Uma avaliação da validade da Lei de Okun para o Brasil no período 1991-2019

Pedro Cunha¹ Rony Ramos² Valber Santos³

Programa de Pós-Graduação em Economia Aplicada - UFPB

19 de janeiro de 2021

¹Mestrando - PPGE/UFPB

²Mestrando - PPGE/UFPB ³Doutorando - PPGE/UFPB

Introdução

Como estimar a Lei de Okun?

Dados

Metodologia

Decomposições

Ball, Leigh e Loungani (2012)

Resultados

Quebra estrutural

Considerações finais

Uma avaliação da validade da Lei de Okun para o Brasil no período 1991-2019

La Introdução

Objetivos do artigo

- Verificar o ajuste da Lei de Okun para movimentos de curto-prazo no desemprego, considerando dados para o Brasil desde 1991 até 2019;
- 2. Verificar a estabilidade da relação estimada ao longo do tempo.

Lei de Okun

Assume-se que mudanças na demanda agregada fazem o produto flutuar ao redor do seu valor potencial. Essas mudanças no produto causam a contratação e demissão de trabalhadores pelas firmas, alterando o emprego; variações no emprego movem o desemprego no sentido oposto. Essas relações podem ser vistas no sistema de equações a seguir:

$$\begin{cases} E_{t} - E_{t}^{*} = \gamma \cdot (Y_{t} - Y_{t}^{*}) + \eta_{t}, & \gamma > 0 \\ U_{t} - U_{t}^{*} = \delta \cdot (E_{t} - E_{t}^{*}) + \mu_{t}, & \delta < 0 \\ U_{t} - U_{t}^{*} = \beta \cdot (Y_{t} - Y_{t}^{*}) + \epsilon_{t}, & \beta < 0 \end{cases}$$
(1)

onde $\beta = \delta \cdot \gamma$ e $\epsilon_t = \mu_t + \delta \cdot \eta_t$. Além disso, E_t e Y_t são o logaritmo do produto e do emprego, respectivamente, U_t é a taxa de desemprego e * indica níveis de longo-prazo.

Estimação - "Níveis x Mudanças"

- 1. A primeira opção é estimar a equação (3). O problema se encontra em estimar os termos não-observáveis U_t^* e Y_t^* . Para contornar isso, foi utilizado o filtro *Hodrick Prescott* (HP), que é bastante conhecido na literatura, muito embora tenha problemas de precisão;
- A segunda opção é estimar a versão "em mudanças"da Lei de Okun, dada pela equação a seguir:

$$\Delta U_t = \alpha + \beta \cdot \Delta Y_t + \omega_t \tag{4}$$

onde Δ é a mudança em relação ao período anterior. Essa equação segue de (3) se assumirmos que U^* é constante e que Y^* cresce a uma taxa constante (ΔY^*). Fazendo isso, obtemos a equação (4) com $\alpha = -\beta \cdot \Delta Y^*$ e $\omega_t = \Delta \epsilon_t$.

Estimação - Seemingly Unrelated Regressions (SUR)

3. Por fim, no interesse de estimar as relações econômicas derivadas do sistema composto pelas equações (1), (2) e (3) conjuntamente, foi utilizado o modelo de regressões aparentemente não-relacionadas, que será explicado mais a frente.

Fonte de dados

Descrição das variáveis

Variável	Nome	Descrição
E_t	Emprego	100 × ln(tamanho total da força de trabalho)
U_t	Taxa de desemprego	% da força de trabalho desempregada que está ativamente procurando por um emprego
Y_t	Produto	$100 imes In(PIB ext{ em dólares correntes})$
Fonte:		The World Bank (2020).

