딥러닝 프레임워크: PyTorch

이건명 충북대학교 대학원 산업인공지능학과

학습 내용

● PyTorch 기본 이론에 대해서 알아본다.

● PyTorch를 이용한 딥러닝 프로그래밍 사례에 대해서 살펴본다.

1. PyTorch

PyTorch

■ Python으로 기존 딥러닝 프레임워크 Torch를 구현한 것

	Comparison Factors	Pass	Fail
1.	Features	TensorFlow	PyTorch
2.	Community	TensorFlow	PyTorch
3.	Level of API	TensorFlow	PyTorch
4.	Speed	PyTorch	TensorFlow
5.	Popularity	TensorFlow	PyTorch
6.	Ramp-Up Time	PyTorch	TensorFlow
7.	Coverage	TensorFlow	PyTorch
8.	Deployment	TensorFlow	PyTorch
9.	Serialization	TensorFlow	PyTorch
10.	Graph constructing and Debugging	PyTorch	TensorFlow
11.	Visualization	TensorFlow	PyTorch
12.	Architecture	PyTorch	TensorFlow
13.	Dataset	TensorFlow	PyTorch
14.	Documentation	PyTorch, TensorFlow	
15.	Device Management	TensorFlow	PyTorch
16.	Custom Extension	PyTorch	TensorFlow

2. PyTorch 설치

❖ PyTorch 설치

https://pytorch.org/get-started/locally/

❖ 텐서(Tensor)

- 벡터와 행렬의 개념을 확장한 것
- 다차원 배열(multidimensional array)

1 import torch	1 import numpy as np 2	1 ft.sum(axis=1)	
2 3 x = torch.FloatTensor([4	2 3 t = np.array([[[0, 1, 2], 4	tensor([[3., 5., 7.],	
7 [7, 8] 8])	8 [15, 16, 17]], 9 [[18, 19, 20],	1 ft.sum(axis=2)	
0 1)	10 [21, 22, 23]] 11])	tensor([[3., 12.], [21., 30.],	
1 x.size()	12 ft = torch.FloatTensor(t)	[39., 48.], [57., 66.]])	
torch.Size([4, 2])	1 ft.shape	1 ft.sum(axis=-1)	
1 x.shape	torch.Size([4, 2, 3])	tensor([[3., 12.],	
torch.Size([4, 2])	1 ft[0]	[21., 30.], [39., 48.], [57., 66.]])	
	tensor([[0., 1., 2.], [3., 4., 5.]])		
1 x.shape[0]	[0., 4., 6.]])	1 ft.view([-1,3]) # 크기가 (?,3)이 되도록 재배치 (res	
4	1 ft[1]	tensor([[0., 1., 2.],	
1 x.dim()	tensor([[6., 7., 8.], [9., 10., 11.]])	[6., 7., 8.], [9., 10., 11.], [12., 13., 14.], [15., 16., 17.], [18., 19., 20.], [21., 22., 23.]])	
2	1 ft[0][0]		
the surfacts O	tensor([0., 1., 2.])		
1 x.sum(axis=0)	1 ft[2][1]		
tensor([16., 20.])		tensor([[[0., 1.],	
	tensor([15., 16., 17.])		
1 x.sum(axis=1)	1 ft[1][0][2]		
tensor([3., 7., 11., 15.])	tensor(8.)		
1 x.sum(axis=-1)	1 ft.sum(axis=0) # 해당 axis가 없어지도록 연산	*******	
tensor([3., 7., 11., 15.])	tensor([[36., 40., 44.], [48., 52., 56.]])	[18., 19.], [20., 21.], [22., 23.]]])	

```
1 \times = \text{np.array}([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
         17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31])
 3 tx = torch.FloatTensor(x)
 1 ty = tx.view([4,2,4])
                                                                                           1 v = u.saueeze(-1)
 1 ty
tensor([[[ 0., 1., 2., 3.],
                                                                                          1 v
        [ 4., 5., 6., 7.]],
                                                                                         tensor([0., 1., 2.])
       [[8., 9., 10., 11.],
       [12., 13., 14., 15.]],
       [[16., 17., 18., 19.],
                                                                                          1 x = torch.FloatTensor([1, 4])
        [20., 21., 22., 23.]],
                                                                                          2 y = torch.FloatTensor([2, 5])
       [[24., 25., 26., 27.],
                                                                                          3z = torch.FloatTensor([3, 6])
        [28., 29., 30., 31.]]])
 1 t = torch.Tensor([0, 1, 2])
                                                                                          1 s1 = torch.stack([x, v, z])
 1 t.shape
                                                                                          1 s1
torch.Size([3])
                                                                                         tensor([[1., 4.],
 1 s = t.unsqueeze(0) # 0은 첫번째 차원에 차원 추가
                                                                                                  [2., 5.],
                                                                                                  [3., 6.]])
 1 s.shape
torch.Size([1, 3])
                                                                                          1 s2 = torch.stack([x, y, z], dim=1)
 1 u = s.view([3,1])
                                                                                          1 s2
 1 u
                                                                                         tensor([[1., 2., 3.],
tensor([[0.],
                                                                                                  [4., 5., 6.]])
       [1.],
       [2.]])
```

