IMPACTO DE MEDIDAS HIGIÊNICO-SANITÁRIAS NA QUALIDADE MICROBIOLÓGICA DO LEITE E NA RESISTÊNCIA ANTIMICROBIANA EM PROPRIEDADES LEITEIRAS DO OESTE DO PARANÁ

Jislene Christina Dall'Stella¹, Silvia Renata Machado Coelho³, Fabiane Picinin de Castro Cislaghi¹, Luciano Lucchetta¹, Ricardo Bellintani Leocádio²

Universidade Tecnológica Federal do Paraná -Francisco Beltrão¹

Marca Representações & Veterinários Associados²

Universidade Estadual do Oeste do Paraná – Cascavel³

jislene@alunos.utfpr.edu.br

https://doi.org/10.5281/zenodo.15521471

Medidas higiênico-sanitárias reduziram a carga microbiana no leite cru e influenciaram a variação da resistência bacteriana.

INTRODUÇÃO

A mastite bovina é uma das principais doenças que afetam a produção leiteira, impactando tanto a qualidade do leite quanto a rentabilidade dos produtores. O tratamento dessa enfermidade geralmente envolve o uso de antimicrobianos. No entanto, o uso excessivo desses medicamentos tem contribuído para o aumento da resistência bacteriana, reduzindo a eficácia dos tratamentos convencionais e representando um desafio para a saúde animal e pública (Rifaat Abd-Elwahab *et al.*, 2024).

Entre os patógenos envolvidos na mastite, *Staphylococcus aureus* se destaca pela resistência a várias classes de antimicrobianos, tornando seu controle mais difícil e exigindo estratégias eficazes de manejo (Yang *et al.*, 2023). Para minimizar o risco de infecções, medidas preventivas, como a higienização rigorosa dos equipamentos de ordenha e a desinfecção dos tetos antes e depois da ordenha (pré e pós-*dipping*), são fundamentais para reduzir a contaminação microbiológica (Lopes *et al.*, 2022).

A resistência antimicrobiana observada em animais de produção também representa risco à saúde humana, consolidando-se como uma preocupação dentro do conceito de saúde única (*One Health*), que integra o bem-estar animal, ambiental e humano (Almansour *et al.*, 2023).

Diante desse cenário, este estudo avaliou a resistência antimicrobiana no leite antes e depois da adoção de medidas higiênico-sanitárias, como a higienização dos equipamentos e dos tetos, analisando o impacto dessas práticas na qualidade microbiológica do leite.

DESENVOLVIMENTO

As amostras de leite foram coletadas de 11 propriedades leiteiras do Oeste do Paraná no momento da retirada pelo caminhão do laticínio, diretamente do resfriador, em tubos estéreis com azidiol e bromopol. Para preservar sua qualidade microbiológica, foram mantidas refrigeradas entre 2 °C e 7 °C até a chegada ao laboratório. A primeira coleta ocorreu em 5 de janeiro de 2025, antes da implementação das medidas higiênico-sanitárias, e a segunda, em 10 de fevereiro de 2025, após as intervenções.

Foram realizadas Contagem de Células Somáticas (CCS), Contagem Padrão em Placas (CPP) e Nitrogênio Ureico no Leite (NUL). Outros componentes, como gordura, proteínas e lactose, foram mensurados, mas não utilizados nos resultados. Um antibiograma foi realizado na propriedade com maior contagem microbiológica para avaliar a resistência bacteriana antes e depois das medidas higiênico-sanitárias.

As análises estatísticas foram conduzidas no Python 3.9, utilizando as bibliotecas *pandas*, *matplotlib* e *seaborn*. As variáveis foram analisadas por meio de frequência, gráficos comparativos e mapas de calor. A variação dos halos de inibição permitiu interpretar a resposta bacteriana às intervenções, facilitando a avaliação da resistência microbiana.

A Tabela 1 apresenta os valores de CCS, CPP e NUL antes e depois das intervenções. Em algumas propriedades, como 1, 2 e 3, houve uma redução significativa na contagem microbiana, enquanto a propriedade 6 manteve altos valores, evidenciando a importância das boas práticas de ordenha (Lopes *et al.*, 2022).

Tabela 1. Valores de Contagem Padrão em Placas (CPP), Contagem de Células Somáticas (CCS) e Nitrogênio Uréico no Leite (NUL) antes e depois da implementação de medidas higiênico-sanitárias.

