SBML Model Report

Model name: "Wodarz2007 - Cytomegalovirus infection model with cytotoxic T lymphocyte response"

May 17, 2018

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Catherine Lloyd¹ and Matthew Grant Roberts² at June 25th 2010 at 1:17 p.m. and last time modified at March nineth 2018 at 4:38 p.m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	15
events	0	constraints	0
reactions	25	function definitions	5
global parameters	16	unit definitions	3
rules	1	initial assignments	0

Model Notes

This a model from the article:

Dynamics of killer T cell inflation in viral infections.

¹University of Auckland, c.lloyd@auckland.ac.nz

²EMBL-EBI, mroberts@embl.ac.uk

Wodarz D, Sierro S, Klenerman P. <u>J R Soc Interface</u> 2007 Jun 22;4(14):533-43 17251133 , **Abstract:**

Upon acute viral infection, a typical cytotoxic T lymphocyte (CTL) response ischaracterized by a phase of expansion and contraction after which it settles at arelatively stable memory level. Recently, experimental data from mice infected with murine cytomegalovirus (MCMV) showed different and unusual dynamics. Afteracute infection had resolved, some antigen specific CTL started to expand overtime despite the fact that no replicative virus was detectable. This phenomenonhas been termed as "CTL memory inflation,... In order to examine the dynamics of this system further, we developed a mathematical model analysing the impact ofinnate and adaptive immune responses. According to this model, a potentially important contributor to CTL inflation is competition between the specific CTL response and an innate natural killer (NK) cell response. Inflation occurs most readily if the NK cell response is more efficient than the CTL at reducing virusload during acute infection, but thereafter maintains a chronic virus load whichis sufficient to induce CTL proliferation. The model further suggests that weaker NK cell mediated protection can correlate with more pronounced CTLinflation dynamics over time. We present experimental data from mice infected with MCMV which are consistent with the theoretical predictions. This model provides valuable information and may help to explain the inflation of CMV specific CD8+T cells seen in humans as they age.

This model was taken from the CellML repository and automatically converted to SBML. The original model was: **Wodarz D, Sierro S, Klenerman P.** (2007) - version=1.0 The original CellML model was created by:

Catherine Lloyd

c.lloyd@auckland.ac.nz The University of Auckland

This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2011 The BioModels.net Team. To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not..

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of seven unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit hour

Name hour

Definition 3600 s

2.2 Unit first_order_rate_constant

Name first_order_rate_constant

Definition $(3600 \text{ s})^{-1}$

2.3 Unit time

Name time

Definition 3600 s

2.4 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.5 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.6 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.7 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

 $\textbf{Definition} \ m$

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
COMpartment	Mouse		3	1		Ø	

3.1 Compartment COMpartment

This is a three dimensional compartment with a constant size of one litre.

Name Mouse

4 Species

This model contains 15 species. Section 9 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi-
					tion
x_0	X	COMpartment	$\text{mol} \cdot l^{-1}$		
y_0	y_0	${\tt COMpartment}$	$\text{mol} \cdot l^{-1}$		
y_1	y_1	${\tt COMpartment}$	$\text{mol} \cdot l^{-1}$	\Box	\Box
L_0	L	${\tt COMpartment}$	$\text{mol} \cdot l^{-1}$	\Box	\Box
ν_0	v	${\tt COMpartment}$	$\text{mol} \cdot l^{-1}$		\Box
z_a	z_a	${\tt COMpartment}$	$\text{mol} \cdot l^{-1}$		\Box
m_0_0	$m_{-}0$	COMpartment	$\text{mol} \cdot l^{-1}$		\Box
m_1_0	$m_{-}1$	COMpartment	$\text{mol} \cdot l^{-1}$		\Box
$m_{-}2_{-}0$	m_2	COMpartment	$\text{mol} \cdot l^{-1}$		\Box
m_3_0	m_3	COMpartment	$\text{mol} \cdot l^{-1}$		\Box
m_4_0	m_4	${\tt COMpartment}$	$\text{mol} \cdot l^{-1}$	\Box	\Box
m_5_0	m_5	${\tt COMpartment}$	$\text{mol} \cdot l^{-1}$		\Box
m_6_0	m_6	COMpartment	$\text{mol} \cdot l^{-1}$		
$m_{-}7_{-}0$	$m_{-}7$	COMpartment	$\text{mol} \cdot l^{-1}$		
$m_{-}8_{-}0$	m8	COMpartment	$\text{mol} \cdot l^{-1}$		

