Operating system

Part VIII: Memory (Advanced)

By KONG LingBo (孔令波)

- Mapping 1 map files into main memory
 - Basic: fundamental ideas and old ways
 - Advanced: so-called virtual memory
- MAPPING 2 map files into persistence storage medias (HDD space as instance)
 - Basic: fundamental understanding about HDD space
 - Advanced: File system
 - Other: RAID, Spooling, etc.

Goals

- Know the related concepts
 - Virtual Memory, Logical address, Physical address, Address translation
- Virtual memory
 - (on-demand) Paging scheme
 - (on-demand) Segmentation
 - Segmentation + Paging → Hybrid

Now

 It's time to learn the real techniques used by current OSs to provide <u>VIRTUAL MEMORY</u>

- We have known the fact
 - The instructions and data of a program should be stored in Main Memory first before its execution
 - With the experience on Windows[®], we can infer that a program whose size is larger than the MM can still run
 - → it seems that there is a "<u>virtual</u>" memory!

- Virtual memory is a feature of an operating system that
 - enables a process to use a memory (RAM)
 address space that is independent of other
 processes running in the same system,
 - and use a space that is larger than the
 actual amount of RAM present,
 temporarily relegating some contents from
 RAM to a disk, with little or no overhead.
- Virtual memory combines active RAM and inactive memory to form a large range of contiguous addresses.

- Paging
 - Basic paging
 - Paging-based VM
 - How to support the transparency of using space larger than the physical memory space
 - Page replacement algorithms
- Segmenting
 - Basic segmenting
 - Segmentation-based VM
 - How to support the transparency of using space larger than the physical memory space
- Segment-page scheme (Hybrid)

- The fundament of paging is **Fixed Partitioning** but with smaller size!
 - It "partition/cut" the logical space of a process into pages [页]
 - It "partition/cut" the physical space of MM into <u>frame</u>s [帧]
 - By default, the sizes of page and frame are same
 - In 32 bit Windows, 4KB
- It seems that the mapping from the process space to MM is easy now
 - If there is available frame, we can assign a page to that frame
 - Since a page corresponds to a set of instructions, that process could run when executing those instructions
- Yes, that is in fact the basic functions of paging scheme!

Needed data structures

- To carry out the paging scheme
 - Besides the pages of a process, OS should know the mapping relationship between pages of that process and frames of the MM
- That is Page table [页表]

Page	Frame

Virtual Memory: Large as you wish!

• Example:

- Just 16 bits are needed to address a physical memory of 64KB.
- Let's use a page size of 1KB so that 10 bits are needed for offsets within a page.

- For the page number part of a logical address we may use a number of bits larger than 6, say 22 (a modest value!!), "pretending" a 32-bit address.
 - Now we have 2^{22} (=4M) pages, each of which is 1KB, so the VM of a process/OS seems 4GB ($\leftarrow 2^{22}*2^{10}=2^{32}=4$ GB)

Logical address now

- Logical address now is divided into two parts:
 - Page number (p) used as an index into a page table which contains the base address of each page in physical memory.
 - Page offset/displacement (d) combined with base address to define the physical memory address that is sent to the memory unit.

page number	page offset
p	d
<i>m</i> – <i>n</i>	n

Logical address = Page# = 1, Offset = 478

0000010111011110

Address Translation now

 Address translation at run-time is then easy to implement in hardware:

page table

In a paging memory management system, there is a page table as following:

Page No	0	1	2	3	4
Frame	2	1	6	3	7

If the page size is 4KB, then paging address hardware will convert logical address 0 into physical address ().

A.8192

B.4096

C.2048

D.1024

Sharing

- What can be shared
 - Reentrant code (pure code)
 - If the code is reentrant, then it never changes during execution. → Two or more processes can execute the same code at the same time.
 - Read-only data
- What can not be shared
 - Each process has its own copy of registers and data storage to hold the data for the process's execution.
- The OS should provides facility to enforce some necessary property for sharing.

