Ciencias de la Computación I

Propiedades de Clausura de Lenguajes Regulares y Lenguajes Libres del Contexto

Ciencias de la Computación I - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2012

Propiedades de Clausura de Lenguajes Regulares

Los lenguajes regulares (LR) son cerrados bajo las siguientes operaciones:

- ✓ Unión
- ✓ Intersección
- √ Complemento
- ✓ Clausura
- ✓ Reversa
- ✓ Concatenación

Cualquiera de estas operaciones aplicadas sobre lenguajes regulares da como resultado otro lenguaje regular.

Intersección de Lenguajes Regulares

Teorema: Dados L₁ y L₂ lenguajes regulares, L₁ ∩ L₂ es un lenguaje regular.

Demostración:

Como L₁ es LR existe un AFD $M_1 = \langle E_1, A_1, \delta_1, e_{01}, F_1 \rangle$ tal que L₁ = L(M₁)

Como L₂ es LR existe un AFD M₂ = $\langle E_2, A_2, \delta_2, e_{02}, F_2 \rangle$ tal que L₂ = L(M₂)

A partir de M₁ y M₂ es posible definir un AFD M de la siguiente manera:

$$M = \langle E_1 \ x \ E_2, \ A_1 \cup A_2 \ , \ \delta, \ [e_{01}, \ e_{02}], \ F_1 \ x \ F_2 \rangle \qquad \qquad E_1 \ \bigcap \ E_2 = \emptyset$$

δ se define como: $δ([e_i, e_k], a) = [e_i], e_k]$ sí y sólo sí

$$\delta_1(\mathbf{e}_i, \mathbf{a}) = \mathbf{e}_i$$

$$\delta_1(e_i, a) = e_i$$
 $y \delta_2(e_k, a) = e_k$

Es decir, $\delta([e_i, e_k], a) = [\delta_1(e_i, a), \delta_2(e_k, a)]$

para todo $e_i \in E_1$, $e_k \in E_2$ y para todo $a \in A$

Como L(M) = L(M₁) \cap L(M₂) = L₁ \cap L₂ L₁ \cap L₂ es un lenguaje regular

Ciencias de la Computación I - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2012

Ejemplo: Intersección entre dos Lenguajes Regulares

$$M_1 = <\{e_{01}, e_{11}, e_{21}\}, \{a,b\}, \delta_1, e_{01}, \{e_{21}\}>$$

 $L(M_1) = L_1$

$$L_2 = \{ a^n b / n > 0 \}$$
 δ_2
 e_{02}
 e_{12}
 e_{22}

$$\begin{split} M_2 &= <\{e_{02}, e_{12}, e_{22}\}, \{a, b\}, \delta_2, e_{02}, \{e_{22}\} > \\ L(M_2) &= L_2 \end{split}$$

A partir de M₁ y M₂, según la demostración anterior, se puede construir un AFD M como:

$$M = <\{[e_{01}e_{02}], [e_{11}e_{12}], [e_{01}e_{12}], [e_{21}e_{22}]\}, \{a,b\}, \delta, [e_{01}e_{02}], \{[e_{21}e_{22}]\}>$$

Ejemplo: Unión entre dos Lenguajes Regulares

Usando autómatas finitos:

$$M_1 = \langle \{e_{01}, e_{11}, e_{21}\}, \{a, b\}, \delta_1, e_{01}, \{e_{21}\} \rangle$$

$$L(M_1)=L_1$$

$$L_2 = \{ a^n b / n > 0 \}$$

$$\delta_2 \qquad e_{02} \qquad e_{12} \qquad b$$

$$\begin{split} \mathbf{M}_2 &= <\{\mathbf{e}_{02}, \mathbf{e}_{12}, \mathbf{e}_{22}\}, \{\mathbf{a}, \mathbf{b}\}, \delta_2, \mathbf{e}_{02}, \{\mathbf{e}_{22}\} > \\ & \quad L(\mathbf{M}_2) = L_2 \end{split}$$

A partir de M₁ y M₂, se puede construir un AF M como:

$$M = <\{e_0, e_{01}, e_{11}, e_{21}, e_{02}, e_{12}, e_{22}\}, \{a, b\}, \delta, e_0, \{e_{21}, e_{22}\} >$$

$$L(M) = \{a^nb/n > 0\}$$

M es AFND_ε y se puede convertir mediante pasajes en AFD que acepta el mismo lenguaje

Como L(M) = L(M₁) \cup L(M₂) = L₁ \cup L₂ luego L₁ \cup L₂ es un lenguaje regular

Ciencias de la Computación I - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2012

Unión de Lenguajes Regulares

<u>Teorema</u>: Dados L_1 y L_2 lenguajes regulares, $L_1 \cup L_2$ es un lenguaje regular.

