Supplementary Materials: DIDO: Deep Inertial Quadrotor Dynamical Odometry

Kunyi Zhang^{1,2} - kunyizhang@zju.edu.cn Chenxing Jiang^{1,2} - chenxingjiang@zju.edu.cn Jinghang Li² - jhanglee.ro@gmail.com Sheng Yang³ - richeng.ys@alibaba-inc.com Teng Ma³ - damon.mt@alibaba-inc.com Chao Xu^{1,2} - chaoxu@zju.edu.cn Fei Gao^{1,2} - fgaoaa@zju.edu.cn

CONTENTS

Ackn	owledge	ment	1
I	IMU K	inematics and Quadrotor Dynamics	2
	I-A		2
	I-B		2
II	Two-Sta	age EKF for Inertial Dynamical Fusion	2
	II-A	Rotation Stage	2
			2
		II-A.2 Process Model	3
		II-A.3 Measurement Model	3
			3
	II-B		3
			3
			4
			4
			6
III	One-Sta	age EKF for Inertial Dynamical Fusion	6
	III-A	•	6
	III-B		6
	III-C		7
	0		7
		8 ·· 3 · 6 · · · · · · · · · · · · · · ·	7
			8
		•	8
	III-D	1	9
IV	Observ	ability Analysis	9

¹State Key Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China.

²Huzhou Institute, Zhejiang University, Huzhou 313000, China.

³Alibaba DAMO Academy Autonomous Driving Lab, Hangzhou 311121, China.

References 10

I. IMU KINEMATICS AND QUADROTOR DYNAMICS

A. IMU Kinematics

IMU measurements include the gyroscope $\widetilde{\omega}$ and non-gravitational acceleration \widetilde{a} , which are measured in the IMU frame (the \mathcal{I} frame) and given by:

$${}^{\mathcal{I}}\widetilde{\boldsymbol{\omega}} = {}^{\mathcal{I}}\boldsymbol{\omega} + {}^{\mathcal{I}}\boldsymbol{b}_{\boldsymbol{\omega}} + \boldsymbol{n}_{\boldsymbol{\omega}},
{}^{\mathcal{I}}\widetilde{\boldsymbol{a}} = {}^{\mathcal{I}}\boldsymbol{a} + {}^{\mathcal{I}}\boldsymbol{b}_{\boldsymbol{a}} + {}^{\mathcal{G}}_{\mathcal{I}}\mathbf{R}^{\mathsf{T}\mathcal{G}}\mathbf{g} + \boldsymbol{n}_{\boldsymbol{a}}, \tag{1}$$

where ${}^{\mathcal{I}}\omega$ and ${}^{\mathcal{I}}a$ are the true angular velocity and acceleration, ${}^{\mathcal{G}}\mathbf{g}=[0,0,9.8]$ is the gravity vector in the gravity-aligned frame (the \mathcal{G} frame), ${}^{\mathcal{G}}_{\mathcal{I}}\mathbf{R}$ is the rotation matrix from the \mathcal{I} frame to the \mathcal{G} frame, n_{ω} and n_a are the additive Gaussian white noise in gyroscope and acceleration measurements, b_{ω} and b_a are the bias of IMU modeled as random walk:

$$n_{\omega} \sim \mathcal{N}(0, \Sigma_{\omega}^2), \quad \dot{\boldsymbol{b}}_{\omega} \sim \mathcal{N}(0, \Sigma_{\boldsymbol{b}_{\omega}}^2),$$

 $n_{\boldsymbol{a}} \sim \mathcal{N}(0, \Sigma_{\boldsymbol{a}}^2), \quad \dot{\boldsymbol{b}}_{\boldsymbol{a}} \sim \mathcal{N}(0, \Sigma_{\boldsymbol{b}_{\boldsymbol{a}}}^2).$ (2)

B. Quadrotor Dynamics

Because the propagation of kinematic states is driven by multiple propulsion units in a quadrotor system, we model the Newtonian dynamics according to [1]. The total driving force of a quadrotor in the body frame (the \mathcal{B} frame) is the sum of the thrust ${}^{\mathcal{B}}\mathbf{F}_t$ and drag force ${}^{\mathcal{B}}\mathbf{F}_d$ generated by each propulsion unit as follow:

$${}^{\mathcal{B}}\boldsymbol{F} = \sum_{i=1}^{4} \left({}^{\mathcal{B}}\boldsymbol{F}_{t_i} - {}^{\mathcal{B}}\boldsymbol{F}_{d_i} \right) = \sum_{i=1}^{4} \left(\tau u_i^2 \boldsymbol{e}_3 - u_i D^{\mathcal{B}} \boldsymbol{v}_i \right), \tag{3}$$

where τ is the thrust coefficient for the propellers, $D = diag(d_x, d_y, d_z)$ is the matrix of effective linear drag coefficients, $e_3 = [0, 0, 1]^{\mathsf{T}}$ is the z axis in any frame, and u_i and ${}^{\mathcal{B}}\boldsymbol{v}_i$ are the rotation speed and velocity of the i-th rotor, respectively. Actually, the velocity of each rotor is:

$${}^{\mathcal{B}}\boldsymbol{v}_{i} = {}^{\mathcal{B}}\boldsymbol{v} + {}^{\mathcal{B}}\boldsymbol{\omega} \times {}^{\mathcal{B}}\boldsymbol{r}_{i}^{\mathcal{B}}, \tag{4}$$

where ${}^{\mathcal{B}}v$ and ${}^{\mathcal{B}}\omega$ are the linear and angular velocity of the quadrotor's center of mass (CoM), ${}^{\mathcal{B}}r_i^{\mathcal{B}}$ is the position of the *i*-th rotor relative to the CoM. To simplify the calculation, we ignore the velocity discrepancy of different rotors and express it as:

$${}^{\mathcal{B}}\boldsymbol{v}_{i} \approx {}^{\mathcal{B}}\boldsymbol{v}.$$
 (5)

The input notations are abbreviated as:

$$U_{ss} = \sum_{i=1}^{4} u_i^2, \quad U_s = \sum_{i=1}^{4} u_i, \tag{6}$$

so we can obtain the Newtonian equation in the \mathcal{G} frame:

$$m\frac{d}{dt} (^{\mathcal{G}} \mathbf{v}) = {}_{\mathcal{B}}^{\mathcal{G}} \mathbf{R} \left(\tau U_{ss} \mathbf{e}_3 - U_s D_{\mathcal{B}}^{\mathcal{G}} \mathbf{R}^{\top \mathcal{G}} \mathbf{v}_{\mathcal{B}}^{\mathcal{G}} \right) - m^{\mathcal{G}} \mathbf{g}.$$
 (7)

