US Patent & Trademark Office Patent Public Search | Text View

United States Patent

Kind Code

B2

Date of Patent

Inventor(s)

12385494

August 12, 2025

Herrera; Nathaniel A. et al.

Fan for handheld blower

Abstract

A fan includes a hub and a plurality of blades extending radially outwardly from the hub and spaced circumferentially about the hub. The plurality of blades includes a reference blade, a first blade, and a second blade. The reference blade is disposed after the first blade in a circumferential direction about the hub. The second blade is disposed after the reference blade in the circumferential direction. The first blade is circumferentially spaced a first distance from the reference blade. The second blade is circumferentially spaced a second distance from the reference blade. The first distance is greater than the second distance.

Inventors: Herrera; Nathaniel A. (Oak Creek, WI), Cholst; Beth E. (Wauwatosa,

WI), Bartlett; Shannon C. (Cedarburg, WI), Whealon; John L. (West

Bend, WI)

Applicant: MILWAUKEE ELECTRIC TOOL CORPORATION (Brookfield, WI)

Family ID: 1000008749793

Assignee: Milwaukee Electric Tool Corporation (Brookfield, WI)

Appl. No.: 18/572095

Filed (or PCT October 10, 2022

Filed):

PCT No.: PCT/US2022/046176

PCT Pub. No.: WO2023/064213

PCT Pub. Date: April 20, 2023

Prior Publication Data

Document IdentifierUS 20240280110 A1

Publication Date
Aug. 22, 2024

Related U.S. Application Data

us-provisional-application US 63254296 20211011

Publication Classification

Int. Cl.: F04D25/08 (20060101); A01G20/43 (20180101); F04D25/06 (20060101); F04D29/32 (20060101); F04D29/34 (20060101); F04D29/38 (20060101); F04D29/66 (20060101)

U.S. Cl.:

CPC **F04D25/08** (20130101); **F04D29/32** (20130101); **F04D29/34** (20130101); **F04D29/38** (20130101);

Field of Classification Search

CPC: A01G (20/47); A01G (20/43); A47L (5/14); A47L (5/24); A47L (5/22); A47L (5/28); A47L (9/02); F04D (19/002); F04D (25/08); F04D (29/545); F04D (29/32); F04D

(29/34); F04D (25/084); F04D (29/281); F04D (29/327); F04D (29/329); F04D (29/38);

F04D (29/388); F04D (25/0673); F04D (29/666); F05B (2240/301)

References Cited

U.S. PATENT DOCUMENTS

Patent No.	Issued Date	Patentee Name	U.S. Cl.	CPC
1898410	12/1932	Wales	N/A	N/A
2284586	12/1941	McDermott	N/A	N/A
2768782	12/1955	Tateishi	N/A	N/A
2938527	12/1959	Nichols	N/A	N/A
3346174	12/1966	Lievens et al.	N/A	N/A
3407431	12/1967	Melnik	N/A	N/A
3540547	12/1969	Coward, Jr.	N/A	N/A
4185688	12/1979	Wiater et al.	N/A	N/A
4222318	12/1979	Patton et al.	N/A	N/A
4413371	12/1982	Tuggle et al.	N/A	N/A
4597203	12/1985	Middleton	N/A	N/A
4615069	12/1985	Henning	N/A	N/A
4692091	12/1986	Ritenour	N/A	N/A
4696450	12/1986	Huang	N/A	N/A
4734017	12/1987	Levin	N/A	N/A
4773119	12/1987	Duthie et al.	N/A	N/A
4792286	12/1987	Gassen	N/A	N/A
4794225	12/1987	Maese	N/A	N/A
4821366	12/1988	Levine	N/A	N/A
4838151	12/1988	Shin-Chin	N/A	N/A
4884314	12/1988	Miner et al.	N/A	N/A
4945604	12/1989	Miner et al.	N/A	N/A
4981414	12/1990	Sheets	N/A	N/A

5035586 12/1990 Sadler et al. N/A 5195208 12/1992 Yamami et al. N/A 5267371 12/1992 Soler et al. N/A 5269665 12/1992 Sadler et al. N/A	N/A N/A N/A N/A N/A N/A
5267371 12/1992 Soler et al. N/A 5269665 12/1992 Sadler et al. N/A	N/A N/A N/A
5269665 12/1992 Sadler et al. N/A	N/A N/A
5383427 12/1994 Tuggle et al. N/A	N/A
5511281 12/1995 Webster N/A	
5560076 12/1995 Leung N/A	N/A
5701631 12/1996 Lindquist N/A	N/A
5768749 12/1997 Ohi et al. N/A	N/A
5821473 12/1997 Takahashi N/A	N/A
5839397 12/1997 Funabashi et al. N/A	N/A
5938527 12/1998 Oshima et al. N/A	N/A
5975862 12/1998 Arahata et al. N/A	N/A
5979013 12/1998 Beckey et al. N/A	N/A
6006400 12/1998 Presenza N/A	N/A
6105206 12/1999 Tokumaru et al. N/A	N/A
6158082 12/1999 Beckey et al. N/A	N/A
6244823 12/2000 Marino et al. N/A	N/A
6305048 12/2000 Salisian N/A	N/A
6324720 12/2000 Beckey et al. N/A	N/A
6324721 12/2000 Doragrip N/A	N/A
6370729 12/2001 Miyamoto N/A	N/A
6442790 12/2001 Svoboda et al. N/A	N/A
6464459 12/2001 Illingworth N/A	N/A
6468053 12/2001 Wölpert N/A	N/A
6497553 12/2001 Illingworth et al. N/A	N/A
6514036 12/2002 Marshall et al. N/A	N/A
6520449 12/2002 Illingworth N/A	N/A
6543726 12/2002 Illingworth N/A	N/A
6565321 12/2002 Illingworth et al. N/A	N/A
6575695 12/2002 Miyamoto N/A	N/A
6595753 12/2002 Illingworth et al. N/A	N/A
6616094 12/2002 Illingworth N/A	N/A
6619922 12/2002 Illingworth et al. N/A	N/A
6623352 12/2002 Illingworth N/A	N/A
6687951 12/2003 Illingworth et al. N/A	N/A
6689225 12/2003 Illingworth N/A	N/A
6719830 12/2003 Illingworth et al. N/A	N/A
6729839 12/2003 Illingworth et al. N/A	N/A
6796858 12/2003 Dusablon 440/38	B63H 11/08
6802693 12/2003 Reinfeld et al. N/A	N/A
6802881 12/2003 Illingworth et al. N/A	N/A
6811687 12/2003 Illingworth N/A	N/A
6857163 12/2004 Iida et al. N/A	N/A
6881025 12/2004 Illingworth et al. N/A	N/A
6957472 12/2004 Illingworth et al. N/A	N/A
6960063 12/2004 Reinfeld et al. N/A	N/A
7055213 12/2005 Iida et al. N/A	N/A
7143468 12/2005 Illingworth et al. N/A	N/A

