ECE375 External Interrupt

TA: Dongjun Lee

School of Electrical Engineering and Computer Science Oregon State University

External Interrupts

- Understand Interrupts
- Demonstrate BumpBot using external Interrupts
- Explore the ATmega I 28 datasheet
- BumpBot counts each whisker and displays on LCD

External Interrupts

- The External Interrupts are triggered by the INT7:0 pins.
- The External Interrupts can be triggered by a falling, a rising edge, or a low level.
 - EICRA (INT3:0) and EICRB (INT7:4)
 - PIND3:0 = INT3:0
 - PINE7:4 = INT7:4

0

External Interrupts

- The External Interrupts are triggered by the INT7:0 pins.
- The External Interrupts can be triggered by a falling, a rising edge, or a low level.
 - EICRA (INT3:0) and EICRB (INT7:4)
 - PIND3:0 = INT3:0
 - PINE7:4 = INT7:4

External Interrupts

- The External Interrupts are triggered by the INT7:0 pins.
- The External Interrupts can be triggered by a falling, a rising edge, or a low level.
 - EICRA (INT3:0) and EICRB (INT7:4)
 - PIND3:0 = INT3:0
 - PINE7:4 = INT7:4

External Interrupts

- The External Interrupts are triggered by the INT7:0 pins.
- The External Interrupts can be triggered by a falling, a rising edge, or a low level.
 - EICRA (INT3:0) and EICRB (INT7:4)
 - PIND3:0 = INT3:0
 - PINE7:4 = INT7:4

Determining Source of Interrupt

• When an interrupt occurs each source of interrupt is mapped to a vector.

Vector #	Program Address	Source	Priority
1	\$0000	RESET	High
2	\$0002	INT0	
3	\$0004	INTI	
9	\$0010	INT7	
10	\$0012	TIMER2 COMP	
11	\$0014	TIMER2 OVF	Low

There are 35 vectors!

External Interrupt Flag Register

- Write "I" in order to clear EIFR
 - ∘ ldi mpr, 0b0000_001 l
 - out EIFR, mpr

ATmegal 28 I/O registers

- ATmega I 28 I/O registers for External Interrupts
 - External Interrupt Control Register A EICRA
 - External Interrupt Control Register B EICRB
 - External Interrupt Mask Register EIMSK
 - External Interrupt Flag Register EIFR
 - sei; set interrupt

Demo Check

- BumpBot Behavior using Interrupts
 - Need to avoid queued interrupts
- LCD displays two counters
 - Count Right/Left Whiskers
 - Implement clearing each counter
 - Hint: Use Bin2ASCII function in LCDDriver.asm to display decimal numbers.
 - It must be able to display both counters greater than 10.
 - Do not show any garbage data when increment/clear the counters.
- Implement 4 interrupts properly
 - INT0 and INT I for counting Right/Left Whiskers
 - INT2 and INT 3 for clearing Right/Left whisker counters

Checklists for Lab 6

- Demo Checklist
 - Standard BumpBot behavior observed
 - · Actually used interrupts, not polling
 - Queued interrupts explicitly avoided
 - Nested interrupts not enabled
 - Correctly configured INT0 INT3 to use fallingedge sense control
- Challenge Checklist
 - Correct alternating-whisker behavior
 - Correct repeated-whisker behavior

Questions?

