回帰分析

回帰モデルの考え方と推定

村田 昇

講義の内容

・ 第1回:回帰モデルの考え方と推定

• 第2回: モデルの評価

・ 第3回: モデルによる予測と発展的なモデル

回帰分析の考え方

回帰分析

• ある変量を別の変量で説明する関係式を構成する

• 関係式: 回帰式 (regression equation)

- 説明される側:目的変数,被説明変数,従属変数,応答変数

- 説明する側: 説明変数, 独立変数, 共変量

• 説明変数の数による分類

- 一つの場合: **単回帰** (simple regression)

- 複数の場合: **重回帰** (multiple regression)

一般の回帰の枠組

• 説明変数: $x_1, ..., x_p$ (p 次元)

• 目的変数: y(1次元)

• 回帰式: y を $x_1,...,x_p$ で説明するための関係式

$$y = f(x_1, \dots, x_p)$$

• 観測データ: n 個の $(y, x_1, ..., x_p)$ の組

$$\{(y_i, x_{i1}, \dots, x_{ip})\}_{i=1}^n$$

線形回帰

- 任意の f では一般的すぎて分析に不向き
- f として1次関数を考える

ある定数 $\beta_0, \beta_1, \ldots, \beta_p$ を用いた式:

$$f(x_1,\ldots,x_p) = \beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p$$

- 1 次関数の場合:線形回帰 (linear regression)
- 一般の場合: 非線形回帰 (nonlinear regression)
- 非線形関係は新たな説明変数の導入で対応可能
 - 適切な多項式: $x_j^2, x_j x_k, x_j x_k x_l, \ldots$
 - その他の非線形変換: $\log x_i, x_i^{\alpha}, \dots$
 - 全ての非線形関係ではないことに注意

回帰係数

• 線形回帰式

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

- $-\beta_0,\beta_1,\ldots,\beta_p$: 回帰係数 (regression coefficients)
- β₀: 定数項 / 切片 (constant term / intersection)
- 線形回帰分析 (linear regression analysis)
 - 未知の回帰係数をデータから決定する分析方法
 - 決定された回帰係数の統計的な性質を診断

回帰の確率モデル

- 回帰式の不確定性
 - データは一般に観測誤差などランダムな変動を含む
 - 回帰式がそのまま成立することは期待できない
- 確率モデル: データのばらつきを表す項 ϵ_i を追加

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \epsilon_i \quad (i = 1, \dots, n)$$

- $-\epsilon_1,\ldots,\epsilon_n$: 誤差項 / 撹乱項 (error / disturbance term)
 - * 誤差項は独立な確率変数と仮定
 - * 多くの場合, 平均 0, 分散 σ^2 の正規分布を仮定
- 推定 (estimation): 観測データから回帰係数を決定

回帰係数の推定

残差

- 残差 (residual): 回帰式で説明できない変動
- 回帰係数 $\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_n)^\mathsf{T}$ を持つ回帰式の残差

$$e_i(\beta) = y_i - (\beta_0 + \beta_1 x_{i1} + \dots + \beta_D x_{iD})$$
 $(i = 1, \dots, n)$

• 残差 $e_i(\beta)$ の絶対値が小さいほど当てはまりがよい

最小二乗法

• 残差平方和 (residual sum of squares)

$$S(\boldsymbol{\beta}) = \sum_{i=1}^{n} e_i(\boldsymbol{\beta})^2$$

• 最小二乗推定量 (least squares estimator)

残差平方和 $S(\beta)$ を最小にする β

$$\hat{\boldsymbol{\beta}} = (\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p)^{\mathsf{T}} = \arg\min_{\boldsymbol{\beta}} S(\boldsymbol{\beta})$$

行列の定義

• デザイン行列 (design matrix)

$$X = \begin{pmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{np} \end{pmatrix}$$

ベクトルの定義

• 目的変数、誤差、回帰係数のベクトル

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad \boldsymbol{\epsilon} = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{pmatrix}$$

- y, ϵ は n 次元ベクトル
- βは p+1 次元ベクトル

行列・ベクトルによる表現

• 確率モデル

$$y = X\beta + \epsilon$$

• 残差平方和

$$S(\boldsymbol{\beta}) = (\boldsymbol{v} - X\boldsymbol{\beta})^{\mathsf{T}} (\boldsymbol{v} - X\boldsymbol{\beta})$$

