LABORATÓRIO DE INTRODUÇÃO À ENGENHARIA DE COMPUTAÇÃO

4 - Álgebra Booleana

Prof. Felipe Soares 2022

Origem

George Boole desenvolveu um sistema de análise lógica por volta de 1850

Este sistema é conhecido atualmente como álgebra de Boole ou Booleana.

Conceitos fundamentais da álgebra Booleana

Proposição – todo enunciado que pode se afirmar ser verdadeiro ou falso.

Exemplo

Amanhã vai chover – não constitui uma proposição, pois existe mais de duas respostas possíveis: Sim, Talvez e Não

Lisboa é a capital de Portugal é uma proposição, cuja resposta é sim.

Princípios da Álgebra Booleana

Não contradição: uma proposição não pode ser simultaneamente verdadeira e falsa Terceiro excluído: uma proposição só pode tomar um dos dois valores possíveis, ou é verdadeira ou falsa, não sendo possível terceira hipótese.

Operações Básicas

Considere F, X e Y proposições Lógicas (ou como chamaremos, variáveis lógicas):

OU (OR) - Adição Lógica F = X + Y

E (AND) - Multiplicação Lógica F = X . Y

Não (NOT) - Complemento (Negação) F = X' ou F = !X ou F = X ou F = ~X

As variáveis lógicas assumem estados distintos, e podem representar situações da vida real:

Nível Lógico 0	Nível Lógico 1
Falso	Verdadeiro
Desligado	Ligado
Baixo	Alto
Nao	Sim
Chave aberta	Chave Fechada

Representação por tabela verdade

Tabela Verdade

Cada entrada = 1 coluna

Cada saída = 1 coluna

As possíveis Combinações entradas podem assumir: N = 2n, onde n = quantidade de variáveis de entrada e N as combinações entre zeros (0) e uns (1), ou Falso e Verdadeiro.

Portas Lógicas

Portas lógicas são dispositivos ou circuitos lógicos que operam um ou mais sinais lógicos de entrada para produzir uma e somente uma saída, a qual é dependente da função implementada no circuito.

Um computador é constituído por uma infinidade de circuitos lógicos, que executam as seguintes funções básicas:

- realizam operações matemáticas
- controlam o fluxo dos sinais
- armazenam dados

Naturalmente, cada operação lógica estudada na Álgebra de Boole está associada à respectiva porta lógica.

OU (OR) - Adição Lógica F = X + Y

X	Y	F
0	0	0
0	1	1
1	0	1
1	1	1

E (AND) - Multiplicação Lógica F = X . Y

Não (NOT) - Complemento (Negação) F = X' ou F = X

X	F
0	1
1	0

Precedência das operações : 1) NOT -> 2) AND -> 3) OR, mas podemos usar os parênteses para alterar esta precedência.

Associações de portas

Usando expressões booleanas, circuitos e tabelas podemos determinar a expressão lógica de saída quando portas são combinadas.

Exemplo 1:

Α	В	С	X
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

A	В	C	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1