Pré-processamento

Prof. Jefferson T. Oliva

Aprendizado de Máquina e Reconhecimento de Padrões (AM28CP) Engenharia de Computação Departamento Acadêmico de Informática (Dainf) Universidade Tecnológica Federal do Paraná (UTFPR) Campus Pato Branco

Sumário

- Amostragem de Dados
- Limpeza de Dados
- Transformação de Dados
- Desbalanceamento

Introdução

Introdução

- Pré-processamento é uma das fases essenciais de um projeto de aprendizado de máquina e é aplicado para diversas finalidades
 - Amostragem
 - Limpeza
 - Lidar com desbalanceamento
 - Transformação

Introdução

- No pré-processamento também inclui:
 - Redução da dimensionalidade*
 - Seleção de atributos*
- Maldição da dimensionalidade
- A etapa de pré-processamento pode ser a mais demorada na mineração de dados

Sumário

- Alguns métodos de aprendizado podem apresentar dificuldades para lidar com número grande de exemplos, como o k-vizinhos mais próximos (KNN - k-nearest neighbors)
- Quanto maior é a quantidade de dados, mais tempo será necessário para treinar um modelo preditivo
- Também, um conjunto muito pequeno pode não ser suficiente para o treinamento de um modelo eficiente
- Se as amostras não forem representativas, o modelo resultante pode não representar o problema real

- É aconselhável que, além do conjunto de amostras não seja grande, os dados obedeça a mesma distribuição estatística do conjunto a partir do qual foi gerado
 - Por exemplo, a média de cada um dos atributos das amostras selecionadas deve ver próxima quando comparada à média do conjunto original
- Métodos de amostragem estatística
 - Aleatória simples
 - Estratificada
 - Progressiva

- Amostragem aleatória simples
 - Cada elemento é selecionado de forma aleatória
 - Amostragem com reposição
 - Amostragem sem reposição

- Amostragem estratificada
 - As amostras são selecionadas de forma balanceada por classe
 - Por exemplo: caso um conjunto original tenha 70% de dados de classe e 30% de classe B, após a amostragem, o conjunto de exemplos selecionados terá a mesma proporção (70/30)
 - Pode acarretar em modelos tendenciosos (favorecimento da classe majoritária)
- Amostragem progressiva
 - Começa com um conjunto de pequeno de amostras
 - No decorrer da aplicação, o conjunto aumenta progressivamente

Sumário

Limpeza de Dados

- Geralmente, os dados não são gerados em formato adequado para a aplicação de métodos de aprendizado de máquina
- Para o melhor desempenho de algoritmos de aprendizado de máquina, é geralmente desejável que os dados estejam "limpos"
 - Entra lixo, sai lixo
 - Correção de problemas nos dados
 - Ruídos
 - Anomalias (outliers)
 - Valores ausentes
 - Valores inconsistentes
 - Valores redundantes

Ruídos

- Possuem valores (erros) diferentes do esperado
- Podem ser causados por problemas nos equipamentos de coleta, transmissão e/ou armazenamento
- Outras causas: falha humana, má fé na coleta, falhas no processo de medição
- Alguns métodos lidam bem com dados ruidosos, outros podem apresentar dificuldades ou incapacidade para processar dados ruidosos
- Podem ser tratados por meio de filtros, como passa-banda

Outliers

 Diversas aplicações têm o objetivo de encontrar anomalias (e.g. fraudes em cartões de crédito)

- Valores ausentes
 - Há diferentes causas para valores ausentes
 - O atributo n\u00e3o foi considerado importante durante a coleta de dados
 - Desconhecimento do valor durante o preenchimento
 - Distração
 - o ...
 - Formas de lidar com valores ausentes
 - Ignorar valores ausentes
 - Descartar exemplos (linhas)
 - Descartar atributos (colunas)
 - Preenchimento de valores (para cada atributo com valores ausentes): média, mediana, moda, heurísticas, etc

Valores ausentes

Idade	Sexo	Peso	manchas	Temperatura	Diagnóstico
18	M	90	não	38,4	Doente
?	F	65	sim	36,0	Saudável
45	F	72	sim	37,5	Doente
20	?	53	não	36,3	Saudável
25	F	48	não	37,9	Doente
29	F	55	sim	39,2	Doente
36	M	70	não	35,8	Saudável
?	F	63	não	40,0	Doente
40	M	82	?	36,0	Saudável

Valores ausentes

Idade	Sexo	Peso	manchas	Temperatura	Diagnóstico
18	M	90	não	38,4	Doente
30	F	65	sim	36,0	Saudável
45	F	72	sim	37,5	Doente
20	F	53	não	36,3	Saudável
25	F	48	não	37,9	Doente
29	F	55	sim	39,2	Doente
36	M	70	não	35,8	Saudável
30	F	63	não	40,0	Doente
40	M	82	não	36,0	Saudável

- Valores inconsistentes
 - Dados podem conter valores inconsistentes (e.g. CEP inválido)
 - Se for o atributo alvo (classe), pode levar a exemplos ambíguos
 - Valores iguais para os mesmos atributos, mas as classes são diferentes
 - Caso não seja possível fazer correções das inconsistências, os exemplos incorretos devem ser descartados

40	М	82	nāo	36,0	Saudável
40	M	82	nāo	36,0	Doente

- Dados redundantes
 - Um exemplo é considerado redundante quando é muito similar a um outro exemplo, ou seja, os atributos possuem valores muito próximos e a classe dos exemplos é a mesma
 - Na limpeza, os exemplos redundantes devem ser removidos

Sumário

- Tem a finalidade de mudar o tipo de um atributo
 - Simbólico para numérico
 - Binarização
 - Numérico para simbólico
 - Normalização
 - ...

