Biostatistique

Inférence statistique: estimation

Anicet Ebou, Institut National Polytechnique Félix Houphouët-Boigny, ediman.ebou@inphb.ci

Plan

Introduction	3
Estimation ponctuelle	5
Estimation par intervalles de confiance	. 14
Autres problèmes d'estimation par intervalle de confiance	. 38

Introduction

L'inférence statistique consiste à tirer des conclusions sur une population à partir d'un échantillon.

Elle est consituée de deux parties:

- Estimation de paramètres;
- Tests d'hypothèses.

L'estimation de paramètres est subdivisés en deux méthodes:

- Estimation ponctuelle;
- Estimation par intervalles de confiance.

Estimation ponctuelle

Estimation ponctuelle

But: estimer un paramètre d'une population à l'aide d'une statistique.

Definition 1.

Soit X une variable aléatoire dont la distribution dépend d'un paramètre θ .

Soit $X_1, X_2, ..., X_n$ un échantillon aléatoire de X de taille n.

Un estimateur ponctuel de θ est une statistique $\hat{\theta}$ de la forme $\hat{\theta} =$

 $h(X_1,...,X_n)$ et vérifiants certains critères.

Trois critères pour la qualité d'un estimateur

Critère 1: le biais:

Le biais d'un estimateur $\hat{\theta}$ du paramètre θ est

$$\operatorname{Biais}(\hat{\theta}) = \mathbb{E}(\hat{\theta}) - \theta$$

On dit que $\hat{\theta}$ est sans biais ou non-biaisé si Biais $(\hat{\theta}) = 0$. Le biais est un mesure de l'erreur systématique faite en approximant θ par $\hat{\theta}$.

Exercice 1: Prouver que $\mathbb{E}(\overline{X}) = \mu$ et $\mathbb{E}(S^2) = \sigma^2$ et donc que \overline{X} et S^2 sont des estimateurs sans biais de μ et σ^2 .

Trois critères pour la qualité d'un estimateur (ii)

Critère 2: Erreur quadratique moyenne

Definition 2.

L'erreur quadratique moyenne (EQM) d'un estimateur $\hat{\theta}$ du paramètre θ est

$$\mathrm{EQM}(\hat{\theta}) = \mathbb{E}\big[\big(\hat{\theta} - \theta\big)^2\big]$$

L'EQM est une mesure de la précision d'un estimateur.

Theorem 1.

Si $\hat{\theta}$ est un estimateur du paramètre θ alors

$$EQM(\hat{\theta}) = V(\hat{\theta}) + \left[Biais(\hat{\theta})\right]^2$$

Trois critères pour la qualité d'un estimateur (iii)

Le meilleur de deux estimateurs $\hat{\theta}_1$ et $\hat{\theta}_2$, c'est-à-dire le plus *efficace*, est celui qui a la plus petite EQM: $\hat{\theta}_1$ est plus efficace que $\hat{\theta}_2$ si

$$\mathrm{EQM} \left(\hat{\theta}_1 \right) < \mathrm{EQM} \left(\hat{\theta}_2 \right) \Leftrightarrow \frac{\mathrm{EQM} \left(\hat{\theta}_1 \right)}{\mathrm{EQM} \left(\hat{\theta}_2 \right)} < 1$$

Lorsque deux estimateurs son non biaisés, ceci revient à dire que le plus efficace est celui dont la variance est la plus petite.

Exercice 2: Soit $X_1,X_2,...,X_5$ un échantillon aléatoire d'une v.a. X telle que $\mathbb{E}(X)=\mu$ et $\mathbb{V}(X)=\sigma^2$. Pour estimer μ , on considère

$$\hat{\theta}_1 = \frac{X_1 + \dots + X_5}{5}$$
 et $\hat{\theta}_2 = \frac{2X_1 - X_2 + X_4}{2}$

- 1. Ces deux estimateurs sont-ils non-biaisés?
- 2. Quel est le meilleur des deux?

Trois critères pour la qualité d'un estimateur (iv)

Critère 3: Convergence

Dénotons par $\hat{\theta}_n$ un estimateur du paramètre θ calculé à partir d'un échantillon de taille n.

Definition 3.

