Questão 4 - parte 2 V ou F

Nº	Afirmativa	Resposta	Explicação
1	O algoritmo de Euclides estendido é utilizado para calcular o inverso modular de um número.	V	O código mostrado é justamente uma implementação do Algoritmo de Euclides estendido , que calcula o inverso modular x1 de a em relação a m.
2	Se mdc(G, Zn) ≠ 1, o programa ainda consegue encontrar o inverso de G em Zn.	F	O inverso modular só existe quando mdc(G, Zn) = 1. Caso contrário, o cálculo não é válido.
3	A operação (H * inverso) % Zn representa a divisão modular de H por G.	V	Dividir em aritmética modular é o mesmo que multiplicar pelo inverso: H / G mod Zn = (H * G ⁻¹) mod Zn.
4	Se n1 for primo, o código aplica o Pequeno Teorema de Fermat para simplificar o cálculo de a^x mod n1.	v	Quando n1 é primo, vale a^(n1-1) = 1 (mod n1) (se a e n1 são coprimos); o código reduz o expoente com base nisso.
5	A função powMod implementa o cálculo de potência modular utilizando multiplicações diretas sem otimização.	F	A função usa exponenciação binária (exp & 1, exp >>= 1), que é o método otimizado , não multiplicações diretas.
6	Quando o resultado do inverso é negativo, o código ajusta o valor somando o módulo m0.	V	O trecho if (x1 < 0) x1 += m0; faz exatamente esse ajuste.
7	O cálculo de φ(n1) (função totiente de Euler) é utilizado apenas quando n1 não é primo.	V	Se n1 for primo aplica-se Fermat (n1-1), e se não for primo aplica-se Euler (usa φ(n1)).