# PEARC'19 Half Day Tutorial

## Floating-Point Analysis Tools

Ignacio Laguna, Harshitha Menon Lawrence Livermore National Laboratory

Michael Bentley, Ian Briggs, Ganesh Gopalakrishnan University of Utah

Cindy Rubio González

University of California at Davis



## The Floating-Point number system is not new



Zuse Z1 (~1938)

Then

## IEEE Standard for Floating-Point Arithmetic

Now

## Floating-Point approximates Reals

- Because of rounding, (x+y)+z != x+(y+z)
  - And many more such identities are violated
- Compilers can change your math
- Rounding errors are non-intuitive
  - Because of the uneven FP number scale

## The Floating-Point Rounding is Non-Intuitive



http://fpanalysistools.org/

## The FP number system tries to span a large range using an "insufficient number of bits"



http://fpanalysistools.org/

Reason: The FP error function is highly non-intuitive

E.g.

Rounding error of (x+y) as a function of x and y



### Kahan's observation

Numerical errors are rare, rare enough not to care about them all the time, but yet not rare enough to ignore them.

— William M. Kahan

## Floating-Point Analysis is Suddenly "Front and Center" in HPC + many other areas

- Allocating needlessly high precision increases data movement
  - Multiple precision types are on the rise
    - Often driven by ML
- The variety of hardware is increasing
  - GPUs and other accelerators
    - Their normal behaviors as well as EXCEPTIONS are on the rise
- Compilers exploit floating-point in an increasing number of ways.
  - Compiler flags mean different things
    - Compilers may heed your flags selectively

### Frenetic pace of FP research now

- Multiple conferences
- Many sessions per conference
- Many different issues

Very little that is tangible for a practitioner to try some of these out

Some good resources do exist (will put it on our website)

E.g., fpbench.org

Michael O. Lam, Floating Point Analysis Research

#### Goals of this Tutorial

- Introduce FOUR mileposts in your repertoire of knowledge
  - Four tools you can practice during the tutorials
  - You can apply them in your own projects!
- We are a resource you can count on during your future work
  - We are invested in multiple research projects in this area
  - We know many more researchers and practitioners whose work we can refer

We hope to build a community of researchers and practitioners

See us (if you like) at SC'19 for a full-day tutorial on this + more topics!

## Specifics of this tutorial

#### FPChecker

- Helps detect FP Exceptions on GPUs
- Outcome: You can use it on your Clang-based GPU projects today!

#### FLiT

- Helps diagnose why your compiler optimization produces unacceptable answers!
- Outcome: You can apply it in the context of your CPU projects today!
  - No Clang or Intel dependency!

#### Precimonious

- Learn the benefit of precision tuning on actual code
- Outcome: You may apply it in the context of your Clang-based CPU codes today!

#### Adapt

- Learn what Automatic Differentiation is, plus how it helps tune precision
- Outcome: You may apply it in the context of your CPU codes today!
  - No Clang, Intel, or CPU specificity

#### Access to AWS Instances

- You will be given access to AWS instances
  - User, password, and IP address will be provided
- How to access your instance:

```
ssh user@1.2.3.4
```

 Exercises for each module located in user's /home directory

```
/home/user1/
    |---Module-TOOL1
    |---exercise-1
    |---exercise-2
    |---exercise-3
    |---Module-TOOL2
    |---exercise-1
    |---exercise-2
    |---exercise-3
    ...
```

### Website & Schedule





#### Tutorial on Floating-Point Analysis Tools

PEARC19, Chicago, Illinois, USA

Jul 30th, 2019

Time: 1:30pm-5:00pm (Tutorial Half-day)

#### Schedule

| Time               | Module                                               | Presenter            | Slides            |
|--------------------|------------------------------------------------------|----------------------|-------------------|
| 1:30pm - 1:40pm    | Introduction                                         | Ganesh, Ignacio      | slides            |
| 1:40pm -<br>2:20pm | FPChecker                                            | Ignacio              | slides,<br>source |
|                    | Key Topics:                                          |                      |                   |
|                    | - Floating-point exceptions, GPUs, CUDA              |                      |                   |
| 2:20pm -<br>3:00pm | FLIT                                                 | Ganesh, Mike,<br>Ian | slides,<br>source |
|                    | Key Topics:                                          |                      |                   |
|                    | - Compiler optimizations, floating-point variability |                      |                   |
| 3:00pm -<br>3:30pm | Break                                                |                      |                   |
| 3:30pm -<br>4:10pm | Precimonious                                         | Cindy                | slides,<br>source |
|                    | Key Topics:                                          |                      |                   |
|                    | - Floating-point mixed-precision, tuning             |                      |                   |
| 4:10pm -<br>4:50pm | ADAPT                                                | Harshitha            | slides,<br>source |
|                    | Key Topics:                                          |                      |                   |
|                    | - Algorithmic differentiation, input sensitivity     |                      |                   |