ПЕРВОЕ ВЫСШЕЕ ТЕХНИЧЕСКОЕ УЧЕБНОЕ ЗАВЕДЕНИЕ РОССИИ

«САНКТ-ПЕТЕРБУРГСКИЙ ГОРНЫЙ УНИВЕРСИТЕТ»

Кафедра механики

Допущены

к проведению занятий в 2018-2019 уч. году Заведующий кафедрой профессор

В.Л. Трушко

«28» апреля 2018 г.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ

для выполнения курсового проекта по учебной дисциплине

«ПРИКЛАДНАЯ МЕХАНИКА»

Специальность: 21.05.04 – «Горное дело»

Специализация: Электрификация и автоматизация горного производства

Разработал: доцент Большунов А.В.

Обсуждены и одобрены на заседании кафедры Протокол № 9 от 27 апреля 2018 г.

ВВЕДЕНИЕ

Курсовое проектирование является заключительным этапом изучения дисциплины «Прикладная механика», способствующим обобщению и закреплению теоретических знаний, полученных студентами, и применению этих знаний к комплексному решению инженерных задач по проектированию механических приводов.

Курсовое проектирование развивает навыки использования технической и справочной литературы, государственных стандартов, прикладных программ по автоматизированному расчету и проектированию узлов и деталей машин.

Знания и навыки, полученные при выполнении курсового проекта по дисциплине «Прикладная механика», способствуют успешному решению студентами различных инженернотехнических задач в курсовом проектировании по специальным дисциплинам и при выполнении дипломном проекта.

Методические указания не являются заменой классических учебников по курсовому проектированию по дисциплине «Прикладная механика», так как в них кратко изложены только основные этапы выполнения курсового проекта. Для успешного выполнения курсового проекта и получения полноценных знаний и навыков необходимо пользоваться учебниками, справочниками и государственными стандартами, указанными в библиографическом списке и использованными при составлении данных методических указаний.

1. ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ И СОДЕРЖАНИЮ КУРСОВОГО ПРОЕКТА

В курсовом проекте по дисциплине «Прикладная механика» проектируется электромеханический привод, состоящий из электродвигателя, одноступенчатого цилиндрического редуктора, муфты и рамы привода.

Основными исходными данными для проектирования являются: номинальный вращающий момент $T_{\text{вых}}$ (H·м) или мощность $P_{\text{вых}}$ (кВт) на выходном валу, угловая скорость $\omega_{\text{вых}}$ (с⁻¹) или частота вращения $n_{\text{вых}}$ (об/мин) выходного вала, срок службы привода.

Проект состоит из пояснительной записки и графической части.

Пояснительная записка курсового проекта включает в себя титульный лист, задание на выполнение проекта, аннотацию на русском и иностранном языках, оглавление, введение, текст записки, заключение, список используемых источников и приложения.

Текст пояснительной записки должен содержать следующие разделы:

- 1. Кинематический и энергетический расчёт привода с одноступенчатым редуктором.
- 2. Выбор материалов зубчатых колёс и их термообработки, определение допускаемых контактных и изгибных напряжений.
- 3. Определение основных геометрических параметров зубчатой передачи по условиям контактной и изгибной выносливости, расчёт геометрии передачи и усилий в зацеплении.
- 4. Эскизную компоновку редуктора, выполненную на миллиметровке.
- 5. Проектный расчёт валов из условия прочности при кручении. Проверка статической прочности вала. Определение коэффициента запаса усталостной прочности вала.
- 6. Определение расчётного ресурса подшипников, принятых на стадии эскизной компоновки.
 - 7. Проверку прочности шпоночных и шлицевых соединений.

- 8. Расчет основных геометрических параметров зубчатых колес и корпуса редуктора.
 - 9. Выбор посадок зубчатых колес и подшипников.
 - 10. Выбор сорта и объема смазки.
 - 11. Выбор соединительной муфты.
- 12. Проектирование сварной рамы привода, выбор размеров и схемы установки фундаментных болтов.

Графическая часть курсового проекта представляет собой следующие чертежи.

- 1. Общий вид привода (формат A1) в двух проекциях с необходимыми разрезами и сечениями, спецификацией, простановкой присоединительных и габаритных размеров, со схемой расположения фундаментных болтов.
- 2. Сборочный чертеж редуктора (формат A1) в двух проекциях с необходимыми разрезами и сечениями, простановкой габаритных, присоединительных, сборочных размеров и спецификацией.

Общий вид привода и сборочный чертеж редуктора по согласованию с преподавателем, ведущим курсовой проект, выполняется или вручную или с использованием средств автоматизированного проектирования.

Пояснительная записка и графическая часть курсового проекта выполняются в соответствии с требованиями ЕСКД и требованиями Горного университета к оформлению курсовых проектов.

Удовлетворяющий предъявляемым требованиям курсовой проект, после проверки преподавателем, допускается к защите, во время которой студент доказывает обоснованность принятых инженерных решений, содержащихся в проекте.

2. КИНЕМАТИЧЕСКИЙ И ЭНЕРГЕТИЧЕСКИЙ РАСЧЁТ ПРИВОДА

Цель расчёта: выбор электродвигателя, определение передаточного отношения передачи, нахождение частоты вращения и угловых скоростей, вращающих моментов и мощностей на валах. Полученные результаты являются исходными данными для последующих расчётов элементов привода.

Электродвигатель выбирают по требуемой мощности и частоте вращения.

Для нахождения требуемой мощности электродвигателя находят необходимую мощность на выходном валу привода:

$$P_{\text{вых}} = T_{\text{вых}} \cdot \omega_{\text{вых}} \,. \tag{2.1}$$

Мощность электродвигателя должна быть больше, так как часть её расходуется в приводе на преодоление трения в муфтах, передачах и подшипниках, на перемешивание масла в редукторе. Какая часть мощности, поданной на входной вал привода, доходит до выходного вала, показывает коэффициент полезного действия (к.п.д.) привода. Общий к.п.д. привода η равен произведению к.п.д. передачи $\eta_{\text{ц}}$ (для цилиндрической зубчатой передачи $\eta_{\text{ц}}$ = 0,97...0,98), к.п.д. подшипников $\eta_{\text{П}}$ = 0,99 и к.п.д. муфты η_{M} = 0,98:

$$\eta = \eta_{\rm II} \cdot \eta_{\rm II}^{j} \cdot \eta_{\rm M} , \qquad (2.2)$$

где j - количество пар подшипников в приводе (для одноступенчатого редуктора j=2).

Находится требуемая мощность электродвигателя:

$$P_{\text{Tpe6}} = \frac{P_{\text{вых}}}{\eta} \,. \tag{2.3}$$

Выбирается двигатель ближайшей большей мощности к полученной по расчёту.

Для нахождения требуемой частоты вращения электродвигателя $n_{\rm BX}$ необходимо учитывать, что цилиндрическая зубчатая передача имеет разумные габариты при значениях передаточного числа от 1,5 до 10, при этом требуемая частота вращения электродвигателя будет находиться в пределах:

$$n_{\rm BX}^{\rm min} = n_{\rm BMX} \cdot 1,5 \,, \tag{2.4}$$

$$n_{\rm\scriptscriptstyle BX}^{\rm max} = n_{\rm\scriptscriptstyle BbIX} \cdot 10. \tag{2.5}$$

В приводах общего назначения обычно используются электродвигатели переменного тока с синхронной частотой вращения, равной 750, 1000, 1500 или 3000 об/мин. Для привода принимается двигатель с частотой вращения, принадлежащей найденному интервалу $n_{\rm BX}^{\rm min}-n_{\rm BX}^{\rm max}$ или ближайший к нему.

Если рассчитанному интервалу принадлежат частоты вращения нескольких двигателей, то надо учитывать, что с повышением частоты вращения масса двигателя и его габариты уменьшаются, снижается стоимость, однако уменьшается его рабочий ресурс. Наиболее предпочтительны двигатели со средними частотами вращения 1000 или 1500 об/мин.

Определяется фактическое передаточное отношение передачи:

$$u = \frac{n_{\text{\tiny JB}}}{n_{\text{\tiny BMX}}} \,. \tag{2.6}$$

Найдём значения угловых скоростей валов ω_i (c⁻¹):

$$\omega_1 = \frac{\pi \cdot n_{_{AB}}}{30}, \qquad (2.7)$$

$$\omega_2 = \frac{\omega_1}{u} \,. \tag{2.8}$$

Мощности P_i на валах:

$$P_1 = P_{\text{TDE}\delta} \cdot \eta_{\text{M}} \cdot \eta_{\text{\Pi}} , \qquad (2.9)$$

$$P_2 = P_1 \cdot \eta_{II} \cdot \eta_{II} . \tag{2.10}$$

Вращающие моменты T_i на валах (H·м):

$$T_1 = \frac{P_1}{\omega_1},$$
 (2.11)

$$T_2 = \frac{P_2}{\omega_2} \,. \tag{2.12}$$

3. ВЫБОР МАТЕРИАЛОВ, ТЕРМООБРАБОТКИ И ОПРЕДЕЛЕНИЕ ДОПУСКАЕМЫХ НАПРЯЖЕНИЙ ДЛЯ ЗУБЧАТОЙ ЦИЛИНДРИЧЕСКОЙ ПЕРЕДАЧИ

Материал зубчатых колёс должен обеспечить контактную и изгибную прочность зубьев. Этим свойствам в наибольшей степени отвечают термообрабатываемые стали.

Зубчатые колёса в зависимости от твёрдости поверхности зубьев разделяют на две группы. Первая - твёрдостью ${\rm HB} \leq 350$ - зубчатые колёса нормализованные и улучшенные, вторая - закалённые, цементированные, нитроцементированные, азотированные с твёрдостью ${\rm HB} > 350$.

По табл. 3.1 с учётом вида термообработки выбирается конкретная марка стали для колеса и шестерни.

Твёрдость поверхности зубьев назначается с учётом следующих рекомендаций.

Если твёрдости активных поверхностей $HB \leq 350$, то в целях выравнивания долговечности зубьев шестерни и колеса, ускорения их приработки и повышения сопротивляемости заеданию твёрдость поверхностей зубьев шестерни всегда назначается больше твёрдости зубьев колеса.

