4.19 1^{re} preuve

$$u_1 = u_1$$

$$u_2 = u_1 \cdot r$$

$$u_3 = u_2 \cdot r$$

$$u_4 = u_3 \cdot r$$

. . .

$$u_n = u_{n-1} \cdot r$$

La multiplication de toutes ces égalités conduit à

$$u_1 u_2 u_3 u_4 \cdot \ldots \cdot u_n = u_1 \cdot u_1 u_2 u_3 \cdot \ldots \cdot u_{n-1} \cdot r^{n-1}$$

En divisant cette dernière équation par $u_1 u_2 u_3 \cdot \ldots \cdot u_{n-1}$, on conclut que

$$u_n = u_1 \cdot r^{n-1}$$

2^e preuve

Montrons la formule $u_n = u_1 \cdot r^{n-1}$ par récurrence.

Initialisation : l'identité $u_1 = u_1 \cdot r^0 = u_1 \cdot 1$ est triviale.

Hérédité: supposons la formule $u_n = u_1 \cdot r^{n-1}$ vraie pour un certain $n \in \mathbb{N}$.

$$u_{n+1} = u_n \cdot r = u_1 \cdot r^{n-1} \cdot r = u_1 \cdot r^{(n-1)+1} = u_1 \cdot r^n$$