Ryan T. Moore

American University

2024-08-23

Rubin (1978)

SUTVA 2: No interference between units.

Does A's assignment affect B's potential outcomes?

▶ Describe violation of SUTVA in social pressure experiment.

- ▶ Describe violation of SUTVA in social pressure experiment.
- ightharpoonup Does assg of MTurk survey respondent A to conjoint profile X affect response of MTurker B?

- ▶ Describe violation of SUTVA in social pressure experiment.
- ightharpoonup Does assg of MTurk survey respondent A to conjoint profile X affect response of MTurker B?
- ➤ Does assg of election monitors to polling place A affect fraud at B?

- ▶ Describe violation of SUTVA in social pressure experiment.
- ightharpoonup Does assg of MTurk survey respondent A to conjoint profile X affect response of MTurker B?
- ▶ Does assg of election monitors to polling place A affect fraud at B?
- \triangleright Does assg of child A to vaccine affect health of B?

- ▶ Describe violation of SUTVA in social pressure experiment.
- ightharpoonup Does assg of MTurk survey respondent A to conjoint profile X affect response of MTurker B?
- ▶ Does assg of election monitors to polling place A affect fraud at B?
- \blacktriangleright Does assg of child A to vaccine affect health of B?
- ▶ Does assg of A to GOTV door knock affect turnout of neighbor?

- ▶ Describe violation of SUTVA in social pressure experiment.
- ightharpoonup Does assg of MTurk survey respondent A to conjoint profile X affect response of MTurker B?
- ▶ Does assg of election monitors to polling place A affect fraud at B?
- \blacktriangleright Does assg of child A to vaccine affect health of B?
- ▶ Does assg of A to GOTV door knock affect turnout of neighbor?
- ightharpoonup Does assg of development £ to village A affect trust in B?

- ▶ Describe violation of SUTVA in social pressure experiment.
- ightharpoonup Does assg of MTurk survey respondent A to conjoint profile X affect response of MTurker B?
- ▶ Does assg of election monitors to polling place A affect fraud at B?
- \blacktriangleright Does assg of child A to vaccine affect health of B?
- ▶ Does assg of A to GOTV door knock affect turnout of neighbor?
- ightharpoonup Does assg of development £ to village A affect trust in B?
- ▶ Other common examples?

Gerber and Green (2012)

► Contagion

- ► Contagion
- **▶** Displacement

- ► Contagion
- **▶** Displacement
- ► Communication

- Contagion
- ▶ Displacement
- ► Communication
- ► Knowledge of others (disappointment/pride)

- Contagion
- ► Displacement
- ► Communication
- ► Knowledge of others (disappointment/pride)
- Deterrence

- ► Contagion
- **▶** Displacement
- ► Communication
- ► Knowledge of others (disappointment/pride)
- Deterrence
- ► Persistence

- ► Contagion
- ▶ Displacement
- ► Communication
- ► Knowledge of others (disappointment/pride)
- Deterrence
- ► Persistence
- ► Memory

Agent	Y if MaryH	Y if PeterH	Y if LimorH	Y if NobodyH
Mary	100	50	70	70
Peter	50	50	50	50
Limor	90	50	90	90
				<u>-</u>
Mean	80	50	70	70

Agent	Y if MaryH	Y if PeterH	Y if LimorH	Y if NobodyH
Mary	100	50	70	70
Peter	50	50	50	50
Limor	90	50	90	90
				
Mean	80	50	70	70

 $ightharpoonup Y_i(0)$ unstable, since depends on who assigned Tr

Agent	Y if MaryH	Y if PeterH	Y if LimorH	Y if NobodyH
Mary	100	50	70	70
Peter	50	50	50	50
Limor	90	50	90	90
				
Mean	80	50	70	70

- $ightharpoonup Y_i(0)$ unstable, since depends on who assigned Tr
- $ightharpoonup \overline{Y}_{\mathrm{None}} = 70.$

Agent	Y if MaryH	Y if PeterH	Y if LimorH	Y if NobodyH
Mary	100	50	70	70
Peter	50	50	50	50
Limor	90	50	90	90
				
Mean	80	50	70	70

- $ightharpoonup Y_i(0)$ unstable, since depends on who assigned Tr
- $ightharpoonup \overline{Y}_{\text{None}} = 70.$
- ightharpoonup Calc TEs relative to \overline{Y}_{None} ("uniformity")

Agent	Y if MaryH	Y if PeterH	Y if LimorH	Y if NobodyH
Mary	100	50	70	70
Peter	50	50	50	50
Limor	90	50	90	90
				
Mean	80	50	70	70

► True uniformity ATE: $\frac{(100-70)+(50-50)+(90-90)}{3} = 10$

Agent	Y if MaryH	Y if PeterH	Y if LimorH	Y if NobodyH
Mary	100	50	70	70
Peter	50	50	50	50
Limor	90	50	90	90
				
Mean	80	50	70	70

► True uniformity ATE: $\frac{(100-70)+(50-50)+(90-90)}{3} = 10$

Agent	Y if MaryH	Y if PeterH	Y if LimorH	Y if NobodyH
Mary	100	50	70	70
Peter	50	50	50	50
Limor	90	50	90	90
				
Mean	80	50	70	70

- True uniformity ATE: $\frac{(100-70)+(50-50)+(90-90)}{3} = 10$
- ▶ But, calculate all TEs relative to uniformity:

Agent	Y if MaryH	Y if PeterH	Y if LimorH	Y if NobodyH
Mary	100	50	70	70
Peter	50	50	50	50
Limor	90	50	90	90
				
