Rankers Academy JEE

(1001CJA101021240026)

Test Pattern

CLASSROOM CONTACT PROGRAMME

(Academic Session: 2024 - 2025)

JEE (Main)
PART TEST
08-12-2024

JEE(Main + Advanced) : ENTHUSIAST COURSE (SCORE-I)

ANSWER KEY PAPER-1 (OPTIONAL)

PART-1	:	PH'	YSI	ICS
--------	---	-----	-----	-----

SECTION-I	Q.	1	2	3	4	5	6	7	8	9	10
	A.	В	С	А	D	А	С	В	В	С	С
	Q.	11	12	13	14	15	16	17	18	19	20
	A.	D	С	D	D	D	В	А	С	В	В
SECTION-II	Q.	1	2	3	4	5					
	A.	4	3	9	3	4					

PART-2: CHEMISTRY

SECTION-II	Q.	1	2	3	4	5	6	7	8	9	10
	A.	В	В	D	А	D	В	А	С	В	С
	Q.	11	12	13	14	15	16	17	18	19	20
	A.	D	С	D	D	D	В	D	В	D	С
	Q.	1	2	3	4	5					
	A.	9480	1263	3	10	4					

PART-3: MATHEMATICS

SECTION-I	Q.	1	2	3	4	5	6	7	8	9	10
	A.	С	D	D	А	В	С	А	А	D	С
	Q.	11	12	13	14	15	16	17	18	19	20
	A.	С	В	В	С	В	А	D	С	С	В
SECTION-II	Q.	1	2	3	4	5					
	A.	0	16	2	50	8					

(HINT - SHEET)

PART-1: PHYSICS

SECTION-I

$$\begin{aligned} W_{net} &= w_g + w_{spring} \\ &= mg(h+d) + \frac{1}{2}k\left(0^2 - d^2\right) \\ w_{net} &= mg(h+d) - \frac{1}{2}kd^2 \end{aligned}$$

2. Ans (C)

$$\frac{1}{2}\text{mv}_0^2 + 0 = 4 + 0$$

$$\frac{1}{2}(0.5)\text{v}_0^2 = 4$$

$$\text{v}_0 = 4\text{ m/s}$$

5 Ang (A'

1001CJA101021240026

HS-1/8

Rankers Academy JE

Target : JEE(Main + Advanced) 2025/08-12-2024/Paper-1

ALLEN®

$$\vec{F} = (m_0 - \lambda t) \frac{d\vec{v}}{dt}$$

$$v_f = 0, I = m(\sqrt{2g(2)} - 0) = 1\sqrt{40}N - S$$

 $I = \sqrt{40} N - S$

for O:
$$-\frac{\frac{kp}{\sqrt{2}}}{\left(\frac{a}{\sqrt{2}}\right)^3} \times 2 = \frac{\frac{kp}{\sqrt{2}}.2}{\frac{a^3}{2\sqrt{2}}} = \frac{4kp}{a^3}$$

for A :-
$$\sqrt{2} \frac{kp}{a^3}$$

$$\frac{E_0}{E_A} = \frac{4}{\sqrt{2}} = 2\sqrt{2}$$

10. Ans (C)

$$v_{\text{disk}} = \frac{\sigma}{2\epsilon_0} \left(\sqrt{R^2 + r^2} - r \right)$$

$$v_{\text{quarter disk}} = \frac{\sigma}{8 \epsilon_0} \left(\sqrt{R^2 + r^2} - r \right)$$

