

Visions to Products

Linear Regression and Support Vector Machines

Marcus Rüb

Hahn-Schickard Villingen-Schwenningen Marcus.rueb@hahn-schickard.de

This session:

- Linear regression
- Least square
- Gradient decent
- SVM

Outline for Supervised Learning (1)

Supervised Learning (1)

- Linear, polynomial regression
- Lasso, Ridge, ElasticNet regression
- Logistic Regression
- Support Vector Machines (SVM)
- Hands-on Supervised Learning

Predict price of vacation rentals in Frankfurt on Airbnb

Linear Regression

Let's create some data

$$y = 0.1x + 1.25 + 0.2$$
 GaussianNoise

Fit in a line

Linear Regression

Let's perform linear regression...

$$y = 0.1x + 1.25 + 0.2 GaussianNoise$$

$$y = mx + b$$
 $w = 0.1014$
b = 1.2258

$$y = 0.1014x + 1.2258$$

How we fitted the line?

We just found the values of 'm' and 'b' that minimize the Mean Squared Error

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (f_i - y_i)^2$$

where N is the number of data points, f_i the value returned by the model and y_i the actual value for data point i.

Mean Squared Error

C.F. Gauss

Carl Friedrich Gauss

Born: 30. April 1777 † 23. Februar 1855 German mathematician

With 18 he invent the Least square method

Least Square

$$y = mx + b$$

$$\underline{m} = \frac{n(\Sigma xy) - (\Sigma x)(\Sigma y)}{n(\Sigma x^2) - (\Sigma x)^2}$$

$$b = \frac{\sum y - m(\sum x)}{n}$$

	Number of Chimpanzees		Percent Successful Hunts
0		1	30
1		2	45
2		3	51
3		4	57
4		5	60
5		6	65
6		7	70
7		8	71
n		X	У

Number of Chimpanzees (x)	Percent Successful Hunts (y)	ху	X ²	y ²
1	30	30	1	900
2	45	90	4	2025

$$m = \frac{n(\Sigma xy) - (\Sigma x)(\Sigma y)}{n(\Sigma x^2) - (\Sigma x)^2} \qquad b = \frac{\Sigma y - m(\Sigma x)}{n}$$

Number of Chimpanzees (x)	Percent Successful Hunts (y)	ху	x²	y²
1	30	30	1	900
2	45	90	4	2025
3	51	153	9	2601
4 57		228	16	3249
5	60	300	25	3600
6	65	390	36	4225
7	70	490	49	4900
8	71	568	64	5041
Σx	Σγ	∑xy	∑x²	Σy²
36	449	2249	204	26541

Number of Chimpanzees (x)	Percent Successful Hunts (y)	ху	X ²	y ²
1	30	30	1	900
2	45	90	4	2025
3	51	153	9	2601
4	57	228	16	3249
5	60	300	25	3600
6	65	390	36	4225
7	70	490	49	4900
8	71	568	64	5041
Σx	Σγ	∑xy	∑x²	Σy²
36	449	2249	204	26541

$$m = \frac{n(\Sigma xy) - (\Sigma x)(\Sigma y)}{n(\Sigma x^2) - (\Sigma x)^2}$$
 $b = \frac{\Sigma y - m(\Sigma x)}{n}$

$$m = \frac{8(2249) - (36)(449)}{8(204) - (36)^2} \quad b = \frac{449 - 5.4405(36)}{8}$$
$$m = 5.4405 \qquad b = 31.6429$$

$$y = mx + b$$

 $y = 5.4405x + 31.6429$

Least Squares - notation

$$y = wx + b = b + wx$$

$$X = 1, x$$

$$W = b$$
, w

$$y = WX = b + wx$$

Also called features

$$X = x_0, x_1, x_2, x_3, \dots, x_n$$
 $x_0 = 1$

$$W = w_0, w_1, w_2, w_3, ..., w_n$$
 $w_0 = b$

$$y = WX = w_0x_0 + w_1x_1 + w_2x_2 + \dots + w_nx_n$$

x_0	x_1	y
1	0.0	1.57
1	0.5	1.18
1	1.0	1.24
1	1.5	1.19
1	2.0	1.62

m = number of samplesn = number of features

How we fitted the line?

