Clustering Comparison between EM and Kmeans + NIPS text analysis the Ultimate 自片

報告概要方法比較 演算法介紹 方法比較 NIPS分析

報告概要

- EM 與K-means 實作與比較
 - 1. 介紹EM演算法的概念,流程
 - 2. 找兩組資料來分看看
 - 3. R Package Demo

- NIPS 文字分析
 - 1. 燒爛電腦

Code & Detail Available:

https://github.com/hyades910739/cluster_NIPS

K-means

演算法流程

- 1. 從資料中隨機選取K點作為起始點,所有觀測值分別計算與這K點的距離, 把各觀測值分配到最近的點
- 2. 分群後計算群的中心點,作為下次迭代之起始點
- 3. 重複1.2. 直至收斂或電腦受不了

報告概要 方法比較 NIPS分析

K-means

K-means

特性

- 1. 時間複雜度: O(NCI), N為資料數量, C為集群數, I為迭代次數
- 2. 可以用不同的dissimilarity來計算

EM Algorithm

演算法流程

設有觀測值 X 與隱變數 Y , 透過以下步驟估計X與Y相關的參數

- 1. E: 給定觀測值與第t次的參數估計值,計算x與y的對數概似函數的期望值
- 2. M:用數值方法找出參數估計值,使得E步驟的函數極大化
- 3. 重複1,2,直至收斂或電腦受不了

EM Algorithm

注意事項

- 1. 比起自己設定起始點外,使用隨機起始點是比較實際的方法(除非有人托夢給你)
- 2. 再估計共變異矩陣時,需要求權重,即P(Y|X)不得為0,若皆為0必須做出調整
- 3. 再進行參數估計時,可以對參數做出限制,例如限制所有高斯模型的共變異矩陣皆相同,或為相異,但共變異為0的矩陣。

報告概要 演算法介紹 方法比較 NIPS分析

EM Algorithm

pseudo code?!

for n個隨機起始點: while 沒收斂: 計算P(Y|X, $\theta^{(t)}$); 計算 α, μ, Σ ; if $P(Yi|X,\theta^{(t)})$ 很小: 調整值 if收斂或迭代次數達上限: 離開迴圈 傳回參數估計,log likelihood function

比較n個log likelihood function,回傳值最大者

EM Algorithm

特色

- 1. 有統計背景的演算法,somehow比較優雅不俗
- 2. 計算複雜,跑豪久rrrr
- 3. 概似函數越高,就代表分的越好???

報告概要 方法比較 NIPS分析

與其他集群方法的比較

有此一說[1]

- 1. EM 與K-means 的準確率(accuracy)低於SOM與Hierarchical
- 2. EM 與K-means 在大型資料上表現較佳
- 3. EM 與K-means 對於雜訊較敏感

報告概要 方法比較 NIPS分析

E-K大對抗

使用資料

利用iris與seeds資料集來比較分群能力

IRIS:

1. 資料來源:R內建資料

2. 資料筆數:150筆

3. 欲分群數:3群

SEEDS:

1. 資料來源: UCI ML[2]

2. 資料筆數:210筆

3. 欲分群數:3群

報告概要 方法比較 XIPS分析

E-K大對抗

比較準則

對於分群方法,我們的比較大致分為三個方向,以下為一些相關準則:[3]

- 1. 內部比較:silhouette width,connectivity [4]
- 2. 穩定性比較: WADP[5,6], APN
- 3. 正確性比較:purity

- [3]: clValid: An R Package for Cluster Validation
- [4]:Computational cluster validation in post-genomic data analysis
- [5]:Evaluation and Comparison of Clustering Algorithms in Analyzing ES Cell Gene Expression Data
- [6]:Molecular classification of cutaneous malignant melanoma by gene expression profiling

silhouette width

Definition:

Let

a(i): the average distance between i and all other data within same cluster.

b(i): the lowest average distance of i to all points in any other cluster.

