

FEATURES

- High density cell design for extremely low R_{DS(ON)}
- Rugged and Reliable
- Compact industry standard SOT-23 surface mount package

BSS138N-Channel MOSFET

Absolute Maximum Ratings (TA=25°C, unless otherwise noted)

Symbol	Parameter			Ratings	Units	
V _{DSS}	Drain-Source Voltage			50	V	
V_{GSS}	Gate-Source	Voltage		±20	V	
I _D	Drain Currer	Current – Continuous (Note 1) 0.22		А		
		- Pulsed		0.88		
P _D	Maximum Po	ower Dissipation	(Note 1)	0.36	W	
	Derate Above 25°C			2.8	mW/°C	
T_{J}, T_{STG}	Operating and Storage Junction Temperature Range			−55 to +150 °C		
T _L		ead Temperature for S 16" from Case for 10		300	°C	
Therma	l Charact	eristics				
$R_{\theta JA}$		sistance, Junction-to-A	Ambient (Note 1)	350	°C/W	
Packag	e Marking	g and Orderin	g Information		1	
Device Marking		Device	Reel Size	Tape width	Quantity	
SS		BSS138	7"	8mm	3000 units	

BSS138

Electrical Characteristics (TA=25°C, unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics		•	•		
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \qquad I_{D} = 250 \mu\text{A}$	50			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A,Referenced to 25°C		72		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 50 \text{ V}, \qquad V_{GS} = 0 \text{ V}$			0.5	μΑ
		V _{DS} = 30 V, V _{GS} = 0 V			100	nA
I _{GSS}	Gate-Body Leakage.	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	0.8	1.3	1.6	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I _D = 1 mA,Referenced to 25°C		-2		mV/°C
$R_{\text{DS(on)}}$	Static Drain–Source On–Resistance	$ \begin{aligned} &V_{GS} = 10 \text{ V}, & I_{D} = 0.22 \text{ A} \\ &V_{GS} = 4.5 \text{ V}, & I_{D} = 0.22 \text{ A} \end{aligned} $			3.5 6.0	Ω
I _{D(on)}	On-State Drain Current	$V_{GS} = 10 \text{ V}, \qquad V_{DS} = 5 \text{ V}$	0.2			Α
g _{FS}	Forward Transconductance	$V_{DS} = 10V$, $I_{D} = 0.22 \text{ A}$	0.12			S
Dynamic	Characteristics					
C _{iss}	Input Capacitance	$V_{DS} = 25 \text{ V}, \qquad V_{GS} = 0 \text{ V},$		27		pF
Coss	Output Capacitance	f = 1.0 MHz		13		pF
C _{rss}	Reverse Transfer Capacitance			6		pF
R _G	Gate Resistance	V _{GS} = 15 mV, f = 1.0 MHz		9		Ω
Switchin	g Characteristics (Note 2)					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 30 \text{ V}, \qquad I_{D} = 0.29 \text{ A},$		2.5	5	ns
t _r	Turn-On Rise Time	$V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$		9	18	ns
t _{d(off)}	Turn-Off Delay Time			20	36	ns
t _f	Turn-Off Fall Time			7	14	ns
Q _g	Total Gate Charge	$V_{DS} = 25 \text{ V}, \qquad I_{D} = 0.22 \text{ A},$		1.7	2.4	nC
Q _{gs}	Gate-Source Charge	V _{GS} = 10 V		0.1		nC
Q_{gd}	Gate-Drain Charge]		0.4		nC
Drain-So	ource Diode Characteristics	and Maximum Ratings				
Is	Maximum Continuous Drain-Source Diode Forward Current				0.22	Α
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, \qquad I_{S} = 0.44 \text{ A(Note 2)}$		0.8	1.4	V

Notes

 R_{0,JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0,JC} is guaranteed by design while R_{0,CA} is determined by the user's board design.

a) 350°C/W when mounted on a minimum pad..

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width $\leq 300~\mu s,~\text{Duty Cycle} \leq 2.0\%$

BSS138 Typical Characteristics

Figure 1. On-Region Characteristics.

Figure 3. On-Resistance Variation with Temperature.

Figure 5. Transfer Characteristics.

Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

BSS138 Typical Characteristics

Figure 7. Gate Charge Characteristics.

Figure 8. Capacitance Characteristics.

Figure 9. Maximum Safe Operating Area.

Figure 10. Single Pulse Maximum Power Dissipation.

Figure 11. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1a. Transient thermal response will change depending on the circuit board design.