МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учреждение образования «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет	информационных технологий
Кафедра	программной инженерии
Специальность	6-05-0612-01 Программная инженерия

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К КУРСОВОМУ ПРОЕКТУ НА ТЕМУ:

«Разработка компилятора IPP-2024»

Выполнил студент Иовчик Павел Петрович (Ф.И.О.)

Руководитель проекта Волчек Дарья Ивановна

Заведующий кафедрой К.Т.н., доц. Смелов В.В.

Консультант Волчек Дарья Ивановна

Нормоконтролер Волчек Дарья Ивановна

Курсовой проект защищен с оценкой

Содержание

Содержание	2
1 Спецификация языка программирования	5
1.1 Характеристика языка программирования	
1.2 Определение алфавита языка программирования	5
1.3 Применяемые сепараторы	5
1.4 Применяемые кодировки	
1.5 Типы данных	
1.6 Преобразование типов данных	7
1.7 Идентификаторы	7
1.8 Литералы	
1.9 Объявление данных	8
1.10 Инициализация данных	9
1.11 Инструкции языка	9
1.12 Операции языка	
1.13 Выражения и их вычисление	11
1.14 Конструкции языка	
1.15 Область видимости идентификатора	12
1.16 Семантические проверки	13
1.17 Распределение оперативной памяти на этапе выполнения	13
1.18 Стандартная библиотека и ее состав	14
1.19 Ввод и вывод данных	14
1.20 Точка входа	14
1.21 Препроцессор	14
1.22 Соглашение о вызовах	15
1.23 Объектный код	15
1.24 Классификация сообщений транслятора	15
1.25 Контрольный пример	
2 Структура транслятора	16
2.1 Компоненты транслятора их назначение и принципы взаимодействия	16
2.2 Перечень входных параметров транслятора	
2.3 Протоколы, формируемые транслятором	
3. Разработка лексического анализатора	19
3.1 Структура лексического анализатора	19
3.2 Контроль входных символов	19
3.3 Удаление избыточных символов	20
3.4 Перечень ключевых слов	
3.5 Основные структуры данных	22
3.6 Структура и перечень сообщений лексического анализатора	22
3.7 Принцип обработки ошибок	23
3.8 Параметры лексического анализатора	
3.9 Алгоритм лексического анализатора	
3.10 Контрольный пример	24
4 Разработка синтаксического анализатора	25

4.1 Структура синтаксического анализатора	25
4.2 Контекстно-свободная грамматика, описывающая синтаксис языка	
4.3 Построение конечного автомата магазинного типа	27
4.4 Основные структуры данных	28
4.5 Описание алгоритма синтаксического разбора	28
4.6. Структура и перечень сообщений синтаксического анализатора	
4.7. Параметры синтаксического анализатора и режимы его работы	30
4.8. Принцип обработки ошибок	30
4.9 Контрольный пример	
5 Разработка семантического анализатора	31
5.1 Структура семантического анализатора	31
5.2 Функции семантического анализатора	
5.3 Структура и перечень сообщений семантического анализатора	32
5.4 Принцип обработки ошибок	34
5.5 Контрольный пример	
6 Вычисление выражений	35
6.1 Выражения, допускаемые языком	35
6.2 Польская запись и принцип ее построения	35
6.3 Программная реализация обработки выражения	36
6.4 Контрольный пример	36
7 Генерация кода	37
7.1 Структура генератора кода	37
7.2 Представление типов данных в оперативной памяти	37
7.3 Статическая библиотека	
7.4 Особенности алгоритма генерации кода	38
7.5 Входные параметры, управляющие генерацией кода	39
7.6 Контрольный пример	
8 Тестирование транслятора	40
8.1 Общие положения	40
8.2 Результаты тестирования	40
Заключение	42
Список использованных источников	43
Приложение А	44
Приложение Б	45
Приложение В	49
Приложение Г	56
Приложение Д	60

Введение

Целью выполнения курсового проекта по дисциплине «Конструирование программного обеспечения» является написание спецификации и разработка собственного языка программирования.

Название языка программирования, для которого разрабатывается компилятор, — IPP-2024. Компиляция будет производиться в язык ассемблера.

Исходя из ранее определённой цели курсового проекта, были определены следующие задачи:

- написание спецификации языка программирования;
- разработка структуры транслятора;
- разработка лексического анализатора;
- разработка синтаксического анализатора;
- разработка семантического анализатора;
- преобразование выражений;
- генерация кода;
- тестирование транслятора.

Информация о каждом этапе разработки компилятора приведена в соответствующих разделах пояснительной записки.

В первом разделе приведена спецификация языка, приведено точное формализованное описание набора правил, определяющих лексику, синтаксис и семантику языка.

Во втором разделе описана структура компилятора.

В третьем разделе описаны принцип работы и этапы разработки лексического анализатора, определены разрешенные символы и ключевые слова языка программирования.

В четвёртом разделе описан принцип работы синтаксического анализатора, определена формальная грамматика и приведена в нормальную форму Грейбах для выполнения синтаксического разбора.

В пятом разделе описаны выражения, допускаемые языком, форма, принципы построения и вычисления выражений.

В седьмом разделе описан процесс генерации кода.

В восьмом разделе приведены примеры тестирования транслятора.

1 Спецификация языка программирования

1.1 Характеристика языка программирования

Язык программирования IPP-2024 — компилируемый, высокоуровневый, строго и статически типизированный, поддерживающий парадигмы процедурного, структурного и императивного программирования.

1.2 Определение алфавита языка программирования

Для языка программирования IPP-2024 разрешено использовать латинские буквы [A-Z, a-z], арабские цифры [0-9], а также специальные символы, такие как сепараторы и непечатные символы. Символы русского языка могут использоваться только в строковых литералах. Во время выполнения программы используются только те символы, которые заранее определены в исходном коде, включая символы, присутствующие в строковых литералах и выводимые в процессе работы программы.

1.3 Применяемые сепараторы

Сепараторы, применяемые в языке программирования IPP-2024, приведены в таблице 1.1.

Таблица 1.1 Применяемые сепараторы в языке программирования ІРР-2024

Символ	Назначение			
Пробел, табуляция,	Используются для разделения лексем в исходном коде,			
переход на новую	обеспечивая корректное разделение и интерпретацию			
строку	токенов компилятором.		токенов компилятором.	
()	Ограничивают список параметров функций, задают			
	приоритет выполнения операций в выражениях и			
	используются для обозначения условий в конструкциях			
	циклов и условных операторов.			
,	Служит для разделения параметров функций или			
	элементов массива при инициализации.			
{}	Определяют границы блоков кода, включая тело функций,			
	циклов или условных операторов, а также используются			
	для инициализации массивов.			
[]	Определяют размерность массива или используются для			
	доступа к элементу массива по индексу.			
;	Обозначает завершение инструкции или выражения в			
	коде.			

1.4 Применяемые кодировки

Для написания исходного кода на языке программирования IPP-2024 используется кодировка Windows-1251, обеспечивающая поддержку символов кириллического алфавита и других символов, необходимых для корректного отображения текста.

1.5 Типы данных

В языке программирования IPP-2024 поддерживаются четыре типа данных: целочисленный, беззнаковый целочисленный, строковый и логический. Дополнительно реализована поддержка массивов для хранения элементов одного типа. Подробное описание типов данных приведено в таблице 1.2.

Таблица 1.2 Типы данных языка программирования IPP-2024

Таблица 1.2 Типы даг	анных языка программирования ІРР-2024		
Тип данных	Описание		
Целочисленный	В памяти занимает 4 байта.		
(int)	Максимальное значение: 0x7FFFFFF.		
	Минимальное значение: 0х80000000.		
	Принцип размещения в памяти: старший бит числа отведен		
	под знак, оставшиеся 31 бит предназначены для хранения		
	значения числа.		
	Значение по умолчанию: 0.		
	Возможные операции:		
	- арифметические операции (+, -, *, /, %);		
	- операции сравнения (>, <, >=, <=, ==, !=).		
Беззнаковый	В памяти занимает 4 байта.		
целочисленный	Максимальное значение: 0xFFFFFFF.		
(uint)	Минимальное значение: 0.		
	Принцип размещения в памяти: все 32 бита предназначены		
	для хранения значения числа.		
	Значение по умолчанию: 0.		
	Возможные операции:		
	- арифметические операции (+, -, *, /, %);		
	- операции сравнения (>, <, >=, <=, ==, !=).		
Строковый (string)	В памяти занимает $n+1$ байт, где $n-$ количество символов в		
	строке.		
	Максимальное количество символов в строке: 254.		
	Принцип размещения в памяти: каждый символ строки		
	занимает 1 байт, в конце строки располагается нулевой		
	символ (признак конца строки).		
	Значение по умолчанию: пустая строка.		
	Возможные операции:		
	- не применяются		

Окончание таблицы 1.2

Логический (bool)	В памяти занимает 4 байта.		
	Может принимать одно из двух значений: true или false.		
	Принцип размещения в памяти: значение младшего бита		
	числа интерпретируется как true (если 1) или false (если 0).		
	Возможные операции:		
	- не применяются		
Массив	В памяти занимает n * 4 байта, где n — количество		
	элементов.		
	Принцип размещения в памяти: элементы массива		
	размещаются в памяти последовательно, каждый элемент		
	занимает 4 байта.		
	Значение по умолчанию: если массив не инициализируется		
	явно при объявлении, его элементы заполняются		
	значениями:		
	– 0 – для массивов целочисленных и беззнаковых типов;		
	- false – для массивов логического типа;		
	- указатель на пустую строку - для массивов строк.		
	Возможные операции (для массивов целочисленных и		
	беззнаковых типов):		
	- арифметические операции (+, -, *, /, %).		

1.6 Преобразование типов данных

В языке программирования IPP-2024 предусмотрены неявные преобразования между знаковыми и беззнаковыми целочисленными типами. Преобразование происходит автоматически, если значение знакового типа неотрицательное и находится в диапазоне представления беззнакового типа.

1.7 Идентификаторы

Идентификаторы в языке программирования IPP-2024 представляют собой имена, используемые для обозначения переменных, функций, параметров функций и других объектов в программе, обеспечивая их уникальную идентификацию в пределах одной области видимости, при этом дублирование идентификаторов запрещено. Идентификаторы не могут совпадать с ключевыми словами языка, могут состоять только из латинских букв [A-Z, a-z], цифр [0-9] и знака нижнего подчеркивания (), причём первый символ должен быть латинской буквой (цифры и знак подчеркивания в начале имени запрещены), а максимальная длина идентификатора ограничена 15 символами.

Правило записи идентификатора можно задать с помощью регулярного выражения: [a-zA-Z][a-zA-Z0-9_]*

Примеры корректных идентификаторов: idenf, idenf_123 и т. п. Примеры некорректных идентификаторов: lidenf, stroka и т. п.

1.8 Литералы

Литерал в языке программирования — это константное значение, которое напрямую вписано в исходный код программы. В языке программирования IPP-2024 предусмотрены следующие типы литералов: целочисленный и строковый. Целочисленные литералы могут быть представлены в различных системах счисления: двоичной, восьмеричной, десятичной и шестнадцатеричной. Описание литералов приведено в таблице 1.3.

Таблица 1.3 Литералы языка программирования IPP-2024

Тип литерала	Характеристика
Целочисленный	Двоичный литерал: [0-1]*b Восьмеричный литерал: [0-7]*о Десятичный литерал: [0-9]* Шестнадцатеричный литерал: [0-9A-F]*h Допустимый диапазон значений: От 0x80000000 до 0xFFFFFFFF (с учётом знака).
Строковый	Набор символов, состоящий из символов русского и латинского алфавитов, десятичных цифр и специальных символов, заключённых в двойные кавычки. Допустимый диапазон значений: От 0 до 254 символов.

