NASA Conference Publication 10075

NASA Workshop 33454 on Impact Damage 6.476 to Composites

Compiled by C. C. Poe, Jr. NASA Langley Research Center Hampton, Virginia

Proceedings of a workshop sponsored by the NASA Langley Research Center and held at Langley Research Center Hampton, Virginia March 19-20, 1991

JULY 1991

(NASA-CP-10075) NASA WORKSHOP ON IMPACT DAMAGE TO COMPOSITES (NASA) 476 p CSCL 110

N91-29240

Unclas G3/24 0033454

Space Administration

Langley Research Center Hampton, Virginia 23665-5225

,			
		-	
		-	
		-	
	•		
	•		

PREFACE

The NASA Workshop on Impact Damage to Composites was sponsored by the Mechanics of Materials Branch of NASA Langley Research Center. The workshop was held on March 19 and 20, 1991 at Langley Research Center, Hampton, Virginia. The objective was to review technology for evaluating damage tolerance of composite structures with impact damage and identify deficiencies. The number of registered participants was 40, representing industry, government, and universities; a list is included. The participants were specialists in the field of impact damage and composites. The workshop was divided into the following five sessions:

- I Impact Mechanics and Scaling
- II Damage and Strength Predictions
- III Standard Tests
- IV Design Criteria and Certification
- V Identification of Technology Deficiencies

The review, which was conducted in Sessions I-IV, consisted of invited talks that covered research and development, design, and criteria. Technology deficiencies were identified and discussed in Session V. Mr. C. C. Poe, Jr. moderated the sessions. This conference publication is a compilation of the slides used by the speakers in Sessions I-IV and a List of Actions to Address Technology Deficiencies that were recommended by the participants in Session V.

e de la companya del companya de la companya del companya de la co

CONTENTS

PREFACE
List of Actions to Address Technology Deficiencies v
List of Speakers and Attendees
Session I - Impact Mechanics and Scaling
Composition and Analysis of the Impact Force Curve
Impacting Large Composite Structures and Scaling Impact Response and Damage
Effect of Low-Speed Impact Damage on Compression Loaded Composite Structures Marshall Rouse, Aircraft Structures Branch, NASA Langley Research Center (Not available for publication.)
Session II - Damage and Strength Predictions
Delaminations in Composite Plates under Transverse Static or Impact Loads
Impact Damaged Composites, Part I: Damage Simulation and Strength Predictions
Towards a Methodology for the Assessment of Impact of Composite Structures
Session III - Standard Tests
Standard Impact Tests Used at Lockheed
Impact Damaged Composites, Part II: Standard Tests for Fuselage Structural Issues
Impact Resistance and Material Toughness

Standard Impact Tests	333
Session IV - Design Criteria and Certification	
Relevance of Impacter Shape to Tension Strength of Thick Carbon/Epoxy with Nonvisible Damage	361
Certification of Composites for Aircraft	401
Damage Tolerance of Composites Criteria and Evaluation	421

iv

LIST OF ACTIONS TO ADDRESS TECHNOLOGY DEFICIENCIES

General

- Standardize philosophy of distinguishing between damage resistance and damage tolerance.
- · Standardize coupon type impact test.
- Develop methodology to relate results from standard impact tests of coupons to structures.
- Develop analyses to reduce the amount of testing currently used in the building block approach to verify a design.
- · Develop progressive damage analyses.
- · Address unique requirements of fuselage type structure.

Damage Resistance

- Develop a measure of extent and degree of impact damage, particularly one that relates to a threshold for detection.
- · Develop understanding of strain-rate effects.
- · Develop failure criteria to predict damage.
- · Determine preload effects.
- · Develop method to predict delamination growth in fatigue.
- · Determine residual stress effects.
- Develop relationship between ply cracking, interlaminar toughness, and damage resistance.
- Develop local contact stiffness relationship that accounts for damage and other nonlinearities.

Damage Tolerance

- · Develop failure criteria.
- · Determine effects of biaxial loading and shear loading.

<u>Criteria</u>

- Survey airlines to determine frequency of impacts that can damage composite structures.
- Determine effects of applying limit load cycles to fatigue test article.
- Perform probability analysis to relate factor of safety to level of impact energy.
- Determine if criteria should result in strengths that are very sensitive to changes in level of energy or damage.
- · Determine effects of oblique impacts.
- Determine how to account for impacter shape.

LIST OF SPEAKERS AND ATTENDEES

Dr. William B. Avery Boeing Defense & Space Group P.O. Box 3999, M/S 82-32 Seattle, WA 98124-2499	(206) 773-5365 (206) 477-2489 fax
Mr. Charles P. Blankenship M.S. 118 NASA Langley Research Center Hampton, VA 23665-5225	(804) 864-6005
Dr. Victor L. Chen Dept. 1XX, M/C 18-98 Douglas Aircraft Co. 3855 Lakewood Blvd. Long Beach, CA 90846	(213) 496-7415 (213) 982-0815 fax
Mr. H. Benson Dexter M.S. 188B NASA Langley Research Center Hampton, VA 23665-5225	(804) 864-3094
Mr. Ernest F. Dost Boeing Commercial Airplane Co. Advanced Programs Composite Group P.O. Box 3707, M.S. 3T-AU Seattle, WA 98124-2499	(206) 393-9632 (206) 477-2489 fax
Mr. Marvin B. Dow M.S. 188B NASA Langley Research Center Hampton, VA 23665-5225	(804) 864-3090
Dr. Wolf Elber M.S. 266 NASA Langley Research Center Hampton, VA 23665-5225	(804) 864-3956
Gerry Flanagan Grumman Aerospace Corp. MS B44-35 Bethpage, NY 11714	(516) 346-6510 (516) 575-7428 fax
Mr. Tim Gillette Lockheed Aeronautical Systems Co. Dept. 76-41 Bldg. 369 P.O. Box 551 Burbank, CA 91520	(818) 847-7913 (818) 847-2482 fax

Dr. Michael Graves Massachusetts Institute of Technology Department of Aeronautics and Astronautics Technical Laboratory for Advanced Composites 77 Massachusetts Avenue, Rm 33-313 Cambridge, MA 02139	(617)	253-3628 -2465
Dr. Longin Greszczuk McDonnell Douglas Space Systems A03/365/13-3 5301 Bolsa Ave. Huntington Beach, CA 92647	(714)	896-3810
Mr. C. F. Griffin Lockheed Aeronautical Systems Co. Dept. 76-41 Bldg. 369 P.O. Box 551 Burbank, CA 91520		847-7913 847-2482 fax
Dr. Christian K. Gunther Boeing Defense & Space Group, Helicopters MS P30-30 P.O. Box 16858 Philadelphia, PA 19142-0858	(215)	499-9526
Mr. Ray E. Horton Boeing Commercial Airplane Co. High Speed Commercial Transport P.O. Box 3707, M.S. 3T-CH Seattle, WA 98124-2499	(206)	477-2243
Dr. Jerrold M. Housner M.S. 240 NASA Langley Research Center Hampton, VA 23665-5225	(804)	864-4323
Dr. Larry B. Ilcewicz Boeing Commercial Airplane Co. Advanced Programs Composite Group P.O. Box 3707, M.S. 3T-AU Seattle, WA 98124-2499		393-9630 477-2489 fax
Dr. Karen E. Jackson M.S. 495 NASA Langley Research Center Hampton, VA 23665-5225	(804)	864-4147
Mr. Wade C. Jackson M.S. 188E NASA Langley Research Center Hampton, VA 23665-5225	(804)	864-3468

Dr. W. Steven Johnson M.S. 188E NASA Langley Research Center Hampton, VA 23665-5225	(804) 864-3463
Mr. Han-Pin Kan Northrop 1 Northrop Ave. Code 3853/MF Hawthorne, CA 90504	(213) 332-5285
Dr. Paul Lagace Massachusetts Institute of Technology Department of Aeronautics and Astronautics Technical Laboratory for Advanced Composites 77 Massachusetts Avenue, Rm 33-303 Cambridge, MA 02139	(617) 253-3628 -2465
Dr. K. Y. Lin University of Washington Guggenheim Hall, FS-10 Seattle, WA 98195	(206) 543-6334
Dr. Jack Lincoln ASD/ENFS Wright Patterson Air Force Base, OH 45433	(513) 255-6879
Mr. Ozzie Lopez M.S. 240 NASA Langley Research Center Hampton, VA 23665-5225	(804) 864-3181
Mr. Carl B. Madsen Hercules Incorporated Aerospace Products Group Bacchus Works, MS N2EA16 Magna, UT 84044-0098	(801) 251-6634 (801) 251-6676 fax
Dr. John E. Masters M.S. 188E NASA Langley Research Center Hampton, VA 23665-5225	(804) 864-3460
Dr. Kevin O'Brien M.S. 188E NASA Langley Research Center Hampton, VA 23665-5225	(804) 864-3465
Mr. C. C. Poe, Jr. M.S. 188E NASA Langley Research Center Hampton, VA 23665-5225	(804) 864-3467

Mr. Marc A. Portanova M.S. 188E NASA Langley Research Center Hampton, VA 23665-5225	(804)	864-3476
Mr. Theodore R. Porter Boeing Military Airplane MS 4A-14 P.O. Box 3707 Seattle, WA 98124-2207	(206)	655-6676
Mr. James Reeder M.S. 188E NASA Langley Research Center Hampton, VA 23665-5225	(804)	864-3456
Mr. Marshall Rouse M.S. 190 NASA Langley Research Center Hampton, VA 23665-5225	(804)	864-3182
Mr. Charles R. Saff McDonnell Aircraft Co. Mail Code 102 1322 P.O. Box 516 St. Louis, MO 63166	(314)	233-8623
Mr. Bharat M. Shah Lockheed Aeronautical Systems Co. D176-41/369/B-6 2777 Onterio Ave. Burbank, CA 91520	(818)	847-9413
Dr. Peter Sjoblom University of Dayton Research Institute 300 College Park Ave. Dayton, OH 45469-0180		229-3812 229-3433 fax
Mr. Joseph Soderquist FAA, AIR-103 800 Independence Ave. SW Washington, DC 20591	(202)	267-9585
Dr. George S. Springer Professor and Chairman Department of Aeronautics and Astronautics Stanford University Stanford, CA 94305		723-4135 723-0062 fax
Dr. Krishna Srinivasan M.S. 226 NASA Langley Research Center Hampton, VA 23665-5225	(804)	864-4266

Mr. Jim Suarez Grumman Aerospace Corp. MS B44-35 Bethpage, NY 11714

(516) 575-6552 (516) 575-7428 fax

Dr. John T. Wang M.S. 240 NASA Langley Research Center Hampton, VA 23665-5225

(804) 864-8185

Composition and Analysis of the Impact Force Curve

presented by

Wade C. Jackson

Mechanics of Materials Branch NASA Langley Research Center

Impact Analysis Model

Analysis Methods

Computer Programs B.V. Sankar (University of Florida) C.T. Sun (Purdue University)

Energy-Balance Method (Greszczuk)

Zener/Olsson Solution

Mittal's Solution

Computer Programs

simply-supported boundary conditions Limited to rectangular plates with **Dynamic Green's Function** Series solution Sankar

accommodate any boundary conditions Limited to rectangular plates but can Finite element method

Energy-Balance Method

$$\frac{1}{2}mv^2 = \int_0^{\delta_{max}} F d\delta + \int_0^{\alpha_{max}} F d\alpha$$

force-displacement relationship for plate

Hertz's Law

$F = n\alpha^{3/2}$

F = K8

Final Equation

$$\frac{1}{2}$$
 mv² = $\frac{1}{2}$ $\frac{F_{\text{max}}^2}{k}$ + $\frac{2}{5}$ $\frac{F_{\text{max}}^{5/3}}{n^{2/3}}$

Zener/Oisson Model

One-parameter dimensionless analytical model.

for bending waves to reflect from the boundaries. Contact duration was less than the time required

Olsson extended Zener's solution to include anisotropic materials.

$$\frac{d^2\overline{\alpha}}{d\bar{t}^2} + \frac{3}{2}\overline{\lambda} \,\overline{\alpha}^{1/2} \, \frac{d\overline{\alpha}}{d\bar{t}} + \overline{\alpha}^{3/2} = 0$$

$$\overline{\alpha}(0) = 0$$
 $\frac{d\overline{\alpha}(0)}{d\overline{t}} = 0$

 $\overline{\alpha}$ = indentation

 $\overline{\lambda}$ = dimensionless impact parameter

Mittal's Equation

Solved same problem as Zener but included the effects of shear deformation.

Final non-linear integral equation

$$\overline{F}^{2/3}(\overline{t}) - \overline{t} + \int_0^{\overline{t}} \overline{F}(\overline{t}') \left[(\overline{t} - \overline{t}') + \frac{4\lambda}{\pi} \left\{ \frac{1}{2} \tan^{-1} \left(\overline{t} - \overline{t}' \right) + \frac{\beta'}{\overline{t} - \overline{t}'} \right\} \right] d\overline{t}' = 0$$

$$\overline{F} = \text{dimensionless force} \qquad \text{Singularity}$$

 \overline{F} = dimensionless force

 λ = dimensionless impact parameter

 $\beta' = \text{dimensionless shear parameter}$

Evaluated using a recursive relationship with a time step of 0.01

Results

Sample Force Histories

Composition of Impact Force Curve

Impact Animations

Correlation between Analyses

Displacements

Effect of Kinetic Energy, Plate Thickness, Shear Deformation, Plate Size, and **Boundary Conditions**

Impact Animations

$12.7 \times 12.7 \text{ cm}$ CI-CI, 13.56 J, v=1.647 m/s, 48-ply Quasi

Time in ms	Time in ma
4,185	4.245

12.7 x12.7 cm SS-SS, 13.56 J, v=9.51 m/s, 48-ply Quasi

12.7 x 12.7 cm SS-SS, 13.56 J, v=26.715 m/s, 48-ply Quasi

12.7 x12.7 cm Cl-Cl, 13.56 J, v= 26.715, 48-ply Quasi

$12.7 \times 12.7 \text{ cm SS-SS}$, 13.56 J, v=95.1 m/s, 48-ply Quasi

Effect of Boundaries on Impact Force

Concluding Remarks - Low Velocity

ENERGY-BALANCE:

Very simple to use and understand.

Accurately predicts impact force and displacements in the "low velocity" region.

Accuracy improves as contact duration increases and/or the plate vibration frequencies increase.

A static stress analysis should be adequate to model the impact problem.

Concluding Remarks - High Velocity

ZENER / OLSSON EQUATION:

Predicts force history very accurately and quickly in the "high velocity" region.

Limited to very thin laminates where shear deformation is not important.

MITTAL'S EQUATION:

Will accurately predict the force history for "high velocity" impacts for a given time step.

Solution is not convergent.

Limited to isotropic or quasi-isotropic plates.

Concluding Remarks - General

Impacts can be divided into three regions: low, medium, and high velocity. Impact force curve can be constructed using an energy-balance and Mittal's equation.

as Sun's or Sankar's must be used to describe the In the "medium velocity" region, a program such impact.

