RELEVANT SAMPLING OF BAND-LIMITED FUNCTIONS

RICHARD F. BASS AND KARLHEINZ GRÖCHENIG

ABSTRACT. We study the random sampling of band-limited functions of several variables. If a band-limited function with bandwidth has its essential support on a cube of volume R^d , then $\mathcal{O}(R^d \log R^d)$ random samples suffice to approximate the function up to a given error with high probability.

1. Introduction

The nonuniform sampling of band-limited functions of several variables remains a challenging problem. Whereas in dimension 1 the density of a set essentially characterizes sets of stable sampling [14], in higher dimensions the density is no longer a decisive property of sets of stable sampling. Only a few strong and explicit sufficient conditions are known, e.g., [3, 10, 12].

This difficulty is one of the reasons for taking a probabilistic approach to the sampling problem [2, 20]. At first glance, one would guess that every reasonably homogeneous set of points in \mathbb{R}^d satisfying Landau's necessary density condition will generate a set of stable sampling. This intuition is far from true. To the best of our knowledge, every construction in the literature of sets of random points in \mathbb{R}^d contains either arbitrarily large holes with positive probability or concentrates near the zero manifold of a band-limited function. Both properties are incompatible with a sampling inequality. See [2] for a detailed discussion.

The difficulties with the probabilistic approach lie in the unboundedness of the configuration space \mathbb{R}^d and the infinite dimensionality of the space of band-limited functions. To resolve this issue, we argued in [2] that usually one observes only finitely many samples of a band-limited function and that these observations are drawn from a bounded subset of \mathbb{R}^d . Moreover, since it does not make sense to sample a given function f in a region where f is small, we proposed to sample f only on its essential support. Since f is sampled only in the relevant region, this method might be called the "relevant sampling of band-limited functions." In this paper we continue our investigation of the random sampling of band-limited functions and settle a question that was left open in [2], namely how many random samples are required to approximate a band-limited function locally to within a given accuracy?

²⁰⁰⁰ Mathematics Subject Classification. 94A20, 42C15, 60E15, 62M30.

K. G. was supported in part by the project P22746-N13 of the Austrian Science Foundation (FWF).

R. B. was supported in part by NSF grant DMS-0901505.

To fix terms, recall that the space of band-limited functions is defined to be

$$\mathcal{B} = \{ f \in L^2(\mathbb{R}^d) : \text{supp } \hat{f} \subseteq [-1/2, 1/2]^d \},$$

where we have normalized the spectrum to be the unit cube and the Fourier transform is normalized as $\hat{f}(\xi) = \int_{\mathbb{R}^d} f(x)e^{-2\pi ix\cdot\xi} dx$. A set $\{x_j : j \in J\} \subseteq \mathbb{R}^d$ is called a set of stable sampling or simply a set of sampling [7], if there exist constants A, B > 0, such that a sampling inequality holds:

(1)
$$A||f||_2^2 \le \sum_{j} |f(x_j)|^2 \le B||f||_2^2, \quad \forall f \in \mathcal{B}.$$

Next, we sample only on the essential support of f. Therefore we let $C_R = [-R/2, R/2]^d$ and define the subset

$$\mathcal{B}(R,\delta) = \left\{ f \in \mathcal{B} : \int_{C_R} |f(x)|^2 dx \ge (1-\delta) \|f\|_2^2 \right\}.$$

As a continuation of [2], we will prove the following sampling theorem.

Theorem 1. Let $\{x_j : j \in \mathbb{N}\}$ be a sequence of independent and identically distributed random variables that are uniformly distributed in C_R . Suppose that $R \geq 2$, that $\delta \in (0,1)$ and $\nu \in (0,1/2)$ are small enough, and that $0 < \epsilon < 1$. There exists a constant κ so that if the number of samples r satisfies

(2)
$$r \ge R^d \frac{1 + \nu/3}{\nu^2} \log \frac{2R^d}{\epsilon},$$

then the sampling inequality

(3)
$$\frac{r}{R^d} \left(\frac{1}{2} - \delta - \nu - 12\delta \kappa \right) ||f||_2^2 \le \sum_{j=1}^r |f(x_j)|^2 \le r ||f||_2^2$$
 for all $f \in \mathcal{B}(R, \delta)$

holds with probability at least $1 - \epsilon$. The constant κ can be taken to be $\kappa = e^{d\pi}$.

The formulation of Theorem 1 is similar to [2, Thm. 3.1]. The main point is that only $\mathcal{O}(R^d \log R^d)$ samples are required for a sampling inequality to hold with high probability. In [2] we used a metric entropy argument to show that $\mathcal{O}(R^{2d})$ samples suffice. We expect that the order $\mathcal{O}(R^d \log R^d)$ is optimal. We point out that in addition all constants are now explicit.

Our idea is to replace the sampling of band-limited function in $\mathcal{B}(R, \delta)$ by a finitedimensional problem, namely the sampling of the corresponding span of prolate spheroidal functions on the cube $[-R/2, R/2]^d$ and then use error estimates. For the probability estimates we use a new tool, namely the powerful matrix Bernstein inequality of Ahlswede and Winter [1] in the optimized version of Tropp [22].

The remainder of the paper contains the analysis of a related finite-dimensional problem for prolate spheroidal functions in Section 2 and transition to the infinite-dimensional problem in $\mathcal{B}(R,\delta)$ with the necessary error estimates in Section 3. The appendix contains an elementary estimate for the constant κ .

2. Finite-Dimensional Subspaces of ${\mathcal B}$

We first study a sampling problem in a finite-dimensional subspace related to the set $\mathcal{B}(R,\delta)$.

