Firewalls and Intrusion Detection Systems: Part 1

Gaurav S. Kasbekar

Dept. of Electrical Engineering

IIT Bombay

NPTEL

References

- J. Kurose, K. Ross, "Computer Networking: A Top Down Approach", Sixth Edition, Pearson Education, 2012
- B.L. Menezes, R. Kumar, "Cryptography, Network Security, and Cyber Laws", Cengage Learning India Pvt. Ltd., 2018
- C. Kaufman, R. Perlman, M. Speciner, "Network Security: Private Communication in a Public World", Pearson Education, 2nd edition, 2002

Introduction

- Most organizations (e.g., universities, companies) have networks connected to the public Internet
- Attackers may attempt to:
 - ☐ infect machines with malware
 - □ obtain corporate secrets
 - map the internal network configurations
 - □ launch Denial of Service attacks, etc.
- We will discuss firewalls and intrusion detection systems, which can be used to detect and/ or prevent such attacks

Firewall

- A firewall is a combination of hardware and software that controls access between an organization's internal network and the Internet
- Allows some packets to pass and blocks others, based on a given security policy
- Prevents intruders from attacking internal network

Also prevents confidential internal data from getting out

Properties of a Firewall

- All traffic from outside to inside and vice versa passes through the firewall
- Only authorized traffic, as defined by the security policy configured by network administrator, allowed to pass
 - □ other traffic blocked
- Firewall itself is designed and maintained in such a way that it is hard to compromise, e.g.:
 - unnecessary services on the machine removed and newly available security patches installed expeditiously
- A firewall may be implemented:
 - ☐ in hardware as a standalone device
 - ☐ or in software on a PC
- Also, many routers support basic firewall functionality

Internet Control Message Protocol (ICMP)

- ICMP is a protocol used by hosts and routers to communicate network-layer information to each other
- A typical use of ICMP is for error reporting
 - □ e.g., while forwarding a packet, if an IP router is unable to find a path to the destination address, then it sends an ICMP packet to source indicating the error
 - may result in display of "Destination host unreachable" or "Destination network unreachable" message to end user
- ICMP packets have the "Protocol" field in the IP header equal to 1
 □ note: this field equals "6" for TCP packets and "17" for UDP packets
- Examples of ICMP packets:
 - ☐ a "redirect" packet, which tells source host to use a particular router for forwarding to a particular destination, presumably because the router the source chose on a previous packet was not the best path to the destination
 - a "ping" packet, which is supposed to be echoed back by the system that receives it
 - o useful for seeing if a system is alive and reachable

Examples of Attacks Using ICMP Messages

- ICMP ping can be exploited by attacker to:
 - If ind machines to break into
- Sending an ICMP message to an internal host, say Alice, falsely claiming that some range of addresses is unreachable will cause:
 - □Alice to end its connections to machines in the range specified by that ICMP message
- ICMP redirects can be used to cause a host to:
 - □send traffic in a different direction, possibly towards a compromised machine
 - □allowing man-in-the-middle attacks to take place

Traceroute

•	A program that can be used to trace a route from a host to any other host in the world
	provides IP addresses of all the routers on path
•	Implemented using ICMP messages
•	Sends a series of ordinary UDP packets to the destination
	ach packet contains an unlikely UDP port number
•	The first of these UDP packets has a TTL of 1, the second of 2, the third of 3, and so on
	When the n' th packet arrives at the n' th router: \square the n' th router observes that the TTL has just expired
	according to the rules of the IP protocol, the router discards the packet and sends an ICMP message to the source
	this message includes the IP address of the router
•	When this ICMP message arrives at the source host, it obtains the IP address of the n 'th router on the path to the destination host
•	This process continues until one of the UDP packets sent by source host reaches the destination host
•	However, the traceroute program can be used by an attacker to attack an organization's network as follows:
	it can map the internal configuration of the organization's network
	It can use the configuration obtained to later attack the organization's network