1. Functions of several variables

Points, vectors and lines

- 1. Find cartesian and parametric equations for these lines:
 - (a) The line through the points (1, 2) i (3, 1);
 - (b) The line through (1, 1) with direction vector equal to (0, 1).
- 2. Provide parametrizations for the sides of the triangle determined by x=0, y=0 and x+y=6.
- 3. Find cartesian and parametric equations for these lines:
 - (a) The line through the points (-1, 0, 2) i (3, 3, 1);
 - (b) The line through $(\sqrt{2}, 1, -\pi)$ with direction vector equal to (0, 1, e).
- 4. Compute the measure of the angles given by:
 - (a) The vectors (2, 4) i (4, 2),
 - (b) The lines x + 2y + 4 = 0 i 4x + 3y + 1 = 0,
 - (c) The vectors (2, 4, 7) i (7, 4, -2),
 - (d) The lines r_1 i r_2 given by these equations

$$r_1$$
: $x + 2y + 3z + 4 = 0$, $4x + 3y + 2z + 1 = 0$
 r_2 : $5x + y - z + 1 = 0$, $-x - y + z + 3 = 0$.

- 5. (a) Compute the dot product of these plane vectors: $(\frac{1}{2}, \frac{1}{\sqrt{2}}) \cdot (\frac{1}{\sqrt{2}}, \frac{1}{2})$ and of these 3-d vectors i $(-1, 0, 2) \cdot (3, 3, 1)$.
 - (b) Find equations for the line in \mathbb{R}^3 which is orthogonal to the plane x+y+z-1=0 and goes through the point (3,1,-4).
 - (c) Find all vectors in \mathbb{R}^3 which are perpendicular to the line given by the equations

$$5x + y - z + 1 = 0$$
, $-x - y + z + 3 = 0$.

(d) Determine all pairs of vectors v, w satisfying ||v + w|| = ||v|| + ||w||. Find also all vectors u, w such that $|\langle u, w \rangle| = ||u|| \cdot ||w||$.

1

- 6. Prove or disprove these claims:
 - (a) $||v w|| \ge |||v|| ||w|||$.
 - (b) $||u v||^2 + ||u + v||^2 = 2(||u||^2 + ||v||^2)$.

- 7. Compute $v \times w$ for v = (-1, 2, 3) i w = (6, 1, 0). Find all vectors which are orthogonal to v. Provide a description of all vectors of modulus 1 in \mathbb{R}^3 as well as the subset of those which are orthogonal to w. (Here all vectors are supposed to start at $(0, 0, 0) \in \mathbb{R}^3$.)
- 8. Describe these sets of point of the plane \mathbb{R}^2 :
 - (a) Those at a fixed distance r > 0 to the point (a, b).
 - (b) Those at the same distance to the point (a, 0) as to the *Y*-axis.
 - (c) The points (x, y) such that $x^2 + y^2 = 2x$.
 - (d) The points (x, y) such that $x^2 y^2 = 2x$.
- 9. Give a geometric description of this subset of \mathbb{R}^3 : (Hint: It's a sphere.)

$$\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 2x + 2y\}.$$

Curves in the plane and in 3-dimensional space

10. Provide descriptions of the paths in the plane given by these curves:

(a)
$$t \to (0,0)$$
; (b) $t \to (t,t)$; (c) $t \to (t,t^2)$; (d) $t \to (t^2,t^3)$;
(e) $t \to (\sin 2\pi t, \cos 2\pi t)$; (f) $t \to (t - \sin t, 1 - \cos t)$; (g) $t \to (t, \sqrt[4]{|t|})$;
(h) $t \to (\cos 2\pi t, t)$; (i) $t \to (e^{-t} \cos t, e^{-t} \sin t)$; (j) $t \to (e^{-t} \cos t, e^{-t})$.