Un estimateur $\hat{\theta}_n$ est convergent si pour tout $\varepsilon > 0$

$$\lim_{n\to\infty} P \Big(|\hat{\theta}_n - \theta| < \varepsilon \Big) = 1$$

Ceci signifie: si la taille de l'échantillon est assez grande alors on est (presque) certain que l'estimateur $\hat{\theta}_n$ est très proche de θ .

Theorem 2.

Si EQM $(\hat{\theta}_n)$ converge vers 0 lorsque $n \to \infty$ alors $\hat{\theta}_n$ est convergent.

Méthodes d'estimation ponctuelle

Méthodes des moments

Rappel:

On appelle *moment* (ou moment ordinaire, ou moment à l'origine) d'ordre $r \in \mathbb{N}$ le paramètre:

$$m_r' = \frac{1}{n} \sum_{i=1}^n x_i^r$$

Méthode des moments:

- La plupart des lois que nous avons vues sont déterminées par un ou deux paramètres (espérance et variance) généralement liés aux deux premiers moments de la v.a., μ'₁ = μ et μ'₂ = σ².
- Soit $X \sim \operatorname{Loi}(\theta_1, \theta_2)$ avec θ_1 et θ_2 inconnus mais dépendants des deux premiers moments. Si $X_1, X_2, ..., X_n$ est un échantillon de taille n des

Méthodes d'estimation ponctuelle (ii)

valeurs de X, on peut définir les deux premiers moments de l'échantillon par rapport à l'origine:

$$m'_k = \frac{1}{n} \sum_{i=1}^n X_i^k \text{ avec } k \in \{1, 2\}$$

Ainsi on peut estimer μ par $\hat{\mu}=m_1'$ et σ^2 par $\widehat{\sigma^2}=m_2'-(m_1')^2$, et donc θ_1 et θ_2 .

Exercice 3: Soit $X \sim \text{Unif}(0, a)$. Quel est l'estimateur \hat{a} du paramètre a par la méthode des moments ?

Méthode du maximum de vaisemblance

Soit X une variable aléatoire dont la distribution est donnée par $f(x,\theta)$, où θ est un paramètre inconnu.

Soit $x_1,...,x_n$ une réalisation (valeurs observées) d'un échantillon aléatoire de taille n de X.

Méthodes d'estimation ponctuelle (iii)

Definition 4.

La fonction de vraisemblance de cet échantillon est

$$L(\theta) = f(x_1,\theta)f(x_2,\theta)...f(x_n,\theta)$$

Intuitivement, $L(\theta)$ est la probabilité d'observer les $x_1,x_2,...,x_n$: $P(X_1=x_1\cap X_2=x_2\cap x_2\cap...\cap X_n=x_n)$

Definition 5.

L'estimateur de vraisemblance maximale de θ est la valeur $\hat{\theta}$ pour laquelle $L(\theta)$ atteint son maximum.

Exercice 4: Soit $X \sim \text{Bern}(p)$. Quel est l'estimateur \hat{p} du paramètre p par la méthode du maximum de vraisemblance ?

Estimation par intervalles de

confiance

Intervalles de confiance

Idée: Soit θ un paramètre de la distribution d'une variable aléatoire X. A partir d'un échantillon, on cherche à déterminer un intervalle [L,U] qui contient θ avec une probabilité donnée.

Definition 6.

Soit X une variable aléatoire et θ un paramètre de sa distribution. Soit $X_1,...,X_n$ un échantillon de taille n de X. Si $L\equiv L(X_1,...,X_n)$ et $U\equiv U(X_1,...,X_n)$ sont deux statistiques telles que

$$P(L \le \theta \le U) = 1 - \alpha$$

alors on dit que [L,U] est un interval de confiance pour θ de niveau de confiance $1-\alpha$.

Interval de confiance pour la moyenne μ : cas où σ^2 est connue

Rappel: si $X \sim N(\mu, \sigma^2)$ ou si la taille n de l'échantillon est grand alors

$$\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$$

Theorem 3.

Dans ce cas, l'intervalle de confiance à $100(1-\alpha)\%$ pour μ est

$$\overline{X} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$

où $z_{\frac{\alpha}{2}}$ est un nombre tel que $\Phi\!\left(z_{\frac{\alpha}{2}}\right) = 1 - \frac{\alpha}{2}$

Exercice 5: Prouver le théorème 3.