Примеры правильных литералов: 1010b, 1570, 12345, 1A3Fh, «Hello, World!» и т. п.

Примеры неправильных литералов: 102b, 89o, 12a45, 1G3Fh, Example и т. п.

1.9 Объявление данных

Для объявления переменной используется ключевое слово new, после которого указывается тип данных переменной и имя идентификатора. Так же при объявлении допускается инициализация переменной. Правила объявления переменной:

- new <тип данных> <имя идентификатора>;
- new <тип данных> <имя идентификатора> = <значение>;
- new<тип_данных>array[<paзмер_массива>]<имя_идентификатора> = $\{$ <литерал>, ... $\}$;

Переменные могут быть локальными или глобальными. Локальные переменные объявляются внутри функций, циклов или условных блоков, и их область видимости ограничивается блоком кода, заключенным в фигурные скобки.

Глобальные переменные объявляются вне всех функций и доступны из любого блока кода, начиная с момента их объявления и до конца программы.

1.10 Инициализация данных

В языке программирования IPP-2024 присутствует два вида инициализации для переменных и один для массивов:

```
- инициализация переменной в месте объявления: new <тип_данных> <имя_идентификатора> = <значение>;
```

- инициализация переменной после объявления:
- <имя_идентификатора> = <значение>;
- инициализация массива в месте объявления: new <тип_данных><имя_массива> = {<литерал>, ...};

Примеры:

- new int num = 5;
- new string text; text = «Hello World!»;
- new int array[3] nums = $\{1, 2, 3\}$;

Так же в языке программирования IPP-2024 присутствует инициализация по умолчанию. Если массив или переменная объявлены без явной инициализации, они автоматически инициализируются значениями по умолчанию: целочисленные и беззнаковые целочисленные типы -0, строковый - пустой строкой, а логический - значением false.

1.11 Инструкции языка

Инструкции языка программирования ІРР-2024 приведены в таблице 1.4.

Таблица 1.4 Инструкции языка программирования IPP-2024

Инструкция	Синтаксис
языка	
Объявление	new <тип_данных> <идентификатор>;
переменной	
Объявление	new <тип_данных> <идентификатор> = <значение>;
переменной с	Значение – литерал, идентификатор, вызов функции
явной	соответствующего типа или выражение.
инициализацие	
й	
Объявление	new <тип_данных> array[<размер_массива>] <идентификатор>;
массива	
Объявление	new <тип_данных> array[<размер_массива>] <идентификатор>
массива с	= {<литерал>,};
явной	
инициализацие	
й	

Окончание таблицы 1.4

Инструкция	Синтаксис		
языка			
Объявление	<тип_данных>function<идентификатор>(<тип_данных>		
функции	<uдентификатор>,)</uдентификатор>		
	{		
	/*тело функции*/		
	return <литерал> <идентификатор>;		
	}		
Вызов функции	<идентификатор>(<литерал> <идентификатор>,);		
Присвоение	<идентификатор> = <значение>;		
значения	Значение – литерал, идентификатор, вызов функции		
переменной	соответствующего типа или выражение.		
Присвоение	<uдентификатор>[<индекс_элемента>] = <значение>;</uдентификатор>		
значения	Значение – литерал, идентификатор, вызов функции		
элементу	соответствующего типа или выражение.		
массива			
Вывод данных	write <идентификатор> <литерал> <идентификатор>		
без переноса на	[индекс_элемента>];		
новую строку			
Вывод данных	writeline <идентификатор> <литерал> <идентификатор>		
с переносом на	[индекс_элемента>];		
новую строку			
Возврат из	return <литерал> <идентификатор>;		
функции			

1.12 Операции языка

- В языке программирования IPP-2024 доступны два типа операций: арифметические и логические. Эти операции применимы исключительно к целочисленным и беззнаковым целочисленным типам данных. Основные характеристики операций языка:
- операции с одинаковым приоритетом выполняются слева направо. Приоритетность можно изменять с помощью круглых скобок;
 - выполнение операций над данными разных типов не допускается;
 - все логические операции имеют одинаковый приоритет.

Подробное описание операций языка программирования IPP-2024 приведено в таблице 1.5.

Таблица 1.5 Операции языка программирования IPP-2024

Тип операции	ции языка программи Операция	Приоритетность	Описание
		операций	
	Сложение (+)	2	Бинарная,
			ассоциативная,
			коммутативная
	Вычитание (-)	2	Бинарная,
			некоммутативная,
			ассоциативная
	Умножение (*)	4	Бинарная,
Арифметические			коммутативная,
			ассоциативная
	Деление (/)	4	Бинарная,
			некоммутативная,
			ассоциативная
	Остаток от	4	Бинарная,
	деления (%)		некоммутативная,
			неассоциативная
	Больше (>)	3	Бинарная,
			некоммутативная
	Меньше (<)	3	Бинарная,
Логические			некоммутативная
	Проверка на	3	Бинарная,
	равенство (==)		коммутативная
	Проверка на	3	Бинарная,
	неравенство (!=)		коммутативная
	Больше или равно	3	Бинарная,
	(>=)		некоммутативная
	Меньше или равно	3	Бинарная,
	(<=)		некоммутативная

1.13 Выражения и их вычисление

Выражением называется совокупность переменных, констант, знаков операций, имен функций, скобок, которая может быть вычислена в соответствии с синтаксисом языка программирования.

Вычисление выражений в языке программирования IPP-2024 осуществляется по следующим правилам:

- операции выполняются в соответствии с их приоритетом, операции с одинаковым приоритетом выполняются слева направо;
 - выражения записываются в одну строку;
 - допускается использовать круглые скобки для смены приоритета;
 - выражение может содержать вызов функции;
 - использование двух операторов подряд не допускается;

- в одном выражении могут участвовать только операнды одного и того же типа данных;
 - составные выражения с логическими операциями не допускаются.

В арифметических выражениях и выражениях сравнения допускаются только операнды целочисленного и целочисленного беззнакового типов.

Перед генерацией кода выражения приводятся к ПОЛИЗ для более удобного вычисления на языке ассемблера.

1.14 Конструкции языка

Конструкции языка программирования ІРР-2024 приведены в таблице 1.6.

Таблица 1.6 Конструкции языка программирования IPP-2024

Таблица 1.6 Конструкции языка программирования ІРР-2024			
Конструкция	Описание		
Главная функция	main		
	\		
	}		
Пользовательская	<тип_данных> function <идентификатор>(<тип_данных>		
функция	<идентификатор>,)		
	\		
	/*тело функции*/		
	return <литерал> <идентификатор>;		
	}		
Цикл	while(<ycловие>)</ycловие>		
	\		
	}		
Условная	if(<условие>)		
конструкция	\		
	}		
	else		
	}		

1.15 Область видимости идентификатора

В языке программирования IPP-2024 идентификаторы могут иметь локальную или глобальную область видимости:

- локальная область видимости: идентификаторы видимы только внутри конструкции, в которой они объявлены, с последовательным доступом сверху вниз.
- глобальная область видимости: идентификаторы, объявленные на уровне программы, доступны из любой точки кода.

Параметры функции имеют локальную область видимости и доступны только внутри этой функции. Создание пользовательских областей видимости не поддерживается.

1.16 Семантические проверки

Семантическим анализатором языка программирования IPP-2024 предусмотрены следующие проверки:

- наличие блока main, точки входа в программу;
- единственная точка входа в программу;
- использование идентификаторов до их объявления;
- переопределение идентификаторов;
- соответствие параметров, передаваемых в функцию, с параметрами в объявлении функции;
 - соответствие типа возвращаемого значения с типом функции;
 - соответствие типов в выражениях;
 - превышение размера целочисленных и строковых литералов;
 - превышение длины лексемы;
- соответствие операторов типам данных, для работы с которыми они предназначены;
 - корректность типов в выражениях условных конструкций (if, while);
- отсутствие параметров у функций DATE и TIME, возвращающих строковый тип;
 - проверка индексов массивов на выход за пределы допустимого диапазона;
- совпадение количества и типов элементов инициализатора массива с размером массива;
- недопустимость присваивания значений, не соответствующих типу переменной или массива;
 - корректность количества и типов аргументов при вызове функций;
 - наличие оператора return в функциях, которые должны возвращать значение;
- соответствие типов данных в операторе return типу возвращаемого значения функции;
 - деление на ноль;
 - проверка на переполнение при вычислении выражений;
- проверка размера и значения целочисленных литералов на соответствие допустимому диапазону;
- недопустимость повторного объявления функций, параметров, переменных и массивов в одной области видимости.

1.17 Распределение оперативной памяти на этапе выполнения

В языке программирования ІРР-2024 для хранения промежуточных результатов в вычислении выражения используется стек. В сегмент констант

записываются все литералы языка. В сегмент данных записываются все имена переменных.

1.18 Стандартная библиотека и ее состав

В стандартной библиотеке языка программирования IPP-2024 содержатся функции, представленные в таблице 1.7.

Таблица 1.7 Стандартная библиотека языка программирования IPP-2024

Функция	Описание	Количество параметров
string DATE()	Возвращает строку с текущей датой формате ДД.ММ.ГГ.	0
string TIME()	Возвращает строку с текущим време формате ЧЧ:ММ:СС.	нем в

Стандартная библиотека написана на языке C++, подключается автоматически на этапе компоновки. Вызовы стандартных функций доступны там же, где и вызов пользовательских функций.

1.19 Ввод и вывод данных

В языке программирования ІРР-2024 ввод данных не поддерживается.

Вывод данных на консоль осуществляется за счет операторов write и writeline. Использование данных операторов допускается только с идентификаторами или литералами. Функции, управляющие выводом данных на консоль, реализованы на языке ассемблера.

1.20 Точка входа

Точкой входа в программе на языке программирования IPP-2024 является функция main. Точка входа не может отсутствовать или быть переопределена.

1.21 Препроцессор

Препроцессор – программа для обработки текста. Может быть отдельной программой, или интегрированной в компилятор.

В языке программирования ІРР-2024 препроцессор не предусмотрен.

1.22 Соглашение о вызовах

В языке программирования IPP-2024 используется соглашение о вызовах stdcall. Особенности stdcall:

- все параметры функции передаются через стек;
- освобождением памяти занимается вызываемый код;
- параметры заносятся в стек справа налево.

1.23 Объектный код

Язык программирования ІРР-2024 транслируется в язык ассемблера.

1.24 Классификация сообщений транслятора

В случае возникновения ошибки в коде программы на языке программирования IPP-2024 и выявления её транслятором в текущий файл протокола выводится сообщение. Их классификация сообщений приведена в таблице 1.8.

Таблица 1.8 Описание ошибок транслятора языка программирования IPP-2024

Диапазон ошибок	Описание
0-99	Системные ошибки
100-109	Ошибки задания входных параметров
110-119	Ошибки чтения и открытия файлов
120-199	Ошибки лексического анализа
200-299	Ошибки синтаксического анализа
300-399	Ошибки семантического анализа
400-999	Зарезервированные ошибки

1.25 Контрольный пример

Контрольный пример, написанный на языке IPP-2024, представлен в приложении А.

2 Структура транслятора

2.1 Компоненты транслятора их назначение и принципы взаимодействия

Транслятор — это программа, преобразующая исходный код на одном языке программирования в исходный код на другом языке программирования.

Схема, поясняющая принцип работы транслятора, изображена на рисунке 2.1.

Рисунок 2.1 – Структура транслятора языка программирования ІРР-2024

Трансляция исходного кода в язык ассемблера разделена на четыре этапа:

- лексический анализ:
- синтаксический анализ;
- семантический анализ;
- генерация кода.

