

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Veröffentlichungsnummer:

0 269 806
A1

⑫

EUROPÄISCHE PATENTANMELDUNG

⑬ Anmeldenummer: 87114161.0

⑮ Int. Cl.4: C07D 231/14, C07D 231/16,
C07D 403/06, C07D 403/04,
C07D 413/04, C07D 403/10,
A01N 43/56

⑭ Anmeldetag: 29.09.87

⑯ Priorität: 04.10.86 DE 3633840

⑰ Veröffentlichungstag der Anmeldung:
08.06.88 Patentblatt 88/23

⑲ Benannte Vertragsstaaten:
AT BE CH DE ES FR GB GR IT LI NL SE

⑰ Anmelder: HOECHST AKTIENGESELLSCHAFT
Postfach 80 03 20
D-6230 Frankfurt am Main 80(DE)

⑳ Erfinder: Sohn, Erich, Dr.
Lerchenbergstrasse 46/1
D-7300 Esslingen(DE)
Erfinder: Handte, Reinhard, Dr.
Theilweg 23
D-8901 Gablingen(DE)
Erfinder: Mildenberger, Hilmar, Dr.
Fasanenstrasse 24
D-6233 Kelkheim (Taunus)(DE)
Erfinder: Bürstell, Helmut, Dr.
Am Hohlacker 65
D-6000 Frankfurt am Main 50(DE)
Erfinder: Bauer, Klaus, Dr.
Doerner Strasse 53D
D-6450 Hanau(DE)
Erfinder: Bieringer, Hermann, Dr.
Eichenweg 26
D-6239 Eppstein/Taunus(DE)

㉑ Phenylpyrazolcarbonsäurederivate, Ihre Herstellung und Verwendung als
Pflanzenwachstumsregulatoren und Safener.

㉒ Verbindungen der Formel I

worin R Halogen, Hydroxy, Cyano, Nitro, (subst.) Alkyl, (subst.) Alkoxy, (Halogen)alkylthio, Carboxy, Alkoxy carbonyl; (Halogen)Alkylsulf(onyl)(onyl) oder -(onyloxy); (Halogen)phenyl, (Halogen)phenoxy; X in 3 oder 5-Position einen (Thio)carbonsäure - oder davon abgeleiteten gegebenenfalls heterocyclischen Rest; Y = Halogen, m = die Zahl 0 oder 1 und n eine Zahl von 0 bis 5 bedeutet, besitzen wertvolle pflanzenwuchsregulierende Eigenschaften und eignen sich darüberhinaus als Safener zum Schutz von Kulturpflanzen vor phytotoxischen Nebenwirkungen von Herbiziden.

HOECHST AKTIENGESELLSCHAFT

HOE 86/F 247

Dr. AU/gm-je

Beschreibung

Phenylpyrazolcarbonsäurederivate, ihre Herstellung und Verwendung als Pflanzenwachstumsregulatoren und Safener

Phenylaminopyrazole mit herbizider Wirkung sind z.B. aus EP-A 138 149 bekannt.

Es wurden neue Phenylpyrazolcarbonsäurederivate gefunden die überraschenderweise hervorragende pflanzenwachstumsregulierende Eigenschaften besitzen und darüber hinaus phytotoxische Nebenwirkungen von Herbiziden gegenüber Kulturpflanzen vermindern.

Gegenstand der vorliegenden Erfindung sind daher die Verbindungen der Formel I

15

20

worin

R unabhängig voneinander Halogen, Hydroxy, Cyano, Nitro, (C₁-C₄)Alkyl, (C₁-C₄)Halogenalkyl, (C₁-C₄)Alkoxy-(C₁-C₄)alkyl, (C₁-C₆)Alkoxy, (C₁-C₆)Alkoxy-(C₁-C₄)alkoxy, (C₁-C₆)Halogenalkoxy, (C₁-C₄)Alkylthio, (C₁-C₄)Halogenalkylthio, Carboxy, (C₁-C₄)Alkoxy carbonyl, (C₁-C₄)Alkylsulfinyl, (C₁-C₄)Halogenalkylsulfinyl, (C₁-C₄)Alkylsulfonyl, (C₁-C₄)Halogenalkylsulfonyl, (C₁-C₄)-Alkylsulfonyloxy, Halogen(C₁-C₄)alkylsulfonyloxy, Phenyl, Halogenphenyl, Phenoxy oder Halogenphenoxy,

25

30

X = in Position 3 oder 5 des Pyrazolringes orientiert ist und einen Rest der Formeln

35

2

Y = Halogen

Z = O oder S

U = O, S oder N-R⁶,15 R¹ Wasserstoff, (C₁-C₁₂)Alkyl,(C₁-C₁₂)Alkyl, das ein- oder mehrfach durch Halogen und/oder ein- bis zweifach durch Hydroxy,(C₁-C₆)Alkoxy,20 (C₁-C₄)Alkoxy(C₁-C₄)alkoxy, (C₁-C₄)-Alkylthio,(C₁-C₄)Alkylsulfinyl, (C₁-C₄)Alkylsulfonyl, Mono- oderDi-(C₁-C₄-alkyl)amino, Cyano, Aminocarbonyl,(C₁-C₄)Alkylcarbonyl, (C₁-C₄-Alkoxy)carbonyl,25 Cyclo(C₃-C₇)-alkyl, Tri(C₁-C₄)alkyl-silyl, Benzyloxy,

Benzylxyethoxy, Phenyl, Phenyl, das durch Halogen oder

(C₁-C₄)Alkyl substituiert ist, durch Phenoxy,20 Phenylthio, die durch Halogen oder (C₁-C₄)-Alkyl

substituiert sein können, durch Oxiranyl,

Tetrahydrononyl, Triazolyl, Pyridinyl, Imidazolyl, durch

30 Carboxy, Carboxylat mit einem für die Landwirtschaft

einsetzbaren Kation oder durch den Rest

-O-N=C(CH₃)₂ substituiert ist,(C₃-C₆)Alkenyl, (C₃-C₆)-Halogenalkenyl,unsubstituiertes oder durch Halogen oder (C₁-C₄)Alkyl35 substituiertes Cyclo(C₃-C₇)alkyl, unsubstituiertes oderdurch Halogen oder (C₁-C₄)Alkyl substituiertes

Cyclo(C₅-C₇)alkenyl, (C₃-C₆)Alkinyl,
 1,2-Epoxy-prop-3-yl, Phenyl oder Phenyl, das ein oder
 zweifach durch Halogen, Nitro, Cyano, (C₁-C₄)Alkyl,
 (C₁-C₄-Alkoxy)carbonyl oder (C₁-C₄)Alkoxy substituiert
 5 ist, (C₁-C₄-Alkyl)carbonyl, Phenylcarbonyl, wobei der
 Phenylring durch Halogen, Nitro, Cyano oder
 (C₁-C₄)Alkyl substituiert sein kann,

einen Rest der Formeln

10

15

25

R² (C₁-C₁₂)Alkyl oder (C₁-C₁₂)Alkyl, das bis zu zweifach
 durch (C₁-C₄)Alkoxyethoxy, Cyclo(C₃-C₆)alkyl,
 Benzyloxy, Phenyl, Phenoxy, (C₁-C₄)Alkylthio, (C₁-C₄-
 Alkoxy)-carbonyl, Carboxy oder Carboxylat mit einem für
 30 die Landwirtschaft einsetzbares Kation, substituiert
 ist,

30

R³ jeweils unabhängig voneinander (C₁-C₆)-Alkyl, Phenyl
 oder (C₃-C₆)-Alkenyl,

4 R Wasserstoff, (C_1-C_{12}) Alkyl oder (C_1-C_{12}) Alkyl, das bis zu zweifach durch (C_1-C_6) Alkoxy, (C_1-C_4) Alkoxy-ethoxy, Hydroxy, Hydroxyimino, (C_1-C_4) -Alkoxyimino, Halogen, Cyclo(C_3-C_6)alkyl, Benzyloxy, Cyano, Aminocarbonyl, Carboxy, (C_1-C_4) -Alkoxy)-carbonyl, Formyl, Phenyl oder Phenoxy substituiert ist, Phenyl oder Phenyl, das bis zu zweifach durch Halogen, Nitro, Cyano, (C_1-C_4) Alkyl oder (C_1-C_4) Alkoxy substituiert ist; (C_1-C_6) -Alkenyl, (C_3-C_6) Cycloalkyl, einen Rest der Formeln

5 $-NR^{12}$, $-O-R^6$, $-NH-CONH_2$, $-NH-CS-NH_2$ oder $-SO_2R^{13}$ oder

10 R^3 und R^4 gemeinsam mit dem Stickstoffatom an das sie gebunden sind, einen gesättigten oder ungesättigten gegebenenfalls benzokonensierten drei- bis siebengliedrigen Ring, der bis zu drei Heteroatome aus der Gruppe O, N oder S enthält und der unsubstituiert oder durch (C_1-C_4) Alkyl oder Halogen substituiert ist und eine Carbonylgruppe enthalten kann,

15 R^5 H, (C_1-C_6) Alkyl oder Phenyl, oder im Falle X =

20 $-CS-OR^5$ ein für die Landwirtschaft einsetzbares Kation,

25 R^6 jeweils unabhängig voneinander H, (C_1-C_4) Alkyl oder Benzyl,

30 R^7 jeweils unabhängig voneinander H, (C_1-C_{12}) Alkyl, das unsubstituiert oder durch Phenyl, das unsubstituiert oder durch Halogen, Nitro, Cyano, (C_1-C_4) Alkyl oder (C_1-C_4) Alkoxy substituiert ist, durch Hydroxy, Cyano, (C_1-C_4) -Alkoxy)-carbonyl, (C_1-C_4) -Alkylthio, (C_1-C_4) -Alkoxy, Cyclo(C_5-C_7)alkyl oder Benzyloxy substituiert ist,

35 (C_3-C_6) Alkenyl, Halogen(C_3-C_6)Alkenyl, (C_3-C_6) Alkinyl, Cyclo(C_5-C_8)alkyl, Cyclo(C_5-C_6)alkenyl, (C_1-C_6) -Alkyl)carbonyl,

Halogen(C_1-C_6 -alkyl)carbonyl,
[(C_1-C_6 -Alkyl)amino]carbonyl, Benzoyl, Halogenbenzoyl
oder Methylbenzoyl

5 R^8 jeweils unabhängig voneinander (C_1-C_6)Alkyl, das unsubstituiertes oder durch Phenyl, Cyclo(C_5-C_7)alkyl, (C_1-C_4)Alkoxy, (C_1-C_4)Alkylthio oder Halogen substituiert ist, oder zwei Reste R^8 gemeinsam mit Z und dem

10 Kohlenstoffatom, an das sie gebunden sind, einen unsubstituierten oder durch (C_1-C_4)Alkyl, Hydroxy- (C_1-C_4)alkyl, Halogen(C_1-C_4)alkyl oder Phenyl substituierten 5- oder 6-gliedrigen gesättigten heterocyclischen Ring;

15 R^9 jeweils unabhängig voneinander H, Halogen, (C_1-C_4)-Alkyl, Nitro oder Cyano,

20 R^{10} unabhängig voneinander H, (C_1-C_6)Alkyl, das unsubstituiert oder durch (C_1-C_4)Alkoxy, Triazolyl oder Imidazolyl substituiert ist, Cyclo(C_3-C_6)alkyl, (C_1-C_6)Alkenyl, Phenyl oder Benzyl, oder im Falle $R^{10}=N=C(R^{10})_2$ beide Reste R^{10} gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, ein unsubstituiertes oder durch Methyl oder Halogen substituiertes Cyclo- (C_5-C_7)alkyl,

25 R^{11} (C_1-C_4)Alkyl, Phenyl, (C_1-C_6 -Alkyl)carbonyl, Benzyl, Benzoyl, Halogenbenzyl, Halogenbenzoyl oder Methylbenzoyl,

30 R^{12} H, (C_1-C_4)Alkyl, Formyl, (C_1-C_6 -Alkyl)carbonyl, Benzoyl, Halogenbenzoyl, Methylbenzoyl oder Trihalogenacetyl,

35 R^{13} (C_1-C_4)Alkyl, Phenyl oder Methylphenyl,

m 0 oder 1,

n eine ganze Zahl von 0 bis 5, insbesondere 1 bis 3,

p eine ganze Zahl von 0 bis 4, insbesondere 0 bis 2 und

q eine ganze Zahl von 0 bis 6, insbesondere 0 bis 3,

5 bedeuten, sowie deren für landwirtschaftliche Zwecke
verträglichen Salze und Quaternisierungsprodukte.

10 Die Salzbildung bzw. Quaternisierung erfolgt hierbei am
basischen Stickstoffatom des Pyrazolrings. Die Salzbildung
oder Quaternisierung ist nicht möglich, wenn R¹, R⁵ ein
Kation bedeutet oder R¹, R², R⁵ eine Carboxylatgruppe
enthält.

Bevorzugt unter den Verbindungen der Formel I sind ins-
besondere solche, bei denen R= Halogen, (C₁-C₄)Alkyl,
Halogen(C₁-C₄)alkyl oder (C₁-C₄)Alkoxy; X= CN, -COOR¹,
CO-SR² oder -CONR³R⁴; Y= Halogen; R¹, R²= H, (C₁-C₄)Alkyl
(C₂-C₄)Alkenyl, (C₂-C₄)Alkinyl, (C₁-C₄)Alkoxy-(C₁-C₄)alkyl
oder ein Kation; R³, R⁴= H, (C₁-C₄)Alkyl, m= 0 oder 1 und
n= 1 bis 3 bedeuten. Von besonderem Interesse hierbei sind
Verbindungen mit R_n= 2,6-Dialkyl, Mono- oder Dihalogen oder
mono-Trifluormethyl.

