1 Organizační úvod

Přesun nebyl odhlasován.

Poznámka (Literatura)

• Engelking: General Topology (spíš taková příručka, hodně obtížná)

• Čech: Bodová topologie

• Kelley: General Topology

• Willard: General Topology

Doporučené jsou poslední dvě.

Poznámka (Podmíny zakončení)

Zkouška (ústní) + úkoly ze cvičení (a účast na cvičení)

2 Úvod

Poznámka (Historie)

- Euler: mosty ve městě Královec (7 mostů, Eulerovský tah)
- Listing (1847): pojem topologie (bez rigorózních definic)
- Poincaré (1895): Analysis Situs (Poincarého hypotéza)
- Fréchet (1906): definuje metrický prostor (až dodnes)
- Hausdorff (1914): tzv. Hausdorffův TP
- Kuratowski (1922): TP, jak jej známe dnes (formálně)

Poznámka (TOPOSYM)

V Praze se každých 5 let koná významná konference topologů – TOPOSYM.

3 Základní pojmy

Topos = umístění (řečtina).

3.1 Topologický prostor, báze, subbáze, váha, charakter

Definice 3.1 (Topologický prostor (TP))

Uspořádaná dvojice (\mathbb{X}, τ) se nazývá topologický prostor, pokud \mathbb{X} je množina, $\tau \subseteq \mathcal{P}(\mathbb{X})$ a platí:

- (T1) \emptyset , $\mathbb{X} \in \tau$
- (T2) jsou-li $\mathbb{U}, \mathbb{V} \in \tau$, pak $\mathbb{U} \cap \mathbb{V} \in \tau$
- (T3) je-li $\mathcal{U} \in \tau$, pak $\bigcup \mathcal{U} \in \tau$.

Definice 3.2 (Topologie)

Systém τ se nazýva
jí body. Prvky τ se nazývají body. Prvky τ se nazývají o
tevřené množiny.

Definice 3.3 (Okolí bodu)

Množina $\mathbb{V} \subseteq \mathbb{X}$ se nazývá okolí bodu x, pokud existuje $\mathbb{U} \in \tau$, že $x \in \mathbb{U} \subseteq \mathbb{V}$. Množina všech okolí bodu x značíme $\mathcal{U}(x) = \mathcal{U}_{\tau}(x)$.

Definice 3.4 (Báze a subbáze)

Soubor množin $\mathcal{B} \subseteq \tau$ se nazývá báze topologie τ , pokud pro každé $\mathbb{U} \in \tau$ existuje $\mathcal{U} \subseteq \mathbb{B}$: $\bigcup \mathcal{U} = \mathbb{U}$. Soubor $\mathcal{S} \subseteq \tau$ se nazývá subbáze topologie τ , pokud $\{\bigcap \mathcal{F} : \mathcal{F} \subseteq \mathcal{S}$ konečná $\}$ je báze topologie τ .

Tvrzení 3.1 (Charakterizace otevřené množiny pomocí okolí)

```
\begin{array}{l} At \ (\mathbb{X},\tau) \ je \ TP \ a \ \mathbb{U} \in \mathbb{X}. \ Pak \ \mathbb{U} \in \tau, \ pr\'{a}v\check{e} \ kdy\check{z} \ \forall x \in \mathbb{U} \exists \mathbb{V} \in \mathcal{U}(x) : \mathbb{V} \subseteq \mathbb{U} \\ \hline D\mathring{u}kaz \\ \text{D\mathring{u}kaz} \ (\Longrightarrow) \ \text{vid\'ime} \ \mathbb{U} = \mathbb{V}. \\ \\ \text{Opačně v\'{ime}} \ \forall x \in \mathbb{U} \exists \mathbb{V}_x \in \mathcal{U}(x) : \mathbb{V}_x \subseteq \mathbb{U}. \ \exists \mathbb{W}_x \in \tau : x \in \mathbb{W}_x \subseteq \mathbb{U}_x. \ \mathbb{U} = \bigcup_{x \in \mathbb{U}} \mathbb{W}_x \in \tau. \\ \hline \tau. \ \text{Tedy} \ \mathbb{U} \in \tau. \end{array}
```

Příklad

Je-li (\mathbb{X} , ϱ) metrický prostor (MP), pak soubor všech ϱ -otevřených množin tvoří topologii na množině \mathbb{X} .

Definice 3.5 (Metrizovatelný TP)

TP (X, τ) se nazývá metrizovatelný, pokud na množině X existuje metrika ϱ tak, že topologie odvozené z (X, ϱ) splývá s topologií τ .

Příklad

Je-li (X, ϱ) MP, pak systém všech otevřených koulí tvoří bázi topologie τ_{ϱ} .

Například

Všechny otevřené intervaly tvoří bázi topologie na \mathbb{R} .

Systém $\{(-\infty, b), (a, \infty) : a, b \in \mathbb{R}\}$ je subbáze topologie na \mathbb{R} .

Příklad (Diskrétní a indiskrétní TP)

Je-li \mathbb{X} množina, pak $(\mathbb{X}, \mathcal{P}(\mathbb{X}))$ je TP, nazývá se diskrétní TP (a vždy je metrizovatelný). Naopak $(\mathbb{X}, \{\emptyset, \mathbb{X}\})$ se nazývá indiskrétní TP. (Pokud $|\mathbb{X}| \geq 2$, pak indiskrétní TP není metrizovatelný.)

Tvrzení 3.2 (Vlastnosti báze)

Je- $li(X, \tau)$ TP a \mathcal{B} jeho báze, pak

 $(B1) \ \forall \mathbb{U}, \mathbb{V} \in \mathcal{B} \forall x \in \mathbb{U} \cap \mathbb{V} \exists \mathbb{W} \in \mathbb{B} : x \in \mathbb{W} \subseteq \mathbb{U} \cap \mathbb{V},$

 $(B2) \mid \mathcal{B} = \mathbb{X}.$

Je-li $\mathbb X$ libovolná množina a $\mathcal B\subseteq \mathbb P(\mathbb X)$ splňuje podmínky (B1), (B2), pak na $\mathbb X$ existuje jediná topologie, jejíž báze je $\mathbb B$.

 $D\mathring{u}kaz$

První část je snadná (průnik 2 množin báze je otevřený, tj. prvkem topologie, tedy se dá zapsat jako sjednocení podmnožiny báze).

Druhá část: Mějme tedy \mathbb{X} a \mathcal{B} z věty splňující obě podmínky. Definujme $\tau := \{ \bigcup \mathcal{U} : \mathcal{U} \subseteq \mathcal{B} \}. \ \tau$ je topologie na \mathbb{X} (ověříme, že τ splňuje podmínky topologie).

Zároveň volba τ je jediná množná, jelikož každý její prvek se musí dát vyjádřit jako sjednocení báze a opačně.

Důsledek

Je-li $\mathbb X$ množina, $\mathcal S\subseteq\mathcal P(\mathbb X)$ a $\bigcup\mathcal S=\mathbb X$, pak $\mathcal S$ je subbáze jednoznačně určené topologie na $\mathbb X$.

 $D\mathring{u}kaz$

 $\mathcal{B} = \{ \cap \mathcal{F} : \mathcal{F} \subseteq \mathcal{S}$ konečná $\}$ splňuje podmínky (B1) a (B2) předchozího tvrzení (B2 definice \mathcal{S} , B1 protože $\mathbb{U}, \mathbb{V} \in \mathcal{B}, \mathbb{U} = \bigcup \mathcal{F}_1, \mathbb{V} = \bigcap \mathcal{F}_2, \mathcal{F}_1, \mathcal{F}_2 \subseteq \mathcal{S}$ konečné. $\mathbb{U} \cap \mathbb{V} = \bigcap (\mathcal{F}_1 \cup \mathcal{F}_2) \in \mathcal{B}$. (Dokonce celý průnik je prvkem \mathcal{B} , nejenom pro každý prvek existuje množina, která ho obsahuje, je podmnožinou průniku a je v \mathcal{B}).

Tvrzení 3.3 (Vlastnosti systému všech okolí)

Je-li (X, τ) TP, pak soubory všech okolí $\mathcal{U}_{\tau}(x), x \in X$ splňují

 $(U1) \ \forall x \in \mathbb{X} : \mathcal{U}(x) \neq \emptyset, x \in \bigcap \mathcal{U}(x),$

 $(U2) \ \forall \mathbb{U} \in \mathcal{U}(x) \forall \mathbb{V} : \mathbb{U} \subseteq \mathbb{V} \subseteq \mathbb{X} \implies \mathbb{V} \in \mathcal{U}(x),$

 $(U3) \ \forall \mathbb{U}, \mathbb{V} \in \mathcal{U}(x) : \mathbb{U} \cap \mathbb{V} \in \mathcal{U}(x),$

 $(U4) \ \forall \mathbb{U} \in \mathcal{U}(x) \exists \mathbb{V} \in \mathcal{U}(x) \forall y \in \mathbb{V} : \mathbb{U} \in \mathcal{U}(y)$

Je-li $\mathbb X$ množina a systémy množin $\mathcal U(x)\subseteq\mathcal P(\mathbb X), x\in\mathbb X$ splňující podmínky (U1-4), pak na množině $\mathbb X$ existuje jediná topologie τ , že $\mathcal U(x)=\mathcal U_\tau(x), x\in\mathbb X$.

 $D\mathring{u}kaz$

První část snadná. (Domácí cvičení.)

Položme $\tau=\{\mathbb{U}\in\mathcal{P}(\mathbb{X}): \forall x\in\mathbb{U}, \mathbb{U}\in\mathcal{U}(x)\}.$ τ je topologie na X. Z (U1) a (U2) vyplyne (T1). Atd...

Definice 3.6 (Báze okolí)

At (X, τ) je TP. Systém množin $\mathcal{B}(x) \subseteq \mathcal{P}(X)$ se nazývá báze okolí v bodě x, pokud $\mathcal{B}(x) \subseteq \mathcal{U}_{\tau}(x)$ a pro každé $V \in \mathcal{U}_{\tau}(x)$ existuje $V \in \mathcal{B}(x)$, že $V \in V$?? Indexovaný soubor $\{\mathcal{B}(x) : x \in X\}$ se nazývá báze okolí prostoru X, pokud $\forall x \in X : \mathcal{B}(x)$ je báze okolí v bodě x.

Tvrzení 3.4 (Vlastnosti báze okolí)

Je- $li(X, \tau)$ TP $a\{B(x): x \in X\}$ báze okolí, pak

(O1) $\mathcal{B}(x) \neq \emptyset, x \in \bigcap \mathcal{B}(x), x \in \mathbb{X},$

 $(O2) \ \forall \mathbb{U}, \mathbb{V} \in \mathcal{B}(x) \exists \mathbb{W} \in \mathcal{B}(x) : \mathbb{W} \subseteq \mathbb{U} \cap \mathbb{V},$

 $(O3) \ \forall \mathbb{U} \in \mathcal{B}(x) \exists \mathcal{B}(x) \forall y \in \mathbb{V} \exists \mathbb{W} \in \mathcal{B}(y) : \mathbb{W} \subseteq \mathbb{U}.$

Je-li \mathbb{X} množina a $\mathcal{B}(x) \subseteq \mathcal{P}(\mathbb{X}), x \in \mathbb{X}$ soubory splňující (O1), (O2), (O3), pak na množině \mathbb{X} existuje jediná topologie, jejíž báze okolí je $\{\mathcal{B}(x): x \in \mathbb{X}\}.$

```
\begin{array}{l} D\mathring{u}kaz\\ \text{První část je snadná.} \end{array} \begin{array}{l} \text{Položme }\mathcal{U}(x) = \left\{\mathbb{U} \in \mathcal{P}(x) : \exists \mathbb{B} \in \mathcal{B}(x) : \mathbb{B} \subseteq \mathbb{U}\right\}, x \in \mathbb{X}. \text{ Ověříme, že splňuje (U1-4).}\\ \text{(U1) z (O1). (U2) z definice }\mathcal{U}. \text{ (U3) z (O2), (U4) z (O3).} \end{array}
```

Definice 3.7 (Váha prostoru)

At (X, τ) je TP. Pak váha prostoru (X, τ) je nejmenší mohutnost báze prostoru (X, τ) . Značíme ji $w(X) = w(X, \tau)$

Charakter v bodě x je nejmenší mohutnost báze okolí bodu x. Značíme ho $\chi(x, \mathbb{X})$.

Charakter prostoru \mathbb{X} je sup $\{\chi(x,\mathbb{X}): x \in \mathbb{X}\}.$

Tvrzení 3.5

 $At (\mathbb{X}, \tau) je TP a x \in \mathbb{X}. Pak \chi(x, \mathbb{X}) \leq w(\mathbb{X})$

 $D\mathring{u}kaz$

At \mathcal{B} je báze (\mathbb{X}, τ) , že $|\mathcal{B}| = w(\mathbb{X})$. Položme $\mathcal{B}(x) := \{ \mathbb{U} \in \mathcal{B} : x \in \mathbb{U} \}$. $\mathcal{B}(x)$ je báze okolí v bodě x.

$$|\mathcal{B}(x)| \le |\mathcal{B}|$$
, protože $\mathcal{B}(x) \subseteq \mathcal{B}$. $\chi(x, \mathbb{X}) \le |\mathcal{B}(x)| \le |\mathcal{B}| = w(\mathbb{X})$.

3.2 Vnitřek, Uzávěr, hranice

Definice 3.8 (Uzavřená množina)

At (X, τ) je TP. Množina $\mathbb{F} \subseteq X$ se nazývá uzavřená, pokud její doplněk je otevřená množina (neboli $X \setminus \mathbb{F} \in \tau$).

Definice 3.9 (Obojetná množina (clopen set))

Množina se nazývá obojetná, pokud je uzavřená a otevřená zároveň.

Definice 3.10 (Uzávěr)

Je-li $\mathbb{A} \subseteq \mathbb{X}$, pak uzávěr \mathbb{A} je $\operatorname{cl}(\mathbb{A}) = \overline{\mathbb{A}} = \bigcap \{ \mathbb{F} \subseteq \mathbb{X}, \mathbb{A} \subseteq \mathbb{F}, \mathbb{F}$ je uzavřená $\}$.

Definice 3.11 (Vnitřek množiny)

Vnitřek množiny \mathbb{A} je Int $\mathbb{A} = \mathbb{A}^0 = \bigcup \{ \mathbb{U} \in \tau : \mathbb{U} \subseteq \mathbb{A} \}.$

Definice 3.12 (Hranice množiny)

Hranice množiny \mathbb{A} je $\delta \mathbb{A} = \overline{\mathbb{A}} \cap \overline{\mathbb{X} \setminus \mathbb{A}}$

Tvrzení 3.6 (Vztah vnitřku a uzávěru)

 $At(X, \tau) \ je \ TP, \ A \subseteq X, \ pak \ X \setminus \overline{A} = Int(X \setminus A) \ a \ X \setminus Int \ A = \overline{X \setminus A}.$

 $D\mathring{u}kaz$

 $\backslash \overline{\mathbb{A}}$ je otevřená, navíc $\mathbb{X} \backslash \overline{\mathbb{A}} \subseteq \mathbb{X} \backslash \mathbb{A}$. Tedy $\mathbb{X} \backslash \overline{\mathbb{A}} \subseteq \operatorname{Int}(\mathbb{X} \backslash \mathbb{A})$. Int $(\mathbb{X} \backslash \mathbb{A}) \mathbb{X} \backslash \mathbb{A}$, přechodem k doplňku $\mathbb{A} \subseteq \mathbb{X} \backslash \operatorname{Int}(\mathbb{X} \backslash \mathbb{A})$. Tedy $\overline{\mathbb{A}} \subseteq \mathbb{X} \backslash \operatorname{Int}(\mathbb{X})$???. Přechodem k doplňku: Int $(\mathbb{X} \backslash \mathbb{A}) \subseteq \mathbb{X} \backslash \overline{\mathbb{A}}$.

Druhou část můžeme dokázat přechodem k doplňku a převedením na první část. \qed

Tvrzení 3.7 (Charakterizace uzávěru)

 $Bud(X,\tau)$ TP, $x\in X$, $A\subseteq X$ a B(x) báze okolí v bodě x. Pak následující podmínky jsou ekvivalentní

- 1) $x \in \mathbb{A}$,
- 2) $\forall \mathbb{U} \in \mathcal{U}(x) : \mathbb{U} \cap \mathbb{A} \neq \emptyset$,
- 3) $\forall \mathbb{U} \in \mathcal{B}(x) : \mathbb{U} \cap \mathbb{A} \neq \emptyset$.

