Зміст

1	Диф	реренціювання	3		
	1.1	Основні означення	3		
	1.2	Умова Коші-Рімана в полярній системі			
		координат (*)			
	1.3	Гармонічні функції			
	1.4	Геометричне застосування			
2	Інтегрування 10				
	2.1	Основні методи інтегрування	10		
	2.2	Властивості та інші теореми	10		
	2.3	Степеневі ряди	16		
	2.4	Нулі аналітичної функції	21		
	2.5	Ряди Лорана	22		
	2.6	Особливі точки	25		
		2.6.1 Усувна точка	25		
		2.6.2 Полюс	26		
		2.6.3 Суттєва точка	27		
	2.7	Лишки	28		
		2.7.1 Усувна точка	28		
		2.7.2 Полюс	28		
		2.7.3 Суттєва точка	29		
	2.8	Застосування лишків для обчислення інтегралів	30		
	2.9	Нескінченна особлива точка	32		
	2.0	2.9.1 Розклад в Лорана	33		
		2.9.2 Ізольовані точки	34		
		2.9.3 Лишки	35		
	2.10	Застосування лишків до дійсних інтегралів			
	2.10	оастосування лишків до дійсних інтегралів	90		
3		VI	42		
	3.1		42		
	3.2	1 1 0	44		
	3.3	• • • • • • • • • • • • • • • • • • • •	51		
	3.4	Середнє за Чезаро	53		
	3.5	Перетворення Фур'є	57		
	3.6	Зворотнє перетворення Фур'є	59		
4	Операційне числення 61				
	4.1	Оригінали функцій	61		
	4.2		63		
	4.3	1 1	68		

	4.3.1	За допомогою лишків 6
	4.3.2	За розкладом зображення в ряд Лорана 6
4.4	Трохи	корисних прикладів використання 6

1 Диференціювання

1.1 Основні означення

Definition 1.1.1. Задана функція $f: A \to \mathbb{C}$ і т. $z_0 \in A$ - гранична точка Функція f називається **диференційованою в т.** z_0 , якщо

$$\exists L \in \mathbb{C} : f(z) - f(z_0) = L(z - z_0) + o(|z - z_0|), z \to z_0$$

А похідною в т. z_0 називають границю

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0},$$

якщо вона існує

Proposition 1.1.2. Функція $f:A\to\mathbb{C}$ - диференційована в т. $z_0\in A\iff \exists f'(z_0)$

Proof.

f - диференційована в т. $z_0 \iff \exists L \in \mathbb{C}:$

$$f(z) - f(z_0) = L(z - z_0) + o(|z - z_0|) \iff o(|z - z_0|) = f(z) - f(z_0) - L(z - z_0) \iff \lim_{z \to z_0} \frac{f(z) - f(z_0) - L(z - z_0)}{z - z_0} = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} - L = 0 \iff \exists L = f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \blacksquare$$

Remark 1.1.2. Оскільки наша функція f є комплексною, а змінна z = x + iy, то її можна представити у вигляді функції від двох змінних

$$f(x,y) = u(x,y) + iv(x,y),$$

Theorem 1.1.3. Теорема Коші-Рімана

Функція $f: A \to \mathbb{C}$ - диференційована в т. $z_0 = x_0 + iy_0 \in A \iff u, v$ - диференційовані в т. (x_0, y_0) та виконуються наступні умови:

$$\begin{cases} \frac{\partial u}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0) \\ \frac{\partial u}{\partial y}(x_0, y_0) = -\frac{\partial v}{\partial x}(x_0, y_0) \end{cases}$$

Proof.

f - диференційована в т. $z_0 \iff \exists L \in \mathbb{C}$:

$$f(z) - f(z_0) = L(z - z_0) + o(|z - z_0|) \iff$$

 $\iff \exists L = A + ib : u(x, y) + iv(x, y) - u(x_0, y_0) - v(x_0, y_0) =$

$$= (A+iB)(x+iy-x_0-iy_0)+o(|z-z_0|) \iff$$

$$\iff \exists A,B \in \mathbb{R} : u(x,y)-u(x_0,y_0)+i(v(x,y)-v(x_0,y_0))=A(x-x_0)+$$

$$B(y-y_0)+i(A(y-y_0)+B(x-x_0))+o(|z-z_0|)+io(|z-z_0|) \iff$$

$$\iff \exists A,B \in \mathbb{R} : \begin{cases} u(x,y)-u(x_0,y_0)=A(x-x_0)+B(y-y_0)+o(|z-z_0|)\\ v(x,y)-v(x_0,y_0)=A(y-y_0)+B(x-x_0)+o(|z-z_0|) \end{cases}$$

$$\iff u,v$$
- диференційовані в т. (x_0,y_0) та:
$$\begin{cases} \frac{\partial u}{\partial x}(x_0,y_0)=A=\frac{\partial v}{\partial y}(x_0,y_0)\\ \frac{\partial u}{\partial y}(x_0,y_0)-B=-\frac{\partial v}{\partial x}(x_0,y_0) \end{cases}$$

Remark 1.1.3.(1). Оскільки $f'(z_0) = L$, то за Коші-Рімана,

$$f'(z_0) = L = A + iB = \frac{\partial u}{\partial x}(x_0, y_0) + i\frac{\partial v}{\partial x}(x_0, y_0),$$

Коротше, є чотири варіанти, як розписати похідну

Example 1.1.3. Знайти похідну $f(z) = e^z$ $e^z = e^{x+iy} = e^x(\cos y + i\sin y) = e^x\cos y + ie^x\sin y$ $\Rightarrow u(x,y) = e^x\cos y; \ v(x,y) = e^x\sin y$ Перевіримо умову Коші-Рімана: $\frac{\partial u}{\partial x} = e^x\cos y; \ \frac{\partial v}{\partial y} = e^x\cos y; \ \frac{\partial u}{\partial y} = -e^x\sin y; \ \frac{\partial v}{\partial x} = e^x\sin y;$ $\Rightarrow \begin{cases} e^x\cos y = e^x\cos y \\ -e^x\sin y = -(e^x\sin y) \end{cases}$

Дана система виконується $\forall x,y \in \mathbb{R}$. Отже, f - диференційована в будь-якій т. z_0 , а її похідна дорівнює:

будь-якій т.
$$z_0$$
, а її похідна дорівнює:
$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = e^x \cos y + i e^x \sin y = e^x e^{iy} = e^z$$

Remark 1.1.3.(2). Насправді, всі табличні похідні справедливі й для комплекснозначного аргументу. Доведння проводиться такмими самими шляхами.

Також зазначу, що арифметика похідної та похідна від композиції теж зберігається

Theorem 1.1.4. Якщо f'(z) = 0 в будь-якій точці, то f(z) = C **Proof.**

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = 0 \Rightarrow \begin{cases} \frac{\partial u}{\partial x} = 0 \\ \frac{\partial v}{\partial x} = 0 \end{cases}$$
 умова Коші-Рімана $\begin{cases} du = 0 \\ dv = 0 \end{cases}$ $\Rightarrow \begin{cases} u = C \\ v = C \end{cases}$ Отже, $f(z) = C$

Corollary 1.1.4. Якщо f'(z)=g'(z) в будь-якій точці, то f(z)=g(z)+C Розглянути функцію h(z)=f(z)-g(z)

Умова Коші-Рімана в полярній системі 1.2 координат (*)

Задане комплексне число z = x + iy представимо в іншому вигляді: $z = |z|(\cos\varphi + i\sin\varphi)$

Тоді якщо покласти $\rho = |z|$, то:

$$\begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi \end{cases}$$

 $\dot{\exists}$ адана комплекснозначна функція f(z), яку можна переписати таким : МОНИР

$$f(z) = u(x, y) + i(x, y)$$

Знайдемо наступні похідні:

Знаидемо наступні похідні:
$$\frac{\partial u}{\partial \rho} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial \rho} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial \rho} = \frac{\partial u}{\partial x} \cos \varphi + \frac{\partial u}{\partial y} \sin \varphi \quad (1)$$

$$\frac{\partial u}{\partial \varphi} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial \varphi} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial \varphi} = -\rho \sin \varphi \frac{\partial u}{\partial x} + \rho \cos \varphi \frac{\partial u}{\partial y} \quad (2)$$

Отримали систему двох рівнянь відносно $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}$, яку ми розв'яжемо.

Для
$$\frac{\partial u}{\partial x}$$
 необхідно: $(1) \cdot \rho \cos \varphi - (2) \cdot \sin \varphi$
Для $\frac{\partial u}{\partial y}$ необхідно: $(1) \cdot \rho \sin \varphi + (2) \cdot \cos \varphi$

$$\Rightarrow \begin{cases} \frac{\partial u}{\partial x} = \frac{\partial u}{\partial \rho} \cos \varphi - \frac{1}{\rho} \frac{\partial u}{\partial \varphi} \sin \varphi \\ \frac{\partial u}{\partial y} = \frac{\partial u}{\partial \rho} \sin \varphi + \frac{1}{\rho} \frac{\partial u}{\partial \varphi} \cos \varphi \end{cases}$$

Аналогічні міркування можна зробити для функції v. Тоді отримаємо:

$$\begin{cases} \frac{\partial v}{\partial y} = \frac{\partial v}{\partial \rho} \sin \varphi + \frac{1}{\rho} \frac{\partial v}{\partial \varphi} \cos \varphi \\ \frac{\partial v}{\partial x} = \frac{\partial v}{\partial \rho} \cos \varphi - \frac{1}{\rho} \frac{\partial v}{\partial \varphi} \sin \varphi \end{cases}$$

Нарешті, використаємо умову Коші-Рімана:
$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{cases} \Rightarrow \begin{cases} \frac{\partial u}{\partial \rho} \cos \varphi - \frac{1}{\rho} \frac{\partial u}{\partial \varphi} \sin \varphi = \frac{\partial v}{\partial \rho} \sin \varphi + \frac{1}{\rho} \frac{\partial v}{\partial \varphi} \cos \varphi \text{ (1)} \\ \frac{\partial u}{\partial \rho} \sin \varphi + \frac{1}{\rho} \frac{\partial u}{\partial \varphi} \cos \varphi = -\frac{\partial v}{\partial \rho} \cos \varphi + \frac{1}{\rho} \frac{\partial v}{\partial \varphi} \sin \varphi \text{ (2)} \end{cases}$$

Зробимо наступні перетворення системи

$$\int (1) \cdot \cos \varphi + (2) \cdot \sin \varphi$$

$$(1) \cdot \sin \varphi - (2) \cdot \cos \varphi$$

Остаточно отримаємо умову Коші-Рімана в полярній системі координат:

$$\begin{cases} \frac{\partial u}{\partial \rho} = \frac{1}{\rho} \frac{\partial v}{\partial \varphi} \\ \frac{1}{\rho} \frac{\partial u}{\partial \varphi} = -\frac{\partial v}{\partial \rho} \end{cases}$$

Показниковим буде наступний приклад, нафіга взагалі полярна умова:

Example 1.2.1. Знайти похідну $f(z) = z^n$

Якщо розписати $z^n = (x + iy)^n$, то далі буде неприємно робити справу по біному Ньютона. Тому краще розглянути полярну заміну:

$$f(z) = z^n = |z^n|(\cos n\varphi + i\sin n\varphi) = \rho^n \cos n\varphi + i\rho^n \sin n\varphi$$

$$\Rightarrow \begin{cases} n\rho^{n-1}\cos n\varphi = \frac{1}{\rho}\rho^n \cdot n\cos n\varphi \\ -\frac{1}{\rho} \cdot \rho^n n\sin n\varphi = -n\rho^{n-1}\sin n\varphi \end{cases}$$

Умова Коші-Рімана виконується завжди. А тому похідна існує всюди. Знайдемо її:

$$f'(z) = \frac{1}{\rho} \rho^n \cdot n \cos n\varphi + in\rho^{n-1} \sin n\varphi = n\rho^{n-1} (\cos n\varphi + i \sin n\varphi) = nz^{n-1}$$

Гармонічні функції 1.3

Definition 1.3.1. Функція f називається **аналітичною в т.** z_0 , якщо вона є диференційованою в околі т. z_0 , тобто:

$$\exists \delta: \forall z \in A: |z-z_0| < \delta \Rightarrow f$$
 -диференційована в т. z

Функція f є **аналітичною в області** D, якщо $\forall z \in D : f$ - аналітична в т. z

Definition 1.3.2. Задана функція $H: A \to \mathbb{R}^2$ і така т. (x_0, y_0) , що на цьому околі існує часткові похідні других порядків

Функція H називається **гармонічною в т.** (x_0, y_0) , якщо справедлива рівність:

$$\frac{\partial^2 H}{\partial x^2} + \frac{\partial^2 H}{\partial y^2} = 0$$

Theorem 1.3.3. Задана одна з функцій v (або u) - гармонічна і двічі аналітична в околі т. z_0 . Тоді $\exists u$ (або v): f(z) = u(x,y) + iv(x,y) - аналітична в т. z_0

Proof.

Оскільки v - гармонічна, то

$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$$

Також оскільки f - аналітична, то для неї виконується умова Коші-Рімана:

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{cases}$$

Для знаходження u можна зробити наступні кроки:

$$du = \frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy = \frac{\partial v}{\partial y}dx - \frac{\partial v}{\partial x}dy = Pdx + Qdy$$

Перевіримо, що ми зможемо знайти цю функцію через інтеграл за шляхом. Для цього дізнаємось, що:

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$
. Справді, $\frac{\partial}{\partial y} \left(\frac{\partial v}{\partial y} \right) = \frac{\partial^2 v}{\partial y^2}$ та $\frac{\partial}{\partial x} \left(-\frac{\partial v}{\partial x} \right) = -\frac{\partial^2 v}{\partial x^2}$

Рівність є справедливою в силу гармонічності функції. Тому наш інтеграл може бути порахованим і він не залежить від шляху, тому:

$$u = \int_{(x_0, y_0)}^{(x, y)} \frac{\partial v}{\partial y} dx - \frac{\partial v}{\partial x} dy + C$$

Отже, f(z) = u(x,y) + iv(x,y)

Випадок, коли дано, що u - гармонічна, є аналогічною

Remark 1.3.3.(1). Зворотнє твердження до **Th. 1.3.3.** є вірним

Дійсно, якщо f - аналітична, то ми використовуємо умову Коші-Рімана. Якщо систему продиференціювати спочатку по x, додати обидві рядочки, а потім зробити ті самі процедури по y, то отримаємо умови гармонічних

 ϕ ункцій для u, v

Remark 1.3.3.(2). Таке доведення, скоріш, є конструктивним на основі прикладів, аніж теоретичним

Example 1.3.3. Дізнатись, чи є функція u(x,y) = 2xy + 3 гармонічною. Якщо так, відновити функцію f(z) = u(x,y) + iv(x,y)

$$\frac{\partial u}{\partial x} = 2y \Rightarrow \frac{\partial^2 u}{\partial x^2} = 0$$
 $\frac{\partial u}{\partial y} = 2x \Rightarrow \frac{\partial^2 u}{\partial y^2} = 0$
 $\Rightarrow \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ - гармонічна. Отже, за **Th. 1.3.3.**, ми можемо знайти уявну частину функції для аналітичної функції $f(z) = u(x,y) + iv(x,y)$. Скористаємось критерієм Коші-Адамара:

$$\begin{cases} 2y = \frac{\partial v}{\partial y} \\ 2x = -\frac{\partial v}{\partial x} \end{cases} \Rightarrow dv = -2x \, dx + 2y \, dy$$

$$\Rightarrow v(x,y) = \int_{(0,0)}^{(x,y)} -2x \, dx + 2y \, dy = \cdots = -x^2 + y^2 + C$$
Отже, $f(z) = 2xy + 3 + i(y^2 - x^2 + C)$
Якщо звести до функції вигляду від змінної z , то: $f(z) = -iz^2 + C$

1.4 Геометричне застосування

Задана функція f(z) - аналітична в т. z_0 , тобто диференційована в околі цієї точки

В цьому околі розглянемо диференційовану криву

$$\gamma(t)=z(t)=x(t)+iy(t)$$
. Вважаємо $z(t_0)=z_0$

Подіємо функцією f на цю криву γ та отримаємо нову криву

$$\tilde{\gamma}(t) = f(z(t))$$

 $ilde{\gamma}(t)$ - диференційована в околі т. t_0

$$(\tilde{\gamma}(t))' = f'(z(t))z'(t) \iff \begin{cases} |\tilde{\gamma}(t)|' = |f'(z(t))||z'(t)| \\ \arg((\tilde{\gamma}(t))') = \arg(f'(z(t)) + \arg(z'(t))) \end{cases}$$

Згадаємо формулу довжини кривої: $l(\gamma) = \int_{t_1}^{t_2} \sqrt{(x'(t))^2 + (y'(t))^2} \, dt$ В нашому випадку:

$$l(ilde{\gamma}) = \int_{t_1}^{t_2} |(ilde{\gamma}(t))'| \, dt$$
 $l(\gamma) = \int_{t_1}^{t_2} |z'(t)| \, dt$ Тоді $|f'(z(t))|$ - коефіцієнт розтягнення в т. z_0

 $(\tilde{\gamma}(t))', \gamma'(t)$ - дотичні вектори до кривої Тоді $\arg f'(z)$ - кут, на який повертається дотична вектор

Більш детально про аналітичні функції можна побачити в підручнику Шабата "Введение в комплексный анализ"

Рис. 1: Шматок кривої навколо т. z_0 розтянули та повернули на деякий кут. (на малюнку масштаб не відповідає реальності: тут z має бути близьким до z_0)

Example. Знайти кут повороту та коефіцієнт розтягнення в т. $z_0=1+i$ для $f(z)=z^3$ $f(z_0)=(1+i)^3=(-2+2i)$, це нам ще знадобиться Оскільки $f'(z)=3z^2$, то $f'(z_0)=3(1+i)^2=6i$ $\Rightarrow |f'(z_0)|=6$, arg $f'(z_0)=\frac{\pi}{2}$

2 Інтегрування

2.1 Основні методи інтегрування

Задана функція f(z) = u(x,y) + iv(x,y). Нехай також γ - орієнтований шлях в просторі $\mathbb C$. Необхідно знайти наступний інтеграл:

$$\int\limits_{\gamma} f(z)\,dz = \int\limits_{\gamma} \left(u(x,y) + iv(x,y)\right)\,\left(dx + i\,dy\right) \stackrel{\text{(розкриваемо дужки)}}{=}$$

$$= \int\limits_{\gamma} u(x,y)\,dx - v(x,y)\,dy + i\int\limits_{\gamma} v(x,y)\,dx + u(x,y)\,dy$$

Отримали стандартний криволінійний інтеграл II роду

Якщо $\gamma = \{z(t), t \in [\vec{a,b}]\}$ та dz(t) = z'(t) dt, то інтеграл зведеться до наступного вигляду:

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(z(t))z'(t) dt$$
A60
$$\int_{\gamma} u(x,y) dx - v(x,y) dy + i \int_{\gamma} v(x,y) dx + u(x,y) dy =$$

$$= \int_{a}^{b} u(x(t), y(t))x'(t) - v(x(t), y(t))y'(t) dt +$$

$$+ i \int_{a}^{b} v(x(t), y(t))x'(t) + u(x(t), y(t))y'(t) dt$$

Example 2.1.1. Обчислити
$$\int \operatorname{Im}(z) \, dz$$
, де
$$\gamma = \{(x,y): y=2x^2, 0 \leq x \leq 1\}$$
 $z=x+iy=x+2ix^2 \Rightarrow dz=dx+i\, dy=(1+4ix)\, dx$ Тоді $\int \operatorname{Im}(z) \, dz = \int_0^1 2x^2(1+4ix) \, dx = \int_0^1 2x^2+8ix^3 \, dx = \frac{2}{3}+2i$

2.2 Властивості та інші теореми

Proposition 2.2.1. Інтеграл $\int\limits_{\gamma} f(z)\,dz$ від параметризації кривої не залежить

Proposition 2.2.2. Для цього ж інтегралу виконуються лінійні властивості

Випливають з властивостей криволінійного інтегралу ІІ роду

Theorem 2.2.3. Ознака модуля

$$\left| \int_{\gamma} f(z) \, dz \right| \le \int_{\gamma} |f(z)| \, |dz|$$

Proof.

