Stabilizing Grand Cooperation of Machine Scheduling Game via Setup Cost Pricing

Lindong Liu

School of Management; International Institute of Finance
University of Science and Technology of China

Co-authored with Zikang Li (PG Student, USTC)

NWPU-Online, July, 2020

Outline

- Preliminaries
- Motivation and Illustrative Example
- Models and Analyses
- Algorithms and Computations
- Extension and Generalization
- Conclusion

PRELIMINARIES

Cooperative Game

A **cooperative game** is defined by a pair (V, C):

- A set $V = \{1, 2, ..., v\}$ of players, grand colaition;
- A characteristic function C(S) = the minimum total cost achieved by the cooperation of members in coalition $S \in \mathbb{S} = 2^V \setminus \{\emptyset\}$.

The game requires:

• A cost allocation $\alpha = [\alpha_1, \alpha_2, \dots, \alpha_v] \in \mathbb{R}^v$, where $\alpha_k =$ the cost allocated to each player $k \in V$.

Core

Define
$$\alpha(S) = \sum_{k \in S} \alpha_k$$
.

A cost allocation $\alpha \in \mathbb{R}^{\nu}$ is in the **core** if it satisfies:

- Budget Balance Constraint: $\alpha(V) = C(V)$;
- Coalition Stability Constraints: $\alpha(S) \leq C(S)$ for each $S \in \mathbb{S}$.

$$\begin{aligned} \operatorname{Core}(V,C) &= & \left\{ \alpha: \ \alpha(V) = C(V), \right. \\ & \left. \alpha(S) \leq C(S), \ \forall S \in \mathbb{S} \setminus \{V\}, \ \alpha \in \mathbb{R}^v \right\}. \end{aligned}$$

Define
$$\alpha(S) = \sum_{k \in S} \alpha_k$$
.

A cost allocation $\alpha \in \mathbb{R}^{\nu}$ is in the **core** if it satisfies:

- Budget Balance Constraint: $\alpha(V) = C(V)$;
- Coalition Stability Constraints: $\alpha(S) \leq C(S)$ for each $S \in \mathbb{S}$.

$$\begin{aligned} \operatorname{Core}(V,C) &= & \left\{ \alpha : \ \alpha(V) = C(V), \right. \\ & \left. \alpha(S) \leq C(S), \ \forall S \in \mathbb{S} \setminus \{V\}, \ \alpha \in \mathbb{R}^v \right\}. \end{aligned}$$

However, Core(V, c) can be empty.

$$\operatorname{Core}(V,C) = \left\{ \alpha : \ \alpha(V) = C(V), \ \alpha(S) \leq C(S), \ \forall S \in \mathbb{S} \setminus \{V\} \right\}$$

$$\operatorname{Core}(V,C) = \left\{ \alpha : \ \alpha(V) = C(V), \ \alpha(S) \leq C(S), \ \forall S \in \mathbb{S} \setminus \{V\} \right\}$$

• Subsidization: $\alpha(V) = C(V) - \theta$, ϵ -core;

$$\operatorname{Core}(V,C) = \left\{ \alpha : \ \alpha(V) = C(V), \ \alpha(S) \leq C(S), \ \forall S \in \mathbb{S} \setminus \{V\} \right\}$$

- Subsidization: $\alpha(V) = C(V) \theta$, ϵ -core;
- Penalization: $\alpha(S) \leq C(S) + z$, least core;

$$\operatorname{Core}(V,C) = \left\{ \alpha : \ \alpha(V) = C(V), \ \alpha(S) \leq C(S), \ \forall S \in \mathbb{S} \setminus \{V\} \right\}$$

- Subsidization: $\alpha(V) = C(V) \theta$, ϵ -core;
- Penalization: $\alpha(S) \leq C(S) + z$, least core;
- Simul. S & P: $\alpha(V) = C(V) \theta$ and $\alpha(S) \leq C(S) + z$, **PSF**;

$$\operatorname{Core}(V,C) = \left\{ \alpha : \ \alpha(V) = C(V), \ \alpha(S) \leq C(S), \ \forall S \in \mathbb{S} \setminus \{V\} \right\}$$

- Subsidization: $\alpha(V) = C(V) \theta$, ϵ -core;
- Penalization: $\alpha(S) \leq C(S) + z$, least core;
- Simul. S & P: $\alpha(V) = C(V) \theta$ and $\alpha(S) \leq C(S) + z$, **PSF**;
- Inv. Opt.: Changing c to d such that Core(V, D) is non-empty.

$$\operatorname{Core}(V,C) = \left\{ \alpha : \ \alpha(V) = C(V), \ \alpha(S) \leq C(S), \ \forall S \in \mathbb{S} \setminus \{V\} \right\}$$

