Diagnosis

Alejandro Keymer 11/11/2019

Ejercicios del libro de Faraway

1. (Ejercicio 1 cap. 6 pág. 97)

Using the sat dataset, fit a model with the total SAT score as the response and expend, salary, ratio and takers as predictors. Perform regression diagnostics on this model to answer the following questions. Display any plots that are relevant. Do not provide any plots about which you have nothing to say. Suggest possible improvements or corrections to the model where appropriate.

```
n <- dim(sat)[1]
p <- dim(sat)[2]
model <-
    lm(total ~ expend + salary + ratio + takers, data = sat)

sat %>%
    select(total, expend, salary, ratio, takers) %>%
    ggpairs(progress = F)
```


Lo primero que hago es crear una matriz de dispersión para tener una idea de como se distribuyen las variables y la relación 2x2 que tienen entre si. Utilizo la librería GGally que tiene la función ggpairs.

Figure 1: Gráficos Diagnósticos

(a) Check the constant variance assumption for the errors.

```
par(mfrow = c(2,2))
plot(model)
```

Para evaluar la homocedasticidad del error utilizo los gráficos de:

- residuales v/s valor ajustado
- residuales estandarisados v/s valor ajustado.

En este caso se observa cierta irregularidad en el gráfico $\hat{y} \times \hat{\epsilon}$ que podría traducir no-linearidad, aunque dentro de todo no se observa un patrón definido, ni tan anormal que haga pensar que el erro no sigue una homocedasticidad.

(b) Check the normality assumption.

```
shapiro.test(resid(model))

##

## Shapiro-Wilk normality test

##

## data: resid(model)

## W = 0.97691, p-value = 0.4304
```

Para evaluar la normalidad del error, utilizo el gráfico de Q-Q de los residuales. En este caso el modelo se acerca bastante a la linea recta, con algunos valores raros que se alejan, que corresponden a los con valores mas altos de residuales, y que habría que examinar mejor.

Por otra parte podemos utilizar el test de Shapiro-Wilk cuya H0 es que el error no difiere de la distribución normal. En este caso no hay evidencia para rechazar la H0

(c) Check for large leverage points.

```
halfnorm(hatvalues(model), labs = rownames(sat))
```



```
augment(model) %>%
filter(.hat > 2*(p/n))
```

```
##
  # A tibble: 2 x 13
##
     .rownames total expend salary ratio takers .fitted .se.fit .resid .hat
##
     <chr>
                       <dbl>
                              <dbl> <dbl>
                                            <int>
                                                    <dbl>
                                                             <dbl>
                                                                    <dbl> <dbl>
## 1 Californ~
                 902
                        4.99
                                               45
                                                     918.
                                                              17.4
                                                                    -15.8 0.282
                               41.1
                                     24
                1076
                        3.66
                                     24.3
                                                              17.7
                                                                     65.8 0.292
## 2 Utah
                               29.1
                                                4
                                                    1010.
## # ... with 3 more variables: .sigma <dbl>, .cooksd <dbl>, .std.resid <dbl>
```

Para evaluar los valores extremos en el modelo, utilizamos dos gráficos.

- La gráfica de los valores ajustados versus los residuales estandarizados $(\hat{y} \times \sqrt{|\hat{\epsilon}|})$
- Una gráfica de $media\ normal\ (halfnormal)$ versus los residuales estandarizados. De esta manera se pueden identificar los valores mas extremos en X.

En este caso podemos ver que los valores para California y Utah cumplen con las características para valores extremos.

(d) Check for outliers.

```
(outliers <-
   augment(model) %>%
  mutate(.t.resid = rstudent(model)) %>%
  arrange(-abs(.t.resid)) %>%
  head(5))
```

```
## # A tibble: 5 x 14
##
     .rownames total expend salary ratio takers .fitted .se.fit .resid
                              <dbl> <dbl>
                                           <int>
##
               <int> <dbl>
                                                    <dbl>
                                                            <dbl>
## 1 West Vir~
                 932
                       6.11
                               31.9
                                     14.8
                                                    1023.
                                                             8.15
                                                                   -90.5 0.0621
                                              17
## 2 Utah
                1076
                       3.66
                               29.1
                                     24.3
                                               4
                                                    1010.
                                                            17.7
                                                                    65.8 0.292
## 3 North Da~
                1107
                               26.3
                                               5
                                                    1040.
                                                                    66.6 0.0810
                       4.78
                                     15.3
                                                             9.31
## 4 New Hamp~
                                              70
                                                             9.41
                                                                    65.9 0.0828
                 935
                        5.86
                               34.7
                                     15.6
                                                     869.
                                                             6.97 -54.1 0.0454
## 5 Nevada
                 917
                        5.16
                               34.8 18.7
                                              30
                                                     971.
## # ... with 4 more variables: .sigma <dbl>, .cooksd <dbl>,
       .std.resid <dbl>, .t.resid <dbl>
abs(outliers\$.t.resid) > abs(qt(.05/(n * 2), n - p))
```

[1] FALSE FALSE FALSE FALSE

Para valorar posibles *outliers* podemos utilizar la estrategia planteada en el libro de Faraway, y calcular los residuales *studentizados*. En este sentido los residuales cuyo valor superen un limite determinado por la corrección de Bonferroni, se podrían considerar posibles *outliers*.

En este caso el valor que mas puede ser un outlier es West Virginia, aunque el valor de .t.resid de west virgina no es mayor al valor limite de p corregido.

```
model_1 < -
    sat %>%
    rownames_to_column() %>%
    filter(rowname != "West Virginia") %>%
    lm(total ~ expend + salary + ratio + takers, data = .)
tidy(model)
## # A tibble: 5 x 5
##
     term
                 estimate std.error statistic p.value
##
     <chr>>
                    <dbl>
                               <dbl>
                                         <dbl>
                                                   <dbl>
                                               7.86e-24
## 1 (Intercept)
                  1046.
                              52.9
                                        19.8
```

```
## 2 expend
                     4.46
                              10.5
                                         0.423 6.74e- 1
## 3 salary
                     1.64
                               2.39
                                         0.686 4.96e- 1
## 4 ratio
                               3.22
                    -3.62
                                        -1.13 2.66e- 1
## 5 takers
                    -2.90
                               0.231
                                       -12.6
                                                2.61e-16
```

```
tidy(model_1)
```

```
## # A tibble: 5 x 5
##
                 estimate std.error statistic p.value
     term
##
     <chr>
                     <dbl>
                               <dbl>
                                          <dbl>
                                                   <dbl>
## 1 (Intercept)
                  1058.
                              48.5
                                         21.8
                                                3.26e-25
## 2 expend
                      7.36
                               9.69
                                         0.759 4.52e- 1
                                         0.496 6.22e- 1
## 3 salary
                      1.09
                               2.19
## 4 ratio
                    -3.94
                               2.94
                                         -1.34 1.88e- 1
## 5 takers
                    -2.97
                               0.213
                                       -14.0
                                                8.68e-18
```

