Interactive Remote Sensing Image Segmentation

> Motivation:

- **High Cost:** Manual annotation of remote sensing images is expensive and time-consuming.
- Existing methods exhibit deficiencies in edge feature extraction, utilization of interactive information, and performance in complex scenes.

> Objectives:

• Enhance interactive segmentation performance to reduce manual annotation workload.

Limitations of Existing Methods:

- Poor edge feature extraction.
- Insufficient utilization of user interaction.
- Weak performance in complex scenes.

Our Solution:

- 1. Proposed a dual-branch network architecture, comprising a Global Feature Extraction Branch and an Edge Information Enhancement Branch.
- 2. We adopted a collaborative feedback mechanism to refine local features and mitigate the dilution of interactive information.

DBCF-Net: Enhanced Interactive Remote Sensing Image Segmentation with a Dual-Branch Network and Collaborative Feedback Integration," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

Interactive Remote Sensing Image Segmentation

> Innovations:

A. Dual-Branch Architecture:

- Global Feature Extraction Branch
- Edge Information Enhancement Branch

B. Collaborative Feedback and Integration Mechanism:

- Focus-and-Fixate Correction Module
- Collaborative Feedback Fusion Module

> Experimental Results:

- Performance: On three benchmark datasets, our DBCF-Net outperformed existing methods like RITM on the Number of Clicks metric. It achieved a 90% IoU with an average of only 2.51 clicks.
- **Ablation Studies:** The results of ablation experiments confirmed the contributions of both network branches and the feedback mechanism.

DBCF-Net: Enhanced Interactive Remote Sensing Image Segmentation with a Dual-Branch Network and Collaborative Feedback Integration," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing