CSE 847 Hw 2

Linear Algebra

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow \begin{vmatrix} 2-2 & 1 & 0 \\ 1 & 2-2 & 0 \\ 1 & 0 & 1-2 \end{vmatrix} = 6$$

$$\Rightarrow (2-2)(2-32+22-0)-1(1-2-0)+0(0-0)=0$$

$$\Rightarrow (4-82+52^2-2^3)-1(1-2)=0$$

$$= 3 - 2^3 + 52^2 - 72 + 3 = 6$$

$$\Rightarrow$$
 - $(2-1)(2^2-42+3)=0$

$$=>-(2-1)^{2}(2-3)=0$$

$$\Rightarrow \lambda - 1 = 0 \qquad \text{or} \qquad \lambda - 3 = 0$$

$$\Rightarrow \lambda = 1 \qquad 0\pi \qquad \lambda = 3$$

i.
$$R = 4,3$$

Fon
$$\lambda = 1$$
,
$$A - \lambda I = A - I = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 4 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

O P.T.O.

Using Gaussian Elimination processe

$$A-2I = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} R_2 \leftarrow R_2 - R_1 \end{bmatrix}$$

$$30, \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow$$
 $x_1 + x_2 = 0 \Rightarrow x_1 = -x_2$

Eigenvector,
$$V = \begin{bmatrix} -x_2 \\ x_2 \\ x_3 \end{bmatrix}$$

igen wecton,
$$V = \begin{bmatrix} x_2 \\ x_3 \end{bmatrix}$$

det, $x_2 = 0$, $x_3 = 1$, then $v_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

Let,
$$x_2=1$$
, $x_3=0$, then $v_2=\begin{bmatrix} -1\\1 \end{bmatrix}$

$$\frac{\text{fon } 2=3}{A-2I=A-3.I} = \begin{bmatrix} -1 & 1 & 6\\ 1 & -1 & 0\\ 0 & 0 & -2 \end{bmatrix}$$

Waing Gaussian elimination process:

$$A - \mathcal{I}I = \begin{bmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix} \quad \begin{bmatrix} R, \leftarrow R_1 / (-1) \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2 \end{bmatrix} \quad \begin{bmatrix} R_2 \leftarrow R_2 - R_1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & -2 \\ 0 & 0 & 0 \end{bmatrix} \quad \begin{bmatrix} R_2 \leftarrow R_2 / (-2) \\ R_2 \leftarrow R_2 / (-2) \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad \begin{bmatrix} R_2 \leftarrow R_2 / (-2) \\ R_2 \leftarrow R_2 / (-2) \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} R_1 \\ R_2 \\ R_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ R_3 \end{bmatrix}$$

