数字逻辑设计

Digital Logic Design

高翠芸 School of Computer Science gaocuiyun@hit.edu.cn 后续课程: 如计算机 组成原理

数字逻辑的知识脉络

时序逻辑元件

- 锁存器 (Latch)
- 触发器 (Flip-Flop)
- 带附加输入端的边沿触发器
- 触发器类型转换

时序逻辑电路的特点

组合电路的特点

- 它是一种无记忆电路──输入信号消失,则 输出信号也会立即消失
- 电路输出端的状态完全由输入端的状态决定

■ 有时需要将参与运算的数据和运算结果保存 起来——在组合逻辑电路的输出端添加具有 记忆功能的部件

组合逻辑电路 vs 时序逻辑电路

- ■锁存器和触发器是构成存储电路的基本元件
- ■两个重要概念: 现态(原态)和 次态(新态)

;	构成	定义	结构	电路框图	逻辑函数表达式
数字逻	组合 逻辑 电路	任意时刻的输出── ■ 仅与当前时刻的输入有关 Z _m = f _m (x ₁ ,, x _n)	不包含 存储元件	X ₁ -	只有一组: Z _m = f _m (x ₁ ,, x _n)
辑电路	时序 逻辑 电路	任意时刻的输出与以下均有关: ■ 当前时刻的输入 ■ 电路过去(上一个时刻)的工作状态 Z _m = f _m (x ₁ ,, x _n , y ₁ ,, y _s)	包含存储元件	X1 Xn 組合电路 ジェ Y1 正存储电路 ※	有三组: 输出方程,驱动方程,状态方程: $Z_m = f_m (x_1,,x_n, y_1,,y_r)$ $Y_r = g_r (x_1,,x_n,y_1,,y_s)$ $Y_s^{n+1} = q_s (x_1,,x_n,Y_1^n,,Y_s^n)$

锁存器和触发器

- 锁存器:没有时钟输入端
- 触发器:有时钟输入端,并且只在时钟信号到来时, 才发生状态转换
 - ◆ 锁存器与触发器的特性(双稳态)
 - 1. 有两个互补的输出端 Q 和 Q'
 - 2. 有两个稳定的状态: 0态, 1态
 - 3. 在外界信号的刺激下,可以从一个稳定状态转变到另 一个稳定状态。
 - 4. 没有(或无效的)外界信号刺激,维持当前状态不变。

双稳态

时序逻辑元件

- 锁存器(Latch)
 - ■或非门构成的基本RS锁存器
 - ■与非门构成的基本RS锁存器
 - ■门控D锁存器
- ■触发器(Flip-Flop)
- ■带附加输入端的边沿触发器
- ■触发器类型转换

基本RS锁存器(触发器的鼻祖)

(1) 电路构成(或非门)

Q (Q_n)——现态

 $Q^+(Q_{n+1})$ ——次态

Q = 0 $(\overline{Q} = 1)$: state 0

Q=1 ($\overline{Q}=0$) : state 1

R: 置0端(Reset the output to Q=0)

S: 置1端(Set the output to Q=1)

(2) 功能表

置0端 R	置1端 S	现态 Q _n	次态 Q _{n+1}
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	_
1	1	11	

保持

置 1

置 0

×不允许

置0端 R	置1端 S	次态 Q _{n+1}
0	0	Q n
0	1	1
1	0	0
1	1	_

输入<mark>高电平</mark> 有效

RS对同时 取1互斥

RS锁存器(S=1, R=0)

$$S = 1, R = 0$$

a.
$$Q_n=1$$
, $Q'_n=0$
 $Q_{n+1}=1$, $Q'_{n+1}=0$

b.
$$Q_n=0$$
, $Q'_n=1$
 $Q_{n+1}=1$, $Q'_{n+1}=0$

基本RS锁存器次态方程、逻辑符号等

(3) 次态方程

(4) 逻辑符号

功能表

置0端 R	置1端 S	现态 Q _n	次态 Q _{n+1}
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	_
1	1	1	_

基本RS锁存器驱动表

(5) 驱动表:完成状态转换需要满足的输入条件

(6) 状态图

反映时序电路状态转移规律及相应输入、输出取值关系的<u>有向图</u>

图中元素的含义

·圆圈:表示电路的状态

• 有向线段:表示状态的转换关系

· 有向线段旁的文字:表示转换条件,即输入信号取值

另一种形式的基本RS锁存器(与非门)

逻辑符号:

(2) 功能表

置0端 R	置1端 S	现态 Q _n	次态 Q _{n+1}
1	1	0	0
1	1	1	1
1	0	0	1
1	0	1	1
0	1	0	0
0	1	1	0
0	0	0	
0	0	1	_

