CS208: Mathematical Foundations of CS

Fall 2018

Lecture 13: September 11

Lecturer: Samar

Scribes: Rohit Agarwal(B17100), Varshdeep Singh(B17067)

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

13.1 Function

Idea of basic function:

Function is just like a machine ,if you give some right input then you will get correct output. or we can say

A function is a set of statements that take inputs, do some specific computation and produces output.

Definition: Function is a mapping such that no two of same element in domain can have different mapping.

Notation: $f: A \rightarrow B$.

Function is defined from A to B where A is said to set of Domain and B is said to set of Co domain.

Lemma 1 13.1.1 Basic terms required to define a function:

- Domain
- Co-domain
- Range
- Support of function

Domain - The set of all possible values for which the function may or may not be defined is called Domain. Set A is called domain of that function.

Range - Range is the set of all output of function after substituting domain values into it.

Co-Domain - Co-domain is the set of all values in which all the output of function is constrained to fall .Set B is called as co-domain of that function.

Support of function - The set of domain elements for which a function is defined is called the support of the function.

13.1.2 Types of function

- Partial Function
- Total Function

13.1.2.1 Partial Function: -

There may be domain elements for which function is not defined . Such functions are called as partial functions. **Examples**:-

1.
$$F(x) = \frac{1}{x^2}$$

For x = 0, this function does not return any value.

so, x=0 is the element in domain which does not contain any value under f.

2. A function that take binary strings as input.

f: length of binary bits from left to right of string y until a 1 appears.

f(0001001) = 4 f(1000) = 1

f(0000) = undefined.

so, this function is also partial function as it does not assign any value to 0000.

13.1.2.2 Total Function : -

If function is defined for each and every element of domain then such functions are called as Total Functions. **Examples**:-

 $1.\sin(\frac{1}{x})$

 $\sin(\frac{1}{x})$ wobbles as go to the x=0 from infinite(or - infinite) its oscillates around the -1,0 and 1 infinite times.

There are an infinite number of these values, and all are between 0 and 1. We can conclude that as $x \to 0$ from the right, the function $\sin(\frac{1}{x})$ does not settle down on any value , and so the limit as x approaches 0 from the right does not exist.

$2.\log(\frac{1}{x})$

As $x\to 0$ from the right the limit of the function goes to the infinity .

$$\lim_{x\to\infty} f(x)$$

$$\lim_{x\to\infty} -log(x) \to -\infty$$

13.1.3 Piece wise Application

If f: is a Function from set A to set B, S is subset of A.

$$f(s) = \{ b \in B, f(s) = b, \forall s \in S \}$$

This is called image of S under f.

 $f\colon A\to B$

Domain = A

 $f:S\to B$, $S\subseteq A$ then ,

Domain = pow(A)

- \Rightarrow Range(f) = f \square domain(f) \square
- \Rightarrow Range(f) \subseteq Co-domain

Exampless :-

1.
$$F(x) = x^2$$
, $R \to R$

note: square of any number is positive.

Range = $\{x \ge 0, x \in R\}$

 \Rightarrow Range \subseteq R and co-domain=R .

 $\Rightarrow Range \subseteq co\text{-}domain$

2.
$$F(x) = \sqrt{x}$$
, $R^+ \to R$

Graph of this function is

 $Domain \geq 0$

Range = R^+

co-domain = R

 \Rightarrow Range \subseteq co-domain .

Graph of this function is

3. $F(x) = \sin x$, $R \rightarrow \Box -2$, $2 \Box$.

From Graph,

Domain = R

co-domain = \square -2, 2 \square

Range = \square -1 , 1 \square

 \Rightarrow Range \subseteq co-domain .

13.1.4 Function Composition

Taking a step amounts to applying a function, and going step by step corresponds to applying functions one after the other.

Composition the function f and g means first calculate f on argument x to produce f(x) and then calculate g on argument f(x) to produce $g \sqsubseteq f(x) \sqsupset$.

Definition :- If we have two function $f:A\to B$ and $g:B\to C$ then , composition g o f , of g and f is defined to be the function from A to C defined by :

$$g \circ f(x) = g(f(x))$$

Examples:

$$\begin{split} &f(x)=x^x\\ &g(x)=floor(x)\\ &then , g o f(x) is defined as\\ &g o f=floor(x^x) Domain = (0\ ,\infty)\\ &Co-domain = \mathop{\sqsubseteq}\limits_{} 0,\infty\)\\ &Range = \mathop{\sqsubseteq}\limits_{} e^{\frac{-1}{e}}\ ,\infty\) \end{split}$$

References

- [4.3.1] Mathematics for Computer Science by Eric Lehman. [4.3.2] Mathematics for Computer Science by Eric Lehman.

FOOPLOT for ploting the graphs.