A FIRST COURSE IN

LINEAR ALGEBRA

A FIRST COURSE

IN

LINEAR ALGEBRA

MAT2040 Notebook

Prof. Tom Luo

The Chinese University of Hongkong, Shenzhen

Prof. Ruoyu Sun

University of Illinois Urbana-Champaign

Copyright ©2004 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herin may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department with the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print, however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

```
Survey Methodology / Robert M. Groves . . . [et al.].

p. cm.—(Wiley series in survey methodology)

"Wiley-Interscience."

Includes bibliographical references and index.

ISBN 0-471-48348-6 (pbk.)

1. Surveys—Methodology. 2. Social

sciences—Research—Statistical methods. I. Groves, Robert M. II. Series.
```

HA31.2.S873 2004

001.4′33—dc22

2004044064

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

Contents

Cont	ributors	7
Forev	word	vi
Prefa	ace	i
Ackr	nowledgments	x
Acro	nyms	xii
1	Week1	
1.1	Tuesday	1
1.1.1	Introduction	1
1.1.2	Gaussian Elimination	3
1.1.3	Complexity Analysis	11
1.1.4	Brief Summary	12
1.2	Thursday	14
1.2.1	Row-Echelon Form	14
1.2.2	Matrix Multiplication	16
1.2.3	Special Matrices	19
1.3	Friday	21
1.3.1	Matrix Multiplication	21
1.3.2	Elementary Matrix	22
1.3.3	Properties of Matrix	24
1.3.4	Permutation Matrix	26
1.3.5	LU decomposition	29
1.3.6	LDU decomposition	33
1.3.7	LU Decomposition with row exchanges	35

2	Week2	37
2.1	Tuesday	37
2.1.1	Review	. 37
2.1.2	Special matrix multiplication case	. 39
2.1.3	Inverse	. 44
2.2	Wednesday	48
2.2.1	Remarks on Gaussian Elimination	. 48
2.2.2	Properties of matrix	. 49
2.2.3	matrix transpose	. 51
2.3	Assignment Two	55
2.4	Friday	56
2.4.1	symmetric matrix	. 56
2.4.2	Interaction of inverse and transpose	. 57
2.4.3	Vector Space	. 58
2.5	Assignment Three	68
3	Week3	71
3.1	Tuesday	71
3.1.1	Introduction	. 71
3.1.2	Review of 2 weeks	. 73
3.1.3	Examples of solving equations	. 74
3.1.4	How to solve a general rectangular	. 79
3.2	Thursday	85
3.2.1	Review	. 85
3.2.2	Remarks on solving linear system equations	. 88
3.2.3	Linearly dependence	. 90
3.2.4	Basis and dimension	. 94
3.3	Friday	99
	Triday	33

3.3.2	More on basis and dimension
3.3.3	What is rank?
3.4	Assignment Four 110
4	Midterm
4.1	Sample Exam 113
4.2	Midterm Exam 120
5	Week4
5.1	Friday 127
5.1.1	Linear Transformation
5.1.2	Example: differentiation
5.1.3	Basis Change
5.1.4	Determinant
5.2	Assignment Five 144
6	Week5
6.1	Tuesday 147
6.1.1	Formulas for Determinant
6.1.2	Determinant by Cofactors
6.1.3	Determinant Applications
6.1.4	Orthogonality and Projection
6.2	Thursday 160
6.2.1	Orthogonality and Projection
6.2.2	Least Squares Approximations
6.2.3	Projections
6.3	Friday 171
6.3.1	Orthonormal basis
6.3.2	Gram-Schmidt Process

