C*-ALGEBRAS, AND THE GELFAND-NAIMARK THEOREM

LUKE ARMITAGE

1. Preliminaries

we will assume knowledge on... brief(er than asst 3) history

2. Basics

2.1. Definitions.

Definition 1 (C*-algebra).

define C*algebras, states, representations, the weak* topology

3. Representations of C*-algebras

to include all representation theory, including GNS, CGN and GN

Theorem 1 (Gelfand- Naimark-Segal). If ρ is a state on a C^* -algebra A, then there exists a cyclic representation π_{ρ} of A on a Hilbert space H_{ρ} , with unit cyclic vector x_{ρ} , such that

$$\rho(a) = \langle \pi_{\rho}(a) x_{\rho}, x_{\rho} \rangle, \ \forall a \in A.$$

Proof. We will construct from ρ the space H_rho , representation π_{ρ} , and vector x_{ρ} , and demonstrate the required properties.

Consider the *left kernel* of ρ :

$$L_{\rho} := \{ t \in A | \rho(t^*t) = 0 \}.$$

For $a, b \in A$, define $\langle a, b \rangle_0 := \rho(b^*a)$. Then $L_\rho = \{t \in A | \langle t, t \rangle_0 = 0\}$, and $\langle \cdot, \cdot \rangle_0$ satisfies

(i) Linearity in 1st argument: for $a, b \in A$, $\alpha, \beta \in \mathbb{C}$:

$$\langle \alpha a + \beta b, c \rangle_0 = \rho(c^*(\alpha a + \beta b))$$

$$= \rho(\alpha c^* a + \beta c^* b)$$

$$= \alpha \rho(c^* a) + \beta \rho(c^* b)$$

$$= \alpha \langle a, c \rangle_0 + \beta \langle b, c \rangle_0.$$

(ii) Conjugate symmetric: for $a, b \in A$:

$$\langle b, a \rangle_0 = \rho(a^*b)$$

$$= \rho((b^*a)^*)$$

$$= \overline{\rho(b^*a)}$$

$$= \overline{\langle a, b \rangle_0}.$$

why?

(iii) Positive semi-definite.

Note that $\langle \cdot, \cdot \rangle$ is not necessarily positive definite on $A-L_{\rho}$ is exactly where this fails.

 L_{ρ} is a linear subspace of A: Consider

$$L:=\{t\in A|\langle t,a\rangle_0=0\forall a\in A\}\subseteq L_\rho.$$

For $t \in L_{\rho}$, by Cauchy-Schwarz we have

$$|\langle t, a \rangle_0|^2 \le \langle t, t \rangle_0 \langle a, a \rangle_0, \ \forall a \in A;$$

that is,

$$\langle t, a \rangle_0 = 0, \ \forall a \in A,$$

so $t \in L$ and $L_{\rho} = L$.