II. TWO-STAGE EKF FOR INERTIAL DYNAMICAL FUSION

A. Rotation Stage

1) State: In the rotation stage, the rotation of the \mathcal{I} frame in the \mathcal{G} frame is taken as state:

$$x = {}^{\mathcal{G}}_{\mathcal{I}}q. \tag{8}$$

2) Process Model: The rotational equation is given:

$$\dot{\boldsymbol{x}} = \frac{1}{2} {}^{\mathcal{G}}_{\mathcal{I}} \boldsymbol{q} \otimes {}^{\mathcal{I}} \boldsymbol{\omega} = \frac{1}{2} {}^{\mathcal{G}}_{\mathcal{I}} \boldsymbol{q} \otimes ({}^{\mathcal{I}} \widehat{\boldsymbol{\omega}} + \boldsymbol{n}_{\boldsymbol{\omega}}), \tag{9}$$

where ${}^{\mathcal{I}}\widehat{\boldsymbol{\omega}} = {}^{\mathcal{I}}\widehat{\boldsymbol{\omega}} - {}^{\mathcal{I}}\widehat{\boldsymbol{b}}_{\boldsymbol{\omega}}$, $\boldsymbol{n}_{\boldsymbol{\omega}} \sim \mathcal{N}(0, \boldsymbol{\Sigma}_{\boldsymbol{\omega}}^2)$, and ${}^{\mathcal{I}}\widehat{\boldsymbol{b}}_{\boldsymbol{\omega}}$ is the output of the gyroscope *De-Bias Net*. The above differential equation is discretized as follows:

$$\begin{aligned}
\boldsymbol{x}_{k+1} &= \mathbf{F}(\boldsymbol{x}_k, \boldsymbol{u}_k, \boldsymbol{n}_k) \\
&= \mathbf{F}_{\boldsymbol{x}} \boldsymbol{x}_k + \mathbf{F}_{\boldsymbol{n}} \boldsymbol{n}_k,
\end{aligned} \tag{10}$$

where,

$$\mathbf{F}_{x} = \frac{\partial \mathbf{F}}{\partial \boldsymbol{x}_{k}} = \mathbf{I}_{4} + \frac{\Delta t}{2} \begin{bmatrix} 0 & -^{\mathcal{I}} \widehat{\boldsymbol{\omega}}^{\top} \\ \mathcal{I} \widehat{\boldsymbol{\omega}} & \lfloor^{\mathcal{I}} \widehat{\boldsymbol{\omega}} \rfloor_{\times} \end{bmatrix},$$

$$\mathbf{F}_{n} = \frac{\partial \mathbf{F}}{\partial \boldsymbol{n}_{\omega}} = \frac{\Delta t}{2} \begin{bmatrix} -q_{x} & -q_{y} & -q_{z} \\ q_{w} & -q_{z} & q_{y} \\ q_{z} & q_{w} & -q_{x} \\ -q_{y} & q_{x} & q_{w} \end{bmatrix} = \frac{\Delta t}{2} \begin{bmatrix} -\boldsymbol{q}_{v} \\ q_{w} \mathbf{I}_{3} + \lfloor \boldsymbol{q}_{v} \rfloor_{\times} \end{bmatrix}.$$
(11)

Specifically, $\boldsymbol{q} = [q_w, q_x, q_y, q_z]^{\top} = [q_w, \boldsymbol{q}_v^{\top}]^{\top}.$

3) Measurement Model: The attitude controllers of most flying robots rely on the complementary filters [2, 3] to obtain attitude observations. Similarly, we consider the gravity alignment constraint to obtain the tilt observation:

$${}^{\mathcal{I}}\widehat{a} \approx {}^{\mathcal{G}}_{\mathcal{I}} \mathbf{R}^{\mathsf{T}\mathcal{G}} \mathbf{g} + \boldsymbol{n_a}. \tag{12}$$

Similarly, ${}^{\mathcal{I}}\widehat{a} = {}^{\mathcal{I}}\widehat{a} - {}^{\mathcal{I}}\widehat{b}_a$, $n_a \sim \mathcal{N}(0, \Sigma_a^2)$, and ${}^{\mathcal{I}}\widehat{b}_a$ is the output of the accelerator *De-Bias Net*. The above observation equation is approximated as:

$$\mathbf{z}_k = \mathbf{H}(\mathbf{x}_k) = \mathbf{H}_{\mathbf{x}} \mathbf{x}_k, \tag{13}$$

where,

$$\mathbf{H}_{x} = 2 \left[\mathbf{e}_{3} \times \mathbf{q}_{v} \mid \mathbf{e}_{3} \times \mathbf{q}_{v} + q_{w} \mathbf{e}_{3} \right]_{\times} + \left(\mathbf{q}_{v} \cdot \mathbf{e}_{3} \right) \mathbf{I}_{3} - \mathbf{e}_{3} \mathbf{q}_{v}^{\top} \right]. \tag{14}$$

4) Extended Kalman Filter:

$$\boldsymbol{x}_{k+1|k} = \mathbf{F}(\boldsymbol{x}_{k|k}, \boldsymbol{u}_{k}),$$

$$\mathbf{P}_{k+1|k} = \mathbf{F}_{\boldsymbol{x}} \mathbf{P}_{k|k} \mathbf{F}_{\boldsymbol{x}}^{T} + \mathbf{F}_{\boldsymbol{u}} \mathbf{Q}_{k} \mathbf{F}_{\boldsymbol{u}}^{T},$$

$$\mathbf{K}_{k+1} = \mathbf{P}_{k+1|k} \mathbf{H}_{\boldsymbol{x}}^{T} \left(\mathbf{H}_{\boldsymbol{x}} \mathbf{P}_{k+1|k} \mathbf{H}_{\boldsymbol{x}}^{T} + \mathbf{R}_{k+1} \right)^{-1},$$

$$\boldsymbol{x}_{k+1|k+1} = \boldsymbol{x}_{k+1|k} \oplus \left(\mathbf{K}_{k+1} (\boldsymbol{z}_{k+1} - \mathbf{H}(\boldsymbol{x}_{k+1|k})) \right),$$

$$\mathbf{P}_{k+1|k+1} = \left(\mathbf{I} - \mathbf{K}_{k+1} \mathbf{H}_{\boldsymbol{x}} \right) \mathbf{P}_{k+1|k},$$
(15)

where,

$$\mathbf{Q} = \mathbf{\Sigma}_{\boldsymbol{\omega}}^2, \quad \mathbf{R} = \mathbf{\Sigma}_{\boldsymbol{a}}^2. \tag{16}$$

B. Translation Stage

1) State: The state of the second stage is defined as:

$$\boldsymbol{x} = ({}^{\mathcal{G}}\boldsymbol{p}_{\mathcal{B}}^{\mathcal{G}}, {}^{\mathcal{G}}\boldsymbol{v}_{\mathcal{B}}^{\mathcal{G}}, \tau, \boldsymbol{d}, {}^{\mathcal{I}}\boldsymbol{p}_{\mathcal{B}}^{\mathcal{I}}, {}^{\mathcal{I}}\boldsymbol{t}_{\mathcal{B}}^{\mathcal{I}}), \tag{17}$$

where ${}^{\mathcal{G}}\boldsymbol{p}_{\mathcal{B}}^{\mathcal{G}}$ and ${}^{\mathcal{G}}\boldsymbol{v}_{\mathcal{B}}^{\mathcal{G}}$ are respectively the velocity and position of the quadrotor body \mathcal{B} frame expressed in the \mathcal{G} frame, τ is the thrust coefficient, \boldsymbol{d} is the drag vector of (d_x, d_y, d_z) , and $({}^{\mathcal{I}}_{\mathcal{B}}\boldsymbol{q}, {}^{\mathcal{I}}\boldsymbol{t}_{\mathcal{B}}^{\mathcal{I}})$ is the extrinsic parameter between the \mathcal{B} and the \mathcal{I} frame.

