ECE4634 Digital Communications Fall 2007

Instructor: R. Michael Buehrer

Lecture #17: Bandpass

Modulation – BFSK

Overview

- We have been studying bandpass digital modulation techiques
- To date we have looked at two linear binary modulation schemes
 - BASK
 - BPSK
- Today we look at a third binary modulation scheme that is non-linear
 - Binary Frequency Shift Keying

- The objectives of today's lecture are
 - to introduce Binary Frequency Shift Keying (BFSK)
 - to discuss the impact of coherent frequencies and continuous phase
 - to examine the power spectral density

Three Ways of Representing Bandpass Signals

- We will need some additional analytical tools to handle bandpass signals
- Magnitude and Phase

$$v(t) = R(t)\cos[\omega_C t + \theta(t)]$$

In Phase and Quadrature

$$v(t) = x(t)\cos(\omega_c t) - y(t)\sin(\omega_c t)$$

Complex Envelope

$$v(t) = \operatorname{Re}\left[g(t)e^{j\omega_{c}t}\right]$$

Bandpass Modulation - FSK

- Binary Frequency Shift Keying (BFSK)
- We modulate or change the frequency depending on the data bit to be sent
- Basic Idea:
 - Send one tone f₁ for a 1
 - Send another tone f₂ for a 0
 - Then we transmit the signal *s*(*t*):

$$1 \Rightarrow s(t) = \cos\left(2\pi f_1 t + \theta_1\right)\Big|_0^{T_s}$$
$$0 \Rightarrow s(t) = \cos\left(2\pi f_2 t + \theta_2\right)\Big|_0^{T_s}$$

 θ_1 and θ_2 are aribtrary constants that simply reflect the fact that the two oscillators are not phase locked.

FSK - Magnitude and Phase Representation

- $s(t) = R(t)\cos[\omega_C t + \theta(t)]$ where
 - $R(t) = 1 \Big|_{0}^{T}$

$$f_c = \frac{f_1 + f_2}{2}$$

$$\Delta f = \frac{f_1 - f_2}{2}$$

- I/Q and complex envelopes are not as easy to interpret
- FSK is widely used for robust communications
 - Like ASK, it can be non-coherently received (i.e., we don't need phase reference)
 - Like BPSK, it is a constant envelope signal

I/Q and Complex Envelope

I/Q Representation

$$x(t) = \cos\left[\theta(t)\right] = \begin{cases} \cos\left[\theta_1 + 2\pi\Delta f t\right]_0^{T_s} & b = 1\\ \cos\left[\theta_2 - 2\pi\Delta f t\right]\right]_0^{T_s} & b = 0 \end{cases}$$

$$y(t) = \sin\left[\theta(t)\right] = \begin{cases} \sin\left[\theta_1 + 2\pi\Delta f t\right]\right]_0^{T_s} & b = 1\\ \sin\left[\theta_2 - 2\pi\Delta f t\right]\right]_0^{T_s} & b = 0 \end{cases}$$

Complex envelope

$$g\left(t\right) = \cos\left[\theta\left(t\right)\right] + j\sin\left[\theta\left(t\right)\right]$$

$$= \begin{cases} \cos\left[\theta_{1} + 2\pi\Delta f t\right] + j\sin\left[\theta_{1} + 2\pi\Delta f t\right]\right|_{0}^{T_{s}} & b = 1\\ \cos\left[\theta_{2} - 2\pi\Delta f t\right] + j\sin\left[\theta_{2} - 2\pi\Delta f t\right]\right|_{0}^{T_{s}} & b = 0 \end{cases}$$
Virginia Tech Fall 2007

Coherent Receiver for FSK

Note: Phases of internally generated sinusoids are matched to incoming sinusoids.

RM Buehrer Virginia Tech Fall 2007

- We can also create a BFSK signal using a frequency modulator. Such a scheme keeps the phase a continuous function (i.e., there are no phase jumps).
- This type of FSK has better spectral properties and is called continuous phase FSK

$$s(t) = A_c \cos \left[\omega_c t + D_f \int_{-\infty}^t m(\lambda) d\lambda \right]$$

$$= \text{Re} \left\{ g(t) e^{j\omega_c t} \right\}$$

$$g(t) = A_c e^{j\theta(t)}$$

$$\theta(t) = D_f \int_{-\infty}^t m(\lambda) d\lambda$$

Virginia Tech Fall 2007 m(t) = polar NRZ line code $D_f = 2\pi\Delta f$

Coherent Carriers vs. Continuous Phase

The two signals sent in BFSK are

$$\cos\left(2\pi f_1 t + \theta_1\right)$$
$$\cos\left(2\pi f_2 t + \theta_2\right)$$

