Instituto Tecnológico y de Estudios Superiores de Monterrey Escuela de Ingeniería y Ciencias Ingeniería en Ciencias de Datos y Matemáticas

Paola Montserrat Vega Ortega -A01274773

Ethan Enrique Verduzco Pérez - A01066955

Miguel Alejandro Salas Reyna - A00827219

Pablo Ramírez Santaella Urencio - A01197501

Unidad de Formación: Optimización Determinista

Profesores: Fernando Elizalde Ramírez y Jaime Eduardo Martínez Sánchez

Socio Formador: Coppel

Monterrey, Nuevo León 8 de junio de 2021

${\bf \acute{I}ndice}$

1.	Intr	roducción	4
	1.1.	Introducción sobre Coppel	4
	1.2.	Investigación sobre e-commerce	5
	1.3.	Introducción al problema	6
		1.3.1. Breve introducción del problema en general	6
		1.3.2. Justificación del problema	6
		1.3.3. Objetivo	7
	1.4.	Trabajo relacionado	7
		1.4.1. Investigación sobre el problema del agente viajero - Análisis de literatura	7
2.	Def	inición del problema	8
	2.1.	Breve introducción del problema a resolver	8
	2.2.	Identificación de las variables y posibles parámetros	9
	2.3.	Función objetivo a optimizar y restricciones	9
	2.4.	Diagrama donde se relacionan las variables con las diversas acciones del modelo	9
	2.5.	Visualización de los puntos de entrega y del Cedis	10
3.	Mod	delo matemático	10
	3.1.	Introducción	10
	3.2.	Definición de conjuntos	11
	3.3.	Definición de parámetros	11
	3.4.	Definición de variables	11
	3.5.	Función objetivo	11
	3.6.	Restricciones	11
4.	Gen	neración de rutas	12
	4.1.	Heurística Ordenados Alfabéticamente	12
		4.1.1. Número de rutas, clientes, distancia total	12
	4.2.	Heurística Ordenados Volumen Ascendente	15
		4.2.1. Número de rutas, costos, clientes, distancia total	15
	4.3.	Heurística Ordenados por distancias de menor a mayor desde el CEDIS	17
		4.3.1. Número de rutas, costos, clientes, distancia total	17
	4.4.	Comparación de heurísticas	18
5.	Con	nclusiones	19
6.	Ane	exos	20
	6.1.	Tabla orden alfabético, primera heurística	20

6.2.	Tabla orden ascendente, segunda heurística	24
6.3.	Tabla orden distancias de menor a mayor desde el CEDIS, tercera heurística	28

Resumen

El presente reporte tiene como objetivo implementar un modelo de programación lineal enfocado llevar a cabo la minimización de costos y optimización del proceso de envios y entregas a domicilio por parte de la empresa Coppel a los clientes del 7 de enero de 2021. Las direcciones de los clientes que adquirieron algún producto están localizadas en el estado de Nuevo León, México.

Palabras claves: Optimización, Coppel, Programación lineal, Problema del agente viajero.

1. Introducción

1.1. Introducción sobre Coppel

Coppel es una empresa mexicana fundada en 1941 con sede en la ciudad de Culiacán. Esta es la cadena comercial de tiendas departamentales más grande de México, donde también cuenta con sucursales en Argentina, con ventas a través del otorgamiento de créditos con pocos requisitos, y repartos sin costo. El negocio que antes era de 24 tiendas en 1990, se ha convertido en un conglomerado con 402 puntos de venta, incluidas las 153 zapaterías Canadá, marca que compraron en 2002. Esto permitió a Coppel convertirse en uno de los principales distribuidores, no sólo de calzado, sino también de teléfonos celulares, ropa, televisores y muebles. Para 2006 Coppel abrió 93 tiendas, y actualmente cuenta con 376 sucursales Coppel y 204 Coppel Canada; además, en mayo inició el Afore Coppel. Hoy, es una de las 100 empresas más grandes del país, según el ranking de Expansión, con ventas superiores a las de tiendas como Sears, El Palacio de Hierro y Famsa, y de bancos como Santander, Inbursa y Scotiabank. El origen de esta gran empresa fue gracias a don Luis Coppel Rivas y Enrique Coppel Tamayo decidieron abrir una tiendita para vender radios y relojes. [3]

El propósito de Coppel es brindar servicios y productos con el fin de mejorar la vida de las personas cumpliendo sus necesidades y deseos. La filosofía de Coppel se basa en los principios de responsabilidad, atención, innovación y confianza para hacer la vida más fácil a sus clientes.

Para conocer el contexto del posicionamiento de la empresa, podemos mencionar que en octubre de 2018, la empresa buscó regresar a la Bolsa Mexicana de Valores, luego de que en 2007 retirara sus acciones, por no cumplir con ciertos requisitos de listado, según informes del diario El Financiero. Según declaraciones al sitio especializado Arena Pública, la colocación sería la «más grande desde la entrada de Santander en 2012 al mercado bursátil» y se realizaría «hacia la última semana de octubre o la primera de noviembre [de 2018]». No obstante, días antes de la mayor colocación accionaria de la BMV, Coppel decidió cancelarla por razones desconocidas. Actualmente, la cadena Coppel se encuentra brindando los siguientes servicios:

- Afore Coppel
- Crédito Departamental Coppel
- Compras telefónicas
- Tienda en línea: Coppel.com
- Pago de servicios (CFE, Telmex, Movistar y Crédito)

■ Envíos de dinero con DineroYa y MoneyGram (Nacional y a Estados Unidos)

Además, la compra en línea garantiza transacciones confiables y privacidad de la información con certificados de Global Sign, Accertify y AIMX. También es importante mencionar que algunos de los beneficios de comprar en Coppel incluyen el envío gratis a partir de 500 pesos, entrega directa o por paquetería, cobertura a todo México, y el tiempo de entrega es de 2 a 7 días hábiles.

1.2. Investigación sobre e-commerce

El e-commerce (comercio electrónico) es la compra y venta de bienes y servicios, o la transmisión de fondos o datos, a través de una red electrónica, principalmente Internet. Estas transacciones comerciales se realizan de empresa a empresa, de empresa a consumidor, de consumidor a consumidor o de consumidor a empresa. Los términos e-commerce y e-business a menudo se usan indistintamente. El término e-tail también se usa a veces en referencia a los procesos transaccionales que componen las compras minoristas en línea. [2]

El comercio electrónico funciona con Internet, donde los clientes pueden acceder a una tienda en línea para navegar y realizar pedidos de productos o servicios a través de sus propios dispositivos. A medida que se realiza el pedido, el navegador web del cliente se comunicará de ida y vuelta con el servidor que aloja el sitio web de la tienda en línea. Los datos relacionados con el pedido se transmitirán a una computadora central conocida como el administrador de pedidos, luego se enviarán a las bases de datos que administran los niveles de inventario, un sistema comercial que administra la información de pago (utilizando aplicaciones como PayPal) y una computadora del banco, antes de volver al administrador de pedidos. Esto es para asegurarse de que el inventario de la tienda y los fondos del cliente sean suficientes para que se procese el pedido. Una vez que se valida el pedido, el administrador de pedidos notificará al servidor web de la tienda, que luego mostrará un mensaje notificando al cliente que su pedido se ha procesado correctamente. Luego, el gerente de pedidos enviará los datos del pedido al almacén o al departamento de cumplimiento, para que el producto o servicio se envíe correctamente al cliente.

Los beneficios del comercio electrónico incluyen su disponibilidad las 24 horas, la velocidad de acceso, la amplia disponibilidad de bienes y servicios para el consumidor, la fácil accesibilidad y el alcance internacional.

- Disponibilidad: Además de las interrupciones o el mantenimiento programado, los sitios de comercio electrónico están disponibles las 24 horas del día, los 7 días de la semana.
- Amplia disponibilidad: El comercio electrónico permite a las marcas poner a disposición una amplia gama de productos, que luego se envían desde un almacén después de realizar una compra. Es probable que los clientes tengan más éxito en encontrar lo que buscan.
- Fácil accesibilidad: En el comercio electrónico, los visitantes pueden navegar por las páginas de categorías de productos y utilizar la función de búsqueda del sitio para encontrar el producto de inmediato.
- Costo más bajo. Las empresas de comercio electrónico puro evitan el costo asociado con las tiendas físicas, como el alquiler, el inventario y los cajeros, aunque pueden incurrir en costos de envío y almacenamiento.

