Exercise 3.21

May 19, 2025

M.F. Atiyah, I.G. MacDonald Introduction to Commutative Algebra

Exercise 3.21.i. Show that $\phi^* : \operatorname{Spec}(S^{-1}A) \to \operatorname{Spec}(A)$ is a homeomorphism of $\operatorname{Spec}(S^{-1}A)$ onto its image in $X = \operatorname{Spec}(A)$.

We want to prove that for D closed in $\operatorname{Spec}(S^{-1}A)$ there is C closed in $\operatorname{Spec}(A)$ and reverse, that the equation holds

$$C \cup \phi^*(\operatorname{Spec}(S^{-1}A)) = \phi^*(D)$$

We take

$$C = V(\mathfrak{a}), \quad D = V(S^{-1}\mathfrak{a})$$

That is, we are going to prove that

$$V(\mathfrak{a}) \cap \phi^*(\operatorname{Spec}(S^{-1}\mathfrak{a})) = \phi^*(V(S^{-1}\mathfrak{a}))$$

Recalling that $S^{-1}\mathfrak{p} \xrightarrow{\phi^*} \mathfrak{p}$, the right are all prime ideals not meeting S and holding $S^{-1}\mathfrak{p} \supseteq S^{-1}\mathfrak{a}$. By the fact that this happens iff $\mathfrak{p} \supseteq \mathfrak{a}$, they are all prime ideals not meeting S and containing \mathfrak{a} . Which is precisely the left.

П

Now ϕ^* maps closed files to closed files in any direction.

Exercise 3.21.ii. Let $f: A \to B$ be a ring homomorphism...

That $(S^{-1}f)^*$: Spec $(S^{-1}B) \to \text{Spec}(S^{-1}A)$ is the restriction of f^* to $S^{-1}Y$ we have already proved in Facts, showing the action of $(S^{-1}f)^*$:

$$(S^{-1}f)^*: S^{-1}\mathfrak{g} \mapsto S^{-1}\mathfrak{p}$$

What is $S^{-1}X = \phi^*(\operatorname{Spec}(S^{-1}A))$? All prime ideals of A not meeting S.

What is $f^{*-1}(S^{-1}X) = f^{*-1}(\phi^*(\operatorname{Spec}(S^{-1}A)))$? All prime ideals of B whose preimages in A do not meet S.

What is $S^{-1}Y = \psi^*(\operatorname{Spec}(S^{-1}B))$? All prime ideals of B not meeting f(S).

We show that the last two sets are equal.

 \supseteq : If \mathfrak{q} does not meet f(S), may its preimage $f^{-1}(\mathfrak{q})$ meet S? Let $s \in f^{-1}(\mathfrak{q})$; $f(s) \in \mathfrak{q}$; now

 \mathfrak{q} meets f(S), a contradiction. So it cannot.

 \subseteq : Let's not let the preimage $f^{-1}(\mathfrak{q})$ of a prime ideal \mathfrak{q} of B meet S. May \mathfrak{q} meet f(B)? $f(s) \in \mathfrak{q}$; $s \in f^{-1}(\mathfrak{q})$; now the preimage $f^{-1}(\mathfrak{q})$ in A meets S, a contradiction. So it cannot.

Exercise 3.21.iii. Let \mathfrak{a} be an ideal of A and let $\mathfrak{b} = \mathfrak{a}^e$ be its extension in B...

Let \mathfrak{a} be an ideal of A and let $\mathfrak{b} = \mathfrak{a}^e$ be its extension in B. What is the homomorphism?

$$\tilde{f}:A/\mathfrak{a}\to B/\mathfrak{b}$$

Recall what does a homomorphism need to factor through a quotient?

The map $\tilde{\phi}$ has to be defined on representatives and cannot differ between them.

$$\tilde{\phi}(a+\mathfrak{a}) = \tilde{\phi}(a'+\mathfrak{a})$$

if $a + \mathfrak{s} = a' + \mathfrak{s}$ iff $a - a' \in \mathfrak{s}$.

