

Running head: HTP for rings of integers
 Math. Subj. Class. (2000): 03B25, 11U05

December 19th, 2003

Division-ample sets and
 the Diophantine problem for rings of integers
 by Gunther Cornelissen, Thanases Pheidas and Karim Zahidi

Abstract. We prove that Hilbert’s Tenth Problem for a ring of integers in a number field K has a negative answer if K satisfies two arithmetical conditions (existence of a so-called *division-ample* set of integers and of an elliptic curve of rank one over K). We relate division-ample sets to arithmetic of abelian varieties.

Introduction.

Let K be a number field and let \mathcal{O}_K be its ring of integers. *Hilbert’s Tenth Problem* or *the diophantine problem* for \mathcal{O}_K is the following: is there an algorithm (on a Turing machine) that decides whether an arbitrary diophantine equation with coefficients in \mathcal{O}_K has a solution in \mathcal{O}_K .

The answer to this problem is known to be negative if $K = \mathbf{Q}$ ([5]), and for several other such K (such as imaginary quadratic number fields [6], totally real fields [7], abelian number fields [11]) by reduction to the case $K = \mathbf{Q}$. This reduction consists in finding a *diophantine model* (cf. [2]) for integer arithmetic over \mathcal{O}_K . The problem is open for general number fields (for a survey see [9] and [12]), but has been solved conditionally, e.g. by Poonen [10] (who shows that the set of rational integers is diophantine over \mathcal{O}_K if there exists an elliptic curve over \mathbf{Q} that has rank one over both \mathbf{Q} and K). In this paper, we give a more general condition as follows:

Theorem. *The diophantine problem for the ring of integers \mathcal{O}_K of a number field K has a negative answer if the following exist:*

- (i) *an elliptic curve defined over K of rank one over K ;*
- (ii) *a division-ample set $A \subseteq \mathcal{O}_K$.*

A set $A \subseteq \mathcal{O}_K$ is called *division-ample* if the following three conditions are satisfied:

- ◊ (diophantineness) A is a diophantine subset of \mathcal{O}_K ;
- ◊ (divisibility-density) Any $x \in \mathcal{O}_K$ divides an element of A ;
- ◊ (norm-boundedness) There exists an integer $\ell > 0$, such that for any $a \in A$, there is an integer $\tilde{a} \in \mathbf{Z}$ with \tilde{a} dividing a and $|N(a)| \leq |\tilde{a}|^\ell$.

Proposition. *A division ample set exists if either*

- (i) *there exists an abelian variety G over \mathbf{Q} such that*

$$\text{rk } G(\mathbf{Q}) = \text{rk } G(K) > 0; \text{ or}$$

- (ii) *there exists a commutative (not necessarily complete) group variety G over \mathbf{Z} such that $G(\mathcal{O}_K)$ is finitely generated and such that $\text{rk } G(\mathbf{Q}) = \text{rk } G(K) > 0$.*

From (i) in this proposition, it follows that our theorem includes that of Poonen, but it isolates the notion of “division-ampeness” and shows it can be satisfied in a broader context. It would for example be interesting to construct, for a given number field K , a curve over \mathbf{Q} such that its Jacobian satisfies this condition.

As we will prove below, part (ii) of this proposition is satisfied for the relative norm one torus $G = \ker(N_K^{KL})$ for a number field L linearly disjoint from K , if K is quadratic imaginary (choosing L totally real).

It would be interesting to know other division-ample sets, in particular, such that are not subsets of the integers.

The proof of the main theorem will use divisibility on elliptic curves and a lemma from algebraic number theory of Denef and Lipshitz. Some of our arguments are similar to ones in [10], but we have avoided continuous reference both for reasons of completeness and because our results have been obtained independently.

1. Lemmas on number fields

In this section we collect a few facts about general number fields which will play a rôle in subsequent proofs. Fix K to be a number field, let $\mathcal{O} = \mathcal{O}_K$ be its ring of integers, and let h denote the class number of \mathcal{O} . Let $N = N_{\mathbf{Q}}^K$ be the norm from K to \mathbf{Q} , and let $n = [K : \mathbf{Q}]$ denote the degree of K . Let $|$ denote “divides” in \mathcal{O} .

