CS 663 Home Work Assignment 2

Trasula Umesh Karthikeya | G
nana Mahesh Vetcha | Kajjayam Varun Gupta 22b0913 | 22b0949 | 22b1030

Contents

1	Question 3	2
	.1 Part a	2
	.2 Part b	2

1 Question 3

Separable Filter:

A 2D filter ${\bf L}$ is said to be separable filter if it can be written as the outer product of two 1D vectors ${\bf u}$ and ${\bf v}$:

$$L = u \times v$$

where \mathbf{u} is a column vector and \mathbf{v} is a row vector.

1.1 Part a

Our Laplacian filter is

$$\mathbf{L} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix} \tag{1}$$

Let us assume that Laplacian filter 1 is a separable filter then there exits two vectors \mathbf{u} and \mathbf{v} such that \mathbf{u} is a column vector and \mathbf{v} is a row vector and $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}$ and

$$\mathbf{L} = \mathbf{u} \times \mathbf{v} = \begin{bmatrix} u_1 v_1 & u_1 v_2 & u_1 v_3 \\ u_2 v_1 & u_2 v_2 & u_2 v_3 \\ u_3 v_1 & u_3 v_2 & u_3 v_3 \end{bmatrix}$$

Now we are with

$$u_1v_1 = 1 \quad u_1v_2 = 1 \quad u_1v_3 = 1 \tag{2}$$

$$u_2v_1 = 1$$
 $u_2v_2 = -8$ $u_2v_3 = 1$ (3)
 $u_3v_1 = 1$ $u_3v_2 = 1$ $u_3v_3 = 1$

Consider, 2 clearly from those three equations we can say that, $v_1/v_2 = 1$ and $v_2/v_3 = 1$ which means

$$v1 = v2 = v3 \tag{4}$$

substituting the results of 4 in 3 we will get $u_2 = 1$ and $u_2 = -8$ simultaneously which is a contradiction. Hence our assumption is wrong.

Therefore Laplacian filter 1 is **not** a separable filter.

1.2 Part b

Our Laplacian filter is

$$\mathbf{L} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix} \tag{5}$$

Since in the given question they asked can we implement \mathbf{L} entirely using 1D convolution we can write \mathbf{L} as sum of two filters which can be separable i.e, we **can implement L** entirely using 1D convolution.

Let

$$\mathbf{L1} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
$$\mathbf{L2} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & -3 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Therefore,

$$L = L1 + L2$$

We can write L1 as outer product of two 1D vectors u1 and v1 i.e,

$$L1 = u1 \times v1$$

where
$$\mathbf{u}\mathbf{1} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$
 and $\mathbf{v}\mathbf{1} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$

Similarly we can write L2 as outer product of two 1D vectors u2 and v1 i.e,

$$L2 = u2 \times v2$$

where
$$\mathbf{u2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
 and $\mathbf{v2} = \begin{bmatrix} 1 & -3 & 1 \end{bmatrix}$

Therefore,

$$\mathbf{L} = \mathbf{u1} \times \mathbf{v1} + \mathbf{u2} \times \mathbf{v2}$$

Where $\mathbf{u1}$ and $\mathbf{u2}$ are column vectors and $\mathbf{v1}$ and $\mathbf{v2}$ are row vectors.

We can directly ignore convolution with $\mathbf{v1}$ and $\mathbf{u2}$ as they are identity filters i.e, convolution on a matrix using this filter results same matrix. Therefore,

$$L = u1 + v2$$

For example if we are applying convolution with ${\bf L}$ on Image ${\bf I}$ then

$$\mathbf{I} * \mathbf{L} = \mathbf{I} * \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} + \mathbf{I} * \begin{bmatrix} 1 & -3 & 1 \end{bmatrix}$$

Where * represents convolution operator

The Laplacian mask 5 can be implemented entirely using 1D convolutions.