

AKIMOTO
Fld: December 15, 1999
Darryl Mexic
202-293-7060
1 of 1

日本特許庁
PATENT OFFICE
JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日
Date of Application: 1998年12月15日

出願番号
Application Number: 平成10年特許願第356817号

出願人
Applicant(s): 富士写真フィルム株式会社

JC675 U.S. PTO
09/461308
12/15/99

1999年 9月17日

特許長官
Commissioner.
Patent Office

近藤 隆彦

出証番号 出証特平11-3062605

【書類名】 特許願

【整理番号】 P24201J

【提出日】 平成10年12月15日

【あて先】 特許庁長官 伊佐山 建志 殿

【国際特許分類】 G01N 21/64
G01N 23/221

【発明の名称】 試験片と生体由来物質の定量方法及び装置

【請求項の数】 15

【発明者】

【住所又は居所】 神奈川県足柄上郡開成町宮台798番地 富士写真フィルム株式会社内

【氏名】 秋本 泰造

【特許出願人】

【識別番号】 000005201

【住所又は居所】 神奈川県南足柄市中沼210番地

【氏名又は名称】 富士写真フィルム株式会社

【代表者】 宗雪 雅幸

【代理人】

【識別番号】 100073184

【住所又は居所】 横浜市港北区新横浜3-18-20 BENEX S-1 7階

【弁理士】

【氏名又は名称】 柳田 征史

【電話番号】 045-475-2623

【選任した代理人】

【識別番号】 100090468

【住所又は居所】 横浜市港北区新横浜3-18-20 BENEX S-1 7階

【弁理士】

【氏名又は名称】 佐久間 剛

【電話番号】 045-475-2623

【手数料の表示】

【予納台帳番号】 008969

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9814441

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 試験片と生体由来物質の定量方法及び装置

【特許請求の範囲】

【請求項 1】 担体上の所定の複数位置に、互いに異なる複数の既知の特異的結合物質がそれぞれ配置された、標識物質で標識された生体由来物質の解析に用いられる試験片であつて、前記特異的結合物質が標識物質で標識されていることを特徴とする試験片。

【請求項 2】 前記生体由来物質を標識する標識物質が、前記特異的結合物質を標識している標識物質とは異なる標識物質であることを特徴とする請求項 1 記載の試験片。

【請求項 3】 前記特異的結合物質が cDNA であることを特徴とする請求項 1 または 2 記載の試験片。

【請求項 4】 前記特異的結合物質を標識している標識物質が蛍光色素であることを特徴とする請求項 1、2 または 3 記載の試験片。

【請求項 5】 前記特異的結合物質を標識している標識物質が放射性同位体であることを特徴とする請求項 1、2 または 3 記載の試験片。

【請求項 6】 担体上の所定の複数位置に、互いに異なる複数の既知の標識特異的結合物質がそれぞれ配置されている試験片の、前記特異的結合物質の標識物質から放出される標識信号の量を各位置ごとに検出し、

前記特異的結合物質を標識している標識物質とは異なる標識物質で標識された生体由来物質を前記特異的結合物質に結合させて、結合した前記生体由来物質の標識物質から放出される標識信号の量を各位置ごとに検出し、

前記特異的結合物質の標識物質から放出される標識信号の量の検出結果と、前記生体由来物質の標識物質から放出される標識信号の量の検出結果に基づいて、前記特異的結合物質と結合した生体由来物質を定量することを特徴とする生体由来物質の定量方法。

【請求項 7】 前記特異的結合物質が cDNA であることを特徴とする請求項 6 記載の生体由来物質の定量方法。

【請求項8】 前記定量がさらにcDNAに関する特性値に基づいて定量するものであることを特徴とする請求項6または7記載の生体由来物質の定量方法。

【請求項9】 前記特異的結合物質を標識している標識物質が蛍光色素であることを特徴とする請求項6、7または8記載の生体由来物質の定量方法。

【請求項10】 前記特異的結合物質を標識している標識物質が放射性同位体であることを特徴とする請求項6、7または8記載の生体由来物質の定量方法。

【請求項11】 担体上の所定の複数位置に、互いに異なる複数の既知の標識特異的結合物質がそれぞれ配置されている試験片の、前記特異的結合物質の標識物質から放出される標識信号を検出する検出手段と、前記特異的結合物質に結合した、該特異的結合物質を標識している標識物質とは異なる標識物質で標識された生体由来物質の標識物質から放出される標識信号の量を各位置ごとに検出する検出手段と、