 $\it Tаблица~3.1$ Некоторые стали, применяемые для зубчатых колёс

1101			писмые д	OIN SYOT	атых колес
Марка стали	НВ (сердце- вины)	HRC (поверх- ности)	<i>о</i> _В , МПа	<i>σ</i> _Г , МПа	Термическая обработка
35	163-192	=	550	270	Нормализация
45	179-207	=	600	320	Нормализация
45	235-262	=	780	540	Улучшение
45	269-302	=	890	650	То же
40X	235-262	=	790	640	- « -
40X	269-302	-	900	750	- « -
40X	269-302	45-50	900	750	Улучшение + Закалка ТВЧ
35XM	235-262	-	800	670	Улучшение
35XM	269-302	-	920	790	Улучшение
35XM	269-302	48-53	920	790	Улучшение +
					Закалка ТВЧ
40XH	235-262	-	800	630	Улучшение
40XH	269-302	-	920	750	Улучшение
40XH	269-302	48-53	920	750	Улучшение + Закалка ТВЧ
20XHM	300-400	56-63	1000	800	Улучшение +
					Цементация +
					Закалка
18ХГТ	300-400	56-63	1000	800	То же
12XH3A	300-400	56-63	1000	800	- « -
25ХГМ	300-400	56-63	1000	800	- « -
40XHM	269-302	56-63	980	780	Улучшение +
A					Азотирование
35Л	163-207	=	550	270	Нормализация
45Л	207-235	-	680	440	Улучшение

Для прямозубых колёс разность средней твёрдости шестерни и колеса должна составлять не менее 20 HB, т.е. $HB_1 \geq HB_2 +20$, для косозубых — $HB_1 \approx HB_2 +(50...70)$.

Для не прирабатывающихся зубчатых передач с твёрдостью активных поверхностей обоих колёс $HRC \ge 45$ обеспечивать разность твёрдостей зубьев шестерни и колеса не требуется. Этим колёсам задают одинаковые режимы термообработки и получают одинаковую твёрдость зубьев.

Допускаемое контактное напряжение при расчёте на сопротивление усталости рабочих поверхностей зубьев рассчитывают отдельно для зубьев шестерни и колеса по формуле:

$$\sigma_{HP} = \frac{\sigma_{H0}}{s_H} \cdot K_{HL}, \tag{3.1}$$

где σ_{H0} – предел контактной выносливости, определяется по формулам, указанным в табл. 3.2, в зависимости от твёрдости поверхности зубьев;

 s_H — коэффициент безопасности, выбирается по табл. 3.2; K_{HL} — коэффициент долговечности, вычисляется по формуле:

$$K_{HL} = \sqrt[6]{\frac{N_{H0}}{N_{HF}}},$$
 (3.2)

где N_{H0} — база испытаний (предварительно задаваемое наибольшее число циклов перемен контактных напряжений), для колёс из стальных заготовок находится по рис. 3.1;

 N_{HE} — эквивалентное число циклов перемен контактных напряжений, вычисляется по формуле:

$$N_{HE} = n \cdot 60 \cdot t_{q} \,, \tag{3.3}$$

где n – частота вращения колеса или шестерни, об/мин;

 $t_{\rm q}$ – срок службы передачи в часах по заданию.

По результатам расчёта значение коэффициента долговечности принимается при $K_{HL} \le 1$ равным единице (т.е. не учитывается), при $K_{HL} > 1$ - равным значению, рассчитанному по (3.2), но не более, чем $K_{HL \ max}$ указанному в табл. 3.2.

Как говорилось выше, значение контактного допускаемого напряжения вычисляется отдельно для шестерни σ_{HP1} и для колеса σ_{HP2} . Общее расчётное напряжение σ_{HP} принимается для:

- прямозубых передач равным наименьшему из двух $\sigma_{\!HP1}$ и $\sigma_{\!HP2}$;
- косозубых и шевронных $\sigma_{HP} = 0,45(\sigma_{HP1} + \sigma_{HP2})$, но не более $1,25\,\sigma_{HP{\rm min}}.$

 $Tаблица\ 3.2$ Значения предела контактной выносливости σ_{H0} , величины коэффициента безопасности s_H и величины предельного коэффициента долговечности K_{HL} в зависимости от термообработки активных поверхностей зубьев

Способ термической или химико- термической обработки зубьев	Твёрдость поверхностей зубьев	Группа стали	<i>о_{но} ,</i> МПа	s_H	K _{HL} , max			
Нормализация, улучшение	≤ 350 HB	Углеродистая, легированная	2HB+70	1 1	≤			
Объёмная закалка	3050 HRC		17HRC+150	1,1	≤ 2,4			
Поверхностная закалка	4056 HRC		17HRC+200					
Цементация или нитроцемента- ция	5565 HRC	Легированная	23HRC	1,2	≤ 1,8			
Азотирование	550750 HV		1050					

Рис. 3.1. Графики: а – зависимости базы испытаний N_{H0} от твёрдости рабочих поверхностей зубьев; б - пересчёта единиц твёрдости HRC в единицы HB.

Допускаемое напряжение изгиба при расчёте на сопротивление усталости зубьев при изгибе рассчитывается отдельно для зубьев шестерни σ_{FP1} и колеса σ_{FP2} по формуле:

$$\sigma_{FP} = \frac{\sigma_{F0}}{s_F} \cdot K_{FL} \cdot K_{FC}, \qquad (3.4)$$

где σ_{F0} – предел выносливости зубьев по напряжениям изгиба, табл. 1.4;

 s_F – коэффициент безопасности, табл. 3.3;

 K_{FC} – коэффициент реверсивности, для нереверсивных передач $K_{FC}=1$, для реверсивных $K_{FC}=0.7$ при HB ≤ 350 и $K_{FC}=0.8$ при HB>350;

 K_{FL} — коэффициент долговечности, при HB \leq 350 рассчитывается по формуле:

$$K_{FL} = 6 \sqrt{\frac{N_{F0}}{N_{FE}}}$$
, (3.5)

при НВ > 350:

$$K_{FL} = 9 \sqrt{\frac{N_{F0}}{N_{FE}}},$$
 (3.6)

по результату расчёта принимается значение, равное 1, если расчётное меньше 1, но не более 2 для зубьев с твёрдостью HB≤350, и не более 1,6 для зубьев с твёрдостью HB>350,

где N_{F0} — база испытаний (предварительно задаваемое наибольшее число циклов перемен напряжений изгиба), для всех сталей $N_{F0}=4\cdot 10^6$;

 $N_{\it FE}$ – эквивалентное число циклов перемен напряжений изгиба:

$$N_{FE} = n \cdot 60 \cdot t_{\Gamma} \,. \tag{3.7}$$

Таблица 3.3 Значения предела выносливости σ_{F0} и величины коэффициента безопасности s_F в зависимости от термообработки активных поверхностей зубьев

1					
Способ термической	Твёрдость				
или химико-	поверхно-	Группа стали	$\sigma_{\!F0,}$	~	
термической	стей		МПа	S_F	
обработки зубьев	зубьев				
Нормализация,	≤ 350 HB	Углеродистая,	1,8HB		
улучшение	≥ 330 HB	легированная	1,611D	1.75	
Объёмная закалка	3050 HRC		550	1,75	
Поверхностная закалка	4056 HRC		330		
Цементация			750		
Нитроцементация	5565 HRC	Легированная	1000	1,5	
Азотирование	5570 HRC		12HRC+300	1,75	

4. ПРОЕКТНЫЙ РАСЧЁТ ПРЯМОЗУБОЙ, КОСОЗУБОЙ И ШЕВРОННОЙ ЦИЛИНДРИЧЕСКОЙ ЗУБЧАТОЙ ПЕРЕДАЧИ

По табл. 4.1 задаётся стандартное значение коэффициента отношения ширины колеса к межосевому расстоянию ψ_{ba} в зависимости от твёрдости рабочей поверхности зубьев и расположения колес относительно опор.

Вычисляется коэффициент отношения ширины колеса к диаметру ψ_{bd} :

$$\psi_{bd} = 0.5 \cdot \psi_{ba}(u+1),$$
 (4.1)

где u — передаточное отношение передачи.

Tаблица 4.1 Интервалы величин и стандартные значения коэффициента ψ_{ba} для зубчатых передач редукторов

Am sy o ratem nopoda i pody ktopos						
Расположение зубчатых	Твёрдость поверхностей зубьев					
колёс относительно опор	<i>HB</i> ≤ 350	<i>HB</i> ≥ 350				
Симметричное	0,3 - 0,5	0,25 - 0,3				
Несимметричное	0,25 - 0,4	0,2 - 0,25				
Консольное	0,2 - 0,25	0,15 - 0,2				
Стандартный ряд значений ко	оэффициента ψ_{ba} :					
0,1; 0,125; 0,16; 0,2; 0,25; 0,3	15; 0,4; 0,5; 0,63; 0,8; 1,6	0; 1,25.				
Примечания. 1. Для прямозубых колёс принимать меньшие значения, для косо-						
зубых большие. 2. Для шевронных колёс при ширине колеса, равной сумме						
полушевронов, коэффициент	увеличивают в 1,31,4 ра	за.				

По графикам на рис. 4.1 находится значение коэффициента концентрации нагрузки $K_{H\beta}$.

Из условия сопротивления контактной усталости рабочих поверхностей зубьев вычисляется межосевое расстояние передачи a_w :

$$a_w = K_a \cdot (u_i + 1) \cdot 3 \sqrt{\frac{T_1 \cdot K_{H\beta}}{u \cdot \psi_{ba} \cdot \sigma_{HP}^2}}, \qquad (2.2)$$

где K_a – коэффициент; для прямозубой передачи K_a = 490, для косозубой и шевронной - K_a = 430;

 T_1 – вращающий момент на валу шестерни, Н·м.