5 Parameters

This model contains 16 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
-			Cint	Constant
RO	R0	15.909		\Box
a0	a0	0.100		\square
a1	a1	0.200		
k	k	1.000		
u	u	1.000		
lambda	lambda	10.000		
d	d	0.100		
beta	beta	0.100		
gamma	gamma	0.500		
alpha	alpha	0.200		
phi	phi	0.100		\square
eta	eta	0.010		
pa	pa	10^{-6}		
ca	ca	15.500		\square
r	r	1.000		
ba	ba	0.100		$\overline{\checkmark}$

6 Function definitions

This is an overview of five function definitions.

6.1 Function definition Constant_flux_irreversible

Name Constant flux (irreversible)

Argument v

Mathematical Expression

v (1)

6.2 Function definition function_1

Name function_1

Arguments param, mod

Mathematical Expression

$$param \cdot mod$$
 (2)

6.3 Function definition function_3

Name function_3

Arguments c_a , y0, y1, za

Mathematical Expression

$$c_{-a} \cdot (y0 + y1) \cdot za \tag{3}$$

6.4 Function definition function

Name function

Arguments parameter, modifier, substrate

Mathematical Expression

parameter
$$\cdot$$
 modifier \cdot substrate (4)

6.5 Function definition function_2

Name function_2

Arguments parameter, modifier

Mathematical Expression

parameter
$$\cdot$$
 modifier (5)

7 Rule

This is an overview of one rule.

7.1 Rule RO

Rule R0 is an assignment rule for parameter R0:

$$R0 = \frac{lambda \cdot eta}{d \cdot a1 \cdot (a0 + eta)} \cdot \left(beta + \frac{gamma \cdot phi}{phi + d}\right) \tag{6}$$

8 Reactions

This model contains 25 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N₀	Id	Name	Reaction Equation	SBO
1	Host_cell- _proliferation	Host cell proliferation	$\emptyset \longrightarrow x0$	
2	${\tt Host_cell_death}$	Host cell death	$x_0 \longrightarrow \emptyset$	
3	${\tt Infection_1}$	Infection 1	$x_0 \stackrel{V_0}{\longrightarrow} y_0$	
4	Infection_2	Infection 2	$x0 \xrightarrow{v0} L0$	
5	<pre>Infected_celldeath_1</pre>	Infected cell death 1	$y_0 \longrightarrow \emptyset$	
6	Infected_cell- _infection- _progression_1	Infected cell infection progression 1	$y0 \longrightarrow y1$	
7	Infected_cell- _infection- _progression_2	Infected cell infection progression 2	$L0 \longrightarrow y0$	
8	CTL_induced- _infected_cell- _death_1	CTL-induced infected cell death 1	$y_0 \xrightarrow{Z_a} \emptyset$	
9	Infected_cell- _death_2	Infected cell death 2	$y1 \longrightarrow \emptyset$	
10	CTL_induced- _infected_cell- _death_2	CTL-induced infected cell death 2	$y1 \xrightarrow{Za} \emptyset$	

N₀	Id	Name	Reaction Equation	SBO
11	Infected_cell- _death_3	Infected cell death 3	$L_{-}0 \longrightarrow \emptyset$	
12	Virus_particle- _production	Virus particle production	$\emptyset \xrightarrow{\mathrm{Y-1}} \mathrm{v} 0$	
13	Viral_particle- _degradation	Viral particle degradation	$v0 \longrightarrow \emptyset$	
14	Precursor- _T_cell- _differentiation- _2	Precursor T-cell differentiation 2	$\emptyset \xrightarrow{\mathbf{m}_{-}8_{-}0} \mathbf{z}_{-}\mathbf{a}$	
15	Infection- _induced_CTL- _proliferation- _stimulation	Infection-induced CTL proliferation stimulation	$\emptyset \xrightarrow{\mathbf{y} = 0, \ \mathbf{y} = 1} \mathbf{z}_{-}\mathbf{a}$	
16	$\mathtt{CTL_cell_death}$	CTL cell death	$z_a \longrightarrow \emptyset$	
17	Naive_CTL- _division_1	Naive CTL division 1	$m00 \longrightarrow 2 m10$	
18	Naive_CTL- _division_2	Naive CTL division 2	$m_1_0 \longrightarrow 2 m_2_0$	
19	Naive_CTL- _division_3	Naive CTL division 3	$m20 \longrightarrow 2 m30$	
20	Naive_CTL- _division_4	Naive CTL division 4	$m_3_0 \longrightarrow 2 m_4_0$	
21	Naive_CTL- _division_5	Naive CTL division 5	$m_4_0 \longrightarrow 2 m_5_0$	
22	Naive_CTL- _division_6	Naive CTL division 6	$m50 \longrightarrow 2 m60$	