6.3.3	The Factorization $A = QR$	180
6.3.4	Function Space	183
6.3.5	Fourier Series	184
6.4	Assignment Six	186
7	Week6	187
7.1	Tuesday	187
7.1.1	Summary of last two weeks	187
7.1.2	Eigenvalues and eigenvectors	191
7.1.3	Products and Sums of Eigenvalue	196
7.1.4	Application: Page Rank and Web Search	197
7.2	Thursday	200
7.2.1	Review	200
7.2.2	Similarity and eigenvalues	200
7.2.3	Diagonalization	203
7.2.4	Powers of A	208
7.2.5	Nondiagonalizable Matrices	209
7.3	Friday	210
7.3.1	Review	210
7.3.2	Fibonacci Numbers	210
7.3.3	Imaginary Eigenvalues	212
7.3.4	Complex Numbers	214
7.3.5	Complex Vectors	214
7.3.6	Spectral Theorem	220
7.3.7	Hermitian matrix	221
7.4	Assignment Seven	223
8	Week7	227
8.1	Tuesday	227
811	Quadratic form	227

8.1.2	Positive Definite Matrices	232
8.2	Thursday	241
8.2.1	SVD: Singular Value Decomposition	241
8.2.2	Remark on SVD decomposition	245
8.2.3	Best Low-Rank Approximation	253
8.3	Assignment Eight	255
9	Final Exam	257
9.1	Sample Exam	257
9.2	Final Exam	264
10	Solution	271
10.1	Assignment Solutions	271
10.1.1	Solution to Assignment One	271
10.1.2	Solution to Assignment Two	277
10.1.3	Solution to Assignment Three	280
10.1.4	Solution to Assignment Four	286
10.1.5	Solution to Assignment Five	297
10.1.6	Solution to Assignment Six	303
10.1.7	Solution to Assignment Seven	311
10.1.8	Solution to Assignment Eight	321
10.2	Midterm Exam Solutions	328
10.2.1	Sample Exam Solution	328
10.2.2	Midterm Exam Solution	338
10.3	Final Exam Solutions	346
10.3.1	Sample Exam Solution	346
10.3.2	Final Exam Solution	357

A	This is Appendix Title	371
A .1	This is First Level Heading	371
A.1.1	This is Second Level Heading	. 372

Contributors

ZHI-QUAN LUO, Shenzhen Research Institute of Big Data, Lecturer RUOYU SUN, Industrial and Enterprise Systems Engineering, Lecturer JIE WANG, The Chinese University of Hongkong, Shenzhen, Typer

Foreword

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Preface

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

place

date

Acknowledgments

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

I. R. S.

Acronyms

ASTA Arrivals See Time Averages

BHCA Busy Hour Call Attempts

BR Bandwidth Reservation

b.u. bandwidth unit(s)

CAC Call / Connection Admission Control

CBP Call Blocking Probability(-ies)

CCS Centum Call Seconds

CDTM Connection Dependent Threshold Model

CS Complete Sharing

DiffServ Differentiated Services

EMLM Erlang Multirate Loss Model

erl The Erlang unit of traffic-load

FIFO First in - First out

GB Global balance

GoS Grade of Service

ICT Information and Communication Technology

IntServ Integrated Services

IP Internet Protocol

ITU-T International Telecommunication Unit – Standardization sector

LB Local balance

LHS Left hand side

LIFO Last in - First out

MMPP Markov Modulated Poisson Process

MPLS Multiple Protocol Labeling Switching

MRM Multi-Retry Model

MTM Multi-Threshold Model

PASTA Poisson Arrivals See Time Averages

PDF Probability Distribution Function

pdf probability density function

PFS Product Form Solution

QoS Quality of Service

r.v. random variable(s)

RED random early detection

RHS Right hand side

RLA Reduced Load Approximation

SIRO service in random order

SRM Single-Retry Model

STM Single-Threshold Model

TCP Transport Control Protocol

TH Threshold(s)

UDP User Datagram Protocol

1.3. Friday

1.3.1. Matrix Multiplication

1.3.1.1. How to compute matrix multiplication quickly?

Given $m \times n$ matrix \boldsymbol{A} and $n \times k$ matrix \boldsymbol{B} , then the result of \boldsymbol{AB} should be a $m \times k$ matrix.

