Blatt 1

Aufgabe 1 (Äquivalenz von Höldernormen). (4 Punkte)

Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt mit $\partial \Omega \in C^{0,1}$. Seien $k \in \mathbb{N}$ und $\alpha \in (0,1)$ fixiert. Definiere

$$||u||_{C^{k,\alpha}(\Omega)} := \sum_{|\beta| \le k} ||D^{\beta}u||_{C^0(\Omega)} + \sum_{|\beta| = k} [D^{\beta}u]_{C^{0,\alpha}(\Omega)}$$

und

$$||u||'_{C^{k,\alpha}(\Omega)} := \sum_{|\beta| \le k} ||D^{\beta}u||_{C^0(\Omega)} + \sum_{|\beta| \le k} [D^{\beta}u]_{C^{0,\alpha}(\Omega)}.$$

Zeige, dass die beiden Normen äuquivalent sind.

Aufgabe 2 (Kompatibilitätsbedingungen I). (4 Punkte)

Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt. Seien $u_0 \in C^{\infty}(\bar{\Omega})$, $\varphi \in C^{\infty}(\partial \Omega \times [0, T))$ und $u \in C^{3;1}(\Omega \times (0, T))$ eine Lösung von

$$\begin{cases} \dot{u} = \sqrt{1 + |Du|^2} \operatorname{div} \left(\frac{Du}{\sqrt{1 + |Du|^2}} \right) & \text{in } \Omega \times (0, T) \\ u(x, 0) = u_0(x) & \text{für } x \in \bar{\Omega} \\ u(x, t) = \varphi(x) & \text{für } (x, t) \in \partial \Omega \times [0, T) \,. \end{cases}$$

Wie lauten die Kompatibilitätsbedingungen der Ordnung 1,2,3?

Welche Bedingung ergibt sich an die mittlere Kümmung $H_{\text{graph }u}$ auf $\partial\Omega$?

Aufgabe 3 (Kompatibilitätsbedingungen II). (4 Punkte)

Sei $\Omega_0 = B_1(0)$ und $\Omega = \bigcup_{t>0} B_{1+t}(0) \times \{t\}$. Seien $u_0 \in C^{\infty}(\bar{\Omega}_0), \varphi \in C^{\infty}(\partial \Omega \setminus \Omega_0)$ und $u \in C^{3;1}(\Omega)$ eine Lösung von

$$\begin{cases} \dot{u} = \sqrt{1 + |Du|^2} \operatorname{div} \left(\frac{Du}{\sqrt{1 + |Du|^2}} \right) & \text{in } \Omega \\ u(x,0) = u_0(x) & \text{für } x \in \bar{\Omega}_0 \\ u(x,t) = \varphi(x,t) & \text{für } (x,t) \in \partial \Omega \setminus \Omega_0 \,. \end{cases}$$

Wie lauten die Kompatibilitätsbedingungen der Ordnung 1,2,3?

Aufgabe 4. (4 Punkte)

Eine Lösung $u: \mathbb{R}^n \times [0, \infty) \to \mathbb{R}$ heißt homothetisch expandierend, falls $u(x, t) = \sqrt{t} u(\frac{x}{\sqrt{t}}, 1)$ auf $\mathbb{R}^n \times (0, \infty)$. Sei Φ die Fundamentallösung der Wärmeleitungsgleichung und $u_0(x) = |x|$.

Zeige, dass die Faltung $u = \Phi * u_0$ unter der Wärmeleitungsgleichung eine homothetisch expandierende Lösung generiert.

Abgabe: Bis Donnerstag, 03.05.2018, 10.00 Uhr, in die Mappe vor Büro F 402.