Shared Pages Example

Paging: The OS Concern

- What should the OS do?
 - -Which frames are available?
 - -Which frames are allow
 - –How to allocate fram arrived process?

Similar as those discussed in Variable partitioning part!

- Placement algorithm *(放置算法)
- Replacement algorithms (替換算法)

PPTs from others\OS PPT in English\ch09.ppt

- Paging
 - Basic paging
 - Paging-based VM
 - How to support the transparency of using space larger than the physical memory space
 - Page replacement algorithms
- Segmenting
 - Basic segmenting
 - Segmentation-based VM
 - How to support the transparency of using space larger than the physical memory space
- Segment-page scheme (Hybrid)

Of course, we need some support for Virtual Memory

 Memory management hardware must support paging and/or segmentation [MMU Discussed in former part].

- OS must be able to manage [→ Concern of this part]
 - the movement of pages and/or segments between external memory and main memory,
 - including placement and replacement of pages/segments.

 PPTs from others\From Ariel J. Frank\OS381\os8-1_vir.ppt

Now, the execution of a process looks like ...

- 1. The OS brings into main memory only a few pieces of the program (including its starting point).
- An interrupt (memory fault) is generated when the memory reference is on a piece that is not present in main memory – <u>is needed (On-demand)</u>.
 - a. OS places the process in a B Called Demand
 - b. OS issues a disk I/O Read Paging!

 memory the piece reference Paging!
 - c. Another process is dispatched to run while the disk I/O takes place.
- 3. An interrupt is issued when disk I/O completes; this causes the OS to place the affected process back in the Ready state.

 PPTs from others\From Ariel J. Frank\OS381\os8-1_vir.ppt

If one page is not in MM yet (Page Fault: 缺页)

- 1. If there is ever a reference to a page not in memory, first reference will cause **page fault**.
- 2. Page fault is handled by the appropriate OS service routines.
- 3. Locate needed page on disk (in file or in backing store).
- 4. Swap page into free frame (assume available).
- 5. Reset page tables valid-invalid bit = 1.
- 6. Restart instruction.

Steps in handling a Page Fault

What happens if there is no free frame?

- Page replacement find some page in memory, but not really in use, swap it out.
- Need <u>page replacement algorithm</u>.
- Performance want an algorithm which will result in minimum number of page faults.
- Same page may be brought into memory several times.

Effective Access Time (EAT)

EAT = (1 - p) x memory access
 + p (page fault overhead
 + swap page out
 + swap page in
 + restart overhead)

- "p" means Page Fault Rate
 - $-0 \le p \le 1.0$
 - if p = 0, no page faults
 - if p = 1, every reference is a fault

- Demand Paging Example
 - Memory access time = 200 nanoseconds [纳秒]
 - Average page-fault service time = 8 milliseconds [毫秒]
 - EAT = (1 p) x 200 + p (8 milliseconds)= (1 - p) x 200 + p x 8,000,000= 200 + p x 7,999,800
 - If one access out of 1,000 causes a page fault, then

```
EAT = 200+0.001*7999800
```

= 8199.8 nanoseconds

= 8.2 microseconds [微秒].

1 millisec = 1,000 microsec = 1,000,000 nanosec

How to improve this kind of **slowdown**?

- The solution could be derived from the EAT equation Improve the access speed, and decrease the page fault
- Two strategies
 - Keeping page table in a higher access speed media
 - Cache (high speed but quite expensive), and the TLB (translation lookaside buffer)
 - Prefetching the possible future accessed pages
 - When page 3 causes a page fau
 MM

Of course, decision is needed – namely the algorithms

a <u>Translation Look-aside Buffer</u> (TLB)

41

Now the **EAT** with TLB

- Parameters
 - TLB Lookup = 20 nanoseconds
 - Hit ratio (percentage of times that a particular page is found in the TLB) = 80%
 - Memory access time = 200 nanoseconds
 - Average page-fault service time = 8 milliseconds
 - If one access for Page table out of 1,000 causes a page fault
- EAT = (20)*0.8 + [200+(8000000-200)*0.001]*0.2
 - = 16+ 8199.8*0.2
 - = 1655.96≈1.6 microseconds