前記特異的結合物質から放出される標識信号の量の検出結果と、前記生体由来物質の標識物質から放出される標識信号の量の検出結果に基づいて、前記特異的結合物質と結合した生体由来物質を定量する解析手段とを備えたことを特徴とする生体由来物質の定量装置。

【請求項12】 前記特異的結合物質がcDNAであることを特徴とする請求項11記載の生体由来物質の定量装置。

【請求項13】 前記解析手段がさらにcDNAに関する特性値に基づいて定量するものであることを特徴とする請求項11または12記載の生体由来物質の定量装置。

【請求項14】 前記特異的結合物質を標識している標識物質が蛍光色素であることを特徴とする請求項11、12または13記載の生体由来物質の定量装置。

【請求項15】 前記特異的結合物質を標識している標識物質が放射性同位体であることを特徴とする請求項11、12または13記載の生体由来物質の定量装置。

【発明の詳細な説明】**【0001】****【発明の属する技術分野】**

本発明は、DNAの解析や免疫学的解析に用いられる試験片とその試験片によって生体由来物質を定量する方法及びその装置に関するものである。

【0002】**【従来の技術】**

約30億bpという巨大なヒトゲノムの全塩基配列を決定し、それらを解析しようというヒトゲノム計画は、当所の予定から早まり2003年までに決定されるのではないかとの見解がなされ、ヒトゲノム計画はシステムティックな塩基配列からシステムティックな機能解析へと焦点が移ってきている。

【0003】

遺伝情報の具体的な内容は、いかなるタンパクがいかなる条件で合成されるかという点につきるものであるが、前者すなわちいかなるタンパクが合成されているかという点については、従来より、ウエスタン・プロット法、ノーザン・プロット法やサザン・プロット法などの解析方法が広く用いられている。しかしながらこれらの方は、取り出された特定のタンパクやDNA、RNAなどがいかなるものであるかという点については解析できても、細胞から抽出されたすべてのタンパクやDNA、RNAを一度に解析するには必ずしも適さなかった。

【0004】

一方、後者すなわちタンパクがいかなる条件で合成されるかという点に関しては、転写のレベルで制御されているために従来の解析方法では充分な解析ができないことが多かったが、その最大の原因は、DNAにおける制御配列と対応する制御内容の双方のデータが不足していたためであった。

【0005】

しかしここにきて、DNAチップやDNAマイクロアレイと呼ばれる、1センチ四方程度の担体表面上に高密度に任意のオリゴヌクレオチドを固定する技術の進歩によって、遺伝子の発現情報の解析が飛躍的に進歩することが期待されている。DNAチップは、シリコンチップをフォトリソグラフィー技術によって多く

の区画に分割し、それぞれの区画上に特定の塩基配列を持った一本鎖DNAを直接合成したものである。DNAマイクロアレイは、従来メンブレン上にプロットされたスポットサイズが約300μあるいはそれ以上であったDNAマクロアレイを、スポットサイズを約200μあるいはそれ以下にしてスライドグラス上にプロットしたものである。DNAチップやDNAマイクロアレイは、信号読取装置とコンピュータシステムにつながれ、チップ上、マイクロアレイ上に配置されたDNAがどのプローブとハイブリダイズしたかを知ることができるようになっている。DNAチップやDNAマイクロアレイ上に配置されるDNAの種類とその配置しただけで、遺伝子DNAの変異解析、多型解析、塩基配列解析、発現解析などさまざまな用途に用いることが可能なものである。

