Apache Spark 3 Fundamentals

Getting Started with Apache Spark

Mohit Batra Founder, Crystal Talks

linkedin.com/in/mohitbatra

Understand what is Apache Spark and how it works

Setup Apache Spark environment

Work with native Spark API - RDDs

Clean & transform data with DataFrames

Work with Spark SQL, UDFs & common operations

Perform optimizations in Spark

New features in Spark 3

Handle streaming data with Structured Streaming

Work with Spark in cloud

Overview

Need for Apache Spark

Spark architecture and ecosystem

How execution happens in Spark?

Spark supported APIs

Version Check

Version Check

This version was created by using:

- Apache Spark 3.3.1
- Apache Hadoop 3.3
- Java v11
- Scala 2.13
- Python 3.7

Version Check

This course is 100% applicable to:

- Apache Spark 3.0 onwards
- Java v8 (8u92+), v11 and v17
- Scala 2.12 onwards
- Python 3.7 onwards

Need for Apache Spark

Structured Data Sources

Unstructured & Streaming Data Sources

Exponential Data Growth

Infrastructure Scalability

Evolving Business Needs

History

Earlier

ETL Tools / RDBMS

2004

MapReduce /
Distributed File
System

Paper published by Google for distributed data processing

History

ETL Tools / RDBMS

2006

Hadoop (MapReduce & HDFS)

Framework for distributed storage & distributed data processing

2004

MapReduce /
Distributed File
System

Hadoop Components

How Hadoop Works?

Disk-heavy Architecture

Challenges with Hadoop

Infrastructure & environment complexity

Need to write a lot of code

Disk-heavy architecture: Multiple IO operations slows down processing

No built-in support for streaming, ML etc.

New tools were built to handle them adding to complexity

History

ETL Tools / RDBMS

2006

Hadoop (MapReduce & HDFS)

2004

MapReduce /
Distributed File
System

2009

Apache Spark

In-memory engine for distributed data processing

Apache Spark

Extremely powerful analytics engine for large-scale distributed data processing, whether structured or unstructured

In-memory engine can run workloads up to 100x faster than Hadoop

Simplified code and multiple language support

Unifies variety of use cases – batch processing, stream processing, machine learning & advanced analytics

History

2004

MapReduce / **Distributed File System**

2009

Apache

Spark

Databricks Azure Synapse Analytics Amazon EMR etc.

Understanding Spark Architecture & Ecosystem

Apache Spark is an extremely powerful, in-memory analytics engine built on cluster computing technology

Spark Ecosystem

Cluster Managers

- YARN, Kubernetes, Mesos etc.

Distributed File System options

- HDFS, Azure Data Lake Store, Amazon S3 or Google Cloud Storage

Multiple language support

- Scala, Python, SQL, R & Java
- Open-source support for C#

Development options

- Console, IDEs (PyCharm, VS Code), Notebooks (Jupyter, Zeppelin) etc.

Available in Cloud Platforms

- Databricks, Cloudera, Azure Synapse Analytics, Azure HDInsight, Amazon EMR etc.

Open-source Connectors

Relational databases - SQL Server, Oracle NoSQL - MongoDB, Cassandra, Azure Cosmos DB **Apache Hadoop, HBase, Hive Cloud storage** MPP engines - AWS Redshift, Azure Dedicated SQL **Visualization tools – Power BI, Tableau**

Streaming - Kafka, Azure Event Hubs, AWS Kinesis

...and much more

Check out more open-source projects...

https://spark.apache.org/third-party-projects.html

How Execution Happens in Spark?

Cluster is a group of machines / nodes

Cluster Manager allocates resources to Spark Applications on Cluster

Spark Application is a set of processes

Has Driver & Executor processes

App 1

Driver takes input from user

Determines how to execute a job

Analyzes job & distributes work to executors

Executors are responsible for executing the work (or code)

Returns result back to Driver

App 1

Spark Session is the entry point to all functionality of Spark

Use Spark Session to read file, create objects, run queries etc.

> **Executor Size** 2 Cores & 14 GB RAM (example)

- 1. Read file1.csv from Storage
- 2. Apply transformations
- 3. Write processed data to Storage

How Execution Happens?

- 1. Read file1.csv from Storage
- 2. Apply transformations
- 3. Write processed data to Storage

- 1. Read file1.csv from Storage
- 2. Apply transformations
- 3. Write processed data to Storage

- 1. Read file1.csv from Storage
- 2. Apply transformations
- 3. Write processed data to Storage

- 1. Read file1.csv from Storage
- 2. Apply transformations
- 3. Write processed data to Storage

- 1. Read file1.csv from Storage
- 2. Apply transformations
- 3. Write processed data to Storage

- 1. Read file1.csv from Storage
- 2. Apply transformations
- 3. Write processed data to Storage

- 1. Read file1.csv from Storage
- 2. Apply transformations
- 3. Write processed data to Storage

- 1. Read file1.csv from Storage
- 2. Apply transformations
- 3. Write processed data to Storage

- 1. Read file1.csv from Storage
- 2. Apply transformations
- 3. Write processed data to Storage

- 1. Read file1.csv from Storage
- 2. Apply transformations
- 3. Write processed data to Storage

- 1. Read file1.csv from Storage
- 2. Apply transformations
- 3. Write processed data to Storage

- 1. Read file1.csv from Storage
- 2. Apply transformations
- 3. Write processed data to Storage

What if number of Tasks are lesser than available Cores?

