FACULTAD DE INGENIERIA Y CIENCIAS EXACTAS

MATERIA: ARQUITECTURA DE COMPUTADORES (3.4.072)
Códigos y Sistemas Numéricos

- Sistemas de Numeración
- Evolución:

Pueden ser de dos tipos: Veamos un ejemplo para el número decimal 221

No Posicionales:

En estos, el valor del símbolo **no depende** la posición que este ocupe dentro del número. Veamos que C equivale a 100 y vale lo mismo en las dos posiciones

CCXXI (numeración Romana: Dos veces cien "C"; Dos veces Diez "X"; Una unidad "I")

Posicionales:

En estos, el valor del símbolo **depende** la posición que este ocupe dentro del número o sea cada símbolo está afectado por un factor de escala. En este caso el primer dos vale doscientos y el segundo veinte

221 (numeración Decimal: 2 centenas, 2 decenas y una unidad de izquierda a derecha)

Sistemas de Numeración Posicionales:

Se calcula como un polinomio, denominado "polinomio de potencias de la base" o "Teorema Fundamental de la Numeración".

Todos los sistemas de numeración posicionales se rigen por este teorema:

$$N^{0}$$
 en base $b = ... d_{2} d_{1} d_{0}$, $d_{-1} d_{-2} d_{-3} ... d_{(b)}$

Los dígitos varían entre b símbolos [0 y b-1]

Valores posibles de los diez dígitos en base 10 : [0,1,2,3,4,5,6,7,8,9]

$$N_{(b)}^{0} = d_{n} b^{n} + ... d_{2} b^{2} + d_{1} b^{1} + d_{0} b^{0} + d_{-1} b^{-1} + d_{-2} b^{-2} + d_{-3} b^{-3} ... + d_{-k} b^{-k}$$

Parte entera

Parte fraccionaria

La expresión genérica para un número en cualquier base es:

$$N_{(b)}^{2} = \sum_{i=-k}^{n} d_{i}. b^{i}$$

- Ejemplos de las bases usadas en informática
- BASE 2 (binaria)b= 2 d= [0,1]
- BASE 8 (octal)b= 8 d= [0,1,2,3,4,5,6,7]
- BASE 10 (decimal)
 b=10 d= [0,1,2,3,4,5,6,7,8,9]
- BASE 16 (hexadecimal) b=16 d= [0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F]

En este último caso los símbolos faltantes de los dígitos de la numeración arábiga se reemplazan con las primeras letras del alfabeto para cubrir los números decimales 10,11,12,13,14 y 15

Potencia de un Sistema Numérico:

- La potencia de un sistema numérico es inversamente proporcional a la cantidad símbolos que necesita para representar una cantidad.
 - SE TIENE LA CANTIDAD DE 15 ELEMENTOS
 - BASE 2 (binaria) $15_{(10)} \rightarrow 1111_{(2)} \rightarrow Menos potente$
 - BASE 8 (octal) $15_{(10)} \rightarrow 17_{(8)}$
 - BASE 10 (decimal) $15_{(10)} \rightarrow 15_{(10)}$
 - ●BASE 16 (hexadecimal) $15_{(10)} \rightarrow F_{(10)} \rightarrow Mas potente$

El número $10_{(xx)}$ en cualquier base representa la base XX

$$\bullet$$
 $10_{(2)} = 2_{(10)}$; $10_{(8)} = 8_{(10)}$; $10_{(10)} = 10_{(10)}$; $10_{(16)} = 16_{(10)}$

- Ejemplo en el Sistema de Numeración Decimal:
 - Base 10 → posee 10 símbolos
 - Símbolos → [0 1 2 3 4 5 6 7 8 9]
 (Cada dígito puede tomar cualquiera de estos símbolos con su valor asociado)
 - Un determinado valor, denominado número decimal, se puede expresar entonces de la siguiente forma:

Número = Σ (dígito)_i * (Base)ⁱ

i es la posición respecto a la coma o puntoLa primera posición a la derecha de la coma i=-1

La primera posición a la izquierda de la coma i=0

El número decimal 123,456₍₁₀₎ puede expresarse como

$$N_{(10)}^{0} = 1.10^{2} + 2.10^{1} + 3.10^{0} + 4.10^{-1} + 5.10^{-2} + 6.10^{-3}$$

Veamos un ejemplo en cualquier base

Sistema Trinario:

