

| Que            | tions                                                                                                                                                                                                                                                 | JEE Main Crash Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1//.           | mathongo $(1 +  \cos x ) \frac{\lambda}{2}$ , $0 < x < \frac{\pi}{2}$ mathongo                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                |                                                                                                                                                                                                                                                       | at $x=rac{\pi}{2},$ then $9\lambda+6\log_c\mu+\mu^6-e^{6\lambda}$ is equal to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                | mathongo /// mathon $e^{\cot \frac{6x}{\cot 4x}}$ , math $\frac{\pi}{2} < x < \pi$ mathongo                                                                                                                                                           | ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                | (1) 11                                                                                                                                                                                                                                                | (2) 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                | (3) $2e^4 + 8$                                                                                                                                                                                                                                        | (4) 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.             | If the function $f(x) = \begin{cases} \frac{\log_e \left(1 - x + x^2\right) + \log_e \left(1 + x + x^2\right)}{\sec x - \cos x}, & x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right) - \{0\} \\ k, & x = 0 \end{cases}$                                | (4) 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | (1) <sub>a</sub> 1 <sub>hongo</sub> /// mathongo /// mathongo /// mathongo                                                                                                                                                                            | (4) 0 mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>3.</b> ///. | Let $a,b \in R, b \neq 0$ . Defined a function, $f(x) = \begin{cases} a \sin \frac{\pi}{2} \left(x - 1\right), & \text{for } x \in \mathbb{R}, b \neq 0, \\ \frac{\tan 2x - \sin 2x}{b - x^3}, & \text{for } x \in \mathbb{R}, b \neq 0, \end{cases}$ | If $f$ is continuous at $x = 0$ , then $10 - ab$ is equal to $0 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4.             | The function $f:R	o R$ defined by $f(x)=\lim_{n	o\infty}rac{\cos{(2\pi x)}-x^{2n}\sin{(x-1)}}{1+x^{2n+1}-x^{2n}}$ is $G$                                                                                                                             | continuous for all $x$ in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                | (1) $R = \{-1\}$ /// mathongo /// mathongo /// mathongo (3) $R = \{1\}$                                                                                                                                                                               | (2) $R = \{-1,1\}$ /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>5.</b> ///. | Consider the function $f(x) = \frac{P(x)}{\sin(x-2)}$ , $x \neq 2$ , and $f(x) = 7$ , $x = 2$ whe continuous at $x = 2$ , then $P(5)$ is equal to                                                                                                     | The $P(x)$ is a polynomial such that $P''(x)$ is always a constant and $P(3)=9$ . If $f(x)$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6.             |                                                                                                                                                                                                                                                       | rval $(-2, 1)$ where the function $f(x)= [x] +\sqrt{x-[x]}$ is discontinuous, is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7.             | Let $f(x) = [x^2 - x] +  -x + [x] $ , where $x \in \mathbb{R}$ and $[t]$ denotes the greates                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                | (1) continuous at $x = 0$ , but not continuous at $x = 1$                                                                                                                                                                                             | (2) continuous at $x = 1$ , but not continuous at $x = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                | (3) continuous at $x = 0$ and $x = 1$                                                                                                                                                                                                                 | (4) not continuous at $x = 0$ and $x = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8.             | If $f:R \to R$ is a function defined by $f(x){=}[x-1]{\cos\left(\frac{2x-1}{2}\right)}\pi$ , where                                                                                                                                                    | $[\cdot]$ denotes the greatest integer function, then $f$ is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                | (1) discontinuous only at $x = 1$<br>(3) continuous only at $x = 1$ mathongo mathongo                                                                                                                                                                 | (2) discontinuous at all integral values of $x$ except at $x = 1$ (4) continuous for every real $x_{1000}$ morphologo mathong with mathon $x_{1000}$ morphologo $x_{1000}$                                                                                                                                                       |
| 9.             | Let $[t]$ denote the greatest integer $\leq t$ . The number of points where the fu                                                                                                                                                                    | unction $f\Big(x\Big)=\Big[x\Big] x^2-1 +\sin\Big(rac{\pi}{[x]+3}\Big)-\Big[x+1\Big],\ x\in\Big(-2,\ 2\Big)$ is not continuous is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                | mathongo /// mathongo /// mathongo /// mathongo                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10.            | Let $[t]$ denote the greatest integer $\leq t$ and $\lim_{x\to 0} x \left[\frac{4}{x}\right] = A$ . Then the function                                                                                                                                 | on, $f(x) = [x^2] \sin(\pi x)$ is discontinuous, when $x$ is equal to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | (1) $\sqrt{A+1}$                                                                                                                                                                                                                                      | (2) $\sqrt{A+5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                |                                                                                                                                                                                                                                                       | (4) $\sqrt{A}$ hongo /// mathongo /// mathongo /// mathongo /// m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 11.            | If $f(x) = \begin{cases} x+a, & x \leq 0 \\  x-4 , & x > 0 \end{cases}$ and $g(x) = \begin{cases} x+1, & x < 0 \\ (x-4)^2 + b, & x \geq 0 \end{cases}$ are contin                                                                                     | uous on $R$ , then $(gof)(2)+(fog)(-2)$ is equal to:  (2) 10 mathongo /// mathongo // mathongo              |
|                | (1) -10 Mariongo Mariongo Mariongo Mariongo                                                                                                                                                                                                           | (2) 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | (3) 8                                                                                                                                                                                                                                                 | (4) - 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12.            | Let $f(x)=[2x^2+1]$ and $g(x)=\begin{cases} 2x-3, & x<0\\ 2x+3, & x\geq 0 \end{cases}$ , where $[t]$ is the greated discontinuous is equal to                                                                                                         | est integer $\leq t$ . Then, in the open interval $(-1,1)$ , the number of points where fog is $\langle -1 \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 13.            |                                                                                                                                                                                                                                                       | $x\leqslant -1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                | The number of points where the function $f(x) = \begin{cases} \left[4x^2 - 1\right] & \text{if } \\  x+1  +  x-2  & \text{if } \end{cases}$                                                                                                           | $x\leqslant -1$ mathons mathons mathons mathons mathons mathons $x \leqslant -1 < x < 1$ , where $[t]$ denotes the greatest integer $\leqslant t$ , is discontinuous is $x\geqslant 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14.            |                                                                                                                                                                                                                                                       | $\{x, x+2[x]\}, \ 0 \le x \le 2$ , where $f$ is not continuous and $n$ be the number of points $f$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                | (1) 2                                                                                                                                                                                                                                                 | (2) 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                |                                                                                                                                                                                                                                                       | (4) 3 athongo ///. mathongo ///. mathongo ///. mathongo ///. m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 15.            | Let $f(x) = \begin{cases} max( x , x^2), &  x  \le 2 \\ 8 - 2 x , & 2 <  x  \le 4 \end{cases}$ . Let $S$ be the set of points in the                                                                                                                  | e interval $(-4, 4)$ at which $f$ is not differentiable. Then $S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                | (1) equals $\{-2, -1, 0, 1, 2\}$                                                                                                                                                                                                                      | (2) equals {-2, 2} mathongo //             |
| 16.            | (3) is an empty set<br>Let $a \in \mathbb{Z}$ and $[t]$ be the greatest integer $\leq t$ , then the number of points, $x \in \mathbb{Z}$                                                                                                              | (4) equal $\{-2, -1, 1, 2\}$<br>where the function $f(x)=[a+13 \sin x], \ x \in (0,\pi)$ is not differentiable, is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7%             | mathorigo exarminentingo mathorigo mathorigo mathorigo                                                                                                                                                                                                | mathongs "// mathongs " Stannathonge Mannage M             |
| 17.<br>///.    | If $[t]$ denotes the greatest integer $\leq t$ , then number of points, at which the interval $(-20, 20)$ , is                                                                                                                                        | e function $f(x)=4 2x+3 +9\left[x+\frac{1}{2}\right]-12[x+20]$ is not differentiable in the open mathongo |



