

Masayuki Okada

### Introduction

- The Fed runs a large loss by paying interest on reserves after 2022.
  - Expenditure = Interest rate (5p.p.) \* Reserve (15% of GDP)
  - Fed's loss / Treasury's tax revenue (2022 Q4 2024 Q3) = 2.5%
- The Fed transferred all profits to the Treasury before 2022.
- The Treasury does not offset the Fed's losses now.

• However, conventional macroeconomic models assume a consolidated government budget (Sargent and Wallace 1981).

## **Research Question**

Do the unconsolidated government budgets change monetary-fiscal policy?

Treasury cannot provide the optimal fiscal support to the central bank.

### What I do

#### **Optimal monetary and fiscal Policy without commitment**

The decision-making problem for the government.

- Maximize the household utility subject to the equilibrium conditions.
  - 1. NK model with two interest-bearing liabilities, reserves and Government bonds.
  - 2. Constraint an optimal resource allocation from Treasury to the central bank.

### What I find

1. Study the inflationary episode after 2022 and negative productivity shock.

#### Question.

How does the impulse responses change when the central bank lacks fiscal backing?

#### Answer.

The central bank without fiscal backing tolerates higher inflation.

The key is the large reserves as an initial condition.

### What I find

- 1. Study the inflationary episode after 2022 and negative productivity shock.
- 2. Quantitatively characterize the dynamic property of the optimal policy.

#### Question.

Does the lack of fiscal support make the optimal monetary-fiscal policy volatile?

#### Answer.

Inflation is more volatile by 3% without the fiscal backing.

Tax is more volatile for productivity and government expenditure shocks, but less for cost-push.

### What I find

- 1. Study the inflationary episode after 2022 and negative productivity shock.
- 2. Quantitatively characterize the dynamic property of the optimal policy.

#### 3. Question

From a normative point, should the Treasury support the central bank?

#### Answer.

The welfare gain of fiscal backing is small in the typical business cycle.

<0.01% in consumption equivalence

The key is 1."typical" business cycle VS. Large reserves as an initial condition.

2. Stochastic steady-state VS Dynamics.

# Model

### **Environment**

- Time. Discrete, Infinite horizon.
- Agents

**Household** consumes, works, and trades reserves and government bonds. Appreciate reserves and bonds as a liquidity value.

**Producers** are the simple New-Keynesian style.

**Treasury** provides public expenditure. Finance by distortionary sales tax, government bonds, and remittance from the central bank.

Central bank provides reserves. Purchases government bonds to stabilize net worth.

• Market. Reserves and government bonds are traded. They differ in duration and liquidity value.

### Household

$$\max_{C_t, N_t(j), B_t^H, D_t^H} \sum_{t=0}^{\infty} \beta^t \left[ \frac{1}{1-\sigma} C_t^{1-\sigma} - \frac{1}{1+\nu} N_t^{1+\nu} + \frac{\chi_1}{1-\gamma_1} (Q_t^d D_t^H)^{1-\gamma_1} + \frac{\chi_2}{1-\gamma_2} (Q_t^b B_t^H)^{1-\gamma_2} \right]$$

s.t.

$$P_t C_t + Q_t^d D_t^H + Q_t^b B_t^H = D_{t-1}^H + (1 + \rho^T Q_t^b) B_{t-1}^H + P_t w_t \int_0^1 N_t(j) dj + P_t \Phi_t,$$

- $D_t^H$  is reserves directly held by the household and issued by the central bank.
- ullet  $B_t^H$  is a long-duration government bond. Duration is given by  $ho^T$ .
- ullet  $\Phi$  is the firm's profit.

### **Firms**

Standard set up of the adjustment cost model.

$$\max_{p_t(i)} \quad E_t \sum_{T=t}^{\infty} \beta^T \Lambda_t \left( \underbrace{(1-\tau_t)p_t(i)y_t(i)}_{\text{Sales tax}} - \mu_t^w w_t N_t(i) - P_t \frac{\varphi}{2} \left( \frac{p_t(i)}{p_{t-1}(i)} - 1 \right)^2 Y_t \right)$$
 Exogenous Cost-push shock

$$\begin{array}{ccc} \text{Production function} & y_t(i) = A_t N_t(i) \\ & & & \text{Exogenous} \\ & & & & \text{Productivity} \end{array}$$

### Government

Treasury's budget

Remittance from CB

$$Q_t^b B_t^T + P_t \tau_t Y_t + P_t H_t = (1 + \rho^T Q_t^b) B_{t-1}^T + P_t G_t$$

 $B^T$  is the total supply of government bonds. The government expenditure,  $G_t$ , is exogenous.