解の条件

• 解 **β** では残差平方和の勾配は零ベクトル

$$\frac{\partial S}{\partial \boldsymbol{\beta}}(\boldsymbol{\beta}) = \left(\frac{\partial S}{\partial \beta_0}(\boldsymbol{\beta}), \frac{\partial S}{\partial \beta_1}(\boldsymbol{\beta}), \dots, \frac{\partial S}{\partial \beta_p}(\boldsymbol{\beta})\right)^{\mathsf{T}} = \boldsymbol{0}$$

演習

問題

• 残差平方和 $S(\beta)$ をベクトル β で微分して解の条件を求めなさい

解答例

• 残差平方和を展開しておく

$$S(\boldsymbol{\beta}) = (y - X\boldsymbol{\beta})^{\mathsf{T}} (y - X\boldsymbol{\beta})$$
$$= y^{\mathsf{T}} y - y^{\mathsf{T}} X \boldsymbol{\beta} - (X\boldsymbol{\beta})^{\mathsf{T}} y + (X\boldsymbol{\beta})^{\mathsf{T}} X \boldsymbol{\beta}$$
$$= y^{\mathsf{T}} y - y^{\mathsf{T}} X \boldsymbol{\beta} - \boldsymbol{\beta}^{\mathsf{T}} X^{\mathsf{T}} y + \boldsymbol{\beta}^{\mathsf{T}} X^{\mathsf{T}} X \boldsymbol{\beta}$$

• ベクトルによる微分を行うと以下のようになる

$$\frac{\partial S}{\partial \boldsymbol{\beta}}(\boldsymbol{\beta}) = -(\boldsymbol{y}^{\mathsf{T}}\boldsymbol{X})^{\mathsf{T}} - \boldsymbol{X}^{\mathsf{T}}\boldsymbol{y} + (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X} + (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{\mathsf{T}})\boldsymbol{\beta}$$
$$= -2\boldsymbol{X}^{\mathsf{T}}\boldsymbol{y} + 2\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X}\boldsymbol{\beta}$$

• したがって β の満たす条件は以下となる

$$-2X^{\mathsf{T}}y + 2X^{\mathsf{T}}X\beta = 0 \quad \sharp \ \emptyset$$
$$X^{\mathsf{T}}X\beta = X^{\mathsf{T}}y$$

補足

• 成分ごとの計算は以下のようになる

$$\frac{\partial S}{\partial \beta_j}(\beta) = -2\sum_{i=1}^n \left(y_i - \sum_{k=0}^p \beta_k x_{ik} \right) x_{ij} = 0$$
ただし、 $x_{i0} = 1$ $(i = 1, \dots, n)$, $j = 0, 1, \dots, p$

$$\sum_{i=1}^n x_{ij} \left(\sum_{k=0}^p x_{ik} \beta_k \right) = \sum_{i=1}^n x_{ij} y_i \quad (j = 0, 1, \dots, p)$$
 x_{ij} は行列 X \mathcal{O} (i, j) 成分であることに注意

正規方程式

正規方程式

• 正規方程式 (normal equation)

$$X^{\mathsf{T}}XB = X^{\mathsf{T}}\mathbf{v}$$

- X^TX: Gram 行列 (Gram matrix)
 - (p+1)×(p+1) 行列(正方行列)
 - 正定対称行列(固有値が非負)

正規方程式の解

- 正規方程式の基本的な性質
 - 正規方程式は必ず解をもつ(一意に決まらない場合もある)
 - 正規方程式の解は最小二乗推定量であるための必要条件
- 解の一意性の条件
 - Gram 行列 X^TX が **正則**
 - X の列ベクトルが独立(後述)
- 正規方程式の解

$$\hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{y}$$

最小二乗推定量の性質

解析の上での良い条件

- 最小二乗推定量がただ一つだけ存在する条件
 - X^TX が正則
 - X^TX の階数が p+1
 - X の階数が p+1
 - X の列ベクトルが 1 次独立

これらは同値条件

解析の上での良くない条件

- 説明変数が1次従属: **多重共線性** (multicollinearity)
- 多重共線性が強くならないように説明変数を選択
 - X の列 (説明変数) の独立性を担保する
 - 説明変数が互いに異なる情報をもつように選ぶ
 - 似た性質をもつ説明変数の重複は避ける

推定の幾何学的解釈

• あてはめ値 / 予測値 (fitted values / predicted values)

$$\hat{\mathbf{y}} = X\hat{\boldsymbol{\beta}} = \hat{\beta}_0 X_{\text{\tiny $\hat{\mathfrak{I}}$ \tiny 0 }\text{\tiny $\hat{\mathfrak{I}}$ \tiny $\hat{\mathfrak{I}}$$

- 最小二乗推定量 ŷ の幾何学的性質
 - L[X]: X の列ベクトルが張る \mathbb{R}^n の線形部分空間
 - -X の階数が p+1 ならば L[X] の次元は p+1 (解の一意性)
 - ŷ は y の L[X] への直交射影
 - 残差 (residuals) $\hat{\epsilon} = y \hat{y}$ はあてはめ値 \hat{y} に直交

 $\hat{\boldsymbol{\epsilon}} \cdot \hat{\boldsymbol{y}} = 0$

Figure 1: n = 3, p + 1 = 2 の場合の最小二乗法による推定

線形回帰式と標本平均

- $\mathbf{x}_i = (x_{i1}, \dots, x_{ip})^\mathsf{T}$: i 番目の観測データの説明変数
- 説明変数および目的変数の標本平均

$$\bar{\boldsymbol{x}} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_i, \qquad \qquad \bar{\boldsymbol{y}} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{y}_i,$$

• $\hat{\beta}$ が最小二乗推定量のとき以下が成立

$$\bar{y} = (1, \bar{x}^{\mathsf{T}})\hat{\boldsymbol{\beta}}$$

演習

問題

- 最小二乗推定量について以下を示しなさい
 - 残差の標本平均が0となる

目的変数や残差のベクトルについて以下を示せばよい

$$\mathbf{1}^{\mathsf{T}}(\boldsymbol{y} - \boldsymbol{\hat{y}}) = \mathbf{1}^{\mathsf{T}}\boldsymbol{\hat{\epsilon}} = 0$$

ただし $\mathbf{1} = (1, ..., 1)^{\mathsf{T}}$ とする

- 回帰式が標本平均を通る

$$\bar{y} = (1, \bar{\boldsymbol{x}}^{\mathsf{T}}) \boldsymbol{\hat{\beta}}$$

解答例

• 残差の表現を整理する

$$\hat{\epsilon} = y - \hat{y} = y - X\hat{\beta}$$
$$= y - X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$

左から X^T を乗じる

$$\boldsymbol{X}^{\mathsf{T}}\boldsymbol{y} - \boldsymbol{X}^{\mathsf{T}}\boldsymbol{X}(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{y} = \boldsymbol{X}^{\mathsf{T}}\boldsymbol{y} - \boldsymbol{X}^{\mathsf{T}}\boldsymbol{y} = 0$$

- 行列 X の 1 列目が 1 であることより明らか
- 説明変数の標本平均をデザイン行列で表す

$$\mathbf{1}^{\mathsf{T}}X = n(1, \bar{\boldsymbol{x}}^{\mathsf{T}})$$

• したがって以下が成立する

$$n(1, \bar{\mathbf{x}}^{\mathsf{T}})\hat{\boldsymbol{\beta}} = \mathbf{1}^{\mathsf{T}} X \hat{\boldsymbol{\beta}}$$
$$= \mathbf{1}^{\mathsf{T}} \hat{\mathbf{y}} = \mathbf{1}^{\mathsf{T}} \mathbf{y}$$
$$= n\bar{\mathbf{y}}$$

残差の分解

最小二乗推定量の残差

• 観測値と推定値 β による予測値の差

$$\hat{\epsilon}_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \dots + \hat{\beta}_p x_{ip}) \quad (i = 1, \dots, n)$$

- 誤差項 $\epsilon_1, \ldots, \epsilon_n$ の推定値
- 全てができるだけ小さいほど良い
- 予測値とは独立に偏りがないほど良い
- 残差ベクトル

$$\hat{\boldsymbol{\epsilon}} = \boldsymbol{y} - \hat{\boldsymbol{y}} = (\hat{\epsilon}_1, \hat{\epsilon}_2, \dots, \hat{\epsilon}_n)^{\mathsf{T}}$$

平方和の分解

- $\bar{y} = \bar{y}1 = (\bar{y}, \bar{y}, \dots, \bar{y})^T$: 標本平均のベクトル
- いろいろなばらつき

