4 Nichtsinguläre Kurven

§18 Funktionenkörper in einer Variablen

Satz 7

Ist K/k Funktionenkörper in einer Variablen über k (das heißt endlich erzeugt, $\operatorname{trdeg}_k(K) = 1$), so gibt es eine bis auf Isomorphie eindeutig bestimmte nichtsinguläre Kurve C mit $k(C) \cong K$.

Beweis Sei $C_K = \{R \subset K : R \text{ ist diskreter Bewertungsring, } k \subset R\}$

Ist C nichtsinguläre Kurve, so ist für jedes $x \in C$ der lokale Ring $\mathcal{O}_{C,x}$ ein diskreter Bewertungsring in k(C) mit $k \subset \mathcal{O}_{C,x}$

Die Eindeutigkeit wird aus Prop. 18.4 und Prop. 18.5 folgen.

Bemerkung 4.18.1

Für $f \in K$ ist $P_F := \{R \in C_K : f \notin R\}$ endlich (Polstellenmenge von f).

Beweis $\times f \in K \setminus k \text{ (sonst ist } P_f = \emptyset).$

Dann ist $g := \frac{1}{f}$ transzendent über k, also K/k(g) endlich.

dann sei B der ganze Abschluss von k[q] in K. B ist dann ein Dedekindring (Alg I, Satz ...) und somit endlich erzeugte, reduzierte k-Algebra.

 \Rightarrow es gibt eine affine Varietät V mit $k[V] \cong B$.

Für jedes $x \in V$ ist $\mathcal{O}_{V,x}$ ein diskreter Bewertungsring $\Rightarrow V$ ist nicht singulär.

Sei $R \in P_f$, also $f \notin R$. Dann ist $g \in R \stackrel{g \notin R}{\Rightarrow} g \in m_R \Rightarrow k[g] \subseteq R \Rightarrow B \subseteq R$. (R ist normal). $m:=m_R\cap B$ ist maximales Ideal in $B\Rightarrow B_m$ ist diskreter Bewertungsring, $B_m\subseteq R$

<u>Beh.</u>: Dann ist $B_m = R$.

<u>Denn</u>: Andernfalls sei $a \in R \setminus B_m$.

Schreibe $a = u \cdot f^{-n}$ mit $u \in B_m^{\times}$, n > 0, (f) = mDann wäre $\frac{1}{a} = u^{-1} \cdot f^n \in m \Rightarrow a \in R^{\times}$

 $f^n \in \mathbb{R}^{\times}$, Widerspruch zu $f^n \in m_R$.

 $\Rightarrow \exists x \in V \text{ mit } R = \mathcal{O}_{V,x}, g \in m_R.$

ist $g(x) = 0 \Rightarrow x \in V(g) \subset V$.

da $g \neq 0$, ist $V(g) \neq V$, also endlich.

Bemerkung 4.18.2

Sei C eine irreduzible, nichtsinguläre Kurve über k, K = k(C). Dann gilt:

- (a) $\mathcal{O}_{C,x} \in C_K$ für jedes $x \in C$
- (b) $\varphi: \begin{array}{ccc} C & \longrightarrow & C_K \\ x & \longmapsto & \mathcal{O}_{C,x} \end{array}$ ist injektiv.
- (c) $C_K \setminus \varphi(C)$ ist endlich.

Beweis c) Œ Sei C affin, dann ist K = Quot(k[C])

Für $R \in C_k$ gilt: $R \in \varphi(C) \Leftrightarrow k[C] \subset R$ (denn das ist äquivalent zu $R = k[C]_m$ für ein maximales Ideal $m \subset k[C]$).

Seien $x_1, ..., x_r$ Erzeuger von k[C] als k-Algebra, dann ist

$$\varphi(C) = \{R \in C_K : x_i \in R \text{ für } i = 1, ..., r\} = \bigcap_{i=1}^r \{R \in C_K : x_i \in R\}$$

Nach 18.1. ist $C_k \setminus U_i (= P_{x_i})$ endlich $\Rightarrow C_K \setminus \varphi(C)$ ist endlich.

Bemerkung 4.18.3

 C_K ist Varietät durch

- (a) $U \subseteq C_K$ offen $\Leftrightarrow C_K \setminus U$ endlich (oder $U = \emptyset$)
- (b) Für U sei $\mathcal{O}(U) = \mathcal{O}_{C_K}(U) = \bigcap_{R \in U} R$

Beweis Sei C affine, nichtsinguläre Kurve mit $k(C) \cong K$. Dann ist nach 18.2 $\varphi(C)$ offen und dicht in C_K und $\varphi: C \to \varphi(C)$ ist Isomorphismus, denn $\mathcal{O}_{C_K,R_0} = R_0$ für jedes $R_0 \in C_K$.

Für $U \subset C_K$ offen mit $R_0 \in U$ ist $\mathcal{O}(U) \hookrightarrow R_0$

 $\Rightarrow \mathcal{O}_{C_K,R} = \lim_{R_0 \in U} \mathcal{O}(U) \hookrightarrow R_0.$

Für $f \in R_0$ sei $U_f = C_K \setminus P_f \Rightarrow f \in \mathcal{O}(U_f)$

Für $U \subset C$ offen ist $\mathcal{O}_C(U) = \bigcap_{x \in U} \mathcal{O}_{C,x}$

Wir sind sicher: $\varphi: C \to \varphi(C)$ ist ein homöomorphismus.