Let's show a specific example:

■ Example 1.8 Given 4×3 matrix \boldsymbol{A} and 3×2 matrix \boldsymbol{B} , then the result of \boldsymbol{AB} should be a 4×2 matrix:

$$\mathbf{AB} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} \times & \times \\ \times & \times \\ \times & \times \\ \times & \times \\ \times & \times \end{bmatrix}_{4 \times 2}.$$

The (i,j)th entry of the result should be the inner product between the ith row of
 A and the jth column of B.

Since the result has 4×2 entries, we have to process such progress 4×2 times to obtain the final result.

- But we can try a more effecient method. We can calculate the *entire row* of the result more easily.
 - For example, note that

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 6 & 1 \\ \times & \times \\ \times & \times \\ \times & \times \end{bmatrix}.$$

The first row of the result is the linear combination of the row of matrix

21

B, and the coefficients are entries of the first row of matrix A:

$$\begin{bmatrix} 1 \end{bmatrix} \times \begin{bmatrix} 1 & 1 \end{bmatrix} + \begin{bmatrix} 2 \end{bmatrix} \times \begin{bmatrix} 1 & 1 \end{bmatrix} + \begin{bmatrix} 3 \end{bmatrix} \times \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 1 \end{bmatrix}.$$

- On the other hand, we can also calculate the *entire column* of the result quickly:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 6 & \times \\ 15 & \times \\ 24 & \times \\ 33 & \times \end{bmatrix}.$$

The first column of the result is the linear combination of the column of matrix A, and the coefficients are entries of the first column of matrix B:

$$\begin{bmatrix} 1 \\ 4 \\ 7 \\ 10 \end{bmatrix} + \begin{bmatrix} 2 \\ 5 \\ 8 \\ 11 \end{bmatrix} + \begin{bmatrix} 3 \\ 6 \\ 9 \\ 12 \end{bmatrix} = \begin{bmatrix} 6 \\ 15 \\ 24 \\ 33 \end{bmatrix}.$$

You can do the remaining calculation by yourself, and the final result is given by:

$$\mathbf{AB} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix}_{4 \times 3} \times \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 0 \end{bmatrix}_{3 \times 2} = \begin{bmatrix} 6 & 1 \\ 15 & 4 \\ 24 & 7 \\ 33 & 10 \end{bmatrix}_{4 \times 2}.$$

1.3.2. Elementary Matrix

So let's review the concept for elementary matrix by an example:

In this course you can think there is **only one** type of elementary matrix. This may contradict what you see in the textbook.

Definition 1.11 [Elementary Matrix] An elementary matrix E_{ij} is a matrix that its diagonal entries are all 1 and the (i,j)th column is a scalar, and the remaining entries are all zero.

For example, the matrix $\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{pmatrix}$ is elementary matrix.

■ Example 1.9 Given vector
$$\mathbf{b} = \begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix}^{\mathrm{T}}$$
 and elementary matrix $\mathbf{E}_{31} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -l_{31} & 0 & 1 \end{bmatrix}$, the effct of postmultiplying \mathbf{E}_{31} for \mathbf{b} has the same effect of doing row operation:

$$m{E}_{31}m{b}=egin{bmatrix} b_1\ b_2\ b_3-l_{31}b_1 \end{bmatrix}$$

Let's do more practice. Given matrix $\mathbf{E}_{21} = \begin{bmatrix} 1 & 0 & 0 \\ -l_{21} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, we can calculate the result

of $\pmb{E}_{21} imes (\pmb{E}_{31} \pmb{b})$ and $\pmb{E}_{21} \pmb{E}_{31}$:

$$\mathbf{E}_{21} \times (\mathbf{E}_{31}\mathbf{b}) = \begin{bmatrix} 1 & 0 & 0 \\ -l_{21} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} b_1 \\ b_2 \\ b_3 - l_{31}b_1 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 - l_{21}b_1 \\ b_3 - l_{31}b_1 \end{bmatrix}$$
$$\mathbf{E}_{21}\mathbf{E}_{31} = \begin{bmatrix} 1 & 0 & 0 \\ -l_{21} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -l_{31} & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -l_{21} & 1 & 0 \\ -l_{31} & 0 & 1 \end{bmatrix}$$