Demostración: (usando Autómatas Finitos (AF))

Como L₁ es LR existe un AFD M₁ = $\langle E_1, A_1, \delta_1, e_{01}, F_1 \rangle$ tal que L₁ = L(M₁)

Como L_2 es LR existe un AFD M_2 = $\langle E_2, A_2, \delta_2, e_{02}, F_2 \rangle$ tal que L_2 = $L(M_2)$

A partir de M₁ y M₂ es posible definir un AF M de la siguiente manera

$$\mathsf{M} = \langle \mathsf{E}_1 \cup \mathsf{E}_2 \cup \{\mathsf{e}_0\} \;,\; \mathsf{A}_1 \cup \mathsf{A}_2, \; \delta, \; \mathsf{e}_0, \; \mathsf{F}_1 \cup \mathsf{F}_2 \rangle \qquad e_0 \not\in \; \mathsf{E}_1 \; \; \mathsf{y} \; e_0 \not\in \; \mathsf{E}_2$$

 δ : se define como:

$$\delta(e_k, a) = \begin{cases} \delta_1(e_k, a) & \text{si } e_k \in E_1 & \text{para todo } e_k \in E_1 \cup E_2 \text{ y} \\ \delta_2(e_k, a) & \text{si } e_k \in E_2 & \text{para todo } a \in A_1 \cup A_2 \end{cases}$$

Además se define $\delta(e_0, \varepsilon) = e_{01}$ y $\delta(e_0, \varepsilon) = e_{02}$

M es AFND- ϵ pero se pueden usar los algoritmos existentes para obtener un AFD equivalente que acepta el mismo lenguaje que M.

Como L(M) = L(M₁) \cup L(M₂) = L₁ \cup L₂ luego L₁ \cup L₂ es un lenguaje regular

Ejemplo: Unión entre dos Lenguajes Regulares

Usando expresiones regulares ER:

 $L_1 = \{ a^{2n+1}b / n >= 0 \} L_1$ es regular, luego existe una ER $r_1 = a(aa)*b L(r_1) = L_1$

 $L_2 = \{ a^nb / n>0 \} L_2$ es regular luego existe una ER $r_2=aa^*b$ $L(r_2)=L_2$

 r_1+r_2 es ER que describe $L(r_1) \cup L(r_2)$ por definición, luego

a(aa)*b+aa*b es ER que describe L(r₁) \cup L(r₂)= L₁ \cup L₂ = { $a^{2n+1}b / n \ge 0$ } \cup { $a^nb / n > 0$ }

Por lo tanto, si $L_1 \cup L_2$ se describe con una ER es un lenguaje regular

Ciencias de la Computación I - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2012

Unión de Lenguajes Regulares

Teorema:

Dados L_1 y L_2 lenguajes regulares, $L_1 \cup L_2$ es un lenguaje regular.

Demostración: (usando Expresiones Regulares (ER))

Como L_1 es LR existe una ER r_1 tal que $L_1 = L(r_1)$

Como L_2 es LR existe una ER r_2 tal que L_2 = $L(r_2)$

 $r_1 + r_2$ es ER que describe el lenguaje regular $L(r_1) \cup L(r_2)$, por definición

Como $L(r_1) = L_1$ y $L(r_2) = L_2$ entonces $L(r_1) \cup L(r_2) = L_1 \cup L_2$

Por lo tanto, $L_1 \cup L_2$ es un lenguaje regular

Ejemplo: Unión entre dos Lenguajes Regulares

Usando gramáticas regulares

$$L_{1} = \{ a^{2n+1}b / n >= 0 \}$$

$$C_{1} = \{ A, B \}, \{ a, b \}, P_{1}, S_{1} >$$

$$P_{1} = \{ S_{1} \rightarrow aB, A \rightarrow aB, B \rightarrow aA, B \rightarrow b \}$$

$$\begin{array}{lll} L_2 = \{ \text{ a}^{\text{n}}\text{b / n} > 0 \} & L(G_2) = L_2 \\ G_2 = <\{C\}, \{a,b\}, P_2, S_2 > \\ P_2 = \{S_2 \rightarrow aC, \ C \rightarrow aC \ C \rightarrow b\} & \text{se deben renombr} \end{array}$$

deben tener nombre distinto que en G₁ si no se deben renombrar

A partir de G_1 y G_2 , se puede construir una gramática regular G como: $P=P_1 \cup P_2$ y reemplazando en cada regla que aparece S_1 y S_2 por S_2 $P=\{S \rightarrow aB, A \rightarrow aB, B \rightarrow aA, B \rightarrow b, S \rightarrow aC, C \rightarrow aC, C \rightarrow b\}$ G=<{A, B, C}, {a, b}, P, S> $L(G)=L(G_1)\cup (G_2)=L_1\cup L_2$ G es regular y genera un Lenguaje Regular $L_1 \cup L_2$

