0.1. 03.08.2020 - Conjuntos, Modelos Probabilísticos y Axiomas

0.1.1. Repaso Tería de Conjuntos

Conjunto Un conjunto es una colección de objetos de cualquier tipo (ej: números, personas, colores, sabores, etc...), a estos objetos se les conoce como los elementos del conjunto. Ejemplos:

- Los números naturales N.
- Los alumnos del curso.

Objetos Siendo así, son los objetos aquellos que definen a los conjuntos en su totalidad.

Notación de Conjuntos

Si $\mathbb S$ es un conjunto y $\mathbf x$ un elemento de $\mathbb S$, escribimos $x \in \mathbb S$. Pero en el caso contrario, donde $\mathbf x$ no es un elemento de $\mathbb S$ escribimos $x \notin \mathbb S$.

Conjunto Vacío Este conjunto se caracteriza por no tener ningún elemento dentro de si mismo, y se denota: \emptyset .

Notación Conjunto Finito

Si S es un conjunto finito co elementos $x_1, x_2, ..., x_n$. Podemos denotar a S como:

$$S = \{x_1, x_2, ..., x_n\}$$

Ejemplos: S conjuto de resulatdos de un dado

$$S = \{1, 2, 3, \dots, 6\}$$

Notación Conjunto Infinito

Si $\mathbb S$ es un conjunto infinito enumerable con elementos x_1,x_2,\ldots se puede escribir a $\mathbb S$ como:

$$S = \{x_1, x_2, ...\}$$

0.1.2. Tipos de Notación

Extención Como los casos presentados anteriormente, esté tipo de notación implica en enumerar elementos demostrando el patron que describe el comportamiento del conjunto.

$$P = \{2,4,6,...,40\}$$

Comprención En este caso tipo de notación no se mencionan los elemento, sino que se mencionan las caracteristicas que tiene cada elemento perteneciete a el dicho conjunto.

 $W = \{x - x \text{ es un color primario}\}\$

 $P=\{x-x \text{ es un número par entre el } 2 \text{ y el } 40\}$

0.1.3. Relaciones Entre Conjuntos

Se dice que \mathbb{S} es un subconjunto de \mathbb{T} (\mathbb{S}, \mathbb{T} conjuntos) es decir que \mathbb{S} está contenido en \mathbb{T} si todo elemento de \mathbb{S} es también un elemento de \mathbb{T} .

Notación Sub Conjuntos

En el caso donde el **sub conjunto** puede ser el mismo **conjunto** se utiliza la siguiente notación:

 $S \subseteq \mathbb{T}$

Pero si el sub conjunto no puede ser el mismo conjunto se utiliza la siguiente notación:

 $S \subset \mathbb{T}$

En el caso de que un conjunto no esté contenido en otro, se utiliza la siguiente notación:

 $S\not\subseteq \mathbb{T}$

0.1.4. Conjunto Universal

Denotamos con Ω el **Conjunto Universal**; un conjunto especial que como caracteristica principal tiene a todos los elementos de interés en un determinado contexto.

Ejemplo $\Omega = \mathbb{C}$ si estudiamos raíces de polinomios con coeficientes reales. (*Teorema Findamental del Álgebra*).

0.1.5. Álgebra de Conjuntos

Complemento La notación pala el complemento es \mathbb{S}^c dondo nos referimos al complemento de \mathbb{S} . Y esté se puede definir de la siguiente forma:

$$S^c = \{x | x \notin S \ (x \in \Omega)\}$$

Unión Donde S y J son conjuntos, la notación para la unión entre dos conjuntos es $S \cup J$ e implica:

$$S \cup \mathbb{J} = \{x | x \in \mathbb{S} \ \acute{o} \ x \in \mathbb{J}\}\$$

Intersección Sean \mathbb{S} y \mathbb{T} conjuntos, su intersección se escribe: $\mathbb{S} \cap \mathbb{T}$, y se define de la siguiente forma:

$$S \cap \mathbb{T} = \{x | x \in \mathbb{S} \ y \ x \in \mathbb{T}\}\$$

Unión entre varios (o infinitos) conjunto

$$\bigcup_{i=0}^{n} \mathbb{S}_{i} = \{x | x \in \mathbb{S}_{i} \ (0 > i > n)\}\$$

Intersección entre varios (o infinitos) conjunto

$$\bigcap_{i=0}^{n} \mathbb{S}_i = \{x | x \in \mathbb{S}_i \ (0 > i > n)\}$$

Conjuntos Disyuntos Dos conjuntos \mathbb{S} y \mathbb{T} se dicen disyuntos o disjuntos si $\mathbb{S} \cap \mathbb{T} = \emptyset$ lo que se generaliza al decir que $\bigcap_{i=0}^{n} \mathbb{S}_i = \emptyset$.

