PMATH 347: Groups and Rings Final Summary

Professor Ross Willard
LATEXER Iris Jiang
Fall 2020

1 Group Theory

Definition 1.1. Binary Operation

Let A be a non-empty set. A **binary operation** on A is a function * whose domain is $A \times A$ (the set of all ordered pairs from A) and which maps into A.

Definition 1.2. Group

A **group** is an ordered pair (G, *), where

- \bullet G is a non-empty set
- \bullet * is a binary operation on G

which jointly satisfy the following further conditions:

- * is associative: (a*b)*c = a*(b*c) for all $a,b,c \in G$
- There exists an **identity** element $e \in G$: a * e = e * a = a for all $a \in G$
- Every $a \in G$ has a 2-sided **inverse**. i.e. an element $a' \in G$ which satisfies a * a' = a' * a = e

Definition 1.3. Order

The **order** of a group G, denoted |G|, is the number of its elements.

For a group G and element $a \in G$, the **order** of a (denoted $|a|or \circ (a)$) is the least integer n > 0 such that $a^n = 1$, if it exists. If no such n exists (this requires G to be infinite), then the order of a is defined to be ∞ .

Proposition 1.1. Suppose G is a group, $a \in G$, and $\circ(a) = n < \infty$. Then for all $k \in \mathbb{Z}$, $a^k = 1 \iff n \mid k$

Proposition 1.2. Let G be a group and $a, b, u, v \in G$

- 1. Left and right cancellation
 - (a) If au = av, then u = v
 - (b) If ub = vb, then u = v
- 2. The equations ax = b and ya = b have unique solutions for $x, y \in G$

Corollary. In any group G, the identity element is unique.

Proposition 1.3. Suppose G is a group,

- 1. Each $a \in G$ has a unique inverse a^{-1}
- 2. $(a^{-1})^{-1} = a$ for all $a \in G$
- 3. $(ab)^{-1} = (b^{-1})(a^{-1})$ for all $a, b \in G$

Definition 1.4. Abelian, cyclic, generator

G is abelian if ab = ba for all $a, b \in G$

If $a \in G$ then $\langle a \rangle$ denotes the set $\{a^n : n \in \mathbb{Z}\}$. Thus $\langle a \rangle \subseteq G$

G is **cyclic** if there exists $a \in G$ such that $G = \langle a \rangle$, in this case we call a a **generator** of G

2 Ring Theory

Definition 2.1. Ring

A **ring** is an ordered triple $(R, +, \cdot)$ where

- \bullet R is a non-empty set
- + and \cdot are binary operations on R

which jointly satisfy the following conditions:

- 1. (R, +) is an abelian group
- $2. \cdot is associative$
- 3. There exists $1 \in R$ such that $1 \cdot a = a \cdot 1 = a$ for all $a \in R$
- 4. (Distributive laws): for all $a, b, c \in R$

$$(a+b) \cdot c = (a \cdot c) + (b \cdot c)$$
$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$

Proposition 2.1. Let R be a ring. Then

- 1. 0a = a0 = 0 for all $a \in R$
- 2. -a = (-1)a = a(-1) for all $a \in R$
- 3. (-a)b = a(-b) = -(ab) for all $a, b \in R$
- 4. (-a)(-b) = ab

Definition 2.2. Unit, invertible, inverse

Let R be a ring.

- 1. An element $a \in R$ is a **unit** if there exists $b \in R$ satisfying ab = ba = 1. (We also say that a is invertible. b is called the **inverse** of a and is denoted a^{-1} ; it is provably unique.)
- 2. R^{\times} denotes the set of units in R.

Definition 2.3. Division ring, field

- 1. A division ring is a ring D satisfying $0 \neq 1$ and $D^{\times} = D \setminus \{0\}$
- 2. A **field** is a commutative division ring

Definition 2.4. Zero divisor

Let R be a ring. A **zero divisor** is an element $a \in R$ such that

- 1. $a \neq 0$
- 2. There exists $b \in R$ with $b \neq 0$ such that ab = 0 or ba = 0 (or both)

Proposition 2.2. Suppose R is a ring and $a \in R$ with $a \neq 0$. If a is not a zero divisor, then we can "multiplicatively cancel by a." That is for all $b, c \in R$,

$$ab = ac \implies b = c$$

 $ba = ca \implies b = c$

Lemma. If R is a ring and $a \in R^{\times}$, then a is not a zero divisor. Hence we can always "multiplicatively cancel by units."

