Quiz ch1-3 Ch6: Priority Queue Ch7: Quick-sort

1 Oct 2013 CMPT231 Dr. Sean Ho Trinity Western University Quiz: Open book, open paper notes. No elec devices (phone, tablet, laptop)

Exam 1: 30pts

- [6] (Dis)prove: If $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$, then $h(n) \in Ω(f(n))$
- [6] (Dis)prove: If $f(n) \in O(g(n))$ and $g(n) \in O(f(n))$, then f(n) = g(n)
- [6] (Dis)prove: $f(n) \in \Theta(f(n/2))$
- The function uniq(A) should return a list of all the elements in A which are unique: e.g.,
 - ◆ uniq([5, 3, 4, 3, 6, 5]) \rightarrow [4, 6] (or [6, 4])
 - Elements may be arbitrarily large, or even floats
 - [8] Implement uniq() as efficiently as you can
 - [4] Derive the algorithmic complexity

Exam 1 solutions: #1-3

- [6] (Dis)prove: If $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$, then $h(n) \in Ω(f(n))$
 - True: transitivity ⇒ f ∈ O(h)
 - Transpose symmetry $\Rightarrow h \in \Omega(f)$
- [6] (Dis)prove: If $f(n) \in O(g(n))$ and $g(n) \in O(f(n))$, then f(n) = g(n)
 - False: e.g., f(n) = n, g(n) = 2n
- [6] (Dis)prove: $f(n) \in \Theta(f(n/2))$
 - False: e.g., $f(n) = 2^n$:
 - $\lim_{n\to\infty} (f(n)/f(n/2)) = \lim_{n\to\infty} (2^n / 2^{n/2}) = \lim_{n\to\infty} (2^{n/2}) = \infty$
 - ◆ Hence f ∈ ω(f(n/2)), so $f \notin Θ(f(n/2))$

Exam 1 solutions: #4

- [8] Implement uniq() as efficiently as you can
 - function uniq(A):
 - MergeSort(A)
 - result = [A[1]]
 - for i in 2 .. length(A):
 - → if (A[i] != A[i-1]) result.append(A[i])
 - return result
- [4] Derive the algorithmic complexity
 - MergeSort takes average ⊖(n lg n)
 - Linear scan for uniques takes ⊖(n)
 - ⇒ average $\Theta(n \lg n)$

Outline for today

- ch6: Binary max-heaps
 - Application: Priority Queue
- ch7: Quicksort
 - Partition & pivot
 - Randomised quicksort
 - Complexity analysis

Binary heap for priority queue

- Binary heaps can implement a priority queue:
 - Set of items with attached priorities
- Interface (set of operations):
 - insert(A, item, pri): add item to the queue A
 - find_max(A): return item with highest priority
 - pop_max(A): same but also delete item
 - set_pri(A, item, pri): set new priority for item (must be higher than old priority)
- Setup queue by building a max-heap
 - find max() is easy: return A[1]
 - pop_max() also easy: remove A[1] and heapify

Inserting into priority queue

- set_pri(A, i, pri): starting from i, "bubble" item up until we find the right place:
 - → A[i] = pri
 - → while i>1 and A[i/2] < A[i]:
 - swap(A[i/2], A[i])
 - i = i/2
 - Complexity: # iterations = $\Theta(\lg n)$
- insert(A, pri): make a new node and set its priority
 - → A.length++
 - → set_pri(A, A.length, pri)
 - Typically, use pre-allocated fixed-length array, and use separate variable to track size of queue
 - Complexity: same as set_pri(): ⊖(lg n)

Priority queue: summary

- Build priority queue using a max-heap: ⊖(n)
- **Get** highest priority item: $\Theta(1)$
- Get and delete highest priority item: ⊖(lg n)
- Set new priority for an item: ⊖(lg n)
- Insert new item into queue: ⊖(lg n)

Outline for today

- ch6: Binary max-heaps
 - Application: Priority Queue
- ch7: Quicksort
 - Partition & pivot
 - Randomised quicksort
 - Complexity analysis

Quicksort

- Divide: partition array A[p .. r] such that:
 - → max(A[p..q-1]) \le A[q] \le min(A[q+1..r])
- Conquer: recurse on each part:
 - quicksort(A, p, q-1) and quicksort(A, q+1, r)
- No combine/merge step needed
- In-place sort
- Worst-case turns out to still be $\Theta(n^2)$, but average-case is $\Theta(n | g(n))$, with small constants
- In practise, quicksort is one of the best algorithms when input values can be arbitrary

Quicksort: partition

- How to do the partitioning?
 - Pick last item as the pivot
 - Walk through array, partitioning array into items ≤ pivot and items > pivot
 - Lastly, swap pivot into place
 - partition(A, p, r):
 - pivot = A[r]
 - split = p
 - for cur = p ... r-1:
 - if A[cur] ≤ pivot:
 - swap(A[split], A[cur])
 - split++
 - swap(A[split], A[pivot])
 - return split

Complexity?

