$$\binom{p}{k} = \frac{p(p-1)\cdots(p-k+1)}{k(k-1)\cdots1}$$

and neither of numbers $k, k-1, \ldots, 1$ is not divisible by p (for $k = 1, 2, \ldots, p-1$), we conclude that factor p cannot be canceled from the numerator of $\binom{p}{k}$ so, $p \mid \binom{p}{k}$.

Now using binomial theorem, one gets

$$(a+b)^p = \sum_{k=0}^p a^k b^{p-k} = a^p + \sum_{k=1}^{p-1} a^k b^{p-k} + b^p \equiv_p a^p + b^p$$

31.1-7 If $a \mid b$ then there exists positive integer k such that b = ka. Let $s = x \mod b$ and $t = s \mod a$. Then, there exist positive integers x' and s' such that x = x'b + s and s = s'a + t. Since now

$$x = bx' + s = x'ka + s'a + t = (x'k + s')a + t$$

and $0 \le t < a$, we conclude that $(x \mod b) \mod a = t = x \mod a$.

Also, if $x \equiv_b y$ then $b \mid (x - y)$ and since $a \mid b$, we conclude that $a \mid (x - y)$.

31.1-8 If $n = a^b$ then $b = \log_a n < \lg n < \beta$. Therefore, for each $b = 2, 3, ..., \beta$, one can check whether there exists a such that $a^b = n$. That can be done efficiently by binary search and recursive powering. The binary search check can be performed as follows:

Algorithm 1 BINARYSEARCHCHECKPOWER(b, n)

Require: Positive integers b and n.

- 1: l := 1, r := n
- 2: **while** r l > 1 **do**
- 3: m := |(l+r)/2|
- 4: if $m^b > n$ then
- 5: r := m
- 6: else
- 7: l := m
- 8: end if
- 9: end while
- 10: **return** $l^b = n$ or $r^b = n$

The complexity of a single multiplication of β -bit numbers is $\mathcal{O}(\beta^2)$. To find a^k , we can use repeated squaring, i.e.

$$a^{k} = \begin{cases} a & k = 1, \\ (a^{l})^{2} & k = 2l \\ (a^{l})^{2} \cdot a & k = 2l + 1, \quad l > 0 \end{cases}$$

It takes $\lg k$ multiplications, so the complexity of computing a^k is $\mathcal{O}(\beta^2 \lg \beta)$. To check whether there exists a such that $a^b = n$ for fixed b, requires $\mathcal{O}(\lg b)$ powering operations, which gives the complexity $\mathcal{O}(\beta^2(\lg \beta)^2)$. Finally, that checking has to be done β times, so the total complexity is $\mathcal{O}(\beta^3(\lg \beta)^2)$, which is polynomial in β .

31.2-3 Let x be any common divisor of a and n. Then a = a'x and n = n'x for some positive integers a' and n' and a + kn = a'x + kn'x = (a' + kn')x so $x \mid a + kn$.

On the other hand, let x be any common divisor of a+kn and n. Then a=a'x and a+kn=cx for some positive integers n' and c, and therefore a=cx-kn=cx-kn'x=(c-kn')x, implying that $x\mid a$.

This proves that the sets of common positive divisors of a and n, and a + kn and n, are equal. Then so are it's maximal elements, i.e. gcd(a, n) = gcd(a + kn, n).

31.2 - 4

Algorithm 2 Euclid(a, b)

Require: Positive integers a and b.

- 1: **while** b > 0 **do**
- $2: \quad r := a \mod b$
- 3: a := b
- 4: b := r
- 5: end while
- 6: return a

31.2-6 It returns $(1, (-1)^{k+1}F_{k-2}, (-1)^kF_{k-1})$. We will prove this by mathematical induction. If we define $F_{-1} := 1$ then $F_1 = F_0 + F_{-1} = 0 + 1 = 1$ and hence, the Fibonacci property holds. In the case k = 1, the tuple is $(1, 1, 0) = (1, (-1)^2F_{-1}, (-1)^1F_0)$, by the definition of the b = 0 case of EXTENDED-EUCLID. Assume that the statement is correct for k - 1. Then since $F_{k+1} = F_k + F_{k-1}$, taking $a = F_{k+1}$ and $b = F_k$, one finds that $a \mod b = F_{k-1}$, so the recursive call in step 3 is EXTENDED-EUCLID (F_k, F_{k-1}) and $\lfloor a/b \rfloor = \lfloor F_{k+1}/F_k \rfloor = 1$. By induction hypothesis, it returns the tuple $(d', x', y') = (1, (-1)^kF_{k-3}, (-1)^{k-1}F_{k-2})$. Then

$$d = d' = 1$$

$$x = y' = (-1)^{k-1} F_{k-2} = (-1)^{k+1} F_{k-2}$$

$$y = x' - \lfloor a/b \rfloor y' = (-1)^k F_{k-3} - \lfloor F_{k+1} / F_k \rfloor (-1)^{k-1} F_{k-2}$$

$$= (-1)^k (F_{k-3} + F_{k-2}) = (-1)^k F_{k-1}$$

which completes the proof by induction.

