Monte Carlo Tree Search und deren Anwendung in Echtzeitspielen

Dr. Johannes Riesterer

Motivation

Künstliche Intelligenz in Spielen

Monte Carlo Tree Search (MCTS) ist ein Verfahren um künstliche Intelligenz in Spielen zu implementieren.

Was ist ein Spiel?

Definition

Ein Spiel besteht aus den folgenden Daten:

- Menge S von Zuständen.
- Startzustand $s_0 \in S$.
- Teilmenge $S_T \subset S$ von Terminalzuständen.
- Anzahl der Spieler $n \in \mathbb{N}$.
- Auswahlfunktion des Spielers $\rho: \mathcal{S} \to \{1, \cdots, n\}$
- Menge A von Aktionen.
- Zustandsübergangsfunktuion $f: S \times A \rightarrow S$.
- Bewertungsfunktion $R: S^k \to \mathbb{R}$, die von den Spielern optimiert werden muss.

Definition

Eine Abbildung $P: S \rightarrow A$ heißt Strategie.

Gametree

Optimale Strategie

Baumsuche

Durchsuche den Baum um Strategie auszuwählen.

Vergleiche hinreichend viele Möglichkeiten

Oft (nahezu) unmöglich und nur für triviale Spiele echtzeitfähig!

(a) 255.169 verschiedene Spielverläufe

(b) Schachmatt in 42 Zügen?

Optimale Strategie Baumsuche

Monte Carlo tree search

Monte Carlo tree search

K-Bandit Problem

An jedem Knoten s_{ij} das Problem:

- Gegeben sind k binäre Zufallsvariablen $X_1, \dots, X_k \in \{0, 1\}$ mit unbekannten Wahrscheinlichkeitsfunktion p_1, \dots, p_k (Banditen).
- Eine der Zufallsvariablen X_i wird ausgewählt und eine Stichprobe durchgeführt.
- Verbessere Auswahlstrategie P_N , so dass nach N Durchgängen möglichst oft die Zufallsvariable mit dem höchsten Erwartungswert (höchste Gewinnwahrscheinlichkeit) ausgewählt wurde.

Gesetz der großen Zahlen

• Seien $(X_m)_1, \cdots, (X_m)_N$ Stichproben der m-ten Zufallsvariable und $(\overline{X_m})_N := \frac{1}{N} \sum_{i=1}^N (X_m)_i$. Dann gilt

$$(\overline{X_m})_N \xrightarrow{N \to \infty} \mathbb{E}(X_m)$$
 (in Wahrscheinlichkeit).

 Je öfter man einen Banditen spielt, desto verlässlicher können wir den durchschnittlichen Gewinn durch den momentan beobachteten durchschnittlichen Gewinn annähern.

Ausbeutung VS Erkundung

Möglichst oft den Banditen mit momentan besten beobachteten durchschnittlichen Gewinn spielen und trotzdem alle Banditen häufig genug ausprobieren.

ϵ -greedy

P_N :

- Sei j der Index mit $(\overline{X}_j)_N = \max_{1 \le i \le k} (\overline{X}_i)_N$.
- wähle mit Wahrscheinlichkeit ϵ den Banditen X_j und mit Wahrscheinlichkeit 1ϵ zufällig einen der Übrigen.

$$P_N \rightarrow P_{N+1}$$
:

• Update $(\overline{X}_j)_{N+1}$

Monte Carlo tree search K-Bandit Problem

UCB1

P_N :

• Wähle Bandit X_j , so dass $(\overline{X}_j)_N + \sqrt{\frac{2 \ln(N)}{T_j(N)}}$ maximal ist.

$$P_N \rightarrow P_{N+1}$$
:

• Update $(\overline{X}_j)_{N+1}$, $T_j(N+1)$

Durchschnittlicher Fehlgriff

$$T_i(N):=$$
 Anzahl der Wahlen von X_i nach N Durchgängen $\mu_j:=\mathbb{E}(X_j)$ $\mu:=\max_{1\leq i\leq k}\mu_i$

Der Regret ist definiert durch $R(N) := \mu \cdot N - \sum_{i=1}^k \mu_i \cdot \mathbb{E}(T_i(N))$.

ϵ -greedy

 $R_N < O(N)$ ist linear begrenzt.

UCB1

 $R_N < O(Log(N))$ ist logarithmisch begrenz

Monte Carlo tree search

Zusammenfassung

- Wende an jedem Knoten s_{ij} des Gamtree eine fest gewählte Monte-Carlo-Strategie an um nächsten Knoten auszuwählen (z.B. ϵ -greedy, UCB1).
- Der Baum wird dann entsprechend dieser Regel durchlaufen.
- Gelangt man an einen Terminalzustand, so werden die gewonnen Information zum update der Strategie jedes Knotens angewendet.

MCTS mit UCB1

Mittels Monte Carlo Tree search, bei der UCB1 als Standardstrategie verwendet wird, wurden erstmals nennenswerte Erfolge in Go erzielt!

