Online appendix

Cross-temporal probabilistic forecast reconciliation: methodological and practical issues

26 September 2023

Contents

A	Cross-sectional, temporal and cross-temporal covariance approximations	2
В	Alternative forms of the cross-temporal covariance matrix	3
	B.1 Proof Theorem 4.1	5
C	Monte Carlo simulation	6
	C.1 Covariance matrix comparison and forecast accuracy scores	7
	C.2 Cross-temporal covariance matrix	9
	C.3 One-step residuals and shrinkage covariance matrix	11
D	Forecast reconciliation of the Australian GDP dataset	17
	D.1 The dataset	17
	D.2 One-step residuals and shrinkage covariance matrix	18
E	Australian Tourism Demand dataset	22
	E.1 Dealing with negative reconciled forecasts	23
	E.2 Tables for all the temporal aggregation orders	24
F	Computation time report	28
Re	eferences	29

A Cross-sectional, temporal and cross-temporal covariance approximations

Table A.1 presents some approximations for the cross-sectional (Hyndman et al. 2011, 2016, Wickramasuriya et al. 2019) and the temporal (Athanasopoulos et al. 2017, Nystrup et al. 2020) covariance matrices. Di Fonzo & Girolimetto (2023*a*) consider the following approximations for the cross-temporal covariance matrix.

 $\operatorname{oct}(ols)$ - identity: $\Omega_{ct} = I_{n(k^*+m)}$.

oct(struc) - structural: $\Omega_{ct} = diag(S_{ct} \mathbf{1}_{mn_b})$.

oct(wlsv) - series variance scaling: $\Omega_{ct} = \widehat{\Omega}_{ct,wlsv}$, a straightforward extension of the series variance scaling matrix presented by Athanasopoulos et al. (2017).

oct(bdshr) - block-diagonal shrunk cross-covariance scaling: $\Omega_{ct} = P\widehat{W}_{ct,shr}^{BD}P'$, with $\widehat{W}_{ct,shr}^{BD}$ a block diagonal matrix where each k-block ($k = m, k_{p-1}, \ldots, 1$) is $I_{M_k} \otimes \widehat{W}_{shr}^{[k]}$ $\widehat{W}_{shr}^{[k]}$ is the shrunk estimate of the cross-sectional covariance matrix proposed by Wickramasuriya et al. (2019), and P is the commutation matrix such that $P\text{vec}(Y_{\tau}) = \text{vec}(Y_{\tau}')$.

oct(shr) - MinT-shr: $\Omega_{ct} = \hat{\lambda} \widehat{\Omega}_{ct,D} + (1-\hat{\lambda}) \widehat{\Omega}_{ct}$, where $\hat{\lambda}$ is an estimated shrinkage coefficient (Ledoit & Wolf 2004), $\widehat{\Omega}_{ct,D} = I_{n(k^*+m)} \odot \widehat{\Omega}_{ct}$ with \odot denoting the Hadamard product, and $\widehat{\Omega}_{ct}$ is the covariance matrix of the cross-temporal one-step ahead in-sample forecast errors.

 $\operatorname{oct}(sam)$ - $\operatorname{MinT-sam}$: $\Omega_{ct} = \widehat{\Omega}_{ct}$.

	Cross-sectional framework	Temporal framework
identity	$\operatorname{cs}(\mathit{ols})$: $W = I_n$	$te(\mathit{ols}) \colon \mathbf{\Omega} = \mathbf{\mathit{I}}_{k^* + m}$
structural	$\operatorname{cs}(\operatorname{struc})$: $W = \operatorname{diag}(S_{\operatorname{cs}}1_{nb})$	$te(\mathit{struc}) \colon \mathbf{\Omega} = diag(S_{te}1_m)$
series variance	$\operatorname{cs}(wls)$: $\boldsymbol{W} = \widehat{\boldsymbol{W}}_D = \boldsymbol{I}_n \odot \widehat{\boldsymbol{W}}$	$te(\mathit{wlsv}) \colon \mathbf{\Omega} = \widehat{\mathbf{\Omega}}_{\mathit{wlsv}}$
MinT-shr	$\operatorname{cs}(shr)$: $\boldsymbol{W} = \hat{\lambda}\widehat{\boldsymbol{W}}_D + (1-\hat{\lambda})\widehat{\boldsymbol{W}}$	$\operatorname{te}(\mathit{shr})$: $\mathbf{\Omega} = \hat{\lambda}\widehat{\mathbf{\Omega}}_D + (1-\hat{\lambda})\widehat{\mathbf{\Omega}}$
MinT-sam	$\operatorname{cs}(\operatorname{sam})$: $W=\widehat{W}$	$\operatorname{te}(\mathit{sam})$: $\mathbf{\Omega} = \widehat{\mathbf{\Omega}}$

Note: \widehat{W} ($\widehat{\Omega}$) is the covariance matrix of the cross-sectional (temporal) one-step ahead in-sample forecast errors, $\widehat{\Omega}_{wlsv}$ is a diagonal matrix presented by Athanasopoulos et al. (2017), and $\widehat{\Omega}_D = I_{k^*+m} \odot \widehat{\Omega}$, where \odot denotes the Hadamard product.

Table A.1: Approximations for cross-sectional (**W**) and temporal (Ω) covariance matrices.

B Alternative forms of the cross-temporal covariance matrix

In this appendix, some derivations of the solutions proposed in Section 4 to obtain an estimator of the cross-temporal covariance matrix are reported. Starting from the the definition of cross-temporal covariance matrix we obtain the first equivalence in (10). Therefore, we have that

The high-frequency time series representation (the second equivalence) can be derived in the following manner:

$$egin{aligned} \widetilde{oldsymbol{\Omega}} &= S_{ct} oldsymbol{\Omega}_{hf ext{-}bts} S_{ct}' \ &= \left(S_{cs} \otimes S_{te}
ight) oldsymbol{\Omega}_{hf ext{-}bts} \left(S_{cs} \otimes S_{te}
ight)' \ &= \left(I_n \otimes S_{te}
ight) \left(S_{cs} \otimes I_{m+k^*}
ight) oldsymbol{\Omega}_{hf ext{-}bts} \left(S_{cs} \otimes I_{m+k^*}
ight)' \left(I_n \otimes S_{te}
ight)' \ &= \left(I_n \otimes S_{te}
ight) oldsymbol{\Omega}_{hf} \left(I_n \otimes S_{te}
ight)' \end{aligned}$$

where $\Omega_{hf} = (S_{cs} \otimes I_{m+k^*}) \Omega_{hf\text{-}bts} (S_{cs} \otimes I_{m+k^*})'$ and $S_{ct} = S_{cs} \otimes S_{te} = (I_n \otimes S_{te}) (S_{cs} \otimes I_{m+k^*}).$ We can apply the shrinkage estimator as

The bottom time series representation (the third equivalence) follows by

$$egin{aligned} \widetilde{oldsymbol{\Omega}} &= S_{ct} oldsymbol{\Omega}_{hf ext{-}bts} S_{ct}' \ &= \left(S_{cs} \otimes S_{te}
ight) oldsymbol{\Omega}_{hf ext{-}bts} \left(S_{cs} \otimes S_{te}
ight)' \ &= \left(S_{cs} \otimes I_{m+k^*}
ight) \left(I_n \otimes S_{te}
ight) oldsymbol{\Omega}_{hf ext{-}bts} \left(I_n \otimes S_{te}
ight)' \left(I_n \otimes S_{te}
ight)' \ &= \left(S_{cs} \otimes I_{m+k^*}
ight) oldsymbol{\Omega}_{bts} \left(S_{cs} \otimes I_{m+k^*}
ight)', \end{aligned}$$

where $\Omega_{bts} = (I_n \otimes S_{te}) \, \Omega_{hf\text{-}bts} \, (I_n \otimes S_{te})'$ and $S_{ct} = S_{cs} \otimes S_{te} = (S_{cs} \otimes I_{m+k^*}) \, (I_n \otimes S_{te})$. Finally we have that

Figure B.1: The four graphs on the left represent the number of different parameters in the covariance matrix for the various approaches presented for different values of m and n (n_b , the number of bottom time series, is about 60% of the total). On the right, we have the boxplot of the percentage reduction in the number of parameters compared to the global approach.

$$(1-\lambda)\left(S_{cs}\otimes I_{m+k^*}\right)\widehat{\Omega}_{bts}\left(S_{cs}\otimes I_{m+k^*}\right)'$$
.

In general, the covariance matrix of the reconciled forecasts is equal to $M\widehat{\Omega}M'$ where $M=S_{ct}G$ is the projection matrix. When using the HB approach, the covariance matrix of the reconciliation and the base forecasts will be identical. Indeed, it can be shown (see Panagiotelis et al. 2021 for more details) that if M is a projection matrix (6) then $MS_{ct}=S_{ct}GS_{ct}=S_{ct}$, and we obtain that

$$egin{aligned} M\widehat{\Omega}_{HB}M' &= MS_{ct}\widehat{\Omega}_{hf ext{-}bts,HB}S'_{ct}M' \ &= S_{ct}GS_{ct}\widehat{\Omega}_{hf ext{-}bts,HB}S'_{ct}G'S'_{ct} \ &= S_{ct}\widehat{\Omega}_{hf ext{-}bts,HB}S'_{ct} &= \widehat{\Omega}_{HB}. \end{aligned}$$

Figure B.1 shows the number of parameters for different values of m and n, with n_b fixed to approximately 60% of n. The right panel reports the boxplot of the percentage reductions in the number of parameters compared to the global approach. Figure B.2 gives some visual insights on the covariance matrices obtainable with $\lambda=0$ and $\lambda=1$, respectively, for a simple cross-temporal hierarchical structure with 3 time series and $\mathcal{K}=\{2,1\}$ (e.g, cross-temporal semi-annual, see the Monte Carlo simulation in Appendix C).

Figure B.2: Representation of four types of covariance matrices that can be obtained from the cross-temporal hierarchical structure (3 time series and m = 2) for two different values of $\lambda \in \{0,1\}$, the shrinkage parameter. The cells that are not modified by shrinkage are colored black, those actively involved in the shrinkage phase are colored light blue, and those derived from and not estimated by the base forecasts errors are colored blue. Additionally, for $\lambda = 1$, the cells corresponding to a zero value are colored white.

B.1 Proof Theorem 4.1

Proof. Let $S_{ct}^+ = (S_{ct}'S_{ct})^{-1}S_{ct}'$ be the generalized inverse of S_{ct} (S_{ct} has linearly independent columns by construction). Applying (6), we obtain

$$\widetilde{\boldsymbol{b}}_{ols}^{[1]} = (\boldsymbol{S}_{ct}' \boldsymbol{S}_{ct})^{-1} \boldsymbol{S}_{ct}' \widehat{\boldsymbol{x}}_h$$

and

$$\widetilde{b}_{hb}^{[1]} = [S_{ct}'(S_{ct}\widehat{\Omega}_{hf-bts}S_{ct}')^+S_{ct}]^{-1}S_{ct}'(S_{ct}\widehat{\Omega}_{hf-bts}S_{ct}')^+\widehat{x}_h.$$

Since $(AB)^{+} = B^{+}A^{+}$ (?), then

$$S'_{ct}(S_{ct}\widehat{\Omega}_{hf-bts}S'_{ct})^{+}S_{ct} = S'_{ct}(\widehat{\Omega}_{hf-bts}^{1/2}S'_{ct})^{+}(S_{ct}\widehat{\Omega}_{hf-bts}^{1/2})^{+}S_{ct}$$

$$= S'_{ct}(S'_{ct})^{+}\widehat{\Omega}_{hf-bts}^{+}S_{ct}^{+}S_{ct} = \widehat{\Omega}_{hf-bts}^{+} = \widehat{\Omega}_{hf-bts}^{-1}$$
(B.1)

and

$$S'_{ct}(S_{ct}\widehat{\Omega}_{hf-bts}S'_{ct})^{+} = S'_{ct}(\widehat{\Omega}_{hf-bts}^{1/2}S'_{ct})^{+}(S_{ct}\widehat{\Omega}_{hf-bts}^{1/2})^{+}$$

$$= \widehat{\Omega}_{hf-bts}^{-1}S_{ct}^{+} = \widehat{\Omega}_{hf-bts}^{-1}(S'_{ct}S_{ct})^{-1}S'_{ct}.$$
(B.2)

Therefore,

$$\begin{split} \widetilde{\boldsymbol{b}}_{hb}^{[1]} &= [S_{ct}'(S_{ct}\widehat{\Omega}_{hf-bts}S_{ct}')^{+}S_{ct}]^{-1}S_{ct}'(S_{ct}\widehat{\Omega}_{hf-bts}S_{ct}')^{+}\widehat{\boldsymbol{x}}_{h} \\ &\stackrel{(B.1)}{=} \widehat{\Omega}_{hf-bts}S_{ct}'(S_{ct}\widehat{\Omega}_{hf-bts}S_{ct}')^{+}\widehat{\boldsymbol{x}}_{h} \\ &\stackrel{(B.2)}{=} \widehat{\Omega}_{hf-bts}\widehat{\Omega}_{hf-bts}^{-1}(S_{ct}'S_{ct})^{-1}S_{ct}'\widehat{\boldsymbol{x}}_{h} \\ &= (S_{ct}'S_{ct})^{-1}S_{ct}'\widehat{\boldsymbol{x}}_{h} = \widetilde{\boldsymbol{b}}_{ols}^{[1]} \end{split}$$

C Monte Carlo simulation

We study the effect of combining cross-sectional and temporal aggregations, using a simple hierarchy that allows us to effectively visualize the quantities involved, such as the covariance matrix. Additionally, the small size and nature of the data generating process make it possible to exactly calculate the true cross-temporal covariance structure, thus providing insights into the nature of the time series data involved in the forecast reconciliation process.

