Course Information

Instructors:

Mostafizur Rahman

• E-mail: <u>rahmanmo@umkc.edu</u>

Office: FH 570H

Office hours:

- Available Before & After Class on Mondays & Wednesdays
- By appointments
- Course Prerequisites: E&C-ENGR 226 and E&C-ENGR 227
- <u>Textbook:</u> Logic and Computer Design Fundamentals, by M.
 Mano and C. Kime

Course Information

Evaluations	Point Value
Quizzes	Quiz: 10 points,
In class activities	Classwork: 20 points
Assignments	20 points
2 Mid Term Exam	15+15 = 30 points
Final Project	20 points
Total points	100 points

- Class participation is a must. You need to have hardware/software resources to participate/lead discussions
- Class activities are due within 30minutes of class end time
- No extra credit activities, late submissions without prior notice

Grading Policy

- Cluster grading scheme will be applied. Starting with the highest scores, students will be clustered within 3-5 points margin. A typical clustering is as follows:
- >90 = A

$$87-90 = A-$$

$$83-86 = B+$$

$$78-82 = B$$

$$73-77 = B-$$

$$67-72 = C+$$

$$56 - 61 = C$$

$$51 - 55 = D +$$

$$46 - 50 = D$$

$$41 - 45 = D$$

40 or lower F

Course Objectives

- Understand Computer Architecture and Organizations
 - CPU
 - Memory/Cache
 - Instruction Set Architecture
 - Cache Hierarchy
 - Input & Output
 - CPU Pipelining
- · Learn Verilog and How to use it

Zooming into a Chip

Computer System - Five Classic Components

- Partitioning of the computing engine into components:
 - Central Processing Unit (CPU): Control Unit (instruction decode, sequencing of operations), Datapath (registers, arithmetic and logic unit, buses)
 - **Memory:** Instruction and operand storage.
 - Input/Output (I/O)

Computing System - Levels of Abstraction

Coordination of many levels of abstraction

Logic Design - Brief Review

- Logic circuits
 - Combinational

Sequential

Combinational Logic

- Outputs, "at any time", are determined by the input combination
- When input changed, output changed immediately
 - Note that real circuits are imperfect and have "propagation delay"
- A combinational circuit
 - Performs logic operations that can be specified by a set of Boolean expressions
 - Can be built hierarchically
- Basic combinatorial circuits
 - Multiplexers
 - Demultiplexers
 - Decoders
 - Comparators

Design Hierarchy Example

Function Specification:
To detect odd number of "1" inputs, i.e.
Z=1 when there is an odd number of "1" present in the inputs

How to design a 3-input Odd Function?

Derive Truth Table for Desired Functionality

А	В	С	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$F = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$= \overline{A}(\overline{BC} + \overline{BC}) + \overline{A}(\overline{BC} + \overline{BC})$$

$$= \overline{A}(B \oplus C) + \overline{A}(\overline{B \oplus C})$$

$$= \overline{A} \oplus (B \oplus C)$$

$$= \overline{A} \oplus B \oplus C$$

Design Hierarchy Example

What a decoder does

- A n-to-2ⁿ decoder takes an n-bit input and produces 2ⁿ outputs. The n inputs represent a binary number that determines which of the 2ⁿ outputs is uniquely true.
- A 2-to-4 decoder operates according to the following truth table.
 - The 2-bit input is called S1S0, and the four outputs are Q0-Q3.
 - If the input is the binary number i, then output Qi is uniquely true.

51	50	Q0	Q1	Q2	Q3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

- For instance, if the input S1 S0 = 10 (decimal 2), then output Q2 is true, and Q0, Q1, Q3 are all false.
- This circuit "decodes" a binary number into a "one-of-four" code.

Enable inputs

- Many devices have an additional enable input, which is used to "activate" or "deactivate" the device.
- For a decoder,
 - EN=1 activates the decoder, so it behaves as specified earlier.
 Exactly one of the outputs will be 1.
 - EN=0 "deactivates" the decoder. By convention, that means all of the decoder's outputs are 0.
- We can include this additional input in the decoder's truth table:

EN	S 1	50	Q0	Q1	Q2	Q3
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

Multiplexers

- A 2ⁿ-to-1 multiplexer sends one of 2ⁿ input lines to a single output line.
 - A multiplexer has two sets of *inputs*:
 - 2ⁿ data input lines
 - n select lines, to pick one of the 2ⁿ data inputs
 - The mux output is a single bit, which is one of the 2ⁿ data inputs.
- The simplest example is a 2-to-1 mux:

$$Q = S' D0 + S D1$$

- The select bit S controls which of the data bits D0-D1 is chosen:
 - If S=0, then D0 is the output (Q=D0).
 - If S=1, then D1 is the output (Q=D1).

