

On the finiteness of Markov complexity of generalized Lawrence liftings

Hara Charalambous Apostolos Thoma Marius Vladoiu *

*Department of Mathematics, Aristotle University of Thessaloniki,
Thessaloniki 54124, Greece*

Department of Mathematics, University of Ioannina, Ioannina 45110, Greece

*Faculty of Mathematics and Computer Science, University of Bucharest,
Str. Academiei 14, Bucharest, RO-010014, Romania*

Abstract

The notion of generalized Lawrence liftings and their Markov complexity for matrices $A \in \mathcal{M}_{d \times n}(\mathbb{Z})$ and $B \in \mathcal{M}_{p \times n}(\mathbb{Z})$ originated from Algebraic Statistics. We give necessary and sufficient conditions for the Markov complexity to be finite.

Key words: Toric ideals, Markov basis, Graver basis, Lawrence liftings.

1991 MSC: 14M25, 14L32, 13P10, 62H17

1 Introduction

The notion of Markov basis originated from Algebraic Statistics. Let A be an element of $\mathcal{M}_{m \times n}(\mathbb{Z})$, for some positive integers m, n . The object of interest is the lattice $\mathcal{L}(A) := \text{Ker}_{\mathbb{Z}}(A)$. A *Markov basis* of A is a finite subset \mathcal{M} of $\mathcal{L}(A)$ such that whenever $\mathbf{w}, \mathbf{u} \in \mathbb{N}^n$ and $\mathbf{w} - \mathbf{u} \in \mathcal{L}(A)$ (i.e. $A\mathbf{w} = A\mathbf{u}$), there exists a subset $\{\mathbf{v}_i : i = 1, \dots, s\}$ of \mathcal{M} that *connects* \mathbf{w} to \mathbf{u} . This means that for $1 \leq p \leq s$, $\mathbf{w} + \sum_{i=1}^p \mathbf{v}_i \in \mathbb{N}^n$ and $\mathbf{w} + \sum_{i=1}^s \mathbf{v}_i = \mathbf{u}$. A Markov basis \mathcal{M} of A gives rise to a generating set of the lattice ideal

$$I_{\mathcal{L}(A)} := \langle x^{\mathbf{u}} - x^{\mathbf{v}} : A\mathbf{u} = A\mathbf{v} \rangle .$$

* Corresponding author

Email addresses: hara@math.auth.gr (Hara Charalambous), athoma@uoit.gr (Apostolos Thoma), vladoiu@gta.math.unibuc.ro (Marius Vladoiu).

Indeed each $\mathbf{u} \in \mathbb{Z}^n$ can be uniquely written as $\mathbf{u} = \mathbf{u}^+ - \mathbf{u}^-$ where $\mathbf{u}^+, \mathbf{u}^- \in \mathbb{N}^n$. It can be shown that if \mathcal{M} is a Markov basis of A then the set $\{x^{\mathbf{u}^+} - x^{\mathbf{u}^-} : u \in \mathcal{M}\}$ is a generating set of $I_{\mathcal{L}(A)}$, see [4]. A Markov basis \mathcal{M} of A is *minimal* if no subset of \mathcal{M} is a Markov basis of A . It is possible that minimal Markov bases of A may have different cardinalities. The *universal Markov basis* of A , $\mathcal{M}(A)$, is the union of all minimal Markov bases of A of minimal cardinality, where we identify a vector \mathbf{u} with $-\mathbf{u}$, see [3,10]. The *extended universal Markov basis* of A , $\mathcal{E}(A)$, is the union of all minimal Markov bases of A , where we identify a vector \mathbf{u} with $-\mathbf{u}$. Note that the universal Markov basis is a subset of the extended universal Markov basis. When $\mathcal{L}(A)$ is a *positive lattice*, i.e. $\mathcal{L}(A) \cap \mathbb{N}^n = \{\mathbf{0}\}$, the graded Nakayama Lemma applies and all minimal Markov bases have the same cardinality. Thus, when $\mathcal{L}(A) \cap \mathbb{N}^n = \{\mathbf{0}\}$, the sets $\mathcal{M}(A)$ and $\mathcal{E}(A)$ are identical.

