Performance Analysis

Performance Analysis

- There are problems and algorithms to solve them.
- Problems and problem instances.
- Example: Sorting data in ascending order.
 - Problem: Sorting
 - Problem Instance: e.g. sorting data (2 3 9 5 6 8)
 - Algorithms: Bubble sort, Merge sort, Quick sort, Selection sort, etc.
- Which is the best algorithm for the problem? How do we judge?

Performance Analysis

- Two criteria are used to judge algorithms:
 (i) time complexity (ii) space complexity.
- Space Complexity of an algorithm is the amount of memory it needs to run to completion.
- <u>Time Complexity</u> of an algorithm is the amount of CPU time it needs to run to completion.

Space Complexity

• Why?

- To know in advance about sufficient memory
- To select the program with minimum memory requirement
- To estimate the largest instance it can solve

Components of Space Complexity

1. Instruction space

- Space needed to store the compiled version of program instruction
- Depends on...
 - The compiler used to compile the program
 - Ex. a+b+(b*c)+(a+b-c)/(a+b)/4
 - The compiler options in effect
 - Ex. Overlay option
 - The target computer
 - Floating point hardware

Components of Space Complexity

2. Data space

- Space needed by constants and simple variables
- Space needed by dynamically allocated objects (arrays, class instance etc.)

3. Environmental stack space

- The return address
- All local variables
- All formal parameters
- Recursion stack space
 - The space needed by local variables & formal parameters
 - The maximum depth of recursion

Space Complexity

- Memory space S(P) needed by a program P, consists of two components:
 - A fixed part: needed for instruction space (byte code), simple variable space, constants space etc. → c
 - A variable part: dependent on a particular instance of input and output data. →
 S_p(instance)
- $S(P) = c + S_p(instance)$

```
Algorithm abc (a, b, c)
     return a+b+b*c+(a+b-c)/(a+b)+4.0:
3.
   For every instance 3 computer words
   required to store variables: a, b, and c.
   Therefore S_p()=3. S(P)=3.
```

```
1. Algorithm Sum(a[], n)
2. {
3.    s:= 0.0;
4.    for i = 1 to n do
5.        s := s + a[i];
6.    return s;
7. }
```

- Every instance needs to store array a [] & n.
 - Space needed to store n = 1 word.
 - Space needed to store a [] = n floating point words (or at least n words)
 - Space needed to store i and s = 2 words
- $S_p(n) = (n + 3)$. Hence S(P) = (n + 3).

```
    Algorithm RSum(a[], n)
    {
    if (n > 0)
    return Rsum(a, n-1) + a[n-1];
    return 0;
    }
```

- Every recursive function call needs to store address of array a[], the value of n & return address.
 - Space needed to store n = 1 word.
 - Space needed to store the address of a [] = 1 word
 - Space needed to store return address = 1 words
 - Depth of recursion = n+1
 - Space needed to store a[] = n words
- $S_p(n) = n$. Hence S(P) = 3(n + 1) + n.

```
1. Algorithm Fact(int n)
2. {
3.    if (n <= 1)
4.    return 1;
5.    else return (n * Fact(n-1));
6. }</pre>
```

- Every recursive function call needs to store the value of n & return address.
 - Space needed to store n = 1 word.
 - Space needed to store return address = 1 words
 - Depth of recursion = n
- Hence S(P) = 2(n)

Time Complexity

- Time required T(P) to run a program P also consists of two components:
 - A fixed part: compile time which is independent of the problem instance → c.
 - A variable part: run time which depends on the problem instance → t_p (instance)
- $T(P) = c + t_p(instance)$

Time Complexity

- How to measure T(P)?
 - 1. Measure experimentally, using a "stop watch"
 - T(P) obtained in secs, msecs.
 - 2. Count no. of major operations / instructions.
 - Identify one or more major operations and determine how many times each is executed.
 - Ignore the other minor operations / instructions.
 - 3. Count program steps \rightarrow T(P) obtained as a <u>step count.</u>
- Fixed part is usually ignored; only the variable part t_p() is measured.

