List of Tables

3.1	Vortex Decay: Calculated Rates of Convergence and Associated Pearson Coefficient	117
4.1	Lid-Driven Cavity Problem: Predicted Vortex Locations and Comparison with the Simulation of Ghia et al. [5], Re = 1000	143
4.2	Lid-Driven Cavity: Computational Cost, Re = 1000	143
5.1	Comparisons of Performance of Several Triangular Mixed Elements of Fig. 5.3 in a Plane Extrusion Problem (ideal plasticity assumed) [40]	168
5.2	Details of Unstructured Meshes Employed	182
5.3	Comparison of Drag Force for the Newtonian Case	184
6.1	Natural Convection in a Square Enclosure. Comparison with Available Numerical Solutions [76]. References Are Shown in Square Brackets	218
9.1	Average Hot Wall Nusselt Number Distribution for Natural Convection in a Variable Porosity Medium, Aspect Ratio = 10	320
9.2	Average Nusselt Number Comparison with Analytical and Numerical Results	323
10.1	Bristol Channel and Severn Estuary—Observed Results and FEM Computation (FL Mesh) of Tidal Half-Amplitude ($m \times 10^2$)	341
11.1	Radiation Conditions for Exterior Wave Problems	360
12.1	Plane Wave Scattering by a Rigid Circular Cylinder, $k_1 = 2k_2$	410
14.1	Major Arteries Used in the Present Study. The ID Numbers and Name Correspond to Those in Figure 14.1.	454