Пръстени и полета. Теореми на Ойлер-Ферма и Уилсън.

В групите, алгебричните структури, които разглеждахме досега, беше въведена една бинарна операция, спрямо която групата е затворена като множество, т.е. на всеки два елемента от групата бинарната операция съпоставяше трети елемент, който също се намира в групата.

Нека сега разгледаме множеството R, в което са въведени две бинарни операции, наречени условно събиране + и умножение \cdot . Ще казваме, че множеството R е npъcmen, ако е затворено относно тези две операции и са изпълнени следните аксиоми:

- I. R е абелева група относно събирането +, т.е.:
 - 1. (a+b) + c = a + (b+c) sa $\forall a, b, c \in R$.
- 2. Съществува нулев елемент $0 \in R^1$, такъв че a+0=0+a=a за $\forall a \in R.$
- 3. За всеки елемент $a \in R$ съществува проттивоположен елемент $-a \in R$, такъв че a + (-a) = -a + a = 0.
 - 4. a+b=b+a за $\forall a,b \in R$.
 - II. Операцията · е асоциативна, т.е.:
 - 5. (ab)c = a(bc) за $\forall a, b, c \in R$.
 - III. В сила са дистрибутивни закони за двете операции, т.е.:
 - 6. (a + b)c = ac + bc и c(a + b) = ca + cb за $\forall a, b, c \in R$.

В допълнение: ако ab=ba за $\forall a,b\in R$, то казваме, че R е комутативен пръстен; ако съществува единичен елемент $e\in R$, такъв че ae=ea=a за $\forall a\in R$, казваме, че R е пръстен c единица. За удобство
ще оазначаваме единичния елемент на R с 1 или с 1_R , за да подчертаем

 $^{^{1}}$ Понякога нулевият елемент на R ще записваме като 0_{R} , когато има нужда от допълнителна яснота.

неговата принадлежност.

Примери:

- 1. Множествата \mathbb{Z} , \mathbb{Q} , \mathbb{R} и \mathbb{C} са пръстени относно обичайните операции събиране и умножение на числа. При това те са комутативни пръстени с единица.
- 2. Подмножествата $m\mathbb{Z} = \{mz \mid z \in \mathbb{Z}\}$ на \mathbb{Z} за $m = 0, 1, 2, \ldots$ също са прсътени относно обичайните събиране и умножение на числа. При $m \geq 2$ е пример за пръстен, който не притежава единичен елемент.
- 3. Нека F е числово поле, $n \in \mathbb{N}$. Тогава $F_{n \times n}$ е пръстен относно операциите събиране и умножение на матрици с единичен елемент единичната матрица E. При n > 1 е пример за некомутативен пръстен.

Следствия от аксиомите:

- а) Нулевият елемент 0_R и противоположният елемент -a за $\forall a \in R$ са единствени. Всъщност това е следствие от аксиомите за групи.
 - б) Ако R е пръстен с единица 1_R , то тя е единствена.
 - в) 0.a = 0 за $\forall a \in R$.
 - Γ) (-a)b = a(-b) = -(ab) за $\forall a, b \in R$.
- д) За $a, b \in R$ означаваме с a b елемента a + (-b), наречен разлика на a и b.
- е) От следствията от аксиомите за групи знаем, че за елемент $a \in R$ и числа $n, m \in \mathbb{Z}$ имаме, че na + ma = (n + m)a и m(na) = (mn)a.
- ж) Аксиома 5. ни дава, че за елементи $a_1, a_2, \ldots, a_k \in R$, елементът $a_1 a_2 \ldots a_k \in R$ е еднозначно определен.
- з) За елемент $a \in R$ и число $k \in \mathbb{N}$ означаваме $a^k = \underbrace{aa \dots a}_{k \text{ пъти}}$. Оттук имаме, че $a^k a^l = a^{k+l}$ и $(a^k)^l = a^{kl}$.

Нека R е пръстен. Елементите $a, b \in R$ се наричат делители на нулата, ако $a \neq 0_R, b \neq 0_R$, но $ab = 0_R$.

Ако в пръстенът R няма делители на нулата, то той се нарича област 2 . Пример за област е пръстенът на целите числа \mathbb{Z} .

