

IA Embarquée

P. Bakowski

Intelligence Artificielle (IA) et IA Embarquée

- Introduction
- Matériel pour l'IA Embarquée : CPU, GPU, TPU
- Logiciel pour l'IA Embarquée : TensorFlow Lite, TensorRT
- Lab 0 Introduction au Réseaux Neuronaux
- Lab 1 CPU-NEON, Inférence sur RPI 4
- Lab 2 GPU Jetson Nano, Inférence
- Lab 3 GPU Jetson-Nano, Reconnaissance faciale
- Lab 4 GPU Jetson-Nano, Voix
- Lab 5 TPU/ASIC Google CORAL, Inférence

- Le Machine Learning est une technologie d'intelligence artificielle permettant aux ordinateurs d'apprendre sans avoir été programmés explicitement à cet effet.
- Pour apprendre et se développer, les ordinateurs ont toutefois **besoin de données** à analyser et sur lesquelles ils doivent **s'entraîner**.

martComputer**L**

- L'apprentissage profond est un ensemble de méthodes d'apprentissage automatique tentant de modéliser avec un haut niveau d'abstraction des données grâce à des architectures articulées de différentes transformations non linéaires.
- Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du **signal sonore ou visuel** et notamment de la **reconnaissance faciale**, de la **reconnaissance vocale**, de la **vision par ordinateur**, du traitement automatisé du langage.

Introduction – IA Embarquée

- Grâce à notre capacité à construire des machines intelligentes qui simulent l'intelligence humaine, les implications pour le progrès technologique dans de nombreux secteurs sont infinies. Alors, quoi de mieux que l'intelligence artificielle?
- Intelligence Artificielle Embarquée.
- L'intelligence artificielle (IA) embarquée est l'application de ML et DL au niveau de l'appareil (embedded device)
- L'Appareil ou *embedded device* est un **SoC** ou un **FPGA** intégré sur une carte autonome **SCB** (Single Computer Board)
- Exemples: Nvidia-Jetson Nano, Xavier, Google-CORAL, ..

Introduction – Logiciel

- Les logiciels fonctionnant sur le équipements IA embarquées sont (presque) les mêmes que ceux sur les équipements standards (PC, serveurs,..)
- **Langages :** C/C++ et Python
- Packages: PyNum, Ski-Learn, ...
- Couches applicatives: Keras, TensorFlow, PyTorch,...
 - TensorFlow => TensorFlow Lite => TensorFlow Lite EDGE
- Couches d'exécution : CUDA, cuDNN, ..
- **OS**: Linux, FreeRTOS, ..

Introduction - Un Neurone

Un **Neurone** est un mécanisme essentiel dans le développement des applications d'IA. Voici sa structure fonctionnelle :

- y = f(x1*w1+x2*w2+b)
- où : w1 et w2 sont des poids (weights) et b est un biais

Introduction – Un Neurone

$$y = f(x1*w1+x2*w2+b)$$

f - fonction sigmoïd représente la fonction de répartition de la loi logistique. Elle est dérivable, ce qui est une contrainte pour l'algorithme de rétropropagation

Exercice : écrivez l'équation de la fonction sigmoïd !

Introduction - Un Neurone

- propagation (for-forwarding)
- rétropropagation (back-forwarding)

Matériel pour lA embarquée

- Les **SoC** développés pour les applications de l'IA embarquée sont presque toujours basées sur les **CPU ARM**
- Ils intègrent les GPUs et/ou les TPUs
- Questions
- Quelles sont les différences entre les CPUs et les GPUs ?
- Quelles sont les différences entre les GPUs et les TPUs ?

Paramètres du notebook	Paramètres du notebook	Paramètres du notebook
Accélérateur matériel None Omettre l'élément de sortie des cellules de code lors de l'enregistrement de ce notebook	Accélérateur matériel GPU O Pour tirer le meilleur parti de Colab, évitez d'utiliser un GPU si vous n'en avez pas besoin. En savoir plus	Accélérateur matériel TPU Pour tirer le meilleur parti de Colab, évitez d'utiliser un TPU si vous n'en avez pas besoin. En savoir plus
Annuler Enregistrer	Omettre l'élément de sortie des cellules de code lors de l'enregistrement de ce notebook	Omettre l'élément de sortie des cellules de code lors de l'enregistrement de ce notebook
	Annuler Enregistrer	Annuler Enregistrer

Matériel pour IA embarquée : CPUs

- Modern CPU Features Summary:
- Has Several Cores
- Specialized in Serial Processing
- Capable of executing a handful of operations at once
- Have high speed FLOPS utilization
- Supports large models thanks to its large memory capacity
- Acceleration: Multi-Core & SIMD (ARM-NEON)

Annuler Enregistrer

Matériel pour lA embarquée : CPUs

OUTPUT

Matériel pour IA embarquée : GPUs

- GPU Features Summary:
- Has hundreds/thousands of cores
- High memory throughput
- Specialized for parallel processing
- Capable of executing thousands of operations at once
- Taking into account integer and floating point operations

Paramètres du notebook

Annuler Enregistrer

Matériel pour IA embarquée : GPUs

OUTPUT

Matériel pour lA embarquée : TPUs

- **TPUs** Features Summary:
- Special Hardware for Matrix Processing
- High Latency (compared to CPU); long start
- Very High Throughput: very large buses
- Compute with Extreme Parallelism on smaller units (FP-16 bit)
- Highly-optimized for large batches and CNNs (convolutional neural network)

Paramètres du notebook

Accélérateur n TPU	natériel
	eur parti de Colab, évitez d'utiliser un TPU si vous coin. <u>En savoir plus</u>
Omettre l'e	elément de sortie des cellules de code lors d ement de ce notebook

Annuler Enregistre

Matériel pour lA embarquée : TPUs

Dans un TPU, les ALUs sont **directement connectés** les uns aux autres sans utiliser la mémoire. Ils peuvent donner directement des informations de passe qui réduiront considérablement la latence.