3

Definition 2.5. integral domain

A ring R is called an **integral domain** (or domain) if it is commutative, satisfies $0 \neq 1$, and has no zero divisors.

Corollary. Every field is an integral domain.

Definition 2.6. Subring

Suppose R is a ring. A subring of R is a subset $S \subseteq R$ such that

- 1. S is a subgroup of (R, +)
- 2. S is closed under multiplication (i.e., $a, b \in S$ implies $ab \in S$)
- 3. $1 \in S$

Write $S \leq R$ to denote that S is a subring of R

Definition 2.7. R[x] R[x] denotes the set of all polynomials in x over R

Theorem 2.1. R[x] is a ring containing R as a subring.

Theorem 2.2. Suppose $q(x), r(x) \in R[x]$ and let $p(x) = q(x) \cdot r(x)$. If R is commutative, then $p(c) = q(c) \cdot r(c)$ for all $c \in R$

Definition 2.8. homomorphism

Let R, S be rings. A function $\varphi : R \text{ to } S$ is a **homomorphism** (of rings) if

- 1. $\varphi(a+b) = \varphi(a) + \varphi(b)$ for all $a, b \in R$
- 2. $\varphi(ab) = \varphi(a)\varphi(b)$ for all $a, b \in R$
- 3. $\varphi(1_R) = 1_S$

Definition 2.9. isomorphism

As in the case of groups

- 1. An **isomorphism** is a bijective homomorphism
- 2. Write $R \cong S$ if there exists an isomorphism from R to S

Definition 2.10. Ideal Let R be a ring and $I \subseteq R$

- 1. I is a **left ideal** of R of
 - (a) I is a subgroup of (R, +)
 - (b) If $r \in R$ and $a \in I$, then $ra \in I$
- 2. Right deals are defined dually $(a \in I, r \in R \implies ar \in I)$
- 3. I is an **ideal** if it is both a left and right ideal

Proposition 2.3. If I is an ideal of R and $1 \in I$, then I = R

Proposition 2.4. Let R, S be rings and $\varphi : R \to S$ a homomorphism

- 1. $im(\varphi)$ is a subring of S
- 2. $ker(\varphi)$ is an ideal of R

Claim. The rule $(a+I) \cdot (b+I) := (ab) + I$ defines an operation \cdot on R/I

Claim. If R is a ring and I is an ideal, then $(R/I, +, \cdot)$ is a ring

Theorem 2.3. First t Isomorphism Theorem for rings

Suppose R, S are rings and $\varphi: R \to S$ is a surjective homomorphism. Then $R/\ker(\varphi) \cong S$

Definition 2.11. principal ideal

Let R be a ring and $a \in R$

- 1. $Ra = \{ra : r \in R\}$
- 2. $aR = \{ar : r \in R\}$
- 3. (a) denotes the smallest ideal of R containing a. (More precisely, (a) is the intersection of all ideals containing a)

We call (a) the **principal ideal generated by** a

Lemma. Suppose R is a ring and $a \in R$

- 1. Ra is a left ideal. It is the smallest left ideal of R containing a
- 2. Similarly, aR is the smallest right ideal of R containing a
- 3. $Ra \cup aR \subseteq (a)$
- (a) = Ra = aR if R is commutative.

Lemma. Suppose I, J are ideals of R

- 1. $I \cup J$ is an ideal; it is the largest ideal of R contained in both I and J
- 2. $I+J:=\{a+b:a\in I,b\in J\}$ is the smallest ideal of R containing both I and J

Definition 2.12. proper, properly contains, maximal ideal

Let R be a ring

- 1. An ideal I is **proper** if $I \neq R$. (equivalently, if $1 \notin I$)
- 2. If I, J are ideals, then J properly contains I if $I \subseteq J$ and $I \neq J$
- 3. I is a maximal ideal if it is a proper ideal, and the only ideal properly containing it is R

Proposition 2.5. Suppose R is a commutative ring and I is an ideal. R/I is a field iff I is a maximal ideal.

Definition 2.13. prime ideal

Suppose R is a commutative ring. An ideal I of R is a **prime ideal** if it is proper and $ab \in I$ implies $a \in I$ or $b \in I$

Proposition 2.6. Suppose R is a commutative ring and I is an ideal. R/I is an integral domain iff I is a prime ideal.

Corollary. Every maximal ideal of a commutative ring is a prime ideal.

Proposition 2.7. Let R be a ring. Every proper ideal of R is contained in a maximal ideal of R.

