Національний технічний університет України "Київський політехнічний інститут"

Факультет прикладної математики Кафедра системного програмування і спеціалізованих комп'ютерних систем

ЛАБОРАТОРНА РОБОТА №2.4

з дисципліни "Структури даних і алгоритми"

ТЕМА: "РЕКУРСИВНІ АЛГОРИТМИ"

Група: КВ-34

Виконав:

Фесенко Денис

Київ – 2024

Постановка задачі:

Дано натуральне число n. Знайти суму перших n членів ряду чисел, заданого рекурентною формулою.

- 1. Розв'язати задачу трьома способами (написати три програми) з використанням рекурсії:
- 1) в програмі використати рекурсивну процедуру або функцію, яка виконує обчислення і членів ряду, і суми на рекурсивному спуску;
- 2) в програмі використати рекурсивну процедуру або функцію, яка виконує обчислення і членів ряду, і суми на рекурсивному поверненні;
- 3) в програмі використати рекурсивну процедуру або функцію, яка виконує обчислення членів ряду на рекурсивному спуску, а обчислення суми на рекурсивному поверненні.
- 2. Програми повинні правильно вирішувати поставлену задачу при будь-якому заданому п (включно з n = 1), для якого результат обчислення може бути коректно представлений типом double.
- 3. Результати обчислення вивести з достатньою кількістю розрядів дробової частини для коректного показу цих результатів.

Завдання за варіантом №20

Варіант № 20

$$F_1 = 1$$
,
для $\forall i > 1$ $F_i = \cos(i) + 2 \cdot \sqrt{|F_{i-1}|}$

```
Код програми:
#include <math.h>
#include <stdio.h>
double Recurs_Down(double prev, double indexF, int n, double s) {
     double item;
     if (indexF == 1) {
          item = 1.0;
     } else {
          item = (cos(indexF) + 2 * sqrtf(fabs(prev)));
     }
     s += item;
     if (indexF < n) {
          return (Recurs_Down(item, indexF + 1, n, s));
     } else {
          return s;
     }
}
double Recurs_Up(int n,double* s) {
     if (n == 1) {
          *s += 1.0;
          return 1.0;
     }
     double item = (cos(n) + 2 * sqrtf(fabs(Recurs_Up(n-1, s))));
     *s += item;
     return item;
}
double Recurs_Up_Down(double indexF, double prev, int n, double s) {
  double item;
  if (indexF == 1) {
    item = 1.0;
  } else {
    item = (cos(indexF) + 2 * sqrtf(fabs(prev)));
  if (indexF == n) {
    return item;
  } else {
```

```
s = item + Recurs_Up_Down(indexF + 1, item, n, s);
    return s;
  }
}
int main(void) {
     int n = 0;
     while (n < 1) {
       printf("n >= 1 --> ");
       scanf("%d", &n);
     }
     double s;
     //Спуск
     s = 0.0;
     printf("Recurs_Down --> %f\n", Recurs_Down(0, 1, n, s));
     //Повернення
     s = 0.0;
     Recurs_Up(n, &s);//беремо адресу корміки суми і передаємо її
параметром
     printf("Recurs_Up --> %f\n", s);
     //Спукс + Повернення
     s = 0.0;
     printf("Recurs_Up_Down --> %f\n", Recurs_Up_Down(1, 0, n, s));
     //Цикл
     s = 1.0;
     double item = 1.0;
     for (double indexF = 2; indexF <= n; indexF++) {</pre>
          item = cos(indexF) + 2 * sqrtf(fabs(item));
          s += item;
     }
     printf("FOR Cycle --> %f", s);
     return 0;
}
```

Тестування

	O Shaxyrok - caryce	
Pibens	Cryck b (2 y no - nobgenous) (2 y no - nobgenous) (4 y no prev, 5) [n = 5]	Wobeprenus 1 Out (18 = 1; 5); 1/8 = 8;
0		1
1	17=1 Up-Down(2,n,1,3) <	S = 1 + 7,9087
2	1/ = 2 Up-Down (3, n, 1, 5838,5)	S = item + 8,3248
3	1 = 3 clp_Town (4, n, 1.567,5)	[3=1tem+4,7873]
4	if=4 Up-Down (5,n, 1.8178,5)	1 [S. # item + 2, 980]
5	iF = 5	1 1stem 1/2,9801
		1

	Cynic + OShanynox refree cany cey		
Dibens	Chyck V	obetheuma 1	
0	Recurs - Down (1,5) [n=5]	Out (45=1,5),	
1	1F=1 <h \$="17</td" becurs="" down(2,5)<[5]="" s+="17" =""><td>TS (</td></h>	TS (
2	1 = 2 < n Recurs - Down (3,5) < 1 = 1,58385]	TSI	
3	1/- 3 Ln Beurs - Down (4,5) [\$+=1,52703]	13 (
4	#F=4 <n Becurs_Down(5,5) = [5+=1,81782]</n 		
5	1F=5== n 7[S+=2,38018]	197115=8,908	

 $=3+\cos|2|+\cos|3|+2\sqrt{\cos|2|+2}+\cos|4|+2\sqrt{\cos|3|+2\sqrt{\cos|2|+2}}+\cos|5|+2\sqrt{\cos|4|+2\sqrt{\cos|3|+2\sqrt{\cos|2|+2}}}$ Alternative Form $\approx 8,9089$

```
n >= 1 --> 0
n >= 1 --> 1
Recurs_Down
                     --> 1.000000
Recurs_Up
                     --> 1.000000
Recurs_Up_Down --> 1.000000
                     --> 1.000000%
FOR Cycle
n >= 1 --> 2
                                         1 + \cos(2) + 2\sqrt{1}
                                                                          (3)
Recurs_Down
                    --> 2.583853
Recurs_Up
                     --> 2.583853
                                          =3+\cos(2)
Recurs_Up_Down --> 2.583853
                                          Alternative Form
FOR Cycle
                     --> 2.583853\%
                                         ≈2,58385
n >= 1 --> 3
                                          \cos(2) + 2\sqrt{1} + \cos(3) + 2\sqrt{\cos(2) + 2\sqrt{1}}
Recurs_Down
                    --> 4.110885
Recurs_Up
                     --> 4.110885
                                           = 3 + \cos(2) + \cos(3) + 2\sqrt{\cos(2) + 2}
Recurs_Up_Down --> 4.110885
                                           Alternative Form
                    --> 4.110885<mark>%</mark>
FOR Cycle
                                          ≈4.11089
n >= 1 --> 4
                                         +\cos(4) + 2\sqrt{\cos(3) + 2\sqrt{\cos(2) + 2\sqrt{1}}}
Recurs_Down
                    --> 5.928704
Recurs_Up
                     --> 5.928704
Recurs_Up_Down --> 5.928704
                                          = 3 + \cos(2) + \cos(3) + 2\sqrt{\cos(2) + 2} + \cos(4) + 2\sqrt{\cos(3) + 2\sqrt{\cos(2) + 2}}
                     --> 5.928704<sup>1</sup>/<sub>8</sub>
FOR Cycle
                                          ≈5.9287
n >= 1 --> 5
                                          2\sqrt{\cos(4)} + 2\sqrt{\cos(3)} + 2\sqrt{\cos(2)} + 2\sqrt{1}
Recurs_Down
                    --> 8.908897
Recurs_Up
                     --> 8.908897
Recurs_Up_Down --> 8.908897
                                         ≈8,9089
```