ОСОБЕННОСТИ КЛИНИКО-ЛАБОРАТОРНОГО СТАТУСА У ДЕТЕЙ С ПОЛИТРАВМОЙ, ПОЛУЧАВШИХ КОРТИКОСТЕРОИДЫ ВО ВРЕМЯ ЛЕЧЕНИЯ В ОРИТ

Пшениснов К.В., Александрович Ю.С., Липин А.С.

ФГБОУ ВО «Санкт-Петербургский государственный педиатрический медицинский университет» Министерства здравоохранения Российской Федерации, РФ, Литовская ул., д. 2, Санкт-Петербург, Российская Федерация, 194100

Пшениснов Константин Викторович — кандидат медицинских наук, доцент кафедры анестезиологии, реаниматологии и неотложной педиатрии факультета послевузовского и дополнительного профессионального образования ФГБОУ ВО «Санкт-Петербургский государственный педиатрический медицинский университет» Минздрава России.

Александрович Юрий Станиславович — доктор медицинских наук, профессор, заведующий кафедрой анестезиологии, реаниматологии и неотложной педиатрии факультета послевузовского и дополнительного профессионального образования ФГБОУ ВО «Санкт-Петербургский государственный педиатрический медицинский университет Минздрава России.

Липин Андрей Сергеевич – врач анестезиолог-реаниматолог, аналитик данных.

Для корреспонденции: Пшениснов Константин Викторович (*Pshenisnov Konstantin Viktorovich*) — кандидат медицинских наук, доцент кафедры анестезиологии, реаниматологии и неотложной педиатрии ФП и ДПО ФГБОУ ВО «Санкт-Петербургский государственный педиатрический медицинский университет» Министерства здравоохранения РФ.

Адрес: 194100, Санкт-Петербург, ул. Литовская, д. 2. т.: 8-911-265-82-00

e-mail: Psh k@mail.ru

For correspondence: Konstantin V. Pshenisnov, MD, Ph.D., associate professor of anesthesiology, Department of Intensive Care and Emergency Pediatrics Postgraduate Education of Saint-Petersburg State Pediatric Medical University of the Healthcare Ministry of the Russian Federation, Saint-Petersburg, 194100, Russian Federation, E-mail: Psh_K@mail.ru

Pshenisnov K.V.: http://orcid.org/0000-0003-1113-5296 Aleksandrovich Yu. S.: http://orcid.org/0000-0002-2131-4813

Lipin A.S.: http://orcid.org/0000-0003-4512-2354

Использование гормональной терапии входит в стандарты оказания помощи пациентам с различными видами травм при развитии гипотензивных явлений или шока. В данной статье рассматривается вопрос связи назначения гормональной терапии с изменениями гемодинамических и биохимических показателей и исходами заболевания. Исследование проводилось на 203 пациентах, госпитализированных в тяжелом или крайне тяжелом состоянии в

отделениях реанимации детских стационаров Санкт-Петербурга, Самары, Воронежа и Уфы. Сделаны выводы о наличии связи проведения гормональной терапии с изменениями гемодинамических и биохимических показателей и исходами заболевания.

Ключевые слова: гормональная терапия, сочетанная травма, травма у детей, гемодинамика, прогноз, статистический анализ

ОСОБЕННОСТИ КЛИНИКО-ЛАБОРАТОРНОГО СТАТУСА У ДЕТЕЙ С ПОЛИТРАВМОЙ, ПОЛУЧАВШИХ КОРТИКОСТЕРОИДЫ ВО ВРЕМЯ ЛЕЧЕНИЯ В ОРИТ

Пшениснов К.В., Александрович Ю.С., Липин А.С.

ФГБОУ ВО «Санкт-Петербургский государственный педиатрический медицинский университет» Министерства здравоохранения Российской Федерации, РФ, Литовская ул., д. 2, Санкт-Петербург, Российская Федерация, 194100

Hormone therapy with dexamethasone and prednisolone is a standart of medicine care with various injuries while hypotension and shoke developing. In current article authors are going to reveal and evaluate links between hormone therapy and changes in haemodinamics and biochemical values as well as outcomes. Archive data of 203 patients had been attended to hospitals in Saint-Petersburg, Samara, Voronezh and Ufa were collected. Conclusions about relations between hormone therapy and hemodinamics and biochemical values are presented.

Keywords: hormone therapy, multiple unjuries, injuries in children, heamodynamics, outcomes, statistics.

CLINICAL AND LABORATORY FEATURES IN MULTIPLE INJURED CHILDREN WHILE CORTICOSTEROID THERAPY IN ICU

Pshenisnov K.V., Aleksandrovich Yu. S., Lipin A.S.

Тяжелая политравма является одной из наиболее частых причин летальных исходов у детей, причем, чем младше ребенок, тем выше вероятность неблагоприятного исхода. Нередко она приводит к необратимому поражению ЦНС и смерти мозга на фоне перенесенной системной гипоксии.

Несмотря на многочисленные международные рекомендации по лечению политравмы, как у взрослых, так и у детей, большинство из них содержат только

базовые принципы интенсивной терапии и не уделяют должного внимания тонкостям и деталям отдельных терапевтических стратегий, которые оказывают существенное влияние на исход.

Международные рекомендации по гемодинамической и респираторной поддержке при политравме у детей в настоящее время вообще отсутствуют, что свидетельствует о необходимости поиска путей оптимальных решений данной проблемы.

Одной из терапевтических стратегий, которая широко используется в клинической практике у пациентов с политравмой и шоком различного генеза является применение системных глюкокортикоидов; однако эффективность их применения в настоящее время вызывает много вопросов и требует проведения мультицентровых рандомизированных исследований.

В частности, это касается тяжелой сочетанной спинальной травмы, при которой достаточно широко применяется метил-преднизолон, однако необходимость и сроки его назначения, по-прежнему, остаются спорными.

В 2017 году были опубликованы клинические рекомендации по использованию метил-преднизолона у взрослых пациентов со спинальной травмой, в которых отмечено, что метил-преднизолон не оказывает существенного положительного влияния на восстановление двигательной активности, хотя у пациентов, которым он был назначен в первые 8 часов после травмы, отмечалось лучшее восстановление моторной функции спустя 6 и 12 месяцев. Авторы не рекомендуют назначать высокие дозы метил-преднизолона взрослым спустя 8 часов после получения травмы, однако постоянная инфузия метил-преднизолона в больших дозах в течение 24 часов оправдана у пациентов, которые поступили в стационар в первые 8 часов посттравматического периода. Постоянное введение препарата в течение 48 часов не рекомендуется.

Аналогичные результаты были получены и в педиатрической практике. В частности, Caruso M.C. et al. (2017) установили, что применение высоких доз метил-преднизолона ассоциируется с высокой вероятностью развития осложнений,

что свидетельствует о необходимости отказа от данной терапевтической стратегии, особенно при отсутствии убедительных доказательств тяжелой спинальной травмы и позднем поступлении ребенка в стационар.

В тоже время следует отметить, что при наличии рефрактерного септического шока, который нередко является осложнением тяжелой политравмы у детей, применение системных кортикостероидов является одной из жизнеспасающих стратегий в связи с наличием у пациента острой надпочечниковой недостаточности критического состояния.

Исходя из вышеизложенного, можно утверждать, что применение системных глюкокортикоидов у детей требует дальнейшего изучения.

Цель исследования — оценить эффекты системных глюкокортикостероидов на клинико-лабораторный статус и исходы тяжелой политравмы у детей, нуждающихся в лечении в ОРИТ.

Пациенты и методы

Дизайн исследования: ретроспективное обсервационное мультицентровое исследование (тип «случай-контроль» и поперечное), выполнение на базе педиатрических ОРИТ Северо-Западного Федерального Округа РФ, БУЗ ВО «Воронежская областная детская клиническая больница №1», ГБУЗ «Самарская областная клиническая больница им. В.Д. Середавина», ГБУЗ «Республиканская детская клиническая больница» Республики Башкортостан.

В исследование было включено 203 ребенка с тяжелой политравмой.