- If $\theta_1 = \theta_2$ we say that the carriers are *coherent*
- If in addition to being coherent, there are no phase changes in the carrier, we say that the modulation is continuous phase.
- Both will have an impact on the bandwidth of the transmit signal
- Coherent carriers are a necessary but not a sufficient condition for continuous phase

Coherent Carriers

Two Carriers have the same phase

Fall 2007

Continuous

Phase

The modulated signal exhibits phase jumps

7.5

7.4

7.1

7.2

7.3

Frequency Separation 2∆f

- Non-coherent Carriers

$$\int_{0}^{T_{b}} \cos\left(2\pi f_{1} + \theta_{1}\right) \cos\left(2\pi f_{2} + \theta_{2}\right) dt = 0$$

$$\int_{0}^{T_{b}} \cos\left(2\pi \left(f_{1} + f_{2}\right) + \theta_{1} + \theta_{2}\right) dt + \int_{0}^{T_{b}} \cos\left(2\pi \left(f_{1} - f_{2}\right) + \theta_{1} - \theta_{2}\right) dt = 0$$

$$\int_{0}^{T_{b}} \cos\left(2\pi \left(f_{1} - f_{2}\right) + \theta_{1} - \theta_{2}\right) dt = 0$$

$$\int_{0}^{T_{b}} \cos\left(2\pi \left(f_{1} - f_{2}\right) + \theta_{1} - \theta_{2}\right) dt = 0$$

$$\int_{0}^{T_{b}} \cos\left(2\pi \left(f_{1} - f_{2}\right) + \theta_{1} - \theta_{2}\right) dt = 0$$

Thus, the signal $cos(2\pi f' + \theta')$ must go through an integer number of cycles. For this to be satisfied:

$$2\pi (f_1 - f_2)T_b = 2\pi k$$
$$f_1 - f_2 = \frac{k}{T_b}$$

The minimum frequency separation is then $1/T_b = R_b$

14

Frequency Separation 2∆f

- Coherent Carriers

$$\int_{0}^{T_{b}} \cos\left(2\pi f_{1}+\theta_{1}\right) \cos\left(2\pi f_{2}+\theta_{1}\right) dt = 0$$

$$\int_{0}^{T_{b}} \cos\left(2\pi \left(f_{1}+f_{2}\right)+2\theta_{1}\right) dt + \int_{0}^{T_{b}} \cos\left(2\pi \left(f_{1}-f_{2}\right)+\theta_{1}-\theta_{1}\right) dt = 0$$

$$\int_{0}^{T_{b}} \cos\left(2\pi \left(f_{1}-f_{2}\right)\right) dt = 0$$

$$\int_{0}^{T_{b}} \cos\left(2\pi 2\Delta ft\right) dt = 0$$

$$\frac{1}{2\pi f} \sin\left(4\pi \Delta ft\right)\Big|_{0}^{T} = 0$$

$$4\pi \Delta fT = k\pi$$

$$\Delta f_{\min} = \frac{1}{4T}$$

Thus, the minimum frequency separation (f_1-f_2) is $1/2T_b = R_b/2$

Power Spectral Density of FSK

- Each of two tones can be thought of as an ASK signal
- In other words, we are modulating two separate carriers by unipolar NRZ baseband waveforms.

Null-to-Null Bandwidth:

$$B = R + (f_1 - f_2) + R$$
$$= 2R + 2\Delta f$$

For orthogonality (coherent FSK):

$$\Delta f_{\min} = \frac{R}{2}$$

$$(f_2 - f_1)_{\min} = R$$

Power Spectral Density

 Let's consider the BFSK signal the sum of two BASK signals:

$$P_{v}(f) = \frac{A^{2}T_{b}}{8} \left[\operatorname{sinc}^{2}((f - f_{1})T_{b}) + \operatorname{sinc}^{2}((f + f_{1})T_{b}) + \frac{1}{T_{b}}\delta(f - f_{1}) + \frac{1}{T_{b}}\delta(f + f_{1}) \right] + \frac{A^{2}T_{b}}{8} \left[\operatorname{sinc}^{2}((f - f_{2})T_{b}) + \operatorname{sinc}^{2}((f + f_{2})T_{b}) + \frac{1}{T_{b}}\delta(f - f_{2}) + \frac{1}{T_{b}}\delta(f + f_{2}) \right]$$