Central bank's budget

Remittance to Treasury

$$Q_t^d D_t^C + (1 + \rho^T Q_t^b) B_{t-1}^C = D_{t-1}^C + Q_t^b B_t^C + P_t H_t$$

 $D^{C}$  is reserves.  $B^{C}$  is a Treasury's bond held by the central bank.

$$B_t^C = \alpha B_t^T$$

Inequality constraint on the remittance

$$H_t \geq H^*$$

## Equilibrium

Market Clearing Condition

(Goods) 
$$Y_t = C_t + G_t + \frac{\varphi}{2} (\pi_t - 1)^2 Y_t$$
  
(Reserves)  $D_t^H = D_t^C$   
(Government bonds)  $B_t^H + B_t^C = B_t^T$ 

# **Optimal Policy (Discretion) - Unconsolidated Budgets**

$$\max \quad E_0 \sum_{t=0}^{\infty} \beta^t \left[ \frac{1}{1-\sigma} C_t^{1-\sigma} - \frac{1}{1+\nu} N_t^{1+\nu} + \frac{\chi_1}{1-\gamma_1} (Q_t^C b_t^C)^{1-\gamma_1} + \frac{\chi_2}{1-\gamma_2} ((1-\alpha) Q_t^T b_t^T)^{1-\gamma_2} \right]$$

**Euler Equations** 

**NKPC** 

**Market Clearing** 

Choice

 $C_t$ ,  $N_t$ ,  $\pi_t$ , Sales Tax Two liabilities Prices of liabilities Remittance

$$Q_t^b B_t^T + P_t \tau_t Y_t + P_t H_t = (1 + \rho^T Q_t^b) B_{t-1}^T + P_t G_t.$$

$$Q_t^d D_t^C + (1 + \rho^T Q_t^b) B_{t-1}^C = D_{t-1}^C + Q_t^b B_t^C + P_t H_t$$

$$H_t \ge H^*$$

Remittance

# **Optimal Policy (Discretion) - Unconsolidated Budgets**

$$\max \quad E_0 \sum_{t=0}^{\infty} \beta^t \left[ \frac{1}{1-\sigma} C_t^{1-\sigma} - \frac{1}{1+\nu} N_t^{1+\nu} + \frac{\chi_1}{1-\gamma_1} (Q_t^C b_t^C)^{1-\gamma_1} + \frac{\chi_2}{1-\gamma_2} ((1-\alpha) Q_t^T b_t^T)^{1-\gamma_2} \right]$$

Choice

**Euler Equations** 

**NKPC** 

**Market Clearing** 

 $C_t, N_t, \pi_t$ , Sales Tax Two liabilities Prices of liabilities Remittance

Treasury

$$Q_t^b B_t^T + P_t \tau_t Y_t + P_t H_t = (1 + \rho^T Q_t^b) B_{t-1}^T + P_t G_t.$$

CB

$$Q_t^d D_t^C + (1 + \rho^T Q_t^b) B_{t-1}^C = D_{t-1}^C + Q_t^b B_t^C + P_t H_t$$

 $H_t \geq H^*$ 

Remittance

#### **Optimal resource allocation through remittance**

For CB, Reduce abundant reserves & Increase scarce reserves. For Treasury, help tax smoothing.

# **Optimal Policy (Discretion) - Consolidated Budgets**

$$\max \quad E_0 \sum_{t=0}^{\infty} \beta^t \left[ \frac{1}{1-\sigma} C_t^{1-\sigma} - \frac{1}{1+\nu} N_t^{1+\nu} + \frac{\chi_1}{1-\gamma_1} (Q_t^C b_t^C)^{1-\gamma_1} + \frac{\chi_2}{1-\gamma_2} ((1-\alpha) Q_t^T b_t^T)^{1-\gamma_2} \right]$$

**Euler Equations** 

**NKPC** 

**Market Clearing** 

Choice

 $C_t, N_t, \pi_t$ , Sales Tax Two liabilities **Prices of liabilities** Remittance

Consolidated Government 
$$Q_t^d D_t^C + Q_t^b (1 - \alpha) B_t^T + \tau_t P_t Y_t = D_{t-1}^C + (1 + \rho^T Q_t^b) (1 - \alpha) B_{t-1}^T + P_t G_t.$$

#### **Solution**

- Discretion. Markov-perfect equilibrium.
- State variables ... Shock, reserves, Treasury bond
- Shock... Cost-push, productivity, and government expenditure.
  - Include one shock and exclude the other two.
- Globally solve the model.
  - Occasionally binding constraints,  $H_t \ge H^*$ .
  - The steady state is a priori unknown (The stead state depends on  $\frac{\partial \ Expectations}{\partial \ state \ variables}$ )

