PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 4:

A61L 25/00, A61K 6/08

A1

(11) Internationale Veröffentlichungsnummer: WO 87/00058

(43) Internationales
Veröffentlichungsdatum: 15. Januar 1987 (15.01.87)

(21) Internationales Aktenzeichen: PCT/CH86/00092

(22) Internationales Anmeldedatum: 3. Juli 1986 (03.07.86)

(31) Prioritätsaktenzeichen: 2920/85-4

(32) Prioritätsdatum: 5. Juli 1985 (05.07.85)

(33) Prioritätsland: CH

(71)(72) Anmelder und Erfinder: LUSUARDI, Werther [CH/CH]; Stockerstrasse 8, CH-8002 Zürich (CH). RA-VEH, Joram [CH/CH]; Könizbergstrasse 76, CH-3097 Liebefeld (CH). STICH, Hermann [CH/CH]; Schlösslistr. 49, CH-3008 Bern (CH).

(74) Gemeinsamer Vertreter: LUSUARDI, Werther; Stokkerstrasse 8, CH-8002 Zürich (CH).

(81) Bestimmungsstaaten: AT, AT (europäisches Patent), AU, BB, BE (europäisches Patent), BG, BR, CF (OA-PI Patent), CG (OAPI Patent), CH, CH (europäisches Patent), CM (OAPI Patent), DE, DE (europäisches Patent), DK, FI, FR (europäisches Patent), GA (OA-PI Patent), GB, GB (europäisches Patent), HU, IT (europäisches Patent), JP, KP, KR, LK, LU, LU (europäisches Patent), MC, MG, ML (OAPI Patent), MR (OAPI Patent), MW, NL, NL (europäisches Patent), NO, RO, SD, SE, SE (europäisches Patent), SN (OA-PI Patent), SU, TD (OAPI Patent), TG (OAPI Patent), US.

Veröffentlicht

Mit internationalem Recherchenbericht.

(54) Title: BONE CEMENT

(54) Bezeichnung: KNOCHENZEMENT

(57) Abstract

The diacrylate or dimethacrylate cement for bones contains particles which are resorbable by the bones, of apatite and/or bioceramic and/or bioglass. The tridimensional network of the organic matrix as well as the resorption of the charge particles contribute to improving the physical solidity and the biological compatibility with the bone tissue.

(57) Zusammenfassung

Der Knochenzement auf der Basis Diacrylat oder Dimethacrylat enthält vom Knochen resorbierbare Apatit- und/ oder Biokeramik/Bioglas-Partikel. Die dreidimensionale Vernetzung der organischen Matrix und die Resorbierbarkeit der Füllstoffpartikel ergeben eine verbesserte physikalische Festigkeit und optimale Biokompatibilität mit dem Knochengewebe.

BEST AVAILABLE COPY

LEDIGLICH ZUR INFORMATION

Code, die zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT	Österreich	FR	Frankreich	ML	Mali
ΑU	Australien	GA	Gabun	MR	Mauritanien
BB	Barbados	GB	Vereinigtes Königreich	MW	Malawi
BE	Belgien	HU	Ungarn	NL	Niederlande
BG	Bulgarien	IT	Italien	NO	Norwegen
BR	Brasilien	JP	Japan ·	RO	Rumānien
CF	Zentrale Afrikanische Republik	KP	Demokratische Volksrepublik Korea	SD	Sudan
CG	Kongo	KR	Republik Korea	SE	Schweden
CH	Schweiz	LI	Liechtenstein	SN	Senegal
CM	Kamerun	LK	Sri Lanka	SU	Soviet Union
DE	Deutschland, Bundesrepublik	LU	Luxemburg	TD	Tschad
DK	Dänemark	MC	Monaco	TG	Togo
FI	Finnland	MG	Madagaskar	US	Vereinigte Staaten von Amerika

1

Knochenzement

Die Erfindung betrifft einen Knochenzement, der durch Aktivierung einer oder Vermischung mehrerer Komponenten zur Aushärtung gebracht werden kann, mit einer flüssigen, polymerisierbaren Phase, einem Gehalt an Füllstoffpartikeln und einem Polymerisationsaktivator.

Die bisher bekannt gewordenen Knochenzemente wurden primär als Verankerungsmaterial für Hüftgelenkprothesen entwickelt und eingesetzt. Sie basieren ausnahmslos auf der Basis Methylmethacrylat (MMA) als organischer Matrix, vereinzelt auch mit plastifizierenden Zusätzen, beispielsweise Butylmethacrylat. Bedingt durch diesen einfachen chemischen Aufbau ist nur eine lineare Vernetzung der organischen Matrix möglich, was, unter Berücksichtigung der allgemein ungenügenden Vermischungstechnik und der anwendungsbedingten Verunreinigung des Knochenzementes mit Körperflüssigkeiten, zu einer extrem schwachen physikalischen Festigkeit und geringen Langzeitstabilität des auspoylmerisierten Knochenzementes führt.