Wir brauchen noch: Für jedes offene $U \subset C$ einen Isomorphismus von k-Algebren (verträglich mit " \subseteq "):

$$\alpha_{U}: \qquad \mathcal{O}_{C_{K}}(\varphi(U)) \longrightarrow \mathcal{O}_{C}(U)$$

$$\parallel \qquad \qquad \parallel$$

$$\bigcap_{R \in \varphi(U)} R \qquad \qquad \bigcap_{x \in U} \mathcal{O}_{C,x}$$

$$\parallel \qquad \qquad \parallel$$

$$\bigcap_{R \in \varphi(U)} \mathcal{O}_{C_{K},R} \qquad = \qquad \bigcap_{x \in U} \mathcal{O}_{C_{K},\varphi(x)}$$

<u>Beh.</u>: Für jedes $R \in L_K$ gibt es eine affine Kurve C_R mit $R \in \varphi(C_R)$, also mit $k[C_R] \subset R$. <u>Denn</u>: Sei $g \in R \setminus k$, B der ganze Abschluss von k[g] in K. Dann ist $B \subset R$ und $B = k[C_R]$ für eine nichtsinguläre, affine Kurve C_R (siehe 18.1).

Proposition 4.18.4

 C_K ist projektiv.

Beweis Sei $C_K = \bigcup_{i=1}^r V_i$ mit affinen nichtsingulären Kurven V_i wie in $\ref{eq:condition}$. Seien weiter $V_i \subseteq \mathbb{A}^{n_i}(k)$ und C_i der Zariski-Abschluss von V_i in $\mathbb{P}^{n_i}(k)$. C_i ist projektive Kurve (eventuell singulär). Nach Proposition 4.18.6 lässt sich die Einbettung $V_i \hookrightarrow C_i$ zu einem Morphismus $\varphi_i : C_K \longrightarrow C_i$.

Sei $\varphi: C_K \longrightarrow \prod_{i=1}^r C_i$ ist projektiv, $C := \overline{\varphi(C_K)}$ auch. $\varphi: C_K \longrightarrow C$ ist dominant $\Rightarrow k(C) \subseteq K \Rightarrow k(C) \cong K$.

Behauptung

 φ ist surjektiv.

Beweis Sei $x \in C$, R der ganze Abschluss von $\mathcal{O}_{C,x}$ in K. R ist normal, also diskreter Bewertungsring

$$\Rightarrow R \in C_K \Rightarrow \mathcal{O}_{C,x} \subseteq R \cong \mathcal{O}_{C,\varphi(R)} \Rightarrow x = \varphi(R)$$

Beweis (obiges "\(\colon\)") für i mit $R \in V_i$ ist $R \cong \mathcal{O}_{V_i,\varphi_i(R)}$. Die Projektion $pr_i: C \longrightarrow C_i$ ist dominant

$$\Rightarrow \mathcal{O}_{V_i,\varphi_i(R)} \longrightarrow \mathcal{O}_{C,\varphi(R)}$$
 ist injektiv,

also ein Isomorphismus, da $\mathcal{O}_{V_i,\varphi_i(R)}$ ein diskreter Bewertungsring ist. (benutze: Ist R diskreter Bewertungsring, $K = \operatorname{Quot}(R)$, $S \subset K$ lokaler Ring mit $R \subseteq S$ und $m_S \cap R = m_R$, so ist R = S)

Noch zu zeigen:

Bemerkung 4.18.5

Sei $\varphi: V \longrightarrow W$ ein bijektiver Morphismus. Ist für jedes $x \in V$ der induzierte Homomorphismus $\mathcal{O}_{W,\varphi(x)} \longrightarrow \mathcal{O}_{V,x}$ ein Isomorphismus, so ist φ ein Isomorphismus.

Beweis Œ V, W affin, sei A := k[W], B := k[V]

Die Voraussetzung ist äquivalent zu:

 $\alpha: A \longrightarrow B$ ist ein k-Algebrenhomomorphismus, sodass $\alpha_m: A_m \longrightarrow B_{m'}$ für jedes maximale Ideal m von A ein Isomorphismus ist (wobei m' das, wegen der Bijektivität von φ , eindeutig bestimmte maximale Ideal von B mit $\alpha^{-1}(m') = m$).

Zu zeigen: α ist bijektiv

 α ist injektiv, da φ surjektiv ist.

 α ist surjektiv: Sei $x \in B$, $I_x := \{y \in A : y \cdot x \in A\}$

 I_x ist Ideal in A.

Ist $I_x = A$, so ist $1 \in I_x$, also $x \in A$.

Ist $I_x \neq A$, so sei m maximales Ideal in A mit $I_x \subseteq m$

$$Vor.$$
 $\exists a \in A, b \in A - m \text{ mit } \frac{x}{1} = \frac{a}{b} \text{ in } A_m = B_{m'}$

$$\Rightarrow \exists t \in A - m \text{ mit } t \cdot (b \cdot x - a) = 0$$

$$\Rightarrow t \cdot bx = ta \in A$$

$$\Rightarrow tb \in I_x \subseteq m \text{ Widerspruch! ,da } t \notin b \notin m$$

Proposition 4.18.6

Sei C nichtsinguläre irreduzible Kurve, V projektive Varietät, $\emptyset \neq U \subseteq C$ offen und $\varphi : U \longrightarrow V$ ein Morphismus. Dann gibt es genau einen Morphismus $\bar{\varphi} : C \longrightarrow V$ mit $\bar{\varphi}|_{U} = \varphi$

Beweis C-U ist endlich, also $\times C-U = \{x\}$, $\times V = \mathbb{P}^n(k)$ und $\varphi(U) \not\subset V(X_i)$, $i = 1, \ldots, n$ Sei $h_{ij} := \frac{X_i}{X_j} \circ \varphi$ für $i \neq j$. h_{ij} ist regulär auf $\varphi^{-1}(D(X_i))$ $(\neq \emptyset)$, da $\varphi(U) \not\subset V(X_j)$ $\Rightarrow h_{ij} \in k(C) =: K$

