P525/2
CHEMISTRY
Paper 2
(Theory)
Nov. /Dec. 2024
2½ hours

UGANDA NATIONAL EXAMINATIONS BOARD

Uganda Advanced Certificate of Education

CHEMISTRY

Paper 2 (Theory)

2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES:

This paper consists of two Sections; A and B.

Answer five questions, including three questions from Section A and any two from Section B.

Write the answers in the answer booklet(s) provided. Any additional question(s) answered will **not** be marked.

Begin each question on a fresh page.

Mathematical tables and graph paper are provided.

Silent non-programmable scientific electronic calculators may be used.

Use equations where necessary to illustrate your answers.

Where necessary, use the following:

[H=1; C=12; O=16; Ca=40; I=127]

© 2024 Uganda National Examinations Board

Turn Over

SECTION A: (60 MARKS)

Answer three questions in this section.

Any additional question(s) answered will not be marked.

1. (a) A compound **Z** contains 87.8 % of carbon and 12.2 % of hydrogen by mass. (i) Calculate the empirical formula of **Z**. (03 marks) (ii) Z decolourises bromine -water and has a vapour density of 41. Determine the molecular formula of Z. $(2\frac{1}{2} \text{ marks})$ Write the: (b) general formula of the homologous series to which Z belongs. (i) (01 mark) (ii) names and structural formulae of all possible isomers of Z. (03 marks)Z reacted with ammoniacal silver nitrate to form a white precipitate. (c) (01 mark) Identify **Z**. (i) (ii) Write an equation for the reaction of **Z** with ammoniacal silver nitrate. $(1\frac{1}{2} \text{ marks})$ Show how **Z** will be synthesized from 1-chlorobutane. (iii) $(1\frac{1}{2} \text{ marks})$ Write an equation to show the reaction of **Z** with; (d) hydrogen bromide. (i) (01 mark)hydrogen bromide in the presence of a peroxide. (ii) (01 mark)Write a mechanism for the reaction in (d)(i). $(4\frac{1}{2} \text{ marks})$ (e) Explain the principle that enables separation of mixtures by 2. (a) (i) steam distillation. (05 marks) State any two advantages of steam distillation. (02 marks) (ii) When a substance Q was steam distilled at 92 °C and a pressure of (b) 101300 Nm⁻², the distillate contained 65 % of Q. Calculate the relative molecular mass of Q. (04 marks) (Vapour pressure of water at 92 °C is 87000 Nm^{-2}) (c) When phenol is reacted with a solution of bromine in carbon tetrachloride at 0 °C, a mixture of 2-bromophenol and 4-bromophenol is obtained. (i) Explain why a mixture of products is obtained. (04 marks)

- (ii) Describe how the mixture of 2-bromophenol and 4-bromophenol can be separated by steam distillation. (05 marks) (Boiling points of 2-bromophenol and 4-bromophenol are 194 °C and 236 °C respectively)
- 3. Carbon, Silicon, germanium, tin and lead are elements in group(IV) of the Periodic Table. The atomic radii and the melting points of the elements are shown in Table 1.

Table 1

Element	Carbon	Silicon	Germanium	Tin	Lead
Atomic radius (nm)	0.077	0.117	0.122	0.140	0.154
Melting point (°C)	3750	1420	950	232	327

- (a) Explain the general trend in the atomic radius and melting point down the group. (5½ marks)
- (b) Discuss the relative stability of the + 2 and + 4 oxidation states of group (IV) elements. (2½ marks)
- (c) Explain the reaction of lead(IV) oxide with;
 - (i) hydrochloric acid. (2½ marks) (ii) sodium hydroxide. (02 marks)
- (d) Explain what would be observed when tin(II) chloride solution is added to;
 - (i) iron(III) sulphate solution. (2½ marks)
 - (ii) iodine solution. $(2\frac{1}{2} \text{ marks})$
 - (iii) acidified potassium manganate(VII) solution. (2½ marks)
- 4. (a) Explain the meaning of the term molar conductivity of an electrolyte. (02 marks)
 - (b) Table 2 shows variation of molar conductivity of sodium chloride solution with dilution.

