光電子強度分布計算ソフト SPADExp 2. 原子ポテンシャルの計算

田中 宏明 (東京大学 物性研究所/理学系研究科物理学専攻)

2022年3月22日

概要

Hartree-Fock-Slater 方程式 (HFS 方程式) により原子ポテンシャルを数値計算する手順を説明する。

目次

1	微分力程式の 数値計算	1
1.1	1 階微分方程式への帰着	1
1.2	Euler 法	2
1.3	4次 Runge-Kutta 法	2
1.4	Numerov 法	3
1.5	実際の数値計算における点列の取り方	3
2	Thomas-Fermi ポテンシャルの計算	3
3	球対称ポテンシャルにおける Schrödiger 方程式	4
3.1	計算手順	4
3.2	対数微分の差から固有エネルギーの誤差を推定する方法	5
3.3	Thomas-Fermi ポテンシャルを用いた計算例	6
4	自己無撞着な原子ポテンシャルの計算	7
4.1	ポテンシャルの修正	7
4.2	SCF 収束	7
4.3	計算例	7

1 微分方程式の数値計算

1.1 1階微分方程式への帰着

以下の議論で出てくる微分方程式は、すべて

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}f(x) = F(f(x), x) \tag{1}$$

の形であり、 $x \ge 0$ の範囲で解かれる。さらに、 $F(f(x), x) = -a(x) \cdot f(x)$ の形で表せるものも多い*1。このとき、 $f'(x) = \frac{\mathrm{d}}{\mathrm{d}x} f(x)$ を用いて

$$\frac{\mathrm{d}}{\mathrm{d}x} \begin{pmatrix} f(x) \\ f'(x) \end{pmatrix} = \begin{pmatrix} f'(x) \\ F(f(x), x) \end{pmatrix} \tag{2}$$

のような連立1階微分方程式に変形することができる。

1.2 Euler 法

Euler 法は x_i での値のみを用いて x_{i+1} での値を計算する方法である。 $x \ge 0$ の範囲で $0 = x_0 < x_1 < \cdots < x_i < x_{i+1} < \cdots$ を満たす点列 x_i $(i = 0, 1, \cdots)$ をとる。このとき、点の間隔 $x_{i+1} - x_i$ は必ずしも一定である必要はない。また、 $x_0 = 0$ における初期値 f(0), f'(0) は与えられているとする。 x_{i+1} における $f(x_{i+1})$ および $f'(x_{i+1})$ の値は、 x_i での値から次のように求められる。

$$f(x_{i+1}) = f(x_i) + f'(x_i)(x_{i+1} - x_i)$$
(3)

$$f'(x_i) = f'(x_i) + F(f(x_i), x_i)(x_{i+1} - x_i)$$
(4)

Euler 法は 1 次の方法であるため計算精度は後述の方法に劣るが、等間隔グリッドである必要がないため汎用性は高い。

1.3 4次 Runge-Kutta 法

4 次 Runge-Kutta 法の一般形は以下のように表される。縦ベクトル $\mathbf{y}(x)$ に関する 1 次微分方程式

$$\frac{\mathrm{d}}{\mathrm{d}x}\mathbf{y}(x) = f(\mathbf{y}(x), \ x) \tag{5}$$

があり、点列 x_i を幅 h で等間隔にとるとき、

$$\mathbf{k}_1 = f(\mathbf{y}(x_i), x_i) \tag{6}$$

$$\mathbf{k}_2 = f(\mathbf{y}(x_i) + h\mathbf{k}_1/2, \ x_i + h/2) \tag{7}$$

$$\mathbf{k}_3 = f(\mathbf{y}(x_i) + h\mathbf{k}_2/2, \ x_i + h/2)$$
 (8)

$$\mathbf{k}_4 = f(\mathbf{y}(x_i) + h\mathbf{k}_3, \ x_i + h) \tag{9}$$

$$\mathbf{y}_{i+1} = \mathbf{y}_i + h \left[\frac{1}{6} \mathbf{k}_1 + \frac{1}{3} \mathbf{k}_2 + \frac{1}{3} \mathbf{k}_3 + \frac{1}{6} \mathbf{k}_4 \right]$$
 (10)

によって \mathbf{y}_{i+1} を求める。 $f(\mathbf{y}(x), x)$ は $\mathbf{y}(x)$ と同じ次元の縦ベクトルを返す関数である。

