

ملخص:

تتناول هذه الورقة البحثية دراسة تأثير رأس المال البشري (المقاس بعده المسجلين في التعليم الثانوي) ورأس المال المادي (المقاس بتراكم رأس المال الثابت ABFF ) واليد العاملة (مقاس بمستوى التشغيل) على النمو الاقتصادي (المقاس بمعدل نمو الناتج المحلي الإجمالي) وفق نموذج Solow المطوري منهجهة Mankiw,Romer,Weil .

النماذج القياسية التي أجريت على السلسل الزمنية للمتغيرات الحقيقة التالية: رأس المال البشري (المقاس بمعدل نمو المسجلين في الطور الثانوي)، ورأس المال المادي (المقاس بمعدل نمو تراكم رأس المال الثابت ABFF )، واليد العاملة (مقاس بمعدل نمو عدد المشتغلين) أعطت النتائج التالية :

- وجود أثر موجب و قوي معنويًا لمعدل النمو الاقتصادي المتأخر بستين على معدل النمو الاقتصادي الحالي، ويعني هذا أن زيادة معدل النمو الاقتصادي المتأخر بستين بنسبة 1% سوف تؤدي إلى زيادة معدل النمو الاقتصادي بحوالي 0.36 %.

- وجود أثر موجب و قوي معنويًا لمعدل نمو رأس المال المادي المتأخر بثلاث سنوات على معدل نمو الـ PIB ، ويعني هذا أن زيادة معدل نمو رأس المال المادي المتأخر بثلاث سنوات بنسبة 1% سوف تؤدي إلى زيادة معدل النمو الاقتصادي بحوالي 0.17 %.

- وجود أثر سالب و معنوي قوي لمعدل نمو رأس المال البشري الحالي على معدل نمو الـ PIB (النمو الاقتصادي) في الأجل القصير فقد بلغت القيمة المقدرة للمرونة الجزئية للنمو الاقتصادي بالنسبة لنمو رأس المال البشري حوالي -0.33 ، ويعني هذا أن الزيادة في نمو رأس المال البشري الحالي بنسبة 1 % سوف تؤدي إلى انخفاض معدل النمو الاقتصادي ب 0.33 % في الأجل القصير .

- وجود أثر موجب و قوي معنويًا لمعدل نمو رأس المال البشري للسنة الماضية على معدل نمو الـ PIB ، ويعني هذا أن زيادة معدل نمو رأس المال البشري للسنة الماضية بنسبة 1% سوف تؤدي إلى زيادة معدل النمو الاقتصادي بحوالي 0.66 %.

- وجود أثر موجب وضعيف معنويًا لمعدل نمو رأس المال البشري المتأخر بستين على معدل نمو الـ PIB ، ويعني هذا أن زيادة معدل نمو رأس المال البشري المتأخر بستين بنسبة 1% سوف تؤدي إلى زيادة معدل النمو الاقتصادي بحوالي 0.33 %.

- وجود أثر سالب و معنوي قوي لمعدل نمو التشغيل الحالي على معدل نمو الـ PIB (النمو الاقتصادي) في الأجل القصير فقد بلغت القيمة المقدرة للمرونة الجزئية للنمو الاقتصادي بالنسبة لنمو التشغيل حوالي -0.38 ، ويعني هذا أن الزيادة في نمو التشغيل الحالي بنسبة 1 % سوف تؤدي إلى انخفاض معدل النمو الاقتصادي ب 0.38 % في الأجل القصير .

- وجود أثر سالب و ضعيف معنويًا لمعدل نمو التشغيل المتأخر بثلاث سنوات على معدل نمو الـ PIB ويعني هذا أن زيادة معدل نمو التشغيل المتأخر بثلاث سنوات بنسبة 1% سوف تؤدي إلى انخفاض معدل النمو الاقتصادي بحوالي 0.21 %.

1 تمهيد:

في مقال يحمل عنوان "A Contribution to the Empirics of Economic Growth " و الذي نشر سنة 1992 في "The quarterly journal of Economics" إقتراح كل من Mankiw,Romer,Weil<sup>1</sup> إدخال رأس المال كمتغير مفسرة إضافية في نموذج Solow المطور<sup>2</sup>.

<sup>1</sup>أستاذ محاضر (أ) جامعة حسيبة بن بو علي الشلف nabil.henni@laposte.net

<sup>2</sup>أستاذ مساعد (ب) جامعة حسيبة بن بو علي الشلف Benmeriemmostafa@gmail.com

## 2 عرض النموذج

يعتمد نموذج (MRW) المقدم على فرضية أن رأسمال البشري يتراكم بنفس تقنية تراكم رأسمال المادي مما يسمح بالتعبير عنه بوحدات مادية و ليس بوحدات زمنية.

دالة الإنتاج المستخدمة هي :  $Y = K^\alpha H^\beta (AL)^\varphi$  حيث :  $\alpha$  ،  $\beta$  و  $\varphi$  ثوابت موجبة تماماً و يعبر  $AL$  عن كمية العمل الفعال. و بوضع  $\gamma = g_A$  ، يكون معدل نمو الناتج الفردي :

$$g_y = \alpha g_K + \beta g_H + (\varphi - 1) g_L + \varphi \cdot \gamma$$

و هي العلاقة المقترنة للتقدير و التي تصاغ كما يلي :

$$g_{yt} = \alpha_0 + \alpha_1 g_{Kt} + \alpha_2 g_{Ht} + \alpha_3 g_{Lt} + \varepsilon_t$$

حيث :  $\alpha_0$  تقدير لـ  $\varphi \cdot \gamma$  ،  $\alpha_1$  تقدير لـ  $\alpha$  ،  $\alpha_2$  تقدير لـ  $\beta$  و  $\alpha_3$  تقدير لـ  $1 - \varphi$ .

