Logistic Regression & Data Preprocessing

Week of November 21st, 2020

Prepared by: Moe Fadae & Najem Bouazza

In this session, we will learn the following points:

```
1 - Data pre-processing: Statiscal significance using P-values
```

- 2 Plotting : Matplotlib library
- 3 Categorical Variables
- 4 Practical Example on Logistic Regression

1 - Multi Linear Regression : P-values

```
In [211]: import pandas as pd
           df = pd.read_csv("house_price_data.csv")
In [212]: dataset = df.copy()
           dataset.head()
Out[212]:
                  MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape
                                                                                    LandContour Utilitie
               1
                           60
                                     RL
                                                        8450
                                                                                                  AllPι
            0
                                                65.0
                                                              Pave
                                                                     NaN
                                                                               Reg
                                                                                             Lvl
                           20
                                     RL
                                                0.08
                                                        9600
                                                              Pave
                                                                     NaN
                                                                               Req
                                                                                             Lvl
                                                                                                  AllPι
            2
                3
                           60
                                     RL
                                                68.0
                                                       11250
                                                              Pave
                                                                     NaN
                                                                               IR1
                                                                                             Lvl
                                                                                                  AllPι
                           70
                                     RL
                                                60.0
                                                        9550
                                                              Pave
                                                                     NaN
                                                                               IR1
                                                                                             Lvl
                                                                                                  AllPι
               5
                           60
                                     RL
                                                84.0
                                                       14260
                                                              Pave
                                                                     NaN
                                                                               IR1
                                                                                             Lvl
                                                                                                  AllPι
           5 rows × 81 columns
In [213]: dataset = dataset[["LotFrontage","LotArea","GarageCars","GarageArea","SalePrice"
In [214]: dataset.isnull().sum()
Out[214]: LotFrontage
                            259
           LotArea
                              0
           GarageCars
                              0
           GarageArea
                              0
           SalePrice
           dtype: int64
```

```
In [215]: dataset.fillna(value=dataset["LotFrontage"].mean(), inplace = True)
In [216]: dataset.isnull().sum()
Out[216]: LotFrontage
                            LotArea
                                                                      0
                            GarageCars
                                                                     0
                            GarageArea
                                                                      0
                            SalePrice
                            dtype: int64
In [217]: dataset.head(5)
Out[217]:
                                     LotFrontage LotArea GarageCars GarageArea SalePrice
                                                                                                             2
                              0
                                                      65.0
                                                                         8450
                                                                                                                                      548
                                                                                                                                                      208500
                               1
                                                      80.0
                                                                         9600
                                                                                                             2
                                                                                                                                     460
                                                                                                                                                      181500
                                                                       11250
                                                                                                             2
                                                      68.0
                                                                                                                                     608
                                                                                                                                                      223500
                               3
                                                      60.0
                                                                         9550
                                                                                                             3
                                                                                                                                     642
                                                                                                                                                      140000
                                                      84.0
                                                                       14260
                                                                                                             3
                                                                                                                                     836
                                                                                                                                                      250000
In [218]: X = dataset[['LotFrontage', 'LotArea', 'GarageCars', 'GarageArea']]
                            y = dataset["SalePrice"]
In [219]: from sklearn.model selection import train test split
                            X train, X test, y train, y test = train test split(X, y, test size = 0.2, random
In [220]: from sklearn.linear_model import LinearRegression
                            #Create the model:
                            regressor = LinearRegression()
                            #Train the model:
                            regressor.fit(X_train, y_train)
Out[220]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
In [221]: L = regressor.coef
                            print("Price = {:..2f} + {:..2f}*LotFrontage + {:..2f}*LotArea + {:..2f}*GarageCars + {:..2
                                             format(regressor.intercept ,L[0], L[1], L[2] ,L[3]))
                            Price = 22887.31 + 429.69*LotFrontage + 0.93*LotArea + 42758.97*GarageCars + 8
                            9.41*GarageArea
In [222]: y pred = regressor.predict(X test)
```

```
In [223]: from sklearn.metrics import r2_score
#R_squared :
R_squared = r2_score(y_test, y_pred)
print("R^2 Value in %: {:.2f} % ".format((R_squared*100)))

R^2 Value in %: 36.32 %
```

