Lezione 28

Saverio Salzo*

15 novembre 2022

1 Esercizio svolto sulle serie

Proviamo che la serie

$$\sum_{n=1}^{+\infty} \frac{\operatorname{sen}(\operatorname{sen}(1/n))}{\sqrt[3]{n}} - \frac{\operatorname{sen}(\operatorname{sen}(\operatorname{sen}(1/n)))}{\sqrt{n}} =: a_n$$

è assolutamente convergente. Per brevità di notazione poniamo $y_n = \text{sen}(\text{sen}(1/n))$. Allora

$$y_n = \underbrace{\frac{\operatorname{sen}(\operatorname{sen}(1/n))}{\operatorname{sen}(1/n)}}_{\stackrel{1}{\downarrow}} \cdot \underbrace{\frac{\operatorname{sen}(1/n)}{1/n}}_{\stackrel{1}{\downarrow}} \cdot \frac{1}{n} \sim \frac{1}{n}$$

e risulta (dalla disuguaglianza triangolare)

$$|a_n| \le \left| \frac{y_n}{n^{1/3}} \right| + \left| \frac{\text{sen}(y_n)}{n^{1/2}} \right| =: b_n.$$
 (1)

Cerchiamo di capire l'ordine di infinitesimo dei due termini di b_n separatamente. Si ha

$$\begin{cases} \left| \frac{y_n}{n^{1/3}} \right| = \left| \frac{y_n}{(1/n)} \frac{1}{nn^{1/3}} \right| = \left| \frac{y_n}{(1/n)} \right| \frac{1}{n^{4/3}} \sim \frac{1}{n^{4/3}} \\ \left| \frac{\sec(y_n)}{n^{1/2}} \right| = \left| \frac{\sec(y_n)}{y_n} \frac{y_n}{(1/n)} \frac{1}{nn^{1/2}} \right| = \left| \frac{\sec(y_n)}{y_n} \frac{y_n}{(1/n)} \right| \frac{1}{n^{3/2}} \sim \frac{1}{n^{3/2}}. \end{cases}$$

Perciò $b_n \sim 1/n^{4/3}$ (è asintotico al termine di ordine inferiore nella somma). Infatti

$$b_n = \left| \frac{y_n}{n^{1/3}} \right| \left(1 + \left| \frac{\sec(y_n)}{y_n} \frac{n^{1/3}}{n^{1/2}} \right| \right) = \frac{1}{n^{4/3}} \left| \underbrace{\frac{y_n}{(1/n)}} \right| \left(1 + \left| \underbrace{\frac{\sec(y_n)}{y_n}} \right| \underbrace{\frac{1}{n^{1/6}}} \right) \sim \frac{1}{n^{4/3}}.$$

In definitiva la serie $\sum b_n$ (che è a termini positivi) è convergente per il criterio di confronto asintotico e quindi, da (1), consegue che anche la serie $\sum |a_n|$ è convergente per il criterio del confronto.

^{*}DIAG, Sapienza Università di Roma (saverio.salzo@uniroma1.it).

2 Ancora sulle regole di derivazione

Teorema 2.1 (sulla derivazione delle funzioni composte). Siano $f: A \to \mathbb{R}$ $e g: B \to \mathbb{R}$ due funzioni reali di una variabile reale tali che $f(A) \subset B$ e consideriamo la funzione composta $g \circ f: A \to \mathbb{R}$. Supponiamo che

- $x_0 \in A$ sia un punto di accumulazione per A e che f sia derivabile in x_0
- $f(x_0)$ sia di accumulazione per B e che g sia derivabile in $f(x_0)$.

Allora $g \circ f$ è derivabile in x_0 e risulta

$$g(g \circ f)'(x_0) = g'(f(x_0))f'(x_0).$$
(2)

Dimostrazione. Sia $x \in A_{x_0}$ e definiamo il seguente prolungamento del rapporto incrementale di g nel punto $f(x_0)$,

$$\Phi \colon B \to \mathbb{R}, \quad \Phi(y) = \begin{cases} \frac{g(y) - g(f(x_0))}{y - f(x_0)} & \text{se } y \neq f(x_0) \\ g'(f(x_0)) & \text{se } y = f(x_0). \end{cases}$$

