PW/TP 9-10: Linear Differential Equations - Mass-spring system

Klassieke massaveersysteem

Set-up We gaan kijken naar de beweging van een massa die aan een veer hangt. Hiervoor hebben we een veer die in rust (zonder massa) een lengte l heeft. Als we vervolgens aan deze veer een massa m hangen, dan zal de veer met een lengte L worden uitgerokken. De positie waarvoor de massa in rust hangt, noemen we het evenwichtspunt.

We stellen u(t) = de verplaatsing van onze massa in de tijd. Hierbij is dus u = 0 in het evenwichtspunt, en zal de verplaatsing positief zijn naar beneden, en negatief naar boven toe. Uit de mechanica weten jullie dat de totale kracht als volgt kan geschreven worden: $F = m \cdot a$. Hierbij hebben we dus $F(t, u, u') = m \cdot u''(t)$.

Opstellen differentiaalvergelijking In het klassieke systeem gaan we kijken naar twee krachten die op de massa werken, namelijk:

- de zwaartekracht: $F_g = m \cdot g$
- de veerkracht: $F_s = -k \cdot (L + u(t))$ (met k = veerconstante)

In het evenwichtspunt u=0, zijn de krachten op de massa gelijk en dus $m \cdot g = k \cdot L$. Als we dit alles invullen in onze vergelijking, dan vinden we:

$$F(t,u,u')=m\cdot u''(t)$$

$$F_g + F_s = m \cdot u^{\prime\prime}(t)$$

$$mg - k(L + u) = mu^{\prime\prime}$$

$$-ku = mu''$$

$$0 = mu'' + ku$$

Oefening 1. Los de gevonden differentiaalvergelijking $0 = m \cdot u''(t) + k \cdot u(t)$ op. Stel hierbij $\omega_0 = \sqrt{\frac{k}{m}}$, en neem als beginvoorwaarden $u(0) = u_0$ de initiële verplaatsing t.o.v. het evenwichtspunt en $u'(0) = v_0$ de initiële snelheid.

1

De amplitude en fasehoek We hebben gevonden dat onze verplaatsing kan geschreven worden als $u(t) = u_0 \cos(\omega_0 t) + \frac{v_0}{\omega_0} \sin(\omega_0 t)$, dit kan ook geschreven worden als $u(t) = R \cos(\omega_0 t - \delta)$. Hierbij is R de amplitude en δ de fasehoek van de verplaatsing.

Oefening 2. Ga na dat de vergelijkingen $u(t) = u_0 \cos(\omega_0 t) + \frac{v_0}{\omega_0} \sin(\omega_0 t)$ en $u(t) = R \cos(\omega_0 t - \delta)$ weldegelijk gelijk zijn. Zoek ook de formules om R en δ te vinden in functie van u_0, v_0 en ω_0 .

De gedempte trilling

Bij de gedempte trilling gaan we nog een stap verder, en nemen we nog een derde kracht in rekening:

• de demping van de veer, die een negatief effect op de snelheid heeft: $F_d = -c \cdot u'(t)$

We vinden zo een nieuwe differentiaalvergelijking:

$$F(t, u, u') = m \cdot u''(t)$$

$$F_g + F_s + F_d = m \cdot u''(t)$$

$$mg - k(L + u) - cu' = mu''$$

$$-ku - cu' = mu''$$

$$0 = mu'' + cu' + ku$$

Oefening 3. Los de gevonden differentiaalvergelijking 0 = mu''(t) + cu'(t) + ku(t) op. Identificieer drie verschillende gevallen afhankelijk van de waarden voor c, m en k. Kijk voor elk van de drie gevallen wat er gebeurt met de verplaatsing, wordt de trilling weldegelijk gedemp? Tip: kijk hiervoor naar de limiet van u(t) voor $t \to \infty$.

De geforceerde trilling

Voor de geforceerde trilling zullen we starten vanaf het klassieke massa-veersysteem zonder demping, maar dit keer is de massa ook onderhevig aan een externe, periodieke kracht. We krijgen dan als differentiaalvergelijking:

$$F(t, u, u') = m \cdot u''(t)$$

$$F_g + F_s + F(t) = m \cdot u''(t)$$

$$mg - k(L + u) + F(t) = mu''$$

$$-ku + F(t) = mu''$$

$$\frac{1}{m}F(t) = u'' + \frac{k}{m}u$$

$$\frac{1}{m}F(t) = u^{\prime\prime} + \omega_0^2 u$$

We nemen als externe kracht $F(t) = F_0 \cos(\omega t)$, en vinden dan : $u''(t) + \omega_0^2 u(t) = \frac{1}{m} F(t)$.

