Лабораторая работа 4.10

Поляризация света. Законы Малюса и Брюстера

Выполнил: Коняхин Всеволод Владимирович, М32051

Краткие теоретические сведения

Поперечные волны обладают особым, присущим только им, свойством, известным под названием поляризация.

Если при распространении световой волны направление колебаний электрического вектора \vec{E} бессистемно, хаотически изменяется с равной амплитудой и, следовательно, любое его направление в плоскости, перпендикулярной распространению волны, равновероятно, то такой свет называют неполяризованным, или естественным. Если колебания электрического вектора фиксированы строго в одном направлении, свет называется линейно- или плоско-поляризованным. В этом случае плоскость, образованная направлением распространения электромагнитной волны и направлением колебаний вектора напряженности электрического поля, называется плоскостью поляризации электромагнитной волны.

Закон Малюса:

$$E_2 = E_1 \cdot \cos \phi$$

$$I_2 = I_1 \cdot \cos^2 \phi$$

Одной из количественных характеристик поляризации является **степень поляризации** P. Для ее определения измеряется интенсивность прошедшего света при вращении поляризатора вокруг направления светового пучка. Определяются максимальная I_{max} и минимальная I_{min} интенсивности (соответствующие двум ортогональным ориентациям поляризатора) и вычисляется величина P по формуле:

$$P = \frac{I_{max} - I_{min}}{I_{max} + I_{min}}$$

Закон Брюстера:

Соответствующую зависимость в 1815 г. установил шотландец Дэвид Брюстер. Как показали опыты, отраженный луч оказывается полностью поляризованым (колебания вектора в нем перпендикулярны плоскости падения) в случае, когда угол между отраженным и преломленным лучом равен 90°. Прошедший луч поляризован частично и содержит преимущественно параллельную составляющую вектора \vec{E} .

$$R^{\parallel} = \left(\frac{E_{refl}^{\parallel}}{E_{fal}^{\parallel}}\right)^2 = \frac{\tan^2(\phi - \psi)}{\tan^2(\phi + \psi)}$$

$$R^{\perp} = \left(\frac{E_{refl}^{\perp}}{E_{fol}^{\perp}}\right)^2 = \frac{\sin^2(\phi - \psi)}{\sin^2(\phi + \psi)}$$

$$\frac{n_2}{n_1} = \frac{\sin \phi}{\sin \psi} = \frac{\sin \phi}{\sin(\frac{\pi}{2} - \phi)} = \frac{\sin \phi}{\cos \phi} = \tan \phi$$

$$\tan \phi_{br} = \frac{n_2}{n_1} = n_{21}$$

Соответствующий угол падения называют углом Брюстера.

Степень поляризации преломленной волны при угле падения, равном углу Брюстера, достигает максимального значения, однако эта волна остается лишь частично поляризованной со степенью поляризации:

$$P = \frac{(n^2 - 1)^2}{2(n^2 + 1)^2 - (n^2 - 1)^2}$$

Для границы воздух–стекло степень поляризации прошедшего света всего 8%. Повысить ее можно путем ряда последовательных отражений и преломлений. Это осуществляют с помощью так называемой стопы Столетова, состоящей из нескольких одинаковых и параллельных друг другу пластинок, установленных под углом Брюстера к падающему свету

Цель работы

Исследование характера поляризации лазерного излучения и экспериментальная проверка законов Малюса и Брюстера.

Рабочие формулы и исходные данные

Формулы

$$P = \frac{I_{max} - I_{min}}{I_{max} + I_{min}}$$

$$I_{\text{OTH}} = \frac{I}{I_{max}}$$

$$K_{\parallel} = \frac{I_{max}}{I_{n}}$$

$$K_{\perp} = \frac{I_{min}}{I_{\Pi}}$$

$$\tan \phi_{br} = \frac{n_2}{n_1} = n_{21}$$

$$P = \frac{(n^2 - 1)^2}{2(n^2 + 1)^2 - (n^2 - 1)^2}$$

Исходные данные

 $I_o = 1.505$ - относительная интенсивность лазера $I_{
m II}$, не ослабленная поляризатором