 $D\mathring{u}kaz$

- 1) -> 2) sporem: Kdyby pro nějaké $\mathbb{U} \in \mathcal{U}(x) : \mathbb{U} \cap \mathbb{A} = \emptyset$, pak existuje \mathbb{V} otevřené: $x \in \mathbb{V} \subseteq \mathbb{U}$. $\mathbb{V} \cap \mathbb{A} = \emptyset$. $\mathbb{X} \setminus \mathbb{V}$ je uzavřená a $\mathbb{A} \subseteq \mathbb{X} \setminus \mathbb{V}$. Pak $x \in \overline{\mathbb{A}} \subseteq \mathbb{X} \setminus \mathbb{V}$, neobsahuje x.
 - $2) \rightarrow 3)$ triviální
- 3) -> 1) sporem: $x \notin \overline{\mathbb{A}}$ pak $x \in \mathbb{X} \setminus \overline{\mathbb{A}}$. Pak existuje $\mathbb{U} \in \mathcal{B}(x)$: $x \in \mathbb{U} \subseteq \mathbb{X} \setminus \overline{\mathbb{A}}$. Pak ???

Jako speciální důsledky dostáváme následující. Je-li $\mathbb U$ otevřená, pak $\mathbb U \cap \mathbb A = \emptyset$ právě když $\mathbb U \cap \overline{\mathbb A} = \emptyset$. Jsou-li $\mathbb U$, $\mathbb V$ otevřené disjunktní množiny, pak $\mathbb U \cap \overline{\mathbb V} = \emptyset = \overline{\mathbb U} \cap \mathbb V$.

Tvrzení 3.8 (Vlastnosti uzávěru)

Pro množiny \mathbb{A} , \mathbb{B} v $TP(\mathbb{X}, \tau)$ platí

$$(C1) \ \overline{\emptyset} = \emptyset,$$

$$(C2) \mathbb{A} \subseteq \overline{\mathbb{A}},$$

$$(C3) \overline{\overline{\mathbb{A}}} = \overline{\mathbb{A}} (C4) \overline{\mathbb{A} \cup \mathbb{B}} = \overline{\mathbb{A}} \cup \overline{\mathbb{B}},$$

$$(C5) \ \overline{\mathbb{A} \cap \mathbb{B}} \subseteq \overline{\mathbb{A}} \cap \overline{\mathbb{B}}.$$

 $D\mathring{u}kaz$

První dvě jsou jednoduché, 3. plyne z uzavřenosti uzávěru. 4. dokážeme inkluzemi. Shrnutím dostaneme (C5). $\hfill\Box$

Příklad

Zobrazení z podmnožin do podmnožin, které splňuje podmínky (C1-C4) jednoznačně určuje topologii.

Tvrzení 3.9 (Vlastnosti vnitřku)

Obdobně jako vlastnosti uzávěru.

Tvrzení 3.10 (Charakterizace hranice)

 $At \ \mathbb{A} \subseteq \mathbb{X} \ a \ x \in \mathbb{X}$. $Pak \ x \in \delta \mathbb{A}$, $právě \ když \ každé okolí bodu <math>x \ protíná \ jak \ \mathbb{A}$, $tak \ \mathbb{X} \setminus \mathbb{A}$.

 $D\mathring{u}kaz$

Plyne okamžitě z definice hranice $\delta \mathbb{A} = \overline{\mathbb{A}} \cap \overline{\mathbb{X} \setminus \mathbb{A}}$ a charakterizace uzávěru.

Tvrzení 3.11 (Vlastnosti hranice)

12. bodů viz skripta. Stejně tak důkaz.

3.3 Husté a řídké množiny, hromadné a izolované body

Definice 3.13 (Hustá a řídká množina, hustota, separabilní prostor)

At X je TP. Množina $\mathbb{A}\subseteq \mathbb{X}$ se nazývá hustá (v X), pokud $\overline{\mathbb{A}}=\mathbb{X}$. A se nazývá řídká, pokud $\mathbb{X}\setminus\overline{\mathbb{A}}$ je hustá.

Hustota prostoru \mathbb{X} je nejmenší mohutnost husté podmnožiny, značí se (\mathbb{X}) (d…density). Prostor se spočetnou hustotou se nazývá separabilní.

Tvrzení 3.12 (Charakterizace hustých a řídkých množin)

Ať \mathbb{X} je TP. $Množina <math>\mathbb{A} \subseteq \mathbb{X}$ je hustá $v \mathbb{X}$, právě $když \forall \mathbb{U}$ otevřená neprázdná $v \mathbb{X}$ protíná \mathbb{A} . $Množina \mathbb{A}$ je řídká $(v \mathbb{X})$, právě $když \forall \mathbb{V}$ otevřená neprázdná $\exists \mathbb{U}$ otevřená neprázdná, že $\mathbb{U} \subseteq \mathbb{V} \setminus \mathbb{A}$, což je právě $když \operatorname{Int}(\overline{\mathbb{A}}) = \emptyset$.

Důkaz

Označme $\tau * = \tau \setminus \emptyset$. Z charakterizace uzávěru: $\overline{\mathbb{A}} = \mathbb{X} \Leftrightarrow \forall x \in \mathbb{X} \forall \mathbb{V} \in \mathcal{U}(x) : \mathbb{V} \cap \mathbb{A} \neq \emptyset$. A je řídká $\Leftrightarrow \mathbb{X} \setminus \overline{\mathbb{A}}$ je hustá $\Leftrightarrow \forall \mathbb{U} \in \tau * : \mathbb{U} \cap (\mathbb{X} \setminus \overline{\mathbb{A}}) \neq \emptyset \Leftrightarrow \forall \mathbb{U} \in \tau * : \mathbb{U} \setminus \overline{\mathbb{A}} \neq \emptyset$.

První část dostaneme ekvivalencí z předchozího: $\forall \mathbb{U} \in \tau * \exists \mathbb{V} \in \tau * : \mathbb{V} \subseteq \mathbb{U} \setminus \overline{\mathbb{A}}$.

Druhá část pak plyne z Int $\overline{A}=\emptyset$

Tvrzení 3.13 (Vztah váhy a hustoty)

 $At \ \mathbb{X} \ je \ TP. \ Pak \ (\mathbb{X}) \le w(\mathbb{X}). \ Speciálně každý prostor se spočetnou bází je separabilní.$

 $D\mathring{u}kaz$

At \mathcal{B} je báze TP X. (BÚNO $\emptyset \notin \mathcal{B}$). $forall \mathbb{B} \in \mathcal{B}$ fixujeme $x_B \in \mathcal{B}$, $\mathbb{D} := \{x_B : B \in \mathcal{B}\}$. Zřejmě $|\mathbb{D}| \leq |\mathcal{B}|$, \mathbb{D} je hustá v X. (Když tedy volíme \mathcal{B} nejmenší, získáme výraz.)

Poznámka

Pro metrizovatelný TP \mathbb{X} platí $(\mathbb{X}) = \mathbf{w}(\mathbb{X})$.

Definice 3.14 (Izolovaný a hromadný bod)

Ať \mathbb{X} je TP. Bod $x \in \mathbb{A} \subseteq \mathbb{X}$ se nazývá izolovaným bodem množiny A, pokud existuje otevřená množina $\mathbb{U} \subseteq \mathbb{X}$, že $\mathbb{U} \cap \mathbb{A} = \{x\}$. Bod x se nazývá hromadným bodem množiny \mathbb{A} , pokud každé okolí bodu x protíná množinu $\mathbb{A} \subseteq \{x\}$

Například

V diskrétním prostoru jsou všechny body izolované. Naopak je-li $\mathbb{X}=\mathbb{R}$ a $\mathbb{A}=\mathbb{Q}$, pak každý bod \mathbb{X} je hromadným bodem množiny \mathbb{A} . Žádný bod z \mathbb{A} není izolovaným bodem \mathbb{A} .

Definice 3.15 (Derivace množiny)

Množina hromadných bodů množiny A se značí A'. Někdy se nazývá derivace A.

Tvrzení 3.14 (Vlastnosti derivace)

 $\overline{\mathbb{A}} = \mathbb{A} \cup \mathbb{A}', \ (\mathbb{A} \cup \mathbb{B})' = \mathbb{A}' \cup \mathbb{B}'$

Důkaz Domácí cvičení (je jednoduchý).

3.4 Spojitá zobrazení

Definice 3.16 (Spojité zobrazení, homeomorfizmus a spojitost v bodě)

Ať (\mathbb{X}, τ) a (\mathbb{Y}, σ) jsou TP. Ať $f : \mathbb{X} \to \mathbb{Y}$. Zobrazení f se nazývá spojité, pokud $\forall \mathbb{U} \in \sigma : f^{-1}(\mathbb{U}) \in \tau$.

f se nazývá homeomorfizmus, pokud f je bijekce a f i f^{-1} jsou spojitá.

f je spojité v bodě x, pokud $\forall \mathbb{V} \in \mathcal{U}_{\sigma}(f(x)) \exists \mathbb{U} \in \mathcal{U}_{\tau}(x) : f(U) \subseteq \mathbb{V}$.

$Nap\check{r}iklad$

 \mathbb{R} , (0,1) jsou homeomorfní (ale nejsou izometrické)

Poznámka

Vlastnosti, TP, které se zachovávají homeomorfizmem se nazývají topologické vlastnosti.

(Úplnost není topologický pojem.)

Například

Zobrazení z diskrétního prostoru je vždy spojité.

Zobrazení do indiskrétního prostoru je taktéž vždy spojité.

Tvrzení 3.15 (Charakterizace spojitých zobrazení)

 $At(X,\tau), (Y,\sigma)$ jsou TP, $f: X \to Y$ zobrazení. Pak následující je ekvivalentní:

- 1) f je spojité
- 2) vzory množin z nějaké subbáze jsou otevřené
- 3) vzory množin z nějaké báze jsou otevřené
- 4) f je spojité v každém bodě
- 5) vzory uzavřených množin jsou uzavřené
- $6) \ \forall \mathbb{A} \subseteq \mathbb{X} : f(\overline{\mathbb{A}}) \subseteq f(\mathbb{A})$
- 7) $\forall \mathbb{B} \subseteq \mathbb{Y} : \overline{f^{-1}(\mathbb{B})} \subseteq f^{-1}(\overline{\mathbb{B}})$
- 8) $\forall \mathbb{B} \subseteq \mathbb{Y} : f^{-1}(\operatorname{Int} \mathbb{B}) \subseteq \operatorname{Int} (f^{-1}(\mathbb{B}))$

1->2 Triviální (z definice).

2->3 At \mathcal{B} je nějaká báze. Dle 2 pro nějakou subbázi \mathcal{S} toho (\mathbb{Y}, σ) platí, že $f^{-1}(\mathbb{S})$ je otevřená pro $\mathbb{S} \in \mathcal{S}$. At $\mathbb{B} \in \mathcal{B}$. \mathbb{B} lze vyjádřit jako sjednocení konečných průniků prvků \mathcal{S} . (Vzor průniku je průnik vzorů, vzor sjednocení je sjednocení vzorů.) $f^{-1}(\mathbb{B})$ je sjednocením konečných průniků prvků tvaru $f^{-1}(\mathbb{S}), \mathbb{S} \in \mathcal{S}$. Tedy $f^{-1}(\mathbb{B})$ je otevřená.

3->4 At $x \in \mathbb{X}$, \mathbb{V} okolí bodu f(x). \mathcal{B} báze z 3. podmínky. $\exists \mathbb{B} \in \mathcal{B}$, že $f(x) \in \mathcal{B} \subseteq \mathbb{V}$. $\mathbb{U} = f^{-1}(\mathbb{B})$ otevřená, $x \in \mathbb{U} f(\mathbb{U}) \subseteq \mathbb{B} \subseteq \mathbb{V}$.

4->5 Ať $\mathbb{F} \subseteq \mathbb{Y}$ je uzavřená. Ať $x \in \overline{f^{-1}(F)}$. Chceme, že $x \in f^{-1}(\mathbb{F})$ (tj. že $f(x) \in \mathbb{F}$). Z 4 pro každé okolí \mathbb{V} bodu f(x) existuje \mathbb{U} okolí x, že $f(x) \subseteq V$. Z definice uzávěru platí, že každé takové \mathbb{U} protíná $f^{-1}(\mathbb{F})$, tedy $f(\mathbb{U}) \cap \mathbb{F} \neq \emptyset$, tedy $\mathbb{V} \cap \mathbb{F} \neq \emptyset$. Tedy podle charakterizace uzávěru $f(x) \in \overline{\mathbb{F}} = \mathbb{F}$.

5->6 $f^{-1}(\overline{f(\mathbb{A})})$ je uzavřená dle 5 a obsahuje \mathbb{A} , tedy obsahuje i $\overline{\mathbb{A}}$. Pak $f(\overline{\mathbb{A}})\subseteq f\left(f^{-1}(\overline{f(\mathbb{A})})\right)\subseteq \overline{f(\mathbb{A})}$.

6->7 Ať $\mathbb{B} \subseteq Y$, $A := f^{-1}(\mathbb{B})$. Dle 6 $f(\overline{f^{-1}(\mathbb{B})}) \subseteq \overline{f(f^{-1}(\mathbb{B}))} \subseteq \overline{\mathbb{B}}$. $\overline{f^{-1}(\mathbb{B})} \subseteq f^{-1}(\overline{\mathbb{B}})$ (aplikováním vzoru? na předchozí).

7->8 Vztah vnitřku a uzávěru. $f^{-1}(\operatorname{Int}\mathbb{B}) = f^{-1}(\mathbb{Y} \setminus \overline{\mathbb{Y} \setminus \mathbb{B}}) = \mathbb{X} \setminus f^{-1}(\overline{\mathbb{Y} \setminus \mathbb{B}}) \stackrel{\text{dle } 7}{\subseteq} \mathbb{X} \setminus \overline{\mathbb{Y} \setminus \mathbb{B}} = \mathbb{X} \setminus \overline{\mathbb{X} \setminus f^{-1}(\mathbb{B})} = \mathbb{X} \setminus (\mathbb{X} \setminus \operatorname{Int} f^{-1}(\mathbb{B})) = \operatorname{Int} f^{-1}(\mathbb{B}).$

8->1 Je-li $\mathbb{V} \subseteq \mathbb{Y}$ otevřená, pak ze 7: $f^{-1}(\mathbb{V}) \subseteq \operatorname{Int}(f^{-1}(\mathbb{V}))$. Triviálně Int $f^{-1}(\mathbb{V}) \subseteq f^{-1}(\mathbb{U})$. Tedy $f^{-1}(\mathbb{V}) = \operatorname{Int} f^{-1}(\mathbb{V})$, tedy $f^{-1}(\mathbb{V})$ je otevřená.

Tvrzení 3.16 (Skládání spojitých zobrazení)

 $At \mathbb{X}, \mathbb{Y}, \mathbb{Z} \ jsou \ TP, \ f: \mathbb{X} \to \mathbb{Y}, g: \mathbb{Y} \to \mathbb{Z} \ zobrazen\'i. \ Jsou \ li \ f, g \ spojit\'a, \ pak \ g \circ f: \mathbb{X} \to \mathbb{Z} \ je \ spojit\'e.$

Pokud f je spojité v bodě x a g spojité v f(x), pak $g \circ f$ je spojité v x.

Je-li \mathbb{V} okolí gf(x), pak $g^{-1}(\mathbb{V})$

3.5 Oddělovací axiomy

Definice 3.17

TP X se nazývá:

- T_0 , pokud $\forall x, y \in \mathbb{X} \exists \mathbb{U}$ otevřená : $|U \cap \{x, y\}| = 1$.
- T_1 , pokud $\forall x, y \in \mathbb{X}, x \neq y \exists \mathbb{U}$ otevřená : $x \in \mathbb{U}, y \notin \mathbb{U}$.
- T_2 (Hausdorffův), pokud $\forall x, y \in \mathbb{X} \exists \mathbb{U}, V$ otevřené disjunktní : $x \in \mathbb{U}, y \in \mathbb{V}$.
- regulární, pokud $\forall \mathbb{F} \subseteq \mathbb{X}$ uzavřenou $\forall \in \mathbb{X} \backslash \mathbb{F} \exists \mathbb{U}, \mathbb{V}$ otevřené disjunktní: $x \in \mathbb{U}, \mathbb{F} \subseteq \mathbb{V}$.
- normální, pokud $\forall \mathbb{E}, \mathbb{F}$ uzavřené disjunktní $\exists \mathbb{U}, \mathbb{V}$ otevřené disjunktní: $\mathbb{E} \subseteq \mathbb{U}, \mathbb{F} \subseteq \mathbb{V}$.
- úplně regulární, pokud $\forall \mathbb{F} \subseteq \mathbb{X}$ uzavřenou $\forall x \in \mathbb{X} \setminus \mathbb{F} \exists f : \mathbb{X} \to [0,1]$ spojitá, že $f(x) = 0, f(\mathbb{F}) \subseteq \{1\}.$
- T_3 , pokud je regulární a T_1 .
- $T_{3\frac{1}{2}}$ nebo T_{π} (Tichonovův), pokud je úplně regulární a T_1 .
- T_4 , pokud je normální a T_1 .

