Глава 1. Функции нескольких переменных

1.1 Основные понятия

Рассмотрим евклидово пространство \mathbb{R}^n . Обозначим за $(x_1,, x_n)$ точку этого пространства. Расстояние (метрика) в пространстве \mathbb{R}^n вводится следующим образом:

$$\rho(P, P') = \sqrt{(x_1 - x_1')^2 + \dots + (x_n - x_n')^2}.$$
 (1.1)

Определение

arepsilon—окрестность точки P_0 — это множество точек P, для которых выполнено: $ho(P,P_0)<arepsilon$.

Определение

Точка P называется внутренней точкой множества M, если она принадлежит M вместе с некоторой своей окрестностью.

Определение

Множество X, все точки которого внутренние, называется открытым.

Onpeделение

Точка P_0 называется точкой сгущения множества M, если в любой ее окрестности содержится хотя бы одна точка P, отличная от точки P_0 .

Onpeделение

Точка P_0 называется граничной точкой множества M, если в любой ее окрестности содержатся как точки принадлежащие множеству M, так и точки, не принадлежащие M.

Onpeделение

Множество, содержащее все свои граничные точки, называется замкнутым.

Определение

Множество точек $(\varphi_1(t), \varphi_2(t), \ldots, \varphi_n(t))$, получаемых при различных значениях параметра $t, \quad t' \leq t \leq t''$, где $\varphi_1, \varphi_2, \ldots, \varphi_n$ – непрерывные функции, называется непрерывной кривой, соединяющей точки P' и P''.

Определение

Множество называется ограниченным, если оно целиком содержится в некотором шаре.

Определение

Множество называется связным, если любые ее две точки можно соединить кривой, целиком лежащей в этом множестве.

Определение

Функция нескольких переменных f – это отображение $\mathbb{R}^n \to \mathbb{R}$: $u = f(x_1, x_2,, x_n)$.

Определение

Пусть $P=(x_1,x_2,\,\ x_n),\quad P_0=(a_1,a_2,\,\ a_n).$ Число A называется пределом функции $f(x_1,x_2,\,\ x_n)$ при $P\to P_0,$ если $\forall\ \varepsilon>0\ \exists\ \delta>0$ такое, что:

$$\rho(P, P_0) = \sqrt{(x_1 - a_1)^2 + (x_2 - a_2)^2 + \dots + (x_n - a_n)^2} < \delta \implies |f(x_1, x_2, \dots, x_n) - A| < \varepsilon.$$
(1.2)

Обозначение

$$\lim_{P \to P_0} f(x_1, \dots, x_n) = A. \tag{1.3}$$

Определение

Говорят, что функция $f(x_1, x_2,, x_n) \to \infty$ $(f(x_1, x_2,, x_n) \to -\infty)$ при $P \to P_0$, если $\forall E > 0 \; \exists \; \delta > 0$ такое, что:

$$\rho(P, P_0) = \sqrt{(x_1 - a_1)^2 + (x_2 - a_2)^2 + \dots + (x_n - a_n)^2} < \delta \implies$$

$$\Rightarrow |f(x_1, x_2, \dots, x_n) - A| > E \quad (|f(x_1, x_2, \dots, x_n) - A| < -E). \quad (1.4)$$

Замечание

$$P \to P_0 \Leftrightarrow \begin{cases} x_1 \to a_1, \\ x_2 \to a_2, \\ \dots \\ x_n \to a_n. \end{cases}$$

Мы рассматриваем предел $P \to P_0$ при одновременном стремлении всех аргументов $(x_1, x_2, ..., x_n)$ к предельным значениям $(a_1, a_2, ..., a_n)$. Но можно рассмотреть пределы, которые берутся последовательно по различным аргументам. Тогда ответ может зависеть от порядка взятия пределов. В этом случае говорят, что предела функции нескольких переменных не существует.

