Optimization Theory and Applications

Kun Zhu (zhukun@nuaa.edu.cn)

January 7, 2019

Introduction

• Consider the general problem

minimize
$$f(x)$$

subject to $x \in \Omega$.

- We have seen several types of FONC
- When is a FONC sufficient for global optimality?
- Answer: In a convex optimization problem

Set Convexity

- Review of convex set: Ω is a convex set if, for any distinct $\mathbf{y}, \mathbf{z} \in \Omega$ and $\alpha \in (0,1)$, we have $\alpha \mathbf{y} + (1-\alpha)\mathbf{z} \in \Omega$
- For a convex set: the line segment joining any two points in the set lies completely inside the set

Set Convexity

- Example:
 - The empty set
 - · A set consisting of a single point
 - A line or a line segment
 - A subspace
 - A hyperplane
 - A half-space
 - ℝⁿ

Set Convexity

- Example: Prove that $\Omega = \{ \mathbf{x} : \mathbf{x} \ge 0 \}$ is convex
 - Let $\mathbf{y}, \mathbf{z} \in \Omega$, and $\alpha \in (0, 1)$
 - Want to show that $\mathbf{x} = \alpha \mathbf{y} + (1 \alpha)\mathbf{z} \in \Omega$
 - What does $\mathbf{x} \in \Omega$ mean?
 - To qualify as a member of $\Omega,$ each of its component must be >0
 - Hence, we must show that each component of x is ≥ 0
 - Each component of $\mathbf{x} = [x_1, \dots, x_n]^T$ satisfies $x_i = \alpha y_i + (1 \alpha)z_i$
 - Note that we have $y_i, z_i, \alpha, 1 \alpha > 0$
 - Hence, $x_i \ge 0$; i.e., $\mathbf{x} \ge 0$, which means $\mathbf{x} \in \Omega$, and therefore, Ω is convex

• **Definition**: The graph of $f: \Omega \to \mathbb{R}, \Omega \subset \mathbb{R}^n$, is given by

$$\left\{ \begin{bmatrix} \boldsymbol{x} \\ f(\boldsymbol{x}) \end{bmatrix} : \boldsymbol{x} \in \Omega \right\}$$

• **Definition**: The epigraph of a function $f: \Omega \to \mathbb{R}, \Omega \subset \mathbb{R}^n$, denoted $\operatorname{epi}(f)$, is the set of points in $\Omega \times \mathbb{R}$ given by

$$\operatorname{epi}(f) = \left\{ \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{\beta} \end{bmatrix} : \ \boldsymbol{x} \in \Omega, \ \boldsymbol{\beta} \in \mathbb{R}, \ \boldsymbol{\beta} \geq f(\boldsymbol{x}) \right\}$$

- **Definition**: A function $f: \Omega \to \mathbb{R}, \Omega \subset \mathbb{R}^n$ is convex on Ω if its epigraph is a convex set
- **Theorem**: A function f is a convex function on Ω if, for any distinct $\mathbf{x}, \mathbf{y} \in \Omega$ and $\alpha \in (0, 1)$

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$$

- f is strictly convex if ≤ is replaced by <
- f is said to be (strictly) concave if -f is (strictly) convex

 A geometric interpretation of convex function: line segment joining two points on the graph lies above the graph

- Consider the function $f(\mathbf{x}) = x_1x_2$. Is f convex over $\Omega = \{\mathbf{x} : x_1 \ge 0, x_2 \ge 0\}$?
 - Answer: No
 - Consider $\mathbf{x} = [1, 2]^T, y = [2, 1]^T$, then

$$\alpha \mathbf{x} + (1 - \alpha)\mathbf{y} = \begin{bmatrix} 2 - \alpha \\ 1 + \alpha \end{bmatrix}$$