- Base 3
- Símbolos: [0 1 2]
- Su polinomio equivalente es:

$$N_{(3)}^{0} = d_n 3^n + ... d_2 3^2 + d_1 3^1 + d_0 3^0 + d_{-1} 3^{-1} + d_{-2} 3^{-2} + d_{-3} 3^{-3} ... + d_{-k} 3^{-k}$$

Sistema Binario:

- Base 2
- Símbolos: [0 1]
- Su polinomio equivalente es:

$$N_{(2)}^{0} = d_{n} 2^{n} + \dots + d_{2} 2^{2} + d_{1} 2^{1} + d_{0} 2^{0} + d_{-1} 2^{-1} + d_{-2} 2^{-2} + d_{-3} 2^{-3} \dots + d_{-k} 2^{-k}$$

Sistema Octal:

- Base 8
- Símbolos: [0 1 2 3 4 5 6 7]
- Su polinomio equivalente es:

$$N_{(8)}^{0} = d_{n} 8^{n} + \dots + d_{2} 8^{2} + d_{1} 8^{1} + d_{0} 8^{0} + d_{-1} 8^{-1} + d_{-2} 8^{-2} + d_{-3} 8^{-3} \dots + d_{-k} 8^{-k}$$

Sistema Hexadecimal:

- Base 16
- Símbolos: [0 1 2 3 4 5 6 7 8 9 A B C D E F]
- Su polinomio equivalente es:

$$N_{(16)}^{0} = d_{n}16^{n} + \dots + d_{2}16^{2} + d_{1}16^{1} + d_{0}16^{0} + d_{-1}16^{-1} + d_{-2}16^{-2} + d_{-3}16^{-3} \dots + d_{-k}16^{-k}$$

- Ejemplo en el Sistema de Numeración Binario:
 - Base 2 → posee 2 símbolos
 - Símbolos → [0 1]
 (Cada dígito puede tomar cualquiera de dos símbolos con su valor asociado)
 - Un determinado valor, denominado número binario, se puede expresar entonces de la siguiente forma:

Para interpretar este número también se cambia de base porque las potencias de la base y los coeficientes se reemplazan por su valor decimal

$$N^{o}_{(10)} = 1.2^{2} + 1.2^{1} + 0.2^{0} + 1.2^{-1} + 0.2^{-2} + 1.2^{-3}$$

$$N^{o}_{(10)} = 1.4 + 1.2 + 0.1 + 1.0,5 + 0.0,25 + 1.0,125$$

$$N^{o}_{(10)} = 4 + 2 + 0 + 0,5 + 0 + 0,125 = 6,625_{(10)}$$

- Conversión entre sistemas numéricos:
- Decimal a Binario:
 - Parte Entera, Método de las divisiones sucesivas por 2.
 - Parte Fraccionaria, Método de las multiplicaciones sucesivas por 2.

Ej.: $14,34_{(10)} \rightarrow a Binario$

Parte Entera

$$0,34 \cdot 2 = 0,68$$

 $0,68 \cdot 2 = 1,36$
 $0,36 \cdot 2 = 0,72$
 $0,72 \cdot 2 = 1,44$

$$0.34_{(10)} = 0.101_{(2)}$$

Parte Fraccionaria

Valor Final: $14,34_{(10)} = 1110,0101_{(2)}$

- Conversión entre sistemas numéricos:
- Decimal a Octal:
 - Parte Entera, Método de las divisiones sucesivas por 8.
 - Parte Fraccionaria, Método de las multiplicaciones sucesivas por 8.

Ej.: $12342,890625_{(10)} \rightarrow \text{a Octal}$

$$12342_{(10)} = 30066_{(8)}$$

Parte Entera

$$0,890625 \cdot 8 = 7,125$$

 $0,125000 \cdot 8 = 1,0$

$$0.890625_{(10)} = 71_{(8)}$$

Parte Fraccionaria

$$12342,890625_{(10)} = 30066,71_{(8)_{1}}$$

- Conversión entre sistemas numéricos:
- Octal a Decimal:
 - Se aplican los pesos correspondientes al sistema octal.
 - O sea se aplica el Teorema fundamental de la Numeración.

Ej.:
$$3034,75_{(8)} \rightarrow a$$
 Decimal
$$N^{o}_{(8)} = 3.8^{3} + 0.8^{2} + 3.8^{1} + 4.8^{0} + 7.8^{1} + 5.8^{2}$$

$$N^{o}_{(8)} = 3.512 + 0.64 + 3.8 + 4.1 + 7.0,125 + 5.0,015625$$

$$N^{o}_{(8)} = 1564,953125_{(10)}$$

Valor Final: $3034,75_{(8)} = 1564,953125_{(10)}$

- Conversión entre sistemas numéricos:
- Octal a Binario:
 - Por cada símbolo octal se pone su equivalente en binario.

