# **Evolutionary Computing**

Chapter 8

**Parameter Control** 

### **Parameter Control**

- Motivation
- Parameter setting
  - Tuning
  - Control
- Examples
- Extended / refined taxonomy
- Some figures about related work

# Motivation (1/2)

An EA has many strategy parameters, e.g.

- mutation operator and mutation rate
- crossover operator and crossover rate
- selection mechanism and selective pressure (e.g. tournament size)
- population size

Good parameter values facilitate good performance

Q1 How to find good parameter values?

# Motivation (2/2)

EA parameters are rigid (values constant during a run)

**BUT** 

an EA is a dynamic, adaptive process

**THUS** 

optimal parameter values may vary during a run

Q2: How to vary parameter values?

### Parameter Setting



### Varying mutation step size

#### Task to solve:

- min  $f(x_1,...,x_n)$
- $L_i \le x_i \le U_i$  for i = 1,...,n bounds
- $g_i(x) \neq 0$  for i = 1,...,q inequality constraints
- $h_i(x) = 0$  for i = q+1,...,m equality constraints

### Algorithm:

- EA with real-valued representation  $(x_1,...,x_n)$
- arithmetic averaging crossover
- Gaussian mutation:  $x'_i = x_i + N(0, \sigma)$
- standard deviation  $\sigma$  is called mutation step size

Replace the constant  $\sigma$  by a function  $\sigma$  (t)

$$\sigma(t) = 1 - 0.9 \times \frac{t}{T}$$

0 < t <= T is the current generation number

- changes in  $\sigma$  are independent from the search progress
- strong user control of  $\sigma$  by the above formula
- σ is fully predictable
- a given  $\sigma$  acts on all individuals of the population

Replace the constant  $\sigma$  by a function  $\sigma(t)$  updated after every n steps by the 1/5 success rule, where  $p_s$  is the % of successful mutations:

$$\sigma(t) = \begin{cases} \sigma(t-n)/c & \text{if } p_s > 0.2\\ \sigma(t-n) \cdot c & \text{if } p_s < 0.2\\ \sigma(t-n) & \text{otherwise} \end{cases}$$

- changes in  $\sigma$  are based on feedback from the search progress
- some user control of  $\sigma$  by the above formula
- σ is not predictable
- a given σ acts on all individuals of the population

- Assign a personal σ to each individual
- Incorporate this  $\sigma$  into the chromosome:  $(x_1, ..., x_n, \sigma)$
- Apply variation operators to  $x_i$ 's and  $\sigma$

$$\sigma' = \sigma \times e^{N(0,\sigma)}$$

$$x_i' = x_i + N(0, \sigma')$$

- changes in **o** are results of natural selection
- (almost) no user control of σ
- $\sigma$  is not predictable
- a given σ acts on one individual

- Assign a personal  $\sigma$  to each variable in each individual
- Incorporate  $\sigma'$ s into the chromosomes:  $(x_1, ..., x_n, \sigma_1, ..., \sigma_n)$
- Apply variation operators to  $x_i$ 's and  $\sigma_i$ 's

$$\sigma_i' = \sigma_i \times e^{N(0,\tau)}$$

$$x_i' = x_i + N(0,\sigma_i')$$

- changes in  $\sigma_i$  are results of natural selection
- (almost) no user control of σ<sub>i</sub>
- $\sigma_i$  is not predictable
- a given  $\sigma_i$  acts on one gene of one individual

### Varying penalties

#### **Constraints**

• 
$$g_i(x) \neq 0$$
 for  $i = 1,...,q$  inequality constraints

• 
$$h_i(x) = 0$$
 for  $i = q+1,...,m$  equality constraints

are handled by penalties:

$$eval(x) = f(x) + W \times penalty(x)$$

where 
$$penalty(x) = \sum_{j=1}^{m} \begin{cases} 1 & for \ violated \ constraint \\ 0 & for \ satisfied \ constraint \end{cases}$$

## Varying penalties, option 1

Replace the constant W by a function W(t)

$$W(t) = (C \times t)^{\alpha}$$

0 < t <= T is the current generation number

- changes in W independently from the search progress
- strong user control of W by the above formula
- W is fully predictable
- a given W acts on all individuals of the population

### Varying penalties, option 2

Replace the constant W by W(t) updated in each generation

$$W(t+1) = \begin{cases} \beta \times W(t) & \text{if last k champions all feasible} \\ \gamma \times W(t) & \text{if last k champions all infeasible} \\ W(t) & \text{otherwise} \end{cases}$$

