Alex Gibbons and Lauren Kawecki

CMPT 363 - Data Mining

Dr. Ankur Agrawal

Due: February 19, 2024

Assignment #2

Titanic Dataset charts

library(graphics)

library(ggplot2)

1. Bar Chart of Class Survival counts by age and gender

This bar chart displays the survival counts based on age and gender within each of the 4 classes

Each group is labeled below the x axis and is visiually grouped by a horizontal gray line

 $barplot(as.matrix(Titanic[,,,"Yes"]),\ beside=TRUE,\ legend=rownames(Titanic),$

main="Survival by Age and Class", xlab="Age", ylab="Count",

col=rainbow(length(rownames(Titanic))),

args.legend=list(x="topright"))

text(c(3, 7, 11, 15), -0.5, c("Male Child", "Female Child", "Male Adult", "Female Adult"), pos=1, xpd=TRUE) segments(x0 = c(1, 5, 9, 13) + 0.4, x1 = c(5, 9, 13, 17) - 0.4, y0 = 0, y1 = 0, col = "lightgray", lwd = 5)

Survival by Age and Class

2. Bar chart of Children Survival Counts

 $\label{thm:continuous} \mbox{\# This bar chart displays the counts of children that survived vs those that did not \\ \mbox{barplot(c(sum(Titanic[,,1,2]),sum(Titanic[,,1,1])),} \mbox{\ } \mbox{\ }$

main="Child Counts Bar Plot",

col=c("green","red"),

names.arg = c("Survived","Not Survived"))

Child Counts Bar Plot

#3. Bar chart of Adult Survival Counts

This bar chart displays the counts of adults that survived vs those that did not barplot(c(sum(Titanic[,,2,2]),sum(Titanic[,,2,1])),

main="Adult Counts Bar Plot", col=c("green","red"),

names.arg = c("Survived","Not Survived"))

Adult Counts Bar Plot

4. Pie Chart Survival Rate by Class

- # This pie chart illustrates the survival rate of passengers from each Class
- # Each slice represents a class

class_survive_slices<-c(sum(Titanic[1,,,"Yes"]),sum(Titanic[2,,,"Yes"]),sum(Titanic[3,,,"Yes"]),sum(Titanic[4,,,"Yes"])) class_survive_pct<-round(class_survive_slices/sum(class_survive_slices)*100) class_survive_pie_lbls<-paste(rownames(Titanic), " ", class_survive_pct,"%",sept="") pie(class_survive_slices,labels=class_survive_pie_lbls,col=rainbow(length(class_survive_pie_lbls)),main="Pie Chart Surviving Classes")

Pie Chart Surviving Classes

5. Stacked Bar Chart of Class Survival Counts

main = "Survival Counts of Different Classes")

This stacked bar chart compares the survival counts between classes

Each bar is broken in two segments representing survivors and non-survivors class_survived <- c(sum(Titanic[1,,,"Yes"]),sum(Titanic[2,,,"Yes"]),sum(Titanic[3,,,"Yes"]),sum(Titanic[4,,,"Yes"])) class_not_survived <- c(sum(Titanic[1,,,"No"]),sum(Titanic[2,,,"No"]),sum(Titanic[3,,,"No"]),sum(Titanic[4,,,"No"])) class_bar_data <- rbind(class_survived,class_not_survived) barplot(class_bar_data, col = c("green","red"), names.arg = rownames(Titanic), legend.text = c("Survived","Not Survived"), xlab = "Class", ylab="Count",

Survival Counts of Different Classes

6. Stacked Bar Chart of Survival Counts Adult vs Child

- # This stacked bar chart compares the survival counts between ages
- # Each bar represents total count of those that survived and those that did not
- # Each bar is broken in two colored segments representing child and adults

adult_survival <- c(sum(Titanic[,,2,"Yes"]), sum(Titanic[,,2,"No"]))</pre>

child_survival <- c(sum(Titanic[,,1,"Yes"]), sum(Titanic[,,1,"No"]))</pre>

age_bar_data <- rbind(adult_survival, child_survival)</pre>

barplot(age_bar_data, col = c("green", "red"),

names.arg = c("Survived", "Not Survived"),

legend.text = c("Adult", "Child"),

xlab = "Survival", ylab = "Count",

main = "Survival Counts of Adults and Children")