Disyunción 2 a 2 Varios conjuntos \mathbb{S}_i se dicen conjuntos disyuntos 2 a 2 si $\mathbb{S}_i \cap \mathbb{S}_j = \emptyset$.

Observación _____

El par ordenado de dos objetos x, y se denota por (x, y) donde $(x, y) \neq (y, x)$. Lo que se diferencia de conjuntos donde $\{x, y\} = \{y, x\}$.

Observación _____

 $Los\ diagramas\ de\ venn\ (representaciones\ graficas\ de\ conjuntos)\ resultan\ \'utiles\ al\ realizar\ problemas\ que\ involucran\ conjuntos.$

0.2. 05.08.2020 - Tarea 1

Demostrar los siguientes lemas:

1. $\mathbb{S} \cup \mathbb{T} = \mathbb{T} \cup \mathbb{S}$ (conmutatividad)

Demostración

Sean \mathbb{S}, \mathbb{T} conjuntos, para demostrar que $\mathbb{S} \cup \mathbb{T} = \mathbb{T} \cup \mathbb{S}$ es necesario demostrar las dos siguientes condiciones:

- Si $x \in (\mathbb{S} \cup \mathbb{T})$ es decir $x \in \mathbb{S}$ o $x \in \mathbb{S}$ o $x \in \mathbb{T}$, luego se pude decir que $x \in (\mathbb{T} \cup \mathbb{S})$.
- Si $x \in (\mathbb{T} \cup \mathbb{S})$ es decir $x \in \mathbb{T}$ o $x \in \mathbb{S}$ o $x \in \mathbb{S}$, luego se pude decir que $x \in (\mathbb{S} \cup \mathbb{T})$.

Como ambas situaciones son verdaderas, se puede concluir que la proposición es verdadera.

2. $\mathbb{S} \cap (\mathbb{T} \cup \mathbb{U}) = (\mathbb{S} \cap \mathbb{T}) \cup (\mathbb{S} \cap \mathbb{U})$ (distributividad)

Demostración

Sean \mathbb{S}, \mathbb{T} y \mathbb{U} conjuntos, para demostrar que la proposición es verdadera hay que demostrar las dos siguientes condiciones:

■ Si $x \in (\mathbb{S} \cap (\mathbb{T} \cup \mathbb{U}))$ significa que $x \in \mathbb{S}$ y también que $x \in (\mathbb{T} \cup \mathbb{U})$ es decir, que incondicionalmente $x \in \mathbb{S}$ pero también $x \in \mathbb{T}$ ó $x \in \mathbb{U}$. Por lo tanto se puede decir que $x \in ((\mathbb{S} \cap \mathbb{T}) \cup (\mathbb{S} \cap \mathbb{U}))$.

■ Por otro lado hay que asumir que $x \in ((\mathbb{S} \cap \mathbb{T}) \cup (\mathbb{S} \cap \mathbb{U}))$, lo que significa que ó $x \in (\mathbb{S} \cap \mathbb{T})$ ó $x \in (\mathbb{S} \cap \mathbb{U})$. A partir de lo anterior se puede asegurar que $x \in \mathbb{S}$ y que $x \in \mathbb{T}$ ó $x \in \mathbb{U}$, que es lo mismo que decir $x \in (\mathbb{S} \cap (\mathbb{T} \cup \mathbb{U}))$

Ya que se cumplen ambas condiciones, se puede concluir que la proposición es verdadera.

3. $(\mathbb{S}^c)^c = \mathbb{S}$

Demostración

Sea S un conjunto, es necesario demostrar dos situaciones para demostrar verdadera a la proposición:

- El hecho de que $x \in (S^c)^c$ quiere decir que $x \notin \mathbb{S}^c$ y por la definición de complemento, se puede asegurar que $x \in \mathbb{S}$.
- Asumiendo que $x \in \mathbb{S}$, por definición se puede decir que $x \notin \mathbb{S}^c$, implicando que x pertenece al complemento de \mathbb{S} .

