Алгебра. Глава 11. Теория чисел и криптография

Криптосистема RSA.

Криптосистема RSA (Rivest-Shamir-Adleman, 1977)

- Пусть p,q большие простые числа, n=pq.
- Тогда $\varphi(n) = (p-1)(q-1)$.
- Пусть $e \in \mathbb{N}$, e < arphi(n) и (e, arphi(n)) = 1.
- Пусть $d\in\mathbb{N}$ обратный вычет к e по модулю arphi(n) (d<arphi(n) и $ed\equiv 1\pmod{arphi(n)}$).
- Чаще всего числа e и d стараются выбирать так, чтобы число d было большим, а число e достаточно небольшим (но и не слишком маленьким).
- Пара (n,e) открытый ключ. Он используется для шифрования сообщений и публикуется в открытом доступе.
- Пара (n,d) секретный ключ. Он используется для дешифрования сообщений и должен храниться в секрете.
- Сообщение число от 0 до n-1 (более длинные сообщения разбиваются на блоки, которые шифруются по отдельности).
- Шифрование функция P:[0..n-1] o [0..n-1], где $P(m)\equiv m^e\pmod n.$
- Дешифрование функция S:[0..n-1] o [0..n-1], где $S(m)\equiv m^d\pmod n$.

Криптосистема RSA. Доказательство корректности

Теорема 1

• S(P(m)) = P(S(m)) = m.

Доказательство

- Нужно доказать, что $m^{ed} \equiv m \pmod{n}$.
- Для этого достаточно доказать, что $m^{ed} \equiv m \pmod p$ и $m^{ed} \equiv m \pmod q$.
- Заметим, что $ed\equiv 1\pmod{arphi(n)}$. То есть, ed=(p-1)(q-1)k+1, где $k\in\mathbb{N}$.
- Пусть $m \not\equiv 0 \pmod p$. Тогда $m^{p-1} \equiv 1 \pmod p$. Следовательно,

$$m^{ed} = m^{(p-1)(q-1)k+1} = (m^{p-1})^{(q-1)k} \cdot m \equiv 1^{(q-1)k} \cdot m \equiv m \pmod p.$$

- Если $m \equiv 0 \pmod p$, то $m^{ed} \equiv 0 \equiv m \pmod p$.
- Итак, во всех случаях получаем, что $m^{ed} \equiv m \pmod{p}$.
- То, что $m^{ed} \equiv m \pmod{q}$, доказывается аналогично.

Криптосистема RSA. О выборе p и q

- Выбирая простые числа p и q, стоит придерживаться некоторых ограничений.
- Числа p и q не должны быть близки друг к другу. Обычно их выбирают так, чтобы длина их записи отличалась на несколько разрядов.
- Действительно, $pq = (rac{p+q}{2})^2 (rac{p-q}{2})^2$.
- Если |p-q| мал, то $(rac{p+q}{2})^2$ ненамного превосходит n.
- Тогда, перебирая точные квадраты, большие n, мы быстро найдём такое a, что a^2-n точный квадрат.
- Далее, положив $a=rac{p+q}{2}$ и $\sqrt{a^2-n}=rac{p-q}{2},$ мы легко найдём p и q.
- (p-1,q-1) должен быть маленьким.
- Каждое из чисел p-1, q-1 должно иметь большой простой делитель.

Вероятностные тесты для проверки простоты. Тест Ферма. Числа Кармайкла.

Проверка простоты числа

- Как мы видим, в криптографии возникает вопрос: а как убедиться, что предъявленное нам число простое.
- Тривиальный алгоритм: перебираем все числа от 2 до \sqrt{n} и проверяем, делится ли n на каждое из них.
- Этот алгоритм экспоненциален относительно длины входа $(\log n)$ и для чисел интересующего нас размера неприменим.
- На данный момент известен единственный алгоритм проверки простоты с доказанным полиномиальным (относительно длины входа) временем работы его придумали $M.\,Agrawal, N.\,Kayal, N.\,Saxena$ в 2004 году.
- Однако, на практике и этот алгоритм работает очень долго и расходует много памяти.
- Чаще всего на практике используют вероятностные тесты, которые работают гораздо быстрее.

