

الامتحان الوطني الموحد للبكالوريا

الدورة الاستدراكية 2017 - الموضوع -

RS 26

المركز الوطنبي للتقويم والامتدانات والتوجيه

2	مدة الإنجاز	الرياضيات	المادة
4	المعامل	مسلكُ العلوم الاقتصادية ومسلك علوم التدبير المحاسباتي رباللغتين العربية والفرنسية	الشعبة أو المسلك

Instructions au candidat(e)	تعليمات للمترشح(ة)		
Important : Le candidat est invité à lire et suivre attentivement ces recommandations.	هام: يتعين على المترشح قراءة هذه التوجيهات بدقة والعمل بها.		
Le document que vous avez entre les mains est de 5 pages :la première est réservée aux recommandations, les pages 2 et 3 sont réservées au sujet en langue arabe et les pages 4 et 5 au sujet en langue française. Choisissez une des deux langues pour répondre aux questions.	وثيقة التي بين يديك من 5 صفحات: الأولى نها خاصة بالتوجيهات، والصفحتان 2 و 3 موضوع باللغة العربية، والصفحتان 4 و 5 فس الموضوع باللغة الفرنسية. اختر إحدى لغتين للإجابة على الأسئلة.		
 Il vous est suggéré de répondre aux questions du sujet avec précision et soin; 	يرجى منك الإجابة عن أسئلة الموضوع بما تستحقه من دقة وعناية؛		
• Il vous est autorisé d'utiliser la calculatrice scientifique non programmable ;	يسمح لك باستعمال الآلة الحاسبة غير القابلة للبرمجة؛		
 Vous devez justifier les résultats (Par exemple: lors du calcul des limites, lors du calcul des probabilités,); 	ينبغى عليك تعليل النتائج (مثلا: عند حساب النهايات، عند حساب الاحتمالات،)؛		
 Vous pouvez répondre aux exercices selon l'ordre que vous choisissez, mais veuillez numéroter les exercices et les questions tels qu'ils le sont dans le sujet; 	بيمكنك الإجابة على التمارين وفق الترتيب الذي تختاره (تختارينه)، لكن يتعين عليك في ترقيم أجوبتك، اعتماد نفس ترقيم التمارين والأسئلة، الوارد في الموضوع؛		
 Veillez à la bonne présentation de votre copie et à une écriture lisible; 	 ينبغي عليك العمل على حسن تقديم الورقة والكتابة بخط مقروء؛ 		
 Il est souhaitable que les pages soient numérotées pour faciliter la correction; 	 بستحسن ترقيم صفحات أوراق التحرير ضماتا لتيسير عملية التصحيح؛ 		
L'écriture au stylo rouge est à éviter;	 پتعین تجنب الکتابة بقلم أحمر؛ 		
Assurez-vous que vous avez traité tous les exercices avant de quitter la salle d'examen.	• تحقق(ي) من معالجتك لكل تمارين الموضوع قبل مغادرة قاعة الامتحان.		

Mo

الامتحان الوطنى الموحد للبكالوريا - الدورة الاستدراكية 2017 - الموضوع 🗫 - مادة: الرياضيات - مسلك العلوم الاقتصادية ومسلك علوم التدبير المحاسباتي (باللغتين العربية والفرنسية)

التمرين الأول: (4.5 نقط)

 \mathbb{N} نعتبر المتتالية العددية $u_{n+1} = \frac{3u_n + 2}{2u_n + 3}$ و $u_0 = 2$: نعتبر المتتالية العددية $(u_n)_{n \in \mathbb{N}}$

u, 9 u, mal .1.1 0.5

 $u_n > 1$: \mathbb{N} من أن $u_{n+1} - 1 = \frac{u_n - 1}{2u_n + 3}$ من أن يحقق من أن $u_{n+1} - 1 = \frac{u_n - 1}{2u_n + 3}$. 1. 0.75

 $u_{n+1} - u_n = 2\left(\frac{1 - u_n^2}{2u_n + 3}\right)$: N من n نكل n نكل n نكل n نكل n نكل n

