

区块链基础架构浅析

ZJUBCA第一次技术分享

杨奕辉

区块链 基于共识的自动状态机

- 对转移规则(消息)或状态达成共识
- 状态自动转移
- 不可逆

没有比特币,只有UTXO(Unspent transaction output)

一笔交易由输入(tx_in)和输出(tx_out)构成,交易输入来自于之前的交易的未花费输出(UTXO)

概要			
l+ = ····	505454	40.3	7.00674.575
块高度	535154	输入	7.09671975 E
确认数	2	輸出	7.09671157 E
出块时间	2018-06-18 12:15:58	矿工费	0.00000818 E
大小 (rawtx)	817 Bytes	矿工费率 (BCH / KB)	0.00001001 E
输入 (5)	7.09671975 BCH	输出 (2)	7.09671157 B
A	1.04010100		7.00660000 \$
		qrjvz5zf0tn7j8z0859vsnnkcvzfumk4lva74zugqe	7.08660000 >
◀ qrjz195qd0dafseqn6pe09yfwkcy4atwq565tdyw	/e7 0.02552423	qr0n2mefwm7jwemz5kxsyuq0f9kxcqws3qej531g2k	0.01011157 >
	qh 0.01058182		
<pre>qzf2cymkdwxcy7vdsy88w0ffgttz00188qnr9cn0</pre>	uv 6.00215744		
<pre></pre>	uy 0.00213744		


```
Transaction
  "version": 1,
  "locktime": 0,
  "vin": [
    "txid":"7957a35fe64f80d234d76d83a2a8f1a0d8149a41d81de548f0a65a8a999f6f18",
    "vout": 0,
     "scriptSig": "3045022100884d142d86652a3f47ba4746ec719...",
    "sequence": 4294967295
  "vout": [
    "value": 0.01500000,
    "scriptPubKey": "OP DUP OP HASH160 ab68025513c3dbd2f7b92a94e0581f5d50f654e7 OP EQUALVERIFY
OP CHECKSIG"
    "value": 0.08450000,
    "scriptPubKey": "OP DUP OP HASH160 7f9b1a7fb68d60c536c2fd8aeaa53a8f3cc025a8 OP EQUALVERIFY
OP CHECKSIG",
```

更多细节请查阅

- 所有状态(包括用户余额)上链,参与共识。
- 交易使用Merkle树来组织。

- 交易与最终状态哈希上链参与共识
- 账户状态数据存储在链下

Block header

- 交易与状态均上链参与共识
- 没有账户概念

- 交易与最终的世界状态哈希上链,参与共识
- 有账户概念,账户状态数据链下存储
- 方便构建智能合约

区块链基础架构

开发者工具

智能合约的解析与执行

对区块(包含交易、状态树、回执等数据集合)达成共识

P2P节点发现,建立加密链接,数据同步,安全性

区块数据、交易数据、账户数据

数据层

哈希函数 A = Hash(B)

将不定长的字符串转换成定长的字符串

- 抗碰撞:对于任意两个不同的数据,其hash值相同的可能性极小。
- 防篡改:只改动输入值的一小部分,也会造成 hash值的巨大改动。
- 不可倒推:B可以得出A,但A不能倒推B

数据层

非对称加密 公钥 私钥

- 地址一般由公钥导出。
- 私钥可以导出公钥。
- 公钥加密,私钥解密。
- 私钥用于创建数字签名,公钥用于验证数字签名。

业界解决方案 ECDH、椭圆曲线(ECDSA)

数据层

Merkle树

- 归纳交易集合
- 快速重哈希
- 轻节点(SPV)验证交易存在性

哈希函数

序列化

世界状态

P2P

- 自主发现节点
- 节点路由表
- 数据同步机制
- 加密通信
- ...

业界解决方案

需要具备功能

- Libp2p
- Devp2p 以太坊自研
- Grpc C/S模型的双工通信

共识

公链

• POW:计算数学难题,消耗电力

• **POS**:质押代币,消耗币天

• DPOS:质押代币,引入选举,牺牲一定的去中

心化换取性能

联盟链

• **PBFT**: 拜占庭容错,在有3f+1个节点时,容忍至多f个节点作恶。

• RAFT:高性能一致性算法,不容错,默认信任主节点。

智能合约

根据事件自动化触发约定的业务逻辑

- 自动化
- 原子性
- 去中心

业界主流智能合约语言

- Solidity
- Java
- Javascript,python,C++,Go......

虚拟机

解析、编译、执行智能合约代码

业界方案

- EVM (以太坊为首的一众公链)
- WASM (基于WebAssembly)
- JVM (Hyperchain, NEO)
- JSVM (星云链)

参考资料

Q&A