Sampling with unequal probabilities of selection (WOR)

Week 9 (6.4)

Stat 260, St. Clair

- You take a (one-stage) random sample where:
 - $\circ t_i =$ "response" in PSU i
 - n = PSU sample size (or unique PSU sampled)
 - $\circ \ \pi_i = ext{sample} \ ext{inclusion prob for PSU} \ i$
 - $\circ \ w_i = 1/\pi_i =$ number of population units represented by PSU i
- The Horvitz-Thompson estimator is

$$\hat{t}_{HT} = \sum_{i=1}^n w_i t_i$$

$$\hat{t}_{HT} = \sum_{i=1}^n w_i t_i$$

ullet For any design (with or without replacement), the H-T estimator is an unbiased estimator of population total t.

$$E(\hat{t}_{\;HT})=t=\sum_{i=1}^{N}t_{i}$$

• Week 2 theory slides

- All total estimates so far, except for ratio estimates, have been HT estimators
 - $\circ \; extsf{SRS:} \, w_i = N/n$
 - \circ Stratified: $w_{hj}=N_h/n_h$
 - \circ One-stage cluster: $w_{ij} = N/n$
- For these designs, the total estimator SE's can be derived from a general variance calculation
 - using the fact that without replacement designs leads to dependence among units being sampled

$$Var(\hat{t}_{HT}) = \sum_{i=1}^{N} \frac{1-\pi_i}{\pi_i} t_i^2 + 2 \sum_{i=1}^{N} \sum_{k=1}^{N} \frac{\pi_{ik} - \pi_i \pi_k}{\pi_i \pi_k} t_i t_k$$

WOR

Soverall unoradared Tairs $\{i,k\}$

$$Var(\hat{t}_{HT}) = \sum_{i=1}^{N} rac{1-\pi_i}{\pi_i} t_i^2 + 2 \sum_{i=1}^{N} \sum_{\substack{k=1 \ i < k}}^{N} rac{\pi_{ik} - \pi_i \pi_k}{\pi_i \pi_k} t_i t_k$$

• We need to compute the joint inclusion probability

$$\pi_{ik} = \pi_{ki} = P(ext{both } i, k ext{ included in the sample})$$

• What is
$$\pi_{ik}$$
 for a SRS?

$$T_{12} = P(both \ 1 + 2 \text{ in SRS})$$

sample that $\{1,2, ? \}$ $n-2$ units to select values $1+2$

$$T_{12} = \text{the of samples with} \qquad \binom{N-2}{n-2} = \frac{n(n-1)}{N(N-1)}$$

$$\binom{N}{n}$$

• SRS: We measure $t_i=y_i$ for each unit and $\hat{t}_{HT}=Nar{y}.$

$$\pi_i=rac{inom{N-1}{n-1}}{inom{N}{n}}=rac{n}{N} \qquad \pi_{ik}=rac{inom{N-2}{n-2}}{inom{N}{n}}=rac{n(n-1)}{N(N-1)}$$

• **SRS**: variance is then

$$Var(\hat{t}_{\;HT}) = \sum_{i=1}^{N} rac{1 - rac{n}{N}}{rac{n}{N}} y_i^2 + 2 \sum_{i=1}^{N} \sum_{k=1}^{N} rac{n(n-1)}{N(N-1)} - rac{n}{N} rac{n}{N}}{rac{n}{N} rac{n}{N}} y_i y_k$$

....lots of algebra....

$$=N^2(1-\frac{n}{N})\frac{S^2}{n} \implies \frac{1}{2}$$

- All designs covered so far have used a SRS
 - \circ Definition: each sample of size n is equally likely
 - \circ Implication: each PSU is equally likely (equal π_i for all i)
- What if we don't use a SRS?
 - Take a random sample of PSU without replacement
 - \circ Let inclusion probs π_i vary (unequal π_i)
- ullet Our unbiased total estimate is still \hat{t}_{HT}
- Our variance is computed using π_i and π_{ik} !

• Supermarkets estimate total sales t for N=4 stores.

