Travaux Dirigés de Chimie

CHARLES TUCHENDLER

MPSI 4 – Lycée Saint-Louis

Année 2019/2020

Table des matières

TD n° 6	ÉQUILIBRES ACIDO-BASIQUES	1
Exercice n° 1 - Cal	cul de quotient de réaction	1
Exercice n° 2 - Cor	nstantes d'équilibre	1
Exercice n° 3 - Act	civités d'espèces chimiques	2
Exercice n° 4 - Sol	utions d'ammoniaque	2
Exercice n° 5 - Rec	cherche de réactions prépondérantes	2
Exercice n° 6 - Dia	gramme de distribution de l'acide citrique	2
Exercice nº 7 - Réa	actions acido-basiques	3
Exercice nº 8 - Sol	ution d'acide phosphorique	3

TD N° 6

ÉQUILIBRES ACIDO-BASIQUES

Exercice n° 1 - Calcul de quotient de réaction

L'acidification d'une solution d'eau de Javel (mélange équimolaire de chlorure de sodium, $(Na^+ + Cl^-)$, et d'hypochlorite de sodium, $(Na^+ + ClO^-)$ par une solution d'acide chlorhydrique, $(H_3O^+ + Cl^-)$ produit un dégagement de dichlore selon la réaction d'équation :

$$Cl^{-}(aq) + 2H_3O^{+}(aq) + ClO^{-}(aq) = Cl_2(g) + 3H_2O(l)$$

A un instant donné:

- $[H_3O^+] = 0,040 \text{ mol.L}^{-1}$
- -- [Cl⁻] = 0,120 mol.L⁻¹
- $[ClO^-] = 0,020 \text{ mol.L}^{-1}$
- $[Na^+] = 0,100 \text{ mol.L}^{-1}$
- $--p(Cl_2) = 125 \text{ mmHg}$
- 1. Déterminer l'activité de chacun des constituants du système.
- 2. En déduire la valeur du quotient de réaction à cet instant.

Donn'ees:

- $-C^{\circ} = 1 \text{ mol.L}^{-1}$
- $-P^{\circ} = 1.00 \text{ bar}$

Exercice n° 2 - Constantes d'équilibre

1. Ecrire les expressions des constantes d'équilibre des réactions suivantes en supposant que les concentrations sont exprimées en $\operatorname{mol.L}^{-1}$:

$$Ag^{+}(aq) + Br^{-}(aq) = AgBr(s)$$
 $K^{\circ}_{1} = 10^{12}$ (6.1)

$$Ag^{+}(aq) + 2CN^{-}(aq) = [Ag(CN)_{2}]^{-}(aq)$$
 $K^{\circ}_{2} = 10^{21}$ (6.2)

$$2 \operatorname{Ag(s)} + 2 \operatorname{H}_{3} \operatorname{O}^{+}(\operatorname{aq}) = 2 \operatorname{Ag^{+}}(\operatorname{aq}) + \operatorname{H}_{2}(\operatorname{g}) + 2 \operatorname{H}_{2} \operatorname{O} \qquad \qquad K^{\circ}_{3} = 10^{-27} \tag{6.3}$$

2. En déduire la valeur des constantes d'équilibre des réaction suivantes :

$$AgBr(s) + 2CN^{-}(aq) = [Ag(CN)_{2}]^{-}(aq) + Br^{-}(aq) K^{\circ}_{4} = ? (6.4)$$

$$2 \operatorname{Ag(s)} + 2 \operatorname{Br}^{-}(\operatorname{aq}) + 2 \operatorname{H}_{3} \operatorname{O}^{+}(\operatorname{aq}) = 2 \operatorname{AgBr(s)} + \operatorname{H}_{2}(\operatorname{g}) + 2 \operatorname{H}_{2} \operatorname{O}$$

$$K^{\circ}_{5} = ?$$

$$(6.5)$$

Exercice n° 3 - Activités d'espèces chimiques

- 1. Un volume V = 500 mL de solution aqueuse est préparé en dissolvant dans le volume suffisant d'eau :
 - 150 mmol d'acide chlorhydrique HCl(g)
 - 13,5 g de chlorure de fer (III) hexahydraté FeCl₃,6 H₂O(s)
 - -20.0 g de sulfate de fer (III) $Fe_2(SO_4)_3(s)$
 - (a) En admettant que chaque soluté est totalement dissocié en ions dans la solution, écrire les réactions de dissolution associées.
 - (b) Déterminer alors la quantité, puis la concentration et enfin l'activité de chacune des espèces ioniques présentes dans cette solution.
- 2. Un système gazeux est constitué des gaz argon, hélium et dihydrogène. Les pressions partielles de ces gaz valent p(Ar) = 120 kPa, p(He) = 0.83 bar et $p(H_2) = 400 \text{ mmHg}$. Déterminer l'activité de chacun de ces gaz.

