MATH 250A: Groups, Rings, and Fields

Jad Damaj

Fall 2022

Contents

1	Gro	roups					
	1.1	August 25					
		1.1.1 Groups					
		1.1.2 Review of homomorphisms, isomorphims					
		1.1.3 Classify all finite groups up to isomorphim					
	1.2	August 30					
		1.2.1 Langrange's Theorem					
		1.2.2 Normal Subgroups					
	1.3	September 1					
		1.3.1 Semidirect Products					
		1.3.2 Cauchy's Theorem					
		1.3.3 Burnside's Lemma					

Chapter 1

Groups

1.1 August 25

1.1.1 Groups

Two ways to define groups

• concrete: group = symmetries of an object X. Here a symmetry is a bijection $X \to X$ with inverse that preserves "structure" (topology, order, binary operation, ...)

Example 1.1.1. The rectangle has 4 symmetries.

The icossahedron has 20×3 symmetries since after fixing the first face there are 3 possible rotations. Vector space \mathbb{R}^k : $n \times n$ matrices with det $\neq 0$, denoted $GL_n(K)$

• abstract definition:

```
Definition 1.1.2. A group is a set G with a binary operation G \times G \to G by (a,b) \mapsto ab, a \times, a+b, \ldots with "Inverse": G \to G by a \mapsto a^{-1} and "Identity": 1,0,e,I,\ldots satisfying the axioms: 1x = x1 = x x(x^{-1}) = (x^{-1})x = 1 (xy)z = x(yz)
```

We can go from the concrete definition to the abstract one: the binary operation is composition, the identity is the trivial symmetry, inverses given y "undoing' a symmetry.

Is an abstract group the symmetries of something?

Theorem 1.1.3 (Cayley's Theorem). Any abstract group is the group of symmetries of some mathematical object.

Recall group actions:

Definition 1.1.4. Given a group G, a set S, a (left) group action is a map $G \times S \to S$ by $(g, s) \mapsto g(s), gs$ satisfying g(h(s)) = gh(s), 1s = s.

To prove Cayley's theorem we need to find :

1. a set S acted on by G

2. structure on S so that G = all symmetries.

What is S? Take S = G.

Need to define the action of GonG. There are 8 natural ways to do this.

First 4, we defin $4 G \times S \to S$ by

- g(s) = s trivial action
- g(s) = gs group product
- Try g(s) = sg Fails since G not necessarily commutative: $g(h(s)) = (sh)g \neq s(gh) = gh(s)$
- $g(s) = sg^{-1}$ works since $g(h(s)) = g(sh^{-1}) = sh^{-1}g^{-1} = s(gh)^{-1} = gh(s)$
- $g(s) = gsg^{-1}$ adjoint action

The above group action is known as a left group action, We define a right group action in a similar way : $S \times G \to S$ by $(s, g) \mapsto (s)g$, s^g satisfying (sg)h = s(gh), $s^g = s(gh)$.

We now define right group actions of G on G: $S \times G \to G$ by

- $(s,g) \mapsto s$
- $(s,g) \mapsto sg$
- $\bullet \ (s,g) \mapsto g^{-1}s$
- $(s,g)\mapsto g^{-1}sg$

Now we have S=G, S=set acted on by G using left action g(s)=gs - left translation. So we have shown $G\subseteq$ symmetries of S.

Want : G =symmetries of S + "structure". Let structure on S= right action of G on S. We now have 3 copies of G:

- 1. set S = G
- 2. G acts on left on S (G = symmetries of S)
- 3. G acts o the right on S (Structure of S)

Object S = S + right G action

What are the symmetries of this?

Bijection $f: S \to S$ preserving the right G-action. eg. f(sg) = f(s)g

Need to check:

- 1. Left G-action of G preserves the right G-action
- 2. Anything that preserves the right G-action is given by left multiplication of an element of G

Check (1): For $g \in G$ need (gs)h = g(sh), follows by commutativity

Note: left G-action does not preserve right G-action: $g(hs) \neq h(gs)$ in general

Check (2): Suppose $f: S \to S$ preserves the right G-action, f(sh) = f(s)h for all $h \in G$. Need to find $g \in G$ such that f(s) = gs. Take s = 1, f(1) = g1 = g so g = f(1). If g = f(1), then f(s) = gs since gs = (f(1))s = f(1s) = f(s).

