Analyse des séries temporelles avec 😱

3 - Décomposition d'une série temporelle

ALAIN QUARTIER-LA-TENTE

Objectifs de cette séquence

Présenter les principales méthodes de décomposition

Questions de positionnement

Pourquoi désaisonnaliser une série ?

Quelles sont les principales méthodes décomposition ?

Quelles sont les différents schémas de décomposition ?

Sommaire

- 1. Schéma de décomposition
- 2. STL
- 3. X-13-ARIMA et TRAMO-SEATS
- 4. Conclusion

Rappels sur les différentes composantes

- Tendance-cycle : évolution de moyen/long terme de la série (TC_t)
 tendance et cycle estimés conjointement : évite problèmes de définition (limite entre cycles courts et longs ?) et difficultés sur séries courtes
- Saisonnalité et autres effets de calendrier (jours ouvrables, fêtes mobiles, etc.) S_t
- Irrégulier : composante d'erreur (idéalement faible) I_t

Rappels sur les différentes composantes

- Tendance-cycle : évolution de moyen/long terme de la série (TC_t)
 tendance et cycle estimés conjointement : évite problèmes de définition (limite entre cycles courts et longs ?) et difficultés sur séries courtes
- Saisonnalité et autres effets de calendrier (jours ouvrables, fêtes mobiles, etc.) S_t
- Irrégulier : composante d'erreur (idéalement faible) I_t

Objectif de la désaisonnalisation : enlever S_t pour mieux analyser le signal conjoncturel et faire des comparaisons temporelles/spatiales

Rappels sur les différentes composantes

- Tendance-cycle : évolution de moyen/long terme de la série (TC_t)
 tendance et cycle estimés conjointement : évite problèmes de définition (limite entre cycles courts et longs ?) et difficultés sur séries courtes
- Saisonnalité et autres effets de calendrier (jours ouvrables, fêtes mobiles, etc.) S_t
- Irrégulier : composante d'erreur (idéalement faible) I_t

Objectif de la désaisonnalisation : enlever S_t pour mieux analyser le signal conjoncturel et faire des comparaisons temporelles/spatiales

 $Y_t = f(S_t, TC_t, I_t)$: quelle relation entre les différentes composantes ?

Les différents schémas de décomposition

Schéma additif :

$$X_t = TC_t + S_t + I_t$$

Schéma multiplicatif (amplitudes de S_t et I_t varient en fonction de la tendance) :

$$X_t = TC_t \times S_t \times I_t$$

• Schéma pseudo-additif (permet de traiter des cas où X_t proche de 0) :

$$X_t = TC_t \times (S_t + I_t - 1)$$

- lorsque certains mois ont des valeurs très faibles, suppose saisonnalité et irrégulier indépendants
- Schéma log-additif :

$$\log(X_t) = \log(TC_t) + \log(S_t) + \log(I_t)$$

Sommaire

- 1. Schéma de décomposition
- 2. STL
- 3. X-13-ARIMA et TRAMO-SEATS
- 4. Conclusion

Seasonal and Trend decomposition using Loess (STL)

Application successive de Loess (régression locale robuste) et de moyennes mobiles

Avantages:

- Applicable sur toutes les fréquences
- Robuste aux points atypiques

Inconvénients:

- Pas de choix automatique du schéma de décomposition
- Pas de correction de jours ouvrables
- Pas de choix automatique des paramètres (longueur des filtres à spécifier)

Exemple (1)

plot(nottem)

Exemple (2)

plot(stl(nottem, s.window = 7))

Exemple (3): autoplot

library(forecast) stl(nottem, s.window = 7) %>% autoplot() 60 -50 -40 -30 -50 -49 - **Pu** 48 -15 -10 -5 -0 --10 -5.0 -2.5 -0.0 --2.5 -5.0 -1925 1935 1930 1940 1920 Time

Sommaire

- 1. Schéma de décomposition
- 2. STL
- 3. X-13-ARIMA et TRAMO-SEATS
- 4. Conclusion

Méthodes utilisées dans les INS

Dans les INS, les méthodes principalement utilisées sont X-13-ARIMA et TRAMO-SEATS :

- Méthodes recommandées par Eurostat
- Permettent de faire des CJO et de prendre en compte les spécificités calendaires
- Choix automatique du schéma de décomposition (additive ou multiplicatif)
- Prise en compte de différents types de ruptures
- Applicables que sur des séries au plus mensuelles (travaux en cours pour étendre ces méthodes)

