Assessment Figures

ML4ER Band Gap Prediction

Muhammad Zain Azeem, Informatics Skunkworks (**non-credits**), Week 2 24/07/2024

467 rows × 71 columns

FEATURE NORMALIZATION

Machine Learning algorithms are quite sensitive to features in terms of shape and size. To resolve such a problem best approach is to make features similar by rescaling. Here, we did rescaling using MinMaxScaler().

0 6.00000 1.135000 1 10.00000 1.27000 2 19.00000 1.345000 3 15.00000 1.560000 4 28.00000 1.440000	9311.576313 9169.525548	5.772386 6.658641
2 19.00000 1.345000 3 15.00000 1.560000 4 28.00000 1.440000	9169.525548	C CE0C41
3 15.00000 1.560000 4 28.00000 1.440000 		0.008041
4 28.00000 1.440000	32.035942	6.919518
<u></u>	23.705899	6.704252
	32.101458	7.343549
00.500000		
462 60.500000 1.422500	40.865008	8.158525
463 83.000000 1.700000	35.483459	7.821898
464 35.333333 1.086000	12405.753339	5.956046
465 50.000000 1.057500	9306.473007	5.880448
466 36.000000 0.948333	12401.714393	5.551922

After scaling

	AtomicNumber_composition_average	AtomicRadii_composition_average	AtomicVolume_composition_average	BCCefflatcnt_composition_average	BCCenergy_pa_composition_average
0	0.012821	0.190923	0.583946	0.176111	0.893262
1	0.064103	0.275430	0.575030	0.310002	0.884705
2	0.179487	0.322379	0.001553	0.349415	0.881725
3	0.128205	0.456964	0.001030	0.316893	0.754709
4	0.294872	0.381847	0.001557	0.413475	0.878016

SETUP FOR MODEL EVALUATION

- In this part, we are doing an unbiased estimation of model error by employing the cross-validation technique, in which we created training and testing sets.
- In this case, we used testing/training sets 10/90, which means 10% of the dataset will be used as a testing set while the remaining will be considered a training set.

Fitting is highly perfect for the training data set

Progress

FITTING THE DECISION TREE MODEL

Applied RandomForestRegressor for determining the band gap

```
Default_model_all_data = RandomForestRegressor(random_state=seed,n_estimators=1,bootstrap=False).fit(X_predict,y_predict)

print("Predicting Silica Band Gap: ",Default_model_all_data.predict(xpredict_Si))

print("Predicting Silica Band Gap: ",Default_model_all_data.predict(xpredict_Si02))

Predicting Silica Band Gap: [2.]

Predicting Silica Band Gap: [7.]
```

EVALUATING MODEL PERFORMANCE ON TRAINING AND TEST DATA

	Error Metric	Training Data	Test Data	Note
0	RMSE	0.0003 (eV)	1.2398 (eV)	(0.0 for perfect prediction)
1	RMSE/std	0.0001	0.5771	(0.0 for perfect prediction)
2	MAE	0.0 (eV)	0.723 (eV)	(0.0 for perfect prediction)
3	R2	1	0.6669	(1.0 for perfect prediction)

A point closer to the straight line shows good fitting results however point far away from it indicating poor fitting

IMPROVING THE MODEL BY OPTIMIZING HYPERPARAMETERS

- Used "hyperparameters" to overcome the poor results of the training dataset (previous slides).
- Its main purpose is to control the model learning process and how its fitting works.

Default model uses the following hyperparameters:

```
{'bootstrap': False,
 'ccp alpha': 0.0,
 'criterion': 'mse',
 'max depth': None,
 'max features': 'auto',
 'max leaf nodes': None,
 'max samples': None,
 'min impurity decrease': 0.0,
 'min impurity split': None,
 'min samples leaf': 1,
 'min samples split': 2,
 'min weight fraction leaf': 0.0,
 'n estimators': 1,
 'n jobs': None,
 'oob score': False,
 'random state': 2345312,
 'verbose': 0,
 'warm start': False}
```

CROSS-VALIDATION STRATEGY: REPEATEDKFOLD CROSS-VALIDATION.

Here we are combining cross-validation with a grid of hyperparameters using scikit-learn "Grid

Search" approach

 MSE for both training and validation dropped with the increase of decision trees, indicating better performance

Minimum Mean Squared Error: 1.281 Number of Trees at minimum: 50

DEFAULT VS. OPTIMIZED MODEL: CROSS-VALIDATION PERFORMANCE

```
# Extract cross validation performance metrics for the optimized model opt_CV_stats = CV_best_stats(CV,y_train)

Average test RMSE: 1.1318 (0.0 for perfect prediction)
Average test RMSE/std: 0.4925 (0.0 for perfect prediction)
Average test MAE: 0.7634 (0.0 for perfect prediction)
Average test R2: 0.7487 (1.0 for perfect prediction)
Increased!
```

 Results after model optimization where we have 50 decision trees

 Comparing optimized model results with the default model

DEFAULT VS. OPTIMIZED MODEL: TRAINING AND TEST DATA PERFORMANCE

A high accurate prediction in the optimized model in contrast to the default model

MAKING PREDICTIONS

DT3 model fitting

fit model to all data except for the values we want to predict.
DT3 = CV.best_estimator_.fit(X_predict,y_predict)

Prediction for Si

```
### MAKE EDITS BELOW HERE ###
Prediction_features = xpredict_Si
### MAKE EDITS ABOVE HERE ###
# make a prediction with the trained DT3 model
print("Predicted Band Gap: ",DT3.predict(Prediction_features))
```

Predicted Band Gap: [1.4931]

Prediction for C

```
### MAKE EDITS BELOW HERE ###
Prediction_features = xpredict_C
### MAKE EDITS ABOVE HERE ###
# make a prediction with the trained DT3 model
print("Predicted Band Gap: ",DT3.predict(Prediction_features))
```

Predicted Band Gap: [2.58746667]

FINAL MODEL PREDICTIONS

```
# combine previous data into one dataframe for visualization
predictions_combined = pd.DataFrame(list(zip(y_test,Test_predictions2)),columns=['test','predictions'])
```

```
# sort on the Test values from low to high
predictions_combined.sort_values("test")
```

	test	predictions
31	0.064	0.811780
39	0.100	0.729860
10	0.100	0.761200
0	0.170	0.493340
21	0.200	2.313460
20	0.200	0.763130
37	0.230	0.781920
7	0.270	0.655300
9	0.310	0.407160
43	0.332	0.648860
38	0.400	0.837400
42	0.590	1.510770
29	0.600	0.918150
27	0.800	0.414520
44	0.900	0.878620
18	0.900	0.834900
26	0.980	0.717020
34	1.030	0.850480
40	1.080	0.829400