Poznámka

normální
$$\implies$$
 úplně regulární $\overset{\text{rozpůlení intervalu }[0,1]}{\Longrightarrow}$ regulární

$$T_4 \implies T_\pi \implies T_3 \implies T_2 \implies T_1 \implies T_0$$

(Platí pouze tímto směrem, ne opačně!)

$$T_0 \not \Longrightarrow T_1 : (\{0,1\}, \{\emptyset, \{0,1\}, \{0\}\}) \dots (Sierpinského TP)$$

 $T_1 \not \Longrightarrow T_2 : (\mathbb{N}, \{\emptyset\} \cup \{\mathbb{N} \setminus K : K \text{je konečná}\}) \text{(Topologie kokonečných (doplněk konečných) množin)}$

Tvrzení 3.17 (Metrizovatelné prostory jsou T_4)

Je-li \mathbb{X} metrizovatelný prostor a \mathbb{E} , $\mathbb{F} \subseteq \mathbb{X}$ uzavřené disjunktní množiny, pak existuje spojitá funkce $f: \mathbb{X} \to [0,1]$, že $f(\mathbb{E}) \subseteq \{0\}$, $f(\mathbb{F}) \subseteq \{1\}$.

Důkaz

 \mathbb{X} je metrizovatelný, tedy existuje metrika ϱ kompatibilní s topologií na \mathbb{X} . Položme $f(x) = \frac{\varrho(x,\mathbb{E})}{\varrho(x,\mathbb{E}) + \varrho(x,\mathbb{F})}, x \in \mathbb{X}$. f je dobře definovaná a jistě spojitá. $f(x) = 0, x \in \mathbb{E}$, $f(x) = 1, x \in \mathbb{F}$.

Lemma 3.18

At X je TP. Pak

- a) \mathbb{X} je $T_1 \Leftrightarrow ka\check{z}d\acute{a}$ jednoprvková množina je uzavřená $\Leftrightarrow ka\check{z}d\acute{a}$ konečná množina je uzavřená.
- b) \mathbb{X} je $T_2 \implies \forall x, y \in \mathbb{X}, x \neq y \exists \mathbb{U} \in \mathcal{U}(x) : y \notin \overline{\mathbb{U}}$.

- c) \mathbb{X} je regulární $\Leftrightarrow \forall x \in \mathbb{X} \forall \mathbb{U} \in \mathcal{U}(x) \exists \mathbb{V} \in \mathcal{U}(x) : \overline{\mathbb{V}} \subseteq \mathbb{U}$.
- \mathbb{X} je normální $\Leftrightarrow \forall \mathbb{V} \subseteq \mathbb{X}$ otevřenou $\forall \mathbb{E} \in \mathbb{V}$ uzavřenou $\exists U \subseteq \mathbb{X}$ otevřená : $\mathbb{E} \subseteq \mathbb{U} \subseteq \overline{\mathbb{U}} \subseteq V$.

Důkaz Jednoduché.

Věta 3.19 (Urysohnovo lemma)

 $TP \ \mathbb{X}$ je normální \Leftrightarrow pro každé dvě disjunktní uzavřené \mathbb{E} , \mathbb{F} existuje spojitá funkce $f: \mathbb{X} \to [0,1]$, že $f(\mathbb{E}) \subseteq \{0\}$, $f(\mathbb{F}) \subseteq \{1\}$

 $D\mathring{u}kaz$

Implikace zprava doleva je snadná – uvažujeme $\left\{x \in \mathbb{X} : f(x) < \frac{1}{2}\right\}$ a $\left\{x \in \mathbb{X} : f(x) > \frac{1}{2}\right\}$.

 \Longrightarrow Označme $D:=\mathbb{Q}\cap [0,1],\ D=\{r_n:n\in\mathbb{N}\cup\{0\}\},\ r_0=0,r_1=1\ (r_n)$ prostá posloupnost. Indukcí najdeme otevřené množiny $\mathbb{V}_q:q\in D,$ že pro $p,q\in D,p< q\implies \mathbb{V}_p\subseteq \mathbb{V}_q$ a navíc $\mathbb{E}\subseteq \mathbb{V}_0,\mathbb{V}_1\subseteq \mathbb{X}\setminus \mathbb{F}.$

Z normality najdeme otevřenou množinu \mathbb{U} , že $\mathbb{E} \subseteq \mathbb{U} \subseteq \overline{\mathbb{U}} \subseteq \mathbb{X} \setminus \overline{r}$. Položíme $\mathbb{V}_0 = \mathbb{U}$, $\mathbb{V}_1 = \mathbb{X} \setminus \mathbb{F}$.

Nyní předpokládejme, že $\mathbb{V}_{r_0}, \mathbb{V}_{r_1}, \ldots, \mathbb{V}_{r_n}, n \geq 1$. Už známe a platí, že pro $p, q \in \{r_0, \ldots, r_n\} : p < q \implies \overline{\mathbb{V}_p} \subseteq \mathbb{V}_q$. Chceme najít $\mathbb{V}_{r_{n+1}}$. At $i, j \leq n$ jsou taková, že $r_i = \max\{r_k : r_k < r_{n+1}\}$ a $r_j = \min\{r_k : r_k > r_{n+1}\}$. $r_i < r_j$. Z 1P: $\overline{V_{r_i}} \subseteq V_{r_j}$. Z normality existuje otevřená $\mathbb{V}_{r_{n+1}}$, že $\overline{\mathbb{V}_{r_i}} \subseteq \mathbb{V}_{r_{n+1}} \subseteq \mathbb{V}_{r_j}$.

Položme $f(x)=1, x\in\mathbb{X}\setminus\mathbb{V}_1|f(x)=\inf r\in D: x\in\mathbb{V}_r, x\in\mathbb{V}_1.$ $f:\mathbb{X}\to[0,1].$ Nyní stačí ověřit spojitost: vzory subbázových (nějaké subbáze) podmnožin jsou otevřené. Zvolím si subbázi $\{[0,b),(a,1],a,b\in(0,1)\}.$ $f^{-1}([0,b))=\{x\in\mathbb{X}:f(x)< b\}=\{x\in\mathbb{X}:\exists r< b: x\in\mathbb{V}_r\}=\bigcap_{r< b}\mathbb{V}_r\dots$ otevřené. $f^{-1}((a,1])=\{x\in\mathbb{X}:f(x)>a\}=\{x\in\mathbb{X}:\exists r>a:\{x\in\mathbb{X}:\exists s>a: x\notin\overline{\mathbb{V}_s}\}=\bigcup_{s>a}\mathbb{X}\setminus\overline{\mathbb{V}_s}\dots$ otevřené

 $Poznámka (T_4 \implies T_{3.5}, normalita \implies úplná regularita)$

3.6 Konvergence v topologických prostorech

Definice 3.18 (Usměrněné množiny)

Dvojice (\mathbb{I}, \leq) se nazývá usměrněná množina, pokud \mathbb{I} je množina a \leq je binární relace na \mathbb{I} , která je reflexivní, tranzitivní a pro $i, j \in \mathbb{I}$, pak existuje $k \in \mathbb{I}$, že $i \leq k, j \leq k$.

 $Nap\check{r}iklad$ (\mathbb{N}, \leq)

Definice 3.19 (Net)

Net v TP X je libovolné zobrazení z usměrněné množiny do X.

Definice 3.20 (Konvergence netu)

Řekneme, že net $(x_i)_{i\in\mathbb{I}}$ konverguje k bodu x, pokud $\forall \mathbb{U} \in \mathcal{U}(x) \exists i_0 \in \mathbb{I} \forall i \in \mathbb{I}, i \geq i_0 : x_i \in \mathbb{U}$. Pokud existuje právě jeden, značíme $x = \lim_{i \in \mathbb{I}} x_i$.

Bod x se nazývá hromadným bodem netu $(x_i)_{i\in\mathbb{I}}$, pokud $\forall \mathbb{U} \in \mathcal{U}(x) \forall i \in \mathbb{I} \exists j \geq i : x_j \in \mathbb{U}$.

Tvrzení 3.20 (Jednoznačnost limity netu)

 $Prostor X je Hausdorffův \Leftrightarrow každý net má nejvýše jednu limitu.$

 (\Longrightarrow) : At $(x_i)_{i\in I}$ je net mající dvě různé limity $x,y\in\mathbb{X}$. \mathbb{X} je Hausdorffův, tedy existuje disjunktní okolí U,V bodů x,y. Pak existuje $i\in I$, že $\forall j\in I, j\geq i: x_j\int\mathbb{U}$ a existuje $k\in I$, že $\forall j\in I, j\geq k: x_j\int\mathbb{V}$. (I,\leq) je usměrněná množina, tedy existuje $l\in I$, že $l\geq i$, $l\geq k$. $x_l\in\mathbb{U}\cap\mathbb{V}$.

Opačně: Ať $\mathbb X$ není Hausdorffův. Ať $x,y\in\mathbb X$ je dvojice různých bodů, které nejdou oddělit otevřenými disjunktními množinami. Uvažme otevřenou množinu $(\mathcal U(x)\times\mathcal V(y),\leq)$, kde $(\mathbb A,\mathbb B)\leq (\mathbb U,\mathbb V)\equiv (\mathbb U\subseteq\mathbb U\wedge\mathbb V\subseteq\mathbb B)$. Pro každé $(\mathbb U,\mathbb V)\in\mathcal U(x)\times\mathcal V(y)$ vezměme nějaký bod $x_{(\mathbb U,\mathbb V)}\in\mathbb U\cap\mathbb V$. $(x_{(\mathbb U,\mathbb V)})_{(\mathbb U,\mathbb V)\in\mathcal U(x)\times\mathcal U(y)}$ je net vX, který konverguje kx a zároveň konverguje ky.

Tvrzení 3.21 (Charakterizace uzávěru pomocí konvergence netů)

 $At \ X \ je \ TP \ a \ A \subseteq X$. $Pak \ x \in \overline{\mathbb{A}}$, $právě \ když \ existuje \ net \ (x_i)_{i \in I} \ tvořený \ body \ z \ A$, $který \ konverguje \ k \ x$.

 $D\mathring{u}kaz$

 (\Longrightarrow) : At $x \in \overline{A}$. $\forall \mathbb{U} \in \mathcal{U}(x) : \mathbb{U} \cap \mathbb{A} \neq \emptyset$. Fixujme $x_{\mathbb{U}} \in \mathbb{U} \cap \mathbb{A}$, pro $\mathbb{U} \in \mathcal{U}(x)$. (\mathcal{U}, \supseteq) je usměrněná množina. $(x_{\mathbb{U}})_{\mathbb{U} \in \mathcal{U}(x)}$ je net tvořený prvky z \mathbb{A} , který konverguje k x.

(⇒): Ať $x \in \mathbb{X}$, $(x_i)_{i \in I}$ je net z prvků \mathbb{A} , který konverguje k x. Chceme, $x \in \overline{\mathbb{A}}$. Ať \mathbb{U} je okolí x. Chceme, že $U \cap \mathbb{A} \neq \emptyset$. (x_i) konverguje k x, tedy existuje $j \in I : x_j \in \mathbb{U}$. Navíc $x_j \in \mathbb{A}$. $x_j \in \mathbb{A} \cap \mathbb{U}$.

Tvrzení 3.22 (Charakterizace spojitosti pomocí netů)

At X, Y jsou TP. $f: X \to Y$ je zobrazení, $x \in X$. Pak f je spojité v bodě x právě tehdy, když pro každý net $(x_i)_{i \in I}$ konvergující k bodu $x \in X$ konverguje net $(f(x_i))_{i \in I}$ k bodu f(x).

$D\mathring{u}kaz$

 (\Longrightarrow) : At $\mathbb{V} \in \mathcal{U}(f(x))$. Pak ze spojitosti $\exists \mathbb{U} \in \mathcal{U}(x) : f(\mathbb{U}) \subseteq \mathbb{V}$. Net (x_i) konverguje k x, tedy existuje $i_0 \in I$, že pro $i \geq i_0 : x_i \in \mathbb{U}$. Pak zřejmě pro $i \geq i_0 : f(x_i) \in \mathbb{V}$.

(⇒): At f není spojité v bodě x. Tedy existuje $\mathbb{V} \in \mathcal{U}(f(x))$, že $\forall \mathbb{U} \in \mathcal{U}(x) : f(\mathbb{U}) \setminus \mathbb{V} \neq \emptyset$. Zvolme $x_{\mathbb{U}} \in \mathbb{U}$, že $f(x_{\mathbb{U}}) \notin \mathbb{V}$. $(x_{\mathbb{U}})_{\mathbb{U} \in \mathcal{U}(x)}$ je net v \mathbb{X} , zřejmě $(x_{\mathbb{U}})$ konverguje k x. $(f(x_{\mathbb{U}}))_{\mathbb{U} \in \mathcal{U}(x)}$ zřejmě tedy nekonverguje k bodu f(x).

4 Operace s TP a zobrazeními

4.1 Obecné konstrukce

Definice 4.1 (Větší a menší topologie)

Ať \mathbb{X} je množina, τ, σ dvě topologie na \mathbb{X} . Řekněme, že τ je větší (jemnější, silnější) než σ , pokud $\tau \supseteq \sigma$. Topologie σ se pak nazývá menší (hrubší, slabší).

Poznámka

Topologie τ je větší než $\sigma \Leftrightarrow id_{\mathbb{X}} : (\mathbb{X}, \tau) \to (\mathbb{X}, \sigma)$ je otevřená.

Jsou-li $\tau_i : i \in I$ topologie na \mathbb{X} , pak $\bigcap_{i \in I} \tau_i$ je opět topologie na \mathbb{X} . Navíc je největší topologií, která je menší než všechny τ_i . $\bigcap_{i \in I} \tau_i$ je subbáze nějaké topologie, která je nejmenší topologie, která je větší než všechny τ_i .

Definice 4.2 (Projektivní a induktivní vytváření)

At X je množina a $(X_i, \tau_i), i \in I$, jsou TP a $f_i : X \to X_i$ zobrazení.

Topologie τ na množině $\mathbb X$ se nazývá projektivně vytvořená, pokud τ je nejmenší topologie, při níž jsou všechna zobrazení $f_i: (\mathbb X, \tau) \to (\mathbb X_i, \tau_i)$ spojitá.

Jsou-li $f_i: \mathbb{X}_i \to \mathbb{X}$ zobrazení, topologie τ na \mathbb{X} se nazývá induktivně vytvořená, pokud τ je největší topologie na \mathbb{X} , při které jsou všechna $f_i: (\mathbb{X}_i, \tau_i) \to (\mathbb{X}, \tau)$ spojitá.

u $\underline{\mathbf{A.1}}$ (Charakterizace spojitosti zobrazení do projektivně definovaného

Af (\mathbb{X}, τ) je projektivně vytvořen souborem zobrazení $f_i : \mathbb{X} \to (\mathbb{X}_i, \tau_i)$. Zobrazení $g : (\mathbb{Y}, \sigma) \to (\mathbb{X}, \tau)$ je spojité $\Leftrightarrow \forall i \in I : f_i \circ g : (\mathbb{Y}, \sigma) \to (\mathbb{X}_i, \tau_i)$ je spojité.

Doprava je jednoduché, složení spojitých zobrazení je spojité.

Opačně: At τ' je největší topologie na \mathbb{X} , při které je zobrazení g spojité: $\tau' = \{\mathbb{U} \subseteq \mathbb{X} : g^{-1}(\mathbb{U}) \in \sigma\}$. Stačí, že $\tau \subseteq \tau'$. τ je nejmenší topologie, která obsahuje množiny $f_i^{-1}(\mathbb{V}), \mathbb{V} \in \tau_i, i \in I$. Tedy stačí ukázat, že $f_i^{-1}(\mathbb{V}) \in \tau'$ pro $\mathbb{V} \in \tau_i, i \in I$. $g^{-1}(f^{-1}(\mathbb{V})) = (f_i \circ g)^{-1}(\mathbb{V}) \in \sigma$. Tedy opravdu $f_i^{-1} \in \tau'$.

