

2005

**YEAR 12** 

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

# Mathematics Extension 1

# **General Instructions**

- Working time 2 Hours.
- Reading Time 5 minutes.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may not be awarded for messy or badly arranged work
- Hand in your answer booklets in 4 sections. Section A (Questions 1 and 2), Section B (Questions 3 and 4), Section C (Questions 5 and 6) and Section D (Question 7)

# **Total Marks - 84**

- Attempt questions 1-7
- All QUESTIONS are of equal value.

Examiner: A. Fuller

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate

# Total marks - 84 Attempt Questions 1 - 7 All questions are of equal value

Answer each SECTION in a SEPARATE writing booklet.

|                  | Section A                                                       |   |           |
|------------------|-----------------------------------------------------------------|---|-----------|
|                  |                                                                 | į | Marks     |
| Question 1 (12 m | arks)                                                           |   |           |
|                  |                                                                 |   |           |
| (a)              | Simplify $\frac{3^n}{3^{n+1}-3^n}$                              |   | 1         |
|                  |                                                                 |   |           |
| (b)              | Evaluate $\lim_{x\to 0} \frac{\sin 5x}{4x}$                     |   | 1         |
| •                |                                                                 |   |           |
| (c)              | The remainder when $x^3 - 3x^2 + px - 14$ is divided by $x - 3$ |   | 2         |
|                  | is 1. Find the value of $p$ .                                   |   |           |
| (d)              | Given that $\log_a 2 = x$ , find $\log_a (2a)$ in terms of x.   |   | 2         |
|                  |                                                                 |   | o as v-1. |
| (e)              | Find the coordinates of the point P that divides the            |   | 2         |
|                  | interval from $A$ (-1,5) to $B$ (6,-4) externally in the        |   |           |
|                  | ratio 3:2.                                                      |   |           |
| · ·              |                                                                 |   |           |
| (f)              | Find, to the nearest minute, the acute angle between            |   | . 2       |
|                  | The lines $3x + 2y - 5 = 0$ and $x - 5y + 7 = 0$ .              |   | ٠.        |
|                  |                                                                 |   |           |
|                  | 3                                                               |   |           |
| (g)              | Solve the inequality $\frac{2}{r} \le 1$                        | • | . 2       |

# Question 2 (12 marks)

(a) Differentiate with respect to x

(i) 
$$y = \tan^3(5x+4)$$

(ii) 
$$y = \ln\left(\frac{2x+3}{3x+4}\right)$$

(iii) 
$$y = \cos(e^{1-5x})$$

- (b) 30 girls, including Miss Australia, enter a Miss WorldCompetition. The first six places are announced.
  - (i) How many different announcements are possible?
  - (ii) How many different announcements are possible
    if Miss Australia is assured a place in the first six?
- (c) If  $f(x) = \tan^{-1}(2x)$  evaluate:

(i) 
$$f\left(\frac{1}{2}\right)$$

(ii)  $f'\left(\frac{1}{2}\right)$ 

# **End of Section**

# Section B (Use a SEPARATE writing booklet)

Marks

Question 3 (12 marks)

(a) (i) State the natural domain and the corresponding range of  $y = 3\cos^{-1}(x-2)$ 

2

(ii) Hence, or otherwise sketch  $y = 3\cos^{-1}(x-2)$ 

1

(b) Find  $\int x\sqrt{16+x^2}dx$  using the substitution  $u=16+x^2$ 

2

(c) Find the general solution of  $\sin 2\theta = \sqrt{3}\cos 2\theta$ 

2

(d) The roots of the equation  $4x^3+6x^2+c=0$ , where c is a non-zero constant, are  $\alpha$ ,  $\beta$ , and  $\alpha\beta$ .

5

(i) Show that  $\alpha\beta \neq 0$ .

(ii) Show that  $\alpha\beta + \alpha^2\beta + \alpha\beta^2 = 0$  and deduce the value of  $\alpha + \beta$ .

(iii) Show that  $\alpha\beta = -\frac{1}{2}$ .

Question 4 (12 marks)

(a) If 
$$\tan \theta = 2$$
 and  $0 < \tilde{\theta} < \frac{\pi}{2}$  evaluate  $\sin \left(\theta + \frac{\pi}{4}\right)$ .

(b) In the diagram ABCD is a cyclic quadrilateral. The bisector of ∠ABC cuts the circle at E, and meets AD produced at F.



