Name	Notation	$\mathrm{pdf}/\mathrm{pmf}$	Range	Mean μ	Variance σ^2	
Beta	$Be(\alpha,\beta)$	$f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$	$x \in (0,1)$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	
Binomial	Bi(n,p)	$f(x) = \binom{n}{x} p^x q^{(n-x)}$	$x \in 0, \cdots, n$	n p	n p q $(q =$	= 1 - p)
Exponential	$Ex(\lambda)$	$f(x) = \lambda e^{-\lambda x}$	$x \in \mathbb{R}_+$	$1/\lambda$	$1/\lambda^2$	
Gamma	$Ga(\alpha,\lambda)$	$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}$	$x \in \mathbb{R}_+$	α/λ	α/λ^2	
Geometric	Ge(p)	$f(x) = p q^x$	$x \in \mathbb{Z}_+$	q/p	q/p^2 $(q =$	= 1 - p)
${\bf HyperGeometric}$	HG(n,A,B)	$f(x) = \frac{\binom{A}{x} \binom{B}{n-x}}{\binom{A+B}{n}}$	$x \in 0, \cdots, n$	nP	$n P Q_{N-1}^{N-n} (P =$	$= \frac{A}{A+B}, Q = \frac{B}{A+B}$
Logistic	$Lo(\mu,\beta)$	$f(x) = \frac{e^{-(x-\mu)/\beta}}{\beta[1 + e^{-(x-\mu)/\beta}]^2}$	$x \in \mathbb{R}$	μ	$\pi^2 \beta^2/3$	
Log Normal	$LN(\mu,\sigma^2)$	$f(x) = \frac{1}{x\sqrt{2\pi\sigma^2}}e^{-(\log x - \mu)^2/2\sigma^2}$	$x \in \mathbb{R}_+$	$e^{\mu+\sigma^2/2}$	$e^{2\mu+\sigma^2} \left(e^{\sigma^2} - 1 \right)$	
Negative Binomial	$NB(\alpha,p)$	$f(x) = {\binom{-\alpha}{x}} p^{\alpha} (-q)^x$	$x \in \mathbb{Z}_+$	$\alpha q/p$	$\alpha q/p^2$ $(q =$	= 1 - p)
Normal	$No(\mu,\sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$	$x \in \mathbb{R}$	μ	σ^2	
Pareto	$Pa(\alpha,\beta)$	$f(x) = \beta \alpha^{\beta} / x^{\beta + 1}$	$x \in (\alpha, \infty)$	$\frac{\alpha \beta}{\beta - 1}$	$\frac{\alpha^2 \beta}{(\beta - 1)^2 (\beta - 2)}$	
Poisson	$Po(\lambda)$	$f(x) = \frac{\lambda^x}{x!} e^{-\lambda}$	$x \in \mathbb{Z}_+$	λ	λ	
Snedecor F	$F(\nu_1,\nu_2)$	2/ 2/	$x \in \mathbb{R}_+$	$\frac{\nu_2}{\nu_2-2}$	$\left(\frac{\nu_2}{\nu_2 - 2}\right)^2 \frac{2(\nu_1 + \nu_2)^2}{\nu_1(\nu_2 - \nu_2)^2}$	$\frac{-2)}{-4)}$
		$x^{\frac{\nu_1-2}{2}} \left[1+\frac{\nu_1}{\nu_2}x\right]^{-\frac{\nu_1+\nu_2}{2}}$				
Student t	$t(\nu)$	$f(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})\sqrt{\pi\nu}} [1 + x^2/\nu]^{-(\nu+1)/2}$	$x \in \mathbb{R}$	0	$\nu/(\nu-2)$	
Uniform	$Un(\alpha,\beta)$	$f(x) = \frac{1}{\beta - \alpha}$	$x \in (\alpha, \beta)$	$\frac{\alpha+\beta}{2}$	$\frac{(\beta - \alpha)^2}{12}$	