Business Intelligence Conceitos

Prof. Sergio Bonato, 2019
asbonato@gmail.com

0 que é BI

- -Organizar os dados estruturados e não estruturados espalhados pela empresa e transformá-los em informações úteis para a gestão da empresa, para o planejamento de estratégias e para a tomada de decisão dos executivos.
- -Os dados estruturados vem geralmente dos <u>sistemas transacionais</u> da empresa.
- -Os não estruturados vem de processos como KMS e Cl.

A Gerência de Conhecimento (KMS) trabalha as informações independente de sua forma, estrutura e domínio

Pessoas (capital intelectual) Pocumentos Fatos Informações

Coleta Processamento Análise

Business Intelligence

Relatórios Vados Analíticos (OLAP) Inferenciais (Mining) Subscrição

Distribuição

Email Web Combinação de Pados

Aporte de Comentários

Threads para Discussão

Procura por metadados e conteúdo

KMS - Knowledge Management System

A Inteligência Competitiva (CI) busca informações diversas do mercado e da concorrência

Competidores Business Intelligence Subscrição **Vistribuição** Relatórios Email Pados Analíticos (OLAP) Web Inferenciais (Mining)

Mercado

PRODUCTION VALUE

Procura por metadados e contúdo

Combinação de Pados

- -Relatórios financeiros
- -Press-releases
- -Balancetes
- -Publicação de resultados

- -Patentes concedidos
- -Marcas registradas
- -Proceedings de seminários
- -Registros

CI - Competitive Intelligence

Modelo Entidade Relacionamento, criado por Peter Chen e James Martin, é o melhor ajustado para sistemas com características transacionais.

Normalização de Bancos de Pados: existem 6 formas normais, mas na prática só se usam as 3 primeiras.

INF: atributos não são multivalorados

PESSOA = {ID + NOME + ENDEREÇO + TELEFONES}

PESSOA = {ID + NOME + ENDEREÇO} TELEFONE = {PESSOA_ID + TELEFONE}

2NF: atributos não dependem somente de parte de uma chave composta

ALUNO_CURSO = {ID_ALUNO + ID_CURSO + NOTA + DESCRIÇÃO_CURSO}

ALUNO_CURSO = {ID_ALUNO + ID_CURSO + NOTA} CURSO = {ID_CURSO + DESCRIÇÃO}

FUNCIONÁRIO = {ID + NOME + ID_CARGO + DESCRIÇÃO_CARGO}

FUNCIONÁRIO = {ID + NOME + ID_CARGO} CARGO = {ID_CARGO + DESCRIÇÃO}

3NF: atributos não dependem de atributos não chave

ITEM_VENDA = {ID + COD_PRODUTO + PRECO_UNI + QUANTIDADE + TOTAL}

ITEM_VENDA = {ID + COD_PRODUTO + PRECO_UNI + QUANTIDADE}

T_Produto = {PRECO_UNI * QUANTIPAPE}

O Modelo Dimensional é o mais adequado para processos analíticos, com pontos de entrada definidos (tabelas dimensão) e dodos consolidados para consultas préestabelecidas (tabelas fato). Geralmente várias tabelas dimensão acessam poucas fontes de dados (fatos).

Pimensional X Relacional

Modelo Pimensional	Modelo Relacional	
Padrão de estrutura mais fácil e intuitiva	Modelo mais complexo	
Anterior ao MER anos 60	Ênfase nos bancos de dados relacionais, anos 70	
Tabelas Fato e Tabelas Dimensão	Tabelas que representam dados e relacionamentos	
Tabelas Fato são o núcleo -normalizadas	Todas as tabelas são normalizadas	
Tabelas Pimensão são o ponto de entrada	As tabelas são indistintamente acessadas	
Tabelas Pimensão opcionalmente normalizadas	Todas as tabelas são normalizadas	
Modelo mais facilmente joined	Maior dificuldade de join pelo número maior de tabelas	
Leitura mais fácil do modelo por usuários não especializados	Maior dificuldade de leitura pelo usuário não especializado	
OLAP - Online Analytical Processing	OLTP - Online Transaction Processing	

Operadores Dimensionais: o ponto representa a intersecção dos valores, fato, com relação aos três eixos (dimensão). O plano mostra uma fatia de valores.

