Estadística en Analítica

2023-2

Pablo A. Saldarriaga psaldar2@eafit.edu.co

¿Dudas del Taller 1?

Aprendizaje Supervisado VS No Supervisado

Supervisado

El proceso de modelado se realiza sobre un conjunto de ejemplos formado por entradas al sistema y la respuesta que debería dar para cada entrada

Se tiene conocimiento a priori de las observaciones

Objetivo:

Replicar/aprender el comportamiento y patrones ya conocidos de los datos

No Supervisado

El proceso de modelado se realiza sobre un conjunto de datos formado por solo entradas al sistema.

No se tiene conocimiento a priori de las observaciones.

Objetivo:

La comprensión y el estudio de los datos.

Metodología Aprendizaje Supervisado

Selección de variables

Particionamiento del Conjunto de Datos

Técnicas supervisadas: Regresión

¿Qué es Aprendizaje Estadístico?

Busca lidiar con el problema de la inferencia estadistica, buscando encontrar la funcion predictiva basado en la informacion disponible

Considera aspectos como:

- Significancia estadística de parámetros
- Busca ajustes (en algunos casos) basados en niveles de confianza
- Analiza patrones distribucionales en la información

¿Qué es Aprendizaje Estadístico?

¿Será posible predecir las ventas utilizando esas 3 variables?

¿Qué es Aprendizaje Estadístico?

Acá debemos identificar:

- ✓ Cual es la variable respuesta u objetivo que se desea predecir
- ✓ Determinar las variables predictoras disponibles (Vector X)

$$X = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix}$$

$$Y=f(X)+\epsilon$$
 —— Captura medidas de error e información no explicada

¿Para qué estimar f?

- ✓ Podemos realizar predicciones para la Y en nuevos puntos de X
- ✓ Podemos entender qué componentes de X son los más importantes para explicar Y, además de cuales son poco relevantes
- ✓ Dependiendo de la complejidad de f, se puede entender como cada componente de X afecta la Y

¿Para qué estimar f?

¿Existirá alguna función f(X) ideal para estos datos?

$$f(x) = E[Y \mid X = x]$$

¿Para qué estimar f?

$$f(x) = E[Y \mid X = x]$$

Consideramos que

- \checkmark f(x) es el predictor óptimo de Y cuando se desea minimizar el error cuadrático medio
- \checkmark $\epsilon = Y f(x)$ es el error irreducible, incluso si conocieramos el valor verdadero de f
- ✓ Podemos representar el error cuadrático medio como:

$$E[(Y - \hat{f}(X))^2 | X = x] = \underbrace{[f(x) - \hat{f}(x)]^2}_{Reducible} + \underbrace{\operatorname{Var}(\epsilon)}_{Irreducible}$$

Complejidad del modelo

Métricas de desempeño: Mod. de regresión

Promedio Característica (x)

R cuadrado (R²)

$$1 - \frac{\sum_{j=1}^{N} error_j^2}{\sum_{j=1}^{N} (y_j - \overline{y_j})^2}$$

Error cuadrático medio (RMSE)

$$\sqrt{\frac{1}{N} \sum_{j=1}^{N} error_{j}^{2}}$$

Error medio absoluto (MAE)

$$\frac{1}{N} \sum_{j=1}^{N} |error_{j}|$$

Error cuadrático medio (MSE)

$$\frac{1}{N} \sum_{j=1}^{N} error_j^2$$

Error medio absoluto (MAPE)

$$\frac{1}{N} \sum_{i=1}^{N} \left| \frac{error_{j}}{y_{real_{j}}} \right|$$

Noción de distancia

Sea X un conjunto no vacío, definimos una función de distancia $d: X \times X \to \mathbb{R}$ que cumple:

$$i. \quad d(x,y) \ge 0$$

$$ii. \quad d(x,y) = 0 \iff x = y$$

iii.
$$d(x,y) = d(y,x)$$

iv.
$$d(x,z) \le d(x,y) + d(y,z)$$

Dist. Euclidea

$$d(X,Y) = ||X - Y||_2$$

Dist. Manhattan

$$d(X,Y) = \|X - Y\|_1$$

Dist. Chebyshov

$$d(X,Y) = \|X - Y\|_{\infty}$$

Distancia de Mahalanobis

$$d(X,Y) = \sqrt{(X-Y)^T \Sigma^{-1} (X-Y)}$$

- Dentro del cálculo de la Distancia, considera la matriz de varianzas y covarianzas
- Tiene en cuenta la correlación/estructura entre las variables

