VOLKAN KURSUN Bilkent University

# Number Representation and Arithmetic Circuits

# **VOLKAN KURSUN**

Some material from McGraw Hill

**EEE 102 Introduction to Digital Circuit Design** 

Bilkent University

### VOLKAN KURSUN

# **One-Bit Addition**

□Four possible input combinations and

three possible results

$$\frac{x}{c} + \frac{y}{c}$$

$$\frac{1}{c} + \frac{y}{c}$$
Sum

$$\frac{+}{0}$$

(a) The four possible cases

|   |   | Carry | Sum |
|---|---|-------|-----|
| х | У | С     | S   |
| 0 | 0 | 0     | 0   |
| 0 | 1 | 0     | 1   |
| 1 | 0 | 0     | 1   |
| 1 | 1 | 1     | 0   |
|   |   |       |     |

rsitv

**VOLKAN KURSUN** 

### **Outline**

Bilkent University

- Addition of Unsigned Numbers
- Arithmetic Overflow (Unsigned)
- Signed Numbers
- Addition of Signed Numbers
- Subtraction of Signed Numbers
- Arithmetic Overflow (Signed)

**EEE 102 Introduction to Digital Circuit Design** 

VOLKAN KURSUN

Bilkent University

**VOLKAN KURSUN** 

# **Half Adder**

□ Half adder: the circuit used for adding two bits

|     | Carry | Sum |
|-----|-------|-----|
| x y | с     | S   |
| 0 0 | 0     | 0   |
| 0 1 | 0     | 1   |
| 1 0 | 0     | 1   |
| 1 1 | 1     | 0   |
|     |       |     |

(b) Truth table





VOLKAN KURSUN Bilkent University

# **Multi-Bit Addition**

□ Example: add two 5-bit unsigned numbers

□With 5-bits, unsigned numbers in the range of 0 to 2<sup>5</sup>-1 (31) can be represented

Generated carries 
$$\longrightarrow$$
 1 1 1 0 ...  $c_{i+1}$   $c_i$  ...  $X = x_4 x_3 x_2 x_1 x_0$  0 1 1 1 1 (15)<sub>10</sub> ...  $x_i$  ...

□ At each bit position i, there may be a carry-in coming from the previous bit position i-1

# Multi-Bit Addition

□ At each bit position i, addition operation requires addition of three bits: x<sub>i</sub>, y<sub>i</sub>, and c<sub>i</sub>

□ For multi-bit addition, design a logic circuit that has 3 inputs  $(c_i, x_i, and y_i)$  and 2 outputs  $(c_{i+1} and s_i)$ 

Generated carries 
$$\longrightarrow$$
 1 1 1 0 ...  $c_{i+1}$   $c_i$  ...  $X = x_4 x_3 x_2 x_1 x_0$  0 1 1 1 1 (15)<sub>10</sub> ...  $x_i$  ...

EEE 102 Introduction to Digital Circuit Design

 $S = S_4 S_3 S_2 S_1 S_0$ 

**Bilkent University** 

**VOLKAN KURSUN** 

VOLKAN KURSUN

**Bilkent University** 

# **Full Adder**

 $\square$ 3 inputs (c<sub>i</sub>, x<sub>i</sub>, and y<sub>i</sub>) and 2 outputs (c<sub>i+1</sub>

**VOLKAN KURSUN** 

EEE 102 Introduction to Digital Circuit Design

| and s <sub>i</sub> ) |       |       |                    |       | $x_i y$       |          |                 |              |           |
|----------------------|-------|-------|--------------------|-------|---------------|----------|-----------------|--------------|-----------|
| C                    | r     | 1,    | C                  | C     | $c_i$         | 00       | 01              | 11           | 10        |
| i                    | $x_i$ | $y_i$ | $\mathbf{c}_{i+1}$ | $s_i$ | 0             |          | 1               |              | 1         |
| 0                    | 0     | 0     | 0                  | 0     | 1             | 1        |                 | 1            |           |
| 0                    | 0     | 1     | 0                  | 1     |               | $S_{i}$  | $= x_i \in$     | $y_i \oplus$ | $c_{i}$   |
| 0                    | 1     | 0     | 0                  | 1     |               |          |                 | •            | •         |
| 0                    | 1     | 1     | 1                  | 0     | $c_i^{x_i y}$ | i<br>00  | 01              | 11           | 10        |
| 1                    | 0     | 0     | 0                  | 1     | 0             |          |                 |              |           |
| 1                    | 0     | 1     | 1                  | 0     |               |          |                 |              |           |
| 1                    | 1     | 0     | 1                  | 0     | 1             |          |                 |              | I         |
| 1                    | 1     | 1     | 1                  | 1     | $c_{i}$ +     | $_1 = x$ | $_{i}y_{i} + x$ | $c_i c_i +$  | $y_i c_i$ |

# Full Adder Implementation

 $(25)_{10}$ 

11001





□A full adder can be constructed using half adders



**VOLKAN KURSUN** Ripple Carry Adder

□An n-bit adder can be formed by using n

full adders: the carry signals ripple through the full adder stages from right to left



□ Quite slow if n is high but a ripple carry adder is easy to design and compact

EEE 102 Introduction to Digital Circuit Design

**VOLKAN KURSUN** 

**Bilkent University** 

**VOLKAN KURSUN** 

### **Decomposed Full Adder Implementation**

Prove  $c_{i+1} = x_i y_i + x_i c_i + y_i c_i = x_i y_i + (x_i \oplus y_i) c_i$ using Karnaugh maps



VOLKAN KURSUN 4-Bit Ripple Carry Adder



EEE 102 Introduction to Digital Circuit Design

**VOLKAN KURSUN** 



VOLKAN KURSUN

### **Outline**

Addition of Unsigned Numbers

- Arithmetic Overflow (Unsigned)
- Signed Numbers
- Addition of Signed Numbers
- Subtraction of Signed Numbers
- Arithmetic Overflow (Signed)

VOLKAN KURSUN

8-Bit Ripple Carry Adder
Can be designed with two 4-bit adders



**VOLKAN KURSUN** 

**VOLKAN KURSUN** 

**Bilkent University** 

**Unsigned** Integers: Addition

 Addition is just like in elementary school. Add bits in each position and carry 1s to more significant bit positions

$$00111 7 + 00110 + 6 01101 13$$

EEE 102 Introduction to Digital Circuit Design

- Assume an n-bit architecture with n-bit source operands provided by n-bit registers and the result will be stored in an n-bit register
- Range of unsigned integers that can be represented with n-bits:  $0 \text{ to } +2^{n}-1$
- OVERFLOW: if an addition operation produces a result that cannot be correctly represented with n-bits (result > +2<sup>n</sup>-1), an overflow occurs

**Bilkent University** 

### **VOLKAN KURSUN Bilkent University** nsigned Integers: Addition

- Examples: assume an architecture with 5-bit registers and operands. Range of unsigned integers that can be represented with 5-bits: 0 to  $+2^5-1 = 0$  to +31
- OVERFLOW: if an unsigned addition operation produces a result that cannot be correctly represented with 5-bits (result > +31) an overflow occurs



**VOLKAN KURSUN** 

### **Outline**

- Addition of Unsigned Numbers
- Arithmetic Overflow (Unsigned)
- Signed Numbers
- Addition of Signed Numbers
- Subtraction of Signed Numbers
- Arithmetic Overflow (Signed)

### **VOLKAN KURSUN Bilkent University** nsigned Integers: Addi

- OVERFLOW: if an addition operation produces a result that cannot be correctly represented with 5-bits (result > +31) an overflow occurs
- OBSERVATION: In unsigned addition overflow is captured by the carry output from the most significant bit position. If Cout 4 = 1, there is an overflow If Cout 4 = 0, there is NO overflow
- Carry output from the most significant bit position (Cout (n-1)) can be used as the **overflow flag** for unsigned addition