4.2 Podprostor, suma, součin, kvocient

Definice 4.3

Je-li (\mathbb{X}, τ) TP a $A \subseteq \mathbb{X}$, pak (A, σ) se nazývá podprostor (\mathbb{X}, τ) , pokud topologie σ je projektivně vytvořená zobrazením identitou na A.

Jsou-li (X_i, τ_i) TP, pak je jejich součin TP (X, τ) , kde $X = \prod_{i \in I} X_i$ a τ je projektivně vytvořená zobrazeními $\pi_i : X \to X_i, \pi_i(\ldots) = x_i$

Zobrazení $f:(\mathbb{X},\tau)\to(\mathbb{Y},\sigma)$ se nazývá vnořené zobrazení, pokud f je prosté a topologie τ na \mathbb{X} je projektivně vytvořená zobrazením f.

Poznámka

At (X, τ) je TP. $A \subseteq X$. $\tau_A := \{U \cap A : U \in \tau\}$ je topologie podprostoru na A.

Ať (\mathbb{X}_i, τ_i) jsou TP, $i \in I$. Ať $\mathbb{X} = \prod_{i \in I} \mathbb{X}_i$, součinová topologie na \mathbb{X} má subbázi: $\mathcal{S} := \{\pi^{-1}(\mathbb{U}) : i \in I, \mathbb{U} \in \tau_i\}$.

Konvergence netú v součinové topologii: Net $(x_j)_{j\in J}$ konverguje k $x\in X\Leftrightarrow \forall i\in I: (\pi_i(x_j))_{j\in J}$ konverguje k $\pi_i(c)$.

Jsou-li $A_i \subseteq X_i$, pak $\overline{\prod A_i} = \prod \overline{A_i}$.

Příklad

 $C([0,1],\mathbb{R}) \subseteq \mathbb{R}^{[0,1]} := \{f : [0,1] \to \mathbb{R}, fzobrazeni\}.$

Topologie podprostoru $C \dots =$ "topologie bodové konvergence".

Definice 4.4

At (X, τ) je TP, $E \subseteq X \times X$ ekvivalence. Uvažme $X \setminus E = \{[x]_E : x \subseteq X\}, \pi : X \to X \setminus E, x \to [x]_E$. Kvocientová topologie na $X \setminus E$ je induktivně vytvořená zobrazením π .

Jsou-li (X_i, τ_i) TP, $i \in I$, $(X_i$ jsou po dvou disjunktní) pak topologie sumy na $\bigcap_{i \in I} X_i$ je topologie, která je induktivně vytvořena zobrazeními $j_i : X_i \to \bigcup_{k \in I} X_k, j_i(x) = x$. Sumu TP značíme $\bigoplus_{i \in I} X_i$.

Zobrazení $f:(\mathbb{X},\tau)\to(\mathbb{Y},\sigma)$ se nazývá kvocientové, pokud je na a topologie σ je induktivně vytvořená zobrazením f.

Příklad

 $\mathbb{X} = \mathbb{R}, E : xEy \Leftrightarrow x - y \in \mathbb{Z}. \mathbb{R} \setminus E$ homeomorfní s kružnicí.

Poznámka

Množina \mathbb{U} v kvocientovém prostoru $\mathbb{X} \setminus E$ je otevřená $\Leftrightarrow \pi^{-1}(\mathbb{U})$ je otevřená v \mathbb{X} .

 $\mathbb{X} = \bigoplus \mathbb{X}_i, \mathbb{U} \subseteq \mathbb{X}. \mathbb{U}$ je otevřená $\Leftrightarrow \mathbb{U} \cap \mathbb{X}_i$ je otevřená v \mathbb{X}_i .

Příklad

Je-li X TP a Y \subset X, M \subset Y, pak $\overline{\mathbb{M}}^{\mathbb{Y}} = \overline{\mathbb{M}}^{\mathbb{X}} \cap \mathbb{Y}$.

Tvrzení 4.2 (Charakterizace vnoření a kvocientových zobrazení)

At (\mathbb{X},τ) a (\mathbb{Y},σ) jsou TP a $f:\mathbb{X}\to\mathbb{Y}$ zobrazení. Zobrazení $f:(\mathbb{X},\tau)\to(\mathbb{Y},\sigma)$ je vnoření $\Leftrightarrow f:(\mathbb{X},\tau)\to (f(\mathbb{X}),\sigma|_{f(\mathbb{X})})$ je homeomorfizmus. Zobrazení $f:(\mathbb{X},\tau)\to(\mathbb{Y},\sigma)$ je kvocientové zobrazení $\Leftrightarrow f$ je na a $\forall V\subseteq\mathbb{Y}:V\in\sigma\Leftrightarrow f^{-1}(V)\in\tau$.

$D\mathring{u}kaz$

f je vnoření $\Leftrightarrow f$ je prosté a τ je projektivně vytvořená zobrazením $f: \mathbb{X} \to (\mathbb{Y}, \sigma) \Leftrightarrow f: \mathbb{X} \to f(\mathbb{X})$ je bijekce a obě zobrazení $f: (\mathbb{X}, \tau) \to (f(\mathbb{X}), \sigma|_{f(\mathbb{X})})$ a $f^{-1}: (f(x), \sigma|_{f(\mathbb{X})}) \to (\mathbb{X}, \tau)$ jsou spojitá $\Leftrightarrow f: (\mathbb{X}, \tau) \to (f(\mathbb{X}), \sigma|_{f(\mathbb{X})})$ je homeomorfismus.

f je kvocientové zobrazení $\Leftrightarrow f$ je na a $\sigma=\sigma'\to (f$ je na a $\forall V\subseteq \mathbb{Y}:V\in\sigma\Leftrightarrow f^{-1}(V)\in\tau).$ \Box

Tvrzení 4.3 (Postačující podmínka pro kvocientové zobrazení)

 $Je-li\ f: \mathbb{X} \to \mathbb{Y}\ spojit\'e\ a\ otev\'ren\'e\ (tj.\ obraz\ otev\'ren\'e\ je\ otev\'ren\'e\)\ (nebo\ uzav\'ren\'e\ ,\ tj.\ obraz\ uzav\'ren\'e\ je\ uzav\'ren\'e\)\ a\ na,\ pak\ f\ je\ kvocientov\'e\ zobrazen\'e.$

$D\mathring{u}kaz$

Použijeme přechozí charakterizaci kvocientového zobrazení. At $V \subseteq \mathbb{Y}$. Pak 1) V je otevřená v \mathbb{Y} , pak f^{-1} je otevřená v \mathbb{X} ze spojitosti. 2) $f^{-1}(V)$ otevřená v \mathbb{X} . Pak z otevřenosti zobrazení f máme, že $f(f^{-1}(V))$ (= V, protože f je na) je otevřená v \mathbb{Y} .

Pro uzavřená zobrazení přes doplňky.

Poznámka

Jsou-li $\mathbb{X},\,\mathbb{Y}$ Banachovy prostory a $f:\mathbb{X}\to\mathbb{Y}$ lineární spojité a na, pakfje otevřené.

Tvrzení 4.4 (Charakterizace Hausdorffových prostorů)

 $TP \ \mathbb{X} \ je \ Hausdorffův \Leftrightarrow \{(x,x) \in \mathbb{X} \times \mathbb{X}, x \in \mathbb{X}\} \ je \ uzavřená \ v \ \mathbb{X} \times \mathbb{X}.$

Poznámka

Operace s TP jsou tranzitivní (součet, součin, kvocient, podprostor, ...).

4.3 Zachovávání konstrukcemi

Definice 4.5

Jsou-li \mathbb{X}_i a \mathbb{Y}_i TP, $i \in I$ a $f_i : \mathbb{X}_i \to \mathbb{Y}_i$ zobrazení, pak definujeme

$$\bigoplus_{i \in I} f_i : \bigoplus_{i \in I} \mathbb{X}_i \to \bigoplus_{i \in I} \mathbb{Y}_i, x \to f_i(x), \text{ pokud } x \in \mathbb{X}.$$

$$\prod_{i \in I} f_i : \prod_{i \in I} \mathbb{X}_i \to \prod_{i \in I} \mathbb{Y}_i, (x_i)_{i \in I} \to (f_i(x_i))_{i \in I}.$$

Jsou-li $\mathbb{X}_i = \mathbb{X}, i \in I$, pak definujeme tzv. diagonální zobrazení

$$\triangle_{i \in I} f_i : \mathbb{X} \to \prod_{i \in I} \mathbb{Y}_i, x \to (f_i(x))_{i \in I}.$$

Tvrzení 4.5

Součinové, součtové a diagonální zobrazení odvozené od spojitých je spojité.

 $D\mathring{u}kaz$

Plyne z charakterizace spojitého zobrazení do projektivně vytvořeného prostoru.

Důsledek

At X je TP a $f,g: \mathbb{X} \to \mathbb{R}$ spojité, pak $f+g, f-g, f\cdot g, \max\{f,g\}$, $\min\{f,g\}$, $|f|, \frac{f}{g}(g\neq 0)$ jsou spojitá.

Důkaz

 $f\triangle g: \mathbb{X} \to \mathbb{R}^2, (f\triangle g)(x) = (f(x), g(x))$ je spojité. Následně toto zobrazení spojíme s $+,-,\ldots$, která jsou spojitá, tedy i výsledek je spojitý.

		T_0	T_1	T_2	T_3	T_{π}	T_4	Separabilní	Spoč. báze	Spoč. charakter	
	podprostor	Ano	Ano	Ano	Ano	Ano	Ne	Ne	Ano	Ano	
	(spoč.) suma	Ano	Ano	Ano	Ano	Ano	Ano	(Ano) Ne	(Ano) Ne	Ano	Γ
	kvocient	Ne	Ne	Ne	Ne	Ne	Ne	Ano	Ne	Ne	
	(spoč.) součin	Ano	Ano	Ano	Ano	Ano	Ne	(Ano) Ne	(Ano) Ne	(Ano) Ne	Γ

Tvrzení 4.6 ((Úplná) regularita se zachovává součinem)

Jsou-li TP X_i , $i \in I$ (úplně) regulární, pak $\prod_{i \in I} X_i$ je (úplně) regulární.

 $D\mathring{u}kaz$

 $X:=\prod_{i\in I}X_i$. At $F\subseteq X$ je uzavřená a $x\in X\setminus F$. Z definice součinové topologie existuje $K\setminus I$ konečná a otevřené $U_i\subseteq X_i,\ i\in K,$ že $x\in \cap_{i\in K}\pi_i^{-1}(U_i)\subseteq X\setminus F$.

Tedy $x_i \in U_i$, $i \in K$. X_i regulární, tedy existuje $G_i \subseteq X_i$ otevřená, že $x_i \in G_i \subseteq \overline{G_i} \subseteq U_i$. TODO dlouhý vzorec.

4.4 Rozšiřování spojitých funkcí

Tvrzení 4.7

 $At X, Y jsou TP, f, g : X \to Y spojitá. Pokud Y je Hausdorffův, pak <math>M := \{x \in X : f(x) = g(x)\}$ je uzavřená v X.

Důkaz

Ať $x \in X \setminus M$. Pak $f(x) \neq g(x) \in Y$. Y je Hausdorffův, tedy existují otevřené disjunktní U, V, že $f(x) \in U, g(x) \in V$. Ať $W := f^{-1}(U) \cap g^{-1}(V)$ je otevřená množina a $x \in W$. $W \cap M = \emptyset$, protože U a V jsou disjunktní, tedy $X \setminus M$ je otevřená, M je uzavřená. \square

Poznámka

Je-li $f:X\to Y$ spoj., Y Hausdorffův a $S\subseteq X$ hustá, pak fcosiS má jediné spojité rozšíření.

Tvrzení 4.8

Je-li X TP a $f_n: X \to \mathbb{R}$ spoj. zobrazení (f_n) konverguje stejnoměrně $k \ f: X \to \mathbb{R}$, pak f je spojité.

 $D\mathring{u}kaz$

TODO!

Věta 4.9 (Tietze-Urysohnova)

Je-li \mathbb{X} normální TP a $F \subseteq \mathbb{X}$ uzavřená, pak lze každou spojitou funkci $f: F \to \mathbb{R}$ spojitě rozšířit na celé \mathbb{X} , tedy existuje spojitá funkce $\overline{f}: \mathbb{X} \to \mathbb{R}$, že $\overline{f} cosiF = f$.

Pozorování: Ke každé spojité funkci $g: F \to [-c,c]$ existuje spojitá funkce $\overline{g}: X \to [-\frac{c}{3},\frac{c}{3}]$, že $|g(x)-\overline{g}(x)| \leq \frac{2}{3}c$ pro každé $x \in F$.

Důkaz pozorování: At $E:=\left\{x\in F:g(x)\leq -\frac{c}{3}\right\}$ a $H:=\left\{x\in F:g(x)\geq \frac{c}{3}\right\}$. E,H uzavřené v F a disjunktní. Tedy E,H uzavřené v \mathbb{X} . Tedy z Urysohnova lemmatu existuje spojitá $h:\mathbb{X}\to [-1,1]$, že $h(E)\subseteq \{-1\}$, $h(H)\subseteq \{1\}$. Položme $\overline{g}:=\frac{c}{3}\cdot h$. Jednoduše nahlédneme, že vzdálenosti z pozorování teď fungují.

Nejprve dokažme pro $f: F \to [-1,1]$ (a rozšíříme jí na spoj. $\overline{f}: \mathbb{X} \to [-1,1]$). Indukcí najdeme posloupnost spojitých funkcí $g_n: \mathbb{X} \to \mathbb{R}$, že $||g_n|| \leq \frac{1}{3} \cdot \left(\frac{2}{3}\right)^{n-1}$ a pro každé $x \in F$ a $n \in \mathbb{N}: |f(x) - \sum_{i=1}^n g_i(x)| \leq \left(\frac{2}{3}\right)^n$.

Položme $g_1=\overline{f}$ z pozorování, tedy $g_1:\mathbb{X}\to \left[-\frac{1}{3},\frac{1}{3}\right]$. Máme-li g_1,\ldots,g_n zkonstruované a splňující předpoklady indukce, pak uvažujme funkci $f':=f-\sum_{i=1}^n g_i:F\to \left[-\left(\frac{2}{3}\right)^n,\left(\frac{2}{3}\right)^n\right]$ a aplikujeme na ni pozorování, tedy existuje spojitá funkce $g_{n+1}:\mathbb{X}\to \left[-\frac{1}{3}\left(\frac{2}{3}\right)^n,\frac{1}{3}\left(\frac{2}{3}\right)^n\right]$, že $|f'(x)-g_{n+1}(x)|\leq \frac{2}{3}\left(\frac{2}{3}\right)^n=\left(\frac{2}{3}\right)^{n+1},\ x\in F$. Položme $\tilde{f}_n:=\sum_{i=1}^n g_i(x)$ a $\tilde{f}:=\sum_{i=1}^\infty g_i(x)=\lim_{n\to\infty}\tilde{f}_n(x)$. Stejnoměrná konvergence zachovává spojitost. A jelikož \tilde{f}_n z Waierstrassova kriteria konverguje stejnoměrně, tak \tilde{f} je spojitá. Zároveň $|\tilde{f}(x)-f(x)|=0$, tedy \tilde{f} je rozšířením f.

Ať nyní $f: F \to \mathbb{R}$. Ať $h: \mathbb{R} \to (-1,1)$ je homeomorfismus. $h \circ f: F \to (-1,1) \subseteq [-1,1]$ podle předchozí části existuje spojité $v: \mathbb{X} \to [-1,1]$, že pro $x \in F$ je $v(x) = h \circ f(x)$. Ať $E:=v^{-1}(\{-1,1\})$ uzavřená v \mathbb{X} . E je disjunktní s F. Z Urysohnova lemmatu existuje spojité $m: \mathbb{X} \to [0,1]$, $m(E) \subseteq \{0\}$, $m(F) \subseteq \{1\}$. $m \circ v: \mathbb{X} \to (-1,1)$. Tudíž $h^{-1} \circ (m \circ v): \mathbb{X} \to \mathbb{R}$ je spojité a navíc $(h^{-1} \circ (m \circ v))(x) = f(x)$ pro $x \in F$.

