Exercices des chapitres 9 à 11

Compléments sur les matrices

- orthogonale O telle que $O^{-1}AO = T$ soit triangulaire.
 - **2.** Soit A une matrice carrée.
 - a) Montrer que $\operatorname{Sp}(A) \subset \bigcup_{i} D'(a_{ii}, \rho_i)$ avec $\rho_i = \sum_{j \neq i} |a_{ij}|$.
 - b) Montrer que $B=\left(\begin{array}{cccc} 3 & 2 & & (0)\\ 1 & \ddots & \ddots\\ & \ddots & \ddots & 2\\ (0) & & 1 & 2 \end{array}\right)$ est inversible.
 - c) Trouver D diagonale telle que DBD^{-1} soit symétrique. Retrouver l'inversibilité de B.
 - d) Déterminer Sp(B).
 - **3.** Soit $A \in \mathcal{M}_{m,n}(\mathbb{R})$ de rang r > 0.
 - \overline{a} Dire tout sur tAA , notamment sur ses valeurs propres.
- b) Pour λ valeur propre strictement positive de tAA, on pose $\sigma = \sqrt{\lambda}$. Soit alors Σ la matrice diagonale $\operatorname{Diag}(\sigma_1,\ldots,\sigma_r)$. Montrer que $A=V\left(\begin{array}{cc} \Sigma & 0 \\ 0 & 0 \end{array}\right){}^tU$ avec V et U des matrices orthogonales.
 - $\boxed{\textbf{4.}} \text{ Pour } A = (a_{ij}) \in \mathcal{M}_n(\mathbb{C}), \text{ on pose } ||A||_2 = \sum_{i,j} |a_{ij}|^2.$
 - a) Montrer que, pour $(A, B) \in \mathcal{M}_n(\mathbb{C})^2$, $||AB||_2 \le ||A||_2 ||B||_2$.
 - b) Trouver les matrices pour lesquelles $||AB||_2 = ||A||_2 ||B||_2$.
- 5. Soit $A \in \mathcal{M}_n(\mathbbm{R})$ symétrique, et soient $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ ses valeurs propres. Montrer que $\lambda_{r+1} = \inf_{F_r \in \mathcal{F}_r} \sup\{(Ax|x), \ x \in F_r \ , \ \|x\| = 1\}$, où \mathcal{F}_r désigne l'ensemble des sous espaces vectoriels de dimension n-r.

Méthodes itératives de résolution de systèmes linéaires

[6.] Soit A une matrice d'ordre $n \geq 2$, inversible et à coefficients réels. On écrit la matrice A sous la forme A = M - N, où M est "facilement inversible" et on s'intéresse à la résolution du système linéaire Ax = b. Dans ce but, on introduit la suite $(x_k)_{k \in \mathbb{N}}$ définie par :

$$x_0$$
 donné dans \mathbb{R}^n et $x_{k+1} = M^{-1}Nx_k + M^{-1}b$.

- 1) Résultats généraux :
 - a) Montrer que si la suite converge, c'est nécessairement vers la solution de Ax = b.
- b) Soit $B = M^{-1}N$ et $\rho(B)$ son rayon spectral. Montrer l'équivalence des deux assertions suivantes :

i. Pour tout
$$x_0 \in \mathbb{R}^n$$
, $\lim_{k \to +\infty} x_k = x$ avec $Ax = b$ ii. $\rho(B) < 1$.

- c) Montrer que, s'il existe une norme matricielle subordonnée $\|\ \|$ telle que $\|B\| < 1$, alors la méthode itérative ci-dessus est convergente.
- 2) On suppose que tous les termes diagonaux de A sont non nuls et on considère la méthode itérative définie par le choix de M=D avec D matrice diagonale de $A:d_{ii}=a_{ii}$ pour $1 \le i \le n$ et $d_{ij}=0$ pour $i \ne j$.
 - a) Quel est le nom de cette méthode?
- b) Montrer que si A est à diagonale strictement dominante, c'est-à-dire si, pour tout $i \in \{1, \dots, n\}, |a_{ii}| > \sum_{j \neq i} |a_{ij}|$, alors cette méthode converge.
- 3) On suppose que tous les termes diagonaux de A sont non nuls et on considère la méthode itérative définie pour une matrice M telle que :

$$m_{ij} = 0$$
 pour $1 \le i < j \le n$ et $m_{ij} = a_{ij}$ pour $1 \le j \le i \le n$.

