Algorithms of Information Security: Samoopravné kódy

Olha Jurečková, Martin Jureček {jurecolh,jurecmar}@fit.cvut.cz

Faculty of Information Technology Czech Technical University in Prague

October 7, 2020

Základní definice

Definition

Hammingova vzdálenost d(x,y) dvou vektorů x a y je rovna počtu souřadnic, ve kterých se liší.

Priklad. d(1000111, 1010110) = 2.

Definition |

Generující matici lineárního (n,k) kódu C v F^n je $k\times n$ matice G, s prvky v F, taková, že její řádky tvoří báze C.

Matice G je ve standardním tvaru, platí-li $G=(I\mid A)$, kde I je jednotková matice $k\times k$ a A je libovolná matice $k\times (n-k)$. Generující matice má rozměr $k\times n$ a musí splňovat 3 základní pravidla:

- 1 každý řádek matice je kódovým slovem
- ${f 2}$ řádky matice jsou lineárně nezávisle, takže hodnost matice G je rovna k
- 3 každé kódové slovo je lineární kombinaci řádků matice.

Má-li kód C generující matici $G=(I\mid A),$ pak jeho kontrolní matice odpovídá $H=(-A^T\mid I),$ kde I je jednotková matice $(n-k)\times (n-k).$

Lineární kódy

Příklad. Uvažujme těleso F_3 a nechť kontrolní matice kódu (5,2) je následující:

$$H = \begin{pmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & 2 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

Převeď te matici H do standardní formy a najděte generující matici G daného kódu.

Řešení: Máme matici

$$H = \begin{pmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & 2 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

vynásobíme druhý řádek matici 2 a dostaneme následující matici:

$$H' = \begin{pmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

Lineární kódy

Dostaneme $H' = (I_3A)$, takže

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 2 \\ 1 & 0 \end{pmatrix}$$

Poznámka. Kontrolní matice lineárního kódu C je generující maticí jeho duálního kódu.

Protože H je generující matice kódu C^{\perp} , potom najdeme kontrolní matici kódu C^{\perp} , což je generující matice kódu C. Dostaneme

$$G = (-A^T \mid I_2) = \begin{pmatrix} 2 & 0 & 2 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{pmatrix}$$

Lineární kódy

 $P\check{r}iklad$. Je dána generující matice G nad tělesem F_3 . Určete kontrolní matici H lineárního kódu generovaného následující maticí

$$G = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 \end{pmatrix}$$

Řešení: Máme matici

$$G = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 \end{pmatrix}$$

odečteme první řádek od 3. řádku a dostaneme následující matici:

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 2 & 2 & 2 \end{pmatrix}$$

Lineární kódy

Dále 3. řádek výnásobíme 2 a druhý řádek odečteme od prvního řádku. Potom 3. řádek odečteme od 2. řádku a dostaneme následující matici:

$$G' = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

Použijeme následující vztah $H = (-A^T \mid I)$ a dostaneme

$$H = (-A^T \mid I_2) = \begin{pmatrix} 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 & 1 \end{pmatrix}$$

Lineární kódy

Příklad. Uvažujme následující binární kód $C = \{(0,0,0), (1,0,1), (0,1,1), (1,1,0)\}.$

- Dokažte, že C je lineární kód.
- Nájděte minimální vzdálenost kódu C.
- Nájděte generující matici kódu C.

Řešení:

- Vektor $(0,0,0) \in C$, operace sčítání vektorů z F_2^3 je uzavřená a každý prvek(vektor) z C má opačný prvek.
- Postupně spočteme Hammingovou váhu všech nenulových slov a zjistíme, že minimální váha je rovna 2. Podle vety (Nechť C je lineární kód nad F_q^n . Potom d(C)=wt(C)) plyne, že minimální vzdálenost kódu C je rovna 2.

• Velikost kódu je 4, takže k=2 a generující matice G musí mít dva řádky. Můžeme vzít např. první dva nenulové vektory a dostaneme:

$$G = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

Definition

Cyklický kód je lineární kód, jehož generující matice je tvořena kódovými slovy (vektory). Tato kódová slova vzniknou cyklickým posunem. Lineární kód C délky n nad tělesem F_q je tedy invariantní vzhledem k cyklickému posunu jeho souřadnic.

