# Các phương pháp học máy Machine learning methods

4 TC: 2 LT - 2 TH

Giảng viên: Tạ Hoàng Thắng

tahoangthang@gmail.com

0975399307



#### **Definitions**

**Regression** is a **type of statistical and machine learning tech**nique used to model and analyze the relationship between

- a dependent variable (also called the target or response variable) and one or more
- independent variables (also called features or predictors).

#### The goal of regression is:

to predict the value of the dependent variable based on the values of the independent variables.



#### **Linear Regression**

- Calculate slope, intercept of  $\hat{y} = x*slop + intercept$ :
  - x = [5, 7, 17, 25]
  - y = [20, 40, 70, 90]

Step 1: Calculate X\*Y,  $X^2$ ,  $Y^2$ ,  $\Sigma X$ ,  $\Sigma Y$ ,  $\Sigma X^*Y$ ,  $\Sigma X^2$ , and  $\Sigma Y^2$ 

|     | X  | Υ   | X*Y  | X <sup>2</sup> | Υ <sup>2</sup> |
|-----|----|-----|------|----------------|----------------|
|     | 5  | 20  | 100  | 25             | 400            |
|     | 7  | 40  | 280  | 49             | 1600           |
|     | 17 | 70  | 1190 | 289            | 4900           |
|     | 25 | 90  | 2250 | 625            | 8100           |
| SUM | 54 | 220 | 3820 | 988            | 15000          |
|     |    |     |      |                |                |

#### **Linear Regression**

Calculate slope, intercept of ŷ = x\*slop + intercept:

- x = [5, 7, 17, 25]
- y = [20, 40, 70, 90]
- n = 4

#### Step 2: Calculate intercept (b<sub>0</sub>)

$$[(\Sigma Y)(\Sigma X^2) - (\Sigma X)(\Sigma XY)] / [n(\Sigma X^2) - (\Sigma X)^2]$$

= (220\*988 - 54\*3820) / (4\*988 - 54\*54)

= 10.6949...

|     | X  | Y   | X*Y  | X <sup>2</sup> | Y <sup>2</sup> |  |  |
|-----|----|-----|------|----------------|----------------|--|--|
|     | 5  | 20  | 100  | 25             | 400            |  |  |
|     | 7  | 40  | 280  | 49             | 1600           |  |  |
|     | 17 | 70  | 1190 | 289            | 4900           |  |  |
|     | 25 | 90  | 2250 | 625            | 8100           |  |  |
| SUM | 54 | 220 | 3820 | 988            | 15000          |  |  |
|     |    |     |      |                |                |  |  |

#### **Linear Regression**

- Calculate slope, intercept of ŷ = x\*slop + intercept:
  - x = [5, 7, 17, 25]
  - y = [20, 40, 70, 90]
  - n = 4

#### Step 3: Calculate slope (b<sub>1</sub>)

$$[n(\Sigma XY) - (\Sigma X)(\Sigma Y)] / [n(\Sigma X^2) - (\Sigma X)^2]$$
  
=  $(4*3820 - 54*220) / (4*988 - 54*54)$   
=  $3.2818...$ 

|     | X  | Υ   | X*Y  | X <sup>2</sup> | γ2    |
|-----|----|-----|------|----------------|-------|
|     | 5  | 20  | 100  | 25             | 400   |
|     | 7  | 40  | 280  | 49             | 1600  |
|     | 17 | 70  | 1190 | 289            | 4900  |
|     | 25 | 90  | 2250 | 625            | 8100  |
| SUM | 54 | 220 | 3820 | 988            | 15000 |
|     |    |     |      |                |       |

$$=> \hat{y} = x*3.28... + 10.69...$$

### **Linear Regression**

- Bài tập nhóm: Calculate slope, intercept of ŷ = x\*slop + intercept:
  - x = [7, 5, 3, 1]
  - y = [2, 4, 6, 8]
  - n = 4

#### **Linear Regression**

```
# Import necessary libraries
 2
      import numpy as np
 3
      import matplotlib.pyplot as plt
 4
      from sklearn.linear model import LinearRegression
 5
      from sklearn.model selection import train test split
      from sklearn.metrics import mean squared error, r2 score
 6
 7
 8
      # Create a simple dataset
 9
      # Independent variable (X)
10
      X = \text{np.array}([[1], [2], [3], [4], [5], [6], [7], [8], [9], [10]])
11
12
      # Dependent variable (y)
13
      y = np.array([3, 4, 2, 5, 7, 8, 8, 9, 10, 12])
14
15
      # Split the dataset into training and testing sets
16
      X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)
17
18
      # Create a linear regression model
19
     model = LinearRegression()
```

