Firms and Farms

The Local Effects of Farm Income on Firms' Demand

Gabriella Santangelo

Presented by: Sai Zhang

January 18, 2023

Outline

- Introductio
- 2 Model
- 3 Data
- 4 Empirical Strategy and Results
- 5 Discussion

Introduction •000

0000

■ rural labor markets in developing countries

Introduction 0000

- rural labor markets in developing countries
- agricultural development in the growth of non-farm sectors

Introduction 0000

- rural labor markets in developing countries
- agricultural development in the growth of non-farm sectors

Introduction 0000

- rural labor markets in developing countries
- agricultural development in the growth of non-farm sectors
 - ↑ increasing demand for manufacturing goods

Introduction 0000

- rural labor markets in developing countries
- agricultural development in the growth of non-farm sectors
 - increasing demand for manufacturing goods
 - increasing cost of labor, crowding out non-farm production

- rural labor markets in developing countries
- agricultural development in the growth of non-farm sectors
 - increasing demand for manufacturing goods
 - ↓ increasing cost of labor, crowding out non-farm production
- lack of credible empirical test of the general equilibrium effects

Introduction 0000

- rural labor markets in developing countries
- agricultural development in the growth of non-farm sectors
 - increasing demand for manufacturing goods
 - ↓ increasing cost of labor, crowding out non-farm production
- lack of credible empirical test of the general equilibrium effects

What's the goal of this paper?

Introduction

- rural labor markets in developing countries
- agricultural development in the growth of non-farm sectors
 - increasing demand for manufacturing goods
 - ↓ increasing cost of labor, crowding out non-farm production
- lack of credible empirical test of the general equilibrium effects

What's the goal of this paper?

Thoerv

model how firms are affected by agricultural productivity shock

Introduction

- rural labor markets in developing countries
- agricultural development in the growth of non-farm sectors
 - increasing demand for manufacturing goods
 - ↓ increasing cost of labor, crowding out non-farm production
- lack of credible empirical test of the general equilibrium effects

What's the goal of this paper?

Thoerv

model how firms are affected by agricultural productivity shock

Empirical Test

test model predictions with quasi-experimental settings Introduction 0000

Roadmap: Theory and Tests

Thoery

model how firms are affected by agricultural productivity shock

Empirical Test

test model predictions with quasi-experimental settings

Thoery

model how firms are affected by agricultural productivity shock

Empirical Test

test model predictions with quasi-experimental settings

3 sectors

Introduction 0000

- agriculture
- spatially **tradable** non-farm
- non-tradable non-farm

Roadmap: Theory and Tests

Thoery

model how firms are affected by agricultural productivity shock

Empirical Test

test model predictions with quasi-experimental settings

3 sectors

Introduction 0000

- agriculture (\(\epsilon\)
- spatially **tradable** (\downarrow) non-farm
- non-tradable $(\downarrow\uparrow)$ non-farm

Thoery

model how firms are affected by agricultural productivity shock

3 sectors

- agriculture (\(\epsilon\)
- spatially **tradable** (\downarrow) non-farm
- non-tradable (↓↑) non-farm

Empirical Test

test model predictions with quasi-experimental settings

2 settings

- productivity shock: rainfall realizations
- wage-floor policy: NREGA program

Roadmap: Theory and Tests

Thoery

model how firms are affected by agricultural productivity shock

3 sectors

- agriculture (\(\epsilon\)
- spatially **tradable** (\downarrow) non-farm
- non-tradable (↓↑) non-farm

Empirical Test

test model predictions with quasi-experimental settings

2 settings

- exogenous productivity shock: rainfall realizations
- staggered wage-floor policy: NREGA program

<u>Literature</u>

Literature

Introduction 0000

> agricultural productivity and the development of non-farm sectors: no convincing causal inference

Bustos et al. (2016) and Hornbeck and Keskin (2015), Marden et al. (2016)

l iterature

Introduction

- agricultural productivity and the development of non-farm sectors:
 no convincing causal inference
 Bustos et al. (2016) and Hornbeck and Keskin (2015), Marden et al. (2016)
- impact evaluation of NREGA: <u>no GE implications on the industrial sector</u> Berg et al. (2012) and Imbert and Papp (2015), Zimmermann (2020)

