Q1. Let $X_1, X_2, ..., X_n$ be i.i.d. $U(0, \theta)$ r.v.'s.

(a) Show that $X_{(n)} = \max\{X_1, X_2, ..., X_n\} \xrightarrow{\mathcal{P}} \theta$.

$$X_1, X_2, ..., X_n \stackrel{iid}{\sim} U(0, \theta), 0 \leq X_{(1)}, X_{(2)}, ..., X_{(n)} \leq \theta$$

$$f_X(x|\theta) = \frac{1}{\theta}$$
; $F_X(x|\theta) = \frac{x}{\theta}$

$$f_{X_{(n)}}(x) = \frac{n!}{(n-1)!(n-n)!} f_X(y) [F_X(x)]^{n-1} [1 - F_X(x)]^{n-n} = \frac{n}{\theta^n} x^{n-1}, \ 0 \le x \le \theta$$

$$F_{X_{(n)}}(x) = \int_0^x \frac{n}{\theta^n} t^{n-1} dt = \frac{1}{\theta^n} x^n$$

For arbitrary $\varepsilon > 0$, $P(X_{(n)} - \theta > \varepsilon) = P(X_{(n)} > \theta + \varepsilon > \theta) = 0$

If
$$\varepsilon > \theta > 0$$
, $P(X_{(n)} - \theta < -\varepsilon) = P(X_{(n)} < \theta - \varepsilon < 0) = 0$

If $\theta \geq \varepsilon > 0$,

$$\lim_{n\to\infty} P(X_{(n)} - \theta < -\varepsilon) = \lim_{n\to\infty} P(X_{(n)} < \theta - \varepsilon) = \lim_{n\to\infty} F_{X_{(n)}}(\theta - \varepsilon) = \lim_{n\to\infty} (\frac{\theta - \varepsilon}{\theta})^n = 0$$

- Therefore, $\lim_{n\to\infty} P(|X_{(n)} \theta| > \varepsilon) = 0$, $X_{(n)} \stackrel{\mathcal{P}}{\to} \theta$
- (b) Show that $X_{(1)} = \min\{X_1, X_2, ..., X_n\} \stackrel{\mathcal{P}}{\to} 0.$

$$f_X(x|\theta) = \frac{1}{\theta}$$
; $F_X(x|\theta) = \frac{x}{\theta}$

$$f_{X_{(1)}}(x)=rac{n!}{(1-1)!(n-1)!}f_X(x)[F_X(x)]^{1-1}[1-F_X(x)]^{n-1}=rac{n}{ heta}\left(1-rac{x}{ heta}
ight)^{n-1}$$
 , $0\leq x\leq heta$

$$F_{X_{(1)}}(x) = \int_0^x \frac{n}{\theta} (1 - \frac{t}{\theta})^{n-1} dt = 1 - (1 - \frac{x}{\theta})^n$$

For arbitrary
$$\varepsilon > 0$$
, $P(X_{(1)} - 0 < -\varepsilon) = P(X_{(1)} < -\varepsilon < 0) = 0$

If
$$\varepsilon > \theta > 0$$
, $P(X_{(1)} > \varepsilon) = P(X_{(1)} > \varepsilon > \theta) = 0$

If
$$\theta > \varepsilon > 0$$
,

$$\lim_{n\to\infty}P(X_{(1)}>\varepsilon)=\lim_{n\to\infty}[1-P(X_{(1)}<\varepsilon)]=\lim_{n\to\infty}[1-F_{X_{(1)}}(\varepsilon)]=\lim_{n\to\infty}[1-1+(1-\frac{\varepsilon}{\theta})^n]=0$$

- Therefore, $\lim_{n\to\infty} P(|X_{(1)}-0|>\varepsilon)=0, X_{(1)}\stackrel{\mathcal{P}}{\to} 0$
- (c) Show that $\frac{X_{(1)}+X_{(n)}}{2} \stackrel{\mathcal{P}}{\to} \frac{\theta}{2}$

$$X_{(1)} \stackrel{\mathcal{P}}{\to} 0$$
 and 0 is constant. $X_{(n)} \stackrel{\mathcal{P}}{\to} \theta$.

By the Theorem1 in Note page39,
$$X_{(1)} + X_{(n)} \stackrel{\mathcal{P}}{\to} \theta + 0 = \theta$$

By the Theorem2,
$$y = \frac{1}{2}x$$
 is a continuous function, $\frac{1}{2}(X_{(1)} + X_{(n)}) \stackrel{\mathcal{P}}{\to} \frac{1}{2}\theta$

Or by the Corollary, for
$$\frac{1}{2}$$
 is a constant, $\frac{1}{2}(X_{(1)} + X_{(n)}) \stackrel{\mathcal{P}}{\rightarrow} \frac{1}{2}\theta$

Q2. Let $S_n = \sum_{i=1}^n X_i$, where $X_1, X_2, ..., X_n$ are i.i.d. Bernoulli(p) r.v.'s.

