

sycam@re lab

SYSTEMS CONTROL AND MULTIAGENT OPTIMIZATION RESEARCH

SEMESTER PROJECT
FINAL PRESENTATION

COORDINATION AND CONTROL OF A GROUP OF GROUND ROBOTS

Pierre Chassagne

COORDINATION AND CONTROL OF A GROUP OF GROUND ROBOTS

Motivation

What?

Create a practical testing environment:

- Flexible
- Modulable
- Easy to use / Easy to setup

Why?

- No existing open-source projects with JetBots and multi-agent control
- Enable real life conditions testing

How?

- ROS2
- Jetbots
- Optitrack

Pierre Chassagne

Background

- ROS2
 - Robotic Operating System
 - Set of software libraries and tools for building robot applications
 - Real-time control
 - Added support for multi-robot system

- Jetbot
 - Open-source ground robots
 - NVIDIA Jetson Nano
 - GPU
 - Camera

Challenges

Pierre Chassagn

- ROS2
 - Network connection
 - Architecture
 - Real time position tracking
 - Flexibility
 - Easy to use / to setup

Jetbots

- OS configuration
- Control
- Task Assignment [TA]
- System compatibility

COORDINATION AND CONTROL OF A GROUP OF GROUND ROBOTS

Pierre Chassagne

General architecture

Wireless Communication

COORDINATION AND CONTROL OF A GROUP OF GROUND ROBOTS

C-CAPT with N robots and M goals & LQR

C-CAPT with N robots and M goals

 \mathbf{Do} : generate M>N goals spaced by Δ

While M>N: Remove one goal randomly

Compute : $D_{i,j} = ||x_i(t_0) - g_j||^2 \quad \forall i \in \mathcal{I}_N, \forall j \in \mathcal{I}_M$

Solve: $\phi^* = argmin \sum_{i=1}^{N} \sum_{j=1}^{M} \phi_{i,j} D_{i,j}$

Initial poses and goal locations

TA with N=20 and $\Delta = 2\sqrt{2R}$

Discrete LQR

$$\min \sum_{k=0}^{\infty} J_k = \mathbf{x}_{\mathbf{k}}^{\mathsf{T}} Q \mathbf{x}_{\mathbf{k}} + u_k^2 R$$

$$\begin{bmatrix} e_{k+1}^{\theta} \\ e_{k+1}^{\theta_i} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ T_s & 1 \end{bmatrix} \begin{bmatrix} e_k^{\theta} \\ e_k^{\theta_i} \end{bmatrix} + \begin{bmatrix} T_s \\ T_s^{\theta_i} \end{bmatrix} u_k$$

$$u_{k+1} = c_k^{\theta} e_k^{\theta} + c_k^{\theta_i} e_k^{\theta_i}$$

Demonstration

Open issues – Future work

ierre Chassag

- Open Issues
 - Wireless communication
 - Docker

- Future work
 - MPC
 - Safe learning
 - Cameras
 - Performance analysis

Thank you for your attention