IMDb Movie data using python web-scrapping

Author: D.Sathyakala,

Data analyst Intern @ Senchola Technology Solutions

Web-scrapping

Import library files

```
import pandas as pd
from bs4 import BeautifulSoup as bs
import requests
import re
```

Steps

```
In [430... try:
             # loading url of top 250 movies of IMBb list
             user agent = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0
             # url of the IMDb website
             url = 'https://www.imdb.com/chart/top/?ref_=nv_mv_250'
             # Get the url from requests library
             response = requests.get(url,headers = {'User-Agent':user_agent,'Accept-Language' : 'en-US,en;q=0.5'})
             print(response)
             # Souping and arranging the html code
             soup = bs(response.text, 'html.parser')
             # Select table from the soup
             movies = soup.findAll('div', attrs = {'class':'sc-c7e5f54-0 gytZrF cli-children'})
             #print(movies)
             # Select the required coulmn for the dataframe
             movie name = []
             year = []
             time = []
             rating = []
             rating_type = []
             votes = []
             # Taking each records and building our dataframe
             for source in movies:
                 # Get movie name
                 name = source.div.a.text
                 movie name.append(name)
                 # Get year of release
                 year1 = source.find('div',class ="sc-c7e5f54-7 brlapf cli-title-metadata").find('span').text
                 year.append(year1)
                 # Get duration of movie
                 time1 = source.find('div',class ="sc-c7e5f54-7 brlapf cli-title-metadata").find('span').find next('span')
                 time.append(time1)
                 # Get rating type of movie
                 rating_type1 = source.find('div',class_="sc-c7e5f54-7 brlapf cli-title-metadata").find('span').find_nex
                 rating_type.append(rating_type1)
                 # Get voting rates of movie
                 vote1 = source.find('span',class_="ipc-rating-star--voteCount").text.replace('\xa0(','').replace(')',''
                 votes.append(vote1)
                 # Get the rating of movie
                 rating1 = source.find('div',class ="sc-e3e7b191-0 iKUUVe sc-c7e5f54-2 hCiLPi cli-ratings-container").te
                 rating.append(rating1)
         except Exception as e:
             print(e)
```

<Response [200]>

```
# Put all details into the Dataframe
df = pd.DataFrame({'Movie Name':movie_name, 'Duration':time, 'Released year':year, 'Rating': rating, 'Rated type
df
```

en.			4 -	-4	
4.0		- 4	는		

	Movie Name	Duration	Released year	Rating	Rated type	Votes
0	1. The Shawshank Redemption	2h 22m	1994	9.3	R	2.8M
1	2. The Godfather	2h 55m	1972	9.2	R	2M
2	3. The Dark Knight	2h 32m	2008	9.0	PG-13	2.8M
3	4. The Godfather Part II	3h 22m	1974	9.0	R	1.3M
4	5. 12 Angry Men	1h 36m	1957	9.0	Approved	839K
245	246. The 400 Blows	1h 39m	1959	8.1	Not Rated	125K
246	247. Persona	1h 23m	1966	8.1	Not Rated	128K
247	248. Aladdin	1h 30m	1992	8.0	G	452K
248	249. Life of Brian	1h 34m	1979	8.0	R	416K
249	250. Dances with Wolves	3h 1m	1990	8.0	PG-13	283K

250 rows × 6 columns

In [432... # Convert duration (hours) into minutes
def convert to minutes(runtime):

