SANNOLIKHETSLÄRA OCH STATISTIK FÖRELÄSNING 9

Mattias Villani

Avdelningen för Statistik och Maskininlärning Institutionen för datavetenskap Linköpings universitet

lı.u

ÖVERSIKT

- ► Hypotesttest
- ► Chi-tvåfördelningen (χ^2)
- χ²-test modellutvärdering

► Ex 1. genomsnittshastigheten på ditt bredband är sämre än leverantören utlovat.

Nollhypotes : H_0 : $\mu \ge 8$ Mbit/s

Alternativhypotes: H_A : μ <8Mbit/s

Ex 2. En ny medicin påverkar blodtrycket.

Nollhypotes : H_0 : μ =0

Alternativhypotes: $H_A: \mu \neq 0$

Ex 3. en UI-förändring ökar andelen nöjda användare.

Nollhypotes : $H_0: p \leq p_0$

Alternativhypotes: $H_A: p > p_0$

Ex 4. andelen KD-väljare är under 4%-spärren.

▶ Tvåsidigt test förkastar H_0 om μ är större eller mindre än μ_0

Nollhypotes : H_0 : $\mu = \mu_0$

Alternativhypotes: $H_A: \mu \neq \mu_0$

Ensidigt test

Nollhypotes : $H_0: \mu \leq \mu_0$

Alternativhypotes: $H_A: \mu > \mu_0$

eller

Nollhypotes : $H_0: \mu \ge \mu_0$

Alternativhypotes: $H_A: \mu < \mu_0$

► Ensidiga test skrivs ibland så här (det ger samma resultat):

Nollhypotes : $H_0: \mu = \mu_0$

Alternativhypotes: $H_A: \mu < \mu_0$

- Notera att hypotesen gäller populationen (μ eller p). För en patient kan förändring i blodtrycket vara skild från noll, trots att $\mu = 0$.
- ▶ **Stickprov** från populationen. Dra **slutsatser** om H_0 eller H_A är sann.
- ► Ex 3. $p_0 = 0.6$. s = 70 baserat på ett stickprov av n = 100 användare. Är s = 70 tillräckligt stort för att förkasta $H_0: p \le p_0$?
- ► Prova: sum(runif(100)<=0.6) i R.

► Typ I fel

$$\alpha = P \{ \text{F\"orkasta } H_0 | H_0 \text{ \"ar sann} \}$$

Vi vill kontrollera att α hålls på en förbestämd låg nivå.

- Ex Gödsel inte effektivt, men du väljer att gödsla ändå.
- ► Typ II fel

$$P$$
 {Acceptera $H_0|H_0$ är falsk}

Ex Gödsel effektivt, men du väljer att inte gödsla.

	Acceptera H_0	Förkasta <i>H</i> 0
H ₀ sann	Korrekt beslut	Typ 1 fel
$H_{\!A}$ sann	Typ II fel	Korrekt beslut

- ▶ Popper: man kan bara förkasta en nollhypotes, aldrig acceptera den.
- ▶ Styrka (power): $p(\theta) = P\{F\"{o}rkasta H_0|H_A \ddot{a}r sann\}$.
- ► Applet: http://tube.geogebra.org/student/m137287.

STEG VID HYPOTESTEST

- 1. Välj teststatistika, $T = T(X_1, ..., X_n)$.
- 2. Beräkna **nollfördelningen** för T (dvs samplingfördelningen F_0 för T om H_0 är sann).
- 3. Bestäm förkastningsregionen \mathcal{R} i nollfördelningen så att $P\left\{T \in \mathcal{R} \middle| H_0\right\} = \alpha$.
- 4. Förkasta H_0 på signifikansnivån α om $T_{obs} \in \mathcal{R}$, där T_{obs} är det observerade värdet på T.

FÖRKASTNINGSREGIONEN

STEG VID HYPOTESTEST - BERNOULLIEXEMPEL

- 1. Teststatistika, $T = S = \sum_{i=1}^{n} X_i = n\hat{p}$.
- 2. Nollfördelningen för $T: \sum_{i=1}^{n} X_i \sim Bin(n, p_0)$.
- 3. Låt $\alpha = 0.05$. qbinom(p=0.05,size=100,prob=0.6, lower.tail=F) ger $\mathcal{R} = [68, 100]$ (ungefär).
- 4. $T_{obs}=70$ så $T_{obs}\in\mathcal{R}$ och nollhypotesen $p\leq 0.6$ förkastas på signifikansnivån 0.05.

Z-TEST

- Z-test används när nollfördelningen är normalfördelad.
 - ► Ex 1. $X_1, ..., X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$ och

$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}.$$

- ► Ex 2. CLT.
- Exempel: $H_0: \mu = \mu_0$ och $H_A: \mu > \mu_0$.
- ► En-sidigt Z-test

$$\begin{cases} \text{F\"orkasta } H_0 & \text{om } Z \geq z_\alpha \\ \text{Acceptera } H_0 & \text{om } Z < z_\alpha \end{cases}$$

▶ Två-sidigt *Z*-test. $H_0: \mu = \mu_0$ och $H_A: \mu \neq \mu_0$.

$$\begin{cases} \text{F\"orkasta } H_0 & \text{om } |Z| \geq z_{\alpha/2} \\ \text{Acceptera } H_0 & \text{om } |Z| < z_{\alpha/2} \end{cases}$$

FÖRKASTNINGSREGIONER - Z-TEST

T-TEST

- Z-test används när nollfördelningen är normalfördelad.
- ightharpoonup Om $\hat{ heta}$ normalfördelad, men σ^2 inte är känd utan skattas med s^2 blir inte

$$\frac{\hat{\theta} - \theta_0}{s / \sqrt{n}}$$

längre normalfördelad utan t-fördelad med n-1 frihetsgrader.

