Materials 36 - Convince that estimation is robust

Laura Gáti

July 10, 2020

Overview

1	Calibration issues	2
	1.1 $\alpha = Prob(\text{keep same price}) = ?$	2
	1.2 The composite parameter κ once and for all	2
2	Back to estimation	4
	2.1 Simulated data with different seed	4
3	Impulse responses to iid monpol shocks across a wide range of learning models	7
A	Model summary	9
В	Target criterion	9

1 Calibration issues

1.1 $\alpha = Prob(\text{keep same price}) = ?$

So far I've used 0.5.

- Nikolay Hristov notes: expected duration of contract = $\frac{1}{1-\alpha}$ periods.
- Evidence on average duration of prices:
 - Bils & Klenow (2004): 4.3 months
 - Klenow & Kryvstov (2008): mean 7-9 months, median 4-7 months
 - Nakamura & Steinsson (2008): 7-9 months
 - Klenow & Malin (2010): 6.9 months
 - Eichenbaum, Jaimovitch & Rebelo (2008, published as 2011): 10.6 months
- \rightarrow On average this gives us 7.56 months, a little more than two quarters. The implied $\alpha \approx 0.6$. Rotemberg & Woodford (1997) calibrate $\alpha = 0.66$. To err on the flexible price side, I set $\alpha = 0.5$.

1.2 The composite parameter κ once and for all

I've used $\kappa = \frac{(1-\alpha\beta)}{\alpha}\zeta$ where I should have used $\kappa = \frac{(1-\alpha)(1-\alpha\beta)}{\alpha}\zeta$. In Preston (2005), and I think this is also Woodford's favorite specification, $\zeta = \frac{\omega+\sigma^{-1}}{1+\omega\theta}$. Let's define terms:

- α: Prob(keep price unchanged)
- β : discount factor
- ζ : measure of strategic complementarity in price setting. The smaller ζ , the more complementarity. This depends on a bunch of things:
 - homogenous vs. specific factor markets ($s_y = 0$ or not)
 - constant vs. variable desired markup ($\epsilon_{\mu} = 0$ or not)
 - no vs. intermediate inputs $(s_m = 0 \text{ or not})$

In particular (Prop 3.3 in Woodford 2011, equation 1.43, Chapter 3, p. 171):

$$\zeta = \frac{(1 - \mu s_m)(s_y + s_Y)}{1 + \theta[\epsilon_\mu + (1 - \mu s_m)s_y]} \tag{1}$$

with

- $-\theta$: price elasticity of demand
- $-\mu(x)$: markup function
- $-\epsilon_{\mu}$: elasticity of markup function (how much do target markups change at different levels of output)
- $-s(y,Y,\xi)$: real marginal cost function
- $-s_y$: elasticity of real marginal cost function wrt firm i's output, $y_t(i)$
- $-s_Y$: elasticity of real marginal cost function wrt aggregate output, y_t
- s_m : elasticity of real marginal cost function wrt intermediate inputs, $m_t(i)$

Then expression $\zeta = \frac{\omega + \sigma^{-1}}{1 + \omega \theta}$ is obtained by assuming no intermediate inputs, constant desired markups wrt. output levels and specific factor markets, so that

$$\zeta = \frac{s_y + s_Y}{1 + s_y \theta} \tag{2}$$

What is ω ? It's the derivative of the MC function wrt own output, but this only coincides with s_y for specific factor markets. Woodford shows that for specific factor markets, $s_y = \omega$, $s_Y = \sigma^{-1}$, while for common factor markets $s_Y = \omega + \sigma^{-1}$ because for the latter, there is no distinction between own and aggregate output for the purpose of wage setting and thus marginal cost. So, more broadly, ω is a measure of how marginal cost reacts to some wage-relevant measure of output. Woodford, Chapter 3, (1.16), p. 152:

$$\omega = \underbrace{\omega_w}_{=\eta, \text{ Frisch elasticity of disutility of labor wrt output}} + \underbrace{\omega_p}_{\text{elasticity of MPL wrt output}}$$
(3)

