CONCOURS D'ENTRÉE

DEUXIÈME ÉPREUVE DE MATHÉMATIQUES

Durée 4h. OPTION A

Le sujet est composé d'un problème comportant 3 parties. Toutes les réponses doivent être soigneusement justifiées.

Convexité dans \mathbb{R}^n

La première partie de ce problème porte sur les ensembles convexes de \mathbb{R}^n (définitions, propriétés). La deuxième partie est consacrée aux fonctions convexes de $C \subset \mathbb{R}^n$ dans \mathbb{R} . La troisième partie fournit quelques exemples et applications.

On pourra utiliser les résultats classiques sur les fonctions convexes d'une variable (i.e. définies sur un sous-ensemble de \mathbb{R}), en explicitant soigneusement les résultats utilisés.

A. Ensembles convexes.

Pour $\|\cdot\|$ une norme de \mathbb{R}^n , B est une boule pour cette norme s'il existe $x_0 \in \mathbb{R}^n$ et r > 0 tels que

$$B = \{ x \in \mathbb{R}^n \ / \ ||x - x_0|| \le r \}$$

la sphère correspondante est

$$S = \{ x \in \mathbb{R}^n / \|x - x_0\| = r \}.$$

Un sous-ensemble C de \mathbb{R}^n est convexe si pour tout $x, y \in C$ et $t \in [0, 1]$,

$$tx + (1-t)y \in C.$$

On appelle combinaison linéaire convexe des points x_i , $i=1,\ldots,k$ toute combinaison

linéaire
$$x = \sum_{i=1}^k t_i x_i$$
 avec $t_i \in [0,1]$ et $\sum_{i=1}^k t_i = 1$.

- **0.** Parmi les sous-ensembles de \mathbb{R}^n ci-dessous, lesquels sont convexes?
 - i) B une boule pour une norme de \mathbb{R}^n ,
 - ii) S une sphère pour une norme de \mathbb{R}^n ,
 - iii) pour $u \in \mathbb{R}$, $\mathcal{H}_u = \{x = (x_1, \dots, x_n) \in \mathbb{R}^n / x_1 + \dots + x_n = u\}$.
- 1.a Montrer qu'un ensemble convexe est stable par combinaison linéaire convexe.
- **1.b** Montrer qu'un ensemble convexe de \mathbb{R}^n est connexe.
- 1.c Montrer que toute intersection d'ensembles convexe et convexe.
- 1.d Montrer que l'adhérence d'un ensemble convexe est convexe.
- 1.e Montrer que l'intérieur d'un ensemble convexe est convexe.
- **2.** Étant donné un sous-ensemble A de \mathbb{R}^n , on appelle enveloppe convexe de A l'intersection de tous les ensembles convexes de \mathbb{R}^n qui contiennent A, on note Cv(A) l'enveloppe convexe de A. Montrer que Cv(A) est l'ensemble des combinaisons linéaires convexes des points de A.
- **3.** Soit C un ensemble convexe de \mathbb{R}^n , $x \in C$ est un point extrémal de C si $C \setminus \{x\}$ est convexe.
- **3.a** Montrer que $x \in C$ est un point extrémal de C si et seulement si :
- $\exists t \in]0,1[,\exists y,z \in C \text{ tels que } ty+(1-t)z=x \Longrightarrow y=z=x.$
- **3.b** Si $\|\cdot\|$ désigne la norme Euclidienne de \mathbb{R}^n et B une boule pour cette norme, quels sont les points extrémaux de B?
- Si $||x||_{\infty} = \max_{i=1,\dots,n} |x_i|$ et si B_{∞} désigne une boule pour cette norme, quels sont les points

extrémaux de B_{∞} ?

3.c On appelle simplexe tout sous-ensemble de \mathbb{R}^n qui est l'enveloppe convexe d'un nombre fini de points de \mathbb{R}^n .

Montrer qu'un simplexe est compact. Quels sont les points extrémaux d'un simplexe?

4. Soit C un compact convexe de \mathbb{R}^n , montrer que l'ensemble des points extrémaux de C est non vide.

Indication: on pourra commencer par montrer que pour tout a $\not\in C$ il existe $b \in C$ tel que

$$\forall x \in C \quad ||a - x|| \le ||a - b||,$$

pour $\|\cdot\|$ la norme Euclidienne sur \mathbb{R}^n .

B. Fonctions convexes

Une fonction f définie sur un convexe $C \subset \mathbb{R}^n$,

$$f: C \longrightarrow \mathbb{R}$$

est une fonction convexe si et seulement si pour tout $x, y \in C$ et $t \in [0, 1]$,

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y).$$

La fonction f est strictement convexe si et seulement si elle est convexe et $\exists t \in]0,1[,\exists x,y \in C$ tels que $f(tx+(1-t)y)=tf(x)+(1-t)f(y)\Longrightarrow x=y.$ 1.a Soit C un ensemble convexe de \mathbb{R}^n et f une fonction définie sur C, on note :

$$F_f = \{(x, \lambda) \in C \times \mathbb{R} / f(x) \le \lambda\} \text{ et}$$
$$E_f = \{(x, \lambda) \in C \times \mathbb{R} / f(x) < \lambda\}.$$

Montrer que f est convexe si et seulement si les ensembles F_f et E_f sont des ensembles convexes de \mathbb{R}^{n+1} .