Критерии включения: 1) возраст до 18 лет; 2) наличие политравмы; 3) необходимость лечения в условиях ОРИТ; 4) длительность лечения в ОРИТ не менее 10 суток

Критерии исключения: 1) органическое поражение ЦНС; 2) наличие тяжелых сопутствующих заболеваний.

Общая характеристика пациентов представлена в табл. 1.

Исследуемые параметры: систолическое артериальное давление (САД); диастолическое артериальное давление (ДАД); среднее артериальное давление (СрАД); частота сердечных сокращений (ЧСС); индекс Альговера (ЧСС/САД);

насыщение гемоглобина пульсирующей крови кислородом (SpO₂); концентрация хлор и лактата в крови; ферментативная активность АлАТ и АсАТ; АПТВ; объем инфузия (в % от возрастной потребности в жидкости); катехоламиновый индекс; площадь поверхности тела; диурез; исход заболевания.

Катехоламиновый индекс рассчитывали по формуле:

дофамин, мкг/кг/минуту + добутамин, мкг/кг/минуту + адреналин, мкг/кг/минуту х 100 + норадреналин, мкг/кг/минуту х 100

Исследование включало несколько этапов, которые были представлены элементами кросс-секционного анализа и оценки по типу «случай-контроль».

Статистический анализ: Для проведения исследования использовалась операционная система семейства Linux (Fedora Workstation 33), язык программирования руthon3 и набор библиотек для анализа данных (pandas, numpy, sklearn, matplotlib). Соответствие данных закону о нормальном распределении проверяли графическими методами, с помощью тестов Краскела-Уоллиса и Фишера. Учитывая, что полученные данные не соответствовали закону о нормальном распределении, все результаты представлены в виде медианы (Ме), нижнего (LQ) и верхнего (HQ) квартилей. Анализ достоверности различий между группами осуществляли с использованием методов непараметрической статистики. За критический уровень значимости принято значение р<0,05.

Результаты исследования. При анализе динамики изменений исследуемых параметров по дням (табл. 2) установлено, что первый день наблюдений значимо отличается (p<0,05) по ряду (12 из 15) исследуемых признаков от средних значений наблюдений пациентов за последующие 2-10 дни (табл. 2). Это позволяет говорить о том, что в первый день исследуемые показатели еще не соответствуют возрастной норме и только на фоне мероприятий интенсивной терапии стремятся к референсным значениям. При проведении аналогичного анализа между 2 днем и 3-10 днями, а также между 3 днем и 4-10 днями, статистически значимых различий становится все меньше.

На следующем этапе (табл. 3) сформировано 9 групп пациентов в зависимости от применения кортикостероидов и исхода заболевания: 1 – все пациенты;

2 — все пациенты, не получавшие ГТ; 3 — все пациенты, получавшие ГТ; 4 — выжившие пациенты; 5 — выжившие пациенты, не получавшие ГТ; 6 — выжившие пациенты, получавшие ГТ; 7 — умершие пациенты; 8 — умершие пациенты, не получавшие ГТ; 9 — умершие пациенты, получавшие ГТ. Выявлено, что в разные дни наблюдения в каждой сформированной группе выявляется разное количество статистически значимых различий: максимальное количество различий в параметрах с уровнем р<0.05 наблюдалось в группах 1, 3, 4, 6 при учете 1 дня наблюдений, а в последующие дни количество таких различий снижалось.

Таким образом, была опровергнута нулевая гипотеза о том, что применение кортикостероидов не влияет на клинико-лабораторный статус у детей с тяжелой политравмой и принят альтернативный вариант, который подразумевал, что у выживших пациентов, получавших кортикостероиды, имеются статистически значимые внутригрупповые различия исследуемых показателей в разные дни наблюдения. Результаты теста Фридмана представлены в табл. 3.

Далее был проведен анализ межгрупповых различий за первые семь дней лечения в ОРИТ в зависимости от применения КРС и ближайшего исхода с помощью теста Краскела-Уоллиса (табл. 4). При этом мы учитывали дополнительные параметры — отклонения минимальных и максимальных значений параметров у каждого пациента от нижней границы ДИ его группы. В большинстве случаев была выявлена статистически значимая разница между группами выживших и умерших пациентов, получавших КС, и группой умерших пациентов, не получавших КС.

Также были проанализированы данные пациентов в зависимости от назначения кортикостероидов, значения показателей которых (более 35% записей) находились за пределами ДИ: в большинстве случаев разница между группами была статистически значима (табл. 5).

Для дальнейшего анализа мы использовали результаты первого этапа и сравнили значения исследуемых параметров за первые сутки у всех пациентов с показателями последующих дней, сформировав при этом 5 групп для попарного

сравнения (табл. 6). Выявлено, что у пациентов, которые получали КС после первого дня лечения в ОРИТ, значения клинико-лабораторных показателей значимо отличаются от пациентов, у которых указанные препараты использовалась лишь в первый день. В первый день наблюдаются наиболее выраженные различия по сравнению с другими днями, причем в большей степени это характерно для выживших пациентов, получавших кортикостероидную терапию. У умерших пациентов различия между показателями отсутствовали.

Аналогичным образом были сформированы группы пациентов в зависимости от исхода (табл. 7). При назначении кортикостероидов в любой из дней лечения в ОРИТ, наблюдается статистически значимое различие между группой умерших и выживших пациентов по всем анализируемым параметрам.

Выявлено наличие статистически значимых различий в ширине диапазонов значений исследованных клинико-лабораторных параметров между сформированными группами пациентов, при этом у детей, получавших КС, диапазон значений был значительно уже.

Наиболее выраженные различия между пациентами, получавшими КС в различные дни лечения в ОРИТ, наблюдаются при сравнении групп детей, получавших КС только в первый день и в любой другой день. В частности, отмечаются статистически значимые различия по концентрации хлора, объему внутривенной волемической нагрузки и использованию катехоламинов (показатели ниже в первой группе).

При анализе исходов выявлено, что умершие и выжившие пациенты (как получавшие КС, так и не получавшие ее) имеют статистически значимые различия по большинству показателей. Однако наибольшее количество статистически значимых различий наблюдается в случае применения КС в первый день лечения в ОРИТ.

Также установлено, что большинство клинико-лабораторных признаков пациентов, у которых КС использовались лишь в первый день лечения в ОРИТ максимально приближены к возрастным референмным значениям по сравнению

с пациентами, у которых КС использовались в другие дни лечения в ОРИТ, что явилось статистически значимым.

Обсуждение: Полученные результаты позволяют предположить, что применение кортикостероидов обеспечивает первичную стабилизацию состояния и способствует восстановлению основных биохимических констант в более узких пределах. Назначение кортикостероидной терапии в первый день имеет наибольший эффект, а эффективность её проведения может служить прогностическим фактором, поскольку в группе умерших пациентов не наблюдалось статистически значимых различий вне зависимости от применения КС, а в группе выживших при использовании КС отмечалась отчетливая положительная динамика наблюдаемых параметров. Можно утверждать, что использование КС сопровождается более стабильными показателями всех показателей гомеостаза. В частности, нижняя граница интерквартильного размаха систолического АД у умерших пациентов, которые не получали КС, находится ниже, чем при их назначении, как у выживших, так и умерших пациентов, что явилось статистически значимым (р=0,006).

Рис. 1. Показатели систолического артериального давления у детей с летальным исходом в зависимости от применения кортикостероидов.

Вероятнее всего, это связано с тем, что максимально выраженный терапевтический эффект от применения КС отмечался лишь в первые сутки после

травмы. Необходимость применения КС в более поздние сроки посттравматического периода свидетельствует о нестабильном состоянии пациента, обладает минимальным терапевтическим эффектом и является одним из признаков, свидетельствующих о высокой вероятности неблагоприятного исхода тяжелой политравмы у детей.

Заключение: Наличие статистически значимых различий в исходах заболевания между пациентами в зависимости от назначения кортикостероидов, позволяет использовать указанный критерий как предиктор исхода тяжелой политравмы у детей уже в первые сутки лечения в ОРИТ.

