Application 1

Capsuleuse de bocaux – Galet – Corrigé

Modélisation sans galet

Question 1 Donner le paramétrage associé au schéma cinématique.

Correction

Question 2 Établir la loi entrée/sortie du système.

Correction

On a:

$$\overrightarrow{OA} + \overrightarrow{AB} + \overrightarrow{BO} = \overrightarrow{0} \iff R\overrightarrow{y_1} - \lambda(t)\overrightarrow{x_2} + L\overrightarrow{x_0} = \overrightarrow{0}$$

En projetant sur $\overrightarrow{x_0}$ et $\overrightarrow{y_0}$ on a :

$$\begin{cases}
-R \sin \alpha(t) - \lambda(t) \cos \beta(t) + L = 0 \\
R \cos \alpha(t) - \lambda(t) \sin \beta(t) = 0
\end{cases}$$

Suivant le cas, on peut donc avoir α en fonction de β ou λ en fonction de α ou β :

$$\tan \beta = \frac{R \cos \alpha}{L - R \sin \alpha}$$

$$\lambda(t)^2 = R^2 + L^2 - 2RL\sin\alpha$$

Question 3 Donner une méthode permettant de valider la cahier des charges vis à vis de la vitesse de rotation de la croix de Malte.

Correction

On peut calculer:

$$\dot{\beta} = \frac{R^2 \dot{\alpha} - LR \dot{\alpha} \sin \alpha}{L^2 - 2RL \sin \alpha + R^2}$$

Le tracé Excel permet de valider que la vitesse de rotation de la croix de Malte reste inférieure à 50 tours par minute.

Question 4 Donner l'expression de $\overrightarrow{V(I, S_1/S_0)}$ et $\overrightarrow{\Omega(S_1/S_0)}$.

Correction

$$\begin{split} \{\mathcal{V}(S_1/S_0)\} &= \left\{ \begin{array}{c} \overrightarrow{\Omega(S_1/S_0)} = \dot{\alpha}\overrightarrow{z_0} \\ \overrightarrow{V(O,S_1/S_0)} = \overrightarrow{0} \end{array} \right\}_O = \left\{ \begin{array}{c} \overrightarrow{\Omega(S_1/S_0)} = \dot{\alpha}\overrightarrow{z_0} \\ \overrightarrow{V(I,S_1/S_0)} = \overrightarrow{IO} \wedge \dot{\alpha}\overrightarrow{z_0} \end{array} \right\}_I \\ \overrightarrow{V(I,S_1/S_0)} &= \left(-R\overrightarrow{y_1} - r\overrightarrow{y_2} \right) \wedge \dot{\alpha}\overrightarrow{z_0} = -R\dot{\alpha}\overrightarrow{x_1} - r\dot{\alpha}\overrightarrow{x_2} \end{split}$$

$$\left\{\mathcal{V}(S_1/S_0)\right\} = \left\{\begin{array}{l} \overrightarrow{\Omega(S_1/S_0)} = \dot{\alpha} \overrightarrow{z_0} \\ \overrightarrow{V(I,S_1/S_0)} = -R\dot{\alpha} \overrightarrow{x_1} - r\dot{\alpha} \overrightarrow{x_2} \end{array}\right\}_I$$

Question 5 Donner l'expression de $\overrightarrow{V(I, S_2/S_0)}$ et $\overrightarrow{\Omega(S_2/S_0)}$.

