Perspectives on Probabilistic Graphical Models

Dong Liu

Information Science and Engineering KTH - Royal Institute of Technology

Profile page: https://firsthandscientist.github.io/

Slide is available at: https://github.com/FirstHandScientist/phdthesis

Why are Probabilistic Graphical Models interested?

PROBABILISTIC GRAPHICAL MODELS

Directed: Bayesian Networks

Core

Is the sprinkler working?

Is the person get contiguous by COVID?

Communication system

Two key aspects to encode in a graphical model:

State

 S_4

PROBABILISTIC GRAPHICAL MODELS

Directed: Bayesian Networks

Two key aspects to encode in a graphical model:

- attributes of our interests in a system → variable nodes
- relationship of these factors (dependencies or

MARKOV RANDOM FIELD (MRF) AND FUNDAMENTAL INFERENCE PROBLEMS

Let us walk through via MRF

- An MRF can be represented by a graph G(V, E) with each node i ∈ V is associated with a random variable X_i
- The probability distribution (Gibbs distribution) is

$$p(\mathbf{x}; \boldsymbol{\theta}) = \frac{1}{Z(\boldsymbol{\theta})} \prod_{\mathbf{a}} \psi_{\mathbf{a}}(\mathbf{x}_{\mathbf{a}}; \boldsymbol{\theta}_{\mathbf{a}}),$$

where $\mathbf{x} = \{x_1, x_2, \cdots, x_N\}$, a indexes potential functions $\mathcal{I} = \{\psi_A, \psi_B, \cdots, \psi_M\}$ and $\boldsymbol{\theta}$ is set of potential function parameters. $Z(\boldsymbol{\theta}) = \sum_{\mathbf{x}} \prod_a \psi_a(\mathbf{x}_a; \theta_a)$.

What do we do with graphical models?

SAGE OF CHAPFICAL MOD

In general:

Motivation

- Representation
 - In place of real systems
 - Abstraction of complex problems or systems (with subjective bias)
- Answer queries Evidence (observation) \rightarrow ?? \rightarrow Answers

Two components interacting with each other:

USAGE OF GRAPHICAL MODELS

In general:

- Representation
 - In place of real systems
 - Abstraction of complex problems or systems (with subjective bias)
- Answer queries
 Evidence (observation) → ?? → Answers

Two components interacting with each other:

Why impact in two direction?

Core

Motivation

Learning to Inference:

A graphical model

- built by expert knowledge, or
- built by extracting information from evidence (empirical data).
- Inference to Learning:

Why impact in two direction?

Core

Motivation

Learning to Inference:

- built by expert knowledge, or
- Inference to Learning:

Model learning: an error trial process that compares inferred 'fact' and actual fact (evidence).

Model learning usually needs inference as a subroutine, which sometimes are replaced by sampling in particle based methods.

COMMON INFERENCE PROBLEMS

The common inference problems in a MRF $\mathcal{G}(\mathcal{V}, \mathcal{E})$:

- Computing the likelihood of observed data.
- Computing the marginals distribution $p(\mathbf{x}_A)$ over particular subset $A \subset \mathcal{V}$ of nodes
- Computing the conditional distribution $p(\mathbf{x}_A|\mathbf{x}_B)$,
- Computing the most likely configuration $argmax_x p(x)$

COMMON INFERENCE PROBLEMS

The common inference problems in a MRF $\mathcal{G}(\mathcal{V}, \mathcal{E})$:

- Computing the likelihood of observed data.
- Computing the marginals distribution $p(\mathbf{x}_A)$ over particular subset $A \subset \mathcal{V}$ of nodes
- Computing the conditional distribution $p(\mathbf{x}_A|\mathbf{x}_B)$,
- Computing the most likely configuration $\operatorname{argmax}_{\boldsymbol{x}} p(\boldsymbol{x})$

Markov Chain Monte Carlo

Gibbs sampling

Stochastic EP

Mean field

What is θ in $p(\mathbf{x}; \theta) = \frac{1}{Z(\theta)} \prod_{a} \psi_{a}(\mathbf{x}_{a}; \theta_{a})$? A direct view:

$$\max_{\theta} \log p(\mathbf{x}; \theta) = \max_{\theta} \sum_{a} \log \psi_{a}(\mathbf{x}_{a}; \theta_{a}) \underbrace{-\log Z(\theta)}_{Helmholtz \ free \ energy}$$

