<u>Chapter – 1 Matter in Our Surroundings</u>

1. Introduction to Matter

- Everything in the universe is made up of matter.
- Matter is anything that has mass and occupies space.
- Examples: Water, air, table, chair, plants, animals, etc.

2. Physical Nature of Matter

2.1 Matter is Made Up of Particles

- All matter is composed of tiny, discrete particles.
- These particles are too small to be seen with the naked eye.
- Evidence of particle nature of matter:
 - o Dissolving sugar or salt in water: The volume of water remains almost the same because the sugar particles adjust in the empty spaces between water molecules.

2.2 Particles of Matter Have Space Between Them

- When substances dissolve, their particles fill the gaps between the particles of the solvent.
- Example: When sugar is added to water, it disappears but does not overflow.

2.3 Particles of Matter are Continuously Moving

- Particles of matter are always in motion, exhibiting **Brownian motion**.
- Evidence:
 - o **Diffusion**: The spreading of one substance into another.
 - Example: The smell of perfume spreading in a room.
 - The rate of diffusion is **faster in gases** than in liquids and solids due to larger intermolecular spaces.

2.4 Particles of Matter Attract Each Other

- The force of attraction between particles holds them together.
- The strength of this force varies between different types of matter:
 - o Strongest in solids (iron, diamond).
 - o Weaker in liquids (water, milk).
 - Weakest in gases (oxygen, nitrogen).

3. States of Matter

Matter exists in **three primary states**:

- 1. Solid
- 2. Liquid
- 3. Gas

3.1 Properties of Solids

- **Definite shape and volume**: Solids maintain their shape unless force is applied.
- **Incompressibility**: Cannot be compressed due to tightly packed particles.
- **High density**: Solids are usually denser than liquids and gases.
- **Negligible diffusion**: Particles do not mix easily.
- Strong intermolecular forces: Particles are held tightly together.
- **Example**: Ice, wood, iron, stone.

3.2 Properties of Liquids

- No fixed shape but fixed volume: Liquids take the shape of the container.
- More compressible than solids but less than gases.
- Lower density than solids but higher than gases.
- Moderate intermolecular forces (weaker than solids but stronger than gases).
- Can flow and diffuse: Liquid particles move freely.
- **Example**: Water, milk, oil.

3.3 Properties of Gases

- Neither fixed shape nor fixed volume: They expand to fill the entire container.
- **Highly compressible**: Gases can be compressed into cylinders.
- Lowest density compared to solids and liquids.
- Weak intermolecular forces.
- **High diffusion rate**: Gas particles move freely.
- **Example**: Oxygen, carbon dioxide, nitrogen.

4. Effect of Change of Temperature on Matter

• **Temperature affects the state of matter** by increasing or decreasing kinetic energy.

4.1 Melting (Fusion)

- The process by which a **solid changes into a liquid** upon heating.
- **Melting Point**: The temperature at which a solid turns into a liquid.

• Example: Ice melts at 0°C.

4.2 Boiling (Vaporization)

- The process by which a **liquid changes into a gas** upon heating.
- **Boiling Point**: The temperature at which a liquid turns into a gas.
- Example: Water boils at **100°C**.

4.3 Evaporation

- The process of conversion of liquid into gas at any temperature below its boiling point.
- Occurs at the surface of the liquid.
- Factors Affecting Evaporation:
 - **Surface area**: More surface area = faster evaporation.
 - o **Temperature**: Higher temperature = faster evaporation.
 - o **Humidity**: More humidity = slower evaporation.
 - Wind speed: Faster wind = faster evaporation.
 - o **Example**: Sweat evaporates from our body, cooling it down.

4.4 Condensation

- The process of **conversion of gas into liquid** on cooling.
- Example: Water droplets on a cold bottle from moisture in the air.

4.5 Sublimation

- Direct conversion of solid to gas without becoming liquid.
- Example: Camphor, dry ice (solid CO₂).

4.6 Freezing (Solidification)

- The process of **conversion of liquid into solid** by cooling.
- Example: Water freezes at **0**°C to form ice.

5. Effect of Pressure on Matter

- Increasing pressure can change the state of matter:
 - o Gases can be liquefied by increasing pressure.
 - o Example: LPG cylinders contain liquefied petroleum gas (LPG).
- Solid carbon dioxide (dry ice) converts directly into gas under normal atmospheric pressure.

6. Latent Heat

- Latent Heat of Fusion: Heat energy required to change 1 kg of solid into liquid at its melting point.
- Latent Heat of Vaporization: Heat energy required to change 1 kg of liquid into gas at its boiling point.