Prolate Spheroidal Functions. Let P_R and Q be the projection operators defined by

(4)
$$P_R f = \chi_{C_R} f$$
 and $Q f = \mathcal{F}^{-1}(\chi_{[-1/2,1/2]^d} \hat{f}),$

where \mathcal{F}^{-1} is the inverse Fourier transform. The composition of these orthogonal projections

$$(5) A_R = Q P_R Q$$

is the operator of time and frequency limiting. This operator arises frequently in the context of band-limited functions and uncertainty principles. The localization operator A_R is a compact positive operator of trace class, and by results of Landau, Slepian, Pollak, and Widom [8,9,17,19,23] the eigenvalue distribution spectrum is precisely known. We summarize the properties of the spectrum that we will need.

Let $A_R^{(1)}$ denote the operator of time-frequency limiting in dimension d=1. This operator can be defined explicitly on $L^2(\mathbb{R})$ by the formula

$$(A_R^{(1)}f)\hat{}(\xi) = \int_{-1/2}^{1/2} \frac{\sin \pi R(\xi - \eta)}{\pi(\xi - \eta)} \hat{f}(\eta) d\eta$$
 for $|\xi| \le 1/2$.

The eigenfunctions of $A_R^{(1)}$ are the prolate spheroidal functions and let the corresponding eigenvalues $\mu_k = \mu_k(R)$ be arranged in decreasing order. According to [6] they satisfy

$$0 < \mu_k(R) < 1 \quad \forall k \in \mathbb{N},$$

 $\mu_{[R]+1}(R) \le 1/2 \le \mu_{[R]-1}(R);$

As a consequence any function with spectrum [-1/2, 1/2] and "essential" support on [-R/2, R/2] is close to the span of the first R prolate spheroidal functions. In particular, we may think of $\mathcal{B}(R, \delta)$ as, roughly, almost a subset of a finite-dimensional space of dimension R.

The time-frequency limiting operator A_R on $L^2(\mathbb{R}^d)$ is the d-fold tensor product of $A_R^{(1)}$, $A_R = A_R^{(1)} \otimes \cdots \otimes A_R^{(1)}$. Consequently, $\sigma(A_R)$, the spectrum of A_R , is

$$\sigma(A_R) = \{ \lambda \in (0,1) : \lambda = \prod_{j=1}^d \mu_{k_j}, \mu_{k_j} \in \sigma(A_R^{(1)}) \}.$$

Since $0 < \mu_k < 1$, A_R possesses at most R^d eigenvalues greater than or equal to 1/2. Again we arrange the eigenvalues of A_R by magnitude $1 > \lambda_1 \ge \lambda_2 \ge \lambda_3 \cdots \ge \lambda_n \ge \lambda_{n+1} \ge \cdots > 0$. Let ϕ_i be the eigenfunction corresponding to λ_i .

We fix R "large" and $\delta \in (0,1)$. Let

$$\mathcal{P}_N = \operatorname{span} \left\{ \phi_j : j = 1, \dots, N \right\}$$

be the span of the first N eigenfunctions of the time-frequency limiting operator A_R (one might call them "multivariate prolate polynomials"). For properly chosen N, \mathcal{P}_N consists of functions in $\mathcal{B}(R,\delta)$. See Lemma 5.

By Plancherel's theorem,

$$\langle Qf, g \rangle = \langle \chi_{[-1/2, 1/2]^d} \hat{f}, \hat{g} \rangle = \langle \hat{f}, \chi_{[-1/2, 1/2]^d} \hat{g} \rangle = \langle f, Qg \rangle.$$

Then for $f \in \mathcal{B}$ we have Qf = f, and so

(6)
$$\langle A_R f, f \rangle = \langle P_R Q f, Q f \rangle = \langle P_R f, f \rangle = \int_{C_R} |f(x)|^2 dx.$$

We first study random sampling in the finite-dimensional space \mathcal{P}_N . In the following $||f||_{2,R}$ denotes the normalized L^2 -norm of f restricted to the cube $C_R = [-R/2, R/2]^d$:

$$||f||_{2,R}^2 = \int_{C_R} |f(x)|^2 dx.$$

Proposition 2. Let $\{x_j : j \in \mathbb{N}\}$ be a sequence of independent and identically distributed random variables that are uniformly distributed in $[-R/2, R/2]^d$. Then

(7)
$$\mathbb{P}\left(\inf_{f \in \mathcal{P}_N, \|f\|_2 = 1} \frac{1}{r} \sum_{j=1}^r (|f(x_j)|^2 - \frac{1}{R^d} \|f\|_{2,R}^2) \le -\frac{\nu}{R^d}\right) \\ \le N \exp\left(-\frac{\nu^2 r}{R^d (1 + \nu/3)}\right)$$

for $r \in \mathbb{N}$ and $\nu \geq 0$.

Proof. We prove the proposition in several steps. First, since \mathcal{P}_N is finite-dimensional, the sampling inequality for \mathcal{P}_N amounts to a statement about the spectrum of an underlying (random) matrix.

