Author's Accepted Manuscript

MiR-132 plays an oncogenic role in laryngeal squamous cell carcinoma by targeting FOXO1 and activating the PI3K/AKT pathway

Rong Lian, Baocai Lu, Lei Jiao, Shaomei Li, Huimin Wang, Wenjie Miao, Wenfa Yu

www.elsevier.com/locate/ejphar

PII: S0014-2999(16)30657-4

DOI: http://dx.doi.org/10.1016/j.ejphar.2016.10.015

Reference: EJP70881

To appear in: European Journal of Pharmacology

Received date: 21 August 2016 Revised date: 11 October 2016 Accepted date: 14 October 2016

Cite this article as: Rong Lian, Baocai Lu, Lei Jiao, Shaomei Li, Huimin Wang Wenjie Miao and Wenfa Yu, MiR-132 plays an oncogenic role in laryngeal squamous cell carcinoma by targeting FOXO1 and activating the PI3K/AKT p at h w a y , *European Journal of Pharmacology* http://dx.doi.org/10.1016/j.ejphar.2016.10.015

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

- 1 MiR-132 plays an oncogenic role in laryngeal squamous cell carcinoma by
- 2 targeting FOXO1 and activating the PI3K/AKT pathway
- 3 Rong Lian¹, Baocai Lu¹, Lei Jiao¹, Shaomei Li², Huimin Wang¹, Wenjie Miao¹, Wenfa Yu^{1*}
- ¹Department of Otolaryngol, the First Affiliated Hospital, Xinxiang Medical College, Weihui
- 5 453100, Henan, PR China.
- 6 ²Department of Operating Theatre, the First Affiliated Hospital, Xinxiang Medical College,
- 7 Weihui 453100, Henan, PR China.
- 8 *Corresponding authors: Department of Otolaryngol, the First Affiliated Hospital, Xinxiang
- 9 Medical College, No. 88 Health Road, Weihui 453100, Henan, PR China. Tel:
- 10 +86-03734404220, E-mail: wenfayuxinxiang@sina.com.

11

12 ABSTRACT

- 13 Increasing evidence indicates that the dysregulation of microRNAs is involved in tumor
- progression and development. The purpose of the present study was to explore the expression
- of microRNA-132 (miR-132) and its function in laryngeal squamous cell carcinoma (LSCC).
- 16 The results showed that miR-132 expression was markedly upregulated in LSCC tissues and
- 17 cell lines. Functional analyses indicated that overexpression of miR-132 enhanced cell
- proliferation and tumor growth, which resulted in the downregulation of p27 and p21 and the
- upregulation of cyclin D1. In addition, luciferase activity indicated that miR-132 directly

20	targets FOXO1, and inhibits FOXO1 protein expression in LSCC cells. Further studies
21	revealed that the ectopic expression of FOXO1 effectively reversed the cell growth induced
22	by miR-132. Moreover, miR-132 also activated the PI3K/AKT pathway, which further
23	decreased FOXO1 expression. In conclusion, these findings demonstrated that miR-132 plays
24	an important oncogenic role in LSCC by modulating the PI3K/AKT/FOXO1 pathway at
25	multiple levels, resulting in strong prognostic implication. Therefore, miR-132 might be a
26	potential therapeutic strategy in LSCC.
27	Keywords: miR-132, FOXO1, PI3K/AKT pathway, laryngeal squamous cell carcinoma

1. Introduction

Laryngeal carcinoma is one of the most common malignancy neoplasms of the head and neck squamous cell carcinoma (Siegel et al., 2013). More than 90% of laryngeal tumors are diagnosed as laryngeal squamous cell carcinoma (LSCC). Although therapy approaches such as surgery and radiotherapy have been improved in recent years (Hunter et al., 2005), the overall 5-year survival rates for laryngeal carcinoma were less than 50% and still have not been significantly improved over the past 30 years, mainly due to metastasis and recurrence (Cosetti et al., 2008). Therefore, there is an urgent need to understand the molecular mechanisms responsible for LSCC metastasis.

