

AD-A079 801

COASTAL ENGINEERING RESEARCH CENTER FORT BELVOIR VA
ESTIMATION OF WAVE TRANSMISSION COEFFICIENTS FOR PERMEABLE BREAKWATER--ETC(U)
OCT 79 W N SEELIG

UNCLASSIFIED

CERC-CETA-79-6

F/6 13/13

NL

AF
D-17-4C

END
PAGE
THREE
2 80
DEC

LL 12
CETA 79-6

Estimation of Wave Transmission Coefficients for Permeable Breakwaters

by

William N. Seelig

COASTAL ENGINEERING TECHNICAL AID NO. 79-6
OCTOBER 1979

ADA 079801

Approved for public release;
distribution unlimited.

DDC FILE COPY

U.S. ARMY, CORPS OF ENGINEERS
COASTAL ENGINEERING
RESEARCH CENTER

Kingman Building
Fort Belvoir, Va. 22060

80 1 22 963

Reprint or republication of any of this material shall give appropriate credit to the U.S. Army Coastal Engineering Research Center.

Limited free distribution within the United States of single copies of this publication has been made by this Center. Additional copies are available from:

*National Technical Information Service
ATTN: Operations Division
5285 Port Royal Road
Springfield, Virginia 22161*

Contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER CETA 79-6	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER <i>9</i>
4. TITLE (and Subtitle) <i>b</i> ESTIMATION OF WAVE TRANSMISSION COEFFICIENTS FOR PERMEABLE BREAKWATERS		5. TYPE OF REPORT & PERIOD COVERED Coastal Engineering Technical Rep.
7. AUTHOR(s) <i>10</i> William N. Seelig		6. PERFORMING ORG. REPORT NUMBER <i>12 24</i>
9. PERFORMING ORGANIZATION NAME AND ADDRESS Department of the Army Coastal Engineering Research Center (CERRE-CS) Kingman Building, Fort Belvoir, Virginia 22060		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS F31538
11. CONTROLLING OFFICE NAME AND ADDRESS Department of the Army Coastal Engineering Research Center Kingman Building, Fort Belvoir, Virginia 22060		12. REPORT DATE <i>14 Oct 1979</i>
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) <i>14 CERC-CETA - 11 -</i>		13. NUMBER OF PAGES 22
16. DISTRIBUTION STATEMENT (of this Report)		15. SECURITY CLASS. (of this report) UNCLASSIFIED
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Permeable breakwaters Transmission coefficients Wave transmission		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The Madsen and White (1976) analytical model of wave transmission through permeable breakwaters is combined with a wave transmission by overtopping formula to provide a method of predicting wave transmission coefficients for permeable breakwaters. Comparison of this combined prediction technique with physical model laboratory tests shows that the technique is useful for estimating transmission coefficients for design. A computer program was found the most convenient method of making predictions. The computer program and an example showing program use are included in an Appendix.		

DD FORM 1 JAN 73 EDITION OF 1 NOV 65 IS OBSOLETE

037 050

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) *JCL*

PREFACE

This report describes methods for predicting wave transmission coefficients for permeable breakwaters using a transmission by overtopping equation together with the analytical model of Madsen and White (1976). This technique has been tested with physical model results for nonbreaking and some breaking waves, for monochromatic and irregular wave conditions, and for riprap and some concrete armor unit breakwaters (Seelig, in preparation, 1979). The technique was found to give useful predictions of transmission coefficients for design. The work was carried out under the offshore breakwaters for shore stabilization program of the U.S. Army Coastal Engineering Research Center (CERC).

This report was prepared by William N. Seelig, Hydraulic Engineer, under the general supervision of Dr. R.M. Sorensen, Chief, Coastal Processes and Structures Branch.

Comments on this publication are invited.

Approved for publication in accordance with Public Law 166, 79th Congress, approved 31 July 1945, as supplemented by Public Law 172, 88th Congress, approved 7 November 1963.

Ted E. Bishop
TED E. BISHOP
Colonel, Corps of Engineers
Commander and Director

Accession For	
NTIS GRADE	
PCU PCL	
COLLECTOR	
A	

CONTENTS

	Page
CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI)	5
I INTRODUCTION	7
II WAVE TRANSMISSION BY OVERTOPPING	8
III WAVE TRANSMISSION THROUGH PERMEABLE BREAKWATERS	9
IV EXAMPLE	10
APPENDIX LISTING OF THE COMPUTER PROGRAM MADSEN	17

TABLES

1 Porosity of various armor units	9
2 Kinematic viscosity of water	10
3 Format of input information.	12
4 Sample input	14
5 Sample output	16

FIGURES

1 Definition of terms for wave transmission for permeable breakwaters	8
2 Observed and predicted transmission coefficients for a rubble-mound breakwater	11
3 Example breakwater	13
4 Information required for (horizontal layer) example breakwater .	15

**CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI)
UNITS OF MEASUREMENT**

U.S. customary units of measurement used in this report can be converted to metric (SI) units as follows:

Multiply	by	To obtain
inches	25.4	millimeters
	2.54	centimeters
square inches	6.452	square centimeters
cubic inches	16.39	cubic centimeters
feet	30.48	centimeters
	0.3048	meters
square feet	0.0929	square meters
cubic feet	0.0283	cubic meters
yards	0.9144	meters
square yards	0.836	square meters
cubic yards	0.7646	cubic meters
miles	1.6093	kilometers
square miles	259.0	hectares
knots	1.852	kilometers per hour
acres	0.4047	hectares
foot-pounds	1.3558	newton meters
millibars	1.0197×10^{-3}	kilograms per square centimeter
ounces	28.35	grams
pounds	453.6 0.4536	grams kilograms
ton, long	1.0160	metric tons
ton, short	0.9072	metric tons
degrees (angle)	0.01745	radians
Fahrenheit degrees	5/9	Celsius degrees or Kelvins ¹

¹To obtain Celsius (C) temperature readings from Fahrenheit (F) readings, use formula: $C = (5/9)(F - 32)$.