Let $f = \langle c, \phi \rangle = \sum_{k=1}^{N} c_k \phi_k \in \mathcal{P}_N$, so that $|f(x_j)|^2 = \sum_{k,l=1}^{N} c_k \overline{c_l} \phi_k(x_j) \overline{\phi_l(x_j)}$. Now define the $N \times N$ matrix T_j of rank one by letting the (k, l) entry be

(8)
$$(T_j)_{kl} = \phi_k(x_j) \overline{\phi_l(x_j)} .$$

Then $|f(x_j)|^2 = \langle c, T_j c \rangle$. Since each random variable x_j is uniformly distributed over C_R and ϕ_k is the k-th eigenfunction of the localization operator A_R , using (6) the expectation of the kl-th entry is

(9)
$$\mathbb{E}\left((T_j)_{kl}\right) = \frac{1}{R^d} \int_{C_R} \phi_k(x) \overline{\phi_l(x)} \, dx = \frac{1}{R^d} \langle A_R \phi_k, \phi_l \rangle$$
$$= \frac{1}{R^d} \lambda_k \delta_{kl} \qquad k, l = 1, \dots, N,$$

where δ_{kl} is Kronecker's delta. Consequently the expectation of T_j is the diagonal matrix

(10)
$$\mathbb{E}(T_j) = \frac{1}{R^d} \operatorname{diag}(\lambda_k) =: \frac{1}{R^d} \Delta.$$

We may now rewrite the expression in (7) as

$$\inf_{f \in \mathcal{P}_{N}, \|f\|_{2}=1} \frac{1}{r} \sum_{j=1}^{r} \left(|f(x_{j})|^{2} - \frac{1}{R^{d}} \|f\|_{2,R}^{2} \right)$$

$$= \inf_{\|c\|_{2}=1} \frac{1}{r} \sum_{j=1}^{r} \left(\langle c, T_{j} c \rangle - \langle c, \mathbb{E}(T_{j}) c \rangle \right)$$

$$= \lambda_{\min} \left(\frac{1}{r} \sum_{j=1}^{N} (T_{j} - \mathbb{E}(T_{j})) \right)$$
(11)

where we use $\lambda_{\min}(U)$ for the smallest eigenvalue of a self-adjoint matrix U.

Consequently, we have to estimate a probability for the matrix norm of a sum of random matrices. We do this using a matrix Bernstein inequality due to Tropp [22]. Let $\lambda_{\max}(A)$ be the largest singular value of a matrix A so that $||A|| = \lambda_{\max}(A^*A)^{1/2}$ is the operator norm (with respect to the ℓ^2 -norm).

Theorem 3. (Tropp) Let X_j be a sequence of independent, random self-adjoint $N \times N$ -matrices. Suppose that

$$\mathbb{E} X_j = 0$$
 and $||X_j|| \le B$ a.s.

and let

$$\sigma^2 = \left\| \sum_{j=1}^r \mathbb{E}\left(X_j^2\right) \right\|.$$

Then for all $t \geq 0$,

(12)
$$\mathbb{P}\left(\lambda_{\max}\left(\sum_{j=1}^{r} X_{j}\right) \geq t\right) \leq N \exp\left(-\frac{t^{2}/2}{\sigma^{2} + Bt/3}\right).$$

To apply the matrix Bernstein inequality, we set $X_j = T_j - \mathbb{E}(T_j)$. We need to calculate $||X_j||$ and $||\sum_j \mathbb{E}(X_j^2)||$. Clearly $\mathbb{E}(X_j) = 0$.

Lemma 4. Under the conditions stated above we have

$$||X_j|| \le 1,$$

$$\mathbb{E}(X_j^2) \le R^{-d}\Delta,$$
and
$$\sigma^2 = ||\sum_{j=1}^r \mathbb{E}(X_j^2)|| \le \frac{r}{R^d}.$$

Proof. (i) To estimate the matrix norm of X_i , recall that

(13)
$$|f(x)| \le ||f||_2 \qquad \forall f \in \mathcal{B}.$$

Hence we obtain

$$||X_j|| = \sup_{\|f\|_2 = 1} \left| |f(x_j)|^2 - R^{-d} ||f||_{2,R}^2 \right| \le ||f||_{\infty} - R^{-d} ||f||_{2,R}^2 \le ||f||_2 = 1.$$

(ii) Next we calculate the matrix $\mathbb{E}(X_i^2)$:

$$\mathbb{E}\left(X_{j}^{2}\right) = \mathbb{E}\left(T_{j}^{2}\right) - R^{-d}\mathbb{E}\left(T_{j}\Delta\right) - R^{-d}\mathbb{E}\left(\Delta T_{j}\right) + R^{-2d}\Delta^{2}$$

$$= \mathbb{E}\left(T_{j}^{2}\right) - R^{-d}\mathbb{E}\left(T_{j}\right)\Delta - R^{-d}\Delta\mathbb{E}\left(T_{j}\right) + R^{-2d}\Delta^{2} = \mathbb{E}\left(T_{j}^{2}\right) - R^{-2d}\Delta^{2}.$$

Furthermore, the square of the rank one matrix T_i is the (rank one) matrix

$$(T_j^2)_{km} = \sum_{l=1}^N (T_j)_{kl} (T_j)_{lm}$$

$$= \sum_l \phi_k(x_j) \overline{\phi_l(x_j)} \phi_l(x_j) \overline{\phi_m(x_j)}$$

$$= \left(\sum_{l=1}^N |\phi_l(x_j)|^2\right) (T_j)_{km}.$$

Writing $m(x) = \sum_{l=1}^{N} |\phi_l(x)|^2$, we obtain

$$(14) T_j^2 = m(x_j)T_j.$$

Let s be the function whose Fourier transform is given by $\hat{s} = \chi_{[-1/2,1/2]^d}$ and let $T_x f(t) = f(t-x)$ be the translation operator. Then it is well known that $T_x s$ is the reproducing kernel for \mathcal{B} , that is,

$$f(x) = \langle f, T_x s \rangle.$$

To see this, by Plancherel's theorem and the inversion formula for the Fourier transform, if $f \in \mathcal{B}$,

$$\langle f, T_x s \rangle = \langle \hat{f}, e^{-2\pi i x \cdot \xi} \hat{s} \rangle = \int_{[-1/2, 1/2]^d} e^{2\pi i x \cdot \xi} \hat{f}(\xi) d\xi = \int e^{2\pi i x \cdot \xi} \hat{f}(\xi) d\xi = f(x).$$

