DEPARTAMENTO DE ANÁLISIS MATEMÁTICO Y MATEMÁTICA APLICADA UNIVERSIDAD COMPLUTENSE DE MADRID

Cálculo Diferencial (M3 y M4). Curso 2021–2022.

Topología en espacios métricos. Hoja 2

- 14. Dada la métrica $d(x,y) = \frac{|x-y|}{1+|x-y|}$ en \mathbb{R} , determina las bolas $\overline{B}(0,1)$ y $B(1,\frac{1}{2})$.
- 15. Consideremos el conjunto $\mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\}$ y, para todo $x, y \in \mathbb{R}^+$, definamos

$$d(x,y) = \left| \frac{1}{x} - \frac{1}{y} \right|.$$

- (a) Demuestra que d es una métrica en \mathbb{R}^+ .
- (b) Determina las bolas $B(1, \frac{1}{2})$ y $\overline{B}(1, 2)$.
- (c) Calcula el diámetro de los conjuntos \mathbb{N} y (0,2].
- (d) Estudia para qué funciones f se tiene que

$$d(x,y) = |f(x) - f(y)|$$

es una métrica.

- 16. Consideramos un conjunto abierto A en el espacio euclídeo \mathbb{R}^n .
 - (a) Prueba que, para todo $v \in \mathbb{R}^n$, el conjunto $v + A = \{v + x : x \in A\}$ es abierto en \mathbb{R}^n .
 - (b) Prueba que, para todo subconjunto $B \subset \mathbb{R}^n$, el conjunto $A + B = \{x + y : x \in A, y \in B\}$ también es abierto en \mathbb{R}^n .
- 17. Demuestra que, en el espacio euclídeo \mathbb{R}^n , todo conjunto finito es un conjunto cerrado. ¿Es esto cierto en cualquier espacio métrico?
- 18. Determina el interior, adherencia, acumulación y frontera de los siguientes conjuntos en \mathbb{R}^2 :
 - (a) $A = \mathbb{Z} \times \mathbb{Z}$.
 - (b) $B = \mathbb{Q} \times \mathbb{Z}$.
 - (c) $C = \mathbb{Q} \times \mathbb{Q}$.
 - (d) $D = R^2 \setminus \{(0,0)\}.$
 - (e) $E = \{(x, y) : x^2 + 4y^2 \le 1; 2x + y \ge 1\}.$
 - (f) $F = \{(x, y) : x y^2 \ge 0; x + y 1 \le 0\}.$
- 19. Determina el interior, la adherencia y la frontera de los siguientes conjuntos en \mathbb{R}^3 :
 - (a) $A = \{(x, y, z) : x^2 + y^2 \le z^2; 0 \le z \le 1 2x^2 2y^2\}.$
 - (b) $B = \{(x, y, z) : x^2 + y^2 \le z^2; x^2 + y^2 + z^2 \le 1\}.$

- 20. Consideremos el conjunto $A = \{(x,y) \in \mathbb{R}^2 : 1 < x^2 + 2y^2 \le 4\} \cup \{(0,0),(1,0)\}$. Prueba que:
 - (a) $P_0 = (0,0)$ es un punto aislado.
 - (b) $P_1 = (1,1)$ es un punto de \overline{A} .
 - (c) $P_1 = (1,1)$ es un punto de A'.
 - (d) $P_2 = (1,0)$ es un punto de Fr(A).
- 21. Determina el interior, adherencia, puntos de acumulación y la frontera de los conjuntos en R:
 - (a) $\left\{ \frac{1}{2m} \frac{1}{2n} : m, n \in \mathbb{N} \right\}$.
 - (b) $\left\{ \frac{3n+1}{7n-2} \cos \frac{n\pi}{4} : n \in \mathbb{N} \right\}$.
 - (c) $\bigcup_{n \in \mathbb{N}} \left\{ \frac{m}{2^n} : m = 1, 2, 3, ..., 2^n \right\}$.
- 22. Consideramos el conjunto \mathbb{Q} de los números racionales como subespacio de \mathbb{R} . Estudia si el conjunto $[\pi, \pi + 1) \cap \mathbb{Q}$ es abierto o cerrado relativo en \mathbb{Q} .
- 23. En los siguientes casos, calcula \overline{A} , siendo $A = \bigcup_{n=1}^{\infty} A_n \subset \mathbb{R}^2$:
 - (a) $A_n = \{(x, y) \in \mathbb{R}^2 : (x 1)^2 + (y 3)^2 \le 2^n \}.$
 - (b) $A_n = \{(x, y) \in \mathbb{R}^2 : (x+1)^2 + y^2 \le \frac{1}{\log(n+1)} \}.$
 - (c) $A_n = \{(x, y) \in \mathbb{R}^2 : ny = x, \ x^2 + y^2 \ge \frac{1}{n^2} \}.$