WES

Generate Collection Print

Search Results - Record(s) 1 through 7 of 7 returned.

1. Document ID: US 5729141 A Relevance Rank: 62

L5: Entry 3 of 7

File: USPT

Mar 17, 1998

US-PAT-NO: 5729141

DOCUMENT-IDENTIFIER: US 5729141 A

TITLE: Split gradient coils for MRI system

DATE-ISSUED: March 17, 1998

INVENTOR-INFORMATION:

NAME

CITY

STATE

COUNTRY

Hass; Mathew Arnold

Andover

MA

Domigan; Paul

Andover

MA

ASSIGNEE-INFORMATION:

NAME

CITY STATE ZIP CODE COUNTRY TYPE CODE

ZIP CODE

Intermagnetics General Corporation

Latham NY

02

APPL-NO: 8/ 616492

DATE FILED: March 19, 1996

INT-CL: [6] $\underline{G01}$ \underline{V} $\underline{3}/\underline{00}$

US-CL-ISSUED: 324/318; 324/322 US-CL-CURRENT: 324/318; 324/322

FIELD-OF-SEARCH: 324/318, 324/322, 324/314, 324/300, 324/307, 324/309, 128/653.5

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO 5021739 5256972 5365172 5386191 5424643 5572129 5574373 5585724	ISSUE-DATE June 1991 October 1993 November 1994 January 1995 June 1995 November 1996 November 1996 December 1996	PATENTEE-NAME Yokosawa et al. Keren et al. Hrovat et al. McCarten et al. Morich et al. Carlson Pausch et al. Morich et al.	US-CL 324/248 324/318 324/309 324/318 324/318 324/318
3303724	December 1996	Morich et al.	324/318

OTHER PUBLICATIONS

Carlson et al, "Design and Evaluation of Shielded Gradient Coils", 1992, pp. 191-206.

ART-UNIT: 225

PRIMARY-EXAMINER: Arana; Louis M.

ATTY-AGENT-FIRM: Helfgott & Karas, P C.

ABSTRACT:

In a magnetic resonance imaging system, wherein a subject to be imaged is supported within a bore of a magnet assembly and exposed to radio frequency (RF) energy emitted from an excitation coil, gradient coils and an RF screen are disposed within the region of the bore exteriorly to an excitation coil and are configured with a split or open region facing sections of the excitation coil for reduced image currents in the gradient coils and the RF screen from RF field generated by the excitation coil. The X gradient coil is reduced to two enlarged coil sections to the left and to the right of the bore. The two opposed sections of the X gradient coil, the two opposed sections of the Y gradient coil, and the opposed pairs of sections of the Z gradient coil are spaced apart at the top and the bottom of the bore for reduced interaction with the excitation coil section located at the top and the bottom of the bore. Thereby, the space between the excitation coil and the shield can be reduced. A more accurate image is developed with greater efficiency in terms of electric power.

8 Claims, 17 Drawing figures

Full	Title	Citation	Front	Review	Classification	Date	Reference	Sequences	Attachments	Claims	KOMO
Draw, D	esc	Image								2.011121	14440

2. Document ID: US 5886548 A

Relevance Rank: 61

L5: Entry 2 of 7

File: USPT

Mar 23, 1999

US-PAT-NO: 5886548

DOCUMENT-IDENTIFIER: US 5886548 A

TITLE: Crescent gradient coils

DATE-ISSUED: March 23, 1999

INVENTOR-INFORMATION:

NAME

CITY

STATE

COUNTRY

Doty; F. David

Columbia

SC

Wilcher; James K.

Columbia SC

ASSIGNEE-INFORMATION:

NAME

CTTY

STATE ZIP CODE COUNTRY

ZIP CODE

TYPE CODE

Doty Scientific Inc.

Columbia

SC

02

APPL-NO: 8/ 608906

DATE FILED: February 29, 1996

PARENT-CASE:

This application is a divisional of application Ser. No. 08/030,853, filed on Mar. 12, 1993, now U.S. Pat. No. 5,554,929 incorporated herein by reference.

INT-CL: [6] G01 V 3/00

US-CL-ISSUED: 324/318 US-CL-CURRENT: 324/318

FIELD-OF-SEARCH: 324/318, 324/322, 335/299, 335/300, 335/301, 128/653.5

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
2354331	July 1944	Polydoroff	175/242
2498475	February 1950	Adams	324/318
3237090	February 1966	Royer et al.	323/45
3466499	September 1969	Beth	313/84
3569823	March 1971	Golay	324/300
3671902	June 1972	Westendorp	336/84
3924211	December 1975	Joffe et al.	335/284
4038622	July 1977	Purcell	335/216
4165479	August 1979	Mansfield	324/300
4514586	April 1985	Waggoner	175/35
4642569	February 1987	Hayes et al.	324/318
4646024	February 1987	Schenck et al.	324/318
4646046	February 1987	Vavrek et al.	335/301
4652824	March 1987	Oppelt	324/318
4707663	November 1987	Minkoff et al.	324/319
<u>4733189</u>	March 1988	Punchard et al.	324/318
4737716	April 1988	Roemer et al.	324/319
<u>4766383</u>	August 1988	Fox et al.	324/318
4768008	August 1988	Purcell et al.	335/318
4820988	April 1989	Crooks et al.	324/318
<u>4849697</u>	July 1989	Cline et al.	324/306
4876510	October 1989	Siebold et al.	324/318
<u>4885440</u>	December 1989	Snoddy et al.	324/318
4910462	March 1990	Roemer et al.	324/318
<u>4920011</u>	April 1990	Ogawa et al.	428/576
4926125	May 1990	Roemer	324/318
<u>4935714</u>	June 1990	Vermilyea	335/299
4954781	September 1990	Hirata	324/318
4965521	October 1990	Egloff	324/312
<u>4978920</u>	December 1990	Mansfield	324/318
5036282	July 1991	Morich et al.	324/318
<u>5061891</u>	October 1991	Totsuka et al.	324/146
<u>5084676</u>	January 1992	Saho et al.	324/318
5132618	July 1992	Sugimoto	324/318
5132621	July 1992	Kang et al.	324/322
<u>5166619</u>	November 1992	Ries	324/318
<u>5185577</u>	February 1993	Minemura	324/318
<u>5198769</u>	March 1993	Frese et al.	324/318
5225782	July 1993	Laskaris et al.	324/318
5235283	August 1993	Lehne et al.	324/318
<u>5278502</u>	January 1994	Laskaris et al.	324/318
5289128	February 1994	DeMeester et al.	324/318
<u>5296810</u>	March 1994	Morich	324/318
5349297	September 1994	DeMeester et al.	324/318
5406204	April 1995	Morich et al.	324/318
5424643	June 1995	Morich et al.	324/318
5489848	February 1996	Furukawa	324/318
5554929	September 1996	Doty et al.	324/318
			,