Нека R е пръстен с единица 1_R . Елементът $a \in R$ се нарича *обратим* елемент, ако съществува елемент $a^{-1} \in R$, такъв че $aa^{-1} = a^{-1}a = 1_R$. Например в пръстена $\mathbb Z$ обратимите елменти са само 1 и -1.

 $^{^{2}}$ Или още *област на иялост*.

Нека R е прсътен с поне два елемента, т.е. $|R| \ge 2$. Казваме, че R е mяло, ако всеки ненулев елемент $a \in R, a \ne 0_R$ е обратим.

Казваме, че R е none, ако R е комутативен пръстен и R е тяло. Дотук ние използвахме понятието числово поле F, за което знаем, че $F\subseteq \mathbb{C}$, $|F|\geq 2$ и за всеки два елемента $a,b\in F$ е изпълнено $a+b,a-b,ab,\frac{a}{b}\in F$. По този начин се оказва, че всяко числово поле F е поле спрямо сегашната дефиниция. С други думи понятието числово поле е само частен случай на по-голям клас алгебрични структури, наречени полета.

Знаем, че $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ са полета т.к. са числови полета. Пример за тяло, което не е поле (т.е. не е комутативно) е множеството

$$\mathbb{H} = \left\{ \begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} \mid a, b \in \mathbb{C} \right\} \subseteq \mathbb{C}_{2 \times 2},$$

наречено *тяло на кватернионите*. Наистина, ако $A = \begin{pmatrix} a & b \\ -\bar{b} & \overline{a} \end{pmatrix} \neq \mathbb{O}$, то $a \neq 0$ и/или $b \neq 0$, откъдето следва, че $\det A \neq 0$ и директно се проверява, че A^{-1} , за която знаем, че съществува, също принадлежи на \mathbb{H} .

Ако R е тяло (в частност поле), то R няма делители на нулата. Наистина, ако допуснем, че в R има елементи, които са делители на нулата, т.е. $a,b \in R$, такива че $a \neq 0_R, b \neq 0_R$, но $ab = 0_R$, то след като умножим двете страни отляво с елемента $a^{-1} \in R$, получаваме $a^{-1}(ab) = 0_R$ и асоциативното свойство на умножението в пръстените довежда до противоречието $1_Rb = b = 0_R$. Следователно остава да е вярно, че в R няма делители на нулата.

Нека R е произволен пръстен. Знаем, че множеството R е абелева група спрямо операцията +, която ще наричаме $a\partial umue$ на pyna на ppoceneна R. Нека R е пръстен с единица 1_R и R^* е множеството на всички обратими елементи на R. Ясно е, че $1_R \in R^*$. Тогава R^* е група относно оерацията \cdot в R: ако $a \in R^*$, то обратният му елемент a^{-1} също принадлежи на R^* и $aa^{-1}=a^{-1}a=1_R$; ако $a,b\in R^*$, то $(ab)^{-1}=\underbrace{b^{-1}}_{\in R^*}\underbrace{a^{-1}}_{\in R^*}$ и

следователно $ab \in R^*$. По този начин R^* е затворено относно операцията \cdot , чиято асоциативност е наследена от операцията \cdot в R, притежава единичен елемент 1_R и всеки елемент притежава обратен. Така доказахме, че R^* е група относно операцията \cdot в R, наречена мултипликативна група на пръстена R.

Примери:

- 1. $\mathbb{Z}^* = \{1, -1\}.$
- 2. $F_{n\times n}^*$ се състои от всички обратими матрици, т.е. с ненулеви детерминанти и следователно $F_{n\times n}^* = GL_n(F)$.
- 3. Ако R е тяло, то всеки негов ненулев елемент е обратим и следователно $R^* = R \setminus \{0_R\}$. Ако R е поле, то R е комутативно тяло и $R^* = R \setminus \{0_R\}$ е абелева група.

Нека R е пръстен, а $S\subseteq R$ е негово подмножество. Казваме, че S е nodnpъcmen на R и означаваме $S\leq R$, ако за $\forall a,b\in S$ е изпълнено $a+b,a-b,ab\in S$. В такъв случай имаме, че $a-a=0_R\in S$ и $0_R-a=-a\in S$ и S се оказва пръстен относно операциите + и \cdot , наследени от R. Не е трудно да се провери, че сечението на фамилия подпръстени на R също е подпръстен на R.

