2 Linear Classifiers and Perceptrons

CLASSIFIERS

You are given sample of n observations, each with d features. Some observations belong to class C; some do not.

Example: Observations are bank loans

Features are income & age (d = 2)

Some are in class "defaulted", some are not

Goal: Predict whether future borrowers will default, based on their income & age.

Represent each observation as a point in d-dimensional space, called a sample point / a feature vector / independent variables / predictors.

[We draw these lines/curves separating C's from X's. Then we use these curves to predict which future borrowers will default. In the last example, though, we're probably overfitting, which could hurt our predictions.]

decision boundary: the boundary chosen by our classifier to separate items in the class from those not.

overfitting: When sinuous decision boundary fits sample points so well that it doesn't classify future points well.

[A reminder that underlined phrase are definitions, worth memorizing.]

Some (not all) classifiers work by computing a

decision function: A function f(x) that maps a sample point x to a scalar such that

f(x) > 0 if $x \in \text{class C}$; $f(x) \le 0$ if $x \notin \text{class C}$.

Aka predictor function or discriminant function.

For these classifiers, the decision boundary is $\{x \in \mathbb{R}^d : f(x) = 0\}$ [That is, the set of all points where the decision function is zero.] Usually, this set is a (d-1)-dimensional surface in \mathbb{R}^d .

 $\{x: f(x) = 0\}$ is also called an isosurface of f for the isovalue 0.

f has other isosurfaces for other isovalues, e.g. $\{x : f(x) = 1\}$.

[Imagine a function in \mathbb{R}^d , and imagine its (d-1)-dimensional isosurfaces.]

[One of these spheres could be the decision boundary.]

linear classifier: The decision boundary is a line/plane.

Usually uses a linear decision function. [Sometimes no decision fn.]

Math Review

[I will write vectors in matrix notation.]

Vectors:
$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = [x_1 \ x_2 \ x_3 \ x_4 \ x_5]^{\top}$$

Think of x as a point in 5-dimensional space.

Conventions (often, but not always):

uppercase roman = matrix, random variable, set X lowercase roman = vector x Greek = scalar α

Other scalars:

n = # of sample pointsd = # of features (per point)= dimension of sample points

i j k = indices $f(), \sigma(), \dots$

function (often scalar)

inner product (aka dot product): $x \cdot y = x_1y_1 + x_2y_2 + ... + x_dy_d$

also written $x^{T}y$

Clearly, $f(x) = w \cdot x + \alpha$ is a <u>linear function</u> in x.

Euclidean norm:
$$|x| = \sqrt{x \cdot x} = \sqrt{x_1^2 + x_2^2 + ... + x_d^2}$$

|x| is the length (aka Euclidean length) of a vector x.

Given a vector x, $\frac{x}{|x|}$ is a <u>unit</u> vector (length 1).

"Normalize a vector x": replace x with $\frac{x}{|x|}$.

Use dot products to compute angles:

Given a linear decision function $f(x) = w \cdot x + \alpha$, the decision boundary is

$$H = \{x : w \cdot x = -\alpha\}.$$

The set *H* is called a hyperplane. (A line in 2D, a plane in 3D.)

[I want you to understand what a hyperplane is. In 2D, it's a line. In 3D, it's a plane. Now take that concept and generalize it to higher dimensions. In d dimensions, a hyperplane is a flat, infinite thing with dimension d-1. A hyperplane divides the d-dimensional space into two halves.]

Theorem: Let x, y be 2 points that lie on H. Then $w \cdot (y - x) = 0$.

Proof:
$$w \cdot (y - x) = -\alpha - (-\alpha) = 0$$
.

w is called the normal vector of H,

because (as the theorem shows) w is normal (perpendicular) to H.

(I.e. w is normal to every pair of points in H.)

[Draw black part first, then red parts. hyperplane.pdf]

If w is a unit vector, then $w \cdot x + \alpha$ is the signed distance from x to H.

I.e. positive on one side of H; negative on other side.

Moreover, the distance from H to the origin is α . [How do we know that?]

Hence $\alpha = 0$ if and only if H passes through origin.

[w does not have to be a unit vector for the classifier to work.

If w is not a unit vector, $w \cdot x + \alpha$ is the signed distance times some real.

If you want to fix that, you can rescale the equation

by computing |w| and dividing both w and α by |w|.

The coefficients in w, plus α , are called weights or sometimes regression coefficients.

[That's why I named the vector w; "w" stands for "weights."]