Этапы выполняются последовательно. У каждого этапа есть входные и выходные данные, которые последовательно передаются следующему компоненту транслятора.

Первой частью трансляции является лексический анализ. На вход лексического анализатора подается исходный код программы. В свою очередь лексический анализатор производит деление исходного кода программы на токены, которые затем идентифицируются и заменяются на лексемы. На выходе лексического анализатора мы имеем две таблицы: таблицу лексем и таблицу идентификаторов.

Синтаксический анализ является второй частью работы транслятора. Синтаксический анализатор выполняет синтаксический анализ. Входными данными для синтаксического анализатора являются таблица лексем и таблица идентификаторов. Выходные данные — дерево разбора.

Затем выполняется семантический анализ. Задача семантического анализатора: проверка соблюдения в исходной программе семантических правил

входного языка программирования. На входе семантический анализатор получает таблицу идентификаторов, таблицу лексем и дерево разбора.

Последним этапом трансляции является генерация кода. На вход генератора подаются таблица лексем и таблица идентификаторов, на основе которых генерируется файл с исходным кодом на языке ассемблера.

2.2 Перечень входных параметров транслятора

Входные параметры необходимы для формирования файлов с результатами работы транслятора. Входные параметры, которые можно передать транслятору языка программирования IPP-2024, представлены в таблице 2.1.

Таблица 2.1 Входные параметры транслятора языка программирования IPP-2024

		<u> </u>
Ключ и входной параметр	Описание параметра	Значение по умолчанию
-in:<путь к файлу>	Текстовый файл с	in.txt
	исходным кодом на языке	
	программирования	
	IPP- 2024	
-log:<путь к файлу>	Файл с протоколом	log.log
	работы транслятора	
-out:<путь к файлу>	Выходной файл –	out.asm
	результат работы	
	транслятора. Содержит	
	исходный код на языке	
	ассемблера.	

2.3 Протоколы, формируемые транслятором

В ходе работы программы формируются протоколы работы лексического, синтаксического и семантического анализаторов, содержащие информацию о ходе их работы. Все файлы создаются в корневом каталоге. В таблице 2.2 приведены протоколы, формируемые транслятором и их содержимое.

Таблица 2.2 Протоколы, формируемые транслятором языка программирования IPP-2024

Формируемый протокол	Описание выходного протокола
Файл, заданный параметром «-log:»	Содержит общую информацию о ходе
	выполнения трансляции: перечисление
	входных параметров, количество
	символов и строк, успех или ошибку по
	каждому этапу трансляции. В случае
	возникновения ошибки, в файл будет
	выведена информация об ошибке.

Окончание таблицы 2.2

Формируемый протокол	Описание выходного протокола	
	Также файл содержит дерево разбора,	
	сформированное во время	
	синтаксического анализа.	
Выходной файл с названием «LT.txt»	Файл содержит таблицу лексем,	
	сформированную во время	
	лексического анализа.	
Выходной файл с названием «IT.txt»	Файл содержит таблицу	
	идентификаторов, сформированную во	
	время лексического анализа.	
Файл, заданный параметром «-out:»	Результат работы программы – файл,	
	содержащий исходный код на языке	
	ассемблера.	

3. Разработка лексического анализатора

3.1 Структура лексического анализатора

Лексический анализатор — это программа, преобразующая исходный текст программы, заменяя лексические единицы их внутренним представлением — лексемами, для создания промежуточного представления исходной программы. Структурная схема лексического анализатора изображена на рисунке 3.1.

Рисунок 3.1 Структурная схема лексического анализатора

Лексический анализ в языке программирования IPP-2024 происходит в два этапа:

- разбиение исходного кода программы на токены;
- идентификация токенов и последующая их замена на лексемы. Заполнение таблиц лексем и идентификаторов.

Входные данные: исходный код на языке программирования IPP-2024.

Результат работы: таблица лексем и таблица идентификаторов.

3.2 Контроль входных символов

Исходный код на языке программирования IPP-2024 прежде, чем транслироваться проверяется на допустимость символов. То есть изначально из входного файла считывается по одному символу и проверяется, является ли он разрешённым. Таблица для проверки входных символов представлена на рисунке 3.2.

IN::T, IN::T, IN::T, IN::	T, IN::T, IN::T, IN::T, IN	N::T, IN::T, IN::T, ' ', IN	::T, IN::T, IN::T, IN::T, IN::T,\
IN::T, IN::T, IN::T, IN::	T, IN::T, IN::T, IN::T, IN	N::T, IN::T, IN::T, IN::T,	<pre>IN::T, IN::T, IN::T, IN::T,\ </pre>
IN::T, IN::T, IN::T, IN::	T, IN::T, IN::T, IN::T, IN	N::T, IN::T, IN::T, IN::T,	<pre>IN::T, IN::T, IN::T, IN::T,\</pre>
IN::T, IN::T, IN::T, IN::	T, IN::T, IN::T, IN::T, IM	N::T, IN::T, IN::T, IN::T,	IN::T, IN::T, IN::T, IN::T, \
IN::T, IN::T, IN::T, IN::	T, IN::T, IN::T, IN::T, IM	N::T, IN::T, IN::T, IN::T,	IN::T, IN::T, IN::T, IN::T,\
IN::T, IN::T, IN::T, IN::	T, IN::T, IN::T, IN::T, IN	N::T, IN::T, IN::T, IN::T,	IN::T, IN::T, IN::T, IN::T, \
IN::T, IN::T, IN::T, IN::	T, IN::T, IN::T, IN::T, IN	N::T, IN::T, IN::T, IN::T,	IN::T, IN::T, IN::T, IN::T, \
IN::T, IN::T, IN::T, IN::	T, IN::T, IN::T, IN::T, IN	N::T, IN::T, IN::T, IN::T,	IN::T, IN::T, IN::T, IN::T,\
\			
IN::T, IN::T, IN::T, IN::	T, IN::T, IN::T, IN::T, IN	N::T, IN::T, IN::T, IN::T,	IN::T, IN::T, IN::T, IN::T, \
IN::T, IN::T, IN::T, IN::	T, IN::T, IN::T, IN::T, IN	N::T, IN::T, IN::T, IN::T,	<pre>IN::T, IN::T, IN::T, IN::T,\</pre>
IN::T, IN::T, IN::T, IN::	T, IN::T, IN::T, IN::T, IM	N::T, IN::T, IN::T, IN::T,	IN::T, IN::T, IN::T, IN::T, \
IN::T, IN::T, IN::T, IN::	T, IN::T, IN::T, IN::T, IM	N::T, IN::T, IN::T, IN::T,	IN::T, IN::T, IN::T, IN::T,\
IN::T, IN::T, IN::T, IN::	T, IN::T, IN::T, IN::T, IM	N::T, IN::T, IN::T, IN::T,	IN::T, IN::T, IN::T, IN::T, \
IN::T, IN::T, IN::T, IN::	T, IN::T, IN::T, IN::T, IN	N::T, IN::T, IN::T, IN::T,	IN::T, IN::T, IN::T, IN::T, \
IN::T, IN::T, IN::T, IN::	T, IN::T, IN::T, IN::T, IN	N::T, IN::T, IN::T, IN::T,	IN::T, IN::T, IN::T, IN::T, \
IN::T, IN::T, IN::T, IN::	T, IN::T, IN::T, IN::T, IN	N::T, IN::T, IN::T, IN::T,	IN::T, IN::T, IN::T, IN::T,\

Рисунок 3.2 Таблица контроля входных символов

Индекс элемента соответствует его коду в таблице символов Window-1251. T – символ разрешён, F – символ запрещён, I – символ игнорируется. Если вместо символа указан другой символ, то при обработке будет происходить его замена на указанный.

3.3 Удаление избыточных символов

Избыточный символ — это символ, отсутствие которого никоем образом не влияет на исходный текст программы. В языке программирования IPP-2024 символы пробела и табуляции являются избыточными. Они игнорируются при считывании из файла исходного кода на языке программирования IPP-2024.

Алгоритм удаления избыточных символов:

Пока есть символ для чтения:

- читаем очередной символ;
- если символ является пробелом или табуляцией:
- если пробел или табуляция находятся между буквами или цифрами, сохраняем их как разделитель между словами;
- если символ не окружён значащими символами (буквами или цифрами),
 пропускаем его.

3.4 Перечень ключевых слов

Ключевые слова языка программирования IPP-2024, сепараторы, символы операций и соответствующие им лексемы приведены в таблице 3.1.

Таблица 3.1 Ключевые слова, сепараторы, символы операций и соответствующие им лексемы языка программирования IPP-2024

Токен	Лексема	Описание
int	t	Целочисленный тип
uint	t	Беззнаковый целочисленный тип
string	t	Строковый тип
bool	t	Логический тип
function	f	Объявления функции
main	m	Главная функция
while	h	Конструкция цикла
if	Z	Условная конструкция (истинная ветвь)
else	e	Условная конструкция (ложная ветвь)
new	n	Объявление переменной
return	r	Выход из функции и возврат значения
true	u	Истинное значение
false	d	Ложное значение
write	W	Оператор вывода (без перевода на новую строку)
writeline	X	Оператор вывода (с переводом на новую строку)
{	{	Начало блока функции

Окончание таблицы 3.1

Токен	Лексема	Описание
}	}	Конец блока функции
((Начало перечислений параметров у функций,
		приоритет операций в выражениях
))	Конец перечислений параметров у функций,
		приоритет операций в выражениях.
,	,	Разделитель параметров функции
;	;	Конец инструкции
+	+	Арифметический оператор (сложение)
-	-	Арифметический оператор (вычитание)
*	*	Арифметический оператор (умножение)
/	/	Арифметический оператор (деление)
%	%	Арифметический оператор (остаток от деления)
>	>	Логический оператор (больше)
<	<	Логический оператор (меньше)
==	&	Логический оператор (равенство)
>=	p	Логический оператор (больше или равно)
<=	k	Логический оператор (меньше или равно)
!=	j	Логический оператор (не равно)
=	=	Оператор присваивания
array	a	Объявление массива
	(a)	Индекс массива

Для распознавания вышеперечисленных цепочек используется механизм конечного автомата, в которых цепочки записаны в виде регулярных выражений. Пример записи регулярного выражения для идентификатора: [a-zA-Z][a-zA-Z0-9]*.

Два графа переходов конечных автоматов для цепочки строкового типа и объявления переменной представлены на рисунках 3.3 и 3.4.

Рисунок 3.3 Граф для строкового типа string

Рисунок 3.4 Граф для объявления переменной

Код на языке С++, который реализует данные цепочки разбора представлен в листингах 3.1 и 3.2.

Листинг 3.1 Цепочка разбора для строкового типа

Листинг 3.2 Цепочка разбора для объявления переменной

3.5 Основные структуры данных

Основными структурами данных лексического анализатора языка программирования ІРР-2024 являются таблица лексем и таблица идентификаторов. Таблица лексем содержит максимальный и текущий размер, а также список записей, каждая из которых включает саму лексему, её номер строки в исходном тексте и индекс в таблице идентификаторов, если лексема является литералом или идентификатором. Таблица идентификаторов хранит информацию о своём максимальном и текущем размере, а также массив записей. Каждая запись содержит идентификатора, его область имя видимости, ТИП данных, категорию идентификатора, индекс первой связанной лексемы и значение, представленное в формате, соответствующем типу данных. Реализация таблицы лексем и таблицы идентификаторов на языке С++ представлена в приложении Б.

3.6 Структура и перечень сообщений лексического анализатора

В языке программирования IPP-2024 для обработки ошибок лексический анализатор использует таблицу с сообщениями, которые содержат номер ошибки, вид ошибки, её сообщение, а также номер строки и позиции возникшей ошибки.

