Zagadnienia na obronę

Matematyka

7 lipca 2025

Spis treści

Analiza matematyczna			
1.	Centralne Twierdzenie Graniczne (CTG)	2	
2.	Pochodna funkcji	3	
3.	Całka Riemanna, całki oznaczone i nieoznaczone	4	
4.	Szereg Taylora i Maclaurina	5	
5.	Kryteria zbieżności szeregów	6	
6.	Ekstrema funkcji (jednej i wielu zmiennych)	7	
7.	Liczby zespolone	8	
8.	Transformata Fouriera	8	
Rachunek prawdopodobieństwa i procesy stochastyczne			
9.	Proces Poissona	9	
10.	Proces Wienera (Ruch Browna)	9	
11.	Prawa Wielkich Liczb (PWL): Słabe i Mocne	10	
12.	Metoda Monte Carlo	11	
13.	Stacjonarność procesu stochastycznego (w węższym i szerszym sensie)	12	
14.	Funkcja charakterystyczna	12	
15.	Martyngały	13	
Statys	tyka	13	
16.	Metody estymacji parametrów	13	

	17.	Regresja liniowa	14
	18.	Testowanie hipotez statystycznych	14
f Algebra			
	19.	Wyznacznik macierzy	15
	20.	Wartości i wektory własne	16
	21.	Układy równań liniowych	16
Metody numeryczne			
	22.	Metody numerycznego rozwiązywania równań różniczkowych	17
	23.	Metody znajdowania miejsc zerowych funkcji	17
	24	Internolacia wielomianowa	18

Analiza matematyczna

1. Centralne Twierdzenie Graniczne (CTG)

Definicja:

Centralne Twierdzenie Graniczne mówi, że jeśli $X_1, X_2, ..., X_n$ są niezależnymi, identycznie rozłożonymi zmiennymi losowymi o skończonej wartości oczekiwanej μ i skończonej wariancji σ^2 , to suma (lub średnia) tych zmiennych po odpowiednim przeskalowaniu dąży rozkładem do rozkładu normalnego, gdy $n \to \infty$.

Formalnie (dla sumy):

$$\frac{\sum_{i=1}^{n} X_i - n\mu}{\sigma\sqrt{n}} \xrightarrow{d} N(0,1)$$

Równoważnie dla średniej arytmetycznej $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$:

$$\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \xrightarrow{d} N(0,1)$$

Założenia:

- 1. Zmienne są niezależne.
- 2. Mają ten sam rozkład (i.i.d.).
- 3. Istnieje skończona wartość oczekiwana μ i skończona wariancja σ^2 .

Zastosowanie:

- Uzasadnienie stosowania rozkładu normalnego w statystyce.
- Budowa przedziałów ufności i testów statystycznych.
- Modelowanie błędów pomiaru i zjawisk losowych w naukach przyrodniczych i społecznych.

Uogólnienia:

- Lindeberga i Lyapunowa CTG: wersje dla zmiennych niezależnych, ale niekoniecznie identycznie rozłożonych.
- CTG dla rozkładów alfa-stabilnych (gdy wariancja nieskończona): Jeśli zmienne mają ciężkie ogony (np. rozkład Pareto), suma po odpowiednim przeskalowaniu może dążyć nie do rozkładu normalnego, lecz do rozkładu alfa-stabilnego. Wtedy:

$$\frac{\sum_{i=1}^{n} X_i - a_n}{b_n} \xrightarrow{d} S_{\alpha}(\cdot)$$

gdzie $0 < \alpha < 2$, S_{α} – rozkład alfa-stabilny, $b_n \sim n^{1/\alpha}$.

2. Pochodna funkcji

Definicja:

Pochodna funkcji f w punkcie x_0 to granica ilorazu różnicowego (jeśli istnieje):

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Interpretacja geometryczna:

Pochodna to **nachylenie stycznej** do wykresu funkcji w punkcie x_0 . Pokazuje, jak szybko zmienia się wartość funkcji.

