Naïve Bayes Classifier for classifying handwritten digits.

- In this task, we implemented Naive Bayes Classifier with laplace smoothing
- Each digit is represented by 28x28 pixels. So we implemented a dictionary with digits as the key and the 28x28 matrix as its value
- We decided to consider a '+' and '#' as 1 feature and ' ' as another feature for identification of digits
- In the initial step, we parse the data of training images. To handle zero counts, we implemented laplace smoothing with smoothing factor k = 1. So for each digit, the pixels in matrix have value as 1 (line 10 in naivebayes.py)
- Whenever we encounter a ' ' at location (i,j) , we do not increment value for the matrix of that digit. Whenever we encounter a '+' or a '#' , we increment the value for that pixel by 1 (line 36 in naive bayes.py)
- Also, the prior probability of each digit is stored (line 23 and 25 in naivebayes.py)
- After the training is done, we've the prior probability as well as probability of seeing a '+' or '#' at each of 28x28 pixel for each digit i.e we have
 - P(D = 0), P(D = 1) ... P(D=9)
 - $P(F = '+' \text{ or } F = '\#', L = (0,0) \mid D = 0) ... P(F = '+' \text{ or } F = '\#', L = (27,27) \mid D = 0) \text{ for } D = 0 \text{ to } 9$
- Also, the prior probability of each digit is stored (line 23 and 25 in naivebayes.py)
- For testing the naive bayes classifier on each image of testimages.txt , we store all the images in a dictionary. The key is the index of the test image and value is 28x28 matrix as described previously
- To classify each image, we do
 - P(D = 1 | F = ' ', L = (0,0) ...F = '+', L = (27,27)) = P(F = ' ', L = (0,0) | D = 1)* ... P(F = '+', L = (27,27)* P(1) (line 84 to 122 in naivebayes.py)
 - We take log to compute the actual value of above equation. This computation is done for each digit
 - The digit which has the highest probability is selected as the label for this test image (line 125,126 in naivebayes.pv)
- We compare our assigned label with the label given and if it matches, we increase the value of counter

Accuracy

- In the end, we get an overall accuracy of **77.1** %
- The accuracy for each digit is shown in below table :

Digit FrequencyInTestData LabelledCorrectly

8	1104401103111100020		rrecuracy
 0	90	76	84.44444
1	108	104	96.296296
2	103	80	77.669903
3	100	79	79.000000
4	107	82	76.635514

5	92	62	67.391304
6	91	69	75.824176
7	106	77	72.641509
8	103	62	60.194175
9	100	80	80.000000