Unión de Lenguajes Regulares

Ciencias de la Computación I - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2012

Teorema:

Dados L_1 y L_2 lenguajes regulares, $L_1 \cup L_2$ es un lenguaje regular.

Demostración: (usando Gramáticas Regulares (GR))

Como L₁ es LR existe una GR G₁ = $\langle N_1, T_1, P_1, S_1 \rangle$ tal que L₁ = L(G₁)

Como L, es LR existe una GR $G_2 = \langle N_2, T_2, P_2, S_2 \rangle$ tal que $L_2 = L(G_2)$

A partir de G₁ y G₂ es posible definir una gramática G como sigue:

$$G = \langle N_1 \cup N_2, T_1 \cup T_2, P, S \rangle$$
 $N_1 \cap N_2 = \emptyset$

 $P = P_1 \cup P_2$ reemplazando S_1 en P_1 y S_2 en P_2 por S_1

Como las reglas de P son las reglas de P₁ y P₂, G es una GR y entonces $L(G) = L(G_1) \cup L(G_2) = L_1 \cup L_2$ es un lenguaje regular

Ejemplo: Complemento de un Lenguaje Regular

A partir de M₂, se puede construir un AFD M´ como:

Ciencias de la Computación I - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2012

Complemento de un Lenguaje Regular

Teorema:

Dado L lenguaje regular, L es un lenguaje regular.

Demostración:

Como L es LR existe un AFD M = $\langle E, A, \delta, e_0, F \rangle$ tal que L = L(M)

A partir de M, se puede construir un nuevo autómata M´ tal que L(M´) = L

M' se define como M' = $\langle E \cup \{\bar{e}\}, A, \delta', e_0, (E - F) \cup \{\bar{e}\} \rangle$,

donde δ se define como

- si $e_k \in E$ y $\delta(e_k, a)$ está definida, $\delta'(e_k, a) = \delta(e_k, a)$ para todo $e_k \in E$ y para todo $a \in A$
- si $e_k \in E$ y $\delta(e_k, a)$ no está definida, $\delta'(e_k, a) = e$ para todo $e_k \in E$ y para todo $a \in A$
- $\operatorname{si} \mathbf{e}_{k} = \mathbf{e}$ $\delta'(\mathbf{e}, \mathbf{a}) = \mathbf{e}$ para todo $\mathbf{a} \in A$

Como L(M') = \overline{L} L es un lenguaje regular

Ejemplo: Reversa de un Lenguaje Regular

$$L_{2} = \{ a^{n}b / n > 0 \}$$

$$L(G_{2}) = L_{2}$$

$$G_{2} = \{ C \}, \{ a, b \}, P_{2}, S_{2} >$$

$$P_{2} = \{ S_{2} \rightarrow aC, C \rightarrow aC \ C \rightarrow b \}$$

G₂ es Regular, Lineal a derecha

A partir de G₂, se puede construir una gramática regular G´ como:

$$\begin{split} &G^{'}\text{=<}\{A,B,C\},\{a,b\},P^{'},S>\\ &P^{'}\text{=}\{S\rightarrow Ca,\ C\rightarrow Ca,\ C\rightarrow b\} \end{split} &\text{Invirtiendo la parte derecha de la}\\ &\text{reglas de P}_2\\ &\text{G}^{'}\text{ es Regular, Lineal a izquierda} \end{split}$$

 $L(G') = L(G_2)^R = L_2^R$ G' es regular y genera un Lenguaje Regular L_2^R

Ciencias de la Computación I - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2012

Reversa de un Lenguaje Regular

Teorema:

Dado L lenguaje regular, L^R es un lenguaje regular.