First of all, we will say a subset $S \subseteq K^n$ is “diophantine over \mathcal{O} ” if its set of representatives $\tilde{S} \subseteq (\mathcal{O} \times (\mathcal{O} - \{0\}))^n$ given by

$$\tilde{S} := \{(a_i, b_i)_{i=1}^n \in (\mathcal{O} \times (\mathcal{O} - \{0\}))^n \mid (a_i/b_i)_{i=1}^n \in S\}$$

is diophantine over \mathcal{O} . Recall that “ $x \neq 0$ ” is diophantine over \mathcal{O} ([8] Prop. 1(b)), hence S is diophantine over \mathcal{O} if and only if it is diophantine over K .

Recall that there is no unique factorisation in general number fields, but we can use the following valuation-theoretic remedy:

1.1 Definition. Let $x \in K$. If $x^h = \frac{a}{b}$ for $a, b \in \mathcal{O}$ with $(a, b) = 1$ (the ideal generated by a and b), we say that $a = \text{wn}(x)$ is a *weak numerator* and $b = \text{wd}(x)$ is a *weak denominator* for x .

1.2 Lemma. (i) For any $x \in K$ a weak numerator and a weak denominator exists and is unique up to units.

(ii) for any valuation, $v(x) > 0 \iff v(\text{wn}(x)) > 0$ [and then $v(\text{wn}(x)) = hv(x)$], and $v(x) < 0 \iff v(\text{wd}(x)) > 0$ [and then $v(\text{wd}(x)) = -hv(x)$].

(iii) For $a \in \mathcal{O}, x \in K$, “ $a = \text{wn}(x)$ ” and “ $a = \text{wd}(x)$ ” are diophantine over \mathcal{O} .

Proof. Since \mathcal{O} is a Dedekind ring, (x) has a unique factorisation in fractional ideals

$$(x) = \mathfrak{p}_1 \cdots \mathfrak{p}_r \cdot \mathfrak{q}_1^{-1} \cdots \mathfrak{q}_s^{-1}.$$

We let a be a generator for the principal ideal $(\mathfrak{p}_1 \cdots \mathfrak{p}_r)^h$ and b a generator for $(\mathfrak{q}_1 \cdots \mathfrak{q}_s)^{-h}$; these are obviously weak numerator/denominator for x . Uniqueness, (ii) and (iii) are obvious. \square

1.3 Lemma. (Denef-Lipshitz [8])

(i) If $u \in \mathbf{Z} - \{0\}$ and $\xi \in \mathcal{O}$ satisfy the divisibility condition

$$2^{n!+1} \prod_{i=0}^{n!-1} (\xi + i)^{n!} \mid u$$

then for any embedding $\sigma : K \hookrightarrow \mathbf{C}$

$$(*)_u \quad |\sigma(\xi)| \leq \frac{1}{2} \sqrt[n!]{|N(u)|}.$$

(ii) If $\tilde{u} \in \mathbf{Z} - \{0\}$, $q \in \mathbf{Z}$ and $\xi \in \mathcal{O}$ satisfy $(*)_{\tilde{u}}$ for any embedding $\sigma : K \hookrightarrow \mathbf{C}$ and $\xi \equiv q \pmod{\tilde{u}}$, then $\xi \in \mathbf{Z}$.

Proof. Easy to extract from the proof of Lemma 1 in [8]. \square

2. Lemmas on elliptic curves

Let E denote an elliptic curve of rank one over K , written in Weierstrass form as

$$E : y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6,$$

let T be the order of the torsion group of $E(K)$, and let P be a generator for the free part of $E(K)$. Define $x_n, y_n \in K$ by $nP = (x_n, y_n)$.

2.1 Lemma. For any integer r the set $rE(K)$ is diophantine over K and, if r is divisible by T , then $rE(K) = \langle rP \rangle \cong (\mathbf{Z}, +)$.

Proof. A point $(x, y) \in K \times K$ belongs to $rE(K) - \{0\}$ if and only if $\exists (x_0, y_0) \in E(K) : (x, y) = r(x_0, y_0)$. As the addition formulæ on E are

algebraic with coefficients from K , this is a diophantine relation. The last statement is obvious. \square

2.2 Lemma. *There exists an integer $r > 0$ such that for any non-zero integers $m, n \in \mathbf{Z}$, m divides n if and only if $\text{wd}(x_{rm}) | \text{wd}(x_{rn})$.*

Proof. We reduce the claim to a statement about valuations using lemma 1.2(ii). The theory of the formal group associated to E implies that if $n = mt$ and v is a finite valuation of K such that $v(x_{rm}) < 0$, then $v(x_{rmt}) = v(x_{rm}) - 2v(t) \leq v(x_{rm})$ ([13] VII.2.2).