11. Ans (D)

$$I = \int F dt = \int_{0}^{T_0} (600 - 2 \times 10^5 t) dt$$

for
$$T_0$$
, $F = 0 \Rightarrow 600 = 2 \times 10^5$ $T_0 \Rightarrow T_0 = 3 \times 10^{-3}$ sec

$$I = 600 \,\mathrm{T_0} - 2 \times 10^5 \,\frac{\mathrm{T_0}^2}{2}$$

$$=600\times3\times10^{-3}-10^{5}\times9\times10^{-6}$$

$$=9 \times 10^{-1} = 0.9 \text{ N-S}$$

12. Ans (C)

$$B + F = mg$$

$$\rho_0 \frac{4}{3} \pi R^3 g + q E = \rho. \frac{4}{3} \pi R^3 g$$

$$qE = (\rho - \rho_0) \frac{4}{3} \pi R^3$$

$$N = \frac{(\rho - \rho_0) \frac{4}{3} \pi R^3}{eE}$$

13. Ans (D)

$$T = mg \cos \theta$$

$$tan \theta = \mu$$

$$T = mg \frac{1}{\sqrt{1 + \mu^2}}$$

14. Ans (D)

$$\longrightarrow$$
 V_0 A \longrightarrow B

$$\frac{1}{2} \frac{2m}{3}$$
. $V_0^2 = \frac{1}{2} kx_0^2$

$$k = \frac{2mV_0^2}{3x_0^2}$$

15. Ans (D)

 $\Delta KE = -mgsin\theta - \mu mg cos\theta$

 $\Delta KE = mgsin\theta - \mu mg \cos\theta$

Rankers Academy JEE

ALLEN®

16. Ans (B)

Ans (B)
$$F = -\frac{dU}{dr} = -\frac{km}{r^2}$$

$$\int dv = km \int \frac{dr}{r^2}$$

$$U = -\frac{km}{r} + C$$

$$-\frac{km}{3R/2} + 0 = \frac{1}{2}mv_0^2 - \frac{km}{R/2}$$

$$\frac{1}{2}mv_0^2 = 2\frac{km}{R} - \frac{2km}{3R} = \frac{4km}{3R}$$

$$v_0^2 = \frac{8k}{3R} \Rightarrow v_0 = \sqrt{\frac{8k}{3R}}$$

19. Ans (B)

$$E_1 = -\frac{1}{20^2} = -2G$$

$$E_2 = \frac{-G(450)}{15^2} = -2G$$

20. Ans (B)

$$V = \frac{kQ}{2R} \left(3 - \frac{r^2}{R^2} \right)$$

$$0 + \frac{kQq_1}{2R} \left(3 - \frac{1}{4} \right) = \frac{1}{2} mv^2 + \frac{kQq_1}{(2R)}$$

$$\frac{kQq_1}{2R}\left(\frac{11}{4}\right) = \frac{1}{2}mv^2 + \frac{kQq_1}{2R}$$

$$\frac{kQq_1}{R}\left(\frac{11}{8} - \frac{1}{2}\right) = \frac{1}{2}mv^2$$

$$\frac{7}{8} \cdot \frac{kQq_1}{R} = \frac{1}{2}mv^2$$

$$v = \frac{\sqrt{7}}{2} \sqrt{\frac{kQq_1}{mR}}$$

PART-1: PHYSICS

SECTION-II

1. Ans (4)

$$v = \sqrt{\frac{2GM}{R}} \Rightarrow v \propto \frac{1}{\sqrt{R}}$$
$$\frac{v_1}{v_2} = \sqrt{\frac{R_2}{R_1}} \Rightarrow \frac{v}{10v} = \sqrt{\frac{R_2}{6400}}$$
$$R_2 = 64 \text{ km}$$

2. Ans (3)

$$N_1 = mg + ma = 80.5g$$

$$N_2 = mg - ma = 59.5 g$$

$$2mg = 140 g \Rightarrow m = 70 kg$$

$$70g + 70 a = 80.5 g \Rightarrow 70 a = 105$$

$$a = 1.5$$

3. Ans(9)

$$dF = \frac{\rho r}{3} (4\pi G) \lambda dr$$

$$=\frac{\rho\lambda}{3}.4\pi Grdr$$

$$F_{\text{net}} = \int dF$$

$$-\rho \lambda = \int_{-\infty}^{R} dF$$

$$= \frac{\rho \lambda}{3}.4\pi G \int_{4R/5}^{R} r dr$$

$$=\frac{\rho\lambda}{3}.4\pi G.\frac{\left(R^2-\frac{16R^2}{25}\right)}{2}$$

$$F_{\text{net}} = \frac{\lambda}{3}.4\pi G \frac{GR^2}{50}. \frac{M}{\frac{4}{3}\pi R^3}$$

