

THE UGANDA INTER SCHOOL VIRTUAL A LEVEL MATHEMATICS SEMINAR 2024.

Saturday 06^{th} July 2024 (9:00 a.m)

INSTRUCTIONS TO STUDENTS AND TEACHERS:

Dear students and teachers we would like to welcome you to participate in the forthcoming Mathematics seminar for senior six students. This is in preparation for the forthcoming final exams(UNEB) and the Mock Examinations. This is a free seminar and no one should charge you any fees. The process to be followed by both the teachers and students is suggested below:

- 1. Teachers share the Seminar questions with their students and ask for volunteers to discuss any of the questions. Questions should be pinned up and learners write down all the questions in their books.
- 2. Teachers talk to the school administrators to allow the children participate as presenters in the seminar on Saturday **06th July from 09:00am 2:00 pm.** Other students will just be participants.
- 3. The student together with the teachers select atleast two best done presentations and the students to represent the school. The solutions and pictures/videos should be uploaded on padlet.https://bit.ly/S4MATHSEMINAR2023
- 4. Hold a mock presentation where all your discussants present to the rest of the class. After that release the rest of the class and record your best presenter in a very quiet environment but with good light. Record each part of the question separately.
- 5. The teacher could now train the student on how to present on zoom as far as sharing a screen and using the whiteboard. Alternatively the students' presentation will be loaded on the computer screen and they explain to us their solution.

SEMINAR DETAILS

S.6 virtual Mathematics seminar 2024.

Time: 06 JULY 2024, 09:00 AM

Join Zoom Meeting

Meeting ID:99344801787 Passcode: HeLP2024

P425/1

- 1. Analysis (6 questions)
 - (a) Differentiation
 - (b) Intergration
 - (c) Differential equations
- 2. Vectors (2 questions)
 - (a) Vectors in 2-D
 - (b) Vectors in 3-D
 - (c) Ratio theorem
 - (d) Line and their properties
 - (e) Planes and their properties
- 3. Trigonometry (2 questions)
- 4. Geometry (2 questions)
 - (a) Coordinate geometry of lines and triangles
 - (b) Locus and circles
 - (c) Parabola
- 5. Algebra (4 questions)
 - (a) Surds, indices and logarithms
 - (b) Quadratics
 - (c) Polynomials
 - (d) Simultaneous equations
 - (e) Inequalities
 - (f) Partial fractions
 - (g) Complex numbers
 - (h) Permutation and combinations

P425/2

- 1. Mechanics (6 questions)
 - (a) Calculus of vectors
 - (b) General motion of the body
 - (c) Relative motion
 - (d) Projectiles
 - (e) Newtonian mechanics
 - (f) e.t.c
- 2. Numerical analysis (4 questions)
 - (a) Location of the roots of an equation
 - (b) Trapezium rule of numerical intergration
 - (c) Newton raphson method
 - (d) Errors
 - (e) Flow charts
- 3. Statitics and probability (6 questions)
 - (a) Mean ,node,median
 - (b) Index numbers
 - (c) Correlation coefficient
 - (d) Scatter diagram
 - (e) Discrete probability distributions
 - (f) Continous probability distributions
 - (g) Distributions
 - i. Uniform distribution
 - ii. Normal distribution
 - iii. Binomial distribution
 - iv. Normal approximation to binomial distribution
 - (h) Estimations

PURE MATHEMATICS (P425/1)

ALGEBRA

- 1. The first 3 terms, in ascending powers of x, in the binomial expansion of $(1+kx)^{10}$ are given by $1+15x+px^2$ where k and p are constants.
 - (a) Find the value of k
 - (b) Find the value of p
 - (c) Given that, in the expansion of $(1+kx)^{10}$, the coefficient of x^4 is q, find the value of q
- 2. Solve the following simultaneous logarithmic equations.

$$\log_2(y - 1) = 1 + \log_2 x$$
$$2\log_3 y = 2 + \log_3 x$$

3. (a) Find all the roots of the equation

$$x^2 + 5x = 42 - \frac{216}{x^2 + 5x}$$

(b) Use the substitution $= x + \frac{6}{x}$ to find all the roots of the equation

$$x^4 - 12x^3 + 47x^2 - 72x + 36 = 0$$

- 4. Solve the equation $|3x 2y 11| + 2\sqrt{31 8x + 5y} = 0$
- 5. The polynomial p(x) is defined by $p(x) = mx^3 + nx^2 17x 6$, where m and n are constants. It is given that (x+2) is a factor of p(x) and that the remainder is 28 when p(x) is divided by (x-2).
 - (a) Find the values of m and n.
 - (b) Hence factorise p(x) completely.
- 6. (a) Expand $(1 + \frac{1}{4}x)^4$ up to the third term and use it to estimate $(1.025)^4$ correct to 3 decimal places.
 - (b) Expand $(1+x)^{\frac{1}{3}}$ up to the term in x^2 . By using the substitution $x=\frac{1}{8}$, estimate the cube root of 9 correct to 3 decimal places.
 - (c) Solve the equation ${}^{n}P_{2}=20$
- 7. (a) The coefficients of x^2 and x^3 in the expansion of $(3-2x)^6$ are a and b respectively. Find the value of $\frac{a}{b}$
 - (b) i. Find the coefficient of x in the expansion of $(2x \frac{1}{x})^5$
 - ii. Hence find the coefficient of x in the expansion of $(1+3x^2)(2x-\frac{1}{x})^5$
- 8. (a) The seventh term of an arithmetic progression is equal to twice the fifth term. The sum of the first seven terms is 84. Find the first term.

- (b) The seventh term of a geometric progression is equal to twice the fifth term. The sum of the first seven terms is 254 and the terms are all positive. Find the first term, showing that it can be written in the form $p + q\sqrt{r}$ where p, q and r are integers.
- 9. (a) Use the factor theorem to express $x^3 + 2x^2 + x 18$ as a product of two factors.
 - (b) Find p and q for which $x^2 1$ is a factor of the polynomial $f(x) = 2x^3 + px^2 + qx + 6$, and hence solve the equation f(x) = 0
- 10. The term independent of x in the expansion of $\left(2x + \frac{k}{x}\right)^6$, where k is a constant is 540.
 - (a) Find the value of k
 - (b) For this value of k, find the coefficient of x^2 in the expansion
- 11. The polynomial $2x^3 5x^2 + ax + b$, where **a** and **b** are constants, is denoted by f(x). It is given that when f(x) is divided by (x+2) the remainder is 8 and that when f(x) is divided by (x-1) the remainder is 50.
 - (a) Find the value of a and the value of b.
 - (b) When **a** and **b** have these values, find the quotient and remainder when f(x) is divided by $x^2 x + 2$.
- 12. Solve the simultaneous equations, giving your answers in exact form

(a)

$$e^{3x+4y} = 2e^{2x-y}$$
$$e^{2x+y} = 8e^{x+6y}$$

(b)

$$2\operatorname{In} x + \operatorname{In} y = 1 + \operatorname{In} 5$$
$$\operatorname{In} 10x - \operatorname{In} y = 2 + \operatorname{In} 2$$

- 13. (a) Show that 1+i is a root of the equation $z^4+3z^2-6z+10=0$. Hence find other roots
 - (b) Given that the complex number z and its conjugate \bar{z} satisfy the equation

$$z\bar{z} - 2z + 2\bar{z} = 5 - 4i$$

Find the possible values of z

- 14. A geometric progression has first term a , where $a \neq 0$, and common ratio r , where $r \neq 1$. The difference between the fourth term and the first term is equal to four times the difference between the third term and the second term.
 - (a) Show that $r^3 4r^2 + 4r 1 = 0$.
 - (b) Show that r-1 is a factor of $r^3-4r^2+4r-1=0$. Hence factorise $r^3-4r^2+4r-1=0$.
 - (c) Hence find the two possible values for the ratio of the geometric progression. Give your answers in an exact form
 - (d) Prove that the sum to infinity is $\frac{1}{2}a(1+\sqrt{5})$

15. Let

$$f(x) = \frac{3x}{(1+x)(1+2x^2)}$$

- (a) Express f(x) in partial fractions.
- (b) Hence obtain the expression of f(x) in ascending powers of x ,upto and including the term in x^3
- 16. The circumference round the trunk of a large tree is measured and found to be 5.00 m. After one year the circumference is measured again and found to be 5.02 m.
 - (a) Given that the circumferences at yearly intervals form an arithmetic progression, find the circumference 20 years after the first measurement.
 - (b) Given instead that the circumferences at yearly intervals form a geometric progression, find the circumference 20 years after the first measurement.
- 17. (a) Use De moivre's theory to show that

$$16\sin^5\theta = \sin 5\theta - 5\sin 3\theta + 10\sin \theta$$

(b) Prove that 3i + 2 is a root to the equation

$$Z^4 - 5Z^3 + 18Z^2 - 17Z + 13 = 0$$

and hence find all other roots to this equation.

- 18. The solutions of the equation |4x 1| = |x + 3| are x = p and x = q, where p < q. Find the exact values of p and q, and hence determine the exact value of |p 2| = |q 1|.
- 19. (a) Solve the equation

i.
$$2 - 5e^{-x} + 5e^{-2x} = 0$$

ii.
$$\sqrt{2-x} + \sqrt{3+x} = 3$$

(b) Solve the simultaneous equation:

$$\frac{x-y}{4} = \frac{z-y}{3} = 2z - x$$
$$x + 3y + 2z = 4$$

- 20. (a) The function $f(x) = x^3 + px^2 5x + q$ has a factor (x 2) and has a value of 5 when x = -3. Find p and q
 - (b) The roots of the equation $ax^2 + bx + c = 0$ are α and β . Form the equation whose roots are $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$
 - (c) Simplify $\frac{\sqrt{3}-2}{2\sqrt{3}+3}$ in the form $p+q\sqrt{3}$ where p and q are rational numbers.