Пример

$$\lim_{x \to 0} \lim_{y \to 0} \frac{x - y + x^2 + y^2}{x + y} = \lim_{x \to 0} (x + 1) = 1.$$

$$\lim_{y \to 0} \lim_{x \to 0} \frac{x - y + x^2 + y^2}{x + y} = \lim_{y \to 0} (y - 1) = -1.$$

Ответ зависит от порядка взятия пределов. Следовательно, предела функции двух переменных при $P \to (0,0)$ не существует.

Теорема 1

Пусть для функции f(x,y) существует двойной предел (то есть предел функци двух переменных):

$$A = \lim_{\substack{x \to a \\ y \to b}} f(x, y).$$

Тогда повторный предел $\lim_{y\to b}\lim_{x\to a}f(x,y)$ для функции f(x,y) будет существовать, если для любого y (из области изменения переменной y) существует конечный одинарный предел $\lim_{x\to a}f(x,y)$. При этом повторный предел будет равен двойному.

Без доказательства.

1.2 Непрерывные функции

Определение

Пусть P' – точка сгущения множества M, принадлежащая множеству M. Пусть функция $f(x_1, x_2,, x_n)$ определена в множестве M. Говорят, что функция $f(x_1, x_2,, x_n)$ непрерывна в точке P', если:

$$\lim_{P \to P'} f(x_1, x_2, \dots, x_n) = f(x_1', x_2', \dots, x_n'). \tag{1.5}$$

Это непрерывность по совокупности переменных. Если функция непрерывна по совокупности переменных, то она непрерывна по каждой переменной, по каждой паре переменных и так далее. Обратное, вообще говоря, неверно.

Пример

Пусть Ω — внутренность параболы $y+x=(y-x)^2$. Зададим функцию f(x,y) в Ω следующим образом. Пусть f(x,y)=1 на параболе $y+x=(y-x)^2$ кроме точки (0,0), а f(0,0)=0. Для каждой точки внутри Ω можно определить функцию f, задавая ее на всех прямых, проходящих через начало координат, то есть прямых вида y=kx.

Рис. 1: Область определения для функции f(x,y)

Найдем точку (x_1, y_1) пересечения такой прямой с параболой:

$$\begin{cases} y = kx \\ y + x = (y - x)^2 \end{cases} \Leftrightarrow \begin{cases} y = kx \\ x(k+1) = x^2(k-1)^2 \end{cases} \Leftrightarrow \begin{cases} x_1 = \frac{k+1}{(k-1)^2}, \\ y_1 = \frac{k(k+1)}{(k-1)^2}. \end{cases}$$

Прямую зададим параметрически:

$$\begin{cases} x = \frac{k+1}{(k-1)^2}t, \\ y = \frac{k(k+1)}{(k-1)^2}t, \\ 0 \le t \le 1. \end{cases}$$

При t=0 Получаем начало координат (0,0), при t=1 получаем точку на параболе. Функцию на данной прямой зададим следующим образом:

$$f(x,y) = f\left(\frac{k+1}{(k-1)^2}t, \frac{k(k+1)}{(k-1)^2}t\right) = t.$$

Ясно, что эта функция непрерывна в нуле на данной прямой. Это верно для любой прямой, в частности, на осях координат. Функцию от коор-

8 Глава 1

динаты x получим при k=0 : $\begin{cases} x=t,\\ y=0, \end{cases}$ функцию от координаты y получим при $k\to+\infty$: $\begin{cases} x=0,\\ y=t. \end{cases}$ Таким образом, функция f(x,y)

непрерывна в нуле как функция x и как функция y (то есть по каждой переменной в отдельности), но как функция двух переменных в точке (0,0) непрерывной не является.

Определение

Функция f непрерывна в некотором множестве M, если она непрерывна во всех точках сгущения этого множества.

Теорема 2 (Первая теорема Больцано-Коши).