Ya que ambas situaciones son verdaderas se a demostrado verdadera a la proposición.

4. $\mathbb{S} \cup \Omega = \Omega$

Demostración

Sea \mathbb{S} un **sub conjunto** de Ω , se tiene:

- Al decir $x \in (\mathbb{S} \cup \Omega)$, por definición de **sub conjunto** se puede asegurar que es lo mismo que decir que $x \in \Omega$ ya que todo x que esté en \mathbb{S} va a estar en Ω .
- Por otro lado al decir que $x \in \Omega$ se asegura que x pertenece a la unión entre Ω y cualquiera de sus **sub conjuntos**. Por lo tanto se puede igualar con $\mathbb{S} \cup \Omega$.

Teniendo en cuenta de que ambas condiciones se cumplen, se ha demostrando que la proposición es verdadera. \blacksquare

5. $\mathbb{S} \cup (\mathbb{T} \cup \mathbb{U}) = (\mathbb{S} \cup \mathbb{T}) \cup \mathbb{U}$ (asociatividad)

Demostración

Sean $\mathbb{S}, \mathbb{T}, \mathbb{U}$ conjuntos luego:

Así demostrando que la proposición es verdadera.

6. $\mathbb{S} \cup (\mathbb{T} \cap \mathbb{U}) = (\mathbb{S} \cup \mathbb{T}) \cap (\mathbb{S} \cup \mathbb{U})$

Demostración

Sean $\mathbb{S} \cup \mathbb{T} \cup \mathbb{U}$ conjuntos, entonces:

De está forma se acaba de comprobar que la proposición es verdadera.

7. $\mathbb{S} \cap \mathbb{S}^c = \emptyset$

Demostración

Sea \mathbb{S} un conjunto, y por contradicción suponiendo que $\mathbb{S} \cap \mathbb{S}^c \neq \emptyset$, por lo tanto $\exists x$ tal que $x \in (\mathbb{S} \cap \mathbb{S}^c)$ pero por definición del complemento de \mathbb{S} (\mathbb{S}^c es todo lo que no está dentro de \mathbb{S}) significa que $\nexists x$ ($\rightarrow \leftarrow$). Asi demostrando que la proposición es verdadera.

8. $\mathbb{S} \cap \Omega = \mathbb{S}$

Demostración

Sea S un conjunto, entonces es necesario evealuar las siguientes situaciones:

- Suponiendo que $x \in (\mathbb{S} \cap \Omega)$ como $\mathbb{S} \subseteq \Omega$ entonces de cualquier forma $\forall x \in \mathbb{S}$ tambien $x \in \Omega$. Pero x talque $x \in \mathbb{S}^c$.
- Suponiendo que $x \in \mathbb{S}$, y como $\mathbb{S} \subseteq \Omega$ entonces $x \in \mathbb{S} \land x \in \text{es decir } x \in (\mathbb{S} \cap \Omega)$.

Ya que en ambos casos son verdaderos se ha demostrado que la proposición es verdadera.

Demostrar las Leyes de De Morgan:

1.

$$\left(\bigcup_{i=1}^{n} \mathbb{S}_{i}\right)^{c} = \bigcap_{i=1}^{n} \mathbb{S}_{i}^{c}$$

Demostración

Sea la union de varios **conjuntos** tal que $\bigcup_{i=1}^n \mathbb{S}_i = \mathbb{S}_1 \cup \mathbb{S}_2 \cup \mathbb{S}_3 \cup ... \cup \mathbb{S}_n$ ahora por induccion matematica se van a revisar los siguientes casos:

Caso base (n=1)

$$\left(\bigcup_{i=1}^1\mathbb{S}_i\right)^c=\left(\mathbb{S}_i\right)^c=\mathbb{S}_1^c=\bigcap_{i=1}^1\mathbb{S}_1^c$$

Caso inductivo Suponiendo que $\bigcup_{i=1}^n \mathbb{S}_i$ la propiedad tal que:

Así demostrando por inducción matemática que la proposición es verdadera para todo n > 1.

