Lab Report: 01.

Course code: CCE-312.

Course Title: Numerical Methods Sessional.

Name of the Lab: Implement Bisection method using Python.

Remarks & Signature:

Submitted To

Professor Dr. Md. Samsuzzaman.

Chairman,

Department of Computer & Communication Engineering.

Faculty of Computer Science & Engineering.

Submitted By

HASAN AHAMMAD ID No: 1902073

Reg No: 08779

Level-3, Semester-1

Session: 2019-2020

Faculty of Computer Science & Engineering.

Patuakhali Science & Technology University. Dumki, Patuakhali-8602.

\$\displaystyle \text{Example-01: Determine the root of the given equation } \mathbb{x}^2-3 = 0 \text{ for } \mathbb{x} \in [1, 2] \text{ and Implement it using Python (Graphical and tabular approach).}

Solution:

Given:
$$x^2-3 = 0$$

Let $f(x) = x^2-3$

Now, find the value of f(x) at a = 1 and b = 2.

$$f(x=1) = 1^2-3 = 1-3 = -2 < 0$$

$$f(x=2) = 2^2-3 = 4-3 = 1 > 0$$

The given function is continuous, and the root lies in the interval [1, 2].

Let "t" be the midpoint of the interval.

I.e.,
$$t = (1+2)/2$$

$$t = 3 / 2$$

Therefore, the value of the function at "t" is

$$f(t) = f(1.5) = (1.5)^2 - 3 = 2.25 - 3 = -0.75 < 0$$

If f(t)<0, assume a = t.

and

If f(t)>0, assume b=t.

f(t) is negative, so a is replaced with t = 1.5 for the next iterations.

The iterations for the given functions are:

Iterations	а	b	С	f(a)	f(b)	f(c)
1	1	2	1.5	-2	1	-0.75
2	1.5	2	1.75	-0.75	1	0.062
3	1.5	1.75	1.625	-0.75	0.0625	-0.359
4	1.625	1.75	1.6875	-0.3594	0.0625	-0.1523
5	1.6875	1.75	1.7188	-01523	0.0625	-0.0457
6	1.7188	1.75	1.7344	-0.0457	0.0625	0.0081
7	1.7188	1.7344	1.7266	-0.0457	0.0081	-0.0189

So, at the seventh iteration, we get the final interval [1.7266, 1.7344] Hence, 1.7344 is the approximated solution.

> Implement with python:

```
import matplotlib.pyplot as plt
from tabulate import tabulate
def bisection(func, a, b, tol=1e-6, max iter=100):
    iterations = []
    a values = []
    b values = []
    c values = []
    f a values = []
    f b values = []
    f c values = []
    if func(a) * func(b) \geq 0:
interval [a, b]")
    for i in range(max iter):
        c = (a + b) / 2
        iterations.append(i)
        a values.append(a)
        b values.append(b)
        c values.append(c) # Store c instead of t
        f a = func(a)
        f b = func(b)
        f c = func(c) \# Renamed f t to f c
        f a values.append(f a)
        f b values.append(f b)
        f c values.append(f c) # Store f c instead of f t
        if f c == 0 or abs(b - a) / 2 < tol:
             break
        else:
    results = list(zip(iterations, a values, b values, c values,
f a values, f b values, f c values))
    table = tabulate(results,
value)", "f(a)", "f(b)", "f(c)"],
    x = [i / 10 \text{ for i in range(int(10 * min(a, b))} - 1, int(10 * min(a, b))] - 1, int(10 * min(a, b))]
max(a, b)) + 2)]
    y = [func(xi) for xi in x]
    plt.plot(x, y, label='f(x)')
    plt.axhline(0, color='red', linestyle='--', label='y=0')
```

```
plt.axvline(c, color='green', linestyle='--', label='Root
Approximation')

plt.title('Bisection Method')
plt.xlabel('x')
plt.ylabel('f(x)')
plt.legend()
plt.grid(True)
plt.show()

print(table)

return c

def my_function(x):
    return x ** 2 -3
a = 1
b = 2

root = bisection(my_function, a, b)
print(f"The approximate root is: {root:.6f}")
```