Пусть функция f(x,y) определена и непрерывна в некоторой связной области \mathcal{D} . Если в двух точках этой области она принимает значения разных знаков, то существует точка (x_0, y_0) , в которой $f(x_0, y_0) = 0$.

Доказательство аналогично теореме Больцано-Коши для функции одной переменной.

Теорема 3 (Вторая теорема Больцано-Коши).

Пусть функция f(x,y) определена и непрерывна в некоторой связной области \mathcal{D} . Пусть $f(x_1,y_1)=A, \quad f(x_2,y_2)=B, \quad A\neq B.$ Тогда для любого числа C, лежащего между A и B, найдется точка (x_3, y_3) , такая, что: $f(x_3, y_3) = C$. Таким образом, непрерывная функция принимает все промежуточные значения между A и B.

Доказательство:

Пусть A < B. Тогда A < C < B. Рассмотрим функцию $\varphi(x,y) =$ f(x,y)-C. Тогда функция $\varphi(x,y)$ непрерывна в области \mathcal{D} . Кроме того, в точках (x_1,y_1) и (x_2,y_2) она принимает значения разных знаков. Тогда по первой теореме Больцано-Коши найдется точка (x_3, y_3) , такая, что:

$$\varphi(x_3, y_3) = 0 \iff f(x_3, y_3) - C = 0 \iff f(x_3, y_3) = C.$$

Лемма Больцано-Вейерштрасса

Из любой ограниченной последовательности точек можно выбрать сходящуюся к предельной точке подпоследовательность.

Доказательство аналогично лемме Больцано-Вейерштрасса для функции одной переменной.

Теорема 4 (Первая теорема Вейерштрасса).

Пусть функция f определена и непрерывна в ограниченной замкнутой области. Тогда она ограничена (то есть $\exists m, M: m \leq f(x,y) \leq M$).

Доказательство аналогично теореме Вейерштрасса для функции одной переменной.

Теорема 5 (Вторая теорема Вейерштрасса).

Функция, непрерывная в ограниченной замкнутой области, достигает там своих наибольшего и наименьшего значений.

Доказательство аналогично теореме Вейерштрасса для функции одной переменной.

1.3 Равномерная непрерывность

Напишем более подробно определение непрерывности функции в точке (x_0, y_0) . Функция f(x, y) непрерывна в точке $(x_0, y_0) \in M$, если $\forall \varepsilon > 0 \; \exists \; \delta > 0$ такое, что:

$$\begin{cases} |x - x_0| < \delta \\ |y - y_0| < \delta \end{cases} \Rightarrow |f(x, y) - f(x_0, y_0)| < \varepsilon. \tag{1.6}$$

Непрерывность функции определяется поточечно, то есть в каждой точке по-отдельности. Можно ли по ε найти такое универсальное δ , что оно подойдет не для одной точки (x_0, y_0) , а для всех точек сразу. Если можно, то говорят, что функция f(x, y) в множестве M равномерно непрерывна. **Теорема 6** (Теорема Кантора).

Если функция f(x,y) непрерывна в ограниченной замкнутой области $\mathcal{D},$ то она там равномерно непрерывна.

Доказательство аналогично теореме Кантора для функции одной переменной.

1.4 Частные производные

Рассмотрим функцию u = f(x, y, z), определенную в некоторой области \mathcal{D} . Возьмем точку P_0 в этой области. Пусть координаты y и z не меняются: $y = y_0$, $z = z_0$. Мы будем рассматривать только изменение координаты x. Тогда u будет функцией одной переменной и можно вычислить ее производную.

Определение

$$f'_{x} \equiv \frac{\partial f}{\partial x}(x_{0}, y_{0}, z_{0}) = \lim_{\Delta x \to 0} \frac{f(x_{0} + \Delta x, y_{0}, z_{0}) - f(x_{0}, y_{0}, z_{0})}{\Delta x}.$$
 (1.7)

Замечание

 $\frac{\partial f}{\partial x}$ — единый символ. Следует отличать его от полной производной $\frac{df}{dx}$, которая представляет из себя отношение дифференциалов df и dx.

