Department of Mathematics

Probability and Random Processes

15B11MA301

Tutorial Sheet 12

(Semi random and random telegraph signal processes and Ergodic Process)

- 1. Let X(t) is semi random telegraph signal process and $Y(t) = \beta X(t)$, where β is uniformly distributed random variable in the interval (-2, 2) and is independent of X(t). Is Y(t) a WSS process? [Ans.Yes]
- 2. Find the mean and variance of a random process $\{X(t)\}$ whose autocorrelation function is given by $R(\tau) = 45 + \frac{4\tau^2 + 9}{\tau^2 + 2}$. [Ans. Mean = 7, Var =0.5]
- 3. For the random process $X(t) = A\cos wt + B\sin wt$, where A and B are random variables with E(A) = E(B) = 0, $E(A^2) = E(B^2) > 0$, and E(AB) = 0. Prove that the process is mean ergodic.
- 4. Let $\{X(t)\}$ be a WSS process with $E\{X(t)\}=2$ and $R_{xx}(\tau)=4+e^{-\left(\frac{|\tau|}{10}\right)}$, find the mean and variance of $S=\int_{0}^{1}X(t)dt$. [Ans. Mean =2; var: $200e^{-\frac{1}{10}}-180$]
- 5. The WSS process $\{X(t)\}$ is given by $X(t) = 10 \cos(100 \text{ t} + \theta)$, where θ is uniformly distributed over $(-\pi, \pi)$. Check whether $\{X(t)\}$ is (i) mean ergodic random process, (ii) correlation ergodic random process. [Ans. Yes; Yes]
- 6. A random binary transmission process $\{X(t)\}$ is a WSS process with zero mean and autocorrelation function $R_{xx}(\tau) = 1 \left(\frac{|\tau|}{T}\right)$, where T is a constant. Find the variance of the time average of $\{X(t)\}$ and also the mean over $\{0, T\}$. Is $\{X(t)\}$ mean ergodic?

[Ans. 2/3; 0; No]