Magnetism with density functional theory

Spin density functional theory

Bluegel, IFF Spring School ('14)

Kohn-Sham formulation of DFT

$$[-\frac{\hbar^2}{2m}\nabla^2 + v(\mathbf{r}) + \int \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' + \frac{\delta E_{XC}}{\delta n(\mathbf{r})}]\phi_i(\mathbf{r}) = \epsilon_i \phi_i(\mathbf{r})$$
$$n(\mathbf{r}) = \sum_{i=1}^{N} |\phi_i(\mathbf{r})|^2$$

Generalization to spin DFT (Barth & Hedin (1972))

2x2 spin-density matrix
$$N$$

$$n_{\alpha\beta}(\mathbf{r}) = \sum_{i=1}^{N} \phi_i^{*\alpha}(\mathbf{r}) \phi_i^{\beta}(\mathbf{r})$$

$$\underline{\mathbf{n}}(\mathbf{r}) = \frac{1}{2} (n(\mathbf{r})\mathbf{I} + \sigma \cdot \mathbf{m}(\mathbf{r}))$$

$$= \frac{1}{2} \begin{pmatrix} n(\mathbf{r}) + m_z(\mathbf{r}) & m_x(\mathbf{r}) - im_y(\mathbf{r}) \\ m_x(\mathbf{r}) + im_y(\mathbf{r}) & n(\mathbf{r}) - m_z(\mathbf{r}) \end{pmatrix}$$

Spin density functional theory (contd.)

Similarly, potential matrices are written as

$$\underline{\mathbf{v}}(\mathbf{r}) = v(\mathbf{r})\mathbf{I} + \mu_B \boldsymbol{\sigma} \cdot \mathbf{B}(\mathbf{r})$$

$$\underline{\mathbf{v}}_{\mathbf{x}\mathbf{C}}(\mathbf{r}) = v_{\mathbf{x}\mathbf{C}}(\mathbf{r})\mathbf{I} + \mu_B \boldsymbol{\sigma} \cdot \mathbf{B}_{\mathbf{X}\mathbf{C}}(\mathbf{r})$$

Magnetic ground state of hexagonal Cr monolayer

For collinear case

$$\left(\frac{\hbar^2}{2m}\nabla^2 + v_{Coul}(\mathbf{r}) + B_z(\mathbf{r}) + v_{XC}^{\uparrow}(\mathbf{r})\right)\phi_i^{\uparrow}(\mathbf{r}) = \epsilon_i^{\uparrow}\phi_i^{\uparrow}(\mathbf{r})$$

$$\left(\frac{\hbar^2}{2m}\nabla^2 + v_{Coul}(\mathbf{r}) - B_z(\mathbf{r}) + v_{XC}^{\downarrow}(\mathbf{r})\right)\phi_i^{\downarrow}(\mathbf{r}) = \epsilon_i^{\downarrow}\phi_i^{\downarrow}(\mathbf{r})$$

Bluegel, IFF Spring School ('14)

Performance of DFT

Comparison between theory and experiment

Property	source	Fe (bcc)	Co (fcc)	Ni (fcc)	Gd (hcp)
$M_{ m spin}$	LSDA	2.15	1.56	0.59	7.63
$M_{ m spin}$	GGA	2.22	1.62	0.62	7.65
$M_{ m spin}$	experiment	2.12	1.57	0.55	
$M_{ m tot.}$	experiment	2.22	1.71	0.61	7.63

Random binary alloys

Slater-Pauling curve

Magnetic moment (μ_B/atom)

Effective alloy Z number

Nominal number of minority band holes

LMTO + **Coherent Potential** Approximation (CPA)

PRB **59**, 419 (1999)

Element-specific magnetic measurements

XAS: X-ray absorption spectroscopy XMCD: X-ray magnetic circular dichroism

Spin-dipolar contribution

Spin dipole operator:

$$T = \sum_{i} \left[s^{(i)} - 3 \frac{r^{(i)} (r^{(i)} \cdot s^{(i)})}{|r^{(i)}|^{2}} \right]$$

$$T = \sum_{i} Q^{(i)} s^{(i)}$$

XMCD:
$$m_{eff}=m_S+7$$

Angular dependence

$$m_{eff}(\theta) = m_S + 7T(\theta)$$
$$T(\theta) \sim \frac{1}{2} (3Cos^2\theta - 1)$$

PRB 82, 014405 (2010)

Quadrupolar tensor
$$Q_{\alpha\beta}^{(i)}=\delta_{\alpha\beta}-3\hat{r}_{\alpha}^{(i)}\hat{r}_{\beta}^{(i)}$$

$$T_{\pm} = \sum_{vv'} T_{vv'}^{(\pm)} a_v^{\dagger} a_{v'} \qquad T_z = \sum_{vv'} T_{vv'}^{(z)} a_v^{\dagger} a_{v'} \qquad c_m^{(l)}(\hat{r}) = \sqrt{\frac{4\pi}{2l+1}} Y_{lm}(\hat{r})$$

$$c_m^{(l)}(\hat{r}) = \sqrt{\frac{4\pi}{2l+1}} Y_{lm}(\hat{r})$$

$$T_{vv'}^{(\pm)} = \langle v | c_0^{(2)} s_{\pm} - \sqrt{6} c_{\pm 2}^{(2)} s_{\mp} \pm \sqrt{6} c_{\pm 1}^{(2)} s_z | v' \rangle \qquad |v\rangle = |l, m, \sigma\rangle$$

$$T_{vv'}^{(z)} = \langle v | -\sqrt{\frac{3}{2}}c_1^{(2)}s_+ + \sqrt{\frac{3}{2}}c_1^{(2)}s_- - 2c_0^{(2)}s_z | v' \rangle$$
 Crystal field No spin-flip

Oguchi and Shishidou, Phys. Rev. B 70, 024412 (2004).

