Лекция 3

Ilya Yaroshevskiy

6 апреля 2021 г.

Содержание

1	Acc	импточиское поведение линейных рекуррент	1
	1.1	Квазимногчлен в рациональную $\Pi\Phi$	1
	1.2	Рациональная ПФ в квазимногочлен	1
	1.3	Оценка ассимптотического поведения	2

1 Ассимпточиское поведение линейных рекуррент

1.1 Квазимногчлен в рациональную ПФ

Лемма 1.

- $\bullet \ a_n = n^k r^n$
- $A(t) = \frac{P(t)}{Q(t)}$

<u>Тогда</u> $Q(t) = (1 - rt)^{k+1}$

$$A(t) = \frac{1}{r} \cdot \frac{P'_k(t)(1-rt) + r(k+1)P_k(t) - \sum_{i=0}^k r\binom{k+1}{i}P_i(t)(1-rt)^{k-i+1}}{(1-rt)^{k+2}}$$

Доказательство. Доделать

Лемма 2.

- $\bullet \ a_n = p(n)r^n$
- $A(t) = \frac{P(t)}{Q(t)}$

Tогда $Q(t) = (1 - rt)^{\deg p + 1}$

 $\mathit{Cnedcmeue}\ 1.0.1.$ Квазимногочлен \Rightarrow Рациональная ПФ: Корни Q(t): $\frac{1}{r_i}$ кратности $\deg p_i+1$

1.2 Рациональная $\Pi\Phi$ в квазимногочлен

• $A(t) = \frac{P(t)}{Q(t)}$

$$Q(t) = \prod_{i=1}^{s} (1 - r_i t)^{f_i}$$

$$\frac{P(t)}{Q(t)} = \sum_{i=1}^{s} \frac{P_i(t)}{(1 - r_i t)^{f_i}}$$

Лемма 3.

$$A(t) = \frac{P(t)}{(1-rt)^{k+1}}$$

Tог ∂a

$$a_n = p(n)r^n$$

, p - nonuhom, $\deg p = k$

$$A(t) = P(t)U(t)$$

$$U(t) = (1 + rt + r^2t^2 + \dots)^{k+1}$$

$$a_n = \sum_{i=0}^n p_i u_{n-i}$$

Следствие 1.0.2.

$$a_n = \sum_{x_1 + x_2 + \dots + x_{k+1} = n} r^n = \binom{n+1+k-1}{k} r^n = \binom{n+k}{k} r^n = \frac{1}{k!} (n+k)(n+k-1)\dots(n+1)r^n = p_k(n)r^n$$

$$\sum_{i=0}^m p_i u_i = \left(\sum_{i=1}^m \frac{p_{n-i}(n)}{r^i}\right) r^n$$

1.3 Оценка ассимптотического поведения

Обратные корни:
$$\begin{array}{ccc} r_1 & f_1 \\ r_2 & f_2 \\ \vdots & \vdots \\ r_s & f_s \end{array}$$

Свойство 1.

- $\bullet \ \exists r_i : |r_i| max$
- $\forall j \neq i : |r_i| < |r_i|$

 r_i вещественные $a_n \sim n^{f_i-1} \cdot r_i^n$

Свойство 2. *Несколько* r_i *имеют* $\max |r_i|$

1. $r_i \in \mathbb{R}, \; r_i = \pm r$. Если разной кратности у r_i, r_j , соответсвенно $f_i > f_j$ Тогда $a_n \sim n^{f_i-1} r_i^n (+n^{f_i-1} r_j^n)$ Если одинаковой кратности $f_i = f_j$ Тогда $a_n \sim c_1 n^{f_i-1} r^n + c_2 n^{f_j-1} (-r)^n$

Свойство 3. r_1, r_2, \ldots, r_l — орбратные корни максимальной степени $\max |r_i|$ и $\max f_i$

$$a_n \sim n^{f_i} z^n \sum_{j=1}^l e^{i\phi_j}$$

 $r_i = z_i e^{i\phi_i}$

 $\mathit{Ecлu}\ \phi_j = rac{2\pi a_j}{b_j},\ n\ \mathit{делится}\ \mathit{нa}\ \mathrm{LCM}(b_j)\ \mathit{классов}$

Пример. Числа каталана:

$$c_n = \sum_{k=0}^{n-1} c_k c_{n-k-1}$$

$$C(t) = c_0 + c_1 t + c_2 t^2 + \dots$$

$$C(t)^2 = c_0^2 + (c_0 c_1 + c_1 c_0) t + \dots$$

$$C(t)^2 \cdot t + 1 = C(t)$$

$$t \cdot C(t)^2 - C(t) + 1 = 0$$

$$C(t) = \frac{1 - \sqrt{1 - 4t}}{2t}$$

Примечание. Рассмотрим $(1-t)^{\alpha}$:

$$(1-t)^{\alpha} = \sum_{i=0}^{\infty} {\alpha \choose i} t^{i} = P_{\alpha}(t)$$

$${\alpha \choose t} = \frac{\alpha(\alpha-1)(\alpha-2) \cdot (\alpha-i+1)}{1 \cdot 2 \cdot 3 \cdot \dots \cdot i}$$

$$P_{\frac{1}{2}}(-4t) = 1 - 2t - 2t^{2} - 4t^{3} - 10t^{4}$$

$${\frac{1}{2}\choose{2}} = \frac{\frac{1}{2} \cdot \left(-\frac{1}{2}\right)}{1 \cdot 2} = -\frac{1}{8}$$

$${\frac{1}{2}\choose{3}} = \frac{\frac{1}{2} \cdot \left(-\frac{1}{2}\right) \left(-\frac{3}{2}\right)}{1 \cdot 2 \cdot 3} = \frac{1}{16}$$