Truth table abbreviations

Here is a full truth table for this 2-to-1 mux, based on the equation:

$$Q = S' DO + S D1$$

S	D1	DO	Q
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

- Here is another kind of abbreviated truth table.
 - Input variables appear in the output column.
 - This table implies that when S=0, the output Q=D0, and when S=1 the output Q=D1.

S	Q
0	DO
1	D1

A 4-to-1 multiplexer

Here is a block diagram and abbreviated truth table for a 4-to-1 mux.

EN'	S1	50	Q
0	0	0	D0
0	0	1	D1
0	1	0	D2
0	1	1	D3
1	X	X	1

There are two logic blocks: odd function and even function generators. And there is a clock input. When the clock is high, odd function generator displays its output and when the clock is low, even function generator displays its output. Can you picture it?

18

Computer Arithmetic

Adding two bits

- We start with a half adder, which adds two bits and produces a two-bit result: a sum (the right bit) and a carry out (the left bit).
- Here are truth tables, equations, circuit and block symbol.

X	У	С	5
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$0 + 0 = 0$$

 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 10$

$$C = XY$$

$$S = X'Y + XY$$

$$= X \oplus Y$$

Be careful! Now we're using + for both arithmetic addition and the logical OR operation.

Full adder equations

- A full adder circuit takes three bits of input, and produces a two-bit output consisting of a sum and a carry out.
- Using Boolean algebra, we get the equations shown here.
 - XOR operations simplify the equations a bit.

X	У	C_{in}	C_{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = \sum m(1,2,4,7)$$
= X' Y' C_{in} + X' Y C_{in}' + X Y' C_{in}' + X Y C_{in}
= X' (Y' C_{in} + Y C_{in}') + X (Y' C_{in}' + Y C_{in})
= X' (Y \oplus C_{in}) + X (Y \oplus C_{in})'
= X \oplus Y \oplus C_{in}

$$C_{out} = \sum m(3,5,6,7)$$
= X' Y C_{in} + X Y' C_{in} + X Y C_{in}' + X Y C_{in}
= (X' Y + X Y') C_{in} + XY(C_{in}' + C_{in})
= (X \oplus Y) C_{in} + XY

Full adder circuit

These things are called half adders and full adders because you can build a full adder by putting together two half adders!

$$S = X \oplus Y \oplus C_{in}$$

 $C_{out} = (X \oplus Y) C_{in} + XY$

A 4-bit adder

- Four full adders together make a 4-bit adder.
- There are nine total inputs:
 - Two 4-bit numbers, A3 A2 A1 A0 and B3 B2 B1 B0
 - An initial carry in, CI
- The five outputs are:
 - A 4-bit sum, S3 S2 S1 S0
 - A carry out, CO
- Imagine designing a nine-input adder without this hierarchical structure—you'd have a 512-row truth table with five outputs!

An example of 4-bit addition

Let's try our initial example: A=1011 (eleven), B=1110 (fourteen).

- 1. Fill in all the inputs, including CI=0
- 2. The circuit produces C1 and S0 (1 + 0 + 0 = 01)
- 3. Use C1 to find C2 and S1 (1 + 1 + 0 = 10)
- 4. Use C2 to compute C3 and S2 (0 + 1 + 1 = 10)
- 5. Use C3 to compute CO and S3 (1 + 1 + 1 = 11)

The final answer is 11001 (twenty-five).

Question

When you add two 4-bit numbers the carry in is always 0, so why does the 4-bit adder have a CI input?

Hierarchical adder design

Here is an 8-bit adder, for example.

Negative Numbers and Subtraction

- The adders we designed can add only non-negative numbers
 - If we can represent negative numbers, then subtraction is "just" the ability to add two numbers (one of which may be negative).
- We'll look at three different ways of representing signed numbers.
- How can we decide which representation is better?
 - The best one should result in the simplest and fastest operations.
- We're mostly concerned with two particular operations:
 - Negating a signed number, or converting x into -x.
 - Adding two signed numbers, or computing x + y.
 - So, we will compare the representation on how fast (and how easily) these operations can be done on them

Signed magnitude representation

- Humans use a signed-magnitude system: we add + or in front of a magnitude to indicate the sign.
- We could do this in binary as well, by adding an extra sign bit to the front of our numbers. By convention:
 - A 0 sign bit represents a positive number.
 - A 1 sign bit represents a negative number.
- Examples:

```
1101_2 = 13_{10} (a 4-bit unsigned number)

0.1101 = +13_{10} (a positive number in 5-bit signed magnitude)

1.1101 = -13_{10} (a negative number in 5-bit signed magnitude)
```

```
0100_2 = 4_{10} (a 4-bit unsigned number)

0 0100 = +4_{10} (a positive number in 5-bit signed magnitude)

1 0100 = -4_{10} (a negative number in 5-bit signed magnitude)
```