Mean	80	50	70	70

- True uniformity ATE: $\frac{(100-70)+(50-50)+(90-90)}{3} = 10$
- ▶ But, calculate all TEs relative to uniformity:

$$If Mary, \frac{100+50+90}{3} - 70 = 80 - 70 = 10$$

Agent	Y if MaryH	Y if PeterH	Y if LimorH	Y if NobodyH
Mary	100	50	70	70
Peter	50	50	50	50
Limor	90	50	90	90
				
Mean	80	50	70	70

- True uniformity ATE: $\frac{(100-70)+(50-50)+(90-90)}{3} = 10$
- ▶ But, calculate all TEs relative to uniformity:

 - ► If Mary, $\frac{100+50+90}{3} 70 = 80 70 = 10$ ► If Peter, $\frac{50+50+50}{3} 70 = 50 70 = -20$

Agent	Y if MaryH	Y if PeterH	Y if LimorH	Y if NobodyH
Mary	100	50	70	70
Peter	50	50	50	50
Limor	90	50	90	90
				
Mean	80	50	70	70

- True uniformity ATE: $\frac{(100-70)+(50-50)+(90-90)}{2} = 10$
- ▶ But, calculate all TEs relative to uniformity:

 - ► If Mary, $\frac{100+50+90}{50+50+50} 70 = 80 70 = 10$ ► If Peter, $\frac{50+50+50}{50+50+90} 70 = 50 70 = -20$ ► If Limor, $\frac{70+50+90}{3} 70 = 70 70 = 0$

Agent	Y if MaryH	Y if PeterH	Y if LimorH	Y if NobodyH
Mary	100	50	70	70
Peter	50	50	50	50
Limor	90	50	90	90
				
Mean	80	50	70	70

- True uniformity ATE: $\frac{(100-70)+(50-50)+(90-90)}{2} = 10$
- ▶ But, calculate all TEs relative to uniformity:

 - ► If Mary, $\frac{100+50+90}{50+50+50} 70 = 80 70 = 10$ ► If Peter, $\frac{50+50+50}{3} 70 = 50 70 = -20$ ► If Limor, $\frac{70+50+90}{3} 70 = 70 70 = 0$
- ► So, $E(Diff in Means) = \frac{10-20+0}{3} = -\frac{10}{3}$

Agent	Y if MaryH	Y if PeterH	Y if LimorH	Y if NobodyH
Mary	100	50	70	70
Peter	50	50	50	50
Limor	90	50	90	90
				
Mean	80	50	70	70

- True uniformity ATE: $\frac{(100-70)+(50-50)+(90-90)}{2} = 10$
- ▶ But, calculate all TEs relative to uniformity:

 - ► If Mary, $\frac{100+50+90}{50+50+50} 70 = 80 70 = 10$ ► If Peter, $\frac{50+50+50}{3} 70 = 50 70 = -20$ ► If Limor, $\frac{70+50+90}{3} 70 = 70 70 = 0$
- ► So, $E(Diff in Means) = \frac{10-20+0}{3} = -\frac{10}{3}$
- \triangleright So, $E(\text{Diff in Means}) \neq ATE$

Agent	Y if MaryH	Y if PeterH	Y if LimorH	Y if NobodyH
Mary	100	50	70	70
Peter	50	50	50	50
Limor	90	50	90	90
				
Mean	80	50	70	70

- True uniformity ATE: $\frac{(100-70)+(50-50)+(90-90)}{2} = 10$
- ▶ But, calculate all TEs relative to uniformity:

 - ► If Mary, $\frac{100+50+90}{50+50+50} 70 = 80 70 = 10$ ► If Peter, $\frac{50+50+50}{3} 70 = 50 70 = -20$ ► If Limor, $\frac{70+50+90}{3} 70 = 70 70 = 0$
- ► So, $E(Diff in Means) = \frac{10-20+0}{3} = -\frac{10}{3}$
- \triangleright So, $E(\text{Diff in Means}) \neq ATE$
- Diff in means is biased for uniformity ATE!

Agent	Y if MaryH	Y if PeterH	Y if LimorH	Y if NobodyH
Mary	100	50	70	70
Peter	50	50	50	50
Limor	90	50	90	90
				
Mean	80	50	70	70

- True uniformity ATE: $\frac{(100-70)+(50-50)+(90-90)}{2} = 10$
- ▶ But, calculate all TEs relative to uniformity:

 - ► If Mary, $\frac{100+50+90}{50+50+50} 70 = 80 70 = 10$ ► If Peter, $\frac{50+50+50}{3} 70 = 50 70 = -20$ ► If Limor, $\frac{70+50+90}{3} 70 = 70 70 = 0$
- ► So, $E(Diff in Means) = \frac{10-20+0}{3} = -\frac{10}{3}$
- \triangleright So, $E(\text{Diff in Means}) \neq ATE$
- Diff in means is biased for uniformity ATE!

Agent	Y if MaryH	Y if PeterH	Y if LimorH	Y if NobodyH
Mary	100	50	70	70
Peter	50	50	50	50
Limor	90	50	90	90
Mean	80	50	70	70

- True uniformity ATE: $\frac{(100-70)+(50-50)+(90-90)}{2} = 10$
- ▶ But, calculate all TEs relative to uniformity:

 - ► If Mary, $\frac{100+50+90}{50+50+50} 70 = 80 70 = 10$ ► If Peter, $\frac{50+50+50}{3} 70 = 50 70 = -20$ ► If Limor, $\frac{70+50+90}{3} 70 = 70 70 = 0$
- ► So, $E(Diff in Means) = \frac{10-20+0}{3} = -\frac{10}{3}$
- \triangleright So, $E(\text{Diff in Means}) \neq ATE$
- Diff in means is biased for uniformity ATE! \odot

Bias under Interference: Difference-in-Means

Agent	Y if MaryH	Y if PeterH	Y if LimorH	Y if NobodyH
Mary	100	50	70	70
Peter	50	50	50	50
Limor	90	50	90	90
Mean	80	50	70	70

▶ What about empirical difference in means, Diff in Means?