2.

$$\Big(\bigcap_{i=0}^n \mathbb{S}_i\Big)^c = \bigcup_{i=0}^n \mathbb{S}_i^c$$

0.2.1. Repaso Tería de Conjuntos

Conjunto Un conjunto es una colección de objetos de cualquier tipo (ej: números, personas, colores, sabores, etc...), a estos objetos se les conoce como los elementos del conjunto. Ejemplos:

- Los números naturales N.
- Los alumnos del curso.

Objetos Siendo así, son los objetos aquellos que definen a los conjuntos en su totalidad.

Notación de Conjuntos

Si $\mathbb S$ es un conjunto y $\mathbf x$ un elemento de $\mathbb S$, escribimos $x \in \mathbb S$. Pero en el caso contrario, donde $\mathbf x$ no es un elemento de $\mathbb S$ escribimos $x \notin \mathbb S$.

Conjunto Vacío Este conjunto se caracteriza por no tener ningún elemento dentro de si mismo, y se denota: \emptyset .

Notación Conjunto Finito

Si $\mathbb S$ es un conjunto finito co elementos $x_1, x_2, ..., x_n$. Podemos denotar a $\mathbb S$ como:

$$S = \{x_1, x_2, ..., x_n\}$$

Ejemplos: S conjuto de resulatdos de un dado

$$S = \{1, 2, 3, \dots, 6\}$$

Notación Conjunto Infinito

Si $\mathbb S$ es un conjunto infinito enumerable con elementos x_1,x_2,\ldots se puede escribir a $\mathbb S$ como:

$$S = \{x_1, x_2, ...\}$$

0.2.2. Tipos de Notación

Extención Como los casos presentados anteriormente, esté tipo de notación implica en enumerar elementos demostrando el patron que describe el comportamiento del conjunto.

 $P = \{2,4,6,...,40\}$

W={amarillo,azul,rojo}

Comprención En este caso tipo de notación no se mencionan los elemento, sino que se mencionan las caracteristicas que tiene cada elemento perteneciete a el dicho conjunto.

 $W = \{x-x \text{ es un color primario}\}\$

 $P=\{x-x \text{ es un número par entre el 2 y el 40}\}$

0.2.3. Relaciones Entre Conjuntos

Se dice que \mathbb{S} es un subconjunto de \mathbb{T} (\mathbb{S}, \mathbb{T} conjuntos) es decir que \mathbb{S} está contenido en \mathbb{T} si todo elemento de \mathbb{S} es también un elemento de \mathbb{T} .

Notación Sub Conjuntos

En el caso donde el sub conjunto puede ser el mismo conjunto se utiliza la siguiente notación:

 $S \subseteq \mathbb{T}$

Pero si el sub conjunto no puede ser el mismo conjunto se utiliza la siguiente notación:

 $S \subset \mathbb{T}$

En el caso de que un **conjunto** no esté contenido en otro, se utiliza la siguiente notación:

 $S\not\subseteq \mathbb{T}$

0.2.4. Conjunto Universal

Denotamos con Ω el **Conjunto Universal**; un conjunto especial que como caracteristica principal tiene a todos los elementos de interés en un determinado contexto.

Ejemplo $\Omega = \mathbb{C}$ si estudiamos raíces de polinomios con coeficientes reales. (*Teorema Findamental del Álgebra*).

0.2.5. Álgebra de Conjuntos

Complemento La notación pala el complemento es \mathbb{S}^c dondo nos referimos al complemento de \mathbb{S} . Y esté se puede definir de la siguiente forma:

$$S^c = \{x | x \notin S \ (x \in \Omega)\}$$

Unión Donde \mathbb{S} y \mathbb{J} son conjuntos, la notación para la unión entre dos conjuntos es $\mathbb{S} \cup \mathbb{J}$ e implica:

$$S \cup \mathbb{J} = \{x | x \in \mathbb{S} \ \acute{o} \ x \in \mathbb{J}\}$$

Intersección Sean \mathbb{S} y \mathbb{T} conjuntos, su intersección se escribe: $\mathbb{S} \cap \mathbb{T}$, y se define de la siguiente forma:

$$S \cap \mathbb{T} = \{x | x \in \mathbb{S} \ y \ x \in \mathbb{T}\}$$

Unión entre varios (o infinitos) conjunto

$$\bigcup_{i=0}^{n} \mathbb{S}_i = \{x | x \in \mathbb{S}_i \ (0 > i > n)\}$$

Intersección entre varios (o infinitos) conjunto

$$\bigcap_{i=0}^{n} \mathbb{S}_i = \{x | x \in \mathbb{S}_i \ (0 > i > n)\}$$

Conjuntos Disyuntos Dos conjuntos \mathbb{S} y \mathbb{T} se dicen disyuntos o disjuntos si $\mathbb{S} \cap \mathbb{T} = \emptyset$ lo que se generaliza al decir que $\bigcap_{i=0}^{n} \mathbb{S}_{i} = \emptyset$.