Вероятностные алгоритмы

- Вероятностный алгоритм это алгоритм, ход и результаты работы которого, помимо входа, зависят от выбора некоторого случайного параметра a.
- Как правило, a это натуральное число, которое случайным образом выбирается из некоторого диапазона.
- При определённых значениях a алгоритм может давать ошибочный результат, но вероятность этого должна быть не слишком велика (т.,е. не превосходить некоторой заранее фиксированной константы).
- Например, бывают вероятностные алгоритмы, для которых вероятность ошибки меньше $\frac{1}{2}$.
- Для снижения вероятности ошибки можно многократно запустить вероятностный алгоритм. При каждом запуске алгоритма параметр a выбирается заново, случайным и независимым от предыдущих запусков образом
- Для проверки простоты числа нас будут интересовать **вероятностные алгоритмы с односторонней ошибкой**.
- Если такой алгоритм отвечает, что число **составное**, то это гарантировано так. А вот ответ **простое** может быть ошибочным.

Тест Ферма

- **Вход:** нечётное натуральное число n.
- Выбираем случайным образом параметр $a \in [2..n-2].$
- Вычисляем a^{n-1} по модулю n.
- Если $a^{n-1} \equiv 1 \pmod n$, то ответ "**простое**".
- Если $a^{n-1} \not\equiv 1 \pmod{n}$, то ответ "составное".
- Из Теоремы Эйлера следует, что ответ "составное" не может быть ошибочным.
- В то же время, ответ "простое" ошибочным быть может.
- Отметим, что сравнение $a^{n-1} \equiv 1 \pmod n$ может быть выполнено только в случае (a,n) = 1.
- К сожалению, существуют такие нечётные составные числа n, для которых $a^{n-1} \equiv 1 \pmod n$ при всех a взаимно простых с n.
- Такие числа называются **числами Кармайкла**. Они проходят тест Ферма почти при любом выборе a. Пример: n=561.
- В 1994 году доказано, что чисел Кармайкла бесконечно много. Встречаются они относительно редко.

Символ Якоби. Закон взаимности.

Символ Якоби

Определение

• Пусть $n=p_1^{k_1}\dots p_\ell^{k_\ell}$ — каноническое разложение нечетного числа, $a\in\mathbb{N}$. Тогда **Символ Якоби** — это

$$\left(rac{a}{n}
ight) := \prod_{i=1}^{\ell} \left(rac{a}{p_i}
ight)^{k_i}.$$

• Из мультипликативности символа Лежандра следует, что

$$\left(\frac{ab}{n}\right) = \left(\frac{a}{n}\right) \cdot \left(\frac{b}{n}\right).$$

• Из $\left(rac{a}{n}
ight)=1$ не следует, что существует квадрат, сравнимый с a по модулю n.

Лемма 1

• Пусть $n\in\mathbb{N}, n$ $\dot{\mathbb{Z}}$ 2. Тогда

$$\left(\frac{2}{n}\right)=(-1)^{\frac{n^2-1}{8}}.$$

Доказательство

- Пусть $f(k) := (-1)^{rac{k^2-1}{8}}.$
- Рассмотрев все пары остатков по модулю 8, можно сделать вывод, что для любых нечетных k_1 и k_2 выполнено

$$f(k_1k_2) = f(k_1)f(k_2).$$

• По Лемме 4.7,

$$\left(rac{2}{p}
ight)=\left(-1
ight)^{rac{p^2-1}{8}}=f(p)$$

для любого нечетного простого p.

• Теперь из определения символа Якоби следует утверждение леммы для нечетного $n=p_1^{k_1}\dots p_\ell^{k_\ell}$

Теорема 2

Закон взаимности для символа Якоби

• Пусть $n,m\in\mathbb{N}$ нечетны. Тогда

$$\left(rac{n}{m}
ight) = (-1)^{rac{n-1}{2} \cdot rac{m-1}{2}} \cdot \left(rac{m}{n}
ight).$$

Доказательство

• Если $\gcd(m,n)>1$, то

$$\left(\frac{n}{m}\right) = \left(\frac{m}{n}\right) = 0$$

и теорема доказана.

