Using Factor Variables in Stata

Thomas Elliott

January 16, 2014

Running regressions on categorical independent variables requires the creation of dummy variables. Recent versions of Stata have included a new way of defining and using categorical variables in regression analysis. For the help page on how to use this method, type help fvvarlist in the command window.

There are four basic factor operators in Stata:

Operator	Description
i.	specify a categorical variable (create indicators for categories)
С.	specify a variable as continuous (when specifying interaction terms)
#	specify an interaction between variables
##	specify factorial interaction between variables (all interactions and main effects)

1 Categorical Variables

I'll be using some data from the General Social Survey (GSS). To begin, let's say we want to regress EDUC, the highest year of education completed, on POLVIEWS, a seven category measure of political views. In GSS, POLVIEWS is a numeric variable, with each number representing a possible categorical answer. By default, Stata will treat POLVIEWS as a continuous variable, which would be a mistake.

. regress EDUC POLVIEWS, nohead

EDUC	***-	Std. Err.	-			Interval]
POLVIEWS	1248473 13.97524	.0183561	-6.80	0.000	1608279 13.81849	0888668 14.13199

Instead, we can use a factor operator to tell Stata that POLVIEWS is a categorical variable and to create indicators. We do this by prepending the factor variable with i.

. regress EDUC i.POLVIEWS, nohead

EDUC	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
POLVIEWS						
2	. 2452808	. 1560552	1.57	0.116	0606091	.5511707
3	.0027932	. 1563809	0.02	0.986	3037352	.3093215
4	8235205	. 1428313	-5.77	0.000	-1.10349	5435512
5 l	1274898	. 1525671	-0.84	0.403	4265427	. 1715632
6 l	3355454	. 1511146	-2.22	0.026	6317512	0393396
7	-1.036269	.1918869	-5.40	0.000	-1.412394	660144
1						
_cons	13.86157	. 1366483	101.44	0.000	13.59372	14.12942

By prepending i., we told Stata to create indicators for each category of POLVIEWS. Notice that the first category (POLVIEWS == 1) is left out. Stata by default will use the first value as the reference category. What if we wanted to use 4 (Moderate) instead? There are two ways to do this. The first is to specify it with the i. prefix, by adding b# where # is the value you want to use for the base. In our example, we wanted to use 4 for moderate, so we would prepend POLVIEWS with ib4.

. regress EDUC ib4.POLVIEWS, nohead

Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
.8235205	.1428313	5.77	0.000	.5435512	1.10349
1.068801	.0860726	12.42	0.000	.900087	1.237516
.8263137	.0866617	9.53	0.000	. 6564446	.9961828
.6960308	.0795739	8.75	0.000	.5400547	.8520068
.4879752	.0767523	6.36	0.000	.33753	. 6384204
2127485	.1409817	-1.51	0.131	4890924	.0635954
13.03805	.0415696	313.64	0.000	12.95657	13.11953
	.8235205 1.068801 .8263137 .6960308 .4879752 2127485	.8235205 .1428313 1.068801 .0860726 .8263137 .0866617 .6960308 .0795739 .4879752 .0767523 2127485 .1409817	.8235205 .1428313 5.77 1.068801 .0860726 12.42 .8263137 .0866617 9.53 .6960308 .0795739 8.75 .4879752 .0767523 6.36 2127485 .1409817 -1.51	.8235205 .1428313 5.77 0.000 1.068801 .0860726 12.42 0.000 .8263137 .0866617 9.53 0.000 .6960308 .0795739 8.75 0.000 .4879752 .0767523 6.36 0.0002127485 .1409817 -1.51 0.131	.8235205 .1428313 5.77 0.000 .5435512 1.068801 .0860726 12.42 0.000 .900087 .8263137 .0866617 9.53 0.000 .6564446 .6960308 .0795739 8.75 0.000 .5400547 .4879752 .0767523 6.36 0.000 .33753 2127485 .1409817 -1.51 0.1314890924

Notice that 4 is the new reference category. Using this method, we have to specify the reference category we want each time. But let's say we are doing a whole series of analyses in which moderate will be our reference category? Instead of specifying the base category each time, we can set it permanently with the fvset base command. The syntax for the command is:

fvset base # var

Where # is the value for the reference category and var is the factor variable.

- . fvset base 4 POLVIEWS
- . regress EDUC i.POLVIEWS, nohead

EDUC	 -+-	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
POLVIEWS					_		
1		.8235205	.1428313	5.77	0.000	.5435512	1.10349
2		1.068801	.0860726	12.42	0.000	.900087	1.237516
3		.8263137	.0866617	9.53	0.000	. 6564446	.9961828
5		.6960308	.0795739	8.75	0.000	.5400547	.8520068
6		.4879752	.0767523	6.36	0.000	.33753	.6384204
7		2127485	.1409817	-1.51	0.131	4890924	.0635954
_cons		13.03805	.0415696	313.64	0.000	12.95657	13.11953

Since we've set the reference category with fvset, every time we run anything in which we declare POLVIEWS a factor variable with i., Stata will now use 4 as the reference category each time.