Bias under Interference: Difference-in-Means

Agent	Y if MaryH	Y if PeterH	Y if LimorH	Y if NobodyH
Mary	100	50	70	70
Peter	50	50	50	50
Limor	90	50	90	90
				
Mean	80	50	70	70

- ▶ What about empirical difference in means, Diff in Means?
- ▶ Empirically, if randomly select winner, calc diff-in-means,

Bias under Interference: Difference-in-Means

Agent	Y if MaryH	Y if PeterH	Y if LimorH	Y if NobodyH
Mary	100	50	70	70
Peter	50	50	50	50
Limor	90	50	90	90
				
Mean	80	50	70	70

- ▶ What about empirical difference in means, Diff in Means?
- ► Empirically, if randomly select winner, calc diff-in-means,
 - ► If Mary, $100 \frac{50+90}{2} = 100 70 = 30$

Agent	Y if MaryH	Y if PeterH	Y if LimorH	Y if NobodyH
Mary	100	50	70	70
Peter	50	50	50	50
Limor	90	50	90	90
Mean	80	50	70	70

- ▶ What about empirical difference in means, Diff in Means?
- Empirically, if randomly select winner, calc diff-in-means,

 - ► If Mary, $100 \frac{50+90}{2} = 100 70 = 30$ ► If Peter, $50 \frac{50+50}{2} = 50 50 = 0$

Agent	Y if MaryH	Y if PeterH	Y if LimorH	Y if NobodyH
Mary	100	50	70	70
Peter	50	50	50	50
Limor	90	50	90	90
				
Mean	80	50	70	70

- ▶ What about empirical difference in means, Diff in Means?
- Empirically, if randomly select winner, calc diff-in-means,

 - ► If Mary, $100 \frac{50+90}{2} = 100 70 = 30$ ► If Peter, $50 \frac{50+50}{2} = 50 50 = 0$ ► If Limor, $90 \frac{70+50}{2} = 90 60 = 30$

Agent	Y if MaryH	Y if PeterH	Y if LimorH	Y if NobodyH
Mary	100	50	70	70
Peter	50	50	50	50
Limor	90	50	90	90
				
Mean	80	50	70	70

- ▶ What about empirical difference in means, Diff in Means?
- Empirically, if randomly select winner, calc diff-in-means,

 - ► If Mary, $100 \frac{50+90}{2} = 100 70 = 30$ ► If Peter, $50 \frac{50+50}{2} = 50 50 = 0$ ► If Limor, $90 \frac{70+50}{2} = 90 60 = 30$
- \triangleright E(Diff in Means) = 20

Agent	Y if MaryH	Y if PeterH	Y if LimorH	Y if NobodyH
Mary	100	50	70	70
Peter	50	50	50	50
Limor	90	50	90	90
				
Mean	80	50	70	70

- ▶ What about empirical difference in means, Diff in Means?
- Empirically, if randomly select winner, calc diff-in-means,

 - ► If Mary, $100 \frac{50+90}{2} = 100 70 = 30$ ► If Peter, $50 \frac{50+50}{2} = 50 50 = 0$ ► If Limor, $90 \frac{70+50}{2} = 90 60 = 30$
- \triangleright E(Diff in Means) = 20

Agent	Y if MaryH	Y if PeterH	Y if LimorH	Y if NobodyH
Mary	100	50	70	70
Peter	50	50	50	50
Limor	90	50	90	90
				
Mean	80	50	70	70

- ▶ What about empirical difference in means, Diff in Means?
- Empirically, if randomly select winner, calc diff-in-means,

 - ► If Mary, $100 \frac{50+90}{2} = 100 70 = 30$ ► If Peter, $50 \frac{50+50}{2} = 50 50 = 0$ ► If Limor, $90 \frac{70+50}{2} = 90 60 = 30$
- \triangleright E(Diff in Means) = 20

 $E(\widehat{ATE}) \neq ATE$, so, estimator biased under randomization.

Agent	Y if MaryH	Y if PeterH	Y if LimorH	Y if NobodyH
Mary	100	50	70	70
Peter	50	50	50	50
Limor	90	50	90	90
				
Mean	80	50	70	70

- ▶ What about empirical difference in means, Diff in Means?
- Empirically, if randomly select winner, calc diff-in-means,

 - ► If Mary, $100 \frac{50+90}{2} = 100 70 = 30$ ► If Peter, $50 \frac{50+50}{2} = 50 50 = 0$ ► If Limor, $90 \frac{70+50}{2} = 90 60 = 30$
- \triangleright E(Diff in Means) = 20

 $E(\widehat{ATE}) \neq ATE$, so, estimator biased under randomization. \odot

Agent	Y if MaryH	Y if PeterH	Y if LimorH	Y if NobodyH
Mary	100	50	70	70
Peter	50	50	50	50
Limor	90	50	90	90
Mean	80	50	70	70

▶ What if use "Limor honored" as reference "control"?

