Homework #3-4 Simplifying Radicals

1.) Simplify each of the following square roots.

(a)
$$\sqrt{18x^4}$$
 $\sqrt{\underline{9\cdot 2\cdot \underline{x}^4}}$

(b)
$$\sqrt{200x^5y^3}$$

$$\sqrt{\underline{100} \cdot 2 \cdot \underline{x}^4 \cdot x \cdot \underline{y}^4 \cdot y}$$

$$10x^2y\sqrt{a \times y}$$

(c)
$$\sqrt{147x^9y^4}$$

$$\sqrt{\frac{49\cdot 3\cdot x^{\$}\cdot x\cdot y^4}{7x^4y^2\sqrt{3}x}}$$

(d)
$$\sqrt{75x^{16}y^{11}}$$

$$\sqrt{25 \cdot 3 \cdot x^{16} y^{10}}$$

$$5 x^{8} y^{10} \sqrt{3y}$$

(e)
$$3x^2y\sqrt{98x^5y^8}$$

 $3x^2y\sqrt{\frac{49\cdot 2\cdot x^4\cdot x\cdot y^8}{2x^2y^4\sqrt{2x}}}$
 $3x^2y7x^2y^4\sqrt{2x}$
 $3x^4y^5\sqrt{2x}$

2.) Simplify each of the following higher order roots.

(c)
$$\sqrt[4]{48x^{10}y^5}$$

 $\sqrt[4]{\underline{6}\cdot 3} \cdot \underline{\times}^{8} \times^{2} \cdot \underline{y}^{4} \cdot y$
 $\sqrt[2]{2} \times \sqrt[2]{3} \times \sqrt[2]{3} \times \sqrt[2]{3}$

(d)
$$\sqrt[5]{64x^{12}y^{15}}$$

$$\sqrt[5]{\underline{3a} \cdot 2 \cdot \underline{x}^{10} \times ^2 \underline{y}^{15}}$$

$$2 \times \sqrt[5]{3} \sqrt[3]{2} \times \sqrt[3]{2}$$

3.) The radical expression $\sqrt{50x^5y^3}$ can be rewritten equivalently as

$$(1) \ 25xy\sqrt{2xy}$$

$$(3) 5x^2y\sqrt{2xy}$$

(2)
$$5xy\sqrt{xy}$$

$$(4) 10x^2y\sqrt{5xy}$$

$$\sqrt{25 \cdot 2 \cdot \cancel{x}^{\cancel{1}} \times \cancel{y}^{\cancel{2}} \cdot \cancel{y}}$$

$$5 \times^{2} y \sqrt{2 \times y}$$

4.) What is the domain of the function $f(x) = \sqrt{x-9}$?

Neither X nor Y repeat

5.) Which of the following tables illustrates a relationship in which y is a one-to-one function of x?

(1)	x	y
	-2	-1
	0	-3
	2	-1
	4	11
	6	2

2)	\boldsymbol{x}	у
	-2	-8
	-1	-1
	0	0
	1	1
i	2	8

) [x	y
	-2	-5
	-1	-4
	0	-1
	-1	7
	-2	5

6		
ł)	X	y
	-2	11
	-1	-4
	0	-5
	1	-4
	2	11

6.) Given the two functions, f(x) = 2x - 4 and $g(x) = x^2 + 7$. Calculate the average rate of change for both functions over the following intervals.

(a)
$$0 \le x \le 4$$

 $f(x)$
(b) $6 \le x \le 9$
 $f(x)$
(0, -4) $\frac{4 - (-4)}{4 - 0} = \lambda$
(0,7) $\frac{23 - 7}{4 - 0} = \lambda$
(0,8) $\frac{14 - 8}{9 - 6} = \lambda$
(9, 14) $\frac{88 - 43}{9 - 6} = \lambda$

Which function has the same average rate of change for both intervals? Explain why this is.

f(x) because it is a linear function, which has a constant rate of change!

- 7.) Given the function $f(x) = \sqrt{2x 4}$:
 - a) Graph f(x) on the axes.
 - b) Find the inverse of f(x).

$$(x)^{2} = (3y - 4)^{2}$$

$$x^{2} = 3y - 4$$

$$x^{2} - 4 = 3x$$

$$x^{2} - 4 = 3x$$

$$\frac{1}{2}x^{2}-3=y$$
 $f^{-1}(x)=\frac{1}{2}x^{2}-3$