Nach Voraussetzung ist $\mathcal{O}_{C,x}$ diskreter Bewertungsring in K. Sei $v_x: K^{\times} \longrightarrow \mathbb{Z}$ die zugehörige Bewertung. Seien weiter $v_i := v_x(h_{i,0}), i = 1, \ldots, n$ und $r_k := \min\{v_t, i = 1, \ldots, n\}$. Für $i \neq k$ ist dann

$$v_x(h_{ik}) = v_x \left(\frac{X_i X_0}{X_0 X_k} \circ \varphi \right)$$

$$= v_x \left(\left(\frac{X_i}{X_0} \circ \varphi \right) \cdot \left(\frac{X_0}{X_k} \circ \varphi \right) \right)$$

$$= v_x(h_{i,0}) - v_x(h_{k,0})$$

$$= r_i - r_k > 0$$

 \exists Umgebung \bar{U} von x mit $h_{ik} \in \mathcal{O}_C(\bar{U}), i = 1, \dots, n, i \neq k$. Für $y \in U$ sei

$$\tilde{\varphi}(y) := \begin{cases} (h_{0k}(y) : \dots : h_{nk}(y)) & k = 0 \text{ oder } r_k \le 0 \\ (1 : h_{1,k}(y) \cdot h_{k,0}(y) : \dots : h_{m,k}(y) \cdot h_{k,0}(y)) & k \ne \text{ und } r_k > 0 \end{cases}$$

 $\tilde{\varphi}$ ist Morphismus $\bar{U} \longrightarrow V$ (mit Bild in $D(X_k)$ beziehungsweise $D(X_0)$. Für $y \neq x$ ist $\tilde{\varphi}(y) = \varphi(y)$).

§19 Divisoren

Definition 4.19.1

Sei C eine nichtsinguläre, irreduzible Kurve.

(a) Ein **Divisor** auf C ist eine endliche formale Summe

$$D = \sum_{i=1}^{n} n_i P_i$$
, wobei $n \in \mathbb{N}$, $n_i \in \mathbb{Z}$, $P_i \in C$

$$\mathrm{Div}(C) := \{ D = \sum n_i P_i : \ D \text{ ist Divisor auf } C \}$$

ist eine freie abelsche Gruppe, genannt $\boldsymbol{Divisorengruppe}$ von C.

- (b) Für $D = \sum_{i=1}^{n} n_i P_i$ heißt $\deg(D) := \sum_{i=1}^{n} n_i \operatorname{der} \operatorname{\mathbf{\textit{Grad}}}$ von D.
- (c) D heißt **effektiv**, wenn alle $n_i \geq 0$ sind.

Definition + Bemerkung 4.19.2

Sei C wie in 19.1, $f \in k(C)^{\times}$.

- (a) Für $P \in C$ heißt $\operatorname{ord}_P(f) := v_P(f)$ die **Ordnung** von f in P (dabei sei v_P die zu P gehörige diskrete Bewertung von k(C)).
- (b) $\operatorname{div}(f) := \sum_{P \in C} \operatorname{ord}_P(f) \cdot P$ heißt **Divisor** von f.
- (c) $D \in \text{Div}(C)$ heißt **Hauptdivisor**, wenn ein $f \in k(C)^{\times}$ existiert mit D = div(f).
- (d) Die Hauptdivisoren bilden eine Untergruppe $Div_H(C)$ von Div(C).

- (e) $Cl(C) := Div(C)/Div_H(C)$ heißt **Divisorenklassengruppe** von C.
- (f) Divisoren $D, D' \in \text{Div}(C)$ heißen **linear äquivalent**, wenn D D' Hauptdivisor ist. Schreibweisen: $D \equiv D', D \sim D'$

Beweis

b) Zu zeigen: $\{P \in C : \operatorname{ord}_P(f) \neq 0\}$ ist endlich.

 ${P \in C : \operatorname{ord}_{P}(f) \neq 0} = V(f) \cup V(\frac{1}{f}) \text{ und } f \neq 0.$

d)
$$\operatorname{div}(f) + \operatorname{div}(g) = \operatorname{div}(f \cdot g); \quad -\operatorname{div}(f) = \operatorname{div}(\frac{1}{f}); \quad 0 = \operatorname{div}(1)$$

Beispiele 4.19.3

(a) $C = \mathbb{P}^1(k)$

Dann gilt $D \in \text{Div}(C)$ ist Hauptdivisor $\Leftrightarrow \deg(D) = 0$

 $\underline{\operatorname{denn}} \overset{\text{``}}{\Rightarrow} \overset{\text{``}}{\operatorname{Sei}} f = \overline{\prod_{i=1}^{n} (X-a_i)} \overset{\text{``}}{\in} k(C)^{\times} \text{ mit } a_i, b_j \in k, \quad a_i \neq b_j \text{ für alle } i, j$

 $\Rightarrow \operatorname{div}(f) = \sum_{i=1}^{n} a_i - \sum_{j=1}^{m} b_j + (m-n) \cdot \infty$

 $\Rightarrow \deg(\operatorname{div}(f)) = 0$

" \Leftarrow " Für Null- und Polstellen, die nicht im Punkt ∞ liegen, schreibe f wie oben, mit den entsprechenden Linearfakoren für die Nullstellen im Zähler, bzw. für die Polstellen im Nenner, jeweils mit Vielfachheiten.