Tensor

- NumPy의 (n차원) 배열 ndarray 객체와 유사하지만 GPU등 HW가속기에서 실행 할 수 있는 자료구조
- Python list는 object 포인터들을 모아놓은 집합
 - 메모리 할당에 있어 비효율적이고, 느림
- numpy array와 tensor는 메모리상 인접한 곳에 공간이 할당

Numpy

- Array 및 Tensor들과 관련된 연산을 편리하게 하기 위한 라이브러리
- np.array(object, dtype=None)
 - numpy ndarray (numpy array)를 만드는 함수
 - object : 값을 가져올 python array
 - dtype : 각 원소의 자료형(data type) (int, float, bool 등)
 입력하지 않을 시 objec에 맞춰서 자동으로 결정

```
a = np.array([1, 2, 3, 4, 5])
b = np.array([[1, 2], [3, 4]], dtype=float)
c = np.array([1, 0, 0, 1], dtype=bool)

[1 2 3 4 5]
[[1. 2.]
[3. 4.]]
[ True False False True]
```

shape

■ Numpy array 또는 tensor의 모양(shape)을 나타내는 속성(property)

```
a = np.array([1, 2, 3, 4, 5])
b = np.array([[1, 2], [3, 4]], dtype=float)
c = np.array([1, 0, 0, 1], dtype=bool)
print(a.shape)
print(b.shape)
print(c.shape)
(5,)
(2, 2)
                      x = torch.FloatTensor([
(4,)
                          [1, 2], [3, 4], [5, 6], [7, 8]
                      1)
                      print(x.shape)
                     print(x.shape[0]
                      torch.Size([4, 2])
```

- ❖ 주어진 형태(shape)의 numpy array 생성 함수
 - np.zeros(shape, dtype=None)
 - np.ones(shape, dtype=None)
 - np.full(shape, fill_value, dtype=None)

```
zeros = np.zeros([3, 3])
ones = np.ones([3, 3])
twos = np.full([3, 3], 2)

print(zeros, zeros.shape)
print(ones, ones.shape)
print(twos, twos.shape)
```

```
[[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]]
[0. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]]
[2 2 2]
[2 2 2]
[2 2 2]
[2 2 2]]
[3, 3)
```

❖ Numpy 배열로부터 tensor 생성 (Numpy Array ⇒ tensor)

❖ tensor를 Numpy 배열로 변환하기 (tensor ⇒ Numpy Array)

```
t = torch.ones(5)
n = t.numpy()
print(n)
[1. 1. 1. 1. 1.]
```

❖ 다른 tensor로부터 tensor 생성하기 (tensor ⇒ tensor)

```
x_ones = torch.ones_like(x_data) # x_data의 속성 유지
x rand = torch.rand like(x data, dtype=torch.float)
                                 # x data의 속성 변경
print(x ones)
print(x rand)
tensor([[1, 1],
        [1, 1]]
tensor([[0.7839, 0.3701],
        [0.8131, 0.3344]])
shape = (2,3,)
rand tensor = torch.rand(shape)
                                    tensor([[0.8398, 0.8787, 0.4099],
ones tensor = torch.ones(shape)
                                            [0.6517, 0.2316, 0.1294]])
zeros tensor = torch.zeros(shape)
                                   tensor([[1., 1., 1.],
                                           [1., 1., 1.]
                                    tensor([[0., 0., 0.],
print(rand tensor)
                                            [0., 0., 0.11)
print(ones tensor)
print(zeros tensor)
```

