Date: 02/06/21

Black Board

Design and Analysis of Algorithms

Topics:

- Bellman Ford Algorithm
 - Dynamic Programming for SSSPs

Single Sort Shortest Paths for various types of graphs

Directed or Undirected Unweighted Graph	BFS	O(V + E)
Directed Acyclic Graph	DP based on Topological Sort	O(V + E)
Directed or Undirected Weighted Graph (+ve weights)	Greedy Algorithm (Dijkstra's Algorithm)	O((V + E)lg V)
Directed or Undirected Weighted Graph (+ve or -ve weights)	DP Algorithm (Bellman-Ford Algorithm)	O(V E)

The main idea of the Bellman Ford Algorithm

The Relax Method Negative Cycle Rebx (x, y, w) IF dist(y) > dist(x)+ w(x,y) $\int dist(y) = dist(x) + w(x,y)$ pan(y) = xbe deleuted Bellan Ford.

How to use the Relax Method to find the SSSP

The do not know the correct order of Relaxion the edges - therefore we hard relax all edges in ony ordr (repeatedly) Phase: relax all edges in any order. -> Every place correctly (optimally) marks of modes in the next level. - How many phases are needed?

Bellman Ford Example

7 (G=(V,E))= O((V)(E)) Bellman Ford (G=(Y, E, W), S) For each nEE: dist(x) = 00 Par [x] = nil dist(s) = 0, flag = true, i = 1-> (WHILE i< IV) AND. flag = = hre: > flog=false For each (x,y) EE: fly=fly // Relax (n,y,w) 1 extra plage