Notation: Throughout this note matrices will be denoted by capital letters such as A or B, and vectors by lowercase boldface letters like \mathbf{x} and \mathbf{b} .

Problems

1. Write the following system as a matrix equation of the form Ax = b.

2. Multiply out the following equations of the form $A\mathbf{b}$.

- 3. We're going to start with a linear system, solve it and then put the result into parametric form (basically like you've already been doing in webwork).
 - (a) Write down the augmented matrix and solve this system.

$$2x_{1} + 4x_{2} -4x_{4} = 10$$

$$3x_{1} + 6x_{2} + x_{3} + 3x_{4} = 11$$

$$x_{1} + 2x_{2} + x_{3} + 7x_{4} = 1$$

(b) Turn the REF matrix you got in part (a) back into a system of equations. Set any free variables equal to 's' or 't'. E.g. if x_4 was free, we would set $x_4 = t$, and then replace all x_4 's in the other equations with t's. (Hint at this point you should have 4 equations total).

(c) Turn your 4 equations into a vector equation of the form:

(c) Turn your 4 equations into a vector equation of the form:

Writing them out clearly (you don't have to do this step:)

$$X_1 = -5 + s2 - t2$$

$$X_2 = : S$$

$$X_3 = -4 + t9$$

$$X_4 = : t$$

These are your
$$X_1 + 2s - 2t = 5$$

$$X_1 + 2s - 2t = 5$$

$$X_2 = S$$

$$X_3 + 9t = -4$$

$$X_4 = t$$

$$X_2 = S$$

$$X_4 = t$$

$$X_2 = S$$

These are your
$$X_3 + 9t = -4$$

$$X_4 = t$$

$$X_4 = t$$

$$X_7 = S$$

4. For each of the following formula, either explain why it is true¹, or give an example where it's false. Here A is a matrix, b, v are vectors and c is just a number. There is a proof on page 39 of the text but after doing an example you kinda get the intuition.

F (b) A = u + cv for some u, v and c

$$\uparrow$$
 (a) $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$

 \top (c) $Ac\mathbf{u} = cA\mathbf{b}$

talse 5. For the following, instead of finding the solution set of a linear system, we're looking for a linear system with a given solution set:

be a vector

only I column(a) Construct a 3×3 matrix A such that the vector $\begin{vmatrix} 1 \\ 1 \end{vmatrix}$ is a solution of

 $A\mathbf{x} = \mathbf{0}$ (here $\mathbf{0}$ means the vector of all zeros).

(b) Construct a 3×3 matrix A such that vector $\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$ is a solution of $A\mathbf{x} = \mathbf{0}$.

¹Ideally to someone sitting next to you