❖ Array 연산

- 기본적으로 같은 크기의 array 간의 사칙연산 및 비교연산 가능
- 같은 위치의 성분간의 연산(element-wise operations)

```
[1. 1. 1.]
zeros = np.zeros([3, 3])
                                          [1. 1. 1.]
ones = np.ones([3, 3])
                                           [1. 1. 1.]
twos = np.full([3, 3], 2)
                                          [[0.5 0.5 0.5]
                                          [0.5 0.5 0.5]
print(zeros + ones)
                                          [0.5 \ 0.5 \ 0.5]]
print(ones / twos)
                                         [[2. 2. 2.]
print(zeros + ones * twos)
                                          [2. 2. 2.]
                                           [2. 2. 2.1]
                                          [ True True True]
print(zeros == [[0, 0, 0], [0, 0, 0],
                                          [ True True True]
 [0, 0, 0]])
                                           [ True True True]]
print(zeros > ones)
                                          [[False False False]
                                           [False False False]
                                           [False False False]]
```

Broadcasting

■ shape이 다른 연산 지원을 위한 복사를 통해 shape 일치


```
1 from PIL import Image
2 import requests
3 from io import BytesIO
4 from matplotlib.pyplot import imshow
5
6 url = 'https://i.imgur.com/BBcy6Wc.jpg'
7 response = requests.get(url)
8 img = Image.open(BytesIO(response.content))
9 a = np.asarray(img)
10 print('a.shape : ', a.shape)
11 imshow(a)
```

```
1 b = [64, 64, 64]
2 print('(a+b).shape : ', (a+b).shape)
3 imshow(a+b)
```

PIL (Python Image Manipulation Library, Python Imaging Library)

(a+b).shape: (750, 722, 3) <matplotlib.image.AxesImage at 0x7f725302f790>

400

600

200

- ❖ Array indexing과 slicing
 - index는 0에서 시작
 - -1 맨 끝 원소
 - n:m n번째 원소부터 m-1번째 원소까지
 - : 해당 차원에 있는 원소 전부

❖ Tensor indexing과 slicing

```
tensor = torch.ones(4, 4)
print(tensor[0])
print(tensor[:, 0])
print(tensor[..., -1])
tensor[:,1] = 0
print(tensor)
tensor([1., 1., 1., 1.])
tensor([1., 1., 1., 1.])
tensor([1., 1., 1., 1.])
tensor([[1., 0., 1., 1.],
        [1., 0., 1., 1.],
        [1., 0., 1., 1.],
        [1., 0., 1., 1.]]
```

- np.sum()/torch.sum()
 - 특정 축(axis)을 따라 모든 원소를 더함
 - np.sum(a, axis=None, keepdims=False)
 - a:대상 array
 - axis: element를 따라 더할 축의 index
 - keepdims : True일 경우 해당 축에 1차원 벡터로 남음. False일 경우 해당 축에 (0차원) element로 남음.

```
a = np.array([[1, 2, 3], [3, 5, 7]])
print(np.sum(a))
print(np.sum(a, axis=0, keepdims=True))
print(np.sum(a, axis=1, keepdims=True))
print(np.sum(a, axis=1, keepdims=False))
[[ 4 7 10]]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
[[ 6]
```


np.sum()/torch.sum() 지정된 축(axis)을 따라 모든 원소를 더함

- np.mean, np.std, np.var
 - 평균, 표준편차, 분산 계산
 - np.mean(a, axis=None, keepdims=False)
 - np.std(a, axis=None, keepdims=False)
 - np.var(a, axis=None, keepdims=False)

reshape / ravel


```
1 4 7 10

2 5 8 11 a1.reshape(3, -1, order='F')

.ravel(order='F') # back to 1D
```

