Obliczenia naukowe Sprawozdanie z listy 5

Wrocław, 3 stycznia 2017

1.1 Opis problemu

Należy napisać funkcję obliczającą Ax = b eliminacją Gaussa, uwzględniając specyficzną postać macierzy A, która jest macierzą rzadką. Należy to zrobić dla dwóch przypadków bez wyboru elementu głównego i z częściowym wyborem elementu głównego.

1.2 Rozwiązanie

Do efektywnego zapamiętywania macierzy rzadkiej A użyłem funkcji opisanych w dokumentacji Julia, rozdział "Sparse Vector and Matrices". Przekazuje się tablice wartości (różnych od zera), tablicę z numerami rzędów i tablicę z numerami kolumn dla wartości różnych od zera. Następnie są one efektywnie przetrzymywane.

Algorytm wygląda następująco:

- 1) Zaczynamy pętlę od pierwszej kolumny do przedostatniej idąc w dół i w prawo.
 - a) (tylko dla częściowego wyboru) Szukamy największego elementu w kolumnie, zamieniamy jego wiersz z aktualnie sprawdzanym. Odpowiadające wiersze zamieniamy także w wektorze b.
 - b) Zaczynając od jeden niżej od obecnego wiersza, kończąc na ostatnim niezerowym, robimy w pętli:

Obliczamy mnożnik wiersza (dzieląc aktualną wartość w wierszu, przez odpowiednią z wiersza wyznaczonego).

Od kolejnych wartości wiersza odejmujemy wartości z wiersza wyznaczonego * mnożnik.

Analogicznie robimy to dla wektora b.

2) Rozwiązywany jest zwykły układ równań (trzeba robić od dołu, wtedy będzie jedno rozwiązanie).

Zwracany jest wektor x.

1.3 Analiza i test

Złożoność czasowa z częściowym wyborem elementu głównego wynosi O(n²), bez O(l*n) (l jest stałą).

Poniżej wyniki testu dla n=16:

Eliminacja Gaussa	Czas [s]	Pamięć [MB]
bez częściowego wyboru el. głównego	0.181446	5.737
Z częściowym wyborem el. głównego	0.197919	5.743

Poniżej wyniki testu dla n=10 000:

Eliminacja Gaussa	Czas [s]	Pamięć [MB]
bez częściowego wyboru el. głównego	4.494078	6.878
Z częściowym wyborem el. głównego	9.363468	7.662

Wyniki dla dużych danych, w tym przypadku dla 10 tysięcy pokazują różnicę czasową na korzyść eliminacji bez częściowego elementu głównego. Warto pamiętać, że ta szybsza metoda nie zadziała dla macierzy źle uwarunkowanych.

2.1 Opis problemu

Należy napisać funkcję wyznaczającą rozkład LU metodą eliminacji Gaussa, uwzględniając specyficzną postać macierzy A.

2.2 Rozwiązanie

Funkcja przyjmuje:

A – macierz rzadka

l – rozmiar kwadratowych macierzy wewnętrzych mainEl – true/false czy ma być wykonany częściowy wybór el. głównego

Funkcja zwraca:

Alu- Macierz, której górny trójkąt to U i dolny to L swap- tablica zmian wierszy w zwracanym Alu

Rozwiązanie jest oparte na poprzednim zadaniu. Różnica polega na tym, że zajmujemy się wyłącznie macierzą A, bez wektora b i na koniec nie obliczamy wektora x. Dlatego odpowiednie

zmiany, które muszą być wykonane w wektorze b są zapisywane w tablicy swap. Wartość j na pozycji i w tablicy swap oznacza, że w macierzy A został zmieniony wiersz i-ty z j-tym.

2.3 i 3.- Wyniki testu i zadanie 3

Do porównanie użyję zadania 1 i 3.

3.1 Opis problemu

Należy napisać funkcję rozwiązującą układ Ax = b z wcześniej wyznaczonego rozkładu LU.

3.2 Rozwiązanie

W zadaniu wektor x jest obliczany z macierzy LU w następujący sposób:

- a) Najpierw z wejściowej macierzy LU, używając dolnego trójkąta L obliczamy Lz=b (idziemy w dół i w prawo).
- b) Następnie z tej samej macierzy LU używając górnego trójkąta U rozwiązujemy Ux=z (idziemy w górę i w lewo).
- c) x jest zwracane

3.3 Analiza i test

Złożoność czasowa w tym przypadku (zadanie 3) jest kwadratowa.

W tej części będę porównywał zadanie pierwsze z drugim i trzecim (ponieważ drugie i trzecie razem prowadzi do obliczenia wektora x).

Poniżej wyniki testu dla n=16:

algorytm	Czy z częściowym wyborem el. głównego	Czas [s]	Pamięć [MB]
Eliminacja Gaussa	tak	0.189069	5.743
LUx=b	tak	0.048443	1.439
Eliminacja Gaussa	nie	0.182658	5.737
LUx=b	nie	0.051318	1.447

Poniżej wyniki testu dla n=10 000:

Tomzej wymm testa dia n' 10 000.					
algorytm	Czy z częściowym wyborem el. głównego	Czas [s]	Pamięć [MB]		
Eliminacja Gaussa	tak	9.638810	7.662		
LUx=b	tak	1.336867	1.600		
Eliminacja Gaussa	nie	4.581444	6.878		
LUx=b	nie	1.155689	1.600		

Wyniki jednoznacznie pokazują przewagę czasową obliczania wektora x z już wyznaczonego LU od zwykłej eliminacji Gaussa, czego oczywiście się spodziewaliśmy.