3.4.7 Let A E IR^{2x2} Show correlation between det(A) and KF(A) where KF(A) = ||A||F||A'||F. First, let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ so that $A' = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & d \end{bmatrix}$. Then $||A||_{F} = \sqrt{a^2 + b^2 + c^2 + d^2}$ and $\|A^{-1}\|_{F} = \frac{1}{\|A\|^{2} + (-b)^{2} + (-c)^{2} + (a)^{2}}$ So $K_F(A) = \frac{a^2 + b^2 + c^2 + d^2}{det(A)}$

Thus det(A) and $\mathcal{H}(A)$ are inversely proportional for $A \in \mathbb{R}^{2\times 2}$