Course Overview and Introduction

CE-717: Machine Learning Sharif University of Technology

M. Soleymani Fall 2019

Course Info

- Instructor: Mahdieh Soleymani
 - ► Email: soleymani@sharif.edu
- Website: http://ce.sharif.edu/courses/98-99/1/ce717-1/
 - Tentative schedule
 - Slides and notes
 - Policies and rules

- Discussions: On Piazza
- TAs:
 - ▶ **Head TA**: Sina Hajimiri
 - ▶ **TAs**: Rassa Ghavami, Parishad Behnam Ghader, Amir Dalili, Faezeh Ghorbanpour, Ali Karimi, Mohammad Ostad Mohammadi, Sorena Salari, Mohammad Ali Samiei

Text Books

- Pattern Recognition and Machine Learning, C. Bishop, Springer, 2006.
- Machine Learning, T. Mitchell, MIT Press, 1998.

Other books:

- The elements of statistical learning, T. Hastie, R. Tibshirani, J. Friedman, Second Edition, 2008.
- Machine Learning: A Probabilistic Perspective, K. Murphy, MIT Press, 2012.
- Richard Sutton and Andrew Barto, Reinforcement Learning: An introduction. MIT Press, Second edition, 2017.

Prerequisites:

- Programming skills
- Probability and statistics
- Basic linear algebra
 - We'll go over it in the review sections.

Assignments

- 7 Problem sets
 - ▶ The first one is on prerequisites.
 - Other sets contain both theoretical and programming assignments
- Exams
 - Midterm and final exams covering all topics taught in class
 - Two mini-exams

Marking Scheme

•	Midterm Exam:	25%
•	Final Exam:	30%
•	Homeworks (written & programming):	35%
•	Mini-exams:	10%

Machine Learning (ML) and Artificial Intelligence (AI)

- ML appears first as a branch of Al
- ML is a preferred approach to other subareas of Al
 - Computer Vision
 - Natural Language Processing
 - Robotics
 - Speech Recognition
- ▶ ML is a strong driver in many applications

A Definition of ML

- ▶ Tom Mitchell (1998):
 - A computer program is said to learn from <u>experience</u> if its performance improves with experience
- Using the observed data to make better decisions
 - Generalizing from the observed data

ML Definition: Example

- Consider an email program that learns how to filter spam according to emails you do or do not mark as spam.
 - Task: Classifying emails as spam or not spam.
 - Experience: Watching you label emails as spam or not spam.
 - Performance: The number (or fraction) of emails correctly classified as spam/not spam.

The essence of machine learning

- A pattern exist
- We do not know it mathematically
- We have data on it

Example: Home Price

Housing price prediction

Regression problem

The goal is to make (real valued) predictions given features

Example: predicting house price from 3 attributes

Size (m ²)	Age (year)	Region	Price (10 ⁶ T)
100	2	5	500
80	25	3	250
•••	•••	•••	•••

Handwritten Digit Recognition Example

Example: Bank loan

- Applicant form as the input:
 - salary
 - age
 - gender
 - current debt
 - ...
- Output: approving or denying the request

Training data: Example

Training data

x_1	x_2	у	
0.9	2.3	ı	
3.5	2.6	I	١
2.6	3.3	I	
2.7	4.1	I	
1.8	3.9	I	
6.5	6.8	-1	
7.2	7.5	-1	
7.9	8.3	-1	
6.9	8.3	-1	
8.8	7.9	-1	
9.1	6.2	- I	

Handwritten Digit Recognition Example

Data: labeled samples

Handwritten Digit Recognition Example

Experience (E) in ML

- Basic premise of learning:
 - "Using a set of observations to uncover an underlying process"
- We have different types of (getting) observations in different types or paradigms of ML methods

Paradigms of ML

- Supervised learning (regression, classification)
 - predicting a target variable for which we get to see examples.
- Unsupervised learning
 - revealing structure in the observed data
- Reinforcement learning
 - partial (indirect) feedback, no explicit guidance
 - Given rewards for a sequence of moves to learn a policy and utility functions

Supervised Learning: Regression vs. Classification

- Supervised Learning
 - Regression: predict a continuous target variable
 - ▶ E.g., $y \in [0,1]$
 - Classification: predict a <u>discrete</u> (unordered) target variable
 - ▶ E.g., $y \in \{1,2,...,C\}$

Data in Supervised Learning

- Data are usually considered as vectors in a d dimensional space
 - Now, we make this assumption for illustrative purpose
 - We will see it is not necessary

Columns:

Features/attributes/dimensions

Rows:

Data/points/instances/examples/samples

Y column:

Target/outcome/response/label

	x_1	<i>x</i> ₂	 x_d	y (Target)
Sample I				
Sample 2				
Sample n-1				
Sample n	_			

Regression: Example

Housing price prediction

Classification: Example

Handwritten Digit Recognition

Components of (Supervised) Learning

- ▶ Unknown target function: $f: X \to Y$
 - Input space: ${\mathcal X}$
 - \blacktriangleright Output space: \mathcal{Y}
- ► Training data: $(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$
- Pick a formula $g: \mathcal{X} \to \mathcal{Y}$ that approximates the target function f
 - ightharpoonup selected from a set of hypotheses ${\cal H}$

