

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE180107301

FCC REPORT (RFID)

Applicant: Chengdu Ebyte Electronic Technology Co., Ltd.

Address of Applicant: Innovation Center D347, 4# XI-XIN road, High-tech district(west),

Chengdu, Sichuan, China

Equipment Under Test (EUT)

Product Name: Wireless transceiver module

Model No.: E70

Trade mark: EBYTE

FCC ID: 2ALPH-E70

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 18 Jan., 2018

Date of Test: 18 May., to 22 May., 2018

Date of report issued: 23 May., 2018

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	23 May., 2018	Original

Tested by: Zora Lee Date: 23 May., 2018

Test Engineer

Reviewed by: Date: 23 May., 2018

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4	TES	T SUMMARY	4
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	
	5.3	TEST ENVIRONMENT AND TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	LABORATORY FACILITY	6
	5.7	LABORATORY LOCATION	7
	5.8	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT:	8
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	12
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	Spurious Emission	
	6.7.1		
	6.7.2		
7	TES	T SETUP PHOTO	35
8	EUT	CONSTRUCTIONAL DETAILS	37

4 Test Summary

Section in CFR 47	Result
15.203/15.247 (c)	Pass
15.207	Pass
15.247 (b)(3)	Pass
15.247 (a)(2)	Pass
15.247 (e)	Pass
15.247(d)	Pass
15.205/15.209	Pass
	15.203/15.247 (c) 15.207 15.247 (b)(3) 15.247 (a)(2) 15.247 (e) 15.247(d)

Pass: Meet the requirement. N/A: Not Applicable for Non-adaptive equipment.

5 General Information

5.1 Client Information

Applicant:	Chengdu Ebyte Electronic Technology Co., Ltd.
Address:	Innovation Center D347,4# XI-XIN road, High-tech district(west), Chengdu, Sichuan, China
Manufacturer/Factory:	Chengdu Ebyte Electronic Technology Co., Ltd.
Address:	Innovation Center D347,4# XI-XIN road, High-tech district(west), Chengdu, Sichuan, China

5.2 General Description of E.U.T.

Product Name:	Wireless transceiver module
Model No.:	E70
Operation Frequency:	907-922.5 MHz
Channel numbers:	32
Modulation technology:	FSK
Antenna Type:	External Antenna
Antenna gain:	2 dBi
Power supply:	DC 5V

Operation Frequen	Operation Frequency each of channel for GFSK						
Channel	Frequency	Channel	Frequency	Channel	Frequency		
0	907.0MHz	13	913.5MHz	26	920.0MHz		
1	907.5MHz	14	914.0MHz	27	920.5MHz		
2	908.0MHz	15	914.5MHz	28	921.0MHz		
3	908.5MHz	16	915.0MHz	29	921.5MHz		
4	909.0MHz	17	915.5MHz	30	922.0MHz		
5	909.5MHz	18	916.0MHz	31	922.5MHz		
6	910.0MHz	19	916.5MHz				
7	910.5MHz	20	917.0MHz				
8	911.0MHz	21	917.5MHz				
9	911.5MHz	22	918.0MHz				
10	912.0MHz	23	918.5MHz				
11	912.5MHz	24	919.0MHz				
12	913.0MHz	25	919.5MHz				
Remark: Channel 0,	16 & 31 selected fo	or GFSK.					

Report No: CCISE180107301

5.3 Test environment and test mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Transmitting mode	Keep the EUT in continuous transmitting with modulation	120VAC 60Hz		

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

Manufacturer	Description	Model	S/N	FCC ID/DoC
LENOVO	Laptop	SL510	2847A65	DoC
EBYTE	Test suite	E25 D1	N/A	N/A
Sunshiny	Adapter	XS-1201000SCN	N/A	N/A

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	02-25-2018	02-24-2019	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	02-25-2018	02-24-2019	
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A	
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019	
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019	
Simulated Station	Anritsu	MT8820C	6201026545	03-07-2018	03-06-2019	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019	
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019	

Conducted Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019		
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019		
LISN	CHASE	MN2050D	1447	02-25-2018	02-24-2019		
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2017	07-20-2018		
ISN	Schwarzbeck	CAT3 8158	CCIS0185	02-25-2018	02-24-2019		
ISN	Schwarzbeck	CAT5 8158	CCIS0186	02-25-2018	02-24-2019		
ISN	Schwarzbeck	NTFM 8158	CCIS0187	02-25-2018	02-24-2019		
Cable	HP	10503A	N/A	03-07-2018	03-06-2019		
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A		

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement:

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an External antenna which cannot replace by end-user, the best-case gain of the antenna is 2 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207			
Test Method:	ANSI C63.10: 2013			
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz			
Limit:	·	Limit	(dBuV)	
Limit	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logar			
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 			
Test setup:	Refere	nce Plane		
	LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network			
Test Instruments:	Test table height=0.8m Refer to section 5.8 for det	tails		
Test mode:	Refer to section 5.3 for det			
Test results:	Passed			

Measurement Data:

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)			
Test Method:	ANSI C63.10:2013 and KDB558074			
Limit:	30dBm			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	15.88		
Middle	14.10	30.00	Pass
Highest	12.82		

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)				
Test Method:	ANSI C63.10:2013 and KDB558074				
Limit:	>500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	0.556			
Middle	0.552	>500	Pass	
Highest	0.556			
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	0.580			
Middle	0.576	N/A	N/A	
Highest	0.580			

Test plot as follows:

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)			
Test Method:	ANSI C63.10:2013 and KDB558074			
Limit:	8 dBm			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result		
Lowest	-19.90				
Middle	-18.88	8.00	Pass		
Highest	-19.66				

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer					
	Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10: 2013 and KDB 558074						
Test Frequency Range:	960MHz to 1.240GHz						
Test site:	Measurement Distance: 3m						
Receiver setup:	Frequency	Detecto	or	RBW	VB	W	Remark
rtocorror cottap:	960MHz-1GHz	Quasi-pe	-	120kHz	300		Quasi-peak Value
	Above 1GHz	Peak		1MHz	3MHz		Peak Value
	Above 1G112	RMS		1MHz	3M	Hz	Average Value
Limit:	Frequency		Limit	(dBuV/m @:	3m)		Remark
	960MHz-1GH	-lz		54.00			uasi-peak Value
	Above 1GH	z		54.00			Average Value
			. 41	74.00	4' 4I	-1- 0 0	Peak Value
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8m(below 1GHz) /1.5m(above 1GHz) above the groundat a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limitspecified, then testing could be stopped and the peak values of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB 					e-receiving height antenna meters above the strength. Both re set to make the to its worst case ter to 4 meters and es to find the action and	
Test setup:	Below 1GHz EUT Tur Tab	3m <	łm lm			A	ntenna Tower Search Antenna est

Below 1GHz:

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz:

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

0.7.1 Oonducted Ennission						
Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plot as follows:

6.7.2 Radiated Emission Method

0.7.2 Radiated Lillission	6.7.2 Radiated Emission Method						
Test Requirement:	FCC Part 15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m						
Receiver setup:	Frequency Detector RBW VBW					3W	Remark
	30MHz-1GHz	Quasi-p		120KHz	3001		Quasi-peak Value
	Above 1GHz	Peak		1MHz	3M		Peak Value
Limite	Fraguana	RMS		1MHz	3M	HZ	Average Value
Limit:	Frequency 30MHz-88M		LII	mit (dBuV/m @ 40.0	23111)		Remark Quasi-peak Value
	88MHz-216M			43.5			Quasi-peak Value
	216MHz-960			46.0			Quasi-peak Value
	960MHz-1G			54.0			luasi-peak Value
	Above 401			54.0			Average Value
	Above 1GF			74.0			Peak Value table 0.8m(below
Test Procedure:	The table of highest rad 2. The EUT antenna, we tower. 3. The antenre the ground Both horizon make the new 4. For each so case and to find the new 5. The test-re Specified E. If the emission to the limit specified EUT have 10 dE	was rotate liation. was set which was not height I to deter ontal and neasurem suspected hen the addither of the rotal maximum eceiver sandwidth sion level ecified, the would be margin was set was set would be margin was set was set would be margin was set was s	and 30 mounts is vermined ement. It is the content of the content tent to the content tent tent tent tent tent tent ten	eters away to the terms away to the maximum ical polarizations, the Enna was turned ding. In Maximum Hone EUT in peresting could be ported. Other did be re-tested.	o deter	mine interest of the article of the	a 3 meter camber. The position of the efference-receiving pole-height antenna four meters above the field strength. Intenna are set to anged to its worst from 1 meter to 4 es to 360 degrees eect Function and as 10 dB lower than and the peak values assions that did not using peak, quasi-reported in a data
Test setup:	Below 1GHz Antenna Tower Search Antenna RF Test Receiver Ground Plane Above 1GHz						

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

	Horn Antenna Tower AE EUT Horn Antenna Tower Ground Reference Plane Test Receiver Test Receiver Test Receiver
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30MHz is too low, so only shows the data of above 30MHz in this report.

Measurement Data (worst case):

Below 1GHz:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

Above 1GHz									
	Test channel: Lowest channel								
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
1814.00	62.89	25.05	4.13	41.25	50.82	74.00	-23.18	Vertical	
2721.00	64.96	26.35	5.07	41.74	54.64	74.00	-19.36	Vertical	
3628.00	50.25	27.72	5.92	41.58	42.31	74.00	-31.69	Vertical	
4535.00	55.45	29.47	6.84	42.08	49.68	74.00	-24.32	Vertical	
5442.00	52.36	30.54	7.16	41.85	48.21	74.00	-25.79	Vertical	
1814.00	64.73	25.10	4.12	41.21	52.74	74.00	-21.26	Horizontal	
2721.00	63.10	26.35	5.07	41.74	52.78	74.00	-21.22	Horizontal	
3628.00	52.75	27.72	5.92	41.58	44.81	74.00	-29.19	Horizontal	
4535.00	53.84	29.47	6.84	42.08	36.48	74.00	-37.52	Horizontal	
5442.00	52.16	30.54	7.18	41.85	48.03	74.00	-25.97	Horizontal	
			Dete	ctor: Avera	ge Value				
2721.00	61.35	26.35	5.07	41.74	51.03	54.00	-2.97	Vertical	

Test channel: Middle channel												
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
1830.00	59.52	25.05	4.13	41.25	47.45	74.00	-26.55	Vertical				
2745.00	59.89	26.35	5.07	41.74	49.57	74.00	-24.43	Vertical				
3660.00	50.30	27.72	5.92	41.58	42.36	74.00	-31.64	Vertical				
4575.00	52.29	29.47	6.84	42.08	46.52	74.00	-27.48	Vertical				
5490.00	52.45	30.54	7.16	41.85	48.30	74.00	-25.70	Vertical				
1830.00	60.06	25.10	4.12	41.21	48.07	74.00	-25.93	Horizontal				
2745.00	63.96	26.35	5.07	41.74	53.64	74.00	-20.36	Horizontal				
3660.00	48.47	27.72	5.92	41.58	40.53	74.00	-33.47	Horizontal				
4575.00	52.20	29.47	6.84	42.08	36.48	74.00	-37.52	Horizontal				
5490.00	52.66	30.54	7.18	41.85	48.53	74.00	-25.47	Horizontal				

Test channel: Highest channel											
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
1845.00	59.55	24.95	4.17	41.31	40.33	74.00	-33.67	Vertical			
2767.50	59.13	26.50	5.10	41.70	43.03	74.00	-30.97	Vertical			
3690.00	48.21	27.84	5.98	41.66	40.82	74.00	-33.18	Vertical			
4612.50	52.58	29.90	6.89	42.12	46.73	74.00	-27.27	Vertical			
5535.00	52.46	30.50	7.24	41.81	51.41	74.00	-22.59	Vertical			
1845.00	58.33	24.95	4.17	41.31	43.09	74.00	-30.91	Horizontal			
2767.50	56.74	26.50	5.10	41.70	44.78	74.00	-29.22	Horizontal			
3690.00	49.38	27.84	5.98	41.66	44.89	74.00	-29.11	Horizontal			
4612.50	51.24	29.90	6.89	42.12	48.22	74.00	-25.78	Horizontal			
5535.00	52.36	30.50	7.24	41.81	55.66	74.00	-18.34	Horizontal			
Detector: Average Value											
5535.00	50.75	30.54	7.18	41.85	46.62	54.00	-7.38	Horizontal			

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.