

# Métodos Determinísticos de Investigação Operacional

 ${
m MIEI}$  -  $3^{
m o}$  and -  $1^{
m o}$  semestre Universidade do Minho

### Trabalho Prático Experimental III



André Ferreira A64296

 $\begin{array}{c} {\rm Tiago~Gomes} \\ {\rm A69853} \end{array}$ 

Sebastião Freitas A71074

Gonçalo Almeida A84610

Angélica Cunha A84398

# Conteúdo

| 1 | Introdução            | 3  |
|---|-----------------------|----|
|   | Modelação             | 4  |
|   | 2.1 Formulação        | 6  |
|   | 2.1.1 Restrições      | 6  |
|   | 2.1.2 Função Objetivo | 7  |
|   | 2.2 Ficheiro de Input | 8  |
|   | 2.3 Output LPSolve    | 9  |
|   | 2.4 Plano de Execução | 10 |
| 3 | Conclusão             | 11 |

# Lista de Figuras

| 2.1 | Grafo associado ao projeto             | 4  |
|-----|----------------------------------------|----|
| 2.2 | Diagrama de Gantt do projeto           | 5  |
| 2.3 | Output LPSolve                         | 9  |
| 2.4 | Diagrama de Gantt do plano de execução | 10 |

### 1. Introdução

O presente relatório irá abordar a elaboração do projeto desenvolvido no âmbito da unidade curricular de Modelos Determinísticos de Investigação Operacional. Neste trabalho prático é apresentado um problema em que se pretende aplicar o método do caminho crítico, o qual é aplicado a projetos que podem ser decompostos num conjunto de actividades, que se considera terem durações determinísticas, entre as quais existem relações de precedência. É-nos dado um projeto no qual a rede consiste num grafo em que cada nó é uma atividade deste.

No problema em análise, o caminho crítico corresponde às actividades 6, 7, 4, 2 e 3, com uma duração de 29 unidades de tempo, que é também o menor tempo necessário para completar a execução de todo o projecto. O objectivo do problema é decidir como devem ser reduzidas as durações das actividades, de modo a realizar o projecto na nova duração desejada, com um custo suplementar mínimo.

De modo a apresentar uma solução a este problema, procedemos a modelá-lo, de modo a poder descrevê-lo de um modo mais facilmente compreensível e objetivo, permitindo-nos seguidamente aplicar métodos de programação linear, com o auxílio de software, para encontrar uma solução ótima para o problema.

## 2. Modelação

De forma a respondermos às necessidades do enunciado proposto, começamos por realizar as alterações necessárias à rede, tendo em conta o número mecanográfico 84610, seguido da formulação do modelo para atingir o objectivo proposto do problema.



Figura 2.1: Grafo associado ao projeto

De seguida, foi realizado o diagrama de Gantt que resulta de resolver o modelo com as variáveis de decisão  $t_i$ ,  $\forall i$ . Há que notar que cada linha representa a atividade indicada e, por exemplo, a primeira coluna corresponde ao intervalo de tempo entre 0 U.T. e 1 U.T..

|    | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |
|----|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 2  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 3  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 4  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 5  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 6  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 7  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 8  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 9  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 10 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 11 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| 12 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

Figura 2.2: Diagrama de Gantt do projeto

#### 2.1 Formulação

#### 2.1.1 Restrições

A seguinte restrição indica que o tempo de execução do projeto deve reduzir, no mínimo, 3 U.T. em relação ao modelo original.

$$tf <= 26$$
:

Dado que  $t_i$  e  $d_i$  representam o tempo de início e duração da atividade i respetivamente, a função  $t_i + d_i$  representa o tempo de conclusão da mesma. Foram definidas as variáveis  $ra_i$  e  $rb_i$  que representam, respetivamente, o valor da máxima redução de tempo a um custo  $c_1$  e  $c_2$ . As seguintes restrições visam garantir as relações de precedência entre atividades tendo em conta as reduções de tempo em cada arco.

