Preliminary Material

March 20, 2019

1 Gröbner Bases

Throughout this section, let K be a field, and let S denote the polynomial ring $K[x_1, \ldots, x_n]$. In this section, we state all of our lemmas, propositions, and theorems without proof. All of the proofs can be found in [?] and [?].

1.1 Monomials and Polynomials in S

A **monomial** *m* in *S* is a product in *S* of the form

$$m=x_1^{\alpha_1}\cdots x_n^{\alpha_n},$$

where all of the exponents $\alpha_1, \ldots, \alpha_n$ are nonnegative integers. Sometimes we will use the notation x^{α} to denote a monomial, where $\alpha = (\alpha_1, \ldots, \alpha_n)$ is an n-tuple of nonnegative integers. Note that $x^{\alpha} = 1$ when $\alpha = (0, \ldots, 0)$. If $m = x^{\alpha}$ is a monomial in S then the **degree** of m, denoted $\deg(m)$ or $|x^{\alpha}|$, is the sum $\alpha_1 + \cdots + \alpha_n$.

A **polynomial** f in S is a finite linear combination of monomials. We will write a polynomial f in the form

$$f=\sum_{\alpha}a_{\alpha}x^{\alpha},\quad a_{\alpha}\in K,$$

where the sum is over a finite number of n-tuples $\alpha = (\alpha_1, \dots, \alpha_n)$. We call a_α the **coefficient** of the monomial x^α . If $a_\alpha \neq 0$, then we call $a_\alpha x^\alpha$ a **term** of f. The **total degree** of $f \neq 0$, denoted $\deg(f)$, is the maximum $|\alpha|$ such that the coefficient a_α is nonzero.

Remark. If we replace the field K with a ring R, then the same terminology applies to $R[x_1, \ldots, x_n]$. For instance, a **monomial** m in $R[x_1, \ldots, x_n]$ is a product of the form $m = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$, and etc...

1.1.1 Monomial Orderings on S

A **monomial ordering** on S is a total ordering > on $\mathbb{Z}^n_{\geq 0}$, or equivalently, a total ordering on the set of monomials x^{α} , $\alpha \in \mathbb{Z}^n_{>0}$, satisfying

$$x^{\alpha} > x^{\beta} \implies x^{\gamma}x^{\alpha} > x^{\gamma}x^{\beta}$$

for all $\alpha, \beta, \gamma \in \mathbb{Z}_{>0}^n$. We say > is a **global monomial ordering** if $x^{\alpha} > 1$ for all $\alpha \neq 0$.

Remark. By a total ordering, we mean for all distinct pairs of monomials x^{α} and x^{β} , we either have $x^{\alpha} > x^{\beta}$ or $x^{\beta} > x^{\alpha}$. This property is used in induction arguments.

Lemma 1.1. Let > be a monomial ordering, then the following conditions are equivalent.

1. > is a well-ordering, i.e. every nonempty set of monomials has a smallest element, or equivalently, every decreasing sequence

$$x^{\alpha(1)} > x^{\alpha(2)} > x^{\alpha(3)} > \cdots$$

eventually terminates.

- 2. $x_i > 1$ for i = 1, ..., n.
- 3. > is global.
- 4. $\alpha \ge_{nat} \beta$ and $\alpha \ne \beta$ implies $x^{\alpha} > x^{\beta}$, where \ge_{nat} is a partial order on $\mathbb{Z}_{\ge 0}^n$ defined by

$$(\alpha_1,\ldots,\alpha_n) \geq_{nat} (\beta_1,\ldots,\beta_n)$$
 if and only if $\alpha_i \geq \beta_i$ for all i.

1

1.1.2 Examples of Monomial Orderings

We now describe some important examples of global monomial orderings: Let $\alpha, \beta \in \mathbb{Z}_{>0}^n$.

1. (Lexicographical ordering): We say $x^{\alpha} >_{lv} x^{\beta}$ if

there exists
$$1 \le i \le n$$
 such that $\alpha_1 = \beta_1, \dots, \alpha_{i-1} = \beta_{i-1}, \alpha_i > \beta_i$.

2. (Degree reverse lexicographical ordering) We say $x^{\alpha} >_{dv} x^{\beta}$ if

$$|\alpha| = \sum_{i=1}^{n} \alpha_i > |\beta| = \sum_{i=1}^{n} \beta_i$$
, or $|\alpha| = |\beta|$ and there exists $1 \le i \le n$ such that $\alpha_n = \beta_n, \dots, \alpha_{i+1} = \beta_{i+1}, \alpha_i < \beta_i$.

3. (Degree lexicographical ordering) We say $x^{\alpha} >_{Dp} x^{\beta}$ if

$$|\alpha| = \sum_{i=1}^n \alpha_i > |\beta| = \sum_{i=1}^n \beta_i$$
, or $|\alpha| = |\beta|$ and there exists $1 \le i \le n$ such that $\alpha_1 = \beta_1, \dots, \alpha_{i-1} = \beta_{i-1}, \alpha_i > \beta_i$.

Example 1.1. With respect to the lexicographical ordering on K[x,y,z], we have $x^3y^2z >_{lp} x^3yz^3$ and $xy^2z >_{lp} xyz^2$. With respect to the degree reverse lexicographical ordering on K[x,y,z], we have $x^2y^2z^2 >_{dp} x^3yz^3$ and $z^2 >_{dp} x$. With respect to the degree lexicographical ordering on K[x,y,z], we have $x^3yz^3 >_{Dp} x^2y^2z^2$ and $z^2 >_{Dp} x$.

