# Colección de Ejercicios Propuestos y sus resoluciones

Sebastian Elizalde Padrón Nro. 96092 sebi.elizalde@gmail.com

Julian Ferres
Padrón Nro. 101483
julianferres@gmail.com

2do. Cuatrimestre de 2018

Aprendizaje Estadístico - Sebastian Grymberg Facultad de Ingeniería, Universidad de Buenos Aires

# Contents

| 2.1 | ca de enunciados y sus soluciones  Clase 1 |
|-----|--------------------------------------------|
|     | 2.1.1 Ejercicio 1                          |
|     | 2.1.2 Ejercicio 2: Esperanza condicional   |
|     | 2.1.3 Ejercicio 3 (STOP) (SIMULACIÓN)      |
|     | 2.1.4 Ejercicio 4 (no entregable)          |
| 2.2 | Clase 2                                    |
|     | 2.2.1 Ejercicio 5                          |
|     | 2.2.2 Ejercicio 6                          |
| 2.3 | Clase 3                                    |
|     | 2.3.1 Ejercicio 7                          |
|     | 2.3.2 Ejercicio 8 (STOP)(SIMULACIÓN)       |
| 2.4 | Clase 4                                    |
|     | 2.4.1 Ejercicio 9: KNN                     |
|     | 2.4.2 Ejercicio 9 bis                      |
|     | 2.4.3 Ejercicio 10                         |
| 2.5 | Clase 5                                    |
| 2.0 | 2.5.1 Ejercicio 11                         |
|     | 2.5.2 Ejercicio 12                         |
|     | 2.5.3 Ejercicio 13                         |
|     | 2.5.4 Ejercicio 14 (STOP)                  |
| 2.6 | Clase 6                                    |
| 2.0 | 2.6.1 Ejercicio 15                         |
|     | 2.6.2 Ejercicio 16                         |

### 1 Introducción

## 2 Lista de enunciados y sus soluciones

#### 2.1 Clase 1

#### 2.1.1 Ejercicio 1

Sea una función convexa f(x) no negativa,  $x_0, x_1, x_2$  tales que:

- $\bullet \ \ x_1 \le x_0 \le x_2$
- $x_0 = p_1 x_1 + p_2 x_2$
- $p_1 \ge 0, p_2 \ge 0, p_1 + p_2 = 1$

Y sea una recta q tal que:

- $g(x_1) = f(x_1)$
- $\bullet \ g(x_2) = f(x_2)$

Quedan dudas de cuál de los siguientes era el planteo: Comprobar la siguiente desigualdad: f(p?x?+p?x?) p?f(x?) + p?f(x?)

Probar que: g(x0) = p1 g(x1) + p2 g(x2)

#### 2.1.2 Ejercicio 2: Esperanza condicional

Utilizando que E[m(x)f(x)] = E[Yf(x)] y m(x) = E[Y|X = x]

Demostrar que vale:  $E[\Phi(x)Y|X] = \Phi(x)E[Y|X]$ 

#### 2.1.3 Ejercicio 3 (STOP) (SIMULACIÓN)

Sea  $X \sim \mathcal{N}(0, 1)$  truncada al intervalo [-1, 1]Imagine m(x) = E[Y|X = x] como:

$$m(x) := \begin{cases} \frac{(x+2)^2}{2} & \text{si } si - 1 \le x < -0.5\\ \frac{x}{2} + 0.875 & \text{si } -0.5 \le x \le 0\\ -5(x - 0.2)^2 + 1.075 & \text{si } 0 < x \le 0.5\\ x + 0.125 & \text{si } 0.5 \le x < 1 \end{cases}$$

Dado un x, la distribución condicional de Y - m(x) es  $\mathcal{N}(0, \sigma^2(x))$ Con  $\sigma(x) = 0.2 - 0.1 \cos(2x)$ 

Se pide simular 200 puntos (X, Y), y graficarlos en un plano.

Además, se piden los 200 pares ordenados en cuestión, para hacer análisis posteriores.