Als weiterer Nachteil herkömmlicher Knochenzemente kommt deren, aufgrund der hohen Monomertoxizität des verwendeten Methylmethacrylats bedingte, Inkompatibilität mit dem Knochengewebe hinzu, was zusammen mit der ohnehin schlechten physikalischen Festigkeit zu hohen Lockerungsraten (bei Implantaten), Brüchen, Desintegration, Abstossung durch das Knochengewebe, Entzündun-

gen und Nekrotisierung des Knochengewebes und anderen unerwünschten Schädigungen sowohl kurzfristiger als auch langfristiger Natur führt.

Eine Beimengung von bioinertem Hydroxylapatit zu einem solchen konventionellen Knochenzement, wie beispielsweise in der EU-B1 Verbesserung der keiner 0'006'414 offenbart, zu führte vorhandenen Noxen **Uebermass** die im Kompatibilitāt, da Polymerisationsbeschleuniger, (Methylmethacrylat, toxische Exotherme) dies verunmöglichen.

kein konventioneller Aus diesem Grunde konnte bis heute eigentliches Knochenersatz-Knochenzement als oder Knochenverbundmaterial verwendet die werden und beruht Operationstechnik im Frakturbereich nach wie vor auf Verwendung von Drahtligaturen oder Miniplatten.

Es bestand daher die Aufgabe, einen Knochenzement zu finden, der einerseits eine reproduzierbar höhere, physikalische und chemische Festigkeit und Langzeitstabilität und anderseits eine echte Biokompatibilität mit dem Knochen- und Weichteilgewebe (z.B. Dura, Bindegewebe, Flimmerepithel) aufweist.

Die Erfindung löst die gestellte Aufgabe mit einem Knochenzement, der die Merkmale des Anspruchs 1 aufweist.

Die besonderen Vorteile des erfindungsgemässen Knochenzementes liegen darin, dass einerseits durch Verwendung von Diacrylaten oder Dimethacrylaten, bzw. von Präpolymeren davon, eine dreidimensionale Vernetzung des ausgehärteten Knochenzementes

resultiert mit einer langfristig signifikant höheren, physikalischen Festigkeit und anderseits die Resorbierbarkeit der Füllstoffpartikel ein Einwachsen des Knochengewebes in den Knochenzement ermöglicht und keine bindegewebige Umscheidung ausgebildet wird.

Ueberraschenderweise ergaben die radiologischen und histologischen Untersuchungen einen bisher nie beobachteten, direkten Knochen-Knochenzement-Kontakt mit teilweiser Verzahnung ohne jedes Anhaltszeichen für eine Primärnekrose. Bei der erfindungsgemässen Knochenzementes Verwendung des Schädelchirurgie für die Ueberbrückung von Kalotten-, Dura mater-, Unterkieferknochen- und Gehörhinterwand-Defekten, bzw. Refixation der Vorderwand des Sinus frontalis traten keine entzündlichen Reaktionen der Weichgewebe auf. Auch bei der direkten Ueberkappung von Zahnpulpen (Pulpawundverband) ergab einwandfreier Defektverschluss sich ein mit teilweise kanalisiertem Dentin unter unmittelbarer Anlagerung, d.h. ohne nekrotische Zwischenschicht, der neu gebildeten Hartsubstanz an den Knochenzement.

Diese echte Biokompatibilität, wie sie bisher von keinem der bekannten Knochenzemente auch nur annähernd erreicht wurde, konnte durch Elimination des hochtoxischen, in der überwiegenden bekannten Knochenzemente verwendeten Dimethyl-Anzahl der (DMPT) noch verbessert p-toluidins werde. Als besonders geeignete Polymerisationsbeschleuniger, welche für die vorgesehene Applikation die beste Gewebeverträglichkeit

4

aufweisen, erwiesen sich solche aromatische Amine, welche ein Molekulargewicht von mindestens 167, vorzugsweise mindestens 195 besitzen, beispielsweise Toluidin- oder Xylidin-Derivate, im speziellen das N,N-Bis-(2-hydroxyaethyl)-p-toluidin oder -xylidin.

Die Menge des zu verwendenden Polymerisationsbeschleunigers hängt u.a. von der gewünschten Verarbeitung- und Aushärtungszeit des Knochenzementes ab. Für einen schnellärtenden Knochenzement, wie er in der Schädelchirurgie und für kleiner Defekte bevorzugt wird, liegt der Gehalt an Beschleuniger typischerweise zwischen 0,7 und 1,8 Gew.%, vorzugsweise zwischen 1,00 und 1,25 Gew.%, der den Polymerisations-Gesamtgewicht bezogen auf das beschleuniger enthaltenden Komponente. Diese Gehaltsbereiche als Polymerisationsstarter statt falls können variieren, Benzoylperoxid ein anderer Katalysator verwendet wird, der Füllstoffanteil der Komponenten variiert wird oder Polymerisationsvorgang beeinflussende Additive zugesetzt werden.

Die im erfindungsgemässen Knochenzement verwendeten Füllstoffunterschiedliche Zusammensetzungen partikel können und geometrische Dimensionen aufweisen, welche dem spezifischen Anwendungszweck anzupassen sind. Die Verwendung von Apatit als Füllstoff in Form des penta-Calciumhydroxidtriphosphats oder des deka-Calciumdihydroxidhexaphophats ergab eine gute Verarbeitbarkeit und ein gutes Fliessvermögen der vermischten Knochenzementmasse. Durch seine grosse Aehnlichkeit mit dem natürlichen Knochenmaterial ergab sich auch eine ausgezeichnete Verträglichkeit.

Entgegen den in der Literatur vorgebrachten Bedenken bei der Verwendung poröser Apatitteilchen hat sich beim erfindungsgemässen Knochenzement ein Porenvolumen der Füllstoffpartikel von mindestens 0,2 ml/g, vorzugsweise von 0,3 ml/g überraschenderweise als besonders günstig für dessen physikalische Eigenschaften erwiesen.

Die zusätzliche Verwendung von biokeramischen Materialien und Gläsern in Form von Splittern oder Kugeln ergab eine schnellere Resorption mit zusätzlichen Verankerungsstellen für den wachsenden Knochen. Der Gehalt an biokeramischem Material oder Glas beträgt vorzugsweise höchstens 30 Gew. bezogen auf die gesamte Menge des Füllstoffes. Zwei besonders geeignete biokeramische Materialien weisen folgende Zusammensetzungen auf:

	Biokeramik 1	Biokeramik 2
	(Gew.%)	(Gew. %)
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Siliziumdioxid	42,4	40,0
Calciumoxid	22,0	24,5
Phosphorpentoxid	11,2	6,0
Natriumoxid	24,4	24,5
Berylliumoxid		5,0

Diese Zusammensetzungen werden bei ca. 1450°C erschmolzen, in Formen gegossen und abgekühlt. Anschliessend wird bei 700-750°C während etwa 2 Stunden thermisch behandelt um Misch-Kristallphasen vom Typ Larnit (ca. 23 Vol.%) und Devritit (ca.

68 Vol.%) zu erhalten. Als besonders bioinerte Biokeramik hat sich eine solche herausgestellt, welcher zusätzlich 5-10 Gew.% Lantanoxid (La₂O₃) zugesetzt wurde und welche die Bildung einer Apatitphase vom Typ (Ca,La)₅ (PO₄)₃ ermöglicht.

Eine weitere bedeutende Verbesserung des erfindungsgemässen Knochenzementes ergab sich durch zusätzliche Beimischung von Calciumhydroxid, resp. Calciumoxid. Der damit angereicherte Knochenzement kann durch seine erhöhte Adhäsionsfähigkeit und am Knochen Benetzbarkeit des Knochens mit Leichtigkeit appliziert werden ohne den bekannten Retraktionseffekt. Das mit Calciumhydroxidzusatz erzeugte alkalische Milieu, mit 10, wirkte kurzfristig erreichten pH-Wert zudem VOD entzündungshemmend. Das Calciumhydroxid kann entweder einer der Knochenzementes beiden redoxhärtenden Komponenten des beigemischt oder als dritte Komponente, zweckmässigerweise in auf Epoxidharz- oder Weichmacherbasis, Paste einer Form eingesetzt werden. Vorteilhafterweise sind bei einer Beimischung Calciumhydroxid nur solche Monomeren in der betreffenden die keine freien Hydroxylgruppen verwenden, Komponente zu eine unerwünschte Hydrolyse des Monomers aufweisen, um zu Als für diesen Zweck geeignete Harze haben sich vermeiden. vorallem Dimethacrylate mit Urethanbausteinen herausgestellt, das 1,6-Bis[methacryloxy-ethoxy-carboxbeispielsweise wie amido]-2,2,4(2,4,4)-trimethylhexan.

Der Gehalt an Calciumhydroxid beträgt vorzugsweise zwischen 10-25 Gew. bezogen auf das Gesamtgewicht der Knochenzementmasse.

erfindungsgemässen Knochenzement Als für den geeignete Dimethacrylate oder sich insbesondere Diacrylate haben höhermolekulare Dimethacrylate, vorzugsweise vom Bisphenol A Typ erwiesen. Speziell geeignet ist das 2,2-Bis[4-(2-hydroxy-3methacroyloxy-propoxy)phenyl]propan, das zweckmässigerweise mit niedrigmolekulareren, dünnflüssigen einem Diacrylat Dimethacrylat verdünnt wird. Der Gehalt an Diacrylat, bzw. Dimethacrylat beträgt vorteilhafterweise zwischen 30 und 50 Gew.%, vorzugsweise zwischen 35 und 45 Gew.% der einzelnen mit Füllstoff angereicherten Komponenten, mit einem Anteil von 30-50 höhermolekularen Dimethacrylaten, vorzugsweise Gew. % MOV Bisphenol A Typ.

Zur Unterdrückung einer durch den Luftsauerstoff bewirkten Polymerisationsinhibierung an der Oberfläche des aushärtenden Knochenzementes hat sich die zusätzliche Beimischung von 1-5 Gew. 2,2-Bis[4-methacroyloxy-phenyl]propan als zweckmässig erwiesen.

Für Anwendungen bei denen grössere Mengen an Knochenzement zum Auspolymerisieren gebracht werden müssen, beispielsweise zur Implantation von Hüftgelenkprothesen, und demzufolge eine erhebliche Exotherme auftritt, hat sich überraschenderweise gezeigt, dass die Wärmeentwicklung durch zusätzliche Verwendung

8

von 0,1 bis 2,0 Gew. (bezogen auf die Menge der flüssigen Phase) eines Menthadiens, vorzugsweise von 1-Methyl-4-isopropyl-cyclohexadien-(1.8) drastisch reduzieren lässt bei gleichbleibender Aushärtungszeit.