Definition 2.14. chain of proper ideal

A chain of proper ideals is set S of proper ideals with the property that for all $I, J \in S$, either $I \subseteq J$ or $J \subseteq I$. (S can be uncountable)

Lemma. Zorn's Lemma

Suppose (A, \leq) is a set equipped with a partial order. If every chain in (A, \leq) has an upper bound in A, then every element of A lies below a maximal element of A.

(A maximal element is an element $a \in A$ such that $a \le b \in A$ implies b = a)

Definition 2.15. If R is a ring, I is an ideal, and $a, b \in R$, then we write $a \equiv b \pmod{I}$ to mean a+I = b+I (equivalentlym $b-a \in I$)

Definition 2.16. coprime

Let R be a ring. Two ideals I, J are **coprime** of I + J = R

Theorem 2.4. Chinese Remainder Theorem

Suppose R is a ring and I, J are coprime ideals. Then for all $a,b \in R$ there exists $c \in R$ such that $c \equiv a \pmod{I}$ and $c \equiv b \pmod{I}$

Corollary. Suppose R is a ring and I, J are coprime ideals

- 1. $R/(I \cap J) \cong R/I \times R/J$
- 2. If $I \cap J = \{0\}$ then $R \cong R/I \times R/J$

Proposition 2.8. Every ideal of \mathbb{Z} is principal.

Definition 2.17. Principal Ideal Domain (PID)

A ring R is a **Principal Ideal Domain** (PID) if

- 1. R is an integral domain (commutative, $0 \neq 1$, no zero divisors)
- 2. Every ideal of R is principal

Lemma. In a commutative ring R, an element u is a unit iff u|1

Corollary. In a commutative ring R, u is a unit iff (u) = (1)

Definition 2.18. associates

We say that a and b are associates and write $a \sim b$ if a = ub for some unit $u \in \mathbb{R}^{\times}$

Lemma. In an integral domain R, $a \sim b$ iff a|b and b|a

Corollary. In an integral domain R, $a \sim b$ iff (a) = (b)

Definition 2.19. nontrivial factorization, reducible, irreducible, prime Let R be an integral domain. Assume $a \in R$ with $a \neq 0$ and $a \notin R^{\times}$

- 1. A nontrivial factorization of a is an equation a = bc where $b, c \in R$ and neither b nor c is a unit
- 2. a is **reducible** if it has a nontrivial factorization in R
- 3. Otherwise a is irreducible (equivalently, a = bc implies b or c is a unit)
- 4. We say that a is a **prime** if for all $b, c \in R$, if a|bc then a|b or a|c

Proposition 2.9. In an integral domain, every prime is irreducible.

Proposition 2.10. Suppose R is an integral domain and $a \in R$. Then a is irreducible iff $(a) \neq (0)$, $(a) \neq (1)$ and there is no principal ideal (b) properly between (a) and (1)

Definition 2.20. complete factorization

Suppose R is an integral domain, $a \in R$, $a \neq 0$, and $a \notin R^{\times}$. A **complete factorization** of a is an equation $a = p_1 p_2 \cdots p_n$, where $n \geq 1, p_1, p_2, \dots, p_n \in R$, and each p_i is irreducible.

Proposition 2.11. Suppose R is an integral domain and R does **not** have an infinite strictly increasing chain of principal ideals. Then every $a \in R$ with $a \neq 0$, $a \notin R^{\times}$ has a complete factorization.

Definition 2.21. essentially the same Let R be an integral domain and $a \in R$ with $a \neq 0$. $a \notin R^{\times}$

- 1. Two complete factorization of a $a = p_1 p_2 \cdots p_n$ and $a = q_1 q_2 \cdots q_m$ are **essentially the same** provided:
 - (a) m = n, and

- (b) After a suitable re-ordering of the q_i 's we have $p_i \sim q_i$ for all $i = 1, \ldots, n$
- 2. We say that **complete factorization in** R **are unique, when they exists**, and we write "R has UCF', provided for any $a \in R$ with $a \neq 0$ and $a \notin R^{\times}$, if a has a complete factorization, then any two complete factorization of a are essentially the same

Lemma. In an integral domain, if p is a prime and $p|a_1a_2\cdots a_n$, then $p|a_i$ for some i

Corollary. Suppose R is an integral domain, $p \in R$ is a prime, and $a = q_1 \cdots q_m$ is a complete factorization of $a \in R$. Then p|a iff $p \sim q_i$ for some i

Proposition 2.12. Suppose R is an integral domain in which every irreducible element is prime. Then R has UCF.