Como West Virgina es un valor extremo (esta lejos de la linea del 0 en el plot de $\hat{y} \times \sqrt{|\hat{\epsilon}|}$)

(e) Check for influential points.

```
plot(model, 4)
```


halfnorm(cooks.distance(model), labs = rownames(sat))


```
model_2 <-
    sat %>%
    rownames_to_column() %>%
    filter(rowname != "Utah") %>%
    lm(total ~ expend + salary + ratio + takers, data = .)
```

```
tidy(model)
## # A tibble: 5 x 5
##
     term
                 estimate std.error statistic p.value
##
     <chr>>
                    <dbl>
                               <dbl>
                                          <dbl>
                                                   <dbl>
## 1 (Intercept)
                              52.9
                                        19.8
                                                7.86e-24
                  1046.
## 2 expend
                     4.46
                              10.5
                                         0.423 6.74e- 1
## 3 salary
                               2.39
                                         0.686 4.96e- 1
                     1.64
## 4 ratio
                    -3.62
                               3.22
                                        -1.13 2.66e- 1
## 5 takers
                    -2.90
                               0.231
                                       -12.6
                                                2.61e-16
tidy(model 1)
## # A tibble: 5 x 5
##
     term
                 estimate std.error statistic p.value
##
                                                   <dbl>
     <chr>>
                     <dbl>
                               <dbl>
                                          <dbl>
## 1 (Intercept)
                  1058.
                              48.5
                                        21.8
                                                3.26e-25
                                         0.759 4.52e- 1
## 2 expend
                     7.36
                               9.69
## 3 salary
                     1.09
                               2.19
                                         0.496 6.22e- 1
## 4 ratio
                                        -1.34 1.88e- 1
                    -3.94
                               2.94
## 5 takers
                    -2.97
                               0.213
                                       -14.0
                                                8.68e-18
tidy(model_2)
## # A tibble: 5 x 5
##
     term
                 estimate std.error statistic p.value
##
     <chr>
                               <dbl>
                                          <dbl>
                                                   <dbl>
                    <dbl>
## 1 (Intercept) 1094.
                                                4.04e-24
                              53.4
                                       20.5
## 2 expend
                    -0.943
                              10.2
                                       -0.0925 9.27e- 1
## 3 salary
                                                1.90e- 1
                    3.10
                               2.33
                                        1.33
## 4 ratio
                                                3.10e- 2
                    -7.64
                               3.43
                                       -2.23
## 5 takers
                    -2.93
                               0.219
                                     -13.4
                                                3.95e-17
```

Para evaluar los puntos mas influyentes podemos utilizar la $distancia\ de\ Cook$ que refleja los cambios en el modelo al no incluir una observación determinada. En este caso destacan Utah y West Virginia como observaciones influyentes. Además podemos volver a mirar el gráfico de $Residuales\ v/s\ leverage$, que también refleja puntos con un grado alto de palanca y un residual alto.

```
influence(model)$coefficients %>%
   as_tibble(rownames = "id") %>%
   gather(key, value, -id) %>%
   ggplot(aes(fct_rev(id), value, group = key)) +
   geom_line(alpha = .75)+
   coord_flip() +
   geom_hline(yintercept = 0, linetype = 3, color = "darkred") +
   facet_grid(~ key, scales = "free") +
   scale_colour_viridis_d(end=.85)
```


La función influence permite obtener los coeficientes al restar una observación x_i ("leave one out"). De esta manera puedo construir un gráfico que revela los cambios en los diferentes coeficientes para cada una de las observaciones. En este gráfico se ve claramente como Utah genera los mayores cambios en todos los coeficientes.

plot(model, 5)


```
sat[44,]
```

```
## expend ratio salary takers verbal math total ## Utah 3.656 24.3 29.082 4 513 563 1076
```

##

##

dfbeta.influence.merMod

dfbetas.influence.merMod

El modelo multivariable es explicativo, con un valor de R^2 relativamente alto. En el modelo el gasto por estudiante expend y el sueldo salary se relacionan de manera positiva con el resultado del test total. La ratio de profesores y el porcentaje de estudiantes que hacen el examen de manera negativa.

Utah es un caso *raro* en la medida que tiene un score muy alta en relación a un gasto **expend** y un sueldo salary inferior al promedio por una parte, y una ratio. El porcentaje de alumnos elegibles takers llama la atención, ya que parece extremadamente bajo en relación a los otros parámetros.

(f) Check the structure of the relationship between the predictors and the response.

lme4

lme4

En primer lugar me remito al gráfico de dispersión de (a), que permite reflejar la distribución y la relacion 1 a 1 de las variables.

```
# added variable
car::avPlots(model)

## Registered S3 methods overwritten by 'car':
## method from
## influence.merMod lme4
## cooks.distance.influence.merMod lme4
```

Added-Variable Plots

Para evaluar la estructura del modelo son de utilidad los gráficos de regresión parcial. La regresión parcial permite *aislar* la influencia de una variable independiente con la variable dependiente, restando la influencia de las otras variables independientes. Además permiten valorar la presencia de *outliers* y puntos influyentes.

En este caso podemos ver la clara relación inversa de la variable takers con el total y la relación mas débil de las otras variables. POdemos observar ademas el caso raro de Utah

```
par(mfrow = c(2,2))
termplot(model, partial.resid = T)
```


gráficos de residuales parciales, permiten conocer la respuesta aislando el *efecto* del resto de variables independientes. También permiten poder observar la presencia de diferencias estructurales, de no -linearidad

2. (Ejercicio 2 cap. 6 pág. 97)

Using the teengamb dataset, fit a model with gamble as the response and the other variables as predictors. Answer the questions posed in the previous question.

En este caso gráfico con utilizando sex como un factor.

(a) Check the constant variance assumption for the errors.

```
par(mfrow = c(2,2))
plot(model)
```

En este caso el gráfico podría definir cierta heterocedasticidad en la medida que a mayor valor de \hat{y} parece haber mayor dispersión del error.

```
var.test(resid(model)[teengamb_cl$sex == "female"], resid(model)[teengamb_cl$sex == "male"])

##

## F test to compare two variances

##

## data: resid(model)[teengamb_cl$sex == "female"] and resid(model)[teengamb_cl$sex == "male"]

## F = 0.31604, num df = 18, denom df = 27, p-value = 0.01374

## alternative hypothesis: true ratio of variances is not equal to 1

## 95 percent confidence interval:

## 0.1379388 0.7808184

## sample estimates:

## ratio of variances

## 0.3160421
```

En este caso al menos en cuanto a las poblaciones según sexo, hay una diferencia significativa en las varianzas

(b) Check the normality assumption.

