

Lezione 04 - Sistemi bifase

Corso di Fisica Tecnica a.a. 2019-2020

*Prof. Gaël R. Guédon*Dipartimento di Energia, Politecnico di Milano

Obiettivi della lezione

- Definire un sistema eterogeneo (bifase)
- > Calcolare le funzioni di stato estensive specifiche di un sistema eterogeneo
- Illustrare le proiezioni dell'equazione di stato nei diagrammi di stato e le relative trasformazioni
- > Definire i titoli di vapore, liquido e solido
- Interpolare le funzioni di stato dalle tabelle termodinamiche

Sistema eterogeneo

Fin'ora abbiamo visto sitemi semplici, che è omogeneo e isotropo, con proprietà che non variano nello spazio e in cui tutti i fenomeni si svolgono con magnitudine uguale in tutte le direzioni

fra uno stato e l'altro le molecole sono in condizioni diverse, e spesso si forma un'interfaccia fra i due stati

una prima porzione (solitamente disegnata in alto c'è il gas per via della forza di gravità) in cui una sostanza è sotto uno stato di aggregazione

un'altra porzione del sistema in cui la nostra sostanza è in una altro stato di aggregazione

stato di aggregazione detto anche fase (liquida, solida o gaseiforme) **Omogeneo** (un solo stato di aggregazione)

Eterogeneo (più stati di aggregazione)

Esempio: acqua alla temperatura 25 °C e pressione 0.03166 bar si trova sia sotto forma liquida che gassosa

Sistema multicomponente

Un sistema multicomponente è un sistema in cui ci sono più sostanze

Monocomponente
(una sola sostanza)
Sono i sistemi che abbiamo visto fino ad ora

Multicomponente
(più sostanze)
Un esempio tipico è l'aria che contiene diverse componenti

Sistema eterogeneo multicomponente Uniamo i due casi delle slide precedenti

➢ Se l'acqua alla temperatura di 25 °C ha una pressione di saturazione pari a 0.03166 bar, perché troviamo nella natura acqua sotto forma gassosa a latm=101325 pascal tale temperatura e pressione 1 atm? La domanda ci chiede come mai, se in natura siamo ad una pressione (1atm) maggiore di 0.03166bar, riusciamo a trovare comunque acqua sotto forma gassosa? Il perchè è legato al fatto che troviamo acqua legata ad altri componenti

➤ In natura, l'acqua bolle a 100 °C.

Possiamo trovare acqua liquida oltre questa temperatura?

Sì. L'acqua bolle a 100 gradi in natura e quindi a 1atm e se io aumento la pressione del mio sistema, la temperatura di ebollizione aumenterà.

(più stati di aggregazione)

vedremo solo sistemi eterogenei monocomponenti

Grandezze estensive del sistema eterogeneo costituito da due stati (o fasi) α e β

Vedremo solo sistemi eterogenei monocomponenti e questi sistemi possono essere divisi in due sottosistemi:

$$M=M_{lpha}+M_{eta}$$
 legato alla fase alfa (per esempio gas)

$$E=E_{lpha}+E_{eta}$$
 legato alla fase beta (per esempio liquida)

Le grandezze estensive specifiche risultano dalla **media pesata sulle masse** dei valori delle grandezze estensive specifiche delle singole fasi

$$e = \frac{M_{\alpha}}{M} e_{\alpha} + \frac{M_{\beta}}{M} e_{\beta}$$

Per quanto riguarda le grandezze estensive specifiche (e), succede

che per trovare tale grandezza sull'intero sistema si fa la media pesata (secondo le masse) delle grandezze nei singoli sottosistemi.

la massa totale è la massa dei due sottosistemi sommati.

Per una generica grandezza estensiva (energia

interna, entropia, volume, etc) usiamo questa formula che lega i due sottosistemi, molto utile per descrivere sistemi complessi

Grandezze estensive del sistema eterogeneo costituito da due stati (o fasi) α e β ricordo che alfa e beta rappresentano due stati (per esempio liquido e gassoso)

$$e = \frac{M_{\alpha}}{M}e_{\alpha} + \frac{M_{\beta}}{M}e_{\beta}$$

(M = massa totale del sistema)
$$x_{lpha} = rac{M_{lpha}}{M}$$
 $x_{eta} = rac{M_{eta}}{M}$

$$x_{\beta} = \frac{M_{\beta}}{M}$$

sono le proporzioni di massa Frazione rispettivamente nello stato alfa massica (es gassoso) e nello stato beta (es liquido)

$$e = x_{\alpha}e_{\alpha} + x_{\beta}e_{\beta}$$

$$x_{\alpha} + x_{\beta} = 1$$

$$e = (1 - x_{\beta})e_{\alpha} + x_{\beta}e_{\beta}$$

=> semplificazione della formula della slide precedente

Grandezze estensive del sistema multicomponente costituito da una miscela di gas ideali

Equazione di stato della miscela: PV = NRT

$$PV = NRT$$

con
$$N = \sum_{i=1}^{n} N_i$$
 = numero di mole del sistema, è la somma delle moli di agni sectorza

Legge di Dalton: $P = \sum_{i=1}^{n} P_i$

$$P = \sum_{i=1}^{n} P_i$$

con la pressione parziale $P_i = \frac{N_i}{N}P$

$$P_i = \frac{N_i}{N} P$$

$$\left[\begin{array}{ccc} N_1 & T \\ P_1 & V \end{array}\right]$$

$$N_2$$
 T

$$+ \mid P_3$$

$$N_n$$
 T

$$P_n$$
 V

$$N=\Sigma N_i$$

$$P=\sum P_{i}$$

$$U = \sum U_i$$

$$S = \sum S_i$$

Regola di Gibbs

$$V = C + 2 - F$$

Abbiamo introdotto in precedenza la legge di Duem, che ci diceva che per descrivere un sistema semplice ci occorrono due grandezze per descrivere uno stato di equilibrio (due grandezze intensive o estensive specifiche).

