CURS 11

Logică Matematică și Computațională

FMI · Denisa Diaconescu · An universitar 2018/2019

LITERALI

Definiția 11.1

Un literal este o

- · variabilă (în care caz spunem că este literal pozitiv) sau
- · negația unei variabile (în care caz spunem că este literal negativ).

Exemplu.

- $\cdot v_1, v_2, v_{10}$ literali pozitivi
- $\cdot \neg v_0, \neg v_{100}$ literali negativi

Definiția 11.2

O formulă φ este în formă normală disjunctivă (FND) dacă φ este o disjuncție de conjuncții de literali.

$$\varphi$$
 este în FND ddacă $\varphi = \bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{k_i} L_{i,j} \right)$, unde fiecare $L_{i,j}$ este literal.

Definiția 11.3

O formulă φ este în formă normală conjunctivă (FNC) dacă φ este o conjuncție de disjuncții de literali.

$$\varphi$$
 este în FNC ddacă $\varphi = \bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{k_i} L_{i,j} \right)$, unde fiecare $L_{i,j}$ este literal.

3

Exemple.

- \cdot $(v_0 \lor v_1) \land (v_3 \lor v_5) \land (\neg v_{20} \lor \neg v_{15} \lor \neg v_{34})$ este în FNC
- · $(\neg v_9 \land v_1) \lor v_{24} \lor (v_2 \land \neg v_1 \land v_2)$ este în FND
- $\cdot v_1 \wedge \neg v_5 \wedge v_4$ este atât în FND cât și în FNC
- · $\neg v_{10} \lor v_{20} \lor v_4$ este atât în FND cât și în FNC
- · $(v_1 \lor v_2) \land ((v_1 \land v_3) \lor (v_4 \land v_5))$ nu este nici în FND, nici în FNC

Notaţie. Dacă
$$L$$
 este literal, atunci $L^c := \begin{cases} \neg v & \text{dacă } L = v \in V \\ v & \text{dacă } L = \neg v. \end{cases}$

Propoziția 11.4

- (i) Fie φ o formulă în FNC, $\varphi = \bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{k_i} L_{i,j} \right)$. Atunci $\neg \varphi \sim \bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{k_i} L_{i,j}^c \right)$, o formulă în FND.
- (ii) Fie φ o formulă în FND, $\varphi = \bigvee_{i=1}^n \left(\bigwedge_{j=1}^{k_i} L_{i,j} \right)$. Atunci $\neg \varphi \sim \bigwedge_{i=1}^n \left(\bigvee_{j=1}^{k_i} L_{i,j}^c \right)$, o formulă în FNC.

Demonstrație.

(i) Aplicând Propoziția 7.4, obținem

$$\neg \varphi = \neg \bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{k_{i}} L_{i,j} \right) \sim \bigvee_{i=1}^{n} \neg \left(\bigvee_{j=1}^{k_{i}} L_{i,j} \right) \\
\sim \bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{k_{i}} \neg L_{i,j} \right) \sim \bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{k_{i}} L_{i,j}^{c} \right).$$

(ii) Exerciţiu.

Algoritm pentru a aduce o formulă la FNC/FND:

Pasul 1. Se înlocuiesc implicațiile și echivalențele, folosind:

$$\varphi \to \psi \sim \neg \varphi \lor \psi$$
 şi $\varphi \leftrightarrow \psi \sim (\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi)$.

Pasul 2. Se înlocuiesc dublele negații, folosind $\neg\neg\psi\sim\psi$, și se aplică regulile De Morgan pentru a înlocui

$$\neg(\varphi \lor \psi) \mathsf{cu} \ \neg \varphi \land \neg \psi \quad \mathsf{şi} \quad \neg(\varphi \land \psi) \mathsf{cu} \ \neg \varphi \lor \neg \psi.$$

Pasul 3.

Pentru FNC, se aplică distributivitatea lui \lor fața de \land , pentru a înlocui

$$\varphi \vee (\psi \wedge \chi) \operatorname{cu} (\varphi \vee \psi) \wedge (\varphi \vee \chi) \quad \text{ §i } \quad (\psi \wedge \chi) \vee \varphi \operatorname{cu} (\psi \vee \varphi) \wedge (\chi \vee \varphi).$$

Pentru FND, se aplică distributivitatea lui \wedge faţa de \vee , pentru a înlocui $\varphi \wedge (\psi \vee \chi)$ cu $(\varphi \wedge \psi) \vee (\varphi \wedge \chi)$ și $(\psi \vee \chi) \wedge \varphi$ cu $(\psi \wedge \varphi) \vee (\chi \wedge \varphi)$.

