Тур	Lager- Nr.	Verwendungsart	Bild- Nr.	Bestell- Nr.	Preise in DM je Stück		
	111.			Q67000-	1 bis 24	25 bis 99	100 bis 999
SAS 201 S2 SAS 201 S4	71085 \ 71086 \	Magnetisch betätigter kontaktloser Schalter	1	-S21-S2 -S21-S4	6,80 6,10	5,50 4,95	4,— 3,60
SAS 211 S2 SAS 211 S4	71087 71088	Magnetisch betätigter kontaktloser Schalter	2 2	-S22-S2 -S22-S4	6,80 6,10	5,50 4,95	4, 3,60
SAS 221 S2 SAS 221 S4	71089 71091	Magnetisch betätigter kontaktloser Schalter	3	-S33-S2 -S33-S4	6,80 6,10	5,50 4,95	4,— 3,60

Gehäusebauformen

Bild 1 - SAS 201 S2 SAS 201 S4

Bild 2 - SAS 211 S2 SAS 211 S4

Bild 3 - SAS 221 S2 SAS 221 S4

Тур	Verwendungsart	Bild- Nr.			Preise in DM je Stück			
				5 bis 24	25 bis 99	100 bis 999		
● HKZ 101 ● HKZ 101 S SAS 231 W	Hall-Magnetgabelschranke Hall-Magnetgabelschranke Hall-IS mit magnetfeld- proportionaler Ausgangspann.	2 2 4	Q67000-S64 Q67000-S64-E10 Q67000-A1468-W	28,— 24,— 9,10	21,— 18,— 7,80	14,— 12,— 6,50		
	Magnetisch betätigte kontaktlose Schalter		0.07000 050	0.04	0.40	0.00		
SAS 241	– mit dynamischen Ausgängen,0 bis 70°C	1	Q67000-S50	3,64	3,12	2,60		
▼ SAS 250	mit statischen Ausgängen,55 bis 125°C	1	Q67000-S46	8,45	7,25	6,05		
SAS 251	 mit statischen Ausgängen, 0 bis 70°C 	1	Q67000-S47	3,64	3,12	2,60		
SAS 261	mit statischem Ausgang und Freigabeeingang 0 bis 70°C	3	Q67000-S59	4,34	3,72	3,10		

Magnetfeldhalbleiter siehe Teil B 3

Die Preisangaben sind ohne Mehrwertsteuer, bei Wiederverkauf nur unverbindliche Preisempfehlungen.

Ausfuhrgenehmigungspflichtig

Gehäusebauformen

Bild 1

Bild 2

Bild 3

Bild 4

Gewicht etwa 0,1 g

Blockschaltungen

Digitale Hall-IS

Die kontaktlosen magnetisch gesteuerten Schalter enthalten auf einem Halbleiterkristall einen Spannungskonstantregler, eine geregelte Stromquelle für den Hallgenerator, einen Differenzverstärker, einen Schmitt-Trigger, zwei Treiberstufen und Endtransistoren mit offenem Kollektor. Der Einsatz ist dann von Vorteil, wenn hohe Zuverlässigkeit, Prellfreiheit, Unempfindlichkeit gegen Verschmutzung und Korrosion und sehr lange Lebensdauer verlangt sind.

Der Hallgenerator wird aus einer Konstantstromquelle gespeist, die eine geregelte Spannung als Referenz benutzt. Dem Hallgenerator folgt ein Differenzverstärker. In der nächsten Stufe wird das Differenzsignal in ein massebezogenes Signal umgeformt.

An dieser Stelle kann durch Subtraktion oder Addition eines Stromes die Null-Komponente (Offset) auf einfache und wenig störanfällige Weise verändert werden.

Der invertierende Verstärkereingang ist herausgeführt, so daß durch externe Beschaltung die Steilheit der Ausgangskennlinie (Verstärkung) in weiten Grenzen variiert werden kann.

