Part 5. 네트워크 보안

Section 20. 네트워크 개요

- 1. 개요
- 2. OSI 모델과 TCP/IP 프로토콜

	OSI 7 Layer Model		TCP/IP Protocol			
7 Layer	Application Layer		Application			
6 Layer	Presentation Layer		telnet	FTP	DHCP	TFTP
5 Layer	Session Layer		НТТР	SMTP	DNS	SNMP
4 Layer	Transport Layer		TCP Transport UDP			
3 Layer	Network Layer Internet ICMP ARP RARP IF		IP			
2 Layer	DataLink Layer		Network Interface			
1 Layer	Physical Layer					

• L1: 물리 계층

• 특징 : 물리적 연결 성정

• 데이터 종류 : bit stream

• 프로토콜/서비스: RS-232, X25, X21

• L2: 데이터 링크 계층

• 특징: 종단-대-종단, 오류제어, 흐름제어, 혼잡 제어, LLC/MAC

• 데이터 종류 : frame

• 프로토콜/서비스: Ethernet, Token Ring, PPP, HDLC

• L3 : 네트워크 계층

• 특징:라우팅

• 데이터 종류 : packet

• 프로토콜/서비스 : IP, ICMP, ARP, RARP, BGP, OSPF, RIP, IPSec, Q930

- L4 : 전송 계층(transport)
 - 특징: 데이터 전송 보장, 흐름제어, 종단간(End-to-End) 제어
 - 데이터 종류 : segment
 - 프로토콜/서비스 : TCP, UDP, RTP, SCTP
- L5 : 세션 계층
 - 특징 : 동기화, 세션 연결,관리,종료
 - 데이터 종류 : message
 - 프로토콜/서비스: 전송모드 결정(반이중, 전이중), NFS, SQL, RPC
- L6: 표현 계층
 - 특징: 압축, 암호화
 - 데이터 종류 : message
 - 프로토콜/서비스 : ASCII, Mpeg, jpg
- L7 : 응용 계층
 - 특징: 각종 응용서비스 제공
 - 데이터 종류 : message
 - 프로토콜/서비스: FTP, SNMP, SMTP, 텔넷, HTTP, SSH

통합보안시스템(UTM: Unified Threat Management)

- > 방화벽, 침입탐지/방지시스템(IDS/IPS), VPN, 안티 바이러스, 웹/이메일 필터링 등 다양한 보안 기능을 **하나의 장비로 통합**하여 제공하는 보안 솔루션이다.
- > 단일 장비로 다양한 보안 기능을 수행하므로 경제성과 보안 관리 및 운영을 편리하게 할 수 있는 장점이 있지만 장애 발생 시 모든 보안기능에 영향을 미치는 단점이 있다.

Section 21. TCP/IP

- 1. 물리 계층
- 2. 데이터링크 계층
 - 노드-대-노드 통신
 - 서비스: framing, 흐름 제어, 오류 제어, 혼잡제어
- 3. 네트워크 계층 (IP, IGMP, ARP, RARP, BGP, OSPF, RIP, IPSec)

[IP, Internet Protocol]

- IPv4
 - Subnet Mask
 - CIDR(클래스 없는 주소지정 방식, Classless Inter-network Domain Routing)

- VLSM(Variable Inter-network Domain Routing)
- Supernetting : 여러 개의 네트워크를 하나의 네트워크 주소로 묶는 것
- IPv6
 - 128비트 주소체계, 8개의 필드로 구성된 헤더, 보안과 인증 확장헤더

[IGMP, Internet Group Management Protocol]

• IP 멀티캐스트 그룹에서 호스트 멤버를 관리하는 프로토콜

[ICMP, Internet Control Message Protocol]

- IP 프로토콜은 호스트와의 관리 질의를 위한 메커니즘이 없는데, **비신뢰성**과 **비연결성**을 보완하기 위한 프로토콜 (즉, 라우터나 다른 호스트가 동작하고 있는지, 네트워크 관리자의 다른호스트나 라우터 정보 획득 등)
 - 오류보고 메시지
 - 질의 메시지
 - Type 8: Echo Request
 - Type 0: Echo Reply
 - Type 5: Redirect 더 나은 경로가 있음을 알리기 위해 라우터가 보내는 메시지
 - Type 3 : Destination Unreachable 타임아웃 발생하여 IP 패킷이 폐기됨 (Code=0은 TTL=0)
 - Type 4 : Soure Quench 데이터를 보낸 호스트에게 IP 데이터그램이 라우터의 집중 현상에 의해 손실되고 있음을 알리는 메시지
 - Type 11: Time Exceeded

[ARP, Address Resoultion Protocol] ←→ RARP

- IP주소를 이용해 해당 MAC 주소를 요청하는 프로토콜
 - ARP 요청(request) 메시지 : 특정 IP에 대한 MAC 주소 요구, **Broadcast**
 - ARP 응답(reply) 메시지 : MAC 주소 정보를 Unicast로 전송

4. 전송 계층 (TCP, UDP)

서비스	TCP	UDP		
신뢰성 프로토콜		비신뢰성 프로토콜		
연결 연결지향적(3-handshaking)		비연결지향적		
패킷 순서 패킷 내에 순서번호를 사용		X		
혼잡제어 혼잡해질 경우 이를 통보		X		
속도, 오버헤드	많은 자원 사용, UDP보다 느림	적은 자원 사용, TCP보다 빠름		

[UDP, User Datagram Protocol]

- 비연결형, 비신뢰성
- 프로세스-대프로세스 통신 (소켓 주소 이용)
- 흐름제어(X), 혼잡 제어(X), 오류 제어(△, Checksum을 제외하고는 없음),

[TCP, Transmission Control Protocol]

- 프로세스-대-프로세스 통신
- 스트림 전송 서비스(stream delivery service)
- 전이중 통신(full-duplex service)
- 연결 지향 서비스 : 논리적인 연결통로를 통해 데이터를 주고받음으로써 전송순서 보장

[TCP Header Flag]

- SYN: 연결 시작
- FIN: 연결 종료
- RST: 연결 리셋 지시
- ACK : Ack Number가 유효함 (요청 응답)
- PSH: 수신자에게 빨리 응용프로그램으로 전달할 것으로 지시

[TCP 프로토콜 타이머]

- RTT(Round Trip Time) : 패킷이 송신 측에서 수신 측에 전달된 후, 그 응답신호가 다시 송신 측에 도달하기까지에 시간
- RTO(Retransmission Timeout): 재전송을 위한 타임아웃. TCP 통신시 전송이 정확히 이루어졌다는 확인을 받지 못한 경우 일정시간을 정해놓고 이 시간동안 확인을 받지 못한 경우 재전송을 하게 된다.
- Fast retransmission : 특정 데이터 segment에 대해 Timeout이 되기 전에 그 세그 먼트를 재전송해달라는 ACK가 3개 연속 수신되면 timeout되기를 기다리지 않고 즉시 재전송(fast retransmission) 한다.

[문제]

- 1. RTO 값은 해당 시간까지 Acknowledge가 전송되어 오지 않는 경우 재선송하기 위한 설정값이다.
- 2. TCP 세그먼트가 유실되어, 해당 세그먼트를 요구하는 Acknowledge가 연속 도착하더라도, RTO 시간이 Time-out되어야 재전송이 가능하다.
- 3. RTO 시간이 너무 클 경우 수신자측의 중복 ACK에 대한 손실 세그먼트를 재전송하는 Fast retransmission 현상이 발생
- 4. RTO 값은 초기 RTT 값을 기준으로 고정되어 있다.
- → 정답 4번, RTO 값은 동적으로 변한다.