730048	4 12/20	006	Scully et al.	N/A	N/A
760029	0 12/20	800	Peters	N/A	N/A
760724	4 12/20	800	Hishida	N/A	N/A
773518	8 12/20	009	Shaffer	N/A	N/A
777489	6 12/20	009	Andresen et al.	N/A	N/A
7845048	8 12/20	009	Bailey et al.	N/A	N/A
7850513	3 12/20	009	Parker et al.	N/A	N/A
792247	0 12/20)10	Joseph	N/A	N/A
794189	4 12/20)10	Skorput	N/A	N/A
8266762	2 12/20)11	Hsu	N/A	N/A
844958	9 12/20)12	Harsy	N/A	N/A
851091	0 12/20)12	Ramsey	N/A	N/A
874581	5 12/20)13	Takano et al.	N/A	N/A
889438	2 12/20)13	Binder	N/A	N/A
891895	6 12/20)13	Pellenc	N/A	N/A
8967949	9 12/20)14	Gamissans Bou	N/A	N/A
9004854	4 12/20)14	Nakazawa	N/A	N/A
905716	6 12/20)14	Prager	N/A	N/A
906268	1 12/20)1 <i>1</i>	Lee	N/A	F04D
300200	1 12/20	/1 4		1 \ // A	19/007
916775	1 12/20)14	Thackery et al.	N/A	N/A
927784	4 12/20)15	Millan	N/A	N/A
936412	5 12/20)15	Takahashi	N/A	N/A
943954	8 12/20)15	Jenson	N/A	N/A
945672	2 12/20)15	Tomasiak et al.	N/A	N/A
953871			Mutoh et al.	N/A	N/A
960349			Yamaoka et al.	N/A	N/A
973718			Gindele et al.	N/A	N/A
986124			Tomasiak et al.	N/A	N/A
986932			Kodato et al.	N/A	N/A
D81282			Smith et al.	N/A	N/A
997044			Kodato et al.	N/A	N/A
997424			Yamaoka et al.	N/A	N/A
100009			Yamaoka et al.	N/A	N/A
100652			Suzuki et al.	N/A	N/A
100919			Yamaoka et al.	N/A	N/A
1022798			Gao et al.	N/A	N/A
1023250			Bylund et al.	N/A	N/A
1026473			Yamaoka et al.	N/A	N/A
102673			Patrick	N/A	N/A
103068			Thackery et al.	N/A	N/A
103375			Shao et al.	N/A	N/A
103759			Bermudez et al.	N/A	N/A
103980	95 12/20)18	Gao et al.	N/A	N/A
104057	07 12/20)18	Zhu	N/A	F04D
					29/545
104878			Shao et al.	N/A	N/A
1067004			Landén et al.	N/A	N/A
106746			Bermudez et al.	N/A	N/A
107220	85 12/20)19	Gao et al.	N/A	N/A