MicroRNAs (miRNAs) are a class of approximately 22-nucleotide non-coding RNA molecules, which have been identified as key negative regulators of gene expression through

40	the endogenous RNA interference machinery (Bartel, 2009; Chen and Rajewsky, 2007).
41	Accumulating evidence suggests that miRNAs play a role in diverse biological processes,
42	including proliferation, apoptosis and tumorigenesis (Krol et al., 2010). Recent studies have
43	also shown that dysregulation of miRNAs is implicated in invasion and metastasis in several
44	human cancer types, and laryngeal carcinoma is not an exception (Kalfert et al., 2015). These
45	studies suggest a critical role of miRNAs in tumorigenesis and development. Until now,
46	miRNAs have been identified as both tumor suppressors and oncogenes, which is dependent
47	on the role of their target genes.
48	An increasing number of studies has shown that lipid and protein phosphatase deregulation
49	plays an important role in cancer development and progression through the constitutive
50	activation of phosphatidylinositol 3-kinase/v-akt murine thymoma viral oncogene homolog
51	(PI3K/AKT) signaling. There have been changes reported in the expression of many
52	oncogenes and tumor suppressor genes in LSCC, such as p-AKT (JIA et al., 2009). These
53	changes could affect cancer development by modulating downstream signal transduction
54	pathways such as the well-known AKT signaling pathway (Knowles et al., 2011; Pedrero et
55	al., 2005). Therefore, a deeper understanding of these molecular mechanisms will help us to
56	identify new diagnostic and therapeutic approaches to this disease and improve the prognosis
57	of LSCC patients. Human Forkhead box O (FOXO) proteins (FOXO1, FOXO3a, FOXO4,
58	and FOXO6) are key effectors of PI3K/Akt signaling and regulate many biological processes,
59	such as cell cycle regulation, cell differentiation, tumorigenesis, and oxidative stress
60	responses (Burgering and Medema, 2003; Carter and Brunet, 2007; Fu and Tindall, 2008).

61 Notably, FOXO1 is also a downstream molecule of the PI3K/AKT pathway. Activated AKT phosphorylates FOXO1, which is subsequently exported from the nucleus into the cytoplasm 62 63 and degraded by proteasomes (Zhao et al., 2004). Moreover, it has been demonstrated that 64 FOXO1 induces G1 phase cell-cycle arrest in glioma cells and renal cell carcinoma due to the 65 inhibition of tumor suppressor phosphatase and tensin homolog deleted on chromosome ten (PTEN), via the upregulation of p27 (Kuo et al., 2013). 66 67 In the current study, we demonstrated that the expression of miR-132 was significantly upregulated in LSCC cells, and acts as an important regulator in LSCC cell proliferation and 68 69 tumor growth. Furthermore, we investigated the role of miR-132 in modulation of the PI3K/AKT pathway in LSCC cells, and discovered that FOXO1 is a novel direct target of 70 71 miR-132. Our findings demonstrated that miR-132 might be a novel target for further studies 72 into the therapy of laryngeal carcinoma. 2. Materials and Methods 73 74 2.1. Cell lines and human tissues 75 Two LSCC cell lines (Hep-2 and AMC-HN-8) and a normal human keratinocyte cell line 76 (HaCaT) were obtained from Shanghai Institute Chinese Academy of Science (Shanghai, 77 China), maintained in RPMI 1640 (Invitrogen) containing 10% fetal bovine serum (FBS), and 78 100 μM each of penicillin and streptomycin in a humidified atmosphere of 5 % CO₂ at 37°C. 79 Human Laryngeal squamous cell carcinoma specimens (n = 10) and corresponding adjacent

non-neoplastic tissues (n = 10) were obtained from patients of the Tianjin First Center

81	Hospital with documented informed consent in each case.
82	2.2. Transfection of miRNA mimics
83	The cells were placed in six-well plates (5 \times 10 ⁵ cells per well) in opti-MEM media
84	(Qiagen, Duesseldorf, Germany) and were transfected with miR-132 mimics using
85	Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA). The transfected cells were cultured for
86	6 h, and the culture medium was then replaced with fresh complete medium. The cells were
87	harvested 24 h after transfection.
88	2.3. RNA extraction, reverse transcription, and real-time PCR
89	Total RNA from cells was extracted using TRIzol (Life Technologies) according to the
90	manufacturer's instructions. Messenger RNA (mRNA) and miRNA were polyadenylated
91	using a poly-A polymerase-based First-Strand Synthesis kit (TaKaRa Bio, DaLian, China)
92	and reverse transcription (RT) of total mRNA was performed using a PrimeScript RT Reagent
93	kit (TaKaRa) according to the manufacturer's protocol. Complementary DNA (cDNA) was
94	amplified and quantified on ABI 7500HT system (Applied Biosystems, Foster City, CA, USA)
95	using SYBR Green I (Roche, Grenzach-Wyhlen, Germany). U6 or
96	glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were used as endogenous controls.
97	Relative fold expressions were calculated with the comparative threshold cycle $(2^{-\Delta\Delta Ct})$
98	method. The primer sequences showed in Table 1.
99	2.4. Western blotting