Select the features based on P-values: Backward Elimination

```
In [224]: import statsmodels.api as sm
In [230]: dataset.columns
Out[230]: Index(['LotFrontage', 'LotArea', 'GarageCars', 'GarageArea', 'SalePrice'], dtyp
          e='object')
In [231]: |dataset = df.copy()
          X = dataset[['LotFrontage', 'LotArea', 'GarageCars', 'GarageArea', 'PoolArea',
In [233]: #Fill in the missing values for the following columns
          X['LotFrontage'] = X.fillna(X['LotFrontage'].mean(), axis = 1)
          X['GarageYrBlt'] = X.fillna(X['GarageYrBlt'].mode()[0], axis = 1)
          C:\Users\pc\anaconda3\lib\site-packages\ipykernel launcher.py:2: SettingWithCop
          vWarning:
          A value is trying to be set on a copy of a slice from a DataFrame.
          Try using .loc[row_indexer,col_indexer] = value instead
          See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/sta
          ble/user guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pyd
          ata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versus-a-c
          opy)
          C:\Users\pc\anaconda3\lib\site-packages\ipykernel launcher.py:3: SettingWithCop
          vWarning:
          A value is trying to be set on a copy of a slice from a DataFrame.
          Try using .loc[row indexer,col indexer] = value instead
          See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/sta
          ble/user guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pyd
          ata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versus-a-c
          opy)
            This is separate from the ipykernel package so we can avoid doing imports unt
          il
```

```
In [234]: | X.isnull().sum()
Out[234]: LotFrontage
                          0
          LotArea
                          0
          GarageCars
                          0
          GarageArea
                          0
          PoolArea
          YrSold
                          0
          OverallCond
                          0
          OverallQual
                          0
          GarageYrBlt
                          0
          dtype: int64
In [235]: y = dataset["SalePrice"]
          X = X.values
          y = y.values
Out[235]: array([[6.500e+01, 8.450e+03, 2.000e+00, ..., 5.000e+00, 7.000e+00,
                   6.500e+01],
                  [8.000e+01, 9.600e+03, 2.000e+00, ..., 8.000e+00, 6.000e+00,
                   8.000e+01],
                  [6.800e+01, 1.125e+04, 2.000e+00, ..., 5.000e+00, 7.000e+00,
                   6.800e+01],
                  [6.600e+01, 9.042e+03, 1.000e+00, ..., 9.000e+00, 7.000e+00,
                   6.600e+01],
                  [6.800e+01, 9.717e+03, 1.000e+00, ..., 6.000e+00, 5.000e+00,
                   6.800e+01],
                  [7.500e+01, 9.937e+03, 1.000e+00, ..., 6.000e+00, 5.000e+00,
                   7.500e+01]])
In [236]: # Multiple Linear Regression equation :
          y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + \dots
In [237]: import numpy as np
          arr_ones = np.ones((X.shape[0],1))
          X new = np.append( values= X , arr = arr ones , axis = 1)
          X new
Out[237]: array([[1.000e+00, 6.500e+01, 8.450e+03, ..., 5.000e+00, 7.000e+00,
                   6.500e+011,
                  [1.000e+00, 8.000e+01, 9.600e+03, ..., 8.000e+00, 6.000e+00,
                   8.000e+01],
                  [1.000e+00, 6.800e+01, 1.125e+04, ..., 5.000e+00, 7.000e+00,
                   6.800e+01],
                  [1.000e+00, 6.600e+01, 9.042e+03, ..., 9.000e+00, 7.000e+00,
                   6.600e+01],
                  [1.000e+00, 6.800e+01, 9.717e+03, ..., 6.000e+00, 5.000e+00,
                   6.800e+01],
                  [1.000e+00, 7.500e+01, 9.937e+03, ..., 6.000e+00, 5.000e+00,
                   7.500e+01]])
```

```
In [238]: # columns names and the corresponding indexes :
    d = {'ones' : 0, 'LotFrontage': 1 , 'LotArea': 2, 'GarageCars': 3, 'GarageArea':
        'PoolArea':5, 'YrSold':6, 'OverallCond':7,'OverallQual':8 ,'GarageYrBlt':9}
In [239]: X_select = X_new[:, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] ]
    d = {'ones' : 0, 'LotFrontage': 1 , 'LotArea': 2, 'GarageCars': 3, 'GarageArea':
        'PoolArea':5, 'YrSold':6, 'OverallCond':7,'OverallQual':8 ,'GarageYrBlt':9}
```

In [240]: # Ordinary least squares (OLS) regression is a statistical method of analysis the
between one or more independent variables and a dependent variable

OLS_regressor = sm.OLS(y,X_select)

OLS_regressor.fit().summary()

Out[240]:

OLS Regression Results

De	p. Variable:		у	F	R-squared:	0.704
	Model:		OLS	Adj. F	R-squared:	0.702
	Method:	Least	Squares		F-statistic:	431.1
Date:		Thu, 19 N	Thu, 19 Nov 2020		-statistic):	0.00
	Time:	: 1	19:54:09	Log-L	ikelihood:	-17656.
No. Ob	servations:		1460		AIC:	3.533e+04
D	f Residuals:		1451		BIC:	3.538e+04
	Df Model:		8			
Covar	iance Type:	no no	onrobust			
	coef	std err	t	P> t	[0.025	0.975]
const	1.647e+05		0.096	0.924	-3.21e+06	3.54e+06
x1	135.1278		4.705	0.000	78.796	191.459
x2	1.0597	_	8.827	0.000	0.824	1.295
x3	1.411e+04	****	4.163	0.000	7462.793	2.08e+04
x4	42.4327		3.673	0.000	19.770	65.096
x5	36.5694		1.266	0.206	-20.081	93.220
х6	-142.0257		-0.166	0.869	-1824.788	
x 7	1830.1669	1039.694	1.760	0.079	-209.297	3869.631
x8	3.541e+04	1034.924	34.218	0.000	3.34e+04	3.74e+04
x 9	135.1278	28.717	4.705	0.000	78.796	191.459
	Omnibus:	618.619	.619 Durbin-Watson:		1.970	
Prob(C	Omnibus):		Jarque-Bera (JB):			
	Skew:	1.489	Prob(JB):		0.00	
Kurtosis:		16.603	Co	nd. No.	1.76e+19	

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 1e-27. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Out[241]:

OLS Regression Results

	,					
De	p. Variable:		у	R	-squared:	0.704
	Model:		OLS	Adj. R	-squared:	0.702
Method:		Least Squares		F-statistic:		493.0
	Date:	Thu, 19 No	v 2020	Prob (F-statistic):		0.00
	Time:	19	9:54:09	Log-Likelihood:		-17656.
No. Ob	servations:		1460	AIC:		3.533e+04
Df	Residuals:		1452	BIC:		3.537e+04
	Df Model:		7			
Covar	iance Type:	nor	nrobust			
	coef	std err	t	P> t	[0.025	0.975]
const	-1.204e+05	8530.004	-14.119	0.000	-1.37e+05	-1.04e+05
x1	134.9881	28.695	4.704	0.000	78.700	191.276
x2	1.0599	0.120	8.833	0.000	0.825	1.295
х3	1.413e+04	3388.247	4.170	0.000	7483.554	2.08e+04
x4	42.4028	11.548	3.672	0.000	19.750	65.055
х5	36.8730	28.812	1.280	0.201	-19.644	93.390
x6	1823.6797	1038.607	1.756	0.079	-213.652	3861.011
х7	3.541e+04	1034.562	34.231	0.000	3.34e+04	3.74e+04
x8	134.9881	28.695	4.704	0.000	78.700	191.276
	Omnibus: 6	318.366 [Durbin-W	lotooni	1.970	
Prob(C)mnibus):	0.000 Ja	rque-Ber	a (JB):	11795.830	
	Skew:	1.488	Pro	ob(JB):	0.00	

Warnings:

Kurtosis:

16.603

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

1.75e+19

[2] The smallest eigenvalue is 1e-27. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Cond. No.

Out[242]:

OLS Regression Results

OLS NE	OLO Regression Results								
De	p. Variable:		у	R	-squared:	0.703			
	Model:		OLS	Adj. R	-squared:	0.702			
Method:		Least Squares		F-statistic:		573.8			
	Date:	Thu, 19 No	v 2020	Prob (F-statistic):		0.00			
	Time:	19	9:54:09	Log-Li	-17657.				
No. Ob	servations:		1460		AIC:	3.533e+04			
Df	Residuals:		1453		BIC:	3.537e+04			
	Df Model:		6						
Covar	iance Type:	noi	nrobust						
	coef	std err	t	P> t	[0.025	0.975]			
const	-1.095e+05	5842.465	-18.745	0.000	-1.21e+05	-9.81e+04			
x1	134.1878	28.712	4.674	0.000	77.866	190.509			
x2	1.0652	0.120	8.873	0.000	0.830	1.301			
х3	1.345e+04	3368.509	3.993	0.000	6843.113	2.01e+04			
x4	42.9116	11.553	3.714	0.000	20.250	65.573			
х5	36.8325	28.832	1.277	0.202	-19.725	93.390			
x6	3.546e+04	1035.008	34.258	0.000	3.34e+04	3.75e+04			
х7	134.1878	28.712	4.674	0.000	77.866	190.509			
(Omnibus: 6	614.482 I	Ourbin-W	/atson:	1.970				
Prob(C	mnibus):	0.000 Ja	rque-Ber	a (JB):	11745.399				
	Skew:	1.475	Pro	ob(JB):	0.00				
	Kurtosis:	16.579	Co	nd. No.	1.75e+19				