Las distancias calculadas utilizando Mahalanobis, siguen un comportamiento Chi-Cuadrado con p grados de libertad. (p asociado a la cantidad de variables)

¿Cómo estimar f?

K- Nearest Neighbors (Regresión)

$$\hat{f}(x_0) = \frac{1}{K} \sum_{x_i \in \mathcal{N}_0} y_i.$$

K- Nearest Neighbors (Regresión)

- ✓ Es un método No Paramétrico, ya que no asume de antemano como es el comportamiento de f
- ✓ Valores grandes de K, generan un comportamiento más suavizado, pero con menor ajuste

Regresión Lineal Simple

$$Error = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \xrightarrow{Error Cuadrático Medio}$$
(ECM)

Estimación de los Coeficientes:

$$\hat{\beta}_1 = \frac{COV(X,Y)}{VAR(X)}$$
 $\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$

Medida de Ajuste:

Este índice corresponde al porcentaje de variabilidad que puede ser explicada una variable en términos de las otras

Regresión lineal

¿Qué tal un ajuste lineal?

$$f(x) = \hat{\beta}_0 + \hat{\beta}_1 X_1$$

Regresión lineal

¿Qué tal un ajuste cuadrático?

$$f(x) = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_1^2$$

Regresión lineal

Ejercicio – Ajuste Polinómico

Regresión Lineal Multiple

$$Y = X\beta + \varepsilon$$

Busca minimizar el error cuadrático medio $(Y - X\beta)'(Y - \beta X)$

$$Error = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \longrightarrow Error Cuadrático Medio$$
(ECM)

$$\hat{\beta} = (X'X)^{-1}X'Y \longrightarrow \Sigma_{xx}^{-1}\Sigma_{xy}$$

Regresión Lineal

Dep. Variable:		Peso	R-s	quared	(uncent	ered):	0.991
Model:		OLS	Adj. R-squared (uncentered):				0.987
Method:	Least 9	Squares			F-sta	tistic:	298.4
Date:	Mon, 07 Fe	eb 2022		Pro	b (F-stat	istic):	8.18e-19
Time:	2	3:07:51		L	og-Likeli	hood:	-88.182
No. Observations:		27				AIC:	190.4
Df Residuals:		20				BIC:	199.4
Df Model:		7					
Covariance Type:	no	nrobust					
	coef	std err	t	P> t	[0.025	0.975]	
sexo		5.564	0.819	0.423	-7.052	16.162	
Estatura	-0.4681	0.538	-0.870	0.395	-1.591	0.654	
Long_pie	1.6018	1.670	0.959	0.349	-1.881	5.084	
Long_brazo	0.3297	0.715	0.461	0.650	-1.161	1.820	
Anchura_espalda	1.7685	0.744	2.376	0.028	0.216	3.321	
Diam_craneo	-0.8285	0.801	-1.034	0.313	-2.500	0.843	
Long_rodilla_tobillo	0.4787	0.989	0.484	0.634	-1.585	2.542	

Supuestos del modelo de regresión

- 1. No existe una relación lineal entre las variables explicativas X_j , j = 1, ..., k. (Ausencia de multicolinealidad)
- Las x_{ij} son números fijos o realizaciones de las v.a.'s X_j , j = 1, ..., k; las cuales son independientes de los términos de error ε_i ; i = 1, ..., n.
- 3. El valor esperado de la v.a. Y es una función lineal de las variables independientes X_j , j = 1, ..., k.
- 4. Los términos de error son v.a. que siguen una distribución normal, tienen media cero y la misma varianza σ^2 (supuesto de homocedasticidad o varianza uniforme):

$$E[\varepsilon_i] = 0$$
 y $Var[\varepsilon_i] = \sigma^2$;; $i = 1, ..., n$

5. Los términos de error aleatorios, ε_i , no están correlacionados entre sí, por lo que $E[\varepsilon_i, \varepsilon_j] = 0$; $\forall i \neq j$.