Evidentemente la funzione Φ è continua in $f(x_0)$. Inoltre

$$\forall x \in A_{x_0} \colon \frac{(g \circ f)(x) - (g \circ f)(x_0)}{x - x_0} = \Phi(f(x)) \frac{f(x) - f(x_0)}{x - x_0}.$$

Si noti che l'uguaglianza di sopra è vera chiaramente se $f(x) \neq f(x_0)$, ma è anche vera se $f(x) = f(x_0)$. Adesso, si osserva che f è continua in x_0 (perché derivabile) e Φ è continua in $f(x_0)$. Perciò $\Phi \circ f$ è continua in x_0 . Allora si ha

$$\lim_{x \to x_0} \frac{(g \circ f)(x) - (g \circ f)(x_0)}{x - x_0} = \Phi(f(x_0)) \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = g'(f(x_0))f'(x_0). \qquad \Box$$

Osservazione 2.2.

(i) Se consideriamo due funzioni $x \mapsto f(x)$ e $y \mapsto g(y)$. Allora la regola (2) si può scrivere alternativamente come

$$(g \circ f)'(x_0) = g'(y)\Big|_{y=f(x_0)} f'(x_0).$$

Questo mostra che per valutare la derivata $(g \circ f)'(x_0)$, si calcola g'(y) sostituendo g'(y) con $f(x_0)$ e poi si moltiplica per $f'(x_0)$. Con la notazione di Eulero la regola si scrive come segue

$$D[g(y)|_{y=f(x)}] = [Dg(y)]|_{y=f(x)} Df(x).$$

(ii) Se si scrive y=f(x) e w=g(y) e si usa la notazione di Leibniz per le derivate, la regola (2) si scrive

$$\frac{dw}{dx} = \frac{dw}{dy}\frac{dy}{dx}$$
 (come se dy si semplificasse).

Esempio 2.3.

(i) Consideriamo la funzione $\sin^2 x$. Essa è evidentemente di tipo composto con $f(x) = \sin x$ e $g(y) = y^2$. Allora, per ogni $x \in \mathbb{R}$,

$$(g \circ f)'(x) = g'(f(x))f'(x) = 2 \operatorname{sen} x \cos x.$$

(ii) La funzione $a^{\cos x}$ si può scrivere come $g \circ f$, dove $f(x) = \cos x$ e $g(y) = a^y$. Allora essa è derivabile e risulta

$$Da^{\cos x} = (a^{\cos x} \log a)D\cos x = -(\log a)a^{\cos x} \sin x.$$

(iii) La funzione $e^{(x^2)}$ si può scrivere come $g \circ f$, dove $f(x) = x^2$ e $g(y) = e^y$. Allora essa è derivabile e risulta

$$De^{(x^2)} = e^{(x^2)}(2x) = 2xe^{(x^2)}.$$

Concludiamo con la regola per la derivazione di una funzione inversa. Sia $f: A \to \mathbb{R}$ iniettiva e $f^{-1}: f(A) \to \mathbb{R}$ la funzione inversa. Evidentemente risulta

$$\forall x \in A \colon (f^{-1} \circ f)(x) = f^{-1}(f(x)) = x. \tag{3}$$

Sia $x_0 \in A$ di accumulazione per A e supponiamo che f sia derivabile in x_0 e che f^{-1} sia derivabile in $f(x_0)$ (si vede facilmente che $f(x_0)$ è di accumulazione per f(A)). Allora per il Teorema 2.1 si ha

$$(f^{-1} \circ f)'(x_0) = (f^{-1})'(f(x_0))f'(x_0).$$

D'altro canto, valendo l'equazione (3), si ha $(f^{-1} \circ f)'(x_0) = 1$. Allora si ha

$$1 = (f^{-1})'(f(x_0))f'(x_0).$$

Questo prova che

$$f'(x_0) \neq 0, \ (f^{-1})'(f(x_0)) \neq 0 \quad \text{e} \quad (f^{-1})'(f(x_0)) = \frac{1}{f'(x_0)}.$$

Nel derivare questo risultato abbiamo supposto che f^{-1} fosse derivabile in $f(x_0)$; il teorema seguente mostra che questa ipotesi si può indebolire.

Teorema 2.4 (sulla derivazione delle funzioni inverse). Sia $f: A \to \mathbb{R}$ una funzione iniettiva $e \ x_0 \in A$, punto di accumulazione per A. Supponiamo che

- $f \ e \ derivabile \ in \ x_0 \ e \ f'(x_0) \neq 0$
- f^{-1} sia continua in $f(x_0)$.

