A PROJECT REPORT ON

Automated Ration Distribution System using ARM-CM3 and IoT

SUBMITTED IN PARTIAL FULFILLMENT OF

DIPLOMA IN EMBEDDED SYSTEM DESIGN (PG-DESD)

 \mathbf{BY}

Samiksha Subhash Kolapate

AT

SUNBEAM INSTITUTE OF INFORMATION TECHNOLOGY, HINJAWADI

SUNBEAM INSTITUTE OF INFORMATION TECHNOLOGY, HINJAWADI.

CERTIFICATE

This is to certify that the project

Automated Ration Distribution System using ARM-CM3 and IoT

Has been submitted by

Samiksha Subhash Kolapate

In partial fulfillment of the requirement for the Course of **PG Diploma in Embedded System Design (PG-DESD AUG2019)** as prescribed by The **CDAC** ACTS, PUNE.

Place: Hinjawadi Date: 30-JAN-2020

Authorized Signature

ACKNOWLEDGEMENT

It gives me a great pleasure to submit Project report. This is the opportunity where I can express my emotions and gratitude from the bottom of my heart.

I express my sincere thanks to my guide **Mr. Abhijit Kulat** for guiding me at every step in making of this project. He motivated us and boosted my confidence and I must admit that the work would not have been accomplished without his guidance and encouragement.

I would like to extend my special thanks to **Mr. Devendra Dhande Sir** and **Mr. Nilesh Ghule Sir** for spending their valuable time to go through my report and providing many helpful suggestions. Lastly I would like to thank all the staff member of electronics department and my friends without whom the project report would not have been completed.

ABSTRACT

Presently, the ration distribution system is manually operated due to which it consumes a lot of time and many immoral activities are taking place in ration shop. Government of India provides various facilities for ration distribution towards the people below poverty line but end user is not able to utilize all these facilities due to forgery and corruption at each level of distribution system. In many forgery cases, shop keepers may sell the material to the end user with higher prices than recommended by government of India. Even shop keeper may sell the ration in open market to gain more profit. In order to overcome such problem, this work aims to propose. Automated Ration Distribution System using Radio Frequency Identification technology. This installed automated system at every ration shop will minimize the manual effort of distributing the ration to community. Thus, management of ration data will be made precise at each level of distribution system. This system will be very useful to prevent the ration forgery and it will help in increasing the transparency among user. In this project, we are replacing the manual work done in the distribution centers by automated electronic device with the help of ARM microcontroller(Cortex-M3) which takes user input about the quantity and type of goods and accurately updates it in data base periodically about the goods and information regarding the transactions done in a digitalized manner with the help of IoT.

Keywords: Database(MySQL), IoT, Microcontroller, Radio Frequency Identification(RFID), Ration Distribution System.

INDEX

1.	INTRODUCTION	1
	1.1 Introduction	2
	1.2 Overview of Project	2
2.	LITERATURE SURVEY	3
3.	PROJECT ARCHITECTURE	4
	3.1 Block Diagram	4
	3.2 Project Design	4
	3.3 Description	5
	3.4 Flowchart	6
4.	HARDWARE DESCRIPTION	8
	4.1 ARM Cortex M3(LPC1768)	8
	4.2 Node MCU(ESP 8266)	10
	4.3 EM-18 RFID Reader Module	11
	4.4 4X4 Matrix Keypad	13
	4.5 USB-to-TTL Converter	14
5.	SOFTWARE REQUIREMENTS AND SPECIFICATIONS	15
	5.1 Vim Editor	15
	5.2 Arduino IDE	15
	5.3 Pycharm	16
	5.4 MariaDB	16
6.	SOURCE CODE EXPLAINATION	17
	6.1 ARM Programming	17
	6.2 ESP8266 Programming	19
	6.3 Server Programming	20
7.	TESTING	21
8.	FUTURE SCOPE	24
9.	CONCLUSION	25
10.	REFERENCES	26

LIST OF TABLES

Section	Table Title	Page
4.1	RFID frequency ranges, distance, modules and	13
	applications.	
4.2	DB-9 Pin Assignments	14

LIST OF FIGURES

Section	Figure Title	Page
3.1	Block Diagram	4
3.2	Flowchart	7
4.1	ARM Cortex M3 LPC1768 Development Board	8
4.2	ESP8266	10
4.3	Pin Diagram of ESP8266	11
4.4	EM-18 RFID Reader Module	12
4.5	4X4 Matrix Keypad	14
4.6	Keypad row-column intersection	14
7.1	UI showing the system waiting for card	21
7.2	UI showing options for selecting quantity	21
7.3	Serial Monitor at Node MCU showing received data and	22
	status of the data transmission to server	
7.4	Initial status of the database	22
7.5	Status of the database after updating values	23