Agent	Y if MaryH	Y if PeterH	Y if LimorH	Y if NobodyH
Mary	100	50	70	70
Peter	50	50	50	50
Limor	90	50	90	90
				<u>-</u>
Mean	80	50	70	70

- ▶ What if use "Limor honored" as reference "control"?
- ► True "Limor" ATE: $\frac{(100-70)+(50-50)}{2} = 15$

Agent	Y if MaryH	Y if PeterH	Y if LimorH	Y if NobodyH
Mary	100	50	70	70
Peter	50	50	50	50
Limor	90	50	90	90
				<u>-</u>
Mean	80	50	70	70

- ▶ What if use "Limor honored" as reference "control"?
- True "Limor" ATE: $\frac{(100-70)+(50-50)}{2} = 15$
- ► Calculate diff-in-means TE's relative to "Limor honored"

Agent	Y if MaryH	Y if PeterH	Y if LimorH	Y if NobodyH
Mary	100	50	70	70
Peter	50	50	50	50
Limor	90	50	90	90
Mean	80	50	70	70

- ▶ What if use "Limor honored" as reference "control"?
- ► True "Limor" ATE: $\frac{(100-70)+(50-50)}{2} = 15$
- ► Calculate diff-in-means TE's relative to "Limor honored"
 - ► If Mary, 80 70 = 10

Agent	Y if MaryH	Y if PeterH	Y if LimorH	Y if NobodyH
Mary	100	50	70	70
Peter	50	50	50	50
Limor	90	50	90	90
Mean	80	50	70	70

- ▶ What if use "Limor honored" as reference "control"?
- ► True "Limor" ATE: $\frac{(100-70)+(50-50)}{2} = 15$
- ► Calculate diff-in-means TE's relative to "Limor honored"
 - ▶ If Mary, 80 70 = 10
 - ▶ If Peter, 50 70 = -20

Agent	Y if MaryH	Y if PeterH	Y if LimorH	Y if NobodyH
Mary	100	50	70	70
Peter	50	50	50	50
Limor	90	50	90	90
				
Mean	80	50	70	70

- ▶ What if use "Limor honored" as reference "control"?
- ► True "Limor" ATE: $\frac{(100-70)+(50-50)}{2} = 15$
- ► Calculate diff-in-means TE's relative to "Limor honored"
 - ▶ If Mary, 80 70 = 10
 - ▶ If Peter, 50 70 = -20
 - $E(Diff in Means) = \frac{10-20}{2} = -5$

Agent	Y if MaryH	Y if PeterH	Y if LimorH	Y if NobodyH
Mary	100	50	70	70
Peter	50	50	50	50
Limor	90	50	90	90
Mean	80	50	70	70

- ▶ What if use "Limor honored" as reference "control"?
- True "Limor" ATE: $\frac{(100-70)+(50-50)}{2} = 15$
- ► Calculate diff-in-means TE's relative to "Limor honored"
 - ▶ If Mary, 80 70 = 10
 - ▶ If Peter, 50 70 = -20
 - ► $E(Diff in Means) = \frac{10-20}{2} = -5$
- ightharpoonup And, E(Diff in Means) = 20

Agent	Y if MaryH	Y if PeterH	Y if LimorH	Y if NobodyH
Mary	100	50	70	70
Peter	50	50	50	50
Limor	90	50	90	90
Mean	80	50	70	70

- ▶ What if use "Limor honored" as reference "control"?
- True "Limor" ATE: $\frac{(100-70)+(50-50)}{2} = 15$
- ► Calculate diff-in-means TE's relative to "Limor honored"
 - ▶ If Mary, 80 70 = 10
 - ▶ If Peter, 50 70 = -20
 - ► $E(Diff in Means) = \frac{10-20}{2} = -5$
- ightharpoonup And, E(Diff in Means) = 20

Agent	Y if MaryH	Y if PeterH	Y if LimorH	Y if NobodyH
Mary	100	50	70	70
Peter	50	50	50	50
Limor	90	50	90	90
				<u>_</u>
Mean	80	50	70	70

- ▶ What if use "Limor honored" as reference "control"?
- ► True "Limor" ATE: $\frac{(100-70)+(50-50)}{2} = 15$
- ► Calculate diff-in-means TE's relative to "Limor honored"
 - ▶ If Mary, 80 70 = 10
 - ▶ If Peter, 50 70 = -20
 - ► $E(Diff in Means) = \frac{10-20}{2} = -5$
- ightharpoonup And, E(Diff in Means) = 20

With interference, diff-in-means under randomization biased.

Agent	Y if MaryH	Y if PeterH	Y if LimorH	Y if NobodyH
Mary	100	50	70	70
Peter	50	50	50	50
Limor	90	50	90	90
Mean	80	50	70	70

- ▶ What if use "Limor honored" as reference "control"?
- True "Limor" ATE: $\frac{(100-70)+(50-50)}{2} = 15$
- ► Calculate diff-in-means TE's relative to "Limor honored"
 - ▶ If Mary, 80 70 = 10
 - ▶ If Peter, 50 70 = -20
 - ► $E(Diff in Means) = \frac{10-20}{2} = -5$
- ightharpoonup And, E(Diff in Means) = 20