 $I_o' = 1.505$ - относительная интенсивность источника белого света, не ослабленная поляризатором

I' = 0.450 - относительная интенсивность света, прошедшего через поляризатор

 $I_{\it max} = 0.568, I_{\it min} = 0.448$ - максимальное и минимальное значение интенсивности отраженного луча

 $\phi_{br} = 59^{\circ}$ - угол Брюстера

Схема установки

- 1. Верхняя пластина
- 2. Стойка с фильтрами
- 3. Защитный экран
- 4. Поляризатор
- 5. Поляризатор (аналог 4)
- 6. Блок для измерения угла Брюстера
- 7. Анализатор (аналог 4)
- 8. Стойка
- 9. Вертикальная шкала
- 10. Основание установки
- 11. Электронный блок
- 12. Индикатор измерений блока амперметра-вольтметра
- 13. Индикатор режима измерений блока амперметра-вольтметра
- 14. Индикатор включенного источника
- 15. Регулятор накала белого осветителя
- 16. Кнопка переключения режима измерений блока амперметр-вольтметр
- 17. Кнопка включения лазера
- 18. Ручка установки относительной интенсивности «J/J0»

- 19. Кнопка переключения фотоприёмников
- 20. Индикатор относительной интенсивности излучения;
- 21. Индикатор включенного фотоприёмника
- 22. Кнопка "Сеть"
- 23. Окно фотоприёмников белого осветителя
- 24. Окно фотоприёмника лазерного излучения

In [1]:

```
import sympy
import scipy
import numpy as np
import pandas as pd
from scipy.signal import argrelextrema
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (10,5)
%matplotlib inline
```

Результаты измерений и расчеты

Упражнение 1. Проверка Закона Малюса

 $I_o = 1.505$ - относительная интенсивность лазера $I_{\scriptscriptstyle \Pi}$, не ослабленная поляризатором

 $I_o' = 1.505$ - относительная интенсивность источника белого света, не ослабленная поляризатором

I' = 0.450 - относительная интенсивность света, прошедшего через поляризатор

Излучение лазера

In [83]:

Out[83]:

	ϕ , градусы	I_1	I_2	I_{mean}
0	0	0.826	0.835	0.8305
1	10	0.776	0.768	0.7720
2	20	0.671	0.703	0.6870
3	30	0.604	0.600	0.6020
4	40	0.469	0.479	0.4740
5	50	0.321	0.316	0.3185
6	60	0.206	0.192	0.1990
7	70	0.107	0.110	0.1085
8	80	0.036	0.029	0.0325
9	90	0.003	0.004	0.0035
10	100	0.018	0.011	0.0145
11	110	0.069	0.076	0.0725
12	120	0.176	0.145	0.1605
13	130	0.274	0.263	0.2685
14	140	0.405	0.353	0.3790
15	150	0.495	0.513	0.5040

гду α - угол поворота анализатора, I_1 и I_2 - интенсивности луча, прошедшего через анализатор для двух экспериментов.

 I_{mean} - среднее значение двух экспериментов.

In [62]:

```
def polarization_degree(i_max, i_min):
    degree = (i_max - i_min) / (i_max + i_min)
    return degree
```

In [63]:

```
print('Степень поляризации лазерного излучения: {:.3f}'.format(polarization_degree(
    max(lazer_df['$I_{mean}$']), min(lazer_df['$I_{mean}$']))))
```

Степень поляризации лазерного излучения: 0.992

Найдем максимальную интенсивнность, чтобы в дальнейшем получить относителные интенсивности.

