Siddharth Mishra-Sharma (MIT/IAIFI) | IAIFI Summer School

Continuous-time/SDE formulation

 $x_t = \sqrt{1 - \beta(t)\Delta_t} x_{t-1} + \sqrt{\beta(t)\Delta_t} \mathcal{N}(0, \mathbb{I})$

 $\approx x_{t-1} - \frac{\beta(t)\Delta_t}{2}x_{t-1} + \sqrt{\beta(t)\Delta_t}\mathcal{N}(0,\mathbb{I})$

In the limit of infinite time steps, $\Delta_t o 0$ and the forward diffusion process can be written as

Which is an update rule corresponding to the Euler-Murayama discretization of the stochastic differential equation (SDE)

$$dx_t = -\frac{1}{2}\beta(t)x_t dt + \sqrt{\beta(t)}dw_t$$

Continuous-time/SDE formulation

In the limit of infinite time steps, $\Delta_t \to 0$ and the forward diffusion process can be written as

$$\begin{aligned} x_t &= \sqrt{1 - \beta(t)\Delta_t} x_{t-1} + \sqrt{\beta(t)\Delta_t} \mathcal{N}(0,\mathbb{I}) \\ &\approx x_{t-1} - \frac{\beta(t)\Delta_t}{2} x_{t-1} + \sqrt{\beta(t)\Delta_t} \mathcal{N}(0,\mathbb{I}) \end{aligned}$$

Which is an update rule corresponding to the Euler-Murayama discretization of the stochastic differential equation (SDE)

$$dx_t = -\frac{1}{2}\beta(t)x_t dt + \sqrt{\beta(t)}dw_t$$

Continuous-time/SDE formulation

The forward diffusion process defined by an SDE

[Song et al 2021]

$$dx_t = -\frac{1}{2}\beta(t)x_t dt + \sqrt{\beta(t)}dw_t$$