第八章练习题(选择题)---(注意向量以黑体录入)

1. 已知向量 a , b , c 是两两垂直的单位向量,且 $p = \alpha a + \beta b + \gamma c$, 其中						
α , β , γ 是常数,则 $m{p}$ =						
A. $\sqrt{\alpha^2 + \beta^2}$ B. $\sqrt{\alpha^2 + \beta^2 + \gamma^2}$						
C. $\sqrt{\gamma^2 + \beta^2}$ D. $\sqrt{\alpha^2 + \gamma^2}$						
2. 向量 $a = \{4, -3, 4\}$ 在向量 $b = \{2, 2, 1\}$ 上的投影为						
A. 2 B. 1 C. 3 D. 4						
3. 已知向量 a , b , c 两两垂直, 且 $ a =1$, $ b =2$, $ c =3$.则 $s=a+b+c$ 与 c						
的夹角是						
A. $\frac{\pi}{2}$ B. $\frac{\pi}{3}$ C. $\arccos \frac{3}{\sqrt{14}}$ D. π						
4. 已知向量 a 和 b 之间的夹角 $\varphi=120^\circ$, $ a =3$, $ b =5$,则 $ a+b =$						
A. 5 B. 3 C. 4 D. $\sqrt{19}$						
5. 设 $a = \{1, 2, \lambda\}, b = \{2\lambda, 1, 1\}, 且a \perp b, 则\lambda = $						
A. -2 B. -1 C. -6 D. $-\frac{2}{3}$						
6. a × b 的几何意义是						
A. 以向量 a 、 b 为相邻边平行四边形的面积的二分之一						
B. 以向量 a 、 b 为相邻边平行四边形的面积						
C. 以向量 a 、 b 为相邻边平行四边形的面积的二两倍						
D. 以上答案都不对						
7. 已知向量 a , b , c , 其中 $c \perp a$, $c \perp b$, 又 $\langle a, b \rangle = \frac{\pi}{6}$, $ a = 6$, $ b = c = 6$						
3. 则 $(a \times b) \cdot c$ = .						

	A. $c \times b$	B. $\boldsymbol{b} \times \boldsymbol{c}$	C. $\boldsymbol{a} \times \boldsymbol{c}$	D. $\boldsymbol{b} \times \boldsymbol{a}$	
15.	已知平行四边形四	四个顶点 <i>A,B</i> ,	C, D, 点D是	是与点 <i>B</i> 相对的,	点,0是坐标原
点,	记 $a = \overrightarrow{OA}$, $b =$	\overrightarrow{OB} , $c = \overrightarrow{OC}$,	,则 可 为	·	
	A. c - b	B. $a - b + c$	C. a+	b-c D.	b-c
16.	已知向量 a 和 b 的	模分别为 a =	$= 2$, $ b = \sqrt{2}$	$\mathbf{a} \cdot \mathbf{b} = 2$, 则 $ a \times b =$
	·				
	A. 2	B. $2\sqrt{2}$	C. 1	D. $\frac{\sqrt{2}}{2}$	
17.	设向量 d 与三个	坐标面 <i>x0y</i> ,	yOz, zOx	<i>c,</i> 的夹角分	别为α, β,
γ($0 \le \alpha, \ \beta, \ \gamma \le \frac{\pi}{2}$, 则 $\cos^2\alpha$ + $\cos^2\alpha$	$\cos^2\beta + \cos^2\gamma$	′ =	
	A. 0	B. 1	C. 2	D. 3	
18.	设 $\alpha = i + j + k$,	则垂直于 α 又	垂直于y轴的鸟	单位向量为	·
	A. $\pm \frac{\sqrt{3}}{3} (i$	+j+k)	B. $\pm \frac{\sqrt{3}}{3} (i -$	j + k)	
	C. $\pm \frac{\sqrt{2}}{2}$ (i	-k)	D. $\pm \frac{\sqrt{2}}{2} (i +$	- k)	
19.	已知非零向量a,	b 满足(a + 3 b	(7a-5b)); $(a-4b)\perp ($	(7a-2b),则
а,	b 之间的夹角为	·			
	A. $\frac{\pi}{6}$	B. $\frac{\pi}{3}$	C. $\frac{\pi}{2}$	D. $\frac{2\pi}{3}$	
20.	已知梯形OABC,	\overrightarrow{CB} $//$ \overrightarrow{OA} ,	$\left \overrightarrow{CB}\right = \frac{1}{2}\left \overrightarrow{OA}\right $	$ $, 若 $\overrightarrow{OA} = a$	a , $\overrightarrow{OC} = b$, 则
\overrightarrow{AB}	=				
	A. $\frac{a}{2} - b$	B. $a - \frac{b}{2}$	C. $\frac{a}{2} + b$	D. $b - \frac{a}{2}$	
21.	已知单位向量 a , b	, <i>c</i> 满足 a + b +	c= 0 ,则 a :	$b + b \cdot c + c \cdot a$	ı =
	A. $-3/2$	В. —1	2. 1 D. 3	3/2	
22.	已知向量在的终点	坐标是(2,-1,0)), 模 a = 14	,其方向与向量	量{−2,3,6}同向,
则向	可量 a 的起点坐标是	<u>. </u>			

