



## CSC3170 Tutorial 2



Qi, Xixian (120090691)



2024/01/23

### CONTENT



1 Relational Schema

2 Keys

Relational Algebra



### **Relational Schema**

# Database model

A database model shows the logical structure of a database, including the relationships and constraints that determine how data can be stored and accessed. There are many kinds of data models, including:

- Hierarchical database model
- Relational model
- Network model
- Object-oriented model
- Entity-relationship model
- Document model
- Entity-attribute-value model
- Star schema
- Object-relational model



Fig: Example of relational model

# Database model



Fig: Example of STAR schema

Fig: Example of Entity-relationship model



The relational model was developed in 1970 by EF Codd as a way to model data in a table format, rather than as a diagram. Instead of focusing on the relationships and instances between entities, tables in the relational model show relevant data, how each table is related.

In other words, each 'table' stands for a relation schema in the relational model.

#### Example:

"Each course has a unique **ID**, **Name** and **Accumulated Hours**". relation attributes

| Course        |        |         |
|---------------|--------|---------|
| <u>C-code</u> | C-name | C-Hours |

schema: Course (ID, name, hours)



## ~class • ~instance •

- Database schema -- is the logical structure of the database.
- Database instance -- is a snapshot of the data in the database at a given instant in time.
- Example:
  - schema: instructor (ID, name, dept\_name, salary)
  - Instance:

| ID    | name       | dept_name  | salary |
|-------|------------|------------|--------|
| 22222 | Einstein   | Physics    | 95000  |
| 12121 | Wu         | Finance    | 90000  |
| 32343 | El Said    | History    | 60000  |
| 45565 | Katz       | Comp. Sci. | 75000  |
| 98345 | Kim        | Elec. Eng. | 80000  |
| 76766 | Crick      | Biology    | 72000  |
| 10101 | Srinivasan | Comp. Sci. | 65000  |
| 58583 | Califieri  | History    | 62000  |
| 83821 | Brandt     | Comp. Sci. | 92000  |
| 15151 | Mozart     | Music      | 40000  |
| 33456 | Gold       | Physics    | 87000  |
| 76543 | Singh      | Finance    | 80000  |



- Attributes: properties that define an entity (col).
- Domain: The set of allowable values for each attribute.
- Tuple: a single record in the database (row).

|                                                                                                 |                                                                              | 4                                                                                              |                                                                                                 | attributes (or columns) |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------|
| ID                                                                                              | name                                                                         | dept_name                                                                                      | salary                                                                                          |                         |
| 10101<br>12121<br>15151<br>22222<br>32343<br>33456<br>45565<br>58583<br>76543<br>76766<br>83821 | Srinivasan Wu Mozart Einstein El Said Gold Katz Califieri Singh Crick Brandt | Comp. Sci. Finance Music Physics History Physics Comp. Sci. History Finance Biology Comp. Sci. | 65000<br>90000<br>40000<br>95000<br>60000<br>87000<br>75000<br>62000<br>80000<br>72000<br>92000 | tuples<br>(or rows)     |
| 98345                                                                                           | Kim                                                                          | Elec. Eng.                                                                                     | 80000                                                                                           |                         |



Keys



Q: What are 'keys'?

A: A key is an attribute or a group of attributes in a table.

Q: Why do we implement 'keys'?

A1: Uniqueness. We have mentioned that each record is <u>unique</u> in the schema, which formalizes the notion of <u>super key</u>, <u>primary key</u>, and <u>candidate key</u>.

A2: Association. A simple way to associate with different schema is to copy one's primary key into the other's attribute, which is an image of the linked relation's primary key.



- A super key is any set of attributes whose values, taken together, uniquely identify each row of a table.
- A candidate key is a minimal super key.
- A primary key is the **specific** candidate key that we picked to serve as the unique identifier for rows of this table.





#### **Employees**

| employee_id | first_name | last_name | phone_number |
|-------------|------------|-----------|--------------|
| 1           | Ravi       | Kumar     | 9876543210   |
| 2           | Priya      | Sharma    | 8765432109   |
| 3           | Amit       | Patel     | 7654321098   |
| 4           | Sneha      | Verma     | 6543210987   |

Q1: What are super keys?

Q2: What are candidate keys?

Q3: How many primary keys are possible?



 A foreign key is a column or columns in a table that that are linked to a primary key in a different table.





Relational Algebra



Relational algebra is a procedural query language, which takes instances of relations as input and yields instances of relations as output.

There are 6 basic operators:

select: σ

project: ∏

union: ∪

set difference: -

Cartesian product: x

rename:  $\rho$ 

### Practice 2

Consider a database with the following schema:

```
Person ( <u>name</u>, age, gender )
Frequents ( <u>name</u>, <u>pizzeria</u> ) [Note: visit a lot]
Eats ( <u>name</u>, <u>pizza</u> )
Serves ( <u>pizzeria</u>, <u>pizza</u>, price )
```

Write relational algebra expressions for the following 4 queries:

- a) Find all pizzerias frequented by at least one person under the age of 18.
- b) Find the names of all females who eat either mushroom or pepperoni pizza (or both).
- c) Find the names of all females who eat both mushroom and pepperoni pizza.
- d) Find all pizzerias that serve at least one pizza that Amy eats for less than \$10.00.

## Practice 2 keys

a. 
$$\pi_{pizzeria}(\sigma_{age < 18}(Person) \bowtie Frequents)$$

b. 
$$\pi_{\text{name}} \left( \sigma_{\text{gender = 'female'} \land (\text{pizza = 'mushroom'} \lor \text{pizza = 'pepperon'})} (\text{Person} \bowtie \text{Eats}) \right)$$

c. 
$$\pi_{\text{name}}(\sigma_{\text{gender = 'female'} \land \text{pizza = 'mushroom'}}(\text{Person} \bowtie \text{Eats})) \cap \pi_{\text{name}}(\sigma_{\text{gender = 'female'} \land \text{pizza = 'pepperoni'}}(\text{Person} \bowtie \text{Eats}))$$

d. 
$$\pi_{pizzeria}(\sigma_{name='Amy'}(Eats) \bowtie \sigma_{price<10}(Serves))$$

For more practice questions, you may visit: Relational Algebra Exercises





# Thank you!