Ej.:
$$52,3_{(8)} \rightarrow$$
 a Binario

$$52,3_{(8)} = 101 \ 010, \ 011_{(2)}$$

b ₂	b₁	b_0	Dec.
4	2	1	
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Conversión entre sistemas numéricos:

Octal a Hexadecimal:

Hay que llevar a cabo un paso intermedio; es decir, pasar el número a decimal o binario y éste, por ultimo, a hexadecimal.

Ej.: $37_{(8)} \rightarrow$ a Hexadecimal

$$3.8^{1} + 7.8^{0} = 31_{10} \rightarrow 31 \boxed{16} \rightarrow 37_{(8)} = 1F_{(16)}$$

Pasaje por Decimal

Pasaje por Binario

b_2	b ₁	b _o	Dec.
4	2	1	
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

De derecha a izquierda cada cuatro símbolos binarios se convierte a hexadecimal.

Ej.:
$$DF4_{(16)} \rightarrow$$
 a Binario

$$D_{(16)} = 13_{(10)} = 1101_{(2)}$$

$$F_{(16)} = 15_{(10)} = 1111_{(2)}$$

$$4_{(16)} = 04_{(10)} = 0100_{(2)}$$

Obteniéndose:

$$DF4_{(16)} \rightarrow 110111110100_{(2)}$$

b ₃	b ₂	b ₁	b ₀	Hex	Dec.
8	4	2	1		
0	0	0	0	0	0
0	0	0	1	1	1
0	0	1	0	2	2
0	0	1	1	3	3
0	1	0	0	4	4
0	1	0	1	5	5
0	1	1	0	6	6
0	1	1	1	7	7
1	0	0	0	8	8
1	0	0	1	9	9
1	0	1	0	Α	10
1	0	1	1	В	11
1	1	0	0	С	12
1	1	0	1	D	13
1	1	1	0	Е	14
1	1	1	1	F	15

- Conversión entre sistemas numéricos:
- Hexadecimal a Decimal:
 - Se desarrolla el polinomio equivalente.

Ej.:
$$3AC,1_{(16)} \rightarrow a$$
 Decimal

$$N_{(16)}^{0} = 3.16^{2} + A.16^{1} + C.16^{0} + 1.16^{-1}_{(10)}$$

Reemplazamos los símbolos hexadecimales por su valor decimal: A, C > 10, 12

$$N_{(16)}^{0} = 3.16^{2} + 10.16^{1} + 12.16^{0} + 1.16^{-1}_{(10)}$$

$$N_{(16)}^{0} = 768 + 160 + 12 + 0.0625 = 940.0625_{(10)}$$

- Conversión entre sistemas numéricos:
- Hexadecimal a Octal:
 - Hay que llevar a cabo un paso intermedio; es decir, pasar el número a decimal o binario y éste, por ultimo, a octal.

Ej.: $1E_{(16)} \rightarrow$ a Octal

1° El equivalente decimal será:

2° por lo que en octal será:

1.
$$16^{1} + 14. 16^{0} = 16 + 14 = 30_{(10)}$$

$$30 | 8 = 36_{(8)}$$

1° El equivalente en binario será:

2° por lo que en octal será:

$$000_{(2)} = 0_{(8)}$$

$$011_{(2)} = 3_{(8)}$$

$$110_{(2)} = 6_{(8)}$$

Síntesis de conversión entre sistemas numéricos:

- Conversión octal, binario o hexadecimal a decimal:
 - Mediante el Teorema Fundamental de la Numeración.
- Conversión decimal a hexadecimal, octal o binario:
 - Método de las divisiones sucesivas por la base (parte entera)
 - Método de las multiplicaciones sucesivas por la base (parte fraccionaria)
- Conversión hexadecimal u octal a binario:
 - Se toma cada símbolo se convierte a binario y se toman todos los bits como si fuera un solo número.
- Conversión octal a hexadecimal:
 - Se convierte primero octal a decimal o binario y luego el valor obtenido a hexadecimal. (Si el número tiene fracción, usar sólo binario)
- Conversión hexadecimal a octal:
 - Se convierte primero el valor hexadecimal a decimal o binario y luego el valor obtenido a octal. (Si el número tiene fracción, usar sólo binario)

REV-08/20