

Modélisation des bases de données

MCD, MPD...

cedric.buron@isen-ouest.yncrea.fr

Support de Benoît Lardeux, d'après les notes de cours de O. Rossini et C. Vignaud

Le modèle relationnel

Proposé en 1970 par E.F. Codd et complété par C.J. Date

- Les concepts (De Codd)
 - Relation => ensemble des enregistrements (table)
 - Attribut => champs
 - Domaine => ensemble des valeurs possibles d'un attribut
 - Tuple => ensemble des éléments constituant un enregistrement
 - Clé => identifiant d'un tuple

Les règles de normalisation

Les formes normales assurent la cohérence de la base

S'applique aux relations (de Codd) => tables

Toute relation possède une clé unique

Les règles de normalisation

1NF: chaque attribut est une valeur élémentaire + clé unique

<u>Nom</u>	<u>Prénom</u>	Métier	1NF
<u>Dupond</u>	<u>Jacques</u>	Plombier	Oui
<u>Martin</u>	<u>Jean</u>	Couvreur, maçon	Non

<u>Cp</u>	Ville	1NF
<u>44360</u>	Vigneux-de-Bretagne	Non
<u>44360</u>	La Pâquelais	Non

Les règles de normalisation

• 2NF: 1NF + les attributs dépendent de la clé complète

<u>User_id</u>	Cours_nom	User_nom	Durée	2NF
<u>112</u>	<u>C++</u>	Dupond	40	Non
<u>112</u>	<u>Réseau</u>	Dupond	30	Non
<u>127</u>	<u>BDD</u>	Martin	15	Non

<u>С</u> р	<u>Ville</u>	Habitants	2NF
<u>44360</u>	<u>Vigneux-de-</u> <u>Bretagne</u>	8000	Oui
44360	<u>La Paquelais</u>	1500	Oui

Les règles de normalisation

3NF: 2NF + les attributs indépendants les uns des autres

Cours_nom	Durée	Nb_DS	3NF
<u>C++</u>	40	2	Non
<u>Réseau</u>	30	2	Non
<u>BDD</u>	15	1	Non

Pas 3NF car la durée détermine le nombre de DS

Nom	Ville	Location	Livre	Auteur	Туре
Martin	Nantes	12012017	La peste	Camus	Roman
Germain	Paris	27032017	Ubik	Dick	SF
Durand	Royan	15032017	Heritage	Paolini	Fantasy
Martin	Nantes	10062018	Ada	Bello	Roman
Durand	Royan	13092017	Le prédicateur	Lackberg	Roman
Germain	Paris	14042018	1984	Orwell	SF

Comment normaliser ces données?

Nom	Ville	Location	Livre	Auteur	Type
<mark>Martin</mark>	Nantes	<mark>12012017</mark>	La peste	Camus	<mark>Roman</mark>
<mark>Germain</mark>	Paris	<mark>27032017</mark>	<mark>Ubik</mark>	Dick	<mark>SF</mark>
<mark>Durand</mark>	Royan	15032017	<mark>Heritage</mark>	Paolini	<mark>Fantasy</mark>
<mark>Martin</mark>	Nantes	10062018	<mark>Ada</mark>	Bello	Roman
<mark>Durand</mark>	Royan	1309201 <mark>7</mark>	Le prédicateur	Lackberg	<mark>Roman</mark>
<mark>Germain</mark>	Paris	14042018	<mark>1984</mark>	Orwell	<mark>SF</mark>

Autres formes normales

Schéma en 3NF => schéma correct

D'autres formes normales existent (4NF, 5NF)

Besoin de dénormalisation => BI, dataware-house

Conception d'une base de données relationnelle

Intervenant

Concepteur

Concepteur

Concepteur

DBA (database admin)

Concepteur/ Développeur

Développeur/ Gestionnaire Phase

Modèle/méthode/action

Modèle Entité-Association (cf méthode MERISE)

Modèle Relationnel (Codd et Date)

Tables/colonnes (Script SQL de création)

Fichiers, droits,... (spécifique au SGBD)

Exécution des scripts SQL du MPD

Migration d'une ancienne base Ou chargement à partir de fichiers Outils

Très nombreux outils d'aide à la conception :

PowerAMC(le + courant)

Designer (Oracle)

Jmerise (open source)

