

Cairo University

Computer Engineering Department

Faculty of Engineering

Third year

VLSI PROJECT

Home Automation System

Team#12 Members

Name	Section	B.N.
Ahmed Ihab Yousry	1	2
Osama Magdy Aied	1	15
Mostafa Mohamed Ahmed Elgendy	2	27
Mostafa Wael Kamal	2	29

January, 2022

We have chosen design 2, as it handles starvation in a better way using dynamic priority and a sort of state machine.

Regarding the optimization parameters, design 2 utilize more area on the chip as it uses a larger design for the priority encoder and regarding the power, design 2 consumes more power due to the excessive load on the priority encoder and the frequent change of the state. Furthermore, slack value is higher as the register to output delay limits it.

Design 1

System Schematic:

Description:

Every 6 clock cycles, the priority is completely reversed through the reversed_priority signal from the counter. The counter starts from 0 to 5 and then goes back to 0, it is increased by 1 in all cycles except if there is no active input, in that case the counter remains as it is for this cycle. The priority encoder outputs a code which represent the state of the system (which is the display output mentioned in the document). The register preserves the state so that any state should take at least 1 cycle. The output decoder maps the system state to the output signals.

Schematic of the design after synthesis:

Note that the values of the temperature in the simulation are 49 and 73 not 8 and 32 because our design for the temperature register is that it ranges from 41F to 104F, so each value in the simulation must be added to 41 because it is our zero reference.

Pre-Synthesis Simulation:

Post-Synthesis Simulation:

Post-Layout Simulation:

Chip Schematic:

Power Grid:

Routing:

Vdd Strips:

Vss Strips:

design.rpt file:

Report Physical info:			
	+	+ Area (squm)	Leakage (uW)
			
	home_automation_system		
Total Instances	56	84	
Macros	0	0	
Pads	0	0	
Phys	0	0	
Blackboxes	0	0	0.000
Cells	56	84	1.784
Buffers	0	0	0.000
Inverters	9	5	0.129
Clock-Gates	1	4	0.059
Combinational] 39]	44	1.042
Latches	0	0	0.000
FlipFlops	7	32	0.554
Single-Bit FF	7	32	0.554
Multi-Bit FF	0	0	0.000
Clock-Gated	4	I	
Bits	7	32	0.554
Load-Enabled	0	- 1	
Clock-Gated	4	ĺ	
Tristate Pin Count	0	i	
Physical Info	Placed	i	
Chip Size (mm x mm)	0.072 x 0.072	5160	
Fixed Cell Area	i i	0	
Phys Only	0	0	
Placeable Area	i	132	
Movable Cell Area		84	
Utilization (%)	63	i	
Chip Utilization (%)	63	i	
Total Wire Length (mm)		i	
Longest Wire (mm)	0.041	i	
Average Wire (mm)	0.030	i	
	t		

path.rpt file:

power.rpt file:

	Instance	Internal Power(uw)	Switching Power(uw)	Leakage Power(uw)	Total Power(uw)
1	*counter	22.111841	37.349838	0.641388	60.103069
2	*priority_encoder	16.324997	34.239510	0.577562	51.142063
3	*state_holder	6.935781	15.369468	0.326888	22.632137
4	*output_decoder	1.539435	5.220446	0.188646	6.948526
5	*i_0_0_0	0.364796	0.204921	0.026733	0.596451
6	*i_0_0_1	0.158072	0.113543	0.022695	0.294310
7			ı	I	
В	*TOTAL	47.434925	92.497726	1.783913	141.716583

Clock period used in this design = 1ns = 1000ps

Score = 0.5 * Movable Cell Area in squm + 0.3 * (clock period in ps – worst slack in ps) + 0.2 * total power in uw = 167.2733166

Design 2

Algorithm:

Initially, the priority is normal (front door, rear door, fire alarm, window, temperature). Then in every cycle, the action with the highest priority in the previous cycle becomes the action with the least priority in the current cycle.

Example:

Cycle 1: front door, rear door, fire alarm, window, temperature

Cycle 2: rear door, fire alarm, window, temperature, front door

Cycle 3: fire alarm, window, temperature, front door, rear door and so on.

System Schematic:

Description:

Every clock cycle, the priority encoder determines the state of the system according to the **counter_value** signal from the counter according to the previously discussed algorithm. The counter starts from 0 to 4 and then goes back to 0, it is increased by 1 in all cycles except if there is no active input, in that case the counter remains as it is for this cycle. The priority encoder outputs a code which represent the state of the system (which is the display output mentioned in the document). The register preserves the state so that any state should take at least 1 cycle. The output decoder maps the system state to the output signals.

Schematic of the design after synthesis:

Pre-Synthesis Simulation:

Post-Synthesis Simulation:

Post-Layout Simulation:

Chip Schematic:

Floor Planning:

Power Grid with Routing:

Power Grid:

Routing:

design.rpt file:

		Area (squm)	Leakage (uW)
esign Name	home_automation_system		
Total Instances	72	103	2.172
Macros	0	0	0.000
Pads	0	0	0.000
Phys	0	0	0.000
Blackboxes	0	0	0.000
Cells	72	103	2.172
Buffers	0		
Inverters	11	6	0.158
Clock-Gates	0	0	0.000
Combinational	52	62	1.417
Latches] 3	8	0.123
FlipFlops	6	27	0.475
Single-Bit FF	6	27	0.475
Multi-Bit FF	0	0	0.000
Clock-Gated	0		
Bits	6	27	0.475
Load-Enabled	0		
Clock-Gated	0		
Tristate Pin Count	0		
hysical Info	Placed		
Chip Size (mm x mm)	0.073 x 0.073	5343	
Fixed Cell Area		0	
Phys Only	0	0	
Placeable Area		163	
Movable Cell Area		103	
Utilization (%)	[63		
Chip Utilization (%)	[63		
Total Wire Length (mm)			
Longest Wire (mm)	0.044		
Average Wire (mm)	0.032		

path.rpt file:

time.rpt file (it is included to show the slack of the default path group):

```
Report for group default

Startpoint: counter/Q_reg[0]/Q

(Clocked by sysclk R)

Endpoint: counter/Q_reg[1]/D

(Clocked by sysclk R)

Path Group: default

Data required time: 968.3

(Clock shift: 1000.0, minus Uncertainty: 0.0, plus Latency 0.0, minus Setup time: 31.7)

Data arrival time: 370.7

Slack: 597.6

Logic depth: 4
```

power.rpt file:

Repor	Report Power (instances with prefix '*' are included in total) :					
	Instance	Internal Power(uw)	Switching Power(uw)	Leakage Power(uw)	Total Power(uw)	
1	*counter	12.970172	 32.886921	0.610360	46.467453	
2	*priority_encoder	33.295689	65.050598	0.982816	99.329102	
3	*state_holder	13.352933	27.481203	0.341241	41.175377	
4	*output_decoder	2.937685	9.588662	0.188646	12.714994	
5	*i_0_0_0	0.364796	0.204921	0.026733	0.596451	
6	*i_0_0_1	0.167103	0.277094	0.022695	0.466892	
7	1		I	I		
8	*TOTAL	63.088379	135.489395	2.172491	200.750275	
	+	·	+	+		

Clock period used in this design = 1ns = 1000ps

Score = 0.5 * Movable Cell Area in squm + 0.3 * (clock period in ps – worst slack in ps) + 0.2 * total power in uw = 319.980055