Рис. 4.1. Значения коэффициента $K_{H\beta}$ для цилиндрических передач в одноступенчатом редукторе находится по графику V: а – значение коэффициента при $HB_2 \le 350$, б - значение коэффициента при $HB_1 > 350$ и $HB_2 > 350$.

Расчётное значение a_w округляется до ближайшего стандартного значения по табл. 4.2.

Таблица 4.2

Стандартный ряд чисел межосевых расстояний a_w , мм 1-й ряд 40, 50, 63, 80, 100, 125, 160, 200, 250, 315, 400,... (предпочтительный) 2-й ряд 140, 180, 225, 280, 355, 450,...

Назначается ориентировочное число зубьев шестерни z_1 . Для зубчатых колёс, нарезанных без смещения, $z_{1 \min} \ge 17$.

По графику на рис. 4.2 находится значение коэффициента формы зуба Y_{F1} (при коэффициенте смещения X=0).

Вычисляется ширина венца зубчатого колеса b_w :

$$b_w = a_w \cdot \psi_{ba} . \tag{2.3}$$

Рис. 4.2. Значение коэффициента формы зуба Y_F при коэффициенте смещения X=0 в зависимости от числа зубьев z (для косозубых и конических - эквивалентное число зубьев z_v)

Определяется нормальный модуль зацепления m_n (для прямозубой передачи $m_n \equiv m$) из условия сопротивления усталости зуба при изгибе:

$$m_n = \frac{K_{ma} \cdot T_1 \cdot (u_1 + 1) \cdot Y_{F1}}{a_w \cdot b_w \cdot \sigma_{FP1}},$$
 (4.4)

где K_{ma} – коэффициент; для прямозубых колёс K_{ma} = 1400, для косозубых – K_{ma} = 1100, для шевронных – K_{ma} = 850.

Расчётное значение модуля округляется до стандартного по табл. 4.3. В силовых передачах рекомендуют не принимать значение модуля менее 1,5 мм.

Таблица 4.3

Стандартный ряд значений модуля m_n , мм

- · · · · · · · · · · · · · · · · · · ·	F F1
1-й ряд (предпочтительный)	1,25; 1,5; 2; 2,5; 3; 4; 5; 6; 8; 10; 12; 16; 20
2-й ряд	1,375; 1,75; 2,25; 2,75; 3,5; 4,5; 5,5; 5,7; 9;

Если из расчёта на сопротивление усталости зуба при изгибе модуль получился намного меньше 1,5 мм, его значение определяют по формуле:

$$m_n = \frac{2 \cdot a_w \cdot \cos \beta}{z_1 \cdot (1+u)} \tag{4.5}$$

и округляют до ближайшего стандартного значения.

Находится суммарное число зубьев z_{Σ} :

$$z_{\Sigma} = \frac{2 \cdot a_{w} \cdot \cos \beta}{m_{n}}, \tag{4.6}$$

тогда число зубьев шестерни будет равно:

$$z_1 = \frac{z_{\Sigma}}{u+1},\tag{4.7}$$

получившееся значение округляется до целого числа.

Если по расчёту $z_1 < 17 \cdot \cos^3 \beta$, принимают $z_1 = 17 \cdot \cos^3 \beta$, округлённое до целого числа.

Число зубьев колеса z_2 :

$$z_2 = z_1 \cdot u \,, \tag{4.8}$$

полученное число зубьев округляют до целого значения.

Для косозубой передачи рассчитывается величина фактического угла наклона зубьев β :

$$\beta = \arccos \left[\frac{(z_1 + z_2) \cdot m_n}{2 \cdot a_w} \right]. \tag{2.9}$$

Находятся делительные диаметры колёс:

$$d_1 = \frac{z_1 \cdot m_n}{\cos \beta} \,, \tag{4.10}$$

$$d_2 = \frac{z_2 \cdot m_n}{\cos \beta} \,. \tag{4.11}$$

Для прямозубой передачи уточняется значение межосевого расстояния:

$$a_w = \frac{d_1 + d_2}{2} \,. \tag{4.12}$$

Находятся диаметры вершин зубьев:

$$d_{a1} = d_1 + 2 \cdot m_n \,, \tag{4.13}$$

$$d_{a2} = d_2 + 2 \cdot m_n, \tag{4.14}$$

диаметры впадин зубьев:

$$d_{f1} = d_1 - 2.5 \cdot m_n \,, \tag{4.15}$$

$$d_{f2} = d_2 - 2.5 \cdot m_n \,. \tag{4.16}$$

Определяется ширина венца зубчатого колеса b_{w2} и шестерни b_{w1} :

$$b_{w2} = a_w \cdot \psi_{ba}, \tag{4.17}$$

$$b_{w1} = b_{w2} + 2...5 \,\text{MM} \,. \tag{4.18}$$

Полученные при расчёте значения b_{w2} и b_{w1} округляются до ближайшего числа из ряда чисел Ra20 нормальных линейных размеров. Ширина канавки для выхода режущего инструмента в шевронных зубчатых колёсах включается в величину b_{w2} .

При этом ширина венца зубчатого колеса b_{w2} должна быть такой, чтобы величина коэффициента осевого перекрытия ε_{β} была не менее:

$$\varepsilon_{\beta} = \frac{b_{w2} \cdot \sin \beta}{\pi \cdot m_n} \ge 1, 1 \dots 1, 2. \tag{4.19}$$

Основные размеры цилиндрической зубчатой передачи показаны на рисунке 4.3.

Рис. 4.3. Основные размеры цилиндрической зубчатой передачи.

5. ПРОВЕРОЧНЫЙ РАСЧЁТ ПРЯМОЗУБОЙ, КОСОЗУБОЙ И ШЕВРОННОЙ ЦИЛИНДРИЧЕСКОЙ ПЕРЕДАЧИ

5.1. Проверочный расчёт на сопротивление контактной усталости

Находится окружная скорость зубьев шестерни *v*:

$$v = \frac{\omega_1 \cdot d_1}{2} \,. \tag{5.1}$$

По табл. 5.1 назначается степень точности передачи.

Таблица 5.1

Рекомендации по выбору степени точности цилиндрических зубчатых передач

Степень точности	Окружная скорость зубьев v, м/с, не более		
по нормам	прямозубые	Косозубые и шевронные	
плавности не ниже	примозубые	косозуоые и шевронные	
6 (высокоточные)	20	30	
7 (точные)	12	20	
8 (средней точности)	6	10	
9 (пониженной точности	2	4	

Рассчитывается коэффициент Z_H , учитывающий форму сопряжённых поверхностей зубьев в полюсе зацепления. При коэффициенте смещения X=0 он вычисляется по формуле:

$$Z_H = \sqrt{\frac{2 \cdot \cos \beta}{\sin(2 \cdot 20^\circ)}}.$$
 (5.2)

Коэффициент, учитывающий механические свойства сопряжённых колёс Z_M при стальных колёсах равен $Z_M = 274$.

Рассчитывается коэффициент торцевого перекрытия ε_{α} :

$$\varepsilon_{\alpha} = \left[1.88 - 3.2 \cdot \left(\frac{1}{z_1} + \frac{1}{z_2} \right) \right] \cdot \cos \beta. \tag{5.3}$$

Для прямозубых передач $\varepsilon_{\alpha} \ge 1,2$, для косозубых - $\varepsilon_{\alpha} > 1$.

Определяется значение коэффициента Z_{ε} , учитывающего суммарную длину контактных линий. Для прямозубых колёс:

$$Z_{\varepsilon} = \sqrt{\frac{4 - \varepsilon_{\alpha}}{3}} \,, \tag{5.4}$$

для косозубых:

$$Z_{\varepsilon} = \sqrt{\frac{1}{\varepsilon_{\alpha}}} \,. \tag{5.5}$$

Находится окружная (тангенциальная) сила F_t :

$$F_t = \frac{2 \cdot T_1}{d_1} \,. \tag{5.6}$$

По табл. 5.2 назначается коэффициент δ_H , учитывающий влияние вида зубчатой передачи и модификации профиля головок зубьев, по табл. 5.3 - коэффициент g_θ , учитывающий влияние разности шагов зацепления шестерни и колеса, по табл. 5.4 - коэффициент $K_{H\alpha}$, учитывающий неравномерность распределения нагрузки между зубьями. Для прямозубых передач $K_{H\alpha}=1$.

Определяется удельная окружная динамическая сила w_{HV} :

$$w_{HV} = \delta_H \cdot g_0 \cdot v \cdot \sqrt{\frac{a_w}{u}}, \qquad (5.7)$$

Tаблица 5.2 Значения коэффициентов δ_H и δ_F , учитывающих влияние вида зубчатой передачи и модификации профиля головки зубьев

зублитой передили и модификации профили толовки зубвев						
Твёрдость поверхности зубьев по Бринеллю	Вид зубьев	$\delta_{\!H}$	$\delta_{\!F}$			
При <i>H</i> ₁ < 350 HB или	Прямые без модификации* головки	0,006	0,016			
$H_2 \leq 350 \text{ HB}$	Прямые с модификацией головки	0,004	0,011			
	Косые	0,002	0,006			
Hav. 11 > 250 HD	Прямые без модификации головки	0,014	0,016			
При $H_1 > 350 \text{ HB}$ То же $H_2 > 350 \text{ HB}$	Прямые с модификацией головки	0,010	0,011			
	Косые	0,004	0,006			

^{*}Модификация зубьев предусматривает его утонение при вершине на величину, которая компенсирует изменение основного шага, обусловленное деформацией зубьев под нагрузкой, благодаря чему зубья входят в зацепление более плавно. Применяется для прямозубых тихоходных высоконагруженных передач.

