

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC163817

Page: 1 of 92

FCC Radio Test Report FCC ID: 2AL64-RE667

Original Grant

Report No. : TB-FCC163817

Applicant : Shenzhen qiuyu Electronic Co.,Ltd

Equipment Under Test (EUT)

EUT Name : Tablet PC

Model No. : RE667

Series Model No. : QM706

Brand Name : Alula

Receipt Date : 2019-01-04

Test Date : 2019-01-07 to 2019-01-25

Issue Date : 2019-01-26

Standards : FCC Part 15, Subpart C (15.247:2018)

Test Method : ANSI C63.10: 2013

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC and IC requirements

Test/Witness Engineer :

Engineer Supervisor :

* <u>Ivan Su</u>

Engineer Manager :

Ray Lai

Jason Xu

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Report No.: TB-FCC163817
Page: 2 of 92

Contents

CON	ITENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	6
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	
	1.7 Measurement Uncertainty	
	1.8 Test Facility	9
2.	TEST SUMMARY	10
3.	TEST EQUIPMENT	11
4.	CONDUCTED EMISSION TEST	12
	4.1 Test Standard and Limit	12
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Mode	13
	4.5 Test Data	13
5.	RADIATED EMISSION TEST	14
	5.1 Test Standard and Limit	14
	5.2 Test Setup	15
	5.3 Test Procedure	16
	5.4 EUT Operating Condition	16
	5.5 Test Data	17
6.	RESTRICTED BANDS REQUIREMENT	18
	6.1 Test Standard and Limit	18
	6.2 Test Setup	18
	6.3 Test Procedure	18
	6.4 EUT Operating Condition	19
	6.5 Test Data	
7.	BANDWIDTH TEST	20
	7.1 Test Standard and Limit	20
	7.2 Test Setup	20
	7.3 Test Procedure	
	7.4 EUT Operating Condition	20
	7.5 Test Data	20
8.	PEAK OUTPUT POWER TEST	21
	8.1 Test Standard and Limit	21

Page: 3 of 92

	8.2 Test Setup	21
	8.3 Test Procedure	21
	8.4 EUT Operating Condition	
	8.5 Test Data	21
9.	POWER SPECTRAL DENSITY TEST	
	9.1 Test Standard and Limit	
	9.2 Test Setup	
	9.3 Test Procedure	22
	9.4 EUT Operating Condition	22
	9.5 Test Data	22
10.	ANTENNA REQUIREMENT	
	10.1 Standard Requirement	23
	10.2 Antenna Connected Construction	23
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	24
	ACHMENT B RADIATED EMISSION TEST DATA	
	ACHMENT C RESTRICTED BANDS REQUIREMENT TEST DATA	
	ACHMENT D BANDWIDTH TEST DATA	
	ACHMENT E PEAK OUTPUT POWER TEST DATA	
	ACHMENT F POWER SPECTRAL DENSITY TEST DATA	

Page: 4 of 92

Revision History

Report No.	Version	Description	Issued Date
TB-FCC163817	Rev.01	Initial issue of report	2019-01-26
The state of the s			
			TU DE
3	53		13
WURR.			4000
1000			LOSS -
TUD!			TO THE
			COLUMN TO THE PARTY OF THE PART
THE PARTY OF THE P			TOUR
33	1		UR A

Page: 5 of 92

1. General Information about EUT

1.1 Client Information

Applicant : Shenzhen qiuyu Electronic Co.,Ltd		Shenzhen qiuyu Electronic Co.,Ltd
Address		3F, E Building, Hongzhuyongqi Industrial Park, Lezhujiao village, xixiang town, Bao'an District, Shenzhen, China
Address	•	town, Bao'an District ,Shenzhen, China
Manufacturer : Shenzhen qiuyu Electronic Co.,Ltd		Shenzhen qiuyu Electronic Co.,Ltd
A daluage	لياا	3F, E Building, Hongzhuyongqi Industrial Park, Lezhujiao village, xixiang
Address	•	town, Bao'an District ,Shenzhen, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name		Tablet PC			
Models No.		RE667, QM706			
Model	4	All models are in the same PCB layout interior structure and			
Different	ŀ	electrical circuits, The only difference is model.			
W.		Operation	802.11b/g/n(HT20): 2412MHz~2462MHz		
		Frequency:	802.11n(HT40): 2422MHz~2452MHz		
OF THE		Number of Channel:	802.11b/g/n(HT20):11 channels see note(3) 802.11n(HT40):7 channels see note(3)		
Product Description		RF Output Power:	802.11b: 9.26dBm 802.11g: 8.49dBm 802.11n (HT20):8.39dBm 802.11n (HT40):7.20dBm		
(4) (1)		Antenna Gain:	1.79dBi FPC Antenna		
Power Supply		DC 3.7V by 2500mAh DC 5V by AC/DC Ada			
Software Version	Ŀ	rk312x-userdebug 6.0.1 MXC89K user.hc.20190122.100315 test-keys			
Hardware Version	-	RAK74E-MB-V1.1			
Connecting I/O Port(S)	:	Please refer to the User's Manual			

Page: 6 of 92

Note:

(1) This Test Report is FCC Part 15.247 for 802.11b/g/n, the test procedure follows the FCC KDB 558074 D01 DTS Meas Guidance v05.