So we have G = symmetries of (Set G + right G action)

Example 1.1.5. G=symmetries of rectange, set S=G

We get the graph:

Cayley graph: Point for each $g \in G$ Draw a line from g to h with gf = h.

Goal of Group theory

- 1. Classify all groups
 - Hard but can do special cases: Groups of order 60, finite subgroups of rotations in \mathbb{R}^3 , all finite simple groups, symmetries of crystals
- 2. Given a group G, classify all ways G can act on something (called a representation of G)
 - ullet Permutation representation : G acts on a set S
 - \bullet Linear representation : G acts on a vector space

Example 1.1.6. Poncaire group = symmetries of space time elementary particle: space of states = vector space acted on by G = linear group of G

1.1.2 Review of homomorphisms, isomorphims

Definition 1.1.7. A homomorphism is a map $f: G \to H$ that preserves structure eg. f(gh) = f(g)f(h), f(1) = 1, $f(g^{-1}) = f(g)^{-1}$

Note: last two properties can be derived from the first.

Example 1.1.8.
$$\exp(x) = e^x : (\mathbb{R}, +) \to (\mathbb{R}, \times)$$

 $\exp(x + y) = \exp(x) \exp(y), \exp(0) = 1, \exp(-x) = \exp(x)^{-1}$

Definition 1.1.9. The kernel of a homomorphism f is the set of elements with image the identity.

Example 1.1.10. $\mathbb{R} \to \text{rotation}$ is the plane by $\theta \mapsto \text{rotation}$ by angle θ .

nontrivial kernel : multiples of 2π .

We get the short exact sequence: $0 \to 2\pi\mathbb{Z} \to \mathbb{R} \to \text{rotations} \to 0$

Definition 1.1.11. A sequence of homomorphisms $A \to B \to C$ is exact if Image $A \to B = \text{Kernel } B \to C$

 $0 \to A \to B$ means $A \to B$ is injective $A \to B \to 0$ means $A \to B$ is surjective

Definition 1.1.12. $f: A \to B$ is an isomorphim if it is a homomorphism with an inverse. We say A, B are isomorphic. "basically the same"

Example 1.1.13. $2\pi\mathbb{Z}$ is isomorphic to \mathbb{Z} .

Example 1.1.14. $\mathbb{Z}/4\mathbb{Z}$, integers mod 4 with addition: $\{0, 1, 2, 3\}$ and $(\mathbb{Z}/5\mathbb{Z})^{\times}$, under multiplication: $\{1, 2, 3, 4\}$ are isomorphic.

We map $0 \to 1 = 2^0$, $1 \to 2 = 2^1$, $2 \to 4 = 2^2$, $3 \to 3 = 2^3$ eg. $x \mapsto 2^x$

1.1.3 Classify all finite groups up to isomorphim

Definition 1.1.15. The order of a group G = number of elements in G

Order 1: $e \times e = e$ 1 group - trivial group **Order 2**: 1 group - e, f with $f^2 = e \cong \mathbb{Z}/2\mathbb{Z}$

Order p for p prime: only one group $\mathbb{Z}/p\mathbb{Z}$ (integers modulo p)

Definition 1.1.16. For $g \in G$ the order of g is the smallest $n \geq 1$ with $g^n = 1$

Theorem 1.1.17 (Lagrange's Theorem). If $g \in G$, the roder of g divides the order of G.

Example 1.1.18. Suppose |G| = p, (p prime). Pick $g \in G$ with $g \neq e$. Order of g divides |G| = p so is either 1 or p. Can't be one since $g \neq e$. So elements of G 1, g, ..., g^{p-1} are all distinct since $g^p = 1$, $g^x \neq 1$ for $0 \leq x < p$ and if $g^i = g^j$, $g^{i-j} = 1$. Thus, these must be all elements of G.