OPERATING SYSTEMS

0

0

图 5.15 MIPS R2000/3000 地址转换

Contemporary Memory Hierarchy & Dynamic Loading

- Paging
 - Basic paging
 - Paging-based VM
 - How to support the transparency of using space larger than the physical memory space
 - Page replacement algorithms
- Segmenting
 - Basic segmenting
 - Segmentation-based VM
 - How to support the transparency of using space larger than the physical memory space
- Segment-page scheme (Hybrid)

Example

- A process makes references to 4 pages: A, B, E, and R
 - Reference stream: BEERBAREBEAR
- Physical memory size: 3 (page) frames

Memory frame\Pages	В	Е	Е	R	В	A	R	Е	В	Е	A	R
1												
2												
3												

The FIFO Policy

- Treats page frames allocated to a process as a circular buffer:
 - When the buffer is full, the oldest page is replaced. Hence first-in, first-out:
 - A frequently used page is often the oldest, so it will be repeatedly paged out by FIFO.
 - -Simple to implement:
 - requires only a pointer that circles through the page frames of the process.

PPTs from others\From Ariel J. Frank\OS381\os8-3_vir.ppt

	↓											
Memory frame	В	Е	Е	R	В	Α	R	Ш	В	Е	Α	R
1	В											
2												
3												

		↓										
Memory frame	В	Е	Е	R	В	Α	R	Е	В	Е	А	R
1	В											
2		Е										
3												

			↓									
Memory frame	В	Е	Е	R	В	Α	R	Е	В	Е	Α	R
1	В											
2		Е	*									
3												

				↓								
Memory frame	В	Е	Е	R	В	Α	R	Е	В	Е	А	R
1	В											
2		Е	*									
3				R								

					↓							
Memory frame	В	Е	Е	R	В	Α	R	Е	В	Е	Α	R
1	В				*							
2		Е	*									
3				R								

						↓						
Memory frame	В	Е	Е	R	В	Α	R	Е	В	Е	Α	R
1	В				*							
2		Е	*									
3				R								

						↓						
Memory frame	В	Е	Е	R	В	Α	R	Е	В	Е	Α	R
1	В				*	Α						
2		Е	*									
3				R								

							↓					
Memory frame	В	E	Е	R	В	Α	R	Е	В	Е	Α	R
1	В				*	Α						
2		Е	*									
3				R			*					

								<u> </u>				
Memory frame	В	Е	Е	R	В	Α	R	Е	В	Е	Α	R
1	В				*	Α						
2		Е	*					*				
3				R			*					

									↓			
Memory frame	В	Е	Е	R	В	Α	R	Е	В	Е	Α	R
1	В				*	Α						
2		Е	*					*				
3				R			*					

									↓			
Memory frame	В	Е	Е	R	В	А	R	Е	В	Ш	Α	R
1	В				*	Α						
2		Е	*					*	В			
3				R			*					

										↓		
Memory frame	В	Е	Е	R	В	Α	R	Е	В	Е	Α	R
1	В				*	Α						
2		Е	*					*	В			
3				R			*					

										↓		
Memory frame	В	Е	Е	R	В	Α	R	Е	В	Е	Α	R
1	В				*	Α						
2		Е	*					*	В			
3				R			*			Е		

											<u> </u>	
Memory frame	В	E	Е	R	В	Α	R	E	В	Е	A	R
1	В				*	Α					*	
2		Е	*					*	В			
3				R			*			Е		

												
Memory frame	В	Е	Е	R	В	Α	R	Е	В	Е	Α	R
1	В				*	Α					*	
2		Е	*					*	В			
3				R			*			Е		

					_					_		+
Memory frame	В	E	Е	R	В	Α	R	E	В	E	Α	R
1	В				*	Α					*	R
2		Е	*					*	В			
3				R			*			Е		

• 7 page faults

Memory frame	В	Е	Е	R	В	А	R	E	В	Е	Α	R
1	В				*	Α					*	R
2		Е	*					*	В			
3				R			*			Е		

• 4 compulsory cache misses

Compulsory D.J.[kəmˈpʌlsəri] adj.必须做的, 强制性的

Memory frame	В	Е	Е	R	В	Α	R	Е	В	Е	Α	R
1	В				*	A					*	R
2		Е	*					*	B			
3				R			*			E		

Optimal Page Replacement

 The Optimal policy selects for replacement the page that will not be used for longest period of time.

