Lecture 2

Linear Regression By: Nazerke Sultanova

Linear Regression

Linear Regression

- There are two types of supervised machine learning algorithms: Regression and classification.
- Regression predicts continuous value outputs
- For instance, predicting the price of a house in dollars is a regression problem

Example

Hours	Scores	
2.5	21	
5.1	47	
3.2	27	
8.5	75	
3.5	30	
1.5	20	
9.2	88	
5.5	60	
8.3	81	
2.7	25	
7.7	85	
5.9	62	
4.5	41	
3.3	42	
1.1	17	
8.9	95	
2.5	30	
1.9	24	
6.1	67	
7.4	69	
2.7	30	
4.8	54	
3.8	35	

Objective

Our objective is to predict hypothesis function

Hypothesis

- Linear regression => linear hypothesis (straight line)
- Y = mx + b
- Slope is m
- Intercept is b

Find a hypothesis?

Percentage = ___*hours+____

Hours	Scores
2.5	21
5.1	47
3.2	27
8.5	75
3.5	30
1.5	20
9.2	88
5.5	60
8.3	81
2.7	25
7.7	85
5.9	62
4.5	41
3.3	42
1.1	17
8.9	95
2.5	30
1.9	24
6.1	67
7.4	69
2.7	30
4.8	54
3.8	35
	·

How to find best hypothesis?

Hypothesis that has smallest error

Sum of squared errors

Cost function

Cost function

For the parameter vector θ (of type \mathbb{R}^{n+1} or in $\mathbb{R}^{(n+1)\times 1}$, the cost function is:

$$J(heta) = rac{1}{2m} \sum_{i=1}^m \left(h_ heta(x^{(i)}) - y^{(i)}
ight)^2$$

The vectorized version is:

$$J(heta) = rac{1}{2m}(X heta - ec{y})^T(X heta - ec{y})$$

Where \vec{y} denotes the vector of all y values.

Gradient Descent

- One of convex optimizations
- Find the global minimum

Gradient Descent Algorithm

Gradient descent algorithm

```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1) }
```

Correct: Simultaneous update

```
temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)
temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)
\theta_0 := temp0
\theta_1 := temp1
```

Gradient Descent Algorithm

Learning rate

Find a direction using derivative

Multivariate Linear Regression

Multiple features (variables).

_>	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
	\times_1	Xz	×3	*4	9
	2104	5	1	45	460 7
_	1416	3	2	40	232 / M= 47
	1534	3	2	30	315
	852	2	1	36	178
No	tation:	*	1	1	$\chi^{(2)} = \begin{bmatrix} 3 \\ 1416 \end{bmatrix}$
_	→ n = nu	mber of fea	<u> </u>		
	$\rightarrow x^{(i)}$ = inp	out (feature	. (2)		
	$\Rightarrow x_j^{(i)} = va$	lue of featu	le. $\chi_3 = 2$		

Assignment

- Write a function for hypothesis(theta1, theta0)
- Write a function for gradient descent(theta1, theta0)
- Find best theta1, theta0
- Visualize the dataset and hypothesis line
- Datasets will be posted in google classrooms (three different dataset for three groups)

Hints for Assignment

- Initialize theta's=0
- Take a few different alphas
- Gradient Descent: repeat until convergence = you can repeat ~2000 times
- Use your intuition

Linear Algebra Review

- Matrix Operations
- Inverse/Transpose of a matrix
- Dot product