By kritika rawa	t A.
Data analysis o	on : tal Health Monitoring Using IoT
Dataset from	: Kaggel
Date	: 22 May 2025

University Mental Health Monitoring Using IoT

Overview

This project explores the use of IoT (Internet of Things) to monitor and improve the mental health of university students. It integrates real-time data collection through smart devices and applies data analysis techniques to detect stress, anxiety, and depression symptoms. The ultimate aim is to assist institutions in identifying at-risk students early and providing necessary mental health interventions.

Project Objective:

- To use IoT devices and sensors to gather physiological and environmental data indicative of mental health status.
- Analyze this data to detect patterns that may signal mental health issues like stress, anxiety, or depression.

Technologies Used:

- Python programming
- Libraries: pandas, matplotlib, seaborn, sklearn
- Jupyter Notebook for data visualization and modeling
- Machine Learning models for classification (e.g., logistic regression, random forest)

Facts and Observations

- IoT data can be a non-intrusive and continuous method of monitoring students' well-being.
- Accuracy of machine learning models is promising, depending on the dataset and features
 selected.
- Factors like lack of sleep, abnormal heart rate, and environmental stressors can be early signs of mental distress.
- Early detection is crucial for effective mental health support.

Analyzed Data Summary

Dataset Description

The project uses a dataset that simulates physiological and environmental data collected from university students via IoT devices. This data is used to assess their mental health status.

Features in the Dataset

The data includes a mix of biometric and lifestyle-related features such as:

- Heart Rate (bpm) to detect physical stress or anxiety.
- Body Temperature (°C) variations may indicate stress or illness.
- Sleep Duration (hours) sleep deprivation is linked to poor mental health.
- Physical Activity Level daily steps or movement can signal well-being.
- Environmental Factors:
 - Noise Level excessive noise is a stressor.
 - Light Exposure affects circadian rhythm and mood.
 - o Ambient Temperature comfort level affects mental state.
- Mental Health Status target variable (e.g., "Normal", "Stressed", "Depressed")

Important Observations

Mental Health Status Correlations

- Stress Level → 0.83
 - ➤ Strong positive correlation as stress increases, mental health worsens.
- Air Quality Index → 0.47
 - ► Moderate positive correlation poor air quality is linked to poorer mental health.
- Noise Level → 0.19
 - ➤ Weak positive correlation higher noise may slightly affect mental health.
- Sleep Hours → -0.36
 - ➤ Moderate negative correlation less sleep is associated with worse mental health.
- Mood Score → -0.33
 - ➤ Negative correlation lower mood corresponds to poor mental health.

Notable Correlations

- - ➤ Poor air quality increases stress levels.

- Stress Level ↔ Sleep Hours → -0.44
 - ➤ Less sleep increases stress.
- Stress Level ↔ Mood Score → -0.41
 - ➤ High stress leads to lower mood.

Model Performance Analysis

Below is a detailed interpretation of the classification results of your mental health prediction model:

Overall Accuracy

- Accuracy: 0.995 (99.5%)
 - ➤ The model correctly predicts the mental health status for 99.5% of the test data this is very high accuracy.

🚺 Classification Report Breakdown

Class Meaning Precision Recall F1-Score Support

- 0 Healthy 1.00 1.00 1.00 101 1 At Risk 0.99 1.00 0.99 98 Affected 0.00 0.00 0.00
- Key Points:
 - Classes 0 (Healthy) and 1 (At Risk) are predicted extremely well almost perfect scores.

1

- Class 2 (Affected) has 0 precision, recall, and F1-score, meaning the model failed to detect this class.
 - o Likely due to severe class imbalance (only 1 instance of class 2 in the test set).