Allora f^{-1} è derivabile in $f(x_0)$ e risulta

$$(f^{-1})'(f(x_0)) = \frac{1}{f'(x_0)}.$$

Dimostrazione. Basta notare che il rapporto incrementale di f^{-1} in $y_0 := f(x_0)$ si può scrivere come segue

$$\forall y \in f(A) \setminus \{y_0\} \colon \frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0} = \varphi(f^{-1}(y)),$$

dove

$$\varphi \colon A_{x_0} \to \mathbb{R} \colon x \mapsto \frac{x - x_0}{f(x) - f(x_0)}.$$

Dato che

$$\lim_{y \to y_0} f^{-1}(y) = f^{-1}(y_0) = x_0, \quad f^{-1}(y) \neq x_0 \text{ in un intorno di } y_0 \quad \text{e} \quad \lim_{x \to x_0} \varphi(x) = \frac{1}{f'(x_0)},$$

allora, per il Teorema sui limiti delle funzioni composte, risulta

$$\lim_{y \to y_0} \frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0} = \lim_{x \to x_0} \varphi(x) = \frac{1}{f'(x_0)}.$$

Se la funzione f è iniettiva e definita in un intervallo, allora, per il teorema sulla continuità delle funzioni inverse, la funzione inversa è automaticamente continua. Si ha perciò il seguente risultato

Corollario 2.5. Sia I un intervallo di \mathbb{R} e $f: I \to \mathbb{R}$ una funzione continua e iniettiva su I. Se f è derivabile in un punto $x_0 \in I$ e $f'(x_0) \neq 0$, allora la funzione inversa $f^{-1}: f(I) \to \mathbb{R}$ è derivabile in $f(x_0)$ e risulta

$$(f^{-1})'(f(x_0)) = \frac{1}{f'(x_0)}.$$

Osservazione 2.6.

(i) Se si definisce $y_0 = f(x_0)$, la formula sulle derivate delle funzioni inverse del Teorema 2.4 si può scrivere equivalentemente

$$f^{-1}(y_0) = \frac{1}{f'(f^{-1}(y_0))}.$$
(4)

Quindi per calcolare la derivata della funzione inversa f^{-1} in un punto del suo dominio y_0 , si calcola il reciproco della derivata della funzione f nel punto $f^{-1}(y_0)$.

(ii) Se si pone y = f(x), si ha $x = f^{-1}(y)$, e, usando la notazione di Leibniz, la formula (4) si scrive

$$\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}}.$$

3 Derivate delle funzioni elementari (parte II)

Derivata 6

$$D\sqrt[n]{x} = \frac{1}{n\sqrt[n]{x^{n-1}}}.$$
 (5)

Dimostrazione. Consideriamo la funzione potenza n-esima, $p_n : \mathbb{R}_+ \to \mathbb{R}_+$ con $p_n(t) = t^n$. Sappiamo che p_n è invertibile e $p_n^{-1}(x) = \sqrt[n]{x}$. Inoltre p_n è derivabile e $p_n'(t) = nt^{n-1} \neq 0$, per t > 0. Perciò per il Corollario 2.5 (equazione (4)) risulta che p_n^{-1} è derivabile in x > 0 e

$$(p_n^{-1})'(x) = \frac{1}{p_n'(p_n^{-1}(x))} = \frac{1}{n(p_n^{-1}(x))^{n-1}} = \frac{1}{n(\sqrt[n]{x})^{n-1}} = \frac{1}{n\sqrt[n]{x^{n-1}}}.$$

Si noti che la formula (5) si può scrivere anche come segue

$$Dx^{\frac{1}{n}} = \frac{1}{n}x^{\frac{1}{n}-1},$$

rivelando una regola di derivazione analoga a quella per esponenti interi positivi.

