

### X4-Class **Power MOSFET**

### IXTH120N20X4

N-Channel Enhancement Mode Avalanche Rated



| $V_{\rm DSS}$        | = | 200V             |
|----------------------|---|------------------|
| <br>  <sub>D25</sub> | = | 120A             |
| R <sub>DS(on)</sub>  | ≤ | $9.5$ m $\Omega$ |



| G = Gate   | D   | = Drain |
|------------|-----|---------|
| S = Source | Tab | = Drain |

| Symbol             | Test Conditions                                                   | Maximum Ra | atings   |
|--------------------|-------------------------------------------------------------------|------------|----------|
| V <sub>DSS</sub>   | T <sub>J</sub> = 25°C to 175°C                                    | 200        | V        |
| $\mathbf{V}_{DGR}$ | $T_J$ = 25°C to 175°C, $R_{GS}$ = 1M $\Omega$                     | 200        | V        |
| V <sub>GSS</sub>   | Continuous                                                        | ±20        | V        |
| V <sub>GSM</sub>   | Transient                                                         | ±30        | V        |
| I <sub>D25</sub>   | T <sub>C</sub> = 25°C                                             | 120        | A        |
| I <sub>DM</sub>    | $T_{\rm c}$ = 25°C, Pulse Width Limited by $T_{\rm JM}$           | 240        | Α        |
| I <sub>A</sub>     | T <sub>C</sub> = 25°C                                             | 60         | A        |
| E <sub>as</sub>    | T <sub>C</sub> = 25°C                                             | 1          | J        |
| dv/dt              | $I_{S} \leq I_{DM}, V_{DD} \leq V_{DSS}, T_{J} \leq 150^{\circ}C$ | 20         | V/ns     |
| P <sub>D</sub>     | T <sub>c</sub> = 25°C                                             | 417        | W        |
| T <sub>J</sub>     |                                                                   | -55 +175   | °C       |
| T <sub>JM</sub>    |                                                                   | 175        | °C       |
| T <sub>stg</sub>   |                                                                   | -55 +175   | °C       |
| T <sub>L</sub>     | Maximum Lead Temperature for Soldering                            | 300        | °C       |
| -                  | 1.6 mm (0.062 in.) from Case for 10s                              |            |          |
| M <sub>d</sub>     | Mounting Torque                                                   | 1.13 / 10  | Nm/lb.in |
| Weight             |                                                                   | 6          | g        |

#### **Features**

- International Standard Package
- Low R<sub>DS(ON)</sub> and Q<sub>G</sub>
   Avalanche Rated
- Low Package Inductance

#### **Advantages**

- High Power Density
- Easy to Mount
- Space Savings

#### **Applications**

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- Robotics and Servo Controls

| <b>Symbol Test Conditions</b> (T <sub>J</sub> = 25°C, Unless Otherwise Specified) |                                                        | Characteristic Values<br>Min.   Typ.   Max. |  |           |                          |
|-----------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------|--|-----------|--------------------------|
| BV <sub>DSS</sub>                                                                 | V <sub>GS</sub> = 0V, I <sub>D</sub> = 250μA           | 200                                         |  |           | V                        |
| V <sub>GS(th)</sub>                                                               | $V_{DS} = V_{GS}, I_D = 250\mu A$                      | 2.5                                         |  | 4.5       | V                        |
| I <sub>GSS</sub>                                                                  | $V_{GS} = \pm 20V, V_{DS} = 0V$                        |                                             |  | ±100      | nA                       |
| I <sub>DSS</sub>                                                                  | $V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 150^{\circ}C$ |                                             |  | 25<br>500 | μ <b>Α</b><br>μ <b>Α</b> |
| R <sub>DS(on)</sub>                                                               | $V_{GS} = 10V, I_{D} = 0.5 \cdot I_{D25}, Note 1$      |                                             |  | 9.5       | mΩ                       |

DS101056A(10/21) © 2021 Littelfuse, Inc.