Another subset of $\mathcal{L}(A)$ that plays an important role in the study of lattice ideals, is the *Graver basis*, $\mathcal{G}(A)$, of A . Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be nonzero integer vectors. We say that $\mathbf{u} = \mathbf{v} +_c \mathbf{w}$ is a *conformal decomposition* of \mathbf{u} if $\mathbf{u}^+ = \mathbf{v}^+ + \mathbf{w}^+$ and $\mathbf{u}^- = \mathbf{v}^- + \mathbf{w}^-$. $\mathcal{G}(A)$ is the subset of $\mathcal{L}(A)$ whose elements have no conformal decomposition. It is always a finite set, see [11,6]. In this paper we show that $\mathcal{L}(A) \cap \mathbb{N}^n = \{\mathbf{0}\}$ is a necessary and sufficient condition for the inclusion $\mathcal{E}(A) \subset \mathcal{G}(A)$ to hold, see Theorem 2.1. We note that the sufficiency of this condition is well known and referred to, in the literature. However, since we could not find a written version of the proof, we give such a proof in Theorem 2.1 for completeness of this present exposition.

Hierarchical models in Algebraic Statistics encourage the study of *generalized Lawrence liftings* $\Lambda(A, B, r)$ for $r \geq 2$, where $A \in \mathcal{M}_{d \times n}(\mathbb{Z})$, $B \in \mathcal{M}_{p \times n}(\mathbb{Z})$, $r \in \mathbb{N}$:

$$\Lambda(A, B, r) = \underbrace{\begin{pmatrix} A & 0 & 0 \\ 0 & A & 0 \\ & & \ddots \\ 0 & 0 & A \\ B & B & \cdots & B \end{pmatrix}}_{r\text{-times}},$$

see [10,8]. We denote the columns of A by $\mathbf{a}_1, \dots, \mathbf{a}_n$ and the columns of B by $\mathbf{b}_1, \dots, \mathbf{b}_n$. The $(rd + p) \times rn$ matrix $\Lambda(A, B, r)$ has columns the vectors

$$\{\mathbf{a}_i \otimes \mathbf{e}_j \oplus \mathbf{b}_i : 1 \leq i \leq n, 1 \leq j \leq r\},$$

where $\mathbf{e}_1, \dots, \mathbf{e}_n$ represents the canonical basis of \mathbb{Z}^n . When $B = I_n$ one gets the usual r -th *Lawrence lifting* $A^{(r)}$, see [10]. We note that $\mathcal{L}(\Lambda(A, B, r))$ is a sublattice of \mathbb{Z}^{rn} . Let $C \in \mathcal{L}(\Lambda(A, B, r))$. We can assign to C an $r \times n$ matrix \mathcal{C} such that

$\mathcal{C}_{i,j} = C_{(i-1)n+j}$. Each row of \mathcal{C} corresponds to an element of $\mathcal{L}(A)$ and the sum of the rows of \mathcal{C} corresponds to an element in $\mathcal{L}(B)$. The number of nonzero rows of \mathcal{C} is the *type* of C . The *complexity* of any subset of $\Lambda(A, B, r)$ is the largest type of any vector in that set. The *Markov complexity*, $m(A, B)$, is the largest type of any vector in the universal Markov basis of $\Lambda(A, B, r)$ as r varies. The *extended Markov complexity*, $e(A, B)$, is the largest type of any vector in the extended universal Markov basis of $\Lambda(A, B, r)$ as r varies. Certainly $e(A, B) \geq m(A, B)$. The *Graver complexity* $g(A, B)$ is the largest type of any vector in the Graver basis of $\Lambda(A, B, r)$ as r varies.

It is natural to ask whether and when any of the complexities $m(A, B)$, $e(A, B)$, $g(A, B)$ are finite. In [10] it was shown that for any matrix A , $g(A, I_n) < \infty$ and $e(A, I_n) \leq g(A, I_n)$. Moreover in [8] it was shown that if A is a matrix with positive integer entries, then $g(A, B) < \infty$ and $e(A, B) \leq g(A, B)$. We note that in both cases mentioned above, the lattices of the corresponding r -th (generalized) Lawrence lifting for $r \geq 2$, are positively graded. In this paper we show that if for any $r \geq 2$, $\mathcal{L}(\Lambda(A, B, r)) \cap \mathbb{N}^{rn} \neq \{\mathbf{0}\}$ then $m(A, B)$ and $e(A, B)$ are infinite, see Theorem 2.9. Thus *$m(A, B)$ is finite if and only if $\Lambda(A, B, r)$ is positively graded for any $r \geq 2$* . It follows that $e(A, B) = m(A, B)$, see Theorem 2.8. To find out whether $\mathcal{L}(\Lambda(A, B, r)) \cap \mathbb{N}^{rn} \neq \{\mathbf{0}\}$ for any $r \geq 2$, it suffices to check the intersection $\text{Ker}_{\mathbb{Z}}(A) \cap \text{Ker}_{\mathbb{Z}}(B)$, as it is shown in Lemma 2.4. We also prove in Theorem 2.5 that *$m(A, B) < \infty$ and $r \geq 2$ then all minimal Markov bases of $\Lambda(A, B, r)$ have the same complexity, while this fails to be true if $m(A, B) = \infty$* . In the last section we give an explicit example where we show that if $m(A, B) = \infty$, then all is possible when considering the complexities of individual minimal Markov bases of $\Lambda(A, B, r)$. In this example in particular, one can find minimal Markov bases with complexities ranging from 1 to r .

