Systèmes Multivariables Notes de cours ^a

2020-2021

a. https://github.com/a-mhamdi/isetbz/

Abdelbacet Mhamdi

Dr.-Ing. en GE – Technologue en GE

Dépt. GE - Institut Supérieur des Études Technologiques de Bizerte

À propos

Dans ce cours, nous traiterons essentiellement les points suivants :

- ★ Caractéristiques d'un AOP;
- ★ Types de polarisation d'un AOP;
- ★ Fonctionnement sans ou avec une boucle de rétroaction;
- ★ Montages de base : amplification, inversion, addition, soustraction, dérivation, intégration, etc.;
- ★ Multivibrateur astable;
- ★ Filtrage actif.

Table des matières

Table des matières

1	Résolution d'une équation différentielle linéaire		
2	Représentation d'état2.1 Formes canoniques2.2 Passage d'une \mathcal{RE} vers matrice \mathcal{FT}		
3	Commande par retour d'état	•	
4	Observateur de Luenberger	,	

1 Résolution d'une équation différentielle linéaire

Une équation différentielle linéaire est souvent mise sous la forme suivante :

$$\dot{X}(t) = \mathcal{F}(t, X), \tag{1}$$

où t n'est pas necessairement un paramètre temporel. La derivée de X par rapport à t est designée par \dot{X} . Les conditions initiales sont données par le biais du vecteur $X(t_0) = X_0$.

Par la suite, on considère un système linéaire de premier ordre suivant :

$$\tau \dot{y}(t) + y(t) = Ku(t) \tag{2}$$

La solution générale de l'équation précedente est la superosition de deux solutions. Une due au régime libre (i.e., sous l'effet de la condition initiale). L'autre est le résultat du régime forcé.

Régime libre

La sortie y_h dans ce cas agit sous l'effet de la condition initiale seule.

$$\tau \dot{y_h}(t) + y_h(t) = 0 \tag{3}$$

Après intégration de l'Eq. (3), on obtient :

$$\ln(|y_h(t)|) = -\frac{t}{\tau} + ci, \tag{4}$$

où In dénote le logarithme naturel. Soit encore, après application de la fonction exp aux deux membre de l'Eq. (4):

$$y_h(t) = Cle^{-\frac{t}{\tau}}.$$
 (5)

ci and Cl sont deux constantes et $Cl=\mathrm{e}^{ci}$. On se donne la condition initiale $y(t=t_0)=y_0$, la constante Cl est égale à $y_0\mathrm{e}^{\frac{t_0}{\tau}}$. On en déduit alors l'expression de la solution homogène par l'expression de l'Eq. (6).

$$y_h(t) = y_0 e^{-\frac{t-t_0}{\tau}}$$
 (6)

Régime forcé

On considère de nouveau Eq. (2). Par application de la méthode de variation de constante, on obtient :

$$y_p(t) = A(t)e^{-\frac{t}{\tau}}$$
 (7)

Après dérivation de $y_p(t)$ par rapport à t, on trouve :

$$\dot{y}_p(t) = \dot{C}I(t)e^{-\frac{t}{\tau}} + CI(t)\frac{de^{-\frac{t}{\tau}}}{dt}$$
(8)

Après developpement, $\dot{y}_p(t)$ devient come suit :

$$\dot{y}_p(t) = \dot{C}I(t)e^{-\frac{t}{\tau}} - \frac{1}{\tau}CI(t)e^{-\frac{t}{\tau}}$$
(9)

On remplace $y_p(t)$ de l'éq. (2) par son terme équiavlent de l'éq. (9) :

$$\tau \left(\dot{C}I(t) - \frac{1}{\tau}CI(t) \right) e^{-\frac{t}{\tau}} + CI(t)e^{-\frac{t}{\tau}} = Ku(t)$$
 (10)

A. Mhamdi

Soit encore, après simplification:

$$\tau \dot{C}I(t)e^{-\frac{t}{\tau}} = Ku(t)$$
 (11)

On déduit l'expression de $\dot{C}I(t)$:

$$\dot{C}I(t) = \frac{K}{\tau} e^{\frac{t}{\tau}} u(t) \tag{12}$$

Après intégration sur l'intervalle $[t_0, t]$,

$$CI(t) = \int_{t_0}^{t} \frac{K}{\tau} e^{\frac{\varsigma}{\tau}} u(\varsigma) d\varsigma \tag{13}$$

La mise à jour de l'eq. (13) dans y_p donne :

$$y_p(t) = \int_{t_0}^t \frac{K}{\tau} e^{-\frac{t-\zeta}{\tau}} u(\zeta) d\zeta$$
 (14)

Il en résulte que la solution la plus générale est $y = y_p + y_h$:

$$y(t) = y_0 e^{-\frac{t-t_0}{\tau}} + \int_{t_0}^t \frac{K}{\tau} e^{-\frac{t-\zeta}{\tau}} u(\zeta) d\zeta$$
 (15)

