

Contents

1	\mathbf{Est}	imación por Regiones de Confianza
	1.1	Intervalos de confianza
	1.2	Métodos de obtención de intervalos de confianza
		1.2.1 Método de la cantidad pivotal
		1.2.2 Método de Neyman
	1.3	Regiones de confianza bayesianas
	1.4	Ejercicios
2	Cor	ntraste de Hipótesis
	2.1	Principios básicos de un contraste de hipótesis
	2.2	Errores de tipo I y de tipo II
		Test uniformemente más potente de tamaño α
		Hipótesis nula simple frente a alternativa simple

1 Estimación por Regiones de Confianza

Ejemplo

Tomemos como ejemplo de entrada a este tema un caso en el que un lanzador de jabalina quiere estimar la distancia real promedio, es decir, su media, μ . Para ello realizamos varias mediciones (muestras) y medimos las distancias. Estos datos se supone que son una m.a.s. de tamaño n de una distribución normal $X \sim N(\theta, \sigma^2)$ con σ conocida. Parece normal suponer que cada x_i distará de μ una cantidad aaleatoria con distribución $Normal(\theta, \sigma^2) - \theta \equiv N(0, \sigma^2)$.

Queremos estimar la media (poblacional) por lo que debemos saber que la media muestral se rige por la distribución $N(\theta, \frac{\sigma^2}{n})$. De manera que si queremos saber en qué intervalo está la media poblacional μ con una probbilidad del 95%.

Antes de ello, simplifiquemos un poco el trabajo y tomemos $Z = \frac{\bar{X} - \theta}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$. Ahora tengamos en cuenta que lo que queremos es calcular un intervalo de manera que:

$$P\{-x \le Z \le x\} = 0.95 \iff x \equiv 1.96 \text{(mirando la tabla de la normal)}$$

$$\implies P\{-1.96 \le Z \le 1.96\} = 0.95 \iff P\{-1.96 \le \frac{\bar{X} - \theta}{\frac{\sigma}{\sqrt{n}}} \le 1.96\} = 0.95 \iff P\{\bar{X} - \frac{\sigma}{\sqrt{n}} \cdot 1.96 < \theta < \bar{X} + \frac{\sigma}{\sqrt{n} \cdot 1.96}\} = 0.95 \implies$$

Cualquier valor de θ que esté dentro del intervalo aleatorio $(\bar{X} - \frac{\sigma}{\sqrt{n}} \cdot 1.96, \bar{X} + \frac{\sigma}{\sqrt{n} \cdot 1.96})$ tiene una probabilidad del 95% de contener el valor real de la media poblacional μ .

Veamos su aplicación a un caso real:

Pongamos que el lanzados lanza la jabalina 6 veces $\implies n = 6$ y que salen los siguientes valores:

89.90 90.02 89.92 91.10 88.71 90.51
$$\Longrightarrow$$

$$\begin{cases} \bar{X} = 90.03 \\ \sigma = 0.8 \end{cases}$$

Todos estos datos nos dan lugar a que el intervalo de confianza sea:

$$(\bar{X} - \frac{\sigma}{\sqrt{n}} \cdot 1.96, \bar{X} + \frac{\sigma}{\sqrt{n} \cdot 1.96}) = \left(90.03 - \frac{0.8}{\sqrt{6}} \cdot 1.96, 90.03 + \frac{0.8}{\sqrt{6} \cdot 1.96}\right) = (89.39, 90.67)$$

Hay que tener en cuenta, que una vez calculado el intervalo, éste ya es fijo y no cambia, de manera que el parámetro θ también lo es y sólo hay dos posibilidades, que esté dentro o que esté fuera y es cómo una moneda ideal, la probabilidad es del 50%. La probabilidad del 95% es que si tomamos varias muestras y sus intervalos correspondientes, el 95% de ellos contendrán el valor real del parámetro θ .

1.1 Intervalos de confianza

Definición 1.1.1 [Región de confianza]

Sea $C(X_1, ..., X_n) \subset \Theta$ una región aleatoria del espacio paramétrico tal que:

$$P_{\theta} \{ \theta \in C(X_1, \dots, X_n) \} \ge 1 - \alpha, \forall \theta \in \Theta$$

Entones para cada $x_1, \ldots, x_n \in \chi^n$, $C(x_1, \ldots, x_n)$ se denomina región de confianza para θ de nivel $1-\alpha$

Ejemplo

Sea por ejemplo $X \sim N(\theta, \sigma^2)$ con σ_0 conocida y $\left(\bar{X} - \frac{\sigma_0}{\sqrt{n}} \ddagger_{\frac{\alpha}{\epsilon}}, \bar{X} + \frac{\sigma_0}{\sqrt{n}} \ddagger_{\frac{\alpha}{2}}\right)$ es un intervalo de grado de confianza $1 - \alpha$ para media θ y con $z_{\frac{\alpha}{2}}$ tal que $\Phi(z_{\frac{\alpha}{2}}) = 1 - \frac{\alpha}{2}$, donde Φ es la función de distribución de la normal estándar N(0,1)

Definición 1.1.2 [Intervalos de confianza]

Sea $h: \Theta \to \mathbb{R}, \alpha \in (0,1)$ y $T_1 = T_1(X_1, \dots, X_n): \chi^n \to \mathbb{R}$ y $T_2 = T_2(X_1, \dots, X_n): \chi^n \to \mathbb{R}, T_1 \leq T_2,$ dos estadísticos unidimensionales tales que

$$P_{\theta}\left\{T_1\left(X_1,\ldots,X_n\right) \leq h(\theta) \leq T_2\left(X_1,\ldots,X_n\right)\right\} \geq 1-\alpha, \forall \theta \in \Theta$$

Entonces, para cada $(x_1, \ldots, x_n) \in \chi^n$, $(T_1(x_1, \ldots, x_n), T_2(x_1, \ldots, x_n))$ se denomina intervalo de confianza para $h(\theta)$ de nivel $1 - \alpha$

Observación 1.1.1 [Explicación de la definición]

- $h(\theta)$ es una función del parámetro θ que se desea estimar, por ejemplo la media poblacional μ
- T₁ y T₂ son dos estadísticos dependientes de la muestra
- El intervalo $(T_1(\vec{x}), T_2(\vec{x}))$ cambia cada vez que tomas una muestra diferente
- La probabilidad que ese intervalo contenga el valor real de $h(\theta)$ debe ser al menos $1-\alpha$

Se construye un intervalo usando una muestra tomada, de modo que sin importar el valor real del parámetro θ , hay algmenos una probabilidad de $1-\alpha$ de probabilidad de que el alor real esté dentro del intervalo.

Observación 1.1.2

Siempre es deseable hacer que la medida de la región de confianza sea mínima (en términos de medida-longitud), entre todas las del mismo grado de confianza $1-\alpha$

Ejemplo

Veamos un ejemplo explicativo de la observación anterior:

En el primer ejemplo de este tema, vemos cómo calcular un intervalo que contiene el 95% del área bajo la curva de la normal, no obstante el intervalo anterior se obtuvo de forma arbitraria, pero haciendo uso de la simetría de la normal. Si quisieramos, por ejemplo, podríamos tomar que un intervalo que deja fuera a la izquierda un 1% y a la derecha un 4%, de manera que dan un intervalo de aproximadamente (-2.33, 1.75).

No obsante podemos comparar la longitud de los intervalos para entender la observación:

$$\begin{cases} \text{Intervalo 1:} & (-1.96, 1.96) \implies \text{Longitud} = 3.92 \\ \text{Intervalo 2:} & (-2.33, 1.75) \implies \text{Longitud} = 4.08 \end{cases}$$

1.2 Métodos de obtención de intervalos de confianza

1.2.1 Método de la cantidad pivotal

Definición 1.2.1 [Cantidad pivotal]

Una cantidad pivotal es una función de la muestra y del parámetro desconocido, que tiene una distribución conocida independiente del valor del parámetro. Es decir,

$$Q(X_1,\ldots,X_n;\theta)$$

Donde Q es a cantidada pivotal, X_1, \ldots, X_n son los datos de la muestra $y \theta$ es el parámetro desconocido que queremos estimar.

Teorema 1.2.1 [Método de la cantidad pivotal]

Si $T = T(X_1, ..., X_n; \theta)$ es una cantidad pivotal monótonamente creciente $\forall \vec{x} \in \chi^n$, fijado cualquier nivel de confianza $1 - \alpha$, $\alpha \in (0, 1)$ se pueden determinar dos contantes $c_1(\alpha)$ y $c_2(\alpha) \in \mathbb{R}$ (que no son únicas), tales que:

$$P_{\theta}\{c_1(\alpha) \leq T(X_1, \dots, X_n; \theta) \leq c_2(\alpha)\} \geq 1 - \alpha, \forall \theta \in \Theta$$

Si para cada $(x_1, \ldots, x_n) \in \chi^n$, $c_1(\alpha) \leq T(x_1, \ldots, x_n; \theta) \leq c_2(\alpha) \Leftrightarrow T_1(x_1, \ldots, x_n; \alpha) \leq h(\theta) \leq T_2(x_1, \ldots, x_n; \alpha)$, entonces $(T_1(x_1, \ldots, x_n; \alpha), T_2(x_1, \ldots, x_n; \alpha))$ es un intervalo de confianza para $h(\theta)$ de nivel $1 - \alpha$

Ejemplo

Para una m.a.s.(n) de $X \sim N(\mu, \sigma), \sigma$ conocida y μ desconocida

$$IC_{1-\alpha}(\mu) = \left(\bar{x} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)$$

es un intervalo de confianza para μ de nivel $1-\alpha, \alpha \in (0,1)$

Para demostrar esto, utilizaremos el teorema de fisher, segun el cual $\overline{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}})$, entonces:

$$\frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$$

$$P(z_{\frac{\alpha}{2}} \le \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \le z_{\frac{\alpha}{2}}) \ge 1 - \alpha \implies P(\bar{X} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}) \ge 1 - \alpha$$

Y asi finalmente se deduce el intervalo dado.

Ejemplo

Para una m.a.s.(n) de $X \sim N(\mu, \sigma), \sigma$ desconocida y μ desconocida. En este caso tenemos que el estadístico $\frac{\bar{X} - \mu}{\sqrt{n}}$ no puede usarse ya que tiene dos parámetros desconocidos, por lo que usaremos los estimadores insesgados de los parámetros \bar{X} y S^2 :

$$\frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1) \qquad \frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2 \implies t_{n-1} = \frac{N(0, 1)}{\sqrt{\chi_{n-1}^2}} \iff$$

$$\iff \frac{\frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}}}{\sqrt{\chi_{n-1}^2}} \sqrt{\frac{\frac{(n-1)S^2}{\sigma^2}}{n-1}} = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}$$

En este nuevo caso, el estadístico sólo tiene un parámetro, pero se distribuye con una distribución t de Student que es independiente del mismo. Los intervalos de confianza ahora se calculan de la forma:

$$P\left\{-t_{\frac{\alpha}{2}} \leq \frac{\bar{X} - \mu}{\frac{S^2}{\sqrt{n}}} \leq t_{\frac{\alpha}{2}}\right\} = 1 - \alpha \iff$$

$$\iff P\left\{-t_{\frac{\alpha}{2}} \cdot \frac{S}{\sqrt{n}} \leq \bar{X} - \mu \leq t_{\frac{\alpha}{2}} \cdot \frac{S}{\sqrt{n}}\right\} \iff$$

$$\iff P\left\{\bar{X} - t_{\frac{\alpha}{2}} \cdot \frac{S}{\sqrt{n}} \leq \mu \leq \bar{X} + t_{\frac{\alpha}{2}} \cdot \frac{S}{\sqrt{n}}\right\} = 1 - \alpha$$

Dado que este es un caso especial en el que ambos parámetros son desconocidos, el intervalo de confianza anterior es el de μ pero podríamos calcular también el de σ^2 , para ello y al contrario que antes, podemos usar el estimador $T \equiv \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$ ya que sólo depende de un parámetro y es independiente del mismo, cosa que no ocurría en el caso de μ . Por lo que el intervalo de confianza para σ^2 sería:

$$P\left\{\chi_{\frac{\alpha}{2}}^{2} \leq \frac{(n-1)S^{2}}{\sigma^{2}} \leq \chi_{1-\frac{\alpha}{2}}^{2}\right\} = 1 - \alpha \iff$$

$$\iff P\left\{\frac{1}{\chi_{\frac{\alpha}{2}}^{2}} \leq \frac{\sigma^{2}}{(n-1)S^{2}} \leq \frac{1}{\chi_{1-\frac{\alpha}{2}}^{2}}\right\} \iff$$

$$\iff P\left\{\frac{(n-1)S^{2}}{\chi_{1-\frac{\alpha}{2}}^{2}} \leq \sigma^{2} \leq \frac{(n-1)S^{2}}{\chi_{\frac{\alpha}{2}}^{2}}\right\} = 1 - \alpha$$

Observación 1.2.1

Dada la independencia del estimador $T \equiv \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$ de otros parámetros, el caso en el que μ es conocida y σ^2 no lo es, se puede resolver de la misma manera.