Figure 2: Gráficos Diagnósticos

```
shapiro.test(resid(model))
```

```
##
## Shapiro-Wilk normality test
##
## data: resid(model)
## W = 0.86839, p-value = 8.16e-05
```

En este caso podemos observar que el gráfico Q-Q difiere de la normalidad con un patrón de $cola\ larga$. Por otra parte la preba de Shapiro Wilk refleja que se rechaza la H0 de normalidad de la distribución del error.

(c) Check for large leverage points.

```
halfnorm(hatvalues(model), labs = teengamb_cl$.rownames)
```



```
augment(model) %>%
    mutate(.rownames = teengamb cl$.rownames) %>%
    filter(.hat > 2*(p/n))
## # A tibble: 4 x 13
##
     gamble sex
                  status income verbal .fitted .se.fit .resid .hat .sigma
                                           <dbl>
                                  <int>
                                                   <dbl>
                                                          <dbl> <dbl>
                                                                        <dbl>
##
      <dbl> <fct>
                   <int>
                           <dbl>
## 1
       88
                            12
            male
                       18
                                      2
                                            77.1
                                                    11.1
                                                          10.9 0.240
                                                                         22.9
                                            78.3
## 2
       90
            male
                       38
                            15
                                      7
                                                    10.7
                                                          11.7 0.221
                                                                         22.9
                       28
       14.1 male
                             1.5
                                      1
                                            28.5
                                                    12.7 -14.4 0.312
                                                                         22.8
## 3
                       61
                                      9
                                            73.5
       69.7 male
                            15
                                                    12.5
                                                          -3.840.302
                                                                         23.0
     ... with 3 more variables: .cooksd <dbl>, .std.resid <dbl>,
```

En este caso podemos ver que los valores para 42 y 35 cumplen con las características para valores extremos. Habría que revisar también los 31 y 33.

(d) Check for outliers.

.rownames <fct>

```
augment(model) %>%
   mutate(.rownames = teengamb_cl$.rownames) %>%
   mutate(.t.resid = rstudent(model)) %>%
    filter(abs(.t.resid) > abs(qt(.05/(n * 2), n - p)))
## # A tibble: 1 x 14
                  status income verbal .fitted .se.fit .resid .hat .sigma
     gamble sex
                                                  <dbl>
##
      <dbl> <fct>
                  <int>
                          <dbl>
                                 <int>
                                          <dbl>
                                                         <dbl> <dbl>
                                                                       <dbl>
                              10
                                           61.7
                                                   7.98
                                                          94.3 0.124
                                                                        16.7
        156 male
## # ... with 4 more variables: .cooksd <dbl>, .std.resid <dbl>,
       .rownames <fct>, .t.resid <dbl>
```

En este caso el valor 24 parece ser un outlier

```
model_1 < -
    teengamb_cl %>%
    filter(.rownames != "24") %>%
    lm(gamble ~ sex + status + income + verbal, data = .)
tidy(model)
## # A tibble: 5 x 5
##
     term
                 estimate std.error statistic
                                                 p.value
##
                                                   <dbl>
     <chr>>
                    <dbl>
                               <dbl>
                                         <dbl>
## 1 (Intercept) 22.6
                             17.2
                                         1.31 0.197
## 2 sexfemale
                 -22.1
                               8.21
                                        -2.69 0.0101
## 3 status
                   0.0522
                               0.281
                                         0.186 0.853
## 4 income
                   4.96
                               1.03
                                         4.84 0.0000179
## 5 verbal
                  -2.96
                               2.17
                                        -1.36 0.180
tidy(model_1)
## # A tibble: 5 x 5
##
                 estimate std.error statistic
     term
                                                  p.value
##
     <chr>>
                    <dbl>
                               <dbl>
                                         <dbl>
                                                    <dbl>
## 1 (Intercept)
                    7.63
                              12.9
                                         0.590 0.558
## 2 sexfemale
                  -16.3
                               6.13
                                        -2.66 0.0112
## 3 status
                               0.208
                    0.174
                                         0.835 0.409
## 4 income
                    4.33
                               0.764
                                         5.67 0.00000126
## 5 verbal
                   -1.80
                               1.61
                                        -1.12 0.271
```

La exclusión de la observación 24 genera varios cambios en todos los coeficientes del modelo. Ademas de ser un candidato a *outlier* es un valor muy influyente

(e) Check for influential points.

```
plot(model, 4)
```


El gráfico de distancias de Cook confirma que el valor 24 se aleja mucho del comportamiento de las otras variables, que es un valor influyente y probablemente un outlier.

```
influence(model)$coefficients %>%
   as_tibble(rownames = "id") %>%
   mutate(id = factor(id, levels = c(1:n))) %>%
   gather(key, value, -id) %>%
```

```
ggplot(aes(fct_rev(id), value, group = key)) +
geom_line(alpha = .75)+
coord_flip() +
geom_hline(yintercept = 0, linetype = 3, color = "darkred") +
facet_grid(~ key, scales = "free")
```


plot(model, 5)

tidy(model)

```
# A tibble: 5 x 5
##
     term
                  estimate std.error statistic
                                                   p.value
##
     <chr>>
                     <dbl>
                                <dbl>
                                           <dbl>
                                                      <dbl>
## 1 (Intercept)
                               17.2
                                           1.31
                   22.6
                                                 0.197
## 2 sexfemale
                  -22.1
                                                 0.0101
                                8.21
                                          -2.69
## 3 status
                    0.0522
                                0.281
                                           0.186 0.853
## 4 income
                    4.96
                                1.03
                                           4.84
                                                 0.0000179
## 5 verbal
                   -2.96
                                2.17
                                          -1.36
                                                 0.180
teengamb_cl[24,]
```

(f) Check the structure of the relationship between the predictors and the response.