To obtain Kelvin (K) readings, use formula: $K = (5/9)(F - 32) + 273.15$.

ESTIMATION OF WAVE TRANSMISSION COEFFICIENTS
FOR PERMEABLE BREAKWATERS

by
William N. Seelig

I. INTRODUCTION

The primary purpose of a breakwater is to reduce wave energy in an area to be sheltered. One of the important characteristics of a breakwater is the magnitude of the wave transmission coefficient, defined as the ratio of the transmitted wave height to the incident wave height.

Two basic types of wave transmission are: (a) by overtopping that occurs when wave runup exceeds the crest elevation of the breakwater, overtops the breakwater, and generates waves in the lee; and (b) through a permeable structure that occurs because some of the wave energy is not dissipated by the breakwater and is transmitted through the breakwater. The total wave transmission coefficient, K_T , is given by:

$$K_T = \sqrt{(K_{To})^2 + (K_{Tt})^2} = H_T/H_I \quad (1)$$

where

K_{To} = transmission by overtopping coefficient

K_{Tt} = coefficient of transmission through the structure

H_I = incident wave height

H_T = transmitted wave height

These and other symbols are defined in Figure 1.

Since the prediction method is complex, particularly for transmission through the structure, a computer program is presented in an Appendix to this report. The program incorporates the analytical model to determine K_{Tt} by Madsen and White (1976)¹ and an empirical equation to determine K_{To} developed by Seelig (in preparation, 1979)².

¹MADSEN, O.S., and WHITE, S.M., "Reflection and Transmission Characteristics of Porous Rubble-Mound Breakwaters," MR 76-5, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., Mar. 1976.

²SEELIG, W.N., "Two-Dimensional Tests of Wave Transmission and Reflection of Laboratory Breakwaters," U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va. (in preparation, 1979).

$$K_T = \sqrt{(K_{To})^2 + (K_{Tt})^2} = H_T/H_I$$

Figure 1. Definition of terms for wave transmission for permeable breakwaters.

II. WAVE TRANSMISSION BY OVERTOPPING

Wave transmission by overtopping occurs when wave energy is transmitted by flow over the top of a structure. The transmission by overtopping coefficient can be estimated using (Seelig, in preparation, 1979)³:

$$\begin{aligned} K_{To} &= C (1-F/R) \\ &= 0 \text{ for } F/R \text{ greater than 1.0} \end{aligned} \quad (2)$$

where

- R = wave runup
- F = breakwater freeboard, defined as the structure height, h , minus the water depth, d_s
- C = an empirical coefficient
- $(K_{To})_{\max} = 1.0$

Laboratory tests show that the value of C is related to the crest width of the structure, B:

$$C = 0.51 - 0.11 B/h . \quad (3)$$

Thus, a slight decrease in the transmission by overtopping occurs as the structure crest width increases.

³SEELIG, W.N., op. cit., p. 7.

Wave runup is estimated using the formula (Ahrens and McCartney, 1975)⁴:

$$\frac{R}{H_I} = \frac{a\xi}{1 + b\xi} \quad (4)$$

where $a = 0.692$ and $b = 0.504$ are recommended for rubble-mound breakwaters and $a = 0.988$ and $b = 0.703$ are recommended for a breakwater armored with two layers of dolos. ξ is the surf parameter given by

$$\xi = \frac{\tan \theta}{\sqrt{H_I/L_0}} \quad (5)$$

where θ is the angle of the seaward face of the breakwater, and L_0 is the deepwater wavelength obtained from linear wave theory. Calculations of wave transmission by overtopping are performed automatically in the program MADSEN (see App.).

III. WAVE TRANSMISSION THROUGH PERMEABLE BREAKWATERS

The coefficient of wave transmission through permeable breakwaters, K_{Tt} , is estimated using the analytical model of Madsen and White (1976)⁵. In this model the transmission coefficient is related to a complex function of the size and porosity of the materials used in building the breakwater (Table 1), the breakwater geometry, the seaward

Table 1. Porosity of various armor units (after U.S. Army, Corps of Engineers, Coastal Engineering Research Center, 1977)⁶.

Armor unit	No. of layers	Placement	Porosity
Quarrystone (smooth)	2	random	0.38
Quarrystone (rough)	2	random	0.37
Quarrystone (rough)	>3	random	0.40
Cube (modified)	2	random	0.47
Tetrapod	2	random	0.50
Quadripod	2	random	0.49
Hexapod	2	random	0.47
Tribar	2	random	0.54
Dolos	2	random	0.63
Tribar	1	uniform	0.47
Quarrystone	graded	random	0.37

⁴AHRENS, J., and MCCARTNEY, B.L., "Wave Period Effect on the Stability of Riprap," *Proceedings of Civil Engineering in the Oceans/III*, June 1975, pp. 1019-1034 (also Reprint 76-2, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., June 1976, NTIS A029 739).

⁵MADSEN, O.S., and WHITE, S.M., op. cit., p. 7.

⁶U.S. ARMY, CORPS OF ENGINEERS, COASTAL ENGINEERING RESEARCH CENTER, *Shore Protection Manual*, 3d ed., Vols. I, II, and III, Stock No. 008-022-00077-1, U.S. Government Printing Office, Washington, D.C., 1977.

slope of the structure, water depth, wave height and period, and the kinematic viscosity of water (Table 2). To use this method, waves should have

$$\frac{d}{L} < \frac{1.25}{\sqrt{H_I \cot^2 \theta}} \quad (6)$$

where L is local wavelength.

Table 2. Kinematic viscosity of water.