коэффициент динамичности K_{HV} :

$$K_{HV} = 1 + \frac{w_{HV} \cdot b_{w2}}{F_t \cdot K_{H\beta} \cdot K_{H\alpha}}, \qquad (5.8)$$

удельная расчётная окружная сила w_{Ht} :

$$w_{Ht} = \frac{F_t}{b_{w2}} \cdot K_{H\beta} \cdot K_{HV} \cdot K_{H\alpha} \,. \tag{5.9}$$

Таблица 5.3

Значения коэффициента g_0 , учитывающего влияние разности шагов зацепления зубьев шестерни и колеса

		1						
	Marrier var	Степень точности передачи по нормам плавности						
	Модуль, мм	6	7	8	9			
Γ	До 3,55	38	47	56	73			
	Свыше 3,55 до 10	42	53	61	82			
	Свыше 10	48	64	73	100			

Таблииа 5.4

Значения коэффициента неравномерности распределения нагрузки между зубьями $K_{H\alpha}$ для цилиндрических косозубых передач в зависимости от степени точности по нормам плавности работы и окруж-

ной скорости передачи у

Окружная скорость	Степень точности по нормам плавности работы					
ν, м/c	5	6	7	8	9	
2,5	1	1,01	1,03	1,05	1,13	
5	1	1,02	1,05	1,09	1,16	
10	1,01	1,03	1,07	1,13	-	
15	1,01	1,04	1,09	-	-	
20	1,02	1,05	1,12	-	-	
25	1,02	1,06	-	-	-	

Рассчитывается величина контактного напряжения σ_H :

$$\sigma_H = Z_H \cdot Z_M \cdot Z_{\varepsilon} \cdot \sqrt{\frac{w_{Hi} \cdot (u+1)}{d_1 \cdot u}}$$
 (5.10)

и сравнивается с величиной допускаемого контактного напряжения.

Расхождение, найденное по формуле:

$$\delta = \frac{\sigma_{HP} - \sigma_H}{\sigma_{HP}} \cdot 100\%, \qquad (5.11)$$

не должно превышать 5% в сторону перегрузки ($\sigma_H > \sigma_{HP}$) и 15% в сторону недогрузки ($\sigma_H < \sigma_{HP}$). В этом случае размеры передачи считаются удовлетворительными.

При недогрузке более 15% межосевое расстояние передачи необходимо уменьшить, а при перегрузке более 5% - увеличить.

Проверочный расчёт на сопротивление усталости зубьев при изгибе.

Для косозубых передач находится коэффициент Y_{β} , учитывающий наклон зуба:

$$Y_{\beta} = 1 - \frac{\beta}{140},\tag{5.12}$$

эквивалентное число зубьев шестерни z_{v1} и колеса z_{v2} :

$$z_{v1} = \frac{z_1}{\cos^3 \beta},$$
 (5.13)

$$z_{v2} = \frac{z_2}{\cos^3 \beta} \,. \tag{5.14}$$

Исходя из числа зубьев для прямозубых передач и из эквивалентного числа зубьев для косозубых передач по графику на рис. 4.2 находятся коэффициенты формы зуба для шестерни Y_{F1} и колеса Y_{F2} .

Вычисляется отношение $\frac{\sigma_{{\scriptscriptstyle FP1}}}{Y_{{\scriptscriptstyle F1}}}$ и $\frac{\sigma_{{\scriptscriptstyle FP2}}}{Y_{{\scriptscriptstyle F2}}}$. Дальнейшая проверка

на сопротивление усталости зубьев при изгибе ведётся для зубьев того колеса, для которого величина найденного отношения меньше.

Для косозубых передач вычисляется коэффициент $K_{F\alpha}$, учиты-

вающий неравномерное распределение нагрузки между парами зубьев при многопарном зацеплении:

$$K_{F\alpha} = \frac{4 + (\varepsilon_{\alpha} - 1) \cdot (n_s - 5)}{4 \cdot \varepsilon_{\alpha}}, \tag{5.15}$$

где n_s — степень точности передачи по нормам плавности работы, табл. 5.1.

Для прямозубых передач $K_{F\alpha} = 1$.

По графикам на рис. 5.1 определяется коэффициент концентрации нагрузки $K_{F\beta}$. По табл. 5.2 назначается коэффициент δ_F , учитывающий влияние вида зубчатой передачи и модификации профиля головок зубьев.

Рассчитывается удельная окружная динамическая сила w_{FV} :

$$w_{FV} = \delta_F \cdot g_0 \cdot v \cdot \sqrt{\frac{a_w}{u}}, \qquad (5.16)$$

коэффициент динамичности K_{FV} :

$$K_{FV} = 1 + \frac{w_{FV} \cdot b_{w2}}{F_t \cdot K_{F\beta} \cdot K_{F\alpha}},$$
 (5.17)

(здесь и далее в формулы подставляется ширина и коэффициент формы зуба того колеса, для которого проводится проверка на сопротивление усталости зубьев при изгибе) удельная расчётная окружная сила w_{Fi} :

$$w_{Ft} = \frac{F_t}{h_{\alpha}} \cdot K_{F\beta} \cdot K_{FV} \cdot K_{F\alpha} \,. \tag{5.18}$$

Находится величина действующего напряжения изгиба σ_F :

$$\sigma_F = \frac{Y_F \cdot w_{Ft}}{m_n} \,. \tag{5.19}$$

Рис. 5.1. Значения коэффициента $K_{F\beta}$ для цилиндрических передач в одноступенчатом редукторе находится по графику V: а — значение коэффициента при $HB_2 \le$ 350, б - значение коэффициента при $HB_1 > 350$ и $HB_2 > 350$;

Величина найденного напряжения не должна превышать величину допускаемого напряжения изгиба σ_{FP} более чем на 5% для того из колёс, для которого делалась проверка. В противном случае нужно назначить модулю m_n большее значение и повторить расчёты до выполнения условия $\sigma_F \leq \sigma_{FP}$.

Силы, действующие в зацеплении

Тангенциальная (окружная) составляющая F_t найдена выше (5.6). Радиальная F_r и осевая F_a составляющие находятся по формулам:

$$F_r = F_t \cdot \frac{tg20^\circ}{\cos \beta}, \qquad (5.22)$$

$$F_a = F_t \cdot tg\beta. \qquad (5.23)$$

$$F_a = F_t \cdot tg\beta \tag{5.23}$$

6. РАСЧЁТ ВАЛОВ

6.1. Выбор материала и проектный расчёт

Материалы для изготовления валов и их механические характеристики указаны в табл. 6.1.

Проектный расчёт вала сводится к определению его минимального диаметра d из условия прочности на кручение :

$$d = \sqrt[3]{\frac{T}{0, 2 \cdot \tau_{\rm P}}},\tag{6.1}$$

где T – момент на валу;

 $\tau_{\rm p}$ – допускаемое касательное напряжение, $\tau_{\rm p}$ =20 . . . 25 МПа.

Ориентируясь на полученное значение диаметра конструируют вал.

Таблица 6.1 Материалы валов и их механические характеристики

Марка	Твёрдость НВ **,	$\sigma_{\!\!\! B}^{\;*}$	$\sigma_{\!$	σ_{-1}	τ1	Коэффи	щиенты
стали	не менее		МΠ	a		ψ_{σ}	ψ_{τ}
Ст5	190	520	280	220	130	0	0
45	240	800	550	350	210	0,1	0
43	270						
40X	240	800	650	360	210	0,1	0,05
40XH	270	920	750	420	250	0,1	0,05
20	145	400	240	170	100	0	0
20X	197	650	400	300	160	0,05	0
12XH3A	260	950	700	420	210	0,1	0,05
12X2H4A	300	1100	850	500	250	0,15	0,1
18XFT	330	1150	950	520	280	0,15	0,1
30ХГТ	320	1150	950	520	310	0,15	0,1

^{*} Для вала-шестерни при твёрдости поверхности зуба \geq 350 НВ пределы прочности $\sigma_{\rm B}$ и текучести $\sigma_{\rm T}$ для сердцевины смотри в табл. 3.1, при этом: $\sigma_{\rm -1}$ =0,4 · $\sigma_{\rm B}$ (сердцевины), $\tau_{\rm -1}$ =0.6 · $\sigma_{\rm -1}$

^{**} Твёрдость НВ дана для сердцевины при поверхностном упрочнении (поверхностная закалка т.в.ч., цементация, азотирование и др.) и для поверхности при улучшении.

6.2. Составление расчётной схемы вала и определение опасных сечений.

Расчёт вала на прочность производится по схеме двухопорной шарнирно опёртой балки.

По чертежу вала составляют его расчётную схему, в которой вал рассматривается как балка на шарнирных опорах, нагруженная внешними силами и моментами.

На схеме фиксированная опора вала (выполненная в виде подшипникового узла, воспринимающего одновременно осевые и радиальные нагрузки) обозначается шарнирно неподвижной опорой, а плавающая опора (подшипниковый узел, воспринимающий только радиальные нагрузки) обозначается шарнирно подвижной опорой.

Радиальные реакции опор считаются приложенными посередине ширины подшипников.

Если на входном конце вала установлена муфта упругая втулочно-пальцевая, то на вал со стороны муфты действует радиальная нагрузка:

$$F_{\rm M} = (0, 2...0, 35) \cdot \frac{2 \cdot T}{D},$$
 (6.2)

где T – вращающий момент на валу;

D – диаметр окружности центров пальцев муфты.

Со стороны зубчатой муфты на вал действует сила:

$$F_{\rm M} = (0, 2...0, 4) \cdot \frac{2 \cdot T}{D},$$
 (6.3)

где D – делительный диаметр зубчатого венца втулки.

Действие сил и вращающих моментов приводят к двум взаимно перпендикулярным плоскостям — горизонтальной «xz» и вертикальной «xy».

Силы, действующие в зацеплении передач, приводятся к оси вала.

В последующих расчётах на прочность действие на вал осевой силы F_a и R_a (идущие вдоль оси "x") не учитываются ввиду малой величины нормальных напряжений, возникающих от них.

Составляются две расчётные схемы вала отдельно - для сил, действующих в плоскости "yx" и плоскости "zx".

В каждой плоскости определяются составляющие радиальных реакций (R_{v1} и R_{v2} в плоскости "yx", R_{z1} и R_{z2} в плоскости"zx").

Строятся эпюры изгибающих моментов, действующие в каждой из плоскостей (M_{yx} и M_{zx}).

Строится эпюра суммарного изгибающего момента:

$$M = \sqrt{M_{yx}^2 + M_{zx}^2} \ . \tag{6.4}$$

Строится эпюра крутящих моментов T_x .

