SRN							
			_		_	_	_

PES University, Bengaluru (Established under Karnataka Act No. 16 of 2013)

UE17EC352

DECEMBER 2020: END SEMESTER ASSESSMENT (ESA) B TECH 6th SEMESTER

UE17EC352 - Digital Communication Answer All Questions

T	ime:	3 Hrs Answer All Questions Max Marks: 100					
			6				
1	a)	A discrete sinusoid is uniformly quantized, with <i>N</i> bits/sample. Assuming <i>N</i> to be large, find the expression for the SNR in dB					
	b)	With the help of suitable diagrams, explain the following about DPCM: i) the DPCM operation, ii) signal recovery at the receiver, and ii) improvement in SNR over PCM					
	c)	Derive the expression for the power spectrum of the bipolar NRZ signal	6				
2	a)	Briefly explain i) Inter Symbol Interference and ii) Nyquist criterion	6				
_	b)	A quaternary communication system (M=4) uses raised cosine pulse shaping with $\alpha = 0.75$. If the first zero crossings of the raised cosine pulse $p(t)$ occur at $\pm 100\mu s$, find i) the symbol rate, ii) the bit rate, and iii) the bandwidth.	6				
	c)	For the AWGN channel, draw the block diagram of the i) detector and ii) vector receiver. Derive the minimum distance decision rule, starting from the MAP decision rule.	8				
3	a)	Prove that the matched filter maximizes the output SNR	5				
	b)	With the help of block diagrams, explain the generation and detection of DPSK symbols	8				
	c)	A digital modulation system uses a bandwidth of 3 MHz. The additive white Gaussian noise has $N_0 = 10^{-19}$. Find the average carrier power required to achieve $P_e = 10^{-4}$, for the following cases: i) BFSK and ii) DPSK. Note that $erfc(2.75) = 10^{-4}$.	7				
4	a)	For a discrete memoryless source with an M -symbol alphabet, show that the maximum entropy is $log(M)$.	6				
	b)	For any source, prove that the average length of any prefix code is greater than or equal to its entropy.	6				
	c)	Find the Huffman code for the source with symbol probabilities {0.3, 0.18,0.15,0.12,0.11,0.1,0.04}. Also find the code efficiency.	8				
_	(a)	Derive the expression for the capacity of a binary erasure channel	7				
5 a) b) c)	/	Find the differential entropy of a Gaussian random variable with zero mean and a variance of σ^2 .	6				
	c)	An analog signal bandlimited to 6 kHz is sampled at twice the Nyquist rate, resulting in a sequence of independent samples. The samples are uniformly quantized into 256 equally likely levels.	7				
		i) Find the average information rate of this source. ii) If this data is to be transmitted without errors over a channel with a bandwidth of 100 kHz, what is the minimum transmit power required? The additive Gaussian noise has $N_0 = 10^{-10}$					