# Matrix Analysis

## Yunwei Ren

## Contents

| 1 | Eigenvalues, eigenvectors, and similarity |                                     |   |
|---|-------------------------------------------|-------------------------------------|---|
|   | 1.1                                       | Introduction                        | 2 |
|   | 1.2                                       | The eigenvalue-eigenvector equation | 2 |

## 1 Eigenvalues, eigenvectors, and similarity

## 1.1 Introduction

1.

*Proof.* Let  $S = \{x \in \mathbb{R}^n : x^T x = 1\}$ , which is clearly a compact subset of  $\mathbb{R}^n$ . Consider the function  $f: x \mapsto x^T A x$ . Since,

$$||f(x+\delta) - f(x)|| = ||(x^T A)\delta + \delta^T (Ax) + \delta^T A\delta|| \le K||\delta||$$

for every  $x \in \mathbb{R}$  and some fixed K, f is continuous. Hence, by Weierstrass's theorem, f attains its maximum value at some point  $x \in S$ . Namely, (1.0.3) has a solution x. Therefore, there exists some  $\lambda \in \mathbb{R}$  such that  $2(Ax - \lambda x) = 0$ , implying that every real symmetric matrix has at least one real eigenvalue.

2.

*Proof.* Let  $S = \{x \in \mathbb{R}^n : x^Tx = 1\}$  and m be the maximum value of  $x \mapsto x^TAx$  in S. Suppose  $\lambda$  is an eigenvalue of A and  $u \neq 0$  is its associated eigenvector, then

$$Au = \lambda u \quad \Rightarrow \quad u^T Au = \lambda \|u\|^2 \quad \Rightarrow \quad (u/\|u\|)^T A(u/\|u\|) = \lambda \quad \Rightarrow \quad m \ge \lambda.$$

Meanwhile, by the previous discussion, m itself is a eigenvalue of A. Hence, it is the largest real eigenvalue of A.

## 1.2 The eigenvalue-eigenvector equation

1.

*Proof.* It follows from

$$(A^{-1} - \lambda^{-1}I)x = (A^{-1} - \lambda^{-1}A^{-1}A)x = \lambda^{-1}A^{-1}(\lambda I - A)x = 0.$$

3.

*Proof.* Since  $A \in M_n(\mathbb{R})$ ,  $u, v \in \mathbb{R}^n$  and  $\lambda \in \mathbb{R}$ ,

$$Ax = \lambda x \implies Au + iAv = \lambda u + i\lambda v$$

implies  $Au = \lambda u$  and  $Av = \lambda v$ . As  $x \neq 0$ , at least one of u and v is nonzero and therefore A has a real eigenvector associated with  $\lambda$ . It can happen that only one of u and v is an eigenvector of A, because if  $x \in \mathbb{R}^n$ , which may happen as we discussed above, the imaginary part of x is 0. Finally, if x is a real eigenvector of A, then the eigenvalue  $\lambda$  it associated with must be real. Otherwise, at least one entry of  $\lambda x$  is not real as  $x \neq 0$ , contradicting with the fact that Ax is real.

**5**.

*Proof.* Let  $p(t) = t^2 - t$ . Since A is idempotent,  $p(A) = A^2 - A = 0$ . Hence, 0 is the only eigenvalue of p(A). By Theorem 1.1.6, the only values the eigenvalues of A can be are the zeros of p, namely, 0 and 1.

Suppose A is nonsingular, then multiplying  $A^{-1}$  on the both sides of  $A^2 = A$  yields A = I.

### 7.

*Proof.* Suppose  $\lambda \in \sigma(A)$  and x is its associated eigenvector, then

$$0 = (A - \lambda I)x = x^*(A^* - \bar{\lambda}I) = x^*(A - \bar{\lambda}I)$$
  

$$\Rightarrow 0 = x^*(A - \bar{\lambda}I)x = x^*Ax - \bar{\lambda}x^*x = (\lambda - \bar{\lambda})||x||^2.$$

Hence,  $\lambda = \bar{\lambda}$ , implying all eigenvalues of A are real.

### 9.

Solution. Solve the equation  $\det(A - \lambda I) = 0$  and we get  $\lambda = \pm i$ .

### 11.

*Proof.* If  $\operatorname{rank}(A - \lambda I) < n - 1$ , then  $\operatorname{adj}(A - \lambda I) = 0$  by (0.8.2) and therefore we can always choose y to be the 0 and the other parts of the proposition clearly hold. Hence, in the following discussion, we assume that  $\operatorname{rank}(A - \lambda I) = n - 1$ .

Apply the full-rank factorization and we get  $\operatorname{adj}(A - \lambda I) = \alpha x y^*$  for some nonzero  $\alpha \in \mathbb{C}$  and  $x, y \in \mathbb{C}^n$ . Replacing x with  $\alpha x$  and  $\alpha$  with 1 proves the first part.

Suppose  $\operatorname{adj}(A - \lambda I) = [\beta_1, \dots, \beta_n]$ , then

$$(A - \lambda I) \operatorname{adj}(A - \lambda I) \Rightarrow (A - \lambda I)\beta_k = 0 \quad (k = 1, 2, \dots, n),$$

implying that  $\beta_k$  is an eigenvector of A associated with  $\lambda$  as long as it is nonzero.

#### 13.

*Proof.* If rank A < n - 1, then x is always an eigenvector of adj A associated with 0 as adj A = 0. Hence, we may assume that rank = n - 1. Then adj  $A = (\det A)A^{-1}$ . By Exercise 1, x is an eigenvector of  $A^{-1}$  and therefore an eigenvector of adj A.