The Entity-Relationship Model (Part I)

R &G - Chapter 2

Steps in Database Design

- 1. Requirements Analysis
 - user needs (non-professional clients)

Design a database

- 2. Conceptual Design
 - high level description
- 3. Logical Design
 - translate ER into DBMS data model
- 4. Schema Refinement
 - Remove redundancy, normalization

Design a GOOD database

Today's Class

- 1. Requirements Analysis
 - user needs; what must database do?
- 2. Conceptual Design
 - high level description

Conceptual Modeling: Informal Explanations

ER model: (E -entities, R - relationships)

Informally

- Entities are usually (relevant) <u>nouns</u>
 - "Stevens has full-time and part-time students."
 - "Stevens has around two hundreds faculty members."
 - Question: what are the nouns/entities in the examples above?
- Relationships are statements about 2 or more objects.
 - Often, <u>verbs</u>.
 - e.g., "a prof teaches a course"
 - **Question**: what is the verb/relationship in the example?

Conceptual Modeling: Informal Explanations (Cont.)

- Besides entities & relations, what else?
 - What information about entities & relationships should be stored in the database?
 - What rules (called *integrity constraints*) should hold on these entities and relationships?
- In relational databases, this is generally encoded in an Entity-Relationship (ER) Diagram

Today's Class

Basic concepts of ER diagram

- Entity set
- Key of entity set
- Relationship set

Entity and Entity Set

- <u>Entity</u>: Real-world object, distinguishable from other objects.
 - An entity is described using a set of <u>attributes</u>.
- <u>Entity set</u>: A collection of similar entities. E.g., all employees.
 - All entities in an entity set have the same set of attributes.
 - Each entity set has a key that can uniquely identify each entity.

Draw An Entity Set in ER Diagram

Entity set

- Draw in a rectangle;
- Name of entity set: either singular or plural format is fine.

Attributes of entity set

- Draw in ovals, one attribute per oval;
- Ovals are connected with the entity set rectangle with solid lines

Key of entity set:

Underlined in ER diagram (more will be discussed later)

Draw An Entity Set in ER Diagram (Cont.)

No attribute sharing among multiple entity sets

- Each entity set has its own attributes
- Different entity sets can have the attributes of the same name
 - E.g., both students and staff have the attribute name
- Attributes (even with the same name) are never shared among entity sets in ER diagram.

Exercise: ER

- What is the entity set?
- What are the attributes?
- What is the key?

Exercise: ER Design (1)

 The supermarket ShopRite! hires you to design a database for its product inventory. Each product has an ID, its description, category, price, and expiry date.

Question:

- What is the entity set?
- What are the attributes of the entity set?
- Draw the ER diagram.

Exercise: ER Design (2)

- Assume you want to design a student directory (a prototype of Facebook II)
- The main concepts you need to describe include
 - Users (ID, age, gender, school)
 - Friend & enemy relations among users

Questions

 Draw the ER diagram (only the Entity set for now; relations for later).

Today's Class

Basic concepts of ER diagram

- Entity set
- Key of entity set
- Relationship set

Three Types of Keys for Entity Set

- Superkey
- Key
- Primary key

Superkey

- A superkey = a set of attributes which, taken collectively, identify <u>uniquely</u> an entity in an entity set
 - All attributes of an entity set E compositely is a superkey of E.

• E.g. *(did, dname, budget)* together is a superkey of the entity set *Departments*

- A subset of superkey may NOT be a superkey
 - E.g., (budget) cannot be a superkey as different departments can have the same budget

Key

A **key** (or *candidate* key) = a superkey for which no proper subset is a superkey (i.e., **minimal** superkey)

- Each entity set must have at least one key!
- E.g. (did) is a key of the entity set *Departments*

- Any superset of a key is a superkey but not a key (because it is not minimal)
 - E.g., (did,dname) is a superkey but not a key

Singleton and Composite Keys

- Singleton key: the key only consists of one attribute
 - E.g., (SSN), (Student ID)
- Composite key: the key consists of more than one attribute
 - E.g. No students in the same class have identical names
 - Key: (Name, Class)
- Each key should be included in parentheses, regardless singleton or composite.

