EPITA

Mathematics

Final exam (S2)

May 2018

Name:

First Name:

Class:

MARK:

Exercise 1 (2 points)

Let $A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & -1 & 1 \\ 2 & 4 & 5 \end{pmatrix}$. Determine the inverse matrix A^{-1} . (Don't forget to check the final result on your draft.)

Exercise 2 (4 points)

Calculate the partial fractal decomposition in $\mathbb{R}(X)$ of the following rational fractions:

1.
$$F(X) = \frac{X^2 + X - 1}{(X - 1)(X - 2)(X + 2)}$$

3. $H(X) = \frac{2X^2 - 1}{(X+1)(X^2 + X + 1)}$

Exercise 3 (2 points)

Let E and F be two vector spaces over \mathbb{R} and $f \in \mathcal{L}(E, F)$. Prove that f is injective iff $\operatorname{Ker}(f) = \{0\}$.

Exercise 4 (3 points)

1. Let $f: \mathbb{R}_2[X] \longrightarrow \mathbb{R}_2[X]$ be defined for every $P \in \mathbb{R}_2[X]$ by $f(P(X)) = 2XP(X) - X^2P'(X)$.

Determine the matrix of f with respect to the standard basis of $\mathbb{R}_2[X]$.

2. Let $f \in \mathcal{L}(\mathcal{M}_2(\mathbb{R}))$ be defined by $f: \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} d & -c \\ -b & a \end{pmatrix}$.

Determine the matrix of f with respect to the standard basis of $\mathcal{M}_2(\mathbb{R})$.

Exercise 5 (2,5 points)

Let E be a vector space over \mathbb{R} and $u \in \mathcal{L}(E)$. We use the notation $u^2 = u \circ u$. Show that $\operatorname{Ker}(u) \cap \operatorname{Im}(u) = \{0\} \iff \operatorname{Ker}(u) = \operatorname{Ker}(u^2)$

Exercise 6 (2,5 points)

You have to justify your answers to the two following questions.

1. Do the vectors $u=(1,1,0),\,v=(4,1,4)$ and w=(2,-1,4) form a basis of \mathbb{R}^3 ?

Exercise 7 (5 points)

Let $f: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow \mathbb{R}^3 \\ \left(\begin{array}{c} x \\ y \\ z \end{array} \right) & \longmapsto \left(\begin{array}{c} x+2y \\ 3y \\ 2x-4y+2z \end{array} \right) \end{array} \right.$ and let A be the matrix of f with respect to the standard basis \mathscr{B} of \mathbb{R}^3 .

1. Determine A.

Determine the matrix of f with respect to \mathscr{B}' .

3. Let $P = \operatorname{Mat}_{\mathscr{Q}',\mathscr{B}}(id)$ where id is the identity map from \mathbb{R}^3 to \mathbb{R}^3 . Determine P^{-1} then $D = P^{-1}AP$. What can you remark?

[this frame continues on the next page]

			7
		_	
alculate D^2 D^3	and deduce (without induct	ion) D^n for every $n \in \mathbb{N}^*$	
Calculate D^2 , D^3	and deduce (without induct	ion) D^n for every $n \in \mathbb{N}^*$.	
Falculate D^2 , D^3	and deduce (without induct	ion) D^n for every $n \in \mathbb{N}^*$.	
alculate D^2 , D^3	and deduce (without induct	ion) D^n for every $n \in \mathbb{N}^*$.	
alculate D^2 , D^3	and deduce (without induct	ion) D^n for every $n \in \mathbb{N}^*$.	
alculate D^2 , D^3	and deduce (without induct	ion) D^n for every $n \in \mathbb{N}^*$.	
alculate D^2 , D^3	and deduce (without induct	ion) D^n for every $n \in \mathbb{N}^*$.	
alculate D^2 , D^3	and deduce (without induct	ion) D^n for every $n \in \mathbb{N}^*$.	
deculate D^2 , D^3	and deduce (without induct	ion) D^n for every $n \in \mathbb{N}^*$.	
dculate D^2 , D^3	and deduce (without induct	ion) D^n for every $n \in \mathbb{N}^*$.	
alculate D^2 , D^3	and deduce (without induct	ion) D^n for every $n \in \mathbb{N}^*$.	
lculate D^2 , D^3	and deduce (without induct	ion) D^n for every $n \in \mathbb{N}^*$.	
lculate D^2 , D^3	and deduce (without induct	ion) D^n for every $n \in \mathbb{N}^*$.	
alculate D^2 , D^3	and deduce (without induct	ion) D^n for every $n \in \mathbb{N}^*$.	
deculate D^2 , D^3	and deduce (without induct	ion) D^n for every $n \in \mathbb{N}^*$.	
decolate D^2 , D^3	and deduce (without induct	ion) D^n for every $n \in \mathbb{N}^*$.	
alculate D^2 , D^3	and deduce (without induct	ion) D^n for every $n \in \mathbb{N}^*$.	
alculate D^2 , D^3	and deduce (without induct	ion) D^n for every $n \in \mathbb{N}^*$.	
alculate D^2 , D^3	and deduce (without induct	ion) D^n for every $n \in \mathbb{N}^*$.	
alculate D^2 , D^3	and deduce (without induct	ion) D^n for every $n \in \mathbb{N}^*$.	
alculate D^2 , D^3	and deduce (without induct	ion) D^n for every $n \in \mathbb{N}^*$.	
alculate D^2 , D^3	and deduce (without induct	ion) D^n for every $n \in \mathbb{N}^*$.	
alculate D^2 , D^3	and deduce (without induct	ion) D^n for every $n \in \mathbb{N}^*$.	
alculate D^2 , D^3	and deduce (without induct	ion) D^n for every $n \in \mathbb{N}^*$.	
alculate D^2 , D^3	and deduce (without induct	ion) D^n for every $n \in \mathbb{N}^*$.	
alculate D^2 , D^3	and deduce (without induct	ion) D^n for every $n \in \mathbb{N}^*$.	
alculate D^2 , D^3	and deduce (without induct	ion) D^n for every $n \in \mathbb{N}^*$.	
alculate D^2 , D^3	and deduce (without induct	ion) D^n for every $n \in \mathbb{N}^*$.	
Falculate D^2 , D^3	and deduce (without induct	ion) D^n for every $n \in \mathbb{N}^*$.	

5. Deduce (without induction) A^n as a function of P, D and n for every $n \in \mathbb{N}^*$.