1.1.3 Multidegree, Leading Coefficients, Leading Monomials, and Leading Terms

Let $f = \sum_{\alpha} c_{\alpha} x^{\alpha}$ be a nonzero polynomial in $K[x_1, \dots, x_n]$ and let > be a monomial order.

1. The **multidegree** of f is

$$\operatorname{multdeg}(f) = \max(\alpha \in \mathbb{Z}_{>0}^n \mid c_\alpha \neq 0).$$

2. The **leading coefficient** of f is

$$LC(f) = c_{\mathbf{multdeg}(f)} \in K.$$

3. The **leading monomial** of f is

$$LM(f) = x^{multdeg(f)}$$
.

4. The **leading term** of f is

$$LT(f) = LC(f) \cdot LM(f)$$
.

Example 1.2. Let $f = 4xy^2z + 4z^2 - 5x^3 + 7x^2z^2$. With respect to lexicographical ordering we have

multdeg
$$(f) = (3,0,0)$$

 $LC(f) = -5$
 $LM(f) = x^3$
 $LT(f) = -5x^3$.

With respect to degree reverse lexicographical ordering we have

multdeg
$$(f) = (2,0,2)$$

 $LC(f) = 7$
 $LM(f) = x^2z^2$
 $LT(f) = 7x^2z^2$.

1.2 Monomial Ideals

An ideal $I \subseteq S$ is a called a **monomial ideal** if there is a subset $A \subset \mathbb{Z}_{\geq 0}^n$ (possibly infinite) such that I consists of all polynomials which are finite sums of the form $\sum_{\alpha \in A} h_{\alpha} x^{\alpha}$, where $h_{\alpha} \in K[x_1, \ldots, x_n]$. In this case, we write $I = \langle x^{\alpha} \mid \alpha \in A \rangle$.

Example 1.3. An example of a monomial ideal is given by $I = \langle x^4y^2, x^3y^4, x^2y^5 \rangle \subseteq K[x, y]$. A nontrivial example of a monomial ideal is given by $J = \langle f_1, f_2, f_3, f_4 \rangle = \langle x^2 + x^2y^3, -x^2y^3 + y^3, x^4, y^6 \rangle$. It's easy to see that $J \subset \langle x^2, y^3 \rangle$. For the reverse inclusion, note that

$$x^{2} = f_{1} - x^{2}f_{2} - y^{3}f_{3}$$
$$y^{3} = f_{1} + y^{3}f_{2} - x^{2}f_{4}.$$

So
$$\langle x^2, y^3 \rangle \subset J$$
. Therefore $J = \langle x^2, y^3 \rangle$.

1.2.1 Monomials Ideals are Finitely-Generated

The next theorem tells us that monomials ideals are finitely generated.

Theorem 1.2. (Dickson's Lemma.) Let $I = \langle x^{\alpha} \mid \alpha \in A \rangle$ be a monomial ideal. Then I can be written as $I = \langle x^{\alpha(1)}, \dots, x^{\alpha(s)} \rangle$ where $\alpha(1), \dots, \alpha(s) \in A$.

1.3 Hilbert Basis Theorem

Throughout the rest of this section, fix a monomial ordering on *S*.

1.3.1 Lead Term Ideal

Let *I* be a nonzero ideal in *S*.

1. We denote by LT(I) the set of leading terms of nonzero elements of I. Thus,

$$LT(I) = \{cx^{\alpha} \mid \text{ there exists } f \in I \setminus \{0\} \text{ with } LT(f) = cx^{\alpha}\}.$$

2. We denote by $\langle LT(I) \rangle$ be the ideal generated by the elements of LT(I).

It is easy to see that $\langle \operatorname{LT}(I) \rangle$ is a monomial ideal. Therefore Theorem (1.2) implies that it is finitely-generated. Thus, there are $g_1, \ldots, g_t \in I$ such that $\operatorname{LT}(I) = \langle \operatorname{LT}(g_1), \ldots, \operatorname{LT}(g_t) \rangle$. If we are given an arbitrary finite generating set for I, say $I = \langle f_1, \ldots, f_s \rangle$, then $\langle \operatorname{LT}(f_1), \ldots, \operatorname{LT}(f_s) \rangle$ and $\langle \operatorname{LT}(I) \rangle$ may be *different* ideals. To see this, consider the following example.

Example 1.4. Let $I = \langle f_1, f_2 \rangle$, where $f_1 = x^3 - 2xy$ and $f_2 = x^2y - 2y^2 + x$, and use grlex ordering on monomials in K[x, y]. Then

$$x \cdot (x^2y - 2y^2 + x) - y \cdot (x^3 - 2xy) = x^2,$$

so that $x^2 \in I$. Thus $x^2 = LT(x^2) \in \langle LT(I) \rangle$. However x^2 is not divisible by $LT(f_1) = x^3$ or $LT(f_2) = x^2y$, so that $x^2 \notin \langle LT(f_1), LT(f_2) \rangle$.

1.3.2 Hilbert Basis Theorem

Theorem 1.3. (Hilbert Basis Theorem). Let I be an ideal in S. Then I is finitely-generated.

1.4 Gröbner Bases

Let *I* be a nonzero ideal in *S*. A finite subset $G = \{g_1, \dots, g_t\}$ is said to be a **reduced Gröbner basis** if

- 1. $\langle LT(g_1), \ldots, LT(g_t) \rangle = \langle LT(I) \rangle$
- 2. LC(g) = 1 for all $g \in G$.
- 3. For all $g \in G$, no monomial of g lies in $\langle LT(G \setminus \{g\}) \rangle$.

