IMPACT DES EFFETS PIÉZOÉLECTRIQUES SUR LES PROPRIÉTÉS OPTIQUES DES NANOBEAMS

Etudiant **Aurelien PELISSIER** *MI PHYTEM ENS Cahan*

Superviseur

Ian ROUSSEAU

Doctorant au LASPE

INTRODUCTION

- Mesures quantiques non destructives
- Traitement quantique de l'information
- Interactions entre photon et exciton

Hétérostructures quantiques

Cavités photoniques

SOMMAIRE

Objectif:

- ✓ Comprendre les déformations dans le nanobeam
- ✓ Ajuster les bandes interdites d'un cristal photonique et d'un puits quantique pour qu'elles correspondent.

Dans ce travail:

- ✓ Simulations: COMSOL et FDTD Lumerical
- ✓ Mesures: Spectroscopie Raman et photoluminescence

Théorie Simulation Mesures

LES NITRURES D'ÉLÉMENT III

Couplage piézoélectrique

$$\sigma_{ij} = \sum_{k,l} C_{ijkl} \times \epsilon_{kl} - \sum_{k} e_{kij} \times E_{k}$$

$$D_i = P_i^{spont} + \sum_{k,l} e_{ikl} \times \epsilon_{kl} + \sum_k \varepsilon_{ik} \times E_k$$

Contraintes et déformations $= \begin{pmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \sigma_{yz} \\ \sigma_{xz} \\ \sigma_{xy} \end{pmatrix} = \begin{pmatrix} \epsilon_{xx} \\ \epsilon_{yy} \\ \epsilon_{zz} \\ 2\epsilon_{yz} \\ 2\epsilon_{xz} \\ 2\epsilon_{xy} \end{pmatrix}$ Lors de l'épitaxie $\epsilon_{xx} = \frac{a_s - a_c}{a_c}$

 a_s : paramètre de maille du substrat

 a_c : paramètre de maille de la couche déposée

$$e_{31} e_{33} e_{15}$$

Non piézoélectrique

NANOBEAM

Cavité photonique

Cristal photonique ID

✓ Confinement selon x

DÉFORMATIONS DANS LE NANOBEAM

Expansion thermique

a_s: paramètre de maille du substrat

 a_c : paramètre de maille de la couche déposée

$$\epsilon_{th}(T_f) = \frac{\Delta a_c(Tc \to Tf)}{a_c(Tc)} - \frac{\Delta a_s(Tc \to Tf)}{a_s(Tc)}$$

$$\epsilon_{th}(\mathrm{TA}) = \epsilon_{th}(4\,\mathrm{K}) = 0.17\,\%$$

DÉFORMATIONS DANS LE NANOBEAM

Expansion thermique

a_s : paramètre de maille du substrat

 a_c : paramètre de maille de la couche déposée

$$\epsilon_{th}(T_f) = \frac{\Delta a_c(Tc \to Tf)}{a_c(Tc)} - \frac{\Delta a_s(Tc \to Tf)}{a_s(Tc)}$$

$$\epsilon_{th}(\mathrm{TA}) = \epsilon_{th}(4\,\mathrm{K}) = 0.17\,\%$$

Courbure

Moyenne des mesures sur II nanobeams verticaux et II horizontaux

Phonon λ	A _I LO	E ₂ H	Si ^{LO}
$\Delta\omega_{\lambda}(PAD_{V})$ [cm ⁻¹]	-1,5 ± 0,5	-0.80 ± 0.5	$0,40 \pm 0,5$
$\Delta\omega_{\lambda}(\text{PAD_H})$ [cm ⁻¹]	-1,4 ± 0,5	-0.82 ± 0.5	$0,40 \pm 0,5$
$\Delta\omega_{\lambda}({\sf Beam_V})$ [cm ⁻¹]	$3,7 \pm 0,5$	-0.46 ± 0.5	$0,45 \pm 0,5$
$\Delta\omega_{\lambda}({\sf Beam_V})$ [cm ⁻¹]	1,8 ± 0,5	-0.98 ± 0.5	0.19 ± 0.5

pl	phonon λ		A _I LO
[10]	a_{λ} (cm ⁻¹)	-818	-685
[10]	p_{λ} (cm ⁻¹)	-797	-997
[8]	A _{Si} (cm ⁻¹)	-413	

