Kompleksiluvut

Yhtälöllä $x^2=-1$ ei ole ratkaisua reaalilukujen $\mathbb R$ joukossa. Yhtälö voidaan ratkaista kompleksiluvuilla. Kompleksilukujen joukko $\mathbb C$.

Määritelmä

Kompleksiluku z on muotoa z = a + bi, missä $a, b \in \mathbb{R}$ ja $z \in \mathbb{C}$. Termi i on imaginääriyksikkö.

Luku a on kompleksiluvun z reaaliosa.

Luku b on kompleksiluvun z imaginaariosa.

Termi i on imaginääriyksikkö, jolle pätee $i^2=-1$. Toisaalta $i=\sqrt{-1}$. (Joissakin kirjoissa imaginääriyksikkönä on kirjain j.) Kompleksilukujen laskusäännöt samat kuin realiluvuilla.

Esimerkkejä kompleksiluvuista: 1+2i, -3-3i, 4, 5i.

Etumerkit ovat merkitseviä: $2+3i \neq 3+2i \neq 2-3i$.

1. Ratkaise vhtälöt $x^2+1=0$ ja $x^2+9=0$.

Kompleksilukujen yhteenlasku.

 $Kompleksilukujen\ yhteenlasku\ suoritetaan\ laskemalla\ reaali-ja\ imaginaariosat\ yhteen$

- $(a+bi) + (c+di) = (a+c) + (b+d)\cdot i.$
- 2. Laske kompleksilukujen summa
 - a. 3+2i ja -1+4i
 - b. -2+i ja -3i
 - c. 3-3i ja 2+3i

Kompleksilukujen vähennyslasku.

Vähennyslasku suoritetaan reaaliosilla ja imaginääriosilla erikseen.

$$(a+bi) - (c+di) = (a-c) + (b-d) \cdot i.$$

- 3. Laske kompleksilukujen erotus
 - a. 3+2i ja -1+4i
 - b. -2+i ja -3i
 - c. 3-3i ja 2+3i

Kompleksilukujen kertolasku.

Kertolasku suoritetaan kuin minkä tahansa binomin kertolasku huomioiden, että $i^2 = -1$.

$$(a+bi) \cdot (c+di) = ac - bd + (ad + bc) \cdot i$$
.

- 4. Laske kompleksilukujen tulo
 - a. 3+2i ja -1+4i
 - b. -2+i ja -3i
 - c. 3-3i ja 2+3i

Kompleksikonjugaatti z* (Kompleksiluvun liittoluku)

Kompleksiluvun a+bi liittoluku on a-bi.

- 5. Muodosta seuraavien kompleksilukujen konjugaatit
 - a. 3+2i
 - b. -1+4i
 - c. 3-3i
 - d. -3i

Kompleksiluvun ja sen konjugaatin tulo on aina positiivinen reaaliluku.

(Poikkeustapaus: Tulo voi olla nolla jos sekä reaaliosa että imaginääriosa ovat nollia.) $(a+bi)(a-bi) = a^2 + b^2$ (HUOM! Yleinen toisen asteen muistikaava $(a+b)(a-b) = a^2 - b^2$)

- 6. Kerro kompleksiluku sen konjugaatilla
 - a. 3+2i
 - b. -1+4i
 - c. 3-3i
 - d. -3i

Kompleksilukujen jakolasku

Jakolasku suoritetaan (kertolaskuna) laventamalla nimittäjän kompleksikonjugaatilla.

- 7. Laske kompleksilukujen osamäärä
 - a. 3+2i ja -1+4i
 - b. -2+i ja -3i

Kompleksitaso (Argand diagram)

Kompleksiluku z=a+bi voidaan esittää pisteenä (a, b) kompleksitasossa. Reaaliosa esitetään x-vaaka-akselilla ja imaginääriosa y-pystyakselilla.

Esimerkki. Kompleksilukuja kompleksitasossa. (kuva 1)

8. Määrittele kompleksitason pisteet kompleksilukuina. (kuva 2)

Kuva. Kompleksiluku ja sen konjugaatti, pisteinä (4,3) ja (4,-3). Pistettä (x, y) vastaa kompleksiluku z=x+yi.

9. Esitä graafisesti kompleksilukujen z_1 =3+4i ja z_2 =1-2i summa, erotus ja tulo, sekä liittoluvut.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Jos diskriminantti on negatiivinen, niin toisen asteen yhtälöllä ei ole reaalilukuratkaisua, koska negatiivisten lukujen neliöjuurta ei ole määritelty realliluvuilla. Tällöin yhtälö voidaan ratkaista kompleksiluvuilla.

Kompleksiluvuilla $i^2=-1$. $(\sqrt{-1}=i)$

- 10. Ratkaise yhtälö.
 - a. $x^2+4=0$
 - b. $x^2-x+6=0$
 - c. $-x^2-3x-5=0$

KOTITEHTÄVÄT

- 11. Ratkaise yhtälö
 - a. a-2+bi=2i+6, kun a ja $b \in \mathbb{R}$
- 12. Ratkaise yhtälö
 - a. $x^2 = -4$
 - b. $3x^2+7=0$
 - c. $x^2+2x+5=0$
 - d. $x^2+3x+4=0$
- 13. Laske kompleksilukujen summa, erotus, tulo ja osamäärä.
 - a. 3+2i ja -1+4i
 - b. -4-2i ja 3+5i
 - c. 4-3i ja 4+3i
- 14. Määrittele seuraavien kompleksilukujen liittoluvut. Laske zz*. Esitä kompleksiluvut kompleksitasossa.
 - a. 3+3i
 - b. 4i-2
 - c. 9-i
 - d. -2-2i

Pythagoraan lause. $c^2 = a^2 + b^2$

$$\sin \alpha = \frac{a}{c}$$

$$\cos \alpha = \frac{b}{c}$$

$$\tan \alpha = \frac{a}{b}$$

 $\cot \alpha =$

- 15. Suorakulmaisen kolmion kateettien pituudet ovat 3 ja 5.
 - a. Laske hypotenuusan pituus.
 - b. Laske kulmien suuruudet.
- 16. Suorakulmaisen kolmion kateettien pituus on 7. Laske hypotenuusan pituus.
 - a. Laske hypotenuusan pituus.
 - b. Laske kulmien suuruudet.

Ympyrä

Ympyrän säde r Ympyrän halkaisija d Ympyrän (kehän pituus) piiri $C = 2\pi r$ Ympyrän ala $A = \pi r^2$

- 17. Ympyrän säde on 2 cm. Laske ympyrän halkaisijan pituus, piiri ja ala.
- 18. Yksikköympyrän säde on 1. Laske ympyrän halkaisijan pituus, piiri ja ala.

Yksikköympyrä, sin ja cos

Yksikköympyrä on ympyrä, jonka keskipiste on origo ja jonka säde on 1.

Suunnattu kulma θ:

Kulman kärki on origossa.

Kulman alkukylki on positiivinen x-akseli.

Kulman θ loppukyljen ja yksikköympyrän leikkauspiste P=(x,y) on kulman θ kehäpiste.

Kulman θ kosini on kulman θ kehäpisteen x-koordinaatti. (cos $\theta = \frac{x}{1} = x$) Ks. Kuva \rightarrow Kulman θ sini on kulman θ kehäpisteen y-koordinaatti (sin $\theta = \frac{y}{1} = y$) Ks. Kuva \rightarrow

- a. $\cos 0^{\circ}$ ja $\sin 0^{\circ}$.
- b. $\cos 90^{\circ}$ ja $\sin 90^{\circ}$.
- c. cos 270° ja sin 270°.
- d. $\cos (-90^{\circ})$ ja $\sin (-90^{\circ})$.

20. Määritä

- a. $\cos 45^{\circ}$ ja $\sin 45^{\circ}$.
- b. $\cos 75^{\circ}$ ja $\sin 75^{\circ}$.

21. Määritä

- a. $\cos 450^{\circ}$ ja $\sin 450^{\circ}$.
- a. $\cos 720^{\circ}$ ja $\sin 720^{\circ}$.

Etumerkit

Kulman θ kosini on positiivinen, jos loppukylki on I tai IV neljänneksessä, ja muualla negatiivinen.

