Databases and the Relational Data Model

Gilles Falquet

Centre universitaire d'informatique

UniGE

Content

- Databases and Database management systems
- The Relational Data Model
- Querying Relational Databases

查询关系数据库

Database

- A database is a collection of related data
 - known facts that can be recorded and that have implicit meaning.
- A database has the following implicit properties
 - represents some aspect of the real world (universe of discourse)
 - is a logically coherent collection of data with some inherent meaning (not random)
 - designed, built, and populated with data for a specific purpose
 - an intended group of users
 - some preconceived applications for these users

Database management system

a piece of software that

- manages the physical storage of persistent date (on hard disks, solid state disks, RAM memory, etc.)
- executes application or user requests to
 - select and retrieve data
 - update data
- satisfies data management requirements

DBMS Requirements

- persistent storage of data
- provide a description of the stored data (schema)
- data access and update functions
- content-based data retrieval (selection criteria)
- multiple simultaneous access (concurrency)
- maintain data integrity
- reliability (crash recovery mechanisms)
- prevent unauthorized access to confidential data

Database management system

Can't we Use a File System?

- persistent storage of data OK
- provide a description of the stored data (schema) X
- data access and update functions ~ the fs doesn't know the internal structure of a file
- content-based data retrieval (selection criteria) X
- multiple simultaneous access (concurrency) X (not within one file)
- maintain data integrity X (anything can be written in a file)
- reliability (crash recovery mechanisms) OK
- prevent unauthorized access to confidential data OK

Data Description and Files

What is the meaning of these symbols?

```
A
4 SoCal:hangarWall // polygon # 5
28.7 9.8 -43.7
28.7 0 -43.7
28.7 0 4
28.7 9.8 4 4
SoCal:hangarIn // polygon # 6
-28.6 9.8 -43.7
```

```
version
 20328
                          0.1
                                 0.0
                                                          Speed-Bird
         KSBD
               L26
                                       0.0
                                             0.1
                                                  N199
2 20328
                                                          Speed-Bird
         KAVX
               KAVX
                          0.1
                                 0.0
                                       0.0
                                             0.0
                                                  N9492E
                                                          Glasair II-S
2 20328
         KSBD
               KSBD
                          0.1
                               0.0
                                      0.0
                                             0.0
                                                  N9492E
2 20329
                          0.1
                                 0.0
                                       0.0
                                             0.0
                                                  N9492E Glasair II-S
         KSBD
               KSBD
```

Problem

- Each application/user must know the meaning and organization of data in the files
- Nothing guarantees that everyone has the same interpretation

Principle: Define a Common Schema

A schema describes the data structure

$$Database = Schema + Data$$

- The schema is an integral part of the database
- Data may not exist without a schema

Data

ZK567	GVA	ZRH	43	106
KL1122	AMS	CDG	50	77
KL232	AMS	PPP	560	230
LX441	GVA	NCE	35	101

Data + Schema

Flight	From	То	Duration	Passagers
ZK567	GVA	ZRH	43	106
KL1122	AMS	CDG	50	77
KL232	AMS	PPP	560	230
LX441	GVA	NCE	35	101

Single schema principle

Everyone sees the data through the schema

Data Model

- A conceptual tool to structure data
- A database schema is expressed with a data model
- A data model is based on a set of concepts
 - hierarchical models (nodes, descendant links, ...)
 - tabular models (tables, rows, columns, ...)
 - graph models (nodes, links, ...)
 - key-value (keys, value sets, ...)

Relational Model of Data

E. F. Codd (1970)

- Based on simple mathematical constructs: sets, n-ary relations
- Has a simple intuitive interpretation: tables, rows, columns
- Well defined operations with a semantics based on relational algebra or relational calculus
- Currently the most frequently used model

Relational Database = Set of Tables

• table = $\underline{\text{set}}$ of rows and columns

Wine

each column has a name and a type (character string, number, date, ...)

Region	rear	Quality
Bordeaux	2010	Excellent
Bourgogne	2010	Average

2014

2013

2011

Order

				1010
Order#	Quantity	Region	Year	ais
				ais
1022	455	Bordeaux	2010	ais
				rdeaux
1322	112	Bordeaux	2010	ueaux
0998	14	Valais	2014	

Quality

Excellent

Average

Good

Formal Model

Domain (or Type): a set of values considered as atomic

Relation schema: $R(A_1, A_2, ..., A_n)$

- a relation name R
- list of attributes, $(A_1, A_2, ..., A_n)$.

Attribute: role played by some domain D in the relation schema R.

• each A_k has a domain dom (A_k)

Relation (relation state)

for a relation schema $R(A_1:T_1, A_2:T_2, ..., A_n:T_n)$

a relation r on R is a set of n-tuples (the rows)

$$r = \{(t_1 = (a_1^1, ..., a_n^1), t_2 = (a_1^2, ..., a_n^2), ..., t_k = (a_1^k, ..., a_n^k))\}$$

where

$$a_1^i \in T_1, \ a_2^i \in T_2, \ ..., \ a_n^i \in T_n \text{ for } i = 1, ..., k.$$

the j th value a^i_j in tuple $t_i=(a^i_1,...,a^i_n)$, corresponds to the attribute A_j , notation: $t_i.A_j$

