DEPARTMENT OF MATHEMATICAL SCIENCES The Johns Hopkins University Baltimore, Maryland 21218

STRONG CONVERGENCE OF NEAREST NEIGHBOR REGRESSION ESTIMATORS

University of Houston O Philip E. Cheng

Technical Report No. 347 ONR Technical Report No. 81-7 June 1981

SEP 23 1981

Ω

Research Supported by the Army, Navy and Air Force under Office of Naval Research Contract N00014-79-C-0801 purpose of the United States Government.

 $^{
m l}_{
m Research}$ performed at The Johns Hopkins University.

DISTRIBUTION TATEM. Approved for public release; Distribution U. mited

N

ABSTRACT

STRONG CONVERGENCE OF NEAREST NEIGHBOR REGRESSION ESTIMATORS

Let x be \mathbb{R}^d -valued and Y be real valued in the framework of nonparametric estimation of a regression function R(x) = E(Y|X=x). The uniform measure of deviation $\|T_n - R\|_B = \sup_{x \in B} |T_n(x) - R(x)|$ is studied for estimators T_n of the nearest neighbor type. It is shown that $\|T_n - R\|_B + 0$ almost surely if the conditional variance of Y given X, Var(Y|X), is a bounded random variable. The associated rate of convergence $\|T_n - R\|_B = o(n^{(d-1)/(2+d)})$, any $\delta > 0$, is obtained assuming that $E[Y]^{2+d} < \infty$, Var(Y|X) is a bounded random variable, and R is Lipschitz of order 1.

Accession For	IS GRA&I · X	Unannounced		Distribution/	Availability Codes	Avail and/or	t Special		
100	NTIS	Una: Just	å	Dist	Ava		Dist	7	

1. Introduction. Consider estimation of the regression function R(x) = E(Y|X = x) given a random sample $(X_1,Y_1),\ldots,(X_n,Y_n)$ from an unknown joint distribution function F. The idea of using nonparametric estimates of the nearest neighbor type was initiated by Fix and Hodges (1951) in their study of nonparametric discriminatory analysis. The following definition of nearest neighbor regression estimator, considered by Royall (1966), Stune (1977) and Devroye (1978), is adopted in this note. Let X be R^d -valued and Y be real-valued. For each X in R^d , order the (X_1,Y_1) , $i=1,\ldots,n$, according to nondecreasing distances $\|X_1-x\|$ (here, $\|\cdot\|$ denotes the usual Euclidean distance on R^d) and obtain $(X_1^X,Y_1^X),\ldots,(X_{nn}^X,Y_{nn}^X)$ where X_1^X is the nearest X_1 to X and X_{nn}^X the farthest. In case of ties of distances, the order may be arbitrarily determined among the subsets of ties. Define an estimator of R(x) by

(1.1) $T_n(x) = \sum_{i=1}^n r_{in}^x$,

where the weights c_{in} , $i=1,\dots,n$ are selected to satisfy

ondition 1

(1)
$$\sum_{i=1}^{n} c_{in} = 1$$
, $c_{1n} \ge c_{2n} \ge \dots \ge c_{nn} \ge 0$,

(ii) $\int\limits_{1=k}^{n}c_{1n}+0$ for a nondecreasing sequence k(n) satisfying i=k(n)+1

 $k(n) + \infty$ and k(n)/n + 0,

(iii) max $c_{in} + 0$. $1 \le i \le k(n)$ In particular, the weights of the so-called K-nearest neighbor (K -NN) estimator satisfy

Countilion 2

- (ii) $c_{in} = 0$ for i > k(n), k(n) + w and k(n)/n + 0,
- (iii) $c_1/k(n) \le c_{1n} \le c_2/k(n)$ for $i=1,\dots,k(n)$ and positive constants $0 < c_1 \le 1 \le c_2.$

Royall (1966) studied the pointwise mean square error of the estimate T_n . Stone (1977) characterized the weight functions $\{c_{1n},\ 1=1,\ldots,n\}$ for which a form of mean L_p -consistency is achieved. Devroye (1978) established a uniform strong convergence result. Discussion of extensive further work related to nearest neighbor rules appears in Stone (1977, Section 9).