With interference, diff-in-means under randomization biased. ©

Notation

$$Y_i(z_i, \mathbf{z}) \stackrel{?}{=} Y_i(z_i, \mathbf{z}')$$

Notation

$$Y_i(z_i, \mathbf{z}) \stackrel{?}{=} Y_i(z_i, \mathbf{z}')$$

$$Y_1(1, (1, 0, 0, 1, ...)) \stackrel{?}{=} Y_1(1, (1, 1, 0, 0, ...))$$

$$Y_0(0, (0, 0, 0, 1, ...)) \stackrel{?}{=} Y_0(0, (0, 1, 0, 0, ...))$$

▶ Let T'_i = whether my friend is treated

- ightharpoonup Let T'_i = whether my friend is treated
- ▶ T_i = whether I (unit i) am treated

- ▶ Let T'_i = whether my friend is treated
- $ightharpoonup T_i = \text{whether I (unit } i) \text{ am treated}$
- ▶ Then, $Y_{T'_iT_i}$ is my potential outcome using both assignments

- ▶ Let T'_i = whether my friend is treated
- $ightharpoonup T_i = \text{whether I (unit } i) \text{ am treated}$
- Then, $Y_{T'_iT_i}$ is my potential outcome using both assignments

- ▶ Let T'_i = whether my friend is treated
- $ightharpoonup T_i = \text{whether I (unit } i) \text{ am treated}$
- ▶ Then, $Y_{T'_iT_i}$ is my potential outcome using both assignments

Under balanced random assignment, **no** interference, naive diff in means has expectation

- ▶ Let T'_i = whether my friend is treated
- $ightharpoonup T_i = \text{whether I (unit } i) \text{ am treated}$
- ▶ Then, $Y_{T'_iT_i}$ is my potential outcome using both assignments

Under balanced random assignment, \mathbf{no} interference, naive diff in means has expectation

$$\frac{\bar{Y}_{11} + \bar{Y}_{01}}{2} - \frac{\bar{Y}_{10} + \bar{Y}_{00}}{2} = \bar{Y}_{01} - \bar{Y}_{00}$$

- Let T_i' = whether my friend is treated
- $ightharpoonup T_i = \text{whether I (unit } i) \text{ am treated}$
- ▶ Then, $Y_{T'_iT_i}$ is my potential outcome using both assignments

Under balanced random assignment, **no** interference, naive diff in means has expectation

$$\frac{\bar{Y}_{11} + \bar{Y}_{01}}{2} - \frac{\bar{Y}_{10} + \bar{Y}_{00}}{2} = \bar{Y}_{01} - \bar{Y}_{00}$$

which is *unbiased* for ATE.

▶ But, if

$$\underline{\bar{Y}_{11} - \bar{Y}_{01}}_{\text{spillover eff on Tr}} > \underline{\bar{Y}_{10} - \bar{Y}_{00}}_{\text{spillover eff on Co}}$$

then tend to overest $\bar{Y}_{01} - \bar{Y}_{00}$

▶ But, if

$$\underline{\bar{Y}_{11} - \bar{Y}_{01}}$$
 > $\underline{\bar{Y}_{10} - \bar{Y}_{00}}$ spillover eff on Tr spillover eff on Co

then tend to overest $\bar{Y}_{01} - \bar{Y}_{00}$

► If

$$\underline{\bar{Y}_{11} - \bar{Y}_{01}}_{
m spillover\ eff\ on\ Tr} < \underline{\bar{Y}_{10} - \bar{Y}_{00}}_{
m spillover\ eff\ on\ Co}$$

then tend to underestimate $\bar{Y}_{01} - \bar{Y}_{00}$.

▶ Multilevel experiments can help estimate these effects

- ▶ Multilevel experiments can help estimate these effects
 - ▶ Given individuals within communities

- ▶ Multilevel experiments can help estimate these effects
 - ▶ Given individuals within communities
 - Randomly assign whether community gets 20% or 80% treatment

- ▶ Multilevel experiments can help estimate these effects
 - ▶ Given individuals within communities
 - ▶ Randomly assign whether community gets 20% or 80% treatment
 - Randomly assign treatment to some individuals in communities

- ▶ Multilevel experiments can help estimate these effects
 - ▶ Given individuals within communities
 - ▶ Randomly assign whether community gets 20% or 80% treatment
 - Randomly assign treatment to some individuals in communities
- "Detecting Spillover Effects: Design and Analysis of Multilevel Experiments", Sinclair, McConnell, and Green (2012)

OES project with IRS (US tax authority):

OES project with IRS (US tax authority):

▶ assign preparers to "some client letters", "no client letters"

OES project with IRS (US tax authority):

- ▶ assign preparers to "some client letters", "no client letters"
- ➤ assign clients in "some client letters" preparers to letters/no letters

Diagnosis of Potential Interference

1. Block:

2. Assign:

```
assg.out <- assignment(block.out, seed = 157)</pre>
```

Diagnosis of Potential Interference

Diagnose interference after assgnmnt (1D, Linday et al. (2001))

73 / 113

diagnose(assg.out, data = x100, id.vars = "id",

3. Diagnose:

```
suspect.var = "b1", suspect.range = c(0, 5))
##
## Units differing by at least 0 and no
## more than 5 on b1:
##
## Group: a
##
     Unit 1 Unit 2 Difference
## 1 1073
             1098
## 2 1002
             1036
## 3 1016
             1060
## 4 1039
             1076
##
## Group: b
```

Further Examination of Design

4. Get block IDs:

```
## [1] 29 17 14 5 17 33 35 10 21 41 39 45 32 49 36 12 18
```

createBlockIDs(assg.out, data = x100, id.var = "id")

```
## [26] 6 37 31 4 11 20 16 47 28 48 12 23 18 2 19 48 14 ## [51] 32 11 40 15 29 8 23 1 9 13 3 24 26 28 3 50 8 ## [76] 2 25 25 26 43 16 46 35 1 44 45 50 37 7 30 10 38
```