En primer lugar me remito al gráfico de dispersión de (a), que permite reflejar la distribución y la relación 1 a 1 de las variables.

```
car::avPlots(model)
```

Added-Variable Plots

En este caso el modelo refleja la relación directa del sexo masculino y del income con gamble, y la relación inversa suave con el score verbal. Es posible apreciar claramente que la observación 24 es un caso *raro* que se sale de las líneas de predicción para todos los coeficientes.

```
par(mfrow = c(2,2))
termplot(model, partial.resid = T)
```


este caso los parciales de residuales reflejan lo que se ve en el primer gráfico de dispersión y es que hay variables que no tiene una distribución normal, como income y , que podrían hacer pensar en hacer que transformaciones de las variables mejorarían la estructura del modelo

3. (Ejercicio 3 cap. 6 pág. 97)

For the **prostate** data, fit a model with lpsa as the response and the other variables as predictors. Answer the questions posed in the first question.

```
n <- dim(prostate)[1]</pre>
p <- dim(prostate)[2]</pre>
prostate_cl <-
   prostate %>%
   mutate(svi = as.logical(svi))
model <-
   lm(lpsa ~ lcavol + lweight + age + lbph + svi + lcp + gleason + pgg45, data = prostate_cl)
ggpairs(prostate_cl, progress = F, lower = list(continuous = wrap("points", alpha = 0.5, size = .4)))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
  `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
  `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
   `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
  `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
  `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```


Lo primero que hago es crear una matriz de dispersión para tener una idea de como se distribuyen las variables y la relación 2x2 que tienen entre si. Utilizo la librería GGally que tiene la función ggpairs.

(a) Check the constant variance assumption for the errors.

```
par(mfrow = c(2,2))
plot(model)
```

Para evaluar la homocedasticidad del error utilizo los gráficos de:

- residuales v/s valor ajustado
- residuales estandarizados v/s valor ajustado.

En este caso no se observa un patrón definido por lo que se asume homocedasticidad.

(b) Check the normality assumption.

```
shapiro.test(resid(model))
```

```
##
## Shapiro-Wilk normality test
##
## data: resid(model)
## W = 0.99113, p-value = 0.7721
```

La gráfica Q-Q parece bastante pareja y aproximada a la linea. El test de Shapiro Wilk confirma la normalidad del error

Figure 3: Gráficos Diagnósticos

(c) Check for large leverage points.


```
augment(model) %>%
  mutate(.rownames = rownames(prostate)) %>%
  filter(.hat > 2*(p/n))
```

```
## # A tibble: 5 x 17
##
      lpsa lcavol lweight
                            age
                                  lbph svi
                                               lcp gleason pgg45 .fitted
##
     <dbl>
           <dbl>
                    <dbl> <int>
                                 <dbl> <lgl> <dbl>
                                                     <int> <int>
                                                                   <dbl>
## 1
     2.01
           0.182
                     6.11
                             65 1.70 FALSE -1.39
                                                         6
                                                               0
                                                                    2.88
## 2
     2.16 1.42
                     3.66
                             73 -0.580 FALSE 1.66
                                                         8
                                                                    1.93
                                                              15
## 3
     2.30
           0.621
                     3.14
                             60 -1.39 FALSE -1.39
                                                         9
                                                              80
                                                                    2.05
## 4 3.08 1.84
                     3.24
                             60 0.438 TRUE
                                              1.18
                                                         9
                                                              90
                                                                    3.54
## 5 4.13 2.53
                     3.68
                             61 1.35 TRUE -1.39
                                                         7
## # ... with 7 more variables: .se.fit <dbl>, .resid <dbl>, .hat <dbl>,
       .sigma <dbl>, .cooksd <dbl>, .std.resid <dbl>, .rownames <chr>
```

Para evaluar los valores extremos en el modelo, utilzamos dos gráficos.

- La gráfica de los valores ajustados versus los residuales estandarizados $(\hat{y} \times \sqrt{|\hat{\epsilon}|})$
- Una gráfica de $media\ normal\ (halfnormal)$ versus los residuales estandarizados. De esta manera se pueden identificar los valores mas extremos en X.

En este caso podemos ver que los valores para el caso 32, 37 y el 41 cumplen con las características para valores extremos.

(d) Check for outliers.

```
augment(model) %>%
  mutate(.t.resid = rstudent(model)) %>%
  filter(abs(.t.resid) > abs(qt(.05/(n * 2), n - p)))
```

```
## # A tibble: 0 x 17
## # ... with 17 variables: lpsa <dbl>, lcavol <dbl>, lweight <dbl>,
## # age <int>, lbph <dbl>, svi <lgl>, lcp <dbl>, gleason <int>,
## # pgg45 <int>, .fitted <dbl>, .se.fit <dbl>, .resid <dbl>, .hat <dbl>,
## # .sigma <dbl>, .cooksd <dbl>, .std.resid <dbl>, .t.resid <dbl>
```

Para valorar posibles *outliers* podemos utilizar la estrategia planteada en el libro de Faraway, y calcular los residuales *studentizados*. En este sentido los residuales cuyo valor superen un limite determinado por la corrección de Bonferroni, se podrían considerar posibles *outliers*.

En este caso no hay valores que cumplan con lo propuesto

(e) Check for influential points.

```
plot(model, 4)
```


Im(lpsa ~ lcavol + lweight + age + lbph + svi + lcp + gleason + pgg45)

halfnorm(cooks.distance(model), labs = rownames(prostate))


```
model_1 <-
   prostate_cl %>%
   rownames_to_column() %>%
   filter(rowname != "32") %>%
   lm(formula = lpsa ~ lcavol + lweight + age + lbph + svi + lcp +
   gleason + pgg45, data = .)
```

