Übungen zur Vorlesung "Stochastik für Studierende der Informatik"

Blatt 11

Abgabetermin: Montag, 22.07.2019, bis 10:15 Uhr in den Briefkästen im Gebäude 051 (Geben Sie auf jedem Lösungsblatt Ihren Namen und Ihre Übungsgruppe an. Sie dürfen maximal zu zweit abgeben.)

Aufgabe 1 (5 Punkte)

In zwei Urnen sind 3 weiße und 3 schwarze Bälle derart verteilt, dass jede Urne 3 Bälle enthält. Es wird bei jedem Schritt ein Ball aus jeder Urne gezogen und anschließend vertauscht wieder zurückgelegt. Sei X_n die Anzahl der weißen Bälle in der linken Urne zur Zeit n.

- (a) Geben Sie die Übergangsmatrix $P = (P_{ij})_{0 \le i,j \le 3} = (\mathbb{P}(X_{n+1} = j \mid X_n = i))_{0 \le i,j \le 3}$ der Markov-Kette $(X_n)_{n>0}$ an.
- (b) Untersuchen Sie, ob diese Markov-Kette irreduzibel und/oder aperiodisch ist.
- (c) Untersuchen Sie, ob diese Markov-Kette eine stationäre Verteilung besitzt. Falls ja, berechnen Sie diese.

Aufgabe 2 (4 Punkte)

Seien X_1, \ldots, X_5 unabhängige, identisch verteilte Zufallsvariablen mit Erwartungswert μ und Varianz σ^2 . Es werden die folgenden Schätzstatistiken betrachtet.

$$T_1 = \frac{1}{3}(X_1 + X_2 + X_3)$$

$$T_2 = X_1 + X_2$$

$$T_3 = \frac{1}{8}(X_1 + X_2 + X_3 + X_4) + \frac{1}{2}X_5$$

$$T_4 = \frac{1}{5}(X_1 + X_2 + X_3 + X_4 + X_5)$$

Welche dieser Schätzfunktionen sind unverzerrt für μ ? Berechnen Sie für die unverzerrten Schätzer jeweils die mittlere quadratische Abweichung und erläutern Sie, mit welchem Schätzer Sie μ schätzen würden.

Aufgabe 3 (3 Punkte)

Die Straßenbahnlinie 4, mit der Sie täglich fahren, kommt tagsüber regelmäßig alle θ Minuten, wobei Ihnen θ unbekannt ist. Sie gehen nun n Tage lang zu einem zufälligen Zeitpunkt zur Haltestelle und notieren sich Ihre Wartezeiten $X_1, ..., X_n$ bis zur Ankunft der Bahn. Zeigen Sie, dass

$$T := 2 \cdot \frac{1}{n} \sum_{i=1}^{n} X_i$$

ein unverzerrter Schätzer für θ ist, und berechnen Sie die erwartete quadratische Abweichung

$$E_{\theta}[(T-\theta)^2] = \operatorname{Var}_{\theta}[T].$$

HINWEIS: Die Aufgabenstellung ist so zu verstehen, dass $X_1,...,X_n$ unabhängige, auf $[0,\theta]$ gleichverteilte Zufallsvariablen sind.

Aufgabe 4 (4 Punkte)

Seien X_1, \ldots, X_n unabhängige, geometrisch verteilte Zufallsgrößen $(X_i \sim \text{Geo}(p))$ mit Zähldichte

$$\mathbb{P}[X_1 = k] = p(1-p)^{k-1}, \quad k = 1, 2, \dots$$

- (a) Bestimmen Sie den Maximum-Likelihood-Schätzer \hat{p}_{ML} für p.
- (b) Ist dieser Schätzer unverzerrt? Begründen Sie Ihre Antwort.

Aufgabe 5 (4 Bonuspunkte)

Die Rotphase einer Ampel auf Ihrem Weg zur Uni dauert θ Sekunden. Jedes Mal, wenn sie an der roten Ampel warten müssen, stoppen Sie die Wartezeit, bis Grün erscheint, und erhalten so Stichproben X_1, \ldots, X_n . Zeigen Sie, dass unter der Annahme, dass die gestoppten Zeiten X_i unabhängige und auf $[0, \theta]$ gleichverteilte Zufallsvariablen sind, der Maximum-Likelihood-Schätzer für θ durch

$$\widehat{\theta}_{ML} = \max(X_1, \dots, X_n)$$

gegeben ist. Zeigen Sie ferner durch Berechnung von $\mathbb{E}[\widehat{\theta}_{ML}]$, dass dieser Schätzer nicht unverzerrt ist.

HINWEISE: Zur Berechnung des Erwartungswertes benötigen Sie die Dichte der Verteilung von $\widehat{\theta}_{ML}$. Berechnen Sie dazu zunächst $\mathbb{P}(\widehat{\theta}_{ML} \leq x)$, indem Sie sich überlegen, was für die X_i gelten muss, wenn ihr Maximum $\leq x$ ist, und deren Unabhängigkeit ausnutzen. Die Dichte erhalten Sie dann durch Ableiten des erhaltenen Ausdrucks nach x.