[8]
$$\Delta\omega$$
 (Si) = A. ε_{xx} pour une déformation biaxiale

[9]
$$\Delta\omega (A_1) = a_{A1}.(\varepsilon_{xx} + \varepsilon_{yy}) + b_{A1}.\varepsilon_{zz} + C(n,\varepsilon)$$

[9]
$$\Delta \omega \left(E_1^{\text{horinzontal}} \right) = a_{E1} \cdot (\varepsilon_{xx} + \varepsilon_{yy}) + b_{E1} \cdot \varepsilon_{zz} + c_{E1} \cdot (\varepsilon_{xx} - \varepsilon_{yy})$$

[9]
$$\Delta \omega (E_2^{\text{vertical}}) = a_{\text{E2}}.(\varepsilon_{xx} + \varepsilon_{yy}) + b_{\text{E2}}.\varepsilon_{zz} - c_{\text{E2}}.(\varepsilon_{xx} - \varepsilon_{yy})$$

Moyenne des mesures sur II nanobeams verticaux et II horizontaux

Phonon λ	A _I LO	E ₂ H	Si ^{LO}
$\Delta\omega_{\lambda}(PAD_{V})$ [cm ⁻¹]	-1,5 ± 0,5	-0,80 ± 0,5	$0,40 \pm 0,5$
$\Delta\omega_{\lambda}(PAD_H)$ [cm ⁻¹]	-1,4 ± 0,5	-0.82 ± 0.5	$0,40 \pm 0,5$
$\Delta\omega_{\lambda}(\text{Beam}_{-}\text{V})$ [cm ⁻¹]	3.7 ± 0.5	-0.46 ± 0.5	$0,45 \pm 0,5$
$\Delta\omega_{\lambda}({\sf Beam_V})$ [cm ⁻¹]	1,8 ± 0,5	-0,98 ± 0,5	0.19 ± 0.5

phonon λ	E ₂ ^H A ₁ ^{LO}	
[10] a_{λ} (cm ⁻¹)	-818 -685	
[10] b_{λ} (cm ⁻¹)	-797 -997	
[8] A _{Si} (cm ⁻¹)	-413	

Grosse différence

[8]
$$\Delta\omega$$
 (Si) = A. ε_{xx} pour une déformation biaxiale

[9]
$$\Delta\omega (A_1) = a_{A1}.(\varepsilon_{xx} + \varepsilon_{yy}) + b_{A1}.\varepsilon_{zz} + C(n,\varepsilon)$$

[9]
$$\Delta\omega$$
 ($E_1^{\text{horinzontal}}$) = a_{E1} .($\varepsilon_{xx} + \varepsilon_{yy}$) + b_{E1} . ε_{zz} + c_{E1} .($\varepsilon_{xx} - \varepsilon_{yy}$)

[9]
$$\Delta \omega (E_2^{\text{vertical}}) = a_{\text{E2}}.(\varepsilon_{xx} + \varepsilon_{yy}) + b_{\text{E2}}.\varepsilon_{zz} - c_{\text{E2}}.(\varepsilon_{xx} - \varepsilon_{yy})$$