Quicksort: complexity

- Worst-case if every partition is the most uneven:
 - pivot (last item) is either largest or smallest item
 - → T(n) = T(n-1) + T(0) + Θ(n)
 - $\bullet \Rightarrow T(n) = \Theta(n^2)$
 - Example inputs that give worst case?
- Best-case if every partition is exactly in half:
 - $T(n) = 2T(n/2) + \Theta(n)$
 - $\bullet \Rightarrow T(n) = \Theta(n \lg(n))$
 - Example inputs that give best case?
- Average-case, assuming random input?

Quicksort: average case

- Not every partition will be best-case ½ ½
 - On average, in between best and worst cases
 - Even if average split is, say, 9/10 1/10:
 - → $T(n) = T((9/10)n) + T((1/10)n) + \Theta(n)$
 - \rightarrow \Rightarrow T(n) = O(n lg(n))
- E.g., assume splits alternate between best+worst:
 - Only adds O(n) work to each of O(lg n) levels
 - $\bullet \Rightarrow$ still $O(n \log(n))$ (albeit w/higher constant)

Quicksort with constant splits

- p.178, #7.2-5: assume every split is α vs 1- α , with constant 0 < α < $\frac{1}{2}$.
 - Min/max depth of a leaf in the recursion tree?
- Min depth: follow smaller side (α) of each split
 - How many splits until reach leaf (1 item)?
 - $\alpha^{m} n = 1 \implies m = -\lg(n) / \lg(\alpha)$
- Max depth: follow larger side $(1-\alpha)$ of each split
 - How many splits until reach leaf (1 item)?
 - $(1-\alpha)^m n = 1 \implies m = -\lg(n) / \lg(1-\alpha)$
- Both are \(\theta(\lg n)\), so with constant-ratio splits, depth of recursion tree is \(\theta(\lg n)\),
- $t \Rightarrow total complexity is <math>\Theta(n \mid g \mid n)$

Outline for today

- ch6: Binary max-heaps
 - Application: Priority Queue
- ch7: Quicksort
 - Partition & pivot
 - Randomised quicksort
 - Complexity analysis

Randomised quicksort

- We saw how giving quicksort pre-sorted data results in worst-case behaviour
 - Always chose last element (r) as pivot
- We can alleviate this risk by randomising our choice of pivot:
 - → rand_partition(A, p, r):
 - swap(A[r], A[rand(p, r)]) # swap w/random item
 - partition(A, p, r)
 - It is still possible our random pivot choices result in worst-case ⊖(n²) time – but unlikely!

Randomised quicksort: average

- Assume items are distinct, and name them in order: $\{z_1, z_2, ..., z_n\}$. How many comparisons?
 - Worst case: all pairs (z_i, z_i) compared $\Longrightarrow \Theta(n^2)$
 - A pair cannot be compared >1 time, because comparisons are only made against pivots, and once a pivot is used by partition(), it is not revisited
- When is a pair (z, z) compared?
 - Only if either z_i or z_j are chosen as a pivot before any other item inbetween {z_i, z_{i+1}, ..., z_j}
 - (If any other item is chosen first, then z_i, z_j will be on opposite sides of the split, and will not be compared)
 - $\bullet \Rightarrow$ probability is 2(1/(j-i+1))

Randomised quicksort: average

■ Summing over all pairs (z, z):

$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} Pr(compare z_i with z_j)$$

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

$$= \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1} \quad (let k = j-i)$$

$$< \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k}$$

$$= \sum_{i=1}^{n-1} O(lg n) \quad (e.g., by Riemann sums)$$

$$= O(n lg n)$$

Visualisations of Sorting algos

■ The Sound of Sorting - Visualization and "Audibilization" of Sorting Algorithms