Additionally, we can use matrix multiplication to derive the result of $(E_{21}E_{31}) \times b$:

$$(\mathbf{E}_{21}\mathbf{E}_{31}) \times \mathbf{b} = \begin{bmatrix} 1 & 0 & 0 \\ -l_{21} & 1 & 0 \\ -l_{31} & 0 & 1 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 - l_{21}b_1 \\ b_3 - l_{31}b_1 \end{bmatrix}$$

Amazingly, we find that the result of $\pmb{E}_{21} imes (\pmb{E}_{31} \pmb{b})$ is actually the same as $(\pmb{E}_{21} \pmb{E}_{31}) imes \pmb{b}$, which is one of the properties of matrix.

1.3.3. Properties of Matrix

Operations on matrix has the following properties:

- 1. A(B+C) = AB + AC.
- 2. $AB \neq BA$, i.e., AB doesn't necessarily equal to BA.
 - In some special cases, **AB** may equal to **BA**. For example, for elementary matrix, we have $\boldsymbol{E}_{21}\boldsymbol{E}_{31}=\boldsymbol{E}_{31}\boldsymbol{E}_{21}$, this means the order of row operation can be changed sometimes.

However, for most cases the equality is not satisfied. given row vector

$$\mathbf{a} = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix}$$
 and column vector $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$, the result of \mathbf{ab} and \mathbf{ba}

is given by:

$$\mathbf{ab} = \begin{pmatrix} a_1 & a_2 & a_3 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = a_1b_1 + a_2b_2 + a_3b_3$$

$$\mathbf{ba} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} \begin{pmatrix} a_1 & a_2 & a_3 \end{pmatrix} = \begin{pmatrix} b_1a_1 & b_1a_2 & b_1a_3 \\ b_2a_1 & b_2a_2 & b_2a_3 \\ b_3a_1 & b_3a_2 & b_3a_3 \end{pmatrix}.$$

$$\mathbf{ba} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} \begin{pmatrix} a_1 & a_2 & a_3 \end{pmatrix} = \begin{pmatrix} b_1 a_1 & b_1 a_2 & b_1 a_3 \\ b_2 a_1 & b_2 a_2 & b_2 a_3 \\ b_3 a_1 & b_3 a_2 & b_3 a_3 \end{pmatrix}.$$

3. Block Multiplication. We use an example to show the process of block multiplicaion:

■ Example 1.10 Given two matrices A and B, we want to compute $C := A \times B$, which can be done by block multiplication. We can partition A and B with appropriate sizes. For example,

$$\mathbf{A} = \begin{bmatrix} 4 & 0 & 4 \\ 6 & 6 & 8 \\ \hline -9 & 5 & -8 \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ \mathbf{A}_3 & \mathbf{A}_4 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 8 & -3 & -7 \\ 3 & -7 & -4 \\ \hline 4 & -4 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{B}_1 & \mathbf{B}_2 \\ \mathbf{B}_3 & \mathbf{B}_4 \end{bmatrix}.$$

Then \boldsymbol{A} and \boldsymbol{B} could be considered as 2×2 block matrices. As a result, \boldsymbol{C} have 2×2 blocks:

$$AB = \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix} \begin{bmatrix} B_1 & B_2 \\ B_3 & B_4 \end{bmatrix} = \begin{bmatrix} A_1B_1 + A_2B_3 & A_1B_2 + A_2B_4 \\ A_3B_1 + A_4B_3 & A_3B_2 + A_4B_4 \end{bmatrix} = \begin{bmatrix} C_1 & C_2 \\ C_3 & C_4 \end{bmatrix}$$