## 3 تقدير النموذج:

نموذج التقدير هو :

$$D \log Y_t = \alpha_0 + \alpha_1 \cdot D \log K_t + \alpha_2 \cdot D \log H_t + \alpha_3 \cdot D \log L_t + \varepsilon_t$$

### 3-1 دراسة استقرارية متغيرات الدراسة:

#### 3-1-1 اختبار استقرارية السلسلة :

تكون السلسلة مستقرة إذا تبدلت حول وسط حسابي ثابت، مع تباين ليس له علاقة بالزمن<sup>3</sup>، ولاختبار استقرارية السلسلة  $\log Y_t$  نستعمل اختبار ديكى - فولر المطور (ADF): يمكن اختصار نتائج هذا الاختبار في الجدول التالي:

الجدول رقم 1: اختبار ADF لاستقرارية السلسلة لـ  $\log Y_t$

<sup>1</sup> N. Gregory Mankiw , David. Romer & David. N. Weil : *A contribution on the empirics economic growth*. The Quarterly Journal of Economics , Vol 107 , N°3. May , 1992.

<sup>2</sup> إرجع إلى Philippe Darreau , **Croissance et politique économique** , 1<sup>er</sup> édition , édition De Boeck Université , Bruxelles, Belgique , 2003 , p32-33 .

من أجل عرض نموذج Solow و الوقوف على فرضياته

<sup>3</sup> قد نبه كل من 'نيلسن' و 'بلوسير' (Nelson & Plosser 1982) كيف أن الجذر الأحادي موجود في أغلبية السلسلات الزمنية في الاقتصاد الكلي.

| النموذج الاول           |                             | النموذج الثاني         |                             | النموذج الثالث         |                             | نوع النموذج                                                            |
|-------------------------|-----------------------------|------------------------|-----------------------------|------------------------|-----------------------------|------------------------------------------------------------------------|
| القيمة<br>%05<br>الحرجة | $ADF$<br>$t_{\hat{\phi}_j}$ | القيمة<br>%5<br>الحرجة | $ADF$<br>$t_{\hat{\phi}_j}$ | القيمة<br>الحرجة<br>%5 | $ADF$<br>$t_{\hat{\phi}_j}$ |                                                                        |
| -1.96                   | 0.10                        | -3.04                  | -2.73<br>(الثابت غ<br>(م)   | -3.69                  | -1.94<br>(الاتجاه غ<br>(م)  | اختبار $ADF$ للسلسلة<br>الأصلية $(\log Y_t)$                           |
| -1.96                   | -1.29                       | -3.08                  | -1.19<br>(الثابت غ<br>(م)   | -3.71                  | -0.62<br>(الاتجاه غ<br>(م)  | اختبار $ADF$ للسلسلة المفرقة<br>من الدرجة الأولى $(D \log Y_t)$        |
| -1.96                   | 0.01                        | -3.08                  | 0.27<br>(الثابت غ<br>(م)    | -3.71                  | -0.95<br>(الاتجاه غ<br>(م)  | اختبار $ADF$ للسلسلة المفرقة<br>من الدرجة<br>الثانية $(DD \log Y_t)$   |
| -1.96                   | -4.99                       | -3.04                  | -4.47<br>(الثابت غ<br>(م)   | -3.71                  | -5.32<br>(الاتجاه غ<br>(م)  | اختبار $ADF$ للسلسلة المفرقة<br>من الدرجة الثا<br>لثة $(DDD \log Y_t)$ |

المصدر : من إعداد الباحثان بالإعتماد على برنامج Eviews 7.0

من خلال الجدول نلاحظ أنه عند الفروق الثالثة للسلسلة  $\log Y_t$  تكون الإحصائية المحسوبة  $\tau$  أكبر (بالقيمة المطلقة) من الإحصائية المجدولة  $\tau_{tabule}$  في النماذج الثلاثة عند مستوى معنوية 5 % ، و منه نقبل الفرضية  $(H_0: \phi_1 = 1)$  أو  $(H_0: \lambda = 0)$  ، وهذا يعني عدم وجود جذر وحدوي في السلسلة ، وكذلك عدم معنوية الثابت و معامل الاتجاه ، ومنه فان السلسلة  $DDD \log Y_t$  مستقرة من نوع DS بدون بمشتق (Sant dérivé).

## 1-3-2 اختبار استقرارية السلسلة : $\log H_t$

باتباع نفس الخطوات المطبقة على السلسلة  $\log Y_t$  ، نحصل على الجدول التالي:

### الجدول رقم 2: اختبار $ADF$ لاستقرارية السلسلة $\log H_t$

| النموذج الاول |       | النموذج الثاني |       | النموذج الثالث |       | نوع النموذج |
|---------------|-------|----------------|-------|----------------|-------|-------------|
| القيمة        | $ADF$ | القيمة الحرجة  | $ADF$ | القيمة         | $ADF$ |             |
|               |       |                |       |                |       |             |

| الدرجة<br>%5 | $t_{\hat{\phi}_j}$ | %5    | $t_{\hat{\phi}_j}$           | الدرجة<br>%5                 | $t_{\hat{\phi}_j}$           |                                                            |
|--------------|--------------------|-------|------------------------------|------------------------------|------------------------------|------------------------------------------------------------|
| -1.96        | 1.82               | -3.01 | -1.27<br>(الثابت<br>غ<br>م)  | -3.64<br>(الاتجاه<br>غ<br>م) | -1.79<br>(الاتجاه<br>غ<br>م) | اختبار $ADF$ للسلسلة $\log H_t$ الأصلية                    |
| -1.95        | - 4.69             | -3.02 | - 5.29<br>(الثابت<br>غ<br>م) | -3.67<br>(الاتجاه<br>غ<br>م) | - 4.9<br>(الاتجاه<br>غ<br>م) | اختبار $ADF$ للسلسلة المفرقة من الدرجة الأولى $D \log H_t$ |

