Data Preprocessing for the VQI TEVAR Dataset

Jennifer Ci, Thu Vu, Lily Hanyi Wang

Datasets Merging

Compare the data from July 2021 and September 2021. Keep the most updated ones by merging TEVAR_LTF_07 with TEVAR_LTF_09, and TEVAR_PROC_07 with TEVAR_PROC_09 separately.

We checked the duplicate PATIENTID in the PROC dataset. These patients are transferred a few days or a few months followed the first procedure. We decided to exclude these abnormal data points.

Variables that exists in both LTF and PROC datasets are: PATIENTID, PRIMPROCID, DEAD, PROC_SURVIVALDAYS. Merge by these variables.

We will work on the PROC and LTF datasets separately. The only variable we want to study in the LTF dataset is the re-intervention variable, LTF_NUM_REINT.

For the time-to-event analysis of re-intervention, we work on the LTF dataset and treat it as a multi-event recurrent survival analysis.

For the logistic regression model of re-intervention, we merge it with the PROC dataset to account for the variables as we did for other outcomes. Here we treated re-intervention as a binary outcome.

Exclusion criteria:

- PRESENTATION: exclude rupture patients
- PATHOLOGY: exclude groups with pathology: 4 = trauma, 8 = Aortic Thrombus, 9 = Other, 10 = Aorto-esophageal Fistula, 11 = Aorto-bronchial Fistula
- URGENCY: exclude rupture. (elective is the same as asymptomatic)
- PROXZONE_DISEASE: exclude 0 and 1
- DISTZONE_DISEASE: exclude 0
- PROXZONE_DISEASE < DISTZONE_DISEASE: disease starting point should be earlier than ending point. 35 wrong data points with distal zone < proximal zone are excluded.

Data Cleaning

Patient demographic and co-morbidities

- Comorbidity history variables: changed to Yes/No scale.
- PREOP_CREAT: merge PREOP_CREAT with retired R_CR_PRESENT (mg/dL)

Operative variables

- PATHOLOGY: merge levels PAU and IMH
- URGENCY: duplicate with PRESENTATION and doesn't make sense, but leave it there.
- extent: type of TAAA based on certain criteria calculated by PROXZONE_DISEASE and DISTZONE_DISEASE.

- ILIACDEV_END: from merging ILIACDEV_END_R, ILIACDEV_END_L
- ACCESS: from merging ACCESS R, ACCESS L: Percutaneous if both are Percutaneous, Open o.w.
- DEV_GTYPE: merge DEV1_GTYPE, DEV2_GTYPE, DEV3_GTYPE: If one device is 'Custom' or 'Physician modified', classified to this instead of 'Standard'

Filter FBVAR patients based on having at least one branch, re-leveled as following.

- lrenal: re-leveled BRANCH_LRENAL_TRT, retired version R_LT_RENAL ignored.
- rrenal: re-leveled BRANCH RRENAL TRT, retired version R RT RENAL ignored.
- sma: re-leveled BRANCH_SMA_TRT, retired version R_SMA ignored.
- celiac: re-leveled BRANCH_CELIAC_TRT, retired version R_CELIAC ignored.
- lsub: re-leveled BRANCH_LSUB_TRT, retired version R_L_SUBCLAV ignored.

Current levels: $0 = \text{None}, 1 = \text{Purposely covered}, 2 = \text{Unintentionally covered}, 3 = \text{Occluded} - \text{coil}, 4 = \text{Occluded} - \text{plug}, 5 = \text{Occluded} - \text{open}, 6 = \text{Stent}, 7 = \text{Stent-graft}, 8 = \text{Chimney}, 9 = \text{Scallop}, 10 = \text{Stented} \cdot \text{Scallop}, 11 = \text{Fenestration}, 12 = \text{Stented-fen}, 13 = \text{Fen branch}, 14 = \text{Side-arm branch}, 15 = \text{Surgical bypass}, 16 = \text{Thromboembolectomy}, 17 = \text{Iliac Device}$

ignore some retired variables without current version

- R_DISTATTZONE: Distal Attachment Zone
- R_GDPROXIMAL: Graft Diameter Proximal
- R_GRFTCONFIG: Graft Configuration
- R_PRATTZONE: Prox. Attachment Zone

Outcomes

- POSTOP_LOS: changed into binary, more than a week or not.
- Create POSTOP_AH: Combine POSTOP_AH, POSTOP_MI,POSTOP_DYSRHYTHMIA for post-procedure abnormal heart disease
- Create BRANCH_POST: BRANCH_XXX_POST changed to Yes/No scale. Then combine BRANCH_LSUB_POST, BRANCH_CELIAC_POST, BRANCH_SMA_POST, BRANCH_RRENAL_POST, BRANCH_LRENAL_POST, BRANCH_RCOMILI_POST, BRANCH_LCOMILI_POST

update some variables with current version

- R_ENDOLEAK_AT_COMPLETION => LEAKATCOM_XXX variables. Only use LEAKATCOMP_NONE. Ignore others or have a brief look
- R_POSTOP_HEMATOMA => ACCESS_HEMATOMA_R, ACCESS_HEMATOMA_L; R_POSTOP_SITEOCC => ACCESS_OCCLUSION_R, ACCESS_OCCLUSION_L. Merge hematoma and occlusion, create new variable: ACCESS_COMPLICATION
- R_POSTOP_SSI => ACCESS_INFECTION_R, ACCESS_INFECTION_L Merge left and right, create new variable: ACCESS_INFECTION

ignore some retired version variables, only use the current version

- R_POSTOP_BOWELISCH <= POSTOP_INTISCH: Bowel Ischemia
- R_LE_ISCH <= POSTOP_LEGEMBO: LE Ischemia
- R_POSTOP_RENAL <= POSTOP_DIALYSIS: change of renal function

record treatment status of the vessels

- NUM_TREATED_BRANCHES: number of treated branches: 4,3,2,1
- NUM_TREATED_RENALS: number of treated renals: 2,1,0
- $\bullet \ \, \mathsf{OCCLUDED_RENAL}, \mathsf{OCCLUDED_SMA}, \mathsf{OCCLUDED_CELIAC}, \mathsf{OCCLUDED_LSUB} \colon \mathrm{whether} \ \mathrm{this} \ \mathrm{vessel} \ \mathrm{is} \ \mathrm{occluded} \ \mathrm{or} \ \mathrm{covered}. \\$

Volume variables

Store a new dataset for further study

Select the variable related to our study. Give them labels for better-looking tables. Finally store the new dataset as a seperate csv file, so that we could use the cleaned dataset in the future modeling.