

EXTERNAL PAYLOAD CARRIER (XPC) A SUBORBITAL RESEARCH PLATFORM

Next-Generation Suborbital Researchers Conference February 28, 2011

PAUL SCHALLHORN, CHUCK TATRO NASA LAUNCH SERVICES PROGRAM

BERNARD KUTTER, GERALD SZATKOWSKI, BEN STOPNITZKY UNITED LAUNCH ALLIANCE

TIM BULK, BRIAN PITCHFORD SPECIAL AEROSPACE SERVICES

Presentation Overview

External Payload Carrier (XPC) — Suborbital Heavy Lift

- Phase I Study Summary
- Phase II Results/Current Status
- Project Plan to First Flight
- XPC Points of Contact

XPC Concept/Design

- "Suborbital Heavy Lift" on Atlas V Booster
- Flies in Unused SRB Location on Atlas V
- Anytime Sufficient Excess Performance is Available
- Jettisoned prior to Centaur separation
- Unpressurized
- Disposable
- Mimics Non-Propulsive SRB

XPC Flight Regime

- Suborbital to 800,000 ft
- Up to 500 secs of μ-gravity
- Possible from Excess Performance
 - » Result of Delta II-sized 600000 payloads on EELVs [€].
- - At nominal SRB separation
 - After SRB separation
 - As late as just prior to Centaur (2nd stage) separation

XPC Dimensions and Capability

- 60 in. diameter
- 37 ft. usable payload length
- 800 ft³ volume
- 4000 pounds
- Exceeds NASA's Sounding Rockets

120 in

Exceeds Suborbital
 Commercial Providers

XPC Capability Comparison

Promising Research Capability

- Multiple User Interest
 - NASA, DOD, DARPA, NRO, Academia, etc.
- Does NOT Compete with Emerging Commercial Suborbital Market
 - Limited flight rate
 - Involved integration process and approval by primary payload customer
- Extremely Promising Test Bed
 - Military and Commercial
 - High Altitude, Hypersonic Aeronautics
 - Microgravity
 - Tropospheric →Upper Atmospheric (Ionosphere) → Exoatmospheric
 Research
 - Reentry Vehicle Research
 - Reusable technology (EELV Next Generation)
 - Point to Point Applications

XPC - Operations Concept

Mimics Atlas V SRB

- Ground Operations
 - » Horizontal integration of suborbital payloads
 - » Mimics normal SRB handling and processing
 - » Attachment (uses identical SRB hardware)

- » Aerodynamically equivalent to SRB
- » Negligible impact to launch vehicle or primary payload
- » Jettisonable at many points on Stage 1 trajectory
 - Atlas V qualified to carry expended SRB

XPC Concept Early Studies NASA LSP

- NASA LSP Internal (Preliminary) Studies
 - 2008 and 2009
 - Aerodynamic Design Studies
 - » Multiple considerations
 - » Equal Surface Area Cone chosen
 - » Minimizes aero-thermal effect deviations
 - » Negligible affect on launch vehicle

Atlas 411

POD

Blunt Base

Cone

Spherical Cap

Area Cone

Phase I Study – Late 2009

- ULA and SAS Tasked to Evaluate Feasibility
 - Funded by NASA LSP
- Research and Trade Studies Conducted
- 57 Variations Considered
 - Configuration, Trajectory, Payload Attachment, Recoverability, etc.

Phase I Study – Findings/Results

- Pros and Cons Identified
- Most Ground Operations Conducive
 - Minimal Additional Hardware
 - Same GSE and processes as SRB operations
- All Atmospheric/Exoatmospheric Regimes Attainable
 - Configuration Dependent
- Three Viable Configurations
 - Strongback
 - Sabot
 - Gunwale
- Configuration Options Identified →
 - Final configuration selection in Phase II-to-PDR effort

Phase I Study - Findings/Results (Con'd.)

- Design Baselines Identified
 - Aluminum isogrid (Revised to Alcomposite structure/shell in Phase I)
 - SRB attachment hardware
 - SRB outer mold line
 - General flight capabilities
- Subsystems Identified
- Preliminary Testing Requirements Identified
- Preliminary Modeling Complete
- Draft System Requirements Document (SRD) begun
- Preliminary Feasibility Study Complete

- NASA LSP funded Phase II Preliminary Design (PDR level) Effort
 - LSP funding and partnering support
 - Phase II nearing completion March 2011
- Partnering Arrangements With:
 - Industry:
 - » Special Aerospace Services (SAS)
 - » United Launch Alliance (ULA)
 - Academia:
 - » Florida Institute of Technology (FIT)
 - USG:
 - » NASA Kennedy Space Center (KSC)
 - » NASA Marshall Space Flight Center (MSFC)

Phase II - Products/Deliverables

- Phase II Products
 - Develop Systems Requirements Document (SRD)
 - Achieve Preliminary Design Review (PDR) level maturity
 - Presentation of XPC early design and systems requirements (SRD) to NASA LSP SRR/Engineering Review Board (ERB)
 - » November 2010
- Identify flight candidates for XPC
- Development schedule and funding profiles
 - Critical Design Review (CDR)
 - Design Certification Review (DCR)
 - First Flight
 - Recurring Cost
- Identify Risk-reduction Activities for Development
- XPC at TRL 3 by end of Phase II

Phase II – Current Status

Phase II Results:

- XPC Final Configuration
- Preliminary Payload Separation Design
- Subsystem Preliminary Designs
- Concept of Operations and launch site processing approach developed

- NASA Mission Directorates
- DoD, DARPA, NRO
- Commercial Sector

- Completion of Preliminary Design (4th Qtr 2011)
- Completion of Critical Design (4th Qtr 2012)
- Constructing, Testing, and Qualifying Activities (2013)
- First Flight (2013 or 2014)

JOHN F. KENNEDY SPACE CENTER

Summary

- External Payload Carrier (XPC)
- Suborbital Heavy Lift
- · 800 cubic feet
- 4000 pounds
- Team includes Government, Industry, Academia
- First Flight Goal 2013

XPC Points of Contact (POCs)

- - Paul Schallhorn, PhD / Charles Tatro
 - » paul.a.schallhorn@nasa.gov
 - » charles.a.tatro@nasa.gov
- NASA Launch Service Program Special Aerospace Services (SAS)
 - Tim Bulk / Brian Pitchford
 - » tbulk@specialaerospaceservices.com
 - » bpitchford@specialaerospaceservices.com

- - Bernard Kutter / Gerald Szatkowski, PhD/Ben Stopnitzky
 - bernard.f.kutter@ulalaunch.com
 - gerard.p.szatkowski@ulalaunch.com
 - benny.stopnitzky@ulalaunch.com

- United Launch Alliance (ULA) Florida Institute of Technology
 - Dan Kirk, PhD
 - » dkirk@fit.edu

- Jacobs Technology
 - Janet Karika
 - » janet.c.karika@nasa.gov