Homework 2: Vectors and Kinematics

Due: Tuesday September 25, 16:00

Policy: Collaboration is allowed, but every student is required to hand in his/her own version of the solutions. Please include your name and student number on the solutions.

Problem 1. 1. Consider the vectors $\mathbf{A} = (2, -2, 0)$ and $\mathbf{B} = (6, -6, -2\sqrt{6})$ in 3-dimensional space. Determine

- (a) |A| and |B|,
- (b) $\boldsymbol{A} \cdot \boldsymbol{B}$,
- (c) the angle θ between \boldsymbol{A} and \boldsymbol{B} ,
- (d) $|\mathbf{A} \times \mathbf{B}|$ and $\mathbf{A} \times \mathbf{B}$.

Problem 2. (K. & K. 1.16) The acceleration of gravity can be measured by projecting a body upward and measuring the time it takes to pass two given points in both directions. See the figure below.

Show that if the time the body takes to pass a horizontal line A in both directions is T_A , and the time to go by a second line B in both directions is

 T_B , then, assuming that the acceleration is constant, its magnitude is

$$g = \frac{8h}{T_A^2 - T_B^2},$$

where h is the height of line B above line A.