```
model_2 <-
   prostate_cl %>%
   rownames_to_column() %>%
   filter(rowname != "47") %>%
   lm(formula = lpsa ~ lcavol + lweight + age + lbph + svi + lcp +
    gleason + pgg45, data = .)
tidy(model)
## # A tibble: 9 x 5
##
                 estimate std.error statistic
    term
                                                   p.value
##
     <chr>>
                   <dbl>
                            <dbl>
                                       <dbl>
                                                     <dbl>
## 1 (Intercept) 0.669
                           1.30
                                       0.516 0.607
## 2 lcavol
                 0.587
                           0.0879
                                       6.68 0.00000000211
                                       2.67 0.00896
## 3 lweight
                 0.454
                           0.170
## 4 age
                 -0.0196
                           0.0112
                                      -1.76 0.0823
## 5 lbph
                           0.0584
                                       1.83 0.0704
                 0.107
## 6 sviTRUE
                 0.766
                           0.244
                                       3.14 0.00233
## 7 lcp
                -0.105
                           0.0910
                                      -1.16 0.250
## 8 gleason
                                       0.287 0.775
                 0.0451
                           0.157
                                       1.02 0.309
## 9 pgg45
                 0.00453
                           0.00442
tidy(model_1)
## # A tibble: 9 x 5
##
                 estimate std.error statistic
    term
                                                   p.value
##
     <chr>
                   <dbl> <dbl>
                                       <dbl>
                                                     <dbl>
## 1 (Intercept) 0.172
                          1.33
                                       0.129 0.897
## 2 lcavol
                           0.0885
                                       6.39 0.00000000793
                 0.565
## 3 lweight
                 0.622
                           0.202
                                       3.08 0.00279
## 4 age
                -0.0213
                           0.0111
                                      -1.91 0.0596
                                       1.63 0.106
## 5 lbph
                 0.0956
                           0.0585
## 6 sviTRUE
                           0.243
                                       3.13 0.00235
                 0.760
## 7 lcp
                -0.106
                           0.0904
                                      -1.17 0.244
                                       0.324 0.747
## 8 gleason
                 0.0507
                           0.156
## 9 pgg45
                 0.00447
                           0.00439
                                       1.02 0.312
tidy(model_2)
## # A tibble: 9 x 5
##
                estimate std.error statistic
    term
                                                   p.value
     <chr>
                   <dbl> <dbl>
                                       <dbl>
                                                     <dbl>
## 1 (Intercept) 0.0488
                           1.29
                                      0.0378 0.970
                           0.0861
                                             0.0000000357
## 2 lcavol
                 0.566
                                      6.57
## 3 lweight
                 0.458
                           0.166
                                      2.76
                                             0.00701
## 4 age
                -0.0168
                           0.0110
                                     -1.54
                                             0.128
## 5 lbph
                 0.117
                           0.0571
                                      2.04
                                             0.0441
## 6 sviTRUE
                 0.826
                           0.239
                                      3.45
                                             0.000863
## 7 lcp
                -0.0980
                           0.0888
                                     -1.10
                                             0.273
## 8 gleason
                 0.114
                           0.156
                                      0.731 0.467
## 9 pgg45
                 0.00446
                           0.00431
                                      1.03
                                             0.304
```

Los casos mas influyentes son el 32 y el 47. Si sacamos del modelo la observación 32, el coeficiente de

lweight cambia en .15. Al quitar la observación 47, el modelo se preserva mejor.

```
influence(model)$coefficients %>%
   as_tibble(rownames = "id") %>%
   mutate(id = factor(id, levels = c(1:n))) %>%
   gather(key, value, -id) %>%
   ggplot(aes(fct_rev(id), value, group = key)) +
   geom_line(alpha = .75)+
   coord_flip() +
   geom_hline(yintercept = 0, linetype = 3, color = "darkred") +
   facet_grid(~ key, scales = "free")
```


En este gráfico se ve como 32 genera un cambio importante en lweight. Llama la atención ademas la observación 69 que genera cambios en varios coeficientes y que tiene una distancia de cook importante.

Im(lpsa ~ lcavol + lweight + age + lbph + svi + lcp + gleason + pgg45)

```
prostate_cl[c(69,32, 47),]
```

```
##
                                                                          lpsa
          lcavol lweight age
                                   1bph
                                          svi
                                                    1cp gleason pgg45
## 69 -0.4462871
                  4.4085
                           69 -1.386294 FALSE -1.38629
                                                              6
                                                                     0 2.96269
## 32
       0.1823216
                  6.1076
                           65
                               1.704748 FALSE -1.38629
                                                              6
                                                                     0 2.00821
       2.7278528
                  3.9954
                           79
                               1.879465
                                         TRUE
                                                2.65676
                                                              9
                                                                   100 2.56879
```

Los casos 69, 32 y 47 son casos influyente. El caso 32 ademas tiene mucha *palanca*. Pero no tengo mucha evidencia como para decir que son outliers.

car::avPlots(model)

⁽f) Check the structure of the relationship between the predictors and the response.

La regresión parcial confirma que 32 y mas aún el69 son casos raros que se comportan de manera diferente a la mayoría en cuanto a las lineas de regresión parcial.

```
par(mfrow = c(2,2))
termplot(model, partial.resid = T)
```


Aquí destaca el caso 32 con un lweight muy alejado del resto, y la estrucutra de lbph (y en menor grado, de lcp, pgg45 y gleason) que no es para nada homogenea, lo que ya se veía en el grafico de dispersion.

4. (Ejercicio 4 cap. 6 pág. 97)

For the swiss data, fit a model with Fertility as the response and the other variables as predictors. Answer the questions posed in the first question.

```
n <- dim(swiss)[1]
p <- dim(swiss)[2]

model <-
    lm(Fertility ~ Agriculture + Examination + Education + Catholic + Infant.Mortality, data = swiss)

swiss %>%
    ggpairs(progress = F, lower = list(continuous = wrap("points", alpha = 0.75, size = .8)))
```


Lo primero que hago es crear una matriz de dispersión para tener una idea de como se distribuyen las variables y la relación 2x2 que tienen entre si. Utilizo la librería GGally que tiene la función ggpairs.

(a) Check the constant variance assumption for the errors.

```
par(mfrow = c(2,2))
plot(model)
```

No se observa un patrón definido, por lo que se acepta una homocedasticidad del error.

(b) Check the normality assumption.

```
shapiro.test(resid(model))
```

##
Shapiro-Wilk normality test

Figure 4: Gráficos Diagnósticos

```
## ## data: resid(model)
## W = 0.98892, p-value = 0.9318
```

El gráfico *Q-Q se adapta bien a la linea. La prueba no permite rechazar la H0 de normalidad del error.

(c) Check for large leverage points.

halfnorm(hatvalues(model), labs = rownames(sat))


```
augment(model) %>%
    filter(.hat > 2*(p/n))
## # A tibble: 2 x 14
##
     .rownames Fertility Agriculture Examination Education Catholic
##
     <chr>>
                    <dbl>
                                 <dbl>
                                             <int>
                                                        <int>
                                                                 <dbl>
```

31

37

20

53

2.15

42.3 ## # ... with 8 more variables: Infant.Mortality <dbl>, .fitted <dbl>, .se.fit <dbl>, .resid <dbl>, .hat <dbl>, .sigma <dbl>, .cooksd <dbl>,

15.2

1.2

.std.resid <dbl>

1 La Vallee

2 V. De Ge~

Para evaluar los valores extremos en el modelo, utilizamos dos gráficos.

54.3

35

- La gráfica de los valores ajustados versus los residuales estandarizados $(\hat{y} \times \sqrt{|\hat{\epsilon}|})$
- Una gráfica de media normal (halfnormal) versus los residuales estandarizados. De esta manera se pueden identificar los valores mas extremos en X.

En este caso podemos ver que los valores para Vermont y Maine cumplen con las características para valores extremos. Llaman la atención también los puntos de La Valle y V. De Geneve que presentan valores extremos en una de las variables.

(d) Check for outliers.