Геометрический смысл частной производной.

В трехмерном пространстве функция двух переменных z = f(x,y) задает некоторую поверхность. На этой поверхности выберем точку и проведем через нее плоскость, параллельную плоскости ZOY. Пересечение поверхности и плоскости дает нам кривую, проходящую через выбранную точку. Тангенс угла наклона касательной к кривой – это частная производная от f по y в выбранной точке:

$$\operatorname{tg} \alpha = \frac{\partial f}{\partial y}.$$

1.5 Полное приращение и полный дифференциал функции нескольких переменных

Рассмотрим функцию u=f(x,y,z), определенную в некоторой области $\mathcal{D}.$

Определение

Пусть
$$\Delta u = f(x_0 + \Delta x, y_0 + \Delta y, z_0 + \Delta z) - f(x_0, y_0, z_0).$$
 (1.8)

Тогда $\triangle u$ называется полным приращением функции u = f(x, y, z).

Теорема 7

Пусть производные f'_x , f'_y , f'_z существуют в некоторой окрестности точки (x_0, y_0, z_0) и непрерывны в точке (x_0, y_0, z_0) . Тогда:

$$\Delta u = f_x'(x_0, y_0, z_0) \Delta x + f_y'(x_0, y_0, z_0) \Delta y + f_z'(x_0, y_0, z_0) \Delta z + \alpha \Delta x + \beta \Delta y + \gamma \Delta z,$$
(1.9)

где
$$\alpha = \alpha(\sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2}), \quad \beta = \beta(\sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2}),$$
 $\gamma = \gamma(\sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2})$ — бесконечно малые величины.

Доказательство:

$$\Delta u = \left(f(x_0 + \Delta x, y_0 + \Delta y, z_0 + \Delta z) - f(x_0, y_0 + \Delta y, z_0 + \Delta z) \right) +$$

$$+ \left(f(x_0, y_0 + \Delta y, z_0 + \Delta z) - f(x_0, y_0, z_0 + \Delta z) \right) +$$

$$+ \left(f(x_0, y_0, z_0 + \Delta z) - f(x_0, y_0, z_0) \right).$$

Так как частные производные существуют в окрестности точки (x_0, y_0, z_0) , можно применить теорему Лагранжа (для функции одной переменной) к каждой из разностей:

$$\Delta u = \underbrace{f'_{x}(x_{0} + \theta_{1} \triangle x, y_{0} + \triangle y, z_{0} + \triangle z)}_{f'_{x}(x_{0}, y_{0}, z_{0}) + \alpha} \Delta x + \underbrace{f'_{y}(x_{0}, y_{0} + \theta_{2} \triangle y, z_{0} + \triangle z)}_{f'_{y}(x_{0}, y_{0}, z_{0}) + \beta} \Delta y + \underbrace{f'_{z}(x_{0}, y_{0}, z_{0}) + \alpha}_{f'_{z}(x_{0}, y_{0}, z_{0}) + \gamma} \Delta z.$$

Следствие

Если в некоторой окрестности точки (x_0, y_0, z_0) существуют частные производные и они непрерывны в точке (x_0, y_0, z_0) , то и сама функция

f(x, y, z) непрерывна в точке (x_0, y_0, z_0) .

