КАФЕДРА № 31

ПОДАВАТЕЛЬ		
ассистент		М.А. Зубарев
должность, уч. степень, звание	подпись, да	та инициалы, фамилия
ОТЧЕ	СТ О ЛАБОРАТОРН	ОЙ РАБОТЕ №1
ЛИНЕА	РИЗАЦИЯ НЕЛИН	ЕЙНЫХ СИСТЕМ
по курс	у: ОСНОВЫ ТЕОРИ	И УПРАВЛЕНИЯ
БОТУ ВЫПОЛНИЛ		
ТУДЕНТ ГР. № 1	142 Konskur	в А.Н. Коновалов
		сь, дата инициалы, фамили

1. Цель работы

Научиться линерезовывать нелинейные функции, производить моделирование в Matlab.

2. Постановка задачи

Выполнить линеаризацию статической зависимости в соответствии с заданным вариантом из Табл.1. Проверить результат построением графиков в MatLab.

12
$$y = \sin(x) + x^3; x_0 = 2.$$

Таблица 1 – Статистическая нелинейная зависимость

Выполните линеаризацию динамической системы в соответствии с заданным вариантом из табл. 2. Проверить результат моделированием в MatLab для следующих условий:

- Постоянный входной сигнал (рабочая точка).
- Синусоидальный входной сигнал в рабочей точке с различной амплитудой.
 - Случайное ступенчатое входное воздействие

12
$$\dot{y} + \sin(y) = \dot{x} + 2x, x_0 = \frac{\sqrt{3}}{4}.$$

Таблица 2 – Динамическая нелинейная зависимость

3. Выполнение работы

Линеаризация Функции

Решение:

$$y(x_0) = F(x_0) + F'(x_0)(x - x_0)$$
$$y(2) = \sin(2) + 8 + (\cos(2) + 12)(x - 2)$$

Листинг программы (линеаризация функции):

```
x = 0:0.01:4;
y1 = sin(x) + x.^3;
y2 = sin(2)+8+(cos(2)+12)*(x-2);
plot (x,y1,x,y2)
grid
```


Рисунок 1 – Линеаризация функции в рабочей точке

Промежуточный вывод: графики сходятся в точке, значит мы выполнили вычислений и программу правильно.

Линеаризация динамической системы

Решение:

12
$$\dot{y} + \sin(y) = \dot{x} + 2x, x_0 = \frac{\sqrt{3}}{4}.$$

$$y' + \sin(y) = x' + 2x$$

$$y' + \sin(y) - x' - 2x = 0$$

$$cos(y) = 1$$

$$x_0 = \frac{\sqrt{3}}{4} \ y_o = 1$$

$$\left. \frac{\partial F}{\partial x} \right|_0 = -2$$

$$\left. \frac{\partial F}{\partial x'} \right|_0 = -1$$

$$\left. \frac{\partial F}{\partial y} \right|_{0} = \cos(y) = 1$$

$$\left. \frac{\partial F}{\partial y'} \right|_0 = 1$$

$$\left. \frac{\partial F}{\partial y^{\prime\prime}} \right|_0 = 0$$

$$F = -2x - x' + y + y'$$

Рисунок 2 — Схема для моделирования с постоянным сигналом

Рисунок 3 - Линеаризация динамической системы с постоянным сигналом

Рисунок 4 - схема для моделирования с синусоидальным сигналом

Рисунок 5 - Линеаризация динамической системы с синусоидальным сигналом

Рисунок 6 - Схема для моделирования с случайным ступенчатым входным воздействием (белый шум)

Рисунок 7 -Линеаризация динамической системы с случайным ступенчатым входным воздействием (белый шум)

4. Вывод

В рамках выполнения данной лабораторной работы были выполнены следующие задачи. Во-первых, были рассчитаны коэффициенты для создания статических и динамических графиков функции. Во-вторых, была проведена линеаризация нелинейных систем, а затем системы были смоделированы в программе Matlab (Simulink).

Далее, были получены графики, которые позволили определить, что схема с синусоидальным сигналом и схема со случайным ступенчатым входным воздействием имеют различные показатели на выходе. Это подтверждает корректность выполнения работы.

Линеаризация, проведенная в ходе работы, является методом линейной аппроксимации нелинейной системы, пригодным для использования в небольшой области вокруг рабочей точки.

Также стоит отметить, что линеаризация полезна в приложениях системы управления и анализе модели. Она позволяет оценить запасы устойчивости цикла путем вычисления ответа разомкнутого контура, анализировать и сравнивать ответ объекта около различных рабочих точек, а также проектировать линейный контроллер.

В конечном итоге, проведенные расчеты и эксперименты позволили успешно выполнить цели лабораторной работы и корректно линеаризовать нелинейные системы.