

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) Department of Sciences and Humanities

	Elements of Electrical and Electronics Engineering Laboratory	Semester:	1/11	
Date of Performance:		Batch No:	C4-01	
	RAMESH. S. PATEL		1601012422	
Faculty Sign & Date:		Grade/Marks:	/ 20	

Experiment No: 7

Title: Measurement of Power using Two Wattmeter Method

Aim and Objective of the Experiment:

To measure the power of three phase power using Two Wattmeter Method

COs to be achieved:

CO2: Demonstrate and analyze steady state response of single phase and three phase circuits

EEEEL

Semester: I/II

Academic Year:

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) Department of Sciences and Humanities

Stepwise-Procedure:

- 1. Connect the circuit as shown in circuit diagram
- 2. Increase the load and note down the reading VL,IL,W1 and W2
- 3. Practically you will obtain total power W=W1+W2
- 4. Theoretically power is measured by using formula P=√3V_Ll_Lcosφ, using cos \$\phi=1(unity)\$ for resistive load.

Observ Sr.no	V _L (Volts)	I _L (Amp)		W ₁ (KW)		(KW)		W= (W ₁ +W ₂) (KW)		$P = \sqrt{3V_L I_L COS \phi}$ (KW)	Lamp load given from lamp bank (KW)
		ТН	PR	ТН	PR	ТН	PR	TH	PR		
1	384.5	0	O	0	0	0	0	0	0	0	0
1						300.38	264	500 76	531	59938	0.6
2	12011									4-44	
3	384.5					-		59996	1184	1132.15	1-2
3	384.5	1.8018	1-7	59998	588	549.98	596	19996		1	1.8

Theoretical Calculations:

Power= $\sqrt{3} \times V_L \times I_L \times \cos \varphi$

cos φ=1

Power = Wattage rating of lamp load x No of lamps (One lamp is of 100W rating)

W1= $V_L \times I_L \times \cos(30+\varphi)$

 $\Phi=0$

W2= $V_L \times I_L \times \cos (30-\phi)$

Total Power=P=W1+W2

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) Department of Sciences and Humanities

Conclusion:

The two weltmeter Method proves to be a robust and accurate technique for measuring 3 phase power, ensuring reliable assesment of power consumption in diverse electric systems.

Signature of faculty in-charge with Date:

Semester: I/II

Academic Year: 2024-25