Atribuição autoral de textos digitais

José Eleandro Custódio

Programa de Mestrado em Sistemas de Informação - PPgSI Universidade de São Paulo - USP

Novembro de 2018

Informações gerais

- Orientador: Prof. Dr. Ivandré Paraboni
- Semestre no curso: 4o.
- Qualificação: 29/10/2018
- Defesa: realização planejada para 30/06/2019
- Linha de pesquisa: Inteligência de sistemas
- Área de pesquisa: Inteligência artificial
- Área de aplicação: Linguística computacional / Língua natural

Agenda

- Introdução
- 2 Conceitos
- Trabalhos relacionados
- 4 Experimentos
- Projeto de pesquisa
- 6 Referências

Introdução

Tema

- A atribuição autoral de textos digitais (AA) (do inglês, Authorship Attribution) visa identificar quem é o autor de um determinado texto a partir de um conjunto de autores possíveis (POTTHAST et al., 2017).
- A premissa principal da AA é que o autor deixa rastros de seu estilo, sendo que esses rastos podem ser a preferência por certas palavras, o tamanho do vocabulário, a utilização de pontuação e a repetição de certos elementos gramaticais.
- A quantificação do estilo de escrita, ou estilometria, compreende um vasto conjunto de medidas e técnicas que buscam extrair uma "biometria" textual (NEAL et al., 2017).

Aplicações da Atribuição Autoral

Aplicações da AA

Sua aplicação pode ajudar:

- em casos de escândalos de corrupção, como no caso Enron (KLIMT; YANG, 2004; CHEN et al., 2011).
- na identificação de abusos na utilização da internet (VARTAPETIANCE; GILLAM, 2012).
- na detecção de notícias falsas (PENG; CHOO; ASHMAN, 2016).
- na detecção de casos onde uma pessoa tenta se passar por outra (KOPPEL; SEIDMAN, 2018).
- na atribuição autoral de código-fonte (ALSULAMI et al., 2017)
- na detecção de pseudônimos (JUOLA, 2015)

Áreas de interesse

- Humanidades Digitais
- Análise Forense
- Linguística computacional

Métodos para atribuição autoral

Os métodos computacionais para atribuição autoral utilizam:

- Análise estatística multivariada (SAVOY, 2016; EVERT et al., 2017).
- Métodos baseados em vizinho mais próximo (KOCHER; SAVOY, 2017; KOPPEL; SEIDMAN, 2018; VARELA et al., 2016).
- Modelos de compressão (HALVANI; GRANER, 2018).
- Aprendizado de máquina com SVM (SCHWARTZ et al., 2013; STAMATATOS, 2017).
- Redes neurais recorrentes (BAGNALL, 2016).
- Redes neurais de convolução (SHRESTHA et al., 2017; SARI; STEVENSON, 2016).

Projeto - Lacunas e motivação

Lacunas gerais:

- A AA é um problema de pesquisa n\u00e3o totalmente resolvido (POTTHAST et al., 2017).
- É o tema da série de competições PAN-CLEF (KESTEMONT et al., 2018).
- Estudos desta área exploram técnicas independentes de idioma e de domínio, subutilizando recursos linguístico-computacionais.

O trabalho em Custódio e Paraboni (2018) apresentou o melhor desempenho global na edição de 2018 da competição PAN-CLEF, no entanto, deixa as seguintes lacunas:

- não tirou proveito de conhecimentos dependentes de idioma como part-of-speech (POS).
- e modelos de representação distribuída (word embeddings.
- foi restrito ao domínio Fanfic.
- não considerou dados em português brasileiro.

Projeto - Hipóteses

Este trabalho considera as seguintes hipóteses:

H1:

O uso de modelos independentes de idioma do tipo de distorção textual permite filtrar aspectos específicos do texto, e a combinação de diversos tipos de distorção pode aumentar o desempenho de sistemas de AA.

H2:

O uso de modelos dependentes de idioma do tipo *part-of-speech* extraídos por anotadores baseados em aprendizado profundo pode aumentar o desempenho de sistemas de AA.

H3:

O uso de modelos dependentes de idioma do tipo representação distribuída (embeddings) pode aumentar o desempenho de sistemas de AA.

Projeto - Objetivo

Objetivo Geral

O objetivo geral deste trabalho é enriquecer modelos de atribuição autoral de texto digitais com conjunto fechado de autores utilizando conhecimentos dependentes e independentes de idioma combinados com técnicas de aprendizados de máquina, de modo a obter resultados superiores ao estabelecido em trabalhos anteriores.

Definições

Definições

- A atribuição autoral (AA) é uma técnica computacional que visa identificar o autor de um texto a partir de um conjunto de autores possíveis, baseando-se em padrões de estilo deixados pelos autores (POTTHAST et al., 2017).
- Do ponto de vista de aprendizado de máquina, a AA pode ser vista como um problema de classificação multi-classes (STAMATATOS, 2009).
- A quantificação do estilo de escrita, ou estilometria, compreende um vasto conjunto de medidas e técnicas que buscam extrair uma "biometria" textual (NEAL et al., 2017).

Apesar da similaridade com a tradicional tarefa de classificação de documentos, a AA busca elementos inconscientes da escrita que sejam independentes do conteúdo semântico do texto (KEŠELJ et al., 2003).

