

Computing the Z Score

www.stats-lab.com

Key Parameters of the Normal Distribution

- Normal Mean μ
 (pronounced "mu")
- Normal Standard Deviation σ (pronounced "sigma")

- Suppose we are interested in a normally distributed variable called *X* (for example: Heights or Weights).
- We are given specific values for
 - Normal Mean μ
 - Normal Standard Deviation σ

- For some particular value x_o of the normal distribution X, there is a corresponding **z-score** z_o .
- The z-score is the distance, in terms of standard deviations, that x_o is from the mean μ .

$$z_o = \frac{x_o - \mu}{\sigma}$$

X =Weights

- Mean of X: $\mu = 1000 \text{ kg}$
- Standard Deviation of X : $\sigma = 20 \text{ kg}$

Compute the z-score for 1050 kgs and 985 kgs

The Normal Distribution: Exercise 1

$$z_o = \frac{x_o - \mu}{\sigma}$$

$$(x_o = 1050 \text{ kgs}, \mu = 1000 \text{ kgs}, \sigma = 20 \text{ kgs})$$

The Normal Distribution: Exercise 2

$$z_o = \frac{x_o - \mu}{\sigma}$$

$$(x_o = 985 \text{ kgs}, \mu = 1000 \text{ kgs}, \sigma = 20 \text{ kgs})$$

Computing the Z-score

The normal distribution has the following paramters

- μ the mean of the normal distribution
- \bullet σ the standard deviation of the distribution

$$z = \frac{x - \mu}{\sigma}$$

Suppose $\mu = 1000 \ \sigma = 400$

$$X \sim N(1000, 400)$$