The input data is linearly separable if there exists a hyperplane that separates all the sample points in class C from all the points NOT in class C.

[At the beginning of this lecture, I showed you one plot that's linearly separable and two that are not.]

We will investigate some linear classifiers that only work for linearly separable data, then we'll move on to more sophisticated linear classifiers that do a decent job with non-separable data. Obviously, if your data is not linearly separable, a linear classifier cannot do a *perfect* job. But we're still happy if we can find a classifier that usually predicts correctly.]

A Simple Classifier

Centroid method: compute mean μ_C of all vectors in class C and mean μ_X of all vectors NOT in C.

We use the decision function

$$f(x) = \underbrace{(\mu_{\rm C} - \mu_{\rm X}) \cdot x - (\mu_{\rm C} - \mu_{\rm X}) \cdot \frac{\mu_{\rm C} + \mu_{\rm X}}{2}}_{\text{normal vector}} \cdot x - (\mu_{\rm C} - \mu_{\rm X}) \cdot \frac{\mu_{\rm C} + \mu_{\rm X}}{2}$$

so that decision boundary is the hyperplane that bisects line segment w/endpoints μ_C , μ_X .

[Better yet, we can adjust the scalar term to minimize the number of misclassified points. Then the hyperplane has the same normal vector, but a different position.]

[Draw data, then μ_C , μ_X , then line & normal. | centroid.pdf |]

[In this example, there's clearly a better linear classifier that classifies every sample point correctly. Note that this is hardly the worst example I could have given.

If you're in the mood for an easy puzzle, pull out a sheet of paper and think of an example, with lots of sample points, where the centroid method misclassifies every sample point but one.]

[Nevertheless, there are cases where this method works well, like when all your positive examples come from one Gaussian distribution, and all your negative examples come from another.]

Perceptron Algorithm (Frank Rosenblatt, 1957)

Slow, but correct for linearly separable points.

Uses a numerical optimization algorithm, namely, gradient descent.

[Poll:

How many of you know what gradient descent is?

How many of you know what a linear program is?

How many of you know what the simplex algorithm for linear programming is?

How many of you know what a quadratic program is?

We're going to learn what most of these things are. As machine learning people, we will be heavy users of optimization methods. Unfortunately, I won't have time to teach you algorithms for many optimization problems, but we'll learn a few. To learn more, take EE 127.]

Consider *n* sample points $X_1, X_2, ..., X_n$.

[The reason I'm using capital X here is because we typically store these vectors as rows of a matrix X. So the subscript picks out a row of X, representing a specific sample point.]

For each sample point, let
$$y_i = \begin{cases} 1 & \text{if } X_i \in \text{class C}, \text{ and} \\ -1 & \text{if } X_i \notin C. \end{cases}$$

For simplicity, consider only decision boundaries that pass through the origin. (We'll fix this later.)

Goal: find weights w such that

$$X_i \cdot w \ge 0$$
 if $y_i = 1$, and

$$X_i \cdot w \le 0$$
 if $y_i = -1$. [remember, $X_i \cdot w$ is the signed distance]

Equivalently: $y_i X_i \cdot w \ge 0$. \leftarrow inequality called a constraint.

Idea: We define a risk function R that is positive if some constraints are violated. Then we use optimization to choose w that minimizes R.

Define the loss function

$$L(z, y_i) = \begin{cases} 0 & \text{if } y_i z \ge 0, \text{ and} \\ -y_i z & \text{otherwise.} \end{cases}$$

[Here, z is the classifier's prediction, and y_i is the correct answer.]

Idea: if z has the same sign as y_i , the loss function is zero (happiness).

But if z has the wrong sign, the loss function is positive.

[For each sample point, you want to get the loss function down to zero, or as close to zero as possible. It's called the "loss function" because the bigger it is, the bigger a loser you are.]

Define risk function (aka objective function or cost function)

$$R(w) = \sum_{i=1}^{n} L(X_i \cdot w, y_i),$$

$$= \sum_{i \in V} -y_i X_i \cdot w \qquad \text{where } V \text{ is the set of indices } i \text{ for which } y_i X_i \cdot w < 0.$$

If w classifies all X_1, \ldots, X_n correctly, then R(w) = 0.

Otherwise, R(w) is positive, and we want to find a better value of w.

Goal: Solve this optimization problem:

Find w that minimizes R(w).

riskplot.pdf Plot of risk R(w). Every point in the dark green flat spot is a minimum. We'll look at this more next lecture.]