Correlation and Regression

Jan Michael C. Yap

Core Facility for Bioinformatics

jcyap@up.edu.ph

Outline

- Correlation
- Regression

Outline

- Correlation
- Regression

(Statistical) Correlation

- Correlation describes the degree of association or relationship between two datasets
 - Can be extended to more than two datasets by performing pairwise tests for all combinations of datasets.
 - Assumption: values between two datasets are paired.
- Idea: do values between two datasets more or less increase and decrease jointly?
- Range of values: [-1,1]
 - 1: positively correlated; -1: negatively correlated; 0: no correlation / independent
- Caveat: correlation does not necessarily imply causation
 - But can be treated as evidence towards it

Visualizing Correlation

Pearson's Product-Moment Correlation Coefficient

• Given two datasets, X and Y, the Pearson's product-moment correlation coefficient is computed as:

$$r_{x,y} = \frac{\sum_{i=1}^{n} \left(X_i - \bar{X}\right) \left(Y_i - \bar{Y}\right)}{\sqrt{\sum_{i=1}^{n} \left(X_i - \bar{X}\right)^2} \sqrt{\sum_{i=1}^{n} \left(Y_i - \bar{Y}\right)^2}}$$

X	10	13	14	16	18	19	20	7	11	3
Υ	13	14	8	5	9	11	17	16	5	1

$$r_{x,y} = 0.341916$$

Rank Correlation Coefficients

- Makes use of the order of the values (i.e. rank) when sorted according to magnitude
- Preprocessing step: arrange the values in each dataset and assign ranks
- Spearman's ρ
 - Apply Pearson's correlation on the ranks

Rank Correlation Coefficients

• Kendall's τ

$$\tau = \frac{n_c - n_d}{0.5n(n-1)}$$

- n_c refers to **concordant pairs,** i.e. number of samples where if rank(x_i) $> rank(x_j)$ then rank(y_i) $> rank(y_j)$ OR if where if rank(x_i) $< rank(x_j)$ then rank(y_i) $< rank(y_i)$, for $1 \le i < j \le n$
- n_d refers to **discordant pairs,** i.e. number of samples where if rank(x_i) > rank(x_j) then rank(y_i) < rank(y_j) OR if where if rank(x_i) < rank(x_j) then rank(y_i) > rank(y_i), for $1 \le i < j \le n$

Rank Correlation Coefficients

X	10	13	14	16	18	19	20	7	11	3
Υ	13	14	8	5	9	11	17	16	5	1

Rank X	8	6	5	4	3	2	1	9	7	10
Rank Y	4	3	7	8	6	5	1	2	8	10

$$\rho = 0.289704$$

C	3	3	5	4	4	3	3	1	1	0
D	6	5	2	2	1	1	0	1	0	0

Significance Testing for Correlation Coefficients

- Pearson (and Spearman)
 - Pearson's correlation coefficient value is first subjected to Fisher transformation, F(r) = arctanh(r)
 - F(r) is normally distributed with mean = F(r_0) and standard deviation = $1/\sqrt{n-3}$
- Kendall
 - Testing the significance requires computing a different standard normally distributed test statistic:

$$Z_A = \frac{3(nc - nd)}{\sqrt{n(n-1)(2n+5)/2}}$$

Outline

- Correlation
- Regression

Regression

- Regression is a modeling technique used to show the relationship of one dependent variable with one or more independent variables.
- The dependent variable is also termed as **response or output** variable.
- The independent variable is also termed as predictor, input, or explanatory variable.

Regression

- Regression is done by **fitting a function** wherein the dependent variable is determined by the independent variable(s)
- Let Y be the dependent variable, and X be the independent variable, we try to regress Y using X via a function f such that Y = f(X)
- For multiple independent variables, X_1 , X_2 , ..., X_n , we have $Y = f(X_1, X_2, ..., X_n)$.
- This has implicit assumption that the dependent variable(s)
 are "causal" to the independent variable

(Least Squares) Linear Regression

Least Squares Linear Regression

X	10	13	14	16	18	19	20	7	11	3
Υ	13	14	8	5	9	11	17	16	5	1

Least Squares Linear Regression

X	10	13	14	16	18	19	20	7	11	3
Υ	13	14	8	5	9	11	17	16	5	1

Least Squares Linear Regression

$$y = mx + b$$

$$b = \frac{(\sum y)(\sum x^2) - (\sum x)(\sum xy)}{n(\sum x^2) - (\sum x)^2}$$
$$m = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2}$$

X	10	13	14	16	18	19	20	7	11	3
Υ	13	14	8	5	9	11	17	16	5	1

$$m = 0.32763$$
 $b = 5.60803$

Significance Testing for Linear Regression

$$s_{est} = \sqrt{\frac{\sum (y - \widehat{y})^2}{N - 2}}$$

- Standard error of the regression model
- Perform **t-test** where the t-statistic is computed as

$$t = \frac{s_{est}}{\sqrt{\sum (x - \bar{x})^2}}$$

Relationship between Correlation and Regression

$$m = r_{x,y} \frac{stdev(y)}{stdev(x)}$$

X	10	13	14	16	18	19	20	7	11	3
Υ	13	14	8	5	9	11	17	16	5	1

$$r_{x,y} = 0.341916$$

$$m = 0.32763$$
 $b = 5.60803$

$$stdev(x) = 5.1856$$

 $stdev(y) = 4.9689$

Multiple (Linear) Regression

- Multiple regression is done when the dependent variable is regressed using more than one independent variables (at a time)
- It is done to assess effect of one independent variable to joint effects of multiple independent variables.
- In practice, multiple regression is done only on linear models.

$$y = m_1 x_1 + m_2 x_2 + \dots + b$$

THANK YOU VERY MUCH! ©

