

Sub A 7
SEQUENCE LISTING

<110> Scott, Robert E.

<120> cDNA encoding P2P proteins and use of P2P cDNA-derived antibodies and antisense reagents in determining the proliferative potential of normal, abnormal and cancer cells in animals and humans

<130> D6386D

<140>

<141> 2001-03-16

<150> US 08/801,308

<151> 1997-02-18

<160> 4

<210> 1

<211> 1404

<212> PRT

<213> Unknown

<220>

<221> PEPTIDE

<223> P2P polypeptide

<400> 1

Met Met Glu Val Lys Asp Pro Asn Met Lys Gly Ala Met Leu Thr
5 10 15
Asn Thr Gly Lys Tyr Ala Ile Pro Thr Ile Asp Ala Glu Ala Tyr
20 25 30
Ala Ile Gly Lys Lys Glu Lys Pro Pro Phe Leu Pro Glu Glu Pro
35 40 45
Ser Ser Ser Ser Glu Glu Asp Asp Pro Ile Pro Ala Glu Leu Leu
50 55 60
Cys Leu Ile Cys Lys Asp Ile Met Thr Asp Ala Val Val Ile Pro
65 70 75
Cys Cys Gly Asn Ser Ser Cys Asp Glu Cys Ile Arg Thr Thr Leu
80 85 90
Leu Glu Ser Asp Lys His Thr Cys Pro Thr Cys His Gln Asn Asp
95 100 105
Val Ser Pro Asp Ala Leu Ile Ala Asn Lys Phe Leu Arg Gln Ala
110 115 120
Val Asn Asn Phe Lys Asn Glu Thr Gly Tyr Thr Lys Arg Leu Arg
125 130 135
Lys Gln Leu Pro Pro Phe Leu Phe Leu Val Pro Pro Pro Arg Pro
140 145 150
Leu Ser Gln Arg Asn Leu Gln Pro Arg Ser Arg Ser Pro Ile Leu
155 160 165
Arg Gln Gln Asp Pro Val Val Phe Arg Tyr Thr Val Ser Pro Thr

	170	175	180
Cys Ser Asp Thr Lys	Thr Ala Gly Ser	Cys Ser Asp Ser Gly	Thr
185		190	195
Leu Ser Arg Leu Pro	Ala Pro Ser Ile	Ser Ser Leu Thr Ser	Asn
200		205	210
Gln Ser Ser Leu Ala	Pro Pro Val Ser	Gly Asn Pro Ser Ser	Ala
215		220	225
Pro Ala Pro Val Pro	Asp Ile Thr Ala	Thr Val Ser Ile Ser	Val
230		235	240
His Ser Glu Lys Ser	Asp Gly Pro Phe	Arg Asp Ser Asp Asn	Lys
245		250	255
Leu Leu Pro Ala Ala	Ala Leu Thr Ser	Glu His Ser Lys Gly	Ala
260		265	270
Ser Ser Ile Ala Ile	Thr Ala Leu Met	Glu Glu Lys Gly Val	Pro
275		280	285
Gly Thr Ser Pro Trp	Asn Ser Ile Phe	Val Gly Gln Ser Leu	Leu
290		295	300
His Gly Gln Leu Ile	Pro Thr Thr Gly	Pro Val Arg Ile Asn	Ala
305		310	315
Ala Arg Pro Gly Gly	Gly Arg Pro Gly	Trp Glu His Ser Asn	Lys
320		325	330
Leu Gly Tyr Leu Val	Ser Pro Pro Gln	Gln Ile Arg Arg Gly	Glu
335		340	345
Arg Ser Cys Tyr Arg	Ser Ile Asn Arg	Gly Arg His His Ser	Glu
350		355	360
Arg Ser Gln Arg Thr	Gln Ser Pro Ser	Leu Pro Ala Thr Pro	Cys
365		370	375
Phe Val Pro Val Pro	Pro Pro Pro Leu	Tyr Pro Pro Pro Pro	His
380		385	390
Thr Leu Pro Leu Pro	Pro Gly Val Pro	Pro Pro Gln Phe Ser	Pro
395		400	405
Gln Phe Pro Ser Ser	Gln Pro Pro Thr	Ala Gly Tyr Ser Val	Pro
410		415	420
Pro Pro Gly Phe Pro	Pro Ala Pro Ala	Asn Ile Ser Thr Ala	Cys
425		430	435
Phe Ser Pro Gly Val	Pro Thr Ala His	Ser Asn Thr Met Pro	Thr
440		445	450
Thr Gln Ala Pro Leu	Leu Ser Arg Glu	Glu Phe Tyr Arg Glu	Gln
455		460	465
Asn Asp Lys Gly Arg	Glu Ser Lys Phe	Pro Tyr Ser Gly Ser	Ser
470		475	480
Tyr Ser Arg Ser Ser	Tyr Thr Asp Ser	Ser Gln Gly Leu Ala	Gln
485		490	495
His Ile His Ala Leu	Thr Leu Ser Pro	Ser Ala Ala His Thr	Leu
500		505	510
Asp Leu Leu His Asp	His Pro His Pro	Pro Glu Glu Ala Glu	Ala
515		520	525
Arg Ser Ala Met Ile	Val His Met Pro	Asp Leu Met Asp Ile	Ala
530		535	540
His Ala Arg Ser Arg	Ser Pro Pro Tyr	Arg Arg Tyr Arg Ser	Arg
545		550	555
Ser Arg Ser Pro Pro	Glu Phe Arg Gly	Gln Ser Pro Thr Lys	Arg