Section 22. 라우팅 (출제빈도 0.9%)

1. 라우팅 개요

- 주어진 IP Packet을 전송하기 위해 송신측에서 목적지까지의 경로를 정하고, 정해진 경로를 따라 패킷을 전달하는 일련의 과정
- Default Routing

[라우터 모드]

- User Mode: 테스트를 목적(ping, trace)으로 사용되며, 현재 상태만 확인 가능
- Priviledge Mode: 유저 모드에서 enable 명령어를 통해 전환 가능, 운영자 모드로서 라우터의 모든 명령어 가능(라우터의 구성확인 및 변경 가능)
- Global Configure Mode : Priviledge Mode에서 config terminal 명령어를 통해 전환되는 모드. 라우터 구성 파일을 변경하는 경우 사용
- Setup Mode

2. 유니캐스트 라우팅

- 라우팅 알고리즘
 - 거리 벡터(distance vector): 목적지까지의 최소비용
 - 일정 시간마다 이웃에 위치한 라우터와 경로정보를 교환해서 최적경로를 설정한다.
 - 링크 상태 라우팅(Link-state): 다익스트라 알고리즘
 - 경로 벡터 알고리즘(path-vector) : 스패닝 트리를 이용한 가장 최선의 규칙
- 라우팅 프로토콜
 - RIP(Routing Information Protocol) (거리 벡터 알고리즘)
 - 가장 오래되고 널리 사용되는 내부 라우팅 알고리즘, 문제점(느린 수렴, 라우팅 루프, 무한 세기, 작은 무한값)
 - 라우팅 루프가 발생할 수 있다 (O)
 - 홉수 15이상 네트워크에서 사용 불가 → 네트워크 규모에 제한을 받음
 - 라우팅 정보가 30초마다 교환되므로 장애 시 복구에 많은 시간이 소요된다. (O)
 - RIP은 요청과 응답 2가지 종류의 메시지로 단순한 구조를 갖는다. (O)
 - 작은 규모의 네트워크에 적용되므로 네트워크 변화를 즉시 라우팅 경로에 반영할 수 있다. (X)

- RIPv2: RIP 확장 프로토콜, CIDR과 VLSM 지원, 서브넷마스크 식별, 경로정보 인증, AS 구별
- IGRP(Interior Gateway Routing Protocol) : RIP 문제점을 해결하기 위한 거리 벡터 알고 리즘
- EIGRP(Enhanced IGRP): IGRP 확장 프로토콜. 링크 상태 라우팅 프로토콜에 가까움
- OSPF(Open Shortest Path First): 링크 상태 라우팅 프로토콜 (링크 상태 알고리즘 → Dijkstra 알고리즘)
 - 모든 라우터가 동일한 네트워크 토폴로지 DB를 기반으로 경로를 계산하기 때문에 라우팅 루프가 발생하지 않는다.
- BGP4(Border Gateway Protocol v4): 현재 인터넷에서 사용하고 있는 유일한 인터 도메인 라우팅 프로토콜. (경로 벡터 알고리즘)

3. 라우터 보안

- Null Routing (blackhole routing)
 - access-list와 함께 유용하게 사용할 수 있는 필터링 기법
 - 특정 ip 또는 ip 대역에 Null이라는 가상의 쓰레기 인터페이스로 보내 패킷이 텅신이 되지 않도록 하는 것
- unicast filtering
 - access-list나 blackhole 필터링을 이용하여 IP나 IP대역을 지정하지 않고도 비정상 트래픽을 효율적으로 필터링할 수 있다.

Section 23. 네트워크 장비의 이해

1. 네트워크 장비의 이해

- NIC (Network Interface Card)
 - 1. PC 혹은 네트워크에서 전달되어 오는 정보를 상호 교환할 수 있도록 만들어 주는 역할을 담당한다.
 - 2. PC에서 전송 요구가 발생하면 이 정보를 일단 버퍼에 저장한다.
 - 3. 빠른 전송을 위해 데이터를 코딩하고 압축한다.
 - 4. 네트워크로 정보를 전송하기 위해 병렬구조로 데이터를 바꾼다. (X)
 - → 직렬로 전환한다.
- 허브(HUB) 1계층 (물리)

- 물리 계층에서 동작하는 장비
- 리피터(repeater) : 약해진 신호를 원래 형태로 재생 및 증폭하는 장치
- 브릿지(bridge) **2계층 (데이터링크)**
 - 데이터링크 계층인 MAC(Media Access Control)에서 동작하는 장비
 - 충돌 도메인(collision domain)을 나누어준다.
 - 스위치와 달리 S/W로 구현됨
- 라우터(router) 3계층 (네트워크)
 - 물리, 데이터 링크, 네트워크 계층에서 동작한다.
 - 이기종 LAN간 연결, LAN을 WAN에 연결, 효율적 경로를 선택하는 라우팅 기능, 에러 패킷에 대한 폐기 수행
 - 라우터는 각 인터페이스를 위한 IP주소와 MAC주소를 갖는다.
 - 인터넷에서 IP네트워크들 간 연결 또는 IP네트워크와 인터넷을 연결
 - 브릿지와 달리 라우터는 브로드캐스팅과 멀티캐스팅 패킷을 모두 차단 (= 회선의 효율적인 사용)
- 스위치(switch) 2계층, 4계층, 7계층
 - L2 : Mac Address 기반
 - L4: TCP/UDP 포트 정보를 분석해 해당 패킷이 현재 사용하는 서비스 종류별(HTTP, FTP 등)로 패킷 처리
 - L7 : 트래픽의 내용 패턴 등을 분석해 패킷을 처리

[스위칭 방식]

- Store-and-Forward : 스위치나 브리지가 일단 들어오는 프레임을 모두 받아들인 다음 처리 시작 (에러 발견시 프레임을 버리고 재전송 요구함→ 에러 복구능력 ↑)
- Cut-Through : 앞에 들어오는 목적지 주소만 보고 처음 48비트만 전송 (에러 복구능력 ↓)
- Fragment-Free : 위 두 방식 결합. 512비트를 보게 됨.

2. VLAN의 구성 및 관리

- VLAN(Virtual Local Area Network) 2계층 (데이터링크)
 - 소프트웨어에 의해 구성한 근거리 네트워크
 - 데이터링크 계층에서 브로드캐스트 도메인을 나누기 위해 사용하는 기술
 - VLAN이란 브로드캐스팅 트래픽을 제한하여 불 필요한 트래픽을 차단하기 위한 논리적인 LAN이다.