Den eingesetzten Diacrylaten, bzw. Dimethacrylaten können die üblichen Stabilisatoren (z.B. 2,6-Di-tert.butyl-phenol), UV-Absorber, Thixotropiermittel (mikrofeine Kieselsäure) und andere geeignete Additive zugesetzt werden. Für Anwendungen bei denen eine spätere röntgenologische Kontrolle wichtig ist, können 5-10 Gew. eines Röntgenopakmittels (z.B. Zirkondioxid) zugesetzt werden.

Für bestimmte Anwendungszwecke kann es vorteilhaft sein, dem erfindungsgemässen Knochenzement Weichmacher zur Verringerung der Sprödigkeit zuzusetzen. Gut geeignet sind besonders solche auf Basis von hochmolekularen Polyurethanen, Polycarbonaten, Polyestern und Polyäthern, beispielsweise dem Nonylphenolpolyglykol-ätheracetat.

Günstige Darbietungsformen für ein mit Peroxid und Beschleuniger aktiviertes System sind die 2-Pasten-Form (Radikalstarter in der einen Paste / Beschleuniger in der anderen Paste) und das Pulver-Flüssigkeit-System (Radikalstarter im Pulver / Beschleuniger in der Flüssigkeit), wobei die Aushärtung durch Vermischen beider Pasten, bzw. durch Mischen des Pulvers mit der Flüssigkeit eingeleitet wird.

Es ist jedoch auch möglich, einphasige Knochenzemente herzustellen, die unter Einwirkung von elektromagnetischer Strahlung, z.B. UV-Licht, sichtbares Licht oder Laserlicht polymerisieren und dann einen Photopolymerisationsinitiator (z.B Benzoin und dessen Derivate) und gegebenenfalls auch einen Polymerisationsbeschleuniger dafür enthalten.

Der erfindungsgemässe Knochenzement eignet sich insbesondere für die folgenden Applikationen:

#### 1. In der Schädel-/Gesichtschirurgie:

- 1.1. Zur Auffüllung von Knochendefekten im Schädelbereich und zur Knochensplitterfixation.
- 1.2. Zur Auffüllung kleinerer Knochendefekte bei anderen Knochen, z.B. als Ersatz für Schrauben und Ligaturen.
- 1.3. Zur Reposition von osteotomierten, autogenen Knochentransplantaten, bzw. zur Fixation von Alloimplantaten am Knochen.

#### 2. Im Dentalbereich:

- 2.1. Als Primärfixation zur Stabilisierung von oralen Implantaten.
- 2.2. Als Ersatzdentin bei der Eröffnung der vitalen Pulpa (Pulpa-Ueberkappung).
- 2.3. Als Wurzelfüllmaterial.
- 2.4. Zur retrograden Wurzelspitzenfüllung mit Knochendefekt-auffüllung apikal.
- 2.5. Zur Apikalverankerung lockerer Zähne.

#### 3. In der HNO-Chirurgie:

- 3.1. Zur Rekonstruktion der hinteren Gehörgangwand bei Radikaloperationen wegen Mittelohrcholesteatom.
- 3.2. Zur Verkleinerung von Radikalhöhlen.
- 3.3. Zur Gehörknöchelchenrekonstruktion, vor allem nach Frakturen.

#### 4. In der Orthopädie:

4.1. Zur Zementierung von künstlichen Gelenkkomponenten, insbesondere Hüft- und Kniegelenken.

Nachfolgend wird an Hand von Beispielen die Erfindung näher erläutert. Die Tabellen zeigen dabei die chemische und gewichtsmässige Zusammensetzung der verschiedenen Komponenten.

Zusammensetzung	Komponente 1 (Gew%)	Komponente 2 (Gew%)	Komponente 3 (Gew%)	Komp. 4 (Gew%)	Komp. 5 (Gew. %)	Komp. 6 (Gew.Z)	Komp. 7 (Gew.Z)
2,2-Bis[4-(2-hydroxy-3-methacroyloxy-propoxy)-phenyl]propan	14,0	14,0		19,4	19,4	23,57	25,39
2,2-Bis[4-methacroyloxy-phenyl]propan	2,0	2,0		2,8	2,8		
Triaethylenglykol- dimethacrylat	22,4	22,4	•	31,1	31,1	23,57	25,39
Benzoylperoxid	1,61			2,2			0,92
N,N-Bis-(2-hydroxyaethyl)- p-toluidin		1,125			1,6	0,48	
Са ₅ (РО ₄ ) ₃ ОН	59,99	60,475		44,36	45,1	26,19	48,284
Calciumhydroxid			100			26,185	
1,6-Bis[methacryloxy-ethoxycarboxamido]2,2,4(2,4,4)-trimethylhexan							
Mikrofeine Kieselsäure							
Stabilisator				0.14		0.005	0.016
Weichmacher							
Zirkondioxid							