المصدر : من إعداد الباحثان بالإعتماد على برنامج Eviews 7.0

من خلال الجدول نلاحظ أنه عند الفروق الأولى للسلسلة  $\log H_t$  تكون الإحصائية المحسوبة  $\tau$  أكبر (بالقيمة المطلقة) من الإحصائية المجدولة  $\tau_{tabule}$  في النماذج الثلاثة عند مستوى معنوية 5 % ، و منه نقبل الفرضية  $(H_0 : \lambda = 0)$  أو  $(H_0 : \phi_1 = 1)$  ، وهذا يعني عدم وجود جذر وحدوي في السلسلة ، وكذلك عدم معنوية الثابت و معامل الاتجاه، ومنه فان السلسلة  $D \log H_t$  مستقرة من نوع DS بدون بمشتق (Sant dérivé).

### 3-1-3 اختبار استقرارية السلسلة $\log K_t$

بإتباع نفس الخطوات السابقة ، نحصل على الجدول التالي:

الجدول رقم 3: اختبار  $ADF$  لاستقرارية السلسلة  $\log K_t$

| القيمة<br>الدرجة<br>%5 | النموذج الاول |                    | النموذج الثاني              |       | النموذج الثالث          |                        | نوع النموذج                             |
|------------------------|---------------|--------------------|-----------------------------|-------|-------------------------|------------------------|-----------------------------------------|
|                        | $ADF$         | $t_{\hat{\phi}_j}$ | القيمة الحرجة<br>%5         | $ADF$ | $t_{\hat{\phi}_j}$      | القيمة<br>الحرجة<br>%5 |                                         |
| -1.96                  | 1.51          | -3.02              | -1.09<br>(الثابت<br>غ<br>م) | -3.65 | -1.18<br>(الاتجاه<br>م) |                        | اختبار $ADF$ للسلسلة $\log K_t$ الأصلية |

المصدر : من إعداد الباحثان بالإعتماد على برنامج Eviews 7.0

من خلال الجدول نلاحظ أنه عند السلسلة الأصلية  $\log K_t$  تكون الإحصائية المحسوبة  $\tau$  أصغر (بالقيمة المطلقة) من الإحصائية المجدولة  $\tau_{tabule}$  في النماذج الثلاثة عند مستوى معنوية 5 % ، و منه لا نقبل الفرضية  $(H_0 : \lambda = 0)$  أو  $(H_0 : \phi_1 = 1)$  ، وهذا يعني وجود جذر وحدوي في السلسلة ، ونجد معامل الاتجاه العام معنوي عند مستوى معنوية 5 % ومنه فان السلسلة  $\log K_t$  غير مستقرة من نوع TS.

### 3-1-4 اختبار استقرارية السلسلة $\log L_t$

بإتباع نفس الخطوات المطبقة على السلسلة  $\log Y_t$  ، نحصل على الجدول التالي :

#### الجدول رقم 4: اختبار ADF لاستقرارية السلسلة $\log L_t$

| النموذج الاول     |                        | النموذج الثاني    |                            | النموذج الثالث    |                             | نوع النموذج                                                |
|-------------------|------------------------|-------------------|----------------------------|-------------------|-----------------------------|------------------------------------------------------------|
| القيمة الحرجية %5 | ADF $t_{\hat{\phi}_j}$ | القيمة الحرجية %5 | ADF $t_{\hat{\phi}_j}$     | القيمة الحرجية %5 | ADF $t_{\hat{\phi}_j}$      |                                                            |
| -1.96             | 4.52                   | -3.01             | -0.94<br>(الثابت غ)<br>(م) | -3.64             | -1.79<br>(الاتجاه غ)<br>(م) | اختبار ADF للسلسلة الأصلية $(\log L_t)$                    |
| -1.95             | -3.83                  | -3.01             | -6.96<br>(الثابت غ)<br>(م) | -3.64             | -7.18<br>(الاتجاه غ)<br>(م) | اختبار ADF للسلسلة المفرقة من الدرجة الأولى $(D \log H_t)$ |

المصدر : من إعداد الباحثان بالإعتماد على برنامج Eviews 7.0

من خلال الجدول نلاحظ أنه عند الفروق الأولى للسلسلة  $\log L_t$  الإحصائية المحسوبة  $\tau$  أكبر (بالقيمة المطلقة) من الإحصائية المجدولة  $\tau_{tabulée}$  في النماذج الثلاثة عند مستوى معنوية 5 % ، و منه نقبل الفرضية  $(H_0 : \lambda = 0)$  أو  $(H_0 : \phi_1 = 1)$ ، وهذا يعني عدم وجود جذر وحدوي في السلسلة، وكذلك عدم معنوية الثابت و معامل الاتجاه، ومنه فان السلسلة  $D \log L_t$  مستقرة من نوع DS بدون بمشتق(Sant dérivé).

