KN8005 Computer Lab #1 VT 2024

Computational Modelling of Neurons

McAlpine et al., 2022

KN8005 Computer Lab #1

Model Foundation

Model Construction and Refinement

Model Validation and Use

Experimental Data
Prior Knowledge
Hypotheses formation

Model specification

Model Simulation Data

Tests on New Data Model Predictions Hypothesis Testing

A Simpler Model

15

The Lotka-Volterra Model

The Lotka-Volterra Equations (And Assumptions)

$$\frac{dP}{dt} = -Pm + bHP$$

$$\frac{dH}{dt} = Hr - aHP$$

$$\begin{cases} P = P(t) & \text{Number of Predators} \\ H = H(t) & \text{Number of Prey} \end{cases}$$

$$\begin{cases} r > 0 & \text{Birth Rate of Prey} \\ m > 0 & \text{Death Rate of Predators} \\ a > 0 & \text{Death Rate of Predators/Prey} \end{cases}$$

Modelling Neuronal Activity

 $250 \times 140 \times 90 \ \mu m$, layer 2/3, mouse visual cortex [Dorkenwald et al. 2019]

Designing Our Model

Identity (What does the neuron look like?)
Connectivity (What type of synapses does the neuron have?)
Activity (What type of input does the neuron receive?)

Modelling Neuronal Identity

The Hodgkin-Huxley Model

Modelling Neuronal Identity

Compartmental Models and LIFs

Compartmental models simulate parts of the neuron with separate properties, usually based on experimental observations

Point Neuron Models Leaky Integrate and Fire (LIF) Neurons

- Spatiotemporal integration of synaptic inputs that will produce a spike at a certain threshold
- The 'leakiness' creates spontaneous change in potential (as in H-H)
- Only two states:
 - Subthreshold
 - Spike and reset

Step 1. Input Driver for V-spikes $V_i(t) = \sum_i \delta(t - t_i)$

Step 2. Synaptic current response $I_i(t, t_i)$

$$= w_j \left(e^{\frac{-t-t_i}{\tau}} - e^{\frac{-t-t_i}{4\tau}}\right) \quad \text{if } t > t_i$$

= 0 \quad \text{if } t \le t_i

Step 3. Network sums synaptic current $I(t) = \sum_{i} I_{i}(t)$

Step 4. Output spike of LIF neuron $V_o(t) = LIF\{I(t)\}$

Step 5. Output Driver neuron issue spike $V_3(t) = LIF\{I(t)\}$

Post-Neuron

Driver

Modelling Neuronal Connections

Types of Synapses

1. Static

- 2. Facilitating or Depressing
- Synapse strength changes with consecutive spikes
- 3. Electrical Synapses
- Neurons are coupled with gap junctions

Modelling Neuronal Connections Types of Input

Current Injection

Current of fixed amplitude is applied

2. Gaussian

 Variable current. Captures the randomness of brain activity by introducing noise to the input

3. Poisson Process

- Events (spikes, arrivals, etc.) occur randomly and independently.
- The time between consecutive events follows an **exponential distribution**.

Your Task

To Model Different Firing Patterns using LIF model

Neuronal Circuits > Resources> Labs> Simulation Labs> link to lab 1 in the manual