	 How well some variables like viral load, smoking, Severity Level describe the hospitalization charges Dataset Definition: Age: This is an integer indicating the age of the primary beneficiary (excluding those above 64 years, since they are generally covered by the government) Sex: This is the policy holder's gender, either male or female Viral Load: Viral load refers to the amount of virus in an infected person's blood
In [162	<pre>import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import warnings # to supress any warnings coming out</pre>
In [377	<pre>from scipy.stats import ttest_ind # 2 Sample independent T-Test from scipy.stats import chi2_contingency #Chi2 test # Tests for Normality from scipy.stats import shapiro #Shapiro Wilk Test from scipy.stats import normaltest # D'Agostino and Pearson's K2 Test from scipy.stats import probplot #PP plot for normality import statsmodels.api as sm #for QQ plot import pylab #for QQ plot from scipy.stats import levene #to check whether variances are similar from scipy.stats import boxcox from scipy.stats import norm</pre>
In [164 Out[164]:	ap.head()
In [165 Out[165]: In [166 Out[166]:	<pre>'Unnamed: 0' ap.drop(ap.columns[0], axis = 1, inplace = True) ap</pre>
	2 28 male no southeast 11.00 3 11124 3 33 male no northwest 7.57 0 54961 4 32 male no northwest 9.63 0 9667 1333 50 male no northwest 10.32 3 26501 1334 18 female no northeast 10.64 0 5515 1335 18 female no southeast 12.28 0 4075 1336 21 female no southwest 8.60 0 5020 1337 61 female yes northwest 9.69 0 72853
In [167	1338 rows × 7 columns
In [293 In [294	<pre>5 severity level 1338 non-null int64 6 hospitalization charges 1338 non-null int64 dtypes: float64(1), int64(3), object(3) memory usage: 73.3+ KB Data type correction, Data description for col in ap.columns[ap.dtypes == "object"].tolist(): ap[col] = ap[col].astype("category") ap["severity level"] = ap["severity level"].astype("category")</pre>
In [295	RangeIndex: 1338 entries, 0 to 1337 Data columns (total 7 columns): # Column
Out[295]:	count 1338.000000 1338.000000 1338.000000 mean 39.207025 10.221233 33176.058296 std 14.049960 2.032796 30275.029296 min 18.000000 5.320000 2805.000000 25% 27.000000 8.762500 11851.000000 50% 39.00000 10.130000 23455.000000 75% 51.000000 17.710000 159426.000000
In [296 Out[296]:	
In [172 Out[172]: In [297	<pre>age</pre>
	male 676 female 662 Name: sex, dtype: int64 male 0.505232 female 0.494768 Name: sex, dtype: float64 no 1064 yes 274 Name: smoker, dtype: int64 no 0.795217 yes 0.204783 Name: smoker, dtype: float64
	southeast 364 northwest 325 southwest 325 northeast 324 Name: region, dtype: int64 southeast 0.272048 northwest 0.242900 southwest 0.242900 northeast 0.242152 Name: region, dtype: float64
In [174	4 25 5 18 Name: severity level, dtype: int64 0 0.428999 1 0.242152 2 0.179372 3 0.117339 4 0.018685 5 0.013453 Name: severity level, dtype: float64
	<pre>if (col.dtype != 'int64' and col.dtype != 'float64'): return "Incorrect Datatype" q1 = np.quantile(col, 0.25) q2 = np.quantile(col, 0.50) q3 = np.quantile(col, 0.75) IQR = q3 - q1 min_outlier = q1 - 1.5*(IQR) max_outlier = q3 + 1.5*(IQR) return col[(col > max_outlier) (col < min_outlier)].count() for col in ap.columns: print("Column: ", col, "\n Number of outliers:", printoutl(ap[col]))</pre> Column: age
In [176	Number of outliers: 0 Column: sex Number of outliers: Incorrect Datatype Column: smoker Number of outliers: Incorrect Datatype Column: region Number of outliers: Incorrect Datatype Column: viral load Number of outliers: 9 Column: severity level Number of outliers: 0 Column: hospitalization charges Number of outliers: 139 fig, axs = plt.subplots(nrows = 1, ncols = 2, figsize=(5, 8))
	<pre>sns.boxplot(data = ap, y = "viral load", color = "orange", showmeans = True, ax = axs[0]).set(title = "Viral Loss.boxplot(data = ap, y = "hospitalization charges", color = "green", showmeans = True, ax = axs[1]).set(</pre>
	10 - 12 - 40000 - 200000 - 20000 - 20000 - 20000 - 20000 - 20000 - 20000 - 20000 - 20000 - 20000 - 20000 - 20000 - 20000 - 20000 - 20000 - 20000 - 200000 - 20000 - 20000 - 20000 - 20000 - 20000 - 20000 - 20000 - 20