Order 4:

- Ex : $\mathbb{Z}/4\mathbb{Z}$, symmetries of rectangle, $(\mathbb{Z}/5\mathbb{Z})^{\times}$, $(\mathbb{Z}/8\mathbb{Z})^{\times}$, symmetries of
- only 2 groups of order 4

1.2 August 30

1.2.1 Langrange's Theorem

Order 4: $\mathbb{Z}/4\mathbb{Z}$, symmetries of rectangle

How to show not isomorphic?

Find some property (preserved by isomorphism) that one group has but the other does not.

Property: Order of elements

- in $\mathbb{Z}/4\mathbb{Z}$, 0, 1, 2, 3 have orders 1, 4, 2, 4 respectively
- all nontrivial elements of the group of symmetries of the rectangle have order 2

Note: counting elements of each order works for small gorups but 2 groups of order 16 with same number of elements of each order

Classification: By Lagrange's theorem, each element has order 1, 2, or 4

- 1. Have an element of order 4: g, group = $\{1, g, g^2, g^3\} \cong \mathbb{Z}/4\mathbb{Z}$ In general, if a group of n elements has an element of order n, it is $\cong \mathbb{Z}/4\mathbb{Z}$
- 2. All elements have order 1 or 2.

Suppose G is finite and has this property. Then G commutes since $(gh)^2 = ghgh = 1 = g^2g^2$ so gh = hg. Note: only true for prime 2, there is a group of order 27 such that all elements have order 1 or 3 but is not commutative

Write group operation as +. G is a vector space over \mathbb{F}_2 (field of 2 elements). So $G \cong \mathbb{F}_2^k$ for osme set $|G| = 2^k$. We get 1 group of order 4 with all elements of order 1 or 2.

Group of order 4 is product of 2 groups, $\mathbb{F}_2^2 = \mathbb{F}_2 \oplus \mathbb{F}_2$.

Suppose G, H are gorups, $G \times H$ is a gorup under operation $(g_1, h_1) \cdot (g_2, h_2) = (g_1 g_2, h_1 h_2)$

Example 1.2.1. $\mathbb{C}^{\times} \cong \mathbb{R}_{>0} \times S^1$, $z = |z| \cdot e^{i\theta}$

Chinese Remainder Theorem: (m, n) coprime, $\mathbb{Z}/mn\mathbb{Z} \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$.

We have maps $f: \mathbb{Z}/mn\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$, $g: \mathbb{Z}/mn\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$. This gives $h: \mathbb{Z}/mn\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$. If (m,n)=1, then the map is injective since if h(k)=0, $k\equiv 0 \mod m$, $\mod n$

Infinite Products: $G_1 \times G_2 \times G_3 \times \cdots$, set of all elements $(g_1, g_2, g_3, \dots,)$

Infinite Sums: Like infinite products but all but finitely many of g_1 are 1.

Example 1.2.2. Roots of $1 = e^{2\pi q}$, $q \in \mathbb{Q}$.

Infinite sum $G_2 + G_3 + G_5 + G_7 + G_1 + \cdots$ $(G_p = \text{roots of order } p^n \text{ for some } n \ge 1)$

Symmetry of Platonic Solids

Faces	Name	Rotations	${\rm Rotations}+{\rm Reflections}$	
4	${\it tetrahedron}$	$12 = 4 \times 3$	$24 \rightarrow \text{not a product}$	
6	hexahedron (cube)	$24 = 6 \times 4$	48	All except tetrahedron have
8	$\operatorname{octahedron}$	$24 = 8 \times 3$	$\left.\begin{array}{c}48\\120\end{array}\right\}$ product $\mathbb{Z}/2\mathbb{Z}\times \text{rotations}$	An except tetraneuron have
12	${ m dodecahedron}$	$60 = 12 \times 5$	120 $\int_{0}^{\text{product } \mathbb{Z}/2\mathbb{Z}} \times \text{rotations}$	
20	icosahedron	$60 = 20 \times 3$	120 J	
	/-1		•	

symmetry $\begin{pmatrix} -1 \\ -1 \end{pmatrix}$ fo reflections in \mathbb{R}^3 , so it commutes with everything