Let I be an ideal in S and let $G = \{g_1, \ldots, g_t\}$ be the reduced Gröbner basis for I. Then given a polynomial f in S, it can be shown that there are unique polynomials $\pi(f)$ and f^G in S such that $f = \pi(f) + f^G$ and no term of f^G is divisible by any of $LT(g_1), \ldots, LT(g_t)$. We call f^G the **normal form of** f **with respect to** G. It follows from uniqueness of f^G and $\pi(f)$ that taking the normal form of a polynomial is a K-linear map:

$$c_1 f_1^G + c_2 f_2^G = (c_1 f_1 + c_2 f_2)^G$$
(1)

for all $c_1, c_2 \in K$ and $f_1, f_2 \in S$. We will denote this map as $-^G$. An important property of $-^G$ is that it preserves homogeneity. The details can be found in \cite{GPo8} and \cite{CLO15}.

2 Graded Rings and Modules

2.1 Graded Rings

A **graded ring** *R* is a ring together with a direct sum decomposition

$$R=\bigoplus_{i\in\mathbb{Z}_{\geq 0}}R_i,$$

where the R_i are abelian groups which satisfies the condition that if $r_i \in R_i$ and $r_j \in R_j$, then $r_i r_j \in R_{i+j}$. The R_i are called **homogeneous components** of R and the elements of R_i are called **homogeneous elements** of **degree** i. If r is a homogeneous element in R, then we denote the degree of r as deg(r). When we say "Let R be a graded ring", we denote the homogeneous components of R as R_i .

Remark. The condition that $r_i \in R_i$ and $r_j \in R_j$, then $r_i r_j \in R_{i+j}$ is equivalent to the condition that $R_i R_j \subset R_{i+j}$.

Example 2.1. An important example of a graded ring is a ring R endowed with the **trivial grading**: The homogoneous components of R being $R_0 := R$ and $R_i := 0$ for all i > 0. If R is a field, then will *always* assume that R is a graded ring endowed with the trivial grading.

Example 2.2. Let R be a ring and let Q be an ideal in R. The associated graded ring of R with respect to Q is

$$\operatorname{Gr}_Q(R) := \bigoplus_{i=0}^{\infty} Q^i / Q^{i+1}.$$

Multiplication in $Gr_Q(R)$ is induced by the multiplication $Q^i \times Q^j \to Q^{i+j}$.

2.1.1 Weighted Polynomial Rings

Let $w := (w_1, ..., w_n)$ be an n-tuple of positive integers. We define the **weighted polynomial ring** S_w with respect to the **weighted vector** w to be the polynomial ring $R[x_1, ..., x_n]$ endowed with the unique grading such that $\deg(x_\lambda) = \alpha_\lambda$ for all $\lambda = 1, ..., n$. We define the **weighted degree** of a monomial $m = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ in S_w , denoted $\deg_w(m)$, to be

$$\deg_w(m) := \sum_{\lambda=1}^n w_\lambda \alpha_\lambda.$$

This grading gives S_w the structure of a graded ring, where the homogeneous components are given by

$$(S_w)_i := \operatorname{Span}_R \langle m \in S_w \mid m \text{ is monomial of weighted degree } i \rangle.$$

Remark. If w = (1, ..., 1), then we recover the polynomial ring $R[x_1, ..., x_n]$ with the usual grading. If the context is clear, we simply use the letter S to denote this graded ring.

Example 2.3. Let K be a field and let S_w denote the weighted polynomial ring K[x,y,z] with respect to the weighted vector w := (1,2,3). The first few homogeneous components of S_w start out as

$$(S_w)_0 = K$$

$$(S_w)_1 = Kx$$

$$(S_w)_2 = Kx^2 + Ky$$

$$(S_w)_3 = Kx^3 + Kxy + Kz$$

$$\vdots$$

2.2 Graded R-Modules

Let R be a graded ring. An R-module M, together with a direct sum decomposition

$$M = \bigoplus_{i \in \mathbb{Z}} M_i$$

into abelian groups M_i is called a **graded** R-module if $R_iM_j \subset M_{i+j}$ for all $i, j \in \mathbb{Z}$. The M_i are called **homogeneous components** of M and the elements of M_i are called **homogeneous** of **degree** i. If m is a homogeneous element in M, then we denote the degree of m as deg(m). When we say "Let M be a graded R-module", then the homogeneous components of M are denoted M_i .

Remark. Unlike in the case of graded rings, we do *not* usually assume that $M_i = 0$ for i < 0.

Example 2.4. Here's an important example of a graded R-module where we do not necessarily have $M_i = 0$ for i < 0: If M is a graded R-module, then for $j \in \mathbb{Z}$, we define the j'th twist or the j'th shift of M to be the graded R-module

$$M(j) := \bigoplus_{i \in \mathbb{Z}} M(j)_i$$

where $M(j)_i := M_{i+j}$.

2.2.1 Graded R-Submodules

Lemma 2.1. Let M be a graded R-module and $N \subset M$ a submodule. The following conditions are equivalent:

- 1. N is graded R-module whose homogeneous components are $M_i \cap N$.
- 2. *N* is generated by homogeneous elements.
- 3. Let $m = \sum m_i$ with $m_i \in M_i$. Then $m \in N$ if and only if $m_i \in N$ for all $i \in \mathbb{Z}$.

Proof. The proof is straightforward and can be found in \cite{GPo8}.

A submodule $N \subset M$ satisfying the equivalent conditions of Lemma (2.1) is called a **graded** (or **homogeneous**) R-submodule.

Example 2.5. Let K be a field, S_w be the polynoimal ring K[x,y,z] with respect to the weight w=(5,6,15), and let $I=\langle y^5-z^2,x^3-z,x^6-y^5\rangle$ be an ideal S_w . Then I is a homogeneous ideal in S_w .

