Permit Numbers 70861 and PSDTX1039

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	Emission Rates	
			lbs/hour	TPY (4)
S01	Pulverized Coal (PC) Boiler	NO _x (30-day)	573	1,793
	(8,185 MMBtu/hr)	NO _x (1-hr)	1,637	
		SO ₂ (30-day)	982	3,585
		SO ₂ (1-hr)	2,456	
		PM/PM ₁₀ (filterable)	123	538
		PM/PM ₁₀ (total)	246	1,076
		CO (30-day)	1,228	5,378
		CO (1-hr)	2,456	
		VOC	29	129
		Organic HAP		8.5
		Sulfuric acid mist	127	133
		Hydrogen fluoride	2.2	9.7
		Hydrogen chloride	2.2	9.7
		Total Halogenated Acids (5)		10.7
		Ammonia	41	55
		Lead	0.55	0.41
		Mercury	0.94	0.038

S01	Startup Emissions - PC Boiler	NO _x	964	
		SO ₂	2,892	
		PM/PM ₁₀ (filterable)	123	
		PM/PM ₁₀ (total)	327	
		со	1,228	
		voc	43	
		Sulfuric acid mist	111	
		Hydrogen fluoride	6	
		Hydrogen chloride	3	
		Ammonia	41	
		Lead	0.55	
		Mercury	0.90	
	g source is incorporated by reference tive November 3, 2006. The authors.			
Boilers, effect	ctive November 3, 2006. The autho 1. Natural Gas-fired			
Boilers, effective June 9, 2011	ctive November 3, 2006. The authors. Natural Gas-fired Auxiliary Boiler (278 MMBtu/hr)	orization was reviewed un	der Registration No.	95851, issued
Boilers, effective June 9, 2011	natural Gas-fired Auxiliary Boiler (278 MMBtu/hr) Before Commercial Operation of Main Boiler (unlimited annual	NO _x	der Registration No.	95851, issued 12.2
Boilers, effective June 9, 2011	ctive November 3, 2006. The authors 1. Natural Gas-fired Auxiliary Boiler (278 MMBtu/hr) Before Commercial Operation of	NO _x	der Registration No. 2.78 0.17	95851, issued 12.2 0.7
Boilers, effective June 9, 2011	natural Gas-fired Auxiliary Boiler (278 MMBtu/hr) Before Commercial Operation of Main Boiler (unlimited annual	NO _x SO ₂	2.78 0.17 10.3	95851, issued 12.2 0.7 45.2
Boilers, effective June 9, 2011	ctive November 3, 2006. The authors 1. Natural Gas-fired Auxiliary Boiler (278 MMBtu/hr) Before Commercial Operation of Main Boiler (unlimited annual hours of operation) Natural Gas-fired	NO _x SO ₂ CO PM/PM ₁₀ /PM _{2.5}	2.78 0.17 10.3 1.61	95851, issued 12.2 0.7 45.2 7.1
Boilers, effective June 9, 2012	ctive November 3, 2006. The authors 1. Natural Gas-fired Auxiliary Boiler (278 MMBtu/hr) Before Commercial Operation of Main Boiler (unlimited annual hours of operation) Natural Gas-fired Auxiliary Boiler (278 MMBtu/hr)	NOx SO2 CO PM/PM ₁₀ /PM _{2.5} VOC	2.78 0.17 10.3 1.61 1.8	95851, issued 12.2 0.7 45.2 7.1 7.9
Boilers, effective June 9, 2012	ctive November 3, 2006. The authors. Natural Gas-fired Auxiliary Boiler (278 MMBtu/hr) Before Commercial Operation of Main Boiler (unlimited annual hours of operation) Natural Gas-fired Auxiliary Boiler (278 MMBtu/hr) After Commercial Operation of Main Boiler (operation limited to	NO _x SO ₂ CO PM/PM ₁₀ /PM _{2.5} VOC	2.78 0.17 10.3 1.61 1.8 2.78	95851, issued 12.2 0.7 45.2 7.1 7.9 0.70
Boilers, effective June 9, 2012	ctive November 3, 2006. The authors. Natural Gas-fired Auxiliary Boiler (278 MMBtu/hr) Before Commercial Operation of Main Boiler (unlimited annual hours of operation) Natural Gas-fired Auxiliary Boiler (278 MMBtu/hr) After Commercial Operation of	NOx SO2 CO PM/PM ₁₀ /PM _{2.5} VOC NOx SO2	2.78 0.17 10.3 1.61 1.8 2.78 0.17	95851, issued 12.2 0.7 45.2 7.1 7.9 0.70 0.04
Boilers, effective June 9, 2012	ctive November 3, 2006. The authors. Natural Gas-fired Auxiliary Boiler (278 MMBtu/hr) Before Commercial Operation of Main Boiler (unlimited annual hours of operation) Natural Gas-fired Auxiliary Boiler (278 MMBtu/hr) After Commercial Operation of Main Boiler (operation limited to	NOx SO2 CO PM/PM ₁₀ /PM _{2.5} VOC NOx SO2	2.78 0.17 10.3 1.61 1.8 2.78 0.17 10.3	95851, issued 12.2 0.7 45.2 7.1 7.9 0.70 0.04 2.58
Boilers, effective June 9, 2012	Ctive November 3, 2006. The authors. Natural Gas-fired Auxiliary Boiler (278 MMBtu/hr) Before Commercial Operation of Main Boiler (unlimited annual hours of operation) Natural Gas-fired Auxiliary Boiler (278 MMBtu/hr) After Commercial Operation of Main Boiler (operation limited to 500 hours per year) Railcar Coal Unloading -	NOx SO2 CO PM/PM ₁₀ /PM _{2.5} VOC NOx SO2 CO PM/PM ₁₀ /PM _{2.5}	2.78 0.17 10.3 1.61 1.8 2.78 0.17 10.3 1.61	95851, issued 12.2 0.7 45.2 7.1 7.9 0.70 0.04 2.58 0.40
So2	Natural Gas-fired Auxiliary Boiler (278 MMBtu/hr) Before Commercial Operation of Main Boiler (unlimited annual hours of operation) Natural Gas-fired Auxiliary Boiler (278 MMBtu/hr) After Commercial Operation of Main Boiler (operation limited to 500 hours per year)	NOx SO2 CO PM/PM ₁₀ /PM _{2.5} VOC NOx SO2 CO PM/PM ₁₀ /PM _{2.5} VOC	2.78 0.17 10.3 1.61 1.8 2.78 0.17 10.3 1.61 1.8	95851, issued 12.2 0.7 45.2 7.1 7.9 0.70 0.04 2.58 0.40 0.45