For the tetrahedron, we have $\begin{pmatrix} -1 & & \\ & 1 & \\ & & 1 \end{pmatrix}$

Order 5: $\mathbb{Z}/5\mathbb{Z}$

Exercise 1.2.3. Find a graph as small as possible with symmetries $\mathbb{Z}/5\mathbb{Z}$

Order 6: 3 obvious examples: $\mathbb{Z}/6\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$, symmetries of the triangle

- $\mathbb{Z}/6\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$
- group of symmetries of the triange is not abelian Permutation Notation: $(5\,2\,1\,3) = \text{function sending } 5 \rightarrow 2, \, 2 \rightarrow 1, \, 1 \rightarrow 3, \, 3 \rightarrow 5$ (Insert Figure) $(1\,2)(2\,3) = (1\,2\,3)$ but $(2\,3)(1\,2) = (1\,3\,2)$

Definition 1.2.4. A subgroup of a group G, is a subset closed under group operations.

Theorem 1.2.5 (Lagrange's Theorem). If H is a subgroup of G, |H| divides |G|.

Special Case: If $H = \text{powers of } g, 1, g, g^2, \dots, g^{n-1}, |H| = |g|$

Construction of subgorups: Pick a set S acted on by G, pick $s \in S$.

H: elements g with gs = s (elements fixing s). Then H is a subgroup.

Lagrange (Converse to Cayley's Thm): If H is a subgroup of G we can find a set acted on by G, such that H=elements fixing $s \in S$.

Given a gorup G, subgroup H. We want to construct: a set S acted on by G.

Consider G=symmetries of triangle, $H = \{(1)(2)(3), (23)\}$ fixing 1.

How do we write 1, 2, 3 in terms of G, H?

Left cosets of $H: 1 \leftrightarrow \text{elements } g \text{ with } g(1) = 1 \text{ (H)}, 2 \leftrightarrow \text{elements } g \text{ with } g(1) = 2 \text{ ((12)}H), 3 \leftrightarrow \text{elements } g \text{ with } g(1) = 3 \text{ ((13)}H)$

Left cosets of H are sets of the from aH (some fixed $a \in G$).

Define $g_1 \approx g_2$ if $g_1 = g_2 h$ for some $h \in H$. This is an equivalence relation:

Reflexivity: $g_1 \approx g_1$ group identity, 1

Symmetry: $g_1 \approx g_2 \rightarrow g_2 \approx g_1$ group inverses, h^{-1}

Transitivity: $g_1 \approx g_2, g_2 \approx g_3 \rightarrow g_1 \approx g_3$ group operation, $h_1 h_2$

 $G = \text{disjoint union of cosets (equivalence classes of } \approx)$ and any two cosets have the same same |H| since we have a bijection $H \to aH$ byb $h \mapsto ah$ with inverse $h \mapsto a^{-1}h$.

So G = # cosets \times size of cosets = # elements of $S \times |$ subgroup of elements fixing s|

Note: We assume S is transisitve - if $s_1, s_2 \in S$. $g(s_1) = s_2$ for some g

Rotations of a dodecahedron: 12 (faces) \times 5 = 20 (vertices) \times 3 = 30 (edges) \times 2 = 60

Conways Group: has order 831555361308172000

Acting on Frames: # 8252375 Group fixing each frame: 1002795171840

Special Cases of Lagrange:

- Fermat: $a^p \equiv a \mod p$ (p prime), $a^{p-1} \equiv 1 \mod p$ (a, p) = 1 Group $(\mathbb{Z}/p\mathbb{Z})^{\times}$ integers modulo p under \times has order p-1. Lagrange: order of a divides p-1 so $a^{p-1} \equiv 1$
- Euler: $a^{\varphi(m)} \equiv 1 \mod n \ (a, m) = 1$ $(\mathbb{Z}/m\mathbb{Z})^{\times} = \text{group of elements coprime to } m, \mod m, \text{ order } = \varphi(m)$

m = 8: $\varphi(m) = 4$, $(\mathbb{Z}/8\mathbb{Z})^{\times} = \{1, 3, 5, 7\}$. Euler $a^4 \equiv 1 \mod 8$ (a odd) but we see $a^2 \equiv 1 \mod 8$

Right Cosets: $Ha \leftrightarrow$ elements of a set acted on, on the right by $G. S \times G \rightarrow S$

Are left cosets the same as right cosets? sometimes

Example 1.2.6. Take G = symmetries of triangle. $H = \{1, (23)\}$. Find the left, right costs of H in G.

