ME 121: Handout for discussion 7

Tommaso Menara *

05/14/2019

Abstract

In this discussion, we solve Problem 5 of the Midterm. These questions are a good recap of useful topics in linear algebra.

1 Problem 5 Midterm

State with reasons whether the following are true or false. You can provide counterexamples for false statements.

- (i) The eigenvectors for the matrix $\begin{bmatrix} 1 & 2 \\ -1 & -2 \end{bmatrix}$ are linearly dependent.
- (ii) The matrix $\begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$ is orthogonal.
- (iii) The transformation that computes the determinant of a matrix is linear.
- (iv) The columns of a 4×5 matrix are linearly dependent.
- (v) One of the eigenvalues of a reflection transformation is zero.
- (vi) One of the eigenvalues of a projection transformation is zero.
- (vii) One of the eigenvalues of any orthogonal transformation must be zero.
- (viii) If A and B are matrices such that AB = 0, then either A = 0 or B = 0.
- (ix) The null space of an $m \times n$ matrix contains vectors in \mathbb{R}^m .
- (x) If a finite set S of non-zero vectors spans a vector space V, then some subset of S is a basis of V.

^{*}Tommaso Menara is with the Department of Mechanical Engineering, University of California at Riverside, tomenara@engr.ucr.edu. All files are available at www.tommasomenara.com

2 Solution to Problem 5

- (i) False: the eigenvalues of the matrix are 0 and -1. Since there are two different eigenvalues, the corresponding eigenvectors are independent. The eigenvalues are computed from $\det(A-\lambda I)=0$, which yields $\lambda^2+\lambda=0$, whose solutions are $\lambda_1=0$ and $\lambda_2=-1$. The eigenvectors associated with these eigenvalues are $v_1=[-2\ 1]^\mathsf{T}$ and $v_2=[-1\ 1]^\mathsf{T}$, respectively, which are clearly independent.
- (ii) False: A orthogonal matrix must have each column with unit norm (length 1). Different columns must be orthogonal, i.e., their dot product must be zero. Alternately, you can check whether $A^{\mathsf{T}}A = AA^{\mathsf{T}} = I$. In this case, the latter equality does not hold. Finally, another method to check whether the matrix is orthogonal, is to verify if its determinant is ± 1 .
- (iii) False: Let us show that this is false with an example in which the property $\mathcal{L}(A+B) = \mathcal{L}(A) + \mathcal{L}(B)$ does not hold. Consider the matrices $A = I_{2\times 2}$ and $B = \operatorname{diag}(1,0)$. Then, $\operatorname{det}(A) = 1$ and $\operatorname{det}(B) = 0$, but $\operatorname{det}(A + B) = 2 \neq 1 = \operatorname{det}(A) + \operatorname{det}(B)$. Hence, the determinant is not a linear transformation.
- (iv) True: The columns of a 4×5 matrix are 5, but the rank of the matrix is at most the $\min(\#rows, \#columns)$, which is 4 in this case. Being the rank the maximum number of linearly independent rows (or columns), one column can be expressed as a linear combination of the other 4. A

trivial example is $\begin{bmatrix} 1 & 0 & 0 & 0 & a \\ 0 & 1 & 0 & 0 & b \\ 0 & 0 & 1 & 0 & c \\ 0 & 0 & 0 & 1 & d \end{bmatrix}.$ Clearly, the column $[a \ b \ c \ d]^\mathsf{T}$ can

be expressed as a linear combination of the previous 4 columns.

(v) False: The linear transformation matrix for a reflection across the line y=mx is

$$\frac{1}{1+m^2}\begin{bmatrix}1-m^2 & 2m\\2m & m^2-1\end{bmatrix}.$$

The eigenvalues and eigenvectors of a linear transformation gives you information about the scaling factors and the directions of the transformation itself. A zero eigenvalue means that there is a non-zero vector that is being transformed to zero. This cannot be the case for a reflection transformation.

(vi) True: The vector perpendicular to the direction along which the transform projects is an eigenvector corresponding to zero eigenvalue. Moreover, all projection matrices are positive semi-definite. Specifically, their eigenvalues are either 0 or 1. Thus, the vector perpendicular to the direction along which the transformation projects satisfies Av=0, which is equivalent to the eigenproblem for the zero eigenvalue. As an example, consider the

2

projection from \mathbb{R}^3 to \mathbb{R}^2 : $P = \operatorname{diag}(1, 1, 0)$. The vector orthogonal to the direction of the projection is $[0\ 0\ a]^\mathsf{T}$ for any a, which is also an eigenvector of P associated to the zero eigenvalue.

(vii) False: An orthogonal transformation preserves length. Hence, if one eigenvalue is zero, that means that a non-zero vector is being reduced to zero. But the zero vector and only the zero vector has zero length. Alternatively, since the determinant of a matrix equals the product of all its eigenvalues, and the determinant of an orthogonal matrix is always unitary, the orthogonal transformation cannot have a zero eigenvalue. Finally, one could also argue as follows. Taking the norm of the eigenproblem $Av = \lambda v$ yields $||Av|| = ||\lambda v|| = |\lambda|^2 ||v||$. The left-hand side becomes:

$$||Av|| = (Av)^{\mathsf{T}}(Av)$$
 by definition of length,
 $= v^{\mathsf{T}}A^{\mathsf{T}}Av$ because A is a real matrix,
 $= v^{\mathsf{T}}v$ because $A^{\mathsf{T}}A = I$ for orthogonal matrices,
 $= ||v||$ by definition of length.

It follows that $||v|| = |\lambda|^2 ||v||$. Since v is an eigenvector, $v \neq 0$, and we can cancel ||v|| on both sides of the equation, obtaining $1 = |\lambda|^2$. Finally, because any length is nonnegative, we are left with $|\lambda| = 1$.

- (viii) False. An easy counterexample to such a claim is $A=\begin{bmatrix}1&0\\0&0\end{bmatrix}$ and $B=\begin{bmatrix}0&0\\0&1\end{bmatrix}$. Notice how $A\neq 0,\, B\neq 0$ and AB=0.
 - (ix) False: the vectors belong to \mathbb{R}^n . In fact, if A is an $m \times n$ matrix, the definition of kernel reads $N(A) = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = 0 \}$.
 - (x) True: Since the set already spans V, by picking a subset that is also linearly independent, we are choosing a basis for V.