保持

置 1

置 0

×不允许

锁存器的应用——开关去抖

- ❖由于机械弹性作用, 机械式开关在使用中, 通常伴随有一定时间的触点机械抖动。
- ❖触点抖动可能导致判断出错(一次按下或释放被错误地认为是多次操作)

(7) 典型芯片

74LS279: 4 R-S latches

RS锁存器小结

- 优点: 结构简单
- 缺点:
 - ① 输入存在约束,使用不便;
 - ② 状态改变由输入直接控制。给使用带来局限性。
- ■用途:记忆输入状态
- ■基本RS锁存器是众多触发器的鼻祖
 - ■其余的触发器都是在其基础上逐步改进和完善后形成的

门控D锁存器

(1) 电路构成

(4) 逻辑符号

(2) 功能表

使能端 G	输入端 D	现态 Q _n	次态 Q _{n+1}	
0	X	0	0	
0	Χ	1	1	
1	0	0	0	Ī
1	0	1	0	
1	1	0	1	
1	1	1	1	

(3) 次态方程

(5) 时序分析

(6) 典型芯片

74LS373: 8D锁存器

门控D锁存器的优缺点

- ◆ 特点:结构简单,仅一个输入端,不存在输入约束问题。
- ◆ 缺点:使能电位G作用期间,只要输入信号D改变(有时是干扰信号), Q也跟着改变♀存在"空翻"现象

违背了构造时钟触发器的初衷:一个时钟内,最多允许触发器状态翻转一次

锁存器的使能端 送时钟信号,电 平触发方式的触 发器 一个时钟内, 触发器状态发 生多次变化

"空翻"现象是锁存器(或电平方式触发器)共有的问题

"空翻"使以上器件不能正确实现计数功能!

☆ 关键问题: 电平(电位)触发

☆ 解决方案: 改电平触发为边沿触发

特征:时钟信号的上

升沿或下降沿,触发

器改变状态

时序逻辑元件

- 锁存器(Latch)
 - ■或非门构成的基本RS锁存器
 - ■与非门构成的基本RS锁存器
 - ■门控D锁存器
- ■触发器(Flip-Flop)
- 带附加输入端的边沿触发器
- ■触发器类型转换

时序逻辑元件

■ 锁存器 (Latch)

■触发器(Flip-Flop)

■带附加输入端的边沿触发器

■触发器类型转换

边沿触发器

- D触发器
- RS触发器
- JK锁存器
- T触发器
- T′触发器
- ■帯附加输入端的触发器

时钟触发器

- 受时钟脉冲控制的触发器称作时钟触发器。
- 时钟也称同步信号。将多个触发器的时钟端相连,可以控制它们同一时刻动作。

边沿触发器—— D触发器

0

(1) 逻辑符号

(2) 功能表(上升沿为例)

时钟端 CK	输入端 D	现态 Q _n	次态 Q _{n+1}	
†	0	0	0	
†	0	1	0	
†	1	0	1	
†	1	1	1	

(3) 次态方程

$$\mathbf{Q}^{\mathsf{n+1}} = \mathbf{D}$$

时钟触发器的特点

- ◆由时钟脉冲确定状态转换的时刻(即何时转换?)
- ◆由输入信号确定触发器状态转换的方向(即如何转换?)

1

0

D触发器的特点:

最简单,应用最广

边沿触发器—— D触发器

- 为了保证正常工作,输入信号D在触发时钟边沿前后 保持恒定的值。
- 如果D在触发边沿的同时发生改变,最终的行为将变得难以预测。

边沿触发器——RS触发器

(1) 逻辑符号

(3) 次态方程

$$Q_{n+1} = S + \overline{R}Q_n$$

SR = 0 (约束条件)

(2) 功能表(上升沿)

时钟端 CK	输入端 R	输入端 S	现态 Q _n	次态 Q _{n+1}
†	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
<u>†</u>	1	0	0	0
1	1	0	1	0
1	1	1	0	_
†	1	1	1	_

(4) 驱动表

Q _n	\rightarrow	Q_{n+1}	R	S
0	\rightarrow	0	Х	0
0	\rightarrow	1	0	1
1	\rightarrow	0	1	0
1	\rightarrow	1	0	X

驱动表可以从触发器 功能推导出来

输入存在约束

RS触发器:输入存在约束

D触发器: 没有约束, 但是只有一个输入端

RS触发器——主从触发器

边沿触发器-JK触发器

CK K

输入端

0

K

0

(1) 逻辑符号

(2) 功能表(下降沿)