5 Kompaktnost

Definice 5.1

Systém množin \mathcal{S} se nazývá pokrytí \mathbb{X} , pokud $\bigcup \mathcal{S} = \mathbb{X}$. Každý podsystém \mathcal{S} , který je také pokrytí, se nazývá podpokrytí.

Pokrytí se nazývá otevřené, pokud všechny jeho prvky jsou otevřené množiny.

TP X se nazývá kompaktní, pokud každé jeho otevřené pokrytí má konečné podpokrytí.

 ${
m TP} \ \mathbb{X}$ se nazývá spočetně kompaktní, pokud každé spočetné pokrytí má konečné podpokrytí.

TP X se nazývá Lindelöfův, pokud každé otevřené pokrytí má spočetné pokrytí.

Řekneme, že systém $\mathcal{F} \subseteq \mathcal{P}(\mathbb{X})$ je centrovaný, pokud pro každé $n \in \mathbb{N}$ a $F_1, \ldots, F_n \in \mathcal{F}$ je $F_1 \cap \ldots \cap F_n \neq \emptyset$.

Věta 5.1 (Charakterizace kompaktnosti)

Pro TP X je ekvivalentní: a) X je kompaktní. b) Každý centrovaný systém sestávající z uzavřené množiny má neprázdný průnik. c) Každý net má limitu? TODO

Důkaz

 $(a \implies b)$ At $\mathcal{F} \subseteq \mathcal{P}(\mathbb{X})$ sestává z uzavřených množin a je centrovaný. Položme $\mathcal{U} := \{\mathbb{X} \setminus F : F \in \mathcal{F}\}$ (systém otevřených množin). At pro spor $\bigcap \mathcal{F} = \emptyset$. Pak \mathcal{U} je pokrytí \mathbb{X} . \mathbb{X} je kompaktní, tedy existuje $U_1, \ldots, U_n \in \mathcal{U}$, že $U_1 \cup \ldots \cup U_n = \mathbb{X}$. $U_i = \mathbb{X} \setminus F_i$ pro něj $F_i \in \mathcal{F}$. Pak $\bigcup_{i=1}^n F_i = \emptyset$. Tedy \mathcal{F} není centrovaný, .

 $(b \implies c)$ At $(x_i)_{i \in I}$ je net v X, (I, \leq) usměrněná množina. Položme $F_i = \{x_j : j \geq i\}$ je uzavřená, $i \in I$. $\mathcal{F} = \{F_i | i \in I\}$ je centrovaný. Tedy dle b) $\bigcap \mathcal{F} \neq \emptyset$. At $x_0 \in \bigcap \mathcal{F}$. Pak x_0 je hromadným bodem netu $(x_i)_{i \in I}$.

 $(c \Longrightarrow a)$. At \mathcal{U} je otevřená podmnožina \mathbb{X} . Předpokládejme pro spor, že neexistuje konečné pokrytí. Tedy pro $\mathcal{F} \subseteq \mathcal{U}$ konečnou existuje bod $x_{\mathcal{F}} \in \mathbb{X} \setminus \bigcup \mathcal{F}$. $(x_{\mathcal{F}})_{\mathcal{F} \subseteq \mathcal{U}}$ je net v \mathbb{X} . Podle c) existuje hromadný bod x tohoto netu. Existuje $U \in \mathcal{U} : x \in \mathcal{U}$. Z definice hromedného bodu existuje $\mathcal{F} \subseteq \mathcal{U}$ konečné, že $\mathcal{F} \supseteq \{U\}$ a $x_{\mathbb{F}} \in \mathcal{U}$. Ale $x_{\mathbb{F}} \notin \bigcup \mathcal{F}.Tojespor$.

Tvrzení 5.2 (Zachovávání vlastností)

Kompaktnost, spočetná kompaktnost i lindelöfovost se dědí na uzavřené podprostory a spojité obrazy.

 $D\mathring{u}kaz$

Ukážeme pouze pro kompaktnost: Ať \mathbb{X} je kompaktní a $F \subseteq \mathbb{X}$ uzavřená. Ať tedy \mathcal{U} je otevřené pokrytí F. Pro každé $U \in \mathcal{U}$ existuje \tilde{U} otevřená v \mathbb{X} , že $\tilde{U} \cap F = U$. Označme $\tilde{\mathcal{U}} = \left\{\tilde{U}: U \in \mathcal{U}\right\} \cup \{X \setminus F\}$. $\tilde{\mathcal{U}}$ otevřené pokrytí \mathbb{X} , tedy z kompaktnosti \mathbb{X} existuje konečné podpokrytí $\left\{\tilde{U}_1, \ldots, \tilde{U}_n, \mathbb{X} \setminus F\right\}$. Pak $\{U_1, \ldots, U_n\}$ je pokrytí F vybrané z \mathcal{U} . Tedy F je kompaktní.

At $f: \mathbb{X} \to \mathbb{Y}$ na, spojité a \mathbb{X} kompaktní. At \mathcal{U} je otevřené pokrytí \mathbb{Y} . TODO otevřené pokrytí \mathbb{X} . \mathbb{X} je kompaktní, tedy existuje TODO. Pak TODO pokrývá \mathbb{Y} .

Důsledek (Nabývání extrému)

Spojitá reálná funkce na (spočetně) kompaktním neprázdném prostoru nabývá maxima a minima.

 $D\mathring{u}kaz$

 $f: \mathbb{X} \to \mathbb{R}$, spojitá, \mathbb{X} spočetně kompaktní. $f(\mathbb{X})$ je spočetně kompaktní \Leftrightarrow kompaktní (v metrických prostorech). Tedy $f(\mathbb{X})$ uzavřená omezená v \mathbb{R} , tedy má minimum a maximum.

Věta 5.3 (Postačující podmínky pro normalitu)

Regulární Lindelöfův TP je normální.

Hausdorffův kompaktní TP je normální (tedy T_4).

$D\mathring{u}kaz$

a) At E, F jsou uzavřené disjunktní. $\forall x \in E \exists$ otevřené $U_x \in \mathcal{U}(x)$, že $\overline{U_x} \cap F = \emptyset$. $\{U_x : x \in \mathbb{X}\}$ je otevřené pokrytí E. Z lindelöfovosti E (uzavřený podprostor \mathbb{X}) existuje $C \subseteq \mathbb{X}$ spočetné, že $\{U_c : c \in C\}$ pokrývá E. Přeindexujeme systém $\{U_c : c \in C\}$ na $\{U_i : i \in \mathbb{N}\}$. Analogicky najdeme $\{V_j : j \in \mathbb{N}\}$ systém otevřených množin pokrývající F, $\overline{V_j} \cap E = \emptyset$, $k \in \mathbb{N}$. TODO

 $U := \bigcup_{i \in \mathbb{N}} U_i *$, otevřené. Kdyby $x \in U \cap V$, pak existují $i, j \in \dots \mathbb{N} : x \in U_i * \cap V_j *$. Búno: $i \geq j : x \in U_i \setminus \bigcup_{k \leq i} \overline{V_k}, x \notin \overline{V_j}, x \notin V_j *$. Tedy \mathbb{X} je normální.

b) Ať \mathbb{X} je Hausdorffův kompaktní. Stačí ukázat, že \mathbb{X} je regulární a použít a). Ať $F\subseteq \mathbb{X}$ je uzavřená, $x\in \mathbb{X}\setminus F$. Pro $y\in F$ existují otevřené disjunktní V_y , U_y , že $x\in U_y,y\in V_y$. F je kompaktní, $\{V_y:y\in F\}$ je otevřená podmnožina F. Tedy existuje konečné podpokrytí $\{V_{y_1},\ldots,V_{y_n}\}$. $U:=\bigcap_{i=1}^n U_{y_i}, V:=\bigcap_{i=1}^n V_{y_i}$ otevřené, tedy \mathbb{X} regulární. \square

Tvrzení 5.4

Kompaktní podprostory (\mathbb{K}) jsou uzavřené v Hausdorffových prostorech (\mathbb{X}).

$D\mathring{u}kaz$

Pro $x \in \mathbb{X} \setminus \mathbb{K}$ fixované a $y \in \mathbb{K}$ existují disjunktní U_y a V_y v \curvearrowleft , že $x \in U_y$ a $y \in V_y$. $\{V_y : y \in \mathbb{K}\}$ je otevřené pokrytí \mathbb{K} . \mathbb{K} je kompaktní, tedy $existsy_1, \ldots, y_n \subseteq \mathbb{K}$, že $V_{y_1} \cup \ldots \cup V_{y_n} \supseteq \mathbb{K}$. $x \in \bigcap_{i=1}^n U_{y_i}$ otevřené je disjunktním s $\bigcup V_{y_i}$, tedy i disjunktní s \mathbb{K} . Tedy $\mathbb{X} \setminus \mathbb{K}$ je otevřená, tj. \mathbb{K} je uzavřená.

Tvrzení 5.5 (Automatický homeomorfismus)

 $At \mathbb{X}, \mathbb{Y}$ jsou kompaktní Hausdorffovy TP a $f: \mathbb{X} \to \mathbb{Y}$ spojitá. a) Pokud je f na, pak f je kvocientové. b) Pokud je f bijekce, pak f je homeomorfismus.

$D\mathring{u}kaz$

a) Stačí ukázat, že f je uzavřené zobrazení. At $F \subseteq \mathbb{X}$ je uzavřená. Pak F je kompaktní, f spojitá, tedy f(F) je kompaktní. Podle předchozího tvrzení je f(F) uzavřená v \mathbb{Y} .

b) Okamžitý důsledek a).

Poznámka

At τ je kompaktní Hausdorffova topologie na \mathbb{X} . Pak τ je maximální kompaktní topologie a minimální Hausdorffova.

Lemma 5.6 (Alexandrovo)

Ať X je TP a S jeho subbáze. Předpokládejme, že z každého pokrytí $U \subseteq S$ lze vybrat konečné podpokrytí. Pak X je kompaktní.

Důkaz (Sporem)

Předpokládejme pro spor, že existuje otevřené pokrytí \mathbb{X} , které nemá konečné podpokrytí. Označme \mathcal{P} množinu všech takových pokrytí. $\mathcal{P} \neq \emptyset$. At $\mathcal{L} \subseteq \mathcal{P}$ je řetězec vzhledem k \subseteq . Pak $\bigcup \mathcal{L} \in \mathcal{P}$: Zřejmě $\bigcup \mathcal{L}$ je otevřené pokrytí \mathbb{X} . Kdyby existovalo $\mathcal{F} \subseteq \bigcup \mathcal{L}$ konečné podpokrytí, pak existuje $\mathcal{U} \in \mathcal{L}$, že $\mathcal{F} \subseteq \mathcal{U}$. Tedy \mathcal{U} má konečné podpokrytí .

Tedy podle Zormova lemmatu existuje maximální prvek $\mathcal{U} \in \mathcal{P}$. Ukážeme, že $\mathcal{U} \cap \mathcal{S}$ je pokrytí \mathbb{X} : At $x \in \mathbb{X}$. Pak existuje $U \in \mathcal{U} : x \in U$. Zároveň existuje $S_1, \ldots, S_n, n \in \mathbb{N}$, že $x \in S_1 \cap \ldots \cap S_n \subseteq U$. Tvrdíme, že pro nějaké $i \leq n : S_i \in \mathcal{U}$: Kdyby ne, pak $\forall i \leq n : S_i \notin \mathcal{U}$. Tedy $\mathcal{U} \cup \{S_i\} \notin \mathcal{P}$ (\mathcal{U} byl maximální prvek \mathcal{P}). Tedy existuje $\mathcal{F}_i \subseteq \mathcal{U}$ konečná, že $\mathcal{F}_i \cap \{S_i\}$ je pokrytí \mathbb{X} . Pak $\bigcup_{i \leq n} \mathcal{F}_i \cup \{U\}$ je pokrytí \mathbb{X} , je konečné, je to podpokrytí \mathcal{U} . Spor.

Tedy $x \in S_i \in \mathcal{S} \cap \mathcal{U}$. Tedy $\mathcal{U} \cap \mathcal{S}$ je pokrytí \mathbb{X} . Podle předpokladu má $\mathcal{S} \cap \mathcal{U}$ konečné podpokrytí, tedy \mathcal{U} má konečné podpokrytí. Spor s volbou \mathcal{U} .

Věta 5.7 (Tichonova)

Součin kompaktních prostorů je kompaktní.

 $D\mathring{u}kaz$

At (X_i, τ_i) , $i \in I$, jsou kompaktní TP. At $X = \prod X_i$. τ součinová topologie na X. At $S := \{\pi_i^{-1}(U) : U \in \tau_i, i \in I\}$. S je subbáze τ . Ověříme, že S splňuje předpoklady Alexandrova lemmatu. At $U \subseteq S$ je pokrytí X. Pro $i \in I$ označme $U_i = \{U \in \tau_i : \pi_i^{-1}(U) \in U\}$. Tvrdíme, že existuje $i \in I$, že U_i je pokrytí X_i : Kdyby ne, pak $\forall i \in ILU_i$ nepokrývá X_i , tedy existuje $x_i \in X_i \setminus \bigcup \{V : V \in U_i\}$. Nyní $x := (x_i)_{i \in I} \in X$, ale $x \notin \bigcup U$. Tedy U nepokrývá X, spor.

 \mathbb{X}_i je kompaktní, tedy existuje $\mathcal{K} \subseteq \mathcal{U}_i$ konečná, že $\bigcup \mathcal{K} = \mathbb{X}_i$. Zřejmě $\{\pi_i^{-1}(U) : U \in \mathcal{K}\}$ je konečné podpokrytí \mathbb{X} prvky z \mathbb{U} . Podle Alexandrova lemmatu je \mathbb{X} kompaktní.

Tvrzení 5.8 (Spojitý obraz kompaktu nezvýší váhu)

 $At \ \mathbb{X} \ je \ kompaktni \ a \ \mathbb{Y} \ Hausdorffův. \ At \ f : \mathbb{X} \to \mathbb{Y} \ je \ spojité \ a \ na. \ Potom \ w(\mathbb{Y}) \le w(\mathbb{X}).$

At \mathcal{B} je báze \mathbb{X} . Můžeme předpokládat, že \mathcal{B} je uzavřená na konečné sjednocení (tím nezvýšíme mohutnost nekonečné báze). Definujeme $\mathcal{C} := \{ \mathbb{Y} \setminus f (\mathbb{X} \setminus B) : B \in \mathcal{B} \}$. \mathcal{C} sestává z otevřené množiny. Ukážeme, že \mathcal{C} je báze \mathbb{Y} . Ukážeme, že \mathcal{C} je báze \mathbb{Y} : At $y \in \mathbb{Y}$ a $V \in \mathcal{U}(y)$ otevřená, pak $f^{-1}(y) \subseteq f^{-1}(V)$. \mathcal{B} je báze, tedy $\forall x \in f^{-1}(y) \exists B_x \in \mathcal{B} : x \in B_x \subseteq f^{-1}(V)$. $f^{-1}(y)$ je kompaktní a $\{B_x : x \in f^{-1}(y)\}$ je otevřené pokrytí $f^{-1}(y)$. Tedy existuje $x_1, \ldots, x_n \in f^{-1}(y) : B_{x_1} \cup \ldots \cup B_{x_n} \supseteq f^{-1}(y)$.

Navíc $B \subseteq TODO$.

6 Prostory spojitých funkcí na kompaktech

Definice 6.1

Pro TP X, Y značíme symbolem C(X, Y) množinu všech spojitých funkcí \curvearrowleft do Y. Pokud $Y = \mathbb{R}$, pak píšeme pouze C(X).

Topologie bodové konvergence: $C(X, Y) \subseteq Y^X$ se součinovou topologií.

Pro \mathbb{X} kompaktní je C(X) se supremovou normou Banachův prostor.

Tvrzení 6.1 (Diniho kriterium pro stejnoměrnou konvergenci)

At X je kompaktní TP a $f_n: X \to \mathbb{R}$ spojitá, že $f_{n+1} \ge f_n, n \in \mathbb{N}$ a f_n bodově konverguje ke spojité funkci f. Pak f_n konverguje stejnoměrně k f.

 $D\mathring{u}kaz$

At $\varepsilon > 0$ at $D_n = \{x \in \mathbb{X} : f(x) - f_n(x) < \varepsilon\}$. Pak D_n je otevřená pro $n \in \mathbb{N}$. Navíc z monotonie $D_1 \subseteq D_2 \subseteq \ldots \bigcup_{n=1}^{\infty} = \mathbb{X}$. \mathbb{X} kompaktní, tedy existuje n_0 , že $D_{n_0} = \mathbb{X}$. Tedy $|f(x) - f_{n_0}(x)| < \varepsilon$ pro libovolné $x \in \mathbb{X}$. Pak pro $n \ge n_0 : f(x) - f_n(x) \le f(x) - f_{n_0}(x) < \varepsilon$.

