Automi e Linguaggi Formali

a.a. 2016/2017

LT in Informatica 28 Febbraio 2017

Alfabeti, linguaggi e automi a stati finiti

Nella lezione di ieri abbiamo visto:

- Che cos'è un alfabeto (di simboli/messaggi/azioni)
- Che cos'è un linguaggio formale
- Che cos'è un Automa a stati finiti deterministico
- Cosa vuol dire che un automa accetta un linguaggio

Automi a Stati Finiti Deterministici

Un Automa a Stati Finiti Deterministico (DFA) è una quintupla

$$A = (Q, \Sigma, \delta, q_0, F)$$

- Q è un insieme finito di stati
- \blacksquare Σ è un alfabeto finito (= simboli in input)
- lacksquare δ è una funzione di transizione $(q,a)\mapsto q'$
- $q_0 \in Q$ è lo stato iniziale
- \blacksquare $F \subseteq Q$ è un insieme di stati finali

Possiamo rappresentare gli automi sia come diagramma di transizione che come tabella di transizione.

Linguaggio accettato da un DFA

■ La funzione di transizione δ può essere estesa a $\hat{\delta}$ che opera su stati e parole (invece che su stati e simboli):

Base:
$$\hat{\delta}(q, \varepsilon) = q$$

Induzione: $\hat{\delta}(q, w) = \delta(\hat{\delta}(q, x), a)$
con $w = xa$ (parola x seguita dal simbolo a)

■ Formalmente, il linguaggio accettato da A è

$$L(A) = \{w : \hat{\delta}(q_0, w) \in F\}$$

 I linguaggi accettati da automi a stati finiti sono detti linguaggi regolari

Esercizi

DFA per i seguenti linguaggi sull'alfabeto {0, 1}:

- Insieme delle stringhe con 01 come sottostringa (fatto)
- Insieme di tutte e sole le stringhe con un numero pari di zeri e un numero pari di uni (fatto)
- Insieme di tutte le stringhe che contengono tre zeri (anche non consecutivi)
- Insieme delle stringhe che cominciano o finiscono (o entrambe le cose) con 01
- Insieme di tutte le stringhe che finiscono con 01

Esempio

■ DFA che riconosce tutte le parole che terminano con 01

Automi a stati finiti non deterministici (NFA

■ Cosa fa questo automa?

Riconosce le parole che terminano con 01 "scommettendo" se sta leggendo gli ultimi due simboli oppure no

- È un esempio di automa a stati finiti non deterministico:
 - può trovarsi contemporaneamente in più stati diversi
 - le transizioni non sono necessariamente complete:
 - \blacksquare da q_1 si esce solo leggendo 1
 - q₂ non ha transizioni uscenti

in questi casi il percorso si blocca, ma può proseguire lungo gli altri percorsi

Definizione formale di NFA

Un Automa a Stati Finiti Non Deterministico (NFA) è una quintupla

$$A = (Q, \Sigma, \delta, q_0, F)$$

- Q è un insieme finito di stati
- \blacksquare Σ è un alfabeto finito (= simboli in input)
- δ è una funzione di transizione che prende in input (q, a) e restituisce un sottoinsieme di Q
- $q_0 \in Q$ è lo stato iniziale
- \blacksquare $F \subseteq Q$ è un insieme di stati finali

Tabella delle transizioni per l'esempio

L'NFA che riconosce le parole che terminano con 01 è

$$A = (Q, \{0, 1\}, \delta, q_0, \{q_2\})$$

dove δ è la funzione di transizione

	0	1
$ ightarrow q_0$	$\{q_0,q_1\}$	$\{q_0\}$
q_1	Ø	$\{q_2\}$
* q 2	Ø	Ø

Linguaggio riconosciuto da un NFA

■ La funzione di transizione estesa $\hat{\delta}$ per gli NFA:

Base:

$$\hat{\delta}(q,\varepsilon) = \{q\}$$

Induzione:

$$\hat{\delta}(q, w) = \bigcup_{p \in \delta(\hat{q}, x)} \delta(p, a)$$

con w = xa (parola x seguita dal simbolo a)

- **Esempio:** calcoliamo $\hat{\delta}(q_0,00101)$ alla lavagna
- Formalmente, il linguaggio accettato da A è

$$L(A) = \{ w : \hat{\delta}(q_0, w) \cap F \neq \emptyset \}$$

Dimostriamo che l'esempio è corretto

■ Dimostriamo che l'automa d'esempio

accetta il linguaggio $L = \{x01 : x \in \Sigma^*\}.$

- Lo faremo dimostrando che valgono tre enunciati che danno le proprietà degli stati:
 - **1** per ogni $w \in \Sigma^*$, $q_0 \in \hat{\delta}(q_0, w)$
 - 2 $q_1 \in \hat{\delta}(q_0, w)$ se e solo se $w = x_0$
 - 3 $q_2 \in \hat{\delta}(q_0, w)$ se e solo se w = x01
- La dimostrazione è per induzione sulla lunghezza |w| della parola in ingresso

Esercizi

Definire degli automi a stati finiti non deterministici che accettino i seguenti linguaggi:

- \blacksquare L'insieme delle parole sull'alfabeto $\{0,1,\ldots,9\}$ tali che la cifra finale sia comparsa in precedenza
- L'insieme delle parole sull'alfabeto $\{0,1,\ldots,9\}$ tali che la cifra finale *non* sia comparsa in precedenza
- L'insieme delle parole di 0 e 1 tali che esistono due 0 separati da un numero di posizioni multiplo di 4 (0 è un multiplo di 4)