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO	PUBN-DATE	COUNTRY	US-CL
304126	February 1989	EPX	30 02
586983	March 1994	EPX	
4029477	April 1991	DEX	
54-3879	February 1979	JPX	
2050062	December 1980	GBX	

OTHER PUBLICATIONS

E.C. Wong et al., <u>Magnetic Resonance</u> in Medicine, vol. 21, 1 Sep. 1991, pp. 39-48. V. Bangert et al., <u>Journal of Physics E: Scientific Instuments</u>, vol. 15, 1 Feb. 1982, pp. 235-239.

J.P. Boehmer et al., Journal of <u>Magnetic Resonance</u>, vol. 83, 1 Jun. 1989, pp. 152-159. Y. Bangert and P. Mansfield, J. Physics E 15, "Magnetic Field <u>Gradient Coils for NMR</u> Imaging," 235 (1982).

P. Mansfield and B. Chapman, J. Magnetic Resonance 66, "Active Magnetic Screening of Gradient Coils in NMR Imaging," 573-576 (Feb. 1986).

P. Mansfield and B. Chapman, J. Magnetic Resonance 72, "Multishield Active Magnetic Screening of Coil Structures in NMR," 211 (1987).

M.K. Stehling, R. Turner, P. Mansfield, Science 254, "Echo-Planar Imaging: Magnetic Resonance Imaging in a Fraction of a Second," 43 (1991).

ART-UNIT: 225

PRIMARY-EXAMINER: Arana; Louis M. ATTY-AGENT-FIRM: Oppedahl & Larson

ABSTRACT:

A high-conductivity ceramic coil form with an internal water jacket is used to simplify water cooling for 3-axis MRI gradient coil configurations on a single cylindrical coilform. Crescent-shaped, axially aligned coils are symmetrically employed on either side of the axial symmetry plane to increase transversely the region of field linearity. These crescent coils may be used in conjunction with Golay-type coils for improved switching efficiency. Lead-filled copper tubing may be used to reduce acoustic noise from pulsed coils in high external magnetic fields.

13 Claims, 17 Drawing figures

	Full	Tit	e Citation	Front	Review	Classification	Date	Reference	Sequences	Attachments	KWC
	Draw	Desc	Image							i atta or il nor ato	150010
			, , ,								
***********		**********									
						***************************************		***************************************		***************************************	
	[7]	3	Documen	t ID·	115 540	16204 A	Dala	vance Rar	-1 57		
		٠.	Documen		05 540	0204 A	Kele	vance Kai	1K; 5/		

L5: Entry 4 of 7

File: USPT

Apr 11, 1995

US-PAT-NO: 5406204

DOCUMENT-IDENTIFIER: US 5406204 A

TITLE: Integrated MRI gradient coil and RF screen

DATE-ISSUED: April 11, 1995

INVENTOR-INFORMATION:

Morich; Michael A. Mentor OH	UNTRY
DeMeester; Gordon D. Wickliffe OH	
Patrick; John L. Chagrin Falls OH	
Zou; Xueming Chesterland OH	

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE Picker International, Inc. Highland Hts. OH 02

APPL-NO: 8/ 080413

DATE FILED: June 21, 1993

PARENT-CASE:

The present application is a continuation-in-part of U.S. applications Ser. Nos. 07/942,521, filed Sep. 9, 1992, 07/859,152, filed Mar. 27, 1992, and 07/859,154, filed Mar. 27, 1992.

INT-CL: [6] G01 R 33/20

US-CL-ISSUED: 324/318 US-CL-CURRENT: 324/318

FIELD-OF-SEARCH: 335/266, 324/300, 324/307, 324/309, 324/310, 324/311, 324/312, 324/313, 324/314, 324/318, 324/319, 324/320, 324/322, 128/653.2, 128/653.5

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO	PUBN-DATE	COUNTRY	US-CL
2180943	September 1985	GBX	03-CL

OTHER PUBLICATIONS

[&]quot;Active Magnetic Screening of Gradient Coils in NMR Imaging", Mansfield, et al.,

Journal of Magnetic Resonance, 66, 573-576 (1986).
"Active Magnetic Screening of Coils For Static and Time-Dependent Magnetic Field Generation in NMR Imaging", Mansfield, et al., J. Phys. E. Sci. Instrum. 19, 540-544

[&]quot;Shielded Gradient Coils and Radio Frequency Probes for High-Resolution Imaging of Rat Brains", Jasinski, et al, Magnetic Resonance in Medicine, 24, 29-41 (1992). "A 60 cm Bore 2.0 Tesla High Homogeneity Magnet For Magnetic Resonance Imaging",

Bobrov, et al., IEEE Transactions on Magnetics, vol. MAG-23, No. 2, Mar. 1987.

