ı

Kap 4. Typer av kjemiske reaksjoner og løsningsstøkiometri

- Vandige løsninger; sterke og svake elektrolytter
- Sammensetning av løsninger
- Typer av kjemiske reaksjoner
 - Fellingsreaksjoner (krystallisasjon)
 - Reaksjoner i løsning
 - Syre-base reaksjoner
 - Red-oks reaksjoner

www.ntnu.no

4.1 Løsninger

- En løsning består av:
 - Løsningsmiddel (solvent)
 - Oppløst stoff (solute)
- Det vanligste l

 øsningsmiddelet: VANN
 - Vandig løsning (aqueous solution)
 - Vann er et polart løsemiddel

Likt løser likt

- Polare stoffer løses lett i vann
 - NaCl (s) \rightarrow Na⁺ (aq) + Cl⁻ (aq)
 - $NH_4NO_3(s) \rightarrow NH_4^+(aq) + NO_3^-(aq)$
- Upolare stoffer (f.eks. fett) løses ikke

4

4.2 Elektrolytter

- **Elektrolytter** = løsninger som leder strøm
- Sterke og svake elektrolytter har henholdsvis høy og lav konsentrasjon av ladede partikler

(a) Nonelectrolyte (b) Weak electrolyte

(c) Strong electrolyte

4.2 Elektrolytter

HCl er en sterk elektrolytt

- H^+
- Cl^{-}

Eddiksyre er en svak elektrolytt

4.3 Sammensetning av løsninger Konsentrasjon

• Molaritet: stoffmengde per volum løsning

$$molaritet = \frac{stoffmengde (mol)}{volum}$$

$$c = \frac{n}{V}$$

• Benevning M (molar) eller mol/L

• Molalitet : stoffmengde per kg løsningsmiddel

molalitet =
$$\frac{\text{stoffmengde (mol)}}{\text{kg løsningsmiddel}}$$
 $m = \frac{n}{m}$

• Benevning molal = mol/kg

- Andre konsentrasjonsenheter:
 - g per 100 g løsningsmiddel (SI chemical data)
 - Molbrøk: forholdet mellom antall mol oppløst stoff og totalt antall mol i blandingen

$$x_i = \frac{n_i}{n_{tot}}$$

Fortynning

• Stoffmengden (antall mol) er uforandret før og etter fortynning! Dvs: $n_1 = n_2 = n_3 = n_4$

$$\mathbf{c}_1 \cdot \mathbf{V}_1 = \mathbf{c}_2 \cdot \mathbf{V}_2$$

4.4 Typer reaksjoner

- Felles for kjemiske reaksjoner: bindinger brytes og nye dannes.
- Kan skje på forskjellige måter, og vi deler ofte reaksjonene inn i grupper. Vanligvis
 - Fellingsreaksjoner (kap 4.5-4.8)
 - Syre-base reaksjoner (kap 4.9)
 - Reduksjons-oksidasjons (red-oks) reaksjoner (kap 4.10-4.12)

Fellingsreaksjoner

- Faste stoffer i vann har ulik løselighet
- Lettløselige salter:
 - f.eks. NaCl, AgNO₃
- Tungtløselige salter:
 - f.eks. AgCl, BaSO₄
- Når man blander to løsninger kan man få utfelling av et bunnfall

Løselighetstabell

	C1	SO ₄ ²⁻	NO ₃ -	CO ₃ ²⁻	O ²⁻	OH-
Na ⁺	LL	LL	LL	LL	LL	LL
K^+	LL	LL	LL	LL	LL	LL
Ag^+	TL	TL	LL	TL	TL	
Pb ²⁺	TL	TL	LL	TL	TL	TL
Cu ²⁺	LL	LL	LL	TL	TL	TL
Fe ²⁺	LL	LL	LL	TL	TL	TL
Zn^{2+}	LL	LL	LL	TL	TL	TL
Ba ²⁺	LL	TL	LL	TL	TL	TL
Ca ²⁺	LL	TL	LL	TL	TL	TL
NH ₄ ⁺	LL	LL	LL	LL		

Nettoligning

I en nettoligning skrives kun de ionene/stoffene som endrer tilstand i reaksjonen

Fullstendig reaksjonligning:

$$NaCl(aq) + AgNO_3(aq) \rightarrow AgCl(s) + NaNO_3(aq)$$

Netto reaksjonsligning:

$$Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$$

Syre-base-reaksjoner

Brønsted-Lowry:

- En **syre** er et stoff som kan **avgi protoner** (H⁺)
- En **base** er et stoff som kan **ta opp protoner**
- Alle syre-base-reaksjoner: protoner går fra et stoff til et annet.
- Kalles derfor ofte for **protolysereaksjoner**, og syrer og baser omtales også med fellesnavnet **protolytter**.
- Syre-base-reaksjon kaller vi ofte en nøytralisasjonsreaksjon

$$H^+(aq) + OH^-(aq) \rightleftharpoons H_2O(l)$$

• Alle protolysereaksjoner er reversible, det vil si de kan gå begge veier avhengig av pH.

