

[000202] WHAT IS CLAIMED IS:

1. A combination comprising a polypeptide comprising the modulating sequence of the erythropoietin receptor and a non-peptide organic molecule of from 12 to 36 atoms other than hydrogen, from 9 to 20 carbon atoms, and from 4 to 12 of the heteroatoms chalcogen, nitrogen, halogen, and metal ion of Groups I and II of the periodic chart, and of the formula:

(1)

wherein:

X is of from 1 to 7 atoms other than hydrogen and is oxygen, sulfur bonded to 0 to 2 oxygen atoms, amino and alkyl substituted amino;

n is 0 or 1;

R₁ is hydrogen or an organic group of from 1 to 12 carbon atoms and from 0 to 6 heteroatoms, which are chalcogen, nitrogen, and halogen consisting of an aliphatic group of from 1 to 6 carbon atoms having from 0 to 2 sites of unsaturation, non-oxo-carbonyl and the nitrogen and sulfur derivatives thereof, alicyclic having from 0 to 2 sites of unsaturation, aryl, heterocyclic and combinations thereof, where the cyclic structures may have from 1 to 2 rings;

R₂ is hydrogen, a heterofunctionality having nitrogen and/or chalcogen bonded to annular carbon, a heterofunctionality having nitrogen and/or chalcogen bonded to

annular carbon to which is substituted with an organic group of from 1 to 10 carbon atoms, aryl, alkaryl, aralkyl and aralkenyl of from 5 to 10 carbon atoms, aroyl of from 6 to 10 carbon atoms, or an organic group bonded through a carbon atom of from 1 to 12 carbon atoms having from 1 to 4, as described above for R₁; R₃ is hydrogen or an organic group of from 1 to 10 carbon atoms and from 0 to 4 chalcogen and nitrogen heteroatoms;

R₄ is hydrogen or alkyl and substituted alkyl of from 1 to 6 carbon atoms, where the substituents are oxy, amino and halo;

with the proviso that R₃ and R₄ can be taken together to form a ring with the annular atoms to which they are attached of from 4 to 10 annular atoms and forming from 1 to 2 rings, where the annular atoms are unsubstituted or substituted with halo, alkyl of from 1 to 3 carbon atoms, oxy of from 0 to 3 carbon atoms, thio of from 0 to 3 carbon atoms and amino of from 0 to 4 carbon atoms;

(2)

wherein:

p is 0, 1 or 2; and

R_5 is a group having from 1 to 3 atoms other than hydrogen and is oxy, thio, amino, nitro, cyano, and alkyl;

(3)

wherein:

Y is O , $S(O)_m$, wherein m is 0, 1 or 2, amino or CH_2 ;

R_6 is H or alkyl of from 1 – 3 carbon atoms;

R_7 is hydrogen, or a group of from 0 to 3 atoms other than hydrogen, and is oxy, thio amino, nitro, cyano, and alkyl;

V is an aryl group having 6 annular members comprising 0 to 2 nitrogen atoms and the remainder carbon atoms

U is a substituent group of from 0 to 5 atoms other than hydrogen, and is oxy, thio amino, nitro, cyano, halo, and alkyl; and

u is 0 to 3; and

(4) diazolo hexahydroquinoline

wherein:

Y is oxygen, sulfur, NH, (alkyl of from 1 to 3 carbon atoms, H) or H₂

R₇ is hydrogen or an organic group of from 1 to 12 carbon atoms and 0 to 4 heteroatoms;

R₈ is hydrogen, an aliphatic group of from 1 to 6 carbon atoms or a heterocycle of from 5 to 6 annular members and from 1 to 2 heteroannular members that are oxygen, nitrogen or sulfur; and

R₉, R₁₀, R₁₃, R₁₄, R₁₅ and R₁₆ are the same or different and are hydrogen or an organic radical of from 1 to 12 carbon atoms or a heterosubstituent of from 1 to 3 heteroatoms;

R₁₁ and R₁₂ are the same or different and are hydrogen or an organic group of from 1 to 12 carbon atoms.

2. A combination according to Claim 1, wherein said polypeptide and said non-peptide organic molecule are complexed at the modulating domain of EPO-R.