In [72]:

```
I_max = max(max(lazer_df['$I_1$']), max(lazer_df['$I_2$']))
print('I max: {}'.format(I_max))

I_min = min(min(lazer_df['$I_1$']), min(lazer_df['$I_2$']))
print('I min: {}'.format(I_min))

phi_max = 0
print('Phi max: {}'.format(phi_max))
```

I max: 0.835 I min: 0.003 Phi max: 0

Построим таблицу с относительными значениями:

In [65]:

```
lazer_rel_df = pd.DataFrame({
    '$\phi$, градусы': [i * 10 for i in range(16)]
})

lazer_rel_df['$I_{rel1}$'] = lazer_df['$I_1$'] / I_max
lazer_rel_df['$I_{rel2}$'] = lazer_df['$I_2$'] / I_max
lazer_rel_df['$I_{rel}$'] = (lazer_rel_df['$I_{rel1}$'] + lazer_rel_df['$I_{rel2}$']
lazer_rel_df
```

Out[65]:

	ϕ , градусы	I_{rel1}	I_{rel2}	I_{rel}
0	0	0.989222	1.000000	0.994611
1	10	0.929341	0.919760	0.924551
2	20	0.803593	0.841916	0.822754
3	30	0.723353	0.718563	0.720958
4	40	0.561677	0.573653	0.567665
5	50	0.384431	0.378443	0.381437
6	60	0.246707	0.229940	0.238323
7	70	0.128144	0.131737	0.129940
8	80	0.043114	0.034731	0.038922
9	90	0.003593	0.004790	0.004192
10	100	0.021557	0.013174	0.017365
11	110	0.082635	0.091018	0.086826
12	120	0.210778	0.173653	0.192216
13	130	0.328144	0.314970	0.321557
14	140	0.485030	0.422754	0.453892
15	150	0.592814	0.614371	0.603593

Построение графика зависимости нормированной интенсивности $I_{\rm OTH}$ от угла ϕ поворота поляроида в полярных координатах; графика зависимости $\cos^2(\phi-\phi_{\it m})$ от угла ϕ поворота поляроида

In [69]:

```
fig, ax = plt.subplots(figsize=(20, 5))
ax.set_title('Зависимость нормированной интенсивности от угла поворота')

ax.scatter(lazer_rel_df['$\phi$, градусы'], lazer_rel_df['$I_{rel}$'], c='r')
ax.plot(lazer_rel_df['$\phi$, градусы'], lazer_rel_df['$I_{rel}$'], 'r--', label='$

ax.scatter(lazer_rel_df['$\phi$, градусы'], (np.cos((lazer_rel_df['$\phi$, градусы'
ax.plot(lazer_rel_df['$\phi$, градусы'], (np.cos((lazer_rel_df['$\phi$, градусы'] -
ax.legend()

plt.show()
```


Исходя из графика выше, поскольку относительная интенсивность лазерного излучения очень похожа на график $\cos^2(\phi-\phi_m)$, можно утверждать, что лазерное излучение обладает линейным видом поляризации

Найдем коэффициенты пропускания использованного поляроида для параллельной и перпендикулярной ориентации его плоскости пропускания

In [81]:

```
K_parallel = I_max / I_o  
K_bot = I_min / I_o  
print('Koэффициенты: K parallel: \{:.5f\}, K_bot: \{:.5f\}'.format(K_parallel, K_bot))
```

Коэффициенты: K parallel: 0.55482, K_bot: 0.00199

Излучение белого света

In [22]:

Out[22]:

	ϕ , градусы	I_1	I_2	I_{mean}
0	0	0.450	0.491	0.4705
1	10	0.465	0.480	0.4725
2	20	0.478	0.480	0.4790
3	30	0.493	0.482	0.4875
4	40	0.486	0.486	0.4860
5	50	0.560	0.465	0.5125
6	60	0.490	0.475	0.4825
7	70	0.485	0.466	0.4755
8	80	0.483	0.464	0.4735
9	90	0.475	0.460	0.4675
10	100	0.473	0.468	0.4705
11	110	0.483	0.456	0.4695
12	120	0.490	0.474	0.4820
13	130	0.510	0.491	0.5005
14	140	0.522	0.514	0.5180
15	150	0.528	0.503	0.5155

гду α - угол поворота анализатора, I_1 и I_2 - интенсивности луча белого света, прошедшего через анализатор для двух экспериментов. I_{mean} - среднее значение двух экспериментов.