In general, the results available for estimators satisfying Condition 2 also hold for those satisfying Condition 1 provided that the quantity $\sum_{i=k(n)+1}^{n} c_{i}$ is sufficiently small. Examples of the K-NN weights (see Stone 1977) include the uniform weights with $c_{in}=1/k(n)$, $i=1,\ldots,k(n)$, the triangular weights, and the quadratic weights. An interesting simplified version of (1.1) given by Devroye (1978) is the estimator

(1.2)
$$\hat{T}_n(x) = T_n(x_{1n}^x)$$
.

Besides facilitating computation, the estimator \hat{T}_n possesses the same strong consistency properties as T_n .

In this note, study is concentrated on the uniform almost sure convergence of the estimators T_n and \hat{T}_n . Under a standard condition (see Stone 1980) that the conditional variance of Y given X, Var(Y|X|, is a bounded random variable, it is shown that $\|T_n-R\|_B+0$ and $\|\hat{T}_n-R\|_B+0$ with probability 1, where B is assumed to be the bounded support of X in R^d. For any $\delta>0$, the associated rates of convergence, $\|T_n-R\|_B=0$ on $(6^{-1})/(2^{+d})$

and $\|\hat{T}_n - R\|_{L^2}$, o(n⁽⁶⁻¹⁾/(2^{4d})) with probability 1, are obtained under the achilitional regularity conditions that R is Lipschitz of order 1 and X parsons a density function f which is bounded away from zero on B.

2. Results. Let $\{x_1, y_1\}, \ldots, \{x_n, y_n\}$ be a random sample from a joint distribution function. Let P_X be the probability measure on R^d corresponding to the marginal distribution function of X. For each x in R^d , let $S^X(x) = \{u_1 || u - x_n || < x\}$, where $\|\cdot\|$ denotes the usual Euclidean metric. Define the support of X to be the set

ssumption 1

- (i) R is continuous on B.
- (ii) ε[Y]^t < α,
- (iii) The noise is in Lt.

We now state the main result for the estimator ${\mathbb T}$.

Theorem 1. Suppose that Assumption 1 holds with t = 2 and that Condition 2 holds with k = n 8 log n, where 8 n = arbitrarily. Then

| T. - R|| 3 + 0 V.P.1.

Regarding the simplified version T, we have

CORDLIARY 1. Under the conditions of Theorem 1.

Devroye (1978) showed the strong consistency of the estimators T_n and \hat{T}_n assuming that the noise is in L_k for t>d+3 and t>2, respectively. A natural question raised by him is whether the results are valid if the noise is in L_2 . The above theorem provides an affirmative answer.

Our next result discusses the associated rate of the uniform convergence in Theorem 1. We assume that X has a density function f. Choose any fixed positive number λ , and let $B_n = \{x \in B\colon \|x-y\| \ge \lambda n^{-1}/(2^{4d}) \text{ for all } y \text{ on the noundary of } B\}$. Thus, each B_n is a compact subset of B and B_n approximates B as $n \to \infty$. The following mild regularity conditions are imposed.

Assumption 2

- i) R is Lipschitz of order 1 on B, i.e. $|R(x) R(y)| \le c ||x y||$ for all x, y in B, for some positive constant c.
- (11) inf $f(x) \ge \mu$ for a positive constant μ .
- (iii) E|Y|2+d < ...
- v) The noise is in L2.

THEOREM 2. Let Assumption 2 and Condition 2 hold with $k=n^{2/(2+d)}$ from with probability 1

(7.1) | | Tn - FI | n - o(n (6-1)/(7+4) | (or any 6 > 0.

For the simplified version \hat{T}_n , we have

COROLLARY 2. Under the conditions of Theorem 2,

From Theorem 3 of Devroye (1978) it can be derived that (2.1) holds under a stringent L_t -noise condition with t $\geq 2+(2+d)^2$. Also, from Theorem 4 of Devroye (1978) it can be checked that for k = c(n log n) 5 ,

Then $\|\hat{T}_n - R\|_{B^{\infty}} = 0(\log n/n)^{1/4}$ with probability 1 under the L_{ξ} -noise condition for t > 5. This rate is faster than that in (2.1) only for $d \le 2$ and at the expense of a more restrictive L_{ξ} -noise condition. Discussion of even more further restrictive exponential type of noise conditions is given in Devroye (1978).

