Math 541 Solutions to HW #4

1. Use the Euclidean algorithm to compute the greatest common divisor of 320353 and 257642.

$$320353 = 257642(1) + 62711$$

$$257642 = 62711(4) + 6798$$

$$62711 = 6798(9) + 1529$$

$$6798 = 1529(4) + 682$$

$$1529 = 682(2) + 165$$

$$682 = 165(4) + 22$$

$$165 = 22(7) + 11$$

$$22 = 11(2) + 0$$

We conclude that g.c.d.(320353, 257642) = 11.

2. Prove that the equation

$$320353x + 257642y = 1$$

has no solutions with x, y in \mathbb{Z} . (Please do this question directly without referring to theorems from class.)

- From (1), we know that g.c.d(320353, 257642) = 11. We can use this to determine that $320353 = 11 \cdot 29123$, and $257642 = 11 \cdot 23422$. Then $320353x + 257642y = (11 \cdot 29123)x + (11 \cdot 23422)y = 11 \cdot (29123x + 23422y)$. That is, 11 divides any integral solution of the equation 320353x + 257642y. Since 11 does not divide 1, we conclude that the equation has no integer solutions.
- 3. Compute the following values: $\phi(100)$, $\phi(40)$, $\phi(101)$.

[Recall that we have formulas $\phi(p^n) = p^n - p^{n-1}$ and $\phi(mn) = \phi(m)\phi(n)$ if m and n are relatively prime.]

- $\phi(100) = \phi(2^2 \cdot 5^2) = (2-1)(2^1)(5-1)(5^1) = (1)(2)(4)(5) = 20$
- $\phi(40) = \phi(2^3 \cdot 5^1) = (2-1)(2^2)(5-1)(5^0) = (1)(4)(4)(1) = 16$
- $\phi(101) = (101 1)(101^0) = 100 (101 \text{ is a prime!})$
- 4. Give 5 examples of groups with 8 elements. Do these groups have distinct multiplication tables up to reordering?
 - $(\mathbb{Z}_8, +)$, i.e. \mathbb{Z}_8 under addition
 - U(15), since $\phi(15) = \phi(3 \cdot 5) = (3-1)(5-1) = (2)(4) = 8$.
 - U(16), since $\phi(16) = \phi(2^4) = (2-1)(2^3) = (1)(8) = 8$.
 - U(20), since $\phi(20) = \phi(2^2 \cdot 5) = (2-1)(2^1)(5-1) = (1)(2)(4) = 8$.
 - U(24), since $\phi(24) = \phi(2^3 \cdot 3) = (2-1)(2^2)(3-1) = (1)(4)(2) = 8$.
 - The multiplication tables for \mathbb{Z}_8 , U(15), U(16), U(20), U(24) follow:

		+	0	1	2	3	4	5	6	7	1
		0	0	1	2	3	4	5	6	7	1
		1	1	2	3	4	5	6	7	0	1
		2	2	3	4	5	6	7	0	1	1
$ (\mathbb{Z}_8, \overline{\ })$	+) =	3	3	4	5	6	7	0	1	2	7
		4	4	5	6	7	0	1	2	3	1
		5	5	6	7	0	1	2	3	4	
		6	6	7	0	1	2	3	4	5	
		7	7	0	1	2	3	4	5	6	
_	•	1	2	4	_	7	8	11	_	13	14
- U(15) = -	1	1	2	4		7	8	11	_	13	14
	2	2	4	8		14	1	7	_	11	13
	4	4	8	1		13		2 14		7	11
	7	7	14	1		4	11	2	\perp	1	8
	8	8	1	2		11	4	13	3	$\frac{14}{8}$	7
	11	11	7	1		2	13	1			4
	13	13	11	7		1	14	8		4	2
	14	14	13	1		8	7	4	_	2	1
- U(16) =	•	1	3	5		7	9	11		13	15
	1	1	3	5		7	9	11	- -	13	15
	3	3	9	1.		5	11	1		7	13
	5	5	15	9		3	13	7		1	11
	7	7	5	3		1	15	13	3 .	11	9
	9	9	11	1		15	1	3	-	5	7
	11	11	1	7		13	3	9	_	15	5
	13	13	7	1		11	5	15)	$\frac{9}{2}$	3
- U(20) = -	15	15	13	1		9	7	5		3	
	•	1	3	7		9	11	13		17	19
	1	1	3	7		9	11	13		17	15
	3	3	9	1		7	13	19	_	11	17
	7 9	7	7	3	- 1	3	17	11	_	19	13
	11	9	13	1	_	19	19 1	17 3	+	$\frac{13}{7}$	9
	13	13	19	1	_	17	3	9	+	1	7
	17	$\frac{13}{17}$	11	19	_	13	$\frac{3}{7}$	1	+	9	3
	19	19	17	13	-	11	9	7		3	1
- U(24) = -		1	5	7		11	13	17	- 7	19	23
	1	1	5	7		11	13	17		19	23
	5	5	1	1		7	17	13		23	19
	7	7	11	1		5	19	23		13	17
	11	11	7	5		1	23	19	_	17	13
	13	13	17	1		23	1	5		7	11
	17	17	13	2		19	5	1	+	11	7
	19	19	23	1		17	7	11	_	1	5
	23	23	29	1	_	13	11	7		5	1
-								<u> </u>			

- We see quickly that U(24) is distinct from the others, since it is the only one with the property that for any $a \in U(24)$, $a^2 \equiv 1 \pmod{24}$.
- Z_8 is all different from all the others, since it has 4 distinct elements that appear on the diagonal, whereas U(15), U(16), and U(20) each have 2 distinct elements on the diagonal.