2 On the finiteness of Markov complexity

Let $D \in \mathcal{M}_{m \times n}(\mathbb{Z})$. We let $\mathcal{L} := \mathcal{L}(D) \subset \mathbb{Z}^n$ and $\mathcal{L}_{\text{pure}}$ be the sublattice of \mathcal{L} generated by the elements in $\mathcal{L} \cap \mathbb{N}^n$. This is the *pure sublattice* of \mathcal{L} , see [3]. In [3, Theorem 4.18], it was shown that

if $\text{rank}(\mathcal{L}_{\text{pure}}) > 1$ or $\text{rank}(\mathcal{L}_{\text{pure}}) = 1$ and $\mathcal{L} \neq \mathcal{L}_{\text{pure}}$, then the universal Markov basis of D , $\mathcal{M}(D)$, is infinite.

It is automatic that in these cases, $\mathcal{E}(D)$, the extended universal Markov basis of D , is infinite.

Suppose now that $\text{rank}(\mathcal{L}_{\text{pure}}) = 1$ and $\mathcal{L} = \mathcal{L}_{\text{pure}}$. We let $\mathbf{0} \neq \mathbf{w} \in \mathbb{N}^n$ be such that $\mathcal{L} = \langle \mathbf{w} \rangle$. It is immediate that $\mathbf{w} \in \mathcal{G}(D)$ and thus $\mathcal{M}(D) \subset \mathcal{G}(D)$. On the other hand, one can easily see that $\{k\mathbf{w}, l\mathbf{w}\}$ is a minimal Markov basis of D for any two

relatively prime integers $k, l \geq 2$. Thus $\mathcal{E}(D)$ is infinite. Since $\mathcal{G}(D)$ is a finite set, it follows that

if $\text{rank}(\mathcal{L}_{\text{pure}}) > 1$ or $\text{rank}(\mathcal{L}_{\text{pure}}) = 1$ and $\mathcal{L} \neq \mathcal{L}_{\text{pure}}$, then the universal Markov basis of D is not contained in the Graver basis of D . If $\text{rank}(\mathcal{L}_{\text{pure}}) \geq 1$ then the extended universal Markov basis of D is not contained in the Graver basis of D .

Let $\mathbf{u} \in \mathcal{L}$ and consider the set $\mathcal{F}(\mathbf{u}^+) := \{\mathbf{t} \in \mathbb{N}^n : \mathbf{u}^+ - \mathbf{t} \in \mathcal{L}\}$. This is a finite set if and only if $\mathcal{L} \cap \mathbb{N}^n = \{\mathbf{0}\}$. We join two elements $\mathbf{w}_1, \mathbf{w}_2$ of $\mathcal{F}(\mathbf{u}^+)$ by an edge if and only if there is $\mathbf{v} \in \mathcal{L}$ such that \mathbf{v}^+ is componentwise smaller than \mathbf{w}_1 and \mathbf{w}_2 , meaning that at least one component of the nonnegative vector $\mathbf{w}_i - \mathbf{v}^+$ is strictly positive, for $i = 1, 2$. We let $\mathcal{G}_{\mathbf{u}}$ be the graph thus produced. When $\mathcal{L} \cap \mathbb{N}^n = \{\mathbf{0}\}$, a necessary condition for $\mathbf{u} \in \mathcal{L}$ to be in $\mathcal{M}(D)$, is the following criterion that appears in [2, Theorem 2.9], [5, Theorem 1.3.2] and [3, Theorem 3.13].

If $\mathcal{L} \cap \mathbb{N}^n = \{\mathbf{0}\}$ and \mathbf{u} is in $\mathcal{M}(D)$ then \mathbf{u}^+ and \mathbf{u}^- belong to different connected components of $\mathcal{G}_{\mathbf{u}}$.

We will use this criterion in the proof of the next theorem.