2) *Process Model:* We regard the quadrotor dynamics as the input, and express the complete process model as follows:

where $_{\mathcal{B}}^{\mathcal{G}}\mathbf{R} = _{\mathcal{I}}^{\mathcal{G}}\mathbf{R}_{\mathcal{B}}^{\mathcal{I}}\mathbf{R}$ is the rotation from the quadrotor body \mathcal{B} frame to the \mathcal{G} frame, and $\widehat{\mathbf{f}}_{res}$ and $\widehat{\mathbf{\Sigma}}_{\mathbf{f}}^2$ ($\mathbf{n}_{\mathbf{f}} \sim \mathcal{N}(0, \widehat{\mathbf{\Sigma}}_{\mathbf{f}}^2)$) are the *Res-Dynamics Net* outputs.

The above differential equation is discretized as follows:

$$\mathbf{x}_{k+1} = \mathbf{F}(\mathbf{x}_k, \mathbf{u}_k, \mathbf{n}_k) = \mathbf{F}_{r} \mathbf{x}_k + \mathbf{F}_{r} \mathbf{n}_k,$$
(19)

where,

$$\mathbf{F}_{x} = \begin{bmatrix} \mathbf{I}_{3} & \frac{\partial p_{k+1}}{\partial v_{k}} & \mathbf{0}_{31} & \mathbf{0}_{3} & \mathbf{0}_{3} & \mathbf{0}_{3} \\ \mathbf{0}_{3} & \frac{\partial v_{k+1}}{\partial v_{k}} & \frac{\partial v_{k+1}}{\partial \tau} & \frac{\partial v_{k+1}}{\partial d} & \frac{\partial v_{k+1}}{\partial \frac{\mathcal{F}}{\mathcal{F}}} & \mathbf{0}_{3} \\ \mathbf{0}_{13} & \mathbf{0}_{13} & 1 & \mathbf{0}_{13} & \mathbf{0}_{13} & \mathbf{0}_{13} \\ \mathbf{0}_{3} & \mathbf{0}_{3} & \mathbf{0}_{31} & \mathbf{I}_{3} & \mathbf{0}_{3} & \mathbf{0}_{3} \\ \mathbf{0}_{3} & \mathbf{0}_{3} & \mathbf{0}_{31} & \mathbf{0}_{3} & \mathbf{I}_{3} & \mathbf{0}_{3} \\ \mathbf{0}_{3} & \mathbf{0}_{3} & \mathbf{0}_{31} & \mathbf{0}_{3} & \mathbf{I}_{3} & \mathbf{0}_{3} \\ \mathbf{0}_{3} & \mathbf{0}_{3} & \mathbf{0}_{31} & \mathbf{0}_{3} & \mathbf{0}_{3} & \mathbf{I}_{3} \end{bmatrix}^{\mathsf{T}}.$$

$$(20)$$

Specifically,

$$\frac{\partial \boldsymbol{p}_{k+1}}{\partial \boldsymbol{v}_{k}} = \mathbf{I}_{3} \Delta t,
\frac{\partial \boldsymbol{v}_{k+1}}{\partial \boldsymbol{v}_{k}} = \mathbf{I} - \frac{U_{s} \Delta t}{m} {}_{\mathcal{B}}^{\mathcal{G}} \mathbf{R} D_{\mathcal{B}}^{\mathcal{G}} \mathbf{R}^{\top},
\frac{\partial \boldsymbol{v}_{k+1}}{\partial \tau} = \frac{U_{ss} \Delta t}{m} {}_{\mathcal{B}}^{\mathcal{G}} \boldsymbol{r}_{3},
\frac{\partial \boldsymbol{v}_{k+1}}{\partial \boldsymbol{d}} = -\frac{\Delta t}{m} \left[{}_{\mathcal{B}}^{\mathcal{G}} \boldsymbol{r}_{1}^{\mathcal{G}} \boldsymbol{v}_{\mathcal{B}}^{\mathcal{G}} \right] {}_{\mathcal{B}}^{\mathcal{G}} \boldsymbol{r}_{2}^{\mathcal{G}} \boldsymbol{r}_{2}^{\mathcal{G}} \boldsymbol{r}_{2}^{\mathcal{G}} \boldsymbol{r}_{3}^{\mathcal{G}} \boldsymbol$$

and $r_i = \mathbf{R} e_i$.

3) Measurement Models: There are three measurements corresponding to the translation stage: the IMU acceleration, the network velocity, and the network displacement measurements.

a) dynamics constraint measurements: The dynamics constraint measurements are expressed as:

$${}^{\mathcal{I}}\widehat{\boldsymbol{a}} = \mathbf{H}_{d}(\boldsymbol{x}, \boldsymbol{n}_{\boldsymbol{a}})$$

$$= \frac{1}{m}{}^{\mathcal{I}}_{\mathcal{B}}\mathbf{R} \left(\tau U_{ss}\boldsymbol{e}_{3} - U_{s}D_{\mathcal{B}}^{\mathcal{G}}\mathbf{R}^{\top\mathcal{G}}\boldsymbol{v}_{\mathcal{B}}^{\mathcal{G}} + \widehat{\boldsymbol{f}}_{res}\right) + {}^{\mathcal{I}}\widehat{\boldsymbol{\omega}} \times ({}^{\mathcal{I}}\widehat{\boldsymbol{\omega}} \times {}^{\mathcal{I}}\boldsymbol{t}_{\mathcal{B}}^{\mathcal{I}}) + {}^{\mathcal{I}}\widehat{\boldsymbol{\alpha}} \times {}^{\mathcal{I}}\boldsymbol{t}_{\mathcal{B}}^{\mathcal{I}} + \boldsymbol{n}_{\boldsymbol{a}},$$

$$(22)$$

whose jacobian can be given as:

$$\frac{\partial \mathbf{H}_d}{\partial \mathbf{x}_k} = \begin{bmatrix} \mathbf{0}_3 & \frac{\partial \mathbf{H}_d}{\partial \mathbf{v}_k} & \frac{\partial \mathbf{H}_d}{\partial \tau} & \frac{\partial \mathbf{H}_d}{\partial d} & \frac{\partial \mathbf{H}_d}{\partial \mathcal{I}_B} & \frac{\partial \mathbf{H}_d}{\partial \tau \mathbf{t}_B^T} \end{bmatrix}, \tag{23}$$