Moyenne des mesures sur II nanobeams verticaux et II horizontaux

Phonon λ	A _I LO	E ₂ H	Si ^{LO}
$\Delta\omega_{\lambda}(PAD_V)$ [cm ⁻¹]	-1,5 ± 0,5	-0,80 ± 0,5	$0,40 \pm 0,5$
$\Delta\omega_{\lambda}(PAD_H)$ [cm ⁻¹]	-1,4 ± 0,5	-0,82 ± 0,5	$0,40 \pm 0,5$
$\Delta\omega_{\lambda}({\sf Beam_V})$ [cm ⁻¹]	3.7 ± 0.5	-0,46 ± 0,5	$0,45 \pm 0,5$
$\Delta\omega_{\lambda}$ (Beam_V) [cm ⁻¹]	1,8 ± 0,5	-0,98 ± 0,5	0,19 ± 0,5

phonon λ	E ₂ ^H A ₁ ^{LO}	
[10] a_{λ} (cm ⁻¹)	-818 -685	
[10] b_{λ} (cm ⁻¹)	-797 -997	
[8] A _{Si} (cm ⁻¹)	-413	

Pas de différence

- Contrainte dans les PADs biaxiale

[8]
$$\Delta\omega$$
 (Si) = A. ε_{xx} pour une déformation biaxiale

[9]
$$\Delta\omega (A_1) = a_{A1}.(\varepsilon_{xx} + \varepsilon_{yy}) + b_{A1}.\varepsilon_{zz} + C(n,\varepsilon)$$

[9]
$$\Delta\omega$$
 (E₁horinzontal) = a_{E1} .($\varepsilon_{xx} + \varepsilon_{yy}$) + b_{E1} . ε_{zz} + c_{E1} .($\varepsilon_{xx} - \varepsilon_{yy}$)
[9] $\Delta\omega$ (E₂vertical) = a_{E2} .($\varepsilon_{xx} + \varepsilon_{yy}$) + b_{E2} . ε_{zz} - c_{E2} .($\varepsilon_{xx} - \varepsilon_{yy}$)

Moyenne des mesures sur II nanobeams verticaux et II horizontaux

Phonon λ	A _I LO	E ₂ H	Si ^{LO}
$\Delta\omega_{\lambda}(PAD_V)$ [cm ⁻¹]	-1,5 ± 0,5	-0,80 ± 0,5	$0,40 \pm 0,5$
$\Delta\omega_{\lambda}(PAD_H)$ [cm ⁻¹]	-1,4 ± 0,5	-0,82 ± 0,5	$0,40 \pm 0,5$
$\Delta\omega_{\lambda}({\sf Beam_V})$ [cm ⁻¹]	$3,7 \pm 0,5$	-0,46 ± 0,5	$0,45 \pm 0,5$
$\Delta\omega_{\lambda}({\sf Beam_V})$ [cm ⁻¹]	1,8 ± 0,5	-0,98 ± 0,5	0,19 ± 0,5
	·		

phono	nλ	E ₂ H	A _I LO
[10] a_{λ} (cm	⁻¹)	-818	-685
[10] b_{λ} (cm	⁻¹)	-797	-997
[8] A _{Si} (cm	n ⁻¹)	-413	

Différence claire

- [8] $\Delta\omega$ (Si) = A. ε_{xx} pour une déformation biaxiale
- [9] $\Delta \omega (A_1) = a_{A1} \cdot (\epsilon_{xx} + \epsilon_{yy}) + b_{A1} \cdot \epsilon_{zz} + C(n, \epsilon)$

[9]
$$\Delta\omega$$
 (E₁horinzontal) = a_{E1} .($\varepsilon_{xx} + \varepsilon_{yy}$) + b_{E1} . ε_{zz} + c_{E1} .($\varepsilon_{xx} - \varepsilon_{yy}$)
[9] $\Delta\omega$ (E₂vertical) = a_{E2} .($\varepsilon_{xx} + \varepsilon_{yy}$) + b_{E2} . ε_{zz} - c_{E2} .($\varepsilon_{xx} - \varepsilon_{yy}$)