V: numero di variabili intensive indipendenti utilizzabili ($P \in T$) per descrivere uno stato di equilibrio

C: numero di componenti

F: numero di fasi

La regola di Glbbs ci dice che c'è un legame fra V C e F. Tendenzialmente useremo sempre Pressione e Temperatura come variabili intensive, che quindi hanno un legame che dipende da quanti componenti ho e da quante fasi ho.

Nel caso monocomponente e monofase V =2, quindi pressione e temperatura saranno indipendenti fra di loro.

Per il sistema monocomponente bifase V=1 Nel caso bifase per descrivere uno stato di equilibrio avrò comunque la necessità di due grandezze (per la legge di Duem), però avrò un legame fra queste due grandezze (V=1, cioè solo una è indipendente). Siccome c'è un legame fra i due:

P e T non sono indipendenti. Lo stato termodinamico è descritto compiutamente da una coppia intensiva-estensiva oppure da una coppia estensiva-estensiva per poter descrivere il mio sistema quindi avrò bisogno di una grandezza estensiva specifica,

$$(P,v)$$
 (T,v) (P,u) (T,u) (P,h) (T,h) (P,s) (T,s) (v,u) (v,h) (v,s) (u,h) (u,s) (h,s)

non posso quindi più usare la coppia (P,T), ma posso usare:

Regola di Gibbs

$$V = C + 2 - F$$

V: numero di variabili intensive indipendenti utilizzabili (P e T)

C: numero di componenti

F: numero di fasi

Nel caso trifase (solido, liquido, areiforme) V=0,

Per il sistema monocomponente trifase V=0 Non ho quindi variabili intensive indipendenti!

Nelle tabelle delle sostanze viene fornita spesso la P e T a punto triplo, che sono appunto i valori fissi di P e T in sistemi monocomponenti trifase

P e T sono fissi e funzioni della sostanza (punto triplo). Lo stato termodinamico è descritto compiutamente da una coppia estensiva-estensiva

Siccome non ho variabili intensivi indipendenti per descrivere lo stato termodinamico devo usare una coppia di grandezze estensive specifiche:

$$(v,u)$$
 (v,h) (v,s) (u,h) (u,s) (h,s)

Transizione di fase

- > Passaggio da uno stato di aggregazione ad un altro
- Avviene a pressione (e temperatura) costante

C'è un legame tra il calore fornito al sistema per effettuare la transizione di fase e una variazione di una grandezza di stato. Questo legame si ricava da: Primo principio in forma differenziale

$$dh = \delta q^{\leftarrow} + vdP$$

siccome lo scambio di calore la P è costante, possiamo scrivere:

Durante la transizione di fase, abbiamo

$$dh = \delta q^{\leftarrow}$$

Calore necessario = Entalpia di transizione

(variazione di entalpia fra i due stati di equilibrio)

Ci riferiremo spesso a entalpia di transione come la quantità di energia necessaria per passare da uno stato a un altro.

L04: Il sistema eterogeneo monocomponente

Ricapitolando...

Sistema eterogeneo monocomponente

Stati monofase: Solido

Liquido

Aeriforme (Gas)

Stati bifase: Coesistenza di solido e liquido

Coesistenza di solido e aeriforme (vapore)

Coesistenza di liquido e aeriforme (vapore)

Stati tripli: Coesistenza di solido, liquido e aeriforme (vapore)

L04: Il sistema eterogeneo monocomponente

Terminologia...

LIQUIDO SOTTORAFFREDDATO

Liquido NON in procinto di evaporare (temperatura di sistema sotto temperatura di saturazione)

LIQUIDO SATURO (liquido a temperatura di saturazione)

Liquido in procinto di evaporare

VAPORE SATURO

Vapore in condizioni di incipiente condensazione (gas a temperatura di saturazione)

VAPORE SURRISCALDATO

Vapore NON in procinto di condensare (temperatura di sistema sopra temperatura di saturazione)

TEMPERATURA DI SATURAZIONE (temperat

(temperatura in cui un liquido inizia a evaporare o in cui un gas inizia a condensarsi)

Temperatura alla quale una sostanza pura comincia ad evaporare/condensare, fissata la pressione

L04: Diagramma di stato P - v - T

Nelle lezioni precedenti abbiamo visto il concetto di equazione di stato che può essere rappresentato da una superficie di stato.

Per un sistema monocomponente all'equilibrio: il diagramma di stato rappresenta la superficie di stato (in bianco) in uno spazio tridimensionale di coordinate P - v - T, luogo dei possibili stati del sistema. La superficie di stato dipende dalla sostanza considerata

Fisica Tecnica – Prof. Gaël R. Guédon

Più ci avviciniamo a un punto critico più la disposizione delle molecole si assomiglia, una volta superato il punto critico, non si riesce più a distinguere la differenza fra un liquido o un solido o un vapore. Se si supera la T critica e la P critica si trova un Fluido supercritico. Se si supera la T critica ma non la P critica si parla di Gas. Se non si supera la T critica e la P critica, ma ci si tiene oltre la linea di transizione distato, si parla di vapore.

Pressione

POLITECNICO MILANO 1863

Terminologia...

Definizioni:

- Solido (S)
 - Liquido sottoraffreddato (L)
- Liquido saturo (sulla curva limite inferiore, tra L e LV)
- Vapore umido (miscela liquido vapore LV)
- Vapore saturo secco (sulla curva limite superiore, tra LV e V)
- Vapore surriscaldato (V)
- Temperatura di saturazione: fissata una *P* è la *T* alla quale
 - > il liquido inizia a evaporare
 - il vapore inizia a condensare

C'è molta terminologia, ma una volta comprese le varie sezioni e linee che le delimitano è tutto molto facile.

Terminologia...

