$$\Lambda_c^+$$

$$I(J^P) = O(\frac{1}{2}^+)$$
 Status: ***

The parity of the Λ_c^+ is defined to be positive (as are the parities of the proton, neutron, and Λ). The quark content is udc. Results of an analysis of $pK^-\pi^+$ decays (JEZABEK 92) are consistent with J=1/2. Nobody doubts that the spin is indeed 1/2.

We have omitted some results that have been superseded by later experiments. The omitted results may be found in earlier editions.

1 MASS

Our value in 2004, 2284.9 \pm 0.6 MeV, was the average of the measurements now filed below as "not used." The BABAR measurement is so much better that we use it alone. Note that it is about 2.6 (old) standard deviations above the 2004 value.

The fit also includes $\Sigma_c - \Lambda_c^+$ and $\Lambda_c^{*+} - \Lambda_c^+$ mass-difference measurements, but this doesn't affect the Λ_c^+ mass. The new (in 2006) Λ_c^+ mass simply pushes all those other masses higher.

VALUE (MeV)		EVTS	DOCUMENT ID		TECN	COMMENT		
2286.46	5±0.14	OUR	FIT			·			
2286.46	5±0.14	Į.	4891	¹ AUBERT,B	05 S	BABR	$\Lambda K_S^0 K^+$ and $\Sigma^0 K_S^0 K^+$		
• • • We do not use the following data for averages, fits, limits, etc. • • •									
2284.7	± 0.6	± 0.7	1134	AVERY	91	CLEO	Six modes		
2281.7	±2.7	±2.6	29	ALVAREZ	90 B	NA14	$pK^-\pi^+$		
2285.8	± 0.6	± 1.2	101	BARLAG	89	NA32	$pK^-\pi^+$		
2284.7	± 2.3	±0.5	5	AGUILAR			$pK^-\pi^+$		
2283.1	±1.7	± 2.0	628	ALBRECHT	88C	ARG	$pK^{-}\pi^{+}$, $p\overline{K}^{0}$, $\Lambda 3\pi$		
2286.2	±1.7	± 0.7	97	ANJOS	88 B	E691	$pK^-\pi^+$		
2281	± 3		2	JONES	87	HBC	$pK^-\pi^+$		
2283	± 3		3	BOSETTI	82	HBC	$pK^-\pi^+$		
2290	± 3		1	CALICCHIO	80	HYBR	$pK^-\pi^+$		

 $^{^1}$ AUBERT,B 05s uses low-Q $\Lambda K_S^0 \, K^+$ and $\Sigma^0 \, K_S^0 \, K^+$ decays to minimize systematic errors. The error above includes systematic as well as statistical errors. Many cross checks and adjustments to properties of the BABAR detector, as well as the large number of clean events, make this by far the best measurement of the Λ_c^+ mass.

Λ_c^+ MEAN LIFE

Measurements with an error $\geq 100 \times 10^{-15}$ s or with fewer than 20 events have been omitted from the Listings.

<i>VALUE</i> (10^{-15} s)	EVTS	DOCUMENT ID		TECN	COMMENT
200 ± 6 OUR AVER	RAGE Erro	r includes scale f	actor	of 1.6.	See the ideogram below.
$204.6 \pm \ 3.4 \pm \ 2.5$	8034	LINK	02 C	FOCS	$pK^-\pi^+$
$198.1 \pm \ 7.0 \pm \ 5.6$	1630	KUSHNIR	01	SELX	$\Lambda_c^+ \rightarrow pK^-\pi^+$
				_	
HTTP://PDG.LBL.0	GOV	Page 1		Crea	ted: 5/30/2017 17:22

179.6	6.9	$9\pm$ 4.4	4749				$e^+e^-pprox \ \varUpsilon(4S)$
215	± 16	± 8	1340	FRABETTI	93 D	E687	$\gamma \operatorname{Be}, \Lambda_{c}^{+} \to p K^{-} \pi^{+}$
• •	• We d	do not use th	e following o	lata for averages	, fits,	limits, e	etc. • • •
180	± 30	± 30	29				γ , $\Lambda_c^+ \rightarrow pK^-\pi^+$
200	± 30	± 30	90	FRABETTI	90	E687	$\gamma \operatorname{Be}, \Lambda_c^+ \to p K^- \pi^+$
196	$^{+23}_{-20}$		101	BARLAG	89	NA32	$pK^{-}\pi^{+}$ + c.c.
220	± 30	± 20	97	ANJOS	88 B	E691	$pK^{-}\pi^{+}$ + c.c.

Λ_c^+ DECAY MODES

	Mode	ı	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
	Hadronic modes with a p	p: 5	=-1 final states	
Γ_1	pK_S^0		($1.58\pm~0.08$) %	S=1.2
Γ_2	$pK^-\pi^+$		$(6.35\pm\ 0.33)\%$	S=1.4
Γ ₃	$p\overline{K}^*(892)^0$	[a]	$(1.98\pm~0.28)~\%$	
Γ_4	Δ (1232) $^{++}$ K $^{-}$		($1.09\pm~0.25$) %	
Γ_5	$arLambda(1520)\pi^+$	[a]	($2.2~\pm~0.5$) %	
Γ_6	$ ho K^- \pi^+$ nonresonant		(3.5 ± 0.4) %	
Γ_7	$p \frac{K_S^0 \pi^0}{p K^0 \eta}$		($1.99\pm~0.13)~\%$	S=1.1
Γ ₈	$p\overline{K}^0\eta$		(1.6 \pm 0.4) %	

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

Page 2

```
pK_{S}^{0}\pi^{+}\pi^{-}
                                                                          (1.66 \pm 0.12)\%
                                                                                                                    S = 1.1
\Gamma_{10} \quad p \, K^{-} \, \pi^{+} \, \pi^{0}
                                                                         (4.9 \pm 0.4)\%
                                                                                                                    S = 1.3
\Gamma_{11} pK^*(892)^-\pi^+
\Gamma_{12} p(K^-\pi^+)_{\text{nonresonant}}\pi^0
                                                                  [a] (1.5 \pm 0.5)\%
                                                                       (4.6 \pm 0.9)\%
       \Delta(1232)\overline{K}^*(892)
\Gamma_{14} p K^{-} 2\pi^{+} \pi^{-}
                                                                         (1.4 \pm 1.0) \times 10^{-3}
\Gamma_{15} p K^- \pi^+ 2\pi^0
                                                                          ( 1.0 \pm 0.5 ) %
\Gamma_{16} pK^-\pi^+3\pi^0
```

Hadronic modes with a p: S = 0 final states

$$\begin{array}{llll} \Gamma_{17} & p\pi^{+}\pi^{-} & (4.3 \pm 0.4) \times 10^{-3} \\ \Gamma_{18} & pf_{0}(980) & [a] & (3.5 \pm 2.3) \times 10^{-3} \\ \Gamma_{19} & p2\pi^{+}2\pi^{-} & (2.3 \pm 1.5) \times 10^{-3} \\ \Gamma_{20} & pK^{+}K^{-} & (10 \pm 4) \times 10^{-4} \\ \Gamma_{21} & p\phi & [a] & (1.08 \pm 0.14) \times 10^{-3} \\ \Gamma_{22} & pK^{+}K^{-} \, \text{non-}\phi & (5.3 \pm 1.2) \times 10^{-4} \end{array}$$

Hadronic modes with a hyperon: S = -1 final states

Γ_{48}	$\Sigma^+\omega$	[a] ($1.74\pm~0.21)~\%$	
Γ_{49}	$\Sigma^+ {\mathcal K}^+ {\mathcal K}^-$	$(3.6 \pm 0.4) \times 10^{-3}$	
Γ ₅₀	$oldsymbol{\Sigma}^+\phi$	[a] $(4.0 \pm 0.6) \times 10^{-3}$	S=1.1
Γ_{51}	${\it \Xi}(1690)^0{\it K}^+$, ${\it \Xi}^{*0} ightarrow$	$(1.03\pm 0.26) \times 10^{-3}$	
_	$\Sigma^+ K^-$	4	
Γ ₅₂	$\Sigma^+ {\it K}^+ {\it K}^-$ nonresonant	$< 8 \times 10^{-4}$	CL=90%
• 5.5	$\equiv^0 K^+$	$(5.0 \pm 1.2) \times 10^{-3}$	
Γ ₅₄	$\Xi^- K^+ \pi^+$	$(6.2 \pm 0.6) \times 10^{-3}$	S=1.1
Γ ₅₅	\equiv (1530) 0 K $^{+}$	[a] $(3.3 \pm 0.9) \times 10^{-3}$	

Hadronic modes with a hyperon: S = 0 final states

	ΛK^+	$(6.1 \pm 1.2) \times 10^{-4}$	
	$\Lambda K^+ \pi^+ \pi^-$	$< 5 \times 10^{-4}$	CL=90%
	$\Sigma^0 K^+$	$(5.2 \pm 0.8) \times 10^{-4}$	
	Σ^0 K $^+$ π^+ π^-	$< 2.6 \times 10^{-4}$	CL=90%
Γ ₆₀	$\Sigma^+ {\it K}^+ \pi^-$	$(2.1 \pm 0.6) \times 10^{-3}$	
	$\Sigma^+ {\it K}^* (892)^0$	[a] $(3.6 \pm 1.0) \times 10^{-3}$	
Γ ₆₂	$\Sigma^- K^+ \pi^+$	$< 1.2 \times 10^{-3}$	CL=90%

Doubly Cabibbo-suppressed modes

Semileptonic modes

F₆₄
$$\Lambda e^+ \nu_e$$
 (3.6 \pm 0.4) % Γ_{65} $\Lambda \mu^+ \nu_\mu$

Inclusive modes

Γ ₆₆	e^+ anything		(4.5	± 1.7) %	
Γ ₆₇	pe^+ anything		(1.8	± 0.9) %	
Γ ₆₈	Λe^+ anything					
Γ ₆₉	p anything		(50	± 16) %	
Γ_{70}	ho anything (no $arLambda$)		(12	± 19) %	
Γ_{71}	p hadrons					
Γ_{72}	<i>n</i> anything		(50	± 16) %	
Γ ₇₃	n anything (no $arLambda$)		(29	± 17) %	
Γ ₇₄	arLambda anything		(35	± 11) %	S=1.4
Γ ₇₅	$arSigma^\pm$ anything	[<i>b</i>]	(10	\pm 5) %	
Γ_{76}	3prongs		(24	± 8) %	

$\Delta C = 1$ weak neutral current (C1) modes, or Lepton Family number (LF), or Lepton number (L), or Baryon number (B) violating modes

		_		-		
Γ_{77}	pe^+e^-		C1	< 5.5	\times 10 ⁻⁶	CL=90%
Γ ₇₈	$p\mu^+\mu^-$		C1	< 4.4	\times 10 ⁻⁵	CL=90%
Γ_{79}	pe $^+\mu^-$		LF	< 9.9	\times 10 ⁻⁶	CL=90%
Γ_{80}	$pe^-\mu^+$		LF	< 1.9	$\times10^{-5}$	CL=90%

Γ_{81}	$\overline{p}2e^+$	L,B	< 2.7	$\times10^{-6}$	CL=90%
	$\overline{p}2\mu^+$	L,B	< 9.4	$\times10^{-6}$	CL=90%
Γ ₈₃	$\overline{p}e^+\mu^+$	L,B	< 1.6	$\times10^{-5}$	CL=90%
Γ ₈₄	$\Sigma^-\mu^+\mu^+$	L	< 7.0	\times 10 ⁻⁴	CL=90%

- [a] This branching fraction includes all the decay modes of the final-state resonance.
- [b] The value is for the sum of the charge states or particle/antiparticle states indicated.

CONSTRAINED FIT INFORMATION

An overall fit to 36 branching ratios uses 57 measurements and one constraint to determine 19 parameters. The overall fit has a $\chi^2=39.9$ for 39 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta x_i \delta x_j \right\rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

x_2	50									
<i>x</i> ₇	43	59								
<i>x</i> ₉	48	57	37							
<i>X</i> 10	30	83	48	54						
<i>x</i> ₂₃	46	72	47	36	53					
<i>x</i> ₂₄	37	66	44	31	52	69				
<i>X</i> 26	53	13	13	44	9	15	6			
<i>X</i> 37	14	24	15	13	18	27	20	4		
<i>x</i> 39	49	58	40	36	42	74	59	28	20	
<i>x</i> ₄₀	36	42	32	25	30	35	34	14	11	31
<i>x</i> ₄₂	42	79	48	52	72	54	52	18	18	45
<i>x</i> ₄₄	15	29	17	17	24	20	19	4	7	17
^X 46	17	11	8	15	9	9	7	25	3	11
<i>x</i> ₄₈	19	31	19	24	29	20	19	13	7	17
<i>X</i> 49	22	41	25	26	37	28	27	9	9	24
<i>×</i> 50	17	33	20	22	30	23	22	8	8	19
^X 54	26	43	27	22	33	53	38	8	15	40
	x_1	x_2	<i>x</i> ₇	<i>x</i> ₉	<i>x</i> ₁₀	<i>x</i> ₂₃	<i>x</i> ₂₄	<i>x</i> ₂₆	<i>X</i> 37	<i>x</i> 39

<i>x</i> ₄₂	34						
<i>x</i> ₄₄	12	26					
^x 46	7	11	3				
<i>x</i> ₄₈	15	28	9	6			
<i>x</i> ₄₉	18	49	13	5	14		
<i>×</i> 50	14	42	11	4	12	20	
^X 54	20	33	12	5	12	17	14
	× ₄₀	x ₄₂	<i>x</i> ₄₄	×46	x ₄₈	<i>x</i> ₄₉	×50

Λ_c^+ Branching ratios

A few really obsolete results have been omitted.

- Hadronic modes with a p: S = -1 final states

$\Gamma(pK_S^0)/\Gamma_{total}$						Γ_1/Γ			
VALUE (%) EV	TS DO	CUMENT ID		ECN	COMMENT				
1.58±0.08 OUR FIT	Error includ	les scale fact	or of 1.	2.		_			
1.52±0.08±0.03 124	13 AE	BLIKIM	16 B	BES3	$e^+e^- \rightarrow \Lambda_c$	√ _C , 4.599 GeV			
$\Gamma(\rho K_S^0)/\Gamma(\rho K^-\pi^+)$ Γ_1/Γ_2 Measurements given as a \overline{K}^0 ratio have been divided by 2 to convert to a K_S^0 ratio.									
Measurements gi	ven as a K^{t}	ratio have	been div	vided by	/ 2 to convert	to a K_S^0 ratio.			
VALUE		<u>DOCUMENT</u>			N <u>COMMENT</u>				
0.249 ± 0.013 OUR FIT		ludes scale fa	actor of	1.5.					
0.234±0.020 OUR AV	ERAGE								
$0.23 \pm 0.01 \pm 0.02$	1025	ALAM			$e^+e^-\approx$				
$0.22 \pm 0.04 \pm 0.03$	133	AVERY	91	. CLE	$60 e^+e^-10$	5 GeV			
$0.28 \pm 0.09 \pm 0.07$	45	ANJOS	90	E69	1 γ Be 70–26	60 GeV			
$0.31 \pm 0.08 \pm 0.02$	73	ALBRECH	T 88	C ARG	$e^{+}e^{-}$ 10	GeV			
$\Gamma(ho K^- \pi^+)/\Gamma_{ m total}$						Γ_2/Γ			
VALUE (%) EV		CUMENT ID			OMMENT				
6.35±0.33 OUR FIT									
6.3 ± 0.5 OUR AVER									
$5.84 \pm 0.27 \pm 0.23$ 6.3	3k AE	BLIKIM	16 BI	ES3 e	$^+e^- o \Lambda_c \overline{\Lambda}$	_c , 4.599 GeV			
$6.84 \pm 0.24 ^{+0.21}_{-0.27}$ 1.4	łk ¹ ZU	IPANC	14 BI	ELL e	$+e^- \rightarrow D(*)$	$-\frac{1}{p}\pi^+$ recoil			
• • • We do not use t	he following	data for ave	erages, f	its, lim	its, etc. • • •				
5.0 ± 1.3	² PE				ee footnote				
¹ This ZUPANC 14	value is the	FIRST-EVE	R mode	l-indep	endent measure	ement of a $arLambda_c^+$			

branching fraction.
² See the note by P. Burchat, " Λ_c^+ Branching Fractions," in any edition of the Review from 2002 through 2014 for how this value was obtained. It is now obsolete.

$\Gamma(\rho\overline{K}^*(892)^0)/\Gamma(\rho K^-\pi^+)$

 Γ_3/Γ_2

Unseen decay modes of the $\overline{K}^*(892)^0$ are included.

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.31±0.04 OUR AVER	AGE				
$0.29\!\pm\!0.04\!\pm\!0.03$		¹ AITALA	00	E791	π^- N, 500 GeV
$0.35^{+0.06}_{-0.07}{\pm}0.03$	39	BOZEK	93	NA32	$\pi^-\mathrm{Cu}$ 230 GeV
0.42 ± 0.24	12	BASILE	81 B	CNTR	$pp \rightarrow \Lambda_{C}^{+}e^{-}X$
• • • We do not use th	e followin	g data for averages	, fits,	limits, e	etc. • • •
0.35 + 0.11		BARI AG	90n	NA32	See BOZEK 93

 $^{35\}pm0.11$ BARLAG 90D NA32 See BOZEK 93 1 AITALA 00 makes a coherent 5-dimensional amplitude analysis of 946 \pm 38 \varLambda_{C}^{+} \to $pK^-\pi^+$ decays.

$\Gamma(\Delta(1232)^{++}K^{-})/\Gamma(\rho K^{-}\pi^{+})$

 Γ_4/Γ_2

	•	,			_
VALUE	<i>EVTS</i>	DOCUMENT ID		TECN	COMMENT
0.17±0.04 OUR AVERA	GE Error	includes scale fa	ctor c	f 1.1.	
$0.18\!\pm\!0.03\!\pm\!0.03$		¹ AITALA	00	E791	π^- N, 500 GeV
$0.12^{\color{red}+0.04}_{-0.05} \pm 0.05$	14	BOZEK	93	NA32	$\pi^-\mathrm{Cu}$ 230 GeV
0.40 ± 0.17	17	BASILE	81 B	CNTR	$pp \rightarrow \Lambda_c^+ e^- X$

 $^{^1}$ AITALA 00 makes a coherent 5-dimensional amplitude analysis of 946 \pm 38 \varLambda_{C}^{+} ightarrow $pK^-\pi^+$ decays.

 Γ_5/Γ_2

 $\Gamma(\Lambda(1520)\pi^+)/\Gamma(\rho K^-\pi^+)$ Unseen decay modes of the $\Lambda(1520)$ are included.

Onseen accay in	Jues of the	, 71(1320) are mela	aca.		
<u>VALUE</u>	<u>EVTS</u>	DOCUMENT ID		TECN	<u>COMMENT</u>
0.35±0.08 OUR AVER	RAGE				
$0.34\!\pm\!0.08\!\pm\!0.05$		¹ AITALA	00	E791	π^- N, 500 GeV
$0.40^{+0.18}_{-0.13}\pm0.09$	12	BOZEK	93	NA32	π^- Cu 230 GeV

 $^{^1}$ AITALA 00 makes a coherent 5-dimensional amplitude analysis of 946 \pm 38 $\it \Lambda_c^+ \rightarrow p\, \it K^-\, \pi^+$ decays.

$\Gamma(pK^-\pi^+ \text{ nonresonant})/\Gamma(pK^-\pi^+)$

<u>VALUE</u>	<u>EVTS</u>	<u>DOCUMENT ID</u>		TECN	<u>COMMENT</u>
0.55 ± 0.06 OUR AVER	AGE				
$0.55 \!\pm\! 0.06 \!\pm\! 0.04$		$^{ m 1}$ AITALA	00	E791	π^- N, 500 GeV
$0.56^{+0.07}_{-0.09}\pm0.05$	71	BOZEK	93	NA32	π^- Cu 230 GeV

 $^{^1}$ AITALA 00 makes a coherent 5-dimensional amplitude analysis of 946 \pm 38 ${\it \Lambda}_{\it C}^+$ ightarrow $pK^-\pi^+$ decays.

$$\Gamma(
ho K_S^0 \pi^0)/\Gamma_{ ext{total}}$$
 $\Gamma_7/\Gamma_{ ext{VALUE (\%)}}$ EVTS DOCUMENT ID TECN COMMENT

VALUE (%)	EVIS	DOCUMENT ID)	IECN	COMMENT	
1.99±0.13 OUR F	IT Error	includes scale fa	ctor of	1.1.		
$1.87 \pm 0.13 \pm 0.05$	558	ABLIKIM	16	BES3	$e^+e^- \rightarrow \Lambda_C \overline{\Lambda}_C$, 4.599	GeV

$\Gamma(\rho K_S^0 \pi^0)/\Gamma(\rho K^-)$	_	- 0				Γ_7/Γ_2
		⁷⁰ ratio have bee				o a K_S^0 ratio.
VALUE		<u>DOCUMENT ID</u>		TECN	COMMENT	
0.313 ± 0.018 OUR FIT $0.33 \pm 0.03 \pm 0.04$	774	ALAM	98	CLE2	$e^+e^- \approx$	$\Upsilon(4S)$
$\Gamma(p\overline{K}^0\eta)/\Gamma(pK^-\eta)$	odes of the					Γ_8/Γ_2
VALUE		DOCUMENT ID				
$0.25\pm0.04\pm0.04$	57	AMMAR	95	CLE2	$e^+e^-\approx$	T(4S)
$\Gamma(\rho K_S^0 \pi^+ \pi^-)/\Gamma_{tc}$ VALUE (%) EV		OCUMENT ID	TEC	N CON	1MENT	Г9/Г
1.66±0.12 OUR FIT						
1.53±0.11±0.09 4	85 A	BLIKIM 16	BES	63 e ⁺	$e^- \rightarrow \Lambda_c 7$	Ī _c , 4.599 GeV
$\Gamma(\rho K_S^0 \pi^+ \pi^-)/\Gamma(\rho K_S^0 \pi^+ \pi^-)$,	-0				Γ ₉ /Γ ₂
		⁷⁰ ratio have bee				o a K_S^0 ratio.
VALUE		DOCUMENT ID			<u>COMMENT</u>	
0.261 ± 0.016 OUR FIT 0.257 ± 0.031 OUR AV		cludes scale facto	or of 1	2.		
$0.26 \pm 0.02 \pm 0.03$		ALAM	98	CLF2	$e^+e^-\approx$	$\Upsilon(45)$
$0.20 \pm 0.02 \pm 0.03$ $0.22 \pm 0.06 \pm 0.02$		AVERY			$e^{+}e^{-}$ 10.1	` '
$0.49\ \pm0.18\ \pm0.04$		BARLAG				
$\Gamma(\rho K^-\pi^+\pi^0)/\Gamma_{to}$	tal					Γ ₁₀ /Γ
VALUE (%) EV		OCUMENT ID	_	N CON	1MENT	
4.9 ±0.4 OUR FIT 4.53±0.23±0.30 18		ides scale factor of BLIKIM 16		63 e ⁺	$e^- \rightarrow \Lambda_c 7$	Ī _C , 4.599 GeV
$\Gamma(\rho K^-\pi^+\pi^0)/\Gamma(\rho^{VALUE})$	$\rho K^-\pi^+$	<u>DOCUMENT ID</u>)	TECN	<u>COMMENT</u>	Γ_{10}/Γ_2
0.777±0.033 OUR FIT	F Error in				COMMENT	
					$e^+e^-\approx$	$\Upsilon(4S)$
$\Gamma(\rho K^*(892)^-\pi^+)$	` •	*				Γ_{11}/Γ_{9}
		$K^*(892)^-$ are in				
VALUE		DOCUMENT ID			<u>COMMENT</u>	
0.88±0.28	17	ALEEV	94	BIS2	nN 20-70	GeV
$\Gamma(\rho(K^-\pi^+)_{\text{nonreso}})$	nant π ⁰)/	Γ(ρΚ ⁻ π ⁺) <u>DOCUMENT ID</u>)	TECN	COMMENT	Γ_{12}/Γ_2
0.73±0.12±0.05	67	BOZEK	93	NA32		
$\Gamma(\Delta(1232)\overline{K}^*(892))$		2021.	30		04 20	г ₁₃ /Г
VALUE (1232) N (092)	/)/	DOCUMENT ID)	TECN	COMMENT	' 13/ '
seen	35	AMENDOLIA				

$\Gamma(\rho K^- 2\pi^+\pi^-)/\Gamma($	$(pK^-\pi^+)$	DOCUMENT ID		TECN	COMMENT	Γ_{14}/Γ_2
<i>VALUE</i> 0.022±0.015		DOCUMENT ID BARLAG		NA32	π^- 230 GeV	
$\Gamma(\rho K^-\pi^+2\pi^0)/\Gamma(\rho K^-\pi^+2\pi^0)$	p $K^-\pi^+)$	<i>D</i> , ii.e., i.e	302		x 250 GeV	Γ_{15}/Γ_2
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	
$0.16\pm0.07\pm0.03$	15	BOZEK	93	NA32	π^- Cu 230 Ge	V
$\Gamma(\rho K^-\pi^+3\pi^0)/\Gamma(\rho K^-\pi^+3\pi^0)$	•	DOCUMENT ID		TECN	COMMENT	Γ_{16}/Γ_{2}
• • • We do not use th						
$0.10\pm0.06\pm0.02$	8	BOZEK	93		π^- Cu 230 Ge	V
Нас	Ironic mod	es with a p: S	S = 0) final s	states ———	_
$\Gamma(\rho\pi^+\pi^-)/\Gamma(\rho K^-$		•				Γ_{17}/Γ_2
VALUE (units 10^{-2})	•	DOCUMENT ID		TECN	COMMENT	
6.7 ±0.5 OUR AVER	AGE				1	
$6.70 \pm 0.48 \pm 0.25$	495	ABLIKIM			$e^{+}e^{-}$ at 4.59	9 GeV
6.9 ± 3.6	5	BARLAG	900	NA32	π^- 230 GeV	
$\Gamma(pf_0(980))/\Gamma(pK^2)$	$-\pi^+$	(000)				Γ_{18}/Γ_{2}
Unseen decay mo	des of the t_0	(980) are includ DOCUMENT ID		TECN	COMMENT	
0.055±0.036		BARLAG		NA32		
F/ 0 ±0 =\/F/ /	(− ±\					- /-
$\Gamma(\rho 2\pi^+ 2\pi^-)/\Gamma(\rho R)$	$(-\pi^+)$	DOCUMENT ID		TECN	COMMENT	Γ_{19}/Γ_2
<u>VALUE</u> 0.036±0.023		DOCUMENT ID BARLAG		NA32	$\frac{COMMENT}{\pi^-$ 230 GeV	
		DAILLAG	900	IVAJZ	7 250 GeV	
$\Gamma(pK^+K^-)/\Gamma(pK^-)$,					Γ_{20}/Γ_{2}
<u>VALUE</u> 0.015±0.006 OUR AVE	<u>EVTS</u> FRAGE Erro	DOCUMENT ID or includes scale	facto	TECN r of 2.1	COMMENT	
$0.014 \pm 0.002 \pm 0.002$	676	ABE		BELL		15)
$0.039\!\pm\!0.009\!\pm\!0.007$	214	ALEXANDER				,
• • • We do not use the	ne following o	data for averages	s, fits,	limits,	etc. ● ●	
$0.096 \pm 0.029 \pm 0.010$	30	FRABETTI	93н	E687	γ Be, $\overline{\it E}_{\gamma}$ 220 $^{\circ}$	GeV
0.048 ± 0.027		BARLAG	90 D	NA32	π^- 230 GeV	
$\Gamma(p\phi)/\Gamma(pK^-\pi^+)$ Unseen decay mo	des of the d	are included				Γ_{21}/Γ_2
•	EVTS	DOCUMENT ID		TECN	COMMENT	
1.70±0.21 OUR AVER						
	44	ABLIKIM			$e^{+}e^{-}$ at 4.59	
	345	ABE			$e^+e^-\approx \gamma(4)$	
2.4 $\pm 0.6 \pm 0.3$	54				$e^+e^-pprox ~\gamma(4)$	15)
• • • We do not use th	ie ioliowing (
4.0 ±2.7		BARLAG	90 D	ivA32	π^- 230 GeV	
HTTP://PDG.LBL.	GOV	Page 9		Creat	ted: 5/30/201	17 17:22

```
\Gamma(pK^+K^-\text{non-}\phi)/\Gamma(pK^-\pi^+)
                                                                                               \Gamma_{22}/\Gamma_2
VALUE (units 10^{-3})
                                           DOCUMENT ID
8.4 \pm1.8 OUR AVERAGE
                                                             160 BES3 e^+e^- at 4.599 GeV
9.36 \pm 2.22 \pm 0.71
                                38
                                           ABLIKIM
                                                             02C BELL
   \pm 2 \pm 2
                               344
                                           ABE
7
             - Hadronic modes with a hyperon: S = -1 final states -
\Gamma(\Lambda\pi^+)/\Gamma_{\text{total}}
                                                                                                 \Gamma_{23}/\Gamma
                       EVTS
                                     DOCUMENT ID
                                                             TECN COMMENT
1.30±0.07 OUR FIT Error includes scale factor of 1.2.
1.24 \pm 0.07 \pm 0.03
                                                             BES3 e^+e^- \rightarrow \Lambda_C \overline{\Lambda}_C, 4.599 GeV
                        706
                                     ABLIKIM
                                                       16
\Gamma(\Lambda\pi^+)/\Gamma(pK^-\pi^+)
                                                                                               \Gamma_{23}/\Gamma_{2}
                           <u>CL% EV</u>TS <u>DOCUMENT ID</u>
   0.204±0.009 OUR FIT Error includes scale factor of 1.1.
   0.204\pm0.019 OUR AVERAGE
   0.217 \pm 0.013 \pm 0.020
                                                           05F FOCS \gamma nucleus, \overline{E}_{\gamma} \approx 180 \text{ GeV}
                                          LINK
  0.18 \pm 0.03 \pm 0.04
                                                                 ARG
                                                                           e^+e^-pprox 10.4~{\rm GeV}
                                          ALBRECHT
   0.18 \pm 0.03 \pm 0.03
                                          AVERY
                                                                 CLEO e^{+}e^{-} 10.5 GeV

    • • We do not use the following data for averages, fits, limits, etc.

< 0.33
                           90
                                                           90
                                                                           \gamma Be 70–260 GeV
                                          ANJOS
                                                                 E691
                                                           88C ARG
                                                                           e^{+}e^{-} 10 GeV
< 0.16
                           90
                                          ALBRECHT
\Gamma(\Lambda\pi^+\pi^0)/\Gamma_{\text{total}}
                                                                                                 \Gamma_{24}/\Gamma
                                                             TECN COMMENT
                                     DOCUMENT ID
7.1 \pm0.4 OUR FIT Error includes scale factor of 1.2.
                                                             BES3 e^+e^- \rightarrow \Lambda_c \overline{\Lambda}_c, 4.599 GeV
7.01 \pm 0.37 \pm 0.19 1497
                                     ABLIKIM
\Gamma(\Lambda\pi^+\pi^0)/\Gamma(\rho K^-\pi^+)
                                          DOCUMENT ID
                                                                  TECN COMMENT
1.11±0.05 OUR FIT
                           Error includes scale factor of 1.1.
                                                                            e^+e^-\approx \Upsilon(3S), \Upsilon(4S)
0.73\pm0.09\pm0.16
                             464
                                          AVERY
                                                                  CLE2
\Gamma(\Lambda \rho^+)/\Gamma(\rho K^- \pi^+)
                                                                                               \Gamma_{25}/\Gamma_{2}
                                        DOCUMENT ID
                                                                 TECN
                                                                          e^+e^-\approx \Upsilon(3S), \Upsilon(4S)
                                        AVERY
\Gamma(\Lambda\pi^-2\pi^+)/\Gamma_{\text{total}}
                                                                                                 \Gamma_{26}/\Gamma
                                     DOCUMENT ID
                                                             TECN COMMENT
3.7 \pm0.4 OUR FIT Error includes scale factor of 1.9.
                                                             BES3 e^+e^- \rightarrow \Lambda_C \overline{\Lambda}_C, 4.599 GeV
3.81\pm0.24\pm0.18
                        609
                                     ABLIKIM
                                                       16
\Gamma(\Lambda\pi^-2\pi^+)/\Gamma(pK^-\pi^+)
                                                                                               \Gamma_{26}/\Gamma_{2}
                                         DOCUMENT ID
                                                                 TECN COMMENT
0.58 \pm0.06 OUR FIT Error includes scale factor of 2.8.
0.522 ± 0.032 OUR AVERAGE
0.508 \pm 0.024 \pm 0.024 1356
                                        LINK
                                                           05F FOCS \gamma nucleus, \overline{E}_{\gamma} \approx 180 \text{ GeV}
0.65 \pm 0.11 \pm 0.12
                                                                 CLEO e^{+}e^{-} 10.5 GeV
                            289
                                         AVERY
                                                                 E691
0.82 \pm 0.29 \pm 0.27
                             44
                                         ANJOS
                                                           90
                                                                           \gamma Be 70–260 GeV
0.94 \pm 0.41 \pm 0.13
                             10
                                         BARLAG
                                                           90D NA32 \pi^- 230 GeV
                                                                           e^{+}e^{-} 10 GeV
                                                           88C ARG
0.61 \pm 0.16 \pm 0.04
                            105
                                         ALBRECHT
HTTP://PDG.LBL.GOV
                                              Page 10
                                                                    Created: 5/30/2017 17:22
```

$\Gamma(\Sigma(1385)^+\pi^+\pi^-)$	$^-$, Σ^{*+} $ ightarrow$			-	COMMENT	Γ_{27}/Γ_{26}
<u>VALUE</u> 0.28±0.10±0.08		DOCUMENT I			γ nucleus, \overline{E}	$_{\gamma} pprox 180 \; GeV$
$\Gamma(\Sigma(1385)^-2\pi^+,$ VALUE	Σ *− → /				<u>COMMENT</u>	Γ ₂₈ /Γ ₂₆
0.21±0.03±0.02		LINK	05F	FOCS	$\frac{\textit{COMMENT}}{\gamma}$ nucleus, \overline{E}	$_{\gamma}pprox$ 180 GeV
$\Gamma(\Lambda\pi^+\rho^0)/\Gamma(\Lambda\pi^-)$	$^{-}2\pi^{+})$	DOCUMENT I	D	TECN	COMMENT	Γ_{29}/Γ_{26}
0.40±0.12±0.12		LINK			γ nucleus, \overline{E}	$_{\gamma}pprox$ 180 GeV
$\Gamma(\Sigma(1385)^+\rho^0,\Sigma_{VALUE})$	-*+ → Λπ			TECN	COMMENT	Γ_{30}/Γ_{26}
$0.14 \pm 0.09 \pm 0.07$		LINK	05F	FOCS	$\frac{\textit{COMMENT}}{\gamma \text{ nucleus, } \overline{E}_{\lambda}}$	~ ≈ 180 GeV
$\Gamma(\Lambda\pi^-2\pi^+ \text{ nonres})$, -	$(\Lambda\pi^-2\pi^+)$				΄ Γ ₃₁ /Γ ₂₆
		DOCUMENT I				100.6.1/
<0.3	90	LINK	05F	FOCS	γ nucleus, \overline{E}	$_{\gamma} pprox 180 \; { m GeV}$
$\Gamma(\Lambda\pi^-\pi^02\pi^+\text{tota})$				TEC	N COMMENT	Γ_{32}/Γ_2
<u>VALUE</u> 0.36±0.09±0.09		1 CRONIN	<u>ΠΙΟ</u> -HEN 03	. TEC	$e^+e^- \approx$	Υ(4S)
¹ CRONIN-HENNE below.						` '
$\Gamma(\Lambda \pi^+ \eta)/\Gamma(\rho K^-)$ Unseen decay r	nodes of the			T F.0		Γ_{33}/Γ_2
<u>VALUE</u> 0.36±0.07 OUR AVE		<u>DOCUMEN</u>	ΠΙ	<u>IEC</u>	N <u>COMMENT</u>	
		CRONIN AMMAR			$e^+e^- \approx e^+e^- \approx e^+e^- \approx e^+e^- \approx e^+e^- \approx e^+e^- \approx e^+e^- \approx e^+e^-$	
$\Gamma(\Sigma(1385)^+\eta)/\Gamma$	$(ho K^- \pi^+)$	1				Γ_{34}/Γ_2
Unseen decay r		, ,				
<u>VALUE</u>	<u>EVTS</u> 54				$\frac{N}{2}$ $\frac{COMMENT}{e^+e^-} \approx$	
$0.17 \pm 0.04 \pm 0.03$	54	AWWAK	9:	o CLE	:2 e'e ≈	1 (45)
$\Gamma(\Lambda\pi^+\omega)/\Gamma(pK^-)$	(π^+)	المرامع المعاريط	ما			Γ_{35}/Γ_2
Unseen decay r				TEC	N <u>COMMENT</u>	
$0.24 \pm 0.06 \pm 0.06$	32				$e^+e^-\approx$	
$\Gamma(\Lambda\pi^-\pi^02\pi^+$, no	η or $\omega)/\Gamma$	$(pK^-\pi^+)$				Γ_{36}/Γ_2
<u>VALUE</u> <0.13	<u>CL%</u>	DOCUMEN	IT ID	TEC	N COMMENT	
<0.13	90	CRONIN	-HEN03	3 CLE	$e^+e^-\approx$	$\Upsilon(4S)$

$\Gamma(\Lambda K^{+} \overline{K}^{0})/\Gamma(\rho K^{-} \pi^{+})$	Γ ₃₇ /Γ ₂
0.089±0.018 OUR FIT Error	rincludes scale factor of 2.0.
0.131±0.020 OUR AVERAGE 0.142±0.018±0.022 251	LINK 05F FOCS γ nucleus, $\overline{E}_{\gamma} \approx$ 180 GeV
	AMMAR 95 CLE2 $e^+e^- \approx \Upsilon(4S)$
$\Gamma(\Xi(1690)^0 K^+, \Xi^{*0} \rightarrow A^0)$, ,
VALUE EVTS	$(1K^0)/\Gamma(1K^+K^0)$ Γ_{38}/Γ_{37}
0.28±0.07 OUR AVERAGE	
	LINK 05F FOCS γ nucleus, $\overline{E}_{\gamma} \approx 180 \text{ GeV}$
$0.26 \pm 0.08 \pm 0.03$ 93	ABE 02C BELL $e^+e^- \approx \Upsilon(4S)$
$\Gamma \left(\Lambda K^+ \overline{K}^0 \right) / \Gamma \left(\Lambda \pi^+ \right)$	Γ ₃₇ /Γ ₂₃
<u>VALUE</u> <u>E</u> 0.44 ±0.08 OUR FIT Error	EVTS DOCUMENT ID TECN COMMENT
0.395±0.026±0.036 460 ±	
$\Gamma(\Sigma^0\pi^+)/\Gamma_{ m total}$	Γ ₃₉ /Γ
VALUE (%) EVTS	DOCUMENT ID TECN COMMENT
1.29±0.07 OUR FIT Error in	ncludes scale factor of $1.1.$ ABLIKIM 16 BES3 $e^+e^- ightarrow arLambda_C \overline{arLambda}_C$, 4.599 GeV
	ADEIMINI 10 DE33 e e $\rightarrow N_C N_C$, 4.599 Gev
$\Gamma(\Sigma^0\pi^+)/\Gamma(\rho K^-\pi^+)$	Γ ₃₉ /Γ ₂
<u>VALUE</u> <u>EVTS</u> 0.203±0.010 OUR FIT Error	DOCUMENT ID TECN COMMENT includes scale factor of 1.2.
$0.20~\pm0.04~$ OUR AVERAGE	
	AVERY 94 CLE2 $e^+e^- \approx \Upsilon(3S), \Upsilon(4S)$
$0.17 \pm 0.06 \pm 0.04$	ALBRECHT 92 ARG $e^+e^- \approx 10.4 \text{ GeV}$
$\Gamma(\Sigma^0\pi^+)/\Gamma(\Lambda\pi^+)$	Γ_{39}/Γ_{23}
VALUE EVTS 0.00 +0.04 OUR FIT Error	<u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> r includes scale factor of 1.1.
0.98 ±0.05 OUR AVERAGE	includes scale factor of 1.1.
	AUBERT 070 BABR $e^+e^- \approx \Upsilon(4S)$
$1.09 \pm 0.11 \pm 0.19$ 750	LINK 05F FOCS γ nucleus, $\overline{E}_{\gamma} \approx 180 \text{ GeV}$
$\Gamma(\Sigma^+\pi^0)/\Gamma_{ m total}$	Γ ₄₀ /Γ
VALUE (%) EVTS	DOCUMENT ID TECN COMMENT
1.24±0.10 OUR FIT	ADJUKINA 16 DEC2 + - 4 4 4500 C V
1.18±0.10±0.03 309	ABLIKIM 16 BES3 $e^+e^- \rightarrow \Lambda_c \overline{\Lambda}_c$, 4.599 GeV
$\Gammaig(\Sigma^+\pi^0ig)/\Gammaig(hoK^-\pi^+ig)$	Γ_{40}/Γ_{2}
<u>VALUE</u> <u>EVTS</u> 0.196±0.015 OUR FIT	DOCUMENT ID TECN COMMENT
$0.20 \pm 0.03 \pm 0.03$ 93	KUBOTA 93 CLE2 $e^+e^-pprox \varUpsilon(4S)$
$\Gamma(\Sigma^+\eta)/\Gamma(ho K^-\pi^+)$	Γ ₄₁ /Γ ₂
Unseen decay modes of	
VALUE EVTS	DOCUMENT ID TECN COMMENT
0.11±0.03±0.02 26	AMMAR 95 CLE2 $e^+e^-pprox \varUpsilon(4S)$
HTTP://PDG.LBL.GOV	Page 12 Created: 5/30/2017 17:22

$\Gamma(\Sigma^+\pi^+\pi^-)/\Gamma_{\rm t}$	otal				Γ_{42}/Γ
VALUE (%)		DOCUMENT ID	TECN COM	MENT	
4.57±0.29 OUR FIT				_	
$4.25\pm0.24\pm0.20$	1156	ABLIKIM 16	BES3 e^+	$e^- \rightarrow \Lambda_c \overline{\Lambda}_c$	4.599 GeV
$\Gamma(\Sigma^+\pi^+\pi^-)/\Gamma($	$(ho K^- \pi^+)$				Γ_{42}/Γ_2
VALUE		DOCUMENT ID		COMMENT	
0.720 ± 0.029 OUR		ncludes scale factor	of 1.1.		
0.69 ± 0.08 OUR	AVERAGE				
0.72 ± 0.14	47 ± 9	VAZQUEZ-JA	۱08 SEL>	\mathcal{L}^- nucleus	s, 600 GeV
$0.74 \ \pm 0.07 \ \pm 0.09$	487	KUBOTA	93 CLE2	$e^+e^-pprox 7$	r(4S)
$0.54 \begin{array}{l} +0.18 \\ -0.15 \end{array}$	11	BARLAG	92 NA32	$2 \pi^{-}$ Cu 230	GeV
-					
$\Gamma(\Sigma^+ \rho^0)/\Gamma(\rho K)$	$^{-}\pi^{+})$				Γ_{43}/Γ_2
VALUE		DOCUMENT ID	TECN	COMMENT	
<0.27	95	KUBOTA	93 CLE2	$e^+e^-pprox \gamma$	45)
$\Gamma(\Sigma^- 2\pi^+)/\Gamma(\rho$	κ- _π +)				Γ_{44}/Γ_2
		DOCUMENT ID	TECN	COMMENT	144/12
<u>VALUE</u> 0.33 ±0.06 OUR I	<u> </u>	<u>DOCUMENT ID</u>	<u>TECIV</u>	COMMENT	
0.314±0.067	30 ± 6	VAZQUEZ-JA	۸08 SEL>	\mathcal{L}^- nucleus	s, 600 GeV
r/r=0 +)/r/r	+ + -1				- /-
$\Gamma(\Sigma^- 2\pi^+)/\Gamma(\Sigma$					Γ_{44}/Γ_{42}
VALUE	<u> </u>	DOCUMENT ID	<u>TECN</u>	COMMENT	
0.46±0.08 OUR FIT		ED A DETTI	045 5607	р Г 220	C 1/
$0.53 \pm 0.15 \pm 0.07$	56	FRABETTI	94E E087	γ Be, E_{γ} 220	GeV
$\Gamma(\Sigma^0\pi^+\pi^0)/\Gamma(\mu^0)$	$\sigma K^-\pi^+)$				Γ_{45}/Γ_2
VALUE	,	DOCUMENT ID	TECN	COMMENT	
$0.36\pm0.09\pm0.10$		·		$e^+e^-pprox \gamma$ (3.	S), \(\gamma(4S) \)
$\Gamma(\Sigma^0\pi^-2\pi^+)/\Gamma$	(-K+)				Г., /Г.
•	•		TECH	6014145145	Γ_{46}/Γ_2
<u>VALUE</u> 0.18±0.05 OUR FI	<u>EV15</u>	DOCUMENT ID	<u> IECN</u>	COMMENT	
		/// CD//	94 CLE2	_+	
$0.21 \pm 0.05 \pm 0.05$	90	AVERY	94 CLE2	$r = r \in \mathcal{X} \times \mathcal{X}$	(4 <i>S</i>)
$\Gamma(\Sigma^0\pi^-2\pi^+)/\Gamma$	(A====+	1			Γ_{46}/Γ_{26}
•	*	•	TECN CO)	1 46/1 26
<u>VALUE</u> 0.30±0.08 OUR FI	<u> </u>	DOCUMENT ID	IECN CC	VIVIIVIEIN I	
$0.26 \pm 0.06 \pm 0.09$	480	LINK 05	FOCS γ	nucleus, $\overline{\it E}_{\gamma} pprox$	180 GeV
Г/ Г + ,) / Г					Г./Г
$\Gamma(\Sigma^+\omega)/\Gamma_{total}$					Γ ₄₈ /Γ
		DOCUMENT ID	TECN COM	MENT	
1.74±0.21 OUR FI				_	
$1.56\pm0.20\pm0.07$	157	ABLIKIM 16	BES3 e^+e^-	$e^- \rightarrow \Lambda_c \overline{\Lambda}_c$	4.599 GeV

$\Gamma(\Sigma^+\omega)/\Gamma(pK^-\pi)$					Γ_{48}/Γ_{2}
Unseen decay mo	<u>EVTS</u>	are included. <u>DOCUMENT ID</u>		TECN	COMMENT
0.274 ± 0.032 OUR FIT $0.54 \pm 0.13 \pm 0.06$	107	KUBOTA	93	CLE2	$e^+e^-pprox \ \varUpsilon(4S)$
$\Gamma(\Sigma^+ K^+ K^-)/\Gamma(p)$	$\kappa^-\pi^+)$				Γ_{49}/Γ_{2}
<u>VALUE</u> 0.056±0.006 OUR FIT	,	DOCUMENT ID		<u>TECN</u>	COMMENT
0.056 ± 0.006 OUR FIT $0.070\pm0.011\pm0.011$	59	AVERY	93	CLE2	$e^+e^-pprox 10.5~{ m GeV}$
$\Gamma(\Sigma^+K^+K^-)/\Gamma(\Sigma^+K^-)$	$\Xi^{+}\pi^{+}\pi^{-})$				Γ_{49}/Γ_{42}
<u>VALUE</u> 0.078±0.008 OUR FIT	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
0.074±0.009 OUR AV					
$0.076 \pm 0.007 \pm 0.009$	246	ABE	0 2C	BELL	$e^+e^-pprox \ \varUpsilon(4S)$
$0.071 \pm 0.011 \pm 0.011$	103	LINK	02G	FOCS	γ nucleus, $pprox$ 180 GeV
$\Gamma(\Sigma^+\phi)/\Gamma(pK^-\pi^-)$	+)	ana Sarahadad			Γ_{50}/Γ_{2}
Unseen decay mo		DOCUMENT ID		TECN	COMMENT
0.063±0.009 OUR FIT	Error inclu		of 1.1		
$0.069 \pm 0.023 \pm 0.016$	26	AVERY	93	CLE2	$e^+e^-pprox 10.5~{ m GeV}$
$\Gamma(\Sigma^+\phi)/\Gamma(\Sigma^+\pi^+)$ Unseen decay mo	π^-) odes of the ϕ	are included.			Γ_{50}/Γ_{42}
Unseen decay mo	odes of the ϕ	are included. <u>DOCUMENT ID</u>		TECN	Γ ₅₀ /Γ ₄₂
Unseen decay movalue VALUE 0.087±0.012 OUR FIT	odes of the ϕ $EVTS$			<u>TECN</u>	
Unseen decay mo <u>VALUE</u> 0.087±0.012 OUR FIT 0.086±0.012 OUR AV	odes of the ϕ $EVTS$	DOCUMENT ID			COMMENT
Unseen decay move $VALUE$ 0.087 \pm 0.012 OUR FIT 0.086 \pm 0.012 OUR AV 0.085 \pm 0.012 \pm 0.012	odes of the φ EVTS ERAGE		02 C	BELL	
Unseen decay move $VALUE$ 0.087 \pm 0.012 OUR FIT 0.086 \pm 0.012 OUR AV 0.085 \pm 0.012 \pm 0.012	edes of the φ EVTS ERAGE 129 57	ABE LINK	02C 02G	BELL	COMMENT $e^{+}e^{-}\approx \Upsilon(4S)$
Unseen decay move that the value $VALUE$ 0.087 \pm 0.012 OUR FIT 0.086 \pm 0.012 OUR AV 0.085 \pm 0.012 \pm 0.012 0.087 \pm 0.016 \pm 0.006 $\Gamma(\Xi(1690)^0 K^+,\Xi^0)$	endes of the ϕ $\frac{EVTS}{}$ ERAGE 129 57 $\bullet 0 \rightarrow \Sigma + K$ $\frac{EVTS}{}$	ABE LINK	02C 02G π-)	BELL FOCS	$e^+e^-pprox \ \gamma(4S)$ γ nucleus, $pprox 180~{ m GeV}$ Γ_{51}/Γ_{42}
Unseen decay move that the value of the val	odes of the ϕ EVTS ERAGE 129 57 •0 → ∑+ K EVTS ERAGE	ABE LINK $T = \int_{DOCUMENT\ ID} \int_{DOCU$	02C 02G π ⁻)	BELL FOCS	$e^+e^-pprox \ \varUpsilon(4S)$ γ nucleus, $pprox 180~{ m GeV}$ $\Gamma_{f 51}/\Gamma_{f 42}$ $COMMENT$
Unseen decay move that the value $VALUE$ 0.087 \pm 0.012 OUR FIT 0.086 \pm 0.012 OUR AV 0.085 \pm 0.012 \pm 0.012 0.087 \pm 0.016 \pm 0.006 $\Gamma(\Xi(1690)^0 K^+,\Xi^0)$	endes of the ϕ $\frac{EVTS}{}$ ERAGE 129 57 $\bullet 0 \rightarrow \Sigma + K$ $\frac{EVTS}{}$	ABE LINK $\frac{\Gamma}{\Gamma} / \Gamma(\Sigma^{+} \pi^{+})$	02C 02G π -)	BELL FOCS TECN BELL	COMMENT $e^{+}e^{-}\approx \Upsilon(4S)$ γ nucleus, ≈ 180 GeV Γ_{51}/Γ_{42} $COMMENT$ $e^{+}e^{-}\approx \Upsilon(4S)$
Unseen decay move the value $VALUE$ 0.087 \pm 0.012 OUR FIT 0.086 \pm 0.012 OUR AVI 0.085 \pm 0.012 \pm 0.012 0.087 \pm 0.016 \pm 0.006 Γ (Ξ (1690) 0 K^{+} , Ξ^{0} ΔUUE 0.023 \pm 0.005 OUR AVI 0.023 \pm 0.005 \pm 0.005	odes of the <i>φ</i> EVTS ERAGE 129 57 •0 → Σ+ K EVTS ERAGE 75 34	ABE LINK $T = \frac{1}{2} \int \Gamma(\Sigma + \pi + \frac{1}{2}) \int \Gamma(\Sigma $	02C 02G π -)	BELL FOCS TECN BELL	$e^+e^-pprox \ \varUpsilon(4S)$ γ nucleus, $pprox 180~{ m GeV}$ $\Gamma_{f 51}/\Gamma_{f 42}$ $COMMENT$
Unseen decay move that the second se	odes of the φ EVTS ERAGE 129 57 •0 → Σ+ Κ EVTS ERAGE 75 34 sonant)/Γ(CL%	ABE LINK $T = \frac{1}{2} \int \Gamma(\Sigma + \pi + \pi) \int \frac{1}{2} \int \frac{1}{$	02C 02G π-) 02C 02G	BELL FOCS TECN BELL FOCS	$\begin{array}{c} \underline{COMMENT} \\ e^{+}e^{-} \approx \ \varUpsilon(4S) \\ \gamma \ \text{nucleus,} \approx 180 \ \text{GeV} \\ \hline \Gamma_{51}/\Gamma_{42} \\ \underline{COMMENT} \\ e^{+}e^{-} \approx \ \varUpsilon(4S) \\ \gamma \ \text{nucleus,} \approx 180 \ \text{GeV} \\ \hline \Gamma_{52}/\Gamma_{42} \\ \underline{COMMENT} \end{array}$
Unseen decay move the value $VALUE$ 0.087 \pm 0.012 OUR FIT 0.086 \pm 0.012 OUR AV 0.085 \pm 0.012 \pm 0.012 0.087 \pm 0.016 \pm 0.006 Γ (Ξ (1690) 0 K^{+} , Ξ^{0} $VALUE$ 0.023 \pm 0.005 OUR AV 0.023 \pm 0.005 \pm 0.005 \pm 0.006 Γ (Σ^{+} K^{+} K^{-} nonrese $VALUE$ <0.018	odes of the φ EVTS ERAGE 129 57	ABE LINK T)/ $\Gamma(\Sigma^+\pi^+)$ DOCUMENT ID ABE LINK $\Sigma^+\pi^+\pi^-)$ DOCUMENT ID ABE	02C 02G π-) 02C 02G	BELL FOCS TECN BELL FOCS TECN BELL	$\begin{array}{c} \underline{COMMENT} \\ e^{+}e^{-} \approx \; \varUpsilon(4S) \\ \gamma \; \text{nucleus,} \approx 180 \; \text{GeV} \\ \hline \qquad \qquad$
Unseen decay move the value of	podes of the ϕ $\frac{EVTS}{ERAGE}$ 129 57 $\bullet 0 \rightarrow \Sigma + K$ $\frac{EVTS}{SERAGE}$ 75 34 $Sonant)/\Gamma($ $\frac{CL\%}{90}$ he following of	ABE LINK T)/ $\Gamma(\Sigma^+\pi^+$ DOCUMENT ID ABE LINK $\Sigma^+\pi^+\pi^-$) DOCUMENT ID ABE lata for averages	02C 02G (π ⁻) 02C 02G	BELL FOCS TECN BELL FOCS TECN BELL limits, 6	$\begin{array}{c} e^{+}e^{-}\approx~ \Upsilon(4S) \\ \gamma \; \text{nucleus,} \approx 180 \; \text{GeV} \\ \hline \Gamma_{51}/\Gamma_{42} \\ \hline COMMENT \\ e^{+}e^{-}\approx~ \Upsilon(4S) \\ \gamma \; \text{nucleus,} \approx 180 \; \text{GeV} \\ \hline \Gamma_{52}/\Gamma_{42} \\ \hline COMMENT \\ e^{+}e^{-}\approx~ \Upsilon(4S) \\ \hline \text{etc.} \bullet \bullet \bullet \end{array}$
Unseen decay move that the value of value of the value of the value of the value of	podes of the ϕ $\frac{EVTS}{ERAGE}$ 129 57 $\bullet 0 \rightarrow \Sigma^{+} K$ $\frac{EVTS}{S}$ $ERAGE$ 75 34 $Sonant)/\Gamma($ $\frac{CL\%}{90}$ 90 he following of 90	ABE LINK T)/ $\Gamma(\Sigma^+\pi^+)$ DOCUMENT ID ABE LINK $\Sigma^+\pi^+\pi^-)$ DOCUMENT ID ABE	02C 02G (π ⁻) 02C 02G	BELL FOCS TECN BELL FOCS TECN BELL limits, 6	$\begin{array}{c} \underline{COMMENT} \\ e^{+}e^{-} \approx \; \varUpsilon(4S) \\ \gamma \; \text{nucleus,} \approx 180 \; \text{GeV} \\ \hline \qquad \qquad$
Unseen decay moderate $VALUE$ 0.087 \pm 0.012 OUR FIT 0.086 \pm 0.012 OUR AVI 0.085 \pm 0.012 \pm 0.012 0.087 \pm 0.016 \pm 0.006 $\Gamma(\Xi(1690)^0 K^+, \Xi^0)$ $VALUE$ 0.023 \pm 0.005 OUR AVI 0.023 \pm 0.005 \pm 0.005 0.022 \pm 0.006 \pm 0.006 $\Gamma(\Sigma^+ K^+ K^- \text{nonre})$ $VALUE$ <0.018 ••• We do not use the contraction of the cont	podes of the ϕ $\frac{EVTS}{ERAGE}$ 129 57 $\bullet 0 \rightarrow \Sigma^{+} K$ $\frac{EVTS}{34}$ $\bullet Sonant)/\Gamma($ $\frac{CL\%}{90}$ 0 0 0 0 0 0	ABE LINK T)/ $\Gamma(\Sigma^+\pi^+$ DOCUMENT ID ABE LINK $\Sigma^+\pi^+\pi^-$) DOCUMENT ID ABE lata for averages LINK	02C 02G (π ⁻) 02C 02G 02C s, fits,	BELL FOCS TECN BELL FOCS TECN BELL limits, 6	$\begin{array}{c} \underline{COMMENT} \\ e^{+}e^{-} \approx \ \varUpsilon(4S) \\ \gamma \ \text{nucleus,} \approx 180 \ \text{GeV} \\ \hline \Gamma_{51}/\Gamma_{42} \\ \underline{COMMENT} \\ e^{+}e^{-} \approx \ \varUpsilon(4S) \\ \gamma \ \text{nucleus,} \approx 180 \ \text{GeV} \\ \hline \Gamma_{52}/\Gamma_{42} \\ \underline{COMMENT} \\ e^{+}e^{-} \approx \ \varUpsilon(4S) \\ \text{etc.} \bullet \bullet \bullet \\ \gamma \ \text{nucleus,} \approx 180 \ \text{GeV} \\ \hline \Gamma_{53}/\Gamma_{2} \\ \end{array}$
Unseen decay move that the value of value of the value of the value of the value of	podes of the ϕ $\frac{EVTS}{ERAGE}$ 129 57 $\bullet 0 \rightarrow \Sigma^{+} K$ $\frac{EVTS}{S}$ $ERAGE$ 75 34 $Sonant)/\Gamma($ $\frac{CL\%}{90}$ 90 he following of 90	ABE LINK T)/ $\Gamma(\Sigma^+\pi^+$ DOCUMENT ID ABE LINK $\Sigma^+\pi^+\pi^-$) DOCUMENT ID ABE lata for averages	02C 02G (π ⁻) 02C 02G 02C s, fits,	BELL FOCS TECN BELL FOCS TECN BELL limits, 6 FOCS	$\begin{array}{c} & \\ e^{+}e^{-}\approx \ \varUpsilon(4S) \\ \gamma \ \text{nucleus,} \approx 180 \ \text{GeV} \\ \hline & \Gamma_{51}/\Gamma_{42} \\ \hline & \\ \frac{COMMENT}{} \\ e^{+}e^{-}\approx \ \varUpsilon(4S) \\ \gamma \ \text{nucleus,} \approx 180 \ \text{GeV} \\ \hline & \Gamma_{52}/\Gamma_{42} \\ \hline & \\ \frac{COMMENT}{} \\ e^{+}e^{-}\approx \ \varUpsilon(4S) \\ \text{etc.} \bullet \bullet \bullet \\ \gamma \ \text{nucleus,} \approx 180 \ \text{GeV} \\ \hline & \Gamma_{53}/\Gamma_{2} \\ \hline \end{array}$

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update $\Gamma(\Xi^-K^+\pi^+)/\Gamma(pK^-\pi^+)$ Error includes scale factor of 1.1 **0.098±0.021 OUR AVERAGE** Error includes scale factor of 1.3. See the ideogram below. 95B ARG $e^+e^- \approx 10.4 \text{ GeV}$ $0.14 \pm 0.03 \pm 0.02$ 34 **ALBRECHT AVERY** CLE2 $e^+e^-\approx 10.5 \text{ GeV}$ $0.079 \pm 0.013 \pm 0.014$ 60 **AVERY** CLEO $e^{+}e^{-}$ 10.5 GeV $0.15 \pm 0.04 \pm 0.03$ 30 WEIGHTED AVERAGE 0.098±0.021 (Error scaled by 1.3) Values above of weighted average, error, and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our 'best' values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. **ALBRECHT** 95B **ARG** 93 CLE₂ 1.0 **AVERY AVERY** 91 CLEO (Confidence Level = 0.180) 0.15 0.2 0.25 0.35 0.3 $\Gamma(\Xi^-K^+\pi^+)/\Gamma(\rho K^-\pi^+)$

$\Gamma(\Xi(1530)^0 K^+)/\Gamma(\rho K^- \pi^+)$

 Γ_{55}/Γ_2

Unseen decay modes of the $\Xi(1530)^0$ are included.

<u>VALUE</u>	<u>EVTS</u>	DOCUMENT ID		TECN	COMM	ENT	
0.052±0.014 OUR AVE	RAGE						
$0.05 \ \pm 0.02 \ \pm 0.01$	11	ALBRECHT	95 B	ARG	e^+e^-	$^{-}pprox10.4$ (GeV
$0.053\!\pm\!0.016\!\pm\!0.010$	24	AVERY	93	CLE2	e ⁺ e ⁻	~ 10.5 (GeV
$\Gamma(\Xi^-K^+\pi^+)/\Gamma(\Lambda^2)$	$\pi^+)$					Γ	₅₄ /Γ ₂₃
$\Gamma(\Xi^-K^+\pi^+)/\Gamma(\Lambda t)$	π ⁺)	<u>DOCUMENT</u>	T ID	<u>TE</u>	CN C	T OMMENT	₅₄ /Γ ₂₃
, , ,	<u>EVTS</u>	<u>DOCUMENT</u>	T ID	<u>TE</u>	CN C		₅₄ /Γ ₂₃

• Hadronic modes with a hyperon: S = 0 final states -

$\Gamma(\Lambda K^+)/\Gamma(\Lambda \pi^+)$				Γ_{56}/Γ_{23}
<u>VALUE</u>	EVTS	DOCUMENT ID	TECN	COMMENT
0.047 ± 0.009 OUR AVE	ERAGE Error i	includes scale facto	or of 1.8.	
$0.044 \pm 0.004 \pm 0.003$	1162 ± 101	AUBERT	07∪ BABR	$e^+e^-pprox \ \varUpsilon(4S)$
$0.074 \pm 0.010 \pm 0.012$	265	ABE	02C BELL	$e^+e^-\approx \Upsilon(4S)$
HTTP://PDG.LBL.	GOV	Page 15	Created: 5	5/30/2017 17:22

$\Gamma(\Lambda K^+\pi^+\pi^-)/\Gamma($	$(\Lambda\pi^+)$					Γ_{57}/Γ_{23}
<i>VALUE</i> <4.1 × 10^{−2}	<u>CL%</u>	DOCUMENT ID				00(4.6)
<4.1 × 10 -	90	AUBERT	070	BABR	e'e ≈	1 (45)
$\Gamma(\Sigma^0 K^+)/\Gamma(\Sigma^0 \pi^0 K^+)$	<u>EVTS</u>	<u>DOCUMENT</u>	ID	TEC	CN COMME	Γ ₅₈ /Γ ₃₉
0.040 ± 0.006 OUR AV $0.038\pm0.005\pm0.003$ $0.056\pm0.014\pm0.008$	366 ± 52 75	AUBERT ABE			BR e ⁺ e ⁻ LL e ⁺ e ⁻	
$\Gamma(\Sigma^0 K^+ \pi^+ \pi^-)/\Gamma$		DOCUMENT ID		TECN	COMMENT	Γ_{59}/Γ_{39}
<u>VALUE</u> <2.0 × 10 ^{−2}	90	AUBERT			$e^+e^-\approx$	Υ(4S)
$\Gamma(\Sigma^{+}K^{+}\pi^{-})/\Gamma(\Sigma^{VALUE})$	•	DOCUMENT ID		TECN	COMMENT	Γ_{60}/Γ_{42}
$0.047 \pm 0.011 \pm 0.008$		ABE				$\Upsilon(4S)$
Γ(Σ+ K* (892) ⁰)/I	odes of the <i>K</i>	$^{*}(892)^{0}$ are inc				Γ_{61}/Γ_{42}
VALUE 0.078±0.018±0.013		<u>DOCUMENT ID</u> LINK				~ 100 CaV
$\frac{\Gamma(\Sigma^{-}K^{+}\pi^{+})/\Gamma(\Sigma^{-}K^{+}\pi^{+})}{<0.35}$		<u>DOCUMENT ID</u> LINK				Γ_{62}/Γ_{61} $pprox$ 180 GeV
	Doubly C	abibbo-suppre	essed	modes		
$\Gamma(\rho K^+\pi^-)/\Gamma(\rho K$	•					Γ ₆₃ /Γ ₂
$VALUE$ (units 10^{-3})	CL% EVTS	DOCUMENT	T ID	TE	CN COMM	ENT
	3379	YANG			ELL At or	
• • • We do not use						
<4.6	90	¹ LINK		05K FC	CS 180 G	eV γ on BeO
$^{ m 1}$ LINK 05K limit is	equivalent to	$(0.05 \pm 0.26 \pm$	0.02)%	% measu	rement.	
	Se	emileptonic m	odes		_	
$\Gamma(\Lambda e^+ \nu_e)/\Gamma_{\text{total}}$	EL/EC	DOCUMENT ID		TECN	COMMENT	Γ ₆₄ /Γ
VALUE (%)		DOCUMENT ID ABLIKIM				4 F00 C-V
$3.63\pm0.38\pm0.20$	104	ABLIKIM	15Y	BE23	507 pb +,	4.599 GeV
$\Gamma(\Lambda e^+ \nu_e)/\Gamma(\rho K^-)$	*	DOCUMENT ID		<u>TECN</u>	<u>COMMENT</u>	Γ_{64}/Γ_2
• • • We do not use	the following o					
0.43 ± 0.08 0.38 ± 0.14	1,2	² BERGFELD ³ ALBRECHT	94	CLE2	e^+e^-pprox	Υ(4 <i>S</i>) 10.4 GeV

 1 BERGFELD 94 measures $\sigma(e^{+}\,e^{-}\to\Lambda_{c}^{+}\,\rm X)\cdot B(\Lambda_{c}^{+}\to\Lambda e^{+}\nu_{e})=(4.87\pm0.28\pm0.69)$ pb.

 2 To extract $\Gamma(\Lambda_c^+\to \Lambda e^+\nu_e)/\Gamma(\Lambda_c^+\to pK^-\pi^+)$, we use $\sigma(e^+e^-\to \Lambda_c^+{\rm X})\cdot {\rm B}(\Lambda_c\to pK^-\pi^+)=(11.2\pm 1.3)$ pb, which is the weighted average of measurements from ARGUS (ALBRECHT 96E) and CLEO (AVERY 91).

³ ALBRECHT 91G measures $\sigma(e^+e^- \rightarrow \Lambda_c^+ X) \cdot B(\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e) = (4.20 \pm 1.28 \pm 0.71) \text{ pb.}$

$\Gamma(\Lambda\mu^+\nu_\mu)/\Gamma(pK^-\pi^+)$

 Γ_{65}/Γ_2

 VALUE
 DOCUMENT ID
 TECN
 COMMENT

 • • • We do not use the following data for averages, fits, limits, etc. • •

 1 BERGFELD 94 measures $\sigma(e^{+}e^{-}\rightarrow\Lambda_{c}^{+}\rm X)\cdot B(\Lambda_{c}^{+}\rightarrow\Lambda\mu^{+}\nu_{\mu})=(4.43\pm0.51\pm0.64)~\rm pb.$

 2 To extract $\Gamma(\Lambda_c^+\to\Lambda\mu^+\nu_\mu)/\Gamma(\Lambda_c^+\to\rho\,K^-\pi^+)$, we use $\sigma(e^+\,e^-\to\Lambda_c^+\,{\rm X})\cdot{\rm B}(\Lambda_c\to\rho\,K^-\pi^+)=(11.2\,\pm\,1.3)$ pb, which is the weighted average of measurements from ARGUS (ALBRECHT 96E) and CLEO (AVERY 91).

³ ALBRECHT 91G measures $\sigma(e^+e^- \rightarrow \Lambda_c^+ X) \cdot B(\Lambda_c^+ \rightarrow \Lambda \mu^+ \nu_\mu) = (3.91 \pm 2.02 \pm 0.90)$ pb.

Inclusive modes —

$\Gamma(e^+ \text{ anything})/\Gamma_{\text{total}}$

 Γ_{66}/Γ

 VALUE
 DOCUMENT ID
 TECN
 COMMENT

 0.045 \pm 0.017
 VELLA
 82
 MRK2
 e^+e^- 4.5-6.8 GeV

$\Gamma(pe^+ \text{ anything})/\Gamma_{\text{total}}$

 Γ_{67}/Γ

 VALUE
 DOCUMENT ID
 TECN
 COMMENT

 0.018 \pm 0.009
 1 VELLA
 82
 MRK2
 e^+e^- 4.5–6.8 GeV

$\Gamma(\Lambda e^+ \text{ anything})/\Gamma_{\text{total}}$

 Γ_{68}/Γ

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

 0.011 ± 0.008

¹VFIIA

82 MRK2 e^+e^- 4.5–6.8 GeV

TECN COMMENT

$\Gamma(p \text{ anything})/\Gamma_{\text{total}}$

 Γ_{69}/Γ

VALUE DOCUMENT ID TECN COMMENT

0.50 \pm 0.08 \pm 0.14

1 CRAWFORD 92 CLEO e^+e^- 10.5 GeV

$\Gamma(p \text{ anything } (\text{no } \Lambda))/\Gamma_{\text{total}}$

 Γ_{70}/Γ

HTTP://PDG.LBL.GOV

Page 17

 $^{^{1}}$ VELLA 82 includes protons from Λ decay.

¹VELLA 82 includes Λ 's from Σ^0 decay.

¹ This CRAWFORD 92 value includes protons from Λ decay. The value is model dependent, but account is taken of this in the systematic error.

 $\Gamma(n \text{ anything})/\Gamma_{\text{total}}$ VALUE $O.50\pm0.08\pm0.14$ DOCUMENT ID OLEO Oleo

 Γ (n anything (no Λ))/ Γ total

VALUE

DOCUMENT ID

TECN
COMMENT

CRAWFORD 92 CLEO e^+e^- 10.5 GeV

 $\Gamma(p \text{ hadrons})/\Gamma_{\text{total}}$ Γ_{71}/Γ

 VALUE
 DOCUMENT ID
 TECN
 COMMENT

 • • • We do not use the following data for averages, fits, limits, etc. • •

0.41 \pm 0.24 ADAMOVICH 87 EMUL γ A 20–70 GeV/c

$\Gamma(\Lambda \text{ anything})/\Gamma_{\text{total}}$

 Γ_{74}/Γ

VALUEEVTSDOCUMENT IDTECNCOMMENT 0.35 ± 0.11 OUR AVERAGEError includes scale factor of 1.4. See the ideogram below. $0.59\pm0.10\pm0.12$ CRAWFORD92CLEO e^+e^- 10.5 GeV 0.49 ± 0.24 ADAMOVICH87EMUL γ A 20–70 GeV/c 0.23 ± 0.10 8ABE86HYBR20 GeV γ p

WEIGHTED AVERAGE 0.35±0.11 (Error scaled by 1.4)

¹ This CRAWFORD 92 value includes neutrons from Λ decay. The value is model dependent, but account is taken of this in the systematic error.

¹ ABE 86 includes Λ 's from Σ^0 decay.

$\Gamma(\Sigma^{\pm}$ anything)/F _{total}			Г ₇₅ /Г
VALUE	<u>EVTS</u>	DOCUMENT ID	TECN COMMENT	
0.1 ± 0.05	5	ABE	86 HYBR 20 GeV γp	
$\Gamma(3\text{prongs})/\Gamma_{to}$	otal			Γ ₇₆ /Γ
VALUE		DOCUMENT ID	TECN COMMENT	
$0.24 \pm 0.07 \pm 0.04$		KAYIS-TOPAK.0	3 CHRS $ u_{\mu}$ emulsion, $\overline{\it E}=$	27 GeV
	Ra	are or forbidde	n modes ———	
	otal ne $\Delta \mathit{C}{=}1$ weak i	neutral current. <i>F</i>	Allowed by higher-order electro	Γ ₇₇ /Γ oweak inter-
actions. <u>VALUE</u>	CL% EVTS	DOCUMEN	T ID TECN COMMENT	-
<5.5 × 10 ⁻⁶				
	otal ne $\Delta \mathit{C}{=}1$ weak i	neutral current. <i>F</i>	Allowed by higher-order electro	Γ ₇₈ /Γ oweak inter-
actions. <i>VALUE</i>	CL% EVT	rs DOCUMEN ⁻	TID <u>TECN</u> <u>COMMENT</u>	
<44 × 10 ⁻⁶	$90 11.1 \pm 5$	6 LEES	11G BABR $e^+e^-\approx 1$	$\Upsilon(4S)$
			es, fits, limits, etc. ● ●	,
$< 3.4 \times 10^{-4}$	90	0 KODAMA	$^{-}$ 95 E653 π^{-} emulsion	n 600 GeV
	pton family-num	ber conservation		Γ ₇₉ /Γ
VALUE			NT ID TECN COMMEN	
$<9.9 \times 10^{-6}$	90 -0.7 ± 3	0 LEES	11G BABR e ⁺ e ⁻	$\approx \Upsilon(4S)$
$\Gamma(\rho e^- \mu^+)/\Gamma_{\rm to}$				Γ ₈₀ /Γ
		ber conservation		-
<19 × 10 ⁻⁶			$rac{T \ ID}{11}$ $rac{TECN}{8}$ $rac{COMMENT}{6}$	
$\Gamma(\overline{p}2e^+)/\Gamma_{\text{tota}}$	ı			Γ ₈₁ /Γ
A test of le	∎ pton- and baryo	n-number conserv	ation.	01/
	CL% EV		NT ID <u>TECN</u> <u>COMMEN</u>	
$< 2.7 \times 10^{-6}$	90 -1.5 ± 4	5 LEES	11G BABR e^+e^-	$\approx \Upsilon(4S)$
		n-number conser	vation and of lepton family-n	Γ ₈₂ /Γ umber con-
servation. <i>VALUE</i>	CL% EVTS	DOCUMEN	T ID TECN COMMENT	-
_	90 0.0 ± 2.2		11G BABR $e^+e^-\approx$	
		n-number conser	vation and of lepton family-n	Γ ₈₃ /Γ umber con-
servation. <i>VALUE</i>	CL% EVT	S DOCUMFI	NT ID <u>TECN</u> COMMEN	Т
<16 × 10 ⁻⁶	$\frac{2270}{90} = \frac{277}{10.1 \pm 6}$		and the second s	
				. ,

$\Gamma(\Sigma^-\mu^+\mu^+)/\Gamma_{\text{total}}$ A test of lepton-number conservation.

 Γ_{84}/Γ

VALUE	•	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
$< 7.0 \times 10^{-4}$	90	0	KODAMA	95	E653	π^- emulsion 600 GeV

1/2 DECAY PARAMETERS

See the note on "Baryon Decay Parameters" in the neutron Listings.

$\alpha \text{ FOR } \Lambda_c^+ \to \Lambda \pi^+$

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
-0.91±0.15 OUR AV	'ERAGE				
$-0.78\!\pm\!0.16\!\pm\!0.19$		LINK	06A	FOCS	γ A, $\overline{\it E}_{\gamma} pprox $ 180 GeV
$-0.94\!\pm\!0.21\!\pm\!0.12$	414	¹ BISHAI			$e^+e^-\stackrel{'}{pprox} \Upsilon(4S)$
-0.96 ± 0.42		ALBRECHT	92	ARG	e^+e^-pprox 10.4 GeV
$-1.1~\pm0.4$	86	AVERY	90 B	CLEO	$e^+e^-pprox 10.6~{ m GeV}$

 $^{^1}$ BISHAI 95 actually gives $\alpha{=}-0.94^{+0.21}_{-0.06}^{+0.21}_{-0.06}^{+0.12}$, chopping the errors at the physical limit -1.0. However, for $\alpha\approx-1.0$, some experiments should $\it get$ unphysical values $(\alpha < -1.0)$, and for averaging with other measurements such values (or errors that extend below -1.0) should *not* be chopped.

$\alpha \text{ FOR } \Lambda_c^+ \to \Sigma^+ \pi^0$

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
$-0.45\pm0.31\pm0.06$	89	BISHAI	95	CLE2	$e^+e^-pprox ~ \gamma(4S)$

$\alpha \text{ FOR } \Lambda_c^+ \to \Lambda \ell^+ \nu_\ell$

The experiments don't cover the complete (or same incomplete) $M(\Lambda \ell^+)$ range, but we average them together anyway.

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
-0.86 ± 0.04 OUR AVE	RAGE				
$-0.86\!\pm\!0.03\!\pm\!0.02$	3201	$^{ m 1}$ HINSON	05	CLEO	$e^+e^-pprox ~ \varUpsilon(4S)$
$-0.91\!\pm\!0.42\!\pm\!0.25$		² ALBRECHT	94 B	ARG	$e^+e^-pprox 10~{ m GeV}$
• • • We do not use the	ne following	g data for average	s, fits,	limits, e	etc. • • •
$-0.82^{\color{red}+0.09}_{-0.06} {}^{\color{red}+0.06}_{-0.03}$	700	³ CRAWFORD	95	CLE2	See HINSON 05
$-0.89 {}^{+ 0.17}_{- 0.11} {}^{+ 0.09}_{- 0.05}$	350	⁴ BERGFELD	94	CLE2	See CRAWFORD 95

¹ HINSON 05 measures the form-factor ratio $R \equiv f_2/f_1$ for $\Lambda_c^+ \to \Lambda e^+ \nu_e$ events to be $-0.31\,\pm\,0.05\,\pm\,0.04$ and the pole mass to be $2.21\,\pm\,0.08\,\pm\,0.14$ GeV/c², and from these calculates α , averaged over q^2 , where $\langle q^2 \rangle = 0.67 \, (\text{GeV/c})^2$.

²ALBRECHT 94B uses Λe^+ and $\Lambda \mu^+$ events in the mass range 1.85 < $M(\Lambda \ell^+)$ < 2.20

³ CRAWFORD 95 measures the form-factor ratio $R \equiv f_2/f_1$ for $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$ events to be $-0.25\pm0.14\pm0.08$ and from this calculates α , averaged over q^2 , to be the above. ⁴BERGFELD 94 uses Λe^+ events.

Λ_c^+ , $\overline{\Lambda}_c^-$ *CP*-VIOLATING DECAY ASYMMETRIES

$(\alpha + \overline{\alpha})/(\alpha - \overline{\alpha})$ in $\Lambda_c^+ \to \Lambda \pi^+$, $\overline{\Lambda}_c^- \to \overline{\Lambda} \pi^-$ This is zero if *CP* is conserved. NALUE DOCUMENT ID

TECN COMMENT 06A FOCS $\overline{\gamma}$ A, $\overline{E}_{\gamma} \approx 180 \text{ GeV}$ $-0.07\pm0.19\pm0.24$ LINK

$(\alpha + \overline{\alpha})/(\alpha - \overline{\alpha})$ in $\Lambda_c^+ \to \Lambda e^+ \nu_e$, $\overline{\Lambda}_c^- \to \overline{\Lambda} e^- \overline{\nu}_e$ This is zero if *CP* is conserved.

DOCUMENT ID TECN COMMENT 05 CLEO $e^+e^- \approx \Upsilon(4S)$ HINSON $0.00\pm0.03\pm0.02$

Λ_c^+ REFERENCES

We have omitted some papers that have been superseded by later experiments. The omitted papers may be found in our 1992 edition (Physical Review **D45**, 1 June, Part II) or in earlier editions.

		BB1 444		(D=0 0)
ABLIKIM	16	PRL 116 052001	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	16U	PRL 117 232002	M. Ablikim <i>et al.</i>	(BES III Collab.)
YANG	16	PRL 117 011801	S.B. Yang <i>et al.</i>	(BELLE Collab.)
ABLIKIM	15Y	PRL 115 221805	M. Ablikim et al.	(BES III Collab.)
ZUPANC	14	PRL 113 042002	A. Zupanc <i>et al.</i>	(BELLE Collab.)
LEES	11G	PR D84 072006	J.P. Lees et al.	(BABAR Collab.)
VAZQUEZ-JA	. 08	PL B666 299	E. Vazquez-Jauregui et al.	(SELEX Collab.)
AUBERT	07U	PR D75 052002	B. Aubert <i>et al.</i>	(BABAR Collab.)
LINK	06A	PL B634 165	J.M. Link et al.	(FNAL FOCUS Collab.)
AUBERT,B	05S	PR D72 052006	B. Aubert <i>et al.</i>	(BABAR Collab.)
HINSON	05	PRL 94 191801	J.W. Hinson <i>et al.</i>	(CLEO Collab.)
LINK	05F	PL B624 22	J.M. Link et al.	(FNAL FOCUS Collab.)
LINK	05K	PL B624 166	J.M. Link et al.	(FNAL FOCUS Collab.)
CRONIN-HEN.		PR D67 012001	D. Cronin-Hennessy <i>et al.</i>	(CLEO Collab.)
KAYIS-TOPAK		PL B555 156	A. Kayis-Topaksu <i>et al.</i>	(CERN CHORUS Collab.)
ABE	02C	PL B524 33	K. Abe <i>et al.</i>	(KEK BELLE Collab.)
LINK	02C	PRL 88 161801	J.M. Link et al.	(FNAL FOCUS Collab.)
LINK	02G	PL B540 25	J.M. Link et al.	(FNAL FOCUS Collab.)
PDG	02	PR D66 010001	K. Hagiwara <i>et al.</i>	(PDG Collab.)
KUSHNIR	01	PRL 86 5243	A. Kushnirenko <i>et al.</i>	(FNAL SELEX Collab.)
MAHMOOD	01	PRL 86 2232	A.H. Mahmood <i>et al.</i>	(CLEO Collab.)
AITALA	00	PL B471 449	E.M. Aitala <i>et al.</i>	(FNAL E791 Collab.)
ALAM	98	PR D57 4467	M.S. Alam <i>et al.</i>	(CLEO Collab.)
ALBRECHT	96E	PRPL 276 223	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ALEXANDER	96C	PR D53 R1013	J.P. Alexander <i>et al.</i>	
ALBRECHT	90C 95B	PL B342 397	H. Albrecht <i>et al.</i>	(CLEO Collab.)
_				(ARGUS Collab.)
AMMAR	95	PRL 74 3534	R. Ammar et al.	(CLEO Collab.)
BISHAI	95	PL B350 256	M. Bishai <i>et al.</i>	(CLEO Collab.)
CRAWFORD	95	PRL 75 624	G. Crawford et al.	(CLEO Collab.)
KODAMA	95	PL B345 85	K. Kodama <i>et al.</i>	(FNAL E653 Collab.)
ALBRECHT	94B	PL B326 320	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ALEEV	94	PAN 57 1370	A.N. Aleev <i>et al.</i>	(Serpukhov BIS-2 Collab.)
AVEDV	0.4	Translated from YF 57 144		(CLEO C-II-L)
AVERY	94	PL B325 257	P. Avery et al.	(CLEO Collab.)
BERGFELD	94	PL B323 219	T. Bergfeld et al.	(CLEO Collab.)
FRABETTI	94E	PL B328 193	P.L. Frabetti <i>et al.</i>	(FNAL E687 Collab.)
AVERY	93	PRL 71 2391	P. Avery et al.	(CLEO Collab.)
BOZEK	93	PL B312 247	A. Bozek <i>et al.</i>	(CERN NA32 Collab.)
FRABETTI	93D	PRL 70 1755	P.L. Frabetti <i>et al.</i>	(FNAL E687 Collab.)
FRABETTI	93H	PL B314 477	P.L. Frabetti <i>et al.</i>	(FNAL E687 Collab.)
KUBOTA	93	PRL 71 3255	Y. Kubota <i>et al.</i>	(CLEO Collab.)
ALBRECHT	92	PL B274 239	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
BARLAG	92	PL B283 465	S. Barlag et al.	(ACCMOR Collab.)
CRAWFORD	92	PR D45 752	G. Crawford <i>et al.</i>	(CLEO Collab.)

JEZABEK	92	PL B286 175	M. Jezabek, K. Rybicki, R. Ry	
ALBRECHT	91G	PL B269 234	H. Albrecht et al.	(ARGUS Collab.)
AVERY	91	PR D43 3599	P. Avery et al.	(CLEO Collab.)
ALVAREZ	90	ZPHY C47 539	M.P. Alvarez et al.	(CERN NA14/2 Collab.)
ALVAREZ	90B	PL B246 256	M.P. Alvarez et al.	(CERN NA14/2 Collab.)
ANJOS	90	PR D41 801	J.C. Anjos et al.	(FNAL E691 Collab.)
AVERY	90B	PRL 65 2842	P. Avery et al.	` (CLEO Collab.)
BARLAG	90D	ZPHY C48 29	S. Barlag et al.	(ACCMOR Collab.)
FRABETTI	90	PL B251 639	P.L. Frabetti <i>et al.</i>	(FNAL E687 Collab.)
BARLAG	89	PL B218 374	S. Barlag et al.	`(ACCMOR Collab.)
AGUILAR	88B	ZPHY C40 321	M. Aguilar-Benitez et al.	(LEBC-EHS Collab.)
Also		PL B189 254	M. Aguilar-Benitez et al.	(LEBC-EHS Collab.)
Also		PL B199 462	M. Aguilar-Benitez et al.	(LEBC-EHS Collab.)
Also		SJNP 48 833	M. Begalli <i>et al.</i>	(LEBC-EHS Collab.)
		Translated from YAF 48 13		,
ALBRECHT	88C	PL B207 109	H. Albrecht et al.	(ARGUS Collab.)
ANJOS	88B	PRL 60 1379	J.C. Anjos et al.	(FNAL E691 Collab.)
ADAMOVICH	87	EPL 4 887	M.I. Adamovich et al.	(Photon Emulsion Collab.)
Also		SJNP 46 447	F. Viaggi et al.	(Photon Emulsion Collab.)
		Translated from YAF 46 79	99.	,
AMENDOLIA	87	ZPHY C36 513	S.R. Amendolia <i>et al.</i>	(CERN NA1 Collab.)
JONES	87	ZPHY C36 593	G.T. Jones et al.	(CERN WA21 Collab.)
ABE	86	PR D33 1	K. Abe <i>et al.</i>	(SLAC HF Photon Collab.)
BOSETTI	82	PL 109B 234	P.C. Bosetti et al.	(AACH3, BONN, CERN+)
VELLA	82	PRL 48 1515	E. Vella <i>et al.</i>	(SLAC, LBL, UCB)
BASILE	81B	NC 62A 14	M. Basile et al.	(CERN, BĠNA, PGIA, FRAS)
CALICCHIO	80	PL 93B 521	M. Calicchio et al.	(BARI, BIRM, BRUX+)

- OTHER RELATED PAPERS -

MIGLIOZZI 99 PL B462 217 P. Migliozzi *et al.* DUNIETZ 98 PR D58 094010 I. Dunietz