Interval de confiance pour la moyenne μ : cas où σ^2 est connue (ii)

Remarques:

- 1. La valeur de $z_{\frac{\alpha}{2}}$ dépend du niveau de confiance voulu: par exemple on a :
 - Si $1-\alpha=0,90$, alors $z_{\frac{\alpha}{\alpha}}\simeq 1,645$.
 - Si $1-\alpha=0,95$, alors $z_{\frac{\alpha}{2}}\simeq 1,960$.
 - Si $1 \alpha = 0,99$, alors $z_{\frac{\alpha}{2}} \simeq 2,576$.
- 2. On peut aussi considérer un intervalle unilatéral, de la forme

$$[L, \infty]$$
 ou $]-\infty, U]$

correspondant à

$$P(\mu \ge L) = 1 - \alpha$$
 ou $P(\mu \le U) = 1 - \alpha$

Dans ce cas, on remplace $\frac{\alpha}{2}$ par α dans les bornes déjà trouvées: $L=\overline{X}-z_{\alpha}\frac{\sigma}{\sqrt{n}}$ et $U=\overline{X}+z_{\alpha}\frac{\sigma}{\sqrt{n}}$

Interval de confiance pour la moyenne μ : cas où σ^2 est connue (iii)

Exercice 6: Des tests sur le diamètre à hauteur de poitrine en cm de *Erythrophleum ivorense* de jeune âge, ont permis d'obtenir les données suivantes pour un échantillon de taille n=10:

Soit X le diamètre à hauteur de poitrine. Sachant que X suit une loi normale d'écart-type $\sigma=0,10,$ donner:

- 1. Une estimation ponctuelle de $\mu = \mathbb{E}(X)$.
- 2. Un intervalle de confiance à 95% pour μ .
- 3. Un intervalle de confiance unilatéral, avec borne inférieure, au niveau de confiance 95% pour μ .

Niveau de confiance et précision de l'estimation

Soit X une variable aléatoire normale de variance connue pour laquelle on veut estimer la moyenne à l'aide d'un échantillon de taille n.

Si le niveau de confiance $1-\alpha$ augmente alors la longueur de l'intervalle de confiance augmente.

La plus grande différence $|\overline{X} - \mu|$ possible entre l'estimateur et le paramètre, appelée *erreur*, est égale à la moitié de la longueur de l'intervalle de confiance.

Par conséquent, si le niveau de confiance augmente, l'erreur augmente.

Taille de l'échantillon

Pour un niveau de confiance $1-\alpha$ donné, soit $|\overline{X}-\mu|$ l'erreur de l'estimation de μ par \overline{X} .

Si on exige que l'erreur soit inférieure à une valeur fixée E, quelle doit être la taille minimale de l'échantillon utilisé?

Réponse:

$$n = \lceil \left(\frac{\sigma z_{\frac{\alpha}{2}}}{E}\right)^2 \rceil$$

Exercice 7: En faire la preuve.

Exercice 8: Des tests sur le diamètre à hauteur de poitrine en cm de *Erythrophleum ivorense* de jeune âge, ont permis d'obtenir les données suivantes pour un échantillon de taille n=10:

Taille de l'échantillon (ii)

Soit X le diamètre à hauteur de poitrine. Sachant que X suit une loi normale d'écart-type $\sigma=0,10$, quelle taille d'échantillon est nécessaire pour construire un intervalle de confiance à 95% avec une erreur inférieure à 0,05?

Intervalle de confiance pour la moyenne: autre cas

Une procédure semblable au cas précédent (variance connue) permet de construire des intervalles de confiance pour la moyenne μ dans différentes situations, en utilisant les distributions échantillonnales étudiées auparavant:

- Cas où $X \sim N(\mu, \sigma^2)$ et σ^2 est inconnue.
- Cas où n est très grand et σ^2 est inconnue.