In [306	<pre>fig, axs = plt.subplots(nrows = 2, ncols = 2, figsize=(8, 4)) sex = ap.sex.value_counts() smoke = ap.smoker.value_counts() reg = ap.region.value_counts() sl = ap["severity level"].value_counts() axs[0][0].pie(x = sex, explode=([0.04] * len(sex)),</pre>
	<pre>labels = reg.index.tolist(), autopct="%.2f", shadow=True) axs[1][1].pie(x = sl, explode=([0.04] * len(sl)),</pre>
	50.52 79.52 49.48 Ves Region Pie-Charts Severity Level
	24.29 27.20 42.90 24.22 11.73 3 4 2.90 24.22 11.73 3
In [364	<pre>fig, axs = plt.subplots(nrows = 1, ncols = 2, figsize=(8, 5)) y_smoke = ap[ap["smoker"] == "yes"] n_smoke = ap[ap["smoker"] == "no"] bin_edges = np.histogram_bin_edges(ap["age"], bins = 5).round(1) hist_1= sns.histplot(data = y_smoke, x = "age", bins = 5, color = "gray", ax = axs[0]) hist_1.margins(y = 0.15) #creating space for percentage label total_1 = float(len(y_smoke)) for p in hist_1.patches: percentage = '{:.1f}%'.format(100 * p.get_height()/total_1) x = p.get_x() + (p.get_width()/2) y = p.get_x() + (p.get_width()/2)</pre>
	<pre>y = p.get_height() + (0.05 * p.get_height()) hist_1.annotate(percentage, (x, y), ha='center') #ha = horizontal alignment of label hist_2 = sns.histplot(data = n_smoke, x = "age", bins = 5, color = "lightgreen", ax = axs[1]) hist_2.margins(y = 0.15) #creating space for percentage label total_2 = float(len(n_smoke)) for p in hist_2.patches: percentage = '{:.1f}%'.format(100 * p.get_height()/total_2) x = p.get_x() + (p.get_width()/2) y = p.get_height() + (0.05 * p.get_height()) hist_2.annotate(percentage, (x, y), ha='center') #ha = horizontal alignment of label axs[0].set_title('Distribution of Age - Smokers', fontsize = 15) axs[0].set_title('Distribution of Age - Non Smokers', fontsize = 15)</pre>
	axs[1].set_xticks(bin_edges, labels=bin_edges) plt.subplots_adjust(right = 1.5) plt.show() Distribution of Age - Smokers Distribution of Age - Non Smokers 28.1% 28.1% 20.1% 18.2% 15.3% Distribution of Age - Non Smokers 26.8% 270 26.8% 270 28.1% 28.1% 290 200 200 217.6% 27.3% 28.1% 200 200 200 200 200 200 200 2
In [365	30 - 100 - 1
In [178	viral load - 0.11 1 0.2 hospitalization charges - 0.3 0.2 1 fig, axs = plt.subplots(nrows = 4, ncols = 2, figsize=(5, 5)) fig.suptitle('Hospitalization Charges Bi-variate analysis', x = 1.5, y = 4.1, fontsize=20)
	<pre>sns.histplot(data = ap, x = "hospitalization charges", hue = "sex", ax = axs[0][0]) sns.boxplot(data = ap, y = "hospitalization charges", x = "sex", ax = axs[0][1]) sns.histplot(data = ap, x = "hospitalization charges", hue = "region", ax = axs[1][0]) sns.boxplot(data = ap, y = "hospitalization charges", x = "region", ax = axs[1][1]) sns.histplot(data = ap, x = "hospitalization charges", hue = "smoker", ax = axs[2][0]) sns.boxplot(data = ap, y = "hospitalization charges", x = "smoker", ax = axs[2][1])</pre>
	<pre>#sns.histplot(data = ap, x = "hospitalization charges", hue = "severity level", ax = axs[3][0]) sns.stripplot(data = ap, y = "hospitalization charges", x = "severity level", ax = axs[3][0]) sns.boxplot(data = ap, y = "hospitalization charges", x = "severity level", ax = axs[3][1]) plt.subplots_adjust(right = 3, top = 4) plt.show()</pre>
	<pre>sns.stripplot(data = ap, y = "hospitalization charges", x = "severity level", ax = axs[3][0]) sns.boxplot(data = ap, y = "hospitalization charges", x = "severity level", ax = axs[3][1]) plt.subplots_adjust(right = 3, top = 4)</pre>
	sns.stripplot(data = ap, y = "hospitalization charges", x = "severity level", ax = axs[3][0]) sns.boxplot(data = ap, y = "hospitalization charges", x = "severity level", ax = axs[3][1]) plt.subplots_adjust(right = 3, top = 4) plt.show() Hospitalization Charges Bi-variate analysis
	substrippiot(data = ap, y = "hospitalization charges", x = "severity level", ax = axs[3][1]) plt.subplots_adjust(zight = 3, top = 4) plt.show() Hospitalization Charges Bi-variate analysis ### ### ### ### ### ### ### #### ##
	### Amount of the control of the con
In [289	### Proposed Company 1
In [289	Dit Habita Book and the state of the state o
In [289	## Hospitalization Charges Bi-variate analysis ## Hospitalization Charges Bi-
