

2강: Supervised Learning

Supervised Learning

Part1 Linear Regression

1.1 LMS algorithm

1.2 The normal equations

1.2.1 Matrix derivatives

1.2.2 Least squares revisited

Supervised Learning

지도학습(Supervised Learning)이란, 데이터에 대한 학습데이터가 주어진 상태에서 컴퓨터를 학습시키는 방법이다. 쉽게 말하면, Y값이 주어진 경우라고 생각하면 된다.

╬ 간단하게 notation 정리

1. $x^{(i)}$: input variables, input features

2. $y^{(i)}$: output or target variables

3. A pair $(x^{(i)}, y^{(i)})$: ith training example

4. a list of n training examples $(x^{(i)},y^{(i)}); i=1,\ldots,n$: a training set

y	x_1	x_2		x_d
$y^{(1)}$	$x_1^{(1)}$	$x_2^{(1)}$		$x_d^{(1)}$
$y^{(2)}$	$x_1^{(2)}$	$x_2^{(2)}$		$x_d^{(2)}$
:	:	:	٠	:
$y^{(n)}$	$x_1^{(n)}$	$x_2^{(n)}$		$x_d^{(n)}$

• 지도학습의 목표

지도학습의 목표는 주어진 training set에 대응되는 y값을 잘 예측하는 함수 h(x)를 추정하는 것이고 이 함수를 hypothesis라고 한다.

2강: Supervised Learning

[통데마 수업] 지도학습이란?

- Format of supervised learning: $Y = f(x) + \epsilon$

- Y변수가 연속형이면 regression problem, y변수가 이산형이면 classification problem

 ϵ : random error term (기본가정: $E(\epsilon)=0/ ext{ Var}(\epsilon)=\sigma^2/\epsilon_1,...,\epsilon_i ext{ indep})$

* 머신러닝에서는 가정을 확인하지 않음!

지도학습의 목표는 f를 추정하여 Y를 예측하는 것이다.

[통데마 수업] f를 추정하는 방법

* training data를 사용!

1. Parametric methods (Model-based approach)

f의 형태 가정하고, training data를 통해 모델의 parameter 추정 / Linear or Nonlinear model

Estimation of parameters \equiv Estimation of f

2. Nonparametric methods

: 오직 데이터에 의존해서 f를 추정/ Nonlinear model

• 모델 평가와 선택의 기준

[통데마 수업] 지도학습의 목표가 prediction인 만큼, 모델의 평가와 선택은 얼마나 Y를 잘 예측했는지에 달려있다.

주의 모델을 세울 때는 training data를 모델을 평가할 때는 test data를 사용한다.

- 1. Regression problem:
- Criterion:

Test
$$MSE = \frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{f}(x_i))^2$$

- Example : KNN regression

- 2. Classification problem:
- Criterion:

Test Misclassification rate $= rac{1}{m} \sum_{i=1}^m I(y_i
eq \hat{y_i})$

- Example : Bayes classifier / KNN classifier

test data가 충분치 않은 경우에는 Sample re-use methods(e.g. bootstrap, cross-validation)를 사용한다.

▼ 여기까지 통데마 lecture2 내용

Ch1: Introduction

Ch2: Supervised learning

Part1 Linear Regression

- 지도학습(supervised learning)을 수행하기 위해서는 function/hypothesis h를 어떻게 나타낼 것인지 결정해야 한다. 초기선택으로, x, y가 대략적으로 linear관계가 있다고 결정하면, 다음과 같이 수식으로 나타낼 수 있다.

$$egin{aligned} h_{ heta}(x) &= heta_0 + heta_1 x_1 + ... + heta_d x_d \ &= \sum_{i=0}^d heta_i x_i \ &= heta^T X. \end{aligned}$$

이때.

