4/21/22, 12:59 PM hmwk10

In [1]: %matplotlib notebook
 from numpy import *
 from matplotlib.pyplot import *

Homework 10 : Conditioning and stability of linear least squares

The least squares problem

$$A\mathbf{x} = \mathbf{b} \tag{1}$$

where $A\in\mathcal{R}^{m\times n}$, $m\geq n$ has four associated "conditioning" problems, described in the table in Theorem 18.1 of TB (page 131). These are

- 1. Sensitivity of $\mathbf{y} = A\mathbf{x}$ to right hand side vector \mathbf{b} ,
- 2. Sensitivity of the solution x to right hand side vector b,
- 3. Sensitivity of $\mathbf{y} = A\mathbf{x}$ to the coefficient matrix A, and
- 4. Sensitivity of the solution \mathbf{x} to the coefficient matrix A.

Problem 1

Sensitivity of y to a perturbation in b.

In TB Lecture 12, the relative condition number is defined as

$$\kappa = \sup_{\delta x} \left(\frac{\|\delta f\|}{\|f(x)\|} \middle/ \frac{\|\delta x\|}{\|x\|} \right) \tag{2}$$

Problem 1(a)

Arguing directly from this definition, establish the condition number of ${f y}$ with respect to perburbations in ${f b}$ given by TB Lecture 18

$$\kappa = \frac{1}{\cos \theta} \tag{3}$$

Hint: The input "x" in this problem is \mathbf{b} and the output (or model) "f" is \mathbf{y} . Show geometrically that the supremum is attained with $P\delta b = \delta b$.

Problem 1(b)

4/21/22, 12:59 PM hmwk10

For $\theta=\pi/2$, the condition number is ∞ . Illustrate what this means by considering the least squares problem

$$\begin{bmatrix} 2\\1 \end{bmatrix} [x] = \begin{bmatrix} -1\\2 \end{bmatrix} \tag{4}$$

Use the results in TB 11.11 and 11.12 (page 82) to determine the projection operator P for this problem. Then compute $\mathbf{y}=P\mathbf{b}$ and show that $P\mathbf{b}=0$. Find a perturbation $\delta\mathbf{b}$ so that $P\delta\mathbf{b}=\delta\mathbf{b}=\delta\mathbf{y}\neq0$. Explain what a condition number $\kappa=\infty$ might mean here. Illustrate your argument graphically.

Problem 1(c)

Now consider the problem

$$\begin{bmatrix} 2 \\ 1 \end{bmatrix} [x] = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \tag{5}$$

For this problem, show that $\kappa=1$. What is qualitatively different about this problem than the problem in which $\kappa=\infty$?

Problem 2

Problem 18.1 in TB (page 136)

Problem 3

Show that if (λ, \mathbf{v}) is an eigenvalue/eigenvector pair for matrix A, then $((\lambda - \mu)^{-1}, \mathbf{v})$ is an eigenvalue/eigenvector pair for the matrix $(A - \mu I)^{-1}$.

Why is this observation useful when using the power iteration to find an eigenvalue close to μ ?

Problem 4

Exercise 29.1 (Lecture 29, TB page 223). This is a five part problem that asks you to code an eigenvalue solver for a real, symmetric matrix using the shifted QR algorithm. Do your code in Python, using the Numpy qr algorithm where needed.

The basic steps are:

1. Reduce your matrix A to tridiagonal form. You may use the hessenberg code we wrote in class.

4/21/22, 12:59 PM hmwk10

- 2. Implement the unshifted QR code (also done in class). Use the Numpy routine $\ \, qr$. Your iteration should stop when the off diagonal elements are smaller (in absolute value) than $au \approx 10^{-12}$.
- 3. Find all eigenvalues of a matrix A using the "deflation" idea described in Algorithm 28.2.
- 4. Introduce the Wilkinson shift, described in Lecture 29.

Notes

- Your code should work for a real, symmetrix matrix
- Your code does not have to be efficient in the sense of optimizing the cost of matrix/vector multiplies and so on.
- ullet Apply your algorithm to the Hilbert matrix <code>scipy.linalg.hilbert</code> . The entries of the m imes m Hilbert matrix are given by

$$H_{ij} = rac{1}{i+j-1}, \qquad i,j = 1,2,\dots m$$
 (6)

```
In [11]: def display_mat(msg,A):
             print(msg)
             fstr = {'float' : "{:>10.6f}".format}
             with printoptions(formatter=fstr):
                 display(A)
             print("")
In [12]: from scipy.linalg import hilbert
         H = hilbert(5)
         display_mat("Hilbert matrix : ", H)
         Hilbert matrix :
                              0.500000,
         array([[ 1.000000,
                                          0.333333,
                                                      0.250000,
                                                                  0.200000],
                [ 0.500000, 0.333333,
                                          0.250000,
                                                      0.200000,
                                                                  0.166667],
                [ 0.333333, 0.250000, 0.200000,
                                                      0.166667,
                                                                  0.142857],
                [ 0.250000, 0.200000, 0.166667,
                                                      0.142857,
                                                                  0.125000],
                  0.200000,
                             0.166667,
                                          0.142857,
                                                      0.125000,
                                                                  0.111111])
In []:
```