Доказательство:

$$\rho = \sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2}.$$

$$\alpha \Delta x + \beta \Delta y + \gamma \Delta z = \left(\alpha \frac{\Delta x}{\rho} + \beta \frac{\Delta y}{\rho} + \gamma \frac{\Delta z}{\rho}\right) \rho.$$
 (1.10)

Так как $\frac{\triangle x}{\rho} \le 1$, $\frac{\triangle y}{\rho} \le 1$, $\frac{\triangle z}{\rho} \le 1$ и α, β, γ — бесконечно малые, то выражение $\left(\alpha \frac{\triangle x}{\rho} + \beta \frac{\triangle y}{\rho} + \gamma \frac{\triangle z}{\rho}\right)$ также является бесконечно малой величиной. Тогда формула (1.10) примет вид:

$$\alpha \triangle x + \beta \triangle y + \gamma \triangle z = o(\rho).$$

Следовательно,

$$\triangle u = f'_x(x_0, y_0, z_0) \triangle x + f'_y(x_0, y_0, z_0) \triangle y + f'_z(x_0, y_0, z_0) \triangle z + o(\rho) \xrightarrow[\rho \to 0]{} 0,$$
а это и означает непрерывность функции $u = f(x, y, z).$

Определение

Функция u=f(x,y,z) называется дифференцируемой в точке $(x_0,y_0,z_0),$ если ее приращение $\triangle u$ представимо в виде:

$$\Delta u = A \Delta x + B \Delta y + C \Delta z + o(\rho), \quad A, B, C = const$$
 (1.11)

Теорема 8 Пусть функция u = f(x, y, z) дифференцируема в точке (x_0, y_0, z_0) , то есть ее приращение $\triangle u$ представимо в виде:

$$\Delta u = \Delta f = A \Delta x + B \Delta y + C \Delta z + o(\rho), \quad A, B, C = const. \quad (1.12)$$

Тогда существуют такие частные производные, что выполнено:

$$A = f'_x(x_0, y_0, z_0), \quad B = f'_y(x_0, y_0, z_0), \quad C = f'_z(x_0, y_0, z_0).$$
 (1.13)

Доказательство:

Возьмем $\triangle y = \triangle z = 0$. Тогда:

$$\frac{f(x_0 + \triangle x, y_0, z_0) - f(x_0, y_0, z_0)}{\triangle x} = A + \frac{o(|\triangle x|)}{\triangle x},$$

то есть существует $f'_x(x_0, y_0, z_0) = A$ (в соответствии с определением частной производной). Аналогично доказывается для B и C. Таким образом, Δu представимо в виде:

$$\Delta u = \Delta f = f'_x(x_0, y_0, z_0) \Delta x + f'_y(x_0, y_0, z_0) \Delta y + f'_z(x_0, y_0, z_0) \Delta z + o(\rho).$$
(1.14)

Замечание

В теореме 7 было доказано следствие в обратную сторону. Если существуют частные производные f'_x , f'_y , f'_z в некоторой окрестности точки (x_0, y_0, z_0) и они непрерывны в точке (x_0, y_0, z_0) , то приращение функции представимо в виде (1.14). По сравнению с функцией одной переменной здесь появилось условие непрерывности частных производных в точке (x_0, y_0, z_0) . Это условие не является необходимым (в теореме 8 оно не понадобилось).

Определение

Если формула (1.14) имеет место, то функция называется дифференцируемой в точке (x_0, y_0, z_0) . Выражение

$$df = f'_x(x_0, y_0, z_0) \triangle x + f'_y(x_0, y_0, z_0) \triangle y + f'_z(x_0, y_0, z_0) \triangle z$$
 (1.15)

называется дифференциалом функции f(x, y, z) (полным дифференциалом).

Комментарий

В соответствии с предыдущим замечанием ясно, что утверждение для

функции нескольких переменных "функция дифференцируема" в данной точке уже не эквивалентно утверждению "функция имеет частные производные по всем переменным" в данной точке, а означает больше. Обычно мы будем предполагать существование и непрерывность частных производных, что перекрывает условие дифференцируемости.

1.6 Геометрический смысл дифференциала функции нескольких переменных

Перед тем как объяснять геометрический смысл дифференциала функции нескольких переменных, напомним геометрический смысл функции одной переменной.

Касательную M_0T можно определить как предельное положение секущей при условии, что длина M_0M стремится к нулю. Можно дать и другое определение касательной, эквивалентное первому.