Filtro Hodrick-Prescott

A ideia básica por trás do filtro é a de **decomposição de uma série temporal**. Deixe $\{h_t\}_{t=1}^T$, denotar o logaritmo de uma variável de uma série temporal. Podemos decompor h_t em um componente de tendência, τ_t ; um componente cíclico, π_t ; e um componente de erro, ϵ_t , de modo que

$$h_t = \tau_t + \pi_t + \epsilon_t \tag{5}$$

Considerando um parâmetro de ponderação, λ , escolhido de forma ótima, existe um componente de tendência τ_t^* que satisfaz o seguinte problema:

$$\min_{\tau_t^*} \left(\sum_{t=1}^T (h_t - \tau_t^*)^2 + \lambda \cdot \sum_{t=2}^{T-1} [(\tau_{t+1}^* - \tau_t^*) - (\tau_t^* - \tau_{t-1}^*)]^2 \right)$$
 (6)

O primeiro termo representa a soma dos quadrados dos desvios, $d_t = h_t - \tau_t^*$, que penaliza o componente cíclico. O segundo termo é uma ponderação da soma dos quadrados das segundas diferenças do componente de tendência. Esse termo penaliza variações na taxa de crescimento do componente de tendência.

Seemingly Unrelated Regressions (SUR)

É uma generalização do modelo de regressão linear, sendo composto por várias equações de regressões, cada uma com suas respectivas variáveis dependentes e conjuntos potencialmente diferentes de variáveis explicativas.

$$\begin{cases} E_{t} - E_{t}^{*} = \gamma \cdot (Y_{t} - Y_{t}^{*}) + \eta_{t}, & \gamma > 0 \\ U_{t} - U_{t}^{*} = \delta \cdot (E_{t} - E_{t}^{*}) + \mu_{t}, & \delta < 0 \\ U_{t} - U_{t}^{*} = \beta \cdot (Y_{t} - Y_{t}^{*}) + \epsilon_{t}, & \beta < 0 \end{cases}$$
(8)

Cada equação do sistema acima pode ser estimada separadamente utilizando Mínimos Quadrados Ordinários, obtendo resultados que são consistentes. Entretanto, no caso em que os termos de erros das equações são correlacionados, tem-se um ganho de eficiência ao estimar as equações conjuntamente, fazendo uso, por exemplo, do método dos Mínimos Quadrados Generalizados Factíveis (MQGF).

Quebra estrutural - teste de Chow e critério do menor Bayesian Information Criteria (BIC)

Para cada potencial ponto de mudança em um intervalo de tempo especificado, uma estatística F é calculada (estatística do teste de Chow). À partir disso, um modelo OLS é estimado para as observações de antes e depois do ponto de mudança e a soma dos quadrados dos resíduos é calculada (ESS). Um outro modelo é estimado para todas as observações, gerando uma soma de quadrados restritas (RSS). Se n é o número de obervações e k é o número de regressores no modelo, então:

$$F = \frac{RSS - ESS}{ESS \cdot (n - 2k)} \tag{10}$$

▶ A ideia do critério BIC é semelhante, porém em vez de comparar os valores da estatística de Chow com os críticos da distribuição F, é escolhido o número de quebras que gera o menor valor para o BIC.

Decomposição da série temporal do desemprego

Fonte: Elaboração própria à partir dos dados disponíveis em *The World Bank*.

Decomposição da série temporal do emprego

Fonte: Elaboração própria à partir dos dados disponíveis em *The World Bank*.

Decomposição da série temporal do PIB

Fonte: Elaboração própria à partir dos dados disponíveis em *The World Bank*.

Uma avaliação da validade da Lei de Okun para o Brasil no período 1991-2019

Ball, Leigh e Loungani (2012)

Resultados: Okun's Law: Fit at 50? - (BALL, LEIGH e LOUGANI, 2012)

Resultados para os EUA

► A Lei de Okun se mostrou forte e estável (não houve quebra estrutural durante a grande recessão).

```
Table 1. United States: Estimates of Okun's Law
(Annual data, 1948-2011)
Equation estimated in levels: U_t - U_t^* = \beta (Y_t - Y_t^*) + \varepsilon_t
Equation estimated in first differences: \Delta U_t = \alpha + \beta \Delta Y_t + \epsilon_t
Equation in levels
Hodrick-Prescott filter \lambda = 100
                                         -0.411***
                                           (0.024)
Obs
                                             64
Adjusted 82
                                            0.817
 RMSE
                                            0.426
Hodrick-Prescott filter \lambda = 1.000
                                         -0.383***
                                           (0.023)
Ohs
                                             64
Adjusted R2
                                            0.813
RMSE
                                            0.524
Equation in first differences
                                         -0.405***
                                           (0.029)
                                         1.349***
                                           (0.116)
Obs
                                             63
Adjusted R2
                                            0.752
RMSE
Note: Table reports point estimates and standard errors in parentheses. ***, **, and * indicate statistical
significance at the 1, 5, and 10 percent level.
```

