Област вежби: Паралелно програмирање

УВОЂЕЊЕ ПАРАЛЕЛИЗМА КОРИШЋЕЊЕМ ТВВ БИБЛИОТЕКЕ – ГРАФ ЗАДАТАКА

Предуслови:

- Rpi2 рачунар (без додатака),
- Преводиоц *GCC* освежен на верзију 4.7 или новију,
- Преузета и подешена ТВВ биоблиотека на Raspberry Pi уређају, према опису из документа "УВОД Raspberry Pi рачунар",
- Подешен мрежни приступ на један од начина представљених у документу "УВОД Raspberry Pi рачунар" уколико се ради преко мреже. Ако се Rpi2 рачунар корити као самосталан рачунар овај захтев се може занемарити,
- Познавање језика Це и материјала из вежби "ТВВ, ТУТОРИЈАЛ I СЛОЖЕНЕ ПЕТЉЕ И КОНТЕЈНЕРИ" и "ТВВ, ТУТОРИЈАЛ III РАСПОРЕЂИВАЧ ЗАДАТАКА".

<u>Увод</u>

DCT алгоритам

DCT алгоритам се рачуна употребом следеће формуле:

$$RRR = Alpha .* (In * C * C')$$

Извршавање овог алгоритма могуће је убрзати тако што ће се множење матрица изделити на независне целине и извршавати паралелно на више процесора (језгара).

Пример

Улазне матрице:

$$In = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix} \qquad C = \begin{bmatrix} 4 & 5 \\ 6 & 7 \end{bmatrix} \qquad Alpha = \begin{bmatrix} 8 & 9 \\ 10 & 11 \end{bmatrix}$$

У првој итерацији задатак 1 множи први ред ln матрице са првом колоном c матрице, и резултат смешта у резултујућу матрицу R у први ред и прву колону. Задатак 2 множи први ред ln матрице са другом колоном c матрице, и резултат смешта у резултујућу матрицу R у први ред и другу колону. Задатак 3 множи други ред ln матрице са првом колоном c матрице, и резултат смешта у резултујућу матрицу R у други ред ln матрице са

другом колоном c матрице, и резултат смешта у резултујућу матрицу R у други ред и другу колону.

$$R = In * C$$

T ₁	T ₂	T ₃	T ₄
$In = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix} C = \begin{bmatrix} 4 & 5 \\ 6 & 7 \end{bmatrix}$	$In = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix} C = \begin{bmatrix} 4 & 5 \\ 6 & 7 \end{bmatrix}$	$In = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix} C = \begin{bmatrix} 4 & 5 \\ 6 & 7 \end{bmatrix}$	$In = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix} C = \begin{bmatrix} 4 & 5 \\ 6 & 7 \end{bmatrix}$
$R_{00} = 0 * 4 + 1 * 6 = 6$	$R_{01} = 0 * 5 + 1 * 7 = 7$	$R_{10} = 2 * 4 + 3 * 6 = 26$	$R_{11} = 2 * 5 + 3 * 7 = 31$

$$R = \begin{bmatrix} 6 & 7 \\ 26 & 31 \end{bmatrix}$$

У другој итерацији задацима 1 и 2 потребни су резултати задатака 1 и 2 из претходне итерације (6 и 7), док су задацима 3 и 4 потребни резултати задатака 3 и 4 из претходне итерације (26 и 31). Задатак 1 множи први ред R матрице са првим редом C матрице, и резултат смешта у резултујућу матрицу RR у први ред и прву колону. Задатак 2 множи први ред R матрице са другим редом R матрице, и резултат смешта у резултујућу матрицу RR у први ред и другу колону. Задатак 3 множи други ред R матрице са првим редом R матрице, и резултат смешта у резултујућу матрицу RR у други ред и прву колону. Задатак 4 множи други ред R матрице са другим редом R матрице, и резултат смешта у резултујућу матрицу R у други ред и другу колону.

$$RR = R * C'$$

T ₁	T ₂	T ₃	T ₄
$R = \begin{bmatrix} 6 & 7 \\ 26 & 31 \end{bmatrix} C = \begin{bmatrix} 4 & 5 \\ 6 & 7 \end{bmatrix}$	$R = \begin{bmatrix} 6 & 7 \\ 26 & 31 \end{bmatrix} C$ $= \begin{bmatrix} 4 & 5 \\ 6 & 7 \end{bmatrix}$	$R = \begin{bmatrix} 6 & 7 \\ 26 & 31 \end{bmatrix}$ $C = \begin{bmatrix} 4 & 5 \\ 6 & 7 \end{bmatrix}$	$R = \begin{bmatrix} 6 & 7 \\ 26 & 31 \end{bmatrix} C$ $= \begin{bmatrix} 4 & 5 \\ 6 & 7 \end{bmatrix}$
$RR_{00} = 6*4 + 7*5 = 59$	$RR_{01} = 6 * 6 + 7 * 7 = 85$	$RR_{10} = 26 * 4 + 31 * 5$ $= 259$	$RR_{11} = 26 * 6 + 31 * 7 = 373$

$$RR = \begin{bmatrix} 59 & 85 \\ 259 & 373 \end{bmatrix}$$

У трећој итерацији задатку 1 потребни су резултати задатка 1 и 2 из претходне итерације, док су задатку 2 потребни резултати задатака 3 и 4. Задатак 1 рачуна скаларно множење првог реда матрице RR и првог реда матрице Alpha. Задатак 2 рачуна скаларно множење другог реда матрице RR и другог реда матрице Alpha.

RRR = RR *.Alpha

T ₁	T ₂	
$RR = \begin{bmatrix} 59 & 85 \\ 259 & 373 \end{bmatrix} Alpha = \begin{bmatrix} 8 & 9 \\ 10 & 11 \end{bmatrix}$	$RR = \begin{bmatrix} 59 & 85 \\ 259 & 373 \end{bmatrix} Alpha = \begin{bmatrix} 8 & 9 \\ 10 & 11 \end{bmatrix}$	
$RRR_{00} = 59 * 8 = 472$	$RRR_{10} = 259 * 10 = 2590$	
$RRR_{01} = 85 * 9 = 765$	$RRR_{11} = 373 * 11 = 4103$	

Коначно решење је:

$$RRR = \begin{bmatrix} 472 & 765 \\ 2590 & 4103 \end{bmatrix}$$

Задатак

У директоријуму пројекат налази се директоријум "DCT" који садржи два пројекта:

- 1) Serial садржи секвенцијални код рачунања DCT алгоритма
- 2) Parallel садржи део паралелног кода који рачуна матрицу \boldsymbol{R} односно прву фазу DCT алгоритма

Употребом задатака из ТВВ библиотеке реализовати паралелно рачунање DCT алгоритма. Угледати се на пример општег ацикличног графа задатака из туторијала о распоређивачу задатака и приложеног кода који обавља рачунање прве фазе алгоритма у пројекту Parallel.