where,

$$\frac{\partial \mathbf{H}_{d}}{\partial \boldsymbol{v}_{k}} = -\frac{U_{s}}{m}_{\mathcal{B}}^{\mathcal{I}} \mathbf{R} D_{\mathcal{B}}^{\mathcal{G}} \mathbf{R}^{\top},
\frac{\partial \mathbf{H}_{d}}{\partial \tau} = \frac{U_{ss}}{m}_{\mathcal{B}}^{\mathcal{I}} \boldsymbol{r}_{3},
\frac{\partial \mathbf{H}_{d}}{\partial \boldsymbol{d}} = -\frac{U_{s}}{m} \begin{bmatrix} \mathcal{I}_{\mathcal{B}} \boldsymbol{r}_{1}^{\mathcal{G}} \boldsymbol{r}_{1}^{\top \mathcal{G}} \boldsymbol{v}_{\mathcal{B}}^{\mathcal{G}} & \mathcal{I}_{\mathcal{B}} \boldsymbol{r}_{2}^{\mathcal{G}} \boldsymbol{r}_{2}^{\top \mathcal{G}} \boldsymbol{v}_{\mathcal{B}}^{\mathcal{G}} & \mathcal{I}_{\mathcal{B}} \boldsymbol{r}_{3}^{\mathcal{G}} \boldsymbol{r}_{3}^{\top \mathcal{G}} \boldsymbol{v}_{\mathcal{B}}^{\mathcal{G}} \end{bmatrix},
\frac{\partial \mathbf{H}_{d}}{\partial \boldsymbol{d}} = \frac{1}{m}_{\mathcal{B}}^{\mathcal{I}} \mathbf{R} \left(-\tau U_{ss} \left[\boldsymbol{e}_{3} \right]_{\times} + U_{s} \left(\left[D_{\mathcal{B}}^{\mathcal{G}} \mathbf{R}^{\top \mathcal{G}} \boldsymbol{v}_{\mathcal{B}}^{\mathcal{G}} \right]_{\times} - D \left[\mathcal{G}_{\mathcal{B}} \mathbf{R}^{\top \mathcal{G}} \boldsymbol{v}_{\mathcal{B}}^{\mathcal{G}} \right]_{\times} \right) - \left[\widehat{\boldsymbol{f}}_{res} \right]_{\times} \right),
\frac{\partial \mathbf{H}_{d}}{\partial \mathcal{I}} \boldsymbol{t}_{\mathcal{B}}^{\mathcal{I}} = \left[\mathcal{I} \widehat{\boldsymbol{\omega}} \right]_{\times} \left[\mathcal{I} \widehat{\boldsymbol{\omega}} \right]_{\times} + \left[\mathcal{I} \widehat{\boldsymbol{\alpha}} \right]_{\times} \right].$$
(24)

Specifically, ${}^{\mathcal{I}}\widehat{\alpha}$ is the angular acceleration in the \mathcal{I} frame, which is obtained by differentiating the angular velocity, ${}^{\mathcal{I}}\widehat{\alpha} = \frac{d}{dt}\widehat{\omega}$. In practice, we low-pass filter the $\widehat{\omega}$, $\widehat{\alpha}$ to reduce noise. And, the noise of IMU acceleration measurements is $n_a \sim \mathcal{N}(0, \Sigma_a^2)$.

b) network velocity measurements: The velocity measurements from V-P Net are expressed as:

$$\mathcal{G}\widehat{\boldsymbol{v}}_{\mathcal{I}}^{\mathcal{G}} = \mathbf{H}_{v}(\boldsymbol{x}, \boldsymbol{n}_{v})
= \mathcal{G}\boldsymbol{v}_{\mathcal{B}}^{\mathcal{G}} - \mathcal{G}_{\mathcal{I}}^{\mathcal{G}}\mathbf{R} \left(\mathcal{I}\widehat{\boldsymbol{\omega}} \times \mathcal{I}\boldsymbol{t}_{\mathcal{B}}^{\mathcal{I}}\right) + \boldsymbol{n}_{v}, \tag{25}$$

whose jacobian can be given as:

$$\frac{\partial \mathbf{H}_{v}}{\partial \boldsymbol{x}_{k}} = \begin{bmatrix} \mathbf{0}_{3} & \mathbf{I}_{3} & \mathbf{0}_{31} & \mathbf{0}_{3} & \mathbf{0}_{3} & \frac{\partial \boldsymbol{r}_{v}}{\partial^{\mathcal{I}} \boldsymbol{t}_{B}^{\mathcal{I}}} \end{bmatrix}, \tag{26}$$

where,

$$\frac{\partial \mathbf{r}_{\mathbf{v}}}{\partial^{\mathcal{I}} \mathbf{t}_{\mathcal{B}}^{\mathcal{I}}} = -\mathcal{I}^{\mathcal{G}} \mathbf{R} \left[\mathcal{I} \widehat{\boldsymbol{\omega}} \right]_{\times}. \tag{27}$$

Specifically, the noise of network velocity measurements is $n_v \sim \mathcal{N}(0, \widehat{\Sigma}_v^2)$.

c) network displacement measurements: The displacement measurements from V-P Net are expressed as:

$$\mathcal{G}\widehat{\boldsymbol{p}}_{\mathcal{I}}^{\mathcal{G}} = \mathbf{H}_{p}(\boldsymbol{x}, \boldsymbol{n}_{p})
= \mathcal{G}\boldsymbol{p}_{\mathcal{B}}^{\mathcal{G}} - \mathcal{G}_{\mathcal{I}}^{\mathcal{G}}\mathbf{R}^{\mathcal{I}}\boldsymbol{t}_{\mathcal{B}}^{\mathcal{I}} + \boldsymbol{n}_{p}, \tag{28}$$

whose jacobian can be given as:

$$\frac{\partial \mathbf{H}_{p}}{\partial \boldsymbol{x}_{k}} = \begin{bmatrix} \mathbf{I}_{3} & \mathbf{0}_{3} & \mathbf{0}_{31} & \mathbf{0}_{3} & \mathbf{0}_{3} & \frac{\partial \mathbf{H}_{p}}{\partial^{\mathcal{I}} t_{\mathcal{B}}^{\mathcal{I}}} \end{bmatrix}, \tag{29}$$

where,

$$\frac{\partial \mathbf{H}_{p}}{\partial^{\mathcal{I}} t_{R}^{\mathcal{I}}} = -_{\mathcal{I}}^{\mathcal{G}} \mathbf{R}. \tag{30}$$

Specifically, the noise of network displacement measurements is $n_p \sim \mathcal{N}(0, \widehat{\Sigma}_p^2)$.

4) Discrete Extended Kalman Filter: The complete EKF procedures for both rotation and translation can be written in a discretized form as follows:

$$\boldsymbol{x}_{k+1|k} = \mathbf{F}(\boldsymbol{x}_{k|k}, \boldsymbol{u}_{k}),$$

$$\mathbf{P}_{k+1|k} = \mathbf{F}_{\boldsymbol{x}} \mathbf{P}_{k|k} \mathbf{F}_{\boldsymbol{x}}^{T} + \mathbf{F}_{\boldsymbol{u}} \mathbf{Q}_{k} \mathbf{F}_{\boldsymbol{u}}^{T},$$

$$\mathbf{K}_{k+1} = \mathbf{P}_{k+1|k} \mathbf{H}_{\boldsymbol{x}}^{T} \left(\mathbf{H}_{\boldsymbol{x}} \mathbf{P}_{k+1|k} \mathbf{H}_{\boldsymbol{x}}^{T} + \mathbf{R}_{k+1} \right)^{-1},$$

$$\boldsymbol{x}_{k+1|k+1} = \boldsymbol{x}_{k+1|k} \oplus \left(\mathbf{K}_{k+1} (\boldsymbol{z}_{k+1} - h(\boldsymbol{x}_{k+1|k})) \right),$$

$$\mathbf{P}_{k+1|k+1} = \left(\mathbf{I} - \mathbf{K}_{k+1} \mathbf{H}_{\boldsymbol{x}} \right) \mathbf{P}_{k+1|k},$$
(31)

where,

$$\mathbf{Q} = \widehat{\mathbf{\Sigma}}_{\mathbf{f}}^{2}, \quad \mathbf{R} = diag\{\mathbf{\Sigma}_{\mathbf{a}}^{2}, \quad \widehat{\mathbf{\Sigma}}_{\mathbf{v}}^{2}, \quad \widehat{\mathbf{\Sigma}}_{\mathbf{p}}^{2}\}. \tag{32}$$

