

有势场与势函数

定义 设 $\bar{f}: \mathbf{R}^n \supset D \to \mathbf{R}^n$,若 $\exists \varphi: D \to R$,使 $\nabla \varphi(\bar{x}) = f(\bar{x})$, $\bar{x} = (x_1, x_2, \dots, x_n)$,则 称 \bar{f} 是**保守场(有势场)**,称 φ 是的一个**势函数**.

- 有势场 \bar{f} 在区域 G 上的任意两个势函数相差一个常数.
- 例如: $\bar{f} = (yz, xz, xy)$ 在 \mathbb{R}^3 中是有势场,其势函数为 $\varphi(x, y, z) = xyz + C$.

$$\vec{g} = (x^2 + y^2)\vec{i} + 2xy \vec{j}$$
 在 \mathbf{R}^2 中是有势场,其势函数为 $\psi(x, y) = \frac{1}{3}x^3 + xy^2 + C$

這理 设 $D \subset \mathbb{R}^n$ 为开集, $\bar{f} = (f_1, f_2, \dots, f_n)$: $D \to \mathbb{R}^n$ 为连续可导的有势场,则

$$\frac{\partial f_j}{\partial x_i} = \frac{\partial f_j}{\partial x_i}, \quad i, j = 1, 2, 3, \dots, n. \quad (或记为 D_i f_j = D_j f_i)$$

【注】此定理之逆不一定成立。例如 $\vec{f} = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$ 在 $\mathbb{R}^2 / \{O\}$ 不是有势场.

曲线积分第二基本定理

這理 设 G 为 R^n 的 Σ 域, $\bar{f}: G \to R^n$ 连续, φ 为 \bar{f} 的一个势函数,则

对 $A,B \in G$ 和任意的 A 到 B 的分段光滑路径 $\alpha:[a,b] \to G$, $\alpha(a) = A$, $\alpha(b) = B$, 有 $\int_{C} \overline{f} \cdot d\alpha = \varphi(B) - \varphi(A).$ 其中 α 为 C 的一个参数表示.

证明: 若
$$C$$
 为光滑的,则有 $\int_{C} \vec{f} \cdot d\alpha = \int_{a}^{b} \vec{f} \left(\alpha(t)\right) \cdot \alpha'(t) dt$

$$= \int_a^b \nabla \varphi (\alpha(t)) \cdot \alpha'(t) dt = \int_a^b \frac{d\varphi (\alpha(t))}{dt} dt = \varphi(B) - \varphi(A).$$

若 C 为分段光滑的,即 $C = C_1 + C_2 + \cdots + C_m$, 其中 C_i $(i = 1, 2, \cdots, m)$ 为光滑曲线,则有

$$\int_{C} \vec{f} \cdot d\alpha = \int_{C_{1}} \vec{f} \cdot d\alpha_{1} + \int_{C_{2}} \vec{f} \cdot d\alpha_{2} + \dots + \int_{C_{m}} \vec{f} \cdot d\alpha_{m}$$

$$= \left[\varphi(B_1) - \varphi(A)\right] + \left[\varphi(B_2) - \varphi(B_1)\right] + \dots + \left[\varphi(B) - \varphi(B_{m-1})\right] = \varphi(B) - \varphi(A).$$

曲线积分与路径无关

 \bullet 由曲线积分的第二基本定理知,有势场 \bar{f} 的曲线积分与路径无关,其积分值由势函数在 曲线的两个端点的函数值决定.

定义 设D ⊂ R^n 为开集, \bar{f} : D → R^n 连续,A, B ∈ D. 若对任意的分段光滑从A 到B的路径C, $\int_C \bar{f} \cdot d\alpha$ 的值相同(其中 α 为C的一个参数表示),则称 \bar{f} 在D上

的**曲线积分与路径无关**,记为 $\int_{A}^{B} \bar{f} \cdot d\alpha$.

(1)
$$\int_{(0,1)}^{(2,3)} y dx + x dy = (xy) \Big|_{(0,1)}^{(2,3)} = 6.$$

(2)
$$\int_{(0,1)}^{(1,2)} \frac{2xy+1}{y} dx + \frac{y-x}{y^2} dy = \left(x^2 + \frac{x}{y} + \ln y\right) \Big|_{(0,1)}^{(1,2)} = \frac{3}{2} + \ln 2.$$

曲线积分的第一基本定量与势函数的计算

這理 设G为 R^n 的区域, $\bar{f}:G\to R^n$ 为连续的向量场,若 \bar{f} 在G上的**曲线积分与路径无关**,

取 $A \in G$, 则 φ : $G \to \mathbb{R}$, $\varphi(x) = \int_A^x \overline{f} \cdot d\alpha$ 是 \overline{f} 的一个**势函数**. 即 φ 可导且 $\nabla \varphi = \overline{f}$. 其中 α 为 从 A 到 x 的任一分段光滑路径的参数表示.