Ejemplo

Sean dos variables aleatorias: $\begin{cases} X \sim N(\mu_x, \sigma_x^2) \\ Y \sim N(\mu_y, \sigma_y^2) \end{cases} \implies \begin{cases} \bar{X} \sim N(\mu_x, \frac{\sigma_x^2}{n}) \\ \bar{Y} \sim N(\mu_y, \frac{\sigma_y^2}{m}) \end{cases}$ Calculemos el intervalo de confianza para $\mu_x - \mu_y$: NO ENTIENDO CÓMO TERMINARLO

Ejemplo

Pongámonos en el caso anterior, con dos variables aleatorias X e Y independientes con σ_x^2 y σ_y^2 desconocidas y queremos calcular el intervalo de confianza para $\frac{\sigma_x^2}{\sigma_y^2}$. Para ello tenemos que:

$$\frac{\sigma_y^2}{\sigma_x^2} \cdot \frac{S_{n-1}^2}{S_{m-1}^2} = \frac{\frac{(n-1)S_{n-1}^2}{\frac{\sigma_x^2}{n-1}}}{\frac{\sigma_y^2}{\frac{\sigma_y^2}{m-1}}} \sim F_{n-1,m-1} \implies$$

$$P\{f_{n-1,m-1;\frac{\alpha}{2}} \le \frac{\sigma_y^2}{\sigma_x^2} \cdot \frac{S_{n-1}^2}{S_{m-1}^2} \le f_{n-1,m-1;1-\frac{\alpha}{2}}\} = 1 - \alpha \implies$$

$$IC_{1-\alpha}\left(\frac{\sigma_x^2}{\sigma_y^2}\right) = \left(\frac{S_{n-1}^2}{S_{m-1}^2} \cdot f_{n-1,m-1;\frac{\alpha}{2}}, \frac{S_{n-1}^2}{S_{m-1}^2} \cdot f_{n-1,m-1;1-\frac{\alpha}{2}}\right)$$

Ejemplo

Para una m.a.s. (n) de de X, si $\theta \in \mathbb{R}$ y la función de distribución de la población $F_{\theta}(x)$, como función en x es continua y estrictamente monótona $\forall \theta$, y como función de θ es continua y estrictamente monótona $\forall x$, entonces $T = -2\sum_{i=1}^{n} \ln F_{\theta}(X_i) \sim \chi_{2n}^2$ constituye una cantidad pivotal y permite obtener un intervalo de confianza para θ

Para ver este primero fijemonos en que como $F_{\theta}(x)$ es continua y estrictamente monótona, entonces: $Y = F(X|\theta) \sim U(0,1)$. Ahora hagamos el cambio:

$$z = -2\ln(F(X|\theta)) \implies y = e^{-z/2}, \quad \left|\frac{dy}{dz}\right| = \frac{1}{2}e^{-z/2} \implies g(z) = \frac{1}{2}e^{-z/2}$$

Que coincide con la densidad de una variable aleatoria χ^2 con 2 grados de libertad. Asi, sumandolas:

$$T = -2\sum_{i=1}^{n} \ln F(X|\theta) \sim \chi_{2n}^{2}$$

Ahora podemos utilizar los cuantiles para obtener el intervalo de confianza:

$$P(\chi_{2n;1-\frac{\alpha}{2}} \le T \le \chi_{2n;\frac{\alpha}{2}}) \ge 1 - \alpha$$

Por tanto utilizando la monotonia estricta en θ de $F_{\theta}(x)$, y la invertibilidad de las ecuaciones, podemos obtener:

$$\chi_{2n;1-\frac{\alpha}{2}} = T(x_1,\ldots,x_n;\underline{\theta}(x_1,\ldots,x_n))$$

$$\chi_{2n;\frac{\alpha}{2}} = T(x_1,\ldots,x_n;\overline{\theta}(x_1,\ldots,x_n))$$

Finalmente obtenemos el intervalo de confianza:

$$(\underline{\theta}(x_1,\ldots,x_n),\overline{\theta}(x_1,\ldots,x_n))$$

Ejemplo

Construir un intervalo de confianza para θ por el método de la cantidad pivotal basado en una m.a.s. (n) de $f_{\theta}(x) = \theta x^{\theta-1} I_{(0,1)}(x)$, con $\theta > 0$

Utilizando el ejemplo anterior, y como:

$$F_{\theta}(x) = \begin{cases} 0 & x \le 0 \\ x^{\theta} & 0 < x < 1 \\ 1 & x > 1 \end{cases}$$

Es una función continua y estrictamente monótona, entonces:

$$P\left(\chi_{2n;1-\frac{\alpha}{2}}^2 < -2\theta \sum_{i=1}^n \ln X_i < \chi_{2n;\frac{\alpha}{2}}^2 \middle| \theta\right) = 1 - \alpha \quad \forall \theta \in \Theta$$

Y por tanto:

$$P\left\{\frac{\chi_{2n;1-\frac{\alpha}{2}}^2}{-2\sum_{i=1}^n \ln X_i} < \theta < \frac{\chi_{2n;\frac{\alpha}{2}}^2}{-2\sum_{i=1}^n \ln X_i} \middle| \theta \right\} = 1 - \alpha \quad \forall \theta \in \Theta$$

1.2.2 Método de Neyman

Teorema 1.2.2 [Método de Neyman]

Sea una m.a.s. de tamaño n. Si para cualquier $\alpha \in [0,1]$ se puedne encontrar dos funciones $\gamma_1(\theta,\alpha)$ y $\gamma_2(\theta,\alpha)$ y un estadístico $T(\vec{X})$ tales que:

$$P\{\gamma_1(\theta,\alpha) < T(\vec{X}) < \gamma_2(\theta,\alpha)|\theta\} \ge 1 - \alpha$$

y si además las fuciones γ_1 y γ_2 son estrictamente monótonas en θ del mismo sentido y las ecuaciones:

$$\begin{cases} \gamma_1(\theta, \alpha) = T(\vec{X}) \\ \gamma_2(\theta, \alpha) = T(\vec{X}) \end{cases}$$

se pueden invertir para resolverlas en θ en función de $T(\vec{x}) = t$ entonces se puede construir un intervalo para θ de grado de confianza $1 - \alpha$, de la forma:

$$\left(\gamma_1^{-1}(t,\alpha),\gamma_2^{-1}(t,\alpha)\right)$$

Ejemplo

Construir por el método de Neyman un intervalo de confianza de longitud esperada mínima para θ basado en una m.a.s. (n) de $X \sim U(0,\theta)$, con $\theta > 0$. Indicación: utilizar $T = T(X_1, \ldots, X_n) = X_{(n)}$ Para ello utilizaremos la función de distribución del estadistico suficiente $T = X_{(n)}$:

$$F(t|\theta) = \begin{cases} 0 & t \le 0\\ \left(\frac{t}{\theta}\right)^n & 0 < t < \theta\\ 1 & t \ge \theta \end{cases}$$

El metodo de Neyman nos dice que tenemos que dos funciones $\gamma_1(\theta;\alpha)$ y $\gamma_2(\theta;\alpha)$ tales que:

$$P(\gamma_1(\theta;\alpha) < T < \gamma_2(\theta;\alpha)|\theta) \ge 1 - \alpha, \quad \alpha \in [0,1]$$

Asi definimos las siguientes constantes:

$$F(\gamma_1(\theta;\alpha)|\theta) = \alpha_1$$
 $1 - F(\gamma_2(\theta;\alpha)|\theta) = \alpha - \alpha_1$

Donde $\alpha_1 \in [0, \alpha]$ Despejando obtenemos que ambas funciones deben ser:

$$\gamma_1(\theta;\alpha) = \theta(\alpha_1)^{\frac{1}{n}}$$
 $\gamma_2(\theta;\alpha) = \theta(1 - (\alpha - \alpha_1))^{\frac{1}{n}}$

Finalmente, volviendo a la probabilidad y teniendo ya nuestras funciones y nuestro estadistico:

$$P\left(\theta\left(\alpha_{1}\right)^{\frac{1}{n}} < X_{(n)} < \theta\left(1 - (\alpha - \alpha_{1})\right)^{\frac{1}{n}} |\theta\right) \ge 1 - \alpha \Longrightarrow$$

$$P\left(\frac{X_{(n)}}{(1-(\alpha-\alpha_1))^{\frac{1}{n}}} < \theta < \frac{X_{(n)}}{(\alpha_1)^{\frac{1}{n}}} | \theta\right) \ge 1-\alpha$$

Obteniendo asi el intervalo de confianza:

$$\left(\frac{X_{(n)}}{(1-(\alpha-\alpha_1))^{\frac{1}{n}}}, \frac{X_{(n)}}{(\alpha_1)^{\frac{1}{n}}}\right)$$

El cual claramente se minimiza en $\alpha_1 = \alpha$, obteniendo finalmente el intervalo de confianza:

$$IC_{1-\alpha}(\theta) = \left(X_{(n)}, X_{(n)}\alpha^{-\frac{1}{n}}\right)$$

7

Definición 1.2.2 [Intervalos de confianza para muestras grandes]

Si $T_n = T(X_1, ..., X_n)$ es un estimador de $h(\theta)$ tal que

$$\frac{T_n - h(\theta)}{\sigma_n(\theta)} \underset{n \to \infty}{d} N(0, 1) \qquad P_{\theta} \left(-z_{\alpha/2} \le \frac{T_n - h(\theta)}{\sigma_n(\theta)} \le z_{\alpha/2} \right) \underset{n \to \infty}{\longrightarrow} 1 - \alpha$$

Por lo tanto, si puede invertirse la desigualdad anterior, despejando $h(\theta)$, se puede obtener un intervalo de confianza para $h(\theta)$, de nivel aproximado $1-\alpha$, cuando el tamaño muestral es suficientemente grande

Observación 1.2.2

Si se cumplen todas las condiciones de regularidad y la ecuación de verosimilitud tiene una única raíz, $\hat{\theta}_n \xrightarrow[n \to \infty]{c.s.} \theta$, puede tomarse $T_n = \hat{\theta}_n$ y $h(\theta) = \theta$, y como

$$\frac{\hat{\theta}_n - \theta}{\sqrt{\frac{1}{nl_1(\theta)}}} \xrightarrow[n \to \infty]{d} N(0, 1)$$

entonces $\sigma_n(\theta) = \sqrt{\frac{1}{nI_1(\theta)}}$, que si es una función continua puede ser aproximada por $\sigma_n(\hat{\theta}_n)$, lo que facilita la inversión

$$IC_{1-\alpha}(\theta) = \hat{\theta}_n \mp z_{\alpha/2} \sqrt{\frac{1}{nI_1(\hat{\theta}_n)}}$$

Ejemplo

Veamos un ejemplo de la observación anterior: Sea una población con función de densidad:

$$f_{\theta}(x) = \theta e^{-x\theta} \implies f_{\theta}(\vec{x}) = \theta^n e^{\theta \sum x_i} \implies \ln f_{\theta}(\vec{x}) = n \ln \theta - \theta \sum x_i \implies$$

Entonces, calculemos la derivada de a función de verosimilitud para obtener el máximo:

$$\frac{\partial}{\partial \theta} \ln f_{\theta}(\vec{x}) = \frac{n}{\theta} - \sum x_i = 0 \implies \hat{\theta}_n = \frac{n}{\theta} - \sum x_i = 0 \iff \hat{\theta}_n = \frac{n}{\sum x_i} = \bar{x}^{-1}$$

Por la observación sabemos que $V[\hat{\theta}_n] = \frac{1}{nI_1(\theta)}$, por lo que tenemos que calcular la segunda derivada de la función de verosimilitud:

$$\frac{\partial^2}{\partial \theta^2} \ln f_{\theta}(\vec{x}) = -\frac{n}{\theta^2} \implies I_n(\theta) = -E \left[\frac{\partial^2}{\partial \theta^2} \ln f_{\theta}(\vec{x}) \right] = \frac{n}{\theta^2} \implies V[\hat{\theta}_n] = \frac{\theta}{\sqrt{n}} \implies V[\hat{\theta}_n] = \frac{\theta}{\sqrt{n}}$$

Por el Teorema Central del límite sabemos que:

$$\frac{\hat{\theta} - \theta}{\frac{\theta}{\sqrt{n}}} \xrightarrow[n \to \infty]{d} N(0, 1) \implies P\left(-z_{\frac{\alpha}{2}} \le \frac{\hat{\theta}_n - \theta}{\frac{\theta}{\sqrt{n}}} \le z_{\frac{\alpha}{2}}\right) \xrightarrow[n \to \infty]{d} 1 - \alpha \iff P\left(\frac{1}{\bar{X}} - z_{\frac{\alpha}{2}} \frac{1}{\bar{X}\sqrt{n}} \le \theta \le \frac{1}{\bar{X}} + z_{\frac{\alpha}{2}} \frac{1}{\bar{X}\sqrt{n}}\right) \xrightarrow[n \to \infty]{d} 1 - \alpha$$

Comprobar que si $X \sim \text{Bin}(1, \theta)$, entonces

$$IC_{1-\alpha}(\theta) = \bar{x} \mp z_{\alpha/2} \sqrt{\frac{\bar{x}(1-\bar{x})}{n}}$$
$$IC_{1-\alpha}(\theta) = \bar{x} \mp z_{\alpha/2} \frac{1}{2\sqrt{n}}$$

son intervalos de confianza para θ basados en el estimador de mínima varianza para muestras grandes.