10774487	12/2019	Yamaoka et al.	N/A	N/A
10897858	12/2020	Hoffman et al.	N/A	N/A
10947983	12/2020	Hoffman	N/A	N/A
2001/0054212	12/2000	Walker	N/A	N/A
2002/0060107	12/2001	Kamoshita et al.	N/A	N/A
2002/0148069	12/2001	Illingworth	N/A	N/A
2002/0155002	12/2001	Reinfeld et al.	N/A	N/A
2002/0176777	12/2001	Reinfeld et al.	N/A	N/A
2002/0176778	12/2001	Reinfeld et al.	N/A	N/A
2002/0182077	12/2001	Reinfeld et al.	N/A	N/A
2002/0182078	12/2001	Reinfeld et al.	N/A	N/A
2003/0033689	12/2002	Marshall et al.	N/A	N/A
2003/0136094	12/2002	Illingworth et al.	N/A	N/A
2003/0150198	12/2002	Illingworth et al.	N/A	N/A
2003/0167741	12/2002	Illingworth et al.	N/A	N/A
2003/0221399	12/2002	Hall	N/A	N/A
2004/0018089	12/2003	Illingworth et al.	N/A	N/A
2004/0091357	12/2003	Reinfeld et al.	N/A	N/A
2004/0139709	12/2003	Illingworth et al.	N/A	N/A
2004/0139710	12/2003	Illingworth et al.	N/A	N/A
2004/0159109	12/2003	Harvie	N/A	N/A
2006/0182502	12/2005	Schliemann et al.	N/A	N/A
2007/0209346	12/2006	Bovo et al.	N/A	N/A
2007/0217914	12/2006	Fujimura	416/219R	F01D 5/3015
2007/0280829	12/2006	Stevens	416/189	F04D 29/164
2007/0294855	12/2006	Iida et al.	N/A	N/A
2008/0089785	12/2007	Schliemann et al.	N/A	N/A
2008/0098703	12/2007	Lucas et al.	N/A	N/A
2008/0141541	12/2007	Hurley	N/A	N/A
2009/0038108	12/2008	Shaanan et al.	N/A	N/A
2009/0078485	12/2008	Gutsch et al.	N/A	N/A
2009/0241285	12/2008	Hinklin et al.	N/A	N/A
2009/0282642	12/2008	Batchelder et al.	N/A	N/A
2010/0003149	12/2009	Nelson	N/A	N/A
2010/0192314	12/2009	Otsuka et al.	N/A	N/A
2010/0247316	12/2009	Aynsley et al.	N/A	N/A
2011/0146023	12/2010	Wada et al.	N/A	N/A
2012/0093490	12/2011	Steinberg	N/A	N/A
2012/0096672	12/2011	Hatano et al.	N/A	N/A
2012/0099996	12/2011	Delvaux	416/204A	F04D 29/544
2012/0138058	12/2011	Fu et al.	N/A	N/A
2013/0017079	12/2012	Armstrong et al.	N/A	N/A
2013/0180495	12/2012	Veerathappa et al.	N/A	N/A
2013/0183141	12/2012	Tan	N/A	N/A
2013/0206172	12/2012	Bjar et al.	N/A	N/A
2014/0021203	12/2013	Walker et al.	N/A	N/A
2014/0056738	12/2013	Takahashi	N/A	N/A

2014/0086728	12/2013	Engert et al.	N/A	N/A	
2014/0105749	12/2013	Pellenc et al.	N/A	N/A	
2014/0140861	12/2013	Pellenc	N/A	N/A	
2014/0220101	12/2012	Vomaalia	1 5 /2 4 4	A01G	
2014/0230181	12/2013	Yamaoka	15/344	20/47	
2014/0356159	12/2013	Heikurinen	29/888.025	F01D 5/34	
2015/0152879	12/2014	Tzeng	416/223R	F04D	
2013/0132073	12/2014	1 Zeng	410/223IX	19/002	
2015/0282356	12/2014	Takahashi et al.	N/A	N/A	
2015/0377253	12/2014	Shibata et al.	N/A	N/A	
2016/0108924	12/2015	Conrad et al.	N/A	N/A	
2016/0120131	12/2015	Conrad et al.	N/A	N/A	
2016/0169249	12/2015	Takahashi et al.	N/A	N/A	
2016/0198636	12/2015	Poole et al.	N/A	N/A	
2016/0216249	12/2015	Sass	N/A	N/A	
2016/0265540	12/2015	Tirone et al.	N/A	N/A	
2016/0298635	12/2015	Su et al.	N/A	N/A	
2016/0305438	12/2015	Yamamoto et al.	N/A	N/A	
2016/0324380	12/2015	Sergyeyenko et	N/A	N/A	
		al.			
2017/0042096	12/2016	Bylund et al.	N/A	N/A	
2017/0045058	12/2016	Bylund et al.	N/A	N/A	
2017/0045246	12/2016	Kaleta et al.	N/A	N/A	
2017/0208748	12/2016	Yamaoka et al.	N/A	N/A	
2017/0241423	12/2016	Han et al.	N/A	N/A	
2017/0273251	12/2016	Haramoto et al.	N/A	N/A	
2017/0273252	12/2016	Haramoto et al.	N/A	N/A	
2018/0000014	12/2017	Yamaoka et al.	N/A	N/A	
2018/0087513	12/2017	Hoffman	N/A	N/A	
2018/0094393	12/2017	Takahashi et al.	N/A	N/A	
2018/0146628	12/2017	Huo et al.	N/A	N/A	
2018/0146682	12/2017	Beau et al.	N/A	N/A	
2018/0209429	12/2017	Ishida	N/A	N/A	
2018/0320705	12/2017	Van Houten	N/A	F01P 5/02	
2019/0021243	12/2018	Naka et al.	N/A	N/A	
2019/0098844	12/2018	Yang et al.	N/A	N/A	
2019/0162192	12/2018	Gao et al.	N/A	N/A	
2019/0191638	12/2018	Yamaoka et al.	N/A	N/A	
2019/0211830	12/2018	Liu et al.	N/A	N/A	
2019/0320598	12/2018	Bermudez et al.	N/A	N/A	
2020/0096001	12/2019	Chung	N/A	N/A	
2020/0096006	12/2019	Shao et al.	N/A	N/A	
2021/0227758	12/2020	Bylund et al.	N/A	N/A	
2022/0136526	12/2021	Shao et al.	N/A	N/A	
FOREIGN PATE	FOREIGN PATENT DOCUMENTS				

FOREIGN PATENT DOCUMENTS Application

Patent No.	Application Date	Country	CPC
2825035	12/2011	CA	N/A
2053083	12/1989	CN	N/A

