CLIMA Y PRODUCCION LECHERA

Ing. Agr. Maria Josefina Cruañes

How are your cows feeling?... How are they milking?

Mapa climático Köppen

Ing. Agr. Maria Josefina Cruañes Profesor Adjunto Cat Bov Leche

a: mes más cálido con más de 22°C f: humedad permanente

BIENESTAR ANIMAL

Broom (1986) describe al bienestar animal como "el estado en el cual se encuentra un animal que trata de adaptarse a su ambiente"

Blood y Studdert (1988) defienen al bienestar animal como "el mantenimiento de normas apropiadas de alojamiento, alimentación y cuidado general, más la prevención y el tratamiento de enfermedades"

La American Veterinary Medical Association (AVMA) amplía este concepto para incluir que "todos los aspectos del bienestar animal, incluyendo el alojamiento apropiado, la alimentación, la prevención y el tratamiento de enfermedades, el cuidado responsable, la manipulación humanitaria, y, cuando sea necesaria, la eutanasia humanitaria" (Anon, 1990)

ESTRES ANIMAL

Los animales pueden sufrir estrés debido a:

✓ Restricción en sus movimientos

✓ Manejo

✓ Hambre

✓ Sed

✓ Lesiones

✓ Extremos climáticos (temperaturas y precipitaciones)

FACTORES QUE AFECTAN AL DESEMPEÑO ANIMAL

Horarios de ordeño y suministro de concentrados

Radiación

Caminatas

Pendiente del terreno

MANEJO Y ALIMENTACIÓN

Oferta de pasturas (presión de pastoreo)

Balance de dietas

DESEMPEÑO ANIMAL Temperatura

Humedad

Lluvia

Vientos

Adaptado de Viglizzo & Roberto, 1993)

Altas temperaturas y humedad elevada generan estrés térmico

> Ing. Agr. Maria Josefina Cruañes Profesor Adjunto Cat Bov Leche

CONFORT TERMICO

La vaca lechera se desarrolla bien productivamente en un rango de temperatura ambiente de 5-21° C, con humedad relativa de 50 % y velocidad del viento de 5-8 km/hora

CONFORT TERMICO
Ganado Holando

CONFORT TERMICO PARA VACAS HOLSTEIN

Índice de temperatura y humedad

Se calcula a partir de la temperatura(T)
y la humedad relativa (HR)

Evalúa el impacto del ambiente sobre las vacas lecheras

Valor ITH: Valores de riesgo

Rel H %	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100		
T																						
Temp °F									THI -													
70	64	64	64	65	65	65	66	66	66	67	67	67	68	68	68	69	69	69	70	70	Heat Stres	20
71	64	65	65	65	66	66	66	67	67	67	68	68	68	69	69	70	70	70	71	71	Begins	,5
72	65	65	65	66	66	67	67	67	68	68	69	69	69	70	70	70	71	71	72	72	3 -	
73	65	66	66	66	67	67	68	68	68	69	69	70	70	71	71	71	72	72	73	73		
74	66	66	67	67	67	68	68	69	69	70	70	70	71	71	72	72	73	73	74	74		
75	67	67	67	68	68	68	69	69	70	70	71	71	72	72	73	73	74	74	75	75		
76	67	67	68	68	69	69	70	70	71	71	72	72	73	73	74	74	75	75	76	76		
77	67	68	68	69	69	70	70	71	71	72	72	73	73	74	74	75	75	76	76	77		
78	68	68	69	69	70	70	71	71	72	73	73	74	74	75	75	76	76	77	77	78	Sharp	ıotion
79	68	69	69	70	70	71	71	72	73	73	74	74	75	76	76	77	77	78	78	79	drops in produ	JCHOH
80	69	69	70	70	71	72	72	73	73	74	75	75	76	76	77	78	78	79	79	80	3334.	
81	69	70	70	71	72	72	73	73	74	75	75	76	77	77	78	78	79	80	80	81		
82	69	70	71	71	72	73	73	74	75	75	76	77	77	78	79	79	80	81	81	82		
83	70	71	71	72	73	73	74	75	75	76	77	78	78	79	80	80	81	82	82	83		
84	70	71	72	73	73	74	75	75	76	77	78	78	79	80	80	81	82	83	83	84		
85	71	72	72	73	74	75	75	76	77	78	78	79	80	81	81	82	83	84	84	85		
86	71	72	73	74	74	75	76	77	78	78	79	80	81	81	82	83	84	84	85	86		
87	72	73	73	74	75	76	77	77	78	79	80	81	81	82	83	84	85	85	86	87		
88	72	73	74	75	76	76	77	78	79	80	81	81	82	83	84	85	86	86	87	88		
89	73	74	75	75	76	77	78	79	80	80	81	82	83	84	85	86	86	87	88	89	_	
90	73	74	75	76	77	78	79	79	80	81	82	83	84	85	86	86	87	88	89	90	Danger Zone	
91	74	75	76	76	77	78	79	80	81	82	83	84	85	86	86	87	88	89	90	91	Zone	
92	74	75	76	77	78	79	80	81	82	83	84	85	85	86	87	88	89	90	91	92		
93	75	76	77	78	79	80	80	81	82	83	84	85	86	87	88	89	90	91	92	93		
94	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94		
95	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95		
96	76	77	78	79	80	81	82	83	85	86	87	88	89	90	91	92	93	94	95	96		
97	77	78	79	80	81	82	83	84	85	86	87	88	89	91	92	93	94	95	96	97		
98	77	78	79	80	82	83	84	85	86	87	88	89	90	91	93	94	95	96	97	98		
99	78	79	80	81	82	83	84	85	87	88	89	90	91	92	93	94	96	97	98	99		
100	78	79	80	82	83	84	85	86	87	88	90	91	92	93	94	95	97	98	99	100		
¹ THI = td - (0.55	x RH)(td	- 58), wh	ere td =	dry bulb	temperat	ure (degr	ees F) a	nd RH =	relative h	numidity	in decima	als.										