Параметризуємо криву
$$\gamma = \{z(t), t \in [a, b]\}$$
. Тоді $z(t) = x(t) + iy(t)$ $dz(t) = (x'(t) + iy'(t)) dt$ $dl = \sqrt{(x'(t))^2 + (y'(t))^2} dt = |z'(t)| dt = |dz|$. Тепер ми знаємо про $|dz|$ Позначимо $J = \int\limits_{\gamma} f(z) \, dz$. Оскільки це є комплексне число, то $J = |J| e^{i\varphi}$ $\Rightarrow |J| = J e^{-i\varphi}$, тоді $\int\limits_{\gamma} f(z) \, dz = \int\limits_{a}^{b} e^{-i\varphi} f(z(t)) z'(t) \, dt =$

$$\int_{\gamma}^{b} \int_{\gamma}^{a} \int_{\gamma}^{b} \int_{\alpha}^{b} \int_{\alpha}^{b} \operatorname{Im}(e^{-i\varphi}f(z(t))z'(t)) dt = \int_{\alpha}^{b} \operatorname{Re}(e^{-i\varphi}f(z(t))z'(t)) dt$$

$$\stackrel{|J| \ge 0}{=} \left| \int_a^b \operatorname{Re}(e^{-i\varphi} f(z(t)) z'(t)) dt \right| \le \int_a^b |\operatorname{Re}(e^{-i\varphi} |f(z(t))| |z'(t))| dt \le$$

Якщо $w=\alpha+i\beta$, то $|w|=\sqrt{\alpha^2+\beta^2}\geq \sqrt{\alpha^2}=|\operatorname{Re} w|$ Тобто $|\operatorname{Re} w|\leq |w|$

$$\leq \int_{a}^{b} |e^{-i\varphi}f(z(t))z'(t)| \, dt = \int_{a}^{b} |f(z(t))|z'(t) \, dt = \int_{\gamma} |f(z)| \, |dz| \, \blacksquare$$

Перед іншими теоремами залишу нагадання

Рис. 2: Ліворуч - однозв'язна область. Праворуч - вже не є однозв'язною, оскільки вона містить (грубо кажучи) дірки

Theorem 2.2.4. Теорема Коші

Задана функція f - аналітична в однозв'язній області D. Тоді для довільного замкненого контуру γ в D

$$\oint_{\gamma} f(z) \, dz = 0$$

Proof.

Рис. 3: Однозв'язна область D і замкнений контур γ

$$\oint f(z) dz = \oint u dx - v dy + i \oint v dx + u dy =$$

За теоремою Коші-Рімана, можна побачити, що коефіцієнти при dx рівні коефіцієнту при dy. Тоді за лемою Пуанкаре про незалежність від шляху, ми отримаємо бажане

Corollary 2.2.4. Інтеграл не залежить від шляху

Example 2.2.4.
$$\oint_{|z|=\frac{1}{2}} \frac{z^2}{z-i} = 0$$

Звісно, є неприємна точка z=i, але незважаючи на це, в колі $|z|=\frac{1}{2}$ наша функція є аналітичною. Тому **Th.2.2.4.** спрацьовує

Theorem 2.2.5. Задана функція f - аналітична в однозв'язній області D. Тоді функція f має первісну F в області D **Proof.**

Розглянемо функцію $F(z)=\int_{z_0}^z f(\zeta)\,d\zeta$ - інтеграл з верхньою межею. Перевіримо, що F'(z)=f(z).

$$\frac{F(z) - F(z_1)}{z - z_1} = \frac{1}{z - z_1} \left[\int_{z_0}^z f(\zeta) \, d\zeta - \int_{z_0}^{z_1} f(\zeta) \, d\zeta \right] = \frac{1}{z - z_1} \int_{z_1}^z f(\zeta) \, d\zeta$$
 В той же самий час
$$f(z_1) = f(z_1) \frac{1}{z - z_1} \cdot (z - z_1) = \frac{1}{z - z_1} \int_{z_1}^z f(z_1) \, d\zeta$$

Remark.
$$\int_{z_1}^{z} 1 d\zeta$$

Задамо $\zeta = z_1 + t(z - z_1)$. Тоді $t \in [0, 1]$, а також $d\zeta = (z - z_1) dt$

Дивно виглядає, але поки невідомо, що формула Ньютона-Лейбніца тут працює

Звідси випливає, що:

$$\left| \frac{F(z) - F(z_1)}{z - z_1} - f(z_1) \right| = \frac{1}{|z - z_1|} \left| \int_{z_1}^{z} f(\zeta) \, d\zeta - \int_{z_1}^{z} f(z_1) \, d\zeta \right| = \frac{1}{|z - z_1|} \left| \int_{z_1}^{z} f(\zeta) - f(z_1) \, d\zeta \right| \le \frac{1}{|z - z_1|} \int_{z_1}^{z} |f(\zeta) - f(z_1)| \, |d\zeta| \le 1$$

Оскільки f - аналітична, то вона є неперервною. Звідси - рівномірно неперервна, тобто $\forall \varepsilon > 0 \; \exists \delta : \forall z : |z - z_0| < \delta \Rightarrow |f(z) - f(z_1)| < \varepsilon$. Тоді $|\zeta - z_1| < \delta \Rightarrow |f(\zeta) - f(z_1)| < \varepsilon$

$$\leq \frac{1}{|z-z_1|} \int_{z_1}^{z} \varepsilon |d\zeta| = \varepsilon$$

Це означає, що
$$\exists \lim_{z \to z_1} \frac{F(z) - F(z_1)}{z - z_1} = f(z_1) = F'(z_1)$$
. І це $\forall z_1 \in D \blacksquare$

Corollary 2.2.5. Якщо Φ - первісна, то $\int_{z_0}^{z_1} f(z) \, dz = \Phi(z_1) - \Phi(z_0)$ Proof.

 Φ - первісна $\Rightarrow \Phi'(z) = f(z)$

За щойно доведеною теоремою, F'(z)=f(z). Отже, $\Phi(z)=F(z)+C$

$$\begin{cases} \Phi(z_0) = 0 + C \\ \Phi(z_1) = F(z_1) + C \end{cases} \Rightarrow F(z_1) = \Phi(z_1) - \Phi(z_0) \blacksquare$$

Example 2.2.5.! Обчислити $\oint \frac{dz}{(z-z_0)^n}$ по колу $\{z:|z-z_0|=1\}, n\in\mathbb{N}$ Зробимо параметризацію: $z-z_0=e^{it}, t\in[0,\vec{2}\pi]$ $dz=ie^{it}\,dt$

$$\Rightarrow \oint \frac{dz}{(z-z_0)^n} = \int_0^{2\pi} \frac{ie^{it} dt}{e^{nit}} = i \int_0^{2\pi} e^{(1-n)it} dt = \left[\frac{2\pi i, n=1}{\frac{1}{1-n}} e^{(1-n)it} \right]_0^{2\pi} = 0, n \neq 1$$

Theorem 2.2.6. Теорема Коші 2

Задана функція f - аналітична в області D. Відомо, що замкнені контури $\gamma_1,\ \gamma_2$ обмежують однорідну область $D_{\gamma_1\gamma_2},$ в якої f - аналітична. Тоді

$$\oint_{\gamma_1} f(z) \, dz = \oint_{\gamma_2} f(z) \, dz$$

Proof.

Рис. 4: Тут $D_{\gamma_1\gamma_2}$ яскраво-блакитна область

Вважатимемо, що вони протилежно напрямлені, контури γ_1^+, γ_2^+ $\oint f(z) \, dz - \oint f(z) \, dz = \oint f(z) \, dz + \oint f(z) \, dz = \oint f(z) \, dz = f(z) \, dz$

Theorem 2.2.7. Інтегральна формула Коші

Задана функція f - аналітична в області D і т. $z_0 \in D$. Відомо, що замкнений контур $\gamma \in D$ охоплює т. z_0 та обмежує однорідну область D_{γ} . Тоді

$$\oint_{\gamma} \frac{f(z)}{z - z_0} dz = 2\pi i f(z_0)$$

Proof.

Рис. 5: В контурі D_{γ} утворена однозв'язна область

Розглянемо коло $c = \{z : |z - z_0| = \rho\}$ таке, що $c \subset D_\gamma$. Тоді за попередньою теоремою,

$$\oint_{\gamma} \frac{f(z)}{z - z_0} dz = \oint_{c} \frac{f(z)}{z - z_0} dz =$$

Покладемо
$$z - z_0 = \rho e^{it} \Rightarrow dz = \rho i e^{it} dt$$

$$= \int_0^{2\pi} \frac{f(z_0 + \rho e^{it})}{\rho e^{it}} \cdot \rho i e^{it} dt = i \int_0^{2\pi} f(z_0 + \rho e^{it}) dt =$$

$$J_0$$
 ρe^{it} J_0 Тут інтеграл не залежить від радіусу ρ . Тому ми спрямуємо його до нуля $=\lim_{\rho\to 0}i\int_0^{2\pi}f(z_0+\rho e^{it})\,dt=i\int_0^{2\pi}f(z_0)\,dt=2\pi i f(z_0)$

Example 2.2.7.
$$\oint_{|z|=1} \frac{\sin z}{z} dz = 2\pi i \sin 0 = 0$$

2.3 Степеневі ряди

Для комплексних чисел степеневий ряд визначається так само:

$$\sum_{n=0}^{\infty} c_n (z - z_0)^n$$

Так само радіує збіжності визначається або Даламбером, або Коші-Адамаром.

$$R = \lim_{n \to \infty} \frac{|c_n|}{|c_{n+1}|}$$
 або $R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|c_n|}}$

Область збіжності визначає нерівність: $|z-z_0| < R$

Example 2.3.0. Визначити область збіжності ряду $\sum_{n=1}^{\infty} \frac{(z-1)^n}{n^2 2^n}$

Знайдемо радіус R за Коші-Адамара:

$$R = \frac{1}{\overline{\lim}_{n \to \infty} \sqrt[n]{\frac{1}{|n^2 2^n|}}} = \frac{1}{\frac{1}{2} \lim_{n \to \infty} \sqrt[n]{\frac{1}{|n^2|}}} = 2$$

Отже, степеневий ряд збігається, коли |z-1| < 2

Надалі будемо вважати, що ми вже знаємо про цей факт: $\sum_{z=0}^{\infty} z^n = \frac{1}{1-z}$ при |z| < 1

Theorem 2.3.1. Теорема Тейлора

Задана функція f - аналітична в області D.

Тоді $\exists R$: в колі $\{\zeta: |\zeta-z_0| < R\} \subset D$ функція f розкладається в ряд

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$$
$$c_n = \frac{1}{2\pi i} \oint_{|\zeta - z_0| = \rho < R} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta$$

Proof.

Скористаємось інтегральною формулою Коші: $\oint_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta = 2\pi i f(z)$

За ще одною теоремою Коші, ми можемо змінити контуру інтегрування. Тоді отримаємо:

$$f(z) = \frac{1}{2\pi i} \oint_{|\zeta - z_0| = \rho} \frac{f(\zeta)}{\zeta - z_0} d\zeta = \frac{1}{2\pi i} \oint_{|\zeta - z_0| = \rho} \frac{f(\zeta)}{\zeta - z_0 + z_0 - z} d\zeta =$$
Тут ми оберемо таке ρ , щоб $\left| \frac{z - z_0}{\zeta - z_0} \right| < 1$

$$= \frac{1}{2\pi i} \oint_{|\zeta - z_0| = \rho} \frac{f(\zeta)}{\zeta - z_0} \cdot \frac{1}{1 - \frac{z - z_0}{\zeta - z_0}} d\zeta = \frac{1}{2\pi i} \oint_{|\zeta - z_0| = \rho} \frac{f(\zeta)}{\zeta - z_0} \cdot \sum_{n=0}^{\infty} \frac{(z - z_0)^n}{(\zeta - z_0)^n} d\zeta =$$

$$= \sum_{n=0}^{\infty} \frac{1}{2\pi i} \oint_{|\zeta - z_0| = \rho} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta \cdot (z - z_0)^n$$

Нарешті, якщо покласти
$$c_n=\frac{1}{2\pi i}\oint\limits_{|\zeta-z_0|=\rho}\frac{f(\zeta)}{(\zeta-z_0)^{n+1}}\,d\zeta$$
, то

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n \blacksquare$$

Corollary 2.3.1.
$$|c_n| \leq \frac{M}{\rho^n}$$
, $\text{ge } M = \max_{z \in D} |f(z)|$

Proof.

$$|c_{n}| = \left| \frac{1}{2\pi i} \right| \oint_{|\zeta - z_{0}| = \rho} \frac{f(\zeta)}{(\zeta - z_{0})^{n+1}} d\zeta \le \frac{1}{2\pi} \oint_{|\zeta - z_{0}| = \rho} \left| \frac{f(\zeta)}{(\zeta - z_{0})^{n+1}} \right| |dz| \le \frac{1}{2\pi} \int_{0}^{2\pi} \frac{M}{\rho^{n}} dt \le \frac{M}{\rho^{n}} \blacksquare$$

Theorem 2.3.2. Теорема Луівілля

Задана функція f - аналітична всюди, але обмежена. Тоді f(z) = const **Proof**.

За минулою теоремою, ми можемо розкласти в ряд f(z). Оскільки вона всюди аналітична, ми можемо взяти $R \to \infty$. Тоді за щойно доведеним наслідком, $|c_n| \le \frac{M}{R^n} \to 0$, але c_n ніяк не залежить від обраного R. Отже, $c_n = 0$ при $n \ne 0 \Rightarrow f(z) = c_0$

Corollary 2.3.2. $\cos z$ та $\sin z$ не ε обмеженими

Theorem 2.3.3. Розклад степеневого ряду є єдиним

Це випливає, насправді, з теореми Тейлора. Можна спробувати припустити, що є два ряди, рівні за значенням, але коефіцієнти різні. Причому, радіус збіжності теж може бути різним. Але розписуючи коефіцієнти, ми прийдемо до їхньої рівності через всілякі теореми Коші

Proposition 2.3.4. Якщо функція f має первісну в D, то вона є аналітичною **Proof**.

Отже, нехай ϵ первісна F, яка може розкластися в ряд Тейлора:

$$F(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n, |z-z_0| < R.$$
 Тоді

$$f(z) = F'(z) = \sum_{n=1}^{\infty} nc_n(z - z_0)^{n-1} \Rightarrow f'(z) = \sum_{n=2}^{\infty} n(n-1)c_n(z - z_0)^{n-2}$$

Ряд має такий самий радіус збіжності за ознаками - аналітична

Proposition 2.3.5. Задана функція f - аналітична в D.

Тоді f - ∞ -диференційована

Proof.

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n \Rightarrow$$

$$\forall k \geq 1: \exists f^{(k)}(z) = \sum_{n=k}^{\infty} n(n-1) \cdots (n-(k-1)) c_n (z-z_0)^{n-k}$$
. У всіх такий

самий радіус збіжності

Theorem 2.3.6. Задані f,g - аналітичні в колі $|z-z_0| < R$ таким чином, що множина $S = \{z: f(z) = g(z)\}$ містить граничну т. z_0 . Тоді f(z) = g(z) на всьому колі

Proof.

Розкладемо обидві функції на степеневий ряд:

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$$
$$g(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

Далі розглянемо послідовність $\{z_k, k \geq 1\} \subset S$ таку, що $\lim_{k \to \infty} z_k = z_0$.

Тоді $\forall k: f(z_k) = g(z_k) \Rightarrow \lim_{k \to \infty} f(z_k) = \lim_{k \to \infty} g(z_k)$

$$\stackrel{\sqcap}{c_0} \qquad \stackrel{\sqcap}{a_0}$$

$$f(z_k) - c_0 = f(z_k) - a_0$$

Ділимо на $z-z_k$. Тоді

$$\frac{1}{z_k - z_0} (f(z_k) - c_0) = \frac{1}{z_k - z_0} (f(z_k) - a_0)$$

$$\sum_{n=1}^{\infty} c_n (z_k - z_0)^{n-1} = \sum_{n=1}^{\infty} a_n (z_k - z_0)^{n-1}$$

$$\Rightarrow c_1 = a_1 \text{ при } k \to \infty$$

$$f(z_k) - c_0 - c_1 (z - z_0) = g(z_k) - a_0 - a_1 (z - z_0)$$
Ділимо на $(z - z_k)^2$. Тоді...
За МІ, ми отримаємо, що $\forall n \geq 1 : c_n = a_n \Rightarrow f(z) = g(z)$

Corollary 2.3.6.(1). Наступні ряди справедливі:

$$e^{z} = \sum_{n=0}^{\infty} \frac{z^{n}}{n!}$$

$$\sin z = \sum_{n=0}^{\infty} (-1)^{n} \frac{z^{2n+1}}{(2n+1)!}$$

$$\cos z = \sum_{n=0}^{\infty} (-1)^{n} \frac{z^{2n}}{(2n)!}$$

Proof.

Доведу лише перший ряд. Решта аналогічно

$$f(z) = e^z, g(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

Якщо покласти $S=\mathbb{R}$, то тоді z_0 - гранична точка та $f(x)=g(x) \forall x \in \mathbb{R}$ Отже, f(z) = g(z)

Corollary 2.3.6.(2). Задана функція f - аналітична в D. Тоді функцію можна розкласти іншим чином:

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

Proof.

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n, |x - x_0| < R$$

$$g(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (z - x_0)^n$$

Якщо покласти $S = (x_0 - R, x_0 + R)$, де x_0 - гранична точка, то отримаємо $f(z) = g(z) \blacksquare$

Corollary 2.3.4.(3). Узагальнена інтегральна формула Коші

$$\oint_{\gamma} \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{2\pi i}{n!} f^{(n)}(z_0)$$

Example 2.3.4.(1). Розкласти функцію $\frac{1}{5+\gamma^2}$ в ряд Тейлора

$$\frac{1}{5+z^2} = \frac{1}{5} \frac{1}{1+\frac{z^2}{5}} \stackrel{z^2}{=} \frac{z}{5} = \frac{1}{5} \frac{1}{1+t} = \frac{1}{5} \frac{1}{1-(-t)} = \frac{1}{5} \sum_{n=0}^{\infty} (-t)^n = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{5^{n+1}}$$

$$\text{\textsup de } |-t| < 1 \Rightarrow \left| \frac{z^2}{5} \right| < 1 \Rightarrow |z| < \sqrt{5}$$

Example 2.3.4.(3).
$$\oint_{|z+i|=1} \frac{\sin z}{(z+i)^3} dz = \frac{2\pi i}{2!} (\sin z)'' \Big|_{z=-i} = -\pi \sinh 1$$

Theorem 2.3.5. Теорема Морери

Задана функція $f \in C(D)$, де D - однозв'язна область. Відомо, що для довільного закмненого контуру в D:

$$\oint f(z) dz = 0$$
. Тоді f - аналітична

Proof.

З умови випливає, що інтеграл не залежить від шляху. Отже, коректно визначеним буде наступний інтеграл:

$$F(z) = \int_{z_0}^z f(\zeta) \, d\zeta, z_0 \in D$$
 Доведемо, що F - первісна до f $F(z_0 + \Delta z) - F(z_0)$ 1 $\int_{z_0 + \Delta z}^{z_0 + \Delta z} dz$

Доведемо, що
$$F$$
 - первісна до f $\frac{F(z_0 + \Delta z) - F(z_0)}{\Delta z} = \frac{1}{\Delta z} \int_{z_0}^{z_0 + \Delta z} f(\zeta) d\zeta$

Крім того,
$$\int_{z_0}^{z_0+\Delta z} f(z_0) \, d\zeta = f(z_0) \Delta z$$
. Тоді

$$\left| \frac{F(z_0 + \Delta z) - F(z_0)}{\Delta z} - f(z_0) \right| \le \frac{1}{|\Delta z|} \int_{z_0}^{z_0 + \Delta z} |f(\zeta) - f(z)| \, d\zeta < 1$$

Оскільки $f \in C(D)$, то тоді вона неперервна в якомусь колі

 $\{z: |z-\zeta| > r\} \subset D$. Звідси вона рівномірно неперервна в колі, тому... $|f(\zeta) - f(z)| < \varepsilon$

Отже, F'(z)=f(z). Тому F - аналітична, а тоді - ∞ -диференційована. Випливає, що $\exists F''(z) = f'(z) \Rightarrow f$ - аналітична \blacksquare

Theorem 2.3.! Узагальнення

Задана функція $f \in C(D)$, де D - однозв'язна область. Тоді наступні умови є еквівалентними:

$$\underbrace{\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{cases}}_{R} \iff f \text{- розкладається в Тейлора} \iff \forall \gamma : \oint_{Y} f(z) \, dz = 0$$

Proof.

