Section F Graphs and Hypothesis Testing Lectures 11 and 12

Michael F. Seese

Department of Political Science University of California San Diego

Political Science 30, Week 7

Outline

Graphs

Hypothesis Testing

Replication code is available on GitHub

• https://github.com/mfseese/Poli30_Spring2021

Graphs: Scatter Plots

Graphs: Scatter Plots

Graphs: Scatter Plots

Graphs: Line Graphs

Graphs: Line Graphs

Hypothesis Testing

- Statistical method that uses [sample] data to evaluate a hypothesis [about a population]
- ▶ Used to determine whether there is a *significant* difference, effect, or relationship

Steps in a Hypothesis Test

- 1. State your hypotheses
 - Null, H_0 , which hypothesizes no difference, effect, or relationship Generally takes the form H_0 : $\bar{x}_2 \bar{x}_1 = 0$
 - Alternative, H_1 , which posits some relationship Something like H_0 : $\bar{x}_2 - \bar{x}_1 \neq 0$
- 2. Gather your data and calculate the difference in means / proportions, slopes, etc.
- 3. Calculate the 95% confidence interval
- 4. Make a decision
 - Reject the null hypothesis
 - Fail to reject the null

Confidence Intervals

Interval and Ratio Variables

$$(\bar{X}_2 - \bar{X}_1) \pm 2 \cdot \sqrt{(SE_1)^2 + (SE_2)^2}$$

Where

$$SE = \frac{\hat{\sigma}}{\sqrt{N}} \tag{2}$$

Nominal and Ordinal Variables

$$(\hat{P}_2 - \hat{P}_1) \pm 2 \cdot \sqrt{(SE_1)^2 + (SE_2)^2}$$

Where

$$SE = \frac{\hat{\sigma}}{\sqrt{N}} = \frac{\sqrt{(\hat{P})(1-\hat{P})}}{\sqrt{N}}$$

(4)

(3)

(1)

- Use Ronald Fisher's famous Iris Dataset
- Look at some Stata output (replication code posted to GitHub)

► We're going to test whether the sepal length of the Virginica Iris is significantly different from that of the Setosa Iris

$$H_0$$
 $\bar{X}_{Virginica} - \bar{X}_{Setosa} = 0$

$$H_1 \ \bar{X}_{\text{Virginica}} - \bar{X}_{\text{Setosa}} > 0$$

Table: Iris Data Summary Statistics

Iris Species	Observations	Mean	Standard Deviation	Min	Max
Setosa	50	5.006	0.3524897	4.3	5.8
Virginica	50	6.588	0.6358796	4.9	7.9

$$(\bar{X}_2 - \bar{X}_1) \pm 2 \cdot \sqrt{(SE_1)^2 + (SE_2)^2}$$
 (1)

$$(6.588 - 5.006) \pm 2 \cdot \sqrt{\left(\frac{0.352}{\sqrt{50}}\right)^2 + \left(\frac{0.635}{\sqrt{50}}\right)^2}$$

Table: Iris Data Summary Statistics

Iris Species	Observations	Mean	Standard Deviation	Min	Max
Setosa	50	5.006	0.3524897	4.3	5.8
Virginica	50	6.588	0.6358796	4.9	7.9

$$(\bar{X}_2 - \bar{X}_1) \pm 2 \cdot \sqrt{(SE_1)^2 + (SE_2)^2}$$
 (1)

$$(6.588 - 5.006) \pm 2 \cdot \sqrt{\left(\frac{0.352}{\sqrt{50}}\right)^2 + \left(\frac{0.635}{\sqrt{50}}\right)^2}$$

