In [6]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
```

In [8]:

```
df=pd.read_csv("/home/iignis/Downloads/zoo (1).csv")
df.head()
```

Out[8]:

	animal_name	hair	feathers	eggs	milk	airborne	aquatic	predator	toothed	backbone	b
0	aardvark	1	0	0	1	0	0	1	1	1	
1	antelope	1	0	0	1	0	0	0	1	1	
2	bass	0	0	1	0	0	1	1	1	1	
3	bear	1	0	0	1	0	0	1	1	1	
4	boar	1	0	0	1	0	0	1	1	1	
4											•

In [9]:

```
class_type_output=df["class_type"]
df=df.drop("class_type", axis=1).drop("animal_name", axis=1)
print(df)
```

	hair	feathers	eggs	milk	airborne	aquatic	predator	toothed
\								
0	1	0	0	1	0	0	1	1
1	1	0	0	1	0	0	0	1
2	0	Θ	1	0	0	1	1	1
3	1	Θ	0	1	0	0	1	1
4	1	0	0	1	0	Θ	1	1
96	1	0	0	1	Θ	Θ	Θ	1
97	1	0	1	0	1	0	0	0
98	1	Θ	0	1	0	0	1	1
99	0	0	1	0	0	0	0	0
100	0	1	1	0	1	0	0	0

	backbone	breathes	venomous	fins	legs	tail	domestic	catsize
0	1	1	0	0	4	0	0	1
1	1	1	0	0	4	1	0	1
2	1	0	Θ	1	0	1	0	Θ
3	1	1	Θ	0	4	0	0	1
4	1	1	Θ	0	4	1	0	1
96	1	1	0	0	2	1	0	1
97	Θ	1	1	0	6	0	0	0
98	1	1	Θ	0	4	1	0	1
99	Θ	1	Θ	0	0	0	0	Θ
100	1	1	Θ	0	2	1	0	0

```
[101 rows x 16 columns]
```

In [10]:

x_train,x_test,y_train,y_test=train_test_split(df, class_type_output,test_size=0.20

In [14]:

```
from sklearn.tree import DecisionTreeClassifier
classifier = DecisionTreeClassifier()
classifier.fit(x_train, y_train)
```

Out[14]:

```
▼ DecisionTreeClassifier
DecisionTreeClassifier()
```

In [12]:

```
y_prediction = classifier.predict(x_test)
y_prediction
```

Out[12]:

```
array([3, 1, 7, 7, 1, 2, 3, 5, 6, 1, 1, 1, 7, 2, 1, 1, 7, 1, 1, 2, 1])
```

In [13]:

```
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
confusion matrix(y test,y prediction)
print(classification report(y test, y prediction))
print(accuracy score(y test, y prediction))
predicted class = list(y prediction)
actual class = list(y test)
for i in range(len(predicted class)):
    print("Predicted class =", predicted class[i],"\tActual class =",actual class[i]
              precision
                            recall f1-score
                                               support
                              1.00
           1
                   1.00
                                        1.00
                                                     10
           2
                   1.00
                              1.00
                                        1.00
                                                      3
           3
                   0.50
                              1.00
                                        0.67
                                                      1
           5
                              0.50
                                        0.67
                                                      2
                   1.00
           6
                   1.00
                              0.33
                                        0.50
                                                      3
                                                      2
           7
                   0.50
                              1.00
                                        0.67
                                        0.86
                                                     21
    accuracy
   macro avg
                   0.83
                              0.81
                                        0.75
                                                     21
weighted avg
                   0.93
                              0.86
                                        0.85
                                                     21
0.8571428571428571
Predicted class = 3
                         Actual class = 5
Predicted class = 1
                         Actual class = 1
Predicted class = 7
                         Actual class = 7
Predicted class = 7
                        Actual class = 6
Predicted class = 1
                        Actual class = 1
Predicted class = 2
                        Actual class = 2
Predicted class = 3
                         Actual class = 3
Predicted class = 5
                         Actual class = 5
Predicted class = 6
                         Actual class = 6
                         Actual class = 1
Predicted class = 1
Predicted class = 1
                         Actual class = 1
Predicted class = 1
                         Actual class = 1
Predicted class = 7
                         Actual class = 6
                         Actual class = 2
Predicted class = 2
Predicted class = 1
                         Actual class = 1
Predicted class = 1
                         Actual class = 1
Predicted class = 7
                         Actual class = 7
                         Actual class = 1
Predicted class = 1
Predicted class = 1
                        Actual class = 1
Predicted class = 2
                        Actual class = 2
Predicted class = 1
                        Actual class = 1
```

In []: