

4ROUNDのAESに対する integral攻撃の実装

セキュリティキャンプ全国大会2022 L1受講者 hirafish

AESの全体アルゴリズム

KeyScheduleにより各ラウンドで 用いる鍵を生成後、 各アルゴリズムを繰り返す

	Key Length (Nk words)	Block Size (Nb words)	Number of Rounds (Nr)
AES-128	4	4	10
AES-192	6	4	12
AES-256	8	4	14

3種類のAES

https://www.seleqt.net/programming/what-is-aes-encryption-working-performance-security/

AESのKey Schedule部

AES128の場合のkey Schedule

ざっくりアルゴリズム

- ① 鍵を4分割する
- ② そのうち一つに対してRotWord, SubWord, Rcon などの処理(黄緑のbox)を行う
- ③ ②で得られたものと4分割した最初の鍵との 差分を取得し、それと他の分割した鍵との 差分を取得することを繰り返す

AESの暗号化部

<u>AddRoundKey</u>

ラウンドごとの鍵

AESの暗号化部

ShiftRows

1行目から4行目を 0, 1, 2, 3バイト分左巡回シフト

MixColumns

$$\begin{bmatrix} s_{0,c}' \\ s_{1,c}' \\ s_{2,c}' \\ s_{3,c} \end{bmatrix} = \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} s_{0,c} \\ s_{1,c} \\ s_{2,c} \\ s_{3,c} \end{bmatrix}$$

Integral攻撃とは?Q

AESの場合

\mathcal{A}	\mathcal{C}	\mathcal{C}	\mathcal{C}		A C C C		$ \mathcal{A} $	\mathcal{C}	\mathcal{C}	\mathcal{C}		\mathcal{A}	\mathcal{A}	\mathcal{A}	\mathcal{A}		\mathcal{B}	\mathcal{B}	\mathcal{B}	\mathcal{B}					
\mathcal{C}	\mathcal{A}	\mathcal{C}	\mathcal{C}	SB SR MC AK	\mathcal{C}	\mathcal{C}	\mathcal{C}	SB SR MC AK	\mathcal{A}	\mathcal{C}	\mathcal{C}	\mathcal{C}	CD CD MC AV	\mathcal{A}	\mathcal{A}	\mathcal{A}	\mathcal{A}	SB SR MC AK	\mathcal{B}	\mathcal{B}	\mathcal{B}	\mathcal{B}			
\mathcal{C}	\mathcal{C}	\mathcal{A}	\mathcal{C}		\mathcal{C}	\mathcal{C}	/ / /	\mathcal{C}	30 SK IVIC AK	\mathcal{A}	\mathcal{C}	\mathcal{C}	\mathcal{C}	SB SR MC AK	\mathcal{A}	\mathcal{A}	\mathcal{A}	\mathcal{A}	SD SK WIC AK	\mathcal{B}	\mathcal{B}	\mathcal{B}	\mathcal{B}		
\mathcal{C}	\mathcal{C}	\mathcal{C}	\mathcal{A}		\mathcal{C}	$C \mid C \mid C \mid C$	\mathcal{C}		$ \mathcal{A} $	\mathcal{C}	\mathcal{C}	\mathcal{C}		\mathcal{A}	\mathcal{A}	\mathcal{A}	\mathcal{A}		\mathcal{B}	\mathcal{B}	\mathcal{B}	\mathcal{B}			
						2^{24} sets					2^{24} sets					2^{24} sets						2^{24} sets			

積分特性(Integral property)

1 ALL(A):集合の取りうるすべての値が複数回出現する

2 BALANCE(B): 集合のすべての値の排他的論理和が 0 になる

3 CONSTANT(C): 集合のすべての値が一定である

4 UNKNOWN(U): すべての値がランダムに出現する(ランダムであることの区別がつかない)

Integral攻撃とは?Q

AESの場合

	\mathcal{A}	\mathcal{C}	\mathcal{C}	\mathcal{C}	CD CD MC AK	A C C C	\mathcal{A}	\mathcal{C}	\mathcal{C}	\mathcal{C}		\mathcal{A}				
	\mathcal{C}	\mathcal{A}	\mathcal{C}	\mathcal{C}	SB SR MC AK	\mathcal{C}	\mathcal{C}	\mathcal{C}	\mathcal{C}	SB SR MC AK	\mathcal{A}	\mathcal{C}	\mathcal{C}	\mathcal{C}	SB SR MC AK	\mathcal{A}
	\mathcal{C}	\mathcal{C}	\mathcal{A}	\mathcal{C}		\mathcal{C}	\mathcal{C}	\mathcal{C}	\mathcal{C}		\mathcal{A}	\mathcal{C}	\mathcal{C}	\mathcal{C}	SD SN WIC AN	\mathcal{A}
	\mathcal{C}	\mathcal{C}	\mathcal{C}	\mathcal{A}		\mathcal{C}	\mathcal{C}	\mathcal{C}	\mathcal{C}		\mathcal{A}	\mathcal{C}	\mathcal{C}	\mathcal{C}		\mathcal{A}
ľ	2^{24} sets											2^{2}	4 50	ote .		

積分特性(Integral property)

1バイトずつ鍵候補(0~256)を探索して XORが0になれば正しい鍵の候補になる

2 BALANCE(B): 集合のすべての値の排他的論理和が 0 になる

3 CONSTANT(C): 集合のすべての値が一定である

4 UNKNOWN(U) : すべての値がランダムに出現する(ランダムであることの区別がつかない)

AES(4ROUND)に対する実装

GitHubにおいたコード

(https://github.com/hirafish/seccamp2022-L1/blob/main/integral.py)参照

```
1バイト目の鍵候補は: [161, 227]
2バイト目の鍵候補は: [18, 110]
3バイト目の鍵候補は: [2]
4バイト目の鍵候補は: [201, 217]
5バイト目の鍵候補は: [180]
6バイト目の鍵候補は: [104]
7バイト目の鍵候補は: [190]
8バイト目の鍵候補は: [160, 161, 215]
9バイト目の鍵候補は: [215]
10バイト目の鍵候補は: [81, 135, 163]
11バイト目の鍵候補は: [31, 87]
12バイト目の鍵候補は: [64, 150, 160]
13バイト目の鍵候補は: [20, 74, 163]
14バイト目の鍵候補は: [56, 82]
15バイト目の鍵候補は: [47, 73]
16バイト目の鍵候補は: [91, 104, 143]
```

- ①候補の直積を 全探索
- ②KeyScheduleから 最初の鍵まで逆算

!!解読成功!!

正解の鍵:

[84, 104, 97, 116, 115, 32, 109, 121, 32, 75, 117, 110, 103, 32, 70, 117] 得られた鍵:

[84, 104, 97, 116, 115, 32, 109, 121, 32, 75, 117, 110, 103, 32, 70, 117]

4ROUND目で用いる鍵候補

OROUND目(最初に与える鍵)の鍵

今回のまとめと今後について

- ☀ 4ROUNDのAESに対して純粋なIntegral攻撃が成立する
- → 現行では無条件の5ROUND以上であれば、 純粋なIntegral攻撃に対する攻撃報告は 見当たらなかった
- ★純粋なIntegral攻撃の発展として Division Propertyの伝搬特性を用いたものがある
- ★ 研究している差分解読法とIntegral攻撃を 組み合わせた手法に取り組んでいきたい

