Clase 4 (Práctica 2) - Análisis 1 - Curvas en \mathbb{R}^3 y superficies cuádricas.

1. Graficar la curva imagen de las siguientes funciones.

- (a) $\alpha(t) = (\cos(t), \sin(t), 2), t \in [0, 2\pi].$
- (b) $\alpha(t) = (\cos(t), \sin(t), t), t \in [0, 2\pi].$
- (c) $\alpha(t) = (t\cos(t), t\sin(t), t), t \in [0, 2\pi].$

En muchos casos, para graficar una curva en \mathbb{R}^2 o \mathbb{R}^3 intentamos buscar alguna relación entre sus coordenadas.

Para el ítem (a) por ejemplo, sabemos que las primeras dos coordenadas $x(t) = \cos(t)$ y $y(t) = \sin(t)$ describen una circunferencia de radio 1. Al mismo tiempo, la coordenada z = 2 nos dice que esta circunferencia se encuentra en el plano a altura z = 2. Otra manera de pensarlo es que la curva imagen de α es la intersección entre el cilindro de ecuación $x^2 + y^2 = 1$ y el plano z = 2.

En el ítem (b) observamos que al igual que el caso anterior las primeras dos coordenadas describen una circunferencia. Sin embargo, también vemos que la coordenada z(t) = t aumenta al mismo tiempo que el ángulo de rotación. La curva imagen será una h'elice.

Por último, en el ítem (c) las coordenadas de α , $x(t) = t\cos(t)$, $y(t) = t\sin(t)$ y z(t) = t cumplen la ecuación $x^2 + y^2 = z^2$ cuyo gráfico es un cono. Entonces podemos intuir que la imagen de la curva está sobre el cono y aumenta sus alturas en forma de hélice.

Superficies cuádricas

Uns superficie cuádrica es el gráfico de una ecuación de segundo grado en tres variables $x, y \in z$:

$$P(x, y, z) = 0.$$

Cualquier superficie cuádrica se puede transformar (por rotaciones y/o traslaciones) en alguna de las siguientes formas:

$$\begin{cases} Ax^{2} + By^{2} + Cz^{2} + D = 0 \\ Ax^{2} + By^{2} + Cz = 0 \end{cases}$$

donde A, B, C v D son constantes.

Para graficar las superficies cuádricas es útil dibujar algunas trazas. Esto consiste en cortar la superficie con planos paralelos a los planos coordenados $x=0,\,y=0,\,z=0$ y dibujar qué curvas se obtienen.

Utilizando trazas vamos a graficar algunas superficies cuádricas en \mathbb{R}^3 .

1. **Esfera:** $x^2 + y^2 + z^2 = 25$

Calculemos algunas trazas:

- $z=-1 \implies x^2+y^2=24$ es una circunferencia contenida en el plano z=-1 de centro (0,0,-1) y radio $\sqrt{24}$.
- $z = 0 \implies x^2 + y^2 = 25$ es una circunferencia contenida en el plano x = 0 de centro (0,0,0) y radio 5.
- $z = 1 \implies x^2 + y^2 = 24$ es una circunferencia contenida en el plano z = 1 de centro (0,0,1) y radio $\sqrt{24}$.
- $x = 0 \implies y^2 + z^2 = 25$ es una circunferencia contenida en el plano x = 0 de centro (0,0,0) y radio 5.

• $y = 0 \implies x^2 + z^2 = 25$, es una circunferencia contenida en el plano y = 0 de centro (0,0,0) y radio 5.

En general, si z = k con k una constante real tenemos

$$x^2 + y^2 + k^2 = 25$$
 \Leftrightarrow $x^2 + y^2 = 25 - k^2$

que es la ecuación de una circunferencia contenida en el plano z=k de centro (0,0,k) y radio $\sqrt{25-k^5}$. Observar que dicha ecuación tiene solución si y solo si $|k| \leq 5$. Para valores de |k| > 5 no hay trazas.

Análogamente se pueden calcular algunas trazas haciendo x = k o y = k.

Con ayuda de GeoGebra podemos dibujar algunas trazas intersectando la ecuación original con distintos planos paralelos a los planos coordenados:

Fig. 1: Trazas z = k

Fig. 2: Trazas x = k

Fig. 3: Trazas y = k

Fig. 4: Gráfico de $x^2 + y^2 + z^2 = 25$

2. Elipsoide: $\frac{x^2}{4} + \frac{y^2}{9} + z^2 = 1$

Calculemos algunas trazas:

• z = -1 \longrightarrow $\frac{x^2}{4} + \frac{y^2}{9} = 0$, el único punto que cumple la ecuación es el (0, 0, -1).

