2.2 Properties of Point Estimators - Efficiency

Steven Cheung 9 February 2022

Definition:

Let $\hat{\theta}_1$ and $\hat{\theta}_2$ be two unbiased estimators for a parameter θ . If

$$var(\hat{\theta_1}) < var(\hat{\theta_2})$$

we say that $\hat{\theta}_1$ is more efficient than $\hat{\theta}_2$.

The relative efficiency of $\hat{\theta}_1$ with respect to $\hat{\theta}_2$ is the ratio $\frac{var(\hat{\theta}_1)}{var(\hat{\theta}_2)}$.

Definition:

let Θ denote a set of all esimators $\hat{\theta} = h(X_1, X_2, \dots, X_n)$ that are unbiased for the parameter θ in the continuous p.d.f $f_x(x,\theta)$ (or discrete p.m.f $p_x(x,\theta)$). The estimator $\hat{\theta}$ is the <u>best</u> (or <u>unbiased minimum variance</u>) <u>estimator</u> if $\hat{\theta}^* \in \Theta$ and

$$var(\hat{\theta^*}) \leq var(\hat{\theta})$$
 for all $\hat{\theta} \in \Theta$

Theorem (The Cramer-Rao Lower Bound):

Let $f_X(X, \theta)$ be a continuous pdf with continuous first-order and second-order derivatives. Let X_1, X_2, \ldots, X_n be a random sample from $f_X(x, \theta)$, and suppose that the set of X values, where $f_X(x, \theta) \neq 0$ does not depend on θ . Let $\hat{\theta} = g(X_1, X_2, \ldots, X_n)$ be any <u>unbiased</u> estituator of θ . Then

$$var(\hat{\theta}) \geq \{nE[\tfrac{\partial ln(f_X(X,\theta))}{\partial \theta}]\}^{-1} = \{-nE[\tfrac{\partial^2 ln(f_X(X,\theta))}{\partial \theta^2}]\}^{-1}$$

If the variance of a given $\hat{\theta}$ is equal to the Cramer-Rao lower bound we say that the estimator is optimal in a sense that no unbiased $\hat{\theta}$ can estimate θ with greater precision.

The unbiased estimator $\hat{\theta}$ is said to be efficient if the variance of $\hat{\theta}$ equals to the Cramer-Rao lower bound associated with $f_x(x,\theta)$.

The efficiency of an unbiased estimator $\hat{\theta}$ is the ratio of the Cramer-Rao lower bound for $f_x(x,\theta)$ to the variance of $\hat{\theta}$.

14 February 2022

Definition:

The mean square error of the estimator $\hat{\theta}$, denoted by $MSE(\hat{\theta})$, is defined as

$$MSE(\hat{\theta}) = E(\hat{\theta} = \theta)^2$$

$$\begin{split} MSE(\hat{\theta}) &= E(\hat{\theta} = \theta)^2 = E[(\hat{\theta} - E(\hat{\theta})) + (E(\hat{\theta}) - \hat{\theta})]^2 \\ &= E[(\hat{\theta} - E(\hat{\theta}))^2 + (E(\hat{\theta}) - \hat{\theta})^2 + 2(\hat{\theta} - E(\hat{\theta}))(E(\hat{\theta}) - \hat{\theta})] \\ &= E(\hat{\theta} - E(\hat{\theta}))^2 + E(E(\hat{\theta}) - \hat{\theta})^2 + 2E(\hat{\theta} - E(\hat{\theta}))(E(\hat{\theta}) - \hat{\theta}) \\ &= var(\hat{\theta}) + (E(\hat{\theta}) - \theta)^2 = var(\hat{\theta}) + (Bias(\hat{\theta}, \theta))^2 \end{split}$$