전 재 욱

Embedded System 연구실 성균관대학교

Outline

- Problem of overfitting
- Cost function
- Regularized linear regression
- Regularized logistic regression

Outline

- Problem of overfitting
- Cost function
- Regularized linear regression
- Regularized logistic regression

- Example
 - Linear regression (housing price)

Example

Linear regression (housing price)

$$\theta_0 + \theta_1 x$$

"Underfit" "High bias"

$$\theta_0 + \theta_1 x + \theta_2 x^2$$

"Just right"

$$\theta_0 + \theta_1 x + \theta_2 x^2$$
 $\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$

"Overfit"

"High variance"

Example

Linear regression (housing price)

$$\theta_0 + \theta_1 x$$

"Underfit" "High bias"

$$\theta_0 + \theta_1 x + \theta_2 x^2$$

"Just right"

$$\theta_0 + \theta_1 x + \theta_2 x^2$$
 $\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$

"Overfit"

"High variance"

Overfitting

- If we have too many features, the learned hypothesis may fit the training set very well $(J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \approx 0)$
 - but fail to generalize to new examples (predict prices on new examples)

- Example
 - Logistic regression

Example

Logistic regression

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1 x_2)$$

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_1^2 + \theta_3 x_1^2 x_2 + \theta_4 x_1^2 x_2^2 + \theta_5 x_1^2 x_2^3 + \theta_6 x_1^3 x_2 + \ldots)$$

"Overfit"

"Underfit"

Addressing overfitting

- x_1 : size of house
- x_2 : # of bedrooms
- x_3 : # of floors
- x_4 : age of house
- x_5 : average income in neighborhood
- x_6 : kitchen size
- x_{100}

Addressing overfitting

- Options:
 - 1) Reduce number of features.
 - Manually select which features to keep.
 - Model selection algorithm
 - 2) Regularization
 - \triangleright Keep all the features, but reduce magnitude/values of parameters θ_i .
 - Works well when we have a lot of features,each of which contributes a bit to predicting y .

Outline

- Problem of overfitting
- Cost function
- Regularized linear regression
- Regularized logistic regression

$$\theta_0 + \theta_1 x + \theta_2 x^2$$

$$\theta_0 + \theta_1 x + \theta_2 x^2$$
 $\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$

$$\theta_0 + \theta_1 x + \theta_2 x^2$$

$$\theta_0 + \theta_1 x + \theta_2 x^2$$
 $\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_2 x^3 + \theta_3 x^4$

- Suppose we penalize and make θ_3 , θ_4 really small
 - $\min_{\theta} \frac{1}{2m} \left[\sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) y^{(i)} \right)^{2} \right] + 1000\theta_{3}^{2} + 1000\theta_{4}^{2}$
 - $\rightarrow \theta_3 \approx 0, \ \theta_4 \approx 0$

- Small values for parameters
 - "Simpler" hypothesis
 - Less prone to overfitting
- Housing
 - Features: x₁, x₁, ..., x₁₀₀
 - Parameters: θ_0 , θ_1 , θ_2 , ..., θ_{100}

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} \right] \Rightarrow$$

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

 θ_0

$$I(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

Regularization parameter $\lambda \geq 0$

- $\blacksquare min_{\theta}J(\theta)$
- Regularization parameter
 - Controls a trade off btw two goals
 - Fit the training set well
 - Keep parameters small

In regularized linear regression, θ is chosen to minimize

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

What if λ is set to extremely large value (perhaps for too large for our problem, say $\lambda = 10^{10}$)?

In regularized linear regression, we choose θ to minimize

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

What if λ is set to extremely large value (perhaps for too large for our problem, say $\lambda = 10^{10}$)?

$$h_{\theta}(x) = \theta_0 + \chi_1 x + \chi_2 x^2 + \chi_3 x^3 + \chi_4 x^4 \approx \theta_0$$

Outline

- Problem of overfitting
- Cost function
- Regularized linear regression
- Regularized logistic regression

Regularized Linear Regression

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

 $min_{\theta}J(\theta)$

Gradient Descent for Linear Regression

$$\theta_j \leftarrow \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

$$(j = 0, 1, 2, ..., n)$$

Gradient Descent for Linear Regression

$$\theta_0 \leftarrow \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_{j} \leftarrow \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$

$$(j = 0, 1, 2, ..., n)$$

Gradient Descent for Regularized Linear Regression

$$\theta_0 \leftarrow \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_{j} \leftarrow \theta_{j} - \alpha \left[\frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right) x_{j}^{(i)} + \frac{\lambda}{m} \theta_{j} \right]$$

$$(j = 0, 1, 2, \dots, n)$$

Gradient Descent for Regularized Linear Regression

Repeat {

$$\theta_0 \leftarrow \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\frac{\partial}{\partial \theta_0} J(\theta)$$

$$\theta_j \leftarrow \theta_j (1 - \alpha \frac{\lambda}{m}) - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x_j^{(i)}$$