Индексы ошибок, обнаруживаемых лексическим анализатором, находятся в диапазоне 120–199. Текст ошибки содержит в себе префикс «Лексический

анализатор». Перечень сообщений лексического анализатора представлен в таблице 3.2.

Таблица 3.2 Перечень ошибок при лексическом анализе языка программирования IPP-2024

Код ошибки	Сообщение
120	Лексический анализатор: недопустимый размер таблицы при её
	создании
121	Лексический анализатор: превышен допустимый размер таблицы
	при добавлении элемента
122	Лексический анализатор: недопустимый индекс при получении
	элемента таблицы
123	Лексический анализатор: недопустимый размер таблицы при её
	создании
124	Лексический анализатор: превышен допустимый размер таблицы
	при добавлении элемента
125	Лексический анализатор: недопустимый индекс при получении
	элемента таблицы
126	Лексический анализатор: превышен допустимый размер лексемы
127	Лексический анализатор: нераспознанная лексема
128	Лексический анализатор: ошибка при считывании строкового
	литерала

3.7 Принцип обработки ошибок

В языке программирования IPP-2024 при обнаружении ошибки в исходном коде программы лексический анализатор формирует сообщение об ошибке и выводит его в файл с протоколом работы, заданный параметром -log, а также в консоль.

3.8 Параметры лексического анализатора

Входным параметром лексического анализа является структура, полученная после чтения входного файла на этапе проверки исходного кода на допустимость символов.

3.9 Алгоритм лексического анализатора

Алгоритм работы лексического анализатора:

- 1) Исходный код читается посимвольно. Каждый символ записывается в строковый буфер, пока не будет достигнут символ-сепаратор;
- 2) Строка передаётся различным конечным автоматам. Если какой—либо из автоматов разберет строку успешно, то он вернёт лексическому анализатору одну символьную лексему, которая будет записана в таблицу лексем. Если лексема

является идентификатором или литералом, то далее идет пункт 3. В противном случае алгоритм начинается сначала;

- 3) В зависимости от прошлых лексем, которые означают тип идентификатора, идентификатору присваивается тип данных;
- 4) Если идентификатор только объявляется с явным указанием типа, то в частично заполненной таблице идентификаторов происходит поиск идентификатора с таким именем, предварительно будет записан тип и область видимости из стека. Если поиск успешен, то лексический анализ останавливается и выводится ошибка, в противном случае идентификатор добавляется в таблицу идентификаторов, а также в таблицу лексем добавляется лексема идентификатора с номер индекса таблицы идентификаторов, где он записан. Переходим в пункт 1;
- 5) Если уже объявленный идентификатор просто используется по ходу программы, то происходит его поиск в частично заполненной таблице. Если идентификатор не найден, то будет выведена соответствующая ошибка и лексический анализ будет завершён. В противном случае лексеме присваивается соответствующий индекс таблицы, и она записывается в таблицу лексем. Переходим в пункт 1;
- 6) Если лексема является литералом, то сначала будет выявлен тип литерала и значение. Если такой же литерал записан уже в таблицу идентификаторов, запись в неё производится не будет, в противном случае наоборот. В таблицу лексем записывается лексема со ссылкой на таблицу идентификаторов. Переходим в пункт 1;
- 7) Если идентификатор является функцией, то она будет записан в таблицу идентификаторов с соответствующими типом возвращаемого значений. Последующие идентификаторы в круглых скобках будут записаны как параметры. В стек помещается функция для отметки об области видимости последующих идентификаторов. Функция там останется пока не буде закончено объявление этой же функции. Переходим в пункт 1
 - 8) Если не пройден весь исходный код, то переходим в пункт 1.

3.10 Контрольный пример

Результат работы лексического анализатора, полученный при выполнении контрольного примера, представлен в приложении Б.

4 Разработка синтаксического анализатора

4.1 Структура синтаксического анализатора

Синтаксический анализатор — часть транслятора, выполняющая синтаксический анализ. Входными данными для синтаксического анализа являются таблица лексем и таблица идентификаторов. Выходные данные — дерево разбора. Синтаксический анализатор использует файл, заданный параметром -log, для записи дерева разбора.

В языке программирования IPP-2024 синтаксический анализ выполняется после завершения работы лексического анализатора.

Структура синтаксического анализатора представлена на рисунке 4.1.

Рисунок 4.1 Структура синтаксического анализатора

4.2 Контекстно-свободная грамматика, описывающая синтаксис языка

Синтаксис языка программирования IPP-2024 описывается при помощи грамматики типа 2 иерархии Хомского (контекстно-свободной грамматики).

Контекстно-свободная грамматика — грамматика типа 2 по иерархии Хомского. Данная грамматика имеет вид $G = \{T, N, P, S\}$, где:

- Т множество терминальных символов;
- N множество нетерминальных символов;
- Р множество правил переходов;
- S стартовый символ;

В контекстно-свободной грамматике правила имеют вид:

– А → α , где А ∈ N, α ∈ V*, V = N U T– словарь грамматики G.

Контекстно-свободная грамматика G имеет нормальную форму Грейбах, если она не является леворекурсивной и правила P имеют вид:

- A → aα, где a ∈ T, α ∈ N*;
- $-S \rightarrow \lambda$, где $S \in N$ начальный символ, если есть такое правило, то S не должен встречаться в правой части правил.

Алгоритм преобразования грамматик в нормальную форму Грейбах:

- исключить недостижимые символы из грамматики;
- исключить лямбда-правила из грамматики;

– исключить цепные правила.

Грамматика языка программирования ІРР-2024 имеет нормальную форму Грейбах, т. к. она не леворекурсивная (не содержит леворекурсивных правил). Перечень и описание терминальных, нетерминальных символов и правил языка программирования ІРР-2024 приведен в таблице 4.1.

Таблица 4.1 Правила грамматики языка программирования IPP-2024				
Нетерминал	Цепочка	Описание		
S	$m{N} tfi(F){rE;} tfi(){rE;} tfi(F){NrE;} tfi(){rE;} tfi(F){NrE;} tfi(){rE;} tfi(F){NrE;} tfi(F$	Стартовый символ,		
	$NrE;$ $ tfi(F){rE;}S $	порождает всю		
	$tfi(){rE;}S tfi(F){NrE;}S tfi(){NrE;}S nti; nti$	структуру исходного		
	=E; nti;S nti=E;S nta@li; nta@li={A}; nta@li	кода.		
	;S nta@li={A};S i=E; i@l=E; i@i=E; i=E;S i			
	@l=E;S i@i=E;S wE; xE; wE;S xE;S h(E){N}			
	E){}e{N} z(E){N}e{} z(E){} s(E){} s(E){}N}e{}			
N	$ \begin{array}{l} N S z(E)\{\}e\{N\}S z(E)\{N\}e\{\}S z(E)\{\}e\{\}S\\ nti; nti=E; nti;N nti=E;N nta@li; nta@li=\{A\}; \end{array} $	Символ порождает		
11	$ \text{Inta@li;N} \text{Inta@li=}\{A\}; \text{N} \text{i=E;} \text{i@l=E;} \text{i@i=E;} $	правила,		
	i=E;N i@l=E;N i@i=E;N wE; xE; wE;N xE;N	описывающие		
	$ h(E)\{N\} h(E)\{\} h(E)\{N\}N h(E)\{\}N z(E)\{N\}$	корректную запись		
	$e\{N\} z(E)\{\}e\{N\} z(E)\{N\}e\{\} z(E)\{\}e\{\} z(E)$	операторов		
	${N}e{N}N z(E){e{N}N z(E){N}e{}}N z(E){}$	1 1		
	}e{}N			
E	i l i@l i@i (E) i() i(W) iM lM i@lM i@iM (E)	Символ порождает		
	M i()M i(W)M	правила,		
		описывающие		
		корректную запись		
3.6		выражений		
M	+E -E *E /E %E >E <e &e je pe ke +em -< td=""><td>Символ порождает</td></e &e je pe ke +em -<>	Символ порождает		
	EM *EM /EM %EM	правила,		
		описывающие		
		корректную запись подвыражений		
F	ti ti,F	Символ порождает		
	1>-	правила,		
		описывающие		
		корректную запись		
		параметров при		
		объявлении функции		

Окончание таблицы 4.1

Нетерминал	Цепочка	Описание
W	i l i,W l,W	Символ порождает
		правила, описывающие
		корректную запись
		параметров при вызове
		функции
A	1 1,A	Символ порождает
		правила, описывающие
		корректную запись
		параметров при
		инициализации массива

4.3 Построение конечного автомата магазинного типа

В языке программирования IPP-2024 конечный автомат с магазинной памятью представляет собой семерку вида $M = \{Q, V, Z, \delta, q_0, z_0, F\}$, где:

- Q множество состояний автомата;
- V алфавит входных символов;
- Z алфавит специальных магазинных символов;
- $-\delta$ функция переходов автомата;
- q₀ начальное состояние автомата;
- − z₀ начальное состояние магазина;
- F множество конечных состояний.

Схема работы конечного автомата с магазинной памятью представлена на рисунке 4.2.

Рисунок 4.2 Схема работы конечного автомата с магазинной памятью

Алгоритм работы конечного автомата с магазинной памятью:

- 1) текущее состояние автомата (q, а α , z β);
- 2) возможны два случая:

- читает символ а, находящийся под головкой (сдвигает ленту);
- не читает ничего (читает λ , не сдвигает ленту);
- 3) по функции переходов δ определяет новое состояние q', если (q', γ) \in δ (q, a, z) или (q', γ) \in δ (q, λ , z);
- 4) читает верхний символ z (в магазине) и записывает цепочку γ т. к. $(q',\gamma)\in\delta$ (q,a,z), при этом, если $\gamma=\lambda$, то верхний символ магазина просто удаляется;
 - 5) работа автомата заканчивается, когда (q, λ, λ) .

Результат, демонстрирующий успешный разбор цепочки из контрольного примера, приведен в приложении В.

4.4 Основные структуры данных

Основными структуры данных синтаксического анализатора языка программирования IPP-2024 являются автомат с магазинной памятью и структура грамматики Грейбах, описывающей правила языка IPP-2024. Данные структуры, реализованные на языке C++, представлены в приложении В.

4.5 Описание алгоритма синтаксического разбора

Алгоритм функционирования синтаксического анализатора для языка программирования IPP-2024:

- 1) В стек автомата помещаются маркер дна и стартовый символ грамматики.
- 2) На основании предварительно построенной таблицы лексем формируется входная лента.
 - 3) Запускается работа автомата.
- 4) Выбирается правило грамматики, соответствующее первому символу в ленте и текущему нетерминалу в стеке. Правило разворачивается, а его символы заносятся в стек в обратном порядке.
- 5) Если текущие терминалы в стеке и ленте совпадают, терминал удаляется из стека, а указатель входной ленты сдвигается на одну позицию вправо. Если они не совпадают, производится возврат к последнему сохранённому состоянию, и для текущего нетерминала выбирается альтернативное правило.
- 6) При появлении нового нетерминала в правиле анализатор возвращается к шагу 4.
- 7) Если на вершине стека остаётся только маркер дна, а входная лента полностью обработана, синтаксический анализ завершён успешно. В противном случае фиксируется ошибка синтаксического анализа.

Блок-схема, иллюстрирующая алгоритм, представлена на рисунке 4.3.

Рисунок 4.3 Блок-схема алгоритма синтаксического анализа

Данный алгоритм представляет обобщённую модель работы магазинного автомата.

4.6. Структура и перечень сообщений синтаксического анализатора

Индексы ошибок, обнаруживаемых синтаксическим анализатором, находятся в диапазоне 200–299. Текст ошибки содержит в себе префикс «Синтаксический анализатор», также ошибка содержит номер строки и позицию возникшей ошибки. Перечень сообщений синтаксического анализатора языка программирования IPP-2024 представлен в таблице 4.2.