2580819	12/2002	CN	N/A
2628767	12/2003	CN	N/A
101135139	12/2007	CN	N/A
101260833	12/2007	CN	N/A
201968600	12/2010	CN	N/A
202015678	12/2010	CN	N/A
102296555	12/2010	CN	N/A
202157288	12/2011	CN	N/A
203270492	12/2012	CN	N/A
103671175	12/2013	CN	N/A
203498784	12/2013	CN	N/A
104074155	12/2013	CN	N/A
204126922	12/2014	CN	N/A
104564839	12/2014	CN	N/A
204722966	12/2014	CN	N/A
204811640	12/2014	CN	N/A
105248156	12/2015	CN	N/A
205276194	12/2015	CN	N/A
106284148	12/2016	CN	N/A
106284149	12/2016	CN	N/A
106284153	12/2016	CN	N/A
205999837	12/2016	CN	N/A
206090426	12/2016	CN	N/A
206289575	12/2016	CN	N/A
107201734	12/2016	CN	N/A
206480689	12/2016	CN	N/A
107269550	12/2016	CN	N/A
206815252	12/2016	CN	N/A
107532604	12/2017	CN	N/A
207498881	12/2017	CN	N/A
207582389	12/2017	CN	N/A
108476871	12/2017	CN	N/A
212508973	12/2020	CN	N/A
3812105	12/1987	DE	N/A
8815616	12/1988	DE	N/A
19523339	12/1995	DE	N/A
29921751	12/1999	DE	N/A
102007037011	12/2007	DE	N/A
102010054841	12/2011	DE 	N/A
202017106572	12/2017	DE	N/A
0821872	12/1997	EP	N/A
2617281	12/2012	EP	N/A
2224713	12/1973	FR	N/A
2840172	12/2002	FR	N/A
958481	12/1963	GB	N/A
2156962	12/1984	GB	N/A
2390118	12/2002	GB	N/A
2513230	12/2013	GB	N/A
H0214790	12/1989	JP	N/A
2749885	12/1997	JP	N/A

2000018720	12/1999	JP	N/A
2009264300	12/2008	JP	N/A
2014037818	12/2013	JP	N/A
101048421	12/2010	KR	N/A
20110009355	12/2010	KR	N/A
200458939	12/2011	KR	N/A
102042387	12/2018	KR	N/A
WO0073662	12/1999	WO	N/A
WO2011097157	12/2010	WO	N/A
WO2012140825	12/2011	WO	N/A
WO2014119175	12/2013	WO	N/A
WO2017101666	12/2016	WO	N/A
WO2017118276	12/2016	WO	N/A
WO2018164145	12/2017	WO	N/A
WO2019062279	12/2018	WO	N/A

OTHER PUBLICATIONS

Machine Translation of CN 2628767 [retrieved on Sep. 4, 2024]. Retrieved from: Espacenet. (Year: 2024). cited by examiner

Black & Decker, "20V Max* Lithium Sweeper" Instruction Manual, Model No. LSW20, Nov. 2011 (32 pages). cited by applicant

Black & Decker, "36V Lithium Hard Surface Sweeper Vac Instruction Manual," Model No.

LSWV36, Jun. 2012 (44 pages). cited by applicant

Black & Decker, "Cordless Broom Instruction Manual," Catalog Nos. NS118, NS118L, Jun. 2011 (6 pages). cited by applicant

Black & Decker, "Heat Gun Instruction Manual," Catalog No. HG1300, Nov. 2010 (32 pages). cited by applicant

Black & Decker, "Instruction Manual," Catalog No. BV2500, BV9000, May 2004 (4 pages). cited by applicant

Black & Decker, "Straight Tube Blower / Sweeper," Instruction Manual, Catalog No. BL950, Aug. 2003 (3 pages). cited by applicant

Black & Decker, "Sweeper," Instruction Manual, Catalog No. CS100, © 2003 (4 pages). cited by applicant

Charles & Hudson, "Stihl BGA 85 Electric Leaf Blower," https://www.youtube.com/watch? v=JMK4zdlUbbY> YouTube video publicly available at least as early as Feb. 25, 2012. cited by applicant

DeWalt, "D26950, D26960 Heavy-Duty Heat Gun," Instruction Manual © 2009 (7 pages). cited by applicant

E Magazine, "Blow, Leaves, Blow," Sep./Oct. 2012, p. 36. cited by applicant

Greenworks, "24V Lithium-Ion Cordless Blower 24352," Owner's Manual, Apr. 24, 2014 (18 pages). cited by applicant

Greenworks, "40V Brushless Blower/Vac 24322," Owner's Manual, Jul. 25, 2013 (13 pages). cited by applicant

Greenworks, "40V Lithium-ion Cordless Blower 24212," Owner's Manual, Dec. 24, 2012 (20 pages). cited by applicant

Greenworks, "40V Lithium-Ion Cordless Blower 24252," Owner's Manual, Jan. 15, 2013 (20 pages). cited by applicant

Kobalt Tools, "Kobalt 40-Volt Max* Blower,"

https://web.archive.org/web/20150509211919/http://kobalttools.com:80/ . . . > web page publicly available at least as early as May 2015. cited by applicant

Leister, "Hot Air Blower, Hotwind Premium Hotwind System," Brochure, May 2011 (4 pages). cited by applicant

Machine Design, "Leaf Removal is a Breeze," Feb. 24, 2000, pp. 60, 62. cited by applicant Milwaukee Tool, "M18TM FuelTM Blower," service parts list bulletin No. 54-05-2705 dated Aug. 2019 (2 pages). cited by applicant

Outdoor Power Equipment, "DR Power introduces lithium-ion battery-powered hand tools," Jul. 2012, p. 60. cited by applicant

Popular Mechanics, "Leaf Mover and Shaker," Oct. 2009, p. 28. cited by applicant

Pro Tool Reviews, "Kobalt 40V Max Lithium-Ion Mower, Blower, and Chainsaw,"

< https://web.archive.org/web/20140630170346/http://www.protoolreviews.com/tools/outdoor-eq...