We define $\tilde{\phi}$ by $\tilde{\phi}(a+\mathfrak{a})=\phi(a)$ so it has to be

$$\phi(a) = \phi(a') \text{ if } a - a' \in \mathfrak{a}$$

$$\phi(a - a') = 0 \text{ if } a - a' \in \mathfrak{a}$$

$$\phi(a) = 0 \text{ if } a \in \mathfrak{a}$$

 $\ker \phi \supseteq \mathfrak{a}$

To factor through the quotient by an ideal, the homomorphism's kernel must contain this ideal.

A homomorphism factors through any ideal contained in its kernel.

If $\mathbf{a} \subseteq \phi^{-1}(0)$ then $\phi(a) = 0$ for $a \in \mathbf{a}$ then $\phi(a - a') = 0$ for $a - a' \in \mathbf{a}$ then $\phi(a) = \phi(a')$ for $a + \mathbf{a} = a' + \mathbf{a}$ and we can say $\tilde{\phi}(a + \mathbf{a}) = \phi(a)$.

We return to $f: A \to B$, $\mathfrak{a} = f^{-1}(\mathfrak{b})$, \mathfrak{b} an ideal of B.

$$A \xrightarrow{f} B \xrightarrow{\rho} B/\mathfrak{b}$$

Does the kernel contain \mathfrak{a} ? If $a \in \mathfrak{a}$ then $a \mapsto f(a) \mapsto f(a) + \mathfrak{b}$, but $f(a) \in \mathfrak{b}$ so a maps to zero and is in the kernel of this composition homomorphism, which then factors through the quotient:

How does $\operatorname{Spec}(A/\mathfrak{a})$ have it canonical image $V(\mathfrak{a})$ in $\operatorname{Spec}(A)$?

$$A \xrightarrow{\pi} A/\mathfrak{a}$$

$$a\mapsto a+\mathfrak{s}$$

That there is a 1-1 correspondence between ideals of A/\mathfrak{a} and ideals of A containing \mathfrak{a} , we are told in the text on page 9. And that prime ideals correspond to prime ideals. So we have a bijection between $\operatorname{Spec}(A/\mathfrak{a})$ and prime ideals of A containing \mathfrak{a} , which comprise the set $V(\mathfrak{a})$. We are not required to prove a homeomorphism here.

The general prime ideal of B/\mathfrak{b} is $\rho(\mathfrak{q})$ where \mathfrak{q} is a prime ideal of B containing \mathfrak{b} .

$$\begin{split} \tilde{f}^*: \rho(\mathfrak{q}) \mapsto \tilde{f}^{-1}(\rho(\mathfrak{q})) \\ \tilde{f}^{-1}(\rho(\mathfrak{q})) = \{a + \mathfrak{a}: f(a) + \mathfrak{b} \in \rho(\mathfrak{q})\} = \dots \end{split}$$

Property. $b + \mathfrak{b} \in \rho(\mathfrak{q}) \iff b \in \mathfrak{q}$.

Probably general for surjective homomorphism and an ideal, or even a set, containing the kernel.

If $b + \mathfrak{b} \in \rho(\mathfrak{q})$ then $b + \mathfrak{b} = b' + \mathfrak{b}$ for some $b' \in \mathfrak{q}$, then $b - b' \in \mathfrak{q}$ and $b' \in \mathfrak{q}$, then $b \in \mathfrak{q}$. \Box

$$\dots = \{a + \mathfrak{a} : f(a) \in \mathfrak{q}\}$$
$$= f^{-1}(\mathfrak{q}) + \mathfrak{a}$$
$$= \pi (f^{-1}(\mathfrak{q}))$$

Now π^* maps this to $\pi^{-1}(\pi(f^{-1}(\mathfrak{q})))$. As π is surjective, this set is $f^{-1}(\mathfrak{q}) = f^*(\mathfrak{q})$. The up-left path: $\rho(\mathfrak{q})$ is identified in $\operatorname{Spec}(B)$ with \mathfrak{q} then this is mapped by f^* to $f^{-1}(\mathfrak{q}) = f^*(\mathfrak{q})$.