```
augment(model) %>%
    mutate(.t.resid = rstudent(model)) %>%
    filter(abs(.t.resid) > abs(qt(.05/(n * 2), n - p)))
## # A tibble: 0 x 15
## # ... with 15 variables: .rownames <chr>, Fertility <dbl>,
       Agriculture <dbl>, Examination <int>, Education <int>, Catholic <dbl>,
       Infant.Mortality <dbl>, .fitted <dbl>, .se.fit <dbl>, .resid <dbl>,
## #
## #
       .hat <dbl>, .sigma <dbl>, .cooksd <dbl>, .std.resid <dbl>,
## #
       .t.resid <dbl>
```

No hay *outliers* por este criterio. Tampoco se observan en el gráfico de las distancias de Cook en los gráficos diagnósticos

(e) Check for influential points.

```
par(mfrow = c(2,2))
plot(model, 4)
halfnorm(cooks.distance(model), labs = rownames(swiss))
```



```
influence(model)$coefficients %%
  as_tibble(rownames = "id") %>%
  gather(key, value, -id) %>%
  ggplot(aes(fct_rev(id), value, group = key)) +
  geom_line(alpha = .75)+
  coord_flip() +
  geom_hline(yintercept = 0, linetype = 3, color = "darkred") +
  facet_grid(~ key, scales = "free") +
  scale_colour_viridis_d(end=.85)
```


colMeans(swiss)

```
##
          Fertility
                          Agriculture
                                           Examination
                                                               Education
                             50.65957
                                                                10.97872
##
           70.14255
                                               16.48936
##
           Catholic Infant.Mortality
##
           41.14383
                             19.94255
swiss %>%
    rownames_to_column() %>%
    filter(rowname %in% c("Porrentruy", "Sierre"))
```

```
## rowname Fertility Agriculture Examination Education Catholic ## 1 Porrentruy 76.1 35.3 9 7 90.57 ## 2 Sierre 92.2 84.6 3 9.46 ## Infant.Mortality
```

```
## 1 26.6
## 2 16.3
```

-8

-6

Infant.Mortality | others

Hay varias observaciones que resultan influyentes. POr le criterio de distancias de Cook, destaca Porrentruy que en segundo gráfico podemos ver, modifica agriculture y Infant.Mortality. Sierre modifica Infant.Mortality hacia el otro sentido, tiene una mortalidad baja, y Examination baja.

Hay dos puntos con alta palanca pero baja influencia, La Valle y V. De Geneve.

(f) Check the structure of the relationship between the predictors and the response.

En primer lugar me remito al gráfico de dispersión de (a), que permite reflejar la distribución y la relación 1 a 1 de las variables.

car::avPlots(model) Added-Variable Plots Fertility | others Fertility | others 15 ranches-Mnt જ 9 0 0 တ 0 0 0 0 -15 -15 10 20 -5 0 5 -30-20 -10 Examination | others Agriculture | others Fertility | others Fertility | others 15 Sierrec 8 0 0 V. De Genev -20 -15 Rive Gaucheonive Droiteo -10-5 0 10 15 -60 -40 -20 0 20 40 Education | others Catholic | others Fertility | others 15 oSierre ത്താ 0 -15

La estructura parece correcta. Podemos ver como Sierre se aleja de la tendencia de los modelos.

2

```
par(mfrow = c(2,2))
termplot(model, partial.resid = T, se = T)
```


Se pueden observar los valores extremos pero con poca influencia en Education y en Infant. Mortality DEstaca la estructura bimodal de Catholic. Se podría realizar una transformación de la variable a una categorial o incluso binaria.

5. (Ejercicio 5 cap. 6 pág. 97)

Using the cheddar data, fit a model with taste as the response and the other three variables as predictors. Answer the questions posed in the first question.

```
n <- dim(cheddar)[1]
p <- dim(cheddar)[2]

model <-
    lm(taste ~ Acetic + H2S + Lactic, data = cheddar)

cheddar %>%
    ggpairs(progress = F)
```


(a) Check the constant variance assumption for the errors.

```
par(mfrow = c(2,2))
plot(model)
```

No se ve un patrón el el gráfico de valores ajustados v/s residuales que haga pensar en problemas de varianza del error.

(b) Check the normality assumption.

```
shapiro.test(resid(model))
##
```

```
##
## Shapiro-Wilk normality test
##
## data: resid(model)
## W = 0.98021, p-value = 0.8312
```

El gráfico Q-Q sigue una distribución muy cercana a la recta y la prueba de S-W no permite desechar la H0 por lo que se puede asumir la normalidad de los residuales.

(c) Check for large leverage points.

```
halfnorm(hatvalues(model), labs = rownames(cheddar))
```


Figure 5: Gráficos Diagnósticos


```
augment(model) %>%
  rowid_to_column() %>%
  filter(.hat > 2*(p/n))
```

A tibble: 0 x 12

```
## # ... with 12 variables: rowid <int>, taste <dbl>, Acetic <dbl>,
## # H2S <dbl>, Lactic <dbl>, .fitted <dbl>, .se.fit <dbl>, .resid <dbl>,
## # .hat <dbl>, .sigma <dbl>, .cooksd <dbl>, .std.resid <dbl>
Los casos 20 y 26 son los casos mas extremos.
```

(d) Check for outliers.

```
augment(model) %>%
  mutate(.t.resid = rstudent(model)) %>%
  filter(abs(.t.resid) > abs(qt(.05/(n * 2), n - p)))
```

```
## # A tibble: 0 x 12
## # ... with 12 variables: taste <dbl>, Acetic <dbl>, H2S <dbl>,
## # Lactic <dbl>, .fitted <dbl>, .se.fit <dbl>, .resid <dbl>, .hat <dbl>,
## # .sigma <dbl>, .cooksd <dbl>, .std.resid <dbl>, .t.resid <dbl>
```

No hay outliers según este criterio.

(e) Check for influential points.

plot(model, 4)

Obs. number Im(taste ~ Acetic + H2S + Lactic)

halfnorm(cooks.distance(model), labs = rownames(cheddar)) 15

Half-normal quantiles

```
influence(model)$coefficients %>%
   as_tibble(rownames = "id") %>%
   mutate(id = factor(id, levels = c(1:n))) %>%
   gather(key, value, -id) %>%
   ggplot(aes(fct_rev(id), value, group = key)) +
   geom_line(alpha = .75)+
   coord_flip() +
   geom_hline(yintercept = 0, linetype = 3, color = "darkred") +
   facet_grid(~ key, scales = "free")
```


Los casos $12~\mathrm{y}~15~\mathrm{son}$ casos influyentes.

<dbl>

<dbl>

##

<chr>

<dbl>

<dbl>

```
## 1 (Intercept)
                   -28.9
                               19.7
                                        -1.46
                                                0.155
## 2 Acetic
                     0.328
                                 4.46
                                         0.0735 0.942
## 3 H2S
                     3.91
                                         3.13
                                                0.00425
                                 1.25
## 4 Lactic
                    19.7
                                 8.63
                                         2.28
                                                 0.0311
```

tidy(model_1)

