

CLAIMS

1. A demodulation method comprising:
 - a log-likelihood ratio calculation step
 - 5 for calculating soft-decision input values of Turbo decoding upon receipt of a sequence of received signal points, performing Turbo decoding using the soft-decision input values, and calculating a log-likelihood ratio of a low-order information bit and
 - 10 a log-likelihood ratio of a parity bit;
- a coset estimation step for estimating the low-order information bit based on the log-likelihood ratio of the low-order information bit calculated by said log-likelihood ratio calculation step, estimating the parity bit based on the log-likelihood ratio of the parity bit calculated by said log-likelihood ratio calculation step, so as to estimate a coset based on the low-order information bit and the parity bit; and
- 20 high-order information bit estimation step for estimating a transmitted signal point based on the coset estimated by said coset estimation step, so as to estimate the high-order information bit based on the transmitted signal point.

2. The demodulation method according to claim 1, characterized in that said log-likelihood ratio calculation step calculates an Euclidean distance from a threshold value of a signal point

RECEIVED - 6/26/99 - 2:22 PM

constellation in a signal state space and uses the calculated distance as soft-decision input values of the Turbo decoding.

5 3. The demodulation method according to
claim 2, characterized in that said log-likelihood
ratio calculation step performs the Turbo decoding
for calculating a branch metric of trellis using a
- linear sum of the soft-decision input values, so as
10 to calculate the log-likelihood ratio of the low-
order information bit and the log-likelihood ratio
of the parity bit.

15 4. The demodulation method according to
claim 1, characterized in that said log-likelihood
ratio calculation step performs the Turbo decoding
that includes conversion.

20 5. The demodulation method according to
claim 1, characterized in that said log-likelihood
ratio calculation step calculates an Euclidean
distance from a threshold value of a signal point
constellation in a signal state space so as to use
the calculated distance as the soft-decision input
25 values of the Turbo decoding that includes
conversion, performs the Turbo decoding whereby a
branch metric of trellis is calculated using a
linear sum of the soft-decision input values, so as
to calculate the log-likelihood ratio of the low-
30 order information bit and the log-likelihood ratio

T000074958522

of the parity bit.

6. A demodulation apparatus comprising:
log-likelihood ratio calculation means
5 for calculating soft-decision input values of Turbo
decoding upon receipt of a sequence of received
signal points, performs Turbo decoding using the
soft-decision input values, and calculating a log-
likelihood ratio of a low-order information bit and
10 a log-likelihood ratio of a parity bit;
a coset estimation means for estimating
the low-order information bit based on the log-
likelihood ratio of the low-order information bit
calculated by said log-likelihood ratio calculation
15 means, estimating the parity bit based on the log-
likelihood ratio of the parity bit calculated by
said log-likelihood ratio calculation means, so as
to estimate a coset based on the low-order
information bit and the parity bit; and
20 high-order information bit estimation
means for estimating a transmitted signal point
based on the coset estimated by said coset
estimation means so as to estimate a high-order
information bit based on the transmitted signal
25 point.

7. The demodulation apparatus according
to claim 6, characterized in that said log-
likelihood ratio calculation means calculates an
30 Euclidean distance from a threshold value of a

signal point constellation in a signal state space and uses the calculated distance as soft-decision input values of the Turbo decoding.

5 8. The demodulation apparatus according to claim 7, characterized in that said log-likelihood ratio calculation means performs the Turbo decoding for calculating a branch metric of trellis using a linear sum of the soft-decision 10 input values, so as to calculate the log-likelihood ratio of the low-order information bit and the log-likelihood ratio of the parity bit.

15 9. The demodulation apparatus according to claim 6, characterized in that said log-likelihood ratio calculation means performs the Turbo decoding that includes conversion.

20 10. The demodulation apparatus according to claim 6, characterized in that said log-likelihood ratio calculation means calculates an Euclidean distance from a threshold value of a signal point constellation in a signal state space so as to use the calculated distance as the soft-25 decision input values of the Turbo decoding that includes conversion, performs the Turbo decoding whereby a branch metric of trellis is calculated using a linear sum of the soft-decision input values, so as to calculate the log-likelihood ratio 30 of the low-order information bit and the log-

likelihood ratio of the parity bit.