Dado que se trata de una $Bin(1,\theta) \equiv Bernoulli(\theta)$, por lo que tenemos que $E[X] = \theta$ y $V(X) = \theta(1-\theta)$, por lo que el estimador de mínima varianza es $\hat{\theta}_n = \bar{x}$. Del que sabemos que $E[\bar{X}] = \theta$ y $V(\bar{X}) = \frac{\theta(1-\theta)}{n}$.

Ahora, gracias al Teorema Central del límite, sabemos que para muestras grandes se cumple que:

$$\frac{\bar{X} - \theta}{\sqrt{\frac{\bar{X}(1 - \bar{X})}{n}}} \xrightarrow[n \to \infty]{d} N(0, 1) \implies P\left(-z_{\frac{\alpha}{2}} \le \frac{\bar{X} - \theta}{\sqrt{\frac{\theta(1 - \theta)}{n}}} \le z_{\frac{\alpha}{2}}\right) \xrightarrow[n \to \infty]{d} 1 - \alpha$$

$$\iff P\left(-z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{\theta(1 - \theta)}{n}} \le \bar{X} - \theta \le z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{\theta(1 - \theta)}{n}}\right) \to 1 - \alpha$$

$$\iff P\left(\bar{X} - z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{\bar{X}(1 - \bar{X})}{n}} \le \theta \le \bar{X} + z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{\bar{X}(1 - \bar{X})}{n}}\right) \xrightarrow[n \to \infty]{d} 1 - \alpha$$

En esta última desigualdad hemos sustituido las apariciones del parámetro θ por su estimador, ya que no lo conocemos.

Ahora veamos el segundo apartado: La varianza del estimador también se podría haber acotado por su máximo y mínimo, es decir:

$$V[\bar{X}] = \frac{\theta(1-\theta)}{n} \implies \frac{\partial}{\partial \theta} \left(\frac{\theta(1-\theta)}{n}\right) = \frac{1}{n} (1-2\theta) = 0 \iff \theta = 0.5 \implies V_{\theta=0.5}[\bar{X}] = \frac{0.25}{n} \implies V[\bar{X}] \le \frac{1}{4n} \implies P\left(\bar{X} - z_{\frac{\alpha}{2}} \cdot \frac{1}{2\sqrt{n}} \le \theta \le \bar{X} + z_{\frac{\alpha}{2}} \cdot \frac{1}{2\sqrt{n}}\right) \xrightarrow[n \to \infty]{d} 1 - \alpha$$

Teorema 1.2.3 [Desigualdad de Tchebychev]

$$P\left(|Y - E[Y]| > k\sqrt{V(Y)}\right) \le \frac{1}{k^2}$$

Ejemplo

Comprobar que si $X \sim \text{Bin}(1, \theta)$, entonces

$$IC_{1-\alpha}(\theta) = \bar{x} \mp \frac{1}{\sqrt{\alpha}} \sqrt{\frac{\bar{x}(1-\bar{x})}{n}}$$
$$IC_{1-\alpha}(\theta) = \bar{x} \mp \frac{1}{\sqrt{\alpha}} \frac{1}{2\sqrt{n}}$$

son intervalos de confianza para θ basados en la desigualdad de Tchebychev.

La desigualdad de Tchebychev nos dice que:

$$P\left(|\bar{X} - E[Y]| > k\sqrt{V[Y]}\right) \le \frac{1}{k^2} \iff$$

$$\iff P\left(|Y - E[Y]| \le k\sqrt{V[Y]}\right) \ge 1 - \frac{1}{k^2} \implies 1 - \alpha = 1 - \frac{1}{k^2} \implies k = \frac{1}{\sqrt{\alpha}}$$

Dado que queremos calcular un intervalo de confianza para θ es necesario buscar un estimador que tenga como esperanza θ y varianza conocida. En este caso, el estimador de mínima varianza es \bar{X} , por lo que tenemos que:

$$P\left(|\bar{X} - \theta| > \frac{1}{\sqrt{\alpha}}\sqrt{\frac{\theta(1 - \theta)}{n}}\right) \le \alpha \iff P\left(-\frac{1}{\sqrt{\alpha}}\sqrt{\frac{\theta(1 - \theta)}{n}} < \bar{X} - \theta < \frac{1}{\sqrt{\alpha}}\sqrt{\frac{\theta(1 - \theta)}{n}}\right) \ge 1 - \alpha$$

$$\iff P\left(\bar{X} - \frac{1}{\sqrt{\alpha}}\sqrt{\frac{\theta(1 - \theta)}{n}} < \theta < \bar{X} + \frac{1}{\sqrt{\alpha}}\sqrt{\frac{\theta(1 - \theta)}{n}}\right) \ge 1 - \alpha$$

$$\iff P\left(\bar{X} - \frac{1}{\sqrt{\alpha}}\sqrt{\frac{\bar{X}(1 - \bar{X})}{n}} < \theta < \bar{X} + \frac{1}{\sqrt{\alpha}}\sqrt{\frac{\bar{X}(1 - \bar{X})}{n}}\right) \ge 1 - \alpha$$

Y bajo la misma premisa que en el ejemplo anterior, podemos sustituir la varianza por su cota superior de manera que el intervalo anterior, nos sale de la forma:

$$\left(\bar{X} - \frac{1}{\sqrt{\alpha}} \frac{1}{2\sqrt{n}} < \theta < \bar{X} + \frac{1}{\sqrt{\alpha}} \frac{1}{2\sqrt{n}}\right)$$

Observación 1.2.3

Los intervalos que se obtienen mediante el método de la desigualdad de Tchebychev son más amplios que los construídos mediante procedimientos específicos a cada modelo de probabilidad

1.3 Regiones de confianza bayesianas

Definición 1.3.1 [Región creible (Intervalos de confianza bayesianos])

Dada una familia de distribuciones de probabilidad $\{f(x_1,\ldots,x_n\mid\theta),\theta\in\Theta\}$, si la información inicial sobre θ viene dada por la función de densidad o de masa $\pi(\theta)$, la región $C(x_1,\ldots,x_n)\subset\Theta$ es una región creíble de probabilidad $1-\alpha$ si

$$P(\theta \in C(x_1,\ldots,x_n) \mid x_1,\ldots,x_n) \ge 1 - \alpha$$

donde esta probabilidad se calcula mediante la distribución final, es decir

$$\int_{C(x_1,\dots,x_n)} \pi\left(\theta \mid x_1,\dots,x_n\right) d\theta \ge 1 - \alpha$$

Ejemplo

Sea $X \sim exp(\frac{1}{\theta})$ calculemos lo siguiente:

1. Intervalo de confianza para θ basado en una m.a.s. (n) de X:

$$X \sim exp(\frac{1}{\theta}) \equiv \gamma(a=1, p=\theta) \implies \frac{2}{\theta} \cdot X \sim exp(\frac{1}{2}) \implies \frac{2\sum x_i}{\theta} \sim \gamma(a=n, p=\frac{1}{2}) \equiv \chi^2_{2n}$$

Entonces estamos ante las condiciones para aplicar el método de la cantidad pivotal:

$$P\left(c_1 \le \frac{2\sum x_i}{\theta} \le c_2\right) = 1 - \alpha \iff IC_{1-\alpha}(\theta) = \left(\frac{2\sum x_i}{c_2}, \frac{2\sum x_i}{c_1}\right)$$

2. Intervalo de confianza para θ basado en una m.a.s. (n) de X y $\theta \sim \gamma(a_0, p_0)$ con a_0, p_0 conocidos:

$$\pi(\theta; \vec{x}) = \frac{\pi(\theta) f_{\theta}(\vec{x})}{\int_{\Theta} \pi(\theta) f_{\theta}(\vec{x}) d\theta} \sim \gamma \left(a_1 = a_0 + n, p_1 = p_0 + n\bar{x} \right)$$

Y ahora sólo queda seguir el mismo razonamiento que antes, tomando:

$$2(p_0 + n\bar{x}) \cdot \theta \sim \gamma(a = a_0 + n, p = \frac{1}{2}) \equiv \chi^2_{2(a_0 + n)}$$

Entonces estamos nuevamente ante las condiciones necesarias para aplicar el método de la cantidad pivotal:

$$P(d_1 \le 2(p_0 + n\bar{x}) \cdot \theta \le d_2) = 1 - \alpha \iff IC_{1-\alpha}(\theta) = \left(\frac{d_1}{2(p_0 + n\bar{x})}, \frac{d_2}{2(p_0 + n\bar{x})}\right)$$

Ejemplo

Sea $(X_1, ..., X_{10})$ una m.a.s. de $X \sim exp(\theta)$ de la que se conoce que $\sum x_i = 32.4$. Calcúlese el IC para $\frac{1}{\theta}$ y contrastarlo con la región creíble, sabiendo que $\pi(\theta) \sim \gamma(a_0 = 4, p_0 = 5)$. Tomando el intervalo de confianza con $\alpha > 0.05$

1. Primero calculemos el intervalo de confianza usual (frecuentista):

$$X \sim exp(\theta) \equiv \gamma(a=1, p=\theta) \implies \sum x_i = n\bar{x} \sim \gamma(a=n, p=\theta) \implies$$

$$\implies 2\theta n\bar{x} \sim \gamma(a=n, p=\frac{1}{2}) \equiv \chi_{2n}^2 \implies P\left(\frac{c_1}{2n\bar{x}} \le \theta \le \frac{c_2}{2n\bar{x}}\right) = 1 - \alpha \implies$$

Ahora sustituyendo los valores, sabiendo que $c_1 = \chi^2_{2n;\frac{\alpha}{2}}$ y $c_2 = \chi^2_{2n;1-\frac{\alpha}{2}}$:

$$c_1 = \chi^2_{20;0.025} = 9.59$$
 $c_2 = \chi^2_{20;0.975} = 34.17 \implies \left(\frac{9.59}{64.8}, \frac{34.17}{64.8}\right) = (0.15, 0.69)$

2. Dado que la exponencial es una gamma, y ésta es autoconjugada, podemos decir (por la teoría vista) que $\pi(\theta; \vec{x}) \sim \gamma(a_1 = a_0 + n, p_1 = p_0 + n\bar{x})$, por lo que si sustuituimos valores llegamos a que:

$$\pi(\theta; \vec{x}) \sim \gamma(a_1 = 4 + 10, p_1 = 5 + 32.4) = \gamma(a_1 = 14, p_1 = 37.4) \implies d_1 \le 2\theta(p_0 + n\bar{x}) \le d_2 \iff \frac{d_1}{2(p_0 + n\bar{x})} \le \theta \le \frac{d_2}{2(p_0 + n\bar{x})}$$

con $d_1 = \chi^2_{28;0.025} = 15.30$ y $d_2 = \chi^2_{28;0.975} = 44.46$, por lo que tenemos que:

$$\left(\frac{15.30}{74.8}, \frac{44.46}{74.8}\right) = (0.20, 0.59)$$

Ejemplo

Haremos el siguiente ejercicio de examen:

- **1** S. e quiere saber si una moneda, cuya probabilidad de cara es θ es o no sesgada, para ello se arroja 16 veces y se observan 10 caras. Si la información inicial sobre θ viene dada mediante una Beta(p=2,q=2), se da la función de densidad y se pide:
 - 1. Determínese para θ un intervalo creíble con colas iguales de probabilidad 0.95
 - 2. Contrástese $H_0: \theta \leq 0.5$ frente a $H_1\theta > 0.5$. Quizá necesita para una distribución Beta(p = 12, q = 8) se cumple que siendo F su función de distribución:

$$F(0.3447) = 0.01$$
 $F(0.383) = 0.025$ $F(0.5) = 1.18$

$$F(0.738) = 0.9$$
 $F(0.797) = 0.975$ $F(0.8267) = 0.99$

Solución:

Como es el lanzamiento de una moneda $\implies X \sim Bernoulli(\theta) \equiv Bin(1,\theta)$

Además, sabemos que n=16, $\sum x_i=10$ y $\theta \sim Beta(p=2,q=2)$, y nos piden calcular una región creíble con $\alpha=0.05$, entonces:

$$\pi(\theta; \vec{x}) = \frac{\pi(\theta) f_{\theta}(\vec{x})}{\int_{\Theta} \pi(\theta) f_{\theta}(\vec{x}) d\theta} \sim Beta(p_1 = p_0 + n\bar{x}, q_1 = q_0 + n - n\bar{x}) \equiv Beta(p_1 = 12, q_1 = 8)$$

1. El enunciado nos dice que demos el intervalo que contenga al 95% de la probabilidad con colas iguales, ésto es que demos el intervalo (a,b) tal que: $P(a<\theta< b)=0.95=P(\theta< b)-P(\theta< a)$. Ahora con este planteamiento más claro podemos ver que gracias a los datos del enunciado tenemos que:

$$\begin{cases} F(0.797) = P(\theta < 0.797) = 0.975 \\ F(0.383) = P(\theta < 0.383) = 0.025 \end{cases} \implies P(0.383 \le \theta \le 0.797) = 0.95 \implies (a, b) = (0.383, 0.797)$$

2. Este apartado es un contraste de hipótesis del tema siguiente que ya veremos más adelante.

Ejemplo -

Sea $X \sim N(\theta, 1)$ con $\theta \sim N(0, 1)$ con $\alpha = 0.05$

1. Calculemos primero un interalo de confianza según el enfoque frecuentista: Para ello será necesario tipificar la variable: $N(0,1) \equiv \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$ y tras ello obtenemos que:

$$P(-z_{\frac{\alpha}{2}} \le \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \le z_{\frac{\alpha}{2}}) = 0.95 \iff P(\bar{X} - z_{\frac{\alpha}{2}} \frac{1}{\sqrt{n}} \le \theta \le \bar{X} + z_{\frac{\alpha}{2}} \frac{1}{\sqrt{n}}) = 0.95$$

2. Ahora calculemos el intervalo de confianza según el enfoque bayesiano, es decir, calculemos la región creíble: Para ello, dado que la normal es una distribución autoconjugda es necesario sacar la distribución final, la cual es una normal dada por los siguientes parámetros:

$$\mu_1 = \frac{\frac{\mu_0}{\sigma_0^2} + \frac{n\bar{x}}{\sigma^2}}{\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}} \qquad \sigma_1 = \frac{1}{\sqrt{\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}}}$$

Entonces en nuestro caso $\theta \sim N(\mu_1 = \frac{n\bar{x}}{1+n}, \sigma_1 = \frac{1}{\sqrt{n+1}})$, la cual es una distribución que no depende de θ por lo que podríamos usarla para calcular la región creíble. Entonces teniendo en cuenta que para una normal $N(\mu', \sigma')$ se cumple que:

$$IC_{\mu} = \left(\mu' - z_{\frac{\alpha}{2}} \cdot \sigma', \mu' + z_{\frac{\alpha}{2}} \cdot \sigma'\right)$$

Entonces podemos decir que en este caso el intervalo es:

$$\left(\frac{n\bar{x}}{1+n} - z_{\frac{\alpha}{2}} \frac{1}{\sqrt{n+1}}, \frac{n\bar{x}}{1+n} + z_{\frac{\alpha}{2}} \frac{1}{\sqrt{n+1}}\right)$$

Observación 1.3.1

Comparemos la longitud de los intervalos:

- $2 \cdot z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$
- $2 \cdot z_{\frac{\alpha}{2}} \cdot \frac{1}{\sqrt{n+1}}$

Podemos ver que la región creíble es más corta que el intervalo de confianza, lo que quiere decir que la probabilidad posterior está mas concetrada.

Ejemplo

Demuestra que para $X \sim Bin(1,\theta) \equiv Bernoulli(\theta)$ con n=1 y $\theta \sim U(0,1)$, entonces el intervalo de confianza de $1-\alpha$ es $IC_{1-\alpha}(\theta) = \left(\sqrt{\frac{\alpha}{2}}, \sqrt{1-\frac{\alpha}{2}}\right)$ Para continuar con este ejercicio, es necesario obtener la distribución final o a priori del parámetro θ :

$$\pi(\theta;x) = \frac{\pi(\theta)f_{\theta}(x)}{\int_{\Theta} \pi(\theta)f_{\theta}(x)d\theta} = \frac{\theta^{x}(1-\theta)^{1-x}}{\int_{0}^{1} \theta^{x}(1-\theta)^{1-x}d\theta} \sim Beta(\alpha = x+1, \beta = 2-x)$$

Ejemplo

Demuestra que para una m.a.s. de tamaño n=10 con distribución $Bin(1,\theta)\equiv Bernoulli(\theta)$, si $\theta\sim U(0,1)$ y se observa $\sum_{i=1}^{10}x_i=3$, entonces la distribución final es Beta(4,8) y $C_{1-\alpha}(\theta)=(0.135,0.564)$, para $\alpha=0.1$ TODO

Observación 1.3.2

Recordemos que el intervalo de confianza obtenido desde el punto de vista frecuentista es $IC_{1-\alpha}(\theta) = \bar{x} \mp z_{\alpha/2} \frac{1}{\sqrt{n}}$, que tiene mayor amplitud, aparte de su diferente interpretación

1.4 Ejercicios

Ejercicio 5.4.1. Sea una m.a.s. de tamaño n de una población con función de densidad:

$$f(x|\theta) = \frac{5x^4}{\theta^5} \cdot I_{(0,\theta)}(x)$$

1. Calcule el estimador de máxima verosimilitud de θ

2. Determínese la región de confianza de grado 0.95 ara θ de la forma $(\lambda T, +\infty)$ para λ conveniente

Solución:

1. Para calcular el EMV obtengamos la función de verosimilitud:

$$f(\vec{x}|\theta) = 5^n \cdot \frac{\prod_{i=1}^n x_i^4}{\theta^5 n} \cdot I_{(x_{(n)},\infty)}(\theta)$$

Esta funcion es claramente decreciente en θ , por lo que para maximizar la función de verosimilitud, θ debe ser lo más pequeño posible, es decir, $\hat{\theta}_n = x_{(n)}$, siendo este nuestro estimador de máxima verosimilitud.

2. Ahora encontremos nuestra region de confianza, que sera de la forma $(\lambda X_{(n)}, +\infty)$. Tras esto comprobemos que:

$$P(X_{(n)} < y | \theta) = P(X < y | \theta)^n = \left(\frac{y}{\theta}\right)^{5n}$$

De lo que sacamos, igualando:

$$\lambda^{5n} = 1 - \alpha \implies \lambda = (1 - \alpha)^{\frac{1}{5n}}$$

Obteniendo asi la region de confianza:

$$RC_{1-\alpha}(\theta) = \left((1-\alpha)^{\frac{1}{5n}} X_{(n)}, +\infty \right)$$

Ejercicio 5.4.2. Para una m.a.s. de tamaño n, de una población con función de densidad:

$$f(x|\theta) = (\theta + 1)x^{\theta} \cdot I_{(0,1)}(x)$$

constrúyase la región de confianza de grado $\alpha-1$ basada en la variable pivotal $T=-\sum(\theta+1)\ln(X_i)$ tomando colas iguales

Solución:

$$f(x|\theta) = (1+\theta)x^{\theta} \implies f(\vec{x}|\theta) = (1+\theta)^n \cdot \prod x_i^{\theta}$$

Veamos si podemos calcular la distribución de T:

El cambio de variable aleatoria continua es $Y = ln(X_i)$, para ello aplicaremos la fórmula de cambio de variable:

$$f_Y(y) = f_X(g^{-1}(y)) \cdot \left| \frac{d}{dy} g^{-1}(y) \right|$$

Entonces:

$$Y_{i} = -(1+\theta)\ln(X_{i}) \implies X_{i} = e^{y\frac{-1}{1+\theta}} \quad \left| \frac{d}{dy}g^{-1}(y) \right| = \frac{1}{1+\theta}e^{y\frac{-1}{1+\theta}} \implies$$

$$f_Y(y) = (1+\theta)(e^{y\frac{-1}{1+\theta}})^{\theta} \cdot \frac{1}{1+\theta}e^{y\frac{-1}{1+\theta}} = e^{-y} \implies Y_i \equiv -(\theta+1)\ln(X_i) \sim Exp(1)$$

ya que $Exp(\lambda) \equiv Gamma(a=1,p=\lambda) \implies Exp(1) \equiv Gamma(a=1,p=1) \implies \sum Y_i = Y \sim Gamma(a=n,p=1)$

$$\implies Z \equiv 2Y \sim Gamma(a=n, p=\frac{1}{2}) \equiv \chi^2_{2n} \implies$$

$$P\left(\chi_{2n;1-\frac{\alpha}{2}}^{2}\right) \leq \chi_{2n}^{2} \leq \chi_{2n;\frac{\alpha}{2}}^{2} = P\left(\chi_{2n;1-\frac{\alpha}{2}}^{2} \leq -2\sum(\theta+1)\ln(X_{i}) \leq \chi_{2n;\frac{\alpha}{2}}^{2}\right) = 1 - \alpha$$

$$\implies IC_{1-\alpha}(\theta) \left(\frac{\chi_{2n;1-\frac{\alpha}{2}}^{2}}{-2(\theta+1)\sum\ln(X_{i})} - 1 \leq \theta \leq \frac{\chi_{2n;\frac{\alpha}{2}}^{2}}{-2(\theta+1)\sum\ln(X_{i})} - 1\right)$$

Ejercicio 5.4.3. Demuéstrese que apra una m.a.s. de tamao n si la función de distribución de la población es $F(x|\theta)$, es continua en θ y como función de θ es estrictamente creciente, entonces

$$T = -\sum_{i=1}^{n} \ln(F(x_i|\theta)) \sim \chi_{2n}^2$$

y por tanto, constituye una variable pivotal.

Solución: Por ser F_X una función de distribución continua, se cumple que $F_X(x) \sim U(0,1)$, por lo que podemos aplicar el cambio de variable aleatoria continua:

$$Y = -\ln(F(X|\theta)) \implies F(X|\theta) = e^{-Y_i} \implies X = F^{-1}(e^{-Y}|\theta) \implies T = -2\sum \ln(F(X|\theta)) \sim \chi_{2n}^2$$
$$\implies P\left(\chi_{2n;1-\frac{\alpha}{2}}^2 \le T \le \chi_{2n;\frac{\alpha}{2}}^2\right) = 1 - \alpha$$

Y por tanto T es una variable pivotal.