We took the risk to write $\pi(\mathfrak{p})$ as $\mathfrak{p} + \mathfrak{s}$ and $\rho(\mathfrak{q})$ as $\mathfrak{q} + \mathfrak{b}$.

Exercise 3.21.iv. Let \mathfrak{p} be a prime ideal of A... We take $S = A \setminus \mathfrak{p}$ in (ii)

What a ring can be reduced modulo $S^{-1}\mathfrak{p}=(A\setminus\mathfrak{p})\mathfrak{p}=\mathfrak{p}A_{\mathfrak{p}}$? Only a ring of which $S^{-1}\mathfrak{p}$ is an ideal, that is, the ring $A_{\mathfrak{p}}$. In (iii), the ring B to the right is reduced by the extension of the ideal $\mathfrak{p}A_{\mathfrak{p}}$ in B? We know from Fact that this is $\mathfrak{p}B_{\mathfrak{p}}$.

This is how we apply (iii): $A := A_{\mathfrak{p}}, \mathfrak{a} := \mathfrak{p}A_{\mathfrak{p}}, \mathfrak{b} := \mathfrak{p}B_{\mathfrak{p}}, f := f_{\mathfrak{p}} := S^{-1}f : A_{\mathfrak{p}} \to B_{\mathfrak{p}}.$

What is $f^{*-1}(\mathfrak{p})$? It is the set $\{\mathfrak{q}: f^*(\mathfrak{q}) = \mathfrak{p}\} = \{\mathfrak{q}: \mathfrak{p} = f^{-1}(\mathfrak{q})\}$. We know that $f^{*-1}(S^{-1}X) = S^{-1}Y$ and $\mathfrak{p} \in S^{-1}X$ so $f^{*-1}(\mathfrak{p}) \subseteq S^{-1}Y$. Any ideal $\mathfrak{q} \in f^{*-1}(\mathfrak{p})$ does not meet $f(A \setminus \mathfrak{p})$: $a \in A \setminus \mathfrak{p}$; $f(a) \in \mathfrak{q}$; $a \in f^{-1}(\mathfrak{q})$; $a \in \mathfrak{p}$, a contradiction. So it is in $\psi^*(\operatorname{Spec}(B_{\mathfrak{p}}))$. To fall into $\rho^*(\operatorname{Spec}(B_{\mathfrak{p}}/\mathfrak{p}B_{\mathfrak{p}}))$, $\mathfrak{q}B_{\mathfrak{p}}$ should contain $\mathfrak{p}B_{\mathfrak{p}}$.

$$\mathfrak{p}B\mathfrak{p} = \left\{ \frac{f(a)}{s} : a \in \mathfrak{p}, b \in B, s \notin \mathfrak{p} \right\}$$

$$\mathfrak{q}B\mathfrak{p} = \left\{ \frac{b}{s} : b \in \mathfrak{q}, s \notin \mathfrak{p} \right\}$$

But $f(a) \in \mathfrak{q}$, then $f(a)b \in \mathfrak{q}$. So $\mathfrak{q}B_{\mathfrak{p}} \supseteq \mathfrak{p}B_{\mathfrak{p}}$. We have shown that

$$f^{*-1}(\mathfrak{p}) \subseteq \psi^*(\rho^*(B\mathfrak{p}/\mathfrak{p}B\mathfrak{p}))$$

The reverse inclusion is obvious from both diagrams combined (the large diagram). Also the diagram shows a bijection.

A closed set in Spec $(B_{\mathfrak{p}}/\mathfrak{p}B_{\mathfrak{p}})$ is $V(\rho(\mathfrak{b}B_{\mathfrak{p}})) = \rho(V(\mathfrak{b}B_{\mathfrak{p}}))$. We want to show that the $\psi^* \circ \rho^*$ image of this set is a closed set in $\operatorname{Spec}(B)$ i.e. the set of prime ideals containing some ideal of B, intersected with $f^{*-1}(\mathfrak{p})$.

