

BLM3620 Digital Signal Processing

Dr. Ali Can KARACA

ackaraca@yildiz.edu.tr

Yıldız Technical University – Computer Engineering

Syllabus

Week	Lectures
1	Introduction to DSP and MATLAB
2	Sinusoids and Complex Exponentials
3	Spectrum Representation
4	Sampling and Aliasing
5	Discrete Time Signal Properties and Convolution
6	Convolution and FIR Filters
7	Frequency Response of FIR Filters
8	Midterm Exam
9	Discrete Time Fourier Transform and Properties
10	Discrete Fourier Transform and Properties
11	Fast Fourier Transform and Windowing
12	z- Transforms
13	FIR Filter Design and Applications
14	IIR Filter Design and Applications
15	Final Exam

For more details -> Bologna page: http://www.bologna.yildiz.edu.tr/index.php?r=course/view&id=5730&aid=3

Lecture #2 – Sinusoids and Complex Exponentials

- Sinusoidal Signals
- Frequency, Period, Phase and Amplitude
- Complex Exponential Signals
- Phasor Addition
- MATLAB Applications

Course Materials

Important Materials:

- James H. McClellan, R. W. Schafer, M. A. Yoder, DSP First Second Edition, Pearson, 2015.
- Lizhe Tan, Jean Jiang, *Digital Signal Processing: Fundamentals and Applications*, Third Edition, Academic Press, 2019.

Auxilary Materials:

- Prof. Sarp Ertürk, Sayısal İşaret İşleme, Birsen Yayınevi.
- Prof. Nizamettin Aydin, DSP Lecture Notes.
- J. G. Proakis, D. K. Manolakis, *Digital Signal Processing Fourth Edition*, Peason, 2014.
- J. K. Perin, Digital Signal Processing, Lecture Notes, Standford University, 2018.

Recall: Tunning Fork

Sinusoids are important part of our world.

SINES and COSINES

Always use the COSINE FORM

$$A\cos(2\pi(440)t+\varphi)$$

• Sine is a special case:

$$\sin(\omega t) = \cos(\omega t - \frac{\pi}{2})$$

Sinusoid Signal

$$A\cos(\omega t + \varphi)$$

• FREQUENCY

 ω

- Radians/sec
- Hertz (cycles/sec)

$$\omega = (2\pi)f$$

• PERIOD (in sec)

$$T = \frac{1}{f} = \frac{2\pi}{\omega}$$

AMPLITUDE

Magnitude

PHASE

Ref. DSP First lecture notes

Some Trigonometric Identities

Number	Equation
1	$\sin^2\theta + \cos^2\theta = 1$
2	$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$
3	$\sin 2\theta = 2\sin\theta\cos\theta$
4	$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$
5	$\cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha \sin\beta$

EXAMPLE of SINUSOID

Given the Formula

$$5\cos(0.3\pi t + 1.2\pi)$$

• Make a plot

PLOT COSINE SIGNAL

$$5\cos(0.3\pi t + 1.2\pi)$$

• Formula defines A, ω , and ϕ

$$A = 5$$

$$\omega = 0.3\pi$$

$$\varphi = 1.2\pi$$

PLOTTING COSINE SIGNAL from the FORMULA

$$|5\cos(0.3\pi t + 1.2\pi)|$$

• Determine **period**:

$$T = 2\pi/\omega = 2\pi/0.3\pi = 20/3$$

Determine a <u>peak</u> location by solving

$$(\omega t + \varphi) = 0 \implies (0.3\pi t + 1.2\pi) = 0$$

- Zero crossing is T/4 before or after
- Positive & Negative peaks spaced by T/2

Time-shifted Sinusoid

$$x(t) = 5\cos(0.3\pi t)$$
 One peak at t = 0

$$x(t+4) = 5\cos(0.3\pi(t+4)) = 5\cos(0.3\pi(t-(-4)))$$

How to determine Amplitude, Phase and Period from a plot

- Measure the period, T
 - Between peaks or zero crossings
 - Compute frequency: $\omega = 2\pi/T$
- Measure time of a peak: t_m
 - Compute phase $= -\omega t_m$
- Measure height of positive peak: A

3 steps

13

(A, ω, ϕ) from a PLOT

$$T = \frac{0.01\text{sec}}{1 \text{ period}} = \frac{1}{100}$$
 $\omega = \frac{2\pi}{T} = \frac{2\pi}{0.01} = 200 \,\pi$

$$t_m = -0.00125 \text{ sec}$$
 $\varphi = -\omega t_m = -(200 \pi)(t_m) = 0.25 \pi$

14

SINE DRILL (MATLAB GUI)

SinDrill is a program that tests the users ability to determine basic parameters of a sinusoid.

