Preprocesamiento

Paquetes

```
In [1]: install.packages('stepR')

Installing package into '/home/max/R/x86_64-pc-linux-gnu-library/4.2'
(as 'lib' is unspecified)

In [2]: require(stepR)

Loading required package: stepR

Successfully loaded stepR package version 2.1-3.
Several new functions are added in version 2.0-0. Some older functions are deprecated (still working) and may be defunct in a later version. Please read the documentation for more details.
```

Cargando los datos

```
In [3]:
    datos = read.csv("datos.csv")
    head(datos)
```

A data.frame: 6 × 2

```
      timestamp
      value

      chr>
      dbl>

      1
      2014-04-01 00:00:00
      19.76125

      2
      2014-04-01 00:05:00
      20.50083

      3
      2014-04-01 00:10:00
      19.96164

      4
      2014-04-01 00:15:00
      21.49027

      5
      2014-04-01 00:20:00
      20.18774

      6
      2014-04-01 00:25:00
      19.92313
```

Objetivo: Definir intervalos que contengan el patrón regular.

```
In [4]:
#Número de escalones
nc = 35
```

```
In [5]:
         #Calculando el modelo
         modelo = steppath(datos$value)
         #Niveles ajustados
         fitg <- modelo[[nc]]</pre>
         #Calculo de la volatilidad
         r = diff(c(0,fitg$rightEnd))
         media = unlist(sapply(1:nc, function(i){rep(fitg$value[i],r[i])}))
         desv = unlist(sapply(1:nc, function(i){
                            ind = fitg$leftEnd[i]:fitg$rightEnd[i]
                            rep(sqrt(var(datos$value[ind])),r[i])
                     }))
         liminf = media - 1.96*desv
         limsup = media + 1.96*desv
         #Gráfica
         plot(datos$value, type = "p", col = "aquamarine4", ylim = c(0,100))
         lines(media, type = "l", col = "black")
```

```
lines(limsup, type = "l", col = "red")
lines(liminf, type = "l", col = "blue")
```


¿Cuántos escalones son necesarios?

Con **18** segmentos se explica suficiente variabilidad.

```
In [6]:
    varianzas = sapply(2:50, function(i){
        fitg <- modelo[[i]]
        var(resid(fitg, datos$value))
    })
    varianza = var(datos$value)
    plot(100*(varianzas/varianza), type = "h",
        main = "% de variabilidad reduccido",
        ylab = "Porcentaje",
        xlab = "Núm de escalones")</pre>
```

% de variabilidad reduccido


```
In [7]:
         #Número de escalones
         nc = 18
         #Niveles ajustados
         fitg <- modelo[[nc]]</pre>
         #Calculo de la volatilidad
         r = diff(c(0,fitg$rightEnd))
         media = unlist(sapply(1:nc, function(i){rep(fitg$value[i],r[i])}))
         desv = unlist(sapply(1:nc, function(i){
                           ind = fitg$leftEnd[i]:fitg$rightEnd[i]
                           rep(sqrt(var(datos$value[ind])),r[i])
                     }))
         liminf = media - 1.96*desv
         limsup = media + 1.96*desv
         #Gráfica
         plot(datosvalue, type = "p", col = "aquamarine4", ylim = c(0,100))
         lines(media, type = "l", col = "black")
         lines(limsup, type = "l", col = "red")
         lines(liminf, type = "l", col = "blue")
```


Con **35** segmentos se obtiene buena *cobertura*.

```
In [8]:
         porc = sapply(2:70, function(nc){
                  fitg <- modelo[[nc]]</pre>
                  r = diff(c(0,fitg$rightEnd))
                 media = unlist(sapply(1:nc, function(i){rep(fitg$value[i],r[i])}))
                  desv = unlist(sapply(1:nc, function(i){
                            ind = fitg$leftEnd[i]:fitg$rightEnd[i]
                            rep(sqrt(var(datos$value[ind])),r[i])
                      }))
                  liminf = media - 1.96*desv
                  limsup = media + 1.96*desv
                  mean((liminf <= datos$value)*(datos$value<=limsup))</pre>
                    })
         plot(porc, type = "h")
         points(porc)
         points(x = 34, y = porc[34], col = "blue", pch = 19)
```

```
porc[30:40]
which.max(porc[30:40])
```

 $0.9776 \cdot 0.9808 \cdot 0.9824 \cdot 0.9836 \cdot 0.984 \cdot 0.9836 \cdot 0.9824 \cdot 0.982 \cdot 0.9812 \cdot 0.9812 \cdot 0.9808$

5

¿Como cubrir el 100%?

