Derivada como taxa de variação

- 1. Cada um dos gráficos na Figura 1 mostra a posição de uma partícula se movendo ao longo do eixo x como uma função do tempo, $0 \le t \le 5$. As escalas verticais dos gráficos são as mesmas. Durante esse intervalo de tempo, alguma partícula tem:
 - (a) Velocidade constante?

(d) Velocidade média zero?

(b) A major velocidade inicial?

(e) Aceleração zero?

(c) A maior velocidade média?

(f) Aceleração positiva durante todo o intervalo?

- **2.** Escreva o gráfico de f' onde f é dada na Figura 2
- 3. Seja C(t) a temperatura de São Carlos após o meio-dia. A função T', a derivada de T, é dada na Figura 2
- (a) Em quais intervalos de t a temperatura é constante?
- (b) Em quais intervalos a temperatura está crescendo? E decrescendo?
- (c) Em qual instante de tempo a temperatura tem maior taxa de variação?
- (d) Em qual instante de tempo a temperatura é a maior possível?
- 4. Uma certa empresa entrou no mercado de ações. Seja S a função que modela o preço de uma ação t horas após a abertura do mercado, em dólares. O gráfico de S' encontra-se na Figura 3.

Figura 1: Função f para o Exercício 2.

Figura 2: Função C' para o Exercício 3

- 1. Em qual momento o preço de uma ação está crescendo o mais rápido possível?
- 2. É possível determinar em qual momento o preço da ação foi o menor possível?
- 3. Em qual intervalo de tempo o preço estava estritamente decrescendo?
- 4. Em quais momentos a função S teve comportamento linear?
- 5. Seja f(t) uma função diferenciável cuja reta tangente em t=2 passa pelos pontos (1,10) e (4,19). Encontre os valores de f(2) e f'(2).
- **6.** Uma função f é dita ser convexa (resp. côncava) quando dados quaisquer dois pontos a < b, a velocidade média de a e b é maior ou igual (resp. menor ou igual) a velocidade instantânea de qualquer ponto em (a,b).
- (a) Escreva a definição acima em termos matemáticos (dica: lembre-se da fórmula de velocidade média, e que a velocidade instantânea é dada pela derivada de f).
- (b) É verdade qualquer função é côncava ou convexa?
- (c) Verifique que se uma função é côncava e convexa, então f é constante.

Figura 3: Função S^\prime para o Exercício 4

- (d) Usando algum software de plotar gráficos responda quais das seguintes funções é convexa.
 - (a) x^2

(d) e^x

- (b) x^3
- (c) ln(x)

(e) $\frac{1}{x}$ no intervalo $(0, +\infty)$.

Derivadas Simples

7. Calcule a derivada das seguintes funções.

- (a) x^5 .
- (b) $3x^2 + 7x 5$.
- (c) e^x .
- (d) $\sin(x) + \cos(x)$.
- (e) ln(x).
- (f) $x^2 \ln(x)$.
- (g) \sqrt{x} .
- (h) tan(x).
- (i) $\frac{1}{x^3}$.
- (j) $\arcsin(x)$.
- (k) x^2e^x .

- (1) $x^3 \sin(x)$.
- (m) $\ln(x)\cos(x)$.
- (n) $x^5 \ln(x)$.
- (o) $x^2 \arctan(x)$.
- $(p) \frac{e^x}{x^2}.$
- $(q) \frac{x^2+1}{\ln(x)}.$
- (r) $\frac{\sin(x)}{x^2}$.
- (s) $\frac{\ln(x)}{x^3}$.
- (t) $\frac{x^4+1}{xe^x}$.
- 8. Use a regra da cadeia para calcular a derivada das seguintes funções.
- (a) $\sin(x^2)$.
- (b) e^{x^3} .
- (c) $\ln(5x+2)$.
- (d) $\cos(x^2 + 1)$.
- (e) $\sqrt{x^2 + 4}$.

- (f) $\sin(\ln(x))$.
- (g) $e^{\sin(x)}$.
- (h) $\ln(\cos(x))$.
- (i) $(3x+5)^4$.
- (j) $\tan^2(x)$.

- **9.** Calcule o limite para a > 0.
- (a) $\lim_{h\to 0} \frac{(a+h)^2 a^2}{h}$
- (b) $\lim_{h\to 0} \frac{\frac{1}{a+h} \frac{1}{a}}{h}$
- (c) $\lim_{h\to 0} \frac{\frac{1}{(a+h)^2} \frac{1}{a^2}}{h}$

(d) $\lim_{h\to 0} \frac{\sqrt{a+h}-\sqrt{a}}{h}$

Dica: Multiplique por $\sqrt{a+h} + \sqrt{a}$ no numerador e no denominador.

(e) $\lim_{h\to 0} \frac{\frac{1}{\sqrt{a+h}} - \frac{1}{\sqrt{a}}}{h}$