Chapitre 11 - Fonctions logiques

Les fonctions logiques (ou portes logiques, opérateurs logiques) permettent d'associer une variable de sortie à une ou plusieurs variables d'entrée.

Quatre fonctions logiques élémentaires permettent de définir toutes les fonctions logiques complexes.

1- LA FONCTION OUI (OU EGALITE):

L'état de la variable de sortie est identique à celui de la variable d'entrée.

Symbole logique	Table de vérité	Équation logique	Schéma électrique à contacts	Chronogramme	
<u> </u>				$\left \begin{array}{c} \uparrow \\ \hline \end{array}\right. \right.$	
<u>a</u> X					
a = True			a = False		
S = a			S = a		
print(S)			print(S)		
a = 0b1			a = 0b0		
S = a			S = a		
print(bin(S)) =			print(bin(S)) =		

2- LA FONCTION NON (OU COMPLEMENT):

L'état de la variable de sortie est l'inverse de celle de la variable d'entrée.

Symbole logique	Table de vérité	Equation logique	Schéma électrique à contacts	Chronogramme
1				↑ →
->				<u> </u>
a = True S = not a print(S)			a = False S = not a print(S)	

3- LA FONCTION ET (OU INTERSECTION):

L'état de la variable de sortie sera à l'état 1 si et seulement si les deux variables d'entrées sont à l'état 1.

La fonction ET correspond à une liaison électrique série.

Symbole logique	Table de vérité	Équation logique	Schéma électrique à contacts		Chronogramme
a & s				<u>a</u>	<u>t</u>
				s 🛉	<u>t</u>
a = False	a = Tru		a = False	L	a = True
b = False	b = Fal		b = True		b = True
S = a and b	S = a a		S = a and b		S = a and b
print(S) =	print(S	,	print(S) =		print(S) =
a = 0b 0	a = 0b 1		a = 0b 0		a = 0b 1
b = 0b 0	b = 0b (b = 0b 1		b = 0b 1
S = a & b =	S = a &	b =	S = a & b =		S = a & b =

<u>Exercice</u>: Soit les nombres binaires A = 0b10101010 et B = 0b11110000. Soit C = A & B. Quelle est la valeur de bin(C)?

4- LA FONCTION OU (OU UNION):

L'état de la variable de sortie sera à l'état 1 si l'une des entrées est à l'état 1 ou bien si toutes les entrées sont à l'état 1. La fonction OU correspond à une liaison électrique parallèle.

Symbole logique	Table de vérité	Équation logique	Schéma électrique à contacts	Chronogramme
a ≥1 s				a t t
→				S

a = False	a = True	a = False	a = True
b = False	b = False	b = True	b = True
S = a or b			
print(S) =	print(S) =	print(S) =	print(S) =
a = 0b 0	a = 0b 1	a = 0b 0	a = 0b 1
b = 0b 0	b = 0b 0	b = 0b 1	b = 0b 1
S = a b =	S = a b =	S = a b =	S = a b =

<u>Exercice</u>: Soit les nombres binaires A = 0b10101010 et B = 0b11110000. Soit $C = A \mid B$. Quelle est la valeur de bin(C)?

5- LA FONCTION OU EXCLUSIF:

L'état de la variable de sortie sera à l'état 1 si l'une des entrées est à l'état 1 ou bien si toutes les entrées sont à l'état 1. La fonction OU correspond à une liaison électrique parallèle

Symbole logique	Table de vérité	Equation logique	Schéma électrique à contacts	Chronogramme
A—=1 B—=5			A B S	<u>a</u> <u>t</u>
A B				s † <u>t</u>

a = 0b 0	a = 0b 1	a = 0b 0	a = 0b 1
b = 0b 0	b = 0b 0	b = 0b 1	b = 0b 1
S = a^b =			

6- PROPRIETE DE L'ALGEBRE DE BOOLE:

a. PROPRIETES SUR LES OPERATIONS:

Commutativité	Associativité	Distributivité
S = a + b =	S = (a+b) + c =	S = a (b + c)
S = a b =	S = (a b) c =	

b. **EGALITES REMARQUABLES**:

a + 0 =	a. 1 =	$a. \bar{a} =$
a.0 =	a + a =	$a + \bar{a} =$
a+1=	a.a =	$a + (\bar{a}.b) =$

7- EXERCICES:

<u>1-</u> Représenter les schémas électriques à contacts des équations suivantes :

$$S1 = \bar{a} + (b.c)$$

$$S2 = a + b.c$$

$$S3 = (a+b).c$$

2- Représenter le logigramme des équations suivantes :

$$S1 = \bar{a} + (b.c)$$

$$S2 = a + b.c$$

$$S3 = (a+b).c$$

3- Etablir l'équation de S1, S2