Pro každé slovo $a=(a_0,\ldots,a_{n-1})\in F_q^n$ platí: $(a_0,\ldots,a_{n-1})\in C\Rightarrow (a_1,\ldots,a_{n-1},a_0)\in C.$ Každé slovo (vektor) a můžeme ztotožnit s polynomem nad tělesem $F_q: a=(a_0,\ldots,a_{n-1})$ je reprezentován $a(x)=a_{n-1}x^{n-1}+\ldots+a_1x+a_0$ nebo také jinak:

$$\sum_{i=0}^{n-1} a_i x^i \in F_q^n[x].$$

Kódové polynomy jsou pak násobky generujícího polynomu, neboť cyklickému posunu odpovídá násobení polynomem x. Pro cyklický kód s polynomem $a(x)=a_{n-1}x^{n-1}+\ldots+a_1x+a_0$ platí, že je jeho generující matice je:

$$G = \begin{pmatrix} a_0 & a_1 & \dots & a_{n-1} & 0 & \dots & 0 \\ 0 & a_0 & a_1 & \dots & a_{n-1} & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & & \\ 0 & 0 & \dots & a_0 & a_1 & \dots & a_{n-1} \end{pmatrix}$$

Příklad.

Najděte generující matici pro cyklický kód (6,3), jehož generující polynom je následující: $1 \cdot x^3 + 0 \cdot x^2 + 1 \cdot x + 1$.

 $\check{\it Re {\it sen i}}.$ Okamžitě ze znalosti koeficientů polynomu x^3+x+1 dostaneme posunem generující matici

$$G = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$$

Příklad. Najděte generující a kontrolní matici pro binární cyklický kód délky 6 s generujícím polynomem: $g(x) = x^3 + 1$.

Řešení. Máme n=6. Všimněte si, že jsme definovali k tak, že deg(g(x))=n-k, potom n-k=3. Odkud dostaneme k=3. Okamžitě ze znalosti koeficientů polynomu $g(x)=x^3+1$ dostaneme posunem generující matici

$$G = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

Dále spočteme $h(x)=(x^n-1):g(x),$ tj. $h(x)=(x^6-1):(x^3+1)=(x^6+1):(x^3+1)=x^3+1.$ Potom kontrolní matici je následující:

$$H = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

Příklad. Uvažujme binární cyklický kód C délky 7 s generujícím polynom: $g(x)=x^3+x+1$. Potom

- Ověřte, že kód C je cyklický (tj. g dělí x^7-1).
- Najděte generující a kontrolní matici pro daný binární cyklický kód ${\cal C}.$

Řešení.

- Snadno ověříme, že $x^7-1=1+x^7=(1+x+x^3)(1+x+x^2+x^4) \text{ nad } F_2,$ takže g(x) dělí x^7+1 (nebo x^7-1) a tedy kód C je cyklický [7,4] kód.
- Máme n=7. Všimněte si, že jsme definovali k tak, že deg(g(x))=n-k, potom n-k=3. Odkud dostaneme k=4. Okamžitě ze znalosti koeficientů polynomu $g(x)=x^3+x+1$ dostaneme posunem generující matici

$$G = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$$

Dále spočteme $h(x)=(x^n-1):g(x),$ tj. $h(x)=(x^7-1):(x^3+x+1)=1+x+x^2+x^4.$ Potom kontrolní matice je následující:

$$H = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$$

Jak získat všechny cyklické kódy dané délky n?

Vše, co musíme udělat, je najít všechny faktory $x^n - 1$.

Příklad. Najděte všechny binární cyklické kódy délky 3.

Řešení. Pokud chceme určit g(x), potom potřebujeme najít rozklad mnohočlenu x^3-1 nad tělesem F_2 , který má člen stupně n-k.

Poznamenejme, že $x^3-1=(x+1)(x^2+x+1).$ Dostaneme následující výsledky:

generující polynom	kód v R_3
1	R_3
x+1	$\{0, 1+x, x+x^2, 1+x^2\}$
$x^2 + x + 1$	$\{0, 1 + x + x^2\}$
$x^3 - 1$	{0}

Příklad. Najděte všechny cyklické kódy délky 4 nad F_3 .