$$= \frac{9}{50} \left(\frac{GM}{R} \right) \lambda = \frac{9}{50} \left(\frac{GM}{R^2} \right) R\lambda$$

$$=\frac{9}{50}\times1\times6\times10^5\times10^{-3}=108 \text{ N}$$

Rankers Academy JEE Target: JEE(Main + Advanced) 2025/08-12-2024/Paper-1

ALLEN®

4. Ans (3)

$$\begin{array}{ccc}
\overrightarrow{m_{A}} & \overrightarrow{m_{B}} \\
\overrightarrow{V_{1}} & \overrightarrow{m_{B}} & \overrightarrow{m_{B}}
\end{array}$$

$$m_A v = m_B v_1 - m_A v_1$$

$$m_A v = (m_B - m_A)v_1$$

$$e = 1 = \frac{v_1 + v_1}{v} = \frac{2v_1}{v} \Rightarrow \frac{v_1}{v} = \frac{1}{2}$$

$$\frac{m_A}{m_B - m_A} = \frac{1}{2} \Rightarrow 2m_A = m_B - m_A$$

$$m_A = \frac{m_B}{3}$$

$$\frac{m_{\rm A}}{m_{\rm A}} = \frac{3}{1}$$

$$mg(8) + \frac{kq^2}{9} = \frac{kq^2}{1} + 0$$

$$mg(8) = kq^2. \frac{8}{9}$$

$$q^2 = \frac{9mg}{k}$$

$$q^2 = \frac{9 \times 80 \times 10^{-3} \times 9.8}{9 \times 10^9}$$

$$q = 28 \mu C$$

2. Ans (B)

$$R - Cl + AlCl_3 \rightarrow R^{\oplus} + AlCl_4^{-}$$

$$RCOCl + AlCl_3 \rightarrow RCO^{\oplus} + AlCl_4^{-}$$

Here both R^{\bigoplus} and RCO^{\bigoplus} are acting as electrophile.

3. Ans (D)

Ti⁺³ configuration : 3d¹

 t_{2g} : ground state of complex, \boldsymbol{e}_g : next higher state

 \therefore e⁻ excites from t_{2g} to e_g

8. Ans (C)

$$\begin{split} & \Big[\text{Co} \big(\text{NH}_3 \big)_6 \Big] \text{Cl}_3 + 3 \text{AgNO}_3 \rightarrow \\ & \big(\text{aq} \big) \\ & \Big[\text{Co} \big(\text{NH}_3 \big)_6 \Big]^{+3} 3 \text{NO}_3^- + 3 \text{AgCl} \downarrow \\ & \big(\text{white} \big) \end{split}$$

9. Ans (B)

$$\left[\operatorname{Fe}(\operatorname{CN})_{6}\right]^{4-} \Rightarrow \operatorname{Fe}^{+2} : 6 \text{ valence electrons}$$

 $e^{-} \operatorname{s} \operatorname{from } 6 \operatorname{CN} = 12$

Total 18 valence electrons

10. Ans (C)

set:
$$1 = d_{xy}, d_{yz}, d_{zx}$$
: non – axial

set:
$$2 = d_{z^2}, d_{x^2-v^2}$$
: axial

11. Ans (D)

8m

 $1 \mathrm{m}$

The M-C π bond is formed by the donation of a pair electrons from a filled d orbital of metal into the vacant antibonding π^* of carbon monoxide.

18. Ans (B)

 C_2H_6 has neither lone pair nor π -bond.