• <u>Impossible to implement</u> (need to know the future) but serves as a standard to compare with the other algorithms we shall study.

PPTs from others\From Ariel J. Frank\OS381\os8-3_vir.ppt

Optimal (MIN)

				↓								
Memory frame	В	Е	Е	R	В	Α	R	Е	В	Е	Α	R
1	В											
2		Е	*									
3				R								

Optimal (MIN)

					↓							
Memory frame	В	Е	Е	R	В	Α	R	Е	В	Е	Α	R
1	В				*							
2		Е	*									
3				R								

Optimal (MIN)

						↓						
Memory frame	В	Е	Е	R	В	Α	R	Е	В	Е	Α	R
1	В				*							
2		Е	*									
3				R								

						↓						
Memory frame	В	Е	Е	R	В	Α	R	Е	В	Е	Α	R
1	В				*	A						
2		Е	*									
3				R								

							↓					
Memory frame	В	Е	Е	R	В	Α	R	E	В	Е	Α	R
1	В				*	Α						
2		Е	*									
3				R			*					

								<u> </u>				
Memory frame	В	Е	Е	R	В	А	R	Е	В	Е	Α	R
1	В				*	Α						
2		Е	*					*				
3				R			*					

									<u> </u>			
Memory frame	В	Е	Е	R	В	А	R	Е	В	Е	А	R
1	В				*	Α						
2		Е	*					*				
3				R			*					

									<u> </u>			
Memory frame	В	Е	Е	R	В	А	R	Е	В	Е	А	R
1	В				*	Α						
2		Е	*					*				
3				R			*		В			

										↓		
Memory frame	В	Е	Е	R	В	А	R	Е	В	Е	Α	R
1	В				*	Α						
2		Е	*					*		*		
3				R			*		В			

											<u> </u>	
Memory frame	В	Е	Е	R	В	Α	R	Е	В	Е	Α	R
1	В				*	Α					*	
2		Е	*					*		*		
3				R			*		В			

												*
Memory frame	В	E	E	R	В	Α	R	E	В	E	Α	R
1	В				*	Α					*	R
2		Е	*					*		*		
3				R			*		В			

• 6 page faults

Memory frame	В	Е	Е	R	В	А	R	E	В	Е	Α	R
1	В				*	Α					*	R
2		Е	*					*		*		
3				R			*		В			

The LRU Policy

[least recently used:最近最少使用算法]

- Replaces the page that has not been referenced for the longest time recently:
 - By the principle of locality, this should be the page least likely to be referenced in the near future.
 - performs nearly as well as the optimal policy.

				↓								
Memory frame	В	Е	Е	R	В	Α	R	Е	В	Е	А	R
1	В											
2		Е	*									
3				R								

					↓							
Memory frame	В	Е	Е	R	В	Α	R	Е	В	Е	Α	R
1	В				*							
2		Е	*									
3				R								

						↓						
Memory frame	В	Е	Е	R	В	Α	R	Е	В	Е	Α	R
1	В				*							
2		Е	*									
3				R								

						↓						
Memory frame	В	Е	Е	R	В	А	R	Е	В	Е	Α	R
1	В				*							
2		Е	*			Α						
3				R								

							<u> </u>					
Memory frame	В	Е	Е	R	В	А	R	Е	В	Ш	А	R
1	В				*							
2		Е	*			Α						
3				R			*					

								↓				
Memory frame	В	Е	Е	R	В	А	R	Е	В	Е	Α	R
1	В				*							
2		Е	*			Α						
3				R			*					