Рис. 6: Схематичне доведення

2.4 Нулі аналітичної функції

Definition 2.4.1. Задана функція f - аналітична в D Точка z_0 називається **нулем функції** f(z), якщо $f(z_0) = 0$ Точка z_0 називається **нулем кратності** k, якщо $\exists g$ - аналітична: $f(z) = (z - z_0)^k g(z), \ g(z_0) \neq 0$

Theorem 2.4.2. Задана функція f - аналітична в D z_0 - корінь кратності $k\iff \begin{cases} f(z_0)=f'(z_0)=\cdots=f^{(k-1)}(z_0)=0\\ f^{(k)}(z_0)\neq 0 \end{cases}$

Proof.

 \implies Дано: z_0 - корінь кратності k, тобто $\exists g$ - аналітична:

$$\overline{f(z)} = (z - z_0)^k g(z), \ g(z_0) \neq 0$$

Оскільки g - аналітична, то $g(z) = \sum_{n=0}^{\infty} \frac{g^{(n)}(z_0)}{n!} (z-z_0)^n$

$$\Rightarrow f(z) = \sum_{n=0}^{\infty} \frac{g^{(n)}(z_0)}{n!} (z - z_0)^{n+k} = \sum_{m=0}^{\infty} \frac{f^{(m)}(z_0)}{m!} (z - z_0)^m$$

Лівий вираз починається з дужки номера k. А правий вираз - з дужки номера 0. Тому всі вирази з дужками від 0 до k-1 мають бути обнуленими.

$$\begin{cases} f(z_0) = f'(z_0) = \dots = f^{(k-1)}(z_0) = 0 \\ f^{(k)}(z_0) \neq 0 \end{cases}$$

Покладемо $g(z) = \sum_{n=k}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z-z_0)^{n-k}$, причому $g(z_0) \neq 0$. Тоді

 $f(z)=(z-z_0)^kg(z)\Rightarrow z_0$ - корінь кратності k

2.5 Ряди Лорана

Ряд Лорана має наступний вигляд

$$\sum_{n=-\infty}^{+\infty} c_n (z-z_0)^n$$

Розпишемо даний ряд іншим шляхом:

$$\sum_{n=-\infty}^{+\infty} c_n (z-z_0)^n = \sum_{n=-\infty}^{-1} c_n (z-z_0)^n + \sum_{n=0}^{+\infty} c_n (z-z_0)^n =$$

В першій сумі замінимо лічильник: n = -k

$$=\sum_{k=1}^{\infty} rac{c_{-k}}{(z-z_0)^k} + \sum_{n=0}^{+\infty} c_n (z-z_0)^n$$
 правильнаа частина

Далі дізнаємось область збіжності для двох рядів:

- правильна частина:
$$R = \frac{1}{\varlimsup_{n \to \infty} \sqrt[n]{|c_n|}} \Rightarrow |z - z_0| < R$$

- головна частина: тимчасова заміна $t = \frac{1}{z - z_0}$. Тоді отримаємо степеневий ряд вигляду:

$$\sum_{k=1}^{\infty} c_{-k} t^k$$

$$R' = \frac{1}{\overline{\lim_{k \to \infty} \sqrt[k]{|c_{-k}|}}} \Rightarrow |t| < R' \Rightarrow |z - z_0| > \frac{1}{R'} \stackrel{\text{покладемо}}{=} r$$

Таким чином область збіжності визначається кільцем:

$$\overline{\lim}_{k \to \infty} \sqrt[k]{|c_{-k}|} = r < |z - z_0| < R = \frac{1}{\overline{\lim}_{n \to \infty} \sqrt[n]{|c_n|}}$$

Більш того, сума ряду Лорана є аналітичною в цьому кільці Надалі $K = \{z: r < |z-z_0| < R\}$

Theorem 2.5.1. Теорема Лорана

Задана функція f - аналітична в кільці K Тоді f розкладається в ряд Лорана:

$$f(z) = \sum_{k=1}^{\infty} \frac{c_{-k}}{(z - z_0)^k} + \sum_{n=0}^{+\infty} c_n (z - z_0)^n$$
$$c_m = \frac{1}{2\pi i} \oint_{|\zeta - z_0| = \rho} \frac{f(\zeta)}{(\zeta - z_0)^{m+1}} d\zeta, \ r < \rho < R$$

Proof.

Скористаємось інтегральною формулою Коші: $\oint_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta = 2\pi i f(z)$

За ще одною теоремою Коші, ми можемо змінити контуру інтегрування. Тоді отримаємо:

$$f(z) = \frac{1}{2\pi i} \oint_{c} \frac{f(\zeta)}{\zeta - z} d\zeta =$$

$$\text{Tyr } c = c_{1} \cup c_{2}^{-} = \{\zeta : |\zeta - z_{0}| < R\} \cup \{\zeta : |\zeta - z_{0}| > r\}$$

$$= \frac{1}{2\pi i} \oint_{c_{1} \cup c_{2}^{-}} \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \left(\oint_{c_{1}} \frac{f(\zeta)}{\zeta - z} d\zeta - \oint_{c_{2}} \frac{f(\zeta)}{\zeta - z} d\zeta \right) =$$

$$= \frac{1}{2\pi i} \left(\oint_{c_{1}} \frac{f(\zeta)}{\zeta - z_{0} + z_{0} - z} d\zeta - \oint_{c_{2}} \frac{f(\zeta)}{\zeta - z_{0} + z_{0} - z} d\zeta \right) =$$

$$= \frac{1}{2\pi i} \left(\oint_{c_1} \frac{f(\zeta)}{\zeta - z_0} \cdot \frac{1}{1 - \frac{z - z_0}{\zeta - z_0}} d\zeta + \oint_{c_2} \frac{f(\zeta)}{z - z_0} \cdot \frac{1}{1 - \frac{\zeta - z_0}{z - z_0}} d\zeta \right)$$
Вважаємо, що $\left| \frac{z - z_0}{\zeta - z_0} \right| < 1$ та $\left| \frac{\zeta - z_0}{z - z_0} \right| < 1$

$$= \frac{1}{2\pi i} \oint_{c_1} \frac{f(\zeta)}{\zeta - z_0} \cdot \sum_{n=0}^{\infty} \frac{(z - z_0)^n}{(\zeta - z_0)^n} d\zeta + \frac{1}{2\pi i} \oint_{c_2} \frac{f(\zeta)}{z - z_0} \cdot \sum_{n=0}^{\infty} \frac{(\zeta - z_0)^n}{(z - z_0)^n} d\zeta =$$

$$= \sum_{n=0}^{\infty} \frac{1}{2\pi i} \oint_{c_1} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta \cdot (z - z_0)^n + \sum_{n=0}^{\infty} \frac{1}{2\pi i} \oint_{c_2} f(\zeta) (\zeta - z_0)^n d\zeta \cdot \frac{1}{(z - z_0)^{n+1}} d\zeta \cdot (z - z_0)^{n+1}$$

Прийшли до ряду Лорана. За теоремою Коші, ми можемо змінити коло c_1 та c_2 , щоб коло було радіусом ρ

Нарешті, якщо покласти
$$c_m = \frac{1}{2\pi i} \oint\limits_{|\zeta-z|=\rho} \frac{f(\zeta)}{(\zeta-z_0)^{m+1}} d\zeta, m \in \mathbb{Z}$$
, то

$$f(z) = \sum_{k=1}^{\infty} \frac{c_{-k}}{(z - z_0)^k} + \sum_{n=0}^{+\infty} c_n (z - z_0)^n \blacksquare$$

Theorem 2.5.2. Розклад в ряд Лорана є єдиним в заданому кільці Випливає з теореми Лорана. Якщо вважати, що є різні розклади ряда Тейлора в різних кільцях, то ми можем взяти інше кільце, щоб ряд розпадався одночасно. А там буде суперечення

Example 2.5.1. Розкласти
$$f(z) = \frac{1}{z(z-3)}$$
 в ряд Лорана в т. $z_0 = 0$ $f(z) = \frac{1}{z} \frac{1}{z-3} = \frac{1}{z} \frac{1}{z-3} \frac{1}{1-\frac{z}{3}} = -\frac{1}{3z} \sum_{n=0}^{\infty} \frac{z^n}{3^n} = -\sum_{n=0}^{\infty} \frac{z^{n-1}}{3^{n+1}} =$ $= -\frac{1}{3z} - \sum_{n=1}^{\infty} \frac{z^{n-1}}{3^{n+1}}$, якщо $\left|\frac{z}{3}\right| < 1 \iff |z| < 3$ $f(z) = \frac{1}{z} \frac{1}{z-3} = \frac{1}{z} \frac{1}{z-3} = \frac{1}{z^2} \sum_{n=0}^{\infty} \frac{3^n}{z^n} = \sum_{n=0}^{\infty} \frac{3^n}{z^{n+2}}$, якщо $\left|\frac{3}{z}\right| < 1 \iff |z| > 3$

2.6 Особливі точки

Definition 2.6.1. Точка z_0 називається **особливою** для f(z), якщо в ній вона не є визначеною

Definition 2.6.2. Точка z_0 називається ізольовано особливою для f(z), якщо в деякому околі т. $z_0 \ f$ - аналітична

Класифікація особливих ізольованих точок:

- усувна, якщо $\exists \lim_{z \to z_0} f(z)$ полюс, якщо $\exists \lim_{z \to z_0} f(z) = \infty$ суттєва, якщо $\nexists \lim_{z \to z_0} f(z)$

2.6.1 Усувна точка

Theorem. Т. z_0 - усувна \iff при розкладі f(z) в Лорана всі коефіцієнти головної частині є нулевими

Proof.

Оцінимо коефіцієнти головної частини:

$$|c_{-k}| = \left| \frac{1}{2\pi i} \oint\limits_{|z-z_0|=\rho} \frac{f(z)}{(z-z_0)^{-k+1}} dz \right| = \frac{1}{2\pi} \left| \oint\limits_{|z-z_0|=\rho} f(z)(z-z_0)^{k-1} dz \right| \le \frac{1}{2\pi i} \oint\limits_{|z-z_0|=\rho} |f(z)| |(z-z_0)^{k-1}| |dz| \le \frac{1}{2\pi i} \oint\limits_{|z-z_0|=\rho} |f(z)| \rho^{k-1}| dz| \le \frac{1}{2\pi i} \int\limits_{|z-z_0|=\rho} |f(z)| \rho^{k-1}| dz| = \frac{1}{2\pi i} \int\limits_{|z-z_0|=\rho} |f(z)| \rho^{k-$$

$$\leq \frac{\rho^{k-1}}{2\pi i} \oint_{|z-z_0|=\rho} M|\,dz| = M\rho^{k-1}$$

За наслідком теореми Коші, ми можемо $\rho \to 0$. Тоді:

$$0 \le |c_{-k}| \le M\rho^{k-1} \to 0 \ \forall k \ge 1 \blacksquare$$

Corollary. Якщо т. z_0 - усувна, то при розкладі f(z) матиме вигляд степеневого ряду

Усувну точку z_0 можна довизначити значенням c_0 з ряду. Тоді f - аналітична в цій точці

2.6.2 Полюс

Якщо т. z_0 є полюсом, то $\exists \lim_{z \to z_0} f(z) = \infty \iff \lim_{z \to z_0} \frac{1}{f(z)} = 0$

Розглянемо функцію $h(z)=\frac{1}{f(z)}$, для якого z_0 - усувна. Довизначивши, ми отримаємо, що $h(z_0)=0$. Звідси в ній вона аналітична, а також є нулем функції

Вважатимемо, що z_0 - нуль кратності k, тобто $h(z) = (z-z_0)^k g(z),$ $g(z_0) \neq 0$

Тоді
$$f(z) = \frac{1}{(z-z_0)^k g(z)}$$

Definition. Точка z_0 для f є **полюсом степені** k, якщо для функції $h(z)=\frac{1}{f(z)}\;z_0$ - нуль кратності k

Lemma. z_0 - полюс для f степені $k \iff \exists \lim_{z \to z_0} (z - z_0)^k f(z) = a \neq 0 \neq \infty$ **Proof.**

 \implies Дано: z_0 - полюс степені k. Тоді $\lim_{z \to z_0} (z - z_0)^k f(z) = \lim_{z \to z_0} \frac{(z - z_0)^k}{h(z)} = \lim_{z \to z_0} \frac{(z - z_0)^k}{(z - z_0)^k g(z)} = \lim_{z \to z_0} \frac{1}{g(z)} \neq 0$

 \sqsubseteq Дано: $\exists \lim_{z \to z_0} (z - z_0)^k f(z) = a \neq 0$. Тоді для функції $(z - z_0)^k f(z)$ т. z_0 - усувна. Тому якщо довизначити її, то створимо нову функцію: $g(z) = \frac{1}{(z - z_0)^k f(z)}$ - аналітична $\Rightarrow g(z_0) = \lim_{z \to z_0} \frac{1}{(z - z_0)^k f(z)} = \frac{1}{a}$ Тому $\frac{1}{f(z)} = g(z)(z - z_0)^k$ і z_0 - корінь кратності k для $h(z) = \frac{1}{f(z)}$

Proposition. Задана така функція $f(z) = \frac{a(z)}{b(z)}$, що z_0 - корінь рівняння для чисельнику і знаменнику з відповідними кратностями k і m. Тоді z_0 - $\begin{bmatrix} \text{усувна}, k \geq m \\ \text{полюс степені } m-k, k < m \end{bmatrix}$

Proof.

Дійсно, за умовою твердження, $f(z)=\frac{(z-z_0)^ka_1(z)}{(z-z_0)^mb_1(z)}$. При k< m отримаємо, що $z-z_0$ залишається в знаменнику. Тому при $z\to z_0$ функція прямує до нескінченності.

А якщо $k \geq m$, то при $z \rightarrow z_0$ отримаємо $f(z) \rightarrow 0$

Theorem. Точка z_0 є полюсом степені $k \iff$ в розкладі f(z) в ряд Лорана головна частина містить лише k доданків

Proof.

Ргоот.
$$z_0$$
 - полюс степені $k \iff$ для $\frac{1}{f(z)} = g(z)(z-z_0)^k, \ z_0$ - нуль кратності $k \iff f(z) = \frac{1}{(z-z_0)^k} \frac{1}{g(z)} = \frac{1}{(z-z_0)^k} h(z), \ h(z)$ - аналітична в околі $z_0 \iff f(z) = \frac{1}{(z-z_0)^k} \sum_{n=0}^{\infty} a_n (z-z_0)^n, \ a_0 = h(z_0) \neq 0$ $\iff f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^{n-k} = \sum_{n=-k}^{\infty} a_{m+k} (z-z_0)^m = \sum_{n=-k=0}^{\infty} a_n (z-z_0)^m \iff$ ряд Лорана містить лише $z_0 = z_0 = z_0$ частини $z_0 = z_0 = z_0$

2.6.3 Суттєва точка

Theorem. Точка z_0 є суттєвою \iff в розкладі f(z) в ряд Лорана головна частини має нескінченну кількість доданків Просто тому, що при 0 - усувна точка. Якщо скінченна кількість, то це вже полюс

Example. 2.6.(1). Знайти всі особливі точки для функції $f(z) = \frac{e^z - 1}{\sin z}$ Проблема виникає в $\sin z = 0 \iff z_k = \pi k, k \in \mathbb{Z}$

Перевіримо т.
$$z_0 = 0$$
:
$$\lim_{z \to 0} \frac{e^z - 1}{\sin z} = \lim_{z \to 0} \frac{e^z - 1}{z} \frac{z}{\sin z} \xrightarrow{\text{чудові границі}} 1 \cdot 1 = 1$$

Отже, z_0 - усувна точка

Розглянемо далі т. $z_k = \pi k, \, k \neq 0$:

Зауважимо, що $\sin z_k = 0$, але $(\sin z_k)' = \cos z_k \neq 0$. Тому для знаменнику z_k - корінь кратності 1

 $\lim_{z \to \pi k} \frac{e^z - 1}{\sin z} = \infty$ (в чисельнику буде якесь ненульове число) Таким чином, z_k - полюс порядка 1

Example 2.6.(2). Знайти всі особливі точки для функції $f(z) = e^{\frac{1}{z}}$ Проблемна точка: z = 0

Розкладемо функцію в ряд Лорана в т. $z_0 = 0$

$$e^{\frac{1}{z}} = \sum_{n=0}^{\infty} \frac{1}{z^n n!}$$

Ряд Лорана містить нескінченну кількість головної частини. А тому z=0 - суттєва точка

2.7 Лишки

Definition 2.7.1. Задана функція f - аналітична в проколотому околі z_0 та контур γ , що охоплює т. z_0 та належить контуру **Лишком функції** f(z) в т. z_0 називається наступний вираз:

$$\operatorname{res}_{z=z_0} f(z) = \frac{1}{2\pi i} \oint_{\gamma} f(z) dz$$

Theorem 2.7.2. Задана функція f - аналітична в проколотому околі z_0 . Тоді $\mathop{\mathrm{res}}_{z=z_0} f(z) = c_{-1}$

Proof.

Дійсно, оскільки f - аналітична, ми можемо розкласти на Лорана. Зокрема

$$c_{-1} = \frac{1}{2\pi i} \oint_{|z-z_0|=\rho} f(z) dz = \underset{z=z_0}{\text{res}} f(z) \blacksquare$$

Методи знаходження лишків для різних типів особливих точок:

2.7.1 Усувна точка

Lemma. Якщо т. z_0 - усувна, то $\mathop{\mathrm{res}}_{z=z_0} f(z) = 0$

Proof.

Дійсно, при т. z_0 - усувна - отримаємо, що Лоран не містить головної частини, а тому $c_{-1} = \mathop{\mathrm{res}}_{z=z_0} f(z) = 0$

2.7.2 Полюс

Theorem. Якщо z_0 - полюс порядку k, то

$$\operatorname{res}_{z=z_0} f(z) = \frac{1}{(k-1)!} \lim_{z \to z_0} (f(z)(z-z_0)^k)^{(k-1)}$$

Proof.

 z_0 - полюс степені k, тоді

$$f(z) = \frac{c_{-k}}{(z - z_0)^k} + \dots + \frac{c_{-1}}{(z - z_0)} + \sum_{n=0}^{\infty} c_n (z - z_0)^n$$

$$\Rightarrow f(z)(z-z_0)^k = c_{-k} + \dots + c_{-1}(z-z_0)^{k-1} + \sum_{n=0}^{\infty} c_n(z-z_0)^{n+k}$$

Далі продиферинціюємо (k-1) разів, отримавши наступне:

$$(f(z)(z-z_0)^k)^{(k-1)} = (k-1)!c_{-1} + \sum_{n=0}^{\infty} (n-k)\cdots(n-2)c_n(z-z_0)^{n+1}$$

В обох частинах рівності знайдемо границю:
$$\lim_{z\to z_0} (f(z)(z-z_0)^k)^{(k-1)} = (k-1)!c_{-1} + 0 = (k-1)! \mathop{\mathrm{res}}_{z=z_0} f(z) \blacksquare$$

Часткові випадки:

- 1. Якщо z_0 полюс степені 1. Тоді $\mathop{\rm res}_{z=z_0} f(z) = \lim_{z \to z_0} f(z)(z - z_0)$
- 2. Якщо $f(z)=rac{arphi(z)}{\psi(z)},$ де z_0 не нуль чисельнику, але нуль знаменнику кратності 1. Тоді z_0 - полюс порядку 1. Отже:

$$\underset{z=z_0}{\text{res}} f(z) = \lim_{z \to z_0} \frac{\varphi(z)}{\psi(z)} (z - z_0) = \lim_{z \to z_0} \frac{\varphi(z)}{\underline{\psi(z) - \psi(z_0)}} = \lim_{z \to z_0} \frac{\varphi(z)}{\psi'(z_0)}$$

$$\Rightarrow \underset{z=z_0}{\operatorname{res}} f(z) = \lim_{z \to z_0} \frac{\varphi(z)}{\psi'(z_0)}$$

Суттєва точка

Тут $\underset{z=z_0}{\operatorname{res}} f(z)$ рахується лише за розкладом в ряд Лорана

Example. 2.7.(1). Знайти всі лишки функції $f(z) = \frac{e^z - 1}{\sin z}$ Вже дізнались в **Ex. 2.6.(1).**, що z = 0 - усувна та $z = \pi k, k \neq 0$ - полюс

порядку 1

$$\underset{z=0}{\operatorname{res}} f(z) = 0$$

$$\operatorname{res}_{z=\pi k} f(z) = \lim_{z \to \pi k} \frac{e^z - 1}{\sin z} (z - \pi k) \stackrel{z - \pi k = t}{=} \lim_{t \to 0} \frac{e^t e^{\pi k} - 1}{\sin (\pi k + t)} t = \lim_{t \to 0} \frac{e^t e^{\pi k} - 1}{(-1)^k \sin t} t = (-1)^k (e^{\pi k} - 1)$$

Example. 2.7.(2). Знайти всі лишки функції $f(z) = e^{\frac{1}{z}}$

Вже знаємо, що за Ex. 2.6.(2). т. z=0 є суттєвою. Але все рівно звернемось до ряду Лорана:

$$e^{\frac{1}{z}} = \sum_{n=0}^{k} \frac{1}{z^n n!}$$

Коефіцієнт перед $\frac{1}{z}$: $c_{-1} = 1$ Отже. $\underset{z=0}{\text{res}} f(z) = c_{-1} = 1$

Застосування лишків для обчислення інтегралів 2.8

Theorem 2.8.1. Теорема Коші (для лишків, 1*)

Задана функція f - аналітична в області D за винятком скінченної кількості особливих точок і замкнений контур γ , якийй охоплює особлиіві точки $z_1, z_2, \cdots z_n$. Тоді

$$\oint_{\gamma} f(z) dz = 2\pi i \sum_{k=1}^{n} \underset{z=z_{k}}{\text{res}} f(z)$$

Proof.