Primary Key

- There can be more than one key for an entity set
 - E.g., each department has a unique did as well as a unique dname
- A primary key = the key chosen as the principal means to identify entities in an entity set
 - ONLY the primary key is <u>underlined</u> in ER diagram
 - Singleton key: underline the single attribute in the key
 - Composite key: underline all the attributes in the key
 - E.g., (Name, Class) is the primary key of the entity set <u>Student</u>
 - Other keys do not need to be drawn in ER diagram
 - But these keys need to be specified in database design (will discuss later).

Student

Age

Class

Name

Exercise: Keys

- Is (ssn) a superkey?
- Is (ssn) a key?
- Is (ssn, name, parking_lot) a superkey?
- Is (ssn, name, parking_lot) a key?

Last Lecture

Basic concepts of ER models

- Entities and entity set
- Keys
 - Superkey: a set of attributes that can uniquely identify each entity
 - Key: minimal superkey
 - It must be a superkey: it can uniquely identify each entity
 - It must be minimal: none of its subset can be a superkey
 - Primary key
 - The key that is picked to be underlined in ER diagram

Consider the following information of the students:

- Each student has a unique student ID;
- Each student has a unique locker number;
- Some students have the same name;
- Some students have the same birth date;
- No student have the same combination of name and birth date;

Questions:

- What are the keys of the *students* entity?
- What is the primary key of the entity?
 - Multiple correct answers
- Draw the primary key in the ER diagram

Today's Class

Basic concepts of ER diagram

- Entity set
- Key of entity set
- Relationship set

Relationships and Relationship Set

- Relationship: Association among two or more entities.
 - E.g., Alan works in Pharmacy department. Alice works in HR department
- Relationship Set: Collection of similar relationships.
 - An *n*-ary relationship set R relates n entity sets $E_1 \dots E_n$; each relationship in R involves entities e_1 in E_1, \dots, e_n in E_n
 - Relationship sets can have their own attributes.

Draw An Relationship Set in ER Diagram

Relationship set

Draw in a diamond;

Attributes of relationship set

- Draw in ovals, one attribute per oval;
- Ovals are connected with the relationship set diamond by solid lines

Relationship set does NOT have keys

Degree of A Relationship

- Degree: the number of participating entity sets.
 - Degree 1: unary (1 diamond connecting with 1 rectangle)
 - Degree 2: binary (1 diamond connecting with 2 rectangles)
 - Degree 3: ternary (1 diamond connecting with 3 rectangles)
 - Degree n: n-ary (1 diamond connecting with n rectangles)
- Binary relationships are very common and widely used.

• Given two entity sets *NBA Player* and *Game*, add the relationship set between them, which describes the fact of *which NBA players play in which games*.

Add Attributes to ER Diagram

- How to represent the "year" info for each game that the players played?
 - E.g., "Stephen Curry plays NBA Finals for 2019 and 2022".

Two Possible Solutions

 Which one is correct? Should the attribute year be added to the relationship set play (Schema A) or the entity set Game (Schema B)?

Where to Put Attributes?

- What's the difference between these 2 ER diagrams?
 - Schema 1: each E2 entity is associated with a single value of A
 - Schema 2: each (E1, E2) pair is associated with a single value of A
 - Each E2 entity can be associated with multiple A values, one for each (E1, E2) pair

Attribute Exercise (Continue)

- Does Schema A allow the same player to play the same game for different years?
 - E.g., "Stephen Curry plays NBA Finals for 2019 and 2022"
- What about Schema B?

Summary: E-R Diagrams

- Rectangles represent entity sets.
- Diamonds represent relationship sets.
- Lines link attributes to entity sets and entity sets to relationship sets.
- □ Ellipses represent attributes of entity/relationship sets
- □ Underline indicates primary key attributes