Durée : 1 heure

Veuillez répondre à toutes les questions suivantes et indiquer les calculs, les réponses et les schémas dans les espaces qui suivent les données.

Constante: $R = 0.08206 \text{ L atm mol}^{-1} \text{ K}^{-1}$

1a. Pour la réaction suivante: $2 O_3(g) \rightarrow 3 O_2(g)$,

exprimer la vitesse de réaction en fonction du changement de concentration du réactif et du produit. (/ 2pts)

1b. Pour la réaction suivante: : $NH_4^+(aq) + NO_2^-(aq) \rightarrow N_2(g) + 2H_2O(l)$

calculer la valeur de la constante de vitesse, *k*, au début de la réaction, si les concentrations initiales dans l'eau à 25° C sont les suivantes:

 $[NH_4^+] = 0.01 \text{ M}, [NO_2^-] = 0.20 \text{ M} \text{ et la vitesse initial observée}, v = 5.4 x <math>10^{-7} \text{ M s}^{-1}$.

(/ 1 pt)

2. Soit la réaction
$$N_2O_4(g) \Leftrightarrow 2 NO_2(g)$$
 (/3 pts)

Sachant que dans les conditions de température dans lesquelles on travaille, la concentration initiale de $[NO_2] = 0.100$ M et à l'équilibre, $[NO_2] = 0.014$ M. Quelle est la concentration de N_2O_4 à l'équilibre ($[N_2O_4]_{initiale} = 0$) et quelle est la valeur de K_c ?

3. La combustion de propane est une réaction exothermique :

$$C_3H_8(g) + 5 O_2(g) \iff 3 CO_2(g) + 4 H_2O(l)$$

Donner et expliquer l'effet de la modification d'une variable sur le déplacement de l'équilibre de cette réaction. (/6 pts)

modification	déplacement vers	explication
	(la droite ou la gauche)	
Augmentation de T		
Diminution de p		
Retrait de H ₂ O (<i>l</i>)		

	Retrait du $O_2(g)$			
	Ajout de $CO_2(g)$			
	Diminution du volume			
4a. Ec	erire l'expression de K_p relat	ive à l'équation chimique su	iivante et préciser les unité	s en atm:
	2 NO(g) +	$O_2(g) \Leftrightarrow 2 NO_2(g)$	(/ 2 pts)
b. I 25°	Déduire la relation qui existe C. (la valeur numérique de	e entre K_c et K_p pour cette reale K_p est 2.2×10^{12} , pour l'un	nction et calculer la valeur j nité voir votre résultat de 4 (pour K_c à a). / 3 pts)
25° C	mbien de g de sulfate de stro? Le produit de solubilité, <i>K</i> sonnement et du calcul	entium, SrSO ₄ , peut-on disso $r_{ps} = 3.2 \cdot 10^{-7}$ à cette tempér	udre dans 100 ml d'eau pu ature. Détailler <u>toutes les é</u>	re à etappes
réactio	on de dissolution:		(/ 3 pts)
6. Doi	nner la définition et un exem	aple (différent pour a et b) po	our:	
a. la p	rotolyse :		(/ 2pts)
b. 1'aı	itoprotolyse :		(/ 2pts)
7. Le	quel des composés suivants	est un acide selon la définiti	on de Lewis et pourquoi ?	/ 2pts)
a. B	H ₃ b. CH ₄	c. NH ₃		
raison	nement :			
	O_3 est un acide fort. Calcule nt 2.5 x 10^{-2} M HNO ₃ .	er la concentration des ions d	l'hydroxydes pour une solu	ution qui / 2pts)

Résultats de l'ancien contrôle 4

1a.
$$v = -\frac{1}{2} \frac{d[O_3]}{dt} = \frac{1}{3} \frac{d[O_2]}{dt}$$

$$k = 2.7 \cdot 10^{-4} M^{-1} s^{-1}$$

1b

$$K_c = \frac{0.043}{0.086} = \underline{0.5 \text{ M}^{-1}}$$

3.

modification	déplacement vers	explication
	(la droite ou la gauche)	
Augmentation de T	gauche	T favorise la réaction endothermique
Diminution de p	gauche	plus de <i>n</i> à l'état gazeux
Retrait de H ₂ O (<i>l</i>)	Aucun déplacement	Les concentrations des espèces à l'état liquide n'influencent pas l'équilibre
Retrait du O ₂ (g)	gauche	Pour garder K_c constante, plus de formation de $[O_2]$.
Ajout de CO ₂ (g)	gauche	Pour garder K_c constante, diminution de [CO ₂]
Diminution du volume	droite	Augmentation de <i>p</i> , moins de <i>n</i> à l'état gazeux.

4a.
$$K_{\rm p} = \frac{p_{\rm NO_2}^2}{p_{\rm NO}^2 p_{\rm O_2}}$$
 atm⁻¹

b.
$$K_{\rm p} = \underline{K_{c}(RT)^{-1}}$$

$$K_{\rm c} = 5.38 \ 10^{13} \ {\rm M}^{-1}$$

5.
$$\underline{s} = 10^{-2} \text{ g}/100\text{ml}$$

6a. et b. cf. polycopié

7. <u>BH</u>₃

La règle de l'octet n'est pas respectée, car il y a une lacune électronique sur le bore. Les 3 liaisons covalentes avec 3 atomes d'hydrogène entourent le bore avec 6 électrons au lieu de 8.

8.
$$[OH^-] = 3.98 \times 10^{-13} M$$

Bon travail!