That is, S_n has Binomial distribution with parameters n and p. Suppose $n \to \infty$, $p \to 0$, and $np = \lambda$. Then show that $S_n \stackrel{\mathcal{D}}{\to} S$, where S has a Poisson distribution with λ .

For $np = \lambda$, $S_n = \sum_{i=1}^{n} X_i \sim Bino(n, p) = Bino(n, \frac{\lambda}{n})$

$$p(x; n, \lambda) = \binom{n}{x} (\frac{\lambda}{n})^x (1 - \frac{\lambda}{n})^{n-x} = \binom{n}{x} (\frac{\lambda}{n})^x (\frac{n-\lambda}{n})^{-x} (1 - \frac{\lambda}{n})^n$$

$$= \frac{n!}{x!(n-x)!} (\frac{\lambda^x}{n^x}) (\frac{n^x}{(n-\lambda)^x}) (1 - \frac{\lambda}{n})^n = \frac{\lambda^x}{x!} (\frac{n!}{(n-x)!(n-\lambda)^x}) (1 - \frac{\lambda}{n})^n$$

$$\lim_{n\to\infty} (1-\frac{\lambda}{n})^n = e^{-\lambda}$$

$$\lim_{n\to\infty} \frac{n!}{(n-x)!(n-\lambda)^x} = \lim_{n\to\infty} \frac{n(n-1)\cdots(n-x+1)}{(n-\lambda)^x} = \lim_{n\to\infty} \frac{1(1-\frac{1}{n})\cdots(1-\frac{x-1}{n})}{(1-\frac{\lambda}{n})^x} = 1$$

$$\lim_{n \to \infty} p(x; n, \lambda) = \lim_{n \to \infty} \frac{\lambda^x}{x!} \left(\frac{n!}{(n-x)!(n-\lambda)^x} \right) \left(1 - \frac{\lambda}{n} \right)^n = \frac{\lambda^x e^{-\lambda}}{x!}$$

By Scheffe's Theorem, if S_n has a pdf $f_n(x) \to f(x)$, $\forall x \in \text{support}$,

f(x) is a Poisson pdf of a r.v x, then $S_n \stackrel{\mathcal{D}}{\to} S$

Q3 Suppose that $X_1, X_2, ..., X_n$ be i.i.d. X, where X has the following pdf:

$$f(x) = \begin{cases} \frac{\beta^{\alpha_0} x^{\alpha_0 - 1}}{\Gamma(\alpha_0)} \exp[-\beta x], & x > 0 \\ 0 & o.w. \end{cases}, \alpha_0 > 0 \text{ known, and } \beta > 0 \text{ unknown.}$$

(a) Determine UMVUE of β^{-1} .

For Gamma Distribution (α_0, β^{-1}) , $\bar{X} \sim \Gamma(n\alpha_0, (n\beta)^{-1})$, $\alpha_0 > 0$ known $E(\bar{X}) = E(X) = \alpha_0 \cdot \beta^{-1}$, then $(\alpha_0)^{-1}\bar{X}$ is an unbiased estimator of β^{-1} .

$$f_{\beta}(\mathbf{x}) = \exp\left[-\beta \sum_{i=1}^{n} x_{i} - \underbrace{-n\alpha_{0}\log(\beta)}_{A(\beta)}\right] \underbrace{\prod_{i=1}^{n} \frac{x_{i}^{\alpha_{0}-1}}{\Gamma(\alpha_{0})} \mathbf{1}_{\{x_{i} \in (0,\infty)\}}}_{h(x)}$$

When α_0 known, Gamma is a canonical 1-parameter exponential family. $\sum_{i=1}^{n} x_i$ is the natural sufficient statistic where $x \in \mathcal{X} \subset \mathbb{R}_+$.

 $(\alpha_0)^{-1}\bar{X}$ is a function of n.s.s and it is a complete sufficient statistic for β^{-1} .

By Lehman-Scheffe Theorem, $(\alpha_0)^{-1}\bar{X}$ is the UMVUE of β^{-1} .

(b) Determine the information lower bound for the estimation of β^{-1} using unbiased estimators, and determine if the UMVUE obtained in (a) attains this.