Consider a 2-level hierarchical structure with three time series (one upper series, A, and two bottom series, B and C) such that the cross-sectional aggregation matrix is $A_{cs} = \begin{bmatrix} 1 & 1 \end{bmatrix}$ (A = B + C). The temporal structure we are considering is equivalent to using semi-annual data with $\mathcal{K} = \{2,1\}$ and m = 2. The assumed Data-Generating Processes (DPG) for the semi-annual bottom level series are two AR(2) given by

$$y_{B,t} = \phi_{B,1} y_{B,t-1} + \phi_{B,2} y_{B,t-2} + \varepsilon_{B,t}$$

$$y_{C,t} = \phi_{C,1} y_{C,t-1} + \phi_{C,2} y_{C,t-2} + \varepsilon_{C,t}$$

with parameters¹ $\phi_B = [\phi_{B,1} \ \phi_{B,2}]' = [1.34 \ -0.74]'$ and $\phi_C = [\phi_{C,1} \ \phi_{C,2}]' = [0.95 \ -0.42]'$. The error $\varepsilon_t = [\varepsilon_{B,t} \ \varepsilon_{C,t}]'$ driving the process is drawn from a multivariate normal distribution with standard deviations simulated from a uniform distribution between 0.5 and 2 and a fixed correlation of -0.8. The cross-sectional error covariance matrix is thus given by

$$\mathbf{\Omega}_{cs} = \begin{bmatrix} 0.9 & 0 \\ 0 & 1.8 \end{bmatrix} \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \begin{bmatrix} 0.9 & 0 \\ 0 & 1.8 \end{bmatrix} = \begin{bmatrix} \sigma_B^2 & \sigma_{BC} \\ \sigma_{BC} & \sigma_C^2 \end{bmatrix}.$$

To obtain the remaining series, the bottom series are then cross-temporally aggregated.

For the forecast experiment, the base forecasts are computing using AR models where the order is automatically determined by the algorithm proposed by Hyndman & Khandakar (2008) and implemented in the R package forecast (Hyndman et al. 2023), thus allowing for possible mis-specification in the models. The training window length is 500 years, consisting of 1000 high frequency observations. The experiment is replicated 500 times, with a forecast horizon of 1 year.

Since the AR(2) models used as DPG for the bottom series B and C at the most disaggregated temporal level are known, we may compute the true covariance matrix for one-step ahead forecasts at the annual level $\Omega_{ct} = S_{ct}\Omega_{hf\text{-}bts}S'_{ct}$, where

$$oldsymbol{\Omega}_{hf ext{-}bts} = egin{bmatrix} \sigma_{B}^{2} & & & & & & & & & & \\ \phi_{B,1}\sigma_{B}^{2} & & \sigma_{B}^{2}\left(1+\phi_{B,1}^{2}
ight) & & & & & & & \\ \sigma_{BC} & & \phi_{B,1}\sigma_{BC} & & \sigma_{C}^{2} & & & & & \\ \phi_{C,1}\sigma_{BC} & \sigma_{BC}\left(1+\phi_{B,1}\phi_{C,1}
ight) & \phi_{C,1}\sigma_{C}^{2} & \sigma_{C}^{2}\left(1+\phi_{C,1}^{2}
ight) \end{bmatrix}.$$

The detailed calculations can be found in Section C.2. Figure C.3 shows both the covariance matrix and the correlation matrix for fixed parameters.

¹The ϕ_B and ϕ_C parameters are estimated from the "Lynx" and "Hare" time series contained in the pelt dataset of the tsibbledata package for R (O'Hara-Wild et al. 2022).

Figure C.3: Simulation experiment. True cross-temporal covariance (left) and correlation (right) error matrix of the reconciled forecasts with $\sigma_B = 0.9$, $\sigma_C = 1.8$, $\phi_B = [1.34 - 0.74]'$, $\phi_C = [0.95 - 0.42]'$ and $\rho = -0.8$.

To construct cross-temporal samples of the base forecasts, we use the Gaussian and bootstrap approaches discussed in Sections 3.1 and 3.2, respectively. For the parametric approach we use multi-step residuals with the different covariance matrix structures analyzed in 4.1, while for the non-parametric approach, we use regular one-step residuals. We do not use overlapping residuals in our analysis as we have the advantage of generating a large number of observation. Ten different reconciliation approaches have been adopted (see Table 2): ct(bu), $ct(shr_{cs}, bu_{te})$, $ct(wlsv_{te}, bu_{cs})$, oct(wlsv), oct(wlsv)

C.1 Covariance matrix comparison and forecast accuracy scores

To compare the true covariance matrix Ω_{ct} with the estimated covariance matrix $\widehat{\Omega}$, we use the Frobenius norm to quantify the difference between two matrices:

$$\|\mathbf{D}\|_F = \sqrt{\sum_{i=1}^{n(k^*+m)} \sum_{j=1}^{n(k^*+m)} |d_{i,j}|^2}$$

where $D = \widehat{\Omega} - \Omega_{ct}$. The true covariance matrix, shown in Figure C.3, was compared to the estimated covariance matrices obtained using various reconciliation approaches and techniques for generating sample paths of the base forecasts. Thus, we should be able to determine which reconciliation approach and simulation technique produce an accurate estimate of the covariance matrix. Other types of matrix norms were also considered with similar results.

From Table C.1, it appears that the reconciled covariance matrices are always closer to the true matrix than the base forecast matrix when using both the Gaussian and the bootstrap approach. Overall, there are no major differences in the findings when using either one-step or multi-step residuals in cross-temporal forecast reconciliation. In fact, using approaches like oct(bdshr), we obtain results that are consistent with approaches such as $oct_h(shr)$, where no temporal and/or cross-sectional correlation assumptions are imposed. It is worth noting that the HB covariance matrix when used to calculate the base forecasts samples, is not changed by the reconciliation step (see Appendix B). In conclusion, our results suggest that using multi-step

	Gener	ation of	the base	e forecas	ts paths
Reconciliation approach	ctjb	(Gaussian	approac	ch*
		G	В	Н	HB
base	8.260	7.748	6.549	3.409	2.215
ct(bu)	3.195	2.215	2.215	2.215	2.215
$\operatorname{ct}(shr_{cs},bu_{te})$	3.202	2.224	2.215	2.224	2.215
$\operatorname{ct}(wlsv_{te},bu_{cs})$	3.183	2.188	2.188	2.215	2.215
oct(wlsv)	3.766	3.082	2.191	2.910	2.215
oct(bdshr)	3.203	2.195	2.184	2.224	2.215
$\operatorname{oct}_h(shr)$	3.251	2.260	2.202	2.226	2.215
$\operatorname{oct}_h(bshr)$	3.602	2.720	2.220	2.756	2.215
$\operatorname{oct}_h(hshr)$	4.869	4.138	4.167	2.225	2.215

^{*}The Gaussian method employs a sample covariance with multi-step residuals.

Table C.1: Simulation experiment. Frobenius norm between the true and the estimated covariance matrix for different reconciliation approaches and different techniques for simulating the base forecasts. Entries in bold represent the lowest value for each column, while the blue entry represent the global minimum. The reconciliation approaches are described in Table 2.

residuals or bootstrap techniques may help find a "good" estimate of the covariance matrix, which can be further improved by the reconciliation.

A limitation of this simulation setting is that we are using a high number of residuals, which may result in undervaluing the benefit from using the parameterization form of the covariance matrix such as HB, H, or B (see Section 4). Additionally, shrinkage techniques often yield very similar results when we use the corresponding matrix with $\lambda = 0$ (full covariance matrix).

In Tables C.2 and C.3 are reported the $\overline{\text{ReICRPS}}$ and ES ratio indices introduced in Sections 5 where low values indicate better quality of the forecasts. The good performance of the $\operatorname{ct}(bu)$ approach can be explained by a good quality of the base forecasts at the bottom level for k=1, and therefore it is difficult for the other approaches to correctly adjust them using the somewhat less good forecasts of the higher temporal and cross-sectional levels. This also explains the good performance of $\operatorname{ct}(shr_{cs},bu_{te})$, which by definition only takes into account the information provided by the most temporally disaggregated base forecasts. Looking at the optimal cross-temporal reconciliation approaches, it does not seem to be any advantage in using multi-step residuals to calculate the covariance matrix in the reconciliation step.

In conclusion, we found that simulating base forecasts from multi-step residuals allows us to estimate a covariance matrix close to the true one. Additionally, we observed that reconciliation could be used to further improve the accuracy of these estimates: accurate base forecasts for k=1 assist the good performance for bottom-up and optimal cross-temporal reconciliation approaches, such as oct(wlsv) and oct(bdshr), which perform well in terms of both CRPS and ES.

			Genera	tion of	the base	forecas	ts sampl	e paths			
Reconciliation approach	ctjb	G	aussian	approac	h*	ctjb Gaussian approa				ch*	
		G	В	Н	HB		G	В	Н	HB	
		\forall	$k \in \{2, 1\}$.}				k = 1			
base	1.000	0.998	0.999	1.002	1.004	1.000	0.998	0.999	0.999	1.000	
ct(bu)	0.901	0.900	0.900	0.900	0.900	0.978	0.976	0.976	0.977	0.977	
$\operatorname{ct}(shr_{cs},bu_{te})$	0.901	0.900	0.899	0.900	0.900	0.977	0.976	0.976	0.976	0.976	
$\operatorname{ct}(wlsv_{te},bu_{cs})$	0.910	0.916	0.916	0.916	0.917	0.986	0.993	0.993	0.993	0.993	
oct(wlsv)	0.922	0.930	0.930	0.930	0.931	0.998	1.006	1.006	1.007	1.007	
oct(bdshr)	0.910	0.916	0.915	0.916	0.916	0.986	0.992	0.992	0.993	0.993	
$\operatorname{oct}_h(shr)$	0.904	0.903	0.902	0.902	0.903	0.980	0.979	0.978	0.979	0.979	
$\operatorname{oct}_h(bshr)$	0.923	0.922	0.922	0.921	0.922	0.999	0.998	0.998	0.998	0.998	
$\operatorname{oct}_h(hshr)$	0.974	0.972	0.972	0.974	0.975	1.052	1.050	1.050	1.053	1.053	
			k = 2								
base	1.000	0.998	0.999	1.005	1.008						
ct(bu)	0.831	0.830	0.829	0.829	0.830						
$\operatorname{ct}(shr_{cs},bu_{te})$	0.830	0.830	0.829	0.829	0.830						
$\operatorname{ct}(wlsv_{te}, bu_{cs})$	0.840	0.846	0.844	0.845	0.846						
oct(wlsv)	0.851	0.859	0.859	0.859	0.861						
oct(bdshr)	0.839	0.845	0.844	0.845	0.846						
$\operatorname{oct}_h(shr)$	0.834	0.833	0.831	0.832	0.832						
$\operatorname{oct}_h(bshr)$	0.852	0.851	0.851	0.851	0.852						
$\operatorname{oct}_h(hshr)$	0.902	0.900	0.899	0.901	0.902						

^{*}The Gaussian method employs a sample covariance matrix and includes four techniques (G, B, H, HB) with multi-step residuals.

Table C.2: Simulation experiment. $\overline{RelCRPS}$ defined in Section 5. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.

C.2 Cross-temporal covariance matrix

We assume two AR(2) processes with correlated errors such that

$$y_{i,t} = \phi_{i,1}y_{i,t-1} + \phi_{i,2}y_{i,t-2} + \varepsilon_{i,t}$$

where $\varepsilon_t \sim \mathcal{N}_2\left(\mathbf{0}_{(2\times 1)}, \mathbf{\Omega}_{cs}\right)$ and $i \in \{B, C\}$. Let $y_{i,T+h}$ be the true observation for the i^{th} series and $\widetilde{y}_{i,T+h}$ the corresponding forecasts such that

$$y_{i,T+1} = \phi_{i,1}y_{i,T} + \phi_{i,2}y_{i,T-1} + \varepsilon_{i,T+1}$$

 $y_{i,T+2} = \phi_{i,1}y_{i,T+1} + \phi_{i,2}y_{i,T} + \varepsilon_{i,T+2}$ and $\widetilde{y}_{i,T+1} = \phi_{i,1}y_{i,T} + \phi_{i,2}y_{i,T-1}$
 $\widetilde{y}_{i,T+2} = \phi_{i,1}\widetilde{y}_{i,T+1} + \phi_{i,2}y_{i,T}$,

then

$$y_{i,T+1} - \widetilde{y}_{i,T+1} = \varepsilon_{i,T+1}$$

$$y_{i,T+2} - \widetilde{y}_{i,T+2} = \varepsilon_{i,T+2} + \phi_{i,1}\varepsilon_{i,T+1}.$$

Finally, we can compute each element of the high frequency bottom time series covariance matrix

$$Var (y_{i,T+1} - \widetilde{y}_{i,T+1}) = \sigma_i^2, \quad \forall i \in \{B,C\}$$

$$Var (y_{i,T+2} - \widetilde{y}_{i,T+2}) = \sigma_i^2 (1 + \phi_{i,1}^2), \quad \forall i \in \{B,C\}$$

$$Cov [(y_{i,T+2} - \widetilde{y}_{i,T+2}), (y_{i,T+1} - \widetilde{y}_{i,T+1})] = Cov [(y_{i,T+1} - \widetilde{y}_{i,T+1}), (y_{i,T+2} - \widetilde{y}_{i,T+2})]$$

			Genera	tion of	the base	forecas	ts sampl	e paths			
Reconciliation approach	ctjb	G	aussian	approac	h*	ctjb Gaussian approa				ch*	
11		G	В	Н	HB		G	В	Н	HB	
		\forall	$k \in \{2, 1\}$.}				k = 1			
base	1.000	0.996	0.999	1.000	1.004	1.000	0.997	1.000	0.997	1.000	
ct(bu)	0.897	0.895	0.896	0.897	0.895	0.969	0.967	0.967	0.968	0.968	
$\operatorname{ct}(shr_{cs},bu_{te})$	0.896	0.895	0.895	0.896	0.896	0.968	0.968	0.967	0.968	0.968	
$\operatorname{ct}(wlsv_{te},bu_{cs})$	0.906	0.912	0.911	0.910	0.912	0.977	0.984	0.983	0.981	0.984	
oct(wlsv)	0.916	0.923	0.923	0.923	0.924	0.989	0.994	0.995	0.995	0.997	
oct(bdshr)	0.906	0.910	0.910	0.911	0.912	0.977	0.981	0.982	0.983	0.985	
$\operatorname{oct}_h(shr)$	0.900	0.898	0.898	0.897	0.898	0.971	0.969	0.969	0.969	0.969	
$\operatorname{oct}_h(bshr)$	0.916	0.914	0.916	0.915	0.916	0.987	0.986	0.987	0.987	0.988	
$\operatorname{oct}_h(hshr)$	0.967	0.964	0.964	0.966	0.967	1.040	1.036	1.036	1.040	1.040	
			k = 2								
base	1.000	0.996	0.998	1.003	1.008						
ct(bu)	0.831	0.829	0.829	0.830	0.828						
$\operatorname{ct}(shr_{cs},bu_{te})$	0.829	0.828	0.829	0.829	0.829						
$\operatorname{ct}(wlsv_{te},bu_{cs})$	0.839	0.844	0.844	0.844	0.845						
oct(wlsv)	0.849	0.858	0.856	0.856	0.857						
oct(bdshr)	0.839	0.845	0.843	0.845	0.844						
$\operatorname{oct}_h(shr)$	0.835	0.833	0.833	0.831	0.832						
$\operatorname{oct}_h(bshr)$	0.850	0.847	0.849	0.849	0.850						
$\operatorname{oct}_h(hshr)$	0.900	0.897	0.896	0.897	0.899						

^{*}The Gaussian method employs a sample covariance matrix and includes four techniques (G, B, H, HB) with multi-step residuals.