Theorem 2.1 *The extended universal Markov basis of D is contained in the Graver basis of D if and only if $\mathcal{L}(D) \cap \mathbb{N}^n = \{\mathbf{0}\}$. The universal Markov basis of D is contained in the Graver basis of D if and only if $\mathcal{L}(D) \cap \mathbb{N}^n = \{\mathbf{0}\}$ or $\mathcal{L}(D) = \mathcal{L}(D)_{\text{pure}}$ and $\text{rank } \mathcal{L}(D) = 1$.*

Proof. Let $\mathcal{L} := \mathcal{L}(D)$. By the remarks preceding the theorem it remains to be shown that if $\mathcal{L} \cap \mathbb{N}^n = \{\mathbf{0}\}$, $\mathbf{u} \in \mathcal{L}$, $\mathbf{u} \notin \mathcal{G}(D)$ then $\mathbf{u} \notin \mathcal{M}(D)$. Since $\mathbf{u} \notin \mathcal{G}(D)$ there exist nonzero vectors $\mathbf{v}, \mathbf{w} \in \mathcal{L}$ such that $\mathbf{u} = \mathbf{v} +_c \mathbf{w}$. Thus $\mathbf{u}^+ = \mathbf{v}^+ + \mathbf{w}^+$ and $\mathbf{u}^- = \mathbf{v}^- + \mathbf{w}^-$. It follows that $\mathbf{u}^+, \mathbf{u}^-$ and $\mathbf{u}^+ - \mathbf{v} = \mathbf{w}^+ + \mathbf{v}^-$ are all in $\mathcal{F}(\mathbf{u}^+)$. Next we show that \mathbf{v}^+ is nonzero. Indeed suppose not. Since $\mathbf{v}^- = \mathbf{v} - \mathbf{v}^+ = \mathbf{v} \in \mathcal{L} \cap \mathbb{N}^n = \{\mathbf{0}\}$, it follows that $\mathbf{v} = \mathbf{0}$, a contradiction. Similarly $\mathbf{w}^+, \mathbf{v}^-, \mathbf{w}^-$ are nonzero. Thus in the fiber $\mathcal{F}(\mathbf{u}^+)$, the elements $\mathbf{u}^+, \mathbf{w}^+ + \mathbf{v}^-$ are connected by an edge because of \mathbf{w}^- and similarly $\mathbf{u}^-, \mathbf{w}^+ + \mathbf{v}^-$ are connected by an edge because of $-\mathbf{v}^-$. It follows that $\mathbf{u}^+, \mathbf{u}^-$ belong to the same connected component of $\mathcal{G}_{\mathbf{u}}$ and thus $\mathbf{u} \notin \mathcal{M}(D)$. \square

Let " > " be any monomial order. We briefly note that if $x^{\mathbf{u}^+} - x^{\mathbf{u}^-}$ is in the reduced Gröbner basis of $I_{\mathcal{L}(D)}$, then \mathbf{u} is in the Graver basis of D , see [11]. The universal Gröbner basis of D consists of all \mathbf{u} such that $x^{\mathbf{u}^+} - x^{\mathbf{u}^-}$ is in a reduced Gröbner basis of $I_{\mathcal{L}(D)}$ and is a finite set. Thus, if $\mathcal{L}(D) \cap \mathbb{N}^n \neq \{\mathbf{0}\}$ then the universal Markov basis of D cannot be contained in the universal Gröbner basis of D . We note that even when $\mathcal{L}(D) \cap \mathbb{N}^n = \{\mathbf{0}\}$, the containment does not hold, as the next example shows.

Example 2.2 Let

$$D = \begin{pmatrix} 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 \\ 4 & 0 & 4 & 0 & 3 & 3 & 3 & 3 \\ 4 & 0 & 0 & 4 & 3 & 3 & 3 & 3 \\ 2 & 2 & 2 & 2 & 6 & 0 & 6 & 0 \\ 2 & 2 & 2 & 2 & 6 & 0 & 0 & 6 \end{pmatrix}.$$

The set $\{(1, 1, -1, -1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 1, -1, -1), (2, 2, 1, 1, -1, -1, -1, -1)\}$ is a minimal Markov basis of D . It follows from [4] that

$$I_D = (x_1x_2 - x_3x_4, x_5x_6 - x_7x_8, x_1^2x_2^2x_3x_4 - x_5x_6x_7x_8).$$

We note that for any monomial order, the initial term of $x_1x_2 - x_3x_4$ divides $x_1^2x_2^2x_3x_4$ while the initial term of $x_5x_6 - x_7x_8$ divides $x_5x_6x_7x_8$. Therefore the element $x_1^2x_2^2x_3x_4 - x_5x_6x_7x_8$ does not belong to a reduced Gröbner basis of $I_{\mathcal{L}(D)}$ and the vector $(2, 2, 1, 1, -1, -1, -1, -1)$ is not in the universal Gröbner basis of D . For a different proof based on the geometry of the fibers one can use the arguments of [11, Chapter 7]. Note that D has 12 different Markov bases. Of those bases, exactly 4 are subsets of the universal Gröbner basis of D .

