L	Definitions(1 - 10)			Definitions(11 - 20)
	,			
Множество	Совокупность объектов произвольной природы, которые рассматриваются как единое целое.		Кортеж	Упорядоченый набор элементов множества <x1, x2,="" xn=""> : xi - компоненты, п - длина</x1,>
Способы задания множеств	Перечисление {1, 2, 3} Характеристическое свойство {1, 8, k^3}		Коммутативность	A U B = B U A A ∩ B = B ∩ A
Собственные / Несобственные подмножества	Несобственные: ø и само множество Собственные: НЕ несобственное	множеств	Дистрибутивность	A U (B ∩ C) = (A U B) ∩ (A U C) A ∩ (B U C) = (A ∩ B) U (B ∩ C)
Булеан множества	Множество всех подмножеств данного множества А (i,j) P(A) (ø, (j), (j), (i, j)}	Войства м	Ассоциативность	A U (B U C) = (A U B) U C A ∩ (B ∩ C) = (A ∩ B) ∩ C
Объединение	$C = A \cup B = \{x \mid x \in A \text{ or } x \in B\}$	0	Поглощение	A U (A ∩ B) = A
ООВЕДИНЕНИЕ	Все элементы С принадлежат А В		Потющение	A ∩ (A ∪ B) = A
Пересечение	$C = A \cap B = \{x \mid x \in A \text{ and } x \in B\}$ Все элементы C принадлежат $A \& B$		Законы де Моргана	$not(A \cap B) = not(A) \cup not(B)$ $not(A \cup B) = not(A) \cap not(B)$
Дополнение	Нахождения всех элементов, не содерж. в множестве $A' = \{x \mid x \in U \text{ and } x \notin A\}$		Отношение на множествах	N - арным отношением называется декартово произведение A1, A2 AN - множеств
Разность	C - множество = $A \setminus B = \{x \mid x \in A \text{ and } x \notin B\}$		Способы задания бин. отношений	Правило : {(x, y) ∈ A x B : y ≥ 5} Перечисление: {(x1, y1), (xn, yn)} Матрица / Плоскость / Граф
				Матрица / Плоскость / Граф "
Симметрическая разность	Элементы \in только A, или только B A∆B = (A \ B) U (B \ A)	A×B	Область определения отношения	$x \in A \mid \exists (x,y) \in R$ Множ-во всех ПЕРВЫХ координат упоряд. пар из R
Декартово произведение	Множество всех пар (a, b) : A x B = {(a, b) : $a \in A, b \in B$ }	R N A	Область значений отношения	$y \in B \mid \exists (x,y) \in R$ Множ-во всех ВТОРЫХ координат упоряд. пар из R
			Extra	
			Бинарное отношение	$R \subseteq A \times B,$ $R - \text{множество sorted(pairs} \langle x, y \rangle) \mid x \in A, y \in B$

	efinitions(21 - 30)	Definitions(31 - 40)		
Обратное отношение	$R^{(-1)} = \{(b, a) \mid (a, b) \in R\}$ $R^{(-1)} \mapsto B \times A$	Отношение эквивалентности	Отношение, которое рефлексивно, симметрично, транзитивно	
Композиция отношений	$\begin{array}{c} R \subseteq A \times B, S \subseteq B \times C - \text{итоговое отношение на } A \times C \\ T = \{(a,c) \mid \exists \ b \in B : (a,b) \in R \ , (b,c) \in S\} \\ T = R \cdot S \end{array}$	Класс эквивалентности	Подмножество, образованное в результате разбиения множества отношением эквивалентности	
<u>Th.</u> Об ассоциативности композиции отношений	$R \subseteq A \times B, S \subseteq B \times C, T \subseteq C \times D$ $(R^{\circ}S)^{\circ}T = R^{\circ}(S^{\circ}T)$	Порождающий элемент	Элемент, находящийся в отношении со всеми элементами своего класса	
Симметричность	(∀a, b ∈ A): aRb => bRa	Разбиение множества	Система непустых мн.{M1, MN} - разбиение, если: M1 U U MN = M; Mi ∩ Mj = ø M1MN - классы разбиения	
Асимметричность	(∀a, b ∈ A) : aRb => not(∃)bRa	<u>Тh.</u> Про разбиение и классы эквивалентности	<a> - разбиение A <=> [A]R R - отношение экв.	
Антисимметричиность	(∀a, b ∈ A) : aRb and bRa => a = b	Отношение строгого порядка	Отношение, которое транзитивно, асимметрично, антирефлексивно	
Несимметричность	(∀a, b ∈ A) : aRb mb(=>) bRa	Отношение нестрогого порядка	Отношение, которое транзитивно, антисимметрично, рефлексивно	
Рефлексивность Антирефпексивность	$(\forall a \in A) : aRa$ $(\forall a \in A) : (a, a) not(\in) R$	Линейно упорядоченное множество	Множество, в котором ∀a, b ∃ (a, b) (b, a)	
Транзитивность отношения	(∀a, b, c ∈ A) : aRb, bRc => aRc	Частично упорядоченное множество	Множество, в котором не для всех a, b ∃ (a, b) (b, a)	
Интранзитивность	(∀a, b, c ∈ A) : aRb, bRc =>not(∃)aRc	Функциональное отношение	Бинарное отношение хRу, в котором каждому $x \in X$ соответствует $s : 1 y \in Y$	
		Extra		
		Th. Про разбиение и классы эквивалентности	If на M задано отн. экв., то оно порождает разбиение на классы эквивалентности любые два элемента класса в отношении, разных классов не в отношении	