abelle

Tabelle 2

<u>e</u>									
Lusammensetzung (Gew.%)	Komp. 8	Комр. 9	Komp.10	Komp. 11	Комр. 12	Komp.13	Komp.14	Komp. 15	Комр.16
2,2-Bis[4-(2-hydroxy-3- methacroyloxy-propoxy)- phenyl]propan		24,27		28,63	. 29,12	21,75	21,52	7,23	7,16
2,2-Bis[4-methacroyloxy- phenyl]propan						-			
Triaethylenglykol- dimethacrylat	25,514		23, 66	28,63	29,12	21,75	21,52		
Benzoylperoxid				1,03	·	.0,78			66.0
N,N-Bis-(2-hydroxyaethyl)- p-toluidin					0,59		0,43	0,7	•••
Са ₅ (РО ₄ ) ₃ ОН	35,9	36,59	38,1	41,53	41,164	55,707	56,526		
Calciumhydroxid	12,82	14,63	14,3						
1,6-Bis[methacryloxy-ethoxy-carboxamido]2,2,4(2,4,4)- trimethylhexan	25,51	24,27	23,7						
Mikrofeine Kieselsäure								7,0	7,0
Stabilisator				0,018	90.0*0	0.013	0.004		0.04
UV-Absorber	0,256	0.24	0,24	·					
Welchmacher								1	54.81
						-		30,0	30,0

÷

#### Beispiel 1:

Von den beiden getrennt in Spritzen aufbewahrten Komponenten 1 und 2 wurden je 0,3 g während 30 Sekunden miteinander vermischt und zur Auffüllung eines Tibiadefektes bei 37°C verwendet. Die Aushärtungszeit betrug 2,75 Minuten und die dabei erreichte Höchsttemperatur 44°C.

Die Probe war ausgezeichnet ausgehärtet, insbesondere auch an deren Oberfläche.

#### Beispiel 2:

Je 0,3 g der Komponenten 1 und 2 wurden mit 0,06 g der Komponente 3 vermischt und analog zu Beispiel 1 appliziert. Man erhielt neben einer verbesserten Handhabung der Knochenzementmasse die gleichen vorteilhaften Resultate wie in Beispiel 1.

#### Beispiel 3:

Je 0,2 g der Komponenten 4 und 5 wurden während 30 Sekunden vermischt und zur Auffüllung eines Defektes an einem Modellknochen bei 23°C verwendet. Die Aushärtung erfolgte nach ca. 3 Minuten mit einer Höchsttemperatur von 28°C.

Bei Verwendung von je 0,3 g der beiden Komponenten bei 37°C erfolgte die Aushärtung innerhalb von ca. 2,75 Minuten mit einer Maximaltemperatur von 44°C.

Die Oberflächen der ausgehärteten Proben waren alle gut auspolymerisiert.

Dieses 2-Komponentensystem wurde als Ueberkappungsmaterial verwendet und zeigte auch histologisch gute Ergebnisse.

Ĩ

#### Beispiel 4:

Gleiche Mengen der Komponenten 6 und 7 wurden während 60 Sekunden vermischt und für eine direkte Pulpaüberkappung verwendet. Es traten postoperativ keine Komplikationen auf. Die histologische Aufarbeitung ergab ebenfalls ausgezeichnete Ergebnisse.

#### Beispiel 5:

Je eine Probe der Einkomponentensysteme 8,9 und 10 wurden zur direkten Pulpaüberkappung verwendet und mit einer UV-Lampe innerhalb von 20 bis 40 Sekunden an Ort und Stelle ausgehärtet. Die Aushärtung erfolgte auch im UV-Lichtschatten, so dass ein durchgehend auspolymerisiertes Material resultierte.

Die Laborprüfung des ausgehärteten Materials ergab einen pH-Wert zwischen 9,2 und 11,0.

#### Beispiel 6:

Gleiche Mengen (0,225 g) der Komponenten 11 und 12 wurden während 30 Sekunden miteinander vermischt und zur Rekonstruktion einer Gehörhinterwand verwendet. Sowohl konsistenzmässig (eher dünnflüssig) als auch von der Aushärtungszeit (ca. 2,5 min) ist das Material für diesen Zweck gut geeignet.

#### Beispiel 7:

Gleiche Mengen (0,25 g) der Komponenten 13 und 14 wurden während 30 Sekunden miteinander vermischt und zur Defektauffüllung bei Wurzelspitzenresektionen verwendet. Im Vergleich zum Material gemäss Beispiel 6 war die Konsistenz eher dick, die exotherme Reaktion geringer (ca. 50°C) und die Aushärtungszeit leicht kürzer (2 min).

#### Beispiel 8:

Gleiche Mengen (0,1 g) der Komponenten 15 und 16 wurden während 60 Sekunden vermischt und als Wurzelfüllungsmaterial verwendet. Die Aushärtungszeit betrug 15 Minuten.

