Linguaggi di Programmazione

Linguaggi

- LINGUAGGI IMPERATIVI
- LINGUAGGI LOGICI
- LINGUAGGI FUNZIONALI

Ogni categoria può contenere linguaggi Object-Oriented

Linguaggio	Base	Concetto di Variabile	Stile	Programma	Esempi
IMPERATIVO	Dichiarazione → Istruzioni	Astrazione cella memoria fisica	Prescrittivo	Algoritmi + Strutture Dati	С
LOGICO	Deduzione logica	Matematico	Dichiarativo	Conoscenza + Controllo	PROLOG
FUNZIONALE	Applicazione di funzioni	Matematico	Dichiarativo	Comp. Funzioni + Ricorsione	LISP

• Stile Prescrittivo

- Prescrive le operazioni che il processore deve eseguire per modificare lo stato del sistema (es. assegnamento)
- Esegue le istruzioni nell'ordine in cui appaiono nel programma (eccezione: strutture di controllo)

• Stile Dichiarativo

- o La conoscenza del problema è espressa indipendentemente dal suo utilizzo
- o Alta modularità e flessibilità

Aspetti comuni linguaggi Logici e Funzionali

- Manipolazione simbolica, non numerica
- Basati su concetti matematici
- Stile dichiarativo

Ambienti Run-time

- Per eseguire un programma il S.O. deve mettere a disposizione un ambiente run-time
 - o Mantenimento dello stato della computazione
 - o Gestione della memoria fisica e virtuale
 - Stack → Gestione chiamate (soprattutto ricorsive) a procedure
 - Heap → Gestione strutture dinamiche

Stack e Valutazioni di procedure

ACTIVATION FRAMES

- Associazione di valori ai parametri formali (Assenza di effetti collaterali → Passaggio dei parametri SOLO per VALORE)
- Valutazione ricorsiva del corpo (tenendo presente che i legami statici delle variabili con i loro valori)
- o Restituzione del/i valore/i del corpo → Quando il valore vieni ritornato lo Stack subisce una "pop" e l'Activation Frame viene rimosso

Return address				
Registri				
Static link				
Dynamic link				
Argomenti				
Variabili/definizioni locali, valori di ritorno				

Regole d'inferenza e Calcoli Logici

Introduzione

- Calcolo Logico → Insieme di regole d'inferenza
 - Manipolare formule logiche in modo sintattico → Stabilire connessione tra insieme di formule di partenza (assiomi) e insieme di conclusioni
 - o Permette di generare espressioni sintattiche a partire da degli assiomi
 - o Manipola i seguenti elementi →
 - Sintassi
 - Un insieme di proposizioni P
 - Un insieme di formule ben formate FBF, tale che P ⊆ FBF
 - Un sottoinsieme di assiomi A ⊆ FBF
 - Un insieme di regole di inferenza che ci permettono di incrementare FBF
 - Semantica
 - Una funzione di verità che ci permette di distinguere ciò che è vero da ciò che è falso rispetto a una data interpretazione
 - Funzione di Interpretazione: V (o I)
 - Tavole di verità
- 2 tipi di logica →
 - o Logica Proposizionale
 - o Logica dei Predicati del Primo Ordine

Logica Proposizionale

- La logica proposizionale si occupa delle conclusioni che possiamo trarre da delle proposizioni
- Una logica proposizionale è sintatticamente definita da un insieme P di proposizioni
 - o Esempi:

 - P = {piove, l'unicorno è un animale mitico}
 - P = {p, q, r, s, w}
- All'insieme P è associata una funzione di verità, o di valutazione, V

```
V: P \rightarrow \{vero, falso\}
```

che <u>associa un valore di verità ad ogni elemento di</u> P (cioè ad ogni proposizione)

- La funzione di valutazione è il ponte di connessione tra la sintassi e la semantica di un linguaggio logico
 - o Esempi
 - V(q) = vero, V(p) = vero, V(w) = falso
 - V(l'unicorno è un animale mitico) = vero
 - V(piove) = falso
- Connettivi logici
 - Congiunzione
 - Disgiunzione
 - Negazione
 - Implicazione

- Formule ben Formate (FBF) → Insieme di tutte le formule formate dagli elementi di P e dalle loro combinazioni
- Letterali → Formule atomiche/Negazioni dell'insieme P

Regole d'inferenza

• Una regola di inferenza ha la seguente forma generale:

Formula generata
$$\longleftarrow \frac{F_1, F_2, ..., F_k}{R}$$
 [nome regola] Regola d'inferenza

Modus Ponens

$$\frac{p \Rightarrow q, \quad p}{q} \quad [\text{modus ponens}]$$

Se piove, allora la strada è bagnata \circ $p \Longrightarrow q$:

piove

(allora) la strada è bagnata

Modus Tollens

$$\frac{p \Rightarrow q, \quad \neg q}{\neg p} \quad [\text{modus tollens}]$$

Se piove, allora la strada è bagnata $\circ p \Longrightarrow q$:

la strada non è bagnata

(allora) non piove

 Queste regole d'inferenza fanno parte del CALCOLO NATURALE → Permettono di derivare "direttamente" una formula ben formata mediante una sequenza di passi ben codificati

Principio di Risoluzione

- Opera su FBF in forma normale congiunta
- Ognuno dei congiunti viene chiamato clausola

