SAMSUNG

IoT Course

Exercise

© 2023 SAMSUNG. All rights reserved.

 $Samsung\ Electronics\ Corporate\ Citizenship\ Office\ holds\ the\ copyright\ of\ this\ document.$

 $This document is a {\it literary property protected by copyright law so reprint and reproduction without permission are prohibited.}$

To use this document other than the curriculum of Samsung Innovation Campus, you must receive written consent from copyright holder.

SIC HCMUTE IOT COURSE

04/08/2024

The Silent Team

Nguyễn Thanh Phú Phạm Tuấn Anh Trần Đình Khánh Nhân Hà Gia Thái Vĩnh Ngọc

Contents

	Cài đặt hệ điều hành Raspberry Pi	6
	1.1. Hệ điều hành	6
	Hình 1.1.1 – Khởi chạy Raspberry Pi Imager v.1.8.5 và chọn phần cứng Raspberry Pi 4	6
	Hình 1.1.2 – Chọn hệ điều hành "Raspberry PI OS (64-bit) / Raspberry Pi Desktop (Recommended) (Recommended) Released: 2024-07-04"	7
	Hình 1.1.3 – Chọn ổ đĩa nơi mà HĐH được cài vào	7
	Hình 1.1.4 – Cấu hình username, password của người dùng trên Raspberry Pi OS và thi lập SSID, password cho Wifi	
	Hình 1.1.5 – Bật dịch vụ SSH	8
	Hình 1.1.6 – Xác nhận lần cuối để tiến hành cài đặt	9
	Hình 1.1.7 – Chờ đến khi hoàn tất và có thể lấy thẻ MicroSD ra khỏi đầu đọc	9
	1.2. Cấu hình RPI	9
	Hình 1.2.1 – Nhập địa chỉ IP vào Puty	. 10
	Hình 1.2.2 – Kết nối được với app Puty	. 10
	Hình 1.2.3 – Đăng nhập vào Raspberry Pi	. 10
	Hình 1.2.4 – Cấu hình SSH cho Pi	.11
	Hình 1.2.5 – Thực hiện lệnh kiểm tra và lựa chọn thư mục	. 11
	Hình 1.2.6 – Cài đặt ứng dụng VNC	.11
	Hình 1.2.7 – Đăng nhập vào Pi	.12
	Hình 1.2.8 – Hoàn thành đăng nhập	.12
	1.3. Sử dụng RPI thông qua máy tính Window	12
	Hình 1.3.1 – Tạo file text từ máy tính	.12
	Hình 1.3.3 – Gửi dữ liệu đến Pi	.13
	Hình 1.3.4 – Pi sau khi nhận được file	.13
	1.4. Thư viện GPIO Zero	13
	Hình 1.4.1 – Cài đặt thư viện gpiozero .	. 14
	Hình 1.4.2 – Chương trình blink_led.	. 14
)	Git và Github	14

	2.1. Cài đặt Git	14
	Hình 2.1.1 – Nhập tên và email	14
	Hình 2.1.2 – Cài đặt Git trên raspberry Pi	15
	2.2. GitHub Repository	15
	Hình 2.2.1 – Tạo kho lưu trử trên Git	15
	Hình 2.2.2 – Đưa dữ liệu lên Git	15
	2.3. Mini Project với Github	16
	Hình 2.3.1 – Thực hiện các lệnh để gửi file lên Github	16
	Hình 2.3.2 – Kết quả sau khi gửi thêm file	16
3.	. Raspberry Pi với Python	16
	3.1. Điều khiển Led	16
	Hình 3.1.1 – Code điều khiển nhấp nháy Led	17
	Hình 3.1.2 – Kết quả điều khiển Led	17
	3.2. Giám sát hoạt động của CPU	17
	Hình 3.2.1 – Code thực hiện lệnh giám sát hoạt động CPU	18
	Hình 3.2.2 – Kết quả giám sát hoạt động CPU	18
	Hình 3.2.3 – Title Error! Bookmark not def	fined.
	3.3. Trực quan hóa dữ liệu	19
	Hình 3.3.1 – Chương trình trực quan hoá dữ liệu cho cảm biến nhiệt độ độ ẩm	19
4.	. Máy chủ DB và lập trình Node.js trên RPI	19
	4.1. Sử dụng Raspberry Pi làm Máy chủ DB	19
	Hình 4.1.1 – Cài đặt MariaDB thông qua apt	20
	Hình 4.1.2 – Kiểm tra phiên bản MariaDB	20
	Hình 4.1.3 – Thiết lập tài khoảng root	20
	Hình 4.1.4 – Chạy mysql với quyền root và sử dụng mysql	21
	Hình 4.1.5 – Chọn user, kiểm tra host và pasword.	21
	Hình 4.1.6 – Thực hiện thay đổi mật khẩu khi gặp lỗi ERROR 1356 (HY000)	21
	Hình 4.1.7 – Thực hiện cập nhật grant table sau khi có chỉnh sửa	22