> Result:

Graph:

Bisection Method

Table:

Iteration	l		İ		İ	c (mid value)	l	f(a)	I	f(b)	l	f(c)
						1.5						-0.75
		1.5				1.75		-0.75				0.0625
		1.5		1.75		1.625		-0.75		0.0625		-0.359375
		1.625		1.75		1.6875		-0.359375		0.0625		-0.15234375
		1.6875		1.75		1.71875		-0.15234375		0.0625		-0.0458984375
		1.71875		1.75		1.734375		-0.0458984375		0.0625		0.008056640625
		1.71875		1.734375		1.7265625		-0.0458984375		0.008056640625		-0.01898193359375
		1.7265625		1.734375		1.73046875		-0.01898193359375		0.008056640625		-0.0054779052734375
		1.73046875		1.734375		1.732421875		-0.0054779052734375		0.008056640625		0.001285552978515625
		1.73046875		1.732421875		1.7314453125		-0.0054779052734375		0.001285552978515625		-0.0020971298217773438
		1.7314453125		1.732421875		1.73193359375		-0.0020971298217773438		0.001285552978515625		-0.00040602684020996094
11		1.73193359375		1.732421875		1.732177734375		-0.00040602684020996094		0.001285552978515625		0.00043970346450805664
12		1.73193359375		1.732177734375		1.7320556640625		-0.00040602684020996094		0.00043970346450805664		1.6823410987854004e-05
13		1.73193359375		1.7320556640625		1.73199462890625		-0.00040602684020996094		1.6823410987854004e-05		-0.00019460543990135193
14		1.73199462890625		1.7320556640625		1.732025146484375		-0.00019460543990135193		1.6823410987854004e-05		-8.889194577932358e-05
15		1.732025146484375		1.7320556640625		1.7320404052734375		-8.889194577932358e-05		1.6823410987854004e-05		-3.603450022637844e-05
16		1.7320404052734375		1.7320556640625		1.7320480346679688		-3.603450022637844e-05		1.6823410987854004e-05		-9.605602826923132e-06
17		1.7320480346679688		1.7320556640625		1.7320518493652344		-9.605602826923132e-06		1.6823410987854004e-05		3.6088895285502076e-06
		1.7320480346679688		1.7320518493652344		1.7320499420166016		-9.605602826923132e-06		3.6088895285502076e-06		-2.9983602871652693e-06
19		1.7320499420166016		1.7320518493652344		1.732050895690918		-2.9983602871652693e-06		3.6088895285502076e-06		3.052637111977674e-07
he approxim	at	e root is: 1.732051										

Example-02: Determine the root of the given equation $x^3-x-1=0$ for $x \in [1, 2]$ and Implement it using Python (Graphical and tabular approach).

```
import matplotlib.pyplot as plt
from tabulate import tabulate
def bisection(func, a, b, tol=1e-6, max iter=100):
    iterations = []
   a values = []
   b values = []
   c values = []
    f a values = []
    f b values = []
    f c values = []
    if func(a) * func(b) \geq 0:
        raise ValueError ("Function does not change sign over the
    for i in range(max iter):
        iterations.append(i)
        a values.append(a)
        b values.append(b)
        c values.append(c) # Store c instead of t
        f a = func(a)
        f b = func(b)
        f c = func(c) \# Renamed f t to f c
        f a values.append(f a)
        f b values.append(f b)
        f c values.append(f c) # Store f c instead of f t
```

```
break
        else:
    results = list(zip(iterations, a values, b values, c values,
f a values, f b values, f c values))
    table = tabulate(results,
max(a, b)) + 2)
   y = [func(xi) for xi in x]
    plt.plot(x, y, label='f(x)')
    plt.axhline(0, color='red', linestyle='--', label='y=0')
    plt.axvline(c, color='green', linestyle='--', label='Root
    plt.title('Bisection Method')
    plt.xlabel('x')
    plt.ylabel('f(x)')
   plt.legend()
    plt.grid(True)
   plt.show()
   print(table)
    return c
def my function(x):
b = 2
root = bisection(my function, a, b)
print(f"The approximate root is: {root:.6f}")
```