Disyunción 2 a 2 Varios conjuntos \mathbb{S}_i se dicen conjuntos disyuntos 2 a 2 si $\mathbb{S}_i \cap \mathbb{S}_j = \emptyset$.

Observación _____

El par ordenado de dos objetos x, y se denota por (x, y) donde $(x, y) \neq (y, x)$. Lo que se diferencia de conjuntos donde $\{x, y\} = \{y, x\}$.

Observación _____

Los diagramas de venn (representaciones graficas de conjuntos) resultan útiles al realizar problemas que involucran conjuntos.

0.2.6. Tarea Demostración De Lemas

Desde: 03.08.2020 **Hasta:** 05.08.2020

Ejercicio 1. Demostrar los siguientes lemas:

a) $\mathbb{S} \cup \mathbb{T} = \mathbb{T} \cup \mathbb{S}$ (conmutatividad)

Demostración

Sean \mathbb{S}, \mathbb{T} conjuntos, para demostrar que $\mathbb{S} \cup \mathbb{T} = \mathbb{T} \cup \mathbb{S}$ es necesario demostrar las dos siguientes condiciones:

- Si $x \in (\mathbb{S} \cup \mathbb{T})$ es decir $x \in \mathbb{S}$ o $x \in \mathbb{S}$ o $x \in \mathbb{T}$, luego se pude decir que $x \in (\mathbb{T} \cup \mathbb{S})$.
- Si $x \in (\mathbb{T} \cup \mathbb{S})$ es decir $x \in \mathbb{T}$ o $x \in \mathbb{S}$ o $x \in \mathbb{S}$, luego se pude decir que $x \in (\mathbb{S} \cup \mathbb{T})$.

Como ambas situaciones son verdaderas, se puede concluir que la proposición es verdadera. \blacksquare

b) $\mathbb{S} \cap (\mathbb{T} \cup \mathbb{U}) = (\mathbb{S} \cap \mathbb{T}) \cup (\mathbb{S} \cap \mathbb{U})$ (distributividad)

Demostración

Sean \mathbb{S}, \mathbb{T} y \mathbb{U} conjuntos, para demostrar que la proposición es verdadera hay que demostrar las dos siguientes condiciones:

- Si $x \in (\mathbb{S} \cap (\mathbb{T} \cup \mathbb{U}))$ significa que $x \in \mathbb{S}$ y también que $x \in (\mathbb{T} \cup \mathbb{U})$ es decir, que incondicionalmente $x \in \mathbb{S}$ pero también $x \in \mathbb{T}$ ó $x \in \mathbb{U}$. Por lo tanto se puede decir que $x \in ((\mathbb{S} \cap \mathbb{T}) \cup (\mathbb{S} \cap \mathbb{U}))$.
- Por otro lado hay que asumir que $x \in ((\mathbb{S} \cap \mathbb{T}) \cup (\mathbb{S} \cap \mathbb{U}))$, lo que significa que ó $x \in (\mathbb{S} \cap \mathbb{T})$ ó $x \in (\mathbb{S} \cap \mathbb{U})$. A partir de lo anterior se puede asegurar que $x \in \mathbb{S}$ y que $x \in \mathbb{T}$ ó $x \in \mathbb{U}$, que es lo mismo que decir $x \in (\mathbb{S} \cap (\mathbb{T} \cup \mathbb{U}))$

Ya que se cumplen ambas condiciones, se puede concluir que la proposición es verdadera.

 $c) \ (\mathbb{S}^c)^c = \mathbb{S}$

Demostración

Sea $\mathbb S$ un conjunto, es necesario demostrar dos situaciones para demostrar verdadera a la proposición:

- El hecho de que $x \in (S^c)^c$ quiere decir que $x \notin \mathbb{S}^c$ y por la definición de complemento, se puede asegurar que $x \in \mathbb{S}$.
- Asumiendo que $x \in \mathbb{S}$, por definición se puede decir que $x \notin \mathbb{S}^c$, implicando que x pertenece al complemento de \mathbb{S} .