1.3. Introducción al problema

1.3.1. Breve introducción del problema en general

Las compras en línea dieron un giro en consecuencia del COVID-19. Con todo el mundo en cuarentena, se consolidó el boom del e-commerce. El consumo de todos los productos y servicios se adaptó a una economía en línea, donde las compras de alimentos, tecnología, farmacia, entre otros subió más del 112 % únicamente en las dos primeras semanas de marzo. El comprar en línea fue la respuesta a las restricciones físicas que se establecieron para todos. Sin embargo, las empresas ante esta aceleración tuvieron que enfrentar distintos problemas relacionados con retail, catálogo y delivery. "No en vano Amazon tuvo que salir a contratar 100.000 empleados full time y part time en Estados Unidos para poder cumplir con los pedidos desde que empezó la pandemia." [4]

Con la nueva normalidad, Coppel ha tenido mucha demanda de compras en línea y su sistema de transporte carece de una operación que agilice los procesos de optimizar y satisfacer la demanda de productos en periodos cortos. Los retos que enfrenta la logística en este momento son los siguientes: mejorar la eficiencia de entrega (disminuir los tiempos entre la fecha de pedido y la recepción del servicio o artículo), disminuir los costos logísticos de transporte y cuidado del ambiente (logística verde).

1.3.2. Justificación del problema

El comercio electrónico ha tenido un crecimiento exponencial en los últimos años por lo que las empresas requieren adaptarse para no quedarse atrás en cuanto innovación y sobre todo seguir siendo una opción para sus clientes. Según datos de la asociación de internet en México, en 2020 la penetración del comercio electrónico en el país se ubicaba en un 50.7 por ciento [5], lo que se ha facilitado debido a la gran cantidad de empresas que ofrecen sus prouctos y servicios. La cuarentena ha aumentado drásticamente este tipo de intercambio electrónico y se estima que la tendencia seguirá en aumento incluso cuando termine la cuarentena. Empresas como Mercadolibre y Amazon están marcando el ritmo de cómo se debe llevar el e-commerce, por lo que empresas nacionales como Coppel requieren mejorar sus servicios si no quieren ser aplastadas por estos gigantes de la industria. Según las palabras de David Geisen, gerente general de Mercadolibre México: "una logística adecuada será fundamental, en nuestro caso tuvimos que contratar a 1,800 personas para que trabajaran en nuestros almacenes e incluso adelantamos inversiones en la capa logística que estaban destinadas para fin de año. Y es que este factor incide directamente en que haya más ventas, más empresas vendiendo y una experiencia de compra más garantizada" [6].

El rápido desarrollo economico es ciertamente un beneficio para las personas, pero el creciente aumento de industrias y empresas también trae consigo responsabilidades. Uno de los problemas que hay que enfrentar es la gran emisión de contaminantes que son enviados a nuestra atmósfera que cada vez dañan más nuestro planeta. Aquí es donde entra la importancia de la logística verde. Un beneficio que trae consigo la optimización de procesos, en este caso de transporte, es que evita o por lo menos disminuye la contaminación del medio ambiente.

1.3.3. Objetivo

Crear un algoritmo que permita la asignación de rutas de transporte a las empresas con el objetivo de optimizar los tiempos de entrega, disminuir los costos asociados al transporte, maximizar las entregas por unidad de transporte, minimizar la cantidad de unidades que salen a entregar, ahorrar combustible y tener la mejor unidad para el tipo de terreno.

1.4. Trabajo relacionado

1.4.1. Investigación sobre el problema del agente viajero - Análisis de literatura

El problema del agente viajero plantea el objetivo de encontrar un recorrido completo que conecte todos los nodos de una red, pasando por cada uno solamente una vez y volviendo al punto de partida, ademas hace una optimización del recorrido ya que minimiza la distancia total de la ruta, o el tiempo del recorrido. Estos problemas tienen mucha aplicacion en el ambito de la logistica y distribucion asi como nuestro reto a resolver.[7]

Este problema contiene una variacion muy importante ya que depende de que las distancias entre un nodo y otro sean simetricas o no, a lo que se refiere esto es a que la distancia entre A y B sea igual a la distancia entre B y A.

La cantidad de rutas posibles en una red esta determinada por la ecuacion:

$$(n-1)!$$

Podemos decir que en una red de 5 nodos la cantidad de rutas posibles es igual a (5-1)! = 24, y a medida que el numero de nodos incremente la cantidad de rutas posibles crece factorialmente. En los casos de que el problema sea simétrico, la cantidad de rutas posibles se reduce a la mitad, mostrado en la ecuación siguente:

$$((n-1)!)/2$$

Esto significa que hay un ahorro en el tiempo del procesamiento de las rutas.[7] Hay varios métodos para resolver este problema, por ejemplo:

Método de la fuerza bruta El método de la fuerza bruta es aquel que no implica el uso de ningún algoritmo sistemático, es tan solo explorar todos los recorridos posibles entre los nodos. Si tomamos la siguiente red como simétrica, los caminos posibles se reducen a la mitad:

Posibles rutas:

$$A-B-D-C-A = 9 + 15 + 4 + 7 = 35km$$

$$A-B-C-D-A = 9 + 10 + 4 + 8 = 31km$$

$$A-C-B-D-A = 7 + 10 + 15 + 8 = 40km$$

Rutas simetricas:

$$A-D-C-B-A = 8+4+10+9 = 31km$$

$$A-C-D-B-A = 7+4+15+9 = 35km$$

$$A-D-B-C-A = 8 + 15 + 10 + 7 = 40km$$

Método del vecino más cercano

Este metodo llamado metodo del vecino mas cercano es un algoritmo heurístico diseñado para resolver el problema del agente viajero, a veces no asegura una solucion óptima, pero suele proporcionar buenas solciones ya que tiene un tiempo de calculo bastante rápido.

Usando la misma imagen del método pasado podemos decir que el método consiste en evaluar y seleccionar al vecino más cercano. Y en este caso es:

Vecinos de A	В	C	D
Distancia	9	7	8

Después de obtener el vecino más cercano, en este caso C, se vuelve a hacer la iteración, pero ahora se excluye A porque es el nodo de origen.

Vecinos de C	В	D
Distancia	10	4

En esta iteración el más cercano a C es D. Y por último, se recorre D a B para tener como última opción cerrar la red uniendo B y A. Por lo que obtenemos una ruta solución :

$$A, C, D, B, A = 7 + 4 + 15 + 9 = 35km$$

En este caso con pocos nodos y este método, la solución no es la más óptima ya que con el método de fuerza bruta obtuvimos una solucion de 31km.[7]

2. Definición del problema

2.1. Breve introducción del problema a resolver

El problema a resolver es de optimizar el sistema de transporte de Coppel. De esta manera satisfacer las entregas de cada cliente, donde al mismo tiempo, se logre disminuir la emisión de contaminantes, optimizar los tiempos de entrega, disminuir los costos de transporte y generar la menor cantidad de tráfico dentro de la ciudad de Nuevo León.

2.2. Identificación de las variables y posibles parámetros

Las variables que tenemos en nuestro PL son:

 X_{ij} = Unidad de transporte i con paquete de cliente j

2.3. Función objetivo a optimizar y restricciones.

El objetivo es optimizar los tiempos de entrega, disminuir los costos asociados al transporte, maximizar las entregas por unidad de transporte, minimizar la cantidad de unidades que salen a entregar, ahorrar combustible y tener la mejor unidad para el tipo de terreno. Las restricciones planteadas para la solución del algoritmo van desde la cantidad de unidades con las que contamos, el número de entregas máximo por unidad, la cantidad de combustible máximo por unidad y los costos de llenar el tanque y los horarios de entrega.

2.4. Diagrama donde se relacionan las variables con las diversas acciones del modelo

La representación más básica del modelo a seguir se muestra en la Figura 1, donde S1 representa la sucursal y las D nos indican las direcciones, en este caso hasta n número de direcciones que analizaremos. Es decir, cada sucursal y dirección tiene la posibilidad de dirigirse a cualquier otra dirección de clientes, dependiendo nuestro algoritmo.

