# HEALTHCARE STAFFING FOR UPCOMING INFLUENZA SEASON

Interim Report, - Brian Avila February 25, 2023

## **PROJECT OVERVIEW**

## 1. Project Motivation

The United States has an influenza season where more people than usual suffer from the flu. Some people, particularly those in vulnerable populations, develop serious complications and end up in the hospital. Hospitals and clinics need additional staff to adequately treat these extra patients. The medical staffing agency provides this temporary staff.

## 2. Project Objective

To help a medical staffing agency that provides temporary workers to clinics and hospitals on an as-needed basis. The analysis will help plan for influenza season, a time when additional staff are in high demand. The final results will examine trends in influenza and how they can be used to proactively plan for staffing needs across the country.

## 3. Project Scope

The agency covers all hospitals in each of the 50 states of the United States, and the project will plan for the upcoming influenza season. The analysis will help plan for influenza season, a time when additional staff are in high demand. The results will examine trends in influenza and how they can be used to proactively plan for staffing needs across the country.

### 4. Research Hypothesis

If a person contracts the Influenza virus over the age of 65, then he/she is at higher risk of mortality and medical care.

#### 5. Data Overview

- The following data sets were obtained and used for this analysis:
  - 1. Influenza deaths by geography, time, age, and gender Source: CDC
  - 2. Population data by geography Source: US Census Bureau

#### 6. Data Limitations



US Census Data: The possible limitations of this particular data set can be due to manual input errors, missing data due to unresponsive households or inaccurate counts.

CDC Influenza Deaths: The data is collected by state registries and is based on death certificates from residents based on state of residence. This data is not immune to data entry or other manual input errors as well. Also, the data was obtained from 2009 to 2017 so it can be considered dated.

Suppressed data consisting of death counts between 0-9 had to be imputed with a numeric value (5).

# 7. Descriptive and Statistical Analysis



A statistical analysis was conducted to assess the relationship between population age group and the mortality numbers obtained from the data.

## **Null hypothesis**

If an individual contracts influenza and is 65 years and older, then he/she is at the same risk or lower risk of mortality as compared to the other age groups.

### **Alternative hypothesis**

If an individual contracts influenza and is 65 years and older, then he/she is at a higher risk of mortality and hospice care as compared to the other age groups.



To determine whether the null hypothesis is true or false, a one-tailed two-sample test was calculated. The p-value computed is less than the significance level, therefore with a 95 % confidence level we can conclude that the null hypothesis is **not true**.

Significance Level: 0.05

P-value: 2.92E-62

Correlation between Influenza deaths and populations in the 65+ age group:

| Correlation               |                                                                                                                                                                                 |                    |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Variables                 | Influenza deaths over 65                                                                                                                                                        | Population over 65 |
| Proposed Relationship     | People over 65 are part of the vulnerable population, since the death rate is expected to be higher for this age group, there should be a correlation between these 2 variables |                    |
| Correlation Coefficient   | 0.94                                                                                                                                                                            |                    |
| Strength of Correlation   | There is a <b>strong relationship</b> (strong relationship is between (0.5 and 1.0)                                                                                             |                    |
| Usefulness/Interpretation | The correlation between the number of deaths and population age can be used to determine the locations with more need for medical care during Influenza season.                 |                    |

## 8. Results and Insight



After our statistical analyses we can infer with a 95 % confidence level that the alternative hypothesis is true, If an individual contracts influenza and is 65 years and older, then he/she is at a higher risk of mortality and hospice care as compared to the other age groups.

Also, it was confirmed a strong correlation between the # of Influenza deaths among people over the age of 65 in the various states, and the state's population in the same age group.

# 9. Remaining Analysis and Next steps:



Based on the results obtained from our statistical analysis thus far, the remaining analysis will be to determine the allocation of the medical staff among the states. An examination of trends in Influenza across the country will have to be administered in order to plan staff distribution for the upcoming Influenza season.

The hypothesis tests conducted indicate that people over the age of 65 are particularly vulnerable and at higher risk of mortality or health complications due to the Influenza virus. This will lead us to increase the medical staffing for those states with higher senior populations.

Next steps will be to develop statistical visualizations and present findings via a video presentation

## 10. Appendix:

Data spread: Mean, variance, and standard deviations were calculated for each researched variable:

| Data Spread           | Variable 1: Deaths over 65 | Variable 2:Population over 65 |
|-----------------------|----------------------------|-------------------------------|
| Dataset name          | CDC Influenza Deaths       | US Census Population          |
| Sample or Population  | Population                 | Population                    |
| Variance              | 942249.7071                | 7.85077E+11                   |
| Standard Deviation    | 970.695476                 | 886045.7331                   |
| Mean                  | 896.7995643                | 807003                        |
| 2 standard deviations | 1941.390952                | 1772091.466                   |
| Outliers              | 2838.190516                | 2579094                       |
| Outlier records       | 18                         | 30                            |
| Total records         | 459                        | 459                           |
| Outlier %             | 4%                         | 7%                            |

#### One tailed, two-sample test calculation performed:

| t-Test: Two-Sample Assuming Unequal Variances |                |               |
|-----------------------------------------------|----------------|---------------|
|                                               | Population 65+ | Mortality 65+ |
| Mean                                          | 807002.7662    | 896.7995643   |
| Variance                                      | 7.86791E+11    | 944307.0209   |
| Observations                                  | 459            | 459           |
| Hypothesized Mean Difference                  | 0              |               |
| df                                            | 458            |               |
| t Stat                                        | 19.47011316    |               |
| P(T<=t) one-tail                              | 2.91778E-62    |               |
| t Critical one-tail                           | 1.648187415    |               |
| P(T<=t) two-tail                              | 5.83556E-62    |               |
| t Critical two-tail                           | 1.965157098    |               |

# **APPROVAL AND AUTHORITY TO PROCEED**

We approve the project as described above, and authorize the team to proceed.

| Name | Title | Date |
|------|-------|------|
|      |       |      |
|      |       |      |
|      |       |      |

| Approved By | Date | Approved By | Date |
|-------------|------|-------------|------|
|             |      |             |      |

We approve the project as described above, and authorize the team to proceed.

| Approved By | Date | Approved By | Date |
|-------------|------|-------------|------|
|-------------|------|-------------|------|