PHYS 3038 Optics L6 Geometrical Optics Reading Material: Ch5.4-5.9

03

Shengwang Du

2015, the Year of Light

5.4.1 Planar Mirrors

Figure 5.44 Rotation of a mirror and the concomitant angular displacement of a beam.

This tiny tiltable mirror (which is so small it can fit through the eye of a needle) is used to steer light beams in one of today's most important telecommunications devices. (Photo courtesy Lucent Technologies' Bell Laboratories.)

Aspherical Mirrors

$$OPL = \overline{W_1 A_1} + \overline{A_1 F} = \overline{W_2 A_2} + \overline{A_2 F}$$

$$\overline{W_1A_1} + \overline{A_1D_1} = \overline{W_2A_2} + \overline{A_2D_2}$$

Paraboloidal Mirror

Aspherical Mirrors

Figure 5.47 Hyperbolic and elliptical mirrors.

The 2.4-m-diameter hyperboloidal primary mirror of the Hubble Space Telescope. (Photo courtesy of NASA.)

5.4.3 Spherical Mirrors

Comparison of spherical and paraboloidal

Mirror Formula

$$\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}$$

$$f = -\frac{R}{2}$$

Negative Focal Length

$$\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}$$

$$f = -\frac{R}{2}$$

Imagery with spherical mirrors

$$\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}$$
$$f = -\frac{R}{2}$$

5.5.1 Dispersing Prisms

Figure 5.56 Geometry of a dispersing prism

$$\sin \theta_{i1} = n \sin \theta_{t1}$$

$$n \sin \theta_{i2} = \sin \theta_{t2}$$

Dispersing Prims

$$n = \frac{\sin[(\delta_m + \alpha)/2]}{\sin \alpha/2}$$

Constant Deviation Dispersing Prisms

Figure 5.58 The Pellin–Broca prism.

Figure 5.59 The Abbe prism.

5.5.2 Reflecting Prisms

(internal reflection without dispersion)

Reflecting Prisms

Figure 5.63 The Dove prism.

Fiber Optics

 $NA = n_i \sin \theta_{max}$

Colonoscope

Fiberoptical Communication

Charles K Kao Nobel Prize in Physics in 2009

"for groundbreaking achievements concerning the transmission of light in fibers for optical communication"

Figure 5.72 The three major fiberoptic configurations and their index profiles. (a) Multimode step-index fiber. (b) Multimode graded-index fiber. (c) Single-mode step-index fiber.

5.7 Optical Systems

CF

Eyes

Eyeglasses

™Microscope

Camera

Telescope

Eye

Eyeclasses

Exit pupil Eyepiece Field stop Objective Entrance pupil Object lmage at ∞

Microscope

Camera

Telescope

03

Hubble Telescope