ART-UNIT: 267

PRIMARY-EXAMINER: Tokar; Michael J.

ATTY-AGENT-FIRM: Fay, Sharpe, Beall, Fagan, Minnich & McKee

ABSTRACT:

The magnetic field assembly of a <u>magnetic resonance</u> imaging device includes an annular superconducting magnet (10) which is mounted within a toroidal vacuum vessel (24). A cylindrical member (26) defines a central bore through which the superconducting magnets generate a temporally constant primary magnetic field. A cylindrical, dielectric former (46) is mounted in the bore displaced a small distance from the cylindrical member. A radio frequency coil (32) is mounted within the cylindrical member defining a patient receiving examination region. An RF shield (34) is mounted around the exterior peripheral surface of the former. Primary gradient coils (40) are mounted around and potted to the exterior of the dielectric former around the RF shield. Gradient shield or secondary coils (44) are potted around an exterior of the cylindrical member within the vacuum chamber. As illustrated in FIG. 3 , when unshielded gradient coils are used, the primary gradient coils and the RF shield are mounted around the outer diameter of the cylindrical member (26).

20 Claims, 3 Drawing figures

Full Title Citation Front Review Classification Date Reference Sequences Attachments Drawi Desc Timage

KWIC

4. Document ID: US 5311135 A Relevance Rank: 56

L5: Entry 7 of 7

File: USPT

May 10, 1994

US-PAT-NO: 5311135

DOCUMENT-IDENTIFIER: US 5311135 A

TITLE: Multiple tap gradient field coil for magnetic resonance imaging

DATE-ISSUED: May 10, 1994

INVENTOR-INFORMATION:

NAME

CITY

STATE ZIP CODE

COUNTRY

Vavrek; Robert M.

Myers; Christopher C.

Waukesha Milwaukee WT WI

ASSIGNEE-INFORMATION:

NAME

CITY

STATE ZIP CODE

COUNTRY TYPE CODE

General Electric Company

Milwaukee WI

02

APPL-NO: 7/ 988986

DATE FILED: December 11, 1992

INT-CL: [5] G01V 3/00

US-CL-ISSUED: 324/318; 324/322 US-CL-CURRENT: 324/318; 324/322

FIELD-OF-SEARCH: 324/318, 324/322, 324/307, 324/309, 324/300, 128/653.5, 335/299, 335/296, 336/137, 336/150

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO 4636728 4646024 4656447 4737716 4794338 4840700 5130656 5227728 5235279	ISSUE-DATE January 1987 February 1987 April 1987 April 1988 December 1988 June 1989 July 1992 July 1993 October 1993	PATENTEE-NAME Compton et al. Schenck et al. Keim et al. Roemer et al. Roemer et al. Edelstein et al. Requardt et al. Kaufman et al. Kaufman et al.	US-CL 324/318 324/318 335/216 324/319 324/39 156/634 324/318 324/318
--	--	--	--

ART-UNIT: 267

PRIMARY-EXAMINER: Arana; Louis ATTY-AGENT-FIRM: Quarles & Brady

ABSTRACT:

An NMR imaging system includes an apparatus for producing a magnetic field gradient within an imaging volume into which the object being imaged is placed. The relatively linear region of the magnetic field gradient is adjusted depending upon the size of the object. The apparatus comprises a source of a gradient signal and four saddle coils positioned in quadrant of a sheet that is wrapped around a cylindrical form. Each saddle coil has a spiral shaped conductive pattern on which are located a primary termination point and a pair of secondary termination points. A switch mechanism connects the four saddle coils in series with the source of a gradient signal, so that voltage from the gradient signal is applied between the primary termination point and a selected secondary termination point of each saddle coil. A control signal applied to the switch mechanism indicates selected secondary termination point and the signal varies according to the size of the object.

11 Claims, 9 Drawing figures

Full	Title	Citation	Frent	Review	Classification	Date	Reference	Sequences	Attachments
Draw, D.	esc I	mage							

KWIC

5. Document ID: US 5372137 A Relevance Rank: 48

L5: Entry 5 of 7

File: USPT

Dec 13, 1994

US-PAT-NO: 5372137

DOCUMENT-IDENTIFIER: US 5372137 A

TITLE: NMR local coil for brain imaging

DATE-ISSUED: December 13, 1994

INVENTOR-INFORMATION:

NAME

CITY

STATE

ZIP CODE

COUNTRY

Wong; Eric C.

Wauwatosa

WI

Hyde; James S.

Dousman

WI

ASSIGNEE-INFORMATION:

NAME

CITY

STATE ZIP CODE COUNTRY TYPE CODE

The MCW Research Foundation, Inc.

Milwaukee WI

02

APPL-NO: 8/ 006219

DATE FILED: January 19, 1993

INT-CL: [5] A61B 5/055, G01R 33/48

US-CL-ISSUED: 128/653.5; 324/309, 324/318 US-CL-CURRENT: 600/422; 324/309, 324/318

FIELD-OF-SEARCH: 128/653.2, 128/653.5, 324/309, 324/318, 324/322, 336/225

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
4680548	July 1987	Edelstein et al.	324/318
4725781	February 1988	Roschmann	324/318
4924184	May 1990	Yoda	324/318
4939465	July 1990	Biehl et al.	324/318
4992737	February 1991	Schnur	324/318
<u>5235279</u>	August 1993	Kaufman et al.	324/318

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO	
E042122	

PUBN-DATE

COUNTRY

US-CL

5042123

February 1993

JPX

128/653.5

OTHER PUBLICATIONS

An Efficient, Highly Homogeneous Radiofrequency Coil for Whole-Body NMR Imaging at 1.5T, Jour. of Magnetic Resonance, 63, 622-628 (1985), Hayes et al. High-Resolution, Short Echo Time MR Imaging of the Fingers and Wrist with a Local Gradient Coil.sup.1, Radiology, vol. 181, No. 2, Nov. 1992, Wong et al. Coil Optimization for MRI by Conjugate Gradient Descent, Mag. Resonance in Medicine, 21, 39-48 (1991), Wong et al.