Water temperature (°C)	Kinematic viscosity of water (m ² /s)
0°	0.0000018
10°	0.0000013
20°	0.0000010
30°	0.0000008

The Madsen and White model was tested against laboratory data for permeable breakwaters (Seelig, in preparation, 1979)⁷ and was shown to give useful estimates for both monochromatic and irregular waves. For irregular wave conditions, the wave input to the program should be the mean wave height and period of peak energy density. A few tests with breaking waves suggest that the prediction method can also be used with breaking waves. The Madsen and White model appears to effectively account for breaking wave energy losses, although it does not explicitly include breaking. Tests of breakwaters armored with dolos units suggest that the program can also be used for artificial armor units. Comparison with laboratory data shows that the model gives the best predictions for shallow-water waves. Predictions of transmission coefficients tend to be conservative for transitional or deepwater waves. Refer to Seelig (in preparation, 1979)⁷ or Madsen and White (1976)⁸ for more information. Figure 2 shows a comparison between wave transmission coefficients observed in a laboratory model and predicted using the methods described in this CETA.

IV. EXAMPLE

Use of the computer program (MADSEN) in the Appendix can best be illustrated by an example. The format of required input information is given in Table 3. Any number of breakwater geometries, water depths or wave conditions can be analyzed in a single run. The first 53 cards are a standard deck of look-up (input) tables (see Table A-1); card type 1 provides the number of breakwater configurations or water depths to analyze. Card types 2 to 6 give required input information for each breakwater of interest; however, a separate set of these card types is required when the breakwater geometry or water depth is changed.

⁷SEELIG, W.N., op. cit., p. 7.

⁸MADSEN, O.S., and WHITE, S.M., op. cit., p. 7.

Figure 2. Observed and predicted transmission coefficients for a rubble-mound breakwater.

Table 3. Format of input information.

Card type	Format	Description
Standard		53 standard input cards
1	I2	Number of breakwater configurations or water depths to test
2	20A4	Title card
3	3I2,4X,7F10.5	Number of wave conditions to test Number of materials Number of horizontal layers Structure height (m) Water depth (m) Kinematic viscosity (m^2/s) Width of top of breakwater (m) Front slope of breakwater = $\tan(\theta)$ Wave runup parameter $a \approx 0.692$ Wave runup parameter $b \approx 0.504$
4	10x,2F10.5 (1 card per material)	Material diameter (m) (armor 1st) Material porosity
5	10x,7F10.5 (1 card per horizontal layer)	Layer thickness (m) Mean length of each material type in the layer (put in consecutive order; e.g., material 1 (armor) 1st, etc.)
6	2F10.5 (wave condition card; one card per wave condition)	Wave period (s) Wave heights (m)

Repeat card types 2 to 6 for each water depth or breakwater configuration to be tested.

Card type 3 gives the number of wave conditions to analyze and summarizes general input information (Table 3). For the example breakwater (Fig. 3), 18 wave conditions with periods of 5, 10, and 20 seconds and with heights that range from 0.1 to 2.0 meters, are analyzed.

Card type 4 gives material characteristics, one card per material and the first card should describe the armor material. The example gives three materials (armor, underlayer, and core); diameter and porosity of the materials are shown in Figure 3.

Card type 5 is used to input the mean horizontal length of various materials in various horizontal layers of the breakwater. A new horizontal layer occurs when there is a change vertically in material type or slope and the layer next to the seabed should be designated as "layer number 1." In the case of the example breakwater, three horizontal layers

Figure 3. Example breakwater.

are shown in Figure 4. Sample horizontal length calculations are also included. Note that when determining horizontal lengths of the armor material, the outer layer of the armor on the seaward side of the breakwater should be "removed" first because dissipation of the seaward face is determined in a separate part of the computer program.

Table 4 gives the computer program input information required for the example; Table 5 is the resulting program output. The output shows that predicted transmitted wave height for this example is a complex function of incident wave height and period.

Table 4. Sample input.

EXAMPLE PROBLEM							
18	3	3	6.0	4.6	00000093	2.52	0.667
MAT	1		0.729	0.37			0.692
MAT	2		0.538	0.37			0.504
MAT	3		0.092	0.37			
LAY	1		3.55	4.53	3.80	6.40	
LAY	2		0.78	4.53	2.54	0.0	
LAY	3		0.47	5.25	0.0	0.0	
S.0			0.1				
S.0			0.5				
S.0			1.0				
S.0			1.5				
S.0			1.75				
S.0			2.0				
10.0			0.1				
10.0			0.5				
10.0			1.0				
10.0			1.5				
10.0			1.75				
10.0			2.0				
20.0			0.1				
20.0			0.5				
20.0			1.0				
20.0			1.5				
20.0			1.75				
20.0			2.0				

V. SUMMARY

A computer program is presented for estimation of wave transmission coefficients for permeable breakwaters. Extensive testing of the program with laboratory data has shown that the program can be used to estimate transmission coefficients for monochromatic or irregular waves and for rubble-mound or other types of permeable breakwaters. A limited amount of testing suggests that it can also be used for breaking and nonbreaking waves.

A copy of the card deck and more extensive program documentation for the computer program MADSEN (CERC Program Number 752X6R1CPO) are available from the ADP Coordinator at CERC. The cost of running the program on a CDC 6600 computer is only a few cents for each wave condition of interest.

Figure 4. Information required for (horizontal layer) example breakwater.

Table 5. Sample output.