Der Rest Y ist insbesondere in Position 4 des
Pyrazolringes orientiert.

Unter Halogen ist F, Cl, Br oder J, insbesondere F, Cl oder
Br zu verstehen.

(C₁-C₄)Halogenalkyl enthält 1 bis 5, insbesondere 1 bis 3
Chlor oder Fluoratome; bevorzugt ist der Rest CF₃.

Halogeniertes (C₁-C₁₂)Alkyl enthält insbesondere 1 bis 13
Chlor- oder Fluoratome, hierzu zählen beispielsweise die
Reste 2,2,2-Trichlorethyl, 4-Chlorbutyl, 2,2,2-Trifluor-
ethyl, 1,1,1,3,3-Hexafluorprop-2-yl; 2,2,3,4,4,4-
Hexafluorbutyl und 3,3,4,4,5,5,6,6,7,7,8,8,8-Trideka-fluor-
oct-1-yl.

(C_1-C_6) Halogenalkylthio, Halogen(C_1-C_4)alkylsulfinyl, Halogen(C_1-C_4)alkylsulfonyl und Halogen(C_1-C_4)alkylsulfonyloxy enthalten jeweils insbesondere 1 bis 9 Chlor- oder Fluoratome;

Halogeniertes (C_3-C_6) Alkenyl enthält insbesondere 1 bis 3 Chlor oder Fluoratome.

Halogenphenyl, Halogenbenzyl oder Halogenbenzoyl enthalten insbesondere 1 bis 3 Fluor, Chlor oder Bromatome.

Unter Trihalogenacetyl ist insbesondere Trichlor- und Trifluoracetyl zu verstehen.

Für den Fall, daß der Rest $-NR^3R^4$ (für X = CO-NR $^3R^4$) einen heterocyclischen Ring bildet, ist hierunter beispielsweise Piperidin, Morphin, 2,6-Dimethylmorpholin, Piperazin, Triazol, Imidazol, Pyrazol, Thiazol und Benzimidazol zu verstehen.

Für den Fall, daß in den aufgeführten Substituenten - zusätzlich zum Pyrazolring - weitere basische Stickstoffatome auftreten, ist auch eine mehrfache Salzbildung oder Quaternisierung möglich.

Für die Herstellung der Salze geeignet sind alle anorganischen oder organischen Säuren, die aufgrund ihres pK_s-Wertes zur Salzbildung befähigt sind, z.B. Halogenwasserstoffsäuren, Salpetersäure, Schwefelsäure, Phosphorsäure, Phosphonsäuren, Sulfonsäuren, Halogenessigsäuren oder Oxalsäure.

Als Quaternisierungsprodukte sind die Umsetzungsprodukte mit Alkyl-, Alkylthioalkyl-, Alkoxyalkyl-, insbesondere (C_1-C_6) Alkyl- und gegebenenfalls im Phenylrest substituierten, insbesondere halogenierten Phenacylhogeniden zu verstehen. Die Herstellung der Quaternisierungsprodukte der Verbindungen der Formel I erfolgt nach allgemein üblichen Methoden.

Als Kationen für R^1 , R^2 oder R^5 , die für die Landwirtschaft einsetzbar sind, kommen Metallkationen z.B. Alkali- oder Erdalkalikationen wie Na, K, Mg oder organische Kationen wie organisches substituiertes Ammonium, organisch substituiertes Phosphonium, Sulfonium oder Sulfoxonium oder andere Stickstoff-kationen in Betracht.

Organisch substituiertes Ammonium bedeutet primäres, sekundäres, tertiäres, quartäres, aliphatisches, aromatisches oder heteroaromatisches Ammonium, das 1 bis drei N- Atome enthalten kann. Die Stickstoffatome des Amins können hierbei auch Teil eines cyclischen Systems sein. Als Beispiele für solche Ammoniumsalze seien genannt:

Mono-, Di-, Tri-, Tetra[(C_1-C_6) Alkyl]ammonium wie Isopropylammonium, Butylammonium, Stearylammmonium, Triethylammonium, Mono-, Di-, Tri-[(C_1-C_4) alkoxy(C_1-C_4)alkyl]ammonium oder Mono-, Di-, Tri-[(C_1-C_6) -alkanol]-ammonium wie Methoxyethylammonium, Methoxypropylammonium, Triethanolammonium, Tripropanolammonium, oder Ammoniumverbindungen mit gemischten Resten wie tert.-Butyldiethanolammonium, Triethylbenzylammonium, Hydroxyethyltrimethylammonium, Chlorethyltrimethylammonium, oder Allylammonium, Diallylammonium, Cyclohexylammonium, Menthanylammmonium, Aminoethylammonium, Ethylendiammonium, Benzhydrylammonium, Pyrrolidinium, Morpholinium, 3-Pyridylammonium, Piperidinium oder Piperazinium, oder ein von einer Aminosäure oder deren Ester abgeleitetes Ammonium wie $[NH_3^+ - CH_2 - COOCH_3]^+$.

Organisch substituiertes Phosphonium, organisches Sulfonium oder organisches Sulfoxonium enthalten aliphatische oder arylaliphatische Reste, wie sie für Ammonium angegeben wurden.

Andere Stickstoff-Kationen sind beispielsweise Hydrazonium, Hydroxylammonium, Guanidinium, Aminoguanidinium oder deren Substitutionsprodukte.

Gegenstand der Erfindung ist ferner ein Verfahren zur

gekennzeichnet, daß man eine Verbindung der Formel II

5

worin R^{14} (C_1-C_6)-Alkyl bedeutet, mit einer Verbindung der Formel III

10

umsetzt und anschließend gegebenenfalls derivatisiert.

Das Verfahren wird bei 0° bis 120°C in einem organischen Lösemittel gegebenenfalls in Gegenwart einer organischen Säure, wie p-Toluolsulfonsäure, Methansulfonsäure, durchgeführt. Als Lösemittel können polare Verbindungen wie Alkohole, z.B. Ethanol, Methanol, organische Säuren wie Eisessig, chlorierte Kohlenwasserstoffe wie Dichlorethan oder aromatische Lösemittel wie Toluol, Xylol eingesetzt werden.

Während der Reaktion entstehen als Zwischenstufen die Verbindungen der Formel IVa und IVb.

25

30

35

Diese Zwischenprodukte können isoliert werden und anschließend unter den oben beschriebenen Bedingungen

cyclisiert werden. Bei der direkten Weiterreaktion werden in der Regel Gemische der Verbindungen der Formel I d.h. die Verbindungen der Formel Ia und Ib nebeneinander erhalten.

5

10

(Ia)

(Ib)

Die Verbindungen der Formeln (Ia) bzw. (Ib) können nach 15 üblichen Verfahren an der Gruppe -COOR¹ oder durch

15 Halogenierung des Pyrazolrestes derivatisiert werden.

So lassen sich die Pyrazole der Formeln Ia oder Ib unter den üblichen Bedingungen der Aromatenhalogenierung in der 4-Position des Pyrazolrestes halogenieren, s. Houben-Weyl, 20 Methoden der organischen Chemie Band 5/3 S. 503 ff, Band 5/4, S. 13 ff (1962). Zur Derivatisierung wird weiterhin der Rest -COOR¹ in bekannter Weise in andere für X genannte Reste umgewandelt, z.B. durch Verseifung, Veresterung, 25 Umesterung, Amidierung, Salzbildung etc. wie dies z.B. in den deutschen Offenlegungsschriften DE-OS 34 44 918 und DE-OS 34 42 690 beschrieben ist, oder es erfolgt auf übliche Weise Salzbildung oder Quaternisierung am basischen Stickstoffatoms des Pyrazolrings.

30 Die Ausgangsverbindungen der Formel II lassen sich durch Umsetzung der Verbindungen der Formel V mit Verbindungen der Formel VI in Gegenwart einer organischen Hilfsbase,

35

(V)

(VI)

erhalten (Literatur: Chem. Ber. 115, S. 2766-2782 (1982)).
¹⁵ R bedeutet eine Abgangsgruppe wie Cl, Br, OSO₂CF₃

Als Hilfsbase können organische Amine wie Triethylamin
5 oder Pyridin eingesetzt werden. Das Verfahren wird zwischen
-20° und +30C° durchgeführt. Die erhaltenen Verbindungen
der Formel II können direkt ohne Aufarbeitung weiter
umgesetzt werden. Die Ausgangsverbindungen der Formel III
lassen sich nach üblichem Verfahren, s. Houben Weyl,
10 Methoden der organischen Chemie Bd 10/2 S. 169 (1967)
herstellen.

Gegenstand der Erfindung ist ferner die Verwendung der
Verbindungen der Formel I als Pflanzenwuchsregulatoren.
15 Mit den erfindungsgemäßen Verbindungen sind typische
wachstumsregulierende Effekte erzielbar. Die Verbindungen
greifen regulierend in den pflanzeneigenen Stoffwechsel ein
und können damit zur gezielten Beeinflussung von
Pflanzeninhaltsstoffen sowie zur Ernteerleichterung wie zum
20 Auslösen von Desiccation und Wuchsstauchung eingesetzt
werden. Des Weiteren eignen sie sich zur generellen
Steuerung und Hemmung von unerwünschtem vegetativen
Wachstum, ohne dabei die Pflanzen abzutöten. Eine Hemmung
25 des vegetativen Wachstums spielt bei vielen mono- und
dikotylen Kulturen eine große Rolle, da das Lagern
hierdurch verringert oder völlig verhindert werden kann.
Besonders hervorzuheben ist die wachstumsregulatorische
Wirksamkeit der Verbindungen als Wuchshemmer in Getreide,
Mais, Soja, Tabak, Baumwolle, Ackerbohne, Raps, Reis,
30 Sonnenblume, Rasen sowie ihre Fähigkeit, den Gehalt an
erwünschten Inhaltsstoffen wie Kohlehydraten (z.B.
Zuckerrohr oder Hirsekulturen) und Protein bei Nutzpflanzen
zu erhöhen. Schließlich zeigen die Verbindungen eine sehr
gute Verbesserung der Fruchtabszission, insbesondere bei
35 Zitrusfrüchten.

Eine weitere Lösung der gestellten Aufgabe sind auch das Pflanzenwachstum regulierende Mittel, die sich durch einen wirksamen Gehalt mindestens einer der erfindungsgemäßen Verbindung auszeichnen. Die Aufwandmenge der Verbindungen der Formel I beträgt im allgemeinen 0,02 bis 2,5 kg 5 Wirksubstanz pro ha, vorzugsweise 0,05 bis 1,5 kg/ha. Die Verbindungen lassen sich bei ihrem praktischen Einsatz gegebenenfalls auch vorteilhaft mit bekannten Wachstumsregulatoren oder natürlichen oder pflanzlichen Hormonen kombinieren. 10

Gegenstand der Erfindung ist ferner die Verwendung der Verbindungen der Formel I als Safener. So wurde gefunden, daß sie phytotoxische Nebenwirkungen von 15 Pflanzenschutzmitteln, insbesondere von Herbiziden, beim Einsatz in Nutzpflanzenkulturen vermindern oder ganz unterbinden.

Die Verbindungen der Formel I können zusammen mit anderen 20 Herbiziden ausgebracht werden und sind dann in der Lage, schädliche Nebenwirkungen dieser Herbizide zu antagonisieren oder völlig aufzuheben, ohne die herbizide Wirksamkeit dieser Herbizide gegen Schadpflanzen zu beeinträchtigen. Hierdurch kann das Einsatzgebiet 25 herkömmlicher Pflanzenschutzmittel ganz erheblich vergrößert werden. Solche Verbindungen, die die Eigenschaft besitzen, Kulturpflanzen gegen phytotoxische Schäden durch Herbizide zu schützen, werden Antidots oder "Safener" genannt. 30

Herbizide, deren phytotoxische Nebenwirkungen mittels der Verbindungen der Formel I herabgesetzt werden können, sind z.B. Carbamate, Thiolcarbamate, Halogenacetanilide, substituierte Phenoxy-, Naphthoxy- und 35 Phenoxyphenoxy carbonsäurederivate sowie Heteroaryloxyphenoxy carbonsäurederivate wie Chinolyloxy-,

Chinoxalyloxy-, Pyridyloxy-, Benzoxazolyloxy-, Benzthiazolyloxy-phenoxy-carbonsäureester und ferner Dimedonoximabkömmlinge. Bevorzugt hiervon sind Phenoxyphenoxy- und Heteroaryloxyphenoxy carbonsäureester. Als Ester kommen hierbei insbesondere niedere Alkyl-, Alkenyl und Alkinylester in Frage.

Beispielsweise seien, ohne daß dadurch eine Beschränkung erfolgen soll, folgende Herbizide genannt:

A) Herbizide vom Typ der Phenoxyphenoxy- und Heteroaryloxy phenoxy carbonsäure- (C_1-C_4) alkyl-, (C_2-C_4) alkenyl- und (C_3-C_4) alkinylester wie

2- (4- (2,4-Dichlorphenoxy)-phenoxy)-propionsäuremethyl-ester,

2- (4- (4-Brom-2-chlorphenoxy)-phenoxy)-propionsäuremethyl-ester,

2- (4- (4-Trifluormethylphenoxy)-phenoxy)-propionsäure-methylester,

2- (4- (2-Chlor-4-trifluormethylphenoxy)-phenoxy)-propion-säuremethylester,

2- (4- (2,4-Dichlorbenzyl)-phenoxy)-propionsäuremethyl-ester,

4- (4- (4-Trifluormethylphenoxy)-phenoxy)-pent-2-en-säure-ethylester,

2- (4- (3,5-Dichlorpyridyl-2-oxy)-phenoxy)-propionsäure-ethylester,

2- (4- (3,5-Dichlorpyridyl-2-oxy)-phenoxy)-propionsäure-propargylester,

2- (4- (3,5-Dichlorpyridyl-2-oxy)-phenoxy)-propionsäure-trimethylsilylmethylester,

2- (4- (6-Chlorbenzoxazol-2-yl-oxy)-phenoxy)-propionsäure-ethylester,

2- (4- (6-Chlorbenzthiazol-2-yl-oxy)-phenoxy)-propionsäure-ethylester,

2- (4- (3-Chlor-5-trifluormethyl-2-pyridyloxy)-phenoxy)-propionsäuremethyl ester,

2-(4-(3-Chlor-5-trifluormethyl-2-pyridyloxy)-phenoxy)-propionsäureethylester

2-(4-(5-Trifluormethyl-2-pyridyloxy)-phenoxy)-propionsäurebutylester,

2-(4-(6-Chlor-2-chinoxalyloxy)-phenoxy)-propionsäureethyl-ester,

2-(4-(6-Fluor-2-chinoxalyloxy)-phenoxy)-propionsäureethyl-ester,

2-(4-(6-Chlor-2-chinolyloxy)-phenoxy)-propionsäureethyl-ester,

B) Chloracetanilid-Herbizide wie
 N-Methoxymethyl-2,6-diethyl-chloracetanilid,
 N-(3'-Methoxyprop-2'-yl)-methyl-6-ethyl-chloracetanilid,
 N-(3-Methyl-1,2,4-oxadiazol-5-yl-methyl)-chloressigsäure-2,6-dimethylanilid,

C) Thiocarbamate wie
 S-Ethyl-N,N-dipropylthiocarbamat oder
 S-Ethyl-N,N-diisobutylthiocarbamat

D) Dimedon-Derivate wie
 2-(N-Ethoxybutyrimidoyl)-5-(2-ethylthiopropyl)-3-hydroxy-2-cyclohexen-1-on,
 2-(N-Ethoxybutyrimidoyl)-5-(2-phenylthiopropyl)-3-hydroxy-2-cyclohexen-1-on oder
 2-(1-Allyloxyiminobutyl)-4-methoxycarbonyl-5,5-dimethyl-3-oxocyclohexenol.
 2-(N-Ethoxypropionamidoyle)-5-mesityl-3-hydroxy-2-cyclohexen-1-on,
 2-(N-Ethoxybutyrimidoyle)-3-hydroxy-5-(thian-3-yl)-2-cyclohexen-1-on.

Das Mengenverhältnis Safener : Herbizid kann innerhalb weiter Grenzen, im Bereich zwischen 1 : 10 und 10 : 1, insbesondere zwischen 2 : 1 und 1 : 10, schwanken. Die jeweils optimalen Mengen an Herbizid und Safener sind abhängig vom Typ des verwendeten Herbizids oder vom verwendeten Safener sowie von der Art des zu behandelnden

Pflanzenbestandes und lassen sich von Fall zu Fall durch entsprechende Versuche ermitteln.

Haupt Einsatzgebiete für die Anwendung der Safener sind vor allem Getreidekulturen (Weizen, Roggen, Gerste, Hafer), Reis, Mais, Sorghum, aber auch Baumwolle, Zuckerrüben, Zuckerrohr und Sojabohne.

Die Safener der Formel I können je nach ihren Eigenschaften zur Vorbehandlung des Saatgutes der Kulturpflanze (Beizung der Samen) verwendet werden oder vor der Saat in die Saatfurchen eingebracht werden oder zusammen mit dem Herbizid vor oder nach dem Auflaufen der Pflanzen angewendet werden. Vorauflaufbehandlung schließt sowohl die Behandlung der Anbaufläche vor der Aussaat als auch die Behandlung der angesäten, aber noch nicht bewachsenen Anbauflächen ein. Bevorzugt ist die gemeinsame Anwendung mit dem Herbizid. Hierzu können Tankmischungen oder Fertigformulierungen eingesetzt werden.

Gegenstand der vorliegenden Erfindung ist daher auch ein Verfahren zum Schutz von Kulturpflanzen vor phytotoxischen Nebenwirkungen von Herbiziden, das dadurch gekennzeichnet ist, daß eine wirksame Menge einer Verbindung der Formel I vor, nach oder gleichzeitig mit dem Herbizid appliziert wird.

Die erfindungsgemäßen Verbindungen der Formel I können, gegebenenfalls im Gemisch mit weiteren Wirkkomponenten oder auch zusammen mit einem Herbizid, als Spritzpulver, emulgierbare Konzentrate, versprühbare Lösungen, Stäubemittel, Beizmittel, Dispersionen, Granulate oder Mikrogranulate in den üblichen Zubereitungen angewendet werden.

Unter Spritzpulvern werden in Wasser gleichmäßig dispergierbare Präparate verstanden, die neben dem

Wirkstoff außer gegebenenfalls einem Verdünnungs- oder Inertstoff noch Netzmittel, z.B. polyoxethylierte Alkylphenole, polyoxethylierte Fettalkohole, Alkyl- oder Alkylphenylsulfonate und Dispergiermittel, z.B.

5 ligninsulfonsaures Natrium, 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium, dibutylnaphthalinsulfonsaures Natrium oder auch oleoylmethyltaurinsaures Natrium enthalten. Ihre Herstellung erfolgt in üblicher Weise z.B. durch Mahlen und Vermischen der Komponenten.

10

Emulgierbare Konzentrate können z.B. durch Auflösen des Wirkstoffes in einem inerten organischen Lösungsmittel, z.B. Butanol, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder Kohlenwasserstoffen unter Zusatz von einem oder mehreren Emulgatoren hergestellt werden. Bei flüssigen Wirkstoffen kann der Lösungsmittelanteil ganz oder auch teilweise entfallen. Als Emulgatoren können beispielsweise verwendet werden:

15 Alkylarylsulfonsaure Calciumsalze wie
Ca-dodecylbenzolsulfonat, oder nichtionische Emulgatoren wie Fettsäurepolyglykolester, Alkylarylpolyglykolether, Fettalkoholpolyglykolether,
20 Propylenoxid-Ethylenoxid-Kondensationsprodukte, Alkylpolyglykolether, Sorbitanfettsäureester,
25 Polyoxethylenorbitanfettsäureester oder Polyoxethylenorbitester.

30 Stäubemittel werden durch Vermahlen des Wirkstoffes mit fein verteilten, festen Stoffen, z.B. Talkum, natürlichen Tonen wie Kaolin, Bentonit, Pyrophyllit oder Diatomeenerde erhalten.

35 Granulate können entweder durch Verdüsen des Wirkstoffes auf adsorptionsfähiges, granulierte Inertmaterial hergestellt werden oder durch Aufbringen von Wirkstoffkonzentraten mittels Bindemitteln, z.B.

Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen auf die Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von

5 Düngemittelgranulaten üblichen Weise - gewünschtenfalls in Mischung mit Düngemitteln - granuliert werden.

In Spritzpulvern beträgt die Wirkstoffkonzentration etwa 10 bis 90 Gew.-%; der Rest zu 100 Gew.-% besteht aus 10 üblichen Formulierungsbestandteilen. Bei emulgierbaren Konzentraten kann die Wirkstoffkonzentration etwa 10 bis 80 Gew.-% betragen. Staubfähige Formulierungen enthalten meistens 5 bis 20 Gew.-% an Wirkstoff, versprühbare 15 Lösungen etwa 1 bis 20 Gew.-%. Bei Granulaten hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorliegt und welche 20 Granulierhilfsmittel, Füllstoffe usw. verwendet werden.

Daneben enthalten die genannten Wirkstoffformulierungen 20 gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergier-, Emulgier-, Penetrations-, Lösungsmittel, Füll- oder Trägerstoffe.

Zur Anwendung werden die in handelsüblicher Form 25 vorliegenden Konzentrate gegebenenfalls in üblicher Weise verdünnt, z.B. bei Spritzpulvern, emulgierbaren Konzentraten, Dispersionen und teilweise auch bei Mikrogranulaten mittels Wasser. Staubförmige und granulierte Zubereitungen sowie versprühbare Lösungen 30 werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt.

Die benötigten Aufwandmengen der Verbindungen der Formel I 35 bei ihrem Einsatz als Safener können je nach Indikation und verwendetem Herbizid innerhalb weiter Grenzen schwanken und variieren im allgemeinen zwischen 0,01 und 10 kg Wirkstoff je Hektar.

Folgende Beispiele dienen zur Erläuterung der Erfindung.

A. Formulierungsbeispiele

5 a) Ein Stäubemittel wird erhalten, indem man 10 Gew.-Teile einer Verbindung der Formel I und 90 Gewichtsteile Talcum oder Inertstoff mischt und in einer Schlagmühle zerkleinert.

10 b) Ein in Wasser leicht dispergierbares, benetzbares Pulver wird erhalten, indem man 25 Gewichtsteile einer Verbindung der Formel I, 64 Gewichtsteile kaolinhaltigen Quarz als Inertstoff, 10 Gewichtsteile ligninsulfonsaures Kalium und 1 Gewichtsteil oleoylmethyltaurinsaures Natrium als Netz- und Dispergiermittel mischt und in einer Stiftmühle mahlt.

15 c) Ein in Wasser leicht dispergierbares Dispersionskonzentrat wird erhalten, indem man 20 Gewichtsteile einer Verbindung der Formel I mit 6 Gewichtsteilen Alkylphenolpolyglykolether ((R)Triton X 207), 3 Gewichtsteilen Isotridecanolpolyglykolether (8 AeO) und 71 Gewichtsteilen paraffinischem Mineralöl (Siedebereich z.B. ca. 255 bis über 377°C) mischt und in einer Reibkugelmühle auf eine Feinheit von unter 5 Mikron vermahlt.

20 d) Ein emulgierbares Konzentrat wird erhalten aus 15 Gewichtsteilen einer Verbindung der Formel I, 75 Gewichtsteilen Cyclohexanon als Lösungsmittel und 10 Gewichtsteilen oxethyliertes Nonylphenol als Emulgator.

25 e) Ein Wasser leicht emulgierbares Konzentrat aus einem Phenoxykarbonsäureester und einem Antidot (10 : 1) wird erhalten aus

30

35

12,00 Gew.-% 2-[4-(6-Chlorbenzoxazol-2-yl-oxy)-phenoxy]-
propionsäureethylester

1,20 Gew.-% Verbindung der Formel I

5

69,00 Gew.-% Xylol

7,80 Gew.-% dodecylbenzolsulfonsaurem Calcium

6,00 Gew.-% ethoxyliertem Nonylphenol (10 EO)

10

4,00 Gew.-% ethoxyliertem Rizinusöl (40 EO)

Die Zubereitung erfolgt wie unter Beispiel a) angegeben.

f) Ein in Wasser leicht emulgierbares Konzentrat aus einem
15 Phenoxykarbonsäureester und einem Antidot (1 : 10) wird
erhalten aus

4,0 Gew.-% 2-[4-(6-Chlorbenzoxazol-2-yl-oxy)-phenoxy]-
propionsäureethylester

20

40,0 Gew.-% Verbindung der Formel I

30,0 Gew.-% Xylol

20,0 Gew.-% Cyclohexanon

4,0 Gew.-% dodecylbenzolsulfonsaurem Calcium

2,0 Gew.-% ethoxyliertem Rizinusöl (40 EO)

25

B. Chemische Beispiele

Beispiele 1 und 2

30 1-Phenyl-pyrazol-5(und 3)-carbonsäureethylester

Zu 14 g Oxalsäurehalbethylchlorid wurde zwischen 0° und
30°C 15 g Ethylvinylether zugetropft und 20 h bei 20 - 30°C
nachgerührt. Das Reaktionsgemisch wurde im

35

Wasserstrahlvakuum eingeengt und in 100 ml Eisessig
aufgenommen. Zu dieser Lösung tropfte man zwischen 10 und
80°C 10,8 g Phenylhydrazin in 150 ml Eisessig zu und

erhitzte das Gemisch 2 h zum Rückfluß. Man gab das
erhaltene Produkt in 1 l Wasser und extrahierte es zweimal
mit 300 ml Essigester. Der organische Extrakt wurde einmal
mit 100 ml Wasser, zweimal mit 100 ml gesättigter

5 NaHCO_3 -Lösung und wieder mit 100 ml Wasser gewaschen und
über MgSO_4 getrocknet. Nach destillativer Trennung erhielt
man

1-Phenyl-pyrazol-5-carbonsäureethylester K_p 100-102/0,5 Torr (Beispiel 1)

1-Phenyl-pyrazol-3-carbonsäureethylester K_p 125-128/0,5 Torr (Beispiel 2)

10 Ausbeute: 10,5 g

Beispiel 3

1-Phenyl-pyrazol-5-carbonsäure

15

4,4 g 1-Phenyl-pyrazol-5-carbonsäureethylester von Beispiel
1 wurden mit 10 ml 16,5 % wäßrigem NaOH und 10 ml Ethanol
6 h bei Raumtemperatur gerührt; das Ethanol wurde
abdestilliert, die wäßrige Phase zweimal mit 10 ml Toluol
20 extrahiert und mit konz. HCl auf pH 3 eingestellt. Der
Niederschlag wurde abgesaugt, mit wenig Wasser gewaschen
und getrocknet: Man erhielt 3,1 g Produkt vom $F_p.$ 182 -
183°C

25 Beispiel 4

1-(2,6-Dichlorphenyl)-pyrazol-5-carbonsäureethylester

Zu 137 g Oxalsäurehalbethylchlorid tropfte man unter
30 Kühlen mit Eis/Kochsalz 145 g Ethyl-vinylether zu; Nach
Erwärmen auf Raumtemperatur wurde 20 h nachgerührt. Die
flüchtigen Bestandteile wurden abdestilliert und der
Rückstand im Wasserstrahlvakuum fraktioniert. Man erhielt
4-Ethoxy-2-oxo-but-3-en-säureethylester vom $K_p.$ 140-143°C.