Рис. 2: Геометрическая интерпретация для функции y = f(x)

Прямая M_0T называется касательной к кривой y = f(x) в точке M_0 , если расстояние MP переменной точки M кривой y = f(x) от прямой M_0T , при стремлении расстояния M_0M к нулю, является бесконечно малой величиной более высокого порядка малости, чем M_0M (то есть если отношение $\frac{MP}{M_0M}$ при этом стремится к нулю). Следовательно, $\sin \varphi \to 0$, а значит стремится к нулю угол φ между секущей M_0M и касательной MP.

По аналогии с определением касательной прямой, дадим определение касательной плоскости.

Определение

Плоскость \mathcal{P} называется касательной плоскостью к поверхности z=f(x,y), если расстояние MP переменной точки M поверхности z=f(x,y) от этой плоскости, при стремлении расстояния M_0M к нулю, является бесконечно малой величиной более высокого порядка малости, чем M_0M (то есть если отношение $\frac{MP}{M_0M}$ при этом стремится к нулю).

Рис. 3: Геометрическая интерпретация для функции z = f(x, y)

Пусть поверхность $\mathcal S$ задана уравнением z=f(x,y). Обозначим за M(x,y,z) произвольную точку на этой поверхности. Возьмем на ней точку $M_0(x_0,y_0,z_0)$ и исследуем при каких условиях плоскость $\mathcal P$, проходящая через точку M_0 и имеющая уравнение:

$$Z - z_0 = A(X - x_0) + B(Y - y_0), (1.16)$$

будет являться касательной плоскостью для поверхности ${\cal S}.$

Проведем прямую ML параллельно оси OZ. Из точки M_0 опустим на нее перпендикуляр M_0N . Треугольник MPK – прямоугольный, выразим из него MP :

$$MP = MK \cdot \cos(\angle KMP).$$

Так как отрезок MK отличается от MP постоянным множителем $\cos(\angle KMP)$ ($\angle KMP$ не меняется при перемещении точки M), то вместо отношения $\frac{MP}{MM_0}$ можно рассматривать отношение $\frac{MK}{MM_0}$. Кроме того, можно заменить в отношении $\frac{MK}{MM_0}$ расстояние $r=MM_0$ на отрезок $\rho=M_0N$. Возможность последней замены необходимо обосновать, так как MM_0 и M_0N хоть и отличаются на множитель $\cos(\angle MM_0N)$, однако при перемещениях точки M угол MM_0N может меняться, а вместе с ним будет меняться и $\cos(\angle MM_0N)$. Докажем возможность такой замены.

<u>Необходимость.</u> Если при $M \to M_0$ отношение $\frac{MK}{\rho} \to 0$, то это будет выполнено и для отношения $\frac{MK}{r}$, так как $r > \rho$ (в прямоугольном треугольнике гипотенуза больше катета).

<u>Достаточность.</u> Пусть $\frac{MK}{r} \to 0$. Докажем, что: $\frac{MK}{\rho} \to 0$.

$$\frac{MK}{\rho} = \frac{MK}{r} \cdot \frac{r}{\rho}.$$

Нам достаточно доказать, что отношение $\frac{r}{\rho}$ ограничено ибо если ограниченную величину умножить на бесконечно малую величину, получим бесконечно малую величину.

Точка M(x,y,z) – это произвольная точка на поверхности $\mathcal S$. Точки M и K лежат на вертикальной прямой, параллельной оси OZ, следовательно: $K(x_k,y_k,z_k)=K(x,y,z_k)$. Тогда:

$$MK = \sqrt{(x - x_k)^2 + (y - y_k)^2 + (z - z_k)^2} = |z - z_k|.$$
 (1.17)

Точка K лежит на плоскости P, а значит удовлетворяет ее уравнению.