- Principio di Risoluzione unitario -> Si ha quando una delle due clausole è un letterale
- Esempio
 - (Da) <Non piove>, <piove o c'è il sole> (Segue che) <C'è il sole>

$$\frac{\neg p, \quad q_1 \lor q_2 \lor \cdots q_k \lor p}{q_1 \lor q_2 \lor \cdots q_k} \quad \text{[unit resolution]}$$

$$\frac{p, \quad q_1 \vee q_2 \vee \cdots q_k \vee \neg p}{q_1 \vee q_2 \vee \cdots q_k} \quad \text{[unit resolution]}$$

Dimostrazioni per assurdo

- Supponiamo di avere a disposizione un insieme di formule FBF (vere, data una certa interpretazione V)
- Supponiamo di voler dimostrare che una certa proposizione p (o formula atomica) è vera
- Possiamo procedere usando il metodo della dimostrazione per assurdo
 - Assumiamo che ¬p sia vera
 - o Se, combinandola con le proposizioni in FBF ottengo una contraddizione, allora concludo che p deve essere vera

0

Assiomi

- Alcune proposizioni sono sempre vere, indipendentemente dalla loro interpretazione (tautologie)
 - \circ **A1**: A \Rightarrow (B \Rightarrow A)
 - $\circ \quad \mathbf{A2}: \ (\mathsf{A} \Rightarrow (\mathsf{B} \Rightarrow \mathsf{C})) \Rightarrow ((\mathsf{A} \Rightarrow \mathsf{B}) \Rightarrow (\mathsf{A} \Rightarrow \mathsf{C}))$
 - $\circ \quad \textbf{A3}: \ (\neg B \Rightarrow \neg A) \Rightarrow ((\neg B \Rightarrow A) \Rightarrow B)$
- Alcune tautologie sono codificabili come regole di inferenza e viceversa

o **A4:** \neg (A $\land \neg$ A) principio di non-contraddizione

A5: A ∨ ¬A

principio del terzo escluso

Sintassi e Semantica

- Un calcolo logico fornisce una manipolazione sintattica
 - **DERIVAZIONE** ⊢
- Una funzione di valutazione caratterizza la semantica
 - CONSEGUENZA LOGICA (ENTAILMENT) ⊨
- Teorema di Completezza e Validità \rightarrow S $\vdash f$ se e solo se S $\models f$

 ("S va in f se e solo se f è conseguenza logica di S"), dove S è un insieme di formule iniziale ed f è una FBF; Il tutto in dipendenza da una particolare funzione di verità V

Tautologie e Modelli

- Particolare interpretazione V che rende vere tutte le formule in S → Modello di S
- FBF sempre vera indipendentemente dal valore assegnato dei letterali → Tautologia

NB: Una tautologia è vera «in» ogni modello

Logica del Primo Ordine

- Un linguaggio logico del primo ordine è costituito da termini costruiti a partire da:
 - **V** → Insieme di simboli di Variabili
 - o C → Insieme di simboli di Costante
 - R → Insieme di simboli di Relazione o Predicati
 - **F** → Insieme di simboli di Funzione
 - Connettivi Logici
- La costruzione di un linguaggio logico del primo ordine è RICORSIVA
- **Predicati** $\rightarrow r \subseteq C_0 \times C_1 \times ... \times C_k \rightarrow ovvero relazioni cartesiane su C, scritte come <math>r(c_1, c_2, ..., c_k)$
- Le funzioni sono definite con il seguente dominio e codominio

$$f: \mathbf{C}_0 \times \mathbf{C}_1 \times ... \times \mathbf{C}_m \rightarrow \mathbf{C}$$

una funzione si scrive come $f(c_1, c_2,...,c_m) \rightarrow$ UNA FUNZIONE NON È UNA FBF

- FBF →
 - O Un **termine** t_j può essere un elemento di **C**, di **V**, oppure un'applicazione di funzione $f(t_1, t_2, ..., t_s)$
 - O Un termine costituito da un **predicato** $r(t_1, t_2, ..., t_k)$, dove ogni t_i è un termine, appartiene ad **FBF**
 - Diversi elementi di FBF connessi dai connettivi logici standard (congiunzione, disgiunzione, negazione, implicazione) appartengono ad FBF
 - O Denotiamo con $t(t_1, t_2, ..., t_r)$ tale combinazione di termini
 - o Le formule

 $\forall x . t(t_1, t_2, ..., x, ..., t_r) \in \exists x . t(t_1, t_2, ..., x, ..., t_r)$ appartengono ad **FBF**

Prolog

Introduzione

- Base formale:
 - Calcolo dei predicati del primo ordine → (Solo clausole di Horn)
 - o Tecniche per risoluzione teoremi
- Ogni FBF può essere riscritta in Forma Normale a Clausole:
 - Forma Normale Congiunta → Congiunzione di disgiunzioni
 - o *Forma Normale Disgiunta →* Disgiunzione di congiunzioni

• Oppure possono essere riscritte come congiunzione di implicazioni:

$$t(z) \rhd p(x) \acute{\cup} q(x,y)$$
$$s(u) \grave{\cup} r(v) \rhd p(w)$$

- Clausole di Horn → Insieme di disgiunzioni di letterali che hanno al più un letterale positivo (con o senza letterali negativi)
- Programma Prolog:
 - o Insieme di fatti e regole
 - Fornisce informazioni su un sistema → Knowledge base
 - Non si esegue, ma si interroga → Queried
- Sintassi: un programma Prolog è costituito da un insieme di clausole della forma

- o In cui **a**, **b**, **c**, e **q** sono **termini** (composti)
- Il prompt Prolog è anche un operatore che chiede al sistema di valutare il goal, in questo caso una congiunzione di termini
- Termini:
 - o Atomi
 - Variabili
 - Composizione di termini → Termine composto (simbolo di funtore + uno o più argomenti)