Remark. Let R be a graded ring, and let I be a homogeneous ideal in R. Then the quotient R/I has an induced structure as a graded ring, where the homogeneous component of R/I is

$$(R/I)_i := (R_i + I)/I \cong R_i/I \cap R_i$$

2.2.2 Homomorphisms of Graded R-Modules

Let M and N be graded R-modules. A homomorphism $\varphi: M \to N$ is called **homogeneous** (or **graded**) of degree j if $\varphi(M_i) \subset N_{i+j}$ for all $i \in \mathbb{Z}$. If φ is homogeneous of degree zero then we will simply say φ is **homogeneous**.

Example 2.6. Let R denote the polynomial ring K[x,y,z,t] with the natural grading. Then the matrix

$$U := \begin{pmatrix} x+y+z & w^2-x^2 & x^3 \\ 1 & x & xy+z^2 \end{pmatrix}$$

defines a homomorphism $U: R(-1) \oplus R(-2) \oplus R(-3) \to R \oplus R(-1)$ which is graded of degree zero.

2.3 Graded *R*-Algebras

Let *R* be a graded ring and let *A* be an *R*-algebra. We say *A* is a **graded** *R***-algebra** if *A* is graded as a ring and $A_0 = R$.

Remark. We do not require A to be a commutative ring.

Example 2.7. Let Q be an ideal in R. The **blowup algebra of** Q **in** R is the R-algebra

$$B_O(R) := R + tQ + t^2Q^2 + t^3Q^3 + \cdots \cong R \oplus Q \oplus Q^2 \oplus Q^3 \oplus \cdots$$

The multiplication in $B_Q(A)$ is induced by the multiplication $Q^i \times Q^j \to Q^{i+j}$.

2.3.1 Homomorphisms of Graded *R*-Algebras

Let A and A' be graded R-algebras. We say $\varphi: A \to A'$ is an R-algebra homomorphism if

1. φ is a homomorphism when viewed as a map of *R*-modules. In other words,

$$\varphi(r_1a_1 + r_2a_2) = r_1\varphi(a_1) + r_2\varphi(a_2)$$

for all $r_1, r_2 \in R$ and $a_1, a_2 \in A$.

2. φ preserves the algebra structure. In other words

$$\varphi(ab) = \varphi(a)\varphi(b)$$

for all $a, b \in A$.

Moreover, we say φ is **graded** if φ is a graded homomorphism when viewed as a map of graded *R*-modules.

2.3.2 Finitely-Generated Graded R-Algebras

An graded *R*-algebra *A* is said to be **finitely-generated** if it is finitely-generated as an *R*-algebra. The next proposition gives a classification of all finitely-generated commutative *R*-algebras.

Proposition 2.1. Every finitely-generated commutative graded R-algebra is isomorphic to S_w/I , where S_w denotes the polynomial ring $R[x_1, \ldots, x_n]$ with respect to the weighted vector $w \in \mathbb{Z}_{\geq 0}^n$ and I is a homogeneous ideal in S_w .

Proof. Let A be a finitely-generated commutative R-algebra with generators a_1, \ldots, a_n . Then for each $\lambda = 1, \ldots, n$ we have $a_{\lambda} \in A_{w_{\lambda}}$, where $w_{\lambda} \in \mathbb{Z}_{\geq 0}$. Let $\varphi : S_w \to A$ be the unique morphism of graded R-algebras such that $\varphi(x_{\lambda}) = a_{\lambda}$ for all $\lambda = 1, \ldots, n$. Then A is isomorphic to $S_w/\text{Ker}(\varphi)$ as graded R-algebras.

2.3.3 Algorithmic Computations in the R-algebra S/I using Gröbner Bases

Let K be a field, S denote the polynomials ring $K[x_1, ..., x_n]$, and I be a homogeneous ideal in S. Then S/I is a graded K-algebra, where the homogeneous component S_i is the K-vector space of all homogeneous polynomials $f \in S$ of degree i. Now fix a monomial ordering and let G be the reduced Gröbner basis of I with respect to this ordering. Define

$$S_I := \operatorname{Span}_K(x^{\alpha} \mid x^{\alpha} \notin \langle \operatorname{LT}(I) \rangle)$$

There is an obvious decompostion of S_I into K-vector spaces $(S_I)_i$, where

$$(S_I)_i = \operatorname{Span}_K(x^{\alpha} \mid x^{\alpha} \notin \langle \operatorname{LT}(I) \rangle \text{ and } \deg(x^{\alpha}) = i).$$

In fact, S/I and S_I are isomorphic as graded K-modules. The isomorphism is given by mapping $\overline{f} \in S/I$ to $f^G \in S_I$. Indeed, K-linearity follows from (1), and the grading is preserved since $-^G$ preserves homogeneity. This makes S/I isomorphic to S_I as graded K-modules. Using this isomorphism, we can carry multiplication from S/I over to S_I to turn S_I into a graded K-algebra: For $f_1, f_2 \in S_I$, we define multiplication as

$$f_1 \cdot f_2 = (f_1 f_2)^G. \tag{2}$$

Defining multilpication this way makes S_I isomorphic to S/I as graded K-algebras. For computational purposes, it is easier to work with S_I rather than S/I.

