

# UNIVERSIDADE FEDERAL DO RIO DE JANEIRO ESCOLA DE QUÍMICA



### EQE776 Modelagem e Simulação de Processos

Aula 00. Apresentação da disciplina

Professor: Roymel Rodríguez Carpio

E-mail: roymel@eq.ufrj.br

## Perguntas necessárias

- □Como é possível determinar as dimensões dos equipamentos, durante o projeto de um processo?
- □Como determinar as condições de operação, para um processo já existente, que permitam obter determinadas metas nas variáveis de saída?
- □Como saber a evolução dinâmica que apresentará um processo químico ou bioquímico a partir de uma condição inicial?
- DÉ possível atingir um estado estacionário estável para um determinado processo químico ou bioquímico?

### Objetivo geral da disciplina

### **Objetivo:**

☐ Habilitar o aluno no desenvolvimento de modelos fenomenológicos, no regime estacionário ou dinâmico, para processos químicos e bioquímicos.

Habilitar o aluno para a implementação e interpretação crítica de simulações de processos químicos e bioquímicos, no regime estacionário ou dinâmico, utilizando tanto softwares livres como comerciais.

## Programa da disciplina

- 1. Modelagem matemática: O modelo matemático; Classificação das variáveis em modelos de processos; Modelos teóricos e empíricos; Equações constitutivas e leis de conservação; Modelos lineares e não lineares; Modelos determinísticos e estocásticos; Modelos concentrados e distribuídos; Modelos estacionários e dinâmicos; Adimensionamento de modelos.
- 2. Simulação de processos: Análise de consistência; Simulação estática; Simulação dinâmica; Análise de estabilidade; Multiplicidade de estados estacionários; Análise de sensibilidade; Simulação em tempo real.

### Formato das aulas

#### <u>Aulas</u>

- As aulas serão ministradas de modo presencial.
- Os slides das aulas, assim como outros materiais complementares, estarão disponíveis no Google Classroom da disciplina (código: p2nfzser).

#### **Atendimento extraclasse**

Dúvidas e demais questões podem ser consultadas pelo e-mail a qualquer momento ou presencialmente, na minha sala, mediante agendamento prévio.

## Programas de computador

- ☐ Ao longo da disciplina serão utilizados tanto softwares livres quanto comerciais:
  - Python
  - EMSO
  - DWSIM
  - Aspen Hysys
  - Aspen Plus

### Sistema de avaliação

```
☐ 1 Trabalho Individual (8 pontos)
☐ 1 Lista de Exercícios (2 pontos)
```

Aspectos a serem considerados na avaliação do trabalho:

- ☐ Processo proposto para ser modelado e simulado: até 2 pontos;
- ☐ Implementação do modelo e da simulação: até 2 pontos;
- ☐ Apresentação do trabalho: até 3 pontos;
- ☐ Participação nas apresentações (perguntas, comentários): até 1 ponto.

# Calendário preliminar

| Entregas:                                           |            |
|-----------------------------------------------------|------------|
| Lista de exercícios, Relatório e Código do trabalho | 01/12/2025 |

| Apresentações:                      |            |
|-------------------------------------|------------|
| Apresentação oral do Trabalho Final | 18/12/2025 |

### **Dúvidas?**



### Recados importantes

☐ Próxima aula: Modelagem matemática (parte 1)

"Ensinar não é transferir conhecimento, mas criar as possibilidades para a sua própria produção ou a sua construção."

Paulo Freire