第三讲:线性空间与集合导论

一种定义集合的新方法

杨林

大 纲

- 1. 线性空间
- 2. 开集与闭集

大 纲

- 1. 线性空间
- 2. 开集与闭集

定义具有闭合运算的集合...

■ 定义1(线性空间):对于集合 V(例如 \mathbb{R}^n)以及域 F(例如 \mathbb{R}), 定义V 上的加法(记作V(F))

$$\forall x, y \in V \Rightarrow x + y \in V$$
,

以及标量乘法(数乘)

$$\forall x \in V, \forall \alpha \in F \Rightarrow \alpha x \in V$$

此外,满足(在实数集上可以忽略、本课程只作为了解):

- $\Box x + y = y + x$ (加法交换律)
- □加法结合律

 $\Box 1x = x$ (数乘单位元)

- □零元存在
- $\square \alpha(x + y) = \alpha x + \alpha y \quad (分配律)$
- □ 负元存在
- $\Box (\alpha + \beta)x = \alpha x + \beta x \quad (分配律)$
- $\square \alpha(\beta x) = (\alpha \beta) x \quad (数乘结合律)$

口 例1:

- 1. 自然数集合
- 2. 整数集合
- 3. 实的 n 重有序数组集合是实数域上的线性空间

口 例1:

- 1. 自然数集合
- 2. 整数集合
- 3. 实的 n 重有序数组集合是实数域上的线性空间

■ 证明:

验证对于任意n 重有序数组x y 满足:

- $\Box x + y = y + x$ (加法交换律)
- $\Box 1x = x$ (数乘单位元)
- $\square \alpha(x + y) = \alpha x + \alpha y \quad (分配律)$
- $\Box (\alpha + \beta)x = \alpha x + \beta x \quad (分配律)$
- $\square \alpha(\beta x) = (\alpha \beta) x \quad (数乘结合律)$

最后,验证满足数乘和加法的封闭性

- □ 加法结合律
- □零元存在
- □ 负元存在

口 例1:

- 1. 自然数集合
- 2. 整数集合
- 3. 实的 n 重有序数组集合是实数域上的线性空间
- 4. 全体 $m \times n$ 阶实矩阵的集合 $\mathbb{R}^{m \times n}$ 按通常的矩阵加法以及实数与矩阵的乘法构成实数域上的线性空间

口 例 2:

1. 区间 [a,b] 上的连续实函数集合 C[a,b], 按函数普通加法与数乘构成实数域上的线性空间

■ 证明:

- (1) 加法交换律: (f+g)(x) = (g+f)(x), 所以 f+g=g+f.
- (2) 加法结合律: (f+g)+h=f+(g+h).
- (3) 加法零元: $(f + \mathbf{0})(x) = f(x) + \mathbf{0}(x) = f(x) + \mathbf{0} = f(x)$, 所以 $f + \mathbf{0} = f$.
- (4) 加法逆元: 定义 -f 为 (-f)(x) = -f(x), 由于 f 连续, -f 也连续,即 $-f \in C[a,b]$. $(f + (-f))(x) = 0 = \mathbf{0}(x)$,所以 f + (-f) = 0.
- (5) 数乘与标量的结合律: $(k(lf))(x) = (kl) \cdot f(x) = ((kl)f)(x)$, 所以 k(lf) = (kl)f.

口 例 2:

1. 区间 [a,b] 上的连续实函数集合 C[a,b], 按函数普通加法与数乘构成实数域上的线性空间

■ 证明:

- (6) 数乘单位元: $(1 \cdot f)(x) = 1 \cdot f(x) = f(x)$, 所以 $1 \cdot f = f$.
- (7) 数乘对函数加法的分配律: (k(f+g))(x) = (kf)(x) + (kg)(x)
- =(kf+kg)(x), $\mathbf{K}(f+g)=kf+kg$.
- (8) 数乘对标量加法的分配律: $((k+l)f)(x) = (k+l) \cdot f(x) = (kf + lf)(x)$, 所以 (k+l)f = kf + lf.

