

Universidade Federal do Espírito Santo Centro Tecnológico Departamento de Engenharia Elétrica Prof. Hélio Marcos André Antunes

Unidade 6: O Projeto de Instalações Elétricas Prediais

Instalações Elétricas I Engenharia Elétrica

6.1- Projeto de Instalações Elétricas

Conceito:

- Projetar uma instalação elétrica consiste basicamente em:
 - Quantificar e localizar os pontos de utilização de energia elétrica;
 - Dimensionar, definir o tipo e o caminho dos condutores e condutos;
 - Dimensionar, definir o tipo e a localização dos dispositivos de proteção, comando, medição de energia elétrica e demais acessórios.
- Objetivo do Projeto de Instalações Elétricas:
 - Garantir a transferência de energia, em geral a rede de distribuição da concessionária, até os pontos de utilização (ponto de luz, tomada e motores, etc.);
 - O projeto deve ser desenvolvido obedecendo normas técnicas aplicáveis.

Características de um Projeto

Pontos Importantes:

- A solução não é única;
- A solução adotada deve atender às normas vigentes e as necessidades do cliente;
- Deve ser analisada a questão econômica no desenvolvimento do projeto (viabilidade econômica);
- Não devem existir ambiguidades na interpretação;
- Deve garantir acessibilidade aos pontos de utilização, bem como de proteção e medição;
- Deve possuir flexibilidade e reserva de carga, permitindo certas alterações e garantindo uma adequada expansão da carga demandada;
- Deve garantir confiabilidade, atendendo a todas as exigências cabíveis e assegurando a integridade física do usuário.

6.2- Etapas na Elaboração de um Projeto

- Informações Preliminares:
 - Planta de Situação: localização do imóvel, bem como sua posição em relação à rede elétrica, avaliando o tipo de fornecimento e pontos de derivação;
 - Projeto Arquitetônico: plantas, cortes, fachadas, detalhes, dimensões gerais;
 - Projetos Complementares: devem ser observadas possíveis restrições, como interferências com vigas, pilares, espessura da laje, localização das prumadas, etc (tudo deve estar em harmonia);
 - Informações com o Proprietário ou Arquiteto: localização preferencial de tomadas, previsões de cargas especiais, aparelhos de ar-condicionado, aquecedores, previsão de futuros acréscimos, etc.

- Quantificação do Sistema:
 - Calcular área e perímetro de cada cômodo;
 - Determinação de número mínimo de tomadas e pontos de iluminação de acordo com a NBR 5410:2004;
 - A esses valores mínimos deve-se acrescentar os pontos desejados e distribuí-los o mais uniforme possível;
 - Distribuir os pontos para aparelhos especiais: elevadores, bombas d'água para combate ao incêndio;
 - Dividir os circuitos por carga e área (observar restrições da NBR 5410/2004);
 - Calcular a carga total para todos os pontos previstos (Carga Instalada-CI);

Cálculos:

- Seções dos condutores e eletrodutos;
- Dimensionamento da proteção e do Quadro de Distribuição de Circuitos.
- Determinação do Padrão de Fornecimento:
 - Com os cálculos da carga instalada, determinar, segundo as normas da concessionária, o tipo de fornecimento;

Desenhos:

- Pontos de utilização;
- Localização dos Quadros de Distribuição;
- Traçados dos circuitos (Diagrama Unifilar);
- Localização dos Centros de Medição, Aterramento e Prumadas.

- Traçados dos Circuitos Alimentadores;
- Diagrama Unifilar dos Quadros de Distribuição e Medição;
- Detalhes necessários para execução do projeto;
- Simbologia, convenções e especificações.
- Lista de Materiais;
- Memorial Descritivo: tem a finalidade de fazer uma descrição sucinta do projeto, justificando, quando necessário, as soluções adotadas. Deve conter:
 - Dados básicos de identificação do projeto;
 - Dados quantitativos do projeto;
 - Descrição geral do projeto;
 - Documentação do projeto.