Для кожної точки z_1, \cdots, z_n ми розглянемо коло $U_j = \{z : |z - z_j| < \delta_j\},$ причому вони не перетинаються між собою. Тут γ охоплює кожну U_i . Тоді

$$\oint_{\gamma} f(z) dz = \oint_{\gamma} f(z) dz - \left(\oint_{U_1} f(z) dz + \dots + \oint_{U_n} f(z) dz \right) + \left(\oint_{U_1} f(z) dz + \dots + \oint_{U_n} f(z) dz \right) =$$

Для кожного інтегралу з мінусом ми замінюємо знак, змінюючи напрямок контуру

$$= \oint_{\gamma \cup U_1^- \cup \dots \cup U_n^-} f(z) dz + \left(\oint_{U_1} f(z) dz + \dots + \oint_{U_n} f(z) dz \right) =$$

Перший інтеграл обмежує всю область D, окрім тих, що потрапляють до кожного кола. А така область є однорідною. Тому за теоремою Коші, перший інтеграл буде нулевим

$$= \sum_{k=1}^{n} \oint_{U_{k}} f(z) dz \stackrel{def}{=} \sum_{k=1}^{n} 2\pi i \underset{z=z_{k}}{\text{res}} f(z) = 2\pi i \sum_{k=1}^{n} \underset{z=z_{k}}{\text{res}} f(z) \blacksquare$$

Рис. 7

Example 2.8.1.
$$\oint_{|z-2|=2} \frac{z \, dz}{(z-1)(z-2)}$$

Розглянемо функцію $f(z)=\frac{z}{(z-1)(z-2)}$ Тут z=1, z=2 - обидві полюси 1 порядку, тому $\mathop{\mathrm{res}}_{z=1} f(z)=\lim_{z\to 1}\frac{z}{(z-1)(z-2)}(z-1)=-1$

$$\underset{z=1}{\text{res}} f(z) = \lim_{z \to 1} \frac{z}{(z-1)(z-2)} (z-1) = -1$$

$$\operatorname{res}_{z=2} f(z) = \lim_{z \to 2} \frac{z}{(z-1)(z-2)} (z-2) = 2$$

$$\equiv 2\pi i (\operatorname{res}_{z=1} f(z) + \operatorname{res}_{z=2} f(z)) = 2\pi i$$

$$\equiv 2\pi i (\underset{z=1}{\text{res}} f(z) + \underset{z=2}{\text{res}} f(z)) = 2\pi i$$

Theorem 2.8.2. Теорема Коші (для лишків, 2*)

Задана функція f - аналітична в $\mathbb C$ за винятком скінченної кількості особливих точок $z_1, z_2, \cdots z_n$. Тоді (див. п. 2.9.3. про лишки)

$$\sum_{k=1}^{n} \underset{z=z_k}{\text{res}} f(z) + \underset{z=\infty}{\text{res}} f(z) = 0$$

Proof.

Розглянемо замкнений контур γ , що охоплює всі скінченні особливі точки

$$\underset{z=\infty}{\text{res}} f(z) \stackrel{def}{=} \frac{1}{2\pi i} \oint_{\gamma^{-}} f(z) \, dz = -\frac{1}{2\pi i} \oint_{\gamma^{+}} f(z) \, dz = -\frac{1}{2\pi i} \cdot 2\pi i \sum_{k=1}^{n} \underset{z=z_{k}}{\text{res}} f(z)$$

$$\Rightarrow \sum_{k=1}^{n} \underset{z=z_k}{\text{res}} f(z) + \underset{z=\infty}{\text{res}} f(z) = 0 \blacksquare$$

Remark 2.8. Ми не розглядаємо нескінченну кількість особливих точок, оскільки в цьому випадку з'являються граничні точки. А вони не є ізольованими

2.9 Нескінченна особлива точка

Хочеться піти здалеку, як зрозуміти цю дивну точку, $z=\infty$ Вважаємо, що в нас є система координат, на якій ми побудуємо сферу радіусом $\frac{1}{2}$ таким чином, щоб сфера торкалась площини XOY в точці (0,0)

На площині XOY кожна точка з координатами (x,y) буде відповідати значенню комплексного числа z=x+iy

I позначимо верхню точку сфери N

Рис. 8: Просто картина

Через точку із XOY (скажімо, т. P) та т. N проведемо пряму. Отримаємо точку перетину M

Тоді кожна точка сфери відповідає точці XOY. Звідси якщо взяти якийсь окіл т. M, то вона відповідатиме окілу т. P

 I навпаки: кожна точка XOY відповідає т. сфери... Але не в т. N. Взагалі кажучи, жодна точка XOY не відповідає N, оскільки пряма буде паралельна до цієї площини. Тому вирішили, що для т. N ставимо в відповідність т. $z=\infty$

Тепер візьмемо окіл т. N радіуса D і подивимось, який окіл відповідає ХОУ. Принаймні це нам знадобиться, якщо ми хочемо розкласти в ряд Лорана

Отримаємо площину вигляду |z| > D. Тобто всі точки комплексної площини за межами кола

Рис. 9: Просто картина

От і все. А тепер можна почати весілля

Розклад в Лорана 2.9.1

Зробимо перетворення $w = \frac{1}{z}$. Точка $z = \infty$ переводить в точку w = 0

Розглянемо ряд Лорана в околі $z=\infty$, тобто для $\{z:|z|>D\}$

$$f(z) = f(\frac{1}{w}) = g(w) =$$
 $|z| > D \iff \left|\frac{1}{w}\right| > D \iff |w| < \frac{1}{D}$
 $= \sum_{k=1}^{\infty} \frac{c_{-k}}{w^k} + \sum_{n=0}^{\infty} c_n w^n = \sum_{k=1}^{\infty} c_{-k} z^k + \sum_{n=0}^{\infty} \frac{c_n}{z_n}$ правильна частина

Отримали ряд Лорана в околі $z=\infty$

Коефіцієнти ряду:

$$c_n = \frac{1}{2\pi i} \oint\limits_{\gamma} \frac{g(w)}{w^{n+1}} dw \equiv$$

Проведемо заміну: $w = \frac{1}{z} \Rightarrow g(w) = f(z)$

$$dw = -\frac{1}{z^2} dz$$

І візьмемо контур |w|=
ho - коло

Тоді якщо $w=\rho e^{it}, t\in [0,\vec{2}\pi]$ - обхід проти годинникової стрілки, то $z = \frac{1}{w} = \frac{1}{e^{-it}}, t \in [2\pi, 0]$ - обхід за годинникової стрілки

Отже, $|w|=\rho$ переводиться в $|z|=\frac{1}{\rho}$ зі зміном орієнтації

Тому
$$\gamma \to \gamma_-$$
 (перед інтегралом буде ще знак мінус)
$$= -\frac{1}{2\pi i} \oint_{\gamma} -\frac{f(z)z^{n+1}}{z^2} dz = \frac{1}{2\pi i} \oint_{\gamma} f(z)z^{n-1} dz$$

Остаточно:

$$c_n = \frac{1}{2\pi i} \oint_{\gamma} f(z) z^{n-1} dz$$

2.9.2 Ізольовані точки

Definition. Точка $z=\infty$ називається ізольованою особливою для f(z), якщо $\exists R :$ в області $\{z : |z| > R\}$, f - аналітична

Класифікація ізольованих точок:

- усувна, якщо $\exists \lim f(z)$
- полюс, якщо $\exists \lim_{z \to \infty} f(z) = \infty$ суттєва, якщо $\nexists \lim_{z \to \infty} f(z)$

Порядок полюса $z=\infty$: $\exists \lim_{z\to\infty} f(z)=\infty \iff \lim_{z\to\infty} \frac{1}{f(z)}=0$

Тоді порядком цієї точки функції f(z) називають кратність нуля функції $h(z) = \frac{1}{f(z)}$, а точніше кратність нуля точки $w_0 = 0$ для функції $g(w) = h\left(\frac{1}{w}\right)$

Proposition 1. Точка $z=\infty$ - усувна \iff ряд Лорана не містить головної частини

Proposition 2. Точка $z=\infty$ - полюс порядка $k\iff$ ряд Лорана містить k доданків головної частини

Proposition 3. Точка $z=\infty$ - суттєва $k\iff$ ряд Лорана містить нескінченну кількість доданків головної частини

Всі ці твердження випливають з того, що ряд Лорана в $z=\infty$ - це ряд Лорана в $w=\frac{1}{z}=0$

2.9.3 Лишки

Defintion. Задана функція f та ізольована точка $z = \infty$ Лишком функції f(z) в т. z називається наступний вираз:

$$\underset{z=\infty}{\operatorname{res}} f(z) = \frac{1}{2\pi i} \oint_{\gamma_{-}} f(z) \, dz$$

За межами γ_- немає інших особливих точок

Theorem. Задана функція f та ізольована точка $z=\infty$ Тоді $\mathop{\mathrm{res}}_{z=\infty} f(z)=-c_1$

Випливає з розкладу ряду Лорана та визначення коефіцієнтів

Шукати лишки можна за аналогічними теоремами в залежності від класифікації ізольованої точки

Example 2.9. Визначити тип ізольованої точки $z_* = \infty$ для функції $f(z) = 1 - z + 2z^2$ і знайти лишок

Тут вже функція розкладена в ряд Лорана в т. $z_* = \infty$, що містить дві доданки головної частини. А тому $z_* = \infty$ - полюс порядку 2

Коефіцієнт перед z: $c_1 = -1$

Tomy $\underset{z=\infty}{\operatorname{res}} f(z) = -c_1 = 1$

2.10 Застосування лишків до дійсних інтегралів

І. R(x,y) - дробово-раціональна функція від x,y

Розглянемо
$$\int_0^{2\pi} R(\cos x, \sin x) \, dx \equiv$$

Заміна:
$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$
, $\sin x = \frac{e^{ix} - e^{-ix}}{2i}$

 $e^{ix}=z\Rightarrow z\in\{z:|z|=1\}$ - коло радіуса 1, що рухається проти годинникової стрілки

$$e^{-ix} = \frac{1}{z}$$

$$\Rightarrow \cos x = \frac{z + \frac{1}{z}}{2} = \frac{z^2 + 1}{2z}$$

$$\Rightarrow \sin x = \frac{z - \frac{1}{z}}{2} = \frac{z^2 - 1}{2zi}$$

$$dz = ie^{ix} dx$$

$$\exists - \oint iR\left(\frac{z^2 + 1}{2z}, \frac{z^2 - 1}{2zi}\right) \frac{dz}{z} = 0$$

Підінтегральна функція - дробово-раціональний вираз від z, що має скінченну кількість особливих точок, в тому числі скінченну кількість полюсів в колі |z|=1

$$= 2\pi \sum_{j=1}^{n} \underset{z=z_{j}}{\operatorname{res}} \left(R\left(\frac{z^{2}+1}{2z}, \frac{z^{2}-1}{2zi}\right) \frac{1}{z} \right)$$

Example.
$$\int_0^{2\pi} \frac{dx}{2 + \cos x + \sin x} \equiv$$

Проводимо ту саму заміну: $z = e^{ix} \Rightarrow \cos x = \frac{z^2 + 1}{2z}$, $\sin x = \frac{z^2 - 1}{2zi}$

$$dx = \frac{-i}{z} dz$$

$$\equiv -i \oint_{|z|=1} \frac{1}{2 + \frac{z^2 + 1}{2z} + \frac{z^2 - 1}{2zi}} \frac{dz}{z} = \oint_{|z|=1} \frac{2}{4iz + iz^2 + i + z^2 - 1} dz =$$

$$= \oint_{|z|=1} \frac{2}{z^2 (1+i) + 4iz + i - 1} dz \equiv$$

Перепозначу:
$$f(z) = \frac{1}{z^2(1+i) + 4iz + i - 1}$$

Подивимось на особливі точки підінтегрального виразу:

$$z^{2}(1+i) + 4iz + i - 1 = 0$$
$$z_{1} = \frac{\sqrt{2} - 2}{2} + i\frac{\sqrt{2} - 2}{2}$$

$$z_2 = -\frac{\sqrt{2}+2}{2} - i\frac{\sqrt{2}+2}{2}$$

Обидва вони полюси першої кратності. Лише одна точка - z_1 - потрапляє в коло |z|=1

$$f(z) = \frac{1}{(1+i)(z-z_1)(z-z_2)}$$

$$\equiv 2 \cdot 2\pi i \underset{z=z_1}{\text{res}} f(z) = 4\pi i \lim_{z \to z_1} \frac{1}{(1+i)(z-z_2)} = 4\pi i \frac{1}{(1+i)(z_1-z_2)} = \cdots = \sqrt{2}\pi$$

II. Невласні дійсні інтеграли

Розглянемо
$$\int_{-\infty}^{+\infty} f(x)dx \stackrel{\text{обчислимо}}{=} = p.v. \int_{-\infty}^{+\infty} f(x)dx = \lim_{A \to \infty} \int_{-A}^{+A} f(x)dx$$

Theorem. Задана функція f(x) на \mathbb{R} така, що вона продовжується аналітично на верхню півплощину \mathbb{C} (тобто $\operatorname{Im} z \geq 0$) за виключенням скінченної кількості точок z_1, \dots, z_n

Наша функція
$$f(z)$$
 така, що $\exists \lim_{|z| \to \infty} |zf(z)| = 0$

Тоді

$$\int_{-\infty}^{+\infty} f(x)dx = 2\pi i \sum_{j=1}^{n} \underset{z=z_{j}}{\text{res}} f(z)$$

Proof.
$$\int_{-\infty}^{+\infty} f(x)dx = \lim_{R \to \infty} \int_{-R}^{R} f(x)dx =$$

$$= \lim_{R \to \infty} \left(\int_{[-R,R]} f(z)dz + \int_{\substack{|z|=R \\ \operatorname{Im} z \ge 0}} f(z)dz - \int_{\substack{|z|=R \\ \operatorname{Im} z \ge 0}} f(z)dz \right) =$$

$$= \lim_{R \to \infty} \left(\int_{[-R,R] \cup |z|=R \atop \operatorname{Im} z \ge 0} f(z)dz - \int_{\substack{|z|=R \\ \operatorname{Im} z \ge 0}} f(z)dz \right) \boxed{\equiv}$$

Обидва інтеграли мають напрямок в противогодинникової стрілки

Розглянемо
$$\left| \int\limits_{\substack{|z|=R\\ \text{Im }z\geq 0}} f(z)dz \right| \leq \int\limits_{\substack{|z|=R\\ \text{Im }z\geq 0}} |f(z)||dz| =$$

Заміна:
$$z = Re^{it}, t \in [0, \pi], |dz| = R dt$$

= $\int_0^{\pi} f(Re^{it})R dt$

Нас цікавить границя цього модулю:

$$\lim_{R \to \infty} f(Re^{it})R = \lim_{\substack{|z| \to \infty \\ |z| = R}} |zf(z)| \stackrel{\text{ymoba}}{=} 0$$

Звідси
$$\lim_{R \to \infty} \int_0^{\pi} f(Re^{it}) R \, dt = 0$$

Для великих R наш контур охоплює всі особливі точки f(z). Але наша кількість скінченна

$$= \sum_{j=1}^{n} \operatorname{res}_{z=z_j} f(z) \blacksquare$$

Example.
$$\int_{-\infty}^{+\infty} \frac{x^2 + 1}{x^4 + 1} dx = \boxed{\equiv}$$

Розглянемо функцію $f(z) = \frac{z^2 + 1}{z^4 + 1}$, при цьому Im z > 0

Для неї є чотири проблемні точки z_1, z_2, z_3, z_4 , але потрапляють лише z_1, z_4 - два полюси, обидва першого порядку:

$$z_{1} = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i \Rightarrow \underset{z=z_{1}}{\text{res}}f(z) = \frac{i+1}{(z_{1} - z_{2})(z_{1} - z_{3})(z_{1} - z_{4})^{2}} = \frac{1}{2\sqrt{2}i}$$

$$z_{4} = -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i \Rightarrow \underset{z=z_{4}}{\text{res}}f(z) = \frac{-i+1}{(z_{4} - z_{1})(z_{4} - z_{2})(z_{4} - z_{3})^{2}} = \frac{1}{2\sqrt{2}i}$$

I нарешті, треба перевірити умову: $\lim_{z\to\infty}zf(z)=\lim_{z\to\infty}z\cdot\frac{z^2+1}{z^4+1}=0$

III. Розглянемо
$$\int_{-\infty}^{+\infty} f(x) \cos \alpha x \, dx$$
 або $\int_{-\infty}^{+\infty} f(x) \sin \alpha x \, dx$

Варто зауважити, що $\cos \alpha x = \operatorname{Re} e^{i\alpha x}$, $\sin \alpha x = \operatorname{Im} e^{i\alpha x}$

Тому:

$$\int_{-\infty}^{+\infty} f(x) \cos \alpha x \, dx = \operatorname{Re} \int_{-\infty}^{+\infty} f(x) e^{i\alpha x} \, dx$$
$$\int_{-\infty}^{+\infty} f(x) \sin \alpha x \, dx = \operatorname{Im} \int_{-\infty}^{+\infty} f(x) e^{i\alpha x} \, dx$$

$$\int_{-\infty}^{+\infty} f(x)e^{i\alpha x} dx = p.v. \int_{-\infty}^{+\infty} f(x)e^{i\alpha x} dx = \lim_{R \to \infty} \int_{-R}^{R} f(x)e^{i\alpha x} dx$$

Lemma. Лема Жордана

Задана функція f - аналітична на верхній півплощині $\mathbb C$ за виключенням скінченної кількості особливих точок.

