Quiz 2 (Section 2)

Started: Mar 3 at 4:53pm

Quiz Instructions

Question 1	1 pts
Let $oldsymbol{G}^R$ be the reverse graph of directed graph $oldsymbol{G}$. Which one of the following is NOT true?	
\bigcirc If $m{G}$ is a DAG then $m{G^R}$ is also a DAG.	
$ullet$ If $oldsymbol{u}$ can reach $oldsymbol{v}$ in $oldsymbol{G}$, then $oldsymbol{G}^R$ is not a DAG.	
$igcup$ The meta-graph of G has the same number of edges with the meta-graph of G^R .	
\bigcirc The reverse graph of G^R is G .	

Question 2 1 pts

How many connected components in the undirected graph below given by its adjacency matrix?

- O 2
- 0 1
- O 4
- 3

Question 3 1 pts

We are in the middle of running Dijkstra's algorithm on the graph given below starting from s: the first 4 vertices that are closest to s are marked as R_4 ; their distance from s is marked as red numbers. Which one will be the 5-th closest vertex from s?

- vertex b
- vertex j
- o vertex c
- o vertex h

Question 4 1 pts

If G has n vertices, how many edges can G have at most assuming G is a DAG? Choose the most accurate number.

- o n(n-1)/2
- n(n-1)
- $n^2/2$
- n^2

Let ${m G}$ be a directed graph with positive edge length and let ${m p}$ be one shortest path from ${m u}$ to ${m v}$. (A): If we increase

by 2, then $m{p}$ is still one shortest path from $m{u}$ to $m{v}$.	If we divide the length of every edge
○ (A) is true and (B) is true.	
(A) is false and (B) is true.	
(A) is true and (B) is false.	
(A) is false and (B) is false.	
Question 6	1 pts
Suppose that after running DFS-with-timing on a directed graph $m{G}$, the [pre, po $[m{4,5}]$ respectively. Which one of the following is true?	ost] values for $oldsymbol{u}$ and $oldsymbol{v}$ are $[3,10]$ and
$oldsymbol{u}$ and $oldsymbol{v}$ must be in the same connected component.	
\bigcirc $m{u}$ and $m{v}$ must be not in the same connected component.	
\bigcirc $oldsymbol{v}$ can reach $oldsymbol{u}$	
$oldsymbol{v}$ can reach $oldsymbol{v}$	
onone of the others is true.	
Question 7	1 pts
Assume we have a directed graph $m{G}$. Would the algorithm below give us all cold, run DFS with timing on $m{G}$ to get $m{postlist}$, Step 2, run DFS on $m{G_R}$ with order	
False	

Question 5

1 pts

Question 8 1 pts

How many linearization does this graph have?

- 6
- <u>_</u> 8
- 0 10
- o 16

Question 9 1 pts

Let G be a directed graph possibly with positive edge length. Let $v_1 \to v_2 \to v_3 \to v_4$ be one shortest path from v_1 to v_4 . Let $v_3 \to v_4 \to v_5 \to v_6$ be one shortest path from v_3 to v_6 . Which one of the following is NOT true?

- $o \ distance(v_1, v_3) + distance(v_3, v_6) = distance(v_1, v_6).$
- On The path $v_3
 ightarrow v_4
 ightarrow v_5$ is one shortest path from v_3 to v_5 .
- $omega distance(v_1, v_4) \geq distance(v_2, v_3)$.
- ${}^{\circ}$ The path $v_2 o v_3 o v_4$ is one shortest path from v_2 to v_4 .

Question 10 1 pts

How many vertices are in the meta-graph of the following graph?

- \bigcirc 1
- 3
- 0 4
- O 2

Quiz saved at 4:55pm

Submit Quiz

- 1. (1 pts.) In fact, u can reach v in G^R is equivalent to that v can reach u in G. But this does not guarantee that there must be a cycle in G. Other three statements are all true.
- **2.** (1 pts.) The graph is given below, which has 3 connected components.

- **3.** (1 pts.) With respect to R_4 , we have $dist[b] = min\{6 + 7, 3 + 12\} = 13$, dist[c] = 9 + 8 = 17, dist[h] = 9 + 8 = 17, dist[j] = 9 + 6 = 15. So vertex b is the 5-th closest vertex from s.
- **4.** (1 pts.) The first vertex can have at most n-1 edges to connect with all other vertices. The second vertex can have at most n-2 edge to connect with all other vertices besides the first vertex. Following this way of building G, the second last vertex can have at most 1 edge to connect with the last vertex, and the last vertex can't have any edge. As a result, G can have at most overall $\sum_{i=1}^{n-1} i = n \cdot (n-1)/2$ edges.
- **5.** (1 pts.) Statement (A) is false. The key is that the number of edges in shortest paths may be different. Counter-example: $p = \{e_1 = 1, e_2 = 1\}$ is the shortest path from u to v, and we have another path $p' = \{e_3 = 3\}$ from u to v. If we increase the length of every edge by 2, the length of p becomes 6, the length of p' becomes 5, then p is no longer the shortest path from u to v.

Statement (B) is true. The key is that the length of *every* path is doubled. So their relationship remains.

- **6.** (1 pts.) The [4, 5] for v is contained in interval [3, 10] for u. In other words, v is explored within exploring u. Therefore, u can reach v. Other statements are all false.
- 7. (1 pts.) We know that G and G_R have the same collection of connected components. The given algorithm is to find connected component of G_R .
- **8.** (1 pts.) Notice that there is a path $a \to b \to f \to e$. So the relative positions of these 4 vertices are fixed. Vertex c can be either between b and f, or between f and e; in either case, which gives a list of 5 vertices, d can be placed in any of the 4 spaces in between. So, the total number of distinct linearization is 8.
- **9.** (1 pts.) (a), This statement is false: we have that $v_1 \to v_2 \to v_3$ is one shortest path from v_1 to v_3 and that $v_3 \to v_4 \to v_5 \to v_6$ is one shortest path from v_3 to v_6 , but these two does not imply that $v_1 \to v_2 \to v_3 \to v_4 \to v_5 \to v_6$ is one shortest path from v_1 to v_6 .
 - (b), According to the optimal substructure property, since $v_3 \to v_4 \to v_5 \to v_6$ is one shortest path from v_3 to v_6 , we have that $v_3 \to v_4 \to v_5$ is one shortest path from v_3 to v_5 .
 - (c), The statement that $distance(v_1, v_4) \ge distance(v_2, v_3)$ is also correct, as all edge lengths are positive.

(d), According to the optimal substructure property, since $v_1 \to v_2 \to v_3 \to v_4$ is one shortest path from v_1 to v_4 , we know that $v_2 \to v_3 \to v_4$ is one shortest path from v_2 to v_4 .