Conceitos - Fatores que influenciam a AA

Canal

- E-mail, jornais, livros, SMS
- Textos mais ou menos formais.

Tópico

- Economia, celebridades, dia-a-dia
- Influencia o vocabulário.

Tamanho do texto

• Métodos probabilísticos são afetados pelo número de observações.

Idioma

• Complexidade morfológica e lexical diferentes.

Domínio ou Gênero do texto

- Contos, artigos, avaliações de produtos
- Influencia no rigor formal e no vocabulário.

Número de autores

• O aumento do número de classes requer o aumento do número de classes.

Conceitos - Subtarefas da análise autoral

AA de conjunto fechado

Os textos do conjunto de teste pertencem a um dos autores candidatos presentes no córpus de treinamento.

K-Atribuição ou ordenação

As saídas do classificador são ordenadas pela probabilidade e são retornados os K autores mais prováveis.

Verificação

Verifica-se se dois documentos foram escritos pelo mesmo autor, não sendo necessário saber quem são os autores.

AA de conjunto aberto

Os textos do conjunto de teste não necessariamente foram escritos por um dos autores do córpus de treinamento

Caracterização

São extraídas informações demográficas do autor do texto podem reduzir a lista de candidatos.

Demais

Agrupamento, Ligação e Quebra de estilo

Conceitos - Tipos de conhecimentos usados

A abordagem estilométrica tradicional utiliza as seguintes fontes de conhecimento:

- Categoria lexical: tamanho médio das palavras, número de letras maiúsculas, quantidade de dígitos, tamanho das sentenças, etc.
- Categoria sintática: frequência da pontuação, palavras de função, frases começando com maiúscula, etc.
- Categoria semântica: contagem das palavras, analisadores semânticos, word embeddings, etc.
- Categoria estrutura: indentação, tamanho do parágrafo, etc.
- Categoria específica de domínio: palavras-chave, tags HTML, emoticons, nomes de produtos.

Conceitos - Tipos de conhecimentos usados

Outra classificação possível e simplificada dos conhecimentos utilizados na AA pode ser a utilização das famílias baseadas em palavras e caracteres.

Palavras

- As palavras mais frequentes são independentes de domínio e utilizadas de forma inconsciente (KESTEMONT, 2014).
- Palavras de função (do inglês, function words) compreende artigos, preposições, locuções adverbiais, e outros.
- Capturam semântica e elementos de conexão entre sentenças.
- Diversas ferramentas s\(\tilde{a}\)o preparadas para usar a unidade palavra.

Conceitos - Tipos de conhecimentos usados

Caracteres

- As sequências de caracteres são considerados os modelos mais efetivos para AA (KJELL; WOODS; FRIEDER, 1994; NEAL et al., 2017).
- Os caracteres mais frequentes (CNG) (do inglês, common n-grams) (KEŠELJ et al., 2003; SAPKOTA et al., 2014).
- São independentes de idioma.
- Não precisam de stemming pois lidam bem com idiomas flexionais.
- Geram vetores de contagem mais densos que os vetores de palavras.
- Os n-gramas de caracteres conseguem capturar pontuação, utilização de espaços, preferências temporais, palavras de função de tamanho curto.
- O trabalho em Sapkota et al. (2015) mostra que apesar de independente de idioma nem todos os char n-gramas tem a mesma origem.

Conceitos - Modelos computacionais

Modelo tradicional de representação textual - BOW

- Hipótese distribucional aplicada a documentos (TURNEY; PANTEL, 2010)
- Modelo de n-gramas
- Conhecimentos: Caracteres, Palavras, POS
- TF-IDF
- TF-IDF equações alternativas utilizadas nos experimentos:
 - $TF_{sublinear} = 1 + \log TF_{t,d} \longrightarrow Definição I do SMART.$
 - $IDF_{Suavizado}(t, D) = log\left(\frac{D}{DF(t)}\right) + 1$

Conceitos - Modelos computacionais

Modelo de representação distribuída

- Hipótese distribucional aplicada símbolos
- Modelos neurais de língua natural (BENGIO et al., 2003)
- Aprendizado n\u00e3o supervisionado
- Transferência de conhecimento
- Word embeddings
 - Representa cada palavra, ou símbolo, em k dimensões, sendo k menor que o tamanho do vocabulário.
 - Word2Vec (MIKOLOV et al., 2013)
 - Doc2Vec (LE; MIKOLOV, 2014)
 - FastText (BOJANOWSKI et al., 2017)

Modelos computacionais baseados em distância

As medidas, ou funções, de distância devem obedecer quatro propriedades (DEZA; DEZA, 2009):

- ① D(A, B) >= 0 para todo $A \in B$, $D \in positiva$.
- 2 D(A, B) = 0 se e, somente se, A = B.
- 3 D(A, B) = D(B, A), D é uma função simétrica.
- O(A, C) <= D(A, B) + D(B, C), a designaldade triangular.

Distância de cosseno

Cossenos
$$(A, B) = 1 - \frac{A \cdot B}{\|A\| \|B\|}$$

Manhattan

Manhattan
$$(A,B) = \sum_i |A_i - B_i|$$

Jaccard

$$Jaccard(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

Interseção binária

MinMax, ou Jaccard generalizado

$$MinMax(A, B) = \frac{\sum_{i}^{n} min(A_{i}, B_{i}|}{\sum_{i}^{n} max(A_{i}, B_{i})}$$

Modelos computacionais baseados em distância

Regra Δ de Burrows

$$\Delta Burrow(A, B) = \frac{1}{N} \sum_{i=1}^{N} |Zscore(A_i, C_i) - Zscore(B_i, C_i)|$$

$$Zscore(X_i, C_i) = \frac{X_i - \mu(C_i)}{\sigma(C_i)}$$
(1)

Distância de Manhattan dos Z-score das frequências

Keselj

$$Keselj(A, B) = \sum_{i}^{n} \left(\frac{2*(A_{i} - B_{i})}{A_{i} + B_{i}}\right)^{2}$$

Stamatatos

$$\begin{array}{ll} \textit{Stamatatos}(A,B,C) & = \\ \sum_{i}^{n} \left(\frac{2*(A_{i}-B_{i})}{A_{i}+B_{i}}\right)^{2} * \left(\frac{2*(A_{i}-C_{i})}{A_{i}+C_{i}}\right)^{2} \end{array}$$

Onde A e B são vetores de frequências documentos que se desejam comparar e C \acute{e} o vetor de frequência do córpus.

Modelos computacionais baseados em distância

Distância Komogorov-Smirnov

Fonte: José Eleandro Custódio, 2018

Definição e propriedades

- $KS(X, Y) = arg_max_x abs(CDF(x|y = 0) CDF(x|y = 1))$
- Distância entre as curvas de probabilidades acumuladas.
- Mede se a variável binária representa distribuições diferentes.

Modelos de aprendizado de máquina (AM)

Regressão logística softmax

$$f_1(X) - \ln Z = \ln P(Y = 1|X)$$
...
$$f_c(X) - \ln Z = \ln P(Y = c|X)$$
(2)

$$P(Y = c|X) = softmax(X, c) = \frac{e^{f_c(X)}}{\sum_{k=1}^{K} e^{f_k(X)}}$$
(3)

Propriedades

- Não assume a independência das variáveis.
- Possui saída probabilística.
- As probabilidades reflem o balanceamento das classes.
- Possui saída contínua.
- É um classificador linear.
- É usado em aprendizado profundo.

Modelos de aprendizado de máquina (AM)

Figure 1: Arquitetura de convolução para sentenças e documentos

Adaptado de Kim (2014)

- Método proposto em LeCun et al. (1989) e baseado no córtex cerebral
- São redes especializadas que processam dados dispostos em grade.
- Operação de convolução é dividida em filtro e convolução, e usa pesos compartilhados.
- A operação de pooling aplicada à texto mais é a max-over-time.

Modelos de aprendizado de máquina (AM)

Figure 2: Expansão de um neurônio de uma rede recorrente

Fonte: $\langle http://colah.github.io/posts/2015-08-Understanding-LSTMs/ \rangle$

- Redes neurais recorrentes (RNN) (ELMAN, 1990), são uma família de redes neurais que fazem o processamento de dados sequenciais, onde a dependência temporal é importante para o resultado (GOODFELLOW; BENGIO; COURVILLE, 2016).
- Devido à recorrência, um neurônio codifica uma sequência temporal.
- O estudo em Mikolov (2012) traz aplicações das RNNs aplicadas a modelagem da língua.

Trabalhos relacionados

Foram estudados os trabalhos:

- relacionados ao histórico da competição PAN-CLEF.
- trabalhos recentes encontrados no Scopus, IEEE e ACL Anthology
- que usaram n-gramas, embeddings e variações.
- que usaram técnicas de similaridade/distância/vizinhos mais próximos.
- que usaram métodos de distância específicos para AA.
- que usaram RNN e CNN.
- que analisaram línguas europeias.

Trabalhos selecionados

Table 1: Trabalhos selecionados

Estudo	Idioma	Tarefa	Conhecimento	Método
Sapkota et al. (2015)	EN	А	С	SVM
Stamatatos (2017)	EN	A,V	C, W	SVM
Schwartz et al. (2013)	EN	А	C, W	SVM
Rocha et al. (2017)	EN	A,V	C, W, P	SVM, RF e SCAP
Evert et al. (2017)	EN	С	W	Clusterização
Varela et al. (2016)	PT-BR	A,V	Р	SVM
Posadas-Durán et al. (2017)	EN	Α	D2V de W	Softmax e SVM
Rhodes (2015)	EN	Α	W2V	CNN-Softmax
Shrestha et al. (2017)	EN	Α	C One-hot	Softmax
Bagnall (2016)	PAN2015	С	C One-hot	RNN-Softmax

José Eleandro Custódio, 2018

Trabalhos relacionados - Considerações

- Os trabalhos em AA costumam usar tanto medidas de distância quanto AA tradicional.
- As redes de convolução apresentaram resultados equivalentes aos baselines, entretanto, apresentaram custo computacional maior.
- As redes recorrentes apresentaram desempenho superiores ao baseline, no entanto, apresentaram custo computacional elevado e precisou de dados adicionais
- Embeddings pré-treinados obtiveram desempenho equivalente ao baseline.
- Os modelos baseados em caracteres representaram desempenho consistentes.
- Os modelos que usam distorção se demonstraram promissores.

Experimentos

Experimentos

Publicação 1

CUSTÓDIO, J. E.; PARABONI, I. Similaridade de Textos aplicada à Verificação Autoral. In: 1st International Congress on Digital Humanities in Rio de Janeiro. [S.I.]: Fundação Getúlio Vargas, 2018.

Verificação autoral ou atribuição por similaridade

- Deseja-se saber se pares de documentos foram escritos pelo mesmo autor. (KOPPEL et al., 2012)
- Aplicável quando não se sabe quem são os autores.
- Modelo supervisionado por vizinho mais próximo.
 - O documento é atribuído ao vizinho mais próximo.
 - A distância pode ser usada no agrupamento autoral.
- Modelo transformado
 - Documentos são uma representação única.

Extração de características

Modelo de espaço de vetores (BOW) com n-gramas de caracteres normalizados com norma L1 (TF).

Foram selecionadas os n-gramas presentes em 90% do córpus (*Common n-grams* (KEŠELJ et al., 2003)).

Distâncias

Medidas de similaridade textual entre os documentos A e B do córpus C:

$$Cossenos(A, B) = \frac{A \cdot B}{\|A\| \|B\|}$$
 (4)

$$Jaccard(A, B) = \frac{|A \cap B|}{|A \cup B|} \tag{5}$$

$$Stamatatos(A, B, N) = \sum_{i} \left(\frac{2*(A-B)}{A+B}\right)^{2} * \left(\frac{2*(A-C)}{A+C}\right)^{2}$$
 (6)

Análise da capacidade de separação da medidas de similaridade aplicadas córpus PAN-CLEF 2014 (STAMATATOS et al., 2014)

Figure 3: Diagnósticos

- Histograma para mesma autoria (tracejado).
- Histograma para autorias diferentes (liso).
- Distribuição acumuladas (linhas).
- Separação pela métrica Kolmogorov-Smirnov.
- Métricas AUC e acurácia.

Modelo proposto 1 - MP1

- As distâncias foram utilizadas como variáveis para o modelo.
- Aplicado a normalização minmax.
- Aplicado a regressão logística.

Modelo proposto 2 - MP2

 Os documentos conhecidos C e de autoria desconhecidas D foram unificados em um úncio BoW através da equação:

$$MP2(C_{ij}, D_{ij}) = \log \left(1 + \frac{(C_{ij} - D_{ij})^2}{C_{ij} + 1}\right)$$
 (7)

- Aplicado a normalização minmax.
- Aplicado a regressão logística.

Table 2: Verificação autoral - Resultados médios das métricas AUC e acurácia em 5-partições.

Modelo	PAN20	14 (EE e EM)	PAN2014-SP	
	ROC	Acurácia	ROC	Acurácia
Jaccard	0,60	0,56	0,57	0,52
Cossenos	0,63	0,50	0,88	0,77
$Cossenos_PCA$	0,63	0,55	0,92	0,83
Keselj	0,61	0,54	0,71	0,60
Stamatatos	0,60	0,55	0,59	0,54
MP1 – Mix	0,75	0,67	0,72	0,62
MP2 – BOW	0,62	0,53	0,93	0,85

PAN2014 (EE e EM) córpus com textos em língua inglesa, PAN2014-SP textos em língua espanhola.

Publicação 2

CUSTÓDIO, J. E.; PARABONI, I. EACH-USP Ensemble Cross-domain Authorship Attribution: Notebook for PAN at CLEF 2018. In: CAPPELLATO, L. et al. (Ed.). Working Notes Papers of the CLEF 2018 Evaluation Labs. [S.I.]: CLEF and CEUR-WS.org, 2018. (CEUR Workshop Proceedings). ISSN 1613-0073.

Atribuição por aprendizado de máquina supervisionado

- Tem-se um conjunto de documentos para os quais se sabe quem são os autores e um documento do qual deseja-se atribuir.
- O classificador extrai a "assinatura do estilo".
- Aspectos inconscientes, como a sintaxe, são mais importantes que a semântica.
- O trabalho apresentado foi parte da participação da tarefa de AA da competição PAN-CLEF2018.

Baseline Bas.PAN

Os organizadores forneceram um sistema baseline pelos com as seguintes características:

- N-gramas de caracteres de tamanho fixo.
- Normalização no documento por TF.
- Sem normalização no córpus.
- Frequência mínima de 4 ocorrências.
- Classificador SVM encapsulado nas estratégias um-contra-um e um-contra-todos.
- Foi otimizado por grid search com validação cruzada com 5 partições, e os melhores parâmetros foram:
 - n-gramas de tamanho 4.
 - Frequência mínima de 5 documentos.
 - SVM com estratégia um-contra-todos.

Dado nossas premissas, o sistema final PAN2018 para AA consistiu de um comitê que concatenou as fontes de informações em uma saída única.

Figure 4: Método proposto final

O sistema foi otimizado por grid search com validação cruzada de 5 partições.

Premissa: O estilo de escrita de autor pode ser capturado através de diversas fontes de informação, como sintática, léxica e semântica.

Método proposto Std.word

Consistiu de um modelo BOW de n-gramas de palavras tradicional.

