
Winter 201

Minimum Spanning Tree (Review from CSC263)

Input: Connected undirected "weighted" graph G = (V,E), i.e., with
 non-negative integer weight/cost w(e) for each edge e (- E.

Output: A spanning tree T (_ E such that cost(T) (sum of the costs of edges in T) is minimal.

- Terminology:
 - . "Spanning tree": acyclic connected subset of edges.
 - . "Acyclic": does not contain any cycle.
 - . "Connected": contains a path between any two vertices.
- Properties: For all spanning trees T of a graph G,
 - . T contains exactly n-1 edges;
 - . the removal of any edge from T disconnects it into two disjoint subtrees (otherwise T would contain a cycle);
 - . the addition of any edge to T creates exactly one cycle (otherwise T would be disconnected).
- A. Brute force: consider each possible subset of edges. Runtime? Exponential, even if we limit search to spanning trees of G (instead of considering all possible subsets of edges).
- B. Prim's algorithm:
 - Idea: Start with some vertex r (- V (pick arbitrarily) and at each
 step, add lowest-cost edge that connects a new vertex to existing
 partial tree.
 - Runtime? \Theta(m log n) using min-heap to implement priority queue of candidate edges (with priority = weight of smallest edge to tree).
- C. Kruskal's algorithm:
 - Idea: Repeatedly put in smallest-cost edge remaining, as long as it
 doesn't create a cycle.
 - Runtime? \Theta(m log m) for sorting; main loop involves sequence of m Union and FindSet operations on n elements which is \Theta(m log n) -- faster using best heuristics. Total is \Theta(m log n) since log m is \Theta(log n).
- D. Reverse-delete algorithm:
 - Idea: Repeatedly delete largest-cost edge remaining, as long as it does not disconnect the graph.
 - Runtime? For each edge, run BFS/DFS starting from one endpoint to figure out if other endpoint can still be reached. Requires $\Omega(m^2)$.

Correctness of Kruskal's algorithm:

- First, spell out algorithm in pseudo-code:
 Sort edges by non-decreasing weight: w(e_1) <= ... <= w(e_m).
 T = {}
 for j = 1,2,...,m:
 let (u,v) = e_j
 if T does _not_ contain a path between u and v:
 T = T u {e_j}</pre>
- Algorithm generates subsets of edges T_0, T_1, ..., T_m.
 Say T_i is "promising" if it can be extended to some MST T* using only edges {e_{i+1},...,e_m}, i.e., T_i (_ T* (_ T_i u {e_{i+1},...,e_m}.

(Set notation again because solution is a subset of input again.)

- Loop invariant: T_i is promising.

Base: $T_0 = \{\}$ is promising: every MST T* is a subset of $\{e_1, ..., e_m\}$.

I.H.: Suppose $i \ge 0$ and T_i can be extended to T^* .

Step: Either $T_{i+1} = T_i$ or $T_{i+1} = T_i$ u $\{e_{i+1}\}$.

Case 1: If T_{i+1} = T_i, then T_i u {e_{i+1}} contains a cycle.
 Since T_i (_ T* and T* is a MST, e_{i+1} !(- T*, so
 T_{i+1} (_ T* (_ T_{i+1} u {e_{i+2},...,e_m}, i.e.,
 T* extends T_{i+1}.

Case 2: If $T_{i+1} = T_i u \{e_{i+1}\}$, then consider whether or not $e_{i+1} (-T^*)$.

Subcase 2.1: If e_{i+1} (- T*, then
 T_{i+1} (_ T* (_ T_{i+1} u {e_{i+2},...,e_m}, i.e.,
 T* extends T_{i+1}.

Subcase 2.2: If e_{i+1} !(- T*, then T* does not extend
 T_{i+1}. Construct T** that does, as follows.
Consider endpoints of e_{i+1} in T*: they are connected by a
 path. Fact: not all edges on this path belong to T_i -- else
 algorithm would not generate T_{i+1} = T_i u {e_{i+1}}. So
 T* contains some edge e_j on this path with j > i+1 (because
 T* agrees with T_i on all edges e_1,...,e_i and e_{i+1} is
 not in T*).
 Then w(e_j) >= w(e_{i+1}) and we let

 $T^{**} = T^{*} u \{e_{i+1}\} - \{e_{j}\}.$ $T^{**} is a MST: it is connected, acyclic, and with total cost <= total cost of <math>T^{*}$ -- in fact, it must be that $w(e_{j}) = w(e_{i+1})$ since T^{*} is also optimal.

In every case, T_{i+1} is promising.

Since every T_i is promising, T_m is promising: $T_m = T^*$ for some MST T^* . So T_m is a MST.

- Correctness of other algorithms proved similarly.

Shortest Paths

Input: connected graph G = (V,E) with edge costs w(e) for all e (- E;
 vertices s,t (- V. IMPORTANT: costs are POSITIVE integers.
Output: a path from s to t with minimum total cost ("shortest" path).

- Brute-force: in general, exponentially many paths possible.
- Special case: if w(e) = 1 for all e: BFS!
- Dijkstra's algorithm: "modified" BFS: use _priority queue_ instead of queue to collect unvisited vertices; set priority = shortest distance so far. Note similarity to Prim's algorithm, but also important difference: for Prim's algorithm, priority = minimum cost of single edge to new vertex; for Dijkstra's algorithm, priority = minimum total distance from s to new vertex.

Intuition: find shortest s-t path by finding shortest paths from s to every vertex.

- Algorithm:

```
# Initialization.
P = {} # edges in shortest paths tree
initialize empty min-priority queue
for all v in V:
    pi[v] = NIL # predecessor of v on shortest s-v path so far
    d[v] = oo # priority of v = minimum distance s-v so far
                # with priority d[v] = oo
    enqueue v
d[s] = 0
update queue order of s
# Main loop.
while queue not empty:
    v = dequeue element with minimum priority d[]
    P = P u \{(pi[v], v)\} # problem when v = s: handled below
    for all edges (v,u):
        if u in the queue and d[v] + w(v, u) < d[u]: # "relaxation"
            pi[u] = v
            d[u] = d[v] + w(v, u)
            update queue order of u
P = P - \{(NIL, s)\} \# clean up
return P
```

- Runtime:

- O(n) for initialization.
- Main loop iterates at most n times (each iteration removes one vertex from the queue).
- Each iteration examines edges in one adjacency list and updates priorities. Over all iterations, each edge generates at most one queue update. And each priority update takes time O(log n).
- Total: O(m log n).
- Optimal substructure in Shortest Path problem:

A subpath of a shortest path is also a shortest path. Proof: Cut and paste technique! Assume that we have a shortest path (P) between two vertices u and v and consider two vertices x and y on this path. If the path between x and y along P is not a shortest path between x and y, we can simply replace this subpath by the shortest between x and y (and we are sure that there is one, why?). Replacing this subpath with another shorter path will make the shortest path between u and v even smaller which is in contradiction with the fact that path p is a shortest path! The reasoning applies even if the shortest x-y path contains nodes that appear elsewhere on P -- then, the contradiction is derived from using only the non-overlapping parts of the path.

- Triangle Inequality:

for all vertices u, v, x in V we have $delta(u,v) \le delta(u,x) + delta(x,v)$.

- Lemma:

During Dijkstra's algorithm, d[v] >= delta(s,v) and this holds after taking any sequence of relaxations.

Proof idea: by induction. The inequality holds after the initialization step (every vertex except s has d[v] = infinity and d[s] = 0). And each relaxation preserves the property (because d[v] is either oo or equal to the total weight of some path in G).

- Correctness (main idea):

Show d[v] = delta(s, v) for all v in P_i , where delta(x, y) is minimum total weight of any x-y path.

Consider one iteration of main loop: v with minimum d[v] removed from queue, $P_{i+1} = P_i u \{ (pi[v], v) \}$.

To show: d[v] = delta(s,v). For contradiction, suppose d[v] > delta(s,v) and let P = s-v path with total weight delta(s,v). Let (x,y) be first edge on P with x in P_i , y outside P_i . Either y = v or y != v. Case 1: y = v.

