Chapter 1

Introduction

In particle physics we are concerned about small objects and their interactions. Since the 1970 the dynamics of these tiny pieces are best described by the Standard Model (SM).

The SM contains two groups of fermionic, Spin 1/2 particles. The former group, the Leptons consist of: the electron (e), the muon (μ) , the tau (τ) and their corresponding neutrinos ν_e , ν_μ and ν_τ . The latter group, the Quarks contain: u, d (up and down, the so called light quarks), s (strange), c (charm), b (beauty or beauty) and t (top or truth). The SM furthermore differenciates between three fundamental forces (and its carriers): the electromagnetic (γ) photon), weak (Z- or W-Boson) and strong (g) gluon) interactions. The before mentioned Leptons solely interact through the electromagnetic and the weak force (also referred to as electroweak interaction), whereas the quarks additionally interact through the strong force.

The strong force is denominated Quantumchromodynamics (QCD). As the name suggest¹ the force is characterized by the color charge. Every quark has next to its type one of the three colors blue, red or green. The color force is mediated through eight gluons, which each being bi-colored², interact with quarks and each other. The strength of the strong force is given by the coupling constant α_s , which we will determine within this work. The strong coupling constant $\alpha_s(E)$ is a function of energy E and increases with decreasing energies³. This is exclusive for QCD and leads to asymptotic freedom and confinement. The former phenomen describes the decreasing strong force between quarks and gluons for high energies (short distances), which become asymptotically free at large energies. The latter expresses the fact, that no isolated quark has been found until today. Quarks appear confined as Hadrons, the so called Mesons⁴ and Baryons⁵. As we measure Hadrons in our experiments but calculate with

¹Chromo is the greek word for color.

²Each gluon carries a color and an anti-color.

³In contrast to the electromagnetic force, where $\alpha(E)$ decreases!

⁴Composite of a quark and an anti-quark.

⁵Composite of three quarks or three anti-quarks.

Name	Symbol	Quark content	Rest mass (MeV)
Pion	π^-	$ar{u}d$	$139.57061(24)\mathrm{MeV}$
Pion	π^0	$(u\bar{u} - d\bar{d})/\sqrt{2}$	$134.9770(5){ m MeV}$
Kaon	K^-	$ar{u}s$	$493.677(16){ m MeV}$
Kaon	K^0	$dar{s}$	$497.611(13){ m MeV}$
Eta	η	$(u\bar{u} + d\bar{d} - 2s\bar{s})/\sqrt{6}$	$547.862(17){ m MeV}$

Table 1.1: List of mesons produced by a τ -decay. Rare final states with branching Ratios smaller than 0.1 have been omitted. The list is taken from [**Davier2006**] with corresponding rest masses taken from [**PDG2018**].

quarks within our theoretical QCD model we have to assume *Quark-Hadron Duality*, which states that QCD, which is the theory of quarks and gluons, is still valid for Hadrons for energies sufficently heigh. For lower energies there are measurable *Duality Violations* (DV), which will be commented within this work.

taken from tau decay adapt! We are foremost interested into the hadronic decay channels, meaning τ -decays that have quarks in their final states. Unfortunately the quarks have never been measured isolated, but appear always in combination of *mesons* and *baryons*. Due to its mass of $m_{\tau} \approx 1.8\,\text{GeV}$ the τ -particle decays into light mesons (pions- π , kaons-K, and eta- η , see table 1.1), which can be experimentally detected.

In the following (??) we will describe the τ -decays, which play an essential role in our QCD analysis. Then in section 1.1 we want to give more details of QCD, especially about the coupling constant $\alpha_s(s)$ (which is not constant at all) and the QCD sum rules.

1.1 Quantumchromodynamics

QCD gives a complete description of quarks and gluons. It is born out of the very successful theory of quantum electrodynamics (QED), but has some major differences. QED has two well known constituent fields the fermion and the photon. It is also a so called abelian theory, meaning that two consecutive rotations commute AB = BA. Due to the abelian nature of the QED gauge group U(1) only fermions carry gauge charge. Photons do not carry charge. In contrast QCD takes quarks⁶ and gluons as fields. Additionally QCD is ruled by a non-abelian gauge symmetry of SU(3). Thus the group operation of QCD in general do not commute, which leads to gluons carrying charge! This charge is called color-charge. The theory requieres three colors and describes interactions between a quark of a color with a quark of another color via gluons. Contrary to QED the force carrier, the gluons, interact with themselve, because they carry color charge.