Manuel (scripts spécifiques au SGBD)

Manuel (sous éditeur SQL, ex : SQL*Plus) ou intégré dans outil d'aide à la conception

Appli spécifique ou outil du SGBD(ex: SQL*Loader Oracle)

MCD: entité-association

- Modèle popularisé par la méthode MERISE (1980)
- EA => entité-association
- ER model => entity relationship model

- Entité=> élément unique décrivant les caractéristiques d'un objet
- Association => lien entre les entités décrivant la relation
- Cardinalité => nombre d'occurrences des entités liées à une autre entité

MCD: entité-association

- Entité: ensemble d'objets partageant les mêmes propriétés et caractérisés par:
 - Propriétés (attributs): nom, type, longueur, valeur par défaut,...
 - Identifiant (clé): une ou plusieurs propriétés
 - Domaine: ensemble des valeurs possibles

MCD: entité-association

Entité:

MCD: entité-association

- Association: lien entre les entités
 - Binaire, ternaire, n-aire
 - Nom sous forme de verbe
 - Peut comporter des propriétés
 - Si composé de clés => ne figure pas sur le MCD

MCD: entité-association

Association:

MCD: entité-association

- Cardinalités: définissent les relations entre les entités
 - Détermine le nombre de fois ou un élément de l'entité est relié à l'entité associée
 - Sous forme de couple de valeurs (min et max)
 - Plusieurs formes de représentations
 - Merise
 - UML
 - Crow's foot

MCD: entité-association

• Cardinalités: définissent les relations entre les entités

MERISE	UML	CROW's FOOT
0,1	0,1	
1,1	1,1	
0,n	0,*	
1, n	1,*	$\overline{}$

MCD: entité-association

Exemple de cardinalité:

Créer MCD

- Les données doivent être regroupées afin d'éviter les redondances
- Chacun des groupements (Entité dans MCD) se traduira par une table
- Toutes les propriétés d'une entité correspondent aux colonnes de la table déduite de cette entité
- Les entités peuvent être mises en rapport via des associations
- Toute association est symbolisée par un ovale. Elle est nommée par un verbe

Créer MCD (2)

Remarque capitale:

L'étape fondamentale consistant à créer autant d'entités que nécessaire est la première de toutes.

Le critère est simple: aucune propriété ne doit se répéter dans aucune table. La règle est stricte quand il s'agit de valeurs de type text, peut-être assouplie lorsqu'il s'agit de valeurs numériques (int, bool, date, time,...)

Modèle EA (ER model): plusieurs formalismes

Merise

UML (selon Connolly et Begg)

Crow's foot (Oracle Designer)

MCD: entité-association

- Entité faible: l'identifiant dépend de l'entité forte à laquelle cette entité est rattachée
- Représentée par (1,1)
- L'identifiant est la clé de l'identité faible + la clé de l'identité forte
- Impact au niveau du MPD
- La suppression des enregistrements forts entraine la suppression des éléments faibles

MCD: entité-association

Exemple d'entité faible:

Exemple de MCD au formalisme graphique Merise

MCD: entité-association

• Entité réflexive: association d'une entité sur elle-même

Formalisme MERISE: Détails du MCD précédent

OUEST

Ex de MCD au formalisme graphique « crow's foot »

Exemple de formalisme graphique UML

MCD: normalisation

- Méthode MERISE de normalisation
 - Pour réaliser un MCD (Modèle Conceptuel de Données)
 - Pour avoir un MPD (Modèle physique de données) respectant les 3NF
 - 5 règles
 - Objectifs
 - Pas de redondance de données
 - Cohérence du schéma

MCD: normalisation

- Règles MERISE
 - Règle 1: toutes les entités ont un identifiant
 - Règle 2: chaque propriété est élémentaire (non décomposable)
 - Règle 3: pour chaque occurrence d'entité ou d'association, chaque propriété ne peut prendre qu'une seule valeur
 - Règle 4: toutes les propriétés dépendent pleinement de l'identifiant
 - Règle 5: toutes les propriétés dépendent uniquement de l'identifiant

MCD: normalisation

- Choix de l'identifiant
 - Identifiant naturel si possible (mail, code, insee, @mac)
 - Identifiant composé
 - Identifiant artificiel (numérique auto-incrémenté)
 - Attention en cas de restauration de base ou migration
 - Obligatoire avec certaines techno de développement

MCD: normalisation

- Dénormalisation (dans les bases de données de gros volume pour des raisons de performances)
 - Construction d'un identifiant unique en concaténant les différentes propriétés d'un identifiant composé
 - Ajout d'une propriété calculée

A ne pas faire au début d'une conception de base!