For the converse, we start by choosing r_0 in such a way that r_0P is non-singular modulo all valuations v on K . By the theorem of Kodaira-Néron ([13], VII.6.1), such r_0 exists and it actually suffices to take $r_0 = 4 \prod_v v(\Delta_E)$, where Δ_E is the minimal discriminant of E , and the product runs over all finite valuations on K for which $v(\Delta_E) \neq 0$. Note that then, $v(x_{r_0n}) < 0 \iff r_0nP = 0$ in the group E_v of non-singular points of E modulo v .

We claim that for an arbitrary finite valuation v on K , if $v(x_{r_0n}) < 0$ and $v(x_{r_0m}) < 0$, then $v(x_{(r_0m, r_0n)}) < 0$, where (\cdot, \cdot) denotes the gcd in \mathbf{Z} . Indeed, the hypothesis means $r_0mP = r_0nP = 0$ in E_v . Since there exist integers $a, b \in \mathbf{Z}$ with $(r_0m, r_0n) = ar_0m + br_0n$, we find $(r_0m, r_0n)P = 0$ in E_v , and hence the claim.

The main theorem of [1] states that for any sufficiently large $M (\geq M_0)$, there exists a finite valuation v such that $v(x_M) < 0$ but $v(x_i) \geq 0$ for all $i < M$. We choose $r = r_0M_0$. Pick such a valuation v for $M = rm$. The hypothesis implies that $v(x_{rn}) < 0$ and hence $v(x_{r(m,n)}) < 0$. But $r(m, n) \leq rm$ and $v(x_i) \geq 0$ for any $i < rm$. Hence $r(m, n) = rm$ so m divides n . \square

2.3 Lemma. *Any $\xi \in \mathcal{O} - \{0\}$ divides the weak denominator of some x_n .*

Proof. Let v be a valuation lying over the prime p_v of \mathbf{Z} , and assume that $v(\xi) = e_v > 0$. Then the group of non-singular points on E modulo v is finite, hence there exists an n_v such that $n_vrP = 0$ in this group, i.e., $v(x_{n_vr}) < 0$. By the formal group law formula, we see that $v(x_{p_v^{e_v} n_v r}) = v(x_{n_vr}) - 2v(p_v^{e_v}) < -e_v$. Putting

$$n = r \cdot \prod_{v(\xi) > 0} n_v p_v^{e_v}$$

will then certainly suffice. \square

2.4 Lemma. *Let m, n, q be integers with $n = mq$. Then*

$$\text{wd}(x_m) | \text{wn}\left(\frac{x_n y_m}{y_n x_m} - q\right).$$

Proof. The formal power series expansion for addition on E around 0 ([13], IV.2.3) implies that $\frac{x_n}{y_n} = q \frac{x_m}{y_m} + O((\frac{x_m}{y_m})^2)$, from which the result follows. \square

3. Proof of the main theorem

Let $\xi \in \emptyset$. Given an elliptic curve E of rank one over K as in the main theorem, we use the notation from section 2 for this E — in particular, choose a suitable r such that lemma 2.2 applies; we also choose ℓ which comes with the definition of A . We claim that the following formulæ give a diophantine definition of \mathbf{Z} in \emptyset :

$$\xi \in \mathbf{Z} \iff \exists m, n \in rT\mathbf{Z}, \exists u \in A - \{0\} \left\{ \begin{array}{l} (1) \quad m|n \\ (2) \quad 2^{n!+1} \prod_{i=0}^{n!-1} (\xi^{\ell n!} + i)^{n!} | u \\ (3) \quad u^h | \text{wd}(x_m) \\ (4) \quad \text{wd}(x_m) | \text{wn}(\frac{x_n y_m}{y_m x_n} - \xi) \end{array} \right.$$

3.1 Any $\xi \in \mathbf{Z}$ satisfies the relations. If $\xi \in \mathbf{Z}$, then a u satisfying (2) exists because A is division-dense. By lemma 2.3, there exists an m satisfying (3) for this u . Define $n = m\xi$ for this m . Then (1) is automatic and (4) is the contents of lemma 2.4.