⁶Quarks are a subset to the fermions.

Flavour	Mass
\overline{u}	$3.48(24)\mathrm{MeV}$
d	$6.80(29)\mathrm{MeV}$
s	$130.0(18)\mathrm{MeV}$
c	$1.523(18) \mathrm{GeV}$
b	$6.936(57) \mathrm{GeV}$
t	$173.0(40) \mathrm{GeV}$

Table 1.2: List of Quarks and their masses. The masses of the up, down, strange, charm and bottom quark are the renormalization group invariant (RGI) quark masses and are quoted in the four-flavour theory $(N_f = 2 + 1)$ at the scale $\mu = 2 \,\text{GeV}$ in the \overline{MS} scheme and are taken from the Flavour Lattice Averaging Group [FLAG2019]. The mass of the top quark is not disucess in [FLAG2019] and has been taken from [PDG2018] from direct observations of top events.

The theory of QCD can be summarized with its *Lagrange density*[Jamin2006]:

$$\mathcal{L}_{QCD}(x) = -\frac{1}{4}G^{a}_{\mu\nu}(x)G^{\mu\nu a}(x) + \sum_{A} \left[\frac{i}{2}\bar{q}^{A}(x)\gamma^{\mu} \overleftrightarrow{D}_{\mu}q^{A}(x) - m_{A}\bar{q}^{A}(x)a^{A}(x) \right], \tag{1.1}$$

where $q^A(x)$ represents the quark fields and $G^a_{\mu\nu}$ being the gluon field strength tensor given by:

$$G^{a}_{\mu\nu}(x) \equiv \partial_{\mu}B^{a}_{\nu}(x) - \partial^{a}_{\nu}(x) + gf^{abc}B^{b}_{\mu}(x)B^{c}_{\nu}(x),$$
 (1.2)

where B^a_μ are the gluon fields, given in the adjoint representation of the SU(3) gauge group with f^{abc} as structure constants. Furthermore we have used $A, B, \ldots = 0, \ldots 5$ as flavour indices, $a, b, \ldots = 0, \ldots 8$ as color indices and $\mu, \nu, \ldots = 0, \ldots 3$ as lorentz indices.

1.1.1 Renormalisation Group

The perurbations of the QCD Lagrangian 1.1 lead to divergencies, which have to be *renormalized*. There are different approaches to 'make' these divergencies finite. The most popular one is **dimensional regularisation**.

In dimensional regularisation we expand the four space-time dimensions to arbitrary dimensions. Consequently the in QCD calculations appearing Feyman integrals have to be continued to D-dimensions like

$$\mu^{2\epsilon} \int \frac{\mathrm{d}^D p}{(2\pi)^D} \frac{1}{[p^2 - m^2 + i0][(q - p)^2 = m^2 + i0]},\tag{1.3}$$

where we introduced the scale parameter μ to account for the extra dimensions and conserve the mass dimension of the non continued integral.

In addition physical quantities⁷ cannot depend on the renormalisation scale μ . Thus the derivative by μ of a general physical quantity $R(q, a_s, m)$ that

⁷Observables that can be measured.

depends on the external momentum q, the renormalised coupling $a_s \equiv \alpha_s/\pi$ and the renormalized quark mass m has to yield zero

$$\mu \frac{\mathrm{d}}{\mathrm{d}\mu} R(q, a_s, m) = \left[\mu \frac{\partial}{\partial \mu} + \mu \frac{\mathrm{d}a_s}{\mathrm{d}\mu} \frac{\partial}{\partial m} + \mu \frac{\mathrm{d}m}{\mathrm{d}\mu} \frac{\partial}{\partial m} \right] R(q, a_s, m) = 0. \tag{1.4}$$

eq. (1.4) is referred to as **renormalization group equation** and is the basis for defining the *renormalisation group functions*:

$$\beta(a_s) \equiv -\mu \frac{\mathrm{d}a_s}{\mathrm{d}\mu} = \beta_1 a_s^2 + \beta_2 a_s^3 + \dots \qquad \beta - \text{function} \qquad (1.5)$$

$$\gamma(a_s) \equiv -\frac{\mu}{m} \frac{\mathrm{d}m}{\mathrm{d}\mu} = \gamma_1 a_s + \gamma_2 a_s^2 + \dots$$
 anomalous mass dimension. (1.6)

Running gauge coupling

The β -function and the anomalous mass dimension are responsible for the running of the strong coupling and the running of the quark mass respektively. In this section we will shortly review the β -function and its implications on the strong coupling, whereas in the following section we will discuss the anomalous-mass dimension.

