What is claimed is:

1	1.	A method of determining data placement for a distributed storage system
2		comprising the steps of:
3		selecting a heuristic class which meets a performance requirement and
4		which provides a replication cost that is within an allowable limit of a
5		minimum replication cost; and
6		instantiating a data placement heuristic selected from a range of data
7		placement heuristics according to the heuristic class.
1	2.	The method of claim 1 wherein the performance requirement comprises a bi-
2		modal performance metric.
1	3.	The method of claim 2 wherein the bi-modal performance metric comprises a
2.		criterion and a ratio of successful requests to total requests.
1	4.	The method of claim 1 wherein the data placement heuristic comprises a
2		computer implemented technique of placing data objects onto nodes of the
3		distributed storage system.
1	5.	The method of claim 4 further comprising the step of evaluating a placement
2		of the data objects.
1	6.	The method of claim 5 wherein the step of evaluating the data placement
2		heuristic provides a performance result and a cost result for the system
3		configuration and the workload.
1	7.	The method of claim 5 wherein the step of instantiating the data placement
2		heuristic comprises simulating an instantiation of the data placement heuristic.
1	8.	The method of claim 7 further comprising the steps of:
2		selecting a second heuristic class for the workload and a second system
3		configuration;
4		instantiating a second data placement heuristic according to the second

5	heuristic class; and
6	evaluating a second placement of the data objects made according to
7	, the second data placement heuristic.
1	9. The method of claim 7 further comprising the steps of:
2	selecting a second heuristic class for the system configuration and a
3	second workload;
4	instantiating a second data placement heuristic according to the second
5	heuristic class; and
6	evaluating a second placement of the data objects made according to
7	the second data placement heuristic.
1	10. The method of claim 5 wherein the step of instantiating the data placement
2	heuristic comprises instantiating the data placement heuristic on an actual
3	distributed storage system operating with an actual workload.
1	11. The method of claim 10 further comprising the steps of:
2	selecting a second heuristic class for the system configuration and the
3	actual workload;
4	instantiating a second data placement heuristic according to the second
5	heuristic class; and
6	evaluating a second placement of the data objects made according to
7	the second data placement heuristic.
1	12. The method of claim 1 wherein the performance requirement comprises a data
2.	access latency.
1	13. The method of claim 1 wherein the performance requirement comprises an
2	average data access latency.
l	14. The method of claim 1 wherein the performance requirement comprises a data
2	access bandwidth.

15.

The method of claim 1 wherein the performance requirement comprises a data

2	update time.
1	16. The method of claim 1 wherein the step of selecting the heuristic class
2	determines a plurality of heuristic parameters.
1	17. The method of claim 16 wherein the step of instantiating the data placement
2	heuristic instantiates the data placement heuristic according to the heuristic parameters.
1	18. The method of claim 17 wherein the step of instantiating the data placement
2	heuristic sets other heuristic parameters to defaults.
1	19. The method of claim 1 wherein the replication cost comprises data storage
2	cost.
1	20. The method of claim 1 wherein the replication cost comprises a replica
2	creation cost.
1	21. The method of claim 20 wherein the replication creation cost comprises a
2	network bandwidth cost for transferring replicas and replica changes.
1	22. The method of claim 20 wherein the replica creation cost comprises a system
2	load cost for running the data placement heuristic.
1 .	23. A method of determining data placement for a distributed storage system
2	comprising the steps of:
3	selecting a heuristic class which meets a performance requirement and
4	which provides a replication cost that is within an allowable limit of a
5	minimum replication cost;
6	instantiating a data placement heuristic selected from a range of data
7	placement heuristics according to the heuristic class; and
8	evaluating a placement of data objects onto nodes of the distributed
9	storage system made according to the data placement heuristic.

1	24. The method of claim 23 wherein the step of instantiating the data placement
2	heuristic comprises simulating instantiation of the data placement heuristic.
1	25. The method of claim 23 wherein the step of instantiating the data placement
2	heuristic comprises instantiating the data placement heuristic on an actual
3	distributed storage system operating with an actual workload.
1	26. A method of determining data placement for a distributed storage system
2	comprising the steps of:
3	selecting a heuristic class which meets a performance requirement and
4	which provides a replication cost that is within an allowable limit of a
5	minimum replication cost;
6	instantiating a data placement heuristic selected from a range of data
7	placement heuristics according to the heuristic class;
8	evaluating a placement of data objects onto nodes of the distributed
9	storage system made according to the data placement heuristic; and
10	iteratively performing the steps of selecting the heuristic class,
11	instantiating the data placement heuristic, and evaluating the placement o
12	the data objects.
1	27. The method of claim 26 wherein second and subsequent performance of the
2	steps of selecting the heuristic class, instantiating the data placement heuristic, and
3	evaluating the placement of the data objects seeks to improve the data placement
4	heuristic.
1	28. The method of claim 26 wherein second and subsequent performance of the
2	steps of selecting the heuristic class, instantiating the data placement heuristic, as
3	evaluating the placement of the data objects seeks to modify the data placement
4	heuristic to account for a changing workload.
1	29. A computer readable memory comprising computer code for implementing a
2	method of determining data placement for a distributed storage system, the
3	method of determining the data placement comprising the steps of:
4	selecting a heuristic class which meets a performance requirement an

2	which provides a replication cost that is within an allowable inflit of a
6	minimum replication cost; and
7	instantiating a data placement heuristic selected from a range of data
8	placement heuristics according to the heuristic class.
1	30. A computer readable memory comprising computer code for implementing a
2	method of determining data placement for a distributed storage system, the
3	method of determining the data placement comprising the steps of:
4	selecting a heuristic class which meets a performance requirement and
5	which provides a replication cost that is within an allowable limit of a
6	minimum replication cost;
7	instantiating a data placement heuristic selected from a range of data
8	placement heuristics according to the heuristic class; and
9	evaluating a placement of data objects onto nodes of the distributed
10	storage system made according to the data placement heuristic.
1	31. A computer readable memory comprising computer code for implementing a
2	method of determining data placement for a distributed storage system, the
3	method of determining the data placement comprising the steps of:
4	selecting a heuristic class which meets a performance requirement and
5	which provides a replication cost that is within an allowable limit of a
6	minimum replication cost;
7	instantiating a data placement heuristic selected from a range of data
8	placement heuristics according to the heuristic class;
9	evaluating a placement of data objects onto nodes of the distributed
10	storage system made according to the data placement heuristic; and
1	iteratively performing the steps of selecting the heuristic class,
12	instantiating the data placement heuristic, and evaluating the placement of
13	the data objects.
IJ	the data objects.