UTILIZING
MACHINE
LEARNING &
REGRESSION
ANALYSIS TO
ANALYZE FLOOD
INSURANCE
DATA

MGT 6203 Proposal Presentation

By (order of presentation):

- Hossein Daneshvar
- Warda Aziz Khan
- Mahshid Jafar Pour
- Anh Tran

April 2022

HOSSEIN

OUTLINE

- Problem Statement
- Dataset(s)
- Data engineering
 - Data exploration through visualization
 - Data cleaning
 - Imputation
 - Feature selection and feature engineering
- Modeling
 - Linear regression
 - Stepwise method
 - Penalized Linear Regression
 - Principal Component Analysis (PCA)
 - Regression Tree
- Conclusions

PROBLEM STATEMENT

- Damage caused by floods is covered under the policy issued by National Flood Insurance Program (NFIP), overseen by FEMA (Federal Emergency Management Agency).
- Flooding is the primary vector of economic damages inflicted on local communities. There is also a projected increase in destructive flooding due to climate change; therefore, there is an enormous need to efficiently distribute financial risk.
- Our target variable is the insurance premium. We are trying to answer the following questions:
 - How do flood zone, elevation, property state, no. of floors and other features affect insurance premium? Can we predict premium based on the variables available?
 - What is the correlation between different variables?
 - What are the most important variables in premium estimation?

DATA

- The main dataset: FEMA's National Flood Insurance Policy Database (https://www.kaggle.com/lynma01/femas-national-flood-insurance-policy-database)
- More than 50,000,000 rows
- Limited the analysis to Houston, TX data (2,029,540 rows)
- Supplementary data: 2,000,000 rows of Claims
 (https://nfipservices.floodsmart.gov/reports-flood-insurance-data)

									regular	e	smallbusi	totalbuildi	totalconte
				policyter	postfirmc	primaryre			merger	ıcy	nessindic	nginsuran	ntsinsura
	policycou	policyeffecti	policytermin	mindicato	onstructio	sidencein	propertys	reportedzi	ratemeth progra	mi reportedo	i atorbuildi	cecoverag	ncecovera
originalnbdate	policycost nt	vedate	ationdate	r	nindicator	dicator	tate	pcode	od ndicato	r ty	ng	е	ge
2008-08-19	388 1	2009-08-19	2010-08-19	1	N	Υ	NH	3278	7 R	WARNER		250000	100000
1997-10-04	315 1	2009-10-04	2010-10-04	1	N	Υ	LA	70726	1 R	DENHAM	SPRINGS	16400	8800
2005-08-13	348 1	2009-08-13	2010-08-13	1	Υ	Υ	SC	29579	7 R	MYRTLE E	EACH	250000	100000
2006-04-14	951 1	2009-04-14	2010-04-14	1	Υ	Υ	AL	35901	2 R	GADSDEN		174900	21000

WARDA

STEPS IN DATA ANALYSIS

- Visualization and understanding data
- Data Filtering/Cleaning
- Feature Selection & Feature Engineering
- Modeling

VISUALIZATION AND UNDERSTANDING DATA

 Visualization to understand the data

DATA FILTERING/CLEANING

- Data Filtering/Cleaning
 - Right data formatting
 - Outlier removal
 - Removed columns with more than 60% data missing
 - Imputing missing data with mean, 0 and mode
 - Created dummy variables for categorical features

STEPS IN DATA ANALYSIS

- Visualization and understanding data
- Data Filtering/Cleaning
 - · Outlier removal
 - Removed columns with more than 60% data missing
 - Imputing missing data with mean, 0 and mode
 - Right data formatting
 - Created dummy variables for categorical features
- Feature Selection & Feature Engineering
 - Correlation matrix
 - VIF
 - Stepwise regression
 - LASSO regression
 - PCA
 - Feature transformation (log and cubic root)
- Modeling
 - Linear model
 - More advanced models such as Random Forest and SVM

MAHSHID

FEATURE SELECTION & FEATURE ENGINEERING

After data cleaning and visualization:

- Explored both linear and Spearman relationship between features and omitted the features that are highly correlated (cut-off > 0.6)
- Explored non-linear transformation of data: logarithmic and cubic root transformation
- Omitted featured with VIF above 10.
- Stepwise regression (AIC as metric) and LASSO regression (5-fold cv) were performed for further feature selection.
- Reduced 44 variables, many of which in categorical format, to 22 through the above steps

FEATURE SELECTION & FEATURE ENGINEERING

- Feature selection and transformation improved R² of linear regression from 0.35 to 0.44.
- All the features are significant based on linear regression
- The final dataset: still large; ~2 million rows with 21 features.
- Due to computational demand, data were filtered for the top most frequent zipcodes: 77096, 77089, 77084, 77024 and 77062. More complicated models are run only on this subset of data which is still large (\sim 293,794 rows).

