COMPSCI/SFWRENG 2C03

Data Structures and Algorithms

Ryszard Janicki

McMaster University

Assignment 3

Name: Hishmat Salehi

MacId: Salehh6

Student number: 400172262

- 1. a. 0: $5 \to 2 \to 6$ 1: $4 \to 8 \to 11$ 2: $5 \to 6 \to 0 \to 3$ 3: $10 \to 6 \to 2$ 4: $1 \to 8$ 5: $0 \to 10 \to 2$ 6: $2 \to 3 \to 0$ 7: $8 \to 11$ 8: $1 \to 11 \to 7 \to 4$ 9: 10: $5 \to 3$
 - 11: $8 \to 7 \to 1$ b. Adjacency Matrix:
 - 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0,
 - 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1,
 - 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0,
 - 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0,
 - 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
 - 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0,
 - 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,
 - 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
 - 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1,
 - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 - 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0,
 - 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0,

3. a)bfs(o) bfs (5) check o bfs (10) check 5 check 3 check 2 bfs (2) check 5 check 6 check o 6fs (3) eheck 10 check 6 check 2 bfs(6) check 2 check 3 check o

4. Consider by contradiction that the edge of maximum weight in the cycle C, edge e, belongs to the MST of the graph. Since MSTs do not contain cycles there is at least one edge in C that is not in the MST. Let's call one of these edges f. Now add f to the MST. There is now a cycle in the MST. Since e has the maximum weight in the cycle C and all edge weights are distinct, it means that weight(f); weight(e). Removing the edge e after having added the edge f would generate a new MST' with total weight less than the total weight in MST, contradicting its minimality.

- 5. a. 0: $6 \rightarrow 5$ 1: 2: $0 \rightarrow 3$ 3: $10 \rightarrow 6$ 4: 1 5: $10 \rightarrow 2$ 6: 2 7: $8 \rightarrow 11$ 8: $1 \rightarrow 4$ 9: 10: 311: 8
 - b. Adjacency Matrix:

- 6. [TODO: Show steps pg. 589] It's strongest component is 0 2 3 5 6 10.
- 7. Topological order:

$$p - n - o - s - m - r - u - y - v - w - z - q - t - x$$

- 8. Suppose there are two minimum trees, A and B. Let e be the edge in just one of A,B with the smallest cost. Suppose it is in A but not B. Suppose e is the edge PQ. Then B must contain a path from P to Q which is not simply the edge e. So if we add e to B, then we get a cycle. If all the other edges in the cycle were in A, then A would contain a cycle, which it cannot. So the cycle must contain an edge f not in A. Hence, by the definition of e (and the fact that all edge-costs are different) the cost of f must be greater than the cost of e. So if we replace f by e we get a spanning tree with smaller total cost. Contradiction.
- 9. a. Minimum spanning tree with Greedy Algorithm:

b. Minimum spanning tree with Kruskal's Algorithm:

Monday, April 6, 2020 3:16 AM

c. Minimum spanning tree with Prim's Algorithm:

10. a to a (0.00)
a to b (2.00) a→b 2.00
a to c (6.00) a→j 4.00 j→c 2.00
a to d (6.00) a→b 2.00 b→f 3.00 f→d 1.00
a to e (8.00) a→l 5.00 l→e 3.00
a to f (5.00) a→b 2.00 b→f 3.00
a to h (5.00) a→h 5.00
a to i (5.00) a→h 5.00
a to j (4.00) a→j 4.00 j→i 1.00
a to j (4.00) a→j 4.00
a to k (7.00) a→b 2.00 b→f 3.00 f→d 1.00 d→k 1.00
a to l (5.00) a→l 5.00

11. s to s (0.00)
s to t (2.00) s→y 7.00 y→x -3.00 x→t -2.00
s to x (4.00) s→y 7.00 y→x -3.00
s to y (7.00) s→y 7.00

s to z (-2.00) s \rightarrow y 7.00 y \rightarrow x -3.00 x \rightarrow t -2.00 t \rightarrow z -4.00

