11 - 9109

F51

SUYLC 50 В ¥ В.А.Загинайко, М.Ю.Попов

МАКРОГЕНЕРАТОР С ОПТИМИЗАЦИЕЙ ПОИСКА МАКРООПРЕДЕЛЕНИЙ В ПРОЦЕССЕ ТРАНСЛЯЦИИ

В.А.Загинайко, М.Ю.Попов

МАКРОГЕНЕРАТОР С ОПТИМИЗАЦИЕЙ ПОИСКА МАКРООПРЕДЕЛЕНИЙ В ПРОЦЕССЕ ТРАНСЛЯЦИИ

I. Основные определения и постановка задачи.

Целью настоящей работы является описание алгоритма работы макрогенератора, реализованного авторами на ЭВМ БЭСМ-6.

За основу был взят макрогенератор, разработанный одним из авторов на ЭВМ M-20 $^{/I/}$. Входной язык и язык макроопределений рассматриваемого в данной работе транслятора совпадает с языком, описанным в работе $^{/I/}$, а также языком "МАКРОС" системы математического обеспечения ЭВМ БЭСМ-4 $^{/2/}$.

Вначале необходимо напомнить основние положения работи /1/.

Текст программи пользователя, написанной на языке ":ЛАКРОС", представляет собой набор операторов, отделяемых друг от друга символом ";" (точка с запятой). Оператор может быть помеченным или непомеченным. Метка представляет собой идентификатор, отделенный от остальной части оператора двоеточием (как в языке АЛГОЛ-60). Операторы рабочей программы будем называть макровызовами. В процессе трансляции макровызов преобразуется в последовательность операторов автокода, называемую в дальнейшем макрорасширением данного макровызова.

Для организации процесса получения автокодного текста макрогенератору (транслятору с языка "МАКРОС") необходимо задать информацию о способе трансляции конструкций языка "МАКРОС", т.е. макроопределения этих конструкций. Макроопределения в данном случае имеют вид таблицы соответствий между операторами языка "МАКРОС" в некоторой абстрактной форме и результатом трансляции этих операторов в виде последовательности символов автокодного текста.

Непомеченная часть операторов языка "МАКРОС" представляет собой последовательность величин и разделителей. Величина есть последовательность букв и цифр в количестве не более шести (фактически величинами могут быть идентификаторы или целые числа без знака). Разделителем может быть лисо знак (+ - * / f , ; ()) либо основной символ, т.е. последовательность любых символов кроме точки, расположенных между двумя точками. Например, в выражении

.IF. a+1 .GO TO.S:

величинами являются A \dot{I} s . Разделителями являются "IF. "GO TO. (основные символы), а также знаки + и :

Сущность процесса макрогенерации состоит в следуищем. На первом этапе трансляции операторов языка "МАКРОС" (этап выделения понятия) производится выделение величин, вхотящих в состав макровызова (фактических параметров) в специальный буфер, после чего в тексте макровызова они заменяются комбинацией XM (формальными параметрами). М в данном случае представляет собой цифру— относительный адрес текста фактического параметра в буфере фактических параметров. В результате такой замены получается абстрактыва форма оператора программы пользователя.

На втором этапе трансляции производится поиск макроопределения в таблице соответствий, левая часть которого совпадает (как текстовая величина) с абстрактной формой оператора пользователя, полученной на первом этапе.

На третьем этапе (макрогенерация) с помощью правой части найденного на втором этапе макроопределения и таблицы фактических параметров производится выдача макрорасширения, т.е. результата трансляции оператора в виде автокодного текста. Процесс макрогенерации выполняется следующим образом: происходит посимвольная выдача текста правой части макроопределения на выводной текстовый буфер транслируемой программы. Если при выводе встречается комбинация Х№, то вместо нее выдается текст соответствующего фактического параметра. Например, если имеется макровызов

и в таблице соответствий имеется макроопределение

.IF. XI = X2 .GO TO. $X3; \sim, XTA, XI;$, AEX, X2; , UZA, X3; то макрорасширением будет являться следующая последовательность операторов в автокоде "МАДЛЕН":

Оптимизация поиска макроопределения на втором этапе трансляции

Из рассмотрения процесса трансляции видно, что с ростом числа задаваемых транслятору макроопределений замедляется скорость работы второго этапа трансляции (поиск макроопределения в таблице соответствий). При линейном поиске время возрастает пропорционально количеству макроопределений в таблице.