An alternative view:

$$\frac{\partial \log p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}_a} = \frac{\partial \log \varphi_a(\mathbf{x}_a; \boldsymbol{\theta}_a)}{\partial \boldsymbol{\theta}_a} - \mathbb{E}_{p(\mathbf{x}_a; \boldsymbol{\theta})} \left[\frac{\partial \log \varphi_a(\mathbf{x}_a; \boldsymbol{\theta}_a)}{\partial \boldsymbol{\theta}_a} \right].$$

Remark

- This essentially requires estimation of Helmholtz free energy or marginal probabilities.
- Stationary points translate into moment matching.

What is
$$\theta$$
 in $p(\mathbf{x}; \theta) = \frac{1}{Z(\theta)} \prod_{a} \psi_{a}(\mathbf{x}_{a}; \theta_{a})$? A direct view:

$$\max_{\boldsymbol{\theta}} \log p(\boldsymbol{x}; \boldsymbol{\theta}) = \max_{\boldsymbol{\theta}} \sum_{a} \log \psi_{a}(\boldsymbol{x}_{a}; \boldsymbol{\theta}_{a}) \underbrace{-\log Z(\boldsymbol{\theta})}_{Helmholtz \ free \ energy}$$

An alternative view:

$$\frac{\partial \log p(\mathbf{\textit{x}}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}_{a}} = \frac{\partial \log \varphi_{a}(\mathbf{\textit{x}}_{a}; \boldsymbol{\theta}_{a})}{\partial \boldsymbol{\theta}_{a}} - \mathbb{E}_{p(\mathbf{\textit{x}}_{a}; \boldsymbol{\theta})} \left[\frac{\partial \log \varphi_{a}(\mathbf{\textit{x}}_{a}; \boldsymbol{\theta}_{a})}{\partial \boldsymbol{\theta}_{a}} \right].$$

Remark:

- This essentially requires estimation of Helmholtz free energy or marginal probabilities.
- Stationary points translate into moment matching.

$$F_V(b) = \mathrm{KL}(b(\boldsymbol{x})||p(\boldsymbol{x}; \theta)) - \log Z(\theta)$$
 with trial $b(\boldsymbol{x})$.

What is the state of x?

A TOY EXAMPLE

Motivation

Assume that we are interested into the state of node i in an MRF, it can be answered by

- the probability $p(x_i)$, or
- an empirical version, a collection of samples $\{x_i^n\}_{n=1}^N$ It is similar for the case when \mathbf{x} is of interests, instead of x_i .

what is the state of x_4

What is the state of x?

Motivation

GIBBS SAMPLING: LET US GUESS BY SAMPLING

We can approximately sample iteratively:

$$x_i \sim p(x_i|\mathbf{x}_{-i}) \sim p(x_i,\mathbf{x}_{-i})$$

This coordinate-wise sampling algorithm is called Gibbs sampling, which answers queries by collected samples $\{x^n\}_{1}^{N}$.

Gibbs sampling is named after the physicist Josiah Willard Gibbs, which was described by brothers Stuart and Donald Geman in 1984, some eight decades after the death of Gibbs.

$$x_i \sim \exp\{\sum_{a \in ne_i} \log \varphi_a(x_i, \mathbf{x}_{a-i}; \boldsymbol{\theta}_a)\}$$

where ne; gives the neighboring potential factors of node i.

Motivation

Naive Mean Field: message in form of sample values \rightarrow message in form of belief

Corresponding to minimization of variational free energy $F_{\nu}(b)$ with trial b in fully-factorized form for univariant $\{b_i\}$.

Iterative sampling → iterative belief update via

$$\log b_i(x_i) \propto \sum_{a \in \text{ne}_i} \sum_{\mathbf{x}_a \setminus x_i} \prod_{j \in a \setminus i} b_j(x_j) \log \varphi_a(\mathbf{x}_a; \boldsymbol{\theta}_a).$$

WHAT IS THE STATE OF x?

Belief Propagation (BP): Let us guess by propagating belief Proposed by Pearl (1982) for Bayesian networks (tree-structured graphs), which then widely used for general graphs (loopy BP).

