Regression Project Amirali Khatib 7/3/2022 Introduction In the this classification and regression project, we'll work with players_csv file which consist of detailed attribute for each football player, we're following 2 purpose in this project. Regression goal: We fit regression models to our data in order to predict players' value in the transfer market. So, football clubs' owners will know how much they should pay to sign a contract with a player that has a special combination of skills. Classification goal: Our purpose in fitting classification models to our data is to build a high performance classifier that be able to recommend the head coach the squad position for each player with specific sort of abilities. Dataset features: To know some more detailes and explanation about the features that exist in the data set, I recommend you to check these two link bellow: Attributes expalation • Example : Luka Modric attributes **Intialization** Import required libraries library(tidyverse) ## Warning: package 'tidyverse' was built under R version 4.1.3 ## -- Attaching packages ----- tidyverse 1.3.1 --## v ggplot2 3.3.6 v purrr 0.3.4 ## v tibble 3.1.7 v dplyr 1.0.9 ## v tidyr 1.2.0 v stringr 1.4.0 ## v readr 2.1.2 v forcats 0.5.1 ## Warning: package 'ggplot2' was built under R version 4.1.3 ## Warning: package 'tibble' was built under R version 4.1.3 ## Warning: package 'tidyr' was built under R version 4.1.3 ## Warning: package 'dplyr' was built under R version 4.1.3 ## Warning: package 'forcats' was built under R version 4.1.3 ## -- Conflicts ----- tidyverse_conflicts() --## x dplyr::filter() masks stats::filter() ## x dplyr::lag() masks stats::lag() library(MASS) ## Attaching package: 'MASS' ## The following object is masked from 'package:dplyr': ## select library(caret) ## Warning: package 'caret' was built under R version 4.1.3 ## Loading required package: lattice ## Attaching package: 'caret' ## The following object is masked from 'package:purrr': lift ## library(rpart) library(rpart.plot) ## Warning: package 'rpart.plot' was built under R version 4.1.3 library(knitr) ## Warning: package 'knitr' was built under R version 4.1.3 library(kableExtra) ## Warning: package 'kableExtra' was built under R version 4.1.3 ## Attaching package: 'kableExtra' ## The following object is masked from 'package:dplyr': ## group_rows library(e1071) ## Warning: package 'e1071' was built under R version 4.1.3 library(nnet) library(pROC) ## Warning: package 'pROC' was built under R version 4.1.3 ## Type 'citation("pROC")' for a citation. ## Attaching package: 'pROC' ## The following objects are masked from 'package:stats': ## cov, smooth, var library(ellipse) ## Warning: package 'ellipse' was built under R version 4.1.3 ## Attaching package: 'ellipse' ## The following object is masked from 'package:graphics': ## pairs library(lares) ## Warning: package 'lares' was built under R version 4.1.3 ## Attaching package: 'lares' ## The following object is masked from 'package:e1071': ## ## impute library(reshape2) ## Warning: package 'reshape2' was built under R version 4.1.3 ## Attaching package: 'reshape2' ## The following object is masked from 'package:tidyr': ## smiths library(ROSE) ## Warning: package 'ROSE' was built under R version 4.1.3 ## Loaded ROSE 0.0-4 Read dataset fifa = read.csv(file = 'D:\\Amirali\\University\\Applied Statistical Analysis\\R-tutorial\\Project\\players_22.cs v', header = TRUE) Data pre-processing fifa = na.omit(fifa)fifa = fifa %>% dplyr::select(-position, everything()) %>% dplyr::select(-value_eur, everything()) $fifa1.0_reg = fifa$ fifa1.0_reg[,c("sofifa_id", "short_name", "potential", "club_name", "league_name", "club_jersey_number", "nationality_n