Introduction

1. Survival func:
$$S(t)=1-F(t)=P(T>t)=\int_t^\infty f(u)\mathrm{d}u$$
 $f(u)=-\frac{\mathrm{d}}{\mathrm{d}u}S(u),\ S(0)=1,\ S(\infty)=0$

2. Empirical survival func:
$$\hat{S}_n(t) = \frac{1}{n} \sum_{i=1}^n I_{(t,\infty)}(T_i), \, n\hat{S}_n(t) \sim \text{Bin}(n, S(t))$$

3. Hazard func:
$$h(t) = \frac{f(t)}{S(t)}$$
, $S(t) = \exp\left(-\int_0^t h(u) du\right) = \exp\left(-H(x)\right)$, $E[t] = \int_0^\infty S(t) dt$

Mortality tables

4. Prob of dying:
$$q_x = \frac{d_x}{l_x} = \frac{l_x - l_{x+1}}{l_x}$$

5. Prob of surviving:
$$p_x = 1 - q_x = \frac{l_{x+1}}{l_x}$$

6.
$$e_x = \sum_{i=1}^{\infty} iP[\text{death in year } (x+i)] = \frac{\sum_{n=x+1}^{\infty} l_n}{l_x}$$

7. Force of motality:
$$\mu_x = -\frac{1}{l} \frac{\mathrm{d}l_x}{\mathrm{d}x} = -\log{(p_x)}$$

8. Mortality rate:
$$m_x = \frac{\text{number of deaths}}{\text{person-time at risk}} = \frac{d_x}{\int_x^{x+1} l_t dt} = \frac{d_x}{\int_0^1 l_{x+t} dt}$$
Central mortality rate: $m_x = \frac{d_x}{l_x - \frac{d_x}{2}}$

9. Prob that die within
$$n$$
 yrs: ${}_{n}q_{x} = \frac{l_{x} - l_{x+n}}{l_{x}}$

10. Prob of surviving
$$n$$
 yrs: $_{n}p_{x} = \frac{l_{x+n}}{l_{n}} = 1 - _{n}q_{x}$

11. Prob that die in age
$$x+m \sim x+m+n$$
: $m|n q_x = \frac{l_{x+m}-l_{x+m+n}}{l_x} = mp_x \cdot nq_{x+m}$

12.
$$_n p_x = \exp\left(-\int_0^n \mu_{x+t} dt\right), l_x = \exp\left(-\int_0^x \mu_t dt\right)$$

13. Linear interpolation (increasing
$$\mu$$
, deaths Uniformly distributed) $tl_x = l_x + t (l_{x+1} - l_x) = l_x - td_x$, $tq_x = tq_x$, $\mu_{x+t} = \frac{q_x}{1 - tq_x}$

14. Exponential interpolation (constant
$$\mu$$
)

$$_{t}l_{x} = l_{x} \left(\frac{l_{x+1}}{l_{x}}\right)^{t} = l_{x}p_{x}^{t}, \ \mu_{x+t} = -\log\left(\frac{l_{x+1}}{l_{x}}\right) = -\log\left(p_{x}\right)$$

15. Hyperbolic interpolation (decreasing
$$\mu$$
)

$$_{t}l_{x} = \frac{l_{x}p_{x}}{p_{x} + tq_{x}}, \,_{t}p_{x} = \frac{p_{x}}{p_{x} + tq_{x}}, \,\mu_{x+t} = \frac{q_{x}}{p_{x} + tq_{x}} = \frac{q_{x}}{1 - q_{x}(1 - t)}$$

16. Select table: $l_{[x+1]} = l_x \cdot p'_x$ (forward, then calc all new ls), $l_{[x]}$ (for backward only)

1

Parametric models and estimation

17. de Moivre hazard:
$$h(t) = \frac{1}{\omega - t}$$
, where $l_{\omega} = 0$ or negligible $f(t) = \frac{1}{\omega}$ (deaths Uniformly distributed)

18. Weibull hazard: $h(t) = \gamma t^{(\gamma - 1)}; t > 0, \gamma > 0, H(t) = t^{\gamma}$ $\gamma < 1$: decreasing; $\gamma = 1$: constant, $\gamma > 1$: increasing

Generalised with a scale parameter α and a location parameter μ : $h(t) = \frac{\gamma}{\alpha} \left(\frac{t - \mu}{\alpha}\right)^{\gamma - 1}$

- 19. Gompertz hazard: $h(t) = Bc^t$, logarithm is linear in t $H(t) = -\left(c^t 1\right) \ln g, \text{ where } \ln g = \frac{-B}{\ln c}$ Gompertz-Makeham hazard: $h(t) = A + Bc^t$ (adult mortality in developed countries)
- 20. Log-linear models: $\log(T) = \alpha + \sigma \varepsilon$
- 21. 1

Non-par and dist-free approaches

- 22. Kaplan-Meier estimator: $\hat{S}(t) = \prod_{\{j: t_j \le t\}} \left(1 \frac{d_j}{n_j}\right)$ Variance:
- 23. Nelson-Aalen estimator: $\hat{H}(t) = \sum_{\{j: t_j \leq t\}} \left(\frac{d_j}{n_j}\right)$ Breslow estimator: $\hat{S}(t) = \exp\left(-\hat{H}(t)\right)$ (greater than K-M estimator by Taylor series, asymptotically equivalent)
- 24. Logrank test:

Semi-par surv modelling

25. Cox PH model: $h(t,X) = h_0(t)\psi(X;\beta)$, commonly $\psi(X;\beta) = \exp\left(\beta^T X\right)$ log-linear form Likelihood $L(\beta) = \prod_{j=1}^d \frac{\psi(i_j)}{\sum_{k \in R(\tau_j)} \psi(k)}$, $I(\hat{\beta}) = -\frac{\partial^2 \ln L(\hat{\beta})}{\partial \beta^2}$, 95% confidence interval for β : $\hat{\beta} \pm z_{\alpha/2} \sqrt{\frac{1}{I(\hat{\beta})}}$