2017-09-06

Information

Misc class information

- 18.100B
- Prof: David Jerison
 - -2-272
- Office hours
 - Tuesday 3:00PM 4:00PM
 - Friday $3{:}00\mathrm{PM}$ $4{:}00\mathrm{PM}$
- Important that you read all that is assigned
- PSETs due on Wednesdays

Homework policies

- Collaboration is encouraged
 - But no copying
 - * Any observed copying will result in a zero
 - If you didn't collaborate, write "no consultation"
- Allowed one automatic extension without penalty
 - No excuse needed
 - $-\,$ All other late work is graded for half-credit

Textbook

- Called "Baby Rudin"
 - Has some problems
 - * It's efficient and doesn't hold your hand
 - * Unclear as to what is the **important** ideas
 - · Things hidden in excercises are important
 - * No graphics
 - * Generally very difficult to read

Overview of Class

- Goals
 - 1. Learn foundations of calculus, series, and differential equations
 - 2. Learn to read and write "rigorous" math
- Continuation classes
 - 18.101 Analysis and Manifolds
 - 18.102 Introduction to Functional Analysis
 - -18.103
 - -18.112
 - -18.901
- Number theory makes heavy use of analysis

And So it Begins

What is e?

- $e = \lim n \to \infty \left(1 + \frac{1}{n}\right)^n$ $e = \sum_{n=0}^{\infty} \frac{1}{n!}$ In was first created, but $\log_1 0$ was used because it could make calculation books simpler

Forier series

- When Forier series were developed, it raised questions about the nature of
- real numbers $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n} = \frac{\pi}{2} x$
- MIT researcher looked at $\sum_{n=1}^{\infty} a_n(w) \frac{\sin(nx)}{n}$
 - Where $a_n(w)$ are called **Gaussian random variables**
 - * Meant to represent Brownian motion

Key question

- How do we determine the distance between two functions?
 - Maybe d(f,g) = |f(x) g(x)|
- Actually, our notion of distance can affect problems
 - For some problems, $d = \int_0^{\pi}$

Back to our question: What are real numbers?

- ullet Field = a set with addition and multiplication defined
 - Also must set some axioms
 - * Must be closed under addition
 - * Must satisfy commutative addition
 - * Must satisfy associative addition
 - * Must have a zero element that completes identity
 - * Must satisfy the existence of an additive inverse
 - * Must satisfy associated multiplicative axioms
 - * Must satisfy distributive property
 - Different from vector spaces
- Ordered set

_

• Ordered field