 $\theta_i = \text{parameter (weight)}$

 $x_0=1$ 로 intercept term

d은 input variable의 개수

[통데마 수업] linear regression

: supervised learning/

parametric method

- model:

 $f(x) = eta_0 + \sum_{j=1}^p eta_j \mathbf{X}_j$ (f모델을 세우고 Y값을 예측)

- least square estimation(LSE): RSS를 최소화하는

 β 를 찾기

- 지도학습의 목표는 y값을 잘 예측하는 것이라고 했다. 이는 주어진 training data에 대해 y값에 유사하도록 h(x)의 parameter를 정하는 것과 같다. 이때 우리는 각 θ 값에 대해 $h(x^{(i)})$ 가 $y^{(i)}$ 에 얼마나 가까운지/유사한지 측정하는 함수를 정의할 수 있다. 이를 cost function 이라고 하며 다음과 같이 나타낼 수 있다.

$$J(heta) = rac{1}{2} \sum_{i=1}^n (h_ heta(x^{(i)}) - y^{(i)})^2$$

이전에 linear regression을 본적이 있다면 least squares cost function과 유사함을 알 수 있을 것이다.

1.1 LMS algorithm

우리는 계속해서 지도학습에 대해서 배우고 있다. 지도학습의 목표는 y값을 잘 예측하는 함수를 찾는 것이고 이 함수를 찾기 위해서는 함수의 파라미터를 찾아야 한다. 이를 구하기 위해 linear regression에서 함수값과 y값이 얼마나 가까운지를 나타내는 cost function $J(\theta)$ 를 정의했고, 최종적으로 $J(\theta)$ 값을 최소화 하는 방향으로 θ 를 찾아야 y를 가장 잘 예측하는 함수를 찾고자 하는 지도학습의 목표에 달성할 수 있을 것이다.

gradient descent algorithm

1) 개념

이를 위해 첫번째로 배울 search algorithm은 gradient descent algorithm으로, 어떤 초기 θ 값에서 시작하여 $J(\theta)$ 를 줄이기 위해 다음 과 같이 반복적으로 θ 를 업데이트하는 방법이다.

╬ 추가설명 ₩

먼저 parameter theta를 어떤 값으로 초기화한다. 이제 초기값으로 설정한 theta에서 J(theta)의 gradient를 구하고, 초기값에서 gradient 만큼 뺀 값을 그 다음 theta 값으로 삼는다. 이러한 작업을 theta가 수렴할 때까지 반복한다

gradient가 0인 지점이 곧 minimal point이므로 계속 iteration을 반복하다 보면 minimizing point로 수렴하게 되는 것이다.

2) 수식

$$egin{aligned} heta_j := heta_j - lpha rac{\partial}{\partial heta_j} J(heta) \ j = 0, ... \, , d \end{aligned}$$

lpha는 learning rate, 이것은 각 iteration마다 parameter theta를 얼마나 변화시킬지를 결정

한다. 너무 작으면 iteration이 많아져 연산량이 많아지고, 너무 크면 minimal point를 건너뛰어 버리는 tradeoff 가 있다.

J에서 가장 가파른 방향으로 감속하도록 업데이트를 반복하는 방법이다.

▼ *공식 유도를 위한 수학개념 정리는 아주 긴 여정이 될 것 같아서 추후에 다시 정리하겠습니당,,,,* ❤️ 지지지난 선대팀 교안 참고할 예정!

이 공식이 나오게 된 원리에 편미분, 그라디언트 등의 추가적인 수학적 설명이 필요한데 강의에서는 수학 내용을 다 생략하기 때문에 내일부터 열심히 정리해서 올려놓겠습니다...!!

