Основы теории графов

1 Вершинная связность

Теорема 1 (Хёринга). тах кол-во путей $P(x \to y)$ (не перес. во внутр. $moч \kappa ax) = |R|$ – тах мн-ва вершин, отделяющих x и y.

Теорема 2 (Менгера). Для \forall несмежных вершин $x,y \in V \not\equiv e(x,y)$ размер мин. верш.-разделяющего мн-ва $|R_{min}(x \leftrightarrow y)| = \max$ числу простых путей $P(x \to y)$, отличных во внутренних точках.

Теорема 3 (Уитни). Граф G k-связный $\iff \forall x,y \in V$, $\exists k$ простых путей $P(x \to y)$, не пересекающихся во внутренних точках $P_i \neq P_i$ (внут.).

2 Рёберная связность

Теорема 4 (Форда-Фалкерсона). тах $nomok\ Q$ через cemb = nponyckhoй cnocoбhocmu минимального S-T разреза.

Теорема 5 (Менгера "рёберная"). Для \forall несмежных вершин $x,y \in V$ $\nexists e(x,y)$ размер min **рёберно**-разделяющего мн-ва $|R_{min}^{edge}(x \leftrightarrow y)| = \max$ числу простых **рёберно**-непересекающихся путей $P(x \to y)$.

3 Паросочетания

	вершинное	рёберное	
незав. мн-во	α	α'	max
покрытие	β	eta'	min
	вершинное	п-сочетание	

Теорема 6 (Галаи).

$$\alpha + \beta = \alpha' + \beta' = n$$

Теорема 7 (Кёнига). $B \,\forall \, 2$ -дольном графе B(m,n): $\beta = \alpha'$

Теорема 8 (Татта). В графе \exists совершенное паро-сочетание \iff при удалении \forall подмножества вершин S образуется нечётных компонент $C_o(G\setminus S)\leqslant |S|$