Left: $H = \{1(23)\}, (31)H = \{(31), (321)\}, (12)H = \{(12), (123)\}$

Right: $H = \{1(23)\}, (31)H = \{(31), (123)\}, (12)H = \{(12), (321)\}$

so left cosets \neq right cosets

Definition 1.2.7. Index of H in G, [G:H] = # cosets of H in G.

Left or right cosets? [G:H][H] = |G| when G finite so # left cosets = # right cosets. In gernal, right cosets \rightarrow left cosets by $Ha \mapsto a^{-1}H$ so # left cosets = # right cosets

1.2.2Normal Subgroups

G/H = set of left coset of G. Is G/H a group?

How to definte $(g_1H) \times (g_2H)$? g_1g_2H

Problem: not well defined - suppose we have g_1, g_2, g_1h_1, g_2h_2 . Want $g_1g_2H = g_1h_1g_2h_2H$

Is $h_1g_2 = g_2(h \in H)$? not in general

Want: $ghg^{-1} \in H$ for all $g \in G$. If this holds, then we can turn G/H into a group.

Definition 1.2.8. If H satisfies the above property, H is called a normal subgroup of G.

Example 1.2.9. $G = \text{symmetries of triangle. } H = \{(23), 1\}. \text{ Is } H \text{ normal?}$

 $(12)(23)(12)^{-1} = (13) \notin H$ so H is not normal

What about $H = \{1, (123), (132)\}$. Is H normal?

H has index 2 in G. $[G:H] = \frac{|G|}{|H|} = 2$. We claim any subset of order 2 is normal. There are only 2 left cosets: H, things not in H. Similarly for right cosets. So right cosets = left cosets. So His normal.

Classifying Groups of Order 6

- orders of elements 1, 2, 3, 6
- If element of order 6, group must be cyclic
- Want element of order 3

Lagrange: order of element divides order of group

Converse: If n divides |G|, does G have a subgroup of order n?

No: $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ has no element of order 4

Yes: if n is prime (Cauchy)

So G has elements a, b of order 2,3 and subset $(1,b,b^2)$ has order 2 so it is normal.

September 1 1.3

1.3.1Semidirect Products

Groups of Order 6:

 $|A| \cdot |B| = |G|, A \cap B = \{e\}$ 2 subgroups A, B of order 2,3

In general, suppose that for a group G, subgroups A, B

- 1. $|G| = |A| \cdot |B|$
- 2. $A \cap B = \{e\}$

Want to reconstruct G from A, B

 $G = AB = \{ab \mid a \in A, b \in B\}, \# \text{ pairs } (a, b) = |G|$

If $a_1b_1 = a_2b_2$, $a_2^{-1}a_1 = b_2b_1^{-1} \in A \cap B = \{e\}$ so $a_1 = a_2, b_1 = b_2$ Every element of G can be written uniquely as a product of $a \in A$, $b \in B$

Problem: What is $a_1b_1 \cdot a_2b_2$? $= a_3b_3$

Easy case: ab = ba for all $a \in A$, $b \in B$ $(a_1b_1)(a_2b_2) = (a_1a_2)(b_1b_2)$

We can view G as the product of $A, B \to G = A \times B$

Slightly less easy case: A is a normal subgroup of G. We get an action of the group B on the group A.

Define the action of B on A by $b(a) = bab^{-1} \in A$ (A normal)

This determines the product on G. $(a_1b_1)(a_2b_2) = a_1(b_1a_2b^{-1})b_1b_2 = \underbrace{a_1b_1(a_2)}_{\in A} \times \underbrace{b_1b_2}_{\in B}$.