Proiezione del diagramma di stato nel piano P-T:

Transizioni di fase:

L04: Diagramma di stato P - v - T

Consideriamo delle transizioni di fase isobare (P costante):

Ci sono due tipi di sostanze per quanto riguarda la solidificazione:

1) Sostanze che solidificando a *P* costante **aumentano** il proprio volume (es. H2O)

 Sostanze che solidificando a P costante diminuiscono il proprio volume

(es. CO2)

Definizione di GAS: Il gas è quello stato di aggregazione in cui se vado a comprimerlo, non si osserva condensazione, ma al massimo si arriva ad avere un fluido supercritico

Fluido a $P < P_{cr}$ e $T > T_{cr}$ che non può essere liquefatto attraverso una trasformazione di compressione isoterma.

Stato di alcune sostanze a condizioni ambiente:

$$P_{
m amb} = 101325 \; {
m Pa} = 1 \; {
m atm}$$

$$T_{\rm amb} = 20 \, ^{\circ}\text{C} \, (293.15 \, \text{K})$$

I fluidi che a condizioni ambiente sono in fase gas sono detti «incondensabili» (azoto) Iniziamo a vedere le trasformazioni

Trasformazione ISOBARA: fornisco (o sottraggo) calore al sistema a pressione costante

In questa trasformazione possiamo notare che sono presenti tutte le fasi

Trasformazione ISOBARA: fornisco (o sottraggo) calore al sistema a pressione costante

In questa trasformazione invece notiamo che abbiamo solo due fasi presenti

Un'altra trasformazione

Trasformazione **ISOTERMA**: espando (o comprimo) il sistema fornendo/estraendo calore per mantenere la temperatura

L04: Diagramma di stato P - v - T

Uno dei problemi del proietare la superficie di stato nel diagramma P-T, è che difficilmente riusciamo a rappresentare le transizioni di fase, perchè le zone SL e LV corrispondo soltanto a un punto. Perciò il diagramma P-T è poco utile per rappresentare cambi di stato. Per ovviare a ciò dobbiamo fare diverse proiezioni della superficie di stato, rispetto a una coppia di grandezze (P,v), ma molto più spesso useremo il diagramma Temperatura-entropia specifica. (si vede nella slide dopo)

Trasformazione ISOBARA: fornisco (o sottraggo) calore al sistema a pressione costante

Trasformazione ISOBARA: fornisco (o sottraggo) calore al sistema a pressione costante

Entalpia (calore) di transizione di fase

 $h_{solido} < h_{liquido} < h_{vapore}$

entalpia di liquefazione entalpia di solidificazione

$$h_{liquido} - h_{solido} > 0$$

 $h_{lst} = h_{solido} - h_{liquido} < 0$

tipici valori di entalpia di transizione al punto triplo per l'acqua:

entalpia di evaporazione entalpia di condensazione

$$h_{lvt} = h_{vapore} - h_{liquido} > 0$$

 $h_{liquido} - h_{vapore} < 0$

$$h_{lvt,H_2O} = 2501.6 \text{ kJ/kg}$$

 $h_{lst,H_2O} = -333 \text{ kJ/kg}$

entalpia di sublimazione entalpia di brinamento

$$\begin{split} h_{svt} &= h_{vapore} - h_{solido} > 0 \\ h_{solido} &- h_{vapore} < 0 \end{split}$$

$$h_{svt,H_2O} = 2834.6 \text{ kJ/kg}$$

Frazioni massiche prendono il nome di titolo:

Titolo di vapore

$$x_v = \frac{M_v}{M}$$

Titolo di liquido

$$x_l = \frac{M_l}{M}$$

Titolo di solido

$$x_s = \frac{M_s}{M}$$

$$x_v + x_l + x_s = 1$$

Noi tratteremo principalmente sistemi con vapore e liquido, quindi parleremo spesso di titolo di vapore e titol odi liquido.

Caso generale per calcolare grandezze estensive specifiche

$$v = (1 - x_l - x_v)v_s + x_lv_l + x_vv_v$$

$$u = (1 - x_l - x_v)u_s + x_lu_l + x_vu_v$$

$$h = (1 - x_l - x_v)h_s + x_lh_l + x_vh_v$$

$$s = (1 - x_l - x_v)s_s + x_ls_l + x_vs_v$$

Sistema Liquido - Vapore

Titolo di vapore

$$x=x_v=rac{M_v}{M}$$
 siccome useremo molto spesso titolo di vapore, usiamo la sola lettera x per indicarlo

Espressioni di grandezze estensive specifiche nel caso bifase (Liquido-Vapore):

$$v = (1 - x)v_l + xv_v$$

$$u = (1 - x)u_l + xu_v$$

$$h = (1 - x)h_l + xh_v$$

$$s = (1 - x)s_l + xs_v$$

Le tabelle termodinamiche, sono molto utili e dovremo usarle per gli esercizi.

I numeri che vediamo in questa tabella rappresentano l'errore che c'è fra la stima del volume specifico calcolato tramite l'equazione di stato del gas ideale e quella reale.

Vapore come gas ideale?

Diagramma acqua:

Errore in % tra $v e v_{id}$ Zona con errore < 1 %

Equazione di stato del gas ideale sempre valida fino a 100 kPa (1 bar)

Sopra 1 MPa (10 bar) e tra 200 e 400 °C, mai! Errore fino e oltre il 100%

Fig 4.49 – Y. Cengel

Tabella di saturazione (in pressione)

confronto con proiezione sul piano P-T della superficie Tabelle di saturazione dell'acqua Tratto da VDI Atlas/ed. Verein Deutscher Ingenieure. - Düsseldorf: VDI-Verl., 1993

