ASSIGNMENT 0- BINARY ADDER

OBJECTIVE

The objective is to design and simulate a functional digital circuit that adds two 2-bit binary numbers and produce a 3-bit output

using basic digital logic gates, and reveal report skills using modern collaboration and publishing platforms.

DESIGN

The attached file shows the schematic diagram and the truth table.

TRUTH TABLE

Inputs					Outputs					
Α0	В0	A1	B1	S0	S1	S2	CO	C1	С	
0	0	0	0	0	0	0	0	0	0	
0	0	0	1	0	1	1	0	0	0	
0	0	1	0	0	1	1	0	0	0	
0	0	1	1	0	0	0	0	1	1	
0	1	0	0	1	0	0	0	0	0	
0	1	0	1	1	1	1	0	0	0	
0	1	1	0	1	1	1	0	0	0	
0	1	1	1	1	0	0	0	1	1	
1	0	0	0	1	0	0	0	0	0	
1	0	0	1	1	1	1	0	0	0	
1	0	1	0	1	1	1	0	0	0	
1	0	1	1	1	0	0	0	1	1	
1	1	0	0	0	0	1	1	0	1	
1	1	0	1	0	1	0	1	0	1	
1	1	1	0	0	1	0	1	0	1	
1	1	1	1	0	0	1	1	1	1	

SIMULATION AND RESULTS

The attached screenshots show the combinations of the two 2-bit binary numbers and their results.

TESTING STRATEGY WITH TESTING CASES

We used sequence generator to add all our inputs to the half adders and also used LED to determine our outputs. When the LED lights red the output is 1 and when the LED does not light the output is 0. The outputs we obtained when using a sequence generator corresponds to those we obtained when adding numbers manually in either decimal form or binary form. The 2-bit binary numbers that were used to test our adder are 00,01,10,11. For example, the expected 3-bit number when adding 0 and 1 is 1, which is 00 + 01 = 001 and the expected 3-bit number when adding 2 and 3 is 5, which is 10 + 11 = 105. With these test cases, we verified that our 2-bit binary adder gives expected outcomes.

CHALLENGES FACED

In order for us to add a carry from the first half adder and the sum of the most significant bit from the second adder, we had to include another exclusive-or-gate. The 2-bit binary adder works as expected except for the combination of 01 + 01 which gives an unexpected outcome.

CONCLUSION

This project effectively demonstrated our capabilities in designing, simulating, and documenting a digital circuit that operates as a 2-bit binary adder using fundamental digital logic gates. By incorporating two half adders and a single OR gate, we successfully achieved the task of adding two 2-bit binary numbers and producing a 3-bit output, which includes both sum bits and the carry-out bit.