Kulman θ sini on positiivinen, jos loppukylki on I tai II neljänneksessä, ja muualla negatiivinen.

- $-1 \le \cos \theta \le 1$
- $-1 \le \sin \theta \le 1$

Pythagoraan lause trigonometrisille funktioille

Pythagoraan lauseen mukaan $x^2+y^2=1$. (Miksi?)

Sijoittamalla saadaan Pythagoraan lause trigonometrisille funktioille:

$$(\cos \theta)^2 + (\sin \theta)^2 = 1 \rightarrow \cos^2 \theta + \sin^2 \theta = 1$$

Radiaanit - Yksikköympyrä

22. Laske yksikköympyrän kehän pituus

Asteet ja radiaanit

Positiivisen kulman suuruus radiaaneina on kulmaa vastaavan yksikköympyrän kaaren pituus. Negatiivisen kulman suuruus radiaaneina on kaaren pituuden vastaluku.

Yleensä kulman yksikkönä on radiaani.

Yksikkömuunnokset: radiaanit ja asteet

Yksikköympyrän (ympyrä, jonka säde on 1) kaaren pituus on 2π . Puolikaaren pituus on π . π radiaania on 180° .

$$\pi \operatorname{rad} = 180^{\circ} \rightarrow 1 \operatorname{rad} = \frac{180^{\circ}}{\pi}$$

$$180^{\circ} = \pi \operatorname{rad} \rightarrow 1^{\circ} = \frac{\pi}{180} \operatorname{rad}$$

23. Määrittele radiaaneina

a. 360°

b. 180°

c. 90°

24. Määrittele radiaaneina

a. -90°

b. -180°

25. Määrittele radiaaneina

a. 45°

b. 7°

26. Määrittele asteina

a. 1 rad

b. $\pi/2$ rad

c. $\pi/6$ rad

d. 2 rad

e. 0.5 rad

Sinifunktio, kosinifunktio ja tangenttifunktio

27. Tarkastele sin x ja cos x - funktioiden arvojen yhteyttä yksikköympyrään ja radiaaneihin.

$$\sin (x+2\pi) = \sin x$$

 $\cos (x+2\pi) = \cos x$
 $\tan (x+\pi) = \tan x$

Funktiot sin x ja cos x on määritelty kaikilla muuttujan x arvoilla ja ovat jatkuvia kaikkialla.

Sin x ja cos x ovat jaksollisia funktioita. Jakso 2π .

 $-1 \le \cos x \le 1$

 $-1 \le \sin x \le 1$

Funktio tan x on määritelty, kun $x\neq\pi/2+n\pi$, missä n on kokonaisluku. Funktio tan x on jatkuva koko määrittelyjoukossaan. Funktio tan x on jaksollinen funktio. Jakso on π .

Kompleksilukujen polaarimuoto ja karteesinen muoto

Kompleksiluku a+bi voidaan esittää polaarimuodossa vektorin r pituuden sekä xakselin ja kompleksilukuvektorin välisen kulman θ avulla: a+bi = r $\angle \theta$.

$$r = \sqrt{a^2 + b^2}$$

 $\tan \theta = \frac{b}{a} \rightarrow \theta = \tan^{-1}(\frac{b}{a})$. Jos a on negatiivinen, niin $\theta = \tan^{-1}(\frac{b}{a}) + \pi$ (180°)

Vektorin r pituutta kutsutaan moduuliksi ja kulmaa $\boldsymbol{\theta}$ argumentiksi.

Kompleksiluvun karteesinen muoto: a+bi.

- 28. Esitä seuraavat kompleksiluvut polaarimuodossa. Esitä kulma asteina.
 - a. 3+2i
 - b. -1+4i
 - c. 3-3i
- 29. Esitä seuraavat kompleksiluvut polaarimuodossa. Esitä kulma radiaaneina.
 - a. 3+2i
 - b. -1+4i
 - c. 3-3i

Pythagoraan lauseen mukaan $a^2+b^2=r^2 \rightarrow r=\sqrt{a^2+b^2}$,

$$\sin \theta = \frac{b}{r} \rightarrow b = r \sin \theta$$

$$\cos \theta = \frac{a}{r} \Rightarrow a = r \cos \theta$$

$$\tan \theta = \frac{r}{b}$$

Karteesinen muoto z = a + bi

'
$$\rightarrow$$
 z = r cos θ + i r sin θ = r (cos θ + i sin θ)

