Huffman Codes

• Huffman's greedy algorithm presents an optimal way to compress a sequence of characters as a binary string

• The algorithm uses a table that shows the frequency of each character in the given sequence

Data Compression Applications:

- Disk storage
- Networking: Lower network bandwidth when transmitting data

Example

• you have a 100,000-character data file that you wish to store compactly

• There are only 6 distinct characters used in the data sequence

• Table 1 below includes the frequency of each character in thousands

	a	b	C	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

- We consider representing the sequence as a binary character code
- Each character is represented by a unique binary string (codeword)
- If we use a fixed-length codes for n distinct characters, we need $\lceil \lg n \rceil$ bits to represent each character

For instance:

- Two characters need 1-bit representation, that are $\{0,1\}$
- Three characters need a 2-bits representation, that are {00,01,10}
- Four characters need also a 2-bits representation, that are $\{00,01,10,11\}$ and so on ...

- With fixed-length codes we represent our 100,000 characters sequence with 300,000 bits
- To obtain a shorter representation, we can use a variable-length code
- We give frequent characters short codewords and infrequent characters long codewords
- The last row in Table 1 shows the variable-length codes in our example
- The number of bits needed with the new representation is

$$(45 \cdot 1 + 13 \cdot 3 + 12 \cdot 3 + 16 \cdot 3 + 9 \cdot 4 + 5 \cdot 4) \cdot 1,000 = 224,000$$
 bits

- Obviously, an algorithm is needed to create the variable-length codes
- Also, such representation needs a method to extract the original sequence

- Example: Show how 110001001101 is a representation of the sequence **face** using the variable-length codes from Table 1
- In fact the codewords in Table 1 are optimal for data compression
- Such codewords are called *prefix-free codes* (no codeword is also a prefix of some other codeword)
- Another example, Show how 100011001101 is a representation of the sequence **cafe** using the variable-length codes from Table 1

Constructing a Huffman code

Huffman invented a greedy algorithm that constructs an optimal prefix-free code Notations:

- \bullet C is the sequence alphabet
- Each C's alphabet character $c \in C$, and has an attribute c. freq giving its frequency
- Q is a min-priority queue (Can be implemented using a MIN-HEAP)
- Extract-Min gives the item with the minimum value in the queue

```
Huffman(C)
1 n = |C|
Q = C
3 for i = 1 to n - 1
4 allocate a new node z.
5 	 x = \text{EXTRACT-MIN}(Q)
6 	 y = \text{EXTRACT-MIN}(Q)
  z.left = x
z.right = y
  z.freq = x.freq + y.freq
      INSERT(Q, z)
10
   return EXTRACT-MIN(Q) // the root of the tree is the only node left
```

According to the character frequencies given in Table 1, the Huffman's algorithm returns the following tree

How to show that Huffman's algorithm is a greedy one?

- 1 Solving the problem locally by selecting the two characters with the lowest frequencies is the greedy choice
- 2 Optimal prefix-free codes have the optimal-substructure property (The optimal problem solution includes optimal solutions to its subproblems)

x and y are characters with the minimum frequencies in C

Let C' be C with characters x and y removed, and a new character z is added

C'

(The proofs of these properties are beyond the scope of this topic)

Time complexity analysis

• Build-Min-Heap initializes Q in O(n)

• Each heap operation takes $O(\lg n)$

• Since we have a loop that iterates for n-1, the running time is $O(n \lg n)$

Summary

- A greedy algorithm picks a local optimal solution that leads to a globally optimal solution
- Greedy algorithms solve problems with optimal substructure