26

The Property of the Control of the C

AND SCALING IMPACT RESPONSE AND DAMAGE IMPACTING LARGE COMPOSITE STRUCTURES

C. B. MADSEN

M. E. MORGAN

R. J. NUISMER

HERCULES AEROSPACE/COMPOSITE PRODUCTS

NASA WORKSHOP ON IMPACT DAMAGE TO COMPOSITES

19-20 MARCH 1991

IMPACTING LARGE/THICK STRUCTURES

28

REQUIRED AN UNDERSTANDING OF THE EFFECTS THE USE OF FILAMENT WOUND CASES FOR THE SPACE SHUTTLE SOLID ROCKET BOOSTER OF DAMAGE ON CASE PERFORMANCE

- **EXTENSIVE HANDLING PRECAUTIONS COULD NOT TOTALLY** ELIMINATE ACCIDENTAL IMPACT THREAT
- ACCEPT/REJECT CRITERIA BASED ON QUARTER-SCALES AND JOINT COUPON MATERIAL
- COUPON AND SUBSCALE RESULTS ARE DIFFICULT TO TRANSLATE TO FULL-SCALE SINCE METHODOLOGY IS NOT WELL UNDERSTOOD
- LACK OF REPRESENTATIVE FULL-SCALE IMPACT STRENGTH LOSS DATA WAS IMPETUS BEHIND SECOND PHASE OF DAMAGE CHARACTERIZATION WORK

ţ

THE OBJECTIVE OF THE FWC IMPACT DAMAGE STUDY WAS TO VERIFY THE BURST INTEGRITY OF THE CASE AT VISUAL DAMAGE THRESHOLD (VDT)

THE SECONDARY OBJECTIVE WAS TO AID IN ESTABLISHING IMPACT DAMAGE DISPOSITIONING TECHNIQUES

SECOND PHASE OF IMPACT CHARACTERIZATION PREVIOUS CONCERNS ABOUT STRENGTH LOSS ADDRESSES LACK OF FULL-SCALE DATA AND **BELOW VISUAL THRESHOLD**

- ESTABLISH VISUAL DAMAGE THRESHOLD (VDT) ON FULL-SCALE CASES (BOTH PAINTED AND NONPAINTED SURFACES)
- VERIFY WHETHER DAMAGE BELOW THE VDT DEGRADES CASE
- CHARACTERIZE EXTENT AND TYPE OF DAMAGE (FROM A VARIETY OF IMPACT CONDITIONS)
- USING EXISTING ANALYTICAL TECHNIQUES AND DEPLY DATA
 - INTRODUCE KNOWN AMOUNTS OF DAMAGE INTO FULL-SCALE TEST RINGS
 - COMPARE RING PERFORMANCE TO PREDICTIONS
- ASSESS DAMAGE TOLERANCE OF FWC RINGS/CASES FROM RING **TEST DATA**

FWC IMPACT DAMAGE INVESTIGATION LOGIC

<u>2</u>

TEST CONFIGURATION USED FOR FWC PROVIDED REPRODUCIBLE INSTRUMENTED IMPACTS

CHERCULES

Ē,

19.255

FWC IMPACT FIXTURE AND INSTRUMENTATION

19.342

Ļ

A MAJOR CONCERN IS UNDETECTED (BELOW VDT) DAMAGE THAT COULD REDUCE PERFORMANCE

- WHAT CONSTITUTED "VISIBLE" BECAME A MAJOR DILEMMA
- LOW LEVEL IMPACTS WERE IDENTIFIABLE IF IMPACT EVENT WAS OBSERVED AND LOCATION KNOWN
- ARMALON OVERWRAP TEXTURED IMPRINT PROVED TO BE HIGHLY SENSITIVE TO IMPACTS
- HUMAN FACTORS SUCH AS EYESIGHT, ABILITY, INSPECTION TECHNIQUES, AND LIGHTING COULD INFLUENCE VISUAL THRESHOLD

Į

DAMAGE THRESHOLD DEVELOPED WITH HELP OF QC **MEASURABLE QUANTIFIED DEFINITION OF VISIBLE INSPECTION GROUPS**

- FIELD INSPECTORS WOULD NOT KNOW WHERE TO LOOK
- THREE SEPARATE QC TEAMS FOUND 5-MIL DEPRESSIONS 100% OF THE TIME
- HERCULES
- MORTON THIOKOL
- DISTURBANCES LESS THAN 5 MILS WOULD BE HARD TO DETECT
- 5-MIL DEPRESSION IS GREATER THAN ARMALON IMPRINT TEXTURE

QUANTITATIVE VISUAL DAMAGE THRESHOLD **DEFINED FOR FWC**

DISTURBANCES, OR FIBER DAMAGE OF DEPTH GREATER THAN ADJACENT COMPOSITE SURFACE. THIS CONDITION INCLUDES VDT IS A VISUALLY DETECTED ANOMALOUS CONDITION ON THE FILAMENT WOUND SURFACE AS COMPARED TO THE IMPRESSIONS, INDENTATIONS, GOUGES, SURFACE FINISH

VDT WAS "QUANTIFIED" TO PROVIDE INSPECTORS WITH A MEANS FOR SCREENING WHAT IS FOUND ON A CASE

VDT LEVELS FOR FWC

1-IN. DIAMETER IMPACTOR - 90 FT-LB

• 0.5-IN. DIAMETER IMPACTOR - 20 FT-LB

THREE-SIDED CORNER IMPACTOR - 10 FT-LB

DAMAGE FROM IMPACT IN QS WAS DIFFERENT THAN IN FS

QS	FS
DELAMINATIONS DETECTED BY NDE AT ALL BUT LOWEST IMPACT LEVELS	NO DELAMINATIONS DETECTEDNDE TECHNIQUES COULD NOT LOCATE/QUANTIFY DAMAGE (CROSS SECTION MICROSCOPY CONFIRMED NO DELAMINATIONS)
FIBER DAMAGE EXTENDED WELL BEYOND IMPACT SITE ON ALL SIDES	FIBER DAMAGE LOCALIZED UNDER IMPACT SITE
FIBER DAMAGE FOUND IN ALL 11 LAYERS AT SEVERE IMPACT CONDITIONS	FIBER DAMAGE FOUND 6 (OF 31) LAYERS DEEP AT SEVERE IMPACT CONDITIONS

ONLY HIGH LEVEL DAMAGE CAUSED STRENGTH LOSS (10%) ON QS RINGS

19.256

HERCULES

7

THE FWC IS TOLERANT TO HIGH IMPACT LEVELS BASED ON FS RING TESTING

16

| CHERCULES

J,

19-257

SCALING IMPACT RESPONSE AND DAMAGE

DAMAGE ASSESSMENT FOR COMPOSITE CASES F04611-86-C-0040

RESULTS OF LITERATURE SEARCH/INDUSTRY SURVEY WERE PRESENTED AT WORKSHOP

IN CONJUNCTION WITH JANNAF COMPOSITE MOTOR CASE SUBCOMMITTEE MEETING, NASA LANGLEY, 23-27 FEB 1987

EXPANDED TO 2 DAYS AT AL REQUEST

ATTENDANCE

INDUSTRY	GOVERNMENT	UNIVERSITY
HERCULES	AFML	• VPI
THIOKOL	AFWL	DREXEL
• CSD	AFFDL	DELAWARE
ASPC	AFOSR	• MIT
ARC	• JPL	ALABAMA
MDAC	• NRL	DAYTON
• DUPONT	NAVAL ORDNANCE	
• FIBERITE	• MICOM	
UNION CARBIDE	• NASA	
GENERAL RESEARCH	 ARMY MATERIALS LAB 	
MISSION RESEARCH		
• AVCO		

PANEL DISCUSSION

PROBLEM: IMPACT DAMAGE OF COMPOSITE CYLINDERS IS NOT WELL UNDERSTOOD

Large Number of Parameters Makes Empirical Approach Difficult

Empirical Approach too Costly for Large Cylinders

OBJECTIVE: GAIN SUFFICIENT UNDERSTAND-ING TO DESIGN COST EFFECTIVE CYLINDER IMPACT TESTS

Understanding of Parameter Effects

Understanding of Scaling Effects

APPROACH: DO SUFFICIENT ANALYSIS UP-FRONT TO DESIGN INTELLIGENT TEST MATRIX

MODEL	FORMULATION	USE
2 DOF SPRING-MASS (R. J. NUISMER)	ASYMPTOTIC () EXPANSION	DEVELOP UNDERSTAND- ING OF QUASI-STATIC/
	OF EXACT SOLUTION	DYNAMIC TRANSITION
SCALING (J. MORTON)	DIMENSIONAL ANALYSIS	DEVELOP SCALING RULES
STATIC DEFLECTION OF PLATES AND CYLINDERS	CLOSED FORM AND FINITE	 INVESTIGATE DIFFERENCES IN PLATE
	ELEMENT	AND CYLINDER RESPONSE TO IMPACT
PLATE RESPONSE TO IMPACT	RAYLEIGH-RITZ TIME-MARCHING	QUANTITATIVE PREDICTION OF PLATE TO
(U. S. CAIKINS/ S. R. SWANSON)	DEFORMABLE	

ANALYSIS RESULTS WERE INSTRUMENTAL IN DESIGN OF TEST MATRIX

"TYPE" OF RESPONSE DEPENDS ON IMPACTOR/ TARGET FREQUENCY RATIO

"MAGNITUDE" OF RESPONSE ESSENTIALLY PROPORTIONAL TO IMPACTOR VELOCITY

RESULTS FROM DIMENSIONAL ANALYSIS:

SIMULTANEOUS SCALEUP OF **BOTH** IMPACTOR AND TARGET GEOMETRY WHILE KEEPING MATERIALS AND IMPACTOR VELOCITY COMSTANT, LEADS TO IDENTICAL TARGET STRAINS AND CONTACT PRESSURAS

RESULTS FROM STATIC DEFLECTION MODELS:

 RESPONSE TO IMPACT OF PLATES AND CYLINDLRS CAN BE MADE SIMILAR

EXPERIMENTAL TEST MATRIX BASED ON ANALYSIS RESULTS

- PLATE TESTS (ALL LAYUPS [X/O/O/X])
- **IMPACTOR:**
- MASS: m AND 64m
- DIAMETER: t, 2t, and 4t

CLAMPED FREE ,

FREE -0°

CLAMPED

4-IN. × 4-IN. × 16 PLIES

8-IN. × 8-IN. × 32 PLIES

 $(\lambda = 4)$

CLAMPED

င်္

SS

4-IN. DIA $(\lambda = 1)$

13-IN. DIA ($\lambda = 3.3$)

1 1977

COMPREHENSIVE DATA WAS COLLECTED FROM IMPACT TESTS

RESPONSE

- IMPACT FORCE (QUASI-STATIC ONLY)
- DEFLECTION (QUASI-STATIC ONLY)
- STRAINS (SCALED GAGES)

DAMAGE

- VISUAL (FRONTSIDE/BACKSIDE DAMAGE)
- NDE (DIGITAL ULTRASONICS)
- DE (THERMAL DEPLY)

RESIDUAL STRENGTH

- TENSILE COUPONS FOR PLATES (SCALED)
- BURST FOR CYLINDER (4" DIA. ONLY)

HERCULES

4-IN. TUBE PRESSURIZED SPECIMEN CONFIGURATION FOR RESIDUAL STRENGTH EVALUATION

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

49

1-1942

SCALED PLATES AND STRAIN GAGES

89C13123

1-1949

FLAT PLATE IMPACT HOLDING FIXTURE

8C7660

1.1944

51

ORIGINAL PAGE IS OF FOUR QUALITY

AIRGUN IMPACT TEST FIXTURE

1.1947

12-IN. CYLINDER IMPACT SITE CONFIGURATION--TWELVE IMPACTS PER CYLINDER

HERCULES

1.1945

ACQUISITION COMPUTER

89C10482

1-1948

PENDULUM IMPACT EVENT INSTRUMENTATION

1.1946

QUASI-STATIC RESPONSE OF PLATES PREDICTED WELL BY RAYLEIGH-RITZ, SHEAR DEFORMABLE, IMPACT MODEL

DYNAMIC RESPONSE OF PLATES PREDICTED WELL BY RAYLEIGH-RITZ, SHEAR DEFORMABLE, **IMPACT**

PLATE RESULTS OBTAINED SUPPORT CONCLUSIONS FROM 2 DOF MODEL

"TYPE" OF RESPONSE DEPENDS ON IMPACTOR/TARGET FREQUENCY RATIO (NOT **VELOCITY OF IMPACTOR)**

IMPACT ON 2-IN. x 2-IN. WITH v₀ --3-15 HOOP NO. 1 VERSUS TIME (AIRGUN) 6.70 6.50 TIME (MSEC)

 $\omega_1 = 12,500 \text{ Hz}$ $\omega_2 = 2,260 \text{ Hz}$

 $\omega_1 = 1600 \text{ Hz}$ $\omega_2 = 2260 \text{ Hz}$

1.1983

RESULTS OBTAINED SUPPORT CONCLUSIONS FROM 2 DOF MODEL

5.62

V3 = 10.6 FT/SEC

25.00

- PROPORTIONAL TO IMPACTOR VELOCITY MAGNITUDE OF RESPONSE ESSENTIALLY (UP TO DAMAGE INITIATION)
- 2 DOF MODEL ACCURATELY PREDICTS **CONTACT FORCE IN QUASI-STATIC**

4.50

10.00

5.00

20.00

1.12

 $v_0 = 1.88 \, \text{FT/SEC}$

1.1987

THE TRENDS OBSERVED ON THE FLAT PLATES ARE CONSISTENT WITH THOSE OF THE CYLINDERS

4-IN. TUBE IMPACT TESTS--09D; FILE: 4IN9D 4-IN. D3 ALL v's

RESPONSE SCALES AS PREDICTED BY DIMENSIONAL ANALYSIS

- KEEPING MATERIALS AND IMPACT VELOCITY CONSTANT WHILE DIMENSIONS OF IMPACTOR AND TARGET SCALEUP BY λ = 1,2,4 RESULTS IN
- **CONSTANT STRAIN**
- CONSTANT CONTACT PRESSURE (FORCE SCALES AS 1,2)
- IMPACT DURATION INCREASES AS A

1.1968

1 1972

HERCULES

1.1974

SIZE EFFECTS APPEAR IN DAMAGE AND STRENGTH SCALING

- IN SPITE OF IDENTICAL STRAINS AND CONTACT PRESSURES, MORE DAMAGE OCCURS AND STRENGTHS GO DOWN AS TARGET GETS LARGER
- DIFFERENT FAILURE MECHANISMS MAY BE AT WORK FOR DIFFERENT TYPES OF DAMAGE
- DELAMINATION AREA APPEARS TO BE RELATED TO IMPACT ENERGY
- FIBER BREAKAGE APPEARS TO BE RELATED TO IMPACT STRESS

DELAMINATION AREAS INDICATE THE FRACTURE MECHANICS SCALING APPROACH IS VALID

- MPACTOR SIZE HAD NO DISCERNABLE EFFECT
- QUASI-STATIC AND DYNAMIC DOMAINS PRODUCED SIMILAR DELAMINATION DAMAGE

FIBER BREAKAGE APPEARS TO BE RELATED TO IMPACT STRESS FOR PLATES

CONCLUSIVE BECAUSE OF INCREASED DATA SCATTER FIBER BREAKAGE DATA FOR CYLINDERS IS LESS

Residual/Undamaged Strength

V3D3

V3D2

4-IN. × 4-IN. PLATE VISUAL IMPACT DAMAGE

V1D3

V1D1

V2D3

V2D1

4-IN. TUBE VISUAL IMPACT DAMAGE

V1D3

V1D2

V2D3

V2D2

V3D2

V3D1

<u>- 1</u>

74

Residual Strength/Undamaged Strength

FLAT PLATES AND 4-IN. TUBES (SAME LAYUP AND THICKNESS) SUPERIMPOSED RESIDUAL STRENGTH DATA FOR 2X2 SUPPORTS FEASIBILITY OF SUBELEMENT APPROACH

DAMAGE AND STRENGTH SCALING MAY BE ABLE **TO BE ACHIEVED THROUGH RESPONSE SCALING** WITH REDUCED IMPACT VELOCITIES

- SCALING IMPACTOR AND TARGET GEOME TRIES RESULTS IN SAME "TYPE" OF RESPONSE
- REDUCING IMPACT VELOCITY AS SCALE INCREASES LOWERS APPLIED STRESSES/ STRAINS AND MAY RESULT IN SIMILAR DAMAGE AND STRENGTH LOSS WITH SCALEUP
- PRELIMINARY RESULTS SUGGEST VELOCITY SHOULD SCALE DOWN AS $\lambda^{-1/2}$