└Ball, Leigh e Loungani (2012)

Resultados para os EUA

Table 3. United States: Estimates of Okun's Law and Unemployment-Employment Relation (Annual data, 1948-2011)

Equations estimated jointly:					
(1) $E_t - E_t^* = \gamma (Y_t - Y_t^*) +$	η,				
2) $U_t - U_t^* = \delta(E_t - E_t^*) + \mu_t$ 3) $U_t - U_t^* = \beta(Y_t - Y_t^*) + \varepsilon_t$					
v	0.543***				
	(0.040)				
Obs	64				
Adjusted R ²	0.610				
Unemployment-Employment F	Relation				
δ	-0.728***				
	(0.027)				
Obs	64				
Adjusted R ²	0.798				
Okun's Law for Unemploymen	t				
В	-0.405***				
	(0.024)				
Obs	64				
Adjusted R ²	0.820				

p-value for H_0 : $\beta = \gamma \delta$

Note: Table reports estimation results for seemingly unrelated regressions (SUR) model comprising equations ((1)-(3), with standard errors in parentheses. ****.** and ** indicate statistical significance at the 1, 5, and 10 percent level. E denotes log of employment. Natural rates $(E_i^*, Y_i^*, \text{ and } U_i^*)$ based on Hodrick-Prescott filter with $\lambda = 100$.

0.378

Resultados para 20 economias avançadas

Os dados se ajustam bem, porém, Austrália, Japão e Espanha apresentam resultados discrepantes.

Table 4, 20 Advanced Economies: Estimates of Okun's Law (Annual data, 1980-2011)
Equation estimated: $U_t - U_t^* = \beta (Y_t - Y_t^*) + \varepsilon_t$

	F	3	Obs	Adjusted R ²	RMSE
Australia	-0.536***	(0.0476)	32	0.797	0.439
Austria	-0.136***	(0.0438)	32	0.213	0.375
Belgium	-0.511***	(0.0817)	32	0.543	0.708
Canada	-0.432***	(0.0374)	32	0.805	0.495
Denmark	-0.434***	(0.0471)	32	0.724	0.570
Finland	-0.504***	(0.0485)	32	0.770	1.025
France	-0.367***	(0.0441)	32	0.681	0.394
Germany	-0.367***	(0.0629)	32	0.508	0.689
Ireland	-0.406***	(0.0395)	32	0.766	0.835
Italy	-0.254***	(0.0672)	32	0.292	0.654
Japan	-0.152***	(0.0194)	32	0.654	0.229
Netherlands	-0.511***	(0.0705)	32	0.617	0.722
New Zealand	-0.341***	(0.0493)	32	0.594	0.705
Norway	-0.294***	(0.0406)	32	0.617	0.449
Portugal	-0.268***	(0.0371)	32	0.615	0.629
Spain	-0.852***	(0.0503)	32	0.899	0.757
Sweden	-0.524***	(0.0719)	32	0.619	1.002
Switzerland	-0.234***	(0.0458)	32	0.439	0.434
United Kingdom	-0.343***	(0.0495)	32	0.595	0.699
United States	-0.454***	(0.0373)	32	0.821	0.418

Note: Natural rates $(U_i^*$ and $Y_i^*)$ based on Hodrick-Prescott filter with $\lambda=100$. Table reports point estimates and standard errors in parentheses. ***, ***and ** indicate statistical significance at the 1, 5, and 10 percent level.

Resultados para 20 economias avançadas

- Evidências de instabilidade para 7/20 países;
- ▶ Para 5 desses 7, o coeficiente da segunda metade é menor. O coeficiente médio da primeira metade é −0, 43 e −0, 36 na segunda metade, o que contraria o FMI (2010), que diz que o coeficiente aumentou ao longo do tempo em função de reformas legais, que reduziram os custos de demissão;
- Para os EUA, os coeficientes se mostraram estáveis.