Regarding the β -function we notice, that $a_s(\mu)$ is not a constant, but runs by varying its scale μ . Lets observe the running of the strong coupling constant by integrating the β -function

$$\int_{a_s(\mu_1)}^{a_s(\mu_2)} \frac{\mathrm{d}a_s}{\beta(a_s)} = -\int_{\mu_1}^{\mu_2} \frac{\mathrm{d}\mu}{\mu} = \log \frac{\mu_1}{\mu_2}.$$
 (1.7)

To analytically evaluate the above integral we can approximate the β -function to first order, with the known coefficient

$$\beta_1 = \frac{1}{6}(11N_c - 2N_f),\tag{1.8}$$

vielding

$$a_s(\mu_2) = \frac{a_s(\mu_1)}{\left(1 - a_s(\mu_1)\beta_1 \log \frac{\mu_1}{\mu_2}\right)}.$$
 (1.9)

As we have three colours $N_c=3$ and six flavours $N_f=6$ the first β -function 1.5 is positive. Thus for $\mu_2>\mu_1$ $a_s(\mu_2)$ decreases logarithmically and vanishes for $\mu_2\to\infty$. This behaviour is known as asymptotic freedom. The coefficients of the β -function are currently known up to the 5th order and listed in the appendix ??.

Running quark mass

Not only the coupling but also the masses carry an energy dependencies, which is governed by the anomalou mass dimension $\gamma(a_s)$.

The properties of the running quark mass can be derived similar to the gauge coupling. Starting from integrating the $anomalous\ mass\ dimension\ 1.6$

$$\log \frac{m(\mu_2)}{m(\mu_1)} = \int_{a_s(\mu_1)}^{a_s(\mu_2)} da_s \frac{\gamma(a_s)}{\beta(a_s)}$$
 (1.10)

we can approximate the *anomalous mass dimension* to first order and solve the integral analytically [Schwab2002]

$$m(\mu_2) = m(\mu_1) \left(\frac{a(\mu_2)}{a(\mu_1)}\right)^{\frac{\gamma_1}{\beta_1}} \left(1 + \mathcal{O}(\beta_2, \gamma_2)\right).$$
 (1.11)

As β_1 and γ_1 (see ??) are positive the quark mass decreases with increasing μ . The general relation between different scales is given by

$$m(\mu_2) = m(\mu_1) \exp\left(\int_{a_s(\mu_1)}^{a_s(\mu_2)} da_s \frac{\gamma(a_s)}{\beta(a_s)}\right)$$
 (1.12)

and can be solved numerically to run the quark mass to the needed scale μ_2 .

QCD in general has a precision problem caused by uncertainties and largness of the strong coupling constant α_s . The fine-structure constant (the coupling constant of QED) is known to eleven digits, whereas the strong coupling is only known to about four. Furthermore for low energies the strong coupling constant is much larger than the fine-structure constant. E.g. at the Z-mass, the standard mass to compare the strong coupling, we have an α_s of 0.11, whereas the fine structure constant would be around 0.007. Consequently to use PT we have to calculate our results to much heigher orders, including tens of thousends of Feynman diagrams, in QCD to achieve a precision equal to QED. For even lower energies, around 1 GeV, the strong coupling reaches a critical value of \approx 0.5 leading to a break down of PT.

In this work we try to achieve a higher precision in the value of $_s$. Our method to measure the strong coupling is called **QCD sum rules**, which by itself is based on a concept called the two-point function for which we will devote the following section.

1.1.2 Two-Point function

The vacuum expectation value of the product of the conserved noether current $J_{\mu}(x)$ at different space-times points x and y is known as the **two-point** function (or simply **correlator**)

$$\Pi_{\mu\nu}(q^2) = \langle 0|J_{\mu}(x)J_{\nu}(y)|0\rangle,$$
(1.13)

where the noether current is given by

$$J_{\mu}(x) = \overline{q}(x)\Gamma q(y) \tag{1.14}$$

, where Γ stands for one of the dirac matrices $\Gamma \in \{1, i\gamma_5, \gamma_\mu, \gamma_\mu\gamma_5\}$, specifying the quantum number of the current (S: scalar, P: pseudo-Scalar, V: vectorial, A: axial-vectorial, respectively).