CONCLUSIONS

- IMPACT EVENT (NOT IMPACT VELOCITY OR IMPACTOR/TARGET MASS IMPACTOR/TARGET FREQUENCY RATIO DETERMINES "TYPE" OF
- SIMPLE PLATE MODEL OF IMPACT ACCURATELY PREDICTS RESPONSE (STRAINS, CONTACT FORCE AND DEFLECTION)
- DIMENSIONAL ANALYSIS ACCURATELY PREDICTS RESPONSE SCALING
- DAMAGE SCALING IS MORE COMPLICATED BUT MAY BE POSSIBLE IMPACT REDUCED WITH SCALING LAWS USING RESPONSE **VELOCITIES**
- PRELIMINARY RESULTS INDICATE SIMILAR PLATE AND CYLINDER RESPONSE TO IMPACT

DELAMINATIONS IN COMPOSITE PLATES STATIC OR IMPACT LOADS UNDER TRANSVERSE

Scott R. Finn and George S. Springer

Department of Aeronautics and Astronautics Stanford, California 94305 Stanford University

edges clamped, simply supported, or free

non-penetrating

OBJECTIVE

A MODEL TO PREDICT:

- Damage Initiation Load
- Delamination

Locations Sizes Shapes

NEED:

- Stress Analysis
- Damage Model

understanding of phenomena

data

and the street of the second of

DAMAGE INITIATION

- OBSERVATION: Delaminations Accompanied by Matrix Cracking
- POSTULATE: Matrix Cracking is a Precursor to Delamination

Initiation Load when Matrix Cracking Occurs

a) Gosse, et al

$$\frac{1}{2} \left(\sigma_{yy} \, + \sigma_{zz} \right) + \sqrt{\frac{1}{4} \left(\sigma_{yy} \, - \sigma_{zz} \right)^2 \, + \sigma_{yz}^2} \, \geq \, Y$$

- b) 3-D Tsai-Wu
- c) 3-D Hashin

DELAMINATION

POSTULATES

- Matrix Cracking Must Be Present
- Crack Must Open
- Sufficient Strain Energy Available to Cause Delamination

 $\hat{S} \geq \Gamma dA$ function of stresses

 $S_t dV_t + S_b dV_b \ge \Gamma dA$

ANALYSIS - SOLUTION

STRESS ANALYSIS

Modified Wu-Springer Finite Element Method

Each Edge: Free, Simply Supported, or Clamped

Static or Dynamic Load

Load Applied Over Finite Area

Use Plate Symmetry for Computational Speed

DELAMINATION

Step by Step

• USER FRIENDLY COMPUTER CODES

DISPLACEMENTS at TIME = 25 μ sec

STRESSES (ksi)

STRAINS (in/in)

COMPUTER CODES

- STRESS ANALYSIS (IMPACT)
- DELAMINATION ANALYSIS (DELAM-TRL)
- COMBINED STRESS AND DELAMINATION ANALYSIS (IMPACT-ST)

USER FRIENDLY

TESTS

OBJECTIVE:

- To Obtain Comprehensive, Systematic Data Set
 - To Gain Understanding of the Phenomena
 - Verify Present Model
 - Verify Future Models

STATIC

DYNAMIC

TESTS

Materials (all ICI/Fiberite):

T300/976 (Thermoset)

IM7/977-2 (Toughened)

APC-2 (Thermoplastic)

IMPACT

STATIC

V = 50-225 in/sec

m = 0.355 - 0.963lbm

R = 0.125, 0.25 in.

L = 4 in.

E = 0 - 65 lbf-in

R = 0.25, 0.5, 1.0 in.

L = 3, 4, 5 in.

DAMAGE INSPECTION

C-Scan

X-Ray

Microscope (sections)

MEASUREMENTS

- Damage Initiation Load
- Occurrence of Matrix Cracking
- Delamination

Shapes Sizes Locations

Illustration of a typical C-scan result

Illustration of a typical x-ray result

EFFECTS INVESTIGATED

- Thickness of Bottom Ply Group
- Mismatch Angle
- Plate Thickness
- Nose Radius
- Plate Length

STATIC

Input Energy, E (lbf-in)

IMPACT

Impact Velocity, V (in/sec)

T300 / 976 $[0_4/90_4]_s$

SUMMARY

Tests

Insight

Large Data Set

- Damage Initiation Model
- Delamination Model
- User Friendly Codes

Engineering Design Tool

Verification

DAMAGE SIMULATION AND IMPACT DAMAGED COMPOSITES, STRENGTH PREDICTIONS PART

Larry B. Ilcewicz

and

Ernest F. Dost

Group Boeing Commercial Airplane

Impact Damaged Composites, Part 1: Damage Simulation and Strength Predictions

Impact Damaged Composites, Part 2: Standard Tests for Fuselage Structural Issues

Damage Simulation and Strength Predictions Impact Damaged Composites, Part 1:

L. Ilcewicz, 3/19/91

Transport Fuselage Structures

Loads and Technical Issues

Problem Definition

A Need to Understand Fundamentals

Damage Resistance versus Damage Tolerance

Silver Bullet Syndrome

Fuselage Section Used for ATCAS Studies

767-X - Sec.46

Use actual 767-X loads

NASA/BOEING ATCAS

Design Drivers for Composite Fuselage

Program addresses critical structural issues.

COMPRESSION (KIPS/IN). All loads are for 2.5 g ULTIMATE load condition.

ATCAS KEEL QUADRANT Note: Descrete keel beam loads are not shown. Shear loads in KIPS/In. Critical Shear Load Condition in Keel and Lower Side Quadrants Aft of Wheel Well All loads shown are for 2.5 g ULTIMATE load condition. 6941 SH 8471 24 (Note Load Redistribution Near Keel Beams and Major Cutouts) 7271 27 9071 27 DOOR CARGO FS 1685 F2 1864 E2 1843 FS 1622 FS 1601 LHS PASSENGER DOOR 08S1 S3 E2 1228 FS 1547 E2 1250 E2 1209 E2 1493 92#1 Sd FS 1422 FS 1434 E2 1413 KEEL BEAM KEEL BEAM

Problem Definition

- Fundamental Understanding of Material Failure Mechanisms
- Damage = f(Impact Variables)
- Combined Loads
- "Engineering" Analysis Methods Verified By Tests
- Damage Simulation
- Failure Criteria
- Identify Critical Impact Threats for Fuselage Structure
- Critical Damage = f(Fuselage Location)
- Design Criteria (ULTIMATE, LIMIT, SAFE FLIGHT)
- Methods to Relate Coupon Screening Tests to Structural Performance
- Material Selection

to Understand the Critical Impact Threat for New Material Forms Material Models and Damage Characterization Tests are Needed

Issues that Should be Addressed to Make Material Selections that are Both Economically & Structurally Sound

Relationship Between Coupon and Structural Performance Additional Tests and Analysis Needed to Evaluate the

Effect of Criteria Must Be Understood, e.g.,

Impact Level

Impact Location

Damage Type and Size

Effect of Scale Must Be Understood, e.g.,

Impact Boundary Condition

Finite Width Effects

Changing Failure Mechanisms

Interactions With Material Dimensional Scales

Relationship Between Material Screening Test Results and Structural Performance

A Need to Understand Fundamentals in Four Areas

Performance as a Function of Laminate Stacking Sequence Experimental Data Showing Postimpact Compression

Boeing ATCAS Goals in Studying Impact Damaged Composites

- Identify Critical Impact Threats for Fuselage Structure
- Characterization of Important Features of Damage State
- Damage Simulation That Works for Coupons and Structures
- Predict Residual Strength for Different Load Combinations

Damage Tolerance: Impact Damage and Through Penetration

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Resin Rich Interlaminar Layer Architecture

T800H/3900-2

IM7/8551-7

E Compressive Damage Tolerance of Three Materials

Interlaminar Toughness is Critical to Impact Damage Resistance Standard Impact Coupon G_{lic}, (in lb/in²) G_{llc} , (in Ib/in²) Impact Damage Area, (in¹) 20 8 8 4 1.2 0.7 CAI, (Ksi) 10.2 cm (4 in) Specimen Width BP907 Adhesive Layer Ref. H. Chai [6] 7.62 NFINITE RIL Thickness, (104 in) 2.54 5.08 (1.0) (2.0) Damage Diameter, cm (in) Analysis Curves for IM7/8551-7 Boeing Standard CAI Coupon 3502 Adhesive Layer Ref. H. Chal [6] Ply Thickness = 0.0074 68 . . . **3** 5 8 <u>8</u> 30 00 12 15 ('ni/dl ni CAI, MPa (Ksi)

Toughened, Resin-Rich Interlaminar Layer for Shear Delamination Resistance Without Compromising Hot/Wet Requirements

- Evidence of Strong Increase in Mode II Toughness With Increasing Load Rate
- Localized Fiber Failure May Have Differing Relationships With Impact Variables

Laminate Stitching to Enhance Sublaminate Stability With Traditional "Brittle" Matrix Systems

- Should Consider Angle Impact and Larger Diameter Impactor for Fiber Fallure
- What About Flat Part of Damage Tolerance Curve (Large Through Penetrations)

There's No Such Thing as a Free Lunch ???

With Proper Fundamental Understanding of Materials, Mechanics,

and Design Criteria, Impact Damage Issues for New Material Forms Can Be Solved, Leading to Safe and Efficient Use of Composites

Impact Damaged Composites, Part 1: Damage Simulation and Strength Predictions

E. Dost Standard Specimen Tests for Fuselage Applications Fuselage Impact Damage Characterization Part 2 Summary

Potential Impact Damage States

Cross-Sections of Impacted Specimens Demonstrating Failure Modes

Localized fiber failure

135

AICAS

Aircraft Fuselage Critical Load Conditions

Critical Load Condition	Pressure Only	Pressure With Tension Induced From Flight Loads	Pressure With Compression Induced From Flight Loads	Pressure With Shear Induced From Flight Loads	Shear Induced From Flight Loads

Characteristic Damage State Caused by Impact

---- Transverse crack descending through to next ply Delamination on surface of current ply

Ply 3

Transverse crack descending through previous ply ---- Transverse crack descending through to next ply Delamination on surface of current ply

Ply 4

 Transverse crack descending through previous ply ---- Transverse crack descending through to next ply Delamination on surface of current ply

Ply 5

Transverse crack descending through previous ply
Transverse crack descending through to next ply
Delamination on surface of current ply

Ply 6

Direction of ply: 0 deg

- Transverse crack descending through previous ply ---- Transverse crack descending through to next ply Delamination on surface of current ply HL1568.25 r1h

---- Transverse crack descending through previous ply
---- Transverse crack descending through to next ply

Delamination on surface of current ply

Ply 8

Transverse crack descending through previous ply
Transverse crack descending through to next ply
Delamination on surface of current ply

146

Sublaminates for (-45,0,45,90)ns Laminates

Sublaminate Buckling Model

Reduced Stiffness Calculation

Assumptions:

- 1. Load carried by damaged area becomes constant following local buckling 2. Strain compatibility between damaged and undamaged material at failure
- 149

Strain Distribution Near Damaged Region

CL1568.05 R2h

Predictions and Experimental Results for 12.7-cm Wide Specimens $AS6/3501-6, (45/0/-45/90)_{5S}$, and Ply Thickness = 0.0188 cm

Experimental Displacement and Strain Contours IM7/8551-7, (45,90,-45,0)_{3s},Damage Diameter = 1.28 in.

strain # 0.1933E-02 to 0.3611E-02 strain # 0.3611E-02 to 0.5289E-02 strain = 0.5289E-02 to 0.6967E-02 strain = 0.6967E-02 to 0.8645E-02 **8** 8 8 2

Axtal Displacement field, Specimen 88/77-1-1 23000 th

strain = 0.8645E-02 to 0.1032E-0 strain = 0.1032E-01 to 0.1200E-(

strain = 0.1200E-01 to 0.1369E-0 strain = 0.1368E-01 to 0.3214E-0

Measured Strain Concentration at 80% of failure is between 1.19 and 1.72 Axial Strain Field, Specimen 88/77-1-1. 23000 lb Calculated Strain Concentration at failure is 1.92

Experimental Displacement and Strain Contours IM7/3501-6, (45,90,-45,0)_{3s},Damage Diameter = 2.6 in.

strain = 0.2561E-02 to 0.3394E-02 strain = 0.1729E-02 to 0.2561E-02 strain = 0.3394E-02 to 0.4226E-02 strain = 0.8968E-03 to 0.1729E-02 **R A B**

strain = 0.5058E-02 to 0.5891E-02 strain = 0.5891E-02 to 0.6723E-02 in = 0.4226E-02 to 0.5058E-02

strain = 0.6723E-02 to 0.1172E-01

Axial Strain Field, Specimen 90177-2, 13000 lb

Measured Strain Concentration at 80% of failure is between 2.9 and 6.6 Calculated Strain Concentration at failure is 4.4

Diameter of Buckled Region vs. Normalized Load IM7/3501-6, (45,90,-45,0)_{ss}

Predictions and Experimental Results for 10.2-cm Wide Specimens T800H/3900-2, $(45/0/-45/90)_{3S}$ and Ply Thickness = 0.0194 cm

Predictions and Experimental Results for 10.2-cm Wide Specimens T800H/3900-2, $(45/0/-45/90)_{4S}$ and Ply Thickness = 0.0151 cm

Sublaminate Stability/Reduced Stiffness Predictions of CAI for Laminate Layup: (453,903,-453,03)s

STAGSC-1 Finite Element Grid

LVDT Measured Specimen Stability Laminate Layup: $(45_3/90_3/-45_3/0_3)_S$

D18233 08 DR13

Summary

- Characteristic damage states (CDS) were classified for impacted laminates
- dominance of the CDS in a toughened material with small damage Local fiber failures and matrix damage were found to compete for
- Test data on compression after impact (CAI) performance versus drop weight impact energy indicated a strong effect of stacking sequence
- Delaminations in the CDS were determined using ultrasonics
- through the thickness was predicted with a sublaminate stability/stress CAI for laminates with symmetric size distributions of matrix damage redistribution analysis method
- Post-impact performance for laminates with unsymmetric size distributions of matrix damage through the thickness was best termed a change in specimen stability, requiring geometrically nonlinear analysis

IMPACT OF COMPOSITE STRUCTURES TOWARDS A METHODOLOGY FOR THE ASSESSMENT OF

PAUL A. LAGACE

TECHNOLOGY LABORATORY FOR ADVANCED COMPOSITES DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

163

GOAL

Develop a consistent methodology (philosophy)

to assess composite structures subjected to impact

TWO MAJOR ISSUES

Damage Resistance:

Measure of the damage incurred by a material/structure due to a particular event.

Damage Tolerance:

Measure of the ability of a material/structure to "perform" (given particular requirements) with damage present.

MODULARIZED APPROACH OVERVIEW

Resistance Damage

1. Global Analysis of Impact Event Strain Response Analysis Loads on Structure Damage Predictions 2. Local Deformation and Local Strain Field 3. Failure Criteria

5. Failure Criteria for Component 4. Degraded Property Model Damaged Stress/Strain Field Performance Prediction

Tolerance Damage

DAMAGE RESISTANCE

À

RESPONSE OF LAMINATE TO IMPACT DIVIDED INTO LOCAL AND GLOBAL RESPONSES

IMPACT EVENT GLOBAL MODEL

Assumed Modes Rayleigh - Ritz Analysis

- Reissner Mindlin Plate Theory (shear deformation) Nonlinear Forcing Function (Hertzian Spring)
 - - Effect of In Plane Loading (Nx, Ny, Nx,) Bending Twisting Coupling (D16, D26 terms)
- Newmark Beta implicit time marching scheme

GLOBAL DYNAMIC RESPONSE IS WELL-PREDICTEI

Y. Qian and S.R. Swanson, "Experimental Measurement of Impact Response in Carbon/Epoxy Plates", <u>Proceedings of the 30th</u> AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference, 1989.