								↓				
Memory frame	В	Е	Е	R	В	А	R	Е	В	Е	Α	R
1	В				*			Е				
2		Е	*			Α						
3				R			*					

									<u> </u>			
Memory frame	В	Е	Е	R	В	А	R	Е	В	Ш	Α	R
1	В				*			E				
2		Е	*			Α						
3				R			*					

									↓			
Memory frame	В	Е	Е	R	В	Α	R	Е	В	Е	Α	R
1	В				*			Е				
2		Е	*			Α			В			
3				R			*					

										<u> </u>		
Memory frame	В	Е	Е	R	В	Α	R	Е	В	Е	Α	R
1	В				*			Е		*		
2		Е	*			A			В			
3				R			*					

											↓	
Memory frame	В	Е	Е	R	В	А	R	Е	В	Е	А	R
1	В				*			Е		*		
2		Е	*			Α			В			
3				R			*					

											<u> </u>	
Memory frame	В	Е	Е	R	В	Α	R	Е	В	Е	Α	R
1	В				*			Е		*		
2		Е	*			A			В			
3				R			*				Α	

												+
Memory frame	В	Е	Е	R	В	Α	R	Е	В	Е	Α	R
1	В				*			Е		*		
2		Е	*			Α			В			
3				R			*				A	

					_	_		_				+
Memory frame	В	Е	Е	R	В	Α	R	E	В	Е	Α	R
1	В				*			Е		*		
2		Е	*			Α			В			R
3				R			*				A	

• 8 page faults

Memory frame	В	Е	Е	R	В	А	R	Е	В	E	Α	R
1	В				*			Е		*		
2		Е	*			Α			В			R
3				R			*				Α	

The Clock (Second Chance) Policy

- Replaces an old page, but not the oldest page
- Arranges physical pages in a circle
 - With a clock hand
- Each page has a used bit
 - Set to 1 on reference
 - On page fault, sweep the clock hand
 - If the used bit == 1, set it to 0 and advance the hand
 - If the used bit == 0, pick the page for replacement

PPTs from others\From Ariel J. Frank\OS381\os8-3_vir.ppt

The Clock (Second Chance) Policy

- The set of frames candidate for replacement is considered as a circular buffer.
- When a page is replaced, a pointer is set to point to the next frame in buffer.
- A reference bit for each frame is set to 1 whenever:
 - a page is first loaded into the frame.
 - the corresponding page is referenced.
- When it is time to replace a page, the first frame encountered with the reference bit set to 0 is replaced:
 - During the search for replacement, each reference bit set to 1 is changed to 0.

		↓											
	Memory frame	В	Ш	Ш	R	В	A	R	Ш	В	ш	A	R
\rightarrow	1												
	2												
	3												

		↓											
	Memory frame	В	Ш	Е	R	В	Α	R	Ш	В	E	А	R
	1	B*											
\rightarrow	2												
	3												

			↓										
	Memory frame	В	Ш	Ш	R	В	А	R	E	В	Е	А	R
	1	B*											
	2		E*										
→	3												

_					↓								
	Memory frame	В	Ш	Ш	R	В	A	R	Ш	В	ш	A	R
\rightarrow	1	B*											
	2		E*	*									
	3				R*								

Since the de me me e fre die are ptace and vance the hand

_							↓						
	Memory frame	В	Ш	Ш	R	В	A	R	Ш	В	ш	А	R
\rightarrow	1	B*				*							
	2		E*	*									
	3				R*								

Since there is an "*", clear "*" and advance the hand

_							 						
	Memory frame	В	ш	Ш	R	В	А	R	Е	В	E	Α	R
	1	B*				*	В						
	2		E*	*			Е						
→	3				R*								

Since there is an "*", clear "*" and advance the hand

_							↓						
	Memory frame	В	Ш	Ш	R	В	A	R	Ш	В	E	А	R
-	1	B*				*	В						
	2		₩*	*			Е						
	3				R*		R						

Now, we can assign A to this position Memory В Ε Ε R В A R Ε B E Α R frame B* 3 R* R