Further Examination of Design

5. Get balance:

```
assg2xBalance(assg.out, x100, id.var = "id",
bal.vars = c("b1", "b2"))
```

```
## $Group1
## strata(): unstrat
## stat Treatment Control adj.diff std.diff
```

vars ## b1 -23.7 0.0 -23.7 -0.08

```
## b2 28.6 0.0 28.6 0.10 0
## ---Overall Test---
## chisquare df p.value
```

```
## unstrat 0.161 2 0.922
## ---
## Signif. codes: 0 '***' 0.001 '** ' 0.05 '.
```

Signif. codes: 0 '***' 0.001 '** ' 0.05 '.
##

\$Group2

z

-0

Avoiding Potential Interference due to Proximity

Are units too near each other?

Avoiding Potential Interference due to Proximity

Are units too near each other?

Avoiding Potential Interference due to Proximity

3000 iterations, max min distance:

▶ Different to mediation *direct*, *indirect* effects

Hudgens and Halloran (2008) (on Ali et al. (2005))

► Here,

- ► Here,
 - ightharpoonup direct: from treating i

- ► Here,
 - ightharpoonup direct: from treating i
 - ▶ indirect: from treating $j \neq i$

- ► Here,
 - ightharpoonup direct: from treating i
 - ▶ indirect: from treating $j \neq i$

Hudgens and Halloran (2008) (on Ali et al. (2005))

- ► Here,
 - ightharpoonup direct: from treating i
 - indirect: from treating $j \neq i$

Think of this as different problem

► (Though, "effect of treatment through others" works?)

Hudgens and Halloran (2008) (on Ali et al. (2005))

- ► Here,
 - ightharpoonup direct: from treating i
 - indirect: from treating $j \neq i$

Think of this as different problem

- ► (Though, "effect of treatment through others" works?)
- ▶ (Common concept, but not really a mediating *variable*)

Hudgens and Halloran (2008) (on Ali et al. (2005))

Table 1. Risk of cholera in recipients of killed oral cholera vaccines or placebo, by level of coverage of the bari during one year of follow-up, based on data from Ali et al. (2005)

Level of vaccine coverage			Vaccine recip	pients	Placebo recipients		
	Target population	Total	Cases	Risk per 1,000 population	Total	Cases	Risk per 1,000 population
>50%	22,394	12,541	16	1.27	6,082	9	1.47
41-50%	24,159	11,513	26	2.26	5,801	27	4.65
36-40%	24,583	10,772	17	1.58	5,503	26	4.72
28-35%	25,059	8,883	22	2.48	4,429	26	5.87
<28%	24,954	5,627	15	2.66	2,852	20	7.01

ightharpoonup Consider > 50% as A, < 28% as B

Table 1. Risk of cholera in recipients of killed oral cholera vaccines or placebo, by level of coverage of the bari during one year of follow-up, based on data from Ali et al. (2005)

Level of vaccine coverage			Vaccine recipients		Placebo recipients		
	Target population	Total	Cases	Risk per 1,000 population	Total	Cases	Risk per 1,000 population
>50%	22,394	12,541	16	1.27	6,082	9	1.47
41-50%	24,159	11,513	26	2.26	5,801	27	4.65
36-40%	24,583	10,772	17	1.58	5,503	26	4.72
28-35%	25,059	8,883	22	2.48	4,429	26	5.87
<28%	24,954	5,627	15	2.66	2,852	20	7.01

- ightharpoonup Consider > 50% as A, < 28% as B
- ▶ Direct effect in B: 7.01 2.66 = 4.35

Table 1. Risk of cholera in recipients of killed oral cholera vaccines or placebo, by level of coverage of the bari during one year of follow-up, based on data from Ali et al. (2005)

Level of vaccine coverage			Vaccine recipients		Placebo recipients		
	Target population	Total	Cases	Risk per 1,000 population	Total	Cases	Risk per 1,000 population
>50%	22,394	12,541	16	1.27	6,082	9	1.47
41-50%	24,159	11,513	26	2.26	5,801	27	4.65
36-40%	24,583	10,772	17	1.58	5,503	26	4.72
28-35%	25,059	8,883	22	2.48	4,429	26	5.87
<28%	24,954	5,627	15	2.66	2,852	20	7.01

- ightharpoonup Consider > 50% as A, < 28% as B
- ▶ Direct effect in B: 7.01 2.66 = 4.35
- ▶ Direct effect in A: 1.47 1.27 = 0.2

Table 1. Risk of cholera in recipients of killed oral cholera vaccines or placebo, by level of coverage of the bari during one year of follow-up, based on data from Ali et al. (2005)

Level of vaccine coverage		Vaccine recipients		Placebo recipients			
	Target population	Total	Cases	Risk per 1,000 population	Total	Cases	Risk per 1,000 population
>50%	22,394	12,541	16	1.27	6,082	9	1.47
41-50%	24,159	11,513	26	2.26	5,801	27	4.65
36-40%	24,583	10,772	17	1.58	5,503	26	4.72
28-35%	25,059	8,883	22	2.48	4,429	26	5.87
<28%	24,954	5,627	15	2.66	2,852	20	7.01

- ightharpoonup Consider > 50% as A, < 28% as B
- ▶ Direct effect in B: 7.01 2.66 = 4.35
- ▶ Direct effect in A: 1.47 1.27 = 0.2
- ▶ Indirect effect on unvaccinated: 7.01 1.47 = 5.54