По характеру эпюр с учётом ступенчатой формы вала и мест концентрации напряжений определяются места возможно опасных сечений.

Как известно, у вала с одинаковыми размерами сечений опасным сечением будет то, в котором действуют наибольшие внутренние усилия. Величина напряжений в поперечном сечении ступенчатого вала зависит не только от величины внутренних усилий, но и от диаметра вала и наличия в сечении концентраторов напряжений. Поэтому для определения опасного сечения, в котором действуют наибольшие по величине напряжения, наличие одних лишь эпюр силовых факторов недостаточно. При расчёте ступенчатых валов приходится назначать по разным признакам несколько предположительно опасных сечений и делать проверку на прочность для каждого из них.

6.3. Напряжения, действующие в опасном сечении.

В поперечном сечении вала действуют переменные нормальные напряжения изгиба σ и переменные касательные напряжения τ от кручения. Переменность напряжений изгиба обусловлена поворотом вала к линии действия сил. Касательные напряжения имеют переменный характер *при нереверсивном* приводе из-за включения-выключения привода, *при реверсивном*

приводе - из-за перемены направления вращения (рис. 6.1).

Рис. 6.1. Характер изменения величины напряжений в поперечном сечении вала: а – нормальных; б – касательных при реверсивной работе; в – касательных при не реверсивной работе.

Величина нормальных напряжений изменяется по симметричному циклу (рис. 6.1 а), для которого среднее напряжение цикла равно нулю ($\sigma_m = 0$). Амплитуда цикла σ_a находится по формуле:

$$\sigma_a = \frac{M}{W},\tag{6.5}$$

где W – момент сопротивления изгибу поперечного сечения вала;

M – величина изгибающего момента в рассматриваемом сечении.

При *нереверсивной* работе среднее τ_m и амплитудное τ_a напряжения цикла равны (рис. 6.1 в) и вычисляются по формуле:

$$\tau_a = \tau_m = \frac{1}{2} \cdot \frac{T}{W_p},\tag{6.6}$$

где W_p — полярный момент сопротивления поперечного сечения вала кручению.

При реверсивной работе (рис. 6.1 б):

$$\tau_a = \frac{T}{W_p},\tag{6.7}$$

$$\tau_m = 0. \tag{6.8}$$

6.4. Проверочный расчёт вала на сопротивление усталости.

Проверка вала на сопротивление усталости сводится к определению величины коэффициента запаса усталостной прочности s в опасных сечениях вала и проверке условия:

$$s = \frac{s_{\sigma} \cdot s_{\tau}}{\sqrt{s_{\sigma}^2 + s_{\tau}^2}} \ge [s] \tag{6.9}$$

где [s] — минимально допустимый коэффициент запаса сопротивления усталости, [s] = 1,8...2,5;

 s_{σ} и s_{τ} — коэффициенты запаса сопротивления усталости по изгибу и по кручению, соответственно:

$$s_{\sigma} = \frac{\sigma_{-1} \cdot K_L}{\frac{K_{\sigma}}{\varepsilon_{\sigma}} \sigma_a + \psi_{\sigma} \sigma_m},$$
(6.10)

$$s_{\tau} = \frac{\tau_{-1} \cdot K_L}{\frac{K_{\tau}}{\varepsilon_{\tau}} \tau_a + \psi_{\tau} \tau_m},$$
(6.11)

где $\sigma_{\!_{-1}}$ и $\tau_{\!_{-1}}$ – пределы выносливости материала вала при изгибе и кручении, соответственно, табл. 6.1;

 K_{σ} и K_{τ} — эффективные коэффициенты концентрации напряжений при изгибе и кручении, табл. 6.3, 6.4, 6.5, 6.6 (при действии в одном сечении нескольких источников концентрации напряжений от формы (например, шпоночного паза и перепада диаметров) учитывают только наиболее опасный из них с учётом влияния шероховатости поверхности;

 $arepsilon_{\sigma}$ и $arepsilon_{ au}$ — коэффициенты влияния абсолютных размеров поперечного сечения, табл. 6.7 (при действии в сечении концентрации напряжений от прессовой посадки коэффициенты K_{σ} и $arepsilon_{\sigma}$, K_{τ} и $arepsilon_{\tau}$ учитываются совместно по табл. 6.6 в виде отношений $K_{\sigma}/arepsilon_{\sigma}$ и $K_{\tau}/arepsilon_{\tau}$. При действии в сечении других концентраторов напряжений в расчёт принимается наибольший из них);

 ψ_{σ} и ψ_{τ} - коэффициенты чувствительности материала к асимметрии цикла напряжений, табл. 6.1;

 K_{I} – коэффициент долговечности, находится по формуле:

$$K_L = \sqrt[m]{\frac{N_0}{N_{LE}}}$$
, но не менее $K_L = 1$, (6.12)

где m — показатель степени, m = 6 для участков вала с прессовыми посадками, для остальных m = 9;

 N_0 — база испытаний, для валов диаметром 10...50 мм N_0 = $(3...5)\cdot 10^6$, для валов диаметром более 50 мм N_0 = 10^7 ;

 $N_{\! L\! E}$ — эквивалентное число циклов перемен напряжений, вычисляется по формуле:

$$N_{LE} = n \cdot 60 \cdot t_{\text{\tiny Yac}}, \tag{6.13}$$

где n – частота вращения вала, об/мин;

 $t_{\rm vac}$ – срок службы привода по заданию, час.

При невыполнении условия (6.9) либо увеличивают диаметр вала в проверяемом сечении, либо выбирают для вала материал с большим по величине пределом выносливости.

Эффективные коэффициенты концентрации напряжений K_{σ} и K_{τ} для ступенчатых валов с галтелью

			K	-σ			Ь	(_τ	
<u>h</u> r	<u>r</u> d		при $\sigma_{\rm B}$, $H/{\rm MM}^2$			при $\sigma_{\rm B}$, $H/{\rm mm}^2$			
r	d	500	700	900	120	500	700	900	120
					0				0
1	0,01	1,35	1,40	1,45	1,5	1,3	1,3	1,3	1,3
	0,02	1,45	1,50	1,55	1,6	1,35	1,35	1,4	1,4
	0,03	1,65	1,70	1,8	1,9	1,4	1,45	1,45	1,5
	0,05	1,60	1,70	1,8	1,9	1,45	1,45	1,5	1,55
	0,1	1,45	1,55	1,65	1,8	1,4	1,4	1,45	1,5
2	0,01	1,55	1,60	1,65	1,7	1,4	1,4	1,45	1,45
	0,02	1,8	1,90	2,0	2,15	1,55	1,6	1,65	1,7
	0,03	1,8	1,95	2,05	2,25	1,55	1,6	1,65	1,7
3	0,01	1,90	2,0	2,1	2,2	1,55	1,6	1,65	1,75
	0,02	1,95	2,1	2,2	2,4	1,6	1,7	1,75	1,85
	0,03	1,95	2,1	2,25	2,45	1,65	1,7	1,75	1,9
5	0,01	2,10	2,25	2,35	2,5	2,2	2,3	2,4	2,6
	0,02	2,15	2,30	2,45	2,65	2,1	2,15	2,25	2,4

$\it Tаблица~6.4$ Эффективные коэффициенты концентрации напряжений

 K_{σ} и K_{τ} для валов в месте шпоночного паза

To I I To A M To A MAN BUSINESS MICE TO MINOTO MUSE							
σ	K						
$\sigma_{\mathrm{B}}^{\mathrm{r}}$, H/mm ²	паз выполнен концевой фрезой	паз выполнен дисковой фрезой	$K_{ au}$				
500	1,60 1,40		1,40				
700	1,90	1,55	1,70				
900	2,15	1,70	2,05				
1200	2,50	1,90	2,40				

Таблица 6.5 Эффективные коэффициенты концентрации напряжений K_{σ} и K_{τ} для шлицевых и резьбовых участков валов

To it it also missingers in personality factions based								
σ_{B} , $\mathrm{H/mm}^2$	K_{σ}		K_{τ}					
	для для		для прямобочных	для эвольвентных				
	шлицев	резьбы	шлицев	шлицев				
400	1,35	1,45	2,10	1,40				
500	1,45	1,78	2,25	1,43				
600	1,55	1,96	2,36	1,46				
700	1,60	2,20	2,45	1,49				
800	1,65	2,32	2,55	1,52				
900	1,70	2,47	2,65	1,55				
1000	1,72	2,61	2,70	1,58				
1200	1,75	2,90	2,80	1,60				

в местах установки на валу деталей с натягом

2 Motan joranostar na sanj goranon o narmom									
Диаметр	Ко/є σ при $\sigma_{\rm B}$, H/мм 2				Кτ/ετ при $\sigma_{ m B}$, Н/мм 2				
вала d, мм	500	700	900	1200	500	700	900	1200	
30	2,6	3,3	4,0	5,1	1,5	2,0	2,4	3,05	
40	2,75	3,5	4,3	5,4	1,65	2,1	2,6	3,25	
50	2,9	3,7	4,5	5,7	1,75	2,2	2,7	3,4	
60	3,0	3,85	4,7	5,95	1,8	2,3	2,8	3,55	
70	3,1	4,0	4,85	6,15	1,85	2,4	2,9	3,7	
80	3,2	4,1	4,95	6,3	1,9	2,45	3,0	3,8	
90	3,3	4,2	5,1	6,45	1,95	2,5	3,05	3,9	
100	3,35	4,3	5,2	6,6	2,0	2,55	3,1	3,95	
Примечание. При установке колец подшипников с натягом табличное									
значение следует умножить на 0,9.									

поперечного сечения ε_{σ} и ε_{τ}

Диаметр вала,	20	40	50	60	70	80	100	120
MM	40	50	60	70	80	90	120	140
Углеродистые ε_{σ}	0,88	0,84	0,81	0,78	0,75	0,73	0,70	0,68
стали ε_{τ}	0,81	0,78	0,76	0,74	0,73	0,72	0,70	0,68
Легированные ε_{σ}	0,77	0,73	0,70	0,68	0,66	0,64	0,62	0,60
стали ε_{τ}	0,81	0,78	0,76	0,74	0,73	0,72	0,70	0,68

6.5. Расчёт вала на статическую прочность.

