Math 302 HW1 Section IV 2024 Duke Kunshan University

Problem 1. Write a program implementing the algorithm Bisection method. Use the program to calculate the real roots of the following equations. Use an error tolerance of $\epsilon = 10^{-5}$.

1.
$$e^x - 3x^2 = 0$$

2.
$$x^3 = x^2 + x + 1$$

3.
$$e^x = \frac{1}{0.1+x^2}$$

4.
$$x = 1 + 0.3\cos(x)$$

Problem 2. Implement the algorithm Newton method. Use it to solve the equation in Problem 1.

Problem 3. Use Newton's method to calculate the unique root of

$$x + e^{-Bx^2}\cos(x) = 0$$

with B > 0 a parameter to be set. Use a variety of increasing values of B, for example, B = 1, 5, 10, 25, 50. Among the choices of x_0 used, choose $x_0 = 0$ and explain any anomalous behavior. Theoretically, the Newton method will converge for any value of x_0 and B. Compare this with actual computations for large values of B.

Problem 4. Use the secant method to solve the equations given in Problem 1.

Problem 5. Ue the secant method to solve the equation of Problem 3.

Problem 6. Show the error formula (as in slides) for the secant method,

$$\alpha - c = -(\alpha - b)(\alpha - a) \frac{f[a, b, \alpha]}{f[a, b]}.$$

Here α is the root.

Problem 7. Apply Newton's method

1. to the function

$$f(x) = \begin{cases} \sqrt{x}, & x \ge 0, \\ -\sqrt{-x}, & x < 0 \end{cases}$$

with the root $\alpha = 0$. What is the behavior of the iterates? Do they converge, and if so, at what rate?

2. Do the same as in (1), but with

$$f(x) = \begin{cases} \sqrt[3]{x^2}, & x \ge 0, \\ -\sqrt[3]{x^2}, & x < 0. \end{cases}$$

Problem 8. A sequence $\{x_n\}$ is said to converge superlinearly to α if

$$|\alpha - x_{n+1}| \le c_n |\alpha - x_n|, \quad n \ge 0$$

with $c_n \to 0$ as $n \to \infty$. Show that in this case,

$$\lim_{n \to \infty} \frac{|\alpha - x_n|}{|x_{n+1} - x_n|} = 1.$$

Thus $|\alpha - x_n| \approx |x_{n+1} - x_n|$ is increasingly valid as $n \to \infty$.

Problem 9. Newton's method for finding a root α of f(x) = 0 sometimes requires the initial guess x_0 to be quite close to α in order to obtain convergence. Verify that this is the case of the root $\alpha = \frac{\pi}{2}$ of

$$f(x) = \cos(x) + \sin^2(50x).$$

Give a rough estimate of how small $|x_0 - \alpha|$ should be in order to obtain convergence to α .