NetSim Under Water Acoustic Networks (UWAN) Experiments and Measurements Workspace

Table of Contents

1	Intro	oduction	2
2	Imp	orting the Workspace	2
3	Mul	ti-Parameter Sweeper	3
4	Ехр	eriments available in this workspace	3
	4.1	Throughput and delay variation with distance	3
	4.2	Underwater propagation losses and device range	8
	4.3	s-Aloha performance with multiple transmit nodes	10

1 Introduction

This is a NetSim "workspace" which contains saved experiments. These experiments can be directly "imported" into NetSim. Further, the workspace has some code modifications that enabled users to log acoustic measurements such as Acoustic pathloss, Received Signal Level, SNR, BER etc.

2 Importing the Workspace

1. Use the following download Link to download a compressed zip folder which contains the workspace

https://github.com/NetSim-TETCOS/UWAN_Experiments_v13_2/archive/refs/heads/main.zip

- 2. Extract the zip folder.
- 3. The extracted project folder consists of a NetSim workspace file (UWAN experiments and measurements.netsimexp).
- 4. Go to NetSim Home window, go to Your Work, and click on Import.

Figure 2-1: NetSim Home Window

- 5. In the Import Workspace Window, browse and select the UWAN experiments and measurements. netsimexp. file from the extracted directory. Click on create a new workspace option and browse to select a path in your system where you want to set up the workspace folder.
- 6. Choose a suitable name for the workspace of your choice. Click Import.

Figure 2-2: NetSim Import workspace window

- 7. The imported workspace will automatically be set as the current workspace.
- 8. The list of experiments will be loaded onto the selected workspace.

Figure 2-3: List of experiments shown inside the workspace

3 Multi-Parameter Sweeper

The multi-parameter sweep program enables users to automatically sweep process across multiple input parameters, simulate each run, save each result, and compare specific output metrics via a spreadsheet software like MS Excel. The sweep program runs NetSim via its CLI interface. Documentation and code is available in the link given.

Utility Download Link: https://tetcos.com/pdf/v13.1/NetSim-Multi-Parameter-Sweeper v13.1.pdf

4 Experiments available in this workspace

4.1 Throughput and delay variation with distance

In this example, we understand how UWAN throughput and delay varies as the distance between 1 transmitter and 1 receiver is varied. Even with *No pathloss* the throughput in UWAN varies with Tx-Rx

distance which is not the case in terrestrial RF based transmissions. The two parameters that affect throughput and delay are the speed of sound and the slot length of s-Aloha. The speed of sound in water is given by the formula

$$c_{sound} = 1449.05 + 45.7t - 5.21 \times t^2 + 0.23 \times t^3 + (1.333 - 0.126t + 0.009 \times t^2)(S - 35) + 16.3 \times z + 0.18 \times z^2$$

where t is one-tenth of the temperature of the water in degrees Celsius, z is the depth in km and S is the salinity of the water. Then using $t=\frac{25}{10}=2.5$, z=50, and S=35 - where t is one-tenth of the temperature of the water in degrees Celsius, z is the depth in meters and S is the salinity of the water, we get $c_{sound}=2799.33~m/s$. When the transmitter receiver distance is d=2km, the propagation delay, $\Delta=\frac{2\times10^3}{2799.33}=714,456.4~\mu s$

Next, as explained in section **Error! Reference source not found.**, we consider ideal slot lengths for different transmitter receiver distances. In the case when $d_{Rx}^{Tx} = 2 \ km$ the slot length turns out as

$$L_{Slot} = T_{tx} + \Delta = 16,800 + 714,456.4 = 731,256.4 \,\mu s = 0.73$$

Table 4-4 shows the ideal slot length settings for $d_{Rx}^{Tx} = 4 km$ and $d_{Rx}^{Tx} = 6 km$.

Network setup:

Create a scenario with 2 Underwater Devices

Figure 4-1: Network Scenario. Two underwater devices connected via an acoustic ad hoc link

- In case #1, distance between the underwater devices is set to be 2km. In case #2 the distance is 4km, while in case #3 it is set to 6 km
- Channel characteristics as NO PATHLOSS
- Change the Following parameters, Right Click on Underwater_Device_1 → Properties

Device Configuration:

Device > Interface (ACOUSTIC) > Datalink Layer			
Slot Length(µs)	16800		
Device> Interface (ACOUSTIC) > Physical Layer			
Source Level $(dB//1\mu Pa)$ 200			
Modulation	QPSK		
Data Rate (kbps)	20		

Table 4-1: Device properties set for this example

Application Configuration:

We run simulations for different traffic generation rates. The generation rate depends on the interpacket arrival time is a GUI input in NetSim – in the following way

$$Generation \ Rate \ (Mbps) = \frac{Packet \ Size \ (Bytes) \times 8}{Interarrival \ Time \ (\mu s)}$$

Application Properties					
Application Method	App1_CBR				
Source ID	1				
Destination ID	2				
Packet Size (Bytes)	14				
	Inter arrival Generation Time (μs) rate (bps)				
	4480000	25			
	2240000	50			
	1120000	100			
Case-1	896000	125			
	746666.6666	150			
	640000	175			
	560000	200			
	5600000	20			
	2800000	40			
Case-2	1866666.6666	60			
	1400000	80			
	1120000	100			
	5600000	20			
	3733333.333	30			
Case-3	2800000	40			
- Just-3	2240000	50			
	1866666.6666	60			
	1600000	70			

Table 4-2: Application properties for the different samples in each case studied in this example

- Click on Packet Trace option and select the Enable Packet Trace check box.
- Run the Simulation for 100 sec.

Theoretical Predictions

The predicted propagation delay when the speed of sound $c_{sound} = 2799.33 \, m/s$ is

Distance between devices	Propagation delay (Δ in μs)
2km	714456.4
4km	1428912.7
6km	2143369.1

Table 4-3: Theoretically predicted propagation delay for different Tx-Rx distances

Transmission delay and Saturation Throughput

Considering a slot length of $731,256.4 \,\mu s$ refer section **Error! Bookmark not defined.Error! Reference source not found.** in UWAN Manual, we see that one packet exactly fits one slot and hence the predicted saturation throughput would be

$$\theta_{sat}^{2km} = \frac{(L_{pkt} \times 8)}{L_{slot}} = \frac{(14 \times 8)}{731256.4 \times 10^{-6}} = 153 \ bps$$

Ver 13.2

Proceeding similarly for 4 km and 6 km, the predictions for saturation throughput are

Distance between devices	Slot Length (L_{slot})	Saturation Throughput $(\theta_{sat}$ in bps)
2 km	731256.4	153
4 km	1445712.7	77
6 km	2160169.1	52

Table 4-4: Ideal slot lengths and theoretically predicted saturation throughputs (θ_{sat}) for different Tx-Rx distances

Simulation results

We calculate of queuing delay, transmission delay, propagation delay from the packet trace. The steps are:

- Open Packet Trace file using the Open Packet Trace option available in the Simulation Results window.
- The difference between the PHY LAYER ARRIVAL TIME(US) and the MAC LAYER ARRIVAL TIME(US) will give us the delay of a packet. Refer Figure 4-2

Queuing Delay $(\mu s) = PHYSICAL\ LAYER\ ARRIVAL\ TIME\ (\mu s) - MAC\ LAYER\ ARRIVAL\ TIME\ (\mu s)$

Figure 4-2: Screen shot of NetSim trace showing the Queuing Delay column

- Now, calculate the mean queuing delay by taking the average of the queueing delays of all the packets. This is nothing but the column average. (Refer Figure 4-2)
- Similarly, users can get the Mean Transmission Delay and Mean Propagation Delay from the packet trace using the formulas

Transmission Delay $(\mu s) = PHY LAYER START TIME(\mu s) - PHY LAYER ARRIVAL TIME(\mu s)$

Propagation Delay $(\mu s) = PHY LAYER END TIME(\mu s) - PHY LAYER START TIME(\mu s)$

	Generation Rate (bps)	Throughput (bps)	Delay (µs)	Mean Propagation Delay(µs)	Mean Transmission Delay(µs)	Mean Queuing Delay(µs)
Φ	25	26	736612.9	714456.4	16800	5356.52
stanc n ter 2km	50	50	736856.4	714456.4	16800	5600
Distance een water is 2km	100	100	736793.4	714456.4	16800	5537.08
	125	124	736856.4	714456.4	16800	5600
ase #1: Dista between underwater devices is 2k	150	149	738666.9	714456.4	16800	7410.53
Case b un devi	175	151	7377656.4	714456.4	16800	6646400
O	200	151	12737656.4	714456.4	16800	12006400
_	20	20	1451313	1428912.7	16800	5600
ce ce betwe en under water	40	40	1451313	1428912.7	16800	5600
. ﴿ 5 فَ مَ	60	59	1453285	1428912.7	16800	7572.33