. > web page publicly available at least as early as Jun. 2014. cited by applicant

Remington, "18 Volt Cordless Blower RM170B," Operator's Manual, Apr. 2011 (12 pages). cited by applicant

Ryobi, "18 Volt Blower, P2100, P2100A, P2100B," Operator's Manual, Rev. 04, Feb. 25, 2008 (14 pages). cited by applicant

Shop Vac, "Wet/Dry Vacuum," Manual @ 2013 (15 pages). cited by applicant Steinel, "Electronic Heat Guns,"

https://web.archive.org/web/20121022121431/http://www.steinel.net/pro . . . > webpage available at least as early as Oct. 2012 (3 pages). cited by applicant

Steinel, "Heat Gun Handbook," © 2007 (28 pages). cited by applicant

Stihl, "Saving Green and Going Green by Choosing Orange," Article dated Feb. 2012 (2 pages). cited by applicant

Stihl, "Stihl BGA 85," Nov. 2010 Manual, © 2011 (30 pages). cited by applicant

Stihl, "Stihl BGA 85," Instruction Manual, © 2011 (56 pages). cited by applicant

Stihl, "Stihl BGA 85," Instruction Manual, © 2013 (60 pages). cited by applicant

Toolmonger, "This Shop-Vac Blows (But in a Good Way),"

https://toolmonger.com/2007/05/10/this-shop-vac-blows-but-in-a-good-way/ Article dated May 10, 2007 (3 pages). cited by applicant

Toro, "Rake and Vac™, Super, and Ultra Blower/Vacuum," Operator's Manual, © 2012 (6 pages). cited by applicant

Troy-Bilt "TB4300 / TB4300B Cordless Blower," Operator's Manual, Mar. 2016 (32 pages). cited by applicant

Worx, "18V Cordless Li-ion Blower/Sweeper, WG540," Manual ©2009 (10 pages). cited by applicant

Worx, "Cordless Li-ion Blower/Sweeper, WG545," Manual ©2015 (28 pages). cited by applicant International Search Report and Written Opinion for Application No. PCT/US2022/046176 dated Feb. 3, 2023 (10 pages). cited by applicant

Primary Examiner: Zamora Alvarez; Eric J

Attorney, Agent or Firm: Dority & Manning, P.A.

Background/Summary

RELATED APPLICATIONS (1) This application is a national phase filing under 35 U.S.C. § 371 of International Application No. PCT/US2022/046176, filed Oct. 10, 2022, which claims the benefit of U.S. Provisional Patent Application No. 63/254,296, filed Oct. 11, 2021, the entire contents of each of which are hereby incorporated by reference.

BACKGROUND

(1) The present disclosure relates to handheld blowers, and more particularly to fans used in handheld blowers.

SUMMARY

- (2) In one independent aspect, the disclosure provides a fan including a hub and a plurality of blades extending radially outwardly from the hub and spaced circumferentially about the hub. The plurality of blades includes a reference blade, a first blade, and a second blade. The reference blade is disposed after the first blade in a circumferential direction about the hub. The second blade is disposed after the reference blade in the circumferential direction. The first blade is circumferentially spaced a first distance from the reference blade. The second blade is circumferentially spaced a second distance from the reference blade. The first distance is greater than the second distance.
- (3) In another independent aspect, the disclosure provides a fan including a hub having an air guide cone and a blade connection portion, and a plurality of blades extending radially outwardly from the blade connection portion and spaced circumferentially about the hub. The blade connection portion tapers radially inwardly and tangentially meets the air guide cone.
- (4) In another independent aspect, the disclosure provides a handheld blower including an air duct extending along an axis, the air duct including an air inlet and an air outlet opposite the air inlet, and a fan disposed in the air duct between the air inlet and the air outlet. The fan rotates about the axis. The fan includes a fan hub extending from an upstream end to a downstream end, the fan hub defining an outer surface with a radius that continuously increases from the upstream end to the downstream end, and a plurality of fan blades extending radially outward from the outer surface between the upstream end and the downstream end. The plurality of fan blades is separated into pairs of blades. The pairs of blades are evenly spaced circumferentially about the fan hub to each other.
- (5) Other features and aspects of the disclosure will become apparent by consideration of the following detailed description and accompanying drawings.

Description

BRIEF DESCRIPTION OF THE FIGURES

- (1) FIG. **1** is a perspective view of a handheld blower, according to embodiments disclosed herein.
- (2) FIG. 2 is a cross-sectional elevation view of a portion of the handheld blower of FIG. 1.
- (3) FIG. **3** is a perspective view of a fan, according to embodiments disclosed herein.
- (4) FIG. **4** is a front elevation view of a portion of the fan of FIG. **3**.
- (5) FIG. **5** is a cross-sectional front elevation view of the fan of FIG. **3**.
- (6) FIG. **6** is a perspective view of a fan, according to embodiments disclosed herein.
- (7) FIG. **7** is a perspective exploded view of the fan of FIG. **6**.
- (8) FIG. **8** is a front elevation view of the fan of FIG. **6**.
- (9) FIG. **9** is a cross-sectional side elevation view of the fan of FIG. **8** taken along line **9-9**.
- (10) FIG. **10** is a cross-sectional side elevation view of the fan of FIG. **8** taken along line **10-10**.
- (11) Before any embodiments of the disclosure are explained in detail, it is to be understood that the disclosure is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The disclosure is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.