Innovation and Creativity

Elektrolytter

HCl er en sterk elektrolytt

+ H+

CI⁻

Eddiksyre er en svak elektrolytt

Hydrogen

Syrer

HCl er en sterk syre

- + H+
- CI⁻

Eddiksyre er en svak syre

- Hydrogen
- Oxygen
- Carbon

Syre-base-reaksjoner

- Eksempel: HCl og NaOH
- Eksempel: HC₂H₃O₂ og NaOH

Sterke baser reagerer fullstendig med svake syrer og vice versa.

Syre-base titrering

• Bestemmelse av mengde ved å benytte løsning med kjent konsentrasjon (**titrant**)

byrette med titrant

Mengde stoff i kolben finnes ved hjelp av c og V til titranten

fargeendring ved ekvivalenspunktet på grunn av indikator

i løsning

ukjent mengde stoff

Redoks-reaksjoner (reduksjon - oksidasjon)

=> Overføring av elektroner (e-) fra et atom/molekyl til et annet

- Oksidasjon: avgivelse av elektroner
- Fe \rightarrow Fe²⁺ + 2e⁻

• Reduksjon: opptak av elektroner

$$S + 2e^{-} \rightarrow S^{2-}$$

- Veldig mange viktige redoksreaksjoner!
 - Forbrenningsreaksjoner
 - Metallfremstilling
 - Etc.

Figure 4.20 A summary of an oxidation–reduction process, in which M is oxidized and X is reduced.

Elektronegativitet

Atomer med **lav** elektronegativitet avgir lett elektroner

Na
$$\rightarrow$$
 Na⁺ + e⁻
Mg \rightarrow Mg²⁺ + 2 e⁻

Atomer med **høy** elektronegativitet tar lett opp elektroner

$$Cl_2 + 2 e^- \rightarrow 2 Cl^-$$

 $O_2 + 4 e^- \rightarrow 2 O^{2-}$

Oksidasjonstall

Regler for oksidasjonstall:

- Oks.tallet for et atom i et grunnstoff er 0 (null)
- Oks.tallet for enatomige ioner er lik ladningen
- I kovalente forbindelser med ikke-metaller har hydrogen oks.tall +1
- Oksygen får oks.tall -2 (unntatt $H_2O_2 => -1$)
- Binære forbindelser: element med høyest elektronegativitet får ladning til dens ioniske forbindelse
- Summen av oks.tallene må være lik ladningen for speciet

Balansering av redoksreaksjoner

Oksidasjonstallmetoden:

- 1. Finn oksidasjonstallene til alle atomene
- 2. Finn endringen i oksidasjonstall
- 3. Balanser slik at e^- avgitt = e^- tatt opp
- 4. Balanser de andre atomene ved inspeksjon

Eksempel:

$$CH_3OH(1) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$$

$$MnO_2(s) + Al(s) \rightarrow Mn(s) + Al_2O_3(s)$$

Balansering av redoksreaksjoner

Halvreaksjonmetoden (for reaksjoner i vannløsning):

- 1. Identifiser hva som er oksidert og redusert ved hjelp av oks.tall
- 2. Skriv separate halvreaksjoner for oksidasjon og reduksjon
- 3. Balanser alle atomene unntatt H og O
- 4. Balanser oksygen ved å legge til H2O
- 5. Balanser H ved å legge til H+
- 6. Balanser ladningen ved å legge til e-
- 7. Multipliser halvreaksjonene så antall e- er likt
- 8. Legg sammen halvreksjonene
- 9. Sjekk at alle atomene og ladningene er balansert

Balansering av redoksreaksjoner

Eksempel:

$$MnO_4^-(aq) + Fe^{2+}(aq) \rightarrow Mn^{2+}(aq) + Fe^{3+}(aq)$$