Here I will modify the column Movie Name, Duration, Votes in proper way

```
total minutes = 0
             parts = runtime.split()
             for part in parts:
                 if 'h' in part:
                     total_minutes += int(part.replace('h','')) * 60
                 elif 'm' in part:
                     total_minutes += int(part.replace('m',''))
             return total minutes
In [433... # Convert viewers count (Mega, Kilo) into whole value
         def convert_viewer_count(viewer_count_str):
              multiplier = 1
              if 'M' in viewer_count_str:
                  multiplier = 1e6
              elif 'K' in viewer_count_str:
                 multiplier = 1e3
              return int(float(viewer_count str.replace('M', '').replace('K', '')) * multiplier)
In [434... try:
             # loading url of top 250 movies of IMBb list
             user agent = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0
             # url of the IMDb website
             url = 'https://www.imdb.com/chart/top/?ref =nv mv 250'
             # Get the url from requests library
             response = requests.get(url,headers = {'User-Agent':user_agent,'Accept-Language' : 'en-US,en;q=0.5'})
             print(response)
             # Souping and arranging the html code
             soup = bs(response.text, 'html.parser')
             # Select table from the soup
             movies = soup.findAll('div', attrs = {'class':'sc-c7e5f54-0 gytZrF cli-children'})
             #print(movies)
             # Select the required coulmn for the dataframe
             rank = []
             movie name = []
             year = []
             time = []
             rating = []
             rating_type = []
             # Taking each records and building our dataframe
             for source in movies:
                 name = source.div.a.text
                 # Get the rank of the movie
                 rank1 = int(name.split('. ')[0])
                 # Get name of the movie
```

```
name1 = name.split('. ')[1]
        rank.append(rank1)
        movie_name.append(name1)
       # Get year of release
        year1 = source.find('div',class_="sc-c7e5f54-7 brlapf cli-title-metadata").find('span').text
       year.append(year1)
       # Get duration of movie in minutes
       time1 = source.find('div',class_="sc-c7e5f54-7 brlapf cli-title-metadata").find('span').find_next('span
        time1 = convert to minutes(time1)
       time.append(time1)
       # Get rating type of movie
        rating type1 = source.find('div',class ="sc-c7e5f54-7 brlapf cli-title-metadata").find('span').find next
        rating type.append(rating type1)
        # Get voting rates of movie in whole number
        vote1 = source.find('span',class ="ipc-rating-star--voteCount").text.replace('\xa0(','').replace(')',''
        vote1 = convert_viewer_count(vote1)
       votes.append(vote1)
       # Get the rating of movie
        rating1 = source.find('div',class_="sc-e3e7b191-0 iKUUVe sc-c7e5f54-2 hCiLPi cli-ratings-container").te
        rating.append(rating1)
except Exception as e:
    print(e)
```

<Response [200]>

Out[435.

```
# Put all details into the Dataframe
df1 = pd.DataFrame({'Rank':rank, 'Movie Name':movie_name, 'Year':year, 'Duration':time, 'Rating':rating, 'Rating'
df1
```

	Rank	Movie Name	Year	Duration	Rating	Rating type	Vote
0	1	The Shawshank Redemption	1994	142	9.3	R	2800000
1	2	The Godfather	1972	175	9.2	R	2000000
2	3	The Dark Knight	2008	152	9.0	PG-13	2800000
3	4	The Godfather Part II	1974	202	9.0	R	1300000
4	5	12 Angry Men	1957	96	9.0	Approved	839000
245	246	The 400 Blows	1959	99	8.1	Not Rated	125000
246	247	Persona	1966	83	8.1	Not Rated	128000
247	248	Aladdin	1992	90	8.0	G	452000
248	249	Life of Brian	1979	94	8.0	R	416000
249	250	Dances with Wolves	1990	181	8.0	PG-13	283000

250 rows × 7 columns

```
In [436... # Dounload the dataFrame into csv file
    df1.to_csv('IMDb dataset.csv',index = False, encoding = 'latin')
```

Data Exploration

```
In [437... # Load the dataset
data = pd.read_csv("IMDb dataset.csv",encoding="latin")
data
```

Out[437	437 R :		Movie Name	Year	Duration	Rating	Rating type	Vote
	0	1	The Shawshank Redemption	1994	142	9.3	R	2800000
	1	2	The Godfather	1972	175	9.2	R	2000000
	2	3	The Dark Knight	2008	152	9.0	PG-13	2800000
	3	4	The Godfather Part II	1974	202	9.0	R	1300000
	4	5	12 Angry Men	1957	96	9.0	Approved	839000
	245	246	The 400 Blows	1959	99	8.1	Not Rated	125000
	246	247	Persona	1966	83	8.1	Not Rated	128000
	247	248	Aladdin	1992	90	8.0	G	452000
	248	249	Life of Brian	1979	94	8.0	R	416000

181

8.0

PG-13 283000

Dances with Wolves 1990

250 rows × 7 columns

249 250

In [438... # Display all the details of dataframe data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 250 entries, 0 to 249 Data columns (total 7 columns):

Non-Null Count Dtype # Column Rank 250 non-null int64 Movie Name 250 non-null object 0 Rank object int64 Year 250 non-null 3 Duration 250 non-null int64 Rating 250 non-null Rating type 250 non-null 250 non-null float64 object 6 Vote int64 250 non-null dtypes: float64(1), int64(4), object(2)

memory usage: 13.8+ KB

illelilory usage: 13.6+ KB

In [439... # Display top 5 rows of the dataset data.head(5)