ART-UNIT: 335

PRIMARY-EXAMINER: Pfaffle; K. M. ATTY-AGENT-FIRM: Quarles & Brady

ABSTRACT:

A local RF and <u>gradient coil</u> for acquiring images of the human brain using fast <u>NMR</u> pulse sequences includes an end capped RF bird cage coil surrounded by a 3 axis <u>gradient coil</u> assembly. An RF shield is disposed between the RF coil and the <u>gradient coils</u> and it is divided into separate segments to reduce <u>eddy currents</u> induced by the changing gradient fields.

28 Claims, 11 Drawing figures

Full	Title	Citation	Front	Review	Classification	Date	Reference	Sequences	Attachments
Draws D	esc li	mage							

KWIC

☐ 6. Document ID: US 6157276 A

Relevance Rank: 46

L5: Entry 1 of 7

File: USPT

Dec 5, 2000

US-PAT-NO: 6157276

DOCUMENT-IDENTIFIER: US 6157276 A

TITLE: MRI magnet assembly with non-conductive inner wall

DATE-ISSUED: December 5, 2000

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY Hedeen; Robert Arvin Clifton Park NY Edelstein; William Alan Schenectady NY El-Hamamsy; Sayed-Amr Schenectady NY Herd; Kenneth Gordon Niskayuna NY Ackermann; Robert Adolph Schenectady NY

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE General Electric Company Schenectady NY 02

APPL-NO: 9/ 134764

DATE FILED: August 14, 1998

INT-CL: [7] <u>H01</u> <u>F</u> <u>6/00</u>

US-CL-ISSUED: 335/216; 324/318, 62/51.1, 505/879, 505/893, 505/898 US-CL-CURRENT: 335/216; 324/318, 505/879, 505/893, 505/898, 62/51.1

FIELD-OF-SEARCH: 335/216, 335/296, 324/318, 324/319, 324/320, 62/51.1, 505/879,

505/892, 505/893, 505/898

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	TOOLE DAME		
	ISSUE-DATE	PATENTEE-NAME	US-CL
4492090	January 1985	Laskaris	62/55
4642569	February 1987	Hayes et al.	324/318
4771256	September 1988	Laskaris et al.	335/301
4879515	November 1989	Roemer et al.	324/318
4896128	January 1990	Wollan et al.	335/299
4910462	March 1990	Roemer et al.	324/318
4986078	January 1991	Laskaris	62/51.1
5001447	March 1991	Jayakumar	335/299
5034713	July 1991	Herd et al.	335/216
5278502	January 1994	Laskaris et al.	324/318
5489848	February 1996	Furukawa	324/318
5530413	June 1996	Minas et al.	335/216
5635839	June 1997	Srivastava et al.	324/320

ART-UNIT: 282

PRIMARY-EXAMINER: Barrera; Ray

ATTY-AGENT-FIRM: Snyder; Marvin Stoner; Douglas E.

ABSTRACT:

An MR magnet assembly includes a cylindrical vessel for housing a superconducting magnet and having a vacuum between its inner and outer walls. The vessel defines a

magnet bore for receiving a patient to be imaged. A gradient coil assembly is mounted in the bore adjacent the inner wall of the magnet assembly. To reduce gradient coil noise, the inner wall is constructed of a non-conductive material which does not support eddy currents.

5 Claims, 5 Drawing figures

Full Title Citation Front Review Classification Date Reference Sequences Attachments

KWIC

7. Document ID: US 5367261 A

Relevance Rank: 43

L5: Entry 6 of 7

File: USPT

Nov 22, 1994

US-PAT-NO: 5367261

DOCUMENT-IDENTIFIER: US 5367261 A

TITLE: Shield for a magnetic resonance imaging coil

DATE-ISSUED: November 22, 1994

INVENTOR-INFORMATION:

NAME

CITY

STATE

COUNTRY

Frederick; Perry S.

Waukesha

WI

ZIP CODE

ASSIGNEE-INFORMATION:

NAME

CITY

STATE ZIP CODE

COUNTRY

TYPE CODE

General Electric Company

Milwaukee WT

02

APPL-NO: 8/ 194798

DATE FILED: February 14, 1994

PARENT-CASE:

This application is a continuation of application Ser. No. 07/907,891 filed on Jul. 2, 1992 now abandoned.

INT-CL: [5] G01R 33/28

US-CL-ISSUED: 324/318; 324/322 US-CL-CURRENT: 324/318; 324/322

FIELD-OF-SEARCH: 324/318, 324/322, 324/300, 324/314, 324/320, 335/299, 335/301,

336/84R, 336/84C, 336/84M

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
4680548	July 1987	Edelstein et al.	324/318
4692705	September 1987	Hayes	324/318
4694255	September 1987	Hayes	324/318
4694663	September 1987	Miller	62/514R
4712067	December 1987	Roschmann et al.	324/318
4771256	February 1988	Laskaris et al.	335/301
4871969	October 1989	Roemer et al.	324/318
4879515	November 1989	Roemer et al.	324/322
4952877	August 1990	Stormont et al.	324/312
4990877	February 1991	Benesch	324/318
<u>4992736</u>	February 1991	Stormont et al.	324/309
5017872	May 1991	Foo et al.	324/322
5132621	July 1992	Kang et al.	324/318
5243286	September 1993	Rzedzian et al.	324/318