При кратковременных перегрузках, повторяемость которых мала и не может вызвать усталостного разрушения, вал может потерять статическую прочность.

Проверка статической прочности вала сводится к проверке выполнения условия:

$$n = \frac{\sigma_{\mathrm{T}}}{\sigma_{_{\mathrm{3KB}}}} \ge [n], \tag{6.14}$$

где n — коэффициента запаса статической прочности вала;

[n] — минимально допустимый коэффициент запаса статической прочности; обычно [n] = 1,3...1,8;

 $\sigma_{\!\scriptscriptstyle T}$ – предел текучести материала вала, табл. 6.1;

$$\sigma_{_{9KB}} = \frac{T_{_{\Pi YCK}}}{T} \sqrt{\sigma^2 + 3 \cdot \tau^2} \ . \tag{6.15}$$

где $T_{\text{пуск}}$ и T — кратковременно действующий при перегрузке и наибольший из долгосрочно действующих моментов;

 σ и τ — нормальное напряжение изгиба и касательное напряжение при действии номинальной нагрузки, рассчитанные по формулам (6.5) и (6.6, 6.7), соответственно.

7. РАСЧЁТ ПОДШИПНИКОВ КАЧЕНИЯ

7.1. Критерии работоспособности и виды расчётов

Современный расчет подшипников качения базируется на двух критериях.

Расчет на статическую грузоподъемность (подбор по статической грузоподъёмности) предупреждает появление остаточных деформаций на беговых дорожках. Выполняется при частоте вращения подшипника n < 1 об/мин.

Расчет на долговечность (подбор по динамической грузоподъёмности) предупреждает усталостное выкрашивание беговых дорожек и тел качения. Выполняется при частоте вращения подшипника n>1 об/мин (при n=1...10 в расчёт принимают n=10 об/мин).

Расчеты по другим критериям не разработаны, так как выход из строя по этим критериям связан с целым рядом случайных факторов, трудно поддающихся учету.

Первоначально на вал устанавливают подшипник лёгкой серии, подобранный по диаметру вала. Выбранный подшипник проверяют по динамической и статической грузоподъёмности. Если проверочные расчёты покажут, что долговечность или грузоподъёмность выбранного подшипника недостаточна, его заменяют подшипником более тяжёлых серий - средней или тяжёлой. Если подшипник тяжёлой серии окажется недостаточно долговечным или грузоподъёмным — увеличивают диаметр вала под подшипник и назначают соответственно подшипник большего размера с аналогичной последующей проверкой.

7.2. Определение сил, нагружающих подшипник

Подшипники являются опорами вала. Силы, действующие на подшипники — реакции опор, поэтому далее будем обозначать их буквой R для того, чтобы их обозначения были отличны от обозначения сил, действующих на валы и подшипники со стороны зацеплений передач и обозначающихся буквой F.

Проверка подшипников начинается с нахождения действующих на них сил - реакций опор. Составляющие радиальных реакций R_{yi} и R_{zi} найдены при расчёте валов . Полные радиальные реакции R_i в обоих опорах будут равны:

$$R_i = \sqrt{R_{yi}^2 + R_{zi}^2}. (7.1)$$

Рассмотрим, как определяются *осевые составляющие* реакций, действующие на подшипник, в зависимости от его типа и схемы установки.

В случае установки вала на *шариковые радиальные* подшипники по схеме — одна опора фиксирующая, другая плавающая, осевая реакция R_a , нагружающая подшипник в фиксирующей опоре, будет равна сумме всех внешних осевых сил F_a , действующих на вал. В подшипнике плавающей опоры осевая реакция не возникает.

Если вал установлен по схеме «враспор» или «врастяжку» на радиально-упорных подшипниках то на него, кроме внешних осевых сил F_a , действуют осевые силы S_1 и S_2 , возникающие в самих подшипниках в результате действия на них радиальных реакций R_i . Эти дополнительные осевые силы также участвуют в создании осевых реакций. Величина этих сил должна быть найдена перед тем, как находить величину осевых реакций R_{ai} .

Для *шариковых радиально-упорных* подшипников *с углом контакта* α <18° осевые силы S_1' и S_2' находятся предварительно по формуле:

$$S_1' = e_1' \cdot R_1, \qquad S_2' = e_2' \cdot R_2,$$
 (7.2)

где e_1' и e_2' – предварительные коэффициенты минимальной осевой нагрузки подшипника в первой и второй опоре соответственно, находятся по графикам на рис. 7.1 в зависимости от отношения радиальной реакции R_i , действующей на подшипник, к статической грузоподъёмности подшипника C_0 .

Для шариковых радиально-упорных подшипников с углом контакта $\alpha \ge 18^\circ$ и конических роликовых радиально-упорных подшипников осевые силы S_1 и S_2 рассчитываются по формуле:

$$S_i = A \cdot e \cdot R_i \,, \tag{7.3}$$

где A — коэффициент, для шариковых подшипников A = 1, для роликовых A = 0,83; e — коэффициент осевой нагрузки по паспорту подшипника.

При известном значении сил S_1 и S_2 осевые реакции R_{a1} и R_{a2} при установке подшипников по схеме «враспор» или «врастяжку»

находятся по формулам табл. 7.1 в зависимости от схемы установки подшипников, показанной на рис. 7.2.

После нахождения осевой и радиальной реакций, действующих на подшипник, проверяется правильность выбора типа подшипника. Она сводится к проверке выполнения условия:

$$R_a \le K \left(C_0 - R_i \right) \tag{7.4}$$

где R_a – осевая реакция, действующая на подшипник;

K – коэффициент, табл. П.18 графа 6;

 C_0 – паспортная статическая грузоподъёмность подшипника;

 R_i – радиальная реакция, действующая на подшипник.

Рис. 7.1. Предварительные значения коэффициентов осевой нагрузки e_i' для шариковых радиально-упорных подшипников с углом контакта от 12° до 18°.

Рис. 7.2. Схемы для определения осевой нагрузки, действующей на радиально- упорные подшипники, при установке подшипников: a – «врастяжку»; δ – «враспор».

Таблица 7.1 Формулы для определения осевой нагрузки, действующей на радиально - упорные подшипники по схеме рис. 7.2

	, ,	
Условия нагружения *	Осевые нагрузки	
$S_1 \ge S_2; F_a \ge 0$	$R_{a1} = S_1;$	
$S_1 < S_2$; $F_a \ge S_2 - S_1$	$R_{a2} = S_1 + F_a$	
$S_1 < S_2$; $F_a \le S_2 - S_1$	$R_{a1} = S_2 - F_a; R_{a2} = S_2$	
* Если F_a направлена не так как на рис	с. 11.2. а в обратную сторону - п	оменяйте

* Если F_a направлена не так как на рис. 11.2, а в обратную сторону - поменяйте местами номера опор.

Если условие (7.4) не выполняется выбранный подшипник заменяют на подшипник с большей грузоподъёмностью либо заменяют его подшипником другого типа.

11.3. Определение эквивалентной нагрузки

Величина эквивалентной нагрузки, действующей на подшипник, находится по формуле:

$$P_{\text{\tiny MKB}} = (XVR_i + YR_a) \cdot K_{\sigma} \cdot K_{\text{\tiny T}} \cdot \sqrt[3]{\sum \alpha_i \cdot \beta_i^3}$$
 (7.5)

где V — коэффициент вращения кольца, при вращении внутреннего кольца относительно направления радиальной нагрузки V = 1, при

вращении наружного $V=1,2;\ K_{\rm F}$ – коэффициент безопасности (табл. 7.2); $K_{\rm T}$ – температурный коэффициент (табл. 7.3);

$$lpha_i = rac{t_i}{t_\Sigma}$$
 и $eta_i = rac{T_i}{T}$ — по графику нагрузки; X и Y — коэффициенты

осевой и радиальной нагрузки, соответственно.

Таблица 7.2 Значения коэффициента безопасности $K_{\mathcal{S}}$ в зависимости от характера нагрузки подшипника

от характера нагрузки подшипника					
Характер нагрузки на подшипник	K_{σ}	Примеры использования			
Спокойная нагрузка	1,0	Ролики ленточных конвейеров, маломощные кинематические редукторы и приводы			
Легкие толчки. Кратковременные перегрузки до 125 % номинальной (расчетной) нагрузки	1,01,2	Прецизионные зубчатые передачи; металлорежущие стойки (кроме строгальных и долбежных); блоки; электродвигатели малой и средней мощности; легкие вентиляторы и воздуходувки; рольганги мелкосортных прокатных станов			
Умеренные толчки. Вибрационная нагрузка Кратковременная перегрузка до 150 % номинальной (расчетной) нагрузки	1,31,5	Буксы рельсового подвижного состава; зубчатые передачи 7-й и 8-й степеней точности; редукторы всех конструкции, краны электрические для среднего режи- ма.			
То же, в условиях повышенной надежности	1,51,8	Центрифуги; мощные электрические ма- шины; энергетическое оборудование			
Нагрузки со значительными толчками и вибрацией. Кратковременные перегрузки до 200 % номинальной (расчетной) нагрузки	1,82,5	Зубчатые передачи 9-й степени точности. Дробилки и копры; кривошипношатунные механизмы; валки прокатных станов, мощные вентиляторы и эксгаустеры			
Нагрузка с сильными ударами и кратковременные перегрузки до 300 % номинальной (расчетной) нагрузки	2,53,0	Тяжелые ковочные машины; лесопильные рамы; рабочие рольганги у крупносортных станов, блюмингов и слябингов			

Таблица 7.3

Значение температурного коэффициента $K_{\rm T}$ в зависимости от рабочей температуры подшипника

Рабочая температура подшипника, °C	125	150	175	200	225	250
K_{T}	1,05	1,10	1,15	1,25	1,35	1,40

Значения коэффициентов нагрузки X и Y определяются в зависимости от типа подшипника следующим образом.