-
$$S_v = (y - \bar{y})^T (y - \bar{y})$$
: 目的変数のばらつき

-
$$S = (y - \hat{y})^{\mathsf{T}} (y - \hat{y}) : 残差のばらつき (\hat{\epsilon}^{\mathsf{T}} \hat{\epsilon})$$

-
$$S_r = (\hat{\mathbf{y}} - \bar{\mathbf{y}})^\mathsf{T} (\hat{\mathbf{y}} - \bar{\mathbf{y}})$$
: あてはめ値 (回帰) のばらつき

• 3 つのばらつき (平方和) の関係

$$(\mathbf{y} - \bar{\mathbf{y}})^{\mathsf{T}} (\mathbf{y} - \bar{\mathbf{y}}) = (\mathbf{y} - \hat{\mathbf{y}})^{\mathsf{T}} (\mathbf{y} - \hat{\mathbf{y}}) + (\hat{\mathbf{y}} - \bar{\mathbf{y}})^{\mathsf{T}} (\hat{\mathbf{y}} - \bar{\mathbf{y}})$$

$$S_{v} = S + S_{r}$$

演習

問題

- 以下の関係式を示しなさい
 - あてはめ値と残差のベクトルが直交する

$$\hat{\mathbf{y}}^{\mathsf{T}}(\mathbf{y} - \hat{\mathbf{y}}) = \hat{\mathbf{y}}^{\mathsf{T}} \hat{\boldsymbol{\epsilon}} = 0$$

- 残差平方和の分解が成り立つ

$$S_{v} = S + S_{r}$$

解答例

• 残差の表現を整理する

$$\hat{\epsilon} = y - X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$
$$= (I - X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}})y$$

左からŷを乗じる

$$\hat{\mathbf{y}}^{\mathsf{T}} \hat{\boldsymbol{\epsilon}} = \hat{\boldsymbol{\beta}}^{\mathsf{T}} X^{\mathsf{T}} (I - X(X^{\mathsf{T}} X)^{-1} X^{\mathsf{T}}) \mathbf{y}$$
$$= \hat{\boldsymbol{\beta}}^{\mathsf{T}} (X^{\mathsf{T}} - X^{\mathsf{T}} X(X^{\mathsf{T}} X)^{-1} X^{\mathsf{T}}) \mathbf{y}$$
$$= \hat{\boldsymbol{\beta}}^{\mathsf{T}} (X^{\mathsf{T}} - X^{\mathsf{T}}) \mathbf{y} = 0$$

• 以下の関係を用いて展開すればよい

$$y-ar{y}=y-\hat{y}+\hat{y}-ar{y}$$
ただし $ar{y}=ar{y}1$

• このとき以下の項は0になる

$$(\hat{\mathbf{y}} - \bar{\mathbf{y}})^{\mathsf{T}} (\mathbf{y} - \hat{\mathbf{y}}) = \hat{\mathbf{y}}^{\mathsf{T}} (\mathbf{y} - \hat{\mathbf{y}}) - \bar{\mathbf{y}} \mathbf{1}^{\mathsf{T}} (\mathbf{y} - \hat{\mathbf{y}}) = 0$$

決定係数

回帰式の寄与

• ばらつきの分解

$$S_y$$
 (目的変数) = S (残差) + S_r (あてはめ値)

• 回帰式で説明できるばらつきの比率

(回帰式の寄与率) =
$$\frac{S_r}{S_v}$$
 = $1 - \frac{S}{S_v}$

• 回帰式のあてはまり具合を評価する代表的な指標

決定係数 $(R^2$ 値)

• 決定係数 (R-squared)

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

• 自由度調整済み決定係数 (adjusted R-squared)

$$\bar{R}^2 = 1 - \frac{\frac{1}{n-p-1} \sum_{i=1}^{n} \hat{\epsilon}_i^2}{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}$$

- 不偏分散で補正している

解析の事例

実データによる例

- 気象庁より取得した東京の気候データ
 - 気象庁 https://www.data.jma.go.jp/gmd/risk/obsdl/index.php
 - データ https://noboru-murata.github.io/multivariate-analysis/data/tokyo_weather.csv

東京の8月の気候の分析

- データの一部
- 気温を説明する5種類の線形回帰モデルを検討
 - モデル1: 気温 = F(気圧)
 - モデル2: 気温 = F(日射)
 - モデル3: 気温 = F(気圧, 日射)
 - モデル4: 気温 = F(気圧, 日射, 湿度)
 - モデル 5: 気温 = F(気圧, 日射, 雲量)