* torch_view()

```
tensor([[[ 0., 1., 2.],
 [ 3., 4., 5.1],
 [[ 6., 7., 8.],
 [ 9., 10., 11.]],
 [12., 13., 14.],
 [15., 16., 17.]],
 [[18., 19., 20.],
 [21., 22., 23.]]])
tensor([[ 0., 1., 2.],
[ 3., 4., 5.],
 [ 6., 7., 8.],
 [ 9., 10., 11.],
 [12., 13., 14.],
 [15., 16., 17.],
 [18., 19., 20.],
 [21., 22., 23.]])
```

torch.view() - cont.

```
tensor([[ 0., 1.],
print (ft.view([-1,4,2]))
                                [ 2., 3.],
                                [ 4., 5.],
print(ft.view([4,-1]))
                                [ 6., 7.11,
                               [[ 8., 9.],
                                [10., 11.],
                                [12., 13.],
                                [14., 15.]],
tensor([[ 0., 1., 2.],
                               [[16., 17.],
 [ 3., 4., 5.]],
 [[ 6., 7., 8.],
                              [18., 19.],
                                [20., 21.],
  [ 9., 10., 11.]],
                                [22., 23.]]])
 [[12., 13., 14.],
 [15., 16., 17.]],
                              tensor([[ 0., 1., 2., 3., 4., 5.],
 [[18., 19., 20.],
                               [ 6., 7., 8., 9., 10., 11.],
  [21., 22., 23.]])
                               [12., 13., 14., 15., 16., 17.],
                               [18., 19., 20., 21., 22., 23.]])
```

- stack()
 - 새로운 축(axis)을 만든 뒤 array들을 해당 축 방향으로 쌓음
 - np.stack(arrays, axis=0)

stack() - cont.

flatten and reshape

ravel()

- np.concatenate
 - array들을 기존의 주어진 축 방향으로 연결
 - array들의 shape는 연결할 축을 제외하고 동일해야 함
 - np.concatenate(arrays, axis=0)

```
a = np.array([[1, 2], [3, 4]])
b = np.array([[5, 6]])
print(np.concatenate((a,b), axis=0))

c = np.array([[7, 8, 9], [10, 11, 12]])
print(np.concatenate((a, c), axis=1))

[[1 2]
      [3 4]
      [5 6]]

[[ 1 2 7 8 9]
      [ 3 4 10 11 12]]
```

torch.cat()

❖ Tensor의 sequeeze와 unsqueeze

- sequeeze : 차원(dimension)의 추가
- unsequeeze: 크기가 1인 차원의 삭제

2d tensor

3d tensor

[3, 4]

https://bit.ly/3CgkVWK

```
tensor ex = torch.rand(size=(2, 1, 2))
tensor ex.squeeze()
# tensor([[0.8510, 0.8263],
# [0.7602, 0.1309]])
tensor ex = torch.rand(size=(2, 2))
tensor ex.unsqueeze(0).shape
# torch.Size([1, 2, 2])
tensor ex.unsqueeze(1).shape
# torch.Size([2, 1, 2])
tensor ex.unsqueeze(2).shape
# torch.Size([2, 2, 1])
```

- np.random.random(size)
 - 0에서 1사이의 무작위 값들로 size 크기의 array 생성
- np.random.randint(low, high=None)
 - high가 None일 때: 0 이상 low 이하의 무작위 정수인, size 크기의 array 생성
 - high가 주어졌을 때: low 이상 high 이하의 무작위 정수인, size 크기의 array 생성
- np.random.normal(loc=0.0, scale=1.0)
 - 평균이 loc이고 표준편차가 scale인 정규분포에서 추출된, size 크기의 array 생성

- np.max, np.min
 - 최대, 최소값 반환
- np.argmax, np.argmin
 - 최대, 최소로 만드는 index(들) 반환
- np.where
 - 특정 조건을 만족하는 곳에서 x의 값을, 아닌 곳에서 y의 값을 가지는 array 반환
- np.argwhere
 - 특정 조건을 만족하는 index(들) 반환
- ❖ np.take
 - array에서 해당 index들을 뽑아 만든 array 반환
- ❖ np.sort
 - array를 주어진 기준에 대하여 정렬

- np.transpose / np.ndarray.T
 - 해당 array의 transpose
- np.expand_dims
 - 해당 array에 축 추가
- np.squeeze
 - 차원 크기가 1인 축 제거
- np.exp, np.log, np.sqrt, np.sin, np.cos, np.tan, ...
 - element-wise 함수들
- ❖ np.matmul
 - 행렬 곱

