Estimaciones de la probabilidad de ruina de una compañía aseguradora a través de métodos estocá- de Monterrey sticos a tiempo discreto

Samuel Méndez, Brenda Martínez, Salette Noemi, Ethan Verduzco y Jesus Marroquin Equipo 5

Resumen

En este cartel se presentan diferentes métodos de aproximación basados en el modelo de Cramer-Lundberg para calcular la probabilidad de ruina de una compañía aseguradora. Entre las estimaciones obtenidas se encuentran el método de Monte-Carlo frecuentista; de varianza reducida, la fórmula de Pollaczek-Khinchin y la aproximación De Vylder. Variando el capital inicial de la compañía, como resultados se obtuvieron las probabilidades de que la empresa quiebre a largo plazo.

Limpieza de los datos

La base de datos original contenía 31976 registros de los cuales 17280 contenían datos perdidos o inválidos, esto representa el 54.04% de los registros. Los registros previamente inválidos fueron clasificados de esta forma por sus banderas, las cuales invalidan valores y explican por qué éstos son nulos, algunos ejemplos son:

- 'l' Negativo sobre el rango
- 'a' PM menor a 5 ug/m3 y 0.05 ppm en CO
- 's' Valores iguales consecutivos
- 'e; Datos faltantes de NO y Nox
- . . .

Método PCA

El objetivo es transformar un conjunto de variables en un nuevo conjunto de variables no correlacionadas denominadas componentes principales.

Estos componentes principales [1] se obtienen con los valores y vectores propios de la matriz de covarianza. Los valores propios nos van a decir que porcentaje de la varianza es explicada por cada valor y los vectores propios [2] nos van a permitir hacer la transformación lineal para obtener los valores por componente y no por su variable original. El objetivo es disminuir las dimensiones de los datos perdiendo la menor cantidad de varianza.

Conclusiones

Este método de análisis multivariado permite examinar la estructura de los datos, principalmente la covarianza en las variables originales estandarizadas para comprenderlos y reducir la dimensión de los datos. Después de aplicar este análisis se logró reducir las 15 variables a solo 3 explicando más del 90% de la varianza. Las variables que más peso tienen en los componentes principales fueron NO, NO2, NOx, PM10, PM25, Ozono, Temperatura, Humedad Relativa y Presión Atmosférica por lo tanto son las más significativas.

Referencias

- 1. XLSTAT., ANÁLISIS DE COMPONENTES PRINCIPALES (ACP) (https://www. xlstat.com/es/soluciones/funciones/analisis-de-componentesprincipales-acp).
- 2. P. Rodó, *Vectores y valores propios* (https://economipedia.com/ definiciones/vectores-y-valores-propios.html).