

CS120: Computer Networks

Lecture 6. Multiple Access 1

Zhice Yang

The Multiplexing Problem

Multiplexing Approaches

Packet Switching

Multiple Access Protocol

 Multiple access protocol determines how multiple users use the multiplexing approach

Multiplexing Method – Multiple Seats in One Cabin

Multiple Access Method

Ticket

First come first served

Targeting Scenarios

- Two Types of Channels:
 - Private
 - Point-to-point link between node, e.g., Current Ethernet
 - ✓ Broadcast
 - Shared communication medium, e.g., Wireless, Original Ethernet
 - Two or more simultaneous transmissions
 - > collision

Targeting Scenarios

- Two Types of Channels:
 - Private
 - Point-to-point link between node, e.g., Current Ethernet
 - ✓ Broadcast
 - Shared communication medium, e.g., Wireless, Original Ethernet
 - Two or more simultaneous transmissions
 - > collision
- Protocol: Media Access Control (MAC)
 - Access Control: determines how nodes share channel, i.e., determine when node can transmit
 - Link Control: reliable point-to-point data link

Multiplexing Approaches

Synchronous Time-division Multiplexing (STDM)

Multiplexing Approaches

Packet Switching

Ethernet

Brief History

IEEE 802.3

Ethernet

An Ideal Multiple Access Method

- Consider a Broadcast Channel of Rate R bps
 - When one node wants to transmit, it can send at rate **R**.
 - When M nodes want to transmit, each can send at average rate R/M
 - Fully decentralized
 - No special node to coordinate transmissions
 - No synchronization of clocks, slots, etc.

Existing Methods

- Fixed Partitioning
 - eg.: TDMA, FDMA
 - Avoid Collisions
- Scheduling
 - eg.: Token Ring, Polling
- Random Access
 - eg.: CSMA
 - Allow Collisions

Random Access

- When node has packet to send
 - Try best to transmit at full channel data rate R
 - Two or more transmitting nodes-> Collision
- Core Design Goals
 - How to detect collisions
 - How to recover from collisions (e.g., via delayed retransmissions)
- Protocols
 - Transmit and Pray
 - Slotted ALOHA
 - CSMA

Trivial Design

- Transmit and Pray
 - Good solution at low load
 - Plenty of collisions at high load
 - Low throughput

Slotted ALOHA

- Assumptions
 - Same Frame Length
 - Nodes are synchronized
 - Nodes start to transmit only at the beginning of slot
 - Nodes can detect collision
- Operation Rule
 - No collision: node sends new frame in next slot
 - Collision: node retransmits frame in each subsequent slot with probability
 p until success

Slotted ALOHA

- Cons:
 - Collisions waste the entire slot
 - There are idle slots
 - None of the transmitter gain the slot
 - (minor) Clock synchronization
 - Improved with un-slotted ALOHA

- For each slot, the probability of successful transmission is $Np(1-p)^{(N-1)}$
- p is the probability of transmission. It is determined by the number of nodes N in the network, when N is large, p should be small.
- The optimal p can be calculated by derivation
 - $f(p)=Np(1-p)^{(N-1)}$
 - $f'(p)=N(1-p)^{(N-1)}-Np(N-1)(1-p)^{(N-2)}$
 - Thus the optimal p is 1/N
- So when p=1/N, the probability of successful transmission $\frac{18}{18}$ is $(1-1/N)^{(N-1)}$, when N is large, it is close to 1/e. Thus the utilization of the channel is about 30%

Slotted ALOHA

- Cons:
 - Collisions waste the entire slot Take actions to handle collision
 - There are idle slots Sense the idle slot
 - None of the transmitter gain the slot
 - (minor) Clock synchronization
 - Improved with un-slotted ALOHA
- For each slot, the probability of successful transmission is $Np(1-p)^{(N-1)}$
- p is the probability of transmission. It is determined by the number of nodes N in the network, when N is large, p should be small.
- The optimal p can be calculated by derivation
 - $f(p)=Np(1-p)^{(N-1)}$
 - $f'(p)=N(1-p)^{(N-1)}-Np(N-1)(1-p)^{(N-2)}$
 - Thus the optimal p is 1/N
- So when p=1/N, the probability of successful transmission 19 is $(1-1/N)^{(N-1)}$, when N is large, it is close to 1/e. Thus the utilization of the channel is about 30%

Carrier Sense Multiple Access (CSMA)

- CSMA: Listen before Transmit
 - If channel is sensed idle: transmit the entire frame
 - If channel is sensed busy: defer the transmission

Can collisions still occur?

CSMA: Collisions

- Collisions can still occur
 - Due to propagation delay
- When collision occurs
 - Entire packet wasted

How to better handle collisions?

CSMA + Collision Detection (CSMA/CD)

 Keep listening to the channel while transmitting

- Abort the transition if collision is detected
 - Opt1: Transmitted signal != sensed signal
 - Opt2: Energy detection
 - Then, retransmit

CSMA/CD

- The Effective Range
 - What if B stopped transmission before it detects collisions?
 - Collision detection failed
 - Ethernet does not use ACK -> no retransmission -> transmission is failed

CSMA/CD

- The Effective Range
 - What if B stopped transmission before it detects collisions?
 - Collision detection failed
 - Ethernet does not use ACK -> no retransmission -> transmission is failed
 - Minimum Packet Size
 - eg. Range 2500m (Local Area Network)
 - => MaxRTT * rate

Ethernet CSMA/CD Protocol

- If channel idle
 - starts transmission
- Else (channel busy)
 - Waits until channel idle.
- If the entire frame is transmitted without detecting another transmission
 - done
 - go idle
- Else
 - Aborts the transmission and sends jam signals
 - to make sure that all the transmitting adapters become aware of the collision
 - Backoff
 - go idle to retransmit (max 16 times)

Ethernet CSMA/CD

- Exponential Backoff
 - After mth collisions, chooses K at random from {0,1,2, ..., 2^m-1}
 - if m>11
 - chooses K at random from {0,1,2, ..., 1024}
 - if m=16
 - done
 - go idle
 - Waits K*one time slot

More about Ethernet

Ethernet Cable

Ethernet Patch Cable

Ethernet Crossover Cable

Inside the Ethernet Hub

Ethernet Frame

- Line Code: Manchester coded (10BASE-T)
- Preamble
 - 7 bytes with pattern 10101010 followed by one byte with pattern 10101011
 - Sync and Clock Recovery

Ethernet Frame (Address)

- Every Ethernet adapter has an address, the MAC address
 - 6bytes
 - Find your MAC addresss
 - ifconfig
 - ipconfig /all
 - Find the manufacturer of your adapter
 - http://coffer.com/mac_find/
 - You can change the MAC address

Ethernet Frame (Address)

- Unicast Address
- Broadcast Address
 - All 1s
- Multicast Address
 - First bit 1

Find if the received packet contains <u>correct</u> address, then pass the error free packet to the host

Ethernet Frame

- Type
 - IPV4, ARP, RoCE, etc.
 - Length
- Body 46-1500 B
- CRC 32
- NO ACK

Reference

- Textbook 2.6
- http://www.ee.columbia.edu/~bbathula/courses/HPCN/lecture04.
 pdf