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 1.01e-27. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Out[243]:

OLS Regression Results

OLS Regression Results								
De	p. Variable:		у	R	-squared:	0.703		
	Model:		OLS	Adj. R	-squared:	0.702		
	Method:	Least S	Squares	F-statistic:		688.0		
	Date:	Thu, 19 No	ov 2020	Prob (F-	statistic):	0.00		
	Time:	1	9:54:10	Log-Li	ikelihood:	-17658.		
No. Ob	servations:		1460	AIC:		3.533e+04		
Df	Residuals:		1454		BIC:	3.536e+04		
	Df Model:		5					
Covariance Type:		no	nrobust					
	coef	std err	1	t P > t	[0.025	0.975]		
const	-1.104e+05	5801.179	-19.033		-1.22e+05	_		
x1	139.7900	28.381	4.925		84.117			
x2	1.0689		8.905		0.833			
x3	1.313e+04		3.907		6536.667			
x4	43.7053	11.538	3.788		21.072			
x5	3.552e+04				3.35e+04			
x6	139.7900	28.381	4.925		84.117			
λŪ	100.7000	20.001	7.020	0.000	04.117	100.400		
(Omnibus: 6	39.877	Durbin-W	Vatson:	1.966			
Prob(C	mnibus):	0.000 J a	ırque-Bei	ra (JB):	12085.236			
	Skew:	1.564	Pro	ob(JB):	0.00			

Warnings:

Kurtosis:

16.743

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

1.74e+19

[2] The smallest eigenvalue is 1.01e-27. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Cond. No.

```
Logistic Regression & Data pre-processing - Jupyter Notebook
In [244]: Optimal_features = X_new[:, [0, 1, 2, 3, 4, 8, 9] ]
          d
Out[244]: {'ones': 0,
            'LotFrontage': 1,
            'LotArea': 2,
            'GarageCars': 3,
            'GarageArea': 4,
            'OverallQual': 8,
            'GarageYrBlt': 9}
  In [ ]:
  In [ ]:
          2 - Plotting: Matplotlib library
In [245]: import matplotlib.pyplot as plt
In [246]: # allows to see the plots on jupyter notebook, if you are using another editor,
          %matplotlib inline
In [247]: plt.show() # you don't need to use it on jupyter notebook.
 In [34]: import numpy as np
          x = np.arange(30)
            = -2*x**2 + 3
 In [38]: |plt.plot(x, y)
                         # it's printing the plot instead of just showing it
          #plt.show()
 Out[38]: [<matplotlib.lines.Line2D at 0x889c0c8>]
               0
             -250
             -500
```



```
In [39]: plt.plot(x, y , "bo" )
```

Out[39]: [<matplotlib.lines.Line2D at 0x89242c8>]


```
In [118]: # These are the basics to plot a simple graph
    plt.plot(x, y)
    plt.xlabel(" This is X label")
    plt.ylabel(" This is y label")
    plt.title(" This is the title ")
```

Out[118]: Text(0.5, 1.0, ' This is the title ')


```
In [49]: ## plt.subplot(nrows, ncols, plot_number) , to create multiple plots on the same
    plt.subplot(2,2,1)
    plt.plot(x,y, "b*")

plt.subplot(2,2,2)
    plt.plot(y,y, "r*")

plt.subplot(2,2,3)
    plt.plot(x,y, "g-")

plt.subplot(2,2,4)
    plt.plot(y,x, "g^")
```

Out[49]: [<matplotlib.lines.Line2D at 0xa036d88>]


```
In [63]: # Object oriented method

# Create empty canvas
fig = plt.figure()

# Add set of axes to figure
ax = fig.add_axes([1,1,1,1]) # Left, bottom, width, height (range 0 to 1)

# Plot on that set of axes
ax.plot(x, y)
ax.set_xlabel("X label")
ax.set_ylabel("X label")
ax.set_title("Title")
```

Out[63]: [<matplotlib.lines.Line2D at 0xb321988>]


```
In [74]:
# Create empty canvas
fig = plt.figure()

# adding axes into fig
ax1 = fig.add_axes([0.1,0.1,0.8,0.8]) #Main axes
ax2 = fig.add_axes([0.2,0.55,0.4,0.3]) #inserted axes

ax1.plot(x, y**2, "bo")
ax1.set_title("Big window")

ax2.plot(y,x**3, "r^")
ax2.set_title("Small window")
```

