Складний рух точки

(тема 1.2.3)

Ппан

- 1. Основні відомості про складний рух
- 2. Види швидкостей та їх формули

Досі розглядався рух точки відносно однієї системи координат, яку вважали нерухомою. Проте все навколо перебуває у неперервному русі, а нерухомої системи координат насправді не існує. Тому нерідко доводиться розглядати рух точок одночасно відносно двох систем відліку, одну з яких умовно приймають нерухомою, а друга певним способом рухається відносно першої. У такому випадку рух точки називають складним.

Рух точки відносно нерухомої системи координат називають **абсолютним**. Рух точки відносно рухомої системи координат називають **відносним**. Рух рухомої системи координат відносно нерухомої називають **переносним**. Абсолютний рух точки складний, він містить у собі відносний і переносний рухи.

Пояснимо це за допомогою рис. 11.1, Нехай xOy — рухома система координат, яка переміщується в площині рисунка рівномірно поступально вздовж осі х; точка А рівномірно переміщується вгору по осі y. Якщо рух буде лише відносним, то точка перейде з положення A в положення A_1 . Якщо ж рух буде лише переносним, то точка з положення A перейде в положення A_2 . А коли одночасно відбуватимуться від

носний і переносний рухи, то точка за той самий проміжок часу перейде з положення A в положення A_3 .

Зважаючи на означення переносного і відносного рухів, а також на розглянутий приклад, можна вибрати такий метод вивчення цих рухів. Якщо треба вивчити відносний рух точки, то потрібно уявно зупинити переносний рух, а коли доводиться вивчати переносний рух, то потрібно уявно зупинити відносний рух.

Швидкість точки в абсолютному русі називають абсолютною, Швидкість точки у відносному русі називають відносною. Швидкість розглядуваної точки, уявно закріпленої у даний момент на рухомій системі координат, називають переносною. Зв'язок між цими швидкостями визначається теоремою про додавання швидкостей.

Рис. 11.3

Теорема, Абсолютна швидкість

точки дорівнює векторній сумі відносної і переносної швидкостей.

Нехай за час Δ t точка перейшла з положення A в положення A_3 , рухаючись по траєкторії абсолютного руху, тобто по дузі AA_3 (рис. 11.3), Коли б рух був лише відносним, то точка перейшла б у положення A_1 ; а коди б рух був лише переносним, то точка перейшла б у положення A_2 . Можна уявити, що точка з A перейшла в положення A_3 , рухаючись спочатку лише по траєкторії переносного руху (дуга AA_2), а потім лише по траєкторії відносного руху (дуга A_2A_3 , яка дорівнює дузі AA_1), Сполучивши точки A, A_2 і A_3 хордами, дістанемо таку залежність між векторами змішень точки A:

$$AA_3 = AA_2 + A_2A_3$$

Поділимо всі члени рівностей на Δt і перейдемо до границі, коли Δt прямує до нуля,

$$\lim_{\Delta t \to 0} \frac{AA_3}{\Delta t} = \lim_{\Delta t \to 0} \frac{AA_2}{\Delta t} + \lim_{\Delta t \to 0} \frac{A_2 A_3}{\Delta t}$$
$$v = v_o + v_r$$

Звідси

де V — вектор абсолютної швидкості; v_e — вектор переносної швидкості; v_r — вектор відносної швидкості. Теорему доведено.

Приклад 11.2. Стержень ОА (рис. 11,4) обертається у площині рисунка навколо нерухомої точки O за законом φ = t^2 . По стержню рівноприскорено рукається повзун M,

віддаляючись від точки О. Рух повзуна визначається рівнянням

$$S = OM = 2 + 2t$$

(v - B M, t - B C). Знайти абсолютну швидкість повзуна в момент t = 1 C.

Розв'язання. Візьмемо нерухому систему координат *хОу*, рухомою системою вважатимемо стержень. Тоді відносним буде рух повзуна М по стержню. Тому відносна швидкість

напрямлена вздовж стержня і дорівнює
$$v_{r}$$
= $\frac{ds}{dt}$ = $4t$,

У момент t = 1 с відносна швидкість за модулем дорівнюватиме $V_{..} = 4$ м/с.

Переносним буде обертальний рух стержня OA з уявно закріпленим на ньому в даний момент повзуном, тому переносна швидкість v_{ϵ} повзуна напрямлена перпендикулярно до стержня, а $\overline{\text{п}}$ величина визначається формулою

$$\mathcal{V}_{m{arphi}} = m{\omega} ext{ x OM} = dm{arphi}/dt ext{ OM}$$

Оскільки $ext{OM} = ext{S} = 2 + 2t^2$ a $dm{arphi}/dt = 2t$

$$v_e = 2t (2 + 2t^2).$$

Приймаючи t = 1 с, знайдемо $v_e = 8 \text{ M/c}$. Через те що відносна і переносна швидкості взаємно перпендикулярні, а за теоремою про додавання швидкостей $v = v_{r_+} v_e$ то

$$V_{=}\sqrt{v_e^2+v_r^2}$$

Підставивши значення швидкостей при t = 1 с, знайдемо

$$V = \sqrt{|v_e|^2 + |v_r|^2} = \sqrt{4^2 + 8^2} = 8.94 \text{m/c}$$

Питання для самоконтролю

- 1. Який рух називається складним?
- 2. Види складного руху.
- 3. Формула абсолютної швидкості.