	Size of Experience (Size 12 - 30), as "Size of Experience Chapter," as "Secretary Profit," can a size [1] (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
	The proposed of the control of the c
In [188	The proof of part of the part
In [188	Analysis with Region Analysis with Region Analysis with Region Analysis with Region The particular and t
In [188 In [286	Analysis w.r. Regions and the second states of the
In [188 In [286	Analysis with Regions of the control
In [286 In [270	Analysis rate of a grant respective control of the respective control
In [286 In [270	The state of the s
In [286 In [270 Out [202]:	The control of the co
In [286 In [286 In [270 In [374	The production of the control of the
In [286 In [286 In [270 In [374	The second of th
In [286 In [286 In [270 In [374	Secretary of the control of the cont
In [286 In [286 In [270 In [374	The state of the s
In [286 In [286 In [270 In [374	The second of th
In [286 In [286 In [270 In [374	And the control of th
In [286 In [270 Out[202]:	Andrew St. American St. America
In [286 In [270 Out[202]:	The state of the s
In [286 In [270 Out[202]:	Section 1997 - 1
In [286 In [374 Out [374]:	The state of the s

In [406	<pre># Checking if both samples belong from normal dist - Normal Test # Ho (Null hyp) => Normally distributed # Ha (Alt hyp) => Not normally distributed alpha = 0.1 stat, p_val = normaltest(ap["hospitalization charges"]) print("Test statistic", stat, "P-value", p_val) if(p_val < alpha): print("Reject Null Hyp - Distribution is not normally distributed") else: print("Fail to reject Null Hyp - Distribution is normally distributed") stat, p_val = normaltest(log_ap) print("\nTest statistic", stat, "P-value", p val)</pre>
	<pre>if(p_val < alpha): print("Reject Null Hyp - Log Transformed Distribution is not normally distributed") else: print("Fail to reject Null Hyp - Log Transformed Distribution is normally distributed") stat, p_val = normaltest(bx[0]) print("\nTest statistic", stat, "P-value", p_val) if(p_val < alpha): print("Reject Null Hyp - BoxCox Transformed Distribution is not normally distributed") else: print("Fail to reject Null Hyp - BoxCox Transformed Distribution is normally distributed") Test statistic 336.88533960007777 P-value 7.0190443866974234e-74 Reject Null Hyp - Distribution is not normally distributed</pre>
In [420	Test statistic 52.71977515219837 P-value 3.564891219118135e-12 Reject Null Hyp - Log Transformed Distribution is not normally distributed Test statistic 54.42062992307923 P-value 1.5230366750063814e-12 Reject Null Hyp - BoxCox Transformed Distribution is not normally distributed Since we have failed to prove that our distribution is normal, we will use the assumption that because n is a large number, the population must be normally distributed y_smoke = ap[ap["smoker"] == "yes"]["hospitalization charges"] n_smoke = ap[ap["smoker"] == "no"]["hospitalization charges"] print(y_smoke.var() / n_smoke.var())
In [421	<pre>3.707890029470998 Since, variances are unequal, we will use equal_var = False in our argument Setting confidence = 95% alpha = 0.05 t_stat, p_val = ttest_ind(y_smoke, n_smoke, equal_var = False, alternative="greater") print("T-Score:", round(t_stat, 5)) print("P-Value:", round(p_val, 5)) if (p_val < alpha): print("Reject Null Hypothesis") else:</pre>
	print("Fail to reject null hypothesis") T-Score: 32.75186 P-Value: 0.0 Reject Null Hypothesis Therefore, with 95% confidence we can say that, on average, people who smoke pay much more charges than those who dont Problem 2: Prove (or disprove) with statistical evidence that the viral load of females is different from that of males
In [423	Types of variables: Viral load (Continuous) v/s Gender (Categorical - Male and Female) Test to be used: 2 tailed independent T-Test Assumptions: T-Test is parametric, hence population should follow normal distribution. All samples should be selected independent of each other Null Hyp => Mean(viral load of men) == Mean(viral load of women) Alt Hyp => Mean(viral load of me) != Mean(viral load of women) fig, axs = plt.subplots(nrows = 1, ncols = 3, figsize=(5, 5)) log_vl = np.log(ap["viral load"]) bx_vl = boxcox(ap["viral load"])