Numpy array vs tensor

[실습] PyTorch의 텐서

import numpy as np

```
Import torch
A = torch.tensor([[1., -1.], [1., -1.]])
print('A = ', A)
B = torch.tensor(np.array([[1, 2, 3], [4, 5, 6]]))
print('B = ', B)
C = torch.rand(3,3)
print('C = ', C)
D = C.numpy()
print('D = ', D)
E = B.view(1,1,2,3)
print('E = ', E)
print('sum of A = ', A.sum())
print('mean of A = ', A.mean())
```

```
A = tensor([[1., -1.],
     [ 1., -1.]])
B = tensor([[1, 2, 3],
      [4, 5, 6]], dtype=torch.int32)
C = tensor([0.4306, 0.4923, 0.6163],
      [0.8168, 0.6739, 0.3506],
      [0.0116, 0.2050, 0.6086]])
D = [[0.43059546 \ 0.49226767]]
0.6162876 1
 [0.8168291 0.6738524 0.3505581 ]
[0.01155788 0.20499885 0.60861003]]
E = tensor([[[1, 2, 3],
       [4, 5, 6]]]], dtype=torch.int32)
sum of A = tensor(0.)
mean of A = tensor(0.)
```

- ❖ PyTorch 기초 cont.
 - torch_LongTensor()
 - LongTensor로 변환
 - TensorDataSet(X, Y)
 - 배열 쌍을 대응되는 원소끼리 결합하여 하나의 데이터 집합 생성
 - 예. (입력 데이터, 출력 레이블)

- ❖ PyTorch 기초 cont.
 - TensorLoader(tensorDataset, batch_size=64, shuffle=True)
 - TensorDataSet 객체를 학습 및 추론에 사용하기 편리한 객체로 변환
 - 배치 단위로 데이터 제공
 - batch_size : 신경망 가중치를 한번 수정할 때 사용하는 데이터 개수
 - suffle: 데이터 순서를 무작위로 섞을지 여부

PyTorch 기초

❖ 계산 그래프(Computation graph)

■ 연산 과정을 data flow로 나타낸 그래프 구조

forward()

backward()

PyTorch 기초

- ❖ 계산 그래프(Computation graph) cont.
 - gradient 계산
 - Computation graph를 이용한 chain rule 적용

autograd (automatic gradient)

PyTorch 기초

Variable

- autograd.Variable 클래스의 객체
- Tensor를 감싸고(wrap) 있으며, Tensor 기반으로 정의된 거의 대부분의 연산 지원
- 계산이 완료된 후 .backward() 를 호출하여 모든 gradient를 계산
- .data 속성: tensor 자체(raw tensor)에 접근 가능
- .grad 속성: 이 변수와 관련된 gradient 누적
- .grad_fn: Variable을 생성한 Function 을 참조

[실습] PyTorch의 텐서

```
import torch
from torch.autograd import Variable
x = Variable(torch.tensor([[2.]]), requires grad = True)
print('x = ', x)
                                                            x = tensor([[2.]], requires_grad=True)
print('x.data = ', x.data)
                                                            x.data = tensor([[2.]])
print('x.grad = ', x.grad)
                                                            x.grad = None
print('x.grad_fn() = ', x.grad_fn)
                                                            x.grad fn() = None
y = x * x * 3
                                                           y = tensor([[12.]], grad_fn=<MulBackward0>)
print('\forallny = ', y)
                                                           y.data = tensor([[12.]])
print('y.data = ', y.data)
                                                           y.grad = None
print('y.grad = ', y.grad)
                                                           y.grad_fn() = <MulBackward0 object at 0x0000022A669C3508>
print('y.grad_fn() = ', y.grad_fn)
                                                            z = tensor([[144.]], grad_fn = < PowBackward0 >)
z = y^{**}2
                                                            z.data = tensor([[144.]])
print(' \forall nz = ', z)
                                                            z.grad = None
print('z.data = ', z.data)
print('z.grad = ', z.grad)
                                                            After invocation of backward()
z.backward( )
                                                           x = tensor([[2.]], requires_grad=True)
print('₩nAfter invocation of backward()')
                                                           x.data = tensor([[2.]])
print(' \forall nx = ', x)
                                                           x.grad = tensor([[288.]])
print('x.data = ', x.data)
                                                            x.grad fn() = None
print('x.grad = ', x.grad)
print('x.grad_fn() = ', x.grad_fn)
                                                           y = tensor([[12.]], grad_fn=<MulBackward0>)
print(' \forall ny = ', y)
                                                           y.data = tensor([[12.]])
                                                           y.grad = None
print('y.data = ', y.data)
                                                           y.grad fn() = <MulBackward0 object at 0x0000022A669BB188>
print('y.grad = ', y.grad)
print('y.grad_fn( ) = ', y.grad_fn)
                                                            z = tensor([[144.]], grad_fn = < PowBackward0 >)
print('\forallnz = ', z)
                                                            z.data = tensor([[144.]])
print('z.data = ', z.data)
                                                            z.grad = None
print('z.grad = ', z.grad)
```