Magnetisch gesteuerte Schaltungen, Hall-IS

Die Bausteine SAS 241, SAS 250, SAS 251, SAS 261 sind magnetisch betätigte kontaktlose Schalter mit folgenden Betriebsarten:

Тур	Kennzeichnung	Speisespannungsbereich	Funktion
SAS 241	SAS 241	4,75 bis 18 V	Schalter; dynamisch
SAS 241 S4	weiß	4,75 bis 5,25 V	offene Kollektorausgänge
SAS 250	SAS 250	4,5 bis 27 V	
SAS 251	SAS 251	4,75 bis 27 V	Schalter; statisch
SAS 251 S4	SAS 251 S4	4,75 bis 5,25 V	offene Kollektorausgänge
SAS 251 S5	orange	4,75 bis 18 V	
SAS 261	blau	4,75 bis 18 V	Schalter; statisch
SAS 261 S4	grün	4,75 bis 5,25 V	offener Kollektorausgang und Freigabeeingang

Alle Bausteine sind im vierpoligen Flachgehäuse lieferbar. SAS 241 und SAS 251 sind auch als filmmontierte Ausführung im MIKROPACK auf Anfrage lieferbar.

Der Baustein SAS 231 liefert eine Spannung proportional zur magnetischen Induktion. Er ist aufgrund seiner MIKROPACK-Bauform besonders für einen Betrieb in sehr kleinen Luftspalten geeignet.

Тур	Kennzeichnung	Speisespannungsbereich	Funktion
SAS 231 L	_	4,75 bis 15 V	Hall-IS mit magnetfeldproportionaler Ausgangsspannung MIKROPACK
SAS 231 W	blau/grün	4,75 bis 15 V	Hall-IS mit magnetfeldproportionaler Ausgangsspannung Miniaturgehäuse

Bipolare Schaltung

Тур	Bestellnummer	Gehäusebauform
SAS 231 L SAS 231 W	Q67000-A1468-L Q67000-A1468-W	MIKROPACK Miniaturgehäuse 6 Anschlüsse

Der Baustein SAS 231 liefert am Ausgang eine Spannung proportional zur magnetischen Induktion (Flußdichte). Die Ausgangsspannung nimmt zu, wenn der Südpol eines Magneten der Chipoberseite genähert wird. Der Nullpunkt wird durch externen Abgleich eingestellt. Die Steilheit der Kennlinie $U_{\rm Q}=f(B)$ kann durch externe Beschaltung variiert werden.

Grenzdaten		Prüfbedin- gungen	untere Grenze B	typ.	obere Grenze A	
Speisespannung Ausgangsstrom Lagertemperatur	U _s I _Q T _s		0 - 40		18 10 125	V mA °C
Funktionsbereich						
Speisepannung	Us		4,75		15 5	V mA
Ausgangsstrom Umgebungstemperatur im Betrieb	$rac{I_{Q}}{T_{U}}$		0		70	°C

Statische Kenndaten bei $U_{\rm S}=10~{\rm V},~T_{\rm U}=25^{\circ}{\rm C},$ wenn nicht anders angegeben

Otatioono itomiaaion so 5		, ···-				
Leerlaufstromaufnahme Ausgangsspannung Steilheit	I _s U _Q S	$R_{L} = \infty$ $R_{L} = 10 \text{ k}\Omega$	0,05 60	6 100	10 <i>U</i> _S -2 140	mA V mV/mT
(ohne Abgleich) "Null"-Komponente	B ₀	$U_{\rm Q} = 0.5 \rm V$	- 35	-	35	mT
Linearitätsfehler (bezogen auf $U_Q = \frac{U_S}{2}$)				2		%
Temperaturkoeffizient	α	$T_{\rm U} = 0 - 70^{\circ}{\rm C}$!	0,4		mT/K

Anschlußanordnungen SAS 231 W

SAS 231 L

Anwendungsschaltung

Ausgangskennlinie ohne Abgleich $U_{Q} = f(B)$

Magnetisch betätigte kontaktlose Schalter mit dynamischen Ausgängen

Bipolare Schaltung

Тур	Bestellnummer	Gehäusebauform
SAS 241 SAS 241 S4	Q67000-S50 Q67000-S50-S4	Kunststoff-Flachgehäuse 4 Anschlüsse

