__/__/___ Hukarni Shardul Sunil 18110088

Fissignment 2 Introduction to robotics @1) $R_0' = \begin{bmatrix} \hat{i}_1 \cdot \hat{i}_0 & \hat{j}_1 \cdot \hat{i}_0 & \hat{k}_1 \cdot \hat{i}_0 \end{bmatrix}$ 2. j. j. k. j. Drthogonal columns means columns a; Taj = 0
where i \(\delta\) $\begin{bmatrix}
\hat{l}, . \hat{l}_{0} \\
\hat{l}, . \hat{j}_{0}
\end{bmatrix} = \hat{l}_{1} . \hat{l}_{0} + \hat{l}_{1} \hat{j}_{0} . \hat{j}_{1} + \hat{l}_{1} \hat{k}_{0} . \hat{j}_{1} \hat{k}_{0}$ $\begin{bmatrix}
\hat{l}, . \hat{k}_{0}
\end{bmatrix} = \hat{l}_{1} . \hat{l}_{0} . \hat{j}_{0} + \hat{l}_{1} \hat{j}_{0} . \hat{j}_{1} . \hat{j}_{0} + \hat{l}_{1} \hat{k}_{0} . \hat{j}_{1} \hat{k}_{0}$ $\begin{bmatrix}
\hat{l}, . \hat{k}_{0}
\end{bmatrix} = \hat{l}_{1} . \hat{k}_{0} . \hat{j}_{0} + \hat{l}_{1} \hat{j}_{0} . \hat{j}_{1} . \hat{j}_{0} + \hat{l}_{1} \hat{k}_{0} . \hat{j}_{1} \hat{k}_{0}$ $\begin{bmatrix}
\hat{l}, . \hat{k}_{0}
\end{bmatrix} = \hat{l}_{1} . \hat{k}_{0} . \hat{j}_{0} . \hat{l}_{0} + \hat{l}_{1} \hat{j}_{0} . \hat{j}_{1} . \hat{j}_{0} + \hat{l}_{1} . \hat{k}_{0} . \hat{j}_{1} \hat{k}_{0}$ $\begin{bmatrix}
\hat{l}, . \hat{k}_{0}
\end{bmatrix} = \hat{l}_{1} . \hat{k}_{0} . \hat{l}_{0} . \hat{l}_{0} . \hat{l}_{0} + \hat{l}_{1} . \hat{l}_{0} . \hat{l}_{0}$ $\begin{cases}
\hat{J}_{1} \cdot \hat{J}_{0} \\
\hat{J}_{1} \cdot \hat{J}_{0}
\end{cases} = \hat{J}_{1} \cdot \hat{J}_{0} \cdot \hat{K}_{1} \cdot \hat{J}_{0} \cdot \hat{K}_{1} \cdot \hat{K}_{0}$ $\hat{J}_{1} \cdot \hat{K}_{0} \cdot \hat{K}_{0} \cdot \hat{K}_{0} \cdot \hat{K}_{1} \cdot \hat{K}_{0}$ = 0 $\begin{cases}
\hat{J}_{1} \cdot \hat{K}_{0} \cdot \hat{K}_{1} \cdot \hat{K}_{0} \\
\hat{K}_{1} \cdot \hat{K}_{0}
\end{cases} = 0$

First link. R' = Cosq, -Sinq, O Sinq, Cosq, O

d. = 0

from frame 1-9,

 $R_{1}^{2} = \begin{bmatrix} C_{23}q_{1} & -Sin q_{2} & 0 \\ Sin q_{2} & C_{23}q_{2} & 0 \end{bmatrix} d_{1}^{2} = \begin{bmatrix} L_{1} \\ 0 \\ 0 \end{bmatrix}$

For from 2-3 $R_2^3 = \begin{bmatrix} \cos \frac{\pi}{2} & 0 & \sin \frac{\pi}{2} \\ 0 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} -\sin \frac{\pi}{2} & 0 & \cos \frac{\pi}{2} \end{bmatrix}$ $\begin{bmatrix} \cos \frac{\pi}{2} & \cos \frac{\pi}{2} \end{bmatrix}$