(b) $C = V(Y^2Z - X^3 + XZ^2) \subseteq \mathbb{P}^2(k)$ (Homogenisierung von $y^2 = x^3 - x$)

 $C = V(y^2 - x^3 + x) \cup \{(0:1:0)\}$ Sei $f = y = \frac{Y}{Z} \in k(C)^{\times}$. Gesucht: div(f)

Auf $U_0 = D(Z)$ ist y regulär und hat 3 Nullstellen, nämlich $P_{-1} = (-1,0)$, $P_0 = (0,0)$ und $P_1 = (1,0)$.

 $\underline{P_0}$: m_{P_0} wird erzeugt von x und y.

Es ist $y^2 = x(\underbrace{x^2 - 1}) \Rightarrow y$ erzeugt m_{P_0} (mit x dagegen lässt sich nur y^2 erzeugen).

Mit y = x(x-1)(x+1) und dem gleichen Argument zeigt man das gleiche für P_{-1} und P_{1}

 $\Rightarrow P_0, P_{-1}, P_1$ haben alle Ordnung 1.

 $P_{\infty} = (0:1:0)$:

 $\overline{m_{P_{\infty}}}$ wird erzeugt von $\frac{X}{Y}$ und $\frac{Z}{Y}$ mit der Gleichung

$$\frac{Z}{X} = \left(\frac{X}{Y}\right)^3 - \frac{X}{Y}\left(\frac{Z}{Y}\right)^2$$

$$\Rightarrow \left(\frac{X}{Y}\right)^3 = \frac{Z}{Y} \left(\underbrace{1 + \frac{X}{Y} \frac{Z}{Y}}_{\mathcal{O}_{C, P_{\infty}}^{\times}}\right)$$

$$\Rightarrow \frac{X}{Y}$$
 erzeugt $m_{P_{\infty}}$

$$\Rightarrow \operatorname{ord}_{P_{\infty}}\left(\frac{Y}{Z}\right) = -3$$

Insgesamt folgt: $\operatorname{div}(f) = P_{-1} + P_0 + P_1 - 3P_{\infty}$

Definition + Bemerkung 4.19.4

Seien C, C' nichtsinguläre Kurven, $f: C \to C'$ ein nichtkonstanter Morphismus.

- (a) Sei $Q \in C'$ und $t \in m_Q$ Erzeuger. Für $P \in f^{-1}(Q)$ heißt $e_P(f) := \operatorname{ord}_P(t \circ f)$ **Verzweigungsordnung** von f in P.
- (b) $e_P(f)$ hängt nicht von der Wahl von t ab.
- (c) Für $Q \in C'$ sei

$$f^*Q := \sum_{P \in f^{-1}(Q)} e_P(f) \cdot P$$

und
$$f^* : \operatorname{Div}(C') \to \operatorname{Div}(C)$$

der induzierte Gruppenhomomorphismus.

(d) $f^*(\operatorname{Div}_H(C')) \subseteq \operatorname{Div}_H(C)$

Beweis d.) Sei $D = \operatorname{div}(g \circ f) \in \operatorname{Div}_H C'$.

Es gilt $f^*D = \operatorname{div}(g \circ f)$, denn:

Für $P \in C$ ist $\operatorname{ord}_P(g \circ f) = N$, falls $g \circ f = t_P^N \cdot u$ für eine Einheit $u \in \mathcal{O}_{C,P}^{\times}$ und einen Erzeuger t_P von m_P . Der Koeffizient von P in f^*D ist

$$\underbrace{\operatorname{ord}_{f(P)}(g)}_{=:n} \cdot \underbrace{v_P(t_Q \circ f)}_{=:m}$$

mit Q := f(P). Also:

$$g = t_Q^n \cdot u_1, t_Q \circ f = t_P^m \cdot u_2$$

$$\Rightarrow g \circ f = (t_Q^n \circ f)^n \cdot (u_1 \circ f) = t^{m \cdot n} \cdot \underbrace{u_2^n(u_1 \circ f)}_{\in \mathcal{O}_{C,P}^{\times}}$$

$$\Rightarrow \operatorname{ord}_P(g \circ f) = n \cdot m$$

Definition + Proposition 4.19.5

Sei $f:C\longrightarrow C'$ ein nichkonstanter Morphismus irreduzibler, nichtsingulärer, projektiver Kurven.

- (a) $\deg(f) := [k(C) : k(C')]$ heißt **Grad** von f (dabei wird k(C') als Teilkörper von k(C) über den von f induzierten Homomorphismus aufgefasst).
- (b) Für $Q \in C'$ ist $\sum_{P \in f^{-1}(Q)} e_P(f) = \deg(f)$

Beweis b.) Sei $f^{-1}(Q) = \{P1, \dots, P_r\}, t = t_Q$ ein Erzeuger von m_Q

$$\Rightarrow e_{P_i}(f) = \operatorname{ord}_{P_i}(t \circ f) = \operatorname{ord}_{P_i}(t) = \dim_k \left(\mathcal{O}_{C,P_i/(t)} \right) (*)$$

wobei $(t) = \left(t_{P_i}^{e_{P_i}(f)}\right).$

 $\times C'$ affin, \hat{C} affin (die P_i müssen in C sein)

Sei R = k[C'], S = k[C]. Dann ist S der ganze Abschluss von R in k(C). Sei $U = R - m_Q$, also $R_U = \mathcal{O}_{C',Q}$, $S' := S_U$ ist ganz über R_U .

Behauptung: S' ist freier R_U -Modul vom Rang n := (f).

"Beweis": S' ist endlich erzeugter R_U -Modul: vergleich Algebra II, Dedekindringe.

Mit dem Elementarteilersatz für Hauptidealringe folgt die Behauptung "frei".

Weiter ist

$$S' \bigoplus_{\mathcal{O}_{C',Q}} k(C') = k(C) \Rightarrow \operatorname{Rg}(S') = [k(C) : k(C')] = n$$

Die maximalen Ideale m_1, \ldots, m_r von S' entsprechen P_1, \ldots, P_r , genauer: $S'_{m_i} = \mathcal{O}_{C,P_i}$ Es ist S'/t. S' n-dimensionaler Vektorraum über $R_U/(t) = k$. Weiter gilt:

$$tS' = \left(\bigcup_{i=1}^{r} tS'_{m_i}\right) \cap S'$$

Mit dem chinesischen Restsatz folgt:

$$S'/tS' = \bigoplus_{i=1}^{r} S'/(tS_{-m_i}' \cap S') \cong \bigoplus_{i=1}^{r} S'_{m_i}/tS'_{m_i} = \bigoplus_{i=1}^{r} \mathcal{O}_{C,P_i}/(t)$$

und dim
$$(\mathcal{O}_{C,P_i/(t)}) = e_{P_i}(f)$$

Satz 8

Jeder Hauptdivisor auf einer irreduziblen, nichtsingulären Kurve hat Grad 0.

Beweis (Beweisidee)

 $f \in k(C) \setminus k$ kann aufgefasst werden als rationale Abbildung $C \dashrightarrow \mathbb{P}^1(k)$. Nach Prop. 18.5 ist f sogar ein Morphismus $f: C \to \mathbb{P}^1(k)$. Der Satz folgt dann aus:

Beh 1: "div $(f) = f^*((0) - (\infty))$ "

Beh 2: $\deg(f^*D) = \deg(f) \cdot \deg(D)$ für jeden Divisor D.

Beweis (von Beh 1) Seien $(x_0:x_1)$ homogene Koordinaten auf $\mathbb{P}^1(k)$. Dann ist $\operatorname{div}(\frac{X_1}{X_0})=(1:0)-(0:1)$ und

$$f^*((1:0) - (0:1)) \stackrel{4.19.4d.)}{=} \operatorname{div}\left(\frac{X_1}{X_0} \circ f\right) = \operatorname{div}(f)$$

Beweis (von Beh 2) folgt aus Proposition 4.19.5 b.)

§20 Das Geschlecht einer Kurve

Sei C eine nichtsinguläre, projektive Kurve über k.

Definition + Bemerkung 4.20.1

Sei $D = \sum n_P P$ ein Divisor auf C.

- (a) $L(D) := \{ f \in k(C) : D + \operatorname{div}(f) \ge 0 \} \cup \{ 0 \}$ heißt **Riemann-Roch-Raum** zu D, L(D) ist k-Vektorraum.
- (b) L(0) = k
- (c) Ist deg(D) < 0, so ist L(D) = 0
- (d) Für $l(D) := \dim L(D)$ gilt:

$$l(D) = l(D')$$
, falls $D \equiv D'$

Beweis (a) $f \in L(D) \Leftrightarrow \text{für jedes } P \in C \text{ ist } \text{ord}_P(f) \ge -n_P \text{ ord}_P(f+g) \ge \min(\text{ord}_P(f), \text{ord}_P(g))$

(d) Sei $D'=D+{\rm div}(g).$ Dann ist $L(D')\longrightarrow L(D),\ f\mapsto fg$ ein Isomorphismus von k-Vektorräumen, denn

$$D' + \operatorname{div}(f) \ge 0 \Leftrightarrow D + \operatorname{div}(g) + \operatorname{div}(f) \ge 0$$

 $\Leftrightarrow D + \operatorname{div}(fg) \ge 0$

Satz + Definition 9 (Riemann)

- (a) Für jeden Divisor $D \in \text{Div}(C)$ mit $\deg D \ge -1$ ist $l(D) \le \deg D + 1$.
- (b) Es gibt ein $\gamma \in \mathbb{N}$, sodass für alle $D \in \text{Div}(C)$ gilt

$$l(D) \ge \deg D + 1 - \gamma$$

(c) Das kleinste $\gamma \in \mathbb{N}$, für das (b) erfüllt ist, heißt **Geschlecht** von C, Schreibweise: g = g(C).

Bemerkung 4.20.2

- (a) Sind C und C' isomorph, so ist g(C) = g(C').
- (b) $g(\mathbb{P}^1(k)) = 0$

Beweis (a) $\sqrt{}$

(b) Zu zeigen: für jeden Divisor D vom Grad ≥ 0 auf $\mathbb{P}^1(k)$ ist $l(D) = \deg D + 1$. Schreibe: $D = D' + D_0$ mit $D' \geq 0$ und $\deg(D_0) = 0$. Nach Beispiel 4.19.3 ist D_0 Hauptdivisor.

$$\Rightarrow l(D') = l(D)$$
. Also $\times D \ge 0$,

$$D = \sum_{i=1}^{r} n_i P_i \text{ mit } n_i \ge 1.$$

$$\Rightarrow L(D) = \{ f \in k(X) : \operatorname{ord}_{P_i}(f) \ge -n_i, i = 1, \dots, r \text{ und } f \text{ regulär auf } \mathbb{P}^1(k) \setminus \{P_1, \dots, P_r\} \}$$

Also ist

$$1, \frac{1}{X - P_1}, \dots, \frac{1}{(X - P_1)^{n_1}}, \frac{1}{X - P_2}, \dots, \frac{1}{(X - P_2)^{n_2}}, \vdots \frac{1}{X - P_r}, \dots, \frac{1}{(X - P_r)^{n_r}}$$

eine Basis von L(D).