Then:

$$S(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

所以silhouette 越接近1表示分群結果越好

WADP

定義

設原始分群結果有K群,其中第j群有 m_j 個觀測值。現將各變數(columns)加入雜訊後重

新分群,計算這 m_j 個觀測值兩兩分在不同群的對數,記為 D_j 。若有 m_j 個觀測值,則會

有
$$M_j = \frac{m_j(m_j-1)}{2}$$
 組對數。定義WADP為

WADP =
$$\frac{\sum_{j=1}^{k} m_j \frac{D_j}{M_j}}{\sum_{j=1}^{k} m_j}$$

則WADP接近0則分群較為穩定(robustness),接近1則易受噪音影響。

Purity

定義

若有原始標籤,就能比較分群準確率,簡單來說,purity就是分對的比率。

設分群結果各群數量為 $\Omega = (\omega_k, ...)$,原始標籤各群數量為 $C = (c_j, ...)$,觀察值總數為N

則定義purity為:

$$Purity(\Omega, C) = \frac{1}{N} \Sigma_k max_j \mid \omega_k \cap c_j \mid$$

越接近1越好

報告概要方法比較方法比較NIPS分析

Note: single or average?

由於k-means與EM演算法皆涉及隨機起始點,無法保證每次收斂的結果都一樣,特別 是當資料很大,或在較寬鬆的收斂準則下。所以,再不同群數、不同變數、或不同方法 下使用這些比較準則,應該進行多次實驗後取平均,比較保守。

其中,WADP更涉及加入隨機噪音,因此必須要多次實驗取平均[5],才是一合理的估計。

Data: iris

Purity and Confused matrix:

EM:

Purity: 0.97

\Label Cluster	setosa	versicolor	virginica
1	50	0	0
2	0	5	50
3	0	45	0

K-Means:

Purity: 0.89

\Label Cluster	setosa	versicolor	virginica
1	50	0	0
2	0	48	14
3	0	2	36

方法比較

Data: iris

	Purity	Silhouette	WADP(0.1)	WADP(1)
EM	0.97	0.50	0.19	0.44
K-Means	0.89	0.55	0.05	0.64

"各有千秋" 來自水鏡先生的評語 ref: 火鳳燎原

Data: Seeds

	Purity	Silhouette	WADP(0.1)	WADP(1)
EM	0.89	0.44	0.22	0.45
K-Means	0.90	0.47	0.06	0.63

結論:

- 1. 在資料較小時,EM 與K-means 的表現非常相似惟 Silhouette 都是K-means較優
- 2. 雖說分群結果大略相同,但實際運行時間EM遠大於K-means 當然也是因為EM寫得不夠有效率qq

報告概要方法比較 演算法介紹 NIPS分析

NIPS 文字分析:

定義問題:

- 找出論文產量前十大的作者,試著對這些論文進行分群,檢驗分群結果是否能對應 到原本的十位作者(群)
- 2. 刪除掉共寫的論文後,共有460篇

文字處理:

處理流程:

斷詞、清理停用詞、 字尾處理 以TF-IDF呈現 Vector Space Model (7241X213090) 利用SVD降至 100維的論文向量 (460X100)

O 分 群 報告概要方法比較 演算法介紹 NIPS分析

文字處理:

處理流程:

問題:要在哪裡取子集

B告概要 方法比較 演算法介紹 NIPS分析

K-means分群結果:

報告概要 方法比較 XIPS分析

加入其他特徵:

POS 詞性標記:

- 1. 定義超過10字元的句子為一句,計算各論文之句數
- 2. 找出特定詞性('CC','DT','EX','IN','MD','WP','WRB','WDT')的詞語 計算這些詞平均每句出現次數,作為變數

其他特徵:

1. 句數、平均句長、字元數大於100的句數(長句)

加入其他特徵:

分群結果: EM(一千次的平均)

	emf_acc	emfp_acc	ems_acc
mean	0.345	0.345	0.374
std	0.024	0.023	0.024
50%	0.343	0.343	0.374

	emf_sil	emfp_sil	ems_sil
mean	0.035	0.034	0.041
std	0.005	0.005	0.005
50%	0.035	0.035	0.041

報告概要方法比較 演算法介紹 NIPS分析

分群結果: K-means(一千次的平均)

	kmf_acc	kmfp_acc	kms_acc
mean	0.336	0.336	0.371
std	0.021	0.023	0.024
50%	0.335	0.345	0.370

	kmf_sil	kmfp_sil	kms_sil
mean	0.044	0.043	0.048
std	0.005	0.005	0.004
50%	0.044	0.043	0.048

"我怕眼淚撐不住!"

來自周杰倫的評語

ref: 火鳳燎原

報告概要 方法比較 XIPS分析

結論

- 1. 不論再大資料與小資料中,EM與 K-means 的表現都滿相似的
- 2. 通常EM的purity略高於K-means, silhouette 則相反(可能與演算法本身特性有關)
- 3. 文字分析還有很長一段路要走