Applied Machine Learning for Business Analytics

Lecture 2: Machine Learning Practices

Lecturer: Zhao Rui

```
knn.rit(x, y)
    # What kind of iris has 2cm x 5cm sepal and 1cm x 5cm petal?
    # call the "predict" method:
    result = knn.predict([[2, 5, 1, 5],])
    print(iris.target_names[result])
    # You can also do probabilistic predictions
    knn.predict_proba([[2, 5, 1, 5],])
    ['setosa']
i]: array([[1., 0., 0.]])
]: result
]: array([0])
    Question: why the following code is not working?
```

]: result = knn.predict([2, 5, 1, 5])

Logistics

- 1-2 days response policy for course-related emails (Please address me Rui)
- Video presentation for group projects
- HW1 has been released (Simple EDA exercise) today, which due Friday Jan 28,
 11:59 pm
- We miss 14 students in group projects. If you need any help, pls contact Sanjay
- The survey will be sent this weekend for your preference over remote learning and f2f learning.

Agenda

- 1. Feature Engineering
- 2. Model Selection: Cross-Validation
- 3. Hyper-parameter Selection
- 4. Data Leakage

1. Feature Engineering

Recall that computers only understand numbers

What is Feature Engineering

- Feature engineering:
 - Extract features to use in your model
 - How to represent examples by the feature vectors?

Feature Engineering

- Core Question:
 - What properties of x **might be** relevant for predicting y?

A "Real" Machine Learning Task

Example Task: Predict y, whether a string x is an email address

```
    x: "diszr@nus.edu.sg"
    x: "nusmsba"
    x: "@trump"
    y:0
```

- Question: What properties of x might be relevant for predicting y?
- Feature extractor: Given input x, output a set of (feature name, feature value)
 pairs

Feature Engineering

- Question: What properties of x might be relevant for predicting y?
- Feature extractor: Given input x, output a set of (feature name, feature value)
 pairs

Engineered Features

For text data: BoW Models I have a dog. He's sleeping. Stopword removal # features I have dog. He's sleeping. Lemmatization 3 0 0 0 Contraction I have dog. He's sleep. Classifier # samples (e.g. LogReg) **Punctuation** I have dog. He is sleep. 0 0 0 Lowercase I have dog He is sleep i have dog he is sleep N-gram

F4	
Features	

ı	you	have	dog	cat	he	she	is	they	sleep	I, have	have, dog	good, dog	
1	0	1	1	0	1	0	1	0	1	1	1	0	

Representation Learning

- Using Deep Learning Approach:
 - o CNN, RNN, Attention Models
 - Learn representations from text, image, video, audio signals

http://cs231n.github.io/convolutional-networks/

Feature Engineering

- In papers, deep learning papers promise no more feature engineering
 - We are still very far from that point
 - Deep learning are not the first choice in industry for many applications

Spam Classification

Except BoW Features:

- Post repetitiveness
- Language detection, typos, abnormal punctuations, ratio uppercase/lowercase
- IP, other users from the same IP
- Blacklisted links
- Targeted users
- ...

Feature engineering

- For complex tasks, number of features can go up to millions or billions!
- Lots of ML production work involves coming up with new features
 - Fraudsters come up with new techniques very fast, so need to come up with new features very fast to counter
- Often require subject matter expertise
- Good Habits: Know your data
 - Visualize: Plot Histograms, Rank Most to least common value
 - Debug: Duplicate examples? Missing Values? Outliers? Data Agrees with dashboards? Training and Validation data similar?
 - Monitor: Feature quantiles

Several feature engineering tips

- 1. EDA
- 2. Handling missing values
- 3. Scaling
- 4. Discretization
- 5. Categorical features
- 6. Feature crossing

EDA for Discrete Features

• Predict Tranx. Probabilities for Onboarding Users

EDA for Continuous Features

User Age Bin (legends = left interval limit, unit in years)

EDA for Continuous Features

Empirical Cumulative Distribution Function: An estimator of the cumulative distribution function

Why Data Goes Missing

- Data missing has different reasons
 - Missing at random (MAR)
 - Missing not at random (MNAR)
 - Missing completely at random (MCAR)

Source: https://en.wikipedia.org/wiki/Missing_data

ID	Age	Gender	Annual income	Job	Buy?
1		А	150,000	Engineer	No
2	27	В	50,000	Teacher	No
3		А	100,000		Yes
4	40	В		Engineer	Yes
5	35	В		Doctor	Yes
6		А	50,000	Teacher	No