Example-03: Find a root of an equation $f(x)=2x^3-2x-5$ using Bisection method.

```
import matplotlib.pyplot as plt
from tabulate import tabulate

def bisection(func, a, b, tol=le-6, max_iter=100):
    iterations = []
    a_values = []
    b_values = []
    c_values = []
    f_a_values = []
    f_b_values = []
```

```
f c values = []
    if func(a) * func(b) \geq 0:
    for i in range(max iter):
        iterations.append(i)
        a values.append(a)
        b values.append(b)
        c values.append(c) # Store c instead of t
        f a = func(a)
        f b = func(b)
        f c = func(c) \# Renamed f t to f c
        f a values.append(f a)
        f b values.append(f b)
        f c values.append(f c) # Store f c instead of f t
        if f c == 0 or abs(b - a) / 2 < tol:
            break
        else:
    results = list(zip(iterations, a values, b values, c values,
f a values, f b values, f c values))
    table = tabulate(results,
"f(a)", "f(b)", "f(c)"],
    x = [i / 10 \text{ for i in range(int(10 * min(a, b))} - 1, int(10 * min(a, b))] - 1, int(10 * min(a, b))]
max(a, b)) + 2)
    y = [func(xi) for xi in x]
    plt.plot(x, y, label='f(x)')
    plt.axvline(c, color='green', linestyle='--', label='Root
Approximation')
    plt.title('Bisection Method')
    plt.xlabel('x')
    plt.ylabel('f(x)')
    plt.legend()
    plt.grid(True)
    plt.show()
    print(table)
```

```
return c
def my_function(x):
    return 2*x ** 3 - 2*x -3
a = 1
b = 2

root = bisection(my_function, a, b)
print(f"The approximate root is: {root:.6f}")
```

Example-04: Find a root of an equation $f(x) = \sqrt{12}$ using Bisection method.

Solution:

```
Let x=\sqrt{12}

\therefore x^2-12=0

i.e. f(x)=x^2-12

x \quad 0 \quad 1 \quad 2 \quad 3 \quad 4

f(x) \quad -12 \quad -11 \quad -8 \quad -3 \quad 4
```

```
import matplotlib.pyplot as plt
from tabulate import tabulate
def bisection(func, a, b, tol=1e-6, max iter=100):
    iterations = []
    a values = []
    b values = []
    c values = []
    f a values = []
    f b values = []
    f c values = []
    if func(a) * func(b) \geq 0:
    for i in range(max iter):
        iterations.append(i)
        a values.append(a)
        b values.append(b)
        c values.append(c) # Store c instead of t
        f a = func(a)
        f b = func(b)
        f c = func(c) \# Renamed f t to f c
        f a values.append(f a)
        f b values.append(f b)
        f c values.append(f c) # Store f c instead of f t
            break
```

```
elif f a * f c < 0:
        else:
    results = list(zip(iterations, a values, b values, c values,
f a values, f b values, f c values))
    table = tabulate(results,
value)", "f(a)", "f(b)", "f(c)"],
    x = [i / 10 \text{ for } i \text{ in range}(int(10 * min(a, b)) - 1, int(10 * min(a, b)))]
max(a, b)) + 2)]
    y = [func(xi) for xi in x]
    plt.plot(x, y, label='f(x)')
    plt.axhline(0, color='red', linestyle='--', label='y=0')
    plt.axvline(c, color='green', linestyle='--', label='Root
Approximation')
    plt.title('Bisection Method')
    plt.xlabel('x')
    plt.ylabel('f(x)')
    plt.legend()
    plt.grid(True)
    plt.show()
    print(table)
    return c
def my function(x):
    return x ** 2 - 12
root = bisection(my function, a, b)
print(f"The approximate root is: {root:.6f}")
```

Example-05: Find a root of an equation $f(x) = \sqrt[3]{48}$ using Bisection method.

