§7. Общий план исследования функции и построение её графика

Нижеследующий план-схема исследования функции обобщает результаты, изложенные в предыдущих параграфах. Исследование функции по этому плану позволит построить обоснованный математический эскиз графика функции.

План исследования функции

- 1. Отыскание области определения данной функции y=f(x), установление свойств чётности (нечётности) и периодичности.
- 2. Отыскание точек пересечения графика функции с осями координат и промежутков знакопостоянства.
 - 3. Исследование функции на непрерывность и существование асимптот.
 - 4. Отыскание промежутков монотонности и точек экстремума.
- 5. Отыскание промежутков одинаковой направленности выпуклости графика функции и точек перегиба.
- 6. Построение математического эскиза графика функции и отыскание множества её значений.

Пример 7.1. Построить график функции
$$f(x) = \frac{(x-2)^3}{2(x-1)^2}$$
.

- ▶1. $D(f) = (-\infty, 1) \cup (1, +\infty)$.
- **2.** График пересекает оси координат в точках (2, 0) и (0, –4), f(x) < 0 при x < 2, f(x) > 0 при x > 2.
- **3.** На D(f) функция непрерывна как элементарная, x = 1 точка разрыва 2 рода ($\lim_{x \to 1 \pm 0} \frac{(x-2)^3}{2(x-1)^2} = -\infty$), прямая x = 1— вертикальная асимптота графика функции (замечание 6.1). Вычисляя пределы (6.2), имеем:

$$\lim_{x \to \pm \infty} \frac{(x-2)^3}{2x(x-1)^2} = \frac{1}{2} \Longrightarrow k = \frac{1}{2},$$

$$\lim_{x \to \pm \infty} \left(\frac{(x-2)^3}{2(x-1)^2} - \frac{1}{2} x \right) = \lim_{x \to \pm \infty} \frac{-4x^2 + 11x - 8}{2(x-1)^2} = -2 \Longrightarrow \qquad \Longrightarrow b = -2 \,. \qquad \Pi$$
рямая

L: y = x/2 - 2 наклонная асимптота графика (теорема 6.1).

4.
$$f'(x) = \left(\frac{(x-1)^3}{2(x-1)^2}\right)' = \frac{(x-2)^2(x+1)}{2(x-1)^3}$$
, на $D(f)$ только две критические

точки: x=-1, x=2, f'(-1)=f'(2)=0. Вместе с точкой x=1 они делят ось Ox на 4 промежутка: $(-\infty,-1)$, (-1,1), (1,2), $(2,+\infty)$. Знак f'(x) в каждом из них приведён в таблице 7.1. Характер изменения функции указан

				1 8	иоли	ца	/.1
x		-1		1		2	
f'(x)	+	0	_	∄	+	0	
f(x)	7	-27/8	N	∄	7	0	7
		max					

стрелками, \nexists — символ несуществования, x = -1 — точка гладкого максимума, а в точке x = 2 нет экстремума, ибо f'(x) не меняет

знака при переходе аргумента x через эту точку.

5.
$$f''(x) = \left(\frac{(x-2)^2(x+1)}{2(x-1)^3}\right)' = \frac{3(x-2)}{(x-1)^4}, \quad x = 2$$
 – единственная точка,

			Та	бли	ца 7.2
X		1		2	
f''(x)	_	∄	_	0	+
f(x)	\cap	∄	\cap	0	\cup

подозрительная на перегиб, f''(2) = 0. Вместе с точкой x = 1 она делит ось Ox на три промежутка: $(-\infty, 1)$, (1, 2), $(2, +\infty)$. Знак f''(x) в каждом из них приведён в таблице 7.2. В ней дугами

указано направление выпуклости графика функции, (2, 0) – точка перегиба графика.

6. Результаты проведённых исследований используем ДЛЯ графика построения данной функции. Сначала строим асимптоты, точку максимума перегиба, затем точку строим график функции с учётом характера поведения функции на D(f)(таблица 7.1) И направления выпуклости графика (таблица 7.2). График данной функции приведён на рис. 7.1, E(y)=**R**. ◀

на рис. 7.1, E(y)=R. ◀ Пример 7.2. Построить график функции $f(x) = \frac{x}{\ln |x|}$.

проходит вертикальная асимптота.

