

HDL-Wideband-PFB-Lab-Test

:≡ Tags

Design Files

Simulink file

Python script

SNAP set up

Signal Chian

ADC mode

Input signal

Noise generator

Signal generator

Test result

ADC RMS

Wideband PFB test result

Design Files

Simulink file

https://github.com/liuweiseu/snap_hdl_tut/blob/master/snap_hdl_pfb_v2.slx

Python script

https://github.com/liuweiseu/snap_scripts/blob/master/ipynb/snap_hdl_pfb.ipynb

Note: Please make sure you use the correct branch of mlib_devel, casper_dspdevel and casperfpga mentioned in the ipynb.

SNAP set up

Signal Chian

ADC mode

• Sampling Freq: 500MSps

Input signal

Noise generator

• PN: <u>NOD 5108</u>

• Attenuation: -11dB

Signal generator

• PN: aGILENT 83630L

• Freq: 150MHz

• Amp: -6dBm

Test result

ADC RMS

Fabric Clock Freq : 250.311637 MHz RMS of ADC_I : 13.911762 RMS of ADC_Q : 13.503327

Wideband PFB test result

• acc_num = 1

acc_num = 128sig power: 107.3; noise power:84.5—> SNR: 23.8dB.

The frequency resolution is:

$$500MHz/1024 = 488.28kHz$$

In theory, the power of noise is:

$$-75 + 10 log (488.28*10^3) - 11 = -29.11 dBm$$

The signal amp is -6dBm, so the SNR should be **23.11dB**, which is almost the same as the result we got in the lab.