#### 2.1.4 Ejercicio 4 (no entregable)

Dado el problema de decisión introducido en el 'Diseño del receptor de una comunicación binaria', verificar que:

$$\delta(r)=\mathbbm{1}\{P(S=1|R=r)>P(S=0|R=r)\}$$
 maximiza:

$$P(S = \delta(r)) = P(S = \delta(0)|R = 0)P(R = 0) + P(S = \delta(1)|R = 1)P(R = 1)$$

#### 2.2 Clase 2

#### 2.2.1 Ejercicio 5

Terminar la cuenta:

$$P(X,Y) = \int_0^{\frac{1}{2}} (1-x)dx + \int_{\frac{1}{2}}^{\frac{3}{4}} xdx$$

Solución:

$$P(X,Y) = \int_0^{\frac{1}{2}} (1-x)dx + \int_{\frac{1}{2}}^{\frac{3}{4}} xdx$$
$$= \int_0^{\frac{1}{2}} 1dx - \int_0^{\frac{1}{2}} xdx + \int_{\frac{1}{2}}^{\frac{3}{4}} xdx$$
$$= \frac{1}{2} - \frac{1}{8} + (\frac{9}{32} - \frac{1}{8})$$
$$= 17/32$$

#### 2.2.2 Ejercicio 6

Sean T, F y E exponenciales de intensidad 1 y tenemos que

$$Y = 1\{T + F + E < 7\}$$

Se tenia que E era inobservable. Y se concluyó que:

$$g^*(T, F) = 1\{T + F < 7 - \ln 2\}$$

Se pide calcular el error:

$$L^* = P(g * (T, F) \neq Y)$$

Solución:

$$\begin{split} L^* &= P(g*(T,F) \neq Y) \\ &= P(T+B < 7 - log2, T+B+E \geq 7) + P(T+B \geq 7 - log2, T+B+E < 7) \\ &= E(e^{-(7-T-B)} \mathbbm{1}\{T+B < 7 - log2\}) + P((1-e^{-(7-T-B)}) \mathbbm{1}\{7 > T+B \geq 7 - log2\}) \\ &= \int_0^{7-log2} xe^{-x} e^{-(7-x)} dx + \int_{7-log2}^7 xe^{-x} (1-e^{-(7-x)}) dx \end{split}$$

(porque la densidad de T + B es  $ue^u$  en  $[0, \infty)$ )

$$=e^{-7}\left(\frac{(7-\log 2)^2}{2}+2(8-\log 2)-8-\frac{7^2}{2}+\frac{(7-\log 2)^2}{2}\right)$$

(ya que  $\int_{x}^{\infty} ue^{-u} du = (1+x)e^{-x}$ )

= 0.0199611...

## 2.3 Clase 3

#### 2.3.1 Ejercicio 7

Se quería acotar:

$$E\left[|\eta^*(x) - \eta(x)|\right] < \epsilon$$

Para  $\epsilon>0$  existe una función  $\eta_{\epsilon}$  uniformemente continua a valores en el intervalo [0,1] sobre un conjunto compacto C que se anula fuera de C, y que tiene la siguiente propiedad:

$$E[|\eta_{\epsilon}(x) - \eta(x)|] < \epsilon$$

Por la desigualdad triangular:

$$E[|\eta^*(x) - \eta(x)|] \le E[|\eta^*(x) - \eta^*_{\epsilon}(x)|] + E[|\eta^*_{\epsilon}(x) - \eta_{\epsilon}(x)|] + E[|\eta_{\epsilon}(x) - \eta(x)|]$$

En clase se acotaron tanto el tercer término como el segundo del segundo miembro de la desigualdad, y el ejercicio es entender por qué el primer término está acotado por el tercero.

## 2.3.2 Ejercicio 8 (STOP)(SIMULACIÓN)

Dado el siguiente diagrama:



Sean:

X una variable aleatoria con distribución uniforme sobre el triangulo  $\mathbf{azul}$ .

Y una variable aleatoria con distribución uniforme sobre el triangulo  ${f rojo}$ .