. د. استنتج ان $(u_n)_{n\in\mathbb{N}}$ تناقصية وأنها متقاربة . 0.5

 \mathbb{N} من $v_n = \frac{u_n - 1}{v_n + 1}$: المعرفة بما يلي المعرفة بما يلي . 2

 $v_n \neq 1$: N· من n کال 2. 0.25

> v. بسب . ب .2 0.25

 $\frac{1}{5}$ اساسها $\left(v_{n}\right)_{n\in\mathbb{N}}$ هندسية اساسها 2. ج. بين أن المتتالية 0.5

n بدلالة ، 2. د . احسب ، بدلالة 0.25

 $u_n = \frac{1 + v_n}{1 - v}$ ال بين ان .3 0.25

 $u_n = \frac{1 + \frac{1}{3} \left(\frac{1}{5}\right)^n}{1 - \frac{1}{2} \left(\frac{1}{5}\right)^n}$: i) .4.3

 $\lim u_n$. احسب 3.3

التمرين الثاني : (4 نقط) التمرين الثاني : (4 نقط) الأعداد 0 ؛ 1 ؛ 2 وكرتين لونهما أسود تحملان العددين 1 ؛ 2 ، كلها غير قابلة للتمييز باللمس.

نسحب عشوانيا بالتتابع وبدون إحلال كرتين من الصندوق.

1. نعتبر الحدثين A و B التاليين:

" الكرتان المسحوبتان تحملان العدد 1 " A

B: " سحب كرة بيضاء في المرة الأولى "

 $p(A) = \frac{I}{10}$ ا. بین ان ان .1 0.5

معللا جو ايك.

1.5

 $p(A \cap B) = \frac{1}{20}$ ب. احسب احتمال الحدث B وبين أن

. على جوابك A و A مستقلان A على جوابك . 0.5

2. ليكن X المتغير العثنواني الذي يساوي جداء العدين اللذين تحملهما الكرتان المسحوبتان.

2. أ. انقل الجدول جانبه على ورقة تحريرك ثم أتمم ملأه

$X = x_i$	0	1	2	4
$p(X=x_i)$	8			
	20		S. S.	

X الأمل الزياضي للمتغير العشواني E(X) . 2. ب. احسب

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2017 - الموضوع

- مادة: الرياضيات - مسلك العلوم الاقتصادية ومسلك علوم التدبير المحاسباتي (باللغتين العربية والفرنسية)

التمرين الثالث: (1.5نقطة)

$$J = \int_0^1 \frac{x^3}{x^2 + 1} dx$$
 و $I = \int_0^1 \frac{x}{x^2 + 1} dx$: نضع المنب الم

التمرين الرابع: (10 نقط)

نعتبر الدالة العدية f للمتغير الحقيقي x المعرفة على IR^* بما يلي e^x : بما يلي وليكن $f(x)=\left(\frac{x-1}{x}\right)e^x$ تمثيلها المبياتي في معلم متعامد ممنظم $f(x)=\left(\frac{x-1}{x}\right)e^x$ نعتبر الدالة العدية والمحتود المعرفة على $f(x)=\left(\frac{x-1}{x}\right)e^x$ بما يلي والمحتود المعرفة على المعرفة المع

النتيجة . احسب
$$f(x)$$
 أعط تأويلا هندسيا لهذه النتيجة . 0.75

البيحة. بين أن
$$\int_{\substack{x \to 0 \ x > 0}} f(x) = -\infty$$
 وأن $\int_{\substack{x \to 0 \ x > 0}} f(x) = +\infty$ أنتيجة.

