Multiple-timescale pathways reduce the cell-to-cell heterogeneity in response to external stress.

Multiple-timescale pathways

Small cell-to-cell heterogeneity

Multiple-timescale pathways reduce the cell-to-cell heterogeneity in response to external stress.

VS

Multiple-timescale pathways

Small cell-to-cell heterogeneity

Single-timescale pathways

Large cell-to-cell heterogeneity

Multiple-timescale pathways reduce the cell-to-cell heterogeneity in response to external stress.

Goal: Find why multiple-timescale pathways reduce the cell-to-cell heterogeneity.

Intermediate pathway
signal

Response
molecules

Initiation

Transduction
(Transduction time

Termination

Fig.3.B time traces show no significant differences between unimodal and bimodal (weak/strong) delay distributions.

Fig.3.B time traces show no significant differences between unimodal and bimodal (weak/strong) delay distributions.

No visible difference.

Fig.3.B time traces show no significant differences between unimodal and bimodal (weak/strong) delay distributions.

No visible difference.

But Exact CV..??

$$CV = \left(rac{\sigma}{\mu}
ight) imes 100\%$$

Fig.3.B time traces show no significant differences between unimodal and bimodal (weak/strong) delay distributions.

Fig.3.B time traces show no significant differences between unimodal and bimodal (weak/strong) delay distributions.

Fig.3.B time traces show no significant differences between unimodal and bimodal (weak/strong) delay distributions.

Fig.3.B time traces show no significant differences between unimodal and bimodal (weak/strong) delay distributions.

Weighted Mix of Γ Distributions

Intuitively, Shift ——— Change in Variance

Q. What about changing birth/death rate?? ∃ CV Difference??

$$\lambda_b = 200, \quad \lambda_d = 1$$

$$CV = \left(rac{\sigma}{\mu}
ight) imes 100\%$$

Lower $\mu = \lambda_b/\lambda_d \longrightarrow$ Higher CV

Original Γ Distributions

Modified bimodal Γ

Modified bimodal Γ

Modified bimodal Γ

Modified bimodal Γ

How to generate high CV values??

Summary: Modifying delay distribution (mean, variance, type) / volume / birth-death ratio do not work.

Original [Paper]

Same Mean

Increased Variance

Horizontal Shift

Lower Birth/Death Ratio (4:1)

Lower Volume (1 \rightarrow 0.009)

Summary: Modifying delay distribution (mean, variance) / volume / birth-death ratio do not work.

Future Directions: Identify why lowering volume increases CV, find how low volume is related to single timescale pathways.