DETAILED DESCRIPTION

(12) FIGS. 1 and 2 generally illustrate a handheld blower 10 including a housing 14. The housing

- 14 includes a handle 18 and a battery receiving area 22 for receiving one or more battery packs 26. A blower tube 30 connects to the housing 14 and includes an outlet 34. With reference to FIG. 2, the housing 14 defines an air duct 38 extending along a duct axis 42 between a duct inlet 46 and a duct outlet 50, opposite and downstream of the duct inlet 46. The blower tube 30 is positioned adjacent the duct outlet 50 to create an air flow path 54 extending between the duct inlet 46 and the outlet 34. A grate 58 is positioned adjacent the duct inlet 46. A motor assembly 62 is positioned in the air duct 38 and includes a motor 66 and a fan 74. The motor 66 and the fan 74 are positioned in the air duct 38 for rotation about a rotation axis 78. In the illustrated embodiment, the rotation axis 78 is coaxial with the duct axis 42. In the illustrated embodiment, the motor assembly 62 is assembled such that the fan 74 is upstream from the motor 66. In other embodiments, however, the motor assembly 62 may be assembled in other configurations.
- (13) FIGS. **3-5** illustrate a fan **100** for use with, for example, the handheld blower **10** of FIGS. **1-2**. The fan **100** includes a fan hub **104** defining an outer surface **108**. A plurality of blades **112** extends radially outwardly from the outer surface **108** of the fan hub **104**. The fan hub **104** may include a body **116** and a hub cap or air guiding cone (not shown but discussed with regard to other embodiments below). In some embodiments, the hub cap is formed as a separate piece and is removed from the body **116**. However, in other embodiments, the hub cap may be formed integrally with the body **116**. The fan **100** may include a passage **120** extending through the fan hub **104** that defines a central rotational axis **124** or rotation axis **124** of the fan **100**. The fan **100** may be supported in a handheld blower or other air moving machine for rotation about the central rotational axis **124** in a rotation direction **128**.
- (14) Each blade 112 extends between a blade base 132 and a blade tip 136, with the blade tip 136 located at a cantilevered end 140 of the blade 112. The blade 112 defines a leading edge 144 and a trailing edge 148 extending between the blade base 132 and the blade tip 136. In the illustrated embodiment, the leading edge 144 may be generally straight while the trailing edge 148 may be curved. However, in other embodiments, other shapes of the fan blade may be used. In the illustrated embodiment, each of the plurality of blades 112 is identical to the others such that a pitch, shape, width, and length of the blades are the same.
- (15) With specific reference to FIGS. **4** and **5**, the plurality of blades **112** may be unevenly spaced about the fan hub **104**. For purposes of discussion, one of the plurality of blades **112** has been identified as a reference blade **152**. While a specific blade has been identified, and the relationships between the blades are discussed with this respect to the reference blade **152**, the relationships apply equally no matter which blade **112** is selected as the reference blade **152**, except where otherwise noted.
- (16) As shown in FIG. 4, the reference blade 152 has a reference tip 156 and a reference leading edge 160. The reference tip 156 and reference leading edge 160 meet at a reference corner 164. A first neighbor blade 168 (or first blade 168) is located next in order from the reference blade 152 in a direction opposite a circumferential direction 170 (or first direction). In other words, the reference blade 152 is disposed after the first blade 168 in the circumferential direction 170. In the illustrated embodiment, the circumferential direction 170 is the same as the rotation direction 128 of the fan 100, however, in other embodiments, the circumferential direction 170 may be opposite the rotation direction 128. A second neighbor blade 172 (or second blade 172) is located next in order from the reference blade 152 in the circumferential direction 170 (or second direction). The first neighbor blade 168 includes a first tip 180 and a first leading edge 184 which intersect in a first corner 188. The second neighbor blade 172 includes a second tip 192 and a second leading edge 196 which intersect in a second corner 200.
- (17) The reference blade **152** is circumferentially spaced a first distance from the first blade **168**, and the reference blade **152** is circumferentially spaced a second distance from the second blade **172**. Specifically, the first distance may be measured as a first angle α **1** measured about the rotation axis **124** between the first corner **188** and the reference corner **164**. The second distance may

similarly be measured as a second angle $\alpha 2$ measured about the rotation axis 124 between the reference corner 164 and the second corner 200. The first angle $\alpha 1$ and the second angle $\alpha 2$ are different. In the case of the exemplary reference blade 152, the first angle $\alpha 1$ is larger than the second angle $\alpha 2$. This relationship may be inverted if another blade is selected as the reference blade. While the first distance and second distance may be described using angles, it is also possible to use the linear distances or arcuate distances between the blades. The relationships between the spacings would remain the same such that a first length would be larger than a second length.

