Вычислительная техника

Лисид Лаконский

October 2022

Содержание

1	Вы	числительная техника - 03.10.2022	2
	1.1	Табличные методы минимизации	4
		1.1.1 Минимизация с помощью карт Карно	4
		1.1.2 Минимизация с помощью диаграмм Вейча	4
	1.2	Цифровые комбинационные устройства	,
		1.2.1 Устройство равнозначности	
		1.2.2 Устройство неравнозначности	
		1.2.3 Полусумматор	
		1.2.4 Комбинационный сумматор	,
2	Вы	числительная техника - 17.10.2022	4
	2.1	Шифраторы	4
		2.1.1 Устранение неоднозначности	4
	2.2	Дешифраторы	4
		2.2.1 Линейные дешифраторы	4
		2.2.2 Каскадный дешифратор	į
	2.3	Мультплексор	ļ
		2.3.1 Схема	(
		2.3.2 Схема в multisim	(
	2.4	Демультиплексор	(
		2.4.1 Схема	,
3	Вы	числительная техника - 17.10.2022	8

1 Вычислительная техника - 03.10.2022

Ревью прошлого зантия: совершенная дизъюнктивная (или) форма, соершенная конъюнктивная (и) нормальная форма, минимазция с помощью трех методов: алгебраического, с помощью карт Карно, с помощью диаграммы Вейча.

1.1 Табличные методы минимизации

1.1.1 Минимизация с помощью карт Карно

$$\begin{pmatrix} 0 & 1 \\ 0 & \\ 1 \end{pmatrix}$$
 - шаблон карты Карно для функции, принимающей два аргумента.
$$\begin{pmatrix} 00 & 01 & 11 & 10 \\ 0 & \\ 1 \end{pmatrix}$$
 - шаблон карты Карно для функции, принимающей три аргумента.
$$\begin{pmatrix} 00 & 01 & 11 & 10 \\ 00 & \\ 01 & \\ 11 & \\ 10 \end{pmatrix}$$
 - шаблон карты Карно для функции, принимающей четыре аргумента.

Основные принципы склейки:

- 1. Склейку клеток одной и той же карты Карно можно осуществлять как по единицам (а), так и по нулям (б). Первое необходимо для получения $ДН\Phi$, второе для получения $KH\Phi$
- 2. Склеивать можно только прямоугольные области с числом единиц (нулей), являющимся целой степенью двойки
- 3. Рекомендуется выбирать максимально возможные области склейки
- 4. Для карт Карно с числом переменных 3 и 4 применимо следующее правило: крайние клетки каждой горизонтали и каждой вертикали граничат между собой и могут объединяться в прямоугольники (топологически карта Карно представляет собой тор). Следствием этого правила является смежность всех четырёх угловых ячеек карты Карно для 4 переменных

1.1.2 Минимизация с помощью диаграмм Вейча

Метод минимизации с помощью диаграмм Вейча основан на методе с применением карт Карно, однако элементы записываются иначе, более удобно для формирования итоговой формулы: лучше смотреть, что изменяется, а что нет.

Все записывается так же с помощью кода Грея, неизменяющиеся элементы подписываются так, чтобы образовывать единицу.

1.2 Цифровые комбинационные устройства

1.2.1 Устройство равнозначности

$$y = (x_1 x_2) + (\overline{x_1 x_2}) = \overline{x_1 x_2} * \overline{\overline{x_1 x_2}}$$

Возвращает единицу, если оба аргумента равны, иначе ноль.

1.2.2 Устройство неравнозначности

$$y = x_1 \overline{x_2} + \overline{x_1} x_2$$

Возвращает единицу, если оба аргумента не равны, иначе ноль.

1.2.3 Полусумматор

$$S = x_1 \oplus x_2, P = x_1 x_2$$
 S - сумма, P - перенос

1.2.4 Комбинационный сумматор

Комбинационный сумматор, удивительно, получается при помощии комбинации полусумматоров или других сумматоров.

Схемы тут не будет, так как в LaTeX крайне неудобно прикреплять картинки. По крайней мере, мне лень сейчас разбираться, как тут в Overleaf это делать.

Складываются аргументы, а потом результат работы сумматора складывается с переносом.

2 Вычислительная техника - 17.10.2022

2.1 Шифраторы

2.1.1 Устранение неоднозначности

Устранять неоднозначность можно с помощью приоритетного шифратора - дополнительный выход p - выход признака невозбуждения: 0 - возбужден хотя бы один из входов, 1 - в противном случае, дополнительный вход E.

2.2 Дешифраторы

2.2.1 Линейные дешифраторы

Ниже приведено обозначение микросхемы $K155 \mathrm{ИД4}$

Существуют также пирамидальные, каскадные дешифраторы.

2.2.2 Каскадный дешифратор

2.3 Мультплексор

Мультиплексор обеспечивает коммутацию на вход одного из входных сигналов.

Формула:

$$y = \overline{x_3} \overline{x_2} \overline{x_1} D_0 + \overline{x_3} \overline{x_2} \overline{x_1} D_1 + \overline{x_3} \overline{x_2} \overline{x_1} D_2 + \ldots + x_3 \overline{x_2} \overline{x_1} D_7$$

В формулу может быть добавлен управляющий сигнал: $y=\overline{x_3x_2x_1}D_0\overline{v}+\overline{x_3x_2}x_1D_1\overline{v}+\overline{x_3}x_2\overline{x_1}D_2\overline{v}+...+x_3x_2x_1D_7\overline{v}$

2.3.1 Схема

2.3.2 Схема в multisim

2.4 Демультиплексор

Демультиплексор — это логическое устройство, предназначенное для переключения сигнала с одного информационного входа на один из информационных выходов.

Формула:

$$y_0 = \overline{x_2} \overline{x_1} D, y_1 = \overline{x_1} D, y_2 = x_2 \overline{x_1} D, y_3 = x_2 x_1 D$$

2.4.1 Схема

3 Вычислительная техника - 17.10.2022

Показать работоспособность - попереключать ключики - показать, что лампчка зажигается.