Denoting the Frisch elasticity as η , and noting that for Cobb-Douglas, $\partial MPL/\partial y_t = 0$,

$$\omega = \eta \tag{4}$$

• Chari, Kehoe & McGrattan (2000) and Woodford (2011) values: $\theta = 10, \sigma = 1, \omega = 1.25, \beta = 0.99$ These values are not controversial. I just want to check that the Frisch elasticity is Kosher, because by setting $\omega = 1.25$, we are implicitly setting the Frisch. According to Susanto (compare my summaries Part 1, p. 56 Mac and Part 2 p. 46-47 Mac), the inverse Frisch elasticity, $\varepsilon_{H,W} = \eta^{-1}$ needs to be 4 to flatten the labor supply curve (Barro-King comovement puzzle), but estimates suggests it's < 1. Here, $\omega = 1.25 = \eta$ implies $\eta^{-1} = 4/5 < 1$. I guess that's at least in line with estimates.

• The value of κ

Susanto suggests (somewhere in my notes) that for a NK model to display reasonable dynamics, κ needs to be below 0.1, but preferably even less than 0.01.

Chari, Kehoe & McGrattan (2000) and Woodford (2011) values with $\alpha = 0.5 \rightarrow \kappa = 0.0842$.

Chari, Kehoe & McGrattan (2000) and Woodford (2011) values with $\alpha = 0.6 \rightarrow \kappa = 0.0451$.

Chari, Kehoe & McGrattan (2000) and Woodford (2011) values with $\alpha = 0.66 \rightarrow \kappa = 0.0298$.

Chari, Kehoe & McGrattan (2000) and Woodford (2011) values with $\alpha = 0.7 \rightarrow \kappa = 0.0219$.

2 Back to estimation

2.1 Simulated data with different seed

Figure 1: A seed for shocks of rng(1) when true data was generated using rng(0)

Simulation using estimated LOM-gain approx

(c) α^{true} , α_0 , $\hat{\alpha}$, right now for nonconvergent solution using default configs

(d) Autocovariogram, right now for nonconvergent solution using default configs

Figure 2: Mean of top 10 estimates for 20 draws of shock histories when true data was generated using rng(0) and $\alpha^{true} = (0.05; 0.025; 0; 0.025; 0.05), fe \in (-2, 2)$

Figure 3: Mean estimates for increasing N, imposing convexity

Figure 4: Mean estimates for increasing N, imposing convexity, continued

(b) Autocovariogram, convexity moments imposed with weight $10\mathrm{M}$

(d) Autocovariogram, convexity moments imposed with weight $10\mathrm{M}$

2.1 Simulated data with different seed

3 Impulse responses to iid monpol shocks across a wide range of learning models

 $T = 400, N = 100, n_{drop} = 5$, shock imposed at t = 25, calibration as above, Taylor rule assumed to be known, PLM = learn constant only, of inflation only.

Figure 5: IRFs and gain history (sample means)

Figure 6: IRFs and gain history (sample means), continued

A Model summary

$$x_{t} = -\sigma i_{t} + \hat{\mathbb{E}}_{t} \sum_{T=t}^{\infty} \beta^{T-t} \left((1-\beta) x_{T+1} - \sigma(\beta i_{T+1} - \pi_{T+1}) + \sigma r_{T}^{n} \right)$$
(A.1)

$$\pi_t = \kappa x_t + \hat{\mathbb{E}}_t \sum_{T=t}^{\infty} (\alpha \beta)^{T-t} \left(\kappa \alpha \beta x_{T+1} + (1-\alpha)\beta \pi_{T+1} + u_T \right)$$
(A.2)

$$i_t = \psi_\pi \pi_t + \psi_x x_t + \bar{i}_t$$
 (if imposed) (A.3)