Intervalle de confiance pour μ : résumé

Situation	Relation utlisée	Intervalle de confiance $1-\alpha$
σ^2 est connue et $X \sim N(\mu, \sigma^2)$, ou n est grand	$\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$	$\mu = \overline{X} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$
σ^2 est inconnue et $X \sim N(\mu, \sigma^2)$	$\frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}} \sim T_{n-1}$	$\mu = \overline{X} \pm t_{\frac{\alpha}{2};n-1} \frac{S}{\sqrt{n}}$
σ^2 est inconnue et n est grand	$\frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}} \sim N(0, 1)$	$\mu = \overline{X} \pm z_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}}$

Intervalle de confiance pour la variance

Une procédure semblable à celle pour la moyenne permet de construire des intervalles de confiance pour σ^2 dans différentes situations, en utilisant les distributions échantillonnales étudiées auparavant:

- Cas où μ est connue.
- Cas où $X \sim N(\mu, \sigma^2)$ et μ inconnue.
- Cas où n est très grand et μ inconnue.

Intervalle de confiance pour σ^2 et σ : résumé

Situation	Relation utlisée	Intervalle de confiance $1-\alpha$
μ est connue et $X \sim N(\mu, \sigma^2)$	$n\frac{S_{\mu}^2}{\sigma^2} \sim \chi_n^2$ avec $S_{\mu}^2 = \frac{1}{n}\sum_{i=1}^n \left(X_i - \mu\right)^2$	$n \frac{S_{\mu}^{2}}{\chi_{\frac{\alpha}{2};n}^{2}} \le \sigma^{2} \le n \frac{S_{\mu}^{2}}{\chi_{1-\frac{\alpha}{2};n}^{2}}$
μ est inconnue et $X \sim N(\mu, \sigma^2)$	$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$	$\frac{(n-1)S^2}{\chi^2_{\frac{\alpha}{2};n-1}} \le \sigma^2 \le \frac{(n-1)S^2}{\chi^2_{1-\frac{\alpha}{2};n-1}}$
μ est inconnue et n est grand	$\frac{S-\sigma}{\frac{\sigma}{\sqrt{2n}}} \sim N(0,1)$	$\frac{S}{1 + \frac{z_{\frac{\alpha}{2}}}{\sqrt{2n}}} \le \sigma \le \frac{S}{1 - \frac{z_{\frac{\alpha}{2}}}{\sqrt{2n}}}$

Intervalle de confiance pour σ^2 et σ : résumé (ii)

Exercice 9: Afin d'estimer la variance σ^2 de l'épaisseur d'un certain type de tasse de café, un échantillon de 25 spécimens est prélevé. L'écart-type observé dans l'échantillon est de 0,08 mm.

On suppose que l'épaisseur de la tasse est distribuée selon une loi normale.

- 1. Déterminer un intervalle de confiance à 95% pour σ^2 .
- 2. Donner un intervalle de confiance unilatéral, avec borne supérieure, au niveau de confiance 90% pour σ^2 .

Intervalle de confiance pour une proportion

Considérons une expérience aléatoire et p la proportion de succès dans une population. Soit X le nombre de succès dans un échantillon de très grande taille n. On a donc $X \sim B(n,p)$ et $\hat{p} = \frac{X}{n} = \sum_{i=1}^n \frac{X_i}{n}$ est un estimateur pour p.

De plus, on a vu auparavant (approximation d'une loi binomiale par une normale), que si n est grand alors:

$$X \sim N \big(\mu = np, \sigma^2 = np(1-p) \big)$$

et donc

$$\frac{X - np}{\sqrt{np(1-p)}} \sim N(0,1) \text{ et } \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} \sim N(0,1)$$

Intervalle de confiance pour une proportion (ii)

On a

$$\frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} \sim N(0, 1)$$

$$\operatorname{Donc} P\!\left(\hat{p} - z_{\frac{\alpha}{2}}\sqrt{\frac{p(1-p)}{n}}\right) \leq p \leq \hat{p} + z_{\frac{\alpha}{2}}\sqrt{\frac{p(1-p)}{n}} = 1 - \alpha$$

Problème: p est inconnu et apparaît dans les bornes. Une approximation acceptable est de le remplacer par son estimateur \hat{p} et ainsi l'intervalle de confiance devient:

$$p = \hat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Intervalle de confiance pour une proportion: calcul de la taille de l'échantillon n

On veut borner l'erreur d'approximation $|p-\hat{p}|=|\ z_{\frac{\alpha}{2}}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\leq E$, ce qui donne

$$n \ge \left(\frac{z_{\frac{\alpha}{2}}}{E}\right)^2 \hat{p}(1-\hat{p})$$

Comme en général, on fait ce calcul avant de considérer un échantillon, on n'a pas forcément de valeur pour \hat{p} . Si on a une estimation antérieure \hat{p}_0 , on la considère, sinon on prend $\hat{p}=0,5$ et on calcule

$$n = \lceil \left(\frac{z_{\frac{\alpha}{2}}}{2E}\right) \rceil$$

.