Следует заметить, что макроопределения могут задаваться транслятору пользователем в том же виде (в смысле набивки), что и программа в языке "МАКРОС". При вводе макроопределений препроцессор транслятора преобразует их в таблицу поиска — список, имеющий следующий вид:

тексты левых частей макроопределений

начало списка
(содержится в
ячейке втрет)

тексты правых частей макроопределений

Это сокращает процесс поиска нужного макроопрецеления. Для более существенного уменьшения времени поиска макроопрецеления в рассматриваемом варианте трансилтора был использован метод автоматической генерации программы поиска макроопределения. Нуже цается описание этого метопа.

Получаемая в результате программа поиска (в представлении на языке "МАКРОС") имеет следующий вид:

```
1. CALL.TMDEF,ETMDEF; .IF. FMDEF = INF1 .FISE. LAR1;
CINF1--BTDEF;
.FO to .LABEND;
LAR1:bss,O;
...

(IF. TMDEF = INFK .ELSE. LARK;
CIMFK--BTDEF;
.GO TO. LAREND;
LARK:PSS,O;
...
LAREND: .CALL.SEARC., ESTARC:
```

Поцпрограмма (блок) тмрег читает первую строчку текста макроопределения, полученного на первом этапе, и засылает ее в ячейку

гмрег . Фрагменты программы с номерами I,2,...К формируются

и накапливаются в процессе поиска макроопределений в таблице с новыми начальными фрагментами. Величины стирт ,... стирк , связанные с фрагментами тирт ,... тирк, характеризуют ссылки на начала
фрагментов таблицы поиска, в которых расположены макроопределения,
начинающиеся с фрагмента тирк . Подпрограмма SEARC осуществляет
просмотр таблицы поиска, начиная с макроопределения, ссылка на которое имеется в ячейке втрег . В процессе поиска макроопределе-

ний производится их упорядочение таким образом, чтобы макроопределения, начинающиеся с одного фрагмента, располагались одно за другим (кроме тех макроопределений, которые до данного момента не были испольсованы в задаче на язике "МАКРОС").

Процесс переулорядочения макроопределений и формирования программы поиска выглядит следующим образом. Накапливается таблица начальных фрагментов макроопределений, уже использованных в процессе трансляции. С каждым начальным фрагментом связана ссылка на начало участка упорядоченных макроопределений в таблице поиска, начинающихся с данного фрагмента. Пусть производится поиск нового макроопределения. В этом случае управление передается на сформированную программу поиска. Если начальный фрагмент первого же найденного кагроопределения не совпадает с фрагментом оператора пользователя, выделенным на первом этапе трансляции, в программу поиска вставляется группа команд обработки нового макроопределения. В противном случае несовпадающее макроопределение с тем же самым начальным фрагментом записывается в хвост группы макроопределений с этим начальным фрагментом.

3. Инструкция по пользованию транслятором.

Для организации трансляции перфокарты в загаче пользователя должни располагаться в следующей последовательности:

*NAME ...

WASSIGN TINE

перфокарты транслятора

*EXECUTE

*MAP

таблица макроопределений

*MAC

программа на языке "МАКРОС"

*END

*ASSEMBLER

wREAD DRUM

программы, слецующие за программой на языке "МАКРОС" *EXECUTE

информация, обрабатываемая зацачей wend file

диспетчерский .онец

Перфокарты макроопределений и операторов на языке "МАКРОС" пробиваются в коде УПП или СДС аналогично тому, как готовятся карты на языках автокод или ФОРТРАН. Карта на языке "МАКРОС" должна иметь в конце символ \$ ("доллар") в коде СДС или ◊ ("ромо") в коде УПП. Этим обеспечивается совместимость информации по пробивке с БЭСМ-4, где символам \$ и ◊ соответствует символ ";" ("точка с запятой"). Текстовая карта, у которой отсутствуют упомящутые символы, рассматривается как карта на автокоде "МАЦЛЕН". В программе на языке "МАКРОС" допускается наличие в произвольном месте автокодных карт.

Левая и правая части макроопределений пробиваются на отдельных картах, следующих одна за другой. Каждая карта должна заканчиваться символом № (⋄).

В результате трансляции получается программа на автокоде, причем операторы на языке "МАКРОС" выдаются в качестве комментариев к автоколной программе.

JUTEPATYPA

- В.А.Загинайко. Инвариантное программирование на машины M-20, Минск-22 и БЭСМ-6. Препринт ОИЯИ. PII-3993, 1968 г.
- 2. В.А.Загинайко. Система математического обеспечения БЭСМ-4. Сообщение ОИЯИ, II-6005, Дубна, I97I г.

