OPTIMIZATION

Mobile service providers need to setup their network - where to set up the towers so that all its users receive the maximum signal strength

Stringent law enforcement by the government – station the patrol vans- area of high crime rates are in the vicinity of patrol vans

A hospital care chain wants to open series of emergency care wards- max accident prone areas

IDENTIFYING ANOMALY-OUTLIERS

Fraud detection- Communication service providers

Fraud transaction- Banking/Finance

Medicine - abnormal cells - diagnosis

DIFFERENCE BETWEEN CLUSTERING & CLASSIFICATION

CLUSTERING

- Data is not labeled
- Group points that are "close" to each other
- Identify structure or patterns in data
- Unsupervised learning

CLASSIFICATION

- Labeled data points
- Want a "rule" that assigns labels to new points
- Supervised learning

STEPS

Choose the number K of clusters.

Select at random K points, the centroids

Assign each data point to the closest centroid

Compute and place the new centroid of each cluster

Reassign each data point to the new closest centroid

if any reassignment took place, go to previous step

else finish

K-Means ++

Using K-means++ we can achieve optimum initial centroids as shown in Fig 1. Where as Fig 2 shows the incorrect initial centroids assignment.

SELECTING THE NUMBER OF CLUSTERS

WITHIN CLUSTER SUM OF SQUARES

$$WCSS = \sum_{P_i \text{ in Cluster 1}} distance(P_i, C_1)^2 + \sum_{P_i \text{ in Cluster 2}} distance(P_i, C_2)^2 + \sum_{P_i \text{ in Cluster 3}} distance(P_i, C_3)^2$$

If the number of clusters = to the number of points

What is WCSS value?

D

HIERARCHICAL

Agglomerative Divisive

AGGLOMERATIVE CLUSTERING

Step 1: Make each data point a single point cluster

Step 2: Take the two closest data points and make them one cluster

Step3: Take the two closest clusters and make them one cluster

Step4: Repeat Step3 until there is only one cluster

Hierarchical Clustering

Hierarchical Clustering

HIERARCHICAL CLUSTERING

Simple Example:

Assume that there are have 6 objects namely A, B, C, D, E and F and each object have two measured features X1 and X2.

SINGLE LINKAGE HIERARCHICAL CLUSTERING

The dendrogram is drawn based on the distances to merge the clusters above

The hierarchy is given as (((D, F), E), C), (A,B). We can also plot the clustering hierarchy into XY space

DISTANCE BETWEEN TWO CLUSTERS

- 1. closest points
- 2. Furthest points
- 3. Average distance
- 4. Distance between centroids

Hierarchical Clustering