3.2 A ξ satisfying the relations is integral. Let $q \in \mathbf{Z}$ satisfy $n = qm$ (which exists by (1)). Then lemma 2.4 implies that

$$\text{wd}(x_m) | \text{wn}(\frac{x_n y_m}{x_m y_n} - q),$$

which can be combined with (4) using the non-archimedean triangle inequality to give

$$\text{wd}(x_m) | \text{wn}(\xi - q) = (\xi - q)^h.$$

By (3), then also $u|\xi - q$.

By norm-boundedness of A we can find $\tilde{u} \in \mathbf{Z}$ such that $\tilde{u}|u$ and $|N(u)| \leq \tilde{u}^\ell$. We still have

$$(*) \quad \xi \equiv q \pmod{\tilde{u}}; \quad \tilde{u}, q \in \mathbf{Z}.$$

Condition (2) implies that Lemma 1.3(i) can be applied with $\xi^{\ell n!}$ in place of ξ , so for any complex embedding σ of K we find

$$(**) \quad |\sigma(\xi)| \leq \frac{1}{2} |N(u)|^{\frac{1}{\ell n!}} \leq \frac{1}{2} N(\tilde{u})^{\frac{1}{n!}}.$$

Because of (*) and (**), we can apply Lemma 1.3(ii) to conclude $\xi \in \mathbf{Z}$.

3.3 The relations (1)-(4) are diophantine over \emptyset . By 1.2 and 2.1, for $a \in \emptyset$, the relations $\exists n \in rT\mathbf{Z} : a = \text{wn}(x_n)$ and $\exists n \in rT\mathbf{Z} :$

$a = \text{wd}(x_n)$ are diophantine. By the diophantineness of A , the membership $u \in A$ is diophantine, and $u \neq 0$ is diophantine ([8], Prop. 1(b)). Condition (1) is diophantine because of Lemma 2.2. Conditions (2)-(4) are obviously diophantine using 1.2. \square

4. Proof of the proposition and discussion of division-ample sets

4.1 Rank-preservation over \mathbf{Q} . We use [3] as a general reference on abelian varieties and formal groups. Suppose there exists an abelian variety G of dimension d over \mathbf{Q} such that $\text{rk } G(\mathbf{Q}) = \text{rk } G(K) > 0$ (note that $G(K)$ is finitely generated by the Mordell-Weil theorem). Let T denote the (finite) order of the torsion of $G(K)$ and consider the free group $TG(K) \cong \mathbf{Z}^r$. The assumption implies that $G(\mathbf{Q})$ is of finite index $[G(K) : G(\mathbf{Q})]$ in $G(K)$. The choice of an ample line bundle on G gives rise to a projective embedding of G in some projective space with coordinates $\langle x_i \rangle_{i=1}^N$, where G is cut out by finitely many polynomial equations and the addition on G is algebraic in those coordinates. Suppose $\{t_i\}$ are algebraic function of the coordinates, and local uniformizers at the unit $\mathbf{0} = (1 : 0 : \dots : 0)$ of G (i.e., $\hat{\mathcal{O}}_{G,\mathbf{0}} = \mathbf{Q}[[t_1, \dots, t_d]]$), and define

$$A_G := \left\{ \text{wd}\left(\prod_{i=2}^N t_i(P)\right) : P \in T[G(K) : G(\mathbf{Q})] \cdot G(K) \text{ and } t_1(P) = 1 \right\}.$$

We claim that A_G is division-ample. Indeed, the three conditions are satisfied:

- (a) A_G is obviously diophantine over \emptyset (the diophantine definition comes from the chosen embedding of G).
- (b) The analogue of lemma 2.3 remains valid:

Claim. A_G is divisibility-dense.