Components of (Supervised) Learning

We have some example pairs of (input, output) called training samples

$$(x^{(1)}, y^{(1)}), ..., (x^{(N)}, y^{(N)})$$

We want to select a function from the input space to the output space

- $f: \mathcal{X} \to \mathcal{Y}$
- We choose a set of hypotheses (candidate formulas)
 - e.g., linear functions
- We use a learning algorithm to select a function from hypothesis set that approximates the target function

(Supervised) Learning problem

- Selecting a hypothesis space
 - Hypothesis space: a set of mappings from feature vector to target
- **Learning**: find mapping \hat{f} (from hypothesis set) based on the training data
 - Which notion of error should we use? (loss functions)
 - Optimization of loss function to find mapping \(\hat{f} \)
- **Evaluation**: we measure how well \hat{f} generalizes to unseen examples (generalization)

Components of (Supervised) Learning

(Supervised) Learning problem

- Selecting a hypothesis space
 - Hypothesis space: a set of mappings from feature vector to target
- ▶ Learning (estimation): optimization of a cost function
 - Based on the training set $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$ and a cost function we find (an estimate) $f \in F$ of the target function
- **Evaluation**: we measure how well \hat{f} generalizes to unseen examples

Solution Components

- Learning model composed of:
 - Hypothesis set
 - Learning algorithm

Perceptron example

Handwritten Digit Recognition Example

Data: labeled samples

Example: Input representation

'raw' input
$$\mathbf{x}=(x_0,\!x_1,x_2,\cdots,x_{256})$$

linear model: $(w_0,w_1,w_2,\cdots,w_{256})$

Features: Extract useful information, e.g.,

intensity and symmetry
$$\mathbf{x}=(x_0,x_1,x_2)$$

linear model: (w_0, w_1, w_2)

Example: Illustration of features

 $\mathbf{x} = (x_0, x_1, x_2)$

 x_1 : intensity

 x_2 : symmetry

Perceptron classifier

- Input $x = [x_1, ..., x_d]$
- Classifier:
 - If $\sum_{i=1}^{d} w_i x_i > \text{threshold then output } 1$
 - \rightarrow else output -1
- ▶ The linear formula $g \in \mathcal{H}$ can be written:

$$g(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^{d} \mathbf{w_i} x_i + \mathbf{w_0}\right)$$

If we add a coordinate $x_0 = 1$ to the input:

$$g(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=0}^{d} \mathbf{w_i} x_i\right)$$
 Vector form

 $g(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x})$

Perceptron learning algorithm: linearly separable data

- Give the training data $(x^{(1)}, y^{(1)}), \dots, (x^{(N)}, y^{(N)})$
- Misclassified data $(x^{(n)}, y^{(n)})$: $sign(w^T x^{(n)}) \neq y^{(n)}$

Repeat

Pick a misclassified data $(x^{(n)}, y^{(n)})$ from training data and update w:

$$\mathbf{w} = \mathbf{w} + y^{(n)} \mathbf{x}^{(n)}$$

Until all training data points are correctly classified by g

Perceptron learning algorithm: Example of weight update

Example: linear classifier

 $\mathbf{x} = (x_0, x_1, x_2)$

 x_1 : intensity

 x_2 : symmetry

(Supervised) Learning problem

- Selecting a hypothesis space
 - Hypothesis space: a set of mappings from feature vector to target
- Learning (estimation): optimization of a cost function
 - Based on the training set $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$ and a cost function we find (an estimate) $f \in F$ of the target function
- **Evaluation**: we measure how well \hat{f} generalizes to unseen examples

Generalization

- We don't intend to memorize data but want to distinguish the pattern.
- A core objective of learning is to generalize from the experience.
 - Generalization: ability of a learning algorithm to perform accurately on new, unseen examples after having experienced.

Paradigms of ML

- Supervised learning (regression, classification)
 - predicting a target variable for which we get to see examples.
- Unsupervised learning
 - revealing structure in the observed data
- Reinforcement learning
 - partial (indirect) feedback, no explicit guidance
 - Given rewards for a sequence of moves to learn a policy and utility functions

Supervised Learning vs. Unsupervised Learning

- Supervised learning
 - Given: Training set
 - labeled set of N input-output pairs $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^N$
 - lacktriangle Goal: learning a mapping from x to y
- Unsupervised learning
 - Given: Training set
 - ▶ Goal: find groups or structures in the data
 - Discover the intrinsic structure in the data

Supervised Learning: Samples

Unsupervised Learning: Samples

Wants to use data to improve their knowledge on a task

Sample Data in Unsupervised Learning

Unsupervised Learning:

Columns:

Features/attributes/dimensions

Rows:

Data/points/instances/examples/s amples

			i	<u> </u>
	x_1	x_2		x_d
Sample I				
Sample 2				
Sample n-1				
Sample n				

Unsupervised learning

- Clustering: partitioning of data into groups of similar data points.
- Dimensionality reduction: data representation using a smaller number of dimensions while preserving (perhaps approximately) some properties of the data.
- Density estimation

Some clustering purposes

- Preprocessing stage to index, compress, or summarize the data
- As a tool to understand the hidden structure in data or to group them
 - To gain knowledge (insight into the structure of the data) or
 - To group the data when no label is available

Clustering: Example Applications

- Clustering docs based on their similarities
 - Grouping new stories in the Google news site
- Market segmentation: group customers into different market segments given a database of customer data.

