Solutions to Michael Spivak's Calculus

Son To <son.trung.to@gmail.com>

 $Ravintola\ Kiltakellari\ ^*$

 $25 th\ June,\ 2017$

^{*}I thank my employer!

Preface

This is my own solutions to Michael Spivak's Calculus textbook.

Vantaa, Finland 25^{th} June, 2017.

Contents

P	reface	i
C	ontents	ii
Ι	Prologue	1
1	Basic properties of number	3

Part I Prologue

Chapter 1

Basic properties of number

Problem 1.1. Prove the following:

- (i) If ax = a for some number $a \neq 0$, then x = 1
- (ii) $x^2 y^2 = (x y)(x + y)$
- (iii) If $x^2 = y^2$, then x = y or x = -y
- (iv) $x^3 y^3 = (x y)(x^2 + xy + y^2)$
- (v) $x^n y^n = (x y)(x^{n-1} + x^{n-2}y + \dots + xy^{n-2} + y^{n-1})$
- (vi) $x^3 + y^3 = (x + y)(x^2 xy + y^2)$ (There is a particularly easy way to do this using (iv), and it will show you how to find a factorization for $x^n + y^n$ whenever n is odd.)
- Solution. (i) By (P7)(Existence of multiplicative inverses), there exists a^{-1} such that,

$$(a^{-1} \cdot a)x = (a^{-1} \cdot a)$$
$$x = 1$$

(ii) By (P9) for 2 times,

$$(x - y)(x + y) \stackrel{1}{=} x \cdot (x + y) + (-y) \cdot (x + y)$$

$$\stackrel{2}{=} x \cdot x + x \cdot y + (-y) \cdot x + (-y) \cdot y$$

$$= x^{2} + x \cdot y + [-(x \cdot y)] + [-(y^{2})]$$

$$= x^{2} - y^{2}$$

(iii) From (ii) and since $x^2 = y^2$,

$$x^2 - y^2 = (x - y)(x + y) = 0$$

This means $(x - y) = 0 \lor (x + y) = 0$, which is $x = y \lor x = -y$

(iv) Starting with the right-hand side,

$$(x-y)(x^2 + xy + y^2) = x \cdot (x^2 + xy + y^2) + (-y) \cdot (x^2 + xy + y^2)$$

= $x^3 + x^2y + xy^2 + [-(x^2y)] + [-(xy^2)] + [-(y)^3]$
= $x^3 - y^3$

(v) I propose two solutions for this problem. The first one is the direct right-hand side manipulation, while the latter is done by induction.

The first solution.

$$\begin{split} &(x-y)(x^{n-1}+x^{n-2}y+\cdots+xy^{n-2}+y^{n-1})\\ &=x^n+x^{n-1}y+\cdots+x^2y^{n-2}+xy^{n-1}\\ &+[-(x^{n-1}y)]+[-(x^{n-2}y^2)]+\cdots+[-(xy^{n-1})]+[-(y^n)]\\ &=x^n-y^n \end{split}$$

Q.E.D

The second solution. Let n=1, then indeed x-y=x-y. Suppose the statement holds true for n=k with $k \in \mathbb{N}$, that is

$$x^{k} - y^{k} = (x - y)(x^{k-1} + x^{k-2}y + \dots + xy^{k-2} + y^{k-1})$$

is true. To finish the proof, we need to prove

$$x^{k+1} - y^{k+1} = (x - y)(x^k + x^{k-1}y + \dots + xy^{k-1} + y^k)$$

That is, the statement holds for n = k. Starting from the left hand side,

$$x^{k+1} - y^{k+1}$$

$$= x^{k+1} - x^k y + x^k y - y^{k+1}$$

$$= x^k (x - y) + y(x^k - y^k)$$

$$= x^k (x - y) + y(x - y)(x^{k-1} + x^{k-2}y + \dots + xy^{k-2} + y^{k-1})$$

$$= (x - y)[x^k + y(x^{k-1} + x^{k-2}y + \dots + xy^{k-2} + y^{k-1})]$$

$$= (x - y)(x^k + x^{k-1}y + x^{k-2}y^2 + \dots + xy^{k-1} + y^k)$$

Q.E.D

(vi) We will use (iv) in our proof,

$$x^{3} + y^{3}$$

$$= x^{3} - y^{3} + 2y^{3}$$

$$= (x - y)(x^{2} + xy + y^{2}) + 2y[(x^{2} + xy + y^{2}) + (-x)(x + y)]$$

$$= (x + y)(x^{2} + xy + y^{2}) + 2[-(xy)](x + y)$$

$$= (x + y)(x^{2} - xy + y^{2})$$

Problem 1.2. What is wrong with the following "proof"? Let x = y. Then

$$x^{2} = xy,$$

$$x^{2} - y^{2} = xy - y^{2},$$

$$(x + y)(x - y) = y(x - y),$$

$$x + y = y,$$

$$2y = y,$$

$$2 = 1.$$

Solution. Note that in the transition from line 3 to line 4, the author "simplifies" (x-y) by dividing (x-y) on both sides. This is wrong since x-y=0, and hence 1/0 is undefined as implied by (P7) in the textbook.

Problem 1.3. Prove the following:

(i)
$$\frac{a}{b} = \frac{ac}{bc}$$
, if $b, c \neq 0$.

(ii)
$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$
, if $b, d \neq 0$.

(iii) $(ab)^{-1} = a^{-1}b^{-1}$, if $a, b \neq 0$. (To do this you must remember the defining property of $(ab)^{-1}$.)

(iv)
$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{db}$$
, if $b, d \neq 0$.

(v)
$$\frac{a}{b} / \frac{c}{d} = \frac{ad}{bc}$$
, if $b, c, d \neq 0$.

(vi) If $b, d \neq 0$, then $\frac{a}{b} = \frac{c}{d}$ if and only if ad = bc. Also determine when $\frac{a}{b} = \frac{b}{a}$.

