UM 204 : INTRODUCTION TO BASIC ANALYSIS SPRING 2022 HOMEWORK 1

Instructor: GAUTAM BHARALI Assigned: JANUARY 14, 2022

- 1. Consider the following axioms:
 - Singleton sets axiom. If x is an element, then the collection whose only element is x which is denoted by $\{x\}$ is a set.
 - Pair sets axiom. If x and y are elements, then the collection whose elements are precisely x and y—which is denoted by $\{x,y\}$ —is a set.

Now, let X and Y be non-empty sets.

- (a) Using the above axioms and any other axioms of Set Theory presented in class, show that ordered pairs exist in the form of appropriate pair sets.
- (b) Using (a) and suitable axioms of Set Theory presented in class, show that $X \times Y$ is a set.
- **2.** Show that for any natural number n, $S(n) \neq n$. (Here, $S(\cdot)$ denotes the successor as postulated by Peano's axioms.)
- **3.** Prove, using Peano's axioms, that if $\Sigma(n)$ denotes some statement involving the natural number n, and if
 - $\Sigma(1)$ is true, and
 - whenever $\Sigma(n)$ is true, then $\Sigma(S(n))$ is true,

then $\Sigma(n)$ is true for every natural number $n \neq 0$.

4. Let X and Y be two non-empty sets and let $f, g: X \to Y$ be two functions. Why do we define f = g as

$$f(x) = g(x) \ \forall x \in X$$
?

Be sure that you give a reason originating in the fundamentals!

5. Let $a \setminus b$ and $c \setminus d$ be two integers $(a, b, c, d \in \mathbb{N})$. Recall that:

$$(a \setminus b) + (c \setminus d) := (a+c) \setminus (b+d).$$

Show that this is well-defined: i.e., independent of the choices of a and b representing $a \setminus b$, and of c and d representing $c \setminus d$.

6. The following two problems establish that the operations "+" and " \times " defined on \mathbb{Z} extend Peano arithmetic to \mathbb{Z} . To this end, **temporarily** denote the addition and multiplication between

integers by $+_{\mathbb{Z}}$ and $\times_{\mathbb{Z}}$, respectively.

- (a) Define the function $f: \mathbb{N} \to \mathbb{Z}$ by $f(n) := n \setminus 0$ for each $n \in \mathbb{N}$. Show that f is injective.
- (b) Show that

$$\begin{split} f(m+n) &= f(m) +_{\mathbb{Z}} f(n), \\ f(m \times n) &= f(m) \times_{\mathbb{Z}} f(n), \ \forall m, n \in \mathbb{N}. \end{split}$$

7. This problem shows why the collection

 $\mathfrak{U} :=$ the collection of all sets,

is **not** a set (or, alternatively, that one **cannot** declare \mathfrak{U} to be a set by an axiom that is compatible with the other axioms of Set Theory).

To this end:

(a) Assume that \mathfrak{U} is a set. Then explain why

$$A := \{ S \in \mathfrak{U} : S \notin S \}$$

is a set.

(b) Does $A \in A$ or $A \in (\mathfrak{U} \setminus A)$? Based on this, argue why \mathfrak{U} is not a set.

Remark. The outcome of the question in (b) above is called Russell's Paradox.