ame", "weight_kg", "height_cm")] <- list(NULL)</pre> colnames(fifa1.0_reg) ## [1] "overall" "potential_growth" ## [3] "age" "international_reputation" ## [5] "crossing" "finishing" ## [7] "heading_accuracy" "short_passing" ## [9] "volleys" "dribbling" "long_passing" ## [11] "curve" ## [13] "ball_control" "sprint_speed" ## [15] "agility" "reactions" "jumping" ## [17] "shot_power" ## [19] "stamina" "strength" ## [21] "long_shots" "aggression" ## [23] "interceptions" "positioning" ## [25] "vision" "composure" ## [27] "marking_awareness" "standing_tackle" "gk_diving" ## [29] "sliding_tackle" ## [31] "gk_handling" "gk_kicking" "gk_reflexes" ## [33] "gk_positioning" "value_eur" ## [35] "position" Data spliting set.seed(23) # test-train split idx = sample(nrow(fifa1.0_reg), size = 0.8 * nrow(fifa1.0_reg)) fifa_trn = fifa1.0_reg[idx,] fifa_tst = fifa1.0_reg[-idx,] # estimation-validation split idx1 = sample(nrow(fifa_trn), size = 0.8 * nrow(fifa_trn)) fifa_est = fifa_trn[idx1,] fifa_val = fifa_trn[-idx1,] # check data length(fifa1.0_reg) ## [1] 36 unique(fifa\$position) "midfielder" "goalkeeper" "defender" ## [1] "forward" fifa_est_c = fifa_est fifa_est_c[,c('position')] <- list(NULL)</pre> cormat = cor(fifa_est_c) cormat = round(cormat, 2) **EDA** melted_cormat = melt(cormat) ggplot(data = melted_cormat, aes(x=Var1, y=Var2, fill=value)) + geom_tile()+ theme(axis.text.x = element_text(angle = 90))+ scale_fill_gradient2(low = "blue", high = "red", mid = "white", midpoint = 0, limit = c(-1,1), space = "Lab", name="Pearson\nCorrelation") composure -Pearson Correlation 0.5 0.0 -0.5 -1.0 crossing international_reputation age potential_growth overall Var1 corr_cross(fifa_est, max_pvalue = 0.05, top = 30) ## Returning only the top 30. You may override with the 'top' argument ## Warning in .font_global(font, quiet = FALSE): Font 'Arial Narrow' is not ## installed, has other name, or can't be found **Ranked Cross-Correlations** 30 most relevant .25 .5 .75 0 short_passing + long_passing long_shots + positioning volleys + long_shots overall + reactions ball control + positioning potential_growth + age crossing + dribbling volleys + positioning Correlations with p-value < 0.05 corr_var(fifa_est, value_eur, top = 30) **Correlations of value_eur** 30 largest correlation variables (original & dummy) .4 international_reputation overall .557 reactions composure vision short_passing .304 .299 shot_power long passing .289 ball_control .251 curve dribbling .242 .235 crossing volleys .231 long_shots positioning finishing .228 .223 .212 .205 stamina aggression agility .18 .171 heading_accuracy .166 sprint_speed marking_awareness interceptions .156 .155 standing_tackle .135 strength .127 jumping .12 sliding_tackle .118 potential_growth position_midfielder -.113 .0457 $ggplot(data = fifa_est, aes(x = position, y = value_eur, group = position, color = position))+$ $geom_point(size = 4)$ 2.0e+08 -1.5e+08 position 11.0e+08 defender forward goalkeeper midfielder 5.0e+07 -0.0e+00 defender forward goalkeeper midfielder table(fifa_est\$position) ## defender forward goalkeeper midfielder ## 2897 454 1787 7127 **RMSE Function** rmse =function(predicted, actual){sqrt(mean((actual - predicted)^2))} Regression Models Linear models Training on estimation set lm_model_list = list(lm_1 = lm(formula = value_eur ~ ., data = fifa_est), $lm_2 = lm(formula = value_eur \sim .^2, data = fifa_est),$ lm_3 = step(lm(formula = value_eur ~ ., data = fifa_est), trace = FALSE, direction = 'both'), $lm_4 = lm(formula = value_eur \sim poly(overall, 2) + poly(age, 2) + poly(international_reputation, 2) + poly(international_reputa$ poly(finishing,2)+poly(long_passing,2)+poly(ball_control,2)+ poly(sprint_speed, 2)+poly(strength, 2)+poly(interceptions, 2)+ poly(vision, 2)+poly(sliding_tackle, 2)+poly(gk_diving, 2), data = fifa_est), lm_5 = lm(formula = value_eur ~ poly(overall, 3)+poly(age, 3)+poly(international_reputation, 3)+ poly(finishing, 3)+poly(long_passing, 3)+poly(ball_control, 3)+ poly(sprint_speed,3)+poly(strength,3)+poly(interceptions,3)+ poly(vision,3)+poly(sliding_tackle,3)+poly(gk_diving,3),data = fifa_est)) Predict value and RMSE value of linear models fifa_est_lm_predicted_list = lapply(lm_model_list, predict, fifa_est) fifa_val_lm_predicted_list = lapply(lm_model_list, predict, fifa_val) fifa_est_lm_rmse_vector = sapply(fifa_est_lm_predicted_list, rmse, fifa_est\$value_eur) fifa_val_lm_rmse_vector = sapply(fifa_val_lm_predicted_list, rmse, fifa_val\$value_eur) rmse_lm = data.frame(fifa_est_lm_rmse_vector, fifa_val_lm_rmse_vector) colnames(rmse_lm) = c('Est','Val') rownames(rmse_lm) = $c('lm_1', 'lm_2', 'lm_3', 'lm_4', 'lm_5')$ rmse_lm = data.matrix(rmse_lm) rmse_lm = melt(rmse_lm) colnames(rmse_lm) = c('model', 'data_type', 'RMSE') $ggplot(data = rmse_lm, aes(x = model, y = RMSE, group = data_type, color = data_type)) + geom_point(size = 2.5) + geom_$ line(size = 0.75)5000000 4000000 data_type - Est **→** Val 3500000 -3000000 -2500000 lm_3 lm_1 lm_2 lm_4 lm_5 model KNN models Feature scaling Estimation set fifa_est_scaled = data.frame(rep(0, nrow(fifa_est))) center_vec = vector() scale_vec = vector() for (i in 1:(length(fifa_est)-2)){ scaled_feature = scale(fifa_est[,i]) fifa_est_scaled[,i] = scaled_feature center_vec = append(center_vec, attr(scaled_feature, 'scaled:center')) scale_vec = append(scale_vec, attr(scaled_feature, 'scaled:scale')) fifa_est_scaled[,length(fifa_est_scaled)+1] = fifa_est\$position fifa_est_scaled[,length(fifa_est_scaled)+1] = fifa_est\$value_eur colnames(fifa_est_scaled) = colnames(fifa_est) Validation fifa_val_scaled = data.frame(rep(0, nrow(fifa_val))) for (i in 1:(length(fifa_val)-2)){ scaled_feature = scale(fifa_val[,i], scale = scale_vec[i], center = center_vec[i]) scaled_feature = as.vector(scaled_feature) fifa_val_scaled[,i] = scaled_feature} class(scaled_feature) ## [1] "numeric" fifa_val_scaled[,length(fifa_val_scaled)+1] = fifa_val\$position fifa_val_scaled[,length(fifa_val_scaled)+1] = fifa_val\$value_eur colnames(fifa_val_scaled) = colnames(fifa_val) fifa_knn_model_list = list() $k_{list} = seq(10, 100, 10)$ for(i in 1:length(k_list)){fifa_knn_model_list[[i]] = knnreg(formula = value_eur ~ . , data = fifa_est, $k = k_list[i])$ fifa_knn_predicted_est_list = lapply(fifa_knn_model_list, predict, fifa_est) fifa_rmse_est_list = sapply(fifa_knn_predicted_est_list, rmse, fifa_est\$value_eur) fifa_knn_predicted_val_list = lapply(fifa_knn_model_list, predict, fifa_val) fifa_rmse_val_list = sapply(fifa_knn_predicted_val_list, rmse, fifa_val\$value_eur) fifa_scaled_knn_model_list = list() for(i in 1:length(k_list)){fifa_scaled_knn_model_list[[i]] = knnreg(formula = value_eur ~ . , data = fifa_est_scaled, $k = k_list[i]$ fifa_scaled_knn_predicted_est_list = lapply(fifa_scaled_knn_model_list, predict, fifa_est_scaled) fifa_scaled_knn_rmse_est_list = sapply(fifa_scaled_knn_predicted_est_list, rmse, fifa_est_scaled\$value_eur) fifa_scaled_knn_predicted_val_list = lapply(fifa_scaled_knn_model_list, predict, fifa_val_scaled) fifa_scaled_knn_rmse_val_list = sapply(fifa_scaled_knn_predicted_val_list, rmse, fifa_val_scaled\$value_eur) knn_report = data.frame(fifa_rmse_est_list, fifa_rmse_val_list, fifa_scaled_knn_rmse_est_list, fifa_scaled_knn_rmse_val_list) colnames(knn_report) = c('est', 'val', 'scaled_est', 