Hence

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) = (2 - \alpha)(1 + \alpha) = 2 + \alpha - \alpha^2$$

and

$$\alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}) = 2$$

• If $\alpha = 1/2 \in (0,1)$, then

$$f(\frac{1}{2}\mathbf{x} + \frac{1}{2}\mathbf{y}) = \frac{9}{4} > \frac{1}{2}f(\mathbf{x}) + \frac{1}{2}f(\mathbf{y})$$

which shows that f is not convex over Ω

Checking Convexity for Quadratics

• **Proposition**: consider the quadratic function $f(\mathbf{x}) = \mathbf{x}^T \mathbf{Q} \mathbf{x}$, where $\mathbf{Q} = \mathbf{Q}^T$. Suppose Ω is a convex set. Then, f is convex on Ω iff

$$(\mathbf{x} - \mathbf{y})^T \mathbf{Q} (\mathbf{x} - \mathbf{y}) \ge 0$$

for all $\mathbf{x}, \mathbf{y} \in \Omega$

Checking Convexity for Quadratics

• Example: $f(\mathbf{x}) = x_1 x_2$, and can be written as $f(\mathbf{x}) = \mathbf{x}^T \mathbf{Q} \mathbf{x}$, where

$$\mathbf{Q} = \frac{1}{2} \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right]$$

• Let $\Omega = \{ \mathbf{x} : \mathbf{x} \ge 0 \}$, and $\mathbf{x} = [2, 2]^T \in \Omega$, $\mathbf{y} = [1, 3]^T \in \Omega$, we have

$$\mathbf{y} - \mathbf{x} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

and

$$(\boldsymbol{y}-\boldsymbol{x})^{\top} \boldsymbol{Q}(\boldsymbol{y}-\boldsymbol{x}) = \frac{1}{2}[-1,1] \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = -1 < 0.$$

• Hence, f is not convex on Ω

Alternative Way of Interpreting Function Convexity

- Suppose $f:\Omega\to\mathbb{R},\,\Omega$ is convex and open, and $f\in\mathcal{C}^1$
- Theorem: f is convex iff for all distinct $\mathbf{x}, \mathbf{y} \in \Omega$ $f(\mathbf{y}) \geq f(\mathbf{x}) + Df(\mathbf{x})(\mathbf{y} \mathbf{x})$
- Interpretation: f convex means that it lies above any linear approximation of it
- For strict convexity, replace
 by >

Alternative Way of Interpreting Function Convexity

- Suppose $f:\Omega\to\mathbb{R},\,\Omega$ convex and open, and $f\in\mathcal{C}^2.$ Let $\mathbf{F}(\mathbf{x})$ be the Hessian of f at \mathbf{x}
- The following theorem gives another characterization of convexity
- **Theorem**: f is convex if and only if $\mathbf{F}(\mathbf{x}) \geq 0$ for all $\mathbf{x} \in \Omega$
- For strict convexity, $\mathbf{F}(\mathbf{x}) > 0$ is sufficient, but not necessary (e.g., $f(\mathbf{x}) = x^4$ is strictly convex but f''(0) = 0)

Alternative Way of Interpreting Function Convexity

- Examples:
 - $f(x) = x^3, \Omega = (0, 1)$. We have f''(x) = 6x > 0 on Ω . Hence, f is convex on Ω
 - $f(x) = -x^2, \Omega = \mathbb{R}$. We have f''(x) = -2 < 0. Hence, f is concave on Ω
 - $f(\mathbf{x}) = 2x_1x_2 x_1^2 x_2^2$. The Hessian of f is

$$F(\mathbf{x}) = \left[\begin{array}{cc} -2 & 2 \\ 2 & -2 \end{array} \right]$$

which is negative semidefinite for all $\mathbf{x} \in \mathbb{R}^2$. Hence, f is concave on \mathbb{R}^2

Operations that Preserves Convexity

- Some operations preserve convexity or allow us to construct new convex functions
- *Scale a convex function*: f is convex, then for any $\alpha \geq 0$,

$$\bar{f} = \alpha f$$

is convex

• **Nonnegative weighted sums**: f_1, \ldots, f_m are convex, then for nonnegative numbers c_1, \ldots, c_m , the function

$$f = c_1 f_1 + \cdots + c_m f_m$$

is convex

• **Pointwise maximum**: f_1 and f_2 are convex, then their pointwise maximum f, defined by

$$f(\mathbf{x}) = \max\{f_1(\mathbf{x}), f_2(\mathbf{x})\}\$$

is convex

Convex Optimization Problems

Consider

minimize
$$f(x)$$

subject to $x \in \Omega$,

where Ω is a convex set, and f is a convex function on Ω

- Name: Convex optimization problem, or convex programming problem
- Examples: LP, QP, SDP