 \check{R} ešení. Pokud chceme určit g(x), potom potřebujeme najít rozklad mnohočlenu x^4-1 nad tělesem F_3 , který má člen stupně n-k. Nechť k=1, potom budeme postupně dělit x^4-1 děliteli x,x-1,x-2=x+1 (všechny polynomy stupně 1.) Podobně budeme postupovat pro k=2 a pro k=3 a pro k=4. Poznamenejme, že $x^4-1=(x-1)(x+1)(x^2+1)$. Dostaneme následující výsledky, kromě triviálních případů $(R_4$ a $\{0\}$.)

- Kód (4,3) generovaný pomocí x 1 = x + 2.
- Kód (4,3) generovaný pomocí x + 1.
- Kód (4,2) generovaný pomocí $x^2 + 1$.
- Kód (4,2) generovaný pomocí $x^2 1 = x^2 + 2$.

- Kód (4,1) generovaný pomocí $(x-1)(x^2+1) = x^3 + 2x^2 + x + 2$.
- Kód (4,1) generovaný pomocí $(x+1)(x^2+1) = x^3 + x^2 + x + 1$.

Konečná tělesa

Definition

Mějme konečné těleso F_q a v něm libovolný nenulový prvek a. Nejmenší přirozené číslo n takové, že $a^n=1$, se nazývá řád prvku.

Uvažujme těleso F_{2^3} . Toto těleso je tvořeno polynomy nad Z_2 modulo ireducibilní polynom x^3+x+1 . Obsahuje prvky $\left\{0,1,x,x+1,x^2,x^2+x,x^2+1,x^2+x+1\right\}$. Charakteristika tohoto tělesa je p=2. Všechny prvky kromě 0 a 1 mají řád n=q-1=8-1=7, a tudíž jsou všechny primitivní.

Dále uvedeme tabulku sčítání:

+	0	1	x	x^2
0	0	1	x	x^2
1	1	0	x+1	$x^2 + 1$
x	x	x+1	0	$x^2 + x$
x^2	x^2	$x^2 + 1$	$x^2 + x$	0
x+1	x+1	x	1	$x^2 + x + 1$
$x^2 + x$	$x^2 + x$	$x^2 + x + 1$	x^2	x
$x^2 + x + 1$	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x+1
$x^2 + 1$	$x^2 + 1$	x^2	$x^2 + x + 1$	1

Pokračování tabulky sčítání:

+	x+1	$x^2 + x$	$x^2 + x + 1$	$x^2 + 1$
0	x+1	$x^2 + x$	$x^2 + x + 1$	$x^2 + 1$
1	x	$x^2 + x + 1$	$x^2 + x$	x^2
x	1	x^2	$x^{2} + 1$	$x^2 + x + 1$
x^2	$x^2 + x + 1$	x	x+1	1
x+1	0	$x^{2} + 1$	x^2	$x^2 + x$
$x^2 + x$	$x^2 + 1$	0	1	x+1
$x^2 + x + 1$	x^2	1	0	x
$x^2 + 1$	$x^2 + x$	x + 1	x	0

Dále uvedeme tabulku násobení:

•	0	1	x	x^2
0	0	0	0	0
1	0	1	x	x^2
x	0	x	x^2	x+1
x^2	0	x^2	x+1	$x^2 + x$
x+1	0	x+1	$x^2 + x$	$x^2 + x + 1$
$x^2 + x$	0	$x^2 + x$	$x^2 + x + 1$	$x^2 + 1$
$x^2 + x + 1$	0	$x^2 + x + 1$	$x^2 + 1$	1
$x^2 + 1$	0	$x^2 + 1$	1	x

Pokračování tabulky násobení:

•	x+1	$x^2 + x$	$x^2 + x + 1$	$x^2 + 1$
0	0	0	0	0
1	x+1	$x^2 + x$	$x^2 + x + 1$	$x^2 + 1$
x	$x^2 + x$	$x^2 + x + 1$	$x^2 + 1$	1
x^2	$x^2 + x + 1$	$x^2 + 1$	1	x
x+1	$x^2 + 1$	1	x	x^2
$x^2 + x$	1	x	x^2	x+1
$x^2 + x + 1$	x	x^2	x+1	$x^2 + x$
$x^2 + 1$	x^2	x+1	$x^2 + x$	$x^2 + x + 1$