The correlator tensor $\Pi_{\mu\nu}(q^2)$ can be lorentz decomposed to a scalar function $\Pi(q^2)$. There are only two possible terms that can reproduce the second order tensor $q_{\mu}q_{\nu}$ and $q^2g_{\mu\nu}$. The sum of both multiplied with two arbitrary functions $A(q^2)$ and $B(q^2)$ yields

$$\Pi_{\mu\nu}(q^2) = q_{\mu}q_{\nu}A(q^2) + q^2g_{\mu\nu}B(q^2). \tag{1.15}$$

By making use of the Ward-identity [Peskin1995]

$$q^{\mu}\Pi_{\mu\nu}(q^2) = q^{\nu}\Pi_{\mu\nu} = 0 \tag{1.16}$$

we can demonstrate, that the two arbitrary functions are related

$$q^{\mu}q^{\nu}\Pi_{\mu\nu} = q^4A(q^2) + q^4B(q^2) = 0$$

$$\implies A(q^2) = -B(q^2).$$
(1.17)

Thus redefining $A(q^2) \equiv \Pi(q^2)$ we expressed the correlator as a scalar function

$$\Pi_{\mu\nu}(q^2) = (q_{\mu}q_{\nu} - q^2g_{\mu\nu})\Pi(q^2). \tag{1.18}$$

The scalar QCD two point function can then be related to the spectrum of hadronic states. The correlator is then related to an integral over the **spectral** function $\rho(s)$ via the Källén-Lehmann spectral representation [Kallen1952, Lehmann1954], which is known since the early fities

$$\Pi(q^2) = \int_0^\infty \mathrm{d}s \frac{\rho(s)}{s - q^2 - i\epsilon}.\tag{1.19}$$

Equation 1.19 is referred to as **dispersion relation** analogous to similar relations which arise for example in electrodynamics and defines the **spectral** function (a derivation can be found in [Rafael1997])

$$\rho(s) = \frac{1}{\pi} \operatorname{Im} \Pi(s). \tag{1.20}$$

Until know we connected theoretical correlators with the measurable hadronic spectrum. Nevertheless the analytic properties of the correlators have to be discussed as the function has discontinuities.

The main contribution from the spectral function given in eq. (1.19) are the hadronic final states

$$2\pi\rho(m^2) = \sum_{n} \langle 0|J_{\mu}(x)|n\rangle \langle n|J_{\nu}(y)\rangle (2\pi^2)^4 \delta^{(4)}(p-p_n), \qquad (1.21)$$

which lead to a series of continuous poles on the positive real axis for the two-point function, see Fig. 1.1. These discontinuities can be tackled with *Cauchy's theorem*, which we will apply in ??.

Until now we exclusively dealt with the perturbative (PT) part of the theory, but QCD is known to have not negligible non-perturbative (NPT) contributions. Thus before continuing with the *Sum Rules* we need a final ingredient the operator product expansion, which implements NPT cotributions to our theory.

Figure 1.1: Analytic structure in the complex q^2 -plane of the Fourier transform of the two-point function. The hadronic final states are responsible for poles appearing on the real-axis. The one-particle states contribute as isolated pole and the multi-particle states contribute as bound-states poles or a continues "discontinuity cut" [Peskin1995].

1.1.3 Operator Product Expansion

The **Operator Product Expansion** (OPE) was introduced by Wilson in 1969 [Wilson1969]. The expansion states that non-local operators can be rewritten into a sum of composite local operators and their corresponding coefficients:

$$\lim_{x \to y} \mathcal{O}_1(x)\mathcal{O}_2(y) = \sum_n C_n(x - y)\mathcal{O}_n(x), \tag{1.22}$$

where $C_n(x-y)$ are the so-called Wilson-coefficients.

The OPE lets us separate short-distance from long-distance effects. In perturbation theory (PT) we can only amount for short-distances, which are equal to hight energies, where the strong-coupling α_s is small. Consequently the OPE decodes the long-distance effects in the higher dimensionsional operators.