Literature

- agricultural productivity and the development of non-farm sectors: no convincing causal inference Bustos et al. (2016) and Hornbeck and Keskin (2015), Marden et al. (2016)
- impact evaluation of NREGA: no GE implications on the industrial sector Berg et al. (2012) and Imbert and Papp (2015), Zimmermann (2020)

Literature

Introduction 0000

- agricultural productivity and the development of non-farm sectors: no convincing causal inference Bustos et al. (2016) and Hornbeck and Keskin (2015), Marden et al. (2016)
- impact evaluation of NREGA: no GE implications on the industrial sector Berg et al. (2012) and Imbert and Papp (2015), Zimmermann (2020)
- productivity shocks in LICs
- trade and volatility
- local economic growth; sectoral shocks and macro fluctuations

Setup

- good market:
 - 3 sectors: A (agricultural), M (non-farm tradable), S (non-farm non-tradable)
 - production with labor $Y_j = heta_j n_j^{lpha}$: agricultural productivity $heta_A$
 - price: p_A, p_M (price-taking, exogenous), p_S endogenous

Setup

■ good market:

- 3 sectors: A (agricultural), M (non-farm tradable), S (non-farm non-tradable)
- production with labor $Y_i = \theta_i n_i^{\alpha}$: agricultural productivity θ_A
- price: p_A, p_M (price-taking, exogenous), p_S endogenous

labor market:

- mobile across sectors, immobile across districts (at least partially inelastic supply)
- wage w

Prediction: Agricultural Labor Market A

Positive productivity shock $\theta_A \uparrow$

Prediction: Agricultural Labor Market A

Positive productivity shock $\theta_A \uparrow$

Prediction: Agricultural Labor Market A

Positive productivity shock $\theta_A \uparrow$

essentially, a positive demand shock, increasing algricultural income

Prediction: Local Tradable Non-farm Labor Market M

Positive productivity shock $\theta_A \uparrow$, leading to $w, n_A \uparrow$

Prediction: Local Tradable Non-farm Labor Market M

Positive productivity shock $\theta_A \uparrow$, leading to $w, n_A \uparrow$

labor supply shrinks to clear market

$\overline{\mathsf{Prediction: Local\ Non-tradable\ Non-farm\ Labor\ Market\ S}}$

Positive productivity shock $\theta_A \uparrow$, leading to $w \uparrow$ and income \uparrow

$\overline{\text{Prediction: Local Non-tradable Non-farm Labor Market } S$

Positive productivity shock $\theta_A \uparrow$, leading to $w \uparrow$ and income \uparrow

Prediction: Local Non-tradable Non-farm Labor Market S

Positive productivity shock $\theta_A \uparrow$, leading to $w \uparrow$ and income \uparrow

Prediction: Agricultural Productivity Shock

$$w = \frac{\alpha \left[(p_A \theta_A)^{\frac{1}{1-\alpha}} + C(p_M \theta_M)^{\frac{1}{1-\alpha}} \right]^{1-\alpha}}{(1-\gamma)^{1-\alpha}} \qquad \partial w / \partial \theta_A > 0$$

$$n_j = \frac{(1-\gamma)(p_j \theta_j)^{\frac{1}{1-\alpha}}}{(p_A \theta_A)^{\frac{1}{1-\alpha}} + C(p_M \theta_M)^{\frac{1}{1-\alpha}}}, \ j \in \{A, M\} \qquad \partial n_A / \partial \theta_A > 0, \partial n_M / \partial \theta_A < 0$$

$$n_S = \frac{\gamma \left[(p_A \theta_A)^{\frac{1}{1-\alpha}} + \alpha(p_M \theta_M)^{\frac{1}{1-\alpha}} \right]}{(p_A \theta_A)^{\frac{1}{1-\alpha}} + C(p_M \theta_M)^{\frac{1}{1-\alpha}}} \qquad \partial n_S / \partial \theta_A > 0$$

$$p_S = \frac{1}{\theta_S} \left[\frac{\gamma}{1-\gamma} \right]^{1-\alpha} \left[(p_A \theta_A)^{\frac{1}{1-\alpha}} + \alpha(p_M \theta_M)^{\frac{1}{1-\alpha}} \right]^{1-\alpha} \qquad \partial p_S / \partial \theta_A > 0$$

$$I = \pi_A + \pi_S + w \qquad \partial I / \partial \theta_A > 0$$

The Theory of NREGA

Reality

Theory

The Theory of NREGA

Reality

■ all housholds, at state-level minimum wage

Theory

■ wage floor: $w \geq w^N, \forall \theta_A \Rightarrow \exists \bar{\theta}_A^N$