- 11. Compute the tangent vector and the tangent line at the point P=(1,0) for the curve (i) in exercise 10. Is there any tangent line for the curve (c) in exercise 10 which passes through the point $Q=\left(\frac{13}{4},10\right)$?
- 12. (a) Provide descriptions of the paths in \mathbb{R}^3 given by these curves:

(1)
$$t \to (t, t, t)$$
; (2) $t \to (t, t^2, t^3)$; (3) $t \to (\sin 2\pi t, \cos 2\pi t, 1)$
(4) $t \to (\sin 2\pi t, \cos 2\pi t, t)$; (5) $t \to (e^{-t} \sin t, e^{-t} \cos t, e^{-t})$.

- (b) Prove that the path given by the curve $\left(t, \frac{1+t}{t}, \frac{1-t^2}{t}\right)$ for $t \neq 0$ lies in a plane,
- 13. Compute the tangent vector to the curve (e) in exercise 12 at the point P = (0, 1, 1), as well as cartesian equations of the tangent line to the curve through this same point.

Differentiable functions of several variables

14. Describe the largest subsets of \mathbb{R}^2 where these formulas define functions:

(a)
$$f(x, y) = \sqrt{1 - x + y}$$
.

(b)
$$g(x, y) = \frac{2xy}{x^2 + y^2}$$
.

(c)
$$h(x, y) = \frac{x}{y} + \frac{y}{x}$$
.

(d)
$$f_1(x, y) = \frac{1}{\sqrt{16 - x^2 - y^2}}$$

(e)
$$g_1(x, y) = |x - y|^{-1} + \sin(x + y) + e^{x - y^2}$$

(f)
$$h_1(x, y) = \frac{1}{x^2 - y}$$

(g)
$$f_2(x, y) = (\log(|x| - |y|))^{-1}$$

(h)
$$g_2(x, y) = \log(f(x, y)^2) + \log(x^2 + y^2)$$

- 15. Find the isolines of the functions f, g, h, f₁ in exercise 14.
- 16. Find the isolines/isosurfaces of these functions:

a)
$$f(x, y) = x - y + 2$$
,

b)
$$g(x, y) = x + y$$
,

c)
$$h(x, y) = xy$$
.

d)
$$F(x, y, z) = x^2 + y^2 + 4z^2$$
, e) $G(x, y, z) = 4x^2 + y^2 - z^2$.

e)
$$G(x, y, z) = 4x^2 + y^2 - z^2$$

- 17. Plot the functions f, g, h, f₁ in exercise 14.
- 18. Plot the functions f, g, h, in exercise 16.
- 19. Compute the gradient of these functions:

(a)
$$f(x, y) = xy$$
.

(b)
$$f(x, y) = e^{xy}$$
.

(c)
$$f(x, y) = \frac{x^2 + y^2}{x^2 - y^2}$$
.

(d)
$$g(x, y, z) = \frac{x}{y}$$
.

(e)
$$g(x, y, z) = e^{zx} \cos(x + zy)$$
.

(f)
$$g(x, y, z) = xe^{2y} \log(x^2yz)$$
.

20. Compute the directional derivatives of the following functions at the given points in the indicated directions:

a)
$$f(x,y) = x + 2xy - 3y^2$$
, $P = (1,2)$, $v = (3/5,4/5)$.

b)
$$g(x, y) = \log \sqrt{x^2 + y^2}$$
, $P = (1, 0)$, $v = \frac{1}{\sqrt{5}}(2, 1)$.
c) $h(x, y) = \sin x + \cos y$, $P = (0, \pi)$, $v = (0, 1)$.

c)
$$h(x, y) = \sin x + \cos y$$
, $P = (0, \pi)$, $v = (0, 1)$.

d)
$$k(x, y) = e^{2xy^2}$$
, $P = (0, 1)$, $v = (1, 0)$.

