Extra Slides: 0-1 Knapsack

Sec 101: MW 3:00-4:00pm DOW 1018

IA: Eric Khiu

0-1 Knapsack Set-Up

You have a set of n items, each with weight w_i and value v_i , and you have a knapsack with maximum weight capacity $\mathcal C$

► Inputs:

- ▶ *n*-length array of positive integer weights $W = [w_1, ..., w_n]$
- ▶ n-length array of positive integer values $V = [v_1, ..., v_n]$
- ▶ Capacity of the knapsack $C \in \mathbb{N}$
- ▶ **Goal:** pick a subset of items $S \subseteq \{1,2,...n\}$ that maximizes the value of the knapsack $\sum_{i \in S} v_i$, while staying within the capacity $\sum_{i \in S} w_i \leq C$

0-1 Knapsack Recurrence

- Step 0: Dimensionality
 - ▶ 2-dimensional: one for item and one for capacity

	x_1	x_2	x_3	 x_{n-2}	x_{n-1}	x_n
y_1						
y_2						
y_3						
:						
y_{m-2}						
y_{m-1}						
y_m						

	x_1	x_2	x_3		x_{n-2}	x_{n-1}		x_n
y_1								
y_2								
y_3								
:								
y_{m-2}								
y_m								
	y_2 y_3 \vdots y_{m-2} y_{m-1}	y_1 y_2 y_3 \vdots y_{m-2} y_{m-1}	y1 y2 y3 : ym-2 ym-1	<i>y</i> ₁ <i>y</i> ₂ <i>y</i> ₃ : : : : : : : : : : : : :	y1 y2 y3 : ym-2 ym-1	y1 y2 y3 : ym-2 ym-1	y1 y2 y3 : ym-2 ym-1	y1 y2 y3 : ym-2 ym-1

- Step 1: Subject of recurrence
 - \blacktriangleright Let K(i,j) be an optimal knapsack solution using only items up to index i, and having capacity only up to j
- ► Step 2: Base cases
 - i = 0 (No item) or j = 0 (no space): K(i,j) = 0
 - ▶ $w_i > j$ (Not enough space to consider item i): K(i,j) = K(i-1,j)

0-1 Knapsack Recurrence

- Step 3: Optimal sub-solution
 - ▶ [Sub-solution] For items 1, ..., i, how do we reduce the problem?
 - ▶ Deal with [Items 1, ..., i-1] and [Item i] separately
 - ▶ **Q:** What would happen if we take item i in the knapsack?
 - \triangleright Capacity reduces by w_i , total value increases by v_i
 - ▶ Else: Both capacity and total value remain unchanged
 - ▶ [Optimal] *Choose* between whether to include the ith item
 - ► Maximization problem: Use *max*
 - ▶ Objective function? $K(i,j) = \max\{K(i-1,j-w_i) + v_i, K(i-1), j)\}$
- Recurrence relation

$$K(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ K(i-1,j) & \text{if } w_i > j \\ \max\{K(i-1,j-w_i) + v_i, K(i-1), j)\} & \text{otherwise} \end{cases}$$

$K(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ K(i-1,j) & \text{if } w_i > j \\ \max\{K(i-1,j-w_i) + v_i, K(i-1), j)\} & \text{otherwise} \end{cases}$

Top-down Recursion

Implement the recursion as in the recurrence

```
Input: Integers n, C, arrays W, V. Again, note the 1-based indexing.

Output: The maximum total value of objects the Knapsack can hold

1: function Knapsack(n, C, W, V)

2: if n = 0 or C = 0 then

3: return 0

4: if W[n] > C then

5: return Knapsack(n - 1, C, W, V)

6: return max(Knapsack(n - 1, C, W, V) + V[n], Knapsack(n - 1, C, W, V))
```

- **Runtime:** $O(2^n)$
- ▶ Space: O(n)

- Easy to translate from recurrence relation
- No additional data structures necessary

- A lot of recursive calls- may not be time-efficient
- Correctness proof is usually harder
 - Not as smooth as bottom up- imagine proving by induction $P(k) \Rightarrow P(k+1)$, but we can't do that with recursive top-down
- Additional concern on segmentation fault

Top-down Memoization

▶ Same as before, but include a memo recording results of previous recursive calls

- ▶ Runtime: $O(n \cdot C)$
- ▶ Space: $O(n \cdot C)$

- Usually better time-complexity than top-down recursion
- While harder than recursion, the logic is often more intuitive than bottom-up

- May still be slower than bottom-up
- Correctness proof may still be harder than bottom-up
- Additional concern on segmentation fault

Bottom-up (Tabulation)

- Build the table without recursion
- ► Iterate over previous results to fill the cells

```
Input: Integers n, C, arrays W, V, and memo table DP.
Output: The maximum total value of objects the Knapsack can hold
 1: function Knapsack(n, C, W, V)
       DP[n][C] \leftarrow -1
                                                           ▶ Initialize values in lookup-table to -1
       for i = 0 : n do
          DP[i][0] = 0
 4:
       for j = 0 : C do
          DP[0][j] = 0
 6:
       for i = 1 : n \text{ do}
 7:
          for j = 1 : C do
 8:
             if W[i] > j then
                 DP[i][j] = DP[i-1][j]
10:
              else
11:
                 DP[i][j] = \max(DP[i-1][j-W[i]] + V[i], DP[i-1][j])
12:
       return DP[n][C]
13:
```


- Almost always fastest in practice
- Segmentation fault is less likely

- Less intuitive
- Common mistake 1: wrong direction for for-loop
- Common mistake 2: wrong initialization

- ▶ Runtime: $O(n \cdot C)$
- ▶ Space: $O(n \cdot C)$

<u>Visualizer</u>