As a result, there is an effective way to calculate C_1 , that is the block multiplication method shown below:

$$C_1 = A_1 B_1 + A_2 B_3 = \begin{bmatrix} 4 & 0 \\ 6 & 6 \end{bmatrix} \begin{bmatrix} 8 & -3 \\ 3 & -7 \end{bmatrix} + \begin{bmatrix} 4 \\ -8 \end{bmatrix} \begin{bmatrix} 4 & -4 \end{bmatrix} = \begin{bmatrix} 48 & -28 \\ 34 & -28 \end{bmatrix}.$$

You can do the remaining calculation to get result of AB:

$$\mathbf{AB} = \mathbf{C} = \begin{bmatrix} 48 & -28 & -24 \\ 34 & -28 & -74 \\ \hline -89 & 24 & 35 \end{bmatrix}.$$

There are also two useful ways to compute AB:

• If **B** has k columns, we can partition **B** into k blocks to compute **AB**:

$$\mathbf{AB} = \mathbf{A} \times \begin{bmatrix} B_1 & B_2 & \dots & B_k \end{bmatrix} = \begin{bmatrix} \mathbf{A}B_1 & \mathbf{A}B_2 & \dots & \mathbf{A}B_k \end{bmatrix}.$$

• If **A** has *m* rows, we can partition **A** into *m* blocks to compute **AB**:

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

1.3.4. Permutation Matrix

Note that there also exists one kind of matrix P such that postmultiplying P for arbitrarily matrix A has the same effect of interchanging two rows of A.

For example, if $\mathbf{P} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, then by postmultiplying \mathbf{P} for \mathbf{A} we obtain:

 $\mathbf{PA} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix}.$

This progress has the same effect of interchanging the first row and the second row of A.

This kind of matrix is called **permutaion matrix**:

Definition 1.12 [Permutation Matrix] P is a **permutation matrix** if postmultiplying P for matrix A has the same effect of interchanging rows of matrix A.

Definition 1.13 [Row Exchange Matrix] P is a row exchange matrix if postmultiplying P for matrix A has the same effect of interchanging only two rows of matrix A.

We use the notation $m{P}_{ij}$ to denote a matrix that has the effect of exchanging row i and row j of $m{A}$.

The way to obtain P_{ij} is simple. After an identity matrix's ith and jth row being exchanged, we could obtain the row exchange matrix P_{ij} .

Let's raise some examples to show what is row exchange matrix:

■ Example 1.11 P_{23} has the effect of exchanging 2th row and 3th row of arbitrary matrix. It is converted from an identity matrix:

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\text{Interchange row 2 and 3}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \mathbf{P}_{23}.$$

$$I = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\text{Interchange row 2 and 3}} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \mathbf{P}_{23}.$$

Postmultiplying by P_{23} exchanges row 2 and row 3 of any matrix:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 6 & 7 \\ 15 & 4 \\ 24 & 3 \end{bmatrix} = \begin{bmatrix} 6 & 7 \\ 24 & 3 \\ 15 & 4 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 24 \\ 15 \\ 24 \\ 4 \end{bmatrix}$$

You may be confused about the concept between *permutation matrix* and *row exchange matrix*. The row exchange matrix is a special case of permutation matrix, but permutation matrix could exchange several rows. For example, row 1,2,3,4 could be changed into row 4,3,2,1.

Before talking about the properties of permutation matrix, let's introduce the definition for nonsingular and inverse matrix:

Definition 1.14 [Nonsigular matrix] Let \boldsymbol{A} be an $n \times n$ matrix, the following statements are equivalent:

- 1. A is nonsingular or invertible.
- 2. There exists a matrix B such that AB = BA = I. And the matrix B is said to be

the **inverse** of \boldsymbol{A} , and we can write $\boldsymbol{B} = \boldsymbol{A}^{-1}$.

- 3. After multiplying finite numbers of elementary matrix, A can be converted to identity matrix $\emph{\textbf{I}}.$ 4. The system of equations $\emph{\textbf{A}}\emph{\textbf{x}}=\emph{\textbf{b}}$ has a unique solution.

If matrix \boldsymbol{A} is not nonsingular, this matrix is called singular.

We are interested in the inverse of permutation matrix.

Proposition 1.3 1. For a permutation matrix P, it can always be decomposed into finite multiplications of row exchange matrices P_{ij} :

$$\boldsymbol{P} = \boldsymbol{P}_{i_1 j_1} \boldsymbol{P}_{i_2 j_2} \dots \boldsymbol{P}_{i_n j_n}$$

2. The inverse of a row exchange matrix is actually equal to itself:

$$\mathbf{P}_{ij}\mathbf{P}_{ij} = \mathbf{I} \Longleftrightarrow \mathbf{P}_{ij}^{-1} = \mathbf{P}_{ij}$$

3. For a permutation matrix written as $P = P_{i_1 j_1} P_{i_2 j_2} \dots P_{i_n j_n}$, its inverse matrix is given by:

$$\mathbf{P}^{-1} = \mathbf{P}_{i_n j_n}^{-1} \mathbf{P}_{i_{n-1} j_{n-1}}^{-1} \dots \mathbf{P}_{i_1 j_1}^{-1} = \mathbf{P}_{i_n j_n} \mathbf{P}_{i_{n-1} j_{n-1}} \dots \mathbf{P}_{i_1 j_1}$$

4. For a $n \times n$ permutation matrix **P** and a $n \times n$ matrix **A** given by:

$$m{P} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & & & \ dots & m{P}_{(n-1) imes (n-1)} \ 0 & & & \ \end{bmatrix} \qquad m{A} = egin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \ 0 & & & \ dots & m{A}_{(n-1) imes (n-1)} \ 0 & & & \ \end{bmatrix}$$

the multiplication result **PA** has the form:

$$PA = egin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \hline 0 & & & & \\ \vdots & & P_{(n-1)\times(n-1)}A_{(n-1)\times(n-1)} & & \\ 0 & & & & \end{bmatrix}$$

Proofoutline. • For proposition 2, it is because that if we exchange two rows of any matrix **A**, and then we exchange the same rows again, the effect is cancelled out!

• For proposition 3, it is because that we just need to do the reverse order of our process in order to obtain the inverse matrix.

1.3.5. LU decomposition

After learning matrix multiplication, we should be familiar some basic results of matrix multiplication:

1. Product of upper triangular matries is also an upper triangular matrix.

2. Product of diagonal matrices is also a diagonal matrix.

Just like permutation matrix, there are also some intersting properties of elementary matrix:

Proposition 1.4

The inverse of an elementary matrix is also an elementary matrix.

■ Example 1.12
$$E_{21} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 is an elementary matrix, the result of postmultiplying

 E_{21} for identity matrix is given by:

$$\mathbf{E}_{21}\mathbf{I} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

which has the same effect of adding $(-2)\times$ row 1 to row 2 of I. How to get the identity matrix again? We just need to add $2\times$ row 1 to row 2 of I, which could be viewed as postmultiply another elementary matrix for I:

$$\overline{\boldsymbol{E}_{21}}(\boldsymbol{E}_{21}\boldsymbol{I}) = \overline{\boldsymbol{E}_{21}}\boldsymbol{E}_{21} = \overline{\boldsymbol{E}_{21}} \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \boldsymbol{I}.$$

Hence, $\overline{\pmb{E}_{21}}$ is the inverse matrix of \pmb{E}_{21} , which is also an elementary matrix.