Характеристика пациентов

Таблица 1

Помережник	Количество пациентов		
Показатель	Абс. число	%	
Мальчики	129	63,55	
Девочки	74	36,45	
Характеристика травмы			
Оценка по шкале AIS, баллы	36,81 (2	25 – 48)	
Оценка по шкале PTS, баллы	5,2 (2	2-8)	
Черепно-мозговая травма + торакальная травма + абдоминальная травма + травма ОДА	45	22,16	
Черепно-мозговая травма + торакальная травма + абдоминальная травма	47	23,15	
Черепно-мозговая травма + торакальная травма + травма ОДА	69	33,99	
Черепно-мозговая травма + абдоминальная травма + травма ОДА	84	41,3	
Черепно-мозговая травма + торакальная травма	71	34,9	
Черепно-мозговая травма + абдоминальная травма	92	45,32	
Черепно-мозговая травма + травма ОДА	174	85,71	
Множественные повреждения опорно-двигательного аппарата	181	89,16	
Автотравма	63	31,03	
Кататравма	58	28,57	
Внутричерепные гематомы	28	13,79	
Субарахноидальные кровоизлияния	48	23,64	
Внутрижелудочковые кровоизлияния	10	4,23	
Применение кортикостероидов			
Применялись	113	55,67	

П	Количество пациентов						
Показатель	Абс. число	%					
Мальчики	129	63,55					
Девочки	74	36,45					
Характеристика травмы							
Оценка по шкале AIS, баллы	36,81 (2	25 – 48)					
Оценка по шкале PTS, баллы	5,2 (2	2-8)					
Черепно-мозговая травма + торакальная травма + абдоминальная травма + травма ОДА	45	22,16					
Черепно-мозговая травма + торакальная травма + абдоминальная травма	47	23,15					
Черепно-мозговая травма + торакальная травма + травма ОДА	69	33,99					
Не применялись	90	44,33					
Применялись только в 1-е сутки лечения в ОРИТ	12	5,91					
Исходы							
Выздоровление	184	90,64					
Летальный исход	19	9,36					
Длительность ИВЛ, часы	3,11 (0 – 4,06)						
Длительность лечения в ОРИТ, сутки	6,93 ([(1-8)					

Таблица 2
Показатели клинико-лабораторного статуса у детей с тяжелой политравмой

HOMEL PADMON						
Параметр	p	Показатели 1-го дня лечения в ОРИТ	Средние значения за 2-10 дни лечения в ОРИТ			
Систолическое АД	0,01	110,0 (102,67-117,22]	108,0 (95,0-120,0]			
Диастолическое АД	0,02	64,33 (58,89-70,0]	61,0 (55,0-70,0]			
Среднее АД	0,01	79,78 (73,33-84,78]	77,33 (68,33-86,67]			
ЧСС	<0,05	105,71 (94,0-115,56]	110,0 (92,0-125,0]			
Шоковый индекс	<0,05	0,95 (0,83-1,11]	1,0 (0,83-1,24]			
SpO ₂	0,69	98,78 (98,0-99,78]	99,0 (98,0-100,0]			
Концентрация хлора в плазме крови	0,56	108,89 (104,6-112,89]	108,74 (104,0-112,0]			
Лактат	< 0,05	1,2 (0,0-1,7]	1,1 (0,0-2,6]			
Амилаза	<0,05	35,25 (0,0-94,0]	18,3 (0,0-49,7]			
АлАТ	<0,05	39,48 (18,98-77,55]	39,6 (15,2-101,5]			
AcAT	<0,05	55,81 (34,06-110,0]	62,5 (28,5-163,4]			
АЧТВ	<0,05	28,9 (0,0-33,09]	25,8 (0,0-31,0]			
Инфузия, % от N	< 0,05	118,53 (98,96-138,79]	84,42 (60,99-130,53]			

Катехоламиновый	0,07	0,0 (0,0-5,31]	0,0 (0,0-5,0]
индекс	0,07	0,0 (0,0 3,51]	0,0 (0,0 5,0]

Таблица 3 Анализ парных выборок пациентов на наличие значимых различий в разные дни лечения (первые 7 дней)

	разные дни лечения (первые / днеи)						
Показатель	Все пациенты	Без применения кортикостероидов	С применением кортикостероидов				
Концентрация хлора в плазме крови	$ \begin{array}{c} 110,0 \\ (106,0-116,75) \\ p = 0,0002 \end{array} $	110,85 (106,75 – 116,0) p = 0,2838	110,0 (105,3 – 117,0) p = 0,0007				
АлАТ	41,3 (21,21 – 93,0) p = 0,0029	44,8 (22,0, 103,55) p = 0,0242	40,9 (21,02, 85,64) p = 0,176				
AcAT	58,75 $(36,0 - 120,65)$ $p = 0,0$	60,4 $(40,04 - 125,0)$ $p = 0,0$	57,0 $(35,3 - 118,52)$ $p = 0,0$				
Амилаза	51,3 $(0,0 - 120,69)$ $p = 0,0$	50,5 (19,22 – 101,1) p = 0,0019	51,3 $(0,0 - 140,43)$ $p = 0,0$				
Диастолическое АД	62,0 (55,0 - 70,0) p = 0,0019	63,0 (58,0 - 72,0) p = 0,0938	61,0 (55,0, 70,0) p = 0,0078				
Диурез, мл/кг	48,0 (33,24 – 75,5) p = 0,0009	48,23 (34,75 – 79,17) p = 0,2918	47,83 (32,94 – 74,5) p = 0,0011				
Шоковый индекс	0.91 (0.76 - 1.09) p = 0.0001	0.97 (0.74 - 1.11) p = 0.7597	0.9 (0.77 - 1.08) p = 0.0				
Инфузия, % от N	118,33 (96,21 – 147,46) p = 0,0	119,03 (99,96, 147,58) p = 0,1117	118,26 (94,2, 145,08) p = 0,0001				
Катехоламиновый индекс	5,0 (0,0-7,5) p = 0,0057	2,75 (0,0-7,5) p = 0,4063	5,0 (0,0-7,5) p = 0,0233				
Лактат	$ \begin{array}{c} 1,2 \\ (0,15-1,9) \\ p = 0,0004 \end{array} $	$ \begin{array}{c} 1,4 \\ (1,0-1,8) \\ p = 0,6424 \end{array} $	$ \begin{array}{c} 1,2 \\ (0,0-2,08) \\ p = 0,0001 \end{array} $				
Систолическое АД $ \begin{array}{c} 110,0 \\ (100,0-120,0) \\ p=0,0002 \end{array} $		$ \begin{array}{c} 112,0 \\ (100,0-120,25) \\ p = 0,1962 \end{array} $	$ \begin{array}{c} 110,0 \\ (100,0-120,0) \\ p = 0,0002 \end{array} $				
Среднее АД	78,33 (71,33 – 87,67) p = 0,0003	80,0 (71,33 – 88,67) p = 0,0638	78,33 (71,42 – 87,33) p = 0,0011				
ЧСС	$ \begin{array}{c} 102,0 \\ (88,0-118,0) \\ p = 0,0118 \end{array} $	$ \begin{array}{c} 102,5 \\ (89,0 - 116,25) \\ p = 0,6667 \end{array} $	$ \begin{array}{c} 102,0 \\ (85,25-118,0) \\ p = 0,0149 \end{array} $				

