7! = 24 = 12 avangements of the 2!!!!!! = 2 ARAS Letters in ARAS AASR ARSA SRAA ASAR SAAR RAAS ASRA SARA DASA

Permutations of a Set with Repeated Elements:

Example: In how many ways can you arrange the letters in MIS-

of all letters were distinct then we would have 11!

attackers were distinct then we would have 11!

2 I's

16

Theorem: Suppose a collection consists of n objects of which MISSISSAUGA

 n_1 are of type 1 and are indistinguishable from each other, n_2 are of type 2 and are indistinguishable from each other,

 n_k are of type k and are indistinguishable from each other.

Suppose that $n_1 + n_2 + \ldots + n_k = n$. Then the number of distinguishable permutations of the n objects is

$$\frac{n!}{n_1!n_2!\cdots n_k!}$$

Combinations and the Binomial Theorem

Defn: Let n and r be non-negative integers with $r \leq n$. An r**combination** of a set of n elements is a <u>subset</u> of r of the n elements.

The number of subsets of size r (r-combinations) that can be chosen from a set of n elements is usually denoted by $\binom{n}{r}$ (read: "n choose r").

[Note that there are many alternative notations.]

Numbers of the form $\binom{n}{r}$ are called **binomial coefficients**.

es:
$$\binom{n}{r} = \frac{n!}{(n-r)!r!}$$

Examples:

$$\begin{pmatrix} 7 \\ 2 \end{pmatrix} = \frac{7!}{(7-2)!2!} = \frac{7!}{5!2!} = \frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 21}{5!2!} = \frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 21}{5!2!} = \frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 21}{7 \cdot 6 \cdot 21}$$

$$n=7$$
 = $\frac{7.6}{2}=21$

$$\binom{10}{4} = \frac{10.9.8.7}{4!} = \frac{109.8.7}{24} = 210$$

There are two distinct types of selecting r objects from a set of n elements.

In an ordered selection, it is not only what elements are chosen but also the order in which they are chosen that matters.

An ordered selection of r elements from a set of n elements is an r-permutation of the set.

In an unordered selection, on the other hand, the order in which the elements are chosen is irrelevant.

An unordered selection of r elements from a set of n elements is the same as a subset of size r or an r-combination of the set.

Relation between permutations and combinations:

	•	
Con P(4,Z) = 4.3	mpare $P(4,2)$ to $\binom{4}{2}$.	
a b cd ab ab ac Eac	-> n! (n-r)! T such permutation	why is this the number of relement subsets of an nelement set?
bod today	each selection of r flungs appear in r! different copies. So if we lorge	
200	there are	/ /
		r.!

$$|23456|$$
 $|x_1=0|$
 $|x_2=4|$
 $|x_3=0|$
 $|x_3=0|$
 $|x_3=0|$
 $|x_3=0|$

Number of Integer Solutions to Equations:

Example: How many integer solutions are there to the equation

	$(x_1 + x_2 + x_3 =$		x x	x x x 3
Sep. (2 and 3)	here $x_1, x_2, x_3 \ge 0$? $ x_1 + x_2 + x_3 \le 0$ $ x_2 + x_3 \le 0$ $ x_2 + x_3 \le 0$ $ x_3 + x_3 \le 0$	4 3 2 2 2 1	001071037	040
$x_1 = 1$ $x_2 = 0$ $x_3 = 3$	There are 3 boxes and 4 indistinguish	+ (placed into	1

these boxes. In how many ways can this be done?

 $x_1 + x_2 \le 7$ $x_1, x_2 \ge 0$ How many integer solutions? Introduce x_3 , $x_1 + x_2 + x_3 = 7$ $x_1, x_2, x_3 \ge 0$ $(n+(r-1)) = (\frac{q}{2}) = \frac{q_18}{2} = 36$

Example: How many integer solutions are there to the equation

where $x_1, x_2, x_3 \ge 0$?

The double $x_1, x_2, x_3 \ge 0$?

The double $x_1, x_2, x_3 \ge 0$?

The double $x_1, x_2, x_3 \ge 0$?

Observe that $x_1 \ge 0$ (because $x_1 + x_2 + x_3 \le 4$)

Solve for $x_1 + x_2 + x_3 + x_4 = 4$ where $x_1, x_2 + x_3 + x_4 \ge 0$ $x_1 + x_2 + x_3 \le 4$ Observe that $x_2 \ge 0$ (because $x_1 + x_2 + x_3 \le 4$)

Solve for $x_1 + x_2 + x_3 + x_4 = 4$ where $x_1, x_2 + x_3, x_4 \ge 0$ $x_1 + x_2 + x_3 \le 4$ Observe that $x_2 + x_3 + x_4 = 4$ where $x_1, x_2 + x_3, x_4 \ge 0$ $x_1 + x_2 + x_3 \le 4$ Example: How many integer solutions are there to the equation

 $x_1 + x_2 + x_3 + x_4 = 9$

where $x_1 \ge 2$, $x_2 \ge 0$, $x_3 \ge -3$, $x_4 \ge 4$?