III. ONE-STAGE EKF FOR INERTIAL DYNAMICAL FUSION

A. State

The state of the system is defined as:

$$\boldsymbol{x} = ({}^{\mathcal{G}}_{\mathcal{T}}\boldsymbol{q}, {}^{\mathcal{G}}\boldsymbol{p}_{\mathcal{B}}^{\mathcal{G}}, {}^{\mathcal{G}}\boldsymbol{v}_{\mathcal{B}}^{\mathcal{G}}, \ \tau, \ \boldsymbol{d}, {}^{\mathcal{I}}_{\mathcal{B}}\boldsymbol{q}, {}^{\mathcal{I}}\boldsymbol{t}_{\mathcal{B}}^{\mathcal{I}}). \tag{33}$$

B. Process Model

We regard the quadrotor dynamics and gyroscope outputs of *De-Bias Net* as the input, and express the complete process model as follows:

$$\mathcal{C}_{\mathcal{I}}\dot{\boldsymbol{q}} = \frac{1}{2}\mathcal{C}_{\mathcal{I}}\boldsymbol{q} \otimes (\mathcal{I}\widehat{\boldsymbol{\omega}} + \boldsymbol{n}_{\boldsymbol{\omega}}),$$

$$\mathcal{C}_{\mathcal{P}_{\mathcal{B}}}^{\mathcal{G}} = \mathcal{C}_{\mathcal{B}}^{\mathcal{G}},$$

$$\mathcal{C}_{\mathcal{P}_{\mathcal{B}}}^{\mathcal{G}} = \frac{1}{m}\mathcal{C}_{\mathcal{B}}^{\mathcal{G}}\mathbf{R} \left(\tau U_{ss}\boldsymbol{e}_{3} - U_{s}D_{\mathcal{B}}^{\mathcal{G}}\mathbf{R}^{\mathsf{T}\mathcal{G}}\boldsymbol{v}_{\mathcal{B}}^{\mathcal{G}} + \hat{\boldsymbol{f}}_{res} + \boldsymbol{n}_{f}\right) - \mathcal{C}_{\mathbf{g}},$$

$$\dot{\boldsymbol{\tau}} = 0,$$

$$\dot{\boldsymbol{d}} = 0,$$

$$\dot{\boldsymbol{d}} = 0,$$

$$\mathcal{C}_{\mathcal{B}}\dot{\boldsymbol{q}} = 0,$$

$$\mathcal{C}_{\mathcal{B}}\dot{\boldsymbol{t}}_{\mathcal{B}}^{\mathcal{T}} = 0,$$
(34)

The above differential equation is discretized as follows:

$$\mathbf{x}_{k+1} = \mathbf{F}(\mathbf{x}_k, \mathbf{u}_k) = \mathbf{F}_{\mathbf{x}} \mathbf{x}_k + \mathbf{F}_{\mathbf{n}} \mathbf{n}_k,$$
(35)

where,

$$\mathbf{F}_{x} = \begin{bmatrix} \frac{\partial_{\mathcal{I}}^{\mathcal{G}} \theta_{k+1}}{\partial_{\mathcal{I}}^{\mathcal{G}} \theta_{k}} & \mathbf{0}_{3} & \mathbf{0}_{3} & \mathbf{0}_{31} & \mathbf{0}_{3} & \mathbf{0}_{3} & \mathbf{0}_{3} \\ \mathbf{0}_{3} & \mathbf{I}_{3} & \mathbf{I}_{3} \Delta t & \mathbf{0}_{31} & \mathbf{0}_{3} & \mathbf{0}_{3} & \mathbf{0}_{3} \\ \frac{\partial v_{k+1}}{\partial_{\mathcal{I}}^{\mathcal{G}} \theta_{k}} & \mathbf{0}_{3} & \frac{\partial v_{k+1}}{\partial v_{k}} & \frac{\partial v_{k+1}}{\partial \tau} & \frac{\partial v_{k+1}}{\partial d} & \frac{\partial v_{k+1}}{\partial_{\mathcal{I}}^{\mathcal{G}} \theta} & \mathbf{0}_{3} \\ \mathbf{0}_{3} & \mathbf{0}_{13} & \mathbf{0}_{13} & 1 & \mathbf{0}_{13} & \mathbf{0}_{13} & \mathbf{0}_{13} \\ \mathbf{0}_{3} & \mathbf{0}_{3} & \mathbf{0}_{3} & \mathbf{0}_{31} & \mathbf{I}_{3} & \mathbf{0}_{3} & \mathbf{0}_{3} \\ \mathbf{0}_{3} & \mathbf{0}_{3} & \mathbf{0}_{3} & \mathbf{0}_{31} & \mathbf{0}_{3} & \mathbf{I}_{3} & \mathbf{0}_{3} \\ \mathbf{0}_{3} & \mathbf{0}_{3} & \mathbf{0}_{3} & \mathbf{0}_{31} & \mathbf{0}_{3} & \mathbf{0}_{3} & \mathbf{I}_{3} \end{bmatrix}^{\mathsf{T}}$$

$$\mathbf{F}_{n} = \begin{bmatrix} \frac{\partial_{\mathcal{I}}^{\mathcal{G}} \theta_{k+1}}{\partial n_{\omega}} & \mathbf{0}_{3} & \mathbf{0}_{3} & \mathbf{0}_{31} & \mathbf{0}_{3} & \mathbf{0}_{3} & \mathbf{0}_{3} \\ \mathbf{0}_{3} & \mathbf{0}_{3} & \frac{\partial v_{k+1}}{\partial n_{f}} & \mathbf{0}_{31} & \mathbf{0}_{3} & \mathbf{0}_{3} & \mathbf{0}_{3} \end{bmatrix}^{\mathsf{T}} .$$

