Міністерство освіти і науки України Національний лісотехнічний університет України

Кафедра інформаційних технологій

Методичні вказівки

до лабораторної роботи №4

" Кореляційно-регресійний аналіз "

з дисципліни

"Інтелектуальний аналіз даних"

для студентів з напрямку підготовки 6.050101 "Комп'ютерні науки"

Лабораторна робота №4

Кореляційно-регресійний аналіз Теоретичні відомості

Алгоритм кореляційно-регресійного аналізу

Даний алгоритм складається з шести частин, кожна з який або їх комбінації можуть складати окремий алгоритм, який буде вирішувати конкретну задачу.

Для реалізації алгоритму слід врахувати, що дані спостережень об'єднані в кореляційну таблицю.

І. Розрахунок вибіркового кореляційного відношення

1. За формулами (3.1) та (3.2) знаходимо суму частот по кожному рядку та по кожному стовпцю (m_i) та загальне число спостережень (n_i) :

$$m_i = \sum_{i=1}^p m_{ji},$$

$$n_i = \sum_{j=1}^q m_{ji},$$

$$n = \sum_{j=1}^p n_i = \sum_{j=1}^q m_j$$

2. Розраховуємо групові середні за формулами (3.3) :

$$\overline{Y}^{(i)} = \frac{1}{n_i} \sum_{j=1}^q y_j m_{ji}, \quad i = 1, 2, ..., p$$

3. Розраховуємо групові дисперсії за формулами (3.4):

$$\widehat{\sigma}_{i}^{2} = \frac{1}{n_{i}} \sum_{i=1}^{q} y_{j}^{2} m_{ji} - (\overline{Y}^{(i)})^{2}, i = 1, 2, ..., p$$

4. Розраховуємо середнє значення спостережуваної ознаки \overline{Y} за формулою (3.5):

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{q} y_{i} m_{j}$$

5. Розраховуємо вибіркову дисперсію $\hat{\sigma}_{y}^{2}$ величини Y за формулою (3.6)

$$\hat{\sigma}_{y}^{2} = \frac{1}{n} \sum_{j=1}^{q} y_{j}^{2} m_{ji} - (\overline{Y})^{2}$$

6. Розраховуємо вибіркову фактичну дисперсію (вибіркову дисперсію групових середніх) за формулою (3.7)

$$\widehat{\sigma}_{\hat{\sigma}}^{2} = \frac{1}{n} \sum_{i=1}^{q} (\overline{Y}^{(i)})^{2} n_{i} - (\overline{Y})^{2}$$

7. Розраховуємо вибіркову залишкову дисперсію $\hat{\sigma}_{y}^{2}$ величини Y за формулою (3.8)

$$\widehat{\sigma}_0^2 = \frac{1}{n} \sum_{i=1}^p (\widehat{\sigma}_i^2 n_i)$$

8. Здійснюємо перевірку за формулою (3.9)

$$\widehat{\sigma}_{y}^{2} = \widehat{\sigma}_{\hat{o}}^{2} + \widehat{\sigma}_{0}^{2}$$

9. Знаходимо вибіркові кореляційні відношення $\hat{\rho}_{xy}$ і вибірковий коефіцієнт детермінації $\hat{\rho}_{xy}^2$ у відповідності з формулами (3.10)

$$\hat{\rho}_{xy} = \sqrt{\hat{\sigma}_{\hat{\sigma}}^2 / \hat{\sigma}_{y}^2}$$
, $\hat{\rho}_{xy}^2 = \hat{\sigma}_{\hat{\sigma}}^2 / \hat{\sigma}_{y}^2$

II. Перевірка гіпотези про значущість вибраного кореляційного відношення.

Перевіримо гіпотезу: $H_0: \rho_{xy} = 0$

1. Розраховуємо не зміщення оцінки генеральної дисперсії σ_0^2 :

A)
$$S_{\hat{\sigma}}^2 = \widehat{\sigma}_{\hat{\sigma}}^2 \frac{n}{(p-1)}$$
;

$$\mathbf{B}) \ S_0^2 = \hat{\sigma}_0^2 \frac{n}{(n-p)};$$

B)
$$S_y^2 = \hat{\sigma}_y^2 \frac{n}{(p-1)}$$
.