Section 24. 무선통신 보완 (1.6%)

1. 무선통신

[무선네트워크 유형]

• WPAN : 단거리 Ad hoc 또는 Peer to Peer 방식

• WLAN: 유선랜의 확장 개념 또는 유선랜 설치가 어려운 지역으로 네트워크 제공

• WMAN: 대도시, 대학 캠퍼스처럼 넓은 지역

[무선랜 표준 기술]

- IEEE 802.11b
 - 공공장소에서 많이 사용하는 무선랜 (2.4GHz, 최대 11Mbps)
- IEEE 802.11a
 - 주파수 5GHz, 최대 54MBps
- IEEE 802.11g
- IEEE 802.11i
 - WPA-1, WPA-2 규격이 포함
- IEEE 802.11n

2. 무선랜 보안

[무선랜 인증 기술]

- SSID(Service Set IDentifier) : AP를 구분하는 ID로 무선랜을 통해 전송되는 패킷 헤더에 덧붙이는 32바이트의 고유 식별자
- MAC 주소 인증
- WEP(Wired Equivalent Privacy) 인증
 - 공유키인 WEP를 이용해 사용자를 인증하는 방식
 - (장점) 데이터 암호와 함께 적용하고, 무선랜 장비에서 WEP의 구현이 간단하고 인증 절차 또한 간결하다는 장점이 있음
 - (단점) 고정된 공유키를 사용하여 키값이 외부로 유출될 경우 보안 문제에 취약하여 현재 는 권장되지 않음
 - (단점) 단방향 인증으로 인해 악의적 목적으로 운영되는 복제 AP를 이용해 정상 사용자의 정상 AP 접속을 방해하거나 복제 AP로 접속하게끔 유도 가능
- EAP(Extensible Authentication Protocol) 인증

[무선랜 암호화 기술]

• WEP(Wired Equivalent Privacy) : 보안적으로 취약하여 현재는 권장되지 않음

•

[무선랜 인증 및 암호화 복합 기술]

- WPA(Wi-Fi Protected Access)
 - 802.11i 보안 규격 일부 기능을 수용
- WPA2(Wi-Fi Protected Access 2) = RSN(Robust Security Network)
 - 2세대 WPA로서, CCMP(Counter Mode with Cipher Block Chaining Messgae Authentication Code Protocol) 암호화 방식을 사용
 - TKIP를 대체하기 위해 AES에 기반을 둔 CCMP 암호화 방식을 사용
 - RC4 알고리즘 대신 AES 암호화 알고리즘을 사용하여 좀 더 강력한 보안을 제공한다.
- 802.1x/EAP(Extensible Authentication Protocol)
 - WPA/WPA2-PSK가 기존 WEP를 보완항 방식이라면, WPA-EAP는 사용자 인증 영역까지 보완한 방식이다.
 - IEEE 802.11의 WPA와 WPA2 표준은 공식 인증 메커니즘으로 이 프로토콜을 채택함.

3. WAP(Wireless Application Protocol)

• WAP는 모든 기존 무선 네트워크 기술(GSM, CDMA, TDMA) 및 IP, XML, HTML, HTTP 등의 인터넷 기술과 가능한 한 호환해서 설계

[규격]

- WWW 프로그래밍 모델에 기반
- XML과 무선 마크업 언어(WML)
- 모바일 무선 단말기에 적합한 소영 브라우저의 규격
- 경량 통신

4. 디바이스 인증기술(기기 인증)

- 아이디/패스워드 기반 인증
 - 1. 아이디/패스워드 기반: 서버의 DB와 비교하여 인증
 - 2. 무선 네트워크 아이디(SSID): AP와 무선랜 클라이언트 간에 SSID를 공유
 - 3. 무선단말과 AP간 WEP 사용
 - 4. 서버 간 접근제어 아이디/패스워드 사용
- MAC 주소값 인증
- 암호 프로토콜을 활용한 인증

• Challenge/Response 인증

5. RFID

- RFID 공격 유형
 - 도청
 - 트래픽분석
 - 위조
 - 서비스 거부(DoS, Denial of Service)
- RFID 보안 기술
 - 암호 기술을 사용하지 않는 정보보호 정책
 - 킬(kill) 명령어, Sleep 명령과 Wake 명령어, 블로커(Blocker) 태그 기법, Faraday Cage, Jamming
 - 암호 기술을 이용한 정보보호 대책
 - 해시 락(Hash Lock) 기법, XOR(Exclusive OR) 기반 원타임 패드 기법

6. 모바일 보안

[1] 모바일 운영체제의 보안과 취약점

- iOS 보안 체계
- iOS 취약점
- 안드로이드의 보안 체계
- 안드로이드의 취약점

[2] BYOD 보안 기술

- MDM(Mobile Device Manangement)
- 컨테이너화(Containerization)
- 모바일 가상화(Hypervisors)
- MAM(Mobile Application Management)
- NAC(Network Access Control)

Section 25. 네트워크 관리

- 1. 네트워크 관리
- 2. SNMP (Simple Network Management Protocol)

• 관리자와 에이전트 간의 간단한 상호작용으로 관리 작업 수행하는 응용 계층 프로토콜

[관리 구성 요소]

- SMI (Structure of Management Information) : 객체에 이름을 붙이고, 객체 유형을 정의하며, 객체와 값을 부호화하는 방법의 규칙
- MIB (Management Information Base) : 관리 정보 집합
 - 네트워크를 관리하는 데 필요한 모든 관리정보를 보관하는 저장소
 - 모든 네트워크 관리 자원들은 객체로 표현되며, 이러한 객체들의 구조적인 모임이 바로 MIB이다.
 - 네트워크 피관리요소에 관한 정보를 규정한 DB이다.
- 3. 원격 접속 서비스

[Telnet]

• 가상 터미널 서비스에 대한 표준 TCP/IP 프로토콜

[Rlogin]

- remote login의 약자, 패스워드 입력이 필요 없다.
- BSD(유닉스 계열 O/S)간의 원격접속

[SSH]

- Telenet, Rlogin을 대체하기 위해 설계. 강력한 인증 방법, 안전한 통신 기능을 제공
- 포트 전달(Port Forwarding) 제공
- RSA 암호화

Section 26. 네트워크 기반 프로그램 활용

- 1. 네트워크 기반 프로그램 활용
 - 연결테스트: ping
 - (ICMP) Ehco Request, (ICMP) Echo Reply
 - 경로추적 : traceroute

```
traceroute -m 5 hostname : 최대 TTL을 지정한다. 디폴트는 30 traceroute -p port : UDP 포트를 지정한다. 디폴트는 33434번이다.
```

• 네트워크 인터페이스 진단 : netstat

-a : 모든 연결과 수신 대기 포트 표시 (all)

-e : 이더넷 통계(ethernet)

```
-n : 주소와 포트 번호를 숫자 형식으로 표시
-an : 네트워크 주소를 숫자로 나타낸다.
```

```
받음 보냄
바이트 2406962625 137723570
유니캐스트 패킷 1873920 1101735
비유니캐스트 패킷 21130 2520
버림 0 0
오류 0 0
알 수 없는 프로토콜 0
```

▲ netstat -e

```
C: ₩Users₩lee>netstat -n

활성 연결

프로토콜 로컬 주소 외부 주소 상태
TCP 127.0.0.1:2165 127.0.0.1:63433 ESTABLISHED
TCP 127.0.0.1:5555 127.0.0.1:64254 ESTABLISHED
TCP 127.0.0.1:5555 127.0.0.1:64261 ESTABLISHED
TCP 127.0.0.1:63315 127.0.0.1:65001 ESTABLISHED
```

▲ netstat- n

• 네트워크 인터페이스 설정: ifconfig

```
ifconfig [device] [ip_address] [netmask IP] [broadcast IP] [up|down]

- device : IP 주소를 부여할 장치 (ex : eth0)

- up|down : 장치 활성화 or 비활성화

EX) ifconfig eth0 16.64.1.86 netmask 255.255.255.0 broadcast 16.64.1.255 up
```

• 네트워크 패킷/로그 분석: tcpdump

```
tcp dump [-option]
- [-A} : 패킷 내용을 ASCII로 출력
- [-c] : 주어진 수의 패킷을 받은 후 종료
- [-i] : 인터페이스 지정 (default : 가장 낮은 숫자의 인터페이스)

tcpdump host 16.64.10.15 and port 80
- 출발지나 목적지가 16.64.10.65이고, 포트가 80인 트래픽을 모니터링
```

Seciton 27. 네트워크 기반 공격의 이해 ★★★ (매회 5-7문제 출제)

1. 서비스 거부공격(DoS, Denial of Service)