di stato:			valori di volume specifico, liquido saturo vapore saturo			entalpia specifica, liquido saturo vapore saturo			entropia specifica liquido saturo			
Il primo punto è il	P (bar)	T (°C)	v _L (m³/kg)	v _v -v _L (m ³ /kg)	v _v (m³/kg)	h _L (kJ/kg)	h _v -h _L (kJ/kg)	h _v (kJ/kg)	s _L (kJ/kgK)	s_v - s_L (kJ/kgK)	s _v (kJ/kgK)	
	0.00611	0.01	0.0010002	206.1619	206.1629	0.0	2501.6	2501.6	0.0000	9.1575	9.1575	
punto triplo	0.01	6.98	0.0010001	129.2097	129.2107	29.3	2485.0	2514.4	0.1060	8.8706	8.9767	
	0.02	17.51	0.0010012	67.0106	67.0116	73.5	2460.2	2533.6	0.2606	8.4640	8.7246	
T 00 - P - 102 1 - 2	0.03	24.10	0.0010027	45.6690	45.6700	101.0	2444.6	2545.6	0.3543	8.2242	8.5785	
Tutti gli altri valori	0.04	28.98	0.0010040	34.8023	34.8033	121.4	2433.1	2554.5	0.4225	8.0530	8.4755	
sono i valori che	0.05	32.90	0.0010052	28.1935	28.1945	137.8	2423.8	2561.6	0.4763	7.9197	8.3960	
	0.06	36.18	0.0010064	23.7396	23.7406	151.5	2416.0	2567.5	0.5209	7.8103	8.3312	
si trovano percorre		39.03	0.0010074	20.5294	20.5304	163.4	2409.2	2572.6	0.5591	7.7176	8.2767	
la curva di saturazi	one 0.08	41.54	0.0010084	18.1028	18.1038	173.9	2403.2	2577.1	0.5926	7.6370	8.2295	
liquido vaporo	0.09	43.79	0.0010094	16.2024	16.2034	183.3	2397.9	2581.1	0.6224	7.5657	8.1881	
liquido-vapore	0.10	45.83	0.0010102	14.6727	14.6737	191.8	2392.9	2584.8	0.6493	7.5018	8.1511	
	0.15	54.00	0.0010140	10.0211	10.0221	226.0	2373.2	2599.2	0.7549	7.2544	8.0093	
	0.20	60.09	0.0010172	7.6482	7.6492	251.5	2358.4	2609.9	0.8321	7.0773	7.9094	
	0.25	64.99	0.0010199	6.2030	6.2040	272.0	2346.4	2618.3	0.8933	6.9390	7.8323	
	0.30	69.13	0.0010223	5.2280	5.2290	289.3	2336.1	2625.4	0.9441	6.8254	7.7695	
	0.35	72.71	0.0010245	4.5245	4.5255	304.3	2327.2	2631.5	0.9878	6.7288	7.7166	
	0.40	75.89	0.0010265	3.9922	3.9932	317.7	2319.2	2636.9	1.0261	6.6448	7.6709	
	0.45	78.74	0.0010284	3.5751	3.5761	329.6	2312.0	2641.7	1.0603	6.5703	7.6306	
	0.50	81.35	0.0010301	3.2391	3.2401	340.6	2305.4	2646.0	1.0912	6.5035	7.5947	
	0.60	85.95	0.0010333	2.7307	2.7317	359.9	2293.6	2653.6	1.1455	6.3872	7.5327	
	0.70	89.96	0.0010361	2.3637	2.3647	376.8	2283.3	2660.1	1.1921	6.2883	7.4804	
	0.80	93.51	0.0010387	2.0859	2.0869	391.7	2274.0	2665.8	1.2330	6.2022	7.4352	
	0.90	96.71	0.0010412	1.8681	1.8691	405.2	2265.6	2670.9	1.2696	6.1258	7.3954	
	1.00	99.63	0.0010434	1.6927	1.6937	417.5	2257.9	2675.4	1.3027	6.0571	7.3598	
	1.01325	100.00	0.0010437	1.6720	1.6730	419.1	2256.9	2676.0	1.3069	6.0485	7.3554	
	1.20	104.81	0.0010476	1.4271	1.4281	439.4	2244.1	2683.4	1.3609	5.9375	7.2984	
	1.40	109.32	0.0010513	1.2352	1.2363	458.4	2231.9	2690.3	1.4109	5.8356	7.2465	
	1.60	113.32	0.0010547	1.0900	1.0911	475.4	2220.9	2696.2	1.4550	5.7467	7.2017	
	1.80	116.93	0.0010579	0.97612	0.9772	490.7	2210.8	2701.5	1.4944	5.6677	7.1622	
	2.00	120.23	0.0010608	0.88434	0.8854	504.7	2201.6	2706.3	1.5301	5.5967	7.1268	
	2.50	127.43	0.0010676	0.71733	0.7184	535.4	2181.0	2716.4	1.6072	5.4448	7.0520	
	3.00	133.54	0.0010735	0.60446	0.6055	561.4	2163.2	2724.7	1.6717	5.3192	6.9909	

perchè la prima colonna rappresenta la temperatura

Tabella di saturazione (in temperatura)

Tabelle di saturazione dell'acqua

ogni "blocco" ha tre colonne, quelle ai lati mostrano i vlaori saturi, mentre

Tratto da VDI Atlas/ed. Verein Deutscher Ingen**que la ecentrale i mostra la differenza fra** i due ai lati.

stessa tabella di prim	a,
na il riferimento è la	

temperatura.

