Solving Wordle with CSP

A constraint programming with LLM approach

Agenda

What's on the menu ?

- 1. What is Wordle?
- 2. Some keywords
- 3. Constraint Solver
- 4. Hybrid Solver
- 5. Possible Improvements
- 6. Conclusion

What is Wordle ?

What is wordle?

- A popular single player word guessing game
- Created by the New York Times
- ☐ Simple rules :
 - ☐ Gray letter not in word
 - ☐ Yellow in word but wrong position
 - ☐ Green in word and right position
- Perfect problem for Constraint Satisfaction Problem (CSP) and LLM application

Some Keywords

Keywords

Constraint Satisfaction Problem (CSP):

 A computational problem defined by a set of variables, domains, and constraints that must all be satisfied simultaneously.

• Heuristic (Computer science):

 A heuristic is an approach to problem-solving that employs a practical method not guaranteed to be optimal or perfect, but sufficient for reaching an immediate, short-term goal or approximate solution.

<u>Large Language Model (LLM):</u>

 A Large Language Model is a deep learning model, typically based on a transformer architecture, that uses billions (or even trillions) of parameters to perform natural language processing tasks such as text generation, translation, summarization, and question answering.

Constraint Solver

Constraint Solver - Main process

Constraint Solver - Implementation

- **Language:** Python

- CSP Solver: Google OR-Tools

- **Data processing**: Pandas

Google OR-Tools

Dataset:

<u>English word dataset</u> (~16000 5 letter words)

Model constraints:

- Letter constraints (Gray / Yellow / Green)
- Heuristic function (maximize):
 - Word score = Cp * P + Cl * L Cd * D

```
P = letter positional frequency
L = letter frequency
D = Nb duplicate letters in word
Cp = Coef. for P
Cl = Coef. for L
Cd = Coef. for D
```

Constraint Solver - Example output

```
Random word: saury
Positional frequency: [defaultdict(<class 'int'>, {0: 0.073}
{0: 0.5271653790591043, 4: 0.4901074053137366, 18: 0.410589
Length of possible words: 15921
Is saury in the dataset? True
status = OPTIMAL
Attempt 1: tares → ['B', 'G', 'Y', 'B', 'Y']
Length of possible words: 18
Is saury in the dataset? True
status = OPTIMAL
Attempt 2: sairy → ['G', 'G', 'B', 'G', 'G']
Length of possible words: 2
Is saury in the dataset? True
status = OPTIMAL
Attempt 3: saury → ['G', 'G', 'G', 'G', 'G']
Solved saury in 3 attempts!
```

Hybrid Solver

Hybrid-Solver - Solving Process

LLM Strategic Decision Making

Hybrid-Solver Demo

Possible Improvements

Possible improvements

CSP Solver

- Use bigger dataset
- Adversarial Filtering /
 Anti-Worst-Case
- Lookahead with MinimaxGuessing

<u>Hybrid-Solver</u>

- Optimize Information Gain methods
- Enhanced LLM Prompting

Conclusion

Thank You!

Any questions ?

Contacts

leon.ayral@epita.fr
gabriel.calvente@epita.fr
cedric.damais@epita.fr
yacine.benihaddadene@epita.fr