Which values of line parameters minimize the Mean Squared Error?

Least squares Method

Carl Friedrich Gauss

Least Squares Method

$$\widehat{w} = (X^T X)^{-1} X^T y$$

$$X = x_0, x_1, x_2, x_3, ..., x_n$$
 $x_0 = 1$
 $W = w_0, w_1, w_2, w_3, ..., w_n$ $w_0 = b$
 $y = WX = w_0x_0 + w_1x_1 + w_2x_2 + \cdots + w_nx_n$

 $\widehat{\boldsymbol{W}}$ is the best approximation to W

How we fitted the line?

Which values of line parameters minimize the Mean Squared Error?

Least squares Method

Carl Friedrich Gauss

Least Squares Method

$$\widehat{w} = (X^T X)^{-1} X^T y$$

Gradient Descent

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (f_i - y_i)^2$$

where N is the number of data points, f_i the value returned by the model and y_i the actual value for data point i.

Mean Squared Error

Learning

$$W = W - \alpha \frac{\partial J}{\partial W}$$

There is another way: Gradient Descent

Gradient Descent Visualization. Credit: rasbt.github.io

Gradient Descent

Derivation:

$$egin{align} D_{m{m}} &= rac{1}{n} \sum_{i=0}^n 2(y_i - (mx_i + c))(-x_i) \ D_m &= rac{-2}{n} \sum_{i=0}^n x_i (y_i - ar{y}_i) \ \end{pmatrix}$$

$$D_{\underline{c}} = \frac{-2}{n} \sum_{i=0}^{n} (y_i - \bar{y}_i)$$

$$m=m-\underline{L} imes D_m$$

$$c = c - L \times D_c$$

$$\widehat{w} = (X^T X)^{-1} X^T y$$

Least Squares

 when there is a relatively small number of features (< 1,000)

Gradient Descent

- when there are many features (> 1,000)
- when we need to stop training at any time
 - e.g. if we only have 1 minute
- If data does not fit in memory
- If you have new data (e.g. stream) and don't want to start all over (with all previous data)

Linear Regression: $y = w_0 + w_1 x$

- You already know how to do it
- It is not a new technique, it's a feature

	X			X	X ²	
x_0	x_1	y	x_0	x_1	x_2	
1	-10.0	17.74	1	-10.0	100.0	١
1	-9.5	21.86	1	-9.5	90.25	١
1	-9	17.84	1	-9	81.00	١
1	-8.5	13.71	1	-8.5	72.25	
1	-8	14.47	1	-8	64.00	İ

Linear Regression: $y = w_0 + w_1x + w_2x^2$

- Polynomial Regression = Linear Regression with polynomial features
- You can get creative:

• X ² , X ³ , X ⁴			X	X ²	
• ZX ² , ZX ³ , Z ² X ² ,	Features	x_0	x_1	x_2	у
		1	-10.0	100.0	17.74
		1	-9.5	90.25	21.86
		1	-9	81.00	17.84
		1	-8.5	72.25	13.71
		1	-8	64.00	14.47

What if some of the inputs are irrelevant?

- Ridge Regression
- Lasso Regression
- ElasticNet Regression

Where is this used?

C02 Sensor

Error with different temperatures, humidity and pressure

C02 = Sensor*x0+temp*x1+hum*x2+pres*x3 + $\frac{1}{2}$

Car price Calculator

What for features do we have?

Support Vector Machines

But, what exactly is the best hyperplane?

Nonlinear data

Questions

What is linear regression?

What is it used for?

How do we get the linear model? Name 2 Methods. And when do you use them.

Explain the steps of the gradient decent.

What is SVM used for?

Which features do we have for example in a House Price calculator with linear regression?

What is the kernel trick?

Calculate a linear regression model for this Datapoints

Marcus.Rueb@Hahn-Schickard.de - Tel.: 07721/943-180

N	X	Y
0	1	2
1	2	3
2	3	7
3	4	8