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO	PUBN-DATE	COUNTRY	US-CL
0196511	October 1986	EPX	335/301
9119994	December 1991	WOX	324/318

ART-UNIT: 267

PRIMARY-EXAMINER: Arana; Louis ASSISTANT-EXAMINER: Mah; Raymond Y. ATTY-AGENT-FIRM: Quarles & Brady

ABSTRACT:

An NMR imaging apparatus includes an excitation coil with a plurality of conductive elements extending between two spaced-apart end loops to form conventional "birdcage" coil. A shield is provided to reduce interference between the excitation coil and gradient field coils. The shield comprises a first electrically conductive section having an open ring with a gap therein and a plurality of first members extending from the ring with each member terminating at a remote end. A capacitor is connected across the gap in the ring. A second electrically conductive section has another ring from which a like plurality of second members extend with each one terminating at a remote end. The remote end of each second member is spaced from a remote end of a corresponding one of the first members and a capacitor is connected across those remote ends.

15 Claims, 5 Drawing figures

Term	Documents
CONDUCTIVE.DWPI,TDBD,EPAB,JPAB,USPT,PGPB.	739111
CONDUCTIVES.DWPI,TDBD,EPAB,JPAB,USPT,PGPB.	122
ELEMENT.DWPI,TDBD,EPAB,JPAB,USPT,PGPB.	2214606
ELEMENTS.DWPI,TDBD,EPAB,JPAB,USPT,PGPB.	1861445
(3 AND (CONDUCTIVE ADJ ELEMENT)).USPT,PGPB,JPAB,EPAB,DWPI,TDBD.	7
(L3 AND (CONDUCTIVE ADJ ELEMENT)).USPT,PGPB,JPAB,EPAB,DWPI,TDBD.	7

Display Format:	-	Change Format
-----------------	---	---------------

<u>Previous Page</u> <u>Next Page</u>

Generate Collection Print

Search Results - Record(s) 1 through 8 of 8 returned.

I. Document ID: US 20020079897 A1

Relevance Rank: 82

L9: Entry 1 of 8

File: PGPB

Jun 27, 2002

PGPUB-DOCUMENT-NUMBER: 20020079897

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20020079897 A1

TITLE: MRI apparatus

PUBLICATION-DATE: June 27, 2002

INVENTOR-INFORMATION:

NAME

CITY

STATE COUNTRY RULE-47

Ham, Cornelis Leonardus Gerardus

Eindhoven

NL

Konijn, Jan

Eindhoven

NL

US-CL-CURRENT: 324/318; 324/322

Full	Title	Cartina	Transiti								
	1 cons	Caston	Liont	Keview	Classification	Date	Reference	Sequences	Attachments	Claims	KWIC
Draw, D	esc l	mage									

2. Document ID: US 6278275 B1

Relevance Rank: 65

L9: Entry 4 of 8

File: USPT

Aug 21, 2001

US-PAT-NO: 6278275

DOCUMENT-IDENTIFIER: US 6278275 B1

TITLE: Gradient coil set with non-zero first gradient field vector derivative

DATE-ISSUED: August 21, 2001

INVENTOR-INFORMATION:

NAME

CITY

STATE ZIP CODE

COUNTRY

Petropoulos; Labros S.

Solon

OH

Schlitt; Heidi A.

Chesterland

OH

OH

ASSIGNEE-INFORMATION:

NAME

CITY

STATE ZIP CODE COUNTRY TYPE CODE

Picker International, Inc.

Highland Heights

02

APPL-NO: 9/ 419597

DATE FILED: October 18, 1999

INT-CL: [7] G01 V 3/00

US-CL-ISSUED: 324/318; 324/309, 324/320 US-CL-CURRENT: 324/318; 324/309, 324/320

FIELD-OF-SEARCH: 324/318, 324/309, 324/307, 324/320, 324/300, 335/296

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
4794338	December 1988	Roemer et al.	324/39
5132618	July 1992	Sugimoto	324/318
<u>5296810</u>	March 1994	Morich	324/318
<u>5736858</u>	April 1998	Katznelson et al.	324/318
5942898	August 1999	Petropoulos et al.	324/318
<u>5952830</u>	September 1999	Petropoulos et al.	324/318

ART-UNIT: 282

PRIMARY-EXAMINER: Oda; Christine ASSISTANT-EXAMINER: Shrivastav; Brij B

ATTY-AGENT-FIRM: Fay, Sharpe, Fagan, Minnich & McKee, LLP

ABSTRACT:

A gradient coil assembly (22) generates substantially linear magnetic gradients across the central portion of an examination region (14). The gradient coil assembly (22) includes primary x, y, and z-gradient coils (62, 66, 68) which generate a gradient magnetic field (90) having a non-zero first derivative in and adjacent the examination region. Preferably, the gradient coil assembly (22) includes secondary, shielding x, y, and z coils which generate a magnetic field which substantially cancels, in an area outside a region defined by the shielding coils, a fringe magnetic field generated by the primary gradient coils. The existence of a non-zero first derivative in and adjacent the examination region eliminates aliasing effects attributable to the non-unique gradient field values on either side of a rollover point (82). The non-unique values of the gradient magnetic field adjacent the rollover point caused structure near the rollover point to overlay each other (FIGS. 7B, 8B). The unique non-linearity of the present gradient (90) adjacent the edges expands (magnifies) the image adjacent the edges (FIGS. 7A, 8A). Because the expansion is unique, distortions at the edges are readily and accurately mapped (52) back to linear.