Solution. (i) Until (iii) is proved, the solution is to test the equality between two sides.

$$a(b)^{-1} = (ac)(bc)^{-1}$$

$$a[(b)^{-1}b] = (ac)(bc)^{-1}b$$

$$(a^{-1}a) = (a^{-1}a)c(bc)^{-1}b$$

$$1 = (bc)(bc)^{-1} = 1$$

(ii) Similar to the above,

$$a(b)^{-1} + c(d)^{-1} = (ad + bc)(bd)^{-1}$$

$$a(b)^{-1}bd + c(d)^{-1}bd = (ad + bc)[(bd)^{-1}(bd)]$$

$$ad(b^{-1}b) + bc(d^{-1}d) = (ad + bc)$$

$$ad + bc = ad + bc$$

(iii) Since $a, b \neq 0$, there exists $(ab)^{-1}, a^{-1}, b^{-1}$ such that,

$$ab = ab$$

$$(ab)^{-1}(ab) = (ab)^{-1}(ab) = 1$$

$$(ab)^{-1}a(bb^{-1}) = b^{-1}$$

$$(ab)^{-1}(aa^{-1}) = b^{-1}a^{-1}$$

$$(ab)^{-1} = a^{-1}b^{-1}$$

(iv) For $b, d \neq 0$,

$$\frac{a}{b} \cdot \frac{c}{d} = ab^{-1}cd^{-1} = ac(d^{-1}b^{-1}) = ac(db)^{-1} = \frac{ac}{db}$$

where the next-to-last equality follows from (iii).

(v) I first establish for any number $a \neq 0$,

$$(a^{-1})^{-1} = a$$

Let $t = a^{-1}$, we want to prove $t^{-1} = a$. Observe that

$$t = a^{-1}$$

$$t \cdot (t)^{-1} = a^{-1} \cdot (t)^{-1}$$

$$a \cdot 1 = (a \cdot a^{-1}) \cdot (t)^{-1}$$

$$a = (t)^{-1}$$

From the left hand side of the statement,

$$\frac{a}{b} / \frac{c}{d} = a(b)^{-1} [c(d)^{-1}]^{-1} = a(b)^{-1} (c)^{-1} [(d)^{-1}]^{-1} = (ad)(bc)^{-1} = \frac{ad}{bc}$$

where the second and third equality follows both from (iii) and the proof above.

(vi) Using (ii),

$$\frac{a}{b} = \frac{c}{d}$$

$$\frac{a}{b} + (-\frac{c}{d}) = 0$$

$$\frac{ad - bc}{bd} = 0$$

$$ad = bc$$

Now, put $c=b \wedge d=a$. It follows that $\frac{a}{b}=\frac{b}{a}$ if and only if $a^2=b^2$. It follows (a-b)(a+b)=0, or $a=b \vee a=-b$.

Problem 1.4. Find all numbers x for which

(i)
$$4 - x < 3 - 2x$$

(ii)
$$5 - x^2 < 8$$

(iii)
$$5 - x^2 < -2$$

(iv)
$$(x-1)(x-3) > 0$$
 (When is a product of two numbers positive?)

(v)
$$x^2 - 2x + 2 > 0$$

(vi)
$$x^2 + x + 1 > 2$$

(vii)
$$x^2 - x + 10 > 16$$

(viii)
$$x^2 + x + 1 > 0$$

(ix)
$$(x-\pi)(x+5)(x-3) > 0$$

(x)
$$(x - \sqrt[3]{2})(x - \sqrt{2}) > 0$$

(xi)
$$2^x < 8$$

(xii)
$$x + 3^x < 4$$

(xiii)
$$\frac{1}{x} + \frac{1}{1-x} > 0$$

$$(xiv) \ \frac{x-1}{x+1} > 0$$

Solution. (i)

$$4-x < 3-2x$$

$$4+(-x+2x) < 3+(-2x+2x)$$

$$(-4+4)+x < -4+3$$

$$x < -1$$

(ii)

$$5 - x^{2} < 8$$

$$5 - 8 < x^{2}$$

$$-3 < x^{2}$$

Since $x^2 \ge 0 \ \forall x \in \mathbb{R}$, the inequality holds $\forall x$.

(iii)

$$5 - x^{2} < -2$$

$$7 < x^{2}$$

$$0 < x^{2} - 7 = (x - \sqrt{7})(x + \sqrt{7})$$

Hence, either $x>\sqrt{7} \ \land \ x>-\sqrt{7}$ or $x<\sqrt{7} \ \land \ x<-\sqrt{7}$, which is $x>\sqrt{7} \ \lor \ x<-\sqrt{7}$.

(iv)

$$(x-1)(x-3) > 0$$

 $(x > 1 \land x > 3) \lor (x < 1 \land x < 3)$
 $x > 3 \lor x < 1$

(v)

$$x^{2} - 2x + 2 > 0$$
$$(x^{2} - 2x + 1) + 1 > 0$$
$$(x - 1)^{2} + 1 > 0$$

Hence the inequality is satisfied $\forall x$.

(vi)

$$x^{2} + x + 1 > 2$$

$$x^{2} + x - 1 > 0$$

$$x^{2} + \left(\frac{1 + \sqrt{5}}{2}\right)x + \left(\frac{1 - \sqrt{5}}{2}\right)x + \left(\frac{(1 - \sqrt{5})(1 + \sqrt{5})}{4}\right) > 0$$

$$\left(x + \frac{1 + \sqrt{5}}{2}\right)\left(x + \frac{1 - \sqrt{5}}{2}\right) > 0$$

$$x > \left(\frac{\sqrt{5} - 1}{2}\right) \lor x < \left(\frac{-(\sqrt{5} + 1)}{2}\right)$$

(vii)

$$x^{2} - x + 10 > 16$$

$$x^{2} - x - 6 > 0$$

$$x^{2} - 3x + 2x - 6 > 0$$

$$x(x - 3) + 2(x - 3) > 0$$

$$(x + 2)(x - 3) > 0$$

$$x > 3 \lor x < -2$$

(viii)

$$x^{2} + x + 1 > 0$$

$$x^{2} + x + \frac{1}{4} - \frac{1}{4} + 1 > 0$$

$$(x + \frac{1}{2})^{2} + \frac{3}{4} > 0$$

which is true for all x.

(ix) Divide the problem into two cases: $x > \pi$ and $x < \pi$.

Case 1: $x > \pi$ Then (x+5)(x-3) > 0, which is $x > 3 \lor x < -5$.

Case 2: $x < \pi$ Then (x + 5)(x - 3) < 0, which is -5 < x < 3.

