```
import numpy as np
import pandas as pd
a=pd.read_csv("/content/train.csv")
print(a)
print(a.head())
print(a.columns)
target_variable = 'price_range'
features = a.columns[a.columns != target variable]
print('Target Variable:', target_variable)
print('Features:',features)
     2
              0.9
                          145
                                       5
                                                     1263
                                                                1716
                                                                       2603
                                                                                11
                                                                                        2
                                          . . .
     3
              0.8
                          131
                                       6
                                                     1216
                                                                1786
                                                                       2769
                                                                                16
                                                                                        8
                                          . . .
     4
                                       2
                                                                                        2
              0.6
                          141
                                                     1208
                                                                1212
                                                                       1411
                                                                                 8
                                          . . .
              . . .
                           . . .
                                                       . . .
                                                                 . . .
                                                                         . . .
                                                                               . . .
                                     . . .
     1995
              0.8
                          106
                                       6
                                                     1222
                                                                1890
                                                                        668
                                                                                13
                                                                                        4
     1996
              0.2
                          187
                                       4
                                                       915
                                                                1965
                                                                       2032
                                                                                11
                                                                                       10
     1997
              0.7
                          108
                                       8
                                                       868
                                                                1632
                                                                       3057
                                                                                 9
                                                                                        1
                                       5
     1998
              0.1
                          145
                                                       336
                                                                  670
                                                                        869
                                                                                18
                                                                                       10
              0.9
     1999
                          168
                                       6
                                                      483
                                                                  754
                                                                       3919
                                                                                19
                                                                                        4
            talk time
                                  touch_screen
                                                  wifi price range
                       three_g
     0
                    19
                               0
                                               0
                                                     1
                                                                    1
     1
                     7
                                                                    2
                               1
                                               1
                                                     0
     2
                     9
                               1
                                               1
                                                     0
                                                                    2
     3
                               1
                                               0
                                                                    2
                    11
                                                     0
     4
                    15
                               1
                                               1
                                                     0
                                                                    1
                   . . .
     1995
                    19
                               1
                                               1
                                                     0
                                                                    0
                                                                    2
     1996
                    16
                               1
                                               1
                                                     1
                     5
                               1
                                                                    3
     1997
                                               1
                                                     0
     1998
                    19
                               1
                                                     1
                                                                    0
                                               1
                     2
                               1
                                                                    3
     1999
                                               1
                                                     1
     [2000 rows x 21 columns]
         battery_power blue clock_speed dual_sim fc four_g int_memory
                                                                                     m_dep
```

2.2

0.6

```
1
                                  0
                                               2
     4
              1
                                                1
     [5 rows x 21 columns]
     Index(['battery_power', 'blue', 'clock_speed', 'dual_sim', 'fc', 'four_g',
            'int_memory', 'm_dep', 'mobile_wt', 'n_cores', 'pc', 'px_height',
            'px_width', 'ram', 'sc_h', 'sc_w', 'talk_time', 'three_g',
            'touch_screen', 'wifi', 'price_range'],
           dtype='object')
     Target Variable: price range
     Features: Index(['battery_power', 'blue', 'clock_speed', 'dual_sim', 'fc', 'four_g',
            'int_memory', 'm_dep', 'mobile_wt', 'n_cores', 'pc', 'px_height',
            'px_width', 'ram', 'sc_h', 'sc_w', 'talk_time', 'three_g',
            'touch_screen', 'wifi'],
           dtype='object')
y=a['price_range']
     0
             1
     1
             2
     2
             2
     3
             2
     4
             1
     1995
             2
     1996
     1997
             3
     1998
             0
     1999
     Name: price_range, Length: 2000, dtype: int64
X=a.drop('price_range',axis=1)
Χ
```

	battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_
0	842	0	2.2	0	1	0	7	0.6	1
1	1021	1	0.5	1	0	1	53	0.7	1
2	563	1	0.5	1	2	1	41	0.9	1
3	615	1	2.5	0	0	0	10	0.8	1
4	1821	1	1.2	0	13	1	44	0.6	1
1995	794	1	0.5	1	0	1	2	8.0	1
1996	1965	1	2.6	1	0	0	39	0.2	1
1997	1911	0	0.9	1	1	1	36	0.7	1
1998	1512	0	0.9	0	4	1	46	0.1	1
1999	510	1	2.0	1	5	1	45	0.9	1
2000 rows × 20 columns									

Next steps: View recommended plots

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3)
```

```
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
print("\nScaled data:")
print(pd.DataFrame(X_train_scaled, columns=X_train.columns).head())
```

Scaled data:

	battery_p	ower blue	clock_spe	ed du	al_sim	f	c four_g	int_memory	\
0	0.57	7540 0.0	0.	04	0.0	0.00000	00 1.0	0.467742	
1	0.22	7273 1.0	0.	00	1.0	0.42105	0.0	0.596774	
2	0.31	5508 0.0	0.	00	1.0	0.26315	0.0	0.822581	
3	0.01	7380 0.0	0.	08	1.0	0.21052	26 0.0	0.822581	
4	0.07	7540 1.0	0.	72	0.0	0.00000	0.0	0.483871	
	m_dep	mobile_wt	n_cores	рс	px_hei	ght px_	_width	ram \	
0	0.222222	0.375000	0.428571	0.00	0.149	490 0.3	313752 0.	278610	
1	0.000000	0.991667	0.714286	0.65	0.278	571 0.2	18959 0.	717647	
2	0.444444	0.966667	0.571429	0.35	0.053	571 0.6	58745 0.	428610	
3	0.888889	0.400000	0.000000	0.55	0.034	184 0.9	50601 0.	279144	
4	0.444444	0.991667	0.857143	1.00	0.391	837 0.2	49666 0.	522727	

```
sc_h sc_w talk_time three_g touch_screen wifi
    0 0.642857 0.388889 0.611111 1.0
                                                  0.0 1.0
    1 0.428571 0.277778 0.777778
                                     0.0
                                                 1.0 1.0
    2 0.571429 0.555556 0.777778
                                    0.0
                                                 1.0 0.0
    3 0.571429 0.388889 0.611111
                                                  0.0 0.0
                                    0.0
    4 0.928571 0.722222 0.277778
                                    0.0
                                                  0.0 0.0
from sklearn.linear model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
model = LogisticRegression()
model.fit(X train, y train)
```

y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)

Accuracy: 0.605

/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_logistic.py:458: Converge STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
 https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options:

https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(

print("\nClassification Report:")
print(classification report(y test, y pred))

Classification Report:

	precision	recall	f1-score	support
0	0.84	0.73	0.78	166
1	0.49	0.56	0.52	136
2	0.40	0.38	0.39	141
3	0.66	0.71	0.69	157
accuracy			0.60	600
macro avg	0.60	0.60	0.60	600
weighted avg	0.61	0.60	0.61	600

https://colab.research.google.com/drive/1IfEBNL9dN6LLP0VcFDQIjM2d6FKo1oaF#scrollTo=PyzZ5o-8M9cy&printMode=true

print("\nConfusion Matrix:")
print(confusion_matrix(y_test, y_pred))

Confusion Matrix: [[122 40 4 0]

[23 76 32 5]

[0 36 53 52] [0 2 43 112]]