Reality

- all housholds, at state-level minimum wage
- 100 days of public work per year

Theory

■ wage floor:

 $w \geq w^N, \forall \theta_A \Rightarrow \exists \bar{\theta}_A^N$

 \blacksquare NREGA labor demand at w^N is infinite

Reality

- all housholds, at state-level minimum wage
- 100 days of public work per year

Theory

- wage floor:
 - $\overline{w} \geq \overline{w^N}, \forall \theta_A \Rightarrow \exists \bar{\theta}_A^N$
- \blacksquare NREGA labor demand at w^N is infinite

The core insight: for some bad productivity realizations. NREGA increases equilibrium wage

Model 000000000

The Theory of NREGA

labor market clearing:

$$n_N + n_A^N + n_M^N + n_A^S = 1$$

Prediction: The Impact of NREGA and Productivity Shock

- $\blacksquare \partial n_N/\partial \theta_A < 0$: NREGA take-up is counter-cyclical
- ullet $|\epsilon_{i,\theta_A}^N|<|\epsilon_{i,\theta_A}|, orall i\in\{w,I,c_A,c_M,c_S,n_M,n_S\}$: NREGA is a stabilizer

Prediction: The Impact of NREGA and Productivity Shock

- $\blacksquare \partial n_N/\partial \theta_A < 0$: NREGA take-up is counter-cyclical
- $\bullet |\epsilon_{i\,\theta_A}^N| < |\epsilon_{i,\theta_A}|, \forall i \in \{w, I, c_A, c_M, c_S, n_M, n_S\}$: NREGA is a stabilizer
- \blacksquare with NREGA, also: w increases, tradable firms shrink, non-tradable sector grows

Prediction: The Impact of NREGA and Productivity Shock

- $\blacksquare \partial n_N/\partial \theta_A < 0$: NREGA take-up is counter-cyclical
- $\qquad |\epsilon^N_{i,\theta_A}| < |\epsilon_{i,\theta_A}|, \forall i \in \{w,I,c_A,c_M,c_S,n_M,n_S\}: \text{ NREGA is a stabilizer }$
- lacktriangle with NREGA, also: w increases, tradable firms shrink, non-tradable sector grows

Together with:

- $\blacksquare w, n_A, n_S, p_S, I$ are cyclical $(\partial/\partial \theta_A > 0)$
- \blacksquare n_M is counter-cyclical $(\partial/\partial\theta_A<0)$

Data

- Non-farm sectors: Annual Survey of Industries (ASI)

 10 waves from 2000-2001 to 2009-2010 fiscal years, firm-level data
- Consumption: National Sample Survey (NSS) Consumer Expenditure Survey
 7 waves from 2003-2004 to 2011-2012
- Wages and Employment: NSS Employment and Unemployment Survey
- Agricultural: Ministry of Agriculture unbalanced panel (2000-2010, crop-by-year) and other district-level measures

Data: Treatment

■ Rainfall: Topical Rainfall Measuring Mission (TRMM) daily rainfall measures, 0.25-by-0.25 degree grid-cell size aggregate to district-year total monsoon rainfall (Jun. to Sep.) nonlinearlity as Jayachandran (2006)

Data: Treatment

- Rainfall: Topical Rainfall Measuring Mission (TRMM) daily rainfall measures, 0.25-by-0.25 degree grid-cell size aggregate to district-year total monsoon rainfall (Jun. to Sep.) nonlinearlity as Jayachandran (2006)
- NREGA: NSS Employment and Unemployment Survey compared with state-level statutory NREGA wages from administrative sources

Variables: Industry

■ traded vs. non-traded classifier:

- Holmes and Stevens (2014) Commodity Flow Survey (CFS) industry classification by transportation cost
- Mian and Sufi (2014) and Kothari (2014):
 - · geographical concentration of industrial production across counties
 - · degree of international trade

Variables: Industry

- traded vs. non-traded classifier:
 - Holmes and Stevens (2014) Commodity Flow Survey (CFS) industry classification by transportation cost
 - Mian and Sufi (2014) and Kothari (2014):
 - · geographical concentration of industrial production across counties
 - · degree of international trade
- agricultural linkage classifier: upstream/downstream/non-linked industries of agriculture (MOSPI, 2004-2005)