	80	76	3509313	1428912.7	16800	2063600
	100	76	12889313	1428912.7	16800	11443600
_	20	20	2165769	2143369.1	16800	5600
3: n n fer 6kr	30	30	2167636	2143369.1	16800	7466.67
is is	40	39	2165609	2143369.1	16800	5440
Sase Distar Detwe Dervidery Ces	50	49	2165769	2143369.1	16800	5600
	60	52	8922169	2143369.1	16800	6762000
ס	70	52	14922169	2143369.1	16800	12762000

Table 4-5: Tabulated results (throughput and delays) for 3 different Tx-Rx distances

Figure 4-3: Throughput vs. Generation rate plotted for Tx-Rx distances of 2km, 4km and 6km based on earlier table

From Table 4-5, we see that the propagation delays from simulation match predictions in Table 4-3. Then from the below table we observe that saturation throughput (the Y axis value once the curve flattens) matches prediction.

Distance between devices	Saturation Throughput. Predicted (θ_{sat} in bps)	Saturation Throughput. Simulation (θ_{sat} in bps)
2 km	153	151
4 km	77	76
6 km	52	52

Table 4-6: NetSim UWAN Simulation results vs. theoretical prediction of saturation throughput, for different Tx-Rx distances

4.2 Underwater propagation losses and device range

In this example, we understand the Thorp propagation model, the sources of under-water noise, the passive sonar equation and how device range can be estimated based on received SNR. Refer to section 3.1 in UWAN Manual for the underlying theory on signal level, transmission losses, and the passive sonar equation.

Network setup

Create a scenario with two underwater devices

Figure 4-4:Network Scenario

- Channel characteristics as PATHLOSS_ONLY
- Change the Following parameters, Right Click on Underwater_Device_1 → Properties

Device Properties > Physical Layer			
Source Level $(dB//1\mu Pa)$	190.8, 187.78,183.91		
Data Rate (kbps)	20		
Modulation Technique	QPSK, BPSK, FSK, 16QAM, 64QAM, 256QAM		

Table 4-7: Device Properties

- Create a CBR Application with Default Properties with Source ID as 1 and Destination ID as 2.
- Run the Simulation for 1000 sec.

Analytical computations

In the Thorp model, the db/km attenuation is given by.

$$10 \log_{10} \alpha(f) = \begin{cases} 0.11 \times \left(\frac{f^2}{1+f^2}\right) + \ +44 \times \left(\frac{f^2}{4100+f^2}\right) + \ 2.75 \times 10^{-4} \times f^2 + 0.003 & f \geq 0.4 \ kHz \\ 0.02 + 0.11 \times \left(\frac{f}{1+f}\right) + 0.011 \times f & f < 0.4 \ kHz \end{cases}$$

For this example, substituting f=20, we get $10 \log_{10} \alpha(f)=4.133 \ db/km$, we see that the total pathloss is

$$10 \log A(d,f) = k \times 10 \log (d_m) + d_{km} \times 10 \log \alpha(f)$$

Using input parameters K ($spread\ coefficient$) = 2, f = 20 kHz and distance between the source and destination, d = 18 km, and we get the total transmission loss, TL, as

$$TL = 10 \log A(d, f) = 153.51 dB$$

Next, we turn to noise level *NL*. The turbulence, shipping, wind, and thermal, noise level in dB is given by

$$10 \log N_t(f) = 17 - 30 \log (f)$$

$$10 \log N_s(f) = 40 + 20 \times (s - 0.5) + 26 \log f - 60 \times \log(f + 0.03)$$

$$10 \log N_w(f) = 50 + 7.5 \times \sqrt{w} + 20 \log f - 40 \log(f + 0.4)$$

$$10 \log N_{th}(f) = -15 + 20 \log f$$

Substituting f=20~kHz, shipping factor s=0.5, surface windspeed w=0~m/s, we get $N_t=-22.03~dB$, $N_s=-4.27~dB$, $N_w=23.63~dB$, and $N_{th}=11.02~dB$. As explained in section 3.1.4 we see that wind noise has the most impact. After adding these noises in the linear scale and then converting back to dB, Total noise, $N_{Total}^{dB}=23.87$. From the passive sonar equation

$$SNR = SL - TL - (NL - DI)$$

Substituting we get

$$SNR = 190.80 - 153.51 - (23.87 - 0) = 7.41 \, dB$$

Results: Packet Error Rate vs Distance

For the above SNR, we plot PER vs. distance for different modulation schemes given default packet size of 14B.

Generally, range is defined as the Tx-Rx distance at which the PER is 10 %. From these plots we can determine a device's range. In summary, we see how the device range is dependent on Source Level, Noise, MCS and packet size.

4.3 s-Aloha performance with multiple transmit nodes

Network setup

We consider three scenarios as shown in the figure below, with 2, 3 and 4 transmitting nodes.