Out[74]: Text(0.5, 1.0, 'Small window')


```
In [82]: #Creating Subplots
fig, ax = plt.subplots(nrows = 2, ncols = 1)
ax[0].plot(x, y**2)
ax[0].set_title("first plot")
ax[1].plot(x,y)
```



```
In [78]: ax # is an array of matplotlib axes, we can index it
Out[78]: array([<matplotlib.axes. subplots.AxesSubplot object at 0x0000000004F94C88>,
```

Out[120]: [<matplotlib.lines.Line2D at 0xeacde08>]


```
In [121]: #legend

#Creating empty figure
fig = plt.figure()

#adding axes
ax = fig.add_axes([0,0,1,1])

#ploting some graphs into axes
ax.plot(x, 3*y + 4 , label = "3*y + 4")
ax.plot(x, -5*y + 2, label = "-5*y + 2")

#Plot Legen
plt.legend(loc = 0) # Loc = 0 : to Look for the best Localtion

#plt.legend(loc = (.3,.5))
```

Out[121]: <matplotlib.legend.Legend at 0xed73cc8>


```
In [117]: # Create an empty canvas with a specified size
fig = plt.figure(figsize=(12,6))

#adding axes
ax = fig.add_axes([0,0,1,1])

#Ploting and adjusting some parameters
ax.plot(x, 3*y + 4 , color = "red", linewidth = 1, linestyle = "-" , marker = "o'
```

Out[117]: [<matplotlib.lines.Line2D at 0xe92c5c8>]


```
In [ ]: # Some other plots
```

```
In [124]: plt.scatter(x,y**2)
```

Out[124]: <matplotlib.collections.PathCollection at 0xef34688>


```
In [126]: plt.hist(y)
```

Out[126]: (array([2., 2., 1., 2., 2., 2., 3., 3., 3., 10.]), array([-1679., -1510.8, -1342.6, -1174.4, -1006.2, -838., -669.8, -501.6, -333.4, -165.2, 3.]), <a list of 10 Patch objects>)


```
In [131]: |plt.boxplot(y)
Out[131]: {'whiskers': [<matplotlib.lines.Line2D at 0x1023e788>,
             <matplotlib.lines.Line2D at 0x1023ed08>],
            'caps': [<matplotlib.lines.Line2D at 0x1023ee08>,
             <matplotlib.lines.Line2D at 0x1023ee88>],
            'boxes': [<matplotlib.lines.Line2D at 0x10236fc8>],
            'medians': [<matplotlib.lines.Line2D at 0x10243d88>],
            'fliers': [<matplotlib.lines.Line2D at 0x10243e88>],
            'means': []}
               0
             -250
             -500
             -750
            -1000
            -1250
            -1500
            -1750
```

For reference:

https://matplotlib.org/gallery.html (https://matplotlib.org/gallery.html)

http://www.matplotlib.org (http://www.matplotlib.org)

https://github.com/rougier/matplotlib-tutorial (https://github.com/rougier/matplotlib-tutorial)

3 - Categorical variables


```
In [26]: import pandas as pd
df = pd.read_csv("house_price_data.csv")
```

In [27]: dataset_2 = df.copy()

In [39]: dataset_2 = dataset_2[["LotFrontage", "Foundation" ,"LotArea", "GarageCars", "Garage
you can add these 2 categorical columns to your dataset_2 and try to encode the
dataset_2[["CentralAir", , "ExterQual"]]

In [40]: dataset_2

Out[40]:

	LotFrontage	Foundation	LotArea	GarageCars	GarageArea	SalePrice
0	65.0	PConc	8450	2	548	208500
1	80.0	CBlock	9600	2	460	181500
2	68.0	PConc	11250	2	608	223500
3	60.0	BrkTil	9550	3	642	140000
4	84.0	PConc	14260	3	836	250000
1455	62.0	PConc	7917	2	460	175000
1456	85.0	CBlock	13175	2	500	210000
1457	66.0	Stone	9042	1	252	266500
1458	68.0	CBlock	9717	1	240	142125
1459	75.0	CBlock	9937	1	276	147500

