2983. Зная коэффициенты Фурье a_n , b_n (n=0,1. 2, . . .) интегрируемой функции f(x), имеющей период 2π , вычислить коэффициенты Фурье a_n , \overline{b}_n (n=0,1, 2, . . .) «смещенной» функции f(x+h) (h= const).

2984. Зная коэффициенты Фурье a_n , b_n (a=0, 1, 2, . . .) интегрируемой функции f(x) периода 2π , вычислить коэффициенты Фурье A_n , B_n (n=0, 1, 2, . . .) функции Стеклова

$$f_h(x) = \frac{1}{2h} \int_{x-h}^{x+h} f(\xi) d\xi.$$

2985. Пусть f(x) — непрерывная функция с периолом 2π и a_n , b_n $(n=0,1,2,\ldots)$ — ее коэффициенты Фурье. Определить коэффициенты Фурье A_n , B_n $(n=0,1,2,\ldots)$ свернутой функции

$$F(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) f(x+t) dt.$$

Пользуясь полученным результатом, вывести равенство Ляпунова.

§ 7. Суммирование рядов

1°. Непосредственное суммирование. Если

$$u_n = v_{n+1} - v_n \qquad (n = 1, 2, \dots) \quad \text{if } \lim_{n \to \infty} v_n = v_\infty.$$

10

$$\sum_{n=1}^{\infty} u_n = v_{\infty} - v_{\mathbf{i}}.$$

В частности, если

$$u_n = \frac{1}{a_n a_{n+1} \cdot \cdot \cdot a_{n+m}},$$

где числа a_l ($i=1,\,2,\,\ldots$) образуют арифметическую прогрессию со знаменателем d, то

$$v_n = -\frac{1}{md} \cdot \frac{1}{a_n a_{n+1} \cdot \cdot \cdot a_{n+m-1}}.$$

В некоторых случаях искомый ряд удается представить в виде линейной комбинации известных рядов:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \ln 2; \qquad \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6};$$