Cloud Stack

Open Source Cloud

Tim Braner
Seminararbeit Cloud Stack
Hochschule Mannheim
08.06.2012

Agenda

- Geschichte
- Was ist Cloud Stack
- Aufbau
 - Zone
 - Pod
 - Cluster
 - Host
 - Storage
- API
- Demo
- Fazit
- Quelle

Geschichte

- Ursprünglich 2008 von VMOps ins Leben gerufen
- 2010 als Open Source Projekt (GPLv3) unter dem Namen "Cloud Stack"
- 2011 von Citrix übernommen
- 2012 Projekt unter die Apache Lizenz (ASL v2) gestellt

Cloud Stack

- Open Source Projekt
- Infrastructure as a Service (laaS) Plattform
- Verwaltung von Komplexen Netzwerken
- Hochverfügbarkeit*
- Integrierte Benutzerverwaltungssystem
 - Mit möglicher Anbindung an ein Rechnungssystem

Features

- Unterstützt Heterogene Systemlandschaften
- Bietet End-Usern eine einfach zu bedienende Benutzeroberfläche
- Hochverfügbarkeit*
- Hoch Skalierend
- Automatische Lastenverteilung*
- Hardware Monitoring
- Multiple Hypervisor Support

Features - Abstraction Layer

- Einfach Bedienung durch End-User
 - Keine Kenntnisse des Hypervisor nötig
 - Speicherplatz oder Hardware kann bequem dazu geschaltet werden
- Netzwerk Trennung
 - Jeder User verfügt über ein eigenes VLAN
 - Admin kann User einer Security Group zuweisen

Features - Network

- Unterstützte Services
 - DHCP
 - VPN
 - Firewall
 - Routing
 - Load Balancing
 - NAT
- Unterstütze Hardwarelösungen
 - Big IP
 - NetScaler

Aufbau

Zone

- Die Zone ist die größte mögliche Gliederung
- Eine Zone sollte Rechenzentren (geographisch) logisch trennen.

Ein Netzwerkmodell für die gesamte Zone

Pod

- Ein Pod beschreibt z.B. einen Rack
- Alles Server im gleichen im Pod, nutzen das gleichen Gast Netzwerk

Cluster

- Stellt verbund von Hypervisorn dar
- Cluster müssen aus einer homogenen Systemlandschaft bestehen

- Für besseres Load Balancing sollten alle Cluster in einem Pod:
 - Die gleiche Virtualisierungssoftware (KVM, vSphere, XenServer) nutzen
 - Die gleiche Hardware verbaut sein

Host - Hypervisor

- Stellen die Hardware f
 ür die VMs zur Verf
 ügung
- Hosts müssen innerhalb eines Cluster Homogen sein
- Ist stets mit einem Managment Server verbunden

Sollte nicht direkt über das Internet erreichbar sein

Primary / Secondary Storage

- Primary Storage:
 - speichert die Virtual Disks
 - Wird innerhalb eines Clusters geteilt

- Secondary Storage:
 - speichert Templates, ISOs, Snapshots
 - Global erreichbar

Management Server

- Stellt das Webinterface zur Verfügung
- Sorgt für die Lastenverteilung der VMs
- Verwaltung der Cloud internen IP-Adressen
- Verwaltung der Storages
- Verwaltung der Snapshots, ISO Images und Spiegelung eines Servers bei einem Ausfall

API

- API ohne Anmeldung erreichbar über Port 8096 (default: aus)
- API mit Anmeldung erreichbar über Port 8080
- Antwort in XML oder JSON
- Beispiel:
- http://<hostname>/client/api?apikey=<key>&co mmand=<command>&serviceofferingid=<id>&te mplateid=<id>&zoneid=<id>&signature=<signature>

Demo

Fragen?

Vielen Dank für eure Aufmerksamkeit