Nome: Matrícula:	1.	
1ª Prova - MTM1018 - T 10	2.	
15 de Outubro de 2018	3.	
$\acute{\mathrm{E}}$ proibido usar calculadora ou similares. Respostas sem justificativas, que n $\~{\mathrm{a}}$ o usem os	4.	
métodos indicados ou que não incluam os cálculos necessários não serão consideradas. \mathcal{M}_{22} indica o espaco das matrizes 2×2 . Todas as operações consideradas são as usuais. Detalhe	5.	

Questão 1. (2pts) Resolva o sistema linear usando o método de Gauss-Jordan (apenas uma operação por vez aqui)

 \sum

$$\begin{cases} x_1 + 2x_2 - 2x_3 - 12x_4 &= 3\\ x_1 + 3x_2 - 18x_4 + 6x_5 &= 2\\ x_1 - 6x_3 - 12x_5 &= 5 \end{cases}$$

Questão 2. (2pts)

- (a) Considere os vetores/matrizes $A_1 = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$, $A_2 = \begin{bmatrix} -2 & 1 \\ -5 & -8 \end{bmatrix}$, $A_3 = \begin{bmatrix} 2 & 0 \\ 4 & 6 \end{bmatrix}$, $A_4 = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}$. Verifique se os vetores $B_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, e $B_2 = \begin{bmatrix} 1 & 4 \\ -2 & 5 \end{bmatrix}$ são combinação linear de A_1, A_2, A_3 e A_4 . (Sugestão: os dois podem ser verificados simultaneamente);
- (b) Observando sua solução no item (a), $\{A_1, A_2, A_3, A_4\}$ é LI? Se A_4 puder ser escrito como combinação linear dos demais, escreva uma combinação linear de A_1, A_2 e A_3 que resulta em A_4 ;
- (c) Encontre uma base e a dimensão do subespaço W de \mathcal{M}_{22} , sendo:

$$W = \{ \begin{bmatrix} a-2b+2c+d & b+2d \\ 2a-5b+4c & 3a-8b+6c-d \end{bmatrix} \in \mathcal{M}_{22}; a, b, c, d \in \mathbb{R} \}$$

Questão 3. (2pts) Considere a matriz $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

o escalonamento apenas na Questão 1.

(0pts)(a) Calcule $A = BB^t + B^tB$.

- (b) Considere a matriz A obtida no item anterior. Determine todos os valores reais λ , tais que existe $X = \begin{bmatrix} x \\ y \end{bmatrix} \neq \overline{0}$ que satisfaz $AX = \lambda X$;
- (c) Para cada um dos valores de λ encontrados no item anterior, determinar todos $X = \begin{bmatrix} x \\ y \end{bmatrix}$ tais que $AX = \lambda X$.

Questão 4. (2pts) Responda VERDADEIRO ou FALSO, com uma breve justificativa ou contraexemplo:

- i-() Se Aé uma matriz $n\times n$ tal que $A^2=\overline{0},$ então $A=\overline{0};$
- ii-() Se A é uma matriz $n \times n$ tal que $A^2 2A + I = \overline{0}$, então A é inversível e $A^{-1} = 2I A$;
- iii-() Pode-se mostrar que "para matrizes $n \times n$ A e B, se AB é invertível, então A e B são é invertíveis" sem usar determinantes;
- iv-() Se $W=\{A\in\mathcal{M}_{22}; \det(A)=0\}$, então W é subespaço de $\mathcal{M}_{22};$
- v-() Existe um subconjunto de 3 vetores LD dentro de $\{v_1=(1,1,1),v_2=(2,3,0),v_3=(-2,0,6),v_4=(-12,-18,0),v_5=(0,6,-12)\}$

Questão 5. (2pts) O traço de uma matriz $n \times n$ $A = (a_{ij})$ é a soma dos elementos da sua diagonal principal e é denotado por tr (A):

$$\operatorname{tr}(A) = a_{11} + a_{22} + \dots + a_{nn}$$

- a) Prove que tr(A+B) = tr(A) + tr(B) e tr(kA) = k tr(A), em que k é um escalar;
- b) Prove que $W = \{A \in M_{22}; \operatorname{tr}(A) = 0\}$ é subespaço de M_{22} , o espaço das matrizes 2×2 ;
- c) Prove que se A e B são matrizes $n \times n$, então $\operatorname{tr}(AB) = \operatorname{tr}(BA)$;
- d) Mostre que não existem matrizes 2×2 tais que $AB BA = I_2$.