Método proposto Std.char

Consistiu de um modelo BOW de n-gramas de caracteres tradicional.

Método proposto Dist.char

Consistiu de um modelo BOW de n-gramas de caracteres onde são letras maiúscula e minúsculas sem acento são distorcidas, deixando a pontuação, espaços e letras com diacríticos.

Experimento - Modelo de distorção textual em caracteres

O modelo *Dist.charN* utiliza distorção textual e foi inspirado em Stamatatos (2017). O objetivo da distorção é mascarar conteúdos que estariam se comportando como ruído para o modelo. Stamatatos (2017) utiliza distorções para mascarar palavras menos frequentes, que estariam relacionadas ao tópico. O modelo *Dist.charN* atua sobre carácter, filtrando a utilização de espaços, pontuação e caracteres com diacríticos, de forma a mascarar caracteres comuns, ou seja, letras minúsculas e maiúsculas. A tabela 3 ilustra a aplicação desse método.

Table 3: Exemplo de distorção de texto aplicado o 1o. documento do 9o. problema da base de treinamento.

Texto original	Texto transformado
-¿Y cómo sabes que no lo ama?	-¿* *ó** **** *** ** ** ***?
-Inglaterra se preguntó a su	-******* ** ******ó * **
vez si habría un muñeco del	*** ** *** <u>1</u> * ** ** <u>1</u> *** ***
esposo también.	***** ****é*.

Experimento 2: Atribuição Autoral

Table 4: Valores ótimos encontrados para PAN2018

Módulo	Parâmetros	Valores ótimos
Extração de	Faixa n-gram	Std.charN - Início=2 Fim=5 Dist.charN - Início=2 Fim=5 Std.WordN - Início=1 Fim=3
características	Freq. min. doc.	0,05
	Freq. max. doc.	1,0
	TF	Sublinear
	IDF	Suavizado
	Normalização no documento	L2
Transformação	PCA	0,99

Experimento 2: Resultados obtidos em treinamento

Table 5: F1 para PAN-CLEF 2018 AA no córpus de desenvolvimento

Problema	Língua	Autores	Bas.PAN	Std.charN	Dist.charN	Std.wordN	Comitê
01	EN	20	0,514	0,609	0,479	0,444	0,625
02	EN	5	0,626	0,535	0,333	0,577	0,673
03	FR	20	0,631	0,681	0,568	0,418	0,776
04	FR	5	0,747	0,719	0,586	0,572	0,820
05	IT	20	0,529	0,597	0,491	0,497	0,578
06	IT	5	0,614	0,623	0,595	0,520	0,663
07	PL	20	0,455	0,470	0,496	0,475	0,554
08	PL	5	0,703	0,948	0,570	0,922	0,922
09	ES	20	0,709	0,774	0,589	0,616	0,701
10	ES	5	0,593	0,778	0,802	0,588	0,830
Média			0,612	0,673	0,551	0,563	0,714

Experimento 2: Resultados obtidos na PAN2018

Resultado geral apresentados pelos organizadores do PAN2018 (KESTEMONT et al., 2018).

Table 6: PAN-CLEF 2018 - 3 melhores equipes - por língua

Equipe	F1 Geral	EN	FR	IT	PL	ES
Custódio e Paraboni (2018)	0,685	0,744	0,668	0,676	0,482	0,856
Murauer, Tschuggnall e Specht (2018)	0,643	0,762	0,607	0,663	0,450	0,734
Halvani e Graner (2018)	0,629	0,679	0,536	0,752	0,426	0,751
PAN18-BASELINE	0,584	0,697	0,585	0,605	0,419	0,615

Table 7: PAN-CLEF 2018 - 3 melhores equipes - por língua

	Quantidade de autores							
Equipe	20	15	10	5				
Custódio e Paraboni (2018)	0,648	0,676	0,739	0,677				
Murauer, Tschuggnall e Specht (2018)	0,609	0,642	0,680	0,642				
Halvani e Graner (2018)	0,609	0,605	0,665	0,636				
PAN18-BASELINE	0,546	0,532	0,595	0,663				

Experimento - Características mais importantes

Table 8: Características textuais mais relevantes para Std.charN

	Candidatos								
01	02	03	04	05					
_as_l	_Sti	_sub	_joi	_day,					
_'	_" Can	_suc	_gh	_dev					
_prec	_" Ca	_l_fi	_er	₋dete					
_l'd	_" Be	_succ	_glow	_plac					
_" Are	_K	_subs	_ls	_mut					
_Re	_but_	_l_f	_sta	_must					
_smel	₋Ofte	_" T	_gor	₋Dro					
_leak	_posi	_a_t	_sorr	_day_					
_is_s	_For	_"St	_eat_	_she_					
_spu	_Ri	_a_sw	_lf_t	_chi					

Extraído do subconjunto 02 com textos em inglês e com 5 autores.

Experimento - Anexo: Características mais relevantes

Table 9: Características textuais mais relevantes para Dist.charN

		Candidatos		
01	02	03	04	05
*_'**	_**	"*"	*_~_	**
**	_**_("*_**	*_~	'*,_*
*'	_**_*	!),_*	**	" –
).	*!	*!!	*	*
),_	__'	*'*_*	****	*
**	*!_*	**_*'	"_**'	·*.
*	*_"**	**_**	_É***	_"*
_'**	_~_	**_*'	_"*'	
!),	_~_*	_**!	_**	

Extraído do subconjunto 02 com textos em inglês e com 5 autores.