Hình 4.1.8 – Cài đặt thư viện pymysql	22
4.2. Giao tiếp Socket with Raspberry Pi - Truyền thông Bluetooth	23
Hình 4.2.1– Ghép nối Bluetooth giữa Raspberry Pi 4 (Pi4) và điện thoại Samsung	ſabS7FE.
	23
Hình 4.2.2 – Xây dựng chương trình điều khiển LED sử dụng SerialPy cổng	
/dev/rfcomm0	23
Hình 4.2.3 – Khởi chạy dịch vụ rfcomm watch để tự tạo cổng /dev/rfcomm0 kh	
bằng ứng dụng Terminal trên điện thoại cho chương trình điểu khiển LED	24
Hình 4.2.4 – Gởi chuỗi ASCII chứa 'ON' từ điện thoại đến Pi	24
Hình 4.2.5 – Chuỗi dữ liệu nhận được	25
Hình 4.2.6 – Đèn LED sáng với chuỗi chứa ký tự 'ON'	25
Hình 4.2.7 – Gởi chuỗi dữ liệu chứa 'OFF' từ điện thoại đến Pi	26
Hình 4.2.8 – Chuỗi dữ liệu chứa 'OFF' nhận được từ điện thoại	26
4.3 Raspberry Pi với Node-RED	27
Hình 4.3.1 – Cài đặt NodeJS mới nhất	28
Hình 4.3.2 – Cài đặt NodeRED	28
Hình 4.3.3 – Khởi độn NodeRED	28
Hình 4.3.4 – Truy cập NodeRED từ máy tính qua port1880	29
Hình 4.3.5 – Tạo 'rpi-gpio out' và thiết lập chân	29
Hình 4.3.6 – Tạo tín hiệu bật và tắt cho LED.	30
Hình 4.3.7 – Deploy (phát hành), và kiểm thử	30
Hình 4.3.8 – Kết quả kiểm thử ở hình 4.3.7	31
Hình 4.3.9 – Kiểm thử với tín hiệu OFF	31
Hình 4.3.10 – Kết quả kiểm thử ở 4.3.9	32
The Silent Team	22

1. Cài đặt hệ điều hành Raspberry Pi

1.1. Hệ điều hành

Hình 1.1.1 – Khởi chạy Raspberry Pi Imager v.1.8.5 và chọn phần cứng Raspberry Pi 4.

Hình 1.1.2 – Chọn hệ điều hành "Raspberry PI OS (64-bit) / Raspberry Pi Desktop (Recommended) (Recommended) Released: 2024-07-04".

Hình 1.1.3 – Chọn ổ đĩa nơi mà HĐH được cài vào.

Hình 1.1.4 – Cấu hình username, password của người dùng trên Raspberry Pi OS và thiết lập SSID, password cho Wifi.

Hình 1.1.5 – Bật dịch vụ SSH.

Hình 1.1.6 – Xác nhận lần cuối để tiến hành cài đặt.

Hình 1.1.7 – Chờ đến khi hoàn tất và có thể lấy thẻ MicroSD ra khỏi đầu đọc.

1.2. Cấu hình RPI

Hình 1.2.1 – Nhập địa chỉ IP vào ứng dụng Puty

Hình 1.2.2 – Kết nối được với ứng dụng Puty

Hình 1.2.3 – Đăng nhập vào Raspberry Pi

Hình 1.2.4 – Cấu hình SSH cho Raspberry Pi

```
pi@raspberrypi:~/Documents

pi@login as: pi
p
```

Hình 1.2.5 – Thực hiện lệnh kiểm tra và lựa chọn thư mục

Hình 1.2.6 – Cài đặt ứng dụng VNC

Hình 1.2.7 – Đăng nhập vào Pi

Hình 1.2.8 – Hoàn thành đăng nhập

1.3. Sử dụng RPI thông qua máy tính Window

Hình 1.3.1 – Tạo file text từ máy tính

Hình 1.3.3 – Gửi dữ liệu đến Raspberry Pi

Hình 1.3.4 – Raspberry Pi sau khi nhận được file

1.4. Thư viện GPIO Zero

```
// msnp@raspberrypi:~/Deskto X + \ - \ \ - \ \ \ X \

(python3.11) msnp@raspberrypi:~/Desktop/Exercise $ sudo apt install python3-gpiozero Reading package lists... Done Building dependency tree... Done Reading state information... Done python3-gpiozero is already the newest version (2.0-1). The following package was automatically installed and is no longer required: rpi.gpio-common Use 'sudo apt autoremove' to remove it. 
0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded. 
(python3.11) msnp@raspberrypi:~/Desktop/Exercise $
```

Hình 1.4.1 – Cài đặt thư viện **gpiozero**.