$$f'(x) = \frac{(x^2 - x + 1)}{x^2} e^x : IR^*$$
 بين ان لكل x من ان لكل x ا

$$IR^*$$
 لكل x من $f'(x) > 0$ اكل x من 1

$$]0;+\infty$$
منحی تغیرات الدالهٔ f علی $]0;+\infty$ ثم علی $]0;+\infty$

$$f$$
 ثم ضع جدول تغیرات الدالة $f(1)$ ثم ضع جدول تغیرات الدالة

$$f$$
 هو التمثيل المبياني للدالة $\left(C_{f}
ight)$ هو التمثيل المبياني للدالة

$$\Gamma$$
 المنحنى Γ المنحنى المنطقة ذات الأفصول Γ المنحنى النقطة ذات الأفصول Γ

$$f(x) = 2$$
 مبيانيا عدد حلول المعادلة 0.5 مبيانيا

$$f(x) = -2$$
: حدد مبياتيا عدد حلول المعادلة . 0.5

Mo

الثانية اهتصاد وتدبير تصحيح الامتحان الوطني الاستدراكي 2017

التمرين الأول: (4,5 ن)

$$\begin{array}{c} \mathbb{N} \text{ i.i. } u_{n+1} = \frac{3u_n + 2}{2u_n + 3} \text{ i.i. } u_0 = 2 : u_1 \text{ lad distribution } u_1 \\ u_2 \text{ i.i. } u_2 \text{ i.i. } u_1 \text{ i.i. } 0.5 \\ u_n > 1 : \mathbb{N} \text{ i.i. } u_{n+1} - 1 = \frac{u_n - 1}{2u_n + 3} \text{ i.i. } 0.5 \\ u_{n+1} - u_n = 2\left(\frac{1 - u_n^2}{2u_n + 3}\right) : \mathbb{N} \text{ i.i. } u_n \text{ i.i. } 0.5 \\ u_{n+1} - u_n = 2\left(\frac{1 - u_n^2}{2u_n + 3}\right) : \mathbb{N} \text{ i.i. } u_n \text{ i.i. } 0.5 \\ \mathbb{N} \text{ i.i. } u_{n+1} - u_n = 2\left(\frac{1 - u_n^2}{2u_n + 3}\right) : \mathbb{N} \text{ i.i. } u_n \text{ i.i. } 0.5 \\ \mathbb{N} \text{ i.i. } u_{n+1} - u_n = 2\left(\frac{1 - u_n^2}{2u_n + 3}\right) : \mathbb{N} \text{ i.i. } u_n \text{ i.i. } 0.5 \\ \mathbb{N} \text{ i.i. } u_n = \frac{u_n - 1}{u_n + 1} : \mathbb{N} \text{ i.i. } u_n \text{ i.i. } u_n$$

التمرين الثاني: (4 ن)

1

نسحب عشوائيا بالتتابع و بدون إحلال كرتين من الصندوق.

1. نعتبر الحدثين A و B التاليين:

" الكرتان المسحوبتان تحملان العدد 1 " A

" سحب كرة بيضاء في المرة الأولى B

$$p(A) = \frac{1}{10}$$
 1. أ- بين أن 0.5

$$p(A \cap B) = \frac{1}{20}$$
 1. ب- أحسب احتمال الحدث B و بين أن

و A مستقلان ؟ علل جوابك . A و A مستقلان . علل جوابك .

2. ليكن X المتغير العشوائي الذي يساوى جداء العددين اللذين تحملهما الكرتان المسحوبتان.

1,5 أ- أنقل الجدول جانبه إلى ورقة تحريرك ثم أتمم ملأه معلا جوابك

x_{i}	0	1	2	4
$p(X = x_i)$				

X الأمل الرياضي للمتغير العشوائي $E\left(X
ight)$ الأمل الرياضي المتغير العشوائي

التمرين الثالث: (1,5) ن

$$J = \int_0^1 \frac{x^3}{x^2 + 1} dx$$
 و $I = \int_0^1 \frac{x}{x^2 + 1} dx$ نضع: $I = \int_0^1 \frac{x}{x^2 + 1} dx$ و $I = \int_0^1 \frac{x}{x^2 + 1} dx$

التمرين الرابع: (10 ن)

نعتبر الدالة العددية
$$f$$
 للمتغير الحقيقي x المعرفة على \mathbb{R}^* بما يلي : g للمتغير الحقيقي g المعرفة على g بما يلي : g بما يلي g المتغير الحقيقي g المعرفة على g بما يلي g بما يلي g المتغير الحقيقي معلم متعامد ممنظم g معلم متعامد ممنظم g المتغير الحقيقي معلم متعامد ممنظم g المتغير الحقيقي والمتغير والمتغير الحقيقي والمتغير الحقيقي والمتغير والمتغ