Table 1. Risk of cholera in recipients of killed oral cholera vaccines or placebo, by level of coverage of the bari during one year of follow-up, based on data from Ali et al. (2005)

Level of vaccine coverage			Vaccine recipients		Placebo recipients		
	Target population	Total	Cases	Risk per 1,000 population	Total	Cases	Risk per 1,000 population
>50%	22,394	12,541	16	1.27	6,082	9	1.47
41-50%	24,159	11,513	26	2.26	5,801	27	4.65
36-40%	24,583	10,772	17	1.58	5,503	26	4.72
28-35%	25,059	8,883	22	2.48	4,429	26	5.87
<28%	24,954	5,627	15	2.66	2,852	20	7.01

- ightharpoonup Consider > 50% as A, < 28% as B
- ▶ Direct effect in B: 7.01 2.66 = 4.35
- ▶ Direct effect in A: 1.47 1.27 = 0.2
- ▶ Indirect effect on unvaccinated: 7.01 1.47 = 5.54
- ▶ Total effect: 7.01 1.27 = 5.74

Table 1. Risk of cholera in recipients of killed oral cholera vaccines or placebo, by level of coverage of the bari during one year of follow-up, based on data from Ali et al. (2005)

Level of vaccine coverage			Vaccine recipients		Placebo recipients		
	Target population	Total	Cases	Risk per 1,000 population	Total	Cases	Risk per 1,000 population
>50%	22,394	12,541	16	1.27	6,082	9	1.47
41-50%	24,159	11,513	26	2.26	5,801	27	4.65
36-40%	24,583	10,772	17	1.58	5,503	26	4.72
28-35%	25,059	8,883	22	2.48	4,429	26	5.87
<28%	24,954	5,627	15	2.66	2,852	20	7.01

- ightharpoonup Consider > 50% as A, < 28% as B
- ▶ Direct effect in B: 7.01 2.66 = 4.35
- ▶ Direct effect in A: 1.47 1.27 = 0.2
- ▶ Indirect effect on unvaccinated: 7.01 1.47 = 5.54
- ▶ Total effect: 7.01 1.27 = 5.74
- \triangleright Overall effect: 35/8479 25/18623 = 2.79/1000

Hudgens and Halloran (2008) (on Ali et al. (2005))

Designing the randomized experiment:

Table 2. Illustrative example of a two-stage randomized placebo-controlled vaccine trial based on data from Ali et al. (2005)

	Group	Vaccine re	ecipients $(Z_{ij} = 1)$	Placebo recipients $(Z_{ij} = 0)$		
Group i	assignment S_i	$ \begin{array}{c} \text{Total} \\ \sum_{j} Z_{ij} \end{array} $	Cases $\sum_{j} Z_{ij} Y_{ij}(\mathbf{Z}_i)$	Total $\sum_{j} (1 - Z_{ij})$	Cases $\sum_{j} (1 - Z_{ij}) Y_{ij}(\mathbf{Z}_{i})$	
1	1	12,541	16	12,541	18	
2	1	11,513	26	11,513	54	
3	0	10,772	17	25,134	119	
4	0	8,883	22	20,727	122	
5	0	5,627	15	13,130	92	

NOTE: Group assignment $S_i = 1$ (0) corresponds to 50% (30%) vaccine coverage.

Hudgens and Halloran (2008) (on Ali 2005)

Table 3. Estimates of population average direct, indirect, total, and overall effects per 1,000 individuals per year for data in Table 2

Effect	Parameter	Estimate	Estimated variance
Direct	$\overline{\mathit{CE}}^D(\psi)$	1.30	.856
Direct	$\overline{\mathit{CE}}^D(\phi)$	3.64	.178
Indirect	$\overline{CE}^{I}(\phi,\psi)$	2.81	3.079
Total	$\overline{CE}^{T}(\phi,\psi)$	4.11	.672
Overall	$\overline{\mathit{CE}}^O(\phi,\psi)$	2.37	1.430

 $\triangleright \psi$: 50% coverage

 $ightharpoonup \phi$: 30% coverage

Ichino and Schündeln (2012) in Ghana Design:

▶ Blocks of 3 constituencies, select 1 for Tr, 2 for Co

Ichino and Schündeln (2012) in Ghana

- ▶ Blocks of 3 constituencies, select 1 for Tr, 2 for Co
- ➤ Treatment constituencies: send observers to 25% of areas

Ichino and Schündeln (2012) in Ghana

- ▶ Blocks of 3 constituencies, select 1 for Tr, 2 for Co
- ➤ Treatment constituencies: send observers to 25% of areas
- ▶ So, areas can be

Ichino and Schündeln (2012) in Ghana

- ▶ Blocks of 3 constituencies, select 1 for Tr, 2 for Co
- ➤ Treatment constituencies: send observers to 25% of areas
- ▶ So, areas can be
 - ► Tr in Tr constituency

Ichino and Schündeln (2012) in Ghana

- ▶ Blocks of 3 constituencies, select 1 for Tr, 2 for Co
- ➤ Treatment constituencies: send observers to 25% of areas
- ▶ So, areas can be
 - ► Tr in Tr constituency
 - ► Co in Tr constituency

Ichino and Schündeln (2012) in Ghana

- ▶ Blocks of 3 constituencies, select 1 for Tr, 2 for Co
- ➤ Treatment constituencies: send observers to 25% of areas
- ▶ So, areas can be
 - ► Tr in Tr constituency
 - ► Co in Tr constituency
 - ► Co in Co constituency