C.
$$(6.7.-12)$$

D.
$$(6, -7, 12)$$

23. 设a, b, c为三个任意向量,则下列等式正确的是 . . .

A.
$$\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{a}$$

B.
$$(a \cdot b)c = a(b \cdot c)$$

A.
$$a \times b = b \times a$$
 B. $(a \cdot b)c = a(b \cdot c)$ C. $(a \times b) \times c = c \times (b \times a)$ D. $|a + b| = |a| + |b|$

D.
$$|a + b| = |a| + |b|$$

24. 已知直线 *L* 过点 *M* (0,-3,-2) 且与两条直线

 $L_1: \frac{x-3}{3} = \frac{y-2}{2} = \frac{z-1}{1}, L_2: \begin{cases} x = -1+2t \\ y = 5-4t, \text{ 都垂直, 则直线 } L \text{ 的方程是} \\ z = 2+3t \end{cases}$

(A)
$$\frac{x}{10} = \frac{y+3}{7} = \frac{z+2}{-16}$$

(A)
$$\frac{x}{10} = \frac{y+3}{7} = \frac{z+2}{-16}$$
 (B) $\frac{x}{10} = \frac{y+3}{-7} = \frac{z+2}{-16}$

(C)
$$\frac{x}{-10} = \frac{y+3}{7} = \frac{z+2}{-16}$$
 (D) $\frac{x}{10} = \frac{y+3}{7} = \frac{z+2}{16}$

(D)
$$\frac{x}{10} = \frac{y+3}{7} = \frac{z+2}{16}$$

25. 直线 $\frac{x}{1} = \frac{y+7}{2} = \frac{z-3}{-1}$ 上与点 (3,2,6) 的距离最近的点是______

(A)
$$(3,-1,0)$$

(B)
$$(3, -1, 1)$$

26. 直线 $\begin{cases} x+y-z-1=0, \\ 2x+y-z-2=0 \end{cases}$ 和直线 $\begin{cases} x+2y-z-2=0, \\ x+2y+2z+4=0 \end{cases}$ 间的最短距离是______.

 $\begin{cases} x = a \cos t \\ y = a \sin t, \text{ 在 } xOy$ 坐标面上的投影曲线是______

$$(A) \quad x^2 + y^2 = a^2$$

(B)
$$\begin{cases} x^2 + 2y^2 = a^2 \\ z = 0 \end{cases}$$

(C)
$$\begin{cases} 2x^2 + y^2 = a^2 \\ z = 0 \end{cases}$$
 (D)
$$\begin{cases} x^2 + y^2 = a^2 \\ z = 0 \end{cases}$$

$$(D) \begin{cases} x^2 + y^2 = a^2 \\ z = 0 \end{cases}$$

28. 过点 M(1,2,-1) 且与直线 $\begin{cases} x = -t + 2, \\ y = 3t - 4, 垂直的平面是_____. \\ z = t - 1 \end{cases}$

(A)
$$x-3y-z+4=0$$

(B)
$$2x-3y-z+4=0$$

(C)
$$x-3y-2z+5=0$$
 (D) $2x-3y-2z+1=0$

(D)
$$2x-3y-2z+1=0$$

29. 已知直线 $L_1: \frac{x-1}{1} = \frac{y-2}{0} = \frac{z-3}{-1}, L_2: \frac{x+2}{2} = \frac{y-1}{1} = \frac{z}{1}$, 则过 L_1 且平行于 L_2 的 平面方程为 _____.