Ya que ambas situaciones son verdaderas se a demostrado verdadera a la proposición.

 $d) \ \mathbb{S} \cup \Omega = \Omega$

Demostración

Sea $\mathbb S$ un **sub conjunto** de Ω , se tiene:

- Al decir $x \in (\mathbb{S} \cup \Omega)$, por definición de **sub conjunto** se puede asegurar que es lo mismo que decir que $x \in \Omega$ ya que todo x que esté en \mathbb{S} va a estar en Ω .
- Por otro lado al decir que $x \in \Omega$ se asegura que x pertenece a la unión entre Ω y cualquiera de sus **sub conjuntos**. Por lo tanto se puede igualar con $\mathbb{S} \cup \Omega$.

Teniendo en cuenta de que ambas condiciones se cumplen, se ha demostrando que la proposición es verdadera. \blacksquare

 $e) \ \mathbb{S} \cup (\mathbb{T} \cup \mathbb{U}) = (\mathbb{S} \cup \mathbb{T}) \cup \mathbb{U} \text{ (asociatividad)}$

Demostración

Sean $\mathbb{S}, \mathbb{T}, \mathbb{U}$ conjuntos luego:

Así demostrando que la proposición es verdadera.

 $f) \ \mathbb{S} \cup (\mathbb{T} \cap \mathbb{U}) = (\mathbb{S} \cup \mathbb{T}) \cap (\mathbb{S} \cup \mathbb{U})$

Demostración

Sean $\mathbb{S} \cup \mathbb{T} \cup \mathbb{U}$ conjuntos, entonces:

De está forma se acaba de comprobar que la proposición es verdadera.

 $g) \mathbb{S} \cap \mathbb{S}^c = \emptyset$

Demostración

Sea \mathbb{S} un conjunto, y por contradicción suponiendo que $\mathbb{S} \cap \mathbb{S}^c \neq \emptyset$, por lo tanto $\exists x$ tal que $x \in (\mathbb{S} \cap \mathbb{S}^c)$ pero por definición del complemento de \mathbb{S} (\mathbb{S}^c es todo lo que no está dentro de \mathbb{S}) significa que $\nexists x$ ($\rightarrow \leftarrow$). Así demostrando que la proposición es verdadera.

 $h) \ \mathbb{S} \cap \Omega = \mathbb{S}$

Demostración

Sea S un conjunto, entonces es necesario evealuar las siguientes situaciones:

- Suponiendo que $x \in (\mathbb{S} \cap \Omega)$ como $\mathbb{S} \subseteq \Omega$ entonces de cualquier forma $\forall x \in \mathbb{S}$ tambien $x \in \Omega$. Pero x talque $x \in \mathbb{S}^c$.
- Suponiendo que $x \in \mathbb{S}$, y como $\mathbb{S} \subseteq \Omega$ entonces $x \in \mathbb{S} \land x \in \text{es decir } x \in (\mathbb{S} \cap \Omega)$.

Ya que en ambos casos son verdaderos se ha demostrado que la proposición es verdadera.

Ejercicio 2. Demostrar las Leyes de De Morgan:

a)

$$\left(\bigcup_{i=1}^{n} \mathbb{S}_{i}\right)^{c} = \bigcap_{i=1}^{n} \mathbb{S}_{i}^{c}$$

Demostración

Sea la union de varios **conjuntos** tal que $\bigcup_{i=1}^n \mathbb{S}_i = \mathbb{S}_1 \cup \mathbb{S}_2 \cup \mathbb{S}_3 \cup ... \cup \mathbb{S}_n$ ahora por induccion matematica se van a revisar los siguientes casos:

Caso base (n=1)

$$\left(\bigcup_{i=1}^1 \mathbb{S}_i\right)^c = \left(\mathbb{S}_i\right)^c = \mathbb{S}_1^c = \bigcap_{i=1}^1 \mathbb{S}_1^c$$

Caso inductivo Suponiendo que $\bigcup_{i=1}^n \mathbb{S}_i$ la propiedad tal que:

Así demostrando por inducción matemática que la proposición es verdadera para todo n>1. \blacksquare

$$\Big(\bigcap_{i=0}^n \mathbb{S}_i\Big)^c = \bigcup_{i=0}^n \mathbb{S}_i^c$$