\$

#### Patentansprüche

- 1. Knochenzement der durch Aktivierung einer oder Vermischung mehrerer Komponenten zur Aushärtung gebracht wird, mit einer flüssigen, polymerisierbaren Phase, einem Gehalt an Füllstoffpartikeln und einem Polymerisationsaktivator, dadurch gekennzeichnet, dass die flüssige Phase mindestens teilweise auf einem Diacrylat oder Dimethacrylat basiert und dass mindestens ein Teil der Füllstoffpartikel anorganischer Natur und mindestens teilweise vom Knochen resorbierbar sind.
- 2. Knochenzement nach Anspruch 1, dadurch gekennzeichnet, dass eine Komponente als Polymerisationsbeschleuniger ein aromatisches Amin mit einem Molekulargewicht von mindestens 157, vorzugsweise mindestens 195, beispielsweise ein Toluidin- oder Kylidinderivat enthält.
- 3. Knochenzement nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die anorganischen Füllstoffpartikel, vorzugsweise in einer Menge von 31 bis 70 Gew. 2, mindestens teilweise aus Apatit, vorzugsweise in Form des penta-Calciumhydroxidtriphosphats oder des deka-Calciumdihydroxidhexaphosphats, bestehen.
- 4. Knochenzement nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Füllstoffpartikel ein Porenvolumen von mindestens 0,2 ml/g, vorzugsweise von mindestens 0,3 ml/g, aufweisen.

- 5. Knochenzement nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Füllstoffpartikel mindestens teilweise aus vorzugsweise eine Apatitphase enthaltenden biokeramischem Material oder Biogläsern bestehen, vorzugsweise in einer Menge von höchstens 30 Gew. 2 bezogen auf das gesamte Füllstoffgewicht.
- 6. Knochenzement nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass mindestens 5 Gew.*, vorzugsweise mehr als 10 Gew. * der Füllstoffpartikel einen Durchmesser von weniger als 35μ, vorzugsweise von weniger als 25μ aufweist.
- 7. Knochenzement nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass ein Teil der Füllstoffpartikel, vorzugsweise 60 bis 70 Gew. bezogen auf das Gesamtgewicht der Knochenzementmasse, aus feinkörnigen Kunststoffperlen, vorzugsweise aus einem Methylmethacrylat/Methylacrylat/Copolymer, besteht.
- 8. Knochenzement nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass als selbständige Komponente oder als Zumischung zu einer oder mehreren der Knochenzement-Komponenten Calciumhydroxid oder Calciumoxid verwendet wird.
- 9. Knochenzement nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die flüssige Phase ein Bisphenol A Derivat enthält, beispielsweise das 2,2-Bis[4-(2-hydroxy-3-

methacroyloxy-propoxy)phenyl]propan, vorzugsweise verdünnt mit einem niedrigmolekulareren, dünnflüssigeren Diacrylat oder Dimethacrylat.

- 10. Knochenzement nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die flüssige Phase zusätzlich ein Menthadien-Derivat, vorzugsweise 1-Methyl-4-isopropyl-cyclo-hexadien-(1.8), enthält.
- 11. Knochenzement nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die flüssige Phase mindestens teilweise ein Urethandimethacrylat, vorzugsweise das 1,6-Bis[methacryloxy-ethoxy-carboxamido]-2,2,4(2,4,4)-trimethylhexan, enthält.
- 12. Knochenzement nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die flüssige Phase zusätzlich einen Gehalt an 2,2-Bis[4-methacroyloxy-phenyl]propan aufweist.
- 13. Verwendung des Knochenzementes nach einem der Ansprüche 1 bis 12 für prothetische Zwecke, insbesondere für die Auffüllung und Ueberbrückung von Knochendefekten, Fixation von Implantaten, Pulpaüberkappungen und Wurzelfüllungen.

# INTERNATIONAL SEARCH REPORT

International Application No PCT/CH 86/00092

I. CLAS	SIFICATION OF SUBJECT MATTER (if several cla	esification symbols apply, Indicate all) 4	
Accordin	ng to International Patent Classification (IPC) or to both i	National Classification and IPC	
Int	t.Cl. 4 A 61 L 25/00; A 61 K	6/08 ⁻	
	S SEARCHED		
	Minimum Docur	nentation Searched 7	
Classificat	ilon System	Classification Symbols	
Int	.Cl. 4 A 61 L		
		or than Minimum Documentation nts are included in the Fields Searched	
		•	
III. DOCI	UMENTS CONSIDERED TO BE RELEVANT!		
Category *			
or regory	Citation of Document, 11 with Indication, where a	ppropriate, of the relevant passages 12	Relevant to Claim No. 13
X	EP, A, 0123323 (ESPE) 31 page 8, lines 20-26; par	October 1984, see agraph 1; claims 1.2	1,3,7,9
Y			2,4-6,8,12 13
Y	US, A, 4243763 (H. ARGENSEE COLUMN 12, lines 62-	TAR) 06 January 1981 63	2
Y	EP, A, 0026090 (KUREHA KA see claims 5,6,10	AGAKU) 01 April 1981	, 4,6
Y	FR, A, 2297887 (ERNST LE: see claims 1,2,5,13-16	ITZ) 13 August 1976,	5,8
Y	US, A, 4404327 (A.M. CRUC September 1983, see colum	GNOLA ET AL.) 13 nn 7, lines 4-14	12
Y	EP, A, 0017937 (KANEBO) 2 see page 9, paragraph 14	29 October 1980,	9
	· ——		./.
• Special	categories of cited documents: 19	TTO letes described to the second	
"A" docu	iment defining the general state of the art which is not	"T" later document published after the or priority date and not in conflict	with the englication had I
cons	lidered to be of particular relevance	cited to understand the principle invention	or theory underlying the
filing	er document but published on or after the international plate.	"X" document of particular relevance	the claimed invention
with C	ment which may throw doubts on priority claim(s) or his cited to establish the publication date of another	cannot be considered novel of convolve an inventive step	
*O* docu	iment referring to an oral disclosure, use, exhibition or	"Y" document of particular relevance, cannot be considered to involve an document is combined with one or	inventive etan when the I
"P" docu	ment published prior to the international filling date had	ments, such combination being ob- in the art.	rious to a person skilled
METRI	then the priority date claimed	"&" document member of the same pat	ent family
	FICATION		
	Actual Completion of the International Search	Date of Mailing of this International Sean	ch Report
	eptember 1986 (09.09.86)	20 October 1986 (2	0.10.86)
	Dean Patent Office	Signature of Authorized Officer	
			1