Ejercicio 5.4.4. Para una población con función de densidad:

$$f(x|\theta) = \frac{4}{\theta^2} x \cdot I_{\left(0, \frac{\theta}{2}\right)}(x) - \frac{4}{\theta^2} (x - \theta) \cdot I_{\left(\frac{\theta}{2}, \theta\right)}(x)$$

- 1. Hállese el estimador máxima verosimilitud T de θ
- 2. Construyase una región de confiana de grado 1 α de la forma $(\frac{T}{2}, \lambda T)$

Solución:

1. Si observamos la funcion de densidad, esta se maximiza en $\theta = 2x_{(n)}$, por lo que el estimador de máxima verosimilitud es:

$$\hat{\theta} = 2x_{(n)}$$

2. Usando el EMV de antes, estamos buscando, y suponiendo $\lambda \geq \frac{1}{2}$:

$$P(X \le \theta \le \lambda 2X|\theta) = 1 - \alpha \implies P\left(\frac{X}{2} \le \theta \le \lambda 2X|\theta\right) = 1 - \alpha$$

Integrando la función de densidad, tenemos que:

$$P\left(\frac{X}{2} \le \theta \le \lambda 2X | \theta\right) = \int_{\frac{\theta}{2\lambda}}^{\frac{\theta}{2}} \frac{4}{\theta^2} x \cdot dx + \int_{\frac{\theta}{2}}^{\theta} \frac{4}{\theta^2} (\theta - x) \cdot dx =$$

$$= \frac{4}{\theta^2} \left[\frac{x^2}{2} \right]_{\frac{\theta}{2\lambda}}^{\frac{\theta}{2}} + \frac{4}{\theta^2} \left[\theta x - \frac{x^2}{2} \right]_{\frac{\theta}{2}}^{\theta} = 1 - \frac{1}{2\lambda^2}$$

Ahora igualemos a nuestro $1 - \alpha$:

$$1 - \frac{1}{2\lambda^2} = 1 - \alpha \implies \lambda = \frac{1}{\sqrt{2\alpha}}$$

Si hubieramos supuesto que $\lambda < \frac{1}{2}$, el intervalo hubiera sido $(2\lambda x, x)$ lo cual es absurdo ya que $x < \lambda$. Finalmente obtenemos el intervalo:

$$IC_{1-\alpha}(\theta) = \left(X, \sqrt{\frac{2}{\alpha}}X\right)$$

Ejercicio 5.4.5. La cantidad de lluvia en litros, caída en dos regiones diferentes A y B arroja los siguientes resultados:

A	81'7	77'5	121'4	76'4	79'8	105'1	86'2	72'2	103'2	130'8
В	90'3	50'7	77'1	96'4	95'7	107'4	60'8	106'9	64'7	102'4

Se puede suponer que los datos constituyen una m.a.s. de poblaciones normales e independientes

- 1. Determínese un intervalo de confianza de grado 0.95 para la varianza de la primera población
- 2. Supuesto que las dos varianzas poblaciones son desconocidas pero iguales determínese un intervalo de confianza de grado 0.95 para la diferencia de medias poblacionales.
- 3. Repítase la parte anterior si se supone que las dos varianzas son desconocidas y diferentes

Solución: Los datos dados por el enunciado son:

$$n = 10 \quad \begin{cases} \bar{x}_A = 93.43 \\ S_A^2 = \frac{1}{9} \sum (x_i - \bar{x}_A)^2 = 420.069 \end{cases} \quad \begin{cases} \bar{x}_B = 85.24 \\ S_B^2 = \frac{1}{9} \sum (x_i - \bar{x}_B)^2 = 421.414 \end{cases}$$

1. En normales, independientemente de si tenemos o no la media, podemos calcular el intervalo de confianza para la varianza poblacional, que es:

$$\left(\frac{S^2(n-1)}{\chi^2_{n-1;\frac{\alpha}{2}}}, \frac{S^2(n-1)}{\chi^2_{n-1;1-\frac{\alpha}{2}}}\right) \implies \text{ en nuestro caso } (198.98, 1400.23)$$

2. Supongamos que $\sigma_A^2 = \sigma_B^2 = \sigma^2$, entonces podemos calcular el intervalo de confianza para la diferencia de medias poblacionales, que es:

$$\frac{\bar{x}_A - \bar{x}_B - (\mu_A - \mu_B) \cdot \sqrt{\frac{n_A n_B}{n_A + n_B}}}{\sqrt{S_p^2}} \sim T_{n+m-2} \text{ con } S_p^2 = \frac{n_A S_A^2 + n_B S_B^2}{n + m - 2} \implies$$

$$P\left(t_{n_A+n_B-2;\frac{\alpha}{2}} \le \frac{8.19 - (\mu_A - \mu_B) \cdot \sqrt{5}}{21.62} \le t_{n_A+n_B-2;\frac{\alpha}{2}}\right) = 0.95 \implies$$

$$\implies IC_{1-\alpha}(\mu_A - \mu_B) = (8.19 - t_{18;0.025} \cdot 9.67, 8.19 + t_{18;0.975} \cdot 9.67) = (-12.1047, 28.4847)$$

3. Para resolver los casos en los que ambas varianzas son diferentes y desconocidas se usa la fórmula del intervalo de confianza de Welch:

4.

$$IC_{1-\alpha}(\mu_A - \mu_B) = (\bar{X}_A - \bar{X}_B) \mp t_{\min(n_A, n_B) - 1; \frac{\alpha}{2}} \cdot \sqrt{\frac{S_A^2}{n_A} + \frac{S_B^2}{n_B}} \implies$$

tomando $min(n_A, n_B) - 1 = 10 - 1 = 9$ y $t_{9:0.025} = 2.262$:

$$IC_{1-\alpha}(\mu_A - \mu_B) = (8.19 - 2.262 \cdot 9.67, 8.19 + 2.262 \cdot 9.67) = (-12.5598, 28.9398)$$

Ejercicio 5.4.6. Para estudiar la conveniencia de aumentar sus instalaciones, una empresa desea estimar la demnada que va a tener durante el próximo año. Para ello, seleccionas en el último año se distribuye con arreglo a la siguiente tabla:

nº de unidades	1000	1002	1004	1006	1008	1010	1012
nº de clientes que las demandan	1	2	1	2	1	2	1

Si se supone que la demanda va a seguir comportándose igual y que la varianza poblacional es 16, determínese una región de grado de confianza $1 - \alpha$ para la media poblacional:

- 1. Sin efectuar hipótesis sobre la distribución de la población
- 2. Suponeiendo que la población es $N(\mu, \sigma^2)$

Solución: Primero analicemos los datos por el enunciado:

$$n = 10$$
 $\bar{X} = 1006$ $S_n^2 = 14.4$ $S_{n-1}^2 = 16$

1. Para calcular el intervalo de confianza sin suponer nada sobre la distribución de la población, podemos usar la desigualdad de Tchebychev:

$$P\left(|\bar{X} - \mu| < k\sqrt{\sigma^2}\right) \ge 1 - \frac{1}{k^2} \iff P\left(\bar{X} - k\sqrt{\frac{\sigma^2}{n}} < \mu < \bar{X} + k\sqrt{\frac{\sigma^2}{n}}\right) \ge 1 - \alpha \implies$$

$$\implies P\left(1006 - \frac{1}{\sqrt{\alpha}} \frac{4}{\sqrt{10}} \le \mu \le 1006 + \frac{1}{\sqrt{\alpha}} \frac{4}{\sqrt{10}}\right)$$

2. Suponiendo que la población es $N(\mu, \sigma^2)$, podemos usar la fórmula del intervalo de confianza para la media poblacional:

$$IC_{1-\alpha}(\mu) = \left(\bar{X} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right) \implies \left(1006 \mp z_{\frac{\alpha}{2}} \frac{4}{\sqrt{10}}\right)$$

Ejercicio 5.4.7. Obténgase un intervalo asintótico de grado de confianza 1 - α para la probabilidad de éxito de una variable aleatoria de $Bernoulli(\theta)$. Aplíquese para una moneda con 1 - $\alpha = 0.95$, si se sabe que en 100 lanzamientos se han obtenido 40 caras.

Solución: Para resolverlo, hemos de hacer uso del Teorema Central del Límite aplicado a los intervalos de confianza, de manera que, si T es un estimador de θ , entonces:

$$\frac{T_n - h(\theta)}{\sqrt{Var(T_n)}} \sim N(0, 1) \implies P\left(-z_{\frac{\alpha}{2}} < \frac{T_n - h(\theta)}{\sqrt{Var(T_n)}} < z_{\frac{\alpha}{2}}\right) \to 1 - \alpha$$

En nuestro caso, tenemos que n=100 $n\bar{x}=40$ y como $X \sim Bernoulli(\theta) \implies E[\bar{X}]=\theta$ y $Var(\bar{X})=\frac{\theta(1-\theta)}{n}$, por lo que podemos decir que:

$$\frac{\bar{X} - \theta}{\sqrt{\frac{\bar{X}(1 - \bar{X})}{n}}} \sim N(0, 1) \implies P\left(-z_{\frac{\alpha}{2}} < \frac{\bar{X} - \theta}{\sqrt{\frac{\bar{X}(1 - \bar{X})}{n}}} < z_{\frac{\alpha}{2}}\right) \rightarrow 1 - \alpha \implies$$

$$\implies IC_{1-\alpha}(\mu) = \left(\bar{X} \mp z_{\frac{\alpha}{2}} \sqrt{\frac{\bar{X}(1 - \bar{X})}{n}}\right) = 0.4 \mp z_{0.025} \sqrt{\frac{0.4 \cdot 0.6}{100}} = (0.4960, 0.3039)$$

Ejercicio 5.4.8. Determínese un intervalo creíble de probabilidad 1 - α para la probabilidad de éxito de θ en una distribución Bernoulli. Supóngase que la información inicial viene dada por una Beta(1,1) y que en 10 repeticiones se han observado 5 éxitos.

П

Solución: Primero recojamos los datos del enunciado:

$$X \sim Bernoulli(\theta) \quad \theta \sim Beta(1,1) \quad \sum x_i = 5 \quad n = 10$$

Entonces, como la distribución de Bernoulli es una distribución conjugada de la distribución Beta, podemos decir que la distribución final es:

$$\theta \sim Beta(a_1 = a_0 + n\bar{x}, b_1 = b_0 + n - n\bar{x}) \implies \theta \sim Beta(6,6)$$

Entonces dado que la distribución final es la dada por el parámetro, pero es independiente del mismo, ahora basta con tomar los cuantiles de esta distribución para obtener el intervalo creíble: $z_{0.95} = 0.271$ y $z_{0.05} = 0.729$ con lo qu θ estará en el intervalo $IC_{1-\alpha}(\theta) = (0.271, 0.729)$

Ejercicio 5.4.9. Determínese un intervalo creíble de probabilidad $1 - \alpha$ para el parámetro θ de una distribución $Poisson(\theta)$, cuando la información inicial para θ viene dada por una $Gamma(a_0, p_0)$.

A continuación, obtengase un intervalo creíble de probabilidad 90 para el parámetro θ en el caso de que, se supone que el número de insectos en una fila sembrada de uncultivo determinao, se distribuye con Poisson. Se toman 10 filas al azas y se obtienen los siguientes números de insectos:

Determíense un intervalo asíntótico además que la información inicial viene dada por una Gamma(0.5, 3)

Solución:

1. Dado que la distribución de Poisson es una distribución conjugada de la distribución Gamma, podemos decir que la distribución final es:

$$\theta \sim Gamma(a_1 = a_0 + n, p_1 = p_0 + \sum x_i) \implies 2(a_0 + n)\theta \sim Gamma(a = \frac{1}{2}, p = p_0 + \sum x_i) \equiv \chi^2_{2(p_0 + \sum x_i)}$$

$$\implies P\left(\chi^2_{2(p_0 + \sum x_i); \frac{\alpha}{2}} \leq 2(a_0 + n)\theta \leq \chi^2_{2(p_0 + \sum x_i); 1 - \frac{\alpha}{2}}\right) \implies IC_{1-\alpha}(\theta) = \left(\frac{\chi^2_{2(p_0 + \sum x_i); \frac{\alpha}{2}}}{2(a_0 + n)}, \frac{\chi^2_{2(p_0 + \sum x_i); 1 - \frac{\alpha}{2}}}{2(a_0 + n)}\right)$$

2. En el caso real que nos incumbe, tenemos que:

$$n = 10$$
 $\sum x_i = 719$ $\bar{x} = 71.9$ $a_0 = 0.5$ $p_0 = 3$

Para realizar un intervalo creíble sustituimos los datos en la fórmula anterior:

$$\left(\frac{\chi_{722;0.05}^2}{2(0.5+10)}, \frac{\chi_{722;0.95}^2}{2(0.5+10)}\right) = (64.61, 73.02)$$

Ejercicio 5.4.10. Un individuo realiza un test de inteligencia cuyo resultado X se supone que sigue una disribución $N(\theta, \sigma = 10)$ siendo θ su nivel de inteligencia real. La informción inicial viene recogida porque en el colectivo al que pertenece el individuo, la inteligencia θ tiene una distribución $N(100, \sigma_0 = 15)$. Determínese una región creíble de probabilidad 0.95 para su nivel de inteligencia cuando el resultado del test ha sido 110. Calcúlese un intervalo de grado de confianza 0.95 y compárense ambos intervalos.

Solución: Dado que estamos en estimación bayesiana, es necesario calcular los parámetros de la normal a posteriori

$$\mu_1 = \frac{\frac{\mu_0}{\sigma_0^2} + \frac{n\bar{x}}{\sigma^2}}{\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2}} \qquad \sigma_1^2 = \frac{1}{\frac{1}{\sigma^2} + \frac{n}{\sigma_0^2}} \implies \mu_1 = 106.9230 \qquad \sigma_1^2 = 69.2307$$

Entonces, basta aplicar la fórmula del intervalo de confianza para la normal:

$$IC_{1-\alpha}(\theta) = \left(\bar{X} \mp z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right) \implies IC_{1-\alpha}(\theta) = \left(106.9230 \mp z_{0.025} \frac{10}{\sqrt{1}}\right) = (93.6918, 126.3081)$$

Ahora calculemos el intervalo de confianza, es decir, intentemos ver el intervalo de confianza frecuentista, hacemos uso de la misma fórmula que antes, pero ahora con los parámetros de la normal a priori:

$$IC_{0.05}(\theta) = (110 \mp z_{0.025} \frac{10}{\sqrt{1}}) = (90.4, 129.6)$$

2 Contraste de Hipótesis

2.1 Principios básicos de un contraste de hipótesis

Ejemplo

Supongamos que en un laboratorio se está estudiando cierta reacción química sobre una determinada sustancia y que el resultado de dicha reacción es una variable observable que se puede modelizar mediante una v.a. X con distribución normal.