'scaled_val') rownames(knn_report) = c('k=10', 'k=20', 'k=30', 'k=40', 'k=50', 'k=60', 'k=70', 'k=80', 'k=90', 'k=100')knn_report val scaled_est scaled_val est ## k=10 3546599 3847711 3236364 3415462 3669803 3599962 ## k=20 3957183 3928143 3878460 ## k=30 4136475 4024404 3740975 3904888 ## k=40 4312672 4052335 4024642 ## k=50 4449114 4143601 4134414 4019128 ## k=60 4569169 4239056 4260066 4056857 4350526 ## k=70 4676300 4293656 4094884 ## k=80 4756708 4359516 4441625 4162836 ## k=90 4838993 4420409 4507762 4224761 ## k=100 4913750 4472461 4560098 4267872 knn_report = melt(data.matrix(knn_report)) colnames(knn_report) = c('k', 'data_type', 'RMSE') $ggplot(data = knn_report, aes(x = k, y = RMSE, group = data_type, color = data_type))+geom_point(size = 2)+geom_l$ ine(size = 0.75)4500000 data_type - est W 40000000 scaled est scaled_val 3500000 k=10 k=20 k=30 k=40 k=50 k=60 k=70 k=80 k=90 k=100 Regression tree models $cp_list = c(0.1, 0.01, 0.001)$ $minsplit_list = seq(10, 100, 30)$ fifa_regtr_list = list(tr1 = rpart(value_eur ~ ., data = fifa_est, cp = 0.1, minsplit = 10), tr2 = rpart(value_eur ~ ., data = fifa_est, cp = 0.1, minsplit = 40), tr3 = rpart(value_eur ~ ., data = fifa_est, cp = 0.1, minsplit = 70), tr4 = rpart(value_eur ~ ., data = fifa_est, cp = 0.1, minsplit = 100), tr5 = rpart(value_eur ~ ., data = fifa_est, cp = 0.01, minsplit = 10), tr6 = rpart(value_eur ~ ., data = fifa_est, cp = 0.01, minsplit = 40), tr7 = rpart(value_eur ~ ., data = fifa_est, cp = 0.01, minsplit = 70), tr8 = rpart(value_eur ~ ., data = fifa_est, cp = 0.01, minsplit = 100), tr9 = rpart(value_eur ~ ., data = fifa_est, cp = 0.001, minsplit = 10), tr10 = rpart(value_eur ~ ., data = fifa_est, cp = 0.001, minsplit = 40), tr11 = rpart(value_eur ~ ., data = fifa_est, cp = 0.001, minsplit = 70), tr12 = rpart(value_eur ~ ., data = fifa_est, cp = 0.001, minsplit = 100)) fifa_regtr_predicted_est_list = lapply(fifa_regtr_list, predict, fifa_est) fifa_regtr_rmse_est_list = sapply(fifa_regtr_predicted_est_list, rmse, fifa_est\$value_eur) fifa_regtr_predicted_val_list = lapply(fifa_regtr_list, predict, fifa_val) fifa_regtr_rmse_val_list = sapply(fifa_regtr_predicted_val_list, rmse, fifa_val\$value_eur) regtr_report = data.frame(fifa_regtr_rmse_est_list,fifa_regtr_rmse_val_list) colnames(regtr_report) = c('Est', 'Val') rownames(regtr_report) = c('tr1', 'tr2', 'tr3', 'tr4', 'tr5', 'tr6', 'tr7', 'tr8', 'tr9', 'tr10', 'tr11', 'tr12') regtr_report Est Val ## tr1 4212303 4438735 ## tr2 4212303 4438735 ## tr3 4212303 4438735 ## tr4 4212303 4438735 ## tr5 2495107 2694443 ## tr6 2731512 2813335 ## tr7 2961682 3478820 ## tr8 2961682 3478820 ## tr9 1425771 1754542 ## tr10 2054955 2140377 ## tr11 2488345 3022428 ## tr12 2565220 3127878 regtr_report = melt(data.matrix(regtr_report)) colnames(regtr_report) = c('model', 'data_type', 'RMSE') $ggplot(data = regtr_report, aes(x = model, y = RMSE, group = data_type, color = data_type))+$ $geom_point(size = 2)+$ $geom_line(size = 0.75)$ 4e+06 data_type 3e+06-- Est **→** Val 2e+06 tr10 tr11 tr12 model rpart.plot(fifa_regtr_list\$tr9) 2.9e+6 100% 1.8e+6 96% 9.2e+6 7% 28e+6 3% 7.2e+6 5% 21e+6 2% 1.3e+6 29% 3.5e+6 3% 3.4e+6 1% 5e+6 0% 11e+6 1% 25e+6 0% 18e+6 1% 32e+6 0% 20e+6 0% 31e+6 0% 80e+6 0% 52e+6 0% 516e+3 43% (2.1e+6) 7% (3.2e+8) 4% (6.4e+6) 1% 6.6e+6 2% 12e+8 1% 17e+6 1% 8.3e+6 0% 24e+8 1% Fit final model on train data and calculate RMSE in predicting test set. tr = rpart(value_eur ~ ., data = fifa_trn, cp = 0.001, minsplit = 10) rmse(predict(tr, fifa_tst), fifa_tst\$value_eur) ## [1] 2143079 rpart.plot(tr) 6.9e+6 4% 8.8e+6 1% 16e+6 1% 7.9e+8 0% 22e+6 0% \$159a+2 2.1a+0 3.2a+0 (6.4a+0 6.4a+0 156a+0 25e+6 0%