- Each of U(15), U(16), and U(20) have the same multiplication table up to reordering. This can be seen in the following way. Note that 2 has order 4 and 14 has order 2 in U(15). A quick computation shows that the elements $\{2^a14^b:0\le a\le 3,0\le b\le 1\}$ are all distinct and give all elements of U(15). Similarly, 3 has order 4 and 15 has order 2 in U(16). A similar computation shows that the elements $\{3^a15^b:0\le a\le 3,0\le b\le 1\}$ are all distinct and give all elements of U(16). In particular, matching 2^a14^b in U(15) with 3^a15^b in U(16) gives an isomorphism between the two groups. Similarly, one can compare these groups with U(20) by taking an element of order 4 and another of order 2 and proceeding in the same manner.
- 5. Compute the order of $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ in $GL_2(\mathbb{Z}_3)$ that is, find the smallest positive integer d such that A^d is the identity matrix.
 - We do this problem with direct computation:

• We do this pro
•
$$A^{1} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$
 $A^{2} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$
 $A^{3} = \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix}$
 $A^{4} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$
 $A^{5} = \begin{bmatrix} 0 & 2 \\ 2 & 2 \end{bmatrix}$
 $A^{6} = \begin{bmatrix} 2 & 2 \\ 2 & 1 \end{bmatrix}$
 $A^{7} = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}$
 $A^{8} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

- We conclude that the order of $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ is 8.
- 6. The group U(17) has 16 elements. Thus, for any element $a \in U(17)$, we have that the order of a divides 16 (as proven in class). Is the converse true? That is, for each positive divisor d of 16, try to find an element of order d. Try this question also for U(15).
 - The converse is true in U(17).
 - By Fermat's Little Theorem, we know that for each element a of U(17), $a^{16} \equiv 1 \pmod{17}$. Therefore, if any element has order less than 16, this order must divide 16. The positive divisors of 16 are 1, 2, 4, 8, and 16. We start by considering the element 2:
 - Since $2^{16} \equiv 1 \pmod{17}$, by Fermat's Little Theorem, we now check 2^8 : $2^8 = 256 \equiv 1 \pmod{17}$. Therefore, $16^2 = (2^4)^2 = 2^8 = 256 \equiv 1 \pmod{17}$, and $4^4 = (2^2)^4 = 2^8 = 256 \equiv 1 \pmod{17}$. Very quickly we see that there are elements of order 8, 4, and 2, and these are 2, 4, and 16, respectively.
 - Since $3^{16} \equiv 1 \pmod{17}$, we now check 3^8 : $3^8 = 6561 \equiv 16 \pmod{17}$. Next we check $3^4 = 81 \equiv 13 \pmod{17}$. Finally, we check $3^2 = 9 \equiv 9 \pmod{17}$. We conclude that the order of 3 is 16.
 - The converse is not true in U(15).

- Note that U(15) has order 8, thus we must consider whether there are elements of order 2, 4, and 8.
 - Referencing the table given above for U(15), we see very quickly that there are three elements of order 2 (just scan the diagonal for 1's, with the exception being the identity). Though somewhat less immediate, there are also exactly four elements of order 4 (start with 2, whose diagonal entry is 4; then $4 \cdot 2 = 8$ and $8 \cdot 2 = 16 \equiv 1 \pmod{15}$).
 - Considering that this group has only eight elements, and that there are three elements of order 2, four elements of order 4, and there is one element of order 1 (the identity, 1), we conclude that there can be no element of order 8.
- 7. Let a and b be elements of U(m). Let e be the order of a and let f be the order of b. Prove that the order of ab divides ef. Give an example where the order of ab is smaller than ef.
 - Since $a^e \equiv 1 \pmod{m}$ and $b^f \equiv 1 \pmod{m}$, we have

$$(ab)^{ef} \equiv a^{ef}b^{ef} \equiv (a^e)^f(b^f)^e \equiv 1^f1^e \equiv 1 \pmod{m}.$$

Now, using division algorithm, write $ef = \operatorname{ord}(ab)q + r$ with $0 \le r < \operatorname{ord}(a)$. Then

$$1 \equiv (ab)^{ef} \equiv (ab)^{\operatorname{ord}(ab)q+r} \equiv ((ab)^{\operatorname{ord}(ab)})^q (ab)^r \equiv 1^q (ab)^r \equiv (ab)^r \pmod{m}$$

Since r is less than the order of ab and $(ab)^r \equiv 1 \pmod{m}$, we must have that r = 0. Thus $ef = \operatorname{ord}(a)q$ and $\operatorname{ord}(a)$ divides ef.

- Example where ab is smaller than ef:
 - Referencing the table for U(15) given above, we see that 2 has order 4, and 4 has order 2, but that $(2 \cdot 4) = 8$ has order 4, which is less than 8.