Example 2.8. Consider S = K[x,y] and $I = \langle xy^2 + y^3, x^3 + x^2y \rangle$. Then $G = \{xy^2 + y^3, x^3 + x^2y\}$ is the reduced Gröbner basis with respect to graded reverse lexicographical order. Thus $LT(I) = \langle xy^2, x^3 \rangle$. Let's do some computations in S_I . First, let's write the first few homogeneous terms of S_I :

$$(S_I)_0 = K$$

 $(S_I)_1 = Kx + Ky$
 $(S_I)_2 = Kx^2 + Kxy + Ky^2$
 $(S_I)_3 = Kx^2y + Ky^3$
 $(S_I)_4 = Ky^4$
 $(S_I)_5 = Ky^5$
:

Next, we multiply some elements together in S_I in the multiplication table below

Example 2.9. Consider S = K[x, y] and $I = \langle xy + y^2, x^3 \rangle$. We first use Singular to compute a Gröbner basis G of I with respect to graded reverse lexicographical ordering. We obtain $G = \{g_1, g_2, g_3\}$. where $g_1 = xy + y^2$, $g_2 = x^3$, and $g_3 = y^4$. Then the first few homogeneous components of I, S/I and S_I are given below

$$I_{0} = 0$$
 $(S/I)_{0} = K \cdot \overline{1}$ $(S_{I})_{0} = K$
 $I_{1} = 0$ $(S/I)_{1} = K\overline{x} + K\overline{y}$ $(S_{I})_{1} = Kx + Ky$
 $I_{2} = Kg_{1}$ $(S/I)_{2} = K\overline{x}^{2} + K\overline{y}^{2}$ $(S_{I})_{2} = Kx^{2} + Ky^{2}$
 $I_{3} = Kxg_{1} + Kyg_{1} + Kg_{2}$ $(S/I)_{3} = K\overline{y}^{3}$ $(S_{I})_{3} = Ky^{3}$
 $I_{4} = S_{4}$ $(S/I)_{4} = 0$ $(S_{I})_{4} = 0$
 \vdots \vdots \vdots

3 Homological Algebra

Throughout this section, let *R* be a ring.

3.1 Chain Complexes over R

A **chain complex** (A, d) **over** R, or simply a **chain complex** if the base ring R is understood from context, is a sequence of R-modules A_i and morphisms $d_i : A_i \to A_{i-1}$

$$(A,d) := \cdots \longrightarrow A_{i+1} \xrightarrow{d_{i+1}} A_i \xrightarrow{d_i} A_{i-1} \longrightarrow \cdots$$

such that $d_i \circ d_{i+1} = 0$ for all $i \in \mathbb{Z}$. The condition $d_i \circ d_{i+1} = 0$ is equivalent to the condition $\operatorname{Ker}(d_i) \supset \operatorname{Im}(d_{i+1})$. With this in mind, we define the *i*th homology of the chain complex (A, d) to be

$$H_i(A,d) := \operatorname{Ker}(d_i)/\operatorname{Im}(d_{i+1}).$$

Let (A,d) and (A',d') be two chain complexes. A **chain map** $\varphi:(A,d)\to (A',d')$ is a sequence of R-module homomorphisms $\varphi_i:A_i\to A'_i$ such that $d'_i\varphi_i=\varphi_{i-1}d'_i$ for all $i\in\mathbb{Z}$. We can view a chain map visually as illustrated in the diagram below:

$$(A,d) := \cdots \longrightarrow A_{i+1} \xrightarrow{d_{i+1}} A_i \xrightarrow{d_i} A_{i-1} \longrightarrow \cdots$$

$$\downarrow^{\varphi_{i+1}} \qquad \downarrow^{\varphi_i} \qquad \downarrow^{\varphi_{i-1}}$$

$$(A',d') := \cdots \longrightarrow A'_{i+1} \xrightarrow{d'_{i+1}} A'_i \xrightarrow{d'_i} A'_{i-1} \longrightarrow \cdots$$

3.1.1 Simplifying Notation

To simplify notation in what follows, we think of R as a trivially graded ring. If (A,d) is a chain complex over R, then we think of (A,d) as a graded R-module A together with a graded endomorphism $d:A\to A$ of degree -1 such that $d^2=0$. We think of d_i as being the restriction of d to A_i and we often refer to d as the **differential**. An element in Ker(d) is called a **cycle** of (A,d) and an element in Im(d) is called a **boundary** of (A,d). We define the **homology** of (A,d) to be

$$H(A,d) := \text{Ker}(d)/\text{Im}(d)$$

Note that $H(A, d) = \bigoplus_{i \in \mathbb{Z}} H_i(A, d)$. We sometimes write H(A) instead of H(A, d) if the differential is understood from context.

Let (A,d) and (A',d') be chain complexes. A chain map $\varphi:(A,d)\to(A',d')$ can be thought of as a homogeneous homomorphism of graded R-modules such that $\varphi d=d'\varphi$.

3.1.2 Homotopy Equivalence

Let φ and ψ be chain maps of chain complexes (A,d) and (A',d'). We say φ is **homotopic** to ψ if there is a graded homomorphism $h:A\to A'$ of degree 1 such that $\varphi-\psi=d'h+hd$.

Proposition 3.1. Let φ and ψ be chain maps of chain complexes (A, d) and (A', d'). Then φ and ψ induce the same map on homology.

Proof. The proof is straightforward and can be found in [?].

3.2 Exact Sequences of Chain Complexes over *R*

Let (A,d), (A',d'), and (A'',d'') be chain complexes and let $\varphi:(A',d')\to (A,d)$ and $\psi:(A,d)\to (A'',d'')$ be chain maps. Then we say that

$$0 \longrightarrow A' \stackrel{\varphi}{\longrightarrow} A \stackrel{\psi}{\longrightarrow} A'' \longrightarrow 0$$

is a **short exact sequence** of chain complexes if the following diagram is commutative with exact rows:

Given such a short exact sequence, we get induced maps $\varphi_i : H_i(A') \to H_i(A)$ and $\psi_i : H_i(A) \to H_i(A'')$, and **connecting homomorphisms** $\gamma_i : H_i(A'') \to H_{i-1}(A')$ which gives rise a long exact sequence in homology:

Remark. It is a nice exercise in homological algebra to work out the details of the connecting map.