- Subsidization: $\alpha(V) = C(V) \theta$, ϵ -core;
- Penalization: $\alpha(S) \leq C(S) + z$, least core;
- Simul. S & P: $\alpha(V) = C(V) \theta$ and $\alpha(S) \leq C(S) + z$, **PSF**;
- Inv. Opt.: Changing c to d such that Core(V, D) is non-empty.
- S. Caprara and Letchford (2010, MP), Liu et al. (2016, IJOC)
- P. Faigle et al. (2001, IJGT), Schulz and Uhan (2010, OR)
- P&S Liu et al. (2018, OR)
- Inv. Opt. Liu et al. (2020, under review)

ILLUSTRATIVE EXAMPLE

Example: Machine Scheduling Game (MSG)

Game of Parallel Machine Scheduling with Setup Cost:

- Grand coalition: $V = \{1, 2, 3, 4\}$;
- Processing times: $t_1 = 2$, $t_2 = 3$, $t_3 = 4$, $t_4 = 5$;
- Machine setup cost: $t_0 = 9.5$;
- c(S) for S ∈ S: minimizes the total completion time of jobs in S plus the machine setup cost;
- $\pi(N) = \pi(\{1,3\}) + \pi(\{2,4\}) = 38$ (SPT Rule).

Example: Empty Core

Coalitions	Cost
{1}	11.5
{2}	12.5
{3}	13.5
{4}	14.5
$\{1, 2\}$	16.5
$\{1, 3\}$	17.5
$\{1,4\}$	18.5
{2,3}	19.5
{2,4}	20.5
{3,4}	22.5
$\{1, 2, 3\}$	25.5
$\{1, 2, 4\}$	26.5
$\{1, 3, 4\}$	28.5
{2,3,4}	31.5
{1, 2, 3, 4}	38

Example: Empty Core

Coalitions	Cost
{1}	11.5
{2}	12.5
{3}	13.5
{4}	14.5
$\{1, 2\}$	16.5
$\{1, 3\}$	17.5
$\{1, 4\}$	18.5
$\{2, 3\}$	19.5
$\{2, 4\}$	20.5
$\{3,4\}$	22.5
$\{1, 2, 3\}$	25.5
$\{1, 2, 4\}$	26.5
$\{1, 3, 4\}$	28.5
$\{2, 3, 4\}$	31.5
$\{1, 2, 3, 4\}$	38

Optimal Cost Allocation Problem

$$\begin{aligned} \max \ \, \left(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}\right) &= \textbf{37.25} < \textbf{38} \\ s.t. \ \, \alpha_{1} \leq \textbf{11.5}, \ \, \cdots, \ \, \alpha_{4} \leq \textbf{14.5}, \\ \alpha_{1}+\alpha_{2} \leq \textbf{16.5}, \ \, \cdots, \ \, \alpha_{3}+\alpha_{4} \leq \textbf{22.5}, \\ \cdots, \\ \alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4} \leq \textbf{38}. \end{aligned}$$

$$\alpha^* = [6; 8.75; 10.75; 11.75]$$

Models & Analyses

Definition

An Identical Variable Parallel machine scheduling of Unweighted jobs game (IVPU):

Definition

An Identical Variable Parallel machine scheduling of Unweighted jobs game (IVPU):

• Grand coalition: $V = \{1, 2, \dots, v\}$;

Definition

An Identical Variable Parallel machine scheduling of Unweighted jobs game (IVPU):

- Grand coalition: $V = \{1, 2, \dots, v\}$;
- Identical machine: $M = \{1, 2, \dots, m\}$;

Definition

An Identical Variable Parallel machine scheduling of Unweighted jobs game (IVPU):

- Grand coalition: $V = \{1, 2, \dots, v\}$;
- Identical machine: $M = \{1, 2, \dots, m\}$;
- Each machine Price: P and Each job processing time: t_k ;

Definition

An Identical Variable Parallel machine scheduling of Unweighted jobs game (IVPU):

- Grand coalition: $V = \{1, 2, \dots, v\}$;
- Identical machine: $M = \{1, 2, \dots, m\}$;
- Each machine Price: P and Each job processing time: t_k ;
- Characteristic function: $c(S) = \min(\sum_{k \in S} C_k + Pm_S)$,

where C_k is the completion time of job $k \in S$ and m_S is the number of using machine for the sub-coalition S.

Definition

A cooperative TU game (V,c) is called an IVPU game if it satisfies the following formulations:

Definition

A cooperative TU game (V,c) is called an IVPU game if it satisfies the following formulations:

$$c(S, P) = \min \sum_{k \in V} \sum_{j \in O} c_{kj} x_{kj} + P \sum_{k \in s} x_{k1}$$

$$s.t. \quad \sum_{j \in O} x_{kj} - y_k^s = 0, \forall k \in V,$$

$$\sum_{k \in V} x_{kj} \le m, \forall j \in O,$$

$$x_{kj} \in \{0, 1\}, \forall k \in V, \forall j \in O,$$

$$y_k^s = 1, k \in s; y_k^s = 0, k \notin s.$$

Definition

• The interval $[P_L(m, S), P_H(m, S)]$ denotes the value range of price when the number of using machines m and the coalition S are given.