Відомо, що
$$\lim_{|z| \to \infty} \max_{\substack{|z| = R \ \operatorname{Im} z > 0}} |f(z)| = 0$$
. Тоді

$$\lim_{R \to \infty} \int_{\substack{|z| = R \\ \text{Im } z > 0}} f(z)e^{i\alpha z} \, dz = 0$$

$$\begin{vmatrix} \int_{\substack{|z|=R\\ \text{Im } z \geq 0}} f(z)e^{i\alpha z} \, dz \end{vmatrix} \leq \int_{\substack{|z|=R\\ \text{Im } z \geq 0}} |f(z)e^{i\alpha z}| \, |dz| = 2$$
Samina: $z = Re^{it}, t \in [0, \pi], |dz| = R \, dt$

$$= \int_0^{pi} \left| f(Re^{it})e^{iR\alpha e^{it}} \right| R dt \leq 1$$

 J_0 Розглянемо окремо $\left|e^{iR\alpha e^{it}}\right| = \left|e^{iR\alpha(\cos t + i\sin t)}\right| = \left|e^{iR\alpha\cos t}\right|\left|e^{-\alpha R\sin t}\right| = \left|e^{iR\alpha\cos t}\right|$

$$\sin t \ge \begin{cases} \frac{2}{\pi}t, t \in [0, \frac{\pi}{2}] \\ \frac{2}{\pi}(\pi - t), t \in [\frac{\pi}{2}, \pi] \end{cases}$$

Отже,
$$e^{-\alpha R \sin t} < e^{-\alpha R g(t)}$$

$$= \max_{|z|=R} |f(z)| \frac{\pi}{\alpha} \left(1 - e^{-\alpha R}\right)$$

Якщо $R \to \infty$, то отриманий вираз прямує до нуля. Таким чином,

Рис. 10: Червоний - $\sin t$, Синій - g(t)

$$\lim_{R \to \infty} \int_{\substack{|z| = R \\ \text{Im } z > 0}} f(z)e^{i\alpha z} \, dz = 0 \, \blacksquare$$

Theorem. Задана функція f(x) на \mathbb{R} така, що вона продовжується аналітично на верхню півплощину \mathbb{C} за виключенням скінченної кількості точок z_1, \dots, z_n

Наша функція
$$f(z)$$
 така, що $\exists\lim_{|z|\to\infty}\max_{\substack{|z|=R\\ \mathrm{Im}\,z\geq 0}}|f(z)|=0$

Тоді

$$\int_{-\infty}^{+\infty} f(x)e^{i\alpha x} dx = 2\pi i \sum_{j=1}^{n} \underset{z=z_{j}}{\text{res}} f(z)e^{i\alpha z}$$

Proof.

$$\int_{-\infty}^{+\infty} f(x)e^{i\alpha x} dx = \lim_{R \to \infty} \left(\int_{\substack{[-R,R] \\ |R| \to \infty}} f(z)e^{i\alpha z} dz + \int_{\substack{|z| = R \\ \text{Im } z \geq 0}} f(z)e^{i\alpha z} dz - \int_{\substack{|z| = R \\ \text{Im } z \geq 0}} f(z)e^{i\alpha z} dz \right) = \lim_{R \to \infty} \left(\int_{\substack{[-R,R] \cup |z| = R \\ \text{Im } z \geq 0}} f(z)e^{i\alpha z} dz - \int_{\substack{|z| = R \\ \text{Im } z \geq 0}} f(z)e^{i\alpha z} dz \right) \xrightarrow{\text{Lm. } \text{Жордана}} = \lim_{R \to \infty} (2\pi i) \sum_{j=1}^{n} \underset{z=z_{j}}{\text{res}} f(z)e^{i\alpha z} = 2\pi i \sum_{j=1}^{n} \underset{z=z_{j}}{\text{res}} f(z)e^{i\alpha z} = 1 \text{ Im } \sum_{j=1}^{n} \underset{z=z_{j}}{\text{res}} f(z)e^{i\alpha z} = 1 \text{ Im } \sum_{j=1}^{n} \underset{z=z_{j}}{\text{res}} f(z)e^{i\alpha z} = 1 \text{ Im } \sum_{j=1}^{n} \underset{z=z_{j}}{\text{res}} f(z)e^{i\alpha z} = 1 \text{ Im } \sum_{j=1}^{n} \underset{z=z_{j}}{\text{res}} f(z)e^{i\alpha z} = 1 \text{ Im } \sum_{j=1}^{n} \underset{z=z_{j}}{\text{res}} f(z)e^{i\alpha z} = 1 \text{ Im } \sum_{j=1}^{n} \underset{z=z_{j}}{\text{res}} f(z)e^{i\alpha z} = 1 \text{ Im } \sum_{j=1}^{n} \underset{z=z_{j}}{\text{res}} f(z)e^{i\alpha z} = 1 \text{ Im } \sum_{j=1}^{n} \underset{z=z_{j}}{\text{res}} f(z)e^{i\alpha z} = 1 \text{ Im } \sum_{j=1}^{n} \underset{z=z_{j}}{\text{res}} f(z)e^{i\alpha z} = 1 \text{ Im } \sum_{j=1}^{n} \underset{z=z_{j}}{\text{res}} f(z)e^{i\alpha z} = 1 \text{ Im } \sum_{j=1}^{n} \underset{z=z_{j}}{\text{res}} f(z)e^{i\alpha z} = 1 \text{ Im } \sum_{j=1}^{n} \underset{z=z_{j}}{\text{Im }} f(z)e^{i\alpha z} = 1 \text{ Im } \sum_{j=1}^{n} \underset{z=z_{j}}{\text{Im }} f(z)e^{i\alpha z} = 1 \text{ Im } \sum_{j=1}^{n} \underset{z=z_{j}}{\text{Im }} f(z)e^{i\alpha z} = 1 \text{ Im } \sum_{j=1}^{n} \underset{z=z_{j}}{\text{Im }} f(z)e^{i\alpha z} = 1 \text{ Im } \sum_{j=1}^{n} \underset{z=z_{j}}{\text{Im }} f(z)e^{i\alpha z} = 1 \text{ Im } \sum_{j=1}^{n} \underset{z=z_{j}}{\text{Im }} f(z)e^{i\alpha z} = 1 \text{ Im } \sum_{j=1}^{n} \underset{z=z_{j}}{\text{Im }} f(z)e^{i\alpha z} = 1 \text{ Im } \sum_{j=1}^{n} \underset{z=z_{j}}{\text{Im }} f(z)e^{i\alpha z} = 1 \text{ Im } \sum_{j=1}^{n} \underset{z=z_{j}}{\text{Im }} f(z)e^{i\alpha z} = 1 \text{ Im } \sum_{j=1}^{n} \underset{z=z_{j}}{\text{Im }} f(z)e^{i\alpha z} = 1 \text{ Im } \sum_{j=1}^{n} \underset{z=z_{j}}{\text{Im }} f(z)e^{i\alpha z} = 1 \text{ Im } \sum_{j=1}^{n} \underset{z=z_{j}}{\text{Im }} f(z)e^{i\alpha z} = 1 \text{ Im } \sum_{j=1}^{n} f(z)e^{i\alpha z} = 1 \text{ Im } \sum_{j=1}^{$$

потрапляє в нашу область

Більш того,
$$\lim_{z \to \infty} f(z) = \lim_{z \to \infty} \frac{z}{z^2 + 4z + 20} = 0$$

$$\equiv \operatorname{Im}[2\pi i \operatorname{res}_{z=z_1} f(z) e^{iz}] = \operatorname{Im} \left[2\pi i \lim_{z \to -2 + 4i} \frac{z e^{iz}}{2 + 2 + 4i} \right] = \dots =$$

$$= \operatorname{Im} \left[\frac{\pi}{4} e^{-4} (4i - 2)(\cos 2 - i \sin 2) \right] = \frac{\pi}{4} e^{-4} (4\cos 2 + 2\sin 2)$$

3 Ряди Фур'є

Передмова до цієї теми

Зазвичай аби розповісти про ряди Фур'є та їхнє появлення на світ, необіхдно знати багато тем з лінійної алгебри 2 семестру. Користуючись нагодою, я хочу передати величезний "привіт" одному викладачу, що максимально завалив зміст дисципліни лін. ал. (із КН ММСА)

І водночає двічі вдячний ГБ за уникнення таких складнощів та дав, в принципі, достойне оповідання рядів Фур'є без лінійки.

3.1 Початок

Нехай задана g(z) - аналітична в кільці $K = \{z : 1 - \varepsilon_1 < |z| < 1 + \varepsilon_2\}.$

Причому $\{z: |z|=1\} \subset K$

Розкладемо g(z) в ряд Лорана за степенем z в цьому кільці:

$$g(z)=\sum_{n=-\infty}^{\infty}c_nz^n,$$
де $c_n=rac{1}{2\pi i}\oint\limits_{|z|=1}rac{g(z)}{z^{n+1}}\,dz$

А тепер зробимо наступне:

$$|z|=1\Rightarrow z=e^{ix}, x\in [0,2\pi]$$
. Тоді $g(z)=g(e^{ix})\stackrel{\text{позн}}{=} f(x)$

$$g(z) = g(e^{ix}) \stackrel{\text{\tiny HO3H}}{=} f(x)$$

$$c_n = \frac{1}{2\pi i} \oint_{|z|=1}^{\pi} \frac{g(z)}{z^{n+1}} dz \stackrel{z=e^{ix}}{=} \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(x)}{e^{(n+1)ix}} ie^{ix} dx = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{-inx} dx$$

Отримали комплексну форму ряду Фур'є

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx}, c_n = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-inx} dx$$

Є деякі необхідні умови:

 $f \in D([0,2\pi]) \iff f$ - 2π -періодична інтегрована на будь-якому відрізку $\iff f \in D([-\pi, \pi])$

За функцією f(x) будуємо ряд Фур'є:

$$S(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx}, c_n = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-inx} dx$$

Головні питання до цього ряду:

- 1) збіжність ряду Фур'є
- 2) якщо збігається, то який зв'язок між S(x) та f(x)

Будемо вивчати для випадку f(x) - дійснозначна функція (в подальшому)

Розглянемо ряд Фур'є

$$\sum_{n=-\infty}^{-1} c_n + c_0 + \sum_{n=1}^{\infty} c_n = c_0 + \sum_{k=1}^{\infty} c_{-k} e^{-ikx} + \sum_{n=1}^{\infty} c_n e^{inx} =$$

Коефіцієнти головної частини:

$$c_{-k} = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{ikx} dx = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{-ikx} dx = \overline{c_k}$$

Tomy
$$c_{-k}e^{-ikx} = \overline{c_k}e^{ikx} = \overline{c_k}e^{ikx}$$

$$= c_0 + \sum_{n=1}^{\infty} \left(\overline{c_n e^{inx}} + c_n e^{inx} \right) =$$

Маленький комплексний факт:

$$\begin{cases} w = a + ib \\ \overline{w} = a - ib \end{cases} \Rightarrow w + \overline{w} = 2a = 2 \operatorname{Re} w$$

З'ясуємо більш детально про коефіцієнт:

$$c_n = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{-inx} dx = \frac{1}{2\pi} \int_0^{2\pi} f(x)\cos nx \, dx - i\frac{1}{2\pi} \int_0^{2\pi} f(x)\sin nx \, dx$$

Тоді:

$$\operatorname{Re}(c_n e^{inx}) =$$

$$= \operatorname{Re}\left(\left(\frac{1}{2\pi} \int_0^{2\pi} f(x)\cos nx \, dx - i\frac{1}{2\pi} \int_0^{2\pi} f(x)\sin nx \, dx\right) \cdot (\cos nx + i\sin nx)\right) = \frac{1}{2\pi i} \left(\int_0^{2\pi} f(x)\cos nx \, dx \cdot \cos nx + \int_0^{2\pi} f(x)\sin nx \, dx \cdot \sin nx\right)$$

$$\boxed{ } c_0 + \sum_{n=1}^{\infty} \frac{1}{\pi} \left(\int_0^{2\pi} f(x) \cos nx \, dx \cdot \cos nx + \int_0^{2\pi} f(x) \sin nx \, dx \cdot \sin nx \right)$$

$$c_0 = \frac{1}{2\pi} \int_0^{2\pi} f(x) \, dx$$

Отримали дійсну формулу ряда Фур'є:

$$f(x) \leadsto \frac{a_0}{2} + \sum_{n=0}^{\infty} a_n \cos nx + b_n \sin nx$$
$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos nx \, dx, n \in \mathbb{N} \setminus \{0\}$$
$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin nx \, dx, n \in \mathbb{N}$$

Але ці формули для функції 2π -періодичних

Розглянемо відображення $[0,2\pi] \leftarrow [0,2l]$

$$[0, 2\pi] \to x, \ x = \frac{t}{l}\pi, t \in [0, 2l]$$

Тоді $f(x)=f(\frac{t}{l}\pi)\stackrel{\text{позн}}{=} g(t)$ - задана на [0,2l], тобто 2l-періодична

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos nx \, dx = \frac{t}{l} \frac{1}{l} \int_0^{2l} g(t) \cos \left(\frac{\pi nt}{l}\right) \, dt$$

$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin nx \, dx \stackrel{x = \frac{l}{l}\pi}{=} \frac{1}{l} \int_0^{2l} g(t) \sin \left(\frac{\pi nt}{l}\right) \, dt$$

Тоді розклад в ряд:

$$g(t) \leadsto \frac{a_0}{2} + \sum_{n=0}^{\infty} a_n \cos\left(\frac{\pi nt}{l}\right) + b_n \sin\left(\frac{\pi nt}{l}\right)$$

Найчастіше зручно шукати коефіцієнти в такому вигляді:

$$a_n = \frac{1}{l} \int_{-l}^{l} g(t) \cos\left(\frac{\pi nt}{l}\right) dt$$
$$b_n = \frac{1}{l} \int_{-l}^{l} g(t) \sin\left(\frac{\pi nt}{l}\right) dt$$

3.2 Аналіз збіжності ряду

Lemma 3.2.1. Лема Рімана

Задана функція $f \in D([a,b])$ (навіть в невласному сенсі абсолютно).

Тоді

1)
$$\int_{a}^{b} f(x) \cos \lambda x \, dx \to 0, \lambda \to \infty$$
2)
$$\int_{a}^{b} f(x) \sin \lambda x \, dx \to 0, \lambda \to \infty$$

Proof.

Доведемо перший пукнт, другий аналогічно Ми розглянемо чотири випадки функції f:

a)
$$f(x) = c$$
 (константа)

$$\Rightarrow \int_{a}^{b} f(x) \cos \lambda x \, dx = \frac{c}{\lambda} \sin \lambda x \Big|_{a}^{b} = \frac{c}{\lambda} \left(\sin \lambda b - \sin \lambda a \right) \stackrel{\lambda \to \infty}{\to} 0$$

б)
$$f(x) = \sum_{k=1}^{n} c_k 1_{<\alpha_k,\beta_k>}(x)$$
 (проста функція)

$$\Rightarrow \int_a^b f(x)\cos\lambda x \, dx = \sum_{k=1}^n \int_a^b 1_{<\alpha_k,\beta_k>}(x)c_k\cos\lambda x \, dx = \sum_{k=1}^n c_k \int_{\alpha_k}^{\beta_k} \cos\lambda x \, dx = \sum_{k=1}^n c_k$$

$$\frac{1}{\lambda} \sum_{k=1}^{n} c_k (\sin \lambda \beta_k - \sin \lambda \alpha_k) \stackrel{\lambda \to \infty}{\to} 0$$

в)
$$f \in D([a,b])$$
, або $\exists \{p_n(x), n \geq 1\} : p_n \Rightarrow f$ (інтегрована функція) $\Rightarrow \forall \varepsilon : \exists N : \sup_{x \in [a,b]} |p_N(x) - f(x)| < \varepsilon \iff$ $\forall x \in [a,b] : p_N(x) - \varepsilon < f(x) < p_N(x) + \varepsilon$

$$\Rightarrow \forall \varepsilon : \exists N : \sup_{x \in [a,b]} |p_N(x) - f(x)| < \varepsilon \iff$$

$$\forall x \in [a, b] : p_N(x) - \varepsilon < f(x) < p_N(x) + \varepsilon$$

$$\Rightarrow \left| \int_{a}^{b} f(x) \cos \lambda x \, dx - \int_{a}^{b} p_{N}(x) \cos \lambda x \, dx \right| = \left| \int_{a}^{b} (f(x) - p_{N}(x)) \cos \lambda x \, dx \right| \le$$

$$\leq \int_{a}^{b} |f(x) - p_{N}(x)| |\cos \lambda x| \, dx \leq \int_{a}^{b} \varepsilon \, dx = \varepsilon (b - a)$$

Таким чином оскільки за п. б), $\int_{a}^{b} p_{N}(x) \cos \lambda x \, dx \stackrel{\lambda \to \infty}{\to} 0$, то

$$\forall \varepsilon > 0 : \exists \Lambda : \forall |\lambda| > \Lambda : \left| \int_a^b p_N(x) \cos \lambda x \, dx \right| < \varepsilon(b-a)$$

Звідси маємо:

$$\left| \int_{a}^{b} f(x) \cos \lambda x \, dx \right| \le \left| \int_{a}^{b} f(x) \cos \lambda x \, dx - \int_{a}^{b} p_{N}(x) \cos \lambda x \, dx \right| + \left| \int_{a}^{b} p_{N}(x) \cos \lambda x \, dx \right| < 2\varepsilon(b-a)$$

Отже, за означенням,
$$\int_a^b f(x) \cos \lambda x \, dx \stackrel{\lambda \to \infty}{\to} 0$$

г) випадок невласного інтегралу, що збіжний абсолютно, тобто (наприклад)

$$\int_{a}^{b} f(x) \cos \lambda x \, dx = \lim_{\delta \to 0+} \int_{a}^{b-\delta} f(x) \cos \lambda x \, dx$$

 $\int_a^b f(x) \cos \lambda x \, dx = \lim_{\delta \to 0+} \int_a^{b-\delta} f(x) \cos \lambda x \, dx$ (аналогічно для особливої точки a, або коли маємо безліч особливих

точок
$$c_1, \ldots, c_n \in (a, b)$$
)

ТОЧОК
$$c_1, \ldots, c_n \in (a, b)$$
)
$$\left| \int_a^b f(x) \cos \lambda x \, dx \right| = \left| \int_a^{b-\delta} f(x) \cos \lambda x \, dx + \int_{b-\delta}^b f(x) \cos \lambda x \, dx \right| \le$$

$$\leq \left| \int_a^{b-\delta} f(x) \cos \lambda x \, dx \right| + \int_{b-\delta}^b |f(x)| |\cos \lambda x| \, dx \le$$

$$\leq \left| \int_a^{b-\delta} f(x) \cos \lambda x \, dx \right| + \int_{b-\delta}^b |f(x)| |dx \le$$

Оскільки
$$\int_a^b |f(x)| \, dx$$
 збігається, то $\forall \varepsilon > 0 : \exists \delta : \int_{b-\delta}^b |f(x)| \, dx < \frac{\varepsilon}{2}$

Більш того, за п. в),
$$\int_a^{b-\delta} f(x) \cos \lambda x \, dx \stackrel{\lambda \to \infty}{\to} 0$$
, тому $\exists \Lambda : \forall |\lambda| > \Lambda :$

$$\left| \int_{a}^{b-\delta} f(x) \cos \lambda x \, dx \right| < \frac{\varepsilon}{2}$$

$$| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Отже, за означенням,
$$\int_a^b f(x) \cos \lambda x \, dx \stackrel{\lambda \to \infty}{\to} 0 \blacksquare$$

Розглянемо частковий ряд: $S_k(x) = \frac{a_0}{2} + \sum_{n=0}^{\infty} a_n \cos nx + b_n \sin nx$, де

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos nt \, dt, \, b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin nt \, dt$$

$$\pi J_{-\pi}$$
 тоді, $\pi J_{-\pi}$

$$S_k(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt + \frac{1}{\pi} \sum_{n=1}^{k} \int_{-\pi}^{\pi} f(t) \cos nt \, dt \cos nx + \int_{-\pi}^{\pi} f(t) \sin nt \, dt \sin nx = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \, dt + \frac{1}{\pi} \sum_{n=1}^{k} \int_{-\pi}^{\pi} f(t) \cos nt \, dt \cos nx + \int_{-\pi}^{\pi} f(t) \sin nt \, dt \sin nx = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \, dt + \frac{1}{\pi} \sum_{n=1}^{k} \int_{-\pi}^{\pi} f(t) \cos nt \, dt \cos nx + \int_{-\pi}^{\pi} f(t) \sin nt \, dt \sin nx = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \, dt + \frac{1}{2\pi} \sum_{n=1}^{k} \int_{-\pi}^{\pi} f(t) \cos nt \, dt \cos nx + \int_{-\pi}^{\pi} f(t) \sin nt \, dt \sin nx = \frac{1}{2\pi} \int$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt + \frac{1}{\pi} \sum_{n=1}^{k} \int_{-\pi}^{\pi} f(t) (\cos nt \cos nx + \sin nt \sin nx) dt =$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt + \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sum_{n=1}^{k} \cos n(t-x) dt =$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \left(\frac{1}{2} + \sum_{n=1}^{k} \cos n(t-x) \right) dt$$

Знайдемо суму підінтегрального виразу:

$$\frac{1}{2} + \sum_{n=1}^{k} \cos n\alpha = \frac{1}{2} + \sum_{n=1}^{k} \frac{\cos n\alpha \sin \frac{\alpha}{2}}{\sin \frac{\alpha}{2}} =$$

$$= \frac{1}{2} + \frac{1}{\sin \frac{\alpha}{2}} \cdot \frac{1}{2} \sum_{n=1}^{k} \left(\sin \left(\frac{\alpha}{2} + n\alpha \right) + \sin \left(\frac{\alpha}{2} - n\alpha \right) \right) =$$

$$= \frac{1}{2} + \frac{1}{2 \sin \frac{\alpha}{2}} \left(\sin \frac{3\alpha}{2} - \sin \frac{\alpha}{2} + \sin \frac{5\alpha}{2} - \sin \frac{3\alpha}{2} + \dots + \sin \frac{(2k+1)\alpha}{2} - \sin \frac{(2k-1)\alpha}{2} \right)$$

$$= \frac{1}{2} + \frac{1}{2 \sin \frac{\alpha}{2}} \left(\sin \frac{(2k+1)\alpha}{2} - \sin \frac{\alpha}{2} \right) = \frac{\sin \left(\frac{(2k+1)\alpha}{2} \right)}{2 \sin \left(\frac{\alpha}{2} \right)}$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \frac{\sin\left(\frac{(2k+1)(t-x)}{2}\right)}{2\sin\left(\frac{(t-x)}{2}\right)} dt \stackrel{t-x=u}{=} \frac{1}{2\pi} \int_{-\pi-x}^{\pi-x} f(u+x) \frac{\sin\left(\frac{(2k+1)}{2}u\right)}{\sin\left(\frac{1}{2}u\right)} du =$$

Наша функція f - 2π -періодична, також і друга функція (як сума \cos).

