Mappings

Example: Translation

$$w = f(z) = z + 1$$

Example: Scaling

$$w = f(z) = 2z$$

Example: Rotation

$$w = f(z) = (1+i)z = (\sqrt{2}e^{i\frac{\pi}{4}})z$$

Example

$$w = f(z) = z^2 = (x^2 - y^2) + i2xy$$

Along
$$y = x$$
 from $x = 0$ to 1: $u = 0$ and $v = 2x^2$

Along
$$y=-x$$
 from $x=0$ to 1: $u=0$ and $v=-2x^2$

Along
$$x=1$$
: $u=1-y^2$ and $v=2y$ $u=1-(\frac{v}{2})^2$ $4u=4-v^2$ $v^2=-4(u-1)$

Example

$$w = f(z) = \frac{1}{z} = \frac{x}{x^2 + y^2} - i \frac{y}{x^2 + y^2}$$

$$u = \frac{x}{x^2 + y^2} \text{ and } v = -\frac{y}{x^2 + y^2}$$
But since $z = \frac{1}{w}$:
$$x = \frac{u}{u^2 + v^2} \text{ and } y = -\frac{v}{u^2 + v^2}$$

$$|w| = \frac{1}{|z|}$$

So the circle |z|=r maps to the circle $|w|=\frac{1}{r}$

$$|w|^2 = \frac{1}{|z|^2}$$

$$u^2 + v^2 = \frac{1}{x^2 + y^2}$$

$$x^2 + y^2 = \frac{1}{u^2 + v^2}$$

Consider the circle $a(x^2+y^2)+bx+cy+d=0$ and apply the mapping:

$$a(\frac{1}{u^2+v^2})+b(\frac{u}{u^2+v^2})+c(-\frac{v}{u^2+v^2})+d=0$$

$$d(u^2 + v^2) + bu - cv + a = 0$$

So as long as $a,d \neq 0$, a circle is mapped to a circle.