Metody obliczania:

- Analityczne: Reguły różniczkowania (iloczyn, iloraz, złożenie funkcji reguła łańcuchowa).
- Numeryczne: Przybliżenia różnicowe, np.

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$
 (różnica prosta)

lub centralna:

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$

3. Całka Riemanna, całki oznaczone i nieoznaczone

Całka Riemanna (konstrukcja):

Dla funkcji f określonej na przedziale [a, b], całka oznaczona to granica sum Riemanna:

$$\int_{a}^{b} f(x) dx = \lim_{\|\mathcal{P}\| \to 0} \sum_{i=1}^{n} f(c_i) \Delta x_i$$

gdzie \mathcal{P} to podział przedziału, $c_i \in [x_{i-1}, x_i], \Delta x_i = x_i - x_{i-1}$.

Całka oznaczona:

$$\int_{a}^{b} f(x) \, dx$$

zwraca liczbę, interpretowana jako pole pod wykresem funkcji między a i b.

Całka nieoznaczona:

$$\int f(x) \, dx$$

zbi
ór wszystkich funkcji pierwotnych F(x), takich że F'(x) = f(x).

Własności:

- Liniowość: $\int (af + bg) = a \int f + b \int g$
- Monotoniczność, addytywność względem przedziału
- Jeśli f ciągła na [a, b], to całkowalna

Podstawowe twierdzenia rachunku całkowego (Newtona-Leibniza):

1. Jeśli F – funkcja pierwotna f, to:

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

2. Jeśli f ciągła, to funkcja:

$$F(x) = \int_{a}^{x} f(t) dt$$

jest różniczkowalna i F'(x) = f(x)

4. Szereg Taylora i Maclaurina

Wzór Taylora:

Dla funkcji f nieskończenie różniczkowalnej w otoczeniu punktu a. Poniższa równość zachodzi, gdy reszta $R_n(x)$ we wzorze Taylora dąży do zera:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

Szereg Maclaurina:

To szczególny przypadek szeregu Taylora dla a = 0:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

Warunki zbieżności:

 Zbieżność szeregu nie oznacza automatycznie równości z funkcją – potrzebna zbieżność jednostajna lub spełnienie warunku z resztą:

$$R_n(x) = f(x) - \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k \to 0 \text{ dla } n \to \infty$$

• Dla wielu funkcji rozwinięcie Taylora zbiega tylko w otoczeniu punktu a (promień zbieżności R>0).

Zastosowania:

- Aproksymacja funkcji (szczególnie w analizie numerycznej)
- Obliczenia przybliżone (np. trygonometryczne, wykładnicze)
- Rozwiązywanie równań różniczkowych
- Fizyka (np. rozwinięcia wokół stanu równowagi)

5. Kryteria zbieżności szeregów

Kryterium porównawcze:

Jeśli $0 \le a_n \le b_n$ dla dużych n, i $\sum b_n$ zbieżny, to $\sum a_n$ też zbieżny. Odwrotnie: jeśli $0 \le b_n \le a_n$ i $\sum b_n$ rozbieżny, to $\sum a_n$ też rozbieżny.

Kryterium d'Alemberta (ilorazowe):

Jeśli

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L$$

to:

- jeśli $L < 1 \rightarrow$ szereg zbieżny,
- jeśli L > 1 lub = $\infty \rightarrow$ rozbieżny,
- jeśli $L=1 \rightarrow \text{brak informacji (kryterium nie rozstrzyga)}.$

Kryterium Cauchy'ego (pierwiastkowe):

Jeśli

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} = L,$$

to:

- $L < 1 \rightarrow \text{szereg zbieżny}$,
- $L > 1 \rightarrow \text{rozbieżny}$,
- $L = 1 \rightarrow \text{kryterium nie rozstrzyga}$.