VECTORS

21. The line L_1 has vector equation

$$r = 3i + 2j + 5k + \lambda(4i + 2j + 3k)$$

The points A(3, p, 5) and B(q, 0, 2), where p and q are constants, lie on the line L_1

(a) Find the value of p and the value of q

The line L_2 has vector equation

$$r = 3j + k + \mu(7i + j + 7k)$$

- (b) Show that L_1 and L_2 intersect and find the position vector of the point of intersection.
- (c) Find the acute angle between L_1 and L_2
- 22. (a) The vertices of a triangle are A(1,2,3), B(0,1,1) and C(2,1,2). Determine the size of angle ABC.
 - (b) Determine the Cartesian equation of the plane containing triangle ABC .
 - (c) Find the angle between the plane in (b) above and the line

$$\frac{x}{5} = y = \frac{2-z}{3}$$

- 23. (a) Find the cartesian equation of the line of intersection of the two planes 2x 3y z = 1 and 4y + 3x + 2z = 3
 - (b) Vectors **a,b** and **c** form the three sides of a triangle. Given that |a| = 5, |b| = 12 and **a.b**= $30\sqrt{3}$, find the area of the triangle
- 24. The position vectors of points A and B are $\mathbf{OA} = 2i 4j k$ and $\mathbf{OB} = 5i 2j + 3k$ respectively. The line AB is produced to meet the plane 2x + 6y 3z = -5 at a point C. Find the;
 - (a) Coordinates of C
 - (b) Angle between AB and the plane
- 25. Find the points of intersection of the line $\frac{x}{5} = \frac{y+2}{2} = \frac{z-1}{4}$ with the plane 3x + 4y + 2z 25 = 0
- 26. (a) A,B and C are vertices of a triangle with position vectors 5i + 7j 9k, 7i + 6j + 2k and 11i + 3j + k respectively. Using vectors prove that ABC is right angled and hence find its area.
 - (b) A perpendicular from a point Q(3, -2, 10) meets the line

$$r = \begin{pmatrix} 8 \\ -1 \\ 7 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ 3 \\ -2 \end{pmatrix}$$
 at N, find the

i. coordinates of N

- ii. perpendicular distance of Q from the line above
- 27. (a) The position vectors of the points P and Q are 4i-3j+5k and i+2j respectively. Find the coordinates of the point R such that PQ: PR = 2:1
 - (b) If the vector $5i \alpha j + k$ is perpendicular to the line r = i 4j + t(2i + 3j 4k). Find the value of α
- 28. (a) Find the vector equation of the line passing through the points A(-2, 2, -4) and B(0, 1, -2), and state,in coordinate form ,its x-intercept.
 - (b) Find the distance of the point P(-2, 5, -7) from the line AB in (a) above.
- 29. Four points have coordinates P(3,4,k), Q(13,9,2), R(1,2,3) and S(10,8,6). The lines PQ and RS intersect at M. Determine the:
 - (a) Vector equation of lines PQ and RS
 - (b) Value of k
 - (c) Coordinates of M

TRIGONOMETRY

- 30. It is given that the angle θ satisfies the equation $\sin(2\theta + \frac{1}{4}\pi) = 3\cos(2\theta + \frac{1}{4}\pi)$.
 - (a) Show that $\tan 2\theta = \frac{1}{2}$.
 - (b) Hence find, in surd form, the exact value of $\tan \theta$, given that θ is an obtuse angle.
- 31. (a) Given that $8 + \cos^2 \theta = 6 \cot \theta$, find the value of $\tan \theta$.
 - (b) Hence find the exact value of $\tan(\theta + 45^{\circ})$
- 32. (a) Express $\cos \theta + \sqrt{3} \sin \theta$ in the form $R \cos(\theta \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$. Give the exact values of R and α
 - (b) Hence prove that $\frac{1}{(\cos\theta+\sqrt{3}\sin\theta)^2} = \frac{1}{4}\sec^2\left(\theta-\frac{\pi}{3}\right)$
- 33. (a) Prove that

$$(\cot \theta + \cos \cot \theta)^2 = \frac{1 + \cos \theta}{1 - \cos \theta}$$

- (b) Hence solve, for $0 < \theta < 2\pi$, $3(\cot \theta + \cos \cot \theta)^2 = 2 \sec \theta$
- 34. (a) Prove the identity

$$\frac{1}{\sin(x+30^0) + \cos(x+60^0)} = \sec x$$

- (b) Hence solve the equation $\frac{2}{\sin(x+30^0)+\cos(x+60^0)} = 7 \tan^2 x$ for $0^0 < x < 360^0$
- 35. (a) Solve $2\sin 2\theta = 3\cos\theta$ for $-180^0 \le \theta \le 180^0$
 - (b) Solve $\sin \theta \sin 4\theta = \sin 2\theta \sin 3\theta$ for $-\pi \le \theta \le \theta$

- 36. (a) Solve the equation $\tan(\theta 60^{\circ}) = 3 \cot \theta$ for $-90^{\circ} < \theta < 90^{\circ}$.
 - (b) Show that

$$\frac{\tan \beta}{\sin \beta} - \frac{\sin \beta}{\tan \beta} \equiv \tan \beta \sin \beta$$

37. (a) Simplify

$$\frac{\sin 105^0 - \sin(-15^0)}{\cos 105^0 + \cos(-15^0)}$$
, giving your answer in the form A $\sqrt{3}$

(b) Given that $x = \tan \theta - \sin \theta$ and $y = \tan \theta + \sin \theta$. Prove that

$$(x^2 - y^2)^2 = 16xy$$

(c) If P,Q and R are angles of a traingle prove that;

$$\frac{1}{p}\cos^2\left(\frac{P}{2}\right) + \frac{1}{q}\cos^2\left(\frac{Q}{2}\right) + \frac{1}{r}\cos^2\left(\frac{R}{2}\right) = \frac{(p+q+r)^2}{4pqr}$$

38. (a) Solve the simultaneous equations:

$$\cos x + 4\sin y = 1$$
$$4\sec x - 3\csc y = 5$$

- (b) Determine the solution of the equation $\tan 2x + 2\sin x = 0$ for $0 \le x \le 90^{\circ}$.
- 39. Prove the following identities
 - (a) $2\csc 2\theta = \csc \theta \sec \theta$
 - (b) $\frac{1+\tan^2\beta}{2-\tan^2\beta} = \sec 2\beta$
- 40. Prove that:

$$\tan 5\theta = \frac{5\tan\theta - \tan^3\theta + \tan^5\theta}{1 - 10\tan^2\theta + \tan^4\theta}$$

41. (a) Prove that

$$\cos(60^0 - x) + \cos(300^0 - x) = \cos x$$

- (b) Hence
 - i. Find the exact value of $\cos 15^{\circ} + \cos 255^{\circ}$
 - ii. Solve the equation

$$\cos(60^{0} - x) + \cos(300^{0} - x) = \frac{1}{4} \csc x$$
 for $0^{0} < x < 180^{0}$

GEOMETRY

42. The figure below shows a sketch of a circle C with centre N(7, 4) The line l with equation $y = \frac{1}{3}x$ is a tangent to C at the point P.

Find

- (a) the equation of line PN in the form y = mx + c, where m and c are constants,
- (b) an equation for C.
- (c) The line with equation $\frac{1}{3}x + k$, where k is a non-zero constant, is also a tangent to C. Find the value of k.
- 43. (a) $P(ap^2, 2ap)$ and $Q(aq^2, 2aq)$ are points on the parabola $y^2 = 4ax$. If the chord passes through the focus ,show that pq = -1. If M is the midpoint of PQ ,deduce that the locus of M is y = 2a(x a)
 - (b) Show that the equation $y^2 = 9(x + y)$ represents a parabola; hence determine its focus and directrix
- 44. (a) A conic section is given by $x = 4\cos\theta$; $y = 3\sin\theta$. Show that the conic section is an ellipse and determine its eccentricity
 - (b) Given that the line y=mx+c is atangent to the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$, show that $c^2=a^2m^2+b^2$. Hence determine the equations of the tangents at the point (-3,3) to the ellipse $\frac{x^2}{16}+\frac{y^2}{9}=1$.
- 45. The parametric coordinate of a curve is $(4\cos\theta, 3\sin\theta)$.
 - (a) Show that the curve represents an ellipse and hence determine its eccentricity.
 - (b) Find the equations of tangents to the ellipse in (a) above which passes through a point (-3,3)
- 46. (a) Find the equation of the tangent to the parabola $y^2 = 4ax$ at the point $P(at^2, 2at)$; and write down the equation of the tangent at the point Q(9a, -6a).
 - (b) Given the ellipse $\frac{x^2}{8} + \frac{y^2}{6} = 1$, find the
 - i. coordinates of the focii
 - ii. length of a latus rectum.

ANALYSIS

47. The figure below shows a solid cuboid ABCDEFGH used as a trough in feeding animals. AB = x cm, BC = 2x cm, AE = h cm The total surface area of the trough is $180cm^2$. The volume of the trough is Vcm^3 .

