

Improved Rectangle Attacks on SKINNY and CRAFT

Hosein Hadipour Nasour Bagheri **Ling Song**

FSE 2022 - Athens, Greece

Outline

- Boomerang and Sandwich Distinguishers
- Our Method To Find Sandwich Distinguishers
- 3 BCT Framework and Our New Tools
- 4 Application to CRAFT
- 5 Application to SKINNY
- 6 Conclusion

Boomerang and Sandwich Distinguishers

Long Weak Differentials V.S. Two Short Strong Differentials

$$\Delta \longrightarrow \left[E : \mathbb{F}_2^n \to \mathbb{F}_2^n \right] \longrightarrow \nabla$$

$$0 \lneq \Pr\{\Delta \xrightarrow{E} \nabla\} \lll 2^{-n}$$

Long Weak Differentials V.S. Two Short Strong Differentials

Upper and Lower Parts are Not Independent in Practice!

From the attacker's perspective:

- Dependency can have a positive effect
 - Feistel Switch [Wag99]
 - Ladder Switch and S-box Switch [BK09]
- Dependency can have a negative effect
 - Inconsistency between the upper and lower trail [Mur11]

Sandwich Distinguisher [DKS10; DKS14]

$$r = r(\Delta_2, \nabla_3) = \Pr\{E_m^{-1}(E_m(x) \oplus \nabla_3) \oplus E_m^{-1}(E_m(x \oplus \Delta_2) \oplus \nabla_3) = \Delta_2\}$$

Sandwich Distinguisher [DKS10; DKS14]

$$\Pr\left(P_3 \oplus P_4 = \Delta_1\right) = \sum_{\Delta_2, \Delta_2', \nabla_3, \nabla_2'} p_{\nabla 3} \times p_{\nabla_3'} \times r\left(\Delta_2, \Delta_2', \nabla_3, \nabla_3'\right) \times q_{\nabla_3} \times q_{\nabla_3'}$$

Ladder Switch

$$r = r(\Delta_2, \nabla_3) = \Pr\{E_m^{-1}(E_m(x) \oplus \nabla_3) \oplus E_m^{-1}(E_m(x \oplus \Delta_2) \oplus \nabla_3) = \Delta_2\}$$

$$\Delta_2 = 0 \Longrightarrow r = r(0, \nabla_3) = 1$$

$$\nabla_3 = 0 \Longrightarrow r = r(\Delta_2, 0) = 1$$

Ladder Switch

$$r = r(\Delta_2, \nabla_3) = \Pr\{E_m^{-1}(E_m(x) \oplus \nabla_3) \oplus E_m^{-1}(E_m(x \oplus \Delta_2) \oplus \nabla_3) = \Delta_2\}$$

$$\Delta_2 = 0 \Longrightarrow r = r(0, \nabla_3) = 1$$

$$\nabla_3 = 0 \Longrightarrow r = r(\Delta_2, 0) = 1$$

Ladder Switch

$$r = r(\Delta_2, \nabla_3) = \Pr\{E_m^{-1}(E_m(x) \oplus \nabla_3) \oplus E_m^{-1}(E_m(x \oplus \Delta_2) \oplus \nabla_3) = \Delta_2\}$$

$$\Delta_2 = 0 \Longrightarrow r = r(0, \nabla_3) = 1$$

$$\nabla_3 = 0 \Longrightarrow r = r(\Delta_2, 0) = 1$$

Effective Parameters in p^2q^2r for SPN Ciphers

- Θ p is mostly determined by the number of active S-boxes in E_0
- Θ q is mostly determined by the number of active S-boxes in E_1
- \odot r is mostly determined by the number of common active S-boxes in E_m
- \triangle Active S-boxes in E_0, E_1 are more expensive than common active S-boxes in E_m

- Find the truncated upper and lower trails minimizing
 - number of active S-boxes in outer parts
 - and number of common active S-boxes in the middle part
- Instantiate the discovered truncated trails with concrete differential trails
- \bigcirc Compute p, q and r to derive the entire probability, i.e., p^2q^2r