Выразим z_k из уравнения плоскости (1.16):

$$z_k = z_0 + A(x_k - x_0) + B(y_k - y_0).$$

Учитывая, что: $x_k = x, \ y_k = y,$ подставим выражение для z_k в (1.17):

$$MK = |z - z_0 - A(x - x_0) - B(y - y_0)| = |\triangle z - (A\triangle x + B\triangle y)|.$$
 (1.18)

Здесь мы ввели следующие обозначения:

$$x - x_0 = \triangle x$$
, $y - y_0 = \triangle y$, $z - z_0 = \triangle z$.

Мы предположили, что $\frac{MK}{r} \xrightarrow[M \to M_0]{} 0$. Следовательно, для точек M, близких к M_0 , будет выполнено:

$$\frac{MK}{r} < \frac{1}{2} \Leftrightarrow |\triangle z - (A\triangle x + B\triangle y)| < \frac{1}{2}r = \frac{1}{2}\sqrt{\triangle x^2 + \triangle y^2 + \triangle z^2}$$
 (1.19)

С другой стороны:

$$|\Delta z - (A\Delta x + B\Delta y)| \ge |\Delta z| - |A||\Delta x| - |B||\Delta y|. \tag{1.20}$$

Тогда из (1.19) и (1.20) следует:

$$|\triangle z| < |A||\triangle x| + |B||\triangle y| + \frac{1}{2}\sqrt{\triangle x^2 + \triangle y^2 + \triangle z^2}.$$
 (1.21)

Так как $\begin{cases} M_0N \perp ML, \\ ML \parallel OZ \end{cases}$, то $M_0N \perp OZ \Leftrightarrow M_0N \parallel XOY$, а значит координаты z у точек M_0 и N совпадают: $z_N=z_0$. Также заметим, что MN лежит на прямой, параллельной оси OZ, то есть координаты x и y у точек M и N совпадают: $x_N=x$, $y_N=y$. Итак, $y_N=y$ 0. Следовательно,

$$\rho = M_0 N = \sqrt{\underbrace{(x_0 - x)^2}_{\triangle x^2} + \underbrace{(y_0 - y)^2}_{\triangle y^2} + \underbrace{(z_0 - z_0)^2}_{0}} = \sqrt{\triangle x^2 + \triangle y^2}. \quad (1.22)$$

Тогда неравенство (1.21) примет вид:

$$|\Delta z| < |A||\Delta x| + |B||\Delta y| + \frac{1}{2}\sqrt{\rho^2 + \Delta z^2}.$$
 (1.23)

Разделим обе части неравенства (1.23) на ρ :

$$\frac{|\triangle z|}{\rho} < |A| \underbrace{\frac{|\triangle x|}{\rho}}_{<1} + |B| \underbrace{\frac{|\triangle y|}{\rho}}_{<1} + \frac{1}{2} \sqrt{1 + \left(\frac{|\triangle z|}{\rho}\right)^2}. \tag{1.24}$$

Учитывая, что:

$$\sqrt{1 + \left(\frac{|\triangle z|}{\rho}\right)^2} < \sqrt{1 + 2\frac{|\triangle z|}{\rho} + \left(\frac{|\triangle z|}{\rho}\right)^2} = 1 + \frac{\triangle z}{\rho},$$

неравенство (1.24) можно упростить:

$$\frac{|\Delta z|}{\rho} < |A| + |B| + \frac{1}{2} \left(1 + \frac{|\Delta z|}{\rho} \right) \Leftrightarrow \frac{1}{2} \frac{|\Delta z|}{\rho} < |A| + |B| + \frac{1}{2} \Leftrightarrow \frac{|\Delta z|}{\rho} < 2(|A| + |B|) + 1.$$
(1.25)