MODULARIZED APPROACH OVERVIEW

Damage 2. Lo

Damage Tolerance

4. Degraded Property Model

Damaged Stress/Strain Field

↓
5. Failure Criteria for Component

†
Performance Prediction

OCAL CONTACT PROBLEM SOLUTION APPROACH

Constitutive properties smeared through-the-thickness

Axisymmetry assumed

D'Alembert inertial terms included in z-direction

Stress function utilized

Contact and body forces expanded as Fourier-Bessel series

Resulting strains rotated into ply principal axes

LOCAL STATIC INDENTATION RESPONSE IS WELL-PREDICTED

MODULARIZED APPROACH OVERVIEW

Resistance Damage

1. Global Analysis of Impact Event Local Deformation and Strain Response Analysis Loads on Structure 3. Failure Criteria Local Strain Field

4. Degraded Property Model Damaged Stress/Strain Field

Damage Predictions

5. Failure Criteria for Component Performance Prediction

Tolerance Damage

DAMAGE PREDICTIONS

- Applied on a ply-by-ply-basis
- Maximum Strain Criterion:

Mode of failure indicated

SPECIFIC EXAMPLE

Layup

- AS4/3501-6 Graphite / Epoxy [±45/0]_{2S}

Geometry

- Length = 190 mm
 Width = 70 mm
 Clamped (x) Free (y)

Impact

- 12.7 mm diameter steel sphere
 - Impact Energy = 8 Joules Impact Speed = 43 m/s

PLY-BY-PLY DAMAGE PREDICTIONS

 $[\pm 45/0]_{2S}$

NDE RESULTS

[±45/0] 2S AS4/3501-6 Graphite/Epoxy 190 mm x 70 mm Clamped (x) - Free (y) 12.7 mm diameter steel sphere at 42.8 m/s impact speed (7.95 Joules)

Ultrasonic C-Scan

X-Ray Photograph (DIB enhanced)

d) (pulse-echo)

NDE RESULTS

[±45/0] 2S AS4/3501-6 Graphite/Epoxy 190 mm x 70 mm Clamped (x) - Free (y) 12.7 mm diameter steel sphere at 42.8 m/s impact speed (7.95 Joules)

Ultrasonic C-Scan (pulse-echo)

(DIB enhanced)

X-Ray Photograph

INTEGRATED DAMAGE IS WELL-PREDICTED

IMPORTANT FACTORS IN DAMAGE RESISTANCE

- It is necessary to treat impact at both the local and global levels (they can be separated)
- Parameters have influence in different regimes
- lower velocity: boundary conditions important
- higher velocity: constituent mass plays a dominant role response length versus span is key
- Impactor energy is not the only controlling factor mass and velocity must be specified
- ability of surface to conform to indentor is important Presence of damage can affect local response
- Preload does affect damage resistance

MATERIAL INFLUENCE ON DAMAGE RESISTANCE

- Mass and layup affect structural properties, inertia, and thus the impact event
- Basic material strengths control resulting damage near impactor

Damage resistance is a combined material/structural property

NEEDS

DAMAGE RESISTANCE

- Include more details in local contact stiffness (material nonlinearities and damage)
- (especially for high strain-to-failure systems) Include high strain rate material properties
- Incorporate influence of preload
- Acquire better failure criteria
- Determine need to do progressive damage analysis
- Extend general methodology to more complicated structure (once modes of structures are known, structure can be analyzed in this manner)
- Use analysis to do proper scaling

METHODOLOGY CAN BE APPLIED TO SANDWICH CONSTRUCTION

ALL DAMAGE POSSIBILITIES MUST BE CONSIDERED

Facesheet damage

- front - back

Core damage

Debond damage

Damage combinations

DAMAGE

MODULARIZED APPROACH OVERVIEW

Damage Resistance

Damage Tolerance

Damaged Stress/Strain Field

Failure Criteria for Component
 Performance Prediction

RESIDUAL ST DAMAG OST-IMPACT A FUNCTION

FRACTURE OCCURS AT TWO LEVELS

• Global level (structural dominated)

Failure as a result of structural mechanism (especially under compression)

Local level (material property)

Failure initiates from local fracture

SANDWICH CONSTRUCTION INTRODUCES MANY POTENTIAL FAILURE MODES

DIFFERENT ANALYSES NEEDED FOR VARIOUS LOADING TYPES/POTENTIAL **FAILURE MODES**

- Many different types of damage occur
 - transverse cracks
- delaminations
- fiber fracture
- others (just beginning to be defined)
- Many different modes of failure/fracture possible
 - depends on geometrical configuration
 - depends on loading
- Each damage type and mode requires consideration
- Requires medium mechanics (ply level) or micromechanics approach

TENSILE

RESIDUAL STRENGTH

MODULARIZED APPROACH OVERVIEW

Damage Resistance

Global Analysis of Impact Event
 Loads on Structure
 Local Deformation and Strain Response Analysis
 Local Strain Field
 A
 Bamage Predictions
 Damage Predictions

Damage Tolerance

4. Degraded Property Model

DAMAGED LAMINATE STRAIN ANALYSIS

EQUIVALENT MEMBRANE MODEL (anisotropic inclusion)

Model Based on Lekhnitskii's Complex Potentials

DEGRADATION ASSUMPTIONS

Delaminations and isolated angle ply splits do not cause significant degradation under tensile loading

Only fiber breakage creates a significant reduction in constitutive properties All elastic constants set to zero in region fiber breakage

MODULARIZED APPROACH OVERVIEW

1. Global Analysis of Impact Event

Loads on Structure

 Local Deformation and Strain Response Analysis

Resistance

Damage

♦ Local Strain Field

+ 3. Failure Criteria

→ Damage Predictions 4. Degraded Property Model

▼ Damaged Stress/Strain Field 5. Failure Criteria for Component

Performance Prediction

Damage Tolerance

106

RESIDUAL STRENGTH PREDICTION FOR IN-PLANE FRACTURE

- Utilize strain from Equivalent Membrane Model
- Average strain concept applied on laminate basis
- Maximum 0° fiber strain assumed to control failure

S.R. =
$$\frac{\overline{\epsilon}_{x}^{\circ}}{\overline{a}_{\circ}\int_{0}^{a_{\circ}}\overline{\epsilon}_{x}(x,y) dr}$$

where
$$\overline{\epsilon}_{x}^{o}$$
 = far field laminate strain $\overline{\epsilon}_{x}(x,y)$ = strain distribution $\overline{\epsilon}_{x}(x,y)$ = material parameter (3.8 mm here

197

--PREDICTED FRACTURE IN-PLANE IS REASONABLY

COMPRESSIVE

RESIDUAL STRENGTH

PREDICTION METHODOLOGIES FOR COMPRESSIVE RESIDUAL STRENGTH

- A significant amount of work has been published on the compressive residual strength of notches, holes, and imbedded delaminations.
- Very little has been published on multiple imbedded delaminations or combined damage (i.e. impact).
- The effect of impact on compressive residual strength cannot be estimated by an "equivalent-sized" notch, hole, imbedded delamination, or some combination thereot.
- sufficient to predict compressive residual strength due Two-dimensional planform damage information is not to impact.

A MINIMUM COMPRESSIVE RESIDUAL STRENGTH (due to impact) EXISTS

What damage state governs this minimum point?

Is this minimum point a laminate characteristic or is it dependent upon impact method?

GENERAL TEST PROCEDURES

- $[\pm 45/0]_{2S}$ laminate of AS4/3501-6 graphite/epoxy
- 12.7 mm diameter spherical impactor
- Impact coupon and inspect damage
- Bond damaged coupon and an undamaged coupon to aluminum honeycomb base
- Test configuration quasi-statically in compression

COMPRESSION TEST SPECIMEN

FEST DATA SHOWS MINIMUM EXISTS

INDEPENDENT OF IMPACTOR MASS MINIMUM APPEARS TO BI

NEEDS

DAMAGE TOLERANCE

- Develop progressive damage model for in-plane failure
- Model "actual" damage
- Develop a repertoire of damage tolerance tools for each failure mode (especially structural failure)

STRUCTURAL CONFIGURATIONS EXTEND METHODOLOGY TO

SUMMARY

- for the treatment of composite structures subjected to A modularized framework and consistent approach impact have been developed
- Some refinement of impact analysis is needed
- (planform) of the damage are generally inappropriate Integrated through-the-thickness representations for residual strength predictions
- Modelling the actual (3-D) damage distribution is essential
- A minimum compressive residual strength exists which may be independent of impactor mass

SUMMARY (cont.)

- Development of damage "metrics" is needed
- Need to develop a repetoire of tools for residual strength assessment
- damage resistance and damage tolerance assessments Development of better failure criteria is key in

STANDARD IMPACT TESTS USED AT LOCKHEED

C. F. GRIFFIN T. GILLETTE NASA WORKSHOP ON IMPACT DAMAGE TO COMPOSITES MARCH 19-20, 1991 LOCKHEED AERONAUTICAL SYSTEMS COMPANY

AGENDA

- LAMINATE IMPACT TESTS
- SUBCOMPONENT IMPACT TESTS
- COMPONENT IMPACT TESTS

LAMINATE IMPACT TESTS

PURPOSE:

- QUANTITATIVE EVALUATION OF THE DAMAGE TOLERANCE OF COMPOSITE MATERIALS
- DATA OFTEN USED TO ESTABLISH PRELIMINARY DESIGN STRENGTH

DATA OBTAINED:

- IMPACT DAMAGE CHARACTERISTICS VERSUS IMPACT ENERGY
- COMPRESSION STRENGTH AFTER IMPACT

ALL DIMENSIOMS ARE IN INCHES.

NOTES,

C-7

IMPACT COMPRESSION SUBPANEL

COUPON LEVEL IMPACT TEST APPARATUS

=>> INTERNAL DAMAGE DUE TO

48 PLY QUASI-ISOTROPIC LAWINAT

40 FT LB IMPACT

HIGH STRAIN CELION/974 1/2 IN. DIA. IMPACTOR 60 FT LB IMPACT

217

IMPACT RESPONSE — RESIN EFFECTS

LOCKHEED STANDARD COMPRESSION AFTER IMPACT COUPON 5 IN. X 10 IN.

= COMPRESSION TEST FIXTURE AND SPECIMEN

COMPRESSION AFTER IMPACT

DYNATUP IMPACT SYSTEM

ORIGINAL PAGE IS OF POOR QUALITY

MICROGRAPHIC COMPARISON OF DYNATUP AND LOCKHEED SYSTEMS 960 IN. LBS./IN.

MICROGRAPHIC COMPARISON OF DYNATUP AND LOCKHEED SYSTEMS 1440 IN. LBS./IN.

ORIGINAL PAGE IS OF POOR QUALITY MICROGRAPHIC COMPARISON OF DYNATUP AND LOCKHEED SYSTEMS 1920 IN. LBS./IN.

ORIGINAL PAGE IS OF POOR QUALITY

SUBCOMPONENT IMPACT TESTS

PURPOSE:

- EVALUATION OF GEOMETRICAL DETAILS ON IMPACT DAMAGE TOLERANCE
- DETERMINATION OF ALLOWABLE DESIGN STRENGTH

DATA OBTAINED:

- IMPACT DAMAGE CHARACTERISTICS VERSUS PANEL CONFIGURATION AND IMPACT LOCATION
- STRENGTH AFTER IMPACT

MICROSECTION OF DAMAGE DUE TO IMPACT BETWEEN STRINGERS

及びが変数が、

231

)

ORIGINAL PAGE IS OF POOR QUALITY

THREE STRINGER PANEL STRENGTH AFTER IMPACT TEST

河

232

ORIGINAL PAGE IS OF POOR QUALITY

AS4/1806 T STIFFENED PANELS

0.502 (48.4/45.2/6.4)

- 0.432 (72.5/25/2.5)

TEE STIFFENED PANEL COMPRESSION TESTS MATL: AS4/1806 TAPE PANEL WEIGHT: 0.034 LB/IN2

	TEST CONFIGURATION	FAILURE LOAD (KIPS)	Nx (LB/IN) NxULT = 22,000 LB/IN	FAILURE STRAIN (IN/IN)
	THE THELING	499.8	35,200	0.0064
BASELINE	POST-IMPACT 80 FT-LB	488.5	34,400	0.0071
	POST. # 80 FT-LB	$495.0 \frac{1}{413.9} (2)$	$23,800 \frac{1}{19,900}$	0.0045(1)
	POST-IMPACT 40 FT-LB	499.2 (1) 528.3 (2)	(2)	0.0045
INTEGRAL	POST-IMPACT \$ 80 FT-LB	453.0	31,900	0
PAD-UP	POST-IMPACT 100 FT-LB	563.7	39,700	0.0068
DISCRETE	POST-IMPACT 80 FT-LB	409.0	28,800	0.0049
PAD-UP	POST-IMPACT 100 FT-LB	420.3	29,600	0.0050
1) CENTED	CENTED CTIECENIED CAILLIDE			

1) CENTER STIFFENER FAILURE

(2) RESIDUAL STRENGTH

7624-057 7-11-88

NxULT = 22,000 LB/IN

J.STIFFENED PANEL COMPRESSION TESTS

FAILURE STRAIN (IN/IN) $\frac{Nx_{ULT}}{22000 LB/IN}$ 34100 25240 27570 26020 NX (LB/IN FAILURE LOAD (KIPS) 524.9 484.2 329.7 0.25 DIA FASTENERS 60 FT-LB 100 FT-LB POST-IMPACT POST-IMPACT TEST CONFIGURATION CRIPPLING COLUMN MATL: AS4/1806 FABRIC

0.0045

0.0064

0.0048

7624-u30 7-11-88

0.0046

IM7/8551-7 TAPE BLADE STIFFENED DESIGN

BLADE STIFFENED PANEL COMPRESSION TESTS MATL: IM7/8551-7 TAPE PANEL WEIGHT: 0.027 LB/IN2

		_		
FAILURE STRAIN (IN/IN)	0.0052	0.0036	0.0046	0.0044
Nx (LB/IN) NxULT = 22,000 LB/IN	25,880	19,430	23,550	22,790
FAILURE LOAD (KIPS)	282.1	211.8	373.2	361.2
TEST CONFIGURATION	0.25 DIA FASTENERS CRIPPLING	POST-IMPACT 100 FT-LB	POST-IMPACT 100 FT-LB	40 FT-LB

7624-037

COMPARISON OF COUPON DATA TO BLADE STIFFENED PANEL DATE

BASELINE BLADE STIFFENED DESIGN

DAMAGE TOLERANCE IMPROVEMENT CONCEPTS

AS4/2220 COUPON AND BLADE STIFFENED PANEL DATA

SCHEMATIC OF 4-STRINGER PANEL TEST ARTICLE

All dimensions are in millimeters.

STATIC STRENGTH COMPARISON OF 4-STRINGER PANELS

SHEAR PANEL IMPACT DAMAGE STRENGTH TEST STATIC AND FATIGUE

246

ORIGINAL PAGE IS OF POOR QUALITY

COMPONENT IMPACT TESTS

PURPOSE:

VERIFICATION OF IMPACT DAMAGED STRENGTH

DATA OBTAINED:

- IMPACT DAMAGE CHARACTERISTICS
- STRENGTH AFTER IMPACT

STIFFENED PANEL WITH CUT-OUT

STIFFENED PANEL WITH CUT-OUT IMPACT DAMAGE STRENGTH TEST

ORIGINAL PAGE IS OF POOR QUALITY

PANEL TEST RESULTS

FAR FIELD STRAIN (IN/IN)	0.0020	0.0033
MAX. STRAIN (IN/IN)	0.0041	0.0066
COMPRESSION LOAD (LB/IN)	16100	23900
TEST CONDITION	UNDAMAGED	DAMAGED - 2 SKIN IMPACTS AT 100 FT-LB - 1 BLADE IMPACT AT 30 FT-LB

252

ORIGINAL PAGE IS OF POOR QUALITY

FULL SCALE RUDDER TEST PROGRAM

- I. STATIC / FATIGUE TEST
- TESTED TO DESIGN ULTIMATE LOADS NO VISIBLE DAMAGE

III. STATIC TEST 70 FAILURE

- RUDDER SURFACE IMPACTED 4 LOCATIONS
- FAILURE OCCURRED @ 125%
 OF DESIGN ULTIMATE BENDING MOMENT.