Blatt 2

Aufgabe 5. (8 Punkte)

Seien $X_0, Y_0: \mathbb{S}^1 \to \mathbb{R}^2$ reguläre, glatte Kurven und $X, Y: \mathbb{S}^1 \times [0, T) \to \mathbb{R}^2$ erfüllen

$$\begin{cases} \frac{\partial X}{\partial t}(x,t) = -\kappa(x,t)\nu(x,t) & \text{für } (x,t) \in \mathbb{S}^1 \times (0,T)\,, \\ X(x,0) = X_0(x) & \text{für } x \in \mathbb{S}^1 \end{cases}$$

und

$$\begin{cases} \frac{\partial Y}{\partial t}(y,t) = -\kappa(y,t)\nu(y,t) & \text{für } (y,t) \in \mathbb{S}^1 \times (0,T)\,, \\ Y(y,0) = Y_0(y) & \text{für } y \in \mathbb{S}^1\,. \end{cases}$$

Definiere $d: \mathbb{S}^1 \times \mathbb{S}^1 \times [0,T) \to \mathbb{R}$ durch

$$d(x, y, t) = ||X(x, t) - Y(y, t)||_{\mathbb{R}^2},$$

die Ableitungen

$$\frac{\partial}{\partial s_x} := \frac{1}{v(x,t)} \frac{\partial}{\partial x} \qquad \text{und} \qquad \frac{\partial}{\partial s_y} := \frac{1}{v(y,t)} \frac{\partial}{\partial y}$$

und die Tangentialvektoren

$$\tau_x := \tau(x,t) := \frac{\partial X}{\partial s_x}(x,t) \quad \text{und} \quad \tau_y := \tau(y,t) := \frac{\partial Y}{\partial s_y}(y,t).$$

Die Zweipunkt-Differentiation definieren wir durch

$$(\tau_x \oplus \tau_y)(f) = \tau_x(f) + \tau_y(f)$$
 und $(\tau_x \ominus \tau_y)(f) = \tau_x(f) - \tau_y(f)$

für $f: \mathbb{S}^1 \times \mathbb{S}^1 \to \mathbb{R}$.

(i) Berechne die Ableitungen

$$au_x(d)$$
, $au_y(d)$, $(au_x \oplus au_y)(d)$, $(au_x \oplus au_y)(d)$, $(au_x \oplus au_y)^2(d)$, $(au_x \oplus au_y)^2(d)$, $\frac{\partial d}{\partial t}$.

- (ii) Seien X_0 und Y_0 disjunkt. Zeige, dass $X(\mathbb{S}^1,t)$ und $Y(\mathbb{S}^1,t)$ disjunkt für alle $t \in [0,T)$ sind. *Hinweis:* Benutze, dass an einem Minimum von d gilt, dass $\xi(d) = 0$ und $\xi^2(d) \ge 0$ für alle $\xi(x,y,t) \in T_{X(x,t)}X(\mathbb{S}^1,t) \bigoplus T_{Y(y,t)}Y(\mathbb{S}^1,t) \text{ gilt.}$ (iii) Sei X_0 eingebettet. Zeige, dass $X(\mathbb{S}^1,t)$ eingebettet für alle $t \in [0,T)$ sind.
- *Hinweis:* Benutze (ii) und die Distanzfunktion $d_{\varepsilon}(x,y,t) = d(x,y,t) + \varepsilon t$.

Aufgabe 6. (8 Punkte)

Seien M^n, N^n kompakte differenzierbare Mannigfaltigkeiten. Sei $X_0: M^n \to \mathbb{R}^{n+1}$ eine glatte Einbettung und $X: M^n \times [0,T) \to \mathbb{R}^{n+1}$ erfülle

$$\begin{cases} \frac{\partial X}{\partial t}(x,t) = -H(x,t)\nu(x,t) & \text{für } (x,t) \in M^n \times (0,T)\,, \\ X(x,0) = X_0(x) & \text{für } x \in M^n\,. \end{cases}$$
 Sei $Y_0: N^n \to \mathbb{R}^{n+1}$ eine glatte Einbettung und $Y: N^n \times [0,T) \to \mathbb{R}^{n+1}$ erfülle

$$\begin{cases} \frac{\partial Y}{\partial t}(y,t) = -H(y,t)\nu(y,t) & \text{für } (y,t) \in N^n \times (0,T)\,, \\ Y(y,0) = Y_0(y) & \text{für } y \in N^n\,. \end{cases}$$

Definiere $d: M^n \times N^n \times [0,T) \to \mathbb{R}$ durch

$$d(x, y, t) = ||X(x, t) - Y(y, t)||_{\mathbb{R}^{n+1}}.$$

(i) Berechne die Ableitungen

$$\frac{\partial d}{\partial x}\,,\quad \frac{\partial d}{\partial y}\,,\quad \left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right)d\,,\quad \left(\frac{\partial}{\partial x}-\frac{\partial}{\partial y}\right)d\,,\quad \left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right)^2d\,,\quad \left(\frac{\partial}{\partial x}-\frac{\partial}{\partial y}\right)^2d\,,\quad \frac{\partial d}{\partial t}\,.$$