In SQL

- There is a set of standard types for the domains
- Definition of a relation schema (and an empty relation)

```
create table Wine(
   Region varchar, -- character string
   Year integer,
   Quality varchar,
   AveragePrice real)
```

Interpretation of a Relation

- Each row represents a fact about an entity or a relationship between entities
- Exemple

in the table Wine(Region, Year, Quality) represents the fact

"Wines in region r have quality q for year y"

III. Querying a Relational Database

- Extract desired information from a database
- Basic operations
 - selection, projection, join
- Standardized query language: SQL(Structured Query Language)
- A declarative (non-procedural language)
 - specify the result you want to obtain (what, no how)

Selection

r a relation on the schema $(A_1, A_2, ..., A_n)$

$$\sigma_{Condition} r = \{t \in r \mid Condition(t) = true \}$$

Retain the tuples of r that satisfy Condition

• the condition is a logical expression with the attribute names $A_1, A_2, ..., A_n$ as variables

Exemple

Wine

Region	Year	Quality
Bordeaux	2010	Excellent
Bourgogne	2010	Average
Valais	2014	Excellent
Valais	2013	Average
Bordeaux	2011	Good

 $\sigma_{Quality = 'Excellent'}$ Wine

Region	Year	Quality
Bordeaux	2010	Excellent
Valais	2014	Excellent

SQL:
select *
from Wine
where Quality = 'Excellent'

Exemple

Wine

Region	Year	Quality
Bordeaux	2010	Excellent
Bourgogne	2010	Average
Valais	2014	Excellent
Valais	2013	Average
Bordeaux	2011	Good

σ_{Quality} = 'Excellent' and Year > 2010Wine

Région	Year	Quality
Valais	2014	Excellent

select *
from Wine
where Quality = 'Excellent'
 and Year > 2010

Projection

r a relation on the schema $(A_1, A_2, ..., A_n)$

$$B = \{A_{i1}, A_{i2}, ..., A_{ik}\} \subseteq \{A_1, A_2, ..., A_n\}$$

$$\pi_{B} r = \{(t.A_{i1}, t.A_{i2}, ..., t.A_{ik} \mid t \in r \}$$

• Retain only the columns $A_{i1}, A_{i2}, ..., A_{ik}$ of r.

Exemple

$\pi_{\text{Region}} \text{Wine}$

Region
Bordeaux
Valais
Bourgogne

Region	Year	Quality
Bordeaux	2010	Excellent
Bourgogne	2010	Average
Valais	2014	Excellent
Valais	2013	Average
Bordeaux	2011	Good

In SQL

select Region
from Wine

Region
Bordeaux
Valais
Valais
Bordeaux
Bourgogne

Region	Year	Quality
Bordeaux	2010	Excellent
Bourgogne	2010	Average
Valais	2014	Excellent
Valais	2013	Average
Bordeaux	2011	Good

Duplicates are not removed! ⇒ a multiset (bag), not a set

Reason: performance

In SQL (2)

select distinct Region
from Wine

Region
Bordeaux
Valais
Bourgogne

Region Year Quality Bordeaux 2010 Excellent 2010 Bourgogne Average Valais 2014 Excellent Valais 2013 Average Bordeaux 2011 Good

Duplicates are removed

(less efficient)

Selection + Projection in SQL

select A1, A2, ..., Ak from T where Condition

Equi Join ⋈

 $r \bowtie_{A=B} s = \{t \text{ concatenated with } u \mid t \in r \text{ and } u \in s \text{ and } t.A = s.B \}$

Student

Enrolment

StdNo	Name	Courseld	Student	Date
6	Jean	math	6	2019-12-04
3	Anne	history	3	2021-12-17
8	Sylvie	sociology	7	2019-06-06
		history	6	2020-08-22

select * from Student, Enrolment
where Student.StdNo = Enrolment.Student

StdNo	Name	Courseld	Student	Date
6	Jean	math	6	2019-12-04
6	Jean	history	6	2020-08-22
3	Anne	history	3	2021-12-17

Self Join

- A relation can be joined with itself
- Like joining two copies of the same relation

"Find the courses that share (at least) one student"

select E1.Courseld, E2.Courseld

from Enrolment E1, Enrolment E2

where E1.Student = E2.Student

and E1.Courseld <> E2.Courseld

Enrolment E1

Courseld	Student	Date
math	6	2019-12-04
history	3	2021-12-17
sociology	7	2019-06-06
history	6	2020-08-22

Enrolment E2

	Courseld	Student	Date
→	math	6	2019-12-04
→	history	3	2021-12-17
→	sociology	7	2019-06-06
*	history	6	2020-08-22

Theta Join ⋈

 $r \bowtie_{A \theta B} s = \{t \text{ concatenated with } u \mid t \in r \text{ and } u \in s \text{ and } t.A \theta s.B \}$

Join +Selection + Projection in SQL

```
select T1.A1, ...
from T1, T2, ...
where Condition and T1.Ai = T2.Bj
```


Exercises

Schema

- city(Name, Country, Latitude, Longitude, Population, Province)
- country(<u>Code</u>, Area, Capital, Name, Population, Province)
- located(City, Country, Lake, Province, River, Sea)

Write SQL queries that retrieve the following information

- cities with more than 10 000 000 inhabitants
- countries with a city on the Indian Ocean
- cities with a population > 30% of the country population
- name of the countries that have a city located on the Baltic Sea
- cities that are more populated than the capital of their country (*)