Note del corso di Geometria 1

Gabriel Antonio Videtta

16 aprile 2023

Esercitazione: forma canonica di Jordan reale

Questo avviso sta ad indicare che questo documento è ancora una bozza e non è da intendersi né completo, né revisionato.

Esercizio 1. Sia $M \in M(n, \mathbb{R})$ tale che $\exists a_1, ..., a_k \in \mathbb{R}$ distinti tale che:

$$(M^2 + a_1^2 I) \cdots (M^2 + a_k^2 I) = 0.$$

Dimostrare allora che esistono $S, A \in M(n, \mathbb{R})$ tale che M = SA con S simmetrica e A antisimmetrica.

Soluzione. Per ipotesi, $p(x) = (x^2 + a_1^2) \cdots (x^2 + a_k^2) \in \text{Ker } \sigma_M$. Dal momento che p(x) si scompone in fattori lineari distinti in \mathbb{C} , p(x) è anche il polinomio minimo di M. Si deduce allora che M è diagonalizzabile, e che i suoi autovalori sono esattamente $\pm a_1 i$, ..., $\pm a_k i$. Allora la forma canonica di Jordan reale di M è:

$$J \Rightarrow ($$