- a) Quel est le nom de cette méthode?
- b) Montrer que si A est à diagonale strictement dominante, alors cette méthode converge.
- 4) Soit $A = \begin{pmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 2 & 2 & 1 \end{pmatrix}$; que peut-on dire de la convergence des deux méthodes proposées précédemment ?
- [7.] Soit A une matrice tridiagonale de taille $n \geq 3$ dont les termes diagonaux sont non nuls. Soit D la matrice diagonale de A, E (resp. F) la matrice triangulaire inférieure (resp. supérieure) stricte de A. On a donc A = D E F; on pose $J = D^{-1}(E + F)$ et $G = (D E)^{-1}F$.
- 1) Pour toute matrice $M=(m_{ij})_{1\leq i,j\leq n}$, on définit, pour tout réel non nul t, la matrice $M(t)=(m_{ij}(t))_{1\leq i,j\leq n}$, avec $m_{ij}(t)=t^{i-j}m_{ij}$ pour $1\leq i,j\leq n$. Montrer alors que :

pour tout
$$t \in \mathbb{R}^*$$
, $\det(M(t)) = \det(M)$.

- 2) On pose $M = F + \lambda^2(D + E)$. En utilisant les notations de la questions 1), écrire la matrice $M(1/\lambda)$ en fonction de D, E, F et λ .
- 3) Montrer que si P_J est le polynôme caractéristique de J et P_G celui de G, alors on a $P_G(\lambda^2) = \lambda^n P_J(\lambda)$. En déduire que $\rho(G) = (\rho(J))^2$ et conclure.

Méthodes directes de résolution de systèmes linéaires

8. Méthode de Gauss

Résoudre par la méthode de Gauss le système linéaire suivant :

$$\begin{cases} x_1 - 3x_2 - x_3 & = 2 \\ -x_1 + x_2 & + 2x_4 = 3 \\ x_2 - x_3 & = 1 \\ 2x_1 + x_2 & - x_4 = 0 \end{cases}$$

9. Décomposition LU

On pose

$$A = \begin{pmatrix} -2 & 1 & -1 & 1 \\ 2 & 0 & 4 & -3 \\ -4 & -1 & -12 & 9 \\ -2 & 1 & 1 & -4 \end{pmatrix}.$$

- 1) Donner la décomposition LU de la matrice A (i.e. A=LU avec L triangulaire inférieure et U triangulaire supérieure).
 - 2) En déduire la solution du système linéaire Ax = b où $b = {}^{t}(1.5, 4, -14, -6.5)$.
- 3) Soit $B = {}^{t}U A^{t}L$. Sans calculs supplémentaires, donner une décomposition LU de la matrice B.

10. Décomposition LU

1) Réaliser la décomposition LU de la matrice :

$$A = \begin{pmatrix} -1 & 1 & -3 & 0 \\ 1 & 1 & 3 & 8 \\ -2 & 2 & -5 & -1 \\ 3 & 1 & 8 & 13 \end{pmatrix}.$$

- 2) En déduire la solution du système linéaire Ax = b avec $b = {}^{t}(0, 2, -1, 5)$.
- 3) Sans calculer A^2 , résoudre le système linéaire $A^2x = b$.

11. Décomposition de Cholesky.

Donner la factorisation de Cholesky des matrices :

1)
$$A_1 = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 8 & -6 \\ 0 & -6 & 25 \end{pmatrix}$$

2)
$$A_2 = \begin{pmatrix} 4 & 0 & 12 & -6 \\ 0 & 1 & 2 & 1 \\ 12 & 2 & 49 & -4 \\ -6 & 1 & -4 & 51 \end{pmatrix}$$
.

12. Décomposition QR

Chercher la décomposition QR de la matrice

$$A = \begin{pmatrix} 1 & -46/5 & -43/5 \\ 2 & 8 & 23 \\ -2 & -28/5 & 26/5 \end{pmatrix}$$

$\boxed{\mathbf{13.}}$ Calcul de déterminant et décomposition LU

- 1) Expliquer comment on peut calculer le déterminant d'une matrice A d'ordre n à partir de sa factorisation LU.
 - 2) Appliquer cette méthode à la matrice

$$A = \left(\begin{array}{rrr} 2 & 1 & 3 \\ -4 & 1 & -4 \\ -2 & 2 & 4 \end{array}\right).$$

$$\boxed{\mathbf{14.}} \text{ Soit } M = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \\ 3 & 4 & 5 & 1 & 2 \end{array}\right).$$

La matrice J_r étant l'élément (α_{ij}) de $\mathcal{M}_{np}(\mathbb{K})$ telle $\alpha_{ij}=1$ si $i=j\leq r$ et $\alpha_{ij}=0$ sinon, trouver r,R et S avec $J_r=RMS$.