Indice ITH

TEMPERAT.	HR	ITH
20°C	0,5	65,4
20°C	0,6	65,96
20°C	0,7	66,52
20°C	0,8	67,08
20°C	0,9	67,64
25°C	0,5	71,95
25°C	0,6	73,01
25°C	0,7	74,07
25°C	0,8	75,13
25°C	0,9	76,19
30°C	0,5	78,5
30°C	0,6	80,06
30°C	0,7	81,62
30°C	0,8	83,18
30°C	0,9	84,74
35°C	0,5	85,05
35°C	0,6	87,11
35°C	0,7	89,17
35°C	0,8	91,23
35°C	0,9	93,29
40°C	0,5	91,6
40°C	0,6	94,16
40°C	0,7	96,72
40°C	0,8	99,28
40°C	0,9	101,84

Estrés calórico en vacas lecheras según indices de ITH

ITH <= 74 No estrés calórico

ITH =75-79 Leve estrés calórico

ITH = 80 - 83 Estrés calórico medio

ITH >= 84 Estrés calórico grave

Horas de estrés diarias para las principales cuencas lecheras argentinas (niveles límites de ITH 72 y 74)

Cuenca	Diciembre		Ene	ero	Febrero	
ITH	> 72	> 74	> 72	> 74	> 72	> 74
Abasto Bs As	7	5	8	6	7	5
Abasto Cordoba y Rio Cuarto	9	6	10	7	7	5
Abasto Rosario	9	7	11	9	9	7
Entre Rios	10	8	13	10	11	8
Oeste de Bs As	7	5	9	7	7	5

Efectos más importantes del estrés térmico

RESPIRACION

FRECUENCIA RESPIRATORIA NORMAL 35-50 pulsaciones por minuto

FRECUENCIA RESPIRATORIA ACELERADA 100-120 pulsaciones por minuto

Crecimiento del ritmo respiratorio

TEMPERATURA CORPORAL

Incremento del la temperatura corporal

> 39 ° C

NECESIDAD DE AGUA

Incremento de los requerimientos de agua

Categoria	10°C	20°C	30°C
Ternera 90 kg	10	11	15
Vaquillona 270 kg	25	37	45
Vaca seca 600 kg	45	58	70
Vaca 18 lts/dia	66	79	92
Vaca 30 lts/dia	77	90	100
Vaca 35 lts/dia	89	100	115

NECESIDAD DE AGUA

Consumo total de agua estimado para vacas lecheras (incluye el agua contenida en los alimentos y en el agua de bebida)