Oefening 4. Los deze niet-homogene differentiaalvergelijking op. Hou er mee rekening dat je twee verschillende gevallen kan onderscheiden, namelijk $\omega_0 = \omega$ en $\omega_0 \neq \omega$.

Système masse-ressort classique

Setup Nous allons examiner le mouvement d'une masse suspendue à un ressort. Pour cela, nous disposons d'un resoort qui a une longueur l au repos (sans mass). Si nous accrochons ensuite une masse m à ce ressort, alors le ressort sera étiré d'une longueur L. La position pour laquelle la masse pend au repos est appelée le point d'équilibre.

Nous posons u(t) =le déplacement de notre masse dans le temps. Ici, u = 0 est au point d'équilibre, et le déplacement sera positif vers le bas, et négatif vers le haut. D'après la mécanique, vous savez que la force totale peut s'écrire comme suit: $F = m \cdot a$. Donc ici nous avons $F(t, u, u') = m \cdot u''(t)$.

Formuler l'équation différentielle Dans le système classique, nous considérons deux forces qui agissent sur la masse, à savoir:

- la force gravitationelle: $F_g = m \cdot g$
- la force de rappel: $F_s = -k \cdot (L + u(t))$ (avec k = constante de ressort/constante de raideur du ressort)

Au point d'équilibre u=0, les forces sur la masse sont égales $m \cdot g = k \cdot L$. Si nous intégrons tout cela dans notre équation, alors nous trouvons:

$$F(t, u, u') = m \cdot u''(t)$$

$$F_g + F_s = m \cdot u^{\prime\prime}(t)$$

$$mg - k(L + u) = mu''$$

$$-ku = mu''$$

$$0 = mu'' + ku$$

Exercice 1. Résoudre l'équation différentielle trouvée $0 = m \cdot u''(t) + k \cdot u(t)$. Supposons que $\omega_0 = \sqrt{\frac{k}{m}}$, et prenons comme conditions initiales $u(0) = u_0$ le déplacement initial par rapport au point d'équilibre et $u'(0) = v_0$ la vitesse initiale.

L'amplitude et l'angle de phase Nous avons constaté que notre déplacement peut s'écrire

 $u(t) = u_0 \cos(\omega_0 t) + \frac{v_0}{\omega_0} \sin(\omega_0 t)$, il peut également s'écrire comme $u(t) = R \cos(\omega_0 t - \delta)$. R est appelée l'amplitude et δ l'angle de phase du déplacement.

Exercice 2. Vérifiez que les équations $u(t) = u_0 \cos(\omega_0 t) + \frac{v_0}{\omega_0} \sin(\omega_0 t)$ et $u(t) = R \cos(\omega_0 t - \delta)$ sont identiques.

Trouvez également les formules pour trouver R et δ en fonction de u_0, v_0 et ω_0 .

Le système masse-ressort-amortisseur

Pour le système masse-ressort-amortisseur mous prenons en compte une troisième force:

• l'amortissement du ressort, qui a un effet négatif sur la vitesse: $F_d = -c \cdot u'(t)$

Nous trouvons donc une nouvelle équation différentielle:

$$F(t, u, u') = m \cdot u''(t)$$

$$F_g + F_s + F_d = m \cdot u''(t)$$

$$mg - k(L + u) - cu' = mu''$$

$$-ku - cu' = mu''$$

$$0 = mu'' + cu' + ku$$

Exercice 3. Résoudre l'équation différentielle trouvée 0 = mu''(t) + cu'(t) + ku(t). Identifiez trois cas différents en fonction des valeurs de c, m et k. Pour chacun des trois cas, voyez également ce qui arrive au déplacement, l'oscillation est-elle atténuée? Conseil: regardez la limite u(t) pour $t \to \infty$.

Oscillation forcée

Pour l'oscillation forcée, nous partirons du système classique de masse-ressort sans amortissement, mais cette fois, la masse est également soumise à une force externe et périodique. On obtient alors une équation différentielle:

$$F(t, u, u') = m \cdot u''(t)$$

$$F_g + F_s + F(t) = m \cdot u''(t)$$

$$mg - k(L + u) + F(t) = mu''$$

$$-ku + F(t) = mu''$$

$$\frac{1}{m}F(t)=u^{\prime\prime}+\frac{k}{m}u$$

$$\frac{1}{m}F(t)=u^{\prime\prime}+\omega_0^2u$$

Nous prenons comme force extérieure $F(t) = F_0 \cos(\omega t)$, et nous trouvons ensuite: $u''(t) + \omega_0^2 u(t) = \frac{1}{m} F(t)$.

Exercice 4. Résoudre cette équation différentielle non homogène. N'oubliez pas que vous pouvez distinguer deux cas différents, à savoir $\omega_0 = \omega_0 \neq \omega_0$.