Since the eigenfunctions ϕ_l form an orthonormal basis for \mathcal{B} , the factor $m(x_j)$ in (14) is majorized by

$$m(x_j) = \sum_{l=1}^N |\phi_l(x_j)|^2 = \sum_{l=1}^N |\langle \phi_l, T_{x_j} s \rangle|^2 \le \sum_{l=1}^\infty |\langle \phi_l, T_{x_j} s \rangle|^2 = ||T_{x_j} s||_2^2 = 1.$$

Since $T_j^2 \leq T_j$ and the expectation preserves the cone of positive (semi)definite matrices (see, e.g. [22]), we have $\mathbb{E}(T_i^2) \leq \mathbb{E}(T_j) = R^{-d}\Delta$, and

$$\mathbb{E}\left(X_{j}^{2}\right) = \mathbb{E}\left(T_{j}^{2}\right) - R^{-2d}\Delta^{2} \leq R^{-d}\Delta.$$

(iii) Now the variance of the sum of positive (semi)definite random matrices is majorized by

$$\sigma^2 = \left\| \sum_{j=1}^r \mathbb{E}\left(X_j^2\right) \right\| \le \left\| \sum_{j=1}^r \mathbb{E}\left(T_j\right) \right\| = \frac{r}{R^d} \|\Delta\| \le \frac{r}{R^d}.$$

End of the proof of Proposition 2. Now we have all information to finish the proof of Proposition 2. Since $\lambda_{\min}(T) = -\lambda_{\max}(-T)$, we substitute these estimates into the matrix Bernstein inequality with $t = r\nu/R^d$, and obtain that

$$\mathbb{E}\left(\lambda_{\min}\left(\sum_{j=1}^{r} (T_j - \mathbb{E}\left(T_j\right))\right) \le -r\nu/R^d\right) \le N \exp\left(-\frac{r^2\nu^2R^{-2d}}{rR^{-d} + r\nu R^{-d}/3}\right).$$

Combined with (11), the proposition is proved.

Random matrix theory offers several methods to obtain probability estimates for the spectrum of random matrices. In [2] we used the entropy method. We also mention the influential work of Rudelson [15] and the recent papers [11, 16] on random matrices with independent columns. The matrix Bernstein inequality offers a new approach and makes the probabilistic part of the argument almost painless. The matrix Bernstein inequality was first derived in [1] and improved in several subsequent papers, in particular in [13]. The version with the best constants is due to Tropp [22]. Matrix Bernstein inequalities also simplify many probabilistic arguments in compressed sensing; see the forthcoming book [4].

3. From Sampling of Prolate Spheroidal Functions to Relevant Sampling of Bandlimited Functions

Let α be the value of the N-th eigenvalue of A_R , that is, $\alpha = \lambda_N$, let $E = E_N$ be the orthogonal projections from \mathcal{B} onto \mathcal{P}_N , and let $F = F_N = I - E_N$. Intuitively, since $f \in \mathcal{B}(R, \delta)$ is essentially supported on the cube C_R , it should be close to the span of the largest eigenfunctions of A_R and thus Ff should be small. The following lemma gives a precise estimate. Compare also with the proof of [9, Thm. 3].

Lemma 5. If $f \in \mathcal{B}(R, \delta)$, then

$$||Ef||_{2}^{2} \ge \left(1 - \frac{\delta}{1 - \alpha}\right) ||f||_{2}^{2},$$

$$||Ef||_{2,R}^{2} \ge \alpha \left(1 - \frac{\delta}{1 - \alpha}\right) ||f||_{2}^{2},$$

$$||Ff||_{2}^{2} \le \frac{\delta}{1 - \alpha} ||f||_{2}^{2}.$$

Proof. Expand $f \in \mathcal{B}$ with respect to the prolate spheroidal functions as $f = \sum_{j=1}^{\infty} c_j \phi_j$. Without loss of generality, we may assume that $||f||_2 = ||c||_2 = 1$. Since $f \in \mathcal{B}(R, \delta)$, we have that

$$1 - \delta \le ||f||_{2,R}^2 = \int_{C_R} |f(t)|^2 dt = \langle A_R f, f \rangle = \sum_{j=1}^{\infty} |c_j|^2 \lambda_j.$$

Set

$$A = ||Ef||_2^2 = \sum_{j=1}^{N} |c_j|^2$$

and $B = \sum_{j>N} |c_j|^2 = 1 - A = ||Ff||_2^2$. Since $\lambda_j \leq \lambda_N = \alpha$ for j > N, we estimate $A = ||Ef||_2^2$ as follows:

$$\begin{split} A &= \sum_{j=1}^{N} |c_{j}|^{2} \geq \sum_{j=1}^{N} |c_{j}|^{2} \lambda_{j} \\ &= \sum_{j=1}^{\infty} |c_{j}|^{2} \lambda_{j} - \sum_{j=N+1}^{\infty} |c_{j}|^{2} \lambda_{j} \\ &\geq 1 - \delta - \lambda_{N} \sum_{j=N+1}^{\infty} |c_{j}|^{2} \\ &= 1 - \delta - \alpha (1 - A) \,. \end{split}$$

The inequality $A \ge 1 - \delta - \alpha(1 - A)$ implies that $||Ef||_2^2 = A \ge 1 - \frac{\delta}{1 - \alpha}$ and using the orthogonal decomposition f = Ef + Ff,

$$B = ||Ff||_2^2 \le \frac{\delta}{1 - \alpha}.$$

Finally, $||Ef||_{2,R}^2 = \sum_{j=1}^N \lambda_j |c_j|^2 \ge \alpha A \ge \alpha (1 - \frac{\delta}{1-\alpha})$, as claimed.

