Chapitre 1 : Clivage ou segmentation

Type d'œuf	Quantité vitellus	Répartition cytoplasmique	taille	Taxon concerné
Alécithes	Absente		100μm	Mammifères
Oligolécithes	Peu abondant	homogène	100µm	Echinodermes
Hétérolecithes	Peu abondant	Inégale : gradient vitellin	± 1mm	Amphibiens
Télolécithes	Très abondant	Distribution généralisée	±1cm	Oiseaux, Reptiles, Mammifères ovipares
Centrolécithes	Très	Masse vitelline	± 1mm	Insectes

Segmentation de l'œuf d'Oursin

Clivage ou segmentation de l'œuf d'amphibien

Clivage total spirale

Segmentation chez mammifères

Comparaison des différents type de clivage:
A - Clivage de type radial (étolles de mer, et Xénope)
B - Clivage de type rotationnel (homme, souris, vers), très lente (1 division toutes les 12-24h)
D'après Gulyas, 1975

Segmentation chez mammifères

La cavitation et l'acquisition des polarités. À partir du stade 16 cellules, les cellules externes possèdent trois domaines membranaires distincts. La membrane apicale est caractérisée par la présence des microvillosités et l'accumulation progressive de cotransporteurs (Na*/K*, Na*/glucose), de canaux sodiques et de transporteurs d'acides aminés. La membrane basolatérale est caractérisée par la présence de jonctions et de contacts intercellulaires. Enfin, une enzyme, la Na*/K* ATPase, est adressée spécifiquement à la membrane plasmique basale, contribuant ainsi à l'élaboration du troisième domaine membranaire.

A savoir pour l'examen :

- Connaitre la définition du clivage ou segmentation
- Connaître les deux grands types de clivage dans le règne animal et ce qui les spécifient ;
- Connaître les différents types d'œufs et la correspondance nom de l'œuf et du taxon concerné ;
- Etre capable de décrire en quelques mots les différents types de clivage présentés en cours et savoir faire au moins un schéma caractéristique pour illustrer chacun ; comprendre ce qui les distingue.
- Savoir expliquer les mécanismes des rotations d'équilibration et de symétrisation de l'œuf fécondé d'amphibien et leur impact sur la symétrisation de l'embryon;
- Savoir expliquer les particularités du cycle cellulaire pendant le clivage.

Chapitre 2: Gastrulation

Annélides- Mollusques

GASTRULATION AMPHIBIENS

Interprétation théorique des rapports cellule-substrat en phase migratoire et en phase stationnaire.

RGD

COOH

A : Phase migratoire : les molécules de fibronactine sont espacées, les prolongements cellulaires avec leurs récepteurs les utilisent comme des prises lors d'une ascension.

B : Phase stationnaire : une condensation des récepteurs membranaires crée des points d'ancrage solidés et stables. Le cytosquelette passe d'une organisation diffuse à la constitution de falscasux d'actine sous forme de fibres de tension (d'après Thiery et coll., Médecine/Sciences, 1987).

Prégastrulation: 2 feuillets: Epiblaste et Hypoblaste

Gastrulation: Ligne primitive Ingression cellules

Avant

- transverse section through caudal part of embryo
 transverse section through cephalic part of the embryo

A savoir pour l'examen :

Connaitre la définition de la gastrulation ;

Connaître les cinq mouvements de base de la gastrulation et savoir les expliquer ; Etre capable de décrire la gastrulation chez l'oursin et d'en expliquer les mécanismes ; Etre capable de décrire la gastrulation chez les amphibiens et d'en expliquer les mécanismes ;

Etre capable de décrire la gastrulation chez les oiseaux et d'en expliquer les mécanismes ; Etre capable de décrire la gastrulation chez la drosophile et d'en expliquer les mécanismes ; Etre capable de décrire la gastrulation chez l'embryon humain et d'en expliquer les mécanismes ;

Savoir faire au moins un schéma illustrant la gastrulation et mettant en évidence les différents mouvements pour chacune des espèces animales traitées en cours ; Etre capable d'associer le nom du mouvement impliqué et le feuillet mis en place.