. أ- أحسب
$$\int_{x\to +\infty} f(x) = +\infty$$
 و بين أن $\int_{x\to +\infty} \frac{f(x)}{x} = +\infty$ أويلا هندسيا لهذه النتيجة. $\int_{x\to +\infty} f(x) dx$

تصحيح التمرين الأول

$$u_1 = \frac{3u_0 + 2}{2u_0 + 3} = \frac{3(2) + 2}{2(2) + 3} = \frac{8}{7}$$
 -1.1

$$u_2 = \frac{3u_1 + 2}{2u_1 + 3} = \frac{3\left(\frac{8}{7}\right) + 2}{2\left(\frac{8}{7}\right) + 3} = \frac{\frac{38}{7}}{\frac{37}{7}} = \frac{38}{37}$$

1. ب-

 $n \in \mathbb{N}$ ليكن \checkmark

$$u_{n+1} - 1 = \frac{3u_n + 2}{2u_n + 3} - 1 = \frac{3u_n + 2 - 2u_n - 3}{2u_n + 3} = \frac{u_n - 1}{2u_n + 3}$$
 : لدينا

$$\mathbb{N}$$
 من $u_{n+1} - 1 = \frac{u_n - 1}{2u_n + 3}$: إذن

√

:
$$n = 0$$
 من أجل • $u_0 = 2$ لدينا

$$u_0 > 1$$
: إذن

$$n \in \mathbb{N}$$
 ليكن $ullet$

$$u_n > 1$$
 نفترض أن

$$u_{n+1} > 1$$
 و نبین أن

$$u_{n+1}-1=\frac{u_n-1}{2u_n+3}$$
: لدينا

$$2u_n + 3 > 0$$
 و $u_n - 1 > 0$ اذن $u_n > 1$ و 2

$$u_{n+1}-1>0$$
 إذن $\frac{u_n-1}{2u_n+3}>0$

$$u_{n+1} > 1$$
 e ais

$$\mathbb{N}$$
 من n لكل $u_n > 1$: أن

$$n \in \mathbb{N}$$
 ليكن 1.

$$u_{n+1} - u_n = \frac{3u_n + 2}{2u_n + 3} - u_n = \frac{3u_n + 2 - 2u_n^2 - 3u_n}{2u_n + 3} = \frac{2\left(1 - u_n^2\right)}{2u_n + 3} = 2\left(\frac{1 - u_n^2}{2u_n + 3}\right)$$
: الذين : لكل n من n الذين : لكل n من n

[. د-

$$n \in \mathbb{N}$$
 ليكن \checkmark

$$2u_n + 3 > 0$$
 و $1 - u_n^2 < 0$: لذينا

$$2\left(\frac{1-u_n^2}{2u_n+3}\right) < 0$$
 إذن

 $u_{n+1} - u_n < 0 : \mathbb{N}$ من n

و بالتالي
$$(u_n)_{n\in\mathbb{N}}$$
 تناقصية

بما أن
$$(u_n)_{n\in\mathbb{N}}$$
 بما أن يتاقصية و مصغورة (بالعدد 1) فإن ناقصية $(u_n)_{n\in\mathbb{N}}$ متقاربة

 $v_n = 1$: من \mathbb{N} بحیث n انه یوجد n

$$\frac{u_n-1}{u_n+1}=1$$
: إذن

$$u_n - 1 = u_n + 1$$
 : إذن

$$v_n \neq 1: \mathbb{N}$$
 من n لكل و بالتالي:

$$v_0 = \frac{u_0 - 1}{u_0 + 1} = \frac{2 - 1}{2 + 1} = \frac{1}{3} - 2$$

$$n \in \mathbb{N}$$
 : $n \in \mathbb{N}$ يكن $n \in \mathbb{N}$

$$v_{n+1} = \frac{u_{n+1} - 1}{u_{n+1} + 1} = \frac{\frac{3u_n + 2}{2u_n + 3} - 1}{\frac{3u_n + 2}{2u_n + 3} + 1} = \frac{\frac{u_n - 1}{2u_n + 3}}{\frac{5u_n + 5}{2u_n + 3}} = \frac{u_n - 1}{5(u_n + 1)} = \frac{1}{5}v_n$$
 : Let