	International Application No.	T/CH 86/00092
III. DOCU	MENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHE	
Category *	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No
		100012111 100 002115 110
Y	DE, A, 1921869 (ESPE) 09 July 1970, see examples 10,11,13; page 4	9,12
A	CH, A, 629517 (OSTEO) 30 April 1982, see claims 1-3	3
	•	
	•	
	• • • • • • • • • • • • • • • • • • •	
		·
		-
		,
	1 :	-
	·	- -
		<u>.</u>
	·	

# ANNEX TO THE INTERNATIONAL SEARCH REPORT ON

INTERNATIONAL APPLICATION NO. PCT/CH 86/00092 (SA

13630)

This Annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 24/09/86

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

cited	t document in search eport	Publication date	Patent f member	<b>—</b>	Publication date
EP-A-	0123323	31/10/84	DE-A-	3314977	31/10/84
US-A-	4243763	06/01/81	US-A-	4390714	28/06/83
EP-A-	0026090	01/04/81	JP-A- US-A- CA-A- CA-A- US-A- US-A-	56045814 4330514 1158017 1162380 4448758 4548959	25/04/81 18/05/82 06/12/83 21/02/84 15/05/84 22/10/85
FR-A-	2297887	13/08/76	DE-A,B,C GB-A- US-A- JP-A- CH-A- AT-B-	2501683 1505815 4131597 51098754 618716 356281	29/07/76 30/03/78 26/12/78 31/08/76 15/08/80 25/04/80
US-A-	4404327	13/09/83	None		
EP-A-	0017937	29/10/80	JP-A- US-A-	55137178 4308014	25/10/80 29/12/81
DE-A-	1921869	09/07/70	NL-A- DE-A- FR-A- GB-A- GB-A- BE-A- CH-A- CA-A- US-A- SE-B-	6907472 1921870 2008541 1263541 1267564 733062 557674 957100 966500 3923740 358807	18/11/69 18/12/69 23/01/70 09/02/72 22/03/72 14/11/69 15/01/75 29/10/74 22/04/75 02/12/75 13/08/73
CH-A-	629517	30/04/82	None		