(x)

$$(x - \sqrt[3]{2})(x - \sqrt{2}) > 0$$
$$x > \sqrt{2} \lor x < \sqrt[3]{2}$$

(xi) (Sometimes, to solve a problem, intuition is a necessity.)

$$2^{x} < 8$$
$$2^{x} < 2^{3}$$
$$x < 3$$

(xii)

$$x + 3^x < 4$$
$$x + 3^x < 1 + 3^1$$
$$x < 1$$

(xiii)

$$\frac{1}{x} + \frac{1}{1-x} > 0$$

$$\frac{1}{x(1-x)} > 0$$

Hence, x(1-x) > 0. This means 0 < x < 1.

(xiv)

$$\frac{x-1}{x+1} > 0$$

Hence, (x-1)(x+1) > 0, or $x > 1 \lor x < -1$.

Problem 1.5. Prove the following:

- (i) If a < b and c < d, then a + c < b + d
- (ii) If a < b, then -b < -a
- (iii) If a < b and c > d, then a c < b d
- (iv) If a < b and c > 0, then ac < bc
- (v) If a < b and c < 0, then ac > bc
- (vi) If a > 1, then $a^2 > a$
- (vii) If 0 < a < 1, then $a^2 < a$
- (viii) If $0 \le a < b$ and $0 \le c < d$, then ac < bd
- (ix) If $0 \le a < b$, then $a^2 < b^2$. (Use (viii).)
- (x) If a, b > 0 and $a^2 < b^2$, then a < b. (Use (ix), backwards.)

Solution. Let P be the set of all positive numbers.

- (i) To prove this, we apply (P11): If $a < b \land c < d$, then $(b a \in P) \land (d c \in P)$. Then $(b a) + (d c) = (b + d) (a + c) \in P$. Therefore, a + c < b + d.
- (ii) We provide two solutions: The first one is by Trichotomy Law (P10), and the second one is by adding [(-a) + (-b)] to both sides.

Proof by Trichotomy Law. If a < b, then $b - a \in P$. By Trichotomy Law, $a - b \notin P$ and $a - b \neq 0$. Therefore, a - b < 0, which is -b < -a. Q.E.D

Proof by adding.

$$a < b$$

$$a + [(-a) + (-b)] < b + [(-a) + (-b)]$$

$$[a + (-a)] + (-b) < [b + (-b)] + (-a)$$

$$-b < -a$$

Q.E.D

- (iii) Using (P11), we have $b-a \in P \land c-d \in P$. Then $(b-a)+(c-d) \in P$. Hence, a-c < b-d.
- (iv) Using (P12), note that $b-a \in P$. Since c > 0, $c(b-a) \in P$, which means bc ac > 0, or ac < bc.
- (v) By Trichotomy law(P10), $-c \in P$. Then by (iv), -(ac) < -(bc). By (ii), ac > bc.
- (vi) Since a > 1 > 0, by (iv), $a^2 > a$.
- (vii) Since a > 0, by (iv), $a^2 < a$.
- (viii) Because 0 < b, bc < bd. Furthermore, if $c \ge 0$, $ac \le bc$ (equality occurs if c = 0), by (iv). Therefore, $ac \le bc < bd$. Hence, ac < bd.
 - (ix) From (viii), let c = a and d = b, then the result follows.
 - (x) Suppose $a \ge b$. Then $a \ge b \ge 0$. By (ix) and (P9), $a^2 \ge b^2$. This contradicts $a^2 < b^2$.

Problem 1.6. (a) Prove that if $0 \le x < y$, then $x^n < y^n$, $n = 1, 2, 3, \ldots$

- (b) Prove that if x < y and n is odd, then $x^n < y^n$.
- (c) Prove that if $x^n = y^n$ and n is odd, then x = y.
- (d) Prove that if $x^n = y^n$ and n is even, then x = y or x = -y.

Solution. (a) Repeatedly apply problem 1.5(viii) for $0 \le x < y$, we have $x^n < y^n$ with n = 1, 2, 3, ...

- (b) The statement is true for the case $0 \le x < y$. In the case $x < y \le 0$, by 1.5(ii), $(-x) > (-y) \ge 0$. By (a), $(-x)^n > (-y)^n$ for all odd n. Since n is odd, $-(x^n) > -(y^n)$. Hence, by 1.5(ii), $x^n < y^n$. In the case $x \le 0 < y$, since n is odd, $x^n < y^n$.
- (c) Suppose that either $x \neq y$. W.l.o.g, let x < y, by (b), $x^n < y^n$ for all odd n, contradicting $x^n = y^n$ for all odd n.
- (d) Suppose that both $x \neq y$ and $x \neq -y$. Then $x^2 y^2 \neq 0$. W.l.o.g, suppose $x^2 > y^2 \geq 0$. Applying (a), this generalizes to $x^n > y^n$ for all even n, contradicting our assumption. Therefore, x = y or x = -y.

The direct proof. In the case $x, y \ge 0$; by (a), if $x^n = y^n$ for all even n, then x = y. In the case $x, y \le 0$; if $x^n = y^n$ for all even n, then $(-x), (-y) \ge 0$ and $(-x)^n = (-y)^n$, so -x = -y and hence x = y. In the case of x and y have different signs, then x and -y are either two positive or two negative numbers. In either subcase, if $x^n = y^n$ for all even n, then $x^n = (-y)^n$, and it follows x = -y from the previous case.

Problem 1.7. Prove that if 0 < a < b, then

$$a < \sqrt{ab} < \frac{a+b}{2} < b$$

Notice that the inequality $\sqrt{ab} \le (a+b)/2$ holds for all $a,b \ge 0$. A generalization of this fact occurs in Problem 2.22.

Solution. Let us first establish that $a < \frac{a+b}{2} < b$. Note that,

$$a+a < a+b < b+b$$

and therefore, $a < \frac{a+b}{2} < b$. To finish the proof, we need to prove $a < \sqrt{ab} < \frac{a+b}{2}$. To do this, let us prove that if 0 < a < b, then $0 < \sqrt{a} < \sqrt{b}$. Note that since b-a>0,

$$b - a = (\sqrt{b} - \sqrt{a})(\sqrt{b} + \sqrt{a}) > 0$$

Therefore, $\sqrt{b} > \sqrt{a} > 0$. We rewrite the inequality as follows,

$$\sqrt{a} \cdot (\sqrt{b} - \sqrt{a}) > 0$$

Then

$$a < \sqrt{ab} \tag{1.1}$$

We next notice that since $\sqrt{b} - \sqrt{a} > 0$, it follows that $(\sqrt{b} - \sqrt{a}) \cdot (\sqrt{b} - \sqrt{a}) = (\sqrt{b} - \sqrt{a})^2 > 0$. Expand the left hand side,

$$(\sqrt{b} - \sqrt{a})^2 = a + b - 2\sqrt{ab} > 0$$

which implies,

$$\sqrt{ab} < \frac{a+b}{2} \tag{1.2}$$

From (1.1) and (1.2), we have
$$a < \sqrt{ab} < \frac{a+b}{2}$$
.

