Data integration and multi-omics

Thomas Stoeger thomas.stoeger@northwestern.edu

November 24th, 2020

Q/A on handout

Q/A on handout

mini-presentation

Q/A on handout

mini-presentation

group coding exercise

Q/A on handout

get overview know where to find details

mini-presentation

group coding exercise

Q/A on handout

get overview know where to find details

mini-presentation

solidify main points

group coding exercise

Q/A on handout

get overview know where to find details

mini-presentation

solidify main points

group coding exercise experience

Q/A on handout

get overview know where to find details

mini-presentation

solidify main points

group coding exercise experience

Q/A on handout

get overview know where to find details

Q/A on handout

get overview know where to find details

Handout (7min to read)

https://github.com/tstoeger/course_multi_omics/blob/main/multi-omics.pdf

Q/A on handout

get overview know where to find details

Handout (7min to read)

https://github.com/tstoeger/course_multi_omics/blob/main/multi-omics.pdf

Questions (~5min)

Ask in person.

Ask anonymously on: https://padlet.com/thomasstoeger/a4mtvpym671dwgnl

mini-presentation

solidify main points

Biology happens at multiple scales.

Genome

visual: IBM

even more

Genome

Be careful!

Figure 1. Overview of multi-omics clustering approaches.

Figure 1. Overview of multi-omics clustering approaches.

Organize data by adhering to good practices.

THE AMERICAN STATISTICIAN 2018, VOL. 72, NO. 1, 2–10 https://doi.org/10.1080/00031305.2017.1375989

Data Organization in Spreadsheets

Karl W. Broman^a and Kara H. Woob

^aDepartment of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI; ^bInformation School, University of Washington, Seattle, WA

ABSTRACT

Spreadsheets are widely used software tools for data entry, storage, analysis, and visualization. Focusing on the data entry and storage aspects, this article offers practical recommendations for organizing spreadsheet data to reduce errors and ease later analyses. The basic principles are: be consistent, write dates like YYYY-MM-DD, do not leave any cells empty, put just one thing in a cell, organize the data as a single rectangle (with subjects as rows and variables as columns, and with a single header row), create a data dictionary, do not include calculations in the raw data files, do not use font color or highlighting as data, choose good names for things, make backups, use data validation to avoid data entry errors, and save the data in plain text files.

ARTICLE HISTORY

Received June 2017 Revised August 2017

KEYWORDS

Data management; Data organization; Microsoft Excel; Spreadsheets

Wrappers, something very useful to learn for everyone working with data.

other / new differently formatted

other/new
differently
formatted

optimize
speed if
frequently used

Figure 1. Overview of multi-omics clustering approaches.

Figure 1. Overview of multi-omics clustering approaches.

group coding exercise experience

3 people per breakout group

3 people per breakout group

free choice of tools

3 people per breakout group

free choice of tools

Are similarities between genes conserved across scales?

Data Source: https://maayanlab.cloud/Harmonizome/subset: https://northwestern.box.com/s/dvrxld7ioe6jgm2srrs7rj8mzkqpkhsa (see handout)

Provides precomputed similarities between genes.

Are similarities between genes conserved across scales?

Note: while you might answer this within 30 minutes, identifying possible challenges is even more valuable.

Suggested: a) take two datasets that intrigue you – possibly small to limit download time b) work / talk with your fellow team members

Data Source: https://maayanlab.cloud/Harmonizome/

subset: https://northwestern.box.com/s/dvrxld7ioe6jgm2srrs7rj8mzkqpkhsa (see handout)

Template code: https://github.com/tstoeger/course_multi_omics/blob/main/how_well_do_different_views_on_biology_correlate.ipynb

Ask anonymously on: https://padlet.com/thomasstoeger/a4mtvpym671dwgnl