Experimento - Características mais relevantes

Table 10: Características textuais mais relevantes em Std.wordN

		Candidatos		
01	02	03	04	05
about_what	against_his	an_odd	although	and_pulled_him
$and_{-}practically$	and_it_was	and_then_he	an_eye	and_pulling
any_of	and_so	acknowledged	and_said	across_his
any_more	and_already	and_he_had	and_takes	across_the
$and_{-}nearly$	and_steve	are_your	and_just	and_all
$and_{-}pulled$	and_say	again_to	ancient	against_her
agree	accent	and_tell	amount_of	among
$all_{L}tony$	and_wet	and_forth	always	about_what_to
ah	apparently	are_just	and_grinned	acting
and_wet_and	after	and_grabbing	about_the	about_their

Extraído do subconjunto 02 com textos em inglês e com 5 autores.

Projeto de pesquisa

Projeto de pesquisa

Projeto - Hipóteses

Este trabalho considera as seguintes hipóteses:

H1:

O uso de modelos independentes de idioma do tipo de distorção textual permite filtrar aspectos específicos do texto, e a combinação de diversos tipos de distorção pode aumentar o desempenho de sistemas de AA.

H2:

O uso de modelos dependentes de idioma do tipo *part-of-speech* extraídos por anotadores baseados em aprendizado profundo pode aumentar o desempenho de sistemas de AA.

H3:

O uso de modelos dependentes de idioma do tipo representação distribuída (embeddings) pode aumentar o desempenho de sistemas de AA.

Projeto - Objetivo

Objetivo Geral

O objetivo geral deste trabalho é enriquecer modelos de atribuição autoral de texto digitais com conjunto fechado de autores utilizando conhecimentos dependentes e independentes de idioma combinados com técnicas de aprendizados de máquina, de modo a obter resultados superiores ao estabelecido em trabalhos anteriores.

Projeto - Conjunto de dados e Avaliação

Avaliação das hipóteses

- Comparação com baselines pertinentes, como o modelo apresentado em Custódio e Paraboni (2018).
- Serão utilizadas as medidas tradicionais de AM, como medida F, acurácia, auroc e outros.
- Espera-se que o resultado médio seja superior ao dos modelos de baseline.

Table 11: Córpus para avaliação dos métodos de AA

Córpus	No. Autores	Idioma	Domínio/Gênero
PAN-CLEF2014	-	EN, ES, DU, GR	NV, AR, RV, ES
PAN-CLEF2018	20	EN, ES, FR, IT, PL	NV
RCV1	50	EN	AR
Nus-SMS	116	EN	SMS
b5-post	1.019	PT-Br	Facebook
BlogSet-BR	4.331	PT-Br	AR

Projeto - Escopo e limitações

Este projeto de pesquisa se limita

- ao estudo das técnicas de distorção textual
- ao estudo das técnicas de anotações linguísticas
- ao estudo das técnicas de representação distribuída
- e utilizará métodos de aprendizado de máquina.
- aos idiomas considerados primordialmente são inglês e português brasileiro.

Não serão considerados

 modelos computacionais baseados em grafos, redes complexas e modelos de compressão.

Projeto - Contribuições

Contribuições

Este trabalho pretende avançar a fronteira de conhecimento sobre o problema de AA usando modelos e recursos computacionais e linguísticos dependentes e independentes de idioma.

Ao estudar os recursos linguísticos espera-se avançar o conhecimento da relação entre a linguagem e os fatores que determinam a autoria. Em especial, pretendemos avançar os estudos para o idioma português brasileiro.

Projeto - Atividades

- Revisão bibliográfica Concluído.
- Participação na PAN-CLEF 2018 Concluído.
- Preparação dos dados Concluído.
- Modelos independentes de idioma Estudo dos tipo de distorção textual, construção dos modelos computacionais e refinamentos específicos.
- Modelos baseados em anotações Estudo dos pacotes para anotações POS, como NLTK¹ e Spacy, construção dos modelos computacionais e refinamentos específicos.
- Modelos baseados em embeddings Preparação de bases de dados de embeddings, estudo de embeddings específicos para AA, construção de modelos computacionais e refinamentos.
- Refinamentos
- Avaliação
- Redação da dissertação
- Divulgação

Projeto - Cronograma

Table 12: Cronograma

	2018			2019									
Atividades	1-6	7	8	9	10	11	12	1	2	3	4	5	6
01. Revisão bibliográfica	×	×	×	×	×								
02. Participação PAN-CLEF2018	×												
03. Preparação dos dados	×	×				x							
04. Modelos independentes de idioma						x	×	×					
05. Modelos baseados em anotações		×				х	×	×					
06. Modelos baseados em <i>embeddings</i>		×						×	×				
07. Refinamentos								×	×	×			
08. Avaliação final										х			
09. Redação da dissertação										×	×	×	
10. Divulgação												x	х

Referências I

ALSULAMI, B. et al. Source code authorship attribution using long short-term memory based networks. In: *Computer Security - ESORICS 2017 - 22nd European Symposium on Research in Computer Security, Oslo, Norway, September 11-15, 2017, Proceedings, Part I.* [s.n.], 2017. p. 65–82. Disponível em:

 $\langle https://doi.org/10.1007/978-3-319-66402-6 \setminus _6 \rangle$.