N⁰	Id	Name	Reaction Equation	SBO
23	Naive_CTL- _division_7	Naive CTL division 7	$m60 \longrightarrow 2 m70$	
24	Naive_CTL- _division_8	Naive CTL division 8	$m70 \longrightarrow 2 m80$	
25	PrecursorT_celldifferentiati _1	Precursor T-cell differentiation 1	$m80 \longrightarrow \emptyset$	

8.1 Reaction Host_cell_proliferation

This is an irreversible reaction of no reactant forming one product.

Name Host cell proliferation

Reaction equation

$$\emptyset \longrightarrow x_-0$$
 (7)

Product

Table 6: Properties of each product.

Id	Name	SBO
x_0	X	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{vol}\left(\text{COMpartment}\right) \cdot \text{Constant_flux_irreversible}\left(\text{lambda}\right)$$
 (8)

$$Constant_flux_irreversible(v) = v$$
 (9)

$$Constant_flux_irreversible(v) = v$$
 (10)

8.2 Reaction Host_cell_death

This is an irreversible reaction of one reactant forming no product.

Name Host cell death

Reaction equation

$$x_-0 \longrightarrow \emptyset$$
 (11)

Reactant

Table 7: Properties of each reactant.

Id	Name	SBO
x_0	X	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{vol}(\text{COMpartment}) \cdot d \cdot [x_0]$$
 (12)

8.3 Reaction Infection_1

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name Infection 1

Reaction equation

$$x_{-0} \xrightarrow{V_{-0}} y_{-0} \tag{13}$$

Reactant

Table 8: Properties of each reactant.

Id	Name	SBO
x_0	X	

Modifier

Table 9: Properties of each modifier.

Id	Name	SBO
v_0	V	

Product

Table 10: Properties of each product.

Id	Name	SBO
y_0	y_0	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{vol}(\text{COMpartment}) \cdot \text{function}(\text{beta}, [v_0], [x_0])$$
 (14)

function (parameter, modifier, substrate) = parameter
$$\cdot$$
 modifier \cdot substrate (15)

function (parameter, modifier, substrate) = parameter
$$\cdot$$
 modifier \cdot substrate (16)

8.4 Reaction Infection_2

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name Infection 2

Reaction equation

$$x_{-}0 \xrightarrow{V_{-}0} L_{-}0 \tag{17}$$

Reactant

Table 11: Properties of each reactant.

Id	Name	SBO
x_0	X	

Modifier

Table 12: Properties of each modifier.

Id	Name	SBO
v_0	V	

Product

Table 13: Properties of each product.

Id	Name	SBO
L_0	L	

Kinetic Law

Derived unit contains undeclared units

$$v_4 = \text{vol}\left(\text{COMpartment}\right) \cdot \text{function}\left(\text{gamma}, [v_0], [x_0]\right)$$
 (18)

function (parameter, modifier, substrate) = parameter
$$\cdot$$
 modifier \cdot substrate (19)

function (parameter, modifier, substrate) = parameter
$$\cdot$$
 modifier \cdot substrate (20)

8.5 Reaction Infected_cell_death_1

This is an irreversible reaction of one reactant forming no product.

Name Infected cell death 1

Reaction equation

$$y_0 \longrightarrow \emptyset$$
 (21)

Reactant

Table 14: Properties of each reactant.

Id	Name	SBO
y_0	y_0	

Kinetic Law

Derived unit contains undeclared units

$$v_5 = \text{vol}\left(\text{COMpartment}\right) \cdot \text{a0} \cdot [\text{y}_0]$$
 (22)

8.6 Reaction Infected_cell_infection_progression_1

This is an irreversible reaction of one reactant forming one product.