Тоді границю
$$[-\pi - x, \pi - x]$$
 можна замінити на $[-\pi, \pi]$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(u+x) \frac{\sin\left(\frac{(2k+1)}{2}u\right)}{\sin\left(\frac{1}{2}u\right)} du =$$

$$= \frac{1}{2\pi} \int_{0}^{\pi} f(u+x) \frac{\sin\left(\frac{(2k+1)}{2}u\right)}{\sin\left(\frac{1}{2}u\right)} du + \frac{1}{2\pi} \int_{-\pi}^{0} f(u+x) \frac{\sin\left(\frac{(2k+1)}{2}u\right)}{\sin\left(\frac{1}{2}u\right)} du =$$
Зробимо заміну в пругому інтегралі: $u = -u$ і замінимо потім на літер

Зробимо заміну в другому інтегралі: u=-v і замінимо потім на літеру u. Отримаємо наступне

$$\equiv \frac{1}{2\pi} \int_0^{\pi} f(x+u) \frac{\sin\left(\frac{(2k+1)}{2}u\right)}{\sin\left(\frac{1}{2}u\right)} + f(x-u) \frac{\sin\left(\frac{(2k+1)}{2}u\right)}{\sin\left(\frac{1}{2}u\right)} du =$$

$$= \frac{1}{\pi} \int_0^{\pi} (f(x+u) + f(x-u)) \frac{\sin\left(\frac{(2k+1)}{2}u\right)}{2\sin\left(\frac{1}{2}u\right)} du$$

Таким чином ми довели теорему:

Theorem 3.2.2. Задана функція f - 2π -періодична, інтегрована. Тоді $S_k(x) = \frac{a_0}{2} + \sum_{n=0}^{k} a_n \cos nx + b_n \sin nx$ - часткова сума ряду Фур'є дорівнює іншому виразу:

$$S_k(x) = \frac{1}{\pi} \int_0^{\pi} (f(x+u) + f(x-u)) D_k(u) du$$

Перепозначення:
$$\frac{\sin\left(\frac{(2k+1)}{2}u\right)}{2\sin\left(\frac{1}{2}u\right)} = \frac{1}{2} + \sum_{n=1}^k \cos ku = D_k(u)$$
 - ядро Діріхле

Властивості ядра Діріхле:

1) $D_k(u)$ - парна, 2π -періодична функція

2)
$$\frac{1}{\pi} \int_{-\pi}^{\pi} D_k(u) du = 1$$

Proof.

1. Вже доводили під час муток з формулами

2.
$$\int_{-\pi}^{\pi} D_k(u) du = \int_{-\pi}^{\pi} \frac{1}{2} du + \sum_{n=1}^{k} \int_{-\pi}^{\pi} \cos ku du = \frac{1}{2} 2\pi = \pi \blacksquare$$

Але нас ще цікавить збіжність часткового ряду

Розглянемо рівність:

$$S_k(x) - c = \frac{1}{\pi} \int_0^\pi (f(x+u) + f(x-u)) D_k(u) du - c \frac{1}{\pi} \int_{-\pi}^\pi D_k(u) du =$$

$$= \frac{1}{\pi} \int_0^\pi (f(x+u) + f(x-u)) D_k(u) du - c \frac{2}{\pi} \int_0^\pi D_k(u) du =$$

$$= \frac{1}{\pi} \int_0^\pi (f(x+u) + f(x-u) - 2c) D_k(u) du =$$
Позначимо $f(x+u) + f(x-u) - 2c = g_{c,x}(u)$

$$= \frac{1}{\pi} \int_0^\pi g_{c,x}(u) D_k(u) du$$

Сформулюємо зараз нову теорему та доведемо її:

Theorem 3.2.3. Ознака Діні (для рядів Φ ур'є)

Задана функція f - 2π -періодчина, інтегрована.

Якщо
$$\exists \delta > 0: \int_0^\delta \frac{|g_{c,x}(u)|}{u} \, du$$
 - збіжний, то $S_k(x) \to c, k \to \infty$

Proof.

Вже з'ясували, що
$$S_k(x) - c = \frac{1}{\pi} \int_0^{\pi} g_{c,x}(u) D_k(u) du =$$

$$= \frac{1}{\pi} \int_0^{\delta} g_{c,x}(u) D_k(u) \, du + \frac{1}{\pi} \int_{\delta}^{\pi} g_{c,x}(u) D_k(u) \, du$$

Розглянемо доданки по черзі:

2.
$$\frac{1}{\pi} \int_{\delta}^{\pi} g_{c,x}(u) \frac{\sin\left(\frac{(2k+1)}{2}u\right)}{2\sin\left(\frac{1}{2}u\right)} du \to 0, k \to \infty$$

за лемою Рімана, тому що $\frac{g_{c,x}(u)}{\sin\left(\frac{1}{2}u\right)}$ - функція без особових точок та

інтегрована

1.
$$\frac{1}{\pi} \int_0^{\delta} g_{c,x}(u) \frac{\sin\left(\frac{(2k+1)}{2}u\right)}{2\sin\left(\frac{1}{2}u\right)} du$$

Можемо застосувати лему Рімана. Але треба зазначити, що $\int_0^{\delta} \left| \frac{g_{c,x}(u)}{2\sin(\frac{u}{2})} \right| du$

збіжний абсолютно. Перевіримо за ознакою порівняння в граничній формі.

За умовою теореми,
$$\int_0^{\delta} \frac{|g_{c,x}(u)|}{u} du$$
 - збіжний

$$\lim_{u \to 0} \frac{\frac{|g_{c,x}(u)|}{2\sin\frac{u}{2}}}{\frac{|g_{c,x}(u)|}{2\sin\frac{u}{2}}} = \lim_{u \to 0} \frac{u}{2\sin\frac{u}{2}} = 1$$

Отже, наш інтеграл збіжний. Тоді за лемою Рімана,

$$\frac{1}{\pi} \int_0^{\delta} g_{c,x}(u) \frac{\sin\left(\frac{(2k+1)}{2}u\right)}{2\sin\left(\frac{1}{2}u\right)} du \to 0, \ k \to \infty$$

Остаточно: $S_k(x) \stackrel{\sim}{-} \stackrel{\sim}{c} \to 0, k \to \infty$

Corollary 3.2.3.(1). Якщо f - диференційована в т. x_0 , то $S_k(x_0) \to f(x_0), k \to \infty$

Proof.

З ознаки Діні випливає, що достатньо перевірити збіжність інтеграла за умовою теореми

А зараз:

$$g_{c,x_0}(u) = f(x_0 + u) + f(x_0 - u) - 2c \stackrel{c=f(x_0)}{=} (f(x_0 + u) - f(x_0)) + (f(x_0 - u) - f(x_0))$$

$$\Rightarrow \frac{|g_{c,x_0}(u)|}{u} = \frac{|(f(x_0 + u) - f(x_0)) + (f(x_0 - u) - f(x_0))|}{u} =$$

$$= \left| \frac{f(x_0 + u) - f(x_0)}{u} + \frac{f(x_0) - f(x_0 - u)}{-u} \right| \stackrel{u \to 0}{\to} |f'(x_0) + f'(x_0)| = |f'(x_0)|$$

Таким чином, у підінтегрованої функції т. u=0 є усувною. Тому збіжний Отже, $S_k(x_0) \to f(x_0), k \to \infty$

Corollary 3.2.3.(2). Якщо для f т. x_0 є стрибком та містить ліву і праву похідну, то $S_k(x_0) \to \frac{1}{2}(f(x_0,+)+f(x_0,-))$

$$c = \frac{1}{2}(f(x_0, +) + f(x_0, -))$$
Тоді $g_{c,x_0}(u) = f(x_0 + u) - f(x_0, +) + f(x_0 - u) - f(x_0, -)$

$$\Rightarrow \frac{|g_{c,x_0}(u)|}{u} = \frac{|(f(x_0 + u) - f(x_0, +)) + (f(x_0 - u) - f(x_0, -))|}{u} = \frac{|f(x_0 + u) - f(x_0, +)|}{u} = \frac{|f(x_0 + u) - f(x_0, +)|}{u}$$

$$= \left| \frac{f(x_0+u) - f(x_0,+)}{u} + \frac{f(x_0,-) - f(x_0-u)}{-u} \right| \stackrel{u\to 0}{\to} |f'(x_0,+) + f'(x_0,-)|$$
 Тоді інтеграл в ознаку Діні збігається. Отже $S_k(x_0) \to c$

Corollary 3.2.3.(3). Якщо f задовільняє умові Ліпшиця в околі т. x_0 , то $S_k(x) \to f(x_0), k \to \infty$

Proof.

$$c = f(x_0)$$

$$\Rightarrow \frac{|g_{c,x_0}(u)|}{u} = \frac{|(f(x_0 + u) - f(x_0)) + (f(x_0 - u) - f(x_0))|}{u} \le \frac{|f(x_0 + u) - f(x_0)|}{u} + \frac{|f(x_0 - u) - f(x_0)|}{u} \le \frac{Lu}{u} + \frac{Lu}{u} = 2L$$

Тобто така функція є обмеженою в околі $(0, \delta)$, тому є інтегрованою За ознаки Діні, $S_k(x) \to f(x_0)$

Проаналізуємо тепер ряд Фур'є на рівномірну збіжність **Theorem 3.2.4.** Задана функція f - 2π -періодчина, кусково неперервно-диференційована. Тоді ряд Фур'є рівномірно збігається до f

Без доведення, бо я заплутався вже (в цей день ГБ не щастило)

Example. Розкласти функцію в ряд Фур'є f(x) = 6 - x на проміжку (3,9)

 $\ddot{\text{I}}$ ї період T=6=2l, тому l=3

Ряд Фур'є містить таку форму:

$$S(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos\left(\frac{\pi nx}{3}\right) + b_n \sin\left(\frac{\pi nx}{3}\right)$$

Знайдемо всі коефіцієнти за формулами:

$$a_n = \frac{1}{3} \int_3^9 (6-x) \cos\left(\frac{\pi nx}{3}\right) dx = 0, \forall n \neq 0$$

Можна міркувати двома способами чому 0: або через періодичність ми можемо змінити границі інтегрування на [-3,3] та використати той факт, що функція - непарна; або площа фігури [3,6] рівний протилежно площі фігури [6.9]. Другий варіант все ж таки більш сприятливий

$$a_n = \frac{1}{3} \int_3^9 (6-x) \, dx \stackrel{\text{ті самі міркування}}{=} 0$$
 $b_n = \frac{1}{3} \int_3^9 (6-x) \sin\left(\frac{\pi nx}{3}\right) \, dx \stackrel{u=6-x}{=} \dots \stackrel{dv=\sin\left(\frac{\pi nx}{3}\right) dx}{=} (-1)^n \frac{6}{\pi n}$
Отже, $f(x) \leadsto S(x) = \sum_{n=1}^{\infty} (-1)^n \frac{6}{\pi n} \sin\left(\frac{\pi nx}{3}\right)$

У нас тут функція f - диференційована в т. $x \neq 3+6k, k \in \mathbb{Z}$. Тоді за

першим наслідком ознаки Діні, S(x) = f(x)

При $x_k = 3 + 6k$ ці точки є стрибками, а також містять ліву та праву похідні. Тоді за другим наслідком ознаки Діні,

$$S(x_k) = \frac{1}{2}(f(x_k+) + f(x_k-)) = 0$$

Рис. 11: Червоний графік відповідає розкладу в ряд Фур'є (тут я взяв лише 10 доданків; при нескінченної кількості вона буде схожа за наш початковий графік, оскім стрибків)

3.3 Додатковий зміст із практики (*)

Властивості ряду Фур'є

- 1. Якщо на (-l,l) задана непарная функція f, то $\forall n\geq 1: a_n=0$
- 2. Якщо на (-l,l) задана парна функція f, то $\forall n\geq 1: b_n=0$
- 3. Якщо $f \in C((-l,l))$, що є 2l-періодична, то $f \in C(\mathbb{R})$ Залишу без доведення

Розклад функції f(x), що задана на [0,l), в ряд за косінус та сінус

1. \cos - Φ yp' ε

Продовжимо нашу функцію на (-l,0) парним чином, тобто:

$$\tilde{f}(x) = \begin{cases} f(x), x \in [0, l) \\ f(-x), x \in (-l, 0) \end{cases}$$

Якщо обережно перевірити, то $\tilde{f}(-x) = \tilde{f}(x), x \in (-l, l)$ Оскільки вона парна, то $\forall n \geq 1 : b_n = 0$

$$\Rightarrow \tilde{f}(x) \rightsquigarrow S(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{\pi nx}{l}\right)$$

Причому
$$a_n = \frac{1}{\pi} \int_{-l}^{l} \tilde{f}(x) \cos\left(\frac{\pi nx}{l}\right) dx = \frac{2}{l} \int_{0}^{l} f(x) \cos\left(\frac{\pi nx}{l}\right) dx$$

Ну а якщо виконаються ознаки Діні, то при $x \in [0, l)$:

$$S(x) = \tilde{f(x)} = f(x)$$

2. sin-Φyp' ϵ

Продовжимо нашу функцію на (-l,0) непарним чином, тобто:

$$\tilde{f}(x) = \begin{cases} f(x), x \in [0, l) \\ -f(-x), x \in (-l, 0) \end{cases}$$

Якщо обережно перевірити, то $\tilde{f}(-x) = -\tilde{f}(x), x \in (-l, l)$ Оскільки вона непарна, то $\forall n \geq 1 : a_n = 0$

$$\Rightarrow \tilde{f}(x) \rightsquigarrow S(x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{\pi nx}{l}\right)$$

Причому
$$b_n = \frac{1}{\pi} \int_{-l}^{l} \tilde{f}(x) \sin\left(\frac{\pi nx}{l}\right) dx = \frac{2}{l} \int_{0}^{l} f(x) \sin\left(\frac{\pi nx}{l}\right) dx$$

Ну а якщо виконаються ознаки Діні, то при $x \in [0, l)$:

$$S(x) = \tilde{f(x)} = f(x)$$

Example. Розкласти функцію f(x) = x - 1 в косінус-ряд, $x \in (0, 2)$ Робимо той самий алгоритм:

$$\tilde{f}(x) = \begin{cases} x - 1, x \in (0, 2) \\ -x - 1, x \in (-2, 0) \end{cases}$$
 - 4-періодична, до речі $\Rightarrow l = 2$

Обчислимо коефіцієнти:

$$a_n = \frac{2}{2} \int_0^2 (x-1) \cos\left(\frac{\pi nx}{2}\right) dx \stackrel{\text{ну там 3а частинами}}{=} \begin{bmatrix} 0, n = 2k \\ \frac{-8}{\pi^2 (2k+1)^2}, n = 2k+1 \end{bmatrix}$$

Таким чином,
$$S(x) = \sum_{k=1}^{\infty} \frac{-8}{\pi^2 (2k+1)^2} \cos\left(\frac{\pi (2k+1)x}{2}\right)$$

Функція $\tilde{f}(x)$ на (0,2) є диференційованою, тому за наслідком ознаки Діні,

$$f(x) = f(x) = x - 1 = \sum_{k=1}^{\infty} \frac{-8}{\pi^2 (2k+1)^2} \cos\left(\frac{\pi (2k+1)x}{2}\right)$$

Remark! Функцію з прикладу можна розкласти в ряд Фур'є стандартним шляхом, не подовжуючи її. Це говорить про те, що розклад в якомусь сенсі не є єдиним

3.4 Середнє за Чезаро

Definition 3.4.1. Задана функція f - 2π -періодчина, інтегрована і ряд Φ ур'є S для неї

Середнім за Чезаро називають наступний вираз

$$\sigma_n(x) = \frac{1}{n} \left(S_0(x) + S_1(x) + \dots + S_{n-1}(x) \right)$$

Отримаємо інтегральний вигляд середьного за Чезаро

$$\sigma_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} S_k(x) = \frac{1}{n} \sum_{k=0}^{n-1} \int_0^{\pi} \frac{f(x+u) + f(x-u)}{2\pi} \frac{\sin\left(\frac{(2k+1)}{2}u\right)}{\sin\left(\frac{1}{2}u\right)} du =$$

$$= \frac{1}{n} \int_0^{\pi} \frac{f(x+u) + f(x-u)}{2\pi \sin\left(\frac{1}{2}u\right)} \sum_{k=0}^{n-1} \sin\left(\frac{(2k+1)}{2}u\right) du =$$

Розпишемо суму в інтегралі

$$\sum_{k=0}^{n-1} \sin\left(\frac{(2k+1)}{2}u\right) = \sum_{k=0}^{n-1} \frac{\sin\left(\frac{(2k+1)}{2}u\right) \sin\frac{u}{2}}{\sin\frac{u}{2}} =$$

$$= \frac{1}{\sin\frac{u}{2}} \sum_{k=0}^{n-1} \frac{1}{2} (\cos(ku) - \cos((k+1)u)) = \frac{1 - \cos nu}{2\sin\frac{u}{2}} = \frac{\sin^2\frac{nu}{2}}{\sin\frac{u}{2}}$$

$$\equiv \frac{1}{n} \int_0^\pi \frac{f(x+u) + f(x-u)}{2\pi} \frac{\sin^2\frac{nu}{2}}{\sin^2\frac{u}{2}} du =$$

$$u = 2v, du = 2dv$$

$$= \int_0^{\frac{\pi}{2}} \frac{f(x+2v) + f(x-2v)}{2\pi} \frac{\sin^2 nv}{n\sin^2 v} dv$$
The property where the property from the property of the property

Таким чином ми довели лему

Lemma 3.4.2. Задана функція f - 2π -періодчина, інтегрована і ряд Фур'є S для неї. Тоді середнє за Чезаро має інтегрований вираз:

$$\sigma_n(f)(x) = \frac{1}{\pi} \int_0^{\frac{\pi}{2}} (f(x+2v) + f(x-2v)) F_n(v) \, dv$$

Перепозначення:
$$\frac{\sin^2 nv}{2n\sin^2 v} = \frac{1}{n}\sum_{k=0}^{n-1} D_k(2v) = F_n(v)$$
 - ядро Феєра

Властивості ядра Феєра:

- 1) $F_k(v)$ парна, 2π -періодчина
- $(2) \frac{1}{\pi} \int_{-\pi}^{\pi} F_n(v) \, dv = 1$ Для обох пунктів розглянути другу формулу ядра Феєра

Тheorem 3.4.3. Теорема Феєра

Задана функція f -, неперервна на $[0,2\pi]$. Тоді $\sigma_n(f) \stackrel{\rightarrow}{\to} f$ на $[0,2\pi]$ Поки що без доведення

Corollary 3.4.3.(1). $\forall \varepsilon > 0$ існує тригонометричний многочлен $T_{\varepsilon}(x) =$

$$A_0 + \sum_{n=1}^{\infty} A_n \cos nx + B_n \sin nx$$
 такий, що $\|f - T_{\varepsilon}\| < \varepsilon$

Proof.

Дійсно існує, можна $T_{\varepsilon}(x) = \sigma_n(f)(x)$

Corollary 3.4.3.(2). Якщо $f \in C([a,b])$, тоді $\forall \varepsilon > 0$ існує звичайний многочлен $P_{\varepsilon}(x)$ такий, що $\|f - P_{\varepsilon}\| < \varepsilon$

Proof.