In [9]:

Se redefine el intervalo al error máximo observado.

```
#Número de escalones
          nc = 35
          #Ajustando el intervalo
          fitg <- modelo[[nc]]</pre>
          r = diff(c(0,fitg$rightEnd))
          media = unlist(sapply(1:nc, function(i){rep(fitg$value[i],r[i])}))
          desv = unlist(sapply(1:nc, function(i){
                             ind = fitg$leftEnd[i]:fitg$rightEnd[i]
                             rep(max(abs(datos$value[ind] - media[ind])/1.96,
                                     sqrt(var(datos$value[ind]))),r[i])
                       }))
          liminf = media - 1.96*desv
          limsup = media + 1.96*desv
In [10]:
          mean((liminf <= datos$value)*(datos$value<=limsup))</pre>
         1
In [11]:
          #Gráfica
          plot(datosvalue, type = "p", col = "aquamarine4", ylim = c(0,100))
          lines(media, type = "l", col = "black")
          lines(limsup, type = "l", col = "red")
          lines(liminf, type = "l", col = "blue")
```


¿Qué atributos pueden servir para predecir Y_t y σ_t ?

```
In [12]:
#autocorrelaciones
acf(datos$value, lag.max = 900)
```

Series datos\$value

 Y_{t-1} es relevante y al restarlo $(Y_t - Y_{t-1})$ simplifica las autocorrelaciones.

```
In [13]:
    #autocorrelaciones
    autocorr = acf(diff(datos$value, lag = 1), lag.max = 900)
```

Series diff(datos\$value, lag = 1)


```
In [14]:
  which( abs(autocorr$acf) > 0.2)
```

 $1 \cdot 2 \cdot 109 \cdot 181 \cdot 289 \cdot 469 \cdot 577 \cdot 865$

Los atributos seleccionados para la predicción son:

- Y_{t-1}
- Y_{t-100}
- Y_{t-181}
- Y_{t-289} .

Construyendo la matriz de entrenamiento.

```
In [21]: Tmax = dim(datos)[1]

colnames(datos)[2] = "Y"
    datos$media = media
    datos$radio = desv
    datos$Y1 = c(NA, datos$Y[1:(Tmax-1)])
    datos$Y109 = c(rep(NA,109), datos$Y[1:(Tmax-109)])
    datos$Y181 = c(rep(NA,181), datos$Y[1:(Tmax-181)])
    datos$Y289 = c(rep(NA,289), datos$Y[1:(Tmax-289)])
    head(datos)
```

	A data.frame: 6 × 8												
	timestamp	Y media		radio	Y1	Y109	Y181	Y289					
	<chr></chr>	<dbl></dbl>											
1	2014-04-01 00:00:00	19.76125	20.09437	1.105089	NA	NA	NA	NA					
2	2014-04-01 00:05:00	20.50083	20.09437	1.105089	19.76125	NA	NA	NA					
3	2014-04-01 00:10:00	19.96164	20.09437	1.105089	20.50083	NA	NA	NA					
4	2014-04-01 00:15:00	21.49027	20.09437	1.105089	19.96164	NA	NA	NA					
5	2014-04-01 00:20:00	20.18774	20.09437	1.105089	21.49027	NA	NA	NA					
6	2014-04-01 00:25:00	19.92313	20.09437	1.105089	20.18774	NA	NA	NA					

	A data.frame: 11 × 8												
	timestamp	Υ	media	radio	Y1	Y109	Y181	Y289					
	<chr></chr>	<dbl></dbl>											
2490	2014-04-09 15:25:00	78.18418	79.28923	4.667098	84.84505	19.85330	18.42458	83.19432					
2491	2014-04-09 15:30:00	75.27373	79.28923	4.667098	78.18418	19.99196	21.81562	87.47734					
2492	2014-04-09 15:35:00	73.03914	79.28923	4.667098	75.27373	20.16878	19.11425	84.97692					
2493	2014-04-09 15:40:00	73.27116	79.28923	4.667098	73.03914	19.20251	19.77559	73.23895					
2494	2014-04-09 15:45:00	84.15995	79.28923	4.667098	73.27116	20.66904	21.59445	83.41171					
2495	2014-04-09 15:50:00	79.11609	79.28923	4.667098	84.15995	20.58034	20.70929	80.56722					
2496	2014-04-09 15:55:00	83.61810	79.28923	4.667098	79.11609	20.31129	20.47215	72.26228					
2497	2014-04-09 16:00:00	82.91643	79.28923	4.667098	83.61810	18.45505	20.82225	76.02028					
2498	2014-04-09 16:05:00	74.16566	79.28923	4.667098	82.91643	19.90787	21.31529	86.74792					
2499	2014-04-09 16:10:00	74.28606	79.28923	4.667098	74.16566	19.42491	21.51068	86.81682					

2500 2014-04-09 16:15:00 84.08531 79.28923 4.667098 74.28606 19.96415 20.57056 84.78144

In [24]:

write.csv2(datos, "datos2.csv")