(a) Show that

$$V = 60x - \frac{4x^3}{3}$$

- (b) Given that x can vary, use calculus to find, to 3 significant figures, the value of x for which V is a maximum. Justify that this value of x gives a maximum value of V.
- (c) Find the maximum value of V, giving your answer to the nearest cm^3 .
- 48. (a) Use the substitution $t = \tan \theta$ to solve

$$\int \frac{1}{4 + 5\cos 2\theta} d\theta$$

(b) Show that;

$$\int_0^1 \tan^{-1} x dx = \frac{1}{4} (\pi - In4)$$

49. (a) Show that

$$\cos 3x = 4\cos^3 x - 3\cos x$$

(b) Hence show that

$$\int_0^{\frac{\pi}{2}} \cos^3 x dx = \frac{2}{3}$$

- 50. (a) Express $8 \sin \theta + 6 \cos \theta$ in the form $R \sin(\theta + \alpha)$, where R > 0 and $0^0 < \alpha < 90^0$, giving the value of α correct to 2 decimal places
 - (b) Hence solve the equation $8\sin\theta + 6\cos\theta = 7$ giving all solutions in the interval $0^0 < \theta < 360^0$.
- 51. The sketch shows the curve C with equation $y = 14 + 5x x^2$ and line L with equation y = x + 2. The line intersects the curve at the points A and B.

- (a) Find the coordinates of A and B.
- (b) Calculate the area enclosed by L and C.
- 52. (a) Given that $y = \cot^{-1} x$, show that $\frac{dy}{dx} = \frac{-1}{x^2+1}$
 - (b) Express $\frac{6x^2-10x-9}{(2x+3)(x^2+1)}$ in terms of partial fracions
 - (c) Hence find $\int \frac{6x^2-10x-9}{(2x+3)(x^2+1)}$
- 53. The parametric equations of a curve are $x = t + 4 \ln t, y = t + \frac{9}{t}$, for t > 0.
 - (a) Show that

$$\frac{dy}{dx} = \frac{t^2 - 9}{t^2 + 4t}$$

- (b) The curve has one stationary point. Find the y coordinate of this point and determine whether it is a maximum or a minimum point.
- 54. (a) Show that $\cos 3x = 4\cos^3 x 3\cos x$
 - (b) Hence show that

$$\int_0^{\frac{1}{6}\pi} (4\cos^3 x + 2\cos x) dx = \frac{17}{6}$$

- 55. (a) Differentiate $\frac{x^3}{\sqrt{(1-2x^2)}}$ with respect to x
 - (b) The period ,T of a swing of a simple pendulum of length ,l is given by the equation $T^2 = \frac{4\pi^2 l}{g}$, where g is the acceleration due to gravity. An error of 2% is made in measuring the length ,l .Determine the resulting percentages error in the period ,T

(c) If
$$y = 3x^2 - x$$
 .
show that $y \frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y + 1 = 6x$

56. A large industrial water tank is such that, when the depth of the water in the tank is x metres, the volume Vm^3 of water in the tank is given by .

$$V = 243 - \frac{1}{3}(9 - x)^3$$

Water is being pumped into the tank at a constant rate of $3.6 m^3$ per hour. Find the rate of increase of the depth of the water when the depth is 4 m, giving your answer in cm per minute.

57. Determine the nature of the turning points of the curve

$$y = \frac{x^2 - 6x + 5}{(2x - 1)}$$

, Sketch the graph of the curve for x=-2 to x=7. State any asymptotes.

- 58. (a) Solve the differential equation $\frac{dy}{dx} + 3y = e^{2x}$ given that when x = 0, y = 1
 - (b) The acceleration of a particle after time t seconds is given by $a = 5 + \cos \frac{1}{2}t$. If initially the particle is moving at $1ms^{-1}$, find its velocity after 20 seconds and the distance it would have covered by then.
- 59. (a) Find

$$\int x^3 e^{x^4} dx$$

(b) Use the substitution $t = \tan x$ to find

$$\int \frac{1}{1+\sin^2 x} dx$$

- 60. (a) Express $f(x) = \frac{x^4 + 2x}{(x-1)(x^2+1)}$ into partial fractions
 - (b) Evaluate $\int_2^4 f(x) dx$
- 61. (a) Given that $y = e^{\tan^{-1} x}$, show that

$$(1+x^2)\frac{d^2y}{dx^2} + (2x-1)\frac{dy}{dx} = 0$$

- (b) Differentiate x^{3x} with respect to x
- 62. (a) Solve the differential equation $(1+x^2)\frac{dy}{dx} = 2+y^2$
 - (b) In a culture of bacteria ,the rate of growth is proportional to the population present at time t. The population doubles every hour. Given that the initial population P_0 is three million, determine after how many hours the population will be 300 million

63. The diagram below shows a sketch of the curve $y = 3x - x^2$. The curve intersects the x-axis at the origin and at the point A. The tangent to the curve at the point B(2,2) intersects the x-axis at the point C.

- (a) Find the equation of the tangent to the curve at B.
- (b) Find the area of the shaded region.
- 64. (a) Differentiate e^{kx} from first principles
 - (b) Use small changes to show that $(16.02)^{\frac{1}{4}} = 2\frac{1}{1600}$
 - (c) Differentiate $\frac{e^{5x}\cos 2x}{\ln(1-x)}$ with respect to x
- 65. (a) Show that

$$\int_0^1 \frac{\ln(x+1)^2}{x+1} dx = (\ln 2)^2$$

(b) Express $5 + 4x - x^2$ in the form $a + b(x - 2)^2$, hence evaluate;

$$\int_2^5 \frac{dx}{\sqrt{5+4x-x^2}}$$

66. (a) Given that $y = e^{\tan^{-1} x}$, show that

$$(1+x^2)\frac{d^2y}{dx^2} + (2x-1)\frac{dy}{dx} = 0$$

- (b) Differentiate $\cos(x^2e^x)$ with respect to x.
- 67. (a) Solve the equations below

i.

$$(1+x^2)\frac{dy}{dx} - y(y+1)x = 0$$
, given that y=1 when x=0

ii.

$$\frac{dy}{dx} - y \tan x - \cos x = 0$$
, given that y=0 at $x = \frac{\pi}{2}$

- (b) The rate at which the temperature of a body falls is proportional to the difference between the temperature of the body and that of its surrounding .Initially the temperature of the body is 80° C .After 10 minutes the temperature of the body is 60° C .The temperature of the surrounding is 15° C
 - i. Form a differential equation for the temperature of the body
 - ii. Determine the time it takes for the temperature of the body to reach 40° C
- 68. Maize dwarf mosaic virus(MDMV) has infected a number of maize plants in Mr Ronalds' garden. The growth in the number of maize plants infected is proportional to the number already infected. Initially 20 maize plants were infected
 - (a) Form a differential equation that models the growth in the number infected
 - (b) Thirty days after the initial number of infections ,60 maize plants were infected .After how many further days does the model predict that 200 maize plants will be infected?

APPLIED MATHEMATICS (P425/2)

MECHANICS

69. The diagram below shows a particle of mass 5 kg on a rough horizontal table, and two light inextensible strings attached to it passing over smooth pulleys fixed at the edges of the table. Particles of masses 4 kg and 6 kg hang freely at the ends of the strings. The particle of mass 6 kg is 0.5 m above the ground. The system is in limiting equilibrium.

- (a) Find the coefficient of friction between the 5 kg particle and the table
- (b) The 6 kg particle is now replaced by a particle of mass 8 kg and the system is released from rest. Find the acceleration of the 4 kg particle and the tensions in the strings.
- 70. A tennis ball is projected with velocity vector (30i 1.4j) ms⁻¹ from a point P which is at a height of 2.4 m vertically above a horizontal tennis court. The ball then passes over a net of height 0.9 m, before hitting the ground after $\frac{4}{7}$ s The origin O lies on the ground directly below the point P. The base of the net is x m from O.

- (a) Find the speed of the ball when it first hits the ground, giving your answer correct to one decimal place.
- (b) After $\frac{2}{5}$ s, the ball is directly above the net.
 - i. Find the position vector of the ball after $\frac{2}{5}$ s
 - ii. Hence determine the value of x and show that the ball clears the net by approximately 16 cm.

- (c) In fact, the ball clears the net by only 4 cm, explain why the observed value is different from the value calculated in (b)(ii).
- 71. One end of a light inextensible string of length 0.75m is attached to a particle A of mass 2.8 kg. The other end of the string is attached to a fixed point O. A is projected horizontally with speed 6 ms⁻¹ from a point 0.75 m vertically above O (see Fig below). When OA makes an angle θ with the upward vertical the speed of A is vms⁻¹.

- (a) Show that $v^2 = 50.7 14.7 \cos \theta$.
- (b) Given that the string breaks when the tension in it reaches 200 N, find the angle that OA turns through between the instant that A is projected and the instant that the string breaks.
- 72. A particle P of mass 0.5 kg moves on a horizontal plane such that its velocity vector v ms⁻¹ at time t seconds is given by

$$v = 12\cos(3t)i - 5\sin(2t)j$$

- (a) Find an expression for the force acting on P at time t s.
- (b) Given that when t = 0, P has position vector (4i + 7j) m relative to the origin O, find an expression for the position vector of P at time t s.
- (c) Hence determine the distance of P from O at time $t = \frac{\pi}{2}$
- 73. The diagram below shows a small block B, of mass 0.2 kg, and a particle P, of mass 0.5 kg, which are attached to the ends of a light inextensible string. The string is taut and passes over a small smooth pulley fixed at the intersection of a horizontal surface and an inclined plane. The block can move on the horizontal surface, which is rough. The particle can move on the inclined plane, which is smooth and which makes an angle of i with the horizontal where $\tan \theta = \frac{3}{4}$. The system is released from rest. In the first 0.4 seconds of the motion P moves 0.3m down the plane and B does not reach the pulley.