分析の視覚化

- 関連するデータの散布図
- モデル1の推定結果
- モデル2の推定結果
- モデル3の推定結果
- 観測値とあてはめ値の比較

モデルの比較

• 決定係数 (R², Adjusted R²)

Table 1: 東京の 8 月の気候

—————— 日付	気温	降雨	 日射	降雪	 風向	風速	気圧	湿度	 雲量
נדם	皿)×	牌图	口初	阵当	黑门门	風壓	XVII.	企 及	
2022-08-01	30.6	0	24.53	0	SSE	2.8	1010.1	72	8.8
2022-08-02	31.6	0	24.78	0	SSE	2.5	1008.8	71	9.8
2022-08-03	31.5	0	21.24	0	SSE	2.3	1005.1	75	7.3
2022-08-04	24.6	18	3.46	0	NE	2.7	1006	89	10
2022-08-05	23.8	0	7.65	0	NE	2.9	1006.1	83	9.8
2022-08-06	25.2	0	17.06	0	SSE	2.4	1008.1	73	10
2022-08-07	27.6	0	14.45	0	SSE	2.2	1009.3	80	8.3
2022-08-08	29.8	0	22.52	0	S	4.5	1008.5	75	4.8
2022-08-09	30.9	0	25.5	0	S	5.5	1006.9	69	6.8
2022-08-10	30.5	0	25.99	0	S	5.3	1007.2	70	6
2022-08-11	29.5	0	22.9	0	S	5.4	1007.5	75	6
2022-08-12	28.3	2	15.36	0	S	5.8	1007.5	81	9.8
2022-08-13	25.5	47.5	4.53	0	S	4.8	1005.6	94	10
2022-08-14	28.2	0	16.28	0	SSE	2.6	1003	84	8.8
2022-08-15	29.4	0	18.65	0	S	2.5	1003.4	78	8.8
2022-08-16	31	0	20.5	0	SSW	4.8	1000.6	70	8.3
2022-08-17	27.3	5	8.87	0	NE	2.5	1005.8	77	10
2022-08-18	26.8	13	8.74	0	S	2.8	1001.7	81	6
2022-08-19	27.5	0	23.52	0	SSE	3.4	1001.7	62	3
2022-08-20	26.4	1.5	13.5	0	NW	1.8	1000.6	82	9.8
2022-08-21	26	1	8.96	0	NE	2.1	1002.3	87	10
2022-08-22	26.2	0	9.05	0	NNE	2.5	1005.5	82	10
2022-08-23	28.7	0	17.94	0	S	3.2	1003.2	83	8.3
2022-08-24	27.8	2	12.86	0	NE	2.9	1003.2	79	10
2022-08-25	25.7	0	9.83	0	SE	2	1004.1	77	10
2022-08-26	27	3.5	10.05	0	SSE	2.1	1002.5	89	10
2022-08-27	29	0	19.87	0	SSE	3.3	1002.7	80	5.5
2022-08-28	23.7	5	4.58	0	NE	3	1009.2	87	9.8
2022-08-29	23.3	0.5	15.45	0	NE	2.8	1016.1	69	8
2022-08-30	22.8	5	10.12	0	NNE	1.9	1012.5	88	10
2022-08-31	27.1	1	17.46	0	S	3.2	1007.6	85	8.8

Table 2: 寄与率によるモデルの比較

	目的変数									
	モデル 1	モデル 2	気温 モデル 3	モデル 4	モデル 5					
気圧	-0.178 (0.127)		-0.223 (0.068)	-0.214 (0.067)	-0.242 (0.068)					
日射		0.297 (0.041)	0.306 (0.036)	0.366 (0.056)	0.348 (0.045)					
湿度 雲量				0.071 (0.051)	0.229 (0.161)					
丟里 Constant	206.535 (127.430)	22.969 (0.690)	247.477 (68.433)	231.843 (68.254)	0.238 (0.161) 263.717 (67.941)					
$\overline{R^2}$	0.064	0.641	0.741	0.758	0.760					
Adjusted R ²	0.031	0.628	0.722	0.731	0.733					

Figure 2: 散布図

Figure 3: モデル 1

Figure 4: モデル 2

Figure 5: モデル 3

Figure 6: モデルの比較

次回の予定

• 第1回:回帰モデルの考え方と推定

• 第2回:モデルの評価

・ 第3回: モデルによる予測と発展的なモデル