- SUBJECTED TO AN ACOUSTIC / THERMAL EQUIVALENT OF 2 LIFETIMES
 - NO VISIBLE DAMAGE
 - SOME DELIMITATIONS ALONG RISERS DISCOVERED AFTER ONE LIFETIME (POSSIBLY THERE SINGLE INITIAL MANUFACTURING). NO GROWTH OF DELAMS, HOWEVER, FROM 1 LIFETIME TO 2.

SUMMARY

- LAMINATE IMPACT TESTS ARE ADEQUATE TO DETERMINE RELATIVE IMPACT DAMAGE BEHAVIOR OF COMPOSITES.
- INDUSTRY STANDARD FOR COUPON IMPACT TESTS SHOULD BE ESTABLISHED.
- SUBCOMPONENT IMPACT TESTS ARE REQUIRED TO ESTABLISH GEOMETRICAL EFFECTS AND DESIGN SPECIFIC STRENGTH ALLOWABLES.
- COMPONENT IMPACT TESTS ARE REQUIRED TO VERIFY STRUCTURAL INTEGRITY.

STANDARD TESTS FOR IMPACT DAMAGED COMPOSITES, STRUCTURAL ISSUES FUSELAGE PART II:

Ernest F. Dost

and

William B. Avery

Commercial Airplane Group Boeing

Impact Damaged Composites, Part 1: Damage Simulation and Strength Predictions

Impact Damaged Composites, Part 2: Standard Tests for Fuselage Structural Issues

E. Dost Standard Specimen Tests for Fuselage Applications Fuselage Impact Damage Characterization Part 2 Summary

DL1623.11 DR1s

Impact Designed Experiment Involving Multiple Variables

Material variables

Structural variables

12.0 lbm

mpact energy skin/stiffener)

> Stiffener type Blade

1,200 in-lb/2,000 in-lb ● 80 in-lb/200 in-lb

Impact temperature 70°F

Stiffener spacing

Hat

• 12 in

• 7 in

● 180°F

Impact diameter
• 0.25 in
• 1.0 in

mpactor tup shape

FlatSpherical

Impactor stiffeness • 0.5 Msi

NASA/BOEING ATCAS

Stiffener layup

Hard Soft

• AS4 • IM7

Fiber

Skin layup

Hard

938 (3501-6)977-2

Resin

Fiber volume

● 0.480 0.565

Soft

(approximately 0.2 in) Thickness Thick

(approximately 0.1 in)

Material form

Tape

Stiffener adhesive

• With

THE DESIGN of EXPERIMENTS (DOE) TECHNIQUE

NASA/Boeing ATCAS

	Fractional Factorial Designed Experiment	8 Tests Main Effects Interactions
Example: 4 Variables	Fully Crossed Experiment	16 Tests Main Effects All Interactions
	Change One Variable (at a time)	5 Tests Main Effects No Interactions

9ec11580

THE DESIGN of EXPERIMENTS (DOE) TECHNIQUE

NASA/Boeing ATCAS Summary for 16 Variables

One Variable at a Time:

17 Tests

Fully Crossed Experiment: 65,536 Tests

Fractional Factorial:

32 Tests

Critical Impact Locations

High Velocity, Low Mass, Instrumented Tup

Force (Lb)

NASA/Boeing ATCAS

IMPACT DAMAGE ZONE MEASURED RESPONSE VARIABLES

Overall Damage Geometry and Distribution

Matrix Damage

Fiber Damage

Through-Thickness Unsymmetry

First Keel Design

1st Sandwich Impact Damage Resistance Designed Experiment

Facesheet Thickness	Core Density	Fabrication Sequence	Facesheet Material
Variables Studied:			

Facesheet Material	IM7/938	IM7/8551-7	IM7/938	IM7/8551-7	IM7/938	IM7/8551-7	IM7/938	
Fabrication Sequence	Precured Skin	Cocured Skin	Cocured Skin	Precured Skin	Precured Skin	Cocured Skin	Cocured Skin	
Core Density	110 WF	110 WF	200 WF	200 WF	200 WF	200 WF	110 WF	
Laminate Thickness	0.045	0.045	0.045	0.045	0.134	0.134	0.134	
Run Number	_	2	ღ	4	5	9	7	•

Thru-Transmission Ultrasound - Signal Response Rohacell Foam Sandwich Panels

IMPACT LOAD vs. DEFLECTION

Facesheet: IM7/8551-7, Thickness = .088 in.

100 in-lb 200 in-lb LEGEND Core Density: 110 WF Deflection (in.) 9.0 0.7 Load (lbs.) (Thousands)

Sub Khz

ttudb Gainin c

a) data

49 db gain in

946 am in

5 MHZ Pulse-Echo Time of Flight C-Scans Rohacell Foam Sandwich Panels

Facesheet: IM7/938

Core Density: 13 lb/ft

Facesheet: IM7/8551-7

Core Density: 13 lb/ft

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POUR QUALITY

1-6-2005-

Impact Damage Resistance and Residual Strength of Sandwich Structure for Aircraft Fuselage

280

Variables

Core type: Foam versus honeycomb

Core density: 6 to 18 lb/ft³

Constant gauge

Core thickness: 0.25 to 0.75 in

Face sheet thickness: 0.1 to 0.3 in

Fiber type: AS4 versus IM7

Matrix type: 3501-6 versus 8551-7

Impactor shape: Flat versus spherical Impactor diameter: 0.25 to 1.0 in

Tapered

Laminate layu

Fiber type: AS

Laminate layup: Hard versus soft Fiber type: AS4 versus IM7 Matrix type: 938 versus 977-2 Fiber volume: 0.480 versus 0.565 Material form: Tow versus tape

Impact Damaged Composites, Part 1: Damage Simulation and Strength Predictions

Impact Damaged Composites, Part 2: Standard Tests for Fuselage Structural Issues

OUTLINE

- **COMPRESSION AFTER IMPACT**
- TENSION AFTER THROUGH PENETRATION
- COMPRESSION AFTER THROUGH PENETRATION

OTHER MATERIAL SCREENING NEEDS

SUMMARY

282

COMPRESSION AFTER IMPACT

ARE EXISTING SPECIMEN GEOMETRIES AND STANDARD TEST PROCEDURES SUFFICIENT?

YES, IF YOU UNDERSTAND:

- THE IMPACT INDUCED DAMAGE STATE
- SPECIMEN BUCKLING LIMITS
- FINITE WIDTH CORRECTION FACTORS
- IMPACTOR SIZE, SHAPE, WEIGHT, AND STIFFNESS EFFECTS
- CAI FAILURE MODES
- PLY THICKNESS AND STACKING SEQUENCE EFFECTS
- **SUBLAMINATE STABILITY**
- SPECIMEN CURVATURE EFFECTS
- ROLL OF UNDAMAGED COMPRESSION STRENGTH
- THE EFFECT OF STIFFENERS
- AND THE INTER-RELATIONSHIPS BETWEEN ALL OF THE

NO / MAYBE, IF YOU INCLUDE:

- COMPRESSION AFTER THROUGH PENETRATION
- SHEAR AFTER IMPACT
- **COMBINED LOADING**
- TAPERED THICKNESS

IMPACT VARIABLES

- STATIC INDENTATION VS. DROP WEIGHT VS. CONTROLLED VELOCITY
- RATE SENSITIVE MATERIALS?
- DAMAGE STATE CHANGE WITH IMPACT RATE?
- IMPACTOR VARIABLES
- GEOMETRY (DIAMETER, SHAPE)
 DAMAGE STATE CHANGES WITH IMPACTOR DIAMETER
 - MASS)
 - LEAD STEEL NYLON
 - STIFFNESS)
- •
- RANGE OF IMPACT ENERGIES
- NEED TO UNDERSTAND VISIBILITY AS A FUNCTION OF ENERGY
- LOW ENERGY (SMALL DAMAGE) VS. HIGH ENERGY (LARGE DAMAGE)
- · DAMAGE STATE CHANGES
- · FAILURE MECHANISMS CHANGE

Predictions and experimental results for 12.7 cm wide specimens, $AS6/3501-6, (45/0/-45/90)_{5S}$, and ply thickness = 0.0188 cm.

Theoretical damage tolerance curves for two material types.

NEED FOR ENHANCED DATA EVALUATION

- INSTRUMENTED IMPACT DATA
- FORCE-TIME CURVES
- FORCE-DISPLACEMENT CURVES
- DAMAGE CHARACTERIZATION
- · FIBER FAILURE VS. DELAMINATION
- · NDE TECHNIQUES: PULSE-ECHO TIME-OF-FLIGHT C-SCAN
- SUPPORTING ANALYSIS
- SPECIMEN BUCKLING LIMITS
- · FINITE WIDTH EFFECTS VS. DAMAGE SIZE
- FAILURE MODE IDENTIFICATION

Example of Instrumented Impact Results and Application To Impact Modeling

B4 Analysis B4 Experiment

Figure 10. Instrumented Impact Results for the Resin Content Study

Figure 11. Predicted and Experimental Results for a Specimen from Batch B4, Impacted at an Energy of 180 in-lb.

T800/3900-2

B1: Low Resin Content

B2: Intermediate Resin Content

B4: High Resin Content

Ref.: Dodd Grande, et al., "Effects of Intra- and Inter-Laminar Resin Content on the Mechanical Properties of Toughened Composite Materials." NASA Conference Publication 3104, pp. 455-476

Figure 5. Finite specimen width effects for IM6/3501-6 moduli, (45/0/-45/90) nS (n>3), undamaged compressive strength = 478 MPa, and ply thickness = 0.0188 cm.

MATERIAL, LAMINATE, AND STRUCTURAL VARIABLES

- TOUGHNESS VS. BASIC COMPRESSION STRENGTH
- PLY THICKNESS AND LAMINATE STACKING SEQUENCE
- **EFFECT ON SPECIMEN STABILITY**
- **EFFECT ON SUBLAMINATE STABILITY**
- **EFFECT ON DAMAGE STATE**

(45/0/-45/90)_{nS} (n≥3), IM6/3501-6 moduli, and ply thickness = 0.0188 cm. Predictions of the effects of undamaged compressive strength for

SPECIMEN CURVATURE / SPECIMEN THICKNESS

- INCREASED INTERLAMINAR SHEAR COMPONENT RESULTS IN LARGER DELAMINATIONS
- **CURVATURE INCREASES SUBLAMINATE STABILITY**
- RESULTS FOR HITEX-46/V398-G BMI LAMINATES

CURVED CAI SPECIMEN

RECOMMENDED CAI STRENGTH TEST **EVALUATION SCHEMES**

- STUDY A RANGE OF IMPACT LEVELS.
- CONSIDER POSSIBLE EFFECTS OF IMPACTOR GEOMETRY, MASS AND VELOCITY.
- USE INSTRUMENTED IMPACT TEST METHODS TO QUANTIFY DAMAGE RESISTANCE.
- NONDESTRUCTIVELY MEASURE IMPACT DAMAGE SIZE PRIOR TO THE CAI TEST.
- **ANALYTICALLY SCALE CAI RESULTS TO ELIMINATE FINITE** SPECIMEN WIDTH EFFECTS.
- VALIDATE ANALYSIS WITH TEST RESULTS TO ADD CONFIDENCE IN USING THE MODELS TO EXTRAPOLATE THE DATA BASE.
- **EXAMINE BROKEN SPECIMENS TO JUDGE FAILURE MODE** FOLLOWING CAI TESTS.

ELEMENT GEOMETRIES

- 1. CRIPPLING SPECIMENS
- · IMPACT DAMAGED IN STRUCTURAL CONFIGURATIONS
- 2. SKIN/STRINGER SEPARATION
- · IMPACT DAMAGED IN STRUCTURAL CONFIGURATIONS

TENSION AFTER THROUGH PENETRATION

BOEING CROWN STUDIES:

TEST METHOD

- 3.5" X 12" SPECIMEN
- 2.5" X 5" WINDOW IN SUPPORT FIXTURE
- 0.875" X 0.060" BLADE

IMPACT RESULTS

- THINNER SPECIMENS EXHIBIT FIBER DAMAGE
- THICKER SPECIMENS EXHIBIT EXTENSIVE DELAMINATION

Expanded View of Blade Impacter

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS

ORIGINAL PAGE IS OF POOR QUALITY

TENSION RESIDUAL STRENGTH

- FOR THICKER SPECIMENS RESIDUAL STRENGTH OF PENETRATION SPECIMENS IS GREATER THAN SLIT SPECIMENS
- FOR THINNER SPECIMENS RESIDUAL STRENGTHS APPROXIMATELY EQUAL OR SLIGHTLY LESS

⊩≷თ ი

For Each notch type:

penetration

Slit slit

HYPOTHESIS

PRIMARILY DELAMINATIONS BEYOND THE PENETRATION IN THICK LAMINATES THE PENETRATION EVENT CAUSES WHICH SOFTENS THE NOTCH TIP REGION AND THEREFORM INCREASES STRENGTH

BREAKAGE BEYOND THE PENETRATION, WHICH INCREASES THE EFFECTIVE NOTCH LENGTH AND REDUCES STRENGTH IN THINNER LAMINATES THE PENETRATION CAUSES FIBER

RECOMMENDED STANDARD COUPON

SPECIMEN: 3.5" X 12"

CUT-OUT: 2.5" X 5"

IMPACTOR: 0.875" X 0.060"

ENGINEERING EVALUATION NEEDED

LARGE DEFLECTIONS

NON-LINEAR EFFECTS

SPECIMEN THICKNESS EFFECTS

CUT-OUT SIZE EFFECTS

ALL RELATED

OTHER MATERIAL SCREENING NEEDS

- 1. COMPRESSION AFTER THROUGH PENETRATION
- 2. SHEAR STRENGTH AFTER IMPACT
- 3. COMBINED LOAD REDISTRIBUTION
- · COMPRESSION / SHEAR
- · COMPRESSION / HOOP TENSION
- IMPACT AND THROUGH PENETRATION
- · TAPERED THICKNESS (INTERLAMINAR SHEAR LOAD TRANSFER)
- 4. SANDWICH SPECIMEN GEOMETRIES
- 5"X10" WITH 4"X4" CUT-OUT IN SUPPORT FIXTURE

Impact Damaged Composites: Summary for Parts 1 and 2

Critical Impact Threats for Fuselage Structure Must Be Identified

Accurate Predictions of Post-Impact Strength Require Characterization of Important Damage Features Complex Damage States Must be Simulated (e.g., Sublaminate Buckling Approach) to Allow Engineering Analysis of Structural Configurations

The Post-Impact Strength/Damage Relationships for Fuselage Structure Will Depend on Location, Combined Load States, and Load Redistribution

Fundamentals Must be Understood to Relate Coupon Screening Tests to Fuselage Structural Performance

References Giving More Information on Topics Covered

- 1.) Gosse, J.H., Morl, P.B.Y., "Impact Damage Characterization of Graphite/Epoxy Laminates," in Proc. of 3rd Tech Conf. of American Society for Composites, Technomic Publ. Co., 1988, pp. 344-353.
- 3.) Ilcawicz, L.B., Dost, E.F., Coggeshall, R.L., "A Model for Compression After Impact Strength Evaluation," in Proc. of 21st Inter. SAMPE Tech. Conf., Soc. for Adv. of Material and Process Engineering, 1989, pp. 130-140.
- 5.) Dost, E.F., Ilcewicz, L.B., Avery, W.B., Coxon, B.R., "The Effects of Stacking Sequence On Impact Damage Resistance and Residual Strength for Quasi-Isotropic Laminates," in Composite Materials: Fatigue and Fracture, ASTM STP 1110, 1991.
- 7.) Grande, D.H., Ifcewicz, L.B., Avery, W.B., Bascom, W.D., "Effects of Intra- and Inter-Laminar Resin Content On Mechanical Properties of Toughened Composite Materials," in Proc. of First NASA Advanced Composite Technology Conf. (Part 2), 1990, pp. 455-475.

