LÝ THUYẾT ĐỒ THỊ

Phạm Nguyên Khang BM. Khoa học máy tính, CNTT pnkhang@cit.ctu.edu.vn

Cần Thơ, 2012

Tính liên thông của đồ thị

- **Đường đi** (walk): đường đi chiều dài k đi từ đỉnh $u = v_0$ đến đỉnh $v_k = v$ là danh sách các đỉnh và cung xen kẽ nhau:
 - V₀, e₁, V₁, e₂, V₂, e₃,, e_k, V_k
 - Cung e_i có đỉnh đầu là v_{i-1} và đỉnh cuối v_i
- Đường đi đơn cung (trail): là đường đi các cung đều khác nhau.
- Đường đi đơn đỉnh (path): là đường đi các đỉnh đều khác nhau.
- Đường đi đơn cung (trail) có đỉnh đầu và đỉnh cuối trùng nhau gọi là một đường vòng (circuit)
- Một đường vòng không có đỉnh nào lặp lại gọi là chu trình (cycle).
- Chiều dài của walk, trail, path, circuit hay cycle là số cung của nó.

Tính liên thông của đồ thị

- Định nghĩa:
 - Đồ thị vô hướng G được gọi là liên thông nếu và chỉ nếu với mọi cặp đỉnh u, v ∈ V luôn tồn tại đường đi (walk) từ u → v. Ngược lại, G được gọi là không liên thông.
 - Đỉnh u được gọi là liên thông với đỉnh v ⇔ tồn tại đường đi từ u → v. Quan hệ liên thông trên G là tập các cặp có thứ tự (u, v) sao cho u liên thông với v.

Tính liên thông của đồ thị

- Định lý:
 - Quan hệ liên thông là một quan hệ tương đương
 - C/M: xem như bài tập
- Bổ đề:
 - Mỗi đường đi (walk) đi từ u đến v luôn chứa 1 một đường đi đơn đỉnh (path) đi từ u đến v.
 - C/M: xem như bài tập

Bộ phận liên thông

- Các bộ phận liên thông của đồ thị G là tập các đồ thị con liên thông lớn nhất của G (là các lớp tương đương của quan hệ liên thông).
- Đỉnh cô lập (có bậc bằng 0) cũng là một bộ phân liên thông chỉ gồm chính nó và được là bộ phận liên thông tầm thường (trivial connected component).

Bài tập

 CMR trong một đồ thị vô hướng, đường đi (walk) ngắn nhất giữa hai đỉnh là một đường đi đơn đỉnh (path).

Khoảng cách giữa 2 đỉnh

- Định nghĩa: Trên một đồ thị vô hướng, khoảng cách từ đỉnh u đến đỉnh v, ký hiệu d(u,v) được định nghĩa bằng:
 - 0, nếu u ≡ v
 - Chiều dài đường đi ngắn nhất từ u đến v, nếu tồn tại đường đi từ u đến v.
 - ∞, nếu không có đường đi từ u đến v.
- Đường kính của đô thị vô hướng là khoảng cách lớn nhất giữa 2 đỉnh trên đổ thị.
- Bài tập:
 - Chứng minh bất đẳng thức tam giác:
 - $d(u, v) \le d(u, x) + d(x, v)$

Bài tập

1. Cho đơn đồ thị vô hướng G= <V, E> có n đỉnh, gọi bậc nhỏ nhất của đồ thi là:

$$\delta(G) = \min_{v \in V} \{ \deg(v) \}$$

- $\delta(G) = \min_{v \in V} \{\deg(v)\}$ CMR: nếu $\delta(G) \ge \left|\frac{n}{2}\right|$ thì G liên thông
- 1. CMR: Số cung ít nhất của một đơn đồ thị vô hướng liên thông có n đỉnh là n - 1.
 - Gơi ý: C/M quy nap trên số cung.

Bài tập

- 1. Cho đơn đồ thị vô hướng G = <V, E> có 2n đỉnh. CMR: nếu tất cả các đỉnh đều có bậc lớn hơn hoặc bằng n, thì G liên thông.
- Cho đô thị vô hướng G có n đỉnh và m cung.
 CMR G có ít nhất n m thành phần liên thông.

Giải thuật kiểm tra tính liên thông của đồ thị – Thực hành (1/2)

- Áp dụng giải thuật duyệt đô thị để đánh số/đánh dấu (gán nhãn) các đỉnh
- Nếu sau khi duyệt tất cả các đỉnh đều có nhãn
 liên thông, ngược lại không liên thông.

Duyệt đồ thị

- Lần lượt xem xét từng đỉnh của đồ thị (mỗi đỉnh chỉ xét lần)
- Bắt đầu từ 1 đỉnh bất kỳ, xét đỉnh các đỉnh kề của nó, xét các đỉnh kề của các đỉnh kề, ...