Valor Pontual

Slicing (Plano)

Operadores Dimensionais: o cubo mostra faixas de valores obtidas a partir do cruzamento de 3 faixas de dimensões. A rotação ou pivoteamento permite transformações na visualização dos dados.

Picing (Cubo)

Rotação (pivoteamento)

Drill down e Drill up são operadores dimensionais relacionados com a granularidade dos dados. Drill down desce na hierarquia. Drill up, sobe.

Drill across permite mudar de tabela fato se as dimensões forem as mesmas.

O Prill Through permite a busca de informações que estão fora da tabela fato. Isso pode demorar.

Pados Operacionais X Informacionais

Características	Pados Operacionais	Pados Informacionais
Conteúdo	Valores correntes	Valores sumariados, calculados, integrados de várias fontes
Organização dos dados	Por aplicação/sistema de informação	Por assuntos/negócios
Natureza dos dados	Pinâmica	Estática até o refresh dos dados
Formato das estruturas	Relacional, próprio para computação transacional	Pimensional, simplificado, próprio para atividades analíticas
Atualização dos dados	Atualização campo a campo	Acesso, sem update
Uso	Altamente estruturado, processamento repetitivo	Pesestruturado, com processamento analítico/heurístico
Tempo de resposta	Otimizado para 2 a 3 seg	Análises mais complexas, com tempos de respostas maiores

Os componentes de um Bl são vários: bancos OLAP de datawarehouse e data mart, banco relacional de ODS, ferramentas de ETL, de query, de report...

Duas abordagens de implementação, uma top-down (Bill Inmon), onde um gigantesco DW dá origem a vários DM, outra bottom-up (Ralph Kimball), onde a integração de vários DM forma o DW.

TO Plano de Integração

-Middle-up

-Alinhavo de dimensões conformes

-Métricas compatíveis

Ferramentas de BI: servem para construção, gerenciamento, consultas, apresentação de dados, etc

Quadrante Mágico Gartner Analytics e Bl 2018

Vendors Dropped

- Pentaho, Datameer
- Alteryx
- ClearStory Data, Zoomdata

New Vendors Added to MQ

Looker

Gartner.

Projeto de PW/PM

- 1. Planejamento
 - Foco no Negócio
 - Pefinição da Abordagem (topdown/bottom-up)
 - Planejamento para Integração
 - Pefinição da Arquitetura Tecnológica
- 2. Levantamento de Necessidades

- 3. Modelagem Dimensional
- 4. Projeto Físico de Banco de Pados
- 5. Desenvolvimento de Aplicações
- 6. Validação e Testes
- 7. Treinamento
- 8. Implantação

Bibliografia

* disponíveis na biblioteca

- * Fonte principal: BARBIERI, Carlos. BI Business Intelligence: Modelagem & Tecnologia; Axcel Books, 2001
- * INMON, William H. Como construir o data warehouse. Rio de Janeiro: Campus, 1997
- * KIMBALL, Ralph; MERZ, Richard. Data Webhouse: construindo o Data Warehouse para a Web. Rio De Janeiro: Campus, 2000

* online

- * MATHEUS, Renato; PARREIRA, Fernando. Inteligência Empresarial versus Business Intelligence: abordagens complementares para o apoio a tomada de decisão no Brasil; http://www.rfmatheus.com.br/doc/MATHEUSPARREIRASIEvsBIV0.51.pdf
- * www.businessintelligence.com
- * SANTOS, Maribel; RAMOS, Isabel. Intelligence: tecnologias da informação na gestão de conhecimento. FCA Editora, 2006