Análise de sobrevivência e confiabilidade

Introdução

Prof. Paulo Cerqueira Jr Faculdade de Estatística - FAEST Instituto de Ciências Exatas e Naturais - ICEN

https://github.com/paulocerqueirajr

Representação do tempo de sobrevivência

Representação do tempo de sobrevivência

- Uma representação simples do mecanismo de censura aleatória é feita usando duas variáveis aleatórias.
- ullet Seja Y uma variável aleatória representando o tempo de falha de um paciente;
- ullet Seja C uma variável aleatória independente de T (censura não informativa), representando o tempo de censura associado a este paciente.
- O tempo observado é representado por

$$t=\min(Y,C) \quad e \quad \delta = \left\{ egin{array}{ll} 1, & Y \leq C \ 0, & Y > C \end{array}
ight.$$

4

Representação dos dados de sobrevivência Exemplos

Tabela: Dados de 32 pacientes com AIDS.

	3	18	29	54	60	84	110	112	116	123
145	151	151	158	173	194	214	329	331	371	408
490	514	541	555	688	780	801	858	887	998	

Tabela: Tempos de sobrevivência observados no estudo de hepatite

Grupo	Tempo de sobrevivência em semanas				
Controle	1+, 2+, 3, 3, 3+, 5+, 5+, 16+, 16+, 16+, 16+, 16+, 16+				
Esteróide	1, 1, 1, 1+, 4+, 5, 7, 8, 10, 10+, 12+, 16+, 16+, 16+				

5

Função de sobrevivência

Qual é a probabilidade de um paciente com aids sobreviver 365 dias ou mais? Isto é, qual a probabilidade de T ser maior do que um determinado valor t=365? Ou, mais formalmente, qual é P(T>365)?

- Esta é uma das principais funções probabilísticas usadas para descrever estudos de sobrevivência.
- A função de sobrevivência é definida como a probabilidade de uma observação não falhar até um certo tempo t, ou seja, a probabilidade de uma observação sobreviver ao tempo t.
- Em termos probabilísticos, isto é escrito como

$$S(t) = P(T > t).$$

- ullet Em consequência, a função de distribuição acumulada é dada por F(t)=1-S(t).
- ullet Definida como a probabilidade de uma observação não sobreviver ao tempo t.

Função de sobrevivência

Estas curvas, supostas representarem as funções de sobrevivência de dois grupos diferentes de pacientes, o grupo 1 tratado com a droga A e o grupo 2 com a droga B.

Note, por exemplo, que o tempo de vida dos pacientes do grupo 1 é superior ao dos pacientes do grupo 2.

Para os pacientes do grupo 1, o tempo para o qual cerca de 50% (tempo mediano) deles estarão mortos é de 20 anos, enquanto que para os pacientes do grupo 2, este tempo é menor (10 anos).

Representação dos dados de sobrevivência

- Os dados de sobrevivência para o indivíduo $i(i=1,\ldots,n)$ sob estudo, são representados, em geral, pelo par $(t_i,\delta_i),$
- t_i : o tempo de evento ou de censura e δ_i a variável indicadora de falha ou censura, ou seja,

$$\delta_i = egin{cases} 1, & t_i ext{ \'e um tempo de evento} \ 0, & t_i ext{ \'e um tempo de censura} \end{cases}$$

• Na presença de covariáveis medidas no i-ésimo indivíduo tais como, dentre outras, $x_i = (\text{sexo}, \text{idade}, \text{tratamento recebido}),$

$$(y_i, \delta_i, x_i)$$
.

• Na presença de censura intervalar temos $(l_i, u_i, \delta_i, x_i)$, em que l_i e u_i são os limites inferiores e superiores observados, respectivamente.

Função Risco ou taxa de falha

- Qual é o risco de um paciente com aids vir a óbito após sobreviver 365 dias?
- Esse risco de morrer aumenta ou diminui com o tempo?

h(t): probabilidade instantânea de um indivíduo sofrer o evento em um intervalo de tempo t e $(t+\epsilon)$ dado que ele sobreviveu até o tempo t.

Sendo ϵ infinitamente pequeno, $\lambda(t)$ expressa o risco instantâneo de ocorrência de um evento, dado que até então o evento não tenha ocorrido.

Função Risco ou taxa de falha

$$h(t) = \lim_{\epsilon o 0} rac{P(t < T < t + \epsilon | T \geq t)}{\epsilon}$$

- h(t) também é denominada:
 - função ou taxa de incidência,
 - força de infecção,
 - taxa de falha,
 - força de mortalidade,
 - força de mortalidade condicional.
- Apesar do nome risco, h(t) é uma taxa (tempo⁻¹).