MAR

Missing at random – the missing data is related to another observed variable

ID	Age	Gender	Annual income	Job	Buy?
1		А	150,000	Engineer	No
2	27	В	50,000	Teacher	No
3		А	100,000		Yes
4	40	В		Engineer	Yes
5	35	В		Doctor	Yes
6		А	50,000	Teacher	No

MNAR

Missing not at random – the data missing is related to the value itself

ID	Age	Gender	Annual income	Job	Buy?
1		А	150,000	Engineer	No
2	27	В	50,000	Teacher	No
3		А	100,000		Yes
4	40	В	(\$350,0000?)	Engineer	Yes
5	35	В	(\$350,0000?)	Doctor	Yes
6		А	50,000	Teacher	No

MCAR

Missing completely at random – there is no pattern to which values are missing

ID	Age	Gender	Annual income	Job	Buy?
1		А	150,000	Engineer	No
2	27	В	50,000	Teacher	No
3		Α	100,000		Yes
4	40	В		Engineer	Yes
5	35	В		Doctor	Yes
6		А	50,000	Teacher	No

- Deletion removing data with missing entries
- Imputation filling missing fields with certain values

Deletion

- Column deletion remove columns with too many missing entries
 - drawbacks even if half the values are missing, the remaining data still potentially useful information for predictions
 - e.g. even if over half the column for 'Marital status' is missing, marital status is still highly correlated with house purchasing
- Row deletion

Marital status
Married
Single
Single

Row deletion

o Good for: data missing completely at random (MCAR) and few values missing

ID	Age	Gender	Annual income	Job	Buy?
1	39	А	150,000	Engineer	No
2	27	В	50,000	Teacher	No
3		А	100,000		Yes
4	40	В	75,000	Engineer	Yes
5	35	В	35,000	Doctor	Yes
6	32	А	50,000	Teacher	No
7	33	В	60,000	Teacher	No
8	20	В	10,000	Student	No

- Row deletion
 - Bad when many examples have missing fields

ID	Age	Gender	Annual income	Job	Buy?
1		A	150,000	Engineer	No
2	27	В	50,000	Teacher	No
3		A	100,000		Yes
4	40	В		Engineer	Yes
5	35	В		Doctor	Yes
6		A	50,000	Teacher	No
7	33	В	60,000	Teacher	No
8	20	В	10,000	Student	No

Row deletion

- Bad for: missing data at random (MAR)
- Can potentially bias data we've accidentally removed all examples with gender 'A'

ID	Age	Gender	Annual income	Job	Buy?
1		А	150,000	Engineer	No
2	27	В	50,000	Teacher	No
3		А	100,000		Yes
4	40	В		Engineer	Yes
5	35	В		Doctor	Yes
6		А	50,000	Teacher	No
7	33	В	60,000	Teacher	No
8	20	В	10,000	Student	No

Row deletion

- Bad for: missing values are not at random (MNAR)
- Missing information is information itself

ID	Age	Gender	Annual income	Job	Buy?
1		А	150,000	Engineer	No
2	27	В	50,000	Teacher	No
3		А	100,000		Yes
4	40	В	(\$350,000?)	Engineer	Yes
5	35	В	(\$350,000?)	Doctor	Yes
6		А	50,000	Teacher	No
7	33	В	60,000	Teacher	No
8	20	В	10,000	Student	No

Imputation

- Fill missing fields with certain values
 - Defaults
 - E.g. 0, or the empty string, etc.
 - Statistical measures mean, median, mode
 - e.g. if a day in July is missing its temperature value, fill it with the median temperature in July

Scaling

Distribution should not have crazy outliers

Ideally all features transformed to a similar range, like (-1, 1) or (0, 5).

Types of scaling

scaling type	use case
min/max normalization	Any no assumptions about variables
z-score normalization	When variables follow a normal distribution
log scaling	When variables follow an exponential distribution

Feature Scaling

- Common Scaling Methods:
 - \circ Min-max Scaler: $\hat{x} = rac{x x_{min}}{x_{max} x_{min}}$
 - \circ Z-score transformation: $\hat{x} = rac{x x_{mean}}{\sigma}$

Which machine learning models require feature scaling?