MCD: exemple

• Déterminer les relations de l'exemple suivant

Nom	Ville	Location	Livre	Auteur	Туре
Martin	Nantes	12012017	La peste	Camus	Roman
Germain	Paris	27032017	Ubik	Dick	SF
Durand	Royan	15032017	Heritage	Paolini	Fantasy
Martin	Nantes	10062018	Ada	Bello	Roman
Durand	Royan	13092017	Le prédicateur	Lackberg	Roman
Germain	Paris	14042018	1984	Orwell	SF

Entités en JMERISE

MPD: Modèle physique de données

 Correspondances entre les termes du modèle relationnelle de Codd et ceux des bases de données relationnelles

Modèle relationnel	Relation	Attribut	Clé	Clé étrangère	Tuple
Modèle EA	Entité	Propriété	Identifiant	Association	Occurrence
Modèle BD relationnelle	Table	Colonne	Clé primaire	Clé étrangère	Ligne

MPD: Modèle physique de données

- Définitions
 - Table: ensemble constitué de la structure et des données liées à une entité
 - Colonne: ensemble des valeurs relatives à une propriété
 - Ligne: un enregistrement (tuple)

MPD: Modèle physique de données

Définitions

Mail	Nom	Prénom	Date_naiss	Typeid	Villeid
jean@mail.com	Dujard	Jean	19/06/1972	1	44360
gege@pat.fr	Depard	Gérard	27/12/1948	1	49125
groot@lgdlg.com	Groot	NULL	13/11/1960	NULL	NULL
isa@bou.ca	Boulays	<mark>Isabelle</mark>	<mark>06/07/1962</mark>	<mark>2</mark>	<mark>111318</mark>

Dérivation d'une association « un à plusieurs »

Migration de clé

Dérivation d'une association « plusieurs à plusieurs » Création d'une table intermédiaire

Dérivation d'une association « un à un »

Dérivation d'une association « entité faible »

Dérivation d'une association réflexive (ex: association « un à plusieurs »)

- Principes généraux
 - Une table possède:
 - Une clé primaire unique (mais peut-être composée)
 - De 0 à n clés étrangères
 - Une clé étrangère peut être composée
 - Une clé étrangère peut être primaire

- Contraintes d'intégrité
 - Condition permettant de garantir la cohérence des données de la base (lors de l'insertion, la mise à jour ou la suppression)

- 3 groupes de contraintes:
 - De domaine
 - D'unicité
 - D'intégrité référentielle

- Contraintes de domaine
 - Contrainte au niveau colonne
 - Contrainte de type (int, date, varchar, ...)
 - Contrainte de longueur (varchar 100)
 - Contrainte d'existence (Not null)
 - Contraintes de valeurs autorisées

- Contraintes d'unicité
 - Contrainte au niveau table
 - Vérification par le SGBD de l'unicité de la clé lors de l'insertion de données
 - Création d'un index sur la clé primaire lors de la création de la table

- Contraintes d'intégrité référentielle
 - Contrainte au niveau relation
 - Vérification par le SGBD de l'unicité de la validité des clés étrangères
 - Table fille en création ou update: vérification existence de la clé étrangère
 - Table mère en suppression: vérification de non impact sur table(s) fille(s)

- Actions référentielles
 - Actions à effectuer dans les tables filles
 - Suppression (ON DELETE)
 - Action CASCADE => destruction des lignes dans les tables filles
 - Action SET NULL => clé étrangère à NULL
 - Mise à jour (ON UPDATE)
 - Mise à jour des clés étrangères dans les tables filles

Question?

Modèle relationnel

- Formes normales
 - 4NF: 3NF + Pour toute relation de dimension n, les relations de dimension n-1 construites sur sa collection doivent avoir un sens

 5NF: 4NF + Pour toute relation de dimension n, il ne doit pas être possible de retrouver l'ensemble de ses occurrences par jointure sur les occurrences des relations partielles prises deux à deux