Categoria: Vaca seca 700 kg					
Requerimientos / T	4.4°C	26.7°C			
Mantenimiento	26.5	40.5			
Preñez	10.2	17.0			
Seca y preñada	36.7	57.5			

Fuente: Revista Infortambo

NECESIDAD DE AGUA

Consumo total de agua estimado para vacas lecheras (incluye el agua contenida en los alimentos y en el agua de bebida)

Categoría: Vaca en ordeño					
Producción / T	4.4°C	26.7°C			
10	45.4	40.5			
20	64.3	93.5			
30	83.2	120.0			
40	102.2	146.4			
50	121.1	172.9			

Fuente: Revista Infortambo

CONSUMO VOLUNTARIO MS

Cambios relativos en el mantenimiento y consumo de materia seca requeridos por vacas de 600 kg de 27.5 lts de producción y 3.7 % de GB, en distintos ambientes.

Temperatura (°C)	Energia mantenimiento	Consumo esperado kg MS/día ⁽¹⁾	Consumo real kg MS/día ⁽²⁾	Producción lts/día	Consumo de agua lts/día
10	100	18.2	18.2	27.5	64.6
20	100	18.2	18.4	27.3	65.4
25	104	18.4	17.7	25.0	71.2
30	111	18.9	16.9	23.0	76.2
35	120	19.4	16.7	18.2	116.2
40	132	20.2	10.5	12.0	102.6

Adaptardo de Mc Dowell, 1976

(1) MS estimada para requerimientos de mantenimiento y producción de leche (2) MS estimación de MS consumida, agua y producción de leche con acceso libre de agua y alimento ad libitum (60% heno y silaje con 40% de concentrados)

PATRON de PASTOREO

PATRON TEÓRICO DE PASTOREO EN FUNCIÓN DE LA TEMPERATURA MEDIA

horas del día

Adaptardo de Hafez, 1973

PRODUCCION

El estrés por calor provoca disminución en la producción de leche

Vacas de mayor producción más afectadas

REPRODUCCION

El estrés por calor provoca pérdidas de eficiencia reproductiva

Disminución de celos

Menor tasa de concepción

Muertes embrionarias

Disminución Celos Fallas en la detección

Distribución porcentual de celos de diferente duración, en horas, según la época del año

Adaptado de Flamenbaun, 1986

Duración (hs)	Verano (%)	Invierno (%)
7	(71)	35
7 - 12	18	30
13 - 18	7	21
19 - 24	1	8
24	3	6

Disminución Celos Fallas en la detección

Porcentaje de celos no detectados en el estado de Florida USA

Tasa de concepción

Tasa de concepción

Muertes embrionarias

Porcentaje de embriones normales, anormales y detenidos recuperados en vaquillas estresadas calóricamente y termoneutrales entre los 1-7 días posconcepción

Grupo	Normal	Anormal	Detenido
Termoneutrales	51	13	16
Estresadas	20	26	34

Extractado de Douglas W. Shaw, DVM, PhD Extension Veterinarian Food Animal Reproduction Ohio State University Extension

Otras consideraciones respecto al estrés termico

Estrés térmico y razas

Los efectos de calor son mayores en vacas Holando que en vacas Jersey y Pardo Suizo.

Estrés térmico y productividad

Los efectos de calor son mayores en vacas de mayor producción.

Estrés térmico y vacas secas

Efecto del estrés calórico en el preparto en el peso del ternero y producción de leche

	PREF	PARTO
	Sin estrés	Con estrés
Peso del ternero al nacer *	39.9	36.84
Producción 100 ds posparto	2.672,40	2.556,00
Producción 305 ds posparto**	6.788,47	5.979,52

^{*} Diferencia significativa P<.05

^{**} Producción ajustada por edad y mes de parto

El estrés por calor es negativo, porque se altera la composición química en leche (disminución de la concentración de proteína)

Manejo para contrarrestar el estrés termico

SOMBRAS NATURALES

La sombra de los árboles es una de las más efectivas.