Log scaling

- Help with skewed data
- Often gives performance gain

Potential Data Leakage

- scaling might lead to data leakage
- scaling variables requires "global" statistics

Discretization

- Turning a continuous feature into a discrete feature (quantization)
- Create buckets for different ranges
 - Incorporate knowledge/expertise about each variable by constructing specific buckets
- Examples
 - Income
 - Lower income: x < \$35,000
 - Middle income: \$35,000 <= x < \$100,000
 - High income: x >= \$100,000
 - Age
 - Minors: x < 18
 - College: 18 <= x < 22
 - Young adult: 22 <= x < 30
 - 30 <= x < 40
 - 40 <= x < 65
 - Seniors: x >= 65

- Example: you want to build a recommendation system for Amazon
 - There are over 2 million brands that we need to recommend
 - It could be used as part of items features
 - Let us try one-hot encoding

- one-hot encoding
- How to address unseen brands when the model is deployed

- one-hot encoding!
- encode unseen brands with "UNKNOWN"

Did we solve the unseen problem?

- one-hot encoding!
- encode unseen brands with "UNKNOWN"
- Group low frequent 1% of brands and newcomers into "UNKNOWN" category

Did we solve the unseen problem?

- one-hot encoding!
- encode unseen brands with "UNKNOWN"
- Group low frequent 1% of brands and newcomers into "UNKNOWN" category
- Problem this treats all new brands the same as unpopular brands on the

platform

What if Disney Linabell come to Amazon as a new brand

Encoding New Categories

- The question is: how to implement a robust method of handling the potential new brands? (Out of Vocabulary Problems)
- 2. Two popular methods:
 - a. Represent each category with its attribute
 - i. For example, to represent a brand, use features: category, yearly revenue, company size, etc..
 - ii. The similar trick could be found in BERT to address OOV words.
 - b. Hashing Encoder
 - i. Using a hash function to hash categories to different indexes
 - ii. Suitable for highly cardinality features
 - iii. Potential collision issues

Feature Crossing

Combine two or more features to create a new feature

Marriage	Single	Married	Single	Single	Married
Children	0	2	1	0	1
Marriage & children	Single, 0	Married, 2	Single, 1	Single, 0	Married, 1

Feature Crossing

- Helps models learn non-linear relationships between variables
- Warning feature crossing can blow up your feature space
 - e.g. Feature A and B both have 100 categories → Feature A x B will have 10,000 categories
 - Need even more data to learn this new feature space
 - Blowing up feature space can increase risk of overfitting

Feature crossing is widely used in recommendation system (CTR prediction)

- 1. https://ai.googleblog.com/2016/06/wide-deep-learning-better-together-with.html
- 2. https://www.ijcai.org/proceedings/2017/0239.pdf

2. Cross-Validation

Which measure should we look for

model evaluation?

Let's try to train a model for this problem

How about this model?

More data

Which measure should we look for model evaluation?

Training performance is not suitable

Generalization

- In ML, a model is used to fit the data
- Once trained, the model is applied upon new data
- Generalization is the prediction capability of the model on live/new data

Model Complexity

The Big Picture

- Goal: predict well on new data drawn from (hidden) true distribution.
- Problem: we don't see the truth.
 - We only get to sample from it.
- If model h fits our current sample well, how can we trust it will predict well on other new samples?

Is the model overfitting?

- Intuition: Occam's Razor principle
 - The less complex a model is, the more likely that a good empirical result is not just due to the peculiarities of our samples.
- Theoretically:
 - Interesting field: generalization theory
 - Based on ideas of measuring model simplicity / complexity

Is the model overfitting?

Empirically:

- Key point: will our model be good on new samples?
- Evaluate: get new samples of data (test set)
- If test set is large enough and we do not cheat by using test set over and over, the good performance on test set can be a useful indicator of model's generalization capability

Training/Test Splitting

- If models do much better on the training set than the testing set, then models are likely overfitting.
- How do we divide?
 - Randomization for splitting
 - Larger training data size -> better model
 - Larger testing data size -> more confident in model's evaluation
 - One practical rule: 10-15% left for testing, the rest for training

Training vs Test

How about this workflow?

Pick model that does best on Test Set.

Partition Data Sets

Better Workflow: Use a validation set

Pick model that does best on Validation Set Confirm results on Test Set

Cross-Validation

- If we have a small dataset: CV can be used
- Idea is simple but smart:
 - Use your initial training data to generate multiple mini train-test splits. Use these splits to evaluate your model
 - K is a hyper-parameters. K is equal to the number of generated train-test splits.