Donn'ees:

- $M(\text{Fe}) = 58,8 \text{ g.mol}^{-1}$
- $M(Cl) = 35,5 \text{ g.mol}^{-1}$
- $M(O) = 16 \text{ g.mol}^{-1}$
- $M(H) = 1 \text{ g.mol}^{-1}$
- $M(S) = 32, 1 \text{ g.mol}^{-1}$

Exercice n° 4 - Solutions d'ammoniaque

- 1. On considère une solution telle que $[NH_3] + [NH_4^+] = 0,01 \text{ mol.L}^{-1}$. Calculer les concentrations d'ammoniac et d'ions ammonium quand le pH est fixé, grâce à un mélange tampon, à :
 - pH=5
 - -- pH=9,5
- 2. On introduit 10^{-1} mol d'ammoniac dans 1 L d'eau. Calculer le pH de la solution à l'équilibre.

 $Donn\acute{e}e : pK_a(NH_4^+/NH_3) = 9, 2$

Exercice n° 5 - Recherche de réactions prépondérantes

1. Placer sur une échelle de pK_a les couples de l'eau et les couples suivants :

Couples	$\mathrm{NH_4}^+/\mathrm{NH_3}$	$\mathrm{CH_{3}COOH/CH_{3}COO^{-}}$	HClO/ClO ⁻	$\mathrm{H_2S/HS}^-$	$\mathrm{HS}^{-}/\mathrm{S}^{2-}$
pK_a	9,2	4,8	7,5	7	13

- 2. Ecrire la réaction prépondérante dans le cas où l'on introduit les solutés suivant en solutions aqueuses. Préciser sa constante d'équilibre.
 - (a) $[NH_3]_0$
 - (b) $[NH_3]_0$ et $[NH_4^+]_0$
 - (c) $\left[\mathrm{CH_3COOH}\right]_0,\,\left[\mathrm{CH_3COO}^-\right]_0,\,\left[\mathrm{HClO}\right]_0$ et $\left[\mathrm{ClO}^-\right]_0$
 - (d) $[HS^-]_0$ et $[Na^+]_0$

Exercice n° 6 - Diagramme de distribution de l'acide citrique

L'acide citrique de formule $C_6H_8O_7$ est un triacide noté H_3A . Le document ci-contre donne son diagramme de distribution en fonction du pH. Les courbes tracées représentent le pourcentage de chacune des espèces contenant "A" lorsque le pH varie.

- 1. Identifier chacune des courbes.
- 2. En déduire les constantes $\mathsf{pK}_{\mathsf{a}_i}$ et $K_{a,i}$ relatives aux trois couples mis en jeu.
- 3. 250,0 mL de solution ont été préparés en dissolvant 1,05 g d'acide citrique monohydraté $C_6H_8O_7H_2O$.
 - (a) Calculer la concentration C de la solution.
 - (b) Déterminer, à partir de C et du diagramme de distribution, la composition du mélange à pH = 4,5.

Données:

- $M(C) = 12 \text{ g.mol}^{-1}$
- $-M(O) = 16 \text{ g.mol}^{-1}$
- $M(H) = 1 \text{ g.mol}^{-1}$

Exercice nº 7 - Réactions acido-basiques

On prépare un volume V=100,0 mL de solution en dissolvant dans de l'eau distillée des quantités : $n_1=2,1.10^{-3}$ mol d'acide lactique CH₃CHOHCOOH noté HA et $n_2=1,7.10^{-3}$ mol d'hypochlorite de sodium NaClO. On donne : $pK_a(HA/A^-)=3,9$ et $pK_a(HClO/ClO^-)=7,5$.

- 1. Placer sur un axe vertical gradué selon les pK_a les couples acide/base mis en jeu et repérer les espèces présentes initialement.
- 2. Ecrire le bilan de la réaction prépondérante et calculer sa constante d'équilibre.
- 3. Calculer les concentrations initiales en acide lactique et en ion hypochlorite. Faire alors un tableau d'avancement de la réaction prépondérante et déterminer la composition finale du système à l'équilibre ainsi qu'une valeur approchée du pH de cette solution.

Exercice n° 8 - Solution d'acide phosphorique

On considère l'acide phosphorique H_3PO_4 noté H_3A dont les constantes d'acidités successives sont :

$$pK_{a_1} = 2,1 \quad ; \quad pK_{a_2} = 7,2 \quad ; \quad pK_{a_3} = 12,4$$

- $1. \ \, {\rm Etablir} \ {\rm le} \ {\rm diagramme} \ {\rm de} \ {\rm pr\'edominance} \ {\rm correspondant}.$
- 2. Si l'on dispose d'une concentration initiale $C_0 = 0, 1 \text{ mol.L}^{-1}$ dans une solution tamponnée à pH = 5, préciser les concentrations des diverses formes phosphatées.