19. Ans (D)

20. Ans (C)

$$X = Polar \Rightarrow cis - [Pt (gly)_2]$$

 $Y = Non-polar \Rightarrow trans- [Pt (gly)_2]$

PART-2: CHEMISTRY

SECTION-II

1. Ans (9480)

$$\Delta_0 < P \Rightarrow$$
 so no forced pairing.
CFSE = $3 \times (-0.4\Delta_0) + 1 \times (+0.6\Delta_0)$

$$=-1.2\Delta_0 + -0.6\Delta_0 = -9480 \text{ cm}^{-1}$$

Rankers Academy

ALLEN®

Enthusiast Course/Score-I/08-12-2024/Paper-1

2. Ans (1263)

Moles of $Cl^- = 3 \times 0.0012 = 0.0036 = \text{moles of H}^+$ moles of H^+ = moles of OH $0.0036 = 28.5 \times 10^{-3} \times x$ x = 0.1263

3. Ans (3)

Ans (10) 4.

Formed product is

Hence its degree of unsaturation is 10.

5. Ans (4)

Cumene
$$\xrightarrow{(i)O_2(AH)/A}$$

OH

OCOCH₃

(i) NaOH/CO₂

(ii) Ac₂O/H ^{\oplus}

PART-3: MATHEMATICS SECTION-I

Ans (C) 1.

Normal at $(x_1 y_1)$ be $xx_1 - yy_1 = x_1^2 - y_1^2$ Pass's through (3, 2)

$$3x_1 - 2y_1 = x_1^2 - y_1^2$$
 ...(i

Also
$$x_1y_1 = 4$$
 ...(ii)

So,
$$3x_1 - \frac{8}{x_1} = x_1^2 - \frac{16}{x_1^2}$$

 $3x_1^3 - 8x_1 = x_1^4 - 16$

$$\Rightarrow x_1^4 - 3x_1^3 + 8x_1 - 16 = 0$$

$$\sum x_i = 3$$
 $\prod x_i = -16$
So, $\frac{\sum x_i}{\prod x_i} = \frac{-3}{16}$

Ans (D)

$$y = 2 + \frac{1}{x+1}$$

$$\Rightarrow (y-2)(x+1) = 1$$

$$C$$

$$(-2,1) \quad A'$$

$$(-1,2)$$

$$x = -1$$

$$a = \sqrt{2}$$

Length of L.R. = $2\sqrt{2}$

Ans (D)

Let circle $S \equiv x^2 + y^2 - a^2 = 0$ and given hyperbola $xy = c^2$

Then,
$$x^2 + \frac{c^4}{x^2} = a^2$$
 or $x^4 - a^2x^2 + c^4 = 0$

If four intersecting points are

$$\left(ct_1,\ \frac{c}{t_1}\right)\ ,\ \left(ct_2,\ \frac{c}{t_2}\right),\ \left(ct_3,\ \frac{c}{t_3}\right) \text{ and }$$

$$\left(ct_4,\ \frac{c}{t_4}\right)\ , \text{ then }$$

$$(ct_1)(ct_2)(ct_3)(ct_4) = c^4$$

$$t_1 t_2 t_3 t_4 = 1$$

∴ Reason is true.

For the point (2, 2); $t_1 = 1$

For the point (4, 1); $t_2 = 2$

For the point (6, 2/3); $t_3 = 3$

For the point $\left(\frac{1}{4}, 16\right)$; $t_4 = \frac{1}{8}$

Now, $t_1 t_2 t_3 t_4 = \frac{3}{4} \neq 1$

: Assertion is false.

Ans (A)

$$e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{24}{49}} = \frac{5}{7}$$

$$foci = (\pm ae, 0) = (\pm 5, 0)$$

$$A \times \frac{5}{1 - \frac{1}{2}} = 5 \Rightarrow A = \sqrt{2} \& B^2 = A^2(e^2 - 1) = 2$$

$$A \times \frac{5}{\sqrt{2}} = 5 \Rightarrow A = \sqrt{2} \& B^2 = A^2(e^2 - 1) = 23$$

Ans (B) 5.

Since each line of family of line passes through the focus of given parabola hence shortest intercept is L.R.

Rankers Academy Target : JEE(Main + Advanced) 2025/08-12-2024/Paper-1

ALLEN®

6. Ans (C)

> minimum value of E is the shortest distance between the parabola $y^2 = 4x$ and circle

$$(x+1)^2 + (y-14)^2 = 9.$$

Thus normal to the parabola $y^2 = 4x$, be

 $y = mx - 2m - m^3$ passes through (-1, 14)gives $m^3 + 3m + 14 = 0$, Thus only one real value m = -2

Hence corresponding point on the parabola is (4, 4)

Thus required minimum distance is

$$\sqrt{5^2 + 10^2} - 3 = 5\sqrt{5} - 3$$

7. Ans (A)

$$x^2 + y^2 + Ax + By + C = 0$$

is passing through (0,0)

$$C = 0$$

The tangent of the parabola $y = x^2$ at (2, 4) is

$$4x - y - 4 = 0$$
(1)

The tangent of circle

$$x^2 + y^2 + Ax + By + C = 0$$
 at (2, 4) is

$$(4 + A) x + (8 + B)y + 2A + 4B = 0$$
(2)

From Equation (1) and (2)

$$\frac{4+A}{4} = \frac{8+B}{-1} = \frac{2A+4B}{-4}$$

$$A + 4B = -36$$
(3)

$$3A + 4B + 2C = -4$$
(4)

Circle passes through (2, 4)

$$A + 2B = -10$$

From (3), (4) and (5)

$$A = 16$$

$$B = -13$$

8. Ans (A)

x = 1 is a root of the equation

$$D = 0$$

$$\Rightarrow \frac{-b}{2a} = 1 \Rightarrow \frac{r - q}{2p - 2q} = 1$$

$$r - q = 2p - 2q$$

$$2p - q - r = 0$$

$$-2p + q + r = 0$$

$$px + qy + r = 0$$

always passes through (-2, 1)

10. Ans (C)

$$S_1: x^2 + y^2 = 9 < r_1 = 3$$

$$S_1: x^2 + y^2 = 9 \underbrace{\qquad}_{A(0, 0)}^{r_1 = 3}$$

$$S_2: (x - 2)^2 + y^2 = 1 \underbrace{\qquad}_{B(2, 0)}^{r_2 = 1}$$

$$\therefore c_1c_2 = r_1 - r_2$$

: given circle are touching internally

Let a variable circle with centre P and radius r

$$\Rightarrow$$
 PA = $r_1 - r$ and PB = $r_2 + r$

$$\Rightarrow$$
 PA + PB = $r_1 + r_2$

$$\Rightarrow$$
 PA + PB = 4 (> AB)

 \Rightarrow Locus of P is an ellipse with foci at A(0, 0) and

B(2, 0) and length of major axis is 2a = 4, $e = \frac{1}{2}$

$$\Rightarrow$$
 centre is at (1, 0) and $b^2 = a^2(1 - e^2) = 3$

if x-ellipse

$$\Rightarrow E: \frac{(x-1)^2}{4} + \frac{y^2}{3} = 1$$

which is satisfied by $\left(2,\pm\frac{3}{2}\right)$

11. Ans (C)

$$\frac{3}{2a^2} + \frac{1}{b^2} = 1$$
 and $1 - \frac{b^2}{a^2} = \frac{1}{3}$
 $\Rightarrow a^2 = 3 \ b^2 = 2$

$$\Rightarrow \frac{x^2}{3} + \frac{y^2}{2} = 1 \qquad \dots (i)$$

Its focus is (1.0)

Now, eqn of circle is

$$(x-1)^2 + y^2 = \frac{4}{3}$$
(ii)

