THE LANGUAGE MODELING PROBLEM

Lecture adapted from https://youtube.com/playlist?list=PLIQ By7xY8mbJONAWxZmZsHj0igjMpKO Ni&si=TLh2Phyna3ZndoHD

 One of the oldest problems studied in statistical NLP because very useful for many applications

 We have some finite vacabulary, say V = {the, a, man, telescope, Beckham, two, ...} (can be very large depending on the data)

• We have an (infinite) set of strings, V^{\dagger} => set of all possible sentences in this language

 A sentence must have 0 or more words and each word must come from V, any sequence is possible.

- Possible sentences:
 - The STOP
 - A STOP
 - The fan STOP
 - The fan saw Beckham STOP
 - The fan saw saw STOP
 - The the STOP
 - STOP

- We have a training sample of example sentences in English
- Collection of sentences from the New York Times during the last ten years for example,
- or large sample of sentences from the web
- 90s => 20 million words/tokens
- 2000s => 1 billion
- Nowadays => couple trillion

- Our task is to « learn » a probability distribution p over the sentences in our language. PINDO
- 2 conditions:
 - $p(x) \ge 0 \ \forall \ x \in V^{\dagger} =>$ For any sentence x, the probability of that sentence must be greater or equal to 0
 - $\sum_{(x \in V^{\dagger})} p(x) = 1 \Rightarrow$ If we sum over all of the probabilities of the sentences in the language we obtain 1, meaning p is a well-formed distribution.

• *p* is essentially a function which returns the probability for a sequence in a given language.

- P (the STOP) = 10^{-12}
- P(the fan STOP) = 10⁻⁸
- $P(\text{the fan saw Beckham STOP}) = 2 \times 10^{-8}$
- P (the fan saw saw) = 10^{-15}
- ... assign a probability to every sequence in the language

 We want to try and assign a high probability to likely sentences in English and low probability to unlikely sentences in English

Why would we want to do this?!

- Language models are useful in many applications:
 - Speech recognition: language models are critical for modern speech recognizers (handwriting recognition also)
 - The estimation techniques used for this problem are useful for other NLP problems such as POS tagging or automatic translation.
 - Nowadays they are widely used for generative purposes

Language modeling for Speech Recognition

- · Quick sketch:
 - Input => an acoustic recording
 - Then map this input to the words which are actually spoken

Language modeling for Speech Recognition

Imagine the person says « recognize speech »

- In practice, there are actually many alternative sentences which could have been spoken:
 - « wreck a nice beach » 1
 - « wreck an ice peach » /

Similar sentences from an acoustic point of view

Language modeling for Speech Recognition

 A language model allows us to produce a probability for each sentence and estimate that « recognize speech » is more probable than other options.

 => Adds some very useful info to get rid of these kinds of confusions

A naive method for Language Modeling

- We have N sentences
- For any sentence or sequence $x_1 \dots x_n$,
- $C(x_1 ... x_n)$ is the # of times the sentence was seen in our training data.

A naive estimate :

$$\bullet p(x_1 \dots x_n) = \frac{C(x_1 \dots x_n)}{N}$$

A naive method for Language Modeling

 Has some deficiencies, although it's a well-formed language model:

 Mainly it assigns proba 0 to any sentence not seen in our training sample...

Cannot generalize to new sentences

Trigram Models

Widely used statistical language model

• Build heavily on the idea of Markov processes...

Markov Processes

- Consider a sequence of random variables $X_1, ..., X_n$.
- Each random variable can take any value in a finite set V (vocab).
- We can assume the length n is fixed for now. (n=100 for ex.)
- We want to model the joint probability

$$P(X) = x_1, ..., X_n = x_n$$

Markov Processes

Huge number of possible values.

VIVIn possible sequences in our example

- Going to use the chain rule to decompose this joint proba
- Remember: $P(A,B) = P(A) \times P(B|A)$
- And therefore $P(A,B,C) = P(A) \times P(B|A) \times P(C|A,B) \times P(C|A,B)$
- So :

$$P(X_{1} = x_{1}, ..., X_{n} = x_{n}) \qquad \begin{cases} x_{1}, x_{2}, x_{3} \end{cases} = P(x_{1})$$

$$= \qquad \qquad P(X_{1} = x_{1}, ..., X_{n} = x_{n}) \qquad P(x_{2}, x_{3}) = P(x_{1})$$

$$= \qquad \qquad P(X_{1} = x_{1}) \prod_{i=2}^{n} P(X_{i} = x_{i} | X_{1} = x_{1}, ..., X_{i-1} = x_{i-1}) \qquad P(x_{3} | x_{3})$$

• The 1st order Markov assumption states that

Her Markov assumption states that
$$P(A, B, C, 0, E) = P(A) \times P(B|A) \times P(X_i = x_i | X_1 = x_1, ..., X_{i-1} = x_{i-1}) \qquad P(C|A, B, C)$$
Can be **simplified** as:
$$P(A, B, C, 0, E) = P(A) \times P(B|A) \times P(C|A, B, C)$$

$$P(C|A, B, C) \times P(E|A, B, C, D)$$

$$\prod_{i=2}^{n} P(X_i = x_i | X_{i-1} = x_{i-1})$$

$$P(A, B, (D) \propto P(A) \times P(B|A) \times P(C|B)$$

$$P(X_1 = x_1, ..., X_n = x_n)$$

(exact equality)

$$P(X_1 = x_1) \prod_{i=2}^n P(X_i = x_i | X_1 = x_1, ..., X_{i-1} = x_{i-1})$$

(Markov assumption)

$$P(X_1 = x_1) \prod_{i=2}^{n} P(X_i = x_i | X_{i-1} = x_{i-1})$$

 Huge assumption to state that the probability of a word here is only conditioned on the previous word...