3. <u>Proofs.</u> Without loss of generality, it suffices to prove the theorems for the case of uniform K-NN weights, i.e. $c_{ih}=1/k$, $1\le i\le k$. Theorem 1 will be proved utilizing the following lemmas.

Consider for each n a permutation function $G(i,x_1,\dots,x_n)$, $i=1,\dots,n$, which for each given $g=(x_1,\dots,x_n)$ maps $\{1,\dots,n\}$ onto $\{1,\dots,n\}$. We have the following lemma (Royall (1966, Lemma 2.1)) on independence and conditionality.

LEMMA 1. If $(x_1, x_1), \dots, (x_n, y_n)$ are independent, then $P[Y_{\sigma(i)} \in B_1, i = 1, \dots, n] X_{\sigma(i)} = x_{\sigma(i)}, i = 1, \dots, n]$ $= \prod_{i=1}^{n} P[Y_{\sigma(i)} \in B_1] X_{\sigma(i)} = x_{\sigma(i)}] \xrightarrow{w.p.1}.$

In view of the definition (1.1) of \mathbf{T}_n . Lemma 1 justifies use of the following terminology. We will let

$$V_{n}(x) = E(T_{n}(x)|X_{1n}, i = 1, ..., n)$$

$$\begin{cases} 1 & \sum_{i=1}^{n} E(V_{1n}|X_{in}) = \frac{1}{k} \sum_{i=1}^{k} E(X_{in}) = 1, ..., n. \end{cases}$$

LEMMA 2. (Inverse (1979, Theorem 11) Assume Condition I and (i) of Arrightion 1. Then

In order to utilize a truncation argument, we define

$$T_n(x) = \frac{1}{k} \sum_{i=1}^k \tilde{Y}_{in},$$

where

$$\tilde{\mathbf{v}}_{\mathrm{in}} = \mathbf{v}_{\mathrm{in}} \ \mathrm{II} \big[\mathbf{v}_{\mathrm{in}} \big] \le \mathbf{n}^{\mathsf{h}} \big\}, \ 1 \le i \le n,$$

$$\bar{v}_{n}(x) = E(\bar{T}_{n}(x) | X_{in}, i = 1, \dots, n) = \frac{1}{k} \sum_{i=1}^{k} \bar{R}(X_{in}),$$

$$\tilde{R}(x_{in}) = R(\tilde{Y}_{in}|x_{in}), 1 \le i \le k.$$

LEMMA 3. Assume (ii) of Assumption I with t * 2. Then

PROTE: (ii) of Assumption 1 implies that $\int\limits_{j=1}^{\infty} P(Y_j^2 > j) \le EY_j^2 < \infty,$ from which it follows that

$$F(|y_j| > j^3 \text{ i.o.}) = P(y_j^2 > j \text{ i.o.}) = 0.$$

(emsequently, there exists a full set A such that for each we A there exists $\sum_{k} (\omega) \in J_{\omega}$. Since J_{ω} is a finite set for each $\omega \in \Omega$ independent of $\kappa \in B$, a finite positive investor M_{ω} such that $Y_{j}(\omega)>j^{\frac{1}{2}}$ only if $1\leq j\leq M_{\omega}$. Set Ju = {Y j (w), 1 \le j \le Nu j for each $w \in \Omega$. Then Y in (w) \neq Y in (w) only if

$$\|T_{n}(x, \omega) - \tilde{T}_{n}(x, \omega)\|_{B} \le \frac{1}{k} \sum_{i=1}^{k} \|Y_{i,n}(\omega) - \tilde{Y}_{j,n}(\omega)\|_{B}$$

$$\le \frac{1}{k} \sum_{i=1}^{k} |Y_{i,n}(\omega) - \tilde{Y}_{j,n}(\omega)| + 0.$$

LENGO 4. Suppose (i) and (iii) of Assumption I hold with the Then | V - V | | + 0 W.P.1.