BAGNALL, D. Authorship clustering using multi-headed recurrent neural networks. In: Cappellato L. Ferro N., M. C. B. K. (Ed.). *CEUR Workshop Proceedings*. [S.I.]: CEUR-WS, 2016. v. 1609, p. 791–804. ISSN 16130073.

BENGIO, Y. et al. A Neural Probabilistic Language Model. Journal of Machine Learning Research, v. 3, p. 1137–1155, 2003.

Referências II

BOJANOWSKI, P. et al. Enriching word vectors with subword information. *Transactions of the Association for Computational Linguistics*, v. 5, p. 135–146, 2017. ISSN 2307-387X.

ENTIRE CHEN, X. et al. Authorship similarity detection from email messages. In: Machine Learning and Data Mining in Pattern Recognition - 7th International Conference, MLDM 2011, New York, NY, USA, August 30 - September 3, 2011. Proceedings. [S.l.: s.n.], 2011. p. 375−386.

CUSTÓDIO, J. E.; PARABONI, I. EACH-USP Ensemble Cross-domain Authorship Attribution: Notebook for PAN at CLEF 2018. In: CAPPELLATO, L. et al. (Ed.). Working Notes Papers of the CLEF 2018 Evaluation Labs. [S.I.]: CLEF and CEUR-WS.org, 2018. (CEUR Workshop Proceedings). ISSN 1613-0073.

DEZA, M. M.; DEZA, E. *Encyclopedia of distances*. [S.I.]: Springer, 2009. 1–583 p.

Referências III

- ELMAN, J. L. Finding structure in time. *Cognitive science*, Wiley Online Library, v. 14, n. 2, p. 179–211, 1990.
- EVERT, S. et al. Understanding and explaining delta measures for authorship attribution. *Digital Scholarship in the Humanities*, v. 32, n. suppl_2, p. ii4–ii16, 2017.
- GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. *Deep Learning*. [S.I.]: MIT Press, 2016. http://www.deeplearningbook.org.
- HALVANI, O.; GRANER, L. Cross-Domain Authorship Attribution Based on Compression: Notebook for PAN at CLEF 2018. In: CAPPELLATO, L. et al. (Ed.). Working Notes Papers of the CLEF 2018 Evaluation Labs. [S.I.]: CLEF and CEUR-WS.org, 2018. (CEUR Workshop Proceedings). ISSN 1613-0073.

Referências IV

■ JUOLA, P. The rowling case: A proposed standard analytic protocol for authorship questions. *Digital Scholarship in the Humanitie*, v. 30, n. Suppl-1, p. i100–i113, 2015.

KEŠELJ, V. et al. N-Gram-Based Author Profiles for Authorship Attribution. In: *Proceedings of the conference pacific association for computational linguistics (PACLING)*. [S.I.: s.n.], 2003. v. 3, p. 255–264.

KESTEMONT, M. Function Words in Authorship Attribution From Black Magic to Theory? *3rd Workshop on Computational Linguistics for Literature (CLfL 2014)*, n. January 2014, p. 59–66, 2014.

Referências V

KESTEMONT, M. et al. Overview of the Author Identification Task at PAN-2018: Cross-domain Authorship Attribution and Style Change Detection. In: CAPPELLATO, L. et al. (Ed.). Working Notes Papers of the CLEF 2018 Evaluation Labs. [S.I.]: CLEF and CEUR-WS.org, 2018. (CEUR Workshop Proceedings). ISSN 1613-0073.

KIM, Y. Convolutional Neural Networks for Sentence Classification. In: Alessandro Moschitti and Bo Pang and Walter Daelemans (Ed.). Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL,. [S.I.: s.n.], 2014. p. 1746–1751.

KJELL, B.; WOODS, W. A.; FRIEDER, O. Discrimination of authorship using visualization. Inf. Process. Manage., v. 30, n. 1,

p. 141-150, 1994.

Referências VI

KLIMT, B.; YANG, Y. The enron corpus: A new dataset for email classification research. In: BOULICAUT, J. et al. (Ed.). *Machine Learning: ECML 2004, 15th European Conference on Machine Learning, Pisa, Italy, September 20-24, 2004, Proceedings.* [S.I.]: Springer, 2004. (Lecture Notes in Computer Science, v. 3201), p. 217–226.

KOCHER, M.; SAVOY, J. A simple and efficient algorithm for authorship verification. *Journal of the Association for Information Science and Technology*, v. 68, n. 1, p. 259–269, 2017.

KOPPEL, M. et al. The "Fundamental Problem" of Authorship Attribution. *English Studies*, v. 93, n. 3, p. 284–291, 2012. ISSN 0013838X.

KOPPEL, M.; SEIDMAN, S. Detecting pseudepigraphic texts using novel similarity measures. *Digital Scholarship in the Humanities*, v. 33, n. 1, p. 72–81, 2018.

Referências VII

LE, Q. V.; MIKOLOV, T. Distributed representations of sentences and documents. In: *Proceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014.* [S.I.: s.n.], 2014. p. 1188–1196. LECUN, Y. et al. Backpropagation Applied to Handwritten Zip Code Recognition. *Neural Computation*, v. 1, n. 4, p. 541–551, 1989. Disponível em: https://doi.org/10.1162/neco.1989.1.4.

MIKOLOV, T. Statistical language models based on neural networks. Tese (Doutorado) — Brno University of Technology, 2012. Disponível em: ⟨http://www.fit.vutbr.cz/∼imikolov/rnnlm/thesis.pdf⟩.

MIKOLOV, T. et al. Efficient estimation of word representations in vector space. *CoRR*, abs/1301.3781, 2013.

Referências VIII

MURAUER, B.; TSCHUGGNALL, M.; SPECHT, G. Dynamic Parameter Search for Cross-Domain Authorship Attribution: Notebook for PAN at CLEF 2018. In: CAPPELLATO, L. et al. (Ed.). Working Notes Papers of the CLEF 2018 Evaluation Labs. [S.I.]: CLEF and CEUR-WS.org, 2018. (CEUR Workshop Proceedings). ISSN 1613-0073.

■ NEAL, T. J. et al. Surveying stylometry techniques and applications. *ACM Comput. Surv.*, v. 50, n. 6, p. 86:1–86:36, 2017.

PENG, J.; CHOO, K. kwang R.; ASHMAN, H. Astroturfing detection in social media: Using binary n-gram analysis for authorship attribution. In: 2016 IEEE Trustcom/BigDataSE/ISPA. [S.I.: s.n.], 2016. p. 121–128. ISBN 9781509032051.

Referências IX

POSADAS-DURÁN, J.-P. et al. Applications of the distributed document representation in the authorship attribution task for small corpora. *Soft Computing*, Springer Verlag, v. 21, n. 3, p. 627–639, feb 2017. ISSN 14327643.

POTTHAST, M. et al. Overview of PAN'17: Author identification, author profiling, and author obfuscation. *Lecture Notes in Computer Science*, v. 10456 LNCS, p. 275–290, 2017. ISSN 16113349.

RHODES, D. Author Attribution with CNN's. *Standford University - CS224D Projects*, p. 1–8, 2015.

ROCHA, A. et al. Authorship Attribution for Social Media Forensics. *IEEE Transactions on Information Forensics and Security*, v. 12, n. 1, p. 5–33, 2017. ISSN 15566013.

Referências X

SAPKOTA, U. et al. Not all character n-grams are created equal: A study in authorship attribution. In: NAACL HLT 2015, The 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Denver, Colorado, USA. [S.I.: s.n.], 2015. p. 93–102.

SAPKOTA, U. et al. Cross-Topic Authorship Attribution: Will Out-Of-Topic Data Help? In: *Proceedings of COLING 2014*, the 25th International Conference on Computational Linguistics: Technical Papers. [S.I.: s.n.], 2014. p. 1228–1237. ISBN 9781941643266.

SARI, Y.; STEVENSON, M. Exploring Word Embeddings and Character N -Grams for Author Clustering Notebook for PAN at CLEF 2016. CEUR Workshop Proceedings, 2016. ISSN 16130073.

Referências XI

SAVOY, J. Estimating the probability of an authorship attribution. Journal of the Association for Information Science and Technology, v. 67, n. 6, p. 1462-1472, 2016. ISSN 23301643. SCHWARTZ, R. et al. Authorship Attribution of Micro-Messages. In: Empirical Methods in Natural Language Processing. [S.l.: s.n.], 2013. p. 1880–1891. ISBN 9781937284978. SHRESTHA, P. et al. Convolutional Neural Networks for Authorship Attribution of Short Texts. In: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics. [S.I.]: Association for Computational Linguistics (ACL), 2017. v. 2, p. 669-674. ISBN 9781510838604. STAMATATOS, E. A survey of modern authorship attribution methods. Journal of the American Society for Information Science and Technology, v. 60, n. 3, p. 538-556, 2009. ISSN 15322882.

Referências XII

STAMATATOS, E. Authorship attribution using text distortion. Conference of the European Chapter of the Association for Computational Linguistics, EACL 2017 - Proceedings of Conference, v. 1, 2017.

STAMATATOS, E. et al. Overview of the author identification task at PAN 2014. In: *Working Notes for CLEF 2014 Conference, Sheffield, UK, September 15-18, 2014.* [S.l.: s.n.], 2014. p. 877–897.

TURNEY, P. D.; PANTEL, P. From frequency to meaning: Vector space models of semantics. *Journal of artificial intelligence research*, abs/1003.1141, 2010.

VARELA, P. J. et al. A computational approach based on syntactic levels of language in authorship attribution. *IEEE Latin America Transactions*, v. 14, n. 1, p. 259–266, 2016. ISSN 15480992.

Referências XIII

VARTAPETIANCE, A.; GILLAM, L. Quite simple approaches for authorship attribution, intrinsic plagiarism detection and sexual predator identification. In: *CLEF 2012 Evaluation Labs and Workshop, Online Working Notes, Rome, Italy, September 17-20, 2012.* [S.I.: s.n.], 2012.