

Índice

- 1. Dimension Reduction Methods
- 2. PCA
- 3. SVD
- 4. DFT

Dimension Reduction Methods

Original Space

Reduced Space

Lipschitz continuity

Sea la función $f: M \to N$ entre espacios métricos (M, d_M) y (N, d_N) se dice que es Lipschitz continua

$$d_N(f(x), f(y)) \le k \cdot d_M(x, y) \qquad \forall x, y \in M$$

$$k \cdot a_M(x, y) \qquad \forall x, y \in N$$

Metric map:
$$k=1$$

Contraction mapping:
$$0 \le k < 1$$

Lipschitz continuity

Sea la función $f: M \to N$ entre espacios métricos (M, d_M) y (N, d_N) se dice que es Lipschitz continua

$$d_N(f(x), f(y)) \le k \cdot d_M(x, y) \qquad \forall x, y \in M$$

Pruning Property: $d_N(f(x), f(y)) \le d_M(x, y)$

Proximity-Preserving Property

$$d_M(a,b) \le d_M(a,c)$$

$$d_N(f(a), f(b)) \le d_N(f(a), f(c))$$

Es muy difícil encontrar transformaciones que reduzcan dimensionalidad y cumplan esta propiedad

Incremental nearest neighbor algorithm

Principal component analysis

Singular value decomposition

Singular value decomposition

Dominio de Frecuencia

Dominio de Frecuencia

Serie de Fourier

$$f(t) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi t}{L} + b_n \sin \frac{n\pi t}{L} \right)$$

Transformada de Fourier

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-2\pi i\omega t} \partial t$$

Fourier Transform

Digitalización

Discrete Fourier Transform

Transformada

$$X_k = \sum_{n=0}^{N-1} x_n \cdot e^{-i\frac{2\pi}{N}kn}$$

$$X_k = \sum_{n=0}^{N-1} x_n \cdot \left[\cos \left(\frac{2\pi}{N} kn \right) - i \cdot \sin \left(\frac{2\pi}{N} kn \right) \right]$$

Fourier Transform

Fourier Transform

Transform of periodically sampled s(t) aka "Discrete-time Fourier transform"

Transform of the periodic summation of s(t) aka "Fourier series coefficients"

Transform of both periodic sampling and periodic summation aka "Discrete Fourier transform"

Discrete Fourier Transform

$$X(k) = \sum_{n=0}^{N-1} x(n) e^{-i\frac{2\pi}{N}kn}$$

Parseval's theorem

$$\int_{-\infty}^{\infty} |x(t)|^2 dt = rac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|^2 d\omega = \int_{-\infty}^{\infty} |X(2\pi f)|^2 df$$

$$\sum_{n=0}^{N-1} |x[n]|^2 = rac{1}{N} \sum_{k=0}^{N-1} |X[k]|^2$$