- (a) Find the tension in the string during the first 0.4 seconds of the motion.
- (b) Calculate the coefficient of friction between B and the horizontal surface
- 74. An object of mass 4kg is initially at rest at a point whose position vector is (-4i + 2j)m. If its acted upon by a force F = (14i + 21j + 24k)N. Find
 - (i) acceleration of the object
 - (ii) its velocity and speed after 2seconds
 - (iii) its distance from the origin after 4seconds
- 75. A particle is projected from a point on level ground such that its initial velocity is $60ms^{-1}$ at an angle of elevation 30^0 and taking $g = 10ms^{-2}$, find
 - (a) the time taken for the particle to reach its maximum height
 - (b) the maximum height
 - (c) the time of flight
 - (d) the horizontal range of the particle
- 76. Two particles of masses 6kg and 3kg are connected by a light inelastic string passing over a smooth fixed pulley. Find;
 - (a) Acceleration of the particles
 - (b) The tension in the string
 - (c) The force on the pulley
- 77. The figure below shows a system of forces acting on a particle placed at O.Find the magnitude and direction of their resultant.

78. (a) A car of mass 1200kg pulls a trailer of mass 300kg up a slope of 1 in 100 against a constant resistance of 0.2N per kg .If the car moved at a constant speed of $1.5ms^{-1}$ for 5 minutes, calculate the ;

- i. tension in the tow bar
- ii. workdone by the car engine during this time
- (b) A car of mass 800kg moved with a constant acceleration of $0.4ms^{-2}$ along a horizontal straight road against a resistance to motion of 250N. Find the power developed at the instant when the car moved at $10ms^{-1}$
- 79. ABCD is arectangle in which AB=5M,BC=3M.forces of 2N,4N,3N and 11N act along AB,BC,CD and DA respectively,their directions being given by the order of the letters. Taking AB as the x-axis and AD as the y-axis .find the resultant force and the moment about A.
- 80. At time t=0, the position vector \mathbf{r} and velocity \mathbf{v} of two trains A and B are as follows.

Trains	Velocity vector	Position vector
A	$V_A = (-6i + k)ms^{-1}$	$r_A = (i+2j+3k)m$
В	$V_B = (-5i + j + 7k)ms^{-1}$	$r_B = (4i - 14j + k)m$

If the trains maintain these velocities, find the:

- (a) Position of B relative to A at time t
- (b) time that elapses before the trains are closest to each other
- (c) least distance between the trains in the subsequent motion
- 81. (a) An object with position vector 5i-8k moves with a constant speed of $5\sqrt{17}$ ms⁻¹ in the direction 2i-2j+3k. Find its distance from the origin after 2 seconds. [5 Marks]
 - (b) A particle of mass 2kg is acted upon by a force $24t^2i + (36t 6)j 12tk$. Initially the particle is at a point (3, -4, 4) and moving with velocity 16i + 15j 8k. Find the
 - (i) speed of the particle after one second.
 - (ii) distance covered by the particle in the first 2 seconds.
 - (iii) rate of doing work when t=2seconds.

NUMERICAL ANALYSIS

- 82. (a) The numbers a = 26.23, b = 13.18 and c = 5.1 are calculated with percentage errors 4, 3 and 2 respectively. Find the errors in a, b and c hence the limits within which the exact value of the expression $ab \frac{b}{c}$ lies correct to 3 decimal places
 - (b) Hence find the absolute error, relative error and percentage error in the above expression.
- 83. (a) Use the trapezium rule with 7 ordinates to estimate $\int_0^6 x e^{-x} dx$ correct to 3 significant figures
 - (b) Find the percentage error made in your estimation ,giving your answer to 2 deciml places .Suggest how this error may be reduced.

- 84. Jinja and Mukono are 66km apart. At 8:00am , Gad starts cycling towards Mukono from Mbikko town which is between Jinja and Kampala 2km away from jinja. If at 8:00pm, he has only covered 36km, estimate,
 - (a) His distance from mukono at 10:00pm
 - (b) When he reaches mukono.
- 85. The distance between Buikwe and Lugazi town is 20 km. Tenga, kibubu and makonge are 8 km, 12 km and 16 km respectively from lugazi and the taxi charges are also respectively 500/=, 800/=, 1000/= and 1500/=. Namboowa is going to Visit her brother Kamyuka living 11 km from lugazi
 - (i) Find how much she will be charged in this taxi
 - (ii) Suppose she had only 850/= and the taxi left her at a distance worth the money, find how far from Buikwe town the taxi leaves her
- 86. Given below are parts of a flow chart not arranged in order

- (a) Re arrange them and draw a complete logical flow chart
- (b) Using N=44 and $x_0 = 2$ Perform a dry run of your arranged flow chart
- (c) State the purpose of the flow chart

87. (a) Derive the simplest iterative formulae based on Newton Raphson method for the equation $(x-2) \ln x = x-1$ and show that it is given by:

$$x_{n+1} = \frac{x_n(2\ln x_n + x_n - 3)}{x_n \ln x_n - 2}; n = 0, 1, 2, 3 \cdots$$

- (b) Construct a flow chart that;
 - i. Reads initial approximations (x_0)
 - ii. Computes and limits the error to a root corrected to 3 decimal places.
 - iii. Prints the root
- (c) Using $x_0 = 4$ as the first approximation perform a dry run for the flow chart above.
- 88. The table values of $\tan \Theta$ have been extracted from four figure tables

Θ	75	76	77	78	79
$\tan \Theta$	3.7321	4.0108	4.3315	4.7046	5.1446

Estimate

- (i) $\tan^{-1}(4.6500)$
- (ii) $\tan 79^{0}36'$
- 89. The charges of sending parcels by JEFF distributing company depends on the weights of the parcels. For the parcels of weight 500g, 1kg, 1.5kg, and 2kg the charges are 1000/=, 2000/=, 3500/=, 4000/= respectively. Estimate
 - (i) What the distributor would charge for a parcel of weight 450g
 - (ii) What the distributor would charge for a parcel of weight 1.8kg
 - (ii) If the sender pays 6200/= what is the weight of his parcel

- 90. Given the numbers x=4,y=6 and z=8 all measured to their nearest integers, find the minimum and maximum values
 - (a) $\frac{z-x}{y}$
 - (b) $\frac{x(y-z)}{z}$
- 91. The numbers x = 4.6, y = 13.8 and z = 80.0 are calculated with percentage errors of 0.5, 0.5 and 0.05 respectively. Calculate the relative error in the expression $\frac{xy}{z}$
- 92. Given the numbers x = 30.75 and y = 4.125 all measured to their nearest number of decimal places indicated.
 - (a) state the maximum possible errors in x and y
 - (b) find the absolute error in the quotient $\frac{x}{y}$
 - (c) find the limits within which the exact value of the quotient $\frac{x}{y}$ lies
- 93. (a) Show graphically that the equation $e^{2x} + 4x = 5$ has one real root between 0 and 1
 - (b) Use the Newton-Raphson iterative method to find the root of the equation in (a) above giving your answer correct to 2 decimal places
- 94. (a) Show that the iterative formula based on Newton Raphson's formula for finding the root of the equation $X = \sqrt[6]{N}$ is given by

$$x_{n+1} = \frac{5}{6} \left[x_n + \frac{N}{5x_n^5} \right]$$

- (b) Draw a flow chart that:
 - (i) Reads N and the initial approximation x_0
 - (ii) Computes and prints the roots to 3 d.p
 - (iii) Print N and the root
- (c) Taking N=26 and $x_0 = 1.5$ perform a dry run for the flow chart.
- 95. (a) Use the trapezium rule with 6 ordinates to estimate the area enclosed by the curve $y = xe^{-x^2}$, the x-axis and the lines x = 1 and x = 3. Give your answer to 4 d.p.
 - (b) Find the exact value of $\int_1^3 x e^{-x^2} dx$
 - (c) Find the percentage error in the estimation
- 96. Use the trapezium rule with 5 strips to estimate $\int_1^5 \frac{1}{3+x^2} dx$ to 3 d.p and find the percentage error made in the estimation. Hence, state ways of reducing such error
- 97. By drawing graphs of $y = e^{2x}$ and y = 5x + 1 on the same axes ,show that the equation $e^{2x} 5x 1 = 0$ has a root between 0 and 1.0 ,correct the root x_0 to 1 decimal place .Hence using x_0 , the initial approximation and the newton Raphson method ,find the root correct it to 3 decimal places.

- 98. (a) Given that X = 4.52 and Y = 2.5 are rounded off to the given number of decimal places, Compute the minimum and maximum values of $\frac{X}{Y}$
 - (b) The floor of a room, $4.4m \times 6.5m$, is to be covered by tiles, $0.5m \times 0.45m$, assuming that the lengths given are rounded off to the given number of decimal points. Find the;
 - i. Minimum and maximum number of tiles required.
 - ii. Range of the total cost of laying the room with tiles if the cost of a tile is fixed at Ugx 4,000.

STATISTICS AND PROBABILITY

99. In a game, a player can score 0, 1, 2, 3 or 4 points each time the game is played. The random variable S, representing the player's score, has the following probability distribution where a, b and c are constants. The probability of scoring less than 2 points is twice the

S	0	1	2	3	4
P(S=s)	a	b	c	0.1	0.15

probability of scoring at least 2 points. Each game played is independent of previous games played. John plays the game twice and adds the two scores together to get a total. Calculate the probability that the total is 6 points.

100. For a set of ten data items

$$\sum (x - 20) = -140 \qquad \qquad \sum (x - 20)^2 = 2050$$

Find their mean and standard deviation

101. In an agricultural experiment ,320 plants were grown on a plot. The lengths of the stems were measured ,to the nearest centimetre, 10 weeks after planting. The lengths were found to be distributed as in the following table.