2 Interaction

Interaction of variables in a regression analysis is specified by multiplying the two variables together. Previously, you need to do this by hand, which can get pretty hairy if you have a lot of categories:

```
gen male = SEX == 1
gen exlib = POLVIEWS == 1
gen lib = POLVIEWS == 2
gen slilib = POLVIEWS == 3
gen mod = POLVIEWS == 4
gen slicon = POLVIEWS == 5
gen con = POLVIEWS == 6
gen excon = POLVIEWS == 7
gen maleXexlib = male*exlib
gen maleXlib = male*lib
gen maleXslilib = male*slilib
gen maleXmod = male*slilib
gen maleXslicon = male*slicon
gen maleXcon = male*con
gen maleXexcon = male*excon
```

And then we would need to include all of the above in our regression command. Instead, Stata gives us a shortcut in the form of #:

. regress EDUC i.SEX i.POLVIEWS SEX#POLVIEWS, nohead

EDUC	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
2.SEX	. 47561	. 2759397	1.72	0.085	0652705	1.01649
POLVIEWS						
2	.3613743	. 2388327	1.51	0.130	1067713	.8295199
3	.2344999	.2381342	0.98	0.325	2322765	.7012764
4	5513693	.218091	-2.53	0.011	9788581	1238805
5 l	.3614134	.2302676	1.57	0.117	0899433	.8127701
6 I	.1740083	.2281394	0.76	0.446	2731767	.6211934
7	5067274	. 2843459	-1.78	0.075	-1.064085	.0506304
1						
SEX#POLVIEWS						
2 2	2059436	.3152785	-0.65	0.514	8239337	.4120464
2 3	4033632	.315548	-1.28	0.201	-1.021881	. 2151551
2 4	475527	. 2883906	-1.65	0.099	-1.040813	. 0897589
2 5	8976255	.3074692	-2.92	0.004	-1.500308	2949428
2 6	9415219	.3045796	-3.09	0.002	-1.538541	3445032
2 7	9762233	.3855571	-2.53	0.011	-1.731969	2204774
1						
_cons	13.58937	. 2087524	65.10	0.000	13.18019	13.99856

The # tells Stata to interact SEX and POLVIEWS. Note that when you use #, Stata assumes that the variables you are interacting are categorical variables. To interact with a continuous variable, you need to include the c. prefix:

. regress EDUC AGE i.POLVIEWS c.AGE#POLVIEWS, nohead

Interval]	[95% Conf.	P> t	t	Std. Err.	Coef.	EDUC
.0200145	0115355	0.598	0.53	.0080479	.0042395	AGE
						POLVIEWS
1.522269	1964956	0.131	1.51	.438429	.6628868	2
1.184153	5460541	0.470	0.72	. 4413477	.3190494	3
.9332021	6406825	0.716	0.36	.4014724	. 1462598	4
1.878167	.1751026	0.018	2.36	. 4344239	1.026635	5 l
1.595479	0960845	0.082	1.74	. 4314904	.7496973	6
1.768242	4734403	0.258	1.13	.5718167	.6474008	7
						POLVIEWS#c.AGE
.0088061	0271895	0.317	-1.00	.0091819	0091917	2
.0113209	0249906	0.461	-0.74	.0092625	0068349	3

4	0208108	.0083921	-2.48	0.013	0372606	004361
5 l	0244743	.0090242	-2.71	0.007	0421629	0067857
6 I	0220221	.0088753	-2.48	0.013	0394189	0046252
7	033427	.0112887	-2.96	0.003	0555543	0112996
1						
_cons	13.66125	.3835279	35.62	0.000	12.90948	14.41301

Notice that when we use #, we need to include the main effects separately. For Stata, # stands for just the interaction term. However, if we wanted to include all the interaction effects and main effects of the variables, we can use the operator ## - two pound signs tells Stata to include the interaction term and all main effects:

. regress EDUC SEX##POLVIEWS, nohead

EDUC	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
2.SEX	.47561	. 2759397	1.72	0.085	0652705	1.01649
POLVIEWS						
2	.3613743	. 2388327	1.51	0.130	1067713	.8295199
3	. 2344999	.2381342	0.98	0.325	2322765	.7012764
4	5513693	.218091	-2.53	0.011	9788581	1238805
5 l	.3614134	.2302676	1.57	0.117	0899433	.8127701
6 l	.1740083	.2281394	0.76	0.446	2731767	.6211934
7	5067274	. 2843459	-1.78	0.075	-1.064085	.0506304
I						
SEX#POLVIEWS						
2 2	2059436	.3152785	-0.65	0.514	8239337	.4120464
2 3	4033632	.315548	-1.28	0.201	-1.021881	. 2151551
2 4	475527	. 2883906	-1.65	0.099	-1.040813	. 0897589
2 5	8976255	.3074692	-2.92	0.004	-1.500308	2949428
26	9415219	.3045796	-3.09	0.002	-1.538541	3445032
2 7	9762233	.3855571	-2.53	0.011	-1.731969	2204774
1						
_cons	13.58937	.2087524	65.10	0.000	13.18019	13.99856

Like before, Stata assumes variables used with the ## operator are categorical variables. This shortcut becomes really useful when we interact more than two variables - it will include all lower level interactions and main effects automatically. The next page shows the results of a three way interaction. It would have been incredibly tedious to create the many indicators and interactions by hand, so the ## operator is very useful in this case.

. regress EDUC SEX##POLVIEWS##RACE, nohead

EDUC	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
2.SEX	.4441819	.3258858	1.36	0.173	1946001	1.082964
POLVIEWS						
2	.1188739	.2803632	0.42	0.672	4306772	.6684251
3	0356943	.2777314	-0.13	0.898	5800867	.5086981
4	-1.087544	.2549151	-4.27	0.000	-1.587213	5878742
5 l	.006421	.2661787	0.02	0.981	5153265	.5281685
6 I	1875431	.2631917	-0.71	0.476	7034357	.3283495
7	6005161	.3213019	-1.87	0.062	-1.230313	.0292808
SEX#POLVIEWS						
2 2	1187812	.3712865	-0.32	0.749	8465548	.6089924
2 3	3399038	.3698596	-0.92	0.358	-1.06488	.3850728
2 4	4184207	.3395514	-1.23	0.218	-1.083989	.2471477
2 5	8837868	.3581756	-2.47	0.014	-1.585861	1817123
2 6	8971659	.3539616	-2.53	0.011	-1.59098	2033516
2 7	-1.131034	.4451843	-2.54	0.011	-2.003657	2584102
RACE						
2	-1.891156	.5190791	-3.64	0.000	-2.908624	8736885
3	-2.343537	.7408547	-3.16	0.002	-3.795717	8913583
SEX#RACE						
2 2	133122	.6765598	-0.20	0.844	-1.459274	1.19303
2 3	1.202485	.9732746	1.24	0.217	7052699	3.110239
POLVIEWS#RACE						
2 2	.7228628	.6119335	1.18	0.238	4766128	1.922338
2 3	1.200854	.8108066	1.48	0.139	3884407	2.790149
3 2	.5775662	.6227936	0.93	0.354	6431966	1.798329
3 3	1.19125	.8148141	1.46	0.144	4059001	2.7884
4 2	1.68555	.5511719	3.06	0.002	.6051759	2.765925
4 3	2.115555	.768735	2.75	0.006	.6087263	3.622383
5 2	.4362598	.6237646	0.70	0.484	7864064	1.658926
5 3	.8963568	.8258861	1.09	0.278	7224959	2.515209
6 2	.3684955	.6523294	0.56	0.572	9101616	1.647153
6 3	.1483274	.8292754	0.18	0.858	-1.477169	1.773824
7 2	5472672	.7850557	-0.70	0.486	-2.086087	.9915522
7 3	-2.532817	1.213427	-2.09	0.037	-4.911305	1543299
SEX#POLVIEWS#RACE						
2 2 2	281755	.7945975	-0.35	0.723	-1.839278	1.275767
2 2 3		1.084467	-1.39	0.164	-3.635923	.6154928

2 3 2		.0788087	.8058376	0.10	0.922	-1.500746	1.658363
2 3 3		-1.571014	1.096913	-1.43	0.152	-3.721118	.5790894
2 4 2		.2295453	.7165159	0.32	0.749	-1.174926	1.634017
2 4 3		-1.661019	1.014035	-1.64	0.101	-3.64867	.326632
2 5 2		.565262	.8103806	0.70	0.485	-1.023198	2.153722
2 5 3		7288761	1.09214	-0.67	0.505	-2.869623	1.411871
2 6 2		.3871559	.8323598	0.47	0.642	-1.244386	2.018698
2 6 3		4591114	1.104427	-0.42	0.678	-2.623942	1.70572
2 7 2		1.587703	1.009605	1.57	0.116	3912651	3.566672
2 7 3		2.466185	1.522995	1.62	0.105	5190987	5.451469
_cons	-	14.17687	.2446963	57.94	0.000	13.69723	14.65651