Kryterium Leibniza (dla szeregów naprzemiennych):

Jeśli a_n są dodatnie, monotonicznie malejące i $\lim a_n = 0$, to szereg:

$$\sum (-1)^n a_n$$

jest **zbieżny** (ale niekoniecznie bezwzględnie).

6. Ekstrema funkcji (jednej i wielu zmiennych)

Dla funkcji jednej zmiennej f(x):

- Warunek konieczny: Jeśli f ma ekstremum lokalne w punkcie x_0 , to $f'(x_0) = 0$ (lub nie istnieje).
- Warunek wystarczający:
 - Jeśli $f''(x_0) > 0$, to minimum lokalne.
 - Jeśli $f''(x_0) < 0$, to maksimum lokalne.
 - Jeśli $f''(x_0) = 0$, potrzebne dalsze badanie (np. wyższe pochodne lub wykres).

Dla funkcji wielu zmiennych f(x, y, ...):

- Warunek konieczny: Punkt krytyczny $\nabla f = 0$ (wszystkie pochodne cząstkowe równe 0).
- Warunek wystarczający (test Hessego): Obliczamy macierz Hessego H (macierz drugich pochodnych).
 - Jeśli H dodatnio określona \rightarrow minimum.
 - Ujemnie określona \rightarrow maksimum.
 - Nieokreślona \rightarrow punkt siodłowy.
 - Zdegenerowana \rightarrow test nie rozstrzyga.

Ekstrema na zbiorach domknietych:

Sprawdzamy wartości funkcji:

- w punktach krytycznych wewnątrz zbioru,
- na brzegu (np. ograniczając funkcję do brzegu i szukając ekstremów),
- porównujemy wartości największa/minimalna to ekstrema globalne.

7. Liczby zespolone

Postać algebraiczna:

$$z = a + bi$$
, $a, b \in \mathbb{R}$, $i^2 = -1$

Postać trygonometryczna:

$$z = r(\cos \varphi + i \sin \varphi), \quad r = |z| = \sqrt{a^2 + b^2}, \ \varphi = \arg z$$

Postać wykładnicza (Eulera):

$$z = re^{i\varphi}$$
, bo $e^{i\varphi} = \cos \varphi + i \sin \varphi$

Wzór de Moivre'a:

Dla $z = r(\cos \varphi + i \sin \varphi)$:

$$z^{n} = |z|^{n} \left(\cos(n\varphi) + i\sin(n\varphi)\right)$$

8. Transformata Fouriera

Definicja (dla funkcji całkowalnej $f \in L^1(\mathbb{R})$):

$$\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x)e^{-2\pi ix\xi} dx$$

Własności:

- Liniowość
- Przesunięcie: $f(x-a) \leftrightarrow e^{-2\pi i a \xi} \hat{f}(\xi)$
- Skalowanie: $f(ax) \leftrightarrow \frac{1}{|a|} \hat{f}\left(\frac{\xi}{a}\right)$
- Transformata pochodnej:

$$f'(x) \leftrightarrow 2\pi i \xi \cdot \hat{f}(\xi)$$

8

• Transformata funkcji parzystej jest rzeczywista, nieparzystej – urojona

Związek z funkcją charakterystyczną:

Funkcja charakterystyczna zmiennej losowej X:

$$\varphi_X(t) = \mathbb{E}[e^{itX}]$$

Funkcja charakterystyczna $\varphi_X(t)$ jest transformatą Fouriera gęstości prawdopodobieństwa zmiennej losowej X, ale z inną konwencją znaku w wykładniku $(e^{itx}$ zamiast $e^{-2\pi ix\xi})$ i skalowania.

Rachunek prawdopodobieństwa i procesy stochastyczne

9. Proces Poissona

Definicja:

Proces Poissona to losowy proces skokowy $(N(t))_{t\geq 0}$, opisujący liczbę zdarzeń, które zaszły do czasu t, gdzie odstępy między kolejnymi zdarzeniami są niezależne i mają rozkład wykładniczy z parametrem $\lambda > 0$.