Length,x(cm)	Number of plants.
$20.5 \le x < 32.5$	30
$32.5 \le x < 38.5$	80
$38.5 \le x < 44.5$	90
$44.5 \le x < 50.5$	60
$50.5 \le x < 68.5$	60

- (a) Calculate an estimate of the:
 - i. Mean of the stem lengths.
 - ii. Median of the stem lengths.
- (b) Display the data on a histogram and use it to estimate the mode

- 102. Lyn buys electrical components from one of 3 suppliers A, B, C, in the ratio 2:1:7. The probability that the component is faulty is 0.33 for A, 0.45 for B and 0.05 for C. Lyn selects a component at random.
 - (a) Find the probability that the component works.
 - (b) Given that the component works, find the probability that Lyn bought the component from supplier B.
- 103. The cost of making a well formulated feed for the layer birds on Mr Ronald's Poultry farm is calculated from the cost of Maize bran, Broken maize , lime and concentrate . The table below gives the cost of these items in 2023 and 2024.

ITEMS	Price(UGX) in 2023	Price (UGX) in 2024	Weight
Maize bran/kg	500	735	12
Lime/kg	500	600	2
Broken maize/kg	800	1400	5
Concentrate/kg	196000	215600	1

Using 2023 as the base year

- (a) Calculate the price relative for each item hence find the simple price index for the cost of making a complete feed
- (b) Find the weighted aggregate price index for the cost of the feed
- 104. Three events A,B and C are such that A and B are independent ,A and C are mutually exclusive. Given that P(A) = 0.4, P(B) = 0.2, P(C) = 0.3 and P(CnB) = 0.1. find P(A/AUC)
- 105. Events M and N are such that $3P(M \cap N) = 2P(\overline{M} \cap N) = P(\overline{M} \cap \overline{N}), P(M) = 0.6$. Find the probability that:
 - (a) Neither events occur
 - (b) Only one event occurs
- 106. The table below shows height in centimetres of 25 students in a certain school.

Height	< 10	< 20	< 25	< 30	< 40	< 55	< 60
Frequency	0	3	4	8	2	6	2

- (a) Find the:
 - (i) Mean height

(iii) Middle 70% of the height.

- (ii) Variance
- (b) Represent the above information on a histogram and use it to estimate the modal height.

107. (a) The information below shows the grades scored by a group of students in biology and mathematics examinations

Student	1	2	3	4	5	6	7	8	9
Math	A	Е	F	A	В	В	С	D	В
Biology	С	0	Е	С	С	В	A	F	D

Compute the rank correlation coefficient for the perfomance between the two subjects . Comment on your result at 1% level of significance

(b) The table below shows the distribution of heights of 134 students in a Maths Class.

Heights	20 - < 30	30 - < 35	35 - < 40	40 - < 55	55 - < 65	65 - < 80	80-< 90
No of students	9	12	27	13	25	18	30

- (a) Calculate the mean mark
- (b) Construct a cumulative frequency curve(ogive) and use it to find
 - (i) Median mark
 - (ii) Range between the 20^{th} and 60^{th} percentile
 - (iii) Range of the middle 40% of the mark
 - (iv) Probability that student selected at random scored below 60 marks.
- 108. A and B are events such that $P(A) = \frac{8}{15}$, $P(B) = \frac{1}{3}$ and $P(A/B) = \frac{1}{5}$. Find the probability that:
 - (i) neither A nor B occurs
 - (ii) Event B does not happen if event A has occurred
 - (iii) Both events occur.
 - (iv) Only one of the two events occurs.
- 109. A school bus can arrive early,on time or late. The probability that it is late is 0.25. The probability that it is on time or late is $\frac{2}{3}$. Find the probability that the school bus is
 - (i) On time
 - (ii) early or on time
- 110. A bag contains 5 red balls and 3 blue balls .Three balls are selected in succession at random from it with replacement.Find the chance that
 - (a) they are of the same colour
 - (b) the first and last are of the same color
 - (c) At most one blue ball is drawn

111. A discrete r.v X has the following p.d.f

$$P(X = x) = \begin{cases} px & ; x = 1, 2, \dots n \\ 0 & ; \text{otherwise} \end{cases}$$

Find

- (i) values of p and n for which E(X)=7
- (ii) $P(2 < X < 7/x \ge 4)$
- 112. A continuous r.v X has the following p.d.f.

$$f(x) = \begin{cases} \beta(3-x) & ; 1 \le x \le 2\\ \beta & ; 2 \le x \le 3\\ \beta(x-2) & ; 3 \le x \le 4\\ 0 & ; \text{otherwise} \end{cases}$$

- (a) Sketch f(x) hence deduce the mean and median of X
- (b) Find
 - (i) the value of β
 - (ii) P(|X-2| < 0.5)
- 113. The distribution function of a continuous r.v X is as follows

$$F(x) = \begin{cases} 0 & ; x \le 0 \\ \frac{1}{2}x^2 & ; 0 \le x \le 1 \\ m + nx^3 & ; 1 \le x \le 2 \\ 1 & ; x \ge 2 \end{cases}$$

Find

- (a) the value of m and n
- (b) f(x)
- (c) Sketch the graph of f.Find
 - i. the mode
 - ii. the median
 - iii. the mean of X
- 114. It is given that

$$f(x) = \begin{cases} \beta(x+2) & ; -2 < x < 0 \\ \frac{1}{2}\beta(3-x) & ; 0 < x < 2 \\ 0 & ; \text{otherwise} \end{cases}$$

Find

(a) the value of β

- (b) F(x)
- (c) P(-1 < X < 1)
- (d) P(1 < X < 3)
- 115. The marks scored in an exam are normally distributed with mean 56 and standard deviation 14.2 .Find the probability that a candidate picked at random scored
 - (a) between 62 and 72 marks
 - (b) atleast 40 marks
- 116. Patience has four coins. One of these coins is biased so that the probability of obtaining a head is 0.6. The other three coins are fair. Patience throws the four coins at the same time. The random variable X denotes the number of heads obtained.
 - (a) Show that the probability of obtaining exactly one head is 0.225.
 - (b) Complete the following probability distribution table for X .

x	0	1	2	3	4
P(X = x)	0.05	0.225			0.075

- (c) Given that E(X) = 2.1, find the value of Var(X).
- 117. On a farm ,35% of the cows are infected by a tick disease. If a random sample of 400 cows is selected from the farm ,find the probability that:
 - (a) less than 30% of the cows are infected
 - (b) more than 155 cows are infected
 - (c) between 120 and 150 inclusive cows are infected
- 118. The diagram below shows the graph of the probability density function, f, of a random variable X that takes values between x = 0 and x = 3 only. The graph is symmetrical about the line x = 1.5.

(a) It is given that P(X < 0.6) = a and P(0.6 < X < 1.2) = b. Find P(0.6 < X < 1.8) in terms of a and b.

(b) It is now given that the equation of the probability density function of X is

$$f(x) = \begin{cases} kx^2(3-x)^2 & ; 0 \le x \le 3\\ 0 & ; \text{otherwise} \end{cases}$$

- i. Show that $k = \frac{10}{81}$
- ii. Find Var (X.)
- 119. Three events A,B and C are such that A and B are independent ,A and C are mutually exclusive. Given that P(A) = 0.4, P(B) = 0.2, P(C) = 0.3 and $P(C \cap B) = 0.1$, find
 - (a) $P(A \cup B^1)$
 - (b) $(A/A \cup C)$
- 120. The marks of 12 students in aptitude and stastics test were as follows

Aptitude	58	52	48	30	48	20	32	50	38	12	36	12
Stastics	90	72	60	38	70	35	33	64	48	24	50	18

- (a) Plot a scatter diagram for the data.comment on the relationship between the two tests
- (b) Draw a line of best fit for the scatter diagram, hence find x when y=68
- (c) Calculate the rank correlation coefficient for the scores in the two tests .comment on your results at 1% level of significance
- 121. (a) A thrown biased dice is such that an even number is twice as likely to show up as an odd number. Find the probability of obtaining
 - i. A number less than 4
 - ii. An odd or prime number
 - (b) A box contains 3 yellow ballot papers, 4 red ballot papers, and 1 green ballot paper. Two ballot papers are picked in succession at random without replacement . Find the probability that
 - i. there is no yellow ballot paper.
 - ii. Atleast one red ballot paper is picked.
- 122. The marks obtained in the UNEB Mathematics paper 2 by candidates of last year were normally distributed with a mean of 64 with a variance of 64.
 - (a) If the pass mark was 50, calculate the percentage of candidates that passed.
 - (b) Calculate the lowest mark for a distinction if 5% of the candidates scored distinctions.
 - (c) Given that a student obtained a distinction, calculate the probability that the student scored above 70.