Solution:

Let
$$x = \sqrt[3]{48}$$

 $\therefore x^3 = 48$
 $\therefore x^3 - 48 = 0$
i.e. $f(x) = x^3 - 48$

Here

x	0	1	2	3	4
f(x)	-48	-47	-40	-21	16

```
import matplotlib.pyplot as plt
from tabulate import tabulate
def bisection(func, a, b, tol=1e-6, max iter=100):
    iterations = []
    a values = []
    b values = []
    c values = []
    f a values = []
    f b values = []
    f c values = []
    if func(a) * func(b) \geq 0:
    for i in range(max iter):
        c = (a + b) / 2
        iterations.append(i)
        a values.append(a)
        b values.append(b)
        c values.append(c) # Store c instead of t
        f a = func(a)
        f b = func(b)
        f c = func(c) \# Renamed f t to f c
        f a values.append(f a)
        f b values.append(f b)
        f c values.append(f c) # Store f c instead of f t
            break
        else:
    results = list(zip(iterations, a values, b values, c values,
f a values, f b values, f c values))
    table = tabulate(results,
value) ", "f(a) ", "f(b) ", "f(c) "],
max(a, b)) + 2)]
    y = [func(xi) for xi in x]
```

```
plt.plot(x, y, label='f(x)')
  plt.axhline(0, color='red', linestyle='--', label='y=0')
  plt.axvline(c, color='green', linestyle='--', label='Root
Approximation')

plt.title('Bisection Method')
  plt.xlabel('x')
  plt.ylabel('f(x)')
  plt.legend()
  plt.grid(True)
  plt.show()

print(table)

return c

def my_function(x):
  return x ** 3 - 48

a = 3
b = 4

root = bisection(my_function, a, b)
print(f"The approximate root is: {root:.6f}")
```

\Leftrigorangle Example-06: Find a root of an equation $f(x)=x^3+2x^2+x-1$ using Bisection method.

Solution:

Here $x^3+2x^2+x-1=0$ Let $f(x)=x^3+2x^2+x-1$ Here

x	0	1
f(x)	-1	3

```
import matplotlib.pyplot as plt
from tabulate import tabulate

def bisection(func, a, b, tol=1e-6, max_iter=100):
    iterations = []
    a_values = []
    b_values = []
    c_values = []
    f_a_values = []
    f_c_values = []
    if func(a) * func(b) >= 0:
        raise ValueError("Function does not change sign over the interval [a, b]")

    for i in range(max_iter):
        c = (a + b) / 2
```

```
iterations.append(i)
        a values.append(a)
        b values.append(b)
        c values.append(c) # Store c instead of t
        f a = func(a)
        f b = func(b)
        f c = func(c) \# Renamed f t to f c
        f a values.append(f a)
        f b values.append(f b)
        f_c_values.append(f_c) # Store f c instead of f t
            break
        else:
    results = list(zip(iterations, a values, b_values, c_values,
f a values, f b values, f c values))
    table = tabulate(results,
value)", "f(a)", "f(b)", "f(c)"],
max(a, b)) + 2)]
    y = [func(xi) for xi in x]
    plt.plot(x, y, label='f(x)')
    plt.axhline(0, color='red', linestyle='--', label='y=0')
    plt.axvline(c, color='green', linestyle='--', label='Root
Approximation')
    plt.title('Bisection Method')
    plt.xlabel('x')
    plt.ylabel('f(x)')
    plt.legend()
    plt.grid(True)
    plt.show()
    print(table)
    return c
def my function(x):
    return x ** 3 + 2*x**2 + x - 1
b = 1
```

```
root = bisection(my_function, a, b)
print(f"The approximate root is: {root:.6f}")
```