| (1) Four points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (2) Two points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (3) three points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (4) one point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| If $f(x) = \begin{cases} \frac{1}{ x } & ;  x  \ge 1 \\ ax^2 + b & ;  x  < 1 \end{cases}$ is differentiable at every                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mathongo mat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (1) $\frac{1}{2}$ , $\frac{1}{2}$ mathongo mathongo (3) $\frac{5}{2}$ , $-\frac{3}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mathongo (2) $\frac{1}{2}$ , $\frac{3}{2}$ ngo /// mathongo /// mathongo /// mathongo ///                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Let $S$ be the set of points where the function, $f(x)=\left 2\right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $2- x-3 ig , x\in \mathrm{R},$ is not differentiable. Then $\sum_{x\in S}f(f(x))$ equal to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| The number of points, at which the function $f(x)= 2x $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $+1 -3 x+2 + x^2+x-2 , x\in R$ is not differentiable, is $\frac{1}{2}$ mathons $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Let K be the set of all real values of $x$ where the function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | on $f(x) = \sin x  -  x  + 2(x-\pi)\cos x $ is not differentiable. Then the set ${ m K}$ is equal to :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (1) $\phi$ (an empty set) mathongo (3) $\{0\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mathongo (2) $\{\pi\}$ mathongo (2) $\{\pi\}$ mathongo (4) $\{0,\pi\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Then, the number of points in $R$ where $(fog)(x)$ is NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (1) <sub>a</sub> 3 <sub>nongo</sub> /// mathongo /// mathongo (3) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mathongo (2) 1 athongo /// mathongo /// mathongo /// mathongo ///                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Let $\sum_{k=1}^{10} f(a+k) = 16(2^{10}-1)$ , where the function $f(a+k) = 16(2^{10}-1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | f satisfies $f(x+y) = f(x)f(y)$ for all natural numbers $x$ , $y$ and $f(1) = 2$ . Then the natural number 'a' is mathenage (2) 16 though (4) 2 mathenage (4) 2 mathenage (4) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Let $f$ be a differentiable function from $R$ to $R$ such that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t $ f(x)-f(y)  \le 2 x-y ^{3/2}$ , for all $x,y \in R$ . If $f(0)=1$ then $\int\limits_0^1 f^2(x)dx$ is equal to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (1) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (2) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (2) 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (1) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (3) 2 mathongo mathongo mathongo karanga kara                                                                                         | (4) $\frac{1}{2}$ mathong mathong mathong mathong where $[x]$ denotes the greatest integer function. If $m$ and $n$ respectively are the number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (3) 2 mathongo mathongo mathongo karanga kara                                                                                         | (4) $\frac{1}{2}$ mathong mathong mathong mathong where $[x]$ denotes the greatest integer function. If $m$ and $n$ respectively are the number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (3) 2 mathongo mathongo mathongo karanga kara                                                                                         | , $-2 < x < 0$ where $[x]$ denotes the greatest integer function. If $m$ and $n$ respectively are the number us and not differentiable, then $m+n$ is equal to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (3) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , $-2 < x < 0$ where $[x]$ denotes the greatest integer function. If $m$ and $n$ respectively are the number us and not differentiable, then $m+n$ is equal to that $f''(x)=g''(x)+6xf'(1)=4g'(1)-3=9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (3) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(4) \ \frac{1}{2}$ , $-2 < x < 0$ , $0 \le x < 2$ where $[x]$ denotes the greatest integer function. If $m$ and $n$ respectively are the number us and not differentiable, then $m+n$ is equal to that $f''(x)=g''(x)+6xf'(1)=4g'(1)-3=9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Let $f:(-2,\ 2)\to\mathbb{R}$ be defined by $f(x)=\begin{cases}x[x]\\(x-1)[x]\end{cases}$ of points in $(-2,\ 2)$ at which $y= f(x) $ is not continuous. Let $f$ and $g$ be twice differentiable functions on $R$ such $f(2)=3$ $g(2)=12$ Then which of the following is NOT true? $(1) \ g(-2)-f(-2)=20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $(4) \ \frac{1}{2}$ $,  -2 < x < 0$ $,  0 \le x < 2$ $\text{where } [x] \text{ denotes the greatest integer function. If } m \text{ and } n \text{ respectively are the numbe}$ $\text{us and not differentiable, then } m+n \text{ is equal to } \underline{\hspace{2cm}}$ $\text{that } f''(x)=g''(x)+6xf'(1)=4g'(1)-3=9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Let $f:(-2,\ 2) \to \mathbb{R}$ be defined by $f(x) = \begin{cases} x[x] \\ (x-1)[x] \end{cases}$ of points in $(-2,\ 2)$ at which $y= f(x) $ is not continuous. Let $f$ and $g$ be twice differentiable functions on $R$ such $f(2)=3$ $g(2)=12$ Then which of the following is NOT true?  (1) $g(-2)-f(-2)=20$ (3) $ f'(x)-g'(x) <6\Rightarrow -1< x<1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $(4) \ \frac{1}{2}$ $, \ -2 < x < 0$ $, \ 0 \le x < 2$ $\text{where } [x] \text{ denotes the greatest integer function. If } m \text{ and } n \text{ respectively are the number}$ $\text{us and not differentiable, then } m+n \text{ is equal to } \underline{\qquad}$ $\text{that } f''(x)=g''(x)+6xf'(1)=4g'(1)-3=9$ $(2) \ \text{If } -1 < x < 2, \text{ then }  f(x)-g(x) <8$ $(4) \ \text{There exists } x_0 \in \left(1,\frac{3}{2}\right) \text{ such that } f(x_0)=g(x_0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Let $f:(-2, 2) \to \mathbb{R}$ be defined by $f(x) = \begin{cases} x[x] \\ (x-1)[x] \end{cases}$ of points in $(-2, 2)$ at which $y =  f(x) $ is not continuou. Let $f$ and $g$ be twice differentiable functions on $R$ such $f(2) = 3$ $g(2) = 12$ Then which of the following is NOT true?  (1) $g(-2) - f(-2) = 20$ (3) $ f'(x) - g'(x)  < 6 \Rightarrow -1 < x < 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(4) \ \frac{1}{2}$ , $-2 < x < 0$ , $0 \le x < 2$ where $[x]$ denotes the greatest integer function. If $m$ and $n$ respectively are the number us and not differentiable, then $m+n$ is equal to that $f''(x)=g''(x)+6xf'(1)=4g'(1)-3=9$ $(2) \ \text{If } -1 < x < 2 \text{, then }  f(x)-g(x)  < 8$ $(4) \ \text{There exists } x_0 \in \left(1,\frac{3}{2}\right) \text{ such that } f(x_0)=g(x_0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Let $f:(-2, 2) \to \mathbb{R}$ be defined by $f(x) = \begin{cases} x[x] \\ (x-1)[x] \end{cases}$ of points in $(-2, 2)$ at which $y =  f(x) $ is not continuou. Let $f$ and $g$ be twice differentiable functions on $R$ such $f(2) = 3$ $g(2) = 12$ Then which of the following is NOT true?  (1) $g(-2) - f(-2) = 20$ (3) $ f'(x) - g'(x)  < 6 \Rightarrow -1 < x < 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(4) \ \frac{1}{2}$ , $-2 < x < 0$ , $0 \le x < 2$ where $[x]$ denotes the greatest integer function. If $m$ and $n$ respectively are the number us and not differentiable, then $m+n$ is equal to that $f''(x)=g''(x)+6xf'(1)=4g'(1)-3=9$ $(2) \ \text{If } -1 < x < 2 \text{, then }  f(x)-g(x)  < 8$ $(4) \ \text{There exists } x_0 \in \left(1,\frac{3}{2}\right) \text{ such that } f(x_0)=g(x_0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Let $f:(-2, 2) \to \mathbb{R}$ be defined by $f(x) = \begin{cases} x[x] \\ (x-1)[x] \end{cases}$ of points in $(-2, 2)$ at which $y =  f(x) $ is not continuou. Let $f$ and $g$ be twice differentiable functions on $R$ such $f(2) = 3$ $g(2) = 12$ Then which of the following is NOT true?  (1) $g(-2) - f(-2) = 20$ (3) $ f'(x) - g'(x)  < 6 \Rightarrow -1 < x < 1$ Let $f: R \to R$ be a function defined by $: f(x) = \begin{cases} \max_{t \le x} x^2 \\ x^2 \\ t \le x \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(4) \ \frac{1}{2}$ , $-2 < x < 0$ , $0 \le x < 2$ where $[x]$ denotes the greatest integer function. If $m$ and $n$ respectively are the number us and not differentiable, then $m+n$ is equal to that $f''(x)=g''(x)+6xf'(1)=4g'(1)-3=9$ $(2) \ \text{If } -1 < x < 2 \text{, then }  f(x)-g(x)  < 8$ $(4) \ \text{There exists } x_0 \in \left(1,\frac{3}{2}\right) \text{ such that } f(x_0)=g(x_0)$ $\mathbf{x}\{t^3-3t\};  x \le 2$ $+2x-6;  2 < x < 3$ $(3-3)+9;  3 \le x \le 5$ $(2x+1;  x > 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Let $f:(-2, 2) \to \mathbb{R}$ be defined by $f(x) = \begin{cases} x[x] \\ (x-1)[x] \end{cases}$ of points in $(-2, 2)$ at which $y =  f(x) $ is not continuous. Let $f$ and $g$ be twice differentiable functions on $R$ such $f(2) = 3$ $g(2) = 12$ Then which of the following is NOT true?  (1) $g(-2) - f(-2) = 20$ (3) $ f'(x) - g'(x)  < 6 \Rightarrow -1 < x < 1$ mathons  Mat                                                  | $(4) \ \frac{1}{2}$ , $-2 < x < 0$ , $0 \le x < 2$ where $[x]$ denotes the greatest integer function. If $m$ and $n$ respectively are the number us and not differentiable, then $m+n$ is equal to that $f''(x)=g''(x)+6xf'(1)=4g'(1)-3=9$ $(2) \ \text{If } -1 < x < 2 \text{, then }  f(x)-g(x)  < 8$ $(4) \ \text{There exists } x_0 \in \left(1,\frac{3}{2}\right) \text{ such that } f(x_0)=g(x_0)$ $\mathbf{x}\{t^3-3t\};  x \le 2$ $+2x-6;  2 < x < 3$ $(3-3)+9;  3 \le x \le 5$ $(2x+1;  x > 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Let $f:(-2, 2) \to \mathbb{R}$ be defined by $f(x) = \begin{cases} x[x] \\ (x-1)[x] \end{cases}$ of points in $(-2, 2)$ at which $y =  f(x) $ is not continuou. Let $f$ and $g$ be twice differentiable functions on $R$ such $f(2) = 3$ $g(2) = 12$ Then which of the following is NOT true?  (1) $g(-2) - f(-2) = 20$ (3) $ f'(x) - g'(x)  < 6 \Rightarrow -1 < x < 1$ mathons  Let $f: R \to R$ be a function defined by $f(x) = \begin{cases} \max_{t \le x} x^2 \\ t \le x \end{cases}$ Where $f(x) = \{x \in S \mid x = 1\}$ where $f(x) = \{x \in S \mid x = 1\}$ where $f(x) = \{x \in S \mid x = 1\}$ is the greatest integer less than or equal to $f(x) = \{x \in S \mid x = 1\}$ where $f(x) = \{x \in S \mid x = 1\}$ is equal to mathons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(4) \ \frac{1}{2}$ $, \ -2 < x < 0$ $, \ 0 \le x < 2$ $\text{where } [x] \text{ denotes the greatest integer function. If } m \text{ and } n \text{ respectively are the number}$ $\text{us and not differentiable, then } m+n \text{ is equal to } \underline{\hspace{2cm}} $ |
| Let $f:(-2, 2) \to \mathbb{R}$ be defined by $f(x) = \begin{cases} x[x] \\ (x-1)[x] \end{cases}$ of points in $(-2, 2)$ at which $y =  f(x) $ is not continuou. Let $f$ and $g$ be twice differentiable functions on $R$ such $f(2) = 3$ $g(2) = 12$ Then which of the following is NOT true?  Then which of the following is NOT true?  (1) $g(-2) - f(-2) = 20$ (3) $ f'(x) - g'(x)  < 6 \Rightarrow -1 < x < 1$ mathons  Let $f: R \to R$ be a function defined by $: f(x) = \begin{cases} \max_{t \le x} x^2 \\ x^2 \\ t \le x \end{cases}$ Where $[t]$ is the greatest integer less than or equal to $t$ . If $(m, I)$ is equal to $(1)$ $(3, \frac{27}{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $(4) \ \frac{1}{2}$ $,  -2 < x < 0$ $,  0 \le x < 2$ $\text{where } [x] \text{ denotes the greatest integer function. If } m \text{ and } n \text{ respectively are the number}$ $\text{us and not differentiable, then } m+n \text{ is equal to } \underline{\qquad}$ $\text{that } f''(x)=g''(x)+6xf'(1)=4g'(1)-3=9$ $(2)  \text{If } -1 < x < 2, \text{ then }  f(x)-g(x) <8$ $(4)  \text{There exists } x_0 \in \left(1,\frac{3}{2}\right) \text{ such that } f(x_0)=g(x_0)$ $\text{sc}\{t^3-3t\};  x \le 2$ $+2x-6;  2 < x < 3$ $(2-3]+9;  3 \le x \le 5$ $(2x+1;  x>5$ Let $m$ be the number of points where $f$ is not differentiable and $I=\int_{-2}^2 f(x)dx$ . Then the ordered pair                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Let $f:(-2, 2) \to \mathbb{R}$ be defined by $f(x) = \begin{cases} x[x] \\ (x-1)[x] \end{cases}$ of points in $(-2, 2)$ at which $y =  f(x) $ is not continuou. Let $f$ and $g$ be twice differentiable functions on $R$ such $f(2) = 3$ $g(2) = 12$ Then which of the following is NOT true?  Then which of the following is NOT true?  (1) $g(-2) - f(-2) = 20$ (3) $ f'(x) - g'(x)  < 6 \Rightarrow -1 < x < 1$ mathons  Let $f: R \to R$ be a function defined by $: f(x) = \begin{cases} \max_{t \le x} x^2 \\ x^2 \\ t \le x \end{cases}$ Where $[t]$ is the greatest integer less than or equal to $t$ . If $(m, I)$ is equal to $(1)$ $(3, \frac{27}{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $(4) \ \frac{1}{2}$ $,  -2 < x < 0$ $,  0 \le x < 2$ $\text{where } [x] \text{ denotes the greatest integer function. If } m \text{ and } n \text{ respectively are the number}$ $\text{us and not differentiable, then } m+n \text{ is equal to } \underline{\qquad}$ $\text{that } f''(x)=g''(x)+6xf'(1)=4g'(1)-3=9$ $(2) \ \text{If } -1 < x < 2, \text{ then }  f(x)-g(x) <8$ $(4) \ \text{There exists } x_0 \in \left(1,\frac{3}{2}\right) \text{ such that } f(x_0)=g(x_0)$ $\text{x}\{t^3-3t\};  x \le 2$ $+2x-6;  2 < x < 3$ $(2-3]+9;  3 \le x \le 5$ $(2x+1;  x>5$ Let $m$ be the number of points where $f$ is not differentiable and $I=\int_{-2}^2 f(x)dx$ . Then the ordered pair                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Let $f:(-2, 2) \rightarrow \mathbb{R}$ be defined by $f(x) = \begin{cases} x[x] \\ (x-1)[x] \end{cases}$ of points in $(-2, 2)$ at which $y =  f(x) $ is not continuou. Let $f$ and $g$ be twice differentiable functions on $R$ such $f(2) = 3$ $g(2) = 12$ Then which of the following is NOT true?  (1) $g(-2) - f(-2) = 20$ (3) $ f'(x) - g'(x)  < 6 \Rightarrow -1 < x < 1$ Mathon 19 The properties of $f(x) = \begin{cases} \max_{t \le x} x^2 \\ x^2 \\ t \le x \end{cases}$ Where $[t]$ is the greatest integer less than or equal to $t$ . If $(m, I)$ is equal to $(1)$ $(3, \frac{27}{4})$ and $(4, \frac{27}{4})$ mathon 20 Let $f: [0, \infty) \rightarrow [0, 3]$ be a function defined by $f(x) = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(4) \ \frac{1}{2}$ $, \ -2 < x < 0$ $, \ 0 \le x < 2$ $\text{where } [x] \text{ denotes the greatest integer function. If } m \text{ and } n \text{ respectively are the number us and not differentiable, then } m + n \text{ is equal to } \underline{\qquad}$ $\text{that } f''(x) = g''(x) + 6xf'(1) = 4g'(1) - 3 = 9$ $(2) \ \text{If } -1 < x < 2, \text{ then }  f(x) - g(x)  < 8$ $(4) \ \text{There exists } x_0 \in \left(1, \frac{3}{2}\right) \text{ such that } f(x_0) = g(x_0)$ $\text{Re}\{t^3 - 3t\};  x \le 2$ $+ 2x - 6;  2 < x < 3$ $2x - 3  + 9;  3 \le x \le 5$ $2x + 1;  x > 5$ Let $m$ be the number of points where $f$ is not differentiable and $I = \int_{-2}^2 f(x) dx$ . Then the ordered pair $(2) \ \left(3, \frac{23}{4}\right)$ $(4) \ \left(4, \frac{23}{4}\right)$ $(4) \ \left(4, \frac{23}{4}\right)$ $(4) \ \left(4, \frac{23}{4}\right)$ Then which of the following is true?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Let $f:(-2,2) \to \mathbb{R}$ be defined by $f(x) = \begin{cases} x[x] \\ (x-1)[x] \end{cases}$ of points in $(-2,2)$ at which $y= f(x) $ is not continuous. Let $f$ and $g$ be twice differentiable functions on $R$ such $f(2)=3$ $g(2)=12$ . Then which of the following is NOT true?  (1) $g(-2)-f(-2)=20$ (3) $ f'(x)-g'(x)  < 6 \Rightarrow -1 < x < 1$ mathons and the following defined by: $f(x) = \begin{cases} \max_{t \le x} x^2 \\ x^2 \\ x \end{cases}$ Where $[t]$ is the greatest integer less than or equal to $t$ . If $(m,I)$ is equal to $(1)$ $(3,\frac{27}{4})$ (3) $(4,\frac{27}{4})$ mathons and the following is NOT true?  Let $f:R \to R$ be a function defined by $(x) = (1)$ is equal to $(1)$ $(3,\frac{27}{4})$ (3) $(4,\frac{27}{4})$ mathons and the function defined by $(x) = (1)$ | $(4) \ \frac{1}{2}$ $,  -2 < x < 0$ $,  0 \le x < 2$ $\text{where } [x] \text{ denotes the greatest integer function. If } m \text{ and } n \text{ respectively are the number}$ $\text{us and not differentiable, then } m+n \text{ is equal to } \underline{\qquad}$ $\text{that } f''(x)=g''(x)+6xf'(1)=4g'(1)-3=9$ $(2) \ \text{If } -1 < x < 2, \text{ then }  f(x)-g(x) <8$ $(4) \ \text{There exists } x_0 \in \left(1,\frac{3}{2}\right) \text{ such that } f(x_0)=g(x_0)$ $\text{x}\{t^3-3t\};  x \le 2$ $+2x-6;  2 < x < 3$ $(2-3]+9;  3 \le x \le 5$ $(2x+1;  x>5$ Let $m$ be the number of points where $f$ is not differentiable and $I=\int_{-2}^2 f(x)dx$ . Then the ordered pair                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Let $f:(-2,2)\to\mathbb{R}$ be defined by $f(x)=\begin{cases}x[x]\\(x-1)[x]\end{cases}$ of points in $(-2,2)$ at which $y= f(x) $ is not continuous. Let $f$ and $g$ be twice differentiable functions on $R$ such $f(2)=3$ $g(2)=12$ . Then which of the following is NOT true?  (1) $g(-2)-f(-2)=20$ (3) $ f'(x)-g'(x) <6\Rightarrow -1< x<1$ mathod the following defined by: $f(x)=\begin{cases}\max_{t\leq x}x^2\\x^2\end{bmatrix}$ . Where $[t]$ is the greatest integer less than or equal to $t$ . If $(m,I)$ is equal to $(1)$ $(3,\frac{27}{4})$ mathod the following defined by $f(x)=(1)$ $f$ is continuous everywhere but not differentiable expression $(0,\infty)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $(4) \ \frac{1}{2}$ $x - 2 < x < 0$ $x - 3 < x < 2$ $x - 3 < x < 0$ $x - 3 < x < $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Let $f:(-2,2)\to\mathbb{R}$ be defined by $f(x)=\begin{cases}x[x]\\(x-1)[x]\end{cases}$ of points in $(-2,2)$ at which $y= f(x) $ is not continuous. Let $f$ and $g$ be twice differentiable functions on $R$ such $f(2)=3$ $g(2)=12$ . Then which of the following is NOT true?  (1) $g(-2)-f(-2)=20$ (3) $ f'(x)-g'(x) <6\Rightarrow -1< x<1$ mathod the following defined by: $f(x)=\begin{cases}\max_{t\leq x}x^2\\x^2\end{bmatrix}$ . Where $[t]$ is the greatest integer less than or equal to $t$ . If $(m,I)$ is equal to $(1)$ $(3,\frac{27}{4})$ mathod the following defined by $f(x)=(1)$ $f$ is continuous everywhere but not differentiable expression $(0,\infty)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $(4) \ \frac{1}{2}$ $x - 2 < x < 0$ $y - 3 < x < $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |