THE PROFESSOR PROPOSES

Table of Contents

Executive Summary	2
Issues and Challenges	3
Exploratory Data Analysis	3
Univariate Analysis / Feature Engineering	3
Metric Data	3
Price	3
Carat	4
Clarity	5
Non Metric Data	7
Color	7
Cut	8
Certification	9
Polish1	LO
Symmetry1	۱1
Bivariate Analysis - Metric	L2
High Carat High Price Data Set1	١3
Regression with Carat1	L4
Regression with Clarity1	۱5
Bivariate Analysis - Non Metric	۱6
Regression with Certification1	۱6
Regression using Cut1	18
Regression using Polish1	۱9
Regression using Symmetry2	20
Regression using Color2	21
Multiple Regression - High Priced Diamond	22
Multiple Regression of Low priced Diamond2	<u>2</u> 4
Observations and Comments) 5

Executive Summary

A Professor is shopping for engagement ring and quickly learns that the pricing diamonds is not so easy. He collects data from wholesalers on 440 different diamonds. Now he has information on prices of these diamonds along with their characteristic features such as color, clarity, cut and carat (famous 4Cs) besides polish, symmetry and certification. These characteristics are considered important features in determining the price, but he was not sure how important are each of these features really are. He has identified a diamond which interests him. He decides to build a regression model using the acquired data to estimate the price of the diamond he is interested in. He wants to ensure that the price he pays for the diamond is fair.

He builds a **multiple regression model** which suggests that the diamond he is interested in is overprized but he also needs to account for the ring and the cost of retailing.

Issues and Challenges

Immediate challenge facing the professor is how to price the diamond of his interest given its characteristics. Advanced multiple regression is a potential approach to solve the pricing challenge. It involves the use of regular metric variables like Carat over a specified range and grouping of data using dummy variables for cut, color, clarity and others.

Exploratory Data Analysis

The exploratory data analysis involved univariate analysis and feature engineering.

Univariate Analysis / Feature Engineering Metric Data Price

Price	
Valid	440
Missing	0
Mean	1716.74
Median	2169.0
Std. Deviation	1175.69
Range	2985
Minimum	160
Maximum	3145

The Price ranged from 160 to 3145 and had bimodal distribution. The diamonds appear to be in two clusters less than \$1000 and higher than \$1000.

Carat

\sim	$\overline{}$		$\overline{}$	+
u	a	L	a	ι.

Valid	440
Missing	0
Mean	.67
Median	.81
Std. Deviation	.38
Range	1.49
Minimum	.09
Maximum	1.58

The Carat ranged from 0.09 to 1.58 and had bimodal distribution. The diamonds appear to be in two clusters 0.09 to 0.30 and 0.81 to 1.58 carats.

Clarity

Clarity	Frequency	Percent	Valid Percent	Cumulative Percent
I 1	82	18.6	18.6	18.6
12	28	6.4	6.4	25.0
SI1	116	26.4	26.4	51.4
SI2	110	25.0	25.0	76.4
SI3	26	5.9	5.9	82.3
VS1	30	6.8	6.8	89.1
VS2	41	9.3	9.3	98.4
VVS1	2	.5	.5	98.9
VVS2	5	1.1	1.1	100.0
Total	440	100.0	100.0	

This ordinally scaled data is potentially a case for being approximated as interval-scaled data. For treatment as nominal data, the VVS scale can be merged with VS since it has very low representation.

Clarity as non-metric	N	왕	Valid %	Cum %
Very few inclusions visible	82	18.6	18.6	18.6
Few inclusions visible	28	6.4	6.4	25.0
Very Very Few inclusions visible at 10X	116	26.4	26.4	51.4
Very Few inclusions visible at 10X	110	25.0	25.0	76.4
Several inclusions visible at 10X	26	5.9	5.9	82.3
Few inclusions at 30X	30	6.8	6.8	89.1
Several inclusions at 30X	41	9.3	9.3	98.4
Very very few inclusions at 30X	2	.5	.5	98.9
Very few inclusions at 30X	5	1.1	1.1	100.0
Total	440	100.0	100.0	

Clarity as Interval scaled	Count	90	Valid %	Cum %
1	82	18.6	18.6	18.6
2	28	6.4	6.4	25.0
3	116	26.4	26.4	51.4
4	110	25.0	25.0	76.4
5	26	5.9	5.9	82.3
6	30	6.8	6.8	89.1
7	41	9.3	9.3	98.4
8	2	.5	.5	98.9
9	5	1.1	1.1	100.0
Total	440	100.0	100.0	

Non Metric Data Color

Colour	Frequency	Percent	Valid Percent	Cumulative Percent
D	20	4.5	4.5	4.5
E	54	12.3	12.3	16.8
F	58	13.2	13.2	30.0
G	43	9.8	9.8	39.8
Н	71	16.1	16.1	55.9
I	79	18.0	18.0	73.9
J	72	16.4	16.4	90.2
K	31	7.0	7.0	97.3
L	12	2.7	2.7	100.0
Total	440	100.0	100.0	

Using the data available we will classify them into four color classes.

