Computer Organization 105-2

Lab 3: Single Cycle CPU

Due: 2016/5/9 23:59:59

1. Goal

• Based on lab2, adding a memory unit(named the module DM in Simple_Single_CPU). Implement a complete single cycle CPU that can run R-type, I-type, branch, and jump instructions.

2. Requirement (70%)

- Please use ModleSim or Xilinx as your HDL simulator.
- It's a team assignment (max: 2 people). Please attach your names and student IDs as comments in the top of each file. The assignment you upload on e3 must have the form of "studentID Name studentID Name LAB3.zip".
- Reg_File[29] represents stack point. Please give an initial value to Reg_File[29] as 128, others 0.
- Decoder may add the following control signal:
 - BranchType_o
 - Jump_o
 - MemRead o
 - MemWrite o
 - MemtoReg_o
- Please name the Data_Memory module DM in Simple_Single_CPU.
- Basic instruction (50%)
 - Lab2 instruction + lw \ sw \ mul \ jump
 - LW
 - $lack Reg[rt] \leftarrow Mem[rs+imm]$
 - SW
 - lacktriangle Mem[rs+imm] \leftarrow Reg[rt]
 - MUL
 - \bullet Reg[rd] \leftarrow Reg[rs]*Reg[rt]
 - JUMP
 - ◆ PC={PC[31:28], address<<2}

Instruction	op[31:26]	rs	rt	rd	shamt	func
LW	6'b100011	rs[25:21]	rt[20:16]	imm[15:0]		
SW	6'b101011	rs[25:21]	rt[20:16]	imm[15:0]		
MUL	6'b000000	rs[25:21]	rt[20:16]	rd[15:11]	5'b00000	6'b011000
JUMP	6'b000010	Address[25:0]				

Advanced instruction (20%)

Instruction	op[31:26]	rs	rt	imm
BGT	6'b000111	rs[25:21]	rt[20:16]	imm[15:0]
BNEZ	6'b000101	rs[25:21]	5'b00000	imm[15:0]
BGEZ	6'b000001	rs[25:21]	5'b00001	imm[15:0]

- BGT (branch greater than)
- BNEZ (branch non equal zero)
- BGEZ (branch greater equal zero)

3. Architecture Diagram

If you need to use extra control signal, please draw your design to the architecture and descript the implement flow on the report.

4. Bonus(10%)

Instruction	op[31:26]	rs	rt	rd	shamt	func	
JAL	6'b000011	Address[25:0]					
JR	6'b000000	rs	0	0	0	6'b001000	

5. Test

- Basic instruction
 - TA offers CO_LAB3_test_data1.txt to let you test your design. Refer to test_data1_result.txt to check your result.
- Advanced instruction
 - CO_LAB3_test_data2.txt extend the previous part and add more instruction to let your test your design. Refer to test_data2_result to check your result.
- Bonus
 - CO_LAB3_test_data3.txt, it is a Fibonacci function. When it done r2 is the answer we want. Refer to test_data3_result to check your result.
- Please change the line in the file "Instr_Memory" whenever you want to use a different test pattern file.
 - \$readmemb("CO LAB3 test data1.txt", Instr Mem);

6. Grading Policy

- Total source: 110pts
 - Basic score: 50 pts, Advance instructions: 20 pts, Bonus: 10%, Q&A: 20pts, Report: 10 pts.
 - Any Plagiarism will be punished with a null score!
- Delay: 10%off/day

7. Hand in your assignment

Please upload the assignment to the E3.

Put all of .v source files and report into same compressed file. (Use

"studentID_Name_studentID_Name_LAB3.zip" to be the name of your compressed file)