	560		565		570									
Asn	Val	Pro	Arg	Glu	Glu	Lys	Glu	Arg	Glu	Tyr	Phe	Asn	Arg	Tyr
				575			580			585				
Arg	Glu	Val	Pro	Pro	Pro	Tyr	Asp	Ile	Lys	Ala	Tyr	Tyr	Gly	Arg
				590			595			600				
Ser	Val	Asp	Phe	Arg	Asp	Pro	Phe	Glu	Lys	Glu	Arg	Tyr	Arg	Glu
				605			610			615				
Trp	Glu	Arg	Lys	Tyr	Arg	Glu	Trp	Tyr	Glu	Lys	Tyr	Tyr	Lys	Gly
				620			625			630				
Tyr	Ala	Val	Gly	Ala	Gln	Pro	Arg	Pro	Ser	Ala	Asn	Arg	Glu	Asp
				635			640			645				
Phe	Ser	Pro	Glu	Arg	Leu	Leu	Pro	Leu	Asn	Ile	Arg	Asn	Ser	Pro
				650			655			660				
Phe	Thr	Arg	Gly	Arg	Arg	Glu	Asp	Tyr	Ala	Ala	Gly	Gln	Ser	His
				665			670			675				
Arg	Asn	Arg	Asn	Leu	Gly	Gly	Asn	Tyr	Pro	Glu	Lys	Leu	Ser	Thr
				680			685			690				
Arg	Asp	Ser	His	Asn	Ala	Lys	Asp	Asn	Pro	Lys	Ser	Lys	Glu	Lys
				695			700			705				
Glu	Ser	Glu	Asn	Val	Pro	Gly	Asp	Gly	Lys	Gly	Asn	Lys	His	Lys
				710			715			720				
Lys	His	Arg	Lys	Arg	Arg	Asn	Glu	Glu	Lys	Gly	Glu	Glu	Ser	Glu
				725			730			735				
Ser	Phe	Leu	Asn	Pro	Glu	Leu	Leu	Glu	Thr	Ser	Arg	Lys	Cys	Arg
				740			745			750				
Gly	Ser	Ser	Gly	Ile	Asp	Glu	Thr	Lys	Thr	Asp	Thr	Leu	Phe	Val
				755			760			765				
Leu	Pro	Ser	Arg	Asp	Asp	Ala	Thr	Pro	Val	Arg	Asp	Glu	Pro	Met
				770			775			780				
Asp	Ala	Glu	Ser	Ile	Thr	Phe	Lys	Ser	Val	Ser	Asp	Lys	Asp	Lys
				785			790			795				
Arg	Glu	Lys	Asp	Lys	Pro	Lys	Val	Lys	Ser	Asp	Lys	Thr	Lys	Arg
				800			805			810				
Lys	Ser	Asp	Gly	Ser	Ala	Thr	Ala	Lys	Lys	Asp	Asn	Val	Leu	Lys
				815			820			825				
Pro	Ser	Lys	Gly	Pro	Gln	Glu	Lys	Val	Asp	Gly	Asp	Arg	Glu	Lys
				830			835			840				
Ser	Pro	Arg	Ser	Glu	Pro	Pro	Leu	Lys	Lys	Ala	Lys	Glu	Glu	Ala
				845			850			855				
Thr	Lys	Ile	Asp	Ser	Val	Lys	Pro	Ser	Ser	Ser	Gln	Lys	Asp	
				860			865			870				
Glu	Lys	Val	Thr	Gly	Thr	Pro	Arg	Lys	Ala	His	Ser	Lys	Ser	Ala
				875			880			885				
Lsy	Asp	Thr	Arg	Arg	Gln	Ser	Gln	Pro	Arg	Thr	Arg	Arg	Ser	Lys
				890			895			900				
Arg	Thr	Val	Pro	Lys	Thr	Ser	Ser	Gln	Lys	Ser	Gln	Pro	Val	Arg
				905			910			915				
Thr	Arg	Arg	Pro	Arg	Ser	Leu	Arg	Lys	Ile	Asn	Tyr	Leu	Ile	Ala
				920			925			930				
Arg	Glu	Lys	Asn	Glu	Arg	Glu	Lys	Arg	Lys	Lys	Ser	Val	Asp	Lys
				935			940			945				
Asp	Phe	Glu	Ser	Ser	Ser	Met	Lys	Ile	Ser	Lys	Val	Glu	Gly	Thr