ColourN	Count	%	Valid %	Cum %
Colorless	132	30.0	30.0	30.0
Near Colorless	193	43.9	43.9	73.9
Faint Yellow	103	23.4	23.4	97.3
Very Light Yellow	12	2.7	2.7	100.0
Total	440	100.0	100.0	

We can consider using Colorless and Yellow as another potential clubbing of the data.

Colour2C	Count	%	Valid %	Cum %
Colorless	325	73.9	73.9	73.9
Yellow	115	26.1	26.1	100.0
Total	440	100.0	100.0	

Cut	Frequency	Percent	Valid Percent	Cumulative Percent
F	59	13.4	13.4	13.4
G	49	11.1	11.1	24.5
I	86	19.5	19.5	44.1
V	97	22.0	22.0	66.1
X	149	33.9	33.9	100.0
Total	440	100.0	100.0	

Cut has reasonably balanced representation of each class.

CutN	Frequency	Percent	Valid Percent	Cumulative Percent
Fair	59	13.6	13.6	13.4
Good	49	11.1	11.1	24.5
Very Good	97	22.0	22.0	46.6
Excellent	149	33.9	33.9	80.5
Ideal	86	19.5	19.5	100.0
Total	440	100.0	100.0	

Certification

Certification	Frequency	Percent	Valid %	Cum %
AGS	12	2.9	2.9	2.9
DOW	1	.2	.2	3.2
EGL	119	27.0	27.0	30.2
GIA	265	60.1	60.1	90.2
IGI	43	9.8	9.8	100.0
Total	441	100.0	100.0	

We can club certification in two classes as established and small labs

CertG	Frequency	Percent	Valid Percent	Cumulative Percent
AGS - GIA	277	63.0	63.0	63.0
Rest	163	37.0	37.0	100.0
Total	440	100.0	100.0	

Polish

Polish	Frequency	Percent	Valid Percent	Cumulative Percent
F	5	1.1	1.1	1.1
G	165	37.5	37.5	38.6
I	5	1.1	1.1	39.8
V	204	46.4	46.4	86.1
X	61	13.9	13.9	100.0
Total	440	100.0	100.0	

Fair and Ideal has very less representation in the data.

PolishN	Frequency	Percent	Valid %	Cum %
Fair	5	1.1	1.1	1.1
Good	165	37.6	37.6	38.7
Very Good	203	46.2	46.2	85.0
Excellent	61	13.9	13.9	98.9
Ideal	5	1.1	1.1	100.0
Total	440	100.0	100.0	

We will club Polish in two categories viz. Fair - Good and Very Good - Ideal.

Polish2C	Frequency	Percent	Valid Percent	Cumulative Percent
Fair - Good	170	38.6	38.6	38.6
Very Good - Ideal	270	61.4	61.4	100.0
Total	440	100.0	100.0	

Symmetry

Symmetry

	Frequenc	У %	Valid %	Cumulative %
F		21 5.0	5.0	5.0
G	1:	35.6	35.6	40.6
I		5 1.1	1.1	41.7
V	20)6 46.7	46.7	88.4
X	Į	51 11.6	11.6	100.0
Tot	tal 4	100.0	100.0	

Symmetry	Frequency	Percent	Valid Percent	Cumulative Percent
Fair	21	4.8	4.8	4.8
Good	157	35.7	35.7	40.5
Very Good	206	46.8	46.8	87.3
Excellent	51	11.6	11.6	98.9
Ideal	5	1.1	1.1	100.0
Total	440	100.0	100.0	

Bivariate Analysis - Metric

We observe that there are two distinct clusters with low carat (0.09 - 0.30) diamonds having low prices and higher carat diamonds having higher prices.

We will build two models for these two clusters. Besides we will focus on the cluster containing Professors diamond.