Note that all arrows of the combined diagram work on prime, not ordinary ideals.

Our contained ideal is the surjection of some ideal $\mathfrak{b}B_{\mathfrak{p}}$ and the same is true for containing prime ideals, they are surjections of prime ideals of $B_{\mathfrak{p}}$ containing $\mathfrak{b}B_{\mathfrak{p}}$.

Now there is a fact: $\mathfrak{b} \subseteq \mathfrak{q} \iff \mathfrak{b}B_{\mathfrak{p}} \subseteq \mathfrak{q}B_{\mathfrak{p}}$: $\mathfrak{b} \subseteq \mathfrak{b}^{ec} \subseteq \mathfrak{q}^{ec} = \mathfrak{q}$. The inclusion relations have moved from $\operatorname{Spec}(B_{\mathfrak{p}}/\mathfrak{p}B_{\mathfrak{p}})$ to $\operatorname{Spec}(B)$ through $\psi^* \circ \rho^*$:

$$(\psi^* \circ \rho^*)(V(\mathfrak{b}B\mathfrak{p} + \mathfrak{p}B\mathfrak{p})) = \psi^*(V(\mathfrak{b}B\mathfrak{p})) = V(\mathfrak{b})$$

a closed set in Spec(B). This set happens to be contained in $f^{*-1}(\mathfrak{p})$ due to the bijection proven above.

Now take a closed set in $f^{*-1}(\mathfrak{p})$. It is the intersection of a closed set in $\operatorname{Spec}(B)$ with the set $f^{*-1}(\mathfrak{p})$ itself. A closed set in $\operatorname{Spec}(B)$ is $V(\mathfrak{b})$. $f^{*-1}(\mathfrak{p})$ are prime ideals of B such that $f^*(\mathfrak{q}) = \mathfrak{p}$ that is $f^{-1}(\mathfrak{q}) = \mathfrak{p}$. The intersection are prime ideals \mathfrak{q} of B such that $f^{-1}(\mathfrak{q}) = \mathfrak{p}$ and $\mathfrak{q} \supseteq \mathfrak{p}$. We have already proved that they do not meet $f(A \setminus \mathfrak{p})$, so they are all in $\psi^*(\operatorname{Spec}(B_{\mathfrak{p}}))$. In $\operatorname{Spec}(B_{\mathfrak{p}})$ each of them is mapped to $\mathfrak{q}B_{\mathfrak{p}} \supseteq \mathfrak{b}B_{\mathfrak{p}}$; it is in $V(\mathfrak{b}B_{\mathfrak{p}})$. After surjection onto $B_{\mathfrak{p}}/\mathfrak{p}B_{\mathfrak{p}}$, they all fall into V of the surjection of $\mathfrak{b}B_{\mathfrak{p}}$

$$\rho(V(\mathfrak{b}B_{\mathfrak{p}})) = V(\rho(\mathfrak{b}B_{\mathfrak{p}}))$$

We move to the final isomorphism $B_{\mathfrak{p}}/\mathfrak{p}B_{\mathfrak{p}} \cong A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}$. The first way is by J. D. Taylor.

$$B/\mathfrak{p}B_{\mathfrak{p}} \cong A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}} \otimes_{A_{\mathfrak{p}}} B_{\mathfrak{p}}$$

$$\cong A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}} \otimes_{A_{\mathfrak{p}}} A_{\mathfrak{p}} \otimes_{A} B$$

$$\cong A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}} \otimes_{A} B$$

The first isomorphism is an application of Exercise 2.2:i9i

$$A/\mathfrak{a} \otimes_A M \cong M/\mathfrak{a}M$$

to $M := B_{\mathfrak{p}}, A := A_{\mathfrak{p}}, \mathfrak{a} := \mathfrak{p}A_{\mathfrak{p}}$, then application of $(\mathfrak{p}A_{\mathfrak{p}})B_{\mathfrak{p}} = \mathfrak{p}B_{\mathfrak{p}}$. The second isomorphism is an application of Proposition 3.5:

$$S^{-1}A \otimes_A M \cong S^{-1}M$$
$$A_{\mathfrak{p}} \otimes_A M \cong M_{\mathfrak{p}}$$
$$A_{\mathfrak{p}} \otimes_A B \cong B_{\mathfrak{p}}$$