- (ii) Seien $X_0(M^n)$ und $Y_0(N^n)$ disjunkt. Zeige, dass $X(M^n,t)$ und $Y(N^n,t)$ disjunkt für alle $t\in [0,T)$ sind.
- (iii) Sei X_0 eingebettet. Zeige, dass $X(\mathbb{S}^1, t)$ eingebettet für alle $t \in [0, T)$ sind. Hinweis: Benutze (ii) und die Distanzfunktion $d_{\varepsilon}(x, y, t) = d(x, y, t) + \varepsilon t$.

Abgabe: Bis Donnerstag, 17.05.2018, 10.00 Uhr, in die Mappe vor Büro F 402.

Blatt 3

Aufgabe 7. (4 Punkte)

Sei $\alpha \in (0,1)$. Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt, T > 0, und $Q_T := \Omega \times (0,T)$. Sei $u : \bar{\Omega} \times [0,T) \to \mathbb{R}$ in $C^{2,\alpha;1,\frac{\alpha}{2}}(\bar{Q}_T)$ und $\varphi : \partial\Omega \times [0,T) \to \mathbb{R}$ in $C^{1,\alpha;0,\frac{\alpha}{2}}(\partial\Omega \times [0,T))$. Definiere

$$\Phi \colon C^{2+\alpha;\frac{2+\alpha}{2}}\left(\overline{Q}_1\right) \to C^{\alpha;\frac{\alpha}{2}}\left(\overline{Q}_1\right), \qquad u \mapsto \frac{\partial u}{\partial \nu} - \varphi.$$

Dann ist $\Phi \in C^1$ und es gilt

$$D\Phi(u)\langle\eta\rangle = D^2u\langle D\eta, \nu\rangle$$
.

Aufgabe 8. (4 Punkte)

Seien Ω , Q_T , u und φ wie in Aufgabe 7. Gelte

$$\begin{cases} \frac{\partial u}{\partial t} = \sqrt{1 + |Du|^2} \operatorname{div} \left(\frac{Du}{\sqrt{1 + |Du|^2}} \right) & \text{in } Q_T \\ u(\cdot, 0) = u_0 & \text{in } \Omega \\ \frac{\partial u}{\partial \nu} = \varphi & \text{in } \partial\Omega \times [0, T] \,. \end{cases}$$

- (i) Beschreibe die Kompatibilitätsbedingungen der Ordnung 0, 1 und 2.
- (ii) Definiere

$$\begin{split} V := \left\{ \eta \in C^{2+\beta,\frac{2+\beta}{2}}(\bar{Q}_1) \,:\, \eta|_{\Omega \times \{0\}} = 0 \right\} \,, \\ W := \left\{ (\rho,\xi) \,:\, \rho \in C^{0+\beta,\frac{0+\beta}{2}}(\partial \Omega \times [0,T]), \xi \in C^{1+\beta,\frac{1+\beta}{2}}(Q_T), \xi|_{\partial \Omega \times \{0\}} = 0 \right\} \\ \text{und } \Psi = (\Psi_1,\Psi_2) : V \to W \text{ mit} \\ \Psi(\eta) = (\Psi_1(\eta),\Psi_2(\eta)) := \left(\frac{\partial \eta}{\partial t} - F(D^2(\eta),D(\eta))), \frac{\partial \eta}{\partial \nu} - \varphi \right) \,. \end{split}$$

Zeige Kurzzeitexistenz für graphischen mittleren Krümmungsfluss mit Neumann-Randwerten. Benutze folgendes Theorem:

Theorem 1 (siehe Theorem IV.5.3, S. 320, Ladyzhenskaya et al., 68). Sei $\Omega \subset \mathbb{R}^n$ offen und T > 0. Definiere $Q_T := \Omega \times (0,T)$. Seien $k \in \mathbb{N}$, $\alpha \in (0,1)$. Seien die Koeffizienten von

$$L: u \mapsto \dot{u} - a^{ij}u_{ij} + b^iu_i + du$$

in $C^{k+\alpha;\frac{k+\alpha}{2}}(Q_T)$. Sei $\partial\Omega\in C^{k,\alpha}$ (im unbeschränkten Fall mit einer lokal gleichmäßigen $C^{k,a}$ -Darstellung des Randes). Dann gibt es für beliebige $f\in C^{k+\alpha;\frac{k+\alpha}{2}}\left(\overline{Q}_T\right)$, beliebige $u_0\in C^{k+2+\alpha}\left(\overline{\Omega}\right)$ und beliebige $\varphi\in C^{k+1+\alpha;\frac{k+1+\alpha}{2}}\left(\overline{Q}_T\right)$, die die Kompatibilitätsbedingungen bis zur Ordnung $\left[\frac{k+1+\alpha}{2}\right]=\left[\frac{k+1}{2}\right]$ erfüllen, eine Lösung $u\in C^{k+2+\alpha;\frac{k+2+\alpha}{2}}\left(\overline{Q}_T\right)$ des Randwertproblems

$$\begin{cases} Lu = f & in Q_T, \\ \frac{\partial u}{\partial \nu} = \varphi & auf \partial \Omega \times [0, T], \\ u(\cdot, 0) = u_0 & auf \Omega. \end{cases}$$

Ist Ω beschränkt, so ist u unter allen $C^{2;1}(Q_T) \cap C^0(\overline{Q}_T)$ -Lösungen eindeutig bestimmt. Es gilt die Abschätzung

$$\begin{aligned} \|u\|_{C^{k+2+\alpha;\frac{k+2+\alpha}{2}}(\overline{Q}_T)} \\ &\leq c \cdot \left(\|f\|_{C^{k+\alpha;\frac{k+\alpha}{2}}(\overline{Q}_T)} + \|u_0\|_{C^{k+2+\alpha}(\overline{\Omega})} + \|\varphi\|_{C^{k+1+\alpha;\frac{k+1+\alpha}{2}}(\overline{Q}_T)} \right) \\ mit \ c = c(\Omega,k,\alpha,L). \end{aligned}$$

Aufgabe 9 (Divergenztheorem auf Mannigfaltigkeiten). (4 Punkte)

Sei $M \subset \mathbb{R}^{n+1}$ eine glatte, kompakte, n-dimensionale Untermannigfaltigkeit. Sei v ein C^1 -Vektorfeld in einer Umgebung von M. Definiere die Divergenz auf M durch

$$\operatorname{div}_{M} v = v_{,\beta}^{\alpha} g^{ij} X_{i}^{\beta} X_{i}^{\gamma} \delta_{\alpha\gamma}.$$

Zeige, dass

$$\int_M \operatorname{div}_M v \, d\mu = -\int_M \left\langle v, \vec{H} \right\rangle_{\mathbb{R}^{n+1}} \, d\mu$$

gilt.

Hinweis: Benutze eine Zerlegung der Eins.

Aufgabe 10 (Monotonieformel für den mittleren Krümmingsfluss). (4 Punkte) Für $x_0 \in \mathbb{R}^n$ und $t_0 \in \mathbb{R}$, definiere $\Phi_{(x_0,t_0)} : \mathbb{R}^n \times (-\infty,t_0) \to \mathbb{R}$ durch

$$\Phi_{(x_0,t_0)}(x,t) := \frac{1}{(4\pi(t_0-t))^{n/2}} \exp\left(-\frac{\|x-x_0\|^2}{4(t_0-t)}\right).$$

Sei M^n eine differenzierbare Mannigfaltigkeit und $X:M^n\times (0,T)\to \mathbb{R}^{n+1}$ eine Lösung des mittleren Krümmungsflußes.

Zeige, dass

$$\frac{d}{dt} \int_{M_t} \Phi_{(x_0, t_0)} d\mu_t = -\int_{M_t} \left\| H(x, t) + \frac{(x - x_0)^{\perp}}{2(t_0 - t)} \right\|^2 \Phi_{(x_0, t_0)} d\mu_t$$

für $t_0 \in (0,T]$ und $t \in (0,t_0)$ gilt, wobei $(x-x_0)^{\perp} := \langle x-x_0,\nu \rangle \nu$ der Normalenanteil des Vektors $x-x_0$ und $M_t := X(M^n,t)$ ist.

