Fundamentos de econometría

Formulario · Primavera 2021

1. Fundamentos estadísticos de econometría

Definición 1.1 (Error cuadrático medio). Definimos el error cuadrático medio como sigue:

$$\mathrm{ECM}(\hat{\theta}) = \mathbb{E}_{\theta} \left[\left(\hat{\theta} - \theta \right)^2 \right] = \mathrm{Var}(\hat{\theta}) + \mathrm{Bias}^2(\hat{\theta}, \theta).$$

Este mide la diferencia en media cuadrada entre nuestros valores estimados y el real. Asimismo, podemos definir el **error cuadrático medio** de una variable X respecto a alguna constante c como sigue:

$$\mathbb{E}\left[(X-c)^2\right] = \sigma_{\mathbf{x}}^2 + (c - \mu_{\mathbf{x}})^2.$$

Teorema 1.1: Error cuadrático mínimo

El valor que minimiza $\mathbb{E}\left[(X-c)^2\right]$ es μ_x .

Corolario 1.1: Desigualdad de Markov I

Sean φ una función monótona creciente y no negativa para los reales no negativos, X una variable aleatoria, $a\geq 0$ y $\varphi(a)>0$, entonces:

$$\mathbb{P}\left(|X| \ge a\right) \le \frac{\mathbb{E}\left[\varphi\left(|X|\right)\right]}{\varphi(a)}.$$

Corolario 1.2: Desigualdad de Markov II

Sea X una variable aleatoria v a > 0, entonces:

$$\mathbb{P}\left(\left|X\right| \ge a\right) \le \frac{\mathbb{E}\left[\left|X\right|^{r}\right]}{a^{r}}.$$

Teorema 1.2: Desigualdad de Chebyshev

Sean X una variable aleatoria con $\mathbb{E}(X)=\mu$ y $\mathrm{Var}(X)=\sigma^2$, y k>0, entonces:

$$\mathbb{P}(\|X - \mu\|_{\alpha} \ge k\sigma) \le \frac{1}{k^2},$$

o bien,

$$\mathbb{P}(\|X - \mu\|_{\alpha} \ge k) \le \frac{\sigma^2}{k^2};$$

donde $\|\cdot\|_{\alpha}$ es la norma α .

Observación 1.1

Sean X_1, X_2, \ldots, X_n una colección de $n \in \mathbb{N}$ variables aleatorias, podemos expresar las funciones de densidad conjunta en términos de densidades condicionales de la siguiente manera:

$$f(x_1, x_2, \dots, x_n) = f(x_1 \mid x_2, x_3, \dots, x_n) \cdot f(x_2, x_3, \dots, x_n)$$

$$= f(x_1 \mid x_2, \dots, x_n) \cdot f(x_2 \mid x_3, \dots, x_n) \cdot \dots \cdot f(x_{n-1} \mid x_n) \cdot f(x_n).$$

Teorema 1.3: Ley de esperanzas iteradas

Sean X y Y dos variables aleatorias tales que $\mathbb{E}\left[X\right]$ está definida y ambas están en el mismo espacio de probabilidad, entonces:

$$\mathbb{E}\left[X\right] = \mathbb{E}\left[\mathbb{E}\left[X \mid Y\right]\right].$$

Proposición 1.1

Por la ley de esperanzas iteradas, tenemos:

$$Var(X) = \mathbb{E}\left[Var(X \mid Y)\right] + Var\left(\mathbb{E}[Y \mid X]\right).$$

Proposición 1.2

$$\mathbb{E}[XY] = \mathbb{E}\left[X\mathbb{E}[Y\mid X]\right].$$

Proposición 1.3

Sea $\varepsilon = Y - \mathbb{E}[Y \mid X]$, entonces:

(i)
$$\mathbb{E}[\varepsilon \mid X] = 0$$
.

(II)
$$Var(\varepsilon \mid X) = \sigma_{v|x}^2$$
.

(III)
$$\mathbb{E}[\varepsilon] = 0$$
.

(iv)
$$Var(\varepsilon) = 0$$
.

(v)
$$Cov(h(X), \varepsilon) = 0$$
.

Proposición 1.4

$$\arg\min_{h(X)} \mathbb{E}\left[(Y - h(X))^2 \right] = \mathbb{E}\left[Y \mid X \right].$$

Definición 1.2 (Mejor predictor lineal). Dado que $\mathbb{E}[Y \mid X]$ puede ser una función no lineal bastante complicada—excepto en el caso normal bivariado—, consideramos $\mathbb{E}^*[Y \mid X]$ el **mejor predictor lineal** (BLP, por sus siglas en inglés) y lo definimos como sigue:

$$\mathbb{E}^* \left[Y \mid X \right] = \alpha + \beta X,$$

tal que

$$\alpha = \mu_{y} - \beta \mu_{x}$$
 $\beta = \frac{\sigma_{xy}}{\sigma_{x}^{2}}$.

Teorema 1.4

Si la esperanza condicional es lineal, esta coincide con el mejor predictor lineal.

Definición 1.3 (Independencia en distribución). *Decimos que, en un conjunto finito de n variables aleatorias* $\{X_1, \ldots, X_n\}$, X_1, \ldots, X_n son mutuamente independientes si:

$$F_{\mathbf{x}_1,...,\mathbf{x}_n}(x_1,...,x_n) = \prod_{k=1}^n F_{\mathbf{x}_k}(x_k), \quad \forall x_1,...,x_n.$$

Definición 1.4 (Independencia en media). *Decimos que una variable aleatoria Y es independiente en media respecto a otra X si:*

$$\mathbb{E}[Y \mid X] = \mathbb{E}[Y].$$

Definición 1.5 (Independencia en covarianza). Decimos que dos variables aleatorias X y Y son independientes en covarianza si

$$Cov(X, Y) = 0.$$

Teorema 1.5

Independencia en distribución implica independencia en medias, y esta, a su vez, implica independencia en covarianzas; pero no en el orden inverso.

Proposición 1.5

Si Y es independiente en media respecto a X, entonces:

$$\mathbb{E}[X^r Y] = \mathbb{E}[X^r] \mathbb{E}[Y], \quad \forall r \in \mathbb{R}.$$

Proposición 1.6

Si Y es independiente en distribución respecto a X, entonces:

$$\mathbb{E}[h(X)Y^s] = \mathbb{E}[h(X)]\mathbb{E}[Y^s]$$

y, por lo tanto, también se cumple

$$\mathbb{E}[X^r Y^s] = \mathbb{E}[X^r] \mathbb{E}[Y^s]$$

para cualquier función h(X) y todo r y s.

2.	Econometría, modelos y datos

3. Modelo de regresión lineal simple

4. Análisis de los supuestos del modelo

5. Modelo de regresión lineal múltiple

6. Otros temas sobre el modelo de regresión lineal