PyTorch

- ❖ PyTorch 기초 cont.
 - model.train()
 - 신경망 모델을 **학습 모드**로 전환
 - model.eval()
 - 신경망 모델을 추론 모델로 전환
 - optimizer.zero_grad()
 - 역전파 오차(그레디언트) 계산의 초기화
 - with.torch.no_grad()
 - 추론 과정에서는 그레디언트 계산 불필요
- ❖ Anaconda에 설치된 패키지와 윈도우 설치 패키지 충돌시
 - Anaconda 환경에서 재설치

[실습] PyTorch의 MLP 프로그래밍

#-*- coding: utf-8 -*-

```
from sklearn.datasets import fetch_openml
                                                                          10
mnist = fetch_openml('mnist_784', version=1, cache=True)
                                                                          15
X = mnist.data/255
                                                                          20
y = mnist.target
                                                                         25
import matplotlib.pyplot as plt
plt.imshow(X[0].reshape(28,28), cmap='gray')
plt.show()
print("이미지 레이블 : { }".format(y[0]))
import torch
from torch.utils.data import TensorDataset, DataLoader
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=1/7, random_state=0)
X_train = torch.Tensor(X_train)
X_{test} = torch.Tensor(X_{test})
y_train = torch.LongTensor(list(map(int, y_train)))
y_test = torch.LongTensor(list(map(int, y_test)))
ds_train = TensorDataset(X_train, y_train)
ds test = TensorDataset(X test, y test)
loader train = DataLoader(ds train, batch size=64, shuffle=True)
loader test = DataLoader(ds test, batch size=64, shuffle=False)
```



```
from torch import nn
model = nn.Sequential()
model.add_module('fc1', nn.Linear(28*28*1, 100)) # 모델 구성
model.add module('relu1', nn.ReLU())
model.add module('fc2', nn.Linear(100,100))
model.add module('relu2', nn.ReLU())
model.add module('fc3', nn.Linear(100,10))
from torch import optim
loss_fn = nn.CrossEntropyLoss() # 손실 함수
optimizer = optim.Adam(model.parameters(), Ir=0.01)
def train(epoch):
   model.train() # 학습 모드로 변환
  for data, targets in loader_train:
     optimizer.zero_grad( ) # 그레디언트 초기화
     outputs = model(data)
     loss = loss_fn(outputs, targets)
     loss.backward()
     optimizer.step()
   print('에포크 {}: 완료'.format(epoch))
def test(head):
   model.eval() # 테스트 모드로 변환
  correct = 0
  with torch.no grad():
     for data, targets in loader test:
        outputs = model(data)
        _, predicted = torch.max(outputs.data, 1)
        correct += predicted.eq(targets.data.view_as(predicted)).sum()
   data num = len(loader test.dataset)
   print('{ } 정확도: { }/{ }({:.0f}%)'.format(head, correct, data num, 100.*correct/data num))
```

```
test('시작')
for epoch in range(3):
  train(epoch)
  test('학습중')
test('학습 후')
index = 10 # 테스트 데이터 중에서 확인해볼 데이터의 인덱스
model.eval() # 모델 테스트 모드로 전환
data = X test[index]
output = model(data) # 모델 적용
print('{ } 번째 학습데이터의 테스트 결과 : { }'.format(index,output))
_, predicted = torch.max(output.data, 0)
print('{ }번째 데이터의 예측 : { }'.format(index, predicted))
X \text{ test show} = (X \text{ test[index]}).numpy()
plt.imshow(X_test_show.reshape(28,28), cmap='gray')
print( ' 실제 레이블: { }'.format(y_test[index]))
```



```
시작 정확도: 796/10000(8%)
에포크 0: 완료
학습중 정확도: 9429/10000(94%)
에포크 1: 완료
학습중 정확도: 9514/10000(95%)
에포크 2: 완료
학습중 정확도: 9589/10000(96%)
학습 후 정확도: 9589/10000(96%)
10 번째 학습데이터의 테스트 결과: tensor([-18.3571, 22.7998, -12.3894, -21.2029, -4.9429, -20.4559, -11.2541, 6.2497, -1.3856, -11.9634], grad_fn=<AddBackward0>)
10번째 데이터의 예측: 1
실제 레이블: 1
```