Por experiencias anteriores se sabe que, si en la sustancia está presente cierto mineral, $X \sim N(\mu=10,\sigma=4)$ y si no lo está $X \sim N(\mu=11,\sigma=4)$. Se puede comprobar por medio de unos análisis si el mineral está o no presente en la sustancia en estudio, pero dichos análisis son muy costosos, por lo que se procede a realizar la reacción química n=25 veces para decidir, a la luz de los resultados, si $\mu=10$ o $\mu=11$

Definición 2.1.1 [Hiptótesis Estadística]

Una hipótesis estadística es cualquier afirmación acerca de un modelo estadístico.

Definición 2.1.2 [Hipótesis Estadística Simple y Compuesta]

Una hipótesis estadística es simple si especifica totalmente el modelo estadístico, en otro caso, se dice que es compuesta

Ejemplo -

Sea $X \sim N(\mu, \sigma^2) \implies$

1.
$$H_0: \mu = 10 \text{ y } \sigma^2 = 4 \rightarrow \text{simple}$$

2.
$$H_0: \mu \in [9,11]$$
 y $\sigma^2 = 4 \rightarrow \text{compuesta}$

3.
$$H_0: \mu = ?$$
 y $\sigma^2 = 4 \rightarrow$ compuesta

4.
$$H_0: \mu \leq 9$$
y $\sigma^2 = 4 \rightarrow \text{compuesta}$

Definición 2.1.3 [Hipótesis Estadística Nula y Alternativa]

Se dice hipótesis nula a la afirmación inicial o por defecto que se pone a prueba. Se asume cierta hasta que haya suficiente evidencia para rechazarla.

En contraste la hipótesis alternativa es la afirmación que se quiere demostrar o detectar.

Ejemplo

Imagina una fábrica que proue botellas de agua de 1000ml de capacidad. Para asegurar la calidad, se toma una muestra aleatoria de las botellas y se mide su contenido. Por tanto nuestro objetivo es verificar si la máquina está llenando correctamente las botellas o si hay un problema.

- Hipótesis nula: $H_0: \mu = 1000ml$ (la máquina está funcionando correctamente)
- Hipótesis alternativa: $H_1: \mu \neq 1000ml$ (la máquina no está funcionando correctamente)

En este caso concreto sería una prueba **bilateral** porque nos preocupa tanto si las botellas están con menos como con más de 1 litro.

Definición 2.1.4 [Contraste de Hipótesis Paramétrico]

Un contraste estadístico es cualquier particiión del espacio muestral χ^n en dos subconjutnos RA y RC de tal manera que si el punto muestral $\vec{x} = (x_1, \ldots, x_n)$ pertenece a RA se dice que se acepta la hipótesis nula, es decir, se admite $H_0: \theta \in \Theta_0$ y si $\vec{x} \in RC$ se dice que se rechaza la hipótesis nula o equivalentemente que se acepta la hipótesis alternativa, es decir, se admite $H_1: \theta \in \Theta_1$.

A RA se le denomina región de aceptación y a RC se le denomina región crítica.

Ejemplo

En el primer ejemplo anterior $\Theta = \{\mu_0, \mu_1\}, \Theta_0 = \{\mu_0\}, \Theta_1 = \{\mu_1\}$

Definición 2.1.5 [Estadístico de Contraste]

En un problema de contraste de hipótesis, se pretende contrastar H_0 frente a H_1 . La decisión ha de basarse en la evidencia aportada por la observación de una muestra o equivalentemente por la observación de un cierto estadístico T denominado <u>estadístico del contraste</u> que será usualmente un estimador suficiente del parámetro θ .

Ejemplo

Siguiendo con el ejemplo anterior de la fábrica de botellas, se puede ver que la máquina embotelladora está malfuncionando de dos formas:

• Tomando una muestra: Supongamos que se toman 3 botellas:

$$X = (999, 1002, 1005)$$

Se define una región crítica sobre la muestra completa, por ejemplo: decidimos rechazar H_0 si al enos dos botelllas tienen mas de 1003ml si la mínima es mayor que 500ml.

En este caso en concreto, sólo una tiene mas de 503ml y la minima es menor de 500ml, por tanto no se rechaza la hipótesis nula o H_0 .

• Tomando un estadístico: Tomemos el estadístico media muestral y el ejemplo anterior. En este caso la media muestral es:

$$\bar{x} = \frac{999 + 1002 + 1005}{3} = 1002$$

Supongamos que sabemos que en este caso la region crítica es que $\bar{x} > 1003$. En este caso, como $\bar{x} < 1003$, no se rechaza la hipótesis nula o H_0 .

Observación 2.1.1

El contraste de hipótesis basado en un estadístico, exige conocer la distribución de dicho estadístico para los posibles valores del parámetro. El contraste se basa en ver si el valor observado del estadístico es raro bajo esa distribución, si ocurre un valor "muy raro" existen dos posibilidades: fue pura casualidad (poco probable) o más probablemente H_0 es falsa.

Definición 2.1.6 [Región Crítica]

Sea una partición del espacio muestral χ^n en dos subconjuntos C y C^* tales que $\chi^n = C \bigcup C^*$ y $C \cap C^* = \phi$. C es una región crítica para el contraste $H_0: \theta \in \Theta_0$ frente a $H_1: \theta \in \Theta_1$ sí y sólo sí, se rechaza H_0 cuando se observa un valor muestral $(x_1, \dots, x_n) \in C$, en cuyo caso se acepta H_1 . Consecuentemente, C^* se denomina región de aceptación y si $(x_1, \dots, x_n) \in C^*$, se dice que no hay suficiente evidencia estadística para rechazar H_0 , en este sentido se acepta H_0

2.2 Errores de tipo I y de tipo II

Definición 2.2.1 [Error de tipo I]

El error de tipo I es el error que se comete cuando se rechaza H_0 siendo cierta. La probabilidad de cometer este error se denomina **nivel de significación del test** y se denota por $\alpha = P_{\theta_0}(C)$, donde $\theta_0 \in \Theta_0$

Definición 2.2.2 [Error de tipo II]

El error de tipo II es el error que se comete cuando se acepta H_1 siendo falsa. La probabilidad de cometer este error se denomina **potencia del test** y se denota por $\beta = P_{\theta_1}(C)$, donde $\theta_1 \in \Theta_1$

Ejemplo

En el primer ejemplo de todos, las probabilidades de cometer error de tipo I y error de tipo II son $P(I) = P(\bar{x} \ge k \mid \mu = 10)$ y $P(II) = P(\bar{x} < k \mid \mu = 11)$

Observación 2.2.1

Lo idóneo sería contar con un test de baja probabilidad de cometer errores tanto de tipo I como de tipo II, pero en la práctica si bajas un error el otro suele subir de forma equilibrida.

La única forma realista de reducir ambos errores simultáneamente sería tomar una muestra más grande, pero ésto conllevaría mas costes, tiempo y recursos.

Definición 2.2.3 [Función de Potencia]

Si C es una región crítica para el contraste $H_0: \theta \in \Theta_0$ frente a $H_1: \theta \in \Theta_1$, se define la función de potencia del test como la función $\beta_C: \Theta \to [0,1]$ que a cada valor θ del parámetro le asigna el valor $\beta_C(\theta) = P_{\theta}(C)$, es decir, la probabilidad de rechazar H_0 cuando el valor del parámetro es θ

Definición 2.2.4 [Nivel de significación y tamaño del test]

Un test C tiene nivel de significación $\alpha \in [0,1]$ sí y sólo sí $\sup \beta_C(\theta) \le \alpha$ y se denomina tamaño del test al valor $\sup \beta_C(\theta)$ $\theta \in \Theta_0$

Ejemplo

En el ejemplo anterior, con $n=25, C=\{10<\bar{x}<10,006\},\ P(I)=\beta_C(\mu=10)=P(10<\bar{x}<10.006\mid \mu=10)=0.05\ P(II)=1-\beta_C(\mu=11)=P(10<\bar{x}<10.006\mid \mu=11)=0.976$ En el ejemplo anterior, con $n=25, C=\{\bar{x}\geq k\}$ y $\alpha=0.05,\ P(I)=\beta_C(\mu=10)=P(\bar{x}\geq 11.316\mid \mu=10)=0.05\ P(II)=1-\beta_C(\mu=11)=P(\bar{x}<11.316\mid \mu=11)=0.6554$ En el ejemplo anterior, con $n=100, C=\{\bar{x}\geq k\}$ y $\alpha=0.05,$ $P(I)=\beta_C(\mu=10)=P(\bar{x}\geq 10.658\mid \mu=10)=0.05$ $P(II)=1-\beta_C(\mu=11)=P(\bar{x}<10.658\mid \mu=11)=0.196$

Definición 2.2.5 [p-valor]

Si para contrastar $H_0: \theta \in \Theta_0$ frente a $H_1: \theta \in \Theta_1$, el test tiene región crítica

$$C = \{(x_1, \dots, x_n) : T(x_1, \dots, x_n) \ge k\}$$

para T un estadístico conveniente, y se observa la muestra (x_1, \ldots, x_n) , se denomina p-valor correspondiente a (x_1, \ldots, x_n) al valor

$$p(x_1,\ldots,x_n) = \sup_{\theta \in \Theta_0} P\{T(X_1,\ldots,X_n) \ge T(x_1,\ldots,x_n) \mid \theta\}$$

Si el tamaño del test es α y observada la muestra (x_1, \ldots, x_n) el p-valor correspondiente $p(x_1, \ldots, x_n) \leq \alpha$, entonces (x_1, \ldots, x_n) pertenece a la región crítica y por lo tanto se rechaza H_0 . Si el p-valor $p(x_1, \ldots, x_n) > \alpha$, entonces (x_1, \ldots, x_n) pertenece a la región de aceptación y por lo tanto no hay suficiente evidencia estadística para rechazar H_0

Ejemplo

En el ejemplo anterior, con $n = 100, C = \{\bar{x} \ge k\}$ y $\alpha = 0.05, P(I) = \beta_c(\mu = 10) = P(\bar{x} \ge 10.658 \mid \mu = 10) = 0.05$ $P(II) = 1 - \beta_C(\mu = 11) = P(\bar{x} < 10.658 \mid \mu = 11) = 0.196$ Entonces, observada $\bar{x} = 11$

$$p(11) = P(\bar{X} \ge 11 \mid \mu = 10) = P(Z \ge 2.5) = 0.00621$$

Por lo tanto, se rechaza $H_0: \mu = 10$ a favor de $H_1: \mu = 11$

Observación 2.2.2

- 1. $n y \alpha$ son valores fijados de antemano
- 2. Las hipótesis nula y alternativa no son intercambiables puesto que el tratamiento que reciben es asimétrico, la asimetría queda matizada por el valor α que se elija como nivel de significación y por la probabilidad de error de tipo II que resulte una vez diseñado el test, pues podría ocurrir que para $\theta \in \Theta_1$, $P_{\theta}(C^c) = 1 \beta_C(\theta) \leq \alpha$
- 3. En el contraste de hipótesis planteado se considera H₀ como la hipótesis de interés, en el sentido que para poder invalidarla es necesario esgrimir una gran evidencia. Por consiguiente, los test de hipótesis se emplean con un carácter conservador, a favor de la hipótesis nula, ya que el nivel de significación que se fija, intenta garantizar que sea muy infrecuente rechazar una hipótesis nula correcta, y la preocupación por dejar vigente una hipótesis nula falsa es menor, pudiéndose aceptar en este último caso riesgos más altos. En este sentido, si el resultado de un contraste

de hipótesis es aceptar H_0 , debe interpretarse que las observaciones no han aportado suficiente evidencia para descartarla; mientras que, si se rechaza, es porque se está razonablemente seguro de que H_0 es falsa y, por consiquiente, aceptamos H_1

Proposición 2.2.1 [Criterio de comparación de contrastes]

Si C y C' son dos test con nivel de significación α basados en una muestra $(X_1, \dots X_n)$ de $\{F_{\theta}, \theta \in \Theta\}$, para contrastar $H_0: \theta \in \Theta_0$ frente a $H_1: \theta \in \Theta_1$, tales que $\beta_C(\theta) \geq \beta_{C'}(\theta), \forall \theta \in \Theta_1$, entonces C es uniformemente más potente que C'