100	Forty-eight h after transfection, total protein was extracted from the Hep-2 cells using
101	RIPA cell lysis buffer containing proteinase and phosphatase inhibitors. The protein
102	concentration of cell lysates was quantified by BCA Kit. Equal quantities of protein was
103	separated by SDS-PAGE and transferred to polyvinylidene difluoride membranes (PVDF,
104	Millipore, Bedford, MA, USA). The membranes were blocked in 5% non-fat dry milk diluted
105	with Tris Buffered Saline Tween-20 (TBST) (in mmol/L: Tris-HCl 20, NaCl 150, PH 7.5, 0.1%
106	Tween 20) at room temperature for 1 h, and then probed with antibodies against p21, p27,
107	cyclin D1, FOXO1, pAKT, AKT, pPI3K, and PI3K (Cell Signaling Technology, Beverly,
108	MA, USA) at 4°C overnight. After extensive washing, the membranes were incubated with
109	secondary horseradish peroxidase-conjugated anti-mouse or anti-rabbit antibodies (diluted
110	1:2,000; Amersham Biosciences, UK). The immunoblots were visualized using an enhanced
111	chemiluminescence detection system (Amersham Pharmacia Biotech, Uppsala, Sweden).
112	2.5. MTT assay
113	Cell growth was measured by MTT assay, Hep-2 cells were seeded in 96-well plates at a
114	concentration of 10 ³ cells/well. The cells were then maintained at 37°C for 24, 48, and 72 h
115	after transfection. The cells were treated with 100 µl 3-[4,5-dimethylthiazol-2-yl]-
116	2,5-diphenyltetrazolium bromide (MTT; Sigma) for 4 h at 37°C, followed by removal of the
117	culture medium and the addition of 150 μ l DMSO. The absorbance at 570 nm was measured
118	in a Thermo Scientific Multiskan (Thermo Fisher Scientific, USA).
119	2.6. BrdU labelling

120	Cells grown on coverslips (Fisher, Pittsburgh, PA,USA) at 70% confluence were incubated
121	with bromodeoxyuridine (BrdU) for 1 h. Cells were then stained with anti-BrdU antibody
122	(Upstate, Temecula, CA, USA) according to the manufacturer's instructions. Gray level
123	images were acquired under a laser scanning microscope (Axioskop 2 plus, Carl Zeiss Co.
124	Ltd., Jena, Germany).
125	2.7. Tumor xenografts
126	Stable cell lines with high expressions of miR-132 were established by transfecting Hep-2
127	cells with a miR-132 mimics, followed by selection for 28 days to obtain stable cell lines. Up
128	to 1×10^7 cells were mixed with matrigel (BD) and injected into athymic nude mice (six weeks
129	old). The mice were monitored and the tumor size was measured daily, and tumor volumes
130	were calculated as width (mm) \times width (mm) \times length (mm) \times 0.5. The mice used in the
131	experiments were handled in accordance with the National Institute of Health Guide for the
132	Care and Use of Laboratory Animals. After 28 days, the mice were killed.
133	2.8. Luciferase reporter assay
134	Cells were plated in 100-mm cell culture dishes, proliferating to 60-80% confluence after
135	24 h of culture. The reporter constructs were transfected using Lipofectamine 2000 (Life
136	Technologies) according to the manufacturer's protocol. After 12 h incubation, the
137	transfection medium was replaced; cells were harvested and washed with PBS, and lysed with
138	passive lysis buffer (Promega). The cell lysates were analyzed immediately using a 96-well