Operation count : Example 1

```
Algorithm IndexOfMax(int a[], int n)
        int index = 0;
        for (int i=1; i < n; i++)
4.
       if (a[index] < a[i])
5.
6.
           index = i;
        return index;
8.

    Comparison can be considered as major operation in

      above algorithm.
   - Total number of comparison = max\{n-1, 0\}
   - Hence, T(P) = n-1
```

Operation count : Example 2

```
1. Algorithm PolyEval(int coeff[], int n, int x)
2. {
3.    int y=1, value=coeff[0];
4.    for(int i=1; i < n; i++)
5.    {
6.        y = y * x;
7.        value = value + y * coeff[i];
8.    }
9. }</pre>
```

Operation count : Example 2

- Here, additions and multiplications can be identified as major operations.
 - Total number of additions = n
 - Total number of multiplications = 2n
- Hence, total number of operations = 3n
- T(P) = 3n

Step Count

- Considers all executable statements of an algorithm.
- What is a program step?
 - $-a+b+b*c+(a+b)/(a-b) \rightarrow$ one step;
 - comments → zero steps;
 - while (⟨expr⟩) do → step count equal to the number of times <expr> is executed.
 - for $i=\langle expr \rangle$ to $\langle expr1 \rangle$ do \rightarrow step count equal to number of times $\langle expr1 \rangle$ is checked.

	Statements	S/E	Freq.	Total
1	Algorithm Sum(a[],n)	0	_	0
2	{	0	_	0
3	S = 0.0;	1		
4	for i=1 to n do	1		
5	s = s+a[i];	1		
6	return s;	1		
7	}	0	_	0

	Statements	S/E	Freq.	Total
1	Algorithm Sum(a[],n)	0	_	0
2	{	0	_	0
3	S = 0.0;	1	1	1
4	for i=1 to n do	1	n+1	n+1
5	s = s+a[i];	1	n	n
6	return s;	1	1	1
7	}	0	_	0

	Statements	S/E	Freq.	Total
1	Algorithm Sum(a[], n, m)	0	_	0
2		0	_	0
3	for i=1 to n do;	1		
4	for j=1 to m do	1		
5	s = s+a[i][j];	1		
6	return s;	1		
7	}	0	_	0

	Statements	S/E	Freq.	Total
1	Algorithm Sum(a[],n,m)	0	_	0
2	{	0	_	0
3	for i=1 to n do;	1	n+1	n+1
4	for j=1 to m do	1	n (m+1)	n (m+1)
5	s = s+a[i][j];	1	nm	nm
6	return s;	1	1	1
7	}	0	_	0

2nm+2n+2

	Statements	S/E	Freq.	Total
1	Algo Transpose(a[], row)	0	_	0
2	{	0	_	0
3	for (i=0; i <row ;="" i++)<="" td=""><td>1</td><td></td><td></td></row>	1		
4	for (j=i+1; j <row; j++)<="" td=""><td>1</td><td></td><td></td></row;>	1		
5	swap(a[i][j],a[j][i]);	1		
7	}	0	_	0

	Statements	S/E	Freq.	Total
1	Algo Transpose(a[],row)	0	_	0
2	{	0	_	0
3	for (i=0; i <row ;="" i++)<="" td=""><td>1</td><td>row+1</td><td>row+1</td></row>	1	row+1	row+1
4	for (j=i+1; j <row; j++)<="" td=""><td>1</td><td>row(row+1)/2</td><td>row(row+1)/2</td></row;>	1	row(row+1)/2	row(row+1)/2
5	swap(a[i][j],a[j][i]);	1	row(row-1)/2	row(row-1)/2
7	}	0	_	0

 $row^2 + row + 1$

	Statements	S/E	Freq.	Total
1	Algorithm ABC(a[],b[],n)	0	_	0
2	{	0	_	0
3	for (j=0; j <n; j++)<="" td=""><td>1</td><td></td><td></td></n;>	1		
4	b[j] = sum(a, j+1);	2j+6		
5	}	0	_	0

	Statements	S/E	Freq.	Total
1	Algorithm ABC(a[],b[],n)	0	_	0
2	{	0	_	0
3	for (j=0; j <n; j++)<="" td=""><td>1</td><td>n+1</td><td>n+1</td></n;>	1	n+1	n+1
4	b[j] = sum(a, j+1);	2j+6	n	n (n+5)
5	}	0	_	0