		PM ₁₀	0.13	0.072
S05	Stackout Conveyor #1 - Coal Dust Fugitives (6)	PM	0.25	0.15
		PM ₁₀	0.12	0.070
S06	Stackout Conveyor #2 - Coal Dust Fugitives (6)	РМ	0.13	0.074
	Coal Dust 1 ugilives (0)	PM ₁₀	0.059	0.035
S07	Active Coal Pile #1 - Coal Dust Fugitives (6)	РМ	0.14	0.59
	Coal Dust 1 ugilives (0)	PM ₁₀	0.068	0.30
S08	Active Coal Pile #2 - Coal Dust Fugitives (6)	РМ	0.14	0.59
	Coal Dust 1 ugilives (0)	PM ₁₀	0.068	0.30
S09	Active Coal Pile Reclaim - Baghouse Vent	РМ	0.002	0.005
		PM ₁₀	<0.001	0.002
S10	Reclaim Conveyor #1 - Coal Dust Fugitives (6)	РМ	0.053	0.104
	Coal Dust 1 ugilives (0)	PM ₁₀	0.025	0.049
	two sources are incorporated by rective November 1, 2003. The auth 6, 2011.			
S10EC	Emergency Reclaim Conveyor Coal Dust Fugitives (6)	РМ	0.063	0.12
		PM ₁₀	0.030	0.059
S10EC	Emergency Reclaim Hopper Coal Dust Fugitives (6)	РМ	0.038	0.074
		PM ₁₀	0.018	0.035
S11	Coal Transfer Tower - Baghouse Vent	РМ	0.083	0.049
	Dagnouse vent	PM ₁₀	0.039	0.023

The following source is incorporated by reference. It remains authorized by Permit by Rule, 30 TAC § 106.262, effective November 1, 2003. The authorization was reviewed under Registration No. 97212, issued September 26, 2011.				
S12	Reclaim Conveyor #2 - Coal Dust Fugitives (6)	РМ	0.35	0.35
	God. Buot. agilitos (c)	PM ₁₀	0.17	0.16