Table C.3: Simulation experiment. ES ratio indices defined in Section 5. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.

$$\begin{split} &=\phi_{i,1}\sigma_{i}^{2}, \quad \forall i \in \{B,C\} \\ &Cov\left[\left(y_{i,T+1}-\widetilde{y}_{i,T+1}\right),\left(y_{j,T+1}-\widetilde{y}_{j,T+1}\right)\right] = Cov\left[\left(y_{j,T+1}-\widetilde{y}_{j,T+1}\right),\left(y_{i,T+1}-\widetilde{y}_{i,T+1}\right)\right] \\ &=\sigma_{i,j}, \quad \forall i,j \in \{B,C\}, \quad i \neq j \\ &Cov\left[\left(y_{i,T+2}-\widetilde{y}_{i,T+2}\right),\left(y_{j,T+1}-\widetilde{y}_{j,T+1}\right)\right] = Cov\left[\left(y_{j,T+1}-\widetilde{y}_{j,T+1}\right),\left(y_{i,T+2}-\widetilde{y}_{i,T+2}\right)\right] \\ &=\phi_{i,1}\sigma_{i,j}, \quad \forall i,j \in \{B,C\}, \quad i \neq j \\ &Cov\left[\left(y_{i,T+2}-\widetilde{y}_{i,T+2}\right),\left(y_{j,T+2}-\widetilde{y}_{j,T+2}\right)\right] = Cov\left[\left(y_{j,T+2}-\widetilde{y}_{j,T+2}\right),\left(y_{i,T+2}-\widetilde{y}_{i,T+2}\right)\right] \\ &=\sigma_{i,j}\left(1+\phi_{i,1}\phi_{j,1}\right), \quad \forall i,j \in \{B,C\}, \quad i \neq j. \end{split}$$

In conclusion,

$$\mathbf{\Omega}_{hf\text{-}bts} = \begin{bmatrix} \sigma_{B}^{2} & & & & & \\ \phi_{B,1}\sigma_{B}^{2} & \sigma_{B}^{2}\left(1 + \phi_{B,1}^{2}\right) & & & & \\ \sigma_{BC} & \phi_{B,1}\sigma_{BC} & \sigma_{C}^{2} & & \\ \phi_{C,1}\sigma_{BC} & \sigma_{BC}\left(1 + \phi_{B,1}\phi_{C,1}\right) & \phi_{C,1}\sigma_{C}^{2} & \sigma_{C}^{2}\left(1 + \phi_{C,1}^{2}\right) \end{bmatrix}$$

and

$$\mathbf{\Omega}_{ct} = S_{ct} \mathbf{\Omega}_{hf ext{-}bts} S_{ct}'.$$

C.3 One-step residuals and shrinkage covariance matrix

In Section 4.1, we discussed the use of one-step residuals in estimating the covariance matrix. In particular we point out that one-step residuals lead to a biased estimate of the covariance matrix where some correlation are zeros by definition (see Figure C.1). In addition, Tables C.4, C.5 and C.6 show the Frobenius norm, CRPS, and ES skill scores as explained in the paper to investigate the effectiveness of one-step residuals. Moreover, in Tables C.7 and C.8, we have utilized a shrinkage matrix rather than the sample covariance matrix to assess the performance of our approach.

			Genera	tion of th	ne base fo	recasts	paths				
	Gaussian approach: sample covariance matrix										
Reconciliation approach	ctjb]	n-sample	residual	M	Multi-step residuals					
11		G	В	Н	HB	G	В	Н	HB		
base	8.260	17.638	16.733	22.178	21.789	7.748	6.549	3.409	2.215		
ct(bu)	3.195	21.789	21.789	21.789	21.789	2.215	2.215	2.215	2.215		
$\operatorname{ct}(shr_{cs},bu_{te})$	3.202	21.942	21.789	21.942	21.789	2.224	2.215	2.224	2.215		
$\operatorname{ct}(wlsv_{te},bu_{cs})$	3.183	18.237	18.237	21.789	21.789	2.188	2.188	2.215	2.215		
oct(wlsv)	3.766	19.174	18.611	22.304	21.789	3.082	2.191	2.910	2.215		
oct(bdshr)	3.203	18.559	18.416	21.937	21.789	2.195	2.184	2.224	2.215		
oct(shr)	5.217	25.015	23.457	23.413	21.789	2.260	2.202	2.226	2.215		
oct(bshr)	5.282	23.772	23.997	22.146	21.789	2.720	2.220	2.756	2.215		
oct(hshr)	6.161	11.336	10.940	23.598	21.789	4.138	4.167	2.225	2.215		
oct(hbshr)	5.731	11.379	10.940	22.146	21.789	5.085	4.167	2.756	2.215		
$\operatorname{oct}_h(shr)$	3.251	20.965	19.992	22.079	21.789	2.260	2.202	2.226	2.215		
$\operatorname{oct}_h(bshr)$	3.602	21.306	21.022	22.146	21.789	2.720	2.220	2.756	2.215		
$\operatorname{oct}_h(hshr)$	4.869	11.405	10.940	22.037	21.789	4.138	4.167	2.225	2.215		

Table C.4: Frobenius norm between the true and the estimated covariance matrix for different reconciliation approaches and different techniques for simulating the base forecasts. Entries in bold represent the lowest value for each column, while the blue entry represent the global minimum. The reconciliation approaches are described in Table 2.

Figure C.1: Comparison of estimated covariance and correlation matrices (first simulation) for base forecasts using a parametric Gaussian (with one-step residuals) approach. The true covariance and correlation matrices are shown in Figure 7.

	Generation of the base forecasts paths Gaussian approach: sample covariance matrix											
			Gaussi	an appr	oach: sa	mple cov	variance	matrix				
Reconciliation approach	ctjb	Ir	n-sample	e residua	ls	M	Iulti-step	residua	als			
-FF		G	В	Н	HB	G	В	Н	HB			
			$\forall k$	$i \in \{2, 1\}$	}							
base	1.000	1.008	1.009	1.044	1.047	0.998	0.999	1.002	1.004			
ct(bu)	0.901	0.930	0.929	0.929	0.929	0.900	0.900	0.900	0.900			
$\operatorname{ct}(shr_{cs},bu_{te})$	0.901	0.929	0.928	0.929	0.928	0.900	0.899	0.900	0.900			
$\operatorname{ct}(wlsv_{te},bu_{cs})$	0.910	0.930	0.929	0.939	0.939	0.916	0.916	0.916	0.917			
oct(wlsv)	0.922	0.942	0.944	0.951	0.953	0.930	0.930	0.930	0.931			
oct(bdshr)	0.910	0.930	0.930	0.939	0.938	0.916	0.915	0.916	0.916			
oct(shr)	0.941	0.999	0.985	0.983	0.973	0.903	0.902	0.902	0.903			
oct(bshr)	0.951	0.995	1.000	0.983	0.986	0.922	0.922	0.921	0.922			
oct(hshr)	0.987	0.995	0.993	1.039	1.026	0.972	0.972	0.974	0.975			
oct(hbshr)	0.987	0.995	0.996	1.024	1.028	0.985	0.985	0.987	0.989			
$\operatorname{oct}_h(shr)$	0.904	0.929	0.928	0.932	0.932	0.903	0.902	0.902	0.903			
$\operatorname{oct}_h(bshr)$	0.923	0.948	0.952	0.951	0.954	0.922	0.922	0.921	0.922			
$\operatorname{oct}_h(hshr)$	0.974	0.982	0.982	1.012	1.012	0.972	0.972	0.974	0.975			
				k = 1								
base	1.000	1.017	1.019	1.017	1.019	0.998	0.999	0.999	1.000			
ct(bu)	0.978	0.994	0.994	0.994	0.994	0.976	0.976	0.977	0.977			
$ct(shr_{cs}, bu_{te})$	0.977	0.993	0.993	0.994	0.993	0.976	0.976	0.976	0.976			
$\operatorname{ct}(wlsv_{te},bu_{cs})$	0.986	1.002	1.002	1.003	1.003	0.993	0.993	0.993	0.993			
oct(wlsv)	0.998	1.014	1.015	1.015	1.016	1.006	1.006	1.007	1.007			
oct(bdshr)	0.986	1.002	1.002	1.003	1.003	0.992	0.992	0.993	0.993			
oct(shr)	1.037	1.082	1.067	1.064	1.056	0.979	0.978	0.979	0.979			
oct(bshr)	1.041	1.071	1.074	1.060	1.062	0.998	0.998	0.998	0.998			
oct(hshr)	1.080	1.090	1.091	1.119	1.105	1.050	1.050	1.053	1.053			
oct(hbshr)	1.065	1.080	1.081	1.088	1.090	1.063	1.064	1.066	1.068			
$\operatorname{oct}_h(shr)$	0.980	0.996	0.995	0.996	0.996	0.979	0.978	0.979	0.979			
$\operatorname{oct}_h(bshr)$	0.999	1.016	1.018	1.016	1.018	0.998	0.998	0.998	0.998			
$\operatorname{oct}_h(hshr)$	1.052	1.067	1.066	1.074	1.075	1.050	1.050	1.053	1.053			
				k = 2								
base	1.000	0.998	0.999	1.071	1.075	0.998	0.999	1.005	1.008			
ct(bu)	0.831	0.869	0.869	0.869	0.869	0.830	0.829	0.829	0.830			
$ct(shr_{cs}, bu_{te})$	0.830	0.869	0.868	0.868	0.868	0.830	0.829	0.829	0.830			
$\operatorname{ct}(wlsv_{te}, bu_{cs})$	0.840	0.863	0.862	0.879	0.878	0.846	0.844	0.845	0.846			
oct(wlsv)	0.851	0.875	0.877	0.891	0.893	0.859	0.859	0.859	0.861			
oct(bdshr)	0.839	0.863	0.863	0.879	0.878	0.845	0.844	0.845	0.846			
oct(shr)	0.854	0.922	0.909	0.908	0.897	0.833	0.831	0.832	0.832			
oct(bshr)	0.869	0.925	0.931	0.911	0.915	0.851	0.851	0.851	0.852			
oct(hshr)	0.901	0.908	0.904	0.966	0.952	0.900	0.899	0.901	0.902			
oct(hbshr)	0.915	0.917	0.919	0.964	0.969	0.913	0.913	0.914	0.917			
$\operatorname{oct}_h(shr)$	0.834	0.868	0.865	0.872	0.872	0.833	0.831	0.832	0.832			
$\operatorname{oct}_h(bshr)$	0.852	0.886	0.890	0.890	0.894	0.851	0.851	0.851	0.852			
$\operatorname{oct}_h(hshr)$	0.902	0.904	0.904	0.953	0.952	0.900	0.899	0.901	0.902			

Table C.5: Simulation experiment. $\overline{RelCRPS}$ defined in Section 5. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.

