ĐẠO HÀM THEO CÔNG THỰC

A/ TÓM TẮT KIẾN THỨC

1) Định nghĩa đạo hàm tại một điểm bất kỳ (tại x)

Cho hàm số y = f(x). Đạo hàm của hàm số f tại biến số x tương đương:

$$y' = f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

2) Quy tắc tính đạo hàm:

Cho u(x), v(x), w(x), y(x) là những hàm số có biến là x

a)
$$(u \pm v \pm w \pm ...)' = u' \pm v' \pm w' \pm ...$$

b)
$$(au)' = au', v\acute{o}i \ a \ l\grave{a} \ h\grave{a}ng \ s\acute{o}$$

c)
$$(uv)' = u'v + v'u$$

 $(uvw)' = u'vw + uv'w + uvw'$

$$d) \left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$$

$$e) y'_{x} = y'_{u}.u'_{x}$$

Chứng minh:

$$* (uv)' = u'v + v'u$$

$$\Delta y = f(x + \Delta x) - f(x) = u(x + \Delta x) \cdot v(x + \Delta x) - u(x) \cdot v(x)$$
$$= [u(x) + \Delta u] \cdot [v(x) + \Delta v] - u(x)v(x)$$
$$= \Delta u \cdot v(x) + \Delta v \cdot u(x)$$

$$y' = \lim_{\Delta x \to 0} \frac{\Delta u \ v(x) + \Delta v \ u(x)}{\Delta x} = u'v + v'u$$

$$* \left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$$

$$y' = \lim_{\Delta x \to 0} \frac{\Delta\left(\frac{u}{v}\right)}{\Delta x} = \frac{\frac{u(x + \Delta x)}{v(x + \Delta x)} - \frac{u(x)}{v(x)}}{\Delta x} = \frac{\frac{u(x + \Delta x).v(x) - v(x + \Delta x).u(x)}{v(x + \Delta x).v(x)}}{\Delta x}$$

$$=\frac{\frac{[u(x)+\Delta u].v(x)-[v(x)+\Delta v].u(x)}{v(x+\Delta x).v(x)}}{\frac{\Delta x}{\Delta x}}=\frac{\frac{\Delta u.v(x)}{\Delta x}-\frac{\Delta v.u(x)}{\Delta x}}{v(x+\Delta x).v(x)}=\frac{u'v-v'u}{v^2}$$

$$* y'_x = y'_u \cdot u'_x$$

$$y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{\Delta y}{\Delta u} \cdot \frac{\Delta u}{\Delta x} = y'_u \cdot u'_x$$

Tính đaohàm: $y = x^{\alpha}$

Áp dụng nhị thức Niu-ton đối với $(x + \Delta x)^n$, ta có:

$$\Delta y = (x + \Delta x)^n - x^n = C_n^1 x^{n-1} \Delta x + C_n^2 x^{n-2} \Delta x^2 + \dots + C_n^1 x \Delta x^{n-1} + \Delta x^n$$

$$y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = (C_n^1 x^{n-1} + C_n^2 x^{n-2} \Delta x + \dots + C_n^1 x \Delta x^{n-2} + \Delta x^{n-1}) = C_n^1 x^{n-1} = n x^{n-1}$$

Tính đaohàm: $y = e^x$

$$y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{e^{(x + \Delta x)} - e^x}{\Delta x} = e^x \lim_{\Delta x \to 0} \frac{e^{\Delta x} - 1}{\Delta x} = e^x$$

Tính đaohàm: $y = a^x$

 $Bi\acute{e}n \, d\acute{o}i \, a^x = e^{lna}$

$$y' = (e^{xlna})' = e^{xlna}.lna = a^xlna$$

Tính đạohàm: $y = log_a x$

 $h am s o y = log_a x$

 $Nghĩa là: x = a^3$

Đạo hàm hai vế: $1 = y'a^y lna$

Suy ra: $y' = \frac{1}{a^y \ln a} = \frac{1}{a^{\log_a x} \ln a} = \frac{1}{x \ln a}$