 $t_i = \text{total sales (thousands of dollars) at store } i$

- **Design:** Random sample WOR with probability proportional to physical store size
- Here's our **population**:

Store	t_i	Size m^2			
A	11	100			
В	20	200			
C	24	300			
D	245	1000			
total (t = 300	1600			

what we want to estimate!

Design: Random sample WOR with probability proportional to physical store size $\longrightarrow \sim = 2$

 $\psi_i = \text{probability of selecting store } i \text{ on your } \underline{\text{first draw}}$

	1		
Store	t_i	Size m^2	ψ_i (00)
A	11	100	$\psi_{2} = \frac{1000}{1600} = \frac{16}{16}$
В	20	200	42=2/16
С	24	300	43 = 316
D	245	1000	44 = 10/16
total	t = 300	1600	1
			•

Design: Random sample WOR with probability proportional to physical store size

 $\psi_i = \text{probability of selecting store } i \text{ on your first draw}$

- ullet Catch: WOR, probabilities for the second draw are not equal to ψ_i
 - $\circ \; \pi_i$ is the probability that store i is one of the two stores sampled, and not equal to ψ_i

hot equal to
$$\psi_i$$
 $\psi_i = pwb$. Store I on first draw

 $f(x) = pwb$. Store I is picked in

 $f(x) = pwb$. Store I is picked in

the sample of 2 stores.

• Draw 1: we sample store B

$$\psi_{i|B} = P(ext{draw 2 is } i \mid ext{draw 1 is } B)$$

Store	Size m^2	$\psi_{i B}$
A	100	1/14
В		0 —
C	300	3/14
D	1000	10/14
total (1400	1

- Use the **individual PSU** selection probs (draw to draw) to compute the **joint inclusion** prob for each pair
- π_{AB} : the probability that both A and B are included is

•
$$\pi_{AB}$$
: the probability that both A and B are included is

$$\begin{array}{l}
T_{AB} = P(A - \text{then B}) + P(B + \text{then A}) \\
= P(A - \text{then B}) + P(B + \text{then A}) \\
= P(B - \text{then B}) + P(B + \text{then A}) \\
= P(B - \text{then B}) + P(B + \text{then A}) \\
= P(B - \text{then B}) + P(B + \text{then A}) \\
= P(B - \text{then B}) + P(B + \text{then A}) \\
= P(B - \text{then B}) + P(B + \text{then A}) \\
= P(B - \text{then B}) + P(B + \text{then A}) \\
= P(B - \text{then B}) + P(B + \text{then A}) \\
= P(B - \text{then B}) + P(B + \text{then A}) \\
= P(B - \text{then A}) + P(B + \text{then A}) \\
= P(B - \text{then A}) + P(B + \text{then A}) \\
= P(B - \text{then A}) + P(B + \text{then A}) \\
= P(B - \text{then A}) + P(B + \text{then A}) \\
= P(B - \text{then A}) + P(B + \text{then A}) \\
= P(B - \text{then A}) + P(B + \text{then A}) \\
= P(B - \text{then A}) + P(B + \text{then A}) \\
= P(B - \text{then A}) + P(B + \text{then A}) \\
= P(B - \text{then A}) + P(B + \text{then A}) \\
= P(B - \text{then A}) + P(B + \text{then A}) \\
= P(B - \text{then A}) + P(B + \text{then A}) \\
= P(B - \text{then A}) + P(B + \text{then A}) \\
= P(B - \text{then A}) + P(B + \text{then A}) \\
= P(B - \text{then A}) + P(B + \text{then A}) \\
= P(B - \text{then A}) + P(B + \text{then A}) \\
= P(B - \text{then A}) + P(B + \text{then A}) \\
= P(B - \text{then A}) + P(B + \text{then A}) \\
= P(B - \text{then A}) + P(B + \text{then A}) \\
= P(B - \text{then A}) + P(B + \text{then A}) \\
= P(B - \text{then A}) + P(B + \text{then A}) \\
= P(B - \text{then A}) + P(B + \text{then A}) \\
= P(B - \text{then A}) + P(B + \text{then A}) \\
= P(B - \text{then A}) + P(B + \text{then A}) \\
= P(B - \text{then A}) + P(B + \text{then A}) \\
= P(B - \text{then A}) + P(B + \text{then A}) + P(B + \text{then A}) \\
= P(B - \text{then A}) + P(B + \text{then A}) + P(B + \text{then A}) \\
= P(B - \text{then A}) + P(B + \text{then A}) + P(B + \text{then A}) + P(B + \text{then A}) \\
= P(B - \text{then A}) + P(B + \text{then A}) \\
= P(B - \text{then A}) + P(B + \text{t$$

