<u>Data Science Practicum Report</u> <u>Mar 8 th 2017</u>

Preprocessing

As agreed in the meeting on Thursday $23^{\rm rd}$, in addition to remove columns with >80% missing values, we kept columns suggested by Joel in the excel file sent on Monday Feb $27^{\rm th}$. Our final list of 79 features was as follows:

Sport	ECCNote	Eparent_welcome
		Epost_event_emai
EventsAttended	ECCNote_camp	1
Hprofileview	Ecoach_list_known_updated	Esms_update
Hcoachimport	ECoachEmailOpen	CollegeProspects
Hmessage	ECoachEval	MessagesReceived
Hsearchhit	ECoachImport	MessagesSent
Hcoacheval	ECoachSearchHit	CaptainU_CHURN
Hemailopen	ECoachVisit	NumYear
EAthlete newsletter	Ecolleges_going_to_the_event	NumMonth
Eathlete_new	Efailed_subscription	monthly_price
Eathlete_new_info_request	EEmailsDigest	Eparent_new
		Hcoachimport_Fre
	Hprofileview_Freq	q
Gender		
Hmessage_Freq	Hsearchhit_Freq	Hcoacheval_Freq
Ecolleges_going_to_the_event_		Esms_update_Fre
Freq	Efailed_subscription_Freq	q
Hits_Frequency	College_Prospects_Frequency	
	Ecoach_list_known_updated_F	
Hemailopen_Freq	req	ECoachVisit_Freq

We then took columns with continuous values and normalized the values by the mean and the standard deviation:

$$z = \frac{x - \mu}{\sigma}$$

Hence each feature had a mean of 0 and a standard deviation of 1. Below is a snapshot of the data:

In [379]:	std_pd.head(5)									
Out[379]:	Hprofileview	Hcoachimport	Hmessage	Hsearchhit	Hcoacheval	Hemailopen	EAthlete newsletter	Eathlete_new	Eathlete_new_info_request	
	-0.334910	-0.082896	-0.118345	-0.863017	-0.034355	-0.132922	-1.570523	-0.050501	-0.012864	
-	-0.334910	-0.082896	-0.118345	-0.063949	-0.034355	-0.132922	1.506564	-0.050501	-0.012864	
-	0.663747	0.843619	0.773367	1.001475	-0.034355	-0.132922	0.480869	-0.050501	-0.012864	
_	-0.334910	-0.082896	2.556791	-0.197127	-0.034355	4.445944	0.480869	-0.050501	-0.012864	
-	-0.334910	-0.082896	-0.118345	-0.330305	-0.034355	-0.132922	0.480869	-0.050501	-0.012864	

We then created dummy variables from features with categorical features: gender and sport.

Final table shape: 16117 rows 79 columns

Predicting Lifetime Churn

This week, we focused on predicting lifetime churn. We implemented three models machine-learning models recorded and visualized Precision and Recall Values.

Below are the three models we chose:

- Decision Trees
- Logistic Regression
- Support Vector Machines (SVM)

When it came to building models, we used 80% of the data (12893 rows) for training and the remaining 20% for testing.

Training data: 12893 rows 79 columns

Test data:: 3224 rows 79 columns

Class distribution of Churners and Non-Churners

Training set

Non-Churners	8083
Churners	4810

Testing Set

Non-Churners	1991
Churners	1233

Summary of Precision Recall Values of Churning

Model	Precision	Recall	F1 Score	
Decision Trees	0.73	0.72	0.73	
Logistic Regression	0.76	0.71	0.73	
SVM	0.77	0.68	0.72	

Summary of Precision Recall Values of Retention

Model	Precision	Recall F1 Score		
Decision Trees	0.83	0.83	0.83	
Logistic Regression	0.83	0.86	0.84	
SVM	0.82	0.82	0.82	

Logistic Regression Visualization

Support Vector Machine Visualization

Important Features According to SVM

Decision Trees

Tree Visualization