【0006】

【発明が解決しようとする課題】

しかしながら、このDNAマイクロアレイを用いた解析は、マイクロアレイの作製やその検出装置の議論がなされ始めたばかりであり、まだかなりの問題点を抱えている。たとえば、マイクロアレイはスポットター装置といわれるものでcDNAをプロットして作製するが、その作製方法としては、図4aに示すようにスライドグラス42上にピン41を直接接触させてcDNA43を配置する接触プリンティング法や、図4bに示すようにスライドグラス42上にシリンジ44を接触させないでcDNA43をプロットする非接触プリンティング法があるが、いずれの作製方法であっても、プロットされるスポットとスポットの間にはスポットされる量にはらつきがあり、最も良い場合であっても、接触プリンティング法で5～10%CV、非接触プリンティング法で3～5%CVのばらつきとなっている。このため、図5に示すように同じDNAマイクロアレイ51のa点とb点とで、また同じa点でもDNAマイクロアレイ51と同じように作製したDNAマイクロアレイ52とではスポットされているDNAのサンプル量が異なり、このため1つの細胞から調整された互いに異なるDNAの定量や、同じ細胞で時期によって発現量が異なるようなDNAの定量的な比較が、実はかなり誤差を含んだものとなるといった問題が起こっている。

【0007】

この問題を解決するために、まず第一に考えられるのはスポットアーチ装置の改良であるが、スポットされるサンプル量の再現性を向上させるための改良には限界があると考えられる。

【0008】

本発明は上記事情に鑑みなされたものであって、スポットアーチ装置の改良によってプロットされる各スポットの再現性の向上に頼ることなく、担体に配置される物質の方に着目し、スポット間でプロット量のばらつきがあつても、正確に定量をおこなうことができるDNAマイクロアレイなどの試験片を提供するものである。

【0009】

【課題を解決するための手段】

本発明の試験片は、担体上の所定の複数位置に、互いに異なる複数の既知の特異的結合物質がそれぞれ配置された、標識物質で標識された生体由来物質の解析に用いられる試験片であつて、前記特異的結合物質が標識物質で標識されていることを特徴とするものである。

【0010】

本発明の生体由来物質の定量方法は、担体上の所定の複数位置に、互いに異なる複数の既知の標識特異的結合物質がそれぞれ配置されている試験片の、前記特異的結合物質の標識物質から放出される標識信号の量を各位置ごとに検出し、

前記特異的結合物質を標識している標識物質とは異なる標識物質で標識された生体由来物質を前記特異的結合物質に結合させて、結合した前記生体由来物質の標識物質から放出される標識信号の量を各位置ごとに検出し、

前記特異的結合物質の標識物質から放出される標識信号の量の検出結果と、前記生体由来物質の標識物質から放出される標識信号の量の検出結果に基づいて、前記特異的結合物質と結合した生体由来物質を定量することを特徴とするものである。

【0011】

本発明の生体由来物質の定量装置は、担体上の所定の複数位置に、互いに異なる

る複数の既知の標識特異的結合物質がそれぞれ配置されている試験片の、前記特異的結合物質の標識物質から放出される標識信号を検出する検出手段と、

前記特異的結合物質に結合した、該特異的結合物質を標識している標識物質とは異なる標識物質で標識された生体由来物質の標識物質から放出される標識信号の量を各位置ごとに検出する検出手段と、

前記特異的結合物質の標識物質から放出される標識信号の量の検出結果と、前記生体由来物質の標識物質から放出される標識信号の量の検出結果に基づいて、前記特異的結合物質と結合した生体由来物質を定量する解析手段とを備えたことを特徴とするものである。

【0012】

「担体」とは、特異的結合物質を安定に結合、点着できるものであればよく、たとえばメンブレンフィルターやスライドグラス板などである。これらの担体は特異的結合物質を安定に結合するために、前処理がなされているものであってよい。

【0013】

「特異的結合物質」とは、ホルモン類、腫瘍マーカー、酵素、抗体、抗原、アブザイム、その他のタンパク、核酸、cDNA、DNA、RNAなどであって、生体由来物質と特異的に結合可能な物質を意味する。「既知の」とは、特異的結合物質によって異なるが、たとえば核酸であればその塩基配列や塩基の長さなどが、タンパクであればアミノ酸の組成などがわかっていることを意味する。ここで、担体の所定の位置に配置される特異的結合物質は、各位置ごとに1種類の特異的結合物質が配置されていることを意味する。

【0014】

「生体由来物質」とは、担体上の所定の位置に配置された既知の特異的結合物質と特異的に結合する物質であって、生体から抽出、単離等された物質を意味するが、生体から直接抽出されたものだけでなく、これらを化学処理、化学修飾等したものも含まれる。たとえばホルモン類、腫瘍マーカー、酵素、抗体、抗原、アブザイム、その他のタンパク、核酸、cDNA、DNA、mRNAなどの物質である。

