Репозиторий проекта.

# 1 Постановка задачи

В работе было необходимо построить прогноз значений временного ряда с помощью моделей эконометрики, рассмотренных в курсе.

Модель ARIMA(p,d,q) – это расширение моделей типа ARMA на нестационарные временные ряды, которые однако могут стать стационарным после применения процедуры дифференцирования ряда. Модель ARIMA(p, d, q) для ряда  $y_t$  определяется как модель ARMA(p,q) для ряда разностей порядка d ряда  $y_t$ .

ARIMA(p, d, q) модель:

$$\Delta^d y_t = \alpha_1 \Delta^d y_{t-1} + \dots + \alpha_p \Delta^d y_{t-p} + \varepsilon_t + \beta_1 \varepsilon_{t-1} + \dots + \beta_q \varepsilon_{t-q},$$

где:  $y_t$  — значение временного ряда в момент времени  $t, \Delta^d = (1-L)^d, \, \varepsilon_t$  - белый шум. L - лаговый оператор.

Обобщение модели ARIMA на ряды с наличием сезонной составляющей назвается SARIMA. Пусть s — известная сезонность ряда. Добавим в модель ARIMA(p,d,q) компоненты, отвечающие за значения в предыдущие сезоны. Тогда модель SARIMA может быть записана следующим образом:

SARIMA(p, d, q)(P, D, Q)s модель:

$$\Delta_s^D \Delta^d y_t = \alpha_1 \Delta_s^D \Delta^d y_{t-1} + \dots + \alpha_p \Delta_s^D \Delta^d y_{t-p}$$

$$+ \varepsilon_t + \beta_1 \varepsilon_{t-1} + \dots + \beta_q \varepsilon_{t-q}$$

$$+ \alpha_1^s \Delta_s^D \Delta^d y_{t-s} + \dots + \alpha_p^s \Delta_s^D \Delta^d y_{t-ps}$$

$$+ \beta_1^s \varepsilon_{t-s} + \beta_O^s \varepsilon_{t-Qs}.$$

где: 
$$\Delta_s^D = (1 - L^s)^D$$

Обобщением SARIMA модели является SARIMAX модель. SARIMAX (Seasonal AutoRegressive Integrated Moving Average with eXogenous inputs) – это эконометрическая модель для прогнозирования временных рядов с учетом сезонности и внешних факторов.

# 2 Ход работы

## 2.1 Данные

В работе решалась задача прогнозирования числа продаж в сети магазинов Эквадора за 2016 год. Данные были взяты с сайта Kaggle. Всего в работе использовались 3 файла (train.csv, stores.csv, oil.csv), на основе которых формировался итоговый датасет.

Описание значений переменных файла train.csv:

- store nbr идентифицирует магазин, в котором продаются товары.
- family определяет тип продаваемого продукта.
- sales указывает общую сумму продаж для определенной группы товаров в конкретном магазине на заданную дату. Возможны дробные значения, так как товары могут продаваться в дробных единицах (например, 1,5 кг сыра вместо 1 пакета чипсов).
- *onpromotion* указывает общее количество товаров в группе продуктов, которые были на акции в магазине на заданную дату.

Файл stores.csv содержит метаданные магазинов, включая город, штат, тип и кластер (все магазины были разбиты на группы по схожести). Файл oil.csv содержит ежедневные цены на нефть. Включает значения как в период обучения, так и в период тестирования. (Эквадор — страна, зависимая от нефти, и ее экономическое состояние сильно подвержено колебаниям цен на нефть.)

## 2.2 Модели и их валидация

Было рассмотрено 3 модели для прогнозирования временного ряда:

- ARIMA модель с ручной настройкой параметров p, d и q
- SARIMAX модель
- Модель машинного обучения (градиентный бустинг XGBRegressor)

Качество оценивалось с помощью следующих метрик: MSE, RMSE, MAE, абсолютная процентная ошибка. Результаты сравнивались с наивным прогнозом – средним числом продаж за последние 3 месяца. Для моделей SARIMAX и бустинга рассматривались два подхода. В первом случае в качестве переменных в модель подавались временные признаки: номера месяца, квартала, дня в году и недели, а также день недели. Кроме этого, использовались «лаговые переменные»: число продаж в эту же дату год, два и три назад (если есть данные за этот период). Такой подход позволяет получать прогноз модели на любое число дней вперед. Во втором случае к этим переменным добавлялись переменные из датасета: цена на топливо за выбранную дату, число акций в магазинах и число транзакций. Трудность второго подхода заключается в том, что мы не знаем будущие значений добавленных драйверов заранее. Если мы хотим получить прогноз на даты, которых нет в нашем датасете, — величины драйверов тоже придется предсказывать.

### 2.3 Предварительная обработка данных

Переменные датасета требовали предварительной предобработки. Например, в значениях цены на газ были пропуски, которые были заполнены с помощью интерполяции квадратичными сплайнами. На рисунках 1 и 2 приведены графики цены до интерполяции и после соответственно.



Рис. 1: Цена за литр топлива в Эквадоре до интерполяции.



Рис. 2: Цена за литр топлива в Эквадоре после интерполяции.

