Girsanov's Theorem and Its Application in Finance

Introduction

In probability theory, **Girsanov's Theorem** provides a way to transform one probability measure into another, allowing us to modify the drift of a stochastic process. This is particularly useful in **risk-neutral pricing** of financial derivatives. This project will cover:

- Measure and measure change
- Radon-Nikodym derivative
- Girsanov's Theorem: Statement & Proof
- Connection to Gaussian PDF
- Application in Mathematical Finance

Measure and Measure Change

A **measure** is a function that assigns probabilities to different events in a probability space (Ω, \mathcal{F}, P) . The probability measure P describes how randomness unfolds.

A **change of measure** means we introduce a new measure \tilde{P} that is absolutely continuous with respect to P. The transformation is defined by the **Radon-Nikodym derivative**:

$$rac{d ilde{P}}{dP}=Z_T,$$

where Z_T is a density process that reweights probabilities.

Radon-Nikodym Derivative

The Radon-Nikodym derivative Z_t is given by:

$$Z_t = \expigg(-\int_0^t heta_s dB_s - rac{1}{2}\int_0^t heta_s^2 dsigg),$$

where θ_t is the **drift adjustment**:

$$\theta = \frac{\mu - r}{\sigma}.$$

This derivative defines the likelihood ratio for changing the probability measure from P to Q.

The density process Z_t plays a key role in changing the measure from P to \tilde{P} . It serves as a **probability density function**, ensuring that probabilities remain valid under the new measure.

Properties of Z_t

- 1. Z_t is always positive: Since $\exp(x) > 0$ for any x, the density process does not introduce negative probabilities.
- 2. Z_t integrates to 1:

$$E^P[Z_T] = 1,$$

ensuring that \tilde{P} remains a valid probability measure.

3. **Reweights probability paths:** Paths with larger drift under P get reweighted differently under \tilde{P} , modifying their likelihoods.

The plot of Z_t shows how the likelihood of different paths changes over time, adjusting probabilities dynamically.

Interpretation of the Density Process

- If $Z_t>1$, the event is **more likely** under $ilde{P}$ than under P.
- If $Z_t < 1$, the event is **less likely** under \tilde{P} than under P.
- The density process accounts for the change in drift between measures.

Girsanov's Theorem

Given a **stochastic process** X(t) in \mathbb{R}^n of the form:

$$dX(t) = \mu(t, \omega)dt + dW(t), \quad t \leq T, \quad Y_0 = 0.$$

where:

- W(t) is an n-dimensional **Brownian motion** under the original probability measure P.
- $\mu(t,\omega)$ is an adapted process (drift term), which introduces a deterministic trend in the process.
- dW(t) represents the standard **Wiener process increments**, capturing random fluctuations

The objective is to transform this process into a standard Brownian motion under a new probability measure \tilde{P} , we want to remove this drift.

The pdf Zt ensures that the new measure interprets the original process as if it had no drift.

Changing the Measure: Definition of $ilde{P}$

We define a **new probability measure** \tilde{P} using the density process:

$$d\tilde{P}(\omega) = Z_T(\omega)dP(\omega).$$

This means that the new probability measure \tilde{P} is **absolutely continuous** with respect to P, and the transformation is called the **Girsanov transformation**.

The Result: Brownian Motion Under \tilde{P}

Under the new measure \tilde{P} , the process:

$$dW^{ ilde{P}}(t) = dW_t + \mu(t,\omega)dt$$

is an n-dimensional **Brownian motion under** \tilde{P} .

This result is **key** because:

- Under P, the process had a drift term $\mu(t,\omega)$.
- After transforming to \tilde{P} , the drift term disappears, and the process behaves like a standard **Brownian motion**.