Solving (i) and (ii) we get

$$y = \pm \frac{2}{\sqrt{3}}, x = 1$$

$$\Rightarrow PQ^2 = \left(\frac{4}{\sqrt{3}}\right)^2 = \frac{16}{3}$$

 $\Rightarrow PQ^2 = \left(\frac{4}{\sqrt{2}}\right)^2 = \frac{16}{3}$

Rankers Academy JEE

ALLEN®

12. Ans (B)

equation of director circle

$$x^{2} + y^{2} = a^{2} + b^{2}$$

 $x^{2} + y^{2} = 25 + 16$
 $x^{2} + y^{2} = 41$

13. Ans (B)

$$S_1 < 0$$

$$\frac{\left(7 - \frac{5h}{4}\right)^2}{25} + \frac{\left(-h\right)^2}{16} - 1 < 0$$
⇒ $25h^2 - 140h + 192 < 0$
⇒ $(5h - 12)(5h - 16) < 0$
⇒ $\frac{12}{5} < h < \frac{16}{5}$
∴ Integral value of h is 3

14. Ans (C)

$$\cos 5^{\circ} \cos 55^{\circ} \cos 65^{\circ} = \frac{1}{4} \cos 15^{\circ}$$
$$= \frac{1}{4} \cdot \frac{\sqrt{3} + 1}{2\sqrt{2}} = \frac{\sqrt{3} + 1}{8\sqrt{2}}$$

15. Ans (B)
BC

16. Ans (A)

$$\cot A + \cot B = p \cot A \cot B = q$$

$$\frac{\sin(A+B)}{\sin A \sin B} = p - q - 1 = \frac{\cos(A+B)}{\sin A \sin B}$$

$$p^{2} + (q-1)^{2} = \frac{\sin^{2}(A+B)}{\sin^{2}A\sin^{2}B} + \frac{\cos^{2}(A+B)}{\sin^{2}A\sin^{2}B}$$

$$p^{2} + (q-1)^{2} = \frac{1}{\sin^{2}A\sin^{2}B}$$

$$(q-1)^{2} = \frac{\cos^{2}(A+B)}{\sin^{2}A\sin^{2}B}$$

$$\cos^{2}(A+B) = \frac{(q-1)^{2}}{p^{2} + (q-1)^{2}}$$

17. Ans (D)

$$S_{k} = \frac{k}{2} (2 \times 1 + (k - 1) \times 1)$$

$$S_{k} = \frac{k}{2} (k + 1)$$

$$\sum_{k=1}^{100} \frac{2}{k(k+1)} = \sum_{k=1}^{100} \left(\frac{2}{k} - \frac{2}{k+1}\right)$$

$$= 2 - \frac{2}{101} = \frac{200}{101}$$

$$S = \frac{200}{101} - 1$$

Enthusiast Course/Score-I/08-12-2024/Paper-1

18. Ans (C)

$$\left(\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots \infty\right)$$

$$-\left[\frac{1}{2^2} + \frac{1}{4^2} + \frac{1}{6^2} + \dots \infty\right]$$

$$= \omega - \frac{1}{2^2} \left\{\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots \infty\right\}$$

$$\omega - \frac{1}{4}\omega = \frac{3\omega}{4}$$

19. Ans (C)

2 (required sum) =
$$(1 - 1 + 2 - 2 + \dots + n - n)^2 - (1^2 + 1^2 + 2^2 + 2^2 + \dots + n^2 + n^2)$$

20. Ans (B)

We have,
$$2b^2 - a^2 > a^2 + b^2 \Rightarrow b^2 > 2a^2$$

$$\Rightarrow \left| \frac{b}{a} \right| > \sqrt{2}$$

PART-3: MATHEMATICS

SECTION-II

1. Ans (0)

Intersection point of tangent at vertex and tangent is (-1, 1)