 $n^2 + 6n + 1$

Here,
$$\sum_{j=0}^{n-1} (2j+6) = 2 \sum_{j=0}^{n-1} j + \sum_{j=0}^{n-1} 6$$

Problem with step count

- Doesn't give accurate estimate of time complexity, because step is not well defined
- For ex,

$$- T(P1) = 4n^2 + 6n + 2 OR$$

- $T(P1) = 5n^2 + 7n + 3$ is correct for a given program P1?
- Consider $R = x^2 + 3x + 5$ as x varies:

$$x = 0$$
 $x^2 = 0$ $3x = 0$ $5 = 5$ $R = 5$
 $x = 10$ $x^2 = 100$ $3x = 30$ $5 = 5$ $R = 135$
 $x = 100$ $x^2 = 10000$ $3x = 300$ $5 = 5$ $R = 10,305$
 $x = 1000$ $x^2 = 1000000$ $3x = 3000$ $5 = 5$ $R = 1,003,005$
 $x = 10,000$ $x^2 = 10^8$ $3x = 3*10^4$ $5 = 5$ $R = 100,030,005$
 $x = 100,000$ $x^2 = 10^{10}$ $3x = 3*10^5$ $5 = 5$ $R = 10,000,300,005$

$R = x^2 + 3x + 5$ for x = 1..10

$R = x^2 + 3x + 5$ for x = 1..20

Observation with step count

• In general, when $F(n) = c_1 n^2 + c_2 n + c_3 c_1 n^2$ is much larger than $c_2 n + c_3$.

• Let
$$r(n) = \frac{c_2 n + c_3}{c_1 n^2} = \frac{c_2}{c_1 n} + \frac{c_3}{c_1 n^2}$$

- Now, $\lim_{n \to \infty} \frac{c_2}{c_1 n} + \frac{c_3}{c_1 n^2} = 0$
- Which denotes that $c_1 n^2$ is the dominant term in the F(n).

Observation with step count

• For two programs A & B,

Analysis of John:

$$t_A(n) = n^2 + 3n$$
 $t_B(n) = 43n$

Analysis of Mary:

$$t_A(n) = 2n^2 + 3n$$
 $t_B(n) = 83n$

For John:

when n<40, program A is faster when n>40, program B is faster

For Mary:

when n<80, program A is faster when n>80, program B is faster

Observation with step count

- In both the cases, Program A is faster than program B.
- Just the break even point (n=40 or n=80) changes.
- Hence, the value of coefficient is irrelevant.
- Thus, to reflect how one function grows with the growth of another function, study of asymptotic notation is required.

Growth of Functions

- The growth of time and space complexity with increasing input size n is a suitable measure for the comparison of algorithms.
- The growth of functions is usually described using the Asymptotic notations
- Three most important asymptotic notations are as follows:
 - − Big − O notation
 - Omega notation
 - Theta notation

Big – O notation

• **Definition:** Let f and g be functions from the integers or the real numbers to the real numbers. We say that f(n) is O(g(n)), if there are exist constants C and n_0 such that,

$$f(n) \le C g(n)$$

• whenever $n >= n_0$.

Big – O notation

Graphically, it can be represented as follows:

Big – O notation

- The idea behind the big-O notation is to establish an **upper boundary** for the growth of a function f(n) for large n.
- We accept the constant C in the requirement

$$f(n) \le Cg(n)$$
 whenever $n \ge n_0$,

because C does not grow with x

• We are only interested in large n, so it is OK if f(n) > Cg(n) for $n \ge n_0$.

Big – O Examples

• Prove that f(n) = 3n + 5 is O(n).

$$f(n) = 3n + 5$$

 $\leq 3n + n$, where $n \geq 5$
 $\leq 4n$
 $\leq C g(n)$, where C=4 & n_0 =5

- Hence, f(n) = 3n + 5 is O(n) is proved.
- Similarly, Prove for the followings:
 - $f(n) = 27n^2 + 16n \text{ is } O(n^2).$
 - $f(n) = 2n^3 + n^2 + 2n \text{ is } O(n^3).$
 - $f(n) = 4n^3 + 2n + 3 \text{ is } O(n^3).$
 - $f(n) = 2^n + 6n^2 + 3n \text{ is } O(2^n).$

Big – O Examples – Incorrect bound

- Prove that $f(n) = 7n + 5 \neq O(1)$.
- Proof by contradiction:
- Assume that 7n + 5 = O(1). So, we must have $7n + 5 \le C.1$ for $n \ge n0$. above statement is not true for large values of n
- Hence, our assumption is false.
- Hence, f(n) = 3n + 5 is O(n) is proved.
- Similarly, Prove for the followings:
 - $f(n) = 10n^2 + 7 \neq O(n).$
 - $f(n) = 27n^2 + 16n + 25 \neq O(n).$
 - $f(n) = 3n^3 + 4n \neq O(n^2).$