4次 Runge-Kutta 法を今の場合に当てはめると、

$$k_1 = f'(x_i)$$
 $k_1' = F(f(x_i), x_i)$ (11)

$$k_2 = f'(x_i) + hk_1/2$$
 $k_2' = F(f(x_i) + hk_1/2, x_i + h/2)$ (12)

$$k_3 = f'(x_i) + hk_2/2$$
 $k_3' = F(f(x_i) + hk_2/2, x_i + h/2)$ (13)

$$k_4 = f'(x_i) + hk_3'$$
 $k_4' = F(f(x_i) + hk_3, x_i + h)$ (14)

$$f(x_{i+1}) = f(x_i) + h\left[\frac{1}{6}k_1 + \frac{1}{3}k_2 + \frac{1}{3}k_3 + \frac{1}{6}k_4\right] \quad f'(x_{i+1}) = f'(x_i) + h\left[\frac{1}{6}k_1' + \frac{1}{3}k_2' + \frac{1}{3}k_3' + \frac{1}{6}k_4'\right]$$
(15)

となる。

^{*1} 負符号は Numerov 法の表式に合わせて付けた。

1.4 Numerov 法

Numerov 法は、 $F(f(x), x) = -a(x) \cdot f(x)$ となっている場合のみ使うことのできる手法である。連立形式は使わず、以下のような式で値を計算する。

$$f(x_{i+1}) = \frac{2(1 - 5h^2 a(x_i)/12)f(x_i) - (1 + h^2 a(x_{i-1})/12)f(x_{i-1})}{1 + h^2 a(x_{i+1})/12}$$
(16)

h は点列の間隔であり、一定値である必要がある。

1.5 実際の数値計算における点列の取り方

本プログラムでは、点列をいくつかのブロックに分け、各ブロック内で等間隔に並ぶようにとる。既定値は表1の通りである。

最初の点	最後の点	間隔	間隔の個数	最初の点の座標	最後の点の座標
0	40	0.0025	40	0	0.1
40	80	0.005	40	0.1	0.3
80	120	0.01	40	0.3	0.7
120	160	0.02	40	0.7	1.5
160	200	0.04	40	1.5	3.1
200	240	0.08	40	3.1	6.3
240	280	0.16	40	6.3	12.7
280	320	0.32	40	12.7	25.5
320	360	0.64	40	25.5	51.1
360	400	1.28	40	51.1	102.3
400	440	2.56	40	102.3	204.7

表 1 既定の点列の取り方。

2 Thomas-Fermi ポテンシャルの計算

Thomas-Fermi ポテンシャルを求めるための微分方程式は

$$\frac{\mathrm{d}}{\mathrm{d}x^2}g(x) = F(g(x), \ x) = \frac{g(x)^{3/2}}{\sqrt{x}}$$
(17)

である。Numerov 法は使えない形式であり、Euler 法または 4 次 Runge-Kutta 法によって解くことができる。ただし、間隔が等間隔でないブロック間については、4 次 Runge-Kutta 法は使えないため Euler 法で行う。

境界条件により g(0)=1 であるが、g'(0) の値は定まらない。もう一つの境界条件 $g(x)\to 0$ を満たす適切な g'(0) $(x\to\infty)$ を探す必要がある。また、数値計算の過程で $g(x_i)<0$ となった場合、2 分の 3 乗ができないため $g(x_{i+1})$ およびそれ以降の計算はできなくなる。

実際の計算では、点列の最後 x_N で $g(x_N)$ が閾値以下になる g'(0) を 2 分法によって探す。 初期値 g'(0)=g' を用いて計算した $g(x_N)$ を $g(x_N; g')$ で表す。 ただし、計算の途中で $g(x_i)<0$ となった場合は数値計算を終了し、 $g(x_N; g')=g(x_i)$ とする。以下の手順で計算は実行される。

1. g'_0 および g'_1 を、 $g(x_N; g'_0) < 0 < g(x_N; g'_1)$ となるように探す。

図 1 Thomas-Fermi ポテンシャル関数 q(x)。

- 2. $g_2' = (g_0' + g_1')/2$ をとり、 $g(x_N; g_2')$ を計算する。
- 3. $g(x_N; g_2') < 0$ であれば、 g_0' の値を g_2' で置き換える。 $g(x_N; g_2') > 0$ で閾値以上であれば、 g_1' の値を g_2' で置き換える。 $g(x_N; g_2') > 0$ で閾値以下であれば、このときの $g(x_i)$ が求める Thomas-Fermi ポテンシャルである。
- 4. $q(x_N; q_2') > 0$ で閾値以下の場合以外は、2. に戻って再度計算を行う。

