Simplex method

Online lecture Thinh Tien Nguyen, Ph.D.

Linear program

maximize

$$y = c^T x$$

subject to

$$Ax \leq b$$

$$x \ge 0$$

where $x,c\in\mathbb{R}^n$

$$A \in \mathbb{R}^{m imes n}$$

$$b \in \mathbb{R}^m \ b \ge 0$$

maximize

$$y = 4x_1 + 3x_2$$

subject to

$$egin{aligned} 4x_1 + 2x_2 & \leq 8 \ x_1 + x_2 & \leq 3 \ x_1, x_2 & \geq 0 \end{aligned}$$

$$egin{align} x &= egin{pmatrix} x_1 \ x_2 \end{pmatrix}, c &= egin{pmatrix} 4 \ 3 \end{pmatrix} \ A &= egin{pmatrix} 4 & 2 \ 1 & 1 \end{pmatrix} \ b &= egin{pmatrix} 8 \ 3 \end{pmatrix} \ \end{array}$$

Standard form

maximize

$$y = c^T x + 0s$$

subject to

$$Ax + s = b$$

$$x,s \geq 0$$

where x,

$$x,c\in\mathbb{R}^n$$

$$A \in \mathbb{R}^{m imes n}$$

$$b \in \mathbb{R}^m$$

$$s \in \mathbb{R}^m$$
 slack variables

Simplex method

maximize

y

subject to

$$egin{aligned} y-c^Tx+0s&=0\ 0y+Ax+s&=b\ \hline x,s&>0 \end{aligned}$$

$$x=0\Rightarrow s=b,y=0$$

 \boldsymbol{x} nonbasic variables

S basic variables

$$s_i \leftrightarrow x_j$$

 x_j entering variable

 s_i leaving variable

 $\begin{array}{c} \operatorname{Basic} \\ \operatorname{variables} \\ s \end{array}$

y	x	s	r.h.s
1	$-c^T$	0	0
0	A	I	b

Entering: $\min -c_j^T$

Leaving: $a_{ij} > 0$, min $\frac{b_i}{a_{ij}}$

Basic	y	•••	x_j	• • •		s_i	• • •	r.h.s
variables	1	•••	$-c_j^T$	• • •	• • •	0	• • •	0
•	:		•			:		:
s_i	0	• • •	a_{ij}	• • •	• • •	1	• • •	b_i
•	:		:			:		•

Dagia	y	• • •	x_{j}	• • •	• • •	s_i	• • •	r.h.s
Basic variables	1		0	• • •	• • •	$\frac{c_j^T}{a_{ij}}$	• • •	$\frac{b_i c_j^T}{a_{ij}}$
:	:		:			•		•
x_{j}	0	• • •	1	• • •	• • •	$\frac{1}{a_{ij}}$	• • •	$\frac{b_i}{a_{ij}}$
•	:		:			•		•

Gaussian elimination

Basic
variables

 x_j

y	• • •	x_j	• • •	• • •	s_i	• • •	r.h.s
1(0		• • •	$\frac{c_j^T}{a_{ij}}$		$\frac{b_i c_j^T}{a_{ij}}$
		:			•		:
0		1			1		b_i
					a_{ij}		a_{ij}
		:			:		:

Stop if the circled coefficients are non-negative

maximize

$$y = 4x_1 + 3x_2$$

subject to

$$egin{aligned} 4x_1 + 2x_2 & \leq 8 \ x_1 + x_2 & \leq 3 \ x_1, x_2 & \geq 0 \end{aligned}$$

maximize

y

subject to

$$egin{aligned} y-4x_1-3x_2-0s_1-0s_2&=0\ 0y+4x_1+2x_2+s_1+0s_2&=8\ 0y+x_1+x_2+0s_1+s_2&=3\ \hline x_1,x_2,s_1,s_2&>0 \end{aligned}$$

Basic variables

 s_1

 s_2

y	x_1	x_2	s_1	s_2	r.h.s
1	_4	-3	0	0	0
0	4	2	1	0	8
0	1	1	0	1	3

-4 is the smallest

Basic	y	x_1	x_2	s_1	s_2	r.h.s
variables	1	-4	-3	0	0	0
s_1	0	4	2	1	0	8
s_2	0	1	1	0	1	3

The smallest ratio is 8/4=2

ъ.	y	x_1	x_2	s_1	s_2	r.h.s
Basic	1	0		1	0	8
variables x_1	0	1	$\frac{1}{2}$	$\frac{1}{4}$	0	2
s_2	0	0	$\frac{1}{2}$	$-rac{1}{4}$	1	1
				-		

-1 is a negative number

Basic variables

 x_1

 x_2

y	x_1	x_2	s_1	s_2	r.h.s
1	0	0	$\frac{1}{2}$	2	10
0	1	0	$\frac{1}{2}$	-1	1
0	0	1	$-\frac{1}{2}$	2	2

$$(x_1, x_2) = (1, 2)$$