- Contrainte dans le nanobeam uniaxiale

Contrainte dans les PADs biaxiale

Moyenne des mesures sur II nanobeams verticaux et II horizontaux

Phonon λ	A _I LO	E ₂ ^H	Si ^{LO}
$\Delta\omega_{\lambda}(PAD_{V})$ [cm ⁻¹]	-1,5 ± 0,5	-0.80 ± 0.5	0.40 ± 0.5
$\Delta\omega_{\lambda}(PAD_H)$ [cm ⁻¹]	-1,4 ± 0,5	-0.82 ± 0.5	0.40 ± 0.5
$\Delta\omega_{\lambda}({\sf Beam_V})$ [cm ⁻¹]	3,7 ± 0,5	-0.46 ± 0.5	$0,45 \pm 0,5$
$\Delta\omega_{\lambda}({\sf Beam_V})$ [cm ⁻¹]	1,8 ± 0,5	-0.98 ± 0.5	0.19 ± 0.5

phonon λ	E ₂ H	A _I LO
[10] a_{λ} (cm ⁻¹)	-818	-685
[10] b_{λ} (cm ⁻¹)	-797	-997
[8] A _{Si} (cm ⁻¹)	-413	

Signe opposé

[8]
$$\Delta \omega$$
 (Si) = A. ε_{xx}

- Contrainte dans les PADs biaxiale
- Contrainte dans le nanobeam uniaxiale
- Compression sur le silicium

Moyenne des mesures sur II nanobeams verticaux et II horizontaux

Phonon λ	A _I LO	E ₂ ^H	Si ^{LO}
$\Delta\omega_{\lambda}(PAD_{V})$ [cm ⁻¹]	-1,5 ± 0,5	-0,80 ± 0,5	$0,40 \pm 0,5$
$\Delta\omega_{\lambda}(PAD_H)$ [cm ⁻¹]	-1,4 ± 0,5	-0.82 ± 0.5	$0,40 \pm 0,5$
$\Delta\omega_{\lambda}(\text{Beam_V})$ [cm ⁻¹]	$3,7 \pm 0,5$	-0,46 ± 0,5	$0,45 \pm 0,5$
$\Delta\omega_{\lambda}({\sf Beam_V})$ [cm ⁻¹]	1,8 ± 0,5	-0,98 ± 0,5	0.19 ± 0.5

phonon λ	E ₂ H	A _I LO
[10] a_{λ} (cm ⁻¹)	-818	-685
[10] b_{λ} (cm ⁻¹)	-797	-997
[8] A _{Si} (cm ⁻¹) -413		13

$\epsilon_{xx}(Beam) = 0,18 \pm 0,12\%$	\leftrightarrow	$\sigma_{uniaxiale}(Beam) = 650 \pm 390 \mathrm{MPa}$
$\epsilon_{xx}(PAD) = 0.07 \pm 0.04 \%$	\leftrightarrow	$\sigma_{biaxiale}(PAD) = 287 \pm 190 \mathrm{MPa}$
$\epsilon_{xx}(Silicium) = -0,097 \pm 0.12$	$2\% \leftrightarrow$	$\sigma_{biaxiale}(Silicium) = -174 \pm 200 \mathrm{MPa}$

Le modèle des déformations induites par l'expansion thermique est une approche correcte de la réalité

- Contrainte dans les PADs biaxiale
- Contrainte dans le nanobeam uniaxiale
- Compression sur le silicium

CONCEPTION D'ÉLECTRODES

Nanobeam en porte-à-faux

✓ Se courbe plus facilement

ELECTRODES

Champ selon z

Pour V = 200V,
$$\delta$$
=5nm

ELECTRODES

Champ selon z

Pour V = 200V, δ =5nm

Champ selon y

Pour V = 200V,
$$\delta$$
=4nm

MICRO-PHOTOLUMINESCENCE

Micro-photoluminescence

Photo-excitation par faisceau laser

- ✓ Précision de quelques centaines de nm
- ✓ Mesures non destructives
- Sensible au réchauffement laser

INFLUENCE DE LA COURBURE SUR LE MODE FONDAMENTAL

MESURES

CONCLUSIONS ET PERSPECTIVE

- ✓ La répartition des contraintes a été prédite sur COMSOL puis vérifié par spectroscopie Raman
- ✓ Des électrodes selon z et y ont été modélisé
- ✓ Une méthode de réglage da la bande interdite photonique selon y a été mise au point.

