Indian Institute of Space Science and Technology AV336 - Digital Signal Processing Lab Department of Avionics

Labsheet 9

- 1. Visualization of the bilinear transform: The bilinear transform is a map between the s-plane and the z-plane and is defined as $z=\frac{1+sT/2}{1-sT/2}$. The inverse map is defined as $s=\frac{2}{T}\frac{1-z^{-1}}{1+z^{-1}}$. In this task you will visualize how an area in the s plane is mapped to z-plane and vice-versa.
 - (a) Select $N \times M$ points $s_{i,j}$ uniformly in any rectangular region that you wish in the splane. (Hint: you can use meshgrid for this purpose). On the z-plane indicate where these points are mapped to under the bilinear transform.
 - (b) Similarly select $N \times M$ points $z_{i,j}$ uniformly in any rectangular region that you wish in the z-plane. (Hint: you can use meshgrid for this purpose). On the s-plane indicate where these points are mapped to under the bilinear transform.
 - (c) Verify (using a sufficiently dense set of points) whether the $j\Omega$ axis is mapped to the unit circle under the bilinear transform.
- 2. Filter design using least squares inverse design: Suppose the desired frequency response $H_d(e^{j\omega})$ can be realized by the causal system with the following z-transform,

$$H_d(z) = \frac{1 + z^{-1}}{1 - 0.5z^{-1}}.$$

Suppose we approximate $H_d(z)$ using a H(z) of the form

$$\frac{b_0}{1 - a_1 z^{-1} - a_2 z^{-2}}.$$

Using least squares inverse design, obtain the values of b_0 , a_1 and a_2 . We note that in least squares inverse design, a set of linear equations have to be written down which constrain the values of b_0 , a_1 and a_2 . Explore the effect of the number of linear equations that you have on your answer.

- 3. Filter design using Butterworth analog filter design and impulse invariance: Suppose we have the following desired requirements $H_d(e^{j\omega})$ on the magnitude of digital filter:
 - (a) Passband edge = 0.2π
 - (b) Stopband edge (starting freq) = 0.4π
 - (c) Magnitude gain in passband to be $\in [1, 1 \delta_p]$, where $\delta_p = 0.05$
 - (d) Magnitude gain in stopband to be $\in [0, \delta_s, \text{ where } \delta_s = 0.001$

Note that no constraints are being put on the phase response of the filter here. In the following, for the impulse invariance based design assume that T = 1.

- (a) Assuming that there is no aliasing and that $H_d(e^{j\omega})$ has been obtained from sampling of an analog signal $h_a(t)$ uniformly at rate $\frac{1}{T}$, what is $H_a(j\Omega)$ (the CTFT of $h_a(t)$)?.
- (b) We note that $H_a(j\Omega)$ can be interpreted as the specification for the design of an analog filter. Obtain a Butterworth filter that is a good approximation to $H_a(j\Omega)$.
- (c) Write down the location of the poles of the analog Butterworth filter $H_a(s)$?
- (d) Under the impulse invariance condition, where are these poles mapped to in the z-plane. Write down the locations of the poles.

Exploration:

- (a) Repeat the design process for $T = \frac{1}{4}$. Is there any change in the frequency response of the realized digital filter.
- (b) Repeat the design process but by not compensating for aliasing in the stopband attenuation. How much is stopband attenuation in the final design? Does it meet the given requirements on $H_d(e^{j\omega})$?
- (c) Using internet resources or Matlab help, find out what the inbuilt function "butter" does. How will you use "butter" for the design problem above?
- (d) Using internet resources or Matlab help, find out what the inbuilt function "filter" does. Suppose $x[n] = 2\cos(0.1\pi n) + 5\cos(0.6\pi n)$ for $n \in \{0, ..., 499\}$. Simulate what happens when the filter that you have designed above is used to filter x[n] in order to obtain y[n]. Plot y[n] as well as its DTFT.