Suppose given groups A, B action of V on A. We construct the semidirect product of A and B, $A \rtimes B$ on the set $A \times B$ with the product given by : $(a_1, b_1)(a_2, b_2) = (a_1b_1(a_2), b_1b_2)$. We can check this is a group.

Order 6

So $\mathbb{Z}/3\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$ defined by the action of $\mathbb{Z}/2\mathbb{Z}$ on $\mathbb{Z}/3\mathbb{Z}$.

 $\operatorname{Sym}(\mathbb{Z}/3\mathbb{Z})$: either f(1)=1 or f(1)=2 so only two possible homomorphisms $\mathbb{Z}/2\mathbb{Z} \to \operatorname{Sym}(\mathbb{Z}/3\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$: identity and trivial homomorphisms

So groups of order 6:

- $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ trivial action $\cong \mathbb{Z}/6\mathbb{Z}$
- $\mathbb{Z}/3\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$ nontrivial action $\cong S_3$

1.3.2 Cauchy's Theorem

Theorem 1.3.1 (Cauchy's Theorem). If $p \mid |G|$ (p prime), G has an element of order p.

Proof. We use induction on the size of the group: can assume true for any peroper subgroups and quotient groups

G abelian: pick $g \in G$. If p||g|, g has order pn so g^n has order p.

If $p \not| |g|$, look at $G/\langle g \rangle$. $\langle g \rangle$ normal since G is ableian, p divides $|G/\langle g \rangle|$. Pick $h \in G/\langle g \rangle$, order divisible by p. Lift h_1 in G. Then $p||h_1$.

Standard Error: Can't always lift h to element of the same order

 $G \cong \mathbb{Z}/4\mathbb{Z}, g = 2$. $G/\langle g \rangle$ has order 2 so take nontrivial element. Its lift does not have order 2 in G

Definition 1.3.2. THe center of G is the elements that commute with all elements of G.

Lemma 1.3.3. Suppose G is nonotrivial, all proper subgroups have index divisible by p. Then the center of G is divisible by p.

Proof. Look at left action of G on itself by conjugation. G = union of orbuts where a, b in the same orbit if there is some g such that g(a) = b. $|G| = \sum (\text{size of orbits})$

Size of orbit = |G|/subgroup of elements fixing a point. Either 1 or divisble by p so

 $G = \underbrace{1+1+1}_{\text{size 1}} + \cdots + \underbrace{pn_1 + pn_2}_{\text{size } > 1} + \cdots. \text{ Since } G \text{ divisible by } p \ \# \text{ orbits with one element is. Theorem follows}$ since Center of G = elements with orbit of size 1.

Proof (Cauchy's Theorem (Cont)). Case 1: Some proper subgroup has order dvisible by p. Such a subgroup has an element of order divisble by p by induction. Casse 2: All proper subgroups have index divisible by p. By lemma, center of G has order divisible by pCenter of G is abelian so it has an element of order p.

Order 7: $\mathbb{Z}/7\mathbb{Z}$

Order 8: Obvious examples: Producst $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ $\mathbb{Z}/8\mathbb{Z}$, symmetries of a square (D_8) - dihedral group. Orders of elements: 1, 2, 4, 8

- If element has order 8, group is cylic
- If all elements have order 1 or 2, group is vector field over \mathbb{F}^2 so is $(\mathbb{Z}/2\mathbb{Z})^2$

So can assume G has an element a, of order 4. $a^4 = 1$. Subgroup $A = \{1, a, a^2, a^3\}$ has index 2 so is normal. Quotient group has order 2 so $\cong \mathbb{Z}/2\mathbb{Z}$

We have an exact sequence $1 \to \mathbb{Z}/4\mathbb{Z} \to G \to \mathbb{Z}/2\mathbb{Z} \to 1$

Problem: Given $1 \to A \to G \to B \to 1$ How to construct G form A, B? Possibilities: $G = A \times B$, or $A \times B$, not always the case:

- $1 \to \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \to 1$ not a semidirect product
- $1 \to \mathbb{Z}/3\mathbb{Z} \to S_3 \to \mathbb{Z}/2\mathbb{Z} \to 1$ $S_3 = \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$

We get an action of B on A by conjugation so considering $1 \to \mathbb{Z}/4\mathbb{Z} \to G \to \mathbb{Z}/2\mathbb{Z} \to 1$ we can take the nontrivial element b of $\mathbb{Z}/2\mathbb{Z}$. Cant say $b^2 = 1$, but $b^2 \in A$. Also B acts on A by conjugation. So we have $\mathbb{Z}/4\mathbb{Z} = \{1.a, a^2, a^3\}$ $a \mapsto bab^{-1}$: $a \mapsto a$ or $a \mapsto a^{-1}$ Possibilities:

bab⁻¹ =
$$a$$
 bab⁻¹ = a^{-1}
 $b^2 = 1$
 $b^2 = a$ $b^2 = a^3$
 $b^2 = a^2$
 $b^2 = a^2$
 $b^2 = a^2$

bab⁻¹ = a
 $b^2 = a^{-1}$
 $b^$

Semidirect Products
$$a = b^2$$
, $ab = ba \rightarrow a^2 = 1$

Quaternion group: generated by a,b with $a^4=1,\,b^2=a^2,\,bab^{-1}=a^{-1}$

Does it exst? Yes: have be viewd in $M_2(\mathbb{C})$ - $a = \begin{pmatrix} i \\ -1 \end{pmatrix}$, $b = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ Usually denote elements: $I = \begin{pmatrix} i & 0 \\ 0 & -1 \end{pmatrix}$, $J = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$, $K = IJ = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$

Quaternions $Q_8 = \{i, I, J, J, -1, -I, -J, -K\}$ satisfying $I^2 = j^2 = K^2 = 1$, IJ = K, JK = 1, KI = J

Hamilton's Quaternions(H) = all numbers a + bi + cj + dk a, b, c, d real

Nonzero elements of H form a gorup. Problem: Show inverses exist.

$$(a+bi+cj+dk)(a-bi-cj-dk) = a^2+b^2+c^+d^2 > 0 \text{ so}$$

$$(a+bi+cj+dk)^{-1} = \frac{a-bi-cj-dk}{a^2+b^2+c^2+d^2}$$

Can also look at $S^3 \subset H = \{a + bi + cj + dk \mid a^2 + b^2 + c^2 = d^2 = 1\}$ For z = a + bi + cj + dK, $\overline{z} = a - bi - cj - dk$ let $z\overline{z} = N(z)$

We see $N(z_1z_2) = N(z_1)N(z_2)$ so if N(z) = 1 closed under \times so is a group.

Only spheres that are a group are S^0, S^1, S^3 . Elements of $\mathbb{R}, \mathbb{C}, H$ with absolute value 1.

Not: $Q_8 \subseteq S^3$

1.3.3 Burnside's Lemma

Problem: How many ways to arrange 8 rooks on a chess board so that no 2 attack eachother? 8 ways for first row, 7 for second, ..., so 8! = 40320 total Suppose we want to count them up to symmetry:

• For 3×3 : (Insert Figure) can only have 2

Approximate number = $\frac{\text{total } \# \text{ of elements}}{\text{order of group}} = \frac{8!}{8} = 7! = 5050$

General problem: Suppose we have a group G acting on a set S. How many orbits? $\geq \frac{|S|}{|G|}$ Answer:

Lemma 1.3.4 (Burnside's Lemma). # of orbits = average number of fixed points of $g \in G$, eg. $s \in S$ with g(s) = s

Proof. Count number of pairs $(g, s) \in G \times S$ with g(s) = s in 2 ways:

- 1. Sum over $G: \sum_{g \in G} (\# \text{ fixed by } g)$
- 2. Sum over S: Each orbit contributes (size of orbit) × (# of elements fixing a point) = |G| so sum = $|G| \times \#$ of orbits

So # of orbits = $\frac{1}{|G|} \sum_{q} \#$ fixed points = avg # fixed points