A Book of Abstract Algebra (2nd Edition)

Chapter 32, Problem 4ED

Bookmark

Show all steps: (

ON

Problem

If $\alpha = \sqrt[4]{2}$ is a real fourth root of 2, then the four fourth roots of 2 are $\pm \alpha$ and $\pm i\alpha$. Explain parts 1–6, briefly but carefully:

$$[\mathbf{Q}(\alpha, i) : \mathbf{Q}] = 8.$$

Step-by-step solution

Step 1 of 2

The objective is to show that $\left[\mathbb{Q}\left(\sqrt[4]{2},i\right):\mathbb{Q}\right]=8$.

Comment

Step 2 of 2

Clearly, $\sqrt[4]{2}$ is the root of $x^4 - 2$.

Also, x^4-2 is irreducible polynomial of lowest degree 4 over $\mathbb Q$ by Eisenstein (p=2).

Therefore
$$, \lceil \mathbb{Q}(\sqrt[4]{2}) : \mathbb{Q} \rceil = \deg(x^4 - 2) = 4.$$

Because $\mathbb{Q}(\sqrt[4]{2})$ is a subfield of the reals and so $i \notin \mathbb{Q}(\sqrt[4]{2})$.

Hence, $x^2 + 1$ is irreducible over $\mathbb{Q}(\sqrt[4]{2})$.

So
$$\cdot \left[\mathbb{Q}\left(\sqrt[4]{2},i\right) : \mathbb{Q}\left(\sqrt[4]{2}\right) \right]$$
 is at least 2.

But i is a root of $x^2+1\in\mathbb{Q}\left(\sqrt[4]{2}\right)[X]$, so the degree of $\mathbb{Q}\left(\sqrt[4]{2},i\right)$ over $\mathbb{Q}\left(\sqrt[4]{2}\right)$ is at most 2, and therefore is exactly 2.

Hence
$$, \left[\mathbb{Q}\left(\sqrt[4]{2}, i\right) : \mathbb{Q}\left(\sqrt[4]{2}\right) \right] = 2.$$

Thus,
$$\left[\mathbb{Q}\left(\sqrt[4]{2},i\right):\mathbb{Q}\right] = \left[\mathbb{Q}\left(\sqrt[4]{2},i\right):\mathbb{Q}\left(\sqrt[4]{2}\right)\right]\left[\mathbb{Q}\left(\sqrt[4]{2}\right):\mathbb{Q}\right]$$

= 2 · 4
= 8.

Comment