Beweis (von Satz 9) (a) Induktion über $d = \deg(D)$

d=0: Ist $f\in L(D), f\neq 0,$ so ist $D+\operatorname{div}(f)\geq 0.$ Da $\deg(D+\operatorname{div}(f))=0,$ folgt $D+\operatorname{div}(f)=0$

$$\Rightarrow D = -\operatorname{div}(f) = \operatorname{div}(\frac{1}{f})$$
$$\Rightarrow L(D) = f \cdot k \Rightarrow l(D) \le 1$$

 $d \geq 1$: Sei $D = \sum_{P \in C}$ und $f_1, \dots, f_{d+2} \in L(D)$.

Zu zeigen: die f_i sind linear abhängig. Sei dazu $P \in C$. Sortiere die f_i so, dass

$$\operatorname{ord}_{P}(f_{i}) = -n_{P} \text{ für } i = 1, \dots, k \text{ und}$$

 $\operatorname{ord}_{P}(f_{i}) > -n_{P} \text{ für } i = k+1, \dots, d+2 \text{ (für ein } k \geq 0)$
 $\Rightarrow f_{i} \in L(D-P) \text{ für } i = k+1, \dots, d+2$

Ist k = 0 oder k = 1, so sind $f_2, \ldots, f_{d+2} \in L(D-P)$ nach Induktionsvoraussetzung linear abhängig. Sei also $k \geq 2$.

Sei
$$g_i := u_i(P) \cdot f_1 - u_1(P) \cdot f_i = t^{-n_P} \underbrace{\left(u_i(P) \cdot u_1 - u_1(P) \cdot u_i\right)}_{\in m_P}$$

("=", wegen $f_i = t^{-n_P} \cdot u_i$ für $u_i \in \mathcal{O}_{C,P}^{\times}$ und einen Erzeuger $t = t_P$ von m_P)

$$\Rightarrow g_i \in L(D-P), i = 2, \dots, k$$

$$\Rightarrow g_2, \dots, g_k, f_{k+1}, \dots, f_{d+2} \text{ sind linear abhängig}$$

$$\Rightarrow f_1, \dots, f_k, f_{k+1}, \dots, f_{d+2} \text{ sind linear abhängig}$$

(b) Behauptung 1: Für jeden Divisor $D \in \text{Div}(C)$ und jedes $P \in C$ gilt

$$l(D+P) \le l(D)+1$$

denn: Sei f_1, \ldots, f_n eine Basis von L(D+P). Wie oben sei $f_1, \ldots, f_k \notin L(D), f_{k+1}, \ldots, f_n \in L(D)$. Definiere $g_i, i = 2, \ldots, k$ wie oben (ist $k \leq 1$, so ist $l(D) \geq n - 1$).

$$g_2, \ldots, g_k$$
 linear unabhängig
 $\Rightarrow g_2, \ldots, g_k, f_{k+1}, \ldots, f_n$ linear abhängig
 $\Rightarrow l(D) \ge n-1$

Für $D \in \text{Div}(C)$ sei s(D) := deg D + 1 - l(D). Dann ist zu zeigen

$$\exists \gamma \in \mathbb{N} \ \forall D \in \mathrm{Div}(C) : s(D) \leq \gamma$$

Es gilt

- (i) s(D) = s(D') für $D \equiv D'$ (4.20.1 (d))
- (ii) $s(D') \le s(D)$, falls $D' \le D$ (Behauptung 1)

Wähle nun $f \in k(C) - k$ fest. Sei

$$N := f^*(0) = \sum_{\substack{P \in C \\ f(P) = 0}} \operatorname{ord}_P(f) \cdot P$$

der Nullstellendivisor von f. deg(N) = deg(f) =: n.

Behauptung 2: Zu jedem Divisor $D \in \text{Div}(C)$ gibt es einen linear äquivalenten Divisor D' mit $D' \leq m \cdot N$ für ein $m \geq 1$.

Behauptung 3: Es gibt ein $\gamma \in \mathbb{N}$ mit $l(m \cdot N) \geq m \cdot n + 1 - \gamma$ für alle $m \geq 1$. Dann ist für $D \in \text{Div}(C)$ und D' wie in Behauptung 2

$$s(D) \stackrel{\text{(i)}}{=} s(D') \stackrel{\text{(ii)}}{\leq} s(m \cdot N) = m \cdot n + 1 - l(m \cdot N)$$

$$\stackrel{\text{Beh. 3}}{\leq} m \cdot n + 1 - (m \cdot n + 1) + \gamma = \gamma$$

Beweis (von Behauptung 2) Sei $D = \sum n_P \cdot P$

Gesucht: $h \in k(C)$ mit

$$n_P + \operatorname{ord}_P h \le \begin{cases} m \cdot \operatorname{ord}_P(f) &: \operatorname{ord}_P(f) > 0 \\ 0 &: \operatorname{ord}_P(f) \le 0 \end{cases}$$

Seien P_1, \ldots, P_r die Punkte in C, für die $n_i := n_{P_i} > 0$ ist, aber $\operatorname{ord}_{P_i}(f) \leq 0$. Sei $h_i := \frac{1}{f} - \frac{1}{f(P_i)} \in k(C)^{\times}, i = 1, \dots, r$

$$\Rightarrow \operatorname{ord}_{P_i}(h_i) \geq 1, i = 1, \dots, r$$

 $\operatorname{ord}_P(h_i) \geq 0$ für alle $P \neq P_i$ mit $\operatorname{ord}_P(f) \leq 0$

$$\Rightarrow h := \prod_{i=1}^{r} h_i^{n_i}$$
 hat die gewünschte Eigenschaft

Beweis (von Behauptung 3) Sei $g_1, ..., g_n$ eine Basis von k(C) über $k(f) = k(\frac{1}{f})$.

