

Graded Homework 1

Due: Friday 15h00, October 18, 2019

Exercise 1. Bases and matrix representation of linear operators (20 points) Let H be the space of real polynomials of maximum degree 2 with the standard inner product and norm on $L^2([-1,1])$. Additionally, let $\Phi = \{\varphi_i(t)\}_{i=0,1,2}$, where $\varphi_i(t) = t^i$. Similarly, let $\Psi = \{\psi_i(t)\}_{i=0,1,2}$.

Part (a)

In the first half of this question, we'll construct functions $\psi_i(t)$, i = 0, 1, 2 to make Ψ an orthonormal bases for H.

- (i) Find $\psi_0(t)$ such that $\|\psi_0(t)\| = 1$ and $\text{span}(\{\psi_0(t)\}) = \text{span}(\{\varphi_0(t)\})$.
- (ii) Find $\psi_1(t)$ such that $\|\psi_1(t)\| = 1$, $\langle \psi_0(t), \psi_1(t) \rangle = 0$ and $\operatorname{span}(\{\psi_0(t), \psi_1(t)\}) = \operatorname{span}(\{\varphi_0(t), \varphi_1(t)\})$. Hint: Start from $\varphi_1(t)$ and make it orthogonal to $\psi_0(t)$ (if it is not already). Then, make the resulting vector have unit length.
- (iii) Find $\psi_2(t)$ such that $\|\psi_2(t)\| = 1$, $\langle \psi_0(t), \psi_2(t) \rangle = 0$, $\langle \psi_1(t), \psi_2(t) \rangle = 0$ and $\operatorname{span}(\Psi) = \operatorname{span}(\Phi) = H$.

Part (b)

In the second half of this question, we'll find matrices to perform differentiation. To do this, let $A: H \to H$ be the differentiation operator so that $\frac{dx(t)}{dt} = Ax(t)$ for all $x(t) \in H$.

- (iv) Write down the matrix $\Gamma: \mathbb{R}^3 \to \mathbb{R}^3$ that performs differentiation on the expansion coefficients of Φ ; i.e., if $x(t) = \Phi \alpha$ and $\frac{dx(t)}{dt} = \Phi \beta$ write down Γ such that $\beta = \Gamma \alpha$. Hint: Since you know how to differentiate polynomials in this basis, you can just write out the matrix with no calculations.
- (v) Let $\Gamma: \mathbb{R}^3 \to \mathbb{R}^3$ be the matrix that performs differentiation on the expansion coefficients of Ψ ; i.e., if $x(t) = \Psi \alpha$ and $\frac{dx(t)}{dt} = \Psi \beta$, Γ is such that $\beta = \Gamma \alpha$.
 - (a) Write Γ in terms of inner products.
 - (b) Find the matrix Γ by calculating the inner products.

Exercise 2. Norms of Oblique Projections

Orthogonal projections are contractions—they either make a vector shorter, or they don't change its length. If $\Pi: \mathcal{H} \to \mathcal{H}$ is an orthogonal projection in a Hilbert space \mathcal{H} , we can write this as

$$\|\Pi x\| \le \|x\|, \ \forall x \in \mathcal{H}.$$

Equivalently, we can say that the spectral norm of Π is upper bounded by 1, and in fact it is equal to one.

(i) Show that $I - \Pi$ is also an orthogonal projection, and that we have

$$\|\Pi\| = \|I - \Pi\| = 1.$$

Assume that the range of Π is non-trivial, and that it is not the whole space \mathcal{H} .

For oblique projections, it no longer holds that they are contractions—they can make a vector longer as well. Thus for a general projection $P: \mathcal{H} \to \mathcal{H}$, we will have

$$||P|| \ge 1.$$

However, it still holds that ||P|| = ||I - P||, and it is the goal of the rest of this exercise to prove this.

Let P be a projection (not necessarily orthogonal), such that neither $\mathcal{R}(P)$ nor $\mathcal{N}(P)$ equal \mathcal{H} . Let $u \in \mathcal{H}$ be such that ||u|| = 1. Let x = Pu and y = (I - P)u.

- (ii) Show that $||u||^2 = ||x||^2 + ||y||^2 + 2\operatorname{Re}\langle x, y \rangle$.
- (iii) We want to show that $||Pu|| \le ||I P||$. Show first that this holds in special cases when x = 0 or y = 0 (the general claim when $x \ne 0$ and $y \ne 0$ is the subject of the next two subquestions).

Hint: Recall that the norm of any projection is greater than or equal to 1.

(iv) Assume that $x \neq 0$ and $y \neq 0$. Define $w \in \mathcal{H}$ as $w = \tilde{x} + \tilde{y}$, with

$$\tilde{x} = \frac{\|y\|}{\|x\|} x, \quad \tilde{y} = \frac{\|x\|}{\|y\|} y.$$

Prove that ||w|| = 1.

- (v) Show that ||Pu|| = ||(I P)w||, and then use the definition of the spectral norm to prove that $||Pu|| \le ||I P||$. Use it again to prove $||P|| \le ||I P||$.
- (vi) Use symmetry to show that $||I P|| \le ||P||$. Conclude finally that ||I P|| = ||P||.

Exercise 3. DFT MATRIX (20 POINTS)

The DFT of a length-N sequence x_n is given by

$$X_k = \sum_{n=0}^{N-1} x_n e^{-j\frac{2\pi}{N}kn}, \qquad k \in \{0, 1, \dots, N-1\},$$

and x_n is computed from X_k by the inverse DFT as

$$x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k e^{j\frac{2\pi}{N}kn}, \quad n \in \{0, 1, \dots, N-1\}.$$

1. Find matrices A and B, such that

$$X = Ax$$
$$x = BX.$$

2. Verify that

$$A \stackrel{a}{=} B^{-1} \stackrel{b}{=} NB^*$$

where B^* is the conjugate-transpose of B.

3. Let C be an $N \times N$ circulant matrix. That is, $c_{ij} = \alpha_{(i-j) \mod N}$ for some length-N sequence α_n .

Show that the columns of B are the eigenvectors of C and compute the corresponding eigenvalues.

4. Compute the product

ACB.

5. Assume that the computational complexity of applying operators A and B is of order $N\log_2 N$. What is the computational complexity of solving the system

$$Cx = b$$
?

Compare this to general (non-circulant) C.

Compare these costs for N = 1024.