Dynamic Airline Revenue Optimization

Group 3: Harshada Pujari | Jayesh Zambre | Khushboo Surana | Payal Jain Faculty Advisor: Professor Tao Li

Leavey School of Business, Santa Clara University

June 2024

Abstract

This report showcases how mathematical optimization, using the Gurobi Python API, can enhance airline revenues through an optimal seat pricing strategy. We formulate the Yield Management Problem as a three-period stochastic programming model, addressing demand uncertainty and pricing adjustments. Our implementation, "Model Building in Mathematical Programming," demonstrates significant potential for maximizing airline profits.

Table of Contents

Introduction	3
Problem Statement	3
Flight and Pricing Data	3
Demand and Forecast Data	3
Actual Demand Data	4
Model Formulation	4
Sets and Indices	4
Parameters	4
Decision Variables	4
Objective Function	5
Constraints	5
Gurobi Optimization	5
Results	5
Impact	6
Real World examples	
Other Use Cases	
Conclusion	6

Introduction

The airline industry relies heavily on ticket sales, which constitute 60% of its revenue. However, airlines face the unique challenge of perishable inventory - once a flight departs, any unsold seats represent lost revenue that cannot be recovered. To address this, airlines employ yield management strategies, which allow for dynamic price adjustments in real-time based on demand fluctuations. This approach aims to fill as many seats as possible while maximizing revenue.

Problem Statement

The project aims to develop an advanced pricing optimization system for an airline to maximize expected revenue from ticket sales while meeting demand commitments for different seat classes. Specifically, the project focuses on the following objectives:

- ❖ Optimize Initial Price Levels and Seat Allocations
- ❖ Determine Provisional Number of Planes and Future Pricing
- **♦** Maximize Yield under Various Scenarios
- Utilize Historical and Actual Demand Data

Flight and Pricing Data

For this project, the optimization model will focus on flights scheduled to depart in three weeks. The airline may require up to six planes, each costing £50,000 to hire. Plane configuration and price options to select from are as follows:

- ❖ 37 First Class seats
- ❖ 38 Business Class seats
- ❖ 47 Economy Class seats

Class	Op	tion 1	Op	tion 2	Opt	tion 3	
First	£	1,200	£	1,000	£	950	
Business	£	900	£	800	£	600	Period 1
Economy	£	500	£	300	£	200	
First	£	1,400	£	1,300	£	1,150	
Business	£	1,100	£	900	£	750	Period 2
Economy	£	700	£	400	£	350	
First	£	1,500	£	900	£	850	
Business	£	820	£	800	£	500	Period 3
Economy	£	480	£	470	£	450	

Demand and Forecast Data

Demand is uncertain but will be affected by price. The probabilities of the scenarios in each period are:

Scenario 1: 10%

Scenario 2: 70%

Scenario 3: 20%

The forecasted demand levels in terms of seats are shown in the following tables:

Period 1					
Class	Option 1	Option 2	Option 3		
First	10	15	20		
Business	20	25	35	Scenario 1	
Economy	45	55	60		
First	20	25	35		
Business	40	42	45	Scenario 2	
Economy	50	52	63		
First	45	50	60		
Business	45	46	47	Scenario 3	
Economy	55	56	64		

	Period 2					
Class	Option 1	Option 2	Option 3			
First	20	25	35			
Business	42	45	46	Scenario 1		
Economy	50	52	60			
First	10	40	50			
Business	50	60	80	Scenario 2		
Economy	60	65	90			
First	50	55	80			
Business	20	30	50	Scenario 3		
Economy	10	40	60			

Period 3						
Class	Option 1	Option 2	Option 3			
First	30	35	40			
Business	40	50	55	Scenario 1		
Economy	50	60	80			
First	30	40	60			
Business	10	40	45	Scenario 2		
Economy	50	60	70			
First	50	70	80			
Business	40	45	60	Scenario 3		
Economy	60	65	70			

Actual Demand Data

We use actual demand from period 1 to adjust pricing strategy in period 2 and so on. It turned out that demand in each period was as shown in the table besides:

Class	Option 1	Option 2	Option 3	
First	25	30	40	
Business	50	40	45	Period 1
Economy	50	53	65	
First	22	45	50	
Business	45	55	75	Period 2
Economy	50	60	80	
First	45	60	75	
Business	20	40	50	Period 3
Economy	55	60	75	

Model Formulation

Sets and Indices

- 1. $i,j,k \in$ Scenarios: Indices and set of scenarios.
- 2. $h \in Options$: Index and set of price options.
- 3. $c \in \text{Class}$: Index and set of seats categories.