Table: Iris Data Summary Statistics

Iris Species	Observations	Mean	Standard Deviation	Min	Max
Setosa	50	5.006	0.3524897	4.3	5.8
Virginica	50	6.588	0.6358796	4.9	7.9

$$(\bar{X}_2 - \bar{X}_1) \pm 2 \cdot \sqrt{(SE_1)^2 + (SE_2)^2}$$
 (1)

$$(6.588 - 5.006) \pm 2 \cdot \sqrt{\left(\frac{0.352}{\sqrt{50}}\right)^2 + \left(\frac{0.635}{\sqrt{50}}\right)^2}$$

$$(6.588 - 5.006) \pm 2 \cdot \sqrt{\left(\frac{0.352}{\sqrt{50}}\right)^2 + \left(\frac{0.635}{\sqrt{50}}\right)^2}$$

$$= 1.582 \pm 2 \cdot \sqrt{(0.0497)^2 + (0.0898)^2}$$

$$= 1.582 \pm 2 \cdot 0.102$$

$$= 1.582 \pm 0.205$$

$$= 1.377 \text{ or } 1.787 \iff \text{Confidence Interval}$$

We can therefore reject the null hypothesis, as the CI does not contain 0

. ttest seplen, by(igroup2)

Two-sample t test with equal variances

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Setosa Virginic	50 50	5.006 6.588	.0498496 .089927	.3524897 .6358796	4.905824 6.407285	5.106176 6.768715
combined	100	5.797	.0945319	.9453186	5.609428	5.984572
diff		-1.582	.1028194		-1.786042	-1.377958

$$\mbox{diff = mean(Setosa) - mean(Virginic)} \qquad \qquad \mbox{t = -15.3862} \\ \mbox{Ho: diff = 0} \qquad \qquad \mbox{degrees of freedom =} \qquad \qquad \mbox{98}$$

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0

$$Pr(T < t) = 0.0000$$
 $Pr(|T| > |t|) = 0.0000$ $Pr(T > t) = 1.0000$

. ttest seplen, by(igroup2)

Two-sample t test with equal variances

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Setosa Virginic	50 50	5.006 6.588	.0498496 .089927	.3524897 .6358796	4.905824 6.407285	5.106176 6.768715
combined	100	5.797	.0945319	.9453186	5.609428	5.984572
diff		-1.582	.1028194		-1.786042	-1.377958

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0

$$Pr(T < t) = 0.0000$$
 $Pr(|T| > |t|) = 0.0000$ $Pr(T > t) = 1.0000$

Difference in Slopes

- ► Slope is just rise over run, or $\frac{\Delta Y}{\Delta X}$
- ▶ You probably learned slope as the m in the equation y = mx + b
 - ► In statistics, we usually call it β, as in y = α + βx
 - You might also see it as b, like: y = a + bx

- ▶ Slopes help us define a relationship between two variables
- ► For example: Does the weight of your car affect the gas mileage?

- Use some data on cars
- ► Look at some Stata output (replication code posted to GitHub)

Let's test whether a car's gas mileage decreases as the weight of the car increases

$$H_0$$
 $\beta_1 = 0$ H_1 $\beta_1 < 0$

Source	SS	df	MS	Numb	er of obs	=	74
				- F(1,	72)	=	134.62
Model	1591.9902	1	1591.9902	2 Prob	> F	=	0.0000
Residual	851.469256	72	11.8259619	R-sq	uared	=	0.6515
				- Adj	R-squared	=	0.6467
Total	2443.45946	73	33.4720474	Root	MSE	=	3.4389
mpg	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
weight	0060087	.0005179	-11.60	0.000	007041	1	0049763
_cons	39.44028	1.614003	24.44	0.000	36.2228	3	42.65774

Our regression equation is: $\hat{y} = 39.440 - 0.006x$

weight _cons	0060087 39.44028	1.614003			70411 22283	42.65774
mpg	Coef.	Std. Err.				Interval
Total	2443.45946	73	33.4720474	Root MSE	=	3.438
Residual	851.469256	72	11.8259619	R-squared Adj R-squa		0.651 0.646
Model	1591.9902	1	1591.9902		=	0.000
Source	SS	df	MS	Number of (F(1, 72)	obs = =	74 134.6

Our interval is given by: $-0.0060087 \pm (2 \cdot 0.0005179)$