EXAMPLE PROBLEM

COMPUTATIONS OF WAVE TRANSMISSION THROUGH A POROUS BREAKWATER

NUM OF WAVE CONDITIONS	18
NUM OF MATERIALS	3
NUM OF HORIZONTAL LAYERS	3
STRUCTURE HEIGHT (M)=	6.000
WATER DEPTH (M)=	4.000
KINEMATIC VISCOSITY (M ² /SEC)=	.000000930
BW TOP WIDTH (M)=	2.520
TANB OF FRONT SLOPES	.6670
RUNUP COEFFICIENTS AF = .692 B= .504	
MATERIAL CHARACTERISTICS (MAKE ARMOR MATERIAL NUMBER 1)	
MATERIAL= 1 DIAMETER (M)= .729 POROSITY= .370	
MATERIAL= 2 DIAMETER (M)= .338 POROSITY= .370	
MATERIAL= 3 DIAMETER (M)= .092 POROSITY= .370	

HORIZONTAL LAYER CHARACTERISTICS
(MAKE LAYER NEXT TO SEALED LAYER NUMBER 1)

	MATERIALS	1	2	3
HORIZONTAL LAYER= 1 THICKNESS (M)= 3.550 LENGTHS (M)= 4.5	HT(M)	6.4	3.8	6.4
HORIZONTAL LAYER= 2 THICKNESS (M)= .780 LENGTHS (M)= 4.5		7.5	0.0	
HORIZONTAL LAYER= 3 THICKNESS (M)= .470 LENGTHS (M)= 5.3		0.0	0.0	

H(M)	T(SEC)	H/(G*T*T)	H/L	D/(G*T*T)	KTT	KTO	KT	KR	HT(M)
.100	5.00	.0000408	.00335	.0196	.391	0.000	.391	.26	.039
.500	5.00	.002041	.01674	.0196	.211	0.000	.211	.28	.105
1.000	5.00	.004082	.03349	.0196	.149	0.000	.149	.28	.149
1.500	5.00	.006192	.05023	.0196	.129	.036	.134	.27	.201
1.750	5.00	.007103	.05860	.0196	.121	.086	.148	.26	.260
2.000	5.00	.008163	.06697	.0196	.113	.125	.168	.26	.337
.100	10.00	.0000102	.00151	.0049	.397	0.000	.397	.51	.040
.500	10.00	.000510	.00753	.0049	.199	0.000	.199	.60	.099
1.000	10.00	.001020	.01507	.0049	.135	0.000	.135	.62	.135
1.500	10.00	.001531	.02260	.0049	.099	.115	.152	.64	.228
1.750	10.00	.001786	.02637	.0049	.088	.159	.182	.64	.318
2.000	10.00	.002041	.03013	.0049	.080	.193	.209	.64	.416
.100	20.00	.0000208	.00073	.0012	.379	0.000	.379	.53	.038
.500	20.00	.000128	.00367	.0012	.184	0.000	.184	.66	.092
1.000	20.00	.000245	.00735	.0012	.125	.010	.125	.70	.125
1.500	20.00	.000383	.01102	.0012	.096	.154	.182	.71	.273
1.750	20.00	.000446	.01286	.0012	.086	.196	.214	.72	.374
2.000	20.00	.000510	.01470	.0012	.080	.227	.241	.72	.481

KTT = WAVE TRANSMISSION THROUGH THE STRUCTURE
KTO = WAVE TRANSMISSION BY OVERTOPPING COEFFICIENT
KT = TOTAL WAVE TRANSMISSION COEFFICIENT
KR = WAVE REFLECTION COEFFICIENT
HT = TRANSMITTED WAVE HEIGHT

THIS PAGE IS BARTON 20131 TRANSMISSION
FROM COPY DISSEMINATED 10 AUG

APPENDIX

LISTING OF THE COMPUTER PROGRAM MADSEN

```

EOR
      PROGRAM MADSEN(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT,TAPE5)
COMMON/MADS1/NM,NL,U(11),N(11),LL(11+11),TH(11)
COMMON/SEEL/NKL,FS
      REAL NKL
      DIMENSION THUF(1),TITLE(20),NUM(10)
      REAL L,NU,KT,KR,NLE,NR,LL,KTD,KTT
      DATA NUM/1,2,3,4,5,6,7,8,9,10/
      PI=3.14159
      CALL READ1
      READ(5,590) NCOMP
  590 FORMAT(5X,4X,7F10.5)
      DO 200 I=1,NCOMP
C READ INPUT INFORMATION
      READ(5+171) (TITLE(JJM),JJM=1,20)
  171 FORMAT(20A4)
      WRITE(6,172) (TITLE(JJM),JJM=1,20)
  172 FORMAT(1H1,10X,20A4)
      READ(5,590) NT,NM,NL,HS,HU,NU,TOPW,TANR,RA,RB
      F=HS-HU
      IF(RA,LE,0.) RA=0.492
      IF(RB,LE,0.) RB=.504
      WRITE(6,471) NT,NM,NL,HS,HU,NU,TOPW,TANR,RA,RB
  471 FORMAT(//,10X,'COMPUTATIONS OF WAVE TRANSMISSION THROUGH A POROUS
* BREAKWATER',//,5X,'INUM OF WAVE CONDITIONS',12X,13,//,5X,
* INUM OF MATERIALS',17X,13,//,5X,
* INUM OF HORIZONTAL LAYERS',1X,15//,5X,'STRUCTURE HEIGHT (M)
* ',16X,F10.3//,5X,'WATER DEPTH (M)',11X,F10.3//,5X,
* 1KINematic Viscosity (M2/SEC)=1,F11.9*, /,5X,1BW TOP WIDTH (M)=1,
* 10X,F10.3//,5X,'TANG OF FRONT SLOPE'=1.9X,F8.4*,/5X,'TRUNUP COEFFICIENT
* ENTS A=1,F6.3,B=1,F6.3)
      DO 99 I=1,11
      DO 98 J=1,11
  98  LL(I,J)=0.
  99  CONTINUE
      WRITE(6,2H3)
  283 FORMAT(5X,'MATERIAL CHARACTERISTICS (MAKE ARMOR MATERIAL NUMBER 1)
*1,/)
      DO 6 I=1,NM
      READ(5+7) D(I),N(I)
  7  FORMAT(10X,7F10.5)
      WRITE(6,177) I,D(I),N(I)
  177 FORMAT(5X,'MATERIAL',13,1'DIAMETER (M)=1,F 6.3,1'POROSITY=1,F6.3)
  6  CONTINUE
      WRITE(6,284) (NU(NM),ME1,NM)
  284 FORMAT(//,5X,'HORIZONTAL LAYER CHARACTERISTICS',//,5X,
*1(MAKE LAYER NEXT TO SEALED LAYER NUMBER 1)',//,
* 5X,'MATERIAL'=1,7(11,5X),/1,63X,6(12+4X),/1
      DO 33 J=1,NL
      READ(5+7) THFJ,(LL(T,J),J=1,NM)
      WRITE(6,178) J,THFJ,(LL(T,J),J=1,NM)
  178 FORMAT(5X,'HORIZONTAL LAYER',13,1'THICKNESS (M)=1,F6.3,1 LENGTH

