18.06 Homework 4 Due Sunday March 12 on Gradescope at 11:59 pm

Find the **incidence matrix** and its rank

1. and one vector in each subspace for this complete graph—all six edges included.

This is Problem 3.5.31 on page 140 of ILA6.

2. If $A^{T}Ax = 0$ then Ax = 0. Reason: Ax is in the nullspace of A^{T} and also in the _____ of A and those spaces are _____. Conclusion: Ax = 0 and therefore $A^{T}A$ has the same nullspace as A. This key fact will be repeated when we need it.

This is Problem 4.1.9 on page 149 of ILA6.

3. Compute the projection matrices aa^T/a^Ta onto the lines through $a_1 = (-1, 2, 2)$ and $a_2 = (2, 2, -1)$. Multiply those projection matrices and explain why their product P_1P_2 is what it is.

This is Problem 4.2.5 on page 159 of ILA6.

4. (Quick and Recommended) Suppose A is the 4 by 4 identity matrix with its last column removed. A is 4 by 3. Project $\mathbf{b} = (1, 2, 3, 4)$ onto the column space of A. What shape is the projection matrix P and what is P?

This is Problem 4.2.14 on page 160 of ILA6.

- **5.** What linear combination of (1, 2, -1) and (1, 0, 1) is closest to $\mathbf{b} = (2, 1, 1)$? This is Problem 4.2.17 on page 161 of ILA6.
- **6.** To find the projection matrix onto the plane x y 2z = 0, choose two vectors in that plane and make them the columns of A. The plane will be the column space of A! Then compute $P = A(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}}$.

<u>OR</u>

To find the projection matrix P onto the same plane x-y-2z=0, write down a vector e that is perpendicular to that plane. Compute the projection $Q=ee^{\mathrm{T}}/e^{\mathrm{T}}e$ and then P=I-Q. This is Problem 4.2.20 **OR** Problem 4.2.21 on page 161 of ILA6.

7. The first three Chebyshev polynomials are given by

 $T_0(x) = 1$, $T_1(x) = x$, $T_2(x) = 2x^2 - 1$

- (a) Show that $\{T_0, T_1, T_2\}$ is a basis for \mathbb{P}_2 , the space of polynomials of degree ≤ 2 (more generally, the space of polynomials of degree $\leq n$ is denoted by \mathbb{P}_n).
- (b) Check that differentiation defines a linear transformation $T_D: \mathbb{P}_2 \to \mathbb{P}_1$ and write down the matrix of each linear transformation in the Chebyshev basis. Similarly, check that integration is a linear transformation $T_S = \mathbb{P}_1 \to \mathbb{P}_2$.
- (c) Let D and S be the differentiation and integration matrices from part (b). Compute the matrix products DS and SD. Interpret the results using calculus: choose a suitable polynomial in \mathbb{P}_2 , differentiate it, and then integrate it.
- (d) Write down bases for the null spaces and column spaces of D and S. Provide the corresponding polynomials. Can you interpret your results about D and S in light of what you know about differentiation and integration from calculus?

This problem is not in the ILA6 textbook.