Отчёт по лабораторной работе №5

Математическое моделирование

Чекалова Лилия Руслановна

Содержание

Цель работы	5
Задание	6
Теоретическое введение	7
Выполнение лабораторной работы	9
Выводы	14
Список литературы	15

Список таблиц

Список иллюстраций

0.1	Программа на Julia	9
0.2	График зависимости числа хищников от числа жертв на Julia	10
0.3	Графики изменения числа хищников и жертв на Julia	10
0.4	Нахождение стационарного состояния	11
0.5	Координаты точки стационарного состояния	11
0.6	Программа на OpenModelica	12
0.7	График зависимости числа хищников от числа жертв на OpenModelica	13
0.8	Графики изменения числа хищников и числа жертв на OpenModelica	13

Цель работы

- Познакомиться с простейшей моделью взаимодействия двух видов типа «хищникжертва»
- Визуализировать модель с помощью Julia и OpenModelica

Задание

- Построить график зависимости численности хищников от численности жертв
- Построить графики изменения численности хищников и численности жертв при заданных начальных условиях
- Найти стационарное состояние системы

Теоретическое введение

Простейшая модель взаимодействия двух видов типа «хищник-жертва» — модель Лотки-Вольтерры. Данная модель основывается на следующих предположениях:

- Численность популяции жертв x и хищников y зависят только от времени (модель не учитывает пространственное распределение популяции на занимаемой территории)
- В отсутствии взаимодействия численность видов изменяется по модели Мальтуса, при этом число жертв увеличивается, а число хищников уменьшается
- Естественная смертность жертвы и естественная рождаемость хищника считаются несущественными
- Эффект насыщения численности обеих популяций не учитывается
- Скорость роста численности жертв уменьшается пропорционально численности хищников:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = ax(t) - bx(t)y(t) \\ \frac{\mathrm{d}y}{\mathrm{d}t} = -cy(t) + dx(t)y(t) \end{cases}$$

В этой модели x — число жертв, y — число хищников. Коэффициент a описывает скорость естественного прироста числа жертв в отсутствие хищников, — естественное вымирание хищников, лишенных пищи в виде жертв. Вероятность взаимодействия жертвы и хищника считается пропорциональной как количеству жертв, так и числу самих хищников (xy). Каждый акт взаимодействия уменьшает популяцию жертв, но способствует увеличению популяции хищников (члены -bxy и dxy в правой части уравнения).

Математический анализ этой (жесткой) модели показывает, что имеется стационарное состояние системы (положение равновесия, не зависящее от времени решение), оно будет

в точке: $x_0=\frac{c}{d}, y_0=\frac{a}{b}$. Если начальные значения задать в стационарном состоянии $x(0)=x_0, y(0)=y_0$, то в любой момент времени численность популяций изменяться не будет. При малом отклонении от положения равновесия численности как хищника, так и жертвы с течением времени не возвращаются к равновесным значениям, а совершают периодические колебания вокруг стационарной точки. Амплитуда колебаний и их период определяется начальными значениями численностей x(0), y(0). Колебания совершаются в противофазе.

Более подробно см. в [1].

Выполнение лабораторной работы

По заданной системе пишем программу (рис. 0.1). В данном случае x — численность хищников, а y — численность жертв.

```
using DifferentialEquations

store on a p

const on a p

c
```

Рис. 0.1: Программа на Julia

Получаем график зависимости численности хищников от численности жертв (рис. 0.2) и графики изменения численности хищников и численности жертв (рис. 0.3).

Зависимость численности хищников от численности ж

Рис. 0.2: График зависимости числа хищников от числа жертв на Julia

Рис. 0.3: Графики изменения числа хищников и жертв на Julia

Добавим в программу нахождение стационарного состояния системы (рис. 0.4).

```
x0_2 = a/b
y0_2 = c/d
@show x0_2
@show y0_2

u0_2 = [x0_2, y0_2]

prob2 = ODEProblem(F, u0_2, T, p)
sol2 = solve(prob2, dtmax=0.1)

plt3 = plot(sol2, vars=(2,1), seriestype=:scatter, color=:red, label="Фазовый портрет",
title="Зависимость численности хищников от численности жертв", xlabel="численность жертв", ylabel="численность хищников")
savefig(plt3, "lab5_3.png")
```

Рис. 0.4: Нахождение стационарного состояния

В результате видим, что стационарное состояние находится в точке со следующими координатами (рис. 0.5).

```
x0_2 = 5.78125
y0_2 = 3.9705882352941178
```

Рис. 0.5: Координаты точки стационарного состояния

Теперь напишем программу для нашего уравнения на OpenModelica (рис. 0.6).

```
model PredPrey
parameter Integer x0 = 9;
parameter Integer y0 = 29;
parameter Real a = 0.37;
parameter Real b = 0.064;
parameter Real c = 0.27;
parameter Real d = 0.068;
Real x(start=x0);
Real y(start=y0);
equation
der(x) = -c*x+d*x*y;
der(y) = a*y-b*x*y;
end PredPrey;
```

Рис. 0.6: Программа на OpenModelica

Получаем график зависимости числа хищников от числа жертв (рис. 0.7) и графики изменения числа хищников и числа жертв (рис. 0.8).

Рис. 0.7: График зависимости числа хищников от числа жертв на OpenModelica

Рис. 0.8: Графики изменения числа хищников и числа жертв на OpenModelica

Выводы

В ходе работы мы изучили простейшую модель взаимодействия двух видов типа «хищник-жертва» — моделью Лотки-Вольтерры, и применили навыки работы с Julia и OpenModelica для построения графиков, визуализирующих эту модель. Кроме того мы нашли стационарное состояние системы — оно находится примерно в точке $x_0=5.78$, $y_0=3.97$. Результатом работы стали график зависимости численности хищников от численности жертв, графики изменения численности хищников и численности жертв и график стационарного состояния системы.

На мой взгляд, OpenModelica лучше справляется с задачами, имеющими в основе дифференциальные уравнения, однако Julia дает больше возможностей для визуализации, то есть для работы с графиками.

Список литературы

1. Теоретические материалы к лабораторной работе "Модель Лотки-Вольтерры" [Электронный ресурс]. URL: https://esystem.rudn.ru/mod/resource/view.php?id=96 7245.