

PHYSICS Chapter 17

3th
SECONDARY

CONSERVACION DE LA EM

ÁREA DE CT

COLORES SUGERIDOS

PARA EL TÍTULO

fdgkdnfladkf

SUB TÍTULO

fdgkdnfladkf

SUB TÍTULO

SUB TÍTULO

HELICOMOTIVACIÓ

"La energía se transmite de un cuerpo a otro"

ENERGÍA MECÁNICA

Es la energía asociada al movimiento mecánico y a las interacciones gravitatoria y elástica de un cuerpo o sistema, respecto a un nivel de referencia que se elija.

Su valor se obtiene con:

$$E_{M} = E_{C} + E_{P_{g}} + E_{P_{e}}$$

Nivel de referencia: N.R.

HELICO | THEORY HELICOTEORI

¿Qué sucede con la energía en el punto más alto? ¿se gastará? ¿se perderá?

Nosotros sabemos que: "la energía no se crea ni se destruye, solo se transforma".

Por lo tanto se cumple concepto muy importante para "LA tema de hoy: CONSERVACIÓN DE

ENERGÍA".

HELICO | THEORY HELICOTEORIA

¿Cuándo se conserva la energía mecánica?

La energía mecánica de un cuerpo o sistema, entre dos puntos de su trayectoria será la misma, siempre que durante el trayecto solo las denominadas fuerzas conservativas (fuerza de gravedad, elástica, etc.) desarrollan trabajo o cuando, esta según su inercia, está en reposo o

moviéndose con MRU.

HELICO | THEORY HELICOTEORIA ENERGÍA

Situaciones en las cuales la energía mecánica se conserva

Para el joven que desliza sobre la rampa lisa.

$$E_{M}^{A} = E_{M}^{B} = E_{M}^{C}$$

Para la esfera que gira unida a un hilo

$$E_{M}^{A} = E_{M}^{B}$$

Indique en cuál de los casos la energía mecánica se conserva.

RESOLUCIÓN:

Para el ler caso: Para el primer caso; \vec{F}_g como no hay fuerza

que realiza trabajo la

energía mecánica no

cambia. Por tanto "La

energía mecánica se

conserva".

Para el 2do

caso:

En el segundo caso; la fuerza de gravedad realiza trabajo mecánico sobre el cuerpo, y como la fuerza de gravedad es una fuerza conservativa podemos afirmar que "La energía mecánica se conserva".

En ambos casos la energía mecánica se conserva

01

El cuerpo mostrado pasa por A con una rapidez de 25 m/s. Determine su energía mecánica cuando pase por el punto B. (Considere superficies lisas).

RESOLUCIÓN:

Realizamos el diagrama de cuerpo libre para el cuerpo.

Como las fuerzas que actúan sobre el cuerpo no realizan trabajo, la energía mecánica se mantiene constante.

Entonces para el cuerpo:

$$E_M^A = E_M^B$$

$$E_M^B = E_M^A = E_C$$

$$E_M^B = \frac{1}{2} \cdot m \cdot v^2$$

$$E_M^B = \frac{1}{2} (2 \text{ kg}) \cdot \left(25 \frac{m}{s}\right)^2$$

$$E_M^B = 1 \text{ kg} \cdot (625 \frac{m^2}{s^2}) \qquad \therefore E_M^B = 625 \text{ J}$$

01

RACHE ELICOPRACTICA

Determine la rapidez en el punto B si el cuerpo es soltado en A. $(g = 10 \text{ m/s}^2)$

RESOLUCIÓN:

Realizamos el diagrama de cuerpo libre para el cuerpo.

La fuerza de gravedad única la de es desarrolla trabajo mecánico y como es fuerza una conservativa podemos afirmar "La que: energía mecánica Entonces ... el para conserva". cuerpo:

$$E_M^A = E_M^B$$

$$E_C^A + E_{Pg}^A = E_C^B + E_{Pg}^B$$

$$m \cdot \mathbf{g} \cdot h_A = \frac{1}{2} \cdot m \cdot v_B^2$$

$$\mathcal{N} \cdot \left(10 \frac{m}{s^2}\right) \cdot 5 m = \frac{1}{2} \cdot \mathcal{N} \cdot v^2$$

$$100 m^2 / s^2 = v^2$$

$$\therefore v = 10 \, m/s$$

La esfera es soltada en el punto A. Determine su rapidez en el punto B. $(g = 10 m/s^2)$

RESOLUCIÓN:

Realizamos el diagrama de cuerpo libre para el cuerpo.

La fuerza de gravedad la única de es trabajo desarrolla mecánico y como es fuerza una conservativa podemos afirmar "La que: mecánica energía se **Entonces** el para conserva". cuerpo:

$$E_M^A = E_M^B$$

$$E_C^A + E_{Pg}^A = E_C^B + E_{Pg}^B$$

$$m \cdot \mathbf{g} \cdot h_A = \frac{1}{2} \cdot m \cdot v_B^2$$

$$h \cdot \left(10 \frac{m}{s^2}\right) \cdot 0.8 \ m = \frac{1}{2} \cdot h \cdot v^2$$

$$8 m^2/s^2 = \frac{1}{2} v^2$$

$$16 m^2/s^2 = v^2$$

$$v = 4 m/s$$

Determine la rapidez del cuerpo en el punto B. $(g = 10 m/s^2)$

RESOLUCIÓN:

Realizamos el diagrama de cuerpo libre para el cuerpo.