- Dost, E.F., Ilcewicz, L.B., Gosse, J.H., "Sublaminate Stability Based
 Modeling of impact Damaged Composite Laminates," in Proc. of 3rd
 Tech. Conf. of Society for Composites, Technomic Publ. Co., 1988, pp. 354-363.
- 4.) Avery, W.B., "A Semi-Discrete Approach to Modeling Post-Impact
 Compression Strength of Composite Laminates," in Proc. of 21st
 Inter. SAMPE Tech. Conf., Soc. for Adv. of Material and Process
 Engineering, 1989, pp. 141-151.
- 6.) Avery, W.B., Grande, D.H., "Influence of Materials and Layup
 Parameters On Impact Demage Mechanisms," in Proc. of 22nd
 Inter. SAMPE Tech. Conf., Soc. for Adv. of Material and Process
 Engineering, 1990, pp. 470-483.
- 8.) Dost, E.F., Avery, W.B., Swanson, G.D., Lin, K.Y., "Developments in impact Damage Modeling for Laminated Composite Structures," in Proc. of First NASA Advanced Composite Technology Conf. (Part 2), 1990, pp. 721-736.

IMPACT DAMAGE RESISTANCE

and

MATERIAL TOUGHNESS

JOHN E. MASTERS LOCKHEED ENGINEERING AND SCIENCE

319

DAMAGE SIZE vs. RESIDUAL COMPRESSION STRENGTH (Single Resin Systems)

COMPRESSION STRENGTH AFTER IMPACT

MODE I STRAIN ENERGY RELEASE RATE (IN-LB/IN 2)

COMPRESSION STRENGTH AFTER IMPACT

DAMAGE SIZE vs. STRAIN ENERGY RELEASE RATE IM6/3100-21 Interleafed Laminates () Indicates Interleaf Type Single Resin Systems (Single Resins and Interleafed Laminates) IM6/3100 9 AS4/3502 IMPACT DAMAGE SIZE (IN 2) C6000/1827 C6000/1827 M6/3100 (E) IM6/3100-21(E) AS4/1808 **\\$4/1808** C6000/1827 (E) AS4/1808 (E) AS4/1808 (A) A AS4/3502 (A) **4S4/907** G G AS4/907 25 20 15 9 $(^{\circ}$ NI/BJ-NI) STAR SELEASE RATE (IN-LB/IN

SUMMARY:

Residual Compression Strength after Impact is a combined measure of

Material Resistance to Impact-Induced Delamination

Material Tolerance to Damage Propagation under Load

Impact Resistance is Directly Proportional to Material Toughness

Strong Correlation between Mode II Strain Energy Release Rate and Impact Resistance (Measured by Impact Delamination Size)

Material Tolerance to Impact Damage Insensitive to Toughness for a given Flaw Size

STANDARD IMPACT TESTS

PRESENTED AT

NASA WORKSHOP ON IMPACT DAMAGE TO COMPOSITES

NASA LARC MARCH 20, 1991

BY DR. VICTOR L. CHEN PRINCIPAL ENGINEER COMPOSITES R&D DOUGLAS AIRCRAFT COMPANY

STANDARD IMPACT TESTS

COMPRESSION AFTER IMPACT

NASA ST-1

ST-1 SET-UP

SRM 2-88 (SACMA)

NASA ST-1

[+45/0/-45/90]_{NS} , 12" X 7" X 1/4"

10 LB. 1/2" HEMISPHERICAL STEEL TIP

NOMINAL 20 FT-LB IMPACT

REPLICA OF THREE

SACMA RECOMMENDED METHOD 2-88

[+45/0/-45/90]_{NS} , 6" X 4" X T

11 LB 5/8" HEMISPHERICAL STEEL TIP

1500 IN-LB/IN IMPACT

COMPRESSION AFTER IMPACT TEST

8	SPECIMEN SIZE	NO. OF PLIES	IMPACT ENERGY FT-LBS.	IMPACT IN-LB/IN THICK	DAMAGE SIZE AREA IN/SQ IN	COMPRESSION Strength KSI	FAILURE STRAIN %	REMARKS
31	2.5×10 2.5×10	32 48	CONTROL	1 1	 	76.6 91.8	1.33	0.178 INCH
34	NASA ST-1 ST-1	32	14.2	957	1.43 1.71 31.3 1.46 1.83 32.8	32.8	0.47	TUP DIA=0.5IN
37	ST-1 ST-1	32	22.0 33.2	1486 1501	1.25 1.35 2.10 3.5	29.2	0.44	
310	4x6 4x6	32 48	22.0	1488 1499	1.28 2.4 2.53 4.8	27.7	0.42	

MAT: AS4/8552 LAMINATE: (0, 45, 90, -45)_{NS}

ISSUES ON COMPRESSION AFTER IMPACT TEST

O IMPACT ENERGY OR IMPACT ENERGY/THICKNESS

O IMPACTOR SIZE

o SPECIMEN SIZE, THICKNESS

o OTHER VARIATIONS - DYNAMIC IMPACT PRELOADING MULTIPLE IMPACT

FIG. 12-Stress output locations for Figs. 14 to 22.

FIG. 14—Transverse shear stress distribution in a $[90\sqrt{0}\sqrt{90}\sqrt{3}]$ lay-up at 10 μs .

FIG. 18—Effect of contact area on shear stress distribution of a $\{90\sqrt{5}/90\sqrt{3}\}$ laminate.

CAI OF STIFFENED PANELS

- O IMPACT SITES
- O SUPPORT DURING IMPACT
- O AUXILIARY TESTS PEEL MOMENT TEST
 PULL-OFF INTERACTION TEST
 STIFFENER CRIPPLING TEST

STRAIN GAGE AND IMPACT LOCATIONS ON PANELS

1,2...12 = STRAIN GAGE LOCATIONS | IMPACT SITES B₁ C₁, ETC. = PANEL NUMBERS

Figure 3. Support Conditions for Impact Tests

		TES	TEST RESULTS		
PANEL	TEST	z	(LB)	M _P = N-m/mm	Mp = 0.215 P vmm (iNLB/IN.)
2	- 66	7,784 7,473 7,673	(1,750) (1,680) (1,725)	1.67 1.61 1.65	(376)
	AVERAGE	AGE		79.7	(383)
>	-	9,340	(2,100)	2.01	(451)
	M W	9.674 9.452	(2,175) (2,125)	2.03	(467) (457)
	AVERAGE	AGE		2.04	(458)

Figure 4. Peel Moment Test

Figure 5. Pull-Off Interaction Test

INTERNAL	EFFECT OF A UNIFORMLY STIFF FLANGE	EFFECT OF A UNIFORMLY FLEXIBLE FLANGE
PULL-OFF LOAD		
] a .	HIGH INTERLAMINAR TENSION UNDER BLADE AND AT FLANGE EDGE	HIGHER INTERLAMINAR TENSION UNDER BLADE; REDUCED TENSION AT EDGE
PEEL MOMENT	dw (Delivery)	dW (
3	HIGH INTERLAMINAR TENSION AT FLANGE EDGE	REDUCED INTERLAMINAR TENSION AT FLANGE EDGE, SINCE FLEXIBLE FLANGE ATTRACTS LESS LOAD
BLADE MOMENT		
ž	Z Z	X.
	HIGH INTERLAMINAR RADIAL TENSION IN THE ELBOW	SIMILAR RESPONSE CAUSING RADIAL ELBOW TENSION

Figure 6. Effects of Internal Loads on Bonded Stringer Interlaminar Tension Stresses

TABLE 3
RESIDUAL COMPRESSION STRENGTH OF POSTIMPACT STIFFENED PANELS

	_,	LENGTH.			IMPAC	FAILURE	FAILURE	
PAN		WIDTH	SKIN, FLANGE		ENERG	4	STRAIN	NO. OF
10	T700/3620		(NO. OF PLIES				(PERCENT)	
	1	39 (15.4)	10, 9	MID. STRINGER	4.J (3.21) -	0.385	3, HAT
2	T700/3620		18, 8	STRINGER		Í	0.385	2 447
		39 (15.4)	1	EDGE	4 (3.03)	-	0.363	3. HAT
3	T700/3620	40 (15.75)	18, 9	MIDBAY	4.2 (3.15) _	0.494	3. HAT
		39 (15.4)		1				
4	T700/3620		18, 9	STRINGER	12.26	-	0.298	3. HAT
5	CARBON	39 (15.4) 51 (20)		EDGE	(9.05)			
<u> </u>	EPOXY	34.3 (13.5)	41, 41	MIDBAY	12.2 (9.0) -	0.52	3. BLADE
1	TAPE	04.5 (10.5)					1	ADHESIVELY
6	CARBON/	48.1 (18.9)	41, 41	MIDBAY,	14.2	1 _	0.37	BONDED
	EPOXY	36.6 (14.4)		1	(10.51)	1	0.31	3, BLADE ADHESIVELY
_				1	,,			BONDED
7	CARBON	48.8 (18.9)	48, 48	MID-	13.4	l –	0.47	3, HAT
	EPOXY	57.2 (22.5)		STRINGER	(9.87)	1		
8	AS4/3501-6	61 (24)	40 74			1		į
_		45.7 (18)	48, 24	MIDBAY, MID	135.5 (100)	-	0.37	3, CHANNEL
		1		STRINGER.	EACH			MECHANICALLY FASTENED
	l			STRINGER	271011	1		PASTENED
_		1 1		EDGE				
9	AS4/3501-6	1 - , , ,	48, 24	MIDBAY	135.5	-	0.38	3, CHANNEL
	1	45.7 (18)			(100)			MECHANICALLY
10	AS4/3501-6	64.74			1]		FASTENED
,,,	A34/3301-0	61 (24) 45.7 (18)	48, 24	MIDBAY.	112.5	-	0.38	3, CHANNEL
	İ	45.7 (16)		MID	(83)			MECHANICALLY
		1 1		STRINGER, STRINGER	EACH	1 1		FASTENED
	1	1 1		EDGE				
11	AS4/3501-6	61 (24)	48, 24	CENTERS	81.3	_	0.32	3.CHANNEL
		45.7 (18)		OF TWO	(60)			MECHANICALLY
	1	1		BAYS	EACH	1 1	i	FASTENED
12	AS4/3501-6	61 (24)	48, 24	CENTERS	54.2	-	0.35	3. CHANNEL
	1	45.7 (18)		OF TWO	(40)	1 1		MECHANICALLY
				BAYS				FASTENED
13	AS6/5245-6	61 (24)	48, 24	MIDBAY,	195.5	i .	0.00	
-		45.7 (18)	40, 24	MID-	13 5.5 (1 00)	-	0.39	3,CHANNEL
		1.0,		STRINGER.	EACH	1		MECHANICALLY FASTENED
	1			STRINGER	2	1	İ	ASTENED
				EDGE]	1	
14	IM6/1808I	51 (20)	39, 14	MIDBAY	135.5	292 (42.3)	-	3, BLADE
15	IM6/1808I	48 (19)			(100)		J	
13	IM0/10001	51 (20)	54, 14	MIDBAY	135.5	361 (52.3)	-	3, BLADE
16	IM6/18081	48 (19) 51 (20)	66, 14	MIDDAY	(100)	477 (70 4)	1	A-BONDED
		48 (19)	00, 14	MIDBAY	13 5.5 (1 00)	477 (69.1)	-	3, BLADE
17	IM6/1808i	51 (20)	40, 14	MIDBAY	135.5	271 (39.3)	_ 1	A-BONDED 3, BLADE
		48 (19)	,		(100)	27 (00.0)	_	A-BONDED
18	IM6/1808I	51 (20)	54, 36	MIDBAY	135.5	225 (32.6)	0.433	3, BLADE
	l	48 (19)		1	(100)			A-BONDED
19	IM6/1808I	51 (20)	54, 36	MID.	135.5	267 (39)	0.400	3, BLADE
20	IM6/1808I	48 (19)		STRINGER	(100)		I	A-BONDED
20	IMIO/18081	51 (20)	54, 18	MID.	135.5	321 (46.5)	0.50	3, BLADE
21	IM6/1808I	48 (19) 51 (20)	54, 18	STRINGER MIDBAY	(100)	200, 520		A-BONDED
•		48 (19)	34, 10	MIDBAT	135.5	267 (39)	-	3, BLADE
22	1M6/18081	51 (20)	54, 18	MID-	(100) 135.5	222 /47		A-BONDED
		48 (19)	1	TRINGER	(100)	323 (47)	0.444	3, BLADE A-BONDED
i			54, 18	MIDBAY	271	184 (26.7)	0.333	3, BLADE
23	IM6/1808I	51 (20)		1	(100)	- ,,	1	A-BONDED
		48 (19)	1					
23 24	IM6/1808I IM6/1808I	48 (19) 51 (20)	54, 18	SIDE OF	144	425 (617)	0.689	3, BLADE
24	IM6/1808i	48 (19) 51 (20) 48 (19)		BLADE	144 (106)	425 (617)	0.689	
		48 (19) 51 (20) 48 (19) 51 (20)	54, 18 63, 18		(1 06) 13 5 .5	425 (617) 302 (43.8)	0.689	3, BLADE A-BONDED 3, BLADE
24 25	IM6/1808i IM7/8551-7	48 (19) 51 (20) 48 (19) 51 (20) 48 (19)	63, 18	BLADE MIDBAY	(106) 135.5 (100)	302 (43.8)	0.689	3, BLADE A-BONDED 3, BLADE A-BONDED
24	IM6/1808i	48 (19) 51 (20) 48 (19) 51 (20) 48 (19) 51 (20)		BLADE	(106) 135.5 (100) 135.5		0.689 — —	3, BLADE A-BONDED 3, BLADE A-BONDED 3, BLADE
24 25	IM6/1808i IM7/8551-7 IM7/8551-7	48 (19) 51 (20) 48 (19) 51 (20) 48 (19) 51 (20) 48 (19)	63, 18 63, 18	BLADE MIDBAY MIDBAY	(106) 135.5 (100) 135.5 (100)	302 (43.8)	-	3, BLADE A-BONDED 3, BLADE A-BONDED 3, BLADE A-BONDED
24 25 26	IM6/1808i IM7/8551-7	48 (19) 51 (20) 48 (19) 51 (20) 48 (19) 51 (20) 48 (19) 142 (56)	63, 18	BLADE MIDBAY	(106) 135.5 (100) 135.5 (100) 135.5	302 (43.8)	0.689 — — — 0.410	3, BLADE A-BONDED 3, BLADE A-BONDED 3, BLADE A-BONDED 3, BLADE
24 25 26	IM6/1808i IM7/8551-7 IM7/8551-7	48 (19) 51 (20) 48 (19) 51 (20) 48 (19) 51 (20) 48 (19)	63, 18 63, 18 54, 18	BLADE MIDBAY MIDBAY MIDBAY	(106) 135.5 (100) 135.5 (100) 135.5 (100)	302 (43.8)	_ _ 0.410	3, BLADE A-BONDED 3, BLADE A-BONDED 3, BLADE A-BONDED 3, BLADE A-BONDED
24 25 26 27	IM6/1808i IM7/8551-7 IM7/8551-7 IM6/1808i	48 (19) 51 (20) 48 (19) 51 (20) 48 (19) 51 (20) 48 (19) 142 (56) 84 (33)	63, 18 63, 18 54, 18	BLADE MIDBAY MIDBAY	(106) 135.5 (100) 135.5 (100) 135.5	302 (43.8)	-	3, BLADE A-BONDED 3, BLADE A-BONDED 3, BLADE A-BONDED 3, BLADE

WHY IMPACT TEST?

o DAMAGE TOLERANCE CRITERIA

o TYPE OF (IN-SERVICE) DAMAGE

O DAMAGE RESISTANCE

O COMPRESSION AFTER IMPACT TEST

Flaw/Damage Type	Flaw/Damage Size (1)
Scratches	Assume the presence of a surface scratch that Is 4.0 In long and 0.02 in deep
Delamination	Assume the presence of an Interply delamination that has an area equivalent to a 2.0-in diameter circle with dimensions most critical to its location (2)
Impact Damage	Assume the presence of damage caused by the impact of a 1.0-in diameter hemispherical impactor with 100 ft-lb of kinetic energy or with that kinetic energy required to cause a dent 0.10 in deep, whichever is least

For limited access areas such as the interior of the wing, the contractor shall have the option of proposing an inspection procedure before closeout which will allow the assumed damage area size to be reduced Ξ

This requirement also accounts for delamination that might occur and be nondetected as a result of in-service repair **2** 351

IMPACT DAMAGE

MATRIX CRACKING

TRANSVERSE SHEAR CRACK BENDING (TENSION) CRACK

DELAMINATION

FIBER BREAKAGE

(THROUGH-THE-THICKNESS CRACK)

FIG. 1-Nomenclature of damage modes. (a) Longitudinal section. (b) Transverse section.

