EXPLAINABLE SENTENCE-LEVEL SENTIMENT ANALYSIS

Salvatore Stefano Furnari Politecnico di Torino Torino, Italy s290057@studenti.polito.it Giuseppe Gallipoli
Politecnico di Torino
Torino, Italy
s291086@studenti.polito.it

Marco Tasca
Politecnico di Torino
Torino, Italy
s285174@studenti.polito.it

Deep Natural Language Processing
Politecnico di Torino

WORKFLOW

WORKFLOW

PROBLEM STATEMENT

THE ISSUES

High number of reviews (non humanly readable).

Inconsistency between item descriptions and products.

Black-box models.

PROBLEMS

[1] Xuechun Li et al. Explainable Sentence-Level Sentiment Analysis for Amazon Product Reviews

PROBLEM STATEMENT

THE ISSUES

High number of reviews (non humanly readable).

Inconsistency between item descriptions and products.

Black-box models.

PROBLEMS

THE MODEL

A sentiment analysis model, with a module about explainability.

It automatically labels reviews as positive or negative, extracting the latent sentiment score of each review.

SOLUTIONS

[1] Xuechun Li et al. Explainable Sentence-Level Sentiment Analysis for Amazon Product Reviews

PROBLEM STATEMENT

THE ISSUES

High number of reviews (non humanly readable).

Inconsistency between item descriptions and products.

Black-box models.

PROBLEMS

THE MODEL

A sentiment analysis model, with a module about explainability.

It automatically labels reviews as positive or negative, extracting the latent sentiment score of each review.

SOLUTIONS

ACHIEVEMENT

Both sellers and customers benefit from this sentiment measure, as a **fundamental index** for commodities.

With the module about explainability, we can check how the score is given.

RESULTS

[1] Xuechun Li et al. Explainable Sentence-Level Sentiment Analysis for Amazon Product Reviews

DATASET: Amazon Musical Instruments Reviews

10.261 SAMPLES

Overall score (from 1 to 5).

Text of the review (English).

number of reviews, based on their score

DATASET: Amazon Musical Instruments Reviews

10.261 SAMPLES

Overall score (from 1 to 5).

Text of the review (English).

HIGHLY UNBALANCED

Impossible to group into two sets creating a balanced distribution.

number of reviews, based on their score

DATASET: Amazon Musical Instruments Reviews

10.261 SAMPLES

Overall score (from 1 to 5).

Text of the review (English).

HIGHLY UNBALANCED

Impossible to group into two sets creating a balanced distribution.

Not clear how Li et al. grouped them.

number of reviews, based on their score

MODEL OVERVIEW

MODEL OVERVIEW

MODEL OVERVIEW

WORKFLOW

PRE-PROCESSING

TEXT CLEANING & BINARY LABELING

TEXT CLEANING

reviewText: we deleted analphabetic signs, lowercased,

lemmatized and removed stopwords [NLTK].

BINARY LABELING

Overall: we grouped the 5 possible scores: $\{1,2,3\} = 0$

and $\{4,5\} = 1$.

reviewerID	asin	reviewerName	helpful	reviewText	Overall summary	unixReviewTi me	reviewTime
A21BPI20UZIR0U A14VAT5EAX3D9S A195EZSQDW3E21	13847192 138471932 138471932	cassandra tu " Yeah, well, that's just like, u Jake Rick Bennette " Rick Bennette"	[0, 0] [13, 14] [1, 1]	Not much to write about here, The product does exactly as it should and is quite affordable The primary job of this device is to block Nice windscreen protects	5good 5Jake 5It Does The Job Well 5GOOD WINDSCREEN	1393545600 1363392000 1377648000	02 28, 2014 03 16, 2013 08 28, 2013

Amazon Musical Instruments Reviews dataset

PRE-PROCESSING

TEXT CLEANING & BINARY LABELING

TEXT CLEANING

reviewText: we deleted analphabetic signs, lowercased, lemmatized and removed stopwords [NLTK].

BINARY LABELING

Overall: we grouped the 5 possible scores: $\{1,2,3\} = 0$ and $\{4,5\} = 1$.

reviewerID	asin	reviewerName	helpful	reviewText	Overall summary	unixReviewTi me	reviewTime
A2IBPI20UZIR0U A14VAT5EAX3D9S A195EZSQDW3E21	13847192 138471932 138471932	cassandra tu " Yeah, well, that's just like, u Jake Rick Bennette " Rick Bennette"	[0, 0] [13, 14] [1, 1]	Not much to write about here, The product does exactly as it should and is quite affordable The primary job of this device is to block Nice windscreen protects	5good 5Jake 5It Does The Job Well 5GOOD WINDSCREEN	1393545600 1363392000 1377648000	02 28, 2014 03 16, 2013 08 28, 2013

Amazon Musical Instruments Reviews dataset

PRE-PROCESSING

TEXT CLEANING & BINARY LABELING

TEXT CLEANING

reviewText: we deleted analphabetic signs, lowercased, lemmatized and removed stopwords [NLTK].

BINARY LABELING

Overall: we grouped the 5 possible scores: $\{1,2,3\} = 0$ and $\{4,5\} = 1$.

	I		ı							'D'T'	
reviewerID	asin	reviewerName	helpful	(reviewText)		Overall s	summary	unixReviewTi me	reviewTime
										IIIC	
		cassandra tu "			Not much to write about here,						
A2IBPI20UZIR0U	13847192	Yeah, well, that's just like, u	[0, 0]		The product does exactly as it should and is quite		5	good		1393545600	02 28, 2014
A14VAT5EAX3D9S	138471932	Jake	[13, 14]		affordable The primary job of this		5	Jake		1363392000	03 16, 2013
A195EZSQDW3E21	138471932	Rick Bennette " Rick Bennette"	[1, 1]		device is to block Nice windscreen protects			It Does The GOOD WI	e Job Well INDSCREEN	1377648000	08 28, 2013

Amazon Musical Instruments Reviews dataset

PRE-PROCESSING

POS TAGGING

Each word is POS-tagged context-aware, [NLTK], to be divided into two subgroups: aspect terms= nouns, and sentimental words=adj+adv.

TF-IDF

The whole corpus is vectorized word by word [scikit-learn] then, the 160 most relevant aspect terms, and the 160 most relevant sentimental words are selected by max(w1, w2).

$$W_{i,j} = tf_i \times \left[\log \frac{1+N}{1+df_{i,j}} + 1 \right]$$

PRE-PROCESSING

SENTIMENT LEXICON

SentiWordNet

Outputs sentiment triplets={positive, negative, neutral}, for each word, context-aware. We combine them, so that the resulting sentiment weight is in [0.5, 1.5].

We assign a weight of 1 to words not present and we average the instances of weighted words.

PRE-PROCESSING

MODEL ARCHITECTURE

- Word Embedding layer
- BiLSTM layer
- Attention layer
- Softmax classifier

MODEL ARCHITECTURE

- Word Embedding layer
- BiLSTM layer
- Attention layer
- Softmax classifier

BERT word embedding

Encode input reviews into a suitable and **context-aware** representation

MODEL ARCHITECTURE

- Word Embedding layer
- BiLSTM layer
- Attention layer
- Softmax classifier

Process word embeddings across subsequent time steps in a **bidirectional** way

Take into account both the preceding and the subsequent word

MODEL ARCHITECTURE

- Word Embedding layer
- BiLSTM layer
- Attention layer
- Softmax classifier

Self-attention mechanism

Identify the words on which the network "focuses more"

Important for model interpretability

MODEL ARCHITECTURE

- Word Embedding layer
- BiLSTM layer
- Attention layer
- Softmax classifier

Binary classification

Softmax classifier to produce class probabilities

MODEL TRAINING AND EVALUATION

Loss function

$$\mathcal{L} = \frac{1}{2}CSE + \frac{1}{2}MSE$$
 combination of: • Cross Entropy (CSE)

- Mean Square Error (MSE)

MODEL TRAINING AND EVALUATION

Loss function

$$\mathcal{L} = \frac{1}{2}CSE + \frac{1}{2}MSE$$

- combination of: Cross Entropy (CSE)
 - Mean Square Error (MSE)

Hyperparameters tuning

- Number of epochs
- Batch size
- Dropout rate

MODEL TRAINING AND EVALUATION

Loss function

$$\mathcal{L} = \frac{1}{2}CSE + \frac{1}{2}MSE$$

- combination of: Cross Entropy (CSE)
 - Mean Square Error (MSE)

Hyperparameters tuning

- Number of epochs
- Batch size
- Dropout rate

Metrics

- Accuracy
- Precision
- Recall
- F₁ score

MODEL TRAINING AND EVALUATION

Loss function

$$\mathcal{L} = \frac{1}{2}CSE + \frac{1}{2}MSE$$

- combination of: Cross Entropy (CSE)
 - Mean Square Error (MSE)

Hyperparameters tuning

- Number of epochs
- Batch size
- Dropout rate

Metrics

Accuracy

Precision

Recall

F₁ score

Original paper:

(probably) metrics only on positive class

Our experiments:

metrics both on positive class and aggregated with macro average

RESULTS - HYPERPARAMETERS TUNING

Number	of	enochs
Number	ΟI	ebocus

n_epochs	batch_size	dropout_rate	macro F_1	F_{1pos}
8	32	0.2	0.593	0.929
10	32	0.2	0.620	0.923
12	32	0.2	0.535	0.933
17	32	0.2	0.614	0.904

Batch size

n_epochs	batch_size	dropout_rate	macro F_1	F_{1pos}
10	32	0.2	0.620	0.923
10	34	0.2	0.663	0.931
10	36	0.2	0.597	0.928
10	38	0.2	0.616	0.929

Dropout rate

n_epochs	batch_size	dropout_rate	macro F_1	F_{1pos}
10	34	0.2	0.663	0.931
10	34	0.4	0.614	0.924
10	34	0.6	0.540	0.930
10	34	0.8	0.497	0.935

Best configuration:

n_epochs=10, batch_size=34, dropout_rate=0.2

RESULTS - BASELINES

Baselines

- LSTM
- SVM
- Multinomial Naïve Bayes

RESULTS - BASELINES

Baselines

- LSTM
- SVM
- Multinomial Naïve Bayes

Results on test set

baseline	a	p_{pos}	r_{pos}	F_{1pos}	macro F_1
BiLSTM +	0.943	0.916	0.988	0.951	0.687
Attention	0.943	0.910	0.900	0.931	0.007
SVM	0.913	0.881	0.979	0.927	0.489
NB	0.910	0.874	0.981	0.924	0.468
LSTM	0.908	0.910	0.922	0.916	0.615

RESULTS - BASELINES

Baselines

- LSTM
- SVM
- Multinomial Naïve Bayes

Results on test set

baseline	a	p_{pos}	r_{pos}	F_{1pos}	macro F_1
BiLSTM +	0.943	0.916	0.988	0.951	0.687
Attention	0.943	0.910	0.966	0.931	0.007
SVM	0.913	0.881	0.979	0.927	0.489
NB	0.910	0.874	0.981	0.924	0.468
LSTM	0.908	0.910	0.922	0.916	0.615

Possible cause: highly **unbalanced** dataset —— predictions **biased** towards positive class

RESULTS - BASELINES

Baselines

- I STM
- SVM
- Multinomial Naïve Bayes

Results on test set

baseline	a	p_{pos}	r_{pos}	F_{1pos}	macro F_1
BiLSTM +	0.943	0.916	0.988	0.951	0.687
Attention	0.545	0.910	0.966	0.931	0.007
SVM	0.913	0.881	0.979	0.927	0.489
NB	0.910	0.874	0.981	0.924	0.468
LSTM	0.908	0.910	0.922	0.916	0.615

Possible cause: highly **unbalanced** dataset —— predictions **biased** towards positive class

Apply the model on a balanced dataset —— Extension I

MODEL EXPLAINABILITY

Two levels of granularity:

• Sentence-level: attention weights distribution over test reviews identify which words in a review have greater importance

MODEL EXPLAINABILITY

Two levels of granularity:

• Sentence-level: attention weights distribution over test reviews identify which words in a review have greater importance

• Corpus-level: attention weights distribution over aspect and sentimental words identify most important products, features and feelings

MODEL EXPLAINABILITY

Two levels of granularity:

• Sentence-level: attention weights distribution over test reviews identify which words in a review have greater importance

• Corpus-level: attention weights distribution over aspect and sentimental words identify most important products, features and feelings

WORKFLOW

DATASET DESCRIPTION AND PRE-PROCESSING

- Much bigger amount of records for training (but beware of computational constraints!)
- Perfect balance between the two sentiments
- Inspect model performance in a different domain and see effects in interpretability
- Removal of meaningless tokens such as HTML tags.

HYPERPARAMETERS TUNING

Same dataset splitting and hyperparameters set

n_epochs	batch_size	dropout_rate	macro F_1	F_{1pos}
8	32	0.2	0.863	0.860
10	32	0.2	0.853	0.845
12	32	0.2	0.842	0.839
8	34	0.2	0.867	0.860
8	34	0.4	0.864	0.862
10	34	0.2	0.853	0.846
12	34	0.2	0.843	0.851
17	34	0.2	0.854	0.845
8	36	0.2	0.861	0.865
10	36	0.2	0.851	0.847
12	36	0.2	0.854	0.848
8	38	0.2	0.861	0.867
10	38	0.2	0.864	0.860

Best configuration: n_epochs=8, batch_size=34, dropout_rate=0.2

RESULTS ON TEST SET

Same baselines

	a	p_{pos}	r_{pos}	F_{1pos}	macro F_1
BiLSTM +	0.886	0.866	0.894	0.880	0.885
Attention	N N H N N N N N N N N N N N N N N N N N	25, 73, 21, 21, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	1,00,000 (0)		
SVM	0.810	0.785	0.832	0.808	0.806
NB	0.791	0.796	0.782	0.789	0.791
LSTM	0.831	0.812	0.861	0.836	0.829

We managed to reach a 20% improvement with respect to the original paper!

SENTENCE ATTENTION WEIGHTS

Higher weights are assigned to:

- Nouns
- Adjectives which express a certain sentiment

ASPECT TERMS ATTENTION WEIGHTS

- Cinema industry jargon
- Movie characters and titles

SENTIMENTAL WORDS ATTENTION WEIGHTS

- Adjectives conveying feeling (both positive and negative!)
- Movie genres, film/actor nationality

WORKFLOW

DATASET DESCRIPTION AND PRE-PROCESSING

- 6 languages and many records for each (we have to restrict the focus)
- Filtering and label assignment in order to get a comparable perfectly balanced dataset
- Multilingual approach based on translation to a target language
- Exploitation of a pre-trained Neural Machine Translation model

HYPERPARAMETERS TUNING

Same dataset splitting and hyperparameters set

n_epochs	batch_size	dropout_rate	macro F_1	F_{1pos}
8	32	0.2	0.816	0.815
10	32	0.2	0.804	0.801
12	32	0.2	0.797	0.806
8	34	0.2	0.830	0.831
8	34	0.4	0.830	0.822
10	34	0.2	0.821	0.821
12	34	0.2	0.807	0.818
8	36	0.2	0.835	0.835
8	36	0.4	0.824	0.817
10	36	0.2	0.823	0.818
12	36	0.2	0.811	0.821
8	38	0.2	0.824	0.821
10	38	0.2	0.811	0.816
12	38	0.2	0.801	0.809

Best configuration: n_epochs=8, batch_size=36, dropout_rate=0.2

RESULTS ON TEST SET

Same baselines

	a	p_{pos}	r_{pos}	F_{1pos}	macro F_1
BiLSTM + Attention	0.852	0.850	0.852	0.851	0.854
SVM	0.782	0.787	0.775	0.781	0.782
NB	0.777	0.770	0.786	0.778	0.776
LSTM	0.813	0.801	0.832	0.816	0.812

Still better than the original paper, but slightly less with respect to Extension I (due to the additional task of machine translation)

SENTENCE ATTENTION WEIGHTS

Higher weights are assigned to:

- Words describing products
- Adjectives which express a certain sentiment

ASPECT TERMS ATTENTION WEIGHTS

- Words describing product features
- Terms related to product category

SENTIMENTAL WORDS ATTENTION WEIGHTS

- Terms expressing the reviewer's opinion about the product
- Adjectives defining the qualities of the item

CONCLUSIONS

TAKEAWAYS

- Model gets poor results with the original dataset: alternative directions could go towards a direct handling of this issue
- Model is profitably adaptable to a different domain of reviews
- Thanks to Neural Machine Translation, model is greatly extended to a multilingual context
- Interpretability analysis shows in a nice and intuitive graphical way which terms are taken into account by the black-box to make predictions

CONCLUSIONS

MODEL USAGE & REPRODUCIBILITY

Examples with Amazon Music dataset

Train

```
main.py train --dataset music --encoder bert --n epochs <epochs> --batch size <batch size> --dropout rate <dropout>
```

Test

```
main.py test    --dataset music --encoder bert --from_pretrained pretrained_path>
```

Baselines

```
main.py baseline lstm --dataset music --encoder bert --n_epochs <epochs> --batch_size <batch_size> --dropout_rate <dropout>
main.py baseline svm --dataset music

main.py baseline nb --dataset music
```

All experiments are available on Google Colaboratory

GitHub repository: https://github.com/gallipoligiuseppe/SentiModel

THANK YOU FOR YOUR ATTENTION

Mollo (Jimpe, dohratote