Perspective:

- Travailler avec des puits quantiques de meilleurs qualité
- Fabriquer les nanobeams en porte-à-faux et appliquer la tension selon z et y
- Remplacer le puits quantique par une boite quantique au centre du nanobeam

REMERCIMENTS

Merci de votre attention

RÉFÉRENCES

- [1] Akahane, Y., Asano, T., Song, B. S., & Noda, S. (2003). High-Q photonic nanocavity in a two-dimensional photonic crystal. *Nature*, 425(6961), 944-947.
- [2] Lodahl, P., Mahmoodian, S., & Stobbe, S. (2015). Interfacing single photons and single quantum dots with photonic nanostructures. *Reviews of Modern Physics*, 87(2), 347.
- [3] G.Rossbach. High-Density Excitonic Effects in GaN: Mott-Transition and Polariton Lasing. PhD thesis, EPFL, n.6245, 2014.
- [4] Giorgio Signorello. Uniaxial Stress Effects in Zincblende and Wurtzite GaAs Nanowires: an Optical Spectroscopy Study. PhD thesis, Universität Basel, 2014.
- [5] KG Lyon, GL Salinger, CA Swenson, and GK White. Linear thermal expansion measurements on silicon from 6 to 340 K. Journal of Applied Physics, 48(3):865–868, 1977.
- [6] Hiromichi Watanabe, Naofumi Yamada, and Masahiro Okaji. Linear thermal expansion coefficient of silicon from 293 to 1000 K. *International journal of thermophysics*, 25(1):221–236, 2004.
- [7] Glen A Slack and SF Bartram. Thermal expansion of some diamondlike crystals. Journal of Applied Physics, 46(1):89–98, 1975.
- [8] G Ndong, G Picardi, C Licitra, D Rouchon, J Eymery, and R Ossikovski. Determination of the biaxial stress in strained silicon nano-stripes through polarized oblique incidence raman spectroscopy. *Journal of Applied Physics*, 114(16):164309, 2013.
- [9] RJ Briggs and AK Ramdas. Piezospectroscopic study of the raman spectrum of cadmium sulfide. Physical Review B, 13(12):5518, 1976.
- [10] F Demangeot, J Frandon, MA Renucci, Olivier Briot, Bernard Gil, and Roger-Louis Aulombard. Raman determination of the phonon deformation potentials in -GaN. MRS Internet Journal of Nitride Semiconductor Research, 1:e23, 1996.
- [11] I.Sanchez. Characterization of the active medium and optical modes of III-nitride based nanobeam photonic cavities. Master's thesis, EPFL, 2016.
- [12] Murray W McCutcheon and Marko Loncar. Design of a silicon nitride photonic crystal nanocavity with a quality factor of one million for coupling to a diamond nanocrystal. Optics express, 16(23):19136–19145, 2008.

CONFINEMENT DES HÉTÉROSTRUCTURES

Puits de potentiel

$$\varepsilon_{QW} = \frac{a_{GaN} - a_{InGaN}}{a_{InGaN}} = -1.65\%$$

CONFINEMENT DES HÉTÉROSTRUCTURES

Puits de potentiel

$$\varepsilon_{QW} = \frac{a_{GaN} - a_{InGaN}}{a_{InGaN}} = -1.65\%$$

Effet Stark

$$E_{QW} = \frac{\left(P_{sp,B} - P_{sp,W}\right)}{\varepsilon_W} + \frac{\left(P_{pz,B} - P_{pz,W}\right)}{\varepsilon_W} + E_{ext}$$