Показатель	Выздоровление	КС не применялись	С применением КС
Концентрация хлора в плазме крови	$ \begin{array}{c} 110,0 \\ (105,0-115,0) \\ p = 0,0 \end{array} $	$ \begin{array}{c} 110,0 \\ (105,5-116,0) \\ p = 0,0523 \end{array} $	$ \begin{array}{c} 110,0 \\ (105,0-115,0) \\ p = 0,0001 \end{array} $
АлАТ	38,48 $(19,95 - 89,52)$ $p = 0,0004$	44,4 (22,25 – 117,35) p = 0,0117	33,7 (19,3 – 71,0) p = 0,0738
AcAT	60,4 $(43,85 - 112,95)$ $p = 0,0$	60,4 $(43,85 - 112,95)$ $p = 0,0$	50,6 $(33,2-95,0)$ $p = 0,0$
Амилаза	63,85 $(27,0 - 143,52)$ $p = 0,0$	55,7 (27,5 – 102,85) p = 0,0019	69,4 $(27,0-171,2)$ $p = 0,0$
Диастолическое АД	65,0 $(60,0-72,0)$ $p = 0,4422$	65,0 (60,0 -72,0) p = 0,4422	61,0 (55,0 - 70,0) p = 0,0001
Диурез, мл/кг	47,83 (32,98 – 75,0) p = 0,0033	48,46 (34,52 – 79,17) p = 0,3763	47,5 $(32,22-73,33)$ $p = 0,0078$
Шоковый индекс	0.93 (0.73 - 1.09) p = 0.8015	0,93 (0,73 - 1,09) p = 0,8015	0,89 (0,75 - 1,06) p = 0,0
Инфузия, % от N	$ \begin{array}{c} 116,16 \\ (94,27 - 144,06) \\ p = 0,0 \end{array} $	114,7 (98,83 – 145,83) p = 0,093	$ \begin{array}{c} 117,23 \\ (92,59 - 143,75) \\ p = 0,0001 \end{array} $
Катехоламиновый индекс	$ \begin{array}{c} 1,3 \\ (0,0-5,0) \\ p = 0,6135 \end{array} $	$ \begin{array}{c} 1,3 \\ (0,0-5,0) \\ p = 0,6135 \end{array} $	5,0 (0,0-7,0) p = 0,0144
Лактат	$ \begin{array}{c} 1,3 \\ (0,9-1,9) \\ p = 0,0003 \end{array} $	$ \begin{array}{c} 1,3 \\ (1,0-1,7) \\ p = 0,3905 \end{array} $	$ \begin{array}{c} 1,3 \\ (0,8-2,0) \\ p = 0,0002 \end{array} $
Систолическое АД	115,0 (100,0 - 120,0) p = 0,332	115,0 (100,0 - 120,0) p = 0,332	$ \begin{array}{c} 110,0 \\ (100,0-120,0) \\ p = 0,0 \end{array} $
Среднее АД	реднее АД $78,83$ $(72,0-87,33)$ $p=0,0$		78,33 (71,67 - 86,67) p = 0,0
ЧСС	$ \begin{array}{c} 100,0 \\ (88,0-115,0) \\ p = 0,6786 \end{array} $	100,0 (88,0 – 115,0) p = 0,6786	$ \begin{array}{c} 100,0 \\ (84,0-116,0) \\ p = 0,0015 \end{array} $
Показатель	Летальный исход	КС не применялись	С применением КС
АЧТВ	24,5 (0,0-36,15) p = 0,0035	25,0 (0,0-31,5) p = 0,0983	24,0 (0,0-37,0) p = 0,1185

Катехоламиновый индекс	7,5 $(4,0-14,0)$ $p = 0,0073$	14,0 (14,0-30,0) p = 0,1265	5,0 $(2,5-10,0)$ $p = 0,0364$
---------------------------	-------------------------------	-------------------------------	-------------------------------

Таблица 4

Сравнительный анализ выборок пациентов за первые 7 дней

Сравнительный апализ выоброк национтов за первые 7 дней						
Параметр	p	Выжившие пациенты, получавшие КС	Умершие пациенты, получавшие КС	Умершие пациенты, не получавшие КС		
Катехоламиновый индекс, 1 квартиль	0,0000	5,571	7,7819	14,9828		
Лактат, 1 квартиль	0,0000	1,2085	0,5157	0,3655		
SpO ₂ , 3 квартиль	0,0001	98,7448	98,2378	99,3208		
АЧТВ, 1 квартиль	0,0004	26,9007	15,3725	14,1115		
Амилаза*	0,0011	79,2286 (26,3286 – 160,5786)	0,0000 (0,0000 – 0,0000)	0,0000 (0,0000 – 72,2393)		
Систолическое АД, 1 квартиль	0,0060	109,361	101,8029	96,7571		
Диастолическое АД, 1 квартиль	0,0111	62,127	57,9126	53,8308		
Концентрация хлора в плазме крови, 1 квартиль	0,0159	110,3991	112,8445	112,6637		
Среднее АД, 1 квартиль	0,0174	77,9618	72,7039	68,4225		
АсАТ, 1 квартиль	0,0194	87,0879	118,9305	62,3428		
Амилаза, 3 квартиль	0,0213	167,2604	31,2796	90,0558		
Амилаза, 1 квартиль	0,0248	117,0766	0,6165	6,2633		
Лактат, 3 квартиль	0,0373	1,6116	1,7959	1,2822		
Катехоламиновый индекс, 3 квартиль	0,0382	9,5239	26,322	32,2077		
Систолическое АД, 3 кв.	0,0383	112,6329	112,3789	113,3381		
АлАТ, 1 квартиль	0,0437	64,2138	74,3447	41,1377		

^{*} в связи с тем, что у тех пациентов, у которых не измерялся уровень амилазы, использовалось значение «0», значимость различий не может быть проверена

Таблица 5

Анализ выборок пациентов с наибольшим количеством параметров за пределами 1,96std

Параметр	p-value	С применением КС >35% параметров вне ДИ Выжившие Умершие		Без приме >35% параме	
				Выжившие	Умершие
САД, 1кв	0,0000	106,02	90,91	110,71	112,68
КИ	0,0000	2,5 (0 – 5)	7,5 (2 – 20)	0 (0 – 5)	4,5 (0 – 5)

ИА	0,0000	0,95 (0,8 – 1,1)	1,1 (0,95 – 1,34)	0,88 (0,73 – 1,02)	0,83 (0,72 – 0,97)
СрАД, 3кв.	0,0000	80,27	75,22	84,23	94,45
ЧСС, 3кв.	0,0000	109,25	121,75	105,36	109,68
СрАД, 1кв.	0,0000	75,54	63,58 (63,58 – 63,58)	79,24 (79,24 – 79,24)	82,19 (82,19 – 82,19)
ДАД, 1кв.	0,0000	60,1	49,72	63,23	66,24
Амилаза, 1кв.	0,0000	81,6	1,59	59,82	0
Амилаза, 3кв.	0,0000	137,86	55,53	102,14	0
Амилаза*	0,0000	52,7 (0 – 146,1)	0 (0 – 0)	47,85 (0 – 122,6)	0 (0 – 0)
Инфузия, % от N, 3кв.	0,0000	122,29	161,93	133,55	148,15
КИ, 3кв.	0,0000	7,67	40,39	4,18	17,89
АЧТВ, 1кв.	0,0000	22,34	20,68	24,31	10,42
ACT	0,0000	58,1 (35,9 – 171,78)	111 (80 – 163,85)	40,8 (30,01 – 86)	104 (30,25 – 110)
АЛТ, 1кв.	0,0000	84,2	80,75	38,92	43,3
САД	0,0000	110 (100 – 116)	101 (82,5 – 111,5)	112,5 (105 – 120)	120 (100 – 131)
АЛТ	0,0000	56,85 (20,25 – 129,88)	66 (42,8 – 189,85)	27,1 (18 – 44,94)	44,9 (37,63 – 108,25)
АСТ, 1кв.	0,0000	108,07	120,19	52,68	50,52
SpO ₂ , 3кв.	0,0000	98,68	98,18	98,91	98,88
СрАД	0,0001	76,67 (70,25 – 86,67)	70 (59,17 – 80,83)	78,33 (73,33 – 89,75)	88,67 (76,42 – 100)
АСТ, 3кв.	0,0001	204,15	300,52	77,72	99,28
САД, 3кв.	0,0001	111,65	104,95	116,5	131,42
ИА, 1кв.	0,0002	0,94	1,08	0,86	0,77
ИА, 3кв.	0,0003	1,06	1,37	0,96	0,95
Инфузия, % от N, 1кв.	0,0004	108,59	127,18	117,17	129,11
ДАД	0,0004	60 (55 – 70)	55 (45 – 69,5)	65 (55,25 – 70)	70 (60 – 77,25)
АЛТ, 3кв.	0,0006	166,05	211,54	68,47	89,17
Лактат, 1кв.	0,0006	1,1	0,72	0,7	0,01
Лактат	0,0008	1,2 (0,6 – 1,7)	0 (0 – 2,2)	0.9(0-1.6)	0 (0 – 0,28)
ДАД, 3кв.	0,0008	64,78	60,55	68,38	76,66
ЧСС, 1кв.	0,0019	100,56	104,81	96,49	95,72
SpO ₂ , 1кв.	0,0022	96,15	96,38	98,03	97,12
Инфузия, % от N	0,0022	115 (84,76 – 139,48)	138,82 (101,55 – 175,76)	121,43 (98,64 – 141,31)	133,75 (128,3 – 149,58)