#### 3-2 اختبار العلاقة السببية لـ Granger :

يستخدم اختبار Granger للتأكد من مدى وجود علاقة سببية بين متغيرين كمعدل نمو رأس المال البشري و معدل نمو PIB ، وذلك في حالة وجود بيانات سلاسل زمنية، ومن المشاكل التي توجد في هذه الحالة أن بيانات السلاسل الزمنية لمتغير ما تكون مترتبة، أي يوجد ارتباط ذاتي بين قيم المتغير الواحد عبر الزمن، ولاستبعاد أثر هذا الارتباط الذاتي إن وجد، يتم إدراج قيم نفس المتغير التابع لعدد من الفجوات الزمنية كمتغيرات تفسيرية في علاقة السببية المراد قياسها يضاف إلى ذلك قيم المتغير التفسيري الآخر لعدد من الفجوات الزمنية كمتغيرات تفسيرية أيضاً، بالنسبة لحالتنا هذه تحصلنا باستعمال برنامج Eviews على النتائج التالية :

#### الجدول رقم 5: نتائج اختبار 'غرانجر' .

| Pairwise Granger Causality Tests |     |            |       |
|----------------------------------|-----|------------|-------|
| Date: 11/12/11 Time: 11:55       |     |            |       |
| Sample: 1987 2009                |     |            |       |
| Lags: 2                          |     |            |       |
| Null Hypothesis:                 | Obs | F-Statisti | Prob. |
|                                  |     |            |       |

|                                | c     |       |
|--------------------------------|-------|-------|
| DLOGH does not Granger Cause   | 18    | 12.84 |
| DDDLOGY                        | 72    | 8     |
| DDDLOGY does not Granger Cause | 0.412 | 0.670 |
| DLOGH                          | 06    | 6     |

المصدر : من إعداد الباحثان بالإعتماد على برنامج Eviews 7.0

لدينا  $F^* = 12.84$  وهي أكبر من الجدولية عند حد معنوية 5% و كذلك ( $prob: 0.0008 < 0.05$ ) وهذا يعني رفض  $H_0$  ومن جهة أخرى في المعادلة الثانية  $F^* = 0.41$  وهي أصغر من الجدولية عند حد معنوية 5% و كذلك أي عدم رفض  $H_0$  و منه: فان المتغير  $DlogH$  يسبب في المتغير  $Y$  و المتغير  $DDDlogY$  لا يسبب في المتغير  $DlogH$ .

### 3- اختبار التكامل المترافق بين متغيرات الدراسة :

بما نحن في التقدير سوف نعتمد على المتغيرات المستقرة ومنه نستطيع القول أن اختبار إمكانية وجود مسار مشترك بين المتغيرات لا يكون إلا بين المتغيرات المتكاملة من نفس الدرجة والتي تتمو بنفس وتيرة الاتجاه على المدى الطويل، وعليه وحسب المعطيات التي هي لدينا فإنه لا يوجد مجال للتكامل المشترك (المترافق) بين المتغيرات.

### 4- تقييم النموذج الأولي

و عليه فإن معادلة الانحدار سوف تأخذ الشكل التالي:

$$D\log Y_t = \alpha_0 + \alpha_1 \cdot D\log K_t + \alpha_2 \cdot D\log H_t + \alpha_3 \cdot D\log L_t + \varepsilon_t$$

**ملاحظة:** لم يتم التطرق لتقدير العلاقة البسيطة ( $D\log Y_t = \alpha_0 + \alpha_1 \cdot D\log K_t + \alpha_2 \cdot D\log H_t + \alpha_3 \cdot D\log L_t + \varepsilon_t$ )، أين كل معلمات النموذج نجدها لا تختلف معنويًا عن الصفر إضافة إلى وجود مشكل الارتباط الخطى للأخطاء (صغر قيمة DW)، و قيمة معامل التحديد الصغيرة جداً.

الجدول رقم 6: نتائج تقييم النموذج

Dependent Variable: DLOGY  
 Method: Least Squares  
 Date: 11/12/11 Time: 12:49  
 Sample (adjusted): 1991 2009  
 Included observations: 19 after adjustments

| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
|----------|-------------|------------|-------------|-------|
|          |             |            |             |       |

|                    |           |                       |           |        |
|--------------------|-----------|-----------------------|-----------|--------|
| DLOGY(-1)          | 0.273735  | 0.456377              | 0.599800  | 0.5909 |
| DLOGY(-2)          | 0.669562  | 0.646792              | 1.035205  | 0.3767 |
| DLOGY(-3)          | -0.262197 | 0.588656              | -0.445415 | 0.6862 |
| DLOGK              | 0.062832  | 0.140542              | 0.447070  | 0.6851 |
| DLOGK(-1)          | 0.031144  | 0.152685              | 0.203979  | 0.8514 |
| DLOGK(-2)          | -0.000754 | 0.119021              | -0.006336 | 0.9953 |
| DLOGK(-3)          | 0.232121  | 0.178842              | 1.297907  | 0.2851 |
| DLOGH              | -0.350941 | 0.177395              | -1.978304 | 0.1423 |
| DLOGH(-1)          | 0.569472  | 0.294373              | 1.934526  | 0.1485 |
| DLOGH(-2)          | 0.468126  | 0.454954              | 1.028952  | 0.3792 |
| DLOGH(-3)          | -0.097439 | 0.259973              | -0.374804 | 0.7327 |
| DLOGL              | -0.523945 | 0.340335              | -1.539498 | 0.2213 |
| DLOGL(-1)          | -0.115872 | 0.279793              | -0.414134 | 0.7066 |
| DLOGL(-2)          | -0.039090 | 0.242617              | -0.161119 | 0.8822 |
| DLOGL(-3)          | -0.355578 | 0.302093              | -1.177047 | 0.3241 |
| C                  | 0.010749  | 0.013385              | 0.803106  | 0.4807 |
| R-squared          | 0.939657  | Mean dependent var    | 0.007974  |        |
| Adjusted R-squared | 0.637939  | S.D. dependent var    | 0.018420  |        |
| S.E. of regression | 0.011083  | Akaike info criterion | -6.328359 |        |
| Sum squared resid  | 0.000369  | Schwarz criterion     | -5.533041 |        |
| Log likelihood     | 76.11941  | Hannan-Quinn criter.  | -6.193759 |        |
| F-statistic        | 3.114362  | Durbin-Watson stat    | 2.140642  |        |
| Prob(F-statistic)  | 0.189974  |                       |           |        |