35 17,5 g des Produktes wurde in 200 ml Toluol gelöst.
Bei 0°C wurden 17,5 g 2,6-Dichlorphenylhydrazin unter
Rühren hinzugeführt. Man erhitzte langsam zum Sieden und

trennte am Wasserabscheider Ethanol und Wasser ab, bis der Siedepunkt bei 111°C konstant blieb. Der Rückstand wurde mit Toluol verdünnt, zweimal mit 2n Salzsäure, gesättigter Hydrogencarbonatlösung und Wasser gewaschen, getrocknet, zur Trockene eingedampft und aus Ethanol umkristallisiert. Ausbeute: 18,3 g
 5 Fp: 51-53°C

Beispiel 5

10 **4-Brom-1-(2,6-Dichlorphenyl)-pyrazol-5-carbonsäureethylester**

14,3 g 1-(2,6-Dichlorphenyl)-pyrazol-5-carbonsäureethyl-ester vom Beispiel 4 wurden in 100 ml Eisessig gelöst, mit 15 10 g Na-Aacetat versetzt und bei Raumtemperatur 4,5 g Brom zugetropft. Nach 60 h wurde das Reaktionsgemisch auf 1 l Wasser gegossen. Der Niederschlag wurde abgesaugt, mit Wasser nachgewaschen und aus Ethanol umkristallisiert. Ausbeute: 8,2 g
 20 Fp: 62-65°C.

25 **Beispiele 6 und 7**

1-(3-Trifluormethylphenyl)-pyrazol-5(und 3)-carbonsäure-cyclohexylester

25 Zu 19,5 g Oxalsäurehalbcyclohexylesterchlorid wurden 15 g Ethylvinylether bei 0°C zugetropft, das Gemisch 20 h bei Raumtemperatur gerührt und die leichtflüchtigen Anteile abdestilliert. Man gab 200 ml Toluol und 0,5 g p-Toluol-30 sulfonsäure hinzu und erhitzte 2 h am Wasserabscheider. Bei 100°C wurden eine Lösung von 17,6 g 3-Trifluormethyl-phenylhydrazin in 100 ml Toluol hinzugefügt und das Gemisch am Wasserabscheider erhitzt, bis das Destillat konstant bei 111°C überdestillierte. Das Produkt wurde mit Toluol verdünnt, zweimal mit 100 ml 2n HCl, zweimal mit 100 ml gesättigter NaHCO_3 -Lösung und einmal mit 100 ml Wasser gewaschen, über MgSO_4 getrocknet und die Lösung zur 35 4

Trockene eingedampft. Nach Säulenchromatographie erhielt man

1-(3-Trifluormethylphenyl)-pyrazol-5-carbonsäurecyclohexyl-

ester, als farbloses Oel, Ausbeute 8,2 g (Beispiel 6)

5 und 1-(3-Trifluormethylphenyl)-pyrazol-3-carbonsäurecyclo-

hexylester, als Oel, Ausbeute 8,7 g (Beispiel 7)

Die Verbindungen wurden 1 H-NMR-spektroskopisch

charakterisiert.

10 Beispiele 8 und 9

1-(4-Methylphenyl)-pyrazol-5(und 3)-carbonsäuremethylester

Zu einer Lösung von 16 g 4-Ethoxy-2-oxo-but-3-en-säure-

15 methylester in 100 ml Eisessig wurden bei 50°C 12,5 g p-Tolylhydrazin in 150 ml Eisessig zugegeben. Man rührte

5 h bei 100°C, gab das Gemisch auf 1 l Wasser und

extrahierte zweimal mit 150 ml Essigester. Die organische

Phase wurde mit gesättigter NaHCO_3 -Lösung und anschließend

20 mit Wasser gewaschen und getrocknet. Nach Einengen im

Wasserstrahlvakuum wurde das Gemisch im Hochvakuum

destillativ getrennt. Man erhielt 4,1 g

1-(4-Methylphenyl)-pyrazol-5-carbonsäure-methylester vom

Kp $0,01$ 116-120°C (Beispiel 8)

25 und 5,3 g 1-(4-Methylphenyl)-pyrazol-3-carbonsäuremethylester

vom Kp $0,01$ 138-142°C

Die Verbindungen wurden 1 H-NMR-spektroskopisch charakterisiert.

Die in der nachfolgenden Tabelle angegebenen Verbindungen der Formel I werden nach den in den vorangehenden Beispielen beschriebenen Verfahrensweisen hergestellt oder aus oben beschriebenen Verbindungen durch Derivatisierung erhalten.

Tabelle I

Bsp. Nr.	R _n	4-Y	X	Fp (°C) (Kp/torr)
10	H	H	5-COOK	
11	H	H	5-COONa	
12	"	"	5-COO ⁻ NH ⁺ (C ₂ H ₅ OH) ₃	131-132
13	"	"	5-COO ⁻ NH ₃ ⁺ -c-C ₆ H ₅	
14	"	Br	5-COOCH ₃	59-61
15	H	Br	3-COOCH ₃	75-87
16	"	Br	5-COO ⁻ H ₂ N ⁺	0el
17	H	Br	5-COO ⁻ H ₂ N ⁺ -c-C ₆ H ₅	139-143
18	H	Cl	5-COOCH ₃	
19	"	"	5-COOH	
20	"	"	5-COOCH ₂ C ₆ H ₅	
21	"	H	3-COOH	142-144
22	"	"	3-COO ⁻ NH(C ₂ H ₅ OH) ₃	0el
23	"	Br	3-COOCH ₃	
24	"	"	3COOH	
25	"	"	3COOCH ₂ C ₆ H ₅	
26	"	Cl	3COOCH ₃	66-68
27	"	"	3COOH	174-175
28	"	"	3-COOK	
29	"	"	3-COOCH ₂ CCl ₃	
30	4-CH ₃	H	5-COOH	192-196
31	4-CH ₃	H	3-COOH	169-172
32	"	Br	5-COOCH ₃	
33	"	"	3-COOCH ₃	
34	2,4-Cl ₂	H	5-COOCH ₃	56-60
35	"	"	5-COOH	212-213

Beispiel- Nr.	R _n	4-Y	X	Fp(°C) (Kp/torr)
36	2,4-Cl ₂	H	3-COOH	177-180
5 37	"	"	5-COSC ₂ H ₅	Oel
38	"	"	5-CO ₂ N	Oel
39	"	Br	5-COOCH ₂ H ₅	45-48
10 40	"	"	3-COOCH ₂ H ₅	91-102
41	"	"	3-COOH	184-188
42	"	"	5-COOH	175-177
43	"	"	5-COO ₂ NH ₃ ⁺ (C ₂ H ₅ OH) ₃	72-75
44	"	"	5-COOK	> 260
15 45	"	H	3-COOCH ₂ H ₅	72-77
46	"	H	5-COOCH ₂ CF ₂ CFHCF ₃	Oel
47	"	"	5-COO-n-C ₁₂ H ₂₅	Oel
48	"	"	5-COO-c-C ₆ H ₁₁	Oel
49	"	"	5-COO ⁻ Li ⁺	>260
20 50	"	"	3-COO ⁻ K ⁺	>260
51	"	"	5-COO ⁻ Ca _{1/2} ²⁺	178-180
52	"	"	5-COO ₂ NH ₃ ⁺	140-143
53	"	Br	5-CO NH ₂	118-120
54	"	H	3-COO ₂ NH ₃ ⁺	212-215
25 55	"	Br	5-CN	106-110
56	"	"		
30 57	"	"	5-CONHCH ₂ CH ₂ OH	49-50
58	"	"	5-COOCH ₂ SCH ₃	
59	"	Cl		
35 60	"	"		

Beispiel- Nr.	R _n	4-Y	X	Fp(°C) (Kp/torr)
61	2,4-Cl ₂	Cl		
5				
62	2,6-(CH ₃) ₂	H	5-COOH	167-170
63	"	"	5-COOCH ₂ H ₅	101-108/0,02
64	"	"	3-COO ⁺ NH(C ₂ H ₅ OH) ₃	83-86
65	"	"	3-COO ⁺ H ₃ N ⁺ -c-C ₆ H ₁₁	144-146
10				
66	"	Br		
67	"	Br	5-COOCH ₂ -CF ₂ CHFCF ₃	
68	"	Cl	5-COOH	
15				
69	"	Cl		
70	2,6-(C ₂ H ₅) ₂	H	5-COOCH ₂ H ₅	119-123/0,01
71	"	H	3-COOCH ₂ H ₅	135-152/0,01
20	72	"	5-COOH	142-146
73	"	H	3-COOH	162-164
74	"	Br	5-COOH	117-123
75	"	"	3-COOH	136-141
76	"	"	5-CONH ₂	
25	77	"	3-CONHOH	
78	"	"		
79	"	Cl	5-COOH	
80	"	Cl	3-COOH	
30	81	"	5-COOCH ₂ H ₅	
82	2-CH ₃ , 6-C ₂ H ₅	H	5-COOCH ₂ H ₅	120-125/0,02
82	"	"	3-COOCH ₂ H ₅	140-144/0,02
83	"	"	5-COOH	126-128
35	84	"	5-COO ⁻ H ₂ N ⁺	137-140

Beispiel- Nr.	R _n	4-Y	X	Fp(°C) (Kp/torr)
85	2-CH ₃ , 6-C ₂ H ₅	Br	5-COOH	
5 86	"	Cl	5-COOCH ₃	
87	"	"	3-COOH	
88	2,6-Cl ₂	H	5-COOH	207-208
89	"	Br	5-COOH	187-192
90	"	H	5-CONH ₂	117-118
10				
91	"	H		225
92	"	"	5-COSC ₂ H ₅	0el
93	"	"	5-COO(CH ₂) ₂ (CF ₃) ₂ -CF ₃	57-61
15 94	"	"	5-COO-n-C ₁₂ H ₂₅	44-48
95	"	"	5-COOCH ₃	113-115
96	"	"	5-CN	94-96
97	"	"	5-CONHCH ₃	220-223
98	2,6-Cl ₂ , 3-NO ₂	"	5-COOCH ₃	0el
20 99	"	"	5-COOH	178-179
100	2,6-Cl ₂	"		176-177
25 101	"	"	5-CNHOH	
102	"	"		
30 103	"	"		
104	"	Br	5-COOCH ₃	
105	"	Br	5-COOCH ₂ CF ₂ CHFCF ₃	
35				
106	"	"		

Beispiel- Nr.	R _n	4-Y	X	Fp(°C) (Kp/torr)	
5	107	2,6-Cl ₂	Br		
10	108	"	Cl	5-COOCH ₂ H ₅	
109	"	Cl	5-COOH		
110	110	"	Cl		
15	111	"	"		
20	112	"	H	3-COOH	
20	113	"	Br	3-COOCH ₂ H ₅	
20	114	"	Cl	3-COOCH ₃	
20	115	3,4-Cl ₂	H	5-COOCH ₂ H ₅	95-99
20	116	"	"	3-COOCH ₂ H ₅	93-96
20	117	"	"	5-COOH	217-219
20	118	"	"	5-COO [⊖] NH [⊕] (C ₂ H ₅ OH) ₃	137-140
25	119	"	Br	5-COONC(CH ₃) ₂	
25	120	"	Cl	5-COOCH ₃	
25	121	"	"	3-COOCH ₂ H ₅	
25	122	"	"	5-COOCH ₂ CH ₂ H ₅	
25	123	3,5-Cl ₂	H	5-COOCH ₂ H ₅	94-97
25	124	"	"	5-COOH	229-232
30	125	"	Br	5-COOH	
30	126	"	"	3-COOH	
30	127	"	Cl	5-COOCH ₂ H ₅	
30	128	2,3,4-Cl ₃	H	5-COOCH ₂ H ₅	0el
30	129	"	H	5-COOH	146
35	130	"	"	3-COOCH ₂ H ₅	0el
35	131	"	Br	5-COOH	
35	132	"	"	5-COOCH ₂ CF ₂ CHFCF ₃	...