Parameters

- 1. Cap_c \in N: Capacity per plane for class c.
- 2. Cost $\in R^+$: Cost to hire a plane.
- 3. Prob_i \in [0,1]: Probability of scenario *i*.
- 4. $f1_{i,c,h} \in R^+$: Forecast demand in period 1 for class c under price option h and scenario i.
- 5. $f2_{i,j,c,h} \in R^+$: Forecast demand in period 2 for class c under price option h if scenario i holds in period 1, and scenario j in period 2.
- 6. $f3_{i,j,k,c,h} \in R^+$: Forecast demand in period 3 for class c under price option h if scenario i holds in period 1, scenario j in period 2, and scenario k in period 3.
- 7. price $1_{c,h} \in R^+$: Price of option h chosen for class c in period 1.
- 8. price $2_{i,c,h} \in R^+$: Price of option h chosen for class c in period 2 as a result of scenario i in period 1.
- 9. price $3_{i,j,c,h} \in R^+$: Price of option h chosen for class c in period 3 as a result of scenario i in period 1, and scenario j in period 2.

Decision Variables

- 1. $p1_{ch} \in \{0,1\}$: Binary variable is equal to one if price of option h is chosen for class c in period 1.
- 2. $p2_{i,c,h} \in \{0,1\}$: This binary variable is equal to one if price of option h is chosen for class c in period as a result of scenario i in period 1.
- 3. $p3_{i,j,c,h} \in \{0,1\}$: This binary variable is equal to one if price of option h is chosen for class c in period 3 as a result of scenario i in period 1 and scenario j in period 2.
- 4. $s1_{i,c,h} \in R^+$: Number of tickets to be sold in period 1 for class c under price option h and scenario i.
- 5. $s2_{i,j,c,h} \in R^+$: Number of tickets to be sold in period 2 for class c under price option h if scenario i holds in period 1, and scenario j in period 2.
- 6. $s3_{i,j,k,c,h} \in R^+$: Number of tickets to be sold in period 3 for class c under price option h if scenario i in period 1, scenario j in period 2, and scenario k in period 3.
- 7. $n \in \mathbb{N}$: Number of planes to fly.

Objective Function

Maximize Expected Profit: ∑ (Revenue–Cost)

Constraints

Price Option Constraint: Only one price option must be chosen for each class in each period

$$1. \sum_{h \in \text{options}} p 1_{c,h} = 1$$

$$\forall c \in \text{Class}$$

2.
$$\sum_{h \in \text{options}} p 2_{i,c,h} = 1$$

$$\forall c \in \text{Class}, i \subseteq \text{Scenarios}$$

3.
$$\sum_{h \in \text{Options}} p 3_{i,j,c,h} = 1$$

$$\forall c \in \text{Class}, i, j \subseteq \text{Scenarios}$$

Sales Constraint: Sales cannot exceed forecasted demand for any period.

4.
$$s1_{i,c,h} \le f1_{i,c,h} * p1_{c,h}$$

$$\forall i \in \text{Scenarios}, c \in \text{Class}, h \in \text{Options}$$

5.
$$s2_{i,j,c,h} \leq f2_{j,c,h} * p2_{i,c,h}$$

$$\forall i, j \in \text{Scenarios}, c \in \text{Class}, h \in \text{Options}$$

6.
$$s3_{i,j,k,c,h} \le f3_{k,c,h} * p3_{i,j,c,h}$$

$$\forall i, j, k \in \text{Scenarios}, c \in \text{Class}, h \in \text{Options}$$

Capacity Constraint: Total seats sold must not exceed plane capacity for each class.