Problem 1.8 (*). Although the basic properties of inequalities were stated in terms of the collection P of all positive numbers, and < was defined in terms of P, this procedure can be reversed. Suppose that P10–P12 are replaced by

(P'10) For any numbers a and b one, and only one, of the following holds:

- (i) a = b,
- (ii) a < b,
- (iii) b < a.
- (P'11) For any numbers a, b, and c, if a < b and b < c, then a < c.
- (P'12) For any numbers a, b, and c, if a < b, then a + c < b + c.
- (P'13) For any numbers a, b, and c, if a < b and 0 < c, then ac < bc.

Show that P10-P12 can then be deduced as theorems.

Solution. Let P be the set of all positive numbers.

- To prove P10, let c = a b, from (P'10), P10 follows.
- To prove P11, let $a, b \in P$; it is sufficient to prove that a + b > 0. From (P'10), we divide the proof into three subscases:

Case 1: a = b

Then a + b = b + b > 0 + b > 0, where the first inequality follows from (P'12). By (P'11), a + b > 0.

Case 2: a < b

Then a + b > a + a > 0 + a > 0, where the first and second inequality follow from (P'12). By applying (P'11) twice, a + b > 0.

Case 3: a > b

Interchanging the role of a and b, we have the result.

• To prove P12, let $a, b \in P$; it is sufficient to prove that $a \cdot b > 0$. From (P'10), we divide the proof into three subcases:

Case 1: a = b

Then $a \cdot b = b \cdot b > 0 \cdot b = 0$, where the first inequality follows from (P'13) and the equality after which is from (P9).

Case 2: a < b

Then $b \cdot a > a \cdot a > 0 \cdot a = 0$, where the first and second inequality is from (P'13). By (P'11), $a \cdot b > 0$.

Case 3: a > b

Interchanging a and b returns us to case 2, which yields the result.

Problem 1.9. Express each of the following with at least one less pair of absolute value signs.

(i)
$$|\sqrt{2} + \sqrt{3} - \sqrt{5} + \sqrt{7}|$$

(ii)
$$|(|a+b|-|a|-|b|)|$$

(iii)
$$|(|a+b|+|c|-|a+b+c|)|$$

(iv)
$$|(|\sqrt{2} + \sqrt{3}| - |\sqrt{5} - \sqrt{7}|)|$$

Solution. (i) Note $\sqrt{7} - \sqrt{5} > 0$, hence

$$|\sqrt{2} + \sqrt{3} - \sqrt{5} + \sqrt{7}| = \sqrt{2} + \sqrt{3} - \sqrt{5} + \sqrt{7}$$

(ii) Since $|a + b| - |a| - |b| \le 0$,

$$|(|a+b|-|a|-|b|)| = |a|+|b|-|a+b|$$

(iii) Since $|a + b + c| \le |a + b| + |c|$,

$$|(|a+b|+|c|-|a+b+c|)| = |a+b|+|c|-|a+b+c|$$

(iv)
$$|(|\sqrt{2} + \sqrt{3}| - |\sqrt{5} - \sqrt{7}|)| = |\sqrt{2} + \sqrt{3} - \sqrt{7} + \sqrt{5}|$$

Problem 1.10. Express each of the following without absolute value signs, treating various cases separately when necessary.

- (i) |a+b| |b|
- (ii) |(|x|-1)|
- (iii) $|x| |x^2|$
- (iv) a |(a |a|)|

Solution. (i) We divide into four cases:

$$a \ge 0$$
 and $b \ge 0$ (Case 1)

$$a \le 0$$
 and $b \le 0$ (Case 2)

$$a \ge 0$$
 and $b \le 0$ (Case 3)

$$a \le 0$$
 and $b \ge 0$ (Case 4)

In Case 1 and Case 2, we have |a+b|-|b|=a since $|a+b| \le |a|+|b|$.

In Case 3, if $a + b \ge 0$, then

$$|a + b| - |b| = (a + b) - (-b) = a + b + b = 2b$$

If $a+b \leq 0$, then

$$|a + b| - |b| = (-a - b) - (-b) = -a + (-b) + b = -a$$

In Case 4, if $a + b \ge 0$, then

$$|a + b| - |b| = (a + b) - (b) = a$$

If $a + b \leq 0$, then

$$|a+b| - |b| = -a + (-b) + (-b) = -a - 2b$$

(ii) We make the problem into 4 cases.

$$x \ge 1$$
 (Case 1)

$$0 \le x \le 1$$
 (Case 2)

$$-1 \le x \le 0 \tag{Case 3}$$

$$x \le -1$$
 (Case 4)

In Case 1, |(|x|-1)| = x-1.

In Case 2, |(|x|-1)|=1-x.

In Case 3, |(|x|-1)| = x+1.

In Case 4, |(|x|-1)| = -(x+1).

(iii) Since $x^2 \ge 0$, $|x| - |x^2| = |x| - x^2$.

If
$$x \ge 0$$
, then $|x| - x^2 = x(1-x)$. If $x \le 0$, then $|x| - x^2 = -x + (-x^2) = -x(1+x)$.

(iv) Note that $|a| \ge a$. Hence,

$$|a - |(a - |a|)| = a + a - |a| = 2a - |a|$$

We have two cases,

Case 1:
$$a \ge 0$$

$$2a - |a| = 2a - a = a$$

Case 2:
$$a \leq 0$$

$$2a - |a| = 2a + a = 3a$$

Problem 1.11. Find all numbers x for which

- (i) |x-3|=8
- (ii) |x-3| < 8
- (iii) |x+4| < 2
- (iv) |x-1|+|x-2|>1
- (v) |x-1| + |x+1| < 2
- (vi) |x-1| + |x+1| < 1
- (vii) $|x-1| \cdot |x+1| = 0$
- (viii) $|x-1| \cdot |x+2| = 3$

Solution. (i)

$$x - 3 = 8 \lor x - 3 = -8$$

 $x = 11 \lor x = -5$

- (ii) Then -8 < x 3 < 8. Hence, -5 < x < 11.
- (iii) Then -2 < x + 4 < 2. Hence, -6 < x < -2.
- (iv) If $1 \le x \le 2$, then the inequality becomes (x-1)+(2-x)=1. If x>2, then 2x-3>1, which is x>2. If x<1, then -2x+3>1, which is x<1. Therefore, either x>2 or x<1 satisfies the inequality.
- (v) If $-1 \le x \le 1$, then (1-x) + (x+1) = 2. If x > 1, then x < 1, which is contradictory. If x < -1, then (1-x) + (-x-1) = -2x < 2 only if x > -1, which is contradictory. Hence, there is no x to satisfy the inequality.
- (vi) It is implied from above that

$$|x-1| + |x+1| \ge 2$$

Therefore, there is no x satisfying the inequality.