Généralisation

On considère désormais un système linéaire d'ordre *n* supérieur à 1. L'équation représentative du système peut s'écrire de la façon suivante :

$$\sum_{i=0}^{n} a_i y^{(i)}(t) = \sum_{i=0}^{m} b_i u^{(j)}(t), \qquad m \le n.$$
(16)

Soit $a_n = 1$. Eq. (16) s'actualise comme suit :

$$y^{(n)}(t) = -\sum_{i=0}^{n-1} a_i y^{(i)}(t) + \sum_{j=0}^{m} b_j u^{(j)}(t)$$
(17)

Soit le vecteur X(t) qui regroupe les variables d'état du système. C'est donc un vecteur à n élements. Il présente la capacité mémoire minimale que le système peut sauvegarder afin de pouvoir déterminer son évolution ultérieure. Nous rappelons qu'on peut transformer l'éq. (17) sous la forme matricielle suivante :

$$\begin{cases} \dot{X}(t) &= AX(t) + Bu(t) \\ y(t) &= CX(t) + Du(t) \end{cases}$$
 (18)

avec

$$(\mathsf{A},\,\mathsf{B},\,\mathsf{C},\,\mathsf{D})\in \mathbb{M}_{(n,\,n)}(\mathbb{C})\mathrm{x}\mathbb{M}_{(n,\,1)}(\mathbb{C})\mathrm{x}\mathbb{M}_{(1,\,n)}(\mathbb{C})\mathrm{x}\mathbb{M}_{(1,\,1)}(\mathbb{C})$$

A est la matrice d'état.

B est la matrice d'entrée:

C est la matrice de sortie;

D caractérise le transfert direct entrée-sortie. Elle existe ssi m = n.

Un schéma explicatif des interactions mutuelles entre ces grandeurs est donné dans [PM82].

Étant donné la solution de l'éq. (15), le vecteur d'état X(t) peut être déduit par la relation suivante :

$$X(t) = e^{A(t-t_0)}X_0 + \int_{t_0}^t e^{A(t-\zeta)}Bu(\zeta)d\zeta$$
(19)

Représentation d'état 2

Nous considérons, ci-après, le scénario d'un système linéaire mono-entrée, mono-sortie (sauf indication). Un système pareil est décrit par l'équation différentielle suivante, avec $m \le n$:

$$\sum_{i=0}^{n} a_{i} \frac{d^{i} y(t)}{dt^{i}} = \sum_{j=0}^{m} b_{j} \frac{d^{j} u(t)}{dt^{j}}.$$
 (20)

En appliquant la transformée de Laplace, on trouve :

$$\frac{Y(s)}{U(s)} = \frac{\sum_{j=0}^{m} b_{j} s^{j}}{\sum_{i=0}^{n} a_{i} s^{i}}.$$
 (21)

Formes canoniques

Forme Campagne

$$\frac{Y(s)}{U(s)} = \frac{\sum_{j=0}^{m} b_{j}s^{j}}{\sum_{i=0}^{n} a_{i}s^{i}}$$
(22)

$$\frac{Y(s)}{U(s)} = \frac{\sum_{j=0}^{m} b_{j} s^{j}}{\sum_{i=0}^{n} a_{i} s^{i}}$$

$$= \frac{\sum_{j=0}^{m} b_{j} (\frac{1}{s})^{n-j}}{\sum_{i=0}^{n} a_{i} (\frac{1}{s})^{n-i}},$$
(22)

Soit $a_n = 1$. Nous multiplions les deux cotés de l'équation précédente par la quantité $\frac{1}{s^n}$ afin d'éviter toute forme derivée dans la réalisation du schéma bloc du système. Le résultat est donné ainsi par Eq. (24).

$$\frac{Y(s)}{U(s)} = \frac{\sum_{j=0}^{m} b_{j}(\frac{1}{s})^{n-j}}{1 + \sum_{i=0}^{n-1} a_{i}(\frac{1}{s})^{n-i}}$$
(24)

Soit encore:

$$Y(s) + \sum_{i=0}^{n-1} a_i (\frac{1}{s})^{n-i} Y(s) = \sum_{j=0}^{m} b_j (\frac{1}{s})^{n-j} U(s)$$
 (25)

La sortie Y(s) est accessible à travers Eq. (26).

$$Y(s) = \sum_{i=0}^{m} b_{j} \left(\frac{1}{s}\right)^{n-j} U(s) - \sum_{i=0}^{n-1} a_{i} \left(\frac{1}{s}\right)^{n-i} Y(s)$$
 (26)

$$= \sum_{j=0}^{m} b_{j} \left(\frac{1}{s}\right)^{n-j} \left[U(s) - \frac{\sum_{i=0}^{n-1} a_{i}\left(\frac{1}{s}\right)^{n-i}}{\sum_{j=0}^{m} b_{j}\left(\frac{1}{s}\right)^{n-j}} Y(s) \right]$$

$$W(s)$$
(27)

