

Stock movement as a Markov Process using Machine Learning predictor

Business Lab for Financial Engineering

Nguyen Minh Duc 20202026

Contents

- Trading Strategy
- Stock Movement as Markov Process

Experiment

Trading Strategy

Just buy low and sell high, simple!

How?

Trading Strategy

Just buy low and sell high, simple!

Then, how to predict the future?

What is a Markov process?

Given the historical states of a random system $X_1, X_2, ..., X_t$, the probability of moving to the next state depends only the current state, i.e., $P(X_{t+1} = x | X_1, X_2, ..., X_t) = P(X_{t+1} = x | X_t)$

2 Stock Movement as a Markov process

We consider the daily return of the stock: $r_t = \frac{P_t}{P_{t-1}} - 1$.

Classify each r_t as

- High Increase (HI): $r_t > Q_{inc}(75\%)$
- Moderate Increase (MI): $Q_{inc}(50\%) \le r_t < Q_{inc}(75\%)$
- Slight Increase (SI): $Q_{inc}(25\%) \le r_t < Q_{inc}(50\%)$
- Neutral (Ne): $Q_{dec}(25\%) \le r_{t} < Q_{inc}(25\%)$
- Slight Decrease (SD): $Q_{dec}(25\%) \leq r_t < Q_{dec}(25\%)$
- Moderate Decrease (MD): $Q_{dec}(25\%) \leq r_t < Q_{dec}(25\%)$
- High Decrease (HD): $r_{
 m t} < {
 m Q}_{
 m dec}(25\%)$

2 Stock Movement as a Markov process

We define a hyperparameter: *lookback* – The number of prior prices to consider *forward* – The number of future days to predict

The sequence of prices can be encoded as a tuple based on the daily return Example: (HI, SD Ne, HD, MI)

Now, we can use the historical prices to estimate the probability distribution of the next price state

$$P(X_{t+1} = (x_{t+1}, x_{t+2}, \dots, x_{t+forward}) \mid X_t = (x_{t-lookback+1}, x_{t-lookback+2}, \dots, x_t))$$

2 Stock Movement as a Markov process

How can we approximate this probability with the sample stock data?

$$P(X_{t+1} = (x_{t+1}, x_{t+2}, \dots, x_{t+forward}) \mid X_t = (x_{t-lookback+1}, x_{t-lookback+2}, \dots, x_t))$$

Previous approach was to use a table to count the frequency of every possible combination of price movements

Memory complexity: $O(7^{lookback})$ Impractical to scale the algorithm beyond 7 *lookbacks*

How to improve memory efficiency for longer sequences?

3 ML-based predictor

Recurrent Neural Network

ML-based predictor

Use prediction in the strategy

$$P[X_{t+1} = (x_{t+1}, x_{t+2}, ..., x_{t+forward}) \mid X_t = (x_{t-lookback+1}, x_{t-lookback+2}, ..., x_t)]$$

The prediction of future trend is the price state with the highest probability $\hat{X}_{t+1} = \operatorname{argmax}_{x} \left(P[X_{t+1} = x \mid X_{t} = (x_{t-lookback+1}, x_{t-lookback+2}, ..., x_{t})] \right)$

L Experimental setup

The historical price of stocks in S&P500 were collected Total number of obtained stocks: 496

The stocks' prices are categorized into 7 categories

Each data point is then one-hot encoded

2 Model hyperparameters

```
self.model = SimpleLSTM(
    lookback=lookback,
    hidden_size=16,
)
```

```
ml_strategy.train(
epochs=100,
lr=1e-2,
batch_size=128,
```

$$Loss(y, \hat{y}) = -\sum_{x \in \{\text{up, side, down}\}} y_i \log(\hat{y}_i)$$

The model's parameters are optimized by *AdamW optimizer*

3

Experimental results

S&P500 Performance

Monthly Expected Return: 0.010 Monthly Volatility: 0.045 **Sharpe ratio: 0.222**

Strategy Performance

Monthly Expected Return: 0.006 Monthly Volatility: 0.025 **Sharpe ratio: 0.226**

Can it beat the market?

The strategy beats 243 stocks → Yes, but only 49% of the time

The strategy generates higher returns than 196 stocks
→ Actually beat the market
49.52% of the time

Case study - NVDA

Monthly Expected Return: 0.082 Monthly Volatility: 0.094 Sharpe ratio: 0.874

4

Case study – Bearish Markets

4

Case study – Bullish Markets

Thank you