O modelo destas restrições é o seguinte:

$$arco_{ij}: t_j \geq t_i + d_i - ra_i - rb_i$$

Assim sendo, temos as seguintes restrições:

```
arco i2: t2 >= ti + 0;
                                       arco 5f: t3 >= t5 + 4 - ra5 - rb5;
arco i4: t4 >= ti + 0;
                                       arco 67: t7 >= t6 + 5 - ra6 - rb6;
arco i6: t6 >= ti + 0;
                                       arco 610: t10 >= t6 + 5 - ra6 - rb6;
arco_23: t3 >= t2 + 7 - ra2 - rb2;
                                       arco 85: t5 >= t8 + 4 - ra8 - rb8;
arco 3f: tf >= t3 + 2 - ra3 - rb3;
                                       arco 89: t9 > = t8 + 4 - ra8 - rb8;
arco 42: t2 >= t4 + 9 - ra4 - rb4;
                                       arco 108: t8 > = t10 + 8 - ra10 - rb10;
arco 45: t5 >= t4 + 9 - ra4 - rb4;
                                       arco 1011: t11 >= t10 + 8 - ra10 - rb10;
arco 53: t3 >= t5 + 4 - ra5 - rb5;
                                       arco_{119}: t9 >= t11 + 7 - ra11 - rb11;
```

Para as reduções de tempo relativas às atividades 7 e 9, foram criadas 4 variáveis binárias que apresentam o valor 1 caso sejam realizadas e 0 caso contrário.

A associação das variáveis e as opções de redução é a seguinte:

- opcao1: A atividade 7 é realizada em 5 U.T. com um custo adicional de 300 U.M.;
- opcao2: A atividade 7 é realizada em 4 U.T. com um custo adicional de 1100 U.M.;
- opcao3: A atividade 9 é realizada em 1 U.T. com um custo adicional de 200 U.M.;
- opcao4: A atividade 9 é realizada em 0 U.T. com um custo adicional de 400 U.M..

Estas variáveis são multiplicadas pela diferença entre a duração original da atividade e a nova duração.

```
arco_74: t4 >= t7 + 6 - 1 opcao1 - 2 opcao2; arco_78: t8 >= t7 + 6 - 1 opcao1 - 2 opcao2; arco_9f: tf >= t9 + 2 - 1 opcao3 - 2 opcao4;
```

Como apenas pode ser realizada uma das opções, são necessárias as seguintes restrições:

$$opcao1 + opcao2 \le 1;$$
  
 $opcao3 + opcao4 \le 1;$ 

Por fim, as seguintes, restrições são referentes aos valores das máximas reduções de tempo dos custos  $c_1$  e  $c_2$ :

```
rb2 <= 1;
ra2 <= 3;
ra3 <= 0.5;
                rb3 <= 0.5;
ra4 <= 2;
                rb4 <= 1;
ra5 <= 0.5;
                rb5 <= 0.5;
ra6 <= 1;
                rb6 <= 1;
ra8 <= 0.5;
                rb8 <= 0.5;
ra10 \le 0.5;
                rb10 \le 0.5;
ra11 <= 1;
                rb11 <= 1;
```

#### 2.1.2 Função Objetivo

A função objetivo deste problema visa minimizar o custo total da operação. Sendo que a soma dos custos normais das atividades é constante, esta não foi especificada na função. Deste modo, é apenas minimizada a soma dos custos adicionais relativos às reduções das durações das atividades.

```
min: 1000 \text{ ra}2 + 200 \text{ ra}3 + 800 \text{ ra}4 + 1600 \text{ ra}5 + 180 \text{ ra}6 + 200 \text{ ra}8 + 100 \text{ ra}10 + 600 \text{ ra}11 + 500 \text{ rb}2 + 100 \text{ rb}3 + 400 \text{ rb}4 + 800 \text{ rb}5 + 90 \text{ rb}6 + 100 \text{ rb}8 + 500 \text{ rb}10 + 300 \text{ rb}11 + 300 \text{ opcao}1 + 1100 \text{ opcao}2 + 200 \text{ opcao}3 + 400 \text{ opcao}4;
```