Die Bausteine SAS 241, SAS 241 S4 sind kontaktlose Schalter, die durch ein Magnetfeld betätigt werden. Die Ausgänge mit offenen Kollektoren ermöglichen wired-AND-Verknüpfungen zur Erzeugung kodierter Signale. Die Ausgänge \mathbf{Q}_1 und \mathbf{Q}_2 geben gleichphasige Signale ab, die unabhängig von der Einwirkungsdauer des Magnetfeldes sind. Das Magnetfeld muß senkrecht mit dem Südpol auf die mit der Kerbe gekennzeichnete Fläche einwirken.

Grenzdaten		Prüfbedin- gungen	untere Grenze B	typ.	obere Grenze A	
Speisespannung Ausgangsstrom Sperrschichttemperatur Lagertemperatur	$\overline{U_{S}}_{I_{Q1},\ I_{Q2}}$ T_{j} T_{s}		- 0,5 - 40		20 30 150 125	V mA °C °C
Wäremewiderstand	$R_{th\;SU}$			ı	170	K/W
Funktionsbereich					•	
Speisespannung SAS 241 SAS 241 S4 Umgebungstemperatur	Us Us Tu		4,75 4,75 0		18 5,25 70	, C , A , A
im Betrieb			l	l	1	1
Statische Kenndaten bei $U_{\rm S}$	= 5 V, T _U :	= 0 bis 70°C, wenn	nicht ander	s angegel	pen	
Speisestrom	$I_{\mathtt{S}}$ $I_{\mathtt{S}}$ $I_{\mathtt{S}}$	$ B < B_A $ $ B > B_E$, Q_1 , $Q_2 = H$ $ B > B_E$, Q_1 , $Q_2 = L$	1		3 3,5 6	mA mA mA
Einschaltinduktion Ausschaltinduktion	B_{E}				0,065	T
SAS 241 SAS 241 S4	B _A B _A B _A	U _S = 18 V	0,01 0,005 0,005			T T T
Max. Temperaturab- weichung bezogen auf 25°C Hysterese Ausgangsstrom Ausgangsspannung	$egin{aligned} egin{aligned} AB_{E}/B_{A} \ B_{Hy} \ I_{Q1}, I_{Q} \ U_{Q1}, U_{Q2} \end{aligned}$	$B \le B_A$ $I_{Q1} = I_{Q2} = 16 \text{ mA}$	-0,005 0,004	0,01	0,005 0,015 10 0,4	T T μ A V
Schaltzeit ($U_S = 5 \text{ V}, T_U = 25^\circ$	C)					
Signalübergangszeit	$t_{THL} \ t_{TLH}$	zw. 90 und 10% zw. 10 und 90%			1 2	μs μs
Ausgangsimpulsdauer	tQ	zw. 50 und 50%	15	20	40	μs

Anschlußanordnung

Impulsdiagramm

$$B_{\mathsf{E}}, B_{\mathsf{A}} = f(T_{\mathsf{U}}), \mathsf{typ}.$$

Magnetisch betätigter kontaktloser Schalter für erhöhte Umgebungstemperatur

Bipolare Schaltung

Tvp	Bestellnummer	Gehäusebauform
SAS 250	Q67000-S46	Kunststoff-Flachgehäuse 4 Anschlüsse

Der Baustein SAS 250 ist ein kontaktloser Schalter, der durch ein Magnetfeld betätigt wird. Die Ausgänge mit offenen Kollektoren ermöglichen wired-AND-Verknüpfungen zur Erzeugung kodierter Signale. Die Ausgänge \mathbf{Q}_1 und \mathbf{Q}_2 geben gleichphasige Signale ab. Das Magnetfeld muß senkrecht mit dem Südpol auf die mit der Kerbe gekennzeichnete Fläche einwirken.

