Duality in chip-firing and parking functions on graphs

Anton Dochtermann (Texas State University)

September 18, 2022

AMS Special Session on Algebraic, Geometric, and Topological Combinatorics

Chip-firing on graphs

- The classical theory of *chip-firing* involves a game played on the vertices of a graph, with connections to statistical physics, commutative algebra, algebraic geometry, etc.
- Recent books (and invited AMS talks!):
 - S. Corry and D. Perkinson, Divisors and Sandpiles: An Intro to Chip-Firing, AMS, 2017.
 - C. Klivans, The Mathematics of Chip-Firing, CRC press, 2018.

• Goal for this talk: Chip-firing on a graph G (and the resulting G-parking functions) say something about $\mathcal{M}(G)^*$, the *dual* matroid of the underlying graphic matroid. What about *dual chip-firing* and *coparking functions*? Use planar graphs for inspiration.

1

Chip-firing with a sink

Suppose G is a finite simple graph on vertex set $\{0, 1, ..., n\}$ with specified sink vertex 0, and edge set E.

- A configuration of chips is a vector $\mathbf{c} = (c_1, \dots, c_n) \in \mathbb{N}^n$.
- A vertex *i* can *fire* when $c_i \ge \deg(i)$.
- The vertex passes chips to each of its neighbors (one for each edge connecting it to i), resulting in a new configuration \mathbf{c}' .
- A configuration \mathbf{c} is *stable* if no vertex can fire, say $\mathbf{c} = \operatorname{stab}(\mathbf{d})$.
- The sink can fire only when the configuration is stable, passing a chip to each of its neighbors.

Example

Matrices

ullet The dynamics of chip-firing are encoded by $ilde{\mathcal{L}}(G)$, the *(reduced) Laplacian* matrix of G.

$$\tilde{\mathcal{L}}(G) = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 3 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

- Firing a vertex i corresponds to subtracting the ith row of $\tilde{\mathcal{L}}(G)$.
- $\mathcal{L}(G)$ defines an equivalence relation on the set \mathbb{Z}^n : $\mathbf{c} \sim \mathbf{d}$ iff $\mathbf{d} \mathbf{c} \in \operatorname{im} \tilde{\mathcal{L}}(G)$.
- Define the *critical* group of *G* as

$$\kappa(G) \cong \mathbb{Z}^n / \operatorname{im} \tilde{\mathcal{L}}(G)$$

• Note that $|\kappa(G)| = \det \tilde{\mathcal{L}}(G) = \#\{\text{spanning trees of } G\}.$

4

Special configurations

One is interested in finding special representatives of each equivalence class [c].

- A configuration $c \ge 0$ is recurrent if c = stab(d), for 'large enough' d.
 - Another way to define $\kappa(G)$: if **c** and **d** both critical then stab(**c** + **d**) is critical.
- A configuration $c \ge 0$ is *superstable* if no *set* of nonsink vertices can fire simultaneously.
 - Superstables also called *G*-parking functions, can be thought of as 'energy minimizing'
 - Relate to Tutte polynomial and Stanley's conjecture on h-vector of $\mathcal{M}(G)^*$ [Merino].

Theorem (Biggs, Dhar, ...)

Each equivalence class [c] contains exactly one critical and one superstable configuration.

Example

- Critical configurations are {121, 021, 111, 120, 101, 111, 020, 110}
- \bullet Superstable configurations (G-parking functions) are $\{000,100,010,001,020,110,101,011\}$
- *h*-vector of $\mathcal{M}(G)^*$ is $\{1,3,4\}$

Planarity and dual chip-firing

• If G is a *planar* graph (with an embedding) we have a dual graph G^* . Can we interpret chip-firing on G^* in terms of G?

- Note that superstable configurations of G^* relate to the h-vector of $\mathcal{M}(G)$.
- In this context we now fire *cycles*, passing chips according to a rule determined by how these circuits intersect (depends on an *orientation*).
- Critical groups agree [Corri-Rossin]: $\kappa(G^*) \cong \kappa(G)$.

Generalizing to all graphs

- What happens if *G* is not planar? We no longer have a 'dual graph' but can we still perform 'dual chip-firing'? Do we have 'dual parking functions'?
- Yes! We will develop this theory in two different ways, both approaches interpret (usual) chip-firing as 'vertex cut' chip-firing and will apply ideas to flows/cycles.
 - 1. Think of vertex cuts as forming a basis for the integral cut space, and dualize to flows.
 - 2. Mimic intersection properties of vertex cuts, define dual parking functions accordingly.

First approach, integral flows

ullet The reduced Laplacian $ilde{\mathcal{L}}(G)$ can be computed as

$$\mathcal{ ilde{L}}(G) = ilde{\partial} ilde{\partial}^T$$

where $\tilde{\partial}$ is the (reduced) incidence matrix of the graph G.

- Integer row space of $\tilde{\partial}$ is called Cut(G), the *lattice of integral cuts* of G.
- Classical chip-firing is governed by the integral basis $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ for Cut(G) given by the vertex cuts of the nonsink vertices.
- For the *dual* picture we seek an integer basis for the *kernel* of $\tilde{\partial}$ (called Flow(G), the *lattice of integral flows* of G).
- ullet For any such basis $\iota = (\mathbf{f}_1 \dots \mathbf{f}_g)$ let

$$\mathcal{L}^*(G) = \iota^T \iota$$

denote the dual Laplacian (w/ respect to this choice of basis).