Duyệt đồ thị

- Lần lượt xem xét từng đỉnh của đồ thị (mỗi đỉnh chỉ xét lần)
- Bắt đầu từ 1 đỉnh bất kỳ, xét đỉnh các đỉnh kề của nó, xét các đỉnh kề của các đỉnh kề, ...

Duyệt đồ thị

- Lần lượt xem xét từng đỉnh của đồ thị (mỗi đỉnh chỉ xét lần)
- Bắt đầu từ 1 đỉnh bất kỳ, xét đỉnh các đỉnh kề của nó, xét các đỉnh kề của các đỉnh kề, ...

Giải thuật kiểm tra tính liên thông của đồ thị – Thực hành (2/2)

- Giải thuật Trémeaux (1882) tìm bộ phận liên thông chứa một đỉnh cho trước:
 - Áp dụng giải thuật duyệt đồ thị theo chiều sâu để đánh số các đỉnh (giải thuật đệ quy). Khởi tạo tất cả các đỉnh có num[x] = -1 và k = 1;

Khi giải thuật kết thúc, các đỉnh được đánh số (num[x] > 0) chính là bộ phận liên thông cần tìm.

Giải thuật tìm tất cả các bộ phận liên thông (thực hành)

 Sử dụng giải thuật duyệt đồ thị (chiều rộng hoặc chiều sâu): Khởi tạo tất cả các đỉnh có num[x] = -1 (chưa được đánh số), xét qua các đỉnh, nếu chưa được đánh dấu => gọi Traversal để duyệt nó.

```
for (x = 1; x <= n; x++)
    if (num[i] < 0) {
        Traversal(G, x);
        //Tìm được 1 bộ phận liên thông.
}</pre>
```

 Mỗi lần duyệt xong 1 đỉnh x, ta sẽ tìm được 1 bộ phận liên thông.

Tính liên thông của đồ thị có hướng

- Cho đồ thị có hướng G = <V, E>

 - G được gọi là liên thông mạnh ⇔ giữa hai đỉnh x,
 y bất kỳ, luôn có đường đi từ x đến y.

Tính liên thông của đồ thị có hướng

- Bộ phận liên thông mạnh
 - Đồ thị con liên thông mạnh: có đường đi giữa hai đỉnh bất kỳ.
 - Đồ thị có hướng không liên thông mạnh bao gồm nhiều bộ phân liên thông mạnh

Tìm các bộ phận liên thông mạnh

- Nhân xét:
 - Các đỉnh trong một chu trình liên thông với nhau
- Giải thuật tìm các bộ phận liên thông mạnh
 - Tìm các chu trình (lớn nhất có thể) của một đồ thị
 - Giải thuật Tarjan (1972)
 - Áp dụng duyệt theo chiều sâu (đệ quy hoặc không đệ quy)
 để đánh số các đỉnh.
 - Để tìm được chu trình, với mỗi đỉnh v, ngoài num[v], ta lưu thêm min_num[v] (là chỉ số nhỏ nhất trong các đỉnh có thể đi đến được từ v). Trong quá trình duyệt, min_num[v] sẽ được cập nhật.
 - Khi duyệt xong 1 đỉnh, nếu num[v] = min_num[v] thì v là đỉnh bắt đầu (đỉnh gốc/đỉnh khớp) của bộ phận liên thông.

Tìm các bộ phận liên thông mạnh

```
void strong connect(Graph* G, int x) {
        num[x] = min num[x] = idx; idx++;
        push(&S, x);
                                  /* Đưa x vào stack */
        on stack[x] = 1; /* x dang ở trên stack */
        /* Lấy các đỉnh kề và duyệt nó */
        List list = neighbors (G, x);
        for (j = 1; j <= list.size; j++) {
                 int y = element at(&list, j);
                 if (num[y] == -1) {
                          strong connect(G, y);
                         min num [x] = min(min num[x], min num[y]);
                 } else if (on stack[y])
                         min num[x] = min(min num[x], num[y]);
        /* Kiểm tra nếu num[x] == min num[x] */
```

Tìm các bộ phận liên thông mạnh

```
void strong connect(Graph* G, int x) {
       /* đánh dấu x */
        /* Lấy các đỉnh kề và duyệt nó */
       /* Kiểm tra nếu num[x] == min_num[x] */
        if (num[x] == min num[x]) {
               /* Loai bỏ các đỉnh ra khỏi stack */
               int w;
               do {
                       W = top(\&S); pop(\&S);
                       on stack[w] = 0;
                       /* làm gì đó trên w, vd: in ra màn hình
*/
               \} while (w != x);
```


Lưu ý:

- Thứ tự các đỉnh kề của 1 đỉnh được sắp xếp từ bé đến lớn.
- Khi duyệt xong 1 đỉnh y, quay về đỉnh cha x (đỉnh trước), cập nhật lại min_num[x] (so với min_num[y])
- Khi xét 1 đỉnh kề y của x mà y đang có mặt trong stack => cập nhật lại min_num[x] (so với num[y]).