Grenzdaten	Prüfbedin- gungen	untere Grenze B	typ.	obere Grenze A	
Speisespannung $U_{\rm S}$ Ausgangsstrom $I_{\rm Q1}, I_{\rm Q}$ Sperrschichttemperatur $T_{\rm i}$ Lagertemperatur $T_{\rm s}$ Wärmewiderstand $R_{\rm th~SU}$	1	0 0 - 40		30 30 150 125 170	V mA °C °C K/W
Funktionsbereich Umgebungstemperatur im Betrieb Speisespannung Us		- 40 4,5		125 27	°C ∨
Statische Kenndaten bei $U_S = 5 \text{ V}$, T_U Speisestrom I_S Einschaltinduktion ¹) Ausschaltinduktion ¹) Magnetische Hysterese Ausgangsstrom Ausgangsspannung I_S	$A = 25 ^{\circ} C$ $\begin{vmatrix} B < B_A \\ B > B_E \end{vmatrix}$ $\begin{vmatrix} B < B_A \\ I_{Q1} = I_{Q2} = 16 \text{ mA} \end{vmatrix}$	0,01 0,004	0,01	3 6 0,065 0,015 10 0,4	mA mA T T T μA
Schaltzeiten Signalübergangszeit $t_{ m HL}$ $t_{ m LH}$	zw. 10 und 90% zw. 90 und 10%	6		1 2	μs μs

¹⁾ Temperaturabhängigkeit: Einschaltinduktion $B_{\rm E}$ und Ausschaltinduktion $B_{\rm A}$, bezogen auf 25°C im Temperaturbereich –40°C bis 125°C $\le \pm$ 0,0075 T.

Anschlußanordnung

Тур	Bestellnummer	Gehäusebauform
SAS 251 SAS 251 S4 SAS 251 S5	Q67000-S47 Q67000-S47-S4 Q67000-S47-S5	Kunststoff-Flachgehäuse 4 Anschlüsse

Die Bausteine SAS 251, SAS 251 S4 und SAS 251 S5, sind kontaktiose Schalter, die durch ein Magnetfeld betätigt werden.

Die Ausgänge mit offenen Kollektoren ermöglichen wired-AND-Verknüpfungen zur Erzeugung kodierter Signale. Die Ausgänge \mathbf{Q}_1 und \mathbf{Q}_2 geben gleichphasige Signale ab. Das Magnetfeld muß senkrecht mit dem Südpol auf die mit der Kerbe gekennzeichnete Fläche einwirken.

Grenzdaten	Prüfbedin- gungen	untere typ Grenze B	obere Grenze A	
Sperrschichttemperatur Lagertemperatur T	s , $I_{\mathbf{Q}2}$	- 0,5 - 0,5 - 40	30 20 30 150 125	V V mA °C °C
SAS 251 S4	ls ls ls	4,75 4,75 4,75	27 5,25 18	\
	-U	0	70	

Statische Kenndaten bei $U_S = 5 \text{ V}$, $T_U = 0 \text{ bis } 70 ^{\circ}\text{C}$, wenn nicht anders angegeben

Statische Kenndaten bei $U_{\rm S}$	= 5 V, T _U =	O bis 70 C, went	1	, angogo-	3	mA
Speisestrom	$I_{\mathbb{S}}$ $I_{\mathbb{S}}$	B < B _A B > B _E	1,5		6 0,065	mA T
Einschaltinduktion Ausschaltinduktion SAS 251, SAS 251 S5 SAS 251 SAS 251 S5 SAS 251 S4	B _E B _A B _A B _A B _A	U _S = 27 V U _S = 18 V	0,01 0,005 0,005 0,005			TTTT
Max. Temperaturabweichung bezogen auf 25°C Hysterese Ausgangsreststrom Ausgangsspannung	${\it \Delta B_{E}/B_{A}} \ {\it B_{Hy}} \ {\it I_{Q1},I_{Q2}} \ {\it U_{Q1},U_{Q2}}$	$B < B_A$ $I_{Q1} = I_{Q2} = 16 \text{ mA}$	- 0,005 0,004	0,01	0,005 0,015 10 0,4	Τ Τ μΑ V