المصدر : من إعداد الباحثان بالإعتماد على برنامج *Eviews 7.0*

### ٣-٥ تحديد عدد التأخيرات الأمثل للنموذج :

من أجل تحديد العدد الأمثل للتأخيرات، ونظراً لأهمية هذه المرحلة يقوم بدراسة مختلف الحالات المرشحة للنموذج والمختلفة حسب قيم  $P$ ؛ نختار النموذج الذي يعطي أقل قيمة للمعايير  $AIC$  ،  $SC$  و  $HQ$  كما يظهر في الجدول مع الأخذ بعين الاعتبار مستوى معامل التحديد  $R^2$  ، معنوية المعالم المقدرة ، و إحصائية  $DW$  .

- بعد تفحص النماذج المرشحة السابقة يمكننا اختيار النموذج لعدة اعتبارات :

1. أقل قيمة للمعايير السابقة كما يظهر في الجدول.
2. مستوى أعلى لمعامل التحديد  $R^2$  .
3. معنوية جيدة للمعلم المقدرة .

الجدول رقم 7 : قيم المعايير عند التأخيرات المختلفة :

| <i>Hannan - Quinn</i> | معيار <i>Schwarz</i> | معيار <i>Akaike</i> | عدد التأخيرات <i>k</i> |
|-----------------------|----------------------|---------------------|------------------------|
| -5.31                 | -5.16                | -5.35               | 0                      |
| -5.86                 | -5.55                | -5.95               | 1                      |
| -5.91                 | - 5.43               | - 6.03              | 2                      |

|              |              |              |   |
|--------------|--------------|--------------|---|
| <b>-6.19</b> | <b>-5.53</b> | <b>-6.32</b> | 3 |
| -5.01        | -4.16        | -5.25        | 4 |

المصدر : من إعداد الباحثان بالإعتماد على برنامج *Eviews 7.0*

- نلاحظ أن قيمة  $P$  التي تدلي المعايير السابقة هي :  $P = 3$

### الجدول رقم 8: نتائج تقدير النموذج

Dependent Variable: DLOGY  
Method: Least Squares  
Date: 11/12/11 Time: 12:54  
Sample (adjusted): 1991 2009  
Included observations: 19 after adjustments

| Variable           | Coefficient | Std. Error            | t-Statistic | Prob.  |
|--------------------|-------------|-----------------------|-------------|--------|
| DLOGY(-1)          | 0.308304    | 0.186617              | 1.652068    | 0.1295 |
| DLOGY(-2)          | 0.367501    | 0.185296              | 1.983321    | 0.0555 |
| DLOGK(-3)          | 0.176969    | 0.052082              | 3.397916    | 0.0068 |
| DLOGH              | -0.327923   | 0.076746              | -4.272817   | 0.0016 |
| DLOGH(-1)          | 0.658933    | 0.104360              | 6.314063    | 0.0001 |
| DLOGH(-2)          | 0.329863    | 0.178691              | 1.845998    | 0.0947 |
| DLOGL              | -0.388259   | 0.110184              | -3.523735   | 0.0055 |
| DLOGL(-3)          | -0.211917   | 0.110559              | -1.916779   | 0.0843 |
| C                  | 0.004788    | 0.003645              | 1.313344    | 0.2184 |
| R-squared          | 0.928379    | Mean dependent var    | 0.007974    |        |
| Adjusted R-squared | 0.871083    | S.D. dependent var    | 0.018420    |        |
| S.E. of regression | 0.006614    | Akaike info criterion | -6.893871   |        |
| Sum squared resid  | 0.000437    | Schwarz criterion     | -6.446505   |        |
| Log likelihood     | 74.49177    | Hannan-Quinn criter.  | -6.818159   |        |
| F-statistic        | 16.20309    | Durbin-Watson stat    | 2.110903    |        |
| Prob(F-statistic)  | 0.000088    |                       |             |        |

المصدر : من إعداد الباحثان بالإعتماد على برنامج *Eviews 7.0*

### التعليق :

أعطى حساب معادلة الانحدار بطريقة المربعات الصغرى، على أساس التأخير بثلاث فترات بالنسبة للمتغير المستقلة والتابعة(بالإعتماد على معايير كل من  $AIC, SC, HQ$ ) ، كما أنه عند التقدير تم إتباع طريقة "Tang" (2000)<sup>1</sup> التي تتلخص في إلغاء المتغير المستقل الذي تكون القيمة المطلقة لـ  $t$  الخاصة به أقل من الواحد الصحيح، وذلك بشكل متالي ، وعليه أعطى التقدير الشكل التالي، وقبل اعتماد هذا النموذج لاستخدامه في تقدير الآثار قصيرة وطويلة الأجل ينبغي التأكد من جودة أداء هذا النموذج . ويتم ذلك بإجراء الاختبارات التشخيصية التالية:

1. اختبار مضراعف لاغرانيج لارتباط التسلسلي بين الباقي :  
Breush-[ Multiplier Test of Residual Lagrange: ] .Godfrey (BG)

### الجدول رقم 9: اختبار مضراعف لاغرانيج لارتباط التسلسلي بين الباقي

Breusch-Godfrey Serial Correlation LM Test:

|             |          |              |        |
|-------------|----------|--------------|--------|
| F-statistic | 0.804246 | Prob. F(2,8) | 0.4806 |
|-------------|----------|--------------|--------|

<sup>1</sup> Pesaran M H. Shin Y.and Smith R J ,Bound Testing Approaches to the Analysis of Long Relationships ,Journal of Applied Econometrics,(2001),p20. in the cite :<http://www.econ.cam.ac.uk/faculty/pesaran/pss1.pdf> , Date of consultation :11/11/2011.

|               |          |                     |        |
|---------------|----------|---------------------|--------|
| Obs*R-squared | 3.180659 | Prob. Chi-Square(2) | 0.2039 |
|---------------|----------|---------------------|--------|

Test Equation:  
Dependent Variable: RESID  
Method: Least Squares  
Date: 11/12/11 Time: 21:03  
Sample: 1991 2009  
Included observations: 19  
Presample missing value lagged residuals set to zero.

| Variable           | Coefficient | Std. Error            | t-Statistic | Prob.     |
|--------------------|-------------|-----------------------|-------------|-----------|
| DLOGY(-1)          | 0.061868    | 0.218867              | 0.282676    | 0.7846    |
| DLOGY(-2)          | -0.006087   | 0.204869              | -0.029709   | 0.9770    |
| DLOGK(-3)          | -0.006743   | 0.053425              | -0.126216   | 0.9027    |
| DLOGH              | 0.012428    | 0.081273              | 0.152912    | 0.8823    |
| DLOGH(-1)          | 0.024284    | 0.111379              | 0.218032    | 0.8329    |
| DLOGH(-2)          | -0.085954   | 0.200288              | -0.429155   | 0.6791    |
| DLOGL              | 0.041276    | 0.122898              | 0.335856    | 0.7456    |
| DLOGL(-3)          | 0.005537    | 0.115188              | 0.048072    | 0.9628    |
| C                  | -0.000555   | 0.003773              | -0.147111   | 0.8867    |
| RESID(-1)          | -0.496537   | 0.397188              | -1.250133   | 0.2466    |
| RESID(-2)          | -0.245052   | 0.441886              | -0.554559   | 0.5944    |
| R-squared          | 0.167403    | Mean dependent var    |             | -3.20E-19 |
| Adjusted R-squared | -0.873343   | S.D. dependent var    |             | 0.004929  |
| S.E. of regression | 0.006747    | Akaike info criterion |             | -6.866550 |
| Sum squared resid  | 0.000364    | Schwarz criterion     |             | -6.319770 |
| Log likelihood     | 76.23223    | Hannan-Quinn criter.  |             | -6.774013 |
| F-statistic        | 0.160849    | Durbin-Watson stat    |             | 2.027835  |
| Prob(F-statistic)  | 0.995298    |                       |             |           |

المصدر : من إعداد الباحثان بالإعتماد على برنامج Eviews 7.0

## 2. اختبار الانحدار الذاتي المشروط بعدم ثبات التباين : (ARCH) (Autoregressive Conditional Heteroscedasticity)

الجدول رقم 10 : اختبار الانحدار الذاتي المشروط بعدم ثبات التباين

Heteroskedasticity Test: ARCH

|               |          |                     |        |
|---------------|----------|---------------------|--------|
| F-statistic   | 0.596956 | Prob. F(1,16)       | 0.4510 |
| Obs*R-squared | 0.647420 | Prob. Chi-Square(1) | 0.4210 |

Test Equation:  
Dependent Variable: RESID^2  
Method: Least Squares  
Date: 11/12/11 Time: 21:05  
Sample (adjusted): 1992 2009  
Included observations: 18 after adjustments

| Variable           | Coefficient | Std. Error            | t-Statistic | Prob.     |
|--------------------|-------------|-----------------------|-------------|-----------|
| C                  | 2.66E-05    | 9.76E-06              | 2.722006    | 0.0151    |
| RESID^2(-1)        | -0.189167   | 0.244836              | -0.772629   | 0.4510    |
| R-squared          | 0.035968    | Mean dependent var    |             | 2.21E-05  |
| Adjusted R-squared | -0.024284   | S.D. dependent var    |             | 3.28E-05  |
| S.E. of regression | 3.32E-05    | Akaike info criterion |             | -17.68393 |
| Sum squared resid  | 1.76E-08    | Schwarz criterion     |             | -17.58500 |
| Log likelihood     | 161.1553    | Hannan-Quinn criter.  |             | -17.67029 |
| F-statistic        | 0.596956    | Durbin-Watson stat    |             | 2.096883  |
| Prob(F-statistic)  | 0.451005    |                       |             |           |

المصدر : من إعداد الباحثان بالإعتماد على برنامج Eviews 7.0

### 3. اختبار التوزيع الطبيعي للباقي : اختبار 'جاك- بيرا' "Jarque-Bera"

الجدول رقم 11: اختبار التوزيع الطبيعي للباقي



المصدر : من إعداد الباحثان بالإعتماد على برنامج Eviews 7.0

### 4. اختبار الارتباط بين المتغيرات المفسرة: اختبار " Klein "

5. اختبار مدى ملائمة تحديد أو تصميم النموذج المقدر من حيث الشكل الدالي لهذا النموذج [Ramsey (RESET)]: (Regression error specification test )

