Aufgabe 1: Elektrische Feldstärke

Die beiden Punktladungen +Q und -Q sind vom Betrag her gleich gross und befinden sich im angegebenen Abstand auf der y-Achse des Koordinatensystems.

Sie verursachen im Raum mit $\varepsilon_r = 1$ (Luft) ein elektrostatisches Feld.

- a) Skizzieren Sie qualitativ den Verlauf der Feldlinien in der xy-Ebene.
- b) Die Feldstärkevektoren auf der x-Achse können in eine x- und eine y-Komponente zerlegt werden.

Leiten Sie die Formel für die x-Komponente der Feldstärkevektoren längs der x-Achse her: $E_x = f(Q, a, x)$.

Aufgabe 2: Plattenkondensator mit Mehrschichtdielektrikum

Daten: Spannung: $U_q = 10 \text{ kV}$

Plattenfläche: $A = 200 \text{ cm}^2$ Schichtdicken: d = 5 mmHartpapier: $\varepsilon_{\text{rH}} = 4,5$ Porzellan: $\varepsilon_{\text{rP}} = 6$

- a) Bestimmen Sie die Beträge der in den drei verschiedenen Schichten auftretenden elektrischen Feldstärken $E_{\rm H}$, $E_{\rm L}$ und $E_{\rm P}$.
- b) Berechnen Sie den Betrag der Ladungen Q auf den Platten.

Aufgabe 3: Zylindrische Durchführung

Daten: Radius des Kupferleiters: $r_{\rm K} = 1 \, {\rm cm}$ Aussenradius der Hartpapierisolation: $r_{\rm H} = 3 \, {\rm cm}$ Radius des Lochs durch die Aussenwand: $r_{\rm A} = 5 \, {\rm cm}$ relative Permittivität des Hartpapiers: $\varepsilon_{\rm rH} = 4,5$

Durchschlagsfestigkeit des Hartpapiers: $E_{DH} = 200 \text{ kV/cm}$ Durchschlagsfestigkeit der Luft: $E_{DL} = 20 \text{ kV/cm}$

Bestimmen Sie die maximale Spannung $U_{\rm max}$, die zwischen dem Kupferleiter und der Aussenwand (Erde) angelegt werden darf, so dass nirgens die Durchschlagsfestigkeit überschritten wird.

Aufgabe 4: Kraft auf Plattenkondensator

Daten: Spannung am Kondensator: U = 8 kV

Fläche der Kondensatorplatten: $A = 200 \text{ cm}^2$ im Kondensator gespeicherte Energie: $W_e = 400 \mu\text{Ws}$

das Dielektrikum ist Luft

Berechnen Sie die Kraft, mit der sich die Platten des Kondensators anziehen.