Gebze Technical University Computer Engineering

CSE 222 - 2018 Spring

HOMEWORK 4 REPORT

VEFİK FIRAT AKMAN 151044031

1 INTRODUCTION

1.1 Problem Definition

Part1:

General Tree'nin Binary Tree olarak temsil edilmesi istenmektedir.

Ayrıca bu temsil işlemini gerçekleştirecek program da kullanılacak sınıfın **Binary Tree** sınıfından **Extend** edilmesi istenmektedir.

Part2:

Yapamadım.

1.2 System Requirements

Proje Intelij IDE üzerinde yazılmıştır. Java 8 kullanılmıştır. Ubuntu ve Windows 10 da çalıştırılabilir.

Add() fonksiyonu veriyi tutan yeni bir **node**'a (child) ve verinin **Tree** de yerleştirileceği konum için **Tree** için de bulunan **node**'a **(parent)** ihtiyacı vardır.

postOrderSearch() ve levelOrderSearch() fonksiyonları arama metotları olup Tree de ki node'lar da arayacakları veriye (target) ihtiyaç duymaktadır.

preOrderTraverse() fonksiyonu **preOrder()** fonksiyonunu çağırmaktadır. Ve **preOrder()** fonksiyonu **Tree**'nin köküne ve **StringBuilder**'a ihtiyacı cardır.

2 METHOD

Add() fonksiyonu veriyi **Tree**'ye yeni bir **node** ekler. Yeni **node child**'tır. Ve **Child**'ın konumunu **parent node**'una göre belirler. Eğer ağaç boşsa **parent null** girilerek **child** olarak verilen **node root** olur.

postOrderSearch() fonksiyonu arama metodudur. Ve arama yaparken önce **child**'lara sonra **root**'a bakmaktadır. **Root**'un parametre olarak verildiği diğer **postOrderSearch()**'i çağırır.

levelOrderSearch() fonksiyonu arama metodudur. **Tree**'yi oluşturan **level**'lere göre ve ilk **level**'den son level'e göre arama yapmaktadır.

preOrderTraverse() fonksiyonu preOrder() fonksiyonunu çağırmaktadır. Ve preOrder() fonksiyonu Tree'nin köküne ve StringBuilder'a ihtiyacı vardır.

2.1 Class Diagrams

2.3 Other Diagrams (optional)

(Add other diagrams if required.)

Başka bir diyagram gerekli gör(e)medim.

2.4 Problem Solution Approach

Part1:

İlk olarak **General Tree** ve **Binary Tree** nedir? Ne özellikleri vardır? Birbirlerinden farkları nelerdir?

Araştırmalarını yaptım. Ardından problem için gerekli olan **Binary Tree** sınıfı ile **ArrayQueue** Sınıfını dersin kitabından aldım.

İstenilen metotların normal de **Binary Tree** de ve **General Tree** de olup olmadıklarını kontrol ettim. Bulduğum metot **implementation**'larını inceledim. Ve kendi problemime uygun olanları kullandım veya modifiye ettim.

Part2:

Part2 de istenileni tam olarak anlayamadım. Ve anlayabildiğim kısımlara çözüm üretemedim. Part1 de yaşadığım sorunlardan sonra da ödevin Part2'sini yapamayacağımı anlayıp yapmama kararı aldım.

3 RESULT

3.1 Test Cases

Main Test:

Main test de düzgün bir **output** formatıyla test **output** ekranında açıklanmıştır. Part1 test edilmektedir. **Output** ekranında her aşama kalın olarak ayrılmıştır.

Unit Test:

BinaryTreeExtend Sınıfının tüm metotları test edilmiştir.

3.2 Running Results

Main Test Running Result:

Unit Test Running Result:

4 Time Analyses

```
preOrder():
```

$$T(f()) = O(n);$$

preOrderSearch():

```
T_{best}(f()) = O(1) and T_{worst}(f()) = T (preOrder);
```

postOrder():

$$T(f()) = O(n);$$

postOrderSearch():

 $T_{best}(f()) = O(1)$ and $T_{worst}(f()) = T(postOrder)$;

levelOrderSearch():

 $T_{best}(f()) = O(1)$ and $T_{worst}(f()) = O(n)$;

add():

 $T_{best}(f()) = O(1)$ and $T_{worst} = T(Search)$;

- Main titles -> 16pt, 2 line break
- Subtitles -> 14pt, 1.5 line break
- Paragraph -> 12pt, 1.5 line break