AD-Uebung zum 22. Oktober

Arne Beer, MN 6489196 Merve Yilmaz, MN 6414978 Sascha Schulz, MN 6434677

22. Oktober 2013

1. (a)

 $\frac{1}{n} \prec 1 \prec \log\log n \prec \log n \asymp \log n^3 \prec \log n^{\log n} \prec n^{0.01} \prec n^{0.5} \prec n \cdot \log n \prec n^8 \prec 2^n \prec 8^n \prec n! \prec n^n$

$$\lim_{n \to \infty} \frac{\frac{1}{n}}{1} = \frac{1}{\infty} = 0$$
$$f_1 \in o(f_2)$$

$$\lim_{n \to \infty} \frac{1}{\log \log n} = \frac{1}{\infty} = 0$$
$$f_2 \in o(f_3)$$

$$\lim_{n \to \infty} \frac{\log \log n}{\log n}$$

Satz von l'Hospital: $\lim_{n\to\infty} \frac{1}{\log n} = \frac{1}{\infty} = 0$

$$f_3 \in o(f_4)$$

$$\lim_{n\to\infty}\frac{\log n}{\log n^3}=\frac{1}{3}$$

$$\lim_{n\to\infty}\frac{\log n^3}{\log n}=3$$

$$f_4 \in \Theta(f_5)$$

$$\lim_{n \to \infty} \frac{\log n^3}{\log n^{\log n}} = \lim_{n \to \infty} \frac{1}{n-3} = \frac{1}{\infty} = 0$$
$$f_5 \in o(f_6)$$

$$\lim_{n\to\infty}\frac{\log n^{\log n}}{n^{0.01}}$$

Satz von l'Hospital: $\lim_{n \to \infty} \frac{200 \cdot \log n}{n^{0.01}}$

Satz von l'Hospital: $\lim_{n \to \infty} 20000 \cdot \frac{1}{n} \cdot n^{0.99} = \lim_{n \to \infty} \frac{20000}{n^{0.01}} = \frac{1}{\infty} = 0$

$$f_6 \in o(f_7)$$

$$\lim_{n \to \infty} \frac{n^{0.01}}{n^{0.5}} = \lim_{n \to \infty} \frac{1}{n^{0.49}} = \frac{1}{\infty} = 0$$

$$f_7 \in o(f_8)$$

$$\lim_{n \to \infty} \frac{n^{0.5}}{n \cdot \log n} = \lim_{n \to \infty} \frac{1}{\sqrt{n} \cdot \log n} = \frac{1}{\infty} = 0$$
$$f_8 \in o(f_9)$$

$$\lim_{n\to\infty}\frac{n\cdot\log n}{n^8}=\lim_{n\to\infty}\frac{\log n}{n^7}$$
 Satz von l'Hospital:
$$\lim_{n\to\infty}\frac{1}{7\cdot n^7}=\frac{1}{\infty}=0$$

$$f_9\in o(f_{10})$$

$$\lim_{n \to \infty} \frac{n^8}{2^n} = \frac{1}{\infty} = 0$$

Eine Exponentialfunktion waechst wesentlich schneller, als eine Polynomfunktion, daher die Schlussfolgerung.

$$f_{10} \in o(f_{11})$$

$$\lim_{n \to \infty} \frac{2^n}{8^n} = \lim_{n \to \infty} \frac{2^n}{(2^3)^n} = \lim_{n \to \infty} \frac{1}{(2^n)^2} = \frac{1}{\infty} = 0$$
$$f_{11} \in o(f_{12})$$

$$\lim_{n \to \infty} \frac{8^n}{n!} = \frac{1}{\infty} = 0$$

Fuer n! gilt $1 \cdot 2 \cdot 3 \cdots (n-2) \cdot (n-1) \cdot (n)$ mit n Multiplikationen.

Fuer 8^n gilt $8 \cdot 8 \cdot 8 \cdot 8 \cdot 8 \cdot 8$ mit n Multiplikationen.

Da bei n! die Multiplikanden ansteigen und bei 8^n konstant bleiben, folgt, dass n! wesentlich schneller waechst als 8^n

$$f_{12} \in o(f_{13})$$

$$\lim_{n \to \infty} \frac{n!}{n^n} = \frac{1}{\infty} = 0$$

Fuer n! gilt $1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n$, wobei (n-1) Multiplikationen vorliegen.

Fuer n^n gilt $n \cdot n \cdot m \cdot n$, wobei ebenfalls (n-1) Multiplikationen vorliegen.