الجدول رقم 12: اختبار مدى ملائمة تحديد أو تصميم النموذج المقدر من حيث الشكل الدالي لهذا النموذج

Ramsey RESET Test  
Equation: UNTITLED  
Specification: DLOGY DLOGY(-1) DLOGY(-2) DLOGK(-3) DLOGH DLOGH(-1) DLOGH(-2) DLOGL DLOGL(-3) C  
Omitted Variables: Squares of fitted values

|                  | Value    | df     | Probability |
|------------------|----------|--------|-------------|
| t-statistic      | 1.266043 | 9      | 0.2373      |
| F-statistic      | 1.602865 | (1, 9) | 0.2373      |
| Likelihood ratio | 3.114093 | 1      | 0.0776      |

F-test summary:

|                  | Sum of Sq. | df | Mean Squares |
|------------------|------------|----|--------------|
| Test SSR         | 6.61E-05   | 1  | 6.61E-05     |
| Restricted SSR   | 0.000437   | 10 | 4.37E-05     |
| Unrestricted SSR | 0.000371   | 9  | 4.13E-05     |
| Unrestricted SSR | 0.000371   | 9  | 4.13E-05     |

LR test summary:

|                   | Value    | df |
|-------------------|----------|----|
| Restricted LogL   | 74.49177 | 10 |
| Unrestricted LogL | 76.04882 | 9  |

Unrestricted Test Equation:

Dependent Variable: DLOGY

Method: Least Squares

Date: 11/12/11 Time: 21:17

Sample: 1991 2009

Included observations: 19

| Variable  | Coefficient | Std. Error | t-Statistic | Prob.  |
|-----------|-------------|------------|-------------|--------|
| DLOGY(-1) | 0.385881    | 0.191312   | 2.017020    | 0.0745 |
| DLOGY(-2) | 0.314951    | 0.184676   | 1.705426    | 0.1223 |
| DLOGK(-3) | 0.184186    | 0.050899   | 3.618617    | 0.0056 |
| DLOGH     | -0.266545   | 0.088912   | -2.997839   | 0.0150 |

|                    |           |                       |           |        |
|--------------------|-----------|-----------------------|-----------|--------|
| DLOGH(-1)          | 0.538070  | 0.139231              | 3.864585  | 0.0038 |
| DLOGH(-2)          | 0.364114  | 0.175633              | 2.073158  | 0.0680 |
| DLOGL              | -0.400906 | 0.107471              | -3.730369 | 0.0047 |
| DLOGL(-3)          | -0.215136 | 0.107400              | -2.003126 | 0.0762 |
| C                  | 0.006565  | 0.003808              | 1.723772  | 0.1188 |
| FITTED^2           | -5.590428 | 4.415670              | -1.266043 | 0.2373 |
| R-squared          | 0.939207  | Mean dependent var    | 0.007974  |        |
| Adjusted R-squared | 0.878413  | S.D. dependent var    | 0.018420  |        |
| S.E. of regression | 0.006423  | Akaike info criterion | -6.952507 |        |
| Sum squared resid  | 0.000371  | Schwarz criterion     | -6.455434 |        |
| Log likelihood     | 76.04882  | Hannan-Quinn criter.  | -6.868383 |        |
| F-statistic        | 15.44914  | Durbin-Watson stat    | 2.406902  |        |
| Prob(F-statistic)  | 0.000187  |                       |           |        |

المصدر : من إعداد الباحثان بالإعتماد على برنامج Eviews 7.0

### الجدول رقم 13: نتائج تقيير نموذج (المتغير التابع : DLOGY)

| المتغيرات المستقلة        | القيمة المقدرة لمعامل    | قيمة الاحتمال - P-       |                          |
|---------------------------|--------------------------|--------------------------|--------------------------|
| DLOGY(-1)                 | 0.308304                 | 0.1295                   |                          |
| DLOGY(-2)                 | 0.367501**               | 0.0555                   |                          |
| DLOGK(-3)                 | 0.176969***              | 0.0068                   |                          |
| DLOGH                     | -0.327923***             | 0.0016                   |                          |
| DLOGH(-1)                 | 0.658933***              | 0.0001                   |                          |
| DLOGH(-2)                 | 0.329863*                | 0.0947                   |                          |
| DLOGL                     | -0.388259***             | 0.0055                   |                          |
| DLOGL(-3)                 | -0.211917*               | 0.0843                   |                          |
| C                         | 0.004788                 | 0.2184                   |                          |
| R <sup>2</sup>            | 0.928379                 |                          |                          |
| DW                        | 2.110903                 |                          |                          |
| F                         | 16.20 *** (0.000088)     |                          |                          |
| + الاختبارات التشخيصية    |                          |                          |                          |
| JB                        | BG LM                    | ARCH                     | RESET                    |
| $\chi^2 = 0,02$<br>(0,98) | F = 0.804246<br>(0.4806) | F = 0.596956<br>(0.4510) | F = 1.602865<br>(0.2373) |

ملاحظات: \*\*معنوي عند مستوى 1% ، \* معنوي عند مستوى 5% ، \* معنوي عند مستوى 10%

+ الأرقام بين الأقواس تمثل قيم الاحتمال (p-value).