Beispiel- Nr.	R _n	4-Y	X	Fp(°C) (Kp/torr)
133	2,3,4-Cl ₃	Br	5-COOCH ₂ CCl ₃	
5 134	"	Cl	5-COOH	
135	2,4,6-Cl ₃	H	5-COOC ₂ H ₅	99-101
136	"	"	3-COOC ₂ H ₅	114-115
137	"	"	5-COOH	
138	"	"	3-COOH	
10 139	"	"	5-COOCH ₃	
140	"	Br	5-COOH	
141	"	Br	3-COOH	
142	"	Cl	5-COOH	
143	"	"	3-COOH	
15 144	4-C ₆ H ₅	H	5-COOC ₂ H ₅	40-43
145	"	"	3-COOC ₂ H ₅	89-92
146	"	"	3-COOH	196-199
147	"	H	5-COO-nC ₁₂ H ₂₅	
148	"	Br	5-COOH	
20 149	"	Br	3-COOH	
150	"	Cl	5-COOH	
151	"	"	3-COOH	
152	2-Cl	H	5-COOCH ₃	64-70
153	"	"	5-COOC ₂ H ₅	81
25 154	"	"	5-COOH	157-161
155	"	"	5-CONH ₂	
156	"	"	5-CONHC ₂ H ₅	
157	"	"	5-CONHNHC ₂ H ₅	
158	"	"	5-COSC ₂ H ₅	
30 159	"	"	5-COO-nC ₁₂ H ₂₅	
160	"	"	3-COOC ₂ H ₅	
161	"	"	3-COSC ₂ H ₅	
162	"	"	3-COOH	
163	"	"	3-COO-nC ₆ H ₅	
35 164	"	Br	5-COOC ₂ H ₅	81

	Beispiel- Nr.	R _n	4-Y	X	Fp(°C) (Kp/torr)
	165	2-Cl	Br	5-COSC ₂ H ₅	
5	166	"	"	5-COOH	
	167	"	"	3-COOOC ₂ H ₅	
	168	"	Cl	5-COOOC ₂ H ₅	
	169	"	Cl	5-COOH	
	170	"	"	3-COOOC ₂ H ₅	
10	171	"	"	3-COSC ₂ H ₅	
	172	2,4-Cl ₂ -5-OCH ₃	H	5-COOOC ₂ H ₅	0el
	173	"	"	5-COOH	187-190
	174	"	"	3-COOOC ₂ H ₅	
	175	"	Br	5-COSC ₂ H ₅	
15	176	"	Cl	3-COOOC ₂ H ₅	
	177	"	"	5-COOOC ₂ H ₅	
	178	2,4-Cl ₂ -5-COOC ₂ H ₅	H	5-COOOC ₂ H ₅	170-175/0,01
	179	"	"	5-COOCH ₃	
	180	"	"	5-COO-C ₆ H ₁₁	
20	181	"	"	3-COOOC ₂ H ₅	
	182	"	Br	5-COOOC ₂ H ₅	
	183	"	Cl	5-COOOC ₂ H ₅	
	184	2-F-4-Cl-5-OCH ₃	H	5-COOOC ₂ H ₅	155-162/0,01
	185	"	"	5-COOH	207-210
25	186	"	"	5-CN	
	187	"	"	5-CONH ₂	
	188	"	"	5-CNHNH ₂	
	189	"	"	3-COOOC ₂ H ₅	
	190	"	"	3-COOH	
30	191	"	"	5-COONH ₄	
	192	"	"	5-COOK	
	193	"	Cl	5-COOCH ₃	
	194	"	Cl	5-COOH	
	195	"	"	3-COOCH ₃	
35	196	"	Br	5-COOOC ₆ H ₅	
	197	"	Br	5-COOCH ₂ CCH	

Beispiel- Nr.	R _n	4-Y	X	Fp(°C) (Kp/torr)
198	2-F-4-Cl-5-OCH ₃ , Br		3-COOCH ₂ H ₅	
5	199	4-CF ₃	H	5-COOCH ₂ H ₅ 53-54
	200	"	"	3-COOCH ₂ H ₅ 79-84
	201	4-CF ₃ -2,6-(NO ₂) ₂	H	5-COOCH ₂ H ₅ 108-112
	202	"	"	3-COOCH ₂ H ₅ 138-142
	203	2,Cl-4CF ₃	H	5COOC ₂ H ₅ 45-47
10	204	"	"	5COOH 149-150
	205	"	"	3-COOCH ₂ H ₅ 66-69
	206	3-CF ₃	H	5-COOCH ₂ H ₅ 87-101/0,01
	207	"	"	3-COOCH ₂ H ₅ 79-84
	208	"	"	5-COOH 136-138
15	209	"	"	3-COO ⁻ (Ca ²⁺) _{1/2} 244-261
	210	"	"	3-COOK 242
	211	"	"	3-COONa 283
	212	"	"	5-COO ⁻ Ca ²⁺ _{1/2} 128-131
	213	"	"	3-COO-C ₆ H ₁₁ 67-68
20	214	"	Br	3-COO-C-C ₆ H ₁₁ 86-91
	215	"	H	5-COO-C-C ₆ H ₁₁ 155-160/0,5
	216	"	Br	5-COO-C-C ₆ H ₁₁ 0el
	217	"	H	5-COO ⁻ K ⁺ 208-213
	218	"	"	5-COO ⁻ NH ₄ ⁺ 65-71
25	219	"	"	3-COO ⁻ NH ₄ ⁺ 207-212
	220	"	"	3-COO ⁻ Li ⁺ >250
	221	"	"	5-CONH-4-C ₆ H ₄ -4-Cl
	222	"	"	5-C(NH ₂)NOCH ₃
	223	"	"	5-COOCH ₂ CH ₂ C-C ₆ H ₁₁
30	224	"	"	5-CSOC ₂ H ₅
	225	"	"	3-COSC ₂ H ₅
	226	"	Br	5-COSC ₂ H ₅
	227	"	Br	3-COSC ₂ H ₅
	228	"	Cl	5-COONHCOC ₂ H ₅
35	229	"	Cl	5-COO(CH ₂) ₂ OC ₂ H ₅ CH ₃
	230	"	"	5-COOCH ₂ C ₆ H ₅

	Beispiel- Nr	R _n	4-Y	X	Fp (°C) (Kp/Torr)
5	231	2,4-F ₂	H	5-COOCH ₃	102-106/0,02
	232	"	"	3-COOCH ₃	120-122/0,02
	233	"	"	5-COOH	196-199
	234	"	Br	5-COOH	165-168
	235	"	Br	3-COOCH ₃	
	236	"	Cl	5-COOH	
10	237	4-F	H	5-COOCH ₃	96-98
	238	4-F	H	3-COOCH ₃	44-49
	239	"	H	5-COOH	147-148
	240	"	H	5-COSC ₂ H ₅	62-65
	241	"	"	5-CSSC ₂ H ₅	
	242	"	"	5-CSN(CH ₃) ₂	
15	243	"	"	5-CONHNHCOOC ₆ H ₅	
	244	"	"	3-COSC ₂ H ₅	
	245	"	"	3-CCNH ₂	
	246	"	Br	5-COOH	207 (Zers.)
	247	"	Br	5-CO-N	
	248	"	Br	3-COOCH ₃	79-83
20	249	"	Cl	5-COOH	
	250	"	"	3-COOH	
	251	4Br	H	5-COOCH ₃	63-65
	252	"	"	5-COOCH ₃	78-81
	253	"	"	5-COOH	
	254	"	"	5-COSC ₂ H ₅	
25	255	"	"	3-COSC ₂ H ₅	
	256	"	Br	5-COOH	
	257	"	Cl	5-COOH	
	258	"	"	3-COOH	
	259	4-Cl	H	5-COOCH ₃	60-65
	260	"	"	3-COOH	169-174

Beispiel- Nr	R _n	4-Y	X	Fp (°C) (Kp/Torr)
261	4-Cl	H	5-COOH	181-182
5 262	"	"	3-COOCH ₃	71-74
263	"	Br	3-COOCH ₃	107-109
264	"	"	5-COOCH ₃	109-112
265	"	H	5-COO ⁻ H ₂ ⁺	152-154
10 266	"	"	5-COO ⁻ H ₃ ⁺	Oel
267	"	Br	5-COOH	196-198
268	"	"	5-COO ⁻ HN ⁺ (C ₂ H ₅ OH) ₃	112-114
15 269	"	"	5-COO ⁻ H ₃ N ⁺	Oel
270	3-Cl	H	5COOC ₂ H ₅	55-60
271	"	"	5-COOH	205
272	3-Cl-5-NO ₂	H	5-COOCH ₃	104-116
20 273	"	"	3-COOCH ₃	141-147
274	3-Cl	H	3-COOH	
275	"	"	3-COSCH ₃	
276	"	Br	5-COOCH ₃	
277	"	Cl	5-COOH	
25 278	"	"	3-COOH	
279	3-COOCH ₃	H	3-COOCH ₃	92-95
280	"	"	5-COOCH ₃	85-87
281	3-COO ⁻ HN ⁺ (C ₂ H ₅ OH) ₃	H	3-COO ⁻ HN ⁺ (C ₂ H ₅ OH) ₃	Oel
282	3-COOH	H	5-COOH	236-238
30 283	3COOH	H	3-COOH	240-243
284	4-COOH	H	5-COOH	>260
285	"	"	3-COOH	>260
286	3-OCF ₂ CHF ₂	H	5-COO-C ₆ H ₁₁ , xH ₂ SO ₄	Oel
287	"	"	5-COOCH ₃	Oel
35 288	"	H	3-COOCH ₃	47-51
289	"	"	5-COO-C ₆ H ₁₁	Oel
290	"	"	3-COO-C ₆ H ₁₁	Oel

Beispiel- Nr	R _n	4-Y	X	Fp(°C) (Kp/Torr)
291	3-OCF ₂ CHF ₂	H	5-COO-i-Borneyl	0el
5 292	"	"	3-COO-i-Borneyl	88-90
293	"	Br	5-COO-c-C ₆ H ₁₁	0el
294	"	"	3-COO-C ₂ H ₅	62-64
295	"	"	5-COO-C ₂ H ₅	0el
296	"	Cl	5-COO-C ₂ H ₅	
10 297	"	"	3-COO-C ₂ H ₅	
298	3-OCF ₂ CHFCF ₃	H	5-COO-C ₂ H ₅	81
299	"	"	5-COOH	129-131
300	"	"	5-COSC ₂ H ₅	
301	"	H	5-CN	
15 302	"	"	3-COO-C ₂ H ₅	44-46
303	"	"	3-COOH	104 (Zers.)
304	"	H	3-COSC ₂ H ₅	
305	"	Br	5-COO-C ₂ H ₅	
306	"	"	3-COO-C ₂ H ₅	
20 307	3-OCF ₃	H	5-COO-C ₂ H ₅	81
308	"	H	3-COO-C ₂ H ₅	55-58
309	"	Cl	5-COO-C ₂ H ₅	
310	4-OCF ₃	H	5-COO-C ₂ H ₅	81
311	"	H	5-COOH	157-158
25 312	"	"	3-COO-C ₂ H ₅	68-71
313	"	Cl	5-COO-C ₂ H ₅	98-99
314	3-NO ₂	H	5-COO-C ₂ H ₅	76-82
315	3-OCHF ₂	H	5-COO-C ₂ H ₅	
316	"	"	5-COOH	
30 317	2,4-F ₂ , 3,5-Cl ₂	H	5-COO-C ₂ H ₅	
318	"	"	3-COO-C ₂ H ₅	
319	"	"	5-COOH	
320	"	Br	5-COO-C ₂ H ₅	
321	"	Cl	3-COO-C ₂ H ₅	
35 322	4-O-C ₆ H ₅	H	5-COO-C ₂ H ₅	
323	"	"	5-COOH	

Beisp.-Nr.	R _n	4-Y	X	Fp(°C)Kp(torr)
324	4-O-C ₆ H ₅	H	3-COOCH ₂ H ₅	
325	4-O-C ₆ H ₄ -2-Cl	H	5-COOCH ₂ H ₅	
326	4-NH ₂	H	3-COOCH ₂ H ₅	84-87
327	3-NHCOCH ₃	H	5-COOCH ₂ H ₅	
328	3-SH	H	5-COOCH ₂ H ₅	
329	3-S-C ₆ H ₅	H	5-COOCH ₂ H ₅	
330	3-SO ₂ -C ₆ H ₅	H	5-COOCH ₃	
331	2,6-Cl ₂ -4-CF ₃	H	5-COOCH ₂ H ₅	69-71
332	"	H	5-CONH ₂	171-173
333	"	H	5-CN	67-69
334	"	H	3-COOCH ₂ H ₅	112-115
335	4-NO ₂	H	3-COOCH ₂ H ₅	159-161
336	3-C ₂ H ₅	H	5-COOCH ₂ H ₅	Oel
337	"	H	3-COOCH ₂ H ₅	Oel
338	3-OCF ₃	H	5-COOH	113-115
339	4-OCF ₃	Br	3-COOCH ₂ H ₅	92-97
340	4-F-3-NO ₂	H	5-COOCH ₂ H ₅	74-76
341	"	H	5-COOH	178 Zers.
342	2,4,6-Cl ₃	Br	5-COOCH ₂ H ₅	64-65
343	2,4,6-Cl ₃ -3-CH ₃	H	5-COOCH ₂ H ₅	38-42
344	3-F-	H	5-COOCH ₂ H ₅	Oel
345	3-F	H	3-COOCH ₂ H ₅	Oel
346	2-CF ₃	H	5-COOCH ₂ H ₅	Oel
347	"	H	5-COOH	130-132
348	2-Cl-5-CF ₃	H	5-COOCH ₂ H ₅	Oel
349	"	H	3-COOCH ₂ H ₅	Oel

Beisp.-Nr.	R _n	4-Y	X	Fp(°C)	Kp(torr)
350	3,5-(CF ₃) ₂	H	5-COOCH ₂ H ₅	63-67	
351	"	H	3-COOCH ₂ H ₅	108-110	
352	"	H	5-COOH	124-126	
353	2,4-Cl ₂ -6-CH ₃	H	5-COOCH ₂ H ₅	63-65	
354	F ₅	H	5-COOCH ₂ H ₅	0el	
355	"	H	3-COOCH ₂ H ₅	0el	
356	"	H	5-COOH	146-150	
357	4-NHCH=C(CN) ₂	H	3-COOCH ₂ H ₅	>220	
358		H	3-COOCH ₂ H ₅	115-117	
359	3-NHCOCOOCH ₂ H ₅	H	5-COOCH ₂ H ₅	50-54	
360	2,4-Cl ₂ -5NO ₂	Br	5-CONH ₂	204-206	
361	2,4,6-Cl ₃ -3NO ₂	H	5-COOCH ₂ H ₅	94-101	
362	"	H	5-COOH	185-187	
363	"	H	5-COOK	189-192	
364	3-CF ₃	H	5-CON(C ₂ H ₅) ₂	66-68	
365	"	H	5-CONHCH ₂ CH(OCH ₃) ₂	92-94	
366	"	H	5-CONH ₂	119-121	
367	"	H	5-CONHCH ₃	72-77	
368	"	H	5-CONHCH ₂ CH(CH ₃) _n -C ₆ H ₅ 0el		
369	"	H	5-CONH-C-C ₆ H ₅	134 Zers.	
370	2-Cl-4-CF ₃	Br	5-COOCH ₂ H ₅	0el	
371	"	Br	3-COOCH ₂ H ₅	38-41	
372	"	H	5-COO- -OCH(CH ₃)COOC ₂ H ₅ 0el		
373	"	H	" COOH	104-106	