	<pre>sns.histplot(data = ap, x = "viral load", ax = axs[0]).set(title = "Actual Distribution", xlabel = "Viral Load") sns.histplot(x = log_vl , ax = axs[1]).set(title = "Log Transformed Distribution", xlabel = "Log Viral Load") sns.histplot(x = bx_vl[0] , ax = axs[2]).set(title = "BoxCox Transformed Distribution", xlabel = "Boxcox transformed Viral Load") plt.subplots_adjust(right = 2.5) plt.show()</pre> Actual Distribution Log Transformed Distribution BoxCox Transformed Distribution
	120 - 100 -
In [425	Viral Load Log Viral Load Boxcox transformed Viral Load
	<pre>if(p_val < alpha): print("Reject Null Hyp - Log Transformed Distribution is not normally distributed") else: print("Fail to reject Null Hyp - Log Transformed Distribution is normally distributed") w_stat, p_val = shapiro(bx_vl[0]) print("\nW-statistic", w_stat, "P-value", p_val) if(p_val < alpha): print("Reject Null Hyp - BoxCox Transformed Distribution is not normally distributed") else: print("Fail to reject Null Hyp - BoxCox Transformed Distribution is normally distributed") # D'Agostino - Pearson K2 Test for normality</pre>
	<pre>stat, p_val = normaltest(bx_vl[0]) print("\nTest statistic", stat, "P-value", p_val) if(p_val < alpha): print("Reject Null Hyp - BoxCox Transformed Distribution is not normally distributed") else: print("Fail to reject Null Hyp - BoxCox Transformed Distribution is normally distributed") W-statistic 0.9939048886299133 P-value 2.6902040190179832e-05 Reject Null Hyp - Distribution is not normally distributed W-statistic 0.9945706725120544 P-value 8.888542652130127e-05 Reject Null Hyp - Log Transformed Distribution is not normally distributed W-statistic 0.9985800385475159 P-value 0.34881141781806946</pre>
In [426	Fail to reject Null Hyp - BoxCox Transformed Distribution is normally distributed Test statistic 2.8848769441490356 P-value 0.23635072079021927 Fail to reject Null Hyp - BoxCox Transformed Distribution is normally distributed As we can see, after performing BoxCox transformation, our sample is normally distributed. Hence we can go ahead with T-Test on this distribution m_viral_load = ap[ap["sex"] == "male"]["viral load"] f_viral_load = ap[ap["sex"] == "female"]["viral load"] print(m_viral_load.var() / f_viral_load.var()) 1.0314909206920337
In [439	<pre>Since, variances are almost equal, we will use equal_var = True in our argument alpha = 0.05 t_stat, p_val = ttest_ind(m_viral_load, f_viral_load, equal_var = True, alternative="two-sided") print("T-Score:", round(t_stat, 5)) print("P-Value:", round(p_val, 5)) if (p_val < alpha): print("Reject Null Hypothesis") else: print("Fail to reject null hypothesis")</pre> T-Score: 1.69571
	P-Value: 0.09017 Fail to reject null hypothesis Therefore, with 95% confidence, we can say that the mean viral loads of both men and women and equal Problem 3: Is the proportion of smoking significantly different across different regions? Types of variables: Smoker(Categorical - Yes or No), Region (Categorical - 4 Regions) Test to be used: Pearson's Chi-square test for independence Assumptions:
Tn [431	 Variables should be discrete/categorical All observations should be independent Cells in contingency table should be mutually exclusive Min frequency of every cell >= 5 Null Hyp => Both categories are independent of each other Alt Hyp => Both categories are dependent on each other Note: We saw in the visual analysis, that the SouthEast Region had more smokers as compared to other regions
Out[431]:	<pre>chi_stat, p_val, df, expected_values = chi2_contingency(ct)</pre>
	<pre>print("Expected array", expected_values) print("Chi Stat:", round(chi_stat, 4)) print("P-Value:", p_val) if (p_val < alpha): print("Null Hyp rejected - Both categories are dependent on each other") else: print("Failed to reject Null- Both categories are independent of each other") Expected array [[257.65022422 258.44544096 289.45889387 258.44544096] [66.34977578 66.55455904 74.54110613 66.55455904]] Chi Stat: 7.3435 P-Value: 0.06171954839170547 Null Hyp rejected - Both categories are dependent on each other</pre> Hence, with 93% confidence, we can say that the number of smokers is dependent upon the region