Figura 1: Grafo de transportación

2.5. Visualización de los puntos de entrega y del Cedis

La representación visual de algunos de los puntos de entrega (10 puntos aleatorios de la base de datos) del día de ruta asignado a nuestro equipo (7 de enero de 2021) y del Cedis correspondiente, en nuestro caso, el que se encuentra en Monterrey, Nuevo León (Julián Villagran 2802 Esq. con Manuel Peña) se encuentra dentro de la Figura 2.

La visualización completa de todos los puntos de entrega se llevará a cabo mediante una matriz en la que colocaremos el tiempo que le llevaría a cada unidad de transporte entregar los productos en todas las posibles combinaciones de destinos.

Figura 2: Visualización de algunos puntos de entrega y del Cedis

3. Modelo matemático

3.1. Introducción

El problema del agente viajero o problema del vendedor ambulante responde a la siguiente pregunta: dada una lista de ciudades y las distancias entre cada par de ellas, ¿cuál es la ruta más corta posible que visita cada ciudad exactamente una vez y al finalizar regresa a la ciudad origen? Este es un problema NP-Hard dentro de la optimización combinatoria. En teoría de la complejidad computacional, la clase de complejidad NP-hard (o NP-complejo, o NP-difícil) es el conjunto de los problemas de decisión que contiene los problemas H tales que todo problema L en NP puede ser transformado polinomialmente en H. Esta clase puede ser descrita como aquella que contiene a los problemas de decisión que son como mínimo tan difíciles como un problema de NP. [1]

En el problema se presentan N! número rutas posibles, aunque se puede simplificar ya que dada una ruta nos da igual el punto de partida y esto reduce el número de rutas a examinar en un factor N quedando (N-1)!. Como no importa la dirección en que se desplace el viajante, el número de rutas a examinar se

reduce nuevamente en un factor 2. Por lo tanto, hay que considerar (N-1)!/2 rutas posibles.

3.2. Definición de conjuntos

El TSP puede ser modelado por medio de un grafo, donde los nodos están conectados por distintos arcos. Se cuenta con un costo de distancia entre la matriz. El grafo no está dirigido, esto quiere decir que las ciudades son los vértices del grafo, los caminos las aristas y las distancias son los costos. Este problema de optimización es de minimización que empieza y termina con un nodo en específico visitando todos los vértices siguientes con el menor costo.

3.3. Definición de parámetros

Costo de i a j:

$$C_{ij}$$
 (1)

3.4. Definición de variables

X es 1 si se dirige de i a j, y 0 en otro caso.

$$X_{ij}$$
 (2)

3.5. Función objetivo

La función objetivo trata de minimizar el costo de transporte de cada destino i a j.

$$\min \sum_{i} \sum_{j} X_{ij} C_{ij} \quad (i,j) \in A$$
 (3)

3.6. Restricciones

• A partir de un nodo i sólo se puede visitar un nodo j. Esto se puede representar de la siguiente manera:

$$\sum_{i \neq 1} X_{ij} = 1 \quad j \in A \tag{4}$$

■ Un nodo j sólo puede ser visitado por un nodo i, es decir, se visita una sola vez.

$$\sum_{i \neq 1} X_{ij} = 1 \quad i \in A \tag{5}$$

$$X_{ij} \in \{0,1\} \quad \forall (ij) \tag{6}$$

$$u_i - u_j + N_{x_{ij}} \le n - 1 \quad 2 \le i \ne j \le n \tag{7}$$

Donde (3) representa la minimización de los costos de los arcos activos. Las restricciones (4) y (5) indican que se sale y se ingresa una única vez al nodo. Todos los nodos deben ser de grados 2. (6)

representa la naturaleza de las variables. La restricción (7) evita los subtours, n denota el número máximo de nodos que pueden ser visitados por un vendedor.

4. Generación de rutas

Un aspecto importante a considerar a la hora de proponer una solución preliminar en cuestión de la generación de rutas, es que cumpla con las condiciones de tiempo por turno del conductor, el cual debe ser menor a 8 horas. Además, la distancia debe ser menor a la capacidad de combustible de las unidades (420 kilometros) y la capacidad máxima de volumen de la unidad no debe ser mayor a 12 metros cúbicos. Por lo que, a través de un algoritmo en el que se analizan dichas restricciones adjuntas en distintas matrices, es posible generar rutas en las que se entreguen todos los pedidos, en las que siempre se tiene que partir de la base o depósito en donde se encuentran todos los paquetes y se tiene que regresar al mismo punto de origen para entregar la unidad. El algorimo fue creado en Python con dichas restricciones para la generación de rutas con las heurísticas presentadas más adelante. El tamaño de la red es de 136 nodos incluyendo el sitio destino CEDIS y se tienen 136 elevado a 136 arcos en total.

4.1. Heurística Ordenados Alfabéticamente

4.1.1. Número de rutas, clientes, distancia total

Para la primera heurística se tomaron los datos de los usuarios por orden alfabético de las direcciones, dentro del algoritmo tomando en cuenta las distancias y los volúmenes se pudieron obtener 7 rutas. Los clientes tomados para estas rutas van en el siguiente orden:

```
ruta 1 es [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]
ruta 2 es [0, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36]
ruta 3 es [0, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52]
ruta 4 es [0, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70]
ruta 5 es [0, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102]
ruta 6 es [0, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129]
ruta 7 es [0, 130, 131, 132, 133, 134]
```

Figura 3: Visualización de rutas con heurística 1

Inicialmente se contaban con los siguientes resultados para cada ruta sin optimizar:

```
ruta 1: 11.2347
ruta 2: 11.822
ruta 3: 10.0192
ruta 4: 11.9026
ruta 5: 11.4781
ruta 6: 11.6439
ruta 7: 0.3375
```

Figura 4: Volumen total por ruta con heurística 1 en metros cúbicos

Dado que habíamos llevado a cabo pruebas de optimización de tiempos antes de realizar las pruebas finales con los datos reales de la problemática, sabíamos que existía un gran margen entre los tiempo de ruta generada por nuestro código y por la optimización final de los tiempos llevado a cabo en GAMS, por

lo que decidimos aumentar mucho más el margen de tiempo de las 8 horas establecidas, de manera concreta hasta el doble de tiempo (16 horas), con el propósito de permitir que todas las unidades se llenarán hasta su capacidad máxima de volumen de paquetes a entregar a los clientes, con la confianza de que una vez que se optimizaran las rutas, los tiempos finales disminuirían entre un 50 y 80 por ciento. Los valores negativos en las figuras de porcentaje de tiempo muerto por ruta hacen referencia a que la ruta excede las 8 horas señaladas en la restricción de la jornada laboral, sin embargo, como se mencionó anteriormente, todos estos resultados quedarán acordes a lo que estipula la Ley Federal del Trabajador respecto a los tiempos de jornada laboral una vez que hayan sido optimizadas las rutas.

```
ruta 1: 13.625
ruta 2: 5.475
ruta 3: 5.075
ruta 4: 6.1
ruta 5: 14.95
ruta 6: 9.6
ruta 7: 0.425
```

Figura 5: Tiempo total por ruta con heurística 1 en horas

```
ruta 1: -70.3125 %
ruta 2: 31.5625 %
ruta 3: 36.5625 %
ruta 4: 23.75 %
ruta 5: -86.875 %
ruta 6: -20.0 %
ruta 7: 94.6875 %
```

Figura 6: Porcentaje de tiempo muerto de cada ruta

Dentro del anexo 5.1 podemos encontrar la dirección por cada número de cliente indicado en estas rutas. Se observó que las direcciones incluidas dentro de la ruta 7 se podían incluir dentro de la ruta 3, dado el volumen disponible en la ruta 3 y el volumen total de la ruta 7, por lo tanto se incluyeron en un solo recorrido obteniendo las siguientes rutas.

```
ruta 1 es [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]
ruta 2 es [0, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36]
ruta 3 es [0, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 130, 131, 132, 133, 134]
ruta 4 es [0, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70]
ruta 5 es [0, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102]
ruta 6 es [0, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129]
```

Figura 7: Visualización de rutas con heurística 1

```
ruta 1: 11.2347
ruta 2: 11.822
ruta 3: 10.3567
ruta 4: 11.9026
ruta 5: 11.4781
ruta 6: 11.6439
```

Figura 8: Volumen total final de cada ruta en metros cúbicos

ruta 1: 6.3775 % ruta 2: 1.4833 % ruta 3: 13.6941 % ruta 4: 0.8117 % ruta 5: 4.3492 % ruta 6: 2.9675 %

Figura 9: Porcentaje de volumen no utilizado

Podemos apreciar dentro de la Figura 7, que en las rutas definidas por nuestro algoritmo se pasaban, sin embargo, al optimizar las rutas se esperaba tener menores horas que cumplieran las restricciones.