3. A combination according to Claim 2, wherein said polypeptide is EPO-R bound to a cellular membrane.
4. A combination comprising a polypeptide comprising the modulating domain sequence of the erythropoietin receptor and a non-peptide organic molecule of from 12 to 36 atoms other than hydrogen, from 9 to 20 carbon atoms, and from 4 to 12 of the heteroatoms chalcogen, nitrogen, halogen, and metal ion of Groups I and II of the periodic chart, and of the formula:

(1)

wherein:

X is of from 1 to 3 atoms other than hydrogen and is oxygen, sulfur bonded to 0 to 2 oxygen atoms, amino and alkyl substituted amino;

n is 0 or 1;

R₁ is a lower alkyl group of 1 to 3 carbon atoms or an organic group having a six annular membered aromatic group having from 0 to 3 substituents, where the substituents are halo, lower alkyl of from 1 to 3 carbon atoms, nitro, trihalomethyl, and is either directly bonded to X or bonded through a linking group of from 1 to 4 carbon, nitrogen, or chalcogen atoms in the chain, being particularly carbon and nitrogen, and there being from 0 to 2 heteroatoms in the chain, where heteroatoms are bonded solely to carbon and hydrogen, or _-acetamidinyl having from 0 to 1 N-OH;

R₂ is hydrogen, amino of 0 to 3 carbon atoms, oxy of from 0 to 3 carbon atoms, a heterofunctionality having nitrogen or chalcogen bonded to annular carbon to which is substituted an organic group of from 1 to 10 carbon atoms and from 0 to 3 heteroatoms;

R₃ is hydrogen or an organic group of from 1 to 10 carbon atoms and from 0 to 4 chalcogen and nitrogen heteroatoms;

R₄ is hydrogen, alkyl or substituted alkyl of from 1 to 6 carbon atoms, where the substituents are oxy, amino and halo;

with the proviso that R₃ and R₄ can be taken together to form a ring with the annular atoms to which they are attached of from 4 to 10 annular atoms and forming from 1 to 2 rings, where the annular atoms are unsubstituted or substituted with halo, alkyl of from 1 to 3 carbon atoms, oxy of from 0 to 3 carbon atoms, thio of from 0 to 3 carbon atoms and amino of from 0 to 4 carbon atoms.

5. A combination according to Claim 4, wherein R₃ is hydrogen or an organic group of from 1 to 8 carbon atoms and 0 to 4 chalcogen, nitrogen and halo heteroatoms.
6. A combination according to Claim 5, wherein R₃ is cyclopropylmethylamino.
7. A combination according to Claim 5, wherein R₃ is H.
8. A combination according to Claim 4, wherein R₁ is a six annular membered aromatic group having from 0 to 3 substituents, where the substituents are halo, lower alkyl of from 1 to 3 carbon atoms, nitro, trihalomethyl, and is either directly bonded to X or bonded through a linking group of from 1 to 4 carbon, nitrogen, or chalcogen atoms in the chain.
9. A combination according to Claim 4, wherein R₄ is methyl.
10. A combination according to Claim 4, wherein R₄ is H.

11. A combination comprising a polypeptide comprising the modulating sequence of the erythropoietin receptor and a non-peptide organic molecule of from 12 to 36 atoms other than hydrogen, from 9 to 20 carbon atoms, and from 4 to 12 of the heteroatoms chalcogen, nitrogen, halogen, and metal ion of Groups I and II of the periodic chart, and of the formula:

(3)

wherein:

Y is O, S(O)_m, wherein m is 0, 1 or 2, amino or CH₂;

R₆ is H or alkyl of from 1 – 3 carbon atoms;

R₇ is hydrogen, or a group of from 0 to 3 atoms other than hydrogen, and is oxy, thio amino, nitro, cyano, and alkyl;

V is a phenyl group;

U is oxy, thio amino, nitro, cyano, halo, and alkyl and from 0 to 3 atoms other than hydrogen; and u is 0 to 3.

12. A combination according to Claim 11, wherein Y is SO₂, V is phenyl, R₇ is Cl and u is 0.

13. A combination comprising a polypeptide comprising the modulating domain sequence of the erythropoietin receptor and a non-peptide organic molecule of from 12 to 36 atoms other than hydrogen, from 9 to 20 carbon

atoms, and from 4 to 12 of the heteroatoms chalcogen, nitrogen, halogen, and metal ion of Groups I and II of the periodic chart, and of the formula:

(1)

wherein:

R₁ is alkyl of from 1 to 3 carbon atoms, substituted phenyl having from 0 to 3 substituents that are CH₃, Cl, NO₂, and CF₃ and bonded directly to an annular carbon atom or through a linking group of from 1 to 3 carbon and nitrogen atoms in the chain or N-hydroxyamidinyl;