139	plate luminometer (Berthold Detection System, Pforzheim, Germany). Luciferase and Renilla
140	luciferase were measured using a Dual-Luciferase Reporter Assay System (Promega)
141	according to the manufacturer's instructions. The luciferase activity of each lysate was
142	normalized to Renilla luciferase activity. The relative transcriptional activity was converted
143	into fold induction above the vehicle control value.
144	2.9. Statistical analysis
145	All statistical analyses were performed using SPSS 17.0 (SPSS, Inc., Chicago, IL, USA).
146	All data displayed as the mean \pm S.D Student's t test or one-way ANOVA were performed
147	to analyze the significance of differences between sample means obtained from three
148	independent experiments. $P < 0.05$ was considered statistically significant.
149	3. Results
150	3.1. Expression of miR-132 is upregulated in LSCC
150 151	3.1. Expression of miR-132 is upregulated in LSCC To analyze the expression of miR-132 in LSCC, qRT-PCR was employed to quantify the
	*6
151	To analyze the expression of miR-132 in LSCC, qRT-PCR was employed to quantify the
151 152	To analyze the expression of miR-132 in LSCC, qRT-PCR was employed to quantify the level of miR-132 in 10 pairs of LSCC tissues. As shown in Fig. 1A, miR-132 expression was
151 152 153	To analyze the expression of miR-132 in LSCC, qRT-PCR was employed to quantify the level of miR-132 in 10 pairs of LSCC tissues. As shown in Fig. 1A, miR-132 expression was significantly higher in cancer tissues compared with their paired paracarcinoma tissues. These
151 152 153 154	To analyze the expression of miR-132 in LSCC, qRT-PCR was employed to quantify the level of miR-132 in 10 pairs of LSCC tissues. As shown in Fig. 1A, miR-132 expression was significantly higher in cancer tissues compared with their paired paracarcinoma tissues. These results indicate that miR-132 expression is upregulated in human LSCC tissues. To determine
151 152 153 154 155	To analyze the expression of miR-132 in LSCC, qRT-PCR was employed to quantify the level of miR-132 in 10 pairs of LSCC tissues. As shown in Fig. 1A, miR-132 expression was significantly higher in cancer tissues compared with their paired paracarcinoma tissues. These results indicate that miR-132 expression is upregulated in human LSCC tissues. To determine the levels of miR-132 in LSCC cells, two LSCC cell lines (Hep-2 and AMC-HN-8) and a

159	indicate that upregulation of miR-132 may play an important role in LSCC development.
160	Hep-2 cells were used to study further. In addition, the results from real-time PCR analysis
161	showed that miR-132 displayed evident upregulation in miR-132 group compared to miR-NC
162	group. These results confirmed that we effectively overexpressed miR-132 expression in
163	Hep-2 cells (Fig. 1C).
164	3.2. MiR-132 upregulation promotes LSCC cell proliferation and modulated cell
165	cycle-related proteins
166	To evaluate the effect of miR-132 on cell proliferation of LSCC, the cells were transfected
167	with miR-132 mimics or miR-NC. The results showed that miR-132 upregulation strongly
168	raised the viabilities of Hep-2 cells (Fig. 2A). Additionally, we also observed that
169	overexpression of miR-132 enhanced cell proliferation, as assessed by the Brdu-ELISA assay
170	(Fig. 2B), showing a positive correlation with the MTT assays. Taken together, these findings
171	demonstrated that overexpression of miR-132 had a proliferation promotion effect on LSCC
172	cells.
173	As miR-132 evidently promoted cell proliferation of LSCC, we assumed that miR-132
174	could accelerate the cell cycle. To confirmed this hypothesis, we examined its functions
175	regarding the expression of genes which regulate the G1/S transition, including the
176	cyclin-dependent kinase (CDK) inhibitors p21 and p27, and the CDK regulator Cyclin D1.
177	Our results suggested that p21 and p27 were strikingly downregulated at both mRNA (Fig. 2C)
178	and protein (Fig. 2D) levels while cyclin D1 levels were markedly upregulated in

179	miR-132-overexpressing Hep-2 cells, compared to NC transfected cells. These results
180	provides further evidence that miR-132 plays an important role in LSCC cell proliferation.
181	Altogether, our results indicated that miR-132 functionally modulates cell cycle regulators,
182	p21, p27 and cyclin D1, thus making it relevant to cell proliferation and the cell cycle.
183	3.3. MiR-132 upregulation promotes LSCC tumorigenicity in vivo
184	To test whether miR-132 could enhance LSCC tumorigenesis, miR-132-overexpressing
185	and negative control cells were inoculated into nude mice. Tumors were measured daily in
186	two dimensions with calipers. The growth curve of tumor xenografts showed that the
187	over-expression of miR-132 significantly enhanced tumor growth compared with the negative
188	control (Fig. 2E). After 28 days, the mice were killed, and the tumors were removed. The
189	average weight of the tumors was measured, demonstrating that the high miR-132 markedly
190	increased the tumor weight compared to the negative control (Fig. 2F). These findings
191	indicated that the overexpression of miR-132 was able to promote LSCC growth.
192	3.4. FOXO1 is identified as a functional downstream target of miR-132
193	To investigate how miR-132 affects the development of LSCC, we searched for potential
194	regulatory targets of miR-132 using three prediction tools (miRanda, PicTar, and TargetScan),
195	and selected FOXO1 as a potential downstream target gene (Fig. 3A). To further examine the
196	effect of miR-143-3p on NFATc1 expression, we reexamined the effect of miR-132 on the
197	mRNA and protein expression of FOXO1. As shown in Fig. 3B and 3C, the upregulation of
198	miR-132 could significantly suppress both mRNA and protein level of FOXO1 expression