21. Find the cartesian equations of the tangent planes to the plots of the following functions at the given points.

a)
$$f(x, y) = \arctan\left(\frac{x}{y}\right)$$
, $P = \left(1, \sqrt{3}, \frac{\pi}{6}\right)$.

b)
$$g(x,y) = \frac{1}{\sqrt{x^2 + y^2}}, \quad P = (1,0,1).$$

22. For each of the following surfaces in \mathbb{R}^3 find the tangent plane and the normal line at the given points:

a)
$$x^2 + y^2 + z^2 = 3$$
, $P = (1, -1, 1)$.

b)
$$\cos z = \sin(x + y), P = (\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}).$$

c)
$$x^2 + z^2 = 4y$$
, $P = (4, 8, 4)$.

d)
$$xyz = 1$$
, $P = (1, 1, 1)$.

e)
$$z = \cos x \cos y$$
, $P = (0, \pi/2, 0)$.

f)
$$x^2 - y^2 = z^2$$
, $P = (-3, 1, 2\sqrt{2})$.

23. Compute the Jacobian matrix of each of these maps:

a)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x, y) \mapsto (y, x)$.

b)
$$g: \mathbb{R}^2 \to \mathbb{R}^3$$
, $(x, y) \mapsto (xe^y + \cos y, x, x + e^y)$.

24. Use the chain rule to compute $\frac{\partial h}{\partial x}$, where h(x,y)=f(u(x,y),v(x,y)) and f,u,v are given as follows:

a)
$$f(u, v) = u^2 + v^2$$
, $u(x, y) = xy$, $v(x, y) = x + y$.

a)
$$f(u, v) = u^2 + v^2$$
, $u(x, y) = xy$, $v(x, y) = x + y$.
b) $f(u, v) = \frac{u^2 + v^2}{u^2 - v^2}$, $u(x, y) = -x - y$, $v(x, y) = xy$.

c)
$$f(u, v) = \sqrt{u^2 + 2uv}$$
, $u(x, y) = \cos xy$, $v(x, y) = \sin xy$.

d)
$$f(u, v) = \sqrt{v^2 + 2uv}$$
, $u(x, y) = \sin xy$, $v(x, y) = \cos xy$.

e)
$$f(u, v) = \log(u^2 + v^2)$$
, $u(x, y) = \sqrt{xy}$, $v(x, y) = \sqrt{x^2 + y^2 - xy}$

f)
$$f(u, v) = e^{uv}$$
, $u(x, y) = e^{xy}$, $v(x, y) = x^2y - xy^2$.

25. Consider the maps $q: \mathbb{R}^2 \to \mathbb{R}^2$ i $h: \mathbb{R}^2 \to \mathbb{R}$ given by

$$g(x, y) = (x^2 + y, x - y^2)$$
 i $h(x, y) = (x^2 + y)^3 - (x - y^2)^4$.

- (a) Compute the differential matrix Dq(1,0).
- (b) Find a function f(u, v) such that h(x, y) = f(g(x, y)) and compute the gradient vector $\nabla f(1,1)$.
- (c) Check that $\nabla h(1,0) = (2,3)$.
- (d) Find the equation of the tangent plane to the plot z = h(x, y) at the point (1, 0, 0).

26. The *ideal gas law* is PV = nRT where P is the pressure, V is the volume, T is the temperature and R is the *ideal gas constant* (the same for all gases), while n is a constant related to the number of particles in the gas divided by the Avogadro constant. Prove that the following formula holds:

$$\frac{\partial V}{\partial T} \frac{\partial T}{\partial P} \frac{\partial P}{\partial V} = -1.$$

The Van der Waals equation extends the ideal gas law in the following way:

$$P = \frac{RT}{V - \beta} - \frac{\alpha}{V^2},$$

where α , β are constants. Check that the previous formula still holds for the Van der Waals equation.