- Memorial de Cálculo: contém o resumo dos principais cálculos e dimensionamentos, contendo principalmente:
 - Cálculo da previsão de carga;
 - Dimensionamento de condutores e eletrodutos;
 - Dimensionamento da proteção;

6.3- Exemplo de um Projeto Elétrico Residencial

- A seguir é apresentado o desenvolvimento de um projeto elétrico residencial.
- Primeira Etapa:
 - Obter a planta baixa da residência, a partir do projeto arquitetônico desenvolvido pelo engenheiro civil ou arquiteto;
 - A planta baixa da residência deve conter o maior número de detalhes, como cortes, fachadas, dimensões gerais para auxiliar a elaboração do projeto elétrico;
 - Contato com o proprietário ou arquiteto (planta de humanização) para definir a localização preferencial de tomadas, cargas especiais, aparelhos de ar-condicionado, aquecedores, previsão de futuros acréscimos, etc.
- Planta baixa do exemplo a ser desenvolvido no Autocad®:
 - Planta Baixa Autocad

- Segunda Etapa
 - Seleção das plantas baixas que serão utilizadas no desenvolvimento do projeto elétrico:
 - Planta baixa selecionada:
 - Planta baixa
 - Planta de humanização e de situação:
 - Planta de humanização e de situação
 - Limpeza da planta baixa:
 - Planta baixa limpa

Terceira Etapa

- Previsão de Carga
 - Calcular área e perímetro de cada cômodo;
 - Determinação do número mínimo de tomadas e pontos de luz, de acordo com a NBR 5410/2004;
 - A esses valores mínimos deve-se acrescentar os pontos desejados e distribuí-los o mais uniforme possível.
- Quadro de Previsão de Cargas (Iluminação, TUG e TUE)

				1	 					<u> </u>
	Dim	nensões		lluminação			TUG		TU	JE .
Dependência	Área	Perímetro	N° de	Pot. Unitária	Pot. Total	N° de	Pot. Unitária	Pot. Total	0	D-12
	(m ²)	(m)	pontos	(VA)	(VA)	pontos	(VA)	(VA)	Aparelho	Potência(VA)
Sala	8,57	11,77								
Quarto	7,04	11,41								
Quarto	9,01	12,09								
Banheiro	2,43	6,24							Chuveiro	5400
Cozinha	6,61	10,29								
Área de Serviço		5,94								
Varanda	0,86	3,7								
Total	36,68	-		-			-		-	

Quadro de Previsão de Cargas

	Dim	nensões		lluminação			TUG		TU	JE .
Dependência	Área	Perímetro	N° de	Pot. Unitária		N° de	Pot. Unitária	Pot. Total	Anarolho	Potência(VA)
	(m ²)	(m)	pontos	(VA)	(VA)	pontos	(VA)	(VA)	Aparelho	Potericia(VA)
Sala	8,57	11,77	1	100	100	3	100	300		
Quarto	7,04	11,41	1	100	100	3	100	300		
Quarto	9,01	12,09	1	100	100	3	100	300		
Banheiro	2,43	6,24	1	100	100	1	600	600	Chuveiro	5400
Cozinha	6,61	10,29	1	100	100	3	600	1800		
Área de Serviço	2,16	5,94	1	100	100	2	600	1200		
Varanda	0,86	3,7	1	100	100	-	-	-		
Total	36,68	-	7	-	700	14	-	4500	-	5400

• Obs: Os valores obtidos na previsão de carga são os valores mínimos que devem ser atendidos segundo a NBR 5410/2004.

Quarta Etapa:

- Após a previsão de cargas, deve-se proceder com a marcação da carga mínina na planta baixa:
 - Pontos de luz no teto;
 - Interruptores simples, paralelo, intermediário, campainha, arandelas e etc.
 - Tomadas de uso geral (TUG);
 - Tomadas de uso específico;
 - Obs: Usar planta de humanização!!
- Definir a localização do Quadro de Distribuição de Circuitos (QDC).
- Planta baixa com pontos de luz, TUG, TUE e QDC

• Quinta Etapa

- Divisão da instalação por meio de circuitos (prever reserva de carga)
- Construção do Quadro de Cargas;

Circuito	Local de Utilização		s (TUG) (A)	TUE (VA)	Ponto de Luz (VA)	Potência	Tensão	Corrente	fp	# mm²	Disjuntor (A)	Balanceam	ento (W)
		100	600		100	Total (VA)	(V)	(A)				A	В
1													
2													
3													
4													
5													
6													
7													
8													

Circuito	Local de Utilização		ns (TUG) (A)	TUE (VA)	Ponto de Luz (VA)	Potência	Tensão	Corrente	fp	# mm²	Dis juntor (A)	Balanceam	ento (W)
		100	600		100	Total (VA)	(V)	(A)				Α	В
1	lluminação				9	900	127						
2	Tomada TUG (Cozinha)	3	3			2100	127						
3	Tomada TUG (Área de Serviço)		2			1200	127						
4	Tomada TUG (Sala+Quarto)	11				1100	127						
5	Tomada TUG (Banheiro+Quarto)	5	1			1100	127						
6	Tomada TUE (Banheiro)			5400		5400	220						
7	Reserva		1			600	127						
8	Reserva		1			600	127						

