Feature selection

Victor Kitov

v.v.kitov@yandex.ru

Feature selection

Feature selection is a process of selecting a subset of original features with minimum loss of information related to final task (classification, regression, etc.)

Applications of feature selection

- Why feature selection?
 - increase predictive accuracy of classifier
 - improve optimization stability by removing multicollinearity
 - increase computational efficiency
 - reduce cost of future data collection
 - make classifier more interpretable
- Not always necessary step:
 - some methods have implicit feature selection:

Applications of feature selection

- Why feature selection?
 - increase predictive accuracy of classifier
 - improve optimization stability by removing multicollinearity
 - increase computational efficiency
 - reduce cost of future data collection
 - make classifier more interpretable
- Not always necessary step:
 - some methods have implicit feature selection:
 - decision trees and tree-based (RF, ERT, boosting)
 - L1 regularization

Types of features

Define f - the feature, $F = \{f_1, f_2, ... f_D\}$ - full set of features, $\tilde{F} = F \setminus \{f\}$.

Strongly relevant feature:

$$p(y|f,\tilde{F}) \neq p(y|\tilde{F})$$

Weakly relevant feature:

$$p(y|f, \tilde{F}) = p(y|\tilde{F}), \text{ but } \exists S \subset \tilde{F} : p(y|f, S) \neq p(y|S)$$

Irrelevant feature:

$$\forall S \subset \tilde{F}: p(y|f,S) = p(y|S)$$

Types of features

Define f - the feature, $F = \{f_1, f_2, ... f_D\}$ - full set of features, $\tilde{F} = F \setminus \{f\}$.

• Strongly relevant feature:

$$p(y|f,\tilde{F}) \neq p(y|\tilde{F})$$

• Weakly relevant feature:

$$p(y|f, \tilde{F}) = p(y|\tilde{F}), \text{ but } \exists S \subset \tilde{F} : p(y|f, S) \neq p(y|S)$$

Irrelevant feature:

$$\forall S \subset \tilde{F}: p(y|f,S) = p(y|S)$$

Aim of feature selection

Find minimal features subset $S \subset F$ such that $P(y|S) \approx P(y|F)$, i.e. leave only relevant and non-redundant features.

Categorization of feature selection algorithms

- Completeness of search:
 - Complete
 - exhaustive search complexity is 2^D .
 - may be not exhaustive under certain conditions on $J(S)^1$
 - Suboptimal
 - deterministic
 - random (deterministic with randomness / completely random)
- Integration with final predictor
 - independent (filter methods)
 - uses predictor quality (wrapper methods)
 - is embedded inside predictor (embedded methods)

 $^{^{1}}J(S)$ is a score of feature subset S.

Table of Contents

- Individual feature importances approach
 - Feature subset generation
 - Feature importance estimation
- Simultaneous feature selection specification

Individual feature importances approach

- Estimate importances for individual features $I(f_1), I(f_2), ... I(f_D)$.
- Generate feature subset based on importances.

Feature selection - Victor Kitov
Individual feature importances approach
Feature subset generation

- 1 Individual feature importances approach
 - Feature subset generation
 - Feature importance estimation

Incomplete search with suboptimal solution

• Order features with respect to feature importances I(f):

$$I(f_1) \ge I(f_2) \ge \dots \ge I(f_D)$$

option 1: select top m

$$\hat{F} = \{f_1, f_2, ... f_m\}$$

option 2: select best set from nested subsets:

$$S = \{\{f_1\}, \{f_1, f_2\}, ...\{f_1, f_2, ...f_D\}\}$$

$$\hat{F} = \arg\max_{F \in S} J(F)$$

- Comments:
 - simple to implement
 - when features are correlated, it will take many redundant features

Feature selection - Victor Kitov
Individual feature importances approach
Feature importance estimation

- 1 Individual feature importances approach
 - Feature subset generation
 - Feature importance estimation

Application of feature importances

- Feature importances can be used:
 - for feature selection
 - for rescaling features for adapting their impact on the model:
 - \bullet e.g.: in K-NN, in linear methods with regularization
 - for adapting feature sampling probability in random forest, extra random trees.

