Congratulations! You passed!

Grade received 90% Latest Submission Grade 90% To pass 80% or higher

Go to next item

1. What is the "cache" used for in our implementation of forward propagation and backward propagation?

1/1 point

✓ Correct

Correct, the "cache" records values from the forward propagation units and are used in backward propagation units because it is needed to compute the chain rule derivatives.

1/1 point

⊘ Correct

Great, you got all the right answers.

3. Considering the intermediate results below, which layers of a deep neural network are they likely to belong to?

1/1 point

∠ Z Expand

⊘ Correct

Correct. The deep layers of a neural network are typically computing more complex features such as the ones shown in the figure.

4. We can not use vectorization to calculate $da^{[l]}$ in backpropagation, we must use a for loop over all the examples. True/False?

✓ Correct

Correct. We can use vectorization in backpropagation to calculate $dA^{[l]}$ for each layer. This computation is done over all the training examples.

5. Suppose W[i] is the array with the weights of the i-th layer, b[i] is the vector of biases of the i-th layer, and g is the activation function used in all layers. Which of the following calculates the forward propagation for the neural network with L layers.

0 / 1 point

∠⁷ Expand

(X) Incorrect

No. Remember that the range omits the last number thus the range from 1 to L calculates only the A up to the L-1 layer.

6. Consider the following neural network:

1/1 point

What are all the values of $n^{[0]}, n^{[1]}, n^{[2]}, n^{[3]}$ and $n^{[4]}$?

✓ Expand

- igotimes Correct Yes. The $n^{[l]}$ are the number of units in each layer, notice that $n^{[0]}=n_x.$
- **7.** If L is the number of layers of a neural network then $dZ^{[L]}=A^{[L]}-Y$. True/False? 1/1 point

- ∠⁷ Expand
- **⊘** Correct
- 8. For any mathematical function you can compute with an L-layered deep neural network with N hidden units there is a shallow neural network that requires only $\log N$ units, but it is very difficult to train.
- 1/1 point

∠ Z Expand

⊘ Correct

Correct. On the contrary, some mathematical functions can be computed using an L-layered neural network and a given number of hidden units; but using a shallow neural network the number of necessary hidden units grows exponentially.

1/1 point

9. Consider the following 2 hidden layers neural network:

Which of the following statements is true? (Check all that apply).

⊘ Correct

Great, you got all the right answers.

10. Whereas the previous question used a specific network, in the general case what is the dimension of $W^{[l]}$, the weight matrix associated with layer l?

1/1 point

⊘ Correct

True