- $z = 0 \implies \frac{x^2}{4} + \frac{y^2}{9} = 1$, es una elipse contenida en el plano z = 0 de centro (0, 0, 0) y semiejes a = 2 y b = 3.
- z = 1 \longrightarrow $\frac{x^2}{4} + \frac{y^2}{9} = 0$, el único punto que cumple la ecuación es el (0, 0, 1).
- $x = 0 \implies \frac{y^2}{9} + z^2 = 1$, es una elipse contenida en el plano x = 0 de centro (0, 0, 0) y semiejes a = 3 y b = 1.
- $y = 0 \implies \frac{x^2}{4} + z^2 = 1$, es una elipse contenida en el plano y = 0 de centro (0, 0, 0) y semiejes a = 2 y b = 1.

Con estos y otros valores de x,y e z podemos graficar algunas trazas:

Fig. 5: Trazas z = k

Fig. 6: Trazas x = k

Fig. 7: Trazas y = k

Fig. 8: Gráfico de
$$\frac{x^2}{4} + \frac{y^2}{9} + z^2 = 1$$

3. Hiperboloide de dos hojas: $-x^2 - y^2 + z^2 = 1$

Calculemos algunas trazas:

• z = -1 \longrightarrow $x^2 + y^2 = 0$, el único punto que cumple la ecuación es el (0, 0, 1).

- $z = 0 \implies x^2 + y^2 = -1$. Esta ecuación no tiene solución. Observar que para $z = k \in (-1,1)$ la ecuación $x^2 + y^2 = 1 k^2$ no tiene solución, con lo cual no existen trazas para estos valores de z = k.
- z = 1 \longrightarrow $x^2 + y^2 = 0$, el único punto que cumple la ecuación es el (0, 0, 1).
- $x = 0 \implies -y^2 + z^2 = 1$, esta es una hipérbola contenida en el plano x = 0 con vértices en (0,0,1) y (0,0,-1).
- $y = 0 \implies -y^2 + z^2 = 1$, esta es una hipérbola contenida en el plano y = 0 con vértices en (0,0,1) y (0,0,-1).

Con estos y otros valores de x,y e z obtenemos los siguientes gráficos:

Fig. 9: Trazas z = k

Fig. 10: Trazas x = k

Fig. 11: Trazas y = k

Fig. 12: Gráfico de $-x^2-y^2+z^2=1$

4. Paraboloide hiperbólico: $\frac{x^2}{4} - y^2 = z$.

Calculemos algunas trazas:

• $z = -1 \implies \frac{x^2}{4} - y^2 = -1 \Leftrightarrow -\frac{x^2}{4} + y^2 = 1$, esta es una hipérbola contenida en el plano z = -1 que pasa por los puntos (0, 1, -1) y (0, -1, -1).

- $z = 0 \quad \leadsto \quad \frac{x^2}{4} y^2 = 0$, la única solución es el punto (0, 0, 0).
- $z=1 \implies \frac{x^2}{4}-y^2=-1$ es una hipérbola contenida en el plano z=1 que pasa por los puntos (2,0,1) y (-2,0,1).
- x=0 \longrightarrow $-y^2=z$ es una parábola contenida en el plano x=0 con vértice en (0,0,0).
- $y = 0 \implies \frac{x^2}{4} = z$ es una parábola contenida en el plano y = 0 con vértice en (0,0,0).

Con estos y otros valores de x,y e z obtenemos los siguientes gráficos:

Fig. 13: Trazas z = k

Fig. 14: Trazas x = k

Fig. 15: Trazas y = k

Fig. 16: Gráfico de $\frac{x^2}{4} - y^2 = z$

Ejercicio: Clasificar las siguientes cuádricas y realizar el gráfico en \mathbb{R}^3 utilizando trazas. Intente hacer los dibujos a mano y luego compruebe con GeoGebra.

(a)
$$x^2 + y^2 - 4z^2 = 1$$

(b)
$$\frac{y^2}{4} + \frac{z^2}{9} = x^2$$

(c)
$$\frac{x^2}{25} + \frac{z^2}{16} = y$$