High Carat High Price Data Set

Regression with Carat

Model	R	R^2	Adjusted R ²	SE of the Estimate	Durbin-Watson
1	.327ª	.107	.103	347.86786	.534

a. Predictors: (Constant), Caratb. Dependent Variable: Price

ANOVA	Sum of Squares	df	Mean Square	F	Sig.
Regression	3456697.034	1	3456697.034	28.565	.000b
Residual	28800866.820	238	121012.045		
Total	32257563.850	239			

Coefficient	В	Std. Error	Beta	t	Sig.
(Constant)	3740.984	185.421		20.176	.000
Carat	-980.604	183.475	327	-5.345	.000

 R^2 of 10.7% indicates somewhat correlation between carats and price. The negative regression coefficient is surprising. Somehow heavier diamonds are not valued as much. We will need to consider other factors which can possibly explain lower prices for higher carat diamonds. For other variables we will use dummy variables.

Regression with Clarity

Case 1: Several permutations give at best a regression coefficient of 10%.

Case 2: Rating scale I3=1 to FL=12 gives a regression coefficient of 0.333.

Model	R	R^2	Adj R ²	SE of the Estimate	Durbin-Watson
1	.577a	.333	.330	300.64525	1.249

a. Predictors: (Constant), ClarityN

ANOVA	Sum of Squares	df	Mean Square	F	Sig.
Regression	10745322.800	1	10745322.800	118.881	.000b
Residual	21512241.050	238	90387.567		
Total	32257563.850	239			

Model	В	Std. Error	Beta	t	Sig.
(Constant)	2176.256	56.712		38.374	.000
ClarityN	139.864	12.828	.577	10.903	.000

Bivariate Analysis - Non Metric

Regression with Certification

We consider certification by GIA and AGS as one category and rest as other. It can be noticed that better R^2 can be achieved by reducing number of attributes of categorical variables.

Model	R	R^2	Adj R ²	SE of the Estimate	Durbin-Watson
1	.231ª	.054	.050	358.16032	1.007

a. Predictors: (Constant), Cert2G

ANOVA	Sum of Squares	df	Mean Square	F	Sig.
Regression	1727206.667	1	1727206.667	13.464	.000b
Residual	30530357.180	238	128278.812		
Total	32257563.850	239			

Coefficients^a

		-		-		
				Standardize		
		Unstand	dardized	d		
		Coefficients Co		Coefficients		
Mode	l	В	Std. Error	Beta	t	Sig.
1	(Constant)	2672.442	32.695		81.738	.000
	Cert2G	169.667	46.238	.231	3.669	.000

a. Dependent Variable: Price

Though 5% R2 is not high but it is significant.

Regression using Cut

Regression with Cut produces 9% R square. It makes it an important feature.

Model Summary^b

Model	R	R^2	Adj R ²	SE of the Estimate	Durbin-Watson
1	.297ª	.088	.084	351.52887	.958

a. Predictors: (Constant), Cut2Cb. Dependent Variable: Price

ANOVA	Sum of Squares	df	Mean Square	F	Sig.
Regression	2847297.693	1	2847297.693	23.042	.000b
Residual	29410266.160	238	123572.547		
Total	32257563.850	239			

Model	В	Std. Error	Beta	t	Sig.
(Constant)	2559.839	46.975		54.494	.000
Cut (Very Good – Ideal)	257.525	53.649	.297	4.800	.000

Regression using Polish

Regression with Polish produces 11% R square. It makes it an important feature.

Model Summary^b

Model	R	R^2	Adj R ²	SE of the	Estimate	D	urbin-Watson
1	.339ª		115	.111	346.370	77	.945

a. Predictors: (Constant), Polish2C

ANOVA	Sum of Squares	df	Mean Square	F	Sig.
Regression	3704058.788	1	3704058.788	30.874	.000b
Residual	28553505.060	238	119972.710		
Total	32257563.850	239			

Model	В	Std. Error	Beta	t	Sig.
(Constant)	2629.897	32.022		82.128	.000
Polish (Very Good – Ideal)	248.542	44.730	.339	5.556	.000

Regression using Symmetry

Regression with Symmetry produces 7.5% R square. The p value is significant, but the t value and F stats are relatively low compared to other.

Model	R	R ² Adj	R ² SE of the	Estimate	Durbin-Watson
1	.275ª	.075	.071	354.0100	.908

a. Predictors: (Constant), Symm2C

ANOVA	Sum of Squares	df	Mean Square	F	Sig.
Regression	2430661.646	1	2430661.646	19.395	.000b
Residual	29826902.200	238	125323.119		
Total	32257563.850	239			

Model	В	Std. Error	Beta	t	Sig.
(Constant)	2432.286	77.251		31.485	.000
Symmetry (Very Good – Ideal)	356.153	80.870	.275	4.404	.000

Regression using Color

Regression with Color produces 2.2% R square. It is significant but exhibit weak relation. We also know that color is part of 4 Cs so we will investigate it further.