e la			liquido saturo		vapore saturo	liquido saturo		vapore saturo	liquido saturo		vapore saturo
•	T (°C)	P (bar)	v _L (m³/kg)	v _v -v _L (m³/kg)	v _v (m³/kg)	h _L (kJ/kg)	h _v -h _L (kJ/kg)	h _v (kJ/kg)	s _L (kJ/kgK)	s _v -s _L (kJ/kgK)	s _v (kJ/kgK)
	0.01	0.006112	0.001000	206.162	206.163	~> 0.0	2501.6	2501.6	0.0000	9.1575	9.1575
	2	0.007055	0.001000	179.922	179.923	8.4	2496.8	2505.2	0.0306	9.0741	9.1047
	4	0.008129	0.001000	157.271	157.272	16.8	2492.1	2508.9	0.0611	8.9915	9.0526
	6	0.009345	0.001000	137.779	137.78	25.2	2487.4	2512.6	0.0913	8.9102	9.0015
	8	0.01072	0.001000	120.965	120.966	33.6	2482.6	2516.2	0.1213	8.8300	8.9513
	10	0.01227	0.001000	106.429	106.43	42.0	2477.9	2519.9	0.1510	8.7510	8.9020
	15	0.017139	0.001001	77.977	77.978	62.9	2466.1	2529.1	0.2243	8.5582	8.7826
	20	0.023366	0.001002	57.837	57.838	83.9	2454.3	2538.2	0.2963	8.3721	8.6684
	25	0.03166	0.001003	43.401	43.402	104.8	2442.5	2547.3	0.3670	8.1922	8.5592
	4 30	0.042415	0.001004	32.928	32.929	125.7	2430.7	2556.4	0.4365	8.0181	8.4546
•	35	0.056216	0.001006	25.244	25.245	146.6	2418.8	2565.4	0.5049	7.8495	8.3543
	40	0.07375	0.001008	19.545	19.546	167.5	2406.9	2574.4	0.5721	7.6861	8.2583
	45	0.09582	0.001010	15.275	15.276	188.4	2394.9	2583.3	0.6383	7.5277	8.1661
	50	0.12335	0.001012	12.045	12.046	209.3	2382.9	2592.2	0.7035	7.3741	8.0776
	55	0.15741	0.001015	9.5779	9.5789	230.2	2370.8	2601.0	0.7677	7.2248	7.9925
	60	0.1992	0.001017	7.6775	7.6785	251.1	2358.6	2609.7	0.8310	7.0798	7.9108
	65	0.25009	0.001020	6.2013	6.2023	272.0	2346.3	2618.4	0.8933	6.9388	7.8321
	70	0.31162	0.001023	5.0453	5.0463	293.0	2334.0	2626.9	0.9548	6.8017	7.7565
	75	0.38549	0.001026	4.1331	4.1341	313.9	2321.5	2635.4	1.0154	6.6681	7.6835
	80	0.4736	0.001029	3.4081	3.4091	334.9	2308.8	2643.8	1.0753	6.5380	7.6133
	85	0.57803	0.001033	2.8278	2.8288	355.9	2296.1	2652.0	1.1343	6.4111	7.5454
	90	0.70109	0.001036	2.3603	2.3613	376.9	2283.2	2660.1	1.1925	6.2873	7.4798
	95	0.84526	0.001040	1.9812	1.9822	398.0	2270.2	2668.1	1.2501	6.1665	7.4166
	100	1.01325	0.001044	1.672	1.673	419.1	2256.9	2676.0	1.3069	6.0485	7.3554
	105	1.208	0.001048	1.4183	1.4193	440.2	2243.6	2683.7	1.3630	5.9331	7.2962
	110	1.4327	0.001052	1.2089	1.2099	461.3	2230.0	2691.3	1.4185	5.8203	7.2388
	115	1.6906	0.001056	1.0353	1.0363	482.5	2216.2	2698.7	1.4733	5.7099	7.1832
	120	1.9854	0.001061	0.89046	0.89152	503.7	2202.2	2706.0	1.5276	5.6017	7.1293
	125	2.321	0.001065	0.76917	0.77023	525.0		2713.0	1.5813	5.4957	7.0769
	130	2.7013	0.001070	0.66707	0.66814	546.3	2173.6	2719.9	1.6344	5.3917	7.0261

Tabella del vapore surriscaldato

è una tabella che mostra le pressioni (sulle righe) e la temperatura (sulle colonne) per un sistema monofase, in cui P e T descrivono uno stato di equilibrio.