1460 rows × 6 columns

```
In [30]: dataset 2["Foundation"].unique()
Out[30]: array(['PConc', 'CBlock', 'BrkTil', 'Wood', 'Slab', 'Stone'], dtype=object)
In [37]: #dataset 2["CentralAir"].unique()
In [38]: #dataset 2["ExterQual"].unique()
In [46]: X = dataset 2.drop("SalePrice", axis = 1)
In [48]: dataset 2
Out[48]:
                LotFrontage Foundation LotArea GarageCars GarageArea
                                                                       SalePrice
              0
                                                         2
                       65.0
                                 PConc
                                          8450
                                                                   548
                                                                         208500
              1
                       0.08
                                CBlock
                                          9600
                                                         2
                                                                  460
                                                                         181500
                       68.0
                                 PConc
                                         11250
                                                         2
              2
                                                                  608
                                                                         223500
              3
                       60.0
                                 BrkTil
                                          9550
                                                         3
                                                                  642
                                                                         140000
                       84.0
                                                                   836
                                                                         250000
                                 PConc
                                         14260
                                                         3
                                                        ...
                                                                    ...
           1455
                       62.0
                                 PConc
                                          7917
                                                         2
                                                                  460
                                                                         175000
                       85.0
                                CBlock
                                                         2
                                                                   500
                                                                         210000
           1456
                                         13175
                       66.0
                                                                   252
                                                                         266500
           1457
                                 Stone
                                          9042
                                                         1
           1458
                       68.0
                                CBlock
                                          9717
                                                                   240
                                                                         142125
                                                         1
                       75.0
           1459
                                CBlock
                                          9937
                                                         1
                                                                   276
                                                                         147500
          1460 rows × 6 columns
In [33]: dataset 2.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 1460 entries, 0 to 1459
          Data columns (total 8 columns):
           #
               Column
                              Non-Null Count
                                               Dtype
               LotFrontage
                                               float64
           0
                              1201 non-null
               CentralAir
                              1460 non-null
                                               object
           1
           2
               Foundation
                              1460 non-null
                                               object
           3
               ExterQual
                              1460 non-null
                                               object
           4
               LotArea
                              1460 non-null
                                               int64
           5
               GarageCars
                              1460 non-null
                                               int64
           6
               GarageArea
                              1460 non-null
                                               int64
           7
               SalePrice
                              1460 non-null
                                               int64
          dtypes: float64(1), int64(4), object(3)
          memory usage: 91.4+ KB
```

OneHot Encoding:

We will be using these 2 classes to encode the categorical variables :

Label Encoder:

Eeach category is assigned a value from 1 through the number of categories for the feature.

In [78]: dataset_3

Out[78]:

	LotFrontage	CentralAir	LotArea	GarageCars	GarageArea	SalePrice
0	65.0	1	8450	2	548	208500
1	80.0	1	9600	2	460	181500
2	68.0	1	11250	2	608	223500
3	60.0	1	9550	3	642	140000
4	84.0	1	14260	3	836	250000
1455	62.0	1	7917	2	460	175000
1456	85.0	1	13175	2	500	210000
1457	66.0	1	9042	1	252	266500
1458	68.0	1	9717	1	240	142125
1459	75.0	1	9937	1	276	147500

1460 rows × 6 columns

Pandas has get_dummies()

re-importing the data

Out[87]:

	LotFrontage	CentralAir	LotArea	GarageCars	GarageArea	SalePrice
0	65.0	Υ	8450	2	548	208500
1	80.0	Υ	9600	2	460	181500
2	68.0	Υ	11250	2	608	223500
3	60.0	Y	9550	3	642	140000
4	84.0	Y	14260	3	836	250000
1455	62.0	Y	7917	2	460	175000
1456	85.0	Υ	13175	2	500	210000
1457	66.0	Y	9042	1	252	266500
1458	68.0	Y	9717	1	240	142125
1459	75.0	Υ	9937	1	276	147500

1460 rows × 6 columns

In [92]: dataset_3 = pd.get_dummies(dataset_3, "CentralAir")
 dataset_3

Out[92]:

	LotFrontage	LotArea	GarageCars	GarageArea	SalePrice	CentralAir_N	CentralAir_Y
0	65.0	8450	2	548	208500	0	1
1	80.0	9600	2	460	181500	0	1
2	68.0	11250	2	608	223500	0	1
3	60.0	9550	3	642	140000	0	1
4	84.0	14260	3	836	250000	0	1
1455	62.0	7917	2	460	175000	0	1
1456	85.0	13175	2	500	210000	0	1
1457	66.0	9042	1	252	266500	0	1
1458	68.0	9717	1	240	142125	0	1
1459	75.0	9937	1	276	147500	0	1

1460 rows × 7 columns

Ordinal Encoding

The encoding of variables retains the ordinal nature of the variable

```
In [98]: dataset_4 = df.copy()
    dataset_4 = dataset_4[["LotFrontage", "ExterQual" ,"LotArea","GarageCars","Garage
    dataset_4
```

Out[98]:

	LotFrontage	ExterQual	LotArea	GarageCars	GarageArea	SalePrice
0	65.0	Gd	8450	2	548	208500
1	80.0	TA	9600	2	460	181500
2	68.0	Gd	11250	2	608	223500
3	60.0	TA	9550	3	642	140000
4	84.0	Gd	14260	3	836	250000
1455	62.0	TA	7917	2	460	175000
1456	85.0	TA	13175	2	500	210000
1457	66.0	Ex	9042	1	252	266500
1458	68.0	TA	9717	1	240	142125
1459	75.0	Gd	9937	1	276	147500

1460 rows × 6 columns

```
In [95]: dataset_4["ExterQual"].unique()
Out[95]: array(['Gd', 'TA', 'Ex', 'Fa'], dtype=object)
In [97]: dict_4 = {'Gd':3, 'TA':2, 'Ex':4, 'Fa':1}
    dataset_4["Quality"] = dataset_4["ExterQual"].map(dict_4)
    dataset_4
```

Out[97]:

	LotFrontage	ExterQual	LotArea	GarageCars	GarageArea	SalePrice	Quality
0	65.0	Gd	8450	2	548	208500	3
1	80.0	TA	9600	2	460	181500	2
2	68.0	Gd	11250	2	608	223500	3
3	60.0	TA	9550	3	642	140000	2
4	84.0	Gd	14260	3	836	250000	3
1455	62.0	TA	7917	2	460	175000	2
1456	85.0	TA	13175	2	500	210000	2
1457	66.0	Ex	9042	1	252	266500	4
1458	68.0	TA	9717	1	240	142125	2
1459	75.0	Gd	9937	1	276	147500	3

1460 rows × 7 columns

4 - Logistic Regression

Import the libraries

```
In [144]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   %matplotlib inline
```

Get the data

```
In [145]: df = pd.read_csv('diabetes_data.csv')
dataset = df.copy()
```

Check the head of the data

In [146]: dataset.head()

Out[146]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	1
0	6	148	72	35	0	33.6	0.627	
1	1	85	66	29	0	26.6	0.351	
2	8	183	64	0	0	23.3	0.672	
3	1	89	66	23	94	28.1	0.167	
4	0	137	40	35	168	43.1	2.288	

In [147]: dataset.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7)
memory usage: 54.1 KB

In [148]: dataset.describe()

Out[148]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesP€
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	
4							•

Explore the data using seaborn library

```
In [149]: sns.set_style('whitegrid')
    dataset['Age'].hist(bins=30)
    plt.xlabel('Age')
```

Out[149]: Text(0.5, 0, 'Age')


```
In [150]: sns.set_style('whitegrid')
    sns.jointplot(data = dataset, x = 'BloodPressure', y = 'Age')
```

Out[150]: <seaborn.axisgrid.JointGrid at 0x117c41c8>


```
In [151]: sns.jointplot(data = dataset, x = 'BloodPressure', y = 'Age', kind = 'kde')
```

Out[151]: <seaborn.axisgrid.JointGrid at 0x117c0548>


```
In [152]: sns.set_style('whitegrid')
    sns.jointplot(data = dataset, x = 'BloodPressure', y = 'SkinThickness' , color =
```

Out[152]: <seaborn.axisgrid.JointGrid at 0x13b61048>

In [153]: sns.scatterplot(data = dataset, x = "BloodPressure", y = "SkinThickness", hue =

Out[153]: <matplotlib.axes._subplots.AxesSubplot at 0x13efa208>

In [154]: dataset.head()

Out[154]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	ļ
0	6	148	72	35	0	33.6	0.627	_
1	1	85	66	29	0	26.6	0.351	
2	8	183	64	0	0	23.3	0.672	
3	1	89	66	23	94	28.1	0.167	
4	0	137	40	35	168	43.1	2.288	
4								•

```
In [155]: sns.scatterplot(data = dataset, x = 'Insulin', y = 'Age' , hue = 'Outcome')
```

Out[155]: <matplotlib.axes._subplots.AxesSubplot at 0x1413fbc8>


```
In [156]: sns.countplot(dataset['Outcome'])
```

Out[156]: <matplotlib.axes._subplots.AxesSubplot at 0x141a98c8>

In [157]: # Creating a paiplot for all variables
sns.pairplot(dataset,hue='Outcome',palette='bwr')