		ANTES			DEPOIS	
Propriedade	CCS (x1000	CPP (x1000	Nitrogênio Uréico	CCS (x1000	CPP (x1000	Nitrogênio Uréico
7.10 P.10 mm	cél/mL)	UFC/mL)	(mg/dL)	cél/mL)	UFC/mL)	(mg/dL)
1	546	703	11,2	378	5	16,3
2	556	1.093	16,2	475	728	13,7
3	1.160	280	13	1.117	104	8

4	2.284	4.407	13,6	2.249	2.026	10,1
5	1.109	153	12,8	1.469	1.118	12
6	3.865	4.007	14	7.025	7.241	11,6
7	1.978	5.280	9,7	378	32	16,8
8	361	17	15,2	3.747	3.554	9,5
9	385	176	13,7	393	10	16,5
10	819	2.884	11	2.185	1.913	10,1
11	1.069	1.924	10,5	2.208	2.022	9,6

Fonte: Próprio autor (2025)

Na propriedade 6, foi realizado o antibiograma. A Figura 1 ilustra a variação da resistência antimicrobiana entre os períodos analisados. Foi observada redução na resistência a alguns antibióticos, enquanto outros mantiveram-se resistentes, evidenciando a complexidade da adaptação bacteriana ao ambiente e às novas práticas sanitárias. De acordo com Rifaat Abd-Elwahab *et al.* (2024), a persistência da resistência antimicrobiana pode estar associada à formação de biofilmes e à capacidade adaptativa das bactérias aos desafios ambientais.

Figura 1. Variação da resistência antimicrobiana no leite antes e depois da implementação de medidas higiênico-sanitárias. *Fonte: Próprio autor (2025)*

A análise dos halos de inibição avaliou mudanças na sensibilidade bacteriana ao longo do tempo (Figura 2). Algumas bactérias apresentaram maior sensibilidade, enquanto, em alguns casos, a

resistência persistiu. Kovačević *et al.* (2022), sugerem que a adoção de protocolos rigorosos de higiene pode reduzir a carga microbiana e contribuir para o controle da resistência antimicrobiana em produtos de origem animal.

Figura 2. Variação dos halos de inibição de bactérias isoladas antes e depois da implementação de medidas higiênico-sanitárias. Fonte: Próprio autor (2025).

A Figura 3 destaca os antibióticos com maior ou menor variação na resistência após a adoção das medidas higiênico-sanitárias. Esse tipo de análise permite visualizar padrões de resistência e auxilia na escolha de práticas mais eficazes para minimizar o uso indiscriminado de antimicrobianos (Yang et al., 2023).

Figura 3. Distribuição da resistência antimicrobiana no leite antes e depois da adoção de medidas higiênico-sanitárias. Fonte: Próprio autor (2025).

CONSIDERAÇÕES FINAIS

A adoção de medidas higiênico-sanitárias demonstrou impacto na qualidade do leite, reduzindo a carga microbiana em diversas propriedades. No entanto, a persistência da resistência antimicrobiana em alguns casos reforça a complexidade da adaptação bacteriana e a necessidade de estratégias complementares para o controle eficaz da contaminação.

A análise do antibiograma revelou que, apesar de melhorias na sensibilidade bacteriana a certos antibióticos, algumas cepas mantiveram resistência. Isso indica que apenas mudanças no manejo sanitário podem não ser suficientes para erradicar microrganismos resistentes.

Diante disso, recomenda-se o aprofundamento das investigações sobre a relação entre práticas higiênico-sanitárias e resistência antimicrobiana, contribuindo para o aprimoramento contínuo da produção leiteira com base em evidências científicas.

REFERÊNCIAS

ALMANSOUR, A. M. et al. The Silent Threat: Antimicrobial-Resistant Pathogens in Food-Producing Animals and Their Impact on Public Health. **Microorganisms**, v. 11, 2023. Disponível em: https://doi.org/10.3390/microorganisms11092127. Acesso em: 31 mar. 2025.

KOVAČEVIĆ, Z. *et al.* Is There a Relationship between Antimicrobial Use and Antibiotic Resistance of the Most Common Mastitis Pathogens in Dairy Cows?. **Antibiotics**, [s. l.], v. 12, n. 1, p. 3, 2022. Disponível em: https://www.mdpi.com/2079-6382/12/1/3. Acesso em: 14 mar. 2025.

LOPES, C. M. de A. *et al.* Influência das boas práticas agropecuárias na contagem padrão em placas (CPP) e na contagem de células somáticas (CCS) no leite cru/ influence of good agricultural practices on standard plate count (SPC) and somatic cell count (SCC) in raw cow milk. **Brazilian Journal of Development**, [s. *l.*], v. 8, n. 3, p. 21519–21536, 2022. Disponível em: https://ojs.brazilianjournals.com.br/ojs/index.php/BRJD/article/view/45748. Acesso em: 14 mar. 2025.

RIFAAT ABD-ELWAHAB, D. M. *et al.* ANTIBIOTIC RESIDUES AND THEIR CORRESPONDING RESISTANCE GENES OF STAPHYLOCOCCUS AUREUS IN RAW MILK. **Assiut Veterinary Medical Journal**, [s. l.], v. 70, n. 182, p. 320–339, 2024. Disponível em: https://avmj.journals.ekb.eg/article 365459.html. Acesso em: 14 mar. 2025.

YANG, F. et al. Antimicrobial resistance and virulence profiles of staphylococci isolated from clinical bovine mastitis.

Frontiers in Microbiology, [s. l.], v. 14, 2023. Disponível em: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2023.1190790/full. Acesso em: 14 mar. 2025.

