MATH2033 Mathematical Analysis (2021 Spring) Assignment 1

Submission deadline of Assignment 1: 11:59p.m. of 4th Mar, 2020 (Thurs)

Instruction: Please complete all required problems. Full details (including description of methods used and explanation, key formula and theorem used and final answer) must be shown <u>clearly</u> to receive full credits. Marks can be deducted for incomplete solution or unclear solution.

<u>Please submit your completed work via the submission system in canvas</u> before the deadline. Late assignment will not be accepted.

Your submission must (1) be hand-written (typed assignment will not be accepted), (2) in a single pdf. file (other file formats will not be accepted) and (3) contain your full name and student ID on the first page of the assignment.

Problem 1

Write down the opposite statement (negation) for each of the following statements

- (a) I will watch a movie and have a dinner outside if tomorrow is sunny or not rainy.
- **(b)** $\forall \varepsilon > 0$, $\exists \delta > 0$ such that if $|x y| < \delta$, then $|f(x) f(y)| < \varepsilon$.
- (c) $\forall x \in S, \forall \varepsilon > 0, \exists \delta > 0$ such that if $|x y| < \delta$, then $|f(x) f(y)| < \varepsilon$.
- (d) $\forall \varepsilon > 0$, $\exists N > 0$ such that $|f_n(x) f_m(x)| < \varepsilon$ for all $m, n \ge N$ and $x \in \mathbb{R}$.
- (e) $\forall x \in \mathbb{R}, \forall \varepsilon > 0, \exists N > 0 \text{ such that } |f_n(x) f_m(x)| < \varepsilon \text{ for all } m, n \ge N.$

Problem 2

We let $f: A \to B$ be a function. For any subset $Y \subseteq B$, we define the *inverse image* of Y under f (denoted by $f^{-1}(Y)$) as the collection of elements in the domain A that maps to elements in f(Y). That is,

$$f^{-1}(Y) = \{ x \in A | f(x) \in Y \}.$$

Prove the following statements

- (a) $U \subseteq f^{-1}(f(U))$ for any subset $U \subseteq A$. Give an example which $U \subset f^{-1}(f(U))$
- **(b)** $f(f^{-1}(V)) \subseteq V$ for any subset $V \subseteq B$. Give an example which $f(f^{-1}(V)) \subset V$
- (c) $f(\bigcup_{\alpha \in I} X_{\alpha}) = \bigcup_{\alpha \in I} f(X_{\alpha})$ and $f^{-1}(\bigcup_{\alpha \in I} Y_{\alpha}) = \bigcup_{\alpha \in I} f^{-1}(Y_{\alpha})$. Here, X_{α} is subset of A and Y_{α} is subset of B for all $\alpha \in I$
- (d) $f(\bigcap_{\alpha \in I} X_{\alpha}) \subseteq \bigcap_{\alpha \in I} f(X_{\alpha})$ and $f^{-1}(\bigcap_{\alpha \in I} Y_{\alpha}) = \bigcap_{\alpha \in I} f^{-1}(Y_{\alpha})$.

(*Note: In (c) and (d), I is called index set. For example,

$$\bigcup_{\alpha \in I} X_{\alpha} = \{x | x \in X_{\alpha} \text{ for some } i \in \alpha\} \text{ and } \bigcap_{\alpha \in I} X_{\alpha} = \{x | x \in X_{\alpha} \text{ for all } i \in \alpha\}$$

(*Note 2: Here, $A \subseteq B$ means that A is proper subset of B in the sense that $A \subseteq B$ but $A \neq B$)

Problem 3

We let $f: X \to Y$ be a function, prove that f is injective if and only if $f(A \cap B) = f(A) \cap f(B)$ for all $A, B \subseteq X$.

(\odot Hint: To prove " \Leftarrow " (i.e. $f(A \cap B) = f(A) \cap f(B)$ implies f is injective) part, you can consider "proof by contradiction" and derive a contradiction by considering suitable choices of A and B).

Problem 4

We let $f_1(x), f_2(x), f_3(x), ...$ be functions (where $f_k: \mathbb{R} \to \mathbb{R}$ for all $k \in \mathbb{N}$). It is given that

$$A_k = \{ x \in \mathbb{R} | f_k(x) = 0 \}$$

is countable for any $k \in \mathbb{N}$.

(a Proposition 16 Let A_n for $n \in \mathbb{N}$ be countable sets. Then $\bigcup_{n=1}^{\infty} A_n$ is a countable set.

 \mathbf{Proof}^1 If some of the A_n are empty then we can just leave them out. If there (t are only finitely many non-empty sets left then the result follows by the above remark. Otherwise assume A_n are already the non-empty ones and let

$$A_0 = \{a_{00}, a_{01}, a_{02}, a_{03}, \ldots\}$$

 $A_1 = \{a_{10}, a_{11}, a_{12}, a_{13}, \ldots\}$
 $A_2 = \{a_{20}, a_{21}, a_{22}, a_{23}, \ldots\}$
 \vdots

(*Not

Then following the diagonals again

$$\bigcup_{n=1}^{\infty} A_n = \{a_{00}, a_{01}, a_{10}, a_{02}, a_{11}, a_{20}, \ldots\}.$$

Note that the above proof requires us to *choose* a list for each A_n , simultaneously.

Problem 5

Prove that the power set $\mathcal{P}(\mathbb{N})$, which is a collection of all subsets (including empty set) of \mathbb{N} , is uncountable. Here, \mathbb{N} is the set of positive integers (natural numbers).

(*Note: Mathematically, we can express the power set $\mathcal{P}(\mathbb{N})$ as

$$\mathcal{P}(\mathbb{N}) = \{A \mid A \subseteq \mathbb{N}\}.$$

^{**}End of Assignment 1**