Исследование методов определения позы человека

Студент: Ковель А.Д. ИУ7-56Б Научный руководитель: Вишневская Т.И.

Цель и задачи

Целью данной работы является представить обзор и сравнение методов определения позы человека.

Задачи:

- изучить методы по определению позы человека;
- выбрать критерии классификации и сравнить эти методы;
- определить области возможного применения методов определения поз человека.

Обзор предметной области определения позы

человека

- 1) модель пиктографических структур;
- 2) гибкое смещение частей;
- 3) края, контуры и гистограммы

Архитектура ResNet

Архитектура HRNet

Архитектура MobileNet

Оптимизация для архитектуры ResNet

Методы глубокого обучения для определения позы человека

- 1) Сверточная машина поз первая нейронная сеть для определения позы
- 2) Integral Pose интегральная регрессия
- 3) SimpleBaseline оптический поток
- 4) HRNet32 отделение признаков
- 5) Dark альтернативный подход к ориентирам
- 6) UDP несмещенное преобразование координат
- 7) MobileNetV2 оптимизация, за счет MobileNet
- 8) Lite-HRnet оптимизция HRNet

Точность и метрики

$$\Pi HO = \frac{\Pi$$
лощадь пересечения двух прямоугольников ; Π лощадь объединения двух прямоугольников ;

- 1) Пересечение над объединением
- 2) Процент правильных частей
- 3) Процент правильных ключевых точек
- 4) Средняя точность
- 5) Сходство ключевых точек объектов
- 6) Средняя погрешность взаимного расположения

$$\Pi\Pi\Pi = \frac{||s_n - s_n'|| + ||e_n - e_n'||}{2} \le \alpha ||s_n - e_n||.$$

$$\Pi\Pi KT = \frac{\Pi p e g c k a 3 a h h o e положение суставов}{И c т u h h o e положение суставов};$$

СКТО =
$$\frac{\sum_{i} (\frac{\exp(-d_{i}^{2})}{2s^{2}k_{i}^{2}}) \delta(v_{i} > 0))}{\sum_{i} (\delta(v_{i} > 0))}.$$
СПВР =
$$\frac{1}{N} \sum_{i=1}^{N} ||J_{i} - J_{i}^{*}||_{2}$$

Наборы данных

- 1) Сосо 330 тыс. изображений
- 2) МРІІ 25 тыс. изображений
- 3) PoseTrack 45 тыс. изображений

Сравнение методов определения позы человека

Метод	Архитектура	Вход	Параметры	CT	CT^{50}	CT^{75}
G-RMI [26]	ResNet-101	353×257	42.6M	64.9	85.5	71.3
Integral Pose [27]	ResNet-101	256×256	45.0M	67.8	88.2	74.8
SimpleBaseline [28]	ResNet-152	384×288	68.6M	73.7	91.9	81.1
HRNet-W32 [29]	HRNet-W32	384×288	28.5M	74.9	92.5	82.8
HRNet-W48 [30]	HRNet-W48	384×288	63.6M	75.5	92.5	83.3
DARK [31]	HRNet-W48	384×288	63.6M	76.2	92.5	83.6
UDP [32]	HRNet-W48	384×288	63.6M	76.5	92.7	84.0

Сравнение оптимизированных методов

Метод	Архитектура	Вход	Параметры	CT	CT^{50}	CT^{75}
Small HRNet [29]	HRNet-W16	384×288	1.3M	55.2	85.8	61.4
MobileNetV2 [33]	MobileNetV2	384×288	9.8M	66.2	90.0	74.0
Lite-HRNet [34]	Lite-HRNet-30	384×288	1.8M	69.7	90.7	77.5

Примеры

- 1) Личные тренеры
- 2) Робототехника
- 3) Дополнительная реальность
- 4) Распознавание поз спортсменов

Заключение

Поставленная цель достигнута: методы определения позы человека были рассмотрены и определены.

Выполненные задачи:

- 1) изучены методы по определению позы человека;
- 2) выбраны критерии классификации и сравнены методы;
- 3) определены области возможного применения.