Università degli Studi di Catania Dipartimento di Matematica e Informatica Corso di Laurea in Informatica Triennale (L 31) Prova finale del corso

Metodi Matematici e Statistici A.A. 2018-2019

19.2.2019

Cognome Matricola	
	Cognome Matricola

Problema 1

Nella tabella che segue riportiamo la quantità di NOx (ossidi di azoto in mg/km) prodotto da un campione di 10 motori diesel estratto da un lotto di produzione di una nota casa automobilistica

59	72	58	65	77	83	72	77	62	62

Supponiamo che questo campione sia estratto da una popolazione distribuita secondo una normale di parametri incogniti. Si calcoli la media campionaria, la deviazione standard campionaria e l'intervallo di confidenza con livello di fiducia 0,1. Se la normativa di legge impone come valore massimo consentito 80 mq/km, possiamo dire che il lotto soddisfa a tale normativa ?

Svolgimento

Problema 2

Una ditta che produce lavatrici ha misurato il livello di rumorosità in funzione del peso di carico del lavaggio, ottenendo la seguente tabella

Rumorosità (db)	25	26	29	31	24	29	26	27
Peso (kg)	31	33	37	38	29	35	32	35

Utilizzando la rumorosità come variabile di risposta (Y) calcolare la retta di regressione, il coefficiente di Pearson e la covarianza. Commentare i risultati. Stimare il valore della rumorosità corrispondente ad un peso di 40 kg.

Svolgimento