Тогда:

$$\frac{r}{\rho} = \frac{\sqrt{\triangle x^2 + \triangle y^2 + \triangle z^2}}{\rho} = \frac{\sqrt{\rho^2 + \triangle z^2}}{\rho} = \sqrt{1 + \left(\frac{|\triangle z|}{\rho}\right)^2} < \sqrt{1 + 2\frac{|\triangle z|}{\rho} + \left(\frac{|\triangle z|}{\rho}\right)^2} = 1 + \frac{|\triangle z|}{\rho} = 2(|A| + |B| + 1),$$

то есть $\frac{r}{\rho}$ ограничено некоторым числом. Мы предположили, что $\frac{MK}{r} \to 0$.

$$\frac{MK}{\rho} = \underbrace{\frac{MK}{r}}_{\text{ограничено}} \cdot \underbrace{\frac{r}{\rho}}_{\text{ограничено}} \to 0.$$

Достаточность доказана. Ранее была доказана необходимость: из условия $\frac{MK}{\rho} \to 0$ следует, что: $\frac{MK}{r} \to 0$. Таким образом, $\frac{MK}{r}$ и $\frac{MK}{\rho}$ одного порядка малости и при выяснении порядка малости можно заменять одну величину на другую. Согласно определению, плоскость \mathcal{P} является касательной плоскостью к поверхности \mathcal{S} в точке M_0 , если:

$$\frac{MP}{M_0M} = \frac{MP}{r} \to 0.$$

Мы доказали, что это эквивалентно тому, что $\frac{MK}{\rho} \to 0$.

$$\frac{MK}{\rho} = \frac{|\triangle z - (A\triangle x + B\triangle y)|}{\rho} \to 0 \iff |\triangle z - (A\triangle x + B\triangle y)| = o(\rho) \iff \triangle z - (A\triangle x + B\triangle y) = o(\rho) \iff \triangle z = A\triangle x + B\triangle y + o(\rho),$$

а это означает что функция z=f(x,y) дифференцируема в точке (x_0,y_0) . Итак, мы доказали следующую теорему:

Теорема 9

Поверхность z=f(x,y) имеет касательную плоскость в точке $M_0(x_0,y_0,z_0)\Leftrightarrow$ функция z=f(x,y) дифференцируема в точке (x_0,y_0) . По теореме 8 получаем, что: $A=f'_x(x_0,y_0),\ B=f'_y(x_0,y_0).$

Тогда уравнение касательной плоскости (1.16) примет вид:

$$Z - z_0 = f_x'(x_0, y_0)(X - x_0) + f_y'(x_0, y_0)(Y - y_0).$$
 (1.26)

1.7 Производные от сложных функций

Рассмотрим функцию u=f(x,y,z), определенную в некоторой открытой области D, где x,y,z являются функциями от переменной t:

$$x = \varphi(t), \ y = \psi(t), \ z = \chi(t),$$

где $\varphi(t),\ \psi(t),\ \chi(t)$ – дифференцируемые функции.

Пусть в области D существуют непрерывные производные $u_x',\ u_y',\ u_z'.$ Тогда по теореме 7 приращение функции u=f(x,y,z) может быть представлено в виде:

$$\Delta u = u_x' \Delta x + u_y' \Delta y + u_z' \Delta z + \alpha \Delta x + \beta \Delta y + \gamma \Delta z, \tag{1.27}$$
 где $\alpha = \alpha \left(\sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2} \right), \ \beta = \beta \left(\sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2} \right),$ $\gamma = \gamma \left(\sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2} \right).$ Так как разложение (1.27) имеет место, то функция u дифференцируема (по определению). Разделим обе части уравнения (1.27) на Δt :

$$\frac{\Delta u}{\Delta t} = u_x' \frac{\Delta x}{\Delta t} + u_y' \frac{\Delta y}{\Delta t} + u_z' \frac{\Delta z}{\Delta t} + \alpha \frac{\Delta x}{\Delta t} + \beta \frac{\Delta y}{\Delta t} + \gamma \frac{\Delta z}{\Delta t}.$$
 (1.28)