Beip.-Nr.	R _n	4-Y	X	Fp(°C)	Kp(torr)
374	2-Cl-5-NO ₂	H	5-COOCH ₂ H ₅	78-82	
375	2-Cl	H	5-CO (Benzimidazol-1-yl)	117-121	
376	"	H	5-COCON ₂ C ₆ H ₅	125-126	
377	5-NO ₂ -2-SC ₆ H ₅	H	5-COOCH ₂ H ₅	Oel	
378	5-Cl-2-NO ₂	H	5-COOCH ₂ H ₅	90-94	
379	3-Cl-4-NO ₂	H	5-COOCH ₂ H ₅	109-113	
380	2,4-(SC ₆ H ₅) ₂ -5-NO ₂	H	5-COOCH ₃	145-148	
381	4-O-CH ₃	H	5-COOCH ₂ H ₅	Oel	
382	"	H	3-COOCH ₂ H ₅	Oel	
383	"	H	5-COOH	170-172	
384	"	H	3-COOH	185-187	
385	2,3,5,6-F ₄	H	5-COOCH ₂ H ₅	57-60	
386	"	H	5-COOH	128-130	
387	"	H	5-COON(C ₂ H ₅) ₂	80-83	
388	"	H	5-COO-n-C ₆ H ₁₃	Oel	
389		H	5-COOCH ₂ H ₅	96-101	
390	3-NO ₂ -4-OC ₆ H ₅	H	5-COOCH ₂ H ₅	52-54	
391	"	H	5-COOH	178-181	
392	4-NH-SO ₂ CH ₃	H	3-COOCH ₂ H ₅	150-155	
393	3-Cl-4-F	H	5-COOCH ₂ H ₅	84-87	
394	"	H	3-COOCH ₂ H ₅	122-125	
395	"	H	5-COOH	>225	
396	4-F-3-CF ₃	"	3-COOCH ₂ H ₅	24-29	
397	4-N(CH ₃) ₂ -3-CF ₃	H	5-COOCH ₂ H ₅	Oel	
398	"	H	3-COOCH ₂ H ₅	Oel	

Beisp.-Nr.	R _n	4-Y	X	Fp(°C) Kp(torr)
399	3-Cl-2,6-(C ₂ H ₅) ₂	H	5-COOC ₂ H ₅	Oel
400	"	H	3-COOC ₂ H ₅	Oel
401	"	H	5-COOH	145-147
402	"	Br	5-COOC ₂ H ₅	Oel
403	2,4-Br ₂	H	5-COOC ₂ H ₅	Oel
404	"	H	3-COOC ₂ H ₅	103-105
405	"	H	5-COOH	217-219
406	"	Br	5-COOC ₂ H ₅	Oel
407	2,4-Cl ₂	H	3-CONHSO ₂ CH ₃	155-159
408	"	H	3-COOCH ₃	105-107
409	"	H	3-COOCH ₂ C≡CH	101-103
410	"	H	5-COOCH ₂ C≡CH	Oel
411	"	H	5-COOCH(CH ₃) ₂	Oel
412	"	H	5-COOCH ₂ CCl ₃	Oel
413	"	H	5-COONC(CH ₃) ₂	87-89
414	"	H	5-COOCH(CF ₃) ₂	Oel
415	"	H	5-CN	70-71
416	"	H	5-COOCH ₂ Si(CH ₃) ₃	Oel
417	"	H	3-COOCH ₂ Si(CH ₃) ₃	51-54
418	"	H	5-CO <chem>Oc1ccccc1</chem>	Oel

Biologische BeispieleA. Wachstumsregulierung5 1. Wuchshemmung an Getreide

In Schalenversuchen im Gewächshaus wurden junge Getreidepflanzen (Weizen, Gerste, Roggen) im 3-Blattstadium mit erfindungsgemässen Verbindungen in verschiedenen 10 Wirkstoffkonzentrationen (kg/ha) tropfnass gespritzt.

Nachdem die unbehandelten Kontrollpflanzen eine Wuchs- 15 höhe von etwa 55 cm erreicht hatten, wurde bei allen Pflanzen der Zuwachs gemessen und die Wuchshemmung in % des Zuwachses der Kontrollpflanzen berechnet. Es wurde außerdem die phytotoxische Wirkung der Ver- bindungen beobachtet, wobei 100% den Stillstand des Wachstums und 0% ein Wachstum entsprechend den unbe- 20 handelten Kontrollpflanzen bedeuten. Es zeigte sich, daß die Verbindungen sehr gute wachstumsregulierende Eigenschaften besitzen.

Die Ergebnisse sind in der nachfolgenden Tabelle zusammengestellt.

25

30

35

Tabelle

	Verbindungen nach Bsp.Nr.	Anwendungs- konz. kg/ha	Wuchshemmung (%)			Phytotox. Wirkung
			Weizen	Gerste	Roggen	
5						
	17	2.5	15	22	19	keine Schäden
		1.25	11	16	14	
	34	"	14	21	17	keine Schäden
		"	10	14	11	
10	42	"	25	38	22	keine Schäden
		"	22	23	17	
	43	"	24	38	23	keine Schäden
		"	21	22	16	
	44	"	24	37	23	keine Schäden
		"	20	23	17	
15	52	"	22	31	21	keine Schäden
		"	18	26	17	
	53	"	16	21	19	keine Schäden
		"	10	15	13	
	55	"	14	20	21	keine Schäden
		"	9	13	14	
20	62	"	18	21	14	keine Schäden
		"	14	15	12	
	72	"	14	17	14	keine Schäden
		"	12	15	9	
	83	"	19	22	19	keine Schäden
		"	12	14	13	
25	88	"	23	36	29	keine Schäden
		"	18	28	20	
	89	"	26	39	24	keine Schäden
		"	21	24	19	
	90	"	14	21	18	keine Schäden
		"	10	16	13	
30	92	"	17	22	19	keine Schäden
		"	11	17	14	

	Verbindungen nach Bsp.Nr.	Anwendungs- konz. kg/ha	Wuchshemmung (%)			Phytotox. Wirkung
			Weizen	Gerste	Roggen	
5	115	2.5	16	21	19	keine Schäden
		1.25	11	17	14	
10	116	"	17	22	19	keine Schäden
		"	12	17	13	
15	117	"	19	24	21	keine Schäden
		"	14	19	16	
20	128	"	16	21	17	keine Schäden
		"	11	16	13	
25	129	"	22	31	22	keine Schäden
		"	18	25	19	
30	135	"	15	19	18	keine Schäden
		"	11	16	14	
35	140	"	20	24	22	keine Schäden
		"	14	19	17	
40	153	"	20	23	21	keine Schäden
		"	13	19	16	
45	154	"	22	27	24	keine Schäden
		"	15	23	19	
50	178	"	14	19	19	keine Schäden
		"	12	14	15	
55	185	"	13	18	15	keine Schäden
		"	9	13	9	
60	204	"	16	19	17	keine Schäden
		"	11	16	15	
65	206	"	15	20	18	keine Schäden
		"	13	13	14	
70	208	"	20	35	22	keine Schäden
		"	14	24	17	
75	217	"	17	27	22	keine Schäden
		"	14	22	17	
80	218	"	18	27	19	keine Schäden
		"	15	23	16	
85	246	"	25	38	27	keine Schäden
		"	21	29	24	
90	267	"	21	30	22	keine Schäden
		"	17	23	17	
95	269	"	24	37	27	keine Schäden
		"	21	28	23	

	Verbindungen nach Bsp.Nr.	Anwendungs- konz. kg/ha	Wuchshemmung (%)			Phytotox. Wirkung
			Weizen	Gerste	Roggen	
5	295	2.5	19	29	22	keine Schäden
		1.25	16	24	17	
10	356	"	19	28	21	keine Schäden
		"	15	22	16	
	366	"	17	21	17	keine Schäden
		"	11	16	13	
	405	"	24	37	23	keine Schäden
		"	21	28	18	
	413	"	19	26	18	keine Schäden
		"	13	19	13	

2. Wuchshemmung in Wasserreis

Reispflanzen wurden in Töpfen im Gewächshaus bis zum
5 3-Blattstadium angezogen, und dann mit den erfindungs-
gemässen Verbindungen behandelt. Die Substanzen wurden
sowohl durch Spritzung appliziert als auch in das
Wasser gegeben.

10 3 Wochen nach Behandlung wurde bei allen Pflanzen der
Zuwachs gemessen und die Wuchshemmung in % des Zuwachses
der Kontrollpflanzen berechnet. Es wurde außerdem auf
eine mögliche phytotoxische Wirkung der Verbindungen
geachtet.

15 Die Wuchshemmung wurde als prozentualer Wert ermittelt,
wobei 100% den Stillstand des Wachstums und 0% ein
Wachstum entsprechend dem der unbehandelten Kontroll-
pflanzen bedeuten.

Die Ergebnisse sind in der nachfolgenden Tabelle
zusammengefaßt.

20

25

Tabelle

Verbindungen nach Bsp. Nr.	Anwendungs- konz. kg/ha	Wuchshemmung (%)	Phytotox. Wirkung
42	2.5	26	keine Schäden
	1.25	24	
	0.62	20	
43	"	27	keine Schäden
	"	24	
	"	19	
62	"	19	keine Schäden
	"	15	
	"	8	
83	"	21	keine Schäden
	"	16	
	"	13	
88	"	19	keine Schäden
	"	16	
	"	12	
178	"	22	keine Schäden
	"	17	
	"	15	
206	"	25	keine Schäden
	"	19	
	"	17	
208	"	32	keine Schäden
	"	27	
	"	21	
218	"	26	keine Schäden
	"	20	
	"	17	
219	"	27	keine Schäden
	"	21	
	"	17	
246	"	29	keine Schäden
	"	25	
	"	21	

3. Wuchshemmung an Sojabohnen

5 Ca. 10 cm große Sojabohnen wurden mit den Wirkstoffzubereitungen tropfnaß bespritzt. Nach 3 Wochen wurde bonitiert.

10 Die Wuchshemmung wurde als prozentualer Wert ermittelt, wobei 100 % den Stillstand des Wachstums und 0 % ein Wachstum entsprechend dem der unbehandelten Kontrollpflanzen bedeutet.

Tabelle

15	Verbindungen nach Bsp.Nr.	Anwendungs- konz. kg/ha	Wuchshemmung (%)	Phytotox. Wirkung
	35	2.5	22	keine Schäden
	88	2.5	25	"
	89	2.5	27	"
20	42	2.5	26	"
	43	2.5	24	"
	44	2.5	26	"

B. Safener - WirkungBeispiel 1

5 Getreide, vorzugsweise Weizen, wurde im Gewächshaus in
Plastiktöpfen von 9 cm Durchmesser bis zum 3-4 Blatt-
stadium herangezogen und dann gleichzeitig mit den er-
findungsgemäßen Verbindungen und den getesteten Herbi-
ziden im Nachlaufverfahren behandelt. Herbizide und die
10 Verbindungen der Formel I wurden dabei in Form wässriger
Suspensionen bzw. Emulsionen mit einer Wasseraufwand-
menge von umgerechnet 800 l/ha ausgebracht. 3-4 Wochen
nach der Behandlung wurden die Pflanzen visuell auf
jede Art von Schädigung durch die ausgebrachten Her-
15 bizide bonitiert, wobei insbesondere das Ausmaß der
anhaltenden Wachstumshemmung berücksichtigt wurde.

20 Die Ergebnisse aus Tabelle V veranschaulichen, daß die
erfindungsgemäßen Verbindungen starke Herbizidschäden
an den Kulturpflanzen effektiv reduzieren können.

25 Selbst bei starken Überdosierungen des Herbizids wer-
den bei den Kulturpflanzen auftretende schwere
Schädigungen deutlich reduziert, geringere Schäden
völlig aufgehoben. Mischungen aus Herbiziden und er-
findungsgemäßen Verbindungen eignen sich deshalb in
ausgezeichneter Weise zur selektiven Unkrautbe-
kämpfung in Getreidekulturen.

30 Beispiel 2

Getreide und die beiden Schadgräser *Avena fatua* und
Alopecurus myosuroides wurden in Plastiktöpfen von 9
bzw. 13 cm Durchmesser in lehmigen Sandboden ausgesät,

unter optimalen Wuchsbedingungen im Gewächshaus bis zum 3-4 Blattstadium bzw. zur beginnenden Bestockung angezogen und mit Mischungen aus den erfindungsgemäßen Verbindungen und den Herbiziden behandelt. Die Präparate wurden dabei 5 in Form wässriger Suspensionen oder Emulsionen mit einer Wasseraufwandmenge von umgerechnet 300 - 600 l/ha ausgebracht.

3-4 Wochen nach der Applikation wurden die Versuchspflanzen auf Wachstumsveränderungen und Schädigung im Vergleich zu unbehandelten und mit den Herbiziden alleine behandelten Kontrollen visuell bonitiert.

Die Ergebnisse aus der Tabelle V zeigen, daß die erfindungsgemäßen Verbindungen sehr gute Safenereigenschaften bei Getreidepflanzen aufweisen und somit Herbizidschäden wirkungsvoll verhindern können, ohne die eigentliche herbizide Wirkung gegen Schadgräser zu beeinträchtigen.

20 Mischungen aus Herbiziden und erfindungsgemäßen Verbindungen können somit zur selektiven Unkrautbekämpfung eingesetzt werden.

Safenerwirkung der erfindungsgemäßen Verbindungen.
Schädigung der Kulturpflanzen in %.