Variables: Industry

- traded vs. non-traded classifier:
 - Holmes and Stevens (2014) Commodity Flow Survey (CFS) industry classification by transportation cost
 - Mian and Sufi (2014) and Kothari (2014):
 - · geographical concentration of industrial production across counties
 - · degree of international trade
- <u>agricultural linkage classifier</u>: upstream/downstream/non-linked industries of agriculture (MOSPI, 2004-2005)
- financial performance indicator:
 - capital intensity
 - dependence on external finance

- firms' production: value of total output
- firms' employment: total number of works and total number of man-days employed
- total compensation paid ■ daily wage: number of man-days

Rainfall and Agricultural Productivity

Prediction: $\beta > 0$

$$\log(y_{d,p,t}) = \beta \log(R_{d,p,t}) + \delta_d + \tau_{p,t} + \epsilon_{d,p,t}$$

where

- $\blacksquare y_{d,p,t}$: district crop yields
- \blacksquare d indexes district, p indexes NREGA phrases, t indexes time
- \bullet $\epsilon_{d,p,t}$: district-clustered (robust to region-year clustering)

Prediction: $\beta > 0$

$$\log(y_{d,p,t}) = \beta \log(R_{d,p,t}) + \delta_d + \tau_{p,t} + \epsilon_{d,p,t}$$

	$\log(Cr$	op Yield)
	(1)	(2)
$\log(Rainfall)$	0.178***	0.192***
	(0.020)	(0.019)
$\log(Rainfall) \times Share$ Irrigated Land		-0.150^{***}
		(0.017)
N	6763	6469
FEs: district, year	Yes	Yes

Rainfall and Agricultural Productivity

Prediction:
$$\beta > 0$$

$$\log(y_{d,p,t}) = \beta \log(R_{d,p,t}) + \delta_d + \tau_{p,t} + \epsilon_{d,p,t}$$

(1)	op Yield) (2)
0.178***	0.192***
(0.020)	(0.019)
	-0.150^{***}
	(0.017)
6763	6469
Yes	Yes
	(1) 0.178*** (0.020)

Rainfall and Individual Wage

Prediction: $\beta > 0$

$$\log(w_{i,d,p,t}) = \beta \log(R_{d,p,t}) + \rho X_{i,d,p,t} + \delta_d + \tau_{p,t} + \epsilon_{i,d,p,t}$$

where

- \blacksquare $X_{i,d,p,t}$: individual i's demographic characteristics
- robustness: state-specific time trends, time trends interacted with district conditions
- wage measures: all wages; high-/low-skilled; agricultural/non-agricultural

Rainfall and Individual Wage

Prediction: $\beta > 0$

$$\log(w_{i,d,p,t}) = \frac{\beta}{\beta}\log(R_{d,p,t}) + \rho X_{i,d,p,t} + \delta_d + \tau_{p,t} + \epsilon_{i,d,p,t}$$

		$\log(Wag$	e)
	All	Agricultural	Non-Agricultural
	(1)	(2)	(3)
$\log(Rainfall)$	0.080*** (0.020)	0.050^{***} (0.019)	0.111*** (0.030)
N FFs: district_phase_time	89429 Yes	44955 Ves	44474 Yes

Rainfall and Individual Wage

Prediction: $\beta > 0$

$$\log(w_{i,d,p,t}) = \frac{\beta}{\beta}\log(R_{d,p,t}) + \rho X_{i,d,p,t} + \delta_d + \tau_{p,t} + \epsilon_{i,d,p,t}$$

		$\log(Wag$	re)
	All	Agricultural	Non-Agricultural
	(1)	(2)	(3)
$\log(Rainfall)$	0.080*** (0.020)	0.050*** (0.019)	0.111*** (0.030)
N FEs: district, phase-time	89429 Yes	44955 Yes	44474 Yes

Rainfall

Rainfall and Household Consumption

Prediction: $\beta > 0$

$$\log(c_{h,d,p,t}) = \beta \log(R_{d,p,t}) + \rho X_{h,t,p,t} + \delta_d + \tau_{p,t} + \epsilon_{h,d,p,t}$$