			Genera	tion of t	he base	forecas	ts paths		
			Gaussi	an appr	oach: sai	mple cov	variance	matrix	
Reconciliation approach	ctjb	Ir	n-sample	residua	ls	M	lulti-step	residua	als
ирргоиси		G	В	Н	HB	G	В	Н	HB
			$\forall k$: ∈ {2,1]	}				
base	1.000	1.005	1.009	1.039	1.046	0.996	0.999	1.000	1.004
ct(bu)	0.897	0.924	0.923	0.924	0.923	0.895	0.896	0.897	0.895
$ct(shr_{cs}, bu_{te})$	0.896	0.924	0.923	0.923	0.922	0.895	0.895	0.896	0.896
$\operatorname{ct}(wlsv_{te},bu_{cs})$	0.906	0.924	0.923	0.933	0.932	0.912	0.911	0.910	0.912
oct(wlsv)	0.916	0.935	0.937	0.944	0.945	0.923	0.923	0.923	0.924
oct(bdshr)	0.906	0.923	0.923	0.932	0.932	0.910	0.910	0.911	0.912
oct(shr)	0.938	0.993	0.980	0.977	0.969	0.898	0.898	0.898	0.897
oct(bshr)	0.947	0.990	0.995	0.979	0.981	0.915	0.915	0.915	0.915
oct(hshr)	0.978	0.987	0.985	1.027	1.016	0.963	0.964	0.966	0.967
oct(hbshr)	0.977	0.986	0.985	1.012	1.016	0.974	0.976	0.977	0.978
$\operatorname{oct}_h(shr)$	0.900	0.923	0.922	0.926	0.925	0.898	0.898	0.897	0.898
$\operatorname{oct}_h(bshr)$	0.916	0.940	0.943	0.942	0.945	0.914	0.916	0.915	0.916
$\operatorname{oct}_h(hshr)$	0.967	0.974	0.974	1.002	1.002	0.964	0.964	0.966	0.967
				k = 1					
base	1.000	1.014	1.020	1.015	1.019	0.997	1.000	0.997	1.000
ct(bu)	0.969	0.985	0.983	0.985	0.984	0.967	0.967	0.968	0.968
$ct(shr_{cs}, bu_{te})$	0.968	0.984	0.983	0.984	0.983	0.968	0.967	0.968	0.968
$\operatorname{ct}(wlsv_{te},bu_{cs})$	0.977	0.991	0.991	0.992	0.992	0.984	0.983	0.981	0.984
oct(wlsv)	0.989	1.002	1.004	1.003	1.004	0.994	0.995	0.995	0.997
oct(bdshr)	0.977	0.989	0.991	0.992	0.992	0.981	0.982	0.983	0.985
oct(shr)	1.028	1.070	1.056	1.053	1.046	0.969	0.969	0.970	0.969
oct(bshr)	1.034	1.061	1.065	1.051	1.053	0.985	0.987	0.986	0.987
oct(hshr)	1.066	1.075	1.076	1.099	1.090	1.037	1.037	1.039	1.039
oct(hbshr)	1.050	1.065	1.065	1.070	1.073	1.048	1.049	1.049	1.052
$\operatorname{oct}_h(shr)$	0.971	0.985	0.985	0.986	0.986	0.969	0.969	0.969	0.969
$\operatorname{oct}_h(bshr)$	0.987	1.002	1.005	1.002	1.005	0.986	0.987	0.987	0.988
$\operatorname{oct}_h(hshr)$	1.040	1.053	1.053	1.059	1.058	1.036	1.036	1.040	1.040
				k = 2					
base	1.000	0.997	0.999	1.063	1.073	0.996	0.998	1.003	1.008
ct(bu)	0.831	0.867	0.867	0.867	0.867	0.829	0.829	0.830	0.828
$\operatorname{ct}(shr_{cs},bu_{te})$	0.829	0.867	0.866	0.866	0.865	0.828	0.829	0.829	0.829
$\operatorname{ct}(wlsv_{te},bu_{cs})$	0.839	0.860	0.860	0.877	0.876	0.844	0.844	0.844	0.845
oct(wlsv)	0.849	0.872	0.875	0.887	0.890	0.858	0.856	0.856	0.857
oct(bdshr)	0.839	0.861	0.861	0.876	0.875	0.845	0.843	0.845	0.844
oct(shr)	0.856	0.921	0.909	0.907	0.898	0.832	0.831	0.832	0.831
oct(bshr)	0.868	0.924	0.930	0.911	0.915	0.849	0.848	0.849	0.848
oct(hshr)	0.897	0.905	0.901	0.959	0.947	0.895	0.896	0.898	0.899
oct(hbshr)	0.910	0.912	0.912	0.957	0.961	0.906	0.909	0.909	0.910
$\operatorname{oct}_h(shr)$	0.835	0.865	0.862	0.870	0.868	0.833	0.833	0.831	0.832
$\operatorname{oct}_h(bshr)$	0.850	0.881	0.885	0.886	0.889	0.847	0.849	0.849	0.850
$\operatorname{oct}_h(hshr)$	0.900	0.902	0.901	0.947	0.948	0.897	0.896	0.897	0.899

Table C.6: Simulation experiment. ES ratio indices defined in Section 5. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.

	Generation of the base forecasts paths Gaussian approach: shrinkage covariance matrix											
			Gaussia	n approa	ach: shri	nkage co	ovarianc	e matrix	[
Reconciliation approach	ctjb	Ir	n-sample	residua	ls	M	lulti-step	residua	als			
ирргоисп		G	В	Н	HB	G	В	Н	HB			
	·		$\forall k$: ∈ {2,1]	}							
base	1.007	1.009	1.044	1.046	0.997	0.999	1.002	1.003	1.000			
ct(bu)	0.929	0.929	0.929	0.929	0.899	0.900	0.900	0.900	0.901			
$\operatorname{ct}(shr_{cs},bu_{te})$	0.929	0.928	0.929	0.928	0.899	0.899	0.900	0.900	0.901			
$\operatorname{ct}(wlsv_{te}, bu_{cs})$	0.930	0.930	0.939	0.938	0.915	0.916	0.917	0.916	0.910			
oct(wlsv)	0.943	0.944	0.951	0.952	0.929	0.930	0.931	0.930	0.922			
oct(bdshr)	0.930	0.930	0.938	0.938	0.915	0.916	0.916	0.916	0.910			
oct(shr)	0.994	0.982	0.980	0.973	0.902	0.902	0.903	0.902	0.941			
oct(bshr)	0.995	0.998	0.983	0.986	0.921	0.922	0.922	0.922	0.951			
oct(hshr)	0.994	0.994	1.035	1.025	0.971	0.972	0.974	0.974	0.987			
oct(hbshr)	0.995	0.997	1.025	1.027	0.984	0.986	0.988	0.988	0.987			
$\operatorname{oct}_h(shr)$	0.929	0.928	0.932	0.932	0.902	0.902	0.903	0.902	0.904			
$\operatorname{oct}_h(bshr)$	0.948	0.951	0.951	0.953	0.921	0.922	0.922	0.922	0.923			
$\operatorname{oct}_h(hshr)$	0.982	0.982	1.011	1.011	0.971	0.972	0.974	0.974	0.974			
				k = 1								
base	1.017	1.019	1.017	1.019	0.998	0.999	0.999	0.999	1.000			
ct(bu)	0.994	0.994	0.994	0.994	0.976	0.976	0.977	0.976	0.978			
$\operatorname{ct}(shr_{cs},bu_{te})$	0.993	0.993	0.993	0.993	0.975	0.976	0.976	0.976	0.977			
$ct(wlsv_{te}, bu_{cs})$	1.002	1.002	1.003	1.003	0.992	0.993	0.993	0.993	0.986			
oct(wlsv)	1.015	1.015	1.015	1.016	1.005	1.007	1.007	1.007	0.998			
oct(bdshr)	1.002	1.002	1.003	1.002	0.992	0.992	0.993	0.992	0.986			
oct(shr)	1.076	1.065	1.061	1.056	0.978	0.978	0.979	0.978	1.037			
oct(bshr)	1.070	1.072	1.060	1.062	0.997	0.998	0.998	0.998	1.041			
oct(hshr)	1.090	1.092	1.114	1.105	1.049	1.050	1.053	1.052	1.080			
oct(hbshr)	1.080	1.081	1.089	1.090	1.062	1.064	1.066	1.066	1.065			
$\operatorname{oct}_h(shr)$	0.996	0.995	0.996	0.996	0.978	0.978	0.979	0.978	0.980			
$\operatorname{oct}_h(bshr)$	1.016	1.018	1.016	1.018	0.997	0.998	0.998	0.998	0.999			
$\operatorname{oct}_h(hshr)$	1.066	1.067	1.075	1.075	1.049	1.050	1.053	1.052	1.052			
n ()	I			k = 2								
base	0.997	0.999	1.071	1.074	0.997	0.999	1.005	1.008	1.000			
ct(bu)	0.869	0.868	0.868	0.868	0.829	0.829	0.830	0.830	0.831			
$\operatorname{ct}(shr_{cs},bu_{te})$	0.868	0.867	0.868	0.867	0.829	0.829	0.830	0.829	0.830			
$\operatorname{ct}(wlsv_{te},bu_{cs})$	0.863	0.862	0.878	0.878	0.845	0.845	0.846	0.846	0.840			
oct(wlsv)	0.876	0.877	0.891	0.892	0.859	0.860	0.860	0.860	0.851			
oct(bdshr)	0.863	0.863	0.878	0.877	0.844	0.845	0.846	0.845	0.839			
oct(shr)	0.918	0.906	0.906	0.897	0.832	0.832	0.833	0.832	0.854			
oct(bshr)	0.924	0.928	0.911	0.915	0.850	0.851	0.852	0.851	0.869			
oct(hshr)	0.907	0.905	0.962	0.951	0.898	0.899	0.902	0.902	0.901			
oct(hbshr)	0.917	0.919	0.964	0.968	0.912	0.913	0.915	0.916	0.915			
$\operatorname{oct}_h(shr)$	0.867	0.864	0.872	0.871	0.832	0.832	0.833	0.832	0.834			
$\operatorname{oct}_h(bshr)$	0.886	0.890	0.890	0.893	0.850	0.851	0.852	0.851	0.852			
$\operatorname{oct}_h(bshr)$	0.904	0.905	0.952	0.952	0.898	0.899	0.902	0.902	0.902			
occ _n (nom)	0.704	0.700	0.702	0.702	0.070	0.077	0.702	0.702	0.702			

Table C.7: Simulation experiment. $\overline{RelCRPS}$ defined in Section 5. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.

			Genera	tion of t	he base	forecas	ts paths		
			Gaussia	n approa	ach: shri	nkage co	ovarianc	e matrix	
Reconciliation approach	ctjb	Ir	n-sample	e residua	ls	M	Iulti-step	residua	ıls
wp p 1 out.		G	В	Н	HB	G	В	Н	HB
			$\forall k$	$z \in \{2,1\}$	}				
base	1.005	1.008	1.039	1.045	0.996	0.999	1.000	1.003	1.000
ct(bu)	0.923	0.923	0.923	0.923	0.895	0.896	0.897	0.897	0.897
$\operatorname{ct}(shr_{cs},bu_{te})$	0.923	0.922	0.922	0.922	0.896	0.895	0.895	0.895	0.896
$\operatorname{ct}(wlsv_{te}, bu_{cs})$	0.924	0.924	0.932	0.932	0.910	0.911	0.911	0.911	0.906
oct(wlsv)	0.935	0.937	0.944	0.945	0.922	0.924	0.923	0.923	0.916
oct(bdshr)	0.924	0.924	0.932	0.931	0.909	0.911	0.911	0.910	0.906
oct(shr)	0.989	0.978	0.975	0.968	0.897	0.898	0.898	0.898	0.938
oct(bshr)	0.990	0.993	0.978	0.981	0.915	0.915	0.915	0.915	0.947
oct(hshr)	0.986	0.985	1.024	1.015	0.963	0.964	0.966	0.967	0.978
oct(hbshr)	0.985	0.986	1.012	1.015	0.973	0.976	0.977	0.978	0.977
$\operatorname{oct}_h(shr)$	0.923	0.922	0.925	0.925	0.897	0.898	0.898	0.898	0.900
$\operatorname{oct}_h(bshr)$	0.941	0.943	0.942	0.945	0.913	0.915	0.915	0.915	0.916
$\operatorname{oct}_h(hshr)$	0.974	0.975	1.001	1.001	0.964	0.964	0.966	0.966	0.967
	•			k = 1					
base	1.014	1.018	1.015	1.019	0.997	0.999	0.997	0.998	1.000
ct(bu)	0.983	0.984	0.984	0.984	0.967	0.967	0.969	0.969	0.969
$\operatorname{ct}(shr_{cs},bu_{te})$	0.983	0.982	0.982	0.983	0.966	0.967	0.966	0.966	0.968
$\operatorname{ct}(wlsv_{te}, bu_{cs})$	0.991	0.992	0.993	0.992	0.983	0.983	0.983	0.983	0.977
oct(wlsv)	1.002	1.004	1.004	1.004	0.994	0.995	0.994	0.996	0.989
oct(bdshr)	0.990	0.991	0.992	0.991	0.981	0.983	0.984	0.982	0.977
oct(shr)	1.065	1.054	1.051	1.045	0.969	0.970	0.970	0.969	1.028
oct(bshr)	1.061	1.063	1.050	1.052	0.986	0.986	0.987	0.985	1.034
oct(hshr)	1.076	1.077	1.095	1.088	1.036	1.036	1.040	1.038	1.066
oct(hbshr)	1.064	1.065	1.071	1.073	1.047	1.048	1.050	1.050	1.050
$\operatorname{oct}_h(shr)$	0.984	0.985	0.986	0.986	0.969	0.969	0.969	0.968	0.971
$\operatorname{oct}_h(bshr)$	1.003	1.005	1.003	1.005	0.985	0.987	0.987	0.986	0.987
$\operatorname{oct}_h(hshr)$	1.054	1.054	1.059	1.059	1.036	1.037	1.038	1.039	1.040
,	1			k = 2					
base	0.996	0.998	1.064	1.073	0.995	0.999	1.003	1.007	1.000
ct(bu)	0.867	0.866	0.867	0.866	0.829	0.829	0.830	0.830	0.831
$\operatorname{ct}(shr_{cs},bu_{te})$	0.867	0.866	0.866	0.866	0.830	0.829	0.830	0.830	0.829
$\operatorname{ct}(wlsv_{te}, bu_{cs})$	0.861	0.861	0.875	0.875	0.843	0.845	0.845	0.845	0.839
oct(wlsv)	0.873	0.874	0.888	0.889	0.856	0.857	0.857	0.856	0.849
oct(bdshr)	0.862	0.861	0.876	0.874	0.843	0.844	0.844	0.844	0.839
oct(shr)	0.918	0.907	0.905	0.898	0.831	0.832	0.832	0.832	0.856
oct(bshr)	0.924	0.928	0.911	0.915	0.849	0.849	0.849	0.849	0.868
oct(hshr)	0.904	0.901	0.957	0.946	0.895	0.896	0.898	0.900	0.897
oct(hbshr)	0.912	0.913	0.956	0.961	0.905	0.909	0.909	0.911	0.910
$\operatorname{oct}_h(shr)$	0.866	0.863	0.869	0.869	0.830	0.831	0.832	0.832	0.835
$\operatorname{oct}_h(bshr)$	0.882	0.886	0.886	0.889	0.846	0.848	0.849	0.848	0.850
$\operatorname{oct}_h(hshr)$	0.901	0.902	0.947	0.946	0.896	0.896	0.898	0.899	0.900

Table C.8: Simulation experiment. ES ratio indices defined in Section 5. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.