S13 Tripper Deck Silo Bay - Enclosed Conveyor -		РМ	0.0015	0.0015
	Baghouse Vent	PM ₁₀	<0.001	<0.001
S14	Inactive Coal Pile - Coal Dust Fugitives (6)	PM	0.26	1.14
	Oodi Bust i ugitives (0)	PM ₁₀	0.13	0.57
S15	Bottom Ash Conveyor & Drop to Bunker -	РМ	0.0014	0.0014
	Dust Fugitives (6)	PM ₁₀	0.00064	0.00068
S16	Bottom Ash Bunker - Truck Loadout -	РМ	0.041	0.0057
	Dust Fugitives (6)	PM ₁₀	0.019	0.0027
S18	Fly Ash Silo - Conveyor Loading -	РМ	0.31	0.39
	Baghouse Vent	PM ₁₀	0.11	0.14
S24	Fly Ash Transfer Point #2 - Dust Fugitives (6)	РМ	0.044	0.027
	Dust i agitives (0)	PM ₁₀	0.021	0.013
S26	Fly Ash Landfill - Dust Fugitives (6)	РМ	0.31	1.36
	Dust i agitives (0)	PM ₁₀	0.16	0.68
S29	Pebble Lime Silo 1- Pneumatic Loading -	РМ	0.090	0.0015
	Baghouse Vent	PM ₁₀	0.043	0.0007
106.144,	ving two sources are incorporated by effective September 4, 2000. The auter 26, 2011.			
1001	Pebble Lime Silo 2 Loading - Baghouse Vent	РМ	0.002	<0.001
	Bagnouse veni	PM ₁₀	<0.001	<0.001
S35	Hydrated Lime Silo 3 Loading - Baghouse Vent	РМ	<0.001	<0.001
	Dagnouse vent	PM ₁₀	<0.001	<0.001
S32	Cooling Tower	PM ₁₀	11	50
S33	Diesel-fired Engine - Emergency Generator	NO _x	25.7	1.29
	(1,500 kW)	SO ₂	0.53	0.027

	_			
		со	2.53	0.13
		PM/PM ₁₀ /PM _{2.5}	0.22	0.011
		voc	0.53	0.027
S34	Diesel-fired Emergency Fire Water Pump	NO _x	3.41	0.17
	(403 hp)	SO ₂	0.11	0.0053
		со	0.66	0.033
		PM/PM ₁₀ /PM _{2.5}	0.081	0.0040
		VOC	0.14	0.0071
S37	Diesel Fuel Storage Tank (800 gallons)	VOC	0.023	<0.001
S38	Diesel Fuel Storage Tank (580 gallons)	voc	0.056	<0.001
C20	Aqueous Ammonia Fugitives (6)	Ammonia	0.16	0.70
S39 The followin		l ence They remain authoriz	ed by Permit by Ru	le as indicated
The followin after each so 26, 2011.	ng sources are incorporated by refere ource name. The authorizations we	re reviewed under Registra	tion No. 97212, issu	led September
The followin	ng sources are incorporated by refere ource name. The authorizations were Fire Water Booster Pump Engine			
The followin after each so 26, 2011.	ng sources are incorporated by refere cource name. The authorizations we	re reviewed under Registra	tion No. 97212, issu	led September
The followin after each so 26, 2011.	ng sources are incorporated by refere ource name. The authorizations were Fire Water Booster Pump Engine	re reviewed under Registra	1.36	0.068
The followin after each so 26, 2011.	ng sources are incorporated by refere ource name. The authorizations were Fire Water Booster Pump Engine	ne reviewed under Registra NO _x CO	1.36 0.32	0.068 0.016
The followin after each so 26, 2011.	ng sources are incorporated by refere ource name. The authorizations were Fire Water Booster Pump Engine	NO _x CO VOC	1.36 0.32 0.038	0.068 0.016 0.0019
The followin after each so 26, 2011.	ng sources are incorporated by refere ource name. The authorizations were Fire Water Booster Pump Engine	NO _x CO VOC SO ₂	1.36 0.32 0.038 0.029	0.068 0.016 0.0019 0.0014
The followin after each so 26, 2011.	pg sources are incorporated by refere ource name. The authorizations were represented by the authorization of the authorization output for the authorization of the authorization output for the authorization of the authorization output for the authorization of the authorization of the authorization of the authorization of the authorization output for the authorization of the authorizatio	NO _x CO VOC SO ₂ PM/PM ₁₀ /PM _{2.5}	1.36 0.32 0.038 0.029 0.072	0.068 0.016 0.0019 0.0014 0.0036
The followin after each so 26, 2011. S40	pig sources are incorporated by refere ource name. The authorizations were provided by the first water Booster Pump Engine (109 hp) [30 TAC § 106.511] Diesel Fuel Storage Tank (290 gallons) [30 TAC § 106.473] Activated Carbon Silo - Baghouse Vent [30 TAC §	NO _x CO VOC SO ₂ PM/PM ₁₀ /PM _{2.5} VOC	1.36 0.32 0.038 0.029 0.072 0.039	0.068 0.016 0.0019 0.0014 0.0036 <0.001
The followin after each so 26, 2011. S40 S41	piesel Fuel Storage Tank (290 gallons) [30 TAC § 106.473] Activated Carbon Silo - Baghouse Vent [30 TAC § 106.144] Soda Ash Silo - Baghouse Vent [30 TAC § 106.144] Recycled Ash Silo - Baghouse	NO _x CO VOC SO ₂ PM/PM ₁₀ /PM _{2.5} VOC	1.36 0.32 0.038 0.029 0.072 0.039 <0.001	0.068 0.016 0.0019 0.0014 0.0036 <0.001
The followin after each se 26, 2011. S40 S41 S42	piesel Fuel Storage Tank (290 gallons) [30 TAC § 106.473] Activated Carbon Silo - Baghouse Vent [30 TAC § 106.144] Soda Ash Silo - Baghouse Vent [30 TAC § 106.144]	re reviewed under Registra NO _x CO VOC SO ₂ PM/PM ₁₀ /PM _{2.5} VOC PM/PM ₁₀ /PM _{2.5}	1.36 0.32 0.038 0.029 0.072 0.039 <0.001	0.068 0.016 0.0019 0.0014 0.0036 <0.001 <0.001

