Prof. Francisco Carvalho.

► Considere o conjunto de aprendizagem abaixo

Item	X	У
1	-5.01	1
2	-5.43	1
3	1.08	1
4	5.35	0
5	5.12	0
6	-1.34	0

► Considere $h_{\theta}(x) = g(\theta_0 + \theta_1 x)$, onde $g(z) = \frac{1}{1 + \exp(-z)}$ e a função de custo

$$J(\theta) = -\left[\frac{1}{m}\sum_{i=1}^{m}y^{(i}\ln(h_{\theta}(x^{(i)}) + (1-y^{(i)})\ln(1-h_{\theta}(x^{(i)}))\right] + \frac{\lambda}{2m}\theta_{1}^{2}$$

Prof. Francisco Carvalho

- Initialize com $\theta = (0,0)$ e calcule $J(\theta)$ considerando $\lambda = 0$ e $\lambda = 1$.
- ▶ Considere $\alpha = 0.1$ e para $\lambda = 0$ e $\lambda = 1$, faça a primeira iteração do algoritmo do gradiente descendente para atualizar $\theta = (\theta_0, \theta_1)$ e calcule $J(\theta)$. Comente.
- RESPONDA A QUESTO EM FOLHAS EM BRANCO, FOTOGRAFE A RESPOSTA COM O SEU CELULAR E COLOQUE O ARQUIVO NO GOOGLE CLASSROOM