D Forecast reconciliation of the Australian GDP dataset

D.1 The dataset

Athanasopoulos et al. (2020) proposed using state-of-the-art forecast reconciliation methods to improve the accuracy of macroeconomic forecasts and facilitate aligned decision-making. In their empirical analysis, they applied cross-sectional forecast reconciliation to 95 Australian QNA time series that represent the Gross Domestic Product (GDP) calculated using both the income and expenditure approaches. These two approaches correspond to two distinct hierarchical structures, with GDP at the top and 15 lower-level aggregates in the income approach, and GDP as the top-level aggregate in a hierarchy of 79 time series in the expenditure approach (for more information, see Athanasopoulos et al. 2020, pp. 702–705 and figures 21.4–21.7). Bisaglia et al. (2020) showed how to obtain a "one-number" forecast where the GDP reconciled forecasts are coherent for both the expenditure and income sides. Di Fonzo & Girolimetto (2022c), Girolimetto & Di Fonzo (2023b) extended the one number forecasts idea to obtain fully reconciled probabilistic forecasts, and Di Fonzo & Girolimetto (2023a) computed cross-temporally reconciled point forecasts.

D.2 One-step residuals and shrinkage covariance matrix

			Ge	eneration	n of the l	ase fore	casts pa	ths		
Reconciliation approach	ctjb	C	Gaussian	approacl	h*	ctjb	Gaussian approach*			
		G_h	H_h	G_{oh}	H_{oh}		G_h	H_h	G_{oh}	H_{oh}
		$\forall k$	$c \in \{4, 2,$	1}				k = 1		
base	1.000	0.979	0.995	0.968	0.976	1.000	0.988	0.988	0.971	0.971
$\operatorname{ct}(shr_{cs},bu_{te})$	0.937	0.956	0.956	0.976	0.976	0.992	1.008	1.008	1.029	1.029
$\operatorname{ct}(wls_{cs},bu_{te})$	0.930	0.917	0.917	0.898	0.898	0.986	0.974	0.975	0.956	0.956
oct(wlsv)	0.926	0.919	0.920	0.900	0.900	0.984	0.981	0.979	0.959	0.959
oct(bdshr)	0.940	0.965	0.945	0.992	0.957	0.997	1.019	1.003	1.044	1.018
oct(shr)	0.944	1.020	0.940	1.094	0.988	1.015	1.095	1.010	1.160	1.059
oct(hshr)	0.988	0.972	1.002	0.974	1.001	1.048	1.037	1.060	1.034	1.061
$oct_o(wlsv)$	0.926	0.911	0.912	0.896	0.895	0.984	0.971	0.970	0.954	0.954
$oct_o(bdshr)$	0.978	0.964	0.946	0.952	0.930	1.034	1.016	1.003	1.005	0.989
$oct_o(shr)$	0.950	0.946	0.922	0.925	0.903	1.014	1.003	0.985	0.987	0.968
$oct_o(hshr)$	0.989	0.966	0.984	0.954	0.965	1.047	1.028	1.038	1.012	1.023
$oct_{oh}(shr)$	1.102	1.059	1.001	1.094	0.988	1.172	1.109	1.066	1.160	1.059
$oct_{oh}(hshr)$	1.006	0.983	1.009	0.974	1.001	1.068	1.046	1.059	1.034	1.061
			k = 2					k = 4		
base	1.000	0.984	0.993	0.968	0.976	1.000	0.966	1.004	0.964	0.981
$\operatorname{ct}(shr_{cs},bu_{te})$	0.949	0.966	0.966	0.987	0.987	0.874	0.896	0.896	0.914	0.914
$\operatorname{ct}(wls_{cs},bu_{te})$	0.942	0.928	0.928	0.909	0.909	0.866	0.853	0.853	0.834	0.834
oct(wlsv)	0.938	0.929	0.931	0.911	0.911	0.860	0.853	0.855	0.835	0.834
oct(bdshr)	0.953	0.976	0.956	1.003	0.969	0.874	0.904	0.880	0.931	0.889
oct(shr)	0.955	1.031	0.951	1.113	1.002	0.866	0.940	0.864	1.015	0.909
oct(hshr)	1.001	0.985	1.014	0.987	1.016	0.919	0.900	0.935	0.904	0.931
$oct_o(wlsv)$	0.938	0.921	0.923	0.907	0.906	0.860	0.847	0.848	0.832	0.830
$oct_o(bdshr)$	0.991	0.974	0.957	0.964	0.942	0.914	0.905	0.883	0.892	0.865
$oct_o(shr)$	0.965	0.958	0.934	0.938	0.916	0.877	0.882	0.852	0.854	0.831
$oct_o(hshr)$	1.002	0.979	0.996	0.967	0.978	0.922	0.898	0.923	0.888	0.898
$\operatorname{oct}_{oh}(shr)$	1.120	1.069	1.013	1.113	1.002	1.020	1.002	0.928	1.015	0.909
$oct_{oh}(hshr)$	1.021	0.996	1.021	0.987	1.016	0.934	0.912	0.951	0.904	0.931

^{*}The Gaussian method employs a sample covariance matrix:

Table D.1: RelCRPS indices defined in Section 5 for the Australian QNA dataset. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.

 G_h and H_h use multi-step residuals and G_{oh} and H_{oh} use overlapping and multi-step residuals.

			Ge	eneration	n of the l	ase fore	casts pa	ths			
Reconciliation approach	ctjb	C	Gaussian	approacl	n*	ctjb	C	aussian	approacl	n*	
11		G_h	H_h	G_{oh}	H_{oh}		G_h	H_h	G_{oh}	H_{oh}	
		$\forall k$	$x \in \{4, 2, 1\}$	1}		k = 1					
base	1.000	0.970	0.988	0.960	0.970	1.000	0.977	0.977	0.965	0.965	
$ct(shr_{cs}, bu_{te})$	0.897	0.944	0.944	0.973	0.973	0.964	1.001	1.001	1.033	1.033	
$ct(wls_{cs}, bu_{te})$	0.886	0.880	0.880	0.860	0.860	0.954	0.944	0.945	0.928	0.928	
oct(wlsv)	0.890	0.890	0.894	0.872	0.872	0.958	0.957	0.957	0.938	0.939	
oct(bdshr)	0.905	0.956	0.934	0.992	0.954	0.972	1.014	0.994	1.048	1.018	
oct(shr)	0.895	0.979	0.895	1.053	0.944	0.973	1.060	0.969	1.121	1.015	
oct(hshr)	0.951	0.940	0.973	0.959	0.992	1.017	1.010	1.034	1.023	1.055	
$\operatorname{oct}_o(wlsv)$	0.891	0.879	0.881	0.864	0.864	0.958	0.945	0.945	0.931	0.931	
$oct_o(bdshr)$	0.940	0.928	0.910	0.918	0.895	1.004	0.986	0.971	0.980	0.961	
$oct_o(shr)$	0.900	0.899	0.876	0.878	0.858	0.973	0.963	0.944	0.949	0.930	
$oct_o(hshr)$	0.956	0.936	0.955	0.922	0.936	1.021	1.004	1.012	0.987	1.000	
$oct_{oh}(shr)$	1.059	1.015	0.956	1.053	0.945	1.130	1.063	1.019	1.121	1.016	
$oct_{oh}(hshr)$	0.986	0.968	0.999	0.959	0.992	1.053	1.034	1.049	1.024	1.055	
			k = 2					k = 4			
base	1.000	0.972	0.985	0.959	0.969	1.000	0.959	1.000	0.957	0.976	
$ct(shr_{cs}, bu_{te})$	0.915	0.961	0.960	0.991	0.991	0.818	0.874	0.874	0.899	0.900	
$\operatorname{ct}(wls_{cs},bu_{te})$	0.904	0.896	0.896	0.877	0.877	0.807	0.805	0.805	0.782	0.783	
oct(wlsv)	0.909	0.907	0.912	0.889	0.889	0.811	0.813	0.819	0.794	0.794	
oct(bdshr)	0.925	0.976	0.953	1.013	0.974	0.825	0.883	0.860	0.920	0.876	
oct(shr)	0.913	1.000	0.914	1.076	0.963	0.807	0.885	0.808	0.967	0.861	
oct(hshr)	0.973	0.960	0.993	0.978	1.014	0.871	0.856	0.897	0.881	0.913	
$oct_o(wlsv)$	0.908	0.895	0.898	0.881	0.882	0.812	0.802	0.806	0.786	0.786	
$oct_o(bdshr)$	0.960	0.947	0.929	0.938	0.915	0.860	0.856	0.836	0.841	0.816	
$oct_o(shr)$	0.921	0.919	0.896	0.898	0.878	0.814	0.821	0.796	0.794	0.775	
$oct_o(hshr)$	0.977	0.956	0.976	0.942	0.957	0.876	0.854	0.882	0.844	0.856	
$oct_{oh}(shr)$	1.082	1.029	0.973	1.076	0.963	0.971	0.954	0.882	0.967	0.861	
$oct_{oh}(hshr)$	1.007	0.988	1.017	0.979	1.014	0.904	0.888	0.934	0.881	0.913	

Table D.2: ES ratio indices defined in Section 5 for the Australian QNA dataset. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.

^{*}The Gaussian method employs a sample covariance matrix: G_h and H_h use multi-step residuals and G_{oh} and H_{oh} use overlapping and multi-step residuals.

	Generation of the base forecasts paths										
Reconciliation approach	ctjb	C	aussian	approacl	h*	ctjb	C	aussian	approacl	n*	
• •		G_h	H_h	G_{oh}	H_{oh}		G_h	H_h	G_{oh}	H_{oh}	
		$\forall k$	$c \in \{4, 2,$	1}				k = 1			
base	1.000	0.979	1.011	0.968	0.987	1.000	0.988	0.988	0.971	0.971	
$\operatorname{ct}(shr_{cs},bu_{te})$	0.937	0.960	0.961	0.962	0.960	0.992	1.001	1.001	1.004	1.000	
$ct(wls_{cs}, bu_{te})$	0.930	0.951	0.953	0.911	0.915	0.986	0.997	0.998	0.964	0.967	
oct(wlsv)	0.926	0.972	0.957	0.918	0.917	0.984	1.010	1.003	0.971	0.970	
oct(bdshr)	0.940	0.986	0.966	0.981	0.956	0.997	1.015	1.006	1.016	1.000	
oct(shr)	0.944	0.999	0.962	1.051	0.995	1.015	1.047	1.021	1.105	1.058	
oct(hshr)	0.988	1.000	1.021	0.979	1.002	1.048	1.045	1.066	1.034	1.053	
$oct_o(wlsv)$	0.926	0.961	0.948	0.914	0.912	0.984	1.000	0.993	0.966	0.965	
$oct_o(bdshr)$	0.978	0.956	0.949	0.949	0.934	1.034	0.984	0.983	0.988	0.977	
$oct_o(shr)$	0.950	0.957	0.946	0.933	0.917	1.014	0.998	0.995	0.986	0.974	
$oct_o(hshr)$	0.989	0.997	1.013	0.967	0.982	1.047	1.039	1.054	1.019	1.032	
$oct_{oh}(shr)$	1.102	1.010	1.006	1.051	0.995	1.172	1.059	1.063	1.105	1.058	
$oct_{oh}(hshr)$	1.006	0.989	1.004	0.979	1.002	1.068	1.037	1.050	1.034	1.053	
			k = 2					k = 4			
base	1.000	0.984	1.009	0.968	0.987	1.000	0.966	1.037	0.964	1.002	
$ct(shr_{cs}, bu_{te})$	0.949	0.972	0.972	0.974	0.971	0.874	0.910	0.911	0.910	0.910	
$\operatorname{ct}(wls_{cs},bu_{te})$	0.942	0.962	0.964	0.923	0.927	0.866	0.897	0.900	0.851	0.855	
oct(wlsv)	0.938	0.988	0.968	0.931	0.929	0.860	0.921	0.903	0.856	0.856	
oct(bdshr)	0.953	1.004	0.979	0.996	0.970	0.874	0.942	0.914	0.932	0.900	
oct(shr)	0.955	1.016	0.973	1.070	1.010	0.866	0.937	0.895	0.981	0.922	
oct(hshr)	1.001	1.015	1.034	0.993	1.017	0.919	0.942	0.965	0.913	0.937	
$oct_o(wlsv)$	0.938	0.976	0.959	0.927	0.925	0.860	0.910	0.894	0.853	0.852	
$oct_o(bdshr)$	0.991	0.970	0.963	0.963	0.948	0.914	0.917	0.905	0.899	0.880	
$oct_o(shr)$	0.965	0.973	0.959	0.948	0.931	0.877	0.903	0.886	0.868	0.850	
$oct_o(hshr)$	1.002	1.013	1.026	0.980	0.996	0.922	0.943	0.962	0.905	0.921	
$oct_{oh}(shr)$	1.120	1.026	1.019	1.070	1.010	1.020	0.947	0.939	0.981	0.922	
$\operatorname{oct}_{oh}(hshr)$	1.021	1.005	1.017	0.993	1.017	0.934	0.929	0.946	0.913	0.937	

Table D.3: RelCRPS indices defined in Section 5 for the Australian QNA dataset. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.

^{*}The Gaussian method employs a shrinkage covariance matrix: G_h and H_h use multi-step residuals and G_{oh} and H_{oh} use overlapping and multi-step residuals.

