

8

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Instructor Details</u>

☆ Course / Assessments / Quiz 4

Previous
Next >

Quiz 4

 $\hfill \square$ Bookmark this page

Q1
0.0/1.0 point (graded) Consider the multivariate Gaussian PDF given as
$\frac{1}{\sqrt{32\pi^2}}e^{\frac{(x-2)^2}{8}+\frac{(x-4)^2}{4}}$ Its mean and covariance matrix are
$\begin{bmatrix} 2 \\ 4 \end{bmatrix}, \begin{bmatrix} 8 & 0 \\ 0 & 4 \end{bmatrix}$
×
Submit
Q2
1.0/1.0 point (graded) In LDA , we choose \mathcal{C}_0 if
✓
Submit
Q3
1.0/1.0 point (graded) LDA can be imported in PYTHON as
from sklearn.discriminant_analysis import LDA
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.discriminant import LinearDiscriminantAnalysis

Submit

from sklearn.discriminant import LDA

\cap	4
V	┰

1.0/1.0 point (graded)

PDF of a Gaussian random vector is

 $\frac{1}{\sqrt{(2\pi)^n|\mathbf{R}|}}e^{-\frac{1}{2}(\bar{\mathbf{x}}-\bar{\mathbf{\mu}})^T\mathbf{R}(\bar{\mathbf{x}}-\bar{\mathbf{\mu}})}$

 $\frac{1}{\sqrt{(2\pi)^n \mathbf{R}}} e^{-\frac{1}{2}(\bar{\mathbf{x}} - \bar{\boldsymbol{\mu}})^T \mathbf{R}^{-1}(\bar{\mathbf{x}} - \bar{\boldsymbol{\mu}})}$

 $\bigcirc \quad \frac{1}{\sqrt{(2\pi)^n R}} e^{-\frac{1}{2}(\bar{\mathbf{x}} - \bar{\mathbf{\mu}})^T \mathbf{R}(\bar{\mathbf{x}} - \bar{\mathbf{\mu}})}$

 $\frac{1}{\sqrt{(2\pi)^n |\mathbf{R}|}} e^{-\frac{1}{2}(\bar{\mathbf{x}} - \bar{\mathbf{\mu}})^T \mathbf{R}^{-1}(\bar{\mathbf{x}} - \bar{\mathbf{\mu}})}$

~

Submit

Q5

1.0/1.0 point (graded)

Consider the two classes C_0 , C_1 distributed as below and determine when the classifier chooses \mathcal{H}_0 . Consider $P_0 = P_1 = \frac{1}{2}$

 $\mathcal{C}_0 \sim N\left(\overline{\mu}_0 = \begin{bmatrix} -4 \\ -6 \end{bmatrix}, \mathbf{R} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{4} \end{bmatrix}\right), \mathcal{C}_1 \sim N\left(\overline{\mu}_1 = \begin{bmatrix} 8 \\ 4 \end{bmatrix}, \mathbf{R} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{4} \end{bmatrix}\right)$

 $\int 5x_1 + 3x_2 \ge -2$

 $\bigcirc 2x_1 - 3x_2 \ge 2$

 $3x_1 + 5x_2 \le 1$

 $3x_1 - 5x_2 \le -1$

Submit

Q6

1.0/1.0 point (graded)

The entropy H(X) of an event is

 $\int_{i=1}^n p(x_i) \log_2 \frac{1}{p(x_i)}$

~

Submit

O 1.12		
1.59		
<u> </u>		
Submit		
)8		
.0/1.0 point (grad	ded) n gain is defined as	
	=H(X)+H(X Y)	
IG(X Y) =	=H(X)-H(X Y)	
	=H(Y)-H(X Y)	
☐ IG(X Y) =	=H(Y)+H(X Y)	
~		
Submit		
Q9		
.0/1.0 point (grad	ded) Iditional entropy for the type feature depicted in the figure below?	
	Type?	
	Typo? French Thelan Tree	
Vhat is the cond	Typo? French Thelan Tree	
Vhat is the cond	Typo? French Thelan Tree	
Vhat is the cond	Typo? French Thelan Tree	
/hat is the cond	Typo? French Thelan Tree	
/hat is the cond 0 ½ 1	Typo? French Thelan Tree	
0	Typo? French Thelan Tree	

© All Rights Reserved