АЧТВ, 3кв.	0,0040	27,8	35,72	29,93	27,38
СІ-, 1кв.	0,0074	108,62	112,56	107,61	106,08
КИ, 1кв.	0,0087	3,49	8,73	1,9	1,06
СІ-, 3кв.	0,0143	111,19	122,95	110,78	114,37

^{*} в связи с тем, что у тех пациентов, у которых не измерялся уровень амилазы, использовалось значение «0», значимость различий не может быть проверена

Таблица 6 Особенности клинико-лабораторного статуса в зависимости от применения кортикостероидов

		1 ЭТАП	
Показатель	p	С применением КС	Без применения КС
Концентрация хлора в плазме крови	0.5307	108,74 (104 – 113)	108 (104,75 – 110,25)
SpO_2	0,7500	100 (98 – 100)	99 (98 – 100)
АлАТ	0,9800	36 (12,6 – 97,25)	31,65 (15,65 – 95,33)
AcAT	0,5100	53,1 (0 – 140,7)	58,2 (27,88 – 162,65)
АЧТВ	0,4400	23,5 (0 – 31)	0 (0 – 30)
Амилаза	0,1700	15,3 (0 – 50,85)	0 (0 – 43,98)
Диастолическое АД	0,2900	60 (55,5 – 70)	60,5 (50 – 70)
Диурез, мл/кг	0,4200	30,3 (15,25 – 54,92)	33,46 (13,72 – 63,07)
Шоковый индекс	0,4100	1 (0,83 – 1,21)	1,08 (0,86 – 1,27)
Инфузия, % от N	0,9900	79,17 (56,04 – 122,14)	79,74 (54,61 – 116,59)
Катехоламиновый индекс	0,1400	0 (0 – 1,25)	0 (0 – 5)
Лактат	0,5400	1 (0 – 2,5)	1,25 (0 – 2,8)
Систолическое АД	0,7400	110 (92,5 – 120)	106,5 (90 – 118,5)
Среднее АД	0,4700	77,33 (68,83 – 86,33)	77,67 (66,67 – 85,67)
ЧСС	0,5600	110 (92 – 125)	112,5 (96 – 122)
		2 ЭТАП	
Показатель	p	Применение КС только в 1-е сутки	Применение КС в любой день лечения в ОРИТ
Концентрация хлора в плазме крови	0,1703	108,74 (104 – 114)	108 (102,3 – 110,75)
SpO ₂	0,4872	99 (98 – 100)	99 (98 – 100)
АлАТ	0,0582	42,8 (23,44 – 78,75)	27,2 (18,98 – 74,9)

		1	
AcAT	0,7963	55,5 (34,98 – 116)	52,5 (38 – 98,3)
АЧТВ	0,0461	27,8 (0 – 34,05)	29,2 (26,96 – 33,68)
Амилаза	0,0215	49,3 (0 – 172,03)	33 (0 – 64,48)
Диастолическое АД	0,1246	65 (60 – 75)	63 (55 – 70)
Диурез, мл/кг	0,0475	42,5 (28 – 58,15)	51,42 (29,06 – 83,33)
Шоковый индекс	0,5066	0,91 (0,78 – 1,09)	0,87 (0,78 – 1,07)
Инфузия, % от N	0,1416	112,73 (89,58 – 138,13)	107,43 (82,25 – 131,56)
Катехоламиновый индекс	0,0000	4,5 (0 – 7,5)	0 (0 – 4,38)
Лактат	0,0001	1,2 (0 – 1,9)	0 (0 – 1,3)
Систолическое АД	0,32	112,5 (104 – 120)	113,5 (102,75 – 118,75)
Среднее АД	0,1356	81,67 (73,33 – 90,08)	77,5 (73,08 – 85,75)
ЧСС	0,1912	105 (88,75 – 120)	98,5 (89 – 118,25)
		3 ЭТАП	
Показатель	p	Применение КС только в 1-е сутки лечения в ОРИТ	Применение КС в любой день лечения в ОРИТ за исключением 1-х суток
Концентрация хлора в плазме крови	0,0000	108 (102,3 – 110,75)	111 (106 – 121)
SpO_2	0,6300	99 (98 – 100)	99 (98 – 100)
АлАТ	0,1800	27,2 (18,98 – 74,9)	38,88 (24,25 – 62,03)
AcAT	0,0500	52,5 (38 – 98,3)	47 (28,4 – 74,7)
АЧТВ	0,0100	29,2 (26,96 – 33,68)	32 (28,78 – 34,8)
Амилаза	0,0000	33 (0 – 64,48)	72 (50,08 – 129,7)
Диастолическое АД	0,4200	63 (55 – 70)	65 (55,5 – 75)
Диурез, мл/кг	0,1400	51,42 (29,06 – 83,33)	53,3 (37,5 – 88,79)
Шоковый индекс	0,0900	0,87 (0,78 – 1,07)	0,97 (0,81 – 1,11)
Инфузия, % от N	0,000	107,43 (82,25 – 131,56)	129,79 (109,69 – 160,27)
Катехоламиновый индекс	0,000	0 (0 – 4,38)	5 (1,25 – 7,5)
Лактат	0,000	0 (0 – 1,3)	1,1 (0 – 1,6)
Систолическое АД	0,9500	113,5 (102,75 – 118,75)	110 (100 – 120)
Среднее АД	0,6400	77,5 (73,08 – 85,75)	80 (71,83 – 90)

ЧСС	0,0400	98,5 (89 – 118,25)	109 (90 – 120,5)
		4 ЭТАП	
Показатель	p	Применение КС только в 1-е сутки	КС не применялись
Концентрация хлора в плазме крови	0,0507	108 (102,3 – 110,75)	108,74 (104 – 113,93)
$\overline{\mathrm{SpO}_2}$	0,9100	99 (98 – 100)	99 (98 – 100)
АлАТ	0,4900	27,2 (18,98 – 74,9)	35 (18,7 – 92,75)
AcAT	0,4600	52,5 (38 – 98,3)	52 (28,9 – 103,18)
АЧТВ	0,8900	29,2 (26,96 – 33,68)	30 (0 – 37)
Амилаза	0,2000	33 (0 – 64,48)	39 (0 – 78,98)
Диастолическое АД	0,5000	63 (55 – 70)	64,5 (60 – 70)
Диурез, мл/кг	0,9000	51,42 (29,06 – 83,33)	48,5 (32,12 – 72,73)
Шоковый индекс	0,1600	0,87 (0,78 – 1,07)	0,99 (0,77 – 1,13)
Инфузия, % от N	0,0800	107,43 (82,25 – 131,56)	112,25 (93,17 – 143,66)
Катехоламиновый индекс	0,0200	0 (0 – 4,38)	0 (0 – 5)
Лактат	0,0000	0 (0 – 1,3)	1,1 (0 – 1,7)
Систолическое АД	0,8800	113,5 (102,75 – 118,75)	110 (100 – 120)
Среднее АД	0,6800	77,5 (73,08 – 85,75)	80 (73,33 – 86,67)
ЧСС	0,0900	98,5 (89 – 118,25)	107 (90 – 120)
		5 ЭТАП	
Показатель	p	Применение КС в любой день лечения в ОРИТ	Кортикостероиды не применялись
Концентрация хлора в плазме крови	0,2442	109 (104 – 116)	108,74 (104 – 113,93)
SpO_2	0,2400	99 (98 – 100)	99 (98 – 100)
АлАТ	0,3000	40,35 (23 – 74,23)	35 (18,7 – 92,75)
AcAT	0,6200	50,6 (31,93 – 97,26)	52 (28,9 – 103,18)
АЧТВ	0,5700	30 (23,55 – 34,39)	30 (0 – 37)
Амилаза	0,0000	61 (0 – 141,5)	39 (0 – 78,98)
Диастолическое АД	0,1000	65 (56 – 75)	64,5 (60 – 70)
Диурез, мл/кг	0,1300	46,2 (30 – 70,83)	48,5 (32,12 – 72,73)
Шоковый индекс	0,1900	0,93 (0,78 – 1,1)	0,99 (0,77 – 1,13)