时钟端 CK	输入端 J	输入端 K	现态 Q _n	次态 Q _{n+1}	
↓	0	0	0	0	保持
+	0	0	1	1	נינאא
+	0	1	0	0	置0
+	0	1	1	0	
+	1	0	0	1	置1
+	1	0	1	1	= '
+	1	1	0	1	· · · · · · · · · · · · · · · · · · ·
+	1	1	1	0	翻车

(3) 次态方程

次态

 Q_{n+1}

 \mathbf{Q}_{n}

0

 $\overline{\mathbf{Q}}_{n}$

Q. JI	00	01	11	10
0	0	0	1	<u>_</u>
1		0	0	1

功能最全,输 入没有约束

呆持

翻转

(4) !	驱动表
--------------	-----

Q _n	\rightarrow	Q_{n+1}	J	K
0	\rightarrow	0	0	Х
0	\rightarrow	1	[1	X)
1	\rightarrow	0	Х	1
1	\rightarrow	1	Х	0
				26

边沿触发器——JK触发器

时钟边沿触发器

- ◆何时转换? ——时钟脉冲有效边沿到来时刻
- ◆如何转换? ——输入信号取值确定

输入	次态 Q _{n+1}	
J	K	Q _{n+1}
0	0	Q _n
0	1	0
1	0	1
1	1	$\overline{\mathbf{Q}}_{n}$

JK触发器—— 主从触发器

clk=0: If Q=0 and J=1, then $S_1=1, R_1=0$ (P=1,P'=0),无论 K取何值. If Q=1 and K=1, then $S_1=0, R_1=1$ (P=0,P'=1),无论 J 取何值.

主触发器的输出取决于从触发器的状态:

从触发器: 0态; 主触发器: 1态

从触发器: 1态: 主触发器: 0态

JK触发器-**\触发器**

Clk :

If Q=0 and J=1: P=1,P'=0, then $S_2=1$ and $R_2=0$, $Q^+=1$ If Q=1 and K=1: P=0,P'=1, then $S_2=0$ and $R_2=1$, $Q^+=0$

边沿触发器—— T触发器

(1) 逻辑符号

(2) 功能表(下降沿)

时钟端 CK	输入端 T	现态 Q _c	次态 Q _{n+1}
+	0	0	0
+	0	1	1
+	1	0	1
+	1	1	0

>		
•	输入端 T	次态 Q _{n+1}
	0	Q _n
	1	\overline{Q}_n

保持

翻转

(3) 次态方程

$$Q_{n+1} = J \overline{Q}_n + \overline{K} Q_n$$

$$\mathbf{Q}_{n+1} = \mathbf{T} \overline{\mathbf{Q}}_{n} + \mathbf{T} \overline{\mathbf{Q}}_{n}$$
$$= \mathbf{T} \oplus \mathbf{Q}_{n}$$

边沿触发器—— T'触发器

(1) 逻辑符号

(3) 次态方程

$$Q_{n+1} = J \overline{Q}_n + \overline{K} Q_n$$

$$IF J=K=T=1$$

$$Q_{n+1} = \overline{Q}_n$$

(2) 功能表(下降沿)

时钟端 CK	输入端 T	现态 Q _n	次态 Q _{n+1}
↓	1	0	1
↓	1	1	0

(4) 波形分析

带附加输入端的边沿触发器

■ 带异步清零端和异步置1端

异步:独立于时 钟信号 用途: 为触发器 设置指定状态

时钟端 CK	输入端 D	异步置1端 PreN	异步清零端 ClrN	次态 Q _{n+1}
Х	X	0	0	不允许
X	Х	0	1	1
X	X	1	0	0
†	0	1	1	0
†	1	1	1	1
0,1, ↓	Χ	1	1	Q _n

· 被用于将触发器设置成<mark>初始态,</mark> 而不依赖于时钟信号。

带附加输入端的边沿触发器—续

■ 带时钟使能端

设0

En

信号给

定错误

解决方案:

使能端CE不与时钟端CLK捆绑使用

后果: 失去同步性!
$$Q^+ = Q \cdot CE' + D \cdot CE$$

带附加输入端的边沿触发器—续

Sd	Rd	СР	J	к	Q n	Qn+1
1	0 1	×	×	×	×	0
			0	0	0	0
		1 1	0	0	1	1
			0	1	0	0
1	1		0	1	1	0
		Ľ	1	0	0	1
			1	0	1	1
			1	1	0	1
			1	1	1	0

时序分析:

T触发器的应用—二进制加法计数器

JK触发器的应用实例

例1:写出JK触发器的次态方程

$$Q_{n+1} = J \overline{Q}_n + \overline{K} Q_n$$

$$= J \overline{Q}_n$$

$$= \overline{A} \overline{Q}_n + \overline{B} \overline{Q}_n \overline{Q}_n$$

$$= \overline{A} \overline{Q}_n \cdot \overline{B} \overline{Q}_n \overline{Q}_n$$

$$= (\overline{A} + \overline{Q}_n) (\overline{B} + \overline{Q}_n) \overline{Q}_n$$

$$= \overline{A} \overline{B} \overline{Q}_n + \overline{B} \overline{Q}_n$$

$$= \overline{B} \overline{Q}_n$$

JK触发器的应用实例2

例2: 画出Q端波形图

方法1:写出JK触发器的次态方程

方法2:在每一个时钟下降沿,计算J和 K的取值,从而确定Q端波形 编入端

СР		-			
A				Щ.	
В				1	-
Q	设 0		 		

第1个 ↓: J=0, K=1 置0功能 第2个 ↓: J=0, K=1 置0功能 第3个 ↓: J=1, K=1 翻转功能 第4个 ↓: J=0, K=0 保持功能 第5个 ↓: J=0, K=0 保持功能

输入	次态 Q _{n+1}	
J	K	Q_{n+1}
0	0	\mathbf{Q}_{n}
0	1	0
1	0	1
1	1	$\overline{\mathbf{Q}}_{n}$

37

触发器的应用——1

1. 存储功能的应用——保存瞬态信号,直到清除为止

【例】举重裁判逻辑电路V2.0: 一个主裁判A和两个副裁判B和C,只有两人以上(必须包含主裁判在内)认定试举动作合格,并按下自己的按钮时,输出信号Z=1,该信号一直保持下去,直到工作人员按下清除按钮 P为止。

分析:

- □ 三个人的按钮动作有先后、长短之别,所以需要3个存储元件分别保存三个按钮信号;
- □ 存储元件有置1和置0功能即可(锁存器和SR 、JK、D触发器均可)

触发器的应用——续

对于每个锁存器:

- □ 裁判按钮按下,执 行<mark>置1</mark>功能;按钮弹 起,执行<mark>保持</mark>功能;
- □ 按钮P按下,全体执 、 行置**0**功能

基本RS锁存器

- □锁存器的置1端S: 连接主裁按钮A
 - 、和副裁B、C输出的低电平
- □锁存器的置0端R:连接工作人员按钮P给出的低电平
- □输出信号Z:三个锁存器输出状态的 、或与逻辑。

采用JK触发器或D触发器, 如何实现?哪种方法更简单?

触发器的应用——2

2. 分频/计数功能的应用——

利用触发器的置0、置1功能,由多个触发器组成分频电路,对输入的时钟信号进行分频。

【例】分析输出信号 Q_1 、 Q_2 、 Q_3 与时钟信号CLK之间的频率关系,R为清零端

边沿触发器——总结

时钟边沿触发器的特点

- ◆ 由时钟脉冲边沿确定状态转换的时刻(即何时转换?) 其余时刻都是保持功能
- ◆ 由输入信号确定触发器状态转换的方向(即如何转换?)

思考:对于一个下降沿触发的JK触发器,如果让它实现保持功能,有几种方法可以做到?

边沿触发器

- ■D触发器
- ■SR触发器
- ■JK触发器
- ■T触发器
- T′触发器
- ■帯附加输入端的触发器

时序逻辑元件

■ 锁存器 (Latch)

■ 触发器 (Flip-Flop)

■ 带附加输入端的边沿触发器

■触发器类型转换

触发器类型转换——代数法

- 触发器类型主要有5种,用到最多的是D触发器
- 触发器类型可以相互转换(例如,设计中手头没有需要的触发器类型)

触发器类型转换——JK转其他

(2)
$$JK \to T$$

$$JK: \ Q_{n+1} = J \ \overline{Q}_n + \overline{K} \ Q_n$$

$$T: \ Q_{n+1} = T \ \overline{Q}_n + \overline{T} \ Q_n$$

$$J=T$$

$$T: \ Q_{n+1} = T \ \overline{Q}_n + \overline{T} \ Q_n$$

$$J=T$$

$$K=T$$

$$J = f(R,S,Q)$$

$$K = f(R,S,Q)$$

RS=0

K=R

触发器类型转换

2. $D \rightarrow JK \setminus T (T') \setminus RS$

(1)
$$D \rightarrow JK$$

$$\begin{array}{ll} \mathsf{D} \to \mathsf{J}\mathsf{K} & \mathsf{D} = f(\mathsf{J},\mathsf{K},\mathsf{Q}) & \longleftarrow \\ \mathsf{J}\mathsf{K} \colon & \mathsf{Q}_{\mathsf{n+1}} = \mathsf{J} \; \overline{\mathsf{Q}}_{\mathsf{n}} + \overline{\mathsf{K}} \; \mathsf{Q}_{\mathsf{n}} \\ \mathsf{D} \colon & \mathsf{Q}_{\mathsf{n+1}} = \mathsf{D} & & \mathsf{D} = \mathsf{J} \; \overline{\mathsf{Q}}_{\mathsf{n}} + \overline{\mathsf{K}} \; \mathsf{Q}_{\mathsf{n}} & \Longrightarrow \end{array}$$

