MLS	Dataset	BST(AIC)	BST(AICc)	BST(BIC)	BST(HQIC) B	ST(GMDL)
	abalone	47.50(3)	47.50(3)	47.50(3)	47.50(3)	47.50(3)
	airfoil_self_noise	48.90(3)	48.90(3)	48.90(3)	48.90(3)	48.90(3)
	auto_mpg	18.43(3)	18.43(3)	18.43(3)	18.43(3)	18.43(3)
	automobile	18.81(3)	18.81(3)	18.81(3)	18.81(3)	18.81(3)
	concrete_data	39.16(3)	39.16(3)	39.16(3)	39.16(3)	39.16(3)
	crime	34.64(3)	34.64(3)	34.64(3)	34.64(3)	34.64(3)
Ridge	fertility	102.78(3)	102.78(3)	102.78(3)	102.78(3)	102.78(3)
	flow	63.78(3)	63.78(3)	63.78(3)	63.78(3)	63.78(3)
	forest	100.75(3)	100.75(3)	100.75(3)	100.75(3)	100.75(3)
	qsar	43.05(3)	43.05(3)	43.05(3)	43.05(3)	43.05(3)
	servo	60.26(3)	60.26(3)	60.26(3)	60.26(3)	60.26(3)
	slump	85.69(3)	85.69(3)	85.69(3)	85.69(3)	85.69(3)
	traffic	45.06(3)	45.06(3)	45.06(3)	45.06(3)	45.06(3)
	wine_red	64.92(3)	64.92(3)	64.92(3)	64.92(3)	64.92(3)
	wine_white	72.97(3)	72.97(3)	72.97(3)	72.97(3)	72.97(3)
Avg. Rai	nk	(3.00)	(3.00)	(3.00)	(3.00)	(3.00)
	abalone	42.99(3)	42.99(3)	42.99(3)	42.99(3)	42.99(3)
SVR	airfoil_self_noise		73.78(3)	73.78(3)	73.78(3)	73.78(3)
	auto_mpg	37.33(3)	37.33(3)	37.33(3)	37.33(3)	37.33(3)
	automobile	100.17(3)	100.17(3)		100.17(3)	100.17(3)
	concrete_data	53.86(3)	53.86(3)	53.86(3)	53.86(3)	53.86(3)
	crime	42.49(3)	42.49(3)	42.49(3)	42.49(3)	42.49(3)
	fertility	114.09(3)	114.09(3)		114.09(3)	114.09(3)
	flow	76.52(4)	76.52(4)	76.51(1)	76.51(1)	76.51(3)
	forest	100.80(3)	100.80(3)	100.80(3)	100.80(3)	100.80(3)
	qsar	39.34(3)	39.34(3)	39.34(3)	39.34(3)	39.34(3)
	servo	16.01(2)	16.01(2)	16.63(4)	16.01(2)	17.35(5)
	slump	72.51(1)	72.51(1)	73.95(3)	73.95(3)	74.17(5)
	traffic	39.35(3)	39.35(3)	39.35(3)	39.35(3)	39.35(3)
	wine_red	57.52(2)	57.52(2)	65.39(4)	57.52(2)	65.39(4)
	wine_white	58.83(2)	58.83(2)	58.83(2)	58.83(2)	73.37(5)
Avg. Rai	nk	(2.83)	(2.83)	(3.07)	(2.77)	(3.50)
	abalone	44.95(3)	44.95(3)	44.95(3)	44.95(3)	44.95(3)
RFR	airfoil_self_noise	23.43(3)	23.43(3)	23.43(3)	23.43(3)	23.43(3)
	auto_mpg	14.62(3)	14.62(3)	14.62(3)	14.62(3)	14.62(3)
	automobile	14.93(3)	14.93(3)	14.93(3)	14.93(3)	14.93(3)
	concrete_data	22.79(3)	22.79(3)	22.79(3)	22.79(3)	22.79(3)
	crime	36.13(3)	36.13(3)	36.13(3)	36.13(3)	36.13(3)
	fertility	99.66(3)	99.66(3)	99.66(3)	99.66(3)	99.66(3)
	flow	66.93(3)	66.93(3)	66.93(3)	66.93(3)	66.93(3)
	forest	105.26(3)	105.26(3)	105.26(3)	105.26(3)	105.26(3)
	qsar	39.17(3)	39.17(3)	39.17(3)	39.17(3)	39.17(3)
	servo	14.06(3)	14.06(3)	14.06(3)	14.06(3)	14.06(3)
	slump	73.55(3)	73.55(3)	73.55(3)	73.55(3)	73.55(3)
	traffic	47.56(3)	47.56(3)	47.56(3)	47.56(3)	47.56(3)
	wine_red	57.64(3)	57.64(3)	57.64(3)	57.64 (3)	57.64 (3)
	wine_white	60.32(3)	60.32(3)	60.32(3)	60.32(3)	60.32(3)
Avg. Rai		(3.00)	(3.00)	(3.00)	(3.00)	(3.00)
Mean Ra		(2.94)	(2.94)	(3.02)	(2.92)	(3.17)
(. , (. , (, ()						

Table 14: The 3-fold cross validation relative mean squared error and Friedman ranks for all the datasets when BST, using several stop criteria (AIC, AICc, BIC, HQIC and GMDL), taking into account some baseline systems (Ridge, SVR and RFR) and the BO sampling strategy.