### **Linear Regression**

```
20
21
      # Train the model
22
      model.fit(X train, y train)
23
24
      # Make predictions using the testing set
25
      y pred = model.predict(X test)
26
27
      # Print the coefficients
28
      print("Coefficient:", model.coef )
29
      print("Intercept:", model.intercept )
30
31
      # Calculate performance metrics
32
      mse = mean squared error (y test, y pred)
33
      r2 = r2 score(y test, y pred)
34
35
      print("Mean Squared Error (MSE):", mse)
36
      print("R-squared:", r2)
37
38
      # Plot the results
39
     plt.scatter(X, y, color='blue') # Plot the original
40
     plt.plot(X test, y pred, color='red', linewidth=2) #
41
      plt.xlabel('X')
42
      plt.ylabel('y')
43
      plt.title('Linear Regression Example')
44
     plt.show()
```

### **Linear Regression**



TẠ HOÀNG THẮNG - Đại học Đà Lạt, Khoa CNTT

#### **Mean Squared Error (MSE)**

- is a metric used to evaluate the accuracy of a regression model.
  - measure the average squared difference between the predicted values and the actual values.
  - a lower MSE indicates better model performance

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

#### Where:

- *n* is the number of data points.
- $y_i$  is the actual value.
- $\hat{y}_i$  is the predicted value.



#### **Mean Squared Error (MSE)**

• Bài tập nhóm: Tính MSE theo yêu cầu sau:

Suppose we have a dataset with 5 actual values y and the corresponding predicted values  $\hat{y}$  from a regression model:

- Actual values (y): [3, 5, 2, 7, 1]
- Predicted values (ŷ): [2.5, 5.3, 2.1, 6.8, 1.2]

#### **Root Mean Squared Error (RMSE)**

is a widely used metric to evaluate the accuracy of a regression model.

$$ext{RMSE} = \sqrt{rac{1}{n}\sum_{i=1}^n(\hat{y}_i-y_i)^2}$$

Bài tập nhóm: Tính MSE theo yêu cầu sau:

Suppose we have a dataset with 5 actual values y and the corresponding predicted values  $\hat{y}$  from a regression model:

- Actual values (y): [3, 5, 2, 7, 1]
- Predicted values (ŷ): [2.5, 5.3, 2.1, 6.8, 1.2]

#### **R-squared**

- the coefficient of determination, is a statistical metric used to evaluate the goodness of fit of a regression model.
  - Indicate how well the independent variables explain the variability of the dependent variable.
  - R-squared values range from 0 to 1
- Scale values:
  - $R^2 = 1$ : perfectly explain any of the variability in the dependent variable
  - $R^2 = 0$ : does not explain any of the variability in the dependent variable
  - 0 < R<sup>2</sup> < 1: explain a proportion of the variability in the dependent variable, close to 1 better.

#### **R-squared**

 the coefficient of determination, is a statistical metric used to evaluate the goodness of fit of a regression model.

$$R^{2} = 1 - \frac{SS_{RES}}{SS_{TOT}} = 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \overline{y})^{2}}$$

 $\bullet$  SS<sub>res</sub> is the sum of squares of residuals (also known as the sum of squared errors, or SSE):

$$ext{SS}_{ ext{res}} = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

•  $SS_{tot}$  is the total sum of squares (which measures the total variance in the dependent variable):

$$ext{SS}_{ ext{tot}} = \sum_{i=1}^n (y_i - ar{y})^2$$

### **R-squared**

• Bài tập nhóm: Tính R-squared theo yêu cầu sau:

Suppose we have a dataset with 5 actual values y and the corresponding predicted values  $\hat{y}$  from a regression model:

- Actual values (y): [3, 5, 2, 7, 1]
- Predicted values (ŷ): [2.5, 5.3, 2.1, 6.8, 1.2]

#### **Multiple Linear Regression**

- is an extension of simple linear regression that models the relationship between a dependent variable and two or more independent variables.
- to understand how changes in the independent variables influence the dependent variable and to predict the dependent variable's value based on those inputs.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_p x_p + \epsilon$$

#### **Multiple Linear Regression**

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + \epsilon$$

- y is the dependent variable (the outcome or target variable).
- $x_1, x_2, \ldots, x_p$  are the independent variables (predictors or features).
- $\beta_0$  is the intercept (the value of y when all independent variables are zero).
- $\beta_1, \beta_2, \dots, \beta_p$  are the coefficients for the independent variables (indicating the change in y for a one-unit change in the corresponding x, holding all other variables constant).
- $\epsilon$  is the error term (representing the difference between the observed and predicted values).