• π_A : the probability that store A is included is the sum of all probs of samples that contain that PSU

$$\pi_{A} = \pi_{AB} + \pi_{AC} + \pi_{AD}$$

$$= .0173 + .0269 + .1458$$

$$= .19$$

• The matrix below gives joint probs π_{ik} in the body and single PSU probs in the margins

		I AB				1		
			A	В		С	D	π_i
tt _{BA} ←		A		0.017	3	0.0269	0.1458	0.1900
	_	В	0.0173			0.0556	0.2976	0.3705
	C	0.0269	0.055	6		0.4567	0.5393	
	D	0.1458	0.297	6	0.4567		0.9002	
	•	π_i	0.1900	0.370	5	0.5393	0.9002	n=2

Note that

• Suppose you sampled stores C and D

Store	Size m^2	π_i	w_i	t_i
С	300	0.5393	1.854	24
D	1000	0.9002	1.111	245

• Estimated total:

$$\mathcal{Z}_{HT} = \mathcal{Z}_{witi} = (1.854)(24) + (1.111)(245)$$

$$= $316.66$$

variance of
$$\hat{t}_{HT}$$
 is -> depends on all 4 stores

(1-0.1900 1-0.9002

$$Var(\hat{t}_{HT}) = \left(\frac{1 - 0.1900}{0.1900} 11^2 + \dots + \frac{1 - 0.9002}{0.9002} 245^2\right)$$

$$+ 2 \left(\frac{0.0173 - (0.1900)(0.3705)}{(0.1900)(0.3705)} (11)(20) + \frac{0.4567 - (0.5393)(0.9002)}{(0.5393)(0.9002)} (24)(245)\right) = 4383.6$$

- The estimated total sales is \$316.67 thousand with a SE of \$66.2 thousand.
- How does this compare to a SRS of n=2 stores?

- Suppose stores C and D were selected from an SRS.
- SRS Estimated total: \$538 thousand

$$\hat{t}_{\,SRS} = Nar{y} = 4rac{24+245}{2} = 538$$

• SRS Variance of \hat{t}_{SRS} is $Var(\hat{t}_{HT}) = 4^2(1-\frac{2}{4})\frac{12874}{2} = 51496$

where
$$S^2=rac{1}{N-1}\sum_{i=1}^N(t_i-ar{t}_{\,\mathcal{U}})=12874$$

```
> pop <- c(11,20,24,245)
> var(pop)
[1] 12874
```

- **Probability proportional to size:** The estimated total sales is \$316.67 thousand with a SE of \$66.2 thousand.
- **SRS:** The estimated total sales is \$538 thousand with a SE of \$226.9 thousand.
- One important reason for selecting PSU with unequal probabilities:
 - \circ can reduce SE (compared to SRS) when selection probability π_i is positively associated with the response t_i
 - called **probability proportional to size (pps)** sampling

 \circ most samples will contain large t_i making variation in \hat{t}_{pps} less than when a small t_i is just as likely as a large

Store: probs. prop. to store size.