Z se define como:  $Z = \frac{1}{2}X + \frac{1}{2}Y$ 

Se pide:

- 1. Generar muestras de X y de Y para aprender.
- $2.\,$  Generar muestras a clasificar uniformes sobre el cuadrado completo.

- 3. Construir una regla del histograma y clasificar las muestras de 2. según lo aprendido en 1. .
- 4. Graficar los resultados.

#### 2.4 Clase 4

#### 2.4.1 Ejercicio 9: KNN

Se pide simular dos normales bivariadas, ambas con matriz de covarianza [[1,0],[0,1]], pero una centrada en (-1,0), y la otra en (1,0).

Se pide:

- 1. Generar muestras de  $N=100,\,1000,\,\dots$ , otros valores. Estas dos serían las clases en las que clasificar los puntos.
- 2. Generar puntos con una distribución uniforme en  $[-4, 4] \times [-4, 4]$ .
- 3. Clasificar los puntos de la uniforme usando KNN, con K=1,3 y 13, utilizando las clases del primer item.
- 4. Graficar los resultados.

#### 2.4.2 Ejercicio 9 bis

"Redactar una carilla que contenga la información relevante sobre la distribución normal multivariada. Llevar ejemplos, y mostrar como cambia el gráfico al variar la matriz de covarianza."

#### 2.4.3 Ejercicio 10

Demostrar que  $\forall a, b, c \in \mathbb{R}^+$ :

$$(a+b+c)^2 \le 3(a^2+b^2+c^2)$$

Sugerencia: usar Cauchy-Schwarz / Jensen.

#### 2.5 Clase 5

#### 2.5.1 Ejercicio 11

Dadas las desigualdades:

$$P(S_n - E[S_n] \ge \epsilon) \le e^{-2\epsilon^2/\sum_{i=1}^n (b_i - a_i)^2}$$

$$P(S_n - E[S_n] \le -\epsilon) \le e^{-2\epsilon^2 / \sum_{i=1}^n (b_i - a_i)^2}$$

Probar que se cumple la siguiente desigualdad:

$$P(|S_n - E[S_n]| \le -\epsilon) \le 2e^{-2\epsilon^2/\sum_{i=1}^n (b_i - a_i)^2}$$

Sugerencia: Usar que  $P(A \cup B) \le P(A) + P(B)$ 

#### 2.5.2 Ejercicio 12

En clase se demostró la primer desigualdad de la hipotesis del ejercicio anterior. Se pide como ejercicio demostrar la segunda desigualdad de la hipotesis.

### 2.5.3 Ejercicio 13

Dada la función:

$$\Phi(u) = \ln p e^u + 1 - p - p u$$

Mostrar que:

- $\Phi(0) = 0$
- $\Phi'(0) = 0$

#### 2.5.4 Ejercicio 14 (STOP)

Dados los siguientes clasificadores por particiones:



Elegir cuál es el mejor para las clases y los puntos generados en el ejercicio 8.

### 2.6 Clase 6

## 2.6.1 Ejercicio 15

Demostrar que la siguiente secuencia constituye una serie convergente:

$$a_n = 8(n+1)e^{-n\epsilon^2/32}$$

Y generalizar viendo que  $\forall \lambda > 0$ :

$$\sum_{n=0}^{\infty} n e^{-\lambda n} < \infty$$

(Sugerencia: Usar que  $\int_0^\infty x e^{-\lambda x} dx = \frac{1}{\lambda^2})$ 

## 2.6.2 Ejercicio 16

Sea la familia de intervalos:

$$A' = \{(a, b) : a < b\}$$

Luego de calcular  $N_{A'}(z_1,z_2)=|\{\emptyset,\{z_1\},\{z_2\},\{z_1,z_2\}\}|=4$  en clase, se pide calcular:

- 1.  $N_{A'}(z_1, z_2, z_3)$
- 2.  $N_{A'}(z_1, z_2, \cdots, z_n)$

# 3 Conclusiones

## References

[1]