Własności:

- 1. Start w zerze: N(0) = 0.
- 2. **Niezależność przyrostów:** Liczba zdarzeń w niepokrywających się przedziałach czasu jest niezależna.
- 3. **Stacjonarność przyrostów:** Rozkład liczby zdarzeń zależy tylko od długości przedziału czasu.
- 4. Rozkład: $P(N(t) = k) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}, k = 0, 1, 2, ...$

Generowanie trajektorii:

Generujemy kolejne odstępy między zdarzeniami T_i z rozkładu wykładniczego $Exp(\lambda)$, a następnie tworzymy czasy zdarzeń $S_n = T_1 + T_2 + \cdots + T_n$. Proces przyjmuje wartość n na przedziale $[S_n, S_{n+1})$.

10. Proces Wienera (Ruch Browna)

Definicja:

Proces Wienera $(W(t))_{t\geq 0}$ to proces stochastyczny o ciągłych trajektoriach, który spełnia:

1. W(0) = 0,

2. niezależność przyrostów,

3. przyrosty mają rozkład normalny: $W(t+s) - W(s) \sim \mathcal{N}(0,t)$,

4. trajektorie są ciągłe z prawdopodobieństwem 1.

Własności:

• **Średnia:** E[W(t)] = 0,

• Wariancja: Var[W(t)] = t,

· Niezależność i stacjonarność przyrostów,

• Gaussianowska natura: każde skończone zbiory wartości mają rozkład normalny.

Samopodobieństwo:

Dla dowolnej stałej a > 0, proces W(at) ma taki sam rozkład jak $\sqrt{a}W(t)$. To oznacza, że proces jest **samopodobny rzędu** H = 1/2.

11. Prawa Wielkich Liczb (PWL): Słabe i Mocne

Prawa Wielkich Liczb opisują warunki, w których średnia arytmetyczna ciągu niezależnych zmiennych losowych zbiega do wartości oczekiwanej.

Słabe Prawo Wielkich Liczb (SPWL):

Jeśli X_1,X_2,\dots są niezależne, identycznie rozłożone (i.i.d.) z $E[X_i]=\mu,$ to

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{P} \mu.$$

(Zbieżność w prawdopodobieństwie.)

Mocne Prawo Wielkich Liczb (MPWL):

Dla tego samego ciągu:

$$\overline{X}_n \xrightarrow{a.s.} \mu.$$

(Zbieżność **prawie na pewno**.)

Rodzaje zbieżności zmiennych losowych:

- 1. Zbieżność prawie na pewno (a.s.): $P(\lim_{n\to\infty} X_n = X) = 1$,
- 2. Zbieżność w prawdopodobieństwie: $\forall \varepsilon > 0$, $\lim_{n \to \infty} P(|X_n X| > \varepsilon) = 0$,
- 3. Zbieżność w rozkładzie (dystrybuancji): $F_{X_n}(x) \to F_X(x)$ dla punktów ciągłości F_X ,
- 4. Zbieżność w średniej kwadratowej: $\lim_{n\to\infty} E[(X_n-X)^2]=0$.

Zależności:

Zb. a.s. \Rightarrow zb. w prawdopodobieństwie \Rightarrow zb. w rozkładzie.

12. Metoda Monte Carlo

Idea:

Metoda Monte Carlo polega na użyciu losowania (symulacji) do przybliżenia wartości liczbowych, np. całek, wartości oczekiwanych, rozwiązań równań itp.

Przykład:

Aby oszacować wartość oczekiwaną E[f(X)], generujemy $X_1,...,X_n$ i obliczamy

$$\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n f(X_i).$$

Dla dużego n, $\hat{\mu}_n \approx E[f(X)]$.

Podstawa teoretyczna:

Prawa Wielkich Liczb – gwarantują, że $\hat{\mu}_n \to E[f(X)]$ przy rosnącym n, co uzasadnia poprawność metody.

