Unidad 2 – Realce y Restauración de Imágenes

Tratamiento Digital de Imágenes

Sergio M. Nava Muñoz

s3rgio.nava@gmail.com

CIMAT/INFOTEC

2025-02-19

- Fin de aprendizaje
- Introducción
- Descomposición en canales RGB
- Representación de imágenes
- Visualización de un patch en RGB y sus canales
- Mezcla aditiva de colores Modelo RGB
- Visualización de valores en escala de grises
- Histograma de una imagen
- Ecualización de histograma
- Ejemplo de ecualización de histograma
- Convolución en imágenes
- Filtrado espacial
- Filtro Promedio (Blur)
- Ejemplo paso a paso
- ¿Qué pasa en los bordes? **

Fin de aprendizaje

- Aplicar técnicas de mejora y restauración de imágenes digitales.
- Utilizar operaciones matriciales y filtros en OpenCV.
- Comprender fundamentos matemáticos de histogramas y filtrado.
- Preparar imágenes para tareas avanzadas de análisis visual.

Introducción

- El realce mejora la apariencia visual de las imágenes.
- Facilita tareas como:
 - Detección de objetos
 - Reconocimiento de texturas (ej. imágenes médicas)
 - Segmentación y clasificación

Descomposición en canales RGB

- Una imagen en color puede verse como tres matrices en escala de grises:
 - Canal R (Rojo)
 - Canal G (Verde)
 - Canal B (Azul)
- Cada canal almacena intensidades entre 0 y 255.
- La combinación de los tres forma la imagen en color.

Canal G

Canal B

Imagen combinada

Representación de imágenes

ullet Una imagen digital en escala de grises puede representarse como una **matriz** I de tamaño M imes N:

$$I = egin{bmatrix} i_{11} & i_{12} & \cdots & i_{1N} \ i_{21} & i_{22} & \cdots & i_{2N} \ dots & dots & \ddots & dots \ i_{M1} & i_{M2} & \cdots & i_{MN} \end{bmatrix}$$

• Cada elemento i_{mn} es un valor de **intensidad** (0–255 en imágenes de 8 bits).

Visualización de un patch en RGB y sus canales

▶ Code

Canal R

 $[[171\ 137\ 145\ 137\ 130][151\ 137\ 136\ 123\ 105][142\ 158\ 154\ 141\ 112][160\ 182\ 157\ 141\ 114][173\ 170\ 122\ 106\ 99]]$

Canal G

 $[[124\ 94\ 105\ 105\ 104][104\ 94\ 99\ 91\ 82][\ 97\ 117\ 119\ 111\ 89][118\ 143\ 125\ 114\ 93][132\ 134\ 91\ 81\ 80]]$

Canal B

[[70 41 53 54 55] [50 39 46 40 32] [40 61 65 57 37] [60 86 68 59 40] [76 76 34 25 24]]

Juntos

 $[[[171\ 124\ 70]\ [137\ 94\ 41]\ [145\ 105\ 53]\ [137\ 105\ 54]\ [130\ 104\ 55]]$

 $[[151\ 104\ 50]\ [137\ 94\ 39]\ [136\ 99\ 46]\ [123\ 91\ 40]\ [105\ 82\ 32]]$

 $[[142\ 97\ 40]\ [158\ 117\ 61]\ [154\ 119\ 65]\ [141\ 111\ 57]\ [112\ 89\ 37]]$

[[160 118 60] [182 143 86] [157 125 68] [141 114 59] [114 93 40]]

Mezcla aditiva de colores — Modelo RGB

RGB color model venn diagram

Explicación:

- El modelo **RGB** (Red, Green, Blue) es aditivo.
- Combinaciones:
 - Rojo + Verde = Amarillo
 - Verde + Azul = Cian
 - Azul + Rojo = Magenta
 - Rojo + Verde + Azul (máxima intensidad) = Blanco
- Cada canal varía de **0 a 255**, permitiendo representar millones de colores.
- Es el modelo usado en pantallas, cámaras y procesamiento digital de imágenes.

Visualización de valores en escala de grises

► Code

Sección 10x10 en escala de grises


```
[[132 101 111 109 106 88 39 37 45 48]
[112 101 104 95 83 76 72 91 41 46]
[104 123 123 114 90 80 110 131 116 104]
[124 148 128 116 93 85 128 139 165 145]
[138 138 94 82 79 89 135 140 129 118]
[111 100 78 84 101 117 140 141 130 114]
[ 72 67 88 109 127 134 126 134 158 128]
[ 58 51 90 105 111 115 100 126 135 107]
```

Histograma de una imagen

- El histograma es la frecuencia de aparición de intensidades.
- Formalmente:

$$h(r_k)=n_k$$

donde r_k es un nivel de gris y n_k el número de píxeles con ese valor.

Código: Construcción del histograma

► Code

Ecualización de histograma

- Busca redistribuir los niveles de gris para mejorar el contraste.
- Función de transformación acumulativa:

$$s_k = (L-1)\sum_{j=0}^k rac{n_j}{MN}$$

donde:

- L = número de niveles (256 en 8 bits).
- M imes N = número total de píxeles.

