Kryształy

IX OIG — Zawody indywidualne, etap I. Dostępna pamięć: 64 MB.

17 XI 2014

Anastazja fascynuje się krystalografią. Aktualnie pochłonięta jest badaniem prostokątnej siatki atomów o wymiarach $N \times M$ (N wierszy po M atomów każdy). Atomy oznaczone są wielkimi literami alfabetu angielskiego. Układ czterech atomów, tworzących kwadrat 2×2 nazwiemy pierwszą warstwą kryształu o środku w tym układzie. Drugą warstwę tego kryształu tworzą wszystkie atomy styczne bokiem z atomami pierwszej warstwy. Analogicznie definiujemy trzecią warstwę, czwartą i tak dalej. Dla jasności:

OOAB	000	5433456
OBII	A00	4322345
AIAA	IBO	32 <mark>11</mark> 234
BIAA	IAO	32 <mark>11</mark> 234
OAII	B00	4322345
OOBA	.000	5433456

Powyżej mamy siatkę atomów o wymiarach 6×7 . Na czerwono zaznaczony jest układ będący środkiem rozpatrywanego kryształu. Po prawej stronie zaznaczone są warstwy kryształu – cyfra odpowiada numerowi warstwy. Powiemy, że warstwa jest spójna, jeżeli "nie brakuje" w niej żadnych atomów i wszystkie tworzące ją atomy są tego samego typu. W powyższym przykładzie spójne są warstwy 1 oraz 2. Warstwa 3 jest niespójna, gdyż składa się z atomów różnych typów. Warstwy 4, 5 i 6 są niespójne, gdyż brakuje w nich atomów. Powiemy, że kryształ ma rozmiar K, jeżeli wszystkie jego warstwy od 1 do K są spójne, ale warstwa K+1 jest już niespójna. W powyższym przykładzie kryształ ma promień 2.

Dla każdego układu atomów 2×2 Anastazja chciałaby poznać promień kryształu o środku w tym układzie. Pomóżcie jej wykonać to zadanie!

Wejście

W pierwszym wierszu standardowego wejścia znajdują się liczby całkowite N, M ($2 \le N, M \le 10^3$). W każdym z kolejnych N wierszy znajduje się napis o długości M złożony z wielkich liter alfabetu angielskiego.

Wyjście

W każdym z N-1 wierszy standardowego wyjścia należy wypisać M-1 liczb całkowitych. Liczba w i-tym wierszu i j-tej kolumnie powinna oznaczać promień kryształu o środku w układzie atomów tworzących kwadrat 2×2 , którego lewy górny róg znajduje się w i-tym wierszu i j-tej kolumnie siatki.

Kryształy

Przykłady

Wejście:	Wejście:	Wejście:	
6 7	4 4	2 3	
00AB000	AAAA	ABC	
OBIIAOO	AAAA	DEF	
AIAAIBO	AAAA		
BIAAIAO	AAAA		
OAIIBOO			
00BA000			
Wyjście:	Wyjście:	Wyjście:	
0 0 0 0 0 1	1 1 1	0 0	
0 0 0 0 0 0	1 2 1		
0 0 2 0 0 0	1 1 1		
0 0 0 0 0 0			
0 0 0 0 0 1			

Kryształy