- Далее $\gcd(m,n)=1$, пусть $n=p_1\dots p_k$ и $m=q_1\dots q_s$ их разложения на простые множители (не обязательно различные).
- Тогда

$$\left(rac{n}{m}
ight) = \prod_{i=1}^k \prod_{j=1}^s \left(rac{p_i}{q_j}
ight)$$

И

$$\left(rac{m}{n}
ight) = \prod_{i=1}^k \prod_{j=1}^s \left(rac{q_j}{p_i}
ight).$$

- Значит, чтобы перейти от $\left(\frac{n}{m}\right)$ к $\left(\frac{m}{n}\right)$, нам нужно перевернуть $k\cdot s$ символов Лежандра вида $\left(\frac{p_i}{q_j}\right)$, превратив их в $\left(\frac{q_j}{p_i}\right)$.
- Один такой переворот по закону взаимности Гаусса (Теореме 4.3) меняет знак символа Лежандра, если и только если оба простых числа $p_i, q_j \equiv 3 \pmod 4$.
- Пусть в разложении n ровно k' простых, сравнимых с 3 по модулю 4, а в разложении m ровно s' таких простых.
- ullet Тогда $\left(rac{n}{m}
 ight)$ и $\left(rac{m}{n}
 ight)$ имеют разный знак, если и только если $k'\cdot s'$ нечетно.
- Отметим, что $k'\not /2\iff n\equiv 3\pmod 4$ и $s'\not /2\iff m\equiv 3\pmod 4$.

• Остается отметить, что

$$m \equiv n \equiv 3 \pmod{4} \iff rac{(m-1)(n-1)}{4} \not = 2.$$

• Благодаря Лемме 1 и Теореме 2 вычислить символ Якоби $\left(\frac{m}{n}\right)$ можно достаточно быстро, причем для этого не нужно знать разложение числа n на простые множители (а найти такое разложение для большого числа как раз — трудная задача).

Первообразные корни.

Определение

- Пусть $n \in \mathbb{N}$. Через Z_n обозначается кольцо вычетов по модулю n, а через Z_n^* множество всех обратимых элементов этого кольца (то есть, вычетов, взаимно простых с n из Пр.СВ по модулю n).
- По Теореме Эйлера, для любого $a \in Z_n^*$ мы знаем, что

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$
.

Определение

- Пусть $a\in Z_n^*, d\in\mathbb{N}$. Будем говорить, что вычет a принадлежит к показателю d по модулю n, если $a^d=1$, но $a^s\neq 1$ при $s\in\mathbb{N}, s< d$. Обозначение: $a\in_n d$.
- Аналогично Лемме 4.1 несложно доказать, что если $a \in_n d$, то $d \mid \varphi(n)$.

Определение

- Пусть $n\in\mathbb{N}$. Вычет $a\in\mathbb{Z}_n^*$ первообразный корень по модулю n, если $a\in_n \varphi(n)$.
- По Теореме 4.1 существуют первообразные корни по модулю $p \in P$. Кроме того, первообразные корни существуют по модулю p^n и $2p^n$, где $p \in P$ нечетно, а также по модулю 4. По остальным модулям первообразных корней нет.

Теорема 3

• Пусть $n\in\mathbb{N}$, a — первообразный корень по модулю n. Тогда $a,a^2,\dots,a^{\varphi(n)}=1$ — Пр.СВ \pmod{n} , то есть, в точности все вычеты из Z_n^* .

Доказательство

- Достаточно доказать, что $a^i
 eq a^j$ при $1 \leq j < i \leq arphi(n)$.
- Предположим противное, пусть $a^i=a^j\implies a^j(a^{i-j}-1)=0.$
- ullet Однако, $a^j
 eq 0$ и $a^{i-j}
 eq 1$, так как 0 < i-j < arphi(n).
- Противоречие.
- Если a первообразный корень по модулю n, то любой вычет $b \in Z_n^*$ представляется в виде $b = a^k$, где $1 \le k \le \varphi(n)$.

Существование первообразного корня по модулю $p^2.$

Теорема 4

- Для простого $p \in P$ существует первообразный корень по модулю p^2 .