END

PURE MATHEMATICS P425/1

- 1. Algebra
 - (a) For the quadratic equation $ax^2 + bx + c = 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

(b) For an arithmetic series (A.P)

$$u_n = a + (n-1)d$$

 $S_n = \frac{1}{2}n\{2a + (n-1)d\}$

(c) For a geometric series (G.P)

$$u_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_{\infty} = \frac{a}{1-r}$$

$$r \neq 1$$

$$|r| < 1$$

(d) Binomial expansion

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \binom{n}{3}a^{n-3}b^3 + \dots + b^n$$

where n is a positive integer

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

$${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{2!}x^{2} + \frac{n(n-1(n-2))}{3!}x^{3} \cdots$$

Where n is rational and |x| < 1

$${}^{n}P_{r} = \frac{n!}{(n-r)!}$$

Where $r \leq n$

(e) Summations

$$\sum_{r=1}^{n} r = \frac{1}{2}n(n+1)$$

$$\sum_{r=1}^{n} r^2 = \frac{1}{6}n(n+1)(2n+1)$$

$$\sum_{r=1}^{n} r^3 = \frac{1}{4}n^2(n+1)^2$$

2. Trigonometry

No	Identity
1	$\tan \theta = \frac{\sin \theta}{\cos \theta}, \sec \theta = \frac{1}{\cos \theta}, \cos \theta = \frac{1}{\sin \theta}$
2	$\cos^2\theta + \sin^2\theta = 1$
3	$1 + \tan^2 \theta = \sec^2 \theta$
4	$\cot^2\theta + 1 = \cos^2\theta$
5	$\sin(A+B) = \sin A \cos B + \cos A \sin B$
6	$\sin(A - B) = \sin A \cos B - \cos A \sin B$
7	$\cos(A+B) = \cos A \cos B - \sin A \sin B$
8	$\cos(A - B) = \cos A \cos B + \sin A \sin B$
9	$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$
10	$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$
11	$\sin 2A = 2\sin A\cos A$
12	$\cos 2A = \cos^2 A - \sin^2 A$
13	$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$

(a) For the t-formula

$$t = \tan \frac{1}{2}\theta$$
$$\sin \theta = \frac{2t}{1+t^2}$$
$$\cos \theta = \frac{1-t^2}{1+t^2}$$

(b) For any triangle with angles , A,B and C and with sides a,b, and c $\,$

$$a^2 = b^2 + c^2 - 2bc \cos A$$
 Cosine rule
$$s = \frac{a+b+c}{2}$$

3. Differentiation

No	y	$\frac{\frac{dy}{dx}}{nx^{n-1}}$
1	x^n	
2	$\ln x$	$\frac{1}{x} \text{ for } x \neq 0$ e^x
3	e^x	e^x
4	$\sin x$	$\cos x$
5	$\cos x$	$-\sin x$
6	$\tan x$	$\sec^2 x$
7	uv	$u\frac{dv}{dx} + v\frac{du}{dx}$
8	$\frac{u}{v}$	$\frac{u\frac{dv}{dx} + v\frac{du}{dx}}{v^2}$ $\frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$
9	f(x)	$\frac{f(x+\delta x)-f(x)}{\delta x}$
10	$\sec x$	$\sec x \tan x$
11	$y=u,u=x$ $e^{f(x)}$	$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$ $f^{1}(x)e^{f(x)}$
12	$e^{f(x)}$	$\int f^1(x)e^{f(x)}$

4. Integration

No	f(x)	$\int f(x)dx$
1	x^n	$\frac{\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{n+1} + c \text{ for } n \neq -1$
2	$\frac{1}{x}$	$\ln x + c$ n
3	e^x	$e^x + c$
4	$\sin x$	$-\cos x + c$
5	$\cos x$	$\sin x + c$
6	$\sec^2 x$	$\tan x + c$
7	$\int u \frac{dv}{dx} dx$	$uv - \int v \frac{du}{dx} dx$
8	$\int \frac{f^{1}(x)}{f(x)} dx$	$\ln f(x) + c$
9	$co\sec x\cot x$	$-co\sec x + c$
10	$\sec x \tan x$	$\sec x + c$
11	$co\sec^2 x$	$-\cot x + c$
12	$\tan x$	$\ln \sec x + c$
13	$co\sec x$	$-\ln co\sec x + \cot x + c$
14	$\cot x$	$\ln \sin x + c$

$$\int \frac{1}{a^2 - b^2 x^2} dx = \frac{1}{b} \sin^{-1} \left(\frac{bx}{a} \right) + c$$

$$\int \frac{1}{a^2 + b^2 x^2} dx = \frac{1}{ab} \tan^{-1} \left(\frac{bx}{a} \right) + c$$

$$\int \frac{a}{p+qx} dx = \frac{a}{q} \ln|p+qx| + c$$

5. Vectors

(a) If
$$a = a_1i + a_2j + a_3k$$
 and $b = b_1i + b_2j + b_3k$ then

$$a.b = a_1b_1 + a_2b_2 + a_3b_3$$
$$= |a||b|\cos\theta$$

(b)
$$i.i = j.j = k.k = 1$$
 and $i.j = i.k = j.k = 0$

(c)
$$|a.a| = |a|^2$$

(d)
$$a.(b+c) = a.b + a.c$$

(e)
$$a.(kb) = (ka).b = k(a.b)$$
 where k is a constant

(f)
$$a.b = |a||b|\cos\theta$$

(g) The cartesian equation of the line

$$\frac{x-a}{x_1} = \frac{y-b}{y_1} = \frac{z-c}{z_1}$$

APPLIED MATHEMATICS P425/2

- 1. Numerical Methods
 - (a) Trapezium rule

$$\int_{a}^{b} f(x)dx \approx \frac{1}{2}h\{y_{o} + 2(y_{1} + y_{2} + \dots + y_{n-1}) + y_{n}\}$$
Where $h = \frac{b-a}{n}$

(b) Newton Raphson Method

$$x_{n+1} = x_n - \frac{f(x_n)}{f^1(x_n)}$$
 Where $x = 0, 1, 2, \cdots$

(c) Ordinates and sub intervals

The number of sub intervals = Number of ordinates -1

(d) The maximum possible error made due to rounding off is given by

$$Error = 0.5 \times 10^{-n}$$

Where \mathbf{n} is the number of decimal places rounded off to

(e) Error

$$Error = Exact \ value - Approximate \ value.$$

(f) Absolute error This is the actual size of the error and is always positive .It is the magnitude of the error

$$Error = |Exact \ value - Approximate \ value|.$$

(g) Relative error

Relative Error
$$=\frac{\text{Absolute error}}{\text{Exact value}}$$

The relative error must always be positive

Relative Error
$$=\frac{|\text{Error}|}{\text{Exact value}}$$

(h) Percentage error

Percentage Error
$$=\frac{|\text{Error}|}{\text{Exact value}} \times 100$$

(i) The interval or range with in which the exact value lies is given by Min value ≤ Exact value ≤ Max value or [Min,Max]

- (j) Absolute error $=\frac{\text{Maximum value}-\text{Minimum value}}{2}$
- 2. Probability and Statistics
 - (a) The mean for ungrouped data is calculated using the formula

Mean =
$$\frac{\text{sum of data values}}{\text{number of values in the data}}$$
$$\overline{X} = \frac{\sum x}{n}$$

(b) The mean for grouped data is calculated using the formula

$$Mean = \frac{\sum fx}{\sum f}$$

Where \mathbf{x} is the class mark and \mathbf{f} is the frequency

(c) The mean for grouped data when given an assumed means is calculated using the formula

$$Mean = A + \frac{\sum fd}{\sum f}$$

Where A is the assumed mean or working mean

d is the deviation given as d = x - A

(d) For grouped data ,the median is calculated using

Median
$$= L_1 + \left(\frac{\sum f}{2} - CF_b\right) \times C$$

Where

 $L_1 = \text{Lower class boundary of the median class}$

 $CF_b = \text{Cummulative frequency before the median class}$

 $f_m = \text{frequency within the median class}$

C = Class width

$$\sum f = \text{Total frequency}$$

(e) For grouped data with equal class width the mode is calculated using

$$Mode = L_1 + \left(\frac{d_1}{d_1 + d_2}\right) \times C$$

Where

 $L_1 = \text{Lower class boundary of the modal class}$

 $d_1 = \text{Modal frequency } -\text{Pre modal frequency}$

 $d_2 = \text{Modal frequency } -\text{Post modal frequency}$

C = Class width

(f) For grouped data ,the lower quartile is calculated using

$$q_1 = L_1 + \left(\frac{\frac{\sum f}{4} - CF_b}{f_m}\right) \times C$$

Where

 $L_1 = \text{Lower class boundary of the } q_1 \text{ class}$

 $CF_b = \text{Cummulative frequency before the } q_1 \text{ class}$

 $f_m = \text{frequency within the } q_1 \text{ class}$

C = Class width

 $\sum f = \text{Total frequency}$

(g) For grouped data ,the upper quartile is calculated using

$$q_3 = L_1 + \left(\frac{\frac{3\sum f}{4} - CF_b}{f_m}\right) \times C$$

Where

 $L_1 = \text{Lower class boundary of the } q_3 \text{ class}$

 $CF_b = \text{Cummulative frequency before the } q_3 \text{ class}$

 $f_m =$ frequency within the q_3 class

C = Class width

 $\sum f = \text{Total frequency}$

- (h) Inter quartile range $=q_3-q_1$
- (i) For grouped data ,the variance is calculated using

$$Var(x) = \frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2$$

- (j) Standard deviation = $\sqrt{Var(x)}$
- 3. Index numbers

Price relative
$$=\frac{p_n}{p_0} \times 100$$

Where

 $p_n = \text{Price of the commodity in the given year(new year)}$

 $p_0 = \text{Price of the commodity in the base year(old year)}$

(b)

Simple price index =
$$\frac{\text{Sum of the price relatives}}{\text{Number of items (N)}} \times 100$$

= $\frac{\sum \left(\frac{p_n}{p_0}\right) \times 100}{N}$

(c)

Simple aggregate price index =
$$\frac{\text{Current year price total}}{\text{Base price total}} \times 100$$

= $\frac{\sum p_n}{\sum p_0} \times 100$

(d)

Weighted price index = Price relatives × weights
$$= \frac{p_n}{p_o} \times w \times 100$$

(e)

Weighted aggregate price index =
$$\frac{\sum p_n w}{\sum p_0 w} \times 100$$

(f)

Weighted average price index =
$$\frac{\sum \frac{p_n}{p_0} \times 100 \times w}{\sum w}$$

(g)

Value index =
$$\frac{\sum p_n q_n}{\sum p_o q_o} \times 100$$

4. Spearman's rank correlation coefficient

$$\rho = 1 - \frac{6\sum d^2}{n(n^2 - 1)}$$

Where n is the difference between the rankings of a given scores and n is the number of pairs

- 5. Probability theory
 - (a) For any events A and B

$$P(A) = P(A \cap \overline{B}) + P(A \cap B)$$

$$P(\overline{A}) = P(\overline{A} \cap B) + P(A \cup B)^{1}$$

$$P(B) = P(\overline{A} \cap B) + P(A \cap B)$$

$$P(\overline{B}) = P(A \cap \overline{B}) + P(A \cup B)^{1}$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