$$(36)$$

Specifically,

$$\frac{\partial_{\mathcal{I}}^{\mathcal{G}}\boldsymbol{\theta}_{k+1}}{\partial_{\mathcal{I}}^{\mathcal{G}}\boldsymbol{\theta}_{k}} = \mathbf{Exp}(-^{\mathcal{I}}\widehat{\boldsymbol{\omega}}\Delta t), \\
\frac{\partial \boldsymbol{v}_{k+1}}{\partial_{\mathcal{I}}^{\mathcal{G}}\boldsymbol{\theta}_{k}} = \frac{\Delta t}{m}_{\mathcal{I}}^{\mathcal{G}}\mathbf{R} \left(-\tau U_{ss} \left[\boldsymbol{z}_{\mathcal{B}}^{\mathcal{T}} \mathbf{r}_{3} \right]_{\times} + U_{s} \left(\boldsymbol{z}_{\mathcal{A}}^{\mathcal{G}} \mathbf{R} \boldsymbol{z}_{\mathcal{B}}^{\mathcal{G}} \mathbf{r}_{\mathcal{B}}^{\mathcal{G}} \boldsymbol{z}_{\mathcal{B}}^{\mathcal{G}} \right)_{\times} - \boldsymbol{z}_{\mathcal{B}}^{\mathcal{G}} \mathbf{R} \boldsymbol{D}_{\mathcal{B}}^{\mathcal{G}} \mathbf{R}^{\top} \left[\boldsymbol{z}_{\mathcal{B}}^{\mathcal{G}} \mathbf{r}_{\mathcal{B}}^{\mathcal{G}} \boldsymbol{z}_{\mathcal{B}}^{\mathcal{G}} \right]_{\times} \right) - \left[\boldsymbol{z}_{\mathcal{B}}^{\mathcal{G}} \mathbf{r}_{\mathcal{A}}^{\mathcal{G}} \boldsymbol{z}_{\mathcal{B}}^{\mathcal{G}} \right]_{\times} \right), \\
\frac{\partial \boldsymbol{v}_{k+1}}{\partial \boldsymbol{v}_{k}} = \mathbf{I} - \frac{U_{s} \Delta t}{m} \boldsymbol{z}_{\mathcal{B}}^{\mathcal{G}} \mathbf{R} \boldsymbol{D}_{\mathcal{B}}^{\mathcal{G}} \mathbf{R}^{\top}, \\
\frac{\partial \boldsymbol{v}_{k+1}}{\partial \boldsymbol{\tau}} = \frac{U_{ss} \Delta t}{m} \boldsymbol{z}_{\mathcal{B}}^{\mathcal{G}} \boldsymbol{r}_{3}, \\
\frac{\partial \boldsymbol{v}_{k+1}}{\partial \boldsymbol{d}} = - \frac{\Delta t}{m} \left[\boldsymbol{z}_{\mathcal{B}}^{\mathcal{G}} \boldsymbol{r}_{1}^{\mathcal{G}} \boldsymbol{r}_{1}^{\mathcal{G}} \boldsymbol{v}_{\mathcal{B}}^{\mathcal{G}} \boldsymbol{z}_{\mathcal{B}}^{\mathcal{G}} \boldsymbol{r}_{2}^{\mathcal{G}} \boldsymbol{r}_{2}^{\mathcal{G}} \boldsymbol{r}_{3}^{\mathcal{G}} \boldsymbol{r}_{3}^{\mathcal{G}} \boldsymbol{r}_{3}^{\mathcal{G}} \boldsymbol{v}_{\mathcal{B}}^{\mathcal{G}} \right], \\
\frac{\partial \boldsymbol{v}_{k+1}}{\partial \boldsymbol{z}_{\mathcal{B}}} = \frac{\Delta t}{m} \boldsymbol{z}_{\mathcal{B}}^{\mathcal{G}} \mathbf{R} \left(-\tau U_{ss} \left[\boldsymbol{e}_{3} \right]_{\times} + U_{s} \left(\left[\boldsymbol{D}_{\mathcal{B}}^{\mathcal{G}} \mathbf{R}^{\top \mathcal{G}} \boldsymbol{v}_{\mathcal{B}}^{\mathcal{G}} \right]_{\times} - \boldsymbol{D} \left[\boldsymbol{z}_{\mathcal{B}}^{\mathcal{G}} \mathbf{R}^{\top \mathcal{G}} \boldsymbol{v}_{\mathcal{B}}^{\mathcal{G}} \right]_{\times} \right) - \left[\boldsymbol{\hat{f}}_{res} \right]_{\times} \right), \\
\frac{\partial \boldsymbol{z}_{\mathcal{B}}^{\mathcal{G}} \boldsymbol{\theta}_{k+1}}{\partial \boldsymbol{n}_{\boldsymbol{\sigma}}} = \mathbf{J}_{r} \left(\boldsymbol{z}_{\mathcal{G}}^{\mathcal{G}} \Delta t \right) \Delta t, \\
\frac{\partial \boldsymbol{v}_{k+1}}{\partial \boldsymbol{n}_{\boldsymbol{\sigma}}} = \frac{1}{m} \boldsymbol{z}_{\mathcal{B}}^{\mathcal{G}} \mathbf{R} \Delta t, \\
(37)$$

where,

$$\mathbf{J}_r(\boldsymbol{\theta}) = \mathbf{I}_3 - \frac{1 - \cos||\boldsymbol{\theta}||}{||\boldsymbol{\theta}||^2} \left[\boldsymbol{\theta} \right]_{\times} + \frac{||\boldsymbol{\theta}|| - \sin||\boldsymbol{\theta}||}{||\boldsymbol{\theta}||^3} \left[\boldsymbol{\theta} \right]_{\times}^2$$
(38)

C. Measurement Model

1) gravity alignment measurements: The attitude controllers of most flying robots rely on the complementary filters [2, 3] to obtain attitude observations. Similarly, we consider the gravity alignment constraint to obtain the tilt observation:

$$\mathcal{I}\widehat{\boldsymbol{a}} = \mathbf{H}_g(\boldsymbol{x}, \boldsymbol{n}_g)
\approx \mathcal{I}_T^{\mathcal{G}} \mathbf{R}^{\mathcal{T}\mathcal{G}} \mathbf{g} + \boldsymbol{n}_g, \tag{39}$$

whose jacobian can be given as:

$$\frac{\partial \mathbf{H}_{g}}{\partial \boldsymbol{x}_{k}} = \begin{bmatrix} \frac{\partial \mathbf{H}_{g}}{\partial_{\mathcal{I}}^{g} \boldsymbol{\theta}_{k}} & \mathbf{0}_{3} & \mathbf{0}_{3} & \mathbf{0}_{3} & \mathbf{0}_{3} & \mathbf{0}_{3} \end{bmatrix}, \tag{40}$$

where,

$$\frac{\partial \mathbf{H}_{g}}{\partial_{\tau}^{\mathcal{G}} \boldsymbol{\theta}_{k}} = \left[\mathcal{I}_{\mathcal{I}}^{\mathcal{G}} \mathbf{R}^{\top \mathcal{G}} \mathbf{g} \right]_{\times}. \tag{41}$$

2) dynamics constraint measurements: The dynamics constraint measurements are expressed as:

$$\mathcal{I}\widehat{\boldsymbol{a}} = \mathbf{H}_{d}(\boldsymbol{x}, \boldsymbol{n}_{\boldsymbol{a}})
= \frac{1}{m} \mathcal{I} \mathbf{R} \left(\tau U_{ss} \boldsymbol{e}_{3} - U_{s} D_{\mathcal{B}}^{\mathcal{G}} \mathbf{R}^{\top \mathcal{G}} \boldsymbol{v}_{\mathcal{B}}^{\mathcal{G}} + \widehat{\boldsymbol{f}}_{res} \right) + \mathcal{I}\widehat{\boldsymbol{\omega}} \times (\mathcal{I}\widehat{\boldsymbol{\omega}} \times \mathcal{I} \boldsymbol{t}_{\mathcal{B}}^{\mathcal{I}}) + \mathcal{I}\widehat{\boldsymbol{\alpha}} \times \mathcal{I} \boldsymbol{t}_{\mathcal{B}}^{\mathcal{I}} + \boldsymbol{n}_{\boldsymbol{a}},$$
(42)

whose jacobian can be given as:

$$\frac{\partial \mathbf{H}_{d}}{\partial x_{k}} = \begin{bmatrix} \frac{\partial \mathbf{H}_{d}}{\partial x_{k}^{\mathcal{G}} \boldsymbol{\theta}_{k}} & \mathbf{0}_{3} & \frac{\partial \mathbf{H}_{d}}{\partial v_{k}} & \frac{\partial \mathbf{H}_{d}}{\partial x_{k}} & \frac{\partial \mathbf{H}_{d}}{\partial$$

where,

$$\frac{\partial \mathbf{H}_{d}}{\partial_{\mathcal{I}}^{\mathcal{G}} \theta_{k}} = -\frac{U_{s} \mathcal{I}}{m} \mathbf{R} D_{\mathcal{B}}^{\mathcal{I}} \mathbf{R}^{\top} \left[\mathcal{I}_{\mathcal{I}}^{\mathcal{G}} \mathbf{R}^{\mathcal{G}} \mathbf{v}_{\mathcal{B}}^{\mathcal{G}} \right]_{\times},$$