17 Claims, 13 Drawing figures

Drawn Desc Image	Draw Desc Image	Full	Title	Citation	Front	Review	Classification	Date	Reference	Sequences	Attachments	KWIC
		Draw, D	esc	mage								1,4415

L9: Entry 3 of 8

File: USPT

Aug 21, 2001

US-PAT-NO: 6278276

DOCUMENT-IDENTIFIER: US 6278276 B1

TITLE: Phased array gradient coil set with an off center gradient field sweet spot

DATE-ISSUED: August 21, 2001

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Morich; Michael A. Mentor OH Retropoulos; Labros S. Solon OH

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Picker International, Inc. Highland Heights OH 02

APPL-NO: 9/ 441283

DATE FILED: November 16, 1999

INT-CL: [7] G01 V 3/00

US-CL-ISSUED: 324/318; 324/322 US-CL-CURRENT: 324/318; 324/322

FIELD-OF-SEARCH: 324/318, 324/322, 324/300, 324/306, 324/307, 324/309, 600/421, 600/422

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

ART-UNIT: 282

PRIMARY-EXAMINER: Arana; Louis

ATTY-AGENT-FIRM: Fay, Sharpe, Fagan, Minnion & McKee, LLP

ABSTRACT:

A gradient coil assembly (22) generates substantially linear gradient magnetic fields through an examination region (14). The gradient coil assembly (22) includes a pair of primary gradient coil sets (22a, 22b) and a pair of shield coil sets (23a, 23b) which are disposed in an overlapping relationship. One gradient coil set is displaced relative to the other gradient coil set such that the mutual inductance between the two is minimized. Preferably, the coil sets (22a, 22b, 23a, 23b) are asymmetric, such that the sweet spot of each coil is displaced from the geometric center of each coil. One primary gradient coil set (22a) is a high efficiency, high switching speed coil to enhance performance of ultrafast magnetic resonance sequences, while the second primary gradient coil set (22b) is a low efficiency coil which generates a high quality gradient magnetic field, but with slower switching speeds. By displacing one gradient coil set relative to the other, mutual inductance is minimized, which maximizes peak asymmetric gradient coil sets in an overlapping, phased array reduces coil resistance, which increases duty cycle and reduces heat dissipation to eliminate extra costs for a cooling system.

26 Claims, 20 Drawing figures

Full Title Citation Front Review Classification Date Reference Sequences Attachments
Drawl Desc Image

KWC

4. Document ID: US 20020050895 A1 Relevance Rank: 54

L9: Entry 2 of 8

File: PGPB

May 2, 2002

PGPUB-DOCUMENT-NUMBER: 20020050895

PGPUB-FILING-TYPE: new

DOCUMENT-IDENTIFIER: US 20020050895 A1

TITLE: Magnetic apparatus for MRI

PUBLICATION-DATE: May 2, 2002

INVENTOR-INFORMATION:

NAME

CITY Haifa

STATE COUNTRY

RULE-47

Zuk, Yuval Katz, Yoav

Rehovot

ILΙL

Katznelson, Ehud Rotem, Haim

Ramat Yishai Mate Asher

IL IL

US-CL-CURRENT: 335/216

Title Citation Front Review Classification Date Reference Sequences Attachments Draws Desc | Image |

ROMO

5. Document ID: US 6163240 A

Relevance Rank: 54

L9: Entry 5 of 8

File: USPT

Dec 19, 2000

US-PAT-NO: 6163240

DOCUMENT-IDENTIFIER: US 6163240 A

TITLE: Magnetic apparatus for MRI

DATE-ISSUED: December 19, 2000

INVENTOR-INFORMATION:

NAME CITY

Zuk; Yuval Haifa STATE ZIP CODE

COUNTRY ILX

Katznelson; Ehud

Ramat Yishai

Katz; Yoav

Rehovot

ILX ILX

Rotem; Haim

Mate Asher

ILX

ASSIGNEE-INFORMATION:

NAME

CITY

STATE ZIP CODE COUNTRY TYPE CODE

Odin Medical Technologies Ltd.

Yokneam Elite

ILX 03

APPL-NO: 9/ 161336

DATE FILED: September 25, 1998

PARENT-CASE:

REFERENCE TO RELATED APPLICATIONS: This application claims priority of and the benefit of U.S. provisional application Ser. No. 60/059,659, filed Sep. 25, 1997.

INT-CL: [7] $\underline{\text{H01}} \ \underline{\text{F}} \ \underline{5/00}, \ \underline{\text{G01}} \ \underline{\text{V}} \ \underline{3/00}$

US-CL-ISSUED: 335/299; 324/318, 324/319, 324/320, 335/296, 335/302, 335/306 US-CL-CURRENT: 335/299; 324/318, 324/319, 324/320, 335/296, 335/302, 335/306

FIELD-OF-SEARCH: 335/216, 335/296-306, 324/318-320, 600/410, 600/421, 600/422

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	TOCILE DAME	D	
- 1	ISSUE-DATE	PATENTEE-NAME	US-CL
<u>H1615</u>	December 1996	Leupold	
<u>4341220</u>	July 1982	Perry	
4608977	September 1986	Brown	
4695802	September 1987	Zijlstra	324/319
4829252	May 1989	Kaufman	021,025
4862086	August 1989	Maeda	
4875485	October 1989	Matsutani	
<u>5134374</u>	July 1992	Breneman et al.	
<u>5153517</u>	October 1992	Oppelt et al.	324/322
5241272	August 1993	Friedrich	324/318
5304933	April 1994	Vavrek et al.	321/310
5332971	July 1994	Aubert	
5365927	November 1994	Roemer et al.	
5390673	February 1995	Kikinis	
5410287	April 1995	Laskaris et al.	
5428292	June 1995	Dorri et al.	
5490509	February 1996	Carlson et al.	
5570073	October 1996	Muller	
5623241	April 1997	Minkoff	
5675305	October 1997	DeMeester et al.	225/200
5677630	October 1997	Laskaris et al.	335/302
5696449	December 1997	Boskamp	
		Бовкашр	

OTHER PUBLICATIONS

A description of ,"HSP 50215 Harris Semiconductor Corporation,FI, U.S.A." 1 page, No Date.