【0015】

特異的結合物質が「標識物質で標識されている」（標識物質で標識されている特異的結合物質を単に標識特異的結合物質ともいう）とは、特異的結合物質のたとえば鎖状分子の片方の末端のように1ヶ所を標識していてもよいし、数ヶ所を標識していてもよい。通常は特異的結合物質の1ヶ所が標識されていれば、担体上の各位置に配置されている特異的結合物質の量は検出可能であるが、検出感度を上げたい場合や、特異的結合物質の1ヶ所だけを標識することが技術上困難だったり、あるいは技術上複雑となったりするような場合には標識箇所が複数であってもよい。

【0016】

生体由来物質を標識する標識物質は、特異的結合物質を標識している標識物質とは異なる標識物質を選択することが好ましい。生体由来物質を標識する標識物質が放出する標識信号と、特異的結合物質を標識する標識物質が放出する標識信号を同時に、それぞれを別々に検出することができるからである。生体由来物質を標識する標識物質は、生体由来物質を1ヶ所標識するものでもよいし、数ヶ所標識するものであってもかまわないが、1ヶ所であることが好ましい。生体由来物質の場合には、構成している物質が既知でない場合もあり、標識物質の取り込まれ方の確認などが必要となり技術的に複雑化するからである。但し既知の物質であれば特異的結合物質と同様に、数ヶ所であっても差し支えない。

【0017】

「標識物質」とは、特異的結合物質や生体由来物質から情報を得るためにこれらの一部を改変し、あるいはこれらに直接付加される、目印となる物質を意味する。標識物質は、標識物質から放出される標識信号が検出でき、かつ特異的結合物質や生体由来物質に取り込まれる規則性があらかじめわかっているものであれば特に限定されるものではない。たとえばサイバーグリーンII、Cy5、フルオレセインイソチオシアネートなどの蛍光色素や³²P、³³Pなどの放射性同位体を用いることが好ましい。「標識信号」とは、たとえば標識物質が蛍光色素である場合には蛍光、標識物質が放射性同位体である場合には放射線のように、標識物質から放出、あるいは出力されるようなものをいう。この場合特異的結合物質に

同位体を生体由来物質に蛍光色素を用いてもよいし、特異的結合物質に蛍光色素を生体由来物質に同位体を用いてもよいし、また特異的結合物質と生体由来物質ともに蛍光色素を用いてもよい。但し、特異的結合物質と生体由来物質ともに蛍光色素を用いる場合には、発光波長帯域が互いに重複しないものあるいは、重複しても少なくとも主要な検出帯域においては重複しない蛍光色素を用いることが必要である。一方放射性同位体を用いる場合には、担体に配置された放射性同位体で標識された特異的結合物質を、特公平5-20712号（オートラジオグラフィーにおける放射性同位元素の定量測定法）のごとく、輝尽性蛍光体シートに密着露光しそのシートをレーザで読み取る。特異的結合物質や生体由来物質に取り込まれる規則性があらかじめわかっているとは、たとえば蛍光色素のサイバーグリーンIIであれば、一本鎖DNAやRNAに弱結合し、その取り込まれ方は塩基の長さに対応するという規則性が、また同じく蛍光色素のCy5であればDNAやRNAの末端に取り込まれるという規則性がある。一方³²Pのような同位体は、同位体で標識する対象によって異なるが、たとえばmRNAからcDNAを合成する際に基質として用いる4種類のヌクレオチドのいずれかにα位が³²Pで標識されたものを用いれば、³²Pはランダムに取り込まれ、標識されているヌクレオチドに含まれる塩基に比例して³²Pが取り込まれるという規則性がある。

【0018】

「生体由来物質を特異的結合物質に結合」とは、たとえばDNAやRNAなどで見られる相補的なヌクレオチド配列の間に安定な二重鎖が形成されるような場合（ハイブリダイゼーション）や、抗原と抗体、ビオチンとアビシンなどのように、特定の物質とのみ選択的に反応する極めて特異性の高い結合を意味する。

