

Produced by Dr. Mario | UNC STOR 390

Football Decision Making

- 5 Key Decisions in Football
 - *Fourth and 4 on Opponent's 30 Yard Line. Field Goal or Punt?
 - Fourth and 4 on Own 30 Yard Line. Attempt or Punt?
 - Gained 7 Yards on First Down From Own 30 Yard Line and Defense Was Offsides. Accept the Penalty?
 - Opponent Gained 0 Yards on Run on First Down. They were Offside. Accept the Penalty?
 - Optimal Run/Pass Mixture on First Down?
- Decision Based on States of Football
- *Best Decision Maximizes the Expected Number of Points $Expected \ Points = V(Down, Yards \ For \ 1st \ Down, Yard \ Line)$

Football Decision Making

- Examples of Expected Points Based on States
 - V(1,10,50) = 1.875
 - V(3,3,80) = 3.851
 - V(2,9,5) = -1.647

Papers on Football Strategy and

- Football States Defined by ...
 - Yard Line
 - Down
 - Yards to Go for First Down
 - Score Differential
 - Time Left in Game

Number of States = $99 \times 4 \times 30 \times 80 \times 60 = 57,024,000$

Assumption About Yards to Go

Assumption Score Differential

Assumption About Time Remaining

Needs Simplification

- Maximize the Expected Number of Points
- Assume Game is of Infinite Length
- Time Remaining Becomes Irrelevant
- Current Score Differential Becomes Irrelevant
- Method Devalued During Ends of 2nd and 4th Quarter

- Yard Line
- Down
- Yards to Go for First Down

There is a Massive Amount of States

Number of States = $99 \times 4 \times 30 = 11,880$

- Value of a State = Margin By Which a Team is Expected to Win
- Historical Research in This Area
 - First Explored by Virgil Carter and Robert Machol (1971)
 - Modified in Hidden Game of Football (Carroll et Al., 1989)
 - Studied for 1st Downs by David Romer (2002) and Footballoutsiders.com
 - Estimated Value by Cabot, Sagarin, and Winston
- Analysis Done from Different Time Periods (1969 to 2006)
- Cabot, Sagarin, and Winston Used a Video Game Pro Quarterback

Comparison of Research on State Values

NFL State Values				
Yard Line	Carter and Machol	Cabot, Sagarin, and Winston	Romer*	Football Outsiders.com*
5	-1.25	-1.33	-0.8	-1.2
15	-0.64	-0.58	0	-0.6
25	0.24	0.13	0.6	0.1
35	0.92	0.84	1.15	0.9
45	1.54	1.53	1.90	1.2
55	2.39	2.24	2.20	1.9
65	3.17	3.02	2.8	2.2
75	3.68	3.88	3.30	3.0
85	4.57	4.84	4.0	3.8
95	6.04	5.84	4.90	4.6

Approaching Opponent's Goal Line

- Takeaways from Analysis
 - Simulation in Video Game Allowed Data For Scenarios Other than 1st Down
 - Romer Discovered Teams Should Go on Fourth Down in Most Situations
 - Over NFL Season There are 40,000 Plays
 - This Proves That Estimated Value of States Has Considerable Error

Simplified Scenario

- Football Field is 7 Yards
- Need to Get 1 Yard to Get a First Down
- Only Have 1 Play to Get a First Down
- ♦ We Have 50% Chance of 1 Yard and 50% Chance of 0 Yards
- When Scored, We Get 7 Points and Opponent Starts on 1 Yard Line
- **♦ No Field Goals or Punts**

My Goal Yard 1 Yard 2 Yard 3 Yard 4 Yard 5 Opponent Goal

- Estimating Value of Each States
 - There are 5 States
 - Expected Value of Points for Each State

Expected Value at i Yard Line = V_i

Equations For Expectation (Law of conditional Expectation)

$$V_1 = 0.5 \times V_2 - 0.5 \times V_5$$

$$V_2 = 0.5 \times V_3 - 0.5 \times V_4$$

$$V_3 = 0.5 \times V_4 - 0.5 \times V_3$$

$$V_4 = 0.5 \times V_5 - 0.5 \times V_2$$

$$V_5 = 0.5 \times (7 - V_1) - 0.5 \times V_1$$

Scoring Gives the Ball to Other Team

Failing Gives the Ball to Other Team

- Estimating Value of Each States
 - Values Can Be Estimated Through Solving Equations
 - System Can Be Solved = 5 Variables and 5 Equations

$$V_1 = -5.25$$

$$V_2 = -1.75$$

$$V_3 = 1.75$$

$$V_4 = 5.25$$

$$V_5 = 8.75$$

- Each Yard Line Increases Expectation by 3.5 Points
- Is There Anything Particularly Unusual About This Methodology?

- Modification for Punts
 - Probability of Punting if 5, 4, 3, 2, 1 Yards Away is 0.9, 0.8, 0.2, 0.05, 0
 - When Punting, the Punter Kicks the Ball 1,2,3,4 Yards Away Approximately 0%, 5%, 10%, and 85% of the Time
 - Equations for Expectation

$$V_{1} = 0.9[-0 \times V_{4} - 0.05 \times V_{3} - 0.1 \times V_{2} - 0.85 \times V_{1}] + 0.1[0.5 \times V_{2} - 0.5 \times V_{5}]$$

$$V_{2} = 0.8[-0 \times V_{3} - 0.05 \times V_{2} - 0.95 \times V_{1}] + 0.2[0.5 \times V_{3} - 0.5 \times V_{4}]$$

$$V_{3} = 0.2[-0 \times V_{2} - 1 \times V_{1}] + 0.8[0.5 \times V_{4} - 0.5 \times V_{3}]$$

$$V_{4} = 0.05[-1 \times V_{1}] + 0.95[0.5 \times V_{5} - 0.5 \times V_{2}]$$

$$V_{5} = 0.5 \times (7 - V_{1}) - 0.5 \times V_{1}$$

Final Inspiration

This is no democracy.

It is a dictatorship.

I am the law.

- Coach Herman Boone