(vii) Either x = 1 or x = -1.

(viii) If $-2 \le x \le 1$, then we obtain $x^2 + x + 1 > 0$. Hence, in either x < -2 or x > 1, we have to solve the equation $x^2 + x - 5 = 0$, whose solution is either $x = \frac{-1 + \sqrt{21}}{2}$ or $x = \frac{-1 - \sqrt{21}}{2}$.

Problem 1.12. Prove the following:

(i) $|xy| = |x| \cdot |y|$

(ii) $\left|\frac{1}{x}\right| = \frac{1}{|x|}$, if $x \neq 0$. (The best way to do this is to remember what $|x|^{-1}$ is.)

(iii)
$$\frac{|x|}{|y|} = \left|\frac{x}{y}\right|$$
, if $y \neq 0$.

(iv) $|x - y| \le |x| + |y|$ (Give a very short proof.)

(v) $|x| - |y| \le |x - y|$ (A very short proof is possible, if you write things in the right way.)

(vi) $|(|x|-|y|)| \le |x-y|$ (Why does this follow immediately from (v)?)

(vii) $|x+y+z| \le |x|+|y|+|z|$. Indicate when equality holds, and prove your statement.

Solution. (i) We have 4 cases,

$$x \ge 0 \quad y \ge 0 \tag{1}$$

$$x \ge 0 \quad y \le 0 \tag{2}$$

$$x \le 0 \quad y \ge 0 \tag{3}$$

$$x \le 0 \quad y \le 0 \tag{4}$$

In (1),
$$|x| \cdot |y| = xy = |xy|$$

In (4),
$$|x| \cdot |y| = (-x)(-y) = xy = |xy|$$

In (3),
$$|x| \cdot |y| = (-x)(y) = -(xy) = |xy|$$

In (2), interchanging x and y leads to (3).

(ii) Since $x \neq 0$, there exists $|x|^{-1}$ such that

$$|x||x|^{-1} = 1 = |x| \left| \frac{1}{x} \right|$$

where the second equality is by (i). Dividing both sides by |x|, we have the result.

(iii) Since $y \neq 0$, from (ii), we immediately have

$$\left|\frac{1}{y}\right| = \frac{1}{|y|}$$

Hence, applying (ii) once more,

$$\left|\frac{x}{y}\right| = |x| \left|\frac{1}{y}\right| = \frac{|x|}{|y|}$$

(iv) Note that,

$$|x - y| = |x + (-y)| \le |x| + |-y| = |x| + |y|$$

where the last equality follows from (i).

(v) Note that,

$$|x - y + y| \le |x - y| + |y|$$

Therefore, $|x| - |y| \le |x - y|$.

(vi) Let the first term be y and the second term be y - x. Applying (v), we have

$$|y| - |y - x| \le |x|$$

Hence, -|x-y| < |x| - |y|. Combining with (v) gives |(|x| - |y|)| < |x-y|.

(vii) Notice the pattern,

$$|x + y + z| \le |x + y| + |z| \le |x| + |y| + |z|$$

the equality holds only if either x, y, z have the same sign or at least two of them must be equal to 0. It is easy to verify this.

Suppose not, then both x, y, z have different signs and at most one of them is 0. If the latter is true, then, w.l.o.g, suppose z = 0, then x, y have different sign, and we are done. If none of them is 0, then, w.l.o.g, suppose z < 0 and pick z such that x + y < -z. Then,

$$|x + y + z| = -(x + y + z) = -x - y - z < |x| + |y| + |z|$$

where inequality must follow since $x, y \neq 0$.

Problem 1.13. The maximum of two numbers x and y is denoted by max(x, y). Thus max(-1,3) = max(3,3) = 3 and max(-1,-4) = max(-4,-1) = -1. The minimum of x and y is denoted by min(x,y). Prove that

$$max(x,y) = \frac{x+y+|y-x|}{2},$$

$$min(x,y) = \frac{x+y-|y-x|}{2}.$$

Derive the formula for max(x, y, z) and min(x, y, z), using, for example

$$max(x, y, z) = max(x, max(y, z)).$$

Son To

Solution. Assume that $x \geq y$, we want to prove that max(x,y) = x.

$$max(x,y) = \frac{x+y+|y-x|}{2} = \frac{x+y+x-y}{2} = \frac{2x}{2} = x$$

Similarly, we need min(x, y) = y.

$$min(x,y) = \frac{x+y-|y-x|}{2} = \frac{x+y-(x-y)}{2} = \frac{x+y-x+y}{2} = \frac{2y}{2} = y$$

Let max(x, y, z) = max(x, max(y, z)). Then

$$\begin{aligned} max(x,y,z) &= \frac{x + max(y,z) + |max(y,z) - x|}{2} \\ &= \frac{x + \frac{y + z + |z - y|}{2} + \left| \frac{y + z + |z - y|}{2} - x \right|}{2} \\ &= \frac{2x + y + z + |z - y| + |y + z + |z - y| - 2x|}{4} \end{aligned}$$

Similarly,

$$min(x, y, z) = \frac{2x + y + z - |z - y| - |y + z - |z - y| - 2x|}{4}$$

- **Problem 1.14.** (a) Prove that |a| = |-a|. (The trick is not to become confused by too many cases. First prove the statement for $a \ge 0$. Why is it then obvious for $a \le 0$?)
 - (b) Prove that $-b \le a \le b$ if and only if $|a| \le b$. In particular, it follows that $-|a| \le a \le |a|$.
 - (c) Use this fact to give a new proof that $|a + b| \le |a| + |b|$.