Hinweis: Zeige zunächst, dass $\operatorname{div}_{M_t} x = n$ gilt und benutze das Divergenztheorem für den Vektor $(x - x_0)\Phi(x_0, t_0)$.

Abgabe: Bis Donnerstag, 31.05.2018, 10.00 Uhr, in die Mappe vor Büro F 402.

Blatt 4

Aufgabe 11. (4 Punkte)

Sei $X_0(\mathbb{S}^2)=M_0\subset\mathbb{R}^3$ eine Hyperfläche mit H>0. Löse $X:\mathbb{S}^2\times[0,T)\to\mathbb{R}^3$ den inversen mittleren Kümmungsfluss

$$\frac{\partial X}{\partial t} = \frac{1}{H}\nu$$

mit Anfangswert X_0 .

Berechne die Evolutionsgleichung von g_{ij} , h_{ij} , $\frac{1}{H}$ und $det(g_{ij})$.

Aufgabe 12. (4 Punkte)

Sei $X_0(\mathbb{S}^2) = M_0 \subset \mathbb{R}^3$ eine sternförmige Hyperfläche mit H > 0. Löse $X : \mathbb{S}^2 \times [0,T) \to \mathbb{R}^3$ den inversen mittleren Kümmungsfluss $\frac{\partial X}{\partial t} = \frac{1}{H}\nu$ mit Anfangswert X_0 . Sei $M_t := X(\mathbb{S}^2,t)$. Dann besagt ein nicht ganz einfach zu zeigenes Resultat, dass $e^{-t/n}M_t$ glatt zu einer Sphäre mit einem Radius $R(M_0) > 0$ konvergiert.

Zeige, dass

$$E(M) := \frac{1}{|M|} \left(\int_{M} H \, d\mu \right)^{2} \ge 16\pi$$

für sternförmige Hyperflächen Mmit H>0 gilt.

Hinweis: Berechne zunächst $\frac{\partial}{\partial t}E(M_t)$ unter dem inversen mittleren Kümmungsfluss. Glatte Konvergenz liefert hier insbesondere, dass $E(e^{-t/n}M_t) \to E(\mathbb{S}^2_R)$ gilt.

Aufgabe 13. (4 Punkte)

Let $X: \mathbb{S}^1 \times [0,T) \to \mathbb{R}^2$ eine Lösung des Curve Shortening Flows $\frac{\partial}{\partial t}X = -\kappa\nu$. Sei $S \in \{\mathbb{S}, \mathbb{R}\}$ und $T_{\infty} \in \{0,\infty\}$.

Zeige

(i) Es existiert eine Folge von Reskalierungen

$$(X_k:I_k\times J_k\to\mathbb{R}^2)_{k\in\mathbb{N}}$$

welche für $k\to\infty$ gleichmäßig und glatt auf kompakten Teilmengen $I\times J\subset S\times (-\infty,T_\infty)$ (mit $0\in I$) im Definitionsbereich und im umgebenen Raum zu einer maximalen, glatten Lösung $X_\infty:S\times (-\infty,T_\infty)\to \mathbb{R}^2$ konvergiert, die wieder den Curve Shortening Flow erfüllt.

(ii) Für eine Typ-I-Reskalierung um eine Typ-I-Singularität gilt $T_{\infty}=0$ und es existiert eine Zeit $\tau_{\infty}\in\left[-\frac{C_{0}^{2}}{4},-\frac{1}{4}\right]$ so dass

$$X_{\infty}(0,\tau_{\infty}) \in B_{3C_0}(0)\,, \quad |\kappa_{\infty}(0,\tau_{\infty})| = 1 \quad \text{ und } \quad \sup_{S \times (-\infty, -\delta^2]} |\kappa_{\infty}| \leq \frac{C_0}{\delta}$$

für alle $\delta < 0$.

(iii) Für eine Typ-II-Reskalierung um eine Typ-II-Singularität gilt $T_{\infty}=\infty$ und

$$X_{\infty}(0,0) = 0$$
 und $\sup_{\mathbb{R} \times \mathbb{R}} |\kappa_{\infty}| = |\kappa_{\infty}(0,0)| = 1$.