Proof. Since any $\xi \in \emptyset - \{0\}$ divides its norm, it suffice to prove that any integer $z \in \mathbf{Z} - \{0\}$ divides an element of A_G . Given a minimal model \mathcal{G}_p for G over a p -adic field \mathbf{Q}_p , let $\mathcal{G}_{p,0}$ denote the group of points whose reduction is non-singular modulo p . Then $\mathcal{G}_{p,0}$ is a clopen subset of \mathcal{G}_p , so $\mathcal{G}_p/\mathcal{G}_{p,0}$ is finite (and non-trivial only for the finite set of primes for which \mathcal{G}_p has bad reduction). Hence we can choose a finite r so large that rP_i is non-singular modulo all primes for all generators P_i of $G(\mathbf{Q})$. Pick a prime $p|z$, then since the group of non-singular points on G modulo p is finite, there exists n_p such that $n_p r P = 0$ in this group, i.e., $v_p(t_i(P)) > 0$ for all i . The formal group \hat{G}_0 of G around $\mathbf{0}$ (defined by the power series that give the addition in terms of $\{t_i\}$) is a formal torus in characteristic zero, and

hence admits for any $N > 0$ a formal logarithmic isomorphism to a power of the additive group

$$\phi : \hat{G}_0(p^N \mathbf{Z}_p) \cong \hat{\mathbf{G}}_a^d(p^N \mathbf{Z}_p)$$

preserving valuations. Hence for any n ,

$$\begin{aligned} v(t_i(nP)) &= v(\phi(t_i(nP))) = v(n(\phi(t_i(P)))) = v(n) + v(\phi(t_i(P))) \\ &= v(n) + v(t_i(P)), \end{aligned}$$

and we can find n such that $v(t_i(P))$ becomes arbitrary large as in 2.3. \square

(c) Since by assumption, all elements of A_G are in \mathbf{Z} , we can set $\tilde{a} = a$, $\ell = n$ for any $a \in A_G$ to get the required norm-boundedness.

Remarks. (i) From available computer algebra, the construction of elliptic curves which fit the above can be automated. One can compute ranks of elliptic curves over \mathbf{Q} quite fast using `mrank` by J. Cremona [4], and over number fields using the `gp`-package of D. Simon [14]. One finds for example unconditionally that the curve $y^2 = x^3 + 8x$ has rank one over \mathbf{Q} and this rank stays the same over $\mathbf{Q}(\sqrt[3]{2})$, $\mathbf{Q}(\sqrt[4]{2})$, hence the diophantine problem for the integers in these number fields has a negative answer (note that their Galois closures are non-abelian).

(ii) We ask: given K , can one construct in some clever way a curve C over \mathbf{Q} such that its Jacobian satisfies the above conditions?

4.2 Rank-preservation over \mathbf{Z} . A similar construction (of which we leave out the details) can be performed if there exists a commutative (not necessarily complete) group variety G over \mathbf{Z} such that $G(\emptyset)$ is finitely generated and such that $\text{rk } G(\mathbf{Z}) = \text{rk } G(\emptyset) > 0$. As an example of this, let L be another number field, linearly disjoint from K . Let $\langle a_i \rangle$ denote a \mathbf{Z} -basis for L/\mathbf{Q} (this is also a basis for \mathcal{O}_{KL} over \mathcal{O}_K). Let T_L denote the norm one torus $N_{\mathbf{Q}}^L(\sum a_i x_i) = 1$. Then $T_L(\mathbf{Z}) \cong \mathcal{O}_L^*$ and

$$T_L(\mathcal{O}_K) = \ker(N_K^{KL} : \mathcal{O}_{KL}^* \rightarrow \mathcal{O}_K^*),$$

hence (by surjectivity of the relative norm) $\text{rk } T_L(\mathcal{O}_K) = \text{rk } \mathcal{O}_{KL}^* - \text{rk } \mathcal{O}_K^*$. In particular, $T_L(\mathcal{O}_K) = T_L(\mathbf{Z})$ iff

$$r_{KL} + s_{KL} = r_K + s_K + r_L + s_L - 1$$

where r_M, s_M denote the number of real, respectively half the number of complex embeddings of a number field M .

(a) If K is totally real of degree d , $r_{KL} = dr_L, s_{KL} = ds_L$, hence we want $r_L + s_L = 1$, which we can achieve by choosing L quadratic imaginary; but then $T_L(\mathbf{Z})$ is of rank zero.

(b) If K is totally complex of degree d , $r_K = 0, s_K = \frac{d}{2}$. Also KL is then totally complex, so $r_{KL} = 0, s_{KL} = \frac{d}{2}[L : \mathbf{Q}]$, hence we want $\frac{d}{2}([L : \mathbf{Q}] - 1) = r_L + s_L - 1$, but since the right hand side is less than or equal to $[L : \mathbf{Q}] - 1$, we find $d \leq 2$. Hence this strategy only works for K quadratic imaginary.