- 30. Esitä seuraavat kompleksiluvut karteesisessa muodossa
 - a. $3\angle\pi/6$
 - b. $2\angle\pi/4$
 - c. $2 \angle 1$

Kompleksilukujen eksponenttimuoto

Eulerin kaava:

 $e^{ix} = \cos x + i \sin x$, missä x on radiaania

Muunnos:

$$e^{-ix} = \cos x - i \sin x$$
, missä x on radiaania

Karteesinen muoto z = a + bi

$$\rightarrow z = r \cos \theta + i r \sin \theta = r (\cos \theta + i \sin \theta) = r e^{i\theta}$$

- 31. Esitä kompleksilukuna
 - a. $e^{i\pi}$
 - b. e^{i3}
 - c. $5e^{i\pi/3}$
 - d. $3e^{i\pi/2}$
- 32. Esitä kompleksiluvut eksponenttimuodossa
 - a. 7+5i
 - b. 3+4i
 - c. 1-i

KOTITEHTÄVÄT

- 33. Määritä
 - a. $\cos 180^{\circ}$ ja $\sin 180^{\circ}$
 - b. $\cos 110^{\circ}$ ja $\sin 110^{\circ}$
 - c. cos 355° ja sin 355°
- 34. Määrittele radiaaneina
 - a. 270°

- b. 80°
- 35. Määrittele asteina
 - a. $\pi/4$ rad
 - b. 1.5 rad
- 36. Esitä kompleksiluvut 1) Argand diagrammissa, 2) polaarimuodossa sekä asteina että radiaaneina.
 - a. $-5+\sqrt{75}i$ (10 \angle -1.047)
 - b. $-4+2i(4.47\angle 2.68)$
 - c. $-2-5i(5.39\angle -1.95)$
 - d. 4-2i(4.47∠-0.46)
- 37. Esitä seuraavat karteesisessa muodossa
 - a. $\sqrt{8} \angle 45^{\circ} (2+2i)$
 - b. $10\angle 60^{\circ} (5+8.7i)$
- 38. Esitä karteesisessa muodossa
 - a. $3\angle\pi/6$
 - b. $2\angle\pi/4$
- 39. Esitä kompleksilukuna
 - a. $2e^{i\pi/3}$
 - b. $3e^{i\pi/4}$
- 40. Esitä eksponenttimuodossa
 - a. 2+2i
 - b. 4-3i

Polaarimuotoisten kompleksilukujen peruslaskutoimitukset

- $z_1 = r_1 \angle \theta_1$
- $z_2 = r_2 \angle \theta_2$
- z₁+ z₂ (Muunna kompleksiluvut karteesiseen muotoon)
- z₁-z₂ (Muunna kompleksiluvut karteesiseen muotoon)
- $z_1 z_2 == r_1 r_2 \angle \theta_1 + \theta_2$
- $\mathbf{z}_1/\mathbf{z}_2 = = \mathbf{r}_1/\mathbf{r}_2 \angle \theta_1 \theta_2$
- 41. Laske polaarimuotoisten kompleksilukujen $3\angle\pi/6$ ja $2\angle\pi/4$
 - a cumma
 - b. erotus
 - c. tulo
 - d. osamäärä

Eksponenttimuotoisen kompleksilukujen peruslaskutoimitukset

Yhteenlasku ja vähennyslasku:

Muunna kompleksiluvut karteesiseen muotoon. Suorita laskutoimitus. Muunna vastaus eksponttimuotoon.

Kertolasku

$$r_1 e^{i\theta_1} r_2 e^{i\theta_2} = r_1 r_2 e^{i(\theta_1 + \theta_2)}$$

Jakolasku

$$\frac{r_1 e^{i\theta_1}}{r_2 e^{i\theta_2}} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}$$

- 42. Laske. $z_1=3e^{i\pi/6}$ ja $z_2=2e^{i\pi/4}$
 - a. z_1+z_2
 - b. z₁-z₂
 - c. $z_1^*z_2$
 - d. z_1/z_2