Hinweis: Benutze folgendes Resultat: Falls $|\kappa| \leq C_0$ auf $\mathbb{S}^1 \times [0, \bar{T}]$, dann existiert für alle $n, m \in \mathbb{N} \cup \{0\}$ eine Konstante $C_{n,m} = C_{n,m}(C_0, X_0)$ sodass

$$\left| \frac{\partial^n}{\partial t^n} \frac{\partial^m \kappa}{\partial s^m} \right| \le C_{n,m}$$

auf $\mathbb{S}^1 \times [0, \bar{T}]$.

Aufgabe 14. (4 Punkte)

Sei $S \in \{\mathbb{S}^1, \mathbb{R}\}$ und $X : S \times (0, T) \to \mathbb{R}^2$ eine Lösung des Curve Shortening Flow $\frac{\partial}{\partial t}X = -\kappa \nu$. Sei $X_{\infty} : S \times (-\infty, T_{\infty}) \to \mathbb{R}^2$ eine Limeslösung nach einer Reskalierung um eine Singularität, wie in Aufgabe 13.

Zeige mit Hilfe von Theoremen 2 und 3:

(i) Es gilt

$$\frac{d}{dt} \int_{\Sigma_t} |\kappa| \, ds_t = -2 \sum_{\{\kappa(s,t)=0\}} \left| \frac{\partial \kappa}{\partial s}(s,t) \right| \, .$$

(ii) Seien $\tau_1, \tau_2 \in (-\infty, T_\infty)$ mit $\tau_1 < \tau_2$. Dann gilt

$$\int_{\tau_1}^{\tau_2} \sum_{\{\kappa_{\infty}(s,\tau)=0\}} \left| \frac{\partial \kappa_{\infty}}{\partial s}(s,\tau) \right| d\tau = 0.$$

(iii) Es gilt $\kappa_{\infty} \neq 0$ auf $S \times (-\infty, T_{\infty})$. Somit ist die Limeslösung X_{∞} entweder strikt konkav oder strikt konvex.

Theorem 2 (Fatous Lemma). Sei $(\Omega, \sigma, d\mu)$ ein messbarer Raum und sei $(f_i : \Omega \to [0, \infty))_{i \in \mathbb{N}}$ eine Folge integrierbarer Funktionen mit $f \geq 0$ sodass $\liminf_{i \to \infty} \int_{\Omega} f_i d\mu < \infty$ gilt. Dann gilt auch

$$\int_{\Omega} \liminf_{i \to \infty} f_i \, d\mu \le \liminf_{i \to \infty} \int_{\Omega} f_i \, d\mu \, .$$

Theorem 3 (Nullstellen der Krümmung). Sei $S \in \{\mathbb{S}^1, \mathbb{R}\}$ und $X : S \times (0,T) \to \mathbb{R}^2$ eine eingebettette Lösung des Curve Shortening Flow mit $\kappa \not\equiv 0$. Sei $t_0 \in (0,T)$. Dann gilt für alle $t \in (0,t_0)$, dass die Menge

$$z(t) = \{ p \in S \mid \kappa(p, t) = 0 \}$$

endlich ist falls $S = \mathbb{S}$ und abzählbar falls $S = \mathbb{R}$. Falls an einem Punkt $(p_1, t_1) \in S \times (0, t_0)$ gilt, dass $\kappa(p_1, t_1) = 0$ und $\frac{\partial}{\partial s} \kappa(p_1, t_1) = 0$, dann folgt:

- (i) Falls $S = \mathbb{S}^1$, dann ist #z(t) streng monoton fallend für $t \in (t_1, t_0)$.
- (ii) Falls $S = \mathbb{R}$, dann existivet eine Umgebung $U = [p_1 \varepsilon, p_1 + \varepsilon] \times [t_1 \delta, t_1 + \delta]$ so dass
 - $u(p_1 \pm \varepsilon, t) \neq 0$ für $|t t_1| \leq \delta$
 - $u(\cdot, t + \delta)$ hat höchstens eine Nullstelle in dem Intervall $[p_1 \varepsilon, p_1 + \varepsilon]$
 - $u(\cdot, t \delta)$ hat mindestens zwei Nullstellen auf dem Intervall $[p_1 \varepsilon, p_1 + \varepsilon]$.