Intervalle de confiance pour une proportion: calcul de la taille de l'échantillon n (ii)

Exercice 10: Douze des 75 arbres d'un échantillon aléatoire sont contaminés par une maladie. Pour le déterminer, on a du abattre ces arbres.

- 1. Déterminer un intevalle de confiance à 95% pour p la proportion d'arbres malades dans la forêt.
- 2. Après cette mesure, on veut une plus petite erreur d'approximation de *p*. Combien d'arbres supplémentaires abattre si on veut une erreur d'au plus 5%?
- 3. Combien d'arbres on aurait du couper si on veur la même erreur maximale, mais si on n'avait pas considéré le premier échantillon de 75 individus ?

Intervalle de confiance avec deux échantillons

Une procédure semblable à celle pour la moyenne permet de construire des intervalles de confiance dans différentes situations où deux échantillons X_1 et X_2 sont obtenus, en utilisant les distributions échantillonnales étudiées auparavant:

- Intervalle de confiance pour $\mu_1-\mu_2$ lorsque $X_i\sim N(\mu_i,\sigma_i^2)$ et les σ_i^2 sont inconnues mais égales.
- Intervalle de confiance pour $\mu_1 \mu_2$ lorsque $X_i \sim N(\mu_i, \sigma_i^2)$ et les σ_i^2 sont inconnues et différentes.
- Intervalle de confiance pour $\mu_1-\mu_2$ lorsque n_1 , n_2 sont grands et les σ_i^2 sont inconnues.
- Intervalle de confiance pour $\frac{\sigma_1^2}{\sigma_2^2}$ lorsque $X_i \sim N(\mu_i, \sigma_i^2)$.
- Intervalle de confiance pour p_1-p_2 lorsque $n_1\,\,,\,\,\,n_2$ sont grands.

Intervalle de confiance pour $\mu_1-\mu_2$

Situation	Relation utlisée	Intervalle de confiance $1-\alpha$
$ \begin{cases} \sigma_1^2 \text{ et } \sigma_2^2 \text{ connues } X_i \sim \\ N(\mu_i, \sigma_i^2) \text{ ou } n_1, n_2 \\ \text{ grands} \end{cases} $	$rac{\overline{X_1} - \overline{X_2} - (\mu_1 - \mu_2)}{\sqrt{rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}}} \sim N(0,1)$	$\mu_{1}-\mu_{2}=\overline{X_{1}}-\overline{X_{2}}\pm\\z_{\frac{\alpha}{2}}\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}\pm$
$\sigma_1^2, \sigma_2^2 \text{ inconnues } \sigma_1^2 = \\ \sigma_2^2 \text{ et } X_i \sim N\big(\mu_i, \sigma_i^2\big)$	$\begin{split} \frac{\overline{X_1} - \overline{X_2} - (\mu_1 - \mu_2)}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim \\ T_{n_1 + n_2 - 2} \\ S_p = \\ \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}} \end{split}$	$\begin{split} \mu_1 - \mu_2 &= \overline{X_1} - \overline{X_2} \pm \\ t_{\frac{\alpha}{2}; n_1 + n_2 - 2} \times \\ S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \end{split}$

Intervalle de confiance pour $\mu_1-\mu_2$ (ii)

