

Divide y Vencerás

Algorítmica

Lukas Häring García 2ºD

Tabla de contenidos

Suma	hasta un n	úmer	o	 													2
0.1	Eficiencia		•	 		•	•	•		•	•	•				•	3
Espec	ificaciones			 													4

Suma hasta un número

Se trata de un ejercicio de obtener un sub-conjunto cuya suma de los elementos sumen el número que buscamos, la definición matemática es la siguiente.

Sea $\mathbf{S} = \{a_1, a_2, \dots a_n\}$ y \mathbf{M} como el sumando total.

Definimos el conjunto ${\bf K}$ como aquél formado por todos los subconjuntos tal que sus elementos sumen ${\bf M}$

$$K = \left\{ \{b_1, b_2, \dots, b_k\} \subseteq S \mid \sum_{i=1}^k b_i = M \right\}$$

Ahora bien, pueden ocurrir dos casos:

1. No tenga solución el problema, es decir $K=\emptyset$. Entonces devolvemos aquel subconjunto que supone el elemento minimal al problema.

$$G = \left\{ \exists G_1 \forall G_2 \subseteq \mathcal{P}(S) \mid G_1 \neq G_2 \land \left(|M - \sum_{x \in G_1} x| < |M - \sum_{y \in G_2} y| \right) \right\}$$

 \mathcal{P} es denotado como el "conjunto potencia" de un conjunto.

2. Si tiene solución, es decir $|K| \ge 1$, devolvemos aquel subconjunto de K que nuestro algoritmo encontró primero, puede o no ser con operadores mínimos.

0.1 Eficiencia

Para cada elemento en el conjunto de los números S, le asignamos "si" o "no" si queremos que se sume o no, esto equivale a multiplicar por 1 o 0 (respectivamente), denotemos c_k para el elemento $a_k \in S$.

<i>C</i> 1	C2	Сз		C_{n-2}	C_{n-1}	C_n
\sim_1	U_Z	~ <u>_</u> 3	•••	-u-z	$-u_{n-1}$	\sim_{tt}

Definimos $f: S \to \mathbb{B}_2$, una asignación a cada elemento de S un único elemento de $\mathbb{B}_2 = \{0,1\}$, esta por tanto, es una aplicación inyectiva, cuyo número de aplicaciones es $|\mathbb{B}_2|^{|S|} = 2^{|S|}$, por lo que el algoritmo usado será **exponencial** de la forma $O(2^n)$, dónde n = |S|.

Especificaciones

- 1. Windows 10.0.14393
- 2. Procesador Intel(R) Core(TM) i7-7800X CPU @ $3.50\mathrm{GHz},\,3504\mathrm{\ Mhz}$
- 3. 6 procesadores principales.
- 4. 12 procesadores lógicos.
- 5. Memoria física instalada (RAM) 8,00 GB x 2
- 6. Compilador MinGW.