第一章 物质的 pVT 关系和热性质

一、概念题

- 1、气体 A 的临界温度高于气体 B 的临界温度,则气体 A 比气体 B ______ 液化。 (难、易)
- 2、某实际气体的温度低于其波义耳温度,在压力较小时 pV _____ nRT。(>、=、<)
- 3、当液体蒸发为同温度下的蒸气时,分子的热运动能不变,但分子间距增大,因此要吸收热量。_____。(对、错)
- 4、一封闭系统经第一个过程由初态变化到终态的热和功分别为 Q_1 、 W_1 ;经第二个过程完成相同状态变化的热和功分别为 Q_2 、 W_2 。若 $W_2/W_1=2$,则 Q_1/Q_2 的值 ______。 (一定、不一定)
 - 5、 $H_2O\left(g\right)$ 的标准摩尔生成焓等于 $H_2\left(g\right)$ 的标准摩尔燃烧焓。_____。(对、错)
 - 6、对于任何宏观物质,其热力学能总是 ______ 它的焓。(大于、等于、小于)
 - 7, 25 , $\Delta_f H_m^e(C_2H_5OH, l)$ $\Delta_f H_m^e(C_2H_5OH, g)$, (>, =, <)
 - 8、若一理想气体化学反应的 $\Delta_{\mathbf{r}}H_{\mathbf{m}}^{\circ}$ 不随温度而变化,则该反应的 $\Delta_{\mathbf{r}}C_{p,\mathbf{m}}^{\circ}=0$ _____。
 (对、错)

_,

- $(1)\ 25\quad \mbox{时 , } C_2 \mbox{H}_4(g)\ \mbox{的} \ \Delta_c \mbox{H}_m^{\mbox{\tiny Θ}} = -1411.0\ \mbox{kJ} \cdot \mbox{mol}^{-1} \ \ \mbox{, } CO_2(g)\ \mbox{的} \ \Delta_f \mbox{H}_m^{\mbox{\tiny Θ}} = -393.5\ \mbox{kJ} \cdot \mbox{mol}^{-1} \ \ \mbox{, } \mbox{H}_2 \mbox{O} \mbox{(1)}\ \mbox{的} \ \Delta_f \mbox{H}_m^{\mbox{\tiny Θ}} = -285.8\ \mbox{kJ} \cdot \mbox{mol}^{-1} \ \ \mbox{, } \mbox{试求} \ C_2 \mbox{H}_4(g)\ \mbox{的} \ \Delta_f \mbox{H}_m^{\mbox{\tiny Θ}} \mbox{, } \mbox{}$
- (2) 已知 25 时 乙醇 $C_2H_5OH(1)$ $\Delta_f H_m^e(C_2H_5OH,1) = -277.69 \text{ kJ} \cdot \text{mol}^{-1}$, $\Delta_c H_m^e(C_2H_5OH,1) = -1366.8 \text{ kJ} \cdot \text{mol}^{-1}$, 二甲醚 $(CH_3)_2O(g)$ 的 $\Delta_f H_m^e(CH_3)_2O,g)$ = $-184.1 \text{ kJ} \cdot \text{mol}^{-1}$ 。求 25 二甲醚的 $\Delta_c H_m^e(CH_3)_2O,g)$ 。

三、试求反应 ${\rm CH_3COOH}(g)$ ——> ${\rm CH_4}(g)$ + ${\rm CO_2}(g)$ 在 1000 K 时的标准摩尔反应焓 $\Delta_{\rm r}H_{\rm m}^{\rm e}$ 。 已知数据如下:

物质	$\frac{\Delta_{\rm f} H_{\rm m}^{\theta}(298.15{\rm K})}{{\rm kJ}\cdot{\rm mol}^{-1}}$	$\frac{\overline{C}_{p,\mathrm{m}}}{\mathbf{J} \cdot \mathbf{K}^{-1} \cdot mol^{-1}}$
CH ₃ COOH (g)		52.3
CH ₃ COOH (l)	-484.09	
CH ₄ (g)	-74.81	37.7
$CO_2(g)$	-393.51	31.4

25 时CH₃COOH(l)的蒸发热为49.25 kJ·mol⁻¹。

四、火箭发动机的推动力可用公式 $F = WC_pT/m$ 计算。式中 C_p 是排出气体的恒压热容,T 是排出气体的热力学温度,m 是排出气体的质量,对于给定的火箭发动机 W 是一个常数。今有两种燃料——氢气和肼,它们的燃烧反应分别为:

$$H_{2}(g) + \frac{1}{2}O_{2}(g) \longrightarrow H_{2}O(g)$$

$$N_{2}H_{4}(g) + \frac{3}{2}O_{2}(g) \longrightarrow N_{2}O(g) + 2H_{2}O(g)$$

- (1) 试计算两种燃料所能达到的火焰温度。
- (2) 用计算结果说明何者是更理想的火箭燃料。

假定燃烧焓和气体的 $C_{n,m}$ 不随温度改变,燃烧焓全部用来加热气体产物。已知:

物质	$\frac{\Delta_{\rm f} H_{\rm m}^{\theta}(298{\rm K})}{{\rm kJ}\cdot{\rm mol}^{-1}}$	$\frac{C_{p,m}(298 \mathrm{K})}{\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{mol}^{-1}}$	$\frac{M}{\mathrm{g}\cdot\mathrm{mol}^{-1}}$
H ₂ O (g)	-242	34	18.0
N ₂ H ₄ (g)	95		
$N_2O(g)$	82	38	44.0

五、将 0.1256 g 蔗糖放在氧弹量热计中完全燃烧,开始时温度为 25 ,燃烧后温度升高了 1.743 。已知燃烧产物和量热计的总热容为1195 J · K ⁻¹ ,蔗糖的摩尔质量为 342.3 g · mol ⁻¹ ,燃烧反应为: $C_{12}H_{22}O_{11}(s)+12O_2(g)\longrightarrow 12CO_2(g)+11H_2O(l)$ 。 $CO_2(g)$ 和 $H_2O(l)$ 的摩尔生成焓分别为 -393.5 kJ · mol ⁻¹ 和 -285.8 kJ · mol ⁻¹ 。试计算 25 时蔗糖的摩尔燃烧焓和摩尔生成焓。