- (18) In the illustrated embodiment, the plurality of blades **112** includes twelve blades **112** separated into pairs of blades **204** evenly spaced around the fan hub **104**. Therefore, each blade **112** has a corresponding diametrically opposed blade **112**. Additionally, a third neighbor blade **208** (or third blade **208**) is located next in order from the first neighbor blade **168** in the first direction. Or in other words, the third blade **208** is positioned before the first blade **168** in the circumferential direction 170. A fourth neighbor blade 212 is located next in order from the second neighbor blade **172** in the second direction. In other words, the fourth blade **212** is positioned after the second blade 172 in the circumferential direction 170. The third neighbor blade 208 includes a third leading edge **216** and a third tip **220** intersecting in a third corner **224**, and the fourth neighbor blade **212** includes a fourth leading edge **228** and a fourth tip **232** intersecting in a fourth corner **236**. The third blade **208** is circumferentially spaced by a third distance from the reference blade **152**. The third distance may be measured as a third angle α 3 measured about the rotation axis **124** between the third corner 224 and the reference corner 164. The fourth blade 212 is circumferentially spaced by a fourth distance from the reference blade **152**. The fourth distance may be represented as a fourth angle α 4 measured about the rotation axis 124 between the fourth corner **236** and the reference corner **164**. The third angle α **3** is the equal to the fourth angle α **4**. Again, linear distances may be used instead of angles with the same result, such that a third length would be equal to a fourth length.
- (19) The fan **100** is rotationally symmetrical about the rotation axis **124**. In other words, the spacing between each of the plurality of blades **112** alternates between the first distance (e.g. the first angle α **1**) and the second distance (e.g. the second angle α **2**) in the circumferential direction **170**. The rotational symmetry means that the plurality of blades **112** are rotationally balanced about the fan hub **104**.
- (20) With reference to FIG. **5**, while the distances were described as angles measured between respective corners, the relationships between the blades remain the same if like points on each blade are used. For example, FIG. **5** illustrates alternate angles (\$1-\$4) measured between center points on each blade. The first angle \$1 is still different from, and larger than, the second angle \$2. The third angle \$3 is still equal to the fourth angle \$4.
- (21) In operation, the uneven spacing allows air to flow through the fan **100** at a high speed while reducing frequencies that are typically perceived by users as being unpleasant compared to fans with evenly spaced blades. For example, embodiments of the fan **100** may primarily generate an output frequency of approximately 1500 Hertz. For comparison, a fan with evenly spaced blades may primarily generate an output frequency of approximately 3200 Hertz.
- (22) FIGS. **6-10** illustrate another embodiment of a fan **300** for use with, for example, the handheld blower **10** of FIGS. **1** and **2**. The fan **300** includes a fan hub **304** and a plurality of blades **308** extending radially outwardly from the fan hub **304**. The plurality of blades **308** are shown as evenly spaced around the hub **304**, however, the plurality of blades **308** may be unevenly spaced as described with respect to FIGS. **3-5** in some embodiments. The fan hub **304** includes a body **312** and an air guiding cone **316**. As shown in FIG. **7**, the air guiding cone **316** may be removably coupled to the body **312**. However, in some embodiments, the air guiding cone **316** may be integrally formed with the body **312**. The fan **300** includes a passageway **320** extending through the body **312**. The passageway **320** defines a central rotational axis **324** (or rotation axis **324**). The

passageway **320** may receive a shaft or other support to rotatably support the fan **300** in the handheld blower **10**. In the illustrated embodiment of FIG. **6**, the forward direction may be generally upstream while a rearward direction may be generally downstream. While the terms forward, front, upstream, rearward, rear, and downstream may be used to describe the fan, these directions do not necessarily correspond to the directions of the motor assembly, the handheld blower, or the environment. The directional language is used for description purposes only and is not meant to limit the embodiment to a certain orientation.

- (23) With reference to FIGS. **6-8**, as described above, the fan hub **304** includes the body **312** and the air guiding cone **316**. The plurality of blades **308** may extend from and be unitarily formed with the body **312**. In other embodiments, the plurality of blades **308** may be otherwise secured to the body **312** may also be referred to herein as the blade connection portion **312**. The body **312** may be tapered radially inward. The body **312** may include a circumferential surface **328**. The circumferential surface **328** may be the radial outermost surface of the body **312** may extend between a rear end **332** and a body connection end **336** configured to couple to the air guiding cone **316**. (24) The air guiding cone **316** may extend between a truncated tip **340** and a cone connection end **344**. The cone connection end **344** may couple to the body connection end **336** of the body **312**. The air guiding cone **316** may further include a cone surface **348**. The cone surface **348** may be the radially outermost surface of the air guiding cone **316**. The cone surface **348** may be curved with respect to the central rotational axis **324**.
- (25) Turning now to FIGS. **9** and **10**, the circumferential surface **328** and the cone surface **348** may combine to form an outer hub surface **352**. The shape of the air guiding cone **316** and body **312** may be such that the circumferential surface **328** and the cone surface **348** meet tangentially at a connection point **356**. The outer hub surface **352** may taper radially inwardly continuously between the rear end **332** and the truncated tip **340**.
- (26) Specifically, as shown in FIG. **9**, in a vertical cross section taken through the fan **300** parallel to the rotation axis **324**, the outer hub surface **352** may form a curved profile **360**. The curved profile **360** may include a first point **364** located at the truncated tip **340**, a second point **368** located at the rear end **332**, and an intermediate point **372** located between the first point **364** and second point **368**. In some embodiments, the intermediate point **372** is co-located with the connection point **356** between the cone surface **348** and the circumferential surface **328**. However, the intermediate point **372** may be any point on the curved profile **360** between the first point **364** and the second point **368**. The first point **364** may be radially located at a first distance R**1** with respect to the rotation axis **324**. The second point **368** may be located at a second distance R**2** with respect to the rotation axis **324**, and the intermediate point **372** may be radially located at an intermediate distance R**1** from the rotation axis **324**.
- (27) As shown in FIG. **9**, a tangent is taken at each of the points **364**, **368**, **372**. A tangent line taken at the first point **364** forms a first angle **388** with respect to the rotation axis **324**. A tangent line taken at the second point **368** forms a second angle **392** with respect to the rotation axis **324**. Finally, a tangent line taken at the intermediate point **372** forms an intermediate angle **396** with respect to the rotation axis **324**. The hub **304** tapers inwardly such that a slope of the outer hub surface **352** is more aggressive at the truncated tip **340** than at the rear end **332**. In other words, the first angle **388** is larger than the second angle **392**. Additionally, the hub **304** is shaped such that the outer hub surface **352** is never parallel to the rotation axis **324**. Finally, the hub **304** is shaped such that the angle of the tangent to the curved profile **360** decreases constantly between the truncated tip **340** and the rear end **332**. Thus, the first angle **388** is larger than the intermediate angle **396**, which is larger than the second angle **392**.
- (28) In operation, the shape of the air guiding cone **316** is such that the fan hub **304** has an increased draft angle as compared a standard fan hub. As shown in FIG. **10**, each blade **308** is connected to the fan hub **304** at an upstream connection point **400** and a downstream connection