最后,显然满足加法和数乘的封闭性. 如果 f 和 g 是C[a,b]上的连续函数, $f+g \in C[a,b], kf \in C[a,b]$

- 定义2(线性子空间): 如果线性空间 V(F)的一个子集是线性空间, 那么它是 V(F)的线性子空间.
- 定理1: $W \neq \emptyset$ 且 $W \subset V$. $W \not\in V(F)$ 的子空间当且仅当 $\forall x,y \in W \Rightarrow x + y \in W$, $\forall x \in W, \forall \alpha \in F \Rightarrow \alpha x \in W$.

或者等价地

$$\forall x, y \in W, \forall \alpha, \beta \in F \Rightarrow \alpha x + \beta y \in W$$

(仅再满足加法和数乘下的封闭性)

■ **定理2**: $S,T \subset V(F)$ 是子空间, 则 $S \cap T$ 是子空间, $S \cup T$ 通常 不是子空间, S + T 是子空间

$$S + T := \{z | z = x + y, x \in S, y \in T\}$$

(仅再满足加法和数乘下的封闭性)

- □ 线性空间在线性组合下是封闭的
- □ 线性空间中的元素形如:

$$x = \sum_{i=1}^{m} \alpha_i x_i, \alpha_i \in F, i = 1, \dots, m$$

- 定义3(线性相关): 总是存在一组不全为 0 的元素 α_i 使得 $\sum_{i=1}^{m} \alpha_i x_i = 0$
- 定义4(线性无关): $\sum_{i=1}^{m} \alpha_i x_i = 0$ 当且仅当 $\alpha_i = 0$, $\forall i$
- **定理3**:由向量集 $x_1, x_2, ..., x_m$ 张成的子空间

Span
$$\{x_1, x_2, ..., x_m\}$$

$$= \left\{ x \mid x = \sum_{i=1}^{m} \alpha_i x_i, \ \alpha_i \in F, i = 1, ..., m \right\}$$

是包含 $x_1, x_2, ..., x_m$ 的最小子空间.

- **定义5**(线性空间的维度): 在空间 V 中,存在线性无关的 $\{x_1, x_2, ..., x_m\}$, 且对于任何 $x_{m+1}, \{x_1, x_2, ..., x_{m+1}\}$ 是线性相关的, 我们称 $\{x_1, x_2, ..., x_m\}$ 为一个极大线性无关组.
- □ 线性空间 V 的维度 $\dim V = m$.
- 口对于线性空间 V, 也称 $\{x_1, x_2, ..., x_m\}$ 为 V 的一个基.
- 关于线性相关性和无关性的重要事实: 向量 y $\in \text{Span}\{x_1, x_2, ..., x_m\}$ 在 $y = \sum_{i=1}^m \alpha_i x_i$ 的情况下具有唯一的系数, 当且仅当 $x_1, x_2, ..., x_m$ 是线性无关的.
- 定理4: 对于线性空间 W_1 和 W_2 ,有 $\dim(W_1 \cap W_2) \leq \min\{\dim(W_1), \dim(W_2)\}$ $\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) \dim(W_1 \cap W_2)$

■ 定义6(线性映射): 如果 V 和 V'是定义在相同域 F 上的线性空间, 如果 σ : $V \to V'$ 满足.

$$\sigma(x + y) = \sigma(x) + \sigma(y), \forall x, y \in V$$

$$\sigma(\alpha x) = \alpha \sigma(x), \forall x \in V, \forall \alpha \in F$$

则称 σ 是从 V 到 V'的线性映射.

线性映射在 $\sigma: V \to V$ 的情况下被称为线性变换

■ **定理5**: 假设 V 和 V'是线性空间, 记所有从 V 到 V'的线性映射组成集合为 $\mathcal{L}(V,V')$. 则 $\mathcal{L}(V,V')$ 也是一个线性空间. 其中, 对于 $\forall \sigma, \tau \in \mathcal{L}(V,V')$,运算满足以下定义:

$$(\sigma + \tau)(x) = \sigma(x) + \tau(x), \quad \forall x \in V$$

 $(\alpha \sigma)(x) = \alpha \sigma(x), \quad \forall x \in V, \forall \alpha \in F$

- 矩阵是不是线性空间?(通过线性空间理解矩阵)
- (1) 按一定顺序排列的一组数(如向量, 当然是一个线性空间)
- (2) 一组(行/列)向量/一阶方程(秩)

矩阵的秩决定了这些向量可以张成的线性空间的维数,解向量张成其余部分(垂直于行向量)