Нека $n \in \mathbb{N}, n > 1$. В пръстена на целите числа \mathbb{Z} остатъците при деление на n са $0,1,\ldots,n-1$. Нека \overline{r} е множествотона всички цели числа, които при деление с n дават остатък r, с други думи числата $z \in \mathbb{Z}$, такива че $z \equiv r \pmod{n}$. Да разгледаме множеството

$$\mathbb{Z}_n = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}.$$

В него дефинираме операции + и \cdot по следния начин: $\overline{k} + \overline{l} = \overline{k+l}$ и $\overline{k} \cdot \overline{l} = \overline{k \cdot l}$. По този начин \mathbb{Z}_n се превръща в пръстен с нулев елемент $\overline{0}$, единичен елемент $\overline{1}$ и при това е комутативен. Наричаме го *пръстен на класовете остатъци по модул п*. Ясно е, че \mathbb{Z}_n има n на брой елемента.

Пример:

Да разгледаме пръстена от класовете остатъци по модул 6

$$\mathbb{Z}_6=\{\overline{0},\overline{1},\overline{2},\overline{3},\overline{4},\overline{5}\}.$$

В него имаме, че $\overline{2}+\overline{3}=\overline{5}; \overline{4}+\overline{5}=\overline{9}=\overline{3},$ защото $9\equiv 3 \pmod 6; \overline{4}\cdot\overline{5}=\overline{20}=\overline{2},$ защото $20\equiv 2 \pmod 6; \overline{3}\cdot\overline{4}=\overline{12}=\overline{0}$ и следователно $\overline{3}$ и $\overline{4}$ са делители на нулата в \mathbb{Z}_6 , а оттук вече самият пръстен няма как да е област.

Да си припомним, че за $n \in \mathbb{N}, n > 1$ с $\varphi(n)$ означаваме броя на естествените числа, ненадминаващи n, които са взаимно прости с n.

Теорема 1. (1) За мултипликативната група на \mathbb{Z}_n имаме, че $\mathbb{Z}_n^* = \{ \overline{k} \mid 0 \le k \le n-1 \ u \ (k,n)=1 \} \ u \ |\mathbb{Z}_n^*| = \varphi(n).$

(2) \mathbb{Z}_n е поле \Leftrightarrow n е просто число.

Доказателство. (1) Да разгледаме произволен елемент $\overline{k} \in \mathbb{Z}_n, k = 1, 2, \ldots, n-1$ (няма нужда да разглеждаме k=0, защото е ясно, че елементът $\overline{0} \notin \mathbb{Z}_n^*$). Нека k и n не са взаимно прости, т.е. (k,n)=d>1 и $k=k_1d$, а $n=n_1d$ за $k_1,n_1\in \mathbb{N}; k_1,n_1>1$. Ясно е, че $\overline{k}\neq \overline{0}$, защото k< n и следователно $n\nmid k$. Също имаме \underline{u} , че $\overline{n_1}\neq \overline{0}$, защото $d>1\Rightarrow n_1< n$ и следователно $n\nmid n_1$. Но $\overline{k}\cdot\overline{n_1}=\overline{kn_1}=\overline{k_1dn_1}=\overline{k_1n}=\overline{0}$, поради очевидния факт, че $n\mid k_1n$. Следователно \overline{k} е делител на нулата в \mathbb{Z}_n и няма как да е обратим елемент, т.е. $\overline{k}\notin \mathbb{Z}_n^*$. Нека сега k и n са взаимно прости, т.е. (k,n)=1. От тъждеството на Безу имаме, че съществуват цели числа $u,v\in \mathbb{Z}$, такива че uk+vn=1. Това означава, че $\overline{uk+vn}=\overline{uk}+\overline{vn}=\overline{uk}+\overline{0}=\overline{u}\cdot\overline{k}=\overline{1}$, с което открихме, че елементът \overline{k} е обратим и неговият обратен е \overline{u} . И така $(k,n)=1\Rightarrow \overline{k}\in \mathbb{Z}_n^*$. По този начин доказахме, че $(k,n)=1\Leftrightarrow \overline{k}\in \mathbb{Z}_n^*$.

(2) \mathbb{Z}_n е комутативен пръстен с единица. В такъв случай \mathbb{Z}_n е поле \Leftrightarrow всеки ненулев елемент на \mathbb{Z}_n е обратим $\Leftrightarrow \mathbb{Z}_n^* = \mathbb{Z}_n \setminus \{\overline{0}\} \Leftrightarrow |\mathbb{Z}_n^*| = n-1 \Leftrightarrow \varphi(n) = n-1 \Leftrightarrow n$ е просто число.