- Find the truncated upper and lower trails minimizing:
 - number of active S-boxes in outer parts
 - and number of common active S-boxes in the middle part
- Instantiate the discovered truncated trails with concrete differential trails
- \bigcirc Compute p, q and r to derive the entire probability, i.e., p^2q^2r

- Find the truncated upper and lower trails minimizing:
 - number of active S-boxes in outer parts
 - and number of common active S-boxes in the middle part
- Instantiate the discovered truncated trails with concrete differential trails
- \bigcirc Compute p, q and r to derive the entire probability, i.e., p^2q^2r

- ♦ Find the truncated upper and lower trails minimizing:
 - number of active S-boxes in outer parts
 - and number of common active S-boxes in the middle part
- Instantiate the discovered truncated trails with concrete differential trails
- \bigcirc Compute p, q and r to derive the entire probability, i.e., p^2q^2r

$$u_i - s_i \ge 0, \ \ell_i - s_i \ge 0, \ -u_i - \ell_i + s_i \ge -1$$

- We Instantiate the first and last parts with concrete bit-wise differentials
- → To compute p, q and r we fix the differences at only four positions
- \triangle Our distinguishers do not rely on differential characteristics for E_0, E_1, E_m

- → We Instantiate the first and last parts with concrete bit-wise differentials
- → To compute p, q and r we fix the differences at only four positions
- $oldsymbol{A}$ Our distinguishers do not rely on differential characteristics for E_0, E_1, E_m

- → We Instantiate the first and last parts with concrete bit-wise differentials
- \odot To compute p, q and r we fix the differences at only four positions
- \triangle Our distinguishers do not rely on differential characteristics for E_0, E_1, E_n

- → We Instantiate the first and last parts with concrete bit-wise differentials
- \odot To compute p, q and r we fix the differences at only four positions
- \triangle Our distinguishers do not rely on differential characteristics for E_0, E_1, E_m

BCT Framework And Our New Tools

- $\mathcal{X}_{\mathrm{DDT}}(\Delta_1, \Delta_2) = \{x : S(x) \oplus S(x \oplus \Delta_1) = \Delta_2\}, \quad \mathrm{DDT}(\Delta_1, \Delta_2) = \#\mathcal{X}_{\mathrm{DDT}}(\Delta_1, \Delta_2)$

- $\mathcal{X}_{\text{DDT}}(\Delta_1, \Delta_2) = \{x : S(x) \oplus S(x \oplus \Delta_1) = \Delta_2\}, \quad \text{DDT}(\Delta_1, \Delta_2) = \#\mathcal{X}_{\text{DDT}}(\Delta_1, \Delta_2)$
- $\mathcal{X}_{\mathrm{BCT}}(\Delta_1, \nabla_2) = \{x : S^{-1}(S(x) \oplus \nabla_2) \oplus S^{-1}(S(x \oplus \Delta_1) \oplus \nabla_2) = \Delta_1\}, \ \mathrm{BCT}(\Delta_1, \nabla_2) = \#\mathcal{X}_{\mathrm{BCT}}(\Delta_1, \nabla_2) \ [\mathsf{Cid} + 18]$

- $\mathcal{X}_{\mathrm{BCT}}(\Delta_1, \nabla_2) = \{x : S^{-1}(S(x) \oplus \nabla_2) \oplus S^{-1}(S(x \oplus \Delta_1) \oplus \nabla_2) = \Delta_1\}, \ \mathrm{BCT}(\Delta_1, \nabla_2) = \#\mathcal{X}_{\mathrm{BCT}}(\Delta_1, \nabla_2) \ [\mathsf{Cid} + 18]$