	950	955	960
Glu Ile Val Lys Pro Ser Pro Lys Arg	Lsy Met Glu Gly Asp	Val	
965	970	975	
Glu Lys Leu Glu Arg Thr Pro Glu Lys	Asp Lys Ile Ala Ser	Ser	
980	985	990	
Thr Thr Pro Ala Lys Lys Ile Lys Leu	Asn Arg Glu Thr Gly	Lys	
995	1000	1005	
Lys Ile Gly Asn Ala Glu Asn Ala Ser	Thr Thr Lys Glu Pro	Ser	
1010	1015	1020	
Glu Lys Leu Glu Ser Thr Ser Ser Lys	Ile Lys Gln Glu Lys	Val	
1025	1030	1035	
Lys Gly Lys Ala Lys Arg Lys Val Ala	Gly Ser Glu Gly Ser	Ser	
1040	1045	1050	
Ser Thr Leu Val Asp Tyr Thr Ser Thr	Ser Ser Thr Gly Gly	Ser	
1055	1060	1065	
Pro Val Arg Lys Ser Glu Glu Lys Thr	Asp Thr Lys Arg Thr	Val	
1070	1075	1080	
Ile Lys Thr Met Glu Glu Tyr Asn Asn	Asp Asn Thr Ala Pro	Ala	
1085	1090	1095	
Glu Asp Val Ile Ile Met Ile Gln Val	Pro Gln Ser Lys Trp	Asp	
1100	1105	1110	
Lys Asp Asp Phe Glu Ser Glu Glu Glu	Asp Val Lys Thr Thr	Gln	
1115	1120	1125	
Pro Ile Gln Ser Val Gly Lys Pro Ser	Ser Ile Ile Lys Asn	Val	
1130	1135	1140	
Thr Thr Lys Pro Ser Ala Thr Ala Lys	Tyr Thr Glu Lys Glu	Ser	
1145	1150	1155	
Glu Gln Pro Glu Lys Leu Gln Lys Leu	Pro Lys Glu Ala Ser	His	
1160	1165	1170	
Glu Leu Met Gln His Glu Leu Arg Ser	Ser Lys Gly Ser Ala	Ser	
1175	1180	1185	
Ser Glu Lys Gly Arg Ala Lys Asp Arg	Glu His Ser Gly Ser	Glu	
1190	1195	1200	
Lys Asp Asn Pro Asp Lys Arg Lys Ser	Gly Ala Gln Pro Asp	Lys	
1205	1210	1215	
Glu Ser Thr Val Asp Arg Leu Ser Glu	Gln Gly His Phe Lys	Thr	
1220	1225	1230	
Leu Ser Gln Ser Ser Lys Glu Thr Arg	Thr Ser Glu Lys His	Glu	
1235	1240	1245	
Ser Val Arg Gly Ser Ser Asn Lys Asp	Phe Thr Pro Gly Arg	Asp	
1250	1255	1260	
Lys Lys Val Asp Tyr Asp Ser Arg Asp	Tyr Ser Ser Ser Lys	Arg	
1265	1270	1275	
Arg Asp Glu Arg Gly Glu Leu Ala Arg	Arg Lys Asp Ser Pro	Pro	
1280	1285	1290	
Arg Gly Lys Glu Ser Leu Ser Gly Gln	Lys Ser Lys Leu Arg	Glu	
1295	1300	1305	
Glu Arg Asp Leu Pro Lys Lys Gly Ala	Glu Ser Lys Lys Ser	Asn	
1310	1315	1320	
Ser Ser Pro Pro Arg Asp Lys Lys Pro	His Asp His Lys Ala	Pro	
1325	1330	1335	
Tyr Glu Thr Lys Arg Pro Cys Glu Glu	Thr Lys Pro Val Asp	Lys	