#### 2.2 Ficheiro de Input

bin opcao1, opcao2, opcao3, opcao4;

```
min: 1000 \text{ ra} + 200 \text{ ra} + 800 \text{ ra} + 1600 \text{ ra} + 180 \text{ ra} + 200 \text{ ra} + 100 \text{ ra} + 600 \text{ ra} + 1 + 100 \text{ ra} + 100 \text
500 \text{ rb2} + 100 \text{ rb3} + 400 \text{ rb4} + 800 \text{ rb5} + 90 \text{ rb6} + 100 \text{ rb8} + 500 \text{ rb10} + 300 \text{ rb11} +
300 \text{ opcao} 1 + 1100 \text{ opcao} 2 + 200 \text{ opcao} 3 + 400 \text{ opcao} 4;
opcao1 + opcao2 \le 1;
opcao3 + opcao4 \le 1;
tf \le 26;
arco i2: t2 >= ti + 0;
arco_i4: t4 >= ti + 0;
arco_{i6}: t6 >= ti + 0;
arco 23: t3 >= t2 + 7 - ra2 - rb2;
arco_3f: tf >= t3 + 2 - ra3 - rb3;
arco 42: t2 >= t4 + 9 - ra4 - rb4;
arco 45: t5 >= t4 + 9 - ra4 - rb4;
arco 53: t3 >= t5 + 4 - ra5 - rb5;
arco_5f: t3 >= t5 + 4 - ra5 - rb5;
arco_67: t7 >= t6 + 5 - ra6 - rb6;
arco 610: t10 >= t6 + 5 - ra6 - rb6;
arco 85: t5 >= t8 + 4 - ra8 - rb8;
arco 89: t9 > = t8 + 4 - ra8 - rb8;
arco_108: t8 >= t10 + 8 - ra10 - rb10;
arco _1011: t11 >= t10 + 8 - ra10 - rb10;
arco_119: t9 >= t11 + 7 - ra11 - rb11;
arco_{74}: t4 >= t7 + 6 - 1 opcao1 - 2 opcao2;
arco_{78}: t8 > = t7 + 6 - 1 opcao1 - 2 opcao2;
arco_9f: tf >= t9 + 2 - 1 opcao3 - 2 opcao4;
ra2 <= 3;
ra3 <= 0.5;
ra4 <= 2;
ra5 <= 0.5;
ra6 <= 1;
ra8 <= 0.5;
ra10 \le 0.5;
ra11 <= 1;
rb2 <= 1;
rb3 \le 0.5;
rb4 <= 1;
rb5 \le 0.5;
rb6 <= 1;
rb8 \le 0.5;
rb10 \le 0.5;
rb11 <= 1;
```

### $2.3 \quad Output \ LPS olve$

| Value of objective fu | ınction: 420.00000000 |
|-----------------------|-----------------------|
| Actual values of the  | variables:            |
| ra2                   | 0                     |
| ra3                   | 0.5                   |
| ra4                   | 0                     |
| ra5                   | Ö                     |
| ra6                   | 1                     |
| ra8                   | 0                     |
| ra10                  | 0                     |
| ra11                  | 0                     |
| rb2                   | 0                     |
| rb3                   | 0.5                   |
| rb4                   | 0                     |
| rb5                   | 0                     |
| rb6                   | 1                     |
| rb8                   | 0                     |
| rb10                  | 0                     |
| rb11                  | 0                     |
| opcao1                | 0                     |
| opcao2                | 0                     |
| opcao3                | 0                     |
| opcao4                | 0                     |
| tf                    | 26                    |
| t2                    | 18                    |
| ti                    | 0                     |
| t4                    | 9                     |
| t6                    | 0                     |
| t3                    | 25                    |
| t5                    | 18                    |
| t7                    | 3                     |
| t10                   | 3                     |
| t8                    | 11                    |
| t9                    | 18                    |
| t11                   | 11                    |

 $\textbf{Figura 2.3:} \ \textit{Output LPSolve}$ 

Analisando o resultado obtido, observa-se que, no total, são aplicadas as reduções da duração das atividades 3 e 6, sendo estas de 1 e 2 U.T. respetivamente. Tendo em conta os custos destas reduções de duração é possível validar o custo total obtido.

$$200 * 0.5 + 100 * 0.5 + 1 * 180 + 1 * 90 = 420$$

#### 2.4 Plano de Execução

Conforme o output obtido pelo LPSolve e o grafo associado ao projeto, foi desenvolvido o seguinte diagrama de Gantt representativo do plano de execução. Há que notar que cada linha representa a atividade indicada e, por exemplo, a primeira coluna corresponde ao intervalo de tempo entre 0 U.T. e 1 U.T..



Figura 2.4: Diagrama de Gantt do plano de execução

É possível confirmar que o tempo deste plano é de 26 U.M., tal como é pedido no enunciado.

### 3. Conclusão

Para a resolução deste problema de investigação operacional, começamos por modular o problema para o poder tratar e resolver com auxílio de software com tal propósito. Em particular, utilizamos o LPSolve, como nos era proposto, na tentativa de obter uma solução ótima para este problema.

Este trabalho ajudou-nos a resolver mais um tipo de problema de programação linear, e permitiu-nos melhorar as nossas capacidades de traduzir problemas concretos em modelações apropriadas que permitam a sua resolução, de um modo mais fácil e perceptível.