# **Calibration**

|       | Variable   | Value  | Description                            | Target                           | Model       | Data        |
|-------|------------|--------|----------------------------------------|----------------------------------|-------------|-------------|
|       | β          | 0.995  | Discount factor                        | -                                | -           | -           |
|       | σ          | 2      | Risk aversion                          | -                                | -           | -           |
| ard _ | ν          | 7      | Frisch Elasticity                      | Frisch Elasticity                | 1/7         | -           |
|       | $\theta$   | 10     | Elasticity of substitution among goods | Mark up                          | 7%          | -           |
|       | $\varphi$  | 100    | Price adjustment cost                  | Slope of NKPC                    | 0.05        | -           |
|       | $ ho^T$    | 0.9    | Duration of Treasury                   | Average Maturity                 | 10 quarters | 32 quarters |
|       | $\chi_1$   | 0.0002 | Utility from reserves                  | Steady-state reserves            | 15% of GDP  | 15% of GDP  |
|       | $\chi_2$   | 0.0015 | Utility from Treasury bond             | Steady state Treasury            | 30% of GDP  | 80% of GDP  |
|       | $\gamma_1$ | 2      | Curvature of utility from reserves     | $rac{\partial Q^d}{\partial d}$ | 0.2         | 0.05~0.2    |
|       | $\gamma_2$ | 2      | Curvature of utility from Treasury     | $rac{\partial Q^b}{\partial b}$ | 0.2         | 0.2~0.5     |
|       | α          | 0.4    | CB's asset holding                     | CB's Net worth                   | 1           | 1           |
|       | $H^*$      | -0.01  | Lower bound on remittance              | -                                | -1% of GDP  | -           |

20

# Results

#### **Simulation**

- The initial state variables are large reserves (90th percentile of simulated reserves).
- The size of the shock is small (-0.3% of output decline and 0.2% of inflation increase).
  - I do not finish solving the model with large shock.









# **Primary Policy Tool and Central Bank's Role**

- After cost-push shock, the primary policy tool is tax break.
- The central bank's role to issue reserves helps tax break.
  - The key parameter is Frisch elasticity and  $(Q^C b^C)^{1-\gamma}$ .

- After productivity shock, the central bank's role is to raise nominal interest rate enough.
- When the household cannot absorb large reserves, the unconsolidated model gives difference.
  - The key parameter is risk aversion and  $(Q^C b^C)^{1-\gamma}$ .







# Dynamic Property of the Optimal Policy

### Does the fiscal backing affect dynamic property of the optimal policy?

- Suppose the central bank has less fiscal support from the Treasury.
  - Increase the lower bound on remittance,  $H^*$ .  $(H_t \ge H^*)$
- $\bullet$  For each  $H^*$  and shock, I solve the model and simulate the economy.
- Compute the mean and variance of consumption, inflation, and tax rate.

- Horizontal is  $H^*$ . Vertical is **the volatility**. Normalized by the volatility in the consolidated model.
- Government expenditure (blue). Productivity (red). Cost-push (black).



• How each variable's volatility changes as fiscal backing for the central bank decreases (i.e.,  $H^* \uparrow$ ).

|             | Cost-push | Government expenditure |
|-------------|-----------|------------------------|
| Consumption | +3%       | +1%                    |
| Tax         | -10%      | +3%                    |
| Inflation   | +1%       | +2%                    |

Fiscal backing allows tax break

• How each variable's volatility changes as fiscal backing for the central bank decreases (i.e.,  $H^* \uparrow$ ).

|             | Cost-push | Government expenditure |
|-------------|-----------|------------------------|
| Consumption | +3%       | +1%                    |
| Tax         | -10%      | +3%                    |
| Inflation   | +1%       | +2%                    |

tax break

Fiscal backing allows Fiscal backing allows tax smoothing

# Retained Earnings by the central bank

- Bank of Japan retains 5% of profits and transfers the rest to the Treasury.
  - Large balance sheet (120% of GDP).
- Bundesbank uses its financial buffers to cushion burdens.
- No reason to retain earnings if the central bank and Treasury are consolidated.

# Why do the central banks retain earnings?

- Lower bound on remittance reduces the upper bound.
- If CB prints reserves and transfer a lot now, increased reserves cannot be reduced through remittance later. → Forward looking decision-making.



- Simulated the economy with cost-push shock.
- Remittance as histogram for consolidated and unconsolidated.

# The welfare gain of fiscal backing

# The welfare gain of fiscal backing is less than 0.01%.

- $\bullet$  I compute the welfare gain of increasing the lower bound on remittance,  $H^*$ .
- Consumption equivalence compared to the case of  $H^* = -\infty$ .

(Intuition) Fiscal backing affects the variance but less the mean.

The lack of fiscal backing increases the average inflation by 0.25 bps.