LINEAR REGRESSION MODEL

- Train-test split: 70% 30%
- Stepwise: forward and both direction; AIC as a metric, all variables significant; $R^2 = 0.498$
- Penalized Linear Regression (Ridge & Lasso):
 occupancy type has the strongest negative
 effect on the target variable, following by
 "elevatedbuildingindicator".
- Risk zone and construction with basement have positive coefficient, resulting in an increase in the total insurance premium

ANH

PRINCIPAL COMPONENT ANALYSIS (PCA)

- PCA was run on the remaining 21 variables. From standard deviations of each PC and screeplot it was concluded that 7 to 10 PCs are sufficient to account for 88% to 96% of variability respectively.
- R² with 7 PCs and 10 PCs is 0.397 and 0.463 respectively.

TREE-BASED REGRESSION

- Decision Tree: input: 21 variables;
 - only 4 variables ("federalpolicyfee",
 "floodzone_highrisk",
 "elevationdifference_trans" and
 "totalbuildinginsurancecoverage_trans"
) were included in the model
 - 12 terminal nodes.
 - R2 = 0.784
- Random Forest:
 - 500 weak regression trees
 - R2 = 0.884

```
Regression tree:
tree(formula = totalinsurancepremiumofthepolicy_log ~ ., data = train)
Variables actually used in tree construction:
[1] "federalpolicyfee" "floodzone_highrisk"
[3] "totalbuildinginsurancecoverage_trans" "elevationdifference_trans"
```


COMPARISON OF LINEAR & TREE-BASED REGRESSIONS

CONCLUSIONS

- The most important features based on linear regression are:
 - Occupancy type (3 dummy variables),
 - · Elevated building indicator, and
 - Floodzone_high risk.
- Random Forest shows the highest predictive power. Based on this model the following are the most important features in predicting insurance premium:
 - Federal policy fee,
 - Total building coverage,
 - · Elevated building indicator, and
 - floodzone_high risk.

REFRENECES

- [1] Munich Re. NatCatSERVICE https://natcatservice.munichre.com/ (2019).
- [2] Winsemius, H. C. et al. Global drivers of future river flood risk. Nat. Clim. Change 6, 381–385 (2016).
- [3] Davis, S. A. & Skaggs, L. L. Catalog of Residential Depth-Damage Functions used by the Army Corps of Engineers in Flood Damage Estimation IWR-92-R-3 (USACE Institute for Water Resources, Fort Belvoir, VA, 1992).
- [4] Wing, O.E.J., Pinter, N., Bates, P.D. et al. New insights into US flood vulnerability revealed from flood insurance big data. Nat Commun 11, 1444 (2020).
- [5] Bübeck, P., de Moel, H., Bouwer, L. M. & Aerts, J. C. J. H. How reliable are projections of future flood damage? Nat. Hazards Earth Syst. Sci. 11, 3293–3306 (2011).
- [6] Merz, B., Kreibich, H., Schwarze, R. & Thieken, A. Review article "Assessment of economic flood damage". Nat. Hazards Earth Syst. Sci. 10, 1697–1724 (2010).
- [7] McGrath, H., El Ezz, A. A. & Nastev, M. Probabilistic depth-damage curves for assessment of flood-induced building losses. Nat. Hazards 97, 1–14 (2019).
- [8] Lehman, W. & Nafari, R. H. An empirical, functional approach to depth damages. E3S Web Conf. 7, 05002 (2016).
- [9] Karapiperis, Dimitris & Kunreuther, Howard & Lamparelli, Nick & Maddox, Ivan & Kousky, Carolyn & Surminski, Swenja & Dolese, Ned & Patel, Paresh & Larkin-Thorne, Sonja. (2017). Flood Risk and Insurance. 10.13140/RG.2.2.27243.13608.
- [10] Congressional Research Service: Informing the legislative debate since 1914. (2021). National Flood Insurance Program: The Current Rating Structure and Risk Rating 2.0. https://crsreports.congress.gov
- [11] https://nfipservices.floodsmart.gov/reports-flood-insurance-data
- [12] https://www.kaggle.com/lynma01/femas-national-flood-insurance-policy-database
- [13] Zuur, A.F., Ieno E.N., Elphick C. S., A protocol for data exploration to avoid common statistical problems, Methods in Ecology & Evolution, (2010)

THANK YOU!