$$v_{n+1} = \frac{1}{5}v_n$$
: N من n اذن: لكل الله الله

$$q=rac{1}{5}$$
 و منه : $\left(v_{n}
ight)_{n\in\mathbb{N}}$: و منه

$$n \in \mathbb{N}$$
 د۔ لیکن $n \in \mathbb{N}$

$$v_{n} = v_{0} q^{n}$$
: لدينا

$$\mathbb{N} \text{ in } n \text{ led } v_n = \frac{1}{3} \cdot \left(\frac{1}{5}\right)^n : \text{id}$$

$$: n \in \mathbb{N}$$

$$: n \in \mathbb{N}$$

$$\text{lequil } 1.3$$

$$: u_n = \frac{1}{u_n + 1} \implies u_n - 1 = (u_n + 1)v_n$$

$$\Leftrightarrow u_n - 1 = u_n v_n + v_n$$

$$\Leftrightarrow u_n - u_n v_n = 1 + v_n$$

$$\Leftrightarrow u_n (1 - v_n) = 1 + v_n$$

$$\Leftrightarrow u_n = \frac{1 + v_n}{1 - v_n} : \mathbb{N} \text{ in } n \text{ id} : n \in \mathbb{N}$$

$$: n \in \mathbb{N} \text{ id} : n \in \mathbb{N}$$

$$v_n = \frac{1}{3} \cdot \left(\frac{1}{5}\right)^n = u_n = \frac{1 + v_n}{1 - v_n} : \mathbb{N} \text{ in } n \text{ id} : n \in \mathbb{N}$$

$$u_n = \frac{1 + \frac{1}{3} \cdot \left(\frac{1}{5}\right)^n}{1 - \frac{1}{3} \cdot \left(\frac{1}{5}\right)^n} : \mathbb{N} \text{ in } n \text{ id} : n \in \mathbb{N}$$

$$\lim_{n \to +\infty} \left(\frac{1}{5}\right)^n = 0 \text{ id} : -1 < \frac{1}{5} < 1 \text{ id} : n \in \mathbb{N}$$

$$\lim_{n \to +\infty} \left(\frac{1}{5}\right)^n = 0 \text{ id} : -1 < \frac{1}{5} < 1 \text{ id} : n \in \mathbb{N}$$

$$\lim_{n \to +\infty} \left(\frac{1}{5}\right)^n = 0 \text{ id} : -1 < \frac{1}{5} < 1 \text{ id} : n \in \mathbb{N}$$

$$\lim_{n \to +\infty} \left(\frac{1}{5}\right)^n = 0 \text{ id} : -1 < \frac{1}{5} < 1 \text{ id} : -1 < \frac{1}{3} \cdot \left(\frac{1}{5}\right)^n = 1 : -1 < \frac{1}{3} \cdot \left(\frac{1}{5}\right)^n =$$

تصحيح التمرين الثاني

التجربة " سحب بالتتابع و بدون إحلال كرتين من الصندوق "

ليكن ۩ كون إمكانيات هذه التجربة

$$card \Omega = A_5^2 = 20$$
: لدينا

1. أ- A'' الكرتان المسحوبتان تحملان العدد 1''

$$cardA = A_2^2 = 2$$

$$p(A) = \frac{cardA}{card\Omega} = \frac{2}{20} = \frac{1}{10}$$

_ب ،

√ اسحب كرة بيضاء في المرة الأولى "

$$cardB = A_3^1 \times A_4^1 = 3 \times 4 = 12$$

$$p(B) = \frac{cardB}{card\Omega} = \frac{12}{20} = \frac{3}{5}$$

" الكرتان المسحوبتان تجملان العدد 1 و الكرة المسحوبة في المرة الأولى بيضاء " $A \cap B$

$$card(A \cap B) = A_1^1 \times A_1^1 = 1$$

$$p(A \cap B) = \frac{card(A \cap B)}{card\Omega} = \frac{1}{20}$$

$$p(A) \times p(B) = \frac{1}{10} \times \frac{3}{5} = \frac{3}{50}$$
 و $p(A \cap B) = \frac{1}{20}$ دينا: 3- لاينا:

بما أن $p(A \cap B) \neq p(A) \times p(B)$ فإن الحدثين A و B غير مستقلين.

