第三十二次

32

2018-2019学年第一学期期终考试试题

考试科目: 线性代数B1	考试时间: 2019.01.14	得分:
学生所在系:	姓名:	_ 学号:
一、填空题【每空4分,共		
$1. \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}^{4} = \begin{pmatrix} 8 & 6 \\ 0 & 6 \\ 8 & 6 \end{pmatrix}$	60 60)	
2. 向量组 $\alpha_1 = (1, 1, 1, 1)$,	$\alpha_2 = (1, 2, 3, 4), \ \alpha_3 = (2, 3, 4)$	$4,5), \alpha_4 = (1,-2,2,-1)$ 的
秩=。		
3. 已知非齐次线性方程组		
	$\int \lambda x_1 + x_2 + x_3 = 1$	
	$\begin{cases} \lambda x_1 + x_2 + x_3 = 1 \\ x_1 + \lambda x_2 + x_3 = \lambda \\ x_1 + x_2 + \lambda x_3 = \lambda^2 \end{cases}$	
	$x_1 + x_2 + \lambda x_3 = \lambda^2$	
有无穷多解,则λ=	0	
4. 设A, B均为n阶矩阵, I	且存在可逆矩阵P, 使得B =	$P^{-1}AP - PAP^{-1} + I$. $\mbox{ yr}$
$\mathbb{R}\lambda_1, \lambda_2, \cdots, \lambda_n$ 为 B 的 n 个物	時征值,则 $\sum\limits_{1\leq i\leq n}\lambda_i=$ 九	0
5. 实二次型 $x_1^2 + x_2^2 + x_3^2 + x_3^$	$4x_1x_2 + 4x_1x_3 + 4x_2x_3$ 的正惯	性指数为。

判断题【判断下列命题是否正确,并简要说明理由。每题5分, 1. 若0为矩阵A的特征值,则A一定不可逆。 A. (True) '.' det(A)= th/h=0 .'. A不及连

"、然性变换在不同毒下的知阵是相似的. 西(3)不够机似于对角阵、八不存至满足争争的基

> 3. 设 $V = \{a_0 + a_1x + a_2x^2 | a_i \in \mathbf{R}, i = 0, 1, 2\}$, 即次数不超过2的实系数多项式构成 的R上的线性空间。若对任意 $f(x), g(x) \in V$ 定义

4. 设2n 阶实对称矩阵 $A=\begin{pmatrix}A_1&B\\C&A_2\end{pmatrix}$, 其中 A_1 , A_2 均为n阶方阵。若A正定,

了对.则A1+A2也正定。 :A正之《 A的各的社会 > 0 》 A1 的各所收入 > 0 21 》 A2- - - > 6 又A对好 n A1, A2 也对的 コA2-

· AliAz都正定。AitAz也是好好的。 国战 AITAZ 电正差. (: XTAITAL)X>0)

三、【10分】
$$\partial \alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \ \alpha_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \ \alpha_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} 为非齐次线性方程组AX = b的3个解。$$

- 1. 求AX = 0的通解;
- 2. 求AX = b的通解;
- 3. 求出满足题设条件的一个非齐次线性方程组。

1. 全月=d1-d2=[] 月=d1-03=[] 月, 長, 長 段性元矣
:, 月, 2 是 AX=0 的 两 5 段性元矣的好。:, AX=0 的
母室间维数 > 2.
$$\Gamma(A) \le 1$$
. 而 : AX=b 有鲜。:, A = 0 (3) bto)
:, $\Gamma(A) \ge 1$. :, $\Gamma(A) = 1$
: $AX = 0$ 的通針为: $\lambda_1 \beta_1 + \lambda_2 \beta_2$. $\lambda_1, \lambda_2 \to 1$ 行意常数。
2. $AX = b$ 的 通 針为: $\alpha_1 + \lambda_1 \beta_1 + \lambda_2 \beta_2$. $\lambda_1, \lambda_2 \to 1$ 行意常数。
3. 由通針: $\alpha_1 + \lambda_1 \beta_1 + \lambda_2 \beta_2$. $\alpha_1 + \lambda_1 \beta_1 + \lambda_2 \beta_2$. $\alpha_1 + \lambda_1 \beta_1 + \lambda_2 \beta_2$.