المصدر : من إعداد الباحثان بالإعتماد على النتائج السابقة

ويتبين من هذا الجدول ما يلي:

1. تشير إحصائية اختبار BG LM إلى خلو النموذج من مشكلة الارتباط التسلسلي .
2. تشير إحصائية ARCH إلى عدم رفض فرضية عدم القائلة بثبات تباين حد الخطأ العشوائي في النموذج المقدر . Homoscedasticity
3. تشير إحصائية اختبار JB إلى عدم رفض الفرضية القائلة بأن الأخطاء العشوائية موزعة توزيعاً طبيعياً في النموذج محل التقدير .
4. تشير إحصائية اختبار RESET إلى صحة الشكل الدالي المستخدم في النموذج المستخدم .

- ولاختبار عما إذا كان هناك مشكلة ازدواج خطى Multicollinearity في النموذج المقدر تم تقدير معامل الارتباط بين كل متغيرين مستقلين من المتغيرات المستقلة لهذا النموذج. وكقاعدة عامة، توجد مشكلة ازدواج خطى حادة في حالة إذا كانت قيمة معامل الارتباط بين متغيرين مستقلين داخل معادلة ما أكبر من 0.7 (Ruth, 2005). يتضح من هذا الجدول أن قيمة معامل الارتباط بين كل متغيرين مستقلين لم يتجاوز 0.7 ومن ثم لا توجد مشكلة ازدواج خطى في النموذج المقدر.

وتشير قيمة معامل التحديد ( $R^2$ ) إلى ارتفاع القوة التفسيرية للمتغيرات المستقلة محل الاهتمام (0.92) كما تشير قيمة إحصاء اختبار  $F$  إلى جودة النموذج المقدر ككل من الناحية الإحصائية.

#### 4- خلاصة (التحليل الاقتصادي لنتائج التقدير):

- وفقاً للنقاط السابقة فإن الصيغة القياسية المثلثى للنموذج هي :

$$d \log Y_t = 0.36d \log Y_{t-2} + 0.17d \log K_{t-3} - 0.33d \log H_t + 0.66d \log H_{t-1} + 0.33d \log H_{t-2} \\ - 0.38d \log L_t - 0.21d \log L_{t-3}$$

- يتضح مما سبق ما يلى:

- وجود أثر موجب و قوي معنواً لمعدل النمو الاقتصادي المتأخر بستين على معدل النمو الاقتصادي الحالي، ويعني هذا أن زيادة معدل النمو الاقتصادي المتأخر بستين بنسبة 1% سوف تؤدي إلى زيادة معدل النمو الاقتصادي بحوالي 0.36%.

- وجود أثر موجب و قوي معنواً لمعدل نمو راس المال المادي المتأخر بثلاث سنوات على معدل نمو الـ PIB ، ويعني هذا أن زيادة معدل نمو راس المال المادي المتأخر بثلاث سنوات بنسبة 1% سوف تؤدي إلى زيادة معدل النمو الاقتصادي بحوالي 0.17%.

- وجود أثر سالب و معنوي قوي لمعدل نمو راس المال البشري الحالي على معدل نمو الـ PIB (النمو الاقتصادي) في الأجل القصير فقد بلغت القيمة المقدرة للمرونة الجزئية للنمو الاقتصادي بالنسبة لنمو راس المال البشري حوالي 0.33 ، ويعني هذا أن الزيادة في نمو راس المال البشري الحالي بنسبة 1 % سوف تؤدي إلى انخفاض معدل النمو الاقتصادي ب 0.33 % في الأجل القصير .

- وجود أثر موجب و قوي معنواً لمعدل نمو راس المال البشري للسنة الماضية على معدل نمو الـ PIB ، ويعني هذا أن زيادة معدل نمو راس المال البشري للسنة الماضية بنسبة 1% سوف تؤدي إلى زيادة معدل النمو الاقتصادي بحوالي 0.66 %.

- وجود أثر موجب وضعيف معنواً لمعدل نمو راس المال البشري المتأخر بستين على معدل نمو الـ PIB ، ويعني هذا أن زيادة معدل نمو راس المال البشري المتأخر بستين بنسبة 1% سوف تؤدي إلى زيادة معدل النمو الاقتصادي بحوالي 0.33 %.

- وجود أثر سالب ومحض قوي لمعدل نمو التشغيل الحالي على معدل نمو النمو الاقتصادي  $PIB$  (النمو الاقتصادي) في الأجل القصير فقد بلغت القيمة المقدرة للمرنة الجزئية للفعل الاقتصادي بالنسبة لنمو التشغيل حوالي -0.38 ، ويعني هذا أن الزيادة في نمو التشغيل الحالي بنسبة 1 % سوف تؤدي إلى انخفاض معدل النمو الاقتصادي بـ 0.38 % في الأجل القصير .
- وجود أثر سالب وضعيف معنوي لمعدل نمو التشغيل التأخر بثلاث سنوات على معدل نمو  $PIB$  ،ويعني هذا أن زيادة معدل نمو التشغيل المتأخر بثلاث سنوات بنسبة 1% سوف تؤدي إلى انخفاض معدل النمو الاقتصادي بحوالي 0.21 %.

#### **المراجع:**

N. Gregory Mankiw , David. Romer & David. N. Weil : *A contribution on the empirics economic growth*. The Quarterly Journal of Economics , Vol 107 , N°3. May , 1992  
Philippe Darreau , Croissance et politique économique , 1<sup>er</sup> édition , édition De Boeck Université , Bruxelles, Belgique , 2003 , p32-33 .  
Pesaran M H. Shin Y.and Smith R J ,Bound Testing Approaches to the Analysis of Long Relationships ,Journal of Applied Econometrics,(2001),p20. in the  
cite :<http://www.econ.cam.ac.uk/faculty/pesaran/pss1.pdf> , Date of consultation :11/11/2011