Задана функція $f(x), x \in [a, b]$

Задамо
$$t = \frac{x-a}{b-a} \cdot 2\pi, t \in [0, 2\pi]$$

Звідси
$$x = \frac{t(b-a)}{2\pi} + a$$

Звідси
$$x=\frac{t(b-a)}{2\pi}+a$$
 $f(x)\stackrel{\text{підставляємо x і позначення}}{=}g(t), g\in C([0,2\pi])$ Тоді за теоремою Феєра, $\sigma_n(g) \stackrel{\rightarrow}{\to} g$, або

$$\forall \varepsilon > 0 : \exists N(\varepsilon) : ||g_{N(\varepsilon)}(g) - g|| < \frac{\varepsilon}{2}$$

 $\sigma_{N(arepsilon)}(g)(t)=A_0+\sum_{n=1}^{N(arepsilon)}A_n\cos nt+B_n\sin nt$ - розкладається в ряд Тейлора

$$\sigma_{N(\varepsilon)}(g)(t) = \sum_{k=0}^{\infty} c_k t^k$$

Тоді
$$\exists K_{\varepsilon}$$
 : для часткової суми цього ряду $\sum_{k=0}^{K(\varepsilon)} c_k t^k = P_{\varepsilon}(k)$ виконано $\|\sigma_n(g) - P_{\varepsilon}\| < \frac{\varepsilon}{2}$. Тому $\|g - P_{\varepsilon}\| = \|g - \sigma_{N(\varepsilon)}(g) + \sigma_{N(\varepsilon)}(g) - P_{\varepsilon}\| \le \|g - \sigma_{N(\varepsilon)}(g)\| + \|\sigma_{N(\varepsilon)}(g) - P_{\varepsilon}\| < \varepsilon$ $P_{\varepsilon}(t) = P_{\varepsilon}(\frac{x-a}{b-a} \cdot 2\pi) = P_{1\varepsilon}(x)$ $\Rightarrow \|g - P_{\varepsilon}\| = \|f - P_{1\varepsilon}\| < \varepsilon$

Theorem 3.4.4. Рівність Парсеваля

Задана функція f - 2π -періодчина, інтегрована. Тоді

$$\frac{1}{\pi} \int_0^{2\pi} f^2(x) \, dx = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} a_n^2 + b_n^2$$

де a_n, b_n - коефіцієнти як в ряду Фур'є

Proof.

$$S_k(x) = \frac{a_0}{2} + \sum_{n=1}^k a_n \cos nx + b_n \sin nx. \text{ Тоді можна отримати, що}$$

$$\int_0^{2\pi} (f(x) - S_k(x))^2 dx \to 0, \text{ якщо } n \to \infty$$

$$\int_0^{2\pi} (f(x) - S_k(x))^2 dx = \int_0^{2\pi} f^2(x) dx - 2 \int_0^{2\pi} f(x) S_k(x) dx + \int_0^{2\pi} S_k^2(x) dx =$$

$$= \int_0^{2\pi} f^2(x) dx -$$

$$-2 \left(\int_0^{2\pi} \frac{a_0}{2} f(x) dx + \sum_{n=1}^k \left(a_n \int_0^{2\pi} \cos nx f(x) dx + b_n \int_0^{2\pi} \sin nx f(x) dx \right) \right) +$$

$$\int_0^{2\pi} \left(\frac{a_0}{2} + \sum_{n=1}^k a_n \cos nx + b_n \sin nx \right)^2 dx =$$
Зауважимо, що справедлива така рівність:
$$\left(\sum_{j=1}^m c_j \right)^2 = \sum_{l=1}^m \sum_{j=1}^m c_l c_j$$

$$= \int_0^{2\pi} f^2(x) dx - 2 \left(\frac{a_0}{2} \cdot \pi a_0 + \sum_{n=0}^k a_n \cdot \pi a_n + b_n \cdot \pi b_n \right) +$$

$$+ \int_0^{2\pi} \left(\frac{a_0}{2} \right)^2 dx + \int_0^{2\pi} 2 \cdot \frac{a_0}{2} \cdot \sum_{k=0}^k a_k \cos nx + b_k \sin nx dx +$$

$$+\int_{0}^{2\pi}\left(\sum_{n=1}^{k}a_{n}\cos nx+b_{n}\sin nx\right)^{2}dx=$$

$$=\int_{0}^{2\pi}f^{2}(x)\,dx-2\left(\frac{a_{0}}{2}\cdot\pi a_{0}+\sum_{n=0}^{k}a_{n}\cdot\pi a_{n}+b_{n}\cdot\pi b_{n}\right)+$$

$$+\frac{\pi a_{0}^{2}}{2}+a_{0}\sum_{n=1}^{k}\left(a_{n}\int_{0}^{2\pi}\cos nx\,dx+b_{n}\int_{0}^{2\pi}\sin nx\,dx\right)+$$

$$+\sum_{n=1}^{k}\sum_{m=1}^{k}a_{n}a_{m}\int_{0}^{2\pi}\cos nx\cos mx\,dx+\sum_{n=1}^{k}\sum_{m=1}^{k}2a_{n}b_{m}\int_{0}^{2\pi}\cos nx\sin mx\,dx+$$

$$\sum_{n=1}^{k}\sum_{m=1}^{k}b_{n}b_{m}\int_{0}^{2\pi}\sin nx\sin mx\,dx$$

$$=\sum_{n=1}^{k}\sum_{m=1}^{k}b_{n}b_{m}\int_{0}^{2\pi}\cos nx\,dx=\int_{0}^{2\pi}\sin nx\,dx=0$$

Також звідси випливає, що
$$\int_{0}^{2\pi}\cos nx\cos mx\,dx=\int_{0}^{2\pi}\cos nx\sin mx\,dx=$$

$$f^{2\pi}$$

 $\int_0^{2\pi} \sin nx \sin mx \, dx = 0,$ але при $m \neq n$. Тому пропадуть безліч доданків прямо зараз

$$\boxed{ } \boxed{ } \int_0^{2\pi} f^2(x) \, dx - \frac{\pi a_0^2}{2} - 2\pi \sum_{n=0}^k a_n^2 + b_n^2 + \sum_{n=1}^k \left(a_n^2 \int_0^{2\pi} \cos^2 nx \, dx + b_n \int_0^{2\pi} \sin^2 nx \, dx \right) =$$

$$= \int_0^{2\pi} f^2(x) \, dx - \pi \left(\frac{a_0^2}{2} + \sum_{n=0}^k a_n^2 + b_n^2 \right) \to 0 \text{ при } n \to \infty$$

І НАРЕШТІ, отримали довгоочікувану рівність:

$$\frac{1}{\pi} \int_0^{2\pi} f^2(x) \, dx = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} a_n^2 + b_n^2 \blacksquare$$

Example 3.4.4. Приклад застосування

Нехай $f(x) = x, x \in (-\pi, \pi)$. Вона є непарною, тому $a_n = 0 : \forall n \geq 0$ $b_n = \cdots = \frac{2(-1)^{n+1}}{n}$

А тепер застосуємо рівність Парсеваля:

$$\frac{1}{\pi} \int_{-\pi}^{\pi} x^2 dx = \frac{2\pi^2}{3} \text{ Th. } \frac{3.3.4.}{\pi} \sum_{n=1}^{\infty} \frac{4}{n^2} \Rightarrow$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

3.5 Перетворення Фур'є

Definition 3.5.1. Задана функція f(x) на \mathbb{R} - абсолютно інтегрована **Перетворенням Фур'є** функції f(x) називається функція:

$$\int_{-\infty}^{+\infty} f(x)e^{i\lambda x} dx = \hat{f}(\lambda) \stackrel{\text{afo}}{=} \mathcal{F}\{f(x)\}$$

Theorem 3.5.2. Властивості

1.
$$\int_{-\infty}^{+\infty} f(x)e^{i\lambda x} dx$$
 збіжний рівномірно на \mathbb{R}

2.
$$\hat{f}(\lambda) \in C(\mathbb{R})$$

3. Якщо функція
$$f(x)$$
 є такою, що $\int_{-\infty}^{+\infty} (1+|x|^k)|f(x)|\,dx$ збіжний, то
$$\exists (\hat{f}(\lambda))^{(k)} = \widehat{((ix)^k f(x))}(\lambda)$$

4. Якщо
$$f(x) \in C^{(k-1)}(\mathbb{R}), \exists f^{(k)}(x)$$
 - абсолютно інтегрована на \mathbb{R} та $f^{(n)}(x) \to 0, x \to \pm \infty, n = \{0, \dots, k-1\}, \text{ то } (\widehat{f^{(k)}})(\lambda) = (-i\lambda)^k \widehat{f}(\lambda)$ **Proof.**

- 1. За ознакою Вейерштрасса та умовою властивості, $|f(x)e^{i\lambda x}| = |f(x)||e^{i\lambda x}| = |f(x)|$, тому і виконується рівномірна збіжність
- 2. Наслідок властивості 1

3. Для довільних
$$n$$
 із $\{0,1,\ldots,k\}$: $(1+|x|^n)<(1+|x|^k)$ Тому збіжним буде $\int_{-\infty}^{+\infty} (1+|x|^n)|f(x)|\,dx$, а згодом $(\hat{f}(\lambda))^{(k)}=\left(\int_{-\infty}^{+\infty} f(x)e^{i\lambda x}\,dx\right)^{(k)}$ (*)

Обчислимо формально, чому дорівнює права частина (нам поки невідомо, чи виконується рівність):

$$\int_{-\infty}^{+\infty} \left(f(x) e^{i\lambda x} \right)^{(k)} dx = \int_{-\infty}^{+\infty} f(x) (ix)^k e^{i\lambda x} dx.$$
 Її ми перевіримо на рівномірну збіжність. Знову за Вейерштрассом

$$|f(x)(ix)^k e^{i\lambda x}| = |f(x)||(ik)^x||e^{i\lambda x}| = |f(x)||x^k| \le |f(x)|(1+|x|^k)$$

Враховуючи умову властивості, досліджуючий інтеграл є рівномірно збіжним

Тому рівність (*) є справедливою. Тому $(\hat{f}(x))^{(k)} = \overline{((ix)^k f(x))}(\lambda)$

4.
$$(\widehat{f^{(k)}})(\lambda) = \int_{-\infty}^{+\infty} f^{(k)}(x)e^{i\lambda x} dx =$$

Інтегруємо за частинами так, щоб я знизив похідну, тому:

$$u = e^{i\lambda x} \Rightarrow du = i\lambda e^{i\lambda x} dx$$

$$dv = f^{(k)}(x) dx \Rightarrow v = f^{(k-1)}(x)$$

$$= f^{(k-1)}(x)e^{i\lambda x}\Big|_{-\infty}^{+\infty} - i\lambda \int_{-\infty}^{+\infty} f^{(k-1)}(x)e^{i\lambda x} dx =$$

Робимо ту саму Санту-Барбару до кінця і отримаємо бажану формулу

$$= (-i\lambda)^k \int_{-\infty}^{+\infty} f(x)e^{i\lambda x} = (-i\lambda)^k \hat{f}(\lambda) dx \blacksquare$$

Example. Знайти перетворення Фур'є для функції $f(x) = e^{-ax^2 + bx + c}$ a > 0

Варто перевірити на абсолютну збіжність:
$$\int_{-\infty}^{+\infty} |f(x)| \, dx = \int_{-\infty}^{+\infty} e^{-ax^2 + bx + c} \, dx = e^c \int_{-\infty}^{+\infty} \frac{e^{bx}}{e^{ax^2}} \, dx$$

Скористаємось фактом (колись давно з 2 семестру), що $\int_{-\infty}^{+\infty} \frac{dx}{e^{kx^2}}$ - збіжний.

Тоді за ознакою границі,

$$\lim_{x \to \infty} \frac{\frac{e^{ax}}{e^{ax^2}}}{\frac{1}{e^{kx^2}}} = \lim_{x \to \infty} e^{(k-a)x^2 + bx} = (0 < k < a) = (e^{-\infty}) = 0$$

Тому там наш інтеграл збігається абсолютно. А ТЕПЕР вже можна й перетворення

$$f(\lambda) = \int_{-\infty}^{+\infty} e^{-ax^2 + bx + c} e^{i\lambda x} dx = \int_{-\infty}^{+\infty} e^{-ax^2 + (b + i\lambda)x + c} dx =$$

В степені виділяємо повний квадрат, мені впадлу вставляти це, тому одразу ж :с

$$= \int_{-\infty}^{+\infty} e^{-a\left(x - \frac{b+i\lambda}{2a}\right)^2} + c + \frac{(b+i\lambda)^2}{4a} dx =$$

Заміна:
$$x - \frac{b + i\lambda}{2} = t$$

Заміна:
$$x - \frac{b + i\lambda}{2a} = t$$

= $e^{c + \frac{(b+i\lambda)^2}{4a}} \int_{-\infty}^{+\infty} e^{-at^2} dt = e^{c + \frac{(b+i\lambda)^2}{4a}} \sqrt{\frac{\pi}{a}}$

Зворотнє перетворення Фур'є 3.6

Definition 3.6.1. Задана функція $g(\lambda)$ на \mathbb{R} - абсолютно інтегрована Зворотнім перетворенням Фур'є функції $g(\lambda)$ називається функція:

$$\frac{1}{2\pi} \int_{-\infty}^{+\infty} g(\lambda) e^{-i\lambda x} d\lambda = \breve{g}(x)$$

Хочемо:
$$(\check{\widehat{f}})(x) = f(x)$$

Proof.

Ну або в інакшому вигляді, ми пруфимо, що

$$\frac{1}{2\pi} \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(x)e^{i\lambda x} \, dx \right) e^{-i\lambda s} \, d\lambda = f(s)$$

Розпишемо ліву частину

$$\frac{1}{2\pi} \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(x) e^{i\lambda x} dx \right) e^{-i\lambda s} d\lambda = \frac{1}{2\pi} \lim_{A \to \infty} \int_{-A}^{A} \left(\int_{-\infty}^{+\infty} f(x) e^{i\lambda x} dx \right) e^{-i\lambda s} d\lambda$$

і спростимо вираз в ліміті

$$\int_{-A}^{A} \left(\int_{-\infty}^{+\infty} f(x) e^{i\lambda x} \, dx \right) e^{-i\lambda s} \, d\lambda = \int_{-A}^{A} \left(\int_{-\infty}^{+\infty} f(x) e^{i\lambda(x-s)} \, dx \right) \, d\lambda =$$

Через те, що $|f(x)e^{i\lambda(x-s)}|=|f(x)|$, то внутрішній інтеграл абсолютно збіжний. Тому можна змінити місцями порядок інтегрування

$$= \int_{-\infty}^{+\infty} \left(\int_{-A}^{A} f(x)e^{i\lambda(x-s)} d\lambda \right) dx = \int_{-\infty}^{+\infty} f(x) \left(\int_{-A}^{A} e^{i\lambda(x-s)} d\lambda \right) dx =$$

$$= \int_{-\infty}^{+\infty} f(x) \frac{e^{i\lambda(x-s)}}{i(x-s)} \Big|_{-A}^{A} dx = \int_{-\infty}^{+\infty} f(x) \frac{2\sin A(x-s)}{x-s} dx \stackrel{x-s=t}{=}$$

$$= \int_{-\infty}^{0} 2f(s+t) \frac{\sin At}{t} dt + \int_{0}^{+\infty} 2f(s+t) \frac{\sin At}{t} dt \stackrel{t=-t \text{ B } \text{першому}}{=}$$

$$= \int_{0}^{+\infty} 2(f(s+t) + f(s-t)) \frac{\sin At}{t} dt$$

$$\frac{1}{2\pi} \int_{-A}^{A} \left(\int_{-\infty}^{+\infty} f(x)e^{i\lambda x} \, dx \right) e^{-i\lambda s} \, d\lambda - c =$$

$$= \frac{1}{\pi} \int_{0}^{+\infty} (f(s+t) + f(s-t)) \frac{\sin At}{t} \, dt - c \frac{2}{\pi} \int_{0}^{+\infty} \frac{\sin At}{t} \, dt =$$

$$= \frac{1}{\pi} \int_{0}^{+\infty} (f(s+t) + f(s-t) - 2c) \frac{\sin At}{t} \, dt =$$
Позначимо $f(s+t) + f(s-t) - 2c = h_{c,s}(t)$

Позначимо
$$f(s+t) + f(s-t) - 2c = h_{c,s}(t)$$

$$= \int_0^{+\infty} h_{c,s}(t) \frac{\sin At}{t} dt$$

Сформулюємо теорему та доведемо її:

Theorem 3.6.1. Ознака Діні (для перетворення Фур'є)

Задана така функція f, що є абсолютно збіжною на \mathbb{R} .

Якщо
$$\exists \delta > 0$$
 : $\int_0^\delta \frac{|h_{c,s}(t)|}{t} dt$ - збіжний, то $\int_0^{+\infty} h_{c,s}(t) \frac{\sin At}{t} dt \to 0$, $A \to \infty$

Якщо розписати наш інтеграл як сума $[0,\delta],[\delta,+\infty),$ то ми матимемо два інтеграли, що прямують до нуля за лемою Рімана

Corollary 3.6.1.

- 1) Якщо f неперервно-диференційована в т. x_0 , то $(\hat{f})(x_0)=f(x_0)$
- 2) Якщо f диференційована в лівому та правому околі т. x_0 , то $(\hat{f})(x_0) =$ $f(x_0,+) + f(x_0,-)$

Proof.

1) Встановимо $c = f(x_0)$, тоді

$$(\tilde{f})(x_0) = \lim_{A \to \infty} \int_0^{+\infty} (f(x_0 + t) - f(x_0) + f(x_0 - t) - f(x_0)) \frac{\sin At}{t} dt = 0$$
Майже дослівно повторюємо доведення з 1-го наслідку з ознаки Діні

для рядів

2) Майже дослівно повторюємо доведення з 2-го наслідку з ознаки Діні для рядів

4 Операційне числення

4.1 Оригінали функцій

Definition 4.1.1. Функція f(t) називається **оригіналом**, якщо вона під умовами:

- 1) f(t) = 0, t < 0
- (2) f(t) кусково неперервна
- 3) $\exists M : \exists \alpha : |f(t)| < Me^{\alpha t}$

Example 4.1.1. $\sin t \to \begin{cases} \sin t, t \geq 0 \\ 0, t < 0 \end{cases}$ - функцію перевели в оригінал

Definition 4.1.2. Функція Хевісайда визначається наступним чином

$$\chi(t) = \begin{cases} 1, t \ge 0\\ 0, t < 0 \end{cases}$$

Example 4.1.2. $\sin t \rightarrow \sin t \cdot \chi(t)$ - скорочена версія **Ex. 4.1.1**

Definition 4.1.3. Задан f(t) - оригінал

Степенем зростання f(t) називаеться число:

$$\sigma(f) = \inf\{\alpha : \exists M : |f(t)| < Me^{\alpha t}\}\$$

Example 4.1.3.

 $1. f(t) = \sin t.$ (тут автоматично вважаємо, що виконується перша умова). Перевіримо третю умову:

3)
$$|\sin t| \le 1 = 1 \cdot e^{0t}$$
, тобто $\exists M = 1, \alpha = 0$

Знайдемо степінь зростання:

$$\forall \alpha > 0 : |\sin t| < 1 \cdot e^{\alpha t}$$

Припустимо, що для $\alpha < 0$: $\exists M : |\sin t| < M \cdot e^{\alpha t}$

Якщо $t \to \infty$, то $|\sin t| \to 0$, що є супереченням (в неї ліміту вопще нема)

Tomy
$$\sigma(f) = 0$$

2.
$$f(t) = e^{\mu t}$$

Зрозуміло, що $|e^{\mu t}| < 1 \cdot e^{\mu t}$, тобто $\alpha = \mu$

$$\forall \alpha > \mu : |e^{\mu t}| < 1 \cdot e^{\alpha t}$$

Припустимо знову, що для $\alpha < \mu : \exists M : e^{\mu t} < Me^{\alpha t}$, або $e^{t(\mu-\alpha)} < M$

Якщо $t\to\infty$, то $e^{(\mu-\alpha)t}\to\infty$, прийшли до суперечення Тому $\sigma(f)=\mu$

3.
$$f(t) = t^{\mu}, \mu > 0$$

Перевіримо третю умову, тобто

$$\exists ?M: |t^{\mu}| \leq Me^{\alpha t} \iff \frac{t^{\mu}}{e^{\alpha t}} < M$$

Якщо $t\to\infty$, то $\frac{t^\mu}{e^{\alpha t}}\to 0$ ЗА УМОВОЮ, що $\alpha>0$, а тому така дріб є обмеженою. Отже знак питання прибираємо

Припустимо, що для $\alpha < 0$: $\exists M: t^{\mu} < Me^{\alpha t}$

Зробимо аналогічні кроки, та отримаємо, що дріб прямує до нескінченності, що суперечить припущенню

I окремо при $\alpha=0$: $t^{\mu} < M$ - також суперечення

Але тим не менш, $\sigma(f) = \inf\{\alpha > 0\} = 0$

Proposition 4.1.4. Арифметичні властивості оригіналів

Задані f(t), g(t) - оригінали. Тоді

- 1) h(t) = g(t) + g(t) оригінал, а $\sigma(h) = \max\{\sigma(f), \sigma(g)\}$
- 2) $h(t) = af(t), a \in \mathbb{R}$ оригінал, а $\sigma(h) = \sigma(f)$
- 3) h(t) = f(t)g(t) оригінал, а $\sigma(h) = \sigma(f) + \sigma(g)$

Proof.