Tabelle

Beispiel-Nr.	herbizide Wirkung	
	TA	HV
H ₁	85	80
H ₁ + 16	40	-
H ₁ + 17	45	-
H ₁ + 26	40	-
H ₁ + 27	40	-
H ₁ + 30	50	-
H ₁ + 34	40	-
H ₁ + 45	20	35
H ₁ + 46	30	40
H ₁ + 47	30	-
H ₁ + 48	30	-
H ₁ + 49	-	50
H ₁ + 50	30	-
H ₁ + 51	-	50
H ₁ + 54	-	50
H ₁ + 65	30	-
H ₁ + 84	40	55
H ₁ + 96	30	-
H ₁ + 98	50	-
H ₁ + 99	-	40
H ₁ + 128	-	50
H ₁ + 136	20	-
H ₁ + 153	30	65
H ₁ + 154	40	-
H ₁ + 164	40	-
H ₁ + 178	50	-
H ₁ + 201	30	-
H ₁ + 204	40	35

Beispiel-Nr.	herbizide Wirkung	
	TA	HV
H ₁ + 205	50	30
H ₁ + 209	50	-
H ₁ + 210	35	-
H ₁ + 211	40	55
H ₁ + 218	-	40
H ₁ + 219	35	-
H ₁ + 220	50	-
H ₁ + 237	40	-
H ₁ + 238	30	-
H ₁ + 239	50	-
H ₁ + 240	50	-
H ₁ + 246	40	30
H ₁ + 251	30	-
H ₁ + 252	30	40
H ₁ + 259	30	-
H ₁ + 260	40	50
H ₁ + 261	50	40
H ₁ + 262	40	45
H ₁ + 265	-	50
H ₁ + 269	-	50
H ₁ + 270	60	50
H ₁ + 271	20	45
H ₁ + 279	50	-
H ₁ + 280	50	-
H ₁ + 286	10	40
H ₁ + 288	30	40
H ₁ + 289	40	-
H ₁ + 293	50	-
H ₁ + 294	40	-
H ₁ + 295	50	-
H ₁ + 298	-	50
H ₁ + 311	40	40
H ₁ + 312	40	50
H ₁ + 314	40	-

herbizide Wirkung		
	TA	HV
H ₁ + 331	40	-
H ₁ + 334	20	50
H ₁ + 340	40	-
H ₁ + 342	40	-
H ₁ + 343	40	-
H ₁ + 344	40	-
H ₁ + 346	40	-
H ₁ + 347	40	-
H ₁ + 348	30	-
H ₁ + 349	20	50
H ₁ + 350	40	50
H ₁ + 352	-	50
H ₁ + 353	40	-
H ₁ + 371	40	35
H ₁ + 373	45	60
H ₁ + 375	35	-
H ₁ + 389	20	50
H ₁ + 391	40	-
H ₁ + 394	40	-
H ₁ + 395	40	-
H ₁ + 407	40	35
H ₁ + 408	35	35
H ₁ + 409	40	40
H ₁ + 410	60	50
H ₁ + 415	40	-
H ₁ + 416	30	60
H ₁ + 417	40	40

Erklärungen und Abkürzungen

Dosierungen der Mischungspartner:

5 H₁ : 2,0 kg a.i. / ha (TA)
0,3 kg a.i. / ha (HV)
Safener : 2,5 kg a.i. / ha

H₁ = Fenoxaprop - ethyl

TA = *Triticum aestivum*

10 HV = *Hordeum vulgare*

15

20

1. Verbindungen der Formel I, deren Salze und
Quaternisierungsprodukte,

5

worin

10 R unabhängig voneinander Halogen, Hydroxy, Cyano, Nitro,
 (C_1-C_4) Alkyl, (C_1-C_4) Halogenalkyl, (C_1-C_4) Alkoxy-
 (C_1-C_4) alkyl, (C_1-C_6) Alkoxy, (C_1-C_6) Alkoxy- (C_1-C_4) alkoxy,
 (C_1-C_6) Halogenalkoxy, (C_1-C_4) Alkylthio,
 (C_1-C_4) Halogenalkylthio, Carboxy, (C_1-C_4) Alkoxy carbonyl,
 (C_1-C_4) Alkylsulfinyl, (C_1-C_4) Halogenalkylsulfinyl,
15 (C_1-C_4) Alkylsulfonyl, (C_1-C_4) Halogenalkylsulfonyl,
 (C_1-C_4) Alkylsulfonyloxy, (C_1-C_4) Halogenalkylsulfonyloxy,
Phenyl, Halogenphenyl, Phenoxy oder Halogenphenoxy,

20 X = in Position 3 oder 5 des Pyrazolringes orientiert ist
und einen Rest der Formeln

Y = Halogen

Z = O oder S

U = O, S oder N-R⁶.

5 R¹ Wasserstoff, (C₁-C₁₂)Alkyl,
 (C₁-C₁₂)Alkyl, das ein- oder mehrfach durch Halogen
 und/oder ein- bis zweifach durch Hydroxy,
 (C₁-C₆)Alkoxy,
 (C₁-C₄)Alkoxy(C₁-C₄)alkoxy, (C₁-C₄)-Alkylthio,
 10 (C₁-C₄)Alkylsulfinyl, (C₁-C₄)Alkylsulfonyl, Mono- oder
 Di-(C₁-C₄-alkyl)amino, Cyano, Aminocarbonyl,
 (C₁-C₄)Alkylcarbonyl, (C₁-C₄-Alkoxy)carbonyl,
 Cyclo(C₃-C₇)-alkyl, Tri(C₁-C₄)alkyl-silyl, Benzyloxy,
 Benzyloxyethoxy, Phenyl, Phenyl, das durch Halogen oder
 15 (C₁-C₄)Alkyl substituiert ist, durch Phenoxy,
 Phenylthio, die durch Halogen oder (C₁-C₄)-Alkyl
 substituiert sein können, durch Oxiranyl,
 Tetrahydrofuryl, Triazolyl, Pyridinyl, Imidazolyl,
 durch Carboxy, Carboxylat mit einem für die
 20 Landwirtschaft einsetzbaren Kation oder durch den Rest
 -O-N=C(CH₃)₂ substituiert ist,
 (C₃-C₆)Alkenyl, (C₃-C₆)-Halogenalkenyl,
 unsubstituiertes oder durch Halogen oder (C₁-C₄)Alkyl
 substituiertes Cyclo(C₃-C₇)alkyl, unsubstituiertes oder
 25 durch Halogen oder (C₁-C₄)Alkyl substituiertes
 Cyclo(C₅-C₇)alkenyl, (C₃-C₆)Alkinyl,
 1,2-Epoxy-prop-3-yl, Phenyl oder Phenyl, das ein oder
 zweifach durch Halogen, Nitro, Cyano, (C₁-C₄)Alkyl,
 (C₁-C₄-Alkoxy)carbonyl oder (C₁-C₄)Alkoxy substituiert
 30 ist, (C₁-C₄-Alkyl)carbonyl, Phenylcarbonyl, wobei der
 Phenylring durch Halogen, Nitro, Cyano oder
 (C₁-C₄)Alkyl substituiert sein kann,
 einen Rest der Formeln

10

oder ein für die Landwirtschaft einsetzbares Kation,

15 R^2 ($\text{C}_1\text{-C}_{12}$)-Alkyl oder ($\text{C}_1\text{-C}_{12}$)-Alkyl, das bis zu zweifach durch ($\text{C}_1\text{-C}_4$)-Alkoxyethoxy, Cyclo($\text{C}_3\text{-C}_6$)-alkyl, Benzyloxy, Phenyl, Phenoxy, ($\text{C}_1\text{-C}_4$)-Alkylthio, ($\text{C}_1\text{-C}_4$ -Alkoxy)-carbonyl, Carboxy oder Carboxylat mit einem für die Landwirtschaft einsetzbares Kation, substituiert ist,

20

R^3 jeweils unabhängig voneinander ($\text{C}_1\text{-C}_6$)-Alkyl, Phenyl oder ($\text{C}_3\text{-C}_6$)-Alkenyl;

25 R^4 Wasserstoff, ($\text{C}_1\text{-C}_{12}$)-Alkyl oder ($\text{C}_1\text{-C}_{12}$)-Alkyl, das bis zu zweifach durch ($\text{C}_1\text{-C}_6$)-Alkoxy, ($\text{C}_1\text{-C}_4$)-Alkoxy-ethoxy, Hydroxy, Hydroxyimino, ($\text{C}_1\text{-C}_4$)-Alkoxyimino, Halogen, Cyclo($\text{C}_3\text{-C}_6$)-alkyl, Benzyloxy, Cyano, Aminocarbonyl, Carboxy, ($\text{C}_1\text{-C}_4$ -Alkoxy)-carbonyl, Formyl, Phenyl oder Phenoxy substituiert ist, Phenyl oder Phenyl, das bis zu zweifach durch Halogen, Nitro, Cyano, ($\text{C}_1\text{-C}_4$)-Alkyl oder ($\text{C}_3\text{-C}_6$)-Alkoxy substituiert ist; ($\text{C}_3\text{-C}_6$)-Alkenyl, ($\text{C}_3\text{-C}_6$)-Cycloalkyl, einen Rest der Formeln

30

35 $-\text{NR}^3\text{R}^{12}$, $-\text{O-R}^6$, $-\text{NH-CONH}_2$, $-\text{NH-CS-NH}_2$ oder $-\text{SO}_2\text{R}^{13}$ oder

³ und ⁴ gemeinsam mit dem Stickstoffatom an das sie gebunden sind, einen gesättigten oder ungesättigten gegebenenfalls benzokonensierten drei- bis siebengliedrigen Ring, der bis zu drei Heteroatome aus der Gruppe O, N oder S enthält und der unsubstituiert oder durch (C_1-C_4) Alkyl oder Halogen substituiert ist und eine Carbonylgruppe enthalten kann,

⁵ R^5 H, (C_1-C_6) Alkyl oder Phenyl, oder im Falle X =
10 $-CS-OR^5$ ein für die Landwirtschaft einsetzbares Kation,

⁶ R^6 jeweils unabhängig voneinander H, (C_1-C_4) Alkyl oder Benzyl,

¹⁵ R^7 jeweils unabhängig voneinander H, (C_1-C_{12}) Alkyl, das unsubstituiert oder durch Phenyl, das unsubstituiert oder durch Halogen, Nitro, Cyano, (C_1-C_4) Alkyl oder (C_1-C_4) Alkoxy substituiert ist, durch Hydroxy, Cyano, 20 (C_1-C_4) -Alkoxy-carbonyl, (C_1-C_4) -Alkylthio, (C_1-C_4) -Alkoxy, Cyclo(C_5-C_7)alkyl oder Benzyloxy substituiert ist,

(C_3-C_6) Alkenyl, Halogen(C_3-C_6)Alkenyl,
25 (C_3-C_6) Alkinyl, Cyclo(C_5-C_8)alkyl,
Cyclo(C_5-C_6)alkenyl, (C_1-C_6) -Alkyl carbonyl,
Halogen(C_1-C_6 -alkyl)carbonyl,
[(C_1-C_6 -Alkyl)amino]carbonyl, Benzoyl, Halogenbenzoyl
oder Methylbenzoyl

³⁰ R^8 jeweils unabhängig voneinander, (C_1-C_6) Alkyl, das unsubstituiert oder durch Phenyl,
Cyclo(C_5-C_7)alkyl, (C_1-C_4) Alkoxy, (C_1-C_4) Alkylthio oder Halogen substituiert ist,
35 oder zwei Reste R gemeinsam mit Z und dem Kohlenstoffatom, an das sie gebunden sind, einen

unsubstituierten oder durch (C_1-C_4)Alkyl, Hydroxy-
(C_1-C_4)alkyl, Halogen(C_1-C_4)alkyl oder Phenyl
substituierten 5- oder 6-gliedrigen gesättigten
heterocyclischen Ring;

5

R^9 jeweils unabhängig voneinander H, Halogen, (C_1-C_4)-
Alkyl, Nitro oder Cyano,

10

R^{10} unabhängig voneinander H, (C_1-C_6)Alkyl, das
unsubstituiert oder durch (C_1-C_4)Alkoxy, Triazolyl
oder Imidazolyl substituiert ist, Cyclo(C_3-C_6)alkyl,
(C_1-C_6)Alkenyl, Phenyl oder Benzyl, oder im Falle $R^1=-N=C(R^{10})_2$ beide Reste
 R^{10} gemeinsam mit dem Kohlenstoffatom, an das sie
gebunden sind, ein unsubstituiertes oder durch Methyl
oder Halogen substituiertes Cyclo- (C_5-C_7)alkyl,

15

R^{11} (C_1-C_4)Alkyl, Phenyl, (C_1-C_6 -Alkyl)carbonyl, Benzyl,
Benzoyl, Halogenbenzyl, Halogenbenzoyl oder
Methylbenzoyl,

20

R^{12} H, (C_1-C_4)Alkyl, Formyl, (C_1-C_6 -Alkyl)carbonyl,
Benzoyl, Halogenbenzoyl, Methylbenzoyl oder
Trihalogenacetyl,

25

R^{13} (C_1-C_4)Alkyl, Phenyl oder Methylphenyl,

m 0 oder 1

n eine ganze Zahl von 0 bis 5

30

p eine ganze Zahl von 0 bis 4 und

q eine ganze Zahl von 0 bis 6

35 bedeuten.

2. Verfahren zur Herstellung der Verbindungen der Formel I von Anspruch 1, dadurch gekennzeichnet, daß man eine Verbindung der Formel II

5

worin R^{14} (C_1-C_6)Alkyl bedeutet, mit einer Verbindung der Formel III

10

umsetzt und anschließend gegebenenfalls derivatisiert.

15 3. Pflanzenbehandlungsmittel, gekennzeichnet durch einen wirksamen Gehalt einer Verbindung der Formel I von Anspruch 1.

20 4. Pflanzenwachstumsregulierende Mittel, gekennzeichnet durch einen wirksamen Gehalt einer Verbindung der Formel I von Anspruch 1.

