Zachary Seymour MATH 506 Presentation Notes May 6, 2014

The space R^{∞} is complete.

Proof. Let $\{x^n\}$ be a Cauchy sequence in R^{∞} , where $x^n=(x_1^n,x_2^n,\dots)$. Our goal is to find an $x=(x_1,x_2,\dots)\in R^{\infty}$ such that $x^n\to x$. Let $\varepsilon>0$. Because each x^n is Cauchy, we have $\exists N>0$ such that $d(x^n,x^m)<\varepsilon, \forall n,m>N$. Therefore, for all i and all n,m>N, we have $|x_i^n-x_i^m|<\varepsilon$. Furthermore, this means, for each i we have (x_i^1,x_i^2,\dots) a Cauchy sequence in \mathbb{R} . Since \mathbb{R} is complete, we have a limit x_i : $x_i=\lim_{n\to\infty}x_i^n$.

Now, choose $\varepsilon > 0$ and replace ε above with $\frac{\varepsilon}{2}$. Again, we can find an N > 0 such that $|x_i^n - x_i^m| < \frac{\varepsilon}{2}$, for all k and n, m > N. Now take the limit as $m \to \infty$, we have $|x_i^n - x_i| < \frac{\varepsilon}{2}$. If we take supremum, we have $\sup_{k=1}^{\infty} |x_i^n - x_i| \le \frac{\varepsilon}{2}$. This implies $d(x^n - x) \le \frac{\varepsilon}{2} < \varepsilon$ and thus x^n converges to x.