(2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

(3) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	05	2432	09	2452
02	2417	06	2437	10	2457
03	2422	07	2442	11	2462
04	2427	08	2447		

Note: CH 01~CH 11 for 802.11b/g/n(HT20) CH 03~CH 9 for 802.11n(HT40)

- (4) The Antenna information about the equipment is provided by the applicant.
- 1.3 Block Diagram Showing the Configuration of System Tested

USB Charging Mode+TX Mode

Adapter	EUT		

TX Mode

1.4 Description of Support Units

Equipment Information					
Name Model		FCC ID/VOC Manufacture		Used "√"	
ADAPTER	W. C. P.	(int)	/	V	

Page: 7 of 92

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test				
Final Test Mode Description				
Mode 1	USB Charging with TX B Mode			

For Radiated Test			
Final Test Mode Description			
Mode 2	TX Mode B Mode Channel 01/06/11		
Mode 3	TX Mode G Mode Channel 01/06/11		
Mode 4	TX Mode N(HT20) Mode Channel 01/06/11		
Mode 5 TX Mode N(HT40) Mode Channel 03/06/09			

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, Middle, lowest available channels, and the worst case data rate as follows:

802.11b Mode: CCK (1 Mbps) 802.11g Mode: OFDM (6 Mbps)

802.11n (HT20) Mode: MCS 0 (6.5 Mbps) 802.11n (HT40) Mode: MCS 0 (13 Mbps)

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 8 of 92

1.6 Description of Test Software Setting

During testing channel&Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN.

Test Software Version		WLAN Test Tool.exe	
Channel	CH 01	CH 06	CH 11
IEEE 802.11b DSSS	32	32	32
IEEE 802.11g OFDM	32	32	32
IEEE 802.11n (HT20)	32	32	32
Test Software Version	CHILL STORY	WLAN Test Tool.exe	
Channel	CH 03	CH 06	CH 09
IEEE 802.11n (HT40)	32	32	32

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
THU THE	Level Accuracy:	
Conducted Emission	9kHz~150kHz	±3.42 dB
	150kHz to 30MHz	±3.42 dB
Dadiated Emission	Level Accuracy:	. 4 CO dD
Radiated Emission	9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy:	±4.40 dB
Radiated Effilssion	30MHz to 1000 MHz	±4.40 db
Radiated Emission	Level Accuracy:	±4.20 dB
Naulateu Elliission	Above 1000MHz	±4.20 ub

Page: 9 of 92

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 10 of 92

2. Test Summary

	FCC Part	t 15 Subpart C(15.247)/ RSS 247	Issue 2	
Standard Section FCC IC		Test Item	ludament	Damark
		rest item	Judgment	Remark
15.203	1	Antenna Requirement	PASS	N/A
15.207	RSS-GEN 7.2.4	Conducted Emission	PASS	N/A
15.205	RSS-GEN 7.2.2	Restricted Bands	PASS	N/A
15.247(a)(2)	RSS 247 5.2 (1)	6dB Bandwidth	PASS	N/A
15.247(b)	RSS 247 5.4 (4)	Peak Output Power	PASS	N/A
15.247(e)	RSS 247 5.2 (2)	Power Spectral Density	PASS	N/A
15.247(d)	RSS 247 5.5	Band Edge	PASS	N/A
15.247(d)& 15.209	RSS 247 5.5	Transmitter Radiated Spurious Emission	PASS	N/A

Note: "/" for no requirement for this test item.

N/A is an abbreviation for Not Applicable.

Page: 11 of 92

3. Test Equipment

Conducted Emiss	ion Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 18, 2018	Jul. 17, 2019
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 18, 2018	Jul. 17, 2019
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 18, 2018	Jul. 17, 2019
LISN	Rohde & Schwarz	ENV216	101131	Jul. 18, 2018	Jul. 17, 2019
Radiation Emission	n Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 18, 2018	Jul. 17, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.16, 2018	Mar. 15, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar.16, 2018	Mar. 15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.16, 2018	Mar. 15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.16, 2018	Mar. 15, 2019
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 14, 2018	Jul. 13, 2019
Pre-amplifier	Sonoma	310N	185903	Mar.16, 2018	Mar. 15, 2019
Pre-amplifier	HP	8449B	3008A00849	Mar.16, 2018	Mar. 15, 2019
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.16, 2018	Mar. 15, 2019
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conducto	ed Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 18, 2018	Jul. 17, 2019
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 15, 2018	Sep. 14, 2019
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 15, 2018	Sep. 14, 2019
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 15, 2018	Sep. 14, 2019
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 15, 2018	Sep. 14, 2019
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 15, 2018	Sep. 14, 2019
IVI I OMEI OEUSOI	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 15, 2018	Sep. 14, 2019
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 15, 2018	Sep. 14, 2019

Page: 12 of 92

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit

Conducted Emission Test Limit

THE PROPERTY OF THE PARTY OF TH	Maximum RF Line Voltage (dBμV)			
Frequency	Quasi-peak Level	Average Level		
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Page: 13 of 92

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Please refer to the Attachment A.

