ZADANIE 1.

Pokaż, że ($\mathbb{Z}/m\mathbb{Z}$) $\otimes_{\mathbb{Z}}$ ($\mathbb{Z}/n\mathbb{Z}$) = 0 jeśli m, n są względnie pierwsze.

Załóżmy, że m, n są względnie pierwsze, czyli z równości Bezout'a:

$$am + bn = 1$$

teraz popatrzmy na dowolny element produkciku:

$$x \otimes y = (xy) \otimes (am + bn) = (xy) \otimes (am) + (xy) \otimes (bn) = (amx) \otimes y + (xy) \otimes 0 = 0 \otimes y + (xy) \otimes 0 = 0 + 0 = 0$$

Czyli każdy element jest 0, więc całość też jest 0.

ZADANIE 2.

Niech A będzie pierścieniem, $\mathfrak a$ ideałem, a M A-modułem. Pokaż, że (A/ $\mathfrak a$) \otimes_A M jest izomorficzne do M/ $\mathfrak a$ M. [Stensoruj ciąg dokładny $0 \to \mathfrak a \to A \to A/\mathfrak a \to 0$ z M

To jest tak, że jak miałam sobie

$$\mathfrak{a} \to A \to A/\mathfrak{a} \to 0$$

i jakiś losowy A-moduł M, to

$$\mathfrak{a}\otimes M \to A\otimes M \to A/\mathfrak{a}\otimes M \to 0$$

też jest ciągiem dokładnym!

Zajebiście, to teraz jak te pyśki szły? Pierwszy jest iniekcją, drugi jest suriekcją i ten drugi indukuje izomorfizm Coker(f) = M/f(M') na M'' (f to pierwsza funkcja, a myśki lecą $M' \to M \to M''$.)

Czyli co? Jak wygląda ta iniekcja $\mathfrak{a} \to \mathsf{A}$? To jest identyczność na \mathfrak{a} lol.

Jak na razie mam, że

$$A/a \otimes M \cong (A \otimes M)/(a \otimes M) \cong AM/aM = M/aM$$

ZADANIE 3.

Niech A będzie pierścieniem lokalnym, M, N skończenie generowanymi A-modułami. Udowodnij, że $M \otimes N = 0$ wtedy M = 0 lub N = 0.

[Niech \mathfrak{m} będzie ideałem maksymalnym, $k = A/\mathfrak{m}$ będzie residue filed (to jest ciało zrobione przez wytentegowanie z tym tym). Niech $M_k = k \otimes_A M \cong M/\mathfrak{m}M$ na mocy zadania 2. Z lematu Nakayamy mamy, że $M_k = 0 \implies M = 0$. Ale $M \otimes_A N = 0 \implies (M \otimes_A N)_k = 0 \implies M_k \otimes_k N_k = 0 \implies M_k = 0$ or $N_k = 0$, since M_k , N_k są przestrzeniami wektorowymi nad ciałem.]

Czyli co, ja mam uzasadnić po prostu przejścia w tym łańcuszku?

$$M \otimes_A N = 0 \implies (M \otimes_A N)_k = 0 \stackrel{(\star)}{\Longrightarrow} M_k \otimes_k N_k = 0 \stackrel{(\heartsuit)}{\Longrightarrow} M_k = 0 \vee N_k = 0$$

Bo cała reszta wydaje się mieć sens?

$$(\star)$$
 k \otimes_A (M \otimes_A N) = 0 \Longrightarrow (k \otimes_A M) \otimes_A (k \otimes_A N) = 0

A to to jest raczej proste, bo jeśli $k \otimes_A (M \otimes_A N) = 0$, to tym bardziej $k \otimes_k (k \otimes_A (M \otimes_A N)) = 0$ a jak się poprzestawia, bo to raczej jest izomorficzne, chyba że nagle świat staną na głowie, to dostaję $k \otimes_A M \otimes_k k \otimes_A N$.

(♥) $M_k \otimes_k N_k = 0 \implies M_k = 0 \lor N_k = 0$? Nie no, to jest raczej oczywiste z tego ten ten na N.

POKOPAŁAM TE RÓWNOŚCI I CO JEST CZYM AAAAAAAAAA

ZADANIE 4.

Niech M_i ($i \in I$) będzie dowolną rodziną A-modułów i niech M będzie ich sumą prostą. Pokaż, że M jest płaski \iff każdy M_i jest płaski

Mamy funktor $T_N: M\mapsto M\otimes_A N$ i on jest na kategorii A-modułów i homomorfizmów. Jeśli T_N jest dokładny, czyli tensorowanie z N przekształca wszystkie ciągi dokładne na ciągi dokładne, wtedy N jest flat A-modułem.

- \iff pójdzie chyba z faktu, że $(M \oplus N) \otimes P \cong (M \otimes P) \oplus (N \otimes P)$
- \implies czyli wiem, że tensorowanie przez sumę \bigoplus M_i daje nam dalej ciąg dokładny i z tego chce dostać, że tensorowanie przez każdy z kolei też daje nam ciąg dokładny. A to nie jest jakoś z tego, że mogę sobie obcinać te funkcje do współrzędnych i na tych współrzędnych one muszą mieć te same własności, czyli w szczególności będą na każdej współrzędnej dokładne?

ZADANIE 5.

Niech A[X] będzie pierścieniem wielomianów jednej zmiennej nad pierścieniem A. Pokaż, że A[X] jest płaską A-algebrą.

No jak dla mnie to taki A[X] mogę przedstawić jako sumą prostą przeliczalnie wielu A. No i teraz wystarczyłoby, żeby A było płaskie, ale co to jest A-algebra?No to jest pierścień wyposażony w strukturę A-modułu. Dlaczego ja nic nie formalizuję