Hình 1.4.3 – Chương trình button_test.py.

2. Git và Github

2.1. Cài đặt Git

```
MINGW64/c/Users/ACER NITRO

--[no-]name-only show variable names only respect include directives on lookup show origin of config (file, standard input, blob, com show scope of config (worktree, local, global, system, command) --[no-]show-scope show scope of config (worktree, local, global, system, command) --[no-]default <value> with --get, use default value when missing entry --[no-]comment <value> human-readable comment string (# will be prepended as needed)

ACER NITRO@DESKTOP-IFICRLF MINGW64 ~ $ git config --global user.name "ThaiHa"

ACER NITRO@DESKTOP-IFICRLF MINGW64 ~ $ git config --global user.email giathai08122001.81@gmail.com

ACER NITRO@DESKTOP-IFICRLF MINGW64 ~ $
```

Hình 2.1.1 – Nhập tên và email

Hình 2.1.2 – Cài đặt Git trên Raspberry Pi

2.2. GitHub Repository

Hình 2.2.1 – Tạo kho lưu trử trên Github

Hình 2.2.2 – Đưa dữ liệu lên Github

2.3. Mini Project với Github

```
MINGW64:/d/IOT_SAMSUNG/git — 

ACER NITRO®DESKTOP-1FICRLF MINGW64 /d/IOT_SAMSUNG/git (main)

$ git add *

ACER NITRO®DESKTOP-1FICRLF MINGW64 /d/IOT_SAMSUNG/git (main)

$ git commit -m "test updated"

[main c12f4aa] test updated

1 file changed, 1 insertion(+)

create mode 100644 test.txt

ACER NITRO®DESKTOP-1FICRLF MINGW64 /d/IOT_SAMSUNG/git (main)

$ git push -u origin main

Enumerating objects: 4, done.

Counting objects: 100% (4/4), done.

Delta compression using up to 8 threads

Compression using up to 8 threads

Compression using up to 8 threads

Compression objects: 100% (2/2), done.

Writing objects: 100% (3/3), 311 bytes | 311.00 ki8/s, done.

Total 3 (delta 0), reused 0 (delta 0), pack-reused 0 (from 0)

To https://github.com/GiaThaiUTE/capstone-Project.git

08319cc..c12f4aa main -> main

branch 'main' set up to track 'origin/main'.

ACER NITRO®DESKTOP-1FICRLF MINGW64 /d/IOT_SAMSUNG/git (main)

$
```

Hình 2.3.1 – Thực hiện các lệnh để gửi file lên Github

Hình 2.3.2 – Kết quả sau khi gửi thêm file

3. Raspberry Pi với Python

3.1. Điều khiển Led

Hình 3.1.1 – Code điều khiển nhấp nháy Led

Hình 3.1.2 – Kết quả điều khiển Led

3.2. Giám sát hoạt động của CPU

Hình 3.2.1 – Code thực hiện lệnh giám sát hoạt động CPU

Hình 3.2.2 – Kết quả giám sát hoạt động CPU

Hình 3.2.3 – Kết quả được thống kê chi tiết hoạt động CPU

3.3. Trực quan hóa dữ liệu

Hình 3.3.1 – Chương trình trực quan hoá dữ liệu cho cảm biến nhiệt độ độ ẩm.

4. Máy chủ DB và lập trình Node.js trên RPI

4.1. Sử dụng Raspberry Pi làm Máy chủ DB

Hình 4.1.1 – Cài đặt MariaDB thông qua apt.

Hình 4.1.2 – Kiểm tra phiên bản MariaDB.

Hình 4.1.3 – Thiết lập tài khoảng root.

```
(exercise) msnp@raspberrypi:~ $ sudo mysql
Welcome to the MariaDB monitor. Commands end with; or \g.
Your MariaDB connection id is 32
Server version: 10.11.6-MariaDB-0+deb12u1 Debian 12
Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [(none)]> use mysql
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
MariaDB [mysql]> |
```

Hình 4.1.4 – Chạy mysql với quyền root và sử dụng mysql.

Hình 4.1.5 – Chọn user, kiểm tra host và pasword.

