ROYAUME DU MAROC Université Abdelmalek Essaâdi Faculté des Sciences de Tétouan Tétouan Particularité (Lucus) Tétouan

TP 3: Détection de sentiments avec un RNN

Objectif : Vous allez construire un réseau de neurones récurrent (RNN) capable de détecter si une phrase exprime un **sentiment positif** ou **négatif**.

Vous travaillerez sur une **petite base d'avis textuels** fournie ci-dessous, puis vous devrez :

- Prétraiter les données
- Créer le vocabulaire
- Implémenter le modèle RNN
- L'entraîner à la classification binaire
- Tester quelques exemples

1. Données d'apprentissage :

Phrase	Sentiment
Je suis très content	1
C'était une belle journée	1
Je suis déçu	0
C'était horrible	0
J'adore ce film	1
Je déteste ce livre	0

Chaque ligne contient une **phrase** exprimant une émotion, et un **label** : 1 pour **positif**, 0 pour **négatif**

2. Prétraitement

- a) Tokenisez chaque phrase.
- b) Créez un vocabulaire contenant tous les mots distincts du corpus.
- c) Remplacez chaque mot par son **indice** dans ce vocabulaire.
- d) Pourquoi faut-il ajouter un jeton <pad>?

3. Encodage

- a) Encodez chaque phrase sous forme de séquence d'indices.
- b) Appliquez un padding sur les séquences pour qu'elles aient toutes la même longueur.

ROYAUME DU MAROC Université Abdelmalek Essaâdi Faculté des Sciences de Tétouan Tétouan Particularité des Sciences de Tétouan

4. Construction du RNN

- a) Implémentez un RNN simple :
 - o Une couche Embedding
 - o Une couche **RNN** (ou GRU/LSTM si vous voulez comparer)
 - o Une couche linéaire de sortie + sigmoïde
- b) La sortie finale est un scalaire entre 0 et 1, à comparer avec le label.
 On utilise ici l'état caché final du RNN pour la prédiction.

5. Entraînement

- a) Définissez une fonction de perte adaptée à la classification binaire.
- b) Entraînez le modèle sur plusieurs époques.
- c) Affichez l'évolution de la perte.

6. Prédiction

- a) Implémentez une fonction predict(phrase) qui retourne :
 - o "Positif" si le modèle prédit une probabilité > 0.5
 - o "Négatif" sinon
- b) Testez avec ces phrases:
 - o "je suis heureux"
 - o "je suis triste"

7. Questions générales :

- 1. Pourquoi un RNN est-il utile ici, au lieu d'un réseau classique?
- 2. Quels sont les inconvénients d'un RNN simple?
- 3. Que se passerait-il si on avait des phrases beaucoup plus longues?