Инфузия, % от N	0,0700	119,13 (95,47 – 143,47)	112,25 (93,17 – 143,66)
Катехоламиновый индекс	0,0000	5 (0 – 7)	0 (0 – 5)
Лактат	0,6600	1,1 (0 – 1,7)	1,1 (0 – 1,7)
Систолическое АД	0,3700	110 (101 – 120)	110 (100 – 120)
Среднее АД	0,0800	80,83 (73,33 – 90)	80 (73,33 – 86,67)
ЧСС	0,7300	105 (90 – 120)	107 (90 – 120)

Таблица 7 Анализ исходов лечения в ОРИТ в зависимости от применения кортикостероидов

I этап (все пациенты)			
Показатель	p	Выздоровление	Летальный исход
Концентрация хлора в плазме крови	0.000000	108,74 (104 – 114)	114,5 (108,74 – 133,25)
SpO_2	0.000000	99 (98 – 100)	98 (98 – 99)
АлАТ	0.000000	36,75 (20,5 – 71,1)	71 (39,375 – 113)
AcAT	0.000000	48,3 (30 – 83,3875)	111 (42,1 – 183)
АЧТВ	0.000103	30 (24 – 35)	24 (0 – 38)
Амилаза	0.000000	61 (19,6625 – 129,775)	0 (0 – 0)
Диастолическое АД	0.000000	65 (60 – 73)	59,5 (46,75 – 70)
Диурез, мл/кг	0.759487	46,73(30,5956 – 72,5)	45,68 (32,75 – 70,8576)
Шоковый индекс	0.002620	0,933 (0,7727 – 1,1)	0,991 (0,8385 – 1,1919)
Инфузия, % от N	0.287204	116,58 (95,0266 – 142,7425)	125,88 (93,7143 – 147,9167)
Катехоламиновый индекс	0.000000	2,5 (0 – 5)	8 (5 – 20)
Лактат	0.000000	1,2 (0 – 1,8)	0 (0 – 1,1)
Систолическое АД	0.000000	110 (104 – 120)	103 (86,5 – 117)
Среднее АД	0.000000	81,333 (73,3333 – 88,3333)	73,333 (60 – 86,8333)
ЧСС	0.914050	106 (90 – 120)	106 (90 – 121,25)
II этап (все пациенты, 1-й день лечения в ОРИТ)			
Показатель	p-value	Выздоровление	Летальный исход
Концентрация хлора в плазме крови	0,3518	108,74 (104 – 111)	108,74 (104,5 – 118)
SpO ₂	0,0009	99 (98 – 100)	98 (98 – 99)
АлАТ	0,0322	36,75 (20,5 – 71,1)	71 (39,375 – 113)
AcAT	0,1218	48,3 (30 – 83,3875)	111 (42,1 – 183)
АЧТВ	0,9305	30 (24 – 35)	24 (0 – 38)

T			
0,0726	61 (19,6625 – 129,775)	0 (0 – 0)	
0,0137	65 (60 – 73)	59,5 (46,75 – 70)	
0,4553	46,733 (30,5956 – 72,5)	45,684 (32,75 – 70,8576)	
0,0857	0,933 (0,7727 – 1,1)	0,991 (0,8385 – 1,1919)	
0,0250	116,583 (95,0266 – 142,7425)	125,884 (93,7143 – 147,9167)	
0,0001	2,5 (0 – 5)	8 (5 – 20)	
0,8782	1,2 (0 – 1,8)	0 (0 – 1,1)	
0,0280	110 (104 – 120)	103 (86,5 – 117)	
0,0180	81,333 (73,3333 – 88,3333)	73,333 (60 – 86,8333)	
0,8647	106 (90 – 120)	106 (90 – 121,25)	
III этап (к	ортикостероиды не применя	лись)	
р	Выздоровление	Летальный исход	
0,0001	108,72 (104 – 114)	111,2 (108,74 – 124)	
0,0000	99 (98 – 100)	98 (98 – 99)	
0,0108	36,75 (20,5 – 71,1)	71 (39,375 – 113)	
0,0658	48,3 (30 – 83,3875)	111 (42,1 – 183)	
0,0022	30 (24 – 35)	24 (0 – 38)	
0,0000	61 (19,6625 – 129,775)	0 (0 – 0)	
0,0005	65 (60 – 73)	59,5 (46,75 – 70)	
0,0886	46,73 (30,5956 – 72,5)	45,68 (32,75 – 70,8576)	
0,0916	0,933 (0,7727 – 1,1)	0,991 (0,8385 – 1,1919)	
0,0917	116,583 (95,0266 – 142,7425)	125,884 (93,7143 – 147,9167)	
0,0000	2,5 (0 – 5)	8 (5 – 20)	
0,0000	1,2 (0 – 1,8)	0 (0 – 1,1)	
0,0063	110 (104 – 120)	103 (86,5 – 117)	
0,0011	81,333 (73,3333 – 88,3333)	73,333 (60 – 86,8333)	
0,7228	106 (90 – 120)	106 (90 – 121,25)	
IV этап (кортикостероиды не применялись в первый день лечения в ОРИТ)			
р	Выздоровление	Летальный исход	
0,5888	108,74 (104 – 113)	108,37 (108 – 117,19)	
	0,0137 0,4553 0,0857 0,0250 0,0001 0,8782 0,0280 0,0180 0,8647 III этап (к р 0,0001 0,0000 0,0108 0,0658 0,0022 0,0000 0,0005 0,0886 0,0916 0,0917 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	0,0137 65 (60 – 73) 0,4553 46,733 (30,5956 – 72,5) 0,0857 0,933 (0,7727 – 1,1) 0,0250 116,583 (95,0266 – 142,7425) 0,0001 2,5 (0 – 5) 0,8782 1,2 (0 – 1,8) 0,0280 110 (104 – 120) 0,0180 81,333 (73,3333 – 88,3333) 0,8647 106 (90 – 120) III этап (кортикостероиды не применя р Выздоровление 0,0001 108,72 (104 – 114) 0,0000 99 (98 – 100) 0,0108 36,75 (20,5 – 71,1) 0,0658 48,3 (30 – 83,3875) 0,0022 30 (24 – 35) 0,0000 61 (19,6625 – 129,775) 0,0005 65 (60 – 73) 0,0886 46,73 (30,5956 – 72,5) 0,0916 0,933 (0,7727 – 1,1) 0,0917 116,583 (95,0266 – 142,7425) 0,0000 2,5 (0 – 5) 0,0003 110 (104 – 120) 0,0011 81,333 (73,3333 – 88,3333) 0,7228 106 (90 – 120) костероиды не применялись в первый д костероиды не применялись в первый д	