Рис. 7.1. График функции $f(x) = \frac{(x-2)^3}{2(x-1)^2}$

- ▶1. $D(f) = (-\infty, -1) \cup (-1, 0) \cup (0, 1) \cup (1, +\infty)$, f(x) нечётная функция, так как f(-x) = -f(x), её график симметричен относительно начала координат. Далее исследование функции и построение графика проведём на промежутке $(0, +\infty)$, потом, используя симметрию графика, построим его и на промежутке $(-\infty, 0)$.
- **2.** График не имеет точек пересечения с осями координат, f(x) < 0 при 0 < x < 1, f(x) > 0 при x > 1.
- **3.** Данная функция непрерывна как элементарная в любой точке промежутка $(0, +\infty)$, кроме точки x=1, где она имеет разрыв. Прямая x=1- вертикальная асимптота графика функции, поскольку $\lim_{x\to 1-0}\frac{x}{\ln|x|}=-\infty$, $\lim_{x\to 1+0}\frac{x}{\ln|x|}=+\infty$. В точке x=0 данная функция имеет правосторонний устранимый разрыв, так как $\lim_{x\to +0}\frac{x}{\ln x}=0$, поэтому через эту точку не

Вычисляя пределы (6.2), имеем: $\lim_{x \to +\infty} \frac{x}{x \ln x} = \lim_{x \to +\infty} \frac{1}{\ln x} = 0 \Rightarrow k = 0$, $\lim_{x \to +\infty} \frac{x}{\ln x} = [\frac{\infty}{\infty}] = \lim_{x \to +\infty} \frac{x'}{(\ln x)'} = \lim_{x \to +\infty} \frac{1}{1/x} = \lim_{x \to +\infty} x = +\infty$. В соответствии с теоремой 6.1 заключаем, что график функции при $x \to +\infty$ не имеет наклонных и горизонтальных асимптот.

4. $f'(x) = \left(\frac{x}{\ln x}\right)' = \frac{\ln x - 1}{\ln^2 x}$, на промежутке $(0, +\infty)$ есть только одна

критическая точка: x = e, f'(e) = 0. Вместе с точкой x = 1 она разбивает его

				T a	блиц	a 7.3
x	0		1		e	
f'(x)	∄	_	∄	_	0	+
f(x)	∄	N	∄	N	e min	7

на три промежутка: (0, 1), (1, e), $(e, +\infty)$. Определив в каждом из них знак f'(x), результаты сведём в таблицу 7.3. В ней стрелками указан характер изменения функции на

данном промежутке, \exists — символ несуществования. В точке x = e функция имеет гладкий минимум.

5. $f''(x) = \left(\frac{\ln x - 1}{\ln^2 x}\right)^{1/2} = \frac{-\ln x + 2}{\ln^3 x}$, f''(x) = 0 при $x = e^2$, в этой точке график функции может иметь перегиб. Вместе с точкой x = 1 она разбивает промежуток $(0, +\infty)$ на три промежутка:

(0,1), $(1,e^2)$, $(e^2,+\infty)$. Знак f''(x) в каждом из них приведён в таблице 7.4, в ней дугами указан характер направления выпуклости графика функции, $(e^2,e^2/2)$ — точка перегиба графика.

Tuonnga /							
х		1		e^2			
f''(x)	_	∄	+	0	-		
f(x)	\subset	∄)	$e^{2}/2$	\subset		

6. Используя результаты выполненных исследований, построим график функции на промежутке $(0, +\infty)$. Сначала строим асимптоты, точку минимума и точку перегиба, затем график функции с учётом характера поведения функции (таблица 7.3) и направления выпуклости графика (таблица 7.4). Часть графика данной функции, отвечающую отрицательным значениям x, получим, используя центральную симметрию. График функции приведён на

Рис. 7.2. График функции $f(x) = \frac{x}{\ln|x|}$

рис. 7.2, $E(y) = \mathbf{R}$.

Пример 7.3. Построить график функции $f(x) = (x-2)e^{-1/(x-2)}$.

▶1. $D(f) = (-\infty, 2) \cup (2, +\infty)$, на D(f) данная функция непрерывна как элементарная, x = 2 — точка разрыва. В примере 6.1 показано, что прямая L: x = 2 является вертикальной асимптотой графика данной функции при $x \to 2 - 0$, при этом $f(x) \to -\infty$. Но L не является асимптотой при $x \to 2 + 0$, так как f(2+0) = 0 (пример 6.1).

Получив с помощью формулы (9.7) главы 3 раздела 4 разложение $e^{-1/(x-2)} = 1 - \frac{1}{x-2} + o\left(\frac{1}{x-2}\right), \text{ имеем: } f(x) = (x-2)\left(1 - \frac{1}{x-2} + o\left(\frac{1}{x-2}\right)\right) \text{ или } f(x) = x-3 - (x-2) \cdot o\left(\frac{1}{x-2}\right).$ Поскольку $(x-2) \cdot o\left(\frac{1}{x-2}\right) \to 0$ при $x \to \pm \infty$,

то в соответствии с определением 6.2 приходим к выводу, что прямая $L\colon y=x-3$ — наклонная асимптота графика функции при $x\to\pm\infty$.

