VLSI Design Verification and Testing

Logic and Fault Modeling

Mohammad Tehranipoor
Electrical and Computer Engineering Department
University of Connecticut

Overview

- Motivation
- Logic Modeling
 - Model types
 - Models at different levels of abstractions
 - Models and definitions
- Fault Modeling
 - □ Why model faults?
 - Some real defects in VLSI and PCB
 - Common fault models
 - Stuck-at faults
 - Single stuck-at faults
 - Multiple stuck-at faults
 - Transistor faults

2

Motivation

- □ Models are often easier to work with
- □ Models are portable
- Models can be used for simulation, thus avoiding expensive hardware/actual circuit implementation
- Nearly all engineering systems are studied using models
- All the above apply for logic as well as for fault modeling

Logic Modeling - Model types

- Behavior
 - □ System at I/O level
 - □ Timing info provided
 - Internal details missing
- Functional
 - DC behavior no timing
- Structural
 - □ Gate level description
 - · Models are often described using a hierarchy

	Modeling Levels					
Modeling level	Circuit description	Signal values	Timing	Application		
Function, behavior, RTL	Programming language-like HDL	0, 1	Clock boundary	Architectura and function verification		
Logic	Connectivity of Boolean gates, flip-flops and transistors	0, 1, X and Z	Zero-delay unit-delay, multiple- delay	Logic verification and test		
Switch	Transistor size and connectivity, node capacitances	0, 1 and X	Zero-delay	Logic verification		
Timing	Transistor technology data, connectivity, node capacitances	Analog voltage	Fine-grain timing	Timing verification		
Circuit	Tech. Data, active/ passive component connectivity	Analog voltage, current	Continuous time	Digital timing and analog circuit verification		

Logic Models and Definitions

- Program model of a circuit
 - Express circuit (gate level) as a program consisting of interconnected logic operations
 - Execute the program to determine circuit output for varying inputs
- RTL model
 - Higher level model of the circuit
- HDL model
 - $\ {\scriptstyle \square}$ Examples at this level are verilog HDL and VHDL

Logic Models and Definitions

- Structural model
 - External representation in the form of netlist
 - Examples of this are uw format, iscas format, EDIF, ...
 - Some keyword used in such representation
 - Primary inputs and Primary outputs
 - Gates: AND, OR, NOT, ...
 - Storage: latch, flip-flop
 - Connections: lines, nets
 - Fanin: number of inputs to a gate
 - Fanout: number of lines a signal feeds
 - Fanout-free circuit: every line or gate has a fanout of one

netlist Format: Two Examples

ISCAS Benchmarks: http://www.fm.vslib.cz/~kes/asic/iscas/

uw format	iscas format	(comb.)
# gate connected to 1 PI 4, 5; 2 PO 3, 6;	# gate #outputs # inputs input gate # 1 input 2 0	4 not 1 1 9 5 and 1 2
3 not 5; 4 not 6; 5 and 7; 6 and 7;	8 fanoutfrom 1 9 fanoutfrom 1 2 input 2 0	3 8 6 and 1 2 4 10
7 or; 7 PO	10 fanoutfrom 2 11 fanoutfrom 2 3 not 1 1	7 or 1 2 5 6 7 output

Logic Models and definitions

- Additional useful terms
 - Graph representation
 - Reconvergent fanouts
 - Stems and branches
 - □ Logic levels in a circuit
 - □ "levelization" of a circuit

Fault Modeling

11

Why Model Faults?

- I/O function tests inadequate for manufacturing (functionality versus component and interconnect testing)
- Real defects (often mechanical) too numerous and often not analyzable
- A fault model identifies targets for testing
- A fault model makes analysis possible
- Effectiveness measurable by experiments

Some Real Defects in Chips

- - Oxide breakdown
- Material defects

 - Bulk defects (cracks, crystal imperfections) Surface impurities (ion migration)
 - Time-dependent failures (Age defects)
 Dielectric breakdown
 Electromigration
- Packaging failures
 Contact degradation
 Seal leaks

Ref.: M. J. Howes and D. V. Morgan, *Reliability and Degradation - Semiconductor Devices and Circuits*, Wiley, 1981.

FMA

- Defects occur either during manufacture or during the use of device.
- Repeated occurrence of the same defects indicates the need for improvements in the manufacturing process or design of the device.
- Procedures for diagnosing defects and finding their causes are known as failure mode analysis (FMA).