La fuerza de gravedad es la única de desarrolla trabajo mecánico y como es una fuerza conservativa podemos afirmar que: "La energía mecánica se conserva".

Entonces para el cuerpo:

$$E_M^A = E_M^B$$

$$E_{C}^{A} + E_{Pg}^{A} = E_{C}^{B} + E_{Pg}^{B}$$

$$\frac{1}{2} \cdot \cancel{p} \cdot v^{2} + \cancel{p} \cdot g \cdot h_{A} = \frac{1}{2} \cdot \cancel{p} \cdot v_{B}^{2}$$

$$\frac{1}{2} \cdot \left(8\frac{m}{s}\right)^{2} + 10\frac{m}{s^{2}} \cdot 4m = \frac{1}{2} \cdot v_{B}^{2}$$

$$32\frac{m^{2}}{s^{2}} + 40\frac{m^{2}}{s^{2}} = \frac{1}{2}v^{2} \qquad \therefore v = 12 \text{ m/s}$$

$$72\frac{m^{2}}{s^{2}} = \frac{1}{2}v^{2} \rightarrow 144\frac{m^{2}}{s^{2}} = v^{2}$$

Determine la rapidez de la esfera de 5 kg en el punto A si se detiene en B. $(g = 10 m/s^2)$

RESOLUCIÓN:

Realizamos el diagrama de cuerpo libre para el cuerpo.

La fuerza de gravedad única de es trabajo desarrolla mecánico y como es fuerza una conservativa podemos afirmar "La que: mecánica energía se Entonces. el para conserva". cuerpo:

$$E_M^A = E_M^B$$

$$E_C^A = E_{Pg}$$

$$\frac{1}{2} \cdot m \cdot v_A^2 = m \cdot g \cdot h_B$$

$$\frac{1}{2} \cdot \mathbf{p} \cdot v^2 = \mathbf{p} \cdot \left(10 \frac{m}{s^2}\right) \cdot 8 \, m$$

$$\frac{1}{2}v^2 = 80\frac{m^2}{s^2}$$

$$v^2 = 160 \frac{m^2}{s^2}$$

$$\therefore v = 4\sqrt{10} \, m/s$$

La partícula mostrada cae libremente. Determine la rapidez v en la posición B. $(g = 10 m/s^2)$

RESOLUCIÓN:

Realizamos el diagrama de cuerpo libre para el cuerpo.

La fuerza de gravedad es la única de desarrolla trabajo mecánico y como es una fuerza conservativa podemos afirmar que: "La energía mecánica se conserva". para el

cuerpo:

Por lo tant
$$\bullet:_{M}^{A} = E_{M}^{B}$$

$$E_{C}^{A} = E_{C}^{B} + E_{Pg}^{B}$$

$$\frac{1}{2} \cdot m \cdot v^{2} = \frac{1}{2} \cdot m \cdot v_{B}^{2} + m \cdot g \cdot h_{B}$$

$$\frac{1}{2} \cdot \left(25 \frac{m}{s}\right)^{2} = \frac{1}{2} \cdot v_{B}^{2} + \left(10 \frac{m}{s^{2}}\right) \cdot 20 m$$

$$\frac{1}{2} \cdot 625 \frac{m^{2}}{s^{2}} = \frac{1}{2} v_{B}^{2} + 200 \frac{m^{2}}{s^{2}}$$

$$\frac{1}{2} \cdot 225 \frac{m^{2}}{s^{2}} = \frac{1}{2} v_{B}^{2} \rightarrow 225 \frac{m^{2}}{s^{2}} = v_{B}^{2} \therefore v_{B} = 15 m/s$$

RACTICA PRACTICA

La resbaladera para niños es un juego antiguo, elaborada de madera, acero o fibra de vidrio. Según se muestra, los niños se dejan caer de la parte superior de la resbaladera. Determine la menor rapidez de llegada al piso. Considere superficie lisa. $(g = 10 m/s^2)$

RESOLUCIÓN:

Realizamos el diagrama de cuerpo libre para el cuerpo. $|\vec{r}|$

La fuerza de gravedad es la única que desarrolla trabajo mecánico y como es una fuerza conservativa podemos afirmar que: "La energía mecánica se conserva".

La menor rapidez de llegada la tendrá si inicialmente tiene la menor energía mecánica; Por lo tanto, consideremos la menor altura.

Entonces para el niño:

$$E_M^{INICIO} = E_M^{FINAL}$$

$$E_{Pg} = E_{C}$$

$$m \cdot g \cdot h = \frac{1}{2} \cdot m \cdot v^{2}$$

$$10 \ m/s^{2} \cdot h = \frac{1}{2} \cdot v^{2}$$

$$20h = v^{2}$$

$$v = \sqrt{20h} \ r$$