	Tabelle	e vap	ore sur	riscaldato	dell'acqu	a			Tr	ratto da VDI Atlas/ed	Verein Deutscher I	ngenieure Düsseld	orf: VDI-Verl., 1993		
	Pressio	ne					, 1	Temperatura			/	√			
	Ts (°C)			50	100	150	200	250	300	350 V	400	500	600	700	800
Tempera	atura di s	satura	azione	74.524	86.08	97.628	109.171	120.711	132.251	143.79	155.329	178.405	201.482	224.558	247.634
•	0.02	h	kJ/kg	2594.4	2688.5	2783.7	2880	2977.7	3076.8	3177.7	3279.7	3489.2	3705.6	3928.8	4158.7
	17.5	5	k.l/kgK	8.9226	9.1934	9.4327	9.6479	9.8441	10.0251	10.1934	10.3512	10.6413	10.9044	11.1464	11.3712
		v	m3/kg	37.24	43.027	48.806	54.58	60.351	66.122	71.892	77.662	89.201	100.74	112.278	123.816
	0.04	h	kJ/kg	2593.9	2688.3	2783.5	2879.9	2977.6	3076.8	3177.4	3279.7	3489.2	3705.6	3928.8	4158.7
	29	5	k.l/kgK	8.6016	8.873	9.1125	9.3279	9.5241	9.7051	9.8735	10.0313	10.3214	10.5845	10.8265	11.0513
		v	m3/kg	24.812	28.676	32.532	37.383	40.232	44.079	47.927	51.773	59.467	67.159	74.852	82.544
	0.06	h	kJ/kg	2593.5	2688	2783.4	2879.8	2977.6	3076.7	3177.4	3279.6	3489.2	3705.6	3928.8	4158.7
	36.2	5	kJ/kgK	8.4135	8.6854	8.9251	9.1406	9.3369	9.5179	9.6863	9.8441	10.1342	10.3973	10.6394	10.8642
		v	m3/kg	18.598	21.501	24.395	27.284	30.172	33.058	35.944	38.829	44.599	50.369	56.138	61.908
	0.08	h	k_l/kg	2593.1	2687.8	2783.2	2879.7	2977.5	3076.7	3177.3	3279.6	3489.1	3705.5	3928.8	4158.7
	41.5	5	k.l/kgK	8.2797	8.5521	8.7921	9.0077	9.2041	9.3851	9.5535	9.7113	10.0014	10.2646	10.5066	10.7314
		v	m3/kg	14.869	17.195	19.512	21.825	24.136	26.445	28.754	31.062	35.679	40.295	44.91	49.526
	0.1	h	k.l/kg	2592.7	2687.5	2783.1	2879.6	2977.4	3076.6	3177.3	3279.6	3489.1	3705.5	3928.8	4158.7
\sim .	45.8	5	kJ/kgK	8.1757	8.4486	8.6888	8.9045	9.101	9.282	9.4504	9.6083	9.8984	10.1616	10.4036	10.6284
		v	m3/kg	1	3.4181	3.8893	4.356	4.8205	5.2839	5.7467	6.2091	7.1335	8.0574	8.981	9.9044
	0.5	h	kJ/kg	_	2682.6	2780.1	2877.7	2976.1	3075.7	3176.6	3279	3488.7	3705.2	3928.6	4158.5
	81.3	5	kJ/kgK		7.6953	7.9406	8.1587	8.3564	8.538	8.7068	8.8649	9.1552	9.4185	9.6606	9.8855
4		v	m3/kg		1.6955	1.9363	2.1723	2.4061	2.6387	2.8708	3.1025	3.5653	4.0277	4.4898	4.9517
	1	h	k.l/kg	1	2676.2	2776.1	2875.4	2974.5	3074.5	3175.6	3278.2	3488.1	3704.8	3928.2	4158.3
٠.	99.6	5	kJ/kgK		7.3618	7.6137	7.8349	8.0342	8.2166	8.3858	8.5442	8.8348	9.0982	9.3405	9.5654
		v	m3/kg	queste ca	aselle	0.95954	1.0804	1.1989	1.3162	1.4328	1.5492	1.7812	2.0129	2.2442	2.4754
	2	h	kJ/kg	in gialla r	annrocont	2768.5	2870.5	2971.2	3072.1	3173.8	3276.7	3487	3704	3927.6	4157.8
	120.2	5	kJ/kgK		<mark>appresen</mark> t		7.5072	7.7096	7.8937	8.0638	8.2226	8.5139	8.7776	9.0201	9.2452
		V	m3/kg	la curva l	<mark>imite, cioè</mark>	la ^{0.633/4}	0.71635	0.79644	0.87529	0.95352	1.0314	1.1865	1.3412	1.4957	1.6499
-	3	h	kJ/kg	zona di L		2700.4	2865.5	2967.9	3069.7	3171.9	3275.2	3486	3703.2	3927	4157.3
	133.5	5	kJ/kgK			7.0771	7.3119	7.5176	7.7034	7.8744	8.0338	8.3257	8.5898	8.8325	9.0577
		v	m3/kg	sottoraffr	eddato,.	0.47066	0.53426	0.59519	0.65485	0.71385	0.7725	0.88919	1.0054	1.1214	1.2372
	4	h	kJ/kg	Ts è mag	giore di T	2752	2860.4	2964.5	3067.2	3170	3273.6	3484.9	3702.3	3926.4	4156.9
	143.6	5	kJ/kgK			6.9285	7.1708	7.38	7.5675	7.7395	7.8994	8.1919	8.4563	8.6992	8.9246
	_	V	m3/kg	quindi sia	mo in casc	di	0.42496	0.47443	0.52258	0.57005	0.61716	0.71078	0.80395	0.89685	0.98956
	5	h	kJ/kg	Liquido so	ottoraffredo	lato	2855.1	2961.1	3064.8	3168.1	3272.1	3483.8	3701.5	3925.8	4156.4
	151.8	5	kJ/kgK	Liquido SC	Moramedo	ato	7.0592	7.2721	7.4614	7.6343	7.7948	8.0879	8.3626	8.5957	8.8213

Interpolazione lineare

$$Y = Y_A + \frac{Y_B - Y_A}{X_B - X_A}(X - X_A)$$

Y: grandezza che si vuole calcolare vogliamo calcolare Y con delle grandezze X che conosciamo.

X: grandezza conosciuta

A, B: stati di riferimento (presenti in tabella) con $X_A < X < X_B$

Prendiamo per esempio Y l'entalpia di un sistema, e X la pressione nota che vale per esempio 3,5 bar. Nelle tabelle il caso particolare di pressione a 3,5 bar non è nota, ma con la formula di interpolazione lineare possiamo ricavarlo usando i due valori X_A (per esempio a 3 bar) e X_B (per esempio a 4 bar) più vicini che ho alla nostra X di 3,5 bar.

Interpolazione lineare: esempio

Vogliamo sapere:

Entalpia liquido saturo a $T=12~{}^{\circ}C$, 12 gradi non ce l'ho nelle tabelle, quindi usiamo quelli da 10 gradi e da 15 gradi e la formula di interpolazione lineare.

$$X_A = T_A = 10 \, ^{\circ}C$$

 $X_B = T_B = 15 \, ^{\circ}C$

$$Y_A = h_{LS,A} = 42.0 \ kJ/kg$$

 $Y_B = h_{LS,B} = 62.9 \ kJ/kg$

Tabelle di saturazione dell'acqua

Tratto da VDI Atlas/ed. Verein Deutscher Inger

			liquido saturo		vapore saturo	liquido saturo		vapore saturo
	T (°C)	P (bar)	v _L (m³/kg)	v _v -v _L (m ³ /kg)	v _v (m³/kg)	h _L (kJ/kg)	h _v -h _L (kJ/kg)	h _v (kJ/kg)
	0.01	0.006112	0.001000	206.162	206.163	0.0	2501.6	2501.6
	2	0.007055	0.001000	179.922	179.923	8.4	2496.8	2505.2
	4	0.008129	0.001000	157.271	157.272	16.8	2492.1	2508.9
\boldsymbol{A}	6	0.009345	0.001000	137.779	137.78	25.2	2487.4	2512.6
	8	0.01072	0.001000	120.965	120.966	33.6	2482.6	2516.2
	10	0.01227	0.001000	106.429	106.43	42.0	2477.9	2519.9
	15	0.017139	0.001001	77.977	77.978	62.9	2466.1	2529.1
D	20	0.023366	0.001002	57.837	57.838	83.9	2454.3	2538.2
B	25	0.03166	0.001003	43.401	43.402	104.8	2442.5	2547.3

$$Y = h_{LS} = h_{LS,A} + \frac{h_{LS,B} - h_{LS,A}}{T_B - T_A} (T - T_A) = 42.0 + \frac{62.9 - 42.0}{15 - 10} (12 - 10)$$

$$h_{LS}(12 \,{}^{\circ}C) = 50.4 \, kJ/kg$$

Vanno sempre controllate le unità di misura e che i valori siano logicamente congruenti con quelli della tabella.