R₂ is CH₃, NH₂, OH, and aroylamido of from 7 to 8 carbon atoms having from 0 to 2 substituents that are CH₃, Cl, NO₂, and CF₃;

R₃ is cycloalkylalkyl of from 4 to 8 carbon atoms, having from 3 to 4 annular atoms, H or carboxy;

R₄ is H, lower alkyl of from 1 to 3 carbon atoms or alkoxyethyl of from 2 to 4 carbon atoms;

with the proviso that R₃ and R₄ may be taken together to define 1,2-dimethylene-₋halo, ₋CH₃-halobenzene, where halo is F or Cl. A method for modulating the activity of EPO-R present as a cell membrane component comprising:

forming a complex by bringing together the members of the combination of Claim 13 under complex forming conditions, where said polypeptide is EPO-R.

14. A method for modulating the activity of EPO-R present as a cell membrane component comprising:

forming a complex by bringing together the members of the combination of Claim 13 under complex forming conditions, where said polypeptide is EPO-R.

5. A combination
6. A combination according to Claim 5, wherein R₃ is cyclopropylmethylamino.
7. A combination according to Claim 5, wherein R₃ is H.
8. A combination according to Claim 4, wherein R₁ is a six annular membered aromatic group having from 0 to 3 substituents, where the substituents are halo, lower alkyl of from 1 to 3 carbon atoms, nitro, trihalomethyl, and is either directly bonded to X or bonded through a linking group of from 1 to 4 carbon, nitrogen, or chalcogen atoms in the chain.
9. A combination according to Claim 4, wherein R₄ is methyl.
10. A combination according to Claim 4, wherein R₄ is H.
11. A combination comprising a polypeptide comprising the modulating sequence of the erythropoietin receptor and a non-peptide organic molecule of from 12 to 36 atoms other than hydrogen, from 9 to 20 carbon atoms, and from 4 to 12 of the heteroatoms chalcogen, nitrogen, halogen, and metal ion of Groups I and II of the periodic chart, and of the formula:
(3)

wherein:

Y is O, S(O)_m, wherein m is 0, 1 or 2, amino or CH₂;

R₆ is H or alkyl of from 1 – 3 carbon atoms;

R₇ is hydrogen, or a group of from 0 to 3 atoms other than hydrogen, and is oxy, thio amino, nitro, cyano, and alkyl;

V is a phenyl group;

U is oxy, thio amino, nitro, cyano, halo, and alkyl and from 0 to 3 atoms other than hydrogen; and

u is 0 to 3.

12. A combination according to Claim 11, wherein Y is SO₂, V is phenyl, R₇ is Cl and u is 0.

13. A combination comprising a polypeptide comprising the modulating domain sequence of the erythropoietin receptor and a non-peptide organic molecule of from 12 to 36 atoms other than hydrogen, from 9 to 20 carbon atoms, and from 4 to 12 of the heteroatoms chalcogen, nitrogen, halogen, and metal ion of Groups I and II of the periodic chart, and of the formula:

(1)

wherein:

R₁ is alkyl of from 1 to 3 carbon atoms, substituted phenyl having from 0 to 3 substituents that are CH₃, Cl, NO₂, and CF₃ and bonded directly to an annular carbon atom or through a linking group of from 1 to 3 carbon and nitrogen atoms in the chain or N-hydroxyamidinyl;

R₂ is CH₃, NH₂, OH, and aroylamido of from 7 to 8 carbon atoms having from 0 to 2 substituents that are CH₃, Cl, NO₂, and CF₃;

R₃ is cycloalkylalkyl of from 4 to 8 carbon atoms, having from 3 to 4 annular atoms, H or carboxy;

R₄ is H, lower alkyl of from 1 to 3 carbon atoms or alkoxymethyl of from 2 to 4 carbon atoms;

with the proviso that R₃ and R₄ may be taken together to define 1,2-dimethylene-_-halo, _-CH₃-halobenzene, where halo is F or Cl.

14. A method for modulating the activity of EPO-R present as a cell membrane component comprising:

forming a complex by bringing together the members of the combination of Claim 13 under complex forming conditions, where said polypeptide is EPO-R.

15. A method for modulating the activity of EPO-R comprising:

forming a complex by bringing together the members of the combination of Claim 11 under complex forming conditions, where said polypeptide is EPO-R.