	1340	1345	1350
Asn Ser Gly Lys	Glu Arg Glu Lys His	Ala Ala Glu Ala Arg	Asn
1355	1360	1365	
Gly Lys Glu Ser	Ser Gly Ala Asn Cys	His Val Tyr Leu Thr	Arg
1370	1375	1380	
Gln Thr Leu Pro	Trp Arg Arg Ser Trp	Leu Leu Gly Arg Trp	Arg
1385	1390	1395	
Arg Ala Pro Ser	Ser Arg Asn Pro Ser		
1400	1404		

<210> 2
<211> 5173
<212> DNA
<213> Unknown

<220>

<221> cDNA
<223> P2P cDNA

<400> 2

aggtccacca cctccatctt acacctgctt tcgttgtgg aaacctggtc attatattaa 60
gaattgccaa caaatgggaa taagaacttt gaatctggc ctaggatcaa aaagagcact 120
ggaattccta gaagtttat gatggaagtg aaagatccta acatgaaagg tgcaatgctt 180
accaacactg gaaaatatgc aataccaact atagatgcag aggcctatgc aatcgaaaag 240
aaagagaaaac cacccttctt accagaggag ccatcatcat cttcagaaga agatgatcct 300
atcccagcag agcttctgtg cctcatctgc aaagacatca tgactgatgc tgggtcatt 360
ccctgctgtg gaaacagttc atgtgatgaa tgtataagaa cgacactctt ggagtcagat 420
aacacatacat gtccaacatg tcaccaaaat gatgttctc ctgatgctt aattgccaac 480
aagttttac gacaggctgt taataacttt aaaaatgaaa ctggctatac aaaacgacta 540
cgaaaacagt tacctccatt ttatTTTta gtaccaccac caagaccact cagtcagcgg 600
aacctacagc ctcgttagtag atctccaata ctaagacagc aggatctgt agtattcagg 660
tacactgtct cgcttacact ctccgataact aagacagcag gatcctgttag tgattcagg 720
acactgtctc gccttacactgc tccgtctata tcttcattaa cttctaatac gtcttccttg 780
gcccttcctg tgtctggaaa tccgtcttct gctccagctc cagttacatcataactgca 840
accgtgtcta tatcagtcca ctcagaaaaaa tcggatggac ctTTTcggga ttctgataat 900
aaattattgc cagctgccgc ctttacatca gaacattcaa agggagcctc ttcaattgt 960
attactgctc ttatggaaaga aaaaggggta ccaggtacca gtccttgaa ctccatctt 1020
gttggacagt cattattaca tggacagttt attcccacaa ctggcccaagt aagaatcaat 1080
gctgctcgctc caggtgggtgg ccggccaggc tgggagcatt ccaacaagct tgggtaccta 1140
gtttctccac cacagcaaatt tagaagagga gaaagaagct gttacagaag tataaaccgc 1200
gggcgacacc acagcgaacg atcacagagg actcaaagcc catcaattcc agcaactcca 1260
tgcttgcgtc ccgttccacc acctcccttgc tatccgcctc ctccccatac acttcctctt 1320
cctccaggtg tacctcctcc acagtttct cctcagttc cctcctccca gcctccaaaca 1380
gcaggatata gtgtccctcc tccaggattt ccaccagctc ctgccaatat atcaacagct 1440
tgctttcac caggtgttcc cactgcccatt tcaaatacca tgcccacaac acaagcacct 1500
cttttgccta gggagaatt ctatagagag caaaacgaca aaggaagaga gtctaaattt 1560
ccctatagtg ggtcatcgta ttcaagaagt tcatacactg actcaagtca aggtctggct 1620
caacacattc acgctttac tctcagtcct tcagctgctc acactctcga tcttcttcac 1680
gatcatcccc atcccccaga agaggcagag gcaagatctg caatgattgt tcacatgcca 1740
gatctcatgg atatgcggca tgctaggtca aggtcacctc cctataagacg atatcgctca 1800
cggtccagat ctcccccaga atttagggga cagtctccca ctaaacgtaa tgtacctcga 1860