REMARK (due to J.-L. Romero): As mentioned in [2], if $f \in \mathcal{B}(R, \delta)$ and $f(x_j) = 0$ for sufficiently many samples $x_j \in C_R$, then $f \equiv 0$. However, f cannot be completely determined by samples in C_R alone. This is a consequence of the fact that $\mathcal{B}(R, \delta)$ is not a linear space. Given a finite subset $S \subseteq C_R$, consider the finite-dimensional subspace \mathcal{H}_0 of \mathcal{B} spanned by the reproducing kernels $T_x s, x \in S$. If $\phi \in \mathcal{H}_0^{\perp}$, then $\phi(x) = \langle \phi, T_x s \rangle = 0$ for $x \in S$. Thus by adding a function in \mathcal{H}_0^{\perp} of sufficiently small norm to $f \in \mathcal{B}(R, \delta)$, one obtains a different function with the same samples. More precisely, let $f \in \mathcal{B}(R, \delta)$ with $||f||_2 = 1$ and $\int_{C_R} |f(x)|^2 dx = \gamma > 1 - \delta$ and $\phi \in \mathcal{H}_0^{\perp}$ with $||\phi||_2 = 1$. Then $f(x) + \epsilon \phi(x) = f(x)$ for $x \in S$ and $f + \epsilon \phi \in \mathcal{B}(R, \delta)$ for sufficiently small $\epsilon > 0$.

Despite this non-uniqueness, one can approximate f from the samples up to an accuracy δ , as is shown by the next lemma.

We will require a standard estimate for sampled 2-norms, a so-called Plancherel-Polya-Nikolskij inequality [21]. Assume that $\mathcal{X} = \{x_j\} \subseteq \mathbb{R}^d$ is relatively separated, i.e., the "covering index"

$$\max_{k \in \mathbb{Z}^d} \# \mathcal{X} \cap (k + [-1/2, 1/2]^d) =: N_0 < \infty$$

is finite. Then there exists a constant $\kappa > 0$, such that

(15)
$$\sum_{j=1}^{\infty} |f(x_j)|^2 \le \kappa N_0 ||f||_2^2 \quad \text{for all } f \in \mathcal{B}.$$

The constant κ can be chosen as $\kappa = e^{d\pi}$. Since the standard proof in [21] uses a maximal inequality with an non-explicit constant, we will give a simple argument using Taylor series in the appendix.

Lemma 6. Let $\{x_j : j = 1, ..., r\}$ be a finite subset of C_R with covering index N_0 . Then the solution to the least square problem

(16)
$$p_{opt} = \operatorname{argmin}_{p \in \mathcal{P}_N} \left\{ \sum_{j=1}^r |f(x_j) - p(x_j)|^2 \right\}$$

satisfies the error estimate

(17)
$$\sum_{j=1}^{r} |f(x_j) - p_{opt}(x_j)|^2 \le N_0 \kappa \frac{\delta}{1 - \alpha} ||f||_2^2 \quad \text{for all } f \in \mathcal{B}(R, \delta) .$$

Proof. We combine Lemma 5 with (15).

$$\sum_{j=1}^{r} |f(x_j) - p_{opt}(x_j)|^2 \le \sum_{j=1}^{r} |f(x_j) - Ef(x_j)|^2$$

$$= \sum_{j=1}^{r} |Ff(x_j)|^2 \le \kappa N_0 ||Ff||_2^2$$

$$\le \kappa N_0 \frac{\delta}{1 - \alpha} ||f||_2^2$$

Next we compare sampling inequalities for the space of prolate polynomials \mathcal{P}_N to sampling inequalities for functions in $\mathcal{B}(R,\delta)$.

Lemma 7. Let $\{x_j : j = 1, ..., r\}$ be a finite subset of C_R with covering index N_0 . If the inequality

(18)
$$\frac{1}{r} \sum_{j=1}^{r} \left(|p(x_j)|^2 - R^{-d} ||p||_{2,R}^2 \right) \ge -\frac{\nu}{R^d} ||p||_2^2$$

holds for all $p \in \mathcal{P}_N$, then the inequality

(19)
$$\sum_{j=1}^{r} |f(x_j)|^2 \ge A||f||_2^2$$

holds for all $f \in \mathcal{B}(R, \delta)$ with a constant

$$A = \frac{r}{R^d} \left(\alpha - \frac{\alpha \delta}{1 - \alpha} - \nu \right) - 2\kappa N_0 \frac{\delta}{1 - \alpha}$$

REMARK: For A to be positive we need

$$r \ge R^d \frac{2\kappa N_0 \frac{\delta}{1-\alpha}}{\alpha - \frac{\alpha\delta}{1-\alpha} - \nu}.$$

Proof. Using the triangle inequality and the orthogonal decomposition f = Ef + Ff, we estimate

$$\left(\sum_{j=1}^{r} |f(x_j)|^2\right)^{1/2} \ge \left(\sum_{j=1}^{r} |Ef(x_j)|^2\right)^{1/2} - \left(\sum_{j=1}^{r} |Ff(x_j)|^2\right)^{1/2}.$$

