1. Tema 4 – Problemas con Valores en la Frontera

Aquí abreviamos esos problemas con BVP, por sus siglas en inglés.

1. Considere el BVP

$$y'' = -4y$$
 con $y(a) = y_a$, $y(b) = y_b$.

- Encuentra dos soluciones linealmente independientes de la EDO (sin condición de frontera). Pista: Dos soluciones son linealmente independiente cuando una no es múltiplo de la otra.
- Supongamos que a=0 y $b=\pi$. ¿Qué condiciones deben satisfacer y_a, y_b para que exista una solución del BVP?
- ¿Qué condiciones deben satisfacer a y b para que la solución del BVP sea única?
- 2. Muestre que las soluciones de los siguientes BVPs

a)
$$y'' = 2 - 4y$$
 b) $y'' = \frac{3}{2}y^2$
 $y(0) = 0$ $y(1) = 4$
 $y(\frac{\pi}{2}) = 1$ $y(2) = 1$

son a)
$$y(t) = \sin^2 t$$
 y b) $y(t) = 4t^{-2}$.

3. Encuentre un s^+ y s^- para los BVPs en el apartado 2 tales que

$$y(b; s^-) < y_b < y(b; s^+)$$
.

4. (Laboratorio) Implementa el algoritmo simple shooting (bisection) para el BVP:

$$y'' = 4y$$
 , $y(0) = 1$, $y(1) = 3$

utilizando los pendientes iniciales $[s^-, s^+] = [-1, 0]$ y un método para EDO para aproximar la solución del PVI (sistema) y una tolerancia 10^{-3} o 10^{-6} .

Sugerencia: Verifique si la aproximación numérica se parece a la solución exacta?

Sugerencia: Usando s^-, s^+ del apartado 3, haz lo mismo.

¿Dónde puedes ahorrar trabajo?

Sugerencia: Haga su algoritmo más eficiente.

- 5. (Laboratorio) Implementa el algoritmo llamado *shooting method* utilizando la iteración de Newton visto en clase, ecuación (IV.5) y aplique el algoritmo a los problemas del ejercicio anterior.
- 6. (Laboratorio) Aplica tu shooting method al problema siguiente

$$y'' = \frac{-2}{v^5}$$
, $y(0) = 1$, $y(2) = 7^{1/3}$,

cuyo solución exacta es $y(t) = (3t+1)^{1/3}$.

7. (Laboratorio, avanzado por si el resto es aburrido) Aplicación del shooting method a un problema stiff: Sea

$$x' = \begin{pmatrix} -100.1 & 99.9 \\ 99.9 & -100.1 \end{pmatrix} x$$
,

con condición inicial $\boldsymbol{x}(0) = (1,\cdot)^T$ y final $\boldsymbol{x}(1) = (\cdot,0)^T$. Los puntos indican que no conocemos los valores (queremos determinarlos).

Aquí, como el problema es *stiff* debes usar un método adaptativo o un método implícito (Trapecio) para resolver la EDO. Para ver problemas, puedes intentar Euler explícito o RK45 (con paso "grande")

Para el método implícito los pasos son equiespaciados del tamaño h. Fijando la tolerancia del "shooting", puedes reducir h para asegurar que el "shooting" no falla.

También, podrías aplicar diferencias finitas (hay que pensar).