```

THIS PAGE IS BEST QUALITY PRACTICALLY
FROM COPY MADE BY THE MDC

```

* S (M)z1,7FA,1z/160X,7F6,1)
33  CONTINUE
    NM=NM+1
    D(NM)=D(1)
    N(NM)=0.01
    NL=NL+1
    TH(NL)=100000000.
    LL(NM,NL)=3,*0f1)
    WRITE(6,942)
942  FORMAT(//16X,IH(M) T(SEC) H/(G*T*T) H/L D/(G*T*T/) KTT
*   KTD KT KR HT(N))
    DO 199 IK=1,NT
    READ(5,8) T,H
8     FORMAT(2F10.5)
    A=H*0.5
    DR=D(1)*0.5
    IF(A.LT.0.00001) GO TO 100
    IF(TANH,LE,0.) GO TO 37
    CALL PFFL(A,HS,D(1),NU,TANB,T,RU,L)
    AI=R11*A
22    DHT=2.*RU*A
    IFLAG=0
C ASSUME DME=DHT AND ITERATE ON THE EQUIVALENT BH
    ICOUNT=0
    DHE=DHT
10    ICOUNT=ICOUNT+1
    CALL ERH4(DHE,DHT,LE,HO,HS,TANB,NU,DR,TOPW)
    CALL INTER(JR,T,LE,NU,AI,NU,DR,T1,R1,L,IFLAG)
    IF(IFLAG.EQ.1) DR=DR*0.95
    IF(IFLAG.EQ.1) GO TO 27
    DHE=(1.+R1)*R11*A
    IF(ICOUNT.LT.4) GO TO 10
    KR=R11*R11
    KTT=T1*R11
37    IF(TANB,LE,0.) CALL INTER(N(1),T,TOPW,HO,A,NU,D(1),KTT,KR,L,IFLAG)
    IF(IFLAG.EQ.1) DR=DH*0.5
    IF(IFLAG.EQ.1) GO TO 37
    SURF=TANB/SQRT(H/(1.56*T*T))
    RH=RA+SURF/(1.+RH+SURF)
    R=H*RH
    FR=F/R
    C=0.51 - 0.11*TOPW/HS
    KTD=C*(1.-FR)
    IF((TOPW/HS).GT.0.,RH,ANU,F,LT,0.) KTD=C*(1.-FR)-(1.-2.*C)*FR
    IF(KTD.GT.1.) KTD=1.
    IF(FR.GT.1.0) KTD=0.
    HGT2=A*2./(9.*RU*T*T)
    HL=2.*A/L
    DGT2=HO/(9.*RU*T*T)
    FLAG=5H
    KT=SQRT(KTT+*2+KTD**2)
    IF(KT.GT.1.0) KT=1.0
    HT=H*KT
    WRITE(6,981) H,T,HGT2,HL,DGT2,KTT,KTD,KT,KR,HT
981  FORMAT(5X,Fh,3,F10.2,F10.6,F10.5,F10.4,F6.3,F6.2,F7.3)
100  CONTINUE
199  CONTINUE
    WRITE(6,201)

```

```

201 FORMAT(//,2X,IKT) = WAVE TRANSMISSION THROUGH THE STRUCTURE
* 2X,IKT0 = WAVE TRANSMISSION BY OVERTIPPING COEFFICIENT
* 2X,IKT = TOTAL WAVE TRANSMISSION COEFFICIENT //,2X,
* IKR = WAVE REFLECTION COEFFICIENT
* //,2X,ITR = TRANSMITTED WAVE HEIGHT)
200 CONTINUE
STOP
END
SUBROUTINE RFFL(A,HS,D,H0,TANH,T,RTI,RH0,L)
COMMON/MAUS/FST(9,11),RUT(9,11),RT(17,11),TX(9,10),RX(9,10)
DIMENSION FSS(11),RUS(11),RS(11)
REAL L,LSL,LS
C PF = MODEL CORRECTION FACTOR TO ACCOUNT FOR MODEL SLOPE EFFECTS
CF=1.28-0.57R*TANH
IF(TANH.LT.0.4) CF=1.02
IF(TANH.GT.0.68) CF=0.89
C FIND WAVE LENGTH L
HOLD=H0/(1.56*T)
CALL LENGTH(HOLD,HUL)
L=H0/HUL
LS=H0/TANH
IF(HS.LT.H0) LS=HS/TANH
LSL=LS/L
IF(LSL.LT.0.8) GO TO 105
TMIN=SQRT((A,2B3*(LS/0.8)/(9.8*TANH(B,2B3*H0/(LS/0.8)))))  

WRITE(6,101) TMIN
101 FORMAT(//,1X,'WARNING - THE MINIMUM WAVE PERIOD TO BE ANALYZED BY THIS PROGRAM IS ',F6.2,' SEC FOR THIS CONDITION')
LSL=0.799
105 I=(LSL*10.+1.)
C INTERPOLATE INPUT TABLE FOR THIS LSL VALUE
II=LSL*20.+1.
DO 3 J=1,11
FSS(J)=FST(I,J)+(FST(I+1,J)-FST(I,J))*(LSL-(I-1)*0.1)/0.1
RUS(J)=RUT(I,J)+(RUT(I+1,J)-RUT(I,J))*(LSL-(I-1)*0.1)/0.1
3 RS(J)=RT(I,J)+(RT(I+1,J)-RT(I,J))*(LSL-(I-1)*0.05)/0.05
C GUESS PHI AND ITERATE
PHI=5.0
M=0
5 J=PHI
FAC=(ALOG(PHI+1.1-ALOG(J+1.))/ALOG(J+2.))-ALOG(J+1.))
FS=FSS(J+1)+FAC*(FSS(J+2)-FSS(J+1))
RU=RUS(J+1)+FAC*(RUS(J+2)-RUS(J+1))
RII=RS(J+1)+(RS(J+2)-RS(J+1))*FAC
ARG=0.24*(D/H0)**0.24*(RU*2.**4/(H0*TANH))**0.3*FS
PHIN=0.5*ATAN(ARG)*57.29578
M=M+1
DEL=ARS(PHIN-PHI)
IF(M.GT.20) GO TO 9
PHI=PHIN
IF(PHI.LT.0.01) PHI=0.01
IF(PHI.GT.0.99) PHI=0.99
IF(DEL.GT.0.05) GO TO 6
6 RII=RII*CF
RETURN
END
SUBROUTINE RFFL
COMMON/MAUS/FST(9,11),RUT(9,11),RT(17,11),TX(9,10),RX(9,10)