Defect, Fault, and Error

- Defect (imperfection in hardware):

 A defect in an electronic system is the unintended difference between the implemented hardware and its intended design.
- Error:
 - A wrong output signal produced by a defective system is called an error. An error is an "effect" whose cause is some "defect".
- Fault (imperfection in function):
 - A representation of a "defect" at the abstracted function level is called a fault.

15

Observed PCB Defects

Defect classes	Occurrence frequency (%	
Shorts	51	
Opens	1	
Missing components	6	
Wrong components	13	
Reversed components	6	
Bent leads	8	
Analog specifications	5	
Digital logic	5	
Performance (timing)	5	

Ref.: J. Bateson, In-Circuit Testing, Van Nostrand Reinhold, 1985.

Common Fault Models

- Single stuck-at faults
- Transistor open and short faults
- Memory faults
- PLA faults (stuck-at, cross-point, bridging)
- Functional faults (processors)
- Delay faults (transition, path)
- Analog faults
- For more examples, see Section 4.4 (p. 60-70) of the book.

Stuck-at Faults

- Single stuck-at faults
- What does it achieve in practice?
- Fault equivalence
- Fault dominance and checkpoint theorem
- Classes of stuck-at faults and multiple faults

Single Stuck-at Faults (contd.)

- How effective is this model?
 - Empirical evidence supports the use of this model
 - Has been found to be effective to detect other types of faults
 - Relates to yield modeling
 - □ Simple to use

20

Why Not Multiple Stuck-at Faults

- In general, several stuck-at faults can be simultaneously present in the circuit.
- A circuit with n lines can have 3ⁿ-1 possible stuck line combinations.
 - □ There are three states: s-a-1, s-a-0, and fault-free
- Even a moderate value n will give an enormously large number of multiple stuck-at faults
- It's a common practice to model only single stuck-at faults.
 - A n-line circuit can have at most 2n single stuck-at faults.
 - This number is further reduced by techniques known as Fault Collapsing.

Fault Equivalence

- Number of fault sites in a Boolean gate circuit
 #PI + #gates + # (fanout branches).
- Fault equivalence:
 - Two faults f1 and f2 are equivalent if all tests that detect f1 also detect f2.
 - If faults f1 and f2 are equivalent then the corresponding faulty functions are identical.
- Fault collapsing:
 - All single faults of a logic circuit can be divided into disjoint equivalence subsets, where all faults in a subset are mutually equivalent. A collapsed fault set contains one fault from each equivalence subset.

22

Δ

Fault Dominance

- If all tests of some fault f1 detect another fault f2, then f2 is said to dominate f1.
- Dominance fault collapsing:
 - □ If fault f2 dominates f1, then f2 is removed from the fault list
 - When dominance fault collapsing is used, it is sufficient to consider only the input faults of Boolean gates.
 - See the next example.
- In a tree circuit (without fanouts) PI faults form a dominance collapsed fault set.
- If two faults dominate each other then they are equivalent.

26

Checkpoints

- Primary inputs and fanout branches of a combinational circuit are called checkpoints.
- Checkpoint theorem: A test set that detects all single (multiple) stuck-at faults on all checkpoints of a combinational circuit, also detects all single (multiple) stuck-at faults in that circuit.

Classes of Stuck-at Faults

- Following classes of single stuck-at faults are identified by fault simulators:
 - Potentially-detectable fault -- Test produces an unknown (X) state at primary output (PO); detection is probabilistic, usually with 50% probability.
 - Initialization fault -- Fault prevents initialization of the faulty circuit; can be detected as a potentially-detectable fault.
 - Hyperactive fault -- Fault induces much internal signal activity without reaching PO.
 - Redundant fault -- No test exists for the fault.
 - Untestable fault -- Test generator is unable to find a test.

Multiple Stuck-at Faults

- A multiple stuck-at fault means that any set of lines is stuck-at some combination of (0,1) values.
- The total number of single and multiple stuck-at faults in a circuit with η single fault sites is 3ⁿ-1.
- A single fault test can fail to detect the target fault if another fault is also present, however, such masking of one fault by another is rare.
- Statistically, single fault tests cover a very large number of multiple faults.

31

Transistor (Switch) Faults

- MOS transistor is considered an ideal switch and two types of faults are modeled:
 - **Stuck-open** -- a single transistor is permanently stuck in the open state.
 - **Stuck-short** -- a single transistor is permanently shorted irrespective of its gate voltage.
- Detection of a stuck-open fault requires two vectors (V1 and V2).
- Detection of a stuck-short fault requires the measurement of quiescent current (I_{DDO}).