Hình 4.1.6 – Thực hiện thay đổi mật khẩu khi gặp lỗi ERROR 1356 (HY000).

Hình 4.1.7 – Thực hiện cập nhật **grant table** sau khi có chỉnh sửa.

```
| As a proper supper su
```

Hình 4.1.8 – Cài đặt thư viện pymysql.

4.2. Giao tiếp Socket with Raspberry Pi - Truyền thông Bluetooth

Hình 4.2.1– Ghép nối Bluetooth giữa Raspberry Pi 4 (Pi4) và điện thoại SamsungTabS7FE.

Hình 4.2.2 – Xây dựng chương trình điều khiển LED sử dụng SerialPy cổng /dev/rfcomm0.

Hình 4.2.3 – Khởi chạy dịch vụ **rfcomm watch** để tự tạo cổng **/dev/rfcomm0** khi kết nối bằng ứng dụng Terminal trên điện thoại cho chương trình điểu khiển LED.

Hình 4.2.4 – Gởi chuỗi ASCII chứa 'ON' từ điện thoại đến Pi.

Hình 4.2.5 – Chuỗi dữ liệu nhận được.

Hình 4.2.6 – Đèn LED sáng với chuỗi chứa ký tự 'ON'.

Hình 4.2.7 – Gởi chuỗi dữ liệu chứa 'OFF' từ điện thoại đến Pi.

Hình 4.2.8 – Chuỗi dữ liệu chứa 'OFF' nhận được từ điện thoại.

Hình 4.2.9 – Đèn LED tắt.

4.3 Raspberry Pi với Node-RED

Hình 4.3.1 – Cài đặt NodeJS mới nhất.

Hình 4.3.2 – Cài đặt NodeRED.

```
Settings file written to /home/msnp/.node-red/settings.js
(exercise) msnp@raspberrypi:~/Desktop/Exercise $ node-red-start

Start Node-RED works better with the Firefox or Chrome browser

Use node-red-stop

Use node-red-stop

Use node-red-stop

Use node-red-stort

Use node-red-start

To start Node-RED uother better with the Firefox or Chrome browser

Use node-red-stop

Use node-red-stop

Use node-red-stop

To view the recent log output

Use sudo systemctl enable nodered.service to autostart Node-RED at every boot

Use sudo systemct disable nodered.service to disable autostart on boot

To find more nodes and example flows - go to http://flows.nodered.org

Starting as a systemd service.

4 Aug 05:20:49 - [info] Node-RED version: v4.0.2

4 Aug 05:20:49 - [info] Node-RED version: v2.25.1

4 Aug 05:20:49 - [info] Node-RED version: v2.25.1

4 Aug 05:20:49 - [info] Linux 6-0.31+rpt-rpj-v4 arm4 LE

node-40:79 info] [DePROS9] DeprecationMarning: The 'pury rame4 LE

node-40:79 info] [DePROS9] DeprecationMarning: The 'pury rode' module is deprecated. Please use a userland alternative instead.

(Use 'node -trace-deprecation... to show where the warning was created)

4 Aug 05:20:49 : [info] Linux 6-0.31+rpt-rpj-v4 arm4 LE

node-40:79 info] [DePROS9] DeprecationMarning: The 'pury rode' module is deprecated. Please use a userland alternative instead.

4 Aug 05:20:49 : [info] Context store: 'default' (module-memory)

4 Aug 05:20:31 : [info] Settings file: /home/msnpy.node-red/settings.js

4 Aug 05:20:31 : [info] Usert store: 'default' indout-dememory]

4 Aug 05:20:31 : [info] Usert store: 'default' indout-dememory]

4 Aug 05:20:31 : [info] Usert store: 'home/msnpy.node-red/projects

4 Aug 05:20:31 : [info] Users its je chame/msnpy.node-red/projects

4 Aug 05:20:31 : [info] Usert store: 'home/msnpy.node-red/projects

4 Aug 05:20:31 : [info] Users its je chame/msnpy.node-red/projects
```

Hình 4.3.3 - Khởi đôn NodeRED.

Hình 4.3.4 – Truy cập NodeRED từ máy tính qua port1880.

Hình 4.3.5 – Tạo 'rpi-gpio out' và thiết lập chân.

Hình 4.3.6 – Tạo tín hiệu bật và tắt cho LED.

Hình 4.3.7 – Deploy (phát hành), và kiểm thử.

Hình 4.3.8 – Kết quả kiểm thử ở hình 4.3.7.

Hình 4.3.9 – Kiểm thử với tín hiệu OFF.

Hình 4.3.10 – Kết quả kiểm thử ở 4.3.9.