Exemplu.

Considerăm formula $\varphi := (\neg v_0 \rightarrow \neg v_2) \rightarrow (v_0 \rightarrow v_2)$.

$$\varphi \sim \neg(\neg v_0 \rightarrow \neg v_2) \lor (v_0 \rightarrow v_2) \quad \text{Pasul 1}$$

$$\sim \neg(\neg \neg v_0 \lor \neg v_2) \lor (v_0 \rightarrow v_2) \quad \text{Pasul 1}$$

$$\sim \neg(\neg \neg v_0 \lor \neg v_2) \lor (\neg v_0 \lor v_2) \quad \text{Pasul 1}$$

$$\sim \neg(v_0 \lor \neg v_2) \lor (\neg v_0 \lor v_2) \quad \text{Pasul 2}$$

$$\sim (\neg v_0 \land \neg \neg v_2) \lor (\neg v_0 \lor v_2) \quad \text{Pasul 2}$$

$$\sim (\neg v_0 \land v_2) \lor \neg v_0 \lor v_2 \quad \text{Pasul 2}$$

$$\sim (\neg v_0 \land v_2) \lor \neg v_0 \lor v_2 \quad \text{Pasul 2}$$

Putem lua $\varphi^{FND} := (\neg v_0 \wedge v_2) \vee \neg v_0 \vee v_2$.

Pentru a obține FNC, continuăm cu Pasul 3:

$$\varphi \sim (\neg v_0 \wedge v_2) \vee (\neg v_0 \vee v_2)$$

$$\sim (\neg v_0 \vee \neg v_0 \vee v_2) \wedge (v_2 \vee \neg v_0 \vee v_2).$$

Putem lua $\varphi^{\text{FNC}} := (\neg v_0 \lor \neg v_0 \lor v_2) \land (v_2 \lor \neg v_0 \lor v_2)$. Se observă, folosind idempotența și comutativitatea lui \lor , că $\varphi^{\text{FNC}} \sim \neg v_0 \lor v_2$.

FUNCȚIA ASOCIATĂ UNEI FORMULE

Exemplu.

Arătaţi că $\vDash v_1 \rightarrow (v_2 \rightarrow (v_1 \land v_2))$.

V_1	V ₂	$V_1 \rightarrow (V_2 \rightarrow (V_1 \wedge V_2))$
0	0	1
0	1	1
1	0	1
1	1	1

Acest tabel defineşte o funcţie $F:\{0,1\}^2 \rightarrow \{0,1\}$

$arepsilon_1$	ε_2	$F(\varepsilon_1, \varepsilon_2)$
0	0	1
0	1	1
1	0	1
1	1	1

FUNCŢIA ASOCIATĂ UNEI FORMULE

Fie φ o formulă și $Var(\varphi) = \{x_1, \dots, x_n\}.$

Fie
$$(\varepsilon_1, ..., \varepsilon_n) \in \{0, 1\}^n$$
. Definim $e_{\varepsilon_1, ..., \varepsilon_n} : Var(\varphi) \to \{0, 1\}$ astfel: $e_{\varepsilon_1, ..., \varepsilon_n}(x_i) = \varepsilon_i$ pentru orice $i \in \{1, ..., n\}$.

Definim $e_{\varepsilon_1,...,\varepsilon_n}^+(\varphi) \in \{0,1\}$ astfel:

$$e_{\varepsilon_1,\ldots,\varepsilon_n}^+(\varphi) := e^+(\varphi),$$

unde $e: V \to \{0,1\}$ este orice evaluare care extinde $e_{\varepsilon_1,...,\varepsilon_n}$, adică, $e(x_i) = e_{\varepsilon_1,...,\varepsilon_n}(x_i) = \varepsilon_i$ pentru orice $i \in \{1,...,n\}$.

Conform Propoziției 6.1, definiția nu este ambiguă.

