ocupación de conexión DWC-6A F/xxxX

X - <t< th=""><th> C</th><th>## FUNCIÓN == 2Atr. (5x20mm) alimentación por la red: 90-250VAC/47-440Hz (DWC-6A F / 1 x x X) alternativo: 18-36VDC (DWC-6A F / 2 x x X) 100-240VAC 50/60Hz (DWC-6A F / 3 x x X) max. 15W tensión interna del aparato 24VDC, resistencia externa: max. 200mA (AC-versión de dispositivo) entrade de impulso de taquímetro, 3 entradas binarias 12-28VDC/ca. 10mA con 24VDC de cada entrada salida de impulso contador libre de potencial, fuerte como 60V/150mA 2 salidas por relés max. 250VAC/3A</th></t<>	C	## FUNCIÓN == 2Atr. (5x20mm) alimentación por la red: 90-250VAC/47-440Hz (DWC-6A F / 1 x x X) alternativo: 18-36VDC (DWC-6A F / 2 x x X) 100-240VAC 50/60Hz (DWC-6A F / 3 x x X) max. 15W tensión interna del aparato 24VDC, resistencia externa: max. 200mA (AC-versión de dispositivo) entrade de impulso de taquímetro, 3 entradas binarias 12-28VDC/ca. 10mA con 24VDC de cada entrada salida de impulso contador libre de potencial, fuerte como 60V/150mA 2 salidas por relés max. 250VAC/3A
18	— I	
 19	÷ PE	
 20	DA1/mA	salida análoga DA1 0(4)20mA
 21	DA1N	salida análoga DA1 0+10V
 22	GND/DA1	potencial de adquisizión DA1

е:	conexión para transductor de fuerza	alimentación 3,3V / max. 100mA	equivalente (max: 10 transductores con 350W paralelo cada uno)		
-X5 transductor de fuerza	Μ-	^ +	>-	W+	⊣⊦ pantalla
-X5	1	2	3	4	5
				>	

alimentación : OPTO,Strint, impulso contador

(1) —— alimentación externa 12-28VDC

(2) ------ alimentación interna 24VDC

ocupación de conexión DWC-6A F/xxxX

•			
	+ X-	-X4 RS-232	SUB-D clavija
	_	구 PE	interface numérico serial:
	2	RS232 RXD	RXD/TXD: RS232
	ε	RS232 TXD	
	4	+5V	
	9	GND	
,	9	NC	
	2	NC	
	8	+5\	
	6	GND	

-X9 RS-485	0	
•	KS-485	bornes de conexión
_	GND	interface numérico serial:
2	RS485 B	A/B: RS485
3	구 PE	
4	RS485 A	
5	+5\	

ocupación de conexión DWC-6A F/xxxP

ifBus-DP PE S S S DF GND DF +5V	SUB-D buje	PROFI-BUS	A/B: RS485								
2		÷ PE	NC	NC	PROF B	RTS	PROF GND	PROF +5V	NC	PROF A	
	-X7		-	2	3	4	5	9	7	8	σ

ocupación de conexión DWC-6A F/xxxD

	9X-	-X6 Device Net	bornes de conexión
	1	-\	Device Net interfaz
<u></u>	2	CAN_L	
•	3	SHIELD	
	4	CAN_H	
,	5	^+	

ocupación de conexión DWC-6A F/xxxE

•			
	-X3	-X3 Ethernet	RJ45 - buje
		∃d ÷	Ethernet interfaz
	-	TD+	
	2	TD-	
	3	RD+	
	4	RX COMMON	
	5	RX COMMON	
)	9	RD-	
,	7	TX COMMON	
	8	TX COMMON	

ocupación de conexión DWC-6A F/xxx PN

_			
	-X3	-X3 Profinet	RJ45-buje
	caja	∃d 小	pantalla
	1	+QL	Profinet interfaz
	2	TD-	
	3	RD+	
	4	NC	
	2	NC	
)	9	RD-	
	7	NC	
	8	NC	

ocupación de conexión DWC-6A F / x x x M

	-X3	-X3 Modbus-TCP	RJ45-buje
	caja	를 PE	pantalla
<u></u>	_	TD+	Modbus-TCP interfaz
	2	TD-	
	3	RD+	
	4	NC	
	2	NC	
)	9	RD-	
	7	NC	
	8	NC	