Santangelo, 2019

Rainfall and Household Consumption

Prediction: $\beta > 0$

$$\log(c_{h,d,p,t}) = \beta \log(R_{d,p,t}) + \rho X_{h,t,p,t} + \delta_d + \tau_{p,t} + \epsilon_{h,d,p,t}$$

	$\log(per\ capita\ Consumption\ Expenditure)$			
	All Goods	Food	Non-Food	Manufactured Goods
	(1)	(2)	(3)	(4)
$\log(Rainfall)$	0.069***	0.015	0.125***	0.079***
	(0.021)	(0.023)	(0.029)	(0.022)
N	83212	83176	83206	83205
FEs: district, phase-time	Yes	Yes	Yes	Yes

Rainfall and Firm Outcomes

Prediction: $\beta > 0$

$$\log(y_{j,d,p,t}) = \beta \log(R_{d,p,t}) + \delta_d + \tau_{p,t} + v_{p,j} + \rho_{j,t} + \epsilon_{i,d,p,t}$$

where

- j indexes industries
- $v_{p,j}$: NREGA-phase specific industry FEs
- $\rho_{j,t}$: industry-time FEs
- \blacksquare T_i : dummy for tradability of a given industry

Santangelo, 2019

Rainfall and Firm Outcomes

Prediction:
$$\beta > 0$$

$$\log(y_{j,d,p,t}) = \beta \log(R_{d,p,t}) + \delta_d + \tau_{p,t} + v_{p,j} + \rho_{j,t} + \epsilon_{i,d,p,t}$$

		$\log(\cdot)$		
	Value of Output	Man-days	Workers	Wage
	(1)	(2)	(3)	(4)
$\log(Rainfall)$	0.122**	0.066***	0.058***	0.056***
	(0.049)	(0.025)	(0.022)	(0.017)
N	17296	17270	17284	17270
FEs: district, phase-year	Yes	Yes	Yes	Yes
FEs: phase-industry, year-industry	Yes	Yes	Yes	Yes

Rainfall and Firm Outcomes: Tradable vs. Non-tradable

Prediction: non-tradable $\beta > 0$

$$\log(y_{j,d,p,t}) = \frac{\beta}{\beta} \log(R_{d,p,t}) + \delta_d + \tau_{p,t} + v_{p,j} + \rho_{j,t} + \epsilon_{i,d,p,t}$$

	$\log(\cdot)$			
	Value of C	Value of Output Man-d		ays
	Non-tradable	Tradable	Non-tradable	Tradable
	(1)	(2)	(3)	(4)
$\log(Rainfall)$	0.164***	-0.060	0.118***	-0.079
	(0.059)	(0.065)	(0.033)	(0.064)
N	13514	3782	13497	3773
FEs: district, phase-year	Yes	Yes	Yes	Yes
FEs: phase-industry, year-industry	Yes	Yes	Yes	Yes

Rainfall

Rainfall and Firm Outcomes: Tradable vs. Non-tradable

Prediction: non-tradable
$$\beta > 0$$

$$\log(y_{j,d,p,t}) = \beta \log(R_{d,p,t}) + \delta_d + \tau_{p,t} + v_{p,j} + \rho_{j,t} + \epsilon_{i,d,p,t}$$

		log	$\mathrm{g}(\cdot)$	
	Workers Wage		9	
	Non-tradable	Tradable	Non-tradable	Tradable
	(1)	(2)	(3)	(4)
$\log(Rainfall)$	0.110***	-0.090	0.063***	0.036^{*}
	(0.028)	(0.066)	(0.018)	(0.021)
N	13504	3780	13497	3773
FEs: district, phase-year	Yes	Yes	Yes	Yes
FEs: phase-industry, year-industry	Yes	Yes	Yes	Yes

Rainfall Exogeneity Validation: Placebo Tests

	$\log(\cdot)$				
	Crop Yield	Value of Output	Man-days	Workers	Wage
Panel A: Poorly Irri	igated				
$\log(Rainfall)$	0.352***	0.264^{***}	0.151^{***}	0.119^{***}	0.052***
	(0.048)	(0.053)	(0.032)	(0.030)	(0.017)
N	1972	5481	5471	5474	5471
Panel B: Highly Iri	rigated				
$\log(Rainfall)$	0.027^{*}	0.032	0.036	0.042	0.038
	(0.015)	(0.075)	(0.045)	(0.044)	(0.040)
N	2262	5034	5028	5029	5028
Panel C: Non-Mons	soon Rainfall				
$\log(N-M Rainfall)$	0.015**	-0.026	-0.033	-0.027	-0.016
,	(0.007)	(0.023)	(0.023)	(0.020)	(0.010)
N	6763	17296	17270	17284	17270