Умови 1 та 2 всюди автоматично виконуються (в принципі)

3 умови твердження відомо, що $\begin{cases} |f(t)| < M_1 e^{\alpha_1 t} \\ |g(t)| < M_2 e^{\alpha_2 t} \end{cases}.$ Тоді

1) $|h(t)| \leq |f(t)| + |g(t)| < M_1 e^{\alpha_1 t} + M_2 e^{\alpha_2 t} < (M_1 + M_2) e^{\alpha t}$, якщо $\alpha = \max\{\alpha_1, \alpha_2\}$

Пункт 3 виконується, тому h - оригінал. Більш того, $\sigma(h) = \max\{\sigma(f), \sigma(g)\}$

- $2)\ npu\ nepeвipки\ n.\ 3\ maм\ npocmo\ нaфіг\ niде\ константа\ a$
- 3) $|h(t)| < M_1 e^{\alpha_1 t} M_2 e^{\alpha_1 t} = M_1 M_2 e^{(\alpha_1 + \alpha_2) t}$ Пукнт 3 виконуєься, тому h оригінал. Більш того, $\sigma(h) = \sigma(f) + \sigma(g)$

Definition 4.1.5. Згорткою функцій f(x) та g(x) на $\mathbb R$ називається функція:

$$f * g(x) = \int_{-\infty}^{+\infty} f(u)g(x - u) du$$

Що буде, якщо f,g - оригінали? Яким буде вигляд згортки?

$$f*g(t) \stackrel{\text{вэже доводимо}}{=} \int_{-\infty}^{+\infty} f(s)g(t-s)\,ds = 3 \ s < 0 \$$
 випливає $f(s) = 0 \$ 3 $s > t$ випливає $t-s < 0 \Rightarrow g(t-s) = 0 \$ $= \int_0^t f(s)g(t-s)\,ds$ Таким чином:

Proposition 4.1.5.(1). Якщо f, g - оригінали, то

$$f * g(t) = \int_0^t f(s)g(t-s) ds$$

Proposition 4.1.5.(2). Якщо f, g - оригінали, то f * g(t) = g * f(t) Під час інтегрування провести заміну: t - s = u

Proposition 4.1.5.(3). Якщо f,g - оригінали, то f*g - теж оригінал, а $\sigma(f*g) = \max\{\sigma(f),\sigma(g)\}$ **Proof.**

Пункти 1, 2 виконані. Залишилось перевірити пункт 3

$$|f * g(t)| = \left| \int_0^t f(s)g(t-s) \, ds \right| \le \int_0^t |f(s)||g(t-s)| \, ds <$$

$$< \int_0^t |f(s)||g(t-s)| \, ds < \int_0^t M_1 e^{\alpha_1 s} M_2 e^{\alpha_2 (t-s)} \, ds = e^{\alpha_2 t} M_1 M_2 \int_0^t e^{(\alpha_1 - \alpha_2) s} \, ds =$$

$$= \frac{e^{\alpha_2 t} M_1 M_2}{\alpha_1 - \alpha_2} (e^{(\alpha_1 - \alpha_2) t} - 1) = \frac{M_1 M_2}{\alpha_1 - \alpha_2} (e^{\alpha_1 t} - e^{\alpha_2 t}) = \frac{M_1 M_2}{|\alpha_1 - \alpha_2|} |e^{\alpha_1 t} - e^{\alpha_2 t}| \le$$

$$\le \frac{M_1 M_2}{\alpha_1 - \alpha_2} 2 e^{\alpha t}, \text{ якщо } \alpha = \max\{\alpha_1, \alpha_2\}$$

Таким чином, f*g - оригінал, а $\sigma(f*g) = \max\{\sigma(f), \sigma(g)\}$

4.2 Перетворення Лапласа

Definition 4.2.1. Заданий f - оригінал **Перетворенням Лапласа** f(t) називається

$$f(t) \leftrightarrow \int_0^{+\infty} f(t)e^{-pt} dt = F(p) \stackrel{\text{afo}}{=} \mathcal{L}\{f(t)\}$$

F(p) називають **зображенням**, де $p \in \mathbb{C}$

$$\begin{array}{c|c}
f & F \\
\hline
\chi(t) & \frac{1}{p} \\
\hline
e^{\alpha t} & \frac{1}{p - \alpha} \\
\hline
ch \alpha t & \frac{p}{p^2 - \alpha^2} \\
\hline
sh \alpha t & \frac{\alpha}{p^2 - \alpha^2} \\
\hline
sin \alpha t & \frac{\alpha}{p^2 + \alpha^2} \\
\hline
t^n & \frac{n!}{p^{n+1}}
\end{array}$$

Табл. 1: Таблиця зображень

Proposition 4.2.2. Про збіжність

 $\int_0^{+\infty} f(t)e^{-pt} dt$ збіжний на комплексній півплощині $\{p: \operatorname{Re} p > \sigma(f)\}$, а рівномірно збіжний на $\{p: \operatorname{Re} p > \alpha > \sigma(f)\}$

Proof.

$$p = x + iy$$
, Re $p = x > \sigma(f)$

Доведемо за ознакою порівняння

$$|f(t)e^{-pt}| = |f(t)||e^{-xt}e^{iyt}| < Me^{\alpha t}e^{-xt} = Me^{(\alpha - x)t}, \, \forall \alpha > \sigma(f)$$

Якщо обрати таке α , щоб $x > \alpha > \sigma(f)$, то отримаємо:

$$|f(t)e^{-pt}| < Me^{(\alpha-x)t}$$

$$\int_0^{+\infty} M e^{(\alpha-x)t} \, dt = \cdots = rac{M}{x-lpha}$$
 - збіжний

Отже, збіжний і початковий інтеграл - зображення 🗖

Theorem 4.2.3. Заданий f(t) - оригінал зі степенем вільності $\sigma(f)$. Тоді зображення F(p) є аналітичною функцією на півплощині

$${p: \operatorname{Re} p > \sigma(f)}$$

Proof.

Формально, $F'(p) = -\int_0^{+\infty} f(t)te^{-pt} dt$. Для рівності треба, щоб права рівність збігалась рівномірно

До речі, f(t)t - теж оригінал, зі степенем вільності $\sigma(f(t)t) = \sigma(f)$

Тоді
$$\forall \alpha_0 > \sigma(f): \int_0^{+\infty} f(t)te^{-pt}$$
 - збіжний рівномірно на $\{p: \operatorname{Re} p > 0\}$

$$\alpha_0 > \sigma(f)$$

Отже, рівність справедлива

Theorem 4.2.4. Заданий f(t) - оригінал. Тоді $F(p) \to 0$, $\operatorname{Re} p \to \infty$ **Proof.**

$$|F(p)| = \left| \int_0^{+\infty} f(t)e^{-pt} \, dt \right| \le \int_0^{+\infty} |f(t)||e^{-(x+iy)t}| \, dt = \int_0^{+\infty} |f(t)|e^{-xt} \, dt < \int_0^{+\infty} |f(t)|^{-2t} \, dt < \int_0^{+\infty} |f(t)|^{-2t$$

Ми обираємо таке α , щоб $\sigma(f) < \alpha < x$

$$<\int_0^{+\infty} Me^{\alpha t}e^{-xt}\,dt = \dots = \frac{M}{x-\alpha} \to 0$$
, якщо $x = \operatorname{Re} p \to \infty$

Theorem 4.2.5. Властивості зображень

- 1. Лінійність, $\alpha f(t) + \beta g(t) \leftrightarrow \alpha F(p) + \beta G(p)$
- 2. Зміщенність, $e^{\alpha t} f(t) \leftrightarrow F(p-\alpha)$
- 3. Запізнення,

Нехай є оригінал f(t) та функція Хевісайда $\eta(t)$. Розглянемо $g(t)=f(t-\tau)\eta(t-\tau), \tau>0$. Тоді $g(t)\leftrightarrow F(p)e^{-p\tau}$

4. Диференціювання зображення, $f^{(n)}(t) \leftrightarrow p^n F(p) - (f^{(n-1)}(0) + p f^{(n-2)}(0) + \cdots + p^n f(0))$ (тут всі похідні є оригіналами)

- 5. Інтегрування оригіналу, $\int_0^t f(s) ds \leftrightarrow \frac{F(p)}{p}$
- 6. Диференціювання зображення, $t^k f(t) \leftrightarrow (-1)^k F^{(k)}(p)$
- 7. Інтегрування зображення, $\frac{f(t)}{t} \leftrightarrow \int_p^{+\infty} F(q) \, dq$, тут $q \to \infty$ таким чином, що $\operatorname{Re} q \to \infty$

8.
$$f * g(t) \leftrightarrow F(p)G(p)$$

Proof.

- 1. Випливає з лінійних властивостей інтегралів
- 2. Просто розписуємо інтеграл, а там властивості степеней буде
- 3. Зробити заміну: $t \tau = s$

$$4. f'(t) \leftrightarrow \int_0^{+\infty} f'(t)e^{-pt} dt \stackrel{u=e^{-pt}, dv=f'(t) dt}{=} f(t)e^{-pt} \Big|_0^{+\infty} - (-p) \int_0^{+\infty} f(t)e^{-pt} dt = \int_0^{+\infty} f'(t)e^{-pt} dt = \int_0^{+\infty$$

65

Оскільки f - оригінал, то $|f(t)| < Me^{\alpha t}$. Далі, $|e^{-pt}| = e^{-xt}$, $\alpha < x$ Тому $|f(t)e^{-pt}| < Me^{\alpha t}e^{-xt} \to 0$, коли $t \to \infty = pF(p) - f(0)$ = pF(p) - f(0) Ну а далі чисто за МІ

5.
$$\int_{0}^{+\infty} f(s) ds \leftrightarrow \int_{0}^{+\infty} \left(\int_{0}^{t} f(s) ds \right) e^{-pt} dt \stackrel{u = \int_{0}^{t} f(s) ds, dv = e^{-pt} dt}{=}$$

$$= \frac{-1}{p} \int_{0}^{t} f(s) ds \cdot e^{-pt} \Big|_{0}^{+\infty} + \frac{1}{p} \int_{0}^{+\infty} f(t) e^{-pt} dt = \frac{1}{p} F(p)$$
6.
$$t f(t) \leftrightarrow \int_{0}^{+\infty} t f(t) e^{-pt} = -\int_{0}^{+\infty} f(t) (e^{-pt})'_{p} dt = -\left(\int_{0}^{+\infty} f(t) e^{-pt} dt \right)' = \int_{0}^{+\infty} f(t) e^{-pt} dt$$

= -F'(p)Потім тупо за МІ

7.
$$\frac{f(t)}{t} \leftrightarrow G(p)$$
 (якесь зображення)
За властивістю 6, $f \cdot \frac{f(t)}{t} \leftrightarrow -G'(p)$
 $\Rightarrow F(p) \leftrightarrow f(t) \leftrightarrow -G'(p) \Rightarrow G'(p) = -F(p)$
Також, $\left(\int_p^{+\infty} F(q) \, dq\right)_p' = -F(p)$
Отже, $G(p) = \int_p^{+\infty} F(q) \, dq$

8.
$$f * g(t) \leftrightarrow \int_0^{+\infty} (f * g)(t)e^{-pt} dt = \int_0^{+\infty} \left(\int_0^t f(s)g(t-s) ds\right)e^{-pt} dt = \int_0^{+\infty} \int_0^t f(s)g(t-s)e^{-p((t-s)+s)} ds dt =$$
3amiha змінних: $t-s=y, s=s$
 $y=[0,+\infty), s=[0,+\infty), J=1$
 $=\int_0^{+\infty} \int_0^{+\infty} f(s)g(y)e^{-p(y+s)} ds dy = \int_0^{+\infty} g(y)e^{-py} dy \int_0^{+\infty} f(s)e^{-ps} ds =$
 $= G(p)F(p)$

Theorem 4.2.6. Теорема Мелліна

Заданий f(t), F(p) - диференційований оригінал зі степенем вільності

 $\sigma(f) = \alpha$ та його зображення. Тоді

$$f(t) = \frac{1}{2\pi i} \int_{x-i\infty}^{x+i\infty} e^{pt} F(p) \, dp, x > \alpha$$

Proof.

Розглянемо оригінал $g(t)=f(t)e^{-xt}$, такий, що $x>\alpha$

Покажемо, що $\int_{-\infty}^{+\infty} |g(t)| \, dt \stackrel{\text{aбo}}{=} \int_{0}^{+\infty} |g(t)| \, dt$ - абсолютно збіжний

Візьмемо якийсь $\alpha < x_* < x$. Тоді $|g(t)| < Me^{x_*t}e^{-xt} = Me^{(x_*-x)t}$

$$|q(t)| < Me^{x_*t}e^{-xt} = Me^{(x_*-x)t}$$

$$\int_{0}^{+\infty} M e^{(x_* - x)t} dt = \frac{M}{x_* - x} e^{(x_* - x)t} \Big|_{0}^{+\infty} < \infty$$

Тоді за Вейерштрасса, наш початковий інтеграл збіжний. Отже, для g(t)можна застосувати перетворення Φ ур'є (стандартне та зворотнє)

Оскільки f(t) - частково неперервно-диференційований, то за ознакою Діні та наслідками з неї отримаємо:

$$g(t) = \widecheck{g}(t) \stackrel{\text{\tiny II.}}{=} \frac{1}{2\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(s)e^{i\lambda(s-t)} \, ds \, d\lambda \stackrel{g(s)=f(s)e^{-sx},s<0}{=}$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} \int_{0}^{+\infty} g(s)e^{i\lambda(s-t)} \, ds \, d\lambda$$

$$f(t)e^{-tx} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \int_{0}^{+\infty} f(s)e^{-sx}e^{i\lambda(s-t)} \, ds \, d\lambda =$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} \int_{0}^{+\infty} f(s)e^{-sx+i\lambda s}e^{-i\lambda t} \, ds \, d\lambda =$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left(\int_{0}^{+\infty} f(s)e^{-s(x-i\lambda)}e^{-i\lambda t} \, ds \right) \, d\lambda \stackrel{\lambda=-y}{=} \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left(\int_{0}^{+\infty} f(s)e^{-s(x+iy)}e^{iyt} \, ds \right)$$

$$\Rightarrow f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left(\int_{0}^{+\infty} f(s)e^{-s(x+iy)}e^{(x+iy)t} \, ds \right) \, dy \stackrel{x+iy=p}{=}$$

$$= \frac{1}{2\pi} \int_{x-i\infty}^{x+i\infty} \left(\int_{0}^{+\infty} f(s)e^{-ps} \, ds \right) e^{pt} \frac{1}{i} \, dp = \frac{1}{2\pi i} \int_{x-i\infty}^{x+i\infty} F(p)e^{pt} \, dp \blacksquare$$

Доведена формула називається формулою Мелліна. Більш детальне та красиве доведення буде в книжці Тихонова "Теория функций комплексного анализа"

4.3 Відновлення оригінала

4.3.1 За допомогою лишків

Theorem. Заданий f(t), F(p) - диференційований оригінал зі степенем вільності $\sigma(f) = \alpha$ та його зображення, яка є аналітичною всоди за виключенням скінченної кількості точок p_1, \ldots, p_n (такі, що $\operatorname{Re} p_t < \alpha$). Тоді

$$f(t) = \sum_{j=1}^{k} \underset{p=p_j}{\text{res}} F(p)e^{pt}$$

Proof.

Через умови ми можемо скористатись формулою Мелліна:

$$f(t) = \frac{1}{2\pi i} \int_{x-i\infty}^{x+i\infty} F(p)e^{pt} dp =$$
Заміна: $p = qe^{i\frac{\pi}{2}} = iq \Rightarrow dp = i dq$
 $= \frac{1}{2\pi i} \int_{\infty+ix}^{-\infty+ix} F(iq)e^{qit} i dq =$
Заміна2: $q = ip = i(x+iy) = ix - y \Rightarrow dq = -dy$
 $= \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(x+iy)e^{(x+iy)t} dy \stackrel{F(x+iy)=g(y)}{=} \frac{1}{2\pi} e^{xt} \int_{-\infty}^{+\infty} g(y)e^{iyt} dy \stackrel{\text{за умовами особливих точок}}{=}$
 $= \frac{1}{2\pi} e^{xt} 2\pi i \sum_{j=1}^{k} \underset{p=p_j}{\operatorname{res}} g(z)e^{izt} = \sum_{j=1}^{k} \underset{p=p_j}{\operatorname{res}} g(z)e^{izt} = \dots$
 \mathcal{A} есь ΓB забув i : сам не можсу знайти(((

Lemma. Заданий f(t), F(p) - диференційований оригінал та його зображення.

Якщо
$$F(p) = \sum_{n=1}^{\infty} \frac{c_n}{p^n}$$
, то

$$f(t) = \sum_{n=1}^{\infty} c_n \frac{t^{n-1}}{(n-1)!}$$

За розкладом зображення в ряд Лорана

4.3.2

$$f(t) = \frac{1}{2\pi i} \int_{x-i\infty}^{x+i\infty} e^{pt} F(p) \, dp = \frac{1}{2\pi i} \int_{x-i\infty}^{x+i\infty} \sum_{n=1}^{\infty} \frac{c_n}{p^n} e^{pt} \, dp =$$

$$= \sum_{n=1}^{\infty} c_n \left(\frac{1}{2\pi i} \int_{x-i\infty}^{x+i\infty} \frac{1}{p^n} e^{pt} \, dp \right) = \sum_{n=1}^{\infty} \frac{c_n}{(n-1)!} t^{n-1} \blacksquare$$

Трохи корисних прикладів використання 4.4

Example 4.4.1. Розв'язати систему диференціальних рівнянь: $\begin{cases} x' = 3x + y \\ y' = -4x - y \end{cases}$

Додатково x(0) = 5, y(0) = -7

$$x(t) \rightarrow X(p) \Rightarrow x'(t) \rightarrow pX(p) - x(0) = pX(p) - 5$$

$$y(t) \rightarrow Y(p) \Rightarrow y'(t) \rightarrow pY(p) - y(0) = pY(p) + 7$$

Отже, система матиме такий вигляд:

$$\begin{cases} pX - 5 = 3X + Y \\ pY + 7 = -4X - Y \end{cases}$$
 Обчислимо систему, розв'язуючи відносно $X(p), Y(p).$

Використовуючи магію метода Крамера, отримаємо
$$\begin{cases} X(p) = \frac{5p-2}{(p-1)^2} \\ Y(p) = \frac{-7p+1}{(p-1)^2} \end{cases}$$

$$X(p) = \frac{5}{(p-1)} + \frac{3}{(p-1)^2} \rightarrow x(t) = 5e^t + 3te^t$$

$$Y(p) = \frac{-7}{(p-1)} + \frac{-6}{(p-1)^2} \rightarrow y(t) = -7e^t - 6te^t$$

Example 4.4.2. Розв'язати інтегральне рівняння:

$$\int_{0}^{t} \operatorname{ch}(t-\tau)x(\tau) d\tau = \operatorname{ch} t - \cos t$$

$$x(t) \to X(p)$$

$$\operatorname{ch} t \to \frac{p}{p^{2}-1}$$

$$\cos t \to \frac{p}{p^{2}+1}$$

I нарешті, зауважимо згортку: $\int_0^t \operatorname{ch}(t-\tau)x(\tau)\,d\tau = ch*x(t) \to \frac{p}{n^2-1}X(p)$

$$\frac{p}{p^2 - 1}X(p) = \frac{p}{p^2 - 1} - \frac{p}{p^2 + 1}$$

Тому рівняння матиме вигляд:
$$\frac{p}{p^2-1}X(p) = \frac{p}{p^2-1} - \frac{p}{p^2+1}$$
 Виразимо $X(p)$ і отримаємо:
$$X(P) = \frac{2}{p^2+1} \to x(t) = 2\sin t$$