Доказательство

- Напомним, что $arphi(p^2)=p(p-1).$
- Достаточно найти такое $b \in \mathbb{N}$, что $b^{p(p-1)} \equiv 1 \pmod{p^2}$, но $b^s \not\equiv 1 \pmod{p^2}$ при s < p(p-1).
- Так как существует первообразный корень по модулю p, существует и такое $a \in \mathbb{N}$, что $a^{p-1} \equiv 1 \pmod p$, но $a^s \not\equiv 1 \pmod p$ при s < p-1.
- ullet Тогда (a,p)=1, а значит, a и a+p разные вычеты из $Z_{p^2}^*$.
- ullet Если $a^s\equiv 1\pmod{p^2}$, то $a^s\equiv 1\pmod{p}\implies s\.:p-1\implies s\in \{p-1,p(p-1)\}.$
- Аналогичное верно и для a+p.
- Предположим, что ни a, ни a+p нам не подходит. Тогда $(a+p)^{p-1}\equiv a^{p-1}\equiv 1\pmod{p^2}$.
- ullet Но $(a+p)^{p-1}-a^{p-1}=\sum_{k=1}^{p-1}C_{p-1}^kp^ka^{p-1-k}\equiv p(p-1)a^{p-2}
 ot\equiv 0\pmod{p^2}$, противоречие.

Эйлеровы псевдопростые.

Определение

• Нечетное составное число n называется **эйлеровым псевдопростым по основанию** a, если (a,n)=1 и

$$a^{rac{n-1}{2}} \equiv \left(rac{a}{n}
ight) \pmod{n}.$$

Теорема 5

• Нечетное составное число n является эйлеровым псевдопростым по основанию не более чем $\frac{\varphi(n)}{2}$ взаимно простых с n и меньших n.

Доказательство

- Назовем число $b \in \mathbb{N}$, (b,n)=1, **хорошим**, если $b^{\frac{n-1}{2}} \not\equiv \left(\frac{b}{n}\right) \pmod n$, и плохим, если это сравнение выполнено.
- Наша цель доказать, что не более чем половина вычетов из Z_n^st плохие.

Утверждение 1

• Пусть $a,b\in Z_n^*$, причем a — плохой вычет, а b — хороший. Тогда ab — хороший.

Доказательство

- Предположим, что ab плохой вычет.
- Тогда $\left(\frac{a}{n}\right)\equiv a^{\frac{n-1}{2}}\pmod{n}$ и $\left(\frac{ab}{n}\right)\equiv (ab)^{\frac{n-1}{2}}\pmod{n}$. Так как (a,n)=(b,n)=1, имеем $\left(\frac{a}{n}\right),\left(\frac{b}{n}\right),\left(\frac{ab}{n}\right)\in\{1,-1\}$ и

$$\left(\frac{b}{n}\right) = \left(\frac{b}{n}\right) \cdot \left(\frac{a}{n}\right)^2 = \left(\left(\frac{b}{n}\right) \cdot \left(\frac{a}{n}\right)\right) \cdot \left(\frac{a}{n}\right) = \left(\frac{ab}{n}\right) \cdot \left(\frac{a}{n}\right) \equiv_n (ab)^{\frac{n-1}{2}} \cdot a^{\frac{n-1}{2}} \equiv_n b^{\frac{n-1}{2}} \cdot (a^{\frac{n-1}{2}})^2 \equiv_n b^{\frac{n-1}{2}}.$$

• В последнем переходе мы использовали, что $a^{\frac{n-1}{2}} \equiv \pm 1 \pmod{n}$.

Утверждение 2

• Если b — хороший вычет, то плохих вычетов не более чем $\frac{arphi(n)}{2}$.

Доказательство

- Пусть a_1, \ldots, a_k все плохие вычеты.
- По Утверждению 1 тогда a_1b,\ldots,a_kb хорошие вычеты, и все они, очевидно, различны.
- Осталось доказать существование хорошего вычета.

Случай 1: $n=p^2$, где $p\in P$

- По Теореме 4 существует первообразный корень по модулю p^2 пусть это $b \leq p^2 1 \leq n 1$.
- ullet Пусть $b\in_n d$. Тогда $b^{d-1}
 ot\equiv 1\pmod n$, откуда следует $d=arphi(p^2)=p(p-1)$.
- Очевидно, n-1 $\not p$. Поэтому $b^{n-1} \not\equiv 1 \pmod n$.
- ullet Если $b^{rac{n-1}{2}}\equiv b^n\pmod n$, то

$$b^{\frac{n-1}{2}} \equiv \pm 1 \pmod n \implies b^{n-1} \equiv 1 \pmod n,$$

противоречие.