Nel caso della tabella del vapore surriscaldato (slide precedente) gli esercizi che risolveremo avranno o la temperatura o la pressione corrispondenti a uno dei valori della tabella e l'altro da calcolare con la formula di interpolazione lineare. Nel caso in cui entrambe le grandezze non corrispondano a nessun valore preciso della tabella usiamo la formula di interpolazione bilineare.

Interpolazione bilineare

Quando gli stati di riferimento non sono direttamente identificabili in tabella

dobbiamo quindi fare tre interpolazioni da fare:

$$Y = Y_A + \frac{Y_B - Y_A}{X_B - X_A}(X - X_A)$$

$$Y_A = Y_{A1} + \frac{Y_{A2} - Y_{A1}}{X_{A2} - X_{A1}} (X_A - X_{A1})$$

$$Y_B = Y_{B1} + \frac{Y_{B2} - Y_{B1}}{X_{B2} - X_{B1}} (X_B - X_{B1})$$

Tabollo vanoro eurriecaldato doll'acqua

esempio del concetto della slide precedente. (continua nella prossima slide)

Interpolazione bilineare: esempio

Entalpia vapore surriscaldato a $P = 1.5 \ bar \ e \ s = 7.5 \ kJ/kgK$

P (bar)				W	1	т	emperatur
Ts (°C)			50	100	150	200	250
	V	m3/kg	74.524	86.08	97.628	109.171	120.711
0.02	h	kJ/kg	2594.4	2688.5	2783.7	2880	2977.7
17.5	5	kJ/kgK	8.9226	9.1934	9.4327	9.6479	9.8441
	V	m3/kg	37.24	43.027	48.806	54.58	60.351
0.04	h	kJ/kg	2593.9	2688.3	2783.5	2879.9	2977.6
29	5	k.l/kgK	8.6016	8.873	9.1125	9.3279	9.5241
	V	m3/kg	24.812	28.676	32.532	37.383	40.232
0.06	h	kJ/kg	2593.5	2688	2783.4	2879.8	2977.6
35.2	5	k.l/kgK	8.4135	8.6854	8.9251	9.1406	9.3369
	V	m3/kg	18.598	21.501	24.395	27.284	30.172
0.08	h	kJ/kg	2593.1	2687.8	2783.2	2879.7	2977.5
41.5	5	kJ/kgK	8.2797	8.5521	8.7921	9.0077	9.2041
	v	m3/kg	14.869	17.195	19.512	21.825	24.136
0.1	h	kJ/kg	2592.7	2687.5	2783.1	2879.6	2977.4
45.8	5	k l/kgK	8.1757	8.4486	8.6888	8.9045	9.101
	V	m3/kg		3.4181	3.8893	4.356	4.8205
0.5	h	kJ/kg		2682.6	2780.1	2877.7	2976.1
81.3	5	k VkgK		7.6953	7.9406	8.1587	8.3564
	V	m3/kg		1.6955	1.9363	2.1723	2.4061
1	h	kJ/kg		2676.2	2776.1	2875.4	2974.5
99.6	5	kJ/kgK	1 _=	7.3618	7.6137	7.8349	8.0342
	v	m3/kg			0.95954	1.0804	1.1989
2	h	kJ/kg	(2768.5	2870.5	2971.2
120.2	5	k.UkgK			7.2794	7.5072	7.7096

$$P_A = 1 \ bar$$
 $P_B = 2 \ bar$ $T_{A1} = 100 \ ^{\circ}C$ $T_{B1} = 150 \ ^{\circ}C$ $T_{A2} = 150 \ ^{\circ}C$ $T_{B2} = 200 \ ^{\circ}C$

$$P_B = 2 bar$$

 $T_{B1} = 150 \,^{\circ}C$
 $T_{B2} = 200 \,^{\circ}C$

continuo della slide precedente.

Interpolazione bilineare: esempio

Entalpia vapore surriscaldato a $P = 1.5 \ bar \ e \ s = 7.5 \ kJ/kgK$

$$h_A(1 \ bar, 7.5 \ kJ/kgK) = \cdots$$

$$h_B(2 \ bar, 7.5 \ kJ/kgK) = \cdots$$

$$h(1.5 \ bar, 7.5 \ kJ/kgK) = \cdots$$

(vedremo a esercitazione i casi in cui l'interpolazione lineare o bilineare non rappresenta una buona approssimazione)

Formule per l'acqua sottoraffreddata

Modello di **liquido incomprimibile ideale** $(c_P = c(T), \beta = 0 \text{ e } K_T = 0)$

$$dh = c(T)dT + vdP$$
$$ds = c(T)\frac{dT}{T}$$

Queste sono forme differenziali e per poterle integrare devo conoscere la funzione c(T), che però non conosciamo. L'ipotesi che quindi facciamo è quella di liquido incomprimibile perfetto, cioè con c costante.

Modello di liquido incomprimibile perfetto (c = cost)

Se abbiamo c costante possiamo quindi integrare le formule viste sopra.

$$\Delta h = c\Delta T + v\Delta P$$

$$\Delta s = c \ln \frac{T_2}{T_1}$$

tutte le grandezze con _ref sono grandezze di riferimento e sono quelle che dobbiamo definire

Vogliamo trovare valori per questo stato (liquido sottoraffreddato), ma siccome non ho tabelle, devo trovare una sorta di modello

Formule per l'acqua sottoraffreddata

Fissando la temperatura alla temperatura a cui vogliamo calcolare il nostro liquido sottoraffreddato, andiamo a cercare il valore di pressione di saturazione nella tabella di liquido saturo. Facendo così abbiamo identificato il punto rosso nel grafico sottostante.

