Worksheet 7.4: Solutions

Acid equilibria – an extension

No.	Answer
1	a i $[H_3O^+] = 1.0 \text{ mol } L^{-1} = 1 \times 10^0 \text{ mol } L^{-1}$ $pH = -log_{10}[H_3O^+] = -log_{10} (1 \times 10^0) = 0$ ii As HCl is a strong, monoprotic acid: $[H_3O^+] = [HCl] = 9.05 \times 10^{-8} \text{ mol } L^{-1}$ $pH = -log_{10}[H_3O^+] = -log_{10}(9.05 \times 10^{-8}) = 7.04$
	Of course this answer does not make sense as a solution of an acid cannot have a pH > 7 at 25°C. In this situation, the self-ionisation of water already produces a solution with a pH of 7, so a solution that contains this small amount of additional HCl would have a pH slightly below 7. b i [OH ⁻] = 0.0700 mol L ⁻¹
	$K_{w} = [H_{3}O^{+}][OH^{-}] = 1 \times 10^{-14}$ $\therefore [H_{3}O^{+}] = \frac{1 \times 10^{-14}}{[OH^{-}]} = \frac{1 \times 10^{-14}}{0.0700} = 1.43 \times 10^{-13} \text{ mol } L^{-1}$ $pH = -log_{10}[H_{3}O^{+}] = -log_{10}(1.43 \times 10^{-13}) = 12.8$
	ii [NaOH] = [OH ⁻] = 4.00×10^{-12} mol L ⁻¹ $K_w = [H_3O^+][OH^-] = 1 \times 10^{-14}$ $\therefore [H_3O^+] = \frac{1 \times 10^{-14}}{[OH^-]} = \frac{1 \times 10^{-14}}{4.00 \times 10^{-12}} = 2.50 \times 10^{-3}$ mol L ⁻¹
	$pH = -\log_{10}[H_3O^+] = -\log_{10}(2.50 \times 10^{-3}) = 2.60$ $iii [OH^-] = 2 \times [Ba(OH)_2] = 0.0124 \text{ mol } L^{-1}$ $K_w = [H_3O^+][OH^-] = 1 \times 10^{-14}$ $\therefore [H_3O^+] = \frac{1 \times 10^{-14}}{[OH^-]} = \frac{1 \times 10^{-14}}{0.0124} = 8.06 \times 10^{-13} \text{ mol } L^{-1}$
	$pH = -log_{10}[H_3O^+] = -log_{10}(8.06 \times 10^{-13}) = 12.1$ c i $[H_3O^+] = 10^{-pH} = 10^{-1.07} = 0.085 \text{ mol } L^{-1}$ ii $[H_3O^+] = 10^{-pH} = 10^{-14.7} = 2.0 \times 10^{-15} \text{ mol } L^{-1}$
2	$c_1 \times V_1 = c_2 \times V_2$ $\therefore 3.55 \times 45.0 = c_2 \times 295$ $\therefore c_2 = 0.542 \text{ mol L}^{-1}$ As HNO ₃ is a strong, monoprotic acid: $[H_3O^+] = [HNO_3] = 0.542 \text{ mol L}^{-1}$ $pH = -log_{10}[H_3O^+] = -log_{10}0.542 = 0.266$

Worksheet 7.4: Solutions

Acid equilibria – an extension

No.	Answer
3	$n(\text{NaOH}) = \frac{\text{m}}{\text{M}} = \frac{9.35}{39.998} = 0.234 \text{ mol}$
	[NaOH] = $\frac{n}{V} = \frac{0.234}{0.400} = 0.584 \text{ mol L}^{-1}$
	$[OH^{-}] = [NaOH] = 0.584 \text{ mol } L^{-1}$ $K_w = [H_3O^{+}][OH^{-}] = 1 \times 10^{-14}$
	$\therefore [H_3O^+] = \frac{1 \times 10^{-14}}{[OH^-]} = \frac{1 \times 10^{-14}}{0.584} = 1.71 \times 10^{-14} \text{ mol } L^{-1}$ $pH = -\log_{10}[H_3O^+] = -\log_{10}(1.71 \times 10^{-14}) = 13.8$
4	$K_{\text{st}} = [Ag^+][OH^-] = 2.0 \times 10^{-8}$ From the equation, $[Ag^+] = [OH^-]$ $\therefore [OH^-] = \sqrt{2.0 \times 10^{-8}} = 1.41 \times 10^{-4} \text{ mol L}^{-1}$ $K_w = [H_3O^+][OH^-] = 1 \times 10^{-14}$ $\therefore [H_3O^+] = \frac{1 \times 10^{-14}}{[OH^-]} = \frac{1 \times 10^{-14}}{1.41 \times 10^{-4}} = 7.07 \times 10^{-11} \text{ mol L}^{-1}$ $ph = -log_{10}[H_3O^+] = -log_{10}(7.07 \times 10^{-11}) = 10.2$
5	a $C_6H_5OH(aq) + H_2O(l) \rightleftharpoons C_6H_5O^-(aq) + H_3O^+(aq)$ ∴ $K_a = \frac{[C_6H_5O^-][H_3O^+]}{[C_6H_5OH]}$
	b $HN_3(aq) + H_2O(1) \rightleftharpoons N_3^-(aq) + H_3O^+(aq)$ $\therefore K_a = \frac{[N_3^-][H_3O^+]}{[HN_3]}$
	c $HPO_3^{2-}(aq) + H_2O(1) \rightleftharpoons PO_3^{3-}(aq) + H_3O^{+}(aq)$ $\therefore K_a = \frac{[PO_3^{3-}][H_3O^{+}]}{[HPO_3^{2-}]}$
6	$\mathbf{a} \ K_{a1} = \frac{[C_2 H O_4^{-}][H_3 O^{+}]}{[C_2 H_2 O_4]}$
	$K_{a2} = \frac{[C_2O_4^{2^-}][H_3O^+]}{[C_2HO_4^{-}]}$
	b $K_{a1} > K_{a2}$