//_

$$H_o' = \begin{bmatrix} R_o & d_o \\ 0 & 1 \end{bmatrix}$$

$$H_0' = \begin{bmatrix} \cos q, & -\sin q, & 0 & 0 \\ & \sin q, & \cos q, & 0 & 0 \\ & & 0 & & 1 & 0 \\ & & & & & & & 1 \end{bmatrix}$$

$$H_{1}^{2} = \begin{bmatrix} R_{1}^{2} & J_{1}^{2} \\ 0 & 1 \end{bmatrix}$$

$$R_{0}^{\prime} = \begin{bmatrix} \cos q, & -\sin q, & 0 \\ \sin q, & \cos q, & 0 \end{bmatrix}_{0}^{\prime} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

tap view

for from 1-2

$$R^{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \pi / 2 & -\sin q_{2} & 0 \\ 0 & \sin \pi / 2 & \sin q_{2} & \cos q_{2} & 0 \\ 0 & \sin \pi / 2 & \cos \pi / 2 & 0 & 0 \end{bmatrix}$$

$$d_{1}^{2} = \begin{cases} 0 & R_{1}^{2} = \begin{cases} \cos q_{2} - \sin q_{2} & 0 \\ 0 & 0 & -1 \\ 2 & \sin q_{2} & \cos q_{2} & 0 \end{cases}$$

Frame 2-3

$$\begin{pmatrix} \rho_0 \\ 1 \end{pmatrix} = H_0^1 H_1^2 H_2^3 \begin{pmatrix} \rho_3 \\ 1 \end{pmatrix}$$

$$H_0' = \begin{bmatrix} R_0' & d_0' \end{bmatrix} = \begin{bmatrix} \cos q, & -\sin q, & 0 & 0 \\ \sin q, & \cos q, & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$|x|^{2} = \begin{vmatrix} \cos q_{2} & -\sin q_{2} & 0 & 0 \\ 0 & -1 & 0 \\ -\cos q_{2} & \cos q_{2} & 0 & 1 \end{vmatrix}$$

$$H_{2}^{3} = \begin{bmatrix} R_{2}^{3} & d_{2}^{3} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & l_{2} + d \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

__/__/___

$$H_{0}^{\prime} = \begin{bmatrix} R_{0}^{\prime} & A_{0}^{\prime} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 10 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$H^{2} = \begin{bmatrix} R^{2} \\ 0 \end{bmatrix}^{2} - \begin{bmatrix} 1 \\ 2 \end{bmatrix}^{2} - \frac{\sqrt{3}}{2} & 0 \\ 3 / 4 & \frac{\sqrt{3}}{4} - \frac{1}{2} & 0 \\ \frac{\sqrt{3}}{4} & \frac{\sqrt{4}}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

H' H,2

$$= \frac{\sqrt{3}}{2}$$

$$\frac{3}{4} \frac{\sqrt{3}}{4} - \frac{1}{2} = 0$$

$$\frac{\sqrt{3}}{4} \frac{\sqrt{3}}{4} \frac{\sqrt{3}}{2} = 0$$

$$0 \quad 0 \quad 0 \quad 1$$

.

when joint is revolute
$$J_{1} = \begin{cases} 2i_{-1} \times (o_{0} - O_{1-1}) \\ 2i_{-1} \end{cases}$$

when joint is prismatic $J_{1} = \begin{cases} 2i_{-1} \times (o_{0} - O_{1-1}) \\ 2i_{-1} \end{cases}$

when joint is prismatic $J_{1} = \begin{cases} 2i_{-1} \times (o_{0} - O_{1-1}) \\ 2i_{-1} \end{cases}$
 $O_{1} = \begin{cases} 0 \\ 0 \end{cases}$
 $O_{2} = \begin{cases} 0 \\ 0 \end{cases}$
 $O_{3} = \begin{cases} 1 \\ 1 \end{cases}$
 $O_{4} = \begin{cases} 1 \\ 1 \end{cases}$
 $O_{2} = \begin{cases} 1 \\ 1 \end{cases}$
 $O_{3} = \begin{cases} 1 \\ 1 \end{cases}$
 $O_{4} = \begin{cases} 1 \\ 1 \end{cases}$
 $O_{5} = \begin{cases} 1 \end{cases}$
 $O_{5} = \begin{cases} 1 \\ 1 \end{cases}$
 $O_{5} = \begin{cases} 1 \end{cases}$

//_

(12)	Jecobia	for	RRR	config		g _o
		CAD		<i>d'</i>		1, 92
	0,=	0				23 77
				•	۷,	192
		10	e di ve	0.	J1.	0.

$$O_1 = \{l, cosq, \}$$
 $O_2 = \{l, cosq, +lz cosq_2\}$
 $\{l, sinq, +lz sinq, +lz sinq, \}$
 $\{l, sinq, +lz sinq, \}$

$$J = \begin{bmatrix} z_0 \times (o_3 - o_0) & z_1 \times (o_3 - o_1) & z_2 \times (o_3 - o_2) \\ z_0 & z_1 & z_2 \end{bmatrix}$$

		- (L1 Sin 9, + le Sing2 + lg sings)	- (128ing + 13sing)	-lasing	3
-	2	1, cosq, +le cosq2+la cosq3	12 (0392+130893	130009	3
_		0	D	0	
		O	0	O	1
		o	0	0	
		1	1	,	
	t				