Séance XII : Espérance conditionnelle et introduction aux processus stochastiques

A) Objectifs de la séance

A la fin de cette séance,

- je maîtrise la caractérisation de l'espérance conditionnelle d'une v.a. dans L^1 par rapport à une sous-tribu;
- je suis capable d'exprimer l'espérance conditionnelle dans L^2 comme une projection orthogonale;
- je suis capable de déterminer l'espérance conditionnelle d'une variable aléatoire;
- je connais les propriétés de l'espérance conditionnelle et je suis capable de manipuler cet objet.

CS 1A - CIP 2019-2020

B) Pour se familiariser avec les concepts (à traiter avant les séances de TD)

Les questions XII.1 et XII.2 sont à traiter avant la séance de TD. Les corrigés sont disponibles sur internet.

Question XII.1

Soient X une variable aléatoire réelle dans $L^2(\Omega, \mathcal{F}, \mathbb{P})$ et \mathcal{G} une sous-tribu de \mathcal{F} . On pose \mathbb{V} ar $(X \mid \mathcal{G}) = \mathbb{E}\left[(X - \mathbb{E}[X \mid \mathcal{G}])^2 \mid \mathcal{G}\right]$.

Q. XII.1.1 Montrer que

$$Var(X) = \mathbb{E}[Var(X \mid \mathcal{G})] + Var(\mathbb{E}[X \mid \mathcal{G}]).$$

Question XII.2 (Conditionnement par rapport à une variable discrète)

Dans l'espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$, soit X une variable aléatoire réelle dans $L^1(\Omega, \mathcal{F}, \mathbb{P})$ et soit Y une variable aléatoire prenant ses valeurs dans l'ensemble dénombrable $\{y_n; n \in \mathbb{N}\}$ telle que $\mathbb{P}(Y = y_n) > 0$ pour tout n.

Q. XII.2.1 Déterminer $\mathbb{E}[X \mid Y]$.

CS 1A - CIP 2019-2020

C) Exercices

Dans le cas de variables aléatoires gaussiennes, l'espérance conditionnelle peut s'exprimer directement à partir des matrices de covariances. Cette relation est importante en statistiques pour les problèmes de régression linéaire.

Exercice XII.1 (Cas gaussien)

Soient X et Y des vecteurs aléatoires à valeurs dans \mathbb{R}^n et \mathbb{R}^p respectivement, tels que (X,Y) soit un vecteur gaussien. On suppose le vecteur gaussien X non-dégénéré.

E. XII.1.1 Dans cette question, on suppose $\mathbb{E}[X] = \mathbb{E}[Y] = 0$. On pose

$$U = Y - \Sigma_{YX} K_X^{-1} X,$$

où
$$K_X = [Cov(X_i, X_j)]_{i,j}$$
 et $\Sigma_{YX} = [Cov(Y_i, X_j)]_{i,j}$.

- (a) Montrer que (U, X) est gaussien.
- (b) Montrer que *X* et *U* sont indépendants.
- (c) En déduire que

$$\mathbb{E}[Y \mid X] = \Sigma_{YX} K_X^{-1} X.$$

E. XII.1.2 Montrer que $\mathbb{E}[Y \mid X]$ peut s'écrire sous la forme

$$\mathbb{E}[Y \mid X] = \mathbb{E}[Y] + \Sigma_{YX} K_X^{-1} (X - \mathbb{E}[X]).$$

E. XII.1.3 Montrer que $Y - \mathbb{E}[Y \mid X]$ et X sont indépendants.

L'espérance conditionnelle permet de caractériser l'indépendance entre variables aléatoires.

Exercice XII.2

E. XII.2.1 Soient X et Y deux variables aléatoires réelles. Montrer que X et Y sont indépendantes si et seulement si pour toute application $g: \mathbb{R} \to \mathbb{R}$ borélienne bornée, on a

$$\mathbb{E}[g(Y) \mid X] = \mathbb{E}[g(Y)] \quad \mathbb{P} - \text{p.s.}$$

E. XII.2.2 Application : soit (X,Y) un couple de variables aléatoires admettant pour densité p : $(x,y)\mapsto e^{-y}\mathbb{1}_{\{0< x< y\}}(x,y)$. Calculer la loi conditionnelle de Y sachant X=x. En déduire que X et Y-X sont indépendantes.

Exercice XII.3 (Somme d'un nombre aléatoire de v.a.)

Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de v.a. réelles i.i.d. et soit N une v. a. à valeurs dans \mathbb{N} indépendante des X_n . On suppose que les variables N et les X_n possèdent des moments d'ordre 1.

On définit

$$Y(\omega) = \sum_{i=1}^{N(\omega)} X_i(\omega).$$

CS 1A - CIP 2019-2020

E. XII.3.1 Montrer que Y est une variable aléatoire. Calculer $\mathbb{E}[Y]$.

D) Approfondissement

Exercice XII.4 (Dérivée de Radon-Nikodym)

Dans l'espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$, soit X une varable aléatoire réelle admettant une densité f continue. Soit $A \in \mathcal{F}$ un événement fixé.

On suppose qu'il existe une fonction continue g telle que pour tout $x \in \mathbb{R}$,

$$\frac{\mathbb{P}(A \cap \{X \in [x, x + h[\}))}{\mathbb{P}(X \in [x, x + h[))} \xrightarrow[h \to 0]{} g(x).$$

E. XII.4.1 Montrer que $\mathbb{P}(A \mid X) = g(X) \mathbb{P}$ -p.s.

Exercice XII.5

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de v.a. et $(\mathcal{F}_n)_{n\in\mathbb{N}}$ une filtration. On suppose que pour tout n, X_n est \mathcal{F}_n -mesurable et $\mathbb{E}[X_{n+1} \mid \mathcal{F}_n] = 0$. On pose $S_n = X_0 + \cdots + X_n$ pour tout $n \in \mathbb{N}$.