	Generation of the base forecasts paths										
Reconciliation approach	ctjb	C	aussian	approacl	h*	ctjb	G	aussian	approacl	n*	
**		G_h	H_h	G_{oh}	H_{oh}		G_h	H_h	G_{oh}	H_{oh}	
		$\forall k$	$c \in \{4,2,$	1}				k = 1			
base	1.000	0.967	1.002	0.957	0.980	1.000	0.973	0.973	0.961	0.962	
$ct(shr_{cs}, bu_{te})$	0.897	0.968	0.969	0.963	0.962	0.964	1.012	1.012	1.009	1.004	
$ct(wls_{cs}, bu_{te})$	0.886	0.939	0.944	0.882	0.888	0.954	0.994	0.998	0.947	0.952	
oct(wlsv)	0.890	0.966	0.959	0.897	0.901	0.958	1.017	1.012	0.960	0.965	
oct(bdshr)	0.905	0.997	0.981	0.986	0.960	0.972	1.031	1.021	1.024	1.005	
oct(shr)	0.895	0.979	0.945	1.021	0.962	0.973	1.041	1.011	1.083	1.028	
oct(hshr)	0.951	0.997	1.023	0.973	1.005	1.017	1.051	1.073	1.034	1.063	
$oct_o(wlsv)$	0.891	0.950	0.945	0.889	0.892	0.958	1.002	0.997	0.953	0.956	
$oct_o(bdshr)$	0.940	0.935	0.933	0.922	0.909	1.004	0.965	0.964	0.969	0.959	
$oct_o(shr)$	0.900	0.935	0.928	0.895	0.884	0.973	0.984	0.982	0.960	0.950	
$oct_o(hshr)$	0.956	0.997	1.015	0.945	0.965	1.021	1.049	1.062	1.007	1.024	
$oct_{oh}(shr)$	1.059	0.981	0.983	1.021	0.962	1.130	1.034	1.041	1.083	1.029	
$oct_{oh}(hshr)$	0.986	0.996	1.014	0.973	1.005	1.053	1.050	1.064	1.034	1.063	
			k = 2					k = 4			
base	1.000	0.970	0.999	0.955	0.980	1.000	0.958	1.033	0.953	1.000	
$ct(shr_{cs}, bu_{te})$	0.915	0.987	0.988	0.983	0.982	0.818	0.909	0.910	0.902	0.902	
$ct(wls_{cs}, bu_{te})$	0.904	0.958	0.962	0.900	0.906	0.807	0.871	0.876	0.805	0.812	
oct(wlsv)	0.909	0.988	0.979	0.916	0.920	0.811	0.896	0.891	0.820	0.825	
oct(bdshr)	0.925	1.024	1.005	1.010	0.984	0.825	0.938	0.919	0.926	0.895	
oct(shr)	0.913	1.006	0.967	1.045	0.982	0.807	0.898	0.864	0.940	0.881	
oct(hshr)	0.973	1.020	1.046	0.994	1.028	0.871	0.924	0.954	0.897	0.929	
$oct_o(wlsv)$	0.908	0.972	0.964	0.908	0.911	0.812	0.882	0.876	0.812	0.816	
$oct_o(bdshr)$	0.960	0.959	0.957	0.945	0.932	0.860	0.884	0.879	0.857	0.841	
$oct_o(shr)$	0.921	0.958	0.950	0.917	0.905	0.814	0.867	0.857	0.815	0.803	
$oct_o(hshr)$	0.977	1.021	1.038	0.966	0.987	0.876	0.926	0.949	0.868	0.889	
$\operatorname{oct}_{oh}(shr)$	1.082	1.002	1.003	1.045	0.982	0.971	0.910	0.911	0.941	0.882	
$oct_{oh}(hshr)$	1.007	1.017	1.036	0.994	1.028	0.904	0.924	0.947	0.896	0.929	

Table D.4: ES ratio indices defined in Section 5 for the Australian QNA dataset. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.

^{*}The Gaussian method employs a shrinkage covariance matrix: G_h and H_h use multi-step residuals and G_{oh} and H_{oh} use overlapping and multi-step residuals.

E Australian Tourism Demand dataset

Table E.1: Geographic divisions of Australia in States, Zones e Regions. Zones formed by a single region are highlighted in italics and not numbered.

Series	Name	Label	Series	Name	Label
Total			continue	es Regions	
1	Australia	Total	49	Gippsland	BCB
States			50	Phillip Island	BCC
2	New South Wales (NSW)	A	51	Central Murray	BDA
3	Victoria (VIC)	В	52	Goulburn	BDB
4	Queensland (QLD)	C	53	High Country	BDC
5	South Australia (SA)	D	54	Melbourne East	BDD
6	Western Australia (WA)	E	55	Upper Yarra	BDE
7	Tasmania (TAS)	F	56	MurrayEast	BDF
8	Northern Territory (NT)	G	57	Mallee	BEA
Zones			58	Wimmera	BEB
9	Metro NSW	AA	59	Western Grampians	BEC
10	Nth Coast NSW	AB	60	Bendigo Loddon	BED
	Sth Coast NSW	AC	61	Macedon	BEE
11	Sth NSW	AD	62	Spa Country	BEF
12	Nth NSW	ΑE	63	Ballarat	BEG
	ACT	AF	64	Central Highlands	BEG
13	Metro VIC	BA	65	Gold Coast	CAA
	West Coast VIC	BB	66	Brisbane	CAB
14	East Coast VIC	BC	67	Sunshine Coast	CAC
15	Nth East VIC	BD	68	Central Queensland	CBA
16	Nth West VIC	BE	69	Bundaberg	CBB
1 <i>7</i>	Metro QLD	CA	70	Fraser Coast	CBC
18	Central Coast QLD	CB	71	Mackay	CBD
19	Nth Coast QLD	CC	72	Whitsundays	CCA
20	Inland QLD	CD	73	Northern	CCB
21	Metro SA	DA	74	Tropical North Queensland	CCC
22	Sth Coast SA	DB	75	Darling Downs	CDA
23	Inland SA	DC	76	Outback	CDB
24	West Coast SA	DD	77	Adelaide	DAA
25	West CoastWA	EA	78	Barossa	DAB
	Nth WA	EB	79	Adelaide Hills	DAC
	SthWA	EC	80	Limestone Coast	DBA
	Sth TAS	FA	81	Fleurieu Peninsula	DBB
26	Nth East TAS	FB	82	Kangaroo Island	DBC
27	Nth West TAS	FC	83	Murraylands	DCA
28	Nth Coast NT	GA	84	Riverland	DCB
29	Central NT	GB	85	Clare Valley	DCC
Regions			86	Flinders Range and Outback	DCD
30	Sydney	AAA	87	Eyre Peninsula	DDA
31	Central Coast	AAB	88	Yorke Peninsula	DDB
32	Hunter	ABA	89	Australia's Coral Coast	EAA
33	North Coast NSW	ABB	90	Experience Perth	EAB
34	South Coast	ACA	91	Australia's SouthWest	EAC
35	Snowy Mountains	ADA	92	Australia's North West	EBA
36	Capital Country	ADB	93	Australia's Golden Outback	ECA
37	The Murray	ADC	94	Hobart and the South	FAA
38	Riverina	ADD	95	East Coast	FBA
39	Central NSW	AEA	96	Launceston, Tamar and the North	FBB
40	New England North West	AEB	97	North West	FCA
41	Outback NSW	AEC	98	WildernessWest	FCB
42	Blue Mountains	AED	99	Darwin	GAA
43	Canberra	AFA	100	Kakadu Arnhem	GAA
44	Melbourne	BAA	101	Katherine Daly	GAC
45	Peninsula	BAB	101	Barkly	GBA
46	Geelong	BAC	102	Lasseter	GBB
47	Western	BBA	103	Alice Springs	GBC
48	Lakes	BCA	104	MacDonnell	GBD
40	Lakes	DCA	103	IVIACDOILIEII	GDD

Source: Wickramasuriya et al. (2019), Di Fonzo & Girolimetto (2022b)

E.1 Dealing with negative reconciled forecasts

One issue in working with time series data is the presence of negative values, which can cause difficulties for certain types of models or analyses. For the base forecasts, using the bootstrap approach produces forecasts naturally non negative (ETS model with the log-transformation), while this is not true for the Gaussian approach. In this case, any negative forecast is set equal to zero. For the cross-temporal reconciliation, Di Fonzo & Girolimetto (2022a, 2023b) propose two solutions: either a state-of-the-art numerical optimization procedure (osqp, Stellato et al. 2020, 2022), or a simple heuristic strategy called set-negative-to-zero (sntz). With sntz, any negative high frequency bottom time series reconciled forecasts are set to zero, and then a cross-temporal reconciliation bottom-up is used to obtain the complete set of fully coherent forecasts. Di Fonzo & Girolimetto (2023b) found that both methods produce similar quality forecasts, but the optimization method required much more time and computational effort compared to the sntz heuristic. To reduce computational demands, we used the less time-intensive heuristic approach for reconciliation.

E.2 Tables for all the temporal aggregation orders

			Ge	neration	of the b	oase fore	ecasts pa	ıths		
Reconciliation approach	ctjb	G	aussian	approac	h*	ctjb	G	aussian	approac	h*
		G	В	Н	HB		G	В	Н	HB
		$\forall k \in \mathcal{A}$	12, 6, 4,	3,2,1}				k = 1		
base	1.000	0.971	0.971	0.973	0.973	1.000	0.972	0.972	0.972	0.972
ct(bu)	1.321	1.011	1.011	1.011	1.011	1.077	0.983	0.982	0.982	0.982
$\operatorname{ct}(shr_{cs},bu_{te})$	1.057	0.974	0.969	0.974	0.969	0.976	0.963	0.962	0.963	0.962
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.062	0.974	0.974	0.972	0.972	0.976	0.965	0.965	0.966	0.966
oct(ols)	0.989	0.989	0.989	0.987	0.987	0.982	0.986	0.988	0.986	0.989
oct(struc)	0.982	0.962	0.961	0.961	0.959	0.970	0.963	0.963	0.963	0.963
oct(wlsv)	0.987	0.959	0.959	0.958	0.957	0.952	0.957	0.957	0.957	0.957
oct(bdshr)	0.975	0.956	0.953	0.952	0.951	0.949	0.955	0.953	0.954	0.954
$\operatorname{oct}_h(bshr)$	0.994	1.018	1.020	1.016	1.019	0.988	1.007	1.013	1.006	1.012
$\operatorname{oct}_h(hshr)$	0.969	0.993	0.993	0.990	0.991	0.953	0.977	0.977	0.979	0.979
$\operatorname{oct}_h(shr)$	1.007	0.980	0.972	0.970	0.970	1.000	0.986	0.977	0.976	0.974
			k = 2					k = 3		
base	1.000	0.970	0.969	0.970	0.971	1.000	0.971	0.971	0.972	0.973
ct(bu)	1.189	0.999	0.999	0.999	0.999	1.273	1.010	1.010	1.010	1.010
$\operatorname{ct}(shr_{cs},bu_{te})$	1.015	0.972	0.970	0.972	0.970	1.041	0.977	0.974	0.977	0.974
$\operatorname{ct}(wlsv_{te}, bu_{cs})$	1.016	0.971	0.971	0.970	0.970	1.046	0.976	0.976	0.974	0.974
oct(ols)	0.992	0.991	0.991	0.990	0.991	0.994	0.992	0.993	0.991	0.992
oct(struc)	0.982	0.966	0.965	0.965	0.965	0.986	0.967	0.966	0.966	0.965
oct(wlsv)	0.972	0.961	0.960	0.960	0.960	0.983	0.963	0.962	0.962	0.962
oct(bdshr)	0.964	0.958	0.957	0.956	0.956	0.972	0.960	0.958	0.957	0.957
$\operatorname{oct}_h(bshr)$	0.997	1.015	1.018	1.013	1.017	0.999	1.021	1.022	1.018	1.022
$\operatorname{oct}_h(hshr)$	0.965	0.987	0.987 0.978	0.986 0.976	0.987 0.975	0.971	0.994	0.994 0.978	0.992 0.976	0.993 0.976
$\operatorname{oct}_h(shr)$	1.005	0.986		0.976	0.973	1.009	0.986		0.976	0.976
1	1 000	0.072	k=4	0.074	0.075	1 000	0.076	k = 6	0.070	0.070
base	1.000	0.973	0.973	0.974	0.975	1.000	0.976	0.976	0.978	0.978
ct(bu)	1.340	1.016	1.015	1.015	1.015	1.450	1.023 0.978	1.023 0.972	1.023 0.978	1.023 0.972
$\operatorname{ct}(shr_{cs},bu_{te})$	1.061	0.978 0.977	0.973 0.977	0.978 0.974	0.973 0.974	1.094 1.103	0.978	0.972	0.978	0.972
$\operatorname{ct}(wlsv_{te}, bu_{cs})$ $\operatorname{oct}(ols)$	1.068 0.993	0.977	0.977	0.974	0.974	0.989	0.977	0.977	0.974	0.974
oct(struc)	0.993	0.965	0.992	0.964	0.963	0.986	0.961	0.960	0.959	0.957
oct(wlsv)	0.980	0.962	0.964	0.964	0.960	1.001	0.960	0.959	0.958	0.957
oct(wise)	0.977	0.959	0.956	0.955	0.954	0.985	0.956	0.953	0.950	0.948
$\operatorname{oct}_h(bshr)$	0.997	1.022	1.022	1.019	1.022	0.994	1.022	1.022	1.020	1.022
$\operatorname{oct}_h(bshr)$	0.973	0.996	0.997	0.994	0.995	0.976	1.000	1.001	0.996	0.997
$\operatorname{oct}_h(shr)$	1.009	0.984	0.976	0.973	0.973	1.010	0.978	0.970	0.967	0.967
occ _n (stri)	1.007	0.701	k = 12	0.770	0.570	1.010	0.770	0.770	0.707	0.707
base	1.000	0.968	0.967	0.969	0.969	I				
ct(bu)	1.675	1.038	1.037	1.037	1.038					
$ct(shr_{cs}, bu_{te})$	1.163	0.977	0.965	0.977	0.965					
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.174	0.978	0.978	0.971	0.971					
oct(ols)	0.982	0.982	0.983	0.980	0.975					
oct(struc)	0.982	0.951	0.949	0.947	0.943					
oct(wlsv)	1.025	0.954	0.953	0.949	0.947					
oct(bdshr)	1.002	0.950	0.944	0.939	0.935					
$\operatorname{oct}_h(bshr)$	0.987	1.024	1.021	1.021	1.019					
$\operatorname{oct}_h(hshr)$	0.978	1.003	1.005	0.996	0.997					
$\operatorname{oct}_h^n(shr)$	1.010	0.963	0.956	0.952	0.952					
11 /	1					1				

 $^{^*}$ The Gaussian method employs a sample covariance matrix and includes four techniques (G, B, H, HB) with multi-step residuals.