Dabei können die g_i so gewählt werden, dass sie ganz über $k\left[\frac{1}{t}\right]$ sind.

- \Rightarrow Jede Polstelle von g_i ist auch Polstelle von $\frac{1}{f}$, also Nullstelle von f.
- $\Rightarrow \operatorname{div}(g_i) + \gamma_0 N \geq 0$ für ein geeignet großes $\gamma_0 \in \mathbb{N}$ $(i = 1, ..., n) \Rightarrow g_i \in L(\gamma_0 N)$

Sei $m \geq 1$

Beh.:
$$\frac{\overline{g_i}}{f^{\nu}} \in L((m+\gamma_0)N), \quad i=1,...,n; \ \nu=0,...,m$$

Denn:

$$\overline{\operatorname{div}(\frac{g}{f^{\nu}})} + (m + \gamma_0)N = \operatorname{div}(g_i) - \nu \operatorname{div}(f) + mN + \gamma_0 N \ge (m - \nu)N \ge 0, \text{ da } \operatorname{div}(g_i) + \gamma_0 N \ge 0 \text{ (s.o.)}$$

Die $\frac{g_i}{f^{\nu}}$ sind k-linear unabhängig.

$$\Rightarrow l(m + \gamma_0)N) \ge m(n+1)$$

Die
$$\frac{g_1}{f^{\nu}}$$
 sind k -linear unabhangig.

$$\Rightarrow l((m+\gamma_0)N) \ge m(n+1)$$

$$\stackrel{Bew.1+Ind.}{\Rightarrow} l(mN) \ge n(m+1) - \gamma_0 n = mn - \underbrace{n(\gamma_0-1)}_{:=\gamma-1}$$

(Denn: Kommt ein Punkt hinzu, so vergrößert sich die Dimension um 0 oder 1.)

Folgerung 4.20.3

Sei C eine nichtsinguläre, projektive Kurve, g = g(C). Dann gibt es ein $d_0 \in \mathbb{Z}$, so dass für alle $D \in \text{Div}(C) \text{ mit } \deg(D) \geq d_0 \text{ gilt:}$

$$l(D) = \deg(D) + 1 - g$$

Beweis Nach Satz 8 gibt es ein D_0 mit $l(D_0) = \deg(D_0) + 1 - g$.

Sei $d_0 = \deg(D_0) + g$ und sei $D \in \operatorname{Div}(C)$ mit $\deg(D) \ge d_0$

$$\Rightarrow l(D - D_0) \ge \deg(D) - \deg(D_0) + 1 - g \ge 1$$

Also gibt es ein $f \in L(D - D_0), f \neq 0$

$$\Rightarrow D' := D + \operatorname{div}(f) \ge D_0$$

$$s(D) = s(D') \ge s(D_0) = g, \quad (s(D) = \deg(D) + 1 - l(D))$$

mit Satz 8: $s(D) \le g \quad \forall D \Rightarrow s(D) = g$

Proposition 4.20.4

Sei $C \subseteq \mathbb{P}^2(k)$ eine nichtsinguläre projektive Kurve vom Grad $d \geq 1$ (d.h. C = V(F) für ein homogenes Polynom F vom Grad d). Dann ist

$$g(C) = \frac{1}{2}(d-1)(d-2)$$

Also: $d=1,2\Rightarrow g=0; d=3\Rightarrow g=1; d=4\Rightarrow g=3; d=5\Rightarrow g=6$... Es esistieren somit keine nichtsingulären Kurven vom Geschlecht 2,4,5,... in $\mathbb{P}^2(k)$

Beispiele 4.20.5

 $V(X_0^d + X_1^d + X_2^d)$ ist nichtsingulär $(d \ge 1, \, \operatorname{char}(k) \nmid d)$ ("Fermat-Kurve")

Beweis Beh. 1: Es gibt eine Gerade $L \subset \mathbb{P}^2(k)$ mit $\sharp(C \cap L) = d$.

<u>Denn</u>: Ausnahme bilden nur die Tangenten. Deren Menge ist aber ein Zariski-abgeschlossener Unterraum der Menge der Geraden.

Sei
$$L = V(F_1)$$
 wie in Beh. 1, $L \cap C = \{P_1, ..., P_d\}$
Œ $P_i \in D(X_0), i = 1, ..., d$

Beh.: Für $D=\sum_{i=1}^d P_i,\ m\geq 1$ und $g\in L(mD)$ gibt es ein homogenes Polynom $H\in k[X_0,X_1,X_2]$ mit $g=\frac{H}{F_1^m}$

Denn: Sei

$$f_1 = \frac{F_1}{X_0} \in k(C)$$

Dann ist $\operatorname{div}(f_1^m g) = mD - mD' + \operatorname{div}(g)$ mit einem effektiven Divisor D' mit Träger in $V(X_0)$ $\Rightarrow f_1^m g$ ist ein Polynom in $\frac{X_1}{X_0}$ und $\frac{X_2}{X_0}$ vom Grad m.

Die Homogenisierung H von $f_1^m g$ erfüllt $g = \frac{H}{F_1^m}$

Also:

$$L(mD) = \frac{k[X_0, X_1, X_2]_m}{F \cdot k[X_0, X_1, X_2]_{m-d}}$$

$$\Rightarrow l(mD) = \frac{1}{2}(m+1)(m+2) - \frac{1}{2}(m-d+1)(m-d+2)$$

$$= \frac{1}{2}[d(m-d+2) + d(m+1)]$$

$$= md - \frac{1}{2}(d^2 - 3d)$$

$$= md + 1 - \frac{1}{2}(d-1)(d-2)$$

§21 Der Satz von Riemann-Roch

Sei C eine nichtsinguläre projektive Kurve über k, k algebraisch abgeschlossen.

