

$$\text{Sistema} \left\{ \begin{array}{ll} x_1 - x_2 - 7x_3 & = & M \\ 4x_1 - x_2 - x_3 & = & 2 \\ x_1 - 7x_2 - x_3 & = & 3 \end{array} \right. \ \text{Sistema triangular} \left\{$$

|         | Multiplicador |   | Coe   | eficientes | Term. Ind. | Transformações |
|---------|---------------|---|-------|------------|------------|----------------|
| 4 (1)   |               | 1 | -1    | -7         | 4,113      |                |
| 42      | Pivo ->       | 4 | -1    | -1         | 2          |                |
| L3      |               | 1 | -7    | -1         | 3          |                |
| L1 (1)  | m21 = 1       | 4 | -1    | -1         | 2          | LF->L2         |
| 1-2     | n = 1         | 1 | -1    | -7         | 4,113      |                |
| 770     | m31 = 1       | 1 | -7    | -1         | 3          |                |
| 42 (3)  |               | 0 | -0,75 | -6,75      | 3,613      | L2=L2-M21-1    |
| 1-3 (3) | Pivo ->       | 0 | -6,75 | -0,75      | 1,5        | L3=L3-m31 L7   |
| Lz (4)  | 1232 = 0,1111 | 0 | -6,75 | -0,75      | 2,5        | L267 L3        |
| Lg [4]  |               |   |       |            | 3,613      |                |
| L3 (4)  |               |   |       |            | 3,3363     | L3=L3-11732-2  |

$$\begin{cases}
-6,759,-0,75z=7517 & \Rightarrow z=\frac{3,3353}{6,6667}=-0,5003 \\
-6,6667z=3,3353
\end{cases}$$

$$y=\frac{2,55+0,3752}{-6,75}=\frac{2,1249}{-6,75}=-0,3149$$

$$\chi=\frac{2-1,5003-0,3149}{4}=\frac{1,1849}{4}=0,2962$$
Solução = [0,2962 -0,3149 -0,5003]<sup>t</sup>

11/11/2021

2.  $\fbox{3 pontos}$  Suponha o mesmo valor M da questão anterior. Resolver o sistema a seguir utilizando o método iterativo de **Jacobi**. Utilizar precisão de 0,001, no máximo 4 iterações e  $X^0 = [000]^t$ . Reorganize o sistema, caso necessário.

Sistema 
$$\begin{cases} -x_1 + 4x_2 - x_3 &= 2 \\ x_1 - x_2 - 7x_3 &= 3 \\ -7x_1 - x_2 + x_3 &= M \end{cases}$$

| S |  |  |  |  |
|---|--|--|--|--|
|   |  |  |  |  |

| k | $x_1^k$ | $x_2^k$ | $x_3^k$ | $\max_{1 \le i \le 3}  x_i^k - x_i^{k-1} $ |
|---|---------|---------|---------|--------------------------------------------|
| 0 | 0       | 0       | 0       |                                            |
| 1 | -0.5876 | 0,5000  | -0,4286 | 0,5(76                                     |
| 2 | -0,7202 | 0,2460  | -0,5839 | 0,2540                                     |
| 3 | -0,7061 | 0,1740  | -0,5666 | 0,0720                                     |
| 4 | -0.6934 | 0.18180 | -0.5543 | 0,0127                                     |

| 0 | 1-7x-4+Z=4,[13 |
|---|----------------|
|   | -x+4y-z=2      |
|   | 1 2            |

|      | 1 1 12                     | 1                     | 1                                  |
|------|----------------------------|-----------------------|------------------------------------|
| (1)  | X1=1(4,113+0+0)            |                       | $z_1 = -\frac{1}{4}(3+0+0)$        |
|      | X1 = -0,9876               |                       | Z=-0,4286                          |
| , ,  | X2 =- 1 (4,113+0,5+0,4216) | 42-1(2-0,5826-0,420)  | $Z_2 = -\frac{1}{7}(3-0,7201+0,5)$ |
| (1)  | ×, = -0/7201               | 42 = 0,246            | 2,50,5839                          |
|      | X3 = = (1)113+0,246+0,584) | 13=1(2-0:7202-95834)  | Z3 = -1(3+0,7202+0,246)            |
| (3)  |                            |                       | Zz - 0,5666                        |
| 141  | ×4=-1(4,113+0,174+0,5666)  | 14=1(2-0,7061-0,5666) | 24=-1 (3+0,7061 4) 741             |
| . 17 |                            | 44= 0,1818            | 24=-0,6543                         |

Solução = [-0,6934 0,1818 -0,5543] Com E= 0,0127

3.  $\boxed{4 \text{ pontos}}$  Seja y=f(x) uma função dada nos pontos a seguir:

Utilize o método de Lagrange com interpolação cúbica (grau 3) para determinar o valor da função no ponto M (o mesmo utilizado nas questões anteriores).

$$L_i(x) = \frac{(x-x_0)(x-x_1)\dots(x-x_{i-1})(x-x_{i+1})\dots(x-x_{n-1})(x-x_n)}{(x_i-x_0)(x_i-x_1)\dots(x_i-x_{i-1})(x_i-x_{i+1})\dots(x_i-x_{n-1})(x_i-x_n)} \text{ para } i = 0,1,2,\dots,n$$

| p       | $(x) = L(x) = y_0 I$ | $L_0(x) + y_1 L_1(x)$ | $)+\cdots+y_nL_n$ | (x) Yn | Mult. Sollago | Caso             | X-Xn   |
|---------|----------------------|-----------------------|-------------------|--------|---------------|------------------|--------|
| x=4,113 | X0=-0,1              | 233346,1709           | 174,4284          | -0,2   | -872,1421     | x - Xo           | 4,213  |
|         | x7 = 0,5             | -101790,1509          | 457,6392          | 0,45   | -1016,9761    | x- x1            | 3,613  |
|         | x2 = 2,41            | 39476,0949            | -6014,6096        | 2,74   | -2157,5658    | x-x2             | 1,703  |
|         | ×3 = 3,89            | -18426,7971           | -63435,8194       | 3/85   | -16476,8362   | x-x3             | 0,223  |
|         | ×4 = 6,25            | 16763,6031            |                   |        | 3,231,6046    | X-X4             | -1,137 |
|         | ×4= 7,00             |                       | 5994,4991         |        | 1272,7172     |                  | -2,997 |
|         | x6 = 8,40            | 41477,9075            |                   |        | 857,0876      | x-xg             | -4,287 |
|         | x= 9,92              | 468112,6346           | 3440,2006         |        | 641,5910-     | x-x <sub>7</sub> | -5,727 |
|         | ×8 = 12,00           | 2840224,7079          | 3261,1061         |        | 465, 8713     | X-×9             | -7,887 |
|         | -                    |                       | 11                |        |               |                  |        |

Posiçus/xn Divisor mult. s/kuso

$$P(4,113) = \frac{174,4284}{233346,1349} + \frac{467,639}{101780,1508} - \frac{6019,6086}{34476,0949} + \frac{63435,8194}{18426,7171} + \frac{14025,1639}{16763,6937} -$$

$$\frac{5854,4441}{22919,1870} + \frac{4449,2846}{41471,8075} - \frac{3440,2066}{166412,6395} + \frac{3261,1061}{2840224,7079} \rightarrow$$