MAL 741 (Fractal Geometry) (Major Test 2015)

Max Time: 2 hours

Max Marks: 40

- [3] (a) Define s-dimensional Hausdorff outer measure H^s. (b) Show that for any E, $\sup\{s \geq 0 : \mathcal{H}^s(E) = \infty\} = \inf\{s \geq 0 : \mathcal{H}^s(E) = 0\}.$ (a) Define the Hausdorff metric on the set of all non-empty closed and bounded subsets of a [2] metric space. [2] (b) Prove that the Hausdorff metric satisfies the triangle inequality. (c) What is the distance between the intervals [0, 1] and [2, 3] of ℝ in the Hausdorff metric. [1] (a) Let $E = \bigcup_{k=1}^{\infty} L_k$, where L_k is the line segment $\{(x, \frac{1}{\sqrt{k}}) : 0 \le x \le \frac{1}{\sqrt{k}}\}$ in \mathbb{R}^2 . Show that [4] $\lim_{B} E \geq 4/3$. (Hint: You may need to obtain the inequality $\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \ge 2\sqrt{n+1} - 2$.) [1] (b) What is the Hausdorff dimension of E. 4. Let $f:[0,1]\to\mathbb{R}$ be a function satisfying $|f(u)-f(u)|\leq c|t-u|^{2-s}$ for all $t,u\in[0,1]$, where [5] c>0 and $1\leq s\leq 2$. Show that $\overline{\dim}_B$ graph $f\leq s$ and $\mathcal{H}^s(\operatorname{graph} f)<\infty$. Let μ be a mass distribution on \mathbb{R}^n , let $F \subset \mathbb{R}^n$ be a Borel set and let $0 < c < \infty$ be a constant. Prove that if $\overline{\lim}_{r\to 0}\mu(B(x,r))/r^s < c$ for all $x\in F$, then $\mathcal{H}^s(F)\geq \mu(F)/c$. [4]
- Let f(z) be a polynomial of degree at least 2. Prove that J(f) is non-empty and compact. [6]
- . Prove that J(f) contains all repelling periodic points of f for any polynomial of degree ≥ 2 . [4]
- 8. (a) Let $f(z) = z^2 + 2z$. Determine the Julia set J(f).
 - (b) Let $f_c(z) = z^2 + c$ and $|c| \le \frac{1}{4}$. Show that $\overline{B(0, \frac{1}{2})} \subset K(f_c) \subset B(0, 2)$.

Scanned by CamScanner