Model Summary^b

Model	R	R^2	Adj R ²	SE of the	Estimate	D	urbin-Watson
1	.148ª		.022	.018	364.105	15	.816

a. Predictors: (Constant), Color2C

ANOVA	Sum of Squares	df	Mean Square	F	Sig.
Regression	705293.813	1	705293.813	5.320	.022b
Residual	31552270.040	238	132572.563		
Total	32257563.850	239			

Model	В	Std. Error	Beta	t	Sig.
(Constant)	2910.611	70.511		41.279	.000
Cut (Very Good – Ideal)	-115.362	50.016	148	-2.307	.022

Multiple Regression - High Priced Diamond

After several permutation combinations, we found a stable model which included all 4 Cs and gave a Rsquare of 0.497 with all variables significant. All 4Cs had the lowest p-values compared to Polish and Certification.

Model Summarv^b

Model	R	R^2	Adj R ²	SE of the Estimate	Durbin-Watson
1	.705ª	.497	.484	263.82079	1.097

a. Predictors: (Constant), Cut2C, Color2C, ClarityN, Cert2G,

Polish2C, Carat

ANOVA	Sum of Squares	df	Mean Square	F	Sig.
Regression	16040435.600	6	2673405.933	38.410	.000b
Residual	16217128.250	233	69601.409		
Total	32257563.850	239			

Model	В	Std. Error	Beta	t	Sig.
(Constant)	414.207	294.317		1.407	.161
Carat	1168.089	218.618	.390	5.343	.000
Color2C	278.097	44.033	.356	6.316	.000
ClarityIS	192.558	16.863	.795	11.419	.000
Cut2CF	120.963	42.924	.140	2.818	.005
Polish2C	101.215	37.450	.138	2.703	.007
Cert2G	80.389	36.606	.110	2.196	.029

Using the parameters of the Professors Diamond We can compute the predicted price:

Feature	Attributes	Coefficient	Value
Constant	1	414.207	414.207
Carat	0.9	1168.089	1051.28
Color	0	278.097	0.0
Clarity	5	192.558	962.79
Cut	1	120.963	120.963
Polish	0	101.215	0.0
Certification	1	80.389	80.389
Total			2629.629

The 95% confidence interval value of price is \$ 2099.98 to \$ 3159.88. Comparatively, the price is about \$470 more than predicted price.

Multiple Regression of Low-priced Diamond

After several permutation combinations, we found a stable model which included only 3 Cs (excluding Cut) and gave a \mathbb{R}^2 of 0.944 with all variables significant.

Model Summary^b

Model	R	R^2	Adj R ²	SE of the	Estimate	Di	urbin-Watson
1	.972a		944	.943	28.675	56	1.489

a. Predictors: (Constant), Color2C, ClarityN, Cert2G, Polish2C, Carat

b. Dependent Variable: Price

ANOVA	Sum of Squares	df	Mean Square	F	Sig.
Regression	2714425.380	5	542885.076	660.213	.000b
Residual	159523.815	194	822.288		
Total	2873949.195	199			

Model	В	Std. Error	Beta	t	Sig.
(Constant)	-208.674	22.886		-9.118	.000
Carat	1485.660	72.934	.812	20.370	.000
Color2C	72.924	6.516	.234	11.192	.000
ClarityIS	25.298	2.186	.241	11.571	.000
Polish2C	11.512	5.262	.042	2.188	.030
Cert2G	65.990	11.871	.226	5.559	.000

It is surprising to note that the Carat alone had almost 85% effect on determining prices. The Polish did not matter much in determining the price.

Observations and Comments

- 1. Carat, Clarity and Color were the primary determinant of the price.
- 2. It was followed by Cut, Certification and Polish.
- 3. Symmetry did not contribute in determining prices.
- 4. The price quoted to the Professor for the diamond appeared to be on higher side but it did not include the cost of retailing and ring itself.

 These were the prices of diamond alone.
- 5. This model is valid only for the diamonds within the range of observed value only.
- 6. Clarity could have been treated as nominal variable but in that case the regression coefficient would have been lower.
- 7. Professor is going to buy diamond only once and not regularly. Considering the one-time expense Professor can offer a price of around \$2900 \$3000 to buy the diamond ring.