Importance of spin-dipolar contribution

Verwey transition (cubic -> monoclinic)

Table 1 | Charge, spin and magnetic dipole moments for 3d orbitals of Fe atoms at different sites in the monoclinic unit cell. Also, effective moments ($\mu_{S,eff} = -2 \langle S_z \rangle \mu_B + 7 \langle T_z \rangle \mu_B$) are provided. The Fe sites are named as in Ref. [17]

Fe site	d-charge	$-2\langle S_z \rangle$	$7\langle T_z\rangle$	μ _{S,eff} (μ _B)
A1	5.91	-3.98	-0.015	-3.995
A2	5.91	-3.98	0.025	-3.955
B1	6.08	3.67	0.72	4.39
B2	5.82	4.14	0.043	4.183
B3	5.85	4.08	0.027	4.107
B4	6.1	3.64	-1.44	2.20

Sci. Rep. 4, 5760 (2014)

Finite temperature magnetism Step 1 (DFT + Monte Carlo simulations)

Map DFT to an effective spin model

Classical Heisenberg Hamiltonian

Classical Heisenberg Hamilton
$$H = -\sum_{i \neq j} J_{ij} \vec{e}_i \vec{e}_j$$

$$J_{ij} = \frac{1}{4\pi} \int_{-4\pi}^{E_F} dE \operatorname{Im} \{ Tr_L(\Delta_i T_{\uparrow}^{ij} \Delta_j T_{\downarrow}^{ji}) \}$$

$$\Delta_i = t_{i\uparrow}^{-1} - t_{i\downarrow}^{-1} \qquad t: \text{on-site scattering matrix}$$

T: scattering path operator

 $J_{ii}>0$, ferromagnetic J_{ii} <0, antiferromagnetic

Finite temperature magnetism (contd.)

Step 2 Monte-Carlo simulations

$$H = -\sum_{i \neq j} J_{ij} \vec{e}_i \vec{e}_j$$

Metropolis algorithm

Determination of critical temperature :

4th order cumulant crossing method

$$U_L = 1 - \frac{\langle M^4 \rangle}{3 \langle M^2 \rangle^2}$$

M : magnetization (order parameter)

Also from magnetization/susceptibility/specific heat vs. temperature

Finite temperature magnetism (contd.)

Interatomic exchange parameters

Kvashnin et al., PRB 91, 125133 (2015)

Orbital-decomposed exchange parameters

$$J_{ij} = J_{ij}^{E_g - E_g} + J_{ij}^{E_g - T_{2g}} + J_{ij}^{T_{2g} - T_{2g}}$$

Fe and Mn are different from others

T_{2g}-T_{2g} and E_g-E_g interactions are opposite in sign

 T_{2g} - T_{2g} interactions are long ranged. Also they are the dominant interactions.

Analysis of electronic structure

T_{2g} states are dominant at the Fermi level

 T_{2g} states contribute to long-range exchange coupling, not E_g .

PRL **116**, 217202 (2016)

Finite temperature magnetism (contd.)

Oxides: Monte Carlo simulation

Quadruple perovskite CaCu₃Fe₂Re₂O₁₂

Half-metallic, large magnetization, high

transition temperature

Wang & Sanyal, unpublished

Atomistic spin dynamics

Landau-Lifshitz-Gilbert equation of motion

$$\frac{d\mathbf{m}_{i}}{dt} = -\gamma \mathbf{m}_{i} \times [\mathbf{B}_{i} + \mathbf{b}_{i}(t)] - \gamma \frac{\alpha}{m} \mathbf{m}_{i} \times (\mathbf{m}_{i} \times [\mathbf{B}_{i} + \mathbf{b}_{i}(t)])$$

precession

Effective field
$$\mathbf{B}_i = -\frac{\partial H}{\partial \mathbf{m}_i}$$

damping

 $\mathbf{b}_i(t)$: Stochastic magnetic field

lpha : damping parameter

 γ : electron gyromagnetic ratio

Exchange (classical Heisenberg)

$$H_{ex} = -\frac{1}{2} \sum_{i \neq j} J_{ij} \mathbf{m}_i \cdot \mathbf{m}_j$$

Dzyaloshinskii-Moriya (spin-orbit coupling)

$$H_{DM} = \sum_{ij} \mathbf{D}_{ij} \cdot (\mathbf{S}_i \times \mathbf{S}_j)$$

Skubic et al., J. Phys: Condens. Matt. 20, 315203 (2008)

Atomistic spin dynamics webpage: http://www.physics.uu.se/cmt/asd

Home grown code: UppASD

Ultrafast magnetization dynamics (ab initio theory + spin dynamics)

Atomic and macrospin dynamics & time evolution of electron and spin temperatures (bcc Fe)