199	compared with the control group. Furthermore, we performed luciferase reporter assay to
200	further validate whether FOXO1 is a direct target of miR-132. The results showed that
201	miR-132 decreased luciferase activity with FOXO1 3'-UTR, but had no effect on luciferase
202	reporter with mutated miR-132- binding elements (Fig. 3D).
203	3.5. FOXO1 is involved in miR-132-induced cell proliferation of LSCC
204	As shown above, over-expression of miR-132 promoted proliferation of LSCC, to further
205	elucidate the function of FOXO1 in miR-132-mediated proliferation. We co-transfected
206	miR-132 mimics with FOXO1 over-expression vectors harboring no specific miR-132
207	binding sequences in the 3'-UTR. We also observed that the luciferase activity of the FOXO1
208	reporter was decreased in miR-132-overexpressing cells. The inhibitory effects of miR-132
209	could be abolished upon transfection with FOXO1 (Fig. 4A). In addition, the MTT assay
210	showed that the ectopic expression of FOXO1 effectively reversed the cell growth induced by
211	miR-132 overexpression (Fig. 4B). Thus, our results demonstrate that miR-132 was able to
212	enhance the proliferation of LSCC, at least in part, by the suppression of FOXO1.
213	3.6. MiR-132 activates the PI3K/AKT pathway in LSCC
214	FOXO1 transcription factor, a major PI3K-AKT downstream effector, regulates the
215	expression of genes that are critical for progress. Given that the expression of FOXO1 was
216	downregulated by miR-132 in LSCC. We hypothesized that miR-132 might modulate the
217	PI3K/AKT pathway by targeting FOXO1 downstream. As shown in Fig. 4C, miR-132
218	upregulation could activate AKT and PI3K activity, indicated by a decrease in phospho-AKT

and phospho-PI3K in Hep-2 cells. At the same time, the level of FOXO1 was decreased. These results demonstrated that miR-132 activates the PI3K/AKT pathway in LSCC. To further confirm whether overexpression of miR-132 promotes LSCC proliferation by activating PI3K/AKT signaling, the cells were treated with an AKT inhibitor (MK-2206) and a PI3K inhibitor (LY294002). The results demonstrated that LSCC cell proliferation was dramatically suppressed (Fig. 4D). Together, these findings demonstrated that overexpression of miR-132 augmented proliferation of Hep-2 cells through activating PI3K/Akt pathway.

4. Discussion

MiRNAs are naturally existing small non-coding RNAs which control the expression of a large number of genes by binding to specific sites in the target mRNA, resulting in mRNA cleavage/degradation or translational repression. Recent advances in the understanding of the molecular mechanism of laryngeal cancer have revealed that multiple miRNAs play an important role in laryngeal carcinogenesis. However, the underlying mechanism responsible for miR-132 in laryngeal carcinogenesis remains unknown. Thus, in the present study, our study revealed that the expressions of the miR-132 was markedly up-regulated in LSCC tissues and cell lines. Additionally, ectopic expression of miR-132 enhanced cell proliferation by blocking the G1/S-phase transition *in vitro*, and accelerated tumor growth. Collectively, these findings indicated that miR-132 may have an essential role in the tumorigenesis and progression of laryngeal cancer.

FOXO1 is a transcription factor for p27, p21, FasL, and Bim, which function as tumor
suppressors by blocking the G1/S transition and inducing apoptosis (Ho et al., 2008; Lam et
al., 2013). Despite mounting evidence of a tumor suppressive role for FOXO1, the
mechanism by which FOXO1 activity is regulated remains unclear. Recently, it has been
shown that FOXO1 activity is generally regulated by post-transcriptional modification rather
than genetic aberration (Haftmann et al., 2012; Mei et al., 2012). Other mechanisms reported
to be important for the regulation of FOXO1 are PI3K/AKT signaling and miRNA (Haftmann
et al., 2012; Xie et al., 2012). Among the miRNAs, miR-27a, miR-96, miR-182, and miR-183
suppressed FOXO1 expression in breast cancer, melanoma, and Hodgkin lymphoma
(Haftmann et al., 2012; Xie et al., 2012). However, the association between miR-132 and
FOXO1 expression has never been addressed. Thus, the identification of target genes may
elucidate miR-132 function and the molecular mechanisms by which it mediates LSCC
progression. Our study is the first to have identified FOXO1 as a genuine target of miR-132
by bioinformatics analysis, suggesting a crucial functional role of FOXO1 in larynx
carcinoma tumorigenesis.
A central transducer of growth and proliferative signaling, the PI3K/AKT signaling
pathway plays an essential role in maintaining tumor cell proliferation, and constitutive
activation of PI3K/AKT signaling is involved in the initiation and progression of various
human cancers, resulting in poor prognosis. It has been well documented that p21 (Tinkum et
al., 2013) and p27 (Cappellini et al., 2003) expression can be transcriptionally regulated by
FOXO1, and the transcriptional activity of FOXO1 is in turn modulated by AKT