NREGA: Take-Up

Prediction: $\beta = 0$, $\gamma < 0$

$$\log(y_{i,d,p,t}) = \beta \log(R_{d,p,t}) + \frac{\gamma}{\gamma} \log(R_{d,p,t}) \times \underbrace{N_{d,p,t}}_{=1(\mathsf{NREGA})} + \rho X_{i,d,p,t} + \delta_d + \tau_{p,t} + \epsilon_{i,d,p,t}$$

NREGA Treatment

NREGA: Take-Up

Prediction:
$$\beta = 0$$
, $\gamma < 0$

$$\log(y_{i,d,p,t}) = \beta \log(R_{d,p,t}) + \frac{\gamma}{\gamma} \log(R_{d,p,t}) \times N_{d,p,t} + \rho X_{i,d,p,t} + \delta_d + \tau_{p,t} + \epsilon_{i,d,p,t}$$

	$\log(Days \; in \; Public \; Employment)$
$\log(Rainfall)$	-0.008
	(0.013)
$\log(Rainfall) imes NREGA$	-0.026^{***}
	(0.009)
N	881601
FEs: district, phase-year	Yes

NREGA: Agricultural Yields

Prediction: $\beta > 0$, $\gamma = 0$

$$\log(y_{d,p,t}) = \beta \log(R_{d,p,t}) + \gamma \log(R_{d,p,t}) \times N_{d,p,t} + \delta_d + \tau_{p,t} + \epsilon_{d,p,t}$$

NREGA Treatment

NREGA: Agricultural Yields

Prediction: $\beta > 0$, $\gamma = 0$

$$\log(y_{d,p,t}) = \beta \log(R_{d,p,t}) + \gamma \log(R_{d,p,t}) \times N_{d,p,t} + \delta_d + \tau_{p,t} + \epsilon_{d,p,t}$$

	$\log(Crop\ Yield)$
$\log(Rainfall)$	0.178^{***}
$\log(Rainfall) \times NREGA$	(0.020) 0.000 (0.003)
N FEs: district. phase-year	6763 Yes

NREGA: Wage Elasticity

Prediction: $\beta > 0$, $\gamma < 0$

$$\log(w_{i,d,p,t}) = \beta \log(R_{d,p,t}) + \gamma \log(R_{d,p,t}) \times N_{d,p,t} + \rho X_{i,d,p,t} + \delta_d + \tau_{p,t} + \epsilon_{i,d,p,t}$$

NREGA: Wage Elasticity

Prediction:
$$\beta > 0$$
, $\gamma < 0$

$$\log(w_{i,d,p,t}) = \beta \log(R_{d,p,t}) + \gamma \log(R_{d,p,t}) \times N_{d,p,t} + \rho X_{i,d,p,t} + \delta_d + \tau_{p,t} + \epsilon_{i,d,p,t}$$

	$\log(Wage)$			
	All	Agricultural	Non-Agricultural	
$\log(Rainfall)$	0.062^{***}	0.057^{***}	0.075^{***}	
	(0.018)	(0.018)	(0.021)	
$\log(Rainfall) imes NREGA$	-0.053***	-0.047^{***}	-0.049^{***}	
	(0.013)	(0.018)	(0.018)	
N	193602	92106	101496	
FEs: district, phase-year	Yes	Yes	Yes	

NREGA: Consumption Volatility

Prediction:
$$\beta > 0$$
, $\gamma < 0$

$$\log(w_{h,d,p,t}) = \beta \log(R_{d,p,t}) + \frac{\gamma}{\gamma} \log(R_{d,p,t}) \times N_{d,p,t} + \rho X_{h,d,p,t} + \delta_d + \tau_{p,t} + \epsilon_{h,d,p,t}$$

