Zadanje 3.7. Množenie lint a, 6 (n-cyfronych) popun wrbine ich na częśli.

$$T(n) \leq \left(2k-1\right) \cdot T\left(\frac{n}{k}\right) + O(n) \Rightarrow T(n) \leq O\left(n^{\log_k(2k-1)}\right)$$

Zadanie 4.4.

gcd $(a,b) = gcd(\frac{a}{2},b)$ gdy 2|a i $2 \nmid b$. gcd (a,b) = gcd(a-b,b) gdy a > b i $2 \nmid a$, $2 \nmid b$ Gdy lindy sg panyste, to durling je na 2 dopski jedna 2 nich nic byshir myxnyste, etcoly dialary 2 casadami pomyisnymi,

Zadame 4.9 Twiendreme Wilsona:
$$p|(p-1)|+1$$

$$(p-2)! = p \quad 1 \Rightarrow (p-1)! = p \quad p-1 \Rightarrow (p-1)!+1 = p \quad p = p$$

Jesti $x \in \{1,2,\dots,p-1\}$ to islarge x^{-1} mod p , without $p = p$:
$$x = p \quad x^{-1}, \quad x^{2} = p \quad 1, \text{why}(x-1)(x+1) = p \quad 0, \text{ wise} \quad x=1 \quad v \quad x=p-1.$$

$$x = p \quad x \quad x=1 \quad$$

Zadanie 4.10.

$$x^{2} = 1 \pmod{p^{\alpha}}$$

$$(x-1)(x+1) = 0 \pmod{p^{\alpha}}$$

$$p>2, \text{ trigoth nice more duction ductor expansion jeducologian, then } x=1 \lor x=p^{\alpha}-1$$

$$p=2: 2^{\alpha-1} \mid x-1 => 2 \mid x+1, \text{ als } 2^{2} \nmid x+1$$

$$(\alpha > 3)$$

$$\alpha = 1 => x=1$$

$$\alpha = 1 \Rightarrow x=1$$

$$\alpha = 1 \Rightarrow x=1$$

$$\alpha = 1 \Rightarrow x=1$$

$$\alpha = 2^{2} + 1 \Rightarrow x=1 \lor x=3$$

$$\alpha = 1 \implies x = 1$$

 $\alpha = 2 \implies x = 2^{2} - 1 \lor x = 2^{2} + 1 \implies x = 1 \lor x = 3$
 $\alpha = 3 \implies x = 2^{\alpha - 1} \pm 1 \implies x = 2^{\alpha} \pm 1 \implies x = 2^{\alpha - 1} + 1$
 $\Rightarrow x = 1 \lor x = 2^{\alpha} - 1 \lor x = 2^{\alpha - 1} + 1$

Zadanie 4.8. a

Zatoring nie wpwst, ze 2^n-1 jest liaby pierwszy, ale n nie jest liaby pierwszy. Nied $n=a\cdot b$ dla $a,b\in \mathbb{N}$, $a,b\geq 1$. Wtedy:

 $2^{n} - 1 = 2^{ab} - 1 = (2^{a})^{b} - 1 = (2^{a} - 1)(2^{a(b-1)} + 2^{a(b-2)} + \dots + 2^{a \cdot 0})$ Zatem $2 \le 2^{a} - 1 < 2^{n-1}$ jest driehnum $2^{n} - 1$, cryli spreamss. 4

Zadame 4.1

Natery storystuć z algorytum Euklidesa (htsz jest "sryshi"), a następure uykomphuć własność lem (m/n) = $\frac{m \cdot n}{\gcd(m/n)}$ = $\frac{m}{\gcd(m/n)} \cdot n$, aby unilngć wyjsúra poza zakus (np. inta w C).

Zaolanie 4.2.

Lem $(a_1b_1c) = \frac{a \cdot lem(b_1c)}{gcd(a_1 \textbf{gen}(b_1c))}$, rige algoryth z popudniego zadania me jest za bando optymalny, jednah musiny go nyhonystai.