Out[439		Rank	Movie Name	Year	Duration	Rating	Rating type	Vote
0		1	The Shawshank Redemption	1994	142	9.3	R	2800000
	1	2	The Godfather	1972	175	9.2	R	2000000
	2	3	The Dark Knight	2008	152	9.0	PG-13	2800000
	3	4	The Godfather Part II	1974	202	9.0	R	1300000
	4	5	12 Angry Men	1957	96	9.0	Approved	839000

In [440... # Display bottom 5 rows of the dataset data.tail(5)

ut[440		Rank	Movie Name	Year	Duration	Rating	Rating type	Vote
	245	246	The 400 Blows	1959	99	8.1	Not Rated	125000
	246	247	Persona	1966	83	8.1	Not Rated	128000
	247	248	Aladdin	1992	90	8.0	G	452000
	248	249	Life of Brian	1979	94	8.0	R	416000
	249	250	Dances with Wolves	1990	181	8.0	PG-13	283000

In [441… # Display size of the dataset data.shape

Out[441... (250, 7)

In [442... # Display the statistics of the dataset
data.describe()

```
25%
                      63.250000 1966.250000 107.250000
                                                           8.100000 2.322500e+05
                50% 125.500000 1994.000000
                                             126.500000
                                                           8.200000 5.405000e+05
                     187.750000 2007.000000
                                             145.750000
                                                           8.400000 9.920000e+05
                                                           9.300000 2.800000e+06
                max 250.000000 2023.000000 238.000000
    In [443... # Display column name of the dataset
              data.columns
    Out[443... Index(['Rank', 'Movie Name', 'Year', 'Duration', 'Rating', 'Rating type',
                       'Vote'],
                     dtype='object')
    In [444… # Check the duplicate data
              data.duplicated().sum()
    Out[444... 0
    In [445... # Identify the null values
              data.isna()
    Out[445...
                Rank Movie Name Year Duration Rating Rating type Vote
                0 False
                                False False
                                                False
                                                       False
                                                                   False False
                1 False
                                False
                                      False
                                                False
                                                       False
                                                                   False False
                2 False
                                False
                                     False
                                                False
                                                       False
                                                                   False
                                                                        False
                3 False
                                False
                                      False
                                                False
                                                                   False
                                                                        False
                                                       False
                4 False
                                False
                                     False
                                                False
                                                       False
                                                                   False
                                                                        False
                ...
              245 False
                                False False
                                                False
                                                       False
                                                                   False False
              246 False
                                False
                                      False
                                                False
                                                       False
                                                                   False False
              247 False
                                                                   False False
                                False
                                     False
                                                False
                                                       False
              248 False
                                                                   False False
                                False False
                                                False
                                                       False
              249 False
                                False False
                                                False
                                                       False
                                                                   False False
             250 rows × 7 columns
    In [446... # Identify the null values
              data.isna().sum()
    Out[446...
              Rank
                               0
              Movie Name
                               0
              Year
                               0
              Duration
                               0
                               0
              Rating
              Rating type
                               0
              Vote
              dtype: int64
     In [ ]:
     In [ ]:
     In [ ]:
Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
```

Out[442...

Rank

mean 125.500000 1986.716000

1.000000 1921.000000

72.312977

count 250 000000

std

min

Year

25.324785

250 000000 250 000000

Duration

129.108000

30.002549

45.000000

Rating

250.000000 2.500000e+02

8.306400 6.759520e+05

0.232757 5.435674e+05

8.000000 3.700000e+04

Vote

IMDb Top 250 Movies

No. of movie 250

Total votes 169M Avg. vote 675.94K Avg. rating 8.31

Avg. Duration Max. rated Movie
The Shawshank Redemption

Movie rating type distribution

Top 5 movie by Duration

Top 10 movie by votes

lop 10 movie by votes											
Year	Movie Name	Votes ▼	Duration	Rating							
2008	The Dark Knight	2800000	152	9.0	0						
1994	The Shawshank Redemption	2800000	142	9.3	0						
2010	Inception	2500000	148	8.8	0						
1999	Fight Club	2300000	139	8.8	0						
1994	Forrest Gump	2200000	142	8.8	0						
1994	Pulp Fiction	2200000	154	8.9	0						
2014	Interstellar	2000000	169	8.7	0						
1972	The Godfather	2000000	175	9.2	0						
2001	The Lord of the Rings: The Fellowship of the Ring	2000000	178	8.8	0						
1999	The Matrix	2000000	136	8.7	0						

Rating vs No. of movies and Votes

Correlation between duration and votes

No. of Movie by Year

