ACIDS AND BASES - 1. - Problem Sheet

- 1. Write ionic equations and give observations for the following reactions:
 - a) dilute hydrochloric acid is added to calcium carbonate
 - b) a solution of sodium sulfide is added to a solution of nitric acid
 - c) small pieces of magnesium are added to a solution of hydrochloric acid
 - d) dilute sulfuric acid is added to copper hydroxide
- 2. Write ionic equations and give observations for the following reactions:
 - a) an excess of sodium hydroxide solution is added to zinc hydroxide
 - b) a solution of potassium hydroxide is added to aluminium and the mixture is heated.
 - c) a solution of potassium hydroxide is added to a solution of copper sulfate
 - d) a solution of sodium hydroxide is added to a solution of aluminium nitrate
- 3. Identify each of the reactants in the following reactions as a Bronsted-Lowry acid or base.

a)
$$HCl(aq) + H_2O(l) \rightarrow H_3O^+(aq) + Cl^-(aq)$$

b)
$$NH_3(aq) + H_2O(l) \rightarrow NH_4^+(aq) + OH^-(aq)$$

c)
$$HSO_4(aq) + OH(aq) \rightarrow SO_4(aq) + H_2O(1)$$

d)
$$2 H_2(g) + O_2(g) \rightarrow 2H_2O(l)$$

e)
$$HCO_3^-(aq) + H_2O(l) \rightarrow H_2CO_3(aq) + OH^-(aq)$$

- f) $HF(aq) + HNO_3(aq) \rightarrow F^-(aq) + H_2NO_3^+(aq)$
- 4. a) Write an equation showing nitric acid (HNO₃) acting as an acid according to the Arrhenius theory.
 - b) Write an equation showing calcium hydroxide acting as a base according to the Arrhenius theory.
 - c) Write an equation to show nitric acid acting as an acid according to the Bronsted-Lowry theory

HF

- 4. d) Write an equation to show ammonia, NH₃, acting as a base according to the Bronsted-Lowry theory
- 5. a) Give the conjugate acids of the following species -

Br⁻ HCO₃⁻

b) Give the conjugate bases of the following species

 $\mathrm{OH^{-}}$ $\mathrm{NH_{4}^{+}}$ $\mathrm{H_{2}PO_{4}^{-}}$

- 6. For the reactions below, list the conjugate pairs involved in each reaction, and state for each pair, which is the acid and which is the base:
 - a) $HCl(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + Cl^-(aq)$
 - b) $NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$
 - c) $HSO_4(aq) + OH(aq) \rightleftharpoons SO_4(aq) + H_2O(l)$
- 7. 0.100 mole of hydrogen chloride is dissolved in 1.00 litre of solution. Calculate the concentrations, in moles per litre, of H^+ ions and OH^- ions in the solution.
- 8. Calculate the concentrations, in moles per litre, of Ca²⁺, OH and H⁺ in a 0.0300 mol L⁻¹ Ca(OH)₂ solution.
- 9. 25.0 mL of 0.467 mol L⁻¹ H₂SO₄ is added to 14.0 mL of 0. 600 mol L⁻¹ NaOH. Calculate the concentrations, in mole per litre, of hydrogen ions and hydroxide ions in the resulting solution.
- 10. Calculate the pH of the following solutions
 - a) a solution of nitric acid in which $[H^+]$ is 1.00 x 10^{-3} .
 - b) 0.0100 mol L⁻¹ HCl solution
 - c) a solution of potassium hydroxide in which [OH⁻] is 1.00 x 10⁻².
 - d) $0.0500 \text{ mol } L^{-1} \text{ Ca(OH)}_2 \text{ solution}$
- 11. Calculate the hydrogen ion and hydroxide ion concentrations in a solution with a pH of 9.00.
- 12. a) Calculate the pH of the solutions with the following concentrations of H⁺:
 - i) 3.76 x 10⁻³ mol L⁻¹
 - ii) 0.000592 mol L⁻¹
 - b) Calculate the concentration of H⁺ in solutions that have the following pH values:
 - i) pH of 2.31
 - ii) pH of 0.843