Ejemplo de ecualización de histograma

Consideremos una imagen de

M imes N = 8 píxeles, con intensidades de 3 bits

(L=8 niveles, de 0 a 7):

$$I = [3, 3, 4, 5, 6, 6, 6, 7]$$

1. Histograma de frecuencias

Intensidad (r_k)	Frecuencia (n_k)
0	0
1	0
2	0
3	2
4	1
5	1
6	3
7	1

2. Probabilidades y acumuladas

Probabilidad: $p(r_k) = n_k/8$

r_k	$p(r_k)$	CDF $\sum_{j=0}^k p(r_j)$
3	0.25	0.25
4	0.125	0.375
5	0.125	0.500
6	0.375	0.875
7	0.125	1.000

3. Nueva asignación de intensidades

$$s_k = (L-1)\sum_{j=0}^k p(r_j)$$

$$\operatorname{Con} L - 1 = 7:$$

r_k	CDF	s_k
3	0.25	$7\cdot 0.25 = 1.75 pprox 2$
4	0.375	$7\cdot 0.375=2.63pprox 3$
5	0.50	$7\cdot 0.50 = 3.50pprox 4$
6	0.875	$7\cdot 0.875=6.13pprox 6$
7	1.00	$7 \cdot 1.00 = 7.00$

4. Imagen ecualizada

Imagen original:

Imagen ecualizada:

Conclusión: La ecualización redistribuyó los valores, extendiendo mejor el contraste entre 2 y 7.

Código: Ecualización con OpenCV

► Code

Convolución en imágenes

- La **convolución** es la operación matemática que permite aplicar un **kernel** o **máscara** sobre una imagen.
- Cada píxel resultante se obtiene como combinación ponderada de sus vecinos:

$$g(x,y) = \sum_{s=-a}^a \sum_{t=-b}^b H(s,t) \cdot f(x+s,y+t)$$

Filtrado espacial

ullet Consiste en aplicar una **máscara o kernel** H a la imagen:

$$g(x,y) = \sum_{s=-a}^a \sum_{t=-b}^b H(s,t) \cdot f(x+s,y+t)$$

- Donde:
 - f(x,y) = imagen original
 - g(x,y) = imagen filtrada
 - lacksquare H = kernel de tamaño (2a+1) imes (2b+1)

Ejemplo de kernel promedio 3x3

$$H = rac{1}{9} egin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Filtro Promedio (Blur)

• El valor del píxel se reemplaza por el **promedio aritmético** de los píxeles en una ventana k imes k.

$$g(x,y) = rac{1}{k^2} \sum_{s=-a}^{a} \sum_{t=-b}^{b} f(x+s,y+t)$$

Kernel:

$$H = rac{1}{k^2} egin{bmatrix} 1 & 1 & \cdots & 1 \ 1 & 1 & \cdots & 1 \ dots & dots & dots \ 1 & 1 & \cdots & 1 \end{bmatrix}$$

Ejemplo paso a paso

Imagen local (parche 3x3):

$$egin{bmatrix} 10 & 20 & 30 \ 40 & 50 & 60 \ 70 & 80 & 90 \end{bmatrix}$$

Kernel de suavizado:

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Resultado para el píxel central = $\frac{1}{9}(10+20+\cdots+90)=50$.

¿Qué pasa en los bordes?

- Al aplicar un kernel, algunos vecinos quedan fuera de la imagen.
- Estrategias comunes de relleno (padding):
 - **Zero padding**: rellena con ceros.
 - Replicate padding: repite el valor de la orilla.
 - Reflect padding: refleja los valores como en un espejo.
 - Valid convolution: solo se calculan píxeles donde el kernel cabe completo.

Ejemplo en OpenCV

► Code

Filtro Gaussiano

Filtro de Mediana

- Es un método no lineal.
- En una ventana $k \times k$, reemplaza el valor del píxel por la **mediana** de los valores en esa ventana.

$$g(x,y) = \mathrm{mediana}\{f(x+s,y+t) \mid -a \leq s, t \leq a\}$$

- Preserva bordes mejor que los filtros lineales.
- Muy eficaz contra ruido impulsivo ("sal y pimienta").

Resumen Comparativo

Filtro	Fórmula	Naturaleza	Ventajas	Desventajas
Promedio (Blur)	Promedio aritmético	Lineal	Simple, rápido	Borra bordes y detalles
Gaussiano	Ponderación con distribución normal	Lineal	Suavizado natural, controlado por σ	Más costoso computacionalmente
Mediana	Mediana de intensidades	No lineal	Preserva bordes, elimina ruido impulsivo	Menos eficiente en ventanas grandes

Código: Filtros en OpenCV

► Code

Comparación visual y análisis

- El filtro blur suaviza pero genera pérdida de detalle.
- El filtro gaussiano suaviza de forma más natural.
- El filtro mediana elimina ruido tipo "sal y pimienta" y preserva bordes.

Aprende

Consulta y toma notas de los siguientes materiales:

- Peguero Núñez, P. D. Realce y restauración de imágenes
- Giménez-Palomares, F. et al. (2016). Convolución y filtrado de imágenes
- León-Batallas, A. et al. (2020). Revisión de métricas
- Mazet, V. (2021). Histogram transformations
- Mazet, V. (2021). Filtering
- OpenCV. (s.f.). Operaciones aritméticas

CIMAT - INFOTEC

Conclusión

- El histograma describe la distribución de intensidades.
- La ecualización mejora el contraste redistribuyendo los niveles.
- Los filtros espaciales suavizan o reducen ruido:
 - Media → suaviza más, pero pierde bordes.
 - Gaussiano → transición suave, natural.
 - Mediana → preserva bordes, elimina ruido impulsivo.
- Comprender la matemática de matrices y convolución es clave para usar y diseñar filtros.