Optimizing Word Segmentation for Downstream Task

Tatsuya Hiraoka[†], Sho Takase[†], Kei Uchiumi[‡], Atsushi Keyaki[‡], Naoaki Okazaki[†] †Tokyo Institute of Technology, [‡]Denso IT Laboratory, Inc.

Findings of EMNLP

OVERVIEW

- Tokenization is a preprocessing for training the downstream model.
- We cannot know appropriate tokenization
 for the downstream task before evaluating the trained downstream model.
- Optimizing a downstream model and a tokenizer simultaneously, OpTok finds appropriate tokenization automatically.
- Connecting the tokenizer with the downstream model, a neural unigram LM in the tokenizer is trained using loss for downstream tasks.

EXPERIMENTS

	Sentiment Analysis		Classification with multiple inputs		Two tasks on a single corpus	
	Weibo(Zh)	Twitter(Ja)	Twitter(En)	SNLI(En)	Genre(En)	Rating(En)
SentencePiece	92.79	86.51	77.26	76.66	71.28	67.29
OpTok	92.82	86.97	78.52	77.04	71.88	67.68

F1 scores on some text classification tasks.

- OpTok achieves a higher performance than the training using SentencePiece with Subword Regularization on 3 languages.
- OpTok works in both formal and informal domains.
- OpTok works even when the downstream task requires multiple inputs.

PROPOSED METHOD

Core Idea:

- Building a unigram LM for tokenization with NN and update it using a loss for the downstream model.
- Weighting sentence vectors $h_{s'_n}$ of N-best tokenization with each tokenization's probability $p(s'_n)$ to connect the neural unigram LM with the downstream model.
- Arrows with solid lines (>) indicate differentiable paths.

EXAMPLES on Genre/Rating Prediction Tasks

- Genre/Rating tasks are created from the same corpus (Amazon Dataset).
- OpTok can find different tokenization for each task.

(1) OpTok increases the probabilities of words		
that are useful to solve the downstream tasks.		

- The right table shows the top 7 words whose probabilities increase during training.

asks.	gun	However	
nose	grip	BUT	
1030	zombie	bad	
	professional	paced	
	treat	Funk	
	gray	awesome	
ion	soap	Ok	

Genre

Rating

different ways for each task.
 The bottom table shows actual tokenization on the validation split.

(2) Trained OpTok tokenizes a sentence in

- OpTok cuts suffix off to predict correct labels from meaningful stems.

Method (true label)	Tokenization
SentencePiece	The characters were interesting in this book . []
	I will look for additional <u>books</u> by Ms . T ate .
OpTok (Genre: Book)	The characters were <u>interesting</u> in this book . []
	I will look for additional <u>book s</u> by Ms . Ta te .
OpTok (Rating: 4)	The characters were <u>interest ing</u> in this book . []
	I will look for additional <u>books</u> by Ms . T ate .