After a plot of a sinusoid is displayed, the user must correctly guess its amplitude, frequency, and phase.

Phase is Ambiguous

The cosine signal is periodic

- Period is 2π

$$A\cos(\omega t + \varphi + 2\pi) = A\cos(\omega t + \varphi)$$

$$5\cos(0.3\pi t + 1.2\pi) = 5\cos(0.3\pi t - 0.8\pi)$$

Attenuaniton: Amplitude Varies with Time (Fade Out?)

$$x(t) = A\cos(\omega t + \varphi)$$
 $A(t) = Ae^{-t/\alpha}$

$$A(t) = Ae^{-t/\alpha}$$


```
fs = 8000;
% define array tt for time
 time runs from -1s to +3.2s
% sampled at an interval of 1/fs
tt = 0: 1/fs : 3.2;
xx = 2.1 * cos(2*pi*440*tt + 0.4*pi);
soundsc (xx,fs)
```

```
x(t) = 2.1\cos(880\pi t + 0.4\pi)
```

```
fs = 8000;
tt = 0: 1/fs : 3.2;
yy = exp(-tt*1.2);% exponential decay
yy = xx.*yy;
soundsc(yy,fs)
```

$$y(t) = 2.1e^{-1.2t} \cos(880\pi t + 0.4\pi)$$

Growing Sinuzoid? (Exponential Sinuzoid)

Damped or Growing Sinusoids

A damped or growing sinusoid is given by

$$x(t) = e^{\sigma t} \cos(\omega t + \theta)$$

• Exponential growth $(\sigma > 0)$ or decay $(\sigma < 0)$, modulated by a sinusoid.

Remember: Complex Numbers

Cartesian Coordinate System

- To solve: $z^2 = -1$
 - z = j
 - Math and Physics use z = i
- Complex number: z = x + jy

Polar Coordinate System

$$r^{2} = x^{2} + y^{2}$$

$$\theta = \operatorname{Tan}^{-1}\left(\frac{y}{x}\right)$$

$$x = r \cos \theta$$
$$y = r \sin \theta$$

Euler's Formula (Important!!)

Complex Exponential

- Real part is cosine
- Imaginary part is sine
- Magnitude is one

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

$$re^{j\theta} = r\cos(\theta) + jr\sin(\theta)$$

Remember: Complex Numbers

Complex addition?

Complex multiplication?

Real part:

$$x = \Re\{z\}$$

Imaginary part:

$$y = \Im\{z\}$$

Zdrill tool

https://dspfirst.gatech.edu/matlab/#zdrill

Euler's Formula (Important!!)

Complex Exponential

- Real part is cosine
- Imaginary part is sine
- Magnitude is one

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

$$re^{j\theta} = r\cos(\theta) + jr\sin(\theta)$$

What happens if we write variable instead of Theta?

$$e^{j\omega t} = \cos(\omega t) + j\sin(\omega t)$$

Euler's Formula (Important!!)

What happens if we write variable instead of Theta?

$$e^{j\omega t} = \cos(\omega t) + j\sin(\omega t)$$

Complex Exponential includes a rotating vector, = complex summation of sinuzoids

Euler's Formula Reversed

• Solve for cosine (or sine)

$$e^{j\omega t} = \cos(\omega t) + j\sin(\omega t)$$

$$e^{-j\omega t} = \cos(-\omega t) + j\sin(-\omega t)$$

$$e^{-j\omega t} = \cos(\omega t) - j\sin(\omega t)$$

$$e^{j\omega t} + e^{-j\omega t} = 2\cos(\omega t)$$

$$\cos(\omega t) = \frac{1}{2}(e^{j\omega t} + e^{-j\omega t})$$

INVERSE Euler's Formula

Solve Euler's formula for cosine (or sine)

$$\cos(\omega t) = \frac{1}{2} (e^{j\omega t} + e^{-j\omega t})$$

$$\sin(\omega t) = \frac{1}{2j} (e^{j\omega t} - e^{-j\omega t})$$

Phasor Form of A Cosine

$$A\cos(\omega t + \varphi) = \Re\{(Ae^{j\varphi})e^{j\omega t}\}$$
Complex Amplitude: Constant