Schaltzeiten ($U_S = 5 \text{ V}$, $T_U = 25 ^{\circ}\text{C}$) Signalübergangszeit t_{TLH} zw. 90 und 10% 2 μs t_{TLH} zw. 10 und 90% 2 μs	· taogangoopa			
		t _{THL} zw. 90 und 10%	1 2	1 '

Anschlußanordnung

$$B_{\mathsf{E}},\,B_{\mathsf{A}}=f(U_{\mathsf{S}}),\,\mathsf{typ}.$$

Magnetisch betätigte kontaktlose Schalter mit Freigabeeingang

Bipolare Schaltung

Typ	Bestellnummer	Gehäusebauform
SAS 261 SAS 261 S4	Q67000-S59 Q67000-S59-S4	Kunststoff-Flachgehäuse 4 Anschlüsse

Die Bausteine SAS 261, SAS 261 S4 sind kontaktlose Schalter, die durch ein Magnetfeld betätigt werden. Wenn ein ausreichend großes Magnetfeld vorhanden ist ($B=B_{\rm E}$) und ein H-Signal am Freigabeeingang anliegt, schaltet der offene Kollektorausgang Q von H nach L. Das Magnetfeld muß senkrecht mit dem Südpol auf die mit der Kerbe gekennzeichnete Fläche einwirken.

Grenzdaten		Prüf- bedingungen	untere Grenze B	typ.	obere Grenze A	
Ausgangsstrom Eingangsspannung an F Sperrschichttemperatur Lagertemperatur	Us IQ UF T; Rth SU		- 0,5 - 0,5 - 40		20 30 5 150 125	V mA V °C °C
Funktionsbereich				I	Į.	I
	Us Us Tu		4,75 4,75 0		18 5,25 70	v v °C

Statische Kenndaten bei $U_S = 5 \text{ V}$, $T_U = 0 \text{ bis } 70 ^{\circ}\text{C}$, wenn nicht anders angegeben

Speisestrom Einschaltinduktion	I _S I _S I _S B _E	$U_{\rm F} = 0.4 \text{ V}, B \text{ beliebig}$ $U_{\rm F} = 2.4 \text{ V}, B > B_{\rm E}$ $U_{\rm F} = 2.4 \text{ V}, B < B_{\rm A}$	1,5 1		500 5 3 0,065	μA mA mA T
Ausschaltinduktion	_		0.01			-
SAS 261	BA	40.74	0,01 0,005			†
0.00.004.04	B _A	U _S = 18 V	0,005			T
SAS 261 S4	B _A		0,000			
Max. Temperaturabwei			- 0,005		0,005	T
bezogen auf 25°C	∆B _E /B _A		0,004	0,01	0,015	T
Hysterese	₿ _{Hy}		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,		
H-Eingangsspannung an F	$oldsymbol{U}_{ ext{IH}}$		2,4			V
L-Eingangsspannung	OIH					
an F	U_{1L}]		0,8	V .
H-Eingangsstrom an F	$I_{ m IH}$	$U_{\rm F} = 2.4 \text{ V}$	l		0,5	μA
L-Eingangsstrom an F	$I_{ m IL}^{ m II}$	$U_{\rm F} = 0.8 \rm V$			5	μA
Ausgangsreststrom	I_{Q}^{n}	$U_{\rm F} = 0.8 \text{ V}, B \text{ beliebig}$		1	10	μΑ
- -		$U_{F} = 2.4 V, B < B_{A}$			10	μΑ
		$U_{Q} = U_{S}$	1		104	μA V
Ausgangsspannung	U_{Q}	$U_{\rm F} = 2.4 \rm V, B > B_{\rm E}$			0,4	\
		$I_{Q} = 16 \text{ mA}$	1	1	I	1

Schaltzeiten $U_S = 5 \text{ V}, T_U = 25 ^{\circ}\text{C}$		Prüf- bedingungen	untere Grenze B	typ.	obere Grenze A	1 1 1 1 1
F nach Q	t_{PHL}	zw. 50 und 50 %		0,4	3	μs
Signalübergangszeit an Q an Freigabeeingang	t _{PLH} t _{THL} t _{THL} t _T	zw. 50 und 50 % zw. 90 und 10 % zw. 10 und 90 % zw. 10 und 90 %		1	4 1 2	μs μs μs V/μs