Ichino and Schündeln (2012) in Ghana

- ▶ Blocks of 3 constituencies, select 1 for Tr, 2 for Co
- ➤ Treatment constituencies: send observers to 25% of areas
- ▶ So, areas can be
 - ► Tr in Tr constituency
 - ► Co in Tr constituency
 - ► Co in Co constituency
- ▶ Where election observers are sent, smaller registration irregularities

Ichino and Schündeln (2012) in Ghana

- ▶ Blocks of 3 constituencies, select 1 for Tr, 2 for Co
- ➤ Treatment constituencies: send observers to 25% of areas
- ▶ So, areas can be
 - ► Tr in Tr constituency
 - ► Co in Tr constituency
 - ► Co in Co constituency
- ▶ Where election observers are sent, smaller registration irregularities
- ▶ In nearby control areas, *larger* irregularities

Sobel (2006)

If interference, diff-in-means estimator (or regression coef)

- ▶ is **not** unbiased for ATE
- ▶ is difference:

(ITT for Tr group) – (indirect/spillover effect on Co group)

► Randomization inference gives valid coverage, even if interference

► Randomization inference gives valid coverage, even if interference

Null Hypotheses:

▶ No primary effect: $H_0: Y_{biz} = Y_{biz'}$

 Randomization inference gives valid coverage, even if interference

- ▶ No primary effect: $H_0: Y_{biz} = Y_{biz'}$
 - ightharpoonup no effect of treatment itself on i

 Randomization inference gives valid coverage, even if interference

- ▶ No primary effect: $H_0: Y_{biz} = Y_{biz'}$
 - \triangleright no effect of treatment itself on i
- No effect: $H_0: Y_{biz} = \widetilde{Y}_{bi}$

 Randomization inference gives valid coverage, even if interference

- ▶ No primary effect: $H_0: Y_{biz} = Y_{biz'}$
 - \triangleright no effect of treatment itself on i
- No effect: $H_0: Y_{biz} = \widetilde{Y}_{bi}$
 - Outcome for i is same as if assigned Tr, but Tr withheld from *everyone* ("uniformity")

 Randomization inference gives valid coverage, even if interference

- ▶ No primary effect: $H_0: Y_{biz} = Y_{biz'}$
 - \triangleright no effect of treatment itself on i
- No effect: $H_0: Y_{biz} = \widetilde{Y}_{bi}$
 - Outcome for i is same as if assigned Tr, but Tr withheld from *everyone* ("uniformity")

 Randomization inference gives valid coverage, even if interference

Null Hypotheses:

- ▶ No primary effect: $H_0: Y_{biz} = Y_{biz'}$
 - \triangleright no effect of treatment itself on i
- No effect: $H_0: Y_{biz} = \widetilde{Y}_{bi}$
 - Outcome for i is same as if assigned Tr, but Tr withheld from *everyone* ("uniformity")

Effect, but no Primary Effect:

▶ if exposing block gets everyone sick, then no primary effect of *i* getting directly exposed

 Randomization inference gives valid coverage, even if interference

Null Hypotheses:

- ▶ No primary effect: $H_0: Y_{biz} = Y_{biz'}$
 - \triangleright no effect of treatment itself on i
- No effect: $H_0: Y_{biz} = \widetilde{Y}_{bi}$
 - Outcome for i is same as if assigned Tr, but Tr withheld from *everyone* ("uniformity")

Effect, but no Primary Effect:

- ▶ if exposing block gets everyone sick, then no primary effect of *i* getting directly exposed
- ▶ if news raises anxiety in HH, irrelevant if I saw news

Next: Causal Forests

References I

- Ali, Mohammad, Michael Emch, Lorenz Von Seidlein, Mohammad Yunus, David A. Sack, Malla Rao, Jan Holmgren, and John D. Clemens. 2005. "Herd Immunity Conferred by Killed Oral Cholera Vaccines in Bangladesh: A Reanalysis." The Lancet 366 (9479): 44–49.
- Gerber, Alan S., and Donald P. Green. 2012. Field Experiments: Design, Analysis, and Interpretation. New York, NY: WW Norton.
- Hudgens, Michael G., and M. Elizabeth Halloran. 2008. "Toward Causal Inference With Interference." Journal of the American Statistical Association 103 (482): 832–42.
- Ichino, Nahomi, and Matthias Schündeln. 2012. "Deterring or Displacing Electoral Irregularities? Spillover Effects of Observers in a Randomized Field Experiment in Ghana." The Journal of Politics 74 (1): 292–307.
- Linday, Linda A., J. A. Tsiouris, Ira L. Cohen, Richard Shindledecker, and Robert DeCresce. 2001. "Famotidine Treatment of Children with Autistic Spectrum Disorders: Pilot Research Using Single Subject Research Design." Journal of Neural Transmission 108: 593–611.
- Rosenbaum, Paul R. 2007. "Interference Between Units in Randomized Experiments." *Journal of the American Statistical Association* 102 (477): 191–200.

References II

- Rubin, Donald B. 1978. "Multiple Imputations in Sample Surveys A Phenomenological Bayesian Approach to Nonresponse."
- Sinclair, Betsy, Margaret McConnell, and Donald P. Green. 2012. "Detecting Spillover Effects: Design and Analysis of Multilevel Experiments." *American Journal of Political Science* 56 (4): 1055–69.
- Sobel, Michael E. 2006. "What Do Randomized Studies of Housing Mobility Demonstrate?: Causal Inference in the Face of Interference." *Journal of the American Statistical Association* 101 (476): 1398–1407.