Correction

$$\begin{split} \{ \mathcal{V}(S_2/S_0) \} &= \left\{ \begin{array}{c} \overrightarrow{\Omega(S_2/S_0)} = \dot{\beta} \overrightarrow{z_0} \\ \overrightarrow{V(B,S_2/S_0)} = \overrightarrow{0} \end{array} \right\}_B = \left\{ \begin{array}{c} \overrightarrow{\Omega(S_2/S_0)} = \dot{\beta} \overrightarrow{z_0} \\ \overrightarrow{V(I,S_2/S_0)} = \overrightarrow{IB} \wedge \dot{\beta} \overrightarrow{z_0} \end{array} \right\}_I \\ \overrightarrow{V(I,S_2/S_0)} &= \left(-\lambda(t)\overrightarrow{x_2} - r\overrightarrow{y_2} \right) \wedge \dot{\beta} \overrightarrow{z_0} = \lambda(t)\dot{\beta} \overrightarrow{y_2} - r\dot{\beta} \overrightarrow{x_2} \\ \\ \{ \mathcal{V}(S_2/S_0) \} &= \left\{ \begin{array}{c} \overrightarrow{\Omega(S_2/S_0)} = \dot{\beta} \overrightarrow{z_0} \\ \overrightarrow{V(I,S_2/S_0)} = \lambda(t)\dot{\beta} \overrightarrow{y_2} - r\dot{\beta} \overrightarrow{x_2} \end{array} \right\}_I \end{aligned}$$

Question 6 En déduire l'expression de $\overrightarrow{V(I, S_2/S_1)}$ dans la base \Re_2 . On donne $\overrightarrow{x_1} = \cos(\alpha - \beta)\overrightarrow{x_2} + \sin(\alpha - \beta)\overrightarrow{y_2}$.

Correction

D'après la composition du torseur cinématique on a :

$$\{\mathcal{V}(S_2/S_1)\} = \{\mathcal{V}(S_2/S_0)\} + \{\mathcal{V}(S_0/S_1)\} \Longleftrightarrow \{\mathcal{V}(S_2/S_1)\} = \{\mathcal{V}(S_2/S_0)\} - \{\mathcal{V}(S_1/S_0)\}$$

On a donc:

$$\{ \mathcal{V}(S_2/S_1) \} = \left\{ \begin{array}{l} \overrightarrow{\Omega(S_2/S_1)} = \overrightarrow{\Omega(S_2/S_0)} - \overrightarrow{\Omega(S_1/S_0)} = (\dot{\beta} - \dot{\alpha}) \, \overrightarrow{z_0} \\ \overrightarrow{V(I, S_2/S_1)} = \overrightarrow{V(I, S_2/S_0)} - \overrightarrow{V(I, S_1/S_0)} = \lambda(t) \dot{\beta} \overrightarrow{y_2} - r \dot{\beta} \overrightarrow{x_2} + R \dot{\alpha} \overrightarrow{x_1} + r \dot{\alpha} \overrightarrow{x_2} \end{array} \right\}_I$$

$$\overrightarrow{x_1} = \cos(\alpha - \beta) \overrightarrow{x_2} + \sin(\alpha - \beta) \overrightarrow{y_2}$$

D'où :

$$\overrightarrow{V(I, S_2/S_1)} = \lambda(t)\dot{\beta}\overrightarrow{y_2} - r\dot{\beta}\overrightarrow{x_2} + R\dot{\alpha}\cos(\alpha - \beta)\overrightarrow{x_2} + R\dot{\alpha}\sin(\alpha - \beta)\overrightarrow{y_2} + r\dot{\alpha}\overrightarrow{x_2} = \begin{bmatrix} -r\dot{\beta} + R\dot{\alpha}\cos(\alpha - \beta) + r\dot{\alpha} \\ \lambda(t)\dot{\beta} + R\dot{\alpha}\sin(\alpha - \beta) \\ 0 \end{bmatrix}_{\mathcal{R}}$$

Question 7 D'après le paramétrage adopté, quelle est la direction du vecteur vitesse du solide S_1 par rapport à S_2 ? En utilisant les résultats de la question précédente, déduire une condition de fonctionnement du mécanisme.

