Redes neurais artificiais para engenharia e ciências aplicadas

3.6 - Projeto prático

Pela análise de um processo de destilação fracionada de petróleo observou-se que determinado óleo poderia ser classificado em duas classes de pureza { P ?} a partir da medição de três grandes asque representam algumas de suas propriedades físico-químicas. A equipe de engenheiros e cientistas pretende usar uma rede *Perceptron* para executar a classificação automática das duas classes.

Assim, baseado nas informações coletadas do processo, formou-se o conjunto de treinamento apresentado no apêndice I, tomando por convenção o valor -1 para óleo pertencente $\hat{\mathbf{e}}$ $\hat{$

Para tanto, o neurônio constituinte do *Perceptron* terá então três entradas e uma saída conforme ilustrado na figura 3.8.

Figura 3.8 - Arquitetura do *Perceptron* para o projeto prático

Utilizando o algoritmo supervisionado de Hebb (regra de Hebb) para classificação de padrões, e assumindo-se a taxa de aprendizagem como 0,01, faça as seguintes atividades:

1) Execute cinco treinamentos para a rede *Perceptron*, iniciando-se o vetor de peso» { em cada treinamento com valores aleatórios entre zero e um. Se for o caso, reinicie o gerador de números aleatórios em cada treinamento de tal forma que os elementos do vetor de pesos iniciais não sejam os mesmos. O conjunto de treinamento encontra-se no apêndice I.

Rede Perceptron 71

2) Registre os resultados dos cinco treinamentos na tabela 3.2 apresentada a seguir.

Tabela 3.2 - Resultados dos treinamentos do *Perceptron*

Treinamento	Vetor de pesos iniciais			Vetor de pesos finais				Número de épocas	
	W ₀	W ₁	W ₂	W ₃	W ₀	W ₁	W ₂	W ₃	
1°(T1)									
2°(T2)									
3°(T3)									
4°(T4)									
5°(T5)									

3) Após o treinamento do *Perceptron*, coloque este em operação, aplicando-o na classificação automática das amostras de óleo da tabela 3.3, indicando ainda nesta tabela aqueles resultados das saídas (Classes) referentes aos cinco processos de treinamento realizados no item 1.

Tabela 3.3 - Amostras de óleo para validar a rede *Perceptron*

Amostra	X ₁	X ₂	X ₃	<i>y</i> (T1)	<i>y</i> (T2)	<i>y</i> (T3)	<i>y</i> (T4)	<i>y</i> (T5)
1	-0,3665	0,0620	5,9891					
2	-0,7842	1,1267	5,5912					
3	0,3012	0,5611	5,8234					
4	0,7757	1,0648	8,0677					
5	0,1570	0,8028	6,3040					
6	-0,7014	1,0316	3,6005					
7	0,3748	0,1536	6,1537					
8	-0,6920	0,9404	4,4058					
9	-1,3970	0,7141	4,9263					
10	-1,8842	-0,2805	1,2548					

Redes neurais artificiais para engenharia e ciências aplicadas

- 4) Explique por que o número de épocas de treinamento, em relação a esta aplicação, varia a cada vez que executamos o treinamento do *Perceptron*.
- 5) Para a aplicação em questão, discorra se é possível afirmar se as suas classes são linearmente separáveis.

Frank Rosenblatt