! Example-07: Find a root of an equation $y=x^3-x^2+2$ using Bisection method.

```
import matplotlib.pyplot as plt
from tabulate import tabulate
def bisection(func, a, b, tol=1e-6, max iter=100):
    iterations = []
    a values = []
    b values = []
    c values = []
    f a values = []
    f b values = []
    f c values = []
    if func(a) * func(b) \geq 0:
        raise ValueError ("Function does not change sign over the
interval [a, b]")
    for i in range (max iter):
        iterations.append(i)
        a values.append(a)
        b values.append(b)
        c values.append(c) # Store c instead of t
        f a = func(a)
        f b = func(b)
        f c = func(c) \# Renamed f t to f c
        f a values.append(f a)
        f b values.append(f b)
        f c values.append(f c) # Store f c instead of f t
        if f c == 0 or abs(b - a) / 2 < tol:
            break
        else:
    results = list(zip(iterations, a values, b values, c values,
f a values, f b values, f c values))
    table = tabulate(results,
"f(a)", "f(b)", "f(c)"],
    x = [i / 10 \text{ for } i \text{ in range}(int(10 * min(a, b)) - 1, int(10 * min(a, b)))]
max(a, b)) + 2)
```

```
y = [func(xi) for xi in x]

plt.plot(x, y, label='f(x)')
plt.axhline(0, color='red', linestyle='--', label='y=0')
plt.axvline(c, color='green', linestyle='--', label='Root

Approximation')

plt.title('Bisection Method')
plt.xlabel('x')
plt.ylabel('f(x)')
plt.legend()
plt.grid(True)
plt.show()

print(table)

return c

def my_function(x):
    return x ** 3 - x**2 + 2

a = -200
b = 300

root = bisection(my_function, a, b)
print(f"The approximate root is: {root:.6f}")
```

\Leftrightarrow Example-08: Find a root of an equation $y=x^2-4$ using Bisection method.

When x=0 then, y=-4 When x=4 then y=12

```
import matplotlib.pyplot as plt
from tabulate import tabulate

def bisection(func, a, b, tol=1e-6, max_iter=100):
    iterations = []
    a_values = []
    b_values = []
    c_values = []
    f_a_values = []
    f_b_values = []
    f_c_values = []
    if func(a) * func(b) >= 0:
        raise ValueError("Function does not change sign over the interval [a, b]")

for i in range(max_iter):
    c = (a + b) / 2
        iterations.append(i)
    a_values.append(a)
```

```
b values.append(b)
        c values.append(c) # Store c instead of t
        f a = func(a)
        f b = func(b)
        f c = func(c) \# Renamed f t to f c
        f a values.append(f a)
        f b values.append(f b)
        f c values.append(f c) # Store f c instead of f t
            break
        else:
    results = list(zip(iterations, a values, b values, c values,
f a values, f b values, f c values))
    table = tabulate(results,
value) ", "f(a) ", "f(b) ", "f(c) "],
    x = [i / 10 \text{ for } i \text{ in range}(int(10 * min(a, b)) - 1, int(10 * min(a, b)))]
max(a, b)) + 2)]
    y = [func(xi) for xi in x]
    plt.plot(x, y, label='f(x)')
    plt.axhline(0, color='red', linestyle='--', label='y=0')
    plt.axvline(c, color='green', linestyle='--', label='Root
Approximation')
    plt.title('Bisection Method')
    plt.xlabel('x')
    plt.ylabel('f(x)')
    plt.legend()
    plt.grid(True)
    plt.show()
    print(table)
    return c
def my function(x):
    return x^**2 - 4
b = 4
root = bisection(my function, a, b)
print(f"The approximate root is: {root:.6f}")
```