The Kernel Abstraction

Slides adopted from CSE 451 class at UW, CS162 class at Berkeley and CSE 421/521 class at UB

อดีต

Single task system

ทำที่งนผล เพื่อใน้เกิด แProtection"

ปัจจุบัน

ทำใช้นกษานาในเวลาเสียากัน เช่น เปิด word พร้อม Chome

Activity #1 13,57

• การเปลี่ยนแปลงจากระบบแบบ single task ไปเป็นระบบ แบบ Multitask ... สิ่งที่จะต้องมีการปรับแต่งหรือเพิ่มเติมเข้า มาใน OS ได้แก่...

What does an OS do...

- Hiding Complexity ADD อก ของprocess เป็นแล้ว RUNใน windowอื่นได้
 Variety of HW
 E.g. different CPU, amout of RAM, I/O devices เมื่อน เป็น สฟค เสียร กันจะมด เลย
- Set of SW องุโน memory กลอดเวลา (แกนร์ขนาปฏิชัติกร) ตัวอื่น มีเท้า-จอก memory Kernel is the part of the OS that running all the time on the computer
 - Core part of the OS
 - -Manages system resources
 - Acts as a bridge between apps and HW

	_					
User Mode		Applications	(the users)	1 1		
		Standard Libs	shells and commands mpilers and interpreters system libraries			
		system-call interface to the kernel				
Kernel Mode	Kernel	signals terminal handling character I/O system terminal drivers	file system swapping block I/O system disk and tape drivers	CPU scheduling page replacement demand paging virtual memory		
		kernel interface to the hardware				
Hardware		terminal controllers terminals	device controllers disks and tapes	memory controllers physical memory		

One of the major goals of OS is... ที่ มาจอ พา interfearz ทำผิดกติก/ผิดภา ปิดตัวแต่ ใกพยางกมชนจึกชื่อมูลของมัน ฮน.ของ ใกล้างื่อใม่ได้ว่าปบารปิด

ระบบศึกษณฑ์ให้ จองที่

- Protecting Process and the Kernel
 - Running multiple programs
 - Keep them from interfering with the OS kernel
 - Keep them from interfering with each other

Activity #2: Protection: WHY?

เวลา 10 นาที

การ protect Process และ Kernel ทำให้เกิด impact อะไรกับระบบบ้าง และยังต้อง protect อะไรอีกบ้าง เพื่ออะไร

Reliability: buggy programs only hurt themselves

Security and privacy: trust programs less
process ครอบใส่สภามปลอดภัย อานข้อมูลคนอื่นไม่ใส่ privacy ค.พื้นส่วนตัวมีตับต่าๆขอ

Fairness: enforce shares of disk, CPU
protect hardware of mamorana alantitulitation

Protection: How? (HW/SW)

เวลา 10 นาที

```
Virsual add. & Virsua
                                                                                                                                                            System calls (SWishou) > Links HW/msis en ad I/O
Tu process all User mode la simetre
                                                                                   - Process
                                                                                                                          - System calls (SW interupts)
```


Hardware Support: Dual-Mode Operation

- Kernel mode
 - Execution with the full privileges of the hardware
 - Read/write to any memory, access any I/O device, read/write any disk sector, send/read any packet
- User mode
 - Limited privileges
 - Only those granted by the operating system kernel
- On the x86, mode stored in EFLAGS register
- On the MIPS, mode in the status register

Hardware Support: Dual-Mode Operation

- Privileged instructions
 - Available to kernel
 - Not available to user code
- Limits on memory accesses
 To prevent user code from overwriting the kernel
- Timer was interupt routine Jan kernal var kernal and kernal and kernal and the country count
- Safe way to switch from user mode to kernel mode, and vice versa

Privileged instructions

• Examples?

 What should happen if a user program attempts to execute a privileged instruction?

โปรแกรมอนางกล่ะ ซีลไปเอง

User Mode

- Application program
 - Running in process

Virtual Machine:VM

คอมพิวเพอร์เสมีอน

- Software emulation of an abstract machine
 - Give programs illusion they own the machine
 - Make it look like HW has feature you want
- 2 types of VM
 - Process VM หยาบารเชาะ window เน มีอาเสาะ ใช้อาลกันใต้
 - Supports the execution of a single program (one of the basic function of the OS)
 - System VM ละเอ็นก ลักลง HW พื้น 05 รีเป็น window ได้
 - Supports the execution of an entire OS and its applications

Process VMs

- GOAL:
 - Provide an isolation to a program
 - Processes unable to directly impact other processes
 - Boundary to the usage of a memory
 - · Fault isolation
 - Bugs in program cannot crash the computer
 - Portability (Program)
 - Write the program for the OS rather the HW

Kernel mode & User mode

Process Abstraction

พงนิรเพงใหม่ใ

• Process: an instance of a program, running with

limited rights

ังช่วีฟ- <mark>Thread:</mark> a sequence of instructions within a process

- Potentially many threads per process (for now 1:1)
- Address space: set of rights of a process
 - Memory that the process can access
 - Other permissions the process has (e.g., which system calls it can make, what files it can access)

Process

- 2 parts
 - PCB in kernel
 - Others in user

Process Control Block: PCB

- Kernel represents each process as a process control block (PCB)
 - Status (running, ready, blocked, ...)
 - Registers, SP, ... (when not running)
 - Process ID (PID), User, Executable, Priority, ...
 - Execution time, ... granslate
 - Themory space, translation tables, ...
- Kernel Scheduler maintains a data structure containing the PCBs
- Scheduling algorithm selects the next one to run

Address Space: In a Picture

Break