

Motivation and Research Question

Lack of research on the link between land-cover and land-use

What is land-cover? What is land-use?

How can we map land-use from land-cover?

Study Area

Naga City is primarily an agricultural city in terms of land-use.

Undergoing rapid population growth (26.9% from 2000-2010) and urbanization.

Urban barangays (classified by the LGU) as priority for mapping because of proximity to sources of flooding: Naga River and Bicol River.

Definitions

Land-Cover

The composition of the features of the earth's surface.

Material that we see and which directly interacts with electromagnetic radiation observed from a satellite.

Land-use

Type of human activity taking place at or near the earth's surface.

Determined by many factors – natural, economic, institutional, cultural, and legal...

Cihlar, J., & Jansen, L. (2001). From Land Cover to Land Use: A Methodology for Efficient Land Use Mapping over Large Areas. *The Professional Geographer*, 53(2), 275–289.

Fisher, P. F., & Unwin, D. (David J. (2005). Re-presenting GIS. Representing GIS Wiley Sons London.

Vegetation-Impervious surface-Soil (VIS) model

Ridd, M. K. (1995). Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: comparative anatomy for cities†. *International Journal of Remote Sensing*. https://doi.org/10.1080/01431169508954549

Simplified Impervious-Pervious surface model

Definitions of impervious surface

Definition

- "...are anthropogenic features through which water cannot infiltrate the soil, including roads, driveways, sidewalks, parking lots, rooftops, and so on."
- "...is generally recognized as an anthropogenic feature through which water cannot infiltrate into the soil. This includes roads, rooftops,, and other features in close contact with human activities and habitation."
- "...impervious surfaces can be defined as any material that prevents the infiltration of water into the soil."

Source

- Lu, D., & Weng, Q. (2006). Use of impervious surface in urban land-use classification. Remote Sensing of Environment, 102(1–2), 146–160.
- Lu, D., & Weng, Q. (2009). Extraction of urban impervious surfaces from an IKONOS image. International Journal of Remote Sensing, 30(5), 1297–1311.

Arnold, C. L., & Gibbons, C. J. (1996). Impervious Surface Coverage: The Emergence of a Key Environmental Indicator. *Journal of the American Planning Association*, 62(2), 243–258.

Limitations of impervious-pervious model

Applicable only for small cities such as Naga.

Not for highly urbanized cities such as Metropolitan Manila, Cebu City or Davao City

Reclassified land-cover image of Naga City urban barangays from Worldview2

Image average resampling using gdal_warp

Resampled impervious-pervious land-cover

https://doi.org/10.1016/j.landurbplan.2011.03.017

Urban Planning, 102(3), 143–155.

Selected training sites for land-use classification

Impervious Area Ratios of Grid-based Land Use Classifications on the Example of an Urban Watershed. Procedia Engineering, 154, 609-616.

https://doi.org/10.1016/j.proeng.2016.07.559

Impervious land-cover proportion statistics per land-use cell for classification

Statistic	Description
Minimum	Describes the lowest value of the sample pixels within a
	class
Maximum	Describes the largest value of the sample pixels within a class
Mean	Describes the arithmetic mean of the sample pixels within a class
Variance	Describes the spread of the sample pixels from the mean
Kurtosis	Describes the sharpness of the peak of the frequency distribution curve of sample pixels
Skew	Describes the asymmetry of the frequency distribution curve of the sample pixels.

Comparison of accuracy scores of classification algorithms

Algorithm	Trial 1 score	Trial 2 score	Trial 3 score	Average
MLP (relu, lbfgs)	0.81	0.53	0.56	0.63
MLP (relu, sgd)	0.56	0.56	0.56	0.56
MLP (logistic,lbfgs)	0.69	0.58	0.61	0.63
MLP (logistic, sgd)	0.36	0.33	0.39	0.36
MLP (tanh, lbfgs)	0.86	0.67	0.64	0.72
MLP (tanh, sgd)	0.50	0.44	0.53	0.49
MLP (identity, lbfgs)	0.72	0.64	0.61	0.66
MLP (identity, sgd)	0.33	0.42	0.53	0.43
Decision Tree	0.69	0.61	0.75	0.69
Random Forest	0.81	0.67	0.64	0.70
Linear SVM	0.64	0.61	0.64	0.63

Confusion matrix of the MLP (tanh, lbfgs)

	Predicted						
		Agricultural/ Idle	Low-density Residential	Medium- density Residential	High-Density Residential	Commercial/ Industrial/ Institutional	All
True	Agricultural/ Idle	9	0	0	0	0	9
	Low-density Residential	0	3	0	0	0	3
	Medium-density Residential	0	0	4	1	0	5
	High-Density Residential	0	0	1	8	0	9
	Commercial/ Industrial/ Institutional	0	0	1	2	7	10
	All	9	3	6	11	7	36

Land-use area and impervious surface area per land-use

Land-Use Class	Area (ha)	Impervious Surface Area (ha)
Agricultural / Idle	1032	58.39
Low-density Residential	525	105.61
Medium-density Residential	469	188.15
High-Density Residential	212	104.67
Commercial/ Industrial/ Institutional	92	50.94
Total	2330	507.76

Approximately 22% of total urban landuse of Naga City is impervious surface.

Impervious surface area

Let's take a closer look at the results...

Land-Use area (hectares) classified from the Worldview2 image with the Multi-Layer Perceptron Algorithm

Impervious surface area (hectares) per land-use

Breaking down impervious surface coverage per barangay

Impervious surface area per barangay

Breaking down land-use per barangay

Discussion

Commercial/industrial/institutional land-uses have the largest proportion of impervious surface area versus land-use area (higher density?)

Residential land-uses have larger IS areas (greater sprawl?)

Agricultural/idle land-uses have the smallest impervious surface proportions.

Increase in impervious surface proportions correlated with intensive residential and commercial activity within barangays.

Ground-truth

Increasing pervious surface

Opportunities for Further Research

Optimal parameters for classification algorithms

Time series study on urban land-cover and land-use change

- -Landsat series
- -Diwata

Correlation with data from other sensors

-MODIS

Correlation with different kinds of data

- -Population / Demographics
- -Economic spatial analysis
- -Peri-urban research

Multi-resolution image analysis