**VOLKAN KURSUN** 

**Bilkent University** 

# **Signed** Integers (2's-Complement)

Most significant bit is the sign bit:

MSB = 0: positive integer

MSB = 1: negative integer

A number is negated by inverting all the bits and adding 1 to the inverted number: 2's complement representation

Signed Number Representation

Two's complement representation

- Used by modern computers
- •Example: 0b 101 = -3
- Properties
  - Only one zero
  - One more negative number than positive number
  - All negative numbers have a 1 in the most significant bit (MSB)

EEE 102 Introduction to Digital Circuit Design

**Bilkent University** 

Two's

Complement

000 = +0001 = +1

010 = +2

011 = +3

100 = -4101 = -3

110 = -2111 = -1

### **VOLKAN KURSUN**

### **Signed Negation**

 To negate a number: complement all digits and add 1 Complement (or invert) means  $1 \rightarrow 0$ ,  $0 \rightarrow 1$ 

$$x + x = 0b11111...111 = -1$$

$$\bar{x} + 1 = -x$$

Example: negate +2 (write -2 in binary)

$$+2 = 0b 0000 0000 \dots 0010$$

**Signed Integers (2s-Complement)** 

Decimal equivalent of an n-bit signed binary number:

$$x = \frac{1}{2}x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \dots + x_12^1 + x_02^0$$

Range:  $-2^{n-1}$  to  $+2^{n-1}-1$ 

- Range with 32 bits: -2<sup>31</sup> to +2<sup>31</sup> 1
  - -2,147,483,648 to +2,147,483,647
- Example:

0b 1111 1111 1111 1111 1111 1111 1100

$$= -1 \times 2^{31} + 1 \times 2^{30} + ... + 1 \times 2^{2} + 0 \times 2^{1} + 0 \times 2^{0}$$

= **-2,147,483,648** + 2,147,483,644 = (-4)<sub>10</sub>

EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN

### **Bilkent University Signed Binary** ↔ **Decimal Conversion**

 $0b1001010 = ?_{ten}$ 

| Binary<br>Digit | De | eci | mal            | Va  | llue |
|-----------------|----|-----|----------------|-----|------|
| 0               | 0  | х   | 20             | =   | 0    |
| 1               | 1  | х   | 21             | =   | 2    |
| 0               | 0  | х   | 22             | =   | 0    |
| 1               | 1  | х   | 23             | =   | 8    |
| 0               | 0  | х   | $2^4$          | =   | 0    |
| 0               | 0  | х   | 2 <sup>5</sup> | =   | 0    |
| 1               | -1 | х   | 2 <sup>6</sup> | =   | -64  |
|                 | Σ  | : = | <u> </u>       | 54. |      |

EEE 102 Introduction to Digital Circuit Design

Signed Binary → Decimal | Decimal → Signed Binary

-54 = 0b?

| Decimal                  | <b>Binary Digit</b>      |  |  |
|--------------------------|--------------------------|--|--|
| -54/2 = -27              | 0                        |  |  |
| -27/2 = -14              | 1                        |  |  |
| -14/2 = -7               | 0                        |  |  |
| -7/2 = -4                | 1                        |  |  |
| -4/2 = -2                | 0                        |  |  |
| -2/2 = -1                | 0                        |  |  |
| -1/2 = -1                | 1                        |  |  |
| -1/2 = -1                | 1: repeats               |  |  |
| Collect → remainder bits | 0b <mark>1</mark> 001010 |  |  |

