TOP2

Mesh:

Entità	Dimensioni
Nodi	150353
Elementi	680208

TIPO DI ELEMENTO:

Connettività	Statistiche	
TE4	680208 (100,00%)	

Materiali.1

Materiale	Acciaio	
Modulo di Young	2e+011N_m2	
Modulo di Poisson	0,266	
Densità	7860kg_m3	
Coefficiente di dilatazione termica	1,17e-005_Kdeg	
Limite di proporzionalità	2,5e+008N_m2	

Caso di analisi statica

Condizioni di bordo

Figure 1

Calcolo STRUTTURA

Numero di nodi : 150353 Numero di elementi : 680208 Numero di D.O.F. : 451059 Numeri di relazioni di contatto : 0 Numero di elementi cinematici : 0

Tetraedro lineare: 680208

Calcolo REAZIONI

Nome: Vincoli.1

Numero di S.P.C: 795

Calcolo CARICHI

Nome: Carichi.1

Risultante del carico applicato:

Fx = 5.948e-010 N Fy = 2.095e-009 N Fz = -2.655e+004 N Mx = 6.970e+003 Nxm My = 7.309e+004 Nxm

Mz = 1.391e-009 Nxm

Calcolo MASSA STRUTTURALE

Nome: StructuralMassSet.1

Numero di linee : 451059 Numero di coefficienti : 8982876 Numero di blocchi : 18 Numero massimo di coefficienti per blocco : 500000

Dimensione totale della matrice : 104 . 52 Mb

Massa strutturale: 2.604e+003 kg

Coordinate del momento di inerzia centrale

Xg: 2.843e+003 mm Yg:-2.506e+002 mm Zg: 1.649e+002 mm

Tensore di inerzia nell'origine: kgxm2

5.270e+002 1.728e+003 -9.598e+002 1.728e+003 2.262e+004 1.377e+002 -9.598e+002 1.377e+002 2.258e+004

Calcolo RIGIDEZZA

Numero di linee : 451059 Numero di coefficienti : 8982876 Numero di blocchi : 18 Numero massimo di coefficienti per blocco : 500000

Dimensione totale della matrice : 104 . 52 Mb

31/01/25, 18:48

Calcolo SINGOLARITA'

Vincolo: Vincoli.1

Numero di singolarità locali 0 Numero di singolarità in traslazione : 0 Numero di singolarità in rotazione : 0 Tipo di vincolo generato : MPC

Calcolo VINCOLI

Vincolo: Vincoli.1

Numero di vincoli : 795 Numero di coefficienti Numero di vincoli fattorizzati: 795 Numero di coefficienti Numero di vincoli differiti 0

Calcolo NORMALIZZATO

Metodo **SPARSE**

Numero dei gradi di fattorizzazione 450264 Numero di supernodi 9231 Numero di indici in sovrapposizione 1731720 Numero di coefficienti : 201929034 Massima ampiezza frontale 4881 Massima dimensione frontale : 11914521 Dimensione della matrice di fattorizzazione (MB) : 1540.6

Numero di blocchi 101

Numero di Mflops per la fattorizzazione 2.829e+005 8.100e+002 Numero di Mflops per la soluzione Pivot relativo minimo 1.035e-002

Calcolo METODO DIRETTO

Nome: Soluzione del caso di analisi statica.1

Vincolo: Vincoli.1

Viene presa in considerazione la massa della struttura

Carico: Carichi.1

Energia di deformazione: 2.196e+000 J

Equilibrio

Componenti	Forze applicate	Reazioni	Residuo	Errore relativo di ampiezza
Fx (N)	5.9481e-010	-3.8894e-007	-3.8835e-007	1.8836e-010
Fy (N)	2.0955e-009	1.9776e-007	1.9985e-007	9.6936e-011
Fz (N)	-2.6547e+004	2.6547e+004	2.5369e-007	1.2305e-010
Mx (Nxm)	6.9703e+003	-6.9703e+003	-4.3930e-007	5.4357e-011
My (Nxm)	7.3095e+004	-7.3095e+004	-5.7110e-007	7.0666e-011
Mz (Nxm)	1.3907e-009	-1.0850e-007	-1.0711e-007	1.3253e-011

Soluzione del caso di analisi statica.1 - Mesh su deformata.1

Figure 2

Mesh su deformata ---- Sul bordo ---- Su tutto il modello

Soluzione del caso di analisi statica.1 - Sforzi alla Von Mises (valori nodali).2

Figure 3

Elementi 3D: : Componenti: : Tutti

Mesh su deformata ---- Sul bordo ---- Su tutto il modello

Soluzione del caso di analisi statica.1 - Vettore traslazione.1

Figure 4

Elementi 3D: : Componenti: : Tutti

Mesh su deformata ---- Sul bordo ---- Su tutto il modello