```

```

177 FORMAT($X*(7E4,0)
DO 1 M=1,11
1 READ(5+177) (FST(N,M)+N$1,9)
DO 2 M=1,11
2 READ(5+177) (RUT(N,M)+N$1,9)
DO 3 M=1,11
3 READ(5+177) (RT(N,M)+N=1+17)
DO 4 M=1,10
4 READ(5+177) (TX(N,M)+N$1,9)
DO 5 M=1,10
5 READ(5+177) (RX(N,M)+N=1,9)
RETURN
END
SUBROUTINE LENGTH( DL0,DL )
REAL L0,LONE,LD0
LD=1.0/DL0
L0D=1.0/DL0
N=1
PI=3.14159
1 ARG=2.0*PI/LD
LONE=L0D*TANH(ARG)
N=N+1
DIFF=ABS(L0NEW-LD)
IF(N>200) 3,4,4
3 IF(DIFF>0.0005) 2+2+5
5 LD=(L0NEW+LD)/2.0
GO TO 1
4 DL=1.0/L0NEW
WRITE(6+100) DL0,DL
100 FORMAT(4DH SUBROUTINE LENGTH DID NOT CONVERGE, D/LD = +F10.5)
1 AHD/L = +F10.5
2 DL=1.0/L0NEW
RETURN
END
SUBROUTINE EQBW(DME,DMT,LE,HD,HS,TANH,NR,DR,TOPW)
COMMON/HADS1/NM,NL,D(11),N(11),L(11+11),TH(11)
DIMENSION RETA(11),DH(11)
REAL NL,LF,NR
NR=0.435
RETAR=2.7*(1.-NR)/(NR**3*UR)
DO 21 J=1,NL
21 RETA(J)=2.7*(1.-R(J))/(N(J)**3*D(J))
TH1=0.
TH2=0.
DO 4 J=1,NL
TH1=TH1+TH(J)
NYL=J
DH(J)=TH(J)/HD
IF(TH1.GT.HD) DH(J)=(HD-TH2)/HD
IF(TH1.GT.HD) GO TO 5
4 TH2=TH2+TH(J)
5 SUMP=0.
DO 16 J=1,NYL
SUM1=0.
DO 17 I=1,NM
17 SUM1=SUM1+RETA(I)/RETAR*(I,J)

```

```

16    SUM2=SUM2+DH(J)/(SQR(SUM1))
      L=1.0/(SUM2**2)*DH/DH
      RETURN
      END
      SUBROUTINE INTER(N,T,L,HO,A,NU,D,TI,RI,ML,IFLAG)
      COMMON/SFEL/NKL,FS
      COMMON/MAADS/FST(9,11),PUT(9,11),RT(17,11),TX(9,10),RX(9,10)
      DIMENSION TS(10),RS(10)
      REAL NKL,L,NU,KD,LAHHDA,N
      SS=(N/0.45)**2
      KD=2.03*14159/ML
      NKL=N*KD*L
      BETAA=2.7*(1.0-N)/(N**3*D)
      LAHHDA=1.0
      F=0.0
      RC=170.0
      IC=0
      FNRF
      IC=IC+1
      H=A+SURT(9,80/HO)/(1.0+AMHDA)
      RD=H*D/NU
      F=N/(KD*L)*(SURT(1.0+(1.0+RC/RD)*(1.0+BETAA*L/(3.0*3.14159*HO)))-1.0)
      LAHHDA=KD*(1.0+F/(2.0**2))
      IF(IC.GT.10) GO TO 5
      IF((ABS(FN-F)/F).GT.0.02) GO TO 2
      5   TI=1.0/(1.0+LAHHDA)
      RI=LAHHDA/(1.0+LAHHDA)
      FS=F/SS
      C   WRITE(6,597) F,FS,H,HO
      597 FORMAT(20X,1F,FS,H,HO+1.4E13,5)
      IF(NKL.GT.0.9) IFLAG=1
      IF(NKL.GT.0.9) RETURN
      IF(NKL.LT.0.1) RETURN
      IF(FS.GT.35.0) FS=35.0
      J=NKL+10
      I=FS
      C   INTERPOLATE MAESSEN CURVES 2 AND 3
      DO 1 I=1,10
      RS(M)=RX(J,M)+(X(J+1,M)-X(J,M))*(NKL-0.1*I)/0.1
      1   TS(M)=TX(J,M)+(Y(J+1,M)-Y(J,M))*(NKL-0.1*I)/0.1
      IF(FS.LE.1.0) TI=TS(1)+ALOG10(FS)*(TS(10)-TS(1))
      IF(FS.LE.1.0) RI=RS(1)+ALOG10(FS)*(RS(10)-RS(1))
      IF(FS.GE.10.0) TI=TS(10)+(45.-FS)/25.
      IF(FS.GE.10.0) RI=RS(10)+(1.-RS(10))*(FS-10.0)/25.
      IF(FS.LE.1.0,.0R.,FS.GE.10.0) RETURN
      RI=RS(1)+(RS(1+1)-RS(1))*( ALOG(FS)-ALOG(I+1.))/( ALOG(I+1.0)-ALOG(I+1.0))
      TI=TS(1)+(TS(1+1)-TS(1))*( ALOG(FS)-ALOG(I+1.0))/( ALOG(I+1.0)-ALOG(I+1.0))
      RETURN
      END