13.	Calculate the hydrogen ion and the hydroxide ion concentrations and the pH of the solutions which form when the following solutions are mixed:
	a) 0.500 L of 0.200 mol L ⁻¹ HCl and 0.500 L of 0.200 mol L ⁻¹ NaOH.
	b) 1.00 L of 0.400 mol L $^{\text{-1}}$ HCl and 1.00 L of 0.200 mol L $^{\text{-1}}$ NaOH.
	c) $1.00 \text{ L of } 0.0200 \text{ mol } L^{-1} \text{ HCl} \text{ and } 1.00 \text{ L of } 0.0200 \text{ mol } L^{-1} \text{ Ca}(OH)_2.$
14.	Calculate the pH of the following solutions: a) a solution in which the concentration of hydroxide ions is 3.25×10^{-2} mol L ⁻¹ .
	b) 20.0 mL of 0.00482 mol $\rm L^{-1}$ HCl solution
	c) 1.58 mol L ⁻¹ KOH solution
	d) a solution that has been prepared by dissolving 0.589 g of HCl in 2.50 L of solution.
	e) a solution formed by reacting 32.0 mL of 2.89 mol $\rm L^{1}$ HNO $_{3}$ with 0.560 g of NaOH.
15. supp	Identify each of the following as a strong acid, weak acid, strong base or weak base, and give an equation to port your answer.
	a) KOH
	b) HNO ₂
	c) NH ₃
	d) MgO
	e) HNO ₃
	f) CH ₃ CH ₂ COOH
	g) CO_3^{2-}
	h) HBr
	i) HCO ₃
	j) NH_4^+
	k) HSO ₄

16. Summarise the acid/base properties of substances by placing the following substances/labels in the correct columns:

most acids	negative ions of strong acids
$\mathrm{NH_4}^+$	HSO_4 , H_2PO_4
positive ions of Groups 1 and 2	HCl, HNO ₃ , H ₂ SO ₄ , HClO ₄
transition metal ions and +3 metal ions	metal hydroxides and oxides
negative ions of weak acids	NH_3

Strong Acids	Weak Acids	Strong Bases	Weak Bases	Neutral

17. Place the following in the correct column:

CH₃COOH	HCl	NaOH	HNO_2	HClO
HClO ₄	HSO ₄ -	CO_3^{2-}	CaO	NH_3
NH ₄ ⁺ KOH	PO_4^{3-}	SO_3^{2-}	HCO ₃ -	
HNO_3	HBr	$\mathrm{Al}^{3^{+}}$	НСООН	Na^+
Cl ⁻	NO_3	SO_4^{2-}		

WEAK ACIDS	STRONG BASES	WEAK BASES	NEUTRAL
	WEAK ACIDS	WEAK ACIDS STRONG BASES	WEAK ACIDS STRONG BASES WEAK BASES

18._

0.03 mol L ⁻¹ HNO ₃ solution	14 mol L^{-1} CH ₃ COOH solution
0.001 mol L ⁻¹ Ca(OH) ₂ solution	16 mol L^{-1} H_2SO_4 solution
0.1 mol L ⁻¹ H ₂ SO ₃ solution	$0.01 \text{ mol } L^{-1} \text{ NH}_3 \text{ solution}$

From the above list choose

- a) a dilute solution of a weak acid
- c) a dilute solution of a strong acid
- e) a concentrated solution of a weak acid
- b) a concentrated solution of a strong acid
- d) a dilute solution of a weak base
 - f) a dilute solution of a strong base.
- 19. Name the salt formed in each of the following reactions:
 - a) sodium hydroxide + nitric acid
 - b) magnesium hydroxide + hydrochloric acid
 - c) potassium hydroxide + ethanoic acid
 - d) ammonia + hydrobromic acid
 - e) sodium carbonate + sulfuric acid

20	. For each of the following salts,	decide whether they would form acidic, basic or neutral solutions,	giving equations
to	support your answers.		

NaCl

KF

 Li_2CO_3

 $Mg(HSO_4)_2$

NH₄Br

- 21. Describe the difference between "dissociation" and "hydrolysis".
- 22. a) Which is the stronger base: Cl⁻(aq) or NH₃(aq)?
 - b) Which is the weaker acid: HF(aq) or HCl(aq)?
 - c) Which is the weaker base: F-(aq) or Cl-(aq)?
- 23. H₂O is a weaker acid than HCO₃⁻. Would you expect the reactants or the products to be favoured in the following equilibrium system?

$$CO_3^{2-}(aq) + H_2O(l) \rightleftharpoons HCO_3^{-}(aq) + OH^{-}(aq)$$

Which base would be the stronger?