Zalety:

- Łatwość implementacji,
- Możliwość zastosowania w problemach wysokowymiarowych lub trudnych analitycznie.

13. Stacjonarność procesu stochastycznego (w węższym i szerszym sensie)

Stacjonarność w szerszym sensie (słaba stacjonarność):

Proces $(X_t)_{t \in T}$ jest stacjonarny w szerszym sensie, jeśli:

- 1. $E[X_t] = \mu = \text{const},$
- 2. $Cov(X_t, X_{t+h}) = \gamma(h)$ zależy tylko od przesunięcia h, a nie od t.

Stacjonarność w węższym sensie (ściśle stacjonarny):

Proces (X_t) jest stacjonarny w węższym sensie, jeśli rozkład $(X_{t_1}, ..., X_{t_k})$ jest taki sam jak $(X_{t_1+h}, ..., X_{t_k+h})$ dla dowolnych $t_1, ..., t_k$ i h. (Inaczej: cały rozkład jest niezmienniczy na przesunięcia czasu.)

Stacjonarność w węższym (ścisłym) sensie implikuje stacjonarność w szerszym sensie (o ile istnieją odpowiednie momenty), ale nie na odwrót.

Przykłady:

- Proces stacjonarny w sensie szerokim: proces autoregresyjny AR(1) z $|\phi| < 1$.
- Proces ściśle stacjonarny: proces o niezależnych i identycznie rozłożonych zmiennych $X_t \sim \text{Exp}(\lambda)$.
- Proces Wienera: nie jest stacjonarny wariancja rośnie z czasem.

14. Funkcja charakterystyczna

Definicja:

Funkcja charakterystyczna zmiennej losowej X to funkcja $\varphi_X(t)=E[e^{itX}],\,t\in\mathbb{R}.$

Własności:

- 1. Zawsze istnieje (również dla zmiennych bez momentów),
- 2. $\varphi_X(0) = 1$,
- 3. $|\varphi_X(t)| < 1$,
- 4. Funkcja charakterystyczna określa jednoznacznie rozkład zmiennej losowej,
- 5. $\varphi_{aX+b}(t) = e^{itb}\varphi_X(at)$,
- 6. Dla niezależnych $X, Y: \varphi_{X+Y}(t) = \varphi_X(t) \cdot \varphi_Y(t)$.

Zastosowanie:

- Identyfikacja rozkładu,
- Dowód twierdzenia centralnego granicznego (CLT),
- Badanie zbieżności w rozkładzie,
- Ułatwia obliczenia przy sumach niezależnych zmiennych.

15. Martyngały

Definicja:

Proces $(X_n)_{n\geq 0}$ to martyngał względem filtracji (\mathcal{F}_n) , jeśli:

- 1. X_n jest \mathcal{F}_n -mierzalny,
- 2. $E[|X_n|] < \infty$,
- 3. $E[X_{n+1} \mid \mathcal{F}_n] = X_n$ prawie na pewno.

Intuicja:

Brak przewagi w grze – przyszła wartość średnia równa jest obecnej, biorąc pod uwagę dostępną informację.

Przykłady:

- $X_n = S_n = \sum_{i=1}^n \xi_i$, gdzie ξ_i są niezależne, mają wartość oczekiwaną 0.
- $X_n = E[Y \mid \mathcal{F}_n]$, gdzie Y ma skończoną wartość oczekiwaną.
- Proces W(t) proces Wienera jest martyngałem względem swojej naturalnej filtracji.

Statystyka

16. Metody estymacji parametrów

Metoda największej wiarygodności (MLE)

Polega na wyznaczeniu takich wartości parametrów rozkładu, które maksymalizują funkcję wiarygodności – czyli prawdopodobieństwo zaobserwowania danej próby. Rozwiązanie uzyskuje się zwykle poprzez różniczkowanie logarytmu funkcji wiarygodności i rozwiązanie układu równań.