Use **Theorem 1.6.2** (Bickel and Doksum)

$$\eta = -\beta \implies \beta = -\eta \implies A(\eta) = -n\alpha_0 \log(\beta) = -n\alpha_0 \log(-\eta)$$

 η is an interior point of the natural parameter space ε .

$$E((\alpha_0)^{-1}\bar{X}) = (n\alpha_0)^{-1}E[\sum_{i=1}^n x_i] = (n\alpha_0)^{-1}A'(\eta) = (n\alpha_0)^{-1}\frac{n\alpha_0}{-\eta} = \beta^{-1}$$

$$Var((\alpha_0)^{-1}\bar{X}) = (n\alpha_0)^{-2}Var(\sum_{i=1}^n x_i) = (n\alpha_0)^{-2}A''(\eta) = (n\alpha_0)^{-2}\frac{n\alpha_0}{\eta^2} = \frac{1}{n\alpha_0\beta^2}$$

• Therefore, The UMVUE of β^{-1} , $(\alpha_0)^{-1}\bar{X}$ has variance $\frac{1}{n\alpha_0\beta^2}$

Regularity Assumptions on the family $\{P : \beta \in \Theta\}$:

- (I) The set $\mathcal{X} = \{x : p(x, \alpha_0, \beta) > 0\}$ does not depend on $\alpha_0, \beta, \forall x \in \mathcal{X}, \alpha_0 > 0, \beta > 0$, score function $\frac{\partial}{\partial \beta} \log p(X, \beta) = -x + \frac{\alpha_0}{\beta}$ exists and is finite.
- (II) If T is any statistic such that $E_{\beta}(|T|) = \beta^{-1} < \infty, \alpha_0 > 0, \beta > 0$, then the operations of integration and differentiation by β can be interchanged in $\frac{\partial}{\partial \beta}E_{\beta}(T(X))) = \frac{\partial}{\partial \beta}\int T(x)p(x,\beta)dx = \int T(x)\frac{\partial}{\partial \beta}p(x,\beta)dx$

Theorem 3.4.1. Information Inequality $\{P_{\beta} : \beta \in \Theta\}$ has density $p(x,\beta), x \in \mathcal{X} \subseteq \mathbb{R}^q$, $E_{\beta}(T(X)) = \beta^{-1}$ is differentiable $\forall \beta$

I and II hold $0 < I(\beta) < \infty \, \forall \beta$,

$$I_{1}(\beta) = -E\left(\frac{\partial^{2}}{\partial \beta^{2}}\log p(X,\beta)\right) = -E\left(\frac{\partial^{2}}{\partial \beta^{2}}[-\beta x + \alpha_{0}\log(\beta)]\right) = -E\left(\frac{\partial}{\partial \beta}[-x + \frac{\alpha_{0}}{\beta}]\right) = \frac{\alpha_{0}}{\beta^{2}}$$
$$Var_{\theta}(T(X)) \ge \frac{\left(\frac{\partial}{\partial \beta}[E(\alpha_{0})^{-1}\bar{X}]\right)^{2}}{nI_{1}(\beta)} = \frac{\left(\frac{\partial}{\partial \beta}(\frac{1}{\beta})\right)^{2}}{n\frac{\alpha_{0}}{\beta^{2}}} = \frac{1}{n\alpha_{0}\beta^{2}}$$

• Therefore, the UMVUE $(\alpha_0)^{-1}\bar{X}$ attains the information lower bound for the estimation of β^{-1} .

Note: **Theorem 3.4.2.** also works. $\{P_{\theta} : \theta \in \Theta\}$ satisfies assumptions (I) and (II). There exists u.b. est. T^* of $\psi(\theta)$, which achieves the information lower bound $\forall \theta$.

Then $\{P\theta\}$ is a one-parameter exponential family of the form $p(x,\theta) = h(x) \exp\{\eta(\theta)T(x) - B(\theta)\}$

Conversely, if $\{P_{\theta}\}$ a one-para exp family of the form (*) with n.s.s. T(X).

 $\eta(\theta)$ has a continuous nonvanishing derivative on θ ,

Then T(X) achieves the information lower bound and is a UMVUE of $E_{\theta}(T(X))$

Q4. Let $X_1, X_2, ..., X_n$ be a sample from $U(\theta_1, \theta_2)$ where θ_1 and θ_2 are unknown. Show that $T(\underline{X}) = (\min(X_1, ..., X_n), \max(X_1, ..., X_n))$ is complete for (θ_1, θ_2) .

$$f_X(x|\theta_1,\theta_2) = \frac{1}{\theta_2 - \theta_1}; F_X(x|\theta_1,\theta_2) = \frac{x - \theta_1}{\theta_2 - \theta_1}$$
Let $T(\underline{X}) = (\min(X_1,...,X_n), \max(X_1,...,X_n)) = (X_{(1)}, X_{(n)}) = (U,V). \ \theta_1 \le u < v \le \theta_2$

$$f_{U,V}(u,v) = \frac{n!}{(1-1)!(n-1-1)!(n-n)!} f_X(u) f_X(v) [F_X(u)]^{1-1} [F_X(v) - F_X(u)]^{n-1-1} [1 - F_X(v)]^{n-n}$$

$$= n(n-1)f_X(u)f_X(v)[F_X(v) - F_X(u)]^{n-2} = \frac{n(n-1)}{(\theta_2 - \theta_1)^2} \left[\frac{v - \theta_1}{\theta_2 - \theta_1} - \frac{u - \theta_1}{\theta_2 - \theta_1} \right]^{n-2} = \frac{n(n-1)}{(\theta_2 - \theta_1)^n} [v - u]^{n-2}$$