We say that \mathbf{u} is $\mathcal{L}(D)$ -primitive if $\mathbf{u} \neq \mathbf{0}$ and $\mathbb{Q}\mathbf{u} \cap \mathcal{L}(D) = \mathbb{Z}\mathbf{u}$. For $\mathbf{u} \in \mathbb{Z}^n$, we let $\text{supp}(\mathbf{u}) := \{i : u_i \neq 0\}$. For $X \subset \mathcal{L}(D)$, we let

$$\text{supp}(X) := \bigcup_{\mathbf{u} \in X} \text{supp}(\mathbf{u}).$$

Suppose that $\mathcal{L}(D) \cap \mathbb{N}^n \neq \{\mathbf{0}\}$. In [3] it was shown that there exists an $\mathcal{L}(D)$ -primitive element $\mathbf{u} \in \mathcal{L}(D) \cap \mathbb{N}^n$ such that $\text{supp}(\mathbf{u}) = \text{supp}(\mathcal{L}(D)_{\text{pure}})$, [3, Proposition 2.7, Proposition 2.10]. This element can be extended to a minimal basis of $\mathcal{L}(D)_{\text{pure}}$ and then to a minimal Markov basis of D of minimal cardinality by [3, Theorem 2.12, Theorem 4.1, Theorem 4.11]. This is the point of the next lemma.

Lemma 2.3 *If $\mathcal{L}(D)_{\text{pure}} \neq \{\mathbf{0}\}$, there exists an $\mathcal{L}(D)$ -primitive element $\mathbf{v} \in \mathbb{N}^n$ and a minimal Markov basis of D of minimal cardinality that contains \mathbf{v} , such that $\text{supp}(\mathbf{v}) = \text{supp}(\mathcal{L}(D)_{\text{pure}})$.*

Next we consider generalized Lawrence liftings, for $A \in \mathcal{M}_{d \times n}(\mathbb{Z})$, $B \in \mathcal{M}_{p \times n}(\mathbb{Z})$ and $2 \leq r \in \mathbb{N}$. We let

$$\mathcal{L}_r := \mathcal{L}(\Lambda(A, B, r)), \quad \mathcal{L}_{A,B} := \text{Ker}_{\mathbb{Z}}(A) \cap \text{Ker}_{\mathbb{Z}}(B).$$

We note that $\mathcal{L}_r \subset \mathbb{Z}^{rn}$ while $\mathcal{L}_{A,B} \subset \mathbb{Z}^n$.

Proposition 2.4 $\mathcal{L}_{A,B} \cap \mathbb{N}^n \neq \{\mathbf{0}\}$ if and only if $\mathcal{L}_r \cap \mathbb{N}^{rn} \neq \{\mathbf{0}\}$ for any $r \geq 2$.

Proof. Let $C \in \mathcal{L}_{A,B} \cap \mathbb{N}^n$. We think of the elements of \mathcal{L}_r as $r \times n$ matrices, as explained in the introduction. We have that $[C \cdots C]^T \in \mathcal{L}_r \cap \mathbb{N}^{rn}$. Conversely, if $[C_1 \cdots C_r]^T \in \mathcal{L}_r \cap \mathbb{N}^{rn}$ then $C_1 + \cdots + C_r \in \mathcal{L}_{A,B} \cap \mathbb{N}^n$. \square

Suppose that $\mathcal{L}_r \cap \mathbb{N}^{rn} = \{\mathbf{0}\}$. Let $U \in \mathcal{L}_r$ and let \mathcal{U} the corresponding $r \times n$ matrix with \mathbf{u}_i as its i -th row. We define $\sigma(\mathcal{U}) = \{i : \mathbf{u}_i \neq 0, 1 \leq i \leq r\}$. Thus the type of \mathcal{U} is the cardinality of $\sigma(\mathcal{U})$. The $\Lambda(A, B, r)$ -degree of U is the vector $\Lambda(A, B, r)U^+$. Thus the $\Lambda(A, B, r)$ -degree of U is in the span $\mathbb{N}(\mathbf{a}_i \otimes \mathbf{e}_j \oplus \mathbf{b}_i : 1 \leq i \leq n, j \in \sigma(\mathcal{U}))$. It is well known that the $\Lambda(A, B, r)$ -degrees of any minimal Markov basis of $\Lambda(A, B, r)$ of minimal cardinality are invariants of $\Lambda(A, B, r)$, see [11].

Theorem 2.5 *Let $\mathcal{L}_r \cap \mathbb{N}^{rn} = \{\mathbf{0}\}$. The complexity of a minimal Markov basis of $\Lambda(A, B, r)$ is an invariant of $\Lambda(A, B, r)$.*

Proof. Let M_1, M_2 be two minimal Markov bases of $I_{\mathcal{L}_r}$. It is enough to show that the complexity of M_1 is less than or equal to the complexity of M_2 . Let $\mathcal{U} = [\mathbf{u}_1 \cdots \mathbf{u}_r]^T \in M_1$ be such that the type of \mathcal{U} is equal to the complexity of M_1 . We let $\mathcal{V} = [\mathbf{v}_1 \cdots \mathbf{v}_r]^T \in M_2$ be such that the $\Lambda(A, B, r)$ -degree of V is the same as the $\Lambda(A, B, r)$ -degree of U . Thus the $\Lambda(A, B, r)$ -degree of V is in $\mathbb{N}(\mathbf{a}_i \otimes \mathbf{e}_j \oplus \mathbf{b}_i : 1 \leq i \leq n, j \in \sigma(\mathcal{U}))$. This implies that $\mathbf{v}_i^+ = 0$ for every $i \notin \sigma(\mathcal{U})$. Since every nonzero element in $\text{Ker}_{\mathbb{Z}}(A)$ has a nonzero positive part (and a nonzero negative part) it follows that $\mathbf{v}_i = 0$ for every $i \notin \sigma(\mathcal{U})$. Thus $\sigma(\mathcal{V}) \subset \sigma(\mathcal{U})$. Reversing the argument we get that $\sigma(\mathcal{U}) = \sigma(\mathcal{V})$. Therefore the complexity of M_1 is less than or equal to the complexity of M_2 . \square

As in [8, Theorem 3.5] one can prove the following statement for arbitrary integer matrices $A \in \mathcal{M}_{d \times n}(\mathbb{Z}), B \in \mathcal{M}_{p \times n}(\mathbb{Z})$.

Theorem 2.6 *The Graver complexity $g(A, B)$ is the maximum 1-norm of any element in the Graver basis $\mathcal{G}(B \cdot \mathcal{G}(A))$. In particular, we have $g(A, B) < \infty$.*

Suppose that $\mathcal{L}_r \cap \mathbb{N}^{rn} \neq \{\mathbf{0}\}$. Next we show that $\Lambda(A, B, r)$ has a minimal Markov basis (of minimal cardinality) whose complexity is r .

Lemma 2.7 *Suppose that $\mathcal{L}_r \cap \mathbb{N}^{rn} \neq \{\mathbf{0}\}$. There exists a minimal Markov basis of $\Lambda(A, B, r)$ of minimal cardinality, that contains an element of type r .*

Proof. We first show that $\mathcal{L}_r \cap \mathbb{N}^{rn}$ has an element of type r . By Lemma 2.4, $\mathcal{L}_{A,B} \cap \mathbb{N}^n \neq \{\mathbf{0}\}$. We let $\mathbf{w} \in \mathcal{L}_{A,B} \cap \mathbb{N}^n$ be such that $\text{supp}(\mathbf{w}) = \text{supp}((\mathcal{L}_{A,B})_{\text{pure}})$. It follows that

$$\begin{pmatrix} \mathbf{w} \\ \vdots \\ \mathbf{w} \end{pmatrix} \in \mathcal{L}_r \cap \mathbb{N}^{rn}$$

has type r . Since $(\mathcal{L}_r)_{pure} = \langle \mathcal{L}_r \cap \mathbb{N}^{rn} \rangle$, we are done by Lemma 2.3. \square

The next theorem is an immediate consequence of Lemma 2.7.

Theorem 2.8 *The Markov complexity $m(A, B)$ is equal to the extended Markov complexity $e(A, B)$ for all $A \in \mathcal{M}_{d \times n}(\mathbb{Z})$, $B \in \mathcal{M}_{p \times n}(\mathbb{Z})$.*

Proof. If $\mathcal{L}_{A,B} \cap \mathbb{N}^n \neq \{\mathbf{0}\}$ then $m(A, B)$ and $e(A, B)$ are both infinite by Proposition 2.4 and Lemma 2.7. If $\mathcal{L}_{A,B} \cap \mathbb{N}^n = \{\mathbf{0}\}$ then $e(A, B) = m(A, B)$ by Nakayama's lemma. \square

Next we completely characterize the cases where $m(A, B) < \infty$.

Theorem 2.9 *The following are equivalent:*

- (1) *the Markov complexity $m(A, B)$ is finite,*
- (2) *$\mathcal{L}_{A,B}$ is a positive lattice,*
- (3) *$\forall r \geq 2$, all minimal Markov bases of $\Lambda(A, B, r)$ have the same complexity.*

Proof. For (1) \Leftrightarrow (2) we only have to show that if $\mathcal{L}_{A,B} \cap \mathbb{N}^n = \{\mathbf{0}\}$ then $m(A, B)$ is finite. By Lemma 2.4, $\mathcal{L}_r \cap \mathbb{N}^{rn} = \{\mathbf{0}\}$ for all $r \geq 2$. By Theorem 2.1 the universal Markov basis of $\Lambda(A, B, r)$ is a subset of the Graver basis of $\Lambda(A, B, r)$ for any r . Thus $m(A, B) \leq g(A, B)$. The latter one is finite, by Theorem 2.6.