Situation	Relation utlisée	Intervalle de confiance $1-\alpha$
$\sigma_1^2 \text{ et } \sigma_2^2 \text{ inconnues}$ $\sigma_1^2 \neq \sigma_2^2$ $X_i \sim N(\mu_i, \sigma_i^2)$	$\frac{\overline{X_1} - \overline{X_2} - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim T_{\nu}$	$\mu_1 - \mu_2 = \overline{X_1} - \overline{X_2} \pm \\ t_{\frac{\alpha}{2};\nu} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}} \pm \\ \nu = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\left(\frac{S_1^2}{n_1}\right)^2 + \left(\frac{S_2^2}{n_2}\right)^2} - 2$
σ_1^2,σ_2^2 inconnues n_1,n_2 grands	$rac{\overline{X_1} - \overline{X_2} - (\mu_1 - \mu_2)}{\sqrt{rac{S_1^2}{n_1} + rac{S_2^2}{n_2}}} \sim N(0, 1)$	$\mu_1 - \mu_2 = \overline{X_1} - \overline{X_2} \pm \\ z_{\frac{\alpha}{2}} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}} \pm$

Intervalle de confiance pour $\mu_1 - \mu_2$: observations couplées

Supposons que les données aient été recueillies par paires sur les mêmes unités expérimentales, c'est-à-dire que chaque unité fournit deux observations X_1 et X_2 .

Si X_1 et X_2 suivent des lois normales alors $D=X_1-X_2$ suit une loi normale et

$$\frac{\overline{D} - (\mu_1 - \mu_2)}{\frac{S_D}{\sqrt{n}}} \sim T_{n-1}$$

où
$$\overline{D}=\frac{1}{n}\sum_{i=1}^nD_i=\overline{X_1}-\overline{X_2}$$
 et $S_D^2=\frac{1}{n-1}\sum_{i=1}^n\left(D_i-\overline{D}\right)^2$

Intervalle de confiance pour $\mu_1 - \mu_2$: observations couplées (ii)

L'intervalle de confiance pour $\mu_1 - \mu_2$ est:

$$\overline{D} - t_{\frac{\alpha}{2};n-1} \frac{S_D}{\sqrt{n}} \leq \mu_1 - \mu_2 \leq \overline{D} + t_{\frac{\alpha}{2};n-1} \frac{S_D}{\sqrt{n}}$$

Intervalle de confiance pour $\mu_1 - \mu_2$: observations couplées (iii)

Exercice 11: On a calculé les valeurs suivantes pour les notes d'un groupe (échantillon) de 41 étudiants de biostatistique pour le contrôle périodique et l'examen finale:

Moyenne du contrôle	Moyenne de	Ecart-type des
sur 30	l'examen final sur 50	différences (sur 50)
17,45	31,75	6,48

Comme les deux examens ont été passés par les mêmes étudiants on considère que les notes obtenues à ces deux évaluations sont des observations couplées.

Dans ce cas, déterminez un intervalle de confiance à 95% pour la différence des moyennes.

Intervalle de confiance pour $\frac{\sigma_1^2}{\sigma_2^2}$ et p_1-p_2

	<u> </u>	r
Situation	Relation utlisée	Intervalle de confiance $1-lpha$
$X_i \sim N(\mu_i, \sigma_i^2)$	$\frac{\frac{S_2^2}{\sigma_2^2}}{\frac{S_1^2}{\sigma_1^2}} \sim F_{n_2-1,n_1-1}$	$\begin{split} L \leq \frac{\sigma_1^2}{\sigma_2^2} \leq U \\ \text{avec} \\ L = \frac{S_1^2}{S_2^2} F_{1-\frac{\alpha}{2};n_2-1,n_1-1} \\ U = \frac{S_1^2}{S_2^2} F_{\frac{\alpha}{2};n_2-1,n_1-1} \end{split}$
X_i binomiale n_1,n_2 grands	$rac{\widehat{p_1}-\widehat{p_2}-(p_1-p_2)}{\sqrt{rac{p_1(1-p_1)}{n_1}+rac{p_2(1-p_2)}{n_2}}}\sim \ N(0,1)$	$ \begin{array}{c} p_1 - p_2 = \hat{p}_1 - \hat{p}_2 \pm \\ z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}} \end{array} $

Autres problèmes d'estimation par

intervalle de confiance

Intervalle de prévision

Contexte: On tire un échantillon $X_1,...,X_n$ d'une population normale $X\sim N(\mu,\sigma^2)$. On veut prédire la prochaine observation X_{n+1} .

Definition 7.