11. $[H^+] = 1 \times 10^{-9} \text{ mol } L^{-1}$

12. a) i) pH = $-\log 3.76 \times 10^{-3} = 2.42$

b) i) $[H^+] = 0.00490 \text{ mol } L^{-1}$

ANSWERS: ACIDS AND BASES - 1. - Problem Sheet.

```
a) 2H^{+}(aq) + CaCO_{3}(s) \rightarrow CO_{2}(g) + H_{2}O(l) + Ca^{2+}(aq)
         White solid dissolves to form colourless gas and colourless solution
     b) 2H^{+}(aq) + S^{2-}(aq) \rightarrow
                                        H_2S(g)
         Colourless solution and a "rotten" smelling colourless gas form.
     c) 2H^+(aq) + Mg(s) \rightarrow H_2(g) + Mg^{2+}(aq)
          Grey solid dissolves to form colourless solution and of colourless gas
      d) 2H^{+}(aq) + Cu(OH)_{2}(s) \rightarrow 2 H_{2}O(1) + Cu^{2+}(aq)
         Green solid dissolves to form blue solution
     a) Zn(OH)_2(s) + 2OH^{-}(aq) \rightarrow Zn(OH)_4^{2-}(aq)
          White solid dissolves to form colourless solution
      b) 2 Al (s) + 2 OH<sup>-</sup> (aq) + 6 H<sub>2</sub>O(l) \rightarrow 3H<sub>2</sub> (g) + 2Al(OH)<sub>4</sub><sup>-</sup> (aq)
         Silver metal dissolves to form colourless solution and colourless gas
     c) Cu^{2+} (aq) + 2 OH^{-} (aq) \rightarrow Cu(OH)_2 (s)
         A blue precipitate forms
     d) Al^{3+} (aq) + 4 OH^{-} (aq) \rightarrow Al(OH)_4^{-} (aq)
         A white precipitate first forms. It then dissolves to form a colourless solution
     a) HCl(aq) - acid
                                   H<sub>2</sub>O(l) - base
                                                                      b) NH<sub>3</sub>(aq) - base
                                                                                                    H_2O(1) - acid
     c) HSO_4(aq) - acid
                                    OH<sup>-</sup>(aq) - base
                                                                       d) not an acid/base reaction
     e) HCO<sub>3</sub> (aq) - base
                                      H<sub>2</sub>O(l) - acid
                                                                       f) HF(aq) - acid
                                                                                                    HNO<sub>3</sub>(aq) - base
                                                                      b) Ca(OH)_2 \rightarrow Ca^{2+} + 2OH^{-}
     a) HNO_3 \rightarrow H^+ + NO_3^-
     c) HNO_3 + H_2O \rightarrow H_3O^+ + NO_3^-
                                                                       d) NH_3 + H_2O \rightarrow NH_4^+ + OH^-
     a) Br - HBr
                                                                      HF - H_2F^+
                                      HCO_3 - H_2CO_3
                                      NH_4^+ - NH_3^-
     b) OH - O<sup>2</sup>
                                                                      H_2PO_4^- - HPO_4^{2-}
     a) HCl (A) / Cl<sup>-</sup> (B)
                                H_2O(B) / H_3O^+(A)
                                                                      b) NH_3(B) / NH_4^+(A) OH^-(B) / H_2O(A)
      c) HSO_4^-(A) / SO_4^{2-}(B) H_2O(A) / OH^-(B)
     HCl \rightarrow H^{+} + Cl^{-}
                                  moles of H<sup>+</sup> formed = 0.100 i.e. conc of H<sup>+</sup> = 0.100 mol L<sup>-1</sup>
7.
      [OH^{-}] = 1 \times 10^{-13} \text{ mol } L^{-1}
                                             conc of Ca^{2+} = 0.0300 \text{ mol } L^{-1}
     Ca(OH)_2 \rightarrow Ca^{2+} + 2OH^{-}
8.
     conc of OH<sup>-</sup> = 2 \times 0.0300 = 0.0600 \text{ mol L}^{-1} conc of H<sup>+</sup> = = 1.67 \times 10^{-13} \text{ mol L}^{-1}
     moles H_2SO_4 = 0.467 \times 0.025 = 0.01167
                                                                      i.e. moles of H^+ = 2 \times 0.01167 = 0.02335
     moles NaOH = 0.600 \times 0.0140 = 0.0084 = \text{moles of OH}^{-}
       H^+ + OH^- \rightarrow H_2O
                                              OH is the limiting reagent
     i.e. 0.0084 moles of OH<sup>-</sup> will react with 0.0084 moles of H<sup>+</sup>
     moles of H^+ left after the reaction = 0.02335 - 0.0084 = 0.01495 vol of new solution = 39.0 \text{ mL}
     conc of H^+ in new solution = = 0.383 mol L<sup>-1</sup>
     conc of OH^{-} = 2.61 \times 10^{-14} \text{ mol } L^{-1}
10. a) pH = 3
                                              b) [H^+] = 0.0100 \text{ mol L}^{-1} i.e. pH = 2
     c) [H^+] = 1 \times 10^{-12} \text{ mol L}^{-1} i.e. pH = 12
      d) [OH^{-}] = 2 \times 0.0500 = 0.100 \text{ mol } L^{-1} [H^{+}] = 1 \times 10^{-13} \text{ mol } L^{-1} i.e. pH = 13
```