gaagagaaaag aacgtgagta tttaataga tacagagaag ttccacccccc ttatgacatc 1920
aaaggctatt atggcgagg tgcgtacttt agagacccat ttgagaaaaga acgctaccgg 1980
gaatggaaa gaaataccg agagtggat gagaagtact acaaagggtt cgcggtggtt 2040
gctcaaccta gaccctcagc caatagagag gactttctc cagagagact cttacctctt 2100
aatatcagaa attcaccctt cacaagaggc cgcagagaag actatgtgc tggacaaagt 2160
catagaaata gaaatctagg tggcaactat ccagaaaagc tttcaacaag ggacagtcac 2220
aatgcaaaag ataatccaa atcgaaggag aaggagagtg agaatgttcc aggagacggc 2280
aaagggaaaca agcataagaa acacaggaaa cgaagaaaacg aagaaaaggg ggaagagagt 2340
gagagcttcc tgaacccaga gctactggag acgtcttagga aatgcagggg atcgtcaggg 2400
attgatgaaa cgaagacaga tacactgtt gttctccaa gcagagacga tgctacacct 2460
gttagggatg agccaatggc cgccagaatcg atcacttca agtcgtatc tgacaaagac 2520
aagagggaaa aggataagcc aaaagtaaaa agtgacaaga ccaaaccggaa aagtgcacggg 2580
tctgctacag ccaagaaaaga caatgtttt aaaccttcta aaggacctca agaaaaggta 2640
gatggagacc gtggaaaagtc tcctcggtct gagccgccac tcaaaaaagc caaagaggag 2700
gctacaaaga ttgactctgt aaaaccttcc tcgtcttctc agaaggatga gaaggtcact 2760
ggaaccccta gaaaagccca ttctaaatct gcaaaagaca ccaggaggca aagccagcca 2820
aggacgagaa ggtcaaaaag gactgttcca aagacatcaa gtcagaaaag ccagccagta 2880
aggacgagaa ggccaagaag cctgagaaaa ataaactact tgatagcaag ggagaaaaac 2940
gaaagagaaa aacggaagaa gagtgtagat aaagatttt agtcgttcc aatgaaaatc 3000
tctaaagttag aaggaacaga aatagtgaaa ccatcacca aacggaaaat ggaaggtgat 3060
gttggaaaagc tggaaaggac cccagaaaag gacaagattt catcatcaac tactccagcc 3120
aaaaaaaaatca aactcaacag agaaactgga aaaaaattt gaaatgcaga aatgcacatc 3180
actacaaaag aaccctctga aaaattggag tcaacatcta gcaaaatcaa acaggaaaaa 3240
gtcaagggaa aggccaaacg gaaagtagct ggtcggaaag gctccagctc cacgcttgt 3300
gattacacca gtacaagttc aactggaggc agtcctgtga gggaaatctga agaaaagaca 3360
gatacaaagc gaacagtcat taaaactatg gaggaatata ataatgataa cacagctcct 3420
gctgaagatg ttataattat gatccagtt ctcagtc aatggataa agatgactt 3480
gagtctgaag aagaagatgt taaaaccaca caacctatac agagtgttagg gaaaccatcg 3540
agtattataa aaaatgtcac tactaagcca tcggctacgg ctaagtacac cgagaaggaa 3600