Matériel: Nvidia Jetson Nano

JETSON NANO

Low Cost AI Computer Module

Heterogeneous CPU Complex Quad Cores A57 with 2M8 L2 for multi-threaded operation 1.43Ghz

> Maxwell Tensor Core GPU 128 CUDA Tensor Cores 512 CUDA GFLOPS (FP16)

> > 4GB 64-Bit LPDDR4 Bandwidth 25.6 GB/s 16GB eMMC

Computer Vision E ISP Video Image Comp

Multimedia Engine Encode 4k, 4x1080 Decode 4k60, 2x4k JPEG encode & de H.264, H.265, VP9 HDMI, DP and eDP

Boot, Power & Security
Boot and power management
ARM TrustZone Secure

Industry Standard IO GPIO, IPC, IPS, SDIO, SPI, UART Support up to 12 CSI @1.5Gbps

Industry Standard High-Speed IO PCIe Gen2 rootport x1 | x2 | x4 RGMII Ethernet USB 3.0 and 2.0 USB 3.0 Gen2 Host and Device

GPU Maxwell à 128 cores à 2 opérateurs – 32 bits (921 MHz) performance = 0,5 TOPS (INT8)

Matériel: Nvidia Jetson Xavier

Jetson Xavier – GPU Volta à 512 cores à 4 opérateurs 64 bits (1377 MHz) – TPU avec 64 Tensor cores

performance = 22 TOPS (INT8)

Matériel: Nvidia Xavier SoC

Attention: Jetson Xavier est un **SBC**, qui intègre un **SoC** Xavier de **11 mld** transistors (**7 nm**). Le coût de développement **2 mld de dollars**.

Matériel : Google Coral

Le **SoC Google Coral** utilise un **ASIC** fabriqué par l'équipe Google appelé **Edge TPU**.

Il utilise une **matrice systolique** pour effectuer les opérations type **tenseur**.

Les éléments de la matrice sont les cellules mul-add.

Matériel : Google Coral SBC

Le Google Coral mini SBC

CPU	MediaTek 8167s SoC (Quad-core Arm Cortex-A35)
GPU	IMG PowerVR GE8300 (integrated in SoC)
ML accelerator	Google Edge TPU coprocessor: 4 TOPS (int8); 2 TOPS per watt
RAM	2 GB LPDDR3
Flash memory	8 GB eMMC
Wireless	Wi-Fi 5 (802.11a/b/g/n/ac); Bluetooth 5.0
Audio/video	3.5mm audio jack; digital PDM microphone; 2.54mm 2-pin speaker terminal; micro HDMI (1.4); 24-pin FFC connector for MIPI-CSI2 camera (4-lane); 24-pin FFC connector for MIPI-DSI display (4-lane)
Input/output	40-pin GPIO header; 2x USB Type-C (USB 2.0)

<u> Matériel : Google Coral</u>

Logiciel : JetPack

Logiciel: ML Docker

Logiciel : ML Docker

Machine Learning container contient : TensorFlow, PyTorch, JupyterLab et d'autres frameworks de ML et de science des données populaires tels que scikitlearn, scipy et Pandas préinstallés dans un environnement Python 3.6.

Jetson Inference container contient :

TensorRT et l'apprentissage par transfert avec PyTorch et les application de classification d'images pour C++ ou Python, la détection d'objets et des démonstrations de caméra en direct

Logiciel : TensorFlow et Keras

Deep Learning ...

Layers, models, optimizers, losses, metrix, ..

Tensor Manipulation ...

Tensors, variables, differentiations, distribution, ...

Coding ...

Import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

Pour la développement nous allons utiliser les bibliothèques de **Python** les plus avancées pour le **ML** (Machine Learning) et **DL** (Deep Learning), telles que **TensorFlow** et **Keras**.

Keras fournit les composants pour créer les couches (layers) d'un réseau de neurones.

Couche d'entrée est conceptuellement différente des autres couches

Couche cachée 1: 4 unités (4 neurones)

Couche cachée 2: 4 unités

Couche de sortie: 1 unité

hidden layer 1 hidden layer 2

<u> Keras : un simple modèle Dense</u>

```
from keras.models import Sequential
from keras.layers import *

model = Sequential()
# input with shape=(3,)
model.add(Dense(units=4,input_shape=(3,))) #hidden layer 1
model.add(Dense(units=4)) #hidden layer 2
model.add(Dense(units=1)) #output layer
```


hidden layer 1 hidden layer 2

<u>Un exemple de réseau neuronal</u>

Un réseau de neurones convolutifs (**ConvNet/CNN**) qui peut prendre une image d'entrée, attribuer de l'importance (poids et biais apprenables) à divers aspects / objets de l'image et **être capable de différencier l'un de l'autre**.

Un résumé

Dans cette présentation nous avons parlé de:

- Le **domaine** de l'intelligence artificielle (IA)
- Les caractéristiques d'intelligence artificielle embarquée (IAE)
- Le matériel disponible pour l'implémentation des modèles d'IAE
- Le logiciel utilisé pour le développement/entraînement des modèles
- Nous avons donné quelques exemples de modèles