- 이 알고리즘을 수행하기 위해서는 우변에 편미분을 해야한다. 이를 쉽게 설명하기 위해 하나의 training example (x,y)만 있다고 생각해보자

$$egin{array}{lcl} rac{\partial}{\partial heta_j} J(heta) &=& rac{\partial}{\partial heta_j} rac{1}{2} (h_ heta(x) - y)^2 \ &=& 2 \; rac{1}{2} (h_ heta(x) - y)^2 \; rac{\partial}{\partial heta_j} (h_ heta(x) - y) \ &=& (h_ heta(x) - y) \; rac{\partial}{\partial heta_j} (\sum_{i=0}^d heta_i x_i - y) \ &=& (h_ heta(x) - y) x_j \end{array}$$

따라서 하나의 training example에 대한 update rule은 다음과 같다.

$$heta_j := heta_j + lpha(y^{(i)} - h_ heta(x^{(i)}))x_j^{(i)}$$

바로 이 rule을 LMS update rule이라고 하는 것이다~~

- 위에서는 하나의 training example에 대해서 LMS rule을 이끌어낸 것이다. 이제 하나 이상의 training set에 대해서 나타낼 수 있는 방법은 다음과 같이 2가지 방식이 있다.

1. Batch gradient descent

첫번째 방법은 다음과 같이 한번의 step마다 전체 training set을 모두 보면서 합을 구하는 방식이다.

```
Repeat until convergence { 	heta_j:=	heta_j+lpha\sum_{i=1}^n(y^{(i)}-h_	heta(x^{(i)}))x_j^{(i)}\ (for\ every\ j) }
```

2. Stochastic gradient descent (incremental gradient descent)

두번째 방법은 한번에 하나의 training example에 대해 파라미터를 업데이트하면서 training set을 도는 방법이다.

```
Loop { for i=1 \ to \ n, \{ \\ \theta_j:=\theta_j+\alpha(y^{(i)}-h_\theta(x^{(i)}))x_j^{(i)} \ (for \ every \ j) \\ \} }
```

두번째 방법은 데이터가 많을 경우 첫번째 방법보다 매우 빠르지만 $J(\theta)$ 를 최소화 하기 위해 업데이트하는 과정에서 example 하나 마다 업데이트되기 때문에 진동하여 miminum지점에 수렴하지 않을 수도 있다. 참고로 이러한 경우에는 α 값을 줄여서 천천히 감소하게 한다면 해결될 수 있으며 상당한 경우에 true mininum에 유사한 값을 주기 때문에 선호되는 방식이긴 하다.

1.2 The normal equations

이번에는 J를 최소화하는 방법들 중에서 gradient descent와 같이 반복하는 알고리즘 대신 θ_j 에 대한 미분을 통해 명확하게 최소화를 수행하는 방법을 알아보자.

• 파라미터 적을 때 유용!

이를 쉽게 설명하게 위해서는 matrix 계산이 필요하기 때문에 이에 대한 notation을 먼저 정리하고자 한다.

1.2.1 Matrix derivatives

• Gradient $\nabla_A f(A)$

 $f:\mathbb{R}^{n imes d}\longmapsto\mathbb{R}$, n by d matrices를 실수로 대응시키는 함수가 있다고 할 때, f를 A로 미분한 것은 그라디언트 $\nabla_A f(A)$ 를 의미하고 다음과 같이 나타낸다.

2강: Supervised Learning 6

$$\nabla_{A}f(A) = \begin{bmatrix} \frac{\partial f}{\partial A_{11}} & \cdots & \frac{\partial f}{\partial A_{1d}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f}{\partial A_{n1}} & \cdots & \frac{\partial f}{\partial A_{nd}} \end{bmatrix}$$

이때, (i,j) element 는 $rac{\partial f}{\partial A_{ij}}$ 으로 나타낸다.

예를 들어,

$$A = egin{bmatrix} A_{11} & A_{12} \ A_{21} & A_{22} \end{bmatrix}$$
이고 $f: \mathbb{R}^{2 imes 2} \longmapsto \mathbb{R}$ 함수가 $f(A) = rac{3}{2}A_{11} + 5A_{12}^2 + A_{21}A_{22}$ 로 주어질 때 $abla_A f(A) = egin{bmatrix} rac{3}{2} & 10A_{12} \ A_{22} & A_{21} \end{bmatrix}$ 으로 나타낼 수 있다.

