Machine Learning Blatt 8

Markus Vieth

David Klopp

Christian Stricker

20. Juni 2016

Nr. 3.1

Design a two-input perceptron that implements the boolean function $A \wedge \neg B$

1. Allgemein:

$$w_0 + w_1 \cdot x_1 + w_2 \cdot x_2$$

2. Bedingungen:

I.
$$w_0 - w_1 - w_2 \le 0$$

II. $w_0 - w_1 + w_2 \le 0$
III. $w_0 + w_1 - w_2 > 0$
VI. $w_0 + w_1 + w_2 \le 0$

- 3. Rechnung:
- 1. I + VI

$$2 \cdot w_0 \le 0 \Leftrightarrow w_0 \le 0$$

2.

I.
$$\Leftrightarrow w_0 \le w_1 + w_2$$

III. $\Leftrightarrow w_0 > -w_1 + w_2$
 $\Rightarrow -w_1 + w_2 < w_0 \le w_1 + w_2$
 $\Rightarrow -w_1 + w_2 < w_1 + w_2$
 $\Leftrightarrow w_1 > 0$

3. Wähle $w_0 = 0$ und $w_1 = 1$

$$0 - 1 - w_2 \le 0$$
$$-1 \le w_2$$

4. Wähle $w_2 = -1$

I.
$$0-1+1=0 \le 0$$
 \checkmark
II. $0-1-1=-2 \le 0$ \checkmark
III. $0+1+1=2>0$ \checkmark
VI. $0+1-1=0 \le 0$ \checkmark

5. Lösung:

$$\vec{w} = \begin{pmatrix} 0\\1\\-1 \end{pmatrix}$$

Nr. 3.2

Abbildung 1: Zahlen entsprechen Gewichten, Kanten ins Leere entsprechen w_0 . Die erste Schicht entspricht der Teilaufgabe 1, zweite Schicht einem Oder $\Rightarrow (A \land \bar{B}) \lor (\bar{A} \land B)$