3.3 Differential Graded R-Algebras

A **differential graded** R**-algebra** is a chain complex (A, d) such that A is a graded R-algebra and the differential d satisfies the **Leibniz law** with respect to this algebra structure:

$$d(ab) = d(a)b + (-1)^{\deg(a)}ad(b).$$
(3)

for all $a, b \in A$. We say that the differential graded R-algebra is **commutative** if $ab = (-1)^{\deg(a) \deg(b)} ba$. We say that the differential graded R-algebra is **strictly commutative** if in addition $a^2 = 0$ for $\deg(a)$ odd.

3.3.1 Homomorphisms of Differential Graded R-Algebras

Let (A,d) and (A',d') be differential graded R-algebras. We say $\varphi:(A,d)\to (A',d')$ is **homomorphism of differential graded** R-algebras if φ is both a chain map and an R-algebra homomorphism.

3.3.2 Differential Graded A-Modules

Let (A, d) be a differential graded R-algebra. A **differential graded** A-**module** (M, d) is a chain complex (M, d) over R such that M is an A-module and such that the differential d satisfies the **Leibniz law** with respect to the algebra structure in A:

$$d(am) = d(a)m + (-1)^{\deg(a)}ad(m).$$
(4)

for all $a \in A$ and $m \in M$.

3.3.3 Obtaining a Differential Graded A-Module from a Chain Complex over R

Let (A, d_A) be a differential graded R-algebra. If we start with a chain complex over R, then we can construct a differential graded A-module. Indeed, suppose that (B, d_B) is a chain complex over R. Then $A \otimes_R B$ is an A-module and a graded R-module whose homogeneous component in degree k is

$$(A \otimes_R B)_k := \bigoplus_{i+j=k} A_i \otimes_R B_j.$$

We define a differential d on $A \otimes_R B$ by first definining it on the elementary tensors as

$$d(a \otimes b) := d_A(a) \otimes b + (-1)^{\deg(a)} a \otimes d_B(b),$$

for all $a \in A$ and $b \in B$, and then extending it R-linearly everywhere else. A straightforward calculation shows that $d^2 = 0$ and that the differential satisfies Leibniz law (4). Moreover, if B is a differential graded R-algebra, then $A \otimes_R B$ can realized as a differential graded R-algebra and a differential graded R-algebra. Multiplication in $R \otimes_R B$ is defined by

$$(a \otimes b)(a' \otimes b') = (-1)^{\deg(a')\deg(b)}aa' \otimes bb'.$$

for all $a, a' \in A$ and $b, b \in B$.

Remark. In particular, if M is an R-module endowed with the trivial grading, then $(A \otimes_R M, d)$ is a differential graded A-module where the homogeneous component of degree k in $A \otimes_R M$ is $(A \otimes_R M)_k := A_k \otimes_R M$, and d acts on elementary tensors as $d(a \otimes m) = d(a) \otimes m$.

3.4 Exterior Algebras and Koszul Complexes

3.4.1 Exterior Algebras

Let R be a ring and M an R-module. For $k \geq 2$, the kth **exteror power** of M, denoted $\Lambda^k(M)$, is the R-module $M^{\otimes k}/J_k$ where J_k is the submodule of $M^{\otimes k}$ spanned by all $m_1 \otimes \cdots \otimes m_k$ with $m_i = m_j$ for $i \neq j$. For any $m_1, \ldots, m_k \in M$, the coset of $m_1 \otimes \cdots \otimes m_k$ in $\Lambda^k(M)$ is denoted $m_1 \wedge \cdots \wedge m_k$. For completeness, we set $\Lambda^0(M) = R$ and $\Lambda^1(M) = M$. A general element in $\Lambda^k(M)$ will be denoted as ω or η . Since $M^{\otimes k}$ is spanned by tensors $m_1 \otimes \cdots \otimes m_k$, the quotient module $M^{\otimes k}/J_k = \Lambda^k(M)$ is spanned by their images $m_1 \wedge \cdots \wedge m_k$. That is, any $\omega \in \Lambda^k(M)$ is a finite R-linear combination

$$\omega = \sum r_{i_1,\ldots,i_k} m_{i_1} \wedge \cdots \wedge m_{i_k},$$

where there coefficients $r_{i_1,...,i_k}$ are in R and the m_i 's are in M. We call $m_1 \wedge \cdots \wedge m_k$ an **elementary wedge product**. Since $r(m_1 \wedge \cdots \wedge m_k) = (rm_1) \wedge \cdots \wedge m_k$, every element of $\Lambda^k(M)$ is a sum (not just a linear combination) of elementary wedge products.

We define the **exterior algebra** of *M* to be

$$\Lambda(M) := \bigoplus_{k \geq 0} \Lambda^k(M)$$
,

where the multiplication rule given by the wedge product. The exterior algebra of M is a graded R-algebra, where the degree k homogeneous component is $\Lambda^k(M)$. If R does not have characteristic 2, then the exterior algebra of M is **skew commutative**. This means that if ω_1 and ω_2 are homogeneous elements, then

$$\omega_1 \wedge \omega_2 = (-1)^{\deg(\omega_1)\deg(\omega_2)} \omega_2 \wedge \omega_1.$$

The construction of $\Lambda(M)$ is functional in M. This means that if N is another R-module and $\varphi: M \to N$ is an R-module homomorphism. Then φ induces a graded R-algebra homomorphism $\wedge \varphi: \Lambda(M) \to \Lambda(N)$, where $\wedge \varphi$ takes the elementary wedge product $m_1 \wedge \cdots \wedge m_k$ in $\Lambda(M)$ and maps it to the wedge product $\varphi(m_1) \wedge \cdots \wedge \varphi(m_k)$ in $\Lambda(N)$. We will write $\wedge^k \varphi$ to be the induced R-module homomorphism from $\Lambda^k(M)$ to $\Lambda^k(N)$. In particular, if N is free of rank n, then $\Lambda^n(N) \cong R$, and if $\varphi: N \to N$ is an R-module homomorphism, then $\wedge^n \varphi$ is multiplication by the determinant of any matrix representing φ .