TCP SYN Flooding Attack, SMURF Attack, Flooding Attack, Land Attack, Ping of Death, Teardrop Attack, Inconsistent Fragmentation

• 가용성 침해

[SYN Flooding Attack]

- 공격자가 임의의 자신의 IP를 속인 뒤, 서버로 대량의 SYN 패킷을 보내 서벌르 대기 상태 (syn+ack sent)로 만드는 공격'
- 3-way handshaking 과정에서 Half-Open 연결 시도가 가능하다는 취약점

[공격방법]

- 공격자 : 시작 주소가 조작된 SYN 메시지를 목적지에 상당히 많이 보냄
- 서버 : 이 패킷 각각에 대해 서버에 정보를 저장하고, SYN/ACK 패킷을 조작된 주소에 보 냄
- 이 주소에 시스템이 존재하면 RST 패킷이 전송되어 요청된 연결이 끊어지고 정보도 삭제되지만, 존재하지 않는다면 해당 주소에서 응답이 오지 않음
- 서버 : 서버는 멍청하게 연결이 실패했다고 생각할 때까지 SYN/ACK 패킷을 보내어 연결 설정 시도를 반복
 - 이 기다리는 시간과 정보가 TCP 연결 테이블에 저장되어 이후 정상적인 연결 요청이 거부됨

[조치방법]

- 보안 패치, IDS/IPS 설치, 접속 타임아웃 시간 단추 등
- Connect Queue Size를 증가시킴 (=Backlog Queue)
- SYN Cookie Size를 늘림
- Router단에서 서브넷 외의 주소를 가지는 소스IP를 가지는 패킷 차단 (tcp intercept)
- 리눅스 계열의 경우 syncookies 기능을 사용하고, Windows의 경우 레지스트리를 변조

[문제]

1. TCP SYN Flooding 공격과 관련이 없는 것은?

- 1. Half Open Conneciton 공격
- 2. 분산 DoS 공격
- 3. Reflector 공격
- 4. Teardrop 공격

정답 : 4번

오버플로우 공격을 일으키는 DoS 공격기법이 Teardrop이다.

[Smurf Attack]

- IP 위장과 ICMP의 특징을 이용한 광범위한 DoS 공격
- Boradcasting Network를 이용한다.

hping3 192.168.0.255 -a 10.10.10.5 -icmp -flood

- hping은 사용자가 커스텀 패킷을 전송한 후 타깃으로부터 응답을 출력하는 툴

[Land Attack]

- 패킷 전송 시 출발지 IP 주소와 목적지 IP 주소 값을 똑같이 한다.
 - = 패킷의 출발지와 도착지와 같은 패킷이 다수 유입된다.
- IP Spoofing을 이용한 SYN 공격

[Ping of Death]

• 한 개의 ICMP 패킷으로 많은 부하를 일으켜 정상적인 서비스를 방해하는 공격법(65,535 bytes 이상)

sysctl -w net.ipv4.icmp_echo_ignore_all = 1

- sysctl 명령은 커널 변수의 값을 제어하여 시스템을 최적화할 수 있는 명령이다.
- 외부의 모든 ping of death 공격을 방어하기 위한 명령어
- -w variable=value : 변수에 값을 설정한다
- -n : 특정 키에 대한 값을 보여준다.

[Teardrop Attack]

- IP가 정상적으로 패킷을 전송할 때 IP 단편화(fragmentation)가 발생한다. 수신자는 재조립을 통해 데이터를 복구하게 되는데, 정확한 조립을 위해 Offset값을 더하게 된다. 이 오프셋 값보다 더 큰 값을 더해 오버플로우를 일으켜 시스템의 기능을 마비시키는 DoS 공격기법이다.
- Teardrop 기법은 이 **Offset값을 고의적으로 수정**하거나, 더 큰 값을 더해 오버플로우 (overflow)를 일으킨다.

2. 분산 서비스 거부공격(DDoS, Distributed Denial of Service)

DDoS 공격 사례 : 트리누(Trinoo), TFN, Stacheldraht, TFN2K 최신 DDoS 공격유형 : UDP/ICMP Flooding, TCP Traffic Flooding, IP Flooding, HTTP Traffic Flooding, HTTP Header/Option Spoofing Flooding

• DDoS : 공격 시스템을 분산배치하여 동시에 대량 트래픽을 발생시키는 공격(Zombie PC)

[종류]

- 1. Trinoo Attack
- 2. Stacheldraht
 - 트리누와 TFN을 참고하여 제작된 도구로서, 마스터 시스템 및 에이전트 데몬 사이에 통신을 할 때 암호화하는 기능이 추가됨.
 - ICMP Flood, SYN Flood, UDP Flood와 Smurf 등의 DDoS 공격을 할 수 있는 기능을 갖고 있음
- 3. TFN2K
 - TFN의 발전된 형태
 - 통신에 특정 포트가 사용되지 않고 암호화되어 있음.

4. Targa

- 여러 종류의 서비스 거부 공격을 실행할 수 있도록 만든 공격 도구로 Mixter에 의해 만들어짐
- 즉, 이미 나와 있는 여러 DoS 공격 소스를 사용하여 통합된 공격도구를 만듦.
- 공격 기법 : bonk, jolt, land, nestea, newlear, syndrop, teardrp, winnuke 등
- * UDP Flooding Attack은 DoS 공격

[공격 방법]

- 1. UDP/ICMP Traffic Flooding 공격
- 2. TCP Traffic Flooding 공격

3. IP Flooding 공격

4. HTTP Traffic Flooding 공격

- 1) GET Flooding
 - 동일한 URL을 반복 요청
 - TCP 3-Way 핸드셰이킹 과정을 통해 정상적인 접속 후 → HTTP Get Method를 통해 무한대로 실행하는 것
- 2) Cache Control Attack (CC Attack)
 - HTTP 메시지의 캐시 옵션을 조작하여 캐싱서버가 아닌 웹서버가 메시지를 처리하 도록 하여 웹서버의 자원을 소모시킨다.

5. HTTP Header/Option Spoofing Flooding 공격

- 1) Slow HTTP Post DoS
- 2) Slow HTTP Header DoS(slowris)
 - HTTP Get 헤더 수신시 발생하는 취약점을 이용한 공격이다.
 - 공격자는 HTTP Header 정보를 비정상적으로 조작하여 웹서버가 온전한 Header 정보가 올때까지 기다리도록 한다.

[동작]

- HTTP에서 헤더의 끝을 /r/n 이라는 개행문자로 구분하는데, 공격자는 개행문자를 보내지 않고 지속적으로 의미없는 변수를 추가한다.
- 서버는 헤더 정보가 아직 전송 중이라고 인식하고 연결을 유지한다.