2. أ-

$$\begin{cases} 0, \overline{0} \\ \overline{0}, 0 \end{cases} \rightarrow X = 0$$

$$p(X = 0) = \frac{2(A_1^1 \times A_4^1)}{20} = \frac{2 \times 1 \times 4}{2} = \frac{2}{5}$$

$$1, 1 \rightarrow X = 1$$

$$p(X = 1) = p(A) = \frac{1}{10}$$

$$\begin{cases} 1, 2 \\ 2, 1 \end{cases} \rightarrow X = 2$$

$$p(X = 2) = \frac{2(A_2^1 \times A_2^1)}{20} = \frac{2 \times 2 \times 2}{20} = \frac{8}{20} = \frac{2}{5}$$

$$2.2 \rightarrow X = 4$$

$$p(X = 4) = \frac{A_2^2}{20} = \frac{2}{20} = \frac{1}{10}$$

\boldsymbol{x}_{i}	0	1	2	4
$p(X = x_i)$	2	1	2	1
	5	10	5	10

2. ب- الأمل الرياضى:

$$E(X) = \left(0 \times \frac{2}{5}\right) + \left(1 \times \frac{1}{10}\right) + \left(2 \times \frac{2}{5}\right) + \left(4 \times \frac{1}{10}\right) = \frac{1}{10} + \frac{4}{5} + \frac{4}{10} = \frac{13}{10}$$

تصحيح التمرين الثالث

$$I = \int_0^1 \frac{x}{x^2 + 1} dx = \frac{1}{2} \int_0^1 \frac{2x}{x^2 + 1} dx = \frac{1}{2} \left[\ln \left| x^2 + 1 \right| \right]_0^1 = \frac{1}{2} \ln \left(2 \right) - \frac{1}{2} \ln \left(1 \right) = \frac{1}{2} \ln \left(2 \right) . \mathbf{1}$$

$$I + J = \int_0^1 \frac{x^3}{x^2 + 1} dx + \int_0^1 \frac{x}{x^2 + 1} dx = \int_0^1 \frac{x^3 + x}{x^2 + 1} dx = \int_0^1 \frac{x(x^2 + 1)}{x^2 + 1} dx = \int_0^1 x dx = \left[\frac{x^2}{2}\right]_0^1 = \frac{1}{2}.2$$

$$J = \frac{1}{2}(1 - \ln 2)$$
 و منه $J = \frac{1}{2} - I = \frac{1}{2} - \frac{1}{2}\ln(2)$ الاننا: $I + J = \frac{1}{2}$

تصحيح التمرين الرابع

1. أ-

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{x-1}{x}\right) e^x = +\infty : \text{ Lim} \checkmark$$

$$\begin{cases} \lim_{x \to +\infty} \left(\frac{x-1}{x}\right) = 1 \\ \lim_{x \to +\infty} e^x = +\infty \end{cases}$$

$$\lim_{x \to +\infty} \frac{f\left(x\right)}{x} = \lim_{x \to +\infty} \left(\frac{x-1}{x}\right) \frac{e^{x}}{x} = +\infty : \text{ Lim} \checkmark$$

$$\begin{cases} \lim_{x \to +\infty} \left(\frac{x-1}{x}\right) = 1 \\ \lim_{x \to +\infty} \frac{e^{x}}{x} = +\infty \end{cases}$$

 $+\infty$ يقبل فرعا شلجميا في اتجاه محور الأراتيب بجوار (C_f) يقبل فرعا شلجميا في اتجاه محور الأراتيب بجوار