Name Infected cell infection progression 1

Reaction equation

$$y_-0 \longrightarrow y_-1$$
 (23)

Reactant

Table 15: Properties of each reactant.

Id	Name	SBO
y_0	y_0	

Product

Table 16: Properties of each product.

Id	Name	SBO
$y_{-}1$	$y_{-}1$	

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \text{vol}\left(\text{COMpartment}\right) \cdot \text{eta} \cdot [y_0]$$
 (24)

8.7 Reaction Infected_cell_infection_progression_2

This is an irreversible reaction of one reactant forming one product.

Name Infected cell infection progression 2

Reaction equation

$$L_{-}0 \longrightarrow y_{-}0$$
 (25)

Reactant

Table 17: Properties of each reactant.

Id	Name	SBO
L_0	L	

Product

Table 18: Properties of each product.

Id	Name	SBO
y_0	y_0	

Kinetic Law

Derived unit contains undeclared units

$$v_7 = \text{vol}\left(\text{COMpartment}\right) \cdot \text{phi} \cdot [\text{L}_-0]$$
 (26)

8.8 Reaction CTL_induced_infected_cell_death_1

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name CTL-induced infected cell death 1

Reaction equation

$$y_-0 \xrightarrow{Z_-a} \emptyset$$
 (27)

Reactant

Table 19: Properties of each reactant.

Id	Name	SBO
y_0	y_0	

Modifier

Table 20: Properties of each modifier.

Id	Name	SBO
z_a	z_a	

Kinetic Law

Derived unit contains undeclared units

$$v_8 = \text{vol}\left(\text{COMpartment}\right) \cdot \text{function}\left(\text{pa}, [\text{z}_\text{a}], [\text{y}_\text{0}]\right)$$
 (28)

function (parameter, modifier, substrate) = parameter
$$\cdot$$
 modifier \cdot substrate (29)

function (parameter, modifier, substrate) = parameter
$$\cdot$$
 modifier \cdot substrate (30)

8.9 Reaction Infected_cell_death_2

This is an irreversible reaction of one reactant forming no product.

Name Infected cell death 2

Reaction equation

$$y_-1 \longrightarrow \emptyset$$
 (31)

Reactant

Table 21: Properties of each reactant.

Id	Name	SBO
y_1	y_1	

Kinetic Law

Derived unit contains undeclared units

$$v_9 = \text{vol}(\text{COMpartment}) \cdot \text{al} \cdot [y_1]$$
 (32)

8.10 Reaction CTL_induced_infected_cell_death_2

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name CTL-induced infected cell death 2

Reaction equation

$$y_{-1} \xrightarrow{Z_{-}a} \emptyset \tag{33}$$

Reactant

Table 22: Properties of each reactant.

Id	Name	SBO
y_1	$y_{-}1$	

Modifier

Table 23: Properties of each modifier.

Id	Name	SBO
z_a	z_a	

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = vol\left(COMpartment\right) \cdot function\left(pa, [z_a], [y_1]\right) \tag{34}$$

function (parameter, modifier, substrate) = parameter
$$\cdot$$
 modifier \cdot substrate (35)

function (parameter, modifier, substrate) = parameter
$$\cdot$$
 modifier \cdot substrate (36)

8.11 Reaction Infected_cell_death_3

This is an irreversible reaction of one reactant forming no product.

Name Infected cell death 3

Reaction equation

$$L_0 \longrightarrow \emptyset$$
 (37)

Reactant

Table 24: Properties of each reactant.

Id	Name	SBO
L_0	L	

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = \text{vol}\left(\text{COMpartment}\right) \cdot d \cdot [\text{L}_{-}0]$$
 (38)

8.12 Reaction Virus_particle_production

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name Virus particle production

Reaction equation

$$\emptyset \xrightarrow{\mathbf{y}_{-1}} \mathbf{v}_{-0} \tag{39}$$

Modifier

Table 25: Properties of each modifier.

Id	Name	SBO
y_1	y_1	

Product

Table 26: Properties of each product.

Id	Name	SBO
ν_0	V	

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = \text{vol}\left(\text{COMpartment}\right) \cdot \text{function_1}\left(k, [y_1]\right)$$
 (40)

$$function_{-1}(param, mod) = param \cdot mod$$
 (41)

$$function_{-1}(param, mod) = param \cdot mod$$
 (42)

8.13 Reaction Viral_particle_degradation

This is an irreversible reaction of one reactant forming no product.

Name Viral particle degradation

Reaction equation

$$v_0 \longrightarrow \emptyset$$
 (43)

Reactant

Table 27: Properties of each reactant.

Id	Name	SBO
ν_0	V	

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = \text{vol}\left(\text{COMpartment}\right) \cdot \mathbf{u} \cdot [\mathbf{v}_0]$$
 (44)

8.14 Reaction Precursor_T_cell_differentiation_2

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name Precursor T-cell differentiation 2

Reaction equation

$$\emptyset \xrightarrow{\text{m_8_0}} \text{z_a} \tag{45}$$

Modifier

Table 28: Properties of each modifier.

Id	Name	SBO
m_8_0	m8	

Product

Table 29: Properties of each product.

Id	Name	SBO
z_a	z_a	

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = \text{vol}\left(\text{COMpartment}\right) \cdot \text{function}_2\left(\text{alpha}, [\text{m}_\text{8}_\text{0}]\right)$$
 (46)

function_2 (parameter, modifier) = parameter
$$\cdot$$
 modifier (47)

function_2 (parameter, modifier) = parameter
$$\cdot$$
 modifier (48)

8.15 Reaction Infection_induced_CTL_proliferation_stimulation

This is an irreversible reaction of no reactant forming one product influenced by two modifiers.

Name Infection-induced CTL proliferation stimulation

Reaction equation

$$\emptyset \xrightarrow{y_-0, y_-1} z_-a \tag{49}$$

Modifiers

Table 30: Properties of each modifier.

Id	Name	SBO
y_0 y_1	y_0 y_1	

Product

Table 31: Properties of each product.

Id	Name	SBO
z_a	z_a	

Kinetic Law

Derived unit contains undeclared units

$$v_{15} = \text{vol}(\text{COMpartment}) \cdot \text{function}_3(\text{ca}, [y_-0], [y_-1], [z_-a])$$
 (50)

8.16 Reaction CTL_cell_death

This is an irreversible reaction of one reactant forming no product.

Name CTL cell death

Reaction equation

$$z_a \longrightarrow \emptyset$$
 (53)

Reactant

Table 32: Properties of each reactant.

Id	Name	SBO
z_a	z_a	

Kinetic Law

Derived unit contains undeclared units

$$v_{16} = \text{vol}\left(\text{COMpartment}\right) \cdot \text{ba} \cdot [\text{z}_\text{a}]$$
 (54)

8.17 Reaction Naive_CTL_division_1

This is an irreversible reaction of one reactant forming one product.

Name Naive CTL division 1

Reaction equation

$$m_-0_-0 \longrightarrow 2 m_-1_-0 \tag{55}$$

Reactant

Table 33: Properties of each reactant.

Id	Name	SBO
m_0_0	m0	

Product

Table 34: Properties of each product.

Id	Name	SBO
m_1_0	$m_{-}1$	

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = \text{vol}\left(\text{COMpartment}\right) \cdot \mathbf{r} \cdot [\text{m}_0_0] \tag{56}$$

8.18 Reaction Naive_CTL_division_2

This is an irreversible reaction of one reactant forming one product.

Name Naive CTL division 2

Reaction equation

$$m_{-}1_{-}0 \longrightarrow 2m_{-}2_{-}0 \tag{57}$$

Reactant

Table 35: Properties of each reactant.

Id	Name	SBO
m_1_0	$m_{-}1$	

Product

Table 36: Properties of each product.

Id	Name	SBO
m_2_0	m_2	

Kinetic Law

Derived unit contains undeclared units

$$v_{18} = \text{vol}\left(\text{COMpartment}\right) \cdot \mathbf{r} \cdot [\mathbf{m}_{-}1_{-}0] \tag{58}$$

8.19 Reaction Naive_CTL_division_3

This is an irreversible reaction of one reactant forming one product.

Name Naive CTL division 3

Reaction equation

$$m_{-}2_{-}0 \longrightarrow 2m_{-}3_{-}0 \tag{59}$$

Reactant

Table 37: Properties of each reactant.

Id	Name	SBO
m_2_0	$m_{-}2$	

Product

Table 38: Properties of each product.

Id	Name	SBO
m_3_0	m_3	

Kinetic Law

Derived unit contains undeclared units

$$v_{19} = \text{vol}\left(\text{COMpartment}\right) \cdot \mathbf{r} \cdot [\text{m}_2_0]$$
 (60)

8.20 Reaction Naive_CTL_division_4

This is an irreversible reaction of one reactant forming one product.

Name Naive CTL division 4

Reaction equation

$$m_3_0 \longrightarrow 2m_4_0 \tag{61}$$

Reactant

Table 39: Properties of each reactant.

Id	Name	SBO
m_3_0	m_3	

Product

Table 40: Properties of each product.

Id	Name	SBO
m_4_0	$m_{-}4$	

Kinetic Law

Derived unit contains undeclared units

$$v_{20} = \text{vol}\left(\text{COMpartment}\right) \cdot \mathbf{r} \cdot [\text{m}_3_0]$$
 (62)

8.21 Reaction Naive_CTL_division_5

This is an irreversible reaction of one reactant forming one product.

Name Naive CTL division 5

Reaction equation

$$m_4_0 \longrightarrow 2 m_5_0$$
 (63)

Reactant

Table 41: Properties of each reactant.

Id	Name	SBO
m_4_0	$m_{-}4$	

Product

Table 42: Properties of each product.

Id	Name	SBO
m_5_0	m_5	

Kinetic Law

Derived unit contains undeclared units

$$v_{21} = \text{vol}\left(\text{COMpartment}\right) \cdot \mathbf{r} \cdot [\text{m_4_0}]$$
 (64)

8.22 Reaction Naive_CTL_division_6

This is an irreversible reaction of one reactant forming one product.

Name Naive CTL division 6

Reaction equation

$$m_5_0 \longrightarrow 2m_6_0$$
 (65)

Reactant

Table 43: Properties of each reactant.

Id	Name	SBO
m_5_0	m_5	

Product

Table 44: Properties of each product.

Id	Name	SBO
m_6_0	m_6	

Kinetic Law

Derived unit contains undeclared units

$$v_{22} = \text{vol}\left(\text{COMpartment}\right) \cdot \mathbf{r} \cdot [\text{m}_5_0] \tag{66}$$

8.23 Reaction Naive_CTL_division_7

This is an irreversible reaction of one reactant forming one product.

Name Naive CTL division 7

Reaction equation

$$m_-6_-0 \longrightarrow 2 m_-7_-0$$
 (67)

Reactant

Table 45: Properties of each reactant.

Id	Name	SBO
m_6_0	$m_{-}6$	

Product

Table 46: Properties of each product.

Id	Name	SBO
m_7_0	m_7	

Kinetic Law

Derived unit contains undeclared units

$$v_{23} = \text{vol}\left(\text{COMpartment}\right) \cdot \mathbf{r} \cdot [\text{m}_6_0]$$
 (68)

8.24 Reaction Naive_CTL_division_8

This is an irreversible reaction of one reactant forming one product.

Name Naive CTL division 8

Reaction equation

$$m_{-}7_{-}0 \longrightarrow 2 m_{-}8_{-}0$$
 (69)

Reactant

Table 47: Properties of each reactant.

Id	Name	SBO
m_7_0	m_7	

Product

Table 48: Properties of each product.

Id	Name	SBO
m_8_0	m8	

Kinetic Law

Derived unit contains undeclared units

$$v_{24} = \text{vol}\left(\text{COMpartment}\right) \cdot \mathbf{r} \cdot [\mathbf{m}_{-}7_{-}0] \tag{70}$$

8.25 Reaction Precursor_T_cell_differentiation_1

This is an irreversible reaction of one reactant forming no product.

Name Precursor T-cell differentiation 1

Reaction equation

$$m_-8_-0 \longrightarrow \emptyset$$
 (71)

Reactant

Table 49: Properties of each reactant.