$$D = f(J,K,Q)$$

$$D = J \overline{Q}_n + \overline{K} Q_n \implies$$

(2)
$$D \rightarrow T(T')$$

$$T: \quad \mathbf{Q}_{n+1} = \mathbf{T} \oplus \mathbf{Q}_{n}$$

$$D: \quad \mathbf{Q}_{n+1} = \mathbf{D}$$

$$T': \quad \mathbf{Q}_{n+1} = \overline{\mathbf{Q}}_{n}$$

$$D = \overline{\mathbf{Q}}_{n}$$

(3) $D \rightarrow RS$?

触发器类型转换——D转其他

- 2. $D \rightarrow JK$, T(T'), RS
 - (3) $D \rightarrow RS$

$$D: \qquad Q_{n+1} = D$$

RS:
$$Q_{n+1} = S + \overline{R} Q_n$$

$$D = S + RQ_n$$

□ 卡诺图法

1. $T \rightarrow JK$, D, RS

(1) $T \rightarrow JK$

Q _n	→	Q_{n+1}	Т	J	K
0	→	0	0	0	X
0	→	1	1	1	X
1	→	0	1	Х	1
1	→	1	0	Х	0

$$T = f(J,K,Q)$$

$$T = J\overline{Q}_n + KQ_n \Rightarrow$$

(2) $T \rightarrow D$

Q _n	→	Q_{n+1}	Т	D
0	→	0	0	0
0	→	1	1	1
1	→	0	1	0
1	→	1	0	0

$$T = f(D,Q)$$

$$T = D \oplus Q_n$$

(3) $T \rightarrow RS$

Q _n	→	Q_{n+1}	Т	R	S
0	→	0	0	X	0
0	→	1	1	0	1
1	→	0	1	1	0
1	→	1	0	0	Х

2. $RS \rightarrow JK$, D, T(T')

(1) RS \longrightarrow JK

$Q_n \longrightarrow Q_{n+1}$	RS	J	K
0 0	× 0	0	×
0 -1	0 1	1	×
$_1 \longrightarrow _0$	1 0	×	1
$_1 \rightarrow _1$	0 ×	×	0

QnIK	00	01	11	10
0	0	0	1	1
1	×	0	0	×

R

Q_n	00	01	11	10
0	×	×	0	0
1	0	\T	1	0

$$\begin{cases}
R = K Q_n \\
S = J \overline{Q}_n
\end{cases}$$

2. RS \rightarrow JK, D, T(T') (1) RS \longrightarrow JK $\begin{cases}
R = K Q_n \\
S = J \overline{Q}_n
\end{cases}$

(2) RS → D

$Q_n \longrightarrow Q_{n+1}$	R S	D
0 0	× 0	0
0 -1	0 1	1
1 -0	1 0	0
$_1 \rightarrow _1$	0 ×	1

. 0	R	2
D	e n 0	1
0	X	1
1	0	0

	$\mathbf{D}_{\mathcal{C}}$	$Q_n = 0$	1
S	0	0	0
	1		×

$$\begin{cases} S = D \\ R = \overline{D} \end{cases}$$

(2) RS → D

$$\begin{cases} S = D \\ R = \overline{D} \end{cases}$$

(3) RS \longrightarrow T?

$Q_n \longrightarrow Q_{n+1}$	RS	T
0 0	× 0	0
0 -1	0 1	1
$_1 \longrightarrow _0$	1 0	1
$_1 \rightarrow _1$	0 ×	0

	F	R		
\sqrt{Q}	n 0	1		
0	×	0		
1	0	1		

	T^Q	ⁿ 0	1
S	0	0	×
	1	1	0

$$\begin{cases} R = T Q_n \\ S = T \overline{Q}_n \end{cases}$$

(3) RS \longrightarrow T

$$\begin{cases} R = T Q_n \\ S = T \overline{Q}_n \end{cases}$$

时序逻辑元件

■ 锁存器 (Latch)

■ 触发器 (Flip-Flop)

■ 带附加输入端的边沿触发器

■触发器类型转换