Derivata 7

$$\boxed{D\log x = \frac{1}{x}}$$

Dimostrazione. La funzione logaritmo log: $\mathbb{R}_+^* \to \mathbb{R}$ è l'inversa della funzione esponenziale exp: $\mathbb{R} \to \mathbb{R}_+^*$, che è continua iniettiva e definita in un intervallo. Allora dato che exp è derivabile in tutti i punti di \mathbb{R} e $D \exp(t) = \exp(t) > 0$, si ha che la funzione log è derivabile in \mathbb{R}_+^* e

$$\forall x \in \mathbb{R}_+^* \colon D\log x = \frac{1}{(D\exp)(\log x)} = \frac{1}{\exp(\log x)} = \frac{1}{x}.$$

Derivata 8

$$\boxed{D \operatorname{tg} x = \frac{1}{\cos^2 x} = 1 + \operatorname{tg}^2 x} \quad \text{e} \quad \boxed{D \cot x = -\frac{1}{\sin^2 x}}$$

Dimostrazione. Dalle regole di derivazione per il rapporto di due funzioni e ricordando le derivate di sin e cos, si ha

$$D \operatorname{tg} x = D \frac{\operatorname{sen} x}{\operatorname{cos} x} = \frac{\operatorname{cos} x \operatorname{cos} x - \operatorname{sen} x (-\operatorname{sen} x)}{\operatorname{cos}^2 x} = \frac{\operatorname{cos}^2 x + \operatorname{sen}^2 x}{\operatorname{cos}^2 x} = \frac{1}{\operatorname{cos}^2 x}.$$

е

$$D\cot x = D\frac{\cos x}{\sin x} = \frac{-\sin x \sin x - \cos x \cos x}{\sin^2 x} = -\frac{\cos^2 x + \sin^2 x}{\sin^2 x} = -\frac{1}{\sin^2 x}.$$

Derivata 9

$$D \operatorname{arcsen} x = \frac{1}{\sqrt{1 - x^2}}$$
 e $D \operatorname{arccos} x = -\frac{1}{\sqrt{1 - x^2}}$ e $D \operatorname{arctg} x = \frac{1}{1 + x^2}$

Dimostrazione. La funzione arcsen: $[-1,1] \to [-\pi/2,\pi/2]$ è definita come l'inversa della restrizione della funzione sen all'intervallo $[-\pi/2,\pi/2]$. Se $t \in]-\pi/2,\pi/2[$ la funzione sen è derivabile in $t \in D$ sen $t = \cos t \neq 0$. Perciò per il Corollario 2.5 la funzione arcsen è derivabile in [-1,1[e risulta

$$\forall x \in]-1, 1[: D \arcsin(x) = \frac{1}{\cos(\arcsin x)} = \frac{1}{\sqrt{1 - \sin^2(\arcsin x)}} = \frac{1}{\sqrt{1 - x^2}}.$$

Si ha infatti $\cos y = \sqrt{1 - \sin^2 y}$ se $y \in [-\pi/2, \pi/2]$. Analogamente arccos: $[-1, 1] \to [0, \pi]$ è definita come l'inversa della restrizione di cos all'intervallo $[0, \pi]$ e si ha quindi

$$\forall x \in]-1,1[: D\arccos(x) = \frac{1}{-\sin(\arccos x)} = -\frac{1}{\sqrt{1-\cos^2(\arccos x)}} = -\frac{1}{\sqrt{1-x^2}}.$$

Si ha infatti $\sin y = \sqrt{1-\cos^2 y}$ se $y \in [0,\pi]$. Infine la funzione $\operatorname{arctg}: \mathbb{R} \to]-\pi/2,\pi/2[$ è l'inversa di $\operatorname{tg}_{]-\pi/2,\pi/2[}:]-\pi/2,\pi/2[\to \mathbb{R}.$ Dato che $D\operatorname{tg} x = 1 + \operatorname{tg}^2 x,$ allora

$$D \arctan x = \frac{1}{(D \operatorname{tg})(\arctan x)} = \frac{1}{1 + \operatorname{tg}^2(\arctan x)} = \frac{1}{1 + x^2}.$$

Esempio 3.1. Sia $f(x) = \operatorname{tg}(\sqrt{x})$. Il dominio di f è

$$A = \left\{ x \in \mathbb{R}_+ \,\middle|\, x^2 \neq \frac{\pi}{2} + k\pi \,\, k \in \mathbb{Z} \right\}.$$

Allora per ogni $x \in A$ con x > 0, f è derivabile in x e

$$f'(x) = (D \operatorname{tg})(\sqrt{x})D\sqrt{x} = \frac{1}{\cos^2(\sqrt{x})} \cdot \frac{1}{2\sqrt{x}} = \frac{1}{2\sqrt{x}\cos^2(\sqrt{x})}.$$

