

Beyond VQA: Generating Multi-word Answers and Rationales to Visual Questions

Radhika Dua*, Sai Srinivas Kancheti*, Vineeth N Balasubramanian {radhika, cs21resch01004, vineethnb}@iith.ac.in Indian Institute of Technology Hyderabad, India

Motivation

- Visual Question Answering is a multi-modal task that aims to measure high-level visual understanding.
- ◆ Contemporary VQA models are restrictive in the sense that answers are obtained via classification over a limited vocabulary (in the case of open-ended VQA), or via classification over a set of multiple-choice-type answers.
- There can be many correct multi-word answers to a question which makes this classification setting restrictive.

Task Description

◆ We introduce a new task: **ViQAR** (Visual Question Answering and Reasoning), wherein a model must generate the complete answer and a rationale that seeks to justify the generated answer.

◆ The above example also illustrates the kind of visual question for which a single-word answer is insufficient.

Methodology

- ◆ Humans often use a rationale to answer a question, and sometimes vice versa. This suggests a close interplay between answer and rationale. Inspired by this interplay, we propose a model for answer and rationale generation.
- ◆ Our architecture consists of the *Generation Module* and the *Refinement Module*, both comprising of two sequential, stacked LSTMs.
- Simplicity of our approach suggests the tractability of our task.

Qualitative Results

Example output from our proposed model:

Challenging input for which our model fails:

Quantitative Results

 We compare our proposed model and its variants against a basic two-stage LSTM model and a VQA model [1] as baselines [CS = cosine similarity].

Metrics	VQA-Baseline	Baseline	Q+I+C (Ours)	Q+I (Ours)	Q+C (Ours)
Univ Sent Encoder CS	0.419	0.410	0.455	0.454	0.440
Infersent CS	0.370	0.400	0.438	0.442	0.426
Embedding Avg CS	0.838	0.840	0.846	0.853	0.845
Vector Extrema CS	0.474	0.444	0.493	0.483	0.475
Greedy Matching Score	0.662	0.633	0.672	0.661	0.657
METEOR	0.107	0.095	0.116	0.104	0.103
Skipthought CS	0.430	0.359	0.436	0.387	0.385
RougeL	0.259	0.206	0.262	0.232	0.236
CIDEr	0.364	0.158	0.455	0.310	0.298
F-BERTScore	0.877	0.860	0.879	0.867	0.868

• We also perform a human Turing test on the generated answers and rationales, and find that our model generates grammatically correct and consistent answers and rationales.

Ablation Results

 We compare our proposed architecture with variations in number of refinement modules.

Image		
Question	Where are they at?	What are person1, person2, person3, person4, and person5 doing here?
Generation Module	Answer: they are in a library Reason: there are shelves of books behind them	Answer: they are studying a class Reason: they are all sitting in a circle and there is a teacher in front of them
Generation - Refinement Module	Answer: they are in a liquor store Reason: there are shelves of liquor bottles on the shelves	Answer: they are all to attend a funeral Reason: they are all wearing black

Metrics	#Refine Modules			
	0	1	2	
Univ Sent Encoder CS	0.453	0.455	0.430	
Infersent CS	0.434	0.438	0.421	
Embedding Avg CS	0.850	0.846	0.840	
Vector Extrema CS	0.482	0.493	0.462	
Greedy Matching Score	0.659	0.672	0.639	
METEOR	0.101	0.116	0.090	
Skipthought CS	0.384	0.436	0.375	
RougeL	0.234	0.262	0.198	
CIDEr	0.314	0.455	0.197	
F-BertScore	0.868	0.879	0.861	

[1] Peter Anderson et al. "Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering". In: CVPR. 2018.