25 5. Mittel zum Schutz von Kulturpflanzen vor phytotoxischen Nebenwirkungen von Herbiziden, gekennzeichnet durch einen wirksamen Gehalt einer Verbindung der Formel I von Anspruch 1.

30 6. Verwendung der Verbindungen der Formel I zur Wachstumsregulierung von Pflanzen.

7. Verwendung der Verbindungen der Formel I zum Schutz von Kulturpflanzen vor phytotoxischen Nebenwirkungen von Herbiziden.

35 8. Verfahren zur Regulierung des Pflanzenwachstums, dadurch gekennzeichnet, daß man auf die Pflanzen oder die Anbaufläche eine wirksame Menge einer Verbindung der Formel I appliziert.

9. Verfahren zum Schutz von Kulturpflanzen vor phytotoxischen Nebenwirkungen von Herbiziden, dadurch gekennzeichnet, daß man auf die Kulturpflanzen oder die Anbaufläche eine wirksame Menge einer Verbindung der Formel I vor, nach oder gleichzeitig mit dem Herbizid appliziert.
10. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, daß das Herbizid ein Phenoxy-phenoxy- oder Heteroaryloxyphenoxy-carbonsäureester ist.

Patentansprüche Österreich und Spanien:

1. Verfahren zur Herstellung von Verbindungen der Formel I

5

worin

10 R unabhängig voneinander Halogen, Hydroxy, Cyano, Nitro, (C₁-C₄)Alkyl, (C₁-C₄)Halogenalkyl, (C₁-C₄)Alkoxy-
(C₁-C₄)alkyl, (C₁-C₆)Alkoxy, (C₁-C₆)Alkoxy-(C₁-C₄)alkoxy, (C₁-C₄)Halogenalkoxy, (C₁-C₄)Alkylthio, (C₁-C₄)Halogenalkylthio, Carboxy, (C₁-C₄)Alkoxycarbonyl,
15 (C₁-C₄)Alkylsulfinyl, (C₁-C₄)Halogenalkylsulfinyl, (C₁-C₄)Alkylsulfonyl, (C₁-C₄)Halogenalkylsulfonyl, (C₁-C₄)Alkylsulfonyloxy, (C₁-C₄)Halogenalkylsulfonyloxy, Phenyl, Halogenphenyl, Phenoxy oder Halogenphenoxy,

20 X = in Position 3 oder 5 des Pyrazolringes orientiert ist und einen Rest der Formeln

25

30

35

Y = Halogen

Z = O oder S

U = O, S oder N-R⁶.

5 R¹ Wasserstoff, (C₁-C₁₂)Alkyl,
 (C₁-C₁₂)Alkyl, das ein- oder mehrfach durch Halogen
 und/oder ein- bis zweifach durch Hydroxy,
 (C₁-C₆)Alkoxy,
 (C₁-C₄)Alkoxy(C₁-C₄)alkoxy, (C₁-C₄)-Alkylthio,
 10 (C₁-C₄)Alkylsulfinyl, (C₁-C₄)Alkylsulfonyl, Mono- oder
 Di-(C₁-C₄-alkyl)amino, Cyano, Aminocarbonyl,
 (C₁-C₄)Alkylicarbonyl, (C₁-C₄-Alkoxy)carbonyl,
 Cyclo(C₃-C₇)-alkyl, Tri(C₁-C₄)alkyl-silyl, Benzyloxy,
 Benzyloxyethoxy, Phenyl, Phenyl, das durch Halogen oder
 15 (C₁-C₄)Alkyl substituiert ist, durch Phenoxy,
 Phenylthio, die durch Halogen oder (C₁-C₄)-Alkyl
 substituiert sein können, durch Oxiranyl,
 Tetrahydrofuryl, Triazolyl, Pyridinyl, Imidazolyl,
 durch Carboxy, Carboxylat mit einem für die
 20 Landwirtschaft einsetzbaren Kation oder durch den Rest
 -O-N=C(CH₃)₂ substituiert ist,
 (C₃-C₆)Alkenyl, (C₃-C₆)-Halogenalkenyl,
 unsubstituiertes oder durch Halogen oder (C₁-C₄)Alkyl
 substituiertes Cyclo(C₃-C₇)alkyl, unsubstituiertes oder
 25 durch Halogen oder (C₁-C₄)Alkyl substituiertes
 Cyclo(C₅-C₇)alkenyl, (C₃-C₆)Alkinyl,
 1,2-Epoxy-prop-3-yl, Phenyl oder Phenyl, das ein oder
 zweifach durch Halogen, Nitro, Cyano, (C₁-C₄)Alkyl,
 30 (C₁-C₄-Alkoxy)carbonyl oder (C₁-C₄)Alkoxy substituiert
 ist, (C₁-C₄-Alkyl)carbonyl, Phenylcarbonyl, wobei der
 Phenylring durch Halogen, Nitro, Cyano oder
 (C₁-C₄)Alkyl substituiert sein kann,
 einen Rest der Formeln

3

HOE 86/F 247
AT, ES

$\cdot -N=C(R^{10})_2$, $\cdot -NR^{3}R^{11}$,

5

10

oder ein für die Landwirtschaft einsetzbares Kation,

15 R^2 (C_1-C_{12})Alkyl oder (C_1-C_{12})Alkyl, das bis zu zweifach durch (C_1-C_4)Alkoxyethoxy, Cyclo(C_3-C_6)alkyl, Benzyloxy, Phenyl, Phenoxy, (C_1-C_4)Alkylthio, (C_1-C_4 -Alkoxy)-carbonyl, Carboxy oder Carboxylat mit einem für die Landwirtschaft einsetzbares Kation, substituiert ist,

20

R^3 jeweils unabhängig voneinander (C_1-C_6)-Alkyl, Phenyl oder (C_3-C_6)-Alkenyl,

25 R^4 Wasserstoff, (C_1-C_{12})Alkyl oder (C_1-C_{12})Alkyl, das bis zu zweifach durch (C_1-C_6)Alkoxy, (C_1-C_4)Alkoxy-ethoxy, Hydroxy, Hydroxyimino, (C_1-C_4)-Alkoxyimino, Halogen, Cyclo(C_3-C_6)alkyl, Benzyloxy, Cyano, Aminocarbonyl, Carboxy, (C_1-C_4 -Alkoxy)-carbonyl, Formyl, Phenyl oder Phenoxy substituiert ist, Phenyl oder Phenyl, das bis zu zweifach durch Halogen, Nitro, Cyano, (C_1-C_4)Alkyl oder (C_1-C_4)Alkoxy substituiert ist; (C_3-C_6)-Alkenyl, (C_3-C_6)Cycloalkyl, einen Rest der Formeln

30

35 $-NR^{3}R^{12}$, $-O-R^6$, $-NH-CONH_2$, $-NH-CS-NH_2$ oder $-SO_2R^{13}$ oder

5 R^3 und R^4 gemeinsam mit dem Stickstoffatom an das sie gebunden sind, einen gesättigten oder ungesättigten gegebenenfalls benzokonensierten drei- bis siebengliedrigen Ring, der bis zu drei Heteroatome aus der Gruppe O, N oder S enthält und der unsubstituiert oder durch (C_1-C_4) Alkyl oder Halogen substituiert ist und eine Carbonylgruppe enthalten kann,

10 R^5 H, (C_1-C_6) Alkyl oder Phenyl, oder im Falle $R =$
 $-CS-OR^5$ ein für die Landwirtschaft einsetzbares Kation,

15 R^6 jeweils unabhängig voneinander H, (C_1-C_4) Alkyl oder Benzyl,

20 R^7 jeweils unabhängig voneinander H, (C_1-C_{12}) Alkyl, das unsubstituiert oder durch Phenyl, das unsubstituiert oder durch Halogen, Nitro, Cyano, (C_1-C_4) Alkyl oder (C_1-C_4) Alkoxy substituiert ist, durch Hydroxy, Cyano, (C_1-C_4) -Alkoxy)-carbonyl, (C_1-C_4) -Alkylthio, (C_1-C_4) -Alkoxy, Cyclo(C_5-C_7)alkyl oder Benzyloxy substituiert ist,

25 (C_3-C_6) Alkenyl, Halogen(C_3-C_6)Alkenyl, Halogen(C_3-C_6)-alkenyl, (C_3-C_6) Alkinyl, Cyclo(C_5-C_8)alkyl, Cyclo(C_5-C_6)alkenyl, (C_1-C_6) -Alkyl)carbonyl, Halogen(C_1-C_6 -alkyl)carbonyl, $[(C_1-C_6)$ -Alkyl]amino]carbonyl, Benzoyl, Halogenbenzoyl oder Methylbenzoyl

30 R^8 jeweils unabhängig voneinander (C_1-C_6) Alkyl, das unsubstituiertes oder durch Phenyl, Cyclo(C_5-C_7)alkyl, (C_1-C_4) Alkoxy, (C_1-C_4) Alkylthio oder Halogen substituiert ist, oder zwei Reste R gemeinsam mit Z und dem Kohlenstoffatom, an das sie gebunden sind, einen

unsubstituierten oder durch (C_1-C_4)Alkyl, Hydroxy-
(C_1-C_4)alkyl, Halogen(C_1-C_4)alkyl oder Phenyl
substituierten 5- oder 6-gliedrigen gesättigten
heterocyclischen Ring;

5

R^9 jeweils unabhängig voneinander H, Halogen, (C_1-C_4)-
Alkyl, Nitro oder Cyano,

10

R^{10} unabhängig voneinander H, (C_1-C_6)Alkyl, das
unsubstituiert oder durch (C_1-C_4)Alkoxy, Triazolyl
oder Imidazolyl substituiert ist, Cyclo(C_3-C_6)alkyl,
(C_1-C_6)Alkenyl, Phenyl oder Benzyl, oder beide Reste
 R^{10} gemeinsam mit dem Kohlenstoffatom, an das sie
gebunden sind, ein unsubstituiertes oder durch Methyl
oder Halogen substituiertes Cyclo- (C_5-C_7)alkyl,

15

R^{11} (C_1-C_4)Alkyl, Phenyl, (C_1-C_6 -Alkyl)carbonyl, Benzyl,
Benzoyl, Halogenbenzyl, Halogenbenzoyl oder
Methylbenzoyl,

20

R^{12} H, (C_1-C_4)Alkyl, Formyl, (C_1-C_6 -Alkyl)carbonyl,
Benzoyl, Halogenbenzoyl, Methylbenzoyl oder
Trihalogenacetyl,

25

R^{13} (C_1-C_4)Alkyl, Phenyl oder Methylphenyl,

m 0 oder 1

30

n eine ganze Zahl von 0 bis 5

p eine ganze Zahl von 0 bis 4 und

q eine ganze Zahl von 0 bis 6

35

bedeuten,

dadurch gekennzeichnet, daß man eine Verbindung der Formel II

worin R^{14} ($\text{C}_1\text{-C}_6$)Alkyl Verbindung der Formel III bedeutet, mit einer

umsetzt und anschließend gegebenenfalls derivatisiert.

2. Pflanzenbehandlungsmittel, gekennzeichnet durch einen wirksamen Gehalt einer Verbindung der Formel I von Anspruch 1.
3. Pflanzenwachstumsregulierende Mittel, gekennzeichnet durch einen wirksamen Gehalt einer Verbindung der Formel I von Anspruch 1.
4. Mittel zum Schutz von Kulturpflanzen vor phytotoxischen Nebenwirkungen von Herbiziden, gekennzeichnet durch einen wirksamen Gehalt einer Verbindung der Formel I von Anspruch 1.
5. Verwendung der Verbindungen der Formel I zur Wachstumsregulierung von Pflanzen.
6. Verwendung der Verbindungen der Formel I zum Schutz von Kulturpflanzen vor phytotoxischen Nebenwirkungen von Herbiziden.
7. Verfahren zur Regulierung des Pflanzenwachstums, dadurch gekennzeichnet, daß man auf die Pflanzen oder die Anbaufläche eine wirksame Menge einer Verbindung der Formel I appliziert.

8. Verfahren zum Schutz von Kulturpflanzen vor phytotoxischen Nebenwirkungen von Herbiziden, dadurch gekennzeichnet, daß man auf die Kulturpflanzen oder die Anbaufläche eine wirksame Menge einer Verbindung der Formel I vor, nach oder gleichzeitig mit dem Herbizid appliziert.
- 5
9. Verfahren gemäß Anspruch 8, dadurch gekennzeichnet, daß das Herbizid ein Phenoxy-phenoxy- oder
- 10 Heteroaryloxyphenoxy-carbonsäureester ist.

Europäisches
Patentamt

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 87 11 4161

EINSCHLÄGIGE DOKUMENTE

Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. CL.4)
			RECHERCHIERTE SACHGEBiete (Int. CL.4)
X	DE-A-1 670 382 (CHINOIN) * Seite 4 *---	1	C 07 D 231/14 C 07 D 231/16 C 07 D 403/06 C 07 D 403/04 C 07 D 413/04 C 07 D 403/10 A 01 N 43/56
A	EP-A-0 151 866 (ELI LILLY) ---		
P, A	EP-A-0 204 242 (BAYER) ---		
P, A	EP-A-0 234 119 (MAY & BAKER) -----		
Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt			
Recherchierort DEN HAAG	Abschlußdatum der Recherche 10-01-1988	Prüfer DE BUYSER I.A.F.	
KATEGORIE DER GENANNTEN DOKUMENTE		T : der Erfindung zugrunde liegende Theorien oder Grundsätze E : älteres Patentdokument, das jedoch erst am oder nach dem Anmelddatum veröffentlicht worden ist D : in der Anmeldung angeführtes Dokument L : aus anderer Gründen angeführtes Dokument & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument	
X : von besonderer Bedeutung allein betrachtet Y : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie A : technologischer Hintergrund O : achtsschriftliche Offenbarung P : Zwischenliteratur			