

LECTURE 31 OF 42

Reasoning under Uncertainty: Uncertain Inference Concluded Discussion: Fuzzy Reasoning & D-S Theory

William H. Hsu

Department of Computing and Information Sciences, KSU

KSOL course page: http://snipurl.com/v9v3
Course web site: http://www.kddresearch.org/Courses/CIS730
Instructor home page: http://www.cis.ksu.edu/~bhsu

Reading for Next Class:

Review Chapters 13 - 14, R&N

Dempster-Shafer theory: http://en.wikipedia.org/wiki/Dempster-Shafer_theory

Fuzzy logic: http://en.wikipedia.org/wiki/Fuzzy_logic

CIS 530 / 730

LECTURE 31 OF 42

COMPUTING & INFORMATION SCIENCES

LECTURE OUTLINE

- Reading for Next Class: Sections 14.1 14.2 (p. 492 499), R&N 2e
- Last Class: Uncertainty, Probability, 13 (p. 462 486), R&N 2^e
 - * Where uncertainty is encountered: reasoning, planning, learning (later)
 - * Sources: sensor error, incomplete/inaccurate domain theory, randomness
- Today: Probability Intro, Continued, Chapter 13, R&N 2^e
 - * Why probability
 - ⇒ Axiomatic basis: Kolmogorov
 - ⇒ With utility theory: sound foundation of rational decision making
 - * Joint probability
 - * Independence
 - * Probabilistic reasoning: inference by enumeration
 - * Conditioning
 - ⇒ Bayes's theorem (aka Bayes' rule)
 - **⇒** Conditional independence
- Coming Week: More Applied Probability, Graphical Models

ACKNOWLEDGEMENTS

Stuart J. Russell **Professor of Computer Science** Chair, Department of Electrical **Engineering and Computer Sciences** Smith-Zadeh Prof. in Engineering

© 2004-2005

Russell, S. J. University of California, Berkeley http://www.eecs.berkeley.edu/~russell

Peter Norvig **Director of Research** Google

Lotfali Asker-Zadeh

Norvig, P. http://norvig.com/

Slides from: http://aima.eecs.berkeley.edu

Zadeh, L. A. University of California, Berkeley http://bit.ly/39shSQ

(Lotfi A. Zadeh) Professor of Computer Science Department of Electrical Engineering and Computer Sciences Director, Berkeley Initiative in **Soft Computing** University of California - Berkeley

PROBABILITY: BASIC DEFINITIONS AND AXIOMS

- Sample Space (Ω) : Range of Random Variable X
- Probability Measure Pr(•)
 - * Ω denotes range of observations; $X: \Omega$
 - * Probability Pr, or P: measure over power set 2^{Ω} event space
 - * In general sense, $Pr(X = x \in \Omega)$ is measure of <u>belief</u> in X = x
 - \Rightarrow P(X = x) = 0 or P(X = x) = 1: plain (aka categorical) beliefs
 - ⇒ Can't be revised; all other beliefs are subject to revision
- Kolmogorov Axioms
 - * 1. $\forall x \in \Omega . 0 \le P(X = x) \le 1$
 - * 2. $P(\Omega) \equiv \sum_{x \in \Omega} P(X = x) = 1$
 - * 3. $\forall X_1, X_2, \dots \ni i \neq j \Rightarrow X_i \land X_j = \emptyset$.

$$\mathbf{P}\left(\bigcup_{i=1}^{\infty} \mathbf{X}_{i}\right) = \sum_{i=1}^{\infty} \mathbf{P}(\mathbf{X}_{i})$$

- Joint Probability: $P(X_1 \wedge X_2) \equiv \text{Prob. of Joint Event } X_1 \wedge X_2$
- Independence: $P(X_1 \wedge X_2) = P(X_1) \cdot P(X_2)$

EVIDENTIAL REASONING — INFERENCE BY ENUMERATION APPROACH

Let X be all the variables. Typically, we want the posterior joint distribution of the query variables Y given specific values e for the evidence variables E

Let the hidden variables be H = X - Y - E

Then the required summation of joint entries is done by summing out the hidden variables:

$$P(Y|E=e) = \alpha P(Y,E=e) = \alpha \Sigma_h P(Y,E=e,H=h)$$

The terms in the summation are joint entries because Y, E, and H together exhaust the set of random variables

Obvious problems:

- 1) Worst-case time complexity $O(d^n)$ where d is the largest arity
- 2) Space complexity $O(d^n)$ to store the joint distribution
- 3) How to find the numbers for $O(d^n)$ entries????

Based on slide © 2004 S. Russell & P. Norvig. Reused with permission.