BCT Framework

- $\mathcal{X}_{\mathrm{BCT}}(\Delta_1, \nabla_2) = \{x : S^{-1}(S(x) \oplus \nabla_2) \oplus S^{-1}(S(x \oplus \Delta_1) \oplus \nabla_2) = \Delta_1\}, \ \mathrm{BCT}(\Delta_1, \nabla_2) = \#\mathcal{X}_{\mathrm{BCT}}(\Delta_1, \nabla_2) \ [\mathsf{Cid} + 18]$

BCT Framework

- $\mathcal{X}_{\mathrm{BCT}}(\Delta_1, \nabla_2) = \{x : S^{-1}(S(x) \oplus \nabla_2) \oplus S^{-1}(S(x \oplus \Delta_1) \oplus \nabla_2) = \Delta_1\}, \ \mathrm{BCT}(\Delta_1, \nabla_2) = \#\mathcal{X}_{\mathrm{BCT}}(\Delta_1, \nabla_2) \ [\mathsf{Cid} + 18]$

Double Boomerang Connectivity Table (DBCT)

- igotagraphi DBCT $^{\vdash}(\Delta_1, \Delta_2, \nabla_3) = \sum_{\nabla_2} ext{UBCT}(\Delta_1, \nabla_2, \Delta_2) \cdot ext{LBCT}(\Delta_2, \nabla_3, \nabla_2)$
- $igotimes ext{DBCT}^\dashv(\Delta_1,
 abla_2,
 abla_3) = \sum_{\Delta_2} ext{UBCT}(\Delta_1,
 abla_2, \Delta_2) \cdot ext{LBCT}(\Delta_2,
 abla_3,
 abla_2).$
- $igotag{}$ DBCT $(\Delta_1, \nabla_3) = \sum_{\Delta_2} \mathtt{DBCT}^{\vdash}(\Delta_1, \Delta_2, \nabla_3) = \sum_{\nabla_2} \mathtt{DBCT}^{\dashv}(\Delta_1, \nabla_2, \nabla_3).$

Double Boomerang Connectivity Table (DBCT)

- igotagraphi DBCT $^{\vdash}(\Delta_1, \Delta_2, \nabla_3) = \sum_{\nabla_2} ext{UBCT}(\Delta_1, \nabla_2, \Delta_2) \cdot ext{LBCT}(\Delta_2, \nabla_3, \nabla_2)$
- $igotag{}$ DBCT $(\Delta_1, \nabla_3) = \sum_{\Delta_2} \mathtt{DBCT}^{\vdash}(\Delta_1, \Delta_2, \nabla_3) = \sum_{\nabla_2} \mathtt{DBCT}^{\dashv}(\Delta_1, \nabla_2, \nabla_3)$

Double Boomerang Connectivity Table (DBCT)

$$\Delta_1 \xrightarrow{\hspace*{1cm}} * \\ \hspace*{1cm} \times \\ \hspace*{1cm} \nabla_3$$

- igotagraphi DBCT $^{\vdash}(\Delta_1, \Delta_2, \nabla_3) = \sum_{\nabla_2} \text{UBCT}(\Delta_1, \nabla_2, \Delta_2) \cdot \text{LBCT}(\Delta_2, \nabla_3, \nabla_2)$

Application to CRAFT

CRAFT [Bei+19]

A 6-round ST Deterministic Distinguisher for CRAFT

A 6-round ST Deterministic Distinguisher for CRAFT

A 6-round ST Deterministic Distinguisher for CRAFT

A 7-round Distinguisher (Extendable up to 14 rounds)

A 7-round Distinguisher (Extendable up to 14 rounds)