Definiția 11.5

Funcția asociată lui φ este $F_{\varphi}: \{0,1\}^n \to \{0,1\}$, definită astfel:

$$F_{\varphi}(\varepsilon_1,\ldots,\varepsilon_n)=e^+_{\varepsilon_1,\ldots,\varepsilon_n}(\varphi)$$
 pentru orice $(\varepsilon_1,\ldots,\varepsilon_n)\in\{0,1\}^n$.

Aşadar, F_{φ} este funcţia definită de tabela de adevăr pentru φ .

FUNCŢIA ASOCIATĂ UNEI FORMULE

Propoziția 11.6

- (i) Fie φ o formulă. Atunci
 - (a) $\models \varphi$ ddacă F_{φ} este funcția constantă 1.
 - (b) φ este nesatisfiabilă ddacă F_{φ} este funcția constantă 0.
- (ii) Fie φ, ψ două formule. Atunci
 - (a) $\varphi \vDash \psi$ ddacă $F_{\varphi} \leq F_{\psi}$.
 - (b) $\varphi \sim \psi$ ddacă $F_{\varphi} = F_{\psi}$.
- (iii) Există formule diferite φ, ψ a.î. $F_{\varphi} = F_{\psi}$.

Demonstrație. Exercițiu.

CARACTERIZAREA FUNCŢIILOR BOOLEENE

Definiția 11.7

O funcție booleană este o funcție $F: \{0,1\}^n \to \{0,1\}$, unde $n \ge 1$. Spunem că n este numărul variabilelor lui F.

Exemplu.

Pentru orice formulă φ , F_{φ} este funcție Booleană cu n variabile, unde $n = |Var(\varphi)|$.

Teorema 11.8

Fie $n \ge 1$ şi $H: \{0,1\}^n \to \{0,1\}$ o funcție booleană arbitrară. Atunci există o formulă φ în FND a.î. $H = F_{\varphi}$.

Demonstraţie. Dacă $H(\varepsilon_1, \dots, \varepsilon_n) = 0$ pentru orice $(\varepsilon_1, \dots, \varepsilon_n) \in \{0, 1\}^n$,

luăm
$$\varphi := \bigvee_{i=1}^{n} (v_i \wedge \neg v_i)$$
. Avem că $Var(\varphi) = \{v_0, \dots, v_{n-1}\}$, aşadar,

 $F_{\varphi}:\{0,1\}^n\stackrel{i=0}{ o}\{0,1\}$. Cum $v_i\wedge \neg v_i$ este nesatisfiabilă pentru orice i, rezultă că φ este de asemenea nesatisfiabilă. Deci, F_{φ} este de asemenea funcția constantă 0.

11

CARACTERIZAREA FUNCȚIILOR BOOLEENE

Altfel, mulţimea

$$T:=H^{-1}(1)=\{(\varepsilon_1,\ldots,\varepsilon_n)\in\{0,1\}^n\mid H(\varepsilon_1,\ldots,\varepsilon_n)=1\}$$

este nevidă.

Considerăm formula

$$\varphi := \bigvee_{(\varepsilon_1, \dots, \varepsilon_n) \in T} \left(\bigwedge_{\varepsilon_i = 1} \mathsf{V}_i \wedge \bigwedge_{\varepsilon_i = 0} \neg \mathsf{V}_i \right).$$

Deoarece $Var(\varphi) = \{v_1, \dots, v_n\}$, avem că $F_{\varphi} : \{0, 1\}^n \to \{0, 1\}$.

Se demonstrează că $H = F_{\varphi}$. (exercițiu suplimentar)

CARACTERIZAREA FUNCȚIILOR BOOLEENE

Teorema 11.9

Fie $n \ge 1$ şi $H: \{0,1\}^n \to \{0,1\}$ o funcție booleană arbitrară. Atunci există o formulă ψ în FNC a.î. $H = F_{\psi}$.

Demonstrație. Dacă $H(\varepsilon_1, \ldots, \varepsilon_n) = 1$ pentru orice $(\varepsilon_1, \ldots, \varepsilon_n) \in \{0, 1\}^n$, atunci luăm

$$\psi := \bigwedge_{i=0}^{n-1} (\mathsf{V}_i \vee \neg \mathsf{V}_i).$$

Altfel, mulţimea

$$F:=H^{-1}(0)=\{(\varepsilon_1,\ldots,\varepsilon_n)\in\{0,1\}^n\mid H(\varepsilon_1,\ldots,\varepsilon_n)=0\}$$

este nevidă.