Una vez mejoradas las rutas iniciales por medio del programa GAMS, dentro del trayecto 2, se optimizó de la siguiente manera:

Figura 10: Grafo ruta 2 optimizada

Donde las equivalencias de las direcciones de los nodos son las siguientes.

- C24 BOSQUES DE BOLO 112 LOS ENCINOS HUINALA
- C25 BOSQUES DE LOS 127 BOSQUES DE HUINALA
- C26 BRENDA 405 LOS PINCELES GPE
- C27 BRISTOL 601 PEDREGAL DE LINDA VISTA
- C28 C FRESNOS 204 LAS HACIENDAS
- C29 C HIGUERILLA 111 SANTA ENGRACIA
- ${
 m C30}$ C LA LAGUNA 201 LAS HACIENDAS
- C31 C LIBERTAD 635 VALLE DE SANTA MARIA
- C32 C NARANJO 176 PESQUERIA
- C33 C TORRE DE SAN 202 TORRES DE SAN MIGUEL
- C34 CALDAS 518 AGUA FRIA APO
- C35 CALLE LIBERTAD 635 VALLE DE SANTA MARIA
- C36 CALLE NUBE 719 VALLE D LS FLORES GP

A continuación, se presentarán los mismos datos analizados anteriormente, pero con las rutas optimizadas. Recordemos que el volumen es el mismo, por lo tanto no se incluye ese dato de nuevo.

```
ruta 1 es [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]
ruta 2 es [0, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36]
ruta 3 es [0, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 130, 131, 132, 133, 134]
ruta 4 es [0, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70]
ruta 5 es [0, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102]
ruta 6 es [0, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129]
```

Figura 11: Visualización de rutas con heurística 1, optimizado

```
ruta 1 optimizado: 41.25 %
ruta 2 optimizado: 59.06 %
ruta 3 optimizado: 64.375 %
ruta 4 optimizado: 65.937 %
ruta 5 optimizado: 20.00 %
ruta 6 optimizado: 60.625 %
```

Figura 12: Tiempo no utilizado, optimizado

Se observa que, anteriormente se pasaban un poco de tiempo las rutas, sin embargo, optimizando el trayecto se cumple con la restricción de tiempo.

4.2. Heurística Ordenados Volumen Ascendente

La segunda heurística fue evaluada con el orden de volumen de menor a mayor, los siguientes resultados son con las rutas no optimizadas.

4.2.1. Número de rutas, costos, clientes, distancia total

```
1 es [0, 1, 2, 3, 4, 5]
2 es [0, 6, 7, 8, 9, 10, 11, 12, 13]
3 es [0, 14, 15, 16, 17, 18, 19, 20, 21, 22]
4 es [0, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36]
5 es [0, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56]
6 es [0, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 1]
7 es [0, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127]
8 es [0, 128, 129, 130, 131, 132, 133, 134]
```

Figura 13: Visualización de rutas con heurística 2, sin optimizar

```
ruta 1: 11.5842
ruta 2: 11.2982
ruta 3: 11.0047
ruta 4: 11.439
ruta 5: 11.6807
ruta 6: 11.8416
ruta 7: 2.7677
ruta 8: 0.0002
```

Figura 14: Volumen total de cada ruta en metros cúbicos

```
ruta 1: 1.6
ruta 2: 4.725
ruta 3: 3.875
ruta 4: 6.375
ruta 5: 4.925
ruta 6: 15.175
ruta 7: 15.475
ruta 8: 0.575
```

Figura 15: Tiempo total por ruta con heuristica 2 en horas

```
Porcentaje de tiempo no utilizado de la ruta 1: 80.0 %
Porcentaje de tiempo no utilizado de la ruta 2: 40.9375 %
Porcentaje de tiempo no utilizado de la ruta 3: 51.5625 %
Porcentaje de tiempo no utilizado de la ruta 4: 20.3125 %
Porcentaje de tiempo no utilizado de la ruta 5: 38.4375 %
Porcentaje de tiempo no utilizado de la ruta 6: -89.6875 %
Porcentaje de tiempo no utilizado de la ruta 7: -93.4375 %
Porcentaje de tiempo no utilizado de la ruta 8: 92.8125 %
```

Figura 16: Porcentaje tiempo no utilizado de cada ruta

```
ruta 1: 3.465 %

ruta 2: 5.8483 %

ruta 3: 8.2942 %

ruta 4: 4.675 %

ruta 5: 2.6608 %

ruta 6: 1.32 %

ruta 7: 76.9358 %

ruta 8: 99.9883 %
```

Figura 17: Porcentaje de volumen no utilizado

En la Figura 18, podemos encontrar la diferencia de tiempos con las rutas optimizadas.

```
ruta 1 optimizado: 83.75 %
ruta 2 optimizado: 61.875 %
ruta 3 optimizado: 73.43 %
ruta 4 optimizado: 54.437 %
ruta 5 optimizado: 69.687 %
ruta 6 optimizado: 39.375 %
ruta 7 optimizado: 38.125 %
ruta 8 optimizado: 60.625 %
```

Figura 18: Tiempo no utilizado, optimizado

En la Figura 11 podemos observar 8 rutas de traslado las cuales cumplen las restricciones de tiempo y volumen. Como se puede apreciar en la Figura 13, la mayoría de las rutas utilizaron casi todo el volumen disponible, a excepción de las rutas 7 y 8 las cuales quedaron con un percentaje no utilizado de 76.93% y 99.99%, respectivamente. Con respecto al tiempo, en general, se optuvieron resultados aceptables ya que la ruta con mayor tiempo utilizado fue la 7, con un tiempo de sobra del 38.125%. La ruta con menor tiempo utilizado fue la 1, con tiempo de sobra del 83.75%.

4.3. Heurística Ordenados por distancias de menor a mayor desde el CEDIS

La tercera heurística se ordenó de manera ascendente conforme las distancias del CEDIS a las direcciones de lo clientes.

4.3.1. Número de rutas, costos, clientes, distancia total

```
ruta 1 es [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
ruta 2 es [0, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]
ruta 3 es [0, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61]
ruta 4 es [0, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80]
ruta 5 es [0, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109]
ruta 6 es [0, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133]
ruta 7 es [0, 134]
```

Figura 19: Visualización de rutas con heurística 3, sin optimizar

```
ruta 1: 11.3948
ruta 2: 11.865
ruta 3: 11.8688
ruta 4: 10.7268
ruta 5: 11.9581
ruta 6: 11.4934
ruta 7: 1.2152
```

Figura 20: Volumen total de cada ruta en metros cúbicos

```
Volumen no utilizado de la ruta 1: 5.0433 %
Volumen no utilizado de la ruta 2: 1.125 %
Volumen no utilizado de la ruta 3: 1.0933 %
Volumen no utilizado de la ruta 4: 10.61 %
Volumen no utilizado de la ruta 5: 0.3492 %
Volumen no utilizado de la ruta 6: 4.2217 %
Volumen no utilizado de la ruta 7: 89.8733 %
```

Figura 21: Porcentaje de volumen no utilizado

```
Porcentaje de tiempo no utilizado de la ruta 1: 55.7812 % Porcentaje de tiempo no utilizado de la ruta 2: 47.9688 % Porcentaje de tiempo no utilizado de la ruta 3: 55.7812 % Porcentaje de tiempo no utilizado de la ruta 4: 73.5938 % Porcentaje de tiempo no utilizado de la ruta 5: 15.625 % Porcentaje de tiempo no utilizado de la ruta 6: 60.4688 % Porcentaje de tiempo no utilizado de la ruta 7: 93.2812 %
```