16. A compound according to Claim 13 and a pharmaceutically acceptable vehicle.
17. A compound according to Claim 11 and a pharmaceutically acceptable vehicle.
18. A method of determining the binding affinity of a test compound to the modulating domain of EPO-R, said method comprising:
adding said test compound to a combination according to Claim 1 and determining the amount of complex of said combination in the presence of said test compound as compared to the absence of said test compound.

19. A method of inducing a physiological response of EPO-R in a host, said method comprising:
administering to said host a physiologically effective amount of a non-peptide organic molecule of from 12 to 36 atoms other than hydrogen, from 9 to 20 carbon atoms, and from 4 to 12 of the heteroatoms chalcogen, nitrogen, halogen, and metal ion of Groups I and II of the periodic chart, and of the formula:

(1)

wherein:

R_1 is alkyl of from 1 to 3 carbon atoms, substituted phenyl having from 0 to 3 substituents that are CH_3 , Cl, NO_2 , and CF_3 and bonded directly to an annular carbon atom or through a linking group of from 1 to 3 carbon and nitrogen atoms in the chain, N-hydroxyamidinyl;

R_2 is CH_3 , NH_2 , OH, and aroylamido of from 7 to 8 carbon atoms having from 0 to 2 substituents that are CH_3 , Cl, NO_2 , and CF_3 ;

R_3 is cycloalkylalkyl of from 4 to 8 carbon atoms, having from 3 to 4 annular atoms, H or carboxy;

R_4 is H, lower alkyl of from 1 to 3 carbon atoms or alkoxyethyl of from 2 to 4 carbon atoms;

with the proviso that R_3 and R_4 may be taken together to define 1,2-dimethylene- α -halo, β - CH_3 -halobenzene, where halo is F or Cl; or

wherein:

Y is O, $S(O)_m$, wherein m is 0, 1 or 2, amino or CH_2 ;

R_6 is H or alkyl of from 1 – 3 carbon atoms;

R₇ is hydrogen, or a group of from 0 to 3 atoms other than hydrogen, and is oxy, thio amino, nitro, cyano, and alkyl;

V is a phenyl group;

U is oxy, thio amino, nitro, cyano, halo, and alkyl and from 0 to 3 atoms other than hydrogen; and

u is 0 to 3.

20. A method according to Claim 19, wherein said non-peptide organic molecule is of formula 1.
21. A method according to Claim 20, wherein X is amino, R₂ is o-methyl, p-chlorophenyl-1, R₂ is H, R₃ is cyclopropylmethylamino and R₄ is methyl.
22. A method of modulating the response to a stimulus of hematopoietic or neuronal cells influenced by the binding of EPO to EPO-R , said method comprising:

contacting said cells with an effective amount to modulate said response of a non-peptide organic molecule of from 12 to 36 atoms other than hydrogen, from 9 to 20 carbon atoms, and from 4 to 12 of the heteroatoms chalcogen, nitrogen, halogen, and metal ion of Groups I and II of the periodic chart, and of the formula:

(1)

wherein:

R₁ is alkyl of from 1 to 3 carbon atoms, substituted phenyl having from 0 to 3 substituents that are CH₃, Cl, NO₂, and CF₃ and bonded directly to an annular carbon atom or through a linking group of from 1 to 3 carbon and nitrogen atoms in the chain, N-hydroxyamidinyl;

R₂ is CH₃, NH₂, OH, and aroylamido of from 7 to 8 carbon atoms having from 0 to 2 substituents that are CH₃, Cl, NO₂, and CF₃;

R₃ is cycloalkylalkyl of from 4 to 8 carbon atoms, having from 3 to 4 annular atoms, H or carboxy;

R₄ is H, lower alkyl of from 1 to 3 carbon atoms or alkoxymethyl of from 2 to 4 carbon atoms;

with the proviso that R₃ and R₄ may be taken together to define 1,2-dimethylene-halo, -CH₃-halobenzene, where halo is F or Cl; or

(3)

wherein:

Y is O, S(O)_m, wherein m is 0, 1 or 2, amino or CH₂;

R₆ is H or alkyl of from 1 – 3 carbon atoms;

R₇ is hydrogen, or a group of from 0 to 3 atoms other than hydrogen, and is oxy, thio amino, nitro, cyano, and alkyl;

V is a phenyl group;

U is oxy, thio amino, nitro, cyano, halo, and alkyl and from 0 to 3 atoms other than hydrogen; and

u is 0 to 3.