$$\frac{\partial \mathbf{H}_{d}}{\partial \mathbf{v}_{k}} = -\frac{U_{s} \mathcal{I}}{m} \mathbf{R} D_{\mathcal{B}}^{\mathcal{G}} \mathbf{R}^{\top},$$

$$\frac{\partial \mathbf{H}_{d}}{\partial \tau} = \frac{U_{ss} \mathcal{I}}{m} \mathbf{r}_{3},$$

$$\frac{\partial \mathbf{H}_{d}}{\partial d} = -\frac{U_{s}}{m} \left[\mathcal{I}_{\mathcal{B}}^{\mathcal{T}} \mathbf{r}_{1\mathcal{B}}^{\mathcal{G}} \mathbf{r}_{1\mathcal{B}}^{\top \mathcal{G}} \mathbf{r}_{2\mathcal{B}}^{\mathcal{G}} \mathbf{r}_{2\mathcal{B}}^{\top \mathcal{G}} \mathbf{r}_{2\mathcal{B}}^{\mathcal{G}} \mathbf{r}_{2\mathcal{B}}^{\mathcal{G$$

Specifically, ${}^{\mathcal{I}}\widehat{\alpha}$ is the angular acceleration in the \mathcal{I} frame, which is obtained by differentiating the angular velocity, ${}^{\mathcal{I}}\widehat{\alpha}=\frac{d}{dt}\widehat{\omega}$. In practice, we low-pass filter the $\widehat{\omega},\widehat{\alpha}$ to reduce noise. And, the noise of IMU acceleration measurements is $n_a \sim \mathcal{N}(0, \Sigma_a^2)$.

3) network velocity measurements: The velocity measurements from V-P Net are expressed as:

whose jacobian can be given as:

$$\frac{\partial \mathbf{H}_{v}}{\partial \boldsymbol{x}_{k}} = \begin{bmatrix} \frac{\partial \mathbf{H}_{v}}{\partial_{\mathcal{I}}^{\mathcal{G}} \boldsymbol{\theta}_{k}} & \mathbf{0}_{3} & \mathbf{I}_{3} & \mathbf{0}_{31} & \mathbf{0}_{3} & \frac{\partial \mathbf{H}_{v}}{\partial^{\mathcal{I}} \boldsymbol{t}_{\mathcal{B}}^{\mathcal{I}}} \end{bmatrix}, \tag{46}$$

where,

$$\frac{\partial \mathbf{H}_{v}}{\partial_{\mathcal{I}}^{\mathcal{G}} \boldsymbol{\theta}_{k}} = {}_{\mathcal{I}}^{\mathcal{G}} \mathbf{R} \left[{}^{\mathcal{I}} \widehat{\boldsymbol{\omega}} \times {}^{\mathcal{I}} \boldsymbol{t}_{\mathcal{B}}^{\mathcal{I}} \right]_{\times},
\frac{\partial \mathbf{H}_{v}}{\partial {}^{\mathcal{I}} \boldsymbol{t}_{\mathcal{B}}^{\mathcal{I}}} = -{}_{\mathcal{I}}^{\mathcal{G}} \mathbf{R} \left[{}^{\mathcal{I}} \widehat{\boldsymbol{\omega}} \right]_{\times}.$$
(47)

Specifically, the noise of network velocity measurements is $n_v \sim \mathcal{N}(0, \widehat{\Sigma}_v^2)$.

4) network displacement measurements: The displacement measurements from V-P Net are expressed as:

$$\mathcal{G}\widehat{\boldsymbol{p}}_{\mathcal{I}}^{\mathcal{G}} = \mathbf{H}_{p}(\boldsymbol{x}, \boldsymbol{n}_{p})
= \mathcal{G}\boldsymbol{p}_{\mathcal{B}}^{\mathcal{G}} - \mathcal{G}_{\mathcal{I}}^{\mathcal{G}} \mathbf{R}^{\mathcal{I}} \boldsymbol{t}_{\mathcal{B}}^{\mathcal{I}} + \boldsymbol{n}_{p}, \tag{48}$$

whose jacobian can be given as:

$$\frac{\partial \mathbf{H}_{p}}{\partial \boldsymbol{x}_{k}} = \begin{bmatrix} \frac{\partial \mathbf{H}_{p}}{\partial_{\mathcal{I}}^{\mathcal{G}} \boldsymbol{\theta}_{k}} & \mathbf{I}_{3} & \mathbf{0}_{3} & \mathbf{0}_{31} & \mathbf{0}_{3} & \frac{\partial \mathbf{H}_{p}}{\partial^{\mathcal{I}} \boldsymbol{t}_{\mathcal{B}}^{\mathcal{I}}} \end{bmatrix}, \tag{49}$$

where,

$$\frac{\partial \mathbf{H}_{p}}{\partial_{\mathcal{I}}^{\mathcal{G}} \boldsymbol{\theta}_{k}} = {}_{\mathcal{I}}^{\mathcal{G}} \mathbf{R} \left[{}^{\mathcal{I}} \boldsymbol{t}_{\mathcal{B}}^{\mathcal{I}} \right]_{\times},
\frac{\partial \mathbf{H}_{p}}{\partial^{\mathcal{I}} \boldsymbol{t}_{\mathcal{B}}^{\mathcal{I}}} = -{}_{\mathcal{I}}^{\mathcal{G}} \mathbf{R}.$$
(50)

Specifically, the noise of network displacement measurements is $n_p \sim \mathcal{N}(0, \widehat{\Sigma}_p^2)$.

D. Discrete Extended Kalman Filter

The complete EKF procedures for both rotation and translation can be written in a discretized form as follows:

$$\boldsymbol{x}_{k+1|k} = \mathbf{F}(\boldsymbol{x}_{k|k}, \boldsymbol{u}_{k}),$$

$$\mathbf{P}_{k+1|k} = \mathbf{F}_{\boldsymbol{x}} \mathbf{P}_{k|k} \mathbf{F}_{\boldsymbol{x}}^{T} + \mathbf{F}_{\boldsymbol{u}} \mathbf{Q}_{k} \mathbf{F}_{\boldsymbol{u}}^{T},$$

$$\mathbf{K}_{k+1} = \mathbf{P}_{k+1|k} \mathbf{H}_{\boldsymbol{x}}^{T} \left(\mathbf{H}_{\boldsymbol{x}} \mathbf{P}_{k+1|k} \mathbf{H}_{\boldsymbol{x}}^{T} + \mathbf{R}_{k+1} \right)^{-1},$$

$$\boldsymbol{x}_{k+1|k+1} = \boldsymbol{x}_{k+1|k} \oplus \left(\mathbf{K}_{k+1} (\boldsymbol{z}_{k+1} - h(\boldsymbol{x}_{k+1|k})) \right),$$

$$\mathbf{P}_{k+1|k+1} = (\mathbf{I} - \mathbf{K}_{k+1} \mathbf{H}_{\boldsymbol{x}}) \mathbf{P}_{k+1|k},$$
(51)

where,

$$\mathbf{Q} = diag\{\boldsymbol{\Sigma}_{\boldsymbol{\omega}}^2, \ \widehat{\boldsymbol{\Sigma}}_{\boldsymbol{f}}^2\}, \ \mathbf{R} = diag\{\boldsymbol{\Sigma}_{\boldsymbol{a}}^2, \ \widehat{\boldsymbol{\Sigma}}_{\boldsymbol{v}}^2, \ \widehat{\boldsymbol{\Sigma}}_{\boldsymbol{p}}^2\}.$$
 IV. Observability Analysis

According to the observability analysis method developed in [4], we could analyze the observability of a control affine system by checking the observability rank criterion.