4 Derivata destra e sinistra, punti angolosi e cuspidi

Definizione 4.1. Sia $A \subset \mathbb{R}$ e $x_0 \in A$ un punto di accumulazione a sinistra (risp. a destra) per A. Sia $f: A \to \mathbb{R}$. Se esiste finito il limite

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \quad \left(\text{risp. } \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}\right) \tag{6}$$

allora si dice che f è derivabile a sinistra (risp. a destra) in x_0 e il limite si chiama derivata sinistra (risp. destra) di f in x_0 e si indica con

$$f'_{-}(x_0)$$
 (risp. $f'_{+}(x_0)$).

Esempio 4.2. Consideriamo la funzione valore assoluto

$$f \colon \mathbb{R} \to \mathbb{R}, \quad f(x) = |x|.$$

Allora $f'_{-}(0) = -1$ e $f'_{+}(0) = 1$. Infatti, per ogni $x \in \mathbb{R}, x \neq 0$,

$$\frac{f(x) - f(0)}{x - 0} = \frac{|x|}{x} = \begin{cases} 1 & \text{se } x > 0 \\ -1 & \text{se } x < 0. \end{cases}$$

Quindi

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = -1 \quad \text{e} \quad \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = 1.$$

Osservazione 4.3.

- (i) Se x₀ è punto di accumulazione sia a destra che a sinistra per A. Allora
 f è derivabile in x₀ ⇔ f è derivabile a sinistra e destra in x₀ e f'₋(x₀) = f'₊(x₀) ∈ ℝ.

 Inoltre se x₀ è punto di accumulazione solo a sinistra (risp. a destra) per A. Allora
 f è derivabile in x₀ ⇔ ∃ f'₋(x₀) ∈ ℝ (risp. ∃ f'₊(x₀) ∈ ℝ).
- (ii) Se il limite (6) esiste ma non è finito, cioè

$$\lim_{x \to x_0^{-}} \frac{f(x) - f(x_0)}{x - x_0} = \pm \infty \quad \left(\text{risp. } \lim_{x \to x_0^{+}} \frac{f(x) - f(x_0)}{x - x_0} = \pm \infty \right)$$

allora, con un abuso di notazione, tale limite si denota ancora con $f'_{-}(x_0)$ (risp. $f'_{+}(x_0)$) e talvolta si chiama ancora derivata sinistra (risp. destra) di f in x_0 .

Definizione 4.4. Sia $A \subset \mathbb{R}$ e $x_0 \in A$ un punto di accumulazione a sinistra e a destra per A. Supponiamo che esistano le derivate sinistra e destra di f in x_0 (finite o no). Il punto x_0 si dice un punto angoloso di f (o del suo grafico) se f è continua in x_0 e $f'_-(x_0) \neq f'_-(x_0)$ e le due derivate non sono entrambe infinite. Il punto x_0 si dice un punto di cuspide se $f'_-(x_0) = +\infty$ e $f'_+(x_0) = -\infty$ o se $f'_-(x_0) = -\infty$ e $f'_+(x_0) = +\infty$.

Figura 1: Punto angoloso (a sinistra) e cuspide (a destra).

Esercizio 4.5. Sia $f: \mathbb{R} \to \mathbb{R}$ con

$$\forall x \in \mathbb{R}: \ f(x) = \frac{3 - |x^3 - 1|}{2}.$$

Verificare che 1 è un punto angoloso del grafico di f e calcolare $f'_{-}(x_0)$ e $f'_{+}(x_0)$.

Proposizione 4.6. Se f è derivabile a sinistra (risp. a destra) in x_0 , allora f è continua a sinistra in x_0 (risp. a destra), cioè $f(x_0-)=f(x_0)$ (risp. $f(x_0+)=f(x_0)$).

Dimostrazione. La dimostrazione procede come nel caso derivabile. Infatti si ha

$$\forall x \in A_{x_0}^-: f(x) = f(x_0) + \frac{f(x) - f(x_0)}{x - x_0}(x - x_0)$$

e quindi
$$\lim_{x \to x_0^-} f(x) = f(x_0) + f'_-(x_0) \cdot 0 = f(x_0).$$