Tính đạohàm: y = sinx

$$y' = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin x}{\Delta x} = \lim_{\Delta x \to 0} \frac{2\sin\frac{\Delta x}{2} \cdot \cos\left(x + \frac{\Delta x}{2}\right)}{\Delta x}$$

$$\left(theo \ c\^{o}ng \ th\'{u}c \ sina - sinb = 2sin\left(\frac{a-b}{2}\right). \cos\left(\frac{a+b}{2}\right)\right)$$

$$y' = \lim_{\Delta x \to 0} \frac{\sin \frac{\Delta x}{2}}{\frac{\Delta x}{2}} \cdot \cos \left(x + \frac{\Delta x}{2} \right) = \lim_{\frac{\Delta x}{2} \to 0} \frac{\sin \frac{\Delta x}{2}}{\frac{\Delta x}{2}} \cdot \lim_{\Delta x \to 0} \cos \left(x + \frac{\Delta x}{2} \right) = \lim_{\Delta x \to 0} \cos \left(x + \frac{\Delta x}{2} \right)$$

y' = cosx

Tính đạohàm: y = cosx

$$y' = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\cos(x + \Delta x) - \cos x}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \frac{-2\sin\left(x + \frac{\Delta x}{2}\right) \cdot \sin\frac{\Delta x}{2}}{\Delta x}.$$

$$\left(\text{theo công thức } \cos a - \cos b = -2\sin\left(\frac{a+b}{2}\right).\sin\left(\frac{a-b}{2}\right)\right)$$

$$y' = -\lim_{\Delta x \to 0} \frac{\sin \frac{\Delta x}{2}}{\frac{\Delta x}{2}} \cdot \sin \left(x + \frac{\Delta x}{2} \right) = -\lim_{\frac{\Delta x}{2} \to 0} \frac{\sin \frac{\Delta x}{2}}{\frac{\Delta x}{2}} \cdot \lim_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right)$$
$$= -\lim_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right)$$

y' = -sinx

Tinh đạo hàm: y = arcsinx

Nghĩa là

x = sinv

Đạo hàm hai vế $1 = \cos y$. y'

Suy ra:

$$y' = \frac{1}{\cos y} = \frac{1}{\cos(\arcsin x)} = \frac{1}{\sqrt{1 - \sin^2(\arcsin x)}} = \frac{1}{\sqrt{1 - x^2}}$$

Tinh đao hàm: y = arccosx

Nghĩa là

x = cosy

Suy ra:

$$y' = \frac{1}{-siny} = \frac{-1}{\sin(arccosx)} = \frac{-1}{\sqrt{1 - cos^2(arccosx)}} = \frac{-1}{\sqrt{1 - x^2}}$$

Tinh đạo hàm: y = arctgx

Nghĩa là

$$x = tgy$$

Đạo hàm hai vế
$$1 = \frac{1}{\cos^2 y}.y' = (1 + tg^2 y).y'$$

Suy ra:

$$y' = \frac{1}{1 + tq^2 y} = \frac{1}{1 + tq^2 (arctqx)} = \frac{1}{1 + x^2}$$

Tinh đao hàm: y = arccotgx

Nghĩa là

x = cotgy

Đạo hàm hai vế
$$1 = \frac{-1}{\sin^2 y}. y' = -(1 + \cot g^2 y). y'$$

Suy ra:
$$y' = \frac{-1}{1 + \cot g^2 y} = \frac{-1}{1 + \cot g^2 (\operatorname{arccot} gx)} = \frac{-1}{1 + x^2}$$