(A)
$$x + 3y + z + 2 = 0$$
 (B) $x - 3y + z + 2 = 0$

(B)
$$x - 3y + z + 2 = 0$$

(C)
$$x + 3y + z + 10 = 0$$
 (D) $x + 3y + z - 10 = 0$

(D)
$$x + 3v + z - 10 = 0$$

30. 已知直线 $L: \begin{cases} x+y-z-1=0, \\ 2x+y-z-2=0 \end{cases}$ 及平面 $\Pi: 4x-y+z-2=0$,则直线 L 与平面 Π

的位置关系是

- (A) L 平行于 π , 但不在 π 上 (B) L 位于 π 内

- (C) L与 π 垂直 (D) 以上都不对

31. 在由平面2x + y - 3z + 2 = 0和平面5x + 5y - 4z + 3 = 0所决定的平面束 内,有两个相互垂直的平面,其中一个平面经过点(4,-3,1),这两个平面的方程 分别是 .

(A)
$$3x + 4y - z + 1 = 0$$
, $x - 2y - 5z - 3 = 0$

(B)
$$3x + 4y - z + 1 = 0$$
, $x - 2y - 5z + 3 = 0$

(C)
$$3x + 4y + z + 1 = 0$$
, $x - 2y - 5z - 3 = 0$

(D)
$$3x + 4y + z - 1 = 0$$
, $x - 2y - 5z - 3 = 0$

32. 以曲线 $\begin{cases} f(y,z) = 0, \\ y = 0 \end{cases}$ 为母线,以 z 轴为旋转轴的旋转曲面的方程为_____.

(A)
$$f(\pm \sqrt{y^2 + z^2}, x) = 0$$

(A)
$$f(\pm \sqrt{y^2 + z^2}, x) = 0$$
 (B) $f(y, \pm \sqrt{x^2 + z^2}) = 0$

(C)
$$f(z, \pm \sqrt{x^2 + y^2}) = 0$$

(C)
$$f(z, \pm \sqrt{x^2 + y^2}) = 0$$
 (D) $f(\pm \sqrt{x^2 + y^2}, z) = 0$

33. 方程
$$\begin{cases} \frac{x^2}{4} + \frac{y^2}{9} = 1, \\ y = 2 \end{cases}$$
 ,在空间 $0xyz$ 中的图形是______.

- (C) 平行于 z 轴的两条直线
- (D) 平行于 xoy 面的椭圆

34. 设空间两直线 $L_1: \frac{x-1}{1} = \frac{y+1}{2} = \frac{z-1}{\lambda}, L_2: x+1 = y-1 = z$ 相交于一点,则 $\lambda =$ _____.

- (A)1 (B) 0 (C) $\frac{5}{4}$ (D) $\frac{5}{3}$

35. 空间三直线

$$L_1: \frac{x+3}{-2} = \frac{y+4}{-5} = \frac{z}{3}, \qquad L_2: \begin{cases} x = 3t, \\ y = -1 + 3t, \\ z = 2 + 7t, \end{cases} \qquad L_3: \begin{cases} x + 2y - z + 1 = 0, \\ 2x + y - z = 0, \end{cases} \quad \text{If } \angle S$$

有_____

(A) $L_1//L_3$

(B) $L_1//L_2$

(C) $L_2 \perp L_3$

- (D) $L_1 \perp L_2$
- 36. 空间直线 L_1 : $\begin{cases} 4x + y + 3z = 0, \\ 2x + 3y + 2z = 9 \end{cases}$ 与 L_2 : $\begin{cases} 3x 2y + z = -5, \\ x 3y 2z = 3 \end{cases}$ 的位置关系

为____

(A) 平行不重合

(B) 相交于一点

(C) 重合

(D) 异面

37. 过点(0,2,4) 且与平面x + 2z = 1及y - 3z = 2都平行的直线是______.