A page fault again, clear "*" and advance the hand

	ı		
	ı		
	ı		
u	J,		
Α		7	

Memory frame	В	Ш	E	R	В	A	R	Ш	В	Ш	Α	R
1	B*				*	A*						
2		E*	*			Е		*	Е			
3				R*		R	*					

Clear "*" and advance the hand

										↓			
	Memory frame	В	Ш	Ш	R	В	A	R	Е	В	Ш	A	R
\rightarrow	1	B*				*	A *						
	2		E*	*			ш		*	E			
	3				R*		R	*		R			

Clear "*" and advance the hand

										↓			
	Memory frame	В	Ш	Ш	R	В	A	R	Ш	В	Ш	A	R
	1	B*				*	A*			A			
→	2		E*	*			Е		*	Е			
	3				R*		R	*		R			

Now put B here, because there is no "*" here Memory В Ε Ε E R В R Ε В A R Α frame B* **A*** A E* E **B*** 3 R* R R

_											ţ		
	Memory frame	В	Ш	Ш	R	В	A	R	Ш	В	ш	A	R
\rightarrow	1	B*				*	A *			A			
	2		E*	*			Е		*	B*			
	3				R*		R	*		R	E*		

A is accessed again, so A* again

	Memory frame	В	Е	Е	R	В	Α	R	Е	В	Е	A	R
-	1	B*				*	A *			A		*	
	2		E*	*			Е		*	B*			
	3				R*		R	*		R	E*		

A page fault again, clear "*" and advance the hand

					Ţ
)	Е	В	Е	Α	R
		A		*	A
	*	R*			

	Memory frame	В	Ш	Ш	R	В	A	R	Ш	В	Ш	A	R
	1	B*				*	A *			A		*	A
\rightarrow	2		E*	*			Е		*	B*			
	3				R*		R	*		R	E*		

Clear "*" and advance the hand

	٦		
J		L	
۸		7	
	v		

	Memory frame	В	E	Е	R	В	Α	R	E	В	E	А	R
	1	B*				*	A*			A		*	A
	2		E*	*			Е		*	B*			В
•	3				R*		R	*		R	E*		

Clear "*" and advance the hand

	٦		
J		L	
۸		7	
	v		

	Memory frame	В	Е	Е	R	В	Α	R	E	В	Е	Α	R
\rightarrow	1	B*				*	A*			A		*	A
	2		E*	*			Е		*	B*			В
	3				R*		R	*		R	E*		Е

7 page faults

Now put R here!

Ī													*
	Memory frame	В	ш	Ш	R	В	A	R	Ш	В	Е	Α	R
	1	B*				*	A*			A		*	R*
-	2		E*	*			Е		*	B*			В
	3				R*		R	*		R	E*		Е

Counting-based Algorithms

- Keep a counter of the number of references that have been made to each page.
- Two possibilities: Least/Most Frequently Used (LFU/MFU).
- LFU Algorithm:
 - replaces page with smallest count; others were and will be used more.
- MFU Algorithm:
 - based on the argument that the page with the smallest count was probably just brought in and has yet to be used.

PPTs from others\From Ariel J. Frank\OS381\os8-3_vir.ppt

	↓											
Memory frame	В	Е	Е	R	В	Α	R	Е	В	Е	А	R
1	В											
2												
3												

		↓										
Memory frame	В	Е	Е	R	В	Α	R	Е	В	Е	Α	R
1	В											
2		Е										
3												

			↓									
Memory frame	В	Е	Е	R	В	Α	R	Ш	В	Е	Α	R
1	В											
2		Е	2									
3												

				↓								
Memory frame	В	Е	Е	R	В	Α	R	Е	В	Е	Α	R
1	В											
2		Е	2									
3				R								

					1							
Memory frame	В	Е	Е	R	В	Α	R	Е	В	Е	Α	R
1	В				2							
2		Е	2									
3				R								

						↓						
Memory frame	В	Е	Е	R	В	Α	R	Е	В	Е	Α	R
1	В				2							
2		Е	2									
3				R		A						