[대응]

- 방화벽 등을 통해 세션 임계치 제한을 설정
- 연결 타임아웃 시간을 짧게 두어 연결이 종료됟록 한다.
- 3) Slow HTTP Read Dos

6. HULK(HTTP Unreadable Load King) DoS

• 웹서버의 가용량(최대 접속 가능 클라이언트 수)을 모두 사용하도록 하여 정상적인 서비 스가 불가능하도록 유도

7. SIP (Session Initiation Protocol) Flood

• INVITE request를 위조된 시작주소에 넣어 전송하는 공격 기법

[공격 사례]

- (1) 트리누(Trinoo) 공격
 - 1999.06~07 / 미네소타 대학 / 솔라리스 2.x 시스템

• UDP Flood 서비스 거부 공격에 사용되는 툴

[대응 방안]

- 1. 라우터(Router)
 - 대응공격 : Direct Flooding, Broadcast Flooding, DNS UDP Flooding, DNS Query Flooding, DNS Reply Flooding등
 - 대응공격의 특징 : 회선의 대역폭 증가 및 동일 네트워크를 사용하는 모든 서비스에 장애 발생

2. 경계 라우터

- 대응공격: 단순 논리공격 (Tear Drop, Bonk, Land Attack) 등의 공격을 방어
- 대응공격의 특징 : 논리적 오류를 이용한 공격으로 피해 서버의 오작동을 유발한다.
- AC에 비해 구성이 쉽고 부하가 적어 사용이 용이

3. QoS

• 차단중심의 대응이 아닌 가용성(Guranteed Capacaity) 중심의 선택적 대역폭 조정방 식 사용

[방어 사례]

• URL Redirect 우회 공격 방어 : 좀비 PC에서 특정 URL 요청시 다른 URL 리다이렉트 신호를 전송해 공격을 차단한 방어 기법

[VoIP 서비스 공격]

- SIP Flood
- RTP(Real-time Transport Protocol) 공격
- INVITE 플러딩 공격
- Register 플러딩 공격

[한국 DDoS 사례]

- 2013.01.25 인터넷 대란 : MS SQL 서버의 허점을 이용한 슬래머웜이 KT 혜화전화국에 있는 DNS 서버에 인터넷 트래픽을 집중 (디스크 파괴 및 파일 삭제 X)
- 2009.07.07 DDoS 공격 : URL Redirect 우회 공격 방어를 통해 컴퓨터 하드디스크 파괴 코드 발견
- 2011.03.04 DDoS 공격: 정부기관, 은행, 포털이 DDoS를 통해 일시적으로 두 차례 마비
- 2013.03.20 사이버테러 : KBS, MBC, YN과 농협, 신한은행 등 방송 및 금융 6개사 전산 망 마비 사태. 북한 정찰총국 소행 (3만 2천여대 마비)
- DRDoS (Distributed Reflection DoS)

- 출발지의 IP를 위조(IP Spoof)하여 정상 요청(request)하면 공격 대상에 대량의 응답 값이 전달되는 것을 이용한 공격방법
- 별도의 에이전트 설치 없이 TCP 프로토콜 및 라우팅 테이블 운영상의 취약성을 이용한 공격이다.
 - TCP 3way-handshake을 이용하는 DDoS 공격으로 공격자는 출발지 IP를 공격대상의 IP로 위조하여 syn 패킷을 다수의 반사서버로 전송하여 공격대상이 이 장비들을 응답하는 syn-ack 패킷을 받아 서비스 거부 상태가 된다.
- 정상적으로 서비스를 제공 중인 서버를 Agent로 활용하는 공격기법
- 클라이언트의 특성상 외부 인터넷 서버 접속이 잦음으로 인하여 클라이언트의 보호는 사실상 불가능하다.

[DDoS와의 차이점]

- IP Spoofing(IP 위조)의 사용 : DDoS는 선택 DRDoS에는 필수
- 반사체(Reflector)의 활용 : 반사 서버 사용

[DRDos의 장점]

- 패킷이 전송되는 경로가 무수히 많다.
- 반사 서버의 단계적 사용 및 확산 : 다수의 반사 서버 목록을 보유하고 있으면 공격 경로를 끊임없이 변경할 수 있음
- 위조된 SYN 패킷 출발지 IP를 랜덤하게 생성하는 DDoS 공격과 다르게 공격대상 IP를 출발지 IP로 위조하여 전송하기 때문에 추적이 힘듦.

[DRDos의 단점]

- DDoS는 Layer 7을 공격하거나 단순 Flood가 아닌 특수 공격에도 활용이 가능하지만 DRDoS는 반사체를 원하는 대로 제어할 수 없어 오로지 Flood 타입 공격만 가능
- Slowloris 공격

3. 네트워크 스캐닝

[1] 포트 스캔 종류

[1] Sweep : 특정 네트워크에 대해 해당 네트워크에 속해 있는 시스템의 유무 판단을 할 수 있고, 목표 네트워크에서 사용하거나 소유하고 있는 IP 주소와 네트워크 범위를 알아내는 기법

- ICMP Sweep
- TCP Sweep
- UDP Sweep

[2] Open Scan : 시스템 활성화 여부, 스캔하는 포트에 해당되는 서비스와 활성화 여부를 조사할 수 있는 방법

1) TCP Full Open Scan (= TCP SYN/ACK Scan)

2) TCP Half Open Scan (= TCP SYN Scan)

세션을 완전히 연결하지 않고, 포트의 활성화 여부만 판단
 (포트 열린 경우) 공격자 SYN 패킷 → 서버 SYN/ACK 패킷 → 공격자 SYN 패킷 (세션에 대한 로그를 남기지 않음)

(포트 닫힌 경우) 공격자 SYN 패킷 → 서버 RST/ACK 패킷

[3] Stealth Scan

- TCP 헤더를 조적하여 **특수한 패킷**을 만들어 보낸 후 그 응답으로부터 포트 활성화 여부를 파악하며 세션을 완전히 연결하지 않아 로그가 남지 않음
- 포트가 열려있는 경우 응답이 없고, 포트가 닫혀 있는 경우 RST 패킷이 돌아온다.
 - 1) TCP FIN Scan: 헤더 내에 FIN 플래그 설정
 - 2) TCP NULL Scan: 헤더 내에 플래그 값 설정않고 전송
 - 3) TCP XMAS Scan: ACK, FIN, RST, SYN URG 플래그 전송
 - 4) ACK Scan
 - 5) TCP Fragment Scan

[2] 대표적인 스캔종류

1. NMap

[Scan Type]

-sS : TCP SYN(Half-open) Scan, 다른 스캔 기법보다 더 비밀스러우며 타깃 호스트에 log 가 남지 않는 방법

-sP: Ping Scan, 네트워크의 어느 호스트가 살아있는지 알고 싶을 때

[Port Option]

[Output Option]

-v: 자세하게 출력

-oX <file> : XML 파일 형식으로 출력

[기타]

-O: 대상 호스트의 운영체제 정보 출력

-f: 스캔 시 방화벽을 통과할 수 있도록 패킷을 분할

-T0 ~ T5: T0 아주 느리게 ~ T5 아주 빠르게

[3] Sniffing

- (1) 스니핑의 종류 (2) 네트워크 스니퍼
- 허브 환경에서의 스니핑
 - 시스템 NIC를 promiscuous 모드로 동작하게 하면 버려지는 패킷을 저장하고 분석이 가능
- 스위치 환경에서의 스니핑
 - Switch Jamming : 스위치의 MAC Address Table을 버퍼 오버플로우시켜서 스위치가 허 브처럼 동작하게 강제적으로 만드는 기법
 - ARP Redirect : 공격자가 자신이 라우터인 것처럼 MAC 주소를 위조하여 ARP Reply 패킷을 해당 네트워크에 boradcast한다.
 - ARP spoofing : 공격자가 특정 호스트의 MAC 주소를 자신의 MAC 주소로 위장한 ARP Reply 패킷을 맏늘어 희생자에게 지속적으로 전송하면, 희생자의 ARP Cache에 특정 호스트의 MAC 정보가 공격자의 MAC 정보로 변경이 된다.
 - ICMP Redirect:
 - 스위치의 span/monitor port를 이용한 스니핑

[대처방법]

1) 능동적인 방법

- 주요 데이터 전송구간에 VPN 운용
- 네트워크 스니퍼

[공격형식]