Id	Name	SBO
m80	$m_{-}8$	

Kinetic Law

Derived unit contains undeclared units

$$v_{25} = \text{vol}\left(\text{COMpartment}\right) \cdot \mathbf{r} \cdot [\text{m}_{-}8_{-}0] \tag{72}$$

9 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

9.1 Species x_0

Name x

Initial concentration $1 \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in Host_cell_death, Infection_1, Infection_2 and as a product in Host_cell_proliferation).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x}_{-}0 = |v_1| - |v_2| - |v_3| - |v_4| \tag{73}$$

9.2 Species y_0

Name y_0

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in Infected_cell_death_1, Infected_cell_infection_progression_1, CTL_induced_infected_cell_death_1 and as a product in Infection_1, Infected_cell_infection_progression_2 and as a modifier in Infection_induced_CTL_proliferation_stimulation).

$$\frac{d}{dt}y_{-}0 = |v_3| + |v_7| - |v_5| - |v_6| - |v_8| \tag{74}$$

9.3 Species y_1

Name y_1

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in Infected_cell_death_2, CTL_induced_infected_cell_death_2 and as a product in Infected_cell_infection_progression_1 and as a modifier in Virus_particle_production, Infection_induced_CTL_proliferation_stimulation).

$$\frac{d}{dt}y_{-1} = |v_6| - |v_9| - |v_{10}| \tag{75}$$

9.4 Species L_0

Name L

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in Infected_cell_infection_progression_2, Infected_cell_death_3 and as a product in Infection_2).

$$\frac{d}{dt}L_{-}0 = |v_4| - |v_7| - |v_{11}| \tag{76}$$

9.5 Species v_0

Name v

Initial concentration $1 \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in Viral_particle_degradation and as a product in Virus_particle_production and as a modifier in Infection_1, Infection_2).

$$\frac{d}{dt}v_{-}0 = |v_{12}| - |v_{13}| \tag{77}$$

9.6 Species z_a

Name z_a

Initial concentration $1 \text{ mol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in CTL_cell_death and as a product in Precursor_T_cell_differentiation_2, Infection_induced_CTL_proliferation_stimulation and as a modifier in CTL_induced_infected_cell_death_1, CTL_induced_infected_cell_death_2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{z}_{-a} = |v_{14}| + |v_{15}| - |v_{16}| \tag{78}$$

9.7 Species m_0_0

Name m_0

Initial concentration $1 \text{ mol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in Naive_CTL_division_1).

$$\frac{d}{dt}m_{-}0_{-}0 = -v_{17} \tag{79}$$

9.8 Species m_1_0

Name $m_{-}1$

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in Naive_CTL_division_2 and as a product in Naive_CTL_division_1).

$$\frac{d}{dt}m_{-1} = 2 v_{17} - v_{18} \tag{80}$$

9.9 Species m_2_0

Name m_2

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in Naive_CTL_division_3 and as a product in Naive_CTL_division_2).

$$\frac{d}{dt}m_2 - 0 = 2 v_{18} - v_{19} \tag{81}$$

9.10 Species m_3_0

Name m_3

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in Naive_CTL_division_4 and as a product in Naive_CTL_division_3).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{m}_{3} = 2 v_{19} - v_{20} \tag{82}$$

9.11 Species m_4_0

Name m_4

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in Naive_CTL_division_5 and as a product in Naive_CTL_division_4).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{m}_{-} 4_{-} 0 = 2 |v_{20}| - |v_{21}| \tag{83}$$

9.12 Species m_5_0

Name m_5

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in Naive_CTL_division_6 and as a product in Naive_CTL_division_5).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{m.5.0} = 2 v_{21} - v_{22} \tag{84}$$

9.13 Species m_6_0

Name $m_{-}6$

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in Naive_CTL_division_7 and as a product in Naive_CTL_division_6).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{m}_{-}6_{-}0 = 2 |v_{22}| - |v_{23}| \tag{85}$$

9.14 Species m_7_0

Name $m_{-}7$

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in Naive_CTL_division_8 and as a product in Naive_CTL_division_7).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{m}_{-}7_{-}0 = 2 v_{23} - v_{24} \tag{86}$$

9.15 Species m_8_0

Name m_8

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in Precursor_T_cell_differentiation_1 and as a product in Naive_CTL_division_8 and as a modifier in Precursor_T_cell_differentiation_2).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{m}_{-}8_{-}0 = 2 v_{24} - v_{25} \tag{87}$$

 $\mathfrak{BML2}^{d}$ was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

 $[^]d$ EML Research gGmbH, Heidelberg, Germany