- 13. r to r (0.00) r to s (5.00) r-is 5.00 r to t (3.00) r-it 3.00 r to x (10.00) r-it 3.00 t-ix 7.00 r to y (7.00) r-it 3.00 t-iy 4.00 r to z (5.00) r-it 3.00 t-iz 2.00
- 14. a. Give a trace for LSD string sort for the keys: no is th ti fo al go pe to co to th ai of th pa

input	d=1	d=0	output
no	pa	ai	ai
is	pe	al	al
th	of	со	СО
ti	th	fo	fo
fo	th	go	go
al	th	is	is
go	ti	no	no
pe	ai	of	of
to	al	pa	pa
СО	no	pe	pe
to	fo	th	th
th	go	th	th
ai	to	th	th
of	СО	ti	ti
th	to	to	to
pa	is	to	to

b. Give a trace for MSD string sort for the keys: no is th ti fo al go pe to co to th ai of th pa

input					output
no	al	ai	ai	ai	ai
is	ai	al	al	al	al
t.h	CO		CO	CO	CO

ti	fo	СО	fo	fo	fo
fo	go	fo	go	go	go
al	is	go	is	is	is
go	no	is	no	no	no
pe	of	no	of	of	of
to	pe	of		pa	pa
СО	pa	pe	pa	pe	pe
to	th	pa	pe		th
th	ti	th		th	th
ai	to	ti	th	th	th
of	to	to	ti	th	ti
th	th	to	to	ti	to
pa	th	th	to	to	to
		th	th	to	
			th		

c. Give a trace for MSD string sort for the keys: now is the time for all good people to come to the aid of

input					output
now	all	aid	aid	aid	aid
is	aid	all	all	all	all
the	come		come	come	come
time	for	come	for	for	for
for	good	for	good	good	good
all	is	good	is	is	is
good	now	is	now	now	now
people	of	now	of	of	of
to	people	of	people	people	people
come	the	people			the
to	time	the	the	the	the
the	to	time	the	the	time
aid	to	to	time		to
of	the	to	to	time	to
		the	to	to	
				to	

15.

16. Failure Function:

P = abbababaaabab

j 0 1 2 3 4 5 6 7 8 9 10 11 12

P[j] abbababaaab a b

f(j) 0 0 0 1 2 1 2 1 1 1 2 1 2

```
Solution using Knuth-Morris-Pratt algorithm:
abaababaabababaabaabaababb
123
abbababaaabab
 45
 abbababaaabab
  678
  abbababaaabab
abaabaababbabaaababaababb
          9 1011
          abbababaaabab
_____
abaabababababaaababaababb
             12131415161718192021222324
             abbababaaabab
Final Answer:
```

abaababaabababaabaabaababb

abbababaaabab

The algorithm performs 24 character comparisons, which are indicated with numerical labels.

17. Solution using Boyer-Moore algorithm:

```
i j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
   bacaabaccabacabaabb
        3 2 1
0 3 a b a c a b
3 5
        abacab
                 10 9 8 7 6 5
9 5
                  abacab
```

The algorithm performs 10 character comparisons, which are indicated with numerical labels.

18. Solution using Rabin-Karp algorithm:

```
bacaabaccabacabaabb
text:
                 abacab
pattern:
```

19. Prefix-free codes: code 3 and code 4 Uniquely decodable codes: code 3 and code 4

Decoding of 100000000000: code 3: Not recognized by the alphabet

code 4: ADDDD

```
20.
   Bits required: 93 + 142 + 8 = 243
21. a. T O B E O R N O T T O B E
       54 4F 42 45 4F 52 4E 4F 54 81
                                          83
                                                80
       Codeword table
       key
              value
       TO
               81
       OΒ
               82
       BE
               83
       ΕO
               84
       OR
               85
       RN
               86
       NO
               87
       \mathsf{T}\mathsf{O}
               88
       TT
               89
       TOB
               88
     b. Y A B B A D A B
                                B A
                                       D A
                                             В
                                                В
                                                   Α
       59 41 42 42 41 44 82
                                84
                                       86
                                             83
                                                   85
                                                          4F 4F 80
       Codeword table
       key
              value
       YΑ
               81
       AB
               82
       BB
               83
       BA
               84
       AD
               85
       DA
               86
       ABB
               87
       BAD
               88
       DAB
               89
       BBA
               88
```

Codeword table

8B

8C

key value

AA 81

ADO

00

AAA 82

AAAA 83

AAAAA 84

AAAAAA 85