• UP BROADCAST RUNNING PROMISC : 무차별모드로 장비가 실행됨

[4] Spoofing

- ARP Spoofing
- IP Spoofing
- DNS Spoofing

[5] Session Hijacking

- 서버와 클라이언트가 TCP 통신을 할 때, RST 패킷을 보내 일시적으로 TCP 세션을 끊어 시퀀스 넘버를 새로 생성하여 세션을 빼앗아 인증을 회피하는 것
- HTTP Session Hijacking : 웹브라우징시 세션 관리를 위해 사용되는 Session ID를 스니핑이나 무작위 추측 공격(brute force guessing)을 통해서 도용하는 기법
- Slow HTTP Read DoS: 공격자는 웹서버와 TCP 연결 시, TCP 윈도우 크기 및 데이터 처리율을 감소시킨 후 HTTP 데이터를 송신하여 웹서버가 정상적으로 응답하지 못하도록 DoS 상태를 유발한다.
- 공격도구 : hunt

[Remote Finger Printing]

[IP Scanning, Port Scanning]

[Sniffing, 암호화 프로토콜]

- 원리
 - NIC 모드를 Promiscuous로 바꾸고 네트워크 상의 모든 트래픽을 다 받아들임으로써 스니 핑 가능
- 대응
 - ARP Cache Table을 정적으로 운영
 - 데이터 암호화: SSL(전자상거래) / PGP, S/MIME(메일) / SSH(원격 접속) / VPN / IPSec

Section 28. IDS/IPS (출제빈도 2.9% / 매회 출제)

1. 침입탐지시스템(IDS, Intrusion Detection System)

• IDS의 동작 순서: 데이터 수집 - 데이터 가공 및 축적 - 분석 및 침입탐지 단계 - 보고 및 대응

[3] 분류

[탐지 방법에 따른 분류]

- 1. 지식기반 침임탐지(knowledge-based detection) = 규칙-기반 침입 탐지(Rule-based Detection) = 오용 침입탐지(misuse detection)
 - 전문가 시스템 = knowledge based detection
 - 상태전이 모델(State Transition Detection)
 - 패턴 매칭(Pattern Matching)
 - 시그니처 분석
 - 키 모니터링(Keystroke Monitoring)
 - 페트리넷(Petri-net): 정보 흐름의 표현을 극도로 간소화한 병렬 가동 시스템 표현. 완전 탐색을 해야하기 때문에 비효율적이며, 시간적 비용과 저장용량이 많이 필요하다는 단점이 있다.
 - 규칙 기반 침입 탐지
 - 변형 탐지 (Anomaly detection) : 이전 사용패턴과 달라진 걸 탐지
 - 침투 식별 (Penetration identification) : 의심스런 행동을 찾아내는 전문가 시스템
- 2. 행위기반 침임탐지(behavior-based detection) = 통계적 변형 탐지 = 비정상 행위 탐지 (anomaly detection, anomaly-based detection)
 - 통계적 분석 방법(Stastistical Detection)
 - 예측 가능 패턴 생성(Predictive Pattern Generation)
 - 신경망 (Neural Netoworks)
 - 통계적 변형 탐지
 - 임계값 탐지(Threshold detection) : 사용자와는 무관하게 다양한 사건들의 발생빈 도에 대한 임계값 정의
 - 프로파일 기반(Profile based) : 각 사용자의 동작에 대한 프로파일을 구성하고 개인 별 행동의 변화를 감지

[데이터 수집원에 따른 분류]

NIDS (Network-based IDS)	분류	HIDS((Host-based IDS)
네트워크를 통해 전송되는 패킷 정보를 수집·분석하여 침입을 방지	탐지방법	호스트 시스템으로부터 생성되고 수집된 감사 자료로 침입을 방지
· 초기 구축비용이 저렴 · OS에게 독립적이어서 구현·관리 쉬움 · 공격자가 흔적을 제거하기 어려움	장점	· 정확한 탐지가 가능 · 암호화 및 스위칭 환경에 적합 · 추가적인 H/W가 필요하지 않다.
 암호화된 패킷 분석 X 스위칭 환경에서 구축비용↑ 고속 네트워크 환경에서 패킷 손실이 많아 탐지율이 떨어짐 호스트 상에서 수행되는 세부 행위 탐지 X 	단점	· 각각의 시스템에 설치해야 하므로 다양한 OS를 지원해야 한다. · 시스템에 추가적인 부하가 걸림 · 구현이 용이하지 않음 · 로그 변조, 공격에 의한 무력화

• NIDS (Network-based IDS)

- 네트워크 트래픽을 분석하고 모니터링
- 정상행위 프로파일과 현재 수집된 트래픽 정보의 특징을 비교하여 침입여부를 판정

[장점]

• HIDS보다 설치되는 시스템 수가 적다

[단점]

• 암호화되는 트래픽에 대한 침입 탐지를 하지 못한다.

• HIDS (Host-based IDS)

[장점]

- 정확한 탐지 가능
- 암호화 및 스위칭 환경에 적합
- 추가 하드웨어 필요하지 않음
- 트로이목마, 백도어, 내부자에 의한 공격탐지/차 가능

[단점]

- 각각의 시스템마다 설치해야 하므로 다양한 O/S를 지원해야 함
- 침입 탐지 시스템으로 인해 시스템 부하 발생

[문제]

• 비정상행위기반 침입탐지 방법은 사전에 구축된 비정상행위 프로파일과 현재 수집된 트래픽 정보의 특징을 비교하여 침입여부를 판단한다.

→ (X) 사전에 구축된 '정상적인' 프로파일과 비교

[IDS의 응용]

• Snort

- 일종의 IDS, 실시간 트래픽 분석, 프로토콜 분석, 내용검색/매칭, 침입탐지 Rule에 의거하여 오버플로우, 포트스캔, CGI 공격, OS 확인 시도 등의 다양한 공격과 스캔을 탐지할 수있다.
- snort 룰(시그니처 형식)

```
alert tcp 192.168.159.0/24 any -> 192.168.159.131 80
(1) (2) (3) (4) (5) (6) (7)
(msg: "DOS SMBdie attack": flow: established: content: "|57724c65648314849a | ":)

(1) Action
- alert: alert를 발생하고 로그에 남김
- dynamic: activate action에 의해 활성화가 되면 log action과 동일한 액션을 취한다.

(2) Protocol
- tcp, udp, icmp, ip 중 택1

(3) IP
- 복수개 IP: 10.10.10.0/24, 11.11.11.11
- 부정 연산자 사용: !10.10.10.0.24

(4) PORT
- 1:1024 - 1부터 1024번 포트
- :1024 - 1024이하 포트
- 1024 - 1024이상 포트
```

2. 침입방지시스템(IPS)

Section 29. 침입차단시스템(Firewall) (2~3문제 / 20문제 中)

1. 침입차단 시스템(방화벽, Firewall) 개요

- 개요: 내/외부 네트워크 사이에서 접근제어 정책을 구현하는 시스템
- 기능
 - 접근 통제, 사용자 인증, 감사 및 로그 기능, 프라이버시 보호, 서비스 통제, 데이터 암호화
 - 패킷 분석 및 공격 탐지 (X) → IDS의 기능
- 분류
 - 서비스 제어 : 안에서 밖으로 혹은 밖에서 안으로 접근할 수 있는 인터넷 서비스 유형을 결정
 - 목적지 제어 : 특정 서비스를 요청들을 시작하거나 침입차단시스템 통과를 허용할 때 목적지 를 결정
 - 행동 제어 : 특정 서비스를 어떻게 사용(how)할지 제어
 - 사용자 제어 : 어느 사용자가 접근을 시도하는지에 따라서 서비스 접근을 제어한다.