Désaisonnalisation en deux modèles

- 1. Linéarisation de la série : correction des points aberrants, des ruptures et des effets calendriers par un modèle RegARIMA
- 2. Décomposition de la série linéarisée : par une méthode non-paramétrique (X-11, application successive de moyennes mobiles) ou paramétrique (SEATS)

Les principaux types d'outliers

Choc ponctuel

Additive outlier (AO) Affecte l'Irrégulier

Changement de niveau

Level Shift (LS)
Affecte la Tendance

Changement de niveau transitoire

Transitory Change (TC) Affecte l'Irrégulier

Rupture de profil saisonnier

Seasonal Outlier (SO) Affecte la Composante Saisonnière

Package à utiliser

Pour X-13ARIMA deux packages peuvent être utilisés :

- seasonal basé sur les programmes du Census Bureau
- RJDemetra basé sur les JDemetra+ (logiciel recommandé par Eurostat)

TRAMO-SEATS: uniquement implémenté dans RJDemetra

Comparaison des performances (1)

Comparaison des performances (2)

Spécifications de base

Specifi- cation	Transfor- mation	Pre-adjustment for leap-year	Working days	Trading days	Easter effect	Outliers	ARIMA model
RSA0	no	no	no	no	no	no	(0,1,1)(0,1,1)
RSA1	test	no	no	no	no	test	(0,1,1)(0,1,1)
RSA2	test	no	test	no	test	test	(0,1,1)(0,1,1)
RSA3	test	no	no	no	no	test	AMI
RSA4	test	no	test	no	test	test	AMI
RSA5	test	no	no	test	test	test	AMI
RSAfull	test	no	tes	st	test	test	AMI
X11	no	no	no	no	no	no	(0,1,1)(0,1,1)
RSA1	test	no	no	no	no	test	(0,1,1)(0,1,1)
RSA2c	test	test	test	no	test	test	(0,1,1)(0,1,1)
RSA3	test	no	no	no	no	test	AMI
RSA4c	test	test	test	no	test	test	AMI
RSA5	test	test	no	test	test	test	AMI

Paramètre spec dans RJDemetra::x13() et RJDemetra::tramoseats()

Exemple

library(RJDemetra);library(ggdemetra);autoplot(x13(nottem))

Exemple (1)

1990

1995

```
autoplot(ipi_c_eu[,"IT"])

150-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125-

125
```

```
mod = x13(ipi_c_eu[,"IT"])
# Pre-ajustement : donne des informations sur le schéma de décomposition
# (log ou non), sur la CJO, les points atypiques et le modèle ARIMA
mod$regarima
```

2005

Time

2010

2015

2000

2020

Exemple (2)

```
y = regression model + arima (3, 1, 0, 0, 1, 1)
Log-transformation: no
Coefficients:
        Estimate Std. Error
Phi(1)
        0.57871
                0.055
Phi(2) 0.41329
                    0.059
Phi(3) 0.09131 0.055
BTheta(1) -0.45726 0.048
           Estimate Std. Error
Monday
            0.8197
                       0.287
Tuesday
            0.8457
                       0.286
Wednesday
            1.5247
                       0.286
Thursday
            0.6638
                       0.285
Friday
            1.2974
                       0.288
Saturday
            -2.6035
                       0.285
Leap year 3.3513
                       0.890
Easter [1] -3.0191
                       0.565
LS (12-2008) -16.4492
                       2.149
LS (8-2009) 9.5156
                       2.154
```

Exemple (3)

```
Residual standard error: 3.023 on 332 degrees of freedom
Log likelihood = -877.9, aic = 1786 aicc = 1787, bic(corrected for length) = 2
# Informations sur la décomposition (non traitée dans ce cours)
mod$decomposition
```

Monitoring and Quality Assessment Statistics:

```
M stats
M(1) 0.039
M(2) 0.031
M(3) 1.018
M(4) 0.324
M(5) 0.852
M(6) 0.142
M(7) 0.095
M(8) 0.160
M(9) 0.072
M(10) 0.114
M(11) 0.101
Q 0.285
```

0.316

Q-M2

3×5

Séries finales estimées :

Trend filter: 13 terms Henderson moving average

Exemple (4)