Таблица 4.2 Перечень сообщений синтаксического анализатора языка программирования IPP-2024

Код ошибки	Сообщение
200	Синтаксическая анализ: неверная структура программы
201	Синтаксический анализ: некорректное использование операторов
	языка
202	Синтаксическая анализ: ошибка в выражении
203	Синтаксическая анализ: ошибка в подвыражении
204	Синтаксическая анализ: ошибка в объявлении параметров функции
205	Синтаксическая анализ: ошибка в передаваемых параметрах
	функции
206	Синтаксическая анализ: ошибка в объявлении массива
207	Синтаксическая анализ: синтаксический анализ завершён досрочно
208	Синтаксический анализ: некорректное использование массива
209	Синтаксический анализ: некорректное закрытие индекса массива

4.7. Параметры синтаксического анализатора и режимы его работы

В языке программирования IPP-2024 специальные параметры для управления режимом работы синтаксического анализатора не предусмотрены. Результат работы лексического анализатора выводится в файл, указанный параметром -log.

4.8. Принцип обработки ошибок

Процесс обработки ошибок организован следующим образом:

- 1) Синтаксический анализатор проверяет все правила и их цепочки в грамматике, чтобы найти совпадение с конструкцией из таблицы лексем.
- 2) Если подходящая цепочка не обнаружена, создаётся ошибка соответствующего типа.
 - 3) Все найденные ошибки сохраняются в общей структуре для их учета.
- 4) После завершения трассировки, при наличии ошибок, в протокол выводится диагностическое сообщение.

Синтаксический анализ завершается досрочно при достижении количества ошибок, равного трем.

4.9 Контрольный пример

Синтаксический анализатор в результате своей работы создаёт дерево разбора контрольного примера, которое приведено в приложении А. Протокол анализа и само дерево разбора исходного кода можно найти в приложении В, а его графическое отображение представлено в Графической работе №1. Протокол анализа демонстрирует пошаговый процесс работы конечного автомата с использованием магазинной памяти. В файл, указанный через параметр -log, записываются такие данные, как номер текущего шага, анализируемое правило, состояние входной ленты и содержимое стека.

5 Разработка семантического анализатора

5.1 Структура семантического анализатора

Семантический анализатор проверяет смысловую структуру программы, обеспечивая её семантическую корректность. Он выполняет более глубокий анализ, чем лексический и синтаксический анализаторы, выявляя ошибки в типах данных, областях видимости, использовании операторов и функций, а также другие нарушения семантики. Структура семантического анализатора языка программирования IPP-2024 представлена на рисунке 5.1.

Рисунок 5.1 Структура семантического анализатора языка программирования IPP- 2024

5.2 Функции семантического анализатора

Семантические проверки языка программирования IPP-2024, включая фазы их выполнения представлены в таблице 5.1.

Таблица 5.1 Семантические проверки языка программирования IPP-2024

Семантическая проверка	Фаза выполнения
Дублирование функции main	Лексический анализ
Превышение целочисленным литералом	Лексический анализ
максимального значения для хранения	
Дублирование пользовательской функции	Лексический анализ
Дублирование параметров функции	Лексический анализ
Дублирование переменной	Лексический анализ
Дублирование массива	Лексический анализ
Значение размера массива	Лексический анализ
Тип размера массива	Лексический анализ
Наличие переменной в доступной области	Лексический анализ
видимости	
Индекс массива при обращении	Семантический анализ
Тип индекса массива при обращении	Семантический анализ
Типы элементов массива при инициализации	Семантический анализ

Окончание таблицы 5.1

Семантическая проверка	Фаза выполнения
Элементы массива при инициализации должны	Семантический анализ
быть литералами	
Пустой блок в условных, циклических	Семантический анализ
конструкциях	
Возможность присваивания	Семантический анализ
Совпадение типов при присваивании	Семантический анализ
Проверка типов библиотечных функций	Семантический анализ
Совпадение типов в логическом выражении	Семантический анализ
Возможность присвоения результата	Семантический анализ
логического выражения	
Бесконечный цикл в выражении while	Семантический анализ
Проверка аргументов библиотечных функций	Семантический анализ
Проверка типов аргументов при вызове функций	Семантический анализ
Наличие точки входа в программу	Семантический анализ

5.3 Структура и перечень сообщений семантического анализатора

Коды ошибок, обнаруживаемых семантическим анализатором, находятся в диапазоне 300—399, а текст ошибок включает префикс «Семантический анализатор». Полный перечень кодов и сообщений ошибок семантического анализатора приведён в таблице 5.2.

Таблица 5.2 Перечень сообщений семантического анализатора языка

программирования ІРР-2024

	программирования п 1-202-		
Код	Сообщение		
ошибки			
300	Семантический анализатор: дублирование функции main		
301	Семантический анализатор: повторное объявление функции		
302	Семантический анализатор: дублирование параметра функции		
303	Семантический анализатор: повторное объявление переменной		
304	Семантический анализатор: повторное объявление массива		
305	Семантический анализатор: недопустимое значение размера массива		
306	Семантический анализатор: размер массива должен быть статическим значением		
307	Семантический анализатор: идентификатор не найден в доступной области видимости		
308	Семантический анализатор: отсутствует точка входа в программу		
309	Семантический анализатор: присваивание невозможно		
310	Семантический анализатор: функции DATE и TIME возвращают строковый тип		

Окончание таблицы 5.2

Код	Сообщение	
ошибки		
311	Семантический анализатор: невозможно присвоить результат логического выражения	
312	Семантический анализатор: несоответствие типов данных в выражении	
313	Семантический анализатор: недопустимые типы данных для	
	арифметических операций	
314	Семантический анализатор: функции DATE и TIME не должны	
	содержать аргументов	
315	Семантический анализатор: функция не должна содержать параметры	
316	Семантический анализатор: превышено количество аргументов при	
	вызове функции	
317	Семантический анализатор: несовпадение типов аргументов функции	
318	Семантический анализатор: недостаточное количество аргументов при	
	вызове функции	
319	Семантический анализатор: неверный тип данных в выражении if/while	
320	Семантический анализатор: недопустимое сравнение в выражении	
	if/while	
321	Семантический анализатор: отсутствует оператор return в функции	
322	Семантический анализатор: тип возвращаемого значения не	
	соответствует типу функции	
323	Семантический анализатор: неверное выражение в операторе return	
324	Семантический анализатор: индекс выходит за границы массива	
325	Семантический анализатор: недопустимое значение для индекса массива	
326	Семантический анализатор: тип элемента не соответствует типу массива при присваивании	
327	Семантический анализатор: обнаружен не литерал в инициализаторе массива	
328	Семантический анализатор: количество элементов в инициализаторе не	
	совпадает с размером массива	
329	Семантический анализатор: несовпадение типов при присваивании	
330	Семантический анализатор: несовпадение типов в логическом	
	выражении	
331	Семантический анализатор: бесконечный цикл в выражении while	
332	Семантический анализатор: пустой блок в if/else/while	
333	Семантический анализатор: переполнение в выражении	
334	Семантический анализатор: деление на ноль	
335	Семантический анализатор: недопустимый тип целочисленного	
	литерала	
336	Семантический анализатор: целочисленный литерал превысил	
	максимальное значение для хранения	
	makonnanbhoo sha tomto gin apanonin	

5.4 Принцип обработки ошибок

При обнаружении ошибки в исходном коде программы на языке программирования IPP-2024 семантический анализатор формирует сообщение об ошибке и выводит его в консоль, а также записывает в файл протокола, указанный параметром —log.

5.5 Контрольный пример

Таблица 5.3 содержит примеры кода с семантическими ошибками и соответствующими сообщениями об этих ошибках.

Таблица 5.3 Примеры диагностики ошибок семантического анализатора

таолица 5.5 примеры диагностики ошио	ок семантического анализатора
Исходный код программы на языке	Сообщение об ошибке
программирования ІРР-2024	
int function mul(int a, int b)	Ошибка 308: Семантический
{	анализатор: отсутствует точка входа в
return 2;	программу
}	
int function mul(int a, int b)	Ошибка 317: Семантический
{	анализатор: несовпадение типов
return 2;	аргументов функции
}	
	Строка:9 Позиция:27
main	
{	
new string str = "param";	
new int num = $mul(str, 2)$;	
}	
main	Ошибка 334: Семантический
{	анализатор: деление на ноль
new int num = $10 / 0$;	
}	

6 Вычисление выражений

6.1 Выражения, допускаемые языком

В языке программирования IPP-2024 разрешены вычисления выражений с использованием целочисленных и беззнаковых целочисленных типов данных, включая возможность вызова функций внутри таких выражений. Также поддерживаются простые логические выражения, состоящие из переменных или литералов целочисленного и беззнакового целочисленного типов. Однако комбинировать логические и арифметические операции в одном выражении нельзя. Приоритет операций указан в таблице 6.1.

Таблица 6.1 Приоритеты операций языка программирования IPP-2024

Операция	Значение приоритета
()	0
,	1
+, -	2
>, <, >=, <=, !=	3
*, /, %	4
@	5

Примеры выражений из контрольного примера: a * b, num1 > num2, 10/5, cnt + 1 и т.д.

6.2 Польская запись и принцип ее построения

Обратная польская запись – форма записи выражений, в которой операнды расположены перед знаками операций.

Язык программирования IPP-2024 транслируется в язык ассемблера, в котором все вычисления производятся через стек. Преобразование исходных выражений в обратную польскую запись, упрощает генерацию кода вычисления выражений в язык ассемблера.

Алгоритм преобразования выражений в обратную польскую запись:

- выражение просматривается слева направо;
- идентификаторы и литералы переносятся в результирующую строку в порядке их следования;
- если идентификатор является именем функции, то он помещается в стек и заменяется специальным символом «\$», если после него следует открывающая скобка;
- операция записывается в стек, если стек пуст или в вершине стека находится открывающая скобка;
- операция выталкивает из стека в результирующую строку все операции с приоритетом больше или равным её собственному, после чего помещается в стек;
 - открывающая скобка помещается в стек;

- закрывающая скобка выталкивает из стека в результирующую строку все операции до открывающей скобки, после чего обе скобки уничтожаются;
- запятая выталкивает из стека в результирующую строку все операции до открывающей скобки;
- по завершении разбора выражения все оставшиеся в стеке операции выталкиваются в результирующую строку;
 - результирующая строка заменяет исходное выражение в таблице лексем.

Примеры построения обратной польской записи из контрольного примера: а b *, cnt 1 +, 10 50 max 1011b 1111b max +, 10 5 / и т.д.

6.3 Программная реализация обработки выражения

Программная реализация алгоритма преобразования выражений к обратной польской записи на языке C++ представлена в приложении Г.

6.4 Контрольный пример

Контрольные примеры с выражениями до и после преобразования в обратную польскую нотацию приведены в таблице 6.2.

Таблица 6.2 Преобразование выражений контрольного примера

Выражение	Результат
a * b	a b *
a > b	a b >
10 / 5	10 5 /
$\max(110, 50) + \max(1011b, 1111b)$	\$ 110 50 max \$ 1011b 1111b max +

7 Генерация кода

7.1 Структура генератора кода

Для трансляции кода с языка программирования IPP-2024 был выбран язык ассемблера. Процесс генерации кода осуществляется следующим образом: генератор кода последовательно обрабатывает таблицу лексем, при необходимости обращаясь к таблице идентификаторов. На основе анализируемых лексем выполняется генерация соответствующего ассемблерного кода. Входными данными для генератора служат таблица лексем и таблица идентификаторов, а результатом работы является готовый ассемблерный код. Структура генератора кода представлена на рисунке 7.1.