#### **Multiple Linear Regression**

**Example:** Let's say we want to predict a house's price based on its size in square feet, the number of bedrooms, and the age of the house.

```
import numpy as np
     import pandas as pd
3
     import matplotlib.pyplot as plt
     from mpl toolkits.mplot3d import Axes3D
4
     from sklearn.linear model import LinearRegression
7
     # Step 1: Create the Dataset
     np.random.seed (42)
8
     Size = np.random.randint(1500, 4000, 10) # Random sizes between 1500 and 4000 sq ft
     Bedrooms = np.random.randint(2, 6, 10) # Random number of bedrooms between 2 and 6
10
     Price = 50000 + 150 * Size + 30000 * Bedrooms + np.random.randn(10) * 10000 # Price calculation
11
12
13
     df = pd.DataFrame({'Size': Size, 'Bedrooms': Bedrooms, 'Price': Price})
     print (df)
```

#### **Multiple Linear Regression**

**Example:** Let's say we want to predict a house's price based on its size in square feet, the number of bedrooms, and the age of the house.

```
# Step 2: Plot the Data
16
17
      fig = plt.figure(figsize=(10, 7))
18
      ax = fig.add subplot(111, projection='3d')
    _ax.scatter(df['Size'], df['Bedrooms'], df['Price'],
19
                  color='blue', label='Actual Data')
20
21
     ax.set xlabel('Size (sq ft)')
22
      ax.set ylabel ('Bedrooms')
23
      ax.set zlabel('Price ($)')
      plt.title('3D Scatter Plot of House Prices')
24
25
      plt.legend()
      plt.show()
26
```

#### **Multiple Linear Regression**

**Example:** Let's say we want to predict a house's price based on its size in square feet, the number of bedrooms, and the age of the house.

```
# Step 3: Perform Multiple Linear Regression
29
     X = df[['Size', 'Bedrooms']]
     y = df['Price']
31
     model = LinearRegression()
     model.fit(X, y)
33
     print("Intercept:", model.intercept )
      print("Coefficients:", model.coef )
34
35
36
      # Step 4: Plot the Regression Plane
     Size grid, Bedrooms grid = np.meshgrid(np.linspace(Size.min(), Size.max(), 10),
37
                                              np.linspace (Bedrooms.min(), Bedrooms.max(), 10))
39
      Price pred grid = model.intercept + model.coef [0] * Size grid + model.coef [1] * Bedrooms grid
40
      fig = plt.figure(figsize=(10, 7))
41
     ax = fig.add subplot(111, projection='3d')
42
     ax.scatter(df['Size'], df['Bedrooms'], df['Price'], color='blue', label='Actual Data')
43
44
      ax.plot surface (Size grid, Bedrooms grid, Price pred grid, color='red', alpha=0.5, label='Regression Plane')
45
      ax.set xlabel('Size (sq ft)')
      ax.set vlabel ('Bedrooms')
46
      ax.set zlabel('Price ($)')
47
      plt.title('3D Plot with Regression Plane')
48
49
      plt.legend()
      plt.show()
50
51
```

### **Multiple Linear Regression**



### **Multiple Linear Regression: Manual Calculation**

Refer: <a href="https://www.statology.org/multiple-linear-regression-by-hand/">https://www.statology.org/multiple-linear-regression-by-hand/</a>

Suppose we have the following dataset with one response variable y and two predictor

variables  $X_1$  and  $X_2$ :

| У   | $X_1$ | X <sub>2</sub> |
|-----|-------|----------------|
| 140 | 60    | 22             |
| 155 | 62    | 25             |
| 159 | 67    | 24             |
| 179 | 70    | 20             |
| 192 | 71    | 15             |
| 200 | 72    | 14             |
| 212 | 75    | 14             |
| 215 | 78    | 11             |