Metoda momentów

Polega na przyrównaniu teoretycznych momentów rozkładu (np. wartości oczekiwanej, wariancji) do odpowiadających im momentów empirycznych wyznaczonych z próby. Liczbę równań dobiera się do liczby estymowanych parametrów.

17. Regresja liniowa

Model regresji liniowej

Model opisuje zależność zmiennej zależnej Y od jednej lub więcej zmiennych niezależnych $X: Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p + \varepsilon$ gdzie ε to składnik losowy.

Założenia modelu klasycznego (Gaussa-Markowa):

- Liniowość modelu względem parametrów.
- Składnik losowy ma zerową wartość oczekiwaną: $E(\varepsilon_i) = 0$.
- Homoskedastyczność: wariancja składnika losowego jest stała: $Var(\varepsilon_i) = \sigma^2$.
- Brak autokorelacji składnika losowego: $Cov(\varepsilon_i, \varepsilon_j) = 0$ dla $i \neq j$.
- Brak idealnej współliniowości między zmiennymi objaśniającymi.
- Dodatkowe założenie do wnioskowania statystycznego (testy t, F): Składnik losowy ma rozkład normalny: $\varepsilon \sim \mathcal{N}(0, \sigma^2)$.

Estymacja parametrów – metoda najmniejszych kwadratów (MNK)

Parametry modelu estymuje się przez minimalizację sumy kwadratów reszt:

$$\min_{\beta} \sum (Y_i - \hat{Y}_i)^2$$

Rozwiązanie analityczne:

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

18. Testowanie hipotez statystycznych

Błąd I rodzaju

Popełniamy go, gdy odrzucamy hipotezę zerową H_0 , mimo że jest prawdziwa. Prawdopodobieństwo tego błędu to poziom istotności α .

Błąd II rodzaju

Popełniamy go, gdy nie odrzucamy H_0 , mimo że hipoteza alternatywna H_1 jest prawdziwa. Prawdopodobieństwo tego błędu to β .

p-wartość

To najmniejsze możliwe α , dla którego odrzucilibyśmy H_0 przy zaobserwowanej statystyce testowej. Jeżeli p-wartość $< \alpha$, odrzucamy H_0 .

Test Kołmogorowa-Smirnowa (K-S)

To nieparametryczny test zgodności, porównujący dystrybuantę empiryczną z dystrybuantą teoretyczną (jednowymiarowy przypadek). Statystyka testowa to maksymalna wartość bezwzględna różnicy między tymi funkcjami. Służy np. do sprawdzania zgodności z zadanym rozkładem. W przypadku testowania normalności, gdy parametry rozkładu (średnia, odchylenie standardowe) są estymowane z próby, należy użyć testu Lillieforsa (poprawka do testu K-S) lub, co jest zalecane, testu o większej mocy, jak testu Shapiro-Wilka.

Algebra

19. Wyznacznik macierzy

Definicja:

Wyznacznik to liczba przypisana macierzy kwadratowej, oznaczana np. det(A), wykorzystywana m.in. do badania odwracalności macierzy. Macierz jest odwracalna wtedy i tylko wtedy, gdy jej wyznacznik jest różny od zera.

Metody obliczania:

- Rozwinięcie Laplace'a: rozwinięcie względem dowolnego wiersza lub kolumny przy użyciu mniejszych wyznaczników (minorów). Dobrze nadaje się dla małych macierzy.
- Eliminacja Gaussa: przekształcamy macierz do postaci trójkątnej; wyznacznik to iloczyn elementów na przekątnej, z uwzględnieniem znaków wynikających z zamian wierszy.

Interpretacja geometryczna:

Dla macierzy 2×2 lub 3×3 , wyznacznik odpowiada odpowiednio polu powierzchni lub objętości równoległoboku/równoległościanu rozpiętego przez kolumny macierzy. Znak wyznacznika informuje o orientacji układu (np. dodatni – zachowana orientacja).