[실습] Spyder에서 PyTorch 실행

[실습] Colab에서 PyTorch 실행

```
[ ] 1 #-*- coding: utf-8 -*-
[ ] 1 from sklearn.datasets import fetch_openml
     2 mnist = fetch_openml('mnist_784', version=1, cache=True)
     3 X = mnist.data/255.0
     4 y = mnist.target
[ ] 1 import matplotlib.pyplot as plt
     2 plt.imshow(X[0].reshape(28,28), cmap='gray')
     3 plt.show()
     4 print('이미지 레이블 : {}'.format(y[0]))
[÷
```



```
[] 1 import torch
2 from torch.utils.data import TensorDataset, DataLoader
3 from sklearn.model_selection import train_test_split
4 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1/7., random_state=0)
5 X_train = torch.Tensor(X_train)
6 X_test = torch.Tensor(X_test)
7 y_train = torch.LongTensor(list(map(int, y_train)))
8 y_test = torch.LongTensor(list(map(int, y_test)))
9 ds_train = TensorDataset(X_train, y_train)
10 ds_test = TensorDataset(X_test, y_test)
11 loader_train = DataLoader(ds_train, batch_size=64, shuffle=True)
12 loader_test = DataLoader(ds_test, batch_size=64, shuffle=False)
```

```
[7] 1 from torch import nn
2 model = nn.Sequential()
3 model.add_module('fc1', nn.Linear(28*28*1, 100))
4 model.add_module('relu1', nn.ReLU())
5 model.add_module('fc2', nn.Linear(100,100))
6 model.add_module('relu2', nn.ReLU())
7 model.add_module('fc3', nn.Linear(100,10))
```

```
[8] 1 from torch import optim
2 loss_fn = nn.CrossEntropyLoss()
3 optimizer = optim.Adam(model.parameters(), Ir=0.01)
```

```
1 def train(epoch):
[9]
      2 model.train()
      3 for data, tragets in loader_train:
      4 optimizer.zero_grad()
      5 outputs = model(data)
      6  loss = loss_fn(outputs, tragets)
      7 loss.backward()
      8
          optimizer.step()
      9 print('epoch {}: 완료'.format(epoch))
[15]
     1 def test(head):
      2 model.eval()
      3 correct = 0
      4 with torch.no_grad():
      5 for data, targets in loader_test:
      6    outputs = model(data)
             _,predicted = torch.max(outputs.data, 1)
             correct += predicted.eq(targets.data.view_as(predicted)).sum()
      8
      9 data num = len(loader test.dataset)
     10 print('accuracy = ', 100.*correct/data_num)
      1 for epoch in range(3):
      2 train(epoch)
      3 test('학습중')
▶ epoch D: 완료
     accuracy = tensor(96.8700)
     epoch 1: 완료
     accuracy = tensor(96.6000)
     epoch 2: 완료
     accuracy = tensor(96.8600)
```