 \triangleright z_{α} blir istället t_{α} och hämtas från Tabell 5 i Byron. Se avsnitt 9.4.8 i Baron.

Z-TEST FÖR SKILLANDEN MELLAN POPULATIONER

▶ Vi kan också testa om två populationer har samma väntevärde:

$$H_0: \mu_X = \mu_Y$$

 $H_\Delta: \mu_X \neq \mu_Y$

- ► Ex är andelen KD-sympatisörer lika stor i Stockholm och Göteborg?
- ▶ Låt $X_1, ... X_n$ vara ett slumpmässigt stickprov från $N(\mu_X, \sigma^2)$.
- ▶ Låt $Y_1, ..., Y_m$ vara ett slumpmässigt stickprov från $N(\mu_Y, \sigma^2)$.
- ▶ Teststatistika: $\bar{X} \bar{Y}$. Samplingfördelning under H_0 ?
 - Linjärkombination av normalvariabler är normalfördelade. $\bar{X} \bar{Y}$ är normalfördelad.
 - $E(\bar{X} \bar{Y}) = \mu_X \mu_Y = 0$ under H_0 .
 - $Var(\bar{X} \bar{Y}) = Var(\bar{X}) + Var(\bar{Y}) = \sigma^2/n + \sigma^2/m =$ $\sigma^2 (1/n + 1/m)$.

$$Z = \frac{\bar{X} - \bar{Y}}{\sqrt{\sigma^2 \left(\frac{1}{n} + \frac{1}{m}\right)}}.$$

KOPPLING MELLAN HYPOTESTEST OCH KONFIDENSINTERVALL

Ett test av $H_0: \theta = \theta_0$ mot $H_A: \theta \neq \theta_0$ på signfikansnivån α

accepterar nollhypotesen

om och endast om

 $heta_0$ ingår i ett symmetriskt (1-lpha)100% konfidensintervall för heta

P-VÄRDE

- Hur väljer vi α?
- Lågt α ställer mycket stora krav på bevisningen: teststatistikan måste anta mycket stora (positiva eller negativa) värden för att vi ska kunna förkasta H₀.
- **Stort** α ställer **låga krav**. Vi förkastar baserat på väldigt lite bevis.
- ▶ ldé: presentera resultat för alla α .
- ▶ P-värde = den lägsta signifikansnivån α där vi kan förkasta nollhypotesen.
- Alternativ definition: Sannolikheten att få en teststatistika som är lika extrem eller ännu mer extrem än T_{obs} .
- ► Exempel: ensidigt *Z*-test:

p-värde:
$$P\{Z \geq Z_{obs}\}$$

SKATTA EN VARIANS - χ^2 -FÖRDELNINGEN

ightharpoonup Väntevärdesriktig estimator av σ^2

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

 \triangleright χ^2 (Chi-två) fördelningen med ν frihetsgrader

$$f(x) = \frac{1}{2^{\nu/2}\Gamma(\nu/2)} x^{\nu/2-1} e^{-x/2}, \quad x > 0$$

 $ightharpoonup Om ~X \sim \chi^2_
u$ så gäller

$$\mathbb{E}X = \nu$$
, $Var(X) = 2\nu$

- $ightharpoonup \chi^2_{\nu}$ -fördelningen är ett specialfall av gamma: $Gamma(\nu/2, 1/2)$.
- ▶ Samplingfördelning för s^2 (om $X_i \stackrel{iid}{\sim} N(\mu, \sigma^2)$)

$$\frac{(n-1)s^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - \bar{X}}{\sigma}\right)^2 \sim \chi_{n-1}^2$$

 $\triangleright \chi^2$ -fördelningen kan användas för att skapa konfidensintervall och

χ^2 GOODNESS OF FIT TEST

- Antag att din population har följande diskreta fördelning F_0 : $P(X=1)=p_1, P(X=2)=p_2, ..., P(X=m)=p_m$.
- ▶ Om du har observerat n observationer så förväntar du dig np_k observationer där X = k.
- Låt Exp(k) beteckna förväntat antal observationer med värde k om F_0 är en korrekt populationsmodell.
- ▶ Låt Obs(k) beteckna faktiskt antal observationer med värde k.

χ^2 GOODNESS OF FIT TEST

► Chi-två statistikan

$$\chi^{2} = \sum_{k=1}^{N} \frac{\left[Obs(k) - Exp(k)\right]^{2}}{Exp(k)}$$

- ▶ Om χ^2 är för stort så drar vi slutsatsen att data inte kommer från populationen med fördelningen F_0 ovan.
- Men hur stort är för stort? Jämför med samplingfördelningen för χ^2 under $H_0: F = F_0$ mot $H_A: F \neq F_0$.
- ▶