Lemma 6.2 (O odmocnině)

Existuje posloupnost polynomů, která na intervalu [0,1] konverguje stejnoměrně $k\sqrt{t}$.

 $D\mathring{u}kaz$

Položme $p_0(t) = 0$, $p_{n+1}(t) = p_n(t) + \frac{t - p_n^2(t)}{2}$, $n \ge 0$. Každé p_n je polynom v proměnné t. $\forall n \in \mathbb{N} : p_n(t) \le \sqrt{t}$ a $p_1(t) \le p_{n+1}(t)$, $t \in [0,1]$ (dokazatelné indukcí). Tedy pro každé $t \in [0,1]$ je posloupnost $(p_n(t))_{n=1}^{\infty}$ neklesající a shora omezená, tedy má vlastní limitu $L = L + \frac{t - L^2}{2} \implies L = \sqrt{t}$.

Definice 6.2

At \mathcal{F} je systém funkcí $\mathbb{X} \to \mathbb{Y}$. Řekneme, že \mathcal{F} odděluje body, pokud pro $x, y \in \mathbb{X}, x \neq y$ existuje $f \in \mathcal{F} : f(x) \neq f(y)$. Řekneme, že \mathcal{F} odděluje body a uzavřené množiny, pokud

Poznámka (Připomínáme svaz a okruh.)

 $\emptyset \neq A \subseteq C(K)$, A je okruh $\Leftrightarrow A$ je uzavřená na násobení, sčítání a odčítání funkcí.

A je svaz $\Leftrightarrow A$ je uzavřená na minimum a maximum dvou funkcí.

Věta 6.3 (Stone-Weierstrass)

At \mathbb{K} je kompaktní TP a $\mathcal{B} \subseteq C(\mathbb{K})$ je vektorový podprostor obsahující konstanty a oddělující body. Je-li \mathcal{B} okruh nebo svaz, pak \mathcal{B} je hustá v $C(\mathbb{K})$ (s topologií stejnoměrné konvergence).

Důkaz (Svaz)

Pozorování: pro $x, y \in \mathbb{K}, x \neq y, a, b \in \mathbb{R}$ existuje $h \in \mathcal{B} : h(x) = a \land h(y) = b$. (\mathcal{B} odděluje body, tedy $\exists u \in \mathcal{B} : u(x) \neq u(y)$. $h(z) := \frac{b-a}{u(y)-u(x)} \cdot (u(z)-u(x)) + a \in \mathcal{B}$.)

Chceme, že \mathcal{B} je hustý. At $f \in C(\mathbb{K})$ a $\varepsilon > 0$. Pro každou dvojici $x, y \in \mathbb{K}$ fixujeme $f_{x,y} \in \mathcal{B}$, že $f_{x,y}(x) = f(x)$ a $f_{x,y}(y) = f(y)$ (to můžeme díky pozorování pro $x \neq y$, pro x = y položíme $f_{x,y} = f(x)$.) At $x \in \mathbb{K}$ je pevné. $\forall y \in \mathbb{K}$ \exists otevřené $U_y \in \mathcal{U}(y) : |f_{x,y}(z) - f_{x,y}(y)| < \frac{\varepsilon}{2}$ (ze spojitosti $f_{x,y}$) a zároveň $|f(z) - f(y)| < \frac{\varepsilon}{2}$ pro $z \in U_y$ (ze spojitosti f). Systém $\{U_y : y \in \mathbb{K}\}$ je otevřené pokrytí \mathbb{K} , tedy existuje $y_1, \ldots, y_k \in \mathbb{K}$: $U_{y_1} \cup \ldots \cup U_{y_k} = \mathbb{K}$. Definujeme $f_x := \min\{f_{x,y_1}, \ldots, f_{x,y_k}\} \in \mathcal{B}$ (\mathcal{B} je svaz). Navíc $f_x \leq f + \varepsilon$ na celém \mathbb{K} a také $f_x(x) = f(x)$. Nyní $\forall x \in \mathbb{K}$ \exists otevřené $V_x \in \mathcal{U}(x) : |f_x(z) - f_x(x)| < \frac{\varepsilon}{2}$ a $|f(z) - f(x)| < \frac{\varepsilon}{2}$ pro $z \in V_x$. $\{V_x : x \in \mathbb{K}\}$ otevřené pokrytí \mathbb{K} . Tedy existují $x_1, \ldots, x_l : V_{x_1} \cup \ldots \cup V_{x_l} = \mathbb{K}$. $g := \max\{f_{x_1}, \ldots, f_{x_l}\}, g \in \mathcal{B}$ a $f - \varepsilon \leq g \leq f + \varepsilon$, tj. $||f - g|| \leq \varepsilon$. \square

Důkaz (Okruh)

Ukážeme, že je-li $\mathcal{A} \subseteq C(\mathbb{K})$ VP a okruh obsahující konstanty a oddělující body, pak $\mathcal{B} = \overline{\mathcal{A}}$ je svaz. Zřejmě \mathcal{B} je VP obsahující konstanty a odděluje body (je nadmnožinou, proto vše obsahuje). Ukážeme, že pro $f \in \mathcal{B}$ je $|f| \in \mathcal{B}$: f je omezená, tedy existuje c > 0, že $c \cdot f^2 : \mathbb{K} \to [0,1]$. Z lemmatu o odmocnině existují polynomy $p_n : [0,1] \to \mathbb{R}$, že p_n stejnoměrně konverguje k odmocnině. Tedy $p_n \circ (c \cdot f^2) \in \overline{\mathcal{A}}$ stejnoměrně konverguje k $\sqrt{c} \cdot |f| \in \overline{\mathcal{A}}$ (z uzávěru se nedá vykonvergovat). Tedy $|f| \in \overline{\mathcal{A}}$, tedy i $\max\{f,g\} = \frac{f+g+|f-g|}{2}$, tedy $\overline{\mathcal{A}}$ je uzavřená na maxima (minima podobně). Z první části $\overline{\overline{\mathcal{A}}} = C(\mathbb{K})$, tedy $\overline{\mathcal{A}} = C(\mathbb{K})$.

Definice 6.3 (Kompaktifikace)

Ať \mathbb{X} je TP. Dvojice (j, \mathbb{Y}) se nazývá kompaktifikací \mathbb{X} , pokud \mathbb{Y} je kompaktní Hausdorfův prostor a $j: \mathbb{X} \to \mathbb{Y}$ je vnoření a $j(\mathbb{X})$ je hustá v \mathbb{Y} .

Prostor $\mathbb X$ a $j(\mathbb X)$ se často ztotožňují, tedy pak zapomínáme na j a mluvíme pouze o $\mathbb Y$, jakožto kompaktifikaci.

Řekneme, že kompaktifikace (j_1, \mathbb{Y}_1) prostoru \mathbb{X} je větší než kompaktifikace (j_2, \mathbb{Y}_2) prostoru \mathbb{X} , pokud existuje spojité zobrazení $f: \mathbb{Y}_1 \to \mathbb{Y}_2$, že $f \circ j_1 = j_2$.

Řekneme, že 2 kompaktifikace (j_1, \mathbb{Y}_1) a (j_2, \mathbb{Y}_2) jsou ekvivalentní, pokud existuje homeomorfismus $h: \mathbb{Y}_1 \to \mathbb{Y}_2, \ h \circ j_1 = j_2$.

Poznámka

Jsou-li (j_1, \mathbb{Y}_1) , (j_2, \mathbb{Y}_2) kompaktifikace prostoru \mathbb{X} a (j_1, \mathbb{Y}_1) je větší než (j_2, \mathbb{Y}_2) a naopak, pak jsou již ekvivalentní.

 $D\mathring{u}kaz$

 $(f_2 \circ f_1) \circ j_1 = f_2 \circ (f_1 \circ j_1) = f_2 \circ j_2 = j_1$. Obdobně $f_1 \circ f_2 \circ j_2$. Tedy $f_2 \circ f_1 = id$ na $j_1(\mathbb{X})$ a $f_1 \circ f_2 = id$ na $j_2(\mathbb{X})$. Jenže $j_1(\mathbb{X})$ je hustá v \mathbb{Y}_1 , tedy nutně $f_2 \circ f_1 = id$ na celém \mathbb{Y}_1 . Úplně analogicky $f_1 \circ f_2 = id$ na \mathbb{Y}_2 , tedy f_1 a f_2 jsou vzájemně inverzní a navíc spojité, tedy jsou homeomorfismy, tj. kompaktifikace jsou ekvivalentní.

Například

 $\mathbb{Y}_1 = [0,1]$ je kompaktifikací $\mathbb{X} = (0,1)$ $(j_1:(0,1) \to [0,1], j_1(x) = x)$. $\mathbb{Y}_2 = \{z \in \mathbb{C}: |z| = 1\}$. $j_2: \mathbb{X} \to \mathbb{Y}_2, j_2(x) = e^{2\pi i x}$. (j_2, \mathbb{Y}_2) je kompaktifikací (0,1). Zřejmě (j_1, \mathbb{Y}_1) je větší než (j_2, \mathbb{Y}_2) . Naopak zřejmě nejsou ekvivalentní.

Definice 6.4 (Lokální kompaktnost)

TP X se nazývá lokálně kompaktní, pokud každý jeho bod má kompaktní okolí.

Tvrzení 6.4 (Alexandrovova kompaktifikace)

 $Každý Hausdorfův lokálně kompaktní prostor <math>\mathbb{X}$ má kompaktifikaci (e, \mathbb{Y}) , při které je $\mathbb{Y} \setminus e(\mathbb{X})$ nejvýše jednoprvková. Ta je určena jednoznačně.

Je-li \mathbb{X} kompaktní, pak má až na ekvivalenci jedinou kompaktifikaci: necht (e, \mathbb{Y}) je kompaktifikace \mathbb{X} . Potom $e(\mathbb{X})$ je kompaktní (spojitý obraz kompaktu), e(x) je uzavřená a hustá v \mathbb{Y} , tedy $e(\mathbb{X}) = \mathbb{Y}$. Tedy e je homeomorfismus a tato kompaktifikace je tedy ekvivalentní s libovolnou další.

Předpokládejme, že \mathbb{X} není kompaktní. BÚNO $\infty \notin \mathbb{X}$. At τ je topologie na \mathbb{X} . $\mathbb{Y} = \mathbb{X} \cup \{\infty\}$. Na \mathbb{Y} definujeme topologii σ :

$$\sigma := \tau \cup \{\{\infty\} \cup (\mathbb{X} \setminus K) : K \subseteq \text{ je kompaktn} i\}.$$

Snadno ověříme, že σ je topologie na \mathbb{Y} . (\mathbb{Y}, σ) je kompaktní: At \mathcal{U} je otevřené pokrytí \mathbb{Y} . $\exists U_0 \in \mathcal{U} : \infty \in U_0 \ \exists K \subseteq \mathbb{X}$ kompaktní: $U_0 = \{\infty\} \cup (\frown \setminus K)$. K je pokryto otevřeným pokrytím $\{K \cap U : U \in \mathcal{U}\}$, tedy z kompaktnosti existují $U_1, \ldots, U_n \in \mathcal{U} : K \subseteq U_1 \cup \ldots \cup U_n$. $\{U_0, U_1, \ldots, U_n\}$ je tedy konečné podpokrytí \mathbb{Y} .

 (\mathbb{Y}, σ) je Hausdorffův: Pro $x, y \in \mathbb{X} \exists U, V \dots$ Zajímavější je to pro ∞ a $x \in \mathbb{X}$. \mathbb{X} je likálně kompaktní, tedy existuje $K \subset \mathbb{X}$ kompaktní, $K \in \mathcal{U}(x), x \in \text{Int}(K), \infty \in \{\infty\} \cup (\mathbb{X} \setminus K)$ (dvě disjunktní množiny).

Jednoznačnost: v Hausdorffově prostoru jsou uzavřené množiny právě ty kompaktní, tedy nebyla jiná volba σ .

Poznámka

Jednobodová (tzn. Alexandrovova) kompaktifikace (pokud existuje) je nejmenší kompaktifikace mezi všemi kompaktifikacemi daného prostoru X.

Lokálně kompaktní Hausdorffovy prostory jsou právě otevřené podmnožiny Hausdorffových kompaktů.

Lemma 6.5 (Tichonovovo vnoření)

At X je TP, Y_i , $i \in I$, jsou TP. At $\mathcal{F} = \{f_i : X \to Y_i : i \in I\}$ je soubor spojitých zobrazení. Pokud \mathcal{F} odděluje body, pak $f := \Delta \mathcal{F} : X \to \prod_{i \in I} Y_i$ $(f(x) = (f_i(x))_{i \in I})$ je prosté. Pokud navíc \mathcal{F} odděluje body a uzavřené množiny, pak f je vnoření.

$D\mathring{u}kaz$

At $x, y \in \mathbb{X}, x \neq y$. \mathcal{F} odděluje body, tedy existuje $i \in I : f_i(x) \neq f_i(y)$. $f(x) \neq f(y)$. Tedy f je prosté. Chceme ukázat, že $f : \mathbb{X} \to f(\mathbb{X})$ je homeomorfismus. Tedy stačí, že je uzavřené. At $F \subseteq \mathbb{X}$ je uzavřené a $x \in \mathbb{X} \setminus F$. $\exists i \in I : f_i(x) \notin f_i(F) = \overline{\pi_i(f(F))} \supseteq \pi_i(f(F))$. Tedy $f_i(x) \notin \pi_i(f(F))$. Proto $\pi_i(f(x)) = f(x) \notin f(F)$. Tedy f je uzavřené. \square

Tvrzení 6.6 (Tichonovova krychle)

Každý Tichonovův prostor lze vnořit do nějaké Tichonovovy krychle, tj. $[0,1]^I$, pro vhodnou množinu I.

Důsledek

Každý Tichonovův prostor má nějakou kompaktifikaci.

 $D\mathring{u}kaz$

Podle předchozího tvrzení existuje vnoření e do Tichonovovy krychle. $(e, \overline{e(\mathbb{X})})$ je kompaktifikace \mathbb{X} .

Definice 6.5

Kompaktifikace z důkazu předchozího důsledku (nebo kterákoliv s ní ekvivalentní) se nazývá Čechova-Stoneova (nebo beta-obal) a značí se βX .

Věta 6.7 (Charakterizace beta obalu)

Ať \mathbb{X} je Tichonovův TP a Y kompaktifikace \mathbb{X} . Pak je ekvivalentní a) Y je Čechova-Stoneova kompaktifikace \mathbb{X} . b) Každou spojitou funkci $f: \mathbb{X} \to [0,1]$ lze spojitě rozšířit na Y. c) Každou spojitou funkci $f: \mathbb{X} \to \mathbb{Z}$ do libovolného kompaktního Hausdorffova prostoru \mathbb{Z} lze spojitě rozšířit na Y. d) Y je největší kompaktifikace \mathbb{X} .

 $D\mathring{u}kaz$

- $a) \implies b): Y = \overline{e(X)}, e = \Delta \{f: f: \mathbb{X} \to [0,1] \text{ spojitá}\}. e: \mathbb{X} \to [0,1]^I.$ At $f: \mathbb{X} \to [0,1]$ je spojité $f \in I, \pi_f: [0,1]^I \to [0,1], \pi_f \circ e = f$, tedy π_f rozšiřuje $f, \pi_f | Y$ je hledané spojité rozšíření.
- $b) \implies c$) Podle lemmatu o Tichonovově vnoření^a můžeme předpokládat, že $Z \subseteq [0,1]^J$ pro nějakou množinu J. $\pi_j \circ f: \mathbb{X} \to [0,1]$ lze spojitě rozšířit na $g_j: Y \to [0,1]$, $j \in J.$ $\Delta \{g_j: j \in J\}: Y \to [0,1]^J$ je hledané spojité rozšíření toho zobrazení $f = \Delta_{j \in J}(\pi_j \circ f)$.
- $c) \implies d$) Triviální z definice uspořádání na kompaktifikaci (Je-li Z nějaká kompaktifikace \mathbb{X} , pak $id_{\mathbb{X}}: \mathbb{X} \to Z$ lze podle c) spojitě rozšířit na Y. Tedy Y je větší kompaktifikace než Z.)
- $d) \implies a)$ Y je největší, tedy je větší než Čechova-Stoneova. Zbývá ukázat, že Čechova-Stoneova kompaktifikace je větší než Y. To již víme z důkazu implikace $a \implies c$ volbou $f = id_{\mathbb{X}}$. Podle poznámky o ekvivalenci kompaktifikací jsou tyto ekvivalentní.