259	phosphorylation (Hou et al., 2014). Several reports have demonstrated that PI3K/AKT
260	pathway alterations play an important role in the development of a variety of human
261	carcinomas. FOXO1 is key downstream factor for PI3K/Akt signaling and regulate many
262	biological processes. Therefore, we hypothesized that miR-132 might modulate the
263	PI3K/AKT pathway by targeting FOXO1 downstream. Our results revealed that miR-132
264	overexpression remarkably increased PI3K and Akt phosphorylation, and activates
265	PI3K/AKT signaling, while PI3K/AKT inhibitors suppressed the miR-132-induced
266	proliferation. In addition, we further demonstrated that miR-132 activated the PI3K/AKT
267	pathway by targeting FOXO1at the downstream level. These studies implicate miR-132 as an
268	oncogenic miR and indicate that miR-132 may have an important role in laryngeal cancer
269	development.
269270	development. In conclusion, for the first time, the present study demonstrates that miR-132 is upregulated
270	In conclusion, for the first time, the present study demonstrates that miR-132 is upregulated
270 271	In conclusion, for the first time, the present study demonstrates that miR-132 is upregulated in LSCC and over-expression of miR-132 promotes cell proliferation and tumor growth.
270271272	In conclusion, for the first time, the present study demonstrates that miR-132 is upregulated in LSCC and over-expression of miR-132 promotes cell proliferation and tumor growth. These findings also demonstrate a functional link between miR-132 and FOXO1 in LSCC,
270271272273	In conclusion, for the first time, the present study demonstrates that miR-132 is upregulated in LSCC and over-expression of miR-132 promotes cell proliferation and tumor growth. These findings also demonstrate a functional link between miR-132 and FOXO1 in LSCC, indicating that FOXO1 may be a novel direct target of miR-132. This study demonstrated that
270271272273274	In conclusion, for the first time, the present study demonstrates that miR-132 is upregulated in LSCC and over-expression of miR-132 promotes cell proliferation and tumor growth. These findings also demonstrate a functional link between miR-132 and FOXO1 in LSCC, indicating that FOXO1 may be a novel direct target of miR-132. This study demonstrated that miR-132 downregulated FOXO1 in both direct and indirect manners by binding the 3'-UTR
270271272273274275	In conclusion, for the first time, the present study demonstrates that miR-132 is upregulated in LSCC and over-expression of miR-132 promotes cell proliferation and tumor growth. These findings also demonstrate a functional link between miR-132 and FOXO1 in LSCC, indicating that FOXO1 may be a novel direct target of miR-132. This study demonstrated that miR-132 downregulated FOXO1 in both direct and indirect manners by binding the 3'-UTR of FOXO1 and by activating the PI3K/AKT pathway in LSCC. Based on all of the data, it

279	increase our knowledge of the molecular regulation of cancer progression and may allow the
280	development of new therapeutic strategies against larynx carcinoma.
281	Conflict of interest The authors have no conflict of interest.
282	Acknowledgements
283	This research was supported by the support program of youth backbone teacher of the college
284	of Henan province (No. 2010GGJS-120).
285	
286	References
287	Bartel, D.P., 2009. MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233.
288	Burgering, B.M., Medema, R.H., 2003. Decisions on life and death: FOXO Forkhead transcription
289	factors are in command when PKB/Akt is off duty. J Leukocyte Biol 73, 689-701.
290	Cappellini, A., Tabellini, G., Zweyer, M., Bortul, R., Tazzari, P., Billi, A., Fala, F., Cocco, L., Martelli,
291	A., 2003. The phosphoinositide 3-kinase/Akt pathway regulates cell cycle progression of HL60 human
292	leukemia cells through cytoplasmic relocalization of the cyclin-dependent kinase inhibitor p27Kip1 and
293	control of cyclin D1 expression. Leukemia 17, 2157-2167.
294	Carter, M.E., Brunet, A., 2007. FOXO transcription factors. Curr Biol 17, R113-R114.
295	Chen, K., Rajewsky, N., 2007. The evolution of gene regulation by transcription factors and
296	microRNAs. Nat Rev Genet 8, 93-103.
297	Cosetti, M., Yu, GP., Schantz, S.P., 2008. Five-year survival rates and time trends of laryngeal cancer
298	in the US population. Arch Otolaryngol 134, 370-379.