Pode assumir qualquer valor positivo (não é probabilidade)

Estimando a função taxa de falha

Na ausência de censuras, temos que a fórmula para estimar a função de taxa de falha é dada por

$$\hat{h}_x(t) = rac{N_x(t)}{R_x(t) imes \Delta_x}$$

 $N_x(t)$: Número de eventos observados no intervalo de classe x.

 Δ_x : amplitude de x.

Uma maneira alternativa de estimar $\lambda(t)$ é utilizar as relações entre S(t), f(t) e h(t).

Comum nas tábuas de vida - demografia.

Estimando função de sobrevivência

Intervalo	$R_x(t)$	$\hat{{S}}_x(t)$
(0,3]	32	1.00000
(3,18]	31	0.96875
(18,29]	30	0.93750
(29,54]	29	0.90625
(54,60]	28	0.87500
(60,84]	27	0.84375
(84,110]	26	0.81250
(110,112]	25	0.78125
(112,116]	24	0.75000
(116,123]	23	0.71875
(123,134]	22	0.68750
(134,145]	21	0.65625

Intervalo	$R_x(t)$	$\hat{S}_x(t)$
(145,151]	20	0.62500
(151,158]	18	0.56250
(158,173]	17	0.53125

Tabela: Estimativa da sobrevivência para os 32 pacientes com AIDS.

Estimando a função taxa de falha

$R_x(t)$	$N_x(t)$	Δ_x	$\hat{h}_x(t)$
32	1	3	0.01042
31	1	15	0.00215
30	1	11	0.00303
29	1	25	0.00138
28	1	6	0.00595
27	1	24	0.00154
26	1	26	0.00148
25	1	2	0.02000
24	1	4	0.01042
23	1	7	0.00621
22	1	11	0.00413
21	1	11	0.00433
	32 31 30 29 28 27 26 25 24 23 22	32 1 31 1 30 1 29 1 28 1 27 1 26 1 25 1 24 1 23 1 22 1	32 1 3 31 1 15 30 1 11 29 1 25 28 1 6 27 1 24 26 1 26 25 1 2 24 1 4 23 1 7 22 1 11

Intervalo	$R_x(t)$	$N_x(t)$	Δ_x	$\hat{h}_x(t)$
(145,151]	20	2	6	0.01667
(151,158]	18	1	7	0.00794
(158,173]	17	1	15	0.00392

Tabela: Estimativa da função de taxa de falha para os 32 pacientes com AIDS.

Comportamentos da função de taxa de falha

Comportamentos da função de taxa de falha

Função taxa de falha acumulada

- Qual o risco de um paciente com aids vir a óbito no primeiro ano após o diagnóstico?
- Qual é o risco dele vir a óbito nos primeiros 2 anos?

H(t): função de taxa de falha (risco) acumulada.

Mede o risco de ocorrência do evento até o tempo t.

É a soma (integral) de todos os riscos em todos os tempos até o tempo t

$$H(t) = \int_0^t h(u) du.$$

Também é uma taxa, logo não está restrita ao intervalo [0;1].

Estimando H(t)

$$\hat{H}_x(t) = \sum_{i=1}^{x-1} \hat{h}_x(t) imes \Delta_x.$$

- O risco acumulado até o tempo t é igual a:
 - lacktriangle o risco acumulado até o tempo t-1 mais
 - lacktriangle o risco instantâneo do período anterior vezes o intervalo de tempo até t.

Especificando o Tempo de Sobrevivência Estimando H(t)

Intervalo	$R_x(t)$	$N_x(t)$	Λ	$\hat{h}_x(t)$	$\hat{H}_x(t)$
	. ,	. ,	Δ_x		
(0,3]	32	1	3	0.01042	0.0000
(3,18]	31	1	15	0.00215	0.03125
(18,29]	30	1	11	0.00303	0.06351
(29,54]	29	1	25	0.00138	0.09684
(54,60]	28	1	6	0.00595	0.13132
(60,84]	27	1	24	0.00154	0.16704
(84,110]	26	1	26	0.00148	0.20408
(110,112]	25	1	2	0.02000	0.24254
(112,116]	24	1	4	0.01042	0.28254
(116,123]	23	1	7	0.00621	0.32420
(123,134]	22	1	11	0.00413	0.36768
(134,145]	21	1	11	0.00433	0.41314

Intervalo	$R_x(t)$	$N_x(t)$	Δ_x	$\hat{h}_x(t)$	$\hat{H}_x(t)$
(145,151]	20	2	6	0.01667	0.46076
(151,158]	18	1	7	0.00794	0.56076
(158,173]	17	1	15	0.00392	0.61631

Tabela: Estimativa da função de taxa acumulada para os 32 pacientes com AIDS.