Abgabe: Bis Donnerstag, 14.06.2018, 10.00 Uhr, in die Mappe vor Büro F 402.

Blatt 5

Aufgabe 15. (4 Punkte)

Sei r > 1 und $\Omega = B_r(0) \setminus B_1(0) \subset \mathbb{R}^2$. Sei $u : \Omega \times [0, \infty) \to \mathbb{R}$ eine Lösung von

$$\begin{cases} \dot{u} = \sqrt{1 + |Du|^2} \operatorname{div} \left(\frac{Du}{\sqrt{1 + |Du|^2}} \right) & \text{in } \Omega \times (0, \infty) ,\\ u(\cdot, 0) = u_0 & \text{in } \overline{\Omega} ,\\ u = 0 & \text{auf } \partial B_1(0) \times [0, \infty) ,\\ u = \operatorname{arccosh}(r) & \text{auf } \partial B_r(0) \times [0, \infty) . \end{cases}$$

Sei $\varepsilon \in (0,1)$ und

$$v_{\varepsilon}(x) = \operatorname{arccosh}\left(\frac{x}{1-\varepsilon}\right)(1-\varepsilon) - \operatorname{arccosh}\left(\frac{1}{1-\varepsilon}\right)(1-\varepsilon).$$

Nehme an, dass $||u(\cdot,t)||_{C^k} \leq C_k$ für alle $t \geq 1$ gilt. Zeige, dass dann

$$\lim_{t \to \infty} u(x, t) \ge v_{\varepsilon}(x)$$

für alle $\varepsilon \in (0,1)$ folgt.

Bemerkung: Dies liefert einen Widerspruch und wir erhalten, dass es keine obere Schranke an den Gradienten für $t \to \infty$ geben kann.

Aufgabe 16. (12 Punkte)

Wann konvergiert die parabolische Lösung gegen die elliptische?

Lies Unterkapitel 1–3 von Part I des Artikels "Asymptotic behaviour of solutions of parabolic equations of any order" von Avner Friedman, Acta Mathematica, Volume 106, Number 1–2, 1961, pp. 1–43.

Bereite die Beweise von Theorem 1 und 2 (für glatte h und g) so vor, dass du sie im Tutorium vorrechnen kannst.

Abgabe: Bis Donnerstag, 28.06.2018, 10.00 Uhr, in die Mappe vor Büro F 402.

Blatt 6

Aufgabe 17. (2+4+2 Punkte)

Sei $M_0 \subset \mathbb{R}^{n+1}$ eine geschlossene n-dimesionale Hyperfläche mit H > 0. Sei $(M_t)_{t \in [0,T)}$ eine Lösung des mittleren Krümmungsflusses mit Startfläche M_0 .

- (i) Zeige, dass H > 0 für alle $t \in (0, T)$.
- (ii) Zeige, dass

$$t \mapsto \max_{M_t} \frac{|A|^2}{H^2}$$

monoton fallend ist.

Hinweis: Benutze Katos Ungleichung $|\nabla |A||^2 \le |\nabla A|^2$.

(iii) Sei n=2. Folgere aus (ii), dass λ_1/λ_2 beschränkt bleibt. Hinweis: Drücke $\frac{(\lambda_1-\lambda_2)^2}{(\lambda_1+\lambda_2)^2}$ mit Hilfe von $|A|^2$ und H aus und betrachte die Funktion $x\mapsto 1-x$.

Aufgabe 18. (8 Punkte)

Sei $M_0 \subset \mathbb{R}^{n+1}$ eine geschlossene n-dimesionale Hyperfläche mit H > 0. Sei $(M_t)_{t \in [0,T)}$ eine Lösung des Gaußkrümmungsflusses mit Startfläche M_0 .

- (i) Berechne die Evolutionsgleihungen von g_{ij} , h_{ij} , H und K.
- (ii) Sei n=2. Zeige, dass

$$t \mapsto \max_{M_t} (\lambda_1 - \lambda_2)^2$$

monoton fallend ist.

Abgabe: Bis Donnerstag, 12.07.2018, 10.00 Uhr, in die Mappe vor Büro F 402.