Soit la nouvelle variable W(s) telle que :

$$W(s) = U(s) - \frac{\sum_{i=0}^{n-1} a_i (\frac{1}{s})^{n-i}}{\sum_{j=0}^{m} b_j (\frac{1}{s})^{n-j}} Y(s)$$

$$= U(s) - \sum_{i=0}^{n-1} a_i (\frac{1}{s})^{n-i} \frac{Y(s)}{\sum_{j=0}^{m} b_j (\frac{1}{s})^{n-j}}$$

$$= U(s) - \sum_{i=0}^{n-1} a_i (\frac{1}{s})^{n-i} W(s)$$

$$= U(s) - \sum_{i=0}^{n-1} a_i (\frac{1}{s})^{n-i} W(s)$$
(28)

La sortie Y(s) est finalement donnée par Eq. (30).

$$Y(s) = \sum_{j=0}^{m} b_j \underbrace{\left(\frac{1}{s}\right)^{n-j} W(s)}_{X_k(s)}$$
(29)

$$= \sum_{k=0}^{m} b_k x_k(s) \tag{30}$$

(32)

Les matrices d'état A_c , d'entrée B_c et de sortie C_c sont :

$$A_{c} = \begin{pmatrix} 0 & 1 & 0 & \cdots & \cdots & 0 \\ 0 & \ddots & 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 0 & 1 \\ -a_{0} & -a_{1} & \cdots & \cdots & -a_{n-2} & -a_{n-1} \end{pmatrix}, \qquad B_{c} = \begin{pmatrix} 0 \\ \vdots \\ \vdots \\ 0 \\ 1 \end{pmatrix}, \tag{31}$$

$$C_c = (b_0 \cdots b_m \quad 0 \cdots 0). \tag{33}$$

2.2 Passage d'une RE vers matrice FT

Soit un système décrit dans l'espace d'état par Eq. (34).

$$\begin{cases} \dot{X}(t) &= AX(t) + Bu(t) \\ y(t) &= CX(t) + Du(t) \end{cases}$$
(34)

La matrice \mathcal{FT} est indiquée par Eq. (35), où Y(s) et U(s) dénotent respectivement les images des signaux y(t) et u(t) par application de la transformée de Laplace :

$$\frac{Y(s)}{U(s)} = C(sI_n - A)^{-1}B + D, (35)$$

La matrice \mathcal{FT} est unique. Elle a autant de lignes que nombre de sorties. Elle a autant de colonnes que nombre d'entrées.

Exercice

On considère la représentation suivante :

$$\begin{cases} \dot{X}(t) = AX(t) + Bu(t), \\ y(t) = CX(t) + Du(t), \end{cases}$$
(36)

avec:

$$A = \begin{pmatrix} 2 & 1 \\ -4 & 0.35 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 1 \\ 0 & 3.2 \\ 4 & 0.5 \end{pmatrix}, \qquad D = \begin{pmatrix} 1 & 0 \\ 0.15 & 1 \\ 2 & 0.25 \end{pmatrix}.$$

Calculer la matrice \mathcal{FT} .

Soit:

$$B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

$$C = \begin{pmatrix} 1 & 1 \\ 0 & 3.2 \\ 4 & 0.5 \end{pmatrix} \qquad c_3$$

$$b_1 \longrightarrow b_2$$

La dimension de la matrice D est (3, 2), Le système décrit par Eq. (36) a 3 sorties et 2 entrées.

$$Soit u(t) = \begin{pmatrix} u_1(t) \\ u_2(t) \end{pmatrix} et y(t) = \begin{pmatrix} y_1(t) \\ y_2(t) \\ y_3(t) \end{pmatrix}.$$

$$\begin{pmatrix} Y_1(s) \\ Y_2(s) \\ Y_3(s) \end{pmatrix} = \begin{pmatrix} \frac{Y_1(s)}{U_1(s)} & \frac{Y_1(s)}{U_2(s)} \\ \frac{Y_2(s)}{U_1(s)} & \frac{Y_2(s)}{U_2(s)} \\ \frac{Y_3(s)}{U_1(s)} & \frac{Y_3(s)}{U_2(s)} \end{pmatrix}$$

$$= \begin{pmatrix} c_1(sl_2 - A)^{-1}b_1 + D(1, 1) & c_1(sl_2 - A)^{-1}b_2 + D(1, 2) \\ c_2(sl_2 - A)^{-1}b_1 + D(2, 1) & c_2(sl_2 - A)^{-1}b_2 + D(2, 2) \\ c_3(sl_2 - A)^{-1}b_1 + D(3, 1) & c_3(sl_2 - A)^{-1}b_2 + D(3, 3) \end{pmatrix} \begin{pmatrix} U_1(s) \\ U_2(s) \end{pmatrix}$$

$$= Matrix Transfer Function : M$$

3 Commande par retour d'état

4 Observateur de Luenberger

Références 7

Références

[PM82] R. V. PATEL et N. Munro. *Multivariable system theory and design*. Oxford, Eng. New York: Pergamon Press, 1982 (cf. p. 2).