e_Doctor Chatbot Performance Report

Prepared by:

- Radhika Dahiya (IIT Guwahati)
- Surya Kamesh Mantha (IIT Roorkee)
- Rahul Yadav (IIT Roorkee)

Date: June 7, 2025

1. Executive Summary

1.1 Project Objective

Evaluate parameter-efficient fine-tuning methods (LoRA vs QLoRA) for clinical deployment of diagnostic AI assistant.

1.2 Key Findings

- QLoRA achieved 11.5% higher diagnostic accuracy (ROUGE-1: 0.2019 vs 0.1811)
- LoRA demonstrated 328x faster inference (5.16s vs 15.73s per token)
- Both methods reduced model size by 99% (176.5 MB vs original 15 GB)
- QLoRA shows 37% better response fluency (PPL 22.80 vs 36.12)

1.3 Recommendation

Implement hybrid deployment strategy:

- QLoRA for diagnostic depth in chronic/specialist cases
- LoRA for urgent triage scenarios
- Context-aware routing based on symptom criticality

2. Dataset Strategy

2.1 HealthcareMagic Dialogue Corpus

Characteristic	Specification
Total Dialogues	2,53,000 doctor-patient exchanges
Content Distribution	Symptoms (42%), Diagnosis (28%), Medication (19%), Prevention (11%)
Preprocessing	HIPAA-compliant de-identification, Medical term standardization

2.2 Training Splits

Method	Data Volume	Samples	Selection Criteria

LoRA	100%	2,53,000	Full coverage
QLoRA	19%	48,200	Stratified sampling by
			medical criticality

3. Training Methodology

3.1 Technical Configuration

• Base Model: DeepSeek-R1-Distill-Llama-8B

• Framework: Unsloth + Hugging Face Transformers

• Hardware: NVIDIA A100 80GB GPU/T4 GPU

3.2 Resource Comparison

Parameter	LoRA	QLoRA
GPU VRAM	24 GB	8 GB
Training Time	2 hours	0.5 hours

4. Training Performance

4.1 Convergence Analysis

Metric	LoRA	QLoRA
Final Loss	1.66	1.41
Epochs to Converge	6	5
Stability	Moderate fluctuations	High consistency

4.2 Visualization

[Figure 1: LoRA Training Curve] — *LoRA loss convergence shows moderate fluctuations after epoch 5^*

[Figure 2: QLoRA Training Curve] — *QLoRA demonstrates smooth descent despite smaller dataset*

5. Evaluation Results

5.1 Quantitative Metrics

Metric	LoRA	QLoRA	Interpretation
ROUGE-1	0.1811	0.2019	↑+11.5% diagnostic precision
ROUGE-L	0.1422	0.1721	† +21.0% clinical coherence
Perplexity (PPL)	36.12	22.80	↓-36.9% response fluency
Latency/token	5.16s	15.73s	\uparrow 305% inference time

5.2 Clinical Validation

Diagnostic accuracy: QLoRA 82% vs LoRA 74% (p<0.01)

Emergency response: LoRA 91% accuracy vs QLoRA 76%

6. Trade-off Analysis & Deployment

6.1 Clinical Decision Matrix

Use Case	Accuracy Priority	Speed Priority
Cardiac Emergency	QLoRA ★★★☆☆	LoRA ★★★★
Diabetes Mgmt	QLoRA ★★★★★	LoRA ★★★☆☆
Medication QA	Tie ★★★☆	Tie ★★★☆☆

Deployment Strategy

- Emergency triage → LoRA (fast response)
- specialist tools → QLoRA (depth)
- Mobile/Edge → Switch dynamically

6.2 Deployment Framework

7. Conclusion

7.1 Key Validation

QLoRA demonstrates statistically superior medical accuracy (p<0.01) for diagnostic use cases, while LoRA remains essential for time-sensitive triage scenarios.

7.2 Workflow

- 1. User submits symptoms
- 2. Urgency classifier routes: Red (critical): Lora model Yellow/Green (routine): QLoRA model
- 3. Generate response + confidence score
- 4. Escalate if high-risk

7.3 System Requirements

Platform	Specs
Cloud	4 vCPUs, 16 GB RAM
Edge Device	Snapdragon 8 Gen 3+
Hospital Server	NVIDIA T4, 32 GB VRAM

8. Acknowledgments & Disclaimer

8.1 Team Contributions

- Radhika Dahiya: Latency engineering and medical validation
- Surya Kamesh Mantha: QLoRA optimization
- Rahul Yadav: Dataset curation

8.2 Ethical Disclaimer

This AI system provides preliminary guidance only and does not replace professional medical judgment. Always consult licensed healthcare providers for clinical decisions. The developers assume no liability for diagnostic use.