Sexta etapa

- Após a divisão da instalação em circuitos, deve-se definir o circuito de cada TUG, TUE e ponto de luz;
 - Planta baixa com circuitos definidos
- Proceder com o roteamento dos eletrodutos:
 - Ligando caixas de passagem no teto até o QDC;
 - Caixa de passagem do teto até as caixas de passagem dos interruptores e tomadas;
 - Os eletrodutos podem ser embutidos em alvenaria ou no solo, dependendo de cada caso.
 - O roteamento dos eletrodutos deve ser feito sempre buscando a o menor caminho entre as caixas de passagem, reduzindo os custos.
 - Planta baixa com roteamento dos eletrodutos

Sétima Etapa

- Esboçar por meio de diagrama unifilar a ligação de todos os pontos de luz, tomadas, campainhas etc do projeto elétrico.
- Projeto elétrico com todas as ligações elétricas

- Oitava etapa
 - Fazer o dimensionamento:
 - Da seção de todos os condutores;
 - Das proteções, disjuntores termomagnéticos e dispositivos diferenciais residuais;
 - Dos eletrodutos.
 - Completar o Quadro de Carga com as informações calculadas anteriormente.
 - Efetuar o balanceamento de carga (Desequilíbrio menor que 5%)

Circuito	Local de Utilização	TUG	(VA)	TUE (VA)	Ponto de Luz (VA)	Potência	Tensão	Corrente	fp	# mm²	Disjuntor (A)	Balanceam	ento (W)
		100	600		100	Total (VA)	(V)	(A)				A	В
1	lluminação				9	900	127	7,09	1,00	1,50	10	900	
2	Tomada TUG (Cozinha)	3	3			2100	127	16,54	0,80	2,50	16		1680
3	Tomada TUG (Área de Serviço)		2			1200	127	9,45	0,80	2,50	16	960	
4	Tomada TUG (Sala+Quarto)	11				1100	127	8,66	0,80	2,50	16		880
5	Tomada TUG (Banheiro+Quarto)	5	1			1100	127	8,66	0,80	2,50	16	880	
6	Tomada TUE (Banheiro)			5400		5400	220	24,55	1,00	4,00	25	2700	2700
7	Reserva		1			600	127	4,72	0,80	-	-	480	
8	Reserva		1			600	127	4,72	0,80	=	-		480
						-						5920	5740

OBS: Todos os cálculos devem constar no Memorial de Cálculo

Dimensionamento dos Circuitos Terminais

Tabela 10.8 - Tipos de linhas elétricas (Tabela 33 da NBR 5410:2004).

Método de Instalação Número	Método de Referência a Utilizar para a Capacidade de Condução de Corrente ⁽¹⁾	Descrição
7	B1	Condutores isolados ou cabos unipolares em eletroduto de seção circular embutido em alvenaria.

Tabela 10.10 - Capacidade de condução de corrente, em ampères, para os métodos de referência A1, A2, B1, B2, C, e D (Tabela 36 da NBR 5410:2004).

Condutores: cobre e alumínio

Isolação: PVC

Temperatura no condutor: 70°C

Temperatura de referência do ambiente: 30° C(ar), 20° C(solo)

C				Métod	dos de Re	ferência l	ndicados	na Tabela	10.8			
Seções	A	1	A	2	В	1	B2		C		I	5
Nominais mm²					Número	de Condi	itores Cai	regados				
	2	3	2	3	2	3	2	3	2	3	2	3
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11	(12)	(13)
					(Cobre						
0,5	7	7	7	7	9	8	9	8	10	9	12	10
0,75	9	9	9	9	11	10	11	10	13	11	15	12
1	11	10	11	10	14	12	13	12	15	14	18	15
1.5	14,5	13,5	14	13	17,5	15,5	16,5	15	19,5	17,5	22	18

Tabela 10.16 - Fatores de correção para agrupamento de circuitos ou cabos multipolares, aplicáveis aos valores da capacidade de condução de corrente dados nas tabelas 10.9; 10.10; 10.11 e 10.12 (Tabela 42 da NBR 5410:2004).

