

TÉCNICA CIRÚRGICA

AESCULAP® Columbus® Streamlined

Artroplastia de Joelho

DESCUBRA A UNIVERSALIDADE DESCUBRA A INDIVIDUALIDADE

CONTEÚDO

4	VISÃO GERAL DA TÉCNICA CONVENCIONAL
6	COMPATIBILIDADE DOS IMPLANTES DA COLUMBUS°
7	PLANEJAMENTO PRÉ-OPERATÓRIO
8	OPÇÃO: TÉCNICA FÊMUR PRIMEIRO
10	PREPARAÇÃO DA TÍBIA
15	OPÇÃO: CUNHA TIBIAL
16	MEDIÇÃO DO ESPAÇO DE EXTENSÃO E FLEXÃO
17	RESSECÇÃO DISTAL DO FÊMUR
19	DETERMINAÇÃO DO TAMANHO DO IMPLANTE FEMORAL
20	AJUSTE DA ROTAÇÃO DO COMPONENTE FEMORAL
22	DETERMINAÇÃO DA ALTURA DO POLIETILENO
23	DETERMINAÇÃO DO TAMANHO DO COMPONENTE TIBIAL
24	PREPARAÇÃO DE PATELA
25	IMPLANTES DE PROVA
26	VERSÃO PS ESTABILIZAÇÃO POSTERIOR
28	PREPARAÇÃO FINAL DA HASTE DA TÍBIA
29	IMPLANTAÇÃO DA PRÓTESE DE PROVA
31	IMPLANTAÇÃO DEFINITIVA
32	VISÃO GERAL INSTRUMENTAL COLUMBUS° STREAMLINED
42	DIMENSÕES GERAIS DOS IMPLANTES COLUMBUS°
44	INFORMAÇÕES DE PEDIDO DA COLUMBUS°
 55	MATRIZ DE IMPLANTES DA COLUMBUS°

ARTROPLASTIA DE JOELHO

ARTROPLASTIA DE JOELHO

COMPATIBILIDADE DOS IMPLANTES DA COLUMBUSº

PLANEJAMENTO PRÉ-OPERATÓRIO

O sistema de joelho da Columbus* fornece modelos de raios-X que ajudam o cirurgião a definir os seguintes parâmetros:

- Ângulo entre o eixo femoral anatômico e mecânico
- Altura da ressecção da superfície articular da tíbia intacta
- Pontos de entrada para as hastes de alinhamento intramedular
- Tamanhos dos implantes
- Posição do osteófitos

Os seguintes raios-x são necessários para realizar a análise de raios-x:

- Articulação do joelho na projeção a.p.: joelho em extensão, centrado sobre a patela distal.
- Articulação do joelho em projeção lateral: joelho em 30° de flexão, centrado sobre a patela distal.
- Raios x da perna inteira na postura monopodal suportada.
- Raios x da patela tangencial: joelho em 30° de flexão, radiação caudocranial, centrado sobre a patela distal.

Os modelos de raios-x da Columbus[®] devem ser usados.

O ângulo entre o eixo femoral mecânico e anatômico é medido usando o modelo de perna inteira. O centro da articulação, linha articular e eixos femorais mecânicos são visíveis no modelo de raios x e são trazidos para o alinhamento com a imagem de raios x. A linha pontilhada que mais se aproxima do eixo anatômico dá o ângulo correto. Para definir a posição da ressecção de tíbia, todo o modelo de perna é trazido para alinhamento com os raios x. A altura de ressecção é dada pela escala de 10-22 mm. A representação da haste de alinhamento intramedular do fêmur no modelo de perna inteira faz com que seja possível verificar o ponto de posição da haste de entrada comparando-o a imagem de raios x. Se deformidades ósseas pronunciadas estiverem presentes, nem sempre é possível utilizar a haste de alinhamento. Um conjunto completo de modelos de raios x é fornecido para a definição pré-operatória dos tamanhos adequados de implante. A localização de osteófitos permite a sua fácil remoção, aumentando a mobilidade das articulações.

O resultado do planejamento pré-operatório deve ser documentado no prontuário do paciente.

ARTROPLASTIA DE JOELHO

OPÇÃO: TÉCNICA FÊMUR PRIMEIRO

O ponto de entrada na cavidade medular do fêmur é preparado utilizando um escareador de acordo com o planejamento pré-operatório.

O canal medular é aberto com uma broca de ø 9 mm. A haste de fêmur intramedular é de ø 8 mm com o seu design especial para minimizar o risco de embolia que é cuidadosamente introduzido dentro da cavidade medular, usando uma haste e incluindo o sistema de fixação de corte distal colocado sobre ele.

O bloco de corte do fêmur é empurrado para dentro da guia no sistema de fixação.

Este sistema oferece a possibilidade de ajuste de intervalo de 1º de varo/valgo, conforme exigido pelo planejamento pré-operatório. A gama de ajuste se estende a 11°.

A altura da ressecção distal definida é estabelecida ao ajustar o suporte do bloco de corte. Ressecções de 4 mm a 14 mm são possíveis. A altura da ressecção distal normal deve ser de 9 mm (= espessura do implante do fêmur distal). O dispositivo de medição femoral dá uma informação sobre o tamanho do implante no osso distal.

O bloco de corte é fixado ao fêmur usando dois pinos sem cabeça através dos furos 'O'.

Um pino de convergência adicional é colocado para estabilizar o bloco.

Observe:

- Espessura do implante femoral distal: 9 mm
- Equilíbrio dos ligamentos
- Eixo de alinhamento (ângulo valgo)
- Espessura da lâmina de serra: 1,27 mm

A ressecção é realizada com atenção especial para proteger o tecido mole de uma lesão. A utilização de afastadores adequados de tecidos moles é recomendada.

O tamanho do fêmur e a largura médio-lateral do osso femoral são novamente medidos utilizando o dispositivo de medição femoral e a régua femoral. O gancho é colocado no córtex lateral e plano contra a ressecção distal. A largura ML é lida diretamente na escala lateral do "fêmur" da régua.

Ressecção distal do fêmur

Ressecção distal do fêmur

Determinação do tamanho do fêmur

O dispositivo de orientação femoral é colocado diretamente em contato com o fêmur distal ressecado. A rotação do bloco é definida utilizando a linha de Whiteside. O dispositivo é girado até que esteja paralelo à linha de Whiteside.

Uma vez que a orientação ideal tiver sido encontrada, os furos de encaixe para o bloco de corte 4-em-1 são perfurados através dos furos do dispositivo que correspondem ao tamanho do componente femoral selecionado.

Determinação do tamanho do fêmur

Os furos L, M e S (Grande, Médio e Pequeno) são os furos guia para a perfuração dos furos para os dois encaixes de fixação dos blocos de corte da APC. Os blocos de corte também têm o respectivo indicador L, M ou S, conforme abaixo:

Faixa de corte	tam. bloco
L	6, 7, 8
M	3, 4, 5
S	1, 2

A alça é ligada ao tamanho apropriado de guia de corte 4-em-1 da Columbus* e posicionada nos orifícios pré-perfurados. A guia de corte é impactada até que ela se encontre em contato completo com a ressecção distal. Depois disso, ela deve ser fixada por meio de dois pinos com rosca convergentes com cabeça.

A fixação da guia de corte é feita por um pino convergente medial e lateral.

A sequência de corte deve ser a seguinte:

- ① corte anterior
- 2 corte posterior
- 3 corte chanfrado posterior
- 4 corte chanfrado anterior

Durante cada corte do osso, devem ser tomados cuidados especiais para proteger os tecidos moles circundantes através do uso de afastadores de tecidos apropriados. Depois que todas as ressecções forem concluídas, os pinos de fixação podem ser removidos.

Ressecção de fêmur

Ressecção de fêmur

ARTROPLASTIA DE JOELHO

1. PREPARAÇÃO DA TÍBIA - ALINHAMENTO EXTRAMEDULAR

O sistema de joelho da Columbus* permite dois procedimentos de alinhamento diferentes:

- alinhamento Extramedular
- alinhamento Intramedular

1. ALINHAMENTO EXTRAMEDULAR

O sistema de alinhamento extramedular é montado na mesa de operação e colocado em posição paralela ao eixo da tíbia.

O alinhamento rotacional é realizado com a extensão da braçadeira ma-

Tem por objetivo atingir o segundo osso metatarso. O sistema de alinhamento oferece a possibilidade de ajustar o bloco de corte tibial em todos os planos:

- Ajuste de altura (A)
- Alinhamento no plano sagital (B)
- Alinhamento varo/valgo (C)

1 Ajuste de altura

A altura da ressecção é definida no planejamento pré-operatório. O objetivo é de remover qualquer defeito na superfície da articulação da tíbia da forma mais completa possível, a fim de criar uma base para a platô tibial no osso intacto. O medidor (T) é configurado para a altura definida e introduzido na abertura do corte. O comprimento do sistema de alinhamento extramedular é então diminuído através da liberação do parafuso (1) até que a medidor entre em contato com um ponto correspondente à linha da articulação.

• Observe: O liner de polietileno já tem uma inclinação posterior de 3°.

Alinhamento no plano sagital

O alinhamento no plano sagital (paralelo ao eixo mecânico) é alcançado através da liberação do parafuso (2). A distância entre as linhas da braçadeira maleolar corresponde a uma inclinação posterior de 1° com uma tíbia com comprimento de 40 cm.

③ Alinhamento varo/valgo

Através da liberação do parafuso (3) que trava a peça na braçadeira maleolar pode ser ajustada no sentido médial-lateral. A distância entre cada linha na escala corresponde a uma alteração de 1° com uma tíbia com comprimento de 40 cm.

Sistema de alinhamento extramedular

Preparação da tíbia

2. PREPARAÇÃO DA TÍBIA - ALINHAMENTO INTRAMEDULAR

O ponto de entrada na cavidade medular da tíbia é preparado utilizando um escareador de acordo com o planejamento pré-operatório. Ele geralmente está por trás da inserção do ligamento cruzado anterior.

A cavidade medular é aberta com a broca de Ø 9 mm.

A haste intramedular da tíbia de \emptyset 8 mm, com o seu design especial para minimizar o risco de embolia, é cuidadosamente introduzida dentro da cavidade medular até a marcação usando haste com o suporte para o bloco de corte montado no mesmo.

O sistema de alinhamento intramedular é montado na mesa de operação e fixado na haste intramedular da tíbia.

Assim como com o sistema extramedular, esta versão do sistema de alinhamento também oferece a possibilidade de ajustar o bloco de corte da tíbia em todos os planos.

 Observe: Para abordagem intramedular você deve usar o bloco de corte da tíbia simétrico.

Ajuste de altura

A altura de ressecção é definida durante o planejamento pré-operatório.O medidor (T) é configurado para a altura definida e introduzido na abertura de corte.

O instrumental de alinhamento intramedular é reduzido na haste intramedular da tíbia até a medidor entrar em contato com o ponto da linha da articulação original.

2 Alinhamento no plano sagital

O valor de inclinação da tíbia pode ser lido na escala (4). O alinhamento no plano sagital (paralelo ao eixo mecânico) é obtido rodando o parafuso de ajuste (S).

• Observe: O liner de polietileno já tem uma inclinação posterior de 3°.

③ Alinhamento varo/valgo

Alinhamento varo/valgo é alcançado através do parafuso de ajuste (V). O alinhamento escolhido pode ser lido na escala (5).

Preparação da tíbia intramedular

Preparação da tíbia intramedular

INSTRUMENTAÇÃO

(sistema de alinhamento intramedular)

INSTRUMENTAÇÃO

(sistema de alinhamento extramedular)

ARTROPLASTIA DE JOELHO

3. RESSECÇÃO DO PLATÔ TIBIAL

O bloco de corte é fixado ao osso com quatro pinos com rosca da seguinte maneira. Dois pinos com rosca sem cabeça são inseridos nos furos frontais marcadas '0'. Dois outros pinos com rosca com cabeças são então inseridos nos orifícios convergentes para fixar o bloco de corte contra o movimento durante a ressecção. Após a remoção dos instrumentais de alinhamento extramedular ou intramedular, a ressecção é realizada utilizando uma lâmina de serra de 1,27 mm de espessura. Esta etapa deve ser realizada com muito cuidado, uma vez que o ligamento cruzado posterior e os ligamentos colaterais não podem ser danificados. A ressecção é normalmente realizada a uma inclinação de 0°.

Observe: Se necessário, você pode usar os dois pinos paralelos para colocar o bloco adequado sobre o osso. Na profundidade necessária dois pinos adicionais sem cabeça são inseridos. Após a remoção do bloco de movimento e os dois primeiros pinos você pode anexar a guia de corte novamente e executar o corte para a cunha unilateral.

Ressecção tibial

VERIFICAÇÃO DA ALTURA DA RESSECÇÃO TIBIAL

A altura da ressecção pode ser verificada através da inserção de uma platô tibial de prova com uma superfície de prova deslizante. Isso torna possível verificar o espaço de flexão é equilibrado e epaço suficiente medial e lateralmente.

 Observe: Se os espaços forem assimétricos, a liberação do ligamento do lado mais estreito deve ser considerada sem esquecer a possível rotação futura do componente femoral. Isto não deve ser levado em conta se a assimetria for causada por um defeito ósseo do côndilo femoral posterior.

Verificação da altura da ressecção tibial

VERIFICAÇÃO DO EIXO MECÂNICO DA TÍBIA

Com uma platô tibial de prova no lugar, o eixo pode ser verificado como se segue. A alça deve ser ligada à platô tibial de prova.

A haste de medição com o encaixe para a segunda haste de medição pode ser inserida na alça, e a segunda haste subsequentemente colocada no encaixe.

O eixo é verificado por comparação da posição da haste de medição para o ponto médio da articulação do tornozelo.

Verificação do eixo tibial

OPÇÃO: CUNHA TIBIAL

Para os pequenos defeitos do platô tibial o sistema de joelho da Columbus* oferece cunhas unilaterais em alturas de 4 mm e 8 mm.

Após a ressecção padrão assimétrica o guia de corte deve ser removido. Os dois pinos com rosca paralelos sem cabeça são usados para colocar o bloco de movimento adequado no osso. Dois pinos com rosca adicionais sem cabeça devem ser inseridos de forma paralela na profundidade requerida. Depois de retirar o bloco de movimento e os primeiros dois pinos com rosca paralelos a guia de corte assimétrico pode ser fixada ao osso novamente. Fixado por dois pinos convergentes ao osso a ressecção é realizada utilizando uma lâmina de serra de 1,27 mm de espessura.

Observe: Para os testes com os Implantes de prova a cunha unilateral correta deve ser aparafusado na platô tibial de prova. Durante a medição do espaço de extensão e flexão a altura da cunha unilateral é adicionada no lado do corte da tíbia. Uma platô tibial CRA/PSA da Columbus* que oferece a possibilidade de aparafusar a cunha unilateral deve ser utilizada para o implante definitivo.

Ressecção tibial

Ressecção Tibial para espaçador unilateral

Montagem do platô tibial espaçador unilateral da tíbia

Ressecção tibial para espaçador unilateral

ARTROPLASTIA DE JOELHO

4. MEDIÇÃO DO ESPAÇO DE EXTENSÃO E FLEXÃO

Após a ressecção do platô tibial, é aconselhável verificar a tensão ligamentar. A fim de alcançar este objetivo, os osteófitos na cabeça da tíbia e nos côndilos femorais devem ser completamente removidos. Esta medida faz com que seja possível calcular a altura de ressecção no fêmur distal (a altura a ser alcançada é de 9 mm de ressecção no côndilo intacto).

- Medir espaço de flexão (FG)
- Medir espaço de extensão (EG)
- Calcular altura de ressecção distal = 9 mm EG + FG

O tamanho dos espaços de flexão e extensão medial e lateralmente é lido no elemento de distração. O número lido é o que está no nível de calço móvel com a extremidade da luva (ver setas na Fig. 17 e Fig. 18).

Observe: Se houver assimetria médio-lateral (mais de 3 mm), a liberação do ligamento deve ser realizada no lado mais estreito (medial para varo, lateral para valgo). Em flexão, a possível rotação futura do componente femoral deve ser levada conta. Após a liberação do ligamento os espaços de flexão e extensão devem ser reavaliados e o procedimento de liberação repetido, se necessário. A diferença médio-lateral de 2 mm é aceitável.

Exemplo: assimetria médio-lateral em extensão

Medição medial de 6 mm e medição lateral de 12 mm: liberação medial até medição medial é 9-10 mm e medição lateral é de 12 mm.

PLANEJAMENTO DA RESSECÇÃO DISTAL DO FÊMUR

A prótese de fêmur distal tem 9 mm de espessura para todos os tamanhos. Assim, o cálculo para a altura de ressecção distal é: 9 mm – EG + FG. Se a diferença de tamanho existe entre os espaços de flexão e extensão (= 0), existem várias possibilidades para resolver isso. O espaço de extensão pode ser ajustado para o espaçoem flexão com máx. de \pm 2 mm, alterando a altura de Ressecção distal do fêmur. Alternativamente, o espaço de flexão pode ser adaptado para o espaço de extensão pela escolha de um implante femoral menor ou maior (este é um método melhor, uma vez que preserva a linha articular). Outras possibilidades existem na construção do côndilo femoral distal com defeito (por exemplo, com o osso).

Exemplo: espaços de flexão e extensão assimétrica FG de 6 mm e simétrica EG de 12 mm: selecione um componente femoral menor, levando em conta o tamanho da caixa. Do F5 ao F4: FG 6 mm + 4 mm (caixa) = FG 10 mm/EG 12 mm

Exemplo: cálculo da altura da ressecção distal: 9 mm - EG 12 mm + FG 10 mm = 7 mm

Medição do espaço de flexão

Medição do espaço de extensão

Tamanho	AP	Caixa	Diferença-	Diferença+
F1	50	34	0	3
F2	53	37	3	3
F3	56.5	40	3	3.5
F4	60.5	43.5	3.5	4
F5	65	47.5	4	4.5
F6	70	52	4.5	5
F7	75.5	57	5	6
F8	80.5	63	6	-

Medidas em [mm]

5. RESSECÇÃO DISTAL DO FÊMUR

O ponto de entrada na cavidade medular do fêmur é preparado utilizando um escareador de acordo com o planejamento pré-operatório.

O canal medular é aberto com uma broca de Ø 9 mm. A haste do fêmur intramedular de Ø 8 mm com o seu design especial para minimizar o risco de embolia é cuidadosamente introduzido dentro da cavidade medular, usando uma haste e incluindo o sistema de fixação de corte distal colocado sobre ele.

O bloco de corte do fêmur é empurrado para dentro da guia no sistema de fixação.

Este sistema oferece a possibilidade de ajuste de varo/valgo em intervalos de 1°, conforme exigido pelo planejamento pré-operatório. A gama de ajuste se estende a 11°.

A altura da ressecção distal definida é estabelecida ao ajustar o suporte do bloco de corte. Ressecções de 4 mm a 14 mm são possíveis. A altura da ressecção distal normal deve ser de 9 mm (= espessura do implante do fêmur distal). Um desvio desta pode ocorrer como um resultado da etapa 4.

Ressecção distal do fêmur

Ressecção distal do fêmur

ARTROPLASTIA DE JOELHO

VERIFICAÇÃO DO EIXO MECÂNICO DA PERNA

O eixo pode ser verificado ao colocar o suporte para a haste de medição dentro da abertura do bloco de corte do femoral. A haste de medição com o encaixe para a segunda haste de medição pode então ser inserida no suporte e a segunda haste de medição fixada no encaixe.

O eixo é verificado por comparação da posição da haste de medição para o ponto médio da cabeça femoral.

O bloco de corte é fixado no osso usando pinos com rosca. Dois pinos com rosca sem cabeça são inseridos nos furos frontais marcados '0'.

Dois outros pinos com rosca com cabeças são então inseridos nos orifícios convergentes para travar o bloco de corte deslizando até o fêmur.

O sistema de fixação e a haste intramedular do fêmur são removidos, deixando apenas o bloco de corte fixado ao osso.

 Observe: Usando o distrator é possível estabelecer se um espaço da articulação adequado foi alcançado na extensão (ver "Medição do espaço de extensão e flexão usando o distrator como um bloco de distância" página 16).

Verificação do eixo da perna

Ressecção distal do fêmur

6. DETERMINAÇÃO DO TAMANHO DO IMPLANTE FEMORAL

O instrumental para determinação do tamanho do implante femoral é colocado sobre a superfície de ressecção distal e em contato com os côndilos posteriores. Ele é então alinhado de forma médio-lateral com o objetivo de alcançar a maior congruência possível com a superfície de Ressecção distal do fêmur.

Determinação do tamanho do fêmur

O tamanho da prótese femoral pode ser lido no lado distal do indicador de tamanho (A). A medidor móvel é utilizada para estabelecer o ponto no córtex lateral anterior em que a superfície do implante femoral deve terminar. O tamanho também é indicado na parte superior do medidor (B). Os furos L, M e S (Grande, Médio e Pequeno) são os furos de guia para a perfuração dos furos para os dois encaixes de fixação dos blocos de corte APC. Os blocos de corte também têm o respectivo indicador L, M ou S, conforme abaixo:

Faixa de corte	tam. bloco
L	6, 7, 8
M	3, 4, 5
S	1, 2

Determinação do tamanho do fêmur

Determinação do tamanho do fêmur

ARTROPLASTIA DE JOELHO

7. AJUSTE DA ROTAÇÃO DO COMPONENTE FEMORAL

Se as placas forem corretamente colocadas sobre os côndilos posteriores, o posicionamento da medidor no córtex femoral anterior dá o tamanho do componente femoral (SZ). A combinação do mecanismo separado 'N (Neutro)' e o Tamanho de Ajuste devem ser fixados em uma linha com o SZ indicador de tamanho. Se este for um tamanho completo, a linha sob o tamanho do fêmur exibido (aqui M5) cria uma linha com SZ e N. Se o indicador SZ mostra um tamanho intermediário, o tamanho deve ser escolhido e ajustado com o parafuso de posicionamento (A). O Tamanho de Ajuste é ajustado usando o mecanismo separado, que é fixado com o parafuso (A).

A ressecção do córtex anterior é ajustada movendo a posição das aberturas dos furos. Este movimento pode ser lido em milímetros na escala de tamanho SZ.

Exemplos: sem rotação externa

O indicador está em tamanho completo 5. Implantação: perfuração nos dois furos inferiores \square \square . Com esta configuração, 8 mm de osso vai ser ressecada no lado posterior.

com 3° de rotação externa

O furo lateral vai ser perfurado no furo inferior \square e o furo médio no lado oposto será perfurado no furo superior \square , tal como ilustrado. O exemplo apresentado é para a perna direita.

8. SELECIONE O TAMANHO DO FÊMUR

Os pontos para consideração na escolha do tamanho do componente femoral são:

- Evitar o subcorte ou saliências do implante na cortical femoral anterior: subcorte ocasiona um risco de fratura e a protrusão pode aumentar a pressão retropatelar.
- Iguale o espaço de flexão ao espaço de extensão: os furos abertos definem a posição do bloco de corte APC. Subsequentemente, alterar o tamanho do bloco de corte APC possibilita alterar a distância de flexão (ver tabela na página 16). Na escolha do componente, assimetrias entre o FG e EG decorrentes da etapa 4 devem ser levadas em conta, tendo a classificação de furo de perfuração (L, M ou S). Se a mudança de tamanho significa mudar para outra faixa de tamanho, os furos devem ser feitos novamente. No caso de uma mudança para um menor ou um maior tamanho do fêmur, os furos já existentes não podem ser utilizados. Também não no mesmo grupo. O instrumental para determinação do tamanho deve ser posicionado mais uma vez na superfície de corte distal. O contato entre os dois calços posteriores e o osso posterior ressecado é necessário. O medidor anterior deve estar em contato com a superfície anterior ressecada. Ao utilizar o mecanismo de ajuste de tamanho separado, o dispositivo é movido anteriormente para o próximo tamanho menor. O mecanismo é fixado nesta posição apertando o parafuso (A). Os novos furos devem ser perfurados no grupo correto.

Determinação do tamanho do fêmur

Observe: sempre aperte o parafuso (A) firmemente após o ajuste.

Determinação do tamanho do fêmur

9. RESSECÇÃO APC

Examplo:

Da Etapa 4: FG 10 mm; EG 12 mm

Altura da ressecção distal do fêmur = 7 mm

Da Etapa 7: tamanho do fêmur 5, indicador de S: N

Ajustar os furos de perfuração em "M" e aplicar o bloco de corte APC de

tamanho 4.

Resultado: simetria entre FG e EG

9. RESSECÇÃO DO APC

Opcional: A ressecção posterior é executada primeiro, usando o bloco de corte APC apropriado. Os espaços de flexão e de extensão são verificados subsequentemente para a altura adequada (veja 'Medição do espaço de extensão e de flexão usando distrator como um bloco de distância' na página 16). Se os resultados forem satisfatórios, os pinos anteriores podem ser removidos. As três ressecções restantes são realizadas, então, usando o bloco de corte APC.

As quatro ressecções (ressecções anteriores e posteriores, além dos chanfros anteriores e posteriores) são executadas em uma configuração, usando o bloco de corte APC que corresponde ao tamanho do fêmur selecionado.

Os dois pinos no bloco de corte são guiados nos furos previamente perfurados, de modo que a marcação da "ANT" para a ressecção anterior no bloco de corte do APC esteja visível. Então, o bloco de corte é fixado na superfície distal da ressecção com os dois pinos convergentes inseridos com as cabeças. Deve-se tomar cuidado para se assegurar de que o bloco de corte seja fixado em contato horizontal na superfície distal da ressecção.

A posição e a profundidade das ressecções podem ser verificadas usando o calibre de profundidade da ressecção.

É aconselhável usar a placa de proteção de tíbia para evitar dano ao platô tibial.

As quatro ressecções femorais são executadas usando uma lâmina de serra com 1,27 mm de espessura, com a largura pequena através dos entalhes de corte.

Sequência de cortes:

- 1. Corte anterior
- 2. Corte posterior
- 3. Corte posterior chanfrado
- 4. Corte anterior chanfrado

Ressecção do fêmur

Calibre de profundidade da ressecção e platô tibial de proteção

ARTROPLASTIA DE JOELHO

DETERMINAÇÃO DA ALTURA DO POLIETILENO

Esta medição permite que a altura do liner de polietileno seja estabelecido, o que indica, também, se uma ressecção corretiva da tíbia é necessária.

 Favor observar: A espessura do fórceps de retração com as pinças fechadas é de 6 mm.

A retração em extensão para uma ressecção femoral distal é de 9 mm.

Examplo:

Ressecção tibial 10 mm+ 9 mm de ressecção femoral = 19 mm de espaço de extensão de altura PE de retração (EG): EG - 9 mm

 Favor observar: As alturas do polietileno são as seguintes: CR/RP 10-16 mm, PS/UC/DD 10-20 mm.

Medição do espaço de extensão e de flexão

Espaço de extensão	Altura do PE	10 mm	12 mm	14 mm	16 mm	18 mm	20 mm
Retração	CR/RP:	10+9=19 mm	12+9=21 mm	14+9=23 mm	16+9=25 mm		
Retração	PS/DD/UC:	10+9=19 mm	12+9=21 mm	14+9=23 mm	16+9=25 mm	18+9=27 mm	20+9=29 mm

Retração em flexão para uma ressecção femoral posterior de 8 mm (ajuste do bloco femoral de corte em 'N' neutro).

Examplo:

Ressecção tibial de 10 mm + ressecção femoral posterior de 8 mm = retração de 18 mm

Altura PE do espaço de flexão (FG): FG - 8 mm

Espaço de extensão	Altura do PE	10 mm	12 mm	14 mm	16 mm	18 mm	20 mm
Retração	CR/RP:	10+8=18 mm	12+8=20 mm	14+8=22 mm	16+8=24 mm		
Retração	PS/DD/UC:	10+8=18 mm	12+8=20 mm	14+8=22 mm	16+8=24 mm	18+8=26 mm	20+8=28 mm

Possibilidades para resolver as assimetrias de FG/EG

EG simétrico < 19 mm e FG < 18 mm: ressecção corretiva da tíbia.

FG > EG → ressecção corretiva distal do fêmur (proximalizar a linha articular).

EG > FG → reconstruir côndilos femorais distais ou selecionar uma prótese femoral menor e um polietileno maior.

10. DETERMINAÇÃO DO TAMANHO DO COMPONENTE TIBIAL

O platô de prova que melhor identifica a superfície de ressecção é selecionada.

Cinco de tamanho grande e quatro de tamanho especial, que são de 3 a 4 mm mais longos em AP, estão disponíveis para esta finalidade. A superfície de prova deslizante é colocada na placa de ensaio, que é conectado ao punho.

A superfície de prova deslizante deve ser selecionada para corresponder ao espaço articular medido na extensão e na flexão.

Superfícies de deslizamento de ensaio para a plataforma rotatória: com o propósito de usar a superfície de prova deslizante do RP, a placa de adaptação do RP deve, primeiramente, ser colocada na platô tibial de prova.

Determinação do tamanho da tíbia

ALINHAMENTO ROTATÓRIO DO COMPONENTE TIBIAL

O alinhamento rotatório do platô tibial é realizado de acordo com a marcação anterior. Ela deve apontar para a transição entre o centro e terço medial da inserção do tendão patelar.

Alternativamente, uma linha de conexão entre a inserção do ligamento cruzado posterior e o meio da inserção do tendão patelar podem ser usados para a orientação.

O alinhamento rotatório também pode ser conseguido funcionalmente usando o componente femoral e os implantes de prova tibial não fixos ao movimentar a perna de extensão para flexão.

Como uma opção, é possível fazer uma marca no osso anterior. A marca tem que estar na posição do eixo central do implante. Isto facilita encontrar a posição definida posteriormente.

Alinhamento rotatório da tíbia

ARTROPLASTIA DE JOELHO

11. PREPARAÇÃO DA PATELA

A espessura da patela é medida usando o fórceps de patela. Esta espessura não deve ser excedida depois da colocação do implante da patela (veja a tabela na página 43). A meta deve ser conseguir uma redução na espessura da patela depois da colocação. O tamanho da patela é estabelecido com os implantes de prova da patela.

Preparação da patela

O fórceps é ajustado à altura escolhida da ressecção. A ressecção é feita por meio do entalhe de corte.

- Medida da espessura da patela
- B Determinação da altura da ressecção

Preparação da patela

O bloco do corte é removido. A guia de perfuração é trazida no fórceps e presa. Os furos do pino são feitos com brocas de Ø 6 mm.

Ressecção da patela

Se não for possível colocar a guia de perfuração em contato com o osso, a guia de perfuração poderá ser girada em 180°. Dessa forma, a profundidade necessária do furo de perfuração pode ser alcançada.

Preparação da patela

12. IMPLANTES DE PROVA

A prótese femoral de prova é introduzida com o suporte de implante do fêmur e alinhada médio lateralmente. Então, o platô tibial de prova, carregando a superfície de deslizamento de prova, é fixado na superfície tibial de ressecção na posição que melhor cobre a cortical.

Opcional para incisões menores: Suporte do Implante MIOS®

O alinhamento pode ser verificado outra vez na flexão e na extensão introduzindo as hastes de medição extramedular no punho preso à platô tibial. A posição da haste de medição é verificada com relação ao ponto médio da cabeça femoral e da articulação do tornozelo.

Os furos do pino para o implante femoral são perfurados com brocas de \emptyset 6 mm com batente. Eles determinam a posição final do implante femoral. Consequentemente, recomenda-se fortemente que estes furos sejam perfurados somente depois que o teste de função da articulação tiver sido realizado.

Implante de prova do fêmur

Verificando o eixo da perna

Implante do fêmur

ARTROPLASTIA DE JOELHO

13. VERSÃO PS ESTABILIZAÇÃO POSTERIOR

Compatibilidade de

Fêmur PS/PE PS Fêmur CR/PE UC Fêmur CR/PE UCR

- Menor desgaste e estabilidade elevada, melhor cinemática
- Maior desgaste, mas ainda estável, boa cinemática e, consequentemente, seguro
- Maior desgaste e menor estabilidade do implante e, portanto, não recomendado

Preparação da caixa PS

Preparação da caixa PS

Preparação da caixa PS

A guia de perfuração para as brocas de Ø 14 mm é aplicada de modo que seu pino caiba no furo da guia da preparação PS. Ela é movida nos sentidos lateral e medial, a fim perfurar os dois cantos da caixa. Assim, a guia de corte para a fresador de Ø 22,5 mm é presa e o osso é fresado com o fresador até seu batente.

Preparação da caixa PS

As paredes lateral e medial são preparadas com a borda de corte do cinzel posicionada sempre para fora.

Preparação da caixa PS

Para verificar a preparação intercondilar, o molde da caixa femoral PS de prova feito sob medida é selecionado e colocado na posição com o suporte. O posicionamento correto é confirmado por meio da altura igual a do molde de prova e da ressecção distal, bem como o contato entre os dois pinos e a ressecção posterior do chanfro.

Verificação da caixa PS

ARTROPLASTIA DE JOELHO

14. PREPARAÇÃO FINAL DA HASTE DA TÍBIA

A platô tibial de prova é fixado na posição desejada com os pinos curtos com cabeças com rosca e estabilizada adicionalmente com o punho. A guia de perfuração deve ser colocada na platô tibial de prova.

A guia de perfuração é mantida em posição com uma braçadeira de retenção. Os tamanhos dos platôs tibiais T1 a T3+ são implementados com uma haste de \emptyset 12 mm como padrão e os tamanhos T4 a T5, com uma haste de \emptyset 14 mm.

O local da haste do platô da tíbia é perfurado com a broca apropriada:

- Brocas de Ø 12 mm ou Ø 14 mm com batente se o platô tibial for usado com o obturador.
- Brocas de Ø 12 mm ou Ø 14 mm com marcações a laser para hastes de extensão curtas ou longas.

Preparação da haste tibial

Visando preparar o local para a haste da asa, a guia do cinzel lateral é colocada em posição na platô tibial de prova. O cinzel lateral que corresponde ao platô tibial (T1/T1+, T2/T2+, T3/T3+, T4/T4+, ou T5) é selecionado e incluso até seu batente.

Preparação da haste tibial

15. IMPLANTAÇÃO DA PRÓTESE DE PROVA

A haste lateral tibial de prova apropriada, conectada a uma haste da extensão se usada, é presa com o insersor e impactada. Com o propósito de consegui-lo, os pinos na platô tibial de prova devem ser removidos e a placa, ser mantida com o punho.

Preparação da haste tibial

Uma vez que os pinos e o impactor tiverem sido removidos, a superfície de deslizamento tibial de prova correspondente é colocada no platô de prova – junto com o pino PS para a versão PS.

Componentes de prova tibial

ARTROPLASTIA DE JOELHO

16. PRÓTESE PS DE PROVA

Para a versão PS, a prótese femoral de prova apropriada é conectada à caixa femoral PS e implantada.

O pino de prova PS é fixo nos implantes tibiais de prova usando o suporte para o molde femoral de prova da caixa PS.

As superfícies de deslizamento de retenção cruzada estão disponíveis nas espessuras de 10 mm a 16 mm em incrementos de 2 mm. Para as versões DD, UC e PS a variação é de 10 mm a 20 mm. Uma placa de prova de 6 mm é fornecida, portanto, para cada uma das placas tibiais de cinco testes. O tamanho de 18 mm é alcançado usando a placa de prova de 6 mm + superfície de deslizamento de prova de 12 mm; o tamanho de 20 mm, usando a placa de prova de 6 mm + de deslizamento de prova de 14 mm.

A cinemática do joelho é verificada com a ajuda das próteses de prova.

A sequência a seguir é recomendada para a remoção da prótese de prova:

- Pino PS
- Superfície de deslizamento de prova
- Prótese femoral de prova
- Tíbia lateral de prova com/sem haste de extensão
- Platô tibial de prova

Componentes de prova PS

17. IMPLANTAÇÃO DEFINITIVA

Os implantes femorais e tibiais Columbus®* podem ser implantados com ou sem cimento. O cirurgião toma esta decisão de acordo com a qualidade do osso do paciente.

Devido à congruência entre as superfícies de ressecção e os implantes, somente uma pequena quantidade de cimento deve ser usada. Isto é particularmente importante nas regiões posteriores para impedir que o cimento entre no espaço periarticular.

A seguinte sequência de implantação é recomendada:

- Placa da tíbia com superfície de deslizamento de prova
- Componente femoral
- Superfície de deslizamento
- Patela

A placa da tíbia é conectada ao impactador e trazida precisamente para a posição definida com ajuda do punho.

Uma superfície de deslizamento de prova deve ser colocada nela, visando evitar o contato entre o implante femoral e a superfície do platô tibial durante a inclusão do implante femoral. A superfície de deslizamento de prova da versão CR e PS pode também ser usada com os implantes femorais e tibiais finais, a fim fazer a decisão final sobre a altura da superfície de deslizamento final.

■ Favor observar: Ao implantar a versão RP, a estabilidade não pode ser verificada com a superfície de deslizamento de prova RP: seu uso sem a placa adaptadora não permite reproduzir a espessura correta.

O suporte femoral com o adaptador correspondente é preso ao componente femoral. O conjunto é colocado no lugar e impactado com a ajuda de um martelo.

 Favor observar: Todas as partículas de cimento têm que ser cuidadosamente removidas.

A patela é implantada usando o fórceps de preparação da patela e o adaptador de inclusão.

Implantação tibial definitiva

Implantação femoral definitiva

Implantação patelar definitiva

ARTROPLASTIA DE JOELHO

O Sistema Integrado de Joelho Columbusº NQ400 oferece ao cirurgião a seguinte instrumentação:

CONJUNTO COMPLETO INTEGRADO COLUMBUS® NQ400

Chave de fenda

adaptadora de motor

para os parafusos PS

Adaptador do motor de

unidade de pino

32

Instrumentais Integrados de preparo Tibial NQ402 Columbusº

Guias de perfuração tibial de Ø 12 mm

TO/T1: NQ361R T3: NQ363R T5: NQ365R

NQ362R T4: NQ364R

Cinzéis de lateral livre/Hastes de ensaio

T1: NQ391R T3: NQ393R T5: NQ395R T2: NQ392R T4: NQ394R

Guias de perfuração tibial de Ø 14 mm TO/T1: NQ371R T3: NQ373R T5: NQ375R

NQ372R T4: NQ374R

Placas tibiais de ensaio/preparação

T1: NQ381R

T1+: NQ382R

T2: NQ383R

T2+: NQ384R

T3: NQ385R T3+: NQ386R

T4: NQ387R

T4+: NQ388R

T5: NQ389R

NQ378R

Suporte de platô tibial de prova/preparação

NQ397R

Suporte tibial de lateral livre

NQ396R

Guia do cinzel

NQ368R

bial de chave

NQ376R

Guia de perfura- Broca com ção esquerda ti- batente Ø 14 com retenção

NQ562

Inserção para o RP tibial para o suporte NQ560R

NQ369R

Guia de perfuração direita tibial de chave com retenção

Instrumentais integrados de preparo Femoral NQ403 Columbusº

NQ460

Impactador femoral

Inserção modular para o suporte femoral

Guias de corte femoral 4 em 1

F3: NQ083R F5: NQ085R F4: NQ084R F6: NQ086R Componentes femorais de ensaio

F3L: NQ453R F5L: NQ455R F4L: NQ454R F6L: NQ456R

NQ449R Broca com batente Ø 6 mm

FL556R

Osteótomo Stille, curvo com 203 mm de comprimento, 20 mm de largura

NQ459

Impactador femoral grande

NQ960R

punho para bloco de corte 4 em 1

Componentes femorais de ensaio

F3R: NQ463R F4R: NQ464R F5R: NQ465R F6R: NQ466R

ARTROPLASTIA DE JOELHO

VISÃO GERAL INSTRUMENTAL COLUMBUS® STREAMLINED NQ400

Instrumentais de ensaio Tibial Integrado NQ404 Columbus® Superfícies de deslizamento de prova

NQ399RM Suporte / impactador

T5/10: NQ555 T5/14: NQ557 T5/12: NQ556 T5/06: NQ554

NQ487R Pino de prefixação

NQ486R Plugue curto do estabilizador (para superfícies de deslizamento de enNQ398 Impactador do platô tibial

NQ485R

Plugue curto do estabilizador (para superfícies de deslizamento de ensaio)

saio)

CONJUNTOS DE COMPLEMENTAÇÃO INTEGRADOS COLUMBUS°

ARTROPLASTIA DE JOELHO

Conjunto Tibial de Complementação Integrado NQ408 Columbusº tamanhos TO & TO+

NQ390R

Commence of the second section and the second section of the section of the second section of the section of the section of the second section of the section of

Cinzéis de lateral livre / Hastes de ensaio T0/0+ do sistema

Conjunto Tibial de Complementação Integrado de ensaio UC NQ410 Columbusº

Superfícies de deslizamento de ensaio UC

T1/10: NQ315 T1/14: NQ317 T2/10: NQ325 T2/14: NQ327 T3/10: NQ335 T3/14: NQ337 T1/12: NQ316 T1/06: NQ514 T2/12: NQ326 T2/06: NQ524 T3/12: NQ336 T3/06: NQ534

T4/10: NQ345 T4/14: NQ347 T4/12: NQ346 T4/06: NQ544

T5/10: NQ355 T5/14: NQ357 T5/12: NQ356 T5/06: NQ554

ARTROPLASTIA DE JOELHO

F2R: NQ462R

Conjunto Femoral de Complementação Integrado de preparo tamanho F7 & F8 NQ412 Columbusº

Conjunto de Complementação Integrado para gerenciamento de tecido mole NQ414 Columbusº

ARTROPLASTIA DE JOELHO

Conjunto de Complementação Integrado de instrumentais de ensaio RP NE296 Columbusº

Superfícies de deslizamento de ensaio RP

T3/10: NQ330 T3/12: NQ331 T3/14: NQ332

T3/16: NQ333 T4/10: NQ340

T4/12: NQ341 T4/14: NQ342 T4/16: NQ343

T5/10: NQ350 T5/12: NQ351 T5/14: NQ352 T5/16: NQ353

NE284

Impactador do platô tibial

Inserção modular tibial para superfície de deslizamento T5: NQ095R

RObservação: A preparação tibial para o Columbus® é descrita no folheto 045802 da brochura Columbus®.

Instrumentais opcionais

NQ096 Conjunto Espaçador Columbus®

NQ996R Suporte do implante do Fêmur Columbus® MIOS®

TAMANHOS DOS IMPLANTES

DIMENSÕES GERAIS DOS IMPLANTES COLUMBUS®

Medidas em [mm]

Tamanho	ML	AP	Caixa	Α	В	С	Pino Z
F1	56	50	34	18.5	34	14	12
F2N	56	53	37	20	36	14.5	13.5
F2	59	53	37	20	36.5	14.5	13.5
F3N	59	56.5	40	21.5	39	16	15
F3	62.5	56.5	40	21.5	39.5	16	15
F4N	62.5	60.5	43.5	23	42	17.5	15
F4	66.5	60.5	43.5	23	42.5	17.5	15
F5N	66.5	65	47.5	26	45.5	20	15
F5	71	65	47.5	26	46	20	15
F6N	71	70	52	28	49	21.5	15
F6	76	70	52	28	49.5	21.5	15
F7	82	75.5	57	30	53.5	23	15
F8	82	80.5	62	32	58	26	15

Visão Geral - Tabela de implantes femorais da Columbus* para o uso combinado com pregos intramedulares

	AP pregos CR	AP pregos PS	ML pregos
F1	22.5	31	18
F2/F2N	24	32.5	19
F3/F3N	26	34	20.5
F4/F4N	28	36	21
F5/F5N	30	38	22
F6/F6N	32.5	40.5	23
F7	35	42.5	25
F8	39	47	25

Medidas em [mm]

	T0/T0+	T1/T1+	T2/T2+	T3/T3+	T4/T4+	T5
Α	62	65	70	75	80	85
В	41/44	43/46	45/49	48/52	51/55	56
С	14/14.5	15/16	16/17.5	17.5/19	19/20.5	20.5
D	28	28	33	38	43	48
Е	12.3	12.3	12.3	12.3	14.3	14.3

	T0/T0+	T1/T1+	T2/T2+	T3/T3+	T4/T4+	T5
D	28	28	33	38	43	48
Haste D+S (curta)	80	80	85	90	95	100
Haste D+L (longa)	120	120	125	130	135	140

O comprimento geral do platô tibialcom a respectiva haste de extensão é dado pela dimensão D na tabela superior e do comprimento da haste Curta (52 mm) ou Longa (92 mm).

Visão geral de tamanhos de patela

	D _{Patela} x H
Patela P1	Ø 27 mm x 7 mm
Patela P2	Ø 30 mm x 8 mm
Patela P3	Ø 33 mm x 9 mm
Patela P4	Ø 36 mm x 10 mm

As hastes da extensão estão disponíveis no diâmetro 12 e 14 mm.

INFORMAÇÕES DE PEDIDO

Componente	Femoral CR/RF	Retenção Cruciforme / cimentado
Padrão	AS	
NN001K	NN001Z	Columbus® CR/RP Fêmur F1L
NN800K	NN800Z	Columbus® CR/RP Fêmur F2N L
NN002K	NN002Z	Columbus® CR/RP Fêmur F2L
NN801K	NN801Z	Columbus® CR/RP Fêmur F3N L
NN003K	NN003Z	Columbus® CR/RP Fêmur F3L
NN899K	NN899Z	Columbus® CR/RP Fêmur F4N L
NN004K	NN004Z	Columbus® CR/RP Fêmur F4L
NN900K	NN900Z	Columbus® CR/RP Fêmur F5N L
NN005K	NN005Z	Columbus® CR/RP Fêmur F5L
NN901K	NN901Z	Columbus® CR/RP Fêmur F6N L
NN006K	NN006Z	Columbus® CR/RP Fêmur F6L
NN007K	NN007Z	Columbus® CR/RP Fêmur F7L
NN008K	NN008Z	Columbus® CR/RP Fêmur F8L
NN011K	NN011Z	Columbus® CR/RP Fêmur F1R
NN810K	NN810Z	Columbus® CR/RP Fêmur F2N R
NN012K	NN012Z	Columbus® CR/RP Fêmur F2R
NN811K	NN811Z	Columbus® CR/RP Fêmur F3N R
NN013K	NN013Z	Columbus® CR/RP Fêmur F3N

Componente	Femoral CR/RP Retenção Cruciforme / não
cimentado	
NN021K	Columbus® CR/RP Fêmur F1L
NN820K	Columbus® CR/RP Fêmur F2N L
NN022K	Columbus® CR/RP Fêmur F2L
NN821K	Columbus® CR/RP Fêmur F3N L
NN023K	Columbus® CR/RP Fêmur F3L
NN919K	Columbus® CR/RP Fêmur F4N L
NN024K	Columbus® CR/RP Fêmur F4L
NN920K	Columbus® CR/RP Fêmur F5N L
NN025K	Columbus® CR/RP Fêmur F5L
NN921K	Columbus® CR/RP Fêmur F6N L
NN026K	Columbus® CR/RP Fêmur F6L
NN027K	Columbus® CR/RP Fêmur F7L
NN028K	Columbus® CR/RP Fêmur F8L
NN031K	Columbus® CR/RP Fêmur F1R
NN830K	Columbus® CR/RP Fêmur F2N R
NN032K	Columbus® CR/RP Fêmur F2R
NN831K	Columbus® CR/RP Fêmur F3N R
NN033K	Columbus® CR/RP Fêmur F3R
NN929K	Columbus® CR/RP Fêmur F4N R

Padrão	AS	
NN909K	NN909Z	Columbus® CR/RP Fêmur F4N R
NN014K	NN014Z	Columbus® CR/RP Fêmur F4R
NN910K	NN910Z	Columbus® CR/RP Fêmur F5N R
NN015K	NN015Z	Columbus® CR/RP Fêmur F5R
NN911K	NN911Z	Columbus® CR/RP Fêmur F6N R
NN016K	NN016Z	Columbus® CR/RP Fêmur F6R
NN017K	NN017Z	Columbus® CR/RP Fêmur F7R
NN018K	NN018Z	Columbus® CR/RP Fêmur F8R

Padrão	AS	
NN034K		Columbus® CR/RP Fêmur F4R
NN930K		Columbus® CR/RP Fêmur F5N R
NN035K		Columbus® CR/RP Fêmur F5R
NN931K		Columbus® CR/RP Fêmur F6N R
NN036K		Columbus® CR/RP Fêmur F6R
NN037K		Columbus® CR/RP Fêmur F7R
NN038K		Columbus® CR/RP Fêmur F8R

Componente	Femoral PS Po	sterior Estabilizado cimentado
Padrão	AS	
NN161K	NN161Z	Columbus® PS Fêmur F1L
NN840K		Columbus® PS Fêmur F2N L
NN162K	NN162Z	Columbus® PS Fêmur F2L
NN841K		Columbus® PS Fêmur F3N L
NN163K	NN163Z	Columbus® PS Fêmur F3L
NN939K		Columbus® PS Fêmur F4N L
NN164K	NN164Z	Columbus® PS Fêmur F4L
NN940K		Columbus® PS Fêmur F5N L
NN165K	NN165Z	Columbus® PS Fêmur F5L
NN941K		Columbus® PS Fêmur F6N L
NN166K	NN166Z	Columbus® PS Fêmur F6L
NN167K	NN167Z	Columbus® PS Fêmur F7L
NN168K		Columbus® PS Fêmur F8L
NN171K	NN171Z	Columbus® PS Fêmur F1R
NN850K		Columbus® PS Fêmur F2N R
NN172K	NN172Z	Columbus® PS Fêmur F2R
NN851K		Columbus® PS Fêmur F3N R
NN173K	NN173Z	Columbus® PS Fêmur F3R
NN949K		Columbus® PS Fêmur F4N R
NN174K	NN174Z	Columbus® PS Fêmur F4R
NN950K		Columbus® PS Fêmur F5N R
NN175K	NN175Z	Columbus® PS Fêmur F5R
NN951K		Columbus® PS Fêmur F6N R
NN176K	NN176Z	Columbus® PS Fêmur F6R
NN177K	NN177Z	Columbus® PS Fêmur F7R
NN178K		Columbus® PS Fêmur F8R

Parafuso de Fixação AS PS para componente meniscal					
Padrão	AS				
NN497Z	Altura 10/12				
NN498Z	Altura 14/16				
NN499Z	Altura 18/20				

Tamanhos Padrões e Estreitos (N) dos componentes do Fêmur daColumbus®

Medidas	ML F1	ML F2	ML F3	ML F4	ML F5	ML F6	ML F7
AP F1	F1						
AP F2	F2N	F2					
AP F3		F3N	F3				
AP F4			F4N	F4			
AP F5				F5N	F5		
AP F6					F6N	F6	
AP F7							F7
AP F8							F8

INFORMAÇÕES DE PEDIDO

Platô tibial CR/PS de Retenção Cruciforme / Modular Estabilizado Posterior, cimentada		
Padrão	AS	
NN070K	NN070Z	Columbus® CR/PS Platô tibial TO
NN058K	NN058Z	Columbus® CR/PS Platô tibial T0+
NN071K	NN071Z	Columbus® CR/PS Platô tibial T1
NN072K	NN072Z	Columbus® CR/PS Platô tibial T1+
NN073K	NN073Z	Columbus® CR/PS Platô tibial T2
NN074K	NN074Z	Columbus® CR/PS Platô tibial T2+
NN075K	NN075Z	Columbus® CR/PS Platô tibial T3
NN076K	NN076Z	Columbus® CR/PS Platô tibial T3+
NN077K	NN077Z	Columbus® CR/PS Platô tibial T4
NN078K	NN078Z	Columbus® CR/PS Platô tibial T4+

Columbus® CR/PS Platô tibial T5

Cruciforme RP, cimentada		
NN271K	NN271Z	Columbus® RP Platô tibial T1
NN272K	NN272Z	Columbus® RP Platô tibial T1+
NN273K	NN273Z	Columbus® RP Platô tibial T2
NN274K	NN274Z	Columbus® RP Platô tibial T2+
NN275K	NN275Z	Columbus® RP Platô tibial T3
NN276K	NN276Z	Columbus® RP Platô tibial T3+
NN277K	NN277Z	Columbus® RP Platô tibial T4
NN278K	NN278Z	Columbus® RP Platô tibial T4+
NN279K	NN279Z	Columbus® RP Platô tibial T5

NN079K

NN079Z

Platô tibial m	nodular de Plata	forma Rotatória RP, não cimentada
Padrão	AS	
NN281K		Columbus® RP Platô tibial T1
NN282K		Columbus® RP Platô tibial T1+
NN283K		Columbus® RP Platô tibial T2
NN284K		Columbus® RP Platô tibial T2+
NN285K		Columbus® RP Platô tibial T3
NN286K		Columbus® RP Platô tibial T3+
NN287K		Columbus® RP Platô tibial T4
NN288K		Columbus® RP Platô tibial T4+
NN289K		Columbus® RP Platô tibial T5

Platô tibial modular de Aumento CRA/PSA CR / Aumento PS cimentada		
NN470K	NN470Z	Columbus® CRA/PSA Platô tibial TO
NN469K	NN469Z	Columbus® CRA/PSA Platô tibial T0+
NN471K	NN471Z	Columbus® CRA/PSA Platô tibial T1
NN472K	NN472Z	Columbus® CRA/PSA Platô tibial T1+
NN473K	NN473Z	Columbus® CRA/PSA Platô tibial T2
NN474K	NN474Z	Columbus® CRA/PSA Platô tibial T2+
NN475K	NN475Z	Columbus® CRA/PSA Platô tibial T3
NN476K	NN476Z	Columbus® CRA/PSA Platô tibial T3+
NN477K	NN477Z	Columbus® CRA/PSA Platô tibial T4
NN478K	NN478Z	Columbus® CRA/PSA Platô tibial T4+
NN479K	NN479Z	Columbus® CRA/PSA Platô tibial T5

INFORMAÇÕES DE PEDIDO

Espaçador	^r Unilateral	Tibial com parafusos
Padrão	AS	
NN560K	NN560Z	Columbus® Espaçador Unilat. Tibial TO/O+ 4 mm RM/LL
NN561K	NN561Z	Columbus® Espaçador Unilat. Tibial TO/0+ 8 mm RM/LL
NN563K	NN563Z	Columbus® Espaçador Unilat. Tibial T1/1+ 4 mm RM/LL
NN564K	NN564Z	Columbus® Espaçador Unilat. Tibial T1/1+8 mm RM/LL
NN566K	NN566Z	Columbus® Espaçador Unilat. Tibial T2/2+ 4 mm RM/LL
NN567K	NN567Z	Columbus® Espaçador Unilat. Tibial T2/2+ 8 mm RM/LL
NN569K	NN569Z	Columbus® Espaçador Unilat. Tibial T3/3+ 4 mm RM/LL
NN570K	NN570Z	Columbus® Espaçador Unilat. Tibial T3/3+ 8 mm RM/LL
NN572K	NN572Z	Columbus® Espaçador Unilat. Tibial T4/4+ 4 mm RM/LL
NN573K	NN573Z	Columbus® Espaçador Unilat. Tibial T4/4+ 8 mm RM/LL
NN575K	NN575Z	Columbus® Espaçador Unilat. Tibial T5 4 mm RM/LL
NN576K	NN576Z	Columbus® Espaçador Unilat. Tibial T5 8 mm RM/LL
NN580K	NN580Z	Columbus® Espaçador Unilat. Tibial T0/0+ 4 mm RL/LM
NN581K	NN581Z	Columbus® Espaçador Unilat. Tibial T0/0+ 8 mm RL/LM
NN583K	NN583Z	Columbus® Espaçador Unilat. Tibial T1/1+ 4 mm RL/LM
NN584K	NN584Z	Columbus® Espaçador Unilat. Tibial T1/1+ 8 mm RL/LM
NN586K	NN586Z	Columbus® Espaçador Unilat. Tibial T2/2+ 4 mm RL/LM
NN587K	NN587Z	Columbus® Espaçador Unilat. Tibial T2/2+ 8 mm RL/LM
NN589K	NN589Z	Columbus® Espaçador Unilat. Tibial T3/3+ 4 mm RL/LM
NN590K	NN590Z	Columbus® Espaçador Unilat. Tibial T3/3+ 8 mm RL/LM
NN592K	NN592Z	Columbus® Espaçador Unilat. Tibial T4/4+ 4 mm RL/LM
NN593K	NN593Z	Columbus® Espaçador Unilat. Tibial T4/4+ 8 mm RL/LM
NN595K	NN595Z	Columbus® Espaçador Unilat. Tibial T5 4 mm RL/LM
NN596K	NN596Z	Columbus® Espaçador Unilat. Tibial T5 8 mm RL/LM

Superfíc	ie de deslizamento PE Retenção Cruciforme do platô Profunda CR
NN200	Columbus® Superfície de deslizamento do platô Profunda CR TO/0+ 10 mm
NN201	Columbus [®] Superfície de deslizamento do platô Profunda CR TO/0+ 12 mm
NN202	Columbus® Superfície de deslizamento do platô Profunda CR TO/0+ 14 mm
NN203	Columbus [®] Superfície de deslizamento do platô Profunda CR TO/0+ 16 mm
NN204	Columbus® Superfície de deslizamento do platô Profunda CR TO/0+ 18 mm
NN205	Columbus® Superfície de deslizamento do platô Profunda CR TO/0+ 20 mm
NN210	Columbus® Superfície de deslizamento do platô Profunda CR T1/1+ 10 mm
NN211	Columbus® Superfície de deslizamento do platô Profunda CR T1/1+ 12 mm
NN212	Columbus® Superfície de deslizamento do platô Profunda CR T1/1+ 14 mm
NN213	Columbus® Superfície de deslizamento do platô Profunda CR T1/1+ 16 mm
NN214	Columbus® Superfície de deslizamento do platô Profunda CR T1/1+ 18 mm
NN215	Columbus® Superfície de deslizamento do platô Profunda CR T1/1+ 20 mm
NN220	Columbus® Superfície de deslizamento do platô Profunda CR T2/2+ 10 mm
NN221	Columbus® Superfície de deslizamento do platô Profunda CR T2/2+ 12 mm
NN222	Columbus® Superfície de deslizamento do platô Profunda CR T2/2+ 14 mm
NN223	Columbus® Superfície de deslizamento do platô Profunda CR T2/2+ 16 mm
NN224	Columbus® Superfície de deslizamento do platô Profunda CR T2/2+ 18 mm
NN225	Columbus® Superfície de deslizamento do platô Profunda CR T2/2+ 20 mm
NN230	Columbus® Superfície de deslizamento do platô Profunda CR T3/3+ 10 mm
NN231	Columbus® Superfície de deslizamento do platô Profunda CR T3/3+ 12 mm
NN232	Columbus® Superfície de deslizamento do platô Profunda CR T3/3+ 14 mm
NN233	Columbus® Superfície de deslizamento do platô Profunda CR T3/3+ 16 mm
NN234	Columbus® Superfície de deslizamento do platô Profunda CR T3/3+ 18 mm
NN235	Columbus® Superfície de deslizamento do platô Profunda CR T3/3+ 20 mm
NN240	Columbus® Superfície de deslizamento do platô Profunda CR T4/4+ 10 mm
NN241	Columbus® Superfície de deslizamento do platô Profunda CR T4/4+ 12 mm
NN242	Columbus® Superfície de deslizamento do platô Profunda CR T4/4+ 14 mm
NN243	Columbus® Superfície de deslizamento do platô Profunda CR T4/4+ 16 mm
NN244	Columbus® Superfície de deslizamento do platô Profunda CR T4/4+ 18 mm
NN245	Columbus [®] Superfície de deslizamento do platô Profunda CR T4/4+ 20 mm
NN250	Columbus® Superfície de deslizamento do platô Profunda CR T5 10 mm
NN251	Columbus® Superfície de deslizamento do platô Profunda CR T5 12 mm
NN252	Columbus® Superfície de deslizamento do platô Profunda CR T5 14 mm
NN253	Columbus® Superfície de deslizamento do platô Profunda CR T5 16 mm
NN254	Columbus® Superfície de deslizamento do platô Profunda CR T5 18 mm
NN255	Columbus® Superfície de deslizamento do platô Profunda CR T5 20 mm

INFORMAÇÕES DE PEDIDO

Superfície de Congruente l	deslizamento PE cruzada de sacrifício Ultra JC
NN400	Columbus® Superfície de deslizamento UC TO/O+ 10 mm
NN401	Columbus® Superfície de deslizamento UC TO/O+ 12 mm
NN402	Columbus® Superfície de deslizamento UC TO/O+ 14 mm
NN403	Columbus® Superfície de deslizamento UC TO/O+ 16 mm
NN404	Columbus® Superfície de deslizamento UC TO/O+ 18 mm
NN405	Columbus® Superfície de deslizamento UC TO/0+ 20 mm
NN410	Columbus® Superfície de deslizamento UC T1/1+ 10 mm
NN411	Columbus® Superfície de deslizamento UC T1/1+ 12 mm
NN412	Columbus® Superfície de deslizamento UC T1/1+ 14 mm
NN413	Columbus® Superfície de deslizamento UC T1/1+ 16 mm
NN414	Columbus® Superfície de deslizamento UC T1/1+ 18 mm
NN415	Columbus® Superfície de deslizamento UC T1/1+ 20 mm
NN420	Columbus® Superfície de deslizamento UC T2/2+ 10 mm
NN421	Columbus® Superfície de deslizamento UC T2/2+ 12 mm
NN422	Columbus® Superfície de deslizamento UC T2/2+ 14 mm
NN423	Columbus® Superfície de deslizamento UC T2/2+ 16 mm
NN424	Columbus® Superfície de deslizamento UC T2/2+ 18 mm
NN425	Columbus® Superfície de deslizamento UC T2/2+ 20 mm
NN430	Columbus® Superfície de deslizamento UC T3/3+ 10 mm
NN431	Columbus® Superfície de deslizamento UC T3/3+ 12 mm
NN432	Columbus® Superfície de deslizamento UC T3/3+ 14 mm
NN433	Columbus® Superfície de deslizamento UC T3/3+ 16 mm
NN434	Columbus® Superfície de deslizamento UC T3/3+ 18 mm
NN435	Columbus® Superfície de deslizamento UC T3/3+ 20 mm
NN440	Columbus® Superfície de deslizamento UC T4/4+ 10 mm
NN441	Columbus® Superfície de deslizamento UC T4/4+ 12 mm
NN442	Columbus® Superfície de deslizamento UC T4/4+ 14 mm
NN443	Columbus® Superfície de deslizamento UC T4/4+ 16 mm
NN444	Columbus® Superfície de deslizamento UC T4/4+ 18 mm
NN445	Columbus® Superfície de deslizamento UC T4/4+ 20 mm
NN450	Columbus® Superfície de deslizamento UC T5 10 mm
NN451	Columbus® Superfície de deslizamento UC T5 12 mm
NN452	Columbus® Superfície de deslizamento UC T5 14 mm
NN453	Columbus® Superfície de deslizamento UC T5 16 mm
NN454	Columbus® Superfície de deslizamento UC T5 18 mm
NN455	Columbus® Superfície de deslizamento UC T5 20 mm

Plataforma Rotatória RP com retenção cruzada na superfície de deslizamento PE

NN310	Columbus® Superfície de deslizamento RP T1/1+ 10 mm
NN311	Columbus® Superfície de deslizamento RP T1/1+ 12 mm
NN312	Columbus® Superfície de deslizamento RP T1/1+ 14 mm
NN313	Columbus® Superfície de deslizamento RP T1/1+ 16 mm
NN320	Columbus® Superfície de deslizamento RP T2/2+ 10 mm
NN321	Columbus® Superfície de deslizamento RP T2/2+ 12 mm
NN322	Columbus® Superfície de deslizamento RP T2/2+ 14 mm
NN323	Columbus® Superfície de deslizamento RP T2/2+ 16 mm
NN330	Columbus® Superfície de deslizamento RP T3/3+ 10 mm
NN331	Columbus® Superfície de deslizamento RP T3/3+ 12 mm
NN332	Columbus® Superfície de deslizamento RP T3/3+ 14 mm
NN333	Columbus® Superfície de deslizamento RP T3/3+ 16 mm
NN340	Columbus® Superfície de deslizamento RP T4/4+ 10 mm
NN341	Columbus® Superfície de deslizamento RP T4/4+ 12 mm
NN342	Columbus® Superfície de deslizamento RP T4/4+ 14 mm
NN343	Columbus® Superfície de deslizamento RP T4/4+ 16 mm
NN350	Columbus® Superfície de deslizamento RP T5 10 mm
NN351	Columbus® Superfície de deslizamento RP T5 12 mm
NN352	Columbus® Superfície de deslizamento RP T5 14 mm
NN353	Columbus® Superfície de deslizamento RP T5 16 mm

Columbus® PI	atô tibial UCR cimentada
NN670K	Columbus® Platô tibial UCR cimentada TO
NN668K	Columbus® Platô tibial UCR cimentada TO+
NN671K	Columbus® Platô tibial UCR cimentada T1
NN672K	Columbus® Platô tibial UCR cimentada T1+
NN673K	Columbus® Platô tibial UCR cimentada T2
NN674K	Columbus® Platô tibial UCR cimentada T2+
NN675K	Columbus® Platô tibial UCR cimentada T3
NN676K	Columbus® Platô tibial UCR cimentada T3+
NN677K	Columbus® Platô tibial UCR cimentada T4
NN678K	Columbus® Platô tibial UCR cimentada T4+
NN679K	Columbus® Platô tibial UCR cimentada T5

Columbus [®] superfície de deslizamento UCR		
NN600	Columbus® Superfície de deslizamento UCR TO/0+ 10 mm	
NN601	Columbus® Superfície de deslizamento UCR TO/0+ 12 mm	
NN602	Columbus® Superfície de deslizamento UCRTO/0+ 14 mm	
NN603	Columbus® Superfície de deslizamento UCR TO/O+ 16 mm	
NN604	Columbus® Superfície de deslizamento UCR TO/O+ 18 mm	
NN605	Columbus® Superfície de deslizamento UCR TO/O+ 20 mm	
NN610	Columbus® Superfície de deslizamento UCR T1/1+ 10 mm	
NN611	Columbus® Superfície de deslizamento UCR T1/1+ 12 mm	
NN612	Columbus® Superfície de deslizamento UCR T1/1+ 14 mm	
NN613	Columbus® Superfície de deslizamento UCR T1/1+ 16 mm	
NN614	Columbus® Superfície de deslizamento UCR T1/1+ 18 mm	
NN615	Columbus® Superfície de deslizamento UCR T1/1+ 20 mm	
NN620	Columbus® Superfície de deslizamento UCR T2/2+ 10 mm	
NN621	Columbus® Superfície de deslizamento UCR T2/2+ 12 mm	
NN622	Columbus® Superfície de deslizamento UCR T2/2+ 14 mm	
NN623	Columbus® Superfície de deslizamento UCR T2/2+ 16 mm	
NN624	Columbus® Superfície de deslizamento UCR T2/2+ 18 mm	
NN625	Columbus® Superfície de deslizamento UCR T2/2+ 20 mm	
NN630	Columbus® Superfície de deslizamento UCR T3/3+ 10 mm	
NN631	Columbus® Superfície de deslizamento UCR T3/3+ 12 mm	
NN632	Columbus® Superfície de deslizamento UCR T3/3+ 14 mm	
NN633	Columbus® Superfície de deslizamento UCR T3/3+ 16 mm	
NN634	Columbus® Superfície de deslizamento UCR T3/3+ 18 mm	

Columbus [®] superfície de deslizamento UCR		
NN635	Columbus® Superficie de deslizamento UCR T3/3+ 20 mm	
NN640	Columbus® Superfície de deslizamento UCR T4/4+ 10 mm	
NN641	Columbus® Superfície de deslizamento UCR T4/4+ 12 mm	
NN642	Columbus® Superficie de deslizamento UCR T4/4+ 14 mm	
NN643	Columbus® Superficie de deslizamento UCR T4/4+ 16 mm	
NN644	Columbus® Superfície de deslizamento UCR T4/4+ 18 mm	
NN645	Columbus® Superfície de deslizamento UCR T4/4+ 20 mm	
NN650	Columbus® Superfície de deslizamento UCR T5 10 mm	
NN651	Columbus® Superfície de deslizamento UCR T5 12 mm	
NN652	Columbus® Superfície de deslizamento UCR T5 14 mm	
NN653	Columbus® Superficie de deslizamento UCR T5 16 mm	
NN654	Columbus® Superficie de deslizamento UCR T5 18 mm	
NN655	Columbus® Superficie de deslizamento UCR T5 20 mm	

INFORMAÇÕES DE PEDIDO

PE gliding su	rface PS Posterior Stabilised incl. fixation screw
NN500	Columbus® Superfície de deslizamento PS T0/0+ 10 mm
NN501	Columbus® Superfície de deslizamento PS TO/O+ 12 mm
NN502	Columbus® Superfície de deslizamento PS TO/O+ 14 mm
NN503	Columbus® Superfície de deslizamento PS TO/O+ 16 mm
NN504	Columbus® Superfície de deslizamento PS TO/O+ 18 mm
NN505	Columbus® Superfície de deslizamento PS TO/O+ 20 mm
NN510	Columbus® Superfície de deslizamento PS T1/1+ 10 mm
NN511	Columbus® Superfície de deslizamento PS T1/1+ 12 mm
NN512	Columbus® Superfície de deslizamento PS T1/1+ 14 mm
NN513	Columbus® Superfície de deslizamento PS T1/1+ 16 mm
NN514	Columbus® Superfície de deslizamento PS T1/1+ 18 mm
NN515	Columbus® Superfície de deslizamento PS T1/1+ 20 mm
NN520	Columbus® Superfície de deslizamento PS T2/2+ 10 mm
NN521	Columbus® Superfície de deslizamento PS T2/2+ 12 mm
NN522	Columbus® Superfície de deslizamento PS T2/2+ 14 mm
NN523	Columbus® Superfície de deslizamento PS T2/2+ 16 mm
NN524	Columbus® Superfície de deslizamento PS T2/2+ 18 mm
NN525	Columbus® Superfície de deslizamento PS T2/2+ 20 mm
NN530	Columbus® Superfície de deslizamento PS T3/3+ 10 mm
NN531	Columbus® Superfície de deslizamento PS T3/3+ 12 mm
NN532	Columbus® Superfície de deslizamento PS T3/3+ 14 mm
NN533	Columbus® Superfície de deslizamento PS T3/3+ 16 mm
NN534	Columbus® Superfície de deslizamento PS T3/3+ 18 mm
NN535	Columbus® Superfície de deslizamento PS T3/3+ 20 mm

PE gliding	surface PS Posterior Stabilised incl. fixation screw
NN540	Columbus® Superfície de deslizamento PS T4/4+ 10 mm
NN541	Columbus® Superfície de deslizamento PS T4/4+ 12 mm
NN542	Columbus® Superfície de deslizamento PS T4/4+ 14 mm
NN543	Columbus® Superfície de deslizamento PS T4/4+ 16 mm
NN544	Columbus® Superfície de deslizamento PS T4/4+ 18 mm
NN545	Columbus® Superfície de deslizamento PS T4/4+ 20 mm
NN550	Columbus® Superfície de deslizamento PS T5 10 mm
NN551	Columbus® Superfície de deslizamento PS T5 12 mm
NN552	Columbus® Superfície de deslizamento PS T5 14 mm
NN553	Columbus® Superfície de deslizamento PS T5 16 mm
NN554	Columbus® Superfície de deslizamento PS T5 18 mm
NN555	Columbus® Superfície de deslizamento PS T5 20 mm

Columbus® Pa	atela de 3 pinos	
NN481	Patela de 3 pinos	P1 Ø 27 mm x 7 mm
NN482	Patela de 3 pinos	P2 Ø 30 mm x 8 mm
NN483	Patela de 3 pinos	P3 Ø 33 mm x 9 mm
NN484	Patela de 3 pinos	P4 Ø 36 mm x 10 mm

COLUMBUS® INSTRUMENTAIS INTEGRADOS

Columbus® C	onjunto Completo Integrado NQ 400 consiste de:	
NQ401	Columbus® Instrumentais Universais Integrados	
NQ402	Columbus® Instrumentais Tibiais Integrados	
NQ403	NQ403 Columbus® Instrumentais Femorais Integrados	
NQ404	Columbus® Instrumentais Tibiais de Ensaio Integrados	

Conjuntos de Complementação para Columbusº do Sistema Integrado:		
NQ406	Columbus® Instrumentais Manuais integrados	
NQ407	Columbus® Alinhamento IM Manual Integrado	
NQ408	Columbus® Preparo Tibial Integrado TO & TO+	
NQ409	Columbus® Extensões Tibiais Integradas	
NQ410	Columbus® Ensaios Tibiais UC Integrados	
NQ411	Columbus® Preparo Femoral Integrado F1 & F2	
NQ412	Columbus® integrado para preparação F7 & F8 do Fêmur	
NQ413	Columbus® Preparo Femoral Integrado PS	
NQ414	Columbus® Gerenciamento de Tecido Mole Integrado	
NE205	Columbus® patela integrada	
NE296	Columbus® Instrumentais Tibiais de Ensaio Integra- dos RP	
NQ984	Columbus® MIOS® Complementação Tibial	

Conjunto de Navegação completa NP611

Conjunto ind	ividual nº
NP168	Instrumentais de navegação
NP602	Instrumentais de joelho para TKA 4.3

INFORMAÇÕES DE PEDIDO

Modelos de raio-X		
NQ192	Escala 1.10:1	
NQ193	Escala 1.15:1	
NQ289	Planejamento da linha central	

Materiais de Implante:

ISODURC Liga de CoCrMo (ISO 5832-4)

Liga de CoCrMo (ISO 5832-12)

Plasmapore* Revestimento puro de titânio

UHMWPE Polietileno de Peso Molecular Ultra Alto (ISO 5834-2)

Acoplamento Largura

Aesculap Acculan 3 Ti Comp. 100 mm

13 mm	GE266SU	GE236SU	
19 mm	GE271SU	GE241SU	GE249SU
23 mm	GE276SU	GE246SU	

MATRIZ DE IMPLANTE COLUMBUS® - PEÇAS FEMORAIS

X

Fêmur CR cimentado	nentado	*									
Tipos:	<u>F</u>	F2N	F2	F3N	£	F4N	7	F5N	F5	F6N	F6
Esquerdo	NN001K	NN800K	NN002K	NN801K	NN003K	X668NN	NN004K	NN900K	NN005K	NN901K	NN006K
Esquerdo	NN001Z	NN800Z	NN002Z	NN801Z	NN003Z	Z668NN	NN004Z	Z006NN	NN005Z	NN901Z	NN006Z
Direito	NN011K	NN810K	NN012K	NN811K	NN013K	X606NN	NN014K	NN910K	NN015K	NN911K	NN016K
Direito	NN011Z	NN810Z	NN012Z	NN811Z	NN013Z	Z606NN	NN014Z	NN910Z	NN015Z	NN911Z	NN016Z

NN018K

NN017K

NN017Z

NN008K

NN007K NN007Z

Fêmur PS cimentado

F8	NN168K		NN178K	
F7	NN167K	NN167Z	NN177K	NN177Z
F6	NN 166K	NN 166Z	NN176K	NN176Z
F6N	NN941K		NN951K	
75	NN165K	NN165Z	NN175K	NN175Z
F5N	NN940K		NN950K	
F4	NN164K	NN164Z	NN174K	NN174Z
F4N	NN939K		NN949K	
æ	NN163K	NN163Z	NN173K	NN173Z
F3N	NN841K		NN851K	
F2	NN162K	NN162Z	NN172K	NN172Z
F2N	NN840K		NN850K	
FI	NN161K	NN161Z	NN171K	NN171Z
Tipos:	Esquerdo	Esquerdo	Direito	Direito

:sodii	ī	FZN	75	NS NS	r
Esquerdo	NN021K	NN820K	NN022K	NN821K	NN023
Direito	NN031K	NN830K	NN032K	NN831K	NN033
Esquerdo Direito	NN021K NN031K	NN820K NN830K	NN022K NN032K	NN821K NN831K	' '

NN028K NN038K

7

F6

NN026K NN036K

NN037K NN027K

NN931K NN921K F6N

NN035K NN025K F5

> NN920K NN930K

NN024K NN034K

NN919K NN929K

F5N

F4

F4N

Parafuso de Fixação PS para PE na versão AS (embalada

Comment of the last	
	NMAGOZ
:amento)	NINIAGO7
uperfície de desliz	7707 INIA
geralmente com superfície de deslizamento)	Times

NN499Z	/16 Altura 18/20
NN498Z	Altura 14/16
NN497Z	Altura 10/12

Tipos:

11.0	
	pinos

P2 P3 P4	NN482 NN483 NN484
P1	NN481
Tipos:	F1-F8

NN674K

NN675K NN275K

NN676K NN276K

NN678K NN278K NN478K NN078K

NN679K NN279K NN479K

NN277K NN677K

NN274K NN474K NN074K

NN075K

T3+

NN475K

NN476K NN076K

NN477K NN077K

NN079K

RM/LL

NN560K

NN563K

NN566K NN569K NN572K NN575K

T4

15

Tipos:

RL/LM NN580K NN583K NN586K NN589K NN592K NN595K

CR/PS

Tipos:

70

T0+

Tíbia cimentada

CRA/PSA

NN470K NN070K

NN469K

NN058K

CR

NN670K

NN668K

4	1
UCR	9

	1
UCR	4

T4	4
T4+	UCR
5	

com parafusos

Espaçadores Unilaterais Tibiais CRA/PSA

Tíbia não cimentada

CR/PS

NN080K

NN059K

NN081K

NN281K

NN282K

NN283K

Tipos:

T0+

	T3	T3+	T4	T4+
084K	NN085K	NN086K	NN087K	NN088K
284K	NN285K	NN286K	NN287K	NN288K

NN089K <u></u>

NN289K

Obtur Ø 12NN26 z

61K	mm	rador
NN264K	Ø 14 mm	(1)
关	mm	1
Ø	curto	Hastes d da Tíbia

	N581K	N561K
	NN584K	NN564K
Hastes de	NN587K	NN567K

RM/LL

NN561K

NN567K

NN570K NN590K

NN593K NN573K

NN596K NN576K

5

lipos:

To

•			extensão	
	THE REAL PROPERTY.	MANAGEMENT		
•	1	ORCHESTINE.		

NN263K	mm	longo	
NN265K	Ø 14	curto	
NN266	mm	longo	

NN260P	Conector	
	Peek	
		No.

NN262K

Ø 12

	NN512	NN312	NN612	NN412	NN212	NN112	14	11,	
	NN513	NN313	NN613	NN413	NN213	NN113	16	Γ1/T1+	UCR
	NN514	ı	NN614	NN414	NN214	ı	18		
	NN515	ı	NN615	NN415	NN215	ı	20		꾸
	NN520	NN320	NN620	NN420	NN220	NN120	10		100
	NN521	NN321	NN621	NN421	NN221	NN121	12		PS.
	NN522	NN322	NN622	NN422	NN222	NN122	14	Т2	
	NN523	NN323	NN623	NN423	NN223	NN 123	16	T2/T2+	
l	NN524	ı	NN624	NN424	NN224	ı	18		
	NN525	ı	NN625	NN425	NN225	ı	20		
					l				

			T3,	T3/T3+					T4	Л4+						15		
Tipos:	10	12	14	16	18	20	10	12	14	16	18	20	10	12	14	16	18	20
CR	NN130	NN131	NN132	NN133	ı	ı	NN140	NN141	NN142	NN 143	I	I	NN150	NN151	NN152	NN153	ı	ı
DD	NN230	NN231	NN232	NN233	NN234	NN235	NN240	NN241	NN242	NN243	NN244	NN245	NN250	NN251	NN252	NN253	NN254	NN25
UC fix	NN430	NN431	NN432	NN433	NN434	NN435	NN440	NN441	NN442	NN443	NN444	NN445	NN450	NN451	NN452	NN453	NN454	NN45
UCR	NN630	NN631	NN632	NN633	NN634	NN635	NN640	NN641	NN642	NN643	NN644	NN645	NN650	NN651	NN652	NN653	NN654	NN655
RP	NN330	NN331	NN332	NN333	1	ı	NN340	NN341	NN342	NN343	I	ı	NN350	NN351	NN352	NN353	ı	1
S	NN530	NN531	NN532	NN533	NN534	NN535	NN540	NN541	NN542	NN543	NN544	NN545	NN550	NN551	NN552	NN553	NN554	NN555

Superfícies de

UCR UC fix.

NN600

NN601

NN602 NN402

NN603

NN604 NN404

NN605

NN610

NN611

NN400 NN200

NN401 NN201

NN202

NN203

NN204

NN205

NN211 NN 111

NN405

NN410 NN210

NN411

NN403

무

NN500

NN501

NN502

NN503

NN504

NN505

NN510

NN511 NN311

NN310

DD

R Tipos:

10

14

16

18

20

10

NN110

deslizamento Superfícies de

SR

D

C

MATRIZ DE IMPLANTE COLUMBUS® – PEÇAS FEMORAIS AS

Fêmur AS CR cimentado

Tipos:	FI	F2N	F2	F3N	F3	F4N	F4	F5N	F5	F6N	F6	F7
Esquerdo	NN001Z	NN800Z	NN002Z	NN801Z	NN003Z	Z668NN	NN004Z	Z006NN	NN005Z	NN901Z	NN006Z	NN007Z
Direito	NN011Z	NN810Z	NN012Z	NN811Z	NN013Z	Z606NN	NN014Z	NN910Z	NN015Z	NN911Z	NN016Z	NN017Z

Fêmur AS PS cimentado

Patela de 3 pinos

lipos:	Ы	P2	P3	P4
F1-F8	NN481	NN482	NN483	NN484

Tíbia cimentada AS

CR/PS

Tipos:

CRA/PSA

NN470Z

NN469Z

NN471Z

NN472Z NN272Z

NN271Z

NN070Z To

NN058Z ₽ To+

NN071Z

NN072Z

11+

NN473Z NN073Z NN474Z NN074Z T2+

NN274Z NN475Z NN075Z NN275Z

NN477Z NN077Z

NN478Z

NN479Z

NN078Z

NN079Z

T4+

da Tíbia AS

curto longo

curto longo

NN262Z NN263Z

NN265Z NN266Z

Ø 14 mm

Ø 12 mm

Hastes de extensão

NN277Z

NN278Z

NN279Z

Espaçadores Unilaterais Tibiais CRA/PSA com prego

RM/LL

NN560Z

NN563Z

T2

겁

4

7

NN580Z

NN583Z

NN586Z NN589Z NN566Z NN569Z

NN592Z NN572Z

NN595Z

NN581Z NN561Z

NN584Z NN587Z NN590Z

NN593Z

NN596Z NN576Z **J**5

lipos:

NN575Z

NN564Z

NN567Z

NN570Z

NN573Z

T3

Tipos:

RL/LM

10/12	NN497Z
14/16	NN498Z
18/20	NN499

R UCR UC fix.