Final filters: Seasonal filter:

```
mod$final
Last observed values
                    sa
                                           s
Jan 2019 103.1 106.8108 106.5337 -3.71079247
                                              0.27706044
Feb 2019 107.5 107.5520 106.4284 -0.05202971
                                              1.12366733
Mar 2019 114.9 105.6270 106.2661 9.27304074 -0.63912431
Apr 2019 102.3 105.5645 106.0825 -3.26453259 -0.51799031
May 2019 118.6 105.8104 105.8478 12.78961029 -0.03744185
Jun 2019 109.1 106.4235 105.6324 2.67648686
                                              0.79112529
Jul 2019 120.4 104.6128 105.4636 15.78719927 -0.85075490
Aug 2019 64.6 105.6598 105.2320 -41.05983503 0.42784829
Sep 2019 110.4 105.0552 104.9091 5.34484540 0.14607297
Oct 2019 118.5 104.4491 104.5092 14.05094470 -0.06015490
Nov 2019 107.8 104.6479 104.1309
                                  3.15211067
                                              0.51695828
Dec 2019 87.6 102.7603 103.8287 -15.16034328 -1.06833688
```

Exemple (5)

Forecasts:

```
y_f
                      sa_f
                                t_f
                                            s f
                                                        i f
Jan 2020 100.60122 103.6937 103.6240
                                     -3.0924959 0.06974302
Feb 2020 104.88729 104.1412 103.5059
                                     0.7461336 0.63521163
Mar 2020 115.35780 102.9935 103.4731
                                     12.3643224 -0.47967022
Apr 2020 100.71674 103.6347 103.4547
                                     -2.9179581 0.17994685
May 2020 108.88911 103.5382 103.4107
                                     5.3508925 0.12754385
Jun 2020 112.99300 103.2766 103.3331 9.7163730 -0.05643767
Jul 2020 119.00943 103.0564 103.2277
                                     15.9529868 -0.17125131
Aug 2020 58.52488 103.3292 103.1321 -44.8042957 0.19705844
Sep 2020 112.54290 103.0286 103.0125
                                    9.5143004 0.01610625
Oct 2020 113,24225 102,7349 102,8926 10,5073243 -0,15771395
Nov 2020 105.65780 102.9839 102.7820
                                      2.6738591
                                                 0.20193998
Dec 2020 91.03785 102.4851 102.6915 -11.4472191 -0.20644338
```

Diagnostics sur la désaisonnalisation mod\$diagnostics

Exemple (6)

```
Relative contribution of the components to the stationary
portion of the variance in the original series,
after the removal of the long term trend
```

Trend computed by Hodrick-Prescott filter (cycle length = 8.0 years)

Component

Cycle	2.275			
Seasonal	89.957			
Irregular	0.740			
TD & Hol.	2.242			
Others	3.886			
Total	99.100			

Combined test in the entire series

Non parametric tests for stable seasonality

	1. Value
Kruskall-Wallis test	0
Test for the presence of seasonality assuming stability	r 0
Evolutive seasonality test	0

Identifiable seasonality present

D 110

Exemple (7)

Residual seasonality tests

```
      qs test on sa
      0.085

      qs test on i
      0.012

      f-test on sa (seasonal dummies)
      0.542

      f-test on i (seasonal dummies)
      0.254

      Residual seasonality (entire series)
      0.438

      Residual seasonality (last 3 years)
      0.999

      f-test on sa (td)
      0.671

      f-test on i (td)
      0.997
```

Pour tracer les coefficients saisonniers (hors CJO) et irrégulier plot(mod\$decomposition)

P. value

Exemple (8)

Coefficients saisonniers + CJO : plus erratiques
ggmonthplot(ggdemetra::seasonal(mod))

Exemple (9)

Sommaire

- 1. Schéma de décomposition
- 2. STL
- 3. X-13-ARIMA et TRAMO-SEATS
- 4. Conclusion

Conclusion

- La désaisonnalisation permet de faire des comparaisons temporelles et spatiales
- Plusieurs schémas de décomposition possibles en fonction des relations entre les composantes :
 - o Additif : $X_t = TC_t + S_t + I_t$ saisonnalité et irrégulier indépendant du niveau
 - o Multiplicatif : $X_t = TC_t \times S_t \times I_t$ saisonnalité et irrégulier proportionnels au niveau

Bibliographie

Hyndman, R.J., & Athanasopoulos, G. (2018) *Forecasting: principles and practice*, 2nd edition, OTexts: Melbourne, Australia. OTexts.com/fpp2. Accessed on oct. 2023.

Ladiray D., et Quenneville B. (1999). Comprendre la méthode X11, *Institut National de la Statistique et des Études Économiques*, https://www.census.gov/pub/ts/papers/x11doc.pdf.

Gomez, V., et Maravall, A. (1997), Programs TRAMO and SEATS: Instructions for the User, *Banco de Espana*.