Correction

Nécessairement, la vitesse de glissement appartient au plan tangent au contact. On a donc :

$$\begin{cases} -r\dot{\beta} + R\dot{\alpha}\cos(\alpha - \beta) + r\dot{\alpha} = \dot{\lambda} \\ \lambda(t)\dot{\beta} + R\dot{\alpha}\sin(\alpha - \beta) = 0 \end{cases}$$

Question 8 $V(I, S_2/S_1) \cdot \overrightarrow{x_2}$ est appelée **vitesse de glissement**. Quel problème technologique pose l'existence de cette vitesse? Ce problème est-il pris en compte sur la capsuleuse? Si oui, comment? Si non, proposez une modification du système permettant la prise en compte de ce problème.

Correction

Cette vitesse de glissement provoque le frottement du doigt sur la croix de Malte. Ce frottement entraînant de l'usure, la capsuleuse de bocaux est équipée d'un galet.

Modélisation avec galet

Question 9 Quelle est la modification sur le paramétrage du système?

Correction

Un angle γ correspondant à la rotation du galet sur lui même apparaît.

Question 10 Comment est-il possible de traduire l'hypothèse de **roulement** sans glissement?

Correction

La vitesse est nulle entre le galet et la croix de Malte est nulle au point *I* :

$$\overrightarrow{V(I,S_3/S_2)} = \overrightarrow{0}$$

Question 11 Calculer la vitesse de rotation du galet $\dot{\gamma}$ en commençant par exprimer $\overrightarrow{V(I,S_3/S_2)}$? *Indice : décomposer* $\overrightarrow{V(I,S_3/S_2)}$ *en fonction des mouvements connus.*

Correction

Malgré l'introduction d'un nouveau composant, la position du point I reste inchangée. Il faut identifier le torseur $\{\mathcal{V}(S_3/S_2)\}$. Pour cela, la composition des vitesses donne :

$$\{\mathcal{V}(S_3/S_2)\} = \{\mathcal{V}(S_3/S_1)\} + \{\mathcal{V}(S_1/S_2)\}$$

Au point I on connaît déjà $\{\mathcal{V}(S_1/S_2)\}$. Calculons $\{\mathcal{V}(S_3/S_1)\}$:

$$\{ \mathcal{V}(S_3/S_1) \} = \left\{ \begin{array}{l} \overrightarrow{\Omega(S_3/S_1)} = \dot{\gamma} \overrightarrow{z_0} \\ \overrightarrow{V(A,S_3/S_1)} = \overrightarrow{0} \end{array} \right\}_A = \left\{ \begin{array}{l} \overrightarrow{\Omega(S_3/S_1)} = \dot{\gamma} \overrightarrow{z_0} \\ \overrightarrow{V(I,S_3/S_1)} = \overrightarrow{IA} \wedge \dot{\gamma} \overrightarrow{z_0} = -r \overrightarrow{y_2} \wedge \dot{\gamma} \overrightarrow{z_0} = -r \dot{\gamma} \overrightarrow{x_2} \end{array} \right\}_I = \left\{ \begin{array}{l} \overrightarrow{\Omega(S_3/S_1)} = \dot{\gamma} \overrightarrow{z_0} \\ \overrightarrow{V(I,S_3/S_1)} = \overrightarrow{IA} \wedge \dot{\gamma} \overrightarrow{z_0} = -r \overrightarrow{y_2} \wedge \dot{\gamma} \overrightarrow{z_0} = -r \dot{\gamma} \overrightarrow{x_2} \end{array} \right\}_I = \left\{ \begin{array}{l} \overrightarrow{\Omega(S_3/S_1)} = \dot{\gamma} \overrightarrow{z_0} \\ \overrightarrow{V(I,S_3/S_1)} = \overrightarrow{IA} \wedge \dot{\gamma} \overrightarrow{z_0} = -r \overrightarrow{y_2} \wedge \dot{\gamma} \overrightarrow{z_0} = -r \dot{\gamma} \overrightarrow{x_2} \end{array} \right\}_I = \left\{ \begin{array}{l} \overrightarrow{\Omega(S_3/S_1)} = \dot{\gamma} \overrightarrow{z_0} \\ \overrightarrow{V(I,S_3/S_1)} = \overrightarrow{IA} \wedge \dot{\gamma} \overrightarrow{z_0} = -r \overrightarrow{y_2} \wedge \dot{\gamma} \overrightarrow{z_0} = -r \dot{\gamma} \overrightarrow{x_2} \end{array} \right\}_I = \left\{ \begin{array}{l} \overrightarrow{\Omega(S_3/S_1)} = \dot{\gamma} \overrightarrow{z_0} \\ \overrightarrow{V(I,S_3/S_1)} = \overrightarrow{IA} \wedge \dot{\gamma} \overrightarrow{z_0} = -r \overrightarrow{y_2} \wedge \dot{\gamma} \overrightarrow{z_0} = -r \dot{\gamma} \overrightarrow{x_2} \end{array} \right\}_I = \left\{ \begin{array}{l} \overrightarrow{\Omega(S_3/S_1)} = \dot{\gamma} \overrightarrow{z_0} \\ \overrightarrow{V(I,S_3/S_1)} = \overrightarrow{IA} \wedge \dot{\gamma} \overrightarrow{z_0} = -r \overrightarrow{y_2} \wedge \dot{\gamma} \overrightarrow{z_0} = -r \dot{\gamma} \overrightarrow{x_2} \end{array} \right\}_I = \left\{ \begin{array}{l} \overrightarrow{\Omega(S_3/S_1)} = \dot{\gamma} \overrightarrow{z_0} \\ \overrightarrow{V(I,S_3/S_1)} = \overrightarrow{IA} \wedge \dot{\gamma} \overrightarrow{z_0} = -r \overrightarrow{y_2} \wedge \dot{\gamma} \overrightarrow{z_0} = -r \dot{\gamma} \overrightarrow{x_2} \end{array} \right\}_I = \left\{ \begin{array}{l} \overrightarrow{\Omega(S_3/S_1)} = \dot{\gamma} \overrightarrow{z_0} \\ \overrightarrow{V(I,S_3/S_1)} = \overrightarrow{V(I,S_3/S_1)} = \overrightarrow{V(I,S_3/S_1)} = -r \overrightarrow{V(I,S_3/S_1)} =$$

On a donc:

$$\overrightarrow{V(I,S_3/S_2)} = \overrightarrow{V(I,S_3/S_1)} + \overrightarrow{V(I,S_1/S_2)}$$

$$\overrightarrow{V(I,S_3/S_2)} = -r\dot{\gamma}\overrightarrow{x_2} + \left(-r\dot{\beta} + R\dot{\alpha}\cos(\alpha - \beta) + r\dot{\alpha}\right)\overrightarrow{x_2} - \left(\lambda(t)\dot{\beta} + R\dot{\alpha}\sin(\alpha - \beta)\right)\overrightarrow{y_2}$$

$$\overrightarrow{V(I,S_3/S_2)} = \begin{bmatrix} -r\dot{\gamma} + \left(-r\dot{\beta} + R\dot{\alpha}\cos(\alpha - \beta) + r\dot{\alpha}\right) \\ -\left(\lambda(t)\dot{\beta} + R\dot{\alpha}\sin(\alpha - \beta)\right) \\ 0 \end{bmatrix}_{\mathcal{R}_2}$$

D'après l'hypothèse de roulement sans glissement, on a :

$$\overrightarrow{V(I,S_3/S_2)} = \overrightarrow{0} \Longrightarrow \dot{\gamma} = -\frac{-r\dot{\beta} + R\dot{\alpha}\cos(\alpha - \beta) + r\dot{\alpha}}{r}$$

Question 12 Valider le choix du galet.

Correction

$$\dot{\gamma} = -\frac{-r\dot{\beta} + R\dot{\alpha}\cos(\alpha - \beta) + r\dot{\alpha}}{r}$$

