逸出功的测量

简要报告 2017011620 计 73 李家昊 实验日期: 2019/4/4

1. 实验目的

- (1) 用里查孙直线法测量阴极材料(钨)的电子逸出功。
- (2) 了解热电子发射的规律, 掌握逸出功的测量方法。

2. 实验电路图

3. 数据处理

(1) 电流 I_f 与温度T的对应关系

用线性内插值法, 得下表

$I_f(A)$	0.500	0.540	0.580	0.620	0.660	0.700
T/K	1726	1792.4	1864.2	1930.6	1991.8	2059

(2) 拟合 $\lg I'_e \sim \sqrt{u_a}$ 曲线

I_f/A	_	$\sqrt{u_a}/V^{\frac{1}{2}}$	6	7	8	9	10	11	12
0.50 1	1726	$u_e'(mV)$	3.10	3.18	3.24	3.31	3.37	3.45	3.51
		$\lg I_e'$	-2.940	-2.929	-2.921	-2.912	-2.904	-2.894	-2.886
0.54 179	1792.4	$u_e'(mV)$	11.23	11.45	11.66	11.90	12.12	12.36	12.61
	1/92.4	$\lg I'_e$	-2.381	-2.373	-2.365	-2.356	-2.348	-2.339	-2.331
0.58	1864.2	$u_e'(mV)$	35.53	36.25	36.93	37.62	38.25	38.98	39.70

		$\lg I'_e$	-1.881	-1.872	-1.864	-1.856	-1.849	-1.841	-1.833
0.62 1930.6	1020 ($u_e'(mV)$	103.18	105.06	106.88	108.74	110.46	112.44	114.42
	$\lg I_e'$	-1.418	-1.410	-1.402	-1.395	-1.388	-1.380	-1.373	
0.66 1991.8	1001.0	$u_e'(mV)$	258.7	263.0	267.5	272.1	276.4	281.2	285.9
	1991.8	$\lg I'_e$	-1.019	-1.011	-1.004	-0.997	-0.990	-0.982	-0.975
0.70 2059	2050	$u_e'(mV)$	617.1	627.7	638.2	648.8	658.8	669.7	680.6
	2039	$\lg I'_e$	-0.641	-0.634	-0.626	-0.619	-0.613	-0.605	-0.598

用 Excel 拟合得下图

不同温度下lg le'与ua1/2的拟合图像

(3) 拟合 $\lg(I_e/T^2) \sim 1/T$ 曲线

由公式

$$\lg I_e' = \lg I_e + \frac{4.39}{2.303T} \cdot \frac{1}{\sqrt{r_1 \ln \frac{r_2}{r_1}}} \sqrt{u_a}$$

我们知道, (2)中线性回归方程的截距即为该温度下的 $\lg I_e$, 即

T(K)	$\lg I_e$	$x = \frac{1}{T}$	$y = \lg \frac{I_e}{T^2}$
1726	-2.9924	0.000579	-9.466
1792.4	-2.4313	0.000558	-8.938
1864.2	-1.9280	0.000536	-8.469

1930.6	-1.4621	0.000518	-8.033
1991.8	-1.0620	0.000502	-7.660
2059	-0.6831	0.000486	-7.310

用 Excel 拟合得下图

lg(l_a/T²) 与 1/T 的线性拟合图像

得回归直线方程

$$\lg \frac{I_e}{T^2} = -23004 \cdot \frac{1}{T} + 3.8771 \qquad (r = 0.9998)$$

拟合程度较好。

(4) 计算逸出功 $e_0 \varphi$

由公式

$$\lg \frac{I_e}{T^2} = \lg AS - 5.039 \times 10^3 \frac{\varphi}{T}$$

及回归方程

$$\lg \frac{I_e}{T^2} = -23004 \cdot \frac{1}{T} + 3.8771$$

对比系数解得

$$\varphi = \frac{-23004}{-5.039 \times 10^3} = 4.565 \text{ V}$$

逸出功

$$e\varphi = 4.565 \text{ eV}$$

(5) 作图法求逸出功(选做部分)

4. 思考题

(1) I_r系统误差修正的必要性?

答:不必要。因为两个 $18k\Omega$ 的串联电阻远大于灯丝电阻,流经该支路的电流远小于电流表的仪器误差,因此无需修正 I_f 的系统误差。

(2) Ua系统误差修正的必要性?

答:不必要。本实验中 $R_5/R_4=0.001$,因此 U_a 的系统误差仅为加速电压恒压源的 1‰,可忽略不计,因此无需修正 U_a 的系统误差。

(3) U' 是否必须化为I' 再进行数据处理?

答: U',无需化为I',。具体做法如下:

由公式

$$\lg I_e' = \lg I_e + \frac{4.39}{2.303T} \cdot \frac{1}{\sqrt{r_1 \ln \frac{r_2}{r_1}}} \sqrt{u_a}$$

以 u_e/R_e 代换 I_e 得

$$\lg u'_e = \lg u_e + \frac{4.39}{2.303T} \cdot \frac{1}{\sqrt{r_1 \ln \frac{r_2}{r_1}}} \sqrt{u_a}$$

由不同温度下的 u'_e 数据,作 $\lg u'_e \sim \sqrt{u_a}$ 图像,取截距,即得不同温度下的 u_e 值。 再由公式

$$\lg \frac{I_e}{T^2} = \lg AS - 5.039 \times 10^3 \frac{\varphi}{T}$$

以ue/Re代换Ie得

$$\lg \frac{u_e}{T^2} = \lg AS + \lg R_e - 5.039 \times 10^3 \frac{\varphi}{T}$$

拟合 $\lg(u_e/T^2)\sim 1/T$ 图像,得斜率k,则逸出电位

$$\varphi = \frac{k}{-5.039 \times 10^3} \text{ (V)}$$

因此能根据Ue和 T求出逸出电位, 且数据处理步骤完全一致。

(4) C 点是否为灯丝中点电位等效点?

答:是。在灯丝两端并联两个等值电阻,构成桥式电路,设灯丝中点为 D,灯丝电阻均匀分布.则有

$$R_1 \cdot R_{HD} = R_2 \cdot R_{KD}$$

由电桥平衡原理,知电桥平衡,因此 C和 D 电势相等。

(5) 倍率变为 x10 挡时, 300Ω采样电阻应该如何接入?

答:应该并联接入。原因如下:

在 x1 挡时

$$R_e = R_{e1} = 2.7 \text{ k}\Omega$$

在 x10 挡时

$$R_e' = \frac{R_{e1}R_{e2}}{R_{e1} + R_{e2}} = 270 \ \Omega$$

电阻变为原来的 1/10 倍, 因此毫伏表的量程变为原来的 10 倍。

5. 实验小结

通过本次实验, 我掌握了里查孙直线法在逸出功测量中的应用, 体会到它的巧妙之处, 并提高了自己的数据处理能力。

同时, 我也体会到科学研究的严谨性和精确性, 认识到实验在科研中的重要性。最后, 感谢助教的详细讲解和耐心指导!

原始数据表格

$U_e'(V)$	$U_a(V)$					
倍率	$I_f(A)$	T(K)				
x1						
x1						
x1						
x10						
x10						
x10						