Случай 2: n свободно от квадратов

- ullet Пусть $n=p\cdot q$, где $p,q\in P$.
- По КТО существует такое число $b \in [1,n-1]$, что $\left(rac{b}{p}
 ight) = -1$ (то есть, b сравнимо по модулю p с любым квадратичным невычетом) и $b\equiv 1\pmod{rac{n}{n}}$. Ясно, что (b,n)=1.
- Тогда $\left(\frac{b}{q}\right)=1$ для любого простого q|n отличного от p, откуда $\left(\frac{b}{n}\right)=-1$ Если $b^{\frac{n-1}{2}}\equiv \left(\frac{b}{n}\right)\equiv -1\pmod n$, то $b^{\frac{n-1}{2}}\equiv -1\pmod p$, что не так. Значит, b хороший вычет.

Тест Соловея-Штрассена.

Тест Соловея-Штрассена

Вход

• Нечётное натуральное число n.

Алгоритм

- 1. Выбираем случайным образом параметр $a \in [2, n-2]$.
- 2. Вычисляем $a^{\frac{n-1}{2}}$ по модулю n.
- 3. Вычисляем $\left(\frac{a}{n}\right)$ по модулю n.
- 4. Если оба эти числа сравнимы $a^{rac{n-1}{2}}\equiv a\left(rac{a}{n}
 ight)\equiv \pm 1\pmod n$, то ответ "простое".
- 5. Иначе ответ "составное".

Замечания

- Из определений символа Лежандра и символа Якоби следует, что ответ "составное" не может быть ошибочным.
- В то же время, ответ "простое" ошибочным быть может.
 - По Теореме 5, вероятность ошибки в тесте Соловея-Штрассена менее $\frac{1}{2}$.
 - Повторив тест с числом n независимо k раз, получим вероятность ошибки менее $\frac{1}{2^k}$.

Тест Миллера-Рабина.

Тест Миллера-Рабина

Вход

• Нечётное натуральное число n.

Алгоритм

- 1. Пусть $n-1=2^t\cdot u$, где $t,u\in\mathbb{N}$ и u
 olimits2.
- 2. Выбираем случайным образом параметр $a \in [2, n-2]$.
- 3. Вычисляем $a^u, a^{2u}, \dots, a^{2^{t-1}u}$ по модулю n (получившаяся последовательность называется последовательностью Миллера-Рабина).
- 4. Ответ "простое" даётся в следующих двух случаях:
 - \circ если $a^u \equiv 1 \pmod{n}$;
 - ullet если $a^{2^k u} \equiv -1 \pmod n$ при некотором $k \in [0,t-1]$.
- 5. Во всех остальных случаях даётся ответ "составное".
- 6. Ответ "простое" при выполнении теста Миллера-Рабина может быть ошибочным.

Определение

• Нечётное составное число n называется **сильно псевдопростым по основанию** a, если тест Миллера-Рабина для числа n с параметром a даёт ответ "простое".

Лемма 2

• Если $n \in P$, то тест Миллера-Рабина выдаст ответ "простое".

Доказательство

- По теореме Эйлера $a^{2^t \cdot u} \equiv 1 \pmod n$, так что в последовательности Миллера-Рабина есть хотя бы одна единица.
- Рассмотрим такое наименьшее k, что $a^{2^k \cdot u} \equiv 1 \pmod{n}$.
 - ullet Если k=0, то $a^u\equiv 1\pmod n$ и тогда дан ответ "простое".
 - ullet Пусть k>0. Тогда $a^{2^k\cdot u}\equiv 1\pmod n$ и $a^{2^{k-1}\cdot u}
 ot\equiv 1\pmod n$.
 - ullet Следовательно, $(a^{2^{k-1}\cdot u}-1)(a^{2^{k-1}\cdot u}+1)=a^{2^k\cdot u}-1$:n.
 - ullet Поскольку $n\in P$ и $a^{2^{k-1}\cdot u}
 ot\equiv 1\pmod n$, получаем, что $a^{2^{k-1}\cdot u}+1$:n.
 - В этом случае тоже дан ответ "простое".
- Итак, тест Миллера-Рабина вероятностный тест с односторонней ошибкой.

Замечание

• Можно доказать, что вероятность ошибки в тесте Миллера-Рабина не превосходит $\frac{1}{4}$, но доказательство весьма технически сложное.