Load balancing problem with Least-Square Policy Iteration

Vincent Antaki

McGill University

LSPI

Least-Square Policy Iteration

Michail G. Lagoudakis & Ronal Parr [2003]. Least-Square Policy Iteration

LSTDQ

```
 \begin{aligned} \mathbf{LSTDQ} \left(D,\ k,\ \phi,\ \gamma,\ \pi\right) & // \operatorname{Learns} \widehat{Q}^{\pi} \text{ from samples} \\ //\ D & : \operatorname{Source of samples} \left(s,a,r,s'\right) \\ //\ k & : \operatorname{Number of basis functions} \\ //\ \phi & : \operatorname{Basis functions} \\ //\ \gamma & : \operatorname{Discount factor} \\ //\ \pi & : \operatorname{Policy whose value function is sought} \\ \widetilde{\mathbf{A}} & = \mathbf{0} & //\ (k \times k) \operatorname{matrix} \\ \widetilde{b} & = \mathbf{0} & //\ (k \times 1) \operatorname{vector} \\ \end{aligned}  for each (s,a,r,s') \in D b  \widetilde{\mathbf{A}} & = \widetilde{\mathbf{A}} + \phi(s,a) \left(\phi(s,a) - \gamma\phi(s',\pi(s'))\right)^{\mathsf{T}} \\ \widetilde{b} & = \widetilde{b} + \phi(s,a)r \end{aligned}   \widetilde{w}^{\pi} & = \widetilde{\mathbf{A}}^{-1}\widetilde{b} \\ \mathbf{return} \ \widetilde{w}^{\pi} \end{aligned}
```

Figure: The LSTDQ algorithm

- Linear function approximation.
- Need to use basis functions.
- ► Requires pseudo-matrix inversions.

^{*} Image from Lagoudakis & Parr. Least-Squares Policy Iteration

Load balancing problem - variant 1

- ▶ The agent has 3 servers at its disposition and needs to dispatch them tasks it receives. Tasks arrive randomly following a Poisson distribution with $\lambda = 2$.
- ▶ Tasks requires a certain amount of work to be completed. This amount of work required to complete a task is equal to 1+T where T is a random poisson variable with $\lambda=5$. The agent never knows the associated workload with a task.
- ▶ All server queues have a maximum length of 10. If the agent tries to add a task to an already full queue, the task is discarded and the agents receive a −5 points reward.
- ▶ At every timestep, all servers accomplish one unit of work on the first task in their queue.
- ▶ Upon the completion a task by a server, the agent receives a reward equal to $\frac{5}{\# \text{ of iteration to complete task}}$.

Load balancing problem - variant 2

- ▶ We now have just 2 servers
- ► The amount of work generated by the servers is now different for every server and stochastic.
- ▶ Distributions : $\mathcal{N}(0.8, 0.1), \mathcal{N}(1.2, 0.1)$

Load balancing problem - state definition

For simplicity, we consider the state to be defined as follows:

- Current timestep
- Queue length of all servers
- ► Time since the current task has been added to the queue for all servers
- ▶ Number of timesteps spent on current task for all servers.

To notice:

- Multiples tasks can arrive at the same timestep.
- ▶ Decisions are not spread at a regular interval through time.

Considerations

Difficulties inherent to that problem :

- Delayed reward
- A bit of stochasticity
- Partially observable state
- Would be better formulated as an average reward problem?

Considerations

The optimal policy is however very simple.

Give the task to the server which is expected to complete it the soonest.

For the first variant, this means:

- Give the task to the server with the shortest queue.
- ▶ If multiples servers have the shortest length of queue, give the task to the one which been running his task for the longest amount of time

Choice of features - basis function dilemma

- Our qvalues are probably not a linear combination of the state as previously expressed. We need to consider basis functions to use for preprocessing.
- We do not wish to spend too much time on designing features; we would prefer the algorithm to sort it out.
- ► However, adding new features means we need to increases the amount examples to look at (to avoid overfitting).
- Increasing the amount of examples is a costly option since LSTDQ does a pseudo-inverse operation.

LSPI settings

- ▶ 100 episodes for policy evaluation
- $\gamma = 0.95$
- ▶ Our behavior policy is ϵ -greedy with $\epsilon = 0.2$
- ▶ Initially, we attempted $\phi(s, a) = \operatorname{concat}([\vec{0} \text{ if } a' \neq a \text{ else } s \forall a'])$ where $\vec{0}$ is a null vector the same size as s. Results were unsucessful.
- $\phi(s,a)$: [timestep, $l_{a'}-l_a \ \forall a' \neq a$, $t_{a'}-t_a \ \forall a' \neq a$] where l_a is the length of the queue corresponding to action a and t_a the number of time since the first task of queue a was added to the queue.

Results - variant 1

▶ Although these results are impressive, they can be mostly be credited to the use of the appropriate set of features.

Results - variant 2

Unfortunatly, our set of features did not achieve decent results on the second variant. Here are some features considered :

- the state
- ▶ the indicators $I_{a'}=0 \ \forall \ a'$ and, if $I_{a'}\neq 0$, ratios between queues length $\frac{I_a}{I_{a'}}, \frac{I_{a'}}{I_a}$ else $\vec{0}$.
- ► Indicators over $\frac{l_{d'}}{l_a} > r$ for $r \in [0.1, 0.2, 0.25, 0.33, 0.5, 1, 2, 3, 4, 5, 10]$
- a onehot encoding of the action.
- Appliying tanh, log out of despair.
- ► Action-based sparse encoding of input : $\phi(x, a) = \text{concat}([\vec{0} \text{ if } a' \neq a \text{ else } x \ \forall \ a'])$
- For binary variables, we also considered the transformation $\phi(x) = [x, 1-x]$.

In the end, none worked. We remain cursed with a linear model in a very non-linear environment.

Conclusion

What have has been learn through those experiments?

- ▶ Methods like LSPI generate a new set of samples at each iteration and process it in one batch.
- Basis function dilemma.
- ► The load balancing problem (variant 2) is hard. Non-linear method should be considered.

The End

Thank you!