【0019】

「前記特異的結合物質の標識物質から放出される標識信号の量の検出結果と、前記生体由来物質の標識物質から放出される標識信号の量の検出結果に基づいて、前記特異的結合物質と結合した生体由来物質を定量する」とは、担体上の1つの位置の特異的結合物質の標識物質から放出される標識信号の量は、その位置に配置されている特異的結合物質の量に比例するので、特異的結合物質に結合した生体由来物質の標識物質から放出される標識信号の量をこれと対応させて、特異

的結合物質のばらつきに関係なく生体由来物質の量（濃度）を定量することができることを意味する。特異的結合物質がcDNAである場合を例にとると、たとえば、担体のn番という位置にcDNA（特異的結合物質）の片方の末端が蛍光標識されたcDNAがs個あるときの蛍光量（標識物質から放出される標識信号の量）をPsとし、一方分子の片方の末端を蛍光標識されたプローブDNA（生体由来物質）がc個、n番のcDNAにハイブリダイゼーションしたときの蛍光量をPcとする。液相系ではcDNAとハイブリダイゼーションするプローブDNAはそのハイブリダイゼーションするcDNAや条件にもよるが、約1/100程度といわれている。担体上の場合は完全な液相系とはいえないが、少なくともプローブDNAの濃度mはn番に存在しているcDNAの数sに比例する。従って、PcはPsとmに比例し、以下の関係が成り立つ。

【0020】

$$P_c \propto m P_s$$

従ってPsとPcを測定すればn番の位置に結合した生体由来物質の濃度mが求められる。

【0021】

上記は、cDNAの1ヶ所のみが標識されている場合であるが、この場合にはPsの値はcDNAの塩基配列や塩基の長さなどは何ら関係せず、n番の位置に配置されたcDNAの数にのみ比例する。しかし、標識物質が特定の塩基を標識したり、塩基の長さに比例して標識するように、標識物質が1分子のcDNAに対し数ヶ所（場合によっては数十ヶ所）を標識するような場合には、塩基の長さによっても蛍光量が異なるため、1枚の担体上の全ての位置が同じ蛍光量を示していても、cDNAの塩基の長さが異なるために全ての位置において、等量のcDNAがプロットされているとは言えなくなる。従って、この場合には更に、「cDNAに関する特性値」を求めておく必要がある。すなわち、担体上に配置されたcDNAの塩基の割合や塩基の長さ、担体の1つの位置にN個のcDNAが含まれている時の蛍光量などのcDNAに関する特性値を、各位置についてコンピュータに登録しておく必要がある。いかなる特性値が必要となるかは、用いた標識物質によって異なるが、プローブDNAの蛍光量Pcは、プローブDNAの

濃度mと、cDNAの蛍光量Psに比例し、1本のcDNAを標識している標識物質の数に反比例する。従って、プローブDNAの濃度mは、下記の式で表され、1本（1分子）のcDNAを標識している標識物質の数をもとめることができると特性値が必要となる。

【0022】

$$m \propto P_c / P_s \times (1\text{本のcDNAを標識している標識物質の数})$$

例えば、cDNAの4つの塩基のうち1つの塩基を標識した場合には、cDNA1分子に含まれる標識された特定の塩基の数が、また、塩基の長さに比例する場合には、塩基の長さと標識物質が1つ取り込まれる塩基の割合（何塩基ごとに1つの標識物質がとりこまるか）といった特性値が必要となる。

【0023】

【発明の効果】

本発明の試験片によれば、担体上の所定の複数位置に配置される、互いに異なる複数の既知の特異的結合物質を標識物質で標識しているので、特異的結合物質が担体上に配置されるときのばらつきに関係なく、試験片上に配置される特異的結合物質の量を特定可能である。

【0024】

本発明の生体由来物質の定量方法及び定量装置によれば、担体上の所定の複数位置に、互いに異なる複数の既知の標識特異的結合物質がそれぞれ配置されている試験片の、特異的結合物質の標識物質から放出される標識信号の量を各位置ごとに検出し、特異的結合物質を標識している標識物質とは異なる標識物質で標識された生体由来物質を特異的結合物質に結合させて、結合した生体由来物質の標識物質から放出される標識信号の量を各位置ごとに検出し、特異的結合物質の標識物質から放出される標識信号の量の検出結果と、生体由来物質の標識物質から放出される標識信号の量の検出結果に基づいて、特異的結合物質に結合している生体由来物質を定量するので、プロットされている特異的結合物質の量のばらつきに関係なく、生体由来物質の定量を行うことが可能である。また、生体由来物質を標識する標識物質を、特異的結合物質を標識している標識物質とは異なる標識物質とすることにより、試験片上の特異的結合物質と生体由来物質の読み取を同

