BERNSTEINOVI POLINOMI IN WEIERSTRASSOV APROKSIMACIJSKI IZREK

IZAK JENKO

POVZETEK. V tem članku bomo spoznali enega izmed prvih konstruktivnih dokazov Weierstrassovega aproksimacijskega izreka, ki pravi da lahko vsako zvezno funkcijo na zaprtem intervalu poljubno dobro enakomerno aproksimiramo s polinomom. Definirali bomo posebno vrsto polinomov t. i. Bernsteinove polinome, si ogledali njihove lastnosti in z njimi dokazali Weierstrassov izrek.

1. Uvod

Preden se lotimo definicije Bernsteinovih polinomov in dokazovanja Weierstrassovega izreka, povejmo nekaj besed o prosotru, ki ga bomo obranavali ter normi, ki bo določila metriko na tem prostoru. Iz razlogov, ki jih bomo razjasnili pozneje, se bomo osredotočili na prostor $\mathcal{C}([0,1],\mathbb{R})$ in supremum normo $\|f\|_{\infty}=\sup\{|f(x)|\mid x\in[0,1]\}$ na njem. Vemo že, da ta norma porodi supremum metriko $d_{\infty}(f,g)=\sup\{|f(x)-g(x)|\mid x\in[0,1]\}$, za katero velja, da na kompaktnem intervalu [0,1] zaporedje zveznih funkcij $(f_n)_{n\in\mathbb{N}}\subset\mathcal{C}([0,1],\mathbb{R})$ enakomerno konvergira k neki zvezni funkciji $f\in\mathcal{C}([0,1],\mathbb{R})$ natanko tedaj ko to zaporedje $(f_n)_{n\in\mathbb{N}}$ konvergira proti f v metriki d_{∞} . Natanko to dejstvo bomo uporabili pri dokazu Weierstrassovega izreka.

 $\bf Definicija~1.1~(Brokoli).~To~je~definicija$

Lema 1.1. To je lema

Izrek 1.2. Drugi izrek

Izrek 1.3 (Weierstrassov izrek). $Prvi\ izrek$

Lema 1.4. Druga lema

Izrek 1.5. Tretji izrek

Zgled. 1 + 1 = 0, če char(K) = 2

Posledica 1.6. p

j