АлАТ	0,0501	36,75 (20,5 – 71,1)	71 (39,375 – 113)	
AcAT	0,1745	48,3 (30 – 83,3875)	111 (42,1 – 183)	
АЧТВ	0,8110	30 (24 – 35)	24 (0 – 38)	
Амилаза	0,8116	61 (19,6625 – 129,775)	0 (0 – 0)	
Диастолическое АД	0,4887	65 (60 – 73)	59,5 (46,75 – 70)	
Диурез, мл/кг	0,9198	46,733 (30,5956 – 72,5)	45,684 (32,75 – 70,8576)	
Шоковый индекс	0,0772	0,9333 (0,7727 – 1,1)	0,991 (0,8385 – 1,1919)	
Инфузия, % от N	0,8111	116,583 (95,026 – 142,742)	125,884 (93,714 – 147,917)	
Катехоламиновый индекс	0,0058	2,5 (0 – 5)	8 (5 – 20)	
Лактат	0,8247	1,2 (0 – 1,8)	0 (0 – 1,1)	
Систолическое АД	0,3345	110 (104 – 120)	103 (86,5 – 117)	
Среднее АД	0,4242	81,333 (73,333 – 88,333)	73,333 (60 – 86,833)	
ЧСС	0,1031	106 (90 – 120)	106 (90 – 121,25)	
V эта	V этап (применение КС в любой из дней лечения в ОРИТ)			
Показатель	p-value	Выздоровление	Летальный исход	
Концентрация хлора в плазме крови	0,0000	108,87 (105 – 115)	120 (108,74 – 139)	
SpO_2	0,0000	99 (98 – 100)	98 (98 – 99)	
АлАТ	0,0000	36,75 (20,5 – 71,1)	71 (39,375 – 113)	
AcAT	0,0000	48,3 (30 – 83,3875)	111 (42,1 – 183)	
АЧТВ	0,1204	30 (24 – 35)	24 (0 – 38)	
Амилаза	0,0000	61 (19,6625 – 129,775)	0 (0 – 0)	
Диастолическое АД	0,0005	65 (60 – 73)	59,5 (46,75 – 70)	
Диурез, мл/кг	0,2074	46,733 (30,5956 – 72,5)	45,685 (32,75 – 70,8576)	
Шоковый индекс	0,0272	0,933 (0,7727 – 1,1)	0,991 (0,8385 – 1,1919)	
Инфузия, % от N	0,3323	116,583 (95,027 – 142,743)	125,884 (93,714 – 147,917)	
Катехоламиновый индекс	0,0000	2,5 (0 – 5)	8 (5 – 20)	
Лактат	0,0000	1,2 (0 – 1,8)	0 (0 – 1,1)	
Систолическое АД	0,0000	110 (104 – 120)	103 (86,5 – 117)	
Среднее АД	0,0001	81,333 (73,333 – 88,3333)	73,333 (60 – 86,8333)	
ЧСС	0,6672	106 (90 – 120)	106 (90 – 121,25)	

VI этап (применение КС в 1-й день лечения в ОРИТ)			
Показатель	p-value	Выздоровление	Летальный исход
Концентрация хлора в плазме крови	0,4055	108 (105 – 109,9)	108,74 (108 – 116)
SpO ₂	0,0080	99 (98 – 100)	98 (98 – 99)
АлАТ	0,1731	36,75 (20,5 – 71,1)	71 (39,375 – 113)
AcAT	0,3566	48,3 (30 – 83,3875)	111 (42,1 – 183)
АЧТВ	0,6311	30 (24 – 35)	24 (0 – 38)
Амилаза	0,0549	61 (19,6625 – 129,775)	0 (0 – 0)
Диастолическое АД	0,0189	65 (60 – 73)	59,5 (46,75 – 70)
Диурез, мл/кг	0,4768	46,733 (30,5956 – 72,5)	45,685 (32,75 – 70,857)
Шоковый индекс	0,4989	0,9333 (0,7727 – 1,1)	0,991 (0,8385 – 1,1919)
Инфузия, % от N	0,0100	116,5833 (95,027 – 142,743)	125,884 (93,714 – 147,917)
Катехоламиновый индекс	0,0070	2,5 (0 – 5)	8 (5 – 20)
Лактат	0,7230	1,2 (0 – 1,8)	0 (0 – 1,1)
Систолическое АД	0,0415	110 (104 – 120)	103 (86,5 – 117)
Среднее АД	0,0239	81,333 (73,333 – 88,333)	73,333 (60 – 86,833)
ЧСС	0,1456	106 (90 – 120)	106 (90 – 121,25)

Результаты статистического анализа и исполняемый код руthon-ноутбука представлены в открытом доступе по адресу https://github.com/docinit/hormone_therapy_in_children_with_multiple_injuries

Работа проведена с использованием открытого программного обеспечения: OC Linux (Fedora 33), Python 3, библиотек для анализа (pandas, matplotlib, sklearn) и графического представления данных (matplotlib, seaborn).

Список литературы:

- 1. Алгоритм оказания помощи детям с сочетанной травмой / Д.И. Юнусов, В.Ю. Александрович, П.И. Миронов (и др.) // Ортопедия, травматология и восстановительная хирургия детского возраста. − 2019. − Т. 7, №4. − С. 67–78.
- 2. Безопасность применения протокола пошаговой терапии острой внутричерепной гипертензии у детей с тяжелой механической травмой / И.А. Колыхалкина, Т.А. Чернышева, В.Г. Амчеславский (и др.) // Медицинский алфавит. 2013. T. 2, № 14. C. 57-58.
- 3. Кондратьев, А. Н. Нейротравма глазами анестезиолога-реаниматолога / А. Н. Кондратьев. М.: Медицина, 2014. 204 с.
- 4. Лечение пострадавших детей с черепно-мозговой травмой. Клинические рекомендации. Ассоциация нейрохирургов России, Ассоциация детских нейрохирургов России. М., 2015.-36 с.
- 5. Лечение пострадавших с тяжелой черепно-мозговой травмой. Ассоциация

- нейрохирургов России, Ассоциация детских нейрохирургов России. М., 2014. 21 с.
- 6. Организация оказания медицинской помощи пострадавшим с сочетанной травмой в травмоцентрах Санкт-Петербурга / А.Н. Тулупов, В.Ю. Афончиков, А.Е. Чикин (и др.) // Скорая медицинская помощь. 2014. №1. С. 67-71.
- 7. Профилактика и лечение внутричерепной гипертензии у детей с тяжелой черепно-мозговой травмой / И.А. Колыхалкина, Т.А. Чернышева, В.Г. Амчеславский, О.В. Карасева (и др.) // Неотложная медицина. 2014. №1. С. 16-19.
- 8. Рекомендации по лечению детей с черепно-мозговой травмой / Ж.Б. Семенова, А.В. Мельников, И.А. Саввина (и др.) // Российский вестник детской хирургии, анестезиологии и реаниматологии. 2016. Т. 6, №2. С. 112-131.
- 9. Савин, И.А. Водно-электролитные нарушения в нейрореанимации / И. А. Савин, А. С. Горячев. М.: «Аксиом Графикс Юнион», 2015. 332 с.
- 10. Савин, И.А. Рекомендации по интенсивной терапии у пациентов с нейрохирургической патологией / под ред. И. А. Савина, М. С. Фокина, А. Ю. Лубнина. М.: НИИ нейрохирургии им. акад. Н. Н. Бурденко РАМН, 2014. 168 с.
- 11. Феличано, Д.В. Травма. В 3 т. / Д.В. Феличано, К.Л. Маттокс, Э.Е. Мур. М.: Издательство Панфилова; БИНОМ. Лаборатория знаний, 2013. Т. 2. С. 496.
- 12. A clinical practice guideline for the management of patients with acute spinal cord injury: recommendations on the use of methylprednisolone sodium succinate / M.G. Fehlings, J.R. Wilson, L.A. Tetreault L.A. (et al.)// Global Spine J. -2017. Vol. 7, 3 Suppl. P. 203–211
- 13. American college of critical care medicine clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock / A.L. Davis, J.A. Carcillo, R.K. Aneja (et al.) // Crit Care Med. -2017. Vol. 45, N 6. P. 1061-1093.
- 14. A review: the role of high dose methylprednisolone in spinal cord trauma in children / J.N. Pettiford, J. Bikhchandani, D.J. Ostlie (et al.) Pediatr Surg Int. 2012. Vol. 28, N 3. P. 287-94.
- 15. Arora, B. Spinal cord injuries in older children: is there a role for high-dose methylprednisolone? / B. Arora, S. Suresh // Pediatr Emerg Care. 2011. Vol. 27, N 12. P. 1192-4.
- 16. Aylward, S.C., Reem, R.E. Pediatric intracranial hypertension / S.C. Aylward, R.E. Reem // Pediatr Neurol. 2017. Vol. 66. P. 32-43.
- 17. Efficacy and safety of methylprednisolone sodium succinate in acute spinal cord injury: a systematic review / M.G. Fehlings, J.R. Wilson, J.S. Harrop (et al.) // Global Spine J. 2017. Vol. 7, 3 Suppl. P. 116S-137S.
- 18. Management of pediatric severe traumatic brain injury: 2019 consensus and guide-lines-based algorithm for first and second tier therapies / P.M. Kochanek, R.C. Tasker, M.J. Bell (et al.) // Pediatr Crit Care Med. 2019. Vol. 20, N 3. P. 269-279.
- 19. Nandhabalan P. Refractory septic shock: our pragmatic approach / P. Nandhabalan, N. Ioannou, C. Meadows // Crit Care. 2018. Vol. 22, N 1. P. 215.
- 20. Annane D, Pastores SM, Rochwerg B, Arlt W, Balk RA, Beishuizen A, Briegel J, Carcillo J, Christ-Crain M, Cooper MS, Marik PE, Umberto Meduri G, Olsen KM,

