MPC Path Planner

At current time, solve following optimization problem. N is horizon length, M is the number of detected obstacles. The pair $z_k := (x_k, y_k)$ is a position of vehicle at time $k.\tau_k^i$ is the position of i^{th} obstacle (vehicles) at time k. T is a goal position, f_z and f_τ^i are dynamics for ego vehicle and i^{th} obstacle. There are two kinds of obstacles. Static obstacle and dynamics obstacle (other vehicle).

$$\min_{u \in U} \sum_{k=1}^{N} D_k^2(z_k) + \sum_{i=1}^{M} \sum_{k=1}^{N} P_k^i(z_k, \tau_k^i)
s.t. \quad z_{k+1} = f_z(z_k, u_k),
\tau_{k+1} = f_\tau(\tau_k, u_k),
Comfort constraint,$$
(1)

where

$$P_k^i(z_k, \tau_k^i) := w \frac{\exp(-\alpha(\|z_k - \tau_k^i\|^2 - s^2))}{1 + \exp(-\alpha(\|z_k - \tau_k^i\|^2 - s^2))}$$
(2)

$$D_k(z_k) = ||z_k - T|| \tag{3}$$

 P_k^i applies large penalty to the position of the i^{th} obstacle that is located at τ^i at time k.

Fig.1 shows the effect of two tuning parameters s and α . horizontal axis is x, vertical axis is z for both subfigures. As shown in Fig.1(a), the parameter s determines the range of penalty effect and the parameter α determines growing rate of the penalty. In the future, both parameters could be a function of speed of vehicle.

Note that Eq.(2) realizes cut-in and yield(let others to cut in) plan.

Lane Change

Choosing goal position T is a design parameter. If T is located in the center line of any lane, vehicle path converge to the corresponding lane.

Figure 1: Penalty term parameterized by s and α

Goal Position

Goal should be set based on traffic information such as high way exit location, road merge and so on.