Varies with time

Find the COMPLEX AMPLITUDE for:

$$x(t) = \sqrt{3}\cos(77\pi t + 0.5\pi)$$

Use EULER's FORMULA:

$$x(t) = \Re\{\sqrt{3}e^{j(77\pi t + 0.5\pi)}\}\$$
$$= \Re\{\sqrt{3}e^{j0.5\pi}e^{j77\pi t}\}\$$

$$X = \sqrt{3}e^{j0.5\pi}$$

POP QUIZ

Determine the 60-Hz sinusoid whose COMPLEX

AMPLITUDE is:

$$X = \sqrt{3} + j3$$

Convert X to POLAR:

$$x(t) = \Re\{(\sqrt{3} + j3)e^{j(120\pi t)}\}\$$
$$= \Re\{\sqrt{12}e^{j\pi/3}e^{j120\pi t}\}\$$

$$\Rightarrow x(t) = \sqrt{12}\cos(120\pi t + \pi/3)$$

Want to Add Sinusoids with same frequency

Adding sinusoids of common frequency results in sinusoid with **SAME** frequency

$$x(t) = \sum_{k=1}^{N} A_k \cos(\omega_0 t + \varphi_k)$$

$$= A\cos(\omega_0 t + \varphi)$$

Get the new complex amplitude by complex addition

$$\sum_{k=1}^{N} A_k e^{j\varphi_k} = A e^{j\varphi}$$

Want to Add Sinusoids with same frequency

Adding sinusoids of common frequency results in sinusoid with **SAME** frequency

Want to Add Sinusoids with same frequency

• ADD THESE 2 SINUSOIDS:

$$x_1(t) = \cos(77\pi t - \pi)$$
$$x_2(t) = \sqrt{3}\cos(77\pi t + 0.5\pi)$$

• COMPLEX (PHASOR) ADDITION:

$$1e^{-j\pi} + \sqrt{3}e^{j0.5\pi}$$

$$\sqrt{3}e^{j\pi/2} = j\sqrt{3}$$

$$e^{-j\pi} = -1$$

$$-1 + j\sqrt{3} = 2e^{j2\pi/3}$$

$$x_3(t) = 2\cos(77\pi t + \frac{2\pi}{3})$$

Phasor Addition

$$x_{1}(t) = 1.7\cos(2\pi(10)t + 70\pi/180)$$

$$x_{2}(t) = 1.9\cos(2\pi(10)t + 200\pi/180)$$

$$x_{3}(t) = x_{1}(t) + x_{2}(t)$$

$$= 1.532\cos(2\pi(10)t + 141.79\pi/180)$$
Phasor Vectors

Phasor Addition

VECTOR
(PHASOR)
ADD

Phasor Vectors

X₁

Phasor Addition

Output

The second of the phasor Addition of the phasor Additi

Sum of Phasors and Fourier Series

Plotting A Complex Exponential in MATLAB


```
%% Plot signal
tt = 0: 1/10000 : 3.2;
xx = 2.1*exp(2*pi*10*tt*1j);
xx2 = 0.5*exp(2*pi*10*tt*1j);
figure (1); plot (tt, real (xx)); x \lim ([0 \ 0.01]);
figure (2); plot (tt, imag(xx)); xlim([0 0.01]);
%% Simulate Phasor
close all;
figure(1);
for i = 1:length(tt)
   x = real(xx(i)); y = imag(xx(i));
   plot([0 x], [0 y]);
   xlim([-4 4]); ylim([-4 4]); drawnow;
```

```
%% Simulate sum of Phasor-2
close all;
figure(1);
for i = 1:length(tt)
   x = real(xx(i));
   y = imag(xx(i));
   x2 = real(xx2(i));
   y2 = imag(xx2(i));
   plot([0 x],[0 y],'r'); hold on;
   plot([x x+x2], [y y+y2], 'b');
   plot([0 x+x2], [0 y+y2], 'k');
   xlim([-4 \ 4]); ylim([-4 \ 4]);
   drawnow; hold off;
```

end

Sum of Phasors and Fourier Series

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

Demo Link: https://dspfirst.gatech.edu/chapters/02sines/demos/phasors/index.html

Where Can We Use Phase Info: Binaural Sound Localization

Sensor
$$S_{k_1}$$
: $r_{k_1}(t) = s(t - \tau_{k_1})$

Sensor
$$S_{k_2}$$
: $r_{k_2}(t) = s(t - \tau_{k_2})$

Exercise - 1

Define
$$x(t)$$
 as

$$x(t) = 7\cos(100\pi t - 3\pi/4) + 3\cos(100\pi(t + 0.005))$$

(a) Use phasor addition to express x(t) in the form $x(t) = A\cos(\omega_0 t + \phi)$ by finding the numerical values of A and ϕ , as well as ω_0 .