[실습] CNN 모델을 이용한 MNIST 데이터 분류

```
#-*- coding: utf-8 -*-
from sklearn.datasets import fetch_openml
mnist = fetch openml('mnist 784', version=1, cache=True)
X = mnist.data
y = mnist.target
import torch
from torch.utils.data import TensorDataset, DataLoader
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1/7, random_state=0)
X train = torch.Tensor(X_train)
X \text{ test} = \text{torch.Tensor}(X \text{ test})
y_train = torch.LongTensor(list(map(int, y_train)))
y test = torch.LongTensor(list(map(int, y test)))
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
from torch.autograd import Variable
X \text{ train} = X \text{ train.view}(-1, 1,28,28).float()
X \text{ test} = X \text{ test.view}(-1,1,28,28).float()
print(X train.shape)
print(X test.shape)
train = TensorDataset(X_train, y_train)
test = TensorDataset(X test, y test)
BATCH SIZE = 32
loader train = DataLoader(train, batch size = BATCH SIZE, shuffle = False)
loader test = DataLoader(test, batch size = BATCH SIZE, shuffle = False)
```

```
class CNN(nn.Module):
   def init (self):
     super(CNN, self). init ( )
     self.conv1 = nn.Conv2d(1, 32, kernel size=5)
     self.conv2 = nn.Conv2d(32, 32, kernel size=5)
     self.conv3 = nn.Conv2d(32,64, kernel size=5)
     self.fc1 = nn.Linear(3*3*64, 256)
     self.fc2 = nn.Linear(256, 10)
     self.loss fn = nn.CrossEntropyLoss()
     self.optimizer = optim.Adam(self.parameters(), lr=0.01)
  def forward(self, x):
     x = F.relu(self.conv1(x))
     x = F.relu(F.max_pool2d(self.conv2(x), 2))
     x = F.dropout(x, p=0.5, training=self.training)
     x = F.relu(F.max pool2d(self.conv3(x),2))
     x = F.dropout(x, p=0.5, training=self.training)
     x = x.view(-1,3*3*64)
     x = F.relu(self.fc1(x))
     x = F.dropout(x, training=self.training)
     x = self.fc2(x)
     return F.log softmax(x, dim=1)
torch.nn.Conv2d(in channels, out channels, kernel size,
           stride=1, padding=0, dilation=1, groups=1,
           bias=True, padding_mode='zeros')
```

```
def fit(model, loader train):
   optimizer = torch.optim.Adam(model.parameters( ))
   error = nn.CrossEntropyLoss()
   EPOCHS = 1
   model.train()
   for epoch in range(EPOCHS):
      correct = 0
      for batch idx, (X batch, y batch) in enumerate(loader train):
         var X batch = Variable(X batch).float( )
         var y batch = Variable(y batch)
         optimizer.zero_grad()
         output = model(var_X_batch)
         loss = error(output, var_y_batch)
         loss.backward()
         optimizer.step()
         predicted = torch.max(output.data, 1)[1]
         correct += (predicted == var y batch).sum( )
         if batch idx \% 50 == 0:
            print('에포크 : {} [{}/{} ({:.0f}%)]₩t 손실함수 : {:.6f}₩t Accuracy:{:.3f}%'.format(
               epoch, batch_idx*len(X_batch), len(loader_train),
               100.*batch idx / len(loader train),
               loss.data,
               correct*100./ (BATCH SIZE*(batch_idx+1))))
```

```
correct = 0
           for test imgs, test_labels in loader_test:
             test imgs = Variable(test imgs).float()
             output = model(test imgs)
             predicted = torch.max(output,1)[1]
             correct += (predicted == test labels).sum()
           print("테스트 데이터 정확도: {:.3f}% ".format( float(correct) /
        (len(loader test)*BATCH SIZE)))
        cnn = CNN()
        evaluate(cnn)
        fit(cnn, loader train)
        cnn.eval() # 모델 테스트 모드로 전환
        evaluate(cnn)
        index = 10 # 테스트 데이터 중에서 확인해볼 데이터의 인덱스
        data = X test[index].view(-1, 1,28,28).float()
        output = cnn(data) # 모델 적용
        print('{} 번째 학습데이터의 테스트 결과 : {}'.format(index, output))
        _, predicted = torch.max(output, 1)
        print('{}번째 데이터의 예측 : {}'.format(index, predicted.numpy()))
        print('실제 레이블 : {}'.format(y_test[index]))
테스트 데이터 정확도: 0.101%
에포크: 0 [0/1875 (0%)] 손실함수: 16.765696 Accuracy:6.250%
에포크 : 0 [1600/1875 (3%)]
                               손실함수: 1.837372 Accuracy:21.691%
에포크 : 0 [59200/1875 (99%)]
                               손실함수: 0.256999 Accuracy:86.894%
테스트 데이터 정확도: 0.930%
10 번째 학습데이터의 테스트 결과: tensor([[-9.7553e+00, -1.5448e-03, -9.4535e+00, -9.9060e+00, -8.7322e+00,
-8.8163e+00, -1.0269e+01, -7.7631e+00, -7.7663e+00, -8.7147e+00]], grad fn=<LogSoftmaxBackward>)
10번째 데이터의 예측 : [1]
실제 레이블:1
```

def evaluate(model):

실습

- 1. PyTorch 환경을 구성한다.
- 2. 실습 프로그래밍 예제를 PyTorch와 Colab 환경에서 직접 실행해 본다.