							<u> </u>					
Memory frame	В	Е	Е	R	В	Α	R	Е	В	Е	Α	R
1	В				2							
2		Е	2									
3				R		Α	R					

								<u> </u>				
Memory frame	В	Е	Е	R	В	А	R	Е	В	Е	Α	R
1	В				2							
2		Е	2					3				
3				R		A	R					

									<u> </u>			
Memory frame	В	Е	Е	R	В	А	R	Е	В	Е	Α	R
1	В				2				3			
2		Е	2					3				
3				R		A	R					

										<u> </u>		
Memory frame	В	Е	Е	R	В	Α	R	Н	В	П	Α	R
1	В				2				3			
2		Е	2					3		4		
3				R		Α	R					

											<u> </u>	
Memory frame	В	Е	Е	R	В	Α	R	Е	В	Е	А	R
1	В				2				3			
2		Е	2					3		4		
3				R		A	R				A	

Memory frame	В	Е	Е	R	В	Α	R	Е	В	Е	Α	R
1	В				2				3			
2		Е	2					3		4		
3				R		Α	R				A	R

• 7 page faults

Memory frame	В	E	Е	R	В	А	R	E	В	Е	Α	R
1	В				2				3			
2		Е	2					3		4		
3				R		Α	R				Α	R

Does adding RAM always reduce misses?

- Yes for LRU and MIN
 - -Memory content of X pages \subseteq X + 1 pages

No for FIFO

- Due to modulo math
- Belady's anomaly: getting more page faults by increasing the memory size

Belady's Anomaly

• 9 page faults

Memory frame	Α	В	С	D	А	В	Е	Α	В	С	D	П
1	Α			D			Е					*
2		В			Α			*		С		
3			С			В			*		D	

Belady's Anomaly

• 10 page faults

Memory frame	Α	В	С	D	А	В	Е	Α	В	С	D	П
1	Α				*		Е				D	
2		В				*		Α				Е
3			С						В			
4				D						С		

Possibility of **Thrashing**

- If a process does not have "enough" pages, the page-fault rate is very high. This leads to:
 - low CPU utilization.
 - operating system thinks that it needs to increase the degree of multiprogramming.
 - another process added to the system.
 - This just increases the load on physical memory.

Thrashing = a process is busy swapping pages in and out.

PPTs from others\From Ariel J. Frank\OS381\os8-2_vir.ppt

You can try those algorithms by yourself

Assume:

- 3 frames
- Instruction References: 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1
- Each of the numbers refers to a page number
- Page size = 1? 2? 4?
- Your task now
 - FIFO
 - MIN (Optimal)
 - LRU
 - Clock

- Paging
 - Basic paging
 - Paging-based VM
 - How to support the transparency of using space larger than the physical memory space
 - Page replacement algorithms
- Segmenting
 - Basic segmenting
 - Segmentation-based VM
 - How to support the transparency of using space larger than the physical memory space
- Segment-page scheme (Hybrid)

Motivation of Segmenting

Paging

- Mapping to allow differentiation between logical memory and physical memory.
- Separation of the user's view of memory and the actual physical memory.
- Chopping a process into equally-sized pieces.
- Paging division is arbitrary; no natural/logical boundaries for protection/sharing.
- Any scheme for dividing a process into a collection of semantic units?

(syntactic [语法的], semantic [语义的])_{Ts from others\OS PPT in English\ch09.ppt}

Segmentation(分段)

- Segmentation could be seen as the extension of variable partitioning
 - Each program is subdivided into blocks of non-equal size called segments.
 - Cut your program according to **Semantic** organization, such as following function, or class etc.
 - Allocate MM region whose size is just the size of the needed segment
 - When a process gets loaded into main memory, its different segments can be located anywhere.