Resultados para 20 economias avançadas

Table 5. 20 Advanced Economies: Estimates of Okun's Law (Annual data, 1980-2011)

Equation estimated: $U_t - U_t^* = \beta_{\text{pre-95}} (Y_t - Y_t^*) + \beta_{\text{post-95}} (Y_t - Y_t^*) + \varepsilon_t$

	β_{pre-95}		β _{post-95}		p-value	Obs	Adjusted R ²	RMSE
Australia	-0.552***	(0.051)	-0.433***	(0.131)	0.405	32	0.796	0.441
Austria	-0.134*	(0.068)	-0.137**	(0.0587)	0.974	32	0.187	0.382
Belgium	-0.634***	(0.099)	-0.310**	(0.126)	0.053	32	0.584	0.676
Canada	-0.500***	(0.041)	-0.287***	(0.059)	0.006	32	0.844	0.442
Denmark	-0.490***	(0.064)	-0.369***	(0.068)	0.205	32	0.730	0.564
Finland	-0.610***	(0.051)	-0.297***	(0.071)	0.001	32	0.833	0.872
France	-0.400***	(0.063)	-0.335***	(0.063)	0.470	32	0.676	0.397
Germany	-0.427***	(0.079)	-0.270**	(0.102)	0.232	32	0.516	0.684
Ireland	-0.462***	(0.073)	-0.382***	(0.047)	0.359	32	0.765	0.836
Italy	-0.142	(0.094)	-0.358***	(0.091)	0.110	32	0.330	0.637
Japan	-0.109***	(0.023)	-0.209***	(0.027)	0.008	32	0.718	0.206
Netherlands	-0.713***	(0.092)	-0.336***	(0.086)	0.006	32	0.695	0.645
New Zealand	-0.317***	(0.056)	-0.426***	(0.104)	0.363	32	0.592	0.707
Norway	-0.319***	(0.050)	-0.247***	(0.07)	0.410	32	0.613	0.451
Portugal	-0.221***	(0.037)	-0.463***	(0.0755)	0.007	32	0.688	0.567
Spain	-0.793***	(0.067)	-0.923***	(0.074)	0.205	32	0.902	0.749
Sweden	-0.648***	(0.091)	-0.362***	(0.104)	0.046	32	0.656	0.953
Switzerland	-0.211***	(0.058)	-0.274***	(0.077)	0.516	32	0.429	0.439
United Kingdom	-0.419***	(0.059)	-0.215***	(0.077)	0.045	32	0.635	0.663
United States	-0.447***	(0.050)	-0.464***	(0.058)	0.829	32	0.815	0.425

Note: Natural rates $(U_i$ and Y_i) based on Hodrick-Prescott filter with $\lambda = 100$, B_{percy} denotes 1980-1994 ample. B_{bulk} denotes 1995-2011 ample. E_b the perturbation sample. B_{bulk} denotes 1995-2011 ample. E_b the perturbation sample. B_{bulk} and B_b and B_b are the same sample. B_{bulk} and B_b are the same sample B_b and B_b are the same sample B_b and B_b indicate statistical significance at B_b , B_b and B_b indicate statistical significance at B_b . B_b and B_b indicate statistical significance at B_b indicate statistical significance

Uma avaliação da validade da Lei de Okun para o Brasil no período 1991-2019 — Resultados

> Resultados: Uma avaliação da validade da Lei de Okun para o Brasil no período 1991-2019 - (CUNHA, RAMOS e SANTOS, 2020)

Equação em níveis

Estimativas da Lei de Okun (dados anuais, 1991-2019)

$$\begin{array}{c} U_t - U_t^* = \beta \cdot (Y_t - Y_t^*) + \epsilon_t \\ \\ \text{Filtro HP } \lambda = 100 \\ \beta & -0,018^{**} \\ & (0,008) \\ \\ \text{Obs.} & 29 \\ R^2 \text{ ajustado} & 0,122 \\ \\ \text{RSE} & 0,895 \text{ (df} = 28) \\ \\ \text{Filtro HP } \lambda = 1000 \\ \beta & -0,033^{***} \\ & (0,008) \\ \\ \text{Obs.} & 29 \\ R^2 \text{ ajustado} & 0,386 \\ \\ \text{RSE} & 1,133 \text{ (df} = 28) \\ \\ \\ \textit{Nota:} & *p < 0,1; **p < 0,05; ***p < 0,01 \\ \\ \end{array}$$