Mechanism 1: Tension, no delamination or shear

Mechanism 2: Tension and shear, tension dominated

Mechanism 3: Tension and shear, shear dominated

Mechanism 4: Shear, small amounts of tension

Figure 1. Fracture Mechanisms

DAMAGE RESISTANCE

IMPACT DAMAGE =

F (STACKING SEQUENCE, IMPACT ENERGY)

O SPECIMEN SUPPORT

O IMPACT FORCE

CONTACT STRESS DISTRIBUTION

DAMAGE TOLERANCE

CAI STRENGTH

= F (-_BAMAGE_SIZE_-)

O WHAT KIND OF DAMAGE

O SHOULD WE CONSIDER TAI

STRUCTURAL MECHANICS

WHAT IS RESIDUAL STRENGTH

G 154.00

STRUCTURAL MECHANICS

RESIDUAL STRENGTH PREDICTION DEVELOPMENT

ANALYSIS

- DAMAGE MODELING (REDUCED STIFFNESS AND STRENGTH)
 - ULTIMATE STRENGTH PREDICTION ON DAMAGE PARTS (FINITE ELEMENT ANALYSIS WITH PARAMETERS

OBTAINED FROM DAMAGE MODEL)

Douglas Resin Selection

OF THICK CARBON/EPOXY WITH SHAPE TO TENSION STRENGTH RELEVANCE OF IMPACTER NONVISIBLE DAMAGE

C. C. Poe, Jr.

NASA Langley Research Center

NASA Workshop on Impact Damage to Composites NASA Langley Research Center March 19 & 20, 1991 Hampton, Virginia

OBJECTIVE

PRESENT METHOD TO PREDICT TENSION STRENGTH WITH BARELY VISIBLE IMPACT DAMAGE ---IRRESPECTIVE OF IMPACTER SHAPE

ORIGINAL PAGE IS OF POOR QUALITY

OUTLINE

■ - DAMAGE FROM SIMULATED IMPACTS PART USING HEMISPHERICAL INDENTERS --

ANALYSIS & EXPERIMENTS

PART II - STRENGTH AFTER LOW-VELOCITY

IMPACTS -- ANALYSIS & EXPERIMENTS

TEST SPECIMEN AND APPARATUS

MPa Pressure compression າ _マfailure Fiber SEM PHOTOGRAPHS OF DAMAGE 5.08-cm-dia Indenter With 589 MPa Pres Delamination Broken Helical layers Helical layers Matrix shear failure .5 mm Hoop -layers

DAMAGED LAYERS

DAMAGED LAYERS 10-18

MAGNIFIED IMPACT DAMAGE IN 7TH LAYER

2.54-CM-INDENTER AND 54.3-KN IMPACT FORCE

373

ANALYTICAL APPROACH

• CALCULATE CONTACT STRESSES USING A. E. H. LOVE'S SOLUTION FOR HEMISPHERICAL PRESSURE APPLIED TO ISOTROPIC, SEMI-INFINITE BODY.

CALCULATE DAMAGE SIZE USING MAXIMUM STRESS CRITERIA.

HERTZ LAW

FOR TRANSVERSELY ISOTROPIC BODIES -

Indentation.-

$$u = R_i^{-1/3} (P/n_0)^{2/3}$$

Pressure.-

Contact radius.-

n_o = 4.52 GPa from indentation measurements = 4.69 GPa from elastic constants = 3.98 GPa from contact radii measurements (previous investigation)

FAILURE UNDER COMPRESSION AND

VJANNAF87/SLDE10

COMPRESSION TEST FOR SHEAR STRENGTH

MAXIMUM STRESS CONTOURS - LOVE'S SOLUTION

CONCLUSIONS

- CONTACT PRESSURE, INDEPENDENT OF INDENTER RADIUS. FIBERS BROKE BELOW CONTACT SITE AT CRITICAL
- DAMAGE VISIBLE WHEN CRITICAL CONTACT PRESSURE WAS EXCEEDED.
- SIZE OF DAMAGE INCREASED WITH INCREASING CONTACT PRESSURE AND INDENTER RADIUS.
- OF ELASTICIY AND MAXIMUM SHEAR STRESS CRITERIA. SIZE OF DAMAGE WAS PREDICTED USING THEORY

PART II

ANALYSIS & EXPERIMENTS LOW-VELOCITY IMPACTS STRENGTH AFTER

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

NASA -84-5453

EXPERIMENTAL APPROACH --- RESIDUAL STRENGTH TESTS

ANALYTICAL APPROACH

IMPACT FORCE - ENERGY BALANCE ANALYSIS

0.4 R1 no Fmax + 0.5 Kb Fmax - KEerr = 0

| IMPACTER, O' R4, m4, v4

TARGET,

HERTZIAN CONTACT,

MPACT

Kett - Mv1/2

AND

WHERE

BEAM,

M = 1/[1/m₁ + 1/(m₂/4)]

STRENGTH - ANALYSIS OF SURFACE CRACKS

STRESS INTENSITY FACTOR FOR ISOTROPIC PLATE

INPLANE LOAD EQUIVALENT SURFACE CRACK

385

\WORKSHOP\SLIDES\SLIDE6

COMPARISON OF DETECTABLE IMPACT DAMAGE

IMPRESSION DEPTHS FOR FWC

IMPACT FORCES FOR RINGS AND FWC

IMPACT FORCE VERSUS EFFECTIVE KINETIC ENERGY

EFFECT OF MASS & VELOCITY ON IMPACT FORCE

RADIOGRAPHS OF IMPACT DAMAGE FOR VARIOUS INDENTERS

STRENGTH REDUCTION FACTOR VERSUS IMPACTER DIAMETER

STRENGTHS WITH SURFACE CUTS

TWO-PART FAILURE WITH SURFACE DAMAGE

FIRST-LIGAMENT FAILURE

Delamination

REMAINING-LIGAMENT FAILURE

397

CONCLUSIONS

- CORRELATED QUITE WELL WITH AN ENERGY BALANCE ANALYSIS EXCEPT WHEN DAMAGE WAS EXTENSIVE. ● IMPACT FORCE AND IMPACT PARAMETERS WERE
- SURFACE CRACK ANALYSIS GAVE GOOD PREDICTIONS OF TENSION STRENGTHS.
- FOR BARELY VISIBLE DAMAGE --
- STRENGTHS WERE LOWER FOR BLUNT IMPACTERS THAN FOR SHARP IMPACTERS
- FACTOR OF SAFETY WAS INDEPENDENT OF IMPACTER SHAPE. તં

COMPOSITES HO CERTIFICATION

FOR AIRCRAFT

John Lincoln

Aeronautical Systems Division,

Wright-Patterson Air Force Base

CERTIFICATION OF COMPOSITES FOR AIRCRAFT

BASIS FOR USAF AIRCRAFT

MIL-STD-1530A THE USAF AIRCRAFT STRUCTURAL INTEGRITY **PROGRAM (ASIP)**

PROGRAM FOR FULL SCALE DEVELOPMENT OF METAL AND COMPOSITE STRUCTURE

COMPOSITE STRUCTURES CAUSE SOME SHIFTING OF EMPHASIS IN THE

TASKS OF ASIP

I DESIGN INFORMATION

DESIGN ANALYSES AND DEVELOPMENT TESTS

III FULL SCALE TESTING

IV FORCE MANAGEMENT DATA PACKAGE

V FORCE MANGEMENT

TASK II

COLUMN TO THE PARTY OF THE PART

RISK OF USING B-BASIS ALLOWABLE

$$P_{L}(y) = \exp\left[-\left(\frac{Y}{\beta_{L}}\right)^{4L}\right]$$

$$A = 6$$

PROBABILITY OF FAILURE =
$$\iint P_s' P_L' dxdy$$
 in one lifetime for a single aircraft a fector where load exceeds strength

PROBABILITY OF FAILURE = 1.5×10^{-3} In one lifetime for a single aircraft

BATTLE DAMAGE TESTS

- INCLUDES ENVIRONMENTALLY CONDITIONED TEST SPECIMENS
- BUILDING BLOCK APPROACH
- DAMAGE BASED ON SPECIFIED THREAT FOR WEAPON SYSTEM
- DAMAGE STRUCTURE MUST MEET IN-FLIGHT EVIDENT RESIDUAL STRENGTH REQUIREMENT
- REPAIRABILITY REQUIREMENTS FOR EACH WEAPON SYSTEM

INCLUDES ENVIRONMENTALLY CONDITIONED TEST SPECIMENS

BUILDING BLOCK APPROACH

STRENGTH TESTS

B-BASIS KNOCKDOWN FOR SUBCOMPONENT AND COMPONENT TESTS

SCALE TEST CORRELATION STRAIN GAGED FOR FULL

TESTS TO INTERROGATE FOR ENVIRONMENTALLY INDUCED FAILURE MODES

DAMAGE TOLERANCE TESTS

INCLUDES ENVIRONMENTALLY CONDITIONED TEST SPECIMENS

- BUILDING BLOCK APPROACH
- DAMAGE
- HIGH ENERGY IMPACT
- SCRATCHES
- DELAMINATIONS
- UPPER BOUND SPECTRUM
- MINIMUM-TWO LIFETIME TEST
 AND MEET RESIDUAL STRENGTH
 REQUIREMENTS
- SENSITIVITY TESTS

INITIAL FLAW/DAMAGE ASSUMPTIONS

FLAW/DAMAGE TYPE	FLAW/DAMAGE SIZE
SCRATCHES	SURFACE SCRATCH 4.0 INCHES IN LENGTH AND 0.02 INCH DEEP
DELAMINATION	INTERPLY DELAMINATION EQUIVALENT TO A 2.0-INCH DIAMETER CIRCLE WITH DIMEMSIONS MOST CRITICAL TO ITS LOCATION
IMPACT DAMAGE	DAMAGE FROM A 1.0-INCH DIAMETER HEMISPHERICAL IMPACTOR WITH 100 FT-LB OF KINETIC ENERGY OR WITH THAT KINETIC ENERGY BENERGY REQUIRED TO CAUSE A DENT 0.10 INCH DEEP WHICHEVER IS LEAST.

RESIDUAL STRENGTH REQUIREMENTS

MAXIMUM AVERAGE INTERNAL MEMBER LOAD THAT WILL OCCUR ONCE IN M TIMES THE INSPECTION INTERVAL. WHEN PDM OR PLT IS DETERMINED TO BE LESS THAN THE DESIGN LIMIT LOAD, THE DESIGN LIMIT LOAD SHOULD BE THE REQUIRED RESIDUAL STRENGTH LOAD LEVEL. PXX NEED NOT BE GREATER THAN 1.2 TIMES THE MAXIMIM LOAD IN ONE LETTING TO BE SEED THAN 1.2 TIMES THE MAXIMIM LOAD IN ONE LETTING TO BE SEED THAN 1.2 TIMES THE MAXIMIM LOAD IN ONE LETTING THE THAN 1.2 TIMES THE MAXIMIM LOAD IN ONE LETTING THE THAN 1.2 TIMES THE MAXIMIM LOAD IN ONE LETTING THE THAN 1.2 TIMES THE MAXIMIM LOAD IN ONE LETTING THE THAN 1.2 TIMES THE MAXIMIM LOAD IN ONE LETTING THE THAN 1.2 TIMES THE MAXIMIM LOAD IN ONE LETTING THE THAN 1.2 TIMES THE MAXIMIM LOAD IN ONE LETTING THE THAN 1.2 TIMES THE MAXIMIM LOAD IN ONE LETTING THE THAN 1.2 TIMES THE MAXIMIM LOAD IN ONE LETTING THE THAN 1.2 TIMES THE MAXIMIM LOAD IN ONE LETTING THE THAN 1.2 TIMES THE MAXIMIM LOAD IN ONE LETTING THE THAN 1.2 TIMES THE MAXIMIM LOAD IN ONE LETTING THE THAN 1.2 TIMES THE MAXIMIM LOAD IN ONE LETTING THE THAN 1.2 TIMES THE MAXIMIM LOAD IN ONE LETTING THE THAN 1.2 TIMES THE MAXIMIM LOAD IN ONE LETTING THE THAN 1.2 TIMES THE MAXIMIM LOAD IN ONE LETTING THE THAN 1.2 TIMES THE MAXIMIM LOAD IN ONE LETTING THE THAN 1.3 TIMES THE MAXIMIM LOAD IN ONE LETTING THE THAN 1.3 TIMES THE MAXIMIM LOAD IN OUT LETTING THE THAN 1.3 TIMES THE MAXIMIM LOAD IN OUT LETTING THE THAN THE THAN 1.3 TIMES THE MAXIMIM LOAD IN OUT LETTING THE THAN THE THAN THE THE THE THE THE THE THE THE THE THE	ONE LIFETIME MEMBER LOAD THAT WILL OCO IS DETERMINED TO BE LESS THE THE REQUIRED RESIDUAL STRE	PLT NON-INSPECTABLE *PXX = MAXIMUM AVERAGE INTERNAL INTERVAL. WHEN PDM OR PLT DESIGN LIMIT LOAD SHOULD BE GREATER THAN 1.2 TIMES
20	1/4 LIFETIME	DEPOT OR BASE Level
20	ONE YEAR	SPECIAL VISUAL
100	TEN FLIGHTS**	WALK-AROUND Visual
100	ONE DAY (TWO FLIGHTS)**	GROUND EVIDENT
100	ONE FLIGHT**	IN-FLIGHT EVIDENT
MAGNIFICATION FACTOR	TYPICAL INSPECTION INTERVAL	DEGREE OF INSPECTABILITY

BE GREATER THAN 1.2 TIMES THE MAXIMUM LOAD IN ONE LIFETIME, IF P_{XX} IS GREÂÎER THAN DESIGN LIMIT LOAD. **MOST DAMAGING DESIGN MISSION

CONDITIONED TEST SPECIMENS INCLUDES ENVIRONMENTALLY

BUILDING BLOCK APPROACH

DURABILITY TESTS

DAMAGE

 LOW ENERGY IMPACT (TOOL DROP, HAIL, RUNWAY DEBRIS) UPPER BOUND SPECTRUM

MINIMUM-TWO LIFETIME TEST AND MEET RESIDUAL IMPAIRMENT REQUIREMENTS

SENSITIVITY TESTS

LOW ENERGY IMPACT

(TOOL DROP)

LOW ENERGY IMPACT (HAIL AND RUNWAY DEBRIS)

REQUIREMENTS	NO FUNCTIONAL IMPAIRMENT OR STRUCTURAL REPAIR REQUIRED FOR TWO DESIGN LIFETIMES AND NO WATER INTRUSION NO VISIBLE DAMAGE	NO FUNCTIONAL IMPAIRMENT FOR TWO DESIGN LIFETIMES AND NO WATER INTRUSION . AFTER FIELD REPAIR IF DAMAGE IS VISIBLE
DENSITY	UNIFORM DENSITY 0.8" ON CENTER	
DAMAGE SOURCE	HAIL O.8" DIAMETER SP. GR = 0.9 O.90 FT/SEC NORMAL TO HORIZONTAL SURFACES A5° ANGLE TO VERTICAL SURFACES	RUNWAY DEBRIS • 0.5" DIAMETER 0BJECT • SP. GR = 3.0 • VELOCITY APPROPRIATE TO WEAPON SYSTEM
ZONE	ALL VERTICAL AND UPWARD FACING HORIZONTAL SURFACES	STRUCTURE IN Path of Debris