The form of the composite operators are dictated by Gauge- and Lorentz symmetry. Thus we can only make use of operators of even dimension. The

operators up to dimension six are given by [Pascual1984]

Dimension 0: 1
Dimension 4:
$$: m_i \overline{q} q:$$
 $: G_a^{\mu\nu}(x) G_{\mu\nu}^a(x):$
Dimension 6: $: \overline{q} \Gamma q \overline{q} \Gamma q:$
 $: \overline{q} \Gamma \frac{\lambda^a}{2} q_\beta(x) \overline{q} \Gamma \frac{\lambda^a}{2} q:$
 $: m_i \overline{q} \frac{\lambda^a}{2} \sigma_{\mu\nu} q G_a^{\mu\nu}:$
 $: f_{abc} G_a^{\mu\nu} G_b^{\nu\delta} G_c^{\delta\mu}:,$

$$(1.23)$$

where Γ stands for one of the dirac matrices $\Gamma \in \{1, i\gamma_5, \gamma^{\mu}, \gamma^{\mu}\gamma_5\}$, specifying the quantum number of the current (S, P, A, respectively). As all the operators appear normal ordered they vanish by definition in PT. Consequently they appear as **Condensates** in Non-perturbative (NPT) QCD like quark-condensate $\langle \overline{q} q \rangle$ or the gluon-condensate $\langle aGG \rangle$ (both of dimension four). These non-vanishing condensats characterize the QCD-vacuum.

As we work with dimensionless functions (e.g. Π) in Sum Rules, the r.h.s. of $\ref{eq:constraint}$? has to be dimensionless. Consequently the Wilson-coefficients have to cancel the dimension of the operator with their inverse mass dimension. To account for the dimensions we can make the inverse momenta explicit

$$\Pi_{V/A}^{OPE}(s) = \sum_{D=0,2,4...} \frac{c^{(D)} \langle \mathcal{O}^{(D)}(x) \rangle}{-s^{D/2}},$$
(1.24)

where we used $C^{(D)} = c/(-s)^{D/2}$ with D being the dimension. Consequently the OPE should converge with increasing dimension for sufficiently large momenta s.

Let's show how the OPE contributions are calculated with a the "standard example" (following [Pascual1986]), where we compute the perturbative and quark-condensate Wilson-coefficients for the ρ -meson. For the ρ -meson, which is composed of u and d quarks, the current of eq. (1.13) takes the following form

$$j^{\mu}(x) = \frac{1}{2} \left(: \left[\overline{u} \gamma^{\mu} u \right](x) - \overline{d} \gamma^{\mu} d \right](x) \right). \tag{1.25}$$

In fig. 1.2 we draw the Feynman-diagram, from which we can take the uncontracted mathematical expression for the scalar correlator

$$\Pi(q^{2}) = -\frac{i}{4q^{2}(D-1)} \int d^{D} x e^{iqx} \langle \Omega | T\{: \overline{u}(x)\gamma^{\mu}u(x) - \overline{d}(x)\gamma^{mu}d(x) :$$

$$\times : \overline{u}(0\gamma_{\mu}u(0) - \overline{d}(0)\gamma_{\mu}d(0) :\} \rangle.$$
(1.26)

Using Wick's theorem we can contract all of the fields and calculate the first term of the OPE (1), which represents the perturbative contribution of the OPE

Figure 1.2: Feynman diagrams of the perturbative (a) and the quark-condensate (b) contribution. The upper part of the right diagram is not wick-contracted and responsible for the condensate.

(1)
$$\Pi(q^{2}) = \frac{i}{4q^{2}(D-1)} (\gamma^{\mu})_{ij} (\gamma_{\mu})_{kl} \int d^{D} x e^{iqx}$$

$$\times \left[\overline{u_{j\alpha}(x)} \overline{u}_{k\beta}(0) \cdot \overline{u_{l\beta}(0)} \overline{u}_{i\alpha}(x) + (u \to d) \right]$$

$$= \frac{3}{8\pi^{2}} \left[\frac{5}{3} - \log \left(-\frac{q^{2}}{\nu^{2}} \right) \right].$$
(1.27)