- 1. Read file1.csv from Storage
- 2. Apply transformations
- 3. Write processed data to Storage

- 1. Read file1.csv from Storage
- 2. Apply transformations
- 3. Write processed data to Storage

- 1. Read file1.csv from Storage
- 2. Apply transformations
- 3. Write processed data to Storage

- 1. Read file1.csv from Storage
- 2. Apply transformations
- 3. Write processed data to Storage

- 1. Read file1.csv from Storage
- 2. Apply transformations
- 3. Write processed data to Storage

- 1. Read file1.csv from Storage
- 2. Apply transformations
- 3. Write processed data to Storage

What if number of Tasks are more than available Cores?

- 1. Read file1.csv from Storage
- 2. Apply transformations
- 3. Write processed data to Storage

- 1. Read file1.csv from Storage
- 2. Apply transformations
- 3. Write processed data to Storage

- 1. Read file1.csv from Storage
- 2. Apply transformations
- 3. Write processed data to Storage

- 1. Read file1.csv from Storage
- 2. Apply transformations
- 3. Write processed data to Storage

- 1. Read file1.csv from Storage
- 2. Apply transformations
- 3. Write processed data to Storage

- 1. Read file1.csv from Storage
- 2. Apply transformations
- 3. Write processed data to Storage

- 1. Read file1.csv from Storage
- 2. Apply transformations
- 3. Write processed data to Storage

- 1. Read file1.csv from Storage
- 2. Apply transformations
- 3. Write processed data to Storage

- 1. Read file1.csv from Storage
- 2. Apply transformations
- 3. Write processed data to Storage

To improve Parallelization

- Increase number of Executors
- Add more cores to each executor

But provisioning too many resources results in under utilization (wastage)

Spark Application

Job

- Job is created when you need to execute code & take action (getting back results)

Partitions

- A partition is a chunk of data
- Driver decides how many partitions to be created
- Number of tasks = number of partitions
- Each task processes only one partition
- How many partitions to be created? How Spark decides that? Can we control? we'll learn later!

Cores / Threads / Slots

- Each core can execute only one task at a time
- Number of parallel tasks = Number of cores

Executor Size = 2 cores 14 GB RAM

Total Cores = 2 X 4 = 8 cores

Parallel Tasks = Total Cores

→ 8 tasks can execute in parallel

Partitions created by Driver = 16

Part 1 Part 2 Part 3 Part 4

Part 5 Part 6 Part 7 Part 8

Part 9 Part 10 Part 11 Part 12

Part 13 | Part 14 | Part 15 | Part 16

Total Tasks = Total Partitions

Task 1 Task 2 Task 3 Task 4

Task 5 Task 6 Task 7 Task 8

Task 9 Task 10 Task 11 Task 12

Task 13 | Task 14 | Task 15 | Task 16

Time to complete task = 1 min

.....,

Time taken by 8 parallel tasks = 1 min

.....,

App

Total time taken by 16 tasks

= 2 mins

Spark APIs – RDDs, DataFrames & Datasets

Spark APIs

Resilient
Distributed
Datasets (RDDs)

DataFrames

Datasets

Resilient Distributed Datasets

Introduced with inception of Spark

Native data structure (Spark Core library)

RDD represents collection of data in memory

- Ex - When file is loaded in memory, it is called RDD

All processing in Spark happens on RDDs

Write code using low-level RDD APIs

- APIs load data in memory as RDDs & process them
- All languages supported Scala, Java, R & Python

Spark does not apply any optimization to RDD code

Higher-Level Spark APIs

DataFrames

Introduced with Spark 1.3

Based on RDDs

Collection of data, but in tabular format

No compile-time safety

Spark applies optimizations to code

Supported in all languages

Datasets

Introduced with Spark 1.6

Based on RDDs

Combination of RDDs and DataFrames

Provides compile-time safety

Spark applies optimizations to code

Supported in Java & Scala

Higher-Level Spark APIs

Before Spark 2.0

From Spark 2.0

Since we are going to use PySpark, we'll work with Untyped APIs (generally referred as DataFrames)

Summary

Background of Apache Spark

- Spark fits the bill for modern data processing needs
- Overcomes challenges faced by Hadoop

In-memory analytics engine that runs on a cluster

- Spark Core & Engine performs distributed processing
- Built-in libraries for various uses cases batch processing, streaming, ML, graph computations
- Uses cluster manager & HDFS

Distributed execution architecture

- Spark application creates Driver & Executors
- Driver creates a Spark Session
- Cluster Manager handles allocation of resources
- Data is divided into Partitions
- Task is allocated to a core to process a data partition

Supports 3 APIs – RDDs, DataFrames & Datasets

Up Next: Setting up Spark Environment