Archisman Panigrahi

Graduate Student (Ph.D. Candidate) · Physics

Massachusetts Institute of Technology, Cambridge, MA, USA

🛘 +1 (857) 706-9484 | 💆 archi137@mit.edu | 🌴 archisman-panigrahi.github.io | 📂 Google Scholar

Education

Ph.D. in Physics

Cambridge, MA, USA

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 2022 - Ongoing

• C.G.P.A - 5.0/5.0

Specialization: Condensed Matter Theory

Supervisor: Prof. Leonid Levitov

Master of Science in Physics

Bangalore, India

INDIAN INSTITUTE OF SCIENCE

Aug. 2021 - Jun. 2022

• C.G.P.A - 9.8/10.0

Bachelor of Science (Research) in Physics

Bangalore, India

Indian Institute of Science

Aug. 2017 - Jun. 2021

• C.G.P.A - 9.8/10.0

Research Articles

- **A. Panigrahi**, L. Levitov; *Signatures of electronic ordering in transport in graphene flat bands* Phys. Rev. B **110**, 035122 (2024)
- M. Masseroni, M. Gull, **A. Panigrahi**, N. Jacobsen, F. Fischer, C. Tong, J. D. Gerber, M. Niese, T. Taniguchi, K. Watanabe, L. Levitov, T. Ihn, K. Ensslin, H. Duprez; *Spin-orbit proximity in MoS*₂/bilayer graphene heterostructures arxiv:2403.17120 (Under review in Nature Communications)
- A. Panigrahi, S. Mukerjee; Energy magnetization and transport in systems with a non-zero Berry curvature in a magnetic field SciPost Phys. Core 6, 052 (2023)
- A. Panigrahi, V. Juričić, B. Roy; *Projected Topological Branes* Commun Phys **5**, 230 (2022)
- A. Panigrahi, R. Moessner, B. Roy; Non-Hermitian dislocation modes: Stability and melting across exceptional points PRB 106, L041302 (2022)

Research Experience

Transport in ordered phases in graphene

MIT, Cambridge, MA, USA

WITH PROF. LEONID LEVITOV

2023 — Present

- · Predicted that momentum-polarized nematic phases in biased bilayer graphene can lead to resistance decreasing with rising temperature
- Demonstrated hysteresis-like switching behavior under the action of a strong electric field

Many Body Localization (MBL) and thermalization of interacting quantum spin chain

IISc, Bangalore, India

(Master's thesis)

WITH PROF. SUBROTO MUKERJEE

September 2021 - April 2022

- Studied how the Out-of-Time Ordered Correlator (OTOC) behaves for MBL and thermal systems
- Studied behavior of OTOC in MBL systems with random and incommensurate potential, with and without interaction

Topological phases in projected lower dimensional branes

MPIPKS, Dresden, Germany

(remotely)

JOINTLY WITH PROF. BITAN ROY AND PROF. VLADIMIR JURIČIĆ

June 2021 - September 2021

- · Numerically studied how topological properties of parent systems emerge in projected crystals and Fibonacci quasicrystals
- · Verified the existence of dislocation modes, Weyl points, and Landau levels in projected crystals and quasicrystals
- Proposed how this method can be utilized to study higher dimensional (>3D) topological phases within 3D systems

Berry curvature effects on thermoelectric transport

IISc, Bangalore, India

(Bachelor's thesis)

WITH PROF. SUBROTO MUKERJEE

October 2020 - June 2021

- · Studied how Berry curvature can alter thermoelectric transport, leading to anomalous Hall and anomalous Nernst effects
- Studied the Boltzmann transport formalism
- · Studied how the Onsager relation can be demonstrated from microscopic theories for a system with a non-trivial Berry curvature
- · Found a condition on the energy magnetization such that the Einstein relation holds for the transport energy current in these systems
- Showcased a physical interpretation of this condition, and obtained a closed expression for energy magnetization
- Analytically solved the Boltzmann transport equation (including Berry curvature effects) for two-dimensional systems

Non-Hermitian Topological Insulators and Dislocations

MPIPKS, Dresden, Germany (remotely)

WITH PROF. BITAN ROY May 2020 - September 2020

- · Studied and numerically implemented SSH Model, Chern Insulators, Quantum Spin Hall Insulators
- Studied the effects of dislocation in Hermitian and Non-Hermitian Chern Insulators
- · Obtained phase diagrams for regimes where topological states get pinned at dislocation centers
- · Proposed how dislocations can be used to probe topological phases in non-Hermitian systems, where the non-Hermitian skin effect masks the traditional bulk-boundary correspondence

Research Interests

Broadly interested in theoretical Condensed Matter Physics

- · Electronic transport in two-dimensional systems and the effects of Berry curvature in transport
- Computational methods in quantum condensed matter physics
- Topological phases of matter and Quantum Phase transitions
- Thermalization of quantum systems and Many body localization

Skills____

Programming skills Julia, MATLAB/Octave, Mathematica, Python

Advanced Physics Courses Strongly Correlated Systems, Advanced Statistical Physics, Quantum Field Theory I, General Relativity

Languages Fluent in English, Bengali, Hindi

Talks___

Transport Signatures of Electronic Ordering in Graphene Flat Bands

Indian Institute of Science,

Bangalore, India

CLICK HERE TO DOWNLOAD THE PRESENTATION

January 2024

Topological phases in quasicrystals: A general principle of construction

CLICK HERE TO DOWNLOAD THE PRESENTATION

APS March Meeting (virtually)

March 2022

Dislocation as a bulk probe of non-Hermitian topology

(remotely)

MPIPKS, Dresden, Germany

July 6, 2021

Teaching Experience

CLICK HERE TO DOWNLOAD THE PRESENTATION

Physics II: Electricity and Magnetism

MIT

TEACHING ASSISTANT

Feb - May 2024

• Taught students one-on-one in office hours and graded exams

Academic Achievements

2023	Qualified among the top 16 participants in MIT Integration Bee	MIT
2022	1st Rank in India in CSIR-NET (JRF) in Physics (score 186/200)	India
2022	1st Rank in India in Graduate Aptitute Test in Engineering (G.A.T.E.) in Physics	India
2017-22	C.G.P.A 9.8/10 in B.S. (Research) and M.S., highest GPA in batch	IISc, Bangalore
2017	1st rank (99.2 %) in Board in Higher Secondary Examination, among about 0.7 million candidates	West Bengal, India
2015	2nd rank (97.57 %) in Board in Secondary Examination, among about 1 million candidates	West Bengal, India

References

- Prof. Leonid Levitov, Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Email Address - levitov@mit.edu
- Prof. Subroto Mukerjee, Dept. of Physics, Indian Institute of Science, Bangalore, India. Email Address - smukerjee@iisc.ac.in
- Prof. Bitan Roy, Dept. of Physics, Lehigh University, Bethlehem, PA 18015, USA. Email Address - bitan.roy@lehigh.edu