Figura 22: Porcentaje tiempo no utilizado de cada ruta

Como se observó en la Figura 20, la ruta 7 podemos integrarla dentro de la ruta 4 para poder complementar el volumen. Por lo tanto, el volumen final de las rutas lo podemos ver en la Figura 23 y 24.

ruta 1 optimizado: 11.3948 ruta 2 optimizado: 11.865 ruta 3 optimizado: 11.8688 ruta 4 optimizado: 11.942 ruta 5 optimizado: 11.9581 ruta 6 optimizado: 11.4934

Figura 23: Volumen total final de cada ruta en metros cúbicos

ruta 1 optimizado: 5.0433 %
ruta 2 optimizado: 1.125 %
ruta 3 optimizado: 1.0933 %
ruta 4 optimizado: 0.4833 %
ruta 5 optimizado: 0.3492 %
ruta 6 optimizado: 4.2217 %

Figura 24: Porcentaje de volumen no utilizado

Después de optimizar se concluyeron los siguientes tiempos no utilizados.

ruta 1 optimizado: 56.25 %
ruta 2 optimizado: 58.125 %
ruta 3 optimizado: 55.9375 %
ruta 4 optimizado: 28.75 %
ruta 5 optimizado: 28.4375 %
ruta 6 optimizado: 54.6875 %

Figura 25: Tiempo no utilizado, optimizado

4.4. Comparación de heurísticas

	Heurística 1	Heurística 2	Heurística 3
Descripción:	Ordenados Alfabéticamente	Ordenados Volumen Ascendente	Ordenados por distancias de menor a mayor desde el CEDIS
Número de rutas	6	8	6
Tiempo total utilizado (horas)	23.1	25.175	25.425
Porcentaje promedio de tiempo muerto	51.87	60.163	47.03
Promedio de volumen utilizado (metros cúbicos)	11.406	10.23	11.76
Tiempo de procesamiento y optimización (horas)	0.5	0.5	5

Figura 26: Tabla comparativa de heurísticas

Como se muestra en la Figura 26, se llevó a cabo un análisis comparativo de las resultados obtenidos por llevar a cabo la generación de rutas a partir de 3 heurísticas, la primera, en la que se encuentran los valores ordenados alfabéticamente, la segunda, en la que están ordenador ascendentemente según su volumen, y finalmente la tercera, en la que están ordenados por distancias de menor a mayor desde el punto de origen que es el CEDIS, en la que todas las opciones cumplen con los requisitos mínimos necesarios a completar, como lo son cumplir con la jornada laboral del conductor, que el volumen de los paquetes sea menor a la capacidad máxima de las unidades, y lo más importante, que hacen entrega de todos los pedidos del día.

Los resultados obtenidos fueron medidos a partir de 5 métricas distintas, las cuales son, la cantidad de rutas necesarias para entregar los pedidos, el tiempo total utilizado por las rutas, el porcentaje promedio de tiempo muerto de las rutas, el promedio de volumen utilizado por unidad enviada y finalmente el tiempo de procesamiento necesario para llevar a cabo la optimización de los tiempos de las rutas en GAMS. A partir de estas métricas, pudimos llegar a la decisión que la mejor decisión que podíamos tomar, según nuestra función objetivo y los retos planteados para resolver esta problemática, es que procediéramos con la heurística número 1, no sólo porque es la que cumple con el prometido de la entrega de paquetes con la menor cantidad de rutas, sino también porque es la que menos tiempo le tomará hacerlo, mejor balanceada tiene la cantidad de paquetes enviados por ruta, y sobretodo, el tiempo de procesamiento para llevar a cabo la optimización es sorprendentemente rápida.

5. Conclusiones

Los resultados obtenidos con los algoritmos y con las restricciones para el problema nos dieron la mejor solución para abordar la situación. Después de realizar tres testeos para que el orden de nuestra matriz fuera diferente concluímos que las mejores opciones eran con la heurística 1 y 3, sin embargo, los tiempos de procesamiento difieron bastante, lo cual en una situación donde se tienen que entregar miles de pedidos, esto no es lo más óptimo. Además, ambas tienen la misma cantidad de rutas y tomando en cuenta la cantidad de tiempo que tardaban en realizar todas las entregas, donde la heurística 1 hace un total de 23.1 horas y la 3 un total de 25.425 horas en sus 6 rutas, la mejor opción es ordenar las direcciones alfabéticamente.

6. Anexos

6.1. Tabla orden alfabético, primera heurística.

CEDIS	1
16 DE SEPTIEMBR 104 BARRIO TAMPIQUITO	2
1A DE REFORMA 605 DR.GONZALEZ	3
28 DE NOBIEMBRE 4738 SAN RAFAEL	4
AARON SAENZ 207 GERONIMO TREVI??O	5
ALEMANIA 1139 NUEVO AMANECER 2	6
ANDROMEDA 3317 COLINAS DEL AEROPUERTO	7
APOZAL 327 CA#ADA BLANCA	8
ARCE 833 JACARANDAS	9
ARCOS DE LOUVRE 101 COLINAS DEL AEROPUERTO	10
ASTEROIDES 308 VALLE D PEDREGAL	11
ATOTONILCO 507 VALLE DE HUINALA APODACA	12
AURORA 529 PESQUERIA	13
AV BENITO JUARE 136 INFONAVIT BENITO JUAREZ	14
AV CENTRAL 1725	15
AV INDEPENDIENT 261 VALLES DE HUINALA	16
AV MEXICO 1307 VIVIENDA DIGNA GPE	17
AVE FUNDADORES 739 FUNDADORES	18
AZUCENA 662 HDA LAS MARGARITAS	19
BACILIO 104 VALLE DE SANTA MARIA	20
BARBADOS 1232 RESID SANTA FE	21
BELLUNO 156 LOMAS DE SAN MARTIN	22
BERMELLON 184 VALLE DE LOS NOGALES	23
BILBAO 921 PASEO DE LAS FLORES	24
BOSQUES DE BOLO 112 LOS ENCINOS HUINALA	25
BOSQUES DE LOS 127 BOSQUES DE HUINALA	26
BRENDA 405 LOS PINCELES GPE	27
BRISTOL 601 PEDREGAL DE LINDA VISTA	28
C FRESNOS 204 LAS HACIENDAS	29
C HIGUERILLA 111 SANTA ENGRACIA	30
C LA LAGUNA 201 LAS HACIENDAS	31
C LIBERTAD 635 VALLE DE SANTA MARIA	32
C NARANJO 176 PESQUERIA	33
C TORRE DE SAN 202 TORRES DE SAN MIGUEL	34

CALDAS 518 AGUA FRIA APO	35
CALLE LIBERTAD 635 VALLE DE SANTA MARIA	36
CALLE NUBE 719 VALLE D LS FLORES GP	37
CALLEJON DE LOS 116 FRACC PRIV ILTAMARINDO	38
CAPITAN 808 FRACC DEPORTIVO HUINALA	39
CARACAS 232 PARAJE STA ROSA	40
CASTA??A 152 VALLE DE HUINALA APO	41
CATEDRAL DE TOL 180 PRIV SAN FERNANDO	42
CEREZO 532 LOS TREBOLES	43
CIRUELO 262 PASEO DE LA LOMA	44
CORAL 212 PEDREGAL LINDA VISTA 2	45
CRATIS 139 SANTA MARIA	46
CUBANOS 136 ROBERTO ESPINOZA 2	47
DALIAS 123 FRACC MIRASOL RESIDENCIAL	48
DE LOS AZULEJO 106 PASEO DE COLIBRIES	49
DE LOS BALCONES 136 VALLE DE LOS NOGALES	50
DE LOS VISIGOD 245 MISION REAL 01	51
DEL HUIZACHE 911 INF LOS FRESNOS III	52
DEL MOLINO 615 VILLA DE SAN MIGUEL	53
DEL PUENTE 805 VILLA DE SAN CARLOS	54
DEL ROBLE 845 HDAS LS MARGARIT GPE	55
EBANOS 144 LADRILLERA	56
ESCOCIA 472 RESID SAN ANTONIO GPE	57
ESPANA 1127 VIVIENDA DIGNA GPE	58
FANTACIAS 435 LOS TREBOLES SECTOR	59
FIDEL VELAZQUEZ 111 JOYAS DEL PEDREGAL	60
FRANCISCO WAGNE 685 VILLAS REGINA PESQUERIA	61
GENERAL TREVI??O 405 PESQUERIA	62
GERANIO 453 HDA LAS MARGARITAS	63
GRANADA 112 FRACC. GOLONDRINAS	64
HACIENDA DEL R 801 HDA LAS MARGARITAS 6 GPE	65
HACIENDA LA HER 733 HDA LAS MARGARITAS 5	66
HACIENDA PENOLE 798 HDA LAS MARGARITAS	67
HACIENDA SAN MI 617 HDA SAN MIGUEL	68
HECTOR 809 FRACC DEPORTIVO HUINALA	69
IMPERIA 109 PESQUERIA	70
JACARANDA 107 BOSQUES DEL SOL GPE	71
JARDINES DEL R 257 JARDINES DE MONTERREY	72

