I. Décharge oscillante d'un condensateur dans une bobine

1. Circuit, conditions initiales et équation différentielle

À l'état initial, le condensateur est chargé. $u_c(0) = 0$ et i(0) = 0

On obtient l'équation différentielle suivante : $\boxed{\ddot{u}_{\it C} + \frac{1}{\it I.C} u_{\it C} = 0}$

$$\ddot{u}_C + \frac{1}{LC}u_C = 0$$

2. Résolution de l'équation différentielle

$$u_C(t) = u_0 \cos\left(\frac{2\pi}{T_0}t + \phi_0\right)$$

$$u_C(t) = E \cos\left(\frac{2\pi}{T_0}t\right) \text{ avec } T_0 = 2\pi\sqrt{LC}$$

$$u_0: \text{ amplitude de la tension } \phi_0: \text{ phase à l'origine des dates } T_0: \text{ période propre}$$

Pour trouver les constantes, calcul de $\dot{u}_{\mathcal{C}}$ puis $\ddot{u}_{\mathcal{C}}$ et remplacement de $u_{\mathcal{C}}$ et $\ddot{u}_{\mathcal{C}}$ dans l'équation pour trouver T_0 . Puis utilisation de i(0)=0 (avec $i(t)=C\frac{du_C}{dt}$) pour avoir $\Phi_0=0$. Enfin on trouve u_0 à partir de $u_c(0) = 0$.

 u_{C} est une tension sinusoïdale : on dit que le circuit LC est le siège d'oscillations électriques libres de période propre $T_0=2\pi\sqrt{LC}$ et que <u>le</u> régime obtenu est périodique.

3. Établissement de l'équation différentielle pour un amortissement non-négligeable

On a l'équation différentielle suivante :

$$\ddot{u}_C + \frac{r+R}{L}\dot{u}_C + \frac{1}{LC}u_C = 0$$

Le dipôle RLC

II. Influence de l'amortissement

Régime périodique de période T₀ Amortissement négligeable :

Régime pseudopériodique de période $T \approx T_0$ • Amortissement faible :

Régime apériodique **Amortissement important:**

III. Interprétation énergétique

$$\mathcal{E}_T$$
 (J) : énergie totale

 $\mathcal{E}_{\mathcal{C}}$ (J) : énergie emmagasinée par le condensateur

 \mathcal{E}_L (J) : énergie emmagasinée par la bobine E (V) : tension aux bornes du condensateur à l'état initial

C (F): capacité du condensateur

L'énergie totale du circuit est constante. Il y a un transfert perpétuel d'énergie entre le condensateur et la bobine.

IV. Entretient des oscillations

On utilise un dipôle D (en série dans le circuit) nommé « montage à résistance négative » dont la tension à ses bornes est $u = -R_0i$ en convention récepteur avec $R_0 = r + R$ afin de fournir l'énergie dissipée par effet Joule.

Le circuit RLC se comporte alors comme un circuit LC idéal.