}

$$(j = 0,1,2,...,n)$$

$$1 - \alpha \frac{\lambda}{m} < 1$$

Gradient Descent for Regularized Linear Regression

- less than 1
- Usually learning rate α is small and m is large
 - So this typically evaluates to (1 a small number)

$$> 1 - \alpha \frac{\lambda}{m}$$
 is often around 0.99 to 0.95

$$\theta_j \leftarrow \theta_j (1 - \alpha \frac{\lambda}{m}) - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

$$If 1 - \alpha \frac{\lambda}{m} = 0.99$$

- θ_j gets multiplied by 0.99 ($\theta_j(1-\alpha\frac{\lambda}{m})$)
 - \triangleright Means the squared norm of θ_j a little smaller

$$-\alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

exactly the same as the original gradient descent

Normal Equation

- $\blacksquare \text{ If } \theta \in R^{n+1}$
 - $I(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) y^{(i)} \right)^2$

where
$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{bmatrix}$$
, $X = \begin{bmatrix} \begin{pmatrix} x^{(1)} \end{pmatrix}^T \\ \begin{pmatrix} x^{(2)} \end{pmatrix}^T \\ \vdots \\ \begin{pmatrix} x^{(m)} \end{pmatrix}^T \end{bmatrix}$, $x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix}$, $y = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{bmatrix}$

$$\bullet = (X^T X)^{-1} X^T y$$

Normal Equation for Regularized Linear Regression

- \blacksquare If $\theta \in \mathbb{R}^{n+1}$
 - $I(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) y^{(i)} \right)^2$
 - → $J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$

where
$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{bmatrix}$$
, $X = \begin{bmatrix} \begin{pmatrix} x^{(1)} \end{pmatrix}^T \\ \begin{pmatrix} x^{(2)} \end{pmatrix}^T \\ \vdots \\ \begin{pmatrix} x^{(m)} \end{pmatrix}^T \end{bmatrix}$, $x^{(i)} = \begin{bmatrix} x^{(i)} \\ x^{(i)}_1 \\ x^{(i)}_2 \\ \vdots \\ x^{(i)}_n \end{bmatrix}$, $y = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{bmatrix}$
$$m \times (n+1)$$

Normal Equation for Regularized Linear Regression

- If $\theta \in \mathbb{R}^{n+1}$
 - $I(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) y^{(i)})^2$

→
$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

$$\frac{\partial}{\partial \theta} J(\theta) = 0 \implies \theta = \begin{pmatrix} X^T X + \lambda \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 0 & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix} \end{pmatrix} X^T y$$

$$(n+1)\times(n+1)$$

Non-Invertibility

- Suppos $m \le n$
 - (# of examples ≤ # of features)
 - Then, in $\theta = (X^T X)^{-1} X^T y$, $(X^T X)^{-1}$ may be singular

If $\lambda > 0$,

$$\theta = \begin{pmatrix} X^T X + \lambda \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 0 & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix} \end{pmatrix}^{-1} X^T y$$

Invertible

Outline

- Problem of overfitting
- Cost function
- Regularized linear regression
- Regularized logistic regression

Regularized Logistic Regression

Cost function

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta} \left(x^{(i)} \right) + \left(1 - y^{(i)} \right) \log \left(1 - h_{\theta} \left(x^{(i)} \right) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

Regularized Logistic Regression

The effect of penalizing parameters $\theta_1, \dots, \theta_n$

Cost function

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta} \left(x^{(i)} \right) + \left(1 - y^{(i)} \right) \log \left(1 - h_{\theta} \left(x^{(i)} \right) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

Gradient Descent for Regularized Logistic Regression

$$\theta_0 \leftarrow \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_{j} \leftarrow \theta_{j} - \alpha \left[\frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_{j}^{(i)} + \frac{\lambda}{m} \theta_{j} \right]$$

$$(j = 0, 1, 2, ..., n)$$

$$\frac{\partial}{\partial \theta_{i}} J(\theta)$$

$$h_{\theta}(z) = \frac{1}{1 + exp(-\theta^T z)}$$

References

- Andrew Ng, https://www.coursera.org/learn/machine-learning
- http://www.holehouse.org/mlclass/07_Regularization.html