3) Bảng công thức đạo hàm

(C)' = 0, C là hằng số	
(x)' = 1	$(u\alpha)' = \alpha u'u^{\alpha-1}$
$(x\alpha)' = \alpha x^{\alpha-1}$	$\left \left(\frac{1}{u} \right)' \right = -\frac{u'}{u^2}$
$\left \left(\frac{1}{r}\right)'\right = -\frac{1}{r^2}$,
	$\left(\sqrt{u}\right)' = \frac{u'}{2\sqrt{u}}$
$\left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}}$	$2\sqrt{u}$
$(e^x)' = e^x$	$(e^u)' = u'e^u$
$(a^x)' = a^x lna$	$(a^u)' = u'a^u lna$
$(lnx)' = \frac{1}{x}$	$(lnu)' = \frac{u'}{u}$
$(\log_a x)' = \frac{1}{x \ln a}$	$(log_a u)' = \frac{u'}{ulna}$
(sinx)' = cosx	(sinu)' = u'cosu
(cosx)' = -sinx	$(\cos u)' = -u' \sin u$
$(tgx)' = \frac{1}{\cos^2 x}$	$(tgu)' = \frac{u'}{\cos^2 u}$
$(\cot gx)' = -\frac{1}{\sin^2 x}$	$(\cot gu)' = -\frac{u'}{\sin^2 u}$
$(arcsinx)' = \frac{1}{\sqrt{1 - x^2}}$	$(arcsinu)' = \frac{u'}{\sqrt{1 - u^2}}$
$(arccosx)' = \frac{-1}{\sqrt{1 - x^2}}$	$(arccosu)' = \frac{-u'}{\sqrt{1 - u^2}}$
$(arctgx)' = \frac{1}{1+x^2}$	$(arctgu)' = \frac{u'}{1 + u^2}$
$(arccotgx)' = \frac{-1}{1+x^2}$	$(arccotgu)' = \frac{-u'}{1+u^2}$

4. Quy tắc L'Hospital

Hàm số
$$\frac{u(x)}{v(x)}$$
 có dạng $\frac{0}{0}$ hay $\frac{\infty}{\infty}$, thì $\lim_{x \to a} \frac{u(x)}{v(x)} = \lim_{x \to a} \frac{u'(x)}{v'(x)}$

B/ LUYỆN TẬP

1. Tính đạo hàm của các hàm số sau đây tại điểm x0 được cho kèm theo:

a)
$$y = 7 + x - x^2$$
, $x_0 = 1$;

$$b) y = x^3 - 2x + 1, x_0 = 2$$

c)
$$y = 2x^5 - 2x + 3$$
, $x_0 = 1$;

2. Tính đạo hàm của mỗi hàm số sau (a, b là hằng số)

a)
$$y = x^5 - 4x^3 + 2x - 3\sqrt{x}$$

a)
$$y = x^5 - 4x^3 + 2x - 3\sqrt{x}$$
 b) $y = \frac{1}{4} - \frac{1}{3}x + x^2 - 0.5x^4$

c)
$$y = \frac{x^4}{4} - \frac{x^3}{3} + \frac{x^2}{2} - x + a^2$$
 d) $y = \frac{ax + b}{a + b}$