Big – O notation – Loose bounds

- Question: If f(x) is $O(x^2)$, is it also $O(x^3)$?
- Yes. x^3 grows faster than x^2 , so x^3 grows also faster than f(x).
- Therefore, we always have to find the **smallest** simple function g(x) for which f(x) is O(g(x)).
- Ex: $f(n) = 2n + 3 = O(n^2)$

Big $-\Omega$ notation

• **Definition:** Let f and g be functions from the integers or the real numbers to the real numbers. We say that f(n) is $\Omega(g(n))$, if there are exist constants C and n_0 such that,

$$f(n) \ge C g(n)$$

• whenever $n >= n_0$.

Big $-\Omega$ notation

Graphically, it can be represented as follows:

Big $-\Omega$ notation

- The idea behind the big- Ω notation is to establish an lower boundary for the growth of a function f(n) for large n.
- It indicates the best case.

Big – Ω Examples

• Prove that f(n) = 3n + 5 is $\Omega(n)$.

$$f(n) = 3n + 5$$

 $\geq 3n$, where $n \geq 1$
 $\geq C g(n)$, where $C=3 \& n_0=1$

- Hence, f(n) = 3n + 5 is $\Omega(n)$ is proved.
- Similarly, Prove for the followings:
 - $f(n) = 27n^2 + 16n$ is $\Omega(n^2)$.
 - $f(n) = 2n^3 + n^2 + 2n$ is $\Omega(n^3)$.
 - $f(n) = 4n^3 + 2n + 3$ is $\Omega(n^3)$.
 - $f(n) = 2^n + 6n^2 + 3n$ is $\Omega(2^n)$.

Big $-\Omega$ Examples - Incorrect bound

- Prove that $f(n) = 7n + 5 \neq \Omega(n^2)$.
- Proof by contradiction:
- Assume that $7n + 5 = \Omega(n^2)$. So, we must have

$$7n + 5 \ge C n^2 \text{ for } n \ge n0.$$

$$c n^2 / (7n + 5) \le 1.$$

above statement is not true for n.

- Hence, our assumption is false.
- Hence, f(n) = 3n + 5 is $\Omega(n)$ is proved.
- Similarly, Prove for the followings:
 - $f(n) = 10n^2 + 7 \neq \Omega(n^3).$
 - $f(n) = 27n^2 + 16n + 25 \neq \Omega(n^3).$
 - $f(n) = 3n^3 + 4n \neq \Omega(2^n).$

Big $-\Omega$ notation - Loose bounds

- Question: If f(x) is $\Omega(x^3)$, is it also $\Omega(x^2)$?
- Yes.
- Therefore, we always have to find the Largest simple function g(x) for which f(x) is $\Omega(g(x))$.
- Ex: $f(n) = 2n + 3 = \Omega(n^2)$

$Big - \Theta$ notation

• **Definition:** Let f and g be functions from the integers or the real numbers to the real numbers. We say that f(n) is $\Theta(g(n))$, if there are exist constants C_1 , C_2 and n_0 such that,

$$C_1 g(n) \le f(n) \le C_2 g(n)$$

• whenever $n >= n_0$.

$Big - \Theta$ notation

Graphically, it can be represented as follows:

Relation between O, Ω and Θ

For any two functions g(n) and f(n), $f(n) = \Theta(g(n))$ iff f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

I.e.,
$$\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$$

Big – O notation - Examples

- Prove that f(n) = 3n + 5 is $\Theta(n)$.
- We can say that $3n \le 3n + 5$ $C_1 n \le f(n)$, where $C_1 = 3$
- similarly, f(n) = 3n + 5 $\leq 3n + n$, where $n \geq 5$ $\leq 4n$ $\leq C_2 g(n)$, where $C_2 = 4$
- Hence, f(n) = 3n + 5 is $\Theta(n)$ is proved.
- Similarly, Prove for the followings:
 - $f(n) = 27n^2 + 16n$ is $\Theta(n^2)$.
 - $f(n) = 2n^3 + n^2 + 2n \text{ is } \Theta(n^3).$
 - $f(n) = 4n^3 + 2n + 3 \text{ is } \Theta(n^3).$
 - $f(n) = 2^n + 6n^2 + 3n \text{ is } \Theta(2^n).$