A Research Centered Approach to Sharing Patient Data While Protecting Patient Privacy

Qingbo Wang, Gaurav Luthria

Goals

Objective: Identify a solution for sharing patient data while maintaining patient privacy

Our Approach (Two Fold)

- Advanced Querying Language
 - Group by / aggregation / custom filtering / statistical test
 - Custom threshold to exclude outliers
 - Keeps the raw data secure in the cloud
- Realistic Synthetic Data Generation from the Query
 - Robust
 - Produce Realistic data
 - Suppress Outliers (outliers are the most easily identifiable)
 - Does not require model complexities or parameters
 - Work with smaller datasets

Query the Original Data

```
d = d[d.REGION_C==1]
d.groupby("EVENT").agg("AVGDOS_N").
describe()

case = np.array(d[d.MALE]["EVENT"])
oth = np.array(d[~d.MALE]["EVENT"])
stats.ttest_ind(case, oth)

case = np.array(d[d["AGE"]<70]
["TRTN"])
oth = np.array(d[d["AGE"]>70]
["TRTN"])
tst = stats.chisquare(case, oth)
```

Generate Synthetic Data from Query

MASK_ID E TEXT TT EVENT EVENT RFS back date recurrence to midpoint 805 0.0 MASK_ID PARNAM1C PARNAM1A PARUNT1C LABRSL1N 0 **CREA** Creatinine mg/dL 10.666667 PLAT2 Platelet Count thous/mm3 216.666667 0 Lab Results SGOT AST 83.333333 U/L 131.666667 0 **SGPT** ALT

Downstream Analysis
Use Vivli Platform to
validate analysis on real
data

MASK_ID	TERMREAS	AVGDOS_N	AVGDOS_C
0	4.0	292.623333	1.0
1	4.0	256.606667	1.0
2	4.0	294.456667	1.0
3	1.0	298.210000	1.0

Drug Exposure Data

Real Data

(Cloud)

Efficacy Sensitivity
Analysis

Generating Synthetic Data

Want to Generate Synthetic Data that is Robust, Realistic, Suppresses Outliers **Method: Permutation Test**

Demo

https://drive.google.com/file/d/1nPdZNeYrEvshGEoLx7ntUHco3-gpT0kq/view?usp=sharing