- 27. Consider a square metallic plate $Q = \{(x,y) : 0 \le x \le 5, \ 0 \le y \le 5\}$ which is heated in a way that the temperature at the point (x,y) is given by the function $T(x,y) = x^2 + y^2$. Compute the direction of the thermal flux (in the plate) at the point (2,4). In which points of the plate can we find the highest temperature?
- 28. Compute $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial x \partial y}$, $\frac{\partial^2 f}{\partial y \partial x}$ i $\frac{\partial^2 f}{\partial y^2}$ for each of the following functions:

$$f(x, y) = \cos(xy^2), \quad f(x, y) = e^{x^2+y^2}.$$

- 29. Is there any function $f: \mathbb{R}^2 \to \mathbb{R}$ such that $\nabla f(x,y) = (2xy + 1, x^2)$?
- 30. Prove that the origin is a critical point of the function $f(x, y) = ax^2 + 2bxy + y^2$. Describe its type for all values of a and b.

Extrema

- 31. Find the local extrema of these functions:
 - (a) $f(x, y) = 8x^3 24xy + y^3$.
 - (b) $f(x, y) = \log(2 + \sin(xy))$.
 - (c) $f(x, y) = \sin x \cos y$.
 - (d) $f(x, y) = (x^2 + y^2 + 1)^{-1}$.
 - (e) $g(x, y, z) = x^2 + y^2 z^2 xy + xz 2z$.
 - (f) g(x, y, z) = xyz(1-x)(1-y)(1-z).

- 32. Find the absolute extrema of the following functions in the indicated sets:
 - a) $f(x, y) = x^2 + y^2$ along the line 3x + 2y = 6.
 - b) $f(x,y) = 1 x^2 y^2$ along the line x + y = 1 with $x \ge 0$ i $y \ge 0$.
 - c) $f(x, y) = x^2y + 12y^2 + 2xy$ along the ellipse $x^2 + 2x + 16y^2 = 9$.
 - d) f(x, y) = x y along the hyperbola $x^2 y^2 = 2$.
 - e) $f(x, y) = \cos^2 x + \cos^2 y$ along the line $x + y = \pi/4$.
 - f) $g(x, y, z) = 3x^2 + 3y^2 + z^2$ in the plane x + y + z = 1.
 - g) $g(x, y, z) = x^2 + y^2 + z^2$ in the set $4x^2 + 9y^2 + 16z^2 = 1$, x = y.
- 33. Find the maximum of the function $f(x, y) = x^2y(4 x y)$ in the triangle bounded by the lines x = 0, y = 0, x + y = 6.
- 34. Consider the function $f(x, y, z) = x^3 + y^3 + z^3$ where n is a natural number. Find its absolute extrema in the ball $\{(x, y, z) : x^2 + y^2 + z^2 \le 1\}$.
- 35. Let $E = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, y \ge x\}$ and let f be the function given by $f(x, y) = x^2 + y^2 + 2x$.
 - (a) Is *E* compact?
 - (b) Does f have maximum and minimum in E? If it does, find these extrema.
- 36. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be the function given by $f(x, y) = x^2 + y^2 2x 2y$ and let D be the semi-disc $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 4, y \ge 0\}$.
 - (a) Find the critical points of f in \mathbb{R}^2 and describe their type (local maximum, local minimum or saddle point).
 - (b) Has f absolute extrema in D? If it does, find them.
- 37. Find the absolute maximum and minimum of the function $f(x, y) = 5x^2 + 5y^2 8xy$ in the compact set $\{(x, y) : x^2 + y^2 xy \le 1\}$.
- 38. Find the triangle with the largest area among the triangles with a fixed perimeter. (Hint: use Heron's formula $S^2 = p(p-a)(p-b)(p-c)$ where a,b,c are the lengths of the sides, S is the area and p is half the perimeter.)
- 39. Consider the function $T(x, y) = 20 + 2x + 2y x^2 y^2$. Prove that the value of T in any point of the disc $D = \{(x, y) : x^2 + y^2 \le 2\}$ is higher that in any point of

$$R = \left\{ (x, y) : x^2 - 8x + y^2 + 16 \le \frac{1}{16} \right\}.$$

- 40. Find the rectangular parallelepiped with the largest volume among those with the same area.
- 41. Find the circular sector with the smaller perimeter among those with the same area.