Taking squares and using (15) on Ef and Ff in the cross product term, we continue as

$$\sum_{j=1}^{r} |f(x_{j})|^{2} \ge \sum_{j=1}^{r} |Ef(x_{j})|^{2} - 2\left(\sum_{j=1}^{r} |Ef(x_{j})|^{2}\right)^{1/2} \left(\sum_{j=1}^{r} |Ff(x_{j})|^{2}\right)^{1/2}$$

$$+ \sum_{j=1}^{r} |Ff(x_{j})|^{2}$$

$$\ge \sum_{j=1}^{r} |Ef(x_{j})|^{2} - 2\kappa N_{0} ||Ef||_{2} ||Ff||_{2}$$

$$\ge \sum_{j=1}^{r} |Ef(x_{j})|^{2} - 2\kappa N_{0} \frac{\delta}{1-\alpha} ||f||_{2}^{2},$$

since by Lemma 5, $||Ff||_2^2 \le \frac{\delta}{1-\alpha}||f||_2^2$ and $||Ef||_2 \le ||f||_2$. Now we make use of hypothesis (18) and Lemma 5 and obtain

$$\sum_{j=1}^{r} |f(x_j)|^2 \ge \sum_{j=1}^{r} |Ef(x_j)|^2 - 2\kappa N_0 \frac{\delta}{1-\alpha} ||f||_2^2$$

$$\ge \frac{r}{R^d} ||Ef||_{2,R}^2 - \frac{\nu r}{R^d} ||Ef||_2^2 - 2\kappa N_0 \frac{\delta}{1-\alpha} ||f||_2^2$$

$$\ge \frac{\alpha r}{R^d} \left(1 - \frac{\delta}{1-\alpha}\right) ||f||_2^2 - \frac{\nu r}{R^d} ||f||_2^2 - 2\kappa N_0 \frac{\delta}{1-\alpha} ||f||_2^2.$$

So we may choose A to be

$$A = \frac{r}{R^d} \left(\alpha - \frac{\alpha \delta}{1 - \alpha} - \nu \right) - 2\kappa N_0 \frac{\delta}{1 - \alpha}.$$

The final ingredient we need is a deviation inequality for the covering index $N_0 = \max_{k \in \mathbb{Z}^d} \{x_j\} \cap (k + [-1/2, 1/2]^d)$.

Lemma 8. Suppose $R \geq 2$ and $\{x_j : j = 1, ..., r\}$ are independent and identically distributed random variables that are uniformly distributed over C_R . Let $a > R^{-d}$. Then

$$\mathbb{P}(N_0 > ar) \le (R+2)^d \exp\left(-r(a\log(aR^d) - (a-R^{-d}))\right).$$

Proof. Let $D_k = k + [-1/2, 1/2]^d$ for $k \in \mathbb{Z}^d$. Note that we need at most $(R+2)^d$ of the D_k 's to cover C_R . If $N_0 > ar$, then for at least one k, D_k must contain at least ar of the x_j 's. Therefore

(20)
$$\mathbb{P}(N_0 > ar) \le (R+2)^d \max_{k \in \mathbb{Z}^d} \mathbb{P}(\#\{x_j\} \cap D_k > ar).$$

Fix $k \in \mathbb{Z}^d$. For any b > 0, by Chebyshev's inequality

$$\mathbb{P}(\#\{x_j\} \cap D_k > ar) = \mathbb{P}\left(\sum_{j=1}^r \chi_{D_k}(x_j) > ar\right) = \mathbb{P}\left(\exp\left(b\sum_{j=1}^r \chi_{D_k}(x_j)\right) > e^{bar}\right)$$

$$\leq e^{-bar}\mathbb{E} \exp\left(b\sum_{j=1}^r \chi_{D_k}(x_j)\right).$$

Since the x_j are uniformly distributed over C_R , then $\chi_{D_k}(x_j)$ is equal to 1 with probability at most R^{-d} and otherwise equals zero. Therefore, using the independence.

$$\mathbb{P}(\#\{x_j\} \cap D_k > ar) \le e^{-bar} \prod_{j=1}^r \mathbb{E} e^{b\chi_{D_k}(x_j)}$$

$$\le e^{-bar} ((1 - R^{-d}) + e^b R^{-d})^r = e^{-bar} ((1 + (e^b - 1)R^{-d})^r)$$

$$\le e^{-bar} (\exp((e^b - 1)R^{-d}))^r.$$

With the optimal choice $b = \log(aR^d)$ the last term is then

$$\exp\left(-r\left(a\log(aR^d)-(a-R^{-d})\right)\right).$$

Substituting this in (20) proves the lemma.

By combining the finite-dimensional result of Proposition 2 with the estimates of Lemmas 7 and 8 and the appropriate choice of the free parameters, we obtain the following theorem.