A 7-round Distinguisher (Extendable up to 14 rounds)

$$\begin{split} \text{DBCT}_{\text{total}} &= \text{DBCT}^{\vdash}(A_{5}, B_{9}, c_{5}) \cdot \text{DBCT}^{\vdash}(B_{9}, C_{12}, d_{1}) \cdot \text{DBCT}^{\dashv}(E'_{1}, f'_{12}, g'_{9}) \cdot \text{DBCT}^{\dashv}(F'_{5}, g'_{9}, h_{5}) \\ \text{Pr}_{\text{total}} &= \text{Pr}(d_{1} \xleftarrow{2 \text{ DDT}} f'_{12}) \cdot \text{Pr}(c_{5} \xleftarrow{3 \text{ DDT}} f'_{12}) \cdot \text{Pr}(C_{12} \xrightarrow{2 \text{ DDT}} E'_{1}) \cdot \text{Pr}(C_{12} \xrightarrow{3 \text{ DDT}} F'_{5}) \\ r &= 2^{-8 \cdot n} \cdot \sum_{B_{9}} \sum_{C_{12}} \sum_{g'_{9}} \sum_{f'_{12}} \sum_{c_{5}} \sum_{d_{1}} \sum_{E'_{1}} \sum_{F'_{5}} \text{DBCT}_{\text{total}} \cdot \text{Pr}_{\text{total}}. \end{split}$$

Summary of Our Distinguishers for CRAFT

Distinguisher Type	# Rounds	Probability	Reference		
ST-Differential	9	2-40.20			
	10	$2^{-44.89}$			
	11	$2^{-49.79}$	[Had+10]		
	12	$2^{-54.48}$	[Had+19]		
	13	$2^{-59.13}$			
	14	$2^{-63.80}$			
ST-Boomerang	6	1			
	7	2 ⁻⁴			
	8	2^{-8}			
	9	2 ^{-14.76}	This Dance		
	10	2 ^{-19.83}	This Paper		
	11	2 ^{-24.90}			
	12	2 ^{-34.89}			
	13	2-44.89			
	14	$2^{-55.85}$			

Application to SKINNY

SKINNY [Bei+16]

18-round Practical Sandwich Distinguisher for SKINNY-128-256

Summary of Our Distinguishers for SKINNY

			Probability		
Version	n	#Rounds	Our Distinguisher	[SQH19]	
SKINNY-n-2n	64	17	2 ^{-26.54} (II)	$2^{-29.78}$	
		18	2 ^{-37.90} (II)	$2^{-45.14}$	
		19	2 ^{-51.08} (II)	$2^{-65.62}$	
	128	18	2 ^{-40.77} (II)	$2^{-77.83}$	
		19	2 ^{-58.33} (II)	$2^{-97.53}$	
		20	2 ^{-85.31} (I)	$2^{-128.65}$	
		21	2 ^{-114.07} (II)	$2^{-171.77}$	
SKINNY-n-3n	64	22	2 ^{-38.84} (I)	$2^{-42.98}$	
		23	2 ^{-52.84} (I)	$2^{-67.36}$	
	128	22	2 ^{-40.57} (I)	$2^{-48.30}$	
		23	2 ^{-56.47} (I)	$2^{-75.86}$	
		24	2 ^{-87.39} (I)	$2^{-107.86}$	
		25	2 ^{-116.59} (I)	$2^{-141.66}$	

Summary of Our Key Recovery Attacks

Scheme	#rounds	Data	Memory	Time	Attack	P_s	Reference
SKINNY-64-128	23/36	2 ^{60.54}	2 ^{60.9}	2 ^{120.7}	Rectangle	0.977	This paper
SKINNY-64-192	29/40	2 ^{61.42}	2 ⁸⁰	2 ¹⁷⁸	Rectangle	0.977	This paper
SKINNY-128-256	24/48	$2^{125.21}$	$2^{125.54}$	2 ^{209.85}	Rectangle	0.977	This paper
SKINNY-128-384	30/56	2 ^{125.29}	$2^{125.8}$	2 ^{361.68}	Rectangle	0.977	This paper
CRAFT	18/32	2 ^{60.92}	2 ⁸⁴	2 ^{101.7}	Rectangle	0.977	This paper
SKINNY-64-128	23/36	2 ^{62.47}	2 ¹²⁴	2 ^{125.91}	Impossible	1	[LGS17]
SKINNY-64-192	27/40	2 ^{63.5}	2 ⁸⁰	2 ^{165.5}	Rectangle	0.916	[LGS17]
SKINNY-128-256	23/48	2124.47	2 ²⁴⁸	2 ^{251.47}	Impossible	1	[LGS17]
SKINNY-128-384	28/56	2 ¹²²	2122.32	2 ^{315.25}	Rectangle	0.8315	[Zha+20]