The second way is inspired by Y. P. Gaillard. We take take the exact sequence

$$0 \to \mathfrak{p}A_{\mathfrak{p}} \to A_{\mathfrak{p}} \to A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}} \to 0$$

Then tensor it with M over A. The sequence

$$\mathfrak{p}A_{\mathfrak{p}} \otimes_A M \to A_{\mathfrak{p}} \otimes_A M \to A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}} \otimes_A M \to 0$$

is exact. This sequence on elements

$$\frac{a}{s} \otimes m \mapsto \frac{a}{s} \otimes m \mapsto \left[\frac{a}{s}\right] \otimes m$$
$$\frac{a}{s} \otimes m \mapsto \left[\frac{a}{s}\right] \otimes m$$

To its second module, we apply Proposition 3.5

$$A_{\mathfrak{p}} \otimes_{A} M \cong M_{\mathfrak{p}}$$
$$\frac{a}{s} \otimes m \mapsto \frac{am}{s}$$
$$\frac{1}{s} \otimes m \leftarrow \frac{m}{s}$$

getting the third exact sequence

$$\mathfrak{p}A_{\mathfrak{p}} \otimes_A M \to M_{\mathfrak{p}} \to A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}} \otimes_A M \to 0$$

The first homomorphism of this sequence is

$$\mathfrak{p}A_{\mathfrak{p}} \otimes_A M \to A_{\mathfrak{p}} \otimes_A M \to M_{\mathfrak{p}}$$
$$\frac{a}{s} \otimes m \mapsto \frac{a}{s} \otimes m \mapsto \frac{am}{s}$$

The second isomorphism is

$$M_{\mathfrak{p}} \to A_{\mathfrak{p}} \otimes_A M \to A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}} \otimes_A M$$
$$\frac{m}{s} \mapsto \frac{1}{s} \otimes m \mapsto \left[\frac{1}{s}\right] \otimes m$$

What is the image of $\mathfrak{p}A_{\mathfrak{p}}\otimes_A M$ in M-ppp in the third sequence? It is

$$\left\{\frac{am}{s}: a \in \mathfrak{p}, s \notin \mathfrak{p}\right\} = \mathfrak{p}M_{\mathfrak{p}}$$

Now we can state that

$$M_{\mathfrak{p}}/\mathfrak{p}M_{\mathfrak{p}} \cong A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}} \otimes_A M$$

$$\frac{m}{s}=\mathfrak{p}M_{\mathfrak{p}}\mapsto\left(\frac{1}{s}+\mathfrak{p}A_{\mathfrak{p}}\right)\otimes m$$

What is the inverse? The general element of $A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}\otimes_A M$

$$\left(\frac{a}{s} + \mathfrak{p}A_{\mathfrak{p}}\right) \otimes m = a\left(\frac{1}{s} + \mathfrak{p}A_{\mathfrak{p}}\right) \otimes m = \left(\frac{1}{s} + \mathfrak{p}A_{\mathfrak{p}}\right) \otimes am$$

is the image of

$$\frac{am}{s} + \mathfrak{p}M_{\mathfrak{p}}$$

The corresponding element in $M_{\mathfrak{p}}/\mathfrak{p}M_{\mathfrak{p}}$ is its preimage. The inverse map on elements is

$$\left(\frac{a}{s} + \mathfrak{p}A_{\mathfrak{p}}\right) \otimes m \mapsto \frac{am}{s} + \mathfrak{p}M_{\mathfrak{p}}$$