Definition 2.22. Unique Factorization Domain

An integral domain R is a **Unique Factorization Domain** (UFD) if

- 1. R does not have an infinite strictly increasing chain of principal ideals
- 2. every irreducible in R is a prime

Lemma. Let R be an integral domain and $p \in R$ with $p \neq 0$. (p) is a prime ideal iff p is a prime

Proposition 2.13. Suppose R is a PID and $p \in R$ with $p \neq 0$. The following are equivalent:

- 1. p is irreducible
- 2. p is a prime
- 3. (p) is a maximal ideal

Corollary. Suppose R is a PID and p is an irreducible element in R. Then R/(p) is a field.

Theorem 2.5. Every PID is a UFD.

Corollary. If F is a field, then F[x] is a UFD.

Definition 2.23. Greatest Common Divisor

Let R be an integral domain and $a, b, d \in R$. We say that d is a **greatest common divisor** of a and b if

- 1. d is a common divisor: d|a and d|b
- 2. d is divisible by every common divisor: for all $c \in R$, if c|a and c|b, then c|d

Lemma. Suppose R is a UFD. For every finite list $a_1, \ldots, a_n \in R$, if at least one of the a_i 's is nonzero, then the list has a greatest common divisor.

Definition 2.24. relatively prime

Suppose R is an integral domain and $a_1, \ldots, a_n \in R$. We say that a_1, \ldots, a_n are **relatively prime** if the only common divisors of a_1, \ldots, a_n are the units in R^{\times} ; equivalently, if 1 is a greatest common divisor of a_1, \ldots, a_n

Lemma. Suppose R is a UFD and $a_1, \ldots, a_n \in R$ with at least one $a_i \neq 0$. Let $d \in R$ be a greatest common divisor of a_1, \ldots, a_n . Define $a'_1, \ldots, a'_n \in R$ by $a'_i := d_i/d$ (i.e. a'_i is the unique solution x to $a_i = dx$). Then a'_1, \ldots, a'_n are relatively prime.

Lemma. Suppose R is an integral domain and $p \in R$ is a prime in R. Then p is a prime in R[x].

Lemma. Suppose R is a UFD, $f(x), g(x) \in R[x]$, and $u \in R$, $u \neq 0$. If u|f(x)g(x), then there exists a factorization u = cd of u in R such that c|f(x) and d|g(x)

Proposition 2.14. Gauss' Lemma

Suppose R is UFD and F is its field of fractions $\{n/d : n, d \in R, d \neq 0\}$. Let $p(x) \in R[x]$ by a polynomial of degree ≥ 1 .

Every nontrivial factorization of p(x) in F[x] can be essentially realized in R[x], in the following sense: if p(x) = A(x)B(x) is a nontrivial factorization of p(x) in F[x], then there exists $t \in F^{\times}$ such that $tA(x) \in R[x]$ and $t^{-1}B(x) \in R[x]$

Corollary. Suppose $f(x) \in \mathbb{Z}[x], \deg(f(x)) \geq 1$, and f(x) is irreducible in $\mathbb{Z}[x]$. Then f(x) is irreducible in $\mathbb{Q}[x]$

Definition 2.25. primitive

Suppose R is an integral domain and $f(x) = a_0 + a_1x + \cdots + a_nx^n \in R[x]$. We say that f(x) is **primitive** in R[x] if its coefficients a_0, a_1, \ldots, a_n are relatively prime in R.

Corollary. Suppose R is a UFD and F is its field of fractions. Let $f(x) \in R[x]$ with $\deg(f) \geq 1$. The following are equivalent:

- 1. f(x) is irreducible in R[x]
- 2. f(x) is primitive in R[x] and irreducible in F[x]

Corollary. Suppose R is a UFD. Every nonzero polynomial $f(x) \in R[x]$ can be factored f(x) = dg(x) were $d \in R$, $g(x) \in R[x]$, and g(x) is primitive

Lemma. Suppose R is a UFD, $c, d \in R$ are non zero, and $f(x), g(x) \in R[x]$ are primitive. If $(cf) \subset (dg)$ then

- 1. $(c) \subseteq (d)$
- 2. $\deg(f) \ge \deg(g)$
- 3. Either $(c) \subset (d)$ or $\deg(f) > \deg(g)$

Theorem 2.6. If R is a UFD, then so is R[x]

Corollary. If R is a UFD, then the ring R[x,y] of polynomials over R in two variables is a UFD.