E. XII.5.1 Montrer que $\{S_n; n \in \mathbb{N}\}$ est une \mathcal{F}_n -martingale.

Exercice XII.6 (Décomposition de Doob)

Soit $\{X_n; n \in \mathbb{N}\}$ une martingale pour la filtration $(\mathcal{F}_n)_{n \in \mathbb{N}}$, de carré intégrable.

E. XII.6.1 Montrer qu'il existe un processus croissant prévisible $\{A_n; n \in \mathbb{N}\}$ et une \mathcal{F}_n -martingale $\{Y_n; n \in \mathbb{N}\}$ tels que $\mathbb{E}(X_0^2) = A_0$ et

$$\forall n \in \mathbb{N}; \quad X_n^2 = A_n + Y_n.$$

E. XII.6.2 Application. Soit $(T_n)_{n \in \mathbb{N}^*}$ une suite de v.a. réelles i.i.d. de carré intégrable et telle que $\mathbb{E}[T_n] = 0$ et $\mathbb{E}[T_n^2] = \sigma^2$. On pose $S_0 = 0$ et $S_n = T_1 + \cdots + T_n$ pour $n \ge 1$.

Montrer que $\{S_n^2 - n\sigma^2; n \in \mathbb{N}\}$ est une martingale.

Exercice XII.7

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires i.i.d. définies sur l'espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$, et à valeurs dans l'espace mesurable (E, \mathcal{E}) . On note μ la loi des X_n .

Soient N_1 et N_2 deux v.a. à valeurs dans \mathbb{N}^* telles que $1 \le N_1 < N_2$. On suppose que pour tout $m \in \mathbb{N}^*$, l'événement $\{N_i = m\}$ ne dépend que de X_0, X_1, \dots, X_{m-1} .

E. XII.7.1 Montrer que les v.a. X_{N_1} et X_{N_2} sont i.i.d.

Séance 12 : Eléments de correction des exercices

Solution de Q. XII.1.1 On écrit

$$X - \mathbb{E}[X] = X - \mathbb{E}[X \mid \mathcal{G}] + \mathbb{E}[X \mid \mathcal{G}] - \mathbb{E}[X].$$

Or $\mathbb{E}[X \mid \mathcal{G}] - \mathbb{E}[X]$ est une variable aléatoire \mathcal{G} -mesurable (et dans $L^2(\Omega, \mathcal{F}, \mathbb{P})$) et, par définition de l'espérance conditionnelle dans $L^2(\Omega, \mathcal{F}, \mathbb{P})$, la variable aléatoire $X - \mathbb{E}[X \mid \mathcal{G}]$ est orthogonale à toute variable dans $L^2(\Omega, \mathcal{G}, \mathbb{P})$.

On en déduit que

$$\mathbb{E}\big[(X - \mathbb{E}[X])^2\big] = \mathbb{E}\left[\big(X - \mathbb{E}[X \mid \mathcal{G}]\big)^2\right] + \mathbb{E}\left[\big(\mathbb{E}[X \mid \mathcal{G}] - \mathbb{E}[X]\big)^2\right].$$

On identifie alors

$$\mathbb{E}\big[\mathbb{V}\mathrm{ar}(X\mid\mathcal{G})\big] = \mathbb{E}\left[\big(X - \mathbb{E}[X\mid\mathcal{G}]\big)^2\right]$$

et

$$\operatorname{Var}(\mathbb{E}[X \mid \mathcal{G}]) = \mathbb{E}\left[\left(\mathbb{E}[X \mid \mathcal{G}] - \mathbb{E}[X]\right)^{2}\right],$$

ce qui implique le résultat.

Solution de Q. XII.2.1 On a vu dans l'Exercice VI.5 que toute variable aléatoire réelle qui est $\sigma(Y)$ -mesurable peut s'écrire sous la forme $\Phi(Y)$ où $\Phi: \mathbb{R} \to \mathbb{R}$ est borélienne.

Ainsi, l'espérance conditionnelle $\mathbb{E}[X \mid Y]$ étant $\sigma(Y)$ -mesurable où Y ne prend que les valeurs discrètes $\{y_n; n \in \mathbb{N}\}$, on peut écrire

$$\mathbb{E}[X \mid Y] = \sum_{n=1}^{\infty} b_n \, \mathbb{1}_{\{y_n\}}(Y) = \sum_{n=1}^{\infty} b_n \, \mathbb{1}_{\{Y = y_n\}} \quad \text{p.s.}$$

où $(b_n)_{n\in\mathbb{N}}$ est une suite de réels.

On détermine la suite $(b_n)_{n\in\mathbb{N}}$ grâce à la définition de $\mathbb{E}[X\mid Y]$

$$\forall n \in \mathbb{N}, \quad \int_{\{Y=y_n\}} \mathbb{E}[X \mid Y] d\mathbb{P} = \int_{\{Y=y_n\}} X d\mathbb{P}.$$

D'où

$$b_n \mathbb{P}(Y = y_n) = \int_{\{Y = y_n\}} X \, d\mathbb{P},$$

ce qui entraîne

$$\mathbb{E}[X \mid Y] = \sum_{n=1}^{\infty} \frac{\int_{\{Y=y_n\}} X d\mathbb{P}}{\mathbb{P}(Y=y_n)} \, \mathbb{1}_{\{Y=y_n\}} \quad \text{p.s.}$$

Solution de E. XII.1.1