Predicting the need for medical imaging on patients' information

🛚 Group 2: Keyu Chen, Yinuo Chen, Rongqian Zhang 💻

Dataset

- Ambulatory Health Care Data
- The National Hospital Ambulatory Medical Care Survey (NHAMCS)
- Patient characteristics: age, sex, race, and ethnicity, and so on
- Visiting characteristics: temperature, heart rate, systolic blood pressure, pulse oximetry, and so on
- **Text** characteristics : reasons for visit and possible causes of disease
- Response variable : ANYIMAGE (X-ray and CT scan)

Source: https://www.cdc.gov/nchs/ahcd/index.htm

Question

Build a model to predict whether patients need any medical imaging

EDA - Response

- 2012 2016: 27,665 observations
- Positive : Negative = 1 : 2.3

EDA - Structured Data

- Some variables have significantly different distribution in two groups
- Ex: Pain scale, age

EDA - Text Data

- Data cleaning
 - Remove urls, punctuations, single letter
 - Remove stop-words
 - Lowercase
- Reasons for visiting
 - Most common words
 - Word cloud

word	n		
pain	9315		
fever	5046		
sore	4279		
unspecifi	4132		
cough	3979		
ach	2941		

EDA - Text Data

- Possible causes of disease
 - Most common words
 - Word cloud

word	n
NA	19574
fall	3444
activ	1879
oth	1713
involv	1562
occurr	1535

Model - structured variables

Multilayer perceptron

Source: <u>TensorFlow - Multi-Layer Perceptron Learning</u>

Model - text variable

- Word embedding GloVe
 - Global Vectors for Word Representation
 - Based on word-word co-occurrence matrix
 - Similar words will have similar representation

The cat sat on the mat. The dog sat on the mat.

co-occurrence matrix with a window size of 1.

	the	cat	sat	on	mat	dog
the	0	1	0	2	2	1
cat	1	0	1	0	0	0
sat	0	1	0	2	0	1
on	2	0	2	0	0	0
mat	2	0	0	0	0	0
dog	1	0	1	0	0	0

Source: https://nlp.stanford.edu/projects/glove/

Model - text variable

- LSTM (Long short-term memory)
 - Similar to the way human read sentence
 - LSTM read words sequentially
 - At each time stamp, it uses current word and the activation from last timestamp as input

Source: https://medium.com/datathings/the-magic-of-lstm-neural-networks-6775e8b540cd

Model - mixed variables

- Hybrid neural network
 - Concatenating MLP and LSTM

Results

- Evaluation
- AUC (Area Under The Curve)

$$TPR = \frac{TP}{TP + FN}$$
 $FPR = \frac{FP}{FP + TN}$

The value of the shold of the shold

 $\textbf{Source:}\ \underline{\text{https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc}$

Thank you!