Daraus folgt, das n^n schneller waechst als n!.

$$f_{13} \in o(f_{14})$$

(b) i. Um die Regel zu beweisen, muss gelten $\log_b n \in O(\log_2 n)$ und $\log_2 n \in O(\log_b n)$. Am einfachsten ist es zu beweisen, dass es fuer alle \log_n mit $n \in \mathbb{N}$, also $\log_a n \in \Theta(\log_b n)$ mit $a, b \in \mathbb{N}$ gilt.

$$\lim_{n\to\infty}\frac{\log_a n}{\log_b n}$$
 Satz von l'Hospital:
$$\lim_{n\to\infty}\frac{\ln n\cdot\ln b}{\ln n\cdot\ln a}=\frac{\ln b}{\ln a}<\infty$$

Dieses Ergebnis ist folglich immer fuer jedes $a,b\in\mathbb{N}$ ein fester Wert und somit gilt auch $\log_b n\in\Theta(\log_2 n)$ fuer ein b>1

- ii. Sobald gilt $f \in O(g)$ ist $\lim_{x \to \infty} \left| \frac{f(x)}{g(x)} \right| < \infty$. Da fuer $g \in \omega(f)$ jedoch $\lim_{x \to \infty} \left| \frac{f(x)}{g(x)} \right| = 0$ gelten muss, kann man nicht von $f \in O(g)$ auf $g \in \omega(f)$ schlussfolgern.
- iii. Fuer die Summe $f_c(n) := \sum_{i=0}^n c^i$ gilt mit c=1, dass $f_c(n) := \sum_{i=0}^n 1^i$. Fuer jeden Ausdruck der Form 1^n mit $n \in \mathbb{R}$ gilt $1^n=1$. Daher laesst sich die Summe $f_c(n) := \sum_{i=0}^n c^i$ fuer c=1 zusammenfassen als $f_c(n) := \sum_{i=0}^n c^i = n$. Also muss fuer $f_c(n) \in \Theta(n)$ mit c=1 gelten, dass $f_c(n) \in O(n)$ und $n \in O(f_c)$ Dies ist erfuellt, da $\lim_{n \to \infty} \frac{n}{n} = 1 < \infty$

Um den Beweis in die entgegengesetze Richtung durchzufuehren, muss abgesichert sein, dass die Summe linear waechst, sodass $f_c(n) \in \Theta(n)$ gilt. Dies ist nur gewaehrleistet, wenn c^i weder gegen 0 noch gegen ∞ strebt, was wiederum nur gilt, falls c=1. Dementsprechend gilt die gegenseitige Beziehung $f_c(n) \in \Theta(n) \Leftrightarrow c=1$

2. (a) Es Soll bewiesen werden, dass fuer alle $F_n \geq 2^{0.5n}$ fuer alle $n \geq 6$

Induktionsannahme:

$$F_n \ge 2^{0.5n}$$
 fuer alle $n \ge 6$

Induktionsanfang:

$$F_6 = 8 \ge 2^3 = 8$$
 wahre Aussage

Induktionsschritt:

$$F_{n+1} \ge 2^{0.5 \cdot (n+1)}$$

 $\Leftrightarrow F_n + F_{n-1} \ge 2^{0.5 \cdot (n+1)} = 2^{0.5n} \cdot \sqrt{2}$

Durch Anwendung der Induktionsannahme folgt:

$$\Leftrightarrow F_n + F_{n-1} \ge 2^{0.5n} + 2^{0.5 \cdot (n-1)}$$

Es gilt: Wenn $a \ge c$

und $b \ge d$

dann ist $a + b \ge c + d$

 $F_n \geq 2^{0.5n}$ ist durch die Induktionsannahme bewiesen. Nun wird eine weiter vollstaendige Induktion fuer den zweiten Ausdruck durchgefuehrt.

Induktionsannahme:

$$F_{n-1} \ge 2^{0.5n-1}$$
 fuer alle $n \ge 7$

Induktionsanfang:

$$F_{7-1} = 8 \ge 2^{0.5 \cdot (7-1)} = 8$$
 wahre Aussage

Induktionsschritt:

$$F_n \ge 2^{0.5 \cdot (n)}$$

Durch Anwendung der Induktionsannahme des ersten Beweises ist die Aussage wahr und bewiesen.

