Exercícios de Geometria Riemanniana

Índice

1	Lista 1	1
2	Exercícios do do Carmo	1
	2.1 Capítulo 0	1
	2.2 Capítulo 1	3

1 Lista 1

Exercício 2 Seja $f: M^n \to N^m$ um mapa suave. Os campos $X \in \mathfrak{X}(M)$ e $\tilde{X} \in \mathfrak{X}(N)$ são ditos f-relacionados se $df_pX_p = \tilde{X}_{f(p)}$, $\forall p \in M$. Mostre que se os campos $X,Y \in \mathfrak{X}(M)$ são, respetivamente, f-relacionados com $\tilde{X}, \tilde{Y} \in \mathfrak{X}(N)$ então [X,Y] é f-relacionado com $[\tilde{X},\tilde{Y}]$.

Solução. Pegue p ∈ M. Queremos ver que

$$f_{*,p}[X,Y] \stackrel{\text{quero}}{=} [\tilde{X}, \tilde{Y}]_{f(p)}.$$

Pegue $g \in \mathcal{F}(N)$.

$$\begin{split} [\tilde{X},\tilde{Y}]_{f(\mathfrak{p})} &\stackrel{\text{def}}{=} \tilde{X}_{f(\mathfrak{p})}(\tilde{Y}g) - \tilde{Y}_{f(\mathfrak{p})}(\tilde{X}g) \\ &\stackrel{\text{hip}}{=} f_{*,\mathfrak{p}}(X_{\mathfrak{p}})(\tilde{Y}g) - f_{*,\mathfrak{p}}(Y_{\mathfrak{p}})(\tilde{X}g) \\ &= X_{\mathfrak{p}}\Big((\tilde{Y}g) \circ f\Big) - Y_{\mathfrak{p}}\Big((\tilde{X}g) \circ f\Big) \\ &\stackrel{\text{hip}}{=} X_{\mathfrak{p}}\Big(\big(f_{*,\mathfrak{p}}(Y)\big)g \circ f\big)\Big) - Y_{\mathfrak{p}}\Big(\big(f_{*,\mathfrak{p}}(X_{\mathfrak{p}})\big)g \circ f\Big) \end{split}$$

2 Exercícios do do Carmo

2.1 Capítulo 0

Exercise 2 Prove que o fibrado tangente de uma variedade diferenciável M é orientável (mesmo que M não seja).

Solution. Es porque la diferencial de los cambios de coordenadas está dada por la identidad y una matriz lineal. Sí, porque por definición las trivializaciones locales de TM preservan la primera coordenada y son isomorfismos lineales en la parte del espacio vectorial. Entonces queda que

$$d(\phi_U \circ \phi_V^{-1}) = \begin{pmatrix} Id & 0 \\ 0 & \xi \in GL(n) \end{pmatrix}$$

pero no estoy seguro de por qué ξ preservaría orientación, i.e. que tenga determinante positivo... a menos de que...

Exercise 5 (Mergulho de $P^2(\mathbb{R})$ em \mathbb{R}^4) Seja $F: \mathbb{R}^3 \to \mathbb{R}^4$ dada por

$$F(x, y, z) = (x^2 - y^2, xy, xz, yz),$$
 $(x, y, z) = p \in \mathbb{R}^3.$

Seja $S^2 \subset \mathbb{R}^3$ a esfera unitária com centro na origem $0 \in \mathbb{R}^3$. Oberve que a restrição $\phi := F|_{S^2}$ é tal que $\phi(\mathfrak{p}) = \phi(-\mathfrak{p})$, e considere a aplicação $\tilde{\phi} : \mathbb{R}P^2 \to \mathbb{R}^4$ dada por

$$\tilde{\varphi}([p]) = \varphi(p)$$
, $[p]$ =clase de equivalência de $p = \{p, -p\}$

Prove que

- (a) $\tilde{\phi}$ é uma imersão.
- (b) $\tilde{\phi}$ é biunívoca; junto com (a) e a compacidade de $\mathbb{R}P^2$, isto implica que $\tilde{\phi}$ é um mergulho.

Solution.

(a) Considere a carta $\{z = 1\}$. A representação coordenada de $\tilde{\varphi}$ vira

$$(x,y) \longmapsto (x^2 - y^2, xy, x, y)$$

cuja derivada como mapa $\mathbb{R}^2 \to \mathbb{R}^4$ é

$$\begin{pmatrix} 2x & -2y \\ y & x \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

que é injetiva. Agora pegue a carta $\{x=1\}$. Então a representão coordenada de $\tilde{\phi}$ vira

$$(y,z) \longmapsto (1-y^2,y,z,yz)$$

e tem derivada

$$\begin{pmatrix} -2y & 0 \\ 1 & 0 \\ 0 & 1 \\ z & y \end{pmatrix}$$

que também é injetiva. Seguramente algo análogo acontece na carta $\{y = 1\}$.

