1.7 1)
$$(a+c)d - (b+d)c = ad + cd - bc - cd = ad - bc$$

2) Soit r un entier tel que $r \mid (a+c)$ et $r \mid (b+d)$.

La propriété 6) de l'exercice 1.1 assure que, quels que soient les entiers m et n, r divise m (a + c) + n (b + d).

En particulier, si m=d et n=-c, on obtient : r divise $d(a+c)-c(b+d)=a\,d-b\,c=1$.

On conclut que $r = \pm 1$.

Étant donné que les seuls diviseurs communs au numérateur a+c et au dénominateur b+d sont ± 1 , la fraction $\frac{a+c}{b+d}$ est irréductible.