Table 2

Dilution $(cm^3 mol^{-1})$	Molar conductivity $(\Omega^{-1}cm^2mol^{-1})$
1	93.6
10	106.7
50	116.5
100	118.0
350	122.0
600	123.8
1000	124.0

- (i) Plot a graph of molar conductivity against dilution. (04 marks)
- (ii) Explain the shape of your graph. (4½ marks)

Turn Over

- (iii) From your graph determine the molar conductivity of sodium chloride at infinite dilution. (½ mark)
- (iv) Calculate the degree of dissociation of a 0.01 M sodium chloride solution. (03 marks)

(The electrolytic conductivity of sodium chloride is $1.18 \times 10^{-3} \Omega^{-1} \text{cm}^{-1}$)

- (c) Explain the effect of increasing temperature on the degree of dissociation and molar conductivity of;
 - (i) strong electrolytes.

(02 marks)

(ii) weak electrolytes.

(04 marks)

SECTION B:(40 MARKS)

Answer any two questions from this section.

Any additional question(s) answered will not be marked.

- 5. (a) State;
 - (i) what is meant by the term solubility product.
 - (ii) how temperature affects the value of solubility product.

(02 marks)

(01 mark)

(iii) two applications of solubility product.

(01 mark)

- (b) Describe how the solubility product of calcium iodate(V) in water at 25 °C can be determined. (07 marks)
- (c) The solubility of anhydrous calcium iodate(V) in water at 25 °C is 3.08 gdm⁻³. Calculate the;
 - (i) solubility product of calcium iodate(V) in water at 25°C.

 $(3\frac{1}{2} marks)$

- (ii) solubility in *moldm*⁻³ of calcium iodate(V) in an aqueous solution of a 0.1 M sodium iodate. (2½ marks)
- (d) Explain what would happen to the solubility of calcium iodate(V) when acidified potassium iodide solution is added to a saturated solution of calcium iodate(V). (03 marks)
- 6. Describe the reaction of each of the pairs of compounds and in each case, write a mechanism for the reaction.
 - (a) 2-chloropropane with sodium hydroxide.

(07 marks)

(b) Benzene with chloroethane.

(04 marks)

(c) 2-methylpropene with bromine in tetrachloromethane.	(03 marks)
---	------------

(d) Propanone with 2,4-dinitrophenylhydrazine. (06 marks)

- 7. (a) Describe how nitric acid is prepared on industrial scale. (06 marks) (Your answer should include equation(s) for the reaction(s) that take(s) place)
 - (b) Explain why a freshly prepared nitric acid is a colourless liquid but appears yellow on standing. (02 marks)
 - (c) Describe the reactions of nitric acid with;
 - (i) zinc. (02 marks)
 - (ii) tin. (02 marks)
 - (iii) sulphur. (02 marks)

(Your answer should include equations where applicable)

- (d) Explain what would be observed if concentrated nitric acid was added to;
 - (i) iron(II) sulphate solution. (03 marks)
 - (ii) copper and the mixture warmed. (03 marks)
- **8.** Explain the following observations and illustrate your answer with equations where necessary.
 - (a) The basic strength of amines in water is in the order; secondary > primary > tertiary. (2½ marks)
 - (b) The decomposition temperatures of carbonates of group(II) elements increases down the group. (03 marks)
 - (c) When sodium chloride solution was added to lead(II) nitrate solution, a white precipitate was formed. The precipitate dissolved to form a colourless solution on addition of excess concentrated hydrochloric acid.

 (04 marks)
 - (d) In the titration of ammonia solution with dilute sulphuric acid, methyl orange (pH range 3-5) is used as the indicator, but not phenolphthalein (pH range 8-10). (04 marks)
 - (e) The boiling points of alcohols are higher than those of amines of similar molecular masses. (03 marks)
 - (f) When ammonia solution was added dropwise until in excess to nickel(II) ions, a green precipitate formed, soluble in excess to form a blue solution.

 (3½ marks)