Now equation of line which is \perp from given tangent and passing through (-1, 1) is

$$y-1 = -\frac{1}{2}(x+1) \implies 2y-2 = -x-1$$

 $x + 2y = 1$

this line x + 2y = 1 and equation of axis satisfied the focus

$$\therefore$$
 x + 2y = 1 and x = y \Rightarrow x = $\frac{1}{3}$, y = $\frac{1}{3}$

Now distance between focus and tangent at

$$a = \left| \frac{\frac{1}{3} + \frac{1}{3}}{\sqrt{2}} \right| \Rightarrow 4a = \frac{8}{3\sqrt{2}}$$
$$\Rightarrow 2a = \frac{4}{3\sqrt{2}} = L$$
$$= L^2 = \frac{8}{3}$$

Rankers Academy

2. Ans (16)

$$k^{2} = \frac{1}{2} \cdot \left| \frac{h + k - 2}{\sqrt{2}} \right| \cdot \left| \frac{h - k + 2}{\sqrt{2}} \right|$$

$$4k^{2} = -(h + k - 2) (h - k + 2)$$

$$4k^{2} = (h + k - 2) (-h + k - 2)$$

$$4k^{2} = (k - 2)^{2} - h^{2}$$

$$4k^{2} = (k - 2)^{2} - 4k^{2}$$

$$4k^{2} = (k - 2)^{2} - 4k^{2}$$

$$4k^{2} = -3k^{2} + 4 - 4k$$

$$4k^{2} + 3k^{2} + 4k = 4$$

$$4k^{2} + 3k^{2} + 3k^{2} + 4k = 4$$

$$4k^{2} + 3k^{2} + 3k^{2} + 4k = 4$$

$$4k^{2} + 3k^{2} + 3k^{2} + 4k = 4$$

$$4k^{2} + 3k^{2} + 3k^{2} + 4k = 4$$

$$4k^{2} + 3k^{2} + 3k^{2} + 4k = 4$$

$$4k^{2} + 3k^{2} + 3k^{$$

3. Ans (2)

Any point on hyperbola $(2\sec\theta, 3\tan\theta)$ chord of contact : $2\sec \sigma x + 3\tan \sigma y = 4$...(1) equation of chord of circle, whose midpoint is (h,k)

$$hx + ky = h^2 + k^2$$
 ...(2)

compare eq(1) and eq(2)

$$\frac{2 \sec \theta}{h} = \frac{3 \tan \theta}{k} = \frac{4}{h^2 + k^2}$$

$$\sec \theta = \frac{2h}{h^2 + k^2}, \tan \theta = \frac{4k}{3(h^2 + k^2)}$$

$$\frac{4h^2}{(h^2 + k^2)^2} - \frac{16k^2}{9(h^2 + k^2)^2} = 1$$

$$\frac{(36x^2 - 16y^2)}{9} = (x^2 + y^2)^2$$

$$\frac{9}{4}(4x^2 - 9y^2) = (x^2 + y^2) \text{ locus of mid point}$$

$$b = \frac{36}{9}, c = \frac{16}{9}$$

Ans (50)

$$(2\sec^{2}A - \sec^{4}A) - (2\csc^{2}A - \csc^{4}A)$$

$$= \frac{15}{4}$$

$$\sec^{2}A(2 - \sec^{2}A) - \csc^{2}A(2 - \csc^{2}A)$$

$$= \frac{15}{4}$$

$$(1 - \tan^{4}A) - (1 - \cot^{4}A) = \frac{15}{4}$$
Put $\tan^{4}A = t$ $-t + \frac{1}{t} = \frac{15}{4}$

$$\frac{1 - t^{2}}{t} = \frac{15}{4} \Rightarrow 4t^{2} + 15t - 4 = 0$$

$$4t^{2} + 16t - t - 4 = 0$$

$$t = -4, \frac{1}{4}$$

$$\tan^{4}A = \frac{1}{4} \Rightarrow \tan^{2}A = \frac{1}{2}$$

5. Ans (8)

Length of tangent = $\sqrt{\alpha\beta}$ = $\sqrt{64}$ = 8