2.3 Test uniformemente más potente de tamaño α

Proposición 2.3.1

Sea C una región crítica para el contraste $H_0: \theta \in \Theta_0$ frente a $H_1: \theta \in \Theta_1$, basada en una muestra $(X_1, \dots X_n)$ de $\{F_{\theta}, \theta \in \Theta\}$ C es un test uniformemente de máxima potencia de tamaño α (TUMP) sí y sólo sí

- 1. $\sup \beta_C(\theta) = \alpha \ \theta \in \Theta_0$
- 2. Para cualquier otro test basado en $(X_1, \dots X_n)$ con región crítica C' tal que $\sup_{\theta \in \Theta_0} \beta_{C'}(\theta) \leq \alpha$, es $\beta_C(\theta) \geq \beta_{C'}(\theta), \forall \theta \in \Theta_1$

2.4 Hipótesis nula simple frente a alternativa simple

Teorema 2.4.1 [Teorema de Neyman-Pearson - Parte I]

Para contrastar $H_0: \theta = \theta_0$ frente a $H_1: \theta = \theta_1$, si para algún $k \geq 0$ existe un test con región crítica $c = \left\{ (x_1, \cdots, x_n) \in \chi^n : \frac{f_{\theta_1}(x_1, \cdots, x_n)}{f_0(x_1, \cdots, x_n)} \geq k \right\}$ y región de aceptación $C^c = \left\{ (x_1, \cdots, x_n) \in x^n : \frac{f_{\theta_1}(x_1, \cdots, x_n)}{f_{\theta_0}(x_1, \cdots x_n)} < k \right\}$ tal que $\alpha = P_{\theta_0}(C)$, entonces C es uniformemente de máxima potencia de tamaño α

Demostraci'on. Observemos que C es un test de tamaño α ya que $\Theta_0 = \{\theta_0\}$ y por lo tanto $\sup_{\theta \in \Theta_0} \beta_C(\theta) = P_{\theta_0}(C) = \alpha$

Sea C' otro test de nivel α , es decir tal que $\alpha \geq \sup_{\theta \in \Theta_0} \beta_{C'}(\theta) = P_{\theta_0}(C')$ y consideremos la siguiente

partición del espacio muestral.

$$S^{+} = \{(x_{1}, \cdots x_{n}) \in \chi^{n} : I_{C}(x_{1}, \cdots x_{n}) > I_{C'}(x_{1}, \cdots x_{n})\},$$

$$S^{-} = \{(x_{1}, \cdots x_{n}) \in \chi^{n} : I_{C}(x_{1}, \cdots x_{n}) < I_{C'}(x_{1}, \cdots x_{n})\},$$

$$\chi^{n} - S^{+} \bigcup S^{-} = \{(x_{1}, \cdots x_{n}) \in \chi^{n} : I_{C}(x_{1}, \cdots x_{n}) = I_{C'}(x_{1}, \cdots x_{n})\}$$

$$\int_{\chi^{n}} (I_{C}(x_{1}, \cdots , x_{n}) - I_{C'}(x_{1}, \cdots , x_{n})) (f_{\theta_{1}}(x_{1}, \cdots , x_{n}) - kf_{\theta_{0}}(x_{1}, \cdots , x_{n})) dx_{1} \cdots dx_{n} =$$

$$\int_{S^{+}} (I_{C}(x_{1}, \cdots , x_{n}) - I_{C'}(x_{1}, \cdots , x_{n})) (f_{\theta_{1}}(x_{1}, \cdots , x_{n}) - kf_{\theta_{0}}(x_{1}, \cdots , x_{n})) dx_{1} \cdots dx_{n} +$$

$$\int_{S^{-}} (I_{C}(x_{1}, \cdots , x_{n}) - I_{C'}(x_{1}, \cdots , x_{n})) (f_{\theta_{1}}(x_{1}, \cdots , x_{n}) - kf_{\theta_{0}}(x_{1}, \cdots , x_{n})) dx_{1} \cdots dx_{n} +$$

$$\int_{\chi^{n} - S^{+} \cup S^{-}} (I_{C}(x_{1}, \cdots , x_{n}) - I_{C'}(x_{1}, \cdots , x_{n})) (f_{\theta_{1}}(x_{1}, \cdots , x_{n}) - kf_{\theta_{0}}(x_{1}, \cdots , x_{n})) dx_{1} \cdots dx_{n} \geq 0$$

$$\int_{\chi^{n}} I_{C}(x_{1}, \cdots , x_{n}) f_{\theta_{1}}(x_{1}, \cdots , x_{n}) - \int_{\chi^{n}} I_{C'}(x_{1}, \cdots , x_{n}) f_{\theta_{0}}(x_{1}, \cdots , x_{n}) dx_{1} \cdots dx_{n} \geq 0$$

$$k \left(\int_{\chi^{n}} I_{C}(x_{1}, \cdots , x_{n}) f_{\theta_{0}}(x_{1}, \cdots , x_{n}) - \int_{\chi^{n}} I_{C'}(x_{1}, \cdots , x_{n}) f_{\theta_{0}}(x_{1}, \cdots , x_{n}) dx_{1} \cdots dx_{n} \right)$$

$$P_{\theta_{1}}(C) - P_{\theta_{1}}(C') \geq k \left(P_{\theta_{0}}(C) - P_{\theta_{0}}(C') \right) \geq k(\alpha - \alpha) = 0 \Rightarrow \beta_{C}(\theta) \geq \beta C'(\theta), \forall \theta \in \Theta_{1} = \{\theta_{1}\}$$

Observación 2.4.1

De la demostración del teorema se deduce que los puntos para los que $f(x_1, ..., x_n \mid \theta_1) = kf(x_1, ..., x_n \mid \theta_0)$ pueden ser colocados tanto en la región crítica como en la región de aceptación. Es importante señalar que el teorema de Neyman-Pearson no dice que el test de la forma dada en su enunciado deba existir cualquiera que sea $\alpha \in [0,1]$

Ejemplo

Para una muestra de tamaño n=12, extraída de una distribución de Poisson con parámetro θ , donde $\theta \in [0,0.5]$, se plantea el siguiente contraste de hipótesis:

$$\begin{cases} H_0: \theta = 0 \\ H_1: \theta = 0.5 \end{cases}$$

La región crítica para este contraste viene dada por:

$$C = \{(x_1, \dots, x_{12}) : \sum_{i=1}^{12} x_i \ge 2\}$$

En este caso particular, como $\sum_{i=1}^{12} x_i < 2$, se tiene que $\overline{X} < \frac{1}{6}$. La probabilidad de error de tipo I (α) y la función de potencia $(\beta(\theta))$ se calcular como sigue:

$$\alpha = \beta(0) = P(C \mid \theta = 0) = P\left(\sum_{i=1}^{12} x_i \ge 2 \mid \theta = 0\right) = 0$$

$$\beta(0.5) = P(C \mid \theta = 0.5) = P\left(\sum_{i=1}^{12} x_i \ge 2 \mid \theta = 0.5\right)$$

$$= P(\text{Poisson}(6) \ge 2)$$

$$= 1 - P(\text{Poisson}(6) = 0) - P(\text{Poisson}(6) = 1)$$

$$= 1 - e^{-6} \left(\frac{6^0}{0!} + \frac{6^1}{1!}\right)$$

$$= 1 - e^{-6} (1 + 6) \approx 0.9826$$

$$\beta(0.25) = P(C \mid \theta = 0.25) = P\left(\sum_{i=1}^{12} x_i \ge 2 \mid \theta = 0.25\right)$$

$$= P(\text{Poisson}(3) \ge 2)$$

$$= 1 - P(\text{Poisson}(3) = 0) - P(\text{Poisson}(3) = 1)$$

$$= 1 - e^{-3} \left(\frac{3^0}{0!} + \frac{3^1}{1!}\right)$$

$$= 1 - e^{-3} (1 + 3) \approx 0.8009$$

Ejemplo

Para una m.a.s.(n) de $X \sim N(\theta, \sigma)$, con σ conocida, encontrar el TUMP de tamaño α para contrastar $H_0: \theta = \theta_0$ frente a $H_1: \theta = \theta_1$, con $\theta_0 < \theta_1$ $\frac{f_{\theta_1}(x_1, \cdots, x_n)}{f_0(x_1, \cdots x_n)} = e^{\frac{1}{\sigma^2}n(\theta_0^2 - \theta_1^2)}e^{\frac{1}{\sigma^n}n(\theta_1 - \theta_0)} \ge k \Leftrightarrow \bar{x} \ge c$ donde c es tal que $P_{\theta_0}\{\bar{x} \ge c\} = \alpha$, es decir $c = \theta_0 + z_\alpha \frac{\sigma}{\sqrt{n}}$

Ejemplo

Para una m.a.s.(n) de $X \sim \text{Exp}(\theta)$, encontrar el TUMP de tamaño α para contrastar $H_0: \theta = \theta_0$ frente a $H_1: \theta = \theta_1$, con $\theta_0 < \theta_1$ $\frac{f_0(x_1, \cdots, x_n)}{f_{\theta_0}(x_1, \cdots x_n)} = \left(\frac{\theta_1}{\theta_0}\right)^n e^{(\theta_0 - \theta_1) \sum_{i=1}^n x_i} \ge k \Leftrightarrow 2\theta_0 \sum_{i=1}^n x_i \le c$

donde c es tal que $P_{\theta_0}\left\{2\theta_0\sum_{i=1}^n x_i \leq c\right\} = \alpha$, es decir $c = \chi^2_{2n,\alpha}$

Ejemplo

Para una m.a.s.(n) de $X \sim N(\mu, \theta)$, con μ conocida, encontrar el TUMP de tamaño α para contrastar $H_0: \theta = \theta_0$ frente a $H_1: \theta = \theta_1$, con $\theta_0 < \theta_1$

$$H_0: \theta = \theta_0 \text{ frente a } H_1: \theta = \theta_1, \text{ con } \theta_0 < \theta_1$$

$$\frac{f_{\theta_1}(x_1, \cdots, x_n)}{f_{\theta_0}(x_1, \cdots x_n)} = \left(\frac{\theta_0}{\theta_1}\right)^n e^{\frac{1}{2}\left(\frac{1}{\theta_0^2} - \frac{1}{\theta_1^2}\right) \sum_{i=1}^n (x_i - \mu)^2} \geq k \iff \frac{\sum_{i=1}^n (x_i - \mu)^2}{\theta_0^2} \geq c \text{ donde } c \text{ es tal que } P_{\theta_0}\left\{\frac{\sum_{i=1}^n (x_i - \mu)^2}{\theta_0^2} \geq c\right\} = \alpha, \text{ es decir } c = \chi_{n,\alpha}^2$$

Ejemplo

Para una m.a.s.(n) de $X \sim \text{Bin}(1, \theta)$, encontrar el TUMP de tamaño α para contrastar $H_0: \theta = \theta_0$ frente a $H_1: \theta = \theta_1$, con $\theta_0 < \theta_1$

frente a
$$H_1: \theta = \theta_1$$
, con $\theta_0 < \theta_1$

$$\frac{f_0(x_1, \dots, x_n)}{f_{\theta_0}(x_1, \dots x_n)} = \left(\frac{1-\theta_1}{1-\theta_0}\right)^n \left(\frac{\theta_1}{\theta_0}\frac{1-\theta_0}{1-\theta_1}\right)^{\sum_{i=1}^n x_i} \Leftrightarrow \sum_{i=1}^n x_i \geq c$$

donde c es tal que $P_{\theta_0} \{ \sum_{i=1}^n x_i \ge c \} = \sum_{j=c}^n {n \choose j} \theta_0^j (1 - \theta_0)^{n-j} = \alpha_c, c = 0, 1, 2, \dots, n \}$

Teorema 2.4.2 [Teorema de Neyman-Pearson - Parte II]

Para contrastar $H_0: \theta = \theta_0$ frente a $H_1: \theta = \theta_1$, si para algún k > 0 existe un test con región crítica C tal que $P_{\theta_0}(C) = \alpha$ con $\left\{ (x_1, \dots, x_n) \in \chi^n : \frac{f_9(x_1, \dots, x_n)}{f_0(x_1, \dots x_n)} > k \right\} \subset cc \left\{ (x_1, \dots, x_n) \in \chi^n : \frac{f_9(x_1, \dots, x_n)}{f_0(x_1, \dots x_n)} \ge k \right\}$ entonces cualquier test C' uniformemente de máxima potencia de nivel α , es de tamaño α y verifica $\left\{ (x_1, \dots, x_n) \in \chi^n : \frac{f_{\theta_1}(x_1, \dots, x_n)}{f_{f_0}(x_1, \dots x_n)} > k \right\} \subset c' \subset \left\{ (x_1, \dots, x_n) \in \chi^n : \frac{f_{\theta_1}(x_1, \dots, x_n)}{f_{\theta_0}(x_1, \dots x_n)} \ge k \right\}$ salvo quizás en un conjunto $A \subset \chi^n$ tal que $P_{\theta_0}(A) = P_{\theta_1}(A)$