PROOF. From continuity of R and boundedness of B, $\|R\|_{R}<\infty$. For t = 2, (iii) of Assumption 1 implies that with probability 1

$$\| v_n - v \|_{B} \le \frac{1}{k} \sum_{i=1}^{k} \| \kappa(x_{in}) - \overline{\kappa}(x_{in}) \|_{B}$$

$$= \frac{1}{k} \sum_{i=2}^{k} \| \kappa(x_{in} \cdot x_{in} \cdot x_{in} \cdot x_{in}) \|_{B}$$

$$\le \frac{1}{k} \sum_{i=1}^{k} \| \kappa(x_{in}^2 \mid x_{in}) \|_{B} \|^{-1}$$

< n-4(02 + || R||2) + 0.

LEMMA 5. Under the assumptions of Theorem 1 we have

For the proof of Lemma 5, the following fact about independent variables

LEMAN 6. (Lamperti (1966)) Let X1,...,Xn be independent random variables $\frac{\omega(kh)}{k!} |x_k| \le M, \ kx_k = 0 \ \text{and} \ \text{var}(x_k) \le \sigma^2 \ \text{for} \ i = 1, \dots, n. \ \text{Let} \ S_n = \sum_{k=1}^k x_k.$ Then for each t, 0 < t < 2/M,

 $E(\exp tS_n) \le \exp[nt^2a^2(1+tM)/2]$.

PROOF OF LEMMA 5. It is seen from Devroye (1978, Theorem 3) that, through a combinatorial argument of Cover (1965) and Vapnik and Chervonenkis (1971) (see also Devroye and Wagner (1977)), the following inequality holds:

$$P\{Sup: (\tilde{T}_{n}(x) - \tilde{V}_{n}(x)) \ge \epsilon\}$$

$$x \in \mathbb{R}$$

$$\leq c_{d}^{d+1}$$
 $\sup_{\{x_1,\dots,x_k\}\in B^k \mid x_{1} = x_{1}, \ x_{2} = x_{1}, \ x_{2} = x_{1}, \ x_{2} = x_{1}, \ x_{2} = x_{2}, \ x_{3} = x_{3}, \$

$$\leq c_{\rm d}^{\rm d+1-\epsilon\beta_n} \sup_{x\in \mathbb{B}^k} \mathbb{E}(\exp[\frac{k}{2}] \frac{\beta_n \log n}{k} (\hat{Y}_i - \overline{R}(X_j)) | X_j = x_j, i = 1,...,k)$$

$$\leq c_{d}^{d+1-cB} \cdot \sup_{\mathbf{x} \in \mathbf{B}^{K}} \frac{k}{i=1} \cdot \operatorname{E} \{\exp\{\frac{n}{k} \cdot (\mathbf{\hat{Y}}_{i} - \mathbf{\tilde{R}}(\mathbf{x}_{i}))\}\} | \mathbf{x}_{i} = \mathbf{x}_{i}\}$$

for a constant C_d depending only on the dimension d. By Lemma 1, $\{\overline{Y}_{\underline{1}} - \overline{R}(X_{\underline{1}})\}_{\underline{1}=1}^n$ given $\{X_{\underline{1}}\}_{\underline{1}=1}^n$ are conditionally independent with mean zero and finite variance, for Sup Var $(\overline{Y}_{\underline{1}}|X_{\underline{1}}) \le \operatorname{Sup} \operatorname{Var}(Y_{\underline{1}}|X_{\underline{1}}) \le \operatorname{Sup} \operatorname{Var}(Y_{\underline{1}}|X_{\underline{1}}) \le \operatorname{Sup} \operatorname{Var}(Y_{\underline{1}}|X_{\underline{1}}) \le \operatorname{D}_2$. Therefore, Lemma 6 is applicable. For KB

each factor in the product of (3.1) $|\bar{Y}_1 - \bar{R}(X_1)| < 2|\bar{Y}_1| < 2n^3$ holds with probability 1 independently of $x \in B$. Set $t = \frac{1}{B}$ log n/k and $M = 2n^3$ such that t < 2/M. The right-hand side of (3.1) is bounded above by