Yedidia, et al, connected the loopy BP with stationary points of **Bethe free energy**

$$F_{Bethe}(b) = \sum_{a \in \mathcal{F}} \sum_{\mathbf{x}_a} b_a(\mathbf{x}_a) \log \frac{b_a(\mathbf{x}_a)}{\varphi_a(\mathbf{x}_a)} - \sum_{i=1}^{N} (|\mathrm{ne}_i| - 1) \sum_{x_i} b_i(x_i) \log b_i(x_i)$$

Corresponding to minimization of approximated **variational** free energy $F_{V}(\underline{b})$ with trial \underline{b} includes $\{b_i\}_{i \in a \setminus i} and \{b_a\}$.

$$\text{msg : variable to factor } \ m_{j \to a}(x_j) \propto \prod_{a' \in \text{ne}_j \setminus a} m_{a' \to j}(x_j)$$

See, D. Liu, M. T. Vu, Z. Li, and Lars K. Rasmussen. α belief propagation for approximate inference. 2020 D. Liu, N. N. Moghadam, L. K. Rasmussen, etc. α belief propagation as fully factorized approximation. In GlobalSIP, 2019. for alternative view to loopy BP.

YEDIDIA, FREEMAN, WEISS: A STEP TO GENERALIZATION

Message among variables & factors → message among

regions

Generalized belief propagation (GBP) generalizes loopy BP

- usual better approximation than LBP
- higher complexity
- sensitive to scheduling of region messages

Corresponding to minimization of approximated **variational free energy** $F_v(b)$ **with trial** b **including** $\{b_B\}$.

Learning

Attempts with neural networks: an imitation game of message passing, or trials under free energy?

LEARN THE MESSAGE UPDATE RULE BY NN

An end-to-end learning process: Factor graph \to converted graph representation \to GNN \to Output

- sum-product update rule (in BP) → NN, to learn
- pseudo probability (belief aggregation) → NN, to learn
- end-to-end learning that requires true marginal probability, which BP, GPB and mean field do no require

Vaca at al. 2010, Informacia Duchahilistic Craphical Madela by Craph Navyal Naturalis

RENN

REGION REVISITED

- If you cannot collect true targets $(p(x_i))$
- If you are unwilling to be restricted to pre-defined inference

Factor graph representation of MRF (2-by-3 grid) with factor nodes.

REGION REVISITED

- If you cannot collect true targets $(p(x_i))$
- If you are unwilling to be restricted to pre-defined inference

Factor graph representation of MRF (2-by-3 grid) with factor nodes.

MRF \rightarrow region graph:

An alternative region graph of the same MRF:

The region-based free energy of a region graph is

$$F_R(\mathcal{B}; heta) = \sum_{R \in \mathcal{R}} \underbrace{c_R}_{counting \ number} \sum_{m{x}_R} b_R(m{x}_R) (\underbrace{E_R(m{x}_R; heta_R)}_{region \ average \ energy} + \ln b_R(m{x}_R)$$

- counting number: balance the contribution of each region
- region average energy: $-\sum_{a\in A_R} \ln \varphi_a(\mathbf{x}_a; \theta_a)$

Motivation

The region-based free energy of a region graph is

$$F_R(\mathcal{B}; \theta) = \sum_{R \in \mathcal{R}} \underbrace{c_R}_{counting \ number} \sum_{m{x}_R} b_R(m{x}_R) (\underbrace{E_R(m{x}_R; \theta_R)}_{region \ average \ energy} + \ln b_R(m{x}_R)$$

- counting number: balance the contribution of each region
- region average energy: $-\sum_{a\in A_R} \ln \varphi_a(\mathbf{x}_a; \theta_a)$

Core

Motivation

The region-based free energy of a region graph is

$$F_R(\mathcal{B}; heta) = \sum_{R \in \mathcal{R}} \underbrace{c_R}_{counting \ number} \sum_{m{x}_R} b_R(m{x}_R) (\underbrace{E_R(m{x}_R; heta_R)}_{region \ average \ energy} + \ln b_R(m{x}_R)$$

- counting number: balance the contribution of each region
- region average energy: $-\sum_{a\in A_R} \ln \varphi_a(\mathbf{x}_a; \theta_a)$