1.b Soit $(f_i)_{i \in D}$, une famille quelconque de fonctions convexes sur C, ensemble convexe de \mathbb{R}^n , telle que pour tout $x \in C$,

$$\sup_{i \in D} f_i(x) < +\infty.$$

Montrer que $f = \sup_{i \in D} f_i$ est une fonction convexe sur C.

2. Version discrète de l'inégalité de Jensen

Soit f une fonction convexe sur un ensemble convexe $C \subset \mathbb{R}^n$. Montrer que pour tout

$$x_1, \ldots, x_k \in C$$
 et $t_1, \ldots, t_k \in [0, 1]$ tels que $\sum_{i=1}^k t_i = 1$, on a :

$$f\left(\sum_{i=1}^{k} t_i x_i\right) \le \sum_{i=1}^{k} t_i f(x_i).$$

Si f est strictement convexe, montrer que

$$\exists t_i \in]0,1[\forall i=1,\ldots,n \text{ et } \sum_{i=1}^n t_i = 1 \text{ tels que } f\left(\sum_{i=1}^k t_i x_i\right) = \sum_{i=1}^k t_i f(x_i)$$

$$\implies \forall i=1,\ldots,n \text{ } x_i = x_1.$$

3. Le but de cette question est de montrer que toute fonction convexe définie sur un ensemble convexe $C \subset \mathbb{R}^n$ est continue sur l'intérieur $\overset{\circ}{C}$ de C. On considère donc f une fonction convexe définie sur C.

On considère $\|\cdot\|$ une norme sur \mathbb{R}^n .

- ${\bf 3.a}$ Montrer que f est bornée sur tout simplexe inclus dans C.
- **3.b** Soit $x_0 \in \overset{\circ}{C}$, montrer qu'il existe un simplexe inclus dans C qui contient x_0 dans son

intérieur.

Montrer qu'il existe une boule $B_1 \subset C$ centrée en x_0 et M > 0 tel que pour tout $x \in B_1$, $|f(x)| \leq M$.

3.c Montrer que pour tout $x \in B_1$,

$$f(x) \ge 2f(x_0) - M.$$

3.d On note 2α le rayon de la boule B_1 et on note B_2 la boule centrée en x_0 et de rayon α . Montrer qu'il existe L > 0 tel que pour tout $x_1, x_2 \in B_2$,

$$|f(x_1) - f(x_2)| \le L||x_1 - x_2||.$$

Indication: pour deux points distincts x_1 et x_2 de B_2 , on pourra utiliser les points

$$x_1' = x_1 - \alpha \frac{x_2 - x_1}{\|x_2 - x_1\|}, \ x_2' = x_2 + \alpha \frac{x_2 - x_1}{\|x_2 - x_1\|}.$$

- **3.e** Conclure que f est continue sur $\overset{\circ}{C}$.
- 4. Montrer que si f est continue et convexe sur un simplexe C alors f atteint son maximum en un point extrémal.
- **5.a** Montrer que f est convexe sur C ensemble convexe de \mathbb{R}^n si et seulement si pour tout $x,y\in C$, la fonction

$$h_{x,y}: [0,1] \longrightarrow \mathbb{R}$$

 $t \mapsto f((1-t)x + ty)$

est convexe.

5.b Montrer aussi que si f est convexe alors pour tout $h \in \mathbb{R}^n$ et pour tout $x \in \overset{\circ}{C}$, la fonction

$$g_{x,h}: V_0 \longrightarrow \mathbb{R}$$
 $t \mapsto f(x+th)$

est convexe sur un voisinage $V_0 \subset \mathbb{R}$ de t = 0.

- **5.c** En déduire qu'une fonction f définie sur un convexe ouvert C et de classe C^2 est convexe si et seulement si la matrice Hessienne H(x,y) de f en (x,y) 1 est semi-définie positive 2 pour tout $(x,y) \in C$.
- **5.d** En déduire que si f est de classe C^2 et convexe sur C un ouvert convexe alors pour que $x^* \in C$ soit un minimum de f, il suffit que $\nabla f(x^*) = 0$ où $\nabla f(x)$ désigne le vecteur gradient de f en x i.e. le vecteur des dérivées partielles.
- **6.** Montrer que si f est strictement convexe sur un ensemble convexe C et s'il existe $x \in C$ tel que $f(x) = \inf_{y \in C} f(y)$ alors x est le seul élément de C à réaliser le minimum de f sur C.