Table E.2: RelCRPS defined in Section 5 for the Australian Tourism Demand dataset. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.

	Generation of the base forecasts paths											
Reconciliation approach	ctjb	G	aussian	approac	h [*]	ctjb	G	aussian	approac	h [*]		
ирргоисп		G	В	Н	HB		G	В	Н	HB		
		$\forall k \in \mathcal{A}$	12, 6, 4,	3,2,1}				k = 1				
base	1.000	0.956	0.955	0.958	0.951	1.000	0.952	0.950	0.952	0.950		
ct(bu)	2.427	0.983	0.983	0.983	0.983	1.759	0.982	0.982	0.982	0.982		
$\operatorname{ct}(shr_{cs},bu_{te})$	1.243	0.886	0.879	0.886	0.879	1.098	0.929	0.928	0.930	0.927		
$\operatorname{ct}(wlsv_{te}, bu_{cs})$	1.499	0.977	0.977	0.971	0.972	1.241	0.975	0.975	0.973	0.974		
oct(ols)	0.955	0.893	0.891	0.893	0.888	0.975	0.937	0.936	0.936	0.935		
oct(struc)	1.085	0.917	0.915	0.916	0.912	1.027	0.943	0.942	0.943	0.942		
oct(wlsv)	1.132	0.933	0.929	0.931	0.927	1.050	0.951	0.949	0.950	0.949		
oct(bdshr)	1.047	0.904	0.897	0.897	0.891	1.009	0.936	0.933	0.934	0.931		
$\operatorname{oct}_h(bshr)$	0.931	0.867	0.866	0.863	0.860	0.965	0.927	0.927	0.925	0.923		
$\operatorname{oct}_h(hshr)$	1.081	0.935	0.931	0.935	0.927	1.028	0.952	0.951	0.952	0.950		
$\operatorname{oct}_h(shr)$	1.068	0.899	0.878	0.875	0.864	1.023	0.935	0.923	0.921	0.916		
			k = 2					k = 3				
base	1.000	0.958	0.954	0.956	0.953	1.000	0.961	0.958	0.960	0.955		
ct(bu)	2.176	1.001	1.001	1.001	1.001	2.428	0.998	0.997	0.997	0.997		
$\operatorname{ct}(shr_{cs},bu_{te})$	1.192	0.927	0.921	0.927	0.921	1.245	0.911	0.904	0.911	0.904		
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.400	0.992	0.992	0.988	0.988	1.500	0.991	0.991	0.986	0.987		
oct(ols)	0.985	0.935	0.932	0.934	0.930	0.976	0.918	0.915	0.917	0.912		
oct(struc)	1.075	0.949	0.947	0.948	0.944	1.096	0.939	0.936	0.938	0.933		
oct(wlsv)	1.110	0.960	0.958	0.958	0.955	1.142	0.953	0.949	0.951	0.946		
oct(bdshr)	1.045	0.938	0.933	0.933	0.929	1.060	0.926	0.920	0.921	0.915		
$\operatorname{oct}_h(bshr)$	0.967	0.917	0.916	0.913	0.908	0.954	0.895	0.895	0.892	0.887		
$\operatorname{oct}_h(hshr)$	1.073	0.962	0.959	0.963	0.956	1.093	0.955	0.951	0.956	0.949		
$\operatorname{oct}_h(shr)$	1.064	0.933	0.916	0.913	0.904	1.082	0.923	0.903	0.900	0.890		
			k = 4					k = 6				
base	1.000	0.960	0.960	0.962	0.956	1.000	0.961	0.959	0.964	0.956		
ct(bu)	2.585	0.996	0.996	0.995	0.996	2.849	1.004	1.003	1.003	1.004		
$\operatorname{ct}(shr_{cs},bu_{te})$	1.277	0.898	0.890	0.899	0.891	1.339	0.882	0.873	0.883	0.874		
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.559	0.990	0.990	0.984	0.985	1.662	0.997	0.997	0.991	0.992		
oct(ols)	0.966	0.905	0.902	0.904	0.899	0.962	0.889	0.887	0.890	0.885		
oct(struc)	1.106	0.930	0.927	0.928	0.924	1.132	0.923	0.919	0.922	0.916		
oct(wlsv)	1.157	0.947	0.943	0.945	0.939	1.192	0.942	0.937	0.941	0.934		
oct(bdshr)	1.065	0.917	0.909	0.910	0.903	1.084	0.907	0.897	0.898	0.890		
$\operatorname{oct}_h(bshr)$	0.943	0.879	0.878	0.876	0.871	0.932	0.856	0.855	0.851	0.848		
$\operatorname{oct}_h(hshr)$	1.101	0.949	0.944	0.949	0.941	1.126	0.945	0.939	0.945	0.936		
$\operatorname{oct}_h(shr)$	1.089	0.915	0.893	0.890	0.878	1.107	0.899	0.875	0.871	0.858		
1	1 000	0.040	k = 12	0.051	0.007							
base	1.000	0.942	0.947	0.951	0.937							
ct(bu)	2.990	0.922	0.921	0.923	0.923							
$\operatorname{ct}(shr_{cs},bu_{te})$	1.326	0.779	0.767	0.777	0.766							
$\operatorname{ct}(wlsv_{te}, bu_{cs})$	1.679	0.917	0.917	0.906	0.908							
oct(ols)	0.872	0.783	0.784	0.783	0.779							
oct(struc)	1.077	0.826	0.822	0.823	0.818							
oct(wlsv)	1.149	0.851	0.845	0.847	0.840							
oct(bdshr)	1.021	0.808	0.796	0.796	0.787							
$\operatorname{oct}_h(bshr)$ $\operatorname{oct}_h(hshr)$	0.833 1.066	0.741 0.851	0.741 0.846	0.737 0.848	0.735 0.838							
$\operatorname{oct}_h(nshr)$ $\operatorname{oct}_h(shr)$		0.851		0.848								
$\operatorname{oct}_h(snr)$	1.043	0./9/	0.768	0.764	0.750							

^{*}The Gaussian method employs a sample covariance matrix and includes four techniques (G, B, H, HB) with multi-step residuals.

Table E.3: *ES ratio indices defined in Section 5 for the Australian Tourism Demand dataset. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.*

	Generation of the base forecasts paths										
Reconciliation approach	ctjb	G	aussian	approac	h*	ctjb	G	aussian	approac	h*	
wp p 1 out.		G	В	Н	HB		G	В	Н	HB	
		$\forall k \in \{$	12, 6, 4,	3.2.1}				k = 1			
base	1.000	0.971	0.972	0.971	0.972	1.000	0.972	0.971	0.972	0.971	
ct(bu)	1.321	1.017	1.018	1.017	1.017	1.077	0.983	0.983	0.983	0.983	
$\operatorname{ct}(shr_{cs},bu_{te})$	1.057	1.013	0.971	1.013	0.971	0.976	0.987	0.961	0.988	0.961	
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.062	1.069	1.070	0.974	0.974	0.976	0.986	0.986	0.965	0.965	
oct(ols)	0.989	1.163	1.052	1.139	0.987	0.982	1.038	0.992	1.047	0.987	
oct(struc)	0.982	1.099	1.039	1.037	0.960	0.970	1.007	0.971	0.999	0.962	
oct(wlsv)	0.987	1.080	1.041	0.992	0.958	0.952	1.004	0.969	0.978	0.956	
oct(bdshr)	0.975	1.072	1.032	0.985	0.950	0.949	0.999	0.965	0.975	0.952	
$\operatorname{oct}_h(bshr)$	0.994	1.202	1.073	1.168	1.021	0.988	1.046	1.012	1.063	1.012	
$\operatorname{oct}_h(hshr)$	0.969	1.066	1.052	1.008	0.994	0.953	0.994	0.972	0.991	0.979	
$\operatorname{oct}_h(shr)$	1.007	1.090	1.046	1.000	0.970	1.000	1.035	0.992	0.998	0.973	
			k = 2					k = 3			
base	1.000	0.969	0.969	0.968	0.968	1.000	0.971	0.970	0.969	0.970	
ct(bu)	1.189	1.000	1.000	1.000	1.000	1.273	1.013	1.013	1.013	1.013	
$\operatorname{ct}(shr_{cs},bu_{te})$	1.015	1.004	0.968	1.004	0.968	1.041	1.013	0.973	1.014	0.973	
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.016	1.043	1.044	0.969	0.969	1.046	1.067	1.068	0.974	0.974	
oct(ols)	0.992	1.118	1.037	1.092	0.989	0.994	1.153	1.053	1.124	0.990	
oct(struc)	0.982	1.075	1.022	1.020	0.963	0.986	1.099	1.041	1.033	0.964	
oct(wlsv)	0.972	1.064	1.021	0.987	0.958	0.983	1.083	1.041	0.993	0.960	
oct(bdshr)	0.964	1.057	1.015	0.983	0.953	0.972	1.075	1.033	0.988	0.955	
$\operatorname{oct}_h(bshr)$	0.997	1.145	1.059	1.114	1.016	0.999	1.190	1.075	1.151	1.021	
$\operatorname{oct}_h(hshr)$	0.965	1.050	1.029	1.001	0.986	0.971	1.067	1.051	1.009	0.994	
$\operatorname{oct}_h(shr)$	1.005	1.083	1.035	1.001	0.973	1.009	1.097	1.050	1.004	0.974	
			k = 4					k = 6			
base	1.000	0.973	0.973	0.971	0.973	1.000	0.976	0.977	0.975	0.977	
ct(bu)	1.340	1.021	1.021	1.021	1.021	1.450	1.032	1.033	1.032	1.033	
$\operatorname{ct}(shr_{cs},bu_{te})$	1.061	1.018	0.974	1.018	0.974	1.094	1.023	0.974	1.024	0.974	
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.068	1.087	1.089	0.976	0.976	1.103	1.108	1.110	0.978	0.978	
oct(ols)	0.993	1.186	1.068	1.148	0.989	0.989	1.223	1.080	1.184	0.987	
oct(struc)	0.986	1.120	1.057	1.042	0.962	0.986	1.141	1.071	1.054	0.959	
oct(wlsv)	0.990	1.100	1.059	0.996	0.959	1.001	1.115	1.076	0.998	0.958	
oct(bdshr)	0.977	1.091	1.049	0.989	0.952	0.985	1.103	1.064	0.989	0.949	
$\operatorname{oct}_h(bshr)$	0.997	1.230	1.089	1.178	1.023	0.994	1.278	1.101	1.219	1.025	
$\operatorname{oct}_h(hshr)$	0.973	1.084	1.071	1.012	0.996	0.976	1.097	1.091	1.017	1.002	
$\operatorname{oct}_h(shr)$	1.009	1.108	1.062	1.003	0.972	1.010	1.113	1.070	1.000	0.968	
			k = 12								
base	1.000	0.968	0.969	0.969	0.971						
ct(bu)	1.675	1.056	1.057	1.057	1.057						
$\operatorname{ct}(shr_{cs},bu_{te})$	1.163	1.032	0.974	1.033	0.974						
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.174	1.128	1.130	0.982	0.982						
oct(ols)	0.982	1.277	1.085	1.252	0.982						
oct(struc)	0.982	1.158	1.074	1.075	0.950						
oct(wlsv)	1.025	1.122	1.085	1.001	0.954						
oct(bdshr)	1.002	1.110	1.071	0.989	0.941						
$\operatorname{oct}_h(bshr)$	0.987	1.347	1.107	1.297	1.031						
$\operatorname{oct}_h(hshr)$	0.978	1.106	1.107	1.021	1.010						
$\operatorname{oct}_h(shr)$	1.010	1.107	1.067	0.991	0.959						

^{*}The Gaussian method employs a shrikage covariance matrix and includes four techniques (G, B, H, HB) with multi-step residuals..

Table E.4: RelCRPS defined in Section 5 for the Australian Tourism Demand dataset. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.