	$\log(per\ capita\ Consumption\ Expenditure)$			
	All Goods	Food	Non-Food	Manufactured Goods
$\log(Rainfall)$	0.056^{***} (0.013)	(0.012)	0.083*** (0.017)	0.063*** (0.014)
$\log(Rainfall) \times NREGA$	-0.052^{****} (0.011)	-0.043^{****} (0.010)	-0.060^{***} (0.015)	-0.034^{***} (0.012)
N FEs: district, phase-year	223323 Yes	223254 Yes	223315 Yes	223313 Yes

NREGA: Local Industrial Production and Employment

Prediction: non-tradable $\beta > 0$, $\gamma < 0$

$$\log(y_{j,d,p,t}) = \beta \log(R_{d,p,t}) + \gamma \log(R_{d,p,t}) \times N_{d,p,t} + \delta_d + \tau_{p,t} + v_{p,j} + \rho_{j,t} + \epsilon_{j,d,p,t}$$

NREGA: Local Industrial Production and Employment

Prediction: non-tradable $\beta > 0$, $\gamma < 0$

$$\log(y_{j,d,p,t}) = \beta \log(R_{d,p,t}) + \gamma \log(R_{d,p,t}) \times N_{d,p,t} + \delta_d + \tau_{p,t} + v_{p,j} + \rho_{j,t} + \epsilon_{j,d,p,t}$$

	$\log(Wage)$	$\log(Value\ of\ Ouput)$		
		All	Non-tradable	Tradable
$\log(Rainfall)$	0.043^{***}	0.096***	0.126^{***}	0.011
	(0.012)	(0.035)	(0.041)	(0.078)
$\log(Rainfall) imes NREGA$	-0.032**	-0.038	-0.086^{*}	0.138
	(0.014)	(0.037)	(0.044)	(0.091)
N	31911	31984	25097	6887
FEs: district, phase-year	Yes	Yes	Yes	Yes
FEs: phase-industry, industry-year	Yes	Yes	Yes	Yes

NREGA: Local Industrial Production and Employment

Prediction: non-tradable $\beta > 0$, $\gamma < 0$

$$\log(y_{j,d,p,t}) = \beta \log(R_{d,p,t}) + \gamma \log(R_{d,p,t}) \times N_{d,p,t} + \delta_d + \tau_{p,t} + v_{p,j} + \rho_{j,t} + \epsilon_{j,d,p,t}$$

	$\log(Man ext{-}days)$		
	All	Non-tradable	Tradable
$\log(Rainfall)$	0.044***	0.069***	-0.020
	(0.020)	(0.025)	(0.061)
$\log(Rainfall) imes NREGA$	-0.016	-0.044	0.042
	(0.027)	(0.028)	(0.060)
N	31911	25046	6865
FEs: district, phase-year	Yes	Yes	Yes
FEs: phase-industry, industry-year	Yes	Yes	Yes

Sai Zhang Santangelo, 2019 3

NREGA: Local Industrial Production and Employment

Prediction: non-tradable $\beta > 0$, $\gamma < 0$

$$\log(y_{j,d,p,t}) = \beta \log(R_{d,p,t}) + \gamma \log(R_{d,p,t}) \times N_{d,p,t} + \delta_d + \tau_{p,t} + v_{p,j} + \rho_{j,t} + \epsilon_{j,d,p,t}$$

		$\log(Workers)$	
	All	Non-tradable	Tradable
$\log(Rainfall)$	0.040^{***}	0.062***	-0.027
	(0.018)	(0.023)	(0.057)
$\log(Rainfall) imes NREGA$	-0.005	-0.030	0.031
	(0.026)	(0.027)	(0.057)
N	31940	25063	6877
FEs: district, phase-year	Yes	Yes	Yes
FEs: phase-industry, industry-year	Yes	Yes	Yes

NREGA Phase: Local Industrial Production and Employment

Distribution of Tradable Level All Districts

NREGA Phase: Local Industrial Production and Employment

Distribution of Tradable Level All Districts

Distribution of Tradable Level By NREGA Phases

NREGA Phase: Local Industrial Production and Employment

Prediction: non-tradable $\beta > 0$, $\gamma < 0$

The effect is more pronounce in Phase 1-2 of NREGA, due to the pre-treatment volatility differences.

