Отчет

Исследование задачи об обтекании кругового цилиндра

Постановка задачи

Движение жидкости описывается нестационарным уравнением Навье-Стокса

$$\frac{\partial u}{\partial t} + u \nabla u = -\nabla p + \frac{1}{Re} \Delta u, \nabla u = 0, Re = \frac{UR}{v}$$

С граничными условиями

$$x^2 + y^2 = 1$$
: $u_x = 0$, $u_y = 0$, $u_z = 0$; $x \to \infty$, $y \to \infty$: $u_x = 1$, $u_y = 0$, $u_z = 0$;

И начальными условиями

$$t = 0$$
: $u_x = 1$, $u_y = 0$, $u_z = 0$;

Кинематическую вязкость будем изменять так, чтобы получить желаемое число Рейнольдса

$$v = \frac{2}{Re} M^2 / c$$

Построение расчетной сетки

Рис.1 Расчетная область

Рис.2 Блочная структура сетки

Рис.3 Структура сетки в окрестности цилиндра

Сетка:

(xmin, xmax) = (-24,28)(ymin, ymax) = (-40,40)

Cells: 34320

Рисунки

Стационарный безотрывной режим обтекания кругового цилиндра при Re =1.6. Эксперимент и численное моделирование

Рис.5

Стационарный режим обтекания кругового цилиндра с формированием присоединенных вихрей при Re = 26. Эксперимент и численное моделирование

Рис.6

Установившийся периодический режим обтекания кругового цилиндра с формированием дорожки Кармана при Re = 140.

Рис. 7

Установившийся периодический режим обтекания кругового цилиндра с формированием дорожки Кармана при Re = 200

Рис. 8 Установившийся периодический режим обтекания кругового цилиндра с формированием дорожки Кармана при Re = 300

Рис. 9 Формирование вихрей за цилиндром после мгновенного старта при Re = 3000 в момент времени t =5

Рис.10

Формирование вихрей за цилиндром после мгновенного старта при Re=3000 в момент времени t=5. Сравнение результатов эксперимента [Bouard & Coutanceau 1980] и результатов численного моделирования

Интегральные характеристики

Коэффициент сопротивления \mathcal{C}_D

$$C_D = \frac{F_x}{U^2 2RL\rho/2}$$

Коэффициент подъемной силы

$$C_L = \frac{F_y}{U^2 2RL\rho/2}$$

Число Струхаля *St*

$$St = \frac{f_1 2R}{U}$$

Среднее квадратическое значение коэффициента подъёмной силы \mathcal{C}_L^{RMS}

$$C_L^{RMS} = \sqrt{\frac{1}{T_2 - T_1} \int_{T_1}^{T_2} (C_L(t))^2 dt}$$

Значения характеристик представлены в таблице

F	Re	0.1	1	10	26	40	100	140	200	300	600
(\mathcal{L}_D	70	12	2.9	1.9	1.5	1.34	1.33	1.334	1.26	1.19
C	RMS L	0	0	0	0	0	0.3	0.34	0.47		
St		_	_	_	_	_	1.6	1.7	0.2		