Then $d[v] \le d[x] + w(x,v)$ [(x,v) one possible edge from P_i to v] = delta(s,x) + w(x,v) [by I.H. since x in P_i] = delta(s,v) < d[v],

contradiction: d[v] < d[v]!</pre>

Case 2: y != v.

Then $d[y] \le d[x] + w(x,y)$ [(x,y) one possible edge from P_i to y] = delta(s,x) + w(x,y) [by I.H. since x in P_i] < delta(s,x) + w(x,y) + delta(y,v) [positive weights] = delta(s,v)< d[v],

contradiction: d[y] < d[v] but $d[v] = minimum outside P_i$. So d[v] = delta(s, v).

Rest of proof involves induction structure around main idea. Included below for reference but not covered during lecture.

- Correctness (details):

Algorithm generates subsets of edges P_0 , P_1 , ..., P_{n-1} . Say P_k is "promising" if it can be "extended" to some collection of shortest paths P^* (really, a shortest paths tree) using only edges that do not have *both* endpoints "in" P_k , i.e., edges with at least one endpoint still in the queue. (Technically, P_k contains edges, not vertices: when we speak of a vertex being "in" P_k , we mean that it is the endpoint of some edge in P_k .)

Loop invariant:

- P_k is promising, and
- for all u in P_k, all v outside P_k,
 d[u] = delta(s,u) <= delta(s,v) <= d[v]</pre>

where delta(s, v) is the minimum total weight of all paths from s to v. (Extra clause is required for the proof to go through.)

Proven by induction on k.

Base Case:

 $P_0 = \{\}$ is promising, trivially.

Ind. Hyp.:

For some arbitrary k, suppose P_k can be extended to some shortest paths tree P^* , using only edges without both endpoints in P_k , and that $d[u] = delta(s, u) \le delta(s, v) \le d[v]$ for all u in P_k and v outside P_k .

Ind. Step:

Consider $P_{k+1} = P_k u \{(u,v)\}$, with u in P_k and v outside P_k .

```
Either (u,v) (- P* or it does not.
If (u,v) (- P*, then P* extends P_{k+1}.
Also, delta(s,v) = delta(s,u) + w(u,v) (because (u,v) in P*) so d[v]
= d[u] + w(u,v) = delta(s,u) + w(u,v) = delta(s,v).
Moreover, because d[v] was the smallest of the d[] values for
vertices outside P_k, d[x] = delta(s,x) <= delta(s,w) <= d[w] for
all x in P_{k+1} and all w outside P_{k+1}.
If (u,v) ! (-P*, then:
  - consider the path P in P^* from s to v, and let (w,v) be the last
    edge on this path;
  - w must belong to P_k -- otherwise, let (x,y) be the first edge
    on P with x in P_k, y outside P_k
      d[y] \le d[x] + w(x,y) (because d[y] is the smallest value of
                   d[t] + w(t,y) for all edges (t,y) with t in P_k)
              = delta(s, x) + w(x, y) (because x in P_k)
             < delta(s,x) + w(x,y) + delta(y,v)
                    (since all edge weights strictly positive)
              = delta(s, v)
             \leq d[v]
      . but this would contradict the fact that d[v] is the smallest
        value of d[t] for all vertices t outside P_k
    so w in P_k;
  - so delta(s,v) = delta(s,w) + w(w,v) = d[w] + w(w,v);
  - since d[v] is the minimum of d[x] + w(x,v) over vertices x, this
    means d[v] \le d[w] + w(w,v) = delta(s,v);
  - so d[v] = delta(s, v) (it cannot be smaller);
  - so we can let P^{**} = P^* - \{(w,v)\}\ u \{(u,v)\}\, and after the update
    to d[w] for all edges (v, w) with w outside P_k, we still have
    that d[x] = delta(s,x) \le delta(s,y) \le d[y] for all x in P k,
    y outside P_k.
```

Hence, the loop invariant holds. When the algorithm terminates, this means d[u] = delta(s, u) for all vertices u: we have found shortest paths to every vertex.

For Next Week

* Readings: Section 6.5.

^{*} Self-Test: Trace matrix chain multiplication algo. on an example.