Worksheet 7.4: Solutions

Acid equilibria – an extension

No.	Answer
7	$[H_2AsO_2^{-1}][H_2O^{+}]$
	$K_a = \frac{[H_2 \text{AsO}_3][H_3 \text{O}^+]}{[H_3 \text{AsO}_3]} = 5.13 \times 10^{-10}$
	From the equation, $[H_2AsO_3^-] = [H_3O^+]$ at equilibrium, and also, for a weak acid,
	$[H_3AsO_3]_i \cong [H_3AsO_3]_{eq} = 0.882 \text{ mol L}^{-1}$ $[H_2AsO_3]_i[H_2O^+]$ $[H_2O^+]^2$
	$\therefore \frac{[H_2AsO_3^-][H_3O^+]}{[H_3AsO_3]} = \frac{[H_3O^+]^2}{0.882} = 5.13 \times 10^{-10}$
	$\therefore [H_3O^+] = 2.13 \times 10^{-5} \text{ mol } L^{-1}$
	$pH = -log_{10}[H_3O^+] = -log_{10} (2.13 \times 10^{-5}) = 4.67$
8	$K_a = \frac{[\text{CH}_3\text{CH}_2\text{COO}^-][\text{H}_3\text{O}^+]}{[\text{CH}_3\text{CH}_2\text{COOH}]}$
	$[CH_3CH_2COOH]$ $[H_3O^+] = 10^{-pH} = 10^{-2.80} = 0.00158 \text{ mol } L^{-1}$
	From the equation, $[CH_3CH_2COO^-]_{eq} = [H_3O^+]_{eq} = 0.00158 \text{ mol } L^{-1}$ and also, for a weak
	acid, $[CH_3CH_2COOH]_i \cong [CH_3CH_2COOH]_{eq} = 0.184 \text{ mol } L^{-1}$
	$\therefore K_a = \frac{[\text{CH}_3\text{CH}_2\text{COO}^-][\text{H}_3\text{O}^+]}{[\text{CH}_3\text{CH}_2\text{COOH}]} = \frac{(0.00158)^2}{0.184} = 1.37 \times 10^{-5}$
9	% hydrolysis = $\frac{[OBr^{-}]}{[HOBr]} \times \frac{100}{1} = 0.00828\%$
	For a weak acid: $[HOBr]_i \simeq [HOBr]_{eq} = 0.350 \text{ mol } L^{-1}$
	$\therefore \frac{[OBr^{-}]}{0.350} \times \frac{100}{1} = 0.00828 \therefore [OBr^{-}] = 2.90 \times 10^{-5} \text{ mol L}^{-1}$
	0.350 1 From the equation:
	$[OBr^{-}]_{eq} = [H_{3}O^{+}]_{eq} = 2.90 \times 10^{-5} \text{ mol L}^{-1}$
	$pH = -log_{10}[H_3O^+] = -log_{10}(2.90 \times 10^{-5}) = 4.54$ $[OBr^-][H_2O^+] = (2.9 \times 10^{-5})^2$
	$K_a = \frac{[OBr^-][H_3O^+]}{[HOBr]} = \frac{(2.9 \times 10^{-5})^2}{0.350} = 2.40 \times 10^{-9}$
10	$[HO_{2}^{-}][H_{3}O^{+}]$
	a $K_a = \frac{[HO_2^-][H_3O^+]}{[H_2O_2]} = 2.27 \times 10^{-12}$
	b $[H_3O^+] = 10^{-pH} = 1 \times 10^{-6}$
	From the equation, $[HO_2^-]_{eq} = [H_3O^+]_{eq}$ and also, for a weak acid,
	$[H_2O_2]_i \cong [H_2O_2]_{eq} = 0.44 \text{ mol } L^{-1}$
	% ionisation = $\frac{[HO_2]}{[H_2O_2]} \times \frac{100}{1} = \frac{1 \times 10^{-6}}{0.44} \times \frac{100}{1} = 2.3 \times 10^{-4}$