Second-Order Markov Processes

Very similar model :

$$P(X_1 = x_1, \dots, X_n = x_n)$$

$$= P(X_1 = x_1) \ P(X_2 = x_2 | X_1 = x_1) \prod_{i=3}^{n} P(X_i = x_i | X_{i-2} = x_{i-2}, X_{i-1} = x_{i-1})$$

Condition on previous 2 elements vs. only the previous element

Second-Order Markov Processes

 We would also like to make the length of a sentence be a random variable: not all sentences will have 100 words...

• So we can define \mathbb{Y}_n to always be equal to STOP where STOP is a special symbol.

• Basically, if STOP is at position i, then this marks the end of the sentence and i = n

Trigram Language Model

 Given these concepts we can define a trigram language model, which consists of:

• A finite set V

• A parameter q(w|u,v) for each trigram u,v,w such that $w \in V \cup \{STOP\}$ and $u,v \in V \cup \{*\}$ (special start symbols)

$$p(A) \rightarrow p(A/*/*)$$

P(1) [* , 4]

Trigram Language Model Formal Definition

- For any sentence made up of tokens x_1, \dots, x_n
 - where $x_i \in V$ for i = 1, ..., n-1
 - and $x_n = STOP$
- The probability of the sentence under the trigram language model is

$$p(x_1, x_2, ..., x_n) = \prod_{i=1}^{n} q(x_i | x_{i-2}, x_{i-1})$$

• Where we define $x_{-1} = x_0 = *$

An example to make things clearer

• Sentence : « * * The dog barks STOP »

```
• p(** the dog barks STOP) = q(the|*,*) • \times q(dog|*, the) • \times q(barks|the, dog) \times q(STOP|dog, barks)
```

- Product of terms to get the proba of the sentence under this type of language model
- We're treating sentences as being generated by a second order Markov process, where each word generated is dependent purely on the 2 previous words.

Trigram Language Model

- Advantages:
 - Simple, easy and cheap
 - useful for many applications
 - availablity of statistics over the internet
 - well understood math.
- Disadvantages:
 - Language: they do not capture non-local dependencies

Estimating the parameters

- So we need to estimate $q(w_i|w_{i-2},w_{i-1})$
- · Remember, if we have two dependent events:

Which is equivalent to

$$p(A,B) = p(A) \times p(B|A)$$

$$p(B|A) = \frac{p(A,B)}{p(A)}$$

• Which can be generalized to 3 events

$$p(C|A,B) = \frac{p(A,B,C)}{(p(A,B))}$$

Estimating the parameters

• A natural estimate is therefore:

$$q(w_i|w_{i-2},w_{i-1}) = \frac{Count(w_{i-2},w_{i-1},w_i)}{Count(w_{i-2},w_{i-1})}$$

So for example :

$$q(laughs|the,dog) = \frac{Count(the,dog,laughs)}{Count(the,dog)}$$

Estimating the parameters from a toy corpus

- An example corpus:
- <mark>1</mark>, the cat saw the mouse.
- 2. the cat heard a mouse.
- 3. the mouse heard.
- 4. a mouse saw.
- 5. a cat saw.
- 6. a cat heard the mouse.

- 9(the/t) = Coent(t, the)

 Coent(t)

 = 1
- $q(\text{naw}|\text{cat}) = \frac{C(\text{cat}, \text{naw})}{C(\text{cat}, \text{naw})} = \frac{C(\text{cat}, \text{naw})}{C(\text{cat}, \text{naw})}$
- => Using the corpus, give the parameter estimates for :
 - a bigram language model
 - a trigram language model

Estimating the parameters

Bigram	Count	Unigram	Count	Relative frequency
* the	3	*	6	3/6
the cat	2	the	5	2/5
cat saw	2	cat	4	2/4
saw the	1	saw	3	1/3
the mouse	2	the	5	2/5
mouse STOP	3	mouse	5	3/5
cat heard	2	cat	4	2/4
heard a	1	heard	3	1/3
a mouse	2	а	4	2/4

Estimating the parameters

Trigrams	Count	Bigram	Count	Relative frequency
* * the	3	**	6	3/6
* the cat	2	* the	3	2/3
the cat saw	1	the cat	2	1/2
cat saw the	1	cat saw	2	1/2
saw the mouse	1	saw the	1	1
the mouse STOP	2	the mouse	3	2/3
the cat heard	1	the cat	2	1/2
cat heard a	1	cat heard	2	1/2
heard a mouse	1	heard a	1	1 //
a mouse STOP	1	a mouse	2	1/2
				<u></u>

q (the | cat, san) = 0,5q (al cot, saw) = 0,25

925 Nn ---