Вече можем да разгледаме първи пример на нечислово (и при това крайно) поле. Нека p е просто число. Горната теорема ни дава, че множеството

$$\mathbb{Z}_p = \{\overline{0}, \overline{1}, \dots, \overline{p-1}\}$$

е поле с р на брой елемента. В полето с пет елемента

$$\mathbb{Z}_5 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}$$

например имаме, че $\overline{2} \cdot \overline{3} = \overline{2 \cdot 3} = \overline{6} = \overline{1}$ и $\overline{4}^2 = \overline{16} = \overline{1}$, с което става ясно, че всеки ненулев елемент е обратим.

Сега можем да докажем теоремите, които споменахме в първа глава.

Теорема на Ойлер-Ферма. $A \kappa o \ n \in \mathbb{N}, a \in \mathbb{Z} \ u \ (a,n) = 1, \ mo \ a^{\varphi(n)} \equiv 1 \pmod{n}$. B частност, ако $n \in n$ просто, $a^{n-1} \equiv 1 \pmod{n}$.

 \mathcal{A} оказателство. Разглеждаме пръстена \mathbb{Z}_n . Ако $b, c \in \mathbb{Z}$, то $\overline{b} = \overline{c} \Leftrightarrow b \equiv c \pmod{n}$. Нека $a \in \mathbb{Z}$ е такова, че (a, n) = 1. Тогава \overline{a} е обратим елемент в \mathbb{Z}_n , т.е. $\overline{a} \in \mathbb{Z}_n^*$. Според Следствие 2 от Теоремата на Лагранж имаме, че $\overline{a}^{|\mathbb{Z}_n^*|} = \overline{1}$, но според Теорема 1 $|\mathbb{Z}_n^*| = \varphi(n)$ и следователно $\overline{a}^{\varphi(n)} = \overline{1}$. В \mathbb{Z} това е равносилно с $a^{\varphi(n)} \equiv 1 \pmod{n}$.

Теорема на Уилсън. Ако p е просто число, то $(p-1)! \equiv -1 \pmod{p}$.

 \mathbb{Z}_p жеровательно. Разглеждаме полето $\mathbb{Z}_p = \{\overline{0},\overline{1},\dots,\overline{p-1}\}$. Нека $\overline{k} \in \mathbb{Z}_p,\overline{k} \neq \overline{0}$. Т.к. сме в поле съществува обратен елемент \overline{k}^{-1} , такъв че $\overline{k} \cdot \overline{k}^{-1} = \overline{1}$. Да видим кога $\overline{k}^{-1} = \overline{k}$. Това означава, че $\overline{k}^2 = \overline{1}$, което е еквивалентно на $(\overline{k}-\overline{1})(\overline{k}+\overline{1})=\overline{0}$. Т.к. \mathbb{Z}_p е поле, в него няма делители на нулата и следователно или $\overline{k}-\overline{1}=\overline{0}$, или $\overline{k}+\overline{1}=\overline{0}$, т.е. $\overline{k}=\overline{1}$ или $\overline{k}=\overline{-1}=\overline{p-1}$. И така $\overline{k}^2=\overline{1}\Leftrightarrow \overline{k}=\overline{1}$ или $\overline{k}=\overline{-1}$. Следователно елементите на \mathbb{Z}_p , които са различни от нула са елементите $\overline{1},\overline{-1}$ и двойки елементи от вида $\{\overline{k},\overline{k}^{-1}\}$, където $\overline{k}\neq\overline{k}^{-1}$. Това означава, че умножавайки всички ненулеви елементи на \mathbb{Z}_p и групирайки двойките обратни елементи, получаваме

$$\overline{1} \cdot (\overline{-1}) \cdots (\underline{\overline{k} \cdot \overline{k}^{-1}}) \cdots = \overline{-1},$$

но както споменахме лявто произведение се състои от всички ненулеви елементи на полето, т.е. имаме

$$\overline{1} \cdot \overline{2} \cdots \overline{p-1} = \overline{-1},$$

което в пръстена на целите числа $\mathbb Z$ ни дава точно исканото равенство

$$(p-1)! \equiv -1 \pmod{p}.$$