Efficient Algorithms for Time Series Retrieval

Master Thesis Defense

Motivation

Focus and Target

We present an algorithm suitable as foundation for a time-series search engine that identifies **similar time series** from a pool of time series data.

We focus on:

- Time Complexity must adequate for a search engine
- Algorithm should be flexible to time series properties
- Results don't need to be closest match (but rather results that are good enough)

Agenda

- 1. Key Concepts
- 2. Methodology
- 3. Challenges
- 4. Demo
- 5. Results Overview
- 6. Discussion and Future Work

Time Series Retrieval

- Analysis of time series data by means of making it searchable
- Utilize time series data properties for comparison

Euclidean Distance

- Most widely-used similarity metric
- Easy to compute
- Intuitive to understand
- Cannot different length time series S and Q
- Struggles with outliers and noise
- Limited application in real-world scenarios

$$D(S, Q) = \sqrt{\Sigma(S_i - Q_i)^2}$$

- Minimal path through 2 time series via warping
- Baseline for our comparison
- Most widely used metric for time series similarity
- Exhaustive search of solution space
- Outliers can lead to clustering
- Not scalable
- Time Complexity $\mathcal{O}(n^2)$

$$\gamma(i,j) = D(s_i, q_i) + \min\{\gamma(i-1, j-1), \gamma(i-1, j), \gamma(i, j-1)\}$$

$S_{i-2,j}$	$S_{i-1,j}$	$S_{i,j}$
$S_{i-2,j-1}$	$S_{i-1,j-1}$	$S_{i,j-1}$
$S_{i-2,j-2}$	$S_{i-1,j-2}$	$S_{i,j-2}$

$$\gamma(i,j) = D(s_i, q_i) + \min\{\gamma(i-1, j-1), \gamma(i-1, j), \gamma(i, j-1)\}$$

$S_{i-2,j}$	$S_{i-1,j}$	$S_{i,j}$
$S_{i-2,j-1}$	$S_{i-1,j-1}$	$S_{i,j-1}$
$S_{i-2,j-2}$	$S_{i-1,j-2}$	$S_{i,j-2}$

$$\gamma(i,j) = D(s_i, q_i) + \min\{\gamma(i-1, j-1), \gamma(i-1, j), \gamma(i, j-1)\}$$

$S_{i-2,j}$	$S_{i-1,j}$	$S_{i,j}$
$S_{i-2,j-1}$	$S_{i-1,j-1}$	$S_{i,j-1}$
$S_{i-2,j-2}$	$S_{i-1,j-2}$	$S_{i,j-2}$

$$\gamma(i,j) = D(s_i, q_i) + \min\{\gamma(i-1, j-1), \gamma(i-1, j), \gamma(i, j-1)\}$$

$S_{i-2,j}$	$S_{i-1,j}$	$S_{i,j}$
$S_{i-2,j-1}$	$S_{i-1,j-1}$	$S_{i,j-1}$
$S_{i-2,j-2}$	$S_{i-1,j-2}$	$S_{i,j-2}$

$$\gamma(i,j) = D(s_i, q_i) + \min\{\gamma(i-1, j-1), \gamma(i-1, j), \gamma(i, j-1)\}$$

$S_{i-2,j}$	$S_{i-1,j}$	$S_{i,j}$
$S_{i-2,j-1}$	$S_{i-1,j-1}$	$S_{i,j-1}$
$S_{i-2,j-2}$	$S_{i-1,j-2}$	$S_{i,j-2}$

Fourier Transformation

- Principal Idea: Project Functions and data vectors into a coordinate system of sine and cosine functions with increasing frequencies
- Describe data vector as Fourier coefficients
- Parseval's Theorem (preservation of L2-norm)
- Power Spectral Density magnitude of frequencies described
- Key for our work: Use largest few PSD-ranked frequencies to describe similarity between two time-series

Methodology

Transformation & Statistics Computation of Time Series Pool

Raw Time Series

Window Functions

Adjusted Time Series

- Time Series + Window =
 Convoluted Series
- Address spectral leakage in time series

Frequency Ranges

Fitting Results into ranges

- Ranges hold values close to each other at the same index
- Allows for nominal classification of found frequencies
- Comparison via boolean logic as opposed to distance calculation

Raw Time Series

Compute 9 Summary Statistics for each Time Series

Searching for a best matches of single time series

Template Time Series

Template
Time Series

Compute Summary Statistics

Templ [5, 9, 4, 7, 10]

Pool TS_1 [5, 9, 4, 7, 10] $0*10^0 + 0*10^1 + 1*10^2 + 0*10^3 + 1*10^4$ = 10100TS₁ [3,4,6,8,10] yields yields TS_2 [...]

TS_n [...]

TS_n [...]

TS_n [...]

TS_n [...]

Highest Matches per Type

Compute Summary Statistics

Template

Time Series

Templ [5, $0*10^{0} + 0*10^{1} + 1*10^{2} + 0*10^{3} + 1*10^{4}$ *TS*₁ [3,4,6,8,10] = 10100

Compute Match Score

	FFT	Hamming	Welch
Best Match	11010	10100	11011

$$A_{trend} = \{S_i \in S_n | 1 \left(-\frac{m_{St}}{|m_{St}|} = -\frac{m_{S_i}}{|m_{S_i}|} \right) \}$$
Match Slope Direction

Compute Match Score

	FFT	Hamming	Welch
Best Match	11010	10100	11011

Highest Matches per Type

$$A_{trend} = \{ S_i \in S_n | 1 \left(-\frac{m_{St}}{|m_{St}|} = -\frac{m_{S_i}}{|m_{S_i}|} \right) \}$$

Match Slope Direction

 $arg min f(S_i) := |\phi_{S_i} - \phi_{S_i}|$

Minimize Statistical Metric

Challenges

Challenges

Phase Shift

Challenges Spectral Leakage

M4 Example Data: M487

Challenges

Hamming Window as Solution

Window Functions

Welch's Window as Solution

ChallengesIntervals as Solution

Demo

Time Complexity

Time Complexity

Time Series Search Algorithm

General Overview

Comparison to DTW

- Results can be comparable to DTW
- Depends on customizing
- Phase shift and wrong window function statistic can lead on undesired results

Matching of Frequencies

- Current approach to frequencies can be improved upon
- Good match on lower frequencies

Window Types

- Match scores indicate that windows generally lead to more precise matchings (higher scores)
- Welch's method beneficial to combat spectral leakage (especially on non-sinusoidal data patterns)

Discussion and Future Work

Discussion and Future Work

Outlook

- FFT together with window functions and summary statistic is powerful tool
- Scale-invariant
- Struggles with loss of temporal information in frequency domain
- Summary statistics do not deliver silver bullet

Discussion and Future Work

Outlook - Frequency Domain

Fourier Transform Frequency Distribution

Thank You!