TensorFlow: a Framework for Scalable Machine Learning ACM Learning Center, 2016

You probably want to know...

- What is TensorFlow?
- Why did we create TensorFlow?
- How does TensorFlow work?
- Code: Linear Regression
- Code: Convolution Deep Neural Network
- Advanced Topics: Queues and Devices

- Fast, flexible, and scalable open-source machine learning library
- One system for research and production
- Runs on CPU, GPU, TPU, and Mobile
- Apache 2.0 license

Machine learning gets complex quickly

Modeling complexity

Machine learning gets complex quickly

Distributed System

Heterogenous System

TensorFlow Handles Complexity

Modeling complexity

Distributed System

Heterogenous System

A multidimensional array.

A graph of operations.

The TensorFlow Graph

Computation is defined as a graph

- Graph is defined in high-level language (Python)
- Graph is compiled and optimized
- Graph is executed (in parts or fully) on available low level devices (CPU, GPU, TPU)
- Nodes represent computations and state
- Data (tensors) flow along edges

Build a graph; then run it.

```
c = tf.add(a, b)
                                   add
session = tf.Session()
value of c = session.run(c, {a=1, b=2})
```

Any Computation is a TensorFlow Graph

Any Computation is a TensorFlow Graph

Automatic Differentiation

Automatically add ops which compute gradients for variables

Any Computation is a TensorFlow Graph

Simple gradient descent:

Any Computation is a TensorFlow Graph distributed

Devices: Processes, Machines, CPUs, GPUs, TPUs, etc

Send and Receive Nodes

distributed

Devices: Processes, Machines, CPUs, GPUs, TPUs, etc

Send and Receive Nodes

distributed

Devices: Processes, Machines, CPUs, GPUs, TPUs, etc

Linear Regression

Linear Regression

What are we trying to do?

Mystery equation: y = 0.1 * x + 0.3 + noise

Model: y = W * x + b

Objective: Given enough (x, y) value samples, figure out the value of W and b.

import tensorflow as tf

```
import tensorflow as tf
                                                         +
x = tf.placeholder(shape=[None],
                   dtype=tf.float32, name="x")
                                                            matmul
                                                  b
W = tf.get variable(shape=[], name="W")
                                                  W
b = tf.get variable(shape=[], name="b")
y = W * x + b
```

Variables Must be Initialized

Running the Computation

Putting it all together

```
import tensorflow as tf
x = tf.placeholder(shape=[None],
                     dtype=tf.float32,
                                                  Build the graph
                     name='x')
W = tf.get variable(shape=[], name='W')
b = tf.get variable(shape=[], name='b')
y = W * x + b
                                                  Prepare execution environment
with tf.Session() as sess:
  sess.run(tf.initialize_all_variables())
  print(sess.run(y, feed_dict=\{x: x_in\})) Run the computation (usually often)
```

Define a Loss

Given x, y compute a loss, for instance:

$$L = (y - y_{label})^2$$

```
# create an operation that calculates loss.
loss = tf.reduce_mean(tf.square(y - y_data))
```

Minimize loss: optimizers

parameters (weights, biases)

tf.train.AdadeltaOptimizer

tf.train.AdagradOptimizer

tf.train.AdagradDAOptimizer

tf.train.AdamOptimizer

Train

Feed (x, y_{label}) pairs and adjust W and b to decrease the loss.

$$W \leftarrow W - \eta \; (\; dL/dW \;)$$

$$b \leftarrow b - \eta \; (\; dL/db \;)$$
 TensorFlow computes gradients automatically
$$\text{ TensorFlow computes gradients automatically}$$

$$\text{ TensorFlow computes gradients automatically}$$

train = optimizer.minimize(loss)

Putting it all together

```
Define a loss
loss = tf.reduce mean(tf.square(y - y label))
                                                          Create an optimizer
optimizer = tf.train.GradientDescentOptimizer(0.5)
                                                          Op to minimize the
train = optimizer.minimize(loss)
with tf.Session() as sess:
  sess.run(tf.initialize_all_variables())
                                                           Initialize variables
  for i in range(1000):
    sess.run(train, feed dict={x: x in[i],
                                  y label: y in[i]})
```

TensorBoard

Deep Neural Network

CAT DOG

CAT & DOG?

