Machine Learning

FYS-2021 Autumn 2024

Course goal

- Introduction to the most important concepts in Machine Learning.
- Perfect level for starting:
 - Pattern Recognition FYS-3012 (advanced ML, more theory)
 - Deep Learning FYS-3033 (deep neural networks)
 - Kaggle competitions https://www.kaggle.com/
- A good balance between theory and practice
 - Plenty of ML blogs and tutorials online, but often weak on the theory side. This course give you the theory behind.

Organization

- Lectures: Tuesdays and Thursdays 14:15-16:00
- Exercises: once a week but several groups you may change group
- 2 sites: Tromsø and Bodø

https://timeplan.uit.no/emne_timeplan.php?sem=24h&module=FYS-2021-1

Uke 34	Mandag 19.08.2024	Tirsdag 20.08.2024	Onsdag 21.08.2024	Torsdag 22.08.2024
08:00	08:15-10:00 TEKNOBYGGET 1.026 FYS-2021-1 Gruppe 4 Andre			08:15-10:00 TEKNOBYGGET 1.026 FYS-2021-1 Gruppe 2 SN ing Informatikk master informatikk
09:00	C. Chol			C. Chol
10:00		10:15-12:00 TEKNOBYGGET 1.026 FYS-2021-1 Gruppe 1 Siv ing Anvendt fysikk og matematikk		10:15-12:00 TEKNOBYGGET 1.026 FYS-2021-1 Gruppe 3 Kuntig Intelligens
11:00		C. Chol		C. Chol
12:00				
13:00				
14:00		14:15-16:00 PHG 139 TEKNOBYGGET 1.022AUD		14:15-16:00 PHG 139 TEKNOBYGGET 1.022AUD
		FYS-2021-1 Forelesning		FYS-2021-1 Forelesning
15:00		① Opptak-live		Opptak+live
		B. Ricaud E. Wetzer		B. Ricaud E. Wetzer
16:00				

Course plan

Course plan on Canvas https://uit.instructure.com/courses/34698

- Lectures and exercises every week
- 2 Assignments: pass/fail
- 1 take-home exam (focused on code and practice) 50% of the final grade
- 1 final exam (focused on the theory) 50% of the final grade

Tools for the course

- Online resources
 - See the list on Canvas
- Communication
 - Canvas
 - Discord
 - Questions in lectures / exercises
- Programming
 - Python
 - Jupyter notebooks
 - o Python modules for ML: numpy, matplotlib, pandas, scikit-learn
 - Github

Plan for August

Ready for assignment 1: Make something that learns!

First exercise session

Programming for Machine Learning

- Python and Python tricks
- Github

Matrices and Machine learning

Forget about for loops: use matrix-vector multiplications

- More concise maths
- Faster computations in Python (calls routines coded in C, process chunks of memory)
- Can be processed in parallel with GPUs

Matrices and Machine learning

Forget about for loops: use matrix vector multiplications

$$Ay = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1N} \\ a_{21} & a_{22} & & & \\ \vdots & & \ddots & & \\ a_{M1} & & & a_{MN} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{pmatrix} = \begin{pmatrix} a_{11}y_1 + \cdots + a_{1N}y_N \\ a_{21}y_1 + \cdots + a_{2N}y_N \\ \vdots \\ \sum_j a_{Mj}y_j \end{pmatrix}$$

```
1  B = numpy.array((M,1))
2  for i in range(M):
3    B[i] = 0
4    for j in range(N):
5    B[i] = B[i] + a[i,j]*y[j]
```

1 B=A@y

Tensors

A tensor is a n-dimensional array.

Example: a vector (1), a matrix (2), a data cube (3), ...

- Deep learning is heavily using tensors and matrix multiplications.
- One framework for designing deep learning model is called "Tensorflow"

Make sure you know your linear algebra!

Git and version control

Git documentation:

https://git-scm.com/doc

Popular platform: Github https://github.com/about

- Track changes in code, allow many people to work on the same code.
- Save the incremental difference in code
- Heavily used in Machine Learning

https://en.wikipedia.org/wiki/Git

https://docs.github.com/en/get-started/using-git/about-git https://docs.github.com/en/get-started/start-your-journey/hello-world https://sillevl.gitbooks.io/git/

Example: https://github.com/microsoft/ML-For-Beginners
Practice during the first exercise session

Git

Git for the ML course

you will have to use Git for the mandatory assignments

Before or during exercise session:

- install Git
- create a Github account