Señal: Forma en la que un fenómeno físico se manifiesta cuando se da en la naturaleza

- Una misma señal puede describir varios fenómenos físicos distintos
- Se representan matemáticamente como funciones de 1 o más variables independientes
- Contiene información en un patrón de variación que adoptan determinadas formas

Tipos de señales

- Señales de tiempo continuo

- Señales de tiempo discreto

 $t \mid n$: variable independiente

 $x(t) \mid x[n]$: variable dependiente

y(t) | y[n]: función

Transformaciones de las variables independientes

1) Escalamiento

- Se multiplica la variable t por una constate a
- Si el dominio de la señal es finito se produce un ensanchamiento o un enangostamiento

2) Reflexión

- Se multiplica $t \cdot (-1)$
- Se produce una inversión alrededor del eje de las coordenadas

3) Desplazamiento del tiempo

- Se efectúa $x(t-t_o)$ posicionando x(0) de x(t) en $x(t_o)$ para la señal $x(t-t_o)$
- La señal se desplaza horizontalmente

4) Convolución

- Se aplica 2) y 3)
- La señal es transformada

Señales básicas de tiempo continua

Ocurren con frecuencia y sirven para construir otras más complejas para poder examinarlas y entenderlas mejor

1) Función escalón unitario

$$u(t) = \begin{cases} 0; t < 0 \\ 1: t > 0 \end{cases}$$

La función tiene una discontinuidad para t=0

2) Función impulso unitario

$$\delta(t) = \begin{cases} Area = 1 \text{ en } t = 0 \\ 0; t \neq 0 \end{cases}$$

Area: se utiliza el valor 1 para poder darle múltiples aplicaciones al impulso unitario

Relación entre u(t) y $\delta(t)$

El escalón es la integral (por ser tiempo continuo) del impulso en función del tiempo

$$u(t) = \int_{T=-\infty}^{T=\infty} \delta(T) \, dT$$

Representación incremental

Si deducimos que $\delta(t)$ es la antiderivada de la anterior integral, será matemáticamente incorrecto porque hay una discontinuidad

$$\delta(t) = \frac{\partial (u(t))}{\partial t}$$

Si $\Delta \! \to 0$ la pendiente se hará cada vez más vertical

 $u(t) = \lim_{\Delta \to 0} u_{\Delta}(t)$ entonces

$$\delta(t) = \lim_{\Delta \to 0} \frac{\partial (u_{\Delta}(t))}{\partial t}$$

Impulso incremental

 $\delta_{\Delta}(t)$ es la pendiente de la recta $rac{1}{\Delta}$ entre 0 y Δ .

- Tiene área 1
- Toma valor 0 en todo otro valor de t
- A medida que $\Delta o 0$, $\delta_{\Delta}(t)$ se hace más angosta y alta manteniendo su área =1

$$\delta(t) = \lim_{\Delta \to 0} \delta_{\Delta}(t)$$

Propiedades del impulso unitario

- Producto de una señal x(t) por el impulso unitario

Para ∆ pequeños

$$x(t) \cdot \delta_{\Delta}(t) \cong x(0) \cdot \delta(t)$$

Si hacemos $\lim \Delta \rightarrow 0$

$$x(t) \cdot \delta_{\Delta}(t) = x(0) \cdot \delta(t)$$

Multiplicar por $\delta(t)$ equivale a escalar o agrandar (porque x(0) es un escalar) el impulso unitario por el número que es la altura de la señal en el origen

Si además desplazamos el $\delta(t)$ hacia $t=t_0$ entonces

$$x(t)\delta(t-t_0) = x(t_0)\delta(t-t_0)$$