- Fu, Z., Tindall, D., 2008. FOXOs, cancer and regulation of apoptosis. Oncogene 27, 2312-2319.
- Haftmann, C., Stittrich, A.B., Sgouroudis, E., Matz, M., Chang, H.D., Radbruch, A., Mashreghi, M.F.,
- 301 2012. Lymphocyte signaling: regulation of FoxO transcription factors by microRNAs. Ann NY Acad
- 302 Sci 1247, 46-55.
- Ho, K., Myatt, S., Lam, E.W., 2008. Many forks in the path: cycling with FoxO. Oncogene 27,
- 304 2300-2311.
- Hou, T., Ou, J., Zhao, X., Huang, X., Huang, Y., Zhang, Y., 2014. MicroRNA-196a promotes cervical
- cancer proliferation through the regulation of FOXO1 and p27Kip1. Brit J Cancer 110, 1260-1268.
- Hunter, K.D., Parkinson, E.K., Harrison, P.R., 2005. Profiling early head and neck cancer. Nat Rev
- 308 Cancer 5, 127-135.
- JIA, T., LEI, W.-b., SU, Z.-z., ZHU, X.-l., WEN, W.-p., LIAO, B., 2009. Expression and Significance
- 310 of AKT/mTOR Signal Pathway in Laryngeal Cancer [J]. Journal of Sun Yat-Sen University (Medical
- 311 Sciences) 1, 010.
- Kalfert, D., Pesta, M., Kulda, V., Topolcan, O., Ryska, A., Celakovsky, P., Laco, J., Ludvikova, M.,
- 313 2015. MicroRNA Profile in Site-specific Head and Neck Squamous Cell Cancer. Anticancer Res 35,
- 314 2455-2463.
- Knowles, J.A., Golden, B., Yan, L., Carroll, W.R., Helman, E.E., Rosenthal, E.L., 2011. Disruption of
- the AKT pathway inhibits metastasis in an orthotopic model of head and neck squamous cell carcinoma.
- 317 Laryngoscope 121, 2359-2365.
- 318 Krol, J., Loedige, I., Filipowicz, W., 2010. The widespread regulation of microRNA biogenesis,
- 319 function and decay. Nat Rev Genet 11, 597.

320 Kuo, Y.-Y., Lin, H.-P., Huo, C., Su, L.-C., Yang, J., Hsiao, P.-H., Chiang, H.-C., Chung, C.-J., Wang, 321 H.-D., Chang, J.-Y., 2013. Caffeic acid phenethyl ester suppresses proliferation and survival of TW2. 6 322 human oral cancer cells via inhibition of Akt signaling. Int J Mol Sci 14, 8801-8817. 323 Lam, E.W.-F., Brosens, J.J., Gomes, A.R., Koo, C.-Y., 2013. Forkhead box proteins: tuning forks for 324 transcriptional harmony. Nat Rev Cancer 13, 482-495. 325 Mei, Y., Wang, Z., Zhang, L., Zhang, Y., Li, X., Liu, H., Ye, J., You, H., 2012. Regulation of 326 neuroblastoma differentiation by forkhead transcription factors FOXO1/3/4 through the receptor 327 tyrosine kinase PDGFRA. P Natl Acad Sci 109, 4898-4903. 328 Pedrero, J.M.G., Carracedo, D.G., Pinto, C.M., Zapatero, A.H., Rodrigo, J.P., Nieto, C.S., Gonzalez, 329 M.V., 2005. Frequent genetic and biochemical alterations of the PI 3 - K/AKT/PTEN pathway in head 330 and neck squamous cell carcinoma. Int J Cancer 114, 242-248. 331 Siegel, R., Naishadham, D., Jemal, A., 2013. Cancer statistics, 2013. CA-Cancer J Clin 63, 11-30. 332 Tinkum, K.L., White, L.S., Marpegan, L., Herzog, E., Piwnica-Worms, D., Piwnica-Worms, H., 2013. Forkhead box O1 (FOXO1) protein, but not p53, contributes to robust induction of p21 expression in 333 334 fasted mice. J Biol Chem 288, 27999-28008. Xie, L., Ushmorov, A., Leithäuser, F., Guan, H., Steidl, C., Färbinger, J., Pelzer, C., Vogel, M.J., Maier, 335 336 H.J., Gascoyne, R.D., 2012. FOXO1 is a tumor suppressor in classical Hodgkin lymphoma. Blood 119, 337 3503-3511. 338 Zhao, X., Gan, L., Pan, H., Kan, D., Majeski, M., Adam, S., Unterman, T., 2004. Multiple elements 339 regulate nuclear/cytoplasmic shuttling of FOXO1: characterization of phosphorylation-and

14-3-3-dependent and-independent mechanisms. Biochem. J 378, 839-849.