JASPE 108 RESIDENCIAL LA NORIA	73
JAZMIN 406 PRADERAS DE HUINALA	74
JUAN ZUAZUA 411 PRIV DE SAN MIGUELITO	75
JULIANTLA 711 EL CANTORAL	76
LA BARCA 468 EL CANTORAL	77
LA ESTRELLA 310 EL CANTORAL	78
LA FLORE??A 1 SANTA MARIA	79
LA TROJE 456 LAS HACIENDAS	80
LEUCA 127 VALLE DE SANTA MARIA	81
LISBOA 1220 MIGUEL HIDALG APC GP	82
LOBELIA 446 HDA LAS MARGARITAS 3 GPE	83
LOS AMOLES 113 HDA SAN MIGUEL	84
LOS ENCINOS 103 GOLONDRINAS I	85
LOS SAUCES 127 GOLONDRINAS GPE	86
LOTO 431 HDA LAS MARGARITAS	87
MANTE 121 COLINAS DEL AEROPUERTO	88
MARIANA 139 VILLAS REGINA	89
MEZQUITE 240 FRACC LAS PROVINCIAS	90
MIGUEL HIDALGO 807 MISION DE SAN FCO	91
MIL AMORES 651 EL CANTORAL	92
MINEO 146 VALLE DE SANTA MARIA	93
MISION GERONA 125 MISION SAN PABLO	94
MISION SAN LUCA 129 MISION DE HUINALA	95
MISION SAN MATE 301 MISION DE HUINALA	96
MISION SAN PABLO 157 MISION DE HUINALA	97
MONTERREY 200 NORIA NORTE 2	98
NEPTUNO 3165 COLINAS DEL AEROPUERTO	99
NOGAL 407 RINCON DE HUINALA	100
OLIVO 133 FRACC MIRASOL RESIDENCIAL	101
PALERMO 715 MIGUEL HIDALG APC GP	102
PINO 786 RENACERES	103
PORTAL ALMEIRA 572 PORTAL DEL VALLE	104
PORTAL DE CIVEL 554 PORTAL DE HUINALA	105
PRIV REMBRANT 404 FRACC MISION REAL	106
PRIVADA FRAMBOY 109 SANTA ENGRACIA	107
QUERETARO 1407 COLINAS DEL AEROPUERTO	108
QUIJOTE 469 EL CANTORAL	109
RAYITO DE LUZ 644 EL CANTORAL	110

REAL DE SAN EST 215 REAL DE SAN JOSE	111
REFORMA 605 LOS PE#A DR. GZZ.	112
RIO BRMEJO 730 PUEBLO NUEVO 6	113
RIO GRANDE 223 BALC DE SATA ROSA	114
RIO PILON 104 PUEBLO NUEVO GPE	115
RIO SENA 210 PUEBLO NUEVO 6	116
RIO SENEGAL 307 BALC DE SATA ROSA	117
RODIO 101 VALLE DE SANTA MARIA	118
SAN MATEO 104 PASEO SAN JAVIER	119
SAN PABLO 555 JARDIN DE SAN PATRICIO	120
SAN RUFINO 133 MIGUEL HIDALG APC GP	121
SANTA TERESA DE 395 EX HACIENDA SAN FRANCISCO	122
SANTO TOMAS 1002 PASEO SAN JAVIER	123
SEPALO 524 LAS PUENTES	124
SHEFFIELD 409 PEDREGAL DE LINDA VISTA	125
SIERRA BLANCA 313 COLINAS DEL AEROPUERTO	126
TUPAL 151 REAL DE APODACA	127
TURI 403 LOMAS DE SAN MARTIN	128
TUXCAQUESCO 218 NORIA NORTE 2	129
UMBERTO 136 VALLE DE SANTA MARIA	130
URUGUAYOS 445 SANTA FE APODACA	131
VALLE DE MEXIC 172 VALLE DE HUINALA APO	132
VALLE DE SAN L 612 VALLE DE HUINALA APO	133
VALLE DEL PARR 128 VALLE DE HUINALA APO	134
VILLA CATALINA 241 VILLAS REGINA PESQUERIA	135
YUCA 1129 VALLE DE LOS NOGALES	136

6.2. Tabla orden ascendente, segunda heurística

CEDIS	1
DEL ROBLE 845 HDAS LS MARGARIT GPE	2
BOSQUES DE LOS 127 BOSQUES DE HUINALA	3
LOS ENCINOS 103 GOLONDRINAS I	4
CALLE NUBE 719 VALLE D LS FLORES GP	5
RIO GRANDE 223 BALC DE SATA ROSA	6
C LIBERTAD 635 VALLE DE SANTA MARIA	7
SHEFFIELD 409 PEDREGAL DE LINDA VISTA	8
BILBAO 921 PASEO DE LAS FLORES	9
JASPE 108 RESIDENCIAL LA NORIA	10
VALLE DEL PARR 128 VALLE DE HUINALA APO	11
SAN MATEO 104 PASEO SAN JAVIER	12
C HIGUERILLA 111 SANTA ENGRACIA	13
CASTA??A 152 VALLE DE HUINALA APO	14
CEREZO 532 LOS TREBOLES	15
CALLEJON DE LOS 116 FRACC PRIV ILTAMARINDO	16
FANTACIAS 435 LOS TREBOLES SECTOR	17
ARCOS DE LOUVRE 101 COLINAS DEL AEROPUERTO	18
28 DE NOBIEMBRE 4738 SAN RAFAEL	19
GERANIO 453 HDA LAS MARGARITAS	20
CUBANOS 136 ROBERTO ESPINOZA 2	21
DE LOS VISIGOD 245 MISION REAL 01	22
C NARANJO 176 PESQUERIA	23
DEL PUENTE 805 VILLA DE SAN CARLOS	24
AVE FUNDADORES 739 FUNDADORES	25
MIGUEL HIDALGO 807 MISION DE SAN FCO	26
TURI 403 LOMAS DE SAN MARTIN	27
HECTOR 809 FRACC DEPORTIVO HUINALA	28
SIERRA BLANCA 313 COLINAS DEL AEROPUERTO	29
TUPAL 151 REAL DE APODACA	30
ANDROMEDA 3317 COLINAS DEL AEROPUERTO	31
C LA LAGUNA 201 LAS HACIENDAS	32
BACILIO 104 VALLE DE SANTA MARIA	33
FIDEL VELAZQUEZ 111 JOYAS DEL PEDREGAL	34

MISION SAN PABLO 157 MISION DE HUINALA	35
CAPITAN 808 FRACC DEPORTIVO HUINALA	36
IMPERIA 109 PESQUERIA	37
QUIJOTE 469 EL CANTORAL	38
EBANOS 144 LADRILLERA	39
ESCOCIA 472 RESID SAN ANTONIO GPE	40
SEPALO 524 LAS PUENTES	41
VALLE DE SAN L 612 VALLE DE HUINALA APO	42
BARBADOS 1232 RESID SANTA FE	43
HACIENDA LA HER 733 HDA LAS MARGARITAS 5	44
HACIENDA PENOLE 798 HDA LAS MARGARITAS	45
HACIENDA SAN MI 617 HDA SAN MIGUEL	46
MANTE 121 COLINAS DEL AEROPUERTO	47
AV MEXICO 1307 VIVIENDA DIGNA GPE	48
DALIAS 123 FRACC MIRASOL RESIDENCIAL	49
CORAL 212 PEDREGAL LINDA VISTA 2	50
APOZAL 327 CA#ADA BLANCA	51
AV INDEPENDIENT 261 VALLES DE HUINALA	52
CRATIS 139 SANTA MARIA	53
DEL MOLINO 615 VILLA DE SAN MIGUEL	54
PORTAL DE CIVEL 554 PORTAL DE HUINALA	55
C TORRE DE SAN 202 TORRES DE SAN MIGUEL	56
DEL HUIZACHE 911 INF LOS FRESNOS III	57
YUCA 1129 VALLE DE LOS NOGALES	58
JULIANTLA 711 EL CANTORAL	59
LA FLORE??A 1 SANTA MARIA	60
VILLA CATALINA 241 VILLAS REGINA PESQUERIA	61
MISION SAN LUCA 129 MISION DE HUINALA	62
PINO 786 RENACERES	63
BERMELLON 184 VALLE DE LOS NOGALES	64
RIO SENA 210 PUEBLO NUEVO 6	65
LA BARCA 468 EL CANTORAL	66
LOS SAUCES 127 GOLONDRINAS GPE	67
VALLE DE MEXIC 172 VALLE DE HUINALA APO	68
16 DE SEPTIEMBR 104 BARRIO TAMPIQUITO	69
AURORA 529 PESQUERIA	70
LEUCA 127 VALLE DE SANTA MARIA	71
RIO SENEGAL 307 BALC DE SATA ROSA	72

BELLUNO 156 LOMAS DE SAN MARTIN	73
LOBELIA 446 HDA LAS MARGARITAS 3 GPE	74
BRENDA 405 LOS PINCELES GPE	75
SAN RUFINO 133 MIGUEL HIDALG APC GP	76
TUXCAQUESCO 218 NORIA NORTE 2	77
1A DE REFORMA 605 DR.GONZALEZ	78
ATOTONILCO 507 VALLE DE HUINALA APODACA	79
CALLE LIBERTAD 635 VALLE DE SANTA MARIA	80
FRANCISCO WAGNE 685 VILLAS REGINA PESQUERIA	81
MARIANA 139 VILLAS REGINA	82
LA TROJE 456 LAS HACIENDAS	83
NOGAL 407 RINCON DE HUINALA	84
REFORMA 605 LOS PE#A DR. GZZ.	85
RODIO 101 VALLE DE SANTA MARIA	86
C FRESNOS 204 LAS HACIENDAS	87
JUAN ZUAZUA 411 PRIV DE SAN MIGUELITO	88
GRANADA 112 FRACC. GOLONDRINAS	89
JACARANDA 107 BOSQUES DEL SOL GPE	90
DE LOS BALCONES 136 VALLE DE LOS NOGALES	91
HACIENDA DEL R 801 HDA LAS MARGARITAS 6 GPE	92
MONTERREY 200 NORIA NORTE 2	93
UMBERTO 136 VALLE DE SANTA MARIA	94
MIL AMORES 651 EL CANTORAL	95
BOSQUES DE BOLO 112 LOS ENCINOS HUINALA	96
RAYITO DE LUZ 644 EL CANTORAL	97
DE LOS AZULEJO 106 PASEO DE COLIBRIES	98
JAZMIN 406 PRADERAS DE HUINALA	99
CIRUELO 262 PASEO DE LA LOMA	100
PRIVADA FRAMBOY 109 SANTA ENGRACIA	101
URUGUAYOS 445 SANTA FE APODACA	102
MISION SAN MATE 301 MISION DE HUINALA	103
RIO PILON 104 PUEBLO NUEVO GPE	104
NEPTUNO 3165 COLINAS DEL AEROPUERTO	105
LOS AMOLES 113 HDA SAN MIGUEL	106
ARCE 833 JACARANDAS	107
MISION GERONA 125 MISION SAN PABLO	108
LISBOA 1220 MIGUEL HIDALG APC GP	109
SANTA TERESA DE 395 EX HACIENDA SAN FRANCISCO	110

LOTO 431 HDA LAS MARGARITAS	111
ALEMANIA 1139 NUEVO AMANECER 2	112
AV BENITO JUARE 136 INFONAVIT BENITO JUAREZ	113
SAN PABLO 555 JARDIN DE SAN PATRICIO	114
PRIV REMBRANT 404 FRACC MISION REAL	115
AARON SAENZ 207 GERONIMO TREVI??O	116
AV CENTRAL 1725	117
QUERETARO 1407 COLINAS DEL AEROPUERTO	118
PALERMO 715 MIGUEL HIDALG APC GP	119
CARACAS 232 PARAJE STA ROSA	120
ESPANA 1127 VIVIENDA DIGNA GPE	121
BRISTOL 601 PEDREGAL DE LINDA VISTA	122
JARDINES DEL B 257 JARDINES DE MONTERREY	123
REAL DE SAN EST 215 REAL DE SAN JOSE	124
GENERAL TREVI??O 405 PESQUERIA	125
CATEDRAL DE TOL 180 PRIV SAN FERNANDO	126
MEZQUITE 240 FRACC LAS PROVINCIAS	127
LA ESTRELLA 310 EL CANTORAL	128
ASTEROIDES 308 VALLE D PEDREGAL	129
RIO BRMEJO 730 PUEBLO NUEVO 6	130
SANTO TOMAS 1002 PASEO SAN JAVIER	131
PORTAL ALMEIRA 572 PORTAL DEL VALLE	132
CALDAS 518 AGUA FRIA APO	133
MINEO 146 VALLE DE SANTA MARIA	134
OLIVO 133 FRACC MIRASOL RESIDENCIAL	135
AZUCENA 662 HDA LAS MARGARITAS	136

6.3. Tabla orden distancias de menor a mayor desde el CEDIS, tercera heurística

CEDIS	1
1A DE REFORMA 605 DR.GONZALEZ	2
FRANCISCO WAGNE 685 VILLAS REGINA PESQUERIA	3
AARON SAENZ 207 GERONIMO TREVI??O	4
CATEDRAL DE TOL 180 PRIV SAN FERNANDO	5
MIGUEL HIDALGO 807 MISION DE SAN FCO	6
REFORMA 605 LOS PE#A DR. GZZ.	7
AV CENTRAL 1725	8
SEPALO 524 LAS PUENTES	9
MONTERREY 200 NORIA NORTE 2	10
DEL ROBLE 845 HDAS LS MARGARIT GPE	11
HACIENDA PENOLE 798 HDA LAS MARGARITAS	12
RAYITO DE LUZ 644 EL CANTORAL	13
EBANOS 144 LADRILLERA	14
HACIENDA LA HER 733 HDA LAS MARGARITAS 5	15
CRATIS 139 SANTA MARIA	16
CUBANOS 136 ROBERTO ESPINOZA 2	17
AVE FUNDADORES 739 FUNDADORES	18
HECTOR 809 FRACC DEPORTIVO HUINALA	19
LOS ENCINOS 103 GOLONDRINAS I	20
DEL PUENTE 805 VILLA DE SAN CARLOS	21
DEL MOLINO 615 VILLA DE SAN MIGUEL	22
DEL HUIZACHE 911 INF LOS FRESNOS III	23
BERMELLON 184 VALLE DE LOS NOGALES	24
C FRESNOS 204 LAS HACIENDAS	25
DE LOS AZULEJO 106 PASEO DE COLIBRIES	26
C LA LAGUNA 201 LAS HACIENDAS	27
FIDEL VELAZQUEZ 111 JOYAS DEL PEDREGAL	28
ESCOCIA 472 RESID SAN ANTONIO GPE	29
LOS SAUCES 127 GOLONDRINAS GPE	30
16 DE SEPTIEMBR 104 BARRIO TAMPIQUITO	31
RIO SENEGAL 307 BALC DE SATA ROSA	32
LOBELIA 446 HDA LAS MARGARITAS 3 GPE	33
MEZQUITE 240 FRACC LAS PROVINCIAS	34