To calculate the higher dimensional contributions of the OPE we use the same techniques as before, but leave some of the fields uncontracted. For the quark-condensate, which we want to derive for tree-level, we leave two fields uncontracted

$$\Pi(q^{2}) = \frac{i}{4q^{2}(D-1)} (\gamma^{\mu})_{ij} (\gamma_{\mu})_{kl} \int d^{D} x e^{iqx} \left[+ \overline{u_{j\alpha}(x)} \overline{u}_{k\beta}(0) \cdot \langle \Omega | : \overline{u}_{i\alpha}(x) u_{l\beta}(0) : |\Omega \rangle \right.$$

$$\left. + \overline{u_{l\beta}(0)} \overline{u}_{i\alpha}(x) \cdot \langle \Omega | : \overline{u}_{k\beta}(0) u_{j\alpha}(x) : |\Omega \rangle + (u \to d) \right].$$
(1.28)

The non contracted fields can then be expanded in x

$$\langle \Omega | : \overline{q}(x)q(0) : |\Omega \rangle = \langle \Omega | : \overline{q}(0)q(0) : |\Omega \rangle + \langle \Omega | : \left[\partial_{\mu}\overline{q}(0) \right] q(0) : |\Omega \rangle x^{\mu} + \dots$$
(1.29)

and redefined to a more elegant notation

$$\langle \overline{q} \, q \rangle \equiv \langle \Omega | : \overline{q} \, (0) q(0) : | \Omega \rangle. \tag{1.30}$$

The finally result can be taken from [Pascual 1984] and yields

$$\Pi_{(\rho)}(q^2) = \frac{1}{2} \frac{1}{(-q^2)^2} \left[m_u \langle \overline{u} \, u + m_d \langle \overline{d} \, \rangle \right]. \tag{1.31}$$

The usage of the OPE and its validity is far from obvious. We are deriving the OPE from matching the Wilson-coefficients to Feynman-graph analyses. These Feynman-graphs are calculated perturbatively but the coefficients with dimension D > 0 correspond to NPT condensates!

Having gathered all of the necessary concepts we can close the gap between the theory and experiment in the last section of the introduction: QCD Sum Rules.

1.1.4 Sum Rules

To relate the measurable hadronic final states of a QCD process (e.g. τ -decays into Hadrons) to a theoretical calculable **QCD** sum rules have been empliyed by Shifman in the late sevent [Shifman1978].

The sum rules are a combination of the two-point function and its analyticity, the OPE, a dispersion relation, the optical theorem and quark hadron duality.

The previously introduced two-point function eq. (1.13) is generally descriped by the OPE to account for NPT effects.

$$\Pi(q^2) = \Pi^{OPE}(q^2). \tag{1.32}$$

Furthermore it is related to the theoretical spectral function $\rho(s)$ via a dispersion relation ??eq:dispersionRelation). Using QCD we are computing interactions based on quarks and gluons, but due to confinement, we are only able to observe Hadrons. Consequently to connect the theory to the experiment we have to assume **quark-hadron duality**⁸, which implies that physical quantities can be described equally good in the hadronic or in the quark-gluon picture. Thus we can rewrite the dispersion relation eq. (1.19) as

$$\Pi_{th}^{OPE}(q^2) = \int_0^\infty \frac{\rho_{exp}(q^2)}{(s - q^2 - i\epsilon)},\tag{1.33}$$

where we connected the theoretical correlator Π_{th} with the experimental measurable spectral function ρ_{exp} .

We have seen that the theoretical description of the correlator Π_{th} contains poles on the real axis, but the experimental data ρ_{exp} is solely accesible on the positive real axis. Thus we have to make use of Cauchy's theorem to access the theoretical values of the two-point function close to the postive real axis (see section 1.1.4) given by

$$\int_{\mathcal{C}} f(z) \, \mathrm{d}z = 0,\tag{1.34}$$

where f(z) is an analytic function on a closed contour C.

The final ingredient of the QCD sum rules is the *optical theorem*, relating experimental data with the imaginary part of the correlator (the spectral function $\rho(s)$).

⁸Or simply duality.

Figure 1.3: Analytical structure of $\Pi(s)$ with the used contour \mathcal{C} for the final QCD Sum Rule expression eq. (1.35).

In total, with the help Cauchy's theorem, the QCD sum rules can be sumed up in the following expression

$$\frac{1}{\pi} \int_0^\infty \frac{\rho_{exp}(t)}{t-s} dt = \frac{1}{\pi} \oint_{\mathcal{C}} \frac{\operatorname{Im} \Pi_{OPE}(t)}{t-s} dt, \tag{1.35}$$

where the l.h.s. is given by the experiment and the r.h.s. can be theoretically evaluated with by applying the OPE of the correlator $\Pi_{OPE}(s)$.