Sejam U e W subespaços de V tais que $U \cup W$ também é subespaço, mostrar que $U \subset W \ \lor \ W \subset U$.

Se $U \cup W$ é subespaço, é fechado com relação à soma. Seja $u \in U$ e $w \in W, u + w \in U \cup W.$

Seja $u' \in U$ e $w' \in W$, $u + w = u' \lor u + w = w'$.

Ou seja, $w=u'-u \ \lor \ u=w'-w,$ ou seja, $w\in U \ \lor \ u\in W.$

Quod Erat Demonstrandum.

Documento compilado em Thursday $13^{\rm th}$ March, 2025, 20:39, tempo no servidor.

Sugestões, comunicar erros: "a.vandre.g@gmail.com".

Licença de uso: \bigoplus_{BV} \bigoplus_{NC} \bigoplus_{SA}

 ${\it Atribuição-Não Comercial-Compartilha Igual~(CC~BY-NC-SA)}.$