Рукопись поступила в издательский отдел 5 августа 1975 года.

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕНІ:ОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индекс Тематика 1. Экспериментальная физика высоких энергий 2. Теоретическая физика высоких энергий 3. Экспериментальная нейтронная физика 4. Терретическая физика мизики эмергий 5. MATEMATERA 6. Ядериая спектроскопия и радможимия 7. Физика тяжелых носов 8. Комогеника 9. Ускорители 10. Автоматизация обработки экспериментальных данных 11. Вычислительная математика и техника 13. Техника физического эксперимента 14. Исследования твердых тел и жидкостей ядернымя методами 15. Экспериментальная физика ядерных реакций при низких энергиях 16. Дозиметрия и физика защиты

17. Теория компенсированного состояния

Нет ли пробелов в Вашей библиотеке?

Вы можете получить по почте перечисленные ниже книги, если они не были заказаны ранее.

16-4888	Дозиметрия язлучений и физика за- щиты ускорителей заряженных час- тиц. Дубна, 1969.	250 стр. 2 р. 64 к.
Д1-5969	Труды Международного симпозвума по физике высоких энергий. Дрезден, 1971.	773 стр. 7 р.69 к.
Д-6004	Бинарные реакции адронов при высо- ких энергиях. Дубна, 1971.	768 стр. 7 р. 60 к.
Д10-6142	Труды Международного симпоэнума по вопросам автоматизации обработ- ки данных с пуэмрьковых и искровых камер. Дубна, 1971.	564 стр. 6 р. 14 к.
Д13-6210	Труды VI Международного свыпо- звума по ядерной электроннке. Вар- шава, 1971.	372 стр. 3 р. 67 к.
Д1-6349	Труды ⁽⁾ Международной конференции по физике высоких энергий и структуре ядра. Дубна, 1971,	670 стр. 6 р. 95 к.
Д-6465	Труды Международной школы по структуре ядра. Алушта, 1972.	525 стр. 5 р. 85 к.
P2-6762	Р.М. Мурадян. Автомодельность в янклюзняных реакциях. Лекция, про- читаниая на Школе молодых ученых по физике высоких энергий. Сухуми, 1972.	111 стр. 1 р. 10 к.
Д-6840	Матерналы (1 Международного свы- позвума по физике высоких энергий и элементарных частиц. Штрбске Плесо, ЧССР, 1972.	398 стр. 3 р. 96 к.
13 - 7154	Пропорциональные камеры. Дубна, 1973.	173 стр. 2 р. 20 к.
Д2-7161	Нелокальные, нелинейные и неренор- мируемые теории поля. Алушта, 1973.	280 стр. 2 р. 75 к.

Д1,2-7411	лубоконеупругне в множественные процессы. Дубна, 1973.	507 стр. 5 р. 66 к
Д13-7616	Труды \	372 стр. 3 р. 65 к.
P1.2-7642	Труды Международной школы моло- дых ученых по физике высоких энер- гий. Гомель, 1973.	623 стр. 7 р. 15 к.
Д10-7707	Совещание по программированию и математическим методам решения физических задач. Дубна, 1973.	564 стр. 5 р. 57 к.
Д1,2-7781	Труды III Международного свыпо- звума по физике высоких энергий и элементарных частиц. Синая, 1973.	478 стр. 4 р. 78 к.
Д3-7991	Труды II Международной школы по нейтронной физике. Алушта, 1974.	552 стр. 2 р. 50 к.
Д1,2-8405	Труды I\ Международного свыпо- звума по физике высоких энергий и элементарных частиц. Вариа,1974.	376 стр. 2 р. 05 к.
Д10,11-8450	Труды Международной школы по во- просам вспользования ЭВМ в ядер- ных исследованиях. Ташкент, 1974.	465 стр. 2 р. 46 к.
P1,2-8529	Труды Международной школы-се- минара молодых ученых. Актуаль- ные проблемы физики элементарных частиц. Сочи, 1974.	582 стр. 2 р. 60 к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79,

издательский отдел Объединенного института ядерных исследований.

Нздательский отдел Объединенного института ядерных исследований. Заказ 20070. Тираж 355. уч.-изд. листов 0.4. Редактор 3.5. Колесова Подписано к печати 7.8.75 г.

Корректор Т.Е.Жильцова