Programare logică și funcțională - examen scris -

<u>Notă</u>

- Subiectele se notează astfel: of 1p; A 2p; B 4p; C 3p.
 Problema Prolog (B) vor fi rezolvată în SWI Prolog. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare predicat folosit; (3) specificarea fiecărui predicat (semnificația parametrilor, model de flux, tipul predicatului - determinist/nedeterminist).
- 3. Problema Lisp (C) va fi rezolvată în Common Lisp. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare funcție folosită; (3) specificarea fiecărei funcții (semnificația parametrilor).

```
A. Fie următoarea definiție de funcție LISP
        (DEFUN F(L)
                  (COND
                          ((NULL L) 0)
                          ((> (F (CAR L)) 1) (F (CDR L)))
                          (T (+ (F (CAR L)) (F (CDR L))))
                 )
        )
```

Rescrieți această definiție pentru a evita dublul apel recursiv (F (CAR L)), fără a redefini logica clauzelor și fără a folosi o funcție auxiliară. Nu folosiți SET, SETQ, SETF. Justificați răspunsul.

B. Să se scrie un program PROLOG care generează lista submulțimilor de sumă pară, cu elementele unei liste. Se vor scrie modelele matematice și modelele de flux pentru predicatele folosite.

Exemplu- pentru lista L=[2, 3, 4] \Rightarrow [[],[2],[4],[2,4]] (nu neapărat în această ordine)

C. Se consideră o listă neliniară. Să se scrie o funcție LISP care să aibă ca rezultat lista inițială din care au fost eliminate toate aparițiile unui element e. Se va folosi o funcție MAP.
Exemplu

a) dacă lista este (1 (2 A (3 A)) (A)) și e este A => (1 (2 (3))) NIL)
b) dacă lista este (1 (2 (3))) și e este A => (1 (2 (3)))