```
## # A tibble: 4 x 5
##
     term
                 estimate std.error statistic p.value
##
     <chr>
                     <dbl>
                               <dbl>
                                          <dbl>
                                                  <dbl>
## 1 (Intercept)
                               17.6
                                         -1.01 0.323
                    -17.8
## 2 Acetic
                     -2.47
                                4.00
                                         -0.617 0.543
## 3 H2S
                      4.04
                                1.09
                                          3.70
                                                0.00106
## 4 Lactic
                     21.5
                                7.56
                                          2.84 0.00886
```

El caso 15 modifica el coeficiente de Acetic en 2, y Lactic en casi 2.

(f) Check the structure of the relationship between the predictors and the response.

car::avPlots(model)

Added-Variable Plots

H2S | others

taste | others -10 0 0 80 -0.4-0.20.0 0.2

Lactic | others

```
par(mfrow = c(2,2))
termplot(model, partial.resid = T)
```


NO se ven mayores problemas estructurales en los gráficos.

6. (*) (Ejercicio 6 cap. 6 pág. 98)

Using thehappydata, fit a model withhappyas the response and the other four variables aspredictors. Answer the questions posed in the first question.

7. (*) (Ejercicio 7 cap. 6 pág. 98)

Using thetvdoctordata, fit a model withlifeas the response and the other two variables aspredictors. Answer the questions posed in the first question.

8. (*) (Ejercicio 8 cap. 6 pág. 98)

For the divusadata, fit a model with divorceas the response and the other variables, except year as predictors. Check for serial correlation.

9. (Ejercicio 3 cap. 7 pág. 110)

Using the divusa data:

(a) Fit a regression model with divorce as the response and unemployed, femlab, marriage, birth and military as predictors. Compute the condition numbers and interpret their meanings.

```
# Miramos colinearidad
divusa %>%
select(-year, -divorce) %>%
   cor() %>%
   corrplot.mixed(., lower = "number", upper = "circle", tl.pos = "lt")
```



```
model <- lm(divorce ~ unemployed + femlab + marriage + birth + military, data = divusa)</pre>
```

Podemos observar que si hay varios predictores que presenta correlación entre si.

```
X <- model.matrix(model)[,-1]
eig <- eigen(t(X) %*% X)

eig$values

## [1] 1174600.548 21261.741 16133.842 6206.181 1856.894

(c_nums <- sqrt(eig$values[1] / eig$values))</pre>
```

```
## [1] 1.000000 7.432684 8.532498 13.757290 25.150782
```

Los n'umeros de condición son relativamente pequeños (< 30) por lo que a pesar de la correlación de parejas encontrada, no parece existir un problema grave de colinearidad.

(b) For the same model, compute the VIFs. Is there evidence that collinearity causes some pre-dictors not to be significant? Explain.

```
(vifs <- vif(X))</pre>
## unemployed
                   femlab
                             marriage
                                            birth
                                                     military
##
     2.252888
                 3.613276
                             2.864864
                                         2.585485
                                                     1.249596
sqrt(vifs)
## unemployed
                   femlab
                             marriage
                                            birth
                                                     military
                 1.900862
     1.500962
                             1.692591
                                         1.607944
                                                     1.117853
```

Si bien hay algunas X_i donde la VIF se aleja de 1 que es la ortogonalidad, tampoco se aleja demasiado.

```
Donde más se aleja es en X_{femlab} donde se puede interpretar que el error estándar aumenta en 1.9008618
model_1 < -
  lm(formula = divorce+2*rnorm(dim(divusa)[1]) ~ unemployed + femlab + marriage + birth +
    military, data = divusa)
sumary(model)
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.487845 3.393779 0.7331
                                             0.46594
## unemployed -0.111252 0.055925 -1.9893
                                             0.05052
## femlab
              0.383649 0.030587 12.5430 < 2.2e-16
               0.118674
## marriage
                          0.024414 4.8609 6.772e-06
## birth
               -0.129959
                          0.015595 -8.3334 4.027e-12
              -0.026734
                          0.014247 -1.8764
## military
                                             0.06471
## n = 77, p = 6, Residual SE = 1.65042, R-Squared = 0.92
sumary(model_1)
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.188907
                          5.090770 -0.6264 0.5330552
## unemployed -0.064336 0.083889 -0.7669 0.4456718
## femlab
               0.451321 0.045881 9.8368 6.809e-15
## marriage
               -0.119572
## birth
                          0.023393 -5.1115 2.595e-06
              -0.023701
                          0.021371 -1.1090 0.2711662
## military
##
## n = 77, p = 6, Residual SE = 2.47569, R-Squared = 0.85
A pesar de eso, si agregamos un poco de ruido el modelo se mantiene relativamente estable.
 (c) Does the removal of insignificant predictors from the model reduce the collinearity? Investigate.
model 1 <-
  lm(formula = divorce+2*rnorm(dim(divusa)[1]) ~ unemployed + marriage + birth +
    military, data = divusa)
model 2 <-
  lm(formula = divorce+2*rnorm(dim(divusa)[1]) ~ unemployed + femlab +
    military, data = divusa)
```

```
sumary(model)
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.487845 3.393779 0.7331
                                        0.46594
## unemployed -0.111252 0.055925 -1.9893
                                        0.05052
## femlab
              ## marriage
             0.118674
                       0.024414 4.8609 6.772e-06
                       0.015595 -8.3334 4.027e-12
## birth
             -0.129959
## military
             -0.026734
                       0.014247 -1.8764
##
## n = 77, p = 6, Residual SE = 1.65042, R-Squared = 0.92
sumary(model 1)
```

```
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 41.347882
                          2.755371 15.0063 < 2.2e-16
                           0.092624 -6.6021 5.935e-09
## unemployed -0.611517
                                               0.3196
## marriage
               -0.043837
                           0.043741 -1.0022
## birth
               -0.231181
                           0.029391 -7.8658 2.729e-11
## military
              -0.014500
                           0.031060 -0.4668
                                               0.6420
## n = 77, p = 5, Residual SE = 3.60519, R-Squared = 0.66
sumary(model 2)
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.8058238 1.6140104 -2.3580 0.02106
## unemployed -0.0075488 0.0797538 -0.0947 0.92485
## femlab
                0.4480247 0.0316047 14.1759 < 2e-16
              -0.0301262 0.0263963 -1.1413 0.25747
## military
##
## n = 77, p = 4, Residual SE = 3.12699, R-Squared = 0.75
vif(model_1)
## unemployed
                              birth
                                      military
               marriage
     1.295131
                1.927175
                           1.924532
##
                                      1.244658
vif(model_2)
## unemployed
                  femlab
                           military
##
     1.276363
                1.074670
                           1.194897
```

En este caso reviso dos modelos alternativos. Uno sin la variable femlab cuyo VIF era alta en l modelo original, y un segundo modelo con la variable femlab pero sin marriage ni birth que tienen una correlación de pareja alta con femlab y entre si.

Los dos modelos alternativos pierden bastante poder explicativo lo que se ve reflejado en un R^2 mas pequeño, sobretodo el sin femlab. Por otra parte, es verdad que en el primer modelo sin femlab no baja la VIF (aumenta en las variables que tiene correlación, birth y marriage). En el segundo modelo, sin birth y marriage, la R^2 baja, pero la VIF también.

Como conclusión, creo que el modelo original es correcto.

10. (Ejercicio 4 cap. 7 pág. 110)

For the longley data, fit a model with Employed as the response and the other variables as predictors.

(a) Compute and comment on the condition numbers.