Кроме этого, категориальные переменные, такие как тип магазина, его локация и флаг праздничного дня, были закодированы числовыми значениями. Однако далее все эти признаки были исключены из модели из-за маленькой дисперсии (весь признак мог быть заполнен одним значением) или из-за их мальтиколлинеарности. Кроме того, для этих признаков наблюдалось большая доля пропусков, порядка 80 процентов.

### 2.4 Обучение моделей

### 2.4.1 Наивный прогноз

Как уже было описано ранее, для наивного прогноза использовалось среднее значение продаж в Эквадоре за последние 3 месяца 2016 года. График прогноза приведен на рисунке 3.



Рис. 3: Наивный прогноз для продаж в Эквадоре.

Для прогноза были измерены основные метрики. Их значения приведены в таблице 1.

Таблица 1: Значения метрик на прогнозе модели градиентного бустинга.

|                      | MSE      | RMSE   | MAE    | Процентная ошибка |
|----------------------|----------|--------|--------|-------------------|
| Временные переменные | 20703.85 | 143.88 | 114.75 | 0.2               |

#### 2.4.2 ARIMA модель

Выбор параметров для ARIMA модели осуществлялся на основе значений функций автокорреляции и частичной автокорреляции. Стационарность ряда проверялась с помощью теста Дики — Фуллера.

Было установлено, что исходный ряд не является стационарным (p-value:0.68). После однократного дифференцирования ряд стал стационарным  $(p-value:6.33\cdot 10^{-14})$ . Кроме того, для ошибок был построен график их распределения, оно оказалось близко к нормальному.

Результаты работы ARIMA модели проведены на рисунке 4.



Рис. 4: Прогноз ARIMA модели для числа продаж в Эквадоре.

Из графика видно, что модель не улавливает динамику ряда и очень скоро прогноз превращается в константный. Значения метрик для ARIMA модели приведены в таблице 2.

Таблица 2: Значения метрик на прогнозе ARIMA модели.

|                      | MSE     | RMSE   | MAE   | Процентная ошибка |
|----------------------|---------|--------|-------|-------------------|
| Временные переменные | 11908.6 | 109.13 | 93.53 | 1.491             |

#### 2.4.3 SARIMAX модель

Главное отличие SARIMAX модели от ARIMA модели – ее способность учитывать сезонность в предсказании, а также дополнительные параметры, помимо значений самого ряда. Как уже было сказано выше, в качестве дополнительных параметров в модель подавались значения числа продаж в дату, цена топлива и числа акций в магазинах. Обучение модели проходило автоматически с помощью пакета statsmodels языка Python. Кроме того, модель обучалась два раза: в первый раз – только на временных и лаговых переменных, во второй – с дополнительными переменными. Результаты предсказания модели приведены на рисунке 5. Значения метрик представлены в таблице 3.

Из графика и значений метрик видно, что учет в модели дополнительных параметров дает значительный прирост в качетсве предсказания.



Рис. 5: Прогноз SARIMAX модели для числа продаж в Эквадоре.

Таблица 3: Значения метрик на прогнозе SARIMAX модели.

|                                       | MSE      | RMSE    | MAE    | Процентная ошибка |
|---------------------------------------|----------|---------|--------|-------------------|
| Временные переменные                  | 24258.07 | 155.75  | 125.47 | 0.22              |
| Временные переменные + дополнительные | 19785.57 | 140.661 | 88.76  | 0.15              |

### 2.4.4 Boosting

В качестве дополнения к работе нам было интересно посмотреть, какие результаты покажет на тех же входных данных бустинг. Принцип работы бустинга принципиально отличается от эконометрических моделей, рассмотренных выше.

В работе рассматривался XGBRegressor из библиотеки *sklearn*. Обучение также как и для SARIMAX модели осуществлялось двумя подходами. Перебор гиперпараметров осуществлялся с помощью библиотеки *hyperopt*. В отличии от обычного перебора по сетке, данный подход использует средства Байесовской оптимизации. Кроме того, при переборе гиперпараметров использовалась кросс-валидация, адаптированная под временные ряды.

Результаты предсказания модели приведены на рисунке 6. Значения метрик представлены в таблице 4.

Из графика и значений метрик видно, что точность прогноза для спецификации с дополнительными переменными близка к реальным значениям числа продаж.



Рис. 6: Прогноз модели градиентного бустинга для числа продаж в Эквадоре.

Таблица 4: Значения метрик на прогнозе модели градиентного бустинга.

|                                       | MSE      | RMSE   | MAE   | Процентная ошибка |
|---------------------------------------|----------|--------|-------|-------------------|
| Временные переменные                  | 14971.71 | 122.36 | 86.83 | 0.15              |
| Временные переменные + дополнительные | 2745.55  | 52.4   | 39.19 | 0.07              |

## 3 Заключение

В работе была решена задача прогнозирования числа продаж в сети магазинов Эквадора за 2016 год. Было рассмотрено 3 способа прогнозирования:

- ARIMA модель с ручной настройкой параметров p, d и q
- SARIMAX модель
- Модель машинного обучения (градиентный бустинг, XGBRegressor)

Было установлено, что среди эконометрических моделей лучше всего себя показала модель SARIMAX. Этот результат, в частности, обусловлен ее способностью учета внешних параметров, а не только прошлые значения ряда.

Кроме того, в работе дополнительно был рассмотрен способ прогнозирования с помощью градиентного бустинга. Этот метод превзошел все эконометрические модели по качеству предсказаний.