We note that Theorem 2.5 gives the implication (1) \Rightarrow (3). For the reverse implication, let $r \geq g(A, B)$ and assume to the contrary that $m(A, B) = \infty$. By Lemma 2.7, there is a minimal Markov basis \mathcal{M}_1 of $\Lambda(A, B, r)$ of complexity r . We let \mathcal{M}_2 be the universal Gröbner basis of D . We note that \mathcal{M}_2 is a Markov basis of D and is contained in the Graver basis. Thus the complexity of \mathcal{M}_2 is less than or equal to $g(A, B) < r$. The Markov bases $\mathcal{M}_1, \mathcal{M}_2$ have different complexities, a contradiction. \square

Remark 2.10 Suppose that $r \geq 2$ and $\mathcal{L}_r \cap \mathbb{N}^{rn} \neq \{\mathbf{0}\}$. Let \mathbf{v} be the \mathcal{L}_r -primitive element of Lemma 2.3. By adding positive multiples of \mathbf{v} to the other elements of the Markov basis of Lemma 2.3 the new set is still a minimal Markov basis of $\Lambda(A, B, r)$, see [3], with the property that all of its elements are of type r .

3 Example

In this section we give an example of matrices A, B such that for any given $r \geq 2$, $\Lambda(A, B, r)$ has a minimal Markov basis with elements of type 1 and 2, a minimal Markov basis with elements of any type from 1 to r , a minimal Markov basis with

all elements of type r and an infinite universal Markov basis.

We let $A_1 \in \mathcal{M}_{2 \times m}(\mathbb{Z})$, $A_2 \in \mathcal{M}_{2 \times 2}(\mathbb{Z})$, $A \in \mathcal{M}_{2 \times (m+2)}(\mathbb{Z})$, $B_2 \in \mathcal{M}_{m \times 2}(\mathbb{Z})$ and $B \in \mathcal{M}_{m \times (m+2)}(\mathbb{Z})$ be the following matrices:

$$A_1 = \begin{pmatrix} 1 & \cdots & 1 \\ 0 & \cdots & 0 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & 0 \\ 1 & -1 \end{pmatrix}, \quad A = (A_1 | A_2), \quad B_2 = \begin{pmatrix} 1 & -1 \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \end{pmatrix}, \quad B = (I_m | B_2).$$

We consider the matrix $\Lambda(A, B, r)$. After column permutations it follows that

$$\Lambda(A, B, r) = \left(\begin{array}{ccc|cc|cc} A & 0 & 0 & A_1 & 0 & 0 & A_2 & 0 & 0 \\ 0 & A & 0 & 0 & A_1 & 0 & 0 & A_2 & 0 \\ & & \ddots & & & \ddots & & & \ddots \\ 0 & 0 & A & 0 & 0 & A_1 & 0 & 0 & A_2 \\ B & B & \cdots & B & I_m & I_m & \cdots & I_m & B_2 & B_2 & \cdots & B_2 \end{array} \right)$$

We note that the lattice $\mathcal{L}(\Lambda(A_1, I_m, r) | \Lambda(A_2, B_2, r))$ is isomorphic to the direct sum of the lattices $\mathcal{L}(\Lambda(A_1, I_m, r))$ and $\mathcal{L}(\Lambda(A_2, B_2, r))$ and thus there is a one to one correspondence between the Markov bases of $\Lambda(A, B, r)$ and unions of the Markov bases of $\mathcal{L}(\Lambda(A_1, I_m, r))$ and $\mathcal{L}(\Lambda(A_2, B_2, r))$.

The matrix $\Lambda(A_1, I_m, r)$ is the defining matrix of the toric ideal of the complete bipartite graph $K_{m,r}$ and has a unique Markov basis corresponding to cycles of length 4: all its elements have type 2, see [9] and [10, Example 5]. We denote by C_i the columns of $\Lambda(A_2, B_2, r)$, for $i = 1, \dots, 2r$. We note that $C_1, C_3, \dots, C_{2r-1}$ are linearly independent while $C_{2l-1} = -C_{2l}$ for $1 \leq l \leq r$. It follows that the lattice $\mathcal{L}(\Lambda(A_2, B_2, r))$ has rank r and is pure. Thus it has infinitely many Markov bases, see [3]. We consider the following Markov basis of $\Lambda(A_2, B_2, r)$ consisting of elements of type 1:

$$\left\{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \\ \vdots & \vdots \\ 0 & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ \vdots & \vdots \\ 1 & 1 \end{pmatrix} \right\}.$$