Erinnerung / Definition + Bemerkung 4.21.1

 $\Omega_C := \Omega_{k(C)/k}$ sei der k(C)-Vektorraum der k-Differentiale von k(C). Die Elemente von $\Omega_{k(C)/k}$ heißen rationale Differentiale oder meromorphe Differentiale auf C. Es gilt: $\dim_{k(C)} \Omega_C = 1$

Beweis

• Ist $C = \mathbb{P}^1(k)$, so ist k(C) = k(X) und $\Omega_C = k(C) \cdot dX$.

• Im Allgemeinen ist k(C) = k(x, y) für geeignete x, y. x und y sind algebraisch abgängig, das heißt es gibt $F \in k[X, Y]$ mit $F(x, y) = 0 \Rightarrow dF(x, y) = 0$. Es gibt also lineare Gleichungen zwischen dx und dy.

Definition + Bemerkung 4.21.2

Sei $\omega \in \Omega_C, \omega \neq 0$

- (a) Für $P \in C$ sei t_P ein Erzeuger von m_P und $\omega = f dt_P$ (für ein $f \in k(C)$). Dann ist ord_P $\omega := \operatorname{ord}_P(f)$ unabhängig von der Wahl des Erzeugers t_P .
- (b) $\operatorname{div}(\omega) := \sum_{P \in C} \operatorname{ord}_P(\omega) \cdot P$ ist Divisor auf C.
- (c) $K \in \text{Div } C$ heißt **kanonisch**, wenn es ein $\omega \in \Omega_C$ gibt mit $K = \text{div}(\omega)$.
- (d) Je zwei kanonische Divisoren sind linear äquivalent.

Beweis (a) Übung!

(b) Sei $P \in C, t_P$ Erzeuger von m_P

$$U = C - \{\tilde{P} \in C : t_P \notin \mathcal{O}_{\tilde{P}}\}$$

ist offen in C. Für $Q \in U$ ist $t_Q := t_P - t_P(Q) \in m_Q$ und $d(t_Q) = d(t_P)$. Die Teilmenge

$$U' = \{ Q \in U : t_Q \notin m_a^2 \}$$

ist offen (!). Für $Q \in U'$ ist $\operatorname{ord}_Q(\omega) = \operatorname{ord}_P(f)$. $\Rightarrow \operatorname{ord}_Q(\omega) \neq 0$ für nur endlich viele $Q \in U'$.

Beispiele

 $C = \mathbb{P}^1(k), \omega = dz$

In $a \in C$ ist z - a ein Erzeuger von m_a

$$\Rightarrow \operatorname{ord}_a \omega = 0$$
, da $\omega = dz = 1 \cdot d(z - a)$

In ∞ ist $\frac{1}{z}$ Erzeuger von m_{∞} .

$$dz = -z^2 d(\frac{1}{z}), \operatorname{ord}_{\infty}(z^2) = -2 \Rightarrow \operatorname{div}(\omega) = -2 \cdot \infty$$

Satz 10 (Riemann-Roch)

Sei C eine nichtsinguläre projektive Kurve über k, K ein kanonischer Divisor auf C. Dann gilt für jeden Divisor $D \in \text{Div}(C)$:

$$l(D) - l(K - D) = \operatorname{deg} D + 1 - q$$

Beweis für den Fall $C \subset \mathbb{P}^2(k)$.

Behauptung: Für jeden Divisor D mit l(D) > 0 und jedes $P \in C$ gilt:

Ist
$$l(K-D-P) \neq l(K-D)$$
, so ist $l(D+P) = l(D)$.

Proposition 4.21.3

Sei $C = V(F) \subset \mathbb{P}^2(k)$ nichsinguläre projektive Kurve vom Grad $d \geq 3$ und $L \subset \mathbb{P}^2(k)$ eine Geradee mit $L \cap C = \{P_1, \dots, P_d\}$. Dann ist

$$K = \sum_{i=1}^{d} (d-3)P_i$$

ein kanonischer Divisor.

Probe:

$$\deg K + 2 = d(d-3) + 2 = d^2 - 3d + 2 = 2g$$
$$g = \frac{1}{2}(d-1)(d-2) = \frac{1}{2}(d^2 - 3d + 2)$$

Beweis Œ $L=V(X_0)$. Sei $X=\frac{X_1}{X_0}, Y=\frac{X_2}{X_0}$ (als Elemente von k(C)) Behauptung:

$$\operatorname{div}(dx) = \sum_{i=1}^{d} (d-3)P_i + \operatorname{div}(f_y)$$

wobei f_y die Klasse in k(C) von $\frac{1}{X_0^{d-1}} \cdot \frac{\partial F}{\partial X_2}$ ist. Dann ist

$$\operatorname{div}(f_y) = \sum_{P \in U_0} \operatorname{ord}_P \frac{\partial F}{\partial X_2} \cdot P - \sum_{i=1}^d (d-1) \cdot P_i$$

Zu zeigen ist also:

$$\operatorname{div} dx = \sum_{P \in U_0} \operatorname{ord}_P \frac{\partial F}{\partial X_2} P - 2 \cdot \sum_{i=1}^d P_i$$

Folgerung 4.21.4

$$D = 0: 1 - l(K) = 1 - g$$

(a)
$$l(K) = g$$

(b)
$$deg(K) = 2g - 2, g - 1 = deg K + 1 - g; D = K$$

(c) für
$$\deg D \ge 2y - 1$$
 ist $l(D) = \deg D + 1 - g$