Demostración:

Como L es LR existe una GR lineal a derecha G = <N, T, P, S> tal que L = L(G)

A partir de G es posible definir una gramática G' = < N, T, P', S > tal que $L(G') = L^R$

donde P' = P con cada regla de producción de P de la forma $A \rightarrow aB$ reemplazada por $A \rightarrow Ba$ para $A \in N \cup \{S\}$ y $B \in N$ y $a \in T$

Como $L(G') = L^R$ L^R es un lenguaje regular

Propiedades de Clausura de Lenguajes Libres del Contexto

Los lenguajes libres del contexto (LLC) son cerrados bajo las siguientes operaciones:

- ✓ Unión
- ✓ Clausura
- ✓ Reversa
- ✓ Concatenación

Los lenguajes libres del contexto (LLC) no son cerrados bajo las siguientes operaciones:

- ✓ Intersección
- √ Complemento

Ciencias de la Computación I - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2012

Ejemplo: Unión de lenguajes Libres del Contexto

$$L_{1} = \{ a^{n}b^{n} / n \ge 0 \}$$

$$L(G_{1}) = L_{1}$$

$$G_{1} = <\{A\}, \{a,b\}, P_{1}, S_{1} >$$

$$P_{1} = \{S_{1} \rightarrow \epsilon, S_{1} \rightarrow A, A \rightarrow aAb, A \rightarrow ab\}$$

$$\begin{aligned} L_2 &= \{ \text{ b}^n \text{a}^n \, / \, \text{n} \ge 0 \, \} \\ L(G_2) &= L_2 \\ G_2 &= < \{ B \}, \{ a, b \}, P_2, S_2 > \\ P_2 &= \{ S_2 \to \epsilon, \\ S_2 \to B, \\ B \to b B a, \\ B \to b a \} \end{aligned}$$

A partir de G₁ y G₂, se puede construir una gramática G como:

$$G=<\{A, B, S_{1}, S_{2}\}, \{a, b\}, P, S>$$

$$P=P_1 \cup P_2 \cup \{S \to S_1, S \to S_2\} - \{S_1 \to \epsilon, S_2 \to \epsilon\}\}$$
 Considerar el caso especial

Si los no terminales en G₁ y G₂ tienen el mismo nombre deben renombrarse

Si en $P_1 \cup P_2$ estaba $S_1 \rightarrow \epsilon$ ó $S_2 \rightarrow \epsilon$ agregar en $P: S \rightarrow \epsilon$

$$P = \! \{S \rightarrow \epsilon, \, S \rightarrow S_1, \, S \rightarrow S_2, \, S_1 \rightarrow A, \, A \rightarrow aAb, \, A \rightarrow ab, \, S_2 \rightarrow B, \, B \rightarrow bBa, \, B \rightarrow ba\}$$

$$L(G)=L(G_1) \cup L(G_2) = L_1 \cup L_2$$
 G es tipo 2 luego $L_1 \cup L_2$ es LLC

Unión de Lenguajes Libres del Contexto

Teorema:

Dados L_1 y L_2 LLC, $L_1 \cup L_2$ es un lenguaje libre del contexto.

Demostración:

Como L₁ es LLC existe una GLC G₁ = $\langle N_1, T_1, P_1, S_1 \rangle$ tal que L₁ = L(G₁)

Como L₂ es LLC existe una GLC G₂ = $\langle N_2, T_2, P_2, S_2 \rangle$ tal que L₂ = L(G₂)

A partir de G₁ y G₂ es posible definir una gramática libre del contexto

 $G = \langle N, T, P, S \rangle$ tal que $L(G) = L(G_1) \cup L(G_2) = L_1 \cup L_2$

La gramática G se define como sigue

 $G = \langle N_1 \cup N_2 \cup \{S_1, S_2\}, T_1 \cup T_2, P, S \rangle$ $N_1 \cap N_2 = \emptyset$

 $P = P_1 \cup P_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\} - \{S_1 \rightarrow E, S_2 \rightarrow E\}$ y además

Si en P_1 está la regla $S_1 \to E$, ó en P_2 $S_2 \to E$ se agrega a P $S \to E$

Como las reglas de P respetan el formato de las GLC, G es una GLC y entonces $L(G) = L(G_1) \cup L(G_2) = L_1 \cup L_2$ es un lenguaje libre del contexto

Ciencias de la Computación I - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2012