Conclusion

Our Main Contributions

- ❷ We introduced a heuristic method to search for sandwich distinguishers
- We introduced new tools in BCT framework (DBCT, ...)
- ❷ We significantly improved the rectangle attacks on SKINNY and CRAFT

Thanks for your attention!

https://github.com/hadipourh/Boomerang

Bibliography I

- [Bei+16] Christof Beierle et al. The SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS. CRYPTO (2). Vol. 9815. Lecture Notes in Computer Science. Springer, 2016, pp. 123–153.
- [Bei+19] Christof Beierle et al. CRAFT: Lightweight Tweakable Block Cipher with Efficient Protection Against DFA Attacks. IACR Trans. Symmetric Cryptol. 2019.1 (2019), pp. 5–45.
- [BK09] Alex Biryukov and Dmitry Khovratovich. Related-Key Cryptanalysis of the Full AES-192 and AES-256. ASIACRYPT. Vol. 5912. Lecture Notes in Computer Science. Springer, 2009, pp. 1–18.
- [Cid+18] Carlos Cid et al. Boomerang Connectivity Table: A New Cryptanalysis Tool. EUROCRYPT (2). Vol. 10821. Lecture Notes in Computer Science. Springer, 2018, pp. 683–714.
- [DKS10] Orr Dunkelman, Nathan Keller, and Adi Shamir. A Practical-Time Related-Key Attack on the KASUMI Cryptosystem Used in GSM and 3G Telephony. CRYPTO. Vol. 6223. Lecture Notes in Computer Science. Springer, 2010, pp. 393–410.
- [DKS14] Orr Dunkelman, Nathan Keller, and Adi Shamir. A Practical-Time Related-Key Attack on the KASUMI Cryptosystem Used in GSM and 3G Telephony. J. Cryptol. 27.4 (2014), pp. 824–849.

Bibliography II

- [Had+19] Hosein Hadipour et al. Comprehensive security analysis of CRAFT. IACR Trans. Symmetric Cryptol. 2019.4 (2019), pp. 290–317.
 [LGS17] Guozhen Liu, Mohona Ghosh, and Ling Song. Security Analysis of SKINNY under Related-Tweakey Settings. IACR Transactions on Symmetric Cryptology 2017.3 (Sept. 2017). https://tosc.iacr.org/index.php/ToSC/article/view/765, pp. 37–72. DOI: 10.13154/tosc.v2017.i3.37–72.
- [Mur11] Sean Murphy. The Return of the Cryptographic Boomerang. IEEE Trans. Inf. Theory 57.4 (2011), pp. 2517–2521.
- [SQH19] Ling Song, Xianrui Qin, and Lei Hu. Boomerang Connectivity Table Revisited. Application to SKINNY and AES. IACR Trans. Symmetric Cryptol. 2019.1 (2019), pp. 118–141.
- [Wag99] David A. Wagner. The Boomerang Attack. FSE. Vol. 1636. Lecture Notes in Computer Science. Springer, 1999, pp. 156–170.
- [WP19] Haoyang Wang and Thomas Peyrin. Boomerang Switch in Multiple Rounds. Application to AES Variants and Deoxys. *IACR Trans. Symmetric Cryptol.* 2019.1 (2019), pp. 142–169.

Bibliography III

[Zha+20] Boxin Zhao et al. Generalized related-key rectangle attacks on block ciphers with linear key schedule: applications to SKINNY and GIFT. Designs, Codes and Cryptography 88.6 (2020), pp. 1103–1126.