PLM:
$$\hat{\mathbb{E}}_t z_{t+h} = a_{t-1} + b h_x^{h-1} s_t \quad \forall h \ge 1 \qquad b = g_x h_x$$
 (A.4)

Updating:
$$a_t = a_{t-1} + k_t^{-1} (z_t - (a_{t-1} + bs_{t-1}))$$
 (A.5)

Anchoring function:
$$k_t^{-1} = \rho_k k_{t-1}^{-1} + \gamma_k f e_{t-1}^2$$
 (A.6)

Forecast error:
$$fe_{t-1} = z_t - (a_{t-1} + bs_{t-1})$$
 (A.7)

LH expectations:
$$f_a(t) = \frac{1}{1 - \alpha \beta} a_{t-1} + b(\mathbb{I}_{nx} - \alpha \beta h)^{-1} s_t$$
 $f_b(t) = \frac{1}{1 - \beta} a_{t-1} + b(\mathbb{I}_{nx} - \beta h)^{-1} s_t$ (A.8)

This notation captures vector learning (z learned) for intercept only. For scalar learning, $a_t = \begin{pmatrix} \bar{a}_t & 0 & 0 \end{pmatrix}'$ and b_1 designates the first row of b. The observables (π, x) are determined as:

$$x_t = -\sigma i_t + \begin{bmatrix} \sigma & 1 - \beta & -\sigma \beta \end{bmatrix} f_b + \sigma \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} (\mathbb{I}_{nx} - \beta h_x)^{-1} s_t$$
 (A.9)

$$\pi_t = \kappa x_t + \begin{bmatrix} (1 - \alpha)\beta & \kappa \alpha \beta & 0 \end{bmatrix} f_a + \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} (\mathbb{I}_{nx} - \alpha \beta h_x)^{-1} s_t$$
 (A.10)

B Target criterion

The target criterion in the simplified model (scalar learning of inflation intercept only, $k_t^{-1} = \mathbf{g}(fe_{t-1})$):

$$\pi_{t} = -\frac{\lambda_{x}}{\kappa} \left\{ x_{t} - \frac{(1-\alpha)\beta}{1-\alpha\beta} \left(k_{t}^{-1} + ((\pi_{t} - \bar{\pi}_{t-1} - b_{1}s_{t-1})) \mathbf{g}_{\pi}(t) \right) \right\}$$

$$\left(\mathbb{E}_{t} \sum_{i=1}^{\infty} x_{t+i} \prod_{j=0}^{i-1} (1 - k_{t+1+j}^{-1} - (\pi_{t+1+j} - \bar{\pi}_{t+j} - b_{1}s_{t+j}) \mathbf{g}_{\bar{\pi}}(t+j)) \right)$$
(B.1)

where I'm using the notation that $\prod_{j=0}^{0} \equiv 1$. For interpretation purposes, let me rewrite this as follows:

$$\pi_{t} = -\frac{\lambda_{x}}{\kappa} x_{t} + \frac{\lambda_{x}}{\kappa} \frac{(1-\alpha)\beta}{1-\alpha\beta} \left(k_{t}^{-1} + f e_{t|t-1}^{eve} \mathbf{g}_{\pi}(t) \right) \mathbb{E}_{t} \sum_{i=1}^{\infty} x_{t+i}$$

$$-\frac{\lambda_{x}}{\kappa} \frac{(1-\alpha)\beta}{1-\alpha\beta} \left(k_{t}^{-1} + f e_{t|t-1}^{eve} \mathbf{g}_{\pi}(t) \right) \left(\mathbb{E}_{t} \sum_{i=1}^{\infty} x_{t+i} \prod_{j=0}^{i-1} (k_{t+1+j}^{-1} + f e_{t+1+j|t+j}^{eve}) \mathbf{g}_{\pi}(t+j) \right)$$
(B.2)

Interpretation: tradeoffs from discretion in RE + effect of current level and change of the gain on future tradeoffs + effect of future expected levels and changes of the gain on future tradeoffs