Ejemplo: Concatenación de lenguajes Libres del Contexto

$$L_{1} = \{ a^{n}b^{n} / n \ge 0 \}$$

$$L(G_{1})=L_{1}$$

$$G_{1}=<\{A\}, \{a,b\}, P_{1}, S_{1}>$$

$$P_{1}=\{S_{1} \rightarrow \epsilon, S_{1} \rightarrow A, A \rightarrow aAb, A \rightarrow ab\}$$

$$\begin{split} L_2 = & \{ \, b^n a^n \, / \, n \ge 0 \, \} \\ L(G_2) = & L_2 \\ G_2 = & < \{ B \}, \{ a, b \}, P_2, S_2 > \\ P_2 = & \{ S_2 \to \epsilon, \\ S_2 \to B, \\ B \to b B a, \\ B \to b a \} \end{split}$$

A partir de G_1 y G_2 , se puede construir una gramática $G = \{A,B,S_1,S_2\}, \{a,b\}, P, S > \{a,b\}$

$$P {=} P_1 {\cup} P_2 {\cup} \{S \rightarrow S_1 S_2\} - \{S_1 \rightarrow \epsilon, \ S_2 \rightarrow \epsilon\}$$

Considerar casos especiales

 $\begin{array}{lll} \text{Si en P}_1 \cup \text{P}_2 \text{ estaban} & \text{S}_1 \rightarrow \epsilon \text{ y S}_2 \rightarrow \epsilon & \text{agregar en P}: \text{ S} \rightarrow \epsilon \\ \text{Si en P}_1 \text{ estaba} & \text{S}_1 \rightarrow \epsilon & \text{agregar en P}: \text{ S} \rightarrow \text{S}_2 \\ \text{Si en P}_2 \text{ estaba} & \text{S}_2 \rightarrow \epsilon & \text{agregar en P}: \text{ S} \rightarrow \text{S}_1 \end{array}$

 $P = \{S \rightarrow S_1S_2, \ S \rightarrow E, \ S \rightarrow S_1, \ S \rightarrow S_2, \ S_1 \rightarrow A, \ A \rightarrow aAb, \ A \rightarrow ab, \ S_2 \rightarrow B, \ B \rightarrow bBa, \ B \rightarrow ba\}$ $L(G)=L(G_1)$. $L(G_2)=L_1$. L_2 G es tipo 2 luego L₁.L₂ es LLC

Concatenación de Lenguajes Libres del Contexto

 $\underline{\text{Teorema}}$: Dados L₁ y L₂ LLC, L₁ . L₂ es un lenguaje libre del contexto.

Demostración:

Como L_1 es LLC existe una GLC $G_1 = \langle N_1, T_1, P_1, S_1 \rangle$ tal que $L_1 = L(G_1)$ Como L_2 es LLC existe una GLC $G_2 = \langle N_2, T_2, P_2, S_2 \rangle$ tal que $L_2 = L(G_2)$ A partir de G_1 y G_2 es posible definir una gramática libre del contexto $G = \langle N, T, P, S \rangle$ tal que $L(G) = L(G_1)$. $L(G_2) = L_1$. L_2 La gramática G se define como sigue $G = \langle N_1 \cup N_2 \cup \{S_1, S_2\}, T_1 \cup T_2, P, S \rangle \qquad N_1 \cap N_2 = \emptyset$ $P = (P_1 \cup P_2 \cup \{S \rightarrow S_1S_2\}) - \{S_1 \rightarrow E, S_2 \rightarrow E\} \qquad \text{y además}$ Si en P_1 está la regla $S_1 \rightarrow E$, se agrega a P la regla $S \rightarrow S_2$

Si en P_2 está la regla $S_2 \to \mathcal{E}$, se agrega a P la regla $S \to S_1$ Si en P_1 está la regla $S_1 \to \mathcal{E}$, y en P_2 $S_2 \to \mathcal{E}$ se agrega a P $S \to \mathcal{E}$

Como las reglas de P respetan el formato de las GLC, G es una GLC y entonces $L(G) = L(G_1) \cdot L(G_2) = L_1 \cdot L_2$ es un lenguaje libre del contexto

Ciencias de la Computación I - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2012

Ejemplo: Clausura de un Lenguaje Libre del Contexto

$$L_{1} = \{ a^{n}b^{n} / n \ge 0 \}$$

$$L(G_{1}) = L_{1}$$

$$G_{1} = \langle \{A\}, \{a,b\}, P_{1}, S_{1} \rangle$$

$$P_{1} = \{ S_{1} \rightarrow \epsilon, S_{1} \rightarrow A, A_{1} \rightarrow aAb, A_{2} \rightarrow ab \}$$