- 42. Find a rectangular parallelepiped satisfying each of these conditions:
 - (a) Length of the diagonal is fixed and volume is maximum.
 - (b) Volume is 500 and area without the top face is minimum.
- 43. Consider the ellipsoid $16x^2+4y^2+9z^2=144$. Find the largest volume of any rectangular parallelepiped inscribed in this ellipsoid in such a way that its sides are parallel to the coordinate planes.
- 44. Find the points closest to the origin in the plane 2x y + 2z = 16 and in the surface $z^2 xy = 1$.
- 45. Imagine the temperature at each point of a plane is given by

$$T(x,y) = \frac{100}{x^2 + y^2 - 2x - 2y + 6}.$$

- (a) What is the temperature at the origin and in which direction does the thermal flux flow? Find the isotherm curve through the origin.
- (b) Which is the hottest point and what is its temperature?
- (c) Which points in the disc $x^2 + y^2 \le 1$ have highest and lowest temperature?
- 46. Consider the function $f(x, y) = x^3 x + y^2 y + 2xy$.
 - (a) Find the equation of the tangent plane to the surface z=f(x,y) at the point (1,1,2).
 - (b) Find the direction in which the function decreases most quickly at the point (1, -1).
 - (c) Find all critical points of f, as well as their type.
- 47. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x,y) = -x^3 - y^3 + \frac{3}{2}x^2 + 3y^2.$$

- (a) Find all critical points of f, as well as their type.
- (b) Find the maximum and minimum of f along the circle $\{(x, y) : x^2 + y^2 = 1\}$.

7

(c) Does f have absolute extrema in the disc $D=\{(x,y)\in\mathbb{R}^2: x^2+y^2\leq 1\}$? If yes, find them.

2. Multiple integrals

48. Compute

(a)
$$\int_0^1 \left(\int_0^1 xy e^{(x+y)} dy \right) dx$$
.

(b)
$$\int_{-1}^{0} \left(\int_{1}^{2} x \log y \, dy \right) \, dx$$
.

49. Compute the following double integrals:

(a)
$$\iint_{Q} (xy)^2 \cos x \, dx \, dy$$
 where $Q = [0, \frac{\pi}{2}] \times [0, 1]$.

(b)
$$\iint_{T} y \ dx \ dy; \iint_{T} x \ dx \ dy$$

where T is the triangle with vertices A = (0,3), B = (3,0), C = (3,6). Assuming density is constant, find the center of mass of T.

50. Compute the following double integrals:

(a)
$$\iint_D (x^2 + y^2) dx dy$$
 where *D* is the closed unit disk.

(b)
$$\iint_{R} (x^3 y) \, dx \, dy$$

where R is the region bounded by the y axis and the parabola $x = y^2 - 4$.

8

(c)
$$\iint_S x^2 y \, dx \, dy$$
 where $S = \{(x, y) : 0 \le y \le \frac{1}{2}, \ x^2 + y^2 \le 1\}.$

51. Plot the plane regions given by the integral limits and compute the integrals.

(a)
$$\int_{1}^{2} \left(\int_{2x}^{3x+1} y \, dy \right) \, dx$$

(b)
$$\int_0^1 \left(\int_{x^3}^{x^2} y^2 \, dy \right) \, dx$$

(c)
$$\int_0^{\pi/2} \left(\int_0^{\cos x} y \sin x \, dy \right) \, dx$$

52. Use Fubini's theorem to compute the following iterated integrals.

(a)
$$\int_0^2 \left(\int_{\frac{u}{2}}^1 e^{x^2} dx \right) dy$$

(b)
$$\int_0^1 \left(\int_{\sqrt[6]{x}}^1 \sin y^7 \, dy \right) \, dx$$

(c)
$$\int_0^4 \left(\int_{\sqrt{y}}^2 \frac{y e^x}{x^4} dx \right) dy$$

- 53. Use polar coordinates to find:
 - (a) The area of the region bounded by

$$S = \{(x, y) \in \mathbb{R}^2 : (x^2 + y^2)^2 = 2a^2(x^2 - y^2)\}, \ a > 0.$$

(b) he area of the region bounded by the curves $r = b(1 + \cos \varphi)$ i $r = b \cos \varphi$, b > 0,

