# **Enriching Historic Photography with Structured Data using Image Region Segmentation**

Taylor Arnold<sup>1</sup> and Lauren Tilton<sup>2</sup> 25-26 May 2020

<sup>1</sup> Assistant Professor of Statistics and Linguistics University of Richmond statsmaths.github.io

<sup>2</sup> Assistant Professor of Digital Humanities University of Richmond

## Introduction

► Guiding question: How can we increase discovery and access of digitied photographic collections through structured data and the semantic web.

- ► Guiding question: How can we increase discovery and access of digitied photographic collections through structured data and the semantic web.
- ► Challenge: Lack of structured linguistic descriptions → difficult to link/search between and across collections; limits computational analysis

- ► Guiding question: How can we increase discovery and access of digitied photographic collections through structured data and the semantic web.
- ► Challenge: Lack of structured linguistic descriptions → difficult to link/search between and across collections; limits computational analysis
- ► Manual approach: manual data construction → extensive resources and becomes more difficult as digitized datasets increase in size.

- ► Guiding question: How can we increase discovery and access of digitied photographic collections through structured data and the semantic web.
- ► Challenge: Lack of structured linguistic descriptions → difficult to link/search between and across collections; limits computational analysis
- ► Manual approach: manual data construction → extensive resources and becomes more difficult as digitized datasets increase in size.
- ► Our approach: Use computer vision techniques!

► built using modern datasets

- ► built using modern datasets
- may produce annotations that are inaccurate or inappropriate for historic data

- ▶ built using modern datasets
- may produce annotations that are inaccurate or inappropriate for historic data
- ► incorrectly extracted data records are particularly concerning when making data available to the public

- built using modern datasets
- may produce annotations that are inaccurate or inappropriate for historic data
- ► incorrectly extracted data records are particularly concerning when making data available to the public
- even when labeled as automated studies have shown that people have trouble accurately interpreting probabilistic data and are overly confident in predictions (Khaw, Luminita, Woodford, 2019)

- built using modern datasets
- may produce annotations that are inaccurate or inappropriate for historic data
- ▶ incorrectly extracted data records are particularly concerning when making data available to the public
- ► even when labeled as automated studies have shown that people have trouble accurately interpreting probabilistic data and are overly confident in predictions (Khaw, Luminita, Woodford, 2019)
- ► risk reinforcing racial, gender, and socioeconomic biases inherent in the training data behind machine learning techniques

#### **Data**

Apply to 1610 color photographs from the Farm Security Administration-Office of War Information Collection (FSA-OWI):

▶ it is a part of one of the most famous and researched photography archives from the United States

Apply to 1610 color photographs from the Farm Security Administration-Office of War Information Collection (FSA-OWI):

- ▶ it is a part of one of the most famous and researched photography archives from the United States
- held by a library that is invested in open access and encourages experimentation with their digital collections

Apply to 1610 color photographs from the Farm Security Administration-Office of War Information Collection (FSA-OWI):

- ▶ it is a part of one of the most famous and researched photography archives from the United States
- held by a library that is invested in open access and encourages experimentation with their digital collections
- indicative of many documentary photography collections held in GLAM institutions

Apply to 1610 color photographs from the Farm Security Administration-Office of War Information Collection (FSA-OWI):

- ▶ it is a part of one of the most famous and researched photography archives from the United States
- held by a library that is invested in open access and encourages experimentation with their digital collections
- indicative of many documentary photography collections held in GLAM institutions
- ► a collection we have worked with through out Photogrammar project since 2010

#### Photogrammar



# **Previous Approaches**

Computer vision methods for creating structured data from still photography:

- object detection
- ► automatic free-form captions
- ► image embeddings

Mask R-CNN instance object classification algorithm (X101-FPN).

Wu, Y., Kirillov, A., Massa, F., Lo, W.-Y., and Girshick, R. (2019). Detectron2.







## **Automatic Captions**

#### Show, attend and tell

Xu, Kelvin, et al. "Show, attend and tell: Neural image caption generation with visual attention." *International conference on machine learning.* 2015.