Summary and Q&A

Objective of RENN1:

min region-based free energy(
$$F_R$$
)+ $\underbrace{\text{panelty on belief consistency}}_{along region graph struture}$

learn with customized optm.
$$\frac{\partial \log p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}_a} = \frac{\partial \log \varphi_a(\mathbf{x}_a; \boldsymbol{\theta}_a)}{\partial \boldsymbol{\theta}_a}$$

learn with auto-grads
$$\max_{\theta} \log p(\mathbf{x}; \theta) = \max_{\theta} \sum_{\theta} \log \psi$$

Objective of RENN¹:

min region-based free energy(
$$F_R$$
)+ $\underbrace{\text{panelty on belief consistency}}_{along region graph struture}$

Inference only

RENN

Learning alternatives of MRFs

$$\frac{\partial \log p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}_{a}} = \frac{\partial \log \varphi_{a}(\mathbf{x}_{a}; \boldsymbol{\theta}_{a})}{\partial \boldsymbol{\theta}_{a}}$$

$$= \frac{\partial \log \varphi_{a}(\mathbf{x}_{a}; \boldsymbol{\theta}_{a})}{\partial \log \varphi_{a}(\mathbf{x}_{a}; \boldsymbol{\theta}_{a})}$$

$$\max_{\theta} \log p(\mathbf{x}; \theta) = \max_{\theta} \sum_{a} \log \psi$$

Objective of RENN¹:

min region-based free energy(
$$F_R$$
)+ $\underbrace{\text{panelty on belief consistency}}_{along region graph struture}$

Learning alternatives of MRFs

$$\frac{\partial \log p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}_{a}} = \frac{\partial \log \varphi_{a}(\mathbf{x}_{a}; \boldsymbol{\theta}_{a})}{\partial \boldsymbol{\theta}_{a}} - \mathbb{E}_{p(\mathbf{x}_{a}; \boldsymbol{\theta})} \left[\frac{\partial \log \varphi_{a}(\mathbf{x}_{a}; \boldsymbol{\theta}_{a})}{\partial \boldsymbol{\theta}_{a}} \right].$$

learn with auto-grads
$$\max_{\theta} \log p(\mathbf{x}; \theta) = \max_{\theta} \sum_{\theta} \log \psi$$

 \rightarrow [Read out beliefs]

Learning alternatives of MRFs

learn with customized optm. learn with auto-grads
$$\partial \log p(\mathbf{x}; \boldsymbol{\theta}) - \partial \log \varphi_{\boldsymbol{\theta}}(\mathbf{x}_{\boldsymbol{\theta}}; \boldsymbol{\theta}_{\boldsymbol{\theta}}) \qquad \text{max log } p(\mathbf{x}; \boldsymbol{\theta}) = \text{max } \sum \log p(\mathbf{x}; \boldsymbol{\theta}) = \text$$

$$\frac{\partial \log p(\mathbf{x}; \boldsymbol{\theta})}{\partial \theta_{\mathbf{a}}} = \frac{\partial \log \varphi_{\mathbf{a}}(\mathbf{x}_{\mathbf{a}}; \boldsymbol{\theta}_{\mathbf{a}})}{\partial \theta_{\mathbf{a}}} \qquad \max_{\boldsymbol{\theta}} \log p(\mathbf{x}; \boldsymbol{\theta}) = \max_{\boldsymbol{\theta}} \sum_{\mathbf{a}} \log \psi_{\mathbf{a}}(\mathbf{x}_{\mathbf{a}}; \boldsymbol{\theta}_{\mathbf{a}}) \\
- \mathbb{E}_{p(\mathbf{x}_{\mathbf{a}}; \boldsymbol{\theta})} \left[\frac{\partial \log \varphi_{\mathbf{a}}(\mathbf{x}_{\mathbf{a}}; \boldsymbol{\theta}_{\mathbf{a}})}{\partial \boldsymbol{\theta}_{\mathbf{a}}} \right]. \qquad - \log 2$$

Ising model:
$$p(\mathbf{x}; \theta) = \frac{1}{Z(\theta)} \exp(\sum_{(i,j) \in \mathcal{E}_F} J_{ij} x_i x_j + \sum_{i \in \mathcal{V}} h_i x_i),$$

 $\mathbf{x} \in \{-1, 1\}^N$,

- J_{ij} is the pairwise log-potential between node i and j, $J_{ij} \sim \mathcal{N}(0,1)$
- h_i is the node log-potential for node i, $h_i \sim \mathcal{N}(0, \gamma^2)$ Inference on grid graph ($\gamma = 0.1$).