Figure 4-5: Simulation scenarios with 2 transmitting nodes in (A), 3 transmitting nodes in (B) and 4 transmitting nodes in (C). In all cases there is a single receiver.

Properties

Then we set the UWAN device properties as shown below

Device Properties
Device > Interface (ACOUSTIC) > Datalink Layer

Retry Limit	0,4,6
Slot Length(µs)	741256.4
Device> Interface (ACOUST	IC) > Physical Layer
Source Level $(dB//1\mu Pa)$	190.8
Modulation	QPSK
Data Rate (kbps)	20

Table 4-8: UWAN Device Properties

- Here, we set the Slot Time as 741256.4 μs , which is the ideal value of 731256.4 μs plus a guard interval of 10,000 μs
- Create a CBR Application from the source nodes (2, 3, 4 and 5 per the cases) to the destination (Node 1) with a packet size of 14 bytes and Inter arrival time as $560000 \mu s$.
- Run the Simulation for 10000sec.

Results

We observe throughputs from network metrics and packets transmitted and packets collided from the Link Metrics. We collision probability as $P_c = \frac{Collision\ Count}{Packet\ Transmitted}$ and tabulate the results in the different cases.

	Case #1: Two transmitting nodes							
Retry Limit	Throughput N1 (bps)	Throughput N2 (bps)	Aggregate Throughput(bps)	Collision Count	Packet Transmitted	P_c		
0	0	0	0	26980	26980	1		
4	55	51	106	7104	16624	0.427		
6	71	65	136	2548	14647	0.173		

Table 4-9: Simulation Results with 2 transmitting nodes

Case #2: Three transmitting nodes							
Retry Limit	Throughput N1 (bps)	Throughput N2 (bps)	Throughput N3 (bps)	Aggregate Throughput (bps)	Collision Count	Packet Transmitted	P_c
0	0	0	0	0	40470	40470	1
4	26	26	27	79	12234	19348	0.632
6	43	41	37	121	4969	15726	0.316

Table 4-10: Simulation Results with 3 transmitting nodes

	Case #3: Four transmitting nodes									
Retr y	Throughp ut N1	Throughp ut N2	Throughp ut N3	Throughp ut N4	Aggregat e	Collisi on	Packet Transmitt	P_c		
0	0	0	0	0	0	53960	53960	1		
4	15	15	14	16	60	16942	22293	0.76		
6	28	27	26	26	107	7202	16756	0.43		

Table 4-11: Simulation Results with 4 transmitting nodes

We carry out simulations with different settings of Retry Count. The final results are plotted below. When Retry count is set to zero, all packets collide even when just two nodes are transmitting. With retry count set to 0, the node attempts a packet transmission. If it fails, there is no retry and the packet

is dropped. Recall, that in s-Aloha the transmitter does not back off before the first transmission attempt for a packet. With backlogged queues, the two transmitting nodes keep attempting at each slot. This leads to continuous collisions.

When the retry count is set to 4 (or 6) a transmitting node back off per the exponential backoff algorithm, before every retransmission. The back off algorithm is explained in section **Error! Reference source not found.** in UWAN Manual . Hence there is an element of randomness in packet transmissions at each slot. Nodes may or may not transmit. The probability of transmission at a particular slot reduces as the Retry Count is increased. Hence, we see lower collision probabilities for Retry count of 6.

Advanced: s-Aloha works as expected only if the slot time is greater than transmission time plus the propagation delay. What happens when slot length is lower than this limit? Under this condition a new slot is available for transmission even before completion of an existing packet transmission. Thus, if an idle node completes its back off before the transmission (where transmission time equals $T_{tx} + \Delta$) of one another node is complete, it will attempt to transmit at the start of a new slot. The two packets collide and are lost. One would therefore expect higher collision probabilities with smaller slot lengths. NetSim simulation results for 2-node transmitting case with slot time, 250 ms is given below

Retry Limit	Throughput N1 (bps)	Throughput N2(bps)	Aggregate Throughput(bps)	Collision Count	Packet Transmitted	P _c	P _c (Ideal slot time)
0	0	0	0	26666	26666	1	1
4	20	20	40	14102	17696	0.79	0.427
6	45	46	91	6987	15109	0.46	0.153

Observe the significant increase in collision probability when the slot time is set lower than the ideal slot time. Next, we fix the retry count at 6 and vary the slot time from 50 ms to 750 ms in steps of 50 ms. In the plot below showing collision probability vs. slot time, we again observe how low slot times lead to higher collision probabilities.

Figure 4-6: Collision probability vs slot time