7.
$$\sum_{h \in \text{Options}} s1_{i,c,h} + \sum_{h \in \text{Options}} s2_{i,j,c,h} + \sum_{h \in \text{Options}} s3_{i,j,k,c,h} \le \text{cap}_{c} * n \quad \forall i, j, k \in \text{Scenarios}, c \in \text{Class}$$

$$\forall i, j, k \in \text{Scenarios}, c \in \text{Class}$$

Plane Limit Constraint: Up to six planes can be hired.

Gurobi Optimization

Step 1: Week-1 Price Optimization (Start of Week 1): Leverage demand forecasts to maximize profit while ensuring demand and capacity constraints are met for each week.

Step 2: Week-2 Price Optimization (Start of Week 2): Replace forecasted demand for Week 1 with actual demand and fix pricing options for Week 1 based on the optimal prices obtained from Step 1

Step 3: Week-3 Price Optimization (Start of Week 3): Replace forecasted demand for Week 1 and Week 2 with actual demand and fix pricing options for Week 1 and Week 2 based on the optimal prices obtained from previous steps.

Step 4: Final Model (Before Flight Take-off): Utilize actual demand data and optimal prices obtained from the three-step pricing optimization process to maximize profit.

Results

- * Week 1: The expected total profit is £166,189 and the no. of planes booked is 3.
- * Week 2: The expected total profit at the beginning of week 2 is £170,792.
- * Week 3: The expected total profit in week 3 is £173,680.

The price options selected for each week is as follows:

Week 1 prices:						
Class	Option	Price				
First	option 1	£1,200				
Business	option 2	£ 900				
Economy	option 3	f 500				

Week 2 prices:						
Class Option Price						
First	option 1	£1,150				
Business	option 2	£1,100				
Economy	option 3	£ 700				

Week 3 prices:						
Class Option Price						
First	option 1	£1,500				
Business	option 2	£ 800				
Economy	option 3	£ 480				

Final Results: The actual total profit is £184,030 and number of planes used: 3.0

Week 1						
Class	Seats Sold	Pri	ce	Revenue		
First	25	£	1,200	£30,000		
Business	50	£	900	£45,000		
Economy	50	£	500	£25,000		

Week 2						
Class Seats Sold Price Revenue						
First	41	£ 1,150	£47,150			
Business	45	£ 1,100	£49,500			
Economy	50	£ 700	£35,000			

Week 3						
Class	Seats Sold Price Revenue					
First	45	£	1,500	£ 67,500		
Business	19	£	800	£ 15,200		
Economy	41	£	480	£ 19,680		

Impact

Implementing advanced demand forecasting enables airlines to offer competitive prices, optimize seat occupancy, and maximize revenue. This approach streamlines operations, reducing costs and enhancing efficiency. By adjusting pricing based on seasonal trends, airlines can further boost revenue potential and improve customer satisfaction, fostering loyalty and long-term success.

Real World examples

- ❖ Southwest: Implemented dynamic pricing, resulting in a 15% increase in revenue and a 10% reduction in operational costs within one year
- ♦ Delta: Utilizes advanced yield management systems, leading to higher customer satisfaction and loyalty, thereby sustaining a competitive advantage

Other Use Cases

- **♦** Hotel Revenue Management
- **❖** Healthcare Resource Management
- **&** E-Commerce Dynamic Pricing

- Concert Ticket Pricing Optimization
- ❖ Car Rental Pricing Optimization

Conclusion

In conclusion, Dynamic Revenue Optimization stands as a vital strategy across industries, offering multifaceted benefits. From driving revenue growth to enhancing operational efficiency and improving customer satisfaction, its impact is profound and far-reaching. By continuously adapting pricing strategies to meet evolving market demands, businesses can not only maximize their revenue potential but also ensure long-term competitiveness in today's dynamic marketplace. Embracing Dynamic Revenue Optimization as a fundamental business practice is crucial for organizations seeking sustainable growth and success in the modern business landscape.