時に行うことが可能となる。

【0025】

なお、本発明の試験片、その定量方法及び定量装置を用いれば、細胞内で転写されたmRNAから、転写のレベルで制御されているタンパク合成の制御内容やメカニズムの解明、あるいは疾病過程で合成される特殊なタンパクの定量の実現により、たとえば癌の進行状態に対応して発現されるさまざまなタンパクを定量することで効果的な薬の選択が可能となったり、あるいはESTの機能解析など幅広い利用が可能である。

【0026】

【発明の実施の形態】

以下、本発明を図面を用いて詳細に説明する。

【0027】

図1は、本発明の試験片及びその作製方法の一実施の形態を示すフローチャートである。ここでは、試験片としてDNAマイクロアレイチップを、特異的結合物質にcDNAを、生体由来物質に細胞から抽出したmRNAを例にとって説明する。

【0028】

本発明のDNAマイクロアレイ10は、ポリ-L-リジン溶液で表面を前処理したスライドグラス（担体）3の所定の位置に、互いに異なる複数の、塩基配列がわかっているcDNA（特異的結合物質）1が、蛍光色素5（フルオレセインイソチオシアネート以下FITCと略す、蛍光色素5は特異的結合物質を標識する標識物質である）で標識されて配置されているものである。

【0029】

cDNAは既知のDNA、mRNAなどから、PCR法やRT-PCR法によって調整されるが、この際FITCで標識されたCTPを用いれば、DNAの4つの塩基のうちC（シトシン）の位置をFITCが標識したcDNA（以下F-cDNA（標識特異的結合物質）という）2が調整できる。調整されたF-cDNA2をスライドグラス3上の所定の位置にスポットター装置によってスポットティングして、DNAマイクロアレイ10を作製する。

【0030】

一方測定しようとするmRNA（生体由来物質）4を細胞から抽出し、さらにmRNAから3'末端にポリAを有するRNAを抽出する。ポリAを末端に有するRNAからcDNAを合成する際に、末端を標識する蛍光色素6（Cy5、生体由来物質を標識する標識物質）を存在させて、5'末端がCy5で標識されたCy5-cDNA（プローブDNA）ができる。

【0031】

Cy5-cDNAを所定の溶液に溶かし、DNAマイクロアレイ10上に静かにのせて、通常のハイブリダイゼーションを行う。

【0032】

次に図2を用いて、図1に示したDNAマイクロアレイ10の上にハイブリダイゼーションしたCy5-cDNAを定量する装置について説明する。図2は本発明の定量装置の一実施の形態の構成を示す図である。図示の定量装置100は、FITCで標識されたF-cDNAが分布するDNAマイクロアレイ10を載置して所定の位置に設置する透明な試料台20と、FITCを励起するのに適した発光波長のレーザ光L1を発光する励起波長488nmのアルゴンレーザ（またはSHGレーザ（励起波長473nm））21と、Cy5を励起するのに適した発光波長のレーザ光L2を発光する励起波長633nmのHe-Neレーザ（または半導体レーザ（励起波長635nm））22と、レーザ光L1を透過しレーザ光L2を反射する第一のダイクロイックミラー23と、DNAマイクロアレイ10の蛍光色素が励起されて発光した蛍光を光電的に検出するフォトマルチプラライヤ（以下PMTという）90と、各レーザ21、22から出射されたレーザ光を、試料台20に載置されたDNAマイクロアレイ10に照射させるとともに、この照射によりDNAマイクロアレイ10から出射する蛍光をPMT90に導光させる光学ヘッド50と、光学ヘッド50からPMT90までの光路上に配設された、2種類のバンドパスフィルタ81、82を切替可能に備えたフィルタセット80と、光学ヘッド50を矢印X方向に等速移動させる主走査手段60と、各レーザ21、22、光学ヘッド50、フィルタセット80およびPMT90を一体的に矢印Y方向（矢印X方向に直行する方向）に移動させる副走査手段70