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

## INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen PCT/CH 86/00092

	ASSIELYATION DES ANNE SUNGSSESSIONALES	·	20,00032
	ASSIFIKATION DES ANMELDUNGSGEGENSTANDS (be		inzugeben)6
	ch der Internationalen Patentklassifikation (IPC) oder nach de	er nationalen Klassifikation und der IPC	
Int. Cl 4	A 61 L 25/00; A 61 K 6/08		
IL DEC	CHERCHIERTE SACHGEBIETE		
11. 1120		A4. 1	
Vigerifii		Mindestprüfstoff ⁷	
K1822111	kationssystem	Klassifikationssymbole	
Int. Cl.4	A 61 L		
	АОГЪ	•	
		f gehörende Veröffentlichungen, soweit diese	
<u> </u>	Officer die recherchiei	rten Sachgebiete fallen ⁸	
	•	•	
	SCHLÄGIGE VERÖFFENTLICHUNGEN9		
Art*	Kennzeichnung der Veröffentlichung ¹¹ , soweit erfordert	ich unter Angabe der maßgeblichen Teile 12	Betr. Anspruch Nr. 13
X	EP, A, 0123323 (ESPE) 31. 01	ktober 1984, siehe	1,3,7,9
	Seite 8, Zeilen 20-26; I	Beispiel 1: Ansprüche	,,,,,,
	1,2		
Y			2,4-6,8,12,
i			13
			13
Y	US, A, 4243763 (H. ARGENTAR)	6. Januar 1981, siehe	2
	Spalte 12, Zeilen 62-63		
	****	•	
Y	EP, A, 0026090 (KUREHA KAGAI	KU) 1. April 1981.	
	siehe Ansprüche 5,6,10		4,6
		·	1,0
Y	FR, A, 2297887 (ERNST LEITZ)	13. August 1976.	
	siehe Ansprüche 1,2,5,13	3-16	5,8
			3,0
Y	US, A, 4404327 (A.M. CRUGNOI	LA ET AL.) 13.	
	September 1983, siehe Sp	palte 7. Zeilen 4-14	12
		.,	
· Y	EP, A, 0017937 (KANEBO) 29.	Oktober 1980, siehe	9
	Seite 9, Beispiel 14	, , , , ,	
* Besond	dere Kategorien von angegebenen Veröffentlichungen 10.		
"A" Ver	offentlichung, die den allgemeinen Stand der Technik	"T" Spätere Veröffentlichung, die nach den	n internationalen An-
	iniert, aber nicht als besonders bedeutsam anzusehen ist	meldedatum oder dem Prioritätsdatum ist und mit der Anmeldung nicht kollid	veröffentlicht worden
tion	res Dokument, das jedoch erst am oder nach dem interna- nalen Anmeldedatum veröffentlicht worden ist	Verstandnis des der Erfindung zugruf	ideliegenden Prinzins
"L" Ver	öffentlichung, die geeignet ist, einen Prioritätsanspruch	oder der ihr zugrundeliegenden Theorie	angegeben ist
ZW8	eifelhaft erscheinen zu lassen, oder durch die das Veröf-	"X" Veröffentlichung von besonderer Bedeu te Erfindung kann nicht als neu oder au	tung; die beanspruch-
nanr	tlichungsdatum einer anderen im Recherchenbericht ge- nten Veröffentlichung belegt werden soll oder die aus einem	keit beruhend betrachtet werden	crimderischer Lang-
and	eren besonderen Grund angegeben ist (wie ausgeführt)	"Y" Veröffentlichung von besonderer Bedeu	tung; die beanspruch-
"O" Verd	öffentlichung, die sich auf eine mündliche Offenbarung,	te Erfindung kann nicht als auf erfind ruhend betrachtet werden, wenn die '	erischer Tätigkeit be-
bezi	Benutzung, eine Ausstellung oder andere Maßnahmen ieht	einer oder mehreren anderen Veröffentl	ichungen dieser Kate-
"P" Verd	öffentlichung, die vor dem internationalen Anmeldeda-	gorie in Verbindung gebracht wird und einen Fachmann naheliegend ist	diese Verbindung für
tum,	, aber nach dem beanspruchten Prioritätsdatum veröffent-	"&" Veröffentlichung, die Mitglied derselben	Paraeria—III- 1
iicut	t worden ist	- volumentationally, and writing derseaben	र बर्द्धारावणा॥ <b>१ ।\$</b> र
	HEINIGUNG		
Datun	n des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherch	nenberichts
9 00	antember 1996		
J. BE	eptember 1986	2 0 OCT 1986	
Intern	nationale Recherchenbehorde	Unterschrift des bevollmächnigen Bedienste	ten /
	Community of the second	M. VAN MOL	
	Europäisches Patentamt	but a variables	

Art *		VERÖFFENTLICHUNGEN (Fortsetzung von Blatt 2)	Betr. Anspruch Nr.
-		The second secon	
Y	DE,	A, 1921869 (ESPE) 9. Juli 1970, siehe Beispielen 10,11,13; Seite 4	9,12
1	CH,	A, 629517 (OSTEO) 30. April 1982, siehe Ansprüche 1-3	3
		-	
			•
		·	
		•	
			•
		•	
		·	
		•	
		- }	
		·	
			•
		·	
			•
			•

# ANHANG ZUM INTERNATIONALEN RECHERCHENBERICHT UBER DIE

INTERNATIONALE PATENTANMELDUNG NR. PCT/CH 86/00092

(SA 13630)

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten internationalen Recherchenbericht angeführten Patentdokumente angegeben. Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am 24/09/86

Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

Im Recherchenbe- richt angeführtes Patentdokument	Datum der Veröffent- lichung	Mitglied Patentfa	l(er) der milie	Datum der Veröffent- lichung
EP-A- 0123323	31/10/84	DE-A-	3314977	31/10/84
US-A- 4243763	06/01/81	US-A-	4390714	28/06/83
EP-A- 0026090	01/04/81	JP-A- US-A- CA-A- CA-A- US-A- US-A-	56045814 4330514 1158017 1162380 4448758 4548959	25/04/81 18/05/82 06/12/83 21/02/84 15/05/84 22/10/85
FR-A- 2297887	13/08/76	DE-A,B,C GB-A- US-A- JP-A- CH-A- AT-B-	2501683 1505815 4131597 51098754 618716 356281	29/07/76 30/03/78 26/12/78 31/08/76 15/08/80 25/04/80
US-A- 4404327	13/09/83	Keine		
EP-A- 0017937	29/10/80	JP-A- US-A-	55137178 4308014	25/10/80 29/12/81
DE-A- 1921,869	09/07/70	NL-A- DE-A- FR-A- GB-A- GB-A- BE-A- CH-A- CA-A- CA-A- US-A- SE-B-	6907472 1921870 2008541 1263541 1267564 733062 557674 957100 966500 3923740 358807	18/11/69 18/12/69 23/01/70 09/02/72 22/03/72 14/11/69 15/01/75 29/10/74 22/04/75 02/12/75 13/08/73
CH-A- 629517	30/04/82	Keine		

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потибр.

# IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.