$$d) y = \frac{ax + b}{a + b}$$

3. Tính đao hàm của mỗi hàm số sau

a)
$$y = (x^7 + x)^2$$

b)
$$y = (x^2 + 1)(5 - 3x^2)$$

$$c)y = \frac{2x}{x^2 - 1}$$

d)
$$y = \frac{5x-3}{x^2+x+1}$$

$$d) y = \frac{x^2 + 2x + 2}{x + 1}$$

$$f) y = x(2x - 1)(3x + 2)$$

4. Tính đạo hàm của các hàm số sau:

a)
$$y = (x - x^2)^{32}$$

$$b) y = \frac{1}{x\sqrt{x}}$$

$$c) y = \frac{1+x}{\sqrt{1-x}}$$

$$d) y = \frac{x}{\sqrt{a^2 - x^2}}$$

5. Cho hàm số $f(x) = \sqrt{x^3 - 2x}$

Giải bất phương trình $f'(x) \le f(x)$

6. Cho hàm số $f(x) = x^3 - 3x^2 + 2$. Hãy giải bất phương trình:

$$a) f'(x) > 0$$

b)
$$f'(x) \leq 3$$

7. Tính đạo hàm của mỗi hàm số sau:

$$a) y = \frac{2x+3}{x^2-5x+5}$$

$$b) y = \frac{1}{(x^2 - x + 1)^5}$$

$$c)y = (x+1)(x+2)^2(x+3)^3$$

$$d) y = \sqrt{\frac{x^2 + 1}{x}}$$

8. Viết phương trình tiếp tuyến của đồ thị hàm số:

a)
$$y = \frac{x-1}{x+1}$$
, biết hoành độ tiếp điểm là $x_0 = 0$

b)
$$y = \sqrt{x+2}$$
, biết tung độ tiếp điểm là $y_0 = 2$

9. Viết phương trình tiếp tuyến của parapol $y = x^2$, biết rằng tiếp tuyến đó đi qua điểm A(0; -1).

10. Tính đạo hàm của các hàm số sau:

a)
$$y = 5sinx - 3cosx$$

b)
$$y = \sin(x^2 - 3x + 2)$$
;

$$c) y = cos\sqrt{2x+1}$$

$$d) y = sin3xcos5x$$

$$e)y = \frac{\sin x + \cos x}{\sin x - \cos x}$$

$$f(y) = \sqrt{\cos 2x}$$

11. Chứng minh rằng hàm số $y = sin^6x + cos^6x + 3sin^2x$ có đạo hàm bằng 0.

12. Tìm đạo hàm của các hàm số sau:

$$a) y = \tan \frac{x+1}{2}$$

a)
$$y = tan \frac{x+1}{2}$$
 b) $y = cot \sqrt{x^2 + 1}$ c) $y = tan^3 x + cot 2x$

$$c) y = tan^3 x + cot 2x$$

d)
$$y = tan3x - cot3x$$
 e) $y = \sqrt{1 + 2tanx}$ f) $y = xcotx$

$$e) y = \sqrt{1 + 2tanx}$$

$$f) y = x cot x$$

13. Tính đạo hàm của mỗi hàm số sau:

$$a) \ \ y = \frac{\sin x}{x} + \frac{x}{\sin x}$$

$$b) y = \frac{\sin^2 x}{1 + \tan 2x}$$

$$c) y = \tan(\sin x)$$

$$d) y = xcot(x^2 - 1)$$

a)
$$y = \frac{\sin x}{x} + \frac{x}{\sin x}$$
 b) $y = \frac{\sin^2 x}{1 + \tan 2x}$ c) $y = \tan(\sin x)$
d) $y = x\cot(x^2 - 1)$ e) $y = \cos^2 \sqrt{\frac{\pi}{4} - 2x}$ f) $y = x\sqrt{\sin 3x}$

$$f) y = x\sqrt{\sin 3x}$$

14. Giải các phương trình y' = 0 trong mỗi trường hợp sau:

$$a) y = \sin 2x - 2\cos x$$

$$b) y = 3\sin 2x + 4\cos 2x + 10x$$

c)
$$y = cos^2x + sinx$$

$$d) y = tanx + cotx$$

15. Tính đao hàm của các hàm số sau:

$$a) y = (2x+1)^{\pi}$$

$$b) \ y = \sqrt[5]{ln^3 5x}$$

$$c) y = \sqrt[3]{\frac{1+x^3}{1-x^3}}$$

d)
$$y = \left(\frac{x}{b}\right)^a \cdot \left(\frac{a}{x}\right)^b \ v \acute{o}i \ a > 0, b > 0$$