## **Automatic Captions**



a man is wearing a hat and a hat



a woman is sitting on a stage with a microphone



a man is sitting on top of a pile of oranges



a couple of giraffes are in a room

## Image Embedding

#### VGG-19

K. Simonyan, A. Zisserman "Very Deep Convolutional Networks for Large-Scale Image Recognition." *arXiv:1409.1556* 

## Image Embeddings



Taylor Arnold (@statsmaths) and Lauren Tilton (@nolauren)

## **Image Segmentation**

## Image Embedding

#### **COCO-stuff**

Caesar, H., Uijlings, J., & Ferrari, V. (2018). "COCO-stuff: Thing and stuff classes in context." In: *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (pp. 1209-1218).

| Group   | Meta        | Categories                                                                      |  |  |
|---------|-------------|---------------------------------------------------------------------------------|--|--|
| indoor  | ceiling     | ceiling-tile                                                                    |  |  |
| indoor  | floor       | floor-wood; floor-stone; floor-tile; floor-marble; carpet                       |  |  |
| indoor  | food        | fruit; vegetable; salad                                                         |  |  |
| indoor  | furniture   | cabinet; cupboard; counter; desk; door; light; mirror; shelf; stairs; table     |  |  |
| indoor  | rawmaterial | cardboard; metal; paper; plastic                                                |  |  |
| indoor  | textile     | banner; blanket; curtain; cloth; clothes; napkin; mat; pillow; rug; towel       |  |  |
| indoor  | wall        | wall-brick; wall-stone; wall-tile; wall-wood; wall-panel; wall-concrete         |  |  |
| indoor  | window      | window-blind                                                                    |  |  |
| outdoor | building    | bridge; house; roof; skyscraper; tent                                           |  |  |
| outdoor | ground      | dirt; gravel; pavement; platform; playingfield; railroad; road; sand; snow; mud |  |  |
| outdoor | plant       | flower; grass; tree; bush; leaves; branch; moss; straw                          |  |  |
| outdoor | sky         | clouds                                                                          |  |  |
| outdoor | solid       | mountain; rock; hill; stone; wood                                               |  |  |
| outdoor | structural  | fence; net; railing; cage                                                       |  |  |
| outdoor | water       | river; sea; waterdrops; fog                                                     |  |  |





# **Creating Structured Data**

### **Creating structured data**

#### Our method:

- ► apply the image segementation algorithm
- record any detected 'stuff' region along with the percentage of the image covered
- ► record total percentage of 'thing' regions
- record number of 'people' regions

#### Web Annotation Data Model: Example I

#### Web Annotation Data Model: Example II

```
<http://photogrammar.org/anno2> a oa:Annotation ;
dcterms:creator <http://photogrammar.org/tarnold2> ;
dcterms:created "2020-02-19T12:01:00Z";
oa:hasBody [
                              pgram: ImageSegmentationRegion;
  a
  pgram:regionName
                              <http://example.org/stuff/people> ;
  pgram:regionPercent 6;
  pgram: regionCount
oa:hasTarget <a href="http://photogrammar.org/resource/1a35022v">http://photogrammar.org/resource/1a35022v</a>;
oa:motivatedBy oa:tagging .
```





## **Evaluation**

#### **Quantitative evaluation**

Hand labelled accuracy of the annotations generated by each method.

|                | Accuracy | Images Labelled | Unique Results |
|----------------|----------|-----------------|----------------|
| Captions       | 31.5%    | 100%            | 1040           |
| Objects        | 70.7%    | 37.3%           | 178            |
| Stuff & People | 97.5%    | 98.9%           | 1140           |

#### **Future Directions**

#### **Future Directions**

- ► further encode information about the detected regions → dominant colors of each region type; describe regions by quadrant
- develop a structured language for creating image captions from the structured data
- ► hierarchical version of a tagged object detection algorithm that simulates the stuff-based regions