Example 3.1. Let R be a ring, $M = Rx_1 \oplus Rx_2 \oplus Rx_3 \cong R^3$, and let $\varphi : M \to M$ be the R-module homomorphism induced by setting $\varphi(x_\mu) = \sum_{\lambda=1}^n a_{\lambda\mu}x_{\lambda}$ for $1 \le \lambda, \mu \le 3$. The matrix representation of φ with respect to the ordered basis $\beta_1 = \{x_1, x_2, x_3\}$ is given by

$$[\varphi]_{\beta_1}^{\beta_1} := \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

To calculate $\wedge^2 \varphi$, we need to see how it acts on the basis vectors $x_{\lambda} \wedge x_{\mu}$ where $1 \leq \lambda < \mu \leq 3$:

$$\varphi(x_1) \wedge \varphi(x_2) = (a_{11}x_1 + a_{21}x_2 + a_{31}x_3) \wedge (a_{12}x_1 + a_{22}x_2 + a_{32}x_3)$$

= $(a_{11}a_{22} - a_{21}a_{12})x_1 \wedge x_2 + (a_{11}a_{32} - a_{31}a_{12})x_1 \wedge x_3 + (a_{21}a_{32} - a_{31}a_{22})x_2 \wedge x_3$

$$\varphi(x_1) \wedge \varphi(x_3) = (a_{11}x_1 + a_{21}x_2 + a_{31}x_3) \wedge (a_{13}x_1 + a_{23}x_2 + a_{33}x_3)$$

= $(a_{11}a_{23} - a_{21}a_{13})x_1 \wedge x_2 + (a_{11}a_{33} - a_{31}a_{13})x_1 \wedge x_3 + (a_{21}a_{33} - a_{31}a_{23})x_2 \wedge x_3$

$$\varphi(x_2) \wedge \varphi(x_3) = (a_{12}x_1 + a_{22}x_2 + a_{32}x_3) \wedge (a_{13}x_1 + a_{23}x_2 + a_{33}x_3)$$

= $(a_{12}a_{23} - a_{22}a_{13})x_1 \wedge x_2 + (a_{12}a_{33} - a_{32}a_{13})x_1 \wedge x_3 + (a_{22}a_{33} - a_{32}a_{23})x_2 \wedge x_3.$

So the matrix representation of $\wedge^2 \varphi$ with respect to the ordered basis $\beta_2 = \{x_1 \wedge x_2, x_1 \wedge x_3, x_2 \wedge x_3\}$ is

$$[\varphi]_{\beta_2}^{\beta_2} = \begin{pmatrix} a_{11}a_{22} - a_{21}a_{12} & a_{11}a_{23} - a_{21}a_{13} & a_{12}a_{23} - a_{22}a_{13} \\ a_{11}a_{32} - a_{31}a_{12} & a_{11}a_{33} - a_{31}a_{13} & a_{12}a_{33} - a_{32}a_{13} \\ a_{21}a_{32} - a_{31}a_{22} & a_{21}a_{33} - a_{31}a_{23} & a_{22}a_{33} - a_{32}a_{23} \end{pmatrix}$$

To calculate $\wedge^3 \varphi$, we need to see how it acts on the basis vector $x_1 \wedge x_2 \wedge x_3$:

$$\varphi(x_1) \wedge \varphi(x_2) \wedge \varphi(x_3) = (a_{11}x_1 + a_{21}x_2 + a_{31}x_3) \wedge (a_{12}x_1 + a_{22}x_2 + a_{32}x_3) \wedge (a_{13}x_1 + a_{23}x_2 + a_{33}x_3)$$

$$= (a_{11}a_{22}a_{33} - a_{11}a_{32}a_{23} + a_{21}a_{32}a_{13} - a_{21}a_{12}a_{33} + a_{31}a_{12}a_{23} - a_{31}a_{22}a_{13})x_1 \wedge x_2 \wedge x_3$$

$$= \det\left([\varphi]_{\beta_1}^{\beta_1} \right) e_1 \wedge e_2 \wedge e_3.$$

3.4.2 Koszul Complexes

Let *R* be a ring, *M* an *R*-module, and $\varphi: M \to R$ an *R*-module homomorphism. The assignment

$$(m_1,\ldots,m_k)\mapsto \sum_{i=1}^k (-1)^{i+1}\varphi(m_i)m_1\wedge\cdots\wedge\widehat{m}_i\wedge\cdots\wedge m_k$$

defines an alternating n-linear map $M^k \to \Lambda^{k-1}(M)$. By the universal property of the kth exterior power, there exists an R-linear map $d_{\varphi}^{(k)}: \Lambda^k(M) \to \Lambda^{k-1}(M)$ with

$$d_{\varphi}^{(k)}(m_1 \wedge \cdots \wedge m_k) = \sum_{i=1}^n (-1)^{i+1} \varphi(m_i) m_1 \wedge \cdots \wedge \widehat{m}_i \wedge \cdots \wedge m_k$$