A partir de G_1 se puede construir una gramática G como: $G=<\{A, X, S_1\},\{a,b\}, P, S>$

$$P=\{S \rightarrow \epsilon, \ S \rightarrow X, \ X \rightarrow S_1 \ X \rightarrow S_1 X, \ S_1 \rightarrow A, \ A \rightarrow aAb, \ A \rightarrow ab\}$$

$$L(G)=(L(G_1))^*={L_1}^* \qquad \qquad G \text{ es tipo 2 luego } L_1^* \text{ es LLC}$$

Clausura de un Lenguaje Libre del Contexto

<u>Teorema</u>: Dado L_1 LLC, L_1^* es un lenguaje libre del contexto. Demostración:

Como L₁ es LLC existe una GLC G₁ = $\langle N_1, T_1, P_1, S_1 \rangle$ tal que L₁ = L(G₁)

A partir de G_1 es posible definir una gramática libre del contexto $G = \langle N, T, P, S \rangle$ tal que $L(G) = L^*(G_1)$

La gramática G se define como sigue G = <N, T, P, S>

 $N = N_1 \cup \{S_1, X\}$

X ∉ N₁

 $T=T_1$

 $P = P_1 \cup \{ \ S \longrightarrow E, \ S \longrightarrow X, \ X \longrightarrow S_1 X, \ X \longrightarrow S_1 \} - \{S_1 \longrightarrow E\}$

Como las reglas de P respetan el formato de las GLC, G es una GLC y entonces $L(G) = (L(G_1))^* = L_1^*$ es un lenguaje libre del contexto

Ciencias de la Computación I - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2012

Ejemplo Reversa de un lenguaje libre del contexto

$$L(G_{1})=L_{1}$$

$$G_{1}=<\{A\},\{a,b\},P_{1},S_{1}>$$

$$P_{1}=\{S_{1} \rightarrow \epsilon, S_{1} \rightarrow A, A \rightarrow aAb, A \rightarrow ab\}$$

A partir de G₁ se puede construir G como:

$$\begin{aligned} G=&<\{A\},\{a,b\},\ P,\ S_1>\\ P=&\{S_1\to\epsilon,\ S_1\to A,\ A\to bAa,\ A\to ba\}\\ L(G)=&L(G_1)^R=&L_1^R & G \text{ es tipo 2 luego}\\ L_1^R \text{ es } LLC \end{aligned}$$

Reversa de un Lenguaje Libre del Contexto

<u>Teorema</u>: Dado L_1 LLC, L_1^R es un lenguaje libre del contexto. Demostración:

Como L₁ es LLC existe una GLC G₁ = $\langle N_1, T_1, P_1, S_1 \rangle$ tal que L₁ = L(G₁)

A partir de G_1 es posible definir una gramática libre del contexto $G = \langle N, T, P, S \rangle$ tal que $L(G) = (L(G_1))^R$

La gramática G se define como sigue $G = \langle N_1, T_1, P, S_1 \rangle$

Donde P=P₁ con cada regla de producción de P₁ de la forma

 $A \rightarrow \omega$ reemplazada por $A \rightarrow \omega^R$ para $A \in N \cup \{S\}$ y $\omega \in \{N \cup T\}^* - \{E\}$

Como las reglas de P respetan el formato de las GLC, G es una GLC y entonces $L(G) = (L(G_1))^R = L_1^R$ es un lenguaje libre del contexto

Ciencias de la Computación I - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2012

Intersección de lenguajes libres del contexto

Es una operación cerrada? Contraejemplo

 $L_1 = \{ a^n b^n c^k / n, k \ge 0 \}$ Libre del contexto

 $L_2 = \{ a^k b^n c^n / n, k \ge 0 \}$ Libre del contexto

 $L_1 \cap L_2 = \{ a^n b^n c^n / n \ge 0 \}$ No es Libre del contexto es Sensible al contexto

La intersección NO es una operación CERRADA para Lenguajes Libres del Contexto

Ejemplo reversa de un Lenguaje Regular

$$L_2 = \{ a^nb / n > 0 \}$$

$$M_2 = \langle e_{02}, e_{12}, e_{22} \rangle, \{a, b\}, d_2, e_{02}, \{e_{22} \} \rangle$$

$$L(M_2)=L_2$$

Tener en cuenta que si hay varios estados finales hay que definir una transición vacía desde e_0 a cada e_f

$$M \!\! = \!\! < \!\! \{e_{02},\! e_{12},\! e_{22},\! e_{0}\}, \, \{a,\, b\}, \, \delta, \, e_{0}, \, \{e_{02}\} \!\! >$$

Como L(M) =
$$L(M_2)^R = L_2^R$$

L₂^R es un lenguaje regular