

Ready Player One

Video Games Head Mounted Displays

CS 415: Game Development (Virtual Reality Module)

Professor Luciano Soares

Head Mounted Displays

- Optics (Displays / Lenses)
- Tracking System
- Processing Unit

Display

Technologies:

- OLED
- LCD

Resolution: 2000x2000 per eye (typical)

Configuration

- RGB stripe
- Diamond PenTile

Refresh rate:

90 - 120Hz

Lenses

- Allows perception of distant objects
- Enlarge the image
- Allows eye to focus display image
- Field of view = $^{\sim}100^{\circ}$

Type of Lenses

Materials:

- Glass
- Plastic

Fresnel lenses:

- Reduces size (volume)
- Creates artifacts in the image
- Simpler

https://pt.wikipedia.org/wiki/Lente_de_Fresnel

HTC Vive 1

Pancake lenses:

- Bit thicker than fresnel lenses (but positioned close to the display)
- Much less artifacts

Spherical Aberrations

One solution is to treat the image before.

Lenses Controls

Inter Pupillary Distance (60 to 70mm) User's eyes to the lenses

HTC Vive

Tracking

Technique used to identify real-time location and/or orientation of points in space (head

position, controls, etc.)

Degrees of Freedom

Tracking technologies

Mechanical

Electromagnetic

Acoustical

Inertial (accelerometers, gyroscopes)

Optical

Magic Leap 1 6DoF electromagnetic tracking

Traditional Tracking Methods

https://xinreality.com/wiki/Inside-out_tracking

Vive Tracking Sensors

- Position and Orientation
- Good precision
- Depends on Base Stations

Base Station

Emits infrared pulses and sweeps

SLAM (Simultaneous Localization and Mapping)

Processing Unit

- Qualcomm SXR2155P Snapdragon XR2+ Applications Processor
- Micron MT62F1536M64D8CL-026 WT:B 12 GB LPDDR5 SDRAM Memory
- Western Digital SDINFDO4-256G 256 GB NAND Flash Memory (UFS)
- Lattice Semiconductor LIF-MD6000-6 CrossLink FPGA
- Qualcomm PM8150L Power Management