Survival Counts of Adults and Children

#7. Stacked Bar Chart male vs female survive not survive

- # This stacked bar chart compares survival counts between males and females
- # Each bar represents total count of survivors and non-survivors and is broken up
- # by color to indicate male or female

male_survival<-c(sum(Titanic[,1,,2]),sum(Titanic[,1,,1]))</pre>

female_survival<-c(sum(Titanic[,2,,2]),sum(Titanic[,2,,1]))</pre>

gender_data<-rbind(male_survival,female_survival)</pre>

barplot(gender_data, col=c("blue","pink"),

names.arg = c("Survived","Not Survived"),

legend.text = c("Male", "Female"),

xlab = "Survival", ylab = "Count",

main = "Survival Counts of Males and Females")

Survival Counts of Males and Females

#8. Mosaic Plot of all data

- # This mosaic plot provides and overview of survival data on the Titanic
- # It displays the proportions of survivors and non-survivors across different categories(class, sex, age).
- # The colors indicate whether they survived (green) or did not survive (green)

mosaicplot(Titanic, main = "Survival on the Titanic", col=c("red","green"))

Survival on the Titanic


```
# 9. Scatter Plot of Passenger Survival Rate by Class
         # This scatter plot visualizes the survival rate of passengers across different classes.
         # The survival rate is calculated by dividing the count of survivors divided by the total
                  number of passengers in that class.
         # Each point on the plot represents a class with its corresponding survival rate.
class_survival <- c(sum(Titanic[1,,,"Yes"]), sum(Titanic[1,,,"No"]),</pre>
            sum(Titanic[2,,,"Yes"]), sum(Titanic[2,,,"No"]),
             sum(Titanic[3,,,"Yes"]), sum(Titanic[3,,,"No"]),
             sum(Titanic[4,,,"Yes"]), sum(Titanic[4,,,"No"]))
class_survival_rate <- class_survival[seq(1, length(class_survival), by = 2)] /
              (class_survival[seq(1, length(class_survival), by = 2)] +
               class_survival[seq(2, length(class_survival), by = 2)])
plot(x = c(1,2,3,4), y = class survival rate,
   main = "Survival Rate by Passenger Class",
   xlab = "Passenger Class", ylab = "Survival Rate",
   col = rainbow(length(rownames(Titanic))), pch = 16,
          xlim = c(0.5,4.5)
legend("topright", legend = rownames(Titanic), col = rainbow(length(rownames(Titanic))), pch = 16, title = "Passenger
Class")
```

Survival Rate by Passenger Class


```
# 10. Heatmap of Survival Rates by class and gender
         # This heatmap displays the Survival Rates of classes and genders/
         # It is color-coded such that red indicates lower survival rates and green indicates higher rates
survival_rates <- apply(Titanic[, , , "Yes"], c(1, 2), sum) /
            apply(Titanic, c(1, 2), sum)
survival df <- as.data.frame(survival rates)
survival_df_long <- reshape(survival_df, direction = "long", idvar = "Class", varying = list(c("Male", "Female")), timevar
= "Gender", v.names = "Survival Rate")
survival_df_long$Class <- c("1st","2nd","3rd","Crew","1st","2nd","3rd","Crew")
survival df long$Gender<-c("Male","Male","Male","Female","Female","Female","Female","Female")
heatmap<-ggplot(survival_df_long, aes(x = Gender, y = Class, fill = `Survival Rate`)) +
 geom tile() +
 scale_fill_gradient(low = "red", high = "green") +
 labs(title = "Survival Rates by Class and Gender",
    x = "Gender",
    v = "Class".
    fill = "Survival Rate") +
 theme minimal() +
 theme(axis.text.x = element_text(angle = 45, hjust = 1))
print(heatmap)
```

Survival Rates by Class and Gender

