Zabezpečenie bezdrôtových komunikačných sietí v inteligentných domácnostiach proti kybernetickým útokom

Bc. Lukáš Doubravský 14. 06. 2017

Motivácia

bezpečnosť je neustály boj,

- bezpečnejšie verzie algoritmov,
- tam, kde pred tým nebola,
- efektívnejšie,
 - pamäť,
 - spotreba,
 - rýchlosť.

Cieľ

 Zvýšiť zabezpečenie v bezdrôtových komunikačných sieťach

Informačná bezpečnosť

Typy útokov

Aktuálny stav vo WPAN 802.15

Zabezpečenie hlavne na transportnej vrstve

• ANT: AES-128

• Bluetooth: AES-CMAC (128)

• ZigBee: AES-128

LoRaWAN: AES-128

Navrhnuté riešenie

- Hardvérové zabezpečenie
 - každý senzor osadený kryptoelement.

- Zabezpečiť komunikáciu medzi:
 - senzorom,
 - najbližším zariadením s výpočtovým výkonom (cloud, HUB).
- ľudský faktor

Navrhnuté riešenie

- centralizovaná architektúra siete,
- PKI
 - RSA/ECC-AES + podpisové schémy
 - Certifikáty (obmedzenej forme)
- Autentifikáciu na aplikačnej vrstve
 - ostatné aspekty inf. bezp. sa dajú zabezpečiť nad touto vrstvou
- Overenie a porovnanie na rovnakej architektúre:
 - nezabezpečené riešenie
 - SW a HW zabezpečenie

Implementácia: Bezdrôtová komunikácia

- Nordic Semiconductors (nRF51422)
 - С,
 - ANT SoftDevice, 2.4 GHz,
 - 32bit architektúra,
 - 256 kB program, 16kB RAM.

Implementácia: Model siete

"Master" kontakt s prostredím

Implementácia: Segmentácia správ

Viac ako 8 bajtov, maximálne 254 bajtov

- Príklad správ
 - **-** 00 00 ...
 - 01 03 01 FF ...

prázdna správa nezabezpečená správa

Implementácia: SW AES

- referenčná SW implementácia
- knižnica: Tiny AES128 v jazyku C
- mód: CBC

Implementácia: HW AES

NXP, Secure element, JVM

• HW: NFC, RNG, RSA, ECC, AES, DES koprocesor

apod.

Implementácia: ISO7816

- pre kontaktné Smart karty
 - SIM,
 - platobné karty.
- signály sú generované SW: GPIO a HW periférií (PPI)
 - CLK: 2.667 MHz.
- ISO7816 I/O signál na UART
 - Baud rate: 7168 bps
- ATR (answer to reset), informácie o karte, preferované nastavenia
- Komunikácia:
 - T=0 bajtová: APDU
 - T=1 bloková: APDU zabalené do bloku

Implementácia: ISO7816 na UART

Implementácia: Schémy

Implementácia: DPS

Implementácia: JavaCard

- Applet JC2.2.2
 - Java
- hardvérovo impl. alg. AES-128 CBC
- Formát správy APDU (terminál-SmartCard)

Implementácia: Funkc. konzoly

- desktop-senzor,
- Segger J-Link RTT (Real Time Transfer):
 - monitorovanie,
 - testovanie,
 - vyhľadávanie manažéra karty,
 - posielanie APDU správy blokovo/bajtovo,
 - ľudsky čitateľný výpis stavu z odpovedi.

Testovanie

Typ zabezpečenia	Metrika		
	Pamäť programu [B]	SRAM [B]	
Žiadne zabezpečenie	7308	5696	
SW AES 128 CBC	11336	6104	
HW AES 128 CBC	18412	7960	

• Nárast veľkosti programu, a to aj pri HW zabezpečení

Typ zahoznošonia	Metrika	
Typ zabezpečenia	Prúdová spotreba [mA]	
Žiadne zabezpečenie	1.4	
SW AES 128 CBC	5.6	
HW AES 128 CBC	8	

Nárast prúdovej spotreby, aj pri HW zabezpečení

Typ zabezpečenia	Metrika		
	Čas 200 interakcií [s]	Čas 1 interakcie [s]	
Žiadne zabezpečenie	258.35 (4 min.)	1.29175	
SW AES 128 CBC	546.75 (9 min.)	2.73375	
HW AES 128 CBC	1638.47 (27 min.)	8.19235	