| Symbol                   | Test Conditions                                                                                             |      | acteristic |           |
|--------------------------|-------------------------------------------------------------------------------------------------------------|------|------------|-----------|
| $(T_J = 25^{\circ}C, L)$ | Inless Otherwise Specified)                                                                                 | Min. | Тур.       | Max       |
| $\mathbf{g}_{fs}$        | $V_{DS} = 10V, I_{D} = 0.5 \cdot I_{D25}, Note 1$                                                           | 72   | 120        | S         |
| $R_{Gi}$                 | Gate Input Resistance                                                                                       |      | 6          | Ω         |
| C <sub>iss</sub>         |                                                                                                             |      | 6100       | pF        |
| c <sub>oss</sub>         | $V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$                                                                       |      | 865        | pF        |
| C <sub>rss</sub>         |                                                                                                             |      | 1.8        | pF        |
|                          | Effective Output Capacitance                                                                                |      |            |           |
| C <sub>o(er)</sub>       | Energy related $\bigvee_{GS} = 0V$                                                                          |      | 510        | pF        |
| C <sub>o(tr)</sub>       | Time related $\int_{0.8}^{0.8} V_{DS} = 0.8 \cdot V_{DSS}$                                                  |      | 2000       | pF        |
| t <sub>d(on)</sub>       | Resistive Switching Times                                                                                   |      | 13         | ns        |
| t <sub>r</sub>           | <del>-</del>                                                                                                |      | 24         | ns        |
| t <sub>d(off)</sub>      | $V_{GS} = 10V$ , $V_{DS} = 0.5 \cdot V_{DSS}$ , $I_{D} = 0.5 \cdot I_{D25}$<br>$R_{G} = 2\Omega$ (External) |      | 100        | ns        |
| t,                       | N <sub>G</sub> – 232 (External)                                                                             |      | 12         | ns        |
| Q <sub>g(on)</sub>       |                                                                                                             |      | 108        | nC        |
| Q <sub>gs</sub>          | $V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$                                       |      | 27         | nC        |
| $\mathbf{Q}_{gd}^{gd}$   |                                                                                                             |      | 27         | nC        |
| R <sub>thJC</sub>        |                                                                                                             |      |            | 0.36 °C/W |
| R <sub>thcs</sub>        |                                                                                                             |      | 0.21       | °C/W      |

#### **Source-Drain Diode**

| Symbol                                                                                                      | Test Conditions                                      | Chara | cteristic          | Values |               |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------|--------------------|--------|---------------|
| $(T_{J} = 25^{\circ}C, U)$                                                                                  | Inless Otherwise Specified)                          | Min.  | Тур.               | Max    |               |
| I <sub>s</sub>                                                                                              | $V_{GS} = 0V$                                        |       |                    | 120    | Α             |
| I <sub>SM</sub>                                                                                             | Repetitive, pulse Width Limited by $T_{_{JM}}$       |       |                    | 480    | Α             |
| V <sub>SD</sub>                                                                                             | $I_F = 100A, V_{GS} = 0V, Note 1$                    |       |                    | 1.4    | V             |
| $\left. egin{array}{l} \mathbf{t}_{rr} & \ \mathbf{Q}_{RM} & \ \mathbf{I}_{RM} & \end{array}  ight.  ight.$ | $I_F = 60A$ , -di/dt = 200A/ $\mu$ s<br>$V_R = 100V$ |       | 190<br>3.2<br>33.7 |        | ns<br>µC<br>A |

Note 1. Pulse test,  $t \le 300 \mu s$ , duty cycle,  $d \le 2\%$ .

# IXTH120N20X4

Fig. 1. Output Characteristics @  $T_J = 25$ °C



Fig. 2. Extended Output Characteristics @ T<sub>J</sub> = 25°C



Fig. 3. Output Characteristics @  $T_J = 150$  °C



Fig. 4.  $R_{DS(on)}$  Normalized to  $I_D$  = 60A Value vs. Junction Temperature



Fig. 5. R<sub>DS(on)</sub> Normalized to I<sub>D</sub> = 60A Value vs.



Fig. 6. Normalized Breakdown & Threshold Voltages



# IXTH120N20X4















Littelfuse reserves the right to change limits, test conditions and dimensions.









Fig. 15. Maximum Transient Thermal Impedance



© 2021 Littelfuse, Inc.





| SYM     | INCHES |        | MILLIMETERS |       |  |
|---------|--------|--------|-------------|-------|--|
| 2 1 IVI | MIN    | MAX    | MIN         | MAX   |  |
| Α       | .190   | .205   | 4.83        | 5.21  |  |
| Α1      | .090   | .100   | 2.29        | 2.54  |  |
| A2      | .075   | .085   | 1.91        | 2.16  |  |
| b<br>b2 | .045   | .055   | 1.14        | 1.40  |  |
| b2      | .075   | .087   | 1.91        | 2.20  |  |
| b4      | .115   | .126   | 2.92        | 3.20  |  |
| O       | .024   | .031   | 0.61        | 0.80  |  |
| D       | .819   | .840   | 20.80       | 21.34 |  |
| D1      | .650   | .690   | 16.51       | 17.53 |  |
| D2      | .035   | .050 _ | 0.89        | 1.27  |  |
| E       | .620   | .635   | 15.75       | 16.13 |  |
| E1      | .545   | .565   | 13.84       | 14.35 |  |
| ω       | .215   | BSC    | 5.45        | BSC   |  |
| 7       | I      | .010   | ļ           | 0.25  |  |
| Κ       |        | .025   |             | 0.64  |  |
|         | .780   | .810   | 19,81       | 20.57 |  |
| L1      | .150   | .170   | 3.81        | 4.32  |  |
| φP      | .140   | .144   | 3,55        | 3.65  |  |
| øP1     | .275   | .290   | 6.99        | 7.37  |  |
| Q       | .220   | .244   | 5,59        | 6.20  |  |
| R       | .170   | .190   | 4.32        | 4.83  |  |
| S       | .242   | BSC    | 6.15 BSC    |       |  |



Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littlefuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

Littelfuse reserves the right to change limits, test conditions and dimensions.