31.3-1

$(\mathbb{Z}_4,+_4)$	0	1	2	3	$(\mathbb{Z}_5^*, +_5$) 1	2	3	4
0					1				
1	1	2	3	0	2	2	4	1	3
2	2	3	0	1	3	3	1	4	2
3	3	0	1	2	4	4	3	2	1

Define $\alpha(x) = 2^x \mod 5$ for $x \in \mathbb{Z}_4$. Then

$$\alpha(x) \cdot_5 \alpha(y) = (2^x \mod 5) \cdot (2^y \mod 5) \mod 5 = 2^{x+y} \mod 5$$

Let x + y = 4k + z where $z = x +_4 y = x + y \mod 4$ and k is positive integer. Since $2^4 = 16 \mod 5 = 1$, we have

$$\alpha(x) \cdot_5 \alpha(y) = 2^{4k+z} \mod 5 = (2^4)^k \cdot 2^z \mod 5 = 2^z \mod 5 = \alpha(z) = \alpha(x+4y).$$

Moreover, since $\alpha(0) = 1$, $\alpha(1) = 2$, $\alpha(2) = 4$, $\alpha(3) = 3$, we conclude that $\alpha : \mathbb{Z}_4 \to \mathbb{Z}_5^*$ is required isomorphism.

- **31.3-2** Since \mathbb{Z}_9 is commutative cyclic group, according to Lagrange theorem, it's proper non-trivial subgroup must be of order 3, i.e. it's $[3] = \{0, 3, 6\}$ (equipped with $+_9$). The other two are [0] and \mathbb{Z}_9 itself.
- On the other hand, \mathbb{Z}_{13}^* is of the order 12. According to the same Lagrange theorem, it's subgroups have orders 1, 2, 3, 4, 6, 12. Therefore, the subgroups are $[1] = \{1\}$, $[3] = \{1, 3, 9\}$, $[4] = \{1, 3, 4, 9, 10, 12\}$, $[5] = \{1, 5, 8, 12\}$, $[12] = \{1, 12\}$ and \mathbb{Z}_{13}^* .
- **31.3-3** To prove that (S', \oplus) is group, we only need to prove that $0 \in S'$ and that for each $a \in S'$ has it's inverse $a' \in S'$. Let $a \in S'$ be arbitrary element and define $\alpha(x) = a \oplus x$, for $x \in S'$. According to the assumption, $\alpha(S') \subseteq S'$ and hence $\alpha(x) = \alpha(y)$ implies $a \oplus x = a \oplus y$ which further implies x = y (S is group). Therefore $\alpha : S' \to S'$ is bijection and hence, there exists $e \in S'$ such that $a = \alpha(e) = a \oplus e$. It implies that $e = 0 \in S'$. In the same manner, there exists $a' \in S'$ such that $0 = \alpha(a') = a \oplus a'$, i.e. an inverse element of a is in S'.
- **31.3-4** Since $\phi(x)$ is the number of integers $1 \le a < x$ which are relatively prime to x. Integer a is relatively prime to p^e if and only if $p \nmid a$. Since every p-th integer is divisible by p, the total number of integers $1 \le a < p^e$ is p^{e-1} . Therefore $\phi(p^e) = p^e p^{e-1} = p^{e-1}(p-1)$.
- **31.3-5** Since obviously $f_a(x) \in \mathbb{Z}_n^*$, to show that f_a is the permutation it is sufficient to show that it is 1-1, i.e. that $f_a(x) = f_a(y)$ implies x = y. Since $f_a(x) = f_a(y)$ implies $ax \equiv_n ay$ which further implies $n \mid ax ay = a(x y)$. The fact that a and n are relatively prime implies $n \mid x y$. If $x \neq y$ then $n \mid x y$ leading to $|x y| \geq n$ which is contradiction, since $x, y \in 1, 2, \ldots, n-1$. Therefore, x = y and f_a is 1-1 and hence a bijection. Since the domain and codomain of f_a are the same (i.e. \mathbb{Z}_N^*) we conclude that f_a is permutation of \mathbb{Z}_n^* .