Home / My courses / Physics of Waves (PH11003) Section 4-10 & Backlog - Autumn 2021 (First Year) / Test s / Test 4

Started on Wednesday, 16 March 2022, 2:16 PM

State Finished

Completed on Wednesday, 16 March 2022, 3:00 PM

Time taken 43 mins 50 secs

Grade 16.00 out of 16.00 (**100**%)

Question **1**

Correct

Mark 2.00 out of 2.00

Consider an elastic wave

$$\xi(x,t)=rac{1\,\mathrm{nm}}{1+(x-c_st)^2}$$

propagating along a long rod of steel with density $ho=7.6 imes10^3~{
m kg\,m^{-3}}$ and Young's modulus $Y=200 imes10^9~{
m N\,m^{-2}}$. Here c_s is the speed of the longitudinal elastic wave in steel. At what x do we have the maximum value of ξ for t =3.2 milliscond? Give your answer in meter units to at least one percent accuracy.

Answer: 16.41565: •

The correct answer is: 16.42

Question $\bf 2$

Correct

Mark 2.00 out of 2.00

For what value of s is the function

$$\xi(x,t)=\sin[x^2+2c_sxt+st^2]$$

a solution of the wave equation

$$rac{\partial^2 \xi}{\partial x^2} - rac{1}{c_s^2} rac{\partial^2 \xi}{\partial t^2} = 0$$

where $c_s=7\,\mathrm{m/s}$. Give your answer in units of $\mathrm{m/s}$ to at least one percent accuracy.

Answer: 49 ✓

The correct answer is: 49.00

Question $\bf 3$

Correct

Mark 2.00 out of 2.00

An electromagnetic wave with

$$ec{E}(z,t) = E_0[\hat{i} + 2\hat{j}] \, \cos(\omega t - kz)$$

is incident on a linear polarizer whose pass axis is along $\hat{n}=[\cos(\theta)\hat{i}+\sin(\theta)\hat{j}]$ where $\theta=6$ degrees. If the intensity of the incident and transmitted waves be I_0 and the I_1 respectively, calculate $(I_1/I_0)\times 100$ to at least one percent accuracy.

Answer: 28.9720

The correct answer is: 28.97

Question **4**

Correct

Mark 2.00 out of 2.00

A birefringent crystal of thickness d has its optic axis parallel to the surface of the crystal. What is the minimum value of d (in μ m) for the crystal is to be a quarter wave plate for light of wavelength $\lambda = 493$ nm? (n_e = 1.5334, n_o = 1.5443). Give your answer to at least 1 percent accuracy.

Answer:

11.30733

The correct answer is: 11.31

Question **5**

Correct

Mark 2.00 out of 2.00

In a Compton effect experiment, incident light of wavelength $1.4\times10^{-12}~\mathrm{m}$ is scattered at 180° to the incident direction,. The electron from which the scattering occurred was initially at rest. Calculate the final momentum of the electron. Give your answer in units of $10^{-23}~\mathrm{kg}~\mathrm{m}~\mathrm{s}^{-1}$ to at least one prcent accuracy. Compton wavelength $\lambda_c=2.4\times10^{-12}~\mathrm{m}$.

Answer: 58.10322

The correct answer is: 58.05

Question **6**

Correct

Mark 2.00 out of 2.00

The ground state energy of an electron in a 1-D infinite square potential well is 6.3 eV. Calculate the width of the well is in units of Angstroms. Write your answer to at least one percent accuracy. (Given, Planck constant $h=6.63\times 10^{-34}$ J-s; mass of electron $m=9.11\times 10^{-31}$ kg; electronic charge is $e=1.6\times 10^{-19}$ C)

Answer: 2.446127

The correct answer is: 2.45

Question 7

Correct

Mark 2.00 out of 2.00

Consider a quantum particle whose wavefunction is

$$\psi(x) = A \ x \ e^{-\alpha x} \ ; \ x \geq 0 \ = 0 \ ; \ x < 0$$

with $\alpha=9.3$. Calculate the magnitude of A so that the wavefunction is normalized. Give your answer to at least one percent accuracy.

Answer:

56.72237

The correct answer is: 56.72

Question **8**

Correct

Mark 2.00 out of 2.00

Find the uncertainty in x for a confined quantum particle in a1-D infinite potential box of width $L=9.5\,\mathrm{nm}$ whose ground state wavefunction is given as

$$\psi(x) = A \sin rac{\pi \, x}{L}.$$

Give your answer in Angstrom units to at least one percent accuracy.

Answer:

17.17182

The correct answer is: 17.20