- Conversão de valores simbólicos
 - Alguns métodos de aprendizado de máquina trabalham apenas com valores numéricos
 - Exemplo: k-vizinhos mais próximos
 - Valores simbólicos precisam ser convertidos para numéricos
 - A conversão depende da ordenação dos valores
 - Também, essa operação depende da quantidade de valores (e.g., se forem 2, que caracteriza como binário, basta converter símbolo para 0 e o outro, para 1), conforme o exemplo abaixo

$$sim = 1$$
, $n\tilde{a}o = 0$

- Conversão ordinal para numérico
 - Caso o atributo seja ordinal e n\u00e3o esteja no formato num\u00e9rico, o mesmo pode ser convertido de acordo a ordem de valores, como no exemplo abaixo
 - baixo (1), médio (2) e alto (3)

Binarização

- Valores consecutivos diferem em 1 bit
- Codifica cada valor por um número binário
- Exemplo de codificação termômetro para 4 bits: 0000 (0), 0001 (1), 0011 (2), 0111 (3), 1111 (4)
 - O tamanho da sequência de bits depende da quantidade de valores diferentes que o atributo possui

- Discretização de valores
 - Transformar valores numéricos em intervalos (ou categorias)
 - Para isso é necessário a definição de um número de categorias
 - Em seguida, mapear os valores dos atributos
 - Exemplo de discretização para o atributo "idade", cujo valor seria em anos:

• 0-11: infância

12-20: adolescência

21-40: adulto jovem

• 41-65: meia idade

• > 65: idoso

- Normalização
 - Faz com que o conjunto de valores de um atributo assuma uma propriedade
 - Diversos métodos podem ser aplicados, por exemplo:
 - Re-escala (min-max): onde todos os valores são convertidos para o intervalo [0, 1]

$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

 Padronização: caso o conjunto de valores tenha uma distribuição Gaussiana, produz valores cuja média é 0 e desvio-padrão é 1

$$x' = \frac{x - \bar{(}x)}{\sigma}$$

- Outras abordagens para a transformação de dados
 - Extração de características
 - Redução de dimensionalidade

Sumário

Dados Desbalanceados

Dados Desbalanceados

- É dito que uma base de dados está desbalanceada quando o número de exemplos varia em diferentes casos
- O desbalanceamento é natural em alguns domínios
 - Exemplo: detecção de fraudes bancárias
- Também, a causa do desbalanceamento pode ser problemas na coleta de dados
- Diversas técnicas de aprendizado de máquina têm dificuldades em lidar com o desbalanceamento de classes
 - Tendência: favorecer a(s) classe(s) majoritária(s)
- Alternativa: balanceamento artificial
 - Selecionar a mesma quantia de exemplos para cada classe

Dados Desbalanceados

- Outras alternativas para lidar com o desbalanceamento:
 - Aumentar a quantidade de exemplos para as classes minoritárias por meio da geração de dados sintéticos
 - SMOTE (synthetic minority over-sampling technique): novos dados são criados por meio de interpolações entre os exemplos da classe minoritária
 - DASYN (adaptive synthetic sampling): é uma variação do método SMOTE na qual exemplos sintéticos são gerados em regiões onde a densidade da classe minoritária é baixa
 - Induzir modelos de classificação unária: onde apenas a(s)
 classe(s) majoritária(s) é(são) considerada(s) no treinamento
 - Caso haja mais de uma classe majoritária, as mesmas podem ser consideradas uma única classe (detecção de anomalias/outliers)
 - A fronteira de decisão é criada apenas para a(s) classe(s) de interesse, na qual, caso um novo exemplo seja classificado fora dessa limitação, o mesmo é considerado anomalia/outlier

Referências

- BISHOP, C. M.

 Pattern Recognition and Machine Learning.

 Springer, 2006.
- DE CARVALHO, A. P. L. F.
 Métodos Baseados em Distância. Aprendizado de Máquina.
 Slides. Ciência de Computação e Matemática Computacional.
 ICMC/USP, 2015.
- DUDA, Richard O.; HART, Peter E.; STORK, David G. Pattern classification.
 2nd ed. New York, NY: J. Wiley & Sons, 2001.
- RASCHKA, S.; MIRJALILI, V. Python Machine Learning. Packt, 2017.