PHILIPS INTERNATIONAL

Philips Semiconductors

Data sheet			
status	Preliminary specification		
date of issue	December 1990		

2N2646 Silicon unijunction transistor

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
-V _{EB2}	emitter-base 2 voltage		_	_	30	\ <u>\</u>
IEM	emitter current	peak value	_	_	2	A
P _{tot}	total power dissipation		_		300	mW
T _i	junction temperature			_	125	°C
R _{BB}	static inter-base resistance	$V_{B2B1} = 3 V$ $I_E = 0$	_	7	-	kΩ
V _{EB1 sat}	emitter-base 1 saturation voltage	$V_{B2B1} = 10 \text{ V}$ $I_E = 50 \text{ mA}$	-	3.5	_	٧
E(V)	emitter valley point current		4	6	_	mA
I _{E(P)}	emitter peak point current			1	5	μΑ

PINNING - TO-18

Base 2 connected to case.

PIN	DESCRIPTION
1	emitter
2	base 1
3	base 2

PIN CONFIGURATION

Silicon unijunction transistor

2N2646

LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134).

SYMBOL.	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
-V _{EB2}	emitter-base 2 voltage		_	30	٧
V _{B2B1}	inter-base voltage		_	35	٧
l _E	emitter current	average value		50	mA
EM	emitter current (note 1)	peak value	_	2	Α
Ptot	total power dissipation (note 2)	T _{amb} ≤ 25 °C		300	mW
T _{etg}	storage temperature range		-65	150	°C
<u></u>	junction temperature		_	125	°C

Notes

- 1. Capacitor discharge ≤ 10 μF at ≤ 30 V.
- 2. Must be limited by external circuit.

THERMAL RESISTANCE

SYMBOL	PARAMETER	VALUE	UNIT
R _{th J-a}	from junction to ambient	300	K/W

Silicon unijunction transistor

2N2646

CHARACTERISTICS

 $T_{amb} = 25$ °C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
R _{BB}	static inter-base resistance	$V_{B2B1} = 3 V$ $I_E = 0$	4.7	7	9.1	kΩ
TC _{RBB}	inter-base resistance temperature coefficient	$V_{82B1} = 3 V$ $I_E = 0$ $T_{amb} = -55 \text{ to } 125 ^{\circ}\text{C}$	0.1		0.9	%/K
-I _{EB2O}	emitter cut-off current	$-V_{EB2} = 30 \text{ V}$ $I_{B1} = 0$	_	-	12	٧
V _{EB1sat}	emitter-base 1 saturation voltage	$V_{B2B1} = 10 \text{ V}$ $I_E = 50 \text{ mA}$		3.5		٧
B2mod	inter-base current modulation	$V_{B2B1} = 10 \text{ V}$ $I_E = 50 \text{ mA}$	_	15		mA
η	input/output ratio (note 1)	$V_{B2B1} = 10 \text{ V}$	0.56	_	0.75	
E(V)	emitter valley point current	$V_{B2B1} = 20 \text{ V}$ $R_{B2} = 100 \Omega$	4	6	_	mA
I _{E(P)}	emitter peak point current	$V_{B2B1} = 25 \text{ V}$	_	1	5	μΑ
V _{OB1M}	base 1 impulse/output voltage		3	5	-	٧

Note

1. $\eta = \frac{(V_{E(P)} - V_{EB1})}{V_{B2B1}}$, when $V_{E(P)} =$ emitter peak point voltage, $V_{EB1} =$ emitter-base 1 breakdown voltage, (approximately 0.5 V at 10 μ A), and $V_{B2B1} =$ inter-base voltage.

Silicon unijunction transistor

2N2646

PACKAGE OUTLINE

Dimensions in mm.

Fig.5 TO-18.