$$ilde{\partial} = egin{bmatrix} 1 & 0 & 0 & -1 & 0 \ 0 & 1 & 0 & 1 & -1 \ 0 & 0 & 1 & 0 & 1 \end{bmatrix} \qquad ilde{\mathcal{L}} = ilde{\partial} ilde{\partial}^T = egin{bmatrix} 2 & -1 & 0 \ -1 & 3 & -1 \ 0 & -1 & 2 \end{bmatrix}$$

$$\ker \tilde{\partial} \text{ has basis } \iota = \begin{bmatrix} 1 & 0 \\ -1 & -1 \\ 0 & 1 \\ 1 & 0 \\ 0 & -1 \end{bmatrix} \text{ so that } \mathcal{L}^*(G) = \iota^T \iota = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$

Integral flow chip-firing

- After fixing a basis $\iota = \{\mathbf{f}_1, \dots, \mathbf{f}_g\}$, the matrix \mathcal{L}^* determines a potential 'chip-firing' rule for these elements.
- Guzmán and Klivans [GM] have developed a chip-firing theory for any $n \times n$ matrix A that is avalanche finite (equivalent to A being an M-matrix).

Definition

For a graph G we say a basis $\iota = \{\mathbf{f}_1, \dots, \mathbf{f}_g\}$ is an integral flow M-basis if the matrix \mathcal{L}^* is an avalanche finite redistribution matrix.

 If G admits an integral flow M-basis then from [GM] we have a good notion of 'chip-firing' on the elements of ι, with notions of z-superstable configurations etc.

Main result

Theorem (D-, Li, Meyers, Samavedam)

Any graph G admits an integral flow M-basis.

- Follows from a purely lattice theoretic result: For any lattice $\Lambda \subset \mathbb{R}^d$ there exists an integral basis $\{\mathbf{f}_1, \dots, \mathbf{f}_g\}$ for Λ with the property that $\mathbf{f}_i \cdot \mathbf{f}_i \leq 0$ for all $i \neq j$.
- From [GK] we know each equivalence class defined by \mathcal{L}^* contains a unique z-superstable configuration and hence:

Proposition

Suppose G has a cycle M-basis with associated dual Laplacian \mathcal{L}^* . Then the number of z-superstable configurations of G is given by $|\tau(G)|$, the number of spanning trees of G.

Cycle *M*-bases

- Want to find an M-basis for G consisting only of cycles: each entry should be 0, -1, 1, with the the nonzero entries corresponding to some cycle (simple closed path) of G.
- Such a basis will be called a *cycle M-basis*.

Proposition (DLMS)

Planar graphs as well as the graphs K_5 and $K_{3,3}$ admit cycle M-bases.

$$\mathcal{L}^* = \begin{bmatrix} 4 & -1 & -2 & 0 & 0 & 0 \\ -1 & 4 & 0 & 0 & 0 & -1 \\ -2 & 0 & 4 & -3 & -1 & 0 \\ 0 & 0 & -3 & 5 & 0 & -1 \\ 0 & 0 & -1 & 0 & 5 & -2 \\ 0 & -1 & 0 & -1 & -2 & 3 \end{bmatrix}$$

Main open question: Does any graph admit cycle M-basis? Perhaps for a class of graphs?

Second approach: Cycle systems

For our second approach to dualizing, we note the following property of vertex cuts:

- In any collection of vertex cuts, the edges that appear *exactly once* form a cut (namely the cut defined by that collection of vertices).
- Suppose G is a graph with cycles $C = \{C_1, \dots, C_g\}$, where g = |E| |V| + 1.
- For $I \subset [g]$, let C_I denote the elements of $\cup_{i \in I} C_i$ that belong to exactly one of the C_i .

Definition

A collection C is a *cycle system* if for all nonempty $I \subset [k]$, the set C_I contains a cycle.

ullet For our graph ${\it G}$, ${\it g}=2$ and we can take ${\it C}=(123,145)$.

$$\mathit{C}_{1}=123,\;\mathit{C}_{2}=145$$
 (so that $\mathit{C}_{12}=2345$)

Which graphs admit cycle systems?

Proposition

The following classes of graph admit cycle systems.

- 1. If G is planar graph, the set of bounded faces form a cycle system.
- 2. If G has a cone vertex v then $C = \{(vu, vw, uw) : uw \text{ an edge of } G\}$ is a cycle system.

- The graph $K_{3,3}$ does *not* admit a cycle system.
- Of the 853 connected graphs on 7 vertices, at least 776 admit cycle systems.
- Notion of cycle system generalizes to other matroids.

Coparking functions

If G admits a cycle system \mathcal{C} , one has a notion of a coparking function relative to \mathcal{C} .

Definition

Given a cycle system $C = \{C_1, C_2, \dots, C_g\}$, a sequence (a_1, a_2, \dots, a_g) is a C-coparking function if for every nonempty $I \subset [k]$ there exists $i \in I$ such that

$$a_i < |C_i \cap C_I|$$
.

• Recall for C = (123, 145) $C_1 = 123$, $C_2 = 145$, and $C_{12} = 2345$.

Main result

Theorem (Corry, D-, Perkinson)

Suppose C is a cycle system for G. Then the coparking functions for C are in bijection with the spanning trees of G.

• Proof uses a dual version of a depth first Dhar's *burning algorithm*. See also *S*-parking functions of [Dong].

Conjecture

The bijection can be chose so that the set of spanning trees with j internally passive edges is in bijection with the set of C-coparking functions of degree k.

ullet This would prove Stanley's conjecture for matroids $\mathcal{M}(G)$, where G admits a cycle system.

Example

For G with the cycle system $C = \{123, 145\}$ we have $h(\mathcal{M}(G)) = (1, 2, 3, 2)$.

T	IP(B)
124	Ø
125	5
134	3
135	35
234	23
235	235
245	45
345	345

Coparking functions $\{(0,0), (1,0), (0,1), (1,1), (2,0), (0,2), (2,1), (1,2)\}.$

Thank you!

