SC3050 Advanced Computer Architecture

Lab 2 briefing

College of Computing and Data Science Nanyang Technological University

Register file

Keep in mind

- Synthesis by keeping DSIZE=64
 - Need to change the NREG fro 4 to 64
 - When we change the NREG (no of registers) the address size also need to be changed.
 - Hence when NREG=4, ASIZE(address size)=2
 - NREG=8, ASIZE(address size)=3
 - NREG=2ⁿ, ASIZE(address size)=n
- Synthesis by keeping NREG=32
 - Need to change the DSIZE fro 4 to 64
 - When we change the DSIZE the address size <u>doesn't need to be</u> changed.
- The number of LUTs is directly available in design summary, the delay here is the minimum clock period and not the combinational delay as this is a sequential circuit

datapath simplified- R format

opcode	Rm	shamt	Rn	Rd
31 21	20 16	5 15	10 9	5 4

Examples:

1. ADD X5, X4, X3 (meaning: X5 \leftarrow (X4 + X3). The machine format is given below.

00000000000	00011		000000		00100		00101
31	21 20	16	15	10	9	5	4

2. XOR X8, X9, X10 (meaning: X8 ← X9 (XOR) X10):

00000000011	01010	000000	01001	01000	
31	21 20	16 15	10 9	5 4	,

R – register type instructions(ADD, SUB, AND, XOR, and ORR)

Datapath for R type instructions

Module instantiation- example

Module name of the submodule to be instantiated

Instance of the submodule to be instantiated

To make the datapath

 You need to instantiate all the following modules and connect then as according to the datapath diagram

```
control C0
(.inst_cntrl(inst[31:21]),.wen_cntrl(wen),.aluop_cntrl(aluop));
regfile RFO (.clk(clk), .rst(rst), .wen(wen), .raddr1(inst[9:5]),
.raddr2(inst[20:16]), .waddr(inst[4:0]), .wdata(aluout),
.rdata1(rdata1), .rdata2(rdata2));
```

alu ALUO (.a(rdata1), .b(rdata2), .op(aluop), .out(aluout));

RTL schematic

Testing the datapath(change)

Hardcoded in "regfile.v"

```
regdata[1] <=3
```

Rest all the registers from 0-31 are initialized to zero

Opcode

Rn=source1

inst=32'b0000000000000100000000000011; // ADD X3, X1, X4

Rm=source2

Rd=dest

Add X3, X1, X4= [X3] <= [X1] + [X4] As reg[1] has value 3 and reg 2 has value 0, the result stored in reg[3] =3