2. 침입차단시스템의 유형에 따른 분류

[1] 패킷 필터링 시스템

- ACL을 이용하며, 속도가 빠르고 비용이 적게 든다. (O)
- 패킷 내의 데이터에 대한 공격을 차단하지 못한다. (O) = 상대적으로 낮은 보안이다. (O)
- 응용 프로그램 사용에 따른 기록 및 감사 추적이 가능하다 (X)
 - → OSI 7의 3계층과 4계층에서 관리자가 필터링을 위해 정의한 IP와 Port 목록을 기반으로 필터링 수행하며, 프로그램 사용에 따른 기록 및 감사추적 불가능
- 일반적인 패킷 라우터에 패킷 필터링 기능을 구현한 것을 스크리닝 라우터(=패킷 필터링 라우터) 라고 한다.

[2] NAT(Network Address Translation)

- 라우터에 의해 적은 숫자의 유효 IP 주소만으로도 많은 시스템들이 인터넷에 접속할 수 있게 해주는 네트워크 서비스 (O)
- 외부에서 내부 네트워크로 직접적인 접근이 불가능하게 되므로 네트워크 보안효과를 가져올 수 있다. (O)
- NAT은 Layer 4 프로토콜이다. (X)

[3] Stateful 패킷 검사 침입차단 시스템

- 패킷 피터링처럼 패킷 정보를 검토하지만, TCP 연결에 관한 정보를 기록한다.
- 세션 하이재킹 같은 공격을 방어

[4] Proxy (801번 문제)

• 침입차단 시스템 호스트에서 실행되는 전문화된 application 서버나 서버 프로그램으로서 침입 차단 시스템에서 사용되는 베스천 호스트에 설치되어 운영됨

Bastion Host : 침입차단 S/W가 설치되어 내/외부 네트워크 사이에서 게이트웨이 역할을 수행하여 철저한 보안 방어 기능이 구축되어 있는 시스템

- Application 계층에서 동작

[5] 응용 계층 게이트웨이(application level proxy)

- 내부 서버 보호 목적
- 사용자 응용계층에서 침입차단 시스템 기능 제공

[6] 회선 레벨 게이트웨이(circut-level gateway)

• 응용 계층 게이트웨이는 내부 서비 보호 목적이지만, 서킷 레벨(circut level) 게이트웨이는 내부 네트워크의 호스트 보호 목적

3. 침입차단시스템의 구축에 따른 분류

- (1) 스크리닝 라우터 구조(Screening Router Architecture)
- (2) 이중 네트워크 호스트 구조 (Dual-Home HHost Architecture)
- (3) 스크린드 호스트 게이트웨이 구조 (Screened Host Gateway)
 - 장점
 - 2단계(네트워크, 응용) 로 방어하기 떄문에 안전
 - 가장 많이 사용하는 방화벽 시스템이며, 융통성이 좋다. (Dual-Homed 게이트웨이 장점을 그대로 가진다)
 - 단점
 - 해커에 의해 screening router의 routing table이 변경되면 방어할 수 없다.
 - 방화벽 시스템 구축 비용 ↑
 - 로그인 정보가 유출되면 내부 네트워크를 보호할 수 없다.
- (4) 스크린드 서브넷 구조 (Screened Subnet Architecture)
 - 스크리닝 라우터들 사이에 dual-homed 게이트웨이가 위치하면서, 인터넷과 내부 네트워크 사이에 DMZ(Demilitarized Zone)라는 네트워크 완충지역 열할을 하는 서브넷을 운영

4. iptables

Section 30. VPN

- 1. VPN(Virtual Private Network)
 - 공중 네트워크를 이용하여 사설 네트워크가 요구하는 서비스를 제공할 수 있도록 네트워크를 구성한 것.

[프로토콜 종류]

[2계층 터널링 프로토콜]

- PPTP(Point-to-Point Tunneling Protocol): MS개발, 일대일 통신만 지원, 사용자 인증, TCP 사용 - PPP인증
- L2F (Layer 2 Fowarding Protocol) : CISCO 개발, 다자간 통신 지원, UDP 사용
- L2TP (Layer 2 Tunneling Protocol) : MS+CISCO (호환성O)

[3계층 터널링 프로토콜]

IPSec

[개요]

- IP 계층(3계층)의 보안 프로토콜이다. (O) = VPN의 3계층 프로토콜이다. (O)
- 보안 서비스 제공을 위하여 AH와 ESP 기능을 이용한다 (O)

[AH, Authentication header]

- 데이터의 무결성 보장과 IP 패킷 데이터 원본 인증에 사용
- 인증은 제공하지만, 암호화 기능은 없음
- AH 헤더에는 전송모드와 터널모드로 나뉘어진다. (O)

[ESP, Encapsulating Security Payload]

- 메시지 출처 인증 + 메시지 무결성 + 메시지 기밀성
- 재전송 공격 방지, 제한된 트래픽 흐름 기밀성
 - 터널모드 : 라우터와 라우터 사이만 암호화

IPSec 보안 프로토콜에서 메시지 출처 인증, 메시지 무결성, 메시지 기밀성 서비스를 지원하는 프로토콜과 새로운 IP 헤 더가 추가되는 동작모드가 잘 묶여진 것은?

- ① ESP 프로토콜, Transport 동작모드
- ② ESP 프로토콜, Tunnel 동작모드
- ③ AH 프로토콜, Transport 동작모드
- ④ AH 프로토콜, Tunnel 동작모드

정답: 2번

[전송모드, 터널모드]

• 동작 모드 종류

- 전송 모드(Transfer Mode): 호스트와 호스트간의 메시지(Payload) 무결성을 제공

IP Header	IPsec Header	IP Payload	IPsec Trailer	
		보호		

- 터널 모드(Tunnel Mode): IP 패킷 전체를 보호하는 모드

	New IP Header	IPsec Header	원본 IP Header	IP Payload	IPsec Trailer
ľ			보호		

• 전송모드: 단말과 단말 간에 설정되는 것이 일반적이며 IP 패킷의 페이로드를 암호화하여 IP헤더로 캡슐화

• 터널모드

- 라우터와 라우터 간에 설정되는 것이 일반적이며 inbound IP 패킷을 모두 암호화하여 IPSec AH 또는 ESP 프로토콜을 적용
- IP 패킷 인증의 범위는 출발지 IP 패킷의 헤더 부분을 포함한다
- 터널모드는 주로 VPN 기능을 수행하는 게이트웨이 간에 보안 기능을 제공한다. (O)
- 전송모드는 데이터그룹 전체를 AH로 캡슐화하고 새로운 IP헤더를 추가한다. (X)
 → AH와 ESP 전송모드 순서 : IP헤더 AH/ESP 헤더 IP Payload (IP헤더를 보호하지 않음)
- IETF에 의해 IP 계층 보안을 위해 개방형 구조로 설계된 VPN 기술이다. (O)

- 전송 모드

- 터널 모드

[SSL VPN]

- PPTP(Point-to-Point Tunneling Protocol): MS개발, 일대일 통신만 지원, 사용자 인증, TCP 사용 - PPP인증
- L2F (Layer 2 Fowarding Protocol): CISCO 개발, 다자간 통신 지원, UDP 사용
- L2TP (Layer 2 Tunneling Protocol) : MS+CISCO (호환성O)
- 사용하는 프로토콜

[IKE, Internet Key Exchange]

• 키 관리 프토토콜, ISAKMP + OAKLEY

Section 31. 최신 네트워크 동향 (1-2문제)