One's complement representation

- A different approach, one's complement, negates numbers by complementing each bit of the number.
- We keep the sign bits: 0 for positive numbers, and 1 for negative. The sign bit is complemented along with the rest of the bits.
- Examples:

```
1101_2 = 13_{10} (a 4-bit unsigned number)

0 \ 1101 = +13_{10} (a positive number in 5-bit one's complement)

1 \ 0010 = -13_{10} (a negative number in 5-bit one's complement)

0100_2 = 4_{10} (a 4-bit unsigned number)

0 \ 0100 = +4_{10} (a positive number in 5-bit one's complement)

1 \ 1011 = -4_{10} (a negative number in 5-bit one's complement)
```

Two's complement

- Our final idea is two's complement. To negate a number, complement each bit (just as for ones' complement) and then add 1.
- Examples:

```
1101_2 = 13_{10} (a 4-bit unsigned number)

0 \ 1101 = +13_{10} (a positive number in 5-bit two's complement)

1 \ 0010 = -13_{10} (a negative number in 5-bit ones' complement)

1 \ 0011 = -13_{10} (a negative number in 5-bit two's complement)

0 \ 100_2 = 4_{10} (a 4-bit unsigned number)

0 \ 1000 = +4_{10} (a positive number in 5-bit two's complement)

1 \ 1011 = -4_{10} (a negative number in 5-bit ones' complement)

1 \ 1100 = -4_{10} (a negative number in 5-bit two's complement)
```

Ranges of the signed number systems

How many negative and positive numbers can be represented in each of the different systems on the previous page?

	Unsigned		One's complement	Two's complement
Smallest			,	1000 (-8)
Largest	1111 (15)	0111 (+7)	0111 (+7)	0111 (+7)

In general, with n-bit numbers including the sign, the ranges are:

	Unsigned	Signed Magnitude	One's complement	Two's complement
Smallest	0	-(2 ⁿ⁻¹ -1)	-(2 ⁿ⁻¹ -1)	-2 ⁿ⁻¹
Largest	2 ⁿ -1	+(2 ⁿ⁻¹ -1)	+(2 ⁿ⁻¹ -1)	+(2 ⁿ⁻¹ -1)

Making a subtraction circuit

- We could build a subtraction circuit directly, similar to the way we made unsigned adders.
- However, by using two's complement we can convert any subtraction problem into an addition problem. Algebraically,

$$A - B = A + (-B)$$

- So to subtract B from A, we can instead add the negation of B to A.
- This way we can re-use the unsigned adder hardware.

A two's complement subtraction circuit

- To find A B with an adder, we'll need to:
 - Complement each bit of B.
 - Set the adder's carry in to 1.
- The net result is A + B' + 1, where B' + 1 is the two's complement negation of B.

Remember that A3, B3 and S3 here are actually sign bits.

Small differences

- The only differences between the adder and subtractor circuits are:
 - The subtractor has to negate B3 B2 B1 B0.
 - The subtractor sets the initial carry in to 1, instead of 0.

 It's not too hard to make one circuit that does both addition and subtraction.

An adder-subtractor circuit

XOR gates let us selectively complement the B input.

$$X \oplus 0 = X$$

$$X \oplus 1 = X'$$

- When Sub = 0, the XOR gates output B3 B2 B1 B0 and the carry in is 0.
 The adder output will be A + B + 0, or just A + B.
- When Sub = 1, the XOR gates output B3' B2' B1' B0' and the carry in is 1. Thus, the adder output will be a two's complement subtraction, A - B.

Signed overflow

- With two's complement and a 4-bit adder, for example, the largest representable decimal number is +7, and the smallest is -8.
- What if you try to compute 4 + 5, or (-4) + (-5)?

- We cannot just include the carry out to produce a five-digit result, as for unsigned addition. If we did, (-4) + (-5) would result in +23!
- Also, unlike the case with unsigned numbers, the carry out cannot be used to detect overflow.
 - In the example on the left, the carry out is 0 but there is overflow.
 - Conversely, there are situations where the carry out is 1 but there is no overflow.

Detecting signed overflow

The easiest way to detect signed overflow is to look at all the sign bits.

- Overflow occurs only in the two situations above:
 - If you add two positive numbers and get a negative result.
 - If you add two negative numbers and get a positive result.
- Overflow cannot occur if you add a positive number to a negative number. Do you see why?

Sign extension

- In everyday life, decimal numbers are assumed to have an infinite number of 0s in front of them. This helps in "lining up" numbers.
- To subtract 231 and 3, for instance, you can imagine:

- You need to be careful in extending signed binary numbers, because the leftmost bit is the sign and not part of the magnitude.
- If you just add 0s in front, you might accidentally change a negative number into a positive one!
- For example, going from 4-bit to 8-bit numbers:
 - 0101 (+5) should become 0000 0101 (+5).
 - But 1100 (-4) should become 1111 1100 (-4).
- The proper way to extend a signed binary number is to replicate the sign bit, so the sign is preserved.