

if F in the form of F1 \land F2, and there are only E1's attributes in F1, and there are only E2's attributes in F2, then $\sigma_F(E1\times E2) \equiv \sigma_{F1}(E1)\times \sigma_{F2}(E2)$

if F in the form of F1 \land F2, and there are only E1's attributes in F1, while F2 includes the attributes both in E1 and E2, then $\sigma_F(E1\times E2) \equiv \sigma_{F2}(\sigma_{F1}(E1)\times E2)$

- $\sigma_{F}(E1 \cup E2) \equiv \sigma_{F}(E1) \cup \sigma_{F}(E2)$
- 8) $\sigma_F(E1 E2) \equiv \sigma_F(E1) \sigma_F(E2)$
- Suppose $A_1...A_n$ is a set of attributes, in which $B_1...B_m$ are E1's attributes, and $C_1...C_k$ are E2's attributes, then

$$\Pi_{A1...An}(E1\times E2)\equiv\Pi_{B1...Bm}(E1)\times\Pi_{C1...Ck}(E2)$$

10) $\Pi_{A1...An}(E1 \cup E2) \equiv \Pi_{A1...An}(E1) \cup \Pi_{A1...An}(E2)$


```
SELECT S.sname

FROM Sailors S

WHERE EXISTS (SELECT *

FROM Reserves R

WHERE R.bid=103 AND S.sid=R.sid)
```


(3) Basic principles

The target of algebra optimization is to make the scale of the operands which involved in binary operations be as small as possible:

- ✓ Push down the unary operations as low as possible
- ✓ Look for and combine the common sub-expression

4.4.3 The Operation Optimization

How to find a "good" access strategy to compute the query improved by algebra optimization is introduced in this section:

- Optimization of select operation
- Optimization of project operation
- Optimization of set operation
- Optimization of join operation
- Optimization of combined operations

Optimization of join operation

Nested loop: one relation acts as outer loop relation (O), the other acts as inner loop relation (I). For every tuple in O, scan I one time to check join condition.

Because the relation is accessed from disk in the unit of block, we can use block buffer to improve efficiency. For $R \bowtie S$, if let R as O, S as I, b_R is physical block number of R, b_S is physical block number of S, there are n_B block buffers in system (n_B >=2), and n_B -1 buffers used for O, one buffer used for I, then the total disk access times needed to compute $R \bowtie S$ is:

$$b_R + rb_R/(n_B-1) \times b_S$$