(A) $\frac{x}{1} = \frac{y-2}{0} = \frac{z-4}{2}$

(B) $\frac{x}{0} = \frac{y-2}{1} = \frac{z-4}{-3}$

(C) $\frac{x}{-2} = \frac{y-2}{3} = \frac{z-4}{1}$

(D) -2x + 3(y - 2) + z - 4 = 0

38. 曲线 $\begin{cases} \frac{x^2}{16} + \frac{y^2}{4} - \frac{z^2}{5} = 1, \\ x - 2z + 3 = 0 \end{cases}$ 在 xOy 坐标面上的投影柱面是______.

- (A) $x^2 + 20y^2 24x 116 = 0$
- (B) $20v^2 + 4z^2 60z 35 = 0$
- (C) $\begin{cases} x^2 + 20y^2 24x 116 = 0, \\ z = 0 \end{cases}$
- (D) $\begin{cases} 20y^2 + 4z^2 60z 35 = 0, \\ x = 0 \end{cases}$

39. 已知|a| = 3, |b| = 26, $|a \times b| = 72$, 则 $a \cdot b =$ _____.

A. 30

B. -20

C. ±30

D. ± 20

40. 过点(-1,0,4), 平行于平面3x - 4y + z - 10 = 0, 且与直线 $x + 1 = y - 3 = \frac{z}{2}$

相交的直线方程为_____

A.
$$\frac{x+1}{-16} = \frac{y}{19} = \frac{z-4}{28}$$
 B. $\frac{x+1}{16} = \frac{y}{19} = \frac{z-4}{28}$

B.
$$\frac{x+1}{16} = \frac{y}{19} = \frac{z-4}{28}$$

C.
$$\frac{x+1}{16} = \frac{y}{-19} = \frac{z-4}{28}$$
 D. $\frac{x+1}{16} = \frac{y}{19} = \frac{z-4}{-28}$

D.
$$\frac{x+1}{16} = \frac{y}{19} = \frac{z-4}{-28}$$

41. 设一平面过原点和点(6,-3,2), 且与平面4x-y+2z-8=0垂直,则此平

面方程为_____.

A.
$$\frac{x-6}{2} = \frac{y+3}{-2} = \frac{z-2}{3}$$
 B. $2x + 2y - 3z = 0$

B.
$$2x + 2y - 3z = 0$$

C.
$$\frac{x}{2} = \frac{y}{2} = \frac{z}{-3}$$

D.
$$2x - 2y + 3z = 0$$

42. 曲线 $L: z = x^2 + 2y^2, z = 2 - x^2$,关于xOy平面的投影柱面方程是_____

A.
$$x^2 + y^2 = 1$$

B.
$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$

C.
$$\begin{cases} x^2 + y^2 = 1 \\ z = 0 \end{cases}$$

D.
$$\begin{cases} \frac{x^2}{4} + \frac{y^2}{9} = 1\\ z = 0 \end{cases}$$

43. 平面x - y + z + 5 = 0和5x - 8y + 4z + 36 = 0确定的直线的对称式方程为

A.
$$\frac{x}{4} = \frac{y-4}{1} = \frac{z+1}{-3}$$
 B. $\frac{x}{4} = \frac{y-4}{1} = \frac{z-1}{3}$

B.
$$\frac{x}{4} = \frac{y-4}{1} = \frac{z-1}{3}$$

C.
$$\frac{x}{4} = \frac{y-4}{-1} = \frac{z+1}{-3}$$
 D. $\frac{x}{4} = \frac{y-4}{1} = \frac{z-1}{-3}$

D.
$$\frac{x}{4} = \frac{y-4}{1} = \frac{z-1}{-3}$$

44. 两平行平面19x - 4y + 8z + 21 = 0和19x - 4y + 8z + 42 = 0之间的距离为

- A. 1/2
- B. 1 C. 2
- D. 21