For the rotation stage which is driven by Eq. (9) and observed by Eq. (12), the rotation $_{\mathcal{I}}^{\mathcal{G}}q$ is composed of two observable angles (roll and pitch) and an unobservable yaw angle.

For the translation stage, we first write the process model of the system in control affine form:

$$\dot{\boldsymbol{x}} = \boldsymbol{f}_0(\boldsymbol{x}) + \sum_{i=1}^n \boldsymbol{f}_i(\boldsymbol{x}) \boldsymbol{u}_i. \tag{53}$$

Since the four motor speeds of the quadrotor are integrated into the two inputs U_{ss} and U_{s} in Eq. (18), our system could be presented:

$$\dot{\boldsymbol{x}} = \boldsymbol{f}_{0}(\boldsymbol{x}) + \boldsymbol{f}_{1}(\boldsymbol{x})U_{ss} + \boldsymbol{f}_{2}(\boldsymbol{x})U_{s}
= \begin{bmatrix} {}^{\mathcal{G}}\boldsymbol{v}_{\mathcal{B}}^{\mathcal{G}} \\ -{}^{\mathcal{G}}\mathbf{g} \\ \mathbf{0}_{10\times 1} \end{bmatrix} + \begin{bmatrix} \mathbf{0}_{3\times 1} \\ \frac{1}{m}{}^{\mathcal{G}}\mathbf{R}\boldsymbol{\tau}\boldsymbol{e}_{3} \\ \mathbf{0}_{10\times 1} \end{bmatrix} U_{ss} + \begin{bmatrix} \mathbf{0}_{3\times 1} \\ -\frac{1}{m}{}^{\mathcal{G}}\mathbf{R}D_{\mathcal{B}}^{\mathcal{G}}\mathbf{R}^{\top\mathcal{G}}\boldsymbol{v}_{\mathcal{B}}^{\mathcal{G}} \end{bmatrix} U_{s}.$$
(54)

And then, we simplify the three measurement models Eq. (22, 25, 28) as:

$$\mathbf{h}_{d} = \frac{1}{m} {}_{\mathcal{B}}^{\mathcal{I}} \mathbf{R} \left(\tau U_{ss} \mathbf{e}_{3} - U_{s} D_{\mathcal{B}}^{\mathcal{G}} \mathbf{R}^{\top \mathcal{G}} \mathbf{v}_{\mathcal{B}}^{\mathcal{G}} \right) + {}^{\mathcal{I}} \widehat{\boldsymbol{\omega}} \times ({}^{\mathcal{I}} \widehat{\boldsymbol{\omega}} \times {}^{\mathcal{I}} \mathbf{t}_{\mathcal{B}}^{\mathcal{I}}) + {}^{\mathcal{I}} \widehat{\boldsymbol{\alpha}} \times {}^{\mathcal{I}} \mathbf{t}_{\mathcal{B}}^{\mathcal{I}},
\mathbf{h}_{v} = {}^{\mathcal{G}} \mathbf{v}_{\mathcal{B}}^{\mathcal{G}} - {}_{\mathcal{I}}^{\mathcal{G}} \mathbf{R} \left({}^{\mathcal{I}} \widehat{\boldsymbol{\omega}} \times {}^{\mathcal{I}} \mathbf{t}_{\mathcal{B}}^{\mathcal{I}} \right),
\mathbf{h}_{p} = {}^{\mathcal{G}} \mathbf{p}_{\mathcal{B}}^{\mathcal{G}} - {}_{\mathcal{I}}^{\mathcal{G}} \mathbf{R}^{\mathcal{I}} \mathbf{t}_{\mathcal{B}}^{\mathcal{I}}.$$
(55)

We use Lie derivatives to quantify the impact of changes in the control input U_{ss} and U_{s} on the output functions h_d , h_v and h_p .

$$L^{0} \mathbf{h} = \mathbf{h},$$

$$L^{k+1}_{\mathbf{f}_{i_{1}}, \mathbf{f}_{i_{2}}, \dots, \mathbf{f}_{i_{k+1}}} \mathbf{h} = \nabla_{\mathbf{x}} \left(L^{k}_{\mathbf{f}_{i_{1}}, \mathbf{f}_{i_{2}}, \dots, \mathbf{f}_{i_{k}}} \mathbf{h} \right) \mathbf{f}_{i_{k+1}}$$
(56)

We stack vertically several Lie derivatives of the unforced vector field \mathbf{f}_0 and the control input vector fields \mathbf{f}_1 and \mathbf{f}_2 into a vector \mathcal{O} :

$$\mathcal{O} = \begin{bmatrix} \mathbf{h}_d \\ \mathbf{h}_v \\ \mathbf{h}_p \\ L_{f_0} \mathbf{h}_d \\ L_{f_0} \mathbf{h}_p \\ L_{f_1} \mathbf{h}_d \\ L_{f_1} \mathbf{h}_v \\ L_{f_2} \mathbf{h}_v \end{bmatrix}, \tag{57}$$

and calculate its gradients as observability matrix $\nabla_x \mathcal{O}$. Finally, we can evaluate whether the system is locally observable by checking the observability rank criterion. In general, the rank is:

$$rank\{\nabla_x \mathcal{O}\} = 11. \tag{58}$$

However, under some certain conditions the matrix has a rank deficiency. Some of these cases are when:

$$\begin{cases} {}^{\mathcal{I}}\widehat{\boldsymbol{\omega}} = \mathbf{0}_{3\times 1}, {}^{\mathcal{I}}\boldsymbol{t}_{\mathcal{B}}^{\mathcal{I}} \ is \ unobservable; \\ {}^{\mathcal{G}}\boldsymbol{v}_{\mathcal{B}}^{\mathcal{G}} = \mathbf{0}_{3\times 1}, D \ and \ {}^{\mathcal{I}}_{\mathcal{B}}\mathbf{R} \ are \ unobservable; \\ {}^{\mathcal{G}}\boldsymbol{v}_{\mathcal{B}}^{\mathcal{G}} = [0;0;*], yaw({}^{\mathcal{I}}_{\mathcal{B}}\mathbf{R}) \ is \ unobservable, \end{cases}$$

$$(59)$$

which means the corresponding parameters to be estimated may not converge under the above conditions.

REFERENCES

- [1] J. Svacha, J. Paulos, G. Loianno, and V. Kumar, "Imu-based inertia estimation for a quadrotor using newton-euler dynamics," *IEEE Robotics and Automation Letters*, vol. 5, no. 3, pp. 3861–3867, 2020.
- [2] R. Mahony, T. Hamel, and J.-M. Pflimlin, "Nonlinear complementary filters on the special orthogonal group," *IEEE Transactions on automatic control*, vol. 53, no. 5, pp. 1203–1218, 2008.
- [3] S. O. Madgwick, A. J. Harrison, and R. Vaidyanathan, "Estimation of imu and marg orientation using a gradient descent algorithm," in 2011 IEEE international conference on rehabilitation robotics. IEEE, 2011, pp. 1–7.
- [4] R. Hermann and A. Krener, "Nonlinear controllability and observability," *IEEE Transactions on automatic control*, vol. 22, no. 5, pp. 728–740, 1977.