Tempo médio e médio residual

Outras duas quantidades de interesse em análise de sobrevivência são: o tempo médio de vida e a vida média residual.

A primeira é obtida pela área sob a função de sobrevivência. Isto é,

$$t_m = \int_0^\infty S(t) dt.$$

Já a vida média residual é definida condicional a um certo tempo de vida t. Ou seja, para indivíduos com idade t esta quantidade mede o tempo médio restante de vida. Isto é,

$$vmr(t) = rac{\int_t^\infty S(u) du}{S(t)}.$$

- ullet A variável aleatória não-negativa T, que representa o tempo de evento, é usualmente especificada em análise de sobrevivência pela:
 - sua função de sobrevivência.
 - ou pela função de taxa de falha (risco).
- Estas duas funções, e funções relacionadas, que são extensivamente usadas na análise de dados de sobrevivência são apresentadas a seguir.

Relações entre funções

$$S(t) = 1 - F(t)$$
 $h(t) = -\frac{d \ln S(t)}{dt}$
 $h(t) = \frac{f(t)}{S(t)}$
 $h(t) = \frac{f(t)}{1 - F(t)}$
 $H(t) = -\ln(S(t))$
 $S(t) = \exp(-H(t))$

No R

- O pacote mais usual de análise de sobrevivência no R é o survival.
- Ele contém uma grande quantidade de métodos para o assunto.

A função Surv serve para definir um objeto do tipo de sobrevivência, para duas notações:

Surv(tempo, status) Surv(inicio, final, status)

Vamos ver um exemplo no R.

No R

- O pacote mais usual de análise de sobrevivência no R é o survival.
- Ele contém uma grande quantidade de métodos para o assunto.

A função Surv serve para definir um objeto do tipo de sobrevivência, para duas notações:

- Surv(tempo, status)
- Surv(inicio, final, status)

Vamos ver um exemplo no R.

Estimação não-paramétrica

Introdução

- Introdução
- Kaplan-Meier
- Nelson-Aalen
- Intervalos de confiança
- Tempo Mediano de sobrevivência
- Kaplan-Meier com estratificação
- Teste de Log-Rank
- Teste de Peto

Introdução

Duas formas não paramétricas de estimação das funções de sobrevivência:

- Kaplan-Meier S(t)
- ullet Nelson-Aalen H(t)

Ambas técnicas envolvem censura.

Sem suposições sobre a distribuição do tempo.

- O estimador não-paramétrico de Kaplan-Meier, proposto por Kaplan e Meier (1958), para estimar a função de sobrevivência.
- ullet A probabilidade de sobrevida até o tempo t é estimada considerando que a sobrevivência até cada tempo é independente da sobrevivência até outros tempos.
- ullet A probabilidade de chegar até o tempo t é o produto da probabilidade de chegar até cada um dos tempos anteriores.
- Estimador produto (ou estimador limite produto)

Estimação não-paramétrica

Estimador de Kaplan-Meier

- Sejam $t_1 < t_2 < \cdots < t_m$ os m tempos onde ocorreram os eventos;
- $R(t_j)$ é o total de pessoas a risco no tempo t_j .
- $\Delta N(t_j)$ é o número de eventos ocorridos precisamente em t_j .
- Para os m tempos t_j em que ocorre um evento, a probabilidade de sobrevivência será estimada pelo número dos que sobreviveram até aquele tempo $(R(t_j) \Delta N(t_j))$ sobre os que estavam em risco naquele tempo $(R(t_j))$.
- Como os eventos são independentes, S(t) é o produto das probabilidades de sobrevivência a cada tempo $t_j \leq t$.

Dessa forma, temos a seguinte expressão:

$$\hat{S}_{KM}(t) = rac{R(t_1) - \Delta N(t_1)}{R(t_1)} imes rac{R(t_2) - \Delta N(t_2)}{R(t_2)} imes \cdots imes rac{R(t_m) - \Delta N(t_m)}{R(t_m)}$$

ou simplesmente

$$\hat{S}_{KM}(t) = \prod_{j:t_i \leq t} rac{R(t_j) - \Delta N(t_j)}{R(t_j)}$$

No R, o estimador de Kaplan-Meier está implementado na função survfit, que deve ser aplicada em um objeto Surv.

Função de taxa de falha Acumulada

$$\hat{H}_{KM}(t) = \ln \hat{S}_{KM}(t)$$

Logo, pode-se estimar qualquer das funções.

No R, basta usar o argumento cumhaz=TRUE na funcao plot.