四、【15分】

设(I): $\alpha_1 = (1, 0, 0)^T$, $\alpha_2 = (0, 1, 0)^T$, $\alpha_3 = (0, 0, 1)^T$; (II): $\beta_1 = (-1, 0, 1)^T$, $\beta_2 = (0, 1, 1)^T$, $\beta_3 = (2, -1, -2)^T$

分别为 R^3 的两组基。设 σ 为 R^3 上的一个线性变换,并且

 $\sigma(\beta_1) = (1, \ 0, \ -3)^T, \ \sigma(\beta_2) = (0, \ -1, \ -1)^T, \ \sigma(\beta_3) = (-5, \ -1, \ 0)^T.$

请分别求出 σ 在(I)、(II)这两组基下的矩阵。

部设从如此到著印度的的过度知阵的下。

 $Pp: (\theta_1 \theta_2 \theta_3) = (d_1 d_2 d_3) T$

1、 丁= (一02) (=(月を別) 用加塩水丁

则从行到到知识的过度知阵为下一=(101)

没一在基础设计下的知识为人。

--- B.

 $B = T^{+}\begin{pmatrix} 1 & 0 & -5 \\ 0 & -1 & -1 \\ -3 & -1 & 0 \end{pmatrix} = \begin{pmatrix} -5 & 0 & -3 \\ -2 & -1 & -5 \\ -2 & 0 & -4 \end{pmatrix}$

 $\sigma(d_1 d_2 d_3) = (d_1 d_2 d_3) A$

 $= \sigma(\beta_1 \beta_2 \beta_3) T^{-1} = (\beta_1 \beta_2 \beta_3) B T^{-1}$ $= (\alpha_1 \alpha_2 \alpha_3) T B T^{-1}$

 $A = TBT^{-1} = \begin{pmatrix} 1 & 0 & -5 \\ 0 & -1 & -1 \\ -3 & -1 & 0 \end{pmatrix} T^{-1} = \begin{pmatrix} -4 & 3 & -3 \\ -2 & 1 & -2 \\ -4 & 6 & -7 \end{pmatrix}$

五、【15分】

设实二次型

$$Q(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 2ax_1x_2 + 2x_1x_3 + 2bx_2x_3$$

可以经过正交变换
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \mathbf{P} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$
化为标准型 $y_2^2 + 2y_3^2$.

1. 确定a和b的取值;

$$2. \quad A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

$$\lambda = 0$$
 时 $(0I-A)X = 0$ 基础特色 (i) $\lambda = 1$ 时 $(I-A)X = 0$ — (i) $\lambda = 1$ 时 $(2I-A)X = 0$ — (i) $\lambda = 2$ 时 $(2I-A)X = 0$ — (i) $\lambda = 2$ 时 $(2I-A)X = 0$ — (i) $\lambda = 2$ 时 (i) $\lambda = 2$ 可 (i) $\lambda = 2$ 可

(光计论特殊情况)

设A为n阶复方阵,且 $A^2=2A$ 。求证:A相似于对角阵。 1、人 \rightarrow 0 全台0. A \rightarrow 0 , 計: 'A(2I-A)=0: Y(2I-A) tr(A)≤n。0 2. 井板を名为2. Mが 又: Y(2I-A)+Y(A) > Y(2I-A+A)=Y(2I)=nの A=4 >> A=2I · · r(A)+r(2I-A)=n. A=2A=> 1=21 人为A该样的世 A的特色拉为0.2. 没 Y(A)=Y. W Y(2I-A)=N-Y. Vi=0. (OIA)X=0的维护。dim li=0=n-维·, I n-r) 段程的 W=2. (2I-A)X=0. dim 4=2= + 4/2 - +5 、A有n分线性预的特任何为.

【8分】

设A 为n阶正定矩阵, $lpha_1, lpha_2, \cdots, lpha_s$ 为 $\mathbf{R^n}$ 中的s个非零向量,且满足

 $\alpha_i^T A \alpha_i = 0, \quad 1 \le i < j \le s$

: A可和似于对角焊。

酒: A正達: diAdi>O di+O. (AT=A) 由 diAdj=0 1< iLj=5 转置符: diAdj(=j<i=5 : di Adj = 0 + itj. (ij=1,-5) 全 Kidit Kzdzt---+ Ksds=日 (夏治 ki20) PM (kidit Kzdzt - - - + Ksds) A (Kidit - - + Ksds) = 0 展开线: KixiAxi+ KixiAxi+ --+ KixiAx Ad=0 由 R diAdi>0 => ki=0 i=1,-5. id1,---公後作品