CIS 530 / 730 ARTIFICIAL INTELLIGENCE LECTURE 31 OF 42

COMPUTING & INF

BAYES'S THEOREM (AKA BAYES' RULE)

Product rule $P(a \wedge b) = P(a|b)P(b) = P(b|a)P(a)$

$$\Rightarrow \ \, \mathsf{Bayes'} \,\, \mathsf{rule} \,\, P(a|b) = \frac{P(b|a)P(a)}{P(b)}$$

or in distribution form

$$\mathbf{P}(Y|X) = \frac{\mathbf{P}(X|Y)\mathbf{P}(Y)}{\mathbf{P}(X)} = \alpha \mathbf{P}(X|Y)\mathbf{P}(Y)$$

Useful for assessing diagnostic probability from causal probability:

$$P(Cause|Effect) = \frac{P(Effect|Cause)P(Cause)}{P(Effect)}$$

E.g., let M be meningitis, S be stiff neck:

$$P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008$$

Note: posterior probability of meningitis still very small!

Based on slide © 2004 S. Russell & P. Norvig. Reused with permission.

NON-PROBABILISTIC REPRESENTATION [2]: PRECISIATION & DEGREE OF MEMBERSHIP

- Set A in U: Class with Crisp Boundary
- Precisiation: Association with Function whose Domain is *U*
- **Precisiation of Crisp Sets**
 - * Through association with (Boolean-valued) characteristic function
 - * $c_A: U \to \{0, 1\}$
- Precisiation of Fuzzy Sets
 - * Through association with membership function
 - * $\mu_A: U \to [0, 1]$
 - * $\mu_A(u)$, $u \in U$, represents grade of membership of u in A
- Degree of Membership
 - * Membership in A: matter of degree
 - * "In fuzzy logic everything is or is allowed to be a matter of degree." Zadeh

Adapted from slide © 2008 L. A. Zadeh, UC Berkeley

http://bit.ly/39shSQ

- "Linguistic" Variables: Qualitative, Based on Descriptive Terms
- Imprecision of Meaning = Elasticity of Meaning
- **Elasticity of Meaning = Fuzziness of Meaning**

Adapted from slide © 2008 L. A. Zadeh, UC Berkeley

http://bit.ly/39shSQ

LECTURE 31 OF 42

AUTOMATED REASONING USING PROBABILITY: INFERENCE TASKS

Simple queries: compute posterior marginal $P(X_i|E=e)$

e.g.,
$$P(NoGas|Gauge = empty, Lights = on, Starts = false)$$

Conjunctive queries:
$$P(X_i, X_i | E = e) = P(X_i | E = e)P(X_i | X_i, E = e)$$

Optimal decisions: decision networks include utility information;

probabilistic inference required for P(outcome|action, evidence)

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?

Adapted from slide © 2004 S. Russell & P. Norvig. Reused with permission.

CIS 530 / 730 Artificial Intelligence LECTURE 31 OF 42

COMPUTING & INFORMATION SCIENCES

CHOOSING HYPOTHESES

Bayes's Theorem

$$P(h/D) = \frac{P(D/h)P(h)}{P(D)} = \frac{P(h \land D)}{P(D)}$$

- MAP Hypothesis
 - * Generally want most probable hypothesis given training data
 - * Define: $\underset{x \in \Omega}{arg \max} [f(x)] = \text{value of } x \text{ in sample space } \Omega \text{ with highest } f(x)$
 - * Maximum a posteriori hypothesis, h_{MAP}

$$\begin{aligned} h_{MAP} &= arg \max_{h \in H} P(h \mid D) \\ &= arg \max_{h \in H} \frac{P(D \mid h)P(h)}{P(D)} \\ &= arg \max_{h \in H} P(D \mid h)P(h) \end{aligned}$$

- ML Hypothesis
 - * Assume that $p(h_i) = p(h_i)$ for all pairs i, j (uniform priors, i.e., $P_H \sim \text{Uniform}$)
 - * Can further simplify and choose maximum likelihood hypothesis, h_{MI}

$$h_{ML} = arg \max_{h_i \in H} P(D / h_i)$$

GRAPHICAL MODELS OF PROBABILITY

- Conditional Independence
 - * X is conditionally independent (CI) from Y given Z iff $P(X \mid Y, Z) = P(X \mid Z)$ for all values of X, Y, and Z
 - * Example: $P(Thunder \mid Rain, Lightning) = P(Thunder \mid Lightning) \Leftrightarrow T \perp R \mid L$
- Bayesian (Belief) Network
 - * Acyclic directed graph model $B = (V, E, \Theta)$ representing Cl assertions over Θ
 - * Vertices (nodes) V: denote events (each a random variable)
 - * Edges (arcs, links) E: denote conditional dependencies
- Markov Condition for BBNs (Chain Rule): $P(X_1, X_2, ..., X_n) = \prod_{i=1}^{n} P(X_i \mid parents(X_i))$
- Example BBN

 $P(20s, Female, Low, Non-Smoker, No-Cancer, Negative, Negative) = <math>P(7) \cdot P(F) \cdot P(L \mid 7) \cdot P(N \mid 7, F) \cdot P(N \mid L, N) \cdot P(N \mid N) \cdot P(N \mid N)$

CIS 530 / 730 Artificial Intelligence ECTURE 31 OF 42

OMPUTING & INFORMATION SCIENCE
KANSAS STATE I INIVERSIT

EVIDENTIAL REASONING: EXAMPLE — CAR DIAGNOSIS

Initial evidence: engine won't start

Testable variables (thin ovals), diagnosis variables (thick ovals) Hidden variables (shaded) ensure sparse structure, reduce parameters

Adapted from slide © 2004 S. Russell & P. Norvig. Reused with permission.

TOOLS FOR BUILDING GRAPHICAL MODELS

- Commercial Tools: Ergo, Netica, TETRAD, Hugin
- Bayes Net Toolbox (BNT) Murphy (1997-present)
 - * Distribution page http://http.cs.berkeley.edu/~murphyk/Bayes/bnt.html
 - * Development group http://groups.yahoo.com/group/BayesNetToolbox
- Bayesian Network tools in Java (BNJ) Hsu et al. (1999-present)
 - * Distribution page http://bnj.sourceforge.net
 - * Development group http://groups.yahoo.com/group/bndev
 - * Current (re)implementation projects for KSU KDD Lab
 - · Continuous state: Minka (2002) Hsu, Guo, Li
 - Formats: XML BNIF (MSBN), Netica Barber, Guo
 - · Space-efficient DBN inference Meyer
 - · Bounded cutset conditioning Chandak

Bayesian **Network tools in**

REFERENCES: **GRAPHICAL MODELS & INFERENCE**

- **Graphical Models**
 - * Bayesian (Belief) Networks tutorial Murphy (2001) http://www.cs.berkeley.edu/~murphyk/Bayes/bayes.html
 - Learning Bayesian Networks Heckerman (1996, 1999) http://research.microsoft.com/~heckerman
- Inference Algorithms
 - Junction Tree (Join Tree, L-S, Hugin): Lauritzen & Spiegelhalter (1988) http://citeseer.nj.nec.com/huang94inference.html
 - (Bounded) Loop Cutset Conditioning: Horvitz & Cooper (1989) http://citeseer.nj.nec.com/shachter94global.html
 - Variable Elimination (Bucket Elimination, ElimBel): Dechter (1986) http://citeseer.nj.nec.com/dechter96bucket.html
 - **Recommended Books**
 - Neapolitan (1990) out of print; see Pearl (1988), Jensen (2001)
 - · Castillo, Gutierrez, Hadi (1997)
 - · Cowell, Dawid, Lauritzen, Spiegelhalter (1999)
 - * Stochastic Approximation http://citeseer.nj.nec.com/cheng00aisbn.html

TERMINOLOGY

- Uncertain Reasoning: Inference Task with Uncertain Premises, Rules
- Probabilistic Representation
 - * Views of probability
 - ⇒ Subjectivist: measure of belief in sentences
 - ⇒ Frequentist: likelihood ratio
 - ⇒ Logicist: counting evidence
 - * Founded on Kolmogorov axioms
 - ⇒ Sum rule
 - ⇒ Prior, joint vs. conditional
 - \Rightarrow Bayes's theorem & product rule: P(A | B) = (P(B | A) * P(A)) / P(B)
 - * Independence & conditional independence
- Probabilistic Reasoning
 - * Inference by enumeration
 - * Evidential reasoning

CIS 530 / 730

LECTURE 31 OF 42

SUMMARY POINTS

- Last Class: Reasoning under Uncertainty and Probability (Ch. 13)
 - * Uncertainty is pervasive
 - * What are we uncertain about?
- Today: Chapter 13 Concluded, Preview of Chapter 14
 - * Why probability
 - ⇒ Axiomatic basis: Kolmogorov
 - ⇒ With utility theory: sound foundation of rational decision making
 - * Joint probability
 - * Independence
 - * Probabilistic reasoning: inference by enumeration
 - * Conditioning
 - ⇒ Bayes's theorem (aka Bayes' rule)
 - **⇒ Conditional independence**
 - Coming Week: More Applied Probability
 - * Graphical models as KR for uncertainty: Bayesian networks, etc.
 - * Some inference algorithms for Bayes nets