例 1 求 $\vec{f} = (3x^2 \sin y + x)\vec{i} + (x^3 \cos y - 2y)\vec{j}$ 的势函数.

解:
$$\varphi(x,y) = \int_{(0,0)}^{(x,y)} (3x^2 \sin y + x) dx + (x^3 \cos y - 2y) dy$$

$$= \int_0^x (3x^2 \sin 0 + x) dx + \int_0^y (x^3 \cos y - 2y) dy$$

$$= \frac{1}{2}x^2 + x^3 \sin y - y^2 + C.$$

$$(x,y)$$

$$(0,x)$$

$$(0,x)$$

例 2 求 $\vec{f} = 2xy\vec{i} + (ze^y + x^2)\vec{j} + e^y \vec{k}$ 的势函数.

曲线积分与路径无关的等价条件

這理 设 G 为 R^n 的区域, $\bar{f}: G \to R^n$ 为连续的向量场,则以下命题等价:

- (1) f 在 G 内为保守场(有势场);
- (2) f 在 G 内的曲线积分与路径无关;
- (3) f 在 G 内沿任意分段光滑的闭曲线的曲线积分为零.

例3 设
$$\vec{f} = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$$
, 计算 $\oint_{x^2 + y^2 = a^2} \vec{f} \cdot d\alpha$, 方向取正向.

解: 取曲线的参数表示为 $x = a\cos t$, $y = a\sin t$, $t \in [0, 2\pi]$

$$\oint_{x^2+y^2=a^2} \vec{f} \cdot d\alpha = \int_0^{2\pi} \frac{(a^2 \sin^2 t + a^2 \cos^2 t)}{a^2 \cos^2 t + a^2 \sin^2 t} dt = 2\pi.$$

【注】由上可知
$$\vec{f} = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$$
在 $\mathbb{R}^2/\{O\}$ 上不是保守场,虽然它满足 $\frac{\partial \left(\frac{-y}{x^2 + y^2}\right)}{\partial y} = \frac{\partial \left(\frac{x}{x^2 + y^2}\right)}{\partial x}$.

向量场为有势场的充分条件

建义 对 $D \subset \mathbb{R}^n$ 为开集,若 $\forall a,b \in D$, $\overline{ab} \in D$,则称 D 为**凸集**.

定理 设 $\bar{f}: \mathbf{R}^n \supset G \to \mathbf{R}^n$ 连续可导的向量场, $G \not\in \mathbf{R}^n$ 的凸集,则 \bar{f} 在G内为保守场(有势场) 当且仅当 $D_i f_j = D_j f_i$ $(i, j = 1, 2, \dots, n)$.

【注】以上定理的结论可以推广到单连通区域上.

這 设 $D \subset \mathbb{R}^2$ 为单连通区域,P(x,y),Q(x,y) 连续可导,则以下命题等价:

- (1) $\vec{f} = (P, Q)$ 在 D 内为保守场(有势场);
- (2) f 在 D 内的曲线积分与路径无关;
- (3) \bar{f} 在 D 内沿任意分段光滑的闭曲线的曲线积分为零;
- $(4) \frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} \times D$ 内每一点皆成立.

【注】对R3上的单连通区域有相同的结论.

曲线积分例题

例 4 计算
$$\int_C \frac{-y dx + x dy}{x^2 + y^2}$$
, 其中 C 为

- (1) 从 A(2,-2) 沿 $y = 2 x^2$ 到 B(-2,-2) 再沿直线 y = -2 到 A.
- (2) 从 C(1,1) 沿 $y = 2 x^2$ 到 D(-1,1).
- (3) 从 A(2,-2) 沿 $y=2-x^2$ 到 B(-2,-2).

$$D(-1,1)$$
 $C(1,1)$
 X
 $A(2,-2)$

解: 记
$$P = \frac{-y}{x^2 + y^2}$$
, $Q = \frac{x}{x^2 + y^2}$, 则有 $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$. 因此有

$$(1) \int_{C} \frac{-y dx + x dy}{x^{2} + y^{2}} = \oint_{x^{2} + y^{2} = a^{2} \text{ (IFfil)}} \frac{-y dx + x dy}{x^{2} + y^{2}} = 2\pi.$$

$$(2) \int_{C} \frac{-y dx + x dy}{x^{2} + y^{2}} = \int_{1}^{-1} \frac{-dx}{x^{2} + 1^{2}} = -\arctan x \left| \frac{-1}{1} = \frac{\pi}{2} \right|.$$

(3)
$$\int_{C} \frac{-y dx + x dy}{x^2 + y^2} = 2\pi - \int_{\overline{R}^4} \frac{-y dx + x dy}{x^2 + y^2} = 2\pi - \int_{-1}^{1} \frac{dx}{x^2 + 1^2} = \frac{3\pi}{2}.$$