-> size + ti(sales) are positively
correlated

- One important reason for **not** selecting PSU with unequal probabilities:
 - $\circ~$ if some PSU have very small π_i , then they have very high weight w_i
 - \circ can cause imprecise **estimates of** $Var(\hat{t}_{HT})$ because of these high weights

TT: - Wi very small

Estimating HT variance

$$Var(\hat{t}_{HT}) = \sum_{i=1}^{N} rac{1-\pi_i}{\pi_i} t_i^2 + 2 \sum_{i=1}^{N} \sum_{k=1}^{N} rac{\pi_{ik} - \pi_i \pi_k}{\pi_i \pi_k} t_i t_k$$

- To estimate variance, treat the summations as population totals
 - estimate the total with a HT-estimator!
 - \circ weight sampled values by w_i 's

Theory

Estimating HT variance

ullet There are three commonly used estimates of $Var(\hat{t}_{HT})$

• Horvitz-Thompson (HT): unbiased and often the default software version (as in survey), but can be negative for samples with small inclusion probs

$$\hat{V}_{HT}(\hat{t}_{HT}) = \sum_{i=1}^{n} \frac{1-\pi_i}{\pi_i^2} t_i^2 + 2 \sum_{i} \sum_{k} \frac{\pi_{ik} - \pi_i \pi_k}{\pi_{ik}} \frac{t_i}{\pi_i} \frac{t_k}{\pi_k}$$
 ,

• Sen-Yates-Grundy (SYG): unbiased and more stable than HT version

$$\hat{V}_{SYG}(\hat{t}_{HT}) = \sum_{i} \sum_{k} rac{\pi_i \pi_k - \pi_{ik}}{\pi_{ik}} \left(rac{t_i}{\pi_i} - rac{t_k}{\pi_k}
ight)^2$$

Estimating HT variance

• With Replacement: is a biased estimate that overestimates the variance, but it doesn't require joint inclusion probs!

$$\hat{V}_{WR}(\hat{t}_{HT}) = \frac{n}{n-1} \sum_{i=1}^{n} \left(\frac{t_i}{\pi_i} - \frac{\hat{t}_{HT}}{n} \right)^2$$

$$\hat{V}_{HT}(\hat{t}_{HT}) \longrightarrow \text{stores C+D sample } T_c = .5373 \text{ TT}_p = .9002$$

$$t_c = 24 \quad t_0 = 245 \quad T_{CO} = .4567$$

$$\hat{V}_{HT}(\hat{t}_{HT}) = \frac{(-.5373)}{.5372^2} (24)^2 + \frac{(-.9002)}{.9002^7} (245)^2$$

$$+ 2 \times \left(\frac{.4567 - (.5373)(.902)}{.4567} \right) \frac{24}{.5393} \times \frac{245}{.9002}$$

$$\approx 6778$$

Example: Estimating HT variance

Sample ${\cal S}$				$\hat{V}_{SYG}(\hat{t}_{\;HT})$			
A,B	0.01726	111.87	-14,691.5	47.1			
A,C	0.02692	102.39	-10,832.1	502.8			
A,D	0.14583	330.06	4,659.3	7,939.8			
В,С	0.05563	98.48	-9,705.1	232.7			
B,D	0.29762	326.15	5,682.8	5,744.1			
C,D	0.45673	316.67	6,782.8	3,259.8			

- If we happen to sample two small stores, our HT estimate of variance is negative!
- But both are unbiased estimators of the true variance.

$$E[\hat{V}_{H7}] = (-14691.5)(.01726) + .01har 5 = V_{H7} = 4383$$

$$Sall samples E[\hat{V}_{879}] = 47.1(.01726) + ... = V_{H7} = 4383$$

$$23/24$$

What about estimating populuation mean?

$$\sum_{all\ elements} w_i$$

- Summing sampling weights over all **elements** sampled will give
 - actual population size (of elements) when weights are equal for all elements and number of elements per PSU is constant
 - an unbiased estimated population size (of elements)
- The Horvitz-Thompson estimate of population mean (per element) is

$$\hat{ar{y}}_{HT} = rac{\hat{t}_{HT}}{\sum_{all\ elements} w_i} = rac{\sum_{i} \omega_i t_i}{\sum_{i} \omega_i}$$

- The survey package uses this when you run svymean
 - $\circ~$ gives $\hat{t}_{\,HT}$ when you run svytotal