On construit un intervalle de prévision comme suit:

- Un estimateur ponctuel de X_{n+1} est \overline{X} .
- Puisque les v.a sont indépendantes, $X_{n+1}-\overline{X}$ suit une loi normale de moyenne nulle et de variance $\sigma^2+\frac{\sigma^2}{n}$
- On construit l'intervalle de confiance correspondant.

Intervalle de prévision (ii)

• L'intervalle de prévision est

$$\overline{X} - z_{\frac{\alpha}{2}} \sqrt{\sigma^2 \left(1 + \frac{1}{n}\right)} \leq X_{n+1} \leq \overline{X} + z_{\frac{\alpha}{2}} \sqrt{\sigma^2 \left(1 + \frac{1}{n}\right)}$$

si la variance σ^2 est connue.

• L'intervalle de prévision est

$$\overline{X} - t_{\frac{\alpha}{2};n-1} \sqrt{S^2 \left(1 + \frac{1}{n}\right)} \leq X_{n+1} \leq \overline{X} + t_{\frac{\alpha}{2};n-1} \sqrt{S^2 \left(1 + \frac{1}{n}\right)}$$

si la variance σ^2 n'est pas connue.

Intervalle de prévision (iii)

Exercice 11: On a mesuré au cours de 10 vols l'accélération maximale (en g) d'un avion de ligne. Les résultats obtenus sont:

On veut prédire l'accélération maximale de l'avion lors de son prochain vol supposant que l'accélération maximale suit une loi normale, avec une confiance de 95%.

Intervalle de tolérance

Contexte: On veut construire, à partir d'un échantillon, un intervalle qui contient un pourcentage donné des valeurs de la population, avec une probabilité $1-\alpha$.

Definition 8.

Un intervalle de tolérance d'une population X est un intervalle construit à partir d'un échantillon $X_1,...,X_n$ et qui contient q% des valeurs X avec probabilité $1-\alpha$.

- q est le taux de couverture.
- $1-\alpha$ est le coefficient de confiance.

Intervalle de tolérance avec une loi normale

On considère $X \sim N(\mu, \sigma^2)$.

Si μ et σ^2 sont connues alors déterminer un intervalle de tolérance se réduit au calcul d'une probabilité avec la loi normale.

Si μ et σ^2 ne sont pas connues alors l'intervalle de tolérance est de la forme

$$\left[\overline{X}-kS;\overline{X}+kS\right]$$

où k est une constante dépdendant de q et $1-\alpha$.

Les valeurs de k pour différentes combinaisons du taux de couverture q et du niveau de confiance $1-\alpha$ sont habituellement données dans des tables.

Intervalle de tolérance avec une loi normale (ii)

Exercice 12: On a mesuré au cours de 10 vols l'accélération maximale (en g) d'un avion de ligne. Les résultats obtenus sont:

On veut définir un intervalle de tolérance bilatéral dont on peut être confiant à 95% qu'il comprend 99% de toutes les accélérations maximales possibles.

Intervalle de tolérance (cas général)

Ici X n'est pas normale, et l'intervalle de tolérance est $[X_{\min}; X_{\max}]$. La relation entre le taux de couverture et le niveau de confiance est

$$\alpha = nq^{n-1} - (n-1)q^n$$

où n est la taille de l'échantillon.

Deux situations sont possibles:

- 1. Si q et n sont connus alors on peut déterminer le niveau de confiance $1-\alpha$.
- 2. Si α et q sont connus alors on peut déterminer n (approximativement) par

$$n \simeq \left\lceil \frac{1}{2} + \frac{1+q}{1-q} \frac{\chi_{\alpha;4}^2}{4} \right\rceil$$

Intervalle de tolérance (cas général) (ii)

Exercice 13: On s'intéresse à la durée nécessaire pour accomplir une certaine tâche. On dispose d'un échantillons de 50 mesures de cette durée (en minutes). Une analyse statistique descriptive des 50 mesures montre que $X_{\min}=8,3$ et $X_{\max}=11,8$. De plus, les données ne semblent pas provénir d'une distribution normale.

- 1. Déterminer un intervalle de tolérance pour la durée X ainsi que le niveau de confiance si le taux de couverture est de 95%.
- 2. Quelle taille d'échantillon doit-on utiliser pour que le niveau de confiance soit de 95% et le taux de couverture de 95% ?