16. Tính giá trị đạo hàm tại điểm đã cho:

a)
$$y = \log_3(\sin x) \ tai \ x = \frac{\pi}{4}$$

$$b) y = \frac{2^x}{x^2} tai x = 1$$

Bài 17: Chứng minh đẳng thức

a) Cho hàm số: $y = x\cos x$

Chứng minh: y'' + y + 2sinx = 0

b) Cho hàm số: $y = e^x \sin x$

Chứng minh rằng: y'' - 2y' + 2y = 0

c) Cho hàm số: y = xtgx

Chứng minh rằng $x^2y'' - 2(x^2 + y^2)(1 + y) = 0$

Bài 18: Tính đạo hàm của các hàm số

a)
$$y = cos^2 2x$$

b)
$$y = \sin^2 5x$$

c)
$$y = 3^{2x}$$

d)
$$y = ln \sqrt[n]{x}$$

Bài 19: Tính đạo hàm của các hàm số

$$a) y = \frac{5x - 3}{x^2 - 3x + 2}$$

$$b) y = \frac{-x - 2}{x^2 - x + 2}$$

b)
$$y = \frac{-x-2}{x^2-x+2}$$
 $c) y = \frac{3x-1}{-x^2-3x+2}$

$$d) y = \frac{-x^2 + 3x - 1}{-x^2 - 3x + 2}$$

$$e) y = \frac{-2x^2 + 3x - 1}{x^2 - x + 2}$$

d)
$$y = \frac{-x^2 + 3x - 1}{-x^2 - 3x + 2}$$
 e) $y = \frac{-2x^2 + 3x - 1}{x^2 - x + 2}$ f) $y = \frac{x^2 - 3x - 2}{-2x^2 - 3x + 1}$

Bài 20: Tính đao hàm của các hàm số

a)
$$y = log_2(sin2x) + arccos(x^2 + 1) + e^{cotg(x+1)}$$

$$b) y = log_2(\arcsin(x^2 + 2x))$$

Bài 21: Tính đao hàm của các hàm số sau:

$$a) y = \frac{x+1}{x-1} \sqrt{x-2}$$

b)
$$y = x^2 arctgx$$
 c) $y = xtgx$

$$c) y = xtgx$$

$$d) y = x^n ln x$$

e)
$$y = (lnx)^n$$

e)
$$y = (lnx)^n$$
 f) $y = (x^2 - 1)(5 - 4x^2)$

$$g) y = sin^n x. cos(mx)$$

Bài 22: Tính các giới hạn

a)
$$\lim_{x\to 2} \frac{2^x - x^2}{x - 2}$$

b)
$$\lim_{x\to 0} \frac{e^{\sin 2x} - e^{\sin x}}{\sin x}$$

Bài 23: Tìm các giới hạn

a)
$$\lim_{x \to 0} \frac{lncosx}{x}$$

b)
$$\lim_{x \to 0} \frac{e^x - 1}{\sin x}$$

c)
$$\lim_{x\to 0} \frac{\ln x}{\ln(\sin x)}$$
 d) $\lim_{x\to 0} \frac{x-\sin x}{x-tgx}$

d)
$$\lim_{x \to 0} \frac{x - \sin x}{x - \tan x}$$

Bài 24: Tính đao hàm các hàm số sau:

a)
$$y = \sqrt{x + \sqrt{x^2 - x + 1}}$$
 b) $y = \frac{x + 3}{\sqrt{x^2 + 1}}$

b)
$$y = \frac{x+3}{\sqrt{x^2+1}}$$

TRẮC NGHIÊM

1. Tiếp tuyến của đồ thị hàm số $y = \frac{4}{x-1}$ tại điểm với hoành độ x = -1 có phương trình là:

$$A. y = -x - 3$$
 $B. y = -x + 2$ $C. y = x - 1$ $D. y = x + 2$

$$B. y = -x + 2$$

$$C. y = x - 1$$

$$D. y = x + 2$$

2. Tiếp tuyến của đồ thị hàm số y = $\frac{1}{\sqrt{2\mathbf{x}}}$ tại điểm với hoành độ x = $\frac{1}{2}$ có phương trình là:

$$A. 2x - 2y = -1$$
 $B. 2x - 2y = 1$ $C. 2x + 2y = 3$ $D. 2x + 2y = -3$

$$B.2x - 2y = 1$$

$$C.2x + 2y = 3$$

$$D.2x + 2y = -3$$

3. Hàm số có đạo hàm bằng $2x + \frac{1}{x^2}$ là:

A.
$$y = \frac{x^3 + 1}{x}$$

B.
$$y = \frac{x^3 + 5x - 1}{x}$$

C.
$$y = \frac{3(x^2 + x)}{x^3}$$

D.
$$y = \frac{2x^2 + x - 1}{x}$$