	Problem 4: Is the mean viral load of women with 0 Severity level, 1 Severity level, and 2 Severity level the same? Types of variables: Viral load(Continuous) v/s Severity (Categorical - 3 Severities to be tested) Test to be used: One-way ANOVA: Since we are comparing means of more than 2 groups of the independent variable Assumptions: 1. ANOVA is parametric, hence population from where samples are taken should follow normal distribution
In [447	2. All samples should be selected independent of each other 3. Variance of data in groups should be similar (Homoscedasticity) Null Hyp => Mean(Viral load of women with Sev-0) = Mean(Viral load of women with Sev-1) = Mean(Viral load of women with Sev-2) = Mean(Cycles sold in Winter) Alt Hyp => Atleast one mean is different Note: We have already seen that viral load graph is normally distributed if we perform a BoxCox transform on it. Hence, we have already satisfied the first condition. We need to check the third condition now fig, axs = plt.subplots(nrows = 1, ncols = 3, figsize=(5, 5))
. լ447	<pre>sns.histplot(x = vl_0, ax = axs[0], color = "crimson").set(title = "Severity-0", xlabel = "Viral load") sns.histplot(x = vl_1, ax = axs[1], color = "palegreen").set(title = "Severity-1", xlabel = "Viral load") sns.histplot(x = vl_2, ax = axs[2], color = "plum").set(title = "Severity-2", xlabel = "Viral load") plt.subplots_adjust(right = 2.5) plt.show()</pre> Severity-1 Severity-2 Severity-2 Severity-2 Severity-2 Severity-2 Severity-2
In [456	plt.figure(figsize=(10, 7))
	<pre>fem_sev = ap[(ap["sex"] == 'female') & (ap["severity level"].isin([0, 1, 2]))] #fem_sev["severity level"].value_counts() sns.histplot(data = fem_sev, x = "viral load", hue = "severity level").set(title = "Comparison of all") plt.show()</pre> Comparison of all ### Severity level
	25 - 15 - 10 - 10 - 10 - 10 - 10 - 10 - 1
In [440	# Levene's test for equal variance # Null Hyp => Variances are equal # Alt Hyp => Atleast one variance is not same # As we can know, the distribution is normally distributed, therefore we will use # center = 'mean' : Recommended for symmetric, moderate-tailed distributions. vl_0 = ap[(ap["severity level"] == 0) & (ap["sex"] == "female")]["viral load"] vl_1 = ap[(ap["severity level"] == 1) & (ap["sex"] == "female")]["viral load"] vl_2 = ap[(ap["severity level"] == 2) & (ap["sex"] == "female")]["viral load"] alpha = 0.05
In [442	<pre>l_stat, p_val = levene(vl_0, vl_1, vl_2, center = "mean") print("L-statistic", l_stat, "P-value", p_val) if(p_val < alpha): print("Reject Null Hyp - All samples dont have similar variance") else: print("Fail to reject Null Hyp - All samples have similar variance") L-statistic 0.9516313931399634 P-value 0.38673078296344054 Fail to reject Null Hyp - All samples have similar variance Now we will perform 1-way ANOVA with C.I = 95% alpha = 0.05</pre>
In [442	<pre>f_stat, p_val = f_oneway(vl_0, vl_1, vl_2, axis = 0) print("F-statistic", f_stat, "P-value", p_val) if(p_val < alpha): print("Reject Null Hyp - Means differ signifcantly") else: print("Fail to reject Null Hyp - Means are similar") F-statistic 0.3355061434584082 P-value 0.7151189650367746 Fail to reject Null Hyp - Means are similar Hence, with 95% confidence, we can say that the mean viral load in women with severity levels of 0,1,2 are similar</pre>
	 Conclusions The major factor affecting hospitalization charges in Apollo Hospitals is whether or not the person has been Smoking. Apart from this, factors such as age, gender, and region too play a significant role in determining the hospitalization charges We were able to prove through Hypothesis tests that mean hospitalization charge for smokers was much greater than that for non-smokers We also proved that, viral loads seen in men and women do not have a significant difference We proved, with 93% confidence that, proportion of people smoking differs from region to region. This was caused mainly due to the SouthEast region. If we would have performed the test for the other regions excluding it, we would have got a different result