Page: 14 of 92

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209

5.1.2 Test Limit

Radiated Emission Limits (9 kHz~1000 MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance of 3	m (dBuV/m)
(MHz)	Peak	Average
Above 1000	74	54

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

Page: 15 of 92

5.2 Test Setup

Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 16 of 92

Above 1GHz Test Setup

5.3 Test Procedure

- (1) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (2) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (3) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (4) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (5) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (6) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (7) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

Page: 17 of 92

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

Page: 18 of 92

6. Restricted Bands Requirement

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.247(d)

FCC Part 15.209

FCC Part 15.205

6.1.2 Test Limit

Restricted Frequency	Distance of 3m (dBuV/m)		
Band (MHz)	Peak	Average	
2310 ~2390	74	54	
2483.5 ~2500	74	54	

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency below 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

Page: 19 of 92

(3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Please refer to the Attachment C.

Page: 20 of 92

7. Bandwidth Test

7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.247 (a)(2)

7.1.2 Test Limit

FCC P	art 15 Subpart C(15.247)/	RSS-210
Test Item	Limit	Frequency Range(MHz)
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

7.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Digital photo framesdle and high channel for the test.

7.5 Test Data

Please refer to the Attachment D.

Page: 21 of 92

8. Peak Output Power Test

8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (b)

8.1.2 Test Limit

FCC Pai	t 15 Subpart C(15.247)/RS	SS-210
Test Item	Limit	Frequency Range(MHz)
Peak Output Power	1 Watt or 30 dBm	2400~2483.5

8.2 Test Setup

8.3 Test Procedure

The measurement is according to section 9.1.2 of KDB 558074 D01 DTS Meas Guidance v05. The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.

8.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

8.5 Test Data

Please refer to the Attachment E.

Page: 22 of 92

9. Power Spectral Density Test

9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247 (e)

9.1.2 Test Limit

FC	CC Part 15 Subpart C(15.2	47)
Test Item	Limit	Frequency Range(MHz)
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5

9.2 Test Setup

9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v05.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser center frequency to DTS channel center frequency.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz(5) Set the VBW to: 10 kHz
- (6) Detector: peak(7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

9.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Digital photo framesdle and high channel for the test.

9.5 Test Data

Please refer to the Attachment F.

Page: 23 of 92

10. Antenna Requirement

10.1 Standard Requirement

10.1.1 Standard FCC Part 15.203

10.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

10.2 Antenna Connected Construction

The gains of the antenna used for transmitting is 1.79dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

Result

The EUT antenna is a FPC Antenna. It complies with the standard requirement.

	Antenna Type	
Tip 1	⊠Permanent attached antenna	QU)
a During	Unique connector antenna	
	☐Professional installation antenna	MOST

Attachment A-- Conducted Emission Test Data

Page: 25 of 92

Page: 26 of 92

Temperature:	25 ℃	Relative H	umidity:	55%
Test Voltage:	AC 240V/60 Hz			a W
Terminal:	Line		(III)	339
Test Mode:	Charging with TX B M	ode	1 62	
Remark:	Only worse case is rep	ported		HALL
90.0 dBuV			Marker Marker Market	QP: — AVG: — peak
0.150	0.5	(MHz) 5		30.000
No. Mk. Fr	9	rrect Measure- actor ment	Limit C	Over
M	Hz dBuV (dB dBuV	dBuV	dB Detector
1 * 0.1	860 38.48 9	0.58 48.06	64.21 -16	6.15 QP
2 0.1	860 22.98 9	0.58 32.56	54.21 -2	1.65 AVG
3 0.2	340 34.69 9	0.58 44.27	62.30 -18	8.03 QP
4 0.2	340 22.35 9	0.58 31.93	52.30 -20	0.37 AVG
5 0.2	819 29.26 9	0.59 38.85	60.76 -2	1.91 QP
6 0.2	819 17.04 9	0.59 26.63	50.76 -24	4.13 AVG
7 0.3	300 23.20 9	0.59 32.79	59.45 -26	6.66 QP
8 0.3	300 13.51 9	0.59 23.10	49.45 -26	6.35 AVG
9 0.3	740 26.42 9	0.60 36.02	58.41 -22	2.39 QP
10 0.3	740 14.94 9	0.60 24.54	48.41 -23	3.87 AVG
11 0.9	860 4.83 9	0.60 14.43	56.00 -4	1.57 QP
12 0.9	860 -4.33 9	0.60 5.27	46.00 -40	0.73 AVG
Emission Level	= Read Level+ Correct	Factor		

Page: 27 of 92

Page: 28 of 92

Attachment B-- Radiated Emission Test Data

9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

below the permissible value has no need to be reported.

