MLflow Steps Screenshots for Titanic Survived Predictions

Step-1: Installing the Libraries

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, f1_score, recall_score, precision_score, confusion_matrix
from sklearn import metrics
from sklearn ensemble import RandomForestClassifier

import mlflow
import mlflow sklearn
from mlflow import log_param, log_metric, log_artifact

✓ 3.2s
Python
```

Step-2: Loading Data, EDA, Classification Model Building

Dropping the redundant columns

```
df = titanic_df.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis =1)
  df.head(2)
✓ 0.0s
   Survived
                       Sex Age
                                  SibSp
                                         Parch
                                                   Fare
                                                         Embarked
0
                            22.0
                                                 7.2500
                                                                 S
                      male
                                                                C
                    female
                            38.0
                                               71.2833
```

	Survived	Pclass	Age	SibSp	Parch	Fare	Sex_female	Sex_male	Embarked_C	Embarked_Q	Embarked_S
0	0	2	22.0	1	0	7.2500	False	True	False	False	True
1	1	0	38.0	1	0	71.2833	True	False	True	False	False
2	1	2	26.0	0	0	7.9250	True	False	False	False	True
3	1	0	35.0	1	0	53.1000	True	False	False	False	True
4	0	2	35.0	0	0	8.0500	False	True	False	False	True

Building the model and predicting the survivors

Logging the parameters, evaluation metrics

```
def titan_model_run(n_estimators, criterion, test_size):
    mlflow.set_experiment(experiment_name='mlflow_titanic_survivals')
    with mlflow.start_run(nested=True) as mlrun:
        data_df = df

        x_train, x_test, y_train, y_test = train_test_split(data_df.drop('Survived', axis=1), data_df['Survived'], test_size=
        test_size, random_state= 10)
        print(x_train.shape, x_test.shape)
        mlflow.log_param('test_size', test_size)

        rf_model = RandomForestClassifier(n_estimators = n_estimators, criterion = criterion, random_state=19)

        print('model intanstiatted')

        mlflow.log_param('n_estimators', n_estimators)
        mlflow.log_param('criterion', criterion)

        rf_model.fit(x_train, y_train)
        print('Model Trained')

        train_pred = rf_model.predict(x_train)
        test_pred = rf_model.predict(x_test)
```

Step-3: Logging the parameters(previous screenshot) and metrics

```
train_pred = rf_model.predict(x_train)
   test pred = rf model.predict(x test)
   train_accuracy = metrics.accuracy_score(train_pred, y_train)
   print('train_accuracy', train_accuracy)
   test_accuracy = metrics.accuracy_score(test_pred, y_test)
   print('test_accuracy', test_accuracy)
   log metric('Accuracy', test accuracy)
   precision = metrics.precision_score(y_test, test_pred)
   log_metric('precision', precision)
   print('precision', precision)
   recall = metrics.recall_score(y_test, test_pred)
   log_metric('recall', recall)
   print('recall', recall)
   f1Score = metrics.f1_score(y_test, test_pred)
   log_metric('f1Score', f1Score)
   print('f1Score', f1Score)
   mlflow.sklearn.log model(rf model, 'Model')
mlflow.end_run()
```

Step-4: Running the Model and tracking parameters in mlflow ui

Step-4

Running the model and tacking the parameters in mlflow ui

```
titan_model_run(100, 'entropy', 0.3)

> 3.1s

Python

2023/10/19 00:10:42 INFO mlflow.tracking.fluent: Experiment with name 'mlflow_titanic_survivals' does not exist. Creating a new exper:
(623, 10) (268, 10)
model intanstiatted
Model Trained
train_accuracy 0.9839486356340289
test_accuracy 0.8097014925373134
precision 0.7216494845360825
recall 0.7446808510638298
f1Score 0.7329842931937173
```


Parameters (3)

Name	Value
criterion	entropy
n_estimators	100
test_size	0.3

Metrics (4)

Name	Value
Accuracy 🗠	0.81
f1Score 🗠	0.733
precision 🗠	0.722
recall 🗠	0.745

Step-5: Re-Running the Model and with different parameters

Re-running the model with different parameter values

Step-6: Tracking the logged parameters of re-run and comparing it with first run in mlflow ui

Parameters (3)

Name	Value
criterion	gini
n_estimators	200
test_size	0.2

Metrics (4)

Name	Value
Accuracy 🗠	0.832
f1Score 🗠	0.762
precision 🗠	0.75
recall 🗠	0.774

Table	Chart	Evaluation Experimental						
					Metrics		Parameters	
	0	Run Name	Created	- ↓	Accuracy	f1Score	criterion	n_estimators
	0	loud-wolf-845			0.832	0.762	gini	200
	0	grandiose-shrike-683		10	0.81	0.733	entropy	100