(b)
$$P(A) + P(\overline{A}) = 1$$

(c)
$$P(A \cup B)^1 = P(\overline{A} \cap \overline{B})$$

(d)
$$P(\overline{A} \cup \overline{B}) = P(A \cap B)^1$$

(e)
$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$
 for $P(B) \neq 0$

- 6. Mechanics
 - (a) For projectile motion

$$y = x \tan \theta - \frac{gx^2}{2u^2} sec^2 \theta$$

(b) For calculus

Physical quantity	Formula	units	Formula	units	Formula
Force	F=ma	N	$a = \frac{dv}{dt}$	ms^{-2}	$k.e = \frac{1}{2}mv^2$
Power	P=F.v	W	$v = \frac{dr}{dt} or \frac{ds}{dt}$	ms^{-1}	Avg accel= $\frac{v(t_2)-v(t_1)}{t_2-t_1}$
Work done	W=F.s or F.r	j	$W = \int_{t_1}^{t_2} f.vdt$	j	speed = v
Impulse	I=F.t	Ns	$v = \int a dt$	ms^{-1}	Avg vel= $\frac{r(t_2)-r(t_1)}{t_2-t_1}$
Momentum	momentum =m.v	${\rm Kgms^{-1}}$	$r = \int v dt$	m	distance = r or s

STATISTICAL TABLES

Significance if at 5%	r _{xy} exceeds at 1% 1.00 0.99	Significance if at 5%	P exceeds at 1%	Significance if	τ exceeds
at 5% 1.00 0.95 0.88 0.81	at 1% 1.00	at 5%			The Charles
0.95 0.88 0.81				at 5%	at 1%
0.88 0.81	0.99			4075	44.170
0.81				THE PROPERTY.	
	0.96	1.00			
0.70	0.92	0.89	1.00	0.87	1.00
0.75	0.88	0.75	0.89	0.71	0.81
0.71	0.83	0.71	0.86	0.64	0.79
0.67	0.80	0.68	0.83		0.72
0.63	0.77	0.65 -	0.79	0.51	0.64
0.60	0.74	0.60	0.74	0.49	0.60
0.58	0.71	0.58	0.71	0.45	0.58
0.55	0.68	0.55	0.68		
0.53	0.66	0.53	0.66		
0.51	0.64	0.51	0.64		
0.50	0.62	0.50	0.62		
0.48	0.61	0.48	0.61		
0.47	0.59	0.47	0.59		
0.46	0,58	0.46	0.58		
0.44	0.56	0.44	0.56	0.33	of war
0.35	0.45	0.35	0.45		
0.31	0.39	0.31	0.39	A STATE OF THE PARTY OF	
0.27		0.27			
0.25	0.33	0.25		THE PARTY OF	
0.23	0.31	0.23			
0.22		0.22		The state of	
0.21	0.27	0.21			
0.20	0.25	0.20	0.25		
	0.63 0.60 0.58 0.55 0.53 0.51 0.50 0.48 0.47 0.46 0.44 0.35 0.31 0.27 0.25 0.23 0.22 0.21	0.63 0.77 0.60 0.74 0.58 0.71 0.55 0.68 0.53 0.66 0.51 0.64 0.50 0.62 0.48 0.61 0.47 0.59 0.46 0.58 0.44 0.56 0.35 0.45 0.31 0.39 0.27 0.35 0.25 0.33 0.23 0.31 0.22 0.29 0.21 0.27	0.63 0.77 0.65 0.60 0.74 0.60 0.58 0.71 0.58 0.55 0.68 0.55 0.53 0.66 0.53 0.51 0.64 0.51 0.50 0.62 0.50 0.48 0.61 0.48 0.47 0.59 0.47 0.46 0.58 0.46 0.44 0.56 0.44 0.35 0.45 0.35 0.31 0.39 0.31 0.27 0.35 0.27 0.25 0.33 0.25 0.23 0.31 0.23 0.22 0.29 0.22 0.21 0.27 0.21	0.63 0.77 0.65 / 0.79 0.60 0.74 0.60 0.74 0.58 0.71 0.58 0.71 0.55 0.68 0.55 0.68 0.53 0.66 0.53 0.66 0.51 0.64 0.51 0.64 0.50 0.62 0.50 0.62 0.48 0.61 0.48 0.61 0.47 0.59 0.47 0.59 0.46 0.58 0.46 0.58 0.44 0.56 0.44 0.56 0.35 0.45 0.35 0.45 0.31 0.39 0.31 0.39 0.27 0.35 0.27 0.35 0.25 0.33 0.25 0.33 0.23 0.31 0.23 0.31 0.22 0.29 0.22 0.29 0.21 0.27 0.27	0.63 0.77 0.65 0.79 0.51 0.60 0.74 0.60 0.74 0.49 0.58 0.71 0.58 0.71 0.45 0.55 0.68 0.55 0.68 0.53 0.66 0.53 0.66 0.53 0.66 0.53 0.66 0.51 0.64 0.61 0.64 0.61 0.64 0.61 0.64 0.61 0.62 0.62 0.62 0.62 0.62 0.62 0.64 0.61 0.64 0.61 0.48 0.61 0.64 0.59 0.47 0.59 0.46 0.58 0.46 0.58 0.44 0.56 0.33 0.33 0.35 0.45 0.33 0.33 0.31 0.39 0.31 0.39 0.31 0.39 0.31 0.39 0.31 0.27 0.35 0.25 0.33 0.25 0.33 0.25 0.33 0.21 0.27 0.29 0.22 0.29 0.29 0.27 0.29

	MULATI				KIBUI	ION	P(z)								ADI)					
Z	0	0040	2 0000	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	- 5		
0.0	0.0000	0438	0080	0120	0160	0199	0239	0279	0319	0359	4	8	12	16	20	24	28	32	3		
0.1	0.0398	0832		0517	0557	0596	0636	0675	0714	0753	4	8	12	16	20	24	28	32	3		
0.2	0.0793		0871	0910	0948	0987	1026	1064	1103	1141	4	8	12	15	19	22	27	31	3		
0.3	0.1179	1217	1255	1293	1331	1368	1406	1443	1480	1517	4	8	11	15	19	22	26	30	-3		
0.4	0.1554	1591	1628	1664	1700	1736	1772	1808	1844	1879	4	7	11	14	18	22	25	29	3		
0.5	0.1915	1950	1985	2019	2054	2088	2123	2157	2190	2224	1	-			112			-			
0.6	0.2257	2291	2324	2357	2389	2422	2454	2486	2517		3	7	10	14	17	21	24	27	3		
0.7	0.2580	2611	2642	2673		10,00	4333	2400	2317	2549	3	6	10	13	16	19	23	26	2		
				1000000	2704	2734	2764	2794	2022	nara	3	6	9	12	15	19	22	25	2		
8.0	0.2881	2910	2939	2967	2995	3023	2704	2794	2823	2852	3	6	9	12	15	18	21	24	2		
					2333	3023	2004	2020		-	3	6	8	11	14	17	20	22	2.		
0.9	0.3159	3186	3212	3238	3264	2200	3051	3078	3106	3133	3	5	8	11	13	16	19	22	2		
		2,000	J.L.L.	2520	3204	3289		Talling	122222		3	5	8	10	13	16	18	21	2		
							3315	3340	3365	3389	2	5	7	10	12	15	17	20	2.		
1.0	0.3413	3438	3461	3485	3508						2	5	7	10	12	14	17	19	23		
					1	3531	3554	3577	3599	3621	2	4	7	9	11	13	15	18	20		
1.1	0.3643	3665	3686	3708				0.000		2017	2	4	6	8	11	13	15	17	1		
2 (10.00)	00000000				3729	3749	3770	3790	3810	3830	2	4	6	8	10	12	14	16	1		
1.2	0.3849	3869	3888	3907	3925						2	4	6	8	10	11	13	15	1		
					-	3944	3962	3980	3997	4015	2	4	5	7	9	11	13	14	1		
1.3	0.4032	4049	4066	4082	4099	4115	4131	4147	4162	4177	2	3	5	6	8	10	11	13	1		
1.4	0.4192	4207	4222	4236	4251	4265	4279	4292	4306	4319	1	3	4	6	7	8	10	11	1		
1.5	0.4332	4345	4357	4370	4382	4204	CAADE	****	20.00									1721611			
1.6	0:4452	4463	4474	4484		4394	4406	4418	4429	4441	1	2	4	5	6	7	8	10	1		
1.7	0.4554	4564			4495	4505	4515	4525	4535	4545	1	2	3	4	5	6	7	8	9		
1.8	0.4554		4573	4582	4591	4599	4608	4616	4625	4633	1	2	3	3	4	5	6	7 .	8		
2009		4649	4656	4664	4671	4678	4686	4693	4699	4706	1	1	2	3	4	4	5	6	6		
1.9	0.4713	4719	4726	4732	4738	4744	4750	4756	4761	4767	1	1	2	2	3	4	4	5	5		
2.0	0.4772	4778	4783	4788	4793	4798	4803	4808	4812	4817	0	1	1	2	2	3	3	4	4		
2.1	0.4821	4826	4830	4834	4838	4842	4846	4850	4854	4957	0	1	1	2	2	2	3	3	4		
2.2	0.4861	4864	4868	4871	4875	4878	4881	4884	4887	4890	0	1	1	1	2	2	2	3	3		
2.3	0.4893	4896	4898	4901	4904	4906	4909	4911 .	4913	4916	0	0	-1	1	1	2	2	2	2		
2.4	0.4918	4920	4922	4925	4927	4929	4931	4932	4934	4936	0	0	1	1	î	1	1	2	2		
2.5	0.4938	4940	4941	4943	4945	4946	40.40	4040	4054	4050											
2.6	0.4953	4955	4956	4957	4959		4948	4949	4951	4952									1		
2.7	0.4965	4966	4967		3,115,345,656,650	4960	4961	4962	4963	4964											
2.8	0.4974	4975		4968	4969	4970	4971	4972	4973	4974							4				
2.9	0.4981	4982	4976	4977	4977	4978	4979	4979	4980	4981											
2.3	0.4901	4302	4982	4983	4984	4984	4985	4985	4986	4986											
3.0	0.4987	4990	4993	4995	4997	4998	4998	4999	4999	5000											