• Dĺžka vykonania testu, aj pri HW zabezpečení

Typ zahoznočania	Metrika	
Typ zabezpečenia	Network overhead [B]	
Žiadne zabezpečenie	1x12	
SW AES 128 CBC	3x12	
HW AES 128 CBC	3x12	

• (1B + 16B) / 6B = 3 pakety

Vyhodnotenie

- Prekvapený výsledkami HW riešenia, (opačné ako sa predpokladalo)
 - veľkosť programu: štandard ISO7816,
 - spotreba: aktivované viaceré periférie,
 - čas komunikácie: strata ANT paketov.

- PKI
 - RSA SW knižnice v C

Záver

- nepodarilo sa zvýšiť zabezpečenie,
 - na základe výsledkov sa dá spraviť odhad riešenia pomocou PKI.

- PKI by bolo možné, riešenie by bolo použiteľné:
 - na rýchlejších sieťach,
 - malé množstvo dát (ISO7816).

Plány do budúcna

- spracovanie RF komunikácie pomocou udalostí:
 - programová synchronizácia (program, chyby)
- overenia na iných komunikačných protokoloch,
- väčšiu sieť,
- testovanie,
- urýchlenie výpočtov/komunikácie s ISO7816:
 - PKI,
 - vyššia rýchlosť CLK (nábežné časy, šum),
 - Secure channel a manuálnu inštaláciu appletu.

Otázky?

- Motivácia
- Informačná bezpečnosť
- Typy útokov
- Aktuálny stav vo WPAN 802.15
- Navrhnuté riešenie
- Implementácia:
 - Bezdrôtová komunikácia
 - Model siete
 - Segmentácia správ
 - SW AES-128 a HW AES-128
 - ISO7816
 - Schémy, DPS
 - JavaCard
 - Funkcionalita konzoly
- Testovanie a vyhodnotenie
- Sebakritika
- Záver
- Plány do budúcna

Používané technológie

- Viac marketing ako technológie a parametre:
 - iControl Networks: ZigBee, Z-Wave
 - BeeWi: Bluetooth
 - Samsung SmartThings hub: WiFi, Z-Wave, LAN,
 ZigBee

Odporúčané aplikácie sietí

- NFC
- RFID
- ANT
- Bluetooth
- ZigBee
- SigFox/LoRa WAN
- WiFi

GSM

Parametre:

Veľkosť siete

Flexibilita

Spotreba

Kom. rýchlosť

Dosah

Prečo komunikačný protokol ANT?

 nutné na niečom overiť riešenie a získať fyzické výsledky,

- generický návrh (rôznorodosť),
- IoT, WSN, vždy bude nutnosť optimalizácie na HW

bol dostupný

Najčastejšie dôvody porúch

- Protiopatrenia:
 - pred-pripravovanie dát, posielanie neskôr,
 - SoftDevice: kontrola, či sa niečo posiela.

- Predpoklad (bez podrobného testovania):
 - komunikácia s kryptoelementom (atomicky),
 - zmeškanie časového okna pre posielanie: rozsynchronizovanie protokolu.

Najčastejšie dôvody porúch

Zefektívnenie HW kryptovania

- Predpripraviť dáta vo vhodný okamich, programovú synchronizáciu,
- vyššia rýchlosť ext. CLK pomocou GPIO,
 - programovo max. 4MHz s 16MHz kryštálom
 - dedikovaný oscilátor max. 20MHz pri niektorých smart kartách
- dedikované periférie pre ISO7816 (atmel),
- konvertor na ISO7816.
- môže narásť:
 - veľkosť programu,
 - cena a čas vývoja,
 - možnosť výskytu chýb a porúch.

Implementácia: ISO7816 APDU (T=0)

Implementácia: ISO7816 Blok dát (T=1)

Prologue Field		Information Field	Epilogue Field	
Node Address	Protocol Control Byte	Length	Optional	Error Detection LRC or CRC
NAD	PCB	LEN	INF	EDC
1 Byte	1 Byte	1 Byte	0-254 Bytes	1/2 Bytes

Implementácia: ISO7816 ATR

