Міністерство освіти і науки України

Національний технічний університет України

«Київський Політехнічний Інститут імені Ігоря Сікорського»

Кафедра конструювання електронно-обчислювальної апаратури

Звіт

3 виконання лабораторної роботи №1

з дисципліни "Аналогова електроніка"

Виконав:

студент групи ДК-61

Сільчук В.І.

Перевірив:

доц. Короткий Є. В.

1. Дослідження суматора напруг на резисторах.

Був побудований суматор напруг на резисторах, за наступною схемою:

Опори резисторів – 100 кОм.

На вхід були подані дві напруги – 4В та 3В, з джерел постійної напруги.

Stop Stop Stop Stop						
	Channel 1	Channel 2				
DC	4.006 V	2.993 V				
True RMS	4.006 V	2.993 V				
AC RMS	1 mV	1 mV				

<u>Теоретичний результат</u>: $U_{BUX} = 0.5 * (U1 + U2) = 0.5 * (3 + 4) = 3.5 B$

Експериментальний результат:

	Channel 1
DC	3.345 V
True RMS	3.345 V
AC RMS	1 mV

Як бачимо, отримане значення Ивих становить 3.345В, що на 4.42% відрізняється від теоретичного.

Симуляція в LTSpice:

Синя лінія – U1, червона – U2, зелена – Uвих.

Як видно, результат відповідає теоретичному значенню.

Подаємо на входи суматора два сигнали з генераторів.

Перший сигнал імпульсний (меандр) з частотою 1КГц, амплітудою 1В. Другий сигнал синусоїдальний з частотою 5 КГц, амплітудою 1В.

Вихідний сигнал:

На виході спостерігаємо комбінацію вхідних сигналів, що відповідає очікуванням.

Налаштування осцилографу: 0.5В/клітинка, 0.5мс/клітинка.

Симуляція в LTSpice:

Схема:

Налаштування джерел:

На вході:

На виході:

1.0V-

0.0ms

0.2ms

Порівнюючи результати симуляції та результати експерименту, можна відмітити те, що вони майже повністю співпадають.

0.6ms

0.8ms

1.0ms

0.4ms

2. Дослідження RC ланцюжка.

Був складений RC-ланцюжок за наступною схемою:

Ємність конденсатора – 10 нФ, опір резистора – 1 кОм.

Час заряду конденсатора до 0.99Е:

$$5RC = 5 * 1000 * 0,00000001 = 0,00005 c = 50 \text{ MKC}$$

Подаємо на вхід імпульсну напругу з амплітудою 1В та такою частотою, щоб період був в 5 разів більший за розраховану тривалість заряду-розряду.

Значення періоду, яке в 5 разів більше за значення тривалості заряду-розряду:

$$5 * 0,00005 = 0,00025 c$$

Шукаємо частоту, при якій період = 5 * tзаряду/розряду.

$$f = 1/T = 1 / 0,00025 = 4000 \Gamma$$
ц.

Вхідний сигнал:

На виході отримали:

Як можна бачити, за 50 мкс конденсатор зарядився до 978 мВ, що відповідає очікуванням.

Налаштування осцилографу: 0.5В/клітинка, 0.05мс/клітинка.

Симуляція в LTSpice:

Схема:

Параметри джерела:

На виході отримали:

Як видно, за 50 мкс конденсатор зарядився до 983 мВ, що відповідає очікуванням, і відрізняється від експериментального значення всього на 5 мВ.

3. Дослідження RC фільтру низької частоти.

Збираємо схему RC ФНЧ:

Номінали компонентів – ємність конденсатора 10 нФ, опір резистора – 1 кОм.

Розраховуємо частоту зрізу:

$$F_3 = 1 / (2*\pi*R*C) = 15916 \Gamma$$
ц

Розраховуємо Ки:

Nº	f, Гц	Ки теор	Ки практ	δ, %
1	0	1	1	-
2	3000	0,983	0,977	0,58
3	6000	0,936	0,928	0,82
4	9000	0,870	0,862	0,97
5	12000	0,798	0,791	0,94
6	15000	0,728	0,721	0,93
7	15916	0,707	0,701	0,86
8	18000	0,662	0,657	0,82
9	21000	0,604	0,6	0,67
10	24000	0,553	0,55	0,48
11	27000	0,508	0,507	0,16
12	30000	0,469	0,469	0,07

Перевірка, що Ки на частоті близькій до нуля в корінь з двох раз більший, ніж Ки на частоті зрізу:

0.701 * 1.41 = 0.988, що доволі близько до значення Ки на мінімальній частоті з вибірки.

АЧХ фільтра низьких частот:

Як видно, точка частоти зрізу знаходиться на частоті 15.75 к Γ ц, що на 1.04% відрізняється від теоретичного значення.

Швидкість спадання становить -20 дБ/дек, що відповідає очікуванням.

Симуляція в LTSpice:

Схема:

Вигляд АЧХ:

Як видно, точка частоти зрізу знаходиться на частоті 15965 Гц, що відрізняється від теоретичних розрахунків всього на 0.3%.

Висновки

Отже, в процесі виконання цієї лабораторної роботи, були досліджені суматор напруг на резисторах, RC-ланцюжок та RC фільтр низьких частот.

Були розраховані теоретичні значення вихідної напруги на суматорі напруг, час заряду/розряду конденсатора, частота зрізу ФНЧ, і перевірені на практиці. Також був розрахований коефіцієнт передачі за напругою для ФНЧ для частоти зрізу та значень частот вище/нижче частоти зрізу, побудований графік АЧХ фільтра низьких частот за допомогою Network Analyzer плати Analog Discovery.

Також виконані дослідження були промодельовані в LTSpice.