Federated Model Distillation with Noise-Free Differential Privacy 2021

IJCAI Lichao Sun, Lingjuan Lyu

Contributions

- 1. Centralized differential privacy(CDP) requires a central trusted party
- 2. Local differential privacy(LDP) only support shallow models such as logisitic regression and only focus on simple tasks and datasets
- 3. Conventional Fl system suffers from several intrinsic limitations:(1) it requires every party to share their local model weights in each round, thus limiting only to models with homogeneous architectures; (2) sharing model weight incurs a significant privacy issue of local model, as it opens all the internal state of the model to white-box inference attacks; (3) model weight is usually of much higher dimension than model predictions, resulting in huge communication overhead and higher privacy cost.
 - Author propose FEDMD-NFDP, a novel federated model distillation framework with the new proposed noise-free differential privacy (NFDP) mechanism that guarantees each party's privacy without explicitly adding any noise.
 - prove that NFDP with both replacement and without replacement sampling strategies can inherently ensure (ε, σ)-differential privacy, eliminating noise addition and privacy cost explosion issues explicitly in previous works.
 - Extensive experiments on benchmark datasets, various settings (IID and Non-IID data distribution), and heterogeneous model architectures, demonstrate that F ED MDNFDP achieves comparable utility with only a few private samples that are randomly sampled from each party, validating the numerous benefits of our framework.

Method

FEDMD-NFDP

(1) during initialization phase, every party i updates its local model weights ω_i on a randomly sampled subset $(X_i, Y_i) \in D_i$ from local private training data D_i for T_i times without any collaboration

(2)during collaboration phase, parties share the knowledge of their local model via their predictions on a subset of public data, X_D

```
Collaboration phase
 9: Y_p[0] = f_{\mathsf{Aggreg}}(\{Y_p^{i \in [N]}[0]\}) 
ightharpoonup Initial aggregation at the
10: for t \in [R] communication rounds do
         Server randomly samples a public subset X_p[t+1] \in
11:
12:
         for i \in [N] parties do
                                          ▶ Each party updates local
     weight w_i in parallel
              for j \in [T_2] epochs do
13:
                  Digest: w_i \leftarrow \mathsf{TRAIN}\left(w_i, X_p[t], Y_p[t]\right)
14:
15:
              end for
              for j \in [T_3] epochs do
16:
17:
                  Revisit: w_i \leftarrow \mathsf{TRAIN}\left(w_i, X_i, Y_i\right)
              end for
18:
              Send Y_p^i[t+1] = \mathsf{PREDICT}(w_i; X_p[t+1]) to the
19:
    server
20:
         Y_p[t+1] = f_{\mathsf{Aggreg}}(\{Y_p^{i \in [N]}[t+1]\}) > Prediction
21:
    aggregation at the server
22: end for
```

Theorem 1. [NFDP mechanism: (ϵ, δ) -differential privacy of sampling without replacement] Given a training dataset of size n, sampling without replacement achieves $(\ln \frac{n+1}{n+1-k}, \frac{k}{n})$ -differential privacy, where k is the subsample size.

Theorem 2. [NFDP mechanism: (ϵ, δ) -differential privacy of sampling with replacement] Given a training dataset of size n, sampling with replacement achieves $((k \ln \frac{n+1}{n}, 1 - \left(\frac{n-1}{n}\right)^k)$ -differential privacy, where k is the subsample size.

Lemma 1. Algorithm 1 using sampling with replacement is consistently more private than using sampling without replacement for any n > 0 and $0 < k \le n$.

Experimental

- MNIST/FEDMNIST and CIFAR-10/CIFAR-100
 - (1)IID Non-IID
 - (2)Local model two or three-layer DNN
 - (3)pytorch GPU NVIDIA Tesla V100 N = 10
- subset of size 5000, R = 20,T1 = 20,T2 = 2,T3 = 1
- FEDMD-NFDP FEDMD-NP/Centralized/FEDMD-LDP
- DP (ε, σ) /model convergence/distillation approaches/IID Non-IID/number of party/

FEMNIST	k	ϵ	δ	Accuracy	CIFAR-10	k	ϵ	δ	Accuracy
FEDMD-NP	2880	+∞	1	96.15%	FedMD-NP	300	+∞	1	86.88%
Centralized	2880	+∞	1	98.00%	Centralized	300	+∞	1	88.83%
FEDMD-NFDP	16	0.0027	0.0062	80.64%	FEDMD-NFDP	16	0.0260	0.0583	74.40%
FEDMD-NFDP	60	0.0090	0.0206	88.06%	FEDMD-NFDP	60	0.0867	0.1815	81.58%
FEDMD-NFDP	300	0.0452	0.0989	93.56%	FEDMD-NFDP	120	0.1734	0.3301	83.57%
FEDMD-NFDP	2880	0.4342	0.6321	96.63%	FEDMD-NFDP	300	0.4336	0.6327	87.38%

Table 2: Comparisons with All Baselines