Bobina de tesla de estado sólido (Revisado)

Nesse documento mais recente, darei uma explicação mais a fundo do funcionamento das bobinas de tesla de estado sólido. O resultado dessa nova bobina de tesla é assustadoramente melhor do que a outra, isso é devido a vários problemas que eu resolvi. O maior deles foi no balanceamento da ponte, onde os dois capacitores eram para formar um divisor de tensão e não pra uma simples descarga no indutor primário.

Abaixo esquema da ponte nova:

O funcionamento ainda é simples, os diodos adicionados (D1 e D2) servem apenas para conduzir alguns picos indutivos por fora do mosfet, diminuindo a dissipação de calor dos mosfets.

A minha ponte está sendo retificada em meia onda pois não estou fazendo o uso do interruptor, assim não se fazendo necessário.

Acima estão desenhados os formatos de onda antes e depois do diodo, como podem deduzir, o circuito inteiro da bobina de tesla será interrompido por meio período de 60 Hertz. Isso melhora o resfriamento dos mosfets e também cria o formato da onda obtido.

Mostrarei abaixo os ciclos de condução dos mosfets, como citado no documento anterior, os capacitores são descarregados pelo mosfet através do **Indutor Primário**. A maior vantagem desse uso ao invés da ligação direta na rede é que assim você limita a corrente de pico e o tempo dela para um determinado valor, que por sua vez vai ser determinado pela capacitância dos capacitores.

Neste caso o primeiro mosfet está ativado. A corrente armazenada no capacitor flui através do **Indutor Primário** descarregando o capacitor. No momento que a corrente flui pelo indutor, é criado um campo magnético que devido ao acoplamento o **Indutor Secundário** tem sua energia transferida para o mesmo.

Aqui está a figura de quando o segundo mosfet está ativado. O ciclo é o mesmo porém é inverso.

O fluxo que flui através do **Indutor Primário** é inverso do que o anterior. Criando um campo magnético também, porém no sentido contrário.

O funcionamento é bem simples, porém na pratica não é só isso que conta, um inversor comum funciona dessa mesma maneira. Porém diferente de uma bobina de tesla, um inversor comum geralmente trabalha com freqüências baixas (geralmente 60 Hertz por ser um padrão da rede elétrica residencial). No caso da bobina de tesla nós temos um **Transformador Ressoante**. Isto significa que precisamos chavear um campo magnético no **Indutor Secundário** na sua freqüência de ressonância. Dada pela formula:

$$\frac{1}{\sqrt{(2\pi LC)}}$$

Onde L é a Indutância do Indutor Secundário e C é a capacitância distribuída do indutor secundário.

No meu caso, usei um circuito que descarta a necessidade de cálculo pois é um sistema de sintonia automática (Ou **Auto-Ressoante**).

Usando-se uma antena é possível captar as oscilações no **Indutor Secundário** criando um "Loop". Esquema da parte de controle:

Fotos da bobina de tesla:

EnergyLabs Brasil - http://www.wate.com.br/el/