7. Evaporation and Cooling

- Evaporation causes cooling because particles absorb energy from the surroundings to convert into vapor.
- Examples:
 - Water cools after evaporation.
 - o Earthen pots keep water cool due to evaporation.
 - Sweat cools our body.

8. Plasma and Bose-Einstein Condensate (BEC) – Additional States of Matter

- 1 Plasma
 - o Found in stars, lightning, and neon lights.
 - Consists of highly charged particles.
- 2. Bose-Einstein Condensate (BEC):
 - Discovered by Satyendra Nath Bose and Albert Einstein.
 - o Formed when matter is cooled to near absolute zero.
 - o Particles behave as a single unit.

9. Vaporization:

Vaporization is the process by which a liquid changes into a gas (or vapor) when heat is supplied. It occurs in two ways:

- 1. **Evaporation** Slow vaporization at the surface of a liquid (occurs at all temperatures).
- 2. **Boiling** Rapid vaporization throughout the liquid at a fixed temperature (boiling point).

Key Differences Between Evaporation and Boiling

Feature	Evaporation	Boiling
Occurrence	Only at the surface	Throughout the liquid
Temperature	Occurs at any temperature Occurs only at boiling point	
Speed	Slow process	Fast process
Bubble Formation	No bubbles	Bubbles form inside the liquid
Energy Requirement Less energy required		More energy required

Factors Affecting Vaporization

1. Temperature

- Higher temperature increases the kinetic energy of molecules, leading to faster vaporization.
- **Boiling Point**: The temperature at which a liquid turns into vapor rapidly.
 - Example: Water boils at 100°C at 1 atm pressure.

2. Surface Area

• A larger surface area exposes more liquid molecules to the air, increasing vaporization.

THINK LIKE A PROTON

o Example: A wet cloth dries faster when spread out than when folded.

3. Humidity

- **Humidity** is the amount of water vapor present in the air.
 - High humidity slows down evaporation (air is already saturated with water vapor).
 - o **Low humidity** speeds up evaporation (air can absorb more vapor).

4. Wind Speed

- Moving air (wind) carries away water vapor, maintaining a lower vapor pressure near the liquid surface.
 - Example: Clothes dry faster on a windy day.

5. Nature of the Liquid

- **Volatile liquids** (e.g., alcohol, acetone) evaporate faster due to weak intermolecular forces.
- **Non-volatile liquids** (e.g., oil, honey) evaporate slowly due to strong intermolecular forces.

6. Pressure

- **Lower atmospheric pressure** reduces the boiling point, making vaporization easier.
 - Example: At high altitudes, water boils below 100°C due to lower air pressure.

10. What is Evaporation?

Evaporation is the process by which a liquid changes into a gas (vapor) at its surface and below its boiling point. It is a slow, surface-level phenomenon that occurs at all temperatures.

Key Features of Evaporation:

- Occurs **only at the surface** of a liquid.
- Happens at all temperatures (not just boiling point).
- A cooling process (absorbs heat from surroundings).
- Example: Drying of clothes, evaporation of sweat.

Factors Affecting Evaporation

1. Temperature

- Higher temperature → Faster evaporation
 - Increased heat provides more kinetic energy to molecules, helping them escape as vapor.
 - o Example: Water evaporates faster on a hot day than on a cold day.

2. Surface Area

- Larger surface area → Faster evaporation
 - More molecules are exposed to air, increasing the rate of escape.

 Example: A spilled liquid dries faster when spread out than when in a small container.

3. Humidity (Amount of Water Vapor in Air)

- Low humidity → Faster evaporation
 - Dry air absorbs more water vapor.
- High humidity → Slower evaporation
 - o Air is already saturated with moisture, reducing evaporation rate.
 - Example: Clothes dry slowly on a humid day.

4. Wind Speed

- Higher wind speed → Faster evaporation
 - Wind removes water vapor near the surface, allowing more molecules to escape.
 - Example: Wet clothes dry faster in windy conditions.

5. Nature of the Liquid

- Volatile liquids (e.g., alcohol, acetone) evaporate faster
 - Weak intermolecular forces make escape easier.
- Non-volatile liquids (e.g., oil, honey) evaporate slower
 - Strong intermolecular forces hold molecules together.

6. Pressure

- Lower pressure → Faster evaporation
 - o Reduced atmospheric pressure makes it easier for molecules to escape.
 - o Example: Water evaporates faster at high altitudes (low pressure).

THINK LIKE A PROTON

Cooling Effect of Evaporation

- Evaporation absorbs **latent heat** from the surroundings, causing cooling.
- Examples:
 - Sweating cools the body (water absorbs heat when evaporating).