that $t \le 2/R$. Intering the of 19.1) is bounded above by $d+1-\epsilon \beta$ k $\exp(3D_2t^2/2)$ which is then bounded by $e^{-d+1-\epsilon \beta}$ asymptotically

since kt 2 + 0 as n + $^\infty$. Likewise, one can obtain

$$P\{\inf (\tilde{T}_{n}(x) - \tilde{V}_{n}(x)) < -\epsilon\} \le cn^{d+1-\epsilon B_{n}}$$

As $\theta \to \infty$ Lemma 5 follows via the Borel-Cantelli lemma.

PROOF OF THEOREM 1. From the triangle inequality

+ 0 with probability 1,

according to Lemmas 2, 3, 4 and 5.

The proof of Corollary I is omitted since it is a matter of defining analogous terminology as needed in the proof of Theorem I and checking straightforwardly that Lemmas 2, 3, 4 and 5 have valid counterparts when the estimator T_n is replaced by \hat{T}_n . We remark that the L_2 -noise condition is needed in the proof of Lemma 5 through an application of Lemma 6. However, it is not known whether Theorem I (or Corollary I) remains valid under any other weaker conditions, say the $L_{\rm p}$ -noise condition for t = 1.

We now turn to the proof of Theorem 2, for which it suffices to establish the following statements. For any $\delta > 0$, we have with probability 1

(3.2)
$$n^{(1-6)/(2+d)} \| v_n - R \|_{B_n} \to 0$$
,

(3.3)
$$n^{1/(2+d)} \| r_n - \bar{r}_n \|_{\mathbf{B}} + 0$$
,

(3.4)
$$n^{(1-\delta)/(2+c)} \| v_n - \tilde{v}_n \|_B + 0$$
, and

(3.5)
$$n^{1/(2+d)} \binom{\beta}{n} \log n^{-1} \| T_n - \bar{V}_n \|_B + 0.$$

The idea is simply to provide rates of convergence for the results of Lemmas 2, 3, 4 and 5. Here, an alteration is noted: the analogous definitions of $\bar{T}_n \text{ and } \bar{V}_n \text{ are given by } \bar{T}_n = \frac{1}{k} \sum_{i=1}^k \bar{Y}_i \text{ with } \bar{Y}_{in} = Y_{in} I | Y_{in}| \le n^{1/(2+d)}_1, \text{ i = 1,...,n},$ and $\bar{V}_n = \frac{1}{k} \sum_{i=1}^k \bar{X}_{in} \text{ with } \bar{R}(X_{in}) = E(\bar{Y}_{in}|X_{in}).$

To show (3.2), we first observe that, by (i) of Assumption 2,

Thus (3.2) follows if it can be shown that

(3.6)
$$n^{(1-\delta)/(2+d)} \| R_{kn} \|_{B_n} + 0$$
 with probability 1.

To show (3.6), let M be a bound on the diameter of the set B. For any E > 0,

the d-dimensional unit sphere. For each n, let $N_n = (N/2)^d/(v_n/2)^d \le cv_n^d$ There exists a subset $\{x_j,\ 1 \le j \le N_j\}$ of B_j such that for each x in B_j there is at least one x_j with $\|x-x_j\|< v_{n}/2$. Thus $R_n\geq v_n$ implies let v ... cn (4-1)/(2+d). Thus S (v) C B and G (v) 2 c(d)µ d for each $x \in B_n$, as soon as n is sufficiently large, where c(d) is the volume of that $R_n^{X,j} > v_n/2$. Consequently, for each positive integer m we have

$$\sum_{n=1}^{n} p_{1n} (1-\delta) / (2+d) \| R_{kn} \|_{B_{R}} > \epsilon$$

$$\leq \sum_{n=1}^{\infty} P\{ \bigcup_{j=1}^{N_n} (cR^{X_j}_n) > v_n/2 \} \}$$

$$\leq \sum_{n=1}^{\infty} P\left(\bigcup_{j=1}^{N} (G(R_{K}^{N}j) \geq G(cv_{j}))\right)$$

provided that m is large enough that $m\delta > (2-\delta) + (2/d)$. Since m is arbitrary, this establishes (3.6) via the Borel-Cantelli lemma. Hence, (3.2) is proved. For (3.3) we observe from the proof of Lemma 3 that the analogous term