Somit gilt:

$$F_n + F_{n-1} \ge 2^{0.5n} + 2^{0.5 \cdot (n-1)}$$

(b) Es Soll bewiesen werden, dass fuer alle $F_n \leq 2^n$ fuer alle $n \geq 0$

Induktionsannahme:

$$F_n \leq 2^n$$
 fuer alle $n \geq 0$

Induktionsanfang:

$$F_0 = 0 \le 2^1 = 1$$
 wahre Aussage

Induktionsschritt:

$$F_{n+1} \le 2^{n+1}$$

 $\Leftrightarrow F_n + F_{n-1} \le 2^{n+1} = 2^n \cdot 2$

Durch Anwendung der Induktionsannahme folgt:

$$\Leftrightarrow F_n + F_{n-1} \le 2^n + 2^{n-1}$$

Es gilt:

$$F_{n+1} \le 2^n \cdot 2$$

$$\Leftrightarrow F_{n+1} \le 2^n + 2^n$$

$$2^n + 2^{n-1} \le 2^n + 2^n$$

daher gilt, dass Die Fibonnaci-Reihe immer kleiner als 2^n ist.

3. (a) Es soll bewiesen werden, dass die Fibonacci-Reihe sich durch die folgende Matrizen-Multiplikation berrechnen laesst:

$$\begin{pmatrix} F_n \\ F_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$M = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n$$

Daraus laesst sich schlussfolgern, dass das Ergebnis der Matrix die an den Stellen $M_{1,0}$ und $M_{1,1}$ equivalent zu F_n und F_{n+1} sein muessen.

Wenn man sich die Zwischenergebnisse der Matrix ${\bf M}$ ansieht, erkennt man folgendes Muster:

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n = \begin{pmatrix} F_{n-1} & F_n \\ F_n & F_{n+1} \end{pmatrix}$$

Induktionsannahme:

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n = \begin{pmatrix} F_{n-1} & F_n \\ F_n & F_{n+1} \end{pmatrix}$$

Induktionsanfang: n=2

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} F_1 & F_2 \\ F_2 & F_3 \end{pmatrix}$$

Aussage stimmt.

Induktionsschritt:

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^{n+1} = \begin{pmatrix} F_n & F_{n+1} \\ F_{n+1} & F_{n+2} \end{pmatrix}$$
$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n \cdot \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} F_n & F_{n+1} \\ F_{n+1} & F_{n+2} \end{pmatrix}$$

Einsetzen der Induktionsannahme

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n \cdot \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} F_{n-1} & F_n \\ F_n & F_{n+1} \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} F_n & F_n + F_{n-1} \\ F_{n+1} & F_{n+1} + F_n \end{pmatrix} \Leftrightarrow \begin{pmatrix} F_n & F_{n+1} \\ F_{n+1} & F_{n+2} \end{pmatrix}$$

Somit ist bewiesen, dass die Aussage fuer alle $n \geq 0$ gilt.

- (b) Fuer jedes X^n mit $n \geq 4$ laesst sich n in Primfaktoren zerlegen, sodass sich X^n als $(X^{\frac{n}{a}})^a$. Dieses Vorgehen laesst sich fuer jeden weiteren Primfaktor wiederholen, sodass die Laufzeit im besten Falle lediglich $\log_2 n$ betraegt.
- (c) Fuer eine Multiplikation zweier 2x2 Matrizen werden 8 Multiplikationen und 4 Additionen benoetigt. Fuer A^n werden nach dem vorherigen Verfahren ledigliche $\log n$ Multiplikationen benoetigt. Dementsprechend betraegt die Laufzeit $\log(n) \cdot 8 \cdot O(l^{1.59}) \cdot 4 \cdot O(l)$. Fuer die Berrechnung mithilfe eines Arrays benoetigen wir eine ungefaehre Laufzeit von $n^2 \cdot O(l)$. Wenn man sich bitweise Addition von zwei Zahlen betrachtet, ist der maximale Zuwachs an Bits der groessten Zahl gleich eins. Da insgesamt n Additionen stattfinden und die Startzahl 1 Bit hat, ist die theoretisch maximal erreichbare Zahl (n+1). In der Praxis wird diese Zahl natuerlich nicht erreicht. Dementsprechend kann man mit $\log(n) \cdot 8 \cdot O((n+1b)^{1.59})s \cdot 4 \cdot O(n+1)$ und $n^2 \cdot O(n+1)$ als schlechtesten Fall rechnen. Die Matrizenmultiplikation ist folglich die performanteste, da sie im Gegenzug zur Array-Berrechnung lediglich von $\log(n)$, anstatt von n^2 abhaengig ist.