Definition

- The interval $[P_L(m, S), P_H(m, S)]$ denotes the value range of price when the number of using machines m and the coalition S are given.
- For the grand coalition V, define $P_L(v, V) = 0$, $P_H(1, V) = P^*$. So the practical domain of the price is $[0, P^*]$ which is divided into v nonoverlapping subintervals by the number of using machines.

Definition

- The interval $[P_L(m, S), P_H(m, S)]$ denotes the value range of price when the number of using machines m and the coalition S are given.
- For the grand coalition V, define $P_L(v, V) = 0$, $P_H(1, V) = P^*$. So the practical domain of the price is $[0, P^*]$ which is divided into v nonoverlapping subintervals by the number of using machines.
- Denote the right end of every subinterval as $P_i, 1 \leq i \leq v$, where $P_1 = P^*$.

$$\omega(P) = \min_{\alpha} \{ c(V, m(V, P)) - \alpha(V) : \\ \alpha(s) \le c(s, m(s, P)), \forall s \in S, \alpha \in \mathbb{R}^{v} \};$$

$$\omega(P) = \min_{\alpha} \{ c(V, m(V, P)) - \alpha(V) : \\ \alpha(s) \leq c(s, m(s, P)), \forall s \in S, \alpha \in \mathbb{R}^{\nu} \};$$

• $\omega(P)$ is piecewise linear, and convex in price P at each subinterval;

$$\omega(P) = \min_{\alpha} \{ c(V, m(V, P)) - \alpha(V) : \\ \alpha(s) \le c(s, m(s, P)), \forall s \in S, \alpha \in \mathbb{R}^{v} \};$$

- $\omega(P)$ is piecewise linear, and convex in price P at each subinterval;
- $\omega(P)$ can be bounded by zero when the number of using machines, m, is larger than $\frac{n}{2}$.

$$\omega(P) = \min_{\alpha} \{ c(V, m(V, P)) - \alpha(V) : \\ \alpha(s) \le c(s, m(s, P)), \forall s \in S, \alpha \in \mathbb{R}^{v} \};$$

- $\omega(P)$ is piecewise linear, and convex in price P at each subinterval;
- $\omega(P)$ can be bounded by zero when the number of using machines, m, is larger than $\frac{n}{2}$.
- P_i , $2 \le i \le v$ can be obtained by SPT rules.

$$\omega(P) = \min_{\alpha} \{ c(V, m(V, P)) - \alpha(V) : \\ \alpha(s) \le c(s, m(s, P)), \forall s \in S, \alpha \in \mathbb{R}^{v} \};$$

- $\omega(P)$ is piecewise linear, and convex in price P at each subinterval;
- $\omega(P)$ can be bounded by zero when the number of using machines, m, is larger than $\frac{n}{2}$.
- P_i , $2 \le i \le v$ can be obtained by SPT rules.
- $P_1 = P_2 + \cdots + P_n = \sum_{i=2}^n P_i$.

• When the number of using machines is 1 for the grand coalition, the range of slopes of the line segments in the interval is $\left(-1, -\frac{1}{n-1}\right]$, and the number of breakpoints is $O(v^2)$;

- When the number of using machines is 1 for the grand coalition, the range of slopes of the line segments in the interval is $\left(-1, -\frac{1}{n-1}\right]$, and the number of breakpoints is $O(v^2)$;
- Define that

$$\omega_1(P) = \min_{\alpha} \{ c(V, m(V, P)) - \alpha(V) : \\ \alpha(s) \le c(s) + P, \forall s \in S, \alpha \in \mathbb{R}^{\nu} \}$$

Then the original problem $\omega(P)$ is equivalent to $\omega_1(P)$ which means that all sub-coalitions only use one machine.

ALGORITHMS & COMPUTATIONS

IPC Algorithm

The Intersection Points Computation(IPC) Algorithm to Construct $\omega(P)$ Function.