Considerăm formula
$$\psi := \bigwedge_{(\varepsilon_1, \dots, \varepsilon_n) \in F} \left(\bigvee_{\varepsilon_i = 1} \neg v_i \lor \bigvee_{\varepsilon_i = 0} v_i \right).$$

Se demonstrează că $H = F_{\psi}$ (exerciţiu!).

CARACTERIZAREA FUNCŢIILOR BOOLEENE

Exemplu.

Fie $H: \{0,1\}^3 \rightarrow \{0,1\}$ descrisă prin tabelul:

$arepsilon_1$	ε_2	ε_3	$H(\varepsilon_1, \varepsilon_2, \varepsilon_3)$	
0	0	0	0	$D_1 = V_1 \vee V_2 \vee V_3$
0	0	1	0	$D_2 = V_1 \vee V_2 \vee \neg V_3$
0	1	0	1	$C_1 = \neg V_1 \wedge V_2 \wedge \neg V_3$
0	1	1	0	$D_3 = V_1 \vee \neg V_2 \vee \neg V_3$
1	0	0	1	$C_2 = V_1 \wedge \neg V_2 \wedge \neg V_3$
1	0	1	1	$C_3 = V_1 \wedge \neg V_2 \wedge V_3$
1	1	0	1	$C_4 = V_1 \wedge V_2 \wedge \neg V_3$
1	1	1	1	$C_5 = V_1 \wedge V_2 \wedge V_3$

$$\varphi = C_1 \lor C_2 \lor C_3 \lor C_4 \lor C_5 \text{ în FND a.î. } H = F_{\varphi}.$$

$$\psi = D_1 \land D_2 \land D_3 \text{ în FNC a.î. } H = F_{\psi}.$$

Teorema 11.10

Orice formulă φ este echivalentă cu o formulă $\varphi^{\rm FND}$ în FND și cu o formulă $\varphi^{\rm FNC}$ în FNC.

Demonstraţie. Fie $Var(\varphi) = \{x_1, \dots, x_n\}$ şi $F_{\varphi}: \{0,1\}^n \to \{0,1\}$ funcţia booleană asociată. Aplicând Teorema 11.8 cu $H:=F_{\varphi}$, obţinem o formulă φ^{FND} în FND a.î. $F_{\varphi}=F_{\varphi^{FND}}$. Aşadar, conform Propoziţiei 11.6.(ii), $\varphi\sim\varphi^{FND}$. Similar, aplicând Teorema 11.9 cu $H:=F_{\varphi}$, obţinem o formulă φ^{FNC} în FNC a.î. $F_{\varphi}=F_{\varphi^{FNC}}$. Prin urmare, $\varphi\sim\varphi^{FNC}$.

Definiția 11.11

O clauză este o mulțime finită de literali:

$$C = \{L_1, \ldots, L_n\}$$
, unde L_1, \ldots, L_n sunt literali.

Dacă n = 0, obţinem clauza vidă $\square := \emptyset$.

O clauză nevidă este considerată implicit o disjuncție.

Definiția 11.12

Fie C o clauză și $e: V \to \{0,1\}$. Spunem că e este model al lui C sau că e satisface C și scriem $e \models C$ dacă există $L \in C$ a.î. $e \models L$.

Definiția 11.13

O clauză C se numește

- (i) satisfiabilă dacă are un model.
- (ii) validă dacă orice evaluare $e: V \to \{0,1\}$ este model al lui C.

CLAUZE

Definiția 11.14

O clauză C este trivială dacă există un literal L a.î. $L, L^c \in C$.

Propoziția 11.15

- (i) Orice clauză nevidă este satisfiabilă.
- (ii) Clauza vidă □ este nesatisfiabilă.
- (iii) O clauză este validă ddacă este trivială.

Demonstrație. Exercițiu.

Fie $S = \{C_1, \dots, C_m\}$ este o mulţime de clauze.

Dacă m=0, obţinem mulţimea vidă de clauze \emptyset .

 ${\cal S}$ este considerată implicit ca o formulă în FNC: conjuncție de disjuncții ale literalilor din fiecare clauză.