Repeating sign bit

**VOLKAN KURSUN** 

**VOLKAN KURSUN Bilkent University Decimal** → **Binary Conversion Notes** 

Positive Decimal → Binary | Negative Decimal → Binary Continue division until quotient and remainder

| both become 0 and repeat (sign bit 0 repeats) |  |  |  |  |  |
|-----------------------------------------------|--|--|--|--|--|
| Decimal Binary Digi                           |  |  |  |  |  |
| +15                                           |  |  |  |  |  |

| Continue division until quotient becomes -1, remainder |  |  |  |  |
|--------------------------------------------------------|--|--|--|--|
| becomes 1, and they repeat (sign bit 1 repeats)        |  |  |  |  |

| Decimal                  |                   | <b>Binary Digit</b>    | Decimal                  | <b>Binary Digit</b> |
|--------------------------|-------------------|------------------------|--------------------------|---------------------|
| +1                       | 5                 |                        | -15                      |                     |
| +15/2                    | = +7              | 1                      | -15/2 = -8               | 1                   |
| +7/2                     | = +3              | 1                      | -8/2 = -4                | 0                   |
| +3/2                     | = +1              | 1                      | -4/2 = -2                | 0                   |
| +1/2                     | = 0               | 1                      | -2/2 = -1                | 0                   |
| 0/2                      | = 0               | 0                      | -1/2 = -1                | 1                   |
| 0/2                      | = 0               | 0                      | -1/2 = -1                | 1                   |
| Sign bit                 |                   | repeats                | Sign bit                 | repeats             |
| Collect > remainder bits |                   | 0b <mark>0</mark> 1111 | Collect → remainder bits | 0b10001             |
| EEE 102 Introduc         | tion to Digital C | Circuit Design         |                          | VOLKAN KURSUN       |

**Outline** 

**Bilkent University** 

- Addition of Unsigned Numbers
- Arithmetic Overflow (Unsigned)
- Signed Numbers
- Addition of Signed Numbers
- Subtraction of Signed Numbers
- Arithmetic Overflow (Signed)

EEE 102 Introduction to Digital Circuit Design

**VOLKAN KURSUN** 

**VOLKAN KURSUN Bilkent University** 

### **VOLKAN KURSUN Bilkent University** 2's Complement Addition

☐ The carry output from the sign-bit position (MSB) is ignored

$$\begin{array}{ccc}
(+5) & & 0 & 1 & 0 & 1 \\
+ & (+2) & & + & 0 & 0 & 1 & 0 \\
\hline
(+7) & & & 0 & 1 & 1 & 1
\end{array}$$

$$\begin{array}{ccc} (-5) & & 1 & 0 & 1 & 1 \\ + & (+2) & & + & 0 & 0 & 1 & 0 \\ \hline (-3) & & & & 1 & 1 & 0 & 1 \end{array}$$

$$(+5) \qquad 0 \ 1 \ 0 \ 1$$

$$+ (-2) \qquad + 1 \ 1 \ 1 \ 0$$

$$(+3) \qquad 1 \ 0 \ 0 \ 1 \ 1$$
Cin and Cout of the MSB position are identical (both are 1): therefore, Cout

can be ignored

**EEE 102 Introduction to Digital Circuit Design** 

1gnore

$$(-5)$$

$$+ (-2)$$

$$(-7)$$
Cin and Cout of the MSB position are identical (both are 1): therefore, Cout ignore

**VOLKAN KURSUN** 

can be ignored

**VOLKAN KURSUN Outline** 

- Addition of Unsigned Numbers
- Arithmetic Overflow (Unsigned)
- Signed Numbers
- Addition of Signed Numbers
- Subtraction of Signed Numbers
- Arithmetic Overflow (Signed)

VOLKAN KURSUN

2's Complement Subtraction

□ Take the 2's complement of the subtrahend (the second operator) and

add it to the minuend (the first operator) 0 1 0 1 (+5)0 1 0 1 + 0010-(-2)(+7)0 1 1 1

### VOLKAN KURSUN **Bilkent University** Adder/Subtractor Only difference between addition and subtraction: 2's

- complement of the second operand is added to the first operand in case of subtraction
- 2's complement: invert all bits and add 1



