

PEA – FINAL PROJECT

JASKARAN RAM - 10735884 - 2023

TYPE B

MARCO GRIBAUDO

GOAL OF THE PROJECT

Performance of a Big-Little architecture

- Determine the best assignment probability distribution of tasks:
 - Test a few alternatives of probabilities of assigning a heavy computation task to an efficiency core and of assigning low computation task to a high-performance core.
- Determine the system throughput in each scenario.

CHARACTERISTICS OF THE MODEL

- A system characterized by a Big-Little architecture is characterized by 4 high performance cores, and 8 energy efficient cores.
- It is used by NB = 10 heavy computation tasks, and NL = 32 low computation tasks.
- The scheduler will mainly schedule heavy computation tasks on the high-performance cores, while low computation tasks on the energy efficient cores. However, to better use the resources, there is also a small probability that tasks will be assigned the other way round
- The execution times of the tasks on the cores are collected in the following traces (all expressed in sec):

	High Performance Cores	Energy Efficient Cores
Heavy computation tasks	TraceB-HH.txt	TraceB-HE.txt
Low computation tasks	TraceB-LH.txt	TraceB-LE.txt

All these components can be considered working in processor sharing, with an exponential service time (different per type of job), whose average is described in these tables:

	I/O	Storage	Network
Heavy computation tasks	50 msec	200 msec	5 msec
Low computation tasks	150 msec	10 msec	120 msec

OTHER COMPONENTS

FITTING

By means of MATLAB and having at disposal samples of the durations of the corresponding execution times, I was able to define the characteristics of the various departments, exploiting the method of moments and fitting the traces according to several distributions, such as Uniform, Exponential, Hyper-Exponential, Hypo-Exponential and Erlang (they were enough to fit well). Then, looking at the coefficient of variation and at the curves in the graph I chose the most appropriate rate for each of the traces

Method of moments is used to determine the best parameters producing samples with characteristics similar to the one measured in the real trace

$$egin{aligned} \mu_1 &\equiv \mathrm{E}[W] = g_1(heta_1, heta_2, \dots, heta_k), \ \mu_2 &\equiv \mathrm{E}[W^2] = g_2(heta_1, heta_2, \dots, heta_k), \ &dots \ \mu_k &\equiv \mathrm{E}[W^k] = g_k(heta_1, heta_2, \dots, heta_k). \end{aligned}$$

FITTING I - HE

Heavy Computations

Energy Efficient cores

Moments:

I. Moment: 96.5605

II. Moment: 29425.2

III. Moment: 1.83159e+07

CV: 1.46829

Distribution:

2 stages hyper-exponential

- p = 0.20066
- $\lambda I = 0.00411398$
- $\lambda 2 = 0.0167277$

FITTING II - HH

Heavy Computations High Performance cores

Moments:

I. Moment: 24.1255II. Moment: 1820.78III. Moment: 278560

CV: 1.45886

Distribution:

2 stages hyper-exponential

- p = 0.206686
- $\lambda I = 0.0167711$
- $\lambda 2 = 0.0672208$

FITTING III - LE

Low Computations Energy Efficient cores

Moments:

I. Moment: 4.80413II. Moment: 24.9919

III. Moment: 139.942

> CV: 0.28784

Distribution:

☐ Erlang k = 12

 \square $\lambda = 2.49785$

FITTING IV - LH

Low Computations High Performance cores

Moments:

l. Moment: 1.5025

II. Moment: 2.44536

III. Moment: 4.28698

> CV: 0.288477

Distribution:

 \Box Erlang k = 12

 \Box $\lambda = 7.98671$

MODEL DEFINITION

- I modeled my components using JMT's JSIMgraph tool, allowing me to synthesize separable models—a system in which the order of components is irrelevant.
- All components operate under <u>Processor Sharing</u> with a defined Service Time. Concerning the Input/Output, Storage, and Network components, I simply expressed the parameters of the exponential distribution provided in the text. For the High Performance/Energy Efficient Cores components, I estimated the probabilistic distribution using the fitting technique, as explained in previous steps.
- As mentioned earlier, this is a <u>closed model</u> with precisely 10 Heavy tasks and 32 Low computation tasks, for which I created two Closed classes with their respective populations.
- The most critical aspect pertains to routing, where I evaluated various scenarios to optimize the system's Throughput (and also Response Time). In the next slides there are various scenarios studied.

I could have added a router but it would have been superfluous since I can do the routing with any component.