 $\beta$  < 1,  $\gamma$  > 1,  $\beta \times \gamma \neq$  1, champion: best of its generation

- changes in W are based on feedback from the search progress
- some user control of W by the above formula
- W is not predictable
- a given W acts on all individuals of the population

## Varying penalties, option 3

Assign a personal W to each individual

Incorporate this W into the chromosome:  $(x_1, ..., x_n, W)$ 

Apply variation operators to x<sub>i</sub>'s and W

#### Alert:

$$eval((x, W)) = f(x) + W \times penalty(x)$$

while for mutation step sizes we had

$$eval((x, \sigma)) = f(x)$$

this option is thus sensitive "cheating" & makes no sense

# Lessons learned (1/2)

Various forms of parameter control can be distinguished by:

- primary features:
  - what component of the EA is changed
  - how the change is made
- secondary features:
  - evidence/data backing up changes
  - level/scope of change

### What component is controlled

Practically any EA component can be parameterized and thus controlled on-the-fly:

- representation
- evaluation function
- variation operators
- selection operator (parent or mating selection)
- replacement operator (survival or environmental selection)
- population (size, topology)

### How are parameters controlled

Three major types of parameter control:

 deterministic: some rule modifies strategy parameter without feedback from the search (based on some counter)

adaptive: feedback rule based on some measure monitoring search progress

 self-adaptative: parameter values evolve along with solutions; encoded onto chromosomes they undergo variation and selection

# Global taxonomy – now well-founded ©



# Evidence: Informing the change (1/2)

The parameter changes may be based on:

- time or nr. of evaluations (deterministic control)
- population statistics (adaptive control)
  - progress made
  - population diversity
  - gene distribution, etc.
- relative fitness of individuals created with given values (adaptive or self-adaptive control)

# Evidence: Informing the change (2/2)

- Absolute evidence: predefined event triggers change, e.g. increase  $p_m$  by 10% if population diversity falls under threshold x
- Direction and magnitude of change is fixed
- Relative evidence: compare values through solutions created with them, e.g. increase p<sub>m</sub> by x% if top x% offspring came by high mutation rates, decrease otherwise
- Direction and magnitude of change is not fixed

# Evidence: Refined taxonomy

Combinations of types and evidences

• Possible: +

· Impossible: -

|          | Deterministic | Adaptive | Self-adaptive |  |
|----------|---------------|----------|---------------|--|
| Absolute | +             | +        | -             |  |
| Relative | elative -     |          | +             |  |

# Scope/level

The parameter may take effect on different levels:

- environment (fitness function)
- population
- individual
- sub-individual

Note: given component (parameter) determines possibilities

Thus: scope/level is a derived or secondary feature in the classification scheme

# Lessons learned (2/2)

### Various forms of parameter control can be distinguished by:

|          | σ(t) = 1-0.9*t/T | σ' = σ/c,<br>if r > ½           | $(x_1,, x_n, \sigma)$ | $(x_1,, x_n, \sigma_1,, \sigma_n)$ | $W(t) = (C^*t)^{\alpha}$ | W'=β*W, if $b_i$ ∈F             | (x <sub>1</sub> ,, x <sub>n</sub> , W) |
|----------|------------------|---------------------------------|-----------------------|------------------------------------|--------------------------|---------------------------------|----------------------------------------|
| What     | Step size        | Step size                       | Step size             | Step size                          | Penalty<br>weight        | Penalty<br>weight               | Penalty<br>weight                      |
| How      | Deterministic    | Adaptive                        | Self-<br>adaptive     | Self-adaptive                      | Deterministic            | Adaptive                        | Self-adaptive                          |
| Evidence | Time             | Successful<br>mutations<br>rate | (Fitness)             | (Fitness)                          | Time                     | Constraint satisfaction history | (Fitness)                              |
| Scope    | Population       | Population                      | Individual            | Gene                               | Population               | Population                      | Individual                             |

# **Evaluation/Summary**

 Parameter control offers the possibility to use appropriate values in various stages of the search

- Adaptive and self-adaptive parameter control
  - offer users "liberation" from parameter tuning
  - delegate parameter setting task to the evolutionary process
  - the latter implies a double task for an EA: problem solving + self-calibrating (overhead)

### Publications per category overview



G. Karafotias, M. Hoogendoorn, and A.E. Eiben, <u>Parameter Control in Evolutionary Algorithms:</u> Trends and Challenges, *IEEE Transactions on Evolutionary Computation*, 19(2):167-187, 2015