(c)
$$\iint_D \sqrt{a^2 - x^2 - y^2} \, dx \, dy \text{ where } D = \{(x, y) \in \mathbf{R}^2 : x^2 + y^2 \le r^2\}, \, r > 0,$$

- (d) $\iint_{R} \sqrt{x^2 + y^2} \, dx \, dy \text{ where } R = \{(x, y) \, | \, x^2 + y^2 \le 2x\}.$
- 54. Compute the center of mass of this three-dimensional object (assuming constant density):

$$B = \{(x, y, z) \mid x^2 + y^2 \le 1, \ 0 \le z \le (x^2 + y^2)^{1/2} \}.$$

55. Let *B* be the solid unit sphere. Using an appropriate change of variables compute

$$I = \iiint_B \frac{1}{\sqrt{2 - x^2 - y^2 - z^2}} \, dV.$$

- 56. Find the volume of the following three-dimensional bodies, as well as their surface area.
 - (a) $\{(x, y, z) : x^2 + y^2 + z^2 \le 36, z \ge 2\}.$
 - (b) $\{(x, y, z) : x^2 + y^2 + z^2 \le 36, -1 \le z \le 3\}.$
- 57. Find the center of mass of these bodies (assuming constant density):
 - (a) A circular cone with base radius R and height h.
 - (b) The body bounded by the conic surface $c^2z^2=x^2+y^2$ with $z\geq 0$, and the sphere with radius R and center at the origin. (c is a constant.)
- 58. Consider a plane metallic disc of radius π cm which has a variable density given by the function (polar coordinates, g/cm²)

9

$$\rho(r,\theta) = r^2 \sin^2 4\theta + 2$$

- (a) Compute the weight of the disk.
- (b) What is the average density of the disk?

3. Curves and line integrals

Curves and line integrals

- 59. Plot the following curves and compute their length:
 - (a) **Logarithmic spiral** $\gamma(t) = (ae^{bt}\cos t, ae^{bt}\sin t), b < 0, t \in [0, +\infty).$
 - (b) Catenary $y(x) = a(e^{\frac{x}{a}} + e^{-\frac{x}{a}})/2, x \in [-a, a], a > 0.$
 - (c) **Cycloid** $c(t) = (rt r\sin t, r r\cos t), \quad 0 \le t \le 2\pi, r > 0.$
 - (d) $p(t) = (t, a \arcsin(t/a), (a/4) \log(a+t)/(a-t), t \in [0, a/2], a > 0.$
- 60. Compute the line integral of the vector field $F(x, y, z) = (x, \cos z, y)$ along the curve $\gamma(t) = (t, t^2, 0)$ for $t \in [0, 1]$.
- 61. Compute the line integral of the vector field $(x^3z, -z^3x, y^3)$ along the curve $(\sin t, t, \cos t)$ for $t \in [0, \frac{\pi}{2}]$.
- 62. Compute the work done by the force F(x, y) = (y, -x) acting on a particle which moves along the curve $\gamma(t) = (t^3, t^4)$ for $0 \le t \le 1$.
- 63. Compute the line integral of the vector field F(x, y, z) = (x, y, z) along these paths:
 - (a) $c_1(t) = (t, t, t), t \in [0, 1].$
 - (b) $c_2(t) = (\cos \pi t, \sin \pi t, 0), t \in [0, 1].$
 - (c) $c_3(t) = (\cos 2\pi t, \sin 2\pi t, t), t \in [0, n], n \in \mathbb{N}.$

4. Convex Optimization

Convex functions

64. Show that if $f: \mathbb{R}^d \to \mathbb{R}$ is a convex function, then it satisfies Jensen's inequality for all $n \geq 2$:

$$f(a_1x_1+\cdots+a_nx_m)\leq a_1f(x_1)+\cdots+a_nf(x_n)$$

for $a_1, \ldots, a_n \in \mathbb{R}$ such that $a_i \geq 0$ for all i and $\sum_{i=1}^n a_i = 1$, and all $x_1, \ldots, x_n \in \mathbb{R}^d$.