 $[OH^{-}] = 1 \times 10^{-5} \text{ mol } L^{-1}$

ii) $pH = -\log 0.000592 = 3.23$

ii) $[H^+] = 0.144 \text{ mol } L^{-1}$

k) HSO_4^- - weak acid HSO_4^- + H_2O

```
13. a) moles HCl = 0.500 \times 0.200 = 0.100 = \text{moles of H}^+
        moles NaOH = 0.500 \times 0.200 = 0.100 = \text{moles of OH}^{-}
        H^+ + OH^- \rightarrow H_2O
                                                          0.100 moles of H<sup>+</sup> will react with 0.100 moles of OH<sup>-</sup>
        i.e. there will be no H<sup>+</sup> or OH<sup>-</sup> remaining from this reaction
        But there will be H<sup>+</sup> and OH<sup>-</sup> from the self-ionisation of water
        i.e. [H^+] = [OH^-] = 1 \times 10^{-7} \text{ mol } L^{-1}
                                                            (i.e. it is a neutral solution)
        pH = -log [H] = -log 1 \times 10^{-7} = 7
    b) moles HCl = 0.400 \times 1.00 = 0.400 = \text{moles of H}^+
        moles NaOH = 0.200 \times 1.00 = 0.200 = \text{moles of OH}^{-1}
        H^{\scriptscriptstyle +} \ + \ OH^{\scriptscriptstyle -} \ \to \ H_2O
                                                 OH<sup>-</sup> is the limiting reagent
        i.e. 0.200 moles of OH will react with 0.200 moles of H
        After the reaction there will be 0.400 - 0.200 = 0.200 moles of H<sup>+</sup> remaining
                                                                                                               vol of new solution = 2.00 L
        [H^+] in new solution = = 0.100 mol L<sup>-1</sup> [OH^-] =
                                                                                   = 1.00 \times 10^{-13} \mod L^{-1}
        pH = -log[H^{+}] = 1
    c) moles HCl = 0.0200 \times 1.00 = 0.0200 = \text{moles of H}^+
        moles Ca(OH)_2 = 0.0200 \times 1.00 = 0.0200
                                                                                   moles of OH^{-} = 2 \times 0.0200 = 0.0400
        H^+ + OH^- \rightarrow H_2O
                                                  H<sup>+</sup> is the limiting reagent
        0.0200 moles of H<sup>+</sup> will react with 0.0200 moles of OH<sup>-</sup>
        i.e. will be left with 0.0400 - 0.0200 = 0.0200 moles of OH<sup>-</sup>
                                                                                                     new volume = 2.00 L
        new [OH^{-}] = 0.0100 \text{ mol } L^{-1}
        [H^{+}] = 1 \times 10^{-12} \text{ mol } L^{-1}
                                                         pH = -log[H] = 12
14. a) [H^+] = 3.077 \times 10^{-13} \text{ mol L}^{-1}
                                                            pH = -\log (3.077 \times 10^{-13}) = 12.5
    b) [H^+] = 0.00482 \text{ mol } L^{-1}
                                                         pH = -\log 0.00482 = 2.32
                                                 [H^+] = 6.329 \times 10^{-15} \text{ mol L}^{-1} \text{ pH} = 14.2
    c) [OH^{-}] = 1.58 \text{ mol } L^{-1}
    d) moles of HCl = = 0.01615 = \text{moles of H}^+
        conc of H^+ = 0.006462 \text{ mol } L^{-1}
                                                                  pH = 2.19
    e) moles of HNO<sub>3</sub> = 2.89 \times 0.032 = 0.09248 = \text{moles of H}^+
        moles of NaOH = = 0.0140 = \text{moles of OH}^{-1}
        H^+ + OH^- \rightarrow H_2O
                                                  OH<sup>-</sup> is the limiting reagent
        0.0140 moles of OH will react with 0.0140 moles of H
        i.e. will be left with 0.09248 - 0.0140 = 0.07848 moles of H^+
                                                                                                    volume = 32.0 \text{ mL}
                                                        pH = -0.390
        [H^+] = 2.452 \text{ mol L}^{-1}
15. a) KOH - strong base
                                        KOH \rightarrow K^{+} + OH^{-}
      b) HNO<sub>2</sub> - weak acid
                                       HNO_2 \rightleftharpoons
                                                          NO_2^- + H^+
      c) NH_3 - weak base NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-
      d) MgO - strong base MgO + H_2O \rightarrow Mg^{2+} + 2 OH^{-}
      e) HNO_3 - strong acid HNO_3 \rightarrow H^+ + NO_3^-
      f) CH<sub>3</sub>CH<sub>2</sub>COOH - weak acid CH<sub>3</sub>CH<sub>2</sub>COOH
                                                                                 CH<sub>3</sub>CH<sub>2</sub>COO<sup>-</sup> + H<sup>+</sup>
      g) CO_3^{2-} - weak base CO_3^{2-} + H_2O \rightleftharpoons
                                                               HCO<sub>3</sub> + OH
      h) HBr - strong acid
                                      HBr \rightarrow H^+ + Br^-
                                         HCO_3^- + H_2O
      i) HCO<sub>3</sub> - weak base
                                                                    \rightleftharpoons
                                                                                H<sub>2</sub>CO<sub>3</sub> + OH<sup>-</sup>
      j) NH<sub>4</sub><sup>+</sup> - weak acid
                                       NH_4^+ + H_2O
                                                                        NH_3 + H_3O^+
                                                              \rightleftharpoons
```

