SATURN 2015

Baltimore, MD — April 27-30, 2015

Smart Decisions

An Architecture Design Game

Humberto Cervantes, Serge Haziyev, Olha Hrytsay, Rick Kazman

April 2015

Instructions

This game intends to illustrate the essentials of architecture design using an iterative method such as ADD.

You will be competing against other software architects (or other teams) from rival companies, so you need to make *smart design decisions* or else your competitors will leave you behind!

Introduction

ADD Step 1: Review Inputs

Functional drivers

Quality attributes

Constraints

Game Rules

ADD Step 2: Review iteration goal and select inputs

ADD Step 3: Choose one or more elements of the system to decompose

Instructions

Smart Decisions

Iteration 1 goal: Logically structure the system

Drivers for the iteration:

- Ad-Hoc Analysis
- Real-time Analysis
- Unstructured data processing
- Scalability
- Cost Economy

Element to decompose:

Big Data System

Game Rules

ADD Step 4: Choose one or more design concepts that satisfy the inputs considered in the iteration

Game Rules: Design Concepts Cards

Extended Relational

Reference Architecture for Data Analytics

Description: Although this reference architecture is completely based on relational model principles and SQL-based DBMS, it intensively uses MPP and In-Memory techniques to improve scalability and extensibility.

Functionality:

** Ad-hoc an alysis - supports compley ad-hoc real-time read queries

** Real-time analysis - near-real time with micro-batching technique

** Unstructured data processing - supports ingesting and querying semistructured data such as JSON XIV.

Quality attributes and constraints:

** Scalability – can run tera lytes with MPP and clustering capabilities

** Extensibility – extending data model is possible but not as flexible as in non-relational architecture

** Data quality - relational model is integrated and consistent

★ Cost economy - MPP DIMS license cost is quite expensive

Sample implementations: Business Reporting, Enterprise Data

Warehousing, Data Discovery

Name and type of design concept

Influence on drivers

Patterns Technologies

- Reference Architectures
- Families

Time to make your first smart decision!

Drivers for the iteration:

- Ad-Hoc Analysis
- Real-time Analysis
- Unstructured data processing
- Scalability
- Cost Economy

Element to decompose:

Big Data System

Select 1 Reference Architecture Card

Possible alternatives:

- Extended Relational
- Pure Non-Relational
- Data Refinery
- Lambda Architecture

Disqualified alternatives:

Traditional Relational

Fill the scorecard

	Iteration #1	Iteration #2	Iteration #3	Iteration #4	Iteration #5	
(a) Design Decisions						
(Names of selected design concept(s))						
(b) Driver selection points (from cards)	1					
(c) Instantiation points (from dice)						
(d) Analysis bonus points (from review)						Final score:
(e) Iteration total $(b + c + d)$						

Fill (b) by adding the points for the drivers considered for the iteration, in this case:

- Ad-Hoc Analysis
- Real-time Analysis
- Unstructured data processing
- Scalability
- Cost Economy

Introduction

ADD Step 5: Instantiate elements, allocate responsibilities and define interfaces.

ADD Step 6: Sketch views and record design decisions

Fill the scorecard

	Iteration #1	Iteration #2	Iteration #3	Iteration #4	Iteration #5	
(a) Design Decisions						
(Names of selected design concept(s))	1					
(b) Driver selection points (from cards)						
(c) Instantiation points (from dice)	^					
(d) Analysis bonus points (from review)						Final score:
(e) Iteration total						

Record design decisions in (a)

Roll the dice and add or subtract points according to the following table fill (c).

Dice result ¹	Points
2 - 3	-2
4 - 9	0
10 - 12	+2

Introduction

ADD Steps

Iteration 1: Scoring

Score Ad-Hoc Analysis, Real-time Analysis, Unstructured data processing, Scalability, Cost Economy

Design decision	Driver points	Bonus points	Comments
Extended Relational	3+2+2+2+1= 10	-4	This reference architecture is less appropriate for this solution mostly because of cost and real-time analysis limitation
Pure Non-Relational	2+2.5+3+3+3= 13.5		This reference architecture is closer to the goal than the others except Lambda Architecture
Lambda Architecture (Hybrid)	2.5+3+3+3+3= 14.5	+2	This is the most appropriate reference architecture for this solution! From the provided reference architectures Lambda Architecture promises the largest number of benefits, such as access to real-time and historical data at the same time.
Data Refinery (Hybrid)	3+1+3+2+1= 10	-4	This reference architecture is less appropriate for this solution mostly because of cost and real-time analysis limitation

Fill the scorecard

	Iteration #1	Iteration #2	Iteration #3	Iteration #4	Iteration #5	
(a) Design Decisions						
(Names of selected design concept(s))						
(b) Driver selection points (from cards)						
(c) Instantiation points (from dice)						
(d) Analysis bonus points (from review)	7					Final score:
(e) Iteration total	K					

Add bonus points, if any and fill (d)

Sum the points and calculate the total for the iteration in (e)

Lambda Architecture Logical Structure

Source: http://lambda-architecture.net/

Big Data Analytics Reference Architectures Trade-off

Instructions

Smart Decisions

Iteration 2: Design Data Stream Element

Drivers for the iteration:

- Performance (for Family and Technology)
- Compatibility (for Family)
- Reliability (for Technology)

Select 1 Family card and 1 Technology card

Possible alternatives:

Disqualified alternatives:

 ETL Engine (lack of real-time data stream support and no need for complex data transformations)

Tip:

 Look for an option that can be deployed on-Premise and on-Cloud

Iteration 3: Design Batch Layer

Drivers for the iteration:

- Scalability
- **Availability**

Select 1 Family card

Possible alternatives:

Distributed File System Document-Oriented NoSQL Database

Oriented Column-Family

Analytic RDBMS

Value

Distributed Search Engine

Disqualified alternatives:

NoSQL Database/Key-

NoSQL Database/Graph-

Look for an option with better extensibility (easy storing of new data formats)

Iteration 4: Design Serving Layer

Drivers for the iteration:

- Ad-hoc Analysis (for Family)
- Performance (for Family and Technology)

Select 1 Family and 1 Technology card

Possible alternatives:

Disqualified alternatives:

- NoSQL Database/Key-Value
- NoSQL Database/Graph-Oriented
- Analytic RDBMS
- Distributed Search Engine

PTip:

Look for an option that provides ad-hoc analysis and still good performance for static reports

Iteration 5: Design Speed Layer

Drivers for the iteration:

- Ad-hoc Analysis (for the family)
- Real-time Analysis (for the technology)

Tip:

Select 1 Family and 1 Technology card

Possible alternatives:

Disqualified alternatives:

- NoSQL Database/Key-Value
- NoSQL Database/Graph-Oriented
- Analytic RDBMS

Look for an option that provides full-text search capabilities and extensibility (new data formats and dashboard views)

Iteration 2: Design decisions analysis and scoring

Family card: score Performance and Compatibility

Design decision	Driver points	Bonus points	Comments
Data Collector	2+3= 5	+2	Additional bonus is added for extensibility
Distributed Message Broker	3+1= 4		

Technology card: score Performance and Reliability

Design decision	Driver points	Bonus points	Comments
Apache Flume	2+2= 4		
Logstash	2+2= 4		
Fluentd	2+3= 5		
RabbitMQ	2+2= 4		
Apache Kafka	3+2= 5	+2	Additional bonus for easier deployment and configuration comparing with other alternatives
Amazon SQS	0		Disqualified due to deployment constraint (support On-premise and Cloud)
Apache ActiveMQ	2+2= 4		

Iteration 3: Design decisions analysis and scoring

Family card: score Scalability and Availability

Design decision	Driver points	Bonus points	Comments
NoSQL Database/Column- Family	3+3= 6	-1	Column families must be defined up front and require modification when log format is changed – extensibility disadvantage
NoSQL Database/Document- Oriented	3+3= 6		
Distributed File System	3+3= 6	+2	Bonus for extensibility (log format changes do not require any changes in DFS cluster) and easier deployability/maintainability compared with NoSQL databases

Note: If you selected FluentD during the previous iteration and DFS at this iteration you receive **-1 performance bonus** (FluentD uses WebHDFS which pays a little performance cost due to HTTP)

Iteration 4: Design decisions analysis and scoring

Family card: score Ad-hoc Analysis, Performance

Design decision	Driver points	Bonus points	Comments
Interactive Query Engine	3+2= 5	+2	Extensibility bonus because this approach does not require complex tuning of schema for introducing new reports and data types
NoSQL Database/Column- Family (+ SQL connector)	1+3= 4		
NoSQL Database/Document- Oriented (+ SQL connector)	1.5+3= 4.5		

Technology card: score Performance

Design decision	Driver points	Bonus points	Comments
Impala	3		
Apache Hive	1.5		
Spark SQL	3		
Apache Cassandra	3		
Apache HBase	2.5		
MongoDB	2		
Apache CouchDB	1.5		

Iteration 5: Scoring

Family card: score Ad-hoc Analysis

Design decision	Driver points	Bonus points	Comments
Distributed Search Engine	2	+2	Full-text search is out of the box + bonus for extensibility (adding new log formats and report views requires minimum changes in search engine)
NoSQL Database/Column- Family	1		
NoSQL Database/Document- Oriented	1.5		

Technology card: score Real-time Analysis

Design decision	Driver points	Bonus points	Comments
Elasticsearch	2.5	+2	Elasticsearch easily integrates with Kibana – an open source interactive dashboard
Apache Solr	2.5		
Splunk (Indexer)	2.5	-2, +2	-2 penalty for cost and +2 bonus (Splunk offers end-to-end solution including powerful visualization tool)
Apache Cassandra	3		
Apache HBase	3		
MongoDB	3		
Apache CouchDB	3		

Fill the scorecard

	Iteration #1	Iteration #2	Iteration #3	Iteration #4	Iteration #5	
(a) Design Decisions						
(Names of selected design concept(s))						
(b) Driver selection points (from cards)						
(c) Instantiation points (from dice)						
(d) Analysis bonus points (from review)						Final score:
(e) Iteration total (b + c + d)						7

Calculate the final score

- Add 2 to the player who finished first
- Add 1 to the player who finished second

