Lecture 1

Daniel Ballesteros-Chávez

October 4, 2021

Contents

1	Introduction to R	1
2	The Working Directory	2
3	Installing packages	3
4	Simple manipulations; numbers and vectors	3
5	Pre-loaded data	6
6	Writing a data frame	7
7	Reading a data frame	7
8	Creating a new variable	8
1	Introduction to P	

1 Introduction to R

• What is R?

R is an open source statistical software.

• How to get it?

You can get R directly on their website https://www.r-project.org/

• What is RStudio?

RStudio is an integrated development environment (IDE) for R.

It is a good tool to get started if you are not used to scripting programming. It has very helpful visual features.

I use emacs and it is difficult for me to get used to Rstudio. My advice: use whatever you find more comfortable.

- Basic commands
 - getwd()
 - setwd()
 - install.packages()
 - library()
 - df < read.dbf()
 - df\$NAME
 - $-\dim(\mathrm{df})$
 - class(df)
 - ls()
 - $\operatorname{rm}(\operatorname{list} = \operatorname{ls}())$
 - sum(df\$NAME)
 - as.numeric()
 - as.character()
 - df NEWVAR < df NAME
 - table()
 - tapply, sapply, lapply, etc.

2 The Working Directory

```
Get my Working Directory (a.k.a. where am I?)
getwd()
   Set my Working Directory (a.k.a. change directory)
setwd("/home/ennaniux/Documents/R_Modelling")
   How does this work in Windows?
setwd("C:/home/ennaniux/Documents/R_Modelling")
   or maybe
setwd("C:\\home\\ennaniux\\Documents\\R_Modelling")
```

3 Installing packages

The Packages are sets of tools that can be downloaded from different servers around the world. Different packages have different R functions for specific purposes.

The Comprehensive R Archive Network (CRAN) https://cran.r-project.org/. CRAN is a network of ftp and web servers around the world that store identical, up-to-date, versions of code and documentation for R.

For example, the foreign package allows R to read different data set files like .sav, .dbf, and other file extensions.

In order to install the package foreign we type in the console

```
install.packages("foreign")
```

this will provide a list of possible servers to choose from, and you can select one close to your location.

4 Simple manipulations; numbers and vectors

The simplest data structure R operates on is the **numeric vector**, which is a single entity consisting of an ordered collection of numbers.

1 3 5

```
x <- c(1,3,5,9)
x
```

The syntax is equivalent to

and

```
assign("z",c(-1,33,2.5,9))
z

-1
33
2.5
```

Linear operations:

z * y + x

-10 1026 42.5 180

Definition of a sequence

3:10

If we want to know the number of entries in our vector, then we use the function ${\tt length}$

length(c(3:10))

8

R tries to apply operations on vectors

x <- c(3:10) x^2

The sum of the first 100 natural numbers, if we want to perform the sum one can do for instance

```
x <- c(1:100)
sum(x)
```

5050

Missing values are denoted by NA. Whenever there is a missing value, the default behaviour is to be reminded:

$$x \leftarrow c(4, 4, NA, 2, 3, NA, 5)$$

sum(x)

nil

Then, if you want to omit the missing values in the operation you have to specify it

$$x <- c(4, 4, NA, 2, 3, NA, 5)$$

 $sum(x, na.rm=TRUE)$

18

A vector can also consists of strings or character type entries:

```
x \leftarrow c("Uno", "Dos", NA, "Cuatro", "Dos", "Cuatro") unique(x)
```

Uno Dos nil Cuatro How to we know if we have a missing value?

$$x \leftarrow c(4, 4, NA, 2, 3, NA, 5)$$

is.na(x)

FALSE FALSE FALSE FALSE TRUE FALSE

5 Pre-loaded data

In R there are several pre-loaded data

```
## In case the code below does not work
## you may need to install the package dataset
## For a list of available datasets, type library(help = "datasets")
head(iris)
```

${\bf Sepal. Length}$	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa

We can also obtain a summary of the data set

summary(iris)

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
Min. :4.300	Min. :2.000	Min. :1.000	Min. :0.100	setosa:50
1st Qu.:5.100	1st Qu.:2.800	1st Qu.:1.600	1st Qu.:0.300	versicolor:50
Median: 5.800	Median: 3.000	Median $:4.350$	Median $:1.300$	virginica :50
Mean $:5.843$	Mean $:3.057$	Mean $:3.758$	Mean: 1.199	nil
3rd Qu.:6.400	3rd Qu.:3.300	3rd Qu.:5.100	3rd Qu.:1.800	$_{ m nil}$
Max. : 7.900	Max. :4.400	Max. $:6.900$	Max. $:2.500$	$_{ m nil}$

6 Writing a data frame

Write a data frame by specifying the columns:

```
df <- data.frame(
"NAME" = c("Aleksandra", "Hugo", "Piotr", "Ewa"),
"AGE" = c(29,35, 39, 33),
"HEIGHT"= c(1.68, 1.83, 2.03, 1.66) )
df</pre>
```

NAME	AGE	HEIGHT
Aleksandra	29	1.68
${ m Hugo}$	35	1.83
Piotr	39	2.03
Ewa	33	1.66

What is the dimension of the data frame?

dim(df)

What are the variable names of the data frame? names(df)

7 Reading a data frame

```
From a .csv file

df <- read.csv('./path_to/file.csv')
    From a .dbf file

library(foreign)
df <- read.csv('./path/to/file.dbf')
    From a .sav file

library(foreign)
    df <- read.spss(file='./path/to/file.sav', to.data.frame=TRUE)
    str(df)  # show the structure of the data frame
    From the clipboard

df2 <- read.table(file = "clipboard", sep = "\t", header=TRUE)</pre>
```

8 Creating a new variable

- Graphics
- Reading data
- Markdown