Při práci s Reed Solomonovými kódy pro nás bude výhodné reprezentovat nenulové prvky konečného tělesa jako mocniny primitivního prvku. Vyberme si jeden z primitivních prvků v tělese F_{2^3} (například x) a označme jej α . Prvkem α^2 rozumíme součin $\alpha \cdot \alpha = x \cdot x = x^2$. Pokračujeme dále s $\alpha^3 = \alpha^2 \cdot \alpha = x^2 \cdot x = x+1$. Zbylé přiřazení uvedeme v následující tabulce:

α	x
α^2	x^2
α^3	x+1
α^4	$x^2 + x$
α^5	$x^2 + x + 1$
α^6	$x^2 + 1$
α^7	1

Reed Solomonové kódy

Příklad. Rozhodněte, zda existuje RS kód s parametry $[7,5,3]_q$. Existuje-li takový kód, najděte nejmenší q a jeho kontrolní matici. \check{R} ešení.

Hledáme nejmenší q, pro které 7 dělí q-1, zřejmě je to právě $q=2^3$. Reprezentujme si prvky tělesa F_8 pomocí kořenu α polynomu x^3+x+1 ireducibilního nad F_2 , tedy $F_8=\left\{a_0+a_1\alpha+a_2\alpha^2\mid a_i\in F_2\right\}$. Protože je grupa F_8^* cyklická, je každý nejednotkový prvek řádu 7, proto dopočteme matici

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \alpha & \alpha^2 & \alpha + 1 & \alpha^2 + \alpha & \alpha^2 + \alpha + 1 & \alpha^2 + 1 \end{pmatrix}$$

Reed Solomonové kódy

Příklad. Uvažujme konečné těleso F_5 a ať $\alpha=2$. Najděte:

- generující polynom pro RS(4,2)
- generující matici pro RS(4,2)
- kontrolní matici pro RS(4,2).

Řešení.

• Uvažujme konečné těleso F_5 a $\alpha=2$. Snadno se zkontroluje, že $ord(\alpha)=4$, a $\beta=\alpha$ je tedy primitivní 4tý kořen jednotky. Poznámka. Vytvoříme generující polynom g(x) RS kódu pomocí následujícího vzorečku:

$$g(x) = (x - \alpha)(x - \alpha^2) \dots (x - \alpha^{n-k}),$$

 $\mathsf{kde}\ \alpha\ \mathsf{je}\ \mathsf{primitivn\'i}\ \mathsf{prvek}.$

Potom generující polynom je:

$$g(x) = (x-2)(x-4) = 3 + 4x + x^{2}.$$

• Dále mužeme napsat generující matici pro RS(4,2):

$$G = \begin{pmatrix} 3 & 4 & 1 & 0 \\ 0 & 3 & 4 & 1 \end{pmatrix}$$

Reed Solomonové kódy

• Víme generující matici a potřebujeme najít kontrolní matici pro RS(4,2). Nejprve upravíme generující matici do standardní formy a získáme následující matice:

$$\begin{pmatrix} 1 & 0 & 3 & 4 \\ 0 & 1 & 3 & 2 \end{pmatrix}$$

Teď máme generující matici ve tvaru $G=(I\mid A),$ pak jeho kontrolní matice je $H=(-A^T\mid I),$ kde I je jednotková matice. V našem případě

$$A = \begin{pmatrix} 3 & 4 \\ 3 & 2 \end{pmatrix}$$

Potom dostaneme následující matici

$$(-A^T \mid I) = \begin{pmatrix} 2 & 2 & 1 & 0 \\ 1 & 3 & 0 & 1 \end{pmatrix}$$

Různými úpravami získáme následující matice:

$$H = \begin{pmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 1 & 3 \end{pmatrix}$$

Příklad.

Najděte generující matici pro cyklický kód (7,3), jehož generující polynom je následující: x^4+x^2+x+1 .

Řešení. Okamžitě ze znalosti koeficientů polynomu $x^4 + x^2 + x + 1$ dostaneme posunem generující matici

$$G = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{pmatrix}$$

Příklad. Najděte generující matici pro binární cyklický kód délky 9 s generujícím polynomem: $g(x) = x^6 + x^3 + 1$.

Řešení. Máme n=9. Všimněte si, že jsme definovali k tak, že deg(g(x))=n-k, potom n-k=6. Odkud dostaneme k=3. Okamžitě ze znalosti koeficientů polynomu $g(x)=x^6+x^3+1$ dostaneme posunem generující matici

$$G = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$