Einfürung in die Algebra Hausaufgaben Blatt Nr. 9

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: January 18, 2024)

I. ZAHLENTHEORIE

Theorem 1. (Division mit Rest)

$$a = bq + r$$
, $0 \le r \le |b| - 1$.

Theorem 2. Sei $\mathbb{Z}^2 \ni (a,b) \neq (0,0)$. Dann gibt es $s,t \in \mathbb{Z}$ mit

$$ggT(a,b) = sa + tb.$$

Theorem 3. Sei $\mathbb{Z}^2 \ni (a,b) \neq (0,0)$ und d ein Teiler von a und b. Es gilt

$$d \cdot ggT\left(\frac{a}{b}, \frac{b}{d}\right) = ggT(a, b).$$

Theorem 4. Seien $a, b, c \in \mathbb{Z}$. Sind a, b teilerfremd, gilt

- (a) $a|bc \implies a|c$
- (b) $a|c \ und \ b|c \implies ab|c$.
- (c) ggT(a,bc) = ggT(a,c)

Theorem 5. *Sei* $a, b \in \mathbb{N}^*$.

$$ab = ggT(a,b) \cdot kgV(a,b).$$

Theorem 6. Sei $a \in \mathbb{Z}$, p eine Primzahl, $a \nmid p$. Dann ist

$$a^{p-1} - 1 \equiv 0 \pmod{p}.$$

 $^{^{}st}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

II. ALLGEMEIN GRUPPENTHEORIE

III. GRUPPENHOMOMORPHISMEN

Theorem 7. *Sei* ϕ : $G \rightarrow H$ *ein Homomorphismus. Es gilt* $ord(\phi(g))|ord(g)$.

Theorem 8. Sei $U \leq G$, $N \subseteq G$.

$$U/U \cap N \cong UN/N$$
.

Theorem 9. Sei $K \subseteq G$, $K \subseteq H \subseteq G$. $H \subseteq G$ genau dann, wenn $H/K \subseteq G/K$. In diesem Fall ist

$$\frac{G}{H} \cong \frac{G/K}{H/K}.$$

IV. GRUPPENOPERATIONEN

Definition 10. Eine Operation ist ein Homomorphismus $G \to \text{Sym}(M)$.

Theorem 11. Die Länge der Bahn durch $m \in M$ ist $[G : G_m]$.

Theorem 12. Sei $m, n \in M$ in der gleichen Bahn. Dann sind die Stabilisatoren konjugiert.

Theorem 13. Sei m_1, \ldots, m_r Repräsentanten der Bahnen.

$$|M| = \sum_{i=1}^{r} [G: G_{m_i}].$$

Theorem 14. Sei m_1, \ldots, m_r Repräsentanten der Konjugationsklassen, die großer als 1 sind. Es gilt

$$|G| = |Z(G)| + \sum_{i=1}^{r} [G : G_{m_i}].$$

V. ABELSCHE GRUPPEN

Theorem 15. Sei n die größte Elementordnung in einer abelschen Gruppe G. Dann gilt $g^n = e$ für alle $g \in G$.

Theorem 16. G ist genau dann abelsch, wenn die Zentrumsfaktorgruppe G/Z(G) zyklisch ist.

Theorem 17. Sei p eine Primzahl. Alle Gruppen der Ordnung p^2 sind abelsch.

VI. ZYKLISCHE GRUPPEN

Theorem 18. Sei a ein Erzeuger der zyklischen Gruppe G mit |G| = n. a^m ist genau dann Erzeuger, wenn m und n teilerfremd sind.

Theorem 19. G ist zyklisch genau dann, wenn G zu jedem positiven Teiler t von |G| genau eine Untergruppe der Ordnung t besitzt.

VII. SYMMETRISCHE & ALTERNIERENDE GRUPPEN

Theorem 20. *Sei* σ , $\tau \in S_n$ *disjunkt. Es gilt* $ord(\sigma\tau) = kgV(ord(\sigma), ord(\tau))$

Theorem 21.

$$S_n = \langle (12), (123 \dots n) \rangle.$$

Theorem 22. Sei $\phi = (a_1 a_2 \dots)(b_1 b_2 \dots) \dots \in S_n$ in Zykelnotation und $\psi \in S_n$. Es gilt

$$\psi \phi \psi^{-1} = (\psi(a_1)\psi(a_2)\dots)(\psi(b_1)\psi(b_2)\dots)\dots$$

VIII. EINFACHE GRUPPEN

IX. PRODUKTGRUPPEN

Theorem 23. Sei $A, B \leq G$. AB ist eine Gruppe genau dann, wenn AB = BA.

Theorem 24.

$$|AB| = \frac{|A||B|}{|A \cap B|}.$$

Theorem 25. Internes direktes Produkt: $A, B \subseteq G, A \cap B = \{e\} \implies AB \cong A \times B$.

Theorem 26. Internes semidirektes Produkt: $A \subseteq G$, $B \subseteq G$, $A \cap B = \{e\} \implies AB \cong A \rtimes B$

Definition 27.
$$A \rtimes_{\varphi} B = (A \times B, \circ, (e, e)), \text{ wobei } (u, v) \circ (\tilde{u}, \tilde{v}) = (u \varphi_v(\tilde{u}), v\tilde{v})$$

X. BEISPIELVERZEICHNIS