 J_{ω} (now given by the fact that $E|Y|^{2+d}<\infty$) is a finite set for each ω in a full set Ω . Hence, for each $\omega \in \Omega$,

$$n^{1/(2+d)} \| T_n(x,\omega) - \tilde{T}_n(x,\omega) \|_{\mathbf{B}}$$

$$\leq n^{1/(2+d)}k^{-1}\sum_{i=1}^{k}|Y_{in}(\omega)-\tilde{Y}_{in}(\omega)|$$

$$\leq \frac{1/(2+d)_{k}-1}{y_{1n}(\omega) \in \mathcal{J}_{\omega}} \frac{\left| y_{1n}(\omega) - \bar{Y}_{1n}(\omega) \right|}{y_{1n}(\omega) \in \mathcal{J}_{\omega}}$$

$$\leq \frac{1/(2+d)}{y_{1n}(\omega) \in \mathcal{J}_{\omega}} \frac{\left| y_{1n}(\omega) - \bar{Y}_{1n}(\omega) \right|}{y_{1n}(\omega) \in \mathcal{J}_{\omega}} + 0.$$

Thus (3.3) is proved.

For (3.4), following the argument of Lemma 4, it is soon that with probability 1

$$n^{(1-\delta)/(2+d)} \| v_n - \bar{v}_n \|_B$$

$$\leq n^{(1-\delta)/(2+\delta)} k^{-1} \sum_{i=1}^{k} \| \, \mathrm{E}[Y_{in} \, \mathrm{I} \, (] Y_{in} \, | \, > n^{1/(2+\delta)} \,) \, | \, X_{in} \, | \, \|_{\mathrm{B}}$$

$$\leq n^{(1-\delta)/(2+d)} k^{-1} \int_{1-1}^{k} || E(Y_{2n}^2|X_{2n})||_{B} n^{-1/(2+d)}$$

$$\leq n^{-6/(2+d)} (D_2 + || R ||_B^2) + 0.$$

Finally, to obtain (3.5), it suffices to show that for any
$$\alpha > 0$$
 (3.7)
$$\sum_{n=1}^{\infty} p\{n^{1/(2+d)}(\frac{1}{B}\log n)^{-1}\|\tilde{T}_n - \tilde{V}_n\|_{\mathbf{B}} > \alpha\} < \infty.$$

From the proof of Lemma 6, it is checked that

(3.8)
$$P\{n^{1/(2+d)}(8, \log n)^{-1} \sup_{x \in B} (\tilde{T}_n(x) - \tilde{V}_n(x)) > \alpha\}$$

$$\leq c_d^{d+1-obn} \sup_{x \in B^k} \lim_{i=1}^k \mathbb{E}\{\exp\{i_1^{1/(2+d)}k^{-1}(\tilde{Y}_{in} - \tilde{R}(x_i))\}|x_i\}.$$

and t = $n^{1/(2+d)}$ k $^{-1}$ < 2/M. Lemma 6 is applicable since the noise is in L₂. it is seen that $|\tilde{Y}_1-\tilde{R}(x_1)|\leq 2|\tilde{Y}_1|\leq 2n^{1/(2+d)}$ w.p.1. Let M = $2n^{1/(2+d)}$ Now, for each factor of the product on the right-hand side of (3.8) Thus (3.8) is bounded above by $c_d^{-n+1-\alpha\beta_n}$ if $\exp(3D_2t^2/2)$ and hence i=1 bounded by $cn^{d+1} - o\beta_n$ since $kt^2 \le 1$. Likewise,

 $p\{n^{1/(2+d)}(g_{1}\log n)^{-1}\inf \{\tilde{r}_{n}(x)-\tilde{v}_{n}(x)\}<-cd\le cn^{d+1-c\beta}n.$

Thus (3.7) holds as $\beta_n + \infty$. (3.5) is proved.