**VOLKAN KURSUN** 

# 2's Complement Subtraction

- □ Take the 2's complement of the subtrahend (the second operator) and add it to the minuend (the first operator)
- □ The carry output from the sign-bit position (MSB) is **ignored**





**EEE 102 Introduction to Digital Circuit Design** 

**VOLKAN KURSUN** 

### **Outline**

**Bilkent University** 

- Addition of Unsigned Numbers
- Arithmetic Overflow (Unsigned)
- Signed Numbers
- Addition of Signed Numbers
- Subtraction of Signed Numbers
- Arithmetic Overflow (Signed)

# Signed Integers: Addition

Assume an architecture with n-bit signed source operands provided by n-bit registers and the signed result will be stored in an n-bit register

Range of signed integers that can be represented with n-bits:  $-2^{n-1}$  to  $+2^{n-1} - 1$ 

- 1. <u>POSITIVE OVERFLOW</u>: if addition of <u>two</u> <u>positive numbers produces</u> a large positive result that cannot be correctly represented with n-bits (<u>result > +2<sup>n-1</sup>-1</u>), a <u>positive overflow</u> occurs
- 2. <u>NEGATIVE OVERFLOW:</u> if addition of <u>two</u> <u>negative numbers produces</u> a small negative result that cannot be correctly represented with n-bits (<u>result < -2<sup>n-1</sup></u>), a <u>negative overflow</u> occurs <u>VOLKAN KURSU</u>

# Signed Integers: Addition

- OBSERVATION: In signed addition overflow is captured by the carry output from and carry in to the most significant bit position. If Cout\_4Cin\_4 = 0b01, there is positive overflow. If Cout\_4Cin\_4 = 0b10, there is negative overflow. If Cout\_4Cin\_4 = 0b00 or 0b11, there is NO overflow
- <u>Carry output from and carry in to the most significant bit</u>
   <u>position</u> (Cout\_(n-1) and Cin\_(n-1)) are used to identify the overflow conditions in signed addition



# Signed Integers: Addition

- Examples: assume an architecture with 5-bit registers and operands: **range of signed integers** that can be represented with 5-bits: -2<sup>4</sup> to +2<sup>4</sup>-1 = **-16 to +15**
- <u>OVERFLOW:</u> if an addition operation produces a result that cannot be correctly represented with 5-bits (<u>result > +15 or result < -16</u>) a <u>positive</u> or <u>negative</u> <u>overflow</u> occurs



# Signed Overflow Conditions • Signed overflow conditions can be

 Signed overflow conditions can be captured by checking the carry output from and carry in to the most significant (sign) bit position during addition

 $\begin{array}{c|cccc} \textit{Overflow} &= \textit{Cout}\_(n-1) \oplus \textit{Cin}\_(n-1) \\ \hline \textbf{Cout}\_(n-1) & \textbf{Cin}\_(n-1) & \textbf{Overflow} \\ \hline 0 & 0 & \textbf{O} & \rightarrow & \textbf{NO overflow} \\ \hline 0 & 1 & \textbf{1} & \rightarrow & \textbf{Positive overflow} \\ \hline 1 & 0 & \textbf{1} & \rightarrow & \textbf{Negative overflow} \\ \hline 1 & 1 & \textbf{0} & \rightarrow & \textbf{NO overflow} \\ \hline \end{array}$ 

# VOLKAN KURSUN Signed Integers: Subtraction

- Subtraction (M-S): the second operand (subtrahend) is negated and added to the first operand (minuend)
  - M S = M + (-S) = M + (S' + 1): take the 2's complement of the subtrahend and add it to the minuend
  - Add/subtract = 0: control signal for addition. Output = A + B
  - Add/subtract = 1: control signal for subtraction. Output = A +  $\bar{B}$  + 1 = A B

