EE Lecture 5: Diode Circuits

MS101 Makerspace

2024-25/II (Spring)

1. Rectifier Circuits

Half-Wave Rectifier

- Full-wave Rectifier
 - Bridge rectifier circuit

Step-Down Transformer (230 V - 12 V RMS)

Fig. 1 Step-down Transformer

A) Half-wave Rectifier

Fig. 2

Output voltage (assuming an ideal diode, i.e. zero voltage drop)

Output voltage (assuming a practical diode with voltage drop)

MS101-EE-Lect 3

Fig. 3

B) Full-wave (Bridge) Rectifier

Fig. 4

 Bridge Rectifier: in every half cycle, two diodes will be in the current path

- 1st half cycle (output A is +ve w.r.t. Output B): current path from output A → D1 → R₁ → D4 → B; D2 and D3 will not conduct.
- 2nd half cycle (Output B is +ve w.r.t. output A): current path from B → D2 → R₁ → D3 → A; D1 and D4 will not conduct.

 V_D : voltage drop across two diodes (D1&D4, D3& D2)

- Full-wave Rectifier: Input and Output waveforms (considering diode drops)
- Peak output voltage will have the *two diode drops* lower than the input voltage. Typ. diode drop = $2x \ 0.5 \ V = 1 \ V$

2. Unregulated Power Supply (Capacitive filter)

• Case A): Half-wave rectifier with a large value capacitor - (>> $10 \mu F$)

• Case B): Full-wave bridge rectifier with a large value capacitor (>> $10~\mu F$)

Unregulated Power Supply

(Using Half-wave Rectifier and a Capacitive filter)

Note:

 Large value capacitors are usually "electrolytic" type capacitors, with the terminals having + and - polarities and should be connected across a dc voltage with matching terminal polarities.

Fig. 7

Fig. 8

When there is no load (or open circuit), V_{out} has no ripple (i.e. V_{out} is a constant dc voltage)

 The half-wave rectifier with C is very seldom used due to its higher ripple voltage

Operation with C across R_L

- C charges during Δ_t , and discharges during $(T-\Delta_t)$.
- Ripple voltage, V_r increases with i_L (load current).
- Ripple voltage can be decreased by increasing C (not a good solution).
- For a given i_L , as $C \uparrow$, $\Delta_t \downarrow$ (which will make $i_D \uparrow \uparrow$)

Fig. 9

11

Operation with C across R_L

- C charges during Δ_t , and discharges during $(T-\Delta_t)$.
- Ripple voltage, V_r increases with i_L (load current).
- Ripple voltage can be decreased by increasing C (not a good solution).
- For a given i_L , as $C \uparrow$, $\Delta_t \downarrow$ (which will make $i_D \uparrow \uparrow$)

MS101-EE-Lect 3

Unregulated Power Supply

(Using Full-wave Bridge Rectifier and a Capacitive filter)

Fig. 10

- Much better than the half-wave (HW) rectifier
 - For the same C and R_L , peak-to-peak ripple voltage gets reduced to half that of HW

MS101-EE-Lect 3

Fig. 11

- Full-wave rectifier output waveform (blue)
- Less Ripple voltage, compared to the Halfwave rectifier circuit
 - Discharge interval for C almost half that of HW case)

NGSPICE Simulation Results (Bridge Rectifier)

- To show the effect of changing C
 - on $V_{\rm out}$
 - on the diode currents

• Four values of C considered ($R_L = 500 \Omega$, $V_{in(peak)} = 17 V$)

$$C = 10 \mu F$$

$$C = 50 \mu F$$

$$C = 100 \mu F$$

$$C = 1000 \mu F$$

- NGSPICE Simulation the effect of C on
 - Output ripple voltage
 - Diode currents

- $V_{in}(peak) = 17 \text{ V}$
- $C = 10 \mu F$; $R_L = 500 \text{ ohms}$
- $I_L = V_{\text{out(avg)}} / R_L \approx 20 \text{ mA}$
- Peak-to-peak ripple ≈ 10 V

- NGSPICE Simulation the effect of C on
 - Output ripple voltage
 - Diode currents

- $V_{in}(peak) = 17 V$
- $C = 50 \mu F$; $R_L = 500 \text{ ohms}$
- $I_L = V_{\text{out(avg)}} / R_L \approx 26 \text{ mA}$
- Peak-to-peak ripple ≈ 3 V

- V_{out} Load current I_L and the Diode \rightarrow currents
- NGSPICE Simulation the effect of C on
 - Output ripple voltage
 - Diode currents

- $V_{in}(peak) = 17 V$
- $C = 100 \mu F$; $R_L = 500 \text{ ohms}$
- $I_L = V_{\text{out(avg)}} / R_L \approx 28 \text{ mA}$
- Peak-to-peak ripple ≈ 2 V

currents

- NGSPICE Simulation the effect of C on
 - Output ripple voltage
 - Diode currents

- $V_{in}(peak) = 17 \text{ V}$
- $C = 1,000 \mu F$; $R_L = 500 \text{ ohms}$
- $I_L = V_{\text{out(avg)}} / R_L \approx 30 \text{ mA}$
- Peak-to-peak ripple ≈ 0.3 V

Problems of Unregulated Power Supply

- Output voltage fluctuates
 - When ac input voltage fluctuates
 - When load current fluctuates

- Ripple voltage increases with load current
 - Ripple voltage for a given load current (i_L) can be reduced only by increasing C
 - Increasing C beyond a certain value can cause diode damages (as the peak diode current will always be many times the average load current)

3. Regulated Power Supply

Problems of the unregulated power supply

- Output voltage fluctuates with the input voltage (for a given load current) - Line regulation
- Output voltage fluctuates for load current (for a given input voltage) - Load regulation

Regulated Power Supply

- Output voltage stays constant (reasonably well):
 - For varying input voltages
 - For varying load currents

Two solutions

- Solution 1
 - Zener diode regulator circuit (usable for small variations in input voltage & load current)

- Solution 2
 - Voltage Regulator IC

We will consider only Solution 2

3B: 7812 Three-terminal Voltage Regulator

Fig. 12

$$V_{in}$$
: +14.5 to 30 V, V_{out} : 11.5 to 12.5 V I_{L} = up to 1 A

Major blocks of the 7812 Voltage Regulator IC:

- Series-pass transistor (Q16)
- Stable Zener reference voltage
- Error amplifier
- Short-circuit protection

Source: 7812 Data sheet, National Semiconductor Corp., 2000

Features of an IC Regulator

• V_{out} will be steady for a large range of V_{in} and I_L values

• Minimum V_{in} to the IC regulator: V_{out} + 2 or 3 V (typical)

- A small value of capacitor, typically 1 μ F is put at the output for stability (i.e. to prevent oscillations)
 - The regulator IC uses a negative feedback error amplifier circuit, which could result in instability.

Other Popular Three-terminal Voltage Regulator ICs

Positive Voltage Regulator ICs

- 1. $7805: V_{out} = 5 \text{ V}$
- 2. $7806: V_{\text{out}} = 6 \text{ V}$
- 3. $7809: V_{out} = 9 \text{ V}$

Negative Voltage Regulator ICs

- 1. $7905: V_{out} = -5 \text{ V}$
- 2. $7906: V_{out} = -6 \text{ V}$
- 3. $7909: V_{out} = -9V$
- 4. $7912: V_{\text{out}} = -12 \text{ V}$