Out[157]: <seaborn.axisgrid.PairGrid at 0x141f8908>

Create and Train the model

```
In [158]: dataset.head(3)
Out[158]:
              Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction A
           0
                       6
                                            72
                             148
                                                         35
                                                                   33.6
                                                                                         0.627
           1
                       1
                              85
                                            66
                                                         29
                                                                 0 26.6
                                                                                         0.351
           2
                       8
                             183
                                            64
                                                          O
                                                                 0 23.3
                                                                                         0.672
In [159]: dataset.columns
Out[159]: Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',
                  'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'],
                 dtype='object')
In [176]: # Define X and y and convert them to arrays
           #X = dataset[['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insuli
          X = dataset.drop('Outcome', axis = 1).values
           y = dataset["Outcome"].values
           Feature Scaling:
In [177]:
           from sklearn.preprocessing import StandardScaler
           sc = StandardScaler()
           X = sc.fit_transform(X)
Out[177]: '\nfrom sklearn.preprocessing import StandardScaler\nsc = StandardScaler()\nX =
           sc.fit transform(X)\n'
  In [ ]:
           Split the data into Train and Test sets
In [178]: from sklearn.model selection import train test split
           X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2 , random)
           Create and train the model
In [179]: from sklearn.linear_model import LogisticRegression
In [180]: log_reg = LogisticRegression()
```

```
In [181]: log_reg.fit(X_train,y_train)
          C:\Users\pc\anaconda3\lib\site-packages\sklearn\linear model\ logistic.py:940:
          ConvergenceWarning: lbfgs failed to converge (status=1):
          STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
          Increase the number of iterations (max iter) or scale the data as shown in:
              https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-
          learn.org/stable/modules/preprocessing.html)
          Please also refer to the documentation for alternative solver options:
              https://scikit-learn.org/stable/modules/linear_model.html#logistic-regressi
          on (https://scikit-learn.org/stable/modules/linear model.html#logistic-regressi
          on)
            extra warning msg= LOGISTIC SOLVER CONVERGENCE MSG)
Out[181]: LogisticRegression(C=1.0, class weight=None, dual=False, fit intercept=True,
                              intercept_scaling=1, l1_ratio=None, max_iter=100,
                             multi class='auto', n jobs=None, penalty='12',
                              random_state=None, solver='lbfgs', tol=0.0001, verbose=0,
                             warm_start=False)
```

Evaluate the model

```
In [182]: #Generate predictions with the model
y_pred = log_reg.predict(X_test)
```

```
In [183]: #Compare y_pred and y_test

df_results = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
    df_results.head(15)
```

Out[183]:

	Actual	Predicted
0	1	1
1	0	0
2	0	0
3	1	1
4	0	0
5	0	0
6	1	1
7	1	1
8	0	0
9	0	0
10	1	1
11	1	1
12	0	0
13	0	0
14	0	0

```
In [184]: # Confusion matrix
from sklearn.metrics import confusion_matrix
In [185]: cm = confusion_matrix(y_test,y_pred)
cm
```

```
In [186]: sns.set( font_scale=3)
    sns.heatmap(cm , annot = True, cbar= False)
    plt.xlabel('Predictions')
    plt.ylabel('y_test')
```

Out[186]: Text(9.5, 0.5, 'y_test')


```
In [187]: sns.set( font_scale=2)
sns.heatmap(cm/np.sum(cm), annot=True, fmt='.1%', cmap='Greens', cbar = False)
```

Out[187]: <matplotlib.axes._subplots.AxesSubplot at 0x17165348>


```
In [188]: sns.set( font_scale=2)
    labels =np.array([['True Neg','False Pos'],['False Neg','True Pos']])
    sns.heatmap(cm, annot=labels,fmt='', cmap='Blues', cbar = False)
    plt.xlabel('Predictions')
    plt.ylabel('y_test')
Out[188]: Text(20.5, 0.5, 'y_test')
```



```
In [ ]:
In [189]: # Create a classification report for the model
          from sklearn.metrics import classification report
In [190]: print(classification_report(y_test,y_pred))
                         precision
                                      recall f1-score
                                                          support
                      0
                              0.84
                                        0.92
                                                   0.88
                                                              107
                      1
                              0.76
                                        0.62
                                                   0.68
                                                               47
                                                   0.82
                                                              154
               accuracy
              macro avg
                              0.80
                                        0.77
                                                   0.78
                                                              154
          weighted avg
                              0.82
                                        0.82
                                                   0.82
                                                              154
  In [ ]:
  In [ ]:
  In [ ]:
```