- (i) Copy the diagram showing the above information
- (ii) Give a reason why  $\angle CDE = \angle CBE$

1

(iii) Show that DE bisects ∠CDF

3



A square ABCD of side 1 unit is gradually 'pushed over' to become a rhombus. The angle at A  $(\theta)$  decreases at a constant rate of  $0\cdot 1$  radians per second.

- (i) At what rate is the area of the rhombus ABCD decreasing when  $\theta = \frac{\pi}{6}$ ?
- 2
- (ii) At what rate is the shorter diagonal of the rhombus ABCD decreasing when  $\theta = \frac{\pi}{3}$ ?
- 3

# Section C (Use a SEPARATE writing booklet)

| Question                              | n 5 (1 | 2 mark | (a)                                                                                                        | Marks    |
|---------------------------------------|--------|--------|------------------------------------------------------------------------------------------------------------|----------|
|                                       | (a)    |        | Two boys decide to settle an argument by taking turns to toss a die. The first person to throw a six wins. |          |
| · · · · · · · · · · · · · · · · · · · |        | (i)    | What is the probability that the first person wins on his second throw?                                    | 1        |
|                                       |        | (ii)   | What is the probability that the first person will win the argument?                                       | 2        |
|                                       |        |        |                                                                                                            | **       |
| (                                     | (b)    |        | $P(2at, at^2)$ , $t > 0$ is a point on the parabola $x^2 = 4ay$ .                                          |          |
|                                       |        |        | The normal to the parabola at P cuts the $x$ axis at X and the $y$ axis at Y.                              |          |
|                                       |        | (i)    | Show that the normal at P has equation $x + ty - 2at - at^3 = 0$                                           | 2        |
|                                       |        | (ii)   | Find the co-ordinates of X and Y                                                                           | <b>1</b> |
|                                       |        | (iii)  | Find the value of $t$ such that P is the midpoint of XY                                                    | 2        |



The point T lies on the circumference of a semicircle, radius r and diameter AB, as shown. The point P lies on AB produced and PT is the tangent at T.

The arc AT subtends an angle of  $\theta$  at the centre, O, and the area of  $\Delta OPT$  is equal to that of the sector AOT .

- (i) Show that  $\theta + \tan \theta = 0$ .
- (ii) Taking 2 as an approximation to  $\theta$ , use Newton's method once to find a better approximation to two decimal places.

# Question 6 (12 marks)

- (a) A particle is oscillating in simple harmonic motion such that its displacement x metres from a given origin O satisfies the equation  $\frac{d^2x}{dt^2} = -4x$  where t is the time in seconds
  - (i) Show that  $x = \alpha \cos(2t + \beta)$  is a possible equation of motion for this particle, where  $\alpha$  and  $\beta$  are constants
  - (ii) The particle is observed initially to have a velocity of 2 metres

    per second and a displacement from the origin of 4 metres.

    Find the amplitude of the oscillation.
  - (iii) Determine the maximum velocity of the particle 2
- (b) Prove by Mathematical Induction that  $\sum_{r=1}^{n} r^3 = 1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{1}{4} n^2 (n+1)^2$
- (c) Consider the function  $f(x) = \frac{x}{\sqrt{1-x^2}}$ 
  - (i) Find the domain of f(x)
  - (ii) Find  $f^{-1}(x)$ , the inverse function of f(x)

#### **End of Section**

# Section D (Use a SEPARATE writing booklet)

Marks

Question 7 (12 marks)

- (a) A projectile fired with velocity V and at an angle of  $45^{\circ}$  to the horizontal, just clears the tops of two vertical posts of height  $8a^2$ , and the posts are  $12a^2$  apart. There is no air resistance, and the acceleration due to gravity is g.
  - (i) If the projectile is at a point P (x, y) at time t,
     Derive expressions for x and y in terms of t.
  - (ii) Hence, show that the equation of the path of the projectile is  $y = x \frac{gx^2}{V^2}$
  - (iii) Using the information in (ii) show that the range of the projectile is  $\frac{V^2}{g}$
  - (iv) If the first post is b units from the origin, show that 2

$$(\alpha) \qquad \frac{V^2}{g} = 2b + 12a^2$$

$$(\beta) \qquad 8a^2 = b - \frac{gb^2}{V^2}$$

(v) Hence or otherwise prove that  $V = 6a\sqrt{g}$ 

End of paper