1. ب-

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(\frac{x-1}{x} \right) e^x = 0 \quad \checkmark$$

$$\begin{cases}
\lim_{x \to -\infty} \left(\frac{x-1}{x} \right) = 1 \\
\lim_{x \to -\infty} e^x = 0
\end{cases}$$

 $-\infty$ بجوار y=0 بجوار معادلته y=0 بجوار معادلته y=0 بجوار y=0

1. ج-

$$\lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} \left(\frac{x - 1}{x}\right) e^x = +\infty \checkmark$$

$$\left\{\lim_{\substack{x \to 0 \\ x < 0}} \left(\frac{x - 1}{x}\right) = +\infty \atop \lim_{\substack{x \to 0 \\ x < 0}} 1 \right\}$$

$$\lim_{\substack{x \to 0 \\ x < 0}} e^x = 1$$

$$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} \left(\frac{x - 1}{x}\right) e^x = -\infty \quad \checkmark$$

$$\begin{cases}
\lim_{\substack{x \to 0 \\ x > 0}} \left(\frac{x - 1}{x} \right) = -\infty \\
\lim_{\substack{x \to 0 \\ x > 0}} = 1
\end{cases}$$

x=0التأويل الهندسى يا يقبل مقاربا عموديا معادلته (C_f)

 $x \in \mathbb{R}^*$ أـ ليكن.

لدينا

$$f'(x) = \left(\frac{x-1}{x}\right)e^{x}$$

$$= \left(\frac{x-1}{x}\right)'e^{x} + \left(\frac{x-1}{x}\right)(e^{x})'$$

$$= \frac{\begin{vmatrix} 1 & -1 \\ 1 & 0 \end{vmatrix}}{x^{2}}e^{x} + \frac{x-1}{x}e^{x}$$

$$= \frac{1}{x^{2}}e^{x} + \frac{x-1}{x}e^{x}$$

$$= \left(\frac{1+x^{2}-x}{x^{2}}\right)e^{x}$$

$$f'(x) = \frac{(x^{2}-x+1)}{x^{2}}e^{x} : \mathbb{R}^{*} \text{ is } x \text{ if } x \text{ i$$

 $x \in \mathbb{R}^*$ يكن $x \in \mathbb{R}^*$

$$f'(x) = \frac{(x^2 - x + 1)}{x^2} e^x$$
 لدينا

 $x^2 > 0$ و لاینا: $e^x > 0$

 $x^{2}-x+1$ إذن إشارة f'(x) هي إشارة

$$x^2 - x + 1 > 0$$
 اِذَن $\Delta = (-1)^2 - 4(1)(1) = 1 - 4 = -3 < 0$ الدينا:

 \mathbb{R}^* و بالتالي : f'(x) > 0 لكل عن

2. ج- على $]-\infty,0[$: بما أن f'(x)>0 فإن f تزايدية قطعا و على $[0,+\infty[$: بما أن f'(x)>0 فإن $[0,+\infty[$

2. د-

$$f(1) = \frac{1-1}{1}e^{1} = 0$$
: لدينا
: $f(1) = \frac{1-1}{1}e^{1} = 0$

x	$-\infty$ () +∞
f'(x)	+	+
f(x)	0 $+\infty$	$-\infty$

: 1 في النقطة ذات الأفصول المنحنى (C_f) في النقطة ذات الأفصول 3.

$$y = f'(1).(x-1)+f(1)$$

$$f'(1) = e$$
 و $f(1) = 0$: لدينا

$$y = e.(x-1)+0$$
 : إذن

$$(T)$$
: $y = ex - e$!

- : y=2 هو عدد نقط تقاطع (C_f) و المستقيم الأفقي الذي معادلته $f\left(x\right)=2$ هو عدد نقط تقاطع (المعادلة تقبل حلين .
- : y=-2 هو عدد نقط تقاطع C_f و المستقيم الأفقي الذي معادلته f(x)=-2 هو عدد نقط تقاطع و المستقيم الأفقي الذي معادلته f(x)=-2 المعادلة تقبل حلا وحيدا .

つづく