- (3) 线性算子/映射(线性空间)
- 定义7:线性映射 σ : $V \rightarrow V$ 的核与像分别是:

$$\operatorname{Ker} \sigma = \{ x \in V : \sigma(x) = 0 \}$$

$$\operatorname{Im} \sigma = \{ y \in V' : y = \sigma(x), x \in V \}.$$

一个矩阵 $A \in F^{m \times n}$,按矩阵与向量的乘法可以作为一个线性映射 $A: F^n \to F^m$. 其核空间常称为零空间 $\mathcal{N}(A)$; 其像空间常称为列空间 $\mathcal{R}(A)$,它可以由矩阵 A 的全部列向量张成

大 纲

- 1. 线性空间
- 2. 开集与闭集

- 定义8:集合 $B(x,r) := \{y \in \mathbb{R}^n : \|y x\| < r\}$ 被称为以 x 为中心、半径 r > 0 的开球(有的叫邻域)
- 定义 $9:S \subset R$ 被称为开集,则要么 $S = \emptyset$,要么对于任意 $x \in S$,存在 r > 0 使得 $B(x,r) \subset S; U \subset R$ 被称为闭集,如果 其补集 $U^C = \{x \in \mathbb{R}^n : x \notin U\}$ 是开集
- **定理6**:一个非空集合是闭集当且仅当它包含所有极限点 (对于极限运算封闭)

(注意只是针对收敛序列)

■ 定理6的证明:

"←" 设 U 是一个闭集. (反证法) 假设存在一个点列 $\{x_1, x_2, ..., x_i, ...\}$ $\subset U$ 收敛于极限点 x, 且 $x \notin U$. 也就是说, $x \in U^C$, 并且存在某个 r > 0 使得开球 $B(x,r) \subset U^C$. 显然, $x_i \notin B(x,r)$, 这与点列 $\{x_1, x_2, ..., x_i, ...\}$ $\subset U$ 收敛于 x 的假设矛盾. 因此,若 U 是闭集,则 U 包含所有收敛序列的极限点.

■ 定理6的证明:

"⇒" 设 U 包含所有收敛序列的极限点,现在我们证明 U^{C} 是开集. (反证法) 假设不是开集,可以找到某个 $x \in U^{C}$,不存在任何 r > 0 使得开球 $B(x,r) \subset U^{C}$.那么,对于某个 $r_{1} > 0$, 我们可以找到一个点 $x_{1} \in B(x,r_{1}) \cap U$ 对于 $r_{2} = r_{1}$ /2,我们可以找到某个 $x_{2} \in B(x,r_{2}) \cap U$ 这样,我们构造了一个收敛的点序列 $\{x_{1},x_{2},...,x_{i},...\} \subset U$,而其极限 $x \in U^{C}$,与事实矛盾。因此, U^{C} 是开集,U是闭集。

□ 例 3:

- 1. 整个数集是闭集, 也是开集
- 2. 如果 $A \cap B \in A \cap B \in S \neq \emptyset$. $S \in B \cap B \neq \emptyset$.
- 3. 任意多个闭集的并集是闭集吗? 为什么?

■ 2证明:

对于任意收敛点列 $\{x_1, x_2, ..., x_i, ...\}$ 属于集合 S ,那么 $\{x_1, x_2, ..., x_i, ...\}$ 既属于 A ,也属于 B . 因为 A 和 B 是两个闭集, $\{x_1, x_2, ..., x_i, ...\}$ 的收敛点也属于 $A \cap B$,根据定理6,集合 S 也是闭集. 上述结论可以推广到任意多闭集相交的情况.

■ 考虑
$$\left[1+\frac{1}{n},2-\frac{1}{n}\right], n=1,2,3...$$

口例3:

- 4. 任意多个开集的并集是开集吗? 为什么?
- 5. 任意多个开集的交集是开集吗?为什么?
- 6. 有没有既不是开集也不是闭集的例子?
- 考虑 $\left[1-\frac{1}{n},2+\frac{1}{n}\right],n=1,2,3...$
- 考虑 $D = \{\frac{1}{n}, n \in \mathbb{N}\}$,任意一点 $\frac{1}{n}$ 都不能构造被包含的开球集;也不包含收敛点0

谢 谢!