				,			
Metric	n	Mean Field	Loopy BP	Damped BP	GBP	Inference Net	RENN
ℓ_1 error	25	0.271 ± 0.051	0.086 ± 0.078	0.084 ± 0.076	0.057 ± 0.024	$\textbf{0.111} \pm \textbf{0.072}$	$\textbf{0.049} \pm 0.078$
	100	0.283 ± 0.024	0.085 ± 0.041	0.062 ± 0.024	0.064 ± 0.019	0.074 ± 0.034	0.025 ± 0.011
	225	$\textbf{0.284} \pm \textbf{0.019}$	$\textbf{0.100} \pm \textbf{0.025}$	$\textbf{0.076} \pm \textbf{0.025}$	$\textbf{0.073} \pm \textbf{0.013}$	$\textbf{0.073} \pm \textbf{0.012}$	0.046 ± 0.011
	400	0.279 ± 0.014	$\textbf{0.110} \pm \textbf{0.016}$	0.090 ± 0.016	$\boldsymbol{0.079 \pm 0.009}$	$\textbf{0.083} \pm \textbf{0.009}$	0.061 ± 0.009
Corre- lation	25	0.633 ± 0.197	0.903 ± 0.114	0.905 ± 0.113	0.923 ± 0.045	0.866± 0.117	0.951 ± 0.112
	100	0.582 ± 0.112	0.827 ± 0.134	0.902 ± 0.059	0.899 ± 0.043	0.903 ± 0.049	0.983 ± 0.012
	225	$\textbf{0.580} \pm \textbf{0.080}$	0.801 ± 0.078	$\textbf{0.863} \pm \textbf{0.088}$	$\textbf{0.869} \pm \textbf{0.037}$	$\textbf{0.873} \pm \textbf{0.037}$	$\textbf{0.949} \pm 0.022$
	400	$\textbf{0.596} \pm \textbf{0.054}$	0.779 ± 0.059	$\textbf{0.822} \pm \textbf{0.047}$	0.852 ± 0.024	0.841 ± 0.028	$\textbf{0.912} \pm 0.025$
log Z error	25	2.512 ± 1.060	0.549 ± 0.373	0.557 ± 0.369	0.169 ± 0.142	0.762 ± 0.439	0.240 ± 0.140
	100	$\textbf{13.09} \pm \textbf{2.156}$	1.650 ± 1.414	1.457 ± 1.365	0.524 ± 0.313	2.836 ± 2.158	$\textbf{1.899} \pm \textbf{0.495}$
	225	29.93 ± 4.679	3.348 ± 1.954	3.423 ± 2.157	$\textbf{1.008} \pm 0.653$	3.249 ± 2.058	4.344 ± 0.813
	400	51.81 ± 4.706	5.738 ± 2.107	$5.873 \!\pm 2.211$	$\textbf{1.750} \pm 0.869$	3.953 ± 2.558	7.598 ± 1.146

- ℓ₁ error of beliefs v.s. true
- correlation *ρ* between true and approximate marginals,
- log 7 error true v.s. free energy approximation

LEARNING MRFs

Motivation

What is θ in $p(\mathbf{x}; \theta)$?

Table of negative log-likelihood of learned MRFs

n	True	Exact	Mean Field	Loopy BP	Damped BP	GBP	Inference Net	RENN				
Grid Graph												
25	9.000	9.004	9.811	9.139	9.196	10.56	9.252	9.048				
100	19.34	19.38	23.48	19.92	20.02	28.61	20. 29	19.76				
225	63.90	63.97	69.01	66.44	66.25	92.62	68.15	64.79				
Complete Graph												
9	3.276	3.286	9.558	5.201	5.880	10.06	5.262	3.414				
16	4.883	4.934	28.74	13.64	18.95	24.45	13.77	5.178				

learning

SUMMARY

- Brief on probabilistic graphic models
- Overview of inference methods
- A focus on the message-passing
- Transition to inference methods with NN

Thank you for your attention. Q&A.