

Structures élastiques - LU3ME006 Problème 2

Exo 1 (\sim 10 points)

On considère une poutre droite [OB] dirigée suivant l'axe $O\overrightarrow{x}$, de longueur 3ℓ . La poutre repose en A $(x=2\ell)$ sur un appui simple mobile et en B $(x=3\ell)$ sur un appui simple fixe. On applique un couple ponctuel autour de \overrightarrow{z} d'intensité $\Gamma>0$ en son extrémité O (x=0). Sa section carrée de côté a suivant le plan Oyz est constante le long de la poutre.

On désigne par I le moment d'inertie de la section de la poutre par rapport à son axe principal d'inertie dirigé suivant l'axe \vec{z} . Le matériau constitutif est homogène, isotrope, linéairement élastique, de module d'élasticité E. Enfin, on fait l'hypothèse d'Euler-Bernoulli.

- 1) En appliquant le principe fondamental de la statique, déterminer en fonction de Γ les valeurs des réactions aux appuis lorsque la structure est en équilibre sous le chargement appliqué.
- 2) Etablir, en fonction de Γ , les expressions des composantes du torseur de cohésion (effort normal N(x), effort tranchant $T_y(x)$ et moment fléchissant $M_z(x)$) dans la poutre.
- 3) Tracer les diagrammes des efforts de cohésion.
- 4) a) Calculer le moment d'inertie I de la section de la poutre par rapport à son axe principal d'inertie dirigé suivant l'axe \vec{z} . Déterminer la contrainte normale σ_{xx} puis en déduire l'expression de la contrainte normale maximale.
 - b) On considère que la contrainte limite élastique du matériau notée σ_{ℓ} est identique en traction et compression. Pour les dimensions ℓ et a et le chargement Γ donnés, quelle est la grandeur minimale a_{min} de la section droite pour rester dans le domaine élastique?

Année Universitaire 2019-2020 1/2

Exo 2 (\sim 10 points)

On considère une poutre droite [OB] dirigée suivant l'axe $O\vec{x}$, de longueur 2ℓ . La poutre repose en O(x=0) sur un appui simple fixe et en $B(x=2\ell)$ sur un appui simple mobile. On applique une densité linéique de force $-p_0x\vec{y}$ sur le segment [OA]. Sa section circulaire pleine de rayon R suivant le plan Oyz est constante le long de la poutre.

On désigne par I le moment d'inertie de la section de la poutre par rapport à son axe principal d'inertie dirigé suivant l'axe \vec{z} . Le matériau constitutif est homogène, isotrope, linéairement élastique, de module d'élasticité E. Enfin, on fait l'**hypothèse d'Euler-Bernoulli**.

1) En appliquant le principe fondamental de la statique, montrer que les valeurs des réactions aux appuis lorsque la structure est en équilibre sous le chargement appliqué sont :

$$\overrightarrow{R_O} = Y_O \overrightarrow{y} = \frac{p_0 \ell^2}{3} \overrightarrow{y}$$
 et $\overrightarrow{R_B} = Y_B \overrightarrow{y} = \frac{p_0 \ell^2}{6} \overrightarrow{y}$.

- 2) Etablir les expressions des composantes du torseur de cohésion (effort normal N(x), effort tranchant $T_y(x)$ et moment fléchissant $M_z(x)$) dans la poutre.
- 3) Tracer les diagrammes des efforts de cohésion. (<u>Indication</u> : $\frac{1}{6} < \frac{2}{9}\sqrt{\frac{2}{3}}$)
- 4) a) Calculer le moment d'inertie I de la section de la poutre par rapport à son axe principal d'inertie dirigé suivant l'axe \vec{z} . Déterminer la contrainte normale σ_{xx} puis en déduire l'expression de la contrainte normale maximale.
 - b) On considère que la contrainte limite élastique du matériau notée σ_{ℓ} est identique en traction et compression. Pour la longueur ℓ , le rayon R et le chargement p_0 donnés, quel est le rayon minimal R_{min} de la section droite pour rester dans le domaine élastique?

Année Universitaire 2019-2020 2/2