$$\Rightarrow x_1 - x_2 = 0 \quad \text{and} \quad x_3 = 0$$

$$\Rightarrow x_1 - x_2 = 0 \quad \text{and} \quad x_3 = 0$$

$$\Rightarrow x_1 - x_2 = 0 \quad \text{and} \quad x_3 = 0$$

$$\Rightarrow x_1 - x_2 = 0 \quad \text{and} \quad x_3 = 0$$

$$\Rightarrow x_1 - x_2 = 0 \quad \text{and} \quad x_3 = 0$$

$$\Rightarrow x_1 - x_2 = 0 \quad \text{and} \quad x_3 = 0$$

$$\Rightarrow x_1 - x_2 = 0 \quad \text{and} \quad x_3 = 0$$

$$\Rightarrow x_1 - x_2 = 0 \quad \text{and} \quad x_3 = 0$$

$$\Rightarrow x_1 - x_2 = 0 \quad \text{and} \quad x_3 = 0$$

$$\Rightarrow x_1 - x_2 = 0 \quad \text{and} \quad x_3 = 0$$

$$\Rightarrow x_1 - x_2 = 0 \quad \text{and} \quad x_3 = 0$$

$$\Rightarrow x_1 - x_2 = 0 \quad \text{and} \quad x_3 = 0$$

$$\Rightarrow x_1 - x_2 = 0 \quad \text{and} \quad x_3 = 0$$

$$\Rightarrow x_1 - x_2 = 0 \quad \text{and} \quad x_3 = 0$$

$$\Rightarrow x_1 - x_2 = 0 \quad \text{and} \quad x_3 = 0$$

$$\Rightarrow x_1 - x_2 = 0 \quad \text{and} \quad x_3 = 0$$

$$\Rightarrow x_1 - x_2 = 0 \quad \text{and} \quad x_3 = 0$$

$$\Rightarrow x_1 - x_2 = 0 \quad \text{and} \quad x_3 = 0$$

$$\Rightarrow x_1 - x_2 = 0 \quad \text{and} \quad x_3 = 0$$

$$\Rightarrow x_1 - x_2 = 0 \quad \text{and} \quad x_3 = 0$$

$$\Rightarrow x_1 - x_2 = 0 \quad \text{and} \quad x_3 = 0$$

$$\Rightarrow x_1 - x_2 = 0 \quad \text{and} \quad x_3 = 0$$

$$\Rightarrow x_1 - x_2 = 0 \quad \text{and} \quad x_3 = 0$$

$$\Rightarrow x_1 - x_2 = 0 \quad \text{and} \quad x_3 = 0$$

$$\Rightarrow x_1 - x_2 = 0 \quad \text{and} \quad x_3 = 0$$

$$\Rightarrow x_1 - x_2 = 0 \quad \text{and} \quad x_3 = 0$$

$$v_1, v_2 \leq v_3$$
 form an orithogonal set, iff, their standard evelidian in product is equal to $v_1, v_2 = v_3$. $v_3 = v_3$. $v_1 = 0$
 $v_1, v_2 = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$. $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = 2 \times 0 + 0 = 0$
 $v_1, v_2 = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$. $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = 0 \times 2 + (-1)0 + 0 = 0$
 $v_2, v_3 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$. $\begin{bmatrix} 2 & 1 \\ 4 & 0 \end{bmatrix} = 0 \times 2 + (-1)0 + 0 = 0$
 $v_3, v_1 = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$. $\begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$

$$v_3^T v_1 = \begin{bmatrix} 27^T & 27 \\ 41^T & -1 \end{bmatrix} = 2x2 + 0x0 + 4(-1) = 0$$

So, they form onthogonal set But, they don't form an orthonormal set dis $\|V_1\|_2 = \sqrt{2^2 + 0^2 + (-1)^2} = \sqrt{5} \neq 1$

||v2||2 = Tort (-1)rtor = 1, [it is onay]

 $||v_3|| = \sqrt{2^2 + o^2 + 4^2} = \sqrt{20} \neq 1$

Heeff We can convert/turn them into

a set of nectors that will form

an onthonormal set of wetons under the stondard euklidian innen product for R3 by non malizing,

$$U_1 = \frac{v_1}{||v_1||_2} = \frac{1}{\sqrt{5}} \begin{bmatrix} 27\\ 0\\ -1/\sqrt{5} \end{bmatrix}$$

$$u_2 = \frac{v_2}{\|v_2\|_2} = \frac{v_2}{1} = v_2 = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

$$100 \, \text{cm}_3 = \frac{1}{120} \begin{bmatrix} 2 \\ 0 \\ 4 \end{bmatrix} = \begin{bmatrix} 2/\sqrt{20} \\ 0 \\ 4/\sqrt{20} \end{bmatrix} \begin{bmatrix} \sqrt{20} - 4\sqrt{5} \\ 4/\sqrt{20} \end{bmatrix}$$

Now,
$$U_2$$
, U_2 , U_3 form an orthonormal set of vectors as $\|U_1\|_2 = \|U_2\|_2 = \|U_3\|_2 = 1$

Linear Algebra

(3)

lias linearly independent columns.

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 & \dots & 1 \end{bmatrix}$$

P.T.O.

det, $x \in N(ATA)$, then, $\Rightarrow (ATA)x = 0$ $\Rightarrow xTATAx = 0$ $\Rightarrow (Ax)^TAx = 0$ $\Rightarrow (Ax)^TAx = 0$ $\Rightarrow (Ax)^TAx = 0$ $\Rightarrow Ax = 0 \Rightarrow x = 0$ or $x \in N(A)$, $x \in N(ATA)$ then $x \in N(A)$ $\Rightarrow x = 0$

Therefore, the columns of A^TA are linearly independent and A^TA is a square matrix.

· AA is invertible.