 $[^]a$ Z kompaktní Hausdorfův $\implies T_4 \implies T_\pi$

Poznámka

Je-li X Tichonovův prostor a $f: \mathbb{X} \to \mathbb{R}$ spojitá omezená, pak f lze spojitě rozšířit na $\overline{f}: \beta \mathbb{X} \to \mathbb{R}$. Banachovy prostory e_{∞} a $C(\beta \mathbb{N}, \mathbb{R})$ lze stotožnit.

7 Metrizovatelnost

Poznámka

Je-li (X, ϱ) metrický prostor, tak $\sigma := \min \{ \varrho, 1 \}$ je opět metrika na X, která generuje stejnou topologii jako ϱ .

Tvrzení 7.1

Jsou-li \mathbb{X}_n metrizovatelné TP, pak $\prod_{n\in\mathbb{N}} \mathbb{X}_n$ je metrizovatelný.

 $D\mathring{u}kaz$

At ϱ_n je metrika na \mathbb{X}_n kompatibilní s topologií τ_n . BÚNO $\varrho_n \leq 1$. $\mathbb{X} = \prod \mathbb{X}_n$. τ součinová topologie na \mathbb{X} . Definujeme ϱ metriku na $\mathbb{X} : \varrho(x,y) := \sum_{n \in \mathbb{N}} 2^{-n} \varrho_n(x_n,y_n)$. Ověříme, že topologie generovaná metrikou ϱ splývá s $\tau : \pi_n : \mathbb{X} \to \mathbb{X}_n$ je 2^n -lipschitzovské, tedy spojité. Tedy topologie generovaná ϱ je větší než τ . At $\varepsilon > 0$ a $x \in \mathbb{X}$, najdeme $n \in \mathbb{N} : 2 \cdot 2^{-n} < \varepsilon$ a at $\delta = 2^{-n}$. $B_{\varrho_1}(x_1,\delta) \times \ldots \times B_{\varrho_n}(x_n,\delta) \times \prod_{i=n+1}^{\infty} \mathbb{X}_i$ je prvek τ , navíc je podmnožinou $B_{\varrho}(x,\varepsilon)$. Tedy topologie generovaná, metrikou ϱ je menší než τ .

Poznámka

Alternativně lze za ϱ brát

$$\sum_{n=1}^{\infty} \frac{\varrho_n(x_n, y_n)}{2^n(1 + \varrho_n(x_n, y_n))}.$$

Věta 7.2 (Urysohnova metrizační)

 $Každý T_3$ prostor se spočetnou bází je metrizovatelný.

 $D\mathring{u}kaz$

Prostor se spočetnou bází je Lindelöfův. Každý regulární Lindelöfův prostor je normální. Tedy \mathbb{X} je T_4 , tedy i Tichonovův. At \mathcal{B} je spočetná báze \mathbb{X} . Označme $\mathcal{A} = \{(U,V) : \overline{U} \subseteq V, U, V \in \mathcal{B}\}$. Pro $(U,V) \in \mathcal{A}$ existuje spojitá funkce $f_{U,V}$ existuje spojitá funkce $f_{U,V} : \mathbb{X} \to [0,1]$, že $f_{U,V}|\overline{U} = 0$, $f_{U,V}|(\mathbb{X} \setminus V) = 1$ (lze z normality). $\mathcal{F} := \{f_{U,V} : (U,V) \in \mathcal{A}\}$ odděluje body a odděluje body a uzavřené množiny. Podle lemmatu o Tichonovově vnoření je $e := \Delta \mathcal{F} : \mathbb{X} \to [0,1]^{\mathcal{F}}$ je vnoření. $[0,1]^{\mathcal{F}}$ je metrizovatelný, protože \mathcal{F} je spočetná. $e : \mathbb{X} \to [0,1]^{\mathcal{F}}$, $e : \mathbb{X} \to e(\mathbb{X})$ je homeomorfismus. $e(\mathbb{X})$ je metrizovatelný, tedy \mathbb{X} je metrizovatelný.

$D\mathring{u}sledek$ Každý kompaktní Hausdorffův prostor se spočetnou bází je metrizovatelný. $D\mathring{u}kaz$ Kompaktní Hausdorffův prostor je T_4 , tedy je i T_3 . Tedy podle Urysohnovy metrizační věty metrizovatelný.

Důsledek

At $f: \mathbb{X} \to \mathbb{Y}$ je spojitá a na, \mathbb{X} kompaktní metrizovatelný a \mathbb{Y} Hausdorffův. Pak \mathbb{Y} je metrizovatelné.

 $D\mathring{u}kaz$

Víme, že spojitý obraz kompaktu nezvýší jeho váhu. $\mathbb X$ kompaktní, netriviální \Longrightarrow má spočetnou bázi. Tedy $\mathbb Y$ má spočetnou bázi. Navíc $\mathbb Y$ je kompakt. Podle předchozího důsledku je $\mathbb Y$ metrizovatelný.

Poznámka

Z důkazu Urysohnovy metrizační věty lze odvodit, že každý separabilní metrizovatelný prostor má metrizovatelnou kompaktifikaci a lze ho vnořit do Hilbertovy kostky $[0,1]^{\mathbb{N}}$.

8 Úplnost

Věta 8.1 (Cantor)

Metrický prostor (X, ϱ) je úplný \Leftrightarrow pro každý centrovaný systém \mathcal{F} sestávající z uzavřených množin a obsahující množiny libovolně malého (kladného) diametru je $\bigcap \mathcal{F} \neq \emptyset$.

Tvrzení 8.2 (O zúplnění)

Každý metrický prostor má zúplnění, tj. pro každý metrický prostor (X, ϱ) existuje metrický prostor (Y, σ) a izometrie $j: X \to j(X) \subseteq Y$, že (Y, σ) je úplný a j(X) je hustá v Y.

Zúplnění je určeno jednoznačně až na ekvivalenci.

Definice 8.1 (Úplná metrizovatelnost a G_{δ} -mnonžina)

TP X se nazývá úplně metrizovatelný, pokud na X existuje kompatibilní úplná metrika.

Množina A v TP \mathbb{X} se nazývá G_{δ} -množina (množina typu G_{δ}), pokud A je průnikem spočetně mnoha otevřených množin.

Poznámka

Úplná metrizovatelnost je topologický pojem. (0,1) je úplně metrizovatelný (ale v běžné metrice není úplný).

Věta 8.3 (Kuratowski)

Ať \mathbb{X} je MP, \mathbb{Y} úplně metrizovatelný. Ať $A\subseteq \mathbb{X}, f:A\to \mathbb{Y}$ spojité. Potom existuje G_{δ} -množina $G\subseteq \mathbb{X}$, že $A\subseteq G\subseteq \overline{A}$, a spojité $g:G\to \mathbb{Y}$, které rozšiřuje f.

Důkaz

Pro $x \in \overline{A}$ definujeme oscilaci $\operatorname{osc}_f(x) = \inf \{ \operatorname{diam} f(U \operatorname{cap} A) : U \text{ otevřené okolí } x \}$. Pro $x \in A : \operatorname{osc}_f(x) = 0 \Leftrightarrow f$ je spojité v bodě $x. G := \{ x \in \overline{A} : \operatorname{osc}_f(x) = 0 \}$. G je G_δ v \overline{A} , \overline{A} je G_δ v \overline{A} . Tedy G je G_δ v \overline{A} .

Pro $x \in G$ existuje $x_1 n \in A$, že $x_n \to x$. Definujeme $g(x) = \lim_{n \to \infty} f(x_n)$. Definice g nezávisí na volbě x_n . g rozšiřuje f. Spojitost g: Pro $U \subseteq \mathbb{X}$ otevřená, že $U \cap G \neq \emptyset$: $g(U) \subseteq \overline{f(U)}$, tedy diam $g(U) \leq \dim \overline{f(U)} = \dim f(U) \implies \operatorname{osc}_g(x) \leq \operatorname{osc}_f(x)$, tedy speciálně $\operatorname{osc}_g(x) = 0, x \in G$, tedy g je spojitá.

Věta 8.4 (Alexandrov)

Je-li \mathbb{X} metrizovatelný a $\mathbb{Y} \subseteq \mathbb{X}$ je úplně metrizovatelný, pak \mathbb{Y} je G_{δ} v \mathbb{X} .

Je-li \mathbb{X} úplně metrizovatelný a $\mathbb{Y} \subseteq \mathbb{X}$ je G_{δ} , pak \mathbb{Y} je úplně metrizovatelný.

 $(\mathbb{X},\varrho),(\mathbb{Y},\sigma)$. id : $(\mathbb{Y},\varrho)\to (\mathbb{Y},\sigma)$ je spojité zobrazení (dokonce homeomorfismus). Tedy podle Kuratowského věty existuje spojité rozšíření $g:G\to Y$, kde $\mathbb{Y}\subseteq G\subseteq \overline{\mathbb{Y}}$. id $_G:G\to G$ je spojité. $g|\mathbb{Y}=\mathrm{id}=\mathrm{id}_G|Y$ a \mathbb{Y} je hustá v G. Z jednoznačnosti zobrazení do Hausdorffova prostoru musí být $g=\mathrm{id}_G$. Tedy $G=\mathbb{Y}$. G je G_δ , tedy i \mathbb{Y} je G_δ .

Druhá část: (\mathbb{X}, ϱ) úplný metrický, $\mathbb{Y} = \bigcap_{n \in \mathbb{N}} U_n$, kde U_n je otevřená, $F_n := \mathbb{X} \setminus U_n$ jsou uzavřené. Definujeme novou metriku na \mathbb{Y} :

$$\varrho'(x,y) = \varrho(x,y) + \sum_{n=1}^{\infty} \min \left\{ 2^{-n}, \left(\frac{1}{\varrho(x,F_n)} - \frac{1}{\varrho(y,F_n)} \right) \right\}.$$

 ϱ' je kompatibilní s metrikou ϱ (cvičení). Ověříme, že ϱ' je úplná: At (y_i) je cauchyovská posloupnost v (\mathbb{Y}, ϱ) . Chceme ukázat, že má limitu. $\varrho < \varrho'$. Tedy (y_i) je cauchyovská v (\mathbb{X}, ϱ) . Tedy (y_i) je konvergentní v (\mathbb{X}, ϱ) . $y_i \to y \in \mathbb{X}$. Chceme, že $y \in \mathbb{Y}$ a $y_i \to y$ v (\mathbb{Y}, ϱ') .

$$n \in \mathbb{N} : \lim_{i,j \to \infty} \left| \frac{1}{\varrho(y_i, F_n)} - \frac{1}{\varrho(y_j, F_n)} \right| = 0$$
(protože (y_i) je ϱ' cauchyovská.)

Tedy $\forall n \in \mathbb{N} \frac{1}{\varrho(y_i, F_n)}$ konvergentní a odražená od nuly (její limita není nula). Tedy $\forall n \in \mathbb{N} : y \notin F_n$. Tedy $y \in \mathbb{Y}$. Navíc $y_i \to y$ v (\mathbb{Y}, ϱ') , protože $\varrho(x, y)$ jde k 0 pro x jde k y a zbytek ϱ' je část posloupnost a zbytek konvergentní $\frac{1}{2^{-n}}$.

Lemma 8.5 (O přírůstku kompaktifikací)

 $Af \ \mathbb{Y} \ a \ \mathbb{Z} \ jsou \ kompaktifikace \ TP \ \mathbb{X}. \ f : \mathbb{Y} \to \mathbb{Z} \ spojit\'e \ roz\'s\'i\'ren\'i \ \mathrm{id}_{\mathbb{X}}. \ Pak \ f(\mathbb{Y} \setminus \mathbb{X}) = \mathbb{Z} \setminus \mathbb{X}.$

 $D\mathring{u}kaz$

Spojitý obraz kompaktů je kompakt, tedy $f(\mathbb{Y})$ je kompaktní, tedy uzavřená v \mathbb{Z} . $f(\mathbb{Y}) \supseteq f(\mathbb{X}) = \mathbb{X}$, \mathbb{X} hustá v \mathbb{Z} , tedy $f(\mathbb{Y})$ je hustá v \mathbb{Z} . Nutně $f(\mathbb{Y}) = \mathbb{Z}$. Tedy $f(\mathbb{Y} \setminus \mathbb{X}) \supseteq \mathbb{Z} \setminus \mathbb{X}$.

Obrácená inkluze sporem: $\exists y \in \mathbb{Y} \setminus \mathbb{X} : \underline{f(y)} = \underline{x} \in \mathbb{X}$. Existuje otevřené okolí U bodu x, že $y \notin \overline{U}$ $(y \neq x)$. Ze spojitosti $f: \overline{\mathbb{X}} \setminus \overline{U} = \overline{f^{-1}}(\overline{\mathbb{X}} \setminus \overline{U}) = f^{-1}(\overline{\mathbb{X}} \setminus \overline{U}) \not\ni y$, tedy $y \notin \overline{\mathbb{X}} \setminus \overline{U}$. Celkem $y \notin \overline{U} \cup \overline{\mathbb{X}} \setminus \overline{U} = \overline{\mathbb{X}} = \mathbb{Y} \not\downarrow$.

Tvrzení 8.6 (Charakterizace čechovsky úplných prostorů)

Pro Tichonovův prostor je ekvivalentní

- $a \times je G_{\delta} v \beta X$,
- $b \ \mathbb{X} \ je \ G_{\delta} \ v \ každ\'e sv\'e kompaktifikaci,$
- $c \ \mathbb{X} \ je \ G_{\delta} \ v \ n\check{e}jak\acute{e} \ sv\acute{e} \ kompaktifikaci.$

a \Longrightarrow b: At \mathbb{Y} je libovolná kompaktifikace \mathbb{X} . $\beta\mathbb{X}$ je největší kompaktifikace \mathbb{X} , tedy existuje spojitá $f: \beta\mathbb{X} \to \mathbb{Y}$, rozšiřující id \mathbb{X} . Víme, že $\mathbb{X} = \bigcap_{n=1}^{\infty} G_n$, G_n otevřená v $\beta\mathbb{X}$. $\mathbb{Y} \setminus f(\beta\mathbb{X} \setminus G_n)$, ot. v \mathbb{Y} . $\bigcup_{n=1}^{\infty} f(\beta\mathbb{X} \setminus G_n) = f(\beta\mathbb{X} \setminus \mathbb{X}) = \mathbb{Y} \setminus \mathbb{X}$. $\mathbb{X} = \bigcap_{n \in \mathbb{N}} (\mathbb{Y} \setminus f(\beta\mathbb{X} \setminus G_n))$, tedy \mathbb{X} je G_δ v \mathbb{Y} .

b ⇒ c: každý Tichonovův prostor má kompaktifikaci.

c \Longrightarrow a: At $\mathbb Y$ je nějaká kompaktifikace $\mathbb X$, že $\mathbb X$ je G_δ v $\mathbb Y$. $\mathbb X = \bigcap G_n, G_n$ otevřené v $\mathbb Y$. Existuje $f: \beta \mathbb X \to \mathbb Y$ spojité rozšíření id $\mathbb X$. $\bigcap_{n \in \mathbb N} f^{-1}(G_n) = \mathbb X$ (z lemmatu o přírůstku). Tedy $\mathbb X$ je G_δ v $\beta \mathbb X$.

Definice 8.2 (Čechovsky úplný)

Tichonovův prostor \mathbb{X} se nazývá čechovsky úplný, pokud \mathbb{X} je G_{δ} v $\beta \mathbb{X}$.

Pozor

V předchozí charakterizaci nelze psát v libovolném kompaktu.

Například

Každý kompaktní Hausdorffův prostor je čechovsky úplný. Každý lokálně kompaktní Hausdorffův prostor je čechovsky úplný (má 1-bodovou kompaktifikaci).

Věta 8.7 (Frolíhova vnitřní charakterizace čechovské úplnosti)

Tichonovův $TP \mathbb{X}$ je čechovsky úplný \Leftrightarrow existuje posloupnost otevřených pokrytí $\mathcal{U}_n, n \in \mathbb{N}$, že pro každý centrovaný systém uzavřených množin \mathcal{F} , takový, že

$$\forall n \in \mathbb{N} \ \exists F \in \mathcal{F} : \exists U \in \mathcal{U}_n : F \subseteq U(*),$$

 $je \cap \mathcal{F} \neq \emptyset$.

