Pt

I.	Modélisation							
:	À l'aide d'un essai, déterminer le modèle de Broïda de H(p). On expliquera la méthode précisément et on donnera tous les calculs et tracés nécessaires à la détermination du modèle.	3	Α				3	
	Même question avec Hz(p).	2	С				0,7	Je veux voir les légendes.
3	Déterminer un correcteur PI qui minimise le temps de réponse ainsi que le dépassement du système en boucle fermée, à l'aide du logiciel EASYREG. On donnera la réponse théorique obtenue.	2	С				0,7	Vous n'avez pas pris le bon modèle.
4	Donner pour ce réglage les valeurs théoriques du temps de réponse à ±5%, ainsi que la valeur du premier dépassement.	1	D				0,05	On veut les valeurs théoriques et non les valeurs pratiques.
į	Déduire de la question 3 les valeurs de Xp, Ti et Td du régulateur mixte.	1	D				0,05	
(Mesurer les performances de votre régulation vis à vis d'une augmentation du débit Q.	2	D				0,1	
II.	Tendance							
:	Compléter le schéma fonctionnel, pour faire apparaître la correction de tendance.	2	Χ				0	
2	Déduire des questions 1 et 2 la valeur du gain de tendance.	2	Х				0	
3	Procéder au réglage de votre régulateur. Donner le nom et la valeur des paramètres modifiés.	2	Χ				0	
II.	Performances de la boucle de tendance							
:	Mesurer les performances de votre régulation vis à vis d'une augmentation du débit Q.	2	Χ				0	
2	Comparer vos résultats à ceux obtenus en boucle simple.	1	Χ				0	
			No	te:	4,6	/20		

I. Modélisation (11 pts)

1. À l'aide d'un essai, déterminer le modèle de Broïda de H(p). On expliquera la méthode précisément et on donnera tous les calculs et tracés nécessaires à la détermination du modèle.

$$K = \frac{\Delta X}{\Delta Y} = \frac{48}{100} = 0.48$$

T=2,8(t1-t0)-1,8(t2-t0)

T=2,8(855-735)-1,8(885-735)

T=66s

H(p)=
$$\frac{K * e^{-Tp}}{1 + tp}$$
 = $\frac{0.48 * e^{-66p}}{1 + 165p}$

2. Même question avec $H_z(p)$.

$$\Delta X = 40\%$$

28% de 40 = 11,2
40% de 40 = 16

$$K = \frac{\Delta X}{\Delta Y} = \frac{40}{100} = 0.4$$

H(p)=
$$\frac{K * e^{-Tp}}{1+tp} = \frac{0.4 * e^{-44p}}{1+110p}$$

3. Déterminer un correcteur PI qui minimise le temps de réponse ainsi que le dépassement du système en boucle fermée, à l'aide du logiciel <u>EASYREG</u>. On donnera la réponse théorique obtenue.

	T(p)	$p(p) = \frac{N(p)}{D(p)}e^{-Rp}$	
N(p) = 0.4(3)			
D(p) = 110p			
R = 44			
Constante de temps pour	le calcul (en s) 100		
Constante de temps pour	,	ésultats des calculs	
Constante de temps pour $\omega_{min} = \text{0.001} \; ; \; \omega_{max} = \text{0}.$	<u>R</u>	ésultats des calculs	
$\omega_{min} = 0.001$; $\omega_{max} = 0$.	<u>R</u>		
ω_{min} = 0.001 ; ω_{max} = 0. Argument _{min} = -337.3829	; raison = 1.05	92.521016427987 °	

$$A = \frac{100}{Xp}$$

$$3 = \frac{100}{Xp}$$

$$Xp = 33,33\%$$

4. Donner pour ce réglage les valeurs théoriques du temps de réponse à $\pm 5\%$, ainsi que la valeur du premier dépassement.

100%=50% 105%=52,5% 95%=47,5% dépassement valeurs 53,5%=107% dépassement de 7%

5. Déduire de la question 3 les valeurs de Xp, Ti et Td du régulateur mixte.

PID MIXTE Kr=
$$\frac{T}{t} = \frac{44}{110} = 0,4$$

A= $\frac{0.83}{0.4}$ *0,4+ $\frac{1}{0.4}$ =3,33
XP=100/3,33=30%
Ti = t+0,4T
Ti=110+0,4*44
Ti=127,6s

$$Td = \frac{44}{0.4 + 2.5} = 15.17s$$

6. Mesurer les performances de votre régulation vis à vis d'une augmentation du débit Q.