	[30 TAC § 106.261]			
S60	Lube Oil Tank [30 TAC § 106.472]	voc	0.010	<0.001
S61	Sulfuric Acid Tank - Condensate Polishing [30 TAC § 106.472]	Sulfuric acid	<0.001	<0.001
S62	Sodium Hypochlorite Tank - Cooling Water Treatment [30 TAC § 106.472]	Sodium Hypochlorite	1.24	0.078
S63	Sodium Bromide Tank - Cooling Water Treatment [30 TAC § 106.472]	Sodium Bromide	0.007	<0.001
S64	Caustic Tank - Condensate Polishing [30 TAC § 106.472]	Caustic	<0.001	<0.001
S65	Sulfuric Acid Tank - Cooling Water Treatment [30 TAC § 106.472]	Sulfuric Acid	<0.001	<0.001
S66	Sulfuric Acid Tank - Process Water Treatment [30 TAC § 106.472]	Sulfuric Acid	<0.001	<0.001
S67	Sodium Hypochlorite Tank - Process Water Treatment [30 TAC § 106.472]	Sodium Hypochlorite	1.24	0.078
S68	Ferric Chloride Tank - Process Water Treatment [30 TAC § 106.472]	Ferric Chloride	0.25	0.010
S69	Caustic Tank - Process Water Treatment [30 TAC § 106.472]	Caustic	0.088	0.005
S71	Hydraulic Fluid Tank [30 TAC § 106.472]	voc	<0.001	<0.001
S72	Diesel Fuel Storage Tank (5,000 gallons) [30 TAC § 106.472]	voc	0.08	0.0032
S73	Diesel Fuel Storage Tank (5,000 gallons) [30 TAC § 106.472]	VOC	0.08	0.0032
S74AB	Recycled Ash Wetting/Mixing	PM	0.006	0.024
	Drop from silo to mix tank (6) [30 TAC §§ 106.261-106.262]	PM ₁₀	0.003	0.011

Permit Numbers 70861 and PSDTX1039 Page

Emission Sources - Maximum Allowable Emission Rates

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources, use area name or fugitive source name.
- (3) NO_X total oxides of nitrogen
 - SO₂ sulfur dioxide
 - PM total particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}
 - PM₁₀ total particulate matter equal to or less than 10 microns in diameter, including PM_{2.5}
 - CO carbon monoxide
 - VOC volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1
 - HAP hazardous air pollutants
- (4) Compliance with annual emission limits (tons per year) is based on a 12-month rolling period. Annual limits include emissions from normal and planned maintenance, startup, and shutdown emissions.
- (5) Total halogenated acids equals the sum of hydrogen chloride and hydrogen fluoride emissions. Although separate annual emission limits are established for HCl and HF, total annual emissions of these air pollutants shall not exceed the single annual emission limit for total halogenated acids.
- (6) Fugitive emission rate is an estimate and is enforceable through compliance with the applicable special conditions and permit application representations.

Date	June 22, 2012
:	