	F 4-			Núr	nero d	e Circu	itos ot	ı de Ca	abos M	ultipol	ares			Tabelas dos
Ref.	Forma de Agrupamento dos Condutores	1	2	3	4	5	6	7	8	9 a 11	12 a 15	16 a 19	≥ 20	Métodos de Referência
1	Em feixe: ao ar livre ou sobre superfície; embutidos; em conduto fechado.	1,00	0,80	0,70	0,65	0,60	0,57	0,54	0,52	0,50	0,45	0,41	0,38	10.10 a 10.13 (métodos A a F)

Dimensionamento do DTM e IDR

• Fabricante de mini-disjuntores GE

Série	GE30		
Curva	Curv	/a C (5 a 1	0 In)
Corrente Nominal (In) A	1P	2P	3P
0.5			
1			
2			
4			
6	GE31C06	GE32C06	GE33C06
10	GE31C10	GE32C10	GE33C10
16	GE31C16	GE32C16	GE33C16
20	GE31C20	GE32C20	GE33C20
25	GE31C25	GE32C25	GE33C25
32	GE31C32	GE32C32	GE33C32
40	GE31C40	GE32C40	GE33C40
50	GE31C50	GE32C50	GE33C50
63	GE31C63	GE32C63	GE33C63
70	GE31C70	GE32C70	GE33C70
80			
100			
125			
Capacidade de Ruptura (kA)			
IEC 898			
len - 127Vea	3		-
Icn - 220Vca	3	3	3
Icn - 230Vca	-	-	-
lcn - 380Vca	-	3	3
Icn - 400Vca	-	-	-

l∆n (sensibilidade)	In (A)	2 módulos	4 módulos
	25	BDC225/030	BPC425/030
	40	BDC240/030	BPC440/030
30m A	63	BPC263/030	BPC463/030
	80	BPC280/030	BPC480/030
	100	BPC2100/030	BPC4100/030

- Nona Etapa
 - Definir a classe de atendimento da unidade consumidora segundo a Escelsa.
 - Classificação da Instalação Escelsa
 - Classificação da unidade consumidora
 - Posicionar medidor de energia elétrica o mais próximo possível do poste da ESCELSA (Planta de situação).
 - Planta baixa de situação da residência
 - Traçar o eletroduto que liga o medidor até o QDC.
 - Localização do medidor de energia elétrica
 - Dimensionar o circuito alimentador, e definir o diâmetro do eletroduto. O circuito alimentador deve ter seção no mínimo igual ao ramal de entrada.

Tabelas para o Dimensionamento do Alimentador

Método de instalação número	Esquema ilustrativo	Descrição	Método de referência ¹⁾
61A		Cabos unipolares em eletroduto(de seção não-circular ou não) ou em canaleta não-ventilada enterrado(a) ⁸⁾	D

Tabela 10.10 - Capacidade de condução de corrente, em ampères, para os métodos de referência A1, A2, B1, B2, C, e D (Tabela 36 da NBR 5410:2004).

Condutores: cobre e alumínio

Isolação: PVC

Temperatura no condutor: 70°C

Temperatura de referência do ambiente: 30° C(ar), 20° C(solo)

C				Métod	dos de Re	ferência l	ndicados	na Tabela	10.8			
Seções Nominais	A	1	А	2	В	1	В	2		C	I	<u> </u>
mm ²					Número	de Condi	itores Ca	rregados				
111111	2	3	2_	3	2	3	2_	3	2	3	2	3
(1)	(a)	(2)	(4)	(F)	(6)	(7)	(0)	(0)	(10)	(11	(10)	(10)
(1)	(2)	(3)	(4)	(5)	(6)	(1)	(8)	(9)	(10)	(11	(12)	(13)
						Cobre			-			
0,5	7	7	7	7	9	8	9	8	10	9	12	10
0,75	9	9	9	9	11	10	11	10	13	11	15	12
1	11	10	11	10	14	12	13	12	15	14	18	15
1.5	14,5	13,5	14	13	17,5	15,5	16,5	15	19,5	17,5	22	18
2,5	19,5	18	18,5	17,5	24	21	23	20	27	24	29	24
4	26	24	25	23	32	28	30	27	36	32	38	31
6	34	31	32	29	41	36	38	34	46	41	47	39
10	46	42	43	39	57	50	52	46	63	57	63	52
16	61	56	57	52	76	68	69	62	85	76	81	67
25	80	73	75	68	101	89	90	80	112	96	104	86
	1											4.55

- Décima Etapa
 - Construir o Digrama Unifilar.
 - Fazer uma legenda com a simbologia adotada.
 - Fazer as observações que julgar necessária.
 - FIM!
- Plantas elétricas desenvolvidas
 - Projeto Elétrico Parte 1
 - Projeto Elétrico Parte 2
 - Projeto Elétrico Parte 3