PLOTS PLOTS

VARYING DIFF BETWEEN MAX AND MIN RATE

Case1: Simulating with two 2-D pools. Min rate=100; Max Rate=Min rate+d; d = [50 100 200 300]

Desired Value=16 (dash-dot line)

Case1: Simulating with two 2-D pools. Min rate=100; Max Rate=Min rate+d; d = [50 100 200 300]

VARYING DIFF BETWEEN MAX AND MIN RATE

Case2: Simulating with one 4-D pools. Min rate=100; Max Rate=Min rate+d; d = [50 100 200 300]

Desired Value=16(dash-dot line)

Case2: Simulating with one 4-D pools. Min rate=100; Max Rate=Min rate+d; d = [50 100 200 300]

Desired Value=8(dash-dot line)

Desired Value=8(dash-dot line)

Case1: Simulating with two 2-D pools. Min rate=100; Max Rate=Min rate+d; d = [50 100 200 300]

Desired Value=4(dash-dot line)

Case2: Simulating with one 4-D pools. Min rate=100; Max Rate=Min rate+d; d = [50 100 200 300]

Desired Value=4(dash-dot line)

Case1: Simulating with two 2-D pools. Min rate=100; Max Rate=Min rate+d; d = [50 100 200 300]

Desired Value=2(dash-dot line)

Case2: Simulating with one 4-D pools. Min rate=100; Max Rate=Min rate+d; d = [50 100 200 300]

Desired Value=2(dash-dot line)

Case1: Simulating with two 2-D pools. Min rate=100; Max Rate=Min rate+d; d = [50 100 200 300]

Desired Value=1(dash-dot line)

Simulations with 2 pool d=50 d=100 8.0 values d=200 d=300 Asymptote v 0.0 0.2 100 150 200 250 300 350 400 No. of neurons d=50 2.0 Lime taken to reach 90% d=100 d=200 d=300 100 150 200 300 350 400 250 No. of neurons

Case2: Simulating with one 4-D pools. Min rate=100; Max Rate=Min rate+d; d = [50 100 200 300]

Desired Value=1(dash-dot line)

Case1: Simulating with two 2-D pools. Min rate=100; Max Rate=Min rate+d; d = [50 100 200 300]

Desired Value=0.5(dash-dot line)

Case2: Simulating with one 4-D pools. Min rate=100; Max Rate=Min rate+d; d = [50 100 200 300]

Desired Value=0.5(dash-dot line)

VARYING RADIUS OF THE POOLS

Case3: Simulating with two 2-D pools. Min rate=100; Max Rate=200; Radius=[1 2 10 17]

Desired Value=16(Dash-dot Line)

Case3: Simulating with two 2-D pools. Min rate=100; Max Rate=200; Radius=[1 2 10 17]

Desired Value=8(Dash-dot Line)

VARYING RADIUS OF THE POOLS

Case4: Simulating with one 4-D pools. Min rate=100; Max Rate=200; Radius=[1 2 10 17]

Desired Value=16(Dash-dot Line)

Case4: Simulating with one 4-D pools. Min rate=100; Max Rate=200; Radius=[1 2 10 17]

Desired Value=8(Dash-dot Line)

Case3: Simulating with two 2-D pools. Min rate=100; Max Rate=200; Radius=[1 2 10 17]

Case4: Simulating with one 4-D pools. Min rate=100; Max Rate=200; Radius=[1 2 10 17]

Desired Value=4 (Dash-dot Line)

Desired Value=4(Dash-dot Line)

Case3: Simulating with two 2-D pools. Min rate=100; Max Rate=200; Radius=[1 2 10 17]

Case4: Simulating with one 4-D pools. Min rate=100; Max Rate=200; Radius=[1 2 10 17]

Desired Value=2 (Dash-dot Line)

Desired Value=2(Dash-dot Line)

Case4: Simulating with two 2-D pools. Min rate=100; Max Rate=200; Radius=[1 2 10 17]

Case4: Simulating with one 4-D pools. Min rate=100; Max Rate=200; Radius=[1 2 10 17]

Desired Value=1 (Dash-dot Line)

Desired Value=1(Dash-dot Line)

Case4: Simulating with two 2-D pools. Min rate=100; Max Rate=200; Radius=[1 2 10 17]

Case4: Simulating with one 4-D pools. Min rate=100; Max Rate=200; Radius=[1 2 10 17]

Desired Value=0.5 (Dash-dot Line)

Desired Value=0.5(Dash-dot Line)

Simulations with 1 pool