TASK III

FULL SCALE TESTING

STATIC TESTS

- REQUIRED FOR COMPOSITE STRUCTURE
- DURABILITY TESTS
- NOT REQUIRED FOR COMPOSITE STRUCTURE IF DESIGN DEVELOPMENT TESTS MEET OBJECTIVES
- DAMAGE TOLERANCE TESTS
- NOT REQUIRED FOR COMPOSITE STRUCTURE IF DESIGN DEVELOPMENT TESTS MEET OBJECTIVES

FULL SCALE TESTING

STATIC TESTS

YES 2

CRITICAL ENVIRONMENTALLY

INDUCED FAILURE MODE

ENVIRONMENTALLY TEST WITH

IEMPERATURE WITHOUT

TEST AT ROOM

SPECIAL MOISTURE

CONDITIONING

CONDITIONED ARTICLE

DESIGN LIMIT LOAD **TEST TO 150%** CONDITION

DESIGN LIMIT LOAD

CONDITION

TEST TO 150%

DESIGN DEVELOPMENT STRAIN GAGING TO **CORRELATE WITH**

DESIGN DEVELOPMENT STRAIN GAGING TO CORRELATE WITH

TASK IV

FORCE MANAGEMENT DATA PACKAGE

LOADS/ENVIRONMENTAL SPECTRUM SURVEY

AND

INDIVIDUAL AIRCRAFT TRACKING PROGRAM

MUST BE CAPABLE OF RECORDING HIGH LOAD EVENTS THAT ARE POTENTIALLY DAMAGING TO COMPOSITE STRUCTURES

RISK OF USING B-BASIS ALLOWABLE

 \lesssim = 20

$$P_{L}(y) = \exp \left[-\left(\frac{Y}{\beta_{L}}\right)^{-4} \right]$$

R = REGION WHERE LOAD EXCEEDS STRENGTH PROBABILITY OF FAILURE = $\iint P'_s P'_t dxdy$ in one lifetime for a single aircraft be region where

PROBABILITY OF FAILURE = 1.5 × 10⁻³ IN ONE LIFETIME FOR A SINGLE AIRCRAFT

CONCLUSIONS

TO USE COMPOSITES IN FLIGHT CRITICAL STRUCTURE OF NEW LABORATORY PROGRAMS HAVE PROVIDED THE CONFIDENCE **WEAPON SYSTEMS** THE AIRCRAFT STRUCTURAL INTEGRITY PROGRAM CURRENTLY CONTAINS THE NECESSARY ELEMENTS FOR FULL SCALE DEVELOPMENT OF COMPOSITE STRUCTURES

Damage Tolerance of Composites Criteria and Evaluation

NASA Workshop on Impact Damage to Composites NASA Langley Research Center Hampton, Virginia

March 19-20, 1991

Ray Horton Boeing Commercial Airplane Group Seattle, Washington

PRECEDING PAGE BLANK NOT FILMED

Presentation Areas

- Air Force criteria development
- Boeing Commercial Airplane criteria
- Air Force contract test approach

Air Force Damage Tolerance Criteria Development

Approach

Basic objectives

Flaw selection

Loading requirement

Industry and Air Force

Participation

Concurrence

Basic Objectives

Safety enhancement

Maximum retention of elements of metals requirements

Realistic compliance requirements

Minimum impact on design/weight/cost

Composite Versus Metals Properties

Condition		Composite behavior relative to metals
Load-strain relationship		More linear strain to fallure
Notch sensitivity	Static	Greater sensitivity
	Fatigue	Less sensitivity
Transverse properties		Weaker
Mechanical properties variability		Slightly higher
Sensitivity to aircraft hygrothermal environment		Greater
Damage growth mechanism		In-plane delamination instead of through-thickness cracks

Manufacturing Flaw / Damage Sources

Materials

Material specification controlled—all

Layup / processing

Process specification controlled-most

Assembly

Assembly specification controlled—some

In-Service Flaw / Damage Sources

- Servicing fueling, inspection and maintenance access, handling/moving
- Access damage access attachment fastener holes - exposed edges gouges, scratches
- Impact damage service carts, work stands, toolbox, tools
- Flight / taxi
- Flight: hail, bird and detached fairingimpact/penetration damage
- Taxi: runway debris, blown tires- impact penetration damage
- Repair processing and assembly
- Similar to manufacturing consideration

Concerns and Considerations

- Damage not included
- Battle damage
- Engine disintegration damage
- Lightning damage
- Bird impact damage
- Hail damage
- Flaws not included
- Porosity
- Fastener hole cracks

Should Not Be Considered for Damage Tolerance Requirements Lightning Damage

- Rationale
- Lightning protection needed for other reasons (i.e., fuel ignition etc.)
- Lightning strike damage will be evaluated in protection system development; protection system should preclude damage that is not visual or significant when not a known event
- Strike assumptions are conservative, as well as testing techniques
- Inspection of damage will require assessment for both protection and structural. Significant damage visually detectable
- Strike usually a known event
- Damage definition difficult
- Impact and penetration should blanket this case

Initial Flaw/Damage Assumptions

Elaw / Damade Tvne	Flaw / Damage Size (1)
Scratches	Assume the presence of a surface scratch that is 4.0 iii
	long and 0.0% in deep
Delamination	Assume the presence of an interply delamination that has
	dimensions most critical to its location (2)
Impact Damade	Assume the presence of damage caused by the impact of
	a 1.0-in diameter hemispherical impactor with 100 ft-lb
	of kinetic energy or with that kinetic energy required to
	cause a dent 0.10 in deep, whichever is least

- For limited access areas such as the interior of the wing, the contractor shall have the option of proposing an inspection procedure before closeout which will allow the assumed damage area size to be reduced $\widehat{\Xi}$
- This requirement also accounts for delamination that might occur and be nondetected as a result of in-service repair (2)

Impact Damage Assumptions

Residual Strength Load Requirements

* xx	Degree of Inspectability	Typical Inspection Interval	Perlod of Unrepaired Service Usage	Magnification Factor, M
PFE	In-flight evident	One flight	Return to base	100
Ра	Ground evident	One flight	Two flights of most damaging design mission	100
м Ум	Walk-around visual	Ten flights	Five inspection intervals	100
Psv	Special visual	One year	Two inspection intervals	50
РОМ	Depot or base level	1/4 lifetime	Two inspection intervals	20
PLT	Noninspectable	One lifetime	Two lifetimes	20

 $^{\star}P_{XX} = Maximum$ internal member load that will occur once in M times the appropriate inspection interval Where PDM or PLT is determined to be less than design limit load, the design limit load shall be the required residual strength load level. P_{XX} need not be greater than 1.2 times the maximum load in one lifetime, if greater than design limit load

Impact Damage and Requirement Metal Structure

Ė

Restoration Cycle for Metal Structure Damage Growth Detection and

Impact Damage and Requirement Composite Structure

Conservative Assumptions

- · That an undetected 100 ft lb impact is a roque event
- That the occurrence is at a most critical location
- That the occurrence will account for worst case environmental conditions
- That with the above combined conditions, the airplane will experience an exceptionally high load

Industry and Air Force Participation and Concurrence

- Air Force
- Reviewed approach
- Concurrence
- Flaw selection
- Compliance requirements
- A I A
- Two reviews
- General acceptance
- Compliance requirement realistic

FAA Advisory Circular AC-107A

"It should be shown that impact damage that can be more than the established threshold of detectability for the realistically expected from manufacturing and service, but not selected inspection procedure, will not reduce the structural strength below ultimate load capability. This can be shown by analysis supported by test evidence, or by tests at the coupon, element or subcomponent level"

1891 04 s1h

Boeing Commercial Airplane Design Criteria

Damage Tolerance Design Philosophy

Composite primary structure shall meet the safety standards and the economic maintenance standards of current transport airplanes.

Strength, durability, and damage tolerance allowables and stiffness properties shall include the effects of adverse environments such as moisture, fuel, hydraulic fluid, and temperature.

Internal loads caused by environmentally induced strains shall be combined with ultimate, residual strength, and operating loads. Structure shall be designed to be resistant to damage from normal handling in manufacturing or airline environments. Equivalence to service-demonstrated successful applications shall be obtained.

durability, damage tolerance, and stiffness. Fixed structure shall be Repaired structure shall meet the requirements for static strength, designed for on-airplane repair.

Boeing Commercial Airplane Design Criteria

Ultimate Strength

Accidental Impact Damage

expected from manufacturing and service, but not more than the procedure, will not reduce the structural strength below ultimate established threshold of detectability for the selected inspection It shall be shown that impact damage that can be realistically load capability. (FAA AC 20-107A, 6.g.) Composite primary structure shall be capable of sustaining ultimate source that cannot be seen visually. To assure that this criteria load with isolated impact damage, inflicted by any likely energy is met, the structure shall be designed to sustain ultimate load ,200 in-lb) that is required to produce impact damage that is after being impacted with the minimum energy source (up to visible from a distance of 5 feet with the unaided eye under normal structural inspection conditions.

Boeing Commercial Airplane Design Criteria

Ultimate Strength

Ground hail

Structure exposed to ground hail shall sustain ultimate load and not require immediate structural repair following impacts as specified below, spaced 12-in apart at critical locations.

r, Impact energy, in-lb	500	70 40
Hail diameter, in	2.5	7. T.
Surface position	Horizontal Vertical	Horizontal Vertical
Structure type	Fixed primary	Removeable primary

Lightning strike

load and not require immediate structural repair following the maximum energy strike occurring at the considered location once in the Primary structure exposed to lightning strike shall sustain ultimate life of the airframe.

4 4004 00

A1891 07 c1h

Boeing Commercial Airplane Design Criteria

Damage Growth and Residual Strength

damage growth under operating loads following isolated impact damage Composite primary structure shall be designed to preclude detrimental at the energy levels defined for ultimate strength requirements with accidental impact damage.

Composite primary structure shall be designed damage tolerant, i.e., it shall be shown by analysis or test that fatigue, corrosion, or accidental damage will be detected by the structural inspection plan and prevent catastrophic failure during the operational life of the airframe.

requirements (FAR 25.571(b)) following failure or obvious partial failure of a single structural unit (e.g., a stiffener with two skin bays, a chord Primary composite structure shall satisfy regulatory residual strength with one skin bay, or similar combinations).

AIR FORCE DAMAGE TOLERANCE REQUIREMENTS

VALIDATION PROGRAM

Building-Block Test Approach

Coupon Basic Property Test Matrix

						Fatigue	er
Specimen		Static		Con	stamp	Const amplitude	Sprectrum
description	RT dry	RT wet	-75°F dry	RT dry	RT wet	.75°F dry	RT dry
Delam - ination	•	•	•	•	•	•	•
200-in-lb Impact damage	•			•			
350-in-lb Impact damage	•			•			•

Test Setup

Material: AS6/2220-3

Specimen: 0.25 x 5.0 x 10.0

1) R = 10

Location of Delaminations in 3-Stringer Panels

ΔIA

2.5

Impact Damage on 3-Stringer Panels Ultrasonic Pulse Echo Readings

1200-in-lb impacts 1-in-dia tip

090

Impact Damage on 3-Stringer Panel **Ultrasonic Pulse Echo Readings**

Multiple Impact Damage

Internal Stringer Flange Impact Damage

Multiple Impact Static Test Results

• AS4/3501-6

Adjusted value

Multiple impact 1200 in-lb + 240 in-lb

Effect of Stitching

Stitching

- 0.25 inch pitch and row spacing
- Thru skin, planking, and stringer flange edge
- Kevlar thread

Other

- 10 / 80 / 10 Skin layup
- 1200 In-Ib impact
- Tested wet at 180

Results

• Failed at 114% of control

First Panel After Initial Consolidation Showing Void Areas THERMOPLASTIC - PEEK APC - 2

THERMOPLASTIC - PEEK APC - 2
Panel After Tool
Rework and Reconsolidation

Comparison of Post-Impact Failure Strain AS4 / APC-2 (PEEK) Versus AS4 / 3501-6

100 ft-lb impact

Fatigue Test Results of Impacted Laminates

Impact in-lb

500 200

500 250

250

Task II 5-Stringer Test Panels

Prior to Test

Typical Blade-Stiffened Panel Failure

5-Stringer Panel

STRINGER SIDE

SKIN SIDE

Typical I-Stiffened Panel Failure 5-Stringer Panel

STIFFENER SIDE

SKIN SIDE

Northrop Wing Box Test

- Conventional composite fighter wing design
- Multispar, hard skin
- Mechanically fastened upper skin to spar
- Harsh load cycling requirement

Northrop Fighter Wing Test Box

3-Stringer Panel Design

8 in. Stringer Spacing

9-56 92-8

• Panel size: 22.4 in x 19.5 in

Stringer spacing: 8 inDesign load: 25k/in

Ultimate design strain: 0

• Material: AS4/3501-6

Nominal ply thickness: 0.0073

ORIGINAL PAGE IS OF POOR QUALITY

Multispar Wing Box Failure Summary

Failure occurred after 355 flight cycles (0.07 lifetimes) at a maximum spectrum load. The box had been designed to the following upper skin strain levels without consideration for damage tolerance

Design ultimate strain - 0.004

Design limit strain - 0.00267

· Maximum spectrum strain - 0.00325

The box would require redesign to meet damage tolerance requirements.

Boeing Wing Box Test

- Advanced design composite transport wing
- Multirib, soft skin
- Co-cured stiffeners with integral reinforcing planks
- Moderate load cycling requirement

Boeing Transport Wing Test Box

Multirib Wing Box in Loading Fixture Installation of Strain Gages

Upper Surface Panel Compression Failure Close-up

Conclusions

· Failure was in the test box upper surface panel and initiated at an induced impact damage location • The strain at failure was 4200 μ in/in, at 105% of the design goal

· The test met all qualification requirements

A1891.09 s

Air Force Damage Tolerance Program Results

- Establishment of damage tolerance specification requirements.
- Development and use of a building-block test approach to demonstrate specification compliance.
- Evaluation of a tough thermoplastic material to demonstrate superior damage tolerance properties.
- Development of analysis methods to predict damage characteristics.
- Testing to investigate methods and materials to improve damage tolerance.
- composite fighter and transport structure to resist battle damage. Assessment of the characteristic ability of the representative

National Aeronautics and Space Agrinostration	Report Docume	ntation Page		
1. Report No.	2. Government Accession	No.	3. Recipient's Catalog	No.
NASA CP-10075				
4. Title and Subtitle			5. Report Date	
NASA Workshop on Impact Dan		July 1991		
171D/1 Workshop on Impact Sun		6. Performing Organization Code		
7. Author(s)			8. Performing Organiz	ation Report No.
C. C. Poe, Jr., Compiler				
•		ŀ	10. Work Unit No.	
			505-63-50-04	
Performing Organization Name and Addre	•	11. Contract or Grant No.		
NASA Langley Research Center				
Hampton, VA 23665-5225			13. Type of Report and	Period Covered
12. Sponsoring Agency Name and Address	,, 			
National Aeronautics and Space A	-	Conference Put 14. Sponsoring Agency		
Washington, DC 20546-0001			14. Sponsoning Agency	Code
15. Supplementary Notes				
Primarily viewgraphs.				
This document is a compilation of Composites held on March 19 and Mechanics of Materials Branch of objective of the workshop was to structures and identify deficiencies addressed. Actions to eliminate to of attendees is also included.	d 20, 1991, at Langle f NASA Langley Re- review technology for es. Research, develo	ey Research Center search Center spor or evaluating impa- pment, design met es were developed	er, Hampton, Virg nsored the worksh et-damage toleran shods, and design . A list of those a	inia. The lop. The loce of composite criteria were
17. Key Words (Suggested by Author(s))		18. Distribution Statem	ent	
polymer-matrix composites aerospace structures				
impact damage		Unclassified - Unlimited Subject Category - 24		
residual strength			Subject Catego	1y - 24
impact mechanics 19. Security Classif. (of this report)	20. Security Classif. (of the	l nis page)	21. No. of pages	22. Price
Unclassified	Unclassified		483	A21