E-prop maths

Werner van der Veen

October 27, 2020

1 Proof: BPTT to E-prop

The main equation to be proved:

$$\frac{dE}{dW_{ji}} = \sum_{t} \frac{dE}{dz_{j}^{t}} \cdot \left[\frac{dz_{j}^{t}}{dW_{ji}} \right]_{\text{local}} \tag{1}$$

We start with the classical factorization of the loss gradients in an unrolled RNN:

$$\frac{dE}{dW_{ji}} = \frac{dE}{d\mathbf{h}_{j}^{t'}} \cdot \frac{\partial \mathbf{h}_{j}^{t'}}{\partial W_{ji}}$$
 (2)

The summation indicates that weights are shared in an unrolled RNN.

We now decompose the first term into a series of learning signals $L_j^t = \frac{dE}{dz_j^t}$ and local factors $\frac{\partial \mathbf{h}_j^{t-t'}}{\partial \mathbf{h}_j^t}$ for t since the event horizon t':

$$\frac{dE}{d\mathbf{h}_{j}^{t'}} = \underbrace{\frac{dE}{dz_{j}^{t'}}}_{L_{j}^{t'}} \frac{\partial z_{j}^{t'}}{\partial \mathbf{h}_{j}^{t'}} + \frac{dE}{d\mathbf{h}_{j}^{t'+1}} \frac{\partial \mathbf{h}_{j}^{t'+1}}{\partial \mathbf{h}_{j}^{t'}}$$
(3)

Note that this equation is recursive. If we substitute the equation (3) into the classical factorization (2), we get:

$$\frac{dE}{dW_{ji}} = \sum_{t'} \left(L_j^{t'} \frac{\partial z_j^{t'}}{\partial \mathbf{h}_j^{t'}} + \frac{dE}{d\mathbf{h}_j^{t'+1}} \frac{\partial \mathbf{h}_j^{'t+1}}{\partial \mathbf{h}_j^{'t}} \right) \cdot \frac{\partial \mathbf{h}_j^{t'}}{\partial W_{ji}}$$
(4)

$$= \sum_{t'} \left(L_j^{t'} \frac{\partial z_j^{t'}}{\partial \mathbf{h}_j^{t'}} + \left(L_j^{t'+1} \frac{\partial z_j^{t'+1}}{\partial \mathbf{h}_j^{t'+1}} + (\cdots) \frac{\partial \mathbf{h}_j^{t'+2}}{\partial \mathbf{h}_j^{t'+1}} \right) \frac{\partial \mathbf{h}_j^{'t+1}}{\partial \mathbf{h}_j^{'t}} \right) \cdot \frac{\partial \mathbf{h}_j^{t'}}{\partial W_{ji}}$$
(5)

We write the term in parentheses into a second term indexed by t:

$$\frac{dE}{dW_{ji}} = \sum_{t'} \sum_{t>t'} L_j^t \frac{\partial z_j^t}{\partial \mathbf{h}_j^t} \frac{\partial \mathbf{h}_j^t}{\partial \mathbf{h}_j^{t-1}} \cdots \frac{\partial \mathbf{h}_j^{t+1}}{\partial \mathbf{h}_j^{t'}} \cdot \frac{\partial \mathbf{h}_j^{'t}}{\partial W_{ji}}$$
(6)

We then exchange the summation indices to pull out the learning signal L_j^t . This expresses the loss as a sum of learning signals multiplied by something we define as the eligibility trace. This eligibility trace consists of $\frac{\partial z_j^t}{\partial \mathbf{h}_j^t}$ and the eligibility vector ϵ_{ji}^t :

$$\frac{dE}{dW_{ji}} = \sum_{t} L_{j}^{t} \underbrace{\frac{\partial z_{j}^{t}}{\partial \mathbf{h}_{j}^{t}}}_{t \geq t'} \underbrace{\sum_{t \geq t'} \frac{\partial \mathbf{h}_{j}^{t}}{\partial \mathbf{h}_{j}^{t-1}} \cdots \frac{\partial \mathbf{h}_{j}^{t+1}}{\partial \mathbf{h}_{j}^{t'}} \cdot \frac{\partial \mathbf{h}_{j}^{'t}}{\partial W_{ji}}}_{e_{ji}^{t}} \tag{7}$$

This is the main e-prop equation.

2 Single-layer e-prop in pseudocode (LIF)

In LIF,
$$\{\mathbf{h}_{j}^{t}, \epsilon_{ji}^{t}\} \subset \mathbb{R}$$
.

for t in T do
$$z_{j}^{t} \leftarrow \begin{cases} 0, & \text{if } t - t_{z_{j}} < \delta t_{\text{ref}}. \\ H(v_{j}^{t} - v_{\text{thr}}), & \text{otherwise}. \end{cases}$$

$$I_{j}^{t} \leftarrow \sum_{i} W_{ji} z_{i}^{t} + \sum_{u} W_{ju} u(t)$$

$$v_{j}^{t+1} \leftarrow \alpha v_{j}^{t} + I_{j}^{t} - z_{j}^{t} \alpha v_{j}^{t} - z_{j}^{t-\delta t_{\text{ref}}} \alpha v_{j}^{t}$$

$$\epsilon_{ji}^{t+1} = \alpha (1 - z_{j} - z_{j}^{t-\delta t_{\text{ref}}}) \epsilon_{ji}^{t} + z_{i}^{t}$$

$$h_{j}^{t+1} \leftarrow \begin{cases} -\gamma, & \text{if } t - t_{z_{j}} < \delta t_{\text{ref}}. \\ \gamma \max\left(0, 1 - \left|\frac{v_{j}^{t+1} - v_{\text{thr}}}{v_{\text{thr}}}\right|\right), & \text{otherwise}. \end{cases}$$

$$\epsilon_{ji}^{t+1} \leftarrow h_{j}^{t+1} \epsilon_{ji}^{t+1}$$

$$y_{k}^{t} = \kappa y_{k}^{t-1} + \sum_{j} W_{kj}^{\text{out}} z_{j}^{t} + b_{k}^{\text{out}}$$

$$W \leftarrow W - \eta \sum_{t} \left(\sum_{k} B_{jk} \left(y_{k}^{t} - y_{k}^{*,t}\right)\right) e_{ji}^{t}$$

$$\text{end for }$$