Solution. (a) Problem 1.12(i) easily tells us that

$$|-a| = |(-1)a| = |-1||a| = 1|a| = |a|$$

- (b) If $a \ge 0$, then $a \le b$. If $a \le 0$, $-a \le b$ follows from $a \ge -b$. Therefore, $|a| \le b$. Conversely, suppose $|a| \le b$. Then it is certain $a \le b$ since $a \le |a| \le b$. From (a), $|-a| \le b$, and hence $a \ge -b$. We conclude that $-b \le a \le b$. Note that since $|a| \le |a|$, $-|a| \le a \le |a|$.
- (c) Because we have $-|a| \le a \le |a|$ and $-|b| \le b \le |b|$, by Problem 1.5(i), we obtain $-(|a| + |b|) \le a + b \le |a| + |b|$. From (b), we arrive at the conclusion $|a + b| \le |a| + |b|$.

Problem 1.15 (*). Prove that if x and y are not both 0, then

$$x^{2} + xy + y^{2} > 0$$
$$x^{4} + x^{3}y + x^{2}y^{2} + xy^{3} + y^{4} > 0$$

Hint: Use problem 1.

Solution. For the first part, note that

$$x^{2} + xy + y^{2} = x^{2} + 2 \cdot x \cdot \frac{1}{2}y + \frac{1}{4}y^{2} - \frac{1}{4}y^{2} + y^{2} = \left(x + \frac{1}{2}y\right)^{2} + \frac{3}{4}y^{2} > 0$$

For the second part, if x = y, then the left-hand side is $5x^4 > 0$. Hence, suppose $x \neq y$. From Problem 1.1(v),

$$x^{5} - y^{5} = (x - y)(x^{4} + x^{3}y + x^{2}y^{2} + xy^{3} + y^{4}) \neq 0$$

If x > y, then $x^5 > y^5$ by Problem 1.6(b). This implies that the second term must be greater than 0. Conversely, $x < y \Rightarrow x^5 < y^5$ implies that it must be greater than 0.

Problem 1.16 (*). (a) Show that

$$(x+y)^2 = x^2 + y^2$$
 only when $x = 0$ or $y = 0$,
 $(x+y)^3 = x^3 + y^3$ only when $x = 0$ or $y = 0$ or $x = -y$.

(b) Using the fact that

$$x^2 + 2xy + y^2 = (x+y)^2 \ge 0,$$

show that $4x^2 + 6xy + 4y^2 > 0$ unless x and y are both 0.

- (c) Use part (b) to find out when $(x+y)^4 = x^4 + y^4$.
- (d) Find out when $(x+y)^5 = x^5 + y^5$. Hint: From the assumption $(x+y)^5 = x^5 + y^5$ you should be able to derive the equation $x^3 + 2x^2y + 2xy^2 + y^3 = 0$, if $xy \neq 0$. This implies that $(x+y)^3 = x^2y + xy^2 = xy(x+y)$.

You should know be able to make a good guess as to when $(x + y)^n = x^n + y^n$; the proof is contained in Problem 11.57

Solution. (a) For the first part,

$$(x+y)^2 = x^2 + 2xy + y^2$$

Hence, $(x+y)^2 = x^2 + y^2$ only when x = 0 or y = 0. For the second part, from Problem 1.1(vi),

$$(x+y)^3 - (x+y)(x^2 - xy + y^2) = 0$$
$$(x+y)(xy) = 0$$

which is true only when x = 0 or y = 0 or x = -y.

- (b) Note that $4x^2 + 6xy + 4y^2 = \underbrace{3(x+y)^2}_{\geq 0} + \underbrace{x^2 + y^2}_{> 0} > 0$ unless x = 0 and y = 0.
- (c) Let us expand $(x+y)^4$.

$$(x+y)^{2}(x+y)^{2} = (x^{2} + 2xy + y^{2})(x^{2} + 2xy + y^{2})$$
$$= x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + y^{4}$$
$$= x^{4} + y^{4} + xy(4x^{2} + 6xy + 4y^{2})$$

Hence, $(x + y)^4 = x^4 + y^4$ only when x = 0 or y = 0, by part (b).

(d) Let us expand $(x+y)^5$.

$$(x+y)^{4}(x+y) = x^{5} + y^{5} + xy(x+y)(4x^{2} + 6xy + 4y^{2}) + xy(x^{3} + y^{3})$$
$$= x^{5} + y^{5} + 5xy(x+y)(x^{2} - xy + y^{2})$$

If $xy \neq 0$ and $x + y \neq 0$, let z = -y, by Problem 1.6(b), $x^3 \neq z^3$. Hence, $x^2 - xy + y^2 \neq 0$. Therefore, $(x + y)^5 = x^5 + y^5$ only when x = 0 or y = 0 or x = -y.

Remark. Hence, for $(x+y)^n = x^n + y^n$, if n is even, then x=0 or y=0. If n is odd, then x=0 or y=0 or x=-y.

Problem 1.17. (a) Find the smallest possible value of $2x^2 - 3x + 4$. Hint: "Complete the square", i.e., write $2x^2 - 3x + 4 = 2(x - 3/4)^2 + ?$

- (b) Find the smallest possible value of $x^2 3x + 2y^2 + 4y + 2$.
- (c) Find the smallest possible value of $x^2 + 4xy + 5y^2 4x 6y + 7$.

Solution. (a) Since $2x^2 - 3x + 4 = 2(x^2 - \frac{3}{2}x + 2)$,

$$2(x^2 - 2 \cdot x\frac{3}{4} + \frac{9}{16} - \frac{9}{16} + 2) = 2(x - \frac{3}{4})^2 + \frac{23}{8}$$

Hence the minimum value is $\frac{23}{8}$ when $x = \frac{3}{4}$.

(b)

$$x^{2} - 3x + \frac{9}{4} - \frac{9}{4} + 2(y^{2} + 2y + 1) = \left(x - \frac{3}{2}\right)^{2} + 2(y + 1)^{2} - \frac{9}{4}$$

The minimum value is $-\frac{9}{4}$ when $x = \frac{3}{2}$ and y = -1.

Page 22 of 27

(c)

$$\frac{1}{2}x^2 + 4xy + 8y^2 - 3y^2 - 6y + 7 + \frac{1}{2}x^2 - 4x$$

$$= \frac{1}{2}(x^2 + 8xy + 16y^2) - 3(y^2 + 2y + 1) + \frac{1}{2}(x^2 - 8x + 16) + 2$$

$$= \frac{1}{2}(x + 4y)^2 - 3(y + 1)^2 + \frac{1}{2}(x - 4)^2 + 2$$

Therefore, the minimum value is 2 when x = 4 and y = -1.