30MHz~1GHz

Temperature:	25 ℃		-1016 L	Relative Hu	ımidity:	55%	9
Test Voltage:	AC 12	0V/60 Hz	M. Carrie	100			
Ant. Pol.	Horizo	ntal		Millian	-	The state of	
Test Mode:	TXBN	/lode 2412N	ИHz	5	3110		1
Remark:	Only w	orse case i	s reported				
80.0 dBuV/m							
					(05)500	IEC ALI D. I' C	
					(HFJFCC)	ISC 3M Radiation Margin -6	
				<u> </u>			
30	1			. 4	5 X	6	Ann
my me	X	2 ************************************	فرمن الإملاما	in M	The way	6 X	Mary
and market			Marine	MA			
	net Hilblidte	and the same					
20							
-20 30.000 40 5	0 60 70	80	(MHz)	300	400 5	500 600 700	1000.0
	0 60 70				40 0 5	500 600 700	1000.0
30.000 40 5		Reading	Correct	Measure-			1000.0
30.000 40 5 No. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
30.000 40 5 No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment dBuV/m	Limit dBuV/m	Over	Detecto
30.000 40 5 No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment dBuV/m	Limit dBuV/m	Over	Detecto
No. Mk. 1 * 57 2 105	Freq. MHz .1914	Reading Level dBuV 46.31	Correct Factor dB/m -24.05	Measure- ment dBuV/m 22.26	Limit dBuV/m 40.00	Over dB -17.74	Detecto QP
No. Mk. 1 * 57 2 105 3 193	Freq. MHz .1914 5.2718	Reading Level dBuV 46.31 40.59	Correct Factor dB/m -24.05 -22.28	Measure- ment dBuV/m 22.26 18.31	Limit dBuV/m 40.00 43.50	Over dB -17.74 -25.19	Detecto QP QP
No. Mk. 1 * 57 2 105 3 193 4 297	Freq. MHz .1914 5.2718 3.7728	Reading Level dBuV 46.31 40.59 40.04	Correct Factor dB/m -24.05 -22.28 -19.87	Measure- ment dBuV/m 22.26 18.31 20.17	Limit dBuV/m 40.00 43.50 43.50	Over dB -17.74 -25.19 -23.33	Detecto QP QP QP
No. Mk. 1 * 57 2 105 3 193 4 297 5 407	Freq. MHz .1914 5.2718 3.7728 7.2241	Reading Level dBuV 46.31 40.59 40.04 39.07	Correct Factor dB/m -24.05 -22.28 -19.87 -16.25	Measure- ment dBuV/m 22.26 18.31 20.17 22.82	Limit dBuV/m 40.00 43.50 43.50 46.00	Over dB -17.74 -25.19 -23.33 -23.18	QP QP QP QP

Page: 29 of 92

Temperature:	25 ℃	R	elative Humic	lity: 55	5%	100		
Test Voltage:	AC 120V/60 Hz	AC 120V/60 Hz						
Ant. Pol.	Vertical	Vertical						
Test Mode:	TX B Mode 2412MHz							
Remark:	Only worse case	e is reported		3	3 W	A REAL PROPERTY OF THE PARTY OF		
80.0 dBuV/m								
				(RF)FCC 1	5C 3M Radiation	,		
					Margin -6	dB		
2 3								
30	5							
JANAN WAS JANAN	WMMJ. HAYYYU	6		\ J	all rhan	hopethan		
Ψ'	TO THE PERSON NAMED IN THE	May down	my manual		W-1003			
	, hu, Audit	A A	driffida.					
20								
30.000 40 50	60 70 80	(MHz)	300	400 5	00 600 700	1000.00		
	Reading	Correct	Measure-					
No. Mk. Fr	eq. Level	Factor	ment	Limit	Over			
Mi	Hz dBuV	dB/m	dBuV/m	dBuV/m	dB	Detecto		
1 30.2	111 44.83	-13.16	31.67	40.00	-8.33	QP		
2 * 48.6	719 55.67	-22.80	32.87	40.00	-7.13	QP		
3 55.2	207 56.33	-23.83	32.50	40.00	-7.50	QP		
4 61.7	781 51.73	-24.21	27.52	40.00	-12.48	QP		
5 105.2	2718 52.13	-22.28	29.85	43.50	-13.65	QP		
6 176.8	3878 40.36	-20.27	20.09	43.50	-23.41	QP		
*:Maximum data	x:Over limit !:over ma	rain						
.waxiiiluiii uata	A.Over mint !.over ma	1911						
			•					

Page: 30 of 92

Above 1GHz

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V	William .	1
Ant. Pol.	Horizontal		THE STATE OF
Test Mode:	TX B Mode 2412MHz		
Remark:	No report for the emission	which more than 10 dE	B below the prescribed
	limit.		