Clustering of docs

Google news

News

U.S. edition ▼

Modern

Top Stories

John Glenn

Aleppo

Donald Trump

Oakland Raiders

Spider-Man: Homecoming

Heisman Trophy

Park Geun-hye

Ghana

La La Land

Alabama

News near you

World

U.S.

Business

Technology

Entertainment

Sports

Spider-Man: Homecoming

See realtime coverage

Your 'Spider-Man: Hom

CNET - 3 hours ago 6 mm | | | | | | | | |

"Spider-Man: Homecoming" drop

'Spider-Man: Homecoming' — 7 'Spider-Man: Homecoming 2.' 'Ba

Highly Cited: Exclusive photo: SI In Depth: Every Plot Point and E

Marvel drops 'Spider-Man: Homecoming' trailer

Los Angeles Times - 8 hours ago

The first trailer for the Marvel and Sony Pictures Entertainme

'Spider-Man: Homecoming' First Trailer: Peter F

Us Weekly - 8 hours ago

By Megan French. Error loading playlist: Playlist load error: I spidey senses tingling with excitement.

Spider-Man: Homecoming: Tom Hol

The Guardian - 19 hours ago

Dimensionality reduction: Example

How to map the high dimensional data into a lower dimensional space in which the distance is more meaningful.

Paradigms of ML

- Supervised learning (regression, classification)
 - predicting a target variable for which we get to see examples.
- Unsupervised learning
 - revealing structure in the observed data
- Reinforcement learning
 - partial (indirect) feedback, no explicit guidance
 - Given rewards for a sequence of moves to learn a policy and utility functions

Reinforcement

Provides only an indication as to whether an action is correct or not

Reinforcement Learning

- Typically, we need to get a sequence of decisions
- Usually, need to decide under uncertainty

Learn a policy that specifies the action for each state

Paradigms of ML

- Supervised learning (regression, classification)
 - predicting a target variable for which we get to see examples.
- Unsupervised learning
 - revealing structure in the observed data
- ▶ Reinforcement learning
 - Reasoning under uncertainty
 - partial (indirect) feedback, no explicit guidance
 - Given rewards for a sequence of moves to learn a policy and utility functions
- Other paradigms: semi-supervised learning, active learning, etc.

Active learning

Select not only the model but also the most informative samples to be labeled

learn a selection function to maximize the success of the supervised learning

Three axes of ML

Data

Task (i.e. what is the type of knowledge that we seek from data)

Algorithm

Three axes of ML

- Data
 - Fully observed
 - Partially observed
 - Actively collecting data
- Task (i.e. what is the type of knowledge that we seek from data)
 - Prediction (i.e. classification or regression)
 - Control
 - Description
- Algorithm
 - Parametric models
 - Nonparametric models

Parametric models

- We consider a parametric boundary (e.g., hyper-plane, hyperbola, ...) and learn its parameters form data
 - ▶ The set of parameters does not grow with increasing the data

Nonparametric models

- We must store data and for each prediction, we need to process training data
- More data means a more complex model
 - Models that grow with the data

Nonparametric models

- k-NN classifier
 - \blacktriangleright Label for x predicted by majority voting among its k-NN.

Find k nearest training data to the new input and predict its label from the labels of its k nearest neighbors

The number of points to search scales with the training data

Some Learning Application Areas

- Computer Vision (Photo tagging, face recognition, ...)
- Natural language processing (e.g., machine translation)
- Robotics
- Speech recognition
- Autonomous vehicles
- Social network analysis
- Web search engines
- Medical outcomes analysis
- Market prediction (e.g., stock/house prices)
- Computational biology (e.g., annotation of biological sequences)
- Self-customizing programs (recommender systems)

ML in Computer Science

- Why ML applications are growing?
 - Improved machine learning algorithms
 - Availability of data (Increased data capture, networking, etc)
 - Software too complex to write by hand
 - Demand for complex systems (on high-dimensional, multi-modal, or heterogeneous data)
 - Demand for self-customization to user or environment

Relation to other fields

- ▶ **Statistics:** the goal is the understanding of the data at hand
- Artificial Intelligence: the goal is to build an intelligent agent
- Data Mining: the goal is to extract patterns from largescale data
- ▶ Data Science: the science encompassing collection, analysis, and interpretation of data
- The goal of machine learning is the underlying mechanisms and algorithms that allow improving our knowledge with more data

Topics of this course

- MI, Map, and Bayesian
- Regression & generalization
- Linear classifier
- Probabilistic classifiers
- SVM & kernel
- Neural Networks
- Decision tree
- Learning Theory
- Non-parametric methods
- Ensemble learning
- Dimensionality reduction
- Clustering
- Reinforcement Learning
- Advanced Topics