2	1	1	
J	4	_	

342

343

360

experiments. *P<0.05 vs. miR-NC.

Figure legends

344 Fig. 1 Identification the overexpression of miR-132 in LSCC tissues and cell lines. (A) The 345 expression level of miR-132 was measured in 10 pairs of LSCC tissues and adjacent normal 346 tissues by qRT-PCR. T: LSCC tissues; N: adjacent normal tissues. (B) The expression of miR-132 was detected by using qRT-PCR in Hep-2, AMC-HN-8 and HaCaT cells. (C) The 347 mRNA levels of miR-132 in Hep-2 cells transfected with miR-132 mimic or its negative 348 349 control (miR-NC) by real-time PCR. All data are presented as mean \pm SD. #P<0.05 vs. 350 HaCaT; *P<0.05 vs. miR-NC. Fig. 2 miR-132 upregulation promotes LSCC cell proliferation and modulated cell 351 352 cycle-related proteins. (A) MTT assays revealed that upregulation of miR-132 promotes the 353 growth of Hep-2 cells. (B) Cell proliferation was determined by using BrdU-ELISA assay. (C) The mRNA levels and (D) the protein expressions of p21, p27 and cyclin D1 were determined 354 355 by real-time PCR and Western Blot, respectively. α-Tubulin was used to serve as the loading control. All data are presented as mean \pm SD. *P<0.05 vs. miR-NC. Overexpression of 356 miR-132 promoted LSCC tumorigenicity in vivo. (E) Growth curves for tumor formation 357 358 after the implantation of Hep-2 cells. Mean tumor volumes are plotted. (F) Histograms of the 359 mean tumor weights of each group. Bars represent the mean ± SD of three independent

361 Fig. 3 MiR-132 regulates the expression of FOXO1. (A) Predicted miR-132 target sequences in the 3'-UTRs of FOXO1. (B) The mRNA expression of FOXO1 was detected using 362 363 qRT-PCR. (C) Results of the Western blot analysis of FOXO1 expression after treatment with the miR-132 mimic. The expression of FOXO1 in Hep-2 cells was lower in the miR-132 364 upregulation group compared with the control group. (D) Luciferase reporter assay of the 365 366 indicated cells transfected with the pGL3-FOXO1-3'-UTR reporter or pGL3-FOXO1-3'-UTR-Mut reporter and miR-132 mimic or negative control. *P<0.05 vs. 367 miR-NC. 368 Fig. 4 FOXO1 mediates miR-132-induced cell proliferation of LSCC. (A) Relative FOXO1 369 reporter activities in the indicated cell lines. (B) MTT assay of Hep-2 cells transfected with 370 either scramble, miR-132 mimic, miR-132 and FOXO1. *P<0.05 vs. negative control. 371 MiR-132 regulates the PI3K/AKT/FOXO1 pathway and involved in proliferation of LSCC. 372 (C) Western blot analysis was performed for pPI3K, PI3K, pAkt, Akt, and FOXO1 373 respectively. (**D**) miR-132-induced proliferation was abrogated by AKT inhibitor (MK-2206) 374 and PI3K inhibitor (LY294002) in LSCC cells as detected by MTT assay. *P<0.05 vs. 375 miR-NC, #*P*<0.05 vs. miR-132 mimic. 376

377

Table 1 Primer sequence for target genes

Gene	Sequence (5'- 3')
FOXO1	ACATTTCGTCCTCGAACCAGCTCA

ATTTCAGACAGACTGGGCAGCGTA

CGATGCCAACCTCCTCAACGA

p21

TCGCAGACCTCCAGCATCCA

TGCAACCGACGATTCTTCTACTCAA

p27

CAAGCAGTGATGTATCTGATAAACAAGGA

AACTACCTGGACCGCTTCCT

cyclin D1

CCACTTGAGCTTGTTCACCA

GACTCATGACCACAGTCCATGC

AGAGGCAGGGATGATGTTCTG

379

GAPDH

380

381

