Modelo de Teoría de Juegos Aplicado a Competencia en Precios

Arnau Sastre linkedin.com/in/arnausastre

August 10, 2025

Abstract

Este artículo presenta un modelo de teoría de juegos para analizar competencia en precios entre dos empresas en mercados con interacción estratégica. Se estudian juegos en estrategias puras y mixtas, identificando equilibrios de Nash y evaluando los pagos esperados en distintos escenarios, desde casos simples y simétricos hasta situaciones asimétricas más realistas.

1 Introducción

La teoría de juegos proporciona un marco formal para modelar interacciones estratégicas entre agentes económicos. En mercados competitivos, las decisiones de precios de una empresa afectan directamente las decisiones y beneficios de sus competidores. Este trabajo implementa varios escenarios de competencia en precios utilizando juegos bimatriz, resolviendo para equilibrios de Nash y analizando implicaciones económicas.

2 Metodología

Se definen juegos entre dos jugadores (Empresa A y Empresa B), cada uno con un conjunto de estrategias de precios. Para cada combinación de estrategias, se especifica una matriz de pagos (u_A, u_B) . El análisis incluye:

- Identificación de equilibrios de Nash en estrategias puras.
- Cálculo de equilibrios mixtos cuando no existe equilibrio puro único.
- Evaluación de pagos esperados en equilibrio mixto.
- Simulación de escenarios asimétricos.

3 Escenarios analizados

Caso base: juego 2x2 simétrico

	B Bajo	B Alto
A Bajo	(3,3)	(5,1)
A Alto	(1,5)	(4,4)

Equilibrio de Nash: (Bajo, Bajo) en estrategia pura.

Caso avanzado: juego 3x3

	B Bajo	B Medio	B Alto
A Bajo	(2,2)	(4,1)	(5,0)
A Medio	(1,4)	(3,3)	(4,2)
A Alto	(0,5)	(2,4)	(3,3)

Equilibrio de Nash: (Bajo, Bajo) en estrategia pura.

Extensión técnica 1: juego puramente mixto (Matching Pennies)

Equilibrio mixto: 50% Cara / 50% Cruz para ambos jugadores. Pago esperado en equilibrio: Empresa A = 0, Empresa B = 0.

Extensión técnica 2: juego asimétrico

	B Bajo	B Medio	B Alto
A Bajo	(3,2)	(4,1)	(5,0)
A Medio	(2,3)	(3,3)	(4,2)
A Alto	(1,4)	(2,4)	(3,3)

Equilibrio de Nash: (Bajo, Bajo) en estrategia pura.

4 Interpretación económica

- En escenarios simétricos, el equilibrio tiende a estrategias de precios bajos para ambos jugadores.
- En juegos sin equilibrio puro (Matching Pennies), las empresas deben randomizar estrategias para no ser predecibles.
- En escenarios asimétricos, la ventaja competitiva en precios bajos consolida el equilibrio en esa zona.

5 Aplicaciones

- Estrategias de precios en mercados oligopolísticos.
- Simulación de reacción de competidores.
- Diseño de licitaciones y subastas.

6 Conclusiones

La teoría de juegos aplicada a pricing competitivo permite predecir comportamientos estratégicos y evaluar pagos esperados bajo distintos escenarios. El modelo es flexible y puede adaptarse a configuraciones más complejas, incluyendo múltiples competidores y estrategias.

Contacto

Para más información o implementación de este modelo, puede contactarme vía ${\bf LinkedIn}$ o consultar otros proyectos en mi ${\tt GitHub}$.