K-Map

Α	В	F
0	0	0
0	1	1
1	0	0
1	1	1

$$F = A'B + AB = B$$

A different way to draw a truth table!

Take advantage of adjacency

Keep common literal only!

Minimization with K-maps

- 1. Draw a K-map
- 2. Combine maximum number of 1's following rules:
 - Only adjacent squares can be combined
 - 2. All 1's must be covered
 - 3. Covering rectangles must be of size 1,2,4,8, ... 2ⁿ
- 3. Check if all covering are really needed
- 4. Read off the SOP expression

2-variable K-map

Given a function with 2 variables: F(X,Y), the total number of minterms are equal to 4:

$$m_0, m_1, m_2, m_3$$

The size of the k-map is always equal to the total number of minterms.

Each entry of the k-map corresponds to one minterm for the function:

Row 0 represents: X'Y', X'Y

Row 1 represents: XY', XY'

For a given function F(X,Y) with the following truth table, minimize it using k-maps

X	Y	F
0	0	0
0	1	0
1	0	1
1	1	1

The final reduced expression is given by the common literals from the combination:

Therefore, since for the combination, Y has different values (0, 1), and X has a fixed value of 1,

The reduced function is: F(X,Y) = X

- Q. Simplify the function $F(X,Y) = \sum m(1,2,3)$
- Sol. This function has 2 variables, and three 1-squares (three minterms where function is 1)

$$F = m_1 + m_2 + m_3$$

Note: The 1-squares can be combined more than once

Y is the common literal in the adjacent 1- squares

X is the common literal

Minimized expression: F = X + Y

2 variable K-Maps (Adjacency)

In an n-variable k-map, each square is adjacent to exactly *n* other squares

Q: What if you have 1 in all squares?

3-variable K-maps

For 3-variable functions, the k-maps are larger and look different.

Total number of minterms that need to be accommodated in the k-map = 8

To maintain adjacency neighbors don't have more than 1 different bit

3-variable K-maps

Note: You can only combine a power of 2 adjacent 1-squares. For e.g. 2, 4, 8, 16 squares. You cannot combine 3, 7 or 5 squares

Minterms m_0 , m_2 , m_4 , m_6 can be combined as m_0 and m_2 are adjacent to each other, m_4 and m_6 are adjacent to each other

m_o and m₄ are also adjacent to each other, m₂ and m₆ are also adjacent to each other

Simplify $F = \sum m(1, 3, 4, 6)$ using K-map

Simplify $F = \sum m(1, 3, 4, 6)$ using K-map

$$F = A'C + AC'$$

Simplify $F = \sum m(0,1, 2, 4, 6)$ using K-map

Simplify $F = \sum m(0,1, 2, 4, 6)$ using K-map

$$F = A' B' + C'$$

3 variable K-Maps (Adjacency)

A 3-variable map has 12 possible groups of 2 minterms

They become product terms with 2 literals

3 variable K-Maps (Adjacency)

A 3-variable map has 6 possible groups of 4 minterms

They become product terms with 1 literals

4-variable K-maps

A 4-variable function will consist of 16 minterms and therefore a size 16 k-map is needed

Each square is adjacent to 4 other squares

A square by itself will represent a minterm with 4 literals

Combining 2 squares will generate a 3-literal output

Combining 4 squares will generate a 2-literal output

Combining 8 squares will generate a 1-literal output

	、 CI	\mathbf{r}			<u> </u>		
	AB	00	01	['] 11	10	•	
	00	$m_{\scriptscriptstyle O}$	m_1	m_3	m_2		
	01	m_4	m_5	m_7	m_6]]	В
•	11	<i>m</i> ₁₂	<i>m</i> ₁₃	<i>m</i> ₁₅	m ₁₄		ט
Α	10	m_8	m_9	m_{11}	<i>m</i> ₁₀		
				<u> </u>			

4-variable K-maps (Adjacency)

、CI	D			
AB	00	01	11	10
00	m_0	m_1	m_3	m_2
01	m_4	m_5	m_7	m_6
11	<i>m</i> ₁₂	<i>m</i> ₁₃	<i>m</i> ₁₅	<i>m</i> ₁₄
10	m_8	m_9	<i>m</i> ₁₁	<i>m</i> ₁₀

Note: You can only combine a power of 2 adjacent 1-squares. For e.g. 2, 4, 8, 16 squares. You cannot combine 3, 7 or 5 squares

Right column and left column are adjacent; can be combined Top row and bottom column are adjacent; can be combined Many possible 2, 4, 8 groupings

Minimize the function $F(A,B,C,D)=\sum m(1,3,5,6,7,8,9,11,14,15)$

$$F = CD + A'D + BC + AB'C'$$

 $F(A,B,C,D) = \Sigma m(0,1,2,5,8,9,10)$

$$F(A,B,C,D) = \Sigma m(0,1,2,5,8,9,10)$$

Solution:

Example (POS)

 $F(A,B,C,D) = \Sigma m(0,1,2,5,8,9,10)$ Write F in the simplified product of sums (POS)

Two methods?
You already know one!

Example (POS)

 $F(A,B,C,D) = \Sigma m(0,1,2,5,8,9,10)$ Write F in the simplified product of sums (POS)

Method 2:

Follow same rule as before but for the ZEROs

$$F' = AB + CD + BD'$$

Therefore,

$$F'' = F = (A'+B')(C'+D')(B'+D)$$

Don't Cares

- In some cases, the output of the function (1 or 0) is not specified for certain input combinations either because
 - The input combination never occurs (Example BCD codes), or
 - We don't care about the output of this particular combination
- Such functions are called incompletely specified functions
- Unspecified minterms for these functions are called don't cares
- While minimizing a k-map with don't care minterms, their values can be selected to be either 1 or 0 depending on what is needed for achieving a minimized output.

$$F = \sum m(1, 3, 7) + \sum d(0, 5)$$

Circle the x's that help get bigger groups of 1's (or 0's if POS).

Don't circle the x's that don't help.

$$F = \sum m(1, 3, 7) + \sum d(0, 5)$$

Circle the x's that help get bigger groups of 1's (or 0's if POS).

Don't circle the x's that don't help.

F = C

 $F(A, B, C, D) = \sum m(1, 3, 7, 11, 15) + \sum d(0, 2, 5)$

- -Two possible solutions!
- -Both acceptable.
- -All 1's covered

 $(b) F = CD + \overline{A}D$

00

01

11

10

0

0

В

Src: Mano's Textbook