agcgagcagc cggagaaaact gcagaagctt cccaggagg cgagccacga gctgtatcg 3660
cacgagctca ggagctcaaa gggcagtgcg tccagtgaga agggcagagc caaggacccg 3720
gagcactcag ggtcgagaaa ggacaaccct gacaagagga agagcgtgc ccagccagac 3780
aaggagagca ctgtggaccg cctgagttag cagggacatt ttaagactt ctctcagtt 3840
tccaaagaga ccaggacttc agagaagcac gagtctgtt gttggcttc aataaaagac 3900
ttcactcctg gtagagacaa gaaagtggac tacgacagca gggattattt cagttccaaag 3960
cgaagagacg agagaggtga attagcaagg agaaaagact ctcctcccc gggcaaagag 4020
tctctgtctg ggcagaaaaag caagctgagg gaggagagag atttacctaa aaagggggcc 4080
gagtcaaaaa aaagtaattt tagccccca agagacaaaa agcctcatga tcataaaagcc 4140
ccctacgaaa ctaaacgccc atgtgaagag acaaaggctg tagataaaaaa ctctggaaag 4200
gagcgggaga agcatgctgc tgaagctcgc aatggaaaag agtccagtgg tgcaaactgc 4260
catgtataacc taacccgcca gaccctccca tggagaagga gctggctgct gggcaggtgg 4320
agaagagcgc cgtcaagccg aaaccccagc tgagccattt ctcgaggctt tcctctgacc 4380
tgaccggga gacgaacgag gcagccttgc aaccagatta taatgagagc gacagtgaga 4440
gtaatgtgtc tgtgaaggaa gaagaagctg ttgccagtat ctccaaggac ttgaaagaga 4500
aaacaacaga gaaagcgaaa gagagctga ctgtagcaac ggccagccag ccaggtgcag 4560
acaggagcca gagccaaagt agcccagtgt tagtcgtat agtcatagcc ttccggagcc 4620
gaccggaaac cacagcagca gtgcagctc agccggaagg ccaggacagc aaaaagaaga 4680
agaagaagaa ggagaagaaa aacgacaaga agcataaaaa gcacaagaag cacaagaagc 4740
acgcaggccg acggcgacgt ggagaagagc cagaacaca aacacaagaa gaagaaggcc 4800
aagaagaaca aagacaagga gaaggagaaa gatgaccaaa aagtgagatc tgcactgtg 4860
tgaaggacgg atgtgttaat tgacttaatt actaagtcat ctgtattaaa ttctgttata 4920
atgtaaagag attccagcct tgtaaataat gaatggaaga ccctgtctg cacttaaaag 4980

tatttgctgc ttgattattt cattttaca tcagagctt ataacgaact tttgtacaga 5040
attgtgagtt gtgaccatgg aacagtgaga ggtttgcta gggcctatta ttttaacca 5100
ccattaatta gttggggtgg agtttactgt actgtaaaat tttcacattt gaatttttt 5160
aattgcctgg caa 5173

<210> 3
<211> 16
<212> DNA
<213> Unknown

<220>

<221> primer_bind
<223> P2P antisense oligonucleotide

<400> 3

cagcaggagc tgtgtt

<210> 4
<211> 16
<212> DNA
<213> Unknown

<220>

<221> primer_bind
<223> P2P sense oligonucleotide

<400> 4

ctactaagcc atcggc