The elementary matrix $E_{ij}(i < j)$ is a lower triangular matrix; and $E_{ij}(i > j)$ is an upper triangular matrix. Let's look at an example:

■ Example 1.13 Let's try Gaussian Elimination for a matrix that is nonsingular. Here we use elementary matrix to describle row operation above the arrow (without row exchange):

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{bmatrix} \xrightarrow{\mathbf{E}_{21}} \begin{bmatrix} 2 & 1 & 1 \\ 0 & -8 & -2 \\ -2 & 7 & 2 \end{bmatrix} \xrightarrow{\mathbf{E}_{31}} \begin{bmatrix} 2 & 1 & 1 \\ 0 & -8 & -2 \\ 0 & 8 & 3 \end{bmatrix} \xrightarrow{\mathbf{E}_{32}} \begin{bmatrix} 2 & 1 & 1 \\ 0 & -8 & -2 \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{U}$$

30

In this process we have

$$\mathbf{\textit{E}}_{21} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{\textit{E}}_{31} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \quad \mathbf{\textit{E}}_{32} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}.$$

Finally we convert A into an upper triangular matrix U. Let's do the reverse of this process to find some interesting results:

$$E_{32}E_{31}E_{21}A = U$$

$$\implies E_{32}^{-1}E_{32}E_{31}E_{21}A = E_{32}^{-1}U \implies E_{31}E_{21}A = E_{32}^{-1}U$$

$$\dots \implies A = E_{21}^{-1}E_{31}^{-1}E_{32}^{-1}U := LU,$$

where $L=\pmb{E}_{21}^{-1}\pmb{E}_{31}^{-1}\pmb{E}_{32}^{-1}$, which is lower triangular matrix.

Hence, we successfully decompose matrix $m{A}$ into the multiplication of a lower triangular matrix $m{L}$ and a upper triangular matrix $m{U}$.

Actually, any nonsingular matrix without row exchanges, i.e., does not require the row exchange during the Gaussian Elimination, could be decomposed as the multiplication of a lower triangular matrix with a upper triangular matrix \mathbf{U} , which is called $\mathbf{L}\mathbf{U}$ decomposition.

1.3.5.1. One Square System = Two Triangular Systems

When considering the *nonsingular* case without row exchanges, recall what we have done before this lecture:

we are working on \boldsymbol{A} and \boldsymbol{b} in **one** equation $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$.

To somplify computation, we aim to deal with \boldsymbol{A} and \boldsymbol{b} in **separate** equations. The LU decomposition can help us do that:

- 1. **Decomposition:** By Gaussian elimination on matrix A, we can decompose A into matrix multiplications: A = LU.
- 2. **Solve:** forward elimination on b using L, then back substitution for x using U.

R

The detail of Solve process.

- (a) First, we apply forward elimination on b. In other words, we are actually solving Ly = b for y.
- (b) After getting y, we then do back substitution for x. In other words, we are actually solving Ux = y for x.

One square system = Two triangular systems. During this process, the original system Ax = b is converted into two triangular systems:

Forward and Backward Solve Ly = b and then solve Ux = y.

There is nothing new about those steps. This is exactly what we have done all the time. We are really solving the triangular system Ly = b as elimination went forward. Then we use back substitution to produce x. An example shows what we actually did:

Example 1.14 Forward elimination on Ax = b will result in equation Ux = y:

$$\mathbf{A}\mathbf{x} = \mathbf{b} \Longleftrightarrow \begin{cases} u + 2v = 5 \\ 4u + 9v = 21 \end{cases}$$
 forward elimination implies $\begin{cases} u + 2v = 5 \\ v = 1 \end{cases} \Longleftrightarrow \mathbf{U}\mathbf{x} = \mathbf{y}.$

We could express such process into matrix form:

LU Decomposition. : We could decompose A into product of L and U:

$$\boldsymbol{L} = \begin{bmatrix} 1 & 0 \\ 4 & 1 \end{bmatrix}, \quad \boldsymbol{U} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

Ly = b. In this system of equation, in oder to solve y, we only need to multiply the inverse of L both sides:

$$\begin{bmatrix} 1 & 0 \\ 4 & 1 \end{bmatrix} \times \boldsymbol{y} = \begin{bmatrix} 5 \\ 21 \end{bmatrix} \implies \boldsymbol{y} = \boldsymbol{L}^{-1} \begin{bmatrix} 5 \\ 21 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 21 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \end{bmatrix}.$$

Ux = y. In this system of equation, in oder to solve x, we only need to multiply the inverse of U both sides:

$$\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \times \mathbf{x} = \begin{bmatrix} 5 \\ 1 \end{bmatrix} \implies \mathbf{x} = \mathbf{U}^{-1} \begin{bmatrix} 5 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}.$$

Both Forward and Back substitution has $O(n^2)$ time complexity.

