Notas de aula

Ryuji

September 8, 2020

Contents

1	Radiovisibilidade			1
	1.1	Perda basica de propagação (L_b)		
		1.1.1	FSL: Free Space Loss	1
		1.1.2	A_a : Perda de gases e vapores	1
		1.1.3	D_L : Perda por obstaculo (sempre simples)	1
	1.2	Atenu	ação devido a chuva $(A_{(R,p)})$	1
		1.2.1	$\gamma_{(R,p)}$: γ da chuva	1

1 Radiovisibilidade

$$RSL = P_{T_X} - L_{F_A} + G_A - L_b + G_B - L_{F_B}$$
 (1)

1.1 Perda basica de propagação (L_b)

$$L_b = FSL + A_a + D_L \tag{2}$$

1.1.1 FSL: Free Space Loss

$$FSL = 92,44 + 20log(f \cdot d) \tag{3}$$

Onde:

FSL - Perda em [dB]

f - frequencia do sinal em [GHz]

d - distancia entre as antenas em [Km]

1.1.2 A_a : Perda de gases e vapores

$$A_a = \gamma_a \cdot d \tag{4}$$

Onde:

 γ_a - Da tabela

d - Distancia entre as antenas em [Km]

1.1.3 D_L : Perda por obstaculo (sempre simples)

$$D_L = 0 (5)$$

1.2 Atenuação devido a chuva $(A_{(R,p)})$

$$A_{(R,p)} = \gamma_{(R,p)} \cdot L_{ef} \tag{6}$$

1.2.1 $\gamma_{(R,p)}$: γ da chuva

$$\gamma_{(R,p)} = K \cdot R^{\alpha} \tag{7}$$

Onde:

 ${\cal K}$ - Da tabela

R - Região hidrometereologica (Obtido atraves do mapa) $[\mathrm{mm/h}]$

 α - Da tabela