Završni ispit iz Raspoznavanja uzoraka¹

22. siječnja 2010.

TEORIJA

1. zadatak (6 bodova)

Objasniti dva pristupa pri korištenju K-L transformacije

2. zadatak (6 bodova)

Definirati vrste aktivacijskih funkcija koje se koriste pri kreiranju neuronskih mreža. Nacrtati iste. Koja aktivacijska funkcija se najčešće koristi pri kreiranju neuronskih mreža s propagacijom greške unatrag? Zašto?

3. zadatak (8 bodova)

Dokazati da je Bayes s normalnom razdiobom, kada je $C_i = C$, a $p(w_1) = p(w_2) = p(w_3)$, jednak Mahalnobisovoj udaljenosti.

ZADATCI

1. zadatak (6 bodova)

Zadatak s neuronskom mrežom. Zadane su gradijentne funkcije od δ_8 do δ_3 , ali u obliku (npr.):

 $\delta_8 = 0.598(1-0.598)(1-0.5968) = 0.097$

 δ_7 = 0,4395(1-0,4395)(0,2466*0,097)= 0,00589

 δ_6 = 0,5162(1-0,5162)(-0,3259*0,097)= -0,00789

i tako do δ_3 .

- a) Nacrtati neuronsku mrežu na temelju tih podataka i označiti sve težinske elemente i sve što se na temelju ovih podataka može označiti
- b) Koji je očekivani izlaz neuronske mreže?
- c) Izračunati sve težine (w ji) neurona 6.

2. zadatak (7 bodova)

Zadatak s Bayesovim operatorom s tim da je zadan razred ω_1 , zadana je kovarijacijska matrica C_2 i rečeno je da je centar svih elemenata razreda ω_2 u ishodištu. Treba izračunati decizijsku funkciju.

3. zadatak (7 bodova)

Standardan Fisher s dva razreda (po dva uzorka). Treba nacrtati uzorke, izračunati i nacrtati decizijsku funkciju te projicirati i označiti projicirane uzorke na decizijskoj funkciji.

¹ Zadatci su zapisani po sjećanju