

A bit of history...

Issac Newton and Edmund Halley

Tycho Brahe and Johannes Kepler, Statue in Prague, Czech Republic

Rules of thumb

- Newton's laws of motion
- Newton's law of gravitation
- Kepler's laws of planetary motion
 - <u>First Law</u> The orbit of each planet is an ellipse, with the Sun at a focus
 - <u>Second Law</u> The line joining the planet to the Sun sweeps out equal areas in equal times.
 - <u>Third Law</u> The square of the period of a planet is proportional to the cube of its mean distance from the Sun.

Mathematical description of orbits

Equations of motion: $\ddot{r} + \frac{\mu}{r^3} r = 0$

Analytical solution: $r = \frac{h^2/\mu}{1 + (B/\mu)\cos(\nu)}$

General equation of a conic section:

$$r = \frac{p}{1 + e\cos(\nu)}$$

All orbits in a two-body system are conic sections!

Geometry of an orbit

Relationship between Energy and geometry of orbit:

$$\mathcal{E} = -\frac{\mu}{2a}$$

$$e = \sqrt{1 + \frac{2\mathcal{E}h^2}{\mu^2}}$$

where $\mathcal{E} = E/\mu$ is specific orbital energy

- Elliptical ($0 \le e < 1, \varepsilon < 0$)
- Parabolic (e = 1, \mathcal{E} = 0)
- Hyperbolic (e > 1, $\varepsilon > 0$)

Orbital elements

- Semi-major axis (a)
- Eccentricity (e)
- Inclination (i)
- Longitude of the ascending node (Ω)
- Argument of periapses (ω)
- True anomaly (ν)

Achieving and Maintaining Orbit

Credits: NASA

Orbit determination and prediction

The Raisting Satellite Earth Station, Germany

Orbital state vectors of a satellite in orbit around earth

Orbit determination and prediction

Credits: David A Vallado

Orbit determination and prediction

TLEs along with Simplified General Perturbations models (SGP, <u>SGP4</u>, SDP4, SGP8 and SDP8) are used for orbit prediction

Credits: NASA

Intermission

Space Situational Awareness

Components of SSA

Why is SSA important?

Number of Cataloged Objects in LEO

Source: NASA

Number of Cataloged Objects in GEO

Source: NASA

The threat of orbital space debris

Spatial density of objects > 10 cm

Credits: ESA

Debris damage

Credits: https://www.spaceacademy.net.au/watch/debris/gsd/gsd.htm

Worst collisions in history

2007 Chinese anti-satellite missile test

View of ISS Orbit (green band) and LEO satellites (green dots) along with debris ring (red) from Chinese ASAT Test

Credit: Dr. Thomas Kelso at CSSI (Center for Space Standards and Innovation)

2009 Iridium - Cosmos collision

Point of collision between Iridium 33 and Kosmos 2251 alongside the debris field after 50 minutes

Collision Avoidance

Identify conjunctions

 by propagating objects' orbits into the future

Generate CDMs

 containing information regarding the conjunction

Propose maneuvers

 By analyzing CDMs that show high risk of collision

Sustainability of Space

Debris Mitigation - Minimize creation of future debris

- Prevent in-orbit explosions and collisions
- Post-mission disposal

Space Traffic Management - Minimize effect of debris on spacecraft

- Collision avoidance
- Spacecraft shielding

Debris Removal - Remove existing debris from orbit

Dedicated space mission

Further Reading

- 1. Fundamentals of Astrodynamics by Roger R. Bate, Donald D. Mueller and Jerry E. White
- 2. Fundamentals of Astrodynamics and Applications by David A. Vallado
- 3. An Overview Of Space Situational Awareness. https://www.spaceacademy.net.au/intell/ssa.htm
- 4. SSA Programme Overview. https://www.esa.int/Safety_Security/SSA_Programme_overview_
- 5. Space traffic management in the new space era. Muelhaupt et. al. The Journal of Space Safety Engineering (2019)