```
model <- lm(Employed ~ ., data = longley)

X <- model.matrix(model)[,-1]
eig <- eigen(t(X) %*% X)

eig$values

## [1] 6.665299e+07 2.090730e+05 1.053550e+05 1.803976e+04 2.455730e+01
## [6] 2.015117e+00

(c_nums <- sqrt(eig$values[1] / eig$values))

## [1] 1.00000 17.85504 25.15256 60.78472 1647.47771 5751.21560</pre>
```

Los numeros de condición son bastante altos al igual que los eigenvalues, lo que sugiere multicolinearidad

En este caso las variables predictoras tienen mucha mayor correlación entre si.

(c) Compute the variance inflation factors.

```
(vifs <- vif(X))
## GNP.deflator
                                 Unemployed Armed.Forces
                                                            Population
                          GNP
                                   33.61889
                                                             399.15102
##
      135.53244
                   1788.51348
                                                 3.58893
##
           Year
##
      758.98060
sqrt(vifs)
## GNP.deflator
                          GNP
                                 Unemployed Armed.Forces
                                                            Population
                    42.290820
                                   5.798180
                                                             19.978764
##
      11.641840
                                                 1.894447
##
           Year
##
      27.549602
```

En este caso excepto por Armed.Forces, y algo menos Unemployed, la mayoría de las variables predictoras correlacionan entre si, y hacen que aumente el error estándar del modelo. Es probable que un modelo mas simple pueda funcionar mejor.

```
summary(model)
##
## Call:
## lm(formula = Employed ~ ., data = longley)
## Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
## -0.41011 -0.15767 -0.02816 0.10155 0.45539
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -3.482e+03 8.904e+02 -3.911 0.003560 **
## GNP.deflator 1.506e-02 8.492e-02
                                      0.177 0.863141
## GNP
               -3.582e-02 3.349e-02 -1.070 0.312681
## Unemployed -2.020e-02 4.884e-03 -4.136 0.002535 **
## Armed.Forces -1.033e-02 2.143e-03 -4.822 0.000944 ***
## Population -5.110e-02 2.261e-01 -0.226 0.826212
                1.829e+00 4.555e-01 4.016 0.003037 **
## Year
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.3049 on 9 degrees of freedom
## Multiple R-squared: 0.9955, Adjusted R-squared: 0.9925
## F-statistic: 330.3 on 6 and 9 DF, p-value: 4.984e-10
```

11. (Ejercicio 5 cap. 7 pág. 110)

For the prostate data, fit a model with lpsa as the response and the other variables as predictors.

```
model <-
lm(lpsa ~ ., data = prostate)</pre>
```

(a) Compute and comment on the condition numbers.

```
X <- model.matrix(model)[,-1]
eig <- eigen(t(X) %*% X)
eig$values</pre>
```

```
## [1] 4.790826e+05 6.190704e+04 2.109042e+02 1.756329e+02 6.479853e+01
## [6] 4.452379e+01 2.023914e+01 8.093145e+00

(c_nums <- sqrt(eig$values[1] / eig$values))
```

```
## [1] 1.00000 2.78186 47.66094 52.22787 85.98499 103.73114 153.85414 ## [8] 243.30248
```

HAlgunos valores son altos y otros no, lo que sugiere que podría haber multicolinerarida en varias combinaciones lineales.

(b) Compute and comment on the correlations between the predictors.

```
corrplot.mixed(cor(X), lower = "number", upper = "circle", tl.pos = "d")
```


Se corrobora lo anterior en la medida de que hay alguno de los predictores que correlacionan bastante, como el caso de pgg45 con gleason y lcp; lcp con svl y lcavol.

(c) Compute the variance inflation factors.

```
(vifs <- vif(X))
## lcavol lweight age lbph svi lcp gleason pgg45
## 2.054115 1.363704 1.323599 1.375534 1.956881 3.097954 2.473411 2.974361
sqrt(vifs)</pre>
```

```
## lcavol lweight age lbph svi lcp gleason pgg45 ## 1.433218 1.167777 1.150478 1.172832 1.398886 1.760100 1.572708 1.724634
```

De todas formas, a pesar de la correlación, no parece haber un mayor problema al analizar la VIF. La mayoría de los predictores suman poco error

12. (*) (Ejercicio 8 cap. 7 pág. 111)

Use the fat data, fitting the model described in Section 4.2.

- (a) Compute the condition numbers and variance inflation factors. Comment on the degree of collinearity observed in the data.
- (b) Cases 39 and 42 are unusual. Refit the model without these two cases and recompute the collinearity diagnostics. Comment on the differences observed from the full data fit.
- (c) Fit a model withbrozekas the response and justage, weight and height as predictors. Compute the collinearity diagnostics and compare to the full data fit.

- (d) Compute a 95% prediction interval forbrozekfor the median values ofage, weight and height.
- (e) Compute a 95% prediction interval forbrozekforage=40,weight=200andheight=73. Howdoes the interval compare to the previous prediction?
- (f) Compute a 95% prediction interval forbrozekforage=40,weight=130andheight=73. Arethe values of predictors unusual? Comment on how the interval compares to the previous two answers.

Ejercicios del libro de Carmona1.

(*) (Ejercicio 9.1 del Capítulo 9 página 172)

Realizar el análisis completo de los residuos del modelo de regresión parabólico propuesto en lasección 1.2 con los datos de tráfico.2.

(*) (Ejercicio 9.2 del Capítulo 9 página 172)

Realizar el análisis completo de los residuos de los modelos de regresión simple y parabólico pro-puestos en la sección 1.2 con los datos de tráfico, pero tomando como variable respuesta la velocidad(sin raíz cuadrada). Este análisis debe justificar la utilización de la raíz cuadrada de la velocidadcomo variable dependiente.