と、PMT 90により検出された検出信号を対数増幅する増幅機91と、この増幅された検出信号をA/D変換するA/D変換器92と、A/D変換されたデータと予め入力されているDNAマイクロアレイ10上のデータとを照らして解析する解析装置93と、レーザ光L1、L2を出射させる制御を行うとともに、フィルタセット80のうち一方のバンドパスフィルタ81、82を選択して、選択されたバンドパスフィルタが上記光路上に配されるように制御するコントロールユニット95をそなえた構成である。

【0033】

次に本実施形態の定量装置100の動作について説明する。

【0034】

試料台20上に、FITCで標識されたcDNAおよびこれにCy5で標識されたCy5-cDNAがハイブリダイズしたDNAマイクロアレイ10が載置され、コントロールユニット95は、レーザ光L1およびレーザ光L2を選択して出射させるようにレーザ21、22を制御し、これにより、レーザ21からレーザ光L1がレーザ22からレーザ光L2が出射される。一方、コントロールユニット95は、第一のフィルタ81が、光学ヘッド50とPMT90との間の光路上に配置されるように、フィルタセット80を制御し、フィルタセット80は、第一のフィルタ81をその光路上に配置する。

【0035】

レーザ21から出射されたレーザ光L1は、ダイクロイックミラー23を透過して矢印X方向に進む。光学ヘッド50の平面ミラー51に入射したレーザ光L1は図示上方に反射され、孔開きミラー52の小孔52aを通過してレンズ53に入射し、レンズ53を通って試料台20上に載置されたDNAマイクロアレイ10の微小領域を照射する。このとき光学ヘッド50は、主走査手段60により、高速にかつ等速度で矢印X方向に移動させられており、レーザ光L1はDNAマイクロアレイ10を矢印X方向に主走査するため、この主走査中に、レーザ光L1が照射された微小領域に存在するF-cDNAに対しては、照射されたレーザ光L1によりFITCが励起されて蛍光K1を発光する。

【0036】

レーザ光L1で発光した蛍光K1はDNAマイクロアレイ10の下面から拡がって出射し、出射した蛍光K1は、光学ヘッド50のレンズ53により、図示下方のビームとされ、同じく光学ヘッド50の孔開きミラー52に入射する。蛍光K1は孔開きミラー52の反射面で反射され、矢印X方向に沿った方向に進行する。矢印X方向に進行した蛍光K1は第一のバンドパスフィルタ81によって、蛍光K1以外の光の透過を阻止されて蛍光K1のみが通過してPMT90に入射する。PMT90に入射した蛍光K1は、それぞれPMT90により増幅されて光電検出され、対応する電気信号として読み取られ、対数増幅器91により増幅され、A/D変換器92によりデジタル信号化されて、解析装置93に出力される。

【0037】

このようにして1主走査による読み取りが終了すると、光学ヘッド50は主走査手段60により元の位置まで戻され、一方その間に、副走査手段70が、レーザ21、22、ダイクロイックミラー23、光学ヘッド50、フィルタセット80及びPMT90を一体的に矢印Y方向に副走査させる。そして、以上の主走査、副走査とを繰り返すことにより、DNAマイクロアレイ10の全面に亘ってレーザ光L1が照射され、DNAマイクロアレイ10の各位置に対応した蛍光K1がデジタル信号化され取得される。

【0038】

主走査、副走査を終えDNAマイクロアレイ10の最後の位置まで蛍光K1のデータが取得されると、光学ヘッド50は最初の位置まで戻され、次に同様にレーザ22から出射されたレーザ光L2で発光した蛍光K2を、蛍光K2以外の光の透過を阻止する第二のバンドパスフィルタ82を用いてPMT90に入射させる。以下上記蛍光K1と同様に主走査、副走査とを繰り返すことによって蛍光K2がデジタル信号化され取得される。なおここでは、DNAマイクロアレイ10の全ての位置についての蛍光K1を読み取りこれをデータとして保存しておいて、次に蛍光K2を読み取るという場合について説明したが、もちろんDNAマイクロアレイ10の各位置ごとに、レーザL1を照射して蛍光K1を読み取った後