for all $m_1, \ldots, m_k \in L$. The collection of the maps $d_{\varphi}^{(k)}$ defines a graded *R*-homomorphism

$$d_{\varphi}: \Lambda(M) \to \Lambda(M)$$

of degree -1. A straightforward calculation shows that d_{φ} gives $\Lambda(M)$ the structure of a differential graded R-algebra. This differential graded R-algebra is called the **Koszul complex** of φ and is denoted $\mathcal{K}_{\bullet}(\varphi)$. The **dual Koszul complex** of φ , denoted $\mathcal{K}^{\bullet}(\varphi)$, is the chain complex over R whose underlying graded R-module is $\operatorname{Hom}_R(\mathcal{K}_{\bullet}(\varphi), R)$ and whose differential is d^* , where d^* is obtained by applying the functor $\operatorname{Hom}_R(-, R)$ to d.

Example 3.2. Let R be a ring of characteristic 2, S denote the polynomial ring $R[x_1, \ldots, x_n]$, and let $\varphi: S_1 := \bigoplus_{\lambda=1}^n Rx_\lambda \to R$ be the unique R-linear map such that $\varphi(x_\lambda) = r_\lambda \in R$ for all $\lambda = 1, \ldots, n$. Then $\Lambda(S_1)$ is isomorphic to $S/\langle x_1^2, \ldots, x_n^2 \rangle$ as graded R-algebras. Using this isomorphism, we give $S/\langle x_1^2, \ldots, x_n^2 \rangle$ the structure of a differential graded R-algebra by carrying over the differential d for $A(S_1)$ to a differential $A(S_1)$ for $A(S_1)$ to a differential $A(S_1)$ to a differential $A(S_1)$ for $A(S_1)$ for

4 Simplicial Complexes

A **simplicial complex** Δ on the set $\{x_1, \ldots, x_n\}$ is a collection of subsets of $\{x_1, \ldots, x_n\}$ such that

- 1. The simplicial complex Δ contains all singletons: $\{x_{\lambda}\} \in \Delta$ for all $\lambda = 1, ..., n$.
- **2**. The simplicial complex Δ is closed under containment: if $\sigma \subseteq \{x_1, \ldots, x_n\}$ and $\tau \supset \sigma$, then $\tau \in \Delta$.

An element of a simplicial complex is called a **face** or **simplex**, and a simplex of Δ not properly contained in another simplex of Δ is called a **facet**. A simplex $\sigma \in \Delta$ of cardinality i+1 is called an i-dimensional face or an i-face of Δ . The empty set \emptyset , is the unique face of dimension -1, as long as Δ is not the **void complex** $\{\}$ consisting of no subsets of $\{1, \ldots, n\}$. The **dimension** of Δ , denoted dim(Δ), is defined to be the maximum of the dimensions of its faces (or $-\infty$ if $\Delta = \{\}$).

Example 4.1. The simplicial complex Δ on $\{x_1, x_2, x_3, x_4, x_5\}$ consisting of all subsets of $\{x_1, x_2, x_3\}$, $\{x_2, x_4\}$, $\{x_3, x_4\}$, and $\{x_4\}$ is pictured below

4.1 Simplicial Homology

Let Δ be a simplicial complex on $\{x_1, \dots, x_n\}$. For $i \in \mathbb{Z}$, let

$$S_i(\Delta) := \operatorname{Span}_K (\sigma \in \Delta \mid \dim(\sigma) = i)$$
 and $S(\Delta) := \bigoplus_{i \in \mathbb{Z}} S_i(\Delta)$.

Then $S(\Delta)$ is a graded K-module. Let $\partial: S(\Delta) \to S(\Delta)$ be the unique graded endomorphism of degree -1 such that

$$\partial(\sigma) = \sum_{\lambda \in \sigma} \sigma \setminus \{\lambda\}.$$

By a direct calculation, we have $\partial^2 = 0$, and so $(S(\Delta), \partial)$ forms a chain complex over K; it is called the (**augmented** or **reduced**) **chain complex of** Δ **over** K. The ith homology of $(S(\Delta), \partial)$ is called the ith **reduced homology** of Δ over K, and is commonly denoted as $\widetilde{H}_i(\Delta, K)$.

Example 4.2. For Δ as in Example (4.1), we have

$$S_{2}(\Delta) = \{\{1,2,3\}\}\$$

$$S_{1}(\Delta) = \{\{1,2\},\{1,3\},\{2,3\},\{2,4\},\{3,4\}\}\}\$$

$$S_{0}(\Delta) = \{\{1\},\{2\},\{3\},\{4\},\{5\}\}\}\$$

$$S_{-1}(\Delta) = \{\emptyset\}$$

Choosing bases for the $S_i(\Delta)$ as suggested by the ordering of the faces listed above, the chain complex for Δ becomes

$$0 \longrightarrow K \xrightarrow{\begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}} K^{5} \xrightarrow{\begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}} K^{5} \xrightarrow{\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \end{pmatrix}} K \longrightarrow 0$$

For example, $\partial_2(e_{\{1,2,3\}}) = e_{\{2,3\}} + e_{\{1,3\}} + e_{\{1,2\}}$, which we identify with the vector (1,1,1,0,0). The mapping ∂_1 has rank 3, so $\widetilde{H}_0(\Delta;K) \cong \widetilde{H}_1(\Delta;K) \cong K$ and the other homology groups are 0. Geometrically, $\widetilde{H}_0(\Delta;K)$ is nontrivial since Δ is disconnected and $\widetilde{H}_1(\Delta;K)$ is nontrivial since Δ contains a triangle which is not the boundary of an element of Δ .