SOMBRAS ARTIFICIALES

SOMBRAS ARTIFICIALES

Ing. Agr. Maria Josefina Cruañes Profesor Adjunto Cat Bov Leche

Ing. Agr. Maria Josefina Cruañes

Profesor Adjunto Cat Bov Leche

SOMBRAS ARTIFICIALES

Orientación E-O (más estable)

Redes plásticas montadas sobre diversos materiales: desde perfiles metálicos hasta postes de árboles.

SOMBRAS ARTIFICIALES EN EL CORRAL DE ESPERA

Temperatura del piso de cemento del corral de espera con y sin sombra

Sombras en el corral de espera

Sombras en el corral de espera

Profesor Adjunto Cat Bov Leche

MATERIAL	DESCRIPCION	EFECTIVIDAD
Heno de hierba	15 cm espesor	1,203
Madera	Sin pintar	1,06
Chapa galvanizada	Pintura blanca	1,053
Chapa de aluminio	Pintura blanca	1,049
Neopreno+nylon+algodón	Color blanco	1,037
Chapa de aluminio	estándar	1
Chapa galvanizada	Estándar	0,992
Placas de fibrocemento	color natural	0,956
Malla plástica de sombreo	90 % cubierta	0,839
Malla plástica de sombreo	80 % cubierta	0,819
Entramado de madera	50 % cubierta	0,589

Estructura de sombra para temeros deslechados. (Extraído de Camillo, Berray Mate).

Estructura de sombra para estaca de ternero lechal. (Extraido de Carrillo, Berray Mate).

Sombras artificiales

Disposición por animal: 3 - 5 m² por vaca

Más calor, más estrés

Vaca lechera: 3 -5 m²

Vaquillona: 2 m²

Terneras: 1 m²

Características comparativas entre la sombra natural y artificial

Característica	Sombra natural	Sombra artificial
Uniformidad de la sombra	variable	alta
Tipo de piso	suelo natural	consolidado
Resistencia al encharcamiento	variable según tipo de suelo	buena
Manejo de la disponibilidad por animal	complejo	sencillo
Disponibilidad desde su planificación	lejana	inmediata

REFRIGERACION

VENTILADORES

VENTILADORES

Ing. Agr. Maria Josefina Cruañes Profesor Adjunto Cat Bov Leche

SISTEMAS COMBINADOS ASPERSORES Y VENTILADORES

SISTEMAS COMBINADOS ASPERSORES Y VENTILADORES

Representación esquemática de sistemas de aspersores y ventiladores

SISTEMAS COMBINADOS ENFRIAMIENTO DEL AIRE

Representación esquemática de la formación de nieblas y ventiladores

SISTEMAS COMBINADOS ASPERSORES Y NIEBLA

SISTEMAS COMBINADOS ASPERSORES Y NIEBLA

Producción y composición de la leche de vacas control y refrescadas por medio de un sistema de aspersión y ventilación, previo a los ordeños

(Adaptado de Valtorta y Gallardo, 2004)

Producción	Control	Refrescadas	Diferencia (%)
Leche, kg/c/d	22.14	23.18	4.69
Grasa	3.44	3.75	9.01
Grasa, kg/ha	0.755	0.87	15.23
Proteínas, %	3.22	3.35	4.03
Proteínas, kg/dia	0.713	0.784	9.96

AGUA EN EL TAMBO

Proveer de agua FRESCA, LIMPIA, ABUNDANTE y de CALIDAD

Con ACCESOS satisfactorios

CALIDAD: Aspectos a considerar

Principales parámetros a analizar

QUIMICOS	BACTERIOLOGICOS	FISICOS
pH Salinidad Sólidos totales Nitratos Nitritos Calcio y Magnesio Sulfatos y Cloruros	Conteo total de bacterias Presencia o ausencia de coliformes	Olor Color Turbidez

CALIDAD: Valores orientativos

QUIMICOS Valores máximos recomendado en ppm	BACTERIOLOGICOS Valor máximo recomendado	FISICOS
pH: 6.6 - 8.5 Salinidad: 960 STD: 3.000 Nitratos: 132 Nitritos: 10 Calcio: 100 Magnesio: 30 Sulfatos: 500 Cloruros: 100	Presencia o ausencia de coliformes: Contenido bacteriano; 1000 ufc/ml	Olor: inolora Color: incolora Turbidez: no turbia