SO₄²⁻ + H₃O⁺

 \rightleftharpoons

16.

Strong Acids	Weak Acids	Strong Bases	Weak Bases	Neutral
HCl, HNO ₃ , H ₂ SO ₄ ,	most acids	metal hydroxides and	negative ions of weak	negative ions of
HClO ₄	$\mathrm{NH_4}^+$	oxides	acids	strong acids
	HSO ₄ -, H ₂ PO ₄ -		$ m NH_3$	positive ions of Groups 1 and 2
	transition metal ions and +3 metal ions			-

17.

STRONG ACIDS	WEAK ACIDS	STRONG BASES	WEAK BASES	NEUTRAL
HCl	CH₃COOH	NaOH	CO ₃ ²⁻	Na ⁺
HClO ₄	HNO ₂	CaO	NH ₃	Cl-
HNO ₃	HClO	КОН	PO ₄ ³⁻	NO ₃
HBr	HSO ₄		SO ₃ ²⁻	SO ₄ ²⁻
	$\mathrm{NH_4}^+$		HCO ₃ -	
	Al^{3+}			
	НСООН			

- 18. a) $0.1 \text{ mol } L^{-1} H_2SO_3 \text{ solution}$
- b) 16 mol L⁻¹ H₂SO₄ solution
- c) 0.03 mol L⁻¹ HNO₃ solution
- d) 0.01 mol L⁻¹ NH₃ solution
- e) 14 mol L⁻¹ CH₃COOH solution
- f) 0.001 mol L⁻¹ Ca(OH)₂ solution

- 19 a) sodium nitrate
- b) magnesium chloride
- c) potassium ethanoate

- d) ammonium bromide
- e) sodium sulfate
- 20. NaCl neutral

$$KF$$
 - weak base F + H_2O \rightleftharpoons HF + OH

$$\text{Li}_2\text{CO}_3$$
 - weak base CO_3^{2-} + H_2O \rightleftharpoons HCO_3^{--} + OH^{--}

$$Mg(HSO_4)_2$$
 - weak acid $HSO_4^- + H_2O \rightleftharpoons SO_4^{2-} + H_3O^+$

$$NH_4Br$$
 - weak acid NH_4^+ + H_2O \rightleftharpoons NH_3 + H_3O^+

21. Dissociation - the breaking up of an ionic lattice that occurs when an ionic substance is dissolved in water e.g. $NaCl(s) \rightarrow Na^{+}(aq) + Cl^{-}(aq)$

Hydrolysis - the reaction of a substance with water e.g. $HCO_3^- + H_2O \implies H_2CO_3 + OH^-$

- 22. a) NH₃(aq) b) HF (aq)
- c) Cl⁻(aq)
- 23. reactants OH-