$$\Delta E = -e.\,l_W.\,E_{QW}$$

Pour
$$E_{OW} = 1 \text{ MV/cm}$$

$$\Delta E = 0, IeV$$

$$\Delta \lambda = 10 \text{ nm pour l'InGaN}$$

CONFINEMENT PHOTONIQUE

Réflexion totale interne

$$n_1 sin(\theta_1) = n_2 sin(\theta_2)$$

$$\theta_c = arcsin\left(\frac{n_2}{n_1}\right)$$

Réflexion totale interne pour $\theta_1 > \theta_c$

CONFINEMENT PHOTONIQUE

Réflexion totale interne

$$n_1 sin(\theta_1) = n_2 sin(\theta_2)$$

$$\theta_c = arcsin\left(\frac{n_2}{n_1}\right)$$

Réflexion totale interne pour $\theta_1 > \theta_c$

Cavité photonique

CONSEQUENCES DES DÉFORMATIONS

Sur le puits quantique

$$E_{QW}(\epsilon_{GaN}) = \frac{P_{sp}^{GaN} - P_{sp}^{InGaN}}{\varepsilon_r \varepsilon_0} + \frac{P_{pz}^{GaN}(\epsilon_{GaN}) - P_{pz}^{InGaN}(\epsilon_{GaN})}{\varepsilon_r \varepsilon_0} - \frac{P_{pz}^{InGaN}(-1,65\%)}{\varepsilon_r \varepsilon_0}$$

$$P_{pz} = e_{31}(\varepsilon_{xx} + \varepsilon_{yy}) + e_{33} \varepsilon_{zz}$$

CONSEQUENCES DES DÉFORMATIONS

Sur le puits quantique

$$E_{QW}(\epsilon_{GaN}) = \frac{P_{sp}^{GaN} - P_{sp}^{InGaN}}{\varepsilon_r \varepsilon_0} + \frac{P_{pz}^{GaN}(\epsilon_{GaN}) - P_{pz}^{InGaN}(\epsilon_{GaN})}{\varepsilon_r \varepsilon_0} - \frac{P_{pz}^{InGaN}(-1,65\%)}{\varepsilon_r \varepsilon_0}$$

$$P_{pz} = e_{31}(\varepsilon_{xx} + \varepsilon_{yy}) + e_{33} \varepsilon_{zz}$$
 Déformations de l'ordre de 0,1% : négligeable

CONSEQUENCES DES DÉFORMATIONS

Sur le puits quantique

$$E_{QW}(\epsilon_{GaN}) = \frac{P_{sp}^{GaN} - P_{sp}^{InGaN}}{\varepsilon_r \varepsilon_0} + \frac{P_{pz}^{GaN}(\epsilon_{GaN}) - P_{pz}^{InGaN}(\epsilon_{GaN})}{\varepsilon_r \varepsilon_0} - \frac{P_{pz}^{InGaN}(-1,65\%)}{\varepsilon_r \varepsilon_0}$$

$$P_{pz} = e_{31}(\varepsilon_{xx} + \varepsilon_{yy}) + e_{33} \varepsilon_{zz}$$

 $P_{vz} = e_{31}(\varepsilon_{xx} + \varepsilon_{vy}) + e_{33} \varepsilon_{zz}$ Déformations de l'ordre de 0,1% : négligeable

Sur le cristal photonique

Fleche de δ = 5nm

Modélisation sur FDTD : pas d'influence

RÉFÉRENCES ANNEXE

- [13] Eli Kapon. Quantum wire lasers. Proceedings of the IEEE, 80(3):398-410, 1992.
- [14] G.Rossbach. High-Density Excitonic Effects in GaN: Mott-Transition and Polariton Lasing. PhD thesis, EPFL, n.6245, 2014.
- [15] Emmanuel Rosencher and Borge Vinter. Optoelectronics. Cambridge University Press, Cambridge, 2002.
- [16] Jana Jágerská. Dispersion Properties of Photonic Crystals and Silicon Nanostructures Investigated by Fourier-Space Imaging. PhD thesis, EPFL, n.4956, 2011.
- [17] D. John, G.Steven, N.Joshua, and D.Robert. Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton, second edition, 2007.