No	. Mk	c. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4823.946	29.66	14.55	44.21	54.00	-9.79	AVG
2		4824.018	42.46	14.55	57.01	74.00	-16.99	peak

Page: 31 of 92

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		-3 M
Ant. Pol.	Vertical		
Test Mode:	TX B Mode 2412MHz	10	
Remark:	No report for the emission was prescribed limit.	hich more than 10 dB	below the

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4822.698	43.34	14.55	57.89	74.00	-16.11	peak
2	*	4822.698	29.09	14.55	43.64	54.00	-10.36	AVG

Page: 32 of 92

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V	Militar	
Ant. Pol.	Horizontal		
Test Mode:	TX B Mode 2437MHz		
Remark:	No report for the emission prescribed limit.	which more than 10 dE	3 below the

No.	Mk.	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.328	41.70	14.86	56.56	74.00	-17.44	peak
2	*	4875.086	29.13	14.87	44.00	54.00	-10.00	AVG

Page: 33 of 92

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX B Mode 2437MHz						
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						

1	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4873.976	29.03	14.86	43.89	54.00	-10.11	AVG
2			4874.414	42.60	14.86	57.46	74.00	-16.54	peak

Page: 34 of 92

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX B Mode 2462MHz						
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						
100 0 dp.3//-							

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4822.974	42.84	14.55	57.39	74.00	-16.61	peak
2	*	4823.832	29.63	14.55	44.18	54.00	-9.82	AVG

Page: 35 of 92

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	The same					
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX B Mode 2462MHz						
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						

No.	Mk.	Freq.		Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4923.034	41.65	15.17	56.82	74.00	-17.18	peak
2	*	4923.034	29.39	15.17	44.56	54.00	-9.44	AVG

Page: 36 of 92

í	Temperature:	25 ℃	Relative Humidity:	55%		
ì	Test Voltage:	ge: DC 3.7V				
	Ant. Pol.	Horizontal	31 - 6			
	Test Mode:	TX G Mode 2412MHz				
Remark: No report for the emission which more than 10 dB below the prescribed limit.						

No	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4823.700	29.60	14.55	44.15	54.00	-9.85	AVG
2		4823.772	42.42	14.55	56.97	74.00	-17.03	peak

Page: 37 of 92

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Vertical						
Test Mode:	TX G Mode 2412MH	TX G Mode 2412MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						

No.	Mk.	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4823.364	42.68	14.55	57.23	74.00	-16.77	peak
2	*	4823.988	29.21	14.55	43.76	54.00	-10.24	AVG

Page: 38 of 92

í	Temperature:	25 ℃	Relative Humidity:	55%			
ì	Test Voltage:	DC 3.7V	Million				
	Ant. Pol.	Horizontal	31 - 6	TIPS OF			
	Test Mode:	TX G Mode 2437MHz					
Remark: No report for the emission which more than 10 dB below the prescribed limit.							

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.592	41.69	14.86	56.55	74.00	-17.45	peak
2	*	4873.592	29.05	14.86	43.91	54.00	-10.09	AVG

Page: 39 of 92

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	THE PARTY OF THE P	1				
Ant. Pol.	Vertical		Till				
Test Mode:	TX G Mode 2437MHz	TX G Mode 2437MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.292	43.10	14.86	57.96	74.00	-16.04	peak
2	*	4873.292	29.03	14.86	43.89	54.00	-10.11	AVG

Page: 40 of 92

Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V	Militia	130			
Ant. Pol.	Horizontal	31 - 6				
Test Mode:	TX G Mode 2462MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					
100.0 40.4//-						

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4924.072	40.48	15.17	55.65	74.00	-18.35	peak
2	*	4924.072	29.47	15.17	44.64	54.00	-9.36	AVG

Page: 41 of 92

Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V	Militia				
Ant. Pol.	Vertical					
Test Mode:	TX G Mode 2462MHz	TX G Mode 2462MHz				
Remark:	mark: No report for the emission which more than 10 dB below the prescribed limit.					
100.0 dB:A//m	·					

No	o. M	lk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	49	923.676	29.45	15.17	44.62	54.00	-9.38	AVG
2		49	925.242	42.72	15.19	57.91	74.00	-16.09	peak

Page: 42 of 92

_								
Ter	mperature:	25 ℃	Relative Humidity:	55%				
Tes	st Voltage:	DC 3.7V						
An	t. Pol.	Horizontal						
Tes	st Mode:	TX N(HT20) Mode 2412M	TX N(HT20) Mode 2412MHz					
Re	mark:	No report for the emission which more than 10 dB below the						
		prescribed limit.		33				

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4824.078	42.65	14.55	57.20	74.00	-16.80	peak
2	*	4824.078	29.63	14.55	44.18	54.00	-9.82	AVG

Page: 43 of 92

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX N(HT20) Mode	TX N(HT20) Mode 2412MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4822.944	41.56	14.55	56.11	74.00	-17.89	peak
2	*	4822.944	29.05	14.55	43.60	54.00	-10.40	AVG

Page: 44 of 92

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX N(HT20) Mode	TX N(HT20) Mode 2437MHz					
Remark: No report for the emission which more than 10 dB below the prescribed limit.							

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.610	43.11	14.86	57.97	74.00	-16.03	peak
2	*	4874.192	29.08	14.86	43.94	54.00	-10.06	AVG

Page: 45 of 92

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX N(HT20) Mode	TX N(HT20) Mode 2437MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						
	p. cccou minu		1 1 20				

No.	Mk.	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4875.002	41.04	14.86	55.90	74.00	-18.10	peak
2	*	4875.002	29.14	14.86	44.00	54.00	-10.00	AVG

Page: 46 of 92

Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Horizontal					
Test Mode:	TX N(HT20) Mode 2462MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4924.390	43.28	15.17	58.45	74.00	-15.55	peak
2	*	4924.390	29.40	15.17	44.57	54.00	-9.43	AVG

Page: 47 of 92

Temperature:	25 °C	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Vertical					
Test Mode:	TX N(HT20) Mode 2462MH	TX N(HT20) Mode 2462MHz				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4923.004	43.23	15.17	58.40	74.00	-15.60	peak
2	*	4923.004	29.35	15.17	44.52	54.00	-9.48	AVG

Page: 48 of 92

Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Horizontal					
Test Mode:	TX N(HT40) Mode 2422MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4842.644	29.22	14.66	43.88	54.00	-10.12	AVG
2		4843.160	42.20	14.67	56.87	74.00	-17.13	peak

Page: 49 of 92

í	Temperature:	25 ℃	Relative Humidity:	55%				
	Test Voltage:	DC 3.7V	C 3.7V					
	Ant. Pol.	Vertical	/ertical					
	Test Mode:	TX N(HT40) Mode 2422MI	Hz					
Remark: No report for the emission which more than 10 dB below the prescribed limit.								
				ļ.				

No	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4844.588	41.29	14.68	55.97	74.00	-18.03	peak
2	*	4844.588	29.21	14.68	43.89	54.00	-10.11	AVG

Page: 50 of 92

Temperature:	25 ℃	Relative Humidity:	55%					
Test Voltage:	DC 3.7V	OC 3.7V						
Ant. Pol.	Horizontal	Horizontal						
Test Mode:	TX N(HT40) Mode 2437M	Hz						
Remark: No report for the emission which more than 10 dB below the prescribed limit.								
to a mul								

No	. Mk.	Freq.		Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4874.696	42.77	14.86	57.63	74.00	-16.37	peak
2	*	4874.696	29.07	14.86	43.93	54.00	-10.07	AVG

Page: 51 of 92

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	C 3.7V					
Ant. Pol.	Vertical	/ertical					
Test Mode:	TX N(HT40) Mode 24	37MHz					
Remark: No report for the emission which more than 10 dB below the prescribed limit.							
100.0 10.111							

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.862	42.97	14.86	57.83	74.00	-16.17	peak
2	*	4873.862	28.99	14.86	43.85	54.00	-10.15	AVG

Page: 52 of 92

	Temperature:	25 ℃	Relative Humidity:	55%				
	Test Voltage:	DC 3.7V	C 3.7V					
	Ant. Pol.	Horizontal						
	Test Mode:	TX N(HT40) Mode 2452MH						
	Remark:	No report for the emission which more than 10 dB below the						
prescribed limit.								

No	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4905.062	42.24	15.05	57.29	74.00	-16.71	peak
2	*	4905.062	29.40	15.05	44.45	54.00	-9.55	AVG

Page: 53 of 92

1	Temperature:	25 ℃	Relative Humidity:	55%				
	Test Voltage:	DC 3.7V	OC 3.7V					
	Ant. Pol.	Vertical						
	Test Mode:	Mode: TX N(HT40) Mode 2452MHz						
Remark: No report for the emission which more than 10 dB below the prescribed limit.								

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4903.316	40.90	15.04	55.94	74.00	-18.06	peak
2	*	4903.316	29.40	15.04	44.44	54.00	-9.56	AVG

Page: 54 of 92

Attachment C-- Restricted Bands Requirement Test Data

(1) Radiation Test

Page: 55 of 92

Page: 56 of 92

Page: 57 of 92

Page: 58 of 92

Page: 59 of 92

Page: 60 of 92

Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	C 3.7V					
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX G Mode 2462MHz	TX G Mode 2462MHz					
Remark:	N/A		a William				

No. Mk.		. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	2459.800	83.57	3.26	86.83	Fundamenta	al Frequency	peak
2	*	2460.400	71.02	3.26	74.28	— Fundamenta	al Frequency	AVG
3		2483.500	45.56	3.41	48.97	74.00	-25.03	peak
4		2483.500	30.67	3.41	34.08	54.00	-19.92	AVG

Page: 61 of 92

Page: 62 of 92

Page: 63 of 92

Page: 64 of 92

Page: 65 of 92

Page: 66 of 92

Page: 67 of 92

Page: 68 of 92

Page: 69 of 92

70 of 92 Page:

(2) Conducted Test

Page: 71 of 92

Page: 72 of 92

Page: 73 of 92

Page: 74 of 92

Attachment D-- Bandwidth Test Data

Temperature:	25 °C	Relative Humidity:	55%
Test Voltage:	DC 3.7V		17.33
Test Mode:	TX 802.11B Mode		
Channel frequence	y 6dB Bandwidth	99% Bandwidth	Limit
(MHz)	(MHz)	(MHz)	(MHz)
2412	10.04	15.019	
2437	10.04	15.055	>=0.5
2462	9.58	15.061	
			L.

802.11B Mode

Page: 75 of 92

Page: 76 of 92

Temperature:	25 ℃		Relative Humidity:	55%
Гest Voltage:	DC 3.7\		CHILD ST	
Test Mode:	TX 802.	11G Mode		THE STATE OF
Channel frequer	ncy 6	dB Bandwidth	99% Bandwidth	Limit
(MHz)		(MHz)	(MHz)	(MHz
2412		16.33	16.502	
2437		16.34	16.499	>=0.5
2462		16.36	16.495	
	<u>'</u>	802.11	G Mode	,
IXI R R	Analyzer - Occupied BW 75 Ω AC C 2.412000000 G	Hz Center		07:53:04 PM Jan 03, 2019 dio Std: None
IXI R R	F 75 Ω AC C	Center	Freq: 2.412000000 GHz Rar ree Run Avg Hold:>10/10	07:53:04 PM Jan 03, 2019
Center Freq	F 75 Ω AC C	Center Trig: F	Freq: 2.412000000 GHz Rar ree Run Avg Hold:>10/10	07:53:04 PMJan 03, 2019 dio Std: None
Center Freq	F 75Ω AC C 2.412000000 G	Center Trig: F	Freq: 2.412000000 GHz Rar ree Run Avg Hold:>10/10	07:53:04 PMJan 03, 2019 dio Std: None
Center Freq	F 75Ω AC C 2.412000000 G	Center Trig: F	Freq: 2.41200000 GHz Rai ree Run Avg Hold:>10/10 Rai	07:53:04 PMJan 03, 2019 dio Std: None
10 dB/div Log 10.00 -10.0 -20.0	F 75Ω AC C 2.412000000 G	Center Trig: Fi #FGain:Low #Atten:	Freq: 2.41200000 GHz Rai ree Run Avg Hold:>10/10 Rai	07:53:04 PMJan 03, 2019 dio Std: None
Center Freq 10 dB/div Log 10.00 -10.0 -20.0 -40.0 -50.0	2.412000000 G	Center Trig: Fi #FGain:Low #Atten:	Freq: 2.41200000 GHz Rai ree Run Avg Hold:>10/10 Rai	07:53:04 PMJan 03, 2019 dio Std: None
Center Freq 10 dB/div Log 10.00 -10.0 -20.0 -40.0 -50.0	F 75Ω AC C 2.412000000 G	Center Trig: Fi #FGain:Low #Atten:	Freq: 2.41200000 GHz Rai ree Run Avg Hold:>10/10 Rai	07:53:04 PMJan 03, 2019 dio Std: None
10 dB/div Log 10.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	2.412000000 G Ref 20.00 dBm	#FGain:Low Center Trig: Fi	Free; 2.41200000 GHz Rai Rai Avg Hold:>10/10 Rai	07:53:04 PM Jan 03, 2019 dio Std: None dio Device: BTS
Center Freq 10 dB/div Log 10.0 20.0 30.0 40.0 50.0 Center 2.412 #Res BW 100	2.412000000 G Ref 20.00 dBm	#FGain:Low Center Trig: Fr. #Atten:	Freq: 2.41200000 GHz Rai ree Run Avg Hold:>10/10 Rai	07:53:04 PM Jan 03, 2019 dio Std: None dio Device: BTS
Center Freq 10 dB/div Log 10.0 20.0 30.0 40.0 50.0 Center 2.412 #Res BW 100	Ref 20.00 dBm	#FGain:Low Center Trig: Fr. #Atten:	Free: 2.412000000 GHz Rai	07:53:04 PM Jan 03, 2019 dio Std: None dio Device: BTS
Center Freq 10 dB/div Log 10.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	Ref 20.00 dBm GHz 0 kHz d Bandwidth 16.4	##FGain:Low Center Trig: Fi #Atten:	Freq: 2.41200000 GHz	07:53:04 PMJan 03, 2019 dio Std: None dio Device: BTS

Page: 77 of 92

x dB Bandwidth

17.57 MHz

x dB

-6.00 dB

Report No.: TB-FCC163817

Page: 78 of 92

nperature:	25 ℃		110	Relative	Humidit	y : 5	5%
t Voltage:	DC 3.7V			_ 01	11.75		A 1
t Mode:	TX 802.11	1N(HT20) N	Mode	30 6	6		33
annel frequenc	cy 6d	B Bandwi	dth	99% Ba	andwidth	h	Limi
(MHz)		(MHz)		(N	lHz)		(MHz
2412		17.57		17	.682		
2437		17.58		17	.677		>=0.
2462		17.58		17	.676		
		802.11	1N(HT20) Mode			
		;	2412 MF	1Z			
	alyzer - Occupied BW 75 Ω AC CORR 412000000 GH Z	REC SE	ENSE:INT	ALIGN AUTO 412000000 GHz Avg Hole	d:>10/10	Radio Std: I	
Center Freq 2.	#12000000 GH2	REC SE	ENSE:INT Center Freq: 2. Trig: Free Run #Atten: 10 dB	ALIGN AUTO		Radio Devic	16 PM Jan 03, 2019 None ce: BTS

Page: 79 of 92

Page: 80 of 92

Temperature:	25 ℃		Relative Humidity:	55%
Test Voltage:	DC 3.7	/		0
Test Mode:	TX 802	.11N(HT40) Mode		
Channel frequen	су б	dB Bandwidth	99% Bandwidth	Limit
(MHz)		(MHz)	(MHz)	(MHz)
2422		35.51	35.966	
2437		35.32	35.954	>=0.5
2452		35.14	35.938	
	·	802.11N(HT	(40) Mode	
		2422 [ИНz	

Page: 81 of 92

Page: 82 of 92

Attachment E-- Peak Output Power Test Data

Test Conditions	: Continuous Transm	nitting Mode	
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		
Mode	Channel frequency (MHz)	Test Result (dBm)	Limit (dBm)
	2412	9.10	
802.11b	2437	9.25	
	2462	9.26	
	2412	8.39	
802.11g	2437	8.49	
	2462	8.32	30
802.11n	2412	7.64	30
(HT20)	2437	8.39	
(11120)	2462	8.39	
902 44n	2422	7.09	
802.11n (HT40)	2437	7.20	
(11140)	2452	7.05	
	Resu	ult: PASS	

	Duty Cycle	
Mode	Channel frequency (MHz)	Test Result
	2412	
802.11b	2437	
	2462	
	2412	
802.11g	2437	
	2462	200/
000 44	2412	>98%
802.11n	2437	
(HT20)	2462	
	2422	
802.11n	2437	
(HT40)	2452	

83 of 92 Page:

802.11 G Mode 2437 MHz

Page: 84 of 92

Page: 85 of 92

Attachment F-- Power Spectral Density Test Data

Temperature:	25 ℃	Relative Hu	midity:	55%
Test Voltage:	DC 3.7V		65	7:13
Test Mode:	TX 802.1	1B Mode	J K	
Channel Freq	uency	Power Density		Limit
(MHz)		(dBm/3 kHz)		(dBm/3 kHz)
2412		-15.037		
2437		-15.747		8
2462		-15.953		
		000 44D Mada		

802.11B Mode

Page: 86 of 92

802.11B Mode

Page: 87 of 92

Temperature:	25 ℃	Tempera	ture: 25 °C
Test Voltage:	DC 3.7V		
Test Mode:	TX 802.1	IG Mode	
Channel Freq	uency	Power Density	Limit
(MHz)		(dBm/3 kHz)	(dBm/3 kHz)
2412		-22.238	
2437		-21.444	8
2462		-22.607	
		802.11G Mode	

Page: 88 of 92

802.11G Mode

Page: 89 of 92

Temperature:	25 ℃		Temperature:	25 ℃
Test Voltage:	DC 3.7V		0111	
Test Mode:	TX 802.1	1N(HT20) Mode	2.0	
Channel Fred	quency	Power De	nsity	Limit
(MHz)		(dBm/3 k	(Hz)	(dBm/3 kHz)
2412		-23.22	4	
2437		-23.54	5	8
2462		-23.20	5	
		802.11N(HT2	0) Mode	
		2412 M	Hz	

90 of 92 Page:

802.11N(HT20) Mode

Page: 91 of 92

emperature:	25 ℃		Temperature:	25 ℃
est Voltage:	DC 3.7V	TO W	1	
est Mode:	TX 802.11	N(HT40) Mode	- CHILLIA	
Channel Freq (MHz)	uency	Power De (dBm/3 k	-	Limit (dBm/3 kHz)
2422		-27.20	-	
2437		-27.25	66	8
2452		-26.64	-0	
	1	802.11N(HT4	0) Mode	
		2422 M	Hz	
Keysight Spectrum A. Keysight Spectrum A. Keysight Spectrum A. Ref. Center Freq 2	nalyzer - Swept SA 75 Ω		ALIGN AUTO AVg Type: Log-Pwr	08:12:23 PM Jan 03, 2019 TRACE 2 2 4 5 6 TYPE M TOWN OPEN P NINN N
Center Freq 2	75 Ω AC CORRE	C SENSE:INT PNO: Fast Trig: Free Ru	ALIGN AUTO AVG Type: Log-Pwr N Avg Hold: 1/100	08:12:23 PM Jan 03, 2019 TRACE 1 2 3 4 5 6 TYPE MWWWWW

#VBW 10 kHz

Page: 92 of 92

----END OF REPORT----