	$\log(Value\ of\ Output)$		
	All	Non-tradable	Tradable
$\log(Rainfall) \times Phase \ 1-2$	0.321***	0.355***	-0.046
	(0.073)	(0.074)	(0.174)
$\log(Rainfall) \times Phase \ 1-2 \times NREGA$	-0.104*	-0.160**	0.121
	(0.054)	(0.075)	(0.143)
$\log(Rainfall) \times Phase \ 3$	0.031	0.055	0.024
	(0.039)	(0.044)	(0.082)
$\log(Rainfall) \times Phase \ 3 \times NREGA$	-0.020	-0.063	0.163
	(0.042)	(0.051)	(0.119)

NREGA Phase: Local Industrial Production and Employment

Prediction: non-tradable $\beta > 0$, $\gamma < 0$

The effect is more pronounce in Phase 1-2 of NREGA, due to the pre-treatment volatility differences.

	$\log(Value\ of\ Man ext{-}days)$		
	All	Non-tradable	Tradable
$\log(Rainfall) \times Phase \ 1-2$	0.153***	0.195***	-0.032
	(0.050)	(0.050)	(0.116)
$\log(Rainfall) \times Phase \ 1-2 \times NREGA$	-0.079^{*}	-0.119**	-0.030
	(0.041)	(0.046)	(0.095)
$\log(Rainfall) \times Phase \ 3$	0.014	0.032	-0.017
	(0.021)	(0.026)	(0.064)
$\log(Rainfall) \times Phase \ 3 \times NREGA$	0.015	-0.007	0.101
	(0.032)	(0.032)	(0.084)

NREGA Phase: Local Industrial Production and Employment

Prediction: non-tradable $\beta > 0$, $\gamma < 0$

The effect is more pronounce in Phase 1-2 of NREGA, due to the pre-treatment volatility differences.

		$\log(Workers)$	
	All	Non-tradable	Tradable
$\log(Rainfall) \times Phase \ 1-2$	0.139***	0.185***	-0.047
	(0.042)	(0.039)	(0.110)
$\log(Rainfall) \times Phase \ 1-2 \times NREGA$	-0.063^*	-0.105**	-0.018
	(0.037)	(0.041)	(0.089)
$\log(Rainfall) \times Phase \ 3$	0.012	0.026	-0.022
	(0.020)	(0.025)	(0.059)
$\log(Rainfall) \times Phase \ 3 \times NREGA$	0.022	0.005	0.074
	(0.031)	(0.030)	(0.081)

DiD Validation: Pre-Trends

DiD Validation: Pre-Trends

DiD Validation: Pre-Trends

Sai Zhang Santangelo, 2019 33

Discussion

Sai Zhang

About This Paper

Pros

- simple and intuitive model
- very good data
- solid empirical strategy
- clean results

Debatables

- impact of NREGA
- exogeneity, choice of FEs
- firm performances
- organization of the paper

Further Thoughts: Dynamics

Non-tradable Employment Elasticity

Non-tradable Wage Elasticity

Further Thoughts: Actual vs. Statutory NREGA Wages

Further Thoughts: Other Potentials

- Manufacture versus Service (Table 4)
- How to understand the tradable good sector?
- Targeting of NREGA
- Spillover: Household/Geographic/Industrial/Sectoral
- Other stablizing channels: Finance
- Welfare: Is it worth it?

References I

- Berg, E., Bhattacharyya, S., Durgam, R., & Ramachandra, M. (2012). Can rural public works affect agricultural wages? evidence from india.
- Bustos, P., Caprettini, B., & Ponticelli, J. (2016). Agricultural productivity and structural transformation: Evidence from brazil. American Economic Review, 106(6), 1320-65.
- Holmes, T. J., & Stevens, J. J. (2014). An alternative theory of the plant size distribution, with geography and intra-and international trade. Journal of Political Economy, 122(2),
- Hornbeck, R., & Keskin, P. (2015). Does agriculture generate local economic spillovers? short-run and long-run evidence from the ogallala aquifer. American Economic Journal:
- Imbert, C., & Papp, J. (2015). Labor market effects of social programs: Evidence from india's employment guarantee. American Economic Journal: Applied Economics. 7(2), 233-63.
- Marden, S. et al. (2016). The agricultural roots of industrial development: 'forward linkages' in reform era china.

References II

Mian, A., & Sufi, A. (2014). What explains the 2007–2009 drop in employment? Econometrica,

Santangelo, G. (2019). Firms and farms: The local effects of farm income on firms' demand.

Zimmermann, L. (2020). Why guarantee employment? evidence from a large indian public-works program. GLO Discussion Paper.

Thank you!