2. Розраховуємо спостережуване значення критерію перевірки нульової гіпотези:

$$F_{\hat{\iota}\hat{a}\hat{a}\hat{e}} = S_{\hat{o}}^2 / S_0^2$$

3. Розраховуємо степені свободи k_1 і k_2 F-розподілу Фішера:

$$k_1 = (p-2), k_2 = (n-p)$$

- 4. За таблицею критичних точок F-розподілу Фішера при заданому рівні значимості α знаходимо критичну точку $F_{\alpha \beta}(\alpha,k_1,k_2)$.
- 5. Порівнюємо значення величин $F_{iàde}$ та $F_{\hat{e}\hat{o}}(\alpha,k_1,k_2)$
 - А) якщо $F_{i\hat{a}\hat{d}\hat{e}} > F_{\hat{e}\hat{o}}$, то гіпотеза відхиляється, тобто вважаємо, що $\rho_{xy} \neq 0$; це означає, що існує кореляційна залежність між величинами X та Y;
 - Б) якщо $F_{i\hat{a}\hat{a}\hat{e}} < F_{\hat{e}\hat{o}}$, то приймаємо гіпотезу H_0 , тобто вважаємо, що між величинами X та Y немає кореляційної залежності.

III. Формування гіпотези про вибір функції регресії. Розрахунок вибіркового коефіцієнта кореляції.

1. Розраховуємо $X\overline{Y}, \overline{X}, \overline{Y}, \widehat{\sigma}_x, \widehat{\sigma}_y$ за формулами:

A)
$$\overline{XY} = \frac{1}{n} \sum_{i=1}^{p} x_i \sum_{j=1}^{q} y_j$$
;

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{p} x_i n_i, \quad \overline{Y} = \frac{1}{n} \sum_{i=1}^{q} y_j m_j;$$

B)
$$\hat{\sigma}_x = \sqrt{\frac{1}{n} \sum_{i=1}^p x_i^2 - (\overline{X})^2}$$
, $\hat{\sigma}_y = \sqrt{\frac{1}{n} \sum_{i=1}^q y_i^2 - (\overline{Y})^2}$

2. Розраховуємо вибірковий коефіцієнт \hat{r}_{xy} кореляції за формулою:

$$\widehat{r}_{xy} = \frac{\overline{XY} - \overline{X}\overline{Y}}{\widehat{\sigma}_x \widehat{\sigma}_y}$$
 - Формулювання гіпотези про вигляд функції регресії.

Порівняємо значення величин $|\widehat{r}_{xy}|$ та ρ_{xy} . Якщо значення $|\widehat{r}_{xy}|$ близьке до ρ_{xy} , то це дає основи висунути гіпотезу про те, що функція регресії лінійна. Якщо функція регресії лінійна, то модуль генерального коефіцієнта кореляції рівний генеральному кореляційному відношенню, тобто $|\widehat{r}_{xy}| = \rho_{xy}$.

IV. Побудова вибіркового лінійного рівняння регресії.

1. За розрахунками значень $X\overline{Y}, \overline{X}, \overline{Y}, \hat{\sigma}_x, \hat{\sigma}_y$

Запишемо рівняння регресії

$$\widehat{Y} = \overline{Y} + \widehat{r}_{xy} \frac{\widehat{\sigma}_{y}}{\widehat{\sigma}_{x}} (x - \overline{X})$$

2. Знайдемо середню квадратичну похибку рівняння регресії

$$\widehat{\sigma}_0^{\vec{e}^{3i}} = +\sqrt{(1-\widehat{r}_{xy}^2)\widehat{\sigma}_y^2}$$

V. Перевірка гіпотези про значущість вибіркового коефіцієнта кореляції.

Нехай згідно даним спостереження ми встановимо, що функція регресії лінійна, тобто, $|\widehat{r}_{xy}|$ та ρ_{xy} майже співпадають.

Перевіримо гіпотезу: $H_0: r_{xy} = 0$

- 1. Розрахуємо факторну дисперсію згідно формули $\widehat{\sigma}_{\hat{\sigma}}^2 = \widehat{\sigma}_{\hat{\sigma}}^{2\hat{e}^{ij}} = \widehat{r}_{xy}^2 \widehat{\sigma}_y^2$
- 2. Розрахуємо остаточну дисперсію згідно формули

$$\widehat{\sigma}_0^2 = \widehat{\sigma}_0^{2\ddot{e}^{3f}} = (1 - \widehat{r}_{xy}^2)\widehat{\sigma}_y^2$$

3. Розрахуємо оцінку результативного признака:

$$S_{\hat{\sigma}}^2 = \widehat{\sigma}_{\hat{\sigma}}^2 \cdot n$$
; $S_0^2 = \widehat{\sigma}_0^2 \cdot n/(n-2)$