PROOF OF THEOREM 2. Combining the results of (3.2), (3.3), (3.4) and (3.5), Theorem 2 is proved.

An analogous proof for Corollary 2 is also omitted

ACKNOWLEDGEMENT. The author expresses his sincere thanks to Professor R. J. Serfling for several helpful comments.

REFERENCES

-13-

Breiman, L. (1968). Probability. Addison-Wesley.

Cover, T. M. (1965). Geometric and statistical proporties of systems of linear inequalities with applications in pattern recognition. IEEE

Trans. Electronic Computers, Vol. EC-14, 326-334,

Devroye, L. P. (1978). The uniform convergence of nearest neighbor regression function estimates and their application in optimization. IEEE Trans.

Info. Th., IT-24, No. 2, 142-151.

Devroye, L. P. and Magner, T. J. (1977). The strong uniform consistency

Pix, E. and Hodges, J. L. Jr. (1951). "Discriminatory analysis, nonparametric of nearest neighbor density estimates. Ann. Statist., 5, No. 3, 536-540.

discrimination: consistency properties". Report No. 4, Project No.

21-49-004, USAF School of Aviation Medicine, Randolph Field, Texas.

Lamperti, J. (1966). Probability. W. A. Benjamin, Inc., N.Y.

Royall, R. M. (1966). A class of nonparametric estimators of a smooth regression function. Ph.D. dissertation, Stanford Univ.

Stone, C. J. (1977). Consistent nonparametric regression. Ann. Statist., 5,

Stone, C. J. (1980). Optimal rates of convergence for nonparametric estimators. Ann. Statist., 8, 1348-1360.

Vapnik, V. N. and Chervonenkis, A. Ya. (1971). On the uniform convergence of relative frequencies of events to their probabilities. Theory of Proband its Appl., Vol. 16, 264-280.

the Levelley

Į

STORBERT CLASSIFICATION OF THES PAGE

REPORT INTERPRETATION PACE	DR 2. GOVE ACTEDION NO. B. BECHFIENE CATALOX NUMBER		5. TYPE OF REPORT & PERIOD COVERED	STROMS CHAVERENCE OF NEAREST NEIGHDOR Technical Report	6. PERFORMING ORGANIZATION REPORT NO.	Technical Report No. 347	8. CONTRACT OR GRANT NUMBER(s)	ONR No. M00014-79-C-0801	9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK AREA
	KINNEL MINNER	ONE No. 31.7	A. TITLE	STROM: CONVERGE	REGRESSION ESTIMATORS		7. AUTHOR(s)	Phillip E. Cheng	PERFORMING ORG

16. DISTRIBUTION STATEMENT (of this report)

15. SECURITY CLASS (of this report)
Unclassified
15s. DECLASSIFICATION/DOWNCRADING SCHEDULE

12. REPORT DATE
June, 1981
13. NUMBER OF PAGES

2

MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)

=

CONTROLLING OFFICE NAME & ADDRESS
Cffice of Naval Research
Statistics and Probability Program
Arlington, Virginia 22217

1

Department of Mathematical Sciences The Johns Hopkins University Baltimore, Maryland 21218 Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from report)

19. SUPPLEMENTARY NOTES

1. KEY WORDS

Monjurametric regression; nearest neighbor estimator; strong convergence.

20. ABSTPACT

Let x be R^d valued and Y be real valued in the framework of nonparametric estimation of a regression function R(x) = E(Y|X=x). The uniform measure of deviation $\|T_n - R\|_B = Sup \|T_n(x) - R(x)\|$ is studied for estimators T_n of the nearest neighbor type. IE^{KB} shown that $\|T_n - R\|_B + 0$ almost surely if the conditional variance of Y given X, Var(Y|X), is a bounded random variable. The accounted rate of convergence $\|T_n - R\|_B = o(n^{(6-1)}/(2+d))$, any $\delta > 0$, is detained assuming that $E[Y|^{2+d} < \infty$, Var(Y|X) is a bounded random variable, and P is Lijschitz of order 1.

