Inverse Properties

It has already been show that inverses are unique.

Theorem

Let G be a group with identity element e.

$$e^{-1} = e$$

Proof

$$ee = e$$

But inverses are unique,

$$\therefore e^{-1} = e$$

Theorem

Let G be a group with identity element e.

$$\forall a, b \in G, (ab)^{-1} = b^{-1}a^{-1}$$

Proof

Assume $a, b \in G$

$$a^{-1},b^{-1}\in G$$

$$ab \text{ and } b^{-1}a^{-1} \in G$$

$$(ab)(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = aea^{-1} = aa^{-1} = e$$

But inverses are unique,

$$\therefore (ab)^{-1} = b^{-1}a^{-1}$$

Theorem

Let G be a group with identity element e.

$$\forall a \in G, \left(a^{-1}\right)^{-1} = a$$

<u>Proof</u>

Assume $a \in G$

Assume
$$a \in G$$

$$a^{-1} \text{ and } (a^{-1})^{-1} \in G$$

$$a^{-1} (a^{-1})^{-1} = (a^{-1}a)^{-1} = e^{-1} = e$$

But inverses are unique,

$$\therefore (a^{-1})^{-1} = a$$

Theorem

Let G,H be groups and let $\phi:G\to H$ be an isomorphism.

$$\forall a \in G, \phi(a^{-1}) = \phi(a)^{-1}$$

<u>Proof</u>

Assume
$$a \in G$$

$$a^{-1} \in G$$

$$\phi(aa^{-1}) = \phi(a)\phi(a^{-1})$$
$$\phi(aa^{-1}) = \phi(e)$$

$$\phi(aa^{-1}) = \phi(e)$$

$$\phi(a)\phi(a^{-1}) = \phi(e)$$

But $\phi(e)$ is an identity for H and inverses are unique, $\therefore \phi(a^{-1}) = \phi(a)^{-1}$

$$\therefore \phi(a^{-1}) = \phi(a)^{-1}$$