Для *шариковых* и *роликовых радиальных* подшипников по табл. 7.4 в зависимости от отношения $\frac{iR_a}{C_0}$ (i – число рядов тел качения, C_0 – статическая грузоподъёмность подшипника) находят значение коэффициента e при угле контакта $\alpha=0$. При этом если $\frac{R_a}{VR} \le e$, то X=1, Y=0, при $\frac{R_a}{VR} > e$ значения коэффициентов X и Y принимают по таблице 7.4.

 $Tаблица\ 7.4$ Коэффициенты X и Y для радиальных и радиально - упорных шариковых полшипников

(F.		ширп	KODDIA 1	юдшин	шков			
VEGE		Однорядные		Двухрядные				
Угол контакта α ,	$\frac{iF_a}{C_0}$	$\frac{F_a}{VF_r}$	> <i>e</i>	$\frac{F_a}{VF_r}$	$\leq e$	$\frac{F_a}{VF_r}$	· > e	e
градусы		X	Y	X	Y	X	Y	
	0,014		2,30				2,30	0,19
	0,028		1,99				1,99	0,22
	0,056		1,71				1,71	0,26
	0,084		1,55				1,55	0,28
0	0,110	0,56	1,45	1	0	0,56	1,45	0,30
	0,170		1,31				1,31	0,34
	0,280		1,15				1,15	0,38
	0,420		1,04				1,04	0,42
	0,560		1,00				1,00	0,44
	0,014		2,30		2,78		3,74	0,23
	0,028		1,99		2,40		3,23	0,26
5	0,056	0,56	1,71	1	2,07	0.78	2,78	0,30
	0,085		1,55		1,87		2,52	0,34
	0,110		1,45		1,75		2,36	0,36

Vroz		Однор	ядные		Двухр	ядные		
Угол контакта α,	$\frac{iF_a}{C_0}$	$\frac{F_a}{VF_r}$	· > e	$\frac{F_a}{VF_r}$	$\leq e$	$\frac{F_a}{VF_r}$	· > e	e
градусы		X	Y	X	Y	X	Y	
	0,170		1,31		1,58		2,13	0,40
	0,280		1,15		1,39		1,87	0,45
	0,420		1,04		1,26		1,69	0,50
	0,560		1,00		1,21		1,63	0,52
	0,014 0,029		1,88 1,71		2,18 1,98		3,06 2,78	0,29 0,32
	0,029		1,71		1,76		2,78	0,32
	0,086		1,41		1,63		2,29	0,38
10	0,110	0,46	1,34	1	1,55	0.75	2,18	0,40
	0,170	., .	1,23		1,42		2,00	0,44
	0,290		1,10		1,27		1,79	0,49
	0,430		1,01		1,17		1,64	0,54
	0,570		1,00		1,16		1,63	0,54
	0,014		1,81		2,08		2,94	0,30
	0,029		1,62		1,84		2,63	0,34
	0,057		1,46		1,69		2,37	0,37
12	0,086 0,110	0,45	1,34 1,22	1	1,52 1,39	0.74	2,18 1,98	0,41 0,45
12	0,170	0,43	1,13	1	1,39	0.74	1,84	0,43
	0,290		1,04		1,20		1,69	0,52
	0,430		1,01		1,16		1,64	0,54
	0,570		1,00		1,16		1,62	0,54
	0,015		1,47		1,65		2,39	0,38
	0,029		1,40		1,57		2,28	0,40
	0,058		1,30		1,46		2,11	0,43
	0,087		1,23		1,38		2,00	0,46
15	0,120	0,44	1,19	1	1,34	0.72	1,93	0,47
	0,170 0,290		1,12 1,02		1,26 1,14		1,82 1,66	0,50
	0,290		1,02		1,14		1,63	0,55 0,56
	0,580		1,00		1,12		1,63	0,56
	0,500	0,43	1,00	1	1.09	0.70	1.63	0.57
18, 19, 20,		0,43	0,87	1	0.92	0.70	1.03	0.57
24, 25, 26, 30		0,39	0,87	1	0.78	0.63	1.24	0.80
21, 23, 20, 30		0,37	0,76	1	0.76	0.60	1.07	0.80
35, 36, 40		0,35	0,57	1	0.55	0.57	0.93	1.14
Сферические		0,33	0,37	1	0.33	0.65	0.65	1.50
Сферические		0,40	ctg α	1	ctg α	0.03	ctg α	ctg
			oig u		oig u		oig a	α
						l	l	u

Для *шариковых радиально-упорных* подшипников с углом контакта менее 18° по табл. 7.4, в зависимости от значения отношения $\frac{iR_{a1}}{C_0}$ и $\frac{iR_{a2}}{C_0}$, уточняется величина коэффициента e_1 для подшипника первой опоры и e_2 для подшипника второй опоры.

Значение коэффициентов e_1 и e_2 сравнивается соответственно со значением коэффициентов e'_1 и e'_2 , используемых в (7.2). При значительном расхождении значений названных коэффициентов расчет величины осевых сил S_1 и S_2 повторяют по (7.2) с вновь найденными значениями коэффициентов e_1 и e_2 . После определения новых значений осевых сил S_1 и S_2 по формулам табл. 7.1 в зависимости от схемы установки подшипников, показанной на рис. 7.2, находят новые значения осевых реакции R_{a1} и R_{a2} , действующих на подшипники. В зависимости от нового значения

отношения
$$\frac{iR_{a1}}{C_0}$$
 и $\frac{iR_{a2}}{C_0}$ по табл. 7.4 уточняют значения

коэффициентов e_1 и e_2 . Таким образом, расчёты повторяются до тех пор, пока коэффициенты, применяемые в формуле (7.2) не будут приблизительно равны значениям коэффициентов, найденным предварительно по табл. 7.4.

Для окончательно найденных значений коэффициентов e по табл. 7.4 определяют коэффициенты X и Y.

Для шариковых радиально-упорных подшипников с углом контакта более 18° и для роликовых радиально-упорных подшипников коэффициент осевой нагрузки e указан в паспорте подшипника. Для шариковых подшипников значения коэффициентов X и Y находят в зависимости от величины отношения $\frac{R_a}{VR}$ по табл. 7.4, для роликовых подшипников в случае

 $\frac{R_a}{VR} \le e$ принимают $X=1,\ Y=0,\ для\ \frac{R_a}{VR} > e$ значения коэффициентов X и Y указаны в паспорте подшипника.

11.4. Проверка по динамической грузоподъёмности

Проверка подшипника по динамической грузоподъёмности сводится к проверке выполнения неравенства:

$$L_{\text{vac}} \ge t_{\text{vac}}$$
, (7.6)

где $L_{\rm vac}$ – расчётный ресурс (долговечность) подшипника, час.; $t_{\rm vac}$ – срок службы подшипника по заданию, час.

Проверка подшипника по (11.6) проводится для того подшипника, на который действует большая по величине эквивалентная нагрузка.

Расчётный ресурс подшипника находится по формуле:

$$L_{\text{vac}} = a_1 \cdot a_{23} \cdot \left(\frac{C}{P_{\text{3KB}}}\right)^p \cdot \frac{10^6}{60 \cdot n},$$
 (7.7)

где p — показатель степени, p = 3 для шариковых и p = 10/3 для роликовых подшипников;

n — частота вращения подшипника, об/мин;

С – паспортная динамическая грузоподъёмность подшипника;

 a_1 – коэффициент надёжности, табл. 7.5;

 a_{23} – коэффициент, характеризующий совместное влияние на долговечность качества металла деталей подшипника и условий его эксплуатации, табл. 7.6.

Таблица 7.5

Значения коэффициента надёжности a_1 в зависимости от вероятности безотказной работы P_r

от вереиниести есзе	TICOSIIC	m pao	OIDII	r		
P _r , %	90	95	96	97	98	99
<i>a</i> ₁ *	1	0,62	0,53	0,44	0,33	0,21
* Had now wrong a few and work was a series of a series of the work of the series of t						

^{*} Для редукторов общего назначения принимают a_1 = 1 из условия 90% вероятности безотказной работы

 $\it Tаблица~7.6$ Значения коэффициента $\it a_{23}$ в зависимости от типа подшипника

Тип подшипника	a_{23}
Шарикоподшипники (кроме сферических.)	0,70,8
Роликоподшипники конические	0,60,7
Роликоподшипники цилиндрические,	0,50,6
шарикоподшипники сферические двухрядные	0,30,0
Роликовые радиальные двухрядные сферические	0.2 0.4
подшипники	0,30,4

Если расчетный ресурс получился меньше требуемого, т.е. $L_{\text{час}} < t_{\text{час}}$, от подшипник легкой серии заменяют подшипником средней или тяжелой серии (при том же диаметре вала под подшипник) и проверку повторяют. Может оказаться, что эти меры не дадут желаемого результата, тогда следует увеличить диаметр вала и выбрать для него соответствующий подшипник больших размеров.

Если размер подшипника нельзя увеличить по конструктивным соображениям, то следует применить подшипники другого типа (например, вместо радиальных шариковых - радиальные роликовые или двухрядные шариковые подшипники) или выбрать схему подшипникового узла, в котором осевую и радиальную нагрузку воспринимают разные подшипники.

11.5. Проверка по динамической грузоподъёмности сдвоенных и двухрядных подшипников

При расчёте динамической грузоподъёмности и эквивалентной динамической нагрузки подшипников узла, состоящего из радиально-упорных шариковых или конических роликовых подшипников, установленных узкими или широкими торцами наружных колец друг к другу, следует учитывать следующее.

При
$$\frac{R_a}{VR} \le e$$
 динамическая грузоподъёмность сдвоенного

подшипника равна динамической грузоподъёмности однорядного подшипника, умноженной на 1,625 для шариковых и 1,714 для роликовых подшипников.

При $\frac{R_a}{VR} > e$ и нереверсивной нагрузке работает только один

ряд тел качения. Величину динамической грузоподъёмности в этом случае следует принимать равной грузоподъёмности однорядного подшипника, поэтому применять сдвоенные подшипники в этих условиях нецелесообразно.