- **Step 1.** Initially, set $I^* = \{P_L, P_H\}$ and $\mathbb{I} = \{[P_L, P_H]\}$.
- **Step 2.** If \mathbb{I} is not empty, update I^* and \mathbb{I} by the following steps:
- **Step 3.** Sort values in I^* by $P_0 < P_1 < \cdots < P_q$, where $P_0 = P_L, P_q = P_H$ and $q = |I^*| 1$.
- **Step 4.** Select any interval from \mathbb{I} , denoted by $[P_{k-1}, P_k]$ with $1 \le k \le q$.
- **Step 5.** Construct two linear function $R_{k-1}(P)$ and $L_k(P)$ so that $R_{k-1}(P)$ passes $(P_{k-1}, \omega(P_{k-1}))$ with a slope equal to a right derivative $K_r^{P_{k-1}}$ of $\omega(P)$ at P_{k-1} , and that $L_k(z)$ passes $(P_k, \omega(P_k))$ with a slope equal to a left derivative $K_r^{P_k}$ of $\omega(P)$ at P_k .

IPC Algorithm

- **Step 6.** If $R_{k-1}(P)$ passes $(P_k, \omega(P_k))$ or $L_k(P)$ passes $(P_{k-1}, \omega(P_{k-1}))$, then update $\mathbb I$ by removing $[P_{k-1}, P_k]$. Otherwise, $R_{k-1}(P)$ and $L_k(P)$ must have a unique intersection point at P = P' for some $P' \in (P_{k-1}, P_k)$. Update I^* by adding P', and update $\mathbb I$ by removing $[P_{k-1}, P_k]$, adding $[P_l, P']$ and $[P', P_r]$.
- Step 7. Go to step 2.
- **Step 8.** Return a piecewise linear function by connecting points $(P, \omega(P))$ for all $P \in I^*$.

IPC Algorithm

CP Algorithm

The Cutting Plane(CP) Algorithm to compute $\omega(P)$ for a given P.

- **Step 1.** Let $\mathbb{S}' \subseteq \mathbb{S} \setminus \{N\}$ indicates a restricted coalition set, which includes some initial coalitions, e.g., $\{1\}, \{2\}, \dots, \{v\}$.
- **Step 2.** Find an optimal solution $\bar{\alpha}(\cdot, P)$ to LP $\tau(P)$:

$$\max_{\alpha \in \mathbb{R}^n} \big\{ \alpha(\textit{N},\textit{P}) : \alpha(\textit{s},\textit{P}) \leq \textit{c}(\textit{s}) + \textit{P}, \text{ for all } \textit{s} \in \mathbb{S}' \big\}.$$

Step 3. Find an optimal solution s^* to the separation problem:

$$\delta = \min \{ c(s) + P - \bar{\alpha}(s, z) : \forall s \in \mathbb{S} \setminus \{N\} \}.$$

Step 4. If $\delta < 0$, then add s^* to \mathbb{S}' , and go to step 2; otherwise, return $\omega(P) = c(N) - \bar{\alpha}(N, P)$.

DP Algorithm

The Dynamic Programming(DP) Algorithm to solve separation problem.

- **Step 1.** Initially, let D(k, u) indicate the minimum objective value of the restricted problem of separation problem, where $k \in \{1, 2, ..., v\}$ and $u \in \{0, 1, ..., v\}$.
- **Step 2.** Given the initial conditions D(1,0) = P and $D(1,1) = t_1 \beta_1 + P$. The boundary conditions are D(k,u) = if u > k, for all $k \in V$.
- **Step 3.** Given the recursion:

$$D(k,u) = \min \begin{cases} D(k-1,u), \text{ for the case when } s^* \text{ does not contain } k, \\ D(k-1,u-1) + ut_k - \alpha_k, \text{ for the case when } s^* \text{ contains } k. \end{cases}$$

Step 4. Obtain the optimal objective value of separation problem by $\delta_{AIPU} = \min\{D(v,u): u \in \{1,2,\ldots,v-1\}\}$. return δ_{AIPU} .

Computational Results

Image

EXTENSION & GENERALIZATION

Machine Scheduling Game with Weighted Jobs

- $\omega(P)$ is piecewise linear, and the slope is $m(V) \sum_{s \in S \setminus \{V\}} \rho_s m(S)$.
- c(S) is not so easy to obtain.
- $P_m = c_0(V, m) c_0(V, m 1), 2 \le m \le v$.
- Separation problem can be solved in pseudo-polynomial time.

Pricing in General IM Games

- $c_0(V,m) c_0(V,m-1) > 0 \Leftrightarrow P_m > 0, m = 2,...,n.;$
- $c_0(V, m) c_0(V, m+1) < c_0(V, m-1) c_0(V, m) \Leftrightarrow P_m < P_{m+1}, m = 2, 3, ..., n.$

Conclusions

- * Cooperative Game Theory:
 - New Instrument for Stabilization via Setup cost Pricing.
- * Scheduling Problem:
 - Constrained Inverse Optimization Problem.
- * Models, Solution Methods and Applications:
 - Several equivalent LP formulations;
 - Feasibility analyses & How to handle infeasibility;
 - Implementations on MSGW game.

The End

Thank you!