### **Multiple Linear Regression: Manual Calculation**

Step 1: Calculate  $X_1^2$ ,  $X_2^2$ ,  $X_1y$ ,  $X_2y$  and  $X_1X_2$ .

| y     | $X_1$  | X <sub>2</sub> |
|-------|--------|----------------|
| 140   | 60     | 22             |
| 155   | 62     | 25             |
| 159   | 67     | 24             |
| 179   | 70     | 20             |
| 192   | 71     | 15             |
| 200   | 72     | 14             |
| 212   | 75     | 14             |
| 215   | 78     | 11             |
| 181.5 | 69.375 | 18.125         |
| 1452  | 555    | 145            |

Mean

Sum

Sum

| $X_1^2$ | $X_2^2$ | X <sub>1</sub> y | X <sub>2</sub> y | $X_1X_2$ |
|---------|---------|------------------|------------------|----------|
| 3600    | 484     | 8400             | 3080             | 1320     |
| 3844    | 625     | 9610             | 3875             | 1550     |
| 4489    | 576     | 10653            | 3816             | 1608     |
| 4900    | 400     | 12530            | 3580             | 1400     |
| 5041    | 225     | 13632            | 2880             | 1065     |
| 5184    | 196     | 14400            | 2800             | 1008     |
| 5625    | 196     | 15900            | 2968             | 1050     |
| 6084    | 121     | 16770            | 2365             | 858      |
| 38767   | 2823    | 101895           | 25364            | 9859     |

### **Multiple Linear Regression: Manual Calculation**

#### **Step 2: Calculate Regression Sums.**

Next, make the following regression sum calculations:

• 
$$\Sigma x_1^2 = \Sigma X_1^2 - (\Sigma X_1)^2 / n = 38,767 - (555)^2 / 8 = 263.875$$

• 
$$\Sigma x_2^2 = \Sigma X_2^2 - (\Sigma X_2)^2 / n = 2,823 - (145)^2 / 8 = 194.875$$

• 
$$\Sigma x_1 y = \Sigma X_1 y - (\Sigma X_1 \Sigma y) / n = 101,895 - (555*1,452) / 8 = 1,162.5$$

• 
$$\Sigma x_2 y = \Sigma X_2 y - (\Sigma X_2 \Sigma y) / n = 25,364 - (145*1,452) / 8 = -953.5$$

• 
$$\Sigma x_1 x_2 = \Sigma X_1 X_2 - (\Sigma X_1 \Sigma X_2) / n = 9,859 - (555*145) / 8 = -200.375$$

### **Multiple Linear Regression: Manual Calculation**

#### **Step 2: Calculate Regression Sums.**

Mean

Sum

| y     | $X_1$  | X <sub>2</sub> |
|-------|--------|----------------|
| 140   | 60     | 22             |
| 155   | 62     | 25             |
| 159   | 67     | 24             |
| 179   | 70     | 20             |
| 192   | 71     | 15             |
| 200   | 72     | 14             |
| 212   | 75     | 14             |
| 215   | 78     | 11             |
| 181.5 | 69.375 | 18.125         |
| 1452  | 555    | 145            |

| Sum |  |
|-----|--|

| $X_1^2$ | $X_2^2$ | X <sub>1</sub> y | X <sub>2</sub> y | $X_1X_2$ |
|---------|---------|------------------|------------------|----------|
| 3600    | 484     | 8400             | 3080             | 1320     |
| 3844    | 625     | 9610             | 3875             | 1550     |
| 4489    | 576     | 10653            | 3816             | 1608     |
| 4900    | 400     | 12530            | 3580             | 1400     |
| 5041    | 225     | 13632            | 2880             | 1065     |
| 5184    | 196     | 14400            | 2800             | 1008     |
| 5625    | 196     | 15900            | 2968             | 1050     |
| 6084    | 121     | 16770            | 2365             | 858      |
| 38767   | 2823    | 101895           | 25364            | 9859     |

| Dog | Cume |
|-----|------|
| neg | Sums |

| s | 263.875 | 194.875 | 1162.5 | -953.5 | -200.375 |
|---|---------|---------|--------|--------|----------|

#### **Multiple Linear Regression: Manual Calculation**

### Step 3: Calculate b<sub>0</sub>, b<sub>1</sub>, and b<sub>2</sub>.

The formula to calculate  $b_1$  is:  $[(\Sigma x_2^2)(\Sigma x_1 y) - (\Sigma x_1 x_2)(\Sigma x_2 y)] / [(\Sigma x_1^2)(\Sigma x_2^2) - (\Sigma x_1 x_2)^2]$ 