Logisches Verhalten

Freigabe-Eingang	$B>B_{E}$	$B < B_A$	Ausgang Q
L L H	x x	X X	H H L H

Anschlußanordnung

Impulsdiagramm

 $B_{\mathsf{E}},\,B_{\mathsf{A}}=f(U_{\mathsf{S}}),\,\mathsf{typ}.$

 $B_{\mathsf{E}},\,B_{\mathsf{A}}=f(T_{\mathsf{U}}),\,\mathsf{typ}.$

Bipolare Schaltung

Тур	Bestellnummer	Gehäusebauform
HKZ 101 HKZ 101 S	Q67000-S64 Q67000-S64-E10	} Sondergehäuse

Die Hall-Magnetgabelschranke HKZ 101 ist ein kontaktloser Schalter bestehend aus einer monolitisch integrierten Hall-Schaltung und einem speziellen Magnetkreis, beides in einem Kunststoffgehäuse dicht vergossen. Der Schalter wird durch Eintauchen einer Weicheisenblende in den Luftspalt der Gabelschranke betätigt.

Hauptanwendung ist der Einsatz im Automobil als kontaktloser Unterbrecher in elektronischen Zündsystemen. Zahlreiche industrielle Anwendungsmöglichkeiten gibt es in der Steuerungs- und Regeltechnik besonders dort, wo Schalter unter rauhen Umgebungsbedingungen wartungsfrei arbeiten sollen (z.B.: Drehzahlaufnehmer, Endschalter, Positionsfühler, Geschwindigkeitsmessung, Abtastung von Codierscheiben etc.).

Besondere Merkmale

- Kontaktloser Schalter mit offenem Kollektorausgang (40 mA)
- Statischer Schaltbetrieb
- Hohe Schaltfrequenzen
- Mit Kunststoff dicht vergossen
- Unempfindlich gegen Schmutz, Licht, Vibration
- Großer Temperatur- und Spannungsbereich
- Integrierter Überspannungsschutz
- Hohe Störsicherheit

Funktionsbeschreibung

Der Halleffekt-Schalter wird durch eine Weicheisenblende, die durch den Luftspalt zwischen Magnet und Hall-Sensor geführt wird, bedient. Die Blende schließt den magnetischen Fluß vor dem Hall-Sensor kurz, wie im Bild 1 gezeigt. Der offene Kollektorausgang ist leitend (LOW), wenn sich die Blende außerhalb des Luftspaltes befindet und sperrt (HIGH), wenn die Blende in den Luftspalt eingeführt wird. Solange sich die Blende im Luftspalt befindet, bleibt der Ausgang gesperrt. Aufgrund dieser statischen Arbeitsweise ist keine minimale Arbeitsfrequenz erforderlich. Die Ausgangs-Signalflanken sind unabhängig von der Arbeitsfrequenz.

Der Schaltkreis besitzt einen integrierten Überspannungsschutz gegen die meisten im Automobil und in der Industrie vorkommenden Spannungsspitzen. Die Ausgangsstufe besitzt Schmitt-Trigger Charakteristik. Durch den maximalen Ausgangsstrom von 40 mA des offenen Kollektors können die meisten elektronischen Schaltungen direkt angesteuert werden.

Bild 1 Funktionsprinzip

Mechanische Eigenschaften

Die Schranke ist mit einem speziellen Kunststoff dicht vergossen, um auch unter rauhen Umgebungsbedingungen eingesetzt werden zu können. Das Gehäuse ist wasserdicht, erschütterungsbeständig und widerstandsfähig gegen Benzin, Öl und Salz. Zur Befestigung des Sensors auf einer Trägerplatte sind 2 Hohlnieten ins Gehäuse eingegossen. Der Schaltkreis besitzt drei flexible Drahtanschlüsse für die Stromversorgung und den Ausgang.