20. Wartości i wektory własne

Definicja:

Dla macierzy kwadratowej A, liczba λ jest **wartością własną**, jeśli istnieje niezerowy wektor v, taki że:

$$Av = \lambda v$$

Wektor v nazywany jest **wektorem własnym** odpowiadającym wartości λ .

Zastosowania:

- Diagonalizacja macierzy: jeśli macierz A ma n liniowo niezależnych wektorów własnych, to można ją przedstawić w postaci $A = PDP^{-1}$, gdzie D to macierz diagonalna z wartościami własnymi. Ułatwia to np. potęgowanie macierzy.
- Zastosowania praktyczne: analiza stabilności układów dynamicznych, PCA (analiza głównych składowych), mechanika kwantowa, przetwarzanie obrazów, grafy.

21. Układy równań liniowych

Liczba rozwiązań:

Układ równań liniowych może mieć:

- jedno rozwiązanie (układ oznaczony),
- nieskończenie wiele rozwiązań (układ nieoznaczony),
- brak rozwiązań (układ sprzeczny).

Twierdzenie Kroneckera-Capellego:

Niech rz(A) oznacza rząd macierzy głównej, a rz(A|b) rząd macierzy rozszerzonej.

• Jeśli $rz(A) \neq rz(A|b)$, to układ jest **sprzeczny** (brak rozwiązań).

- Jeśli rz(A) = rz(A|b) = r, to układ jest niesprzeczny. Wtedy, dla n niewiadomych:
 - Jeśli r = n, układ jest **oznaczony** (jedno rozwiązanie).
 - Jeśli r < n, układ jest **nieoznaczony** (nieskończenie wiele rozwiązań).

Metody numeryczne

22. Metody numerycznego rozwiązywania równań różniczkowych

Metoda Eulera

To najprostsza metoda numeryczna dla równań postaci y' = f(x, y), z danym warunkiem początkowym $y(x_0) = y_0$. Przybliżenie wyznacza się iteracyjnie: $y_{n+1} = y_n + hf(x_n, y_n)$ gdzie h to krok siatki. Metoda ma rząd dokładności 1 i może być niestabilna przy większym kroku.

Metody Rungego-Kutty

To rodzina dokładniejszych metod; najczęściej stosowana to metoda RK4 (czwartego rzędu): $y_{n+1} = y_n + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$ gdzie k_1, k_2, k_3, k_4 to przybliżenia nachyleń w różnych punktach przedziału. RK4 zapewnia wysoką dokładność przy umiarkowanym koszcie obliczeniowym.

23. Metody znajdowania miejsc zerowych funkcji

Metoda bisekcji

Polega na iteracyjnym dzieleniu przedziału [a,b], w którym funkcja zmienia znak (czyli $f(a) \cdot f(b) < 0$). W każdej iteracji wybiera się połowę przedziału, w której występuje zmiana znaku. Metoda jest wolna (zbieżność liniowa), ale zawsze zbieżna.

Metoda Newtona (Newtona-Raphsona)

Stosuje wzór: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ Wymaga znajomości pochodnej f'(x) i odpowiedniego punktu startowego. Zbieżność jest kwadratowa, ale może zawieść, jeśli $f'(x_n) \approx 0$ lub punkt startowy jest źle dobrany.

24. Interpolacja wielomianowa

Idea

Interpolacja polega na znalezieniu wielomianu $P_n(x)$, który przechodzi przez dane punkty (x_i, y_i) . Przykładowe metody to Lagrange'a lub Newtona. Celem jest aproksymacja funkcji znanej tylko w punktach.

Efekt Rungego

Przy interpolacji wielomianowej na równomiernej siatce, szczególnie dla funkcji o dużych zmianach (np. $f(x)=\frac{1}{1+x^2}$), wielomian może silnie oscylować na końcach przedziału. Zjawisko to nazywa się efektem Rungego i wskazuje, że zwiększanie stopnia wielomianu nie zawsze poprawia jakość interpolacji.