Problem 1.18. (a) Suppose that $b^2 - 4c \ge 0$. Show that the numbers

$$\frac{-b+\sqrt{b^2-4c}}{2}$$
, $\frac{-b-\sqrt{b^2-4c}}{2}$

both satisfy the equation $x^2 + bx + c = 0$.

- (b) Suppose that $b^2 4c < 0$. Show that there are no numbers x satisfying $x^2 + bx + c = 0$; in fact, $x^2 + bx + c > 0$ for all x. Hint: Complete the square.
- (c) Use this fact to give another proof that if x and y are not both 0, then $x^2 + xy + y^2 > 0$.
- (d) For which number α is it true that $x^2 + \alpha xy + y^2 > 0$ whenever x and y are not both 0?
- (e) Find the smallest possible value of $x^2 + bx + c$ and of $ax^2 + bx + c$, for a > 0.

Solution. (a) Substitution immediately gives the desired result.

(b)

$$x^{2} + bx + c = x^{2} + bx + \frac{b^{2}}{4} - \frac{b^{2}}{4} + c$$

which immediately yields $\left(x+\frac{b}{2}\right)^2+\frac{[-(b^2-4c)]}{4}>0$ for all x since $b^2-4c<0$

- (c) If y = 0, $x^2 > 0$. Suppose not, using (b), we obtain $-3y^2 < 0$. Hence, $x^2 + xy + y^2 > 0$.
- (d) If y=0, the result follows for all α . Suppose $y\neq 0$, using (b), we obtain $\alpha^2y^2-4y^2<0$, which is $y^2(\alpha^2-4)<0$. It follows that $-2<\alpha<2$.

(e) From (b), it follows that the minimum value of $x^2 + bx + c$ is $\frac{[-(b^2 - 4c)]}{4}$ when x = -b/2. Since a > 0, with the role of b is now b/a and of c is c/a, we easily derive the result.

$$x^{2} + \frac{b}{a}x + \frac{c}{a} = \left(x + \frac{b}{2a}\right)^{2} + \frac{[-(b^{2} - 4ac)]}{4a^{2}}$$

So its minimum value is $\frac{[-(b^2-4ac)]}{4a^2}$ when $x=-\frac{b}{2a}$.

Problem 1.19. The fact that $a^2 \ge 0$ for all numbers a, elementary as it may seem, is nevertheless the fundamental idea upon which most important inequalities are ultimately based. The great-granddaddy of all inequalities is the *Schwarz inequality*:

$$x_1y_1 + x_2y_2 \le \sqrt{x_1^2 + x_2^2} \sqrt{y_1^2 + y_2^2}.$$

(A more general form occurs in Problem 2.21) The three proofs of the Schwarz inequality outlined below have only one thing in common—their reliance on the fact that $a^2 \geq 0$ for all a.

(a) Prove that if $x_1 = \lambda y_1$ and $x_2 = \lambda y_2$ for some number λ , then equality holds in Schwarz inequality. Prove the same thing if $y_1 = y_2 = 0$. Now suppose that y_1 and y_2 are not both 0, and that there is no number λ such that $x_1 = \lambda y_1$ and $x_2 = \lambda y_2$. Then

$$0 < (\lambda y_1 - x_1)^2 + (\lambda y_2 - x_2)^2$$

= $\lambda^2 (y_1^2 + y_2^2) - 2\lambda (x_1 y_1 + x_2 y_2) + (x_1^2 + x_2^2).$

Using Problem 1.18, complete the proof of the Schwarz inequality.

(b) Prove the Schwarz inequality by using $2xy \le x^2 + y^2$ (how is this derived?) with

$$x = \frac{x_i}{\sqrt{x_1^2 + x_2^2}}, \quad y = \frac{y_i}{\sqrt{y_1^2 + y_2^2}},$$

first for i = 1 and then for i = 2.

(c) Prove the Schwarz inequality by first proving that

$$(x_1^2 + x_2^2)(y_1^2 + y_2^2) = (x_1y_1 + x_2y_2)^2 + (x_1y_2 - x_2y_1)^2.$$

(d) Deduce, from each of these three proofs, that equality holds only when $y_1 = y_2 = 0$ or when there is a number λ such that $x_1 = \lambda y_1$ and $x_2 = \lambda y_2$.

Solution. (a) If $x_1 = \lambda y_1$ and $x_2 = \lambda y_2$ for every $\lambda \geq 0$,

$$\lambda(y_1^2 + y_2^2) = |\lambda| \sqrt{(y_1^2 + y_2^2)^2}$$
$$= \lambda(y_1^2 + y_2^2)$$

Or if $y_1 = y_2 = 0$, then equality holds since both sides are 0. Otherwise, suppose that y_1 and y_2 are not both 0, and there is no number λ such that $x_1 = \lambda y_1$ and $x_2 = \lambda y_2$, then

$$0 < \lambda^{2}(y_{1}^{2} + y_{2}^{2}) - 2\lambda(x_{1}y_{1} + x_{2}y_{2}) + (x_{1}^{2} + x_{2}^{2})$$
$$= \lambda^{2} - 2\lambda \frac{x_{1}y_{1} + x_{2}y_{2}}{y_{1}^{2} + y_{2}^{2}} + \frac{x_{1}^{2} + x_{2}^{2}}{y_{1}^{2} + y_{2}^{2}}$$

This holds only when, by Problem 1.18(b),

$$\frac{4(x_1y_1 + x_2y_2)^2}{(y_1^2 + y_2^2)^2} + \frac{[-4(x_1^2 + x_2^2)(y_1^2 + y_2^2)]}{(y_1^2 + y_2^2)^2} < 0$$

which only holds when

$$x_1y_1 + x_2y_2 < \sqrt{x_1^2 + x_2^2}\sqrt{y_1^2 + y_2^2}$$

since $a \leq |a|$ for all a.

