My stylings for blind

Team_SVM

20162259 박민규

ABOUT US

Team_SVM

- 데이터 분석 기법의 하나인 Support Vector Machine의 약자

데이터 수집, 분석, 활용을 통해 정확도 높은 시스템을 구축을 목표로 하는 스터디 그룹입니다.

프로젝트 수행 동기

"시각장애인이라고 장례식서 빨간 옷 입을 순 없죠."

입력 2020.12.11 04:30 수정 2020.12.11 06:45

시각장애인 위한 '색 구분 라벨' 개발한 디자이너 박진 대표 "시간 장소 목적 따라 옷 입는 것도 권리" 서울시각장애인복지관과 협업 '오선지 라벨' 개발

"선생님, 바지 고를 때 제일 중요한 것이 뭔가요?"

코디가 얼굴을 조씨에게 바짝 갖다대며 묻는다. "착용감! 불편하면 못 입어"라며 칼 같은 대답이 돌아온다. 옷장에 이미 검정색과 베이지색 바지가 있다는 조씨의 말에 코디는 군청색을 추천한다. 코디가 허리둘레 31인치에 맞는 바지를 매대에서 찾는다. 이 모습을 본 한 매장고객이 코디에게 한 치수 큰 바지를 찾아달라며 말을 걸어온다. 친절한 말투와 정제된 용어에그를 매장 직원으로 오해한 탓이다.

시각장애인은 옷 코디를 어떻게 할까? 색깔은 어떻게 알지?[ENG]

YouTube · 원샷한솔OneshotHansol 2020. 12. 15.

시각장애인은 옷을 어떻게 고르나요?

YouTube · 취재대행소 왱 2017. 12. 27.

프로젝트 수행 방향성

노트북의 카메라 or 의류 사이트의 옷을 인식하여,

옷의 종류와 색을 음성으로 전환하는 **시스템** 구축

숭실대학교 17학번 && 18학번 시각장애인 학우 **인터뷰** 결과

현재 옷을 입는데 불편한 점	18학번	Ⅰ. 옷의 색깔을 구분하는데 가족의 도움을 받는다.Ⅱ. 색깔을 알더라도 어떻게 매치를 시켜야 할지의 어려움
	17학번	I. 가격 확인의 어려움
이 프로젝트를 진행하는데 고려해야할 점	18학번	 Ⅰ. 줄무늬 옷이나 옷의 무늬나 이미지가 있는 경우 색상 표현에 문제가 생길 수 있다. Ⅱ. 색상 뿐만 아니라 명도 같은 색상 묘사를 잘 알려줘야 한다.
	17학번	Ⅰ. 시각 장애인이 혼자 노트북 웹캠 촬영이 가능한지 의문Ⅱ. 이미 색상을 구별하는 어플 존재. 어떻게 차별성을 둘 것인가?
요구 사항	18학번	I. 시각장애인이 혼자서 편하게 이용할 수 있도록, 음성지원 시스템을 지원 했으면 좋겠다.
	17학번	I. 옷의 바코드를 촬영해 옷에 대한 데이터를 얻게 하는 프로젝트가 해외에서는 진행

프로젝트 수행 과정

tiny_YOLO Model 선정, 구축 이유

- 1. 사진내 물체의 위치 찿기 + 물체 이름 분류를 한단계로
 - 2. 다른 알고리즘에 비해 빠름 (실시간 가능)
 - 3. 노트북 웹 캠으로 도움 없이 사용 가능

학습	예측 = 실 사용
GPU (only NVIDIA GPU)	CPU (노트북, 안드로이드)
NVIDIA	Core™ i5

tiny_YOLO Model 선정, 구축 이유

- 1. 사진내 물체의 위치 찿기 + 물체 이름 분류를 한단계로
 - 2. 다른 알고리즘에 비해 빠름 (실시간 가능)
 - 3. 노트북 웹 캠으로 도움 없이 사용 가능

1,000번째 학습 모델 학습 과정

10,000번째 학습 모델 학습 과정

노트북 웹캠 촬영

의류 사이트 옷 선택

Yolo Model

Yolo Model

Bounding box 추출

Bounding box 추출

K-means Clustering로 색상 분류 && CSS3_Hex_To_Names(색상표)

클러스터링 기법으로 5가지 색상 분류 중 가장 많은 부분을 차지하는 색상 추출

색상 결과 TTS로 읽기

색상 결과 TTS로 읽기

프로젝트 성능

직접 학습한 옷 구분 Yolo Model

현재 **10,000개의 학습데이터로** 학습한 의류 구분 Yolo 모델에서 긴팔, 반팔, 긴바지 등의 **13가지 상세 카테고리**로 구분 가능

프로젝트 성능

직접 학습한 옷 구분 Yolo Model

현재 **10,000개의 학습데이터로** 학습한 의류 구분 Yolo 모델에서 긴팔, 반팔, 긴바지 등의 **13가지 상세 카테고리**로 구분 가능

프로젝트 성능

일반 티셔츠

Yolov3-416

Label Extract

```
In [18]: font = cv2.FONT_HERSHEY_PLAIN
         for i in range(len(boxes)):
             if i in indexes:
                 x, y, w, h = boxes[i]
                 label = str(classes[class_ids[i]])
                 color = colors[i]
                 cv2.rectangle(img, (x, y), (x + w, y + h), color, 2)
                 cv2.putText(img, label, (x, y + 30), font, 3, color, 3)
         cv2.imshow("Image", img)
         cv2.waitKey(0)
         cv2.destroyAllWindows()
In [19]: label
Out[19]: 'teddy bear'
```

Yolo 옷의 무늬('teddy') 확인 후 TTS로 음성 서비스 제공

프로젝트 창의성

숭실대학교 17학번 && 18학번 시각장애인 학우 **인터뷰** 결과

	시각 장애인 학우의 요구사항		구현 여부
Team_SV M 프로그램	단순한 색상 표현의	0	K-means <mark>클러스터링</mark> 기법을 사용하여 RGB픽셀을 그룹화하여 상당히 높은 정확도의 특정 색 추출 가능하다
	어려움	0	YOLOv3-416모델을 사용하여 테디베어를 인식한 것처럼, 색상 묘사 뿐만 아니라 디테일한 옷 묘사 가 가능하다
	디테일한 색상 묘사	0	CSS3 라이브러리를 통해 색상을 64가지 영어 이름으로 표현하게 되며, 알기 어려운 색상 이름은 옅은 회색 같이 알기 쉬운 한글로 번역 .
	음성지원시스템 구축	0	파이썬의 구글 GTTS 라이브러리를 통해 한글로 된 색 이름을 말하는 것이 가능 하다
차별성	바코드를 이용한 옷 정보 (해외)		바코드 가 없어도 이미지만으로 옷의 색상 정보와 형태를 알려준다
창의성	색상 알려주는 프로그램과 차별성	0	색상 구별 뿐만 아니라, 의류 모델이 무엇을 입고 있는지, 각 의류별 색상 을 알려주며, 옷에 그려져 있는 무늬도 확인 이 가능하다

프로젝트 수행 발전성

•프로토 타입 앱

- 1) 로컬 컴퓨터 **서버화**
- 2) 모바일에서 로컬 서버로 접속하여 프로그램 실행
- 3) 의류 묘사 텍스트 **음성**으로 전달

애플리케이션은 시각장애인이 **혼자서** 잘 이용할 수 있도록

쌍방향 음성 시스템을 지원