The table gives $P(z) = \int_0^z \phi(z)dz$

If the random variable Z is distributed as the standard normal distribution N(0,1) then:

- 1. $P(o \le Z \le z_p) = P(Shaded Area)$
- 2. $P(Z > Z_p) = Q = \frac{1}{2} P$
- 3. $P(Z > |Z_p|) = 1 2P = 2Q$

UN	MULA	TIVE BING	MIAL PI	ROBABII	LITY (D)	STRIBU	TION	_	ni			
								\[\sum_{1\ge 1} \]	,,,,			
		0.01	0.05	0.10	0.15		X					
2	1	0.0199	0.05	1900	2775	3600	0.25 4375	0.30	0.35	0.40	0.45	0.50
	2	0.0001	0025	0100	0225	0400	0625	5100 0900	5775 1225	6400 1600	6975 2025	7500 2500
3	1	0.0297	1426	2710	3859	4880	5781	6570	7254	7840	8336	110000000
	2	0.0003	0072	0280	0608	1040	1562	2160	2818	3520	4252	8750 5000
	3		0001	0010	0034	0800	0156	0270	0429	0640	0911	1250
4	1 2	0.0394	1855	3439	4780	5904	6836	7599	8215	8704	9085	9375
	3	0.0000	0140 0005	0523 0037	1095 0120	1808 0272	2617 0508	3483 0837	4370 1265	5248 1792	6090 2415	6875 3125
	4			0001	0005	0016	0039	0081	0150	0256	0410	0625
5	1	0.0490	2262	4095	5563	6723	7627	8319	8840	9222	9497	9688
	2	0.0010	0226	0815	1648	2627	3672	4718	5716	6630	7438	8125
	3 4		0012	0086	0266	0579	1035	1631	2352 0540	3174 0870	4069 1312	5000 1875
	5			0005	0022 0001	0067	0156 0010	0308 0024	0053	0102	0185	0312
	1	0.0585	2649	4686	6229	7379	8220	8824	9246	9533	9723	9844
	2	0.0015	0328	1143	2235	3446	4661	5798	6809	7667	8364	8906
	3		0022	0158 0013	0473 0059	0989 0170	1694 0376	2557 0705	3529 1174	4557 1792	5585 2553	6562 3438
	5		0001	0001	0004	0016	0046	0109	0223	0410	0692	1094
	6					0001	0002	0007	0018	0041	0083	0156
	1	0.0679	3017	5217	6794	7903	8665	9176	9510	9720	9848	9922 9375
	2	0.0020	0444	1497 0257	2834 0738	4233 1480	5551 2436	6706 3529	7662 4677	8414 5801	8976 6836	7734
	3 4		0038 0002	0027	0121	0333	0706	1260	1998	2898	3917	5000
	5			0002	0012	0047	0129	0288	0556	0963	1529 0357	2266 0625
	6 7				0001	0004	0013	0038	0090 0006	0188 0016	0037	0023
	1	0.0773	3366	5695	7275	8322	8999	9424	9681	9832	9916	9961
	2	0.0027	0572	1869	3428	4967	6329	7447	8309	8936	9368 7799	9648 8555
	3	0.0001	0058	0381	1052 0214	2031 0563	3215 1138	4482 1941	5722 2936	6846 4059	5230	6367
	4 5		0004	0050	0029	0104	0273	0580	1061	1737	2604	3633
	6				0002	0012	0042	0113 0013	0253 0036	0498 0085	0885 0181	1445 0352
	7 8					0001	0009	0001	0002	0007	0017	0039
	1200		2000	6126	7684	8658	9249	9596	9793	9899	9954	9980
	1 2	0.0865	3698 0712	2252	4005	5638	6997	8040	8789 6627	9295 7682	9615 8505	9805 9102
	3	0.0001	0084	0530	1409	2618 0856	3993 1657	5372 2703	3911	5174	6386	7461
	4		0006	0083	0339 0056	0196	0489	0988	1717	2666	3786	5000
	5			0001	0006	0031	0100	0253 0043	0536 0112	0994 0250	1658 0498	2539 0898
	7					0003	0013	0004	0014	0038	0091	0195
	8 9				=41 + 3				0001	0003	0008	0020
			1017	6517	8031	8926	9437	9718	9865	9940	9975	9990
	2	0.0956	4013 0861	6513 2639	4557	6242	7560	8507 6172	9140 7384	9536 8327	9767 9004	9893 9453
	3	0.0093	0115	0702	1798	3222	4744 2241	3504	4862	6177	7340	8281
	4		0010	0128	0500	1209 0328	0781	1503	2485	3569	4956	6230
	5		0001	0016	0014	0064	0197	0473	0949	1662 0548	2616 1020	3770
	7			1000	0001	0009	0035	0016	0048	0123	0274	1719 0547
	8					0001	11.0000000	0001	0005	0017	0045	0107
	9								-	0001	0003	0010
		0.1047	4212	6862	8327	9141	9578	9802 8870	9912 9394	9964	9986	9995
	1 2	0.1047 0.0052	4312 1019	3026	5078	6779	8029 5448	6873	7999	9698 8811	9861	9941
	3	0.0002	0152	0896	2212	3826 1611	2867	4304	5744	7037	9348 8089	9673
	5		0016 0001	0185 0028	0694	0504	1146	2103	3317	4672	6029	8867 7256

CUMULATIVE BINOMIAL PROBABILITY (DISTRIBUTION)

n	r	0.01	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50
1	6			0003	0027	0117	0343	0782	1487	2465	3669	5000
	7			0000	0003	0020	0076	0216	0501	0994	1738	2744
	8				0003	0002	0012	0043	0122	0293	0610	1133
	9					OUUZ	0001	0006	0020	0059	0148	0327
	10						OUUL	0000	0002	0007	0022	0059
	11								0002	5007	0002	0005
12	1	0.1136	4596	7176	8578	9313	9683	9862	9943	9978	9992	9998
	2	0.0062	1184	3410	5565	7251	8416	9150	9576	9804	9917	9968
	3	0.0002	0196	1109	2642	4417	6093	7472	8487	9166	9579	9807
	4		0022	0256	0922	2054	3512	5075	6533	7747	8655	9270
	5		0002	0043	0239	0726	1576	2763	4167	5618	6956	8062
	6		OUL	0005	0046	0194	0544	1178	2127	3348	4731	6128
	7			0001	0007	0039	0143	0386	0846	1582	2607	3872
	8			0001	0007	0006	0028	0095	0255	0573	1117	1938
	9				1000	0001	0004	0017	0056	0153	0356	0730
	10					1000	0004	0002	0008	0028	0079	0193
	11							0002	0000	0003	0011	0032
	12								0001	0003	0001	0002
5	1	0.1399	5367	7941	9126	9648	9866	9953	9984	9995	9999	1.000
	2	0.0096	1710	4510	6814	8329	9198	9647	9858	9948	9983	9995
	3	0.0004	0362	1841	3958	6020	7639	8732	9383	9729	9893	9963
	4	0.0001	0055	0556	1773	3518	5387	7031	8273	9095	9576	9824
	5		0006	0127	0617	1642	3135	4845	6481	7827	8796	9408
	6		0001	0022	0168	0611	1484	2784	4357	5968	7392	8491
	7		0001	0003	0036	0181	0566	1311	2452	3902	5478	6964
	8			0003							3465	5000
	9				0006	0042 0008	0173 0042	0500 0152	1132	2131 0950	1818	3036
	10				0001				0422			1509
	11					0001	8000	0037	0124	0338	0769	
	12						0001	0007	0028	0093	0255	0592
	13							0001	0005	0019	0063	0176
	14								0001	0003	0011	0037
=											0001	0005
0	1 2	0.1821 0.0169	6415 2642	8784 6083	9612 8244	9885 9308	9968 9757	9992 9924	9998 9979	1.0000 9995	1.0000	1.0000
	3	0.0010	0755	3231	5951	7939	9087				9999	
	4	0.0010	0159	1330	3523			9645	9879	9964	9991	9998
	5		0026	0432	1702	5886 3704	7748 5852	8929	9556	9840	9951	9987
	6		0003	0113	0673	1958	3828	7625	8818	9490	9811	9941
	7		0003	0024	0219	0867	2142	5836	7546	8744	9447	9793
	8			0004	0059			3920	5834	7500	8701	9423
	9			0004	0059	0321	1018	2277	3990	5841	7480	8684
	10			0001	0002	0026	0409	1133	2376	4044	5857	7483
	11				0002	0006	0139	0480	1218	2447	4086	5881
	12					0006	0039	0171	0532	1275	2493	4119
	13					1000	0009	0051	0196	0565	1308	2517
	14						0002	0013	0060	0210	0580	1316
	15							0003	0015	0065	0214	0577
	16								0003	0016	0064	0207
	17									0003	0015	0059
	18										0003	0013
	10				_							0002

To obtain $p(i \le r)$ use: $p(i \le r) = 1 - p(i \ge r + 1)$

Where a space in the table is empty the probability is less than 0.00005.