Definiția 11.16

Fie $e: V \to \{0,1\}$. Spunem că e este model al lui S sau că e satisface S şi scriem $e \models S$ dacă $e \models C_i$ pentru orice $i \in \{1, ..., m\}$.

Definiția 11.17

 ${\cal S}$ se numește

- (i) satisfiabilă dacă are un model.
- (ii) validă dacă orice evaluare $e: V \to \{0,1\}$ este model al lui S.

Propoziția 11.18

- · Dacă ${\mathcal S}$ conține clauza vidă \square , atunci ${\mathcal S}$ nu este satisfiabilă.
- ∅ este validă.

Demonstrație. Exercițiu.

Exemplu.

Arătăm că $\mathcal{S} = \{\{v_1, \neg v_3\}, \{\neg v_3, v_3\}, \{v_2, v_1\}, \{v_2, \neg v_1, v_3\}\}$ este satisfiabilă.

Considerăm $e: V \to \{0,1\}$ a.î. $e(v_1) = e(v_2) = 1$. Atunci $e \models S$.

Exemplu.

Arătăm că $\mathcal{S}=\{\{\neg v_1,v_2\},\{\neg v_3,\neg v_2\},\{v_1\},\{v_3\}\}$ nu este satisfiabilă.

Presupunem că S are un model e. Atunci $e(v_1) = e(v_3) = 1$ și, deoarece $e \models \{\neg v_3, \neg v_2\}$, trebuie să avem $e(v_2) = 0$. Rezultă că $e(v_2) = e^+(\neg v_1) = 0$, deci e nu satisface $\{\neg v_1, v_2\}$. Am obținut o contradicție.

CLAUZE ŞI FNC

Unei formule φ în FNC îi asociem o mulţime de clauze \mathcal{S}_{φ} .

Fie

$$\varphi := \bigwedge_{i=1}^n \left(\bigvee_{j=1}^{k_i} L_{i,j}\right),\,$$

unde fiecare $L_{i,j}$ este literal. Pentru orice i, fie C_i clauza obţinută considerând toţi literalii $L_{i,j}, j \in \{1, \dots, k_i\}$ distincţi.

Fie S_{φ} mulţimea tuturor clauzelor $C_i, i \in \{1, \dots, n\}$ distincte.

 \mathcal{S}_{φ} se mai numește și forma clauzală a lui φ .

Propoziția 11.19

Pentru orice evaluare $e: V \to \{0,1\}, e \models \varphi \text{ ddacă } e \models \mathcal{S}_{\varphi}.$

Demonstraţie. Exerciţiu.

CLAUZE ŞI FNC

Unei mulţimi de clauze ${\cal S}$ îi asociem o formulă ${\varphi}_{{\cal S}}$ în FNC astfel:

$$\cdot \ C = \{L_1, \dots, L_n\}, n \geq 1 \longmapsto \varphi_C := L_1 \vee L_2 \vee \dots \vee L_n.$$

$$\cdot \square \longmapsto \varphi_{\square} := \mathsf{V}_0 \land \neg \mathsf{V}_0.$$

Fie $S = \{C_1, \dots, C_m\}$ o mulţime nevidă de clauze. Formula asociată lui S este

$$\varphi_{\mathcal{S}} := \bigwedge_{i=1}^{m} \varphi_{\mathcal{C}_i}.$$

Formula asociată mulțimii vide de clauze este $\varphi_{\emptyset} := \mathsf{v}_0 \vee \neg \mathsf{v}_0$.

Formula $\varphi_{\mathcal{S}}$ nu este unic determinată, depinde de ordinea în care se scriu elementele în clauze și în \mathcal{S} , dar se observă imediat că: $\mathcal{S} = \mathcal{S}'$ implică $\varphi_{\mathcal{S}} \sim \varphi_{\mathcal{S}'}$.

Propoziţia 11.20

Pentru orice evaluare $e: V \to \{0,1\}, e \models S$ ddacă $e \models \varphi_S$.

Demonstrație. Exercițiu.

Definiția 11.21

Fie C_1, C_2 două clauze. O clauză R se numește rezolvent al clauzelor C_1, C_2 dacă există un literal L a.î. $L \in C_1, L^c \in C_2$ și

$$R = (C_1 \setminus \{L\}) \cup (C_2 \setminus \{L^c\}).$$

Regula Rezoluției

$$Rez \qquad \frac{C_1, C_2}{(C_1 \setminus \{L\}) \cup (C_2 \setminus \{L^c\})}, \quad L \in C_1, L^c \in C_2$$

Notăm cu $Res(C_1, C_2)$ mulțimea rezolvenților clauzelor C_1, C_2 .