Cross-Validation

- Partition data into k subsets, i.e., folds
- Iteratively train the model on k-1 folds while using the remaining fold as the test set (hold-out set)
- Compute the average performances over the K folds

CV

- Divide into three sets
 - Training set
 - Validation set
 - Test set
- Classic gotcha: only train the model on training data
 - Getting surprisingly low loss?
 - Check the whole procedure

How to detect overfitting

- After training/testing splitting, training loss is much less than testing loss.
- Start with a simple model as the benchmark
 - When add model complexity, you will have a reference point to see whether the additional complexity is worthy.

How to prevent overfitting

- Train with more data
 - Filter noisy data (outlier)
- Remove features
 - Remove irrelevant features
- Regularization
 - Control model complexity
 - Different machine learning models have their own regularization methods.

sklearn.linear_model.Ridge

class sklearn.linear_model. $Ridge(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=0.001, solver='auto', random_state=None)$ [source]

Linear least squares with I2 regularization.

Minimizes the objective function:

$$||y - Xw||^2_2 + alpha * ||w||^2_2$$

This model solves a regression model where the loss function is the <u>linear least squares</u> function and <u>regularization</u> is given by the I2-norm. Also known as Ridge Regression or Tikhonov regularization. This estimator has built-in support for multi-variate regression (i.e., when y is a 2d-array of shape (n_samples, n_targets)).

Read more in the User Guide.

Alpha is the controlling parameter, which is also hyperparameter

3. Hyperparameter Optimization

Hyperparameters

- Machine learning algorithms usually have two kinds of weights:
 - Parameters: learned by data during training such as slope of linear regression, layer weights of neural networks
 - Hyperparameters: left to us to select beforehand such as K in KNN, number of layers in neural networks

Hyperparameters

```
>>> from sklearn.linear_model import Ridge
>>> import numpy as np
>>> n_samples, n_features = 10, 5
>>> rng = np.random.RandomState(0)
>>> y = rng.randn(n_samples)
>>> X = rng.randn(n_samples, n_features)
>>> clf = Ridge(alpha=1.0)
>>> clf.fit(X, y)
Ridge()
```

Hyperparameters should be passed when you initialize the machine learning model **before training**

Searching is Iterative, then Expensive

Grid Search

- Define a grid on n-dimensions, where each of these maps for an hyperparameter
- For each dimension, define the range of possible values
- Search for all combinations and select the best one

Random Search

- Randomly pick the point from the configuration space
- The rest is the same as grid search

Good on high-dim spaces

From Bergstra and Bengio

Advanced Search Algorithms

- For grid and random search, the previous trials can not contribute to each new guess.
- Try to model the hyperparameter search as a machine learning task
 - Tree-structured Parzen Estimator
 - Gaussian Process
 - Other bayesian optimization methods

Main idea: based on the distribution of the previous results, decide which set of parameters should be explored firstly

GCP Implementation:

https://cloud.google.com/blog/products/ai-machine-learning/hyperparamet er-tuning-cloud-machine-learning-engine-using-bayesian-optimization

4. Data Leakage

Data Leakage

- Training data leakage
 - Oversampling before splits
 - Training data may overlap with testing data
 - Prepare features on the entire data instead of just training data
 - Create vocab/preprocessing scaler from train+test data
 - Group leakage
 - A patient has 2 CT scans, 1 in train, 1 in test.

Feature leakage

- Some form of the label "slip" into the features
- This same information is not available during inference

Feature Leakage Example I

- Detect Lung Cancer from CT Scans
- Collected from Hospital I
- Performs well on unseen data from I
- Performs poorly on new data from Hospital II

Date
Doctor note
Medical record
Scanner type
CT scan Image

Feature Leakage Example I

- Detect Lung Cancer from CT Scans
- Collected from Hospital I
- Performs well on unseen data from I
- Performs poorly on new data from Hospital II

Date	
Doctor note	
Medical record	
Scanner type	
CT scan Image	

At hospital I, when doctors suspect that a patient has lung cancer, they send that patient to a higher-quality scanner

How to avoid leakage

- Check for duplication between train and valid/test splits
- Use only train splits for feature engineering (model training for sure)
- Train model on subset of features.
 - If performance very high on subset, either high quality features or leakage!
- Monitor model performance as more features are added
 - If sudden increase, either high quality features or leakage!
- Check the correlation between feature and label
- Keep asking yourself during model development: can we use this information when the model is deployed for inference?