In [82]:

```
print('Степень поляризации излучения белого света: {:.3f}'.format(polarization_degr
max(light_df['$I_{mean}$']), min(light_df['$I_{mean}$']))))
```

Степень поляризации излучения белого света: 0.051

Построение зависимости $\frac{I}{I'}(\phi)$ для белого света

In [99]:

```
fig, ax = plt.subplots(figsize=(20, 5))
ax.set_title('Зависимость нормированной интенсивности от угла поворота')
ax.scatter(lazer_rel_df['$\phi$, градусы'], lazer_rel_df['$I_{rel}$'], c='r')
ax.plot(lazer_rel_df['$\phi$, градусы'], lazer_rel_df['$I_{rel}$'], 'r--', label='$
ax.scatter(light_df['$\phi$, градусы'], light_df['$I_{mean}$'] / I_prime, c='g')
ax.plot(light_df['$\phi$, градусы'], light_df['$I_{mean}$'] / I_prime, 'g--', label
ax.scatter(lazer_rel_df['$\phi$, градусы'], (np.cos((lazer_rel_df['$\phi$, градусы'] -
ax.legend()
plt.show()
```


Упражнение 2. Проверка Закона Брюстера

 $I_{max} = 0.568, I_{min} = 0.448$ - максимальное и минимальное значение интенсивности отраженного луча $\phi_{br} = 59^{\circ}$ - угол Брюстера

Экспериментальные значения:

In [101]:

Out[101]:

	ϕ , градусы	I_1	I_2
0	30	1.076	1.069
1	32	1.073	1.063
2	34	1.071	1.061
3	36	1.066	1.058
4	38	1.063	1.057
5	40	1.061	1.054
6	42	1.059	1.054
7	44	1.055	1.051
8	46	1.051	1.041
9	48	1.046	1.043
10	50	1.038	1.040
11	52	1.028	1.028
12	54	1.018	1.014
13	56	1.006	0.999
14	58	0.988	0.986
15	60	0.972	0.976
16	62	0.955	0.958
17	64	0.926	0.926

гду ϕ - угол наклона стеклянной пластинки, I_1 и I_2 - интенсивность прошедшего света в прямом и обратном направлениях, соответственно.

In [111]:

```
n_21 = np.tan(phi_br * np.pi / 180)
print('Показатель преломления второй среды относительно первой: {:.3f}'.format(n_21
```

Показатель преломления второй среды относительно первой: 1.664

```
In [112]:
```

```
pl = polarization_degree(max(max(df2['$I_1$']), max(df2['$I_2$'])), min(min(df2['$Iprint('Степень поляризации света после прохождения его через пластинку: {:.3f}'.for
```

Степень поляризации света после прохождения его через пластинку: 0.075

In [113]:

```
def partial_polarization(n):
    degree = (n ** 2 - 1) ** 2 / (2 * (n ** 2 + 1) ** 2 - (n ** 2 - 1) ** 2)
    return degree
```

In [114]:

```
print('Степень поляризации света после прохождения его через пластинку теоретическа

◆
```

Степень поляризации света после прохождения его через пластинку теорет ическая: 0.124

In [115]:

```
p3 = polarization_degree(i_max, i_min)
print('Степень поляризации белого света после прохождения его через пластинку: {:.3
```

Степень поляризации белого света после прохождения его через пластинк у: 0.118

Выводы и анализ результатов работы

В данной лабораторной работе были рассмотрены поляризация света, а также законы Малюса и Брюстера.

В первой части работы было предложено проверить закон Малюса для лазера и белого света. Поскольку графики квадрата косинуса и нормированная интенсивность лазерного излучения совпали, то можно утверждать, что лазерное излучение обладает линейной поляризацией. Были найдены коэффициенты пропускания использованного поляроида для параллельной и перпендикулярной ориентации его плоскости пропускания. Также было рассмотрено и излучение белого света: его степень поляризованности получилась меньше, поскольку изначально свет неполяризован; однако и для белого света верно, что пройдя через поляризатор, он стал линейно поляризован.

Во второй части работы был вычислен показатель преломления среды по найденному углу Брюстера $n_{21}=1.664, \phi_{br}=59^\circ$. Были получены три числа для степени поляризации белого света через пластинкку: два экспериментальных и одно теоретическое. Эти три числа соотносятся друг с другом в пределах погрешности.