65. Show that for all $x_1, \ldots, x_n > 0$ in \mathbb{R} , we have

$$\frac{1}{n}(x_1+\cdots x_n)\geq \sqrt[n]{x_1\cdots x_n}.$$

Hint: Use Jensen's inequality and the fact that In is concave.

66. Show that the functions x^2, x^4, \dots, x^{2n} are all convex.

67. Let $w \in \mathbb{R}^n$ and $b \in \mathbb{R}$. Show that the function $f: \mathbb{R}^n \to \mathbb{R}$ given by

$$f(x) = w^T x + b$$

is both convex and concave.

68. Show that if $A \in \mathcal{M}_n(\mathbb{R})$ is a symmetric positive semidefinite matrix, $b \in \mathbb{R}^n$ and $c \in \mathbb{R}$, then

$$f(x) = \frac{1}{2}x^{\mathsf{T}}Ax + b^{\mathsf{T}}x + c$$

is convex.

69. Show that if $f_1, f_2 : \mathbb{R}^d \to \mathbb{R}$ are convex and a_1, a_2 are non-negative real numbers, then $a_1 f_1 + a_2 f_2$ is also a convex function.

70. Show that if $f_1, f_2 : \mathbb{R}^d \to \mathbb{R}$ are convex then so is the max function:

$$f(x) = \max\{f_1(x), f_2(x)\}.$$

71. Show that $f: \mathbb{R}^n_+ \to \mathbb{R}$,

$$f(x_1,\ldots,x_n)=\sum_{i=1}^n x_i \ln(x_i)$$

is convex.

Convex sets

72. Let $f: \mathbb{R}^d \to \mathbb{R}$. The *epigraph* of f is:

$$E = \{(x, s) \in \mathbb{R}^d \times \mathbb{R} : f(x) \le s\}.$$

Show that E is a convex set if and only if f is a convex function.

73. Suppose that $a_1, a_2, \ldots, a_n > 0$. Show that the ellipsoid

$$S = \{(x_1, \dots, x_n) \in \mathbb{R}^n : a_1 x_1^2 + a_2 x_2^2 + \dots + a_n x_n^2 \le 1\}$$

is a convex set.

- 74. Consider whether the following statements are true or false:
 - (a) The intersection of two convex subsets is convex.
 - (b) The union of two convex subsets is convex.
 - (c) The difference $A \setminus B = \{x \in A : x \notin B\}$ of a convex set A from another convex set B is convex.

Optimization. Duality.

75. Express the following optimization problem

$$\max_{x \in \mathbb{R}^2, \xi \in \mathbb{R}} p^\mathsf{T} x + \xi$$

subject to the constraints $\xi \ge 0$, $x_0 \le 0$, $x_1 \le 3$ as a standard linear program in matrix notation.

76. Consider the linear program

$$\min_{x \in \mathbb{R}^2} - \begin{bmatrix} 5 \\ 3 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

subject to

$$\begin{bmatrix} 2 & 2 \\ 2 & -4 \\ -2 & 1 \\ 0 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 33 \\ 8 \\ -5 \\ -1 \\ 8 \end{bmatrix}.$$

12

Derive the dual program using Lagrange duality.

77. Consider the quadratic program

$$\min_{\mathbf{x} \in \mathbb{R}^2} \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 5 \\ 3 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

subject to

$$\begin{bmatrix} 1 & 0 \\ -1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}.$$

Derive the dual quadratic program using Lagrange duality.

78. Consider the convex optimization problem

$$\min_{w \in \mathbb{R}^d} \frac{1}{2} w^\mathsf{T} w$$
 subject to $w^\mathsf{T} x \ge 1$.

Derive the Lagrangian dual by introducing Lagrange multipliers λ .