Risposte Foglio1

Giulia Coucorde, Andrea Cacioli, Lorenzo Dentis 914833

8 novembre 2022

1 Esercizio 1

Sia X una v.a che assume il valore 1 con probabilità p e (-N) con probabilità 1-p. Qui N è una v.a. di Poisson di parametro λ

$$X = \begin{cases} 1 & p \\ -N & 1-p \end{cases}$$

$$N \sim Pois(\lambda)$$
(1)

1.a

Determinare il valore di λ per cui $\mathbb{E}(X) = 0$.

Per il teorema dell'attesa totale, $\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X|A_i]P(A_i)$ con $A_1,...,A_n$ eventi a due a due disgiunti che formano una partizione di E, possiamo affermare che

$$\mathbb{E}[X] = P(X = 1) * E[1|X = 1] + P(X = -N) * \mathbb{E}[-N|X = -N] =$$

$$= p + (1 - p) * \mathbb{E}[-N] =$$

$$= essendo \ N \sim Poisson(\lambda) \ vale \ \mathbb{E}[N] = \lambda$$

$$= p - \lambda(1 - p)$$

$$\lambda = \frac{p}{1-p}$$

1.b

Calcolare Var(X). Usando la definizione di varianza, $Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$ ed il valore dell'attesa calcolato in sezione 1.a, scriviamo:

$$Var(X) = E[X^{2}] - [p - \lambda(1-p)]^{2}$$
(2)

Analogmantente al punto precedente si può calcolare $\mathbb{E}[X^2]$

$$\mathbb{E}[X^{2}] = p * \mathbb{E}[1^{2}] + (1 - p)\mathbb{E}[(-N)^{2}] =$$

$$= p + (1 - p)(\lambda + \lambda^{2}) = p + \lambda + \lambda^{2} - p\lambda - p\lambda^{2} =$$

$$= p(1 - \lambda - \lambda^{2}) + \lambda(1 + \lambda)$$

Sostituendo nella equazione(2)

$$Var(X) = p(1 - \lambda - \lambda^2) + \lambda(1 + \lambda) - (p - \lambda(1 - p))^2$$

1.c

Sia $\{X_i\}_{i=1,2,...}$ una successione di v.a. distribuite come X e sia $Y = \sum_{i=1}^{M}$, con M v.a. di Poisson di parametro β , indipendente dalle X_i . Determinare $\mathbb{E}(Y)$.

$$\begin{split} Y &= \sum_{i=1}^{M} X_i \\ M &\sim Pois(\beta). \\ \text{Chiamiamo } \mathbb{E}(X_i) = p - \lambda + \lambda p = \mu \\ \mathbb{E}(Y) &= \sum_{m=1}^{\infty} \mathbb{E}[Y|M=m]P(M=m) \end{split}$$

Data $M \sim Pois(\beta)$ allora $P(M=m) = \frac{\beta^m}{m!} e^{-\beta}$. Invece

$$\begin{split} \mathbb{E}[Y|M=m] &= \mathbb{E}[\sum_{i=1}^{m}] = per \ linearit\grave{a} \\ &= \sum_{i=1}^{m} \mathbb{E}[X_i] = m\mu \end{split}$$

Quindi

$$\begin{split} \mathbb{E}[y] &= \sum_{m=1}^{\infty} m \mu \qquad \frac{\beta^m}{m!} e^{-\beta} = \\ &= e^{-\beta} \mu \sum_{m=1}^{\infty} m \frac{\beta^m}{m!} = \\ &= e^{-\beta} \mu \sum_{m=1}^{\infty} \frac{\beta^m}{(m-1)!} = \\ &= semplificando\ con\ Wolfram\ Alpha = \\ &= \beta \mu \end{split}$$

Questo esercizio poteva essere alternativamente risolto utilizzando il teorema della doppia attesa e quindi ponendo $\mathbb{E}(Y) = \mathbb{E}[\sum_{i=1}^N X_i] = \mathbb{E}[\mathbb{E}[\sum_{i=1}^N X_i|N]]$. Condizionando su N e svolgendo i calcoli analogamente a quanto fatto in classe saremmo giunti alla seguente uguaglianza:

$$\mathbb{E}[Y] = \mathbb{E}[\sum_{i=1}^{N} X_i] = \mathbb{E}[N] * \mathbb{E}[X] = \beta \mu$$

2 Esercizio 2

Alla stazione di partenza di un treno salgono K persone, con K v.a. distribuita secondo Poisson, di parametro $\lambda=100$. Il treno effettua un'unica fermata prima dell'arrivo a destinazione. Alla fermata ogni persona scende, con uguale probabilità p.

$$K \sim Pois(100) \qquad X \sim Binom(K, p)$$

$$f_K(k) = \frac{\lambda^k}{k!} e^{-\lambda} \qquad f_X(x) = \binom{k}{x} p^x (1-p)^{k-x}$$

$$\mathbb{E}(k) = \lambda = 100 \qquad \mathbb{E}(X) = kp$$

Creiamo inoltre una nuova v.a. Z=K-X che conta il numero di persone rimaste sul treno.

2.a

Se nessun nuovo passeggero sale alla fermata intermedia, determinare la probabilità che il treno arrivi alla stazione di destinazione finale con almeno 90 passeggeri.

Si sta cercando $P(Z \ge 90)$.

$$\begin{split} f_Z(z) &= \sum_{k=0}^{\infty} \underbrace{P(k-X=z|K=k)}_{\binom{k}{(k-z)}p^{k-z}(1-p)^z} \underbrace{P(K=k)}_{\frac{\lambda^k}{k!}e^{-\lambda}} = \\ &= \sum_{k=0}^{\infty} \frac{k!}{(k-z)!z!} p^{k-z} (1-p)^z \frac{\lambda^k}{k!} e^{-\lambda} = \\ &= portando\ fuori\ dalla\ sommatoria\ i\ termini\ non\ correlati\ a\ k = \\ &= \frac{e^{-\lambda}(1-p)^z}{z!} \sum_{k=0}^{\infty} \frac{k!}{(k-z)!} p^{k-z} \frac{\lambda^k}{k!} = \frac{e^{-\lambda}(1-p)^z}{z!} \sum_{k=0}^{\infty} \frac{p^{k-z}\lambda^k}{(k-z)!} = \\ &= moltiplicando\ e\ dividendo\ \lambda^{k-z} = \\ &= \frac{e^{-\lambda}(1-p)^z}{z!} \sum_{k=0}^{\infty} \frac{p^{k-z}\lambda^k}{(k-z)!} * \lambda^{k-z}\lambda^{z-k} = \\ &= \frac{e^{-\lambda}(1-p)^z\lambda^z}{z!} \sum_{k=0}^{\infty} \frac{p^{k-z}\lambda^k\lambda^{k-z}}{(k-z)!\lambda^k} = \\ &= \frac{e^{-\lambda}(1-p)^z\lambda^z}{z!} \sum_{k=0}^{\infty} \frac{(p\lambda)^{k-z}}{(k-z)!} = \\ &= \frac{e^{p\lambda}e^{-\lambda}(1-p)^z\lambda^z}{z!} = e^{p\lambda-\lambda} \frac{(\lambda-\lambda p)^z}{z!} = Pois(\lambda-\lambda p) \end{split}$$

Quindi
$$F_Z(z) = \sum_{i=0}^{z} f_Z(i) = P(Z < z).$$

$$P(Z > 90) = 1 - P(Z < 90) = 1 - f_Z(89)$$

2.b

- 3 Esercizio 3
- 4 Esercizio 4