- 1. Sia $\mathcal{F}:=\mathcal{F}(2,t,e_{\max},e_{\min})$ l'insieme di numeri di macchina con l'arrotondamento, che contiene anche i numeri denormalizzati. Siano d la spaziatura dei numeri denormalizzati e u la precisione di macchina di \mathcal{F} .
 - Determina gli interi t, e_{max} , e_{min} in modo che $e_{\text{max}} + e_{\text{min}} = 8$, realmax = 15 e $\frac{realmin}{d} = 8$.
 - Quanti sono i numeri di F?
 - Siano dati $x = (1.\overline{011})_2$ e $y = (10.\overline{011})_2$. Determina $\tilde{x} = fl(x) \in \mathcal{F}, \ \tilde{y} = fl(y) \in \mathcal{F}$ e $\tilde{z} = \tilde{x}fl(+)\tilde{y}$.
 - Determina u e l'esponente e tale che $\tilde{z}2^e = u$.
 - Scrivi $x, y \in \tilde{x}, \tilde{y}$ come frazioni di numeri interi in base 10.
- 2. Si vuole calcolare y = F(x) con $F(x) = \sqrt{f(g(x))}$, con f, g funzioni date.
 - $\bullet\;$ Determina la relazione tra il numero di condizionamento di Fe quelli di fe g.
 - Studia il condizionamento della funzione F(x) quando $f(x) = e^x$, $g(x) = x^2$, e $f(x) = x^2$, $g(x) = e^x$.

Sia $F(x) = \sqrt{x^2 - 4}$ con x che varia nel campo di definizione. Confronta la stabilità dei due algoritmi

- $\sqrt{x^2-4}$
- $\sqrt{(x-2)(x+2)}$

al variare di x numero di macchina.

- 3. Sia $f(x) = x^3 5x^2 + 7x 3$.
 - Disegna il grafico di f. Determina le radici α , β con $\alpha < \beta$.
 - •• Studia la convergenza del metodo di Newton ad α e a β . Considera le successioni ottenute con il metodo di Newton con i seguenti valori iniziali
 - (a) $x_0 = 0$
 - (b) $x_0 = 5/3$
 - (c) $x_0 = 2$
 - (d) $x_0 = 7/3$
 - (e) $x_0 = 8/3$
 - (f) $x_0 = 4$

Sono convergenti? Se convergenti, convergono ad α o a β ? Qual è l'ordine di convergenza? Giustifica tutte le risposte.

- Sia $g(x) = x \frac{f(x)}{m}$. Considera il metodo iterativo $x_{k+1} = g(x_k), k = 0, 1, \ldots$ Studia la convergenza locale ad α del metodo iterativo al punto precedente con m=7. La successione ottenuta con $x_0=0$ è convergente? Se convergente, qual è l'ordine di convergenza? Giustifica le risposte.
- ullet Determina m in modo che la convergenza locale a eta sia superlineare. La successione ottenuta con $x_0=2$ è convergente? Se convergente, qual è l'ordine di convergenza? Giustifica le risposte.
- Definisci il concetto di ordine di convergenza per una generica successione $x_k \to \alpha$ per $k \to +\infty$.
- 4. Sia data la matrice

$$A = \left(\begin{array}{ccc} \alpha & 3 & 2\alpha \\ 8 & 13 & 19 \\ -2\alpha & -7 & -3\alpha \end{array} \right).$$

- Calcola la fattorizzazione LU di A. Per quale scelta del parametri α esiste tale fattorizzazione?
- Disegna il grafico della funzione $\alpha \to ||A||_1$.
- Sia $\alpha = 2$. Calcola la fattorizzazione PA = LU con la tecnica del pivot parziale.
- Scrivi la pseudocodifica dell'algoritmo di eliminazione di Gauss di base per calcolare la fattorizzazione LU di A di dimensione n.
- Modifica la pseudocodifica al punto precedente per calcolare la fattorizzazione PA = LU con la tecnica del pivot parziale.

Sia $f(x) = e^{2x}$. Dati i punti $P_0 = (-1/2, f(-1/2)), P_1 = (0, f(0)), P_2 = (1/2, f(1/2)).$

- Determina il polinomio p che interpola i tre punti nella forma di Newton.
- Scrivi la formula dell'errore f(x) p(x) e determina una limitazione di $\max_{x \in [-1,1]} |f(x) p(x)|$.
- Determina il polinomio \tilde{p} che interpola i tre punti e $P_3 = (1, f(1))$ nella forma di Newton.
- Determina il polinomio q di primo grado di miglior approssimazione dei quattro punti P_0, P_1, P_2 e $P_4 = (2, f(2))$ nel senso dei minimi quadrati.