• trace : square matrix의 diagonal entries의 합

$$tr(A) = \sum_{i=1}^d A_{ii}$$

성질1

$$trAB = trBA$$

$$trABC = trCAB = trBCA,$$

$$trABCD = trDABC = trCDAB = trBCDA.$$

성질2

$$trA = trA^T \ tr(A+B) = trA + trB \ tr\ aA = atrA$$

· matrix derivatives

$$egin{aligned}
abla_A tr AB &= B^T & (1) \
abla_{A^T} f(A) &= \left(
abla_A f(A)
ight)^T & (2) \
abla_A tr ABA^T C &= CAB + C^T AB^T & (3) \
abla_A |A| &= |A| \left(A^{-1}
ight)^T & (4) \end{aligned}$$

▼ 증명은,,,생략하려고 합니다,,,

하지만 원하는 분이 있다면 공장 가동합니다..!

1.2.2 Least squares revisited

이제 위에서 정리한 matrix derivatives를 통해 $J(\theta)$ 를 최소화하는 θ 를 찾을 수 있을 것이다. $J(\theta)$ 를 matrix-vectorial notation으로 다시 나타내보자.

$$X = \begin{bmatrix} -(x^{(1)})^T - \\ -(x^{(2)})^T - \\ \vdots \\ -(x^{(n)})^T - \end{bmatrix}$$

• \vec{y} (target values from the training set): n차원 벡터

$$\vec{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{bmatrix}$$

J(θ)

$$J(heta) \;\; = \;\; rac{1}{2} \sum_{i=1}^n {(h_ heta(x^{(i)}) - y^{(i)})^2}$$

 \circ since $h_{\theta}(x^{(i)}) = (x^{(i)})^T \theta$,

$$X\theta - \vec{y} = \begin{bmatrix} (x^{(1)})^T \theta \\ \vdots \\ (x^{(n)})^T \theta \end{bmatrix} - \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(n)} \end{bmatrix}$$
$$= \begin{bmatrix} h_{\theta}(x^{(1)}) - y^{(1)} \\ \vdots \\ h_{\theta}(x^{(n)}) - y^{(n)} \end{bmatrix}.$$

 $\circ~$ using the fact for a vector z, $z^Tz=\sum_i z_i^2$:

$$\frac{1}{2}(X\theta - \vec{y})^{T}(X\theta - \vec{y}) = \frac{1}{2}\sum_{i=1}^{n}(h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$
$$= J(\theta)$$

이제 J를 최소화하기 위해 θ 에 대해 미분하는 방법을 알아야 한다. 1.2.1의 equation (2)와 (3)을 합하면, 다음과 같은 식을 유도할 수 있다.

$$\nabla_{A^T} tr A B A^T C = B^T A^T C^T + B A^T C \qquad (5)$$

따라서,

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2} (X\theta - \vec{y})^T (X\theta - \vec{y})$$

$$= \frac{1}{2} \nabla_{\theta} \left(\theta^T X^T X \theta - \theta^T X^T \vec{y} - \vec{y}^T X \theta + \vec{y}^T \vec{y} \right)$$

$$= \frac{1}{2} \nabla_{\theta} \operatorname{tr} \left(\theta^T X^T X \theta - \theta^T X^T \vec{y} - \vec{y}^T X \theta + \vec{y}^T \vec{y} \right)$$

$$= \frac{1}{2} \nabla_{\theta} \left(\operatorname{tr} \theta^T X^T X \theta - 2 \operatorname{tr} \vec{y}^T X \theta \right)$$

$$= \frac{1}{2} \left(X^T X \theta + X^T X \theta - 2 X^T \vec{y} \right)$$

$$= X^T X \theta - X^T \vec{y}$$

이를 0으로 두면, 다음과 같이 normal equations을 구할 수 있다.

$$X^T X \theta = X^T \vec{y}$$

최종적으로 식을 풀면 $J(\theta)$ 를 최소화하는 θ 값을 구할 수 있다.

$$\theta = (X^T X)^{-1} X^T \vec{y}$$