Theorem 9. Let $\{x_j : j \in \mathbb{N}\}$ be a sequence of independent and identically distributed random variables that are uniformly distributed in C_R . Suppose $R \geq 2$,

$$\delta < \frac{1}{2(1+12\kappa)},$$

and

$$\nu < \frac{1}{2} - \delta(1 + 12\kappa).$$

Let

(21)
$$A = \frac{r}{R^d} \left(\frac{1}{2} - \delta - \nu - 12\delta \kappa \right).$$

Then the sampling inequality

(22)
$$A\|f\|_{2}^{2} \leq \sum_{j=1}^{r} |f(x_{j})|^{2} \leq r\|f\|_{2}^{2} \quad \text{for all } f \in \mathcal{B}(R, \delta)$$

holds with probability at least

(23)
$$1 - R^d \exp\left(-\frac{\nu^2 r}{R^d (1 + \nu/3)}\right) - (R+2)^d \exp\left(-\frac{r}{R^d} (3\log 3 - 2)\right).$$

Proof. Since $|f(x)| \leq ||f||_2$ for $f \in \mathcal{B}$, the right hand inequality in (22) is immediate. We take $\alpha = 1/2$ and $N = R^d$ in Proposition 2 and $a = 3R^{-d}$ in Lemma 8. Let

$$V_1 = \left\{ \inf_{f \in \mathcal{P}_N, \|f\|_2 = 1} \frac{1}{r} \sum_{j=1}^r (|f(x_j)|^2 - \frac{1}{R^d} \|f\|_{2,R}^2) \le -\frac{\nu}{R^d} \right\}$$

and let

$$V_2 = \{ N_0 > ar \}.$$

By Proposition 2 and Lemma 8, the probability of $(V_1 \cup V_2)^c$ is bounded below by (23). By Lemma 7,

$$\frac{1}{r} \sum_{j=1}^{r} |f(x_j)|^2 \ge A ||f||_2^2$$

for all $f \in \mathcal{B}(R, \delta)$ on the set $(V_1 \cup V_2)^c$. With $\alpha = 1/2$ and $N_0 = 3R^{-d}$ the lower bound A of Lemma 7 simplifies to $A = \frac{r}{R^d} \left(\frac{1}{2} - \delta - \nu - 12\delta \kappa \right)$. Our assumptions on δ and ν guarantee that A > 0.

The formulation of Theorem 1 now follows. With $N=R^d$ and $0<\nu<1/2-\delta<1/2,$ if $\epsilon>0$ is given and (24)

$$r \ge \max\left(R^d \frac{1+\nu/3}{\nu^2}\log \frac{2R^d}{\epsilon}, \frac{R^d}{3\log 3 - 2}\log \frac{2(R+2)^d}{\epsilon}\right) = R^d \frac{1+\nu/3}{\nu^2}\log \frac{2R^d}{\epsilon},$$

then the probability in (23) will be larger than $1 - \epsilon$.

REMARK: Observe that the parameters δ and R are not independent. As mentioned in [2, p. 14], for $\mathcal{B}(R,\delta)$ to be non-empty, we need $\delta \geq 2\pi\sqrt{2R}e^{-\pi R}$ (up to terms of higher order). Thus for small δ as in Theorem 9 we need to choose R of order $R \approx c \log(d/\delta)$.

APPENDIX A. THE PLANCHEREL-POLYA INEQUALITY

We finish by showing that the constant κ in the Plancherel-Polya inequality (15) can be chosen explicitly to be $\kappa = e^{d\pi}$. The argument is simple and well-known, see, for example, [5].

Lemma 10. Let $\{x_j : j \in \mathbb{N}\}$ be a set in \mathbb{R}^d with covering index N_0 . Then

$$\sum_{j=1}^{\infty} |f(x_j)|^2 \le N_0 e^{d\pi} ||f||_2^2.$$

Proof. Let $k \in \mathbb{Z}^d$ and $x_j \in k+[-1/2,1/2] =: D_k$. Then $||x_j-k||_{\infty} \le 1/2$. Consider the Taylor expansion of $f(x_j)$ at k (with the usual multi-index notation):

$$|f(x_j)| = \Big| \sum_{\alpha > 0} \frac{D^{\alpha} f(k)}{\alpha!} (x_j - k)^{\alpha} \Big| \le \sum_{\alpha > 0} \frac{|D^{\alpha} f(k)|}{\alpha!} \left(\frac{1}{2}\right)^{|\alpha|}.$$

We now let $\theta \in (0,1)$ and apply Cauchy-Schwarz:

(25)
$$|f(x_j)|^2 \le \sum_{\alpha \ge 0} \frac{1}{\alpha!} (\frac{1}{2})^{2\theta|\alpha|} \sum_{\alpha \ge 0} \frac{|D^{\alpha} f(k)|^2}{\alpha!} (\frac{1}{2})^{2(1-\theta)|\alpha|}$$

$$= e^{d/4\theta} \sum_{\alpha \ge 0} \frac{|D^{\alpha} f(k)|^2}{\alpha!} (\frac{1}{2})^{2(1-\theta)|\alpha|}.$$

If $f \in \mathcal{B}$, then by Shannon's sampling theorem (or because the reproducing kernels $T_k s, k \in \mathbb{Z}^d$, form an orthonormal basis of \mathcal{B}) we have

$$\sum_{k \in \mathbb{Z}^d} |f(k)|^2 = ||f||_2^2 \qquad \forall f \in \mathcal{B}.$$

To estimate the partial derivatives we use Bernstein's inequality $||D^{\alpha}f||_2 \leq \pi^{|\alpha|}||f||_2$. We first assume that $N_0 = 1$, i.e., each cube D_k contains at most one of the x_j 's. Then we obtain, after interchanging the order of summation

$$\sum_{j \in \mathbb{N}} |f(x_{j})^{2}| \leq e^{d/4\theta} \sum_{\alpha \geq 0} \sum_{k \in \mathbb{Z}^{d}} \frac{|D^{\alpha} f(k)|^{2}}{\alpha!} \left(\frac{1}{2}\right)^{2(1-\theta)|\alpha|}$$

$$= e^{d/4\theta} \sum_{\alpha \geq 0} \left(\frac{1}{2}\right)^{2(1-\theta)|\alpha|} \frac{\|D^{\alpha} f\|_{2}^{2}}{\alpha!}$$

$$\leq e^{d/4\theta} \sum_{\alpha \geq 0} \left(\frac{1}{2}\right)^{2(1-\theta)|\alpha|} \frac{\pi^{2|\alpha|}}{\alpha!} \|f\|_{2}^{2} = e^{d/4\theta} e^{d\pi^{2}/4^{1-\theta}} \|f\|_{2}^{2}$$
(26)

