Error Behaviour of Newton's Method

Newton's method is a procedure for finding approximate solutions to equations of the form f(x) = 0. The procedure is to

- 1) Make a preliminary guess x_1 .
- 2) Define $x_2 = x_1 \frac{f(x_1)}{f'(x_1)}$.
- 3) Iterate. That is, once you have computed x_n , define $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$.

Newton's method usually works spectacularly well, provided your initial guess is reasonably close to a solution of f(x) = 0. A good way to select this initial guess is to sketch the graph of y = f(x). In these notes we shall see why "Newton's method usually works spectacularly well, provided your initial guess is reasonably close to a solution of f(x) = 0". We shall assume that there are two numbers L, M > 0 such that f obeys:

- H1) $|f'(x)| \ge L$ for all x
- H2) $|f''(x)| \leq M$ for all x

Let r be any solution of f(x) = 0. Then f(r) = 0. Suppose that we have already computed x_n . The error in x_n is $|x_n - r|$. We now derive a formula that relates the error after the next step, $|x_{n+1} - r|$, to $|x_n - r|$. We have seen in class that

$$f(x) = f(x_n) + f'(x_n)(x - x_n) + \frac{1}{2}f'(c)(x - x_n)^2$$

for some c between x_n and x. In particular, choosing x = r,

$$0 = f(r) = f(x_n) + f'(x_n)(r - x_n) + \frac{1}{2}f'(c)(r - x_n)^2$$
(1)

By the definition of x_{n+1} ,

$$0 = f(x_n) + f'(x_n)(x_{n+1} - x_n)$$
(2)

(In fact, we defined x_{n+1} as the solution of $0 = f(x_n) + f'(x_n)(x - x_n)$.) Subtracting (2) from (1).

$$0 = f'(x_n)(r - x_{n+1}) + \frac{1}{2}f''(c)(r - x_n)^2 \implies x_{n+1} - r = \frac{f''(c)}{2f'(x_n)}(x_n - r)^2$$
$$\Rightarrow |x_{n+1} - r| = \frac{|f''(c)|}{2|f'(x_n)|}|x_n - r|^2$$

If the guess x_n is close to r, then c, which must be between x_n and r, is also close to r and $|x_{n+1}-r| \approx \frac{|f''(r)|}{2|f'(r)|}|x_n-r|^2$. Even if x_n is not close to r, by the hypotheses (H1) and (H2) on the behaviour of f

$$\left| x_{n+1} - r \right| \le \frac{M}{2L} |x_n - r|^2$$
 (3)

Let's denote by ε_1 the error $|x_1 - r|$ of our initial guess. In fact, let's denote by ε_n the error $|x_n - r|$ in x_n . Then (3) says

$$\varepsilon_{n+1} \le \frac{M}{2L} \varepsilon_n^2$$

In particular

$$\varepsilon_{2} \leq \frac{M}{2L}\varepsilon_{1}^{2}$$

$$\varepsilon_{3} \leq \frac{M}{2L}\varepsilon_{2}^{2} \leq \frac{M}{2L} \left(\frac{M}{2L}\varepsilon_{1}^{2}\right)^{2} = \left(\frac{M}{2L}\right)^{3} \varepsilon_{1}^{4}$$

$$\varepsilon_{4} \leq \frac{M}{2L}\varepsilon_{3}^{2} \leq \frac{M}{2L} \left(\left(\frac{M}{2L}\right)^{3} \varepsilon_{1}^{4}\right)^{2} = \left(\frac{M}{2L}\right)^{7} \varepsilon_{1}^{8}$$

$$\varepsilon_{5} \leq \frac{M}{2L}\varepsilon_{4}^{2} \leq \frac{M}{2L} \left(\left(\frac{M}{2L}\right)^{7} \varepsilon_{1}^{8}\right)^{2} = \left(\frac{M}{2L}\right)^{15} \varepsilon_{1}^{16}$$

By now we can see a pattern forming, that is easily verified by induction

$$\varepsilon_n \le \left(\frac{M}{2L}\right)^{2^{n-1}-1} \varepsilon_1^{2^{n-1}} = \frac{2L}{M} \left(\frac{M}{2L}\varepsilon_1\right)^{2^{n-1}}$$

As long as $\frac{M}{2L}\varepsilon_1 < 1$ (which tells us quantitatively how good our first guess has to be in order for Newton's method to converge), this goes to zero extremely quickly as n increases. For example, suppose that $\frac{M}{2L}\varepsilon_1 \leq \frac{1}{2}$. Then

Each time you increase n by one, the number of zeroes after the decimal place roughly doubles.