PROBABILITIES: all Heavy Tasks on High Performance and Light Tasks on Energy Efficient

Throug Average	•	h se	lected class at each selected	station	1.	
	Station Name:		High Performance Cores	Cla	ss Name:	All
	Conf.Int/Max Rel.I	Err:	0.99 / 0.03	Ana	lyzed samples	: 40960
	Min: Average value: 0.1		0.1439	Ma	c:	0.1528
			482 Ab		bort Measure	
	sample values (gr		o see the simulation time, the). Energy Efficient Cores		Name:	All
	Conf.Int/Max Rel.I	Err:	0.99 / 0.03	Anal	zed samples:	14080
	Min:		1.6207	Max:		1.7104
	Average value:	1.6	644		А	bort Measure
V						

	Station Name:	High Performance Cores Class Name:	All
	Conf.Int/Max Rel.Err	0.99 / 0.03 Analyzed samples	: 10000
	Min:	- Max:	-
	Average value: 1.	0000	
	Right-click to save it Click on green bars t	: to see the simulation time, the sample average (blue), and the sa	Hide insta
_	Click on green bars t	Energy Efficient Cores Class Name:	imple valu
	Click on green bars t	Energy Efficient Cores Class Name:	All

System Throughput of		re system for each sele	cted class.			
Station Name	e:	Network	Class Name:	All		
Conf.Int/Max	Rel.Err:	0.99 / 0.03	Analyzed samples	s: 56320	56320	
Min:		1.7884	Max:	1.8426		
Average va	lue: 1.8	3151			Abort N	
				Hide insta	intaneous	

•	Response Time esponse time of the	entire system for each se	elected class.	
	Station Name:	Network	Class Name:	All
	Conf.Int/Max Rel.Err	: 0.99 / 0.03	Analyzed samples:	33280
	Min:	22.7007	Max:	23.4959
	Average value: 2	3.0983		Abort M
				Hide instantaneous

WORST ROUTING CONFIGURATION, even it represents the main indications about routing

RANDOM ROUTING

Much better performance but still not optimized (for example Utilization)

LEAST UTILIZATION

It does not comply with the routing directives but is definitely more performing

JOIN THE SHORTEST QUEUE

Throug Average	•	h se	elected class at each selected	station	1.	
	Station Name:		High Performance Cores	Cla	ss Name:	All
	Conf.Int/Max Rel.E	err:	0.99 / 0.03	Ana	alyzed sample	es: 143360
	Min:		2.0295	Ma	x:	2.1188
	Average value:	2.0)732			Abort Measure
	Click on green bar sample values (gre Station Name:		o see the simulation time, the). Energy Efficient Cores		le average (b s Name:	lue), and the
	Conf.Int/Max Rel.E	rr:	0.99 / 0.03	Anal	yzed samples	s: 102400
	Min:		1.2221	Max		1.2893
	Average value:	1.2	2548			Abort Measure
	Click on green bar sample values (gre		o see the simulation time, the	e samp		ntaneous values lue), and the

	Station Name:	High Performance Cores	Class Name:	All
	Conf.Int/Max Rel.Err:	0.99 / 0.03	Analyzed sample	s: 10000
	Min:	-	Max:	-
Z	Average value: 1.	0000		Abort Measure
	Click on green bars t sample values (green	o see the simulation time, the n).		taneous values ue), and the
_	_			
_	sample values (greer	Energy Efficient Cores	e sample average (bl	ue), and the
	Station Name:	Energy Efficient Cores	e sample average (bl	ue), and the

Station Name:	Network	Class Name:	All
Conf.Int/Max Rel.E	Err: 0.99 / 0.03	Analyzed samples:	112640
Min:	12.3325	Max:	12.8669
Average value:	12.5997		Abort Measure
		Hide in	nstantaneous values

BEST ROUTING CONFIGURATION!

Same annotations as last one but a slight improvement of performance

CONCLUSIONS

I have studied and analyzed four scenarios, all with a confidence interval of 99% and a maximum relative error of 3%. I have explored four different routing methods:

1.	Core T	Гуре-Based Routing:
		All heavy tasks are executed on high-performance cores, while light tasks are handled by energy-efficient cores (Configuration Requested but not well performing
		Despite achieving similar UTILIZATION, this approach doesn't optimize Throughput.
2.	Rando	om Routing:
		This method performs significantly better than the first approach but still has space for optimization.
3.	"Least	t Utilization" Approach:
		lobs are routed to the station with the smallest utilization

4. "Join the Shortest Queue" Approach:

This configuration has proven to be one of the most efficient.

☐ This configuration has demonstrated to ensure the highest system Throughput and a better average response time.

In summary, after analyzing the four scenarios, the "Join the Shortest Queue" approach has emerged as the most promising, ensuring maximum system Throughput and optimal average response time, even it doesn't comply with the routing directives

THANKS

JASKARAN.RAM@MAIL.POLIMI.IT