C. Exemples et applications

- 1. Parmi les fonctions suivantes définies sur $C \subset \mathbb{R}^n$, lesquelles sont convexes?
 - i) $x \mapsto ||x||, C = \mathbb{R}^n$, où $||\cdot||$ est une norme de \mathbb{R}^n ,

ii)
$$x \mapsto a^T \cdot x + b$$
, $C = \mathbb{R}^n$, $a \in \mathbb{R}^n$ et $b \in \mathbb{R}$.

iii)
$$(x,y) \mapsto \frac{x^2}{y+1}$$
, $C = \{(x,y) \in \mathbb{R}^2 / y > -1\}$,

iv)
$$(x,y) \mapsto x \ln y + y \ln x$$
, $C = \{(x,y) \in \mathbb{R}^2 / x > 0, y > 0\}$,

v)
$$x = (x_1, ..., x_n) \mapsto e^{x_1 + ... + x_n}, C = \mathbb{R}^n,$$

 $^{^1}$ On rappelle que la matrice Hessienne est la matrice des dérivées partielles secondes : $H(x,y)_{i,j}=\frac{\partial^2 f}{\partial x_i\partial x_j}(x,y)$

²On rappelle qu'une matrice symétrique $M \in \mathcal{M}_n(\mathbb{R})$ est semi-définie positive si et seulement si pour tout $x \in \mathbb{R}^n$, $x^T \cdot M \cdot x \geq 0$, x^T désignant le vecteur ligne, transposé de x

³Pour A une matrice $n \times p$, A^T désigne la transposée.

vi)
$$x = (x_1, ..., x_n) \mapsto \ln(e^{x_1} + ... + e^{x_n}), C = \mathbb{R}^n,$$

- **2** Montrer que la fonction $f(x,y) = x \ln x + y \ln y$ admet un unique minimum sur $\{(x,y) \in \mathbb{R}^2 \mid x > 0, \ y > 0\}$ que l'on déterminera.
- **3.** Montrer que la fonction f définie sur $D = \{(x,y) \in \mathbb{R}^2, \ x^2 + y^2 \le 1\}$ par :

$$\begin{cases} f(x,y) = \frac{x^2}{y+1} & \text{si } (x,y) \neq (0,-1) \\ f(0,-1) = 0 \end{cases}$$

est convexe sur D, continue sur $D \setminus \{(0,-1)\}$. Admet-elle un prolongement continu sur D? Peut-on étendre le résultat de continuité obtenu à la question **B.3** au convexe C?

4. Inégalités de Jensen.

4.a. Une application de la version discrète de l'inégalité de Jensen.

On considère $P = (p_1, \ldots, p_k) \in \mathbb{R}^k$ et $Q = (q_1, \ldots, q_k) \in \mathbb{R}^k$ tels que $p_i > 0$ et $q_i > 0$ pour $i = 1, \ldots, k$ et

$$\sum_{i=1}^{k} p_i = \sum_{i=1}^{k} q_i = 1.$$

On définit la divergence de Kullback-Leibler D(P||Q) par :

$$D(P||Q) = \sum_{i=1}^{k} p_i \ln \left(\frac{p_i}{q_i}\right).$$

Montrer que $D(P||Q) \ge 0$ et que D(P||Q) = 0 si et seulement si $p_i = q_i$ pour tout i = 1, ..., k.

Indication : on pourra commencer par montrer que $x \mapsto x \ln x$ est strictement convexe sur son ensemble de définition.

On note
$$\mathcal{P} = \left\{ (P, Q) \in]0, 1[^k \times]0, 1[^k / \sum_{i=1}^k p_i = \sum_{i=1}^k q_i = 1 \right\}.$$

L'application:

$$\begin{array}{ccc} \mathcal{P} & \longrightarrow & \mathbb{R}^+ \\ (P,Q) & \mapsto & D(P||Q) \end{array}$$

définit-elle une distance?

4.b. Version continue I

Soit $\varphi:[0,1]\to\mathbb{R}$ une fonction continue et f une fonction convexe sur \mathbb{R} , comparer $f\left(\frac{1}{n}\sum_{k=1}^n\varphi(\frac{k}{n})\right)$ et $\frac{1}{n}\sum_{k=1}^nf\left(\varphi(\frac{k}{n})\right)$ puis montrer que

$$f\left(\int_{0}^{1}\varphi(t)dt\right)\leq\int_{0}^{1}f(\varphi(t))dt.$$

4.c. Version continue II

On considère f une fonction convexe sur \mathbb{R} . Soit [a,b] un intervalle de \mathbb{R} , $g:[a,b]\to\mathbb{R}^+$

une fonction continue telle que $\int_a^b g(t)dt = 1$, et φ une fonction continue sur [a,b]. Montrer que

$$f\left(\int_{a}^{b} \varphi(t)g(t)dt\right) \leq \int_{a}^{b} f(\varphi(t))g(t)dt.$$

Indication : on pourra commencer par montrer cette inégalité pour φ une fonction en escalier.

4.d. Application à la $\it divergence \ de \ Kullback-Leibler$

Pour deux fonctions continues φ_1 et φ_2 de [0,1] dans \mathbb{R}^+_{\star} telles que

$$\int_{0}^{1} \varphi_j(t)dt = 1 \quad j = 1, 2,$$

on définit

$$D(\varphi_1||\varphi_2) = \int_0^1 \varphi_1(t) \ln \frac{\varphi_1(t)}{\varphi_2(t)} dt.$$

Montrer que $D(\varphi_1||\varphi_2) \geq 0$.