ECE 50024

Homework 6

Parth Sagar Hasabnis

phasabni@purdue.edu

Exercise 1:

	Exercise 1
	Let 0 = 0 and • = 1
a)	$h_1(\chi_n) = 1$ $n = 1, 2,, 8$
	$h_2(\chi_n) = 0$ $n = 1, 2,, 8$
	hi() matches with 3/5 samples hi() matches with 2/5 samples
(3	Hence the learning algorithm will pick hi.
	9=[1,1,1,1,1,1]
>	g matches with:
2)	3 out-samples once (f3) 2 out-samples thrice (f4, f6, f7)
3)	1 put = can ale thrice (da da ds)
4)	1 out - sample thrice (&2, &3, &s) 0 out - samples once (fi)

Exercise 2:

a) As all the three coins we pick are fair coins, the probability that we get a head on each of them is same and is equal to 0.5.

$$\begin{array}{l} \mu_1 = 0.5 \\ \mu_{rand} = 0.5 \\ \mu_{min} = 0.5 \end{array}$$

b) Histograms of the random variables

c) Hoeffding's inequality for the 3 coins

Note: The curves for V_1 and V_{rand} coincide.

d) The coins $coin_1$ and $coin_{rand}$ follow the Hoeffding bound, while $coin_{min}$ does not. This is because the coins $coin_1$ and $coin_{rand}$ are selected before we look at the data, while $coin_{min}$ is selected after we have the data. Hoeffding inequality is valid only if we apply it before we look at the data.


```
In [ ]: import numpy as np
        import matplotlib.pyplot as plt
In [ ]: V_1 = []
        V_min = []
        V_rand = []
        M = 1000
        trials = 100000
        N = 10
        p = 0.5
        heads array = []
        for trial in range(trials):
            for coin in range(M):
                n_heads = np.random.binomial(N, p)
                heads_array.append(n_heads)
            V 1.append(heads array[0])
            V min.append(np.min(heads array))
            idx = np.random.randint(0,M)
            V_rand.append(heads_array[idx])
            heads_array = []
In [ ]: V1 = np.array(V_1)/N
        plt.hist(V1, bins=11)
        plt.title("Histogram of V1")
        plt.xlabel("Value taken by V1")
        plt.ylabel("Frequency")
        plt.xticks(np.arange(0,12,1)/10)
        plt.xlim([0,1])
Out[]: (0.0, 1.0)
```



```
In []: Vrand = np.array(V_rand)/N
    plt.hist(Vrand, bins=11)
    plt.title("Histogram of Vrand")
    plt.xlabel("Value taken by Vrand")
    plt.ylabel("Frequency")
    plt.xticks(np.arange(0,12,1)/10)
    plt.xlim([0,1])
```

Out[]: (0.0, 1.0)


```
In [ ]: Vmin = np.array(V_min)/N
    plt.hist(Vmin)
    plt.title("Histogram of Vmin")
    plt.xlabel("Value taken by Vmin")
    plt.ylabel("Frequency")
    plt.xticks(np.arange(0,2,1)/10)
    plt.xlim([0,0.2])
```

Out[]: (0.0, 0.2)


```
In []: mu_1 = 0.5
    mu_rand = 0.5
    mu_min = 0.5
    V = np.array([V1, Vrand, Vmin])
    mu = np.array([0.5, 0.5, 0.5])

epilson = np.linspace(0,0.5,11)
    Prob = np.zeros((len(V)+1, len(epilson)))
    for e in range(len(epilson)):
        for idx in range(len(V)):
            count = np.count_nonzero((np.abs(V[idx] - mu[idx]))>epilson[e])
            Prob[idx,e] = count/trials
            Prob[idx+1,e] = 2*np.exp(-2*(epilson[e]**2)*N)
```

```
In []: marker = ["solid", "dashed", "solid", "dotted"]
   plt.figure(figsize=(10,6))
   for i, vector in enumerate(Prob):
        plt.plot(epilson, vector, linestyle=marker[i])
   plt.legend(["V_1", "V_rand", "V_min", "Hoeffding bound"])
   plt.title("Epsilon vs Probability")
   plt.xlabel("Epsilon")
   plt.ylabel("Probability")
```

Out[]: Text(0, 0.5, 'Probability')

