INSTITUT FÜR INFORMATIK

DER LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Masterarbeit

Dynamic PGAS Data Structures

Stefan Effenberger

INSTITUT FÜR INFORMATIK

DER LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Masterarbeit

Dynamic PGAS Data Structures

Stefan Effenberger

Aufgabensteller: Prof. Dr. Dieter Kranzlmüller

Betreuer: Tobias Fuchs

Abgabetermin: ADD DATE

Hiermit versichere ich, dass ich die vorliegende Makeine anderen als die angegebenen Quellen und Hi	ĕ
München, den ADD DATE	
U	nterschrift des Kandidaten)

Abstract

ADD ABSTRACT

Inhaltsverzeichnis

1	Intro	oduction	1
	1.1	Motivation	1
	1.2	Scope	1
2	Pac	kground	-
_			9
	2.1	Graph definition	3
	2.2	Standard Template Library	3
	2.3	Partitioned Global Address Space	3
	2.4	DASH Library	3
3	Rela	ated Work	5
	3.1	Shared Memory	Ę
		3.1.1 STINGER	Ę
		3.1.2 Ligra	Ę
	3.2	Distributed Memory	-
	0.2	3.2.1 Parallel Boost Graph Library	1
		3.2.2 STAPL Parallel Graph Library	
		5.2.2 STAFL Faranei Graph Library	٠
4	Con	tainer Concept	7
	4.1	Interface semantics	7
	4.2	Computational constraints/assumptions	7
	4.3	Memory Space	7
	4.4	Index Space	7
	4.5	Iteration Space	7
5	Refe	erence Implementation	g
		·	
6		e studies	11
	6.1	Static structure	11
		6.1.1 Graph traversal	11
		6.1.2 Shortest path evaluation	11
	6.2	Dynamic Structure	11
		6.2.1 Graph partitioning	11
		6.2.2 De Bruijn Graph construction	11
7	Eval	luation	13
•	7.1	Micro-benchmarks	13
	1.1	micro bondinanas	10
8	Con	nclusion	15
	8.1	Summary	15
	8.2	Assessment	15

In halts verzeichn is

8.3 Outlook	15
Abbildungsverzeichnis	17
Literaturverzeichnis	19

1 Introduction

- 1.1 Motivation
- 1.2 Scope

2 Background

- 2.1 Graph definition
- 2.2 Standard Template Library
- 2.3 Partitioned Global Address Space
- 2.4 DASH Library

3 Related Work

- 3.1 Shared Memory
- **3.1.1 STINGER**
- 3.1.2 Ligra
- 3.2 Distributed Memory
- 3.2.1 Parallel Boost Graph Library
- 3.2.2 STAPL Parallel Graph Library

4 Container Concept

- 4.1 Interface semantics
- 4.2 Computational constraints/assumptions
- 4.3 Memory Space
- 4.4 Index Space
- 4.5 Iteration Space

5 Reference Implementation

6 Case studies

- 6.1 Static structure
- 6.1.1 Graph traversal
- 6.1.2 Shortest path evaluation
- **6.2 Dynamic Structure**
- 6.2.1 Graph partitioning
- 6.2.2 De Bruijn Graph construction

Evaluation

7.1 Micro-benchmarks

8 Conclusion

- 8.1 Summary
- 8.2 Assessment
- 8.3 Outlook

Abbildungsverzeichnis

Literaturverzeichnis

- [BgM⁺17] Brenner, Michael; Gentschen Felde, Nils; Metzger, Stefan; Reiser, Helmut; Schaf, Thomas: Praxisbuch ISO-IEC 27001: Management der Informationssicherheit und Vorbereitung auf die Zertifizierung. 2. Auflage. Hanser, 2017
- [ITE16] ITEMO (Hrsg.): FitSM Teil 0: Überblick und Begriffe. Version 2.4. FitSM working group: ITEMO, September 2016. http://fitsm.itemo.org/fitsm-standard
- [Wik17] WIKIBOOKS: Latex Bibliography Management. https://en.wikibooks.org/wiki/LaTeX/Bibliography_Management. Version: 2017. abgerufen am 2. Mai 2017