Proof of Girsanov's Theorem (Concise)

Let W_t be a standard Brownian motion under measure P. Define the **Radon–Nikodym** derivative:

$$Z_t = \expigg(-\int_0^t heta_s dW_s - rac{1}{2}\int_0^t heta_s^2 dsigg).$$

Using Itô's Lemma, we apply the measure change:

$$dW_t^{ ilde{P}} = dW_t + heta_t dt.$$

Under the new measure $ilde{P}$ defined by $d ilde{P}=Z_TdP$, the process $W_t^{ ilde{P}}$ satisfies:

$$\mathbb{E}^{ ilde{P}}[W_t^{ ilde{P}}]=0, \quad \mathrm{Var}^{ ilde{P}}(W_t^{ ilde{P}})=t.$$

Thus, $W_t^{\tilde{P}}$ is a standard Brownian motion under \tilde{P} , completing the proof.

Key Takeaways & Intuition

1. Measure Change Adjusts Drift but Preserves Randomness

- The sample paths of X(t) remain the same, but their probabilities are **reweighted** under \tilde{P} .
- The transformation ensures that under \tilde{P} , the drift disappears, simplifying computations.

2. Radon-Nikodym Derivative Ensures Valid Measure Change

- ullet The density process Z_t guarantees that $ilde{P}$ remains a valid probability measure.
- The expectation of Z_T under P is 1, confirming that the total probability is preserved:

$$E^P[Z_T] = 1.$$

Connecting $\frac{d\tilde{P}}{dP}$ to Gaussian PDF

Since Z_t is the likelihood ratio, let's connect it to a **Gaussian density transformation**.

Probability Density Function (PDF) Change

Suppose under P, we have:

$$X \sim \mathcal{N}(\mu, \sigma^2).$$

We want to transform this into a **standard normal** under \tilde{P} . Using the density function of a normal variable:

$$f_X(x) = rac{1}{\sqrt{2\pi\sigma^2}} \mathrm{exp}igg(-rac{(x-\mu)^2}{2\sigma^2}igg).$$

We define:

$$Z = rac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1).$$

Since the cumulative distribution function (CDF) transformation states:

$$F_Z(z) = P(Z \le z) = P\left(X \le \mu + \sigma z\right) = F_X(\mu + \sigma z),$$

this confirms that the change of measure preserves the structure of probabilities, but shifts and rescales the distribution.

Connection Between Z_t and Gaussian Transformation

Girsanov's theorem essentially transforms the **drifted Brownian motion** into a standard Brownian motion under the new measure. The likelihood ratio

$$Z_t = \expigg(- heta B_t - rac{1}{2} heta^2 tigg)$$

plays a role similar to the density transformation in a normal distribution shift.

- The term $\exp(-\theta B_t)$ adjusts for the mean shift.
- The term $\exp\left(-\frac{1}{2}\theta^2t\right)$ ensures that probabilities integrate correctly to 1.

This directly corresponds to the transformation from

$$X \sim \mathcal{N}(\mu, \sigma^2)$$

to

$$Z \sim \mathcal{N}(0,1)$$
.

Application in Mathematical Finance

Introduction

In financial mathematics, we use different probability measures to describe uncertainty. The real-world measure P reflects actual market behavior, whereas the risk-neutral measure \tilde{P} is employed for derivative pricing, ensuring that discounted asset prices are martingales. Girsanov's theorem provides the mathematical framework to switch between these measures.

Reweighting the Probability Measure

Suppose we have a base measure $\mu(dx)$ that represents real-world probabilities. To obtain a new measure v(dx) (such as the risk-neutral measure), we reweight $\mu(dx)$ using a density function f(x) (the Radon–Nikodym derivative):

$$v(dx) = f(x)\mu(dx).$$

For any event A, this implies:

$$v(A) = \int_A f(x) \mu(dx).$$

In our context, we set $\mu(dx)\equiv dP(\omega)$ and $v(dx)\equiv d\tilde{P}(\omega)$. The function f(x), often denoted by $Z_t(\omega)$ when dynamic, is what reweights the real-world measure P to yield the risk-neutral measure \tilde{P} .

The Radon-Nikodym Derivative and Expectations

The Radon–Nikodym derivative is defined by:

$$Z_t = rac{d ilde{P}}{dP}.$$

This derivative enables us to compute expectations under \tilde{P} using the measure P:

$$\mathbb{E}^{ ilde{P}}[X] = \int X(\omega) d ilde{P}(\omega) = \int X(\omega) Z_t(\omega) dP(\omega).$$

Thus, even if our data or simulations are under P, we can obtain risk-neutral expectations by reweighting with Z_t .