Suppose a Riemann-integrable g(u, v) is a function satisfying $E[g(u, v)] = 0 \ \forall (\theta_1, \theta_2)$.

$$E[g(u,v)] = \int_{\theta_1}^{\theta_2} \int_{\theta_1}^{v} g(u,v) f_{U,V}(u,v) du dv = \frac{n(n-1)}{(\theta_2 - \theta_1)^n} \int_{\theta_1}^{\theta_2} \int_{\theta_1}^{v} g(u,v) \left[v - u\right]^{n-2} du dv = 0$$

Let

$$h(\theta_1, v) = \int_{\theta_1}^{v} g(u, v) [v - u]^{n-2} du$$

= $-g(\theta_1, v) \frac{(v - \theta_1)^{n-1}}{n-1} - \int_{\theta_1}^{v} \left[\frac{d}{du} g(u, v) \right] \frac{(v - u)^{n-1}}{n-1} du$

For $\frac{n(n-1)}{(\theta_2-\theta_1)^n} \neq 0$, then

$$\int_{\theta_1}^{\theta_2} \int_{\theta_1}^{v} g(u, v) \left[v - u \right]^{n-2} du dv = \int_{\theta_1}^{\theta_2} h(\theta_1, v) dv = 0$$

Moreover,

$$\begin{split} 0 &= \frac{\partial^2}{\partial \theta_1 \partial \theta_2} \int_{\theta_1}^{\theta_2} h(\theta_1, v) dv \\ &= \frac{\partial^2}{\partial \theta_1 \partial \theta_2} \left[\int_0^{\theta_2} h(\theta_1, v) dv - \int_0^{\theta_1} h(\theta_1, v) dv \right] \\ &= \frac{\partial}{\partial \theta_2} \int_0^{\theta_2} \left[\frac{\partial}{\partial \theta_1} h(\theta_1, v) \right] dv - \frac{\partial}{\partial \theta_1} \int_0^{\theta_1} \left[\frac{\partial}{\partial \theta_2} h(\theta_1, v) \right] dv \\ &= \frac{\partial}{\partial \theta_1} h(\theta_1, \theta_2) + \int_0^{\theta_2} \left[\frac{\partial}{\partial \theta_2} \frac{\partial}{\partial \theta_1} h(\theta_1, v) \right] dv \\ &= \frac{\partial}{\partial \theta_1} \left[-g(\theta_1, \theta_2) \frac{(\theta_2 - \theta_1)^{n-1}}{n-1} - \int_{\theta_1}^{\theta_2} \left(\frac{\partial}{\partial u} g(u, \theta_2) \right) \frac{(\theta_2 - u)^{n-1}}{n-1} du \right] \\ &= -\frac{\partial}{\partial \theta_1} \left[g(\theta_1, \theta_2) \frac{(\theta_2 - \theta_1)^{n-1}}{n-1} \right] + \frac{\partial}{\partial \theta_1} \int_{\theta_2}^{\theta_1} \left(\frac{\partial}{\partial u} g(u, \theta_2) \right) \frac{(\theta_2 - u)^{n-1}}{n-1} du \\ &= -\left[\frac{\partial}{\partial \theta_1} g(\theta_1, \theta_2) \right] \frac{(\theta_2 - \theta_1)^{n-1}}{n-1} + g(\theta_1, \theta_2) (\theta_2 - \theta_1)^{n-2} \\ &+ \left[\frac{\partial}{\partial \theta_1} g(\theta_1, \theta_2) \right] \frac{(\theta_2 - \theta_1)^{n-1}}{n-1} + \int_{\theta_2}^{\theta_1} \frac{\partial}{\partial \theta_1} \left[\left(\frac{\partial}{\partial u} g(u, \theta_2) \right) \frac{(\theta_2 - u)^{n-1}}{n-1} \right] du \\ &= g(\theta_1, \theta_2) (\theta_2 - \theta_1)^{n-2} \end{split}$$

For $\theta_1 \neq \theta_2$, the solution to E[g(T(X))] = 0, $\theta \in \Theta$ is g(u, v) = 0 almost sure.

That is, if $E[g(u,v)] = 0, \forall (\theta_1, \theta_2)$ implies $P(g(u,v) = 0) = 1, \forall (\theta_1, \theta_2)$.

Thus, $T(\underline{X}) = (\min(X_1, ..., X_n), \max(X_1, ..., X_n))$ is complete for (θ_1, θ_2) .