- Since f₁ f₂ = R_s and the first nulls occur at f₂ R_s and f₁ + R_s, the null-to-null BW is 3R_s
- Four tones exist in the spectrum at +/- f₁ and +/- f₂

Example

Virginia Tech Fall 2007

- I & Q components
- Real and Imaginary components

Fall 2007

- $f_c = 5Hz$
- $f_1 = 4.5Hz$
- $f_2 = 5.5Hz$
- $R_b = 1bps$

- $f_c = 5Hz$
- $f_1 = 4.5Hz$
- $f_2 = 5.5Hz$
- $R_b = 1bps$

- Minimum Shift Keying is a form of BFSK that has
 - Minimum frequency separation $2\Delta f = R_b/2$
 - Thus requires coherent carriers
 - Continuous Phase
- Results in substantially reduced bandwidth as compared to standard BFSK
- Can also be seen as a form of QPSK with pulse shaping
 - We will see this in the next lecture

Minimum Shift Keying

• Example – $f_c = 10Hz$, $f_1 = 9.75Hz$, $f_2 = 10.25Hz$, $R_b = 1bps$

 For non-coherent carriers, the minimum nullto-null bandwidth is

$$W_{null} = 3R_b$$

 For coherent carriers, the minimum null-tonull bandwidth is

$$W_{null} = 2.5R_b$$

 For coherent carriers AND continuous phase, the minimum null-to-null bandwidth is

$$W_{null} = 1.5R_b$$

- We have now examined three binary digital modulation schemes
 - BPSK
 - BASK
 - BFSK
- How can be reduce the bandwidth requirements of these schemes without reducing the bit rate?
 - Pulse shaping we have discussed some about this already
 - M-ary modulation we will consider this next

Appendix A

An alternate view of the required frequency separation for orthogonal symbols

Calculate the correlation coefficient and set to zero

$$\rho(\Delta f, \Delta \theta) = \frac{1}{C} \int_{0}^{T} \cos(2\pi f_{1}t + \theta_{1}) \cos(2\pi f_{2}t + \theta_{2}) dt$$

$$= \frac{1}{T} \int_{0}^{T} \left[\cos(2\pi (f_{1} + f_{2})t + \theta_{1} + \theta_{2}) + \cos(2\pi \Delta f t + \Delta \theta)\right] dt$$

$$\approx \frac{1}{T} \int_{0}^{T} \cos(2\pi 2\Delta f t + \Delta \theta) dt$$

$$= \frac{1}{2\pi 2\Delta f T} \left(\sin(2\pi 2\Delta f t + \Delta \theta) - \sin(\Delta \theta)\right)$$

$$C = \sqrt{\int_{0}^{T} \cos^{2}(2\pi f_{1}t + \theta_{1}) dt} \int_{0}^{T} \cos^{2}(2\pi f_{2}t + \theta_{2}) dt$$

$$= \sqrt{\frac{T}{2} \frac{T}{2}}$$

$$= \frac{T}{2}$$
27

Correlation Coefficient (cont.)

• If $\Delta\theta = 0$

$$\rho(\Delta f, \Delta \theta) = \frac{1}{2\pi\Delta fT} \left(\sin(2\pi 2\Delta fT + \Delta \theta) - \sin(\Delta \theta) \right)$$
$$= \operatorname{sinc}(4\Delta fT)$$

Thus, the correlation goes to zero for

$$2\Delta f = \frac{1}{2T}$$

$$\Delta f = \frac{1}{4T} = \frac{R}{4} \qquad |f_1 - f_2| = \frac{R}{2}$$

Correlation Coefficient (cont.)

• If $\Delta\theta \neq 0$

$$\rho(\Delta f, \Delta \theta) = \frac{1}{2\pi 2\Delta fT} \left(\sin(2\pi 2\Delta fT + \Delta \theta) - \sin(\Delta \theta) \right)$$
$$= \frac{1}{\pi 2\Delta fT} \sin(\pi 2\Delta fT) \cos(\pi 2\Delta fT + \Delta \theta)$$

• Thus, since $\Delta\theta$ is unknown the correlation goes to zero for

$$2\Delta f = \frac{1}{T}$$

$$\Delta f = \frac{1}{2T} = \frac{R}{2} \qquad |f_1 - f_2| = R$$