(b) Note that $(x-y)^2 \ge 0$. For i=1,

$$\frac{x_1^2}{x_1^2 + x_2^2} + \frac{y_1^2}{y_1^2 + y_2^2} \ge 2 \cdot \frac{x_1 y_1}{\sqrt{x_1^2 + x_2^2} \sqrt{y_1^2 + y_2^2}}$$
(1.3)

For i=2.

$$\frac{x_2^2}{x_1^2 + x_2^2} + \frac{y_2^2}{y_1^2 + y_2^2} \ge 2 \cdot \frac{x_2 y_2}{\sqrt{x_1^2 + x_2^2} \sqrt{y_1^2 + y_2^2}}$$
(1.4)

(1.3)+(1.4), we derive

$$x_1y_1 + x_2y_2 \le \sqrt{x_1^2 + x_2^2}\sqrt{y_1^2 + y_2^2}$$

(c)

$$(x_1^2 + x_2^2)(y_1^2 + y_2^2)$$

$$= (x_1^2y_1^2 + 2x_1y_1x_2y_2 + x_2^2y_2^2) + (x_1^2y_2^2 - 2x_1y_2x_2y_1 + x_2^2y_1^2)$$

$$= (x_1y_1 + x_2y_2)^2 + (x_1y_2 - x_2y_1)^2$$

Note that $(x_1y_2 - x_2y_1)^2 \ge 0$. Hence,

$$x_1y_1 + x_2y_2 \le \sqrt{x_1^2 + x_2^2} \sqrt{y_1^2 + y_2^2}$$

since $a \leq |a|$ for all a.

(d) In (a), it is obvious; the proof is based on the separation of two cases, $a^2 = 0$ and $a^2 > 0$. In (b), equality occurs only when x = y; by construction, $y_1 = y_2 = 0$ or, if not,

$$\frac{x_1}{\sqrt{x_1^2 + x_2^2}} = \frac{y_1}{\sqrt{y_1^2 + y_2^2}}$$
$$\frac{x_2}{\sqrt{x_1^2 + x_2^2}} = \frac{y_2}{\sqrt{y_1^2 + y_2^2}}$$

implies that for

$$\lambda = \frac{\sqrt{x_1^2 + x_2^2}}{\sqrt{y_1^2 + y_2^2}}$$

 $x_1 = \lambda y_1$ and $x_2 = \lambda y_2$.

In (c), equality occurs only when $(x_1y_2 - x_2y_1)^2 = 0$ and $x_1y_1 + x_2y_2 \ge 0$. These will be satisfied only when $y_1 = y_2 = 0$ or for $\lambda \ge 0$, $x_1 = \lambda y_1$ and $x_2 = \lambda y_2$.

Problem 1.20. Prove that if

$$|x-x_0| < \frac{\epsilon}{2}$$
 and $|y-y_0| < \frac{\epsilon}{2}$,

then

$$|(x+y) - (x_0 + y_0)| < \epsilon,$$

$$|(x-y) - (x_0 - y_0)| < \epsilon$$

Solution. This problem mainly uses the results from Problem 1.12. For the first inequality, note that $|(x+y)-(x_0+y_0)|=|(x-x_0)+(y-y_0)|$, and

$$|(x - x_0) + (y - y_0)| \le |x - x_0| + |y - y_0|$$

 $< \frac{\epsilon}{2} + \frac{\epsilon}{2}$
 $= \epsilon$

For the second inequality, we rewrite $|(x-y)-(x_0-y_0)|=|(x-x_0)-(y-y_0)|$, then

$$|(x - x_0) - (y - y_0)| \le |x - x_0| + |y - y_0|$$

 $< \frac{\epsilon}{2} + \frac{\epsilon}{2}$
 $= \epsilon$

Problem 1.21 (*). Prove that if

$$|x - x_0| < \min\left(\frac{\epsilon}{2(|y_0| + 1)}, 1\right)$$
 and $|y - y_0| < \frac{\epsilon}{2(|x_0| + 1)},$

then $|xy - x_0y_0| < \epsilon$.

Solution. We want to utilize the more diverse cases of inequality expression in term of x, therefore we rewrite $|xy - x_0y_0| = |xy - xy_0 + xy_0 - x_0y_0|$. Hence,

$$|xy - xy_0 + xy_0 - x_0y_0| \le |x||y - y_0| + |y_0||x - x_0|$$

$$< (|x_0| + 1)\frac{\epsilon}{2(|x_0| + 1)} + |y_0|\frac{\epsilon}{2(|y_0| + 1)}$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon$$

where the first strict inequality follows from $|x| - |x_0| \le |x - x_0|$ (Problem 1.12), and the second strict inequality comes from the fact $\frac{|y_0|}{|y_0|+1} < 1$.

Problem 1.22 (*). Prove that if $y_0 \neq 0$ and

$$|y - y_0| < \min\left(\frac{|y_0|}{2}, \frac{\epsilon |y_0|^2}{2}\right),$$

then $y \neq 0$ and

$$\left|\frac{1}{y} - \frac{1}{y_0}\right| < \epsilon.$$

Solution. Note that the assumption implies $|y| > \frac{|y_0|}{2} > 0$, which further implies $\frac{1}{|y|} < \frac{2}{|y_0|}$; therefore, it must be that $y \neq 0$. Note $\left|\frac{1}{y} - \frac{1}{y_0}\right| = \left|\frac{y - y_0}{yy_0}\right|$, and from that

$$\left| \frac{y - y_0}{yy_0} \right| = |y - y_0| \left| \frac{1}{yy_0} \right|$$

$$< \frac{\epsilon |y_0|^2}{2} \frac{2}{|y_0|^2}$$

$$= \epsilon$$

Problem 1.23 (*). Replace the question marks in the following statement by expressions involving ϵ, x_0 , and y_0 so that the conclusion will be true:

If $y_0 \neq 0$ and

$$|y - y_0| < ?$$
 and $|x - x_0| < ?$

then $y \neq 0$ and

$$\left| \frac{x}{y} - \frac{x_0}{y_0} \right| < \epsilon.$$

This problem is trivial in the sense that its solution follows from Problem 1.21 and Problem 1.22 with almost no work at all (notice that $x/y = x \cdot 1/y$). The crucial point is not to become confused; decide which of the two problems should be used first, and don't panic if your answer looks unlikely.

Solution. An observation at both suggested related problems reveals

$$|y - y_0| < \min\left(\frac{|y_0|}{2}, \frac{\epsilon |y_0|^2}{4(|x_0|^2 + 1)}\right)$$

 $|x - x_0| < \min\left(\frac{\epsilon |y_0|}{2(|y_0| + 1)}, 1\right)$

Since $y_0 \neq 0$, we easily obtain $y \neq 0$ by Problem 1.22.