	Generation of the base forecasts paths											
Reconciliation approach	ctjb	G	aussian	approac	h [*]	ctjb	G	aussian	approac	h [*]		
upprouen		G	В	Н	HB		G	В	Н	HB		
		$\forall k \in \cdot$	12, 6, 4,	3,2,1}				k = 1				
base	1.000	0.958	0.984	0.972	0.992	1.000	0.954	0.958	0.954	0.958		
ct(bu)	2.427	1.040	1.042	1.040	1.041	1.759	1.001	1.002	1.002	1.002		
$\operatorname{ct}(shr_{cs},bu_{te})$	1.243	0.988	0.913	0.990	0.913	1.098	1.011	0.938	1.013	0.938		
$ct(wlsv_{te}, bu_{cs})$	1.499	1.117	1.120	1.025	1.025	1.241	1.019	1.020	0.990	0.990		
oct(ols)	0.955	1.000	0.984	0.985	0.922	0.975	0.983	0.961	0.987	0.945		
oct(struc)	1.085	1.094	1.047	1.018	0.952	1.027	1.054	0.981	1.022	0.953		
oct(wlsv)	1.132	1.137	1.065	1.059	0.969	1.050	1.078	0.989	1.043	0.960		
oct(bdshr)	1.047	1.085	1.013	1.011	0.927	1.009	1.050	0.966	1.019	0.942		
$\operatorname{oct}_h(bshr)$	0.931	1.002	1.001	0.982	0.889	0.965	0.980	0.975	0.985	0.933		
$\operatorname{oct}_h(hshr)$	1.081	1.109	1.039	1.076	0.973	1.028	1.061	0.978	1.052	0.963		
$\operatorname{oct}_h(shr)$	1.068	1.088	1.008	0.995	0.896	1.023	1.061	0.966	1.011	0.924		
			k = 2					k = 3				
base	1.000	0.960	0.971	0.958	0.972	1.000	0.963	0.981	0.966	0.986		
ct(bu)	2.176	1.035	1.036	1.035	1.035	2.428	1.042	1.044	1.042	1.043		
$\operatorname{ct}(shr_{cs},bu_{te})$	1.192	1.020	0.942	1.021	0.942	1.245	1.009	0.931	1.011	0.931		
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.400	1.104	1.106	1.018	1.019	1.500	1.127	1.130	1.029	1.029		
oct(ols)	0.985	1.028	1.008	1.002	0.950	0.976	1.020	1.004	0.994	0.938		
oct(struc)	1.075	1.115	1.051	1.039	0.967	1.096	1.117	1.064	1.033	0.965		
oct(wlsv)	1.110	1.149	1.065	1.070	0.979	1.142	1.160	1.082	1.073	0.981		
oct(bdshr)	1.045	1.105	1.024	1.033	0.949	1.060	1.109	1.032	1.029	0.943		
$\operatorname{oct}_h(bshr)$	0.967	1.029	1.025	0.998	0.928	0.954	1.024	1.025	0.993	0.911		
$\operatorname{oct}_h(hshr)$	1.073	1.122	1.042	1.083	0.983	1.093	1.129	1.054	1.090	0.984		
$\operatorname{oct}_h(shr)$	1.064	1.110	1.019	1.018	0.922	1.082	1.116	1.030	1.015	0.915		
			k = 4					k = 6				
base	1.000	0.962	0.987	0.973	0.996	1.000	0.963	0.998	0.984	1.011		
ct(bu)	2.585	1.052	1.054	1.053	1.053	2.849	1.083	1.085	1.083	1.084		
$\operatorname{ct}(shr_{cs},bu_{te})$	1.277	1.000	0.923	1.002	0.923	1.339	0.999	0.921	1.000	0.920		
$\operatorname{ct}(wlsv_{te},bu_{cs})$	1.559	1.150	1.153	1.037	1.037	1.662	1.189	1.193	1.066	1.066		
oct(ols)	0.966	1.022	1.008	0.994	0.931	0.962	1.023	1.014	1.003	0.930		
oct(struc)	1.106	1.120	1.076	1.031	0.963	1.132	1.132	1.100	1.039	0.972		
oct(wlsv)	1.157	1.167	1.097	1.075	0.982	1.192	1.187	1.124	1.090	0.995		
oct(bdshr)	1.065	1.112	1.041	1.025	0.939	1.084	1.121	1.058	1.029	0.940		
$\operatorname{oct}_h(bshr)$	0.943	1.028	1.028	0.994	0.900	0.932	1.029	1.032	1.000	0.887		
$\operatorname{oct}_h(hshr)$	1.101	1.137	1.068	1.093	0.986	1.126	1.153	1.089	1.110	0.999		
$\operatorname{oct}_h(shr)$	1.089	1.118	1.039	1.012	0.910	1.107	1.118	1.045	1.006	0.902		
			k = 12									
base	1.000	0.948	1.010	1.002	1.033							
ct(bu)	2.990	1.028	1.031	1.029	1.029							
$\operatorname{ct}(shr_{cs},bu_{te})$	1.326	0.897	0.830	0.899	0.830							
$\operatorname{ct}(wlsv_{te}, bu_{cs})$	1.679	1.119	1.123	1.009	1.009							
oct(ols)	0.872	0.927	0.914	0.930	0.840							
oct(struc)	1.077	1.028	1.012	0.950	0.894							
oct(wlsv)	1.149	1.089	1.041	1.006	0.922							
oct(bdshr)	1.021	1.015	0.964	0.935	0.855							
$\operatorname{oct}_h(bshr)$	0.833	0.927	0.927	0.927	0.784							
$\operatorname{oct}_h(hshr)$	1.066	1.056	1.005	1.026	0.926							
$\operatorname{oct}_h(shr)$	1.043	1.011	0.952	0.909	0.809							

^{*}The Gaussian method employs a shrikage covariance matrix and includes four techniques (G, B, H, HB) with multi-step residuals.

Table E.5: ES ratio indices defined in Section 5 for the Australian Tourism Demand dataset. Approaches performing worse than the benchmark (bootstrap base forecasts, ctjb) are highlighted in red, the best for each column is marked in bold, and the overall lowest value is highlighted in blue. The reconciliation approaches are described in Table 2.

F Computation time report

In this section, we provide a computational time analysis for the two forecasting experiments in the paper. Tables F.1 and F.2 show the runtime (in seconds) required for simulating 1000 samples (first row, base) and the additional time needed for reconciliation with various approaches in the first iteration of the experiment. The first table is refers to the Australian QNA dataset, while the second to the Australian Tourism Demand dataset. The system's hardware and software specifications are

• CPU: Intel(R) Core(TM) i7-10700 CPU 2.90GHz 2.90 GHz

• RAM size: 64 GB

• R version: R-4.2.1_2022-06-23_ucrt

• R packages: forecast (Hyndman et al. 2023), MASS (Venables & Ripley 2002), Rfast (Papadakis et al. 2022), and FoReco (Girolimetto & Di Fonzo 2023a)

Reconciliation approach	ctjb		G_h			H_h		G_{oh}		H_{oh}
base		29.01		2.21		2.17		2.14		2.18
$\operatorname{ct}(shr_{cs},bu_{te})$	+	0.19	+	0.13	+	0.12	+	0.30	+	0.30
$\operatorname{ct}(wls_{cs},bu_{te})$	+	0.21	+	0.31	+	0.31	+	0.33	+	0.35
$\operatorname{oct}_o(wlsv)$	+	0.25	+	0.24	+	0.22	+	0.22	+	0.22
$oct_o(bdshr)$	+	0.48	+	0.44	+	0.45	+	0.45	+	0.45
$oct_{oh}(shr)$	+	0.69	+	0.68	+	0.67	+	0.68	+	0.69
$oct_{oh}(hshr)$	+	0.64	+	0.65	+	0.64	+	0.65	+	0.64

Table F.1: Computational time (in seconds) for the first iteration of the Australian QNA forecasting experiment. The first row (base) reports the time to simulate 1000 samples, and the remaining rows the additional time to reconcile them with different approaches.

Reconciliation approach		ctjb		G		В		Н	НВ		
base		61.21		660.43		643.54		641.40		692.63	
ct(bu)	+	2.14	+	2.25	+	2.05	+	2.12	+	2.54	
$\operatorname{ct}(shr_{cs},bu_{te})$	+	3.79	+	4.02	+	3.79	+	3.54	+	4.18	
$\operatorname{ct}(wlsv_{te},bu_{cs})$	+	13.29	+	14.14	+	13.02	+	13.12	+	14.42	
oct(ols)	+	8.67	+	7.34	+	7.40	+	7.64	+	6.85	
oct(struc)	+	7.73	+	7.10	+	7.19	+	7.11	+	6.56	
oct(wlsv)	+	8.24	+	6.97	+	6.99	+	7.04	+	6.46	
oct(bdshr)	+	60.27	+	52.65	+	52.13	+	51.92	+	49.51	
$\operatorname{oct}_h(bshr)$	+	503.52	+	426.20	+	419.99	+	418.94	+	422.94	
$\operatorname{oct}_h(hshr)$	+	485.66	+	482.13	+	418.64	+	418.82	+	463.18	
$\operatorname{oct}_h(shr)$	+	359.78	+	444.40	+	373.84	+	372.72	+	448.20	

Table F.2: Computational time (in seconds) for the first iteration of the Australian Tourism Demand forecasting experiment. The first row (base) reports the time to simulate 1000 samples, and the remaining rows the additional time to reconcile them with different approaches.

References

- Athanasopoulos, G., Gamakumara, P., Panagiotelis, A., Hyndman, R. J. & Affan, M. (2020), Hierarchical Forecasting, *in* P. Fuleky, ed., 'Macroeconomic Forecasting in the Era of Big Data', Vol. 52, Springer International Publishing, Cham, pp. 689–719.
- Athanasopoulos, G., Hyndman, R. J., Kourentzes, N. & Petropoulos, F. (2017), 'Forecasting with temporal hierarchies', *European Journal of Operational Research* **262**(1), 60–74.
- Bisaglia, L., Fonzo, T. D. & Girolimetto, D. (2020), Fully reconciled GDP forecasts from Income and Expenditure sides, *in* A. Pollice, N. Salvati & F. Schirripa Spagnolo, eds, 'Book of Short Papers SIS 2020', Pearson, pp. 951–956.
- Di Fonzo, T. & Girolimetto, D. (2022*a*), 'Enhancements in cross-temporal forecast reconciliation, with an application to solar irradiance forecasts', *arXiv*:2209.07146.
- Di Fonzo, T. & Girolimetto, D. (2022*b*), 'Forecast combination-based forecast reconciliation: Insights and extensions', *International Journal of Forecasting, in press*.
- Di Fonzo, T. & Girolimetto, D. (2022c), Fully reconciled probabilistic GDP forecasts from Income and Expenditure sides, *in* A. Balzanella, M. Bini, C. Cavicchia & R. Verde, eds, 'Book of Short Papers SIS 2022', Pearson, pp. 1376–1381.
- Di Fonzo, T. & Girolimetto, D. (2023*a*), 'Cross-temporal forecast reconciliation: Optimal combination method and heuristic alternatives', *International Journal of Forecasting* **39**(1), 39–57.
- Di Fonzo, T. & Girolimetto, D. (2023*b*), 'Spatio-temporal reconciliation of solar forecasts', *Solar Energy* **251**, 13–29.
- Girolimetto, D. & Di Fonzo, T. (2023a), FoReco: Point Forecast Reconciliation. R package v0.2.6. **URL:** https://danigiro.github.io/FoReco/
- Girolimetto, D. & Di Fonzo, T. (2023*b*), 'Point and probabilistic forecast reconciliation for general linearly constrained multiple time series', *arXiv*:2305.05330.
- Hyndman, R. J., Ahmed, R. A., Athanasopoulos, G. & Shang, H. L. (2011), 'Optimal combination forecasts for hierarchical time series', *Computational Statistics & Data Analysis* **55**(9), 2579–2589.
- Hyndman, R. J., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., Kuroptev, K., O'Hara-Wild, M., Petropoulos, F., Razbash, S., Wang, E., Yasmeen, F., Garza, F., Girolimetto, D., Ihaka, R., R Core Team, Reid, D., Shaub, D., Tang, Y., Wang, X. & Zhou, Z. (2023), forecast: Forecasting Functions for Time Series and Linear Models. R package v8.20.
 - **URL:** https://pkg.robjhyndman.com/forecast/
- Hyndman, R. J. & Khandakar, Y. (2008), 'Automatic Time Series Forecasting: The forecast Package for R', *Journal of Statistical Software* **27**, 1–22.

- Hyndman, R. J., Lee, A. J. & Wang, E. (2016), 'Fast computation of reconciled forecasts for hierarchical and grouped time series', *Computational Statistics & Data Analysis* **97**, 16–32.
- Ledoit, O. & Wolf, M. (2004), 'A well-conditioned estimator for large-dimensional covariance matrices', *Journal of Multivariate Analysis* **88**(2), 365–411.
- Nystrup, P., Lindström, E., Pinson, P. & Madsen, H. (2020), 'Temporal hierarchies with autocorrelation for load forecasting', *European Journal of Operational Research* **280**(3), 876–888.
- O'Hara-Wild, M., Hyndman, R. J., Wang, E. & Godahewa, R. (2022), tsibbledata: Diverse Datasets for 'tsibble'. R package v0.4.1.

URL: *tsibbledata.tidyverts.org*

- Panagiotelis, A., Athanasopoulos, G., Gamakumara, P. & Hyndman, R. J. (2021), 'Forecast reconciliation: A geometric view with new insights on bias correction', *International Journal of Forecasting* **37**(1), 343–359.
- Papadakis, M., Tsagris, M., Dimitriadis, M., Fafalios, S., Tsamardinos, I., Fasiolo, M., Borboudakis, G., Burkardt, J., Zou, C., Lakiotaki, K. & Chatzipantsiou, C. (2022), *Rfast: A Collection of Efficient and Extremely Fast R Functions*. R package version 2.0.6.

 URL: https://CRAN.R-project.org/package=Rfast
- Stellato, B., Banjac, G., Goulart, P., Bemporad, A. & Boyd, S. (2020), 'OSQP: An operator splitting solver for quadratic programs', *Mathematical Programming Computation* **12**(4), 637–672.
- Stellato, B., Banjac, G., Goulart, P., Boyd, S. & Bansal, V. (2022), osqp: Quadratic Programming Solver using the 'OSQP' Library. R package v0.6.0.7.

 URL: osqp.org
- Venables, W. N. & Ripley, B. D. (2002), *Modern Applied Statistics with S*, 4th edn, Springer, New York.

URL: https://www.stats.ox.ac.uk/pub/MASS4/

Wickramasuriya, S. L., Athanasopoulos, G. & Hyndman, R. J. (2019), 'Optimal Forecast Reconciliation for Hierarchical and Grouped Time Series Through Trace Minimization', *Journal of the American Statistical Association* **114**(526), 804–819.