4. Розраховуємо наближене значення критерію:

$$F_{\mu a \delta n} = S_{\phi}^2 / S_0^2$$

5. Розрахуємо число степенем свободи k_1 і k_2 F-розподілу:

$$k_1 = (2-1) = 1, k_2 = (2-n)$$

- 6. За таблицею критичних точок F-розподілу при заданому рівні значимості α знаходимо критичну точку $F_{\kappa p}(\alpha,k_1,k_2)$
- 7. Порівнюємо $F_{\mu\alpha\delta\eta}$ та $F_{\kappa\rho}(\alpha,k_1,k_2)$:
 - A) якщо $F_{\mu\alpha\delta\alpha} > F_{\kappa\rho}(\alpha, k_1, k_2)$, то гіпотезу H_0 відхиляємо;
 - Б) якщо $F_{\text{набл}} < F_{\kappa p}(\alpha, k_1, k_2)$, то гіпотезу H_0 приймаємо і вважаємо, що вибірковий коефіцієнт кореляції незначний.

VI. Перевірка гіпотези про лінійність функції регресії.

Перевіримо гіпотезу про те, що функція регресії лінійна:

$$H_0 = M(Y/X = x) = M[Y] + r \frac{\sigma_y}{\sigma_x} (x - M[X])$$

В пунктах I та III даного алгоритму були встановлені $\hat{\sigma}_{y}^{2}$, $\hat{\rho}_{yx}^{2}$, \hat{r}_{xy}^{2} . Використовуючи дисперсійну таблицю (Табл.1) виконаємо наступні дії:

1. Знайдемо дисперсію $\hat{\sigma}_{B}^{2}$, обумовлену нелінійною залежністю Y та X згідно формули:

$$\widehat{\sigma}_B^2 = \widehat{\sigma}_y^2 (\widehat{\rho}_{yx}^2 - \widehat{r}_{xy}^2)$$

2. Знаходимо дисперсію $\hat{\sigma}_0^2$, обумовлену залишковим фактором згідно формули:

$$\widehat{\sigma}_0^2 = \widehat{\sigma}_y^2 (1 - \widehat{\rho}_{yx}^2)$$

3. Знаходимо незміщені оцінки S_0^2 та S_B^2 генеральної дисперсійної величини Y:

$$S_B^2 = \hat{\sigma}_B^2 n/(p-2), \ S_0^2 = \hat{\sigma}_0^2 n/(n-p)$$

- 4. Розраховуємо спостережуване значення критерію:
- 5. За таблицею критичних точок F-розподілу при заданому рівні значимості α знаходимо критичну точку $F_{\kappa\rho}(\alpha,k_1,k_2)$
- 6. Порівнюємо $F_{{\scriptscriptstyle Ha}\bar{6}\pi}$ та $F_{{\scriptscriptstyle K}p}(\alpha,k_1,k_2)$:
 - A) якщо $F_{{\scriptscriptstyle Ha\'o}{\scriptscriptstyle 5}} > F_{{\scriptscriptstyle K}p}(\alpha,k_1,k_2)$, то гіпотезу H_0 відхиляємо;

Б) якщо $F_{\text{набл}} < F_{\kappa p}(\alpha, k_1, k_2)$, то гіпотезу H_0 про лінійність функції регресії не відхиляємо.

Завдання до лабораторної роботи

- 1. Запрограмувати алгоритм кореляційно-регресійного аналізу аналізу.
- 2. Вирішити завдання кореляційно-регресійного аналізу відповідно до номеру варіанту.
- 3. Сформулювати висновки в термінах предметної області.
- 4. Оформити звіт до лабораторної роботи

За даними, наведеними в таблиці, виконати кореляційно-регресійний аналіз згідно описаного вище алгоритму.

Завдання передбачає 30 варіантів В кожному варіанті всі можливі значення Y_i величини Y змінюються на постійну величину, рівну номеру варіанта + дані з першої лабораторної.

Накладні витрати (млнгрн.) (X)	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9
Об'єм виконаних робіт (млнгрн.) (Y)	(1,5)	(2,5)	(3,5)	(4,5)	(5,5)	(6,5)	(7,5)	(8,5)
10-20 (15)	4	5						
20-30 (25)	1	3	1					
30-40 (35)	2	3	6	5	3	1		
40-50 (45)		5	9	19	8	7	2	1
50-60 (55)		1	2	7	16	9	4	2
60-70 (65)			1	5	6	4	2	2
70-80 (75)							1	