For fixed $1 \leq a \leq r$ and $1 \leq b \leq m+2$ we let $E_{a,b}$ be the matrix of $\mathcal{M}_{r \times (m+2)}(\mathbb{Z})$ which has 1 on the (a,b) -th entry and 0 everywhere else. Moreover for $1 \leq i < j \leq r$, $1 \leq k < l \leq m$ and $1 \leq s \leq r$, we let $E_{(i,j),(k,l)} \in \mathcal{M}_{r \times (m+2)}(\mathbb{Z})$ and $T_s \in \mathcal{M}_{r \times (m+2)}(\mathbb{Z})$ be the matrices

$$E_{(i,j),(k,l)} = E_{i,k} - E_{i,l} - E_{j,k} + E_{j,l}, \quad T_s = E_{s,m+1} + E_{s,m+2}.$$

It follows that the set $\mathcal{M} = \{T_1, \dots, T_r\} \cup \{E_{(i,j),(k,l)} : 1 \leq i < j \leq r, 1 \leq k < l \leq m\}$ is a minimal Markov basis of $\Lambda(A, B, r)$ of cardinality $r + \binom{r}{2} \binom{m}{2}$. The elements of \mathcal{M} have type 1 and 2.

Note that the set

$$\{T_1, T_1 + T_2, \dots, T_1 + \dots + T_r\} \cup \{E_{(i,j),(k,l)} : 1 \leq i < j \leq r, 1 \leq k < l \leq m\}$$

is a minimal Markov basis of $\Lambda(A, B, r)$ and the type of its elements range from 1 to r . Moreover if $T = \sum_{s=1}^r T_s$, then the set

$$\{T, T + T_2, \dots, T + T_r\} \cup \{T + E_{(i,j),(k,l)} : 1 \leq i < j \leq r, 1 \leq k < l \leq m\}$$

is a minimal Markov basis of $\Lambda(A, B, r)$ such that all its elements are of type r , see [3].

We remark that if S is any integer linear combination of the elements T_s , $1 \leq s \leq r$ and $1 \leq i < j \leq r, 1 \leq k < l \leq m$ then the element $S + E_{(i,j),(k,l)}$ belongs to the infinite universal Markov basis of $\Lambda(A, B, r)$.

Acknowledgment. This paper was partially written during the visit of the first and third author at the University of Ioannina. The third author was supported by a Romanian grant awarded by UEFISCDI, project number 83/2010, PNII-RU code TE-46/2010, program Human Resources, “Algebraic modeling of some combinatorial objects and computational applications”.

References

- [1] S. Aoki, H. Hisayuki, A. Takemura, *Markov bases in algebraic statistics*. Springer Series in Statistics. Springer, New York, xii+298 pp (2012).
- [2] H. Charalambous, A. Katsabekis, A. Thoma, Minimal systems of binomial generators and the indispensable complex of a toric ideal, Proc. Amer. Math. Soc. **135**, 3443–3451 (2007).
- [3] H. Charalambous, A. Thoma, M. Vladoiu, Markov bases of lattice ideals, arXiv:1303.2303v2.

- [4] P. Diaconis, B. Sturmfels, Algebraic algorithms for sampling from conditional distributions, *Ann. Statist.* **26**, 363–397 (1998).
- [5] M. Drton, B. Sturmfels, S. Sullivant, *Lectures on algebraic statistics*, Oberwolfach Seminars, 39. Birkhäuser Verlag, Basel, viii+171 pp (2009).
- [6] J. E. Graver, On the foundations of linear and integer linear programming I, *Math. Program.* **9**, 207–226 (1975).
- [7] R. Hemmecke, K. Nairn, On the Gröbner complexity of matrices, *J. Pure Appl. Alg.* **213**, 1558–1563 (2009).
- [8] S. Hoşten, S. Sullivant, A finiteness theorem for Markov bases of hierarchical models, *J. Combin. Theory Ser. A* **114**, 311–321 (2007).
- [9] E. Reyes, Ch. Tatakis, A. Thoma, Minimal generators of toric ideals of graphs, *Adv. Appl. Math.* **48**, 64–78 (2012).
- [10] F. Santos, B. Sturmfels, Higher Lawrence configurations, *J. Combin. Theory Ser. A* **103**, 151–164 (2003).
- [11] B. Sturmfels, *Gröbner Bases and Convex Polytopes*, University Lecture Series, No 8, MAS, R.I. (1995).