Welcome to

CMPSCI 445 Information Systems

Instructor:

Prof. Gerome Miklau

Overview of Information Management

Gerome Miklau

CMPSCI 445 – Information Systems

UMass Amherst

Sep 3, 2008

Some slide content courtesy of Zack Ives, Ramakrishnan & Gehrke, Dan Suciu, Ullman & Widom

Today

- Overview of data management
- Course topics
- Course requirements
- Student information form

Goals of this course

- Relational databases
 - an introduction to their design and use.
- Web data management
 - an introduction to key technologies for managing data on the WWW.

Databases & DBMS's

- A database is a large, integrated collection of data.
- A database management system (DBMS) is a software package designed to store and manage databases, allowing:
 - Define the kind of data stored
 - Querying/updating interface
 - Reliable storage & recovery of 100s of GB
 - Control access to data from many concurrent users

Can filesystems do it?

Not really.

- Schema for files is limited
- No query language for data in files
- Files can store large amounts of data, but
 - no recovery from failure
 - no efficient access to items within file
 - buffering in memory
- Concurrent access not safe

Evolution

- Early DBMS's (1960's), evolved from file systems.
- Data with many small items & many queries or modifications:
 - Airline reservations
 - Banking

Early DB systems

Data model

The data model includes basic assumptions about what an "item" of data is, how to represent it and interpret it.

- Tree-based hierarchical data model
- Graph-based network data model

- Encouraged users to think about data the way it was stored.
- No high level query language

The Relational Model

- •The relational data model (Codd, 1970):
 - Data independence: details of physical storage are hidden from users
 - High-level declarative query language
 - say what you want, not how to compute it.
 - mathematical foundation

DBMS Benefit #1: Generality and Declarativity

- The programmer/user does not need to know details:
 - indices, sort orders, machine speeds, disk speeds, concurrent users, etc.
- Instead, the programmer/user programs with a logical model in mind
- The DBMS "makes it happen" based on an understanding of relative costs of different methods

Benefit #2: Efficiency and Scale

- Efficient storage of hundreds of GBs of data
- Efficient access to data
- Rapid processing of transactions

Benefit #3: Management of Concurrency and Reliability

- Simultaneous transactions handled safely.
- Recovery of system data after system failure.
- More formally: the ACID properties
 - Atomicity all or nothing
 - Consistency sensible state not violated
 - Isolation separated from effects
 - Durability once completed, never lost

How Does One Build a Database?

- Start with a conceptual model
- Design & implement schema
- Write applications using DBMS and other tools
 - Many ways of doing this (DBMS, API writers, library authors, web server, etc.)
 - Common applications include PHP/JSP/servletdriven web sites
- The DBMS takes care of query optimization and execution

Conceptual Design

Designing a Schema (Set of Relations)

STUDENT

sid	name
1	Jill
2	Во
3	Maya

Takes

sid	cid
1	645
1	683
3	635

COURSE

cid	name	sem
645	DB	F05
683	Al	S05
635	Arch	F05

- Convert to tables + constraints
- Then need to do "physical" design: the layout on disk, indices, etc.

PROFESSOR

fid	name
1	Diao
2	Saul
8	Weems

Teaches

fid	cid
1	645
2	683
8	635

Queries

Find all courses that "Mary" takes

```
SELECT C.name
FROM Students S, Takes T, Courses C
WHERE S.name="Mary" and
S.sid = T.sid and T.cid = C.cid
```

- What happens behind the scene ?
 - Query processor figures out how to answer the query efficiently.

Queries, behind the scene

Declarative SQL query Query execution plan: SELECT C.name FROM Students S, Takes T, Courses C WHERE S.name="Mary" and S.sid = T.sid and T.cid = C.cidcid=cid sid=sid name="Mary" Courses **Takes Students**

The **optimizer** chooses the best execution plan for a query

Architecture of DBMS

An Issue: 80% of the World's Data is Not in a DB!

- Examples:
 - Scientific data
 (large images, complex programs that analyze the data)
 - Personal data
 - WWW and email (some of it is stored in something resembling a DBMS)
- Data management is expanding to tackle these problems
 - XML data enables exchange across systems
 - Integration of diverse data sets
 - Structured queries replaced by search & approximate answers.

Why study data management?

- One of the broadest, most exciting areas in CS!
- A microcosm of CS in general
 - languages, operating systems, concurrent programming, data structures, algorithms, theory, distributed systems, statistical techniques.

Course topics and Requirements

Course topics

- Fundamentals: relational design, query languages, SQL.
- Database internals: storage, indexing, query processing, query optimization, transaction management.
- XML and semi-structured data models.
- Security: access control, privacy.
- Other topics: Information retrieval, advanced data types, performance tuning
- **Skills:** Postgres and PHP for web development.

Prerequisites

- CMPSCI 287: Programming Language Paradigms.
- Or consent of the instructor

Grading

- Homework: 25%
- Course Project: 20%
- Midterm: 20%
- Final: 25%
- Attendance, Participation: 10%

Homework: 25%

- Several assignments throughout the course
 - Written problem sets
 - Programming exercises with SQL, XQuery

Project: 20%

- General theme: build a web application using Postgres and PHP.
- Groups of 2-3 preferred.
- Project work will include:
 - Schema design, DB implementation
 - Web site design.
 - Multiple milestones, status report.
 - In-class presentation.

Exams

- Midterm (20%)
 - in-class around the 8th week.
- Final (25%)
 - not yet determined by registrar

Attendance & Participation

- Attend every class.
- Ask questions, contribute to answers.
- Participate in in-class exercises.

Academic honesty

- All submitted work must be your own.
 - Although students are encouraged to study together, each student is expected to produce his or her own solution to the homework problems.
 - Copying or using sections of someone else's program or assignment, even if it has been modified by you, is not acceptable.
 - The University has very clear guidelines for academic misconduct and the staff of CS 445 will be vigorous in enforcing them. Please see the UMass policy on academic honesty here: www.umass.edu/dean_students/code_conduct/ acad_honest.htm

Textbook

Database Management Systems

Ramakrishnan and Gehrke

Readings posted on the website before class.

Communication

- Instructor
 - Office hours:
 - Mon 9-10am, or by appointment
 - Held in CS building, Rm 208.
 - Email: miklau at cs.umass.edu
- Check the course webpage often
 - http://avid.cs.umass.edu/courses/445/f2008/
- Mailing list
 - For help: cs445-help AT edlab-mail.cs.umass.edu
 - Class list: cs445 AT edlab-mail.cs.umass.edu

Information about you

Please fill out a student information form.

Questions about the course?