Рисунок 7.1 Структура генератора кода

7.2 Представление типов данных в оперативной памяти

Язык программирования IPP-2024 основан на плоской модели памяти (flat), при которой приложению выделяется единый непрерывный сегмент для размещения кода и данных. Этот сегмент разделён на следующие области:

- .stack для стека;
- .const для хранения констант;
- .data для переменных;
- .code для машинного кода.

Соответствие типов данных в исходном языке программирования IPP-2024 типам целевого языка приведены в таблице 7.1.

Таблица 7.1 Соответствие типов данных языка программирования IPP-2024 и языка ассемблера

Тип данных	Представление на языке	Описание
	ассемблера	
int	sdword	Хранит целочисленное
		знаковое значение
		размером 4 байта.

Окончание таблицы 7.1

Тип данных	Представление на языке	Описание	
	ассемблера		
uint	dword	Хранит целочисленное	
		беззнаковое значение	
		размером 4 байта.	
bool	dword	Хранит логическое	
		значение true, false	
string	dword	Хранит указатель на	
		начало строки	

7.3 Статическая библиотека

Функции, входящие в состав статической библиотеки IPP-2024, приведены в таблице 7.2.

Таблица 7.2 Функции стандартной библиотеки языка программирования IPP- 2024

Tuosinga 7:2 + yinkimi etangapinon onosmotekn asaika npot pamminpobania 111 2021					
Функция	Описание	Количество			
Функция	Описанис	параметров			
	Возвращает строку с текущей датой в				
string DATE()	формате ДД.ММ.ГГ.	0			
	Возвращает строку с текущим временем в				
	формате ЧЧ:ММ:СС.				
string TIME()		0			

Статическая библиотека написана на языке С++. Подключение статической библиотеки производится автоматически на этапе компоновки.

7.4 Особенности алгоритма генерации кода

Обобщенная блок-схема алгоритма генерации кода языка ассемблера изображена на рисунке 7.2.

Рисунок 7.2 Обобщенная блок-схема алгоритма генерации кода

Алгоритм генерации исходного кода с языка программирования IPP-2024 на язык ассемблера:

- в файл, заданный параметром -out, записывается информация о модели памяти, используемом соглашении о вызовах и подключаются необходимые библиотеки;
- проходим по таблице идентификаторов и в сегмент констант записываем литералы;
- проходим по таблице лексем и ищем объявление переменных, заполняем сегмент данных этими переменными;
 - снова проходим по таблице лексем, заполняя уже сегмент кода.

Для генерации используются шесть функций:

- 1) CreateNameWithScope(char*& scopedName, const IT::Entry entry) предназначена для создания имён идентификаторов с учётом их области видимости.
- 2) Head (Out::OUT& out) отвечает за запись информации о модели памяти, соглашении о вызовах, а также подключение необходимых библиотек.
- 3) Const (LA::LEX lex, Out::OUT& out) используется для генерации сегмента констант.
- 4) Data (LA::LEX lex, Out::OUT& out) служит для генерации сегмента переменных.
 - 5) Code (LA::LEX lex, Out::OUT& out) занимается генерацией сегмента кода.
- 6) Generation (LA::LEX lex, Out::OUT& out) объединяет работу всех перечисленных функций и выполняет трансляцию исходного кода на язык ассемблера.

7.5 Входные параметры, управляющие генерацией кода

Входными параметрами генератора в языке программирования IPP-2024 являются таблица идентификаторов и таблица лексем, которые предназначены для генерации кода ассемблера. Результат работы генератора кода выводится в файл, указанный параметром -out.

7.6 Контрольный пример

Контрольный пример языка программирования IPP-2024, сгенерированный в язык ассемблера, представлен в приложении Д.

8 Тестирование транслятора

8.1 Общие положения

Тесты предназначены для выявления ошибок в работе компилятора и их последующего устранения. Ошибки обнаруживались как на ранних этапах разработки, так и на более поздних стадиях.

При возникновении ошибки работа транслятора прекращается, так как ошибка на одном этапе может привести к сбоям на последующих. Сообщение об ошибке с указанием её номера будет выведено в файл протокола и на консоль.

8.2 Результаты тестирования

Описание тестовых наборов, демонстрирующих проверки на разных этапах трансляции, приведено в таблице 8.1.

Таблица 8.1 Результаты тестирования транслятора

Исходный код	Ошибка	Этап
main	Ошибка 127:Лексический анализатор:	Лексический
{	нераспознанная лексема	анализ
new int a#;	-	
}	Строка:3 Позиция:13	
main	Ошибка 128:Лексический анализатор:	Лексический
{	ошибка при считывании строкового	анализ
new string str	литерала	
= "stroka;		
}	Строка:3 Позиция:26	
main	202: строка 3,Синтаксическая анализ:	Синтаксический
{	ошибка в выражении	анализ
new int a =	Ошибка 207:Синтаксическая анализ:	
123	синтаксический анализ завершён	
}	досрочно	
int function mul(int	204: строка 1,Синтаксическая анализ:	Синтаксический
a,)	ошибка в объявлении параметров	анализ
{	функции	
return 2;	Ошибка 207:Синтаксическая анализ:	
}	синтаксический анализ завершён	
	досрочно	
main	Ошибка 209:Синтаксический анализ:	Синтаксический
{	некорректное закрытие индекса массива	анализ
new int		
$array3] = \{1, 2, 3\};$	Строка:3 Позиция:17	
}		

Окончание таблицы 8.1

,		
Исходный код	Ошибка	Этап
main	Ошибка 329: Семантический	Семантический
{	анализатор: несовпадение типов при	анализ
new int a =	присваивании	
"stroka";		
}	Строка:3 Позиция:6	
int function mul(int	Ошибка 322: Семантический	Семантический
a, int b)	анализатор: тип возвращаемого	анализ
{	значения не соответствует типу	
new int res =	функции	
a * b;		
return	Строка:4 Позиция:20	
"stroka";		
}		
main	Ошибка 326: Семантический	Семантический
{	анализатор: тип элемента не	анализ
new int	соответствует типу массива при	
$array[3] arr = \{1, 2,$	присваивании	
"stroka"};		
}	Строка:3 Позиция:14	
main	Ошибка 331: Семантический	Семантический
{	анализатор: бесконечный цикл в	анализ
while $(2 > 1)$	выражении while	
{		
	Строка:3 Позиция:3	
writeline		
"infinity";		
}		
}		

Заключение

В ходе выполнения курсовой работы был разработан транслятор с языка программирования IPP-2024 в язык ассемблера и написана пояснительная записка со спецификацией языка.

Таким образом, были выполнены основные задачи данной курсовой работы:

- сформулирована спецификация языка программирования IPP-2024;
- разработаны конечные автоматы и важные алгоритмы на их основе для эффективной работы лексического анализатора;
- осуществлена программная реализация лексического анализатора,
 распознающего допустимые цепочки спроектированного языка программирования;
- разработана контекстно-свободная, приведённая к нормальной форме Грейбах, грамматика для описания синтаксически верных конструкций языка;
 - осуществлена программная реализация синтаксического анализатора;
- разработан семантический анализатор, осуществляющий проверку используемых инструкций на соответствие логическим правилам;
 - разработан транслятор кода на язык ассемблера;
 - проведено тестирование всех вышеперечисленных компонентов.

Количественные и качественные характеристики реализации транслятора:

- количество типов данных: 4;
- количество инструкция языка: 4;
- количество лексем: 33;
- правил грамматики: 7;
- наличие стандартной библиотеки даты и времени;
- наличие арифметических операторов и операторов сравнения;
- наличие пользовательской структуры данных массива.

Работа по разработке компилятора позволила получить необходимое представление о структурах и процессах, использующихся при построении компиляторов, также были изучены основы теории формальных грамматик и основы общей теории компиляторов.

Список использованных источников

- 1 Ахо А. Компиляторы: принципы, технологии и инструменты / А. Ахо, Р. Сети, Дж. Ульман. М.: Вильямс, 2003. 768с.
- 2 Ирвин К. Р. Язык ассемблера для процессоров Intel / К. Р. Ирвин. М.: Вильямс, 2005.-912c.
- 3 Прата, С. Язык программирования С++. Лекции и упражнения / С. Прата. М., 2006 1104 с.
- 4 Страуструп, Б. Принципы и практика использования С++ / Б. Страуструп $2009-1238~\mathrm{c}.$

Приложение А

```
uint function mul(uint a, uint b)
    new uint res;
    res = a * b;
    return res;
}
main
    new string str = "Hello world!";
    writeline str;
    new int num1 = 21;
    new int num2 = 43;
    if(num1 > num2)
        str = DATE();
    else
        str = TIME();
    writeline str;
    new uint num3;
    new uint num4;
    num3 = mul(110,50) + mul(1011b,1111b);
    num4 = 10 / 5;
    new int array[4] nums = \{1, 2, 3, 4\};
    new uint num5 = mul(num1, num2);
    writeline num5;
    new uint cnt = 0;
    while (cnt < 4)
        write cnt;
        write " - ";
        writeline nums[cnt];
        cnt = cnt + 1;
    }
```

Листинг 1 Контрольный пример на языке программирования IPP-2024

Приложение Б

```
namespace LT
     struct Entry
          char lexema;
          int sn;
          int idxTI = LT TI NULLXDX;
          Entry();
          Entry(char lexema, int sn, int idxTI);
     };
     struct LexTable
          int maxsize;
          int size;
          Entry* table;
     };
     LexTable Create(int size);
     void Add(LexTable& lextable, Entry entry);
     Entry GetEntry(LexTable& lextable, int n);
     void WriteTable(LexTable& lextable);
     void Delete(LexTable& lextable);
```

Листинг 2 Структура таблицы лексем на языке С++

```
namespace IT
     enum IDDATATYPE { VOID = 0, UINT = 1, STRING = 2, BOOL = 3, INT
     enum IDTYPE { V = 1, F = 2, P = 3, L = 4, A = 5};
     struct Entry
          int idxfirstLE;
          char id[TI ID MAXSIZE];
          char scope[TI ID MAXSIZE];
          IDDATATYPE iddatatype;
          IDTYPE idtype;
          union
               bool vbool;
               unsigned int vuint;
               int vint;
               struct
                    int len;
                    char str[TI STR MAXSIZE];
               } vstr;
          } value;
```

```
Entry();
};

struct IdTable

{
    int maxsize;
    int size;
    Entry* table;
};

IdTable Create(int size);
void Add(IdTable& idtable, Entry entry);
Entry GetEntry(IdTable& idtable, int n);
int IsId(IdTable& idtable, char id[TI_ID_MAXSIZE]);
int Search(IdTable& idtable, Entry entry);
void WriteTable(IdTable& idtable);
void Delete(IdTable& idtable);
}
```

Листинг 3 Структура таблицы идентификаторов на языке С++

```
tfi(ti,ti)
2
     {
3
     nti;
4
     i=i*i;
5
     ri;
6
7
     m
8
     {
9
     nti=1;
10
     xi;
11
     nti=1;
12
     nti=l;
13
     z(i>i)
14
     {
15
     i=i();
16
17
     е
18
19
     i=i();
20
     }
21
     xi;
22
    nti;
23
     nti;
24
     i=i(1,1)+i(1,1);
25
     i=1/1;
26
     nta@li={1,1,1,1};
27
     nti=i(i,i);
28
     xi;
29
     nti=1;
30
     h(i < l)
31
     {
32
     wi;
```

```
33 wl;

34 xi@i;

35 i=i+l;

36 }

37 }
```