(b) $\tilde{\varphi}$ é injetiva. Pegue dois pontos $p_1 := [x_1 : y_1 : z_1]$ e $p_2 := [x_2 : y_2 : z_2]$ e suponha que $\tilde{\varphi}(p_1) = \tilde{\varphi}(p_2)$. I.e.,

$$x_1^2 - y_1^2 = x_2^2 - y_2^2$$
, $x_1y_1 = x_2y_2$, $x_1z_1 = x_2z_2$, $y_1z_1 = y_2z_2$

Suponha primeiro que $z_1 \neq 0$. Segue que

$$x_1 = \frac{z_2}{z_1} x_2$$
, $y_1 = \frac{z_2}{z_1} y_2$

logo

$$x_2^2 - y_2^2 = x_1^2 - y_1^2 = \left(\frac{z_2}{z_1}\right)^2 (x_2^2 - y_2^2) \implies z_2 = z_1 \implies x_1 = x_2, \quad y_1 = y_2$$

Em fim, uma imersão injetiva com domínio compacto é um mergulho porque é fechada: pegue um fechado no domínio, vira compacto, imagem é compacta, que é fechado. Pronto. .

Exercício 8 $\varphi: M_1 \to M_2$ difeo local. Se M_2 é orientável, então M_1 é orientável.

Solução. Defina: uma base $\beta \subset T_pM$ é orientada se $\phi_*\beta$ é orientada em $T_{\phi(p)}M$. Tá bem definida porque ϕ é um difeomorfismo em p, i.e. ϕ_* é isomorfismo. Para mostrar que é contínua à la Lee, qualquer vizinhança de um ponto $p \in M_1$, a correspondente carta coordenada em $\phi(p)$, um marco coordenado nela e puxe (pushforward baix ϕ^{-1}) de volta para U. Difeomorfismo e muito bom: o pushforward the campos vetoriais está bem definido. E por construção está orientado.

2.2 Capítulo 1

Exercise 1 Prove que a aplicação antípoda $A: S^n \to S^n$ dada por A(p) = -p é uma isometria de S^n . Use este fato para introduzir uma métrica Riemanniana no espaço projetivo real $\mathbb{R}P^n$ tal que a projeção natural $\pi: S^n \to \mathbb{R}P^n$ seja uma isometria local.

Solution. Lembre que a métrica de S^n é a induzida pela métrica euclidiana, onde pensamos que $T_pS^n \hookrightarrow T_p\mathbb{R}^{n+1}$. É claro que A é uma isometría de \mathbb{R}^n , pois ela é a sua derivada (pois ela é linear), de forma que $\langle \nu, w \rangle_p = \langle -\nu, -w \rangle_{A(p)} = \langle \nu, w \rangle_{-p}$.

É um fato geral que se as transformações de coberta preservam a métrica, obtemos uma métrica no quociente de maneira natural, i.e. para dois vetores $v,w \in T_p\mathbb{R}P^n$ definimos $\langle v,w \rangle_p^{\mathbb{R}P^n} := \langle \tilde{v},\tilde{w} \rangle_{\tilde{p}\in\pi^{-1}(p)}$.

Para ver que a projeção natural é uma isometria local basta ver que a diferencial de A é um isomorfismo em cada ponto. Mas como ela é -A, isso é claro.

Exercício 7 Seja G um grupo de Lie compacto e conexo (dim(G) = n). O objetivo do exercício é provar que G possui uma métrica bi-invariante. Para isto, prove as seguintes etapas:

- (a) Seja ω uma n-forma diferencial em G invariante à esquerda, isto é, $L_x^*\omega = \omega$, para todo $x \in G$. Prove que ω é invariante à direita.
 - Sugestão: Para cada $a \in Ga$, $R_a^*\omega$ é invariante à esqueda. Decorre daí que $R_a^*\omega = f(a)\omega$. Verifique que f(ab) = f(a)f(b), isto é, $f: G \to \mathbb{R} \setminus \{0\}$ é um homomorfismo (contínuo) de G no grupo multiplicativo dos números reais. Como f(G) é um subgrupo compacto compacto e conexo, conclui-se que f(G) = 1. Logo $R_a^*\omega = \omega$.
- (b) Mostre que existe uma n-forma diferencial invariante à esquerda ω em G.
- (c) Seja $\langle \cdot, \cdot \rangle$ uma métrica invariante à esquerda em G. Seja ω uma n-forma diferencial positiva invariante à esqueda em G, é defina uma nova métrica Riemanniana $\langle \langle \cdot, \cdot \rangle \rangle$ em G por

$$\langle\langle u, v \rangle\rangle_{p} = \int_{G} \langle(dR_{x})_{y}u, (dR_{x})_{y}v \rangle_{yx} \omega,$$

$$x, y \in G, \qquad u, v \in T_{u}G$$

Prove que $\langle \langle \cdot, \cdot \rangle \rangle$ é bi-invariante.

