

X3-Class HiPERFET™ **Power MOSFET**

IXFA38N30X3 IXFP38N30X3

300V 38A $50m\Omega$

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_{_{\rm J}}$ = 25°C to 150°C	300	V	
V _{DGR}	$T_J = 25^{\circ}C$ to 150°C, $R_{GS} = 1M\Omega$	300	V	
V _{GSS}	Continuous	±20	V	
V _{GSM}	Transient	±30	V	
I _{D25}	T _c = 25°C	38	A	
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	60	Α	
I _A	T _c = 25°C	19	A	
E _{as}	$T_c = 25^{\circ}C$	400	mJ	
dv/dt	$I_{S} \leq I_{DM}, V_{DD} \leq V_{DSS}, T_{J} \leq 150^{\circ}C$	50	V/ns	
P_{D}	T _C = 25°C	240	W	
T _J		-55 +150	°C	
T _{JM}		150	°C	
T _{stg}		-55 + 150	°C	
T _L	Maximum Lead Temperature for Solderin	g 300	°C	
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C	
F _c	Mounting Force (TO-263) Mounting Torque (TO-220)	1065 / 2.214.6 1.13 / 10	N/lb Nm/lb.in	
Weight	TO-263 TO-220	2.5 3.0	g g	

Symbol $(T_J = 25^{\circ}C,$	Test Conditions Unless Otherwise Specified)	Charac Min.	cteristic '	Values Max.
BV _{DSS}	$V_{GS} = 0V, I_{D} = 1mA$	300		V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 1mA$	2.5		4.5 V
I _{GSS}	$V_{gS} = \pm 20V, V_{DS} = 0V$			±100 nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			25 μA 500 μA
R _{DS(on)}	V _{GS} = 10V, I _D = 0.5 • I _{D25} , Note 1		34	50 mΩ

G = Gate= Drain S = SourceTab = Drain

Features

- International Standard Packages
- Low R_{DS(ON)} and Q_G
 Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- Robotics and Servo Controls

Symbol	ymbol Test Conditions Cha		racteristic Values	
$(T_{J} = 25^{\circ}C,$	Unless Otherwise Specified)	Min.	Тур.	Max
g _{fs}	V _{DS} = 10V, I _D = 0.5 • I _{D25} , Note 1	20	34	S
R_{Gi}	Gate Input Resistance		1.9	Ω
C _{iss}			2240	pF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		330	pF
C _{rss}			1.3	pF
	Effective Output Capacitance			
$C_{o(er)}$	Energy related $\int V_{GS} = 0V$		130	pF
$C_{o(tr)}$	Time related $\int V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		520	pF
t _{d(on)}	Resistive Switching Times		19	ns
t,	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		23	ns
t _{d(off)}	$R_{G} = 10\Omega$ (External)		60	ns
t,	n _G = 1052 (External)		14	ns
Q _{g(on)}			35	nC
Q _{gs}	$V_{gs} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		10	nC
Q _{gd}			11	nC
R _{thJC}				0.52 °C/W
R _{thCS}	TO-220		0.50	°C/W

Source-Drain Diode

Symbol $(T_J = 25^{\circ}C, U)$	Test Conditions Unless Otherwise Specified)	Chara Min.	cteristic Typ.	Values Max	
I _s	$V_{GS} = 0V$			38	Α
I _{SM}	Repetitive, Pulse Width Limited by $T_{_{JM}}$			152	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	V
$\left. egin{array}{c} \mathbf{t}_{rr} & \\ \mathbf{Q}_{RM} & \\ \mathbf{I}_{RM} & \end{array} ight. ight.$	$I_F = 19A$, -di/dt = 100A/ μ s $V_R = 100V$		90 330 7.4		ns nC A

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 14. Forward-Bias Safe Operating Area 100 R_{DS(on)} Limit 25µs 10 100µs I_D - Amperes 1ms $T_{J} = 150^{\circ}C$ 0.1 10ms $T_C = 25^{\circ}C$ Single Pulse 0.01 10 100 1,000 $V_{\rm DS}$ - Volts

Fig. 15. Maximum Transient Thermal Impedance

SYM	INCH	INCHES MIL		LIMETER	
SIM	MIN	MAX	MIN	MAX	
Α	.170	.185	4.30	4.70	
A1	.000	.008	0.00	0.20	
A2	.091	.098	2.30	2.50	
b	.028	.035	0.70	0.90	
b2	.046	.060	1.18	1.52	
С	.018	.024	0.45	0.60	
C2	.049	.060	1.25	1.52	
D	.340	.370	8.63	9.40	
D1	.300	.327	7.62	8.30	
E	.380	.410	9.65	10.41	
E1	.270	.330	6.86	8.38	
е	.100	BSC	2.54 BSC		
Н	.580	.620	14.73	15.75	
L	.075	.105	1.91	2.67	
L1	.039	.060	1.00	1.52	
L2	_	.070	_	1.77	
[L3]	.010	BSC	0.254 BSC		

SYM	INCHES		MILLIMETERS	
2114	MIN	MAX	MIN	MAX
Α	.169	.185	4.30	4.70
A1	.047	.055	1.20	1.40
A2	.079	.106	2.00	2.70
Ь	.024	.039	0.60	1.00
b2	.045	.057	1.15	1.45
С	.014	.026	0.35	0.65
D	.587	.626	14.90	15.90
D1	.335	.370	8.50	9.40
(D2)	.500	.531	12.70	13.50
E	.382	.406	9.70	10.30
(E1)	.283	.323	7.20	8.20
е	.100 BSC		2.54 BSC	
e1	.200 BSC		5.08 BSC	
H1	.244	.268	6.20	6.80
L	.492	.547	12.50	13.90
L1	.110	.154	2.80	3.90
ØΡ	.134	.150	3.40	3.80
Q	.106	.126	2.70	3.20

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.