Листинг 4 Таблица лексем

Nº Id Identifier Scope		Identifier type 	Line in text
0 mul	uint	lunction	1
global 1 a	null uint	lnarametr	1
mul	null	parameer	1 1
2 b	uint	parametr	1
mul	null	•	
3 res	uint	variable	3
mul	0		
4 main	void	function	7
global	null		1.0
5 str main	string ""(0)	lvariable	9
	(0) string	lliteral	9
main	"Hello world!		1 2
7 num1		variable	11
main	10	·	
8 L1	int	literal	11
main	21		
9 num2		variable	12
main	0		. 1.0
10 L2	1nt 43	literal	12
main 11 DATE	•	function	15
if0	null	Tunccion	15
12	string	lfunction	19
else1	null	,	
13 num3	uint	variable	22
main	0		
14 num4	uint	variable	23
main	0	12.1	104
15 L3	int	literal	24
main 16 L4	9 int	literal	24
16	11110	ITTCETAT	4 '1
17 L5	int	literal	24
main	11	1	1 — -
18 L6	int	literal	24
main	15		
19 L7	int	literal	25
main	10		
20 L8	int	literal	25
main	5		

21 L9		int	literal	126
main	4	1110	11100101	120
22 nums		int	array	26
main	4		1 4 = 4 4	1 = 0
23 L10	·	int	literal	126
main	1	-		-
24 L11		int	literal	126
main	2		•	•
25 L12	· ·	int	literal	126
main	3			
26 L13		int	literal	26
main	4			
27 num5	1	uint	variable	27
main	0			
28 cnt		uint	variable	29
main	0			
29 L14		int	literal	29
main	0			
30 L15		int	literal	30
while2	4			
31 L16		string	literal	33
while2	" - '	' (3)		
32 L17	I	int	literal	35
while2	1			

Листинг 5 Таблица идентификаторов

Приложение В

```
namespace GRB
     struct Rule
          GRBALPHABET nn;
          int iderror;
          short size;
          struct Chain
               short size;
               GRBALPHABET* nt;
               Chain()
                     (*this).size = 0;
                     (*this).nt = 0;
               };
               Chain (short psize, GRBALPHABET s, ...);
               char* GetCChain(char* b);
               static GRBALPHABET T(char t)
                    return GRBALPHABET(t);
               };
               static GRBALPHABET N(char n)
                    return -GRBALPHABET(n);
               static bool IsT(GRBALPHABET s)
                    return s > 0;
               };
               static bool isN(GRBALPHABET s)
                    return !IsT(s);
               };
               static char AlphabetToChar(GRBALPHABET s)
                    return IsT(s) ? char(s) : char(-s);
               };
          } *chains;
          Rule()
               (*this).iderror = -1;
                (*this).nn = 0 \times 00;
               (*this).size = 0;
               (*this).chains = nullptr;
          Rule (GRBALPHABET pnn, int iderror, short psize, Chain c,
...);
          char* GetCRule(char* b, short nchain);
```

```
short GetNextChain(GRBALPHABET t, Rule::Chain& pchain,
short j);
    };
    struct Greibach
     {
          short size;
          GRBALPHABET startN;
          GRBALPHABET stbottomT;
          Rule* rules;
          Greibach() { (*this).size = 0; (*this).startN = 0;
(*this).stbottomT = 0; (*this).rules = 0; };
          Greibach (GRBALPHABET pstartN, GRBALPHABET pstbottomT,
short psize, Rule r, ...);
          short GetRule(GRBALPHABET pnn, Rule& prule);
          Rule GetRule(short n);
     };
    Greibach GetGreibach();
```

Листинг 6 Структура грамматики Грейбах на языке С++

```
class my stack SHORT : public std::stack<short>
public:
     using std::stack<short>::c;
};
typedef my stack SHORT MFSTSTSTACK;
namespace MFST
     struct MfstState
          short lenta position;
          short nrule;
          short nrulechain;
          MFSTSTSTACK st;
          MfstState();
          MfstState(short pposition, MFSTSTSTACK pst, short
pnrulechain);
          MfstState(short pposition, MFSTSTSTACK pst, short pnrule,
short pnrulechain);
     };
     class my stack MfstState :public std::stack<MfstState> {
     public:
          using std::stack<MfstState>::c;
     struct Mfst
          enum RC STEP {
```

```
NS OK,
               NS NORULE,
               NS NORULECHAIN,
               NS ERROR,
               TS OK,
               TS NOK,
               LENTA END,
               SURPRISE,
          };
          struct MfstDiagnosis
               short lenta position;
               RC STEP rc step;
               short nrule;
               short nrule chain;
               MfstDiagnosis();
               MfstDiagnosis(short plenta position, RC STEP
prc step, short pnrule, short pnrule chain);
          } diagnosis[MFST DIAGN NUMBER];
          GRBALPHABET* lenta;
          short lenta position;
          short nrule;
          short nrulechain;
          short lenta size;
          GRB::Greibach grebach;
          LT::LexTable lex;
          MFSTSTSTACK st;
          my stack MfstState storestate;
          Mfst();
          Mfst(LT::LexTable& plex, GRB::Greibach pgrebach);
          char* GetCSt(char* buf);
          char* GetCLenta(char* buf, short pos, short n = 25);
          char* GetDiagnosis(short n, char* buf);
          bool SaveState(Log::LOG& log);
          bool ResetState (Log::LOG& log);
          bool PushChain(GRB::Rule::Chain chain);
          RC STEP Step(Log::LOG& log);
          bool Start(Log::LOG& log);
          bool SaveDiagnosis(RC STEP pprc step);
          void PrintRules(Log::LOG& log);
          struct Deducation
               short size;
               short* nrules;
               short* nrulechains;
               Deducation()
                    size = 0;
                    nrules = 0;
```

```
nrulechains = 0;
};
} deducation;

bool SaveDeducation();
};
}
```

Листинг 7 Структура автомата с магазинной памятью на языке С++

```
Шаг : Правило
                              Входная лента
                                                                 Стек
    : S->tfi(F) {rE; }
                              tfi(ti,ti){nti;i=i*i;ri;}
                                                                 S$
     : SAVESTATE:
0
                              tfi(ti,ti) {nti;i=i*i;ri;}
                                                                 tfi(F) {rE; }$
1
                              fi(ti,ti) {nti;i=i*i;ri;}m
                                                                 fi(F) {rE; }$
2
                              i(ti,ti){nti;i=i*i;ri;}m{
                                                                 i(F) {rE; }$
3
                              (ti,ti) {nti;i=i*i;ri;}m{n
                                                                 (F) {rE; }$
4
                              ti, ti) {nti; i=i*i; ri; }m{nt
                                                                 F) {rE;}$
5
    : F->ti
                              ti, ti) {nti; i=i*i; ri; }m{nt
                                                                 F) {rE; }$
5
    : SAVESTATE:
5
                              ti, ti) {nti; i=i*i; ri; }m{nt
                                                                 ti) {rE; }$
6
                              i, ti) {nti; i=i*i; ri; }m{nti
                                                                 i) {rE; }$
7
                              ,ti) {nti;i=i*i;ri;}m{nti=
                                                                 ) {rE; }$
8
8
    : RESSTATE
8
                              ti, ti) {nti; i=i*i; ri; }m{nt
                                                                 F) {rE; }$
9
    : F->ti,F
                              ti, ti) {nti; i=i*i; ri; }m{nt
                                                                 F) {rE; }$
9
    : SAVESTATE:
9
                              ti, ti) {nti; i=i*i; ri; }m{nt
                                                                ti, F) {rE;}$
10
                              i, ti) {nti; i=i*i; ri; }m{nti
                                                                 i,F) {rE;}$
                                                                 ,F) {rE;}$
11
                              ,ti) {nti;i=i*i;ri;}m{nti=
12
                              ti) {nti;i=i*i;ri;}m{nti=l
                                                                 F) {rE; }$
    : F->ti
13
                              ti) {nti;i=i*i;ri;}m{nti=l
                                                                 F) {rE; }$
13
    : SAVESTATE:
                              3
13
                              ti) {nti;i=i*i;ri;}m{nti=l
                                                                 ti) {rE; }$
14
                              i) {nti; i=i*i; ri; }m{nti=l;
                                                                 i) {rE; }$
15
                              ) {nti; i=i*i; ri; }m{nti=l; x
                                                                 ) {rE; }$
16
                              {nti;i=i*i;ri;}m{nti=l;xi
                                                                 {rE;}$
17
                              nti;i=i*i;ri;}m{nti=l;xi;
                                                                 rE; }$
18
    : RESSTATE
18
18
                              ti) {nti;i=i*i;ri;}m{nti=l
                                                                 F) { rE; }$
19
    : F->ti,F
                              ti) {nti; i=i*i; ri; }m{nti=l
                                                                 F) {rE; }$
19
    : SAVESTATE:
19
                              ti) {nti; i=i*i; ri; }m{nti=l
                                                                 ti,F) {rE; }$
20
    :
                              i) {nti; i=i*i; ri; }m{nti=l;
                                                                 i,F){rE;}$
21
                              ) {nti; i=i*i; ri; }m{nti=l; x
                                                                 ,F) {rE;}$
22
    : 2
22
    : RESSTATE
22
                              ti) {nti; i=i*i; ri; }m{nti=l
                                                                 F) {rE; }$
23
    : TNS NORULECHAIN/NS NORULE
23
    : RESSTATE
23
                              ti, ti) {nti; i=i*i; ri; }m{nt
                                                                 F) {rE; }$
24
      TNS NORULECHAIN/NS NORULE
```

```
: RESSTATE
24
24
                              tfi(ti,ti){nti;i=i*i;ri;}
                                                                S$
25
    : S->tfi() {rE;}
                              tfi(ti,ti) {nti;i=i*i;ri;}
                                                                S$
25
    : SAVESTATE:
25
                              tfi(ti,ti) {nti;i=i*i;ri;}
                                                                tfi() {rE; }$
26
                              fi(ti,ti) {nti;i=i*i;ri;}m
                                                                fi() {rE; }$
27
                              i(ti,ti){nti;i=i*i;ri;}m{
                                                                i() {rE; }$
28
                              (ti,ti) {nti;i=i*i;ri;}m{n
                                                                 () { rE; }$
29
                                                                ) {rE; }$
    :
                              ti, ti) {nti; i=i*i; ri; }m{nt
30
    : 2
30
   : RESSTATE
30
                                                                S$
                              tfi(ti,ti) {nti;i=i*i;ri;}
31
                              tfi(ti,ti) {nti;i=i*i;ri;}
                                                                S$
    : S->tfi(F){NrE;}
31
    : SAVESTATE:
31
                              tfi(ti,ti){nti;i=i*i;ri;}
tfi(F) {NrE; }$
32
                              fi(ti,ti) {nti;i=i*i;ri;}m
                                                                fi(F) {NrE; }$
33
                              i(ti,ti){nti;i=i*i;ri;}m{
                                                                i(F) {NrE; }$
34
                              (ti,ti) {nti; i=i*i; ri; }m{n
                                                                 (F) {NrE; }$
35
                                                                F) {NrE; }$
                              ti, ti) {nti; i=i*i; ri; }m{nt
36
    : F->ti
                                                                F) {NrE; }$
                              ti, ti) {nti; i=i*i; ri; }m{nt
36
    : SAVESTATE:
36
                              ti, ti) {nti; i=i*i; ri; }m{nt
                                                                ti) {NrE; }$
37
                              i, ti) {nti; i=i*i; ri; }m{nti
                                                                i) {NrE; }$
38
                              ,ti) {nti;i=i*i;ri;}m{nti=
                                                                ) {NrE; }$
    :
39
    : 2
    : RESSTATE
39
39
                              ti, ti) {nti; i=i*i; ri; }m{nt
                                                                F) {NrE; }$
40
    : F->ti,F
                              ti, ti) {nti; i=i*i; ri; }m{nt
                                                                F) {NrE; }$
40
    : SAVESTATE:
40
                              ti, ti) {nti; i=i*i; ri; }m{nt
                                                                ti, F) { NrE; }$
41
                              i, ti) {nti; i=i*i; ri; }m{nti
                                                                i, F) {NrE; }$
42
                                                                 ,F) {NrE;}$
                              ,ti) {nti;i=i*i;ri;}m{nti=
43
                              ti) {nti; i=i*i; ri; }m{nti=l
                                                                F) {NrE; }$
44
    : F->ti
                              ti) {nti;i=i*i;ri;}m{nti=l
                                                                F) {NrE; }$
    : SAVESTATE:
44
44
                              ti) {nti; i=i*i; ri; }m{nti=l
                                                                ti) {NrE; }$
45
                              i) {nti; i=i*i; ri; }m{nti=l;
                                                                i) {NrE; }$
46
                                                                ) {NrE; }$
                              ) {nti; i=i*i; ri; }m{nti=l; x
47
                              {nti;i=i*i;ri;}m{nti=l;xi
                                                                {NrE; }$
48
                              nti;i=i*i;ri;}m{nti=l;xi;
                                                                NrE; }$
   : N->nti;
49
                             nti;i=i*i;ri;}m{nti=l;xi;
                                                                NrE; }$
49
    : SAVESTATE:
49
                              nti;i=i*i;ri;}m{nti=l;xi;
                                                                nti;rE; }$
50
                              ti;i=i*i;ri;}m{nti=l;xi;n
                                                                ti;rE; }$
2113: SAVESTATE:
                              67
                              i+1; } }
2113:
                                                                iM; } } $
2114:
                              +1; } }
                                                                M; } } $
2115: M->+E
                              +1; } }
                                                                M; } } $
2115: SAVESTATE:
                              68
2115:
                              +1; } }
                                                                +E; } }$
2116:
                              1; } }
                                                                E; } }$
2117: E->1
                              1; } }
                                                                E; } }$
```

```
2117: SAVESTATE:
                               69
2117:
                               1; } }
                                                                  1; } } $
2118:
                                                                  ; } } $
                               ; } }
2119:
                               } }
                                                                  2120:
                               }
                                                                  }$
2121:
                                                                  $
2122: 6
2123: ---->LENTA END
```