$$x(t) = 7 \cos(100 \pi t - 3\pi l u) + 3\cos(100 \pi t + \pi l 2)$$

$$= Re \left\{ 7e^{-\frac{1}{3}\pi l u} \frac{100 \pi t}{e} + 3e^{-\frac{1}{3}\pi l 2} \frac{100 \pi t}{e} \right\}$$

$$= Re \left\{ \left(7e^{-\frac{1}{3}\pi l u} + 3e^{-\frac{1}{3}\pi l 2} \right) e^{\frac{1}{3}100 \pi t} \right\}$$

$$= \frac{10.8806 \pi}{100 \pi t} \frac{100 \pi t}{100 \pi t}$$

(b) Make two complex plane plots to illustrate how complex amplitudes (phasors) were used to solve part (a). On the first plot, show the two complex amplitudes being added; on the second plot, show your solution as a vector and the addition of the two complex amplitudes as vectors (head-to-tail).

Exercise - 2

Simplify the following complex-valued expressions. In each case reduce the answers to a simple numerical form. Let

$$V = -3 + j3\sqrt{3}.$$

(a) Express jV in polar form. In addition plot jV as a vector.

(d) Express $\Re\{j^3Ve^{j15t}\}$ in the standard "cosine" form.

$$Re\{j^{3}Ve^{j\frac{15t}{5}}\}=Re\{e^{j\frac{\pi}{2}}.6e^{j\frac{2\pi}{3}}e^{j15t}\}=Re\{6e^{j\frac{\pi}{6}}e^{j15t}\}$$

$$=[6\cos(15t+\frac{\pi}{6})]$$

Exercise - 3

The phase of a sinusoid can be related to time shift: $x(t) = A\cos(2\pi f_{\circ}t + \phi) = A\cos(2\pi f_{\circ}(t - t_{1}))$ In the following parts, assume that the period of the sinusoidal wave is T = 20 sec.

(a) "When $t_1 = 5$ sec, the value of the phase is $\phi = 3\pi/2$." Explain whether this is TRUE or FALSE.

$$\varphi = -2\pi(t/\tau)$$

$$t_1=5 \Rightarrow \varphi = -2\pi (5/20) = -\pi/2$$

$$t_1=5=> \varphi=-2\pi(5/20)=-7/2$$
BUT YOU CAN ADD 21, SO $\varphi=-7/2+2\pi=37/2$ TRUE

(b) "When $t_1 = -5$ sec, the value of the phase is $\phi = \pi/4$." Explain whether this is TRUE or FALSE.

$$\varphi = -2\pi \left(-\frac{5}{20}\right) = +\frac{\pi}{2}$$
 [FALSE]

Homework - 1

P-2.10 Define x(t) as

$$x(t) = 2\sin(\omega_0 t + \pi/4) + \cos(\omega_0 t)$$

- (a) Express x(t) in the form $x(t) = A\cos(\omega_0 t + \phi)$.
- (b) Find a complex-valued signal z(t) such that $x(t) = \Re e\{z(t)\}.$

P-2.7 Simplify the following expressions:

(a)
$$3e^{j\pi/3} + 4e^{-j\pi/6}$$

(b)
$$\left(\sqrt{3} - j3\right)^{10}$$

(c)
$$(\sqrt{3} - j3)^{-1}$$

(d)
$$\left(\sqrt{3} - j3\right)^{1/3}$$

(e)
$$\Re \{ j e^{-j\pi/3} \}$$

Give the answers in *both* Cartesian form (x + jy) and polar form $(re^{j\theta})$.

P-2.11 Define x(t) as

$$x(t) = 5\cos(\omega t) + 5\cos(\omega t + 120^{\circ}) + 5\cos(\omega t - 120^{\circ})$$

Simplify x(t) into the standard sinusoidal form: $x(t) = A\cos(\omega t + \phi)$. Use phasors to do the algebra, but also provide a plot of the vectors representing each of the three phasors.