- 각종 네트워크 보안제품의 인터페이스를 표준화하여 중앙 통합 관리
 - EX) 통합 로그 관리, 이벤트 필터링, 시릿간 통합 모니터링/경보/상황전파, 로그 분석 및 의 사결정 지원
- 1. 최신 보안 기술과 솔루션
 - ESM(Enterprise Security Management)
 - NAC(Network Access Control)
 - 일련의 프로토콜을 사용해 '엔드포인트(Endpoint)'가 처음 내부망 네트워크에 접속시도를 할때 기존 내부망에 피해를 끼치지 않도록 접속하는 엔드포인트에 일련의 보안정책을 적용할수 있도록 하는 컴퓨터 네트워킹 솔루션이다.
 - APT(Advanced Persistent Threat, 지능형 지속 위협)
 - 특정 대상을 겨냥해 다양한 공격 기법을 이용하여 장기간 지속적으로 공격하는 것
 - SIEM(Security Information Event Management)
 - 보안 시스템에서 발생하는 로그를 분석하여 이상 징후 파악하고, 그 결과를 경영진에게 보고 할 수 있도록 해주는 시스템
 - QRader, Arcsight, SPLUNK, enVision 와 같은 프로그램 사용
- 2. 최신 보안 주제

다음은 TCP 프로토콜의 타이머에 대한 설명이다. 옳지 않은 것은?

• ① TCP 타이머에서 재전송 타이머(RTO, Retransmission Time Out)값으로 설정하고 타이머가 끝나기 전에 확인응답이 수신되면 타이머는 소멸한다.

- ② 왕복시간(RTT, Round Trip Time)은 재전송 초과 값을 계산하기 위해서 왕복시간을 계산한다.
- ③ 영속 타이머는 교착상태가 발생한다.
- ④ RTO 값은 최기 RTT 값을 기준으로 항상 고정되어 있다.

정답: 4, 손실 하면 RTO값을 2배로 늘림

17. 다음의 보기에서 빈칸에 알맞은 용어는 무엇인가?

- ()는 /etc/hosts.deny와 /etc/hosts.allow 파일을 통하여 접근 통제를 구현한다.
- 1 TCP Wrapper
- 2 Tripwire
- ③ SARA
- **4** NESSUS

정답:1

10. 서버 보안을 강화하기 위한 방법으로 서버에 들어오고 나가는 IP 트 래픽을 제어할 수 있는 방법은?

- 1 ipchain/iptable
- ② IP Control/mod_security
- ③ mod_security/nmap
- 4 IP Manager/IP Filtering

정답:1

6. 다음의 보안 도구 중 무결성 검증용으로 사용하는 것과 가장 거리가 먼 것은?

- 1 tripwire
- ② fcheck
- ③ md5
- 4 nessus

정답: 4번

nesus : 전 세계적으로 가장 널리 사용하는 취약점 스캔 도구

워너크라이 랜섬웨어와 페트야 랜섬웨어의 차이점을 바르게 설명한 것은?

- ① 워너크라이 랜섬웨어에 네트워크 웜 기능이 추가되었다.
- ② MFT(Master File Table) 영역 암호화가 추가되었다.
- ③ 워너크라이 랜섬웨어와 달리 SMB 취약점을 기반으로 한다.
- ④ MBR(Master Boot Record) 영역을 감염시켜서 부팅을 불가능하게 만든다.

정답: 4번

페트야 랜섬웨어(Petya Ransomware)

- 2016년 최초 발견
- MFT(Master File Table) 영역 암호화 + MBR(Master Boot Roader) 영역 감염

다음 중 가장 옳지 않은 것은?

- ① wtmp: 사용자들이 로그인, 로그아웃한 정보를 가지고 있다.
- ② pacct : 사용자가 로그인한 후부터 로그아웃할 때까지 입력한 명령과 시간, 작동된 tty 등에 대한 정보를 가지고 있다.
- ③ utmp: 시스템에 현재 로그인한 사용자들에 대한 상태정보를 가지고 있다.
- ④ btmp : 사용자별로 가장 마지막에 로그인한 시간과 접속 IP, tty 등에 대한 정보를 가지고 있다.

정답: 4번

• 5번 이상 로그인에 실패했을 경우에 로그인 실패정보를 기록, lastb 명령어로 확인가능

다음 보기에서 설명하는 공격은?

- ㅇ 여러 호스트가 특정 대상에게 다량의 ICMP Echo Request 를 보내게 하여 서비스거부(DoS)를 유발시킨다.
- ㅇ 소스 주소를 공격 대상 호스트로 위조한 ICMP 패킷을 브로드캐스트하면 근처의 호스트가 다량의 Echo Reply를 발생시킨다.
- ① 세션 하이젝킹 공격
- ② 브로드캐스팅 공격
- ③ Tear Drop 공격
- ④ Smurf 공격

정답: 4번

- 여러 호스트가 특정 대상에게 다량의 ICMP Echo Request를 보내게 하여 서비스 거부 (DoS)를 유발시킨다.
- 소스 주소를 공격 대상 호스트로 위조한 ICMP 패킷을 브로드캐스트하면 근처의 호스트가 다량의 Echo Reply를 발생시킨다.
- 공격 대상 호스트는 다량으로 유입되는 패킷으로 인해 서비스 불능 상태에 빠진다.

다음 중 베스천 호스트에 대한 설명으로 올바른 것은?

- ① 두 개의 스크린 호스트를 이용한다.
- ② 라우터 기능 외에 패킷 통과 여부를 결정할수 있는 스크린 기능을 가지고 있다.
- ③ 두 개의 랜 카드를 가진 호스트를 말한다.
- ④ 보호된 네트워크에 유일하게 외부에 노출되는 내외부 네트워크 연결점으로 사용되는 호스트이다.

40. 다음의 공격 방법을 방어하기 위한 침입차단시스템의 유형으로 가장 적절한 것은?

침입차단시스템을 우회하기 위하여 침입차단시스템 내부망에 있는 시스템의 서비스 요청을 받은 것으로 가장하여 패킷을 전송한다.

① 응용레벨 게이트웨이

- ② 회로레벨 게이트웨이
- ③ 패킷 필터링 라우터
- ④ 상태검사 패킷 필터

다음 중 CIDR 기법을 사용하지 않는 라우팅 프로토콜은?

- 1 RIP v1
- ② RIP v2
- ③ EIGRP
- 4 OSPF

정답 : 1

원격지 OS를 탐지하는 방법으로 옳지 않은 것은?

- 1. telnet ip port 명령을 사용하여 배너 정보를 검토한다.
- 2. nmap -oX 명령어 이용
- 3. TCP 초기 시퀀스 넘버를 확인한다.
- 4. HTTP GET 명령어와 SERVER 키워드를 grep하여 OS를 확인한다.

정답: 2,

- nmap -oX <파일명> : 스캔결과를 XML로 출력
- 1. 애니캐스트는 다중 송신자와 그룹 내에서 가장 가까운 곳에 있는 일부 수신자들 사이의 통신을 말한다. (X)
 - → 단일 송신자와 그룹 내에서 가장 가까운 곳에 있는 수신자 사이의 통신을 말함.

정리 못한 부분

봇넷(bot-net) 감염된 시스템인 봇이 네트워크로 연결된 형태.

[AH, Authentication header]

• 데이터의 무결성 보장과 IP 패킷 인증에 사용

[ESP, Encapsulating Security Payload]

• AH와 동일한 인증 + 기밀성 보장

• 재전송 공격 방지, 제한된 트래픽 흐름 기밀성

- 전송 모드

- 터널 모드

• 터널모드 : 라우터와 라투어 사이만 암호화