[ЦПМ, кружок по математике]
 Филатов Андрей

 [2024-2025]
 группа 10-2
 З апреля

Разнобой

1. На стороне AC треугольника ABC выбрана точка D. Точки I_1, I_2, I — центры вписанных окружностей треугольников ABD, BCD, ABC соответственно. Докажите, что если I — ортоцентр треугольника BI_1I_2 , то BD — высота треугольника ABC.

- **2.** В остроугольном треугольнике ABC проведены высота AH и медиана BM. На описанной окружности треугольника BHM отмечена такая точка D, что $AD \parallel BM$ и точки B и D лежат в разных полуплоскостях относительно прямой AC. Докажите, что BC = BD.
- **3.** В неравнобедренном треугольнике ABC угол B равен 130° . Точка H основание высоты из вершины B. На сторонах AB и BC нашлись такие точки D и E соответственно, что DH = EH и четырехугольник ADEC вписанный. Найдите $\angle DHE$.
- **4.** Дан остроугольный треугольник ABC. На отрезке AC и на продолжении стороны BC за точку C выбираются такие переменные точки X и Y соответственно, что $\angle ABX + \angle CXY = 90^\circ$. Точка T проекция точки B на прямую XY. Докажите, что все такие точки T лежат на одной прямой.
- 5. На биссектрисе угла B остроугольного треугольника ABC выбрана точка T. Окружность S, построенная на BT как на диаметре, пересекает стороны AB и BC в точках P и Q соответственно. Окружность, проходящая через вершину A и касающаяся S в точке P, вторично пересекает прямую AC в точке X. Окружность, проходящая через вершину C и касающаяся S в точке Q, вторично пересекает прямую AC в точке Y. Докажите, что TX = TY.
- **6.** На продолжении стороны AD прямоугольника ABCD за точку D выбрана точка E. Луч EC вторично пересекает окружность ω , описанную около треугольника ABE, в точке F. Лучи DC и AF пересекаются в точке P. На прямую l, проходящую через точку E параллельно прямой AF, опущен перпендикуляр CH. Докажите, что прямая PH касается окружности ω .
- 7. В треугольнике ABC отмечен центр вневписанной окружности I_A напротив вершины A. Окружность ω проходит через A, I_A и пересекает продолжение отрезков AB, AC (за точки B, C) в точках X, Y соответственно. Пусть S, T точки на отрезках I_AB, I_AC такие, что $\angle AXI_A = \angle BTI_A$ и $\angle AYI_A = \angle CSI_A$. Прямые BT, CS пересекаются в точке K. Прямые KI_A, TS пересекаются в точке K. Докажите, что K0, K1, K2 лежат на одной прямой.

[ЦПМ, кружок по математике][2024-2025] группа 10-2 З апреля

Разнобой

- **1.** На стороне AC треугольника ABC выбрана точка D. Точки I_1, I_2, I центры вписанных окружностей треугольников ABD, BCD, ABC соответственно. Докажите, что если I ортоцентр треугольника BI_1I_2 , то BD высота треугольника ABC.
- **2.** В остроугольном треугольнике ABC проведены высота AH и медиана BM. На описанной окружности треугольника BHM отмечена такая точка D, что $AD \parallel BM$ и точки B и D лежат в разных полуплоскостях относительно прямой AC. Докажите, что BC = BD.
- 3. В неравнобедренном треугольнике ABC угол B равен 130° . Точка H основание высоты из вершины B. На сторонах AB и BC нашлись такие точки D и E соответственно, что DH = EH и четырехугольник ADEC вписанный. Найдите $\angle DHE$.
- **4.** Дан остроугольный треугольник ABC. На отрезке AC и на продолжении стороны BC за точку C выбираются такие переменные точки X и Y соответственно, что $\angle ABX + \angle CXY = 90^\circ$. Точка T проекция точки B на прямую XY. Докажите, что все такие точки T лежат на одной прямой.
- **5.** На биссектрисе угла B остроугольного треугольника ABC выбрана точка T. Окружность S, построенная на BT как на диаметре, пересекает стороны AB и BC в точках P и Q соответственно. Окружность, проходящая через вершину A и касающаяся S в точке P, вторично пересекает прямую AC в точке X. Окружность, проходящая через вершину C и касающаяся S в точке Q, вторично пересекает прямую AC в точке Y. Докажите, что TX = TY.
- **6.** На продолжении стороны AD прямоугольника ABCD за точку D выбрана точка E. Луч EC вторично пересекает окружность ω , описанную около треугольника ABE, в точке F. Лучи DC и AF пересекаются в точке P. На прямую l, проходящую через точку E параллельно прямой AF, опущен перпендикуляр CH. Докажите, что прямая PH касается окружности ω .
- 7. В треугольнике ABC отмечен центр вневписанной окружности I_A напротив вершины A. Окружность ω проходит через A, I_A и пересекает продолжение отрезков AB, AC (за точки B, C) в точках X, Y соответственно. Пусть S, T точки на отрезках I_AB , I_AC такие, что $\angle AXI_A = \angle BTI_A$ и $\angle AYI_A = \angle CSI_A$. Прямые BT, CS пересекаются в точке K. Прямые KI_A , TS пересекаются в точке Z. Докажите, что X, Y, Z лежат на одной прямой.