Girsanov's Theorem

Girsanov's theorem formalizes the change of measure. Suppose that under P, a stock follows a geometric Brownian motion with drift μ and volatility σ :

$$dS_t = \mu S_t dt + \sigma S_t dB_t.$$

When switching to the risk-neutral measure \tilde{P} , the drift is replaced by the risk-free rate r. Girsanov's theorem tells us that the likelihood ratio (or density) Z_t takes the exponential form:

$$Z_t = \expigg(-\int_0^t heta_s dB_s - rac{1}{2}\int_0^t heta_s^2 dsigg),$$

where

$$\theta_s = \frac{\mu - r}{\sigma}.$$

This adjustment ensures that the discounted asset price becomes a martingale under $ilde{P}.$

Application in Risk-Neutral Pricing

In practice, asset prices are observed under P, but derivative pricing requires the risk-neutral measure \tilde{P} . There are two common approaches:

1. **Direct Simulation**: Simulate the stock price directly under \tilde{P} using a drift of r:

$$dS_t = rS_t dt + \sigma S_t dW_t.$$

2. **Reweighting Method**: Simulate stock price paths under P (with drift μ) and reweight each payoff by Z_t to compute the expectation under \tilde{P} :

$$\mathbb{E}^{ ilde{P}}[X] = \mathbb{E}^{P}[XZ_t].$$

For example, the price C of a European call option with strike K and maturity T is given by:

$$C=e^{-rT}\mathbb{E}^{ ilde{P}}[(S_T-K)^+],$$

or equivalently,

$$C=e^{-rT}\mathbb{E}^P[(S_T-K)^+Z_T].$$

Methodology Overview

Simulating Stock Price Paths

We simulate the stock price under P via the geometric Brownian motion:

$$dS_t = \mu S_t dt + \sigma S_t dB_t.$$

Girsanov's theorem provides the likelihood ratio for reweighting:

$$Z_T = \expigg(- heta B_T - rac{1}{2} heta^2 Tigg),$$

with
$$\theta = \frac{\mu - r}{\sigma}$$
.

Pricing the European Call Option

We consider two approaches:

- 1. **Direct Simulation**: Simulate paths under \tilde{P} with drift r.
- 2. **Reweighting Method**: Compute the call payoff $(S_T K)^+$ using paths simulated under P and then reweight these payoffs by Z_T to obtain the risk-neutral expectation.

Illustrative Stock Price Paths

Comparison of the Two Measures

The figures above show sample stock price paths generated over the same time horizon, but under two different measures:

- **Real-World Measure**: The drift of the stock price is μ . Paths may not be directly suitable for pricing.
- **Risk-Neutral Measure**: The drift is replaced by r. Under this measure, the discounted stock price is a martingale, which is critical for no-arbitrage pricing.

Implications for European Call Pricing

Under the risk-neutral measure, the price of a European call option with strike K and maturity T is given by:

$$C=e^{-rT}\mathbb{E}^{ ilde{P}}ig[(S_T-K)^+ig].$$

In practice, we can either:

- 1. **Directly simulate** paths with drift r and compute the discounted expected payoff.
- 2. **Reweight real-world paths** using the Radon–Nikodym derivative Z_T to transform expectations from P to \tilde{P} .

These figures highlight the key conceptual difference: while real-world paths might exhibit a drift μ based on historical or observed data, risk-neutral paths are constructed so that pricing formulas remain arbitrage-free and consistent with the risk-free rate r.

Conclusion

Girsanov's theorem is essential in financial mathematics, as it allows us to convert real-world probabilities into risk-neutral probabilities. This conversion is crucial for arbitrage-free pricing of derivatives. By reweighting simulated paths using the likelihood ratio Z_t , we

pricing, reconciling empirical data with financial theory.

ensure that our pricing models accurately reflect the theoretical foundations of risk-neutral