point **404**. A first length L**1** is measured between the upstream connection point **400** and a tip **408** of the blade **308**. A second length L**2** is measured between the downstream connection point **404** and a tip **408** of the blade **308**. Because of the taper of the blade connection portion **312**, the first length L**1** is larger than the second length L**2**, meaning that the available blade surface of the plurality of fan blades **308** is maximized, or at least greater than is the case for standard fans, for contacting the operational medium (e.g., air). Thus, the fan **300** has an increased fan efficiency compared to a standard fan.

(29) Although the disclosure has been described in detail with reference to certain preferred embodiments, variations and modifications exist within the scope and spirit of one or more independent aspects of the disclosure as described.

Claims

- 1. A fan comprising: a hub; a plurality of blades, each blade of the plurality of blades including a blade base coupled to the hub, each blade extending radially outwardly from the hub to a cantilevered end, the plurality of blades spaced circumferentially about the hub at a common axial location of the hub, the plurality of blades including a reference blade, a first blade, and a second blade; and wherein the reference blade is disposed after the first blade in a circumferential direction about the hub and the second blade is disposed after the reference blade in the circumferential direction, the first blade is circumferentially spaced a first distance from the reference blade, the second blade is circumferentially spaced a second distance from the reference blade, and the first distance is greater than the second distance; and wherein the fan is rotationally symmetrical.
- 2. The fan of claim 1, wherein the plurality of blades includes twelve blades.
- 3. The fan of claim 1, wherein the hub includes an outer surface, and the plurality of blades extends from the outer surface.
- 4. The fan of claim 1, wherein the blades are grouped in pairs circumferentially about the hub.
- 5. The fan of claim 1, wherein the blades are identical.
- 6. The fan of claim 1, wherein the hub includes a passage for receiving a shaft, the passage defining a central rotational axis of the fan.
- 7. The fan of claim 1, wherein each blade of the plurality of blades has a corresponding diametrically opposed blade.
- 8. The fan of claim 1, wherein any blade of the plurality of blades can be the reference blade.
- 9. The fan of claim 8, wherein the circumferential spacing between respective blades alternates between the first distance and the second distance in the circumferential direction.
- 10. A fan comprising: a hub including an air guide cone and a blade connection portion, the blade connection portion tapering radially inwardly and tangentially meeting the air guide cone; and a plurality of blades, each blade of the plurality of blades including a blade base coupled to the hub at a common axial location of the hub, each blade extending radially outwardly from the blade connection portion to a cantilevered end, wherein at least a portion of the plurality of blades are unevenly spaced about the hub, wherein the plurality of fan blades separated into pairs of blades, the pairs of blades evenly spaced circumferentially about the hub with each other, wherein the fan is rotationally symmetrical.
- 11. The fan of claim 10, wherein the blade connection portion tapers radially inwardly along an entire axial length of the blade connection portion.
- 12. The fan of claim 10, wherein the air guide cone is removably coupled to the blade connection portion.
- 13. The fan of claim 10, wherein each blade is formed as a single unitary part with the blade connection portion.
- 14. The fan of claim 10, wherein the air guide cone and the blade connection portion form an outer surface of the hub, and the outer surface of the hub tapers inwardly along an entire axial length of

the hub.

- 15. The fan of claim 10, wherein each blade of the plurality of blades is longer radially through an upstream connection point than through a downstream connection point.
- 16. The fan of claim 10, wherein the air guide cone has a truncated tip.
- 17. The fan of claim 10, wherein the blade connection portion includes a passage defined therein for receiving a shaft, the passage defining a central rotational axis of the fan.
- 18. The fan of claim 17, wherein the blade connection portion tapers radially inwardly along the central rotational axis in an upstream direction.
- 19. A handheld blower comprising: an air duct extending along an axis, the air duct including an air inlet and an air outlet opposite the air inlet; and a fan disposed in the air duct between the air inlet and the air outlet, the fan configured to rotate about the axis, the fan including a fan hub extending from an upstream end to a downstream end, the fan hub defining an outer surface with a radius that continuously increases from the upstream end to the downstream end, the fan hub including an air guide cone and a blade connection portion, and a plurality of fan blades extending radially outwardly from the outer surface of the blade connection portion between the upstream end and the downstream end, each blade of the plurality of blades including a blade base coupled to the blade connection portion of the hub, each blade of the plurality of blades extending to a cantilevered end, the plurality of fan blades separated into pairs of blades, the pairs of blades evenly spaced circumferentially about the fan hub with each other, wherein at least a portion of the plurality of blades are unevenly spaced about the hub, further wherein the fan is rotationally symmetrical.