2. $f'(x) = \frac{x-1}{x-2}e^{-1/(x-2)}$, на D(f) есть одна критическая точка: x=1, в которой f'(x)=0. Вместе с точкой x=2 она делит вещественную ось на три интервала: $(-\infty,1)$, (1,2), $(2,+\infty)$. Знак T а б л и ц а 7.5

f'(x) в каждом из них приведён в таблице 7.5. В ней стрелками указан характер изменения функции на данном промежутке. В точке x=1 функция имеет гладкий максимум.

			1 4 0 3	пиц	1 7.5
X		1		2	
f'(x)	+	0	_	∄	+
f(x)	7	- <i>е</i>	A	∄	7
		max			

- 3. $f''(x) = \frac{1}{(x-2)^3} e^{-1/(x-2)}$, на D(f) нет точек перегиба, f''(x) < 0 при x < 2 и f''(x) > 0 при x > 2, следовательно, график функции направлен выпуклостью вверх на промежутке $(-\infty, 2)$ и выпуклостью вниз на промежутке $(2, +\infty)$.
- 4. График функции, построенный с использованием результатов проведённых исследований, приведён на рис. 7.3, E(y)=($-\infty$,4] $U(0,+\infty)$. ◀

Рис. 7.3. График функции $f(x) = (x-2)e^{-1/(x-2)}$

Рис. 7.4. График функции $f(x) = \sqrt[3]{(x-1)^2} - \sqrt[3]{x^2}$

Пример 7.4. Построить график функции $f(x) = \sqrt[3]{(x-1)^2} - \sqrt[3]{x^2}$.

▶1. D(f)=**R**. Для координат точек пересечения графика с осями координат имеем соотношения: $x=0 \Rightarrow y=1;$ $y=0 \Rightarrow \sqrt[3]{(x-1)^2} - \sqrt[3]{x^2} = 0 \Rightarrow \sqrt[3]{(x-1)^2} = \sqrt[3]{x^2}$, отсюда получаем: $(x-1)^2=x^2 \Rightarrow -2x+1=0 \Rightarrow x=1/2$. Итак, график пересекает оси координат в точках: (0,1) и (1/2,0). Поскольку

$$f(x) > 0 \Rightarrow \sqrt[3]{(x-1)^2} > \sqrt[3]{x^2} \Leftrightarrow (x-1)^2 > x^2 \Leftrightarrow -2x+1 > 0 \Rightarrow x < 1/2$$
, то приходим к выводу, что $f(x) > 0$ при $x < 1/2$, $f(x) < 0$ при $x > 1/2$.

2. График функции не имеет вертикальных асимптот, поскольку функция непрерывна на \mathbf{R} как элементарная. Прямая L: y = 0- горизонтальная асимптота графика функции при $x \to \pm \infty$, так как $\lim_{x \to \pm \infty} (\sqrt[3]{(x-1)^2} - \sqrt[3]{x^2}) = 0$ (замечание (6.3)). Действительно,

$$\lim_{x \to \pm \infty} (\sqrt[3]{(x-1)^2} - \sqrt[3]{x^2}) = [\infty - \infty] = \lim_{x \to \pm \infty} \frac{(x-1)^2 - x^2}{\sqrt[3]{(x-1)^4} + \sqrt[3]{(x-1)^2 x^2} + \sqrt[3]{x^4}} = \lim_{x \to \pm \infty} \frac{-2x+1}{\sqrt[3]{(x-1)^4} + \sqrt[3]{(x-1)^2 x^2} + \sqrt[3]{x^4}} = \lim_{x \to \pm \infty} \frac{-2x+1}{x^{4/3} \left(\sqrt[3]{(1-\frac{1}{x})^4} + \sqrt[3]{(1-\frac{1}{x})^2} + 1\right)} = 0.$$

$$3. f'(x) = ((x-1)^{2/3} - x^{2/3})' = \frac{2}{3}((x-1)^{-1/3} - x^{-1/3}) = \frac{2}{3} \frac{\sqrt[3]{x} - \sqrt[3]{x-1}}{\sqrt[3]{x(x-1)}},$$

 $\sqrt[3]{x} - \sqrt[3]{x-1} > 0$ при $\forall x \in \mathbb{R}$, $f'(x) = \infty$ при x = 0, x = 1. Итак, функция имеет

			Tab	лица	a 7.6
х		0		1	
f'(x)	+	8	_	8	+
f(x)	7	1	A	-1	7
		max		min	

две критические точки: x = 0, x = 1, они делят ось Ox на три интервала: $(-\infty, 0)$, (0, 1), $(1, +\infty)$. Определив в каждом из них знак f'(x), полученные результаты сведём в таблицу 7.6. В ней

стрелками указан характер изменения функции на данном промежутке. В точке x=0 функция имеет острый максимум, а в точке x=1- острый минимум.

