Introduction to Machine Learning Homework 3: Model Order Selection*

Prof. Linda Sellie

Spring 2018

- 1. For each of the following pairs of true functions $f(\mathbf{x})$ and model classes $f_{\beta}(\mathbf{x})$ determine: (i) if the model class is linear; (ii) if there is no under-fitting; and (iii) if there is no under-fitting, what is the true parameter?
 - (a) $f(\mathbf{x}) = 1 + 2x$, $f_{\beta}(x) = \beta_0 + \beta_1 x + \beta_2 x^2$
 - (b) $f(\mathbf{x}) = 1 + x + 3x^2 + 4x^3$, $f_{\beta}(x) = \beta_0 + \beta_1 x + \beta_2 x^2$.
 - (c) $f(\mathbf{x}) = (x_1 x_2)^2$ and $f_{\beta}(\mathbf{x}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1^2 + \beta_4 x_2^2$.
- 2. A medical researcher wishes to evaluate a new diagnostic test for cancer. A clinical trial is conducted where the diagnostic measurement y of each patient is recorded along with attributes of a sample of cancerous tissue from the patient. Three possible models are considered for the diagnostic measurement:
 - Model 1: The diagnostic measurement y depends linearly only on the cancer volume.
 - Model 2: The diagnostic measurement y depends linearly on the cancer volume and the patient's age.
 - Model 3: The diagnostic measurement y depends linearly on the cancer volume and the patient's age, but the dependence (slope) on the cancer volume is different for two types of cancer Type I and II. (Hint: Use a variable x_3 which is assigned the value 1 if the cancer is Type I, and x_3 has the value 0 if the cancer is of Type II.)
 - (a) Define variables for the cancer volume, age and cancer type and write a linear model for the predicted value \hat{y} in terms of these variables for models 1 & 2 above. Extra credit: Do the same for model 3. For Model 3, you will want to use one-hot coding
 - (b) What are the number of parameters in model 1 & 2? Which model is the most complex?

as mentioned above.

^{*}These questions are adapted from Prof. Rangan's homework.

(c) Since the models in part (a) are linear, given training data, we should have $\hat{\mathbf{y}} = \mathbf{A}\boldsymbol{\beta}$ where $\hat{\mathbf{y}}$ is the vector of predicted values on the training data, \mathbf{A} is a design matrix (feature matrix) and $\boldsymbol{\beta}$ is the vector of parameters. To test the different models, data is collected from 100 patients. The records of the first three patients are shown below:

Patient	Measurement	Cancer	Cancer	Patient
ID	y	type	volume	age
12	5	I	0.7	55
34	10	II	1.3	65
23	15	II	1.6	70
:	:	:	:	:

For model 1 in part (a), based on this data, what are the first three rows of the matrix **A**?

For model 2 in part (a), based on this data, what are the first three rows of the matrix **A**?

Extra credit: For model 3 in part (a), based on this data, what are the first three rows of the matrix **A**?

(d) To evaluate the models, 10-fold cross validation is used with the following results.

Model	training	test
	MSE	MSE
1	2.0	2.01
2	0.7	0.72
3	0.65	0.70

Which model should be selected?