TAREFA

- Ambiente discreto 4x4, com obstáculos.
- Agente deve alcançar posição destino D a partir de qualquer lugar do ambiente.
- D é um estado absorvente (ao atingir D, o episódio termina): V*(D) = 0
- Ações que o agente pode realizar: N, S, L, O
- Penalidade por executar uma **ação** (qualquer) = -1
 - ◆ Melhor política => caminho mais curto
- Considerar $\gamma = 1$ e MDP determinístico (p=1)

Ambiente

$$A$$
ç \tilde{o} es = {N, S, L, O}

Tarefa: algoritmo de iteração de valor para MDP determinístico

• Cálculo iterativo da função valor ótima.

$$V(s) \leftarrow r_{s,a} + \max_{a} (V(s'))$$

Repetir até V(s) estabilizar.

Sendo:

s – estado atual, s' – próximo estado, $r_{s,a}$ – reforço recebido por executar a em s V(.) – valor do estado

Exemplo de cálculo de V(s)

Início

Iteração 1 (quando calculous para todos os estados)

$$V(s) = \max_{a} ((r(s, 0) + V(s'_{1})),$$

$$(r(s, N) + V(s'_{2})),$$

$$(r(s, L) + V(s'_{3})),$$

$$(r(s, S) + V(s'_{4})))$$

$$= \max_{a} ((-1+0), (-1+0), (-1+0), (-1+0))$$

$$= -1$$

0

Tarefa

- Entrega: Mostrar o valor no espaço de estados (grade com o valor em cada célula) após CADA ITERAÇÃO, até a convergência do algoritmo VI
- Responder:
 - ◆ Qual estado tem valor **mínimo**? Qual o valor deste estado?
 - ◆ Qual estado tem valor **máximo**? Qual o valor deste estado?
 - ◆Mostrar na grade qual é a **política ótima** em cada célula.