NN600

NN601 NN401 NN201

NN602 NN402

NN603 NN403 NN203

NN604 NN404 NN204

NN605 NN405 NN205

NN610

NN410 NN210

NN412

NN612

NN613 NN413

NN614

NN615 NN415 NN215

NN312 NN512

NN313

NN513

NN514

NN515

NN202

NN500

NN501

NN502

NN503

NN504

NN505

NN510 NN310

NN511 NN311 NN611 NN411 NN211 NN 111

NN400 NN200

D R

Tipos:

70

4

16

18

20

10

NN110

NN112 NN212

NN213 NN113 16

NN214

NN414

14

20

NN120 10

NN121

NN122 7

NN 123 16

18

20

NN223

Superfícies de

ß

NN520	NN320	NN620	NN420	NN220
NN521	NN321	NN621	NN421	NN221
NN522	NN322	NN622	NN422	NN222

NN323 NN523

NN524

NN525

NN423

NN623

NN624 NN424 NN224

NN625 NN425 NN225

			T3	[3/T3+					T4,	T4+						15		
Tipos:	10	12	14	16	18	20	10	12	14	16	18	20	10	12	14	16	18	20
CR	NN130	NN131	NN132	NN133	1	1	NN140	NN 141	NN142	NN143	1	I	NN150	NN151	NN152	NN153	1	1
DD	NN230	NN231	NN232	NN233	NN234	NN235	NN240	NN241	NN242	NN243	NN244	NN245	NN250	NN251	NN252	NN253	NN254	NN255
UC fix.	NN430	NN431	NN432	NN433	NN434	NN435	NN440	NN441	NN442	NN443	NN444	NN445	NN450	NN451	NN452	NN453	NN454	NN455
UCR	NN630	NN631	NN632	NN633	NN634	NN635	NN640	NN641	NN642	NN643	NN644	NN645	NN650	NN651	NN652	NN653	NN654	NN655
RP	NN330	NN331	NN332	NN333	ı	ı	NN340	NN341	NN342	NN343	ı	ı	NN350	NN351	NN352	NN353	ı	ı
PS	NN530	NN531	NN532	NN533	NN534	NN535	NN540	NN541	NN542	NN543	NN544	NN545	NN550	NN551	NN552	NN553	NN554	NN555

REVISÃO DA MATRIZ DE IMPLANTE COLUMBUSº - PEÇAS FEMORAIS

Fêmur CR cimentado

27 Nm para hastes do fêmur

Esquedo NR001K NR002K NR003K NR004K NR005K NR006K NF Direito NR011K NR012K NR013K NR014K NR015K NR016K NF	Tipos:	됴	F2	ដ	F4	F5	F6	F7
NR011K NR012K NR013K NR014K NR015K NR016K	Esquedo	NR001K	NR002K	NR003K	NR004K	NR005K	NR006K	NR007K
	Direito	NR011K	NR012K	NR013K	NR014K	NR015K	NR016K	NR017K

Haste Femoral de 6° cimentada

いる

Tipos: 77 mm 157 mm 77 mm 157 mm 77 mm F1-F7 NR291K NR294K NR292K NR295K NR295		Ø 12	12 mm	Ø 15	ð 15 mm	Ø 18	18 mm
NR291K NR294K NR292K NR295K	Tipos:	77 mm	157 mm	77 mm	157 mm	77 mm	157 mm
	F1-F7	NR291K	NR294K	NR292K	NR295K	NR293K	NR296K

Possíveis combinações de Fêmur/Tíbia

F7	+	+	+	+	OK	OK
F6	+	+	+	OK N	OK N	OK
F5	+	+	0K	0K	OK	OK
F4	+	X) N	X	X	+
ፎ	OK	X) W	XO	+	+
F2	Ж	X	Ж	ı	ı	1
ᇤ	OK) N	ı	ı	ı	ı
Tipos:	T0/T0+	T1/T1+	T2/T2+	T3/T3+	T4/T4+	T5

não compatível

Hastes de Fêmur não cimentada

STORES OF

177 mm NR440K

117 mm

NR450K NR460K

NR420K NR430K

NR410K

NR540K NR550K NR560K

NR510K NR520K

NR530K

	Offset	NR401K
para sas	Neutro	NR400K
Porca femoral para hastes externas	Tipos:	F1-F7

•				
	P0	P1	P2	P3
Tipos:	Ø 27mm	Ø 27mm Ø 30mm Ø 33mm Ø 36mm	Ø 33mm	Ø 36mm
F1-F7	NN481	NN482	NN483	NN484

Espaçador distal do Fêmur

Tipos:	5 mm	10 mm	15 mm	5 mm	10 mm	15 mm
F1	NR461K	NR471K	ı	NR561K	NR571K	I
F2	NR462K	NR472K	ı	NR562K	NR572K	ı
F3	NR463K	NR473K	1	NR563K	NR573K	ı
F4	NR464K	NR474K	ı	NR564K	NR574K	ı
F5	NR465K	NR475K	NR485K	NR565K	NR575K	NR585K
F6	NR466K	NR476K	NR486K	NR566K	NR576K	NR586K
F7	NR467K	NR477K	NR487K	NR567K	NR577K	NR587K

Observação: Espaçador do fêmur de 15 mm pode ser usado de forma distal ou posterior. Por outro lado, no mesmo lado do côndilo, não há nenhum espaço para qualquer outro espaçador!

⁺ possível, mas não recomendado pela Aesculap

REVISÃO DE MATRIZ DE IMPLANTE COLUMBUS" - PEÇAS TIBIAIS

Tíbia cimentada

com porca dentro para fixação de ML

72 T2+ T3 VR073K NR074K NR075K	11+ T:	11 NR071K	To+ NR068K	To NR070K	Tipos:
~	12+ 1073K NR074K	. T2 T2+)72K NR073K NR074K	T1+ T2 T2+ K NR072K NR073K NR074K	T1 T1+ T2 T2+ D68K NR071K NR072K NR073K NR074K	T0+ T1 T1+ T2 T2+ 1070K NR068K NR071K NR072K NR073K NR074K

NR079K

Hastes tibiais de compensação cimentadas

	Ø 12	mm	Ø 15	5 mm	Ø 18	mm
Tipos:	52 mm	92 mm	52 mm	92 mm	52 mm	92 mm
FO-F5	NR191K	NR194K	NR192K	NR195K	NR193K	NR196K

Hastes tibiais de compensação não cimentadas

	Ø 11 mm	mm	Ø 12 mm	mm	Ø 13 mm	mm	Ø 14 mm	mm	Ø 15 mm	mm	1
Tipos:	92 mm	92 mm 132 mm 92 mm 132 mm 92 mm 132 mm 92 mm 132 mm 92 mm 132 mm	92 mm	132 mm							
T0-T5	NR171K	NR181K	NR172K	NR182K	NR173K	NR183K	NR174K	NR184K	NR175K	NR185K	-
	Ø 16 mm	m m	Ø 17 mm	mm	Ø 18 mm	m	Ø 19 mm	B	Ø 19 mm	mm	
Tipos:	92 mm	92 mm 132 mm	92 mm	132 mm	92 mm	132 mm	92 mm	132 mm	92 mm	132 mm	
T0-T5	NR176K	NR186K	NR177K	NR187K	NR178K	NR188K	NR179K	NR189K	NR180K	NR190K	

Possíveis combinações de Fêmur/Tíbia

15	T4/T4+	T3/T3+	T2/T2+	T1/T1+	T0/T0+	Tipos:
ı	1	1	1	QK	ę	판
ŀ	I	 I	읒	9	읒	F2
+	+	웃	웃	웃	읒	హె
+	읒	읒	읒	읒	+	4
읒	Q.	읒	읒	+	+	.
읒	Q N	웃	+	+	+	F6
읒	QX	+	+	+	+	F7

não compatível

+ possível, mas não recomendado pela Aesculap

Superfície de deslizamento PE de retenção média com parafuso

2	afuso	***	10 Nm pai	10 Nm para o parafuso PE	o PE	Supe
	18 mm	20 mm	24 mm	28 mm	32 mm	10 mn
	NR104	NR105	NR106	I	I	NR600
	NR114	NR115	NR116	I	I	NR610
	NR124	NR125	NR126	NR127	I	NR620
	NR134	NR135	NR136	NR137	I	NR630
	NR144	NR145	NR146	NR147	NR148	NR640
	NR154	NR155	NR156	NR157	NR158	NR650
- 1						

Superfície de deslizamento PE de retenção alta com parafuso

Superfíc	ie de desli	Superfície de deslizamento PE de retenção alta com parafuso	∃ de retenç	ão alta com	parafuso		10 Nm pa	10 Nm para o parafuso PE
10 mm	12 mm	14 mm	16 mm	18 mm	20 mm	24 mm	28 mm	32 mm
NR600	NR601	NR602	NR603	NR604	NR605	NR606	I	I
NR610	NR611	NR612	NR613	NR614	NR615	NR616	I	
NR620	NR621	NR622	NR623	NR624	NR625	NR626	NR627	I
NR630	NR631	NR632	NR633	NR634	NR635	NR636	NR637	I
NR640	NR641	NR642	NR643	NR644	NR645	NR646	NR647	NR648
NR650	NR651	NR652	NR653	NR654	NR655	NR656	NR657	NR658

Hemi-Espaçador Tibial RM/LL com parafuso

T4/4+

NR150 NR140

NR151 NR141

NR152 NR142 NR132 NR122

NR153

NR143 NR133

T3/3+ T2/2+

NR130 NR120 NR110

NR131 NR121 NR111 NR101

T1/1+

T0/0+ Tipos:

NR100

NR112 NR102

NR113 NR103

NR123

10 mm

12 mm

14 mm

16 mm

Tipos:	5 mm	10 mm	15 mm	
T0/0+		NR041K	NR042K	
T1/1+	NR044K	NR045K	NR046K	
T2/2+	NR048K	NR049K	NR050K	
T3/3+	NR052K	NR053K	NR054K	
T4/4+	NR056K	NR057K	NR058K	
T5	NR060K	NR061K	NR062K	

Hemi-Espaçador Tibial RM/LL com parafuso

ed ed	Hemi-Espa	ıçador Tibi	Hemi-Espaçador Tibial RM/LL 👓
	5 mm	10 mm	15 mm
	NR240K	NR241K	NR242K
	NR244K	NR245K	NR246K
	NR248K	NR249K	NR250K
	NR252K	NR253K	NR254K
	NR256K	NR257K	NR258K
	NROGOK	NR261K	NROGOK

B. Braun Brasil. | Aesculap Av. Eugênio Borges 1092, Arsenal | São Gonçalo | RJ | 24751-000 S.A.C: 0800 0227286 | www.bbraun.com.br

AESCULAP® – a B. Braun brand