- Rodgers S, Russell JA, Van den Berghe G. Guidelines for the diagnosis and management of critical illness-related corticosteroid insufficiency (CIRCI) in critically ill patients (Part I): Society of Critical Care Medicine (SCCM) and European Society of Intensive Care Medicine (ESICM) 2017. Intensive Care Med. 2017 Dec;43(12):1751-1763.
- 21. Utility of amylase and lipase as predictors of grade of injury or outcomes in pediatric patients with pancreatic trauma / R. Herman, K.E. Guire, R.S. Burd (et al.) // J Pediatr Surg. __2011. Vol. 46, N5. P. 923-926.
- 22. Kornelsen E, Mahant S, Parkin P, Ren LY, Reginald YA, Shah SS, Gill PJ. Corticosteroids for periorbital and orbital cellulitis. Cochrane Database Syst Rev. 2021 Apr 28;4:CD013535.

References:

- 1. Алгоритм оказания помощи детям с сочетанной травмой / Д.И. Юнусов, В.Ю. Александрович, П.И. Миронов (и др.) // Ортопедия, травматология и восстановительная хирургия детского возраста. − 2019. − Т. 7, №4. − С. 67–78.
- 2. Безопасность применения протокола пошаговой терапии острой внутричеренной гипертензии у детей с тяжелой механической травмой / И.А. Колыхалкина, Т.А. Чернышева, В.Г. Амчеславский (и др.) // Медицинский алфавит. 2013. Т. 2, № 14. С. 57-58.
- 3. Кондратьев, А. Н. Нейротравма глазами анестезиолога-реаниматолога / А. Н. Кондратьев. М.: Медицина, 2014. 204 с.
- 4. Лечение пострадавших детей с черепно-мозговой травмой. Клинические рекомендации. Ассоциация нейрохирургов России, Ассоциация детских нейрохирургов России. М., 2015. 36 с.
- 5. Лечение пострадавших с тяжелой черепно-мозговой травмой. Ассоциация нейрохирургов России, Ассоциация детских нейрохирургов России. М., 2014. 21 с.
- 6. Организация оказания медицинской помощи пострадавшим с сочетанной травмой в травмоцентрах Санкт-Петербурга / А.Н. Тулупов, В.Ю. Афончиков, А.Е. Чикин (и др.) // Скорая медицинская помощь. 2014. №1. С. 67-71.
- 7. Профилактика и лечение внутричерепной гипертензии у детей с тяжелой черепно-мозговой травмой / И.А. Колыхалкина, Т.А. Чернышева, В.Г. Амчеславский, О.В. Карасева (и др.) // Неотложная медицина. 2014. №1. С. 16-19.
- 8. Рекомендации по лечению детей с черепно-мозговой травмой / Ж.Б. Семенова, А.В. Мельников, И.А. Саввина (и др.) // Российский вестник детской хирургии, анестезиологии и реаниматологии. − 2016. − Т. 6, №2. − С. 112-131.
- 9. Савин, И.А. Водно-электролитные нарушения в нейрореанимации / И. А. Савин, А. С. Горячев. М.: «Аксиом Графикс Юнион», 2015. 332 с.
- 10. Савин, И.А. Рекомендации по интенсивной терапии у пациентов с нейрохирургической патологией / под ред. И. А. Савина, М. С. Фокина, А. Ю. Лубнина. М.: НИИ нейрохирургии им. акад. Н. Н. Бурденко РАМН, 2014. 168 с.
- 11. Феличано, Д.В. Травма. В 3 т. / Д.В. Феличано, К.Л. Маттокс, Э.Е. Мур. М.: Издательство Панфилова; БИНОМ. Лаборатория знаний, 2013. Т. 2. С. 496.

- 12. A clinical practice guideline for the management of patients with acute spinal cord injury: recommendations on the use of methylprednisolone sodium succinate / M.G. Fehlings, J.R. Wilson, L.A. Tetreault L.A. (et al.)// Global Spine J. 2017. Vol. 7, 3 Suppl. P. 203–211
- 13. American college of critical care medicine clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock / A.L. Davis, J.A. Carcillo, R.K. Aneja (et al.) // Crit Care Med. 2017. Vol. 45, N 6. P. 1061-1093.
- 14. A review: the role of high dose methylprednisolone in spinal cord trauma in children / J.N. Pettiford, J. Bikhchandani, D.J. Ostlie (et al.) Pediatr Surg Int. 2012. Vol. 28, N 3. P. 287-94.
- 15. Arora, B. Spinal cord injuries in older children: is there a role for high-dose methylprednisolone? / B. Arora, S. Suresh // Pediatr Emerg Care. 2011. Vol. 27, N 12. P. 1192-4.
- 16. Aylward, S.C., Reem, R.E. Pediatric intracranial hypertension / S.C. Aylward, R.E. Reem // Pediatr Neurol. 2017. Vol. 66. P. 32-43.
- 17. Efficacy and safety of methylprednisolone sodium succinate in acute spinal cord injury: a systematic review / M.G. Fehlings, J.R. Wilson, J.S. Harrop (et al.) // Global Spine J. 2017. Vol. 7, 3 Suppl. P. 116S-137S.
- 18. Management of pediatric severe traumatic brain injury: 2019 consensus and guidelines-based algorithm for first and second tier therapies / P.M. Kochanek, R.C. Tasker, M.J. Bell (et al.) // Pediatr Crit Care Med. 2019. Vol. 20, N 3. P. 269-279.
- 19. Nandhabalan P. Refractory septic shock: our pragmatic approach / P. Nandhabalan, N. Ioannou, C. Meadows // Crit Care. 2018. Vol. 22, N 1. P. 215.
- 20. Annane D, Pastores SM, Rochwerg B, Arlt W, Balk RA, Beishuizen A, Briegel J, Carcillo J, Christ-Crain M, Cooper MS, Marik PE, Umberto Meduri G, Olsen KM, Rodgers S, Russell JA, Van den Berghe G. Guidelines for the diagnosis and management of critical illness-related corticosteroid insufficiency (CIRCI) in critically ill patients (Part I): Society of Critical Care Medicine (SCCM) and European Society of Intensive Care Medicine (ESICM) 2017. Intensive Care Med. 2017 Dec;43(12):1751-1763.
- 21. Utility of amylase and lipase as predictors of grade of injury or outcomes in pediatric patients with pancreatic trauma / R. Herman, K.E. Guire, R.S. Burd (et al.) // J Pediatr Surg. __2011. Vol. 46, N5. P. 923-926.
- 22. Kornelsen E, Mahant S, Parkin P, Ren LY, Reginald YA, Shah SS, Gill PJ. Corticosteroids for periorbital and orbital cellulitis. Cochrane Database Syst Rev. 2021 Apr 28;4:CD013535.

Участие авторов:

Концепция и дизайн исследования – Пшениснов К.В., Липин А.С.

Сбор и обработка материала – Пшениснов К.В., Липин А.С.

Статистическая обработка – Липин А.С.

Написание текста – Пшениснов К.В., Липин А.С.

Редактирование – Александрович Ю.С., Пшениснов К.В.

Конфликт интересов: отсутствует

Conflict of interest. The authors declare no conflict of interest.

Финансовая поддержка: Исследование проводилось в рамках научноисследовательской работы ФГБОУ ВО «ФГБОУ ВО «Санкт-Петербургский государственный педиатрический медицинский университет» Министерства здравоохранения Российской Федерации и не имело спонсорской поддержки Funding. The study had no sponsorship.