4.
$$f''(x) = \frac{2}{3}((x-1)^{-1/3} - x^{-1/3})' = \frac{2}{9}(x^{-4/3} - (x-1)^{-4/3}) = \frac{2}{9}\frac{\sqrt[3]{(x-1)^4} - \sqrt[3]{x^4}}{\sqrt[3]{x^4(x-1)^4}},$$

f''(x) = 0 при $\sqrt[3]{(x-1)^4} - \sqrt[3]{x^4} = 0$, отсюда имеем: $\sqrt[3]{(x-1)^4} = \sqrt[3]{x^4} \Rightarrow (x-1)^4 = x^4 \Rightarrow (x-1)^4 - x^4 = 0$. Разложив левую часть последнего соотношения

на множители по формуле разность квадратов, получим: $((x-1)^2-x^2)((x-1)^2+x^2)=0 \Rightarrow (-2x+1)((x-1)^2+x^2)=0$. Итак, f''(x)=0

при $-2x+1=0 \Rightarrow x=1/2$. В точках x=0, x=1 не

Таблица 7.7							
x		0		1/2		1	
f''(x)	+	∄	+	0	_	∄	_
f(x)	\supset	1)	0	\cap	-1	\cap

существует f''(x), так как в них первая производная бесконечна. Точки x=0, x=1/2, x=1— точки, подозрительные на перегиб. Они разбивают ось Ox на четыре интервала: $(-\infty,0), (0,1/2), (1/2,1), (1,+\infty)$. Определив в каждом из них знак f''(x), результаты сведём в таблицу 7.7. В ней дугами указан характер направления выпуклости графика функции на данном промежутке, (1/2,0)— точка перегиба графика.

5. Используя результаты проведённых исследований, строим график функции (рис. 7.4), E(y)=[−11]. \blacktriangleleft

Пример 7.5. Построить график функции $f(x) = \arcsin \frac{1-x^2}{1+x^2}$.

- ▶1. D(f)=R. Данная функция чётная (f(-x)=f(x)) её график обладает осевой симметрией относительно оси Oy.
- **2.** $x = 0 \Rightarrow y = \arcsin 1 = \pi/2$, $y = 0 \Rightarrow \arcsin \frac{1-x^2}{1+x^2} = 0 \Rightarrow \frac{1-x^2}{1+x^2} = 0 \Rightarrow x = \pm 1$ график пересекает оси координат в точках $(0, \pi/2)$ и $(\pm 1, 0)$. Так как $f(x) > 0 \Rightarrow \arcsin \frac{1-x^2}{1+x^2} > 0 \Leftrightarrow 0 < \frac{1-x^2}{1+x^2} < 1 \Leftrightarrow -1 < x < 1$, то приходим к выводу, что f(x) > 0 при -1 < x < 1, f(x) < 0 при x < -1, x > 1.
- **3.** Функция непрерывна на **R** как элементарная график функции не имеет вертикальных асимптот. Прямая $L: y = -\pi/2$ горизонтальная асимптота графика при $x \to \pm \infty$, ибо $\lim_{x \to \pm \infty} \arcsin \frac{1-x^2}{1+x^2} = \arcsin(-1) = -\frac{\pi}{2}$ (замечание 6.3).
- **4.** Вопрос о промежутках монотонности и экстремумах данной функции был рассмотрен в примере 4.2, в таблице 4.2 приведены результаты этих исследований. На интервале $(-\infty,0)$ функция f(x) возрастает, а на интервале $(0,+\infty)$ она убывает. В точке

x = 0 функция имеет угловой максимум, $f(0) = \pi/2$, $f'_{-}(0) = 1$, $f'_{+}(0) = -1$.

5.
$$f'(x) = \begin{cases} 2/(1+x^2), & x < 0, \\ -2/(1+x^2), & x > 0, \end{cases} x \neq 0$$
 (пример

4.2), отсюда

$$f''(x) = \begin{cases} -4x/(1+x^2)^2, & x < 0, \\ 4x/(1+x^2)^2, & x > 0. \end{cases}$$
 Поскольку

Рис. 7.5. График функции $f(x) = \arcsin \frac{1 - x^2}{1 + x^2}$

- f''(x) > 0 при любом $x \ne 0$, то из теоремы 5.1 заключаем, что при любом $x \ne 0$ график f(x) направлен выпуклостью вниз.
- **6.** При построении графика сначала строим асимптоту L: $y = -\pi/2$, затем точку углового максимума $(0,\pi/2)$, указав в неё направления односторонних касательных. График приведён на рис. 7.5, $E(y) = (-\pi/2,\pi/2]$. ◀