FACULDADES INTEGRADAS DE CARATINGA CURSO DE CIÊNCIA DA COMPUTAÇÃO

DISCIPLINA: Arquitetura de Computadores I

PROFESSOR: Maicon Ribeiro

TURMAS: 3º Período | SEMESTRE / ANO: 1º / 2022

DATA DE ENTREGA: 23/05/2022

Circuitos Lógicos Combinacionais - Somadores

Hades: https://tams.informatik.uni-hamburg.de/applets/hades/archive/hades.jar

Um circuito somador, é um circuito capaz de efetuar soma aritmética de valores binários. Neste exercício, vamos nos referir aos bits como dígitos. Logo, um circuito somador de três bits é simplesmente um somador de 3 dígitos. Observe um exemplo em decimal e outro em binário:

265	101
+ <u>368</u>	<u>+011</u>
633	1000

Observe que no exemplo em binário, houve o que chamamos de estouro de pilha. Isso é, a soma dos últimos dígitos (os mais significativos – à esquerda), sofreu um 'vai um' o qual é útil para o resultado final.

Os exemplos acima, correspondem a uma soma de três bits (ou três dígitos).

Para resolver esse problema são necessários três circuitos separados, uma para cada dígito. Se fôssemos fazê-lo em decimal, precisaríamos de um circuito para as unidades, outro para as dezenas e um terceiro para as centenas. Em binário, precisaremos de um circuito para os bits menos significativos (os da direita), outro circuito para os bits intermediários e um último circuito para os bits mais significativos (da esquerda).

Veja a tabela verdade capaz de efetuar a soma dos bits menos significativos e dos bits mais significativos:

Soma dos bits menos significativos					
Α	В	Resultado	vai1		
0	0	0	0		
0	1	1	0		
1	0	1	0		
1	1	0	1		

Crie um circuito integrado capaz de efetuar a soma de três dígitos, além do mapa de Karnaugh e equação booleana.

Soma dos bits mais significativos						
Α	В	veio1	Resultado	Vai1		
0	0	0	0	0		
0	0	1	1	0		
0	1	0	1	0		
0	1	1	0	1		
1	0	0	1	0		
1	0	1	0	1		
1	1	0	0	1		
1	1	1	1	1		

Dica: Crie apenas um único circuito no hades contendo, à direita um circuito referente a soma do bit menos significativo.

À esquerda deste, crie outros dois circuitos, para efetuar a soma dos dígitos mais significativos.

Atenção: Efetue a ligação dos circuitos de modo que a saída Vai1 de um bit, vire a entrada veio1 do próximo bit (como acontece com uma soma comum).