A description of, "HSP 50214 Harris Semiconductor Corporation ,FI, U.S.A" lpage, No Date.

Faulkner et al., "Guidelines for Establishing a Virtual Reality Lab", IEEE Engineering in Medicine and in Biology, Mar. Apr. 1996 pp. 86-93.

ART-UNIT: 282

PRIMARY-EXAMINER: Gellner; Michael L. ASSISTANT-EXAMINER: Barrera; Raymond

ATTY-AGENT-FIRM: Eitan, Pearl, Latzer & Cohen-Zedek

ABSTRACT:

Magnetic apparatus for MRI/MRT probes and methods for construction thereof are disclosed. One embodiment includes a pair of opposed magnet assemblies defining an open region therebetween, a transmitting RF coil having at least a portion thereof disposed within the open region, at least one receiving RF coil disposed within the open region and X,Y and Z gradient coils. At least one of the X,Y and Z gradient coils is disposed outside of the open region. Another embodiment of the apparatus includes a single magnet assembly having a first surface and a second surface opposing the first surface, a transmitting RF coil having at least a portion thereof opposing the first surface, at least one receiving RF coil and X,Y and Z gradient coils. At least one of the X,Y and Z gradient coils opposes the second surface. In another embodiment the magnet assembly

generates a permanent z-gradient magnetic field and therefore includes only X and Y gradient coils, at least one of which opposes the second surface. The apparatuses may also include one or more shim coils.

21 Claims, 24 Drawing figures

Title Citation Front Review Classification Date Reference Sequences Attachments Draw Desc. Image

KMIC

6. Document ID: US 5760584 A Relevance Rank: 52

L9: Entry 7 of 8

File: USPT

Jun 2, 1998

US-PAT-NO: 5760584

DOCUMENT-IDENTIFIER: US 5760584 A

TITLE: Shield for MR system RF coil provided with multiple capacitive channels for RF

current flow

DATE-ISSUED: June 2, 1998

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Frederick; Perry S. Waukesha WI

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

General Electric Company Milwaukee WI 02

APPL-NO: 8/ 689948

DATE FILED: August 16, 1996

INT-CL: [6] G01 R 33/20

US-CL-ISSUED: 324/318 US-CL-CURRENT: 324/318

FIELD-OF-SEARCH: 335/301, 174/35R, 174/35MS, 324/300, 324/307, 324/309, 324/318

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
4871969	October 1989	Roemer et al.	324/318
4879515	November 1989	Roemer et al.	324/318
5381093	January 1995	Kawamoto	324/318
5680046	October 1997	Ferderick et al.	324/318

ART~UNIT: 221

PRIMARY-EXAMINER: O'Shea; Sandra L. ASSISTANT-EXAMINER: Eisenberg; Michael

ATTY-AGENT-FIRM: Skarsten; James O. Pilarski; John H.

ABSTRACT:

An RF shield is provided to prevent coupling between the gradient coils and the RF coil

of an MR imaging system, wherein the RF field rotates around the RF coil axis. The shield includes a number of coaxial conductive cylinders, and further includes a plurality of cylinders formed of dielectric material, each dielectric cylinder positioned between adjacent conductive cylinders. Each conductive cylinder is formed from sheets of copper, each sheet having a pattern of conductive loops formed therein, and each loop having an associated gap to prevent induction of eddy currents therein by gradient magnetic fields produced by the MR system gradient coils. The number of conductive cylinders, and the angular orientation thereof with respect to one another, are selected to provide a plurality of closed paths for RF image current induced by the RF field, wherein respective closed paths are established by capacitive coupling between a given conductive loop of a given conductive cylinder, and conductive loops in other of the conductive cylinders.

11 Claims, 7 Drawing figures

Full Title Citation Front Review Classification Date Reference Sequences Attachments Draw Desc Image

KWIC

7. Document ID: US 5381093 A

Relevance Rank: 49

L9: Entry 8 of 8

File: USPT

Jan 10, 1995

US-PAT-NO: 5381093

DOCUMENT-IDENTIFIER: US 5381093 A

TITLE: Magnetic resonance imaging apparatus

DATE-ISSUED: January 10, 1995

INVENTOR-INFORMATION:

NAME

CITY

STATE ZIP CODE

COUNTRY

Kawamoto: Hiromi

Yaita

JPX

ASSIGNEE-INFORMATION:

NAME

CITY

STATE ZIP CODE

COUNTRY TYPE CODE

Kabushiki Kaisha Toshiba

Kawasaki

JPX 03

APPL-NO: 7/ 986352

DATE FILED: December 7, 1992

FOREIGN-APPL-PRIORITY-DATA:

COUNTRY

APPL-NO

APPL-DATE

JP

3-324780

December 9, 1991

INT-CL: [6] G01 R 33/20

US-CL-ISSUED: 324/318 US-CL-CURRENT: 324/318

FIELD-OF-SEARCH: 324/300, 324/307, 324/309, 324/310, 324/311, 324/312, 324/313,

324/314, 324/318, 324/319, 324/320, 324/322, 128/653.5

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
4642569	February 1987	Hayes et al.	324/318
4879515	November 1989	Roemer et al.	324/318
4965521	October 1990	Egloff	324/312

ART-UNIT: 267

PRIMARY-EXAMINER: Tokar; Michael J. ATTY-AGENT-FIRM: Limbach & Limbach

ABSTRACT:

The MR imaging apparatus comprises an RF shield for interposed between the set of gradient coil and the RF coil. The RF shield is a cylinder which longitudinal axis is substantially coincident to the z-axis in which a static magnetical field is applied. The RF shield comprises two conductive sheet-members which are half-cylinder respectively and integrated into one cylinder. The sheet members have a plurality of generally C-shaped conductive loop portions respectively which are defined by nonconductive lines parallel to RF current flow induced therein by the RF coil and a single radial cut line respectively. The RF shield comprises a connecting means for electrically connecting the C-shaped conductive loop portions so that the C-shaped conductive loop portion in one of the sheet members and corresponding C-shaped conductive loop portion in the other sheet member can be formed into one circuit respectively and a current can circulate in said circuit in the same direction around a y-axis orthogonal to the z-axis.

21 Claims, 10 Drawing figures

Draw, Desc Image	Draw, Desc Image	on.	n	Front	Revie	vv Classifi	eation	Date	Refer	ence	Seque	nces	Attachmen	its	KWIC	1
																u

8. Document ID: US 5872452 A Relevance Rank: 48

L9: Entry 6 of 8

File: USPT

Feb 16, 1999

US-PAT-NO: 5872452

DOCUMENT-IDENTIFIER: US 5872452 A

TITLE: Apparatus and method for the generation of gradient magnetic fields for high resolution NMR experiments

DATE-ISSUED: February 16, 1999

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY Cory; David G. Roston MA

Cory; David G. Boston MA
Lewandowski; Joel T. Oxford MA

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE
Bruker Instruments, Inc. Billerica MA 02

APPL-NO: 8/ 794477

DATE FILED: February 4, 1997

INT-CL: [6] G01 V 3/00

US-CL-ISSUED: 324/321; 324/318 US-CL-CURRENT: 324/321; 324/318 FIELD-OF-SEARCH: 324/321, 324/320, 324/318, 324/314, 324/307, 324/309

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
<u>5208536</u>	May 1993	Cory	324/321
<u>5260657</u>	November 1993	Lewis et al.	324/321
<u>5325059</u>	June 1994	Doty	324/321

OTHER PUBLICATIONS

Osamu Oishi et al., Institute for Molecular Science, Myodaiji, Okazaki 444, Japan, New PFG NMR Spectrometer with a Rotatable Quadrupole Coil for the Measurement of an Anisotropic Self-Diffusion Coefficient Tensor, Journal of Magnetic Resonance, XP 000633889, Series A 123, pp. 64-71 (1996), Article No. 0214.

Goran Odberg et al, Division of Physical Chemistry, The Royal Institute of Technology, S-100 44, Stockholm 70, Sweden, On the Use of a Quadrupole Coil for NMR Spin-Echo Diffusion Studies, Journal of Magnetic Resonance 16, XP-002064740, pp. 342-347 (1974). R. Botwell, et al., Magic-Angle Gradient-Coil Design, Magnetic Resonance Center, University of Nottingham, Nottingham NG7 2RD United Kingdom, Journal of Magnetic Resonance, XP 000519712, Series A 115, pp. 55-59 (1995).

Seiichi Miyajima et al., Laboratory of Atomic and Solid Sate Physics, Cornell University, Ithaca, NY 14853-2501, USA, Pulsed-field-gradient stimulated-spin-echo NMR study of anisotropic self-diffusion in smectic Ad liquid crystal CBOOA.

ART-UNIT: 287

PRIMARY-EXAMINER: Arana; Louis

ATTY-AGENT-FIRM: Kudirka & Jobse, LLP

ABSTRACT:

A gradient magnetic field generator is provided for generating a spatially varying gradient magnetic field for use with a nuclear magnetic resonance spectroscopy probe having a rotatable sample container. The gradient field generator has a plurality of straight line conductive segments which lie parallel to one another and perpendicular to a plane within which lies a rotation axis about which the sample container rotates. The straight line conductive segments each conduct a current which generates a component of the overall gradient magnetic field. The conductive segments preferably lie in a cylindrical distribution about a stator within which the sample container is rotated. The appropriate currents for the conductive segments may be determined by finding a solution for the Jacobian which defines the magnetic field variations in the three-dimensional space of the stator. Finding an appropriate solution is simplified by presuming the cylindrical distribution of conductive segments and allowing restriction due to the size and shape of the stator, and the physical space between the stator and an inner surface of the probe housing.

19 Claims, 8 Drawing figures

Draw. Desc Image	Full	Title		Front	Review	Classification	Date	Reference	Sequences	Attachments	KWIC
	rawu Do	esc l	mage								
				***************************************	***************************************	**************************************	33444444444				
						Generate C	ollection	on II	Print		

Term	Documents
THREE.DWPI,TDBD,EPAB,JPAB,USPT,PGPB.	2002574
THREES.DWPI,TDBD,EPAB,JPAB,USPT,PGPB.	975
GRADIENT.DWPI,TDBD,EPAB,JPAB,USPT,PGPB.	171373
GRADIENTS.DWPI,TDBD,EPAB,JPAB,USPT,PGPB.	40550
COIL.DWPI,TDBD,EPAB,JPAB,USPT,PGPB.	717215
COILS.DWPI,TDBD,EPAB,JPAB,USPT,PGPB.	228330
(8 AND ((THREE ADJ GRADIENT) ADJ COIL)).USPT,PGPB,JPAB,EPAB,DWPI,TDBD.	8
(L8 AND (THREE ADJ GRADIENT ADJ COIL)).USPT,PGPB,JPAB,EPAB,DWPI,TDBD.	8

Display Format: - Change Format

Previous Page Next Page