- · Rezoluția a fost introdusă de Blake (1937) și dezvoltată de Davis, Putnam (1960) și Robinson (1965).
- · Multe demonstratoare automate de teoreme folosesc rezoluţia. Limbajul PROLOG este bazat pe rezoluţie.

Exemplu.

Fie $C_1 = \{v_1, v_2, \neg v_5\}$ şi $C_2 = \{v_1, \neg v_2, v_{100}, v_5\}$.

- · Luăm $L := \neg v_5$. Atunci $L \in C_1$ și $L^c = v_5 \in C_2$. Prin urmare, $R = \{v_1, v_2, \neg v_2, v_{100}\}$ este rezolvent al clauzelor C_1, C_2 .
- · Dacă luăm $L':=v_2$, atunci $L'\in C_1$ și $L'^c=\neg v_2\in C_2$. Prin urmare, $R'=\{v_1, \neg v_5, v_{100}, v_5\}$ este rezolvent al clauzelor C_1, C_2 .

Exemplu.

Fie $C_1 = \{v_7\}$ şi $C_2 = \{\neg v_7\}$.

Atunci clauza vidă \square este rezolvent al clauzelor C_1, C_2 .

Fie ${\mathcal S}$ o mulţime de clauze.

Definiția 11.22

O derivare prin rezoluție din S sau o S-derivare prin rezoluție este o secvență C_1, C_2, \ldots, C_n de clauze a.î. pentru fiecare $i \in \{1, \ldots, n\}$, una din următoarele condiții este satisfăcută:

- (i) C_i este o clauză din S;
- (ii) există j, k < i a.î. C_i este rezolvent al clauzelor C_i, C_k .

Definiția 11.23

Fie C o clauză. O derivare prin rezoluție a lui C din S este o S-derivare prin rezoluție C_1, C_2, \ldots, C_n a.î. $C_n = C$.

Exemplu.

Fie

$$\mathcal{S} = \{ \{ \neg V_1, V_2 \}, \{ \neg V_2, \neg V_3, V_4 \}, \{ V_1 \}, \{ V_3 \}, \{ \neg V_4 \} \}.$$

O derivare prin rezoluție a clauzei vide \square din ${\mathcal S}$ este următoarea:

$$\begin{array}{lll} C_1 &=& \{\neg v_4\} & C_1 \in \mathcal{S} \\ C_2 &=& \{\neg v_2, \neg v_3, v_4\} & C_2 \in \mathcal{S} \\ C_3 &=& \{\neg v_2, \neg v_3\} & C_3 \text{ rezolvent al clauzelor } C_1, C_2 \\ C_4 &=& \{v_3\} & C_4 \in \mathcal{S} \\ C_5 &=& \{\neg v_2\} & C_5 \text{ rezolvent al clauzelor } C_3, C_4 \\ C_6 &=& \{\neg v_1, v_2\} & C_6 \in \mathcal{S} \\ C_7 &=& \{\neg v_1\} & C_7 \text{ rezolvent al clauzelor } C_5, C_6 \\ C_8 &=& \{v_1\} & C_8 \in \mathcal{S} \\ C_9 &=& \square & C_9 \text{ rezolvent al clauzelor } C_7, C_8. \end{array}$$

Pentru orice mulţime de clauze \mathcal{S} , notăm cu

$$Res(S) := \bigcup_{C_1, C_2 \in S} Res(C_1, C_2).$$

Propoziția 11.24

Pentru orice mulțime de clauze S și orice evaluare $e: V \to \{0,1\}$,

$$e \models S \Rightarrow e \models Res(S)$$
.

Teorema de corectitudine a rezoluției 11.25

Fie $\mathcal S$ o mulţime de clauze. Dacă \square se derivează prin rezoluţie din $\mathcal S$, atunci $\mathcal S$ este nesatisfiabilă.

Pe data viitoare!

Conținutul tehnic al acestui curs se regăsește în cursul de *Logică Matematică și Computațională* al prof. Laurențiu Leuștean din anul universitar 2017/2018.