PPTs from others\SCU Zhaohui\OS\Chapter07.ppt

Dynamics of Simple Segmentation

- There is external fragmentation; it is reduced when using small segments.
 - Each segment is fully packed with instructions/data; <u>no internal</u> <u>fragmentation</u>.
- In contrast with paging, segmentation is visible to the programmer:
 - provided as a convenience to organize logically programs (example: data in one segment, code in another segment).
 - must be aware of segment size limit.
- The OS maintains a segment table for each process. Each entry contains:
 - the starting physical addresses of that segment.
 - the length of that segment (for protection).

Example of Segmentation

Logical address used in segmentation

- Logical address now is divided into two parts:
 - (segment number, offset) = (s, d), the CPU indexes (with s) the segment table to obtain the starting physical address b and the length I of that segment.
- The physical address is obtained by adding d to b (in contrast with paging):
 - The hardware also compares the offset d with the length I of that segment to determine if the address is valid.

Virtual address translation scheme with segmentation

Sharing in Segmentation Systems

- Segments are shared when entries in the segment tables of 2 different processes point to the same physical locations.
- Example: the same code of a text editor can be shared by many users:
 - Only one copy is kept in main memory.
- But each user would still need to have its own private data segment.

Part IX Memory management

157

Shared Segments Example

process P₂

- Paging
 - Basic paging
 - Supporting VM
- Segmenting
 - Basic segmenting
 - Supporting VM
- Segment-page scheme (Hybrid)

Segmentation + Paging (Hybrid)

- Paging or segmentation?
- In the old days,
 - Motorola 68000 paging.
 - Intel 80x86 segmentation.
- Now
 - combines both paging and segmentation
- The OS for I386
 - OS/2 from IBM
 - NT from MS

PPTs from others\OS PPT in English\ch09.ppt

Address Translation in hybrid method

PPTs from others\OS5e after William Stallings\Chapter08.ppt PPTs from others\From Ariel J. Frank\OS381\os8-2_vir.ppt

Figure 8.13 Address Translation in a Segmentation/Paging System

Segmentation + Paging: MULTICS

- The MULTICS system solved problems of external fragmentation and lengthy search times by paging the segments.
- Solution differs from pure segmentation in that the segment-table entry contains not the base address of the segment, but rather the base address of a page table for this segment.

Part IX Memory management

PPTs from others\From Ariel J. Frank\OS381\os7-4 rea.ppt

Scheme **MULTICS Address** Translation

Case Study – Windows

- Virtual memory with (on-)demand page
- Can support 32 or 64 bits
- Has a pool of free frames
- Uses pre-paging (called clustering)
- What happens if the amount of free memory falls below some threshold?
 - Each process has a minimum number of processes
 - Windows will take away pages that exceed that minimum
 - Applies LRU Locally

Case Study - Windows

- Each process is guaranteed to have a minimum number of frames
- Each process has a maximum number of frames
- If a page fault occurs for a process that has the maximum number of frames a local replacement policy is used
- If a page fault occurs for a process that is below its working set maximum a free frame is used.

Case Study - Linux

- Virtual memory with (on-)demand paging
- Can support 32 or 64 bits
- Replacement
 - Least recently used (LRU) policy
 - Different implementations for different systems

- ICQ C [10 pts]
 - Next week
 - 1 hour, close
 - Multiple choice, Computation

Data structures used to manage physical memory

内存池是实现申请内存函数的基础,主要目的就是管理一段内存,说明哪块内存被占用了,哪块内存是空闲的。管理这些内存占用情况的数据结构,用的是**bit** map,每一个比特对应着一块·4K·的内存。。

内存池一共分为四个,内核的物理地址内存池、用户的物理地址内存池、内核的虚拟地址内存池、用户的虚拟地址内存池。。

管理物理地址的内存池的结构为'pool,两个内存池变量为'kernel pool, user pool,

```
struct·pool·{。
····struct·bitmap·pool_bitmap;。
····uint32_t·phy_addr_start;·//本内存<u>池管理</u>的物理内存起始。
····uint32_t·pool_size;。
};。
```

https://bbs.huaweicloud.com/blogs/150951

• 反置页表(IPT: Inverted page table)

Operating system Part I Introduction