# Analyzing Attrition Rates: Identifying Key Drivers

This presentation explores the key drivers of employee attrition and analyzes the impact of factors like tenure, age, and compensation on retention rates.

**S** by Sai Kiran reddy Tallapureddy





[2]: import numpy as np
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt

[4]: dataset=pd.read\_csv("greendestination (1) (1).csv")

[5]: dataset

| [5]: |     | Age | Attrition | BusinessTravel    | DailyRate | Department                | DistanceFromHome | Education | EducationField | EmployeeCount | EmployeeNumber | <br>RelationshipSatisf |
|------|-----|-----|-----------|-------------------|-----------|---------------------------|------------------|-----------|----------------|---------------|----------------|------------------------|
|      | 0   | 41  | Yes       | Travel_Rarely     | 1102      | Sales                     | 1                | 2         | Life Sciences  | 1             | 1              |                        |
|      | 1   | 49  | No        | Travel_Frequently | 279       | Research &<br>Development | 8                | 1         | Life Sciences  | 1             | 2              |                        |
|      | 2   | 37  | Yes       | Travel_Rarely     | 1373      | Research &<br>Development | 2                | 2         | Other          | 1             | 4              |                        |
|      | 3   | 33  | No        | Travel_Frequently | 1392      | Research &<br>Development | 3                | 4         | Life Sciences  | 1             | 5              |                        |
|      | 4   | 27  | No        | Travel_Rarely     | 591       | Research &<br>Development | 2                | 1         | Medical        | 1             | 7              |                        |
|      |     |     |           |                   | x;        |                           |                  |           |                |               |                |                        |
| 14   | 465 | 36  | No        | Travel_Frequently | 884       | Research &<br>Development | 23               | 2         | Medical        | 1             | 2061           |                        |
| 14   | 466 | 39  | No        | Travel_Rarely     | 613       | Research &<br>Development | 6                | 1         | Medical        | 1             | 2062           |                        |

# Understanding Employee Tenure: The Impact of "YearsAtCompany"

#### **Early Attrition**

New employees tend to leave at a higher rate, often due to factors like job mismatch or lack of adaptation.

#### Long-Term Retention

Employees with longer tenures are more likely to stay, indicating greater job satisfaction and commitment.

```
25 RelationshipSatisfaction 1470 non-null
                                                    int64
       26 StandardHours
                                    1470 non-null
                                                    int64
       27 StockOptionLevel
                                    1470 non-null int64
       28 TotalWorkingYears
                                    1470 non-null int64
       29 TrainingTimesLastYear
                                    1470 non-null int64
       30 WorkLifeBalance
                                    1470 non-null int64
       31 YearsAtCompany
                                    1470 non-null int64
       32 YearsInCurrentRole
                                    1470 non-null int64
       33 YearsSinceLastPromotion
                                    1470 non-null int64
       34 YearsWithCurrManager
                                    1470 non-null int64
      dtypes: int64(26), object(9)
      memory usage: 402.1+ KB
[15]: #normalize function is used to return the relative frequencies
      attrition_rate = dataset['Attrition'].value_counts(normalize=True) *100
      print("Attrition Rate:\n", attrition rate)
      Attrition Rate:
       Attrition
      No
             83.877551
             16.122449
      Yes
      Name: proportion, dtype: float64
[37]:
      columns clean = ["YearsAtCompany", "Age", "MonthlyIncome"]
      # remove outliers using IQR
      def iqr(df, column):
          Q1 = dataset[column].quantile(0.25) # 25th percentile
          Q3 = dataset[column].quantile(0.75) # 75th percentile
          IQR = Q3 - Q1 # Interquartile range
```

# Attritioon rate atrittion - rate



### The Influence of Age on Attrition

#### **Early Career**

Younger employees are more likely to explore new opportunities and may have a higher tolerance for change.

#### Mid-Career

Employees in their mid-careers may experience a dip in attrition as they've established themselves and gained experience.

#### **Late Career**

Older employees, nearing retirement, may have lower attrition rates due to financial stability and career satisfaction.

Made with Gamma

```
# Age vs. Attrition
plt.figure(figsize=(6,4))
sns.boxplot(x="Attrition", y="Age", data=dataset)
plt.title("Attrition vs. Age")
plt.show()

# Years at Company vs. Attrition
plt.figure(figsize=(6,4))
sns.boxplot(x="Attrition", y="YearsAtCompany", data=dataset)
plt.title("Attrition vs. Years at Company")
plt.show()

# Income vs. Attrition
plt.figure(figsize=(6,4))
sns.boxplot(x="Attrition", y="MonthlyIncome", data=dataset)
plt.title("Attrition", y="MonthlyIncome", data=dataset)
plt.title("Attrition vs. Monthly Income")
plt.show()
```



### 120 50 20 Kielbo

# The Role of Compensation: Examining "MonthlyIncome"



#### Salary

Employees with lower salaries may be more susceptible to leaving for better compensation elsewhere.



#### **Benefits**

Comprehensive benefits packages, beyond base salary, can play a significant role in retaining employees.



### Retention Strategies for High-Risk Employees



```
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.linear model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report
label encoder = LabelEncoder()
dataset['Attrition'] = label encoder.fit transform(dataset['Attrition']) # Yes=1, No=0
features = ["Age", "YearsAtCompany", "MonthlyIncome"]
X = dataset[features]
y = dataset["Attrition"]
X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)
model = LogisticRegression()
model.fit(X_train, y_train)
y pred = model.predict(X test)
accuracy = accuracy_score(y_test, y_pred)*100
print(f"Model Accuracy: {accuracy}")
print("Classification Report:\n", classification_report(y_test, y_pred))
Model Accuracy: 86.73469387755102
Classification Report:
                           recall f1-score
                   0.87
                            1.00
                                      0.93
                                                  255
                   0.00
                            0.00
                                      0.00
                                                   39
```

### Data-Driven Insights: Visualizing Attrition Patterns



### Conclusion and Next Steps

By analyzing attrition data, we can gain valuable insights into employee satisfaction, retention, and company growth. This information can guide us in developing effective strategies to improve employee engagement and reduce attrition.