Demostración. Si C' es un test uniformemente de máxima potencia de nivel α y existe C de la forma del enunciado con k > 0, entonces por el apartado anterior C es también uniformemente de máxima potencia de nivel α . Por lo tanto, $\beta_C(\theta_1) = \beta_{C'}(\theta_1)$. Entonces, $0 = P_{\theta_1}(C) - P_{\theta_1}(C') \ge k(\alpha - P_{\theta_0}(C')) \ge 0$ y como $k > 0 \Rightarrow P_{\theta_0}(C') = \alpha$ y se sigue que

$$\int_{X^n} (I_C(x_1, \dots, x_n) - I_{C'}(x_1, \dots, x_n)) (f_{\theta_1}(x_1, \dots, x_n) - kf_{\theta_0}(x_1, \dots, x_n)) dx_1 \dots dx_n = 0$$

Por lo tanto, o bien $I_C(x_1, \dots, x_n) = I_{C'}(x_1, \dots, x_n), \forall (x_1, \dots, x_n), o$

$$\int_{S^{+}} \left(I_{C}\left(x_{1}, \cdots, x_{n}\right) - I_{C'}\left(x_{1}, \cdots, x_{n}\right)\right) \left(f_{\theta_{1}}\left(x_{1}, \cdots, x_{n}\right) - kf_{\theta_{0}}\left(x_{1}, \cdots, x_{n}\right)\right) dx_{1} \cdots dx_{n} = 0$$

$$\int_{S^{-}} \left(I_{C}\left(x_{1}, \cdots, x_{n}\right) - I_{C'}\left(x_{1}, \cdots, x_{n}\right)\right) \left(f_{\theta_{1}}\left(x_{1}, \cdots, x_{n}\right) - kf_{\theta_{0}}\left(x_{1}, \cdots, x_{n}\right)\right) dx_{1} \cdots dx_{n} = 0$$

$$\int_{S^{+}} \left(f_{\theta_{1}}\left(x_{1}, \cdots, x_{n}\right) - kf_{\theta_{0}}\left(x_{1}, \cdots, x_{n}\right)\right) dx_{1} \cdots dx_{n} = 0 \Rightarrow S^{+} \subset \left\{f_{\theta_{1}}\left(x_{1}, \cdots, x_{n}\right) - kf_{\theta_{0}}\left(x_{1}, \cdots, x_{n}\right) = 0\right\}$$

$$-\int_{S^{-}} \left(f_{\theta_{1}}\left(x_{1}, \cdots, x_{n}\right) - kf_{\theta_{0}}\left(x_{1}, \cdots, x_{n}\right)\right) dx_{1} \cdots dx_{n} = 0 \Rightarrow S^{-} \subset \left\{f_{\theta_{1}}\left(x_{1}, \cdots, x_{n}\right) - kf_{\theta_{0}}\left(x_{1}, \cdots, x_{n}\right) = 0\right\}$$
o bien $P_{\theta_{1}}\left(S^{+}\right) = \int_{S^{+}} f\left(x_{1}, \dots, x_{n} \mid \theta_{1}\right) dx_{1} \cdots dx_{n} = 0, P_{\theta_{0}}\left(S^{+}\right) = \int_{S^{+}} f\left(x_{1}, \dots, x_{n} \mid \theta_{0}\right) dx_{1} \cdots dx_{n} = 0$

$$P_{\theta_{1}}\left(S^{-}\right) = \int_{S^{-}} f\left(x_{1}, \dots, x_{n} \mid \theta_{1}\right) dx_{1} \cdots dx_{n} = 0 \text{ y } P_{\theta_{1}}\left(S^{-}\right) = \int_{S^{-}} f\left(x_{1}, \dots, x_{n} \mid \theta_{0}\right) dx_{1} \cdots dx_{n} = 0$$

Definición 2.4.1 [Test aleatorizado]

Un test aleatorizado es cualquier función medible tal que $\varphi(x_1, \dots, x_n)$ expresa la probabilidad de rechazar la hipótesis nula cuando se observa $(x_1, \dots, x_n) \in \chi^n$

Observación 2.4.2

Como su propio nombre indica, en un test aleatorizado, observado un valor muestral $(x_1, \dots, x_n) \in \chi^n$, se efecua un sorteo con probabilidad $\varphi(x_1, \dots, x_n)$ de rechazar H_0 y $1 - \varphi(x_1, \dots, x_n)$ de aceptarla. En este sentido, una región crítica es un test no aleatorizado, pues observada una muestra nuestra decisión es tajante: rechazamos o aceptamos H_0 .

En cambio, en los test aleatorizados la decisión final depede total o parcialmente del azar. Aunque esta

es una regla de conducta no determinística, los tests no aleatorizados son un caso particular de ella para $\varphi(x_1, \dots, x_n) = I_C(x_1, \dots, x_n)$

Definición 2.4.2 [Función de potencia de un test aleatorizado]

Si φ es un test aleatorizado para el contraste $H_0: \theta \in \Theta_0$ frente a $H_1: \theta \in \Theta_1$, se define función de potencia del test a la función $\beta_{\varphi}: \Theta \to [0,1]$ que a cada valor θ del parámetro le asigna el valor $\beta_{\varphi}(\theta) = E_{\theta}(\varphi)$.

Definición 2.4.3 [Nivel de significación y tamaño de un test aleatorizado]

Un test aleatorizado φ tiene nivel de significación $\alpha \in [0,1]$ sí y sólo sí $\sup \beta_{\varphi}(\theta) \leq \alpha$ y se denomina tamaño del test al valor $\sup_{\theta \in \Theta_0} \beta_{\varphi}(\theta)$ $\theta \in \Theta_0$

Teorema 2.4.3

En las mismas condiciones del teorema de Neyman-Pearson, $\forall \alpha \in (0,1)$ existe un test aleatorizado φ de tamaño α de la forma

$$\varphi(x_1, \dots x_n) = \begin{cases} 1 & si & f_{\theta_1}(x_1, \dots x_n) > k f_{\theta_0}(x_1, \dots x_n) \\ \gamma & si & f_{\theta_1}(x_1, \dots x_n) = k f_{\theta_0}(x_1, \dots x_n) \\ 0 & si & f_{\theta_1}(x_1, \dots x_n) < k f_{\theta_0}(x_1, \dots x_n) \end{cases}$$

 $con \ k \ge 0 \ y \ \gamma \in [0,1] \ tales \ que$

$$\alpha = E_{\theta_0}[\varphi] = P_{\theta_0}\left\{f_{\theta_1}\left(x_1, \cdots x_n\right) > kf_{\theta_0}\left(x_1, \cdots x_n\right)\right\} + \gamma P_{\theta_0}\left\{f_{\theta_1}\left(x_1, \cdots x_n\right) = kf_{\theta_0}\left(x_1, \cdots x_n\right)\right\}$$

Además,

I) φ es uniformemente de máxima potencia de tamaño α para contrastar $H_0: \theta = \theta_0$ frente a $H_1: \theta = \theta_1$

Para cualquier otro test φ' basado en $(X_1, \dots X_n)$ tal que $\sup_{\theta \in \Theta_0} \beta_{\varphi'}(\theta) \le \alpha$, es $\beta_{\varphi}(\theta) \ge \beta_{\varphi'}(\theta)$, $\forall \theta \in \Theta_1$

II) existe φ de la forma del enunciado verificando $\alpha = E_{\theta_0}[\varphi]$ para k > 0 y φ' es uniformemente de máxima potencia de nivel α , entonces φ' es de tamaño α y φ' $(x_1, \dots, x_n) = \varphi$ (x_1, \dots, x_n) salvo quizá en un conjunto $A \subset \chi^n$ tal que $P_{\theta_0}(A) = P_{\theta_1}(A) = 0$

Definición 2.4.4 [Test insesgado]

Un test φ de tamaño α es insesgado para el contraste $H_0: \theta = \theta_0$ frente a $H_1: \theta = \theta_1$ sí y sólo sí $E_{\theta_1}(\varphi) \ge \alpha$

Corolario 2.4.1

El test uniformemente de máxima potencia de tamaño α construido en el lema de Neyman Pearson es insesgado.

Demostración. Sea $\varphi'(x_1, \dots, x_n) = \alpha$, salvo quizá en un conjunto $A \subset \chi^n$ tal que $P_{\theta_0}(A) = P_{\theta_1}(A) = 0$. Como $E_{\theta_0}[\varphi'] = \alpha$ y φ' no es de la forma del enunciado del Teorema 5, $\alpha = E_{\theta_1}[\varphi'] \le E_{\theta_1}[\varphi]$.

Ejemplo

Para una m.a.s.(n) de $X \sim \text{Bin}(1,\theta)$, encontrar el TUMP de tamaño α para contrastar $H_0: \theta = \theta_0$ frente a $H_1: \theta = \theta_1$, con $\theta_0 > \theta_1$. Particularizarlo para $n = 10, \alpha = 0.05, \theta_0 = 0.5$ y $\theta_1 = 0.4$ $\frac{f_{\theta_1}(x_1, \dots, x_n)}{f_{\theta_0}(x_1, \dots x_n)} = \left(\frac{1-\theta_1}{1-\theta_0}\right)^n \left(\frac{\theta_1}{\theta_0} \frac{1-\theta_0}{1-\theta_1}\right)^{\sum_{i=1}^n x_i} \Leftrightarrow \sum_{i=1}^n x_i \leq c$

$$\frac{f_{\theta_1}(x_1, \dots, x_n)}{f_{\theta_0}(x_1, \dots x_n)} = \left(\frac{1-\theta_1}{1-\theta_0}\right)^n \left(\frac{\theta_1}{\theta_0} \frac{1-\theta_0}{1-\theta_1}\right)^{\sum_{i=1}^n x_i} \Leftrightarrow \sum_{i=1}^n x_i \le c$$

donde c es tal que $P_{\theta_0}\{\sum_{i=1}^n x_i \leq c\} = \sum_{j=0}^c \binom{n}{j} \theta_0^j (1-\theta_0)^{n-j} = \alpha_c, c = 0, 1, 2, \dots, n$

$$\begin{array}{l} P_{\theta_0}\left\{\sum_{i=1}^n x_i < 2\right\} = 0.0108 \\ P_{\theta_0}\left\{\sum_{i=1}^n x_i < 3\right\} = 0.0547 \end{array}$$

$$\varphi(x_1, \dots x_n) = \begin{cases} 1 & \text{si} \quad \sum_{i=1}^n x_i < 2\\ \gamma & \text{si} \quad \sum_{i=1}^{n-1} x_i = 2\\ 0 & \text{si} \quad \sum_{i=1}^n x_i > 2 \end{cases}$$

$$0.05 = E_{\theta_0}[\varphi] = 1 \times P_{\theta_0} \left\{ \sum_{i=1}^n x_i < 2 \right\} + \gamma \times P_{\theta_0} \left\{ \sum_{i=1}^n x_i = 2 \right\} = 0.0108 + \gamma \times 0.0547 \Rightarrow \gamma = 0.892$$

Contrastes de hipótesis unilaterales

Familia de distribuciones de razón de verosimilitud monótona Sea $X \approx (\chi, \beta_{\chi}, F_{\theta})_{\theta \in \Theta \subset \mathbb{R}}$ un modelo estadístico continuo (o discreto) uniparamétrico y (X_1, \cdots, X_n) una muestra de $\{F_{\theta}, \theta \in \Theta\}$, siendo $f_{\theta}(x_1, \cdots x_n)$ su función de densidad (o de masa) $\{F_{\theta}, \theta \in \Theta\}$ es una familia de distribuciones de razón de verosimilitud monótona creciente (o decreciente) sí y sólo sí existe un estadístico $T = T(X_1, \dots, X_n) : \chi^n \to \mathbb{R}$ tal que, si $\theta_0, \theta_1 \in \Theta$ y $\theta_0 < \theta_1$, entonces la razón de verosimilitudes $\frac{f_{\theta_1}(x_1, \dots, x_n)}{f_{\theta_0}(x_1, \dots, x_n)}$ es una función monótona creciente (o decreciente) en $T(x_1, \dots, x_n)$