Если узел состоит из подшипников, отдельно воспринимающих осевую и радиальную нагрузку, подшипники рассчитываются независимо друг от друга, а их эквивалентную нагрузку определяют, учитывая только ту силу, которую они воспринимают.

11.6. Проверка подшипников по статической грузоподъёмности

По статической грузоподъёмности выбирают или проверяют подшипники при частоте вращения n < 1 об/мин.

Условие подбора:

$$P_0 \le C_0, \tag{7.9}$$

где P_0 — эквивалентная статическая нагрузка, табл. 7.7; C_0 — паспортная эквивалентная статическая грузоподъёмность.

Коэффициенты X_0 и Y_0 в формулах табл. 7.7 принимаются по табл. 7.8 или по паспорту подшипника.

При невыполнении условия (11.9) назначается подшипник с большей статической грузоподъёмностью.

Таблица 7.7 Уравнения для расчёта эквивалентной статической нагрузки P_0

Тип подшипника	D
тип подшинника	P_0
Шариковые радиальные и радиально- упорные	Наибольшая из:
Роликовые радиально-упорные	$P_0 = X_0 R + Y_0 R_a,$ $P_0 = R$
Радиальные роликовые с $\alpha = 0^{\circ}$	$P_0 = R$
Упорные роликовые и шариковые с $\alpha = 90^{\circ}$	$P_0 = R_a$

Тип подшипника		Однорядные		ухрядные
Шариковые радиальные	X_0	Y_0	X_0	Y_0
Шариковые сферические	0,6	0,5	0,6	0,5
Шариковые радиально-упорные при угле контакта	0,5	$22ctg\alpha$	1.0	$0,44$ ctg α
1819°				
20°	0,5	0,42	1,0	0,84
25°	0,5	0,38	1,0	0,76
26°	0,5	0,37	1,0	0,74
30°	0,5	0,33	1,0	0,66
35°	0,5	0,29	1,0	0,58
36°	0,5	0,28	1,0	0,56
40°	0,5	0,26	1,0	0,52
Роликовые радиально-упорные	0,5	22ctgα	1,0	0,44ctga

8. РАСЧЁТ ШПОНОЧНЫХ СОЕДИНЕНИЙ

Проектирование шпоночного соединения с *призматической* шпонкой проводится в следующей последовательности.

По табл. 8.1 находят размеры поперечного сечения шпонки (высоту и ширину) в зависимости от размера диаметра вала.

Tаблица 7.1 Шпонки призматические обыкновенные по ГОСТ 23360-78, мм

Диаметр	Ширина	Высота	Глубина паза	Длина шпонки
вала <i>d</i>	шпонки <i>b</i>	шпонки <i>h</i>	на валу t_1	l
1	2	3	4	5
От 6 до 8	2	2	1,2	От 6 до 20
Св. 8 » 10	3	3	1,8	» 6 » 36
» 10 » 12	4	4	2,5	» 8 » 45
Св. 12 до 17	5	5	3	От 10 до 56
» 17 » 22	6	6	3,5	» 14 » 70
Св. 22 до 30	8	7	4	От 18 до 90
» 30 » 38	10	8	5	» 22 » 110
» 38 » 44	12	8	5	» 28 » 140
Св.44 до 50	14	9	5,5	От 36 до 160
» 50 » 58	16	10	6	» 45 » 180
» 58 » 65	18	11	7	» 50 » 200
Св.65 до 75	20	12	7,5	От 56 до 220
» 75 » 85	22	14	9	» 63 » 250
» 85 » 95	25	14	9	» 70 » 280
» 95 » 110	28	16	10	» 80 » 320
» 110 » 130	32	18	11	» 90 » 360

Из условия прочности на смятие, находится минимально необходимая рабочая длина шпонки $l_{\rm p}$:

$$l_{\rm p} = \frac{2 \cdot T}{d \cdot (0.95 \cdot h - t_1) \cdot \sigma_{\rm \tiny CMP}}, \tag{8.1}$$

где T – вращающий момент на валу, $H \cdot мм$;

d – диаметр вала, мм;

h – высота шпонки, мм, табл. 8.1;

 t_1 – глубина паза на валу, мм, табл. 8.1;

для стальных шпонок, МПа

	Нагрузка						
постоянная реверсивная ударна					ударная	I	
	Режимы *						
Л	Л С Т Л С Т Л С Т						T
180	80 165 150 120 110 100 60 55 50						
100	100 90 80 65 60 54 33 30 27						
* Pex	* Режимы: Л - лёгкий; С - средний; Т - тяжёлый.						

Для шпонок исполнения 2 (с плоскими торцами) расчётное значение длины округляется до ближайшего большего стандартного значения по табл. 8.3. Для шпонок исполнения 1 (с закруглёнными торцами) вычисляется полная длина шпонки l:

$$l = l_{p} + b, \tag{8.2}$$

где b — ширина шпонки, мм, табл. 8.1.

Полученное значение округляется до ближайшего большего стандартного значения по табл. 8.3.

Таблица 8.3

Стандартный ряд длин призматических шпонок, мм

1	6; 8; 10; 12; 14; 16; 18; 20; 22; 25; 28; 32; 36; 40; 45; 50; 56; 63;
ι	70; 80; 90; 100; 110; 125; 160; 180, далее через 10 до 500

9. ЗАДАНИЯ НА КУРСОВОЕ ПРОЕКТИРОВАНИЕ

В таблице 9.1 представлены варианты заданий — основные параметры привода: мощность $P_{\scriptscriptstyle \rm BMX}$ (кВт) на выходном валу, частота вращения $n_{\scriptscriptstyle \rm BMX}$ (об/мин) выходного вала, срок службы привода $t_{\scriptscriptstyle \rm час}$ в часах. Дополнительно преподавателем может быть задано:

- вид цилиндрической передачи (прямозубая, косозубая, шевронная);
 - характер работы привода (реверсивный, нереверсивный);
- твердость рабочей поверхности зубьев (больше 350HB, меньше 350HB);
- расположение осей валов редуктора (горизонтально в горизонтальной плоскости, горизонтально в вертикальной плоскости шестерня сверху, горизонтально в вертикальной плоскости шестерня снизу).

Таблица 9.1

Варианты заданий на курсовое проектирование

Вариант	$P_{_{\mathrm{BMX}}}$,	$n_{_{\mathrm{BMX}}}$,	t _{vac} ,	Вариант	$P_{_{\mathrm{BMX}}}$,	$n_{_{\mathrm{BMX}}}$,	t, час
	кВт	об/мин	час		кВт	об/мин	
1	3,7	280	25000	18	7,5	150	28000
2	2,0	270	16000	19	4,4	290	8400
3	7,0	300	10000	20	2,6	115	7000
4	2,8	350	6300	21	5,2	380	32000
5	1,0	230	5000	22	3,1	310	32000
6	1,4	220	20000	23	2,8	115	17000
7	3,9	240	32000	24	7,3	190	32000
8	2,2	320	12500	25	1,5	280	6700
9	5,2	230	23000	26	3,7	310	32000
10	1,6	450	5000	27	5,2	180	8200
11	7,8	230	12500	28	1,7	490	16000
12	5,2	150	18000	29	4,8	190	9000
13	1,8	250	27000	30	2,0	370	23000
14	4,7	230	12500	31	3,3	145	16000
15	2,4	430	13000	32	5,2	190	20000
16	5,2	340	8500	33	6,0	460	5000
17	1,3	180	6300	34	5,0	170	18000

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

Основной:

- 1. Андреев, В.И. Детали машин и основы конструирования. Курсовое проектирование [Электронный ресурс]: учебное пособие / В.И. Андреев, И.В. Павлова. — Электрон. дан. — Санкт-Петербург: Лань, 2013. — 352 с. — Режим доступа: https://e.lanbook.com/book/12953.
- 2. Остяков, Ю.А. Проектирование деталей и узлов конкурентоспособных машин [Электронный ресурс]: учебное пособие / Ю.А. Остяков, И.В. Шевченко. Электрон. дан. Санкт-Петербург: Лань, 2013. 336 с. Режим доступа: https://e.lanbook.com/book/30428.

Дополнительный:

- 1. Тюняев, А.В. Детали машин [Электронный ресурс]: учебник / А.В. Тюняев, В.П. Звездаков, В.А. Вагнер. Электрон. дан. Санкт-Петербург: Лань, 2013. 736 с. Режим доступа: https://e.lanbook.com/book/5109.
- 2. Гулиа, Н.В. Детали машин [Электронный ресурс]: учебник / Н.В. Гулиа, В.Г. Клоков, С.А. Юрков. Электрон. дан. Санкт-Петербург: Лань, 2013. 416 с. Режим доступа: https://e.lanbook.com/book/5705.
- 3. Справочник конструктора: Учебно-практическое пособие: В 2 книгах Книга 1. Машины и механизмы / Фещенко В.Н., 2-е изд., переб. и доп. М.:Инфра-Инженерия, 2017. 400 с.: 60х84 1/8 (Переплёт) ISBN 978-5-9729-0084-8 Режим доступа: http://znanium.com/catalog/product/906490
- 4. Справочник конструктора: Учебно-практическое пособие: В 2 книгах Книга 2. Машины и механизмы / Фещенко В.Н., 2-е изд., перераб. и доп. М.:Инфра-Инженерия, 2017. 400 с.: 60х84 1/8 (Переплёт) ISBN 978-5-9729-0085-5 Режим доступа: http://znanium.com/catalog/product/906491

Содержание

Введение	2
1. Требования к оформлению и содержанию курсового проекта	3
2. Кинематический и энергетический расчёт привода	5
3. Выбор материалов, термообработки и определение допускаемых на-	
пряжений для зубчатой цилиндрической передачи	7
4. Проектный расчёт прямозубой, косозубой и шевронной цилиндриче-	
ской зубчатой передачи	13
5. Проверочный расчёт прямозубой, косозубой и шевронной цилиндри-	
ческой передачи	18
6. Расчёт валов	25
7. Расчёт подшипников качения	33
8. Расчёт шпоночных соединений	46
9. Задания на курсовое проектирование	48
Библиографический список	49