Solução.

- (a)
- (b)
- (c) Vou usar outra notação. Suponha que g é uma métrica invariante à esquerda em G. Definimos

$$\tilde{g} := \int_{u \in C} (R_x^* g) \omega$$

como operador $\mathfrak{X}(G) \times \mathfrak{X}(G) \longrightarrow \mathcal{F}(G)$.

Agora vamos ver que \tilde{g} é invariante à esquerda, i.e. queremos ver que para todo $\alpha \in G$,

$$\tilde{g} \stackrel{\text{quero}}{=} L_{\alpha}^* \tilde{g} \stackrel{\text{def}}{=} L_{\alpha}^* \int_{G} (R_{\alpha}^* g) \omega.$$

Vamos ver que o pullback L_{α}^* pode "entrar na integral" e trocar de lugar com R_x^* , daí o resultado segue porque g é L_{α} -invariante. As contas acabam sendo que

$$\begin{split} L_{\alpha}^* \int_G (R_x^* g) \omega &= \int_G L_{\alpha}^* R_x^* g \omega = \int_G (L_{\alpha} \circ R_x)^* g \omega = \int_G (R_x \circ L_{\alpha})^* g \omega \\ &= \int_G R_x^* L_{\alpha}^* g \omega = \int_G R_x^* g \omega = \tilde{g} \end{split}$$

Para ver que g também é invariante à direita fazemos:

$$\tilde{g} \stackrel{\text{quero}}{=} R_{\alpha}^* \tilde{g} \stackrel{\text{def}}{=} R_{\alpha}^* \int_G (R_{\alpha}^*) g \omega = \int_G R_{\alpha}^* R_{\alpha}^* g \omega = \int_G R_{\alpha \alpha}^* g \omega = \int_G R_{\alpha \alpha}^* g \omega = \tilde{g}$$

porque estamos integrando em todo G e G → G transitivamente.

Para todo aquele que tem dúvida, aqui estão as contas da invarianza à esquerda super explicitas:

Fixe $y \in G$ e $u, v \in T_yG$. Temos que

$$\begin{split} (L_{\alpha}^* \tilde{g})(u,\nu) &= L_{\alpha}^* \left(\int_g (R_x^* g) \omega \right) (u,\nu) \\ &= \left(\int_G (R_x^* g) \omega \right) \left((L_{\alpha})_{*,\alpha^{-1}y} u, (L_{\alpha})_{*,\alpha^{-1}y} \nu \right) \\ &= \int_G (R_x^* g) \Big((L_{\alpha})_{*,\alpha^{-1}y} u, (L_{\alpha})_{*,\alpha^{-1}y} \nu \Big) \omega \\ &= \int_G g \Big((R_x)_{*,\alpha^{-1}yx^{-1}} (L_{\alpha})_{*,\alpha^{-1}y} u, (R_x)_{*,\alpha^{-1}yx^{-1}} (L_{\alpha})_{*,\alpha^{-1}y} \nu \Big) \omega \\ &= \int_G g \Big((R_x \circ L_{\alpha})_{*,\alpha^{-1}yx^{-1}} u, (R_x \circ L_{\alpha})_{*,\alpha^{-1}yx^{-1}} \nu \Big) \omega \\ &= \int_G g \Big((L_{\alpha} \circ R_x)_{*,\alpha^{-1}yx^{-1}} u, (L_{\alpha} \circ R_x)_{*,\alpha^{-1}yx^{-1}} \nu \Big) \omega \\ &= \int_G g \Big((L_{\alpha})_{*,\alpha^{-1}yx^{-1}} (R_x)_{*,yx^{-1}} u, (L_{\alpha})_{*,\alpha^{-1}yx^{-1}} (R_x)_{*,yx^{-1}} \nu \Big) \omega \\ &= \int_G \Big((L_{\alpha})_{*,\alpha^{-1}yx^{-1}} u, (R_x)_{*,yx^{-1}} u, (R_x)_{*,yx^{-1}} \nu \Big) \omega \\ &= \int_G g \Big((R_x)_{*,yx^{-1}} u, (R_x)_{*,yx^{-1}} \nu \Big) \omega \\ &= \int_G g \Big((R_x)_{*,yx^{-1}} u, (R_x)_{*,yx^{-1}} \nu \Big) \omega \\ &\stackrel{\text{def}}{=} \tilde{g}(u,\nu). \end{split}$$

onde $R_x \circ L_\alpha = L_\alpha \circ R_x$ por associatividade de produto no grupo.