ALIMENTACION

DIETAS FRIAS

Una dieta fría es aquella que genera una alta proporción de nutrientes netos para la síntesis y disminuye el incremento calórico originado durante la fermentación y el metabolismo,

ALIMENTACION

DIETAS FRIAS

Mayor contenido energético por unidad de volumen

Fibra de alta fermentación

Menor degradabilidad de las proteínas

Alto contenido de nutrientes que "puentean"

el rumen (by pass)

CARACTERISTICAS DE DIETAS CALIENTES Y FRIAS

	CALIENTES	FRIAS
Digestibilidad	Baja	Alta
Fibra		
Proteínas degradabilidad	Mayor	Menor
Ejemplos	Pasturas maduras Henos y silajes fibrosos Concentrados con alta fibra	Pasturas tiernas Silajes con alto grano Concentrados ricos en grasa

BARRO EN EL TAMBO

Ing. Agr. Maria Josefina Cruañes Profesor Adjunto Cat Bov Leche

Camino a estabilizar

Toma de muestras del suelo y ensayos para determinar sus propiedades.

Escarificado del suelo a estabilizar

Regado del suelo hasta humedad óptima con solución de agua y Sika Suelos 21.

Perfilado y nivelación

Compactación

Colocación de piedra partida como anclaje superficial y compactación final.

Regado superficial final con la solución de Sika Suelos 21

Camino estabilizado

BIBLIOGRAFIA

- Concepto de Bienestar animal y requisitos de bienestar en vacas de leche.

 Boehringer Ingelheim.
 - Relación entre bienestar animal y la producción de leche (I).

 Boehringer Ingelheim.
 - Relación entre bienestar animal y la producción de leche (II).

 Boehringer Ingelheim.
 - Estrés calórico, su efecto en vacas lecheras. Imanol Mujika Arraiago. Mayo Junio 2005.
 - Estrategias de manejo nutricional y ambiental para el verano. Miriam Gallardo ⁽¹⁾ y Silvia Valtorta ⁽²⁾. ⁽¹⁾ INTA EEA - ⁽²⁾ CONICET Rafaela.
 - El estrés calórco. Efecto en las vacas lecheras. Imanol Mujica Arraigo. Asistencia Tecnica ITGG. Mayo junio 2005.
- Producción de leche en verano. Silvia Valtorta y otros. de Publicaciones UNL.

BIBLIOGRAFIA

- Reproducción Animal. Efectos del estrés calórico en la función reproductiva de vacas lecheras. Material traducido y adaptado de ORWilde del original de Douglas W. Shaw DVM, PhD.
 - Estrés calórico, su efecto en tambo.
- Stress calórico: su efecto en vacas de producción de leche. Coop. Colonias Unidas Agrop. Ind. Ldta.
 - La vaca lechera en el verano: sombra, agua y manejo. Ing. Agr. Danilo Bartaburu.2001 Revista Plan Agropecuario Nº 94. Inst Plan Agr
- El agua, un elemento fundamental. Ing Agr María Alejandra Herrero, área agrícola de la Fac. Cs. Veterinarias UBA.
 - El manejo del agua en verano. 1ra. Parte. Revista Chacra Enero 2000.
 - El manejo del agua en verano. 1ra. Parte. Revista Chacra Enero 2000.

BIBLIOGRAFIA

- Principales Características del agua para consumo vacuno de leche. Boehringer Ingelheim.
 - •Calidad de agua subterranea rural. FCA UNER. Vivot, Cruañes y Cruañes. 1999.
- Nunca digas de esta agua no has de beber. Requerimientos y consecuencias de no "nutrir" con buen agua a las vacas en ordeño. Ing Agr María Alejandra Herrero, Med. Vet. Verónica Maldonado y Martín Pol.
 - Alimentacao de vacas en clima quente. Barney Harris. Jr. 1992. Universidad da Florida, Gainsville.
 - Fotos propias, 2007, 2008, 2009 y 2010.
 - Comerciales: Sika Soluciones. Adapsa Agua.
 - •Universidad de Kansas. Sprinkler Systems for Cooling Dairy Cows at Feed Line.
 - Accesos internet, varios, entre otros: http://www.fftc.agnet.org/library
 - •Sprinkling Systems Evaporative Cooling http://www.jdmfg.com/jd_agri/sprinkling2.htm