Листинг 8 Протокол работы синтаксического анализатора

```
: S->tfi(F){NrE;}S
    : F->ti,F
7
    : F->ti
11
   : N->nti;N
15
   : N->i=E;
17
   : E->iM
18
   : M->*E
19
   : E->i
22
   : E->i
25
   : S->m\{N\}
27
   : N->nti=E;N
31
   : E->1
33
   : N->xE;N
34
   : E->i
36
   : N->nti=E;N
40
   : E->1
42
   : N->nti=E;N
46
   : E->1
48
   : N->z(E)\{N\}e\{N\}N
50
   : E->iM
51
   : M->>E
52
   : E->i
55
   : N->i=E;
57
   : E->i()
64
   : N->i=E;
66
   : E->i()
71
   : N->xE; N
72
   : E->i
74
   : N->nti;N
78
   : N->nti;N
82
   : N->i=E;N
84
   : E->i(W)M
86
   : W->1,W
88
    : W->1
90
   : M->+E
91
   : E->i(W)
93
   : W->1,W
   : W->1
95
98
   : N->i=E;N
100 : E->1M
101 : M->/E
102 : E->1
104 : N->nta@li={A};N
```

```
112 : A->1,A
114 : A->1,A
116 : A->1,A
118 : A->1
121 : N->nti=E;N
125 : E - > i(W)
127 : W->i,W
129 : W->i
132 : N->xE;N
133 : E->i
135 : N->nti=E;N
139 : E->1
141 : N->h(E)\{N\}
143 : E->iM
144 : M-><E
145 : E->1
148 : N->wE;N
149 : E->i
151 : N->wE; N
152 : E->1
154 : N->xE;N
155 : E->i@i
159 : N->i=E;
161 : E->iM
162 : M->+E
163 : E->1
```

Листинг 9 Дерево разбора контрольного примера

Приложение Г

```
#include "pch.h"
namespace PN
     void PN(LT::LexTable& lextable, IT::IdTable& idtable)
          for (int i = 0; i < lextable.size; i++)
               if (lextable.table[i].lexema == LEX EQUAL SIGN)
                    if (lextable.table[i + 2].lexema ==
LEX SEMICOLON)
                         continue;
                    }
                    else
                         PolishNotation (++i, lextable, idtable,
LEX SEMICOLON);
               if (lextable.table[i].lexema == LEX IF ||
lextable.table[i].lexema == LEX WHILE)
                i += 2;
                PolishNotation(i, lextable, idtable,
LEX RIGHTTHESIS);
    void PolishNotation(int pos, LT::LexTable& lextable,
IT::IdTable& idtable, char endLexem)
        std::stack<LT::Entry> operatorsStack;
        std::queue<LT::Entry> output;
        int countOfLex = 0;
        int expressionPosition = pos;
        for (expressionPosition;
lextable.table[expressionPosition].lexema != endLexem;
expressionPosition++, countOfLex++)
            switch (lextable.table[expressionPosition].lexema)
            case LEX ID:
(idtable.table[lextable.table[expressionPosition].idxTI].idtype ==
IT::F)
operatorsStack.push(lextable.table[expressionPosition]);
```

```
else
                    output.push(lextable.table[expressionPosition]);
                break;
            case LEX LITERAL:
                output.push(lextable.table[expressionPosition]);
                break;
            case LEX LEFTTHESIS:
                if (lextable.table[expressionPosition - 1].lexema ==
LEX_ID && lextable.table[expressionPosition - 1].idxTI != TI NULLIDX
& &
                    idtable.table[lextable.table[expressionPosition]]
- 1].idxTI].idtype == IT::F)
                    output.push(LT::Entry{ '$',
lextable.table[expressionPosition].sn, -1 });
operatorsStack.push(lextable.table[expressionPosition]);
                break;
            case LEX RIGHTTHESIS:
                while (!operatorsStack.empty() &&
operatorsStack.top().lexema != LEX LEFTTHESIS)
                    output.push(operatorsStack.top());
                    operatorsStack.pop();
                if (!operatorsStack.empty() &&
operatorsStack.top().lexema == LEX LEFTTHESIS)
                    operatorsStack.pop();
                if (!operatorsStack.empty() &&
operatorsStack.top().idxTI != TI NULLIDX &&
idtable.table[operatorsStack.top().idxTI].idtype == IT::F)
                    output.push(operatorsStack.top());
                    operatorsStack.pop();
                break;
            case LEX COMMA:
                while (!operatorsStack.empty() &&
operatorsStack.top().lexema != LEX LEFTTHESIS)
                    output.push(operatorsStack.top());
                    operatorsStack.pop();
                }
                break;
            case LEX PLUS:
            case LEX MINUS:
            case LEX STAR:
            case LEX DIRSLASH:
```

```
case LEX PERCENT:
            case LEX LESS:
            case LEX MORE:
            case LEX MORE OR EQUAL:
            case LEX LESS OR EQUAL:
            case LEX EQUAL:
            case LEX NOT EQUAL:
                if (lextable.table[expressionPosition].lexema ==
LEX MINUS && lextable.table[expressionPosition + 1].lexema == LEX ID
& &
                    lextable.table[expressionPosition + 1].idxTI !=
TI NULLIDX && idtable.table[lextable.table[expressionPosition +
1].idxTI].idtype == IT::F)
                    output.push(lextable.table[expressionPosition]);
                    continue;
                while (!operatorsStack.empty() &&
GetPriority(lextable.table[expressionPosition], idtable) <=</pre>
GetPriority(operatorsStack.top(), idtable))
                    output.push(operatorsStack.top());
                    operatorsStack.pop();
operatorsStack.push(lextable.table[expressionPosition]);
                break;
            default:
                break;
        while (!operatorsStack.empty())
            output.push(operatorsStack.top());
            operatorsStack.pop();
        for (int i = 0; i < countOfLex; i++)
            if (!output.empty())
                lextable.table[pos + i] = output.front();
                output.pop();
            }
            else
                lextable.table[pos + i] = LT::Entry{ PN FILLER,
lextable.table[pos].sn, -1 };
     int GetPriority(LT::Entry entry, IT::IdTable& idtable)
          switch (entry.lexema)
```

```
case LEX LEFTTHESIS:
          case LEX RIGHTTHESIS:
               return 0;
          case LEX COMMA:
               return 1;
          case LEX PLUS:
          case LEX MINUS:
               return 2;
          case LEX MORE:
          case LEX LESS:
          case LEX MORE OR EQUAL:
          case LEX_LESS_OR_EQUAL:
          case LEX EQUAL:
          case LEX NOT EQUAL:
               return 3;
          case LEX STAR:
          case LEX DIRSLASH:
        case LEX PERCENT:
               return 4;
          case LEX IND:
               return 5;
          }
          return -1;
}
```

Листинг 10 Программная реализация обработки выражений на языке С++

Приложение Д

```
.586
.model flat, stdcall
includelib kernel32.lib
includelib libucrt.lib
includelib ../Debug/IPP-2024L.lib
includelib ../Debug/IPP-2024ASML.lib
ExitProcess proto : dword
SetConsoleTitleA proto: dword
GetStdHandle proto: dword
WriteConsoleA proto: dword, : dword, : dword, : dword, : dword
SetConsoleOutputCP proto : dword
SetConsoleCP proto : dword
overflow error message proto
division by zero error message proto
index error message proto
GetStringArrayElementAndOffset proto
GetIntArrayElementAndOffset proto
PrintUnsignedInt proto : dword
PrintUnsignedIntNewLine proto : dword
PrintInt proto : dword
PrintIntNewLine proto : dword
PrintBoolean proto : dword
PrintBooleanNewLine proto : dword
PrintConsole proto : dword
PrintConsoleNewLine proto : dword
extrn TIME : proc
extrn DATE : proc
.stack 4096
.const
consoleTitle byte "IPP-2024", 0
strPause byte "pause", 0
emptyString byte " ", 0
L0 sdword 3
L1 sdword 1
L2 sdword 2
L3 sdword 3
L4 sdword 1
L5 sdword 4
L6 sdword 0
L7 sdword 3
L8 sdword 1
.data
nums main sdword 1, 2, 3
cnt main sdword 0
.code
main proc
```

```
push 1251d
     call SetConsoleOutputCP
     push 1251d
     call SetConsoleCP
     push offset consoleTitle
     call SetConsoleTitleA
     push -11
     call GetStdHandle
     xor eax, eax
     mov eax, L5
     push eax
     push lengthof nums main
     push offset nums main
     push L4
     call GetIntArrayElementAndOffset
     pop ebx
     mov [eax], ebx
     xor eax, eax
     mov eax, L6
     mov cnt main, eax
WHILE 0:
     mov eax, cnt main
     cmp eax, L7
     jge END WHILE 0
     push lengthof nums main
     push offset nums main
     push cnt main
     call GetIntArrayElementAndOffset
     push [eax]
     call PrintIntNewLine
     xor eax, eax
     mov eax, cnt main
     push eax
     mov eax, L8
     pop ebx
     add eax, ebx
     jo OVERFLOW ERROR
     mov cnt main, eax
     jmp WHILE 0
END WHILE 0:
     jmp NO ERRORS
OVERFLOW ERROR:
     call overflow error message
DIVISION BY ZERO ERROR:
     call division_by_zero_error_message
NO ERRORS:
     push 0
     call ExitProcess
```

main endp
end main

Листинг 11 Результат генерации кода на основе контрольного примера