Modello di liquido incomprimibile **perfetto** (c = cost)

la temperatura di riferimento è la medesima temperatura a cui voglio calcolare l'entalpia del liquido sottoraffreddato

$$h(P,T) - h_{ls}(P_{sat}(T)) = c(T-T) + v(P-P_{sat}(T))$$

Formula da usare per calcolare l'entalpia del liquido sottoraffreddato usando valori di riferiemento dalla tabella del liquido saturo:

$$h(P,T) = h_{ls}(P_{sat}(T)) + v(P - P_{sat}(T))$$

Per v si può usare il valore del liquido saturo fornito dalla tabella

$$v = v_{ls}(P_{sat}(T))$$

(è un'ottima approssimazione, che possiamo usare)

Valido anche in caso di modello di liquido incomprimibile <u>ideale</u>

Siccome alla fine il termine "c" sparisce, non mi importa se c è costante o una funzione, tanto è ininfluente.

Invece di usare la temperatura di riferimento e le tabelle, uso la pressione di riferimento e le tabelle, andando quindi a cercare il punto rosso nel grafico. Quale è il problema?

Formule per l'acqua sottoraffreddata

Modello di liquido incomprimibile **perfetto** (c = cost)

Secondo approccio

In generale non è valido questo approccio con la pressione, perchè c non è costante, m a è variabile, per cui questo approccio può dare dei valori molto sbagliati.

Problema: cosa fare se si conosce P e non T (ES 3.1.6)? (prossima slide)

Formule per l'acqua sottoraffreddata

Caso nel quale si conosce (P, h) e si vuole conoscere T

$$h(P,T) = h_{ls}(P_{sat}(T)) + v(P - P_{sat}(T))$$
di solito trascurabile

Si interpola in tabella di saturazione la temperatura per la quale $h_{ls}(T) = h$

Approccio simile se si conosce (P, s) e si vuole conoscere T

Vedremo esercizi su questo approccio a esercitazione

In assenza di tabelle, si possono usare le seguenti relazioni semplificate che rimangono valide in prossimità del punto triplo per:

1. stato solido

2. stato liquido

Quando abbiamo stato di vapore usiamo sempre le tabelle.

Quando abbiamo stato liquido usiamo le formule che abbiamo visto prima.

stato vapore

Quando abbiamo stato solido abbiamo un approccio simile a quello del liquido e fare una buona

(il punto triplo è il punto P_0, T_0)

liquido

vapore

T

apprissimazione, ponendo la temperatura di saturazione delle varie pressioni a T_0 (temperatura a punto triplo). Facendo così a livello grafico stiamo approssimando la parete solido-liquido con una linea verticale (gialla nel disegno)

è un entalpia di fase fra liquido e solido, questo termine non c'è nelle formule del liquido.

stato solido

o
$$h(P,T) = h_0 + h_{lst} + c_s(T - T_0) + v_s(P - P_0)$$

$$s(P,T) = s_0 + s_{lst} + c_s \ln \frac{T}{T_0} = s_0 + \frac{h_{lst}}{T_0} + c_s \ln \frac{T}{T_0}$$

con

 P_0 , T_0 : pressione e temperatura del punto triplo ($P_0 = 0.00611$ bar; $T_0 = 0.01$ °C)

 h_0 : entalpia di riferimento al punto triplo in <u>fa</u>se liquida ($h_0 = 0$ kJ/kg)

 s_0 : entropia di riferimento al punto triplo in fase liquida ($s_0 = 0 \text{ kJ/kgK}$)

 h_{lst} : entalpia di solidificazione al punto triplo ($h_{lst} = -333 \text{ kJ/kg}$)

 c_s : calore specifico del ghiaccio ($c_s = 2093 \text{ J/kgK}$)

 v_s : volume specifico del ghiaccio ($v_s = 0.00109 \text{ m}^3/\text{kg}$)

POSSIAMO APPROSSIMARE $T_{sat,L-S}(P) = T_0$

Questi valori sono tutte stime al punto triplo

2. stato liquido (USARE TABELLE)

$$h(P,T) = h_0 + c_l(T - T_0) + v_l(P - P_0)$$

$$s(P,T) = s_0 + c_l \ln \frac{T}{T_0}$$

con

 P_0 , T_0 : pressione e temperatura del punto triplo ($P_0 = 0.00611$ bar; $T_0 = 0.01$ °C)

 h_0 : entalpia di riferimento al punto triplo in fase liquida ($h_0 = 0 \text{ kJ/kg}$)

 s_0 : entropia di riferimento al punto triplo in fase liquida ($s_0 = 0 \text{ kJ/kgK}$)

 c_l : calore specifico dell'acqua liquida ($c_l = 4186 \text{ J/kgK}$)

 v_l : volume specifico dell'acqua liquida ($v_l = 0.001 \text{ m}^3\text{/kg}$)

3. stato vapore (USARE TABELLE)

$$h(P,T) = h_0 + h_{lvt} + c_P (T - T_0)$$

$$s(P,T) = s_0 + s_{lvt} + c_P \ln \frac{T}{T_0} - R^* \ln \frac{P}{P_0} = s_0 + \frac{h_{lvt}}{T_0} + c_P \ln \frac{T}{T_0} - R^* \ln \frac{P}{P_0}$$

con

 P_0 , T_0 : pressione e temperatura del punto triplo ($P_0 = 0.00611$ bar; $T_0 = 0.01$ °C)

 h_0 : entalpia di riferimento al punto triplo in fase liquida ($h_0 = 0$ kJ/kg)

 s_0 : entropia di riferimento al punto triplo in fase liquida ($s_0 = 0 \text{ kJ/kgK}$)

 h_{lvt} : entalpia di evaporazione al punto triplo ($h_{lvt} = 2501.6 \text{ kJ/kg}$)

 c_P : calore specifico a pressione costante dell'acqua vapore ($c_P = 2009 \text{ J/kgK}$)