1.3.6. LDU decomposition

The aim of LDU decomposition is to let the diagonal entries of *U* and *L* to be **one**.

Suppose we have decomposed A into LU, where the upper triangular matrix U is given by:

$$\begin{bmatrix} d_1 & \times & \times & \times & \times \\ & d_2 & \times & \times & \times \\ & & d_3 & \times & \times \\ & & & d_4 & \times \\ & & & & d_5 \end{bmatrix}$$

If we want to set its diagonal entries of U to be all **one**, we just need to multiply a matrix D^{-1} that is given by:

$$\mathbf{D}^{-1} := \begin{bmatrix} d_1^{-1} & & & & & \\ & d_2^{-1} & & & & \\ & & d_3^{-1} & & \\ & & & d_4^{-1} \\ & & & & d_5^{-1} \end{bmatrix} \implies \mathbf{D}^{-1}\mathbf{U} = \begin{bmatrix} 1 & \times & \times & \times & \times \\ & 1 & \times & \times & \times \\ & & 1 & \times & \times \\ & & & 1 & \times & \times \\ & & & & 1 & \times \\ & & & & & 1 \end{bmatrix}.$$

We can convert LU decomposition into LDU decomposition by simply adding the multiplying factor DD^{-1} :

$$A = LU = LDD^{-1}U = LD(D^{-1}U) = LD\hat{U},$$

where $\hat{\boldsymbol{U}} = \boldsymbol{D}^{-1}\boldsymbol{U}$ is also an upper triangular matix.

Here D is the inverse matrix of D^{-1} :

$$D = \begin{bmatrix} d_1 & & & & \\ & d_2 & & & \\ & & d_3 & & \\ & & & d_4 & \\ & & & & d_5 \end{bmatrix}$$

Note that the *diagonal* entries of D are all **pivots values** of U.

Similarly, we can also proceed this step again to let diagonal entries of L to be one.

Definition 1.15 [LDU Decomposition] In conclusion, we decompose matrix A into the

$$A = LDU$$

 $m{A} = m{L} m{D} m{U}$ where: $m{L}$ is lower triangular matrix with unit entries in diagonal $m{D}$ is diagonal matrix $m{U}$ is upper triangular matrix with unit entries in diagona

 \boldsymbol{U} is upper triangular matrix with unit entries in diagonal

This decomposition is called LDU decomposition.

Here is a property of LDU decomposition, the proof of which is omitted.

LDU decomposition is unique to any matrix. Let L, L_1 denote a **Proposition 1.5** lower triangular matrix, D, D₁ diagonal, and U, U₁ upper triangular.

If
$$A = LDU$$
, and also, $A = L_1D_1U_1$, then we have $L = L_1$, $D = D_1$, $U = U_1$.

1.3.7. LU Decomposition with row exchanges

How can we handle row exchange in our *LU* decomposition?

Assume we are going to do Gaussian Elimination with matrix A with row exchange.

- At first We can postmultiply some elementary matrices **E** to get **EEEA**.
- Sometimes we need to multiply by P_{ij} to do *row exchange* to continue Gaussian Elimination.
- So we may end our elimination with something like **PEEEPEEEEA**.
- If we can get all the elementary matrix L together, we could convert them into one single L that has the same effect as before.
- The key problem is that how can we get all the row exchange matrix *P* out from the elementary matrices?

Theorem 1.1 If A is *nonsingular*, then there exists a permutation matrix P such that PA = LU.

The proof is omitted.

For the nonsingular matrix A without row exchange, we can always decompose it as A = LU; but for the row exchange case, we have to postmultiply a specific permutation matrix to obtain such LU decomposition.