fold: 構造化関数プログラミング

胡 振江 東京大学 計数工学科 2006年度

Copyright © 2006 Zhenjiang Hu, All Right Reserved.

内容

- 組型とその上の関数
 - ▶ 基本関数 (構成関数 + 分離関数)
 - ▶ 有理数上の計算
- 関数型とその上の関数
 - ▶ 関数合成
 - ▶ 逆関数
 - ▶ 正格関数・非正格関数
- リスト型とその上の関数
 - ▶ リスト上の再帰関数
 - ▶ リスト上の標準再帰関数形 fold

組型とその上の関数

型 (T_1,T_2) は第 1 要素が T_1 型の値で第 2 要素が T_2 型の値であるような値の対で構成される型である.

関数型と関数上の関数

関数型 (→) はすべての関数の集まりである.

$$+, -, *, /, \text{ square}, (\land), \text{ ord}, \text{ until}, \dots$$

関数はあらゆる型の値を引数にとりうるし,あらゆる種類の値を結果として返すことができる.

高階関数: 引数として関数をとる、あるいは結果として関数を返す関数.

例:微分演算子

 $\frac{d}{dx}$:: 関数 \rightarrow 導関数

関数合成

● (○): 二つの関数を合成する演算子.

(o) ::
$$(\beta \to \gamma) \to (\alpha \to \beta) \to (\alpha \to \gamma)$$

 $(f \circ g) x = f(g x)$

• 関数合成は結合性をもつ演算子.

$$(f \circ g) \circ h = f \circ (g \circ h)$$

逆関数

単射関数 $f::A \rightarrow B$ に対して, A の任意の値 x に対して,

$$g(f x) = x$$

となる g を f の逆関数といい , 一般的に f^{-1} と表す .

例:関数

$$f$$
 :: Int \rightarrow (Int, Int) f x = (sign x , abs x)

は単射であり,次の逆関数をもつ.

$$f^{-1}$$
 :: $(\operatorname{Int}, \operatorname{int}) \to \operatorname{Int}$ $f^{-1}(s, a) = s * a$

正格関数と非正格関数

• 正格関数

▶ 定義: $f \perp = \bot$ であるような関数 f を正格関数 (strict function) という.

▶ 例: $square(1/0) = \bot$

• 非正格関数

▶ 定義:正格でない関数

▶ 例:次の定義について考えよう.

three :: $Int \rightarrow Int$

three x = 3

このときに , three (1/0) = 3 である .