数値計算により得られた g(x) は図 1 の通りである。先行研究 [2] と同様の結果が得られている。

3 球対称ポテンシャルにおける Schrödiger 方程式

3.1 計算手順

HFS 方程式ではポテンシャル V(r) は球対称であり、動径方向の Schrödinger 方程式は

$$\left[-\frac{1}{2} \frac{\mathrm{d}^2}{\mathrm{d}r^2} + \frac{l(l+1)}{2r^2} + V(r) \right] P_{nl}(r) = E_{nl} P_{nl}(r)$$
(18)

となる。Thomas-Fermi スケーリング $r=\mu x$ を適用して整理すると、 $P_{nl}(r)=p_{nl}(x),\ V(r)=v(x)$ として

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2} p_{nl}(x) = \left[\frac{l(l+1)}{x^2} + 2\mu^2 (v(x) - E_{nl}) \right] p_{nl}(x)$$
(19)

となる。点列 x_i におけるポテンシャル $v(x_i)$ が与えられている状況を考えるので、Euler 法または Numerov 法で計算ができる。4 次 Runge-Kutta 法は $x_i+h/2$ での値も必要となるため使用できない。n および l は与えられており、節が n-l-1 個ある解とその時の E_{nl} を探す。原点で正則な束縛解は、 $p_{nl}(0)=0$ および $p_{nl}(x)\to 0$ $(x\to\infty)$ を満たす。後者は、計算範囲の最後の点 x_N に対し $p_{nl}(x_N)=0$ の条件で近似される。原点での境界条件 $p_{nl}(0)=0$ および $p'_{nl}(0)$ に対する適当な初期条件から $p_{nl}(x_i)$ を求めていく手順は Thomas-Fermi ポテンシャルの時と同様である。しかし、x が大きいところでの数値誤差が大きく、二分法によって $p_{nl}(x_N)=0$ を満たす固有値 E_{nl} を探すのは難しい。そこで、 E_{nl} の試行値が与えられたとき波動関数 $p_{nl}(x_i)$ は以下のように計算する。

1. 式 (19) の右辺にある関数 $l(l+1)/x^2+2\mu^2(v(x)-E_{nl})$ は、 $x\to\infty$ で $-E_{nl}>0$ となる。そこで、最後に関数の値が負から正に変わる点を x_0 とすると、 E_{nl} が適切な固有値のとき $x>x_0$ の範囲で $p_{nl}(x)$

は単調増加し節を持たない。

- 2. 計算範囲を、 $0 \le x < x_0 \times \text{const.}$ で定める。定数 const. は 8 程度が適切であり、用意していた点列の最後が $x_0 \times \text{const.}$ より小さければ前者を境界値とする。
- 3. $0 \le x \le x_0$ の範囲は x = 0 から外側に解き、 $p_{nl}^{\text{out}}(x_i)$ を得る。 $x_0 \le x$ の範囲は境界から内側に解き、 $p_{nl}^{\text{in}}(x_i)$ を得る。それぞれの計算において、1 階微分の初期値は適当に与える。
- 4. 節の個数は $0 \le x \le x_0$ の範囲にあるもののみを数える。
- 5. 式 (19) は線型微分方程式であるから、解の定数倍もまた解である。 $p_{nl}^{\mathrm{out}}(x_i)$ と $p_{nl}^{\mathrm{in}}(x_i)$ が $x=x_0$ で連続になるようスケールを合わせることができるが、このときに 1 階微分も連続になっていれば適切な解を得られたことになる。 関数が連続になるようスケールを合わせたときに 1 階微分も連続になるかどうかは、対数微分 $\frac{1}{p_{nl}(x)}\frac{\mathrm{d}}{\mathrm{d}x}p_{nl}(x)=\frac{\mathrm{d}}{\mathrm{d}x}\log\left(p_{nl}(x)\right)$ が一致するかを調べればよい。
- 6. 対数微分が一致しない場合、次節の方法により固有エネルギーの誤差 ΔE を推定できる。

はじめに手順 1.-4. を行い、節の個数が n-l-1 個になる範囲で最大の E_{nl} を求める *2 。節の個数を調べることで E_{nl} の値をある程度推定できたら、次は手順 1.-6. を全て行い、固有エネルギーの推定値を変化させていく。これを $|\Delta E|$ が閾値以下になるまで続ければ、最終的に得られた E_{nl} が固有値となり、 $p_{nl}(x_i)$ を規格化すれば波動関数が得られる。