Propiedades del estimador de Mínimos Cuadrados

- La recta estimada pasa por el punto (\$\bar{x}_1\$, \$\bar{x}_2\$, ..., \$\bar{y}\$).
- La suma de los residuos mínimo-cuadráticos es cero:

$$\sum_{i=1}^{n} e_i$$

 Los residuos mínimo-cuadráticos están incorrelacionados con las variables explicativas:

$$\sum_{i=1}^{n} x_{ik} e_i = 0 ; \forall j = 1, \dots, k$$

 La suma de los productos cruzados entre los valores ajustados (predichos) y los residuos es igual a cero:

$$\sum_{i=1}^{n} \hat{y}_i e_i = 0 ; \forall j = 1, \dots, k$$

1. Se desea probar:

$$H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0 \ vs. \ H_1: al \ menos \ un \ \beta_j \neq 0; \ j = 1,2,...,k$$

 Estadístico de prueba : Se obtiene completando la siguiente tabla de análisis de varianza(ANAVA)

Fuente de variación	Suma de Cuadrados	Grados de libertad	Cuadrados medios	Estadístico F_C
Modelo	SCR = SCT - SCE	k	$CMR = \frac{SCR}{k}$	$\frac{CMR}{CME}$
Error	$SCE = \sum_{i=1}^{n} e_i^2$	n - (k + 1)	$CME = \frac{SCE}{n - (k+1)}$	
Total	$SCT = \sum_{i=1}^{n} (y_i - \bar{y})^2$	n-1		

- 3. Se rechaza H_0 si $F_C > F_{(\alpha, k, n-(k+1))}$
- Conclusión:
- Si no se rechaza H_0 , se puede afirmar que no hay una relación lineal útil entre la variable Y y cualquiera de las k variables explicativas, , con un nivel de significancia α
- Si se rechaza H_0 , se puede afirmar que al menos una de las k variables explicativas está relacionada linealmente con Y, con un nivel de significancia α .

Consiste en realizar las pruebas de hipótesis para β_i , j = 1, 2, ..., k:

Prueba de hipótesis para β_j , j = 1, 2, ..., k

- 1. Se desea probar: $H_0: \beta_j = 0 \ vs. H_1: \beta_j \neq 0$.
- 2. Estadístico de prueba : $t_j = \frac{\widehat{\beta}_j}{s_{\widehat{\beta}_j}}$

donde $s_{\hat{\beta}_i}$ es el error estándar (desviación estándar) del estimador $\hat{\beta}_j$.

- 3. Se rechaza H_0 si $|t_j| > t_{\left(\frac{\alpha}{2}, n-(k+1)\right)}$
- Si X_i influye en el modelo, es decir si $\beta_i \neq 0$, entonces debe estar en él.

Nota: Otra forma es construyendo el I.C. al $(1 - \alpha)100\%$ para β_j , j = 1,2,...,k

$$\hat{\beta}_j \pm t_{\left(\frac{\alpha}{2}, n-(k+1)\right)} \hat{\beta}_{\hat{\beta}_j}$$

Y verificando que el IC construido no contenga al cero.

3.2 Intervalo de confianza al $(1 - \alpha)100\%$ para $\mu_{Y|x_1^*,...x_k^*} = E[Y|x_1^*,...x_k^*]$

$$\hat{y} \pm t_{\left(\frac{\alpha}{2}, n-(k+1)\right)} S_{\hat{Y}}$$

donde $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1^* + \dots + \hat{\beta}_k x_k^*$ es el valor calculado (estimado) del estadístico \hat{Y} , y $s_{\hat{Y}}$ es el error estándar del estimador \hat{Y} .

