${\bf Laboratorium\ problemowe} \\ {\bf Helikopter}$

Maciej Cebula Marcin Kowalczyk Daniel Rubak

Spis treści

1	\mathbf{Wstep}					
	1.1	Cel zajęć				
2	Ide	Identyfikacja				
	2.1	Identyfikacja parametrów śmigieł				
	2.2	Charakterystyka statyczna helikoptera				
	2.3	Moment bezwładności				
		2.3.1 Oś "pitch"				

Wstęp

1.1 Cel zajęć

Identyfikacja

2.1 Identyfikacja parametrów śmigieł.

W celu wyznaczenia dynamiki śmigieł helikoptera odpowiedzialnych za ruch odpowiednio względem osi pionowej - Pitch jak i poziomej - Azimuth, przeanalizowano odpowiedzi obiektu na wymuszenie w postaci skoku jednostkowego. Zmiana prędkości obrotowej każdego ze śmigieł, w reakcji na skokową zmianę napięcia zasilania, posłużyła do wyznaczenia parametrów transmitancji. Na bazie przeprowadzonych doświadczeń przyjęto, że każde ze śmigieł jest obiektem inercyjnym pierwszego rzędu w sytuacji gdy sygnałem wejściowym jest napięcie zasilania, a wyjściowym prędkość obrotowa. Do wyznaczenia parametrów tak przyjętego modelu wykorzystano metodę najmniejszych kwadratów.

Rys. 2.1: Charakterystyka śmigła oś pozioma.

W przypadku osi poziomej model śmigła opisany jest następującą transmitancją:

$$G(s) = \frac{K}{Ts+1} = \frac{11.63}{0.31s+1} \tag{2.1}$$

Rys. 2.2: Charakterystyka śmigła oś pionowa.

Natomiast dla osi pionowej:

$$G(s) = \frac{K}{Ts+1} = \frac{14.28}{0.71s+1} \tag{2.2}$$

2.2 Charakterystyka statyczna helikoptera.

Do wyznaczenia zależności generowanego momentu siły przez śmigło odpowiedzialne za ruch wzdłuż osi pionowej przeprowadzono eksperyment polegający na doczepianiu ciężarków o różnej masie z drugiej strony helikoptera i równoważeniu tak powstałego momentu siły przez odpowiednie dobranie prędkości obrotowej. W tabeli 2.1 podano otrzymane dane. Na podstawie zależności momentu siły od prędkości wyznaczono wielomian aproksymujący rzędu trzeciego opisanego zależnością:

$$M(v) = -0.0002v^3 - 0.0009v^2 - 0.0061v + 0.1571$$
(2.3)

Tabela 2.1: Porównanie poszczególnych regulatorów LQR.

	1	0 ,	
Maga [g]	Prędkość	Wsp. PWM	Moment sily
Masa [g]	[RPM]	[%]	[Nm]
0	7.1	63	0.1530
15	6.3	51	0.1148
30	5.2	37	0.0765
45	3.75	32	0.0383
60	0	0	0
75	-5.15	-33	-0.0383
90	-7.05	-57	-0.0765
105	-8.7	-85	-0.1148

Rys. 2.3: Charakterystyka statyczna śmigła oś pionowa.

Chcąc znalezć zależność pomiędzy wartościami odczytywanymi z tachopradnicy a rzeczywistą prędkością obrotową śmigła sporządzono charakterystykę statyczną napięcia na tachoprądnicy od jej sygnału wyjściowego. Z racji na liniową zależność, otrzymane dane pomiarowe aproksymowano funkcją liniową w postaci:

$$U(x) = 0.164 \cdot x + 0.0019 \tag{2.4}$$

Dane pomiarowe z wyznaczoną funkcją aproksymującą zaprezentowane są na rysunku 2.4. Finalnie otrzymano następującą zależność na prędkość obrotową wirnika:

Rys. 2.4: Skalowanie prędkości obrotowej śmigła.

$$RPM = (0.164 \cdot x + 0.0019) * \frac{1}{0.52}$$
 (2.5)

2.3 Moment bezwładności

2.3.1 Oś "pitch"

W celu wyznaczenia momentu bezwładności helikoptera względem punktu podporu przyjęto oscylacyjny model obiektu. W celu wyznaczenia parametrów opisujących dynamikę, przeprowadzono eksperyment polegający na rejestracji gasnących oscylacji układu po wychyleniu go z położenia równowagi o zadany kąt. Następnie na postawie zarejestrowanych danych i funkcji *lsqnonlin* dobrano parametry równania 2.6 minimalizując kwadrat różnicy pomiędzy odpowiedzią obiektu i modelu. Na rysunku 2.6 przedstawiono porównanie odpowiedzi obiektu i modelu.

$$Ku(t) = \frac{d^2\alpha(t)}{dt^2} + 2\xi \cdot \omega \cdot \frac{d\alpha(t)}{dt} + \alpha(t) \cdot \omega^2$$
(2.6)

Rys. 2.5: Zależność pomiędzy współczynnikiem wypełnienia PWM i prędkością obrotową.

Na drodze optymalizacji otrzymano następujące wartości parametrów:

K = 1

 $\xi = 0.013$

 $\omega = 2.2247$

Moment bezwładności helikoptera wyznaczono z zależności pomiędzy momentem bezwładności wahadła fizycznego, a okresem drgań równanie 2.7.

$$J = \left(\frac{T}{2\pi}\right)^2 \tag{2.7}$$

gdzie:

 ${\cal J}$ - moment bezwładności

 $T=\frac{2\pi}{\omega}$ - okres drgań własnych

W efekcie końcowym wartości momentu bezwładności wynosi $J=0.202~kg\cdot m^2.$

Rys. 2.6: Porównanie odpowiedzi obiektu i modelu.

Bibliografia