The choice $4^{\theta}=2/\pi$ yields the constant $\kappa=e^{d/4^{\theta}}\,e^{d\pi^2/4^{1-\theta}}=e^{d\pi}$. For arbitrary N_0 we obtain

$$\sum_{j \in \mathbb{N}} |f(x_j)|^2 = \sum_{k \in \mathbb{Z}^d} \sum_{\{j: x_j \in D_k\}} |f(x_j)|^2 \le N_0 e^{d\pi} ||f||_2^2,$$

as claimed.

Possibly the Plancherel-Polya inequality could be improved to a local estimate of the form $\sum_{x_j \in C_R} |f(x_j)|^2 \leq \tilde{\kappa} N_0 ||f||_{2,R}^2$, but we did not pursue this question.

References

- [1] R. Ahlswede and A. Winter. Strong converse for identification via quantum channels. *IEEE Trans. Inform. Theory*, 48(3):569–579, 2002.
- [2] R.F. Bass and K. Gröchenig. Random sampling of band-limited functions. *Israel J. Math.*, 177:1–28, 2010.

- [3] A. Beurling. Local harmonic analysis with some applications to differential operators. In Some Recent Advances in the Basic Sciences, Vol. 1 (Proc. Annual Sci. Conf., Belfer Grad. School Sci., Yeshiva Univ., New York, 1962–1964), pages 109–125. Belfer Graduate School of Science, Yeshiva Univ., New York, 1966.
- [4] S. Foucard and H. Rauhut. A Mathematical Introduction to Compressive Sensing. Applied and Numerical Harmonic Analysis. Birkhäuser Boston Inc., Boston, MA, 2012, to appear.
- [5] K. Gröchenig. Reconstruction algorithms in irregular sampling. Math. Comp., 59(199):181–194, 1992.
- [6] H. Landau. On the density of phase space expansions. IEEE Trans. Inform. Theory, 39:1152–1156, 1993.
- [7] H. J. Landau. Necessary density conditions for sampling and interpolation of certain entire functions. *Acta Math.*, 117:37–52, 1967.
- [8] H. J. Landau and H. O. Pollak. Prolate spheroidal wave functions, Fourier analysis and uncertainty. II. *Bell System Tech. J.*, 40:65–84, 1961.
- [9] H. J. Landau and H. O. Pollak. Prolate spheroidal wave functions, Fourier analysis and uncertainty. III. The dimension of the space of essentially time- and band-limited signals. *Bell System Tech. J.*, 41:1295–1336, 1962.
- [10] B. Matei and Y. Meyer. Simple quasicrystals are sets of stable sampling. *Complex Var. Elliptic Equ.*, 55(8-10):947–964, 2010.
- [11] S. Mendelson and A. Pajor. On singular values of matrices with independent rows. *Bernoulli*, 12(5):761–773, 2006.
- [12] A. Olevskiĭ and A. Ulanovskii. Universal sampling and interpolation of band-limited signals. Geom. Funct. Anal., 18(3):1029–1052, 2008.
- [13] R. I. Oliveira. Sums of random Hermitian matrices and an inequality by Rudelson. *Electron. Commun. Probab.*, 15:203–212, 2010.
- [14] J. Ortega-Cerdà and K. Seip. Fourier frames. Ann. of Math. (2), 155(3):789–806, 2002.
- [15] M. Rudelson. Random vectors in the isotropic position. J. Funct. Anal., 164(1):60-72, 1999.
- [16] M. Rudelson and R. Vershynin. Smallest singular value of a random rectangular matrix. Comm. Pure Appl. Math., 62(12):1707–1739, 2009.
- [17] D. Slepian. Prolate spheroidal wave functions, Fourier analysis and uncertainty. IV. Extensions to many dimensions; generalized prolate spheroidal functions. *Bell System Tech. J.*, 43:3009–3057, 1964.
- [18] D. Slepian. On bandwidth. Proc. IEEE, 64(3):292–300, 1976.
- [19] D. Slepian and H. O. Pollak. Prolate spheroidal wave functions, Fourier analysis and uncertainty. I. *Bell System Tech. J.*, 40:43–63, 1961.
- [20] S. Smale and D.-X. Zhou. Shannon sampling and function reconstruction from point values. Bull. Amer. Math. Soc. (N.S.), 41(3):279–305 (electronic), 2004.
- [21] H. Triebel. Theory of function spaces. Birkhäuser Verlag, Basel, 1983.
- [22] J. Tropp. User-friendly tail bounds for sums of random matrices. Found. Comput. Math., 2011. doi:10.1007/s10208-011-9099-z.
- [23] H. Widom. Asymptotic behavior of the eigenvalues of certain integral equations. II. Arch. Rational Mech. Anal., 17:215–229, 1964.

Department of Mathematics, University of Connecticut, Storrs CT 06269-3009 USA

E-mail address: r.bass@uconn.edu

FACULTY OF MATHEMATICS, UNIVERSITY OF VIENNA, NORDBERGSTRASSE 15, A-1090 VIENNA, AUSTRIA

E-mail address: karlheinz.groechenig@univie.ac.at