Interpretación de los coeficientes

Variable dependiente	Regresor X_j	eta_j	Interpretación
		Efecto mg en Y ante un	Y aumenta o disminuye
Niveles	Niveles	cambio unitario en \boldsymbol{X}_j	eta_j veces cuando aumenta X_j
(1)	1		Un incremento en 1% en X_j genera
Logaritmo	Logaritmo	Elasticidad X_j de Y	un incremento o disminución de β_j % en Y
F1000000 (20000)		Tasas de crecimiento o retorno	Un incremento en una unidad de X_j genera
Logaritmo	Niveles		un incremento o disminución en $\beta_j*100\%$ en Y
	Para Company	Respuesta de Y ante una variación de X_j	Un incremento en 1% en X_j genera
Niveles	Logaritmo		un incremento o disminución en $eta_j/100$ en Y

Interpretación de los coeficientes

Source	SS	df	MS	Number of F(1, 524)
Model	1179.73204	1	1179.73204	Prob > F
Residual	5980.68225	524	11.4135158	
Total	7160.41429	525	13.6388844	Adj R-squa Root MSE

- * Un año adicional de educación hace que el salario por hora aumente 54 centávos US\$ por hora
- * Debido al caracter lineal, cada año adicional de educación hace que el salario aumente en una misma cantidad, independiente del nivel inicial de educación

wage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
educ	.5413593	.053248	10.17	0.000	.4367534	.6459651
cons	9048516	.6849678	-1.32	0.187	-2.250472	.4407687

Interpretación de los coeficientes

Source	SS	df	MS	Number of		526
Model Residual	27.5606288 120.769123	1 524	27.5606288	R-squared	* El sa educac	
Total	148.329751	525	.28253286	- Adj R-squ Root MSE	* En es	ste caso, el salario aumenta en un porcentaje constante
lwage	Coef.	Std. Err.	t	P> t [9	5% Conf.	. Interval)
educ	.0827444	.0075667			678796 8925563	.0976091 .7749891

¿Cómo puedo encontrar la mejor combinación de datos?

Evaluando todas las combinaciones y mantener la de mejor resultado

¿Si tengo N variables, cuantas posibles combinaciones hay?

N!

¿Es factible evaluarlas todas?

No

Selección de variables

- ✓ Realizar regresión con todas las variables
- ✓ Eliminar la que tenga el P-valor más alto
- √ Volver a realizar la regresión

Ventajas y Desventajas del modelo de regresión

Ventajas:

- ✓ Interpretabilidad
- ✓ Simple y fácil de usar

Desventajas:

- Alta varianza cuando hay muchas variables
- La presencia de colinealidad afecta el modelo
- ✓ No se puede usar cuando hay mas variables que registros
- Requiere trabajo extra para seleccionar variables

Selección de Variables

Forward Selection

Backward Selection

Estandarización de los datos - Importancia

- ✓ Ayuda a evitar sesgos en la construcción de modelos
- ✓ Las operaciones que se realizan ocupan menos memoria.
- Reduce/evita errores computacionales
- Permite obtener análisis que dependan del comportamiento estadístico de las variables libres de una unidad de medida

Estandarización de los datos

$$\frac{X - \mu}{\sigma} \equiv \frac{X(unidad) - \mu(unidad)}{\sigma(unidad)} - - \triangleright \text{ Adimensional}$$

Tipificación

$$0 \le \frac{X - X_{min}}{X_{max} - X_{min}} \le 1$$

Escalamiento Min-Max

$$\frac{X}{X_{max}} \le 1$$

Escalamiento con Max

$$\frac{X}{X_{prom}}$$

Escalamiento con Promedio

Estandarización de los datos

Regresión Lineal:

Ayuda a ver la variable que más impacta al modelo

Modelo con variables sin estandarizar ValorSeguro = 500 + 0.5ingresos + 20edad - 200#hijos

Modelo con variables estandarizadas ValorSeguro = 5 + 0.8ingresos + 1.2edad - 0.5#hijos

PCA:

Evita sesgos en la selección de componentes

Mayor variabilidad

unidades de medida!