 \Longrightarrow : TP \mathbb{X} je čechovsky úplný, tedy \mathbb{X} je G_{δ} v $\beta\mathbb{X}$. $\mathbb{X} = \bigcap_{n \in \mathbb{N}} G_n$, G_n otevřená v $\beta\mathbb{X}$. Pro $x \in \mathbb{X}$ a $n \in \mathbb{N}$ existuje otevřená $U_{x,n} \subseteq \beta\mathbb{X}$, že $x \in U_{x,n} \subseteq \overline{U_{x,n}} \subseteq G_n$. Položme $V_{x,n} = U_{x,n} \cap \mathbb{X}$... otevřené v \mathbb{X} . $U_n := \{V_{x,n} : x \in \mathbb{X}\}$... otevřené pokrytí \mathbb{X} . At \mathcal{F} je centrovaný systém uzavřených množin splňující (*). Chceme, že $\bigcap \mathcal{F} \neq \emptyset$. At $\mathcal{F}' := \{\overline{F} : F \in \mathcal{F}\}$. \mathcal{F}' je centrovaný systém uzavřených množin v $\beta\mathbb{X}$. Z charakterizace kompaktnosti je $\bigcap \mathcal{F}' \neq \emptyset$. At $x \in \bigcap \mathcal{F}'$. Ukážeme, že $x \in \mathbb{X}$. Víme $x \in G_n$, $n \in \mathbb{N}$. Tedy $x \in \bigcap_{n \in \mathbb{N}} G_n = \mathbb{X}$. $\overline{F} \cup \mathbb{X} = F$ (protože F je uzavřená v \mathbb{X}). Proto $x \in \bigcap \mathcal{F}$. Tedy $\bigcap \mathcal{F} \neq \emptyset$.

 $\Leftarrow: \mathbb{X} \text{ splňuje druhou část věty. Pro } U \in \mathcal{U}_n \text{ existuje otevřená množina } V_U \subseteq \beta \mathbb{X}, \text{ že } \mathbb{X} \cap V_U = U. \ G_n := \bigcup \left\{ V_U : U \in \mathcal{U}_n \right\} \subseteq \underset{\text{otevřená}}{\subseteq}, \mathbb{X} \subseteq G_n. \mathbb{X} \subseteq \bigcap_{n \in \mathbb{N}} G_n. \text{ Zbývá } \mathbb{X} \supseteq \bigcap_{n \in \mathbb{N}} G_n.$

At $x \in \bigcap_{n \in \mathbb{N}} G_n$. $\mathcal{F} := \{ \mathbb{X} \cap \stackrel{V}{:} V \in \mathcal{U}(x) \}$. \mathcal{F} je centrovaný systém uzavřených množin v \mathbb{X} . Navíc splňuje i (*), tj. $\bigcap \mathcal{F} \neq \emptyset$. At $y \in \bigcap \mathcal{F}$. Ukážeme, že y = x. Kdyby $y \neq x$, pak (jelikož jsme v Hausdorffově prostoru) existuje $V \in \mathcal{U}(x) : y \notin \overline{V} \implies y \notin \bigcap \mathcal{F}$. 4. $x = y \in \mathbb{X}$. Celkově $\mathbb{X} = \bigcap G_n$, tedy \mathbb{X} je G_δ v $\beta \mathbb{X}$.

Důsledek (Čech)

Metrizovatelný prostor X je úplně metrizovatelný, právě když je čechovsky úplný.

$D\mathring{u}kaz$

 \Longrightarrow : At \mathbb{X} je úplně metrizovatelný a ϱ je úplná kompatibilní metrika. At \mathcal{V}_n je soubor otevřených koulí o poloměru 2^{-n} (otevřené pokrytí \mathbb{X}). (\mathbb{X}, ϱ) je úplný, tedy podle Cantorovy věty pro každý centrovaný systém \mathcal{F} sestávající z uzavřených množin a splňující $\forall n \in \mathbb{N} \ \exists F \in \mathcal{F} \ \exists V \in \mathcal{V}_n : F \subseteq V$, je $\bigcap \mathcal{F} \neq \emptyset$. Tudíž podle Frolíkovy charakterizace je \mathbb{X} čechovsky úplný.

⇐: důkaz úplně totožný, jelikož všechno je ekvivalence.

 \Leftarrow druhý způsob. At ϱ je nějaká kompaktní metrika na \mathbb{X} . At Y je zúplnění (\mathbb{X}, ϱ). $\beta \mathbb{Y}$ je kompaktifikace \mathbb{Y} , ale je to také kompaktifikace \mathbb{X} (\mathbb{X} je v \mathbb{Y} hustá a \mathbb{Y} je hustá v $\beta \mathbb{Y}$). \mathbb{X} je čechovsky úplný, tedy \mathbb{X} je G_δ v $\beta \mathbb{Y}$. Tedy \mathbb{X} je G_δ v \mathbb{Y} . Podle věty Alexandrova je \mathbb{X} úplně metrizovatelný.

Věta 8.8 (Baire)

Průnik spočetně mnoha otevřených hustých podmnožin čechovsky úplného prostoru je v něm hustý.

$D\mathring{u}kaz$

Af $G_n, n \in \mathbb{N}$ je otevřená hustá v \mathbb{X} . Af \mathcal{U}_n jsou otevřené pokrytí z Frolíkovy charakterizce. Af $G \neq \emptyset$ otevřená. Chceme $\bigcap G_n \cap G \neq \emptyset$. Indukcí nalezneme pro každé $n \in \mathbb{N}$ uzavřenou množinu $F_n \subseteq \mathbb{X}$ s neprázdným vnitřkem, že $F_{n+1} \subseteq F_n, F_n \subseteq G_n \cap G$ a že $\exists U_n \in \mathcal{U}_n : F_n \subseteq U_n$. $\{F_n | n \in \mathbb{N}\}$ je centrovaný systém uzavřených množin a podle Frolíkovy charakterizace $\bigcap F_n \neq \emptyset, \bigcap F_n \subseteq G \cap \bigcap_{n \in \mathbb{N}} G_n$.

Tvrzení 8.9 (Zachování čechovské úplnosti operacemi)

Čechovská úplnost se zachovává spočetnou sumou, spočetným součinem a uzavřeným podprostorem.

 $D\mathring{u}kaz$

Ať $X_i, i \in \mathbb{N}$ jsou čechovsky úplné. $X_i = \bigcap_{n \in \mathbb{N}} G_{i,n}, G_{i,n}$ otevřené v βX_i .

 $\bigoplus_{i\in\mathbb{N}}\mathbb{X}_i\subseteq\bigoplus_{i\in\mathbb{N}}\beta\mathbb{X}_i\ ...\ lokálně kompaktní. Tedy můžeme uvažovat jednobodovou kompaktifikaci <math>\alpha(\bigoplus\beta\mathbb{X}_i)\supseteq\bigoplus_{i\in\mathbb{N}}\beta\mathbb{X}_i. \bigoplus_{i\in\mathbb{N}}\beta\mathbb{X}_i$ je otevřená v $\alpha(\bigoplus\beta\mathbb{X}_i). \bigoplus\mathbb{X}_i=\bigcap_{n\in\mathbb{N}}\beta\mathbb{X}_i$

... je G_δ v $\alpha(\ldots)$. Tedy $\bigoplus \mathbb{X}_i$ je čechovsky úplný.

Pro součin obdobně (dokonce můžeme vynechat α).

Ať $F\subseteq \mathbb{X}$ uzavřená, $\mathbb{X}=\bigcap_{n\in\mathbb{N}}G_n,\ G_n\subseteq\beta\mathbb{X}$ otevřené. $F\subseteq\overline{F}$ je kompaktifikace F. $F=F\cap\mathbb{X}=F\cap\bigcap_{n\in\mathbb{N}}G_n=\overline{F}\cap\bigcap_{n\in\mathbb{N}}G_n=\bigcap\overline{F}\cap G_n$ jsou otevřené v \overline{F} . Tedy F je čechovsky úplný.

9 Uniformní prostory

Weil 1936 a Tukey 1940

Poznámka

Pro množinu X značíme $\triangle(X) = \{(x, x) : x \in \mathbb{X}\}.$

Pro $E \subseteq X \times X$ označíme $E^{-1} = \{(y,x) | (x,y) \in E\}.$

Pro $C, D \subseteq X \times X$, $C \circ D = \{(x, z) | \exists y \in X : (x, y) \in C \land (y, z) \in D\}.$

Pro $E \subseteq X \times X$, $x \in X$, $E[x] = \{y \in X : (x, y) \in E\}$.

Definice 9.1 (Uniformní prostor)

Dvojice $(\mathbb{X}, \mathcal{D})$ se nazývá uniformní prostor, pokud \mathbb{X} je množina a $\mathcal{D} \subseteq \mathcal{P}(\mathbb{X} \times \mathbb{X})$ (tj. \mathcal{D} je soubor binárních relací na \mathbb{X}), $\mathcal{D} \neq \emptyset$ a splňuje:

- $\forall D \in \mathcal{D} : \triangle(\mathbb{X}) \subseteq D$,
- $\forall C, D \in \mathcal{D} : C \cap D \in \mathcal{D}$,
- $\forall D \in \mathcal{D} \ \exists C \in \mathcal{D} : C \circ C \subseteq D \ (,,\frac{\varepsilon}{2}"),$
- $\forall D \in \mathcal{D} : D^{-1} \in \mathcal{D}$,

- $\forall D \in \mathcal{D} \ \forall C \subseteq \mathbb{X} \times \mathbb{X}, C \supset D : C \in \mathcal{D},$
- $\forall x,y \in \mathbb{X}, x \neq y \; \exists D \in \mathcal{D} : (x,y) \notin D$. (Občas se neuvádí, pak se definují tzv. separované uniformní prostory, které ji mají navíc.)

Systém \mathcal{D} se nazývá uniformita na \mathbb{X} . Prvky \mathcal{D} se nazývají okolí diagonály.

Poznámka

Poslední podmínka je ekvivalentní podmínce $\mathcal{D} = \Delta(\mathbb{X})$.

Definice 9.2 (Báze a subbáze)

Systém $\mathcal{B} \subseteq \mathcal{P}(\mathbb{X} \times \mathbb{X})$ se nazývá báze uniformity (resp. báze uniformity \mathcal{D}), pokud uzavřením \mathcal{B} na nadmnožiny dostaneme nějakou uniformitu (resp. uniformitu \mathcal{D}).

Systém $S \subseteq \mathcal{P}(\mathbb{X} \times \mathbb{X})$ se nazývá subbáze uniformity (resp. subbáze uniformity \mathcal{D}), pokud konečné průniky prvků z S tvoří bázi uniformity (resp. bázi uniformity \mathcal{D}).

Definice 9.3 (Uniformní / stejnoměrně spojité zobrazení)

Zobrazení $f:(\mathbb{X},\mathcal{D})\to (\mathbb{Y},\mathcal{E})$ se nazývá uniformní (nebo stejnoměrně spojité), pokud $(f\times f)^{-1}(E)\in\mathcal{D}$, pro každé $E\in\mathcal{E}$. ($\Leftrightarrow \forall E\in\mathcal{E}\ \exists D\in\mathcal{D}:(x,y)\in D\implies (f(x),f(y))\in E$.)

Definice 9.4 (Uniformní izomorfismus)

Zobrazení $f:(\mathbb{X},\mathcal{D})\to(\mathbb{Y},\mathcal{E})$ se nazývá uniformní izomorfismus, jestliže f je bijekce a f i f^{-1} jsou uniformní zobrazení.

Lemma 9.1

Ať X je množina. Systém $\mathcal{B} \subseteq \mathcal{P}(X \times X)$ tvoří bázi nějaké uniformity na X, pokud

- $\bigcap \mathcal{B} = \triangle(X)$,
- $\forall C, D \in \mathcal{B} \exists E \in \mathcal{B} : E \subseteq C \cap D$,
- $\forall D \in \mathcal{B} \ \exists C \in \mathcal{B} : C \circ C \subseteq D$,
- $\forall D \in \mathcal{B} \ \exists E \in \mathcal{B} : E \subseteq D^{-1}$.

 $D\mathring{u}kaz$

Bez důkazu. (Důkaz přímočarý.)

Například

Diskrétní uniformita na množině $X - \mathcal{D} = \{D \in \mathcal{P}(X \times X) | \Delta(X) \subseteq D\}$. (Samozřejmě lze definovat i indiskrétní uniformitu $\mathcal{D} = \{X \times X\}$, ale tu nebudeme používat).

Tvrzení 9.2 (Vytvoření UP z MP a TP z UP)

Je-li (\mathbb{X}, ϱ) MP a $D_{\varepsilon} = \{(x, y) \in \mathbb{X} \times \mathbb{X} : \varrho(x, y) < \varepsilon\}$, pak $\{D_{\varepsilon} | \varepsilon > 0\}$ je báze nějaké uniformity \mathcal{D}_{o} na \mathbb{X} . (Tato uniformita se nazývá generovaná metrikou ϱ .)

Je-li $(\mathbb{X}, \mathcal{D})$ UP, pak systém $\tau_{\mathcal{D}} = \{A \subseteq \mathbb{X} | \forall x \in A \exists D \in \mathbb{D} : D[x] \subseteq A\}$ je topologie na \mathbb{X} a pro každé $x \in \mathbb{X}$ tvoří systém $\{D[x] : D \in \mathcal{D}\}$ bázi okolí v bodě x (při topologii $\tau_{\mathcal{D}}$). (Topologie $\tau_{\mathcal{D}}$ se nazývá generovaná uniformitou \mathcal{D} .) (Topologii lze definovat i za pomocí okolí)

Je-li(X, D) (separovaný) UP, $pak(X, \tau_D)$ je Hausdorffův(TP).

 $(\mathbb{X}, \varrho) \to (\mathbb{X}, \mathcal{D}_{\varrho}) \to (X, \tau_{\mathcal{D}_{\varrho}}) \ je \ totéž jako \ (\mathbb{X}, \varrho) \to (\mathbb{X}, \tau_{\varrho}).$

 $D\mathring{u}kaz$

Vynechán.

Definice 9.5

UP (X, \mathcal{D}) je metrizovatelný, pokud na X existuje metrika ϱ , že $\mathcal{D} = \mathcal{D}_{\varrho}$.

TP (X, τ) je uniformizovatelný, pokud na X existuje uniformita \mathcal{D} tak, že $\tau = \tau_{\mathcal{D}}$.

Například

Diskrétní TP je uniformizovatelný, ale může být generován nediskrétní uniformitou.

Věta 9.3 (Metrizovatelnost UP)

 $UP(@X,\mathcal{D})$ je metrizovatelný $\Leftrightarrow UP(X,\mathcal{D})$ má spočetnou bázi.

 $D\mathring{u}kaz$

Na topologii 2.

Poznámka (Operace s UP a zobrazeními)

Podobně jako u TP můžeme definovat podprostor, sumu, součin a kvocient UP.

Definice 9.6 (Net)

Net $(x_i)_{i\in I}$ v UP (X, \mathcal{D}) se nazývá cauchyovský, pokud $\forall D \in \mathcal{D} \exists i_0 \in I \ \forall i, j \geq i_0 : (x_i, x_j) \in \mathcal{D}$.

UP (X, \mathcal{D}) je úplný, pokud každý cauchyovský net v (X, \mathcal{D}) je konvergentní v $(X, \tau_{@D})$.

Poznámka

Metrický prostor (\mathbb{X},ϱ) je úplný $\Leftrightarrow (\mathbb{X},\mathcal{D}_{\varrho})$ je úplný.

Definice 9.7 (Totální omezenost)

UP (X, \mathcal{D}) se nazývá totálně omezený, pokud $\forall E \in \mathcal{D} \exists K \subseteq X$ konečná: $E[K] = \bigcup_{x \in K} E[x] = X$.

Poznámka

Metrický prostor (\mathbb{X}, ϱ) je totálně omezený $\Leftrightarrow (\mathbb{X}, \mathcal{D}_{\varrho})$ je totálně omezený.

Věta 9.4

 $Bud'(X, \mathcal{D})$ UP. $Pak(X, \tau_{\mathcal{D}})$ je kompaktní $\Leftrightarrow (X, \mathcal{D})$ je úplný a totálně omezený.

 $D\mathring{u}kaz$

Není přímočarý. Vynechán.

Věta 9.5 (Uniformita na kompaktu)

Na každém kompaktním Hausdorffově TP existuje právě jedna uniformita, která generuje tuto topologii.