3.2 対数微分の差から固有エネルギーの誤差を推定する方法

式 (19) を少し変形し、微分方程式

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}p(x) + (V(x) - \varepsilon)p(x) = 0 \tag{20}$$

および境界条件 $p(0)=0,\;p(x)\to 0\;(x\to\infty)$ を満たす解 p(x) および固有値 ε を求める状況を考える。境界条件を満たすが $x=x_0$ で不連続または微分可能でない解 $q(x)=p(x)+\Delta p(x)$ と固有値 $\varepsilon+\Delta\varepsilon$ が得られたときに $\Delta\varepsilon$ を推定する。

q(x) および $\varepsilon + \Delta \varepsilon$ は $x = x_0$ 以外で式 (20) を満たすので、代入して差の 1 次をとると

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2} \Delta p(x) + (V(x) - \varepsilon) \Delta p(x) - \Delta \varepsilon \cdot p(x) = 0 \tag{21}$$

p(x) をかけて積分すると、

$$\int_{0}^{x_0} \left[p(x) \frac{\mathrm{d}^2}{\mathrm{d}x^2} \Delta p(x) + (V(x) - \varepsilon) p(x) \Delta p(x) - \Delta \varepsilon \cdot p(x)^2 \right] \mathrm{d}x = 0$$
 (22)

$$\iff \int_0^{x_0} \left[p(x) \frac{\mathrm{d}^2}{\mathrm{d}x^2} \Delta p(x) - \Delta p(x) \frac{\mathrm{d}^2}{\mathrm{d}x^2} p(x) \right] \mathrm{d}x = \Delta \varepsilon \int_0^{x_0} p(x)^2 \mathrm{d}x \quad (∵ 式 (20) を (V(x) - \varepsilon) p(x) に適用)$$
(23)

$$\iff \left[p(x) \frac{\mathrm{d}}{\mathrm{d}x} \Delta p(x) - \Delta p(x) \frac{\mathrm{d}}{\mathrm{d}x} p(x) \right]_{0}^{x_{0}} = \Delta \varepsilon \int_{0}^{x_{0}} p(x)^{2} \mathrm{d}x \tag{24}$$

$$\iff \left[p(x)^2 \Delta \left(\frac{1}{p(x)} \frac{\mathrm{d}}{\mathrm{d}x} p(x) \right) \right]_0^{x_0} = \Delta \varepsilon \int_0^{x_0} p(x)^2 \mathrm{d}x \tag{25}$$

$$\iff p(x_0)^2 \Delta \left(\frac{1}{p(x_0)} \frac{\mathrm{d}}{\mathrm{d}x} p(x_0) \right) = \Delta \varepsilon \int_0^{x_0} p(x)^2 \mathrm{d}x \quad (\because p(0) = 0)$$
 (26)

 $^{^{*2}}$ 境界条件および節の個数の条件を満たす E_{nl} からわずかでも大きくなると、節が 1 つ増えるため。

を得る。積分範囲 $[x_0,\infty]$ についても負符号が付く以外は同様。q(x) を用いて差分表記を書き直すと、

$$p(x_0)^2 \left[\frac{1}{q(x_0 - 0)} \frac{\mathrm{d}}{\mathrm{d}x} q(x_0 - 0) - \frac{1}{p(x_0)} \frac{\mathrm{d}}{\mathrm{d}x} p(x_0) \right] = \Delta \varepsilon \int_0^{x_0} p(x)^2 \mathrm{d}x$$
 (27)

$$-p(x_0)^2 \left[\frac{1}{q(x_0+0)} \frac{d}{dx} q(x_0+0) - \frac{1}{p(x_0)} \frac{d}{dx} p(x_0) \right] = \Delta \varepsilon \int_{x_0}^{\infty} p(x)^2 dx$$
 (28)

p(x) は求められないので q(x) で代用し、左辺第 2 項が消えるように整理することで

$$\Delta \varepsilon = \frac{\frac{1}{q(x_0 - 0)} \frac{\mathrm{d}}{\mathrm{d}x} q(x_0 - 0) - \frac{1}{q(x_0 + 0)} \frac{\mathrm{d}}{\mathrm{d}x} q(x_0 + 0)}{\frac{1}{q(x_0 - 0)^2} \int_0^{x_0} q(x)^2 \mathrm{d}x + \frac{1}{q(x_0 + 0)^2} \int_{x_0}^{\infty} q(x)^2 \mathrm{d}x}$$
(29)