```

Table A-1. Standard look-up tables to be read by subroutine REDI.

1	.85	.83	.901	.502	.192	.333	.233	.463	.96
2	.85	.83	.901	.492	.192	.303	.193	.423	.90
3	.85	.83	.901	.492	.162	.293	.103	.243	.70
4	.85	.83	.901	.472	.102	.222	.943	.073	.40
5	.85	.83	.901	.442	.052	.142	.742	.803	.00
6	.85	.83	.901	.451	.982	.032	.502	.502	.60
7	.85	.83	.901	.441	.891	.922	.282	.222	.20
8	.85	.83	.901	.471	.801	.792	.021	.911	.83
9	.85	.83	.901	.401	.701	.681	.791	.631	.60
10	.85	.83	.901	.361	.611	.521	.571	.381	.24
11	.85	.83	.901	.301	.501	.401	.371	.171	.00
12	1.001	.242	0.032	.492	.693	.283	.353	.744	.00
13	1.001	.231	.942	.322	.502	.882	.973	.203	.34
14	1.001	.221	.852	.162	.312	.562	.632	.732	.80
15	1.001	.201	.742	.032	.142	.282	.322	.342	.36
16	1.001	.191	.701	.901	.982	.042	.042	.021	.97
17	1.001	.191	.611	.781	.821	.821	.791	.731	.65
18	1.001	.181	.501	.681	.671	.651	.581	.491	.38
19	1.001	.181	.481	.571	.541	.471	.371	.271	.18
20	1.001	.171	.451	.481	.421	.321	.211	.08	.97
21	1.001	.161	.371	.381	.311	.181	.05	.93	.80
22	1.001	.161	.371	.291	.191	.06	.93	.80	.67
23	1.001	.001	.001	.001	.001	.001	.001	.001	.001
24	1.001	.00	.98	.96	.92	.87	.87	.84	.87
25	1.001	.00	.98	.93	.83	.75	.74	.78	.75
26	1.001	.00	.97	.90	.75	.65	.66	.60	.61
27	1.001	.00	.97	.87	.68	.55	.58	.62	.56
28	1.001	.00	.95	.83	.62	.06	.52	.55	.48
29	1.00	.99	.94	.79	.57	.40	.45	.50	.43
30	1.00	.99	.93	.75	.51	.34	.40	.45	.38
31	1.00	.99	.92	.72	.44	.28	.30	.42	.33
32	1.00	.99	.91	.70	.40	.23	.33	.39	.30
33	1.00	.98	.90	.67	.35	.18	.31	.35	.27
34	.80	.66	.57	.50	.46	.42	.38	.36	.34
35	.67	.50	.41	.34	.30	.26	.22	.18	.16
36	.58	.41	.32	.26	.21	.17	.13	.11	.08
37	.50	.33	.26	.19	.16	.12	.09	.07	.05
38	.43	.30	.22	.16	.12	.08	.07	.04	.03
39	.41	.26	.18	.13	.09	.07	.04	.03	.02
40	.37	.23	.15	.11	.08	.05	.03	.02	.02
41	.33	.21	.13	.09	.06	.04	.03	.02	.01
42	.31	.19	.12	.08	.05	.03	.03	.02	.01
43	.29	.17	.11	.07	.04	.03	.02	.01	.01
44	.25	.40	.49	.56	.58	.59	.58	.56	.53
45	.35	.52	.60	.65	.66	.65	.63	.62	.60
46	.44	.60	.68	.71	.71	.69	.67	.67	.66
47	.50	.67	.73	.74	.73	.72	.71	.70	.70
48	.57	.71	.75	.77	.76	.74	.73	.73	.73
49	.60	.73	.78	.78	.77	.76	.76	.76	.76
50	.63	.76	.80	.79	.79	.78	.77	.77	.77
51	.66	.78	.81	.80	.79	.79	.79	.79	.79
52	.68	.80	.82	.81	.80	.80	.80	.80	.80
53	.71	.81	.83	.82	.81	.81	.81	.81	.81

Seelig, William N.

Estimation of wave transmission coefficients for permeable breakwaters / by William N. Seelig. - Fort Belvoir, Va. : U.S. Coastal Engineering Research Center ; Springfield, Va. : available from National Technical Information Service, 1979. 22 p. : ill. ; 27 cm. - (Coastal engineering technical aid ; CETA 79-6)

Cover title.

Report describes methods for predicting wave transmission coefficients for permeable breakwaters using a transmission by overtopping equation with an analytical model. A computer program was found the most convenient method of making predictions. The program and an example showing its use are included in an Appendix.
1. Breakwaters. 2. Wave overtopping. 3. Wave propagation.
I. Title. II. Series: U.S. Coastal Engineering Research Center. Coastal engineering technical aid; CETA 79-6.

