Lecture 5

Michael Brodskiy

Professor: M. Onabajo

September 19, 2024

- Finite Open-Loop Gain and Bandwidth
 - Assumptions during most previous examples
 - * Infinite A_{0OL} (subscript "0" indicates DC gain)
 - * Gain independence with respect to frequency ("flat gain")
 - Open-loop gain of a typical (real) op-amp:
 - * Single-pole approximation (F_{BOL} = break frequency)
 - * High-frequency roll-off with -20 dB/dec (single-pole approximation for first order filters, can approximate $f_t = A_{0OL} f_{BOL}$)
 - * $f_t = \text{transition frequency (unity-gain)}$
- Mathematical Representation of Finite Gain/Bandwidth
 - $-A_{0OL} = DC \text{ gain}, \omega_{-} \text{ break frequency}, \omega_{t} = \text{unity-gain frequency}$
 - Op-amp model with a transfer function of a single-pole low-pass filter:

$$A(\omega) = \frac{A_{0OL}}{1 + (j\omega/\omega_B)}, |A(\omega)| = \frac{A_{0OL}}{\sqrt{1 + \left(\frac{\omega}{\omega_B}\right)^2}}$$

- Inverting Amplifier Analysis
 - High closed-loop gain (high R_2/R_1 ratio) reduces the closed-loop break frequency
- Closed-Loop Gain versus Break Frequency Trade-off
 - Fundamental gain-bandwidth (GBW) product limitation:

$$f_t = A_{0OL} f_{BOL} = A_{0CL} f_{BCL}$$

- When $f >> f_B$:

$$|A(f)| \approx A_{0OL} \cdot \frac{f_B}{f} = \frac{f_t}{f}$$

- Closed-Loop: Gain Bandwidth $\propto f_{3\text{dB}}$
 - When an op-amp is connected in a feedback configuration, the gain-bandwidth product (f_t) remains unchanged
 - The 3dB frequency (break frequency) depends on feedback network components
 - Gain-bandwidth product $(f_t = A_{0OL}f_{BOL})$
- Large-Signal Operation: Voltage Swing
 - Output voltage swing limitation
 - * The output voltage can only be in the following range:

$$V_{S-} + x < V_o < V_{S+} - x$$

- * The output limits should be specified in the manufacturers datasheet
- Clipping (saturation) occurs if the above condition is not met
- Linear Operating Range
 - The input/output transfer characteristic of an op-amp (with a specified supply) voltage provide valuable information about large-signal operation
- \bullet Large-Signal Operation: Current Restrictions
 - Op-amps have specified output current limits
 - The op-amp must source/sink the current to/from load impedance (and feedback network elements)
 - Careful: Small load or feedback resistors \rightarrow high I_o
 - Clipping occurs when $I_o > I_{\rm limit}$ would be required, but $I_o = I_{\rm limit}$
- Finite Open-Loop Gain and Bandwidth

$$A(f) = \frac{A_{0OL}}{1 + j(f/f_{BOL})}$$

2

- Closed-Loop Impact of Finite Gain/Bandwidth
 - * Inverting amplifier: $G = -\frac{R_2}{R_1}$
 - * Non-inverting amplifier: $G = 1 + \frac{R_2}{R_1}$
 - * For both cases: $f_{\text{3dB}} \approx \frac{f_t}{1 + (R_2/R_1)}$

• Output Slew-Rate Limitation

$$\left| \frac{dv_o(t)}{dt} \right| \le SR$$

- The magnitude of the output voltage's rate of change can not exceed the slew-rate (SR) specification of the op-amp
- Typical $10^{5}[V/s] < SR < 10^{8}[V/s]$
- Usually the SR is specified with load resistance conditions

• DC Imperfections of Op-Amps

- Bias Current (I_B)
 - * Required for proper operation of internal circuitry (or resulting from unwanted leakage currents)
 - * Typical range: $0.1[nA] 1[\mu A]$
 - $*I_B = (I_{B+} I_{B-})/2$
 - * I_{B+} and I_{B-} flow at the respective terminals
- Offset Current (I_{off})
 - * $|\pm I_{off}| = |I_{B+} I_{B-}| < 200[\text{nA}] \text{ normally}$
 - * Results from internal device mismatches (transistors, resistors, etc.)
- Offset Voltage (V_{off})
 - * Due to internal device mismatches
 - * $|\pm V_{off}|$ < a few millivolts

• Analysis Procedure with DC Imperfections

- Draw a schematic diagram in which the source for a single DC imperfection is included (modeled)
- Replace all other sources
 - * Voltage source \rightarrow short circuit
 - \ast Current source \rightarrow open circuit
- Follow standard circuit analysis laws and ideal op-amp assumptions