Equação em primeiras diferenças

Estimativas da Lei de Okun (dados anuais, 1991-2019)

$$\begin{array}{c|c} \Delta \textit{U}_t = \alpha + \beta \cdot \Delta \textit{Y}_t + \epsilon_t \\ \\ \beta & -0,015 \\ (0,009) \\ \alpha & 0,265 \\ (0,177) \\ \text{Obs.} & 28 \\ \textit{R}^2 \text{ ajustado} & 0,060 \\ \text{RSE} & 0,918 \text{ (df} = 26) \\ \\ \textit{Nota:} & ^*p < 0,1; \ ^{**}p < 0,05; \ ^{***}p < 0,01 \\ \end{array}$$

Sistema de equações

Estimativas da Lei de Okun e da relação de Desemprego-Emprego(dados anuais, 1991-2016)

Nota:	*p < 0, 1; **p < 0, 05; ***p < 0, 01
p-valor para $H_0: \beta = \gamma \cdot \delta$	0, 02464
RSE	1, 1604 (df = 25)
R ² ajustado	0, 2496
Obs.	26
	(0,0047)
β	$-{f 0},{f 0114}^*$
Lei de Okun para Desemprego	
RSE	1, 3986 (df = 25)
R ² ajustado	0,0955
Obs.	26
	(0, 0570)
δ	-0, 1650 **
Relação Desemprego-Emprego	
RSE	6, 2720 (df = 25)
R ² ajustado	0,0114
Obs.	26
	(0, 0176)
γ	0, 0138
Lei de Okun para Emprego	

−Resultados └Quebra estrutural

Presença de quebra estrutural - Lei de Okun (1991-2019) - Critério do menor BIC - $\lambda=1000$

Presença de quebra estrutural - Lei de Okun (1991-2019) - Critério da estatística F - $\lambda = 1000$

Lei de Okun (dados anuais, 1991-2019)

$$\begin{array}{c|c} U_t - U_t^* = \beta \cdot (Y_t - Y_t^*) + \epsilon_t \\ \hline \\ \text{Período 1991} - 1998 \\ \beta & 0,005 \\ (0,013) \\ \hline \\ \text{Obs.} & 8 \\ R^2 \text{ ajustado} & -0,119 \\ \text{RSE} & 0,907 \text{ (df} = 7) \\ \hline \\ \text{Período 1999} - 2019 \\ \beta & -0,043^{***} \\ (0,008) \\ \hline \\ \text{Obs.} & 21 \\ R^2 \text{ ajustado} & 0,587 \\ \text{RSE} & 1,038 \text{ (df} = 20) \\ \hline \\ \hline \\ \textit{Nota}^1 : & *p < 0,1; ***p < 0,05; ****p < 0,01 \\ \hline \\ \textit{Nota}^2 : & U_t^* \in Y_t^* \text{ estimados utilizando o filtro HP com } \lambda = 1000. \\ \hline \end{array}$$

Uma avaliação da validade da Lei de Okun para o Brasil no período 1991-2019

Considerações finais

Considerações finais

- A Lei de Okun não se adequa tão bem aos dados brasileiros, em especial se considerado o sistema de equações completo e não apenas a relação desemprego-produto;
- ► Foi detectada a presença de uma quebra estrutural na equação estimada para a Lei de Okun considerando o critério de menor BIC, muito embora o teste de Chow aponte para a inexistência de quebra na equação estimada. A regressão realizada para o período pós 1998 apresentou o melhor ajuste à Lei de Okun, ao passo que para o período pré 1998 não foi obtido ajuste algum;
- Novos trabalhos devem buscar analisar o ajuste da Lei de Okun para outros países menos desenvolvidos, bem como outras metodologias de estimação, dado a notória discussão acerca da precisão do filtro HP.

Uma avaliação da validade da Lei de Okun para o Brasil no período 1991-2019

Obrigado!