Convex Optimization Problems

- **Theorem**: In a convex optimization problem, a point is a global minimizer if and only if it is a local minimizer
- *Lemma*: Let $g: \Omega \to \mathbb{R}$ be a convex function defined on a convex set $\Omega \subset \mathbb{R}^n$. Then, for each $c \in \mathbb{R}$, the set

$$\Gamma_c = \{ \mathbf{x} \in \Omega : g(\mathbf{x}) \le c \}$$

is a convex set

• *Corollary*: In a convex optimization problem, the set of all global minimizers is convex (simply by setting $c = \min_{\mathbf{x} \in \Omega} f(\mathbf{x})$)

Convex Optimization Problems

- Summary of FONCs
 - Set constraint: $\mathbf{d}^T \nabla f(\mathbf{x}^*) \geq 0$ for all feasible directions \mathbf{d}
 - Interior: $\nabla f(\mathbf{x}^*) = 0$
 - $\Omega = \{ \mathbf{x} : \mathbf{h}(\mathbf{x}) = 0 \}$: Lagrange conditions
 - $\Omega = \{ \mathbf{x} : \mathbf{h}(\mathbf{x}) = 0, \mathbf{g}(\mathbf{x}) \le 0 \}$: KKT conditions

Convex Optimization Problems with Set Constraints

• Theorem: consider the convex optimization problem

minimize
$$f(x)$$

subject to $x \in \Omega$,

where $f \in \mathcal{C}^1$ on a convex set that contains Ω . Suppose the point $\mathbf{x}^* \in \Omega$ satisfies

$$\mathbf{d}^T \nabla f(\mathbf{x}^*) > 0$$

for any feasible direction \mathbf{d} at \mathbf{x}^* . Then \mathbf{x}^* is a global minimizer

• *Corollary*: If the point \mathbf{x}^* above satisfies $\nabla f(\mathbf{x}^*) = 0$, then \mathbf{x}^* is a global minimizer

Convex Optimization Problems with Equality Constraints

- Let us now consider problems with equality constraints $\mathbf{h}(\mathbf{x}) = 0$
- Assume that the constraint set $\Omega = \{ \mathbf{x} : \mathbf{h}(\mathbf{x}) = 0 \}$ is convex, and f is convex
- Theorem: consider the convex optimization problem

minimize
$$f(x)$$

subject to $h(x) = 0$.

• Suppose there exists a feasible point \mathbf{x}^* and a vector λ^* such that

$$Df(\boldsymbol{x}^*) + \boldsymbol{\lambda}^{*T} Dh(\boldsymbol{x}^*) = \boldsymbol{0}^T.$$

Then, x* is a global minimizer

Convex Optimization Problems with Equality and Inequality Constraints

 Now consider problems with both equality and inequality constraints:

$$\mathbf{h}(\mathbf{x}) = 0, \quad \mathbf{g}(\mathbf{x}) \le 0$$

The constraint set is

$$\begin{split} \Omega &=& \{x: h(x) = 0, g(x) \leq 0\} \\ &=& \{x: h(x) = 0\} \bigcap \{x: g(x) \leq 0\}. \end{split}$$

- Note that the intersection of convex sets is convex.
- Hence Ω is convex if both the above sets are convex

Convex Optimization Problems with Equality and Inequality Constraints

- We have already seen an example where the set $\{x : h(x)\} = 0$ is convex
- When is $\{\mathbf{x} : \mathbf{g}(\mathbf{x})\} \leq 0$ convex?
- Note that

$$\{x:g(x)\leq 0\}=igcap_{i=1}^p\{x:g_i(x)\leq 0\}.$$

• Therefore, if each g_i is convex, then we conclude that each $\mathbf{x} : g_i(\mathbf{x}) < 0$ is convex, and hence $\mathbf{x} : \mathbf{g}(\mathbf{x} < 0)$ is convex

Convex Optimization Problems with Equality and Inequality Constraints

• Theorem: consider the convex optimization problem

minimize
$$f(x)$$

subject to $h(x) = 0$
 $g(x) \le 0$.

• Suppose there exists a feasible point ${\bf x}^*$ and vectors λ^* and μ^* such that

1.
$$\mu^* \ge 0$$
;
2. $Df(x^*) + \lambda^{*T} Dh(x^*) + \mu^{*T} Dg(x^*) = 0^T$; and
3. $\mu^{*T} g(x^*) = 0$.

Then, x* is a global minimizer

Further Reading

• "Convex optimization" by Stephen Byod.