The conclusion is that this approach covers Denef's result from [6], except that he can discard the first condition in our theorem (existence of elliptic curve of rank one) by using a torus instead.

Remark. In all these examples, division-ample sets are actually subsets of the integers. Can one find a division-ample set which does not consist of just ordinary integers?

Acknowledgements. The authors thank Jan Van Geel for very useful help and encouragement. The third author was supported by a Marie-Curie Individual Fellowship (HPMF-CT-2001-01384).

References

- [1] J. Cheon and S. Hahn, *The orders of the reductions of a point in the Mordell-Weil group of an elliptic curve*. Acta Arith. **88** (1999), no. 3, 219–222.
- [2] G. Cornelissen and K. Zahidi, *Topology of Diophantine sets: remarks on Mazur's conjectures*. Hilbert's tenth problem: relations with arithmetic and algebraic geometry (Ghent, 1999), 253–260, Contemp. Math. **270**, Amer. Math. Soc., Providence, RI, 2000.
- [3] G. Cornell and J.H. Silverman, *Arithmetic geometry*, Papers from the conference held at the University of Connecticut, Storrs, Connecticut, July 30–August 10, 1984. Springer-Verlag (1986).
- [4] J. Cremona, [mwrkank](http://www.maths.nott.ac.uk/personal/jec/), www.maths.nott.ac.uk/personal/jec/, 1995–2001.
- [5] M. Davis, Y. Matijasevič and J. Robinson, *Hilbert's tenth problem: Diophantine equations: positive aspects of a negative solution*. Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Vol. **XXVIII**, Northern Illinois Univ., De Kalb, Ill., 1974), pp. 323–378.
- [6] J. Denef, *Hilbert's tenth problem for quadratic rings*. Proc. Amer. Math. Soc. **48** (1975), 214–220.
- [7] J. Denef, *Diophantine sets over algebraic integer rings. II*. Trans. Amer. Math. Soc. **257** (1980), no. 1, 227–236.
- [8] J. Denef and L. Lipshitz, *Diophantine sets over some rings of algebraic integers*. J. London Math. Soc. (2) **18** (1978), no. 3, 385–391.
- [9] T. Pheidas and K. Zahidi, *Undecidability of existential theories of rings and fields: a survey*, in: “Hilbert's tenth problem: relations with arithmetic and algebraic geometry” (Ghent, 1999), Contemp. Math. **270**, Amer. Math. Soc. (2000), 49–105.

- [10] B. Poonen, *Using elliptic curves of rank one towards the undecidability of Hilbert's tenth problem over rings of algebraic integers*. Algorithmic Number Theory (eds. C. Fieker, D. Kohel), 5th International Symp. ANTS-V, Sydney, Australia, July 2002, Proceedings, Lecture Notes in Computer Science **2369**, Springer-Verlag, Berlin, 2002, pp. 33-42.
- [11] H.N. Shapiro and A. Shlapentokh, *Diophantine relationships between algebraic number fields*. Comm. Pure Appl. Math. **42** (1989), no. 8, 1113–1122.
- [12] A. Shlapentokh, *Hilbert's tenth problem over number fields, a survey*, in: “Hilbert's tenth problem: relations with arithmetic and algebraic geometry” (Ghent, 1999), Contemp. Math. **270**, Amer. Math. Soc. (2000), 107–137.
- [13] J.H. Silverman, *The arithmetic of elliptic curves*, Graduate Texts in Math. **106**, Springer-Verlag, New York, 1986.
- [14] D. Simon, *Computing the rank of elliptic curves over number fields*, LMS J. Comput. Math. **5** (2002), 7-17.

Mathematisch Instituut, Universiteit Utrecht, Postbus 80010, 3508 TA Utrecht,
Nederland (gc)¹

Department of Mathematics, University of Crete, P.O. Box 1470, Herakleio, Crete,
Greece (tp)

Equipe de Logique Mathématique, U.F.R. de Mathématiques (case 7012), Université Denis-Diderot Paris 7, 2 place Jussieu, 75251 Paris Cedex 05, France (kz)

Email:

`cornelissen@math.uu.nl,`
`pheidas@math.uoc.gr,`
`zahidi@logique.jussieu.fr`

¹All correspondence should be sent to this author