Đề bài: Cheap Robot

Lời giải: Với mỗi cặp truy vấn (a, b), giả sử c là kết quả cần tìm. Ta có một số nhận xét:

- Tại đỉnh u bất kỳ, có thể đi đến một đỉnh central gần đỉnh u nhất. Dễ dàng chứng minh bằng phản chứng. (*)
- Gọi năng lượng còn lại khi đứng tại đỉnh u bất kỳ là e và e' là năng lượng còn lại khi đi từ u đến central gần đỉnh u nhất sau đó quay lại u. Khi đó $e \le e'$. (**)

Từ (*), gọi d[u] là khoảng cách từ đỉnh u đến central gần u nhất. Dùng Multi-Source Dijkstra để tìm d[u] trong O(mlog(n)). Khi đó $e \ge d[u]$ (***)

Từ (**), ta có $e \le c - d[u]$. Vì vậy, ta có thể tham lam: Khi đứng tại đỉnh u, có thể làm giá trị năng lượng còn lại đạt giá trị lớn nhất có thể, e = c - d[u], bằng cách đi đến một đỉnh central gần đỉnh u nhất sau đó quay lại u.

Để đi từ đỉnh u đến đỉnh v thông qua cạnh nối với chi phí w, từ (***), cần thỏa mãn điều kiện $c-d[u]-w\geq d[v]$ hay $w+d[u]+d[v]\leq c$. Từ đó, ta có thể chuyển đổi đồ thị: " Giữa hai đỉnh u và v có trọng số w+d[u]+d[v]", và thực hiện bài toán truy vấn " Tìm đường đi ngắn nhất giữa hai đỉnh a và b, với quy ước độ dài đường đi là độ dài cạnh có trọng số lớn nhất trên đường đi đó." - bài toán Widest Path Problem có thể giải quyết với Kruskal và Binary Lifting trong O(log(n)) với mỗi truy vấn.

Tổng ĐPT: O(mlog(n) + qlog(n)).