を得る。式を見てわかるように、数値計算で得られた $p_{nl}^{\mathrm{out}}(x_i)$ および $p_{nl}^{\mathrm{in}}(x_i)$ をスケーリングせずに q(x) として使用できる。

3.3 Thomas-Fermi ポテンシャルを用いた計算例

Thomas-Fermi ポテンシャルを用い、固有エネルギー E_{nl} の Z 依存性を調べると図 2 のようになった。この結果は先行研究 [2] とよく一致している。

図 2 Thomas-Fermi ポテンシャルにおける固有エネルギー。先行研究 [2] は Rydberg 単位系であり、それに合わせるため縦軸は $\sqrt{-E}$ ではなく $\sqrt{-2E}$ にしている。

4 自己無撞着な原子ポテンシャルの計算

4.1 ポテンシャルの修正

HFS 方程式におけるポテンシャル V(r) は、前に述べた通り

$$V(r) = -\frac{Z}{r} + \frac{1}{r} \int_0^r \sigma(r') dr' + \int_r^\infty \frac{\sigma(r')}{r'} dr' - 3\left(\frac{3\rho(r)}{8\pi}\right)^{1/3}$$
(30)

$$\sigma(r) = \sum_{nl} w_{nl}(P_{nl}(r))^2 \tag{31}$$

$$\rho(r) = \frac{\sigma(r)}{4\pi r^2} \tag{32}$$

である。実際の計算においては、 $r = \mu x$ によるスケーリングを行い、

$$V(x_i) = -\frac{Z}{\mu x_i} + \frac{1}{x_i} \sum_{j=0}^{i-1} \sigma(x_j)(x_{j+1} - x_j) + \sum_{j=i}^{N-1} \frac{\sigma(x_j)}{x_j}(x_{j+1} - x_j) - 3\left(\frac{3\rho(x_i)}{8\pi}\right)^{1/3}$$
(33)

$$\sigma(x_i) = \sum_{nl} w_{nl} (P_{nl}(x_i))^2 \tag{34}$$

$$\rho(x_i) = \frac{\sigma(x_i)}{4\pi(\mu x_i)^2} \tag{35}$$

を用いる。さらに、 $x \to \infty$ での振る舞いは $V(x_i) \sim -1/\mu x_i$ になるべきであるため、

$$V_{\text{modified}}(x_i) = \begin{cases} V(x_i) & V(x_i) < -\frac{1}{\mu x_i} \\ -\frac{1}{\mu x_i} & V(x_i) > -\frac{1}{\mu x_i} \end{cases}$$
(36)

の修正を挟む。修正後のポテンシャル $V_{\text{modified}}(x_i)$ を用いて、動径方向の Schrödinger 方程式 (19) を解く。

4.2 SCF 収束

j 回目の入力ポテンシャル $V^{(j)}(x_i)$, $V^{(j)}_{modified}(x_i)$ を用いて j 回目の計算を行ったのち、j+1 回目の計算 に用いる入力ポテンシャルは単純混合法によって定める。j 回目の計算で求めた波動関数によって得られたポテンシャルを $V(x_i)$, $V_{modified}(x_i)$ とすると、

$$V^{(j+1)}(x_i) = (1 - A)V(x_i) + A \cdot V^{(j)}(x_i), \quad V_{\text{modified}}^{(j+1)}(x_i) = (1 - A)V_{\text{modified}}(x_i) + A \cdot V_{\text{modified}}^{(j)}(x_i) \quad (37)$$

である。混合比Aは0から1の間であり、0.5に設定すると適切に収束した。

収束の判定は、以下に示すパラメータ α , β を用いる。

$$\alpha_j = \max_i \left| \frac{V^{(j)}(x_i) - V^{(j+1)}(x_i)}{V^{(j)}(x_i)} \right|$$
 (38)

$$\beta_j = \max_i \left| \mu x_i V^{(j)}(x_i) - \mu x_i V^{(j+1)}(x_i) \right| \tag{39}$$

両方が閾値以下になったときを収束と定める。

4.3 計算例

炭素原子の場合、Z=6、占有数は $w_{10}=2$, $w_{20}=2$, $w_{21}=2$ となる。実際に計算を行った結果が図 3 である。先行研究 [1] の結果とよく一致している。

図 3 炭素原子における自己無撞着なポテンシャル。インセットは、 $V(x)=-1/\mu x$ への修正が加わる部分付近の拡大図である。

参考文献

- [1] F. Herman and S. Skillman "Atomic Structure Calculations" , 1963.
- [2] R. Latter, Phys. Rev. 99, 510 (1955).