同じ位置にレーザL2を照射して蛍光K2を読み取るという動作をすべての位置について繰り返し行っても差し支えない。

【0039】

DNAマイクロアレイ10の各位置に対応したデジタル信号を取得した解析装置93には、図3に示すように、DNAマイクロアレイ10の各位置に配置されているF-cDNAの一本当たりの塩基(A, G, C, T)の割合のデータが登録されている。従って、登録されているF-cDNA1本当たりの塩基の割合とF-cDNAの蛍光量のデータと、測定されたF-cDNAの蛍光量とCy5-cDNAの蛍光量からその位置のCy5-cDNAの濃度を求めることができる。例えば、1-1番の位置のF-cDNAの蛍光量をP₁、Cy5-cDNAの蛍光量をP₂とすると、Cy5-cDNAの濃度mは、 $m \propto P_2 / P_1 \times 20$ となる。DNAマイクロアレイ10のすべての位置について同様に解析すればCy5-cDNAの各位置の濃度が求められる。

【0040】

ここでは、蛍光色素としてFITCとCy5を用いたが、その他の蛍光色素を用いることも、また同位体を用いることも可能である。その場合には、解析装置93に予め、各位置における既知のcDNAの塩基の長さや構成している塩基の割合、既知量のcDNAの蛍光量あるいは放射線量などを標識物質に応じて登録しておけば、新たに作製されたDNAマイクロアレイのcDNAの蛍光量または放射線量と、プローブDNAの蛍光量または放射線量を測定することで、各位置のプローブDNAの濃度を求めることが可能である。

【0041】

尚、本発明の実施の形態では、試験片としてDNAマイクロアレイを、特異的結合物質としてcDNAを、生物体由来物質として細胞から抽出したmRNAを用いて説明したが、本発明はこれに限定されるものではない。

【図面の簡単な説明】

【図1】

本発明の試験片及びその作製方法の一実施の形態を示すフローチャート

【図2】

本発明の定量装置の一実施の形態の構成を示す図

【図3】

本発明の定量装置が保持しているデータの一実施の形態を示す図

【図4】

DNAマイクロアレイのスポットとプロットの一実施の形態を示す図

【図5】

従来のDNAマイクロアレイの斜視図

【符号の説明】

- 1 cDNA (特異的結合物質)
- 2 標識特異的結合物質
- 3 スライドグラス (担体)
- 4 mRNA (生体由来物質)
- 5 蛍光色素 (標識物質)
- 6 蛍光色素 (標識物質)
- 10 DNAマイクロアレイ
- 93 解析装置 (解析手段)
- 100 定量装置

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

【書類名】 要約書

【要約】

【課題】 細胞から抽出され蛍光色素で標識されたmRNAをDNAマイクロアレイで定量する。

【解決手段】 スライドグラス（3）上の所定の複数の位置に、互いに塩基配列の異なる、複数の、塩基配列が既知であるcDNA（1）をFITC（5）で標識したF-cDNA（2）を配置する。細胞から抽出したmRNA（4）から蛍光色素Cy5（6）の存在下、cDNAを合成してCy5-cDNAとする。Cy5-cDNAをDNAマイクロアレイ10上にのせて、F-cDNA（2）とハイブリダイゼーションを行う。ハイブリダイゼーション後のDNAマイクロアレイ10を、cDNA（1）の塩基割合や、塩基の長さなどの情報が登録されている解析装置が組み込まれた定量装置で読み取る。

【選択図】 図1

【書類名】 職権訂正データ
【訂正書類】 特許願

<認定情報・付加情報>

【特許出願人】

【識別番号】 000005201

【住所又は居所】 神奈川県南足柄市中沼210番地

【氏名又は名称】 富士写真フィルム株式会社

【代理人】

【識別番号】 100073184

【住所又は居所】 神奈川県横浜市港北区新横浜3-18-20 BE

NEX S-1 7階 柳田国際特許事務所

柳田 征史

【選任した代理人】

【識別番号】 100090468

【住所又は居所】 神奈川県横浜市港北区新横浜3-18-20 BE

NEX S-1 7階 柳田国際特許事務所

佐久間 剛

出願人履歴情報

識別番号 [000005201]

1. 変更年月日 1990年 8月14日

[変更理由] 新規登録

住 所 神奈川県南足柄市中沼210番地
氏 名 富士写真フィルム株式会社