ARCOS DE LOUVRE 101 COLINAS DEL AEROPUERTO	35
ANDROMEDA 3317 COLINAS DEL AEROPUERTO	36
CORAL 212 PEDREGAL LINDA VISTA 2	37
JACARANDA 107 BOSQUES DEL SOL GPE	38
SANTA TERESA DE 395 EX HACIENDA SAN FRANCISCO	39
ALEMANIA 1139 NUEVO AMANECER 2	40
BRISTOL 601 PEDREGAL DE LINDA VISTA	41
C TORRE DE SAN 202 TORRES DE SAN MIGUEL	42
JULIANTLA 711 EL CANTORAL	43
GENERAL TREVI??O 405 PESQUERIA	44
RIO GRANDE 223 BALC DE SATA ROSA	45
SHEFFIELD 409 PEDREGAL DE LINDA VISTA	46
CASTA??A 152 VALLE DE HUINALA APO	47
28 DE NOBIEMBRE 4738 SAN RAFAEL	48
BACILIO 104 VALLE DE SANTA MARIA	49
BARBADOS 1232 RESID SANTA FE	50
JUAN ZUAZUA 411 PRIV DE SAN MIGUELITO	51
DE LOS BALCONES 136 VALLE DE LOS NOGALES	52
JARDINES DEL B 257 JARDINES DE MONTERREY	53
LA ESTRELLA 310 EL CANTORAL	54
CAPITAN 808 FRACC DEPORTIVO HUINALA	55
APOZAL 327 CA#ADA BLANCA	56
YUCA 1129 VALLE DE LOS NOGALES	57
JAZMIN 406 PRADERAS DE HUINALA	58
URUGUAYOS 445 SANTA FE APODACA	59
LISBOA 1220 MIGUEL HIDALG APC GP	60
PALERMO 715 MIGUEL HIDALG APC GP	61
FANTACIAS 435 LOS TREBOLES SECTOR	62
IMPERIA 109 PESQUERIA	63
AV INDEPENDIENT 261 VALLES DE HUINALA	64
ATOTONILCO 507 VALLE DE HUINALA APODACA	65
HACIENDA DEL R 801 HDA LAS MARGARITAS 6 GPE	66
PINO 786 RENACERES	67
ESPANA 1127 VIVIENDA DIGNA GPE	68
VALLE DEL PARR 128 VALLE DE HUINALA APO	69
CALLEJON DE LOS 116 FRACC PRIV ILTAMARINDO	70
VALLE DE SAN L 612 VALLE DE HUINALA APO	71
VALLE DE MEXIC 172 VALLE DE HUINALA APO	72

ARCE 833 JACARANDAS	73
DALIAS 123 FRACC MIRASOL RESIDENCIAL	74
PORTAL DE CIVEL 554 PORTAL DE HUINALA	75
RIO SENA 210 PUEBLO NUEVO 6	76
SAN RUFINO 133 MIGUEL HIDALG APC GP	77
RIO PILON 104 PUEBLO NUEVO GPE	78
AV BENITO JUARE 136 INFONAVIT BENITO JUAREZ	79
SAN PABLO 555 JARDIN DE SAN PATRICIO	80
BOSQUES DE LOS 127 BOSQUES DE HUINALA	81
CALLE NUBE 719 VALLE D LS FLORES GP	82
HACIENDA SAN MI 617 HDA SAN MIGUEL	83
LA BARCA 468 EL CANTORAL	84
BRENDA 405 LOS PINCELES GPE	85
BOSQUES DE BOLO 112 LOS ENCINOS HUINALA	86
RIO BRMEJO 730 PUEBLO NUEVO 6	87
MISION SAN PABLO 157 MISION DE HUINALA	88
MISION SAN LUCA 129 MISION DE HUINALA	89
PRIVADA FRAMBOY 109 SANTA ENGRACIA	90
MISION SAN MATE 301 MISION DE HUINALA	91
LOTO 431 HDA LAS MARGARITAS	92
ASTEROIDES 308 VALLE D PEDREGAL	93
OLIVO 133 FRACC MIRASOL RESIDENCIAL	94
AZUCENA 662 HDA LAS MARGARITAS	95
JASPE 108 RESIDENCIAL LA NORIA	96
LA FLORE??A 1 SANTA MARIA	97
NOGAL 407 RINCON DE HUINALA	98
PRIV REMBRANT 404 FRACC MISION REAL	99
CALDAS 518 AGUA FRIA APO	100
C HIGUERILLA 111 SANTA ENGRACIA	101
TUPAL 151 REAL DE APODACA	102
AV MEXICO 1307 VIVIENDA DIGNA GPE	103
LOS AMOLES 113 HDA SAN MIGUEL	104
MISION GERONA 125 MISION SAN PABLO	105
CARACAS 232 PARAJE STA ROSA	106
PORTAL ALMEIRA 572 PORTAL DEL VALLE	107
CIRUELO 262 PASEO DE LA LOMA	108
TUXCAQUESCO 218 NORIA NORTE 2	109
BILBAO 921 PASEO DE LAS FLORES	110

MANTE 121 COLINAS DEL AEROPUERTO	111
LA TROJE 456 LAS HACIENDAS	112
C LIBERTAD 635 VALLE DE SANTA MARIA	113
SAN MATEO 104 PASEO SAN JAVIER	114
LEUCA 127 VALLE DE SANTA MARIA	115
BELLUNO 156 LOMAS DE SAN MARTIN	116
CALLE LIBERTAD 635 VALLE DE SANTA MARIA	117
RODIO 101 VALLE DE SANTA MARIA	118
UMBERTO 136 VALLE DE SANTA MARIA	119
REAL DE SAN EST 215 REAL DE SAN JOSE	120
MINEO 146 VALLE DE SANTA MARIA	121
CEREZO 532 LOS TREBOLES	122
TURI 403 LOMAS DE SAN MARTIN	123
AURORA 529 PESQUERIA	124
MIL AMORES 651 EL CANTORAL	125
NEPTUNO 3165 COLINAS DEL AEROPUERTO	126
QUERETARO 1407 COLINAS DEL AEROPUERTO	127
SIERRA BLANCA 313 COLINAS DEL AEROPUERTO	128
VILLA CATALINA 241 VILLAS REGINA PESQUERIA	129
MARIANA 139 VILLAS REGINA	130
GRANADA 112 FRACC. GOLONDRINAS	131
QUIJOTE 469 EL CANTORAL	132
SANTO TOMAS 1002 PASEO SAN JAVIER	133
DE LOS VISIGOD 245 MISION REAL 01	134
GERANIO 453 HDA LAS MARGARITAS	13
C NARANJO 176 PESQUERIA	136

Referencias

- [1] Britannica. NP-hard Wikipedia, la enciclopedia libre. 2018. URL: https://es.wikipedia.org/wiki/NP-hard.
- [2] Wesley Chai. What is E-Commerce? Definition and Meaning. 2020. URL: https://searchcio.techtarget.com/definition/e-commerce#:~:text=E2D.
- [3] Coppel. Coppel Wikipedia, la enciclopedia libre. 2021. URL: https://es.wikipedia.org/wiki/Coppel.
- [4] El efecto de COVID-19 en el ecommerce. URL: https://www.forbes.com.mx/el-efecto-de-covid-19-en-el-ecommerce/.
- [5] Asociación de Internet en México. Tendencias de crecimiento del e-commerce en México 2020. 2020. URL: https://www.asociaciondeinternet.mx/tendencias-de-crecimiento-del-e-commerce-enmexico-2020.
- [6] Eréndira Reyes. Estos cuatro retos acechan el crecimiento del eCommerce mexicano. 2020. URL: https://expansion.mx/tecnologia/2020/07/14/estos-cuatro-retos-acechan-el-crecimiento-del-ecommerce-mexicano.
- [7] Bryan Salazar. Problema del agente viajero TSP Ingenieria Industrial Online. URL: https://www.ingenieriaindustrialonline.com/investigacion-de-operaciones/problema-del-agente-viajero-tsp/.