Correlation

• two class:

$$\rho(f,y) = \frac{\sum_{i} (f_{i} - \bar{f})(y_{i} - \bar{y})}{\left[\sum_{i} (f_{i} - \bar{f})^{2} \sum_{i} (y_{i} - \bar{y})^{2}\right]^{1/2}} = \frac{a}{b}$$

• multiclass $\omega_1, \omega_2, ...\omega_C$ (micro averaged $ho(f, y_c) \, c = 1, 2, ...C)$

$$R^{2} = \frac{\sum_{c=1}^{C} \left[\sum_{i} (f_{i} - \bar{f})(y_{ic} - \bar{y}_{c}) \right]^{2}}{\sum_{c=1}^{C} \sum_{i} (f_{i} - \bar{f})^{2} \sum_{i} (y_{ic} - \bar{y}_{c})^{2}} = \frac{\sum_{c} a_{c}^{2}}{\sum_{c} b_{c}^{2}}$$

- Benefits:
 - simple to compute
 - applicable both to continuous and discrete features/output.
 - does not require calculation of probability density function.

Correlation for non-linear relationship

- Correlation captures only linear relationship.
- Example: consider X-random variable, with $\mathbb{E}X=0$, $\mathbb{E}X^3=0$ and random variable $Z=X^2$. Then X, Z are uncorrelated but dependent.
- Other examples of data and its correlation:

May consider correlation between ranks.

Definitions

• Entropy² of random variable Y:

$$H(Y) := -\sum_y p(y) \ln p(y)$$

• Kullback-Leibler divergence for two p.d.f. P(x) and Q(x): $KL(P||Q) := \sum_{x} P(x) \ln \frac{P(x)}{Q(x)}$

• Mutual information:

$$MI(X,Y) := \sum_{x,y} p(x,y) \ln \left[\frac{p(x,y)}{p(x)p(y)} \right] = KL(p(x,y)||p(x)p(y))$$

²measures level of uncertainty of r.v. Y

Properties of MI

- Properties of MI:
 - identifies arbitrary non-linear dependencies
 - requires calculation of probability distributions
 - continuous variables need to be discretized

Table of Contents

- 1 Individual feature importances approach
- 2 Simultaneous feature selection specification

Tree feature importances

- Tree feature importances (clf.feature_importances_ in sklearn).
 - Consider feature f
 - Let T(f) be the set of all nodes, relying on feature f when making split.
 - efficiency of split at node $t: \Delta I(t) = I(t) \sum_{c \in childen(t)} \frac{n_c}{n_t} I(c)$
 - feature importance of $f: \sum_{t \in T(f)} n_t \Delta I(t)$
- Alternative: difference in decision tree prediction quality for
 - original validation set
 - 2 validation set with j-th feature randomly shuffled

Feature importances from linear model

- Feature importances from linear classification:
 - fit linear classifier with regularization to data
 - 2 retrieve w (clf.coef in scikit-learn)
 - \odot importance of feature f_i is equal to $|w_i|$.
- Features should be normalized beforehand!

Sequential search

- Sequential forward selection algorithm:
 - init: $k = 0, F_0 = \emptyset$
 - while k < max features:
 - $f_{k+1} = \operatorname{arg\,max}_{f \in F} J(F_k \cup \{f\})$
 - $F_{k+1} = F_k \cup \{f_{k+1}\}$
 - if $J(F_{k+1}) < J(F_k)$: break
 - \bullet k=k+1
 - return F_k
- Variants:
 - sequential backward selection
 - up-k forward search
 - down-p backward search
 - up-k down-p composite search
 - up-k down-(variable step size) composite search
 - may consider random subset of variants