# Lecture 2 Image Formation

COMP3204 & COMP6223 Computer Vision

What is inside an image?







#### Decomposing an image into its bits



(a) original image







**(f)** bit 4



**(c)** bit 1



(**g**) bit 5



**(d)** bit 2



**(h)** bit 6



**(e)** bit 3



(i) bit 7 (MSB)

#### Effects of differing image resolution











(a)  $64 \times 64$ 

**(b)** 128×128

(c)  $256 \times 256$ 

#### Jean Baptiste Joseph Fourier

- Any periodic function is the result of adding up sine and cosine waves of different frequencies
- Sceptical? Yeah, so were Lagrange and Laplace. Good company eh?
- "Fourier's treatise is one of the very few scientific books that can never be rendered antiquated by the progress of science"
   James Clerk Maxwell 1878
- Fourier 10 Laplace 0 ...



#### What are 2D waves?

2D waves are along x and y axes simultaneously



#### and in terms of frequency

• N.b. colour immaterial (just for visuals)









### Step up Monsieur Fourier...

$$Fp(\omega) = \Im(p(t)) = \int_{-\infty}^{\infty} p(t)e^{-j\omega t}dt$$

where:  $Fp(\omega)$  is the Fourier transform, and  $\Im$  denotes the Fourier transform process;

 $\omega$  is the **angular** frequency,  $\omega = 2\pi f$  measured in **radians/s** (where the frequency f is the reciprocal of time t, f = 1/t);



j is the complex variable  $j = \sqrt{-1}$  (electronic engineers prefer j to i since they cannot confuse it with the symbol for current; perhaps they don't want to be mistaken for mathematicians who use  $i = \sqrt{-1}$ )



p(t) is a **continuous** signal (varying continuously with time); and

 $e^{-j\omega t} = \cos(\omega t) - j\sin(\omega t)$  gives the frequency components in p(t).

#### What does the Fourier transform do?







## Zut alors! On doit applique ca

• Pulse 
$$p(t) = \begin{vmatrix} A & \text{if } -T/2 \le t \le T/2 \\ 0 & \text{otherwise} \end{vmatrix}$$

• Use Fourier 
$$Fp(\omega) = \int_{-T/2}^{T/2} Ae^{-j\omega t} dt$$

• Evaluate integral 
$$Fp(\omega) = -\frac{Ae^{-j\omega l/2} - Ae^{j\omega l/2}}{j\omega}$$

And get result

$$Fp(\omega) = \begin{vmatrix} \frac{2A}{\omega} \sin\left(\frac{\omega T}{2}\right) & \text{if } \omega \neq 0 \\ AT & \text{if } \omega = 0 \end{vmatrix}$$





#### Google "are you frightened of maths"





#### A pulse and its Fourier transform





# Reconstructing a signal from its Fourier transform







(a) contribution for  $\omega = 1$ 



**(b)** contribution for  $\omega = 2$ 



(c) contribution for  $\omega = 3$ 



(**d**) contribution for  $\omega = 4$ 



(e) reconstruction by integration

#### Magnitude and phase of Fourier transform of a pulse

$$Fp(\omega) = \int_{-\infty}^{\infty} p(t)e^{-j\omega t}dt = \text{Re}(Fp(\omega)) + j\text{Im}(Fp(\omega))$$









$$|Fp(\omega)| = \sqrt{\operatorname{Re}(Fp(\omega))^{2} + \operatorname{Im}(Fp(\omega))^{2}}$$

$$\arg(Fp(\omega)) = \tan^{-1}\left(\frac{\operatorname{Im}(Fp(\omega))}{\operatorname{Re}(Fp(\omega))}\right)$$

# Using Gait as a Biometric, via Phase-Weighted Magnitude Spectra

David Cunado, Mark S. Nixon and John N. Carter

Department of Electronics and Computer Science, University of Southampton, Highfield, Southampton SO17 1BJ, England.

Email: dc95r@ecs.soton.ac.uk and msn@ecs.soton.ac.uk



**Fig. 1.** (a) Hip and (b) Knee rotation angles.

#### Gait patterns (angle of swinging leg)



Fig. 2. Variation in Hip Rotation.



Fig. 3. Example Image of Walking Subject.



Fig. 6. Phase and Magnitude Gait Spectra.

#### Illustrating the importance of phase



(a) eye image



(b) ear image



(c) reconstruction from magnitude(eye) and phase(ear)



(d) reconstruction from magnitude(ear) and phase(eye)