Remember linear regression?

```
import tensorflow as tf
x = tf.placeholder(shape=[None],
                   dtype=tf.float32,
                   name='x')
W = tf.get_variable(shape=[], name='W')
b = tf.get variable(shape=[], name='b')
y = W * x + b
loss = tf.reduce mean(tf.square(y - y label))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
```

Convolutional DNN

```
x = tf.contrib.layers.conv2d(x, kernel size=[5,5], ...)
x = tf.contrib.layers.max pool2d(x, kernel size=[2,2], ...)
x = tf.contrib.layers.conv2d(x, kernel size=[5,5], ...)
x = tf.contrib.layers.max pool2d(x, kernel size=[2,2], ...)
x = tf.contrib.layers.fully connected(x, activation fn=tf.nn.relu)
x = tf.contrib.layers.dropout(x, 0.5)
logits = tf.config.layers.linear(x)
```


Defining Complex Networks

Distributed TensorFlow

Data Parallelism

Describe a cluster: ClusterSpec

```
tf.train.ClusterSpec({
    "worker": [
        "worker0.example.com: 2222",
        "worker1.example.com: 2222",
        "worker2.example.com:2222"
    "ps0.example.com:2222",
        "ps1.example.com:2222"
```

Share the graph across devices

```
with tf.device("/job:ps/task:0"):
  weights_1 = tf.Variable(...)
  biases_1 = tf.Variable(...)
with tf.device("/job:ps/task:1"):
  weights_2 = tf.Variable(...)
  biases_2 = tf.Variable(...)
with tf.device("/job:worker/task:7"):
  input, labels = ...
  layer_1 = tf.nn.relu(tf.matmul(input, weights_1) + biases_1)
  logits = tf.nn.relu(tf.matmul(layer_1, weights_2) + biases_2)
  train_{op} = ...
with tf.Session("grpc://worker7.example.com:2222") as sess:
  for _ in range(10000):
    sess.run(train_op)
```

Input Pipelines with Queues

Tutorials & Courses

Tutorials on tensorflow.org:

Image recognition: https://www.tensorflow.org/tutorials/image_recognition

Word embeddings: https://www.tensorflow.org/versions/word2vec

Language Modeling: https://www.tensorflow.org/tutorials/recurrent

Translation: https://www.tensorflow.org/versions/seq2seq

Deep Dream:

https://tensorflow.org/code/tensorflow/examples/tutorials/deepdream/deepdream.ipynb

Thank you and have fun!

Inception

An Alaskan Malamute (left) and a Siberian Husky (right). Images from Wikipedia.

https://research.googleblog.com/2016/08/improving-inception-and-image.html

Show and Tell

https://research.googleblog.com/2016/09/show-and-tell-image-captioning-open.html

Parsey McParseface

Text Summarization

Original text

• Alice and Bob took the train to visit the zoo. They saw a **baby giraffe, a lion, and a flock of colorful tropical birds**.

Abstractive summary

Alice and Bob visited the zoo and saw animals and birds.

Mobile TensorFlow

TensorFlow was designed with mobile and embedded platforms in mind. We have sample code and build support you can try now for these platforms:

Android

ios

Raspberry Pi

Many applications can benefit from on-device processing. Google Translate's instant visual translation is a great example. By running its processing locally, users get an incredibly responsive and interactive experience.

Mobile TensorFlow makes sense when there is a poor or missing network connection, or where sending continuous data to a server would be too expensive. We are working to help developers make lean mobile apps using TensorFlow, both by continuing to reduce the code footprint, and supporting quantization and lower precision arithmetic that reduce model size.

Architecture