¡Debido a las

Menor variabilidad

Considere variables como: Ingresos edad, # de hijos

Regresión lineal con penalización

La regresion tradicional busca minimizar:

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

La regresion penalizada busca minimizar:

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda \, Penalty(\beta)$$

Regresión lineal con penalización

Opciones de penalización

Ridge: Penalty(
$$\beta$$
) = $\sum_{j=1}^{P} \beta_j^2$.

Ridge: Penalty
$$(\beta) = \sum_{j=1}^{p} \beta_j^2$$
. Lasso: Penalty $(\beta) = \sum_{j=1}^{p} |\beta_j|$.

Naive elastic net: Penalty(
$$\beta$$
) = $\alpha \sum_{j=1}^p \beta_j^2 + (1-\alpha) \sum_{j=1}^p |\beta_j|$.

Regresión lineal con penalización

Regresión Ridge

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_{n-1} X_{n-1} + \beta_n X_n$$

$$\hat{Y} = \hat{\beta_0} + \hat{\beta_1} X_1 + \dots + \hat{\beta_{n-1}} X_{n-1} + \hat{\beta_n} X_n$$

$$Error = \sum_{i=1}^{m} (y_i - \hat{Y}_i)^2 + \lambda \sum_{j=1}^{n} \beta_j^2$$

Regresión Ridge

- \checkmark $\lambda \ge 0$ actua como un parametro a ser tuneado
- ✓ Cuando $\lambda = 0$, la regresion ridge es equivalente a la de minimos cuadrados
- \checkmark Mientras mas grande sea λ , los coeficientes seran llevados a 0 (esto es el encogimiento)
- \checkmark λ se puede encontrar usando validacion cruzada
- ✓ La estandarizacion es importante ya que se aplica el mismo factor de penalización a las variables

$$\hat{\beta}^{\mathsf{ridge}} = (A^{\mathsf{T}}A + \lambda I)^{-1}A^{\mathsf{T}}y$$

Regresión Lasso

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_{n-1} X_{n-1} + \beta_n X_n$$

$$\widehat{Y} = \widehat{\beta_0} + \widehat{\beta_1} X_1 + \dots + \widehat{\beta_{n-1}} X_{n-1} + \widehat{\beta_n} X_n$$

$$Error = \sum_{i=1}^{m} (y_i - \hat{Y}_i)^2 + \lambda \sum_{j=1}^{n} |\beta_j|$$

Regresión Lasso

- \checkmark $\lambda \ge 0$ juega un rol similar que en la regresión Ridge
- ✓ Cuando $\lambda = 0$, la regresion ridge es equivalente a la de minimos cuadrados
- ✓ Permite realizar selección de variables

Regresión Ridge VS Lasso

- ✓ Lasso lleva a coeficientes a ser más dispersos (varios ceros), mientras que Ridge lleva los coeficientes a ser más densos (no ceros)
- ✓ Lasso se utiliza para selección de variables, lo que lleva a:
 - Interpretabilidad
 - ✓ Eficiencia computacional en las predicciones
- Es más "sencillo" resolver una regresión Ridge que una Lasso
- ✓ La regresión lasso tiene un buen desempeño solo si un número pequeño de predictores es necesario

Elastic Net

- ✓ Es una combinación entre Ridge y Lasso
- ✓ El parametro alfa controla el mix entre ridge y lasso
- ✓ El parámetro lambda juega un papel similar a la regresión ridge y lasso
- Es un problema de optimización convexa

Penalty(
$$\beta$$
) = $\alpha \sum_{j=1}^{p} \beta_j^2 + (1 - \alpha) \sum_{j=1}^{p} |\beta_j|$.

Inspira Crea Transforma