Thus,  $\mathbf{b_1} = [(194.875)(1162.5) - (-200.375)(-953.5)] / [(263.875) (194.875) - (-200.375)^2] =$ **3.148** 

#### **Multiple Linear Regression: Manual Calculation**

#### Step 3: Calculate $b_0$ , $b_1$ , and $b_2$ .

The formula to calculate  $b_2$  is:  $[(\Sigma x_1^2)(\Sigma x_2 y) - (\Sigma x_1 x_2)(\Sigma x_1 y)] / [(\Sigma x_1^2)(\Sigma x_2^2) - (\Sigma x_1 x_2)^2]$ 

Thus,  $\mathbf{b_2} = [(263.875)(-953.5) - (-200.375)(1152.5)] / [(263.875) (194.875) - (-200.375)^2] = -1.656$ 

The formula to calculate  $b_0$  is:  $\overline{y} - b_1 \overline{X}_1 - b_2 \overline{X}_2$ 

Thus,  $\mathbf{b_0} = 181.5 - 3.148(69.375) - (-1.656)(18.125) = -6.867$ 

#### **Multiple Linear Regression: Manual Calculation**

Step 5: Place  $b_0$ ,  $b_1$ , and  $b_2$  in the estimated linear regression equation.

The estimated linear regression equation is:  $\hat{y} = b_0 + b_1^*x_1 + b_2^*x_2$ 

In our example, it is  $\hat{y} = -6.867 + 3.148x_1 - 1.656x_2$ 

### **Multiple Linear Regression: Manual Calculation**

#### Bài tập nhóm:

- Tính b0, b1, và b2 của MLR cho bảng dữ liệu:
  - Y = [1, 0, 1, 0]
  - X1 = [170, 155, 1650, 165]
  - X2 = [75, 45, 56, 49]

### **Polynomial Regression**

- is a type of regression analysis where the relationship between the independent variable and the dependent variable is modeled as an n-th degree polynomial.
- Unlike simple linear regression, which fits a straight line to the data, polynomial regression fits a curved line to capture more complex relationships.

### **Polynomial Regression**

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \dots + \beta_n x^n + \epsilon$$

#### where:

- $\beta_0$  is the intercept,
- $\beta_1, \beta_2, \ldots, \beta_n$  are the coefficients of the polynomial terms,
- x is the independent variable,
- y is the dependent variable,
- $\epsilon$  is the error term.

### **Polynomial Regression**

```
import numpy as np
      import matplotlib.pyplot as plt
 3
      from sklearn.preprocessing import PolynomialFeatures
 4
      from sklearn.linear model import LinearRegression
      from sklearn.pipeline import make pipeline
 6
      # Generate example data
 8
      np.random.seed(0)
      X = \text{np.sort}(5 * \text{np.random.rand}(100, 1), axis=0)
10
      y = np.sin(X).ravel() + np.random.normal(0, 0.1, X.shape[0])
11
12
      # Fit polynomial regression model
13
      degree = 3
14
      poly = PolynomialFeatures (degree)
      X poly = poly.fit transform(X)
15
      model = LinearRegression()
16
17
      model.fit(X poly, y)
18
19
      # Predict using the model
20
      X fit = np.linspace (0, 5, 100) [:, np.newaxis]
21
      X fit poly = poly.transform(X fit)
      y fit = model.predict(X fit poly)
```

### **Polynomial Regression**

```
# Fit polynomial regression model
12
13
      degree = 3
      poly = PolynomialFeatures (degree)
14
      X poly = poly.fit transform(X)
15
16
      model = LinearRegression()
17
      model.fit(X poly, y)
18
19
      # Predict using the model
     X fit = np.linspace (0, 5, 100) [:, np.newaxis]
21
      X fit poly = poly.transform(X fit)
22
      y fit = model.predict(X fit poly)
23
24
      # Plot the results
      plt.scatter(X, y, color='blue', label='Data')
25
      plt.plot(X_fit, y fit, color='red', label='Polynomial Regression')
26
27
      plt.xlabel('X')
      plt.ylabel('y')
28
      plt.title('Polynomial Regression (Degree 3)')
29
30
      plt.legend()
      plt.show()
31
32
```

### **Polynomial Regression**

