02/18/19 Yasin Ceran

Types of Machine Learning

- Supervised
- Unsupervised
- Reinforcement

Supervised Learning

$$(x_i, y_i) \propto p(x, y)$$
 i.i.d. $x_i \in \mathbb{R}^p$ $y_i \in \mathbb{R}$ $f(x_i) \approx y_i$

Classification and Regression

- target y discrete
- Will you pass?

- target y continuous
- How many points will you get in the exam?

Generalization

Not only $f(x_i) \approx y_i$, also for new data: $f(x) \approx y$

Relationship to Statistics

Statistics

- model first
- inference emphasis

Machine learning

- data first
- prediction emphasis

The Machine Learning Work-Flow

Model Feedback Loop

Representing Data

Training and Test Data

training set

test set

Jupyter Notebook

Part 1- Data Loading

Preprocessing

Scaling and Distances

Scaling and Distances

Ways to Scale Data

Categorical Variables

 $\{'red','green','blue'\} \subset R^p$?

Categorical Variables

"red"	"green"	"blue"	
/ 1	0	0	
0	1	0	
/ 0	0	1	

Jupyter Notebook

Part 2- PreProcessing

Supervised ML Workflow

Nearest Neighbors

$$f(x) = y_i, i = \operatorname{argmin}_i ||x_i - x||$$

Nearest Neighbors

$$f(x) = y_i, i = \operatorname{argmin}_i ||x_i - x||$$

training set

test set

KNN with scikit-learn

```
sklearn.model_selection train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y)

sklearn.neighbors KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=1)
knn.fit(X_train, y_train)
print("accuracy: {:.2f}".format(knn.score(X_test, y_test)))
y_pred = knn.predict(X_test)
```

accuracy: 0.77

More neighbors

More neighbors

Influence of n_neighbors

Model complexity

Overfitting and Underfitting

Overfitting and Underfitting

Overfitting and Underfitting

Model complexity

Threefold split

Threefold split

pro: fast, simple con: high variance, bad use of data

Implementing threefold split

```
X_trainval, X_test, y_trainval, y_test = train_test_split(X, y)
X train, X val, y train, y val = train test split(X trainval, y trainval)
val scores = []
neighbors = np.arange(1, 15, 2)
    i neighbors:
    knn = KNeighborsClassifier(n_neighbors=i)
    knn.fit(X_train, y_train)
    val scores.append(knn.score(X val, y val))
print("best validation score: {:.3f}".format(np.max(val scores)))
best_n_neighbors = neighbors[np.argmax(val_scores)]
print("best n_neighbors:", best_n_neighbors)
knn = KNeighborsClassifier(n_neighbors=best_n_neighbors)
knn.fit(X_trainval, y_trainval)
print("test-set score: {:.3f}".format(knn.score(X_test, y_test)))
best validation score: 0.991
best n neighbors: 11
test-set score: 0.951
```

Part 3: Jupyter Notebook

Supervised Learning

Linear Models for Regression

Linear Models for Regression

$$\hat{\mathbf{y}} = \mathbf{w}^T \mathbf{x} + b = \sum_{i=1}^p w_i x_i + b$$

Ordinary Least Squares

$$\hat{\mathbf{y}} = \mathbf{w}^T \mathbf{x} + b = \sum_{i=1}^p w_i x_i + b$$

$$\min_{w \in \mathbb{R}^p} \sum_{i=1}^p ||w^T \mathbf{x}_i - y_i||^2$$

Ridge Regression

$$\min_{w \in \mathbb{R}^p} \sum_{i=1}^n ||w^T \mathbf{x}_i - y_i||^2 + \alpha ||w||^2$$

Always has a unique solution. Tuning parameter alpha.

Part 4: Jupyter Notebook

Linear Models for Regression