TC203

.U581ta
no. 79-6

627

Seelig, William N.

Estimation of wave transmission coefficients for permeable breakwaters / by William N. Seelig. - Fort Belvoir, Va. : U.S. Coastal Engineering Research Center ; Springfield, Va. : available from National Technical Information Service, 1979. 22 p. : ill. ; 27 cm. - (Coastal engineering technical aid ; CETA 79-6)

Cover title.

Report describes methods for predicting wave transmission coefficients for permeable breakwaters using a transmission by overtopping equation with an analytical model. A computer program was found the most convenient method of making predictions. The program and an example showing its use are included in an Appendix.
1. Breakwaters. 2. Wave overtopping. 3. Wave propagation.
I. Title. II. Series: U.S. Coastal Engineering Research Center. Coastal engineering technical aid; CETA 79-6.

TC203

.U581ta
no. 79-6

627

Seelig, William N.

Estimation of wave transmission coefficients for permeable breakwaters / by William N. Seelig. - Fort Belvoir, Va. : U.S. Coastal Engineering Research Center ; Springfield, Va. : available from National Technical Information Service, 1979. 22 p. : ill. ; 27 cm. - (Coastal engineering technical aid ; CETA 79-6)

Cover title.

Report describes methods for predicting wave transmission coefficients for permeable breakwaters using a transmission by overtopping equation with an analytical model. A computer program was found the most convenient method of making predictions. The program and an example showing its use are included in an Appendix.
1. Breakwaters. 2. Wave overtopping. 3. Wave propagation.
I. Title. II. Series: U.S. Coastal Engineering Research Center. Coastal engineering technical aid; CETA 79-6.

TC203

.U581ta
no. 79-6

627

Seelig, William N.

Estimation of wave transmission coefficients for permeable breakwaters / by William N. Seelig. - Fort Belvoir, Va. : U.S. Coastal Engineering Research Center ; Springfield, Va. : available from National Technical Information Service, 1979. 22 p. : ill. ; 27 cm. - (Coastal engineering technical aid ; CETA 79-6)

Cover title.

Report describes methods for predicting wave transmission coefficients for permeable breakwaters using a transmission by overtopping equation with an analytical model. A computer program was found the most convenient method of making predictions. The program and an example showing its use are included in an Appendix.
1. Breakwaters. 2. Wave overtopping. 3. Wave propagation.
I. Title. II. Series: U.S. Coastal Engineering Research Center. Coastal engineering technical aid; CETA 79-6.

TC203

.U581ta
no. 79-6

627

Seelig, William N.

Estimation of wave transmission coefficients for permeable breakwaters / by William N. Seelig. - Fort Belvoir, Va. : U.S. Coastal Engineering Research Center ; Springfield, Va. : available from National Technical Information Service, 1979. 22 p. : ill. ; 27 cm. - (Coastal engineering technical aid ; CETA 79-6)

Cover title.

Report describes methods for predicting wave transmission coefficients for permeable breakwaters using a transmission by overtopping equation with an analytical model. A computer program was found the most convenient method of making predictions. The program and an example showing its use are included in an Appendix.

1. Breakwaters. 2. Wave overtopping. 3. Wave propagation.
I. Title. II. Series: U.S. Coastal Engineering Research Center.

Coastal engineering technical aid; CETA 79-6.

TC203

no. 79-6

627

.U581ta no. 79-6
no. 79-6

627

Seelig, William N.

Estimation of wave transmission coefficients for permeable breakwaters / by William N. Seelig. - Fort Belvoir, Va. : U.S. Coastal Engineering Research Center ; Springfield, Va. : available from National Technical Information Service, 1979. 22 p. : ill. ; 27 cm. - (Coastal engineering technical aid ; CETA 79-6)

Cover title.

Report describes methods for predicting wave transmission coefficients for permeable breakwaters using a transmission by overtopping equation with an analytical model. A computer program was found the most convenient method of making predictions. The program and an example showing its use are included in an Appendix.

1. Breakwaters. 2. Wave overtopping. 3. Wave propagation.
I. Title. II. Series: U.S. Coastal Engineering Research Center.

Coastal engineering technical aid; CETA 79-6.

TC203

no. 79-6

627

.U581ta no. 79-6
no. 79-6

627

Seelig, William N.

Estimation of wave transmission coefficients for permeable breakwaters / by William N. Seelig. - Fort Belvoir, Va. : U.S. Coastal Engineering Research Center ; Springfield, Va. : available from National Technical Information Service, 1979. 22 p. : ill. ; 27 cm. - (Coastal engineering technical aid ; CETA 79-6)

Cover title.

Report describes methods for predicting wave transmission coefficients for permeable breakwaters using a transmission by overtopping equation with an analytical model. A computer program was found the most convenient method of making predictions. The program and an example showing its use are included in an Appendix.

1. Breakwaters. 2. Wave overtopping. 3. Wave propagation.
I. Title. II. Series: U.S. Coastal Engineering Research Center.

Coastal engineering technical aid; CETA 79-6.

TC203

no. 79-6

627

Seelig, William N.

Estimation of wave transmission coefficients for permeable breakwaters / by William N. Seelig. - Fort Belvoir, Va. : U.S. Coastal Engineering Research Center ; Springfield, Va. : available from National Technical Information Service, 1979. 22 p. : ill. ; 27 cm. - (Coastal engineering technical aid ; CETA 79-6)

Cover title.

Report describes methods for predicting wave transmission coefficients for permeable breakwaters using a transmission by overtopping equation with an analytical model. A computer program was found the most convenient method of making predictions. The program and an example showing its use are included in an Appendix.

1. Breakwaters. 2. Wave overtopping. 3. Wave propagation.
I. Title. II. Series: U.S. Coastal Engineering Research Center.

Coastal engineering technical aid; CETA 79-6.

TC203

no. 79-6

627