Paths of analysis*

Synthia

October 10, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Exclude Diastereoselecitve reactions, Tunnels, FGI, FGI with protec-

tions

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

Strategies: none selected

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

5 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 45.00

Figure 1: Outline of path 1

2.1.1 Jones Oxidation

Substrates:

1. oct-3c-en-1-ol - available at Sigma-Aldrich

Products:

1. oct-3c-ensaeure

Typical conditions: cromate.sulfate.H2O.acetone

Protections: none

Reference: 10.1002/9780470638859.conrr349 and 10.1021/jm00270a004

2.1.2 Synthesis of alkyl chlorides from carboxylic acids

${\bf Substrates:}$

1. oct-3c-ensaeure

Products:

1. 1-chloro-hept-2c-ene

 $\textbf{Typical conditions:} \ \, \text{Ag(Phen)} \\ 2OTf. OtBu. Cl. acetonitrile. RT$

Protections: none

Reference: DOI: 10.1021/ja210361z

Retrosynthesis ID: 11619

2.1.3 Shi Epoxidation

Substrates:

1. 1-chloro-hept-2c-ene

${\bf Products:}$

1. C7H13ClO

 $\textbf{Typical conditions:} \ \ \text{chiral catalyst.oxone.} \\ \text{NaHCO3.MeCN.Bu4NHSO4}$

Protections: none

Reference: 10.1021/ja972272g and 10.1021/ja003049d

Retrosynthesis ID: 9991499

2.1.4 Kornblum Oxidation

${\bf Substrates:}$

1. C7H13ClO

Products:

1. 2,3-epoxycyclohexanone

 ${\bf Typical\ conditions:\ DMSO.NEt 3}$

Protections: none

Reference: 10.1080/00397918608056381 and 10.1002/9780470638859.conrr373

2.1.5 Tebbe Olefination

Substrates:

1. 2,3-epoxycyclohexanone

Products:

 $1. \ \, C{=}CC1OC1CCCC$

Typical conditions: Cp2TiCl2.AlMe3.toluene

Protections: none

Reference: 10.1016/j.tet.2007.03.015 and 10.1002/9780470638859.conrr617

Retrosynthesis ID: 11714

2.1.6 Ozonolysis followed by reduction

Substrates:

 $1. \ C{=}CC1OC1CCCC$

Products:

1. (3-butyl-oxiranyl)-methanol

 ${\bf Typical\ conditions:}\ {\bf O3.MeOH.CH2Cl2.NaBH4.low\ temperature}$

Protections: none

Reference: 10.1016/j.tet.2017.03.039

Retrosynthesis ID: 5080

2.1.7 Tandem oxidation-esterification

Substrates:

1. (3-butyl-oxiranyl)-methanol

Products:

1. CCCCC1OC1C(=O)OC

Typical conditions: Oxidant (eg. I2.K2CO3 or Ca(OCl)2).MeOH

Protections: none

Reference: 10.1016/S0040-4039(00)73550-7 and 10.1016/j.tet.2005.03.097 and

10.1021/ol062940f

2.1.8 Ring-opening of epoxides or thiiranes with azides

$$+ N = N^{t} = NH$$

$$+ N = N^{t} = NH$$

$$+ 2 \qquad - 2$$

Substrates:

- 1. hydrazoic acid
- $2. \ CCCCC1OC1C(=O)OC$

Products:

1. CCCCC(O)C(N=[N+]=[N-])C(=O)OC

Typical conditions: NaN3.NH4Cl.MeOH.H2O.65 $\,\mathrm{C}$

Protections: none

Reference: 10.1021/jm400529f p. 4361, 4367 and 10.1021/ja003713q p. 1590,

1594

Retrosynthesis ID: 858

2.1.9 Dehydration of Beta Hydroxy Carbonyl Compounds

Substrates:

1. CCCCC(O)C(N=[N+]=[N-])C(=O)OC

Products:

1. CCCC/C=C(N=[N+]=[N-])C(=O)OC

Typical conditions: TsOH

Protections: none

Reference: DOI:10.1002/anie.201204977 AND 10.1021/ol0627770

Retrosynthesis ID: 7732

2.2 Path 2

Score: 76.25

Figure 2: Outline of path 2

2.2.1 Darzens Condensation

Substrates:

- 1. Methyl bromoacetate available at Sigma-Aldrich
- 2. Pentanal available at Sigma-Aldrich

Products:

1. CCCCC1OC1C(=O)OC

 ${\bf Typical\ conditions:}\ {\rm KOtBu.HOtBu}$

Protections: none

Reference: 10.1002/0471264180.or005.10 and 10.1021/cr50002a002

Retrosynthesis ID: 11625

2.2.2 Ring-opening of epoxides or thiiranes with azides

$$+ N = N^{\pm} NH$$

$$+ 0$$

$$+ 0$$

$$+ 0$$

$$+ 0$$

$$+ 0$$

$$+ 0$$

$$+ 0$$

$$+ 0$$

$$+ 0$$

Substrates:

1. hydrazoic acid

 $2. \ CCCCC1OC1C(=O)OC$

Products:

1. CCCCC(O)C(N=[N+]=[N-])C(=O)OC

Typical conditions: NaN3.NH4Cl.MeOH.H2O.65 C

Protections: none

Reference: 10.1021/jm400529f p. 4361, 4367 and 10.1021/ja003713q p. 1590,

1594

2.2.3 Dehydration of Beta Hydroxy Carbonyl Compounds

Substrates:

1. CCCCC(O)C(N=[N+]=[N-])C(=O)OC

Products:

1. CCCC/C=C(N=[N+]=[N-])C(=O)OC

Typical conditions: TsOH

 ${\bf Protections:}\ {\rm none}$

Reference: DOI:10.1002/anie.201204977 AND 10.1021/ol0627770

Retrosynthesis ID: 7732

2.3 Path 3

Score: 76.25

Figure 3: Outline of path 3

2.3.1 Enantioselective addition of enolates to aldehydes followed by deprotection

Substrates:

1. Methyl 2-((diphenylmethylene)amino)acetate - available at Sigma-Aldrich

2. Pentanal - available at Sigma-Aldrich

Products:

1. CCCCC(O)C(N)C(=O)OC

Typical conditions: ProPhenol.Et2Zn.MS4A.toluene.rt then

NaBH3CN.AcOH.MeOH deprotection: Pd/C.H2

Protections: none

Reference: 10.1021/ja4129394 **Retrosynthesis ID:** 9998198

2.3.2 Synthesis of alkyl azides from alkyl amines and TfN3

Substrates:

1. trifluoromethanesulfonyl azide

2. CCCCC(O)C(N)C(=O)OC

Products:

1. CCCCC(O)C(N=[N+]=[N-])C(=O)OC

 $\textbf{Typical conditions:} \ \ H2O.K2CO3.CH2Cl2.CuSO4.MeOH$

Protections: none

Reference: DOI: 10.1016/0040-4039(96)01307-X

Retrosynthesis ID: 9920002

2.3.3 Dehydration of Beta Hydroxy Carbonyl Compounds

Substrates:

1. CCCCC(O)C(N=[N+]=[N-])C(=O)OC

Products:

1. CCCC/C=C(N=[N+]=[N-])C(=O)OC

Typical conditions: TsOH

Protections: none

Reference: DOI:10.1002/anie.201204977 AND 10.1021/ol0627770

Retrosynthesis ID: 7732

2.4 Path 4

Score: 84.06

Figure 4: Outline of path 4

2.4.1 Synthesis of alkyl azides from alkyl amines and TfN3

Substrates:

 $1. \ trifluoromethanesulfonyl\ azide$

2. DL-Serine methyl ester hydrochloride - available at Sigma-Aldrich

Products:

1. COC(=O)C(CO)N=[N+]=[N-]

Typical conditions: H2O.K2CO3.CH2Cl2.CuSO4.MeOH

Protections: none

Reference: DOI: 10.1016/0040-4039(96)01307-X

Retrosynthesis ID: 9920002

2.4.2 Oxidation of primary alcohols with DMP

Substrates:

1. COC(=O)C(CO)N=[N+]=[N-]

Products:

1. COC(=O)C(C=O)N=[N+]=[N-]

Typical conditions: DMP.DCM.0-25 C

Protections: none

Reference: 10.1016/j.bmc.2020.115469 p. 3, 9 and 10.1021/acs.jmedchem.8b01878 SI p. S43

Retrosynthesis ID: 50426

2.4.3 Grignard-Type Reaction

$$Mg^{Br} + 0 0 \longrightarrow 0 \longrightarrow 0$$

$$N = N^{+} N^{-}$$

$$?$$

Substrates:

- 1. COC(=O)C(C=O)N=[N+]=[N-]
- 2. butylmagnesium bromide

Products:

1. CCCCC(O)C(N=[N+]=[N-])C(=O)OC

Typical conditions: Mg or Li.ether

Protections: none

Reference: 10.1016/S0040-4020(99)00197-0 or 10.1055/s-0030-1260809 or

10.1021/ol703056u

2.4.4 Dehydration of Beta Hydroxy Carbonyl Compounds

Substrates:

1. CCCCC(O)C(N=[N+]=[N-])C(=O)OC

Products:

1. CCCC/C=C(N=[N+]=[N-])C(=O)OC

Typical conditions: TsOH

 ${\bf Protections:}\ {\rm none}$

Reference: DOI:10.1002/anie.201204977 AND 10.1021/ol0627770

Retrosynthesis ID: 7732

2.5 Path 5

Score: 84.06

Figure 5: Outline of path 5

2.5.1 Nucleophilic substitution with azides

$$\begin{array}{c} CI \\ OH \\ O \end{array} + \begin{array}{c} N = N^{+} \\ N \end{array} - \begin{array}{c} OH \\ N \\ N \end{array}$$

Substrates:

1. Potassium azide - available at Sigma-Aldrich

2. Methyl 2-chloro-3-hydroxypropionate - available at Sigma-Aldrich

Products:

1. COC(=O)C(CO)N=[N+]=[N-]

 ${\bf Typical\ conditions:\ DMF.} heat$

Protections: none

Reference: 10.1021/jo990445+ and 10.1002/adsc.200404102

Retrosynthesis ID: 31011206

2.5.2 Oxidation of primary alcohols with DMP

Substrates:

1.
$$COC(=O)C(CO)N=[N+]=[N-]$$

Products:

1.
$$COC(=O)C(C=O)N=[N+]=[N-]$$

Typical conditions: DMP.DCM.0-25 $\rm C$

Protections: none

Reference: 10.1016/j.bmc.2020.115469 p. 3, 9 and

10.1021/acs.jmedchem.8b01878 SI p. S43

Retrosynthesis ID: 50426

2.5.3 Grignard-Type Reaction

Substrates:

1. COC(=O)C(C=O)N=[N+]=[N-]

2. butylmagnesium bromide

Products:

1. CCCCC(O)C(N=[N+]=[N-])C(=O)OC

Typical conditions: Mg or Li.ether

Protections: none

Reference: 10.1016/S0040-4020(99)00197-0 or 10.1055/s-0030-1260809 or

10.1021/ol703056u

2.5.4 Dehydration of Beta Hydroxy Carbonyl Compounds

Substrates:

1. CCCCC(O)C(N=[N+]=[N-])C(=O)OC

Products:

1. CCCC/C=C(N=[N+]=[N-])C(=O)OC

Typical conditions: TsOH

 ${\bf Protections:}\ {\rm none}$

Reference: DOI:10.1002/anie.201204977 AND 10.1021/ol0627770