• The relations, still introducing an extra variable *r* as in polar coordinates (it will be very useful)

$$\begin{cases} x = (\rho\cos\phi)\cos\theta \\ y = (\rho\cos\phi)\sin\theta \\ z = \rho\cos\phi \end{cases} \quad \text{and} \quad \begin{cases} \rho^2 = x^2 + y^2 + z^2 \\ r = \rho\sin\phi \\ \frac{r}{z} = \tan\phi \end{cases} \quad \theta \in [0, 2\pi], \phi \in [0, \pi]$$

• If $\phi > \frac{\pi}{2}$ then z < 0, the angle make *P* lies below the *Oxy*-plane.

The Jacobian

$$\frac{\partial(x,y,z)}{\partial(p,\phi,\theta)} = \int^2 \sin \phi$$

1. Sketch the solid region in (r, z) plane

2. Solving for the bounds.

Sketch $\phi = \pi/4$ and $f = 2 ws \phi$ in $(r_1 z)$ plane and 30 space

$$\Rightarrow \frac{r}{z} = \tan \phi = 1$$

$$J = 2\cos\phi$$
 =) $J^2 = 2\rho\cos\phi$
 $\chi^2 + \chi^2 + \chi^2 = 2\pi$ =) $\chi^2 + \chi^2 + \chi^2 - 2\pi = 0$

=)
$$x^{2}+y^{2}+z^{2}-2z+1=1$$

 $r^{2}+(z+1)^{2}=1$
Cy circle of ractius 1
at (0,1)

Remark: Using a sketch in (1,2) plane only if the surface doesnot depend on Θ .

Calculate the average height of a point inside the hemisphere $x^2 + y^2 + z^2 = 1$ with $z \ge 0$.

Ex 3.

Use spherical integration to find the volume of the solid bounded below by the cone $\frac{1}{2} = \sqrt{\frac{\chi^2 + y^2}{1}}$

and above by the hemisphere

$$z = \sqrt{1 - x^{2} - y^{2}} \implies z^{2} = 1 - x^{2} - y^{2} \implies x^{2} + y^{2} + z^{2} = 1$$

$$z = \sqrt{\frac{x^{2} + y^{2}}{3}} \implies posd = \frac{p smb}{\sqrt{3}}$$

$$= \frac{\Gamma}{\sqrt{3}}$$

$$(note: \Gamma = g smb)$$

$$0 \le \phi \in \frac{\pi}{3}, \quad 0 \le \phi \le 2\pi$$

$$2\pi \sqrt{3} = 1. \quad \text{find} \quad \text{dpd} \phi d\phi$$

$$\sqrt{3} = 1. \quad \sqrt{3} = 1. \quad \sqrt{$$

Note:
$$a^2 - 2ab + b^2 = (a-b)^2$$

Find the volume of the solid between the sphere $\rho = \cos \phi$ and the hemisphere $\rho = 2, z \ge 0$.

$$\begin{array}{lll}
g = loo & Couplete the square \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}{2} + \frac{1}{4} \\
2^{2}-2 & = 2^{2}-2z \cdot \frac{1}$$

Ex5. (Exta problem)

Find the volume of the solid bounded below by the sphere $\rho = 2\cos\phi$ and above by the cone $z = \sqrt{x^2 + y^2}$

 $\beta = 2\cos \phi$ $\beta^{2} = 2\cos \phi$ $\chi^{2} + \chi^{2} + z^{2} = 2 \Rightarrow \chi^{2} + (z - 1)^{2} = 1$ Circle $f^{2} + (z - 1)^{2} = 1$ Genter (0,1), radius 1

Evaluate the integral $\iiint_E (x^2 + y^2 + z^2) dV$ where E is the region between two half-cones $z = \sqrt{x^2 + y^2}$ and $z = \sqrt{3x^2 + 3y^2}$ and bounded by the hemisphere $x^2 + y^2 + z^2 = 9$.

 $\frac{2}{2} = \sqrt{x^{2} + y^{2}} \implies \frac{2}{2} = r$ $\frac{2}{2} = \sqrt{3(x^{2} + y^{2})} \implies \frac{2}{2} = \sqrt{3(x^{$

thus $\tan \phi = 1 \Rightarrow \phi = \frac{\pi}{4}$ $\tan \phi = \frac{1}{6} \Rightarrow \phi = \frac{\pi}{6}$ $\Rightarrow \frac{\pi}{6} \leq \phi \leq \frac{\pi}{4}$

 $\frac{2\pi}{\sqrt{\pi/4}}$ $\frac{3}{\sqrt{\sqrt{2\pi/4}}}$ $\frac{3}{\sqrt{2\pi/4}}$ $\frac{3}{\sqrt{$