Transparency or Newsworthiness? The Probability of Constitutional Court Press Release Occurrence

Philipp Meyer

> 11th Annual CAP Conference **Panel E1**: Thursday 16:00-17:45 Amsterdam • 5st July 2018

Research Question & Gap

Question:

When do decision-related court press releases occur?

- Judicial politics
 - \rightarrow Courts promote decisions to enhance transparency
- Communication research
 - \rightarrow Political actors aim to attract media attention which is why courts promote decisions
- \rightarrow Little research about the occurrence of court press releases
- \rightarrow Based on a novel data set, this study tries to fill this research gap

Condition I: Transparency

- Dilemma: Courts face an implementation problem
- To be assertive courts need: 1) transparency; 2) an informed public
- Only if the public is able to monitor political behavior in the context of court decisions, non-compliance of politicians can be detected (Vanberg 2005)
 - \rightarrow A informed public is a "baseline source of power" for courts (Staton 2010, 13)

Condition I: Transparency

- Transparency is needed where political evasion is painful: decisions that strike down the status quo (Vanberg 2005)
- Court press releases enhance transparency (Staton 2010)
 - \rightarrow Hypothesis 1: Court press releases are most likely to occur if decisions change the status quo
- Transparency is harder to achieve for complex policy issues (Vanberg 2005, Krehbiel 2016)
 - \rightarrow Hypothesis 2: Court press releases are most likely to occur if decisions deal with complex issues

Condition II: Newsworthiness

- Effectiveness of policy is influenced by the media, which is why political actors adopt the media's logic to attract media attention (Esser 2013)
- This is done by presenting policy in a media-friendly way
 - \rightarrow Internalization of news factors & professionalization of communication style (Strömbäck / Van Aelst 2013)
 - \rightarrow Presenting newsworthy and easy consumable information

Condition II: Newsworthiness

- Press releases are used to present information and are defined as information subsidies which reduce journalists costs of gathering information (Gandy 1982)
 - \rightarrow Hypothesis 3: Court press releases are most likely to occur if decisions contain newsworthy aspects

Data & Methods

Data

- Time frame: January 1997 May 2018
- Decisions by the Germany Federal Constitutional Court, available on the court's website
 - $\rightarrow N = 6755$ decisions
- Decision characteristics and the decision texts are scraped and processed to create the data set

Methods

- Research aim: predict press release occurrence & identify factors which influence the occurrence
 - \rightarrow Binary logic: whether a press release occurs or not
 - \rightarrow Logistic regressions are suitable

Measurement

• Dependent variable

• Press release occurrence: existence of a court press release accompanying a decision

• Independent variables

- Status quo change: existence of a status quo change enhance the probability of PR occurrence
- Case complexity: existence of a complex policy issue **enhance** the probability of PR
- Newsworthiness: existence of ...
 - ▷ ... an oral hearing **enhance** the probability of PR
 - ▷ ... a separate opinion **enhance** the probability of PR
 - ▷ ... a abstract review proceeding **enhance** the probability of PR
 - ▷ ... a constitutional complaint **enhance** the probability of PR
 - ▷ ... a concrete review proceeding **decrease** the probability of PR

Results

Table 1: Logit regression

	Dependent variable: Occurence of press releases			=
Model 1	Model 2	Model 3	Model 4	Hypothesis
2.221*** (0.134)			1.563*** (0.157)	+
	0.596*** (0.059)		0.414*** (0.064)	+
		2.294*** (0.372)	2.125*** (0.383)	+
		2.923*** (0.232)	2.684*** (0.237)	+
		-0.164 (0.106)	-0.070 (0.108)	-
		1.138*** (0.157)	0.765*** (0.166)	-
		0.960*** (0.329)	-0.052 (0.356)	+ / -
-1.379*** (0.031)	-1.532*** (0.042)	-1.305*** (0.101)	-1.610*** (0.110)	
6,755 -3,422.074 6,848.149	6,755 -3,523.076 7,050.152	6,755 -3,322.522 6,657.043	6,755 -3,246.090 6,508.180	
67 %	66 %	68 %	69 %	
	2.221*** (0.134) -1.379*** (0.031) -6,755 -3,422.074 6,848.149	Occu Model 1 2.221*** (0.134) 0.596*** (0.059) -1.379*** (0.031) -1.532*** (0.042) 6.755 -3,422.074 -3,523.076 6,848.149 7,050.152	Occurence of press re Model 1 Model 2 Model 3	Model 1 Occurrence of press releases Model 2 Model 3 Model 4 2.221*** (0.134) 1.563*** (0.157) 0.596*** (0.059) 0.414*** (0.064) 2.294*** (0.372) 2.125*** (0.332) 2.923*** (0.232) 2.684*** (0.232) 4.138*** (0.106) 0.108) 1.138*** (0.157) 0.765*** (0.157) 0.960*** (0.329) 0.0356) -1.379*** (0.031) -1.532*** (0.042) -1.305*** (0.101) -1.610*** (0.110) 6,755 -3,422.074 -3,523.076 -3,523.076 -3,7322.522 -3,246.090 -6,881.149 7,050.152 -0,687.043 6,550.81.80

Results

Figure 1: Predicted probability and first differences

N=6755 court decisions by the GFCC; 1000 simulations from the logit Models 1 & 4 in table 1. The status quo change is varied, while the other variables are held constant at their means.

• Average predicted probability shows that press releases are most likely to occur when the court changes the status quo

Conclusion & Outlook

- Court press releases are an institutional tool which are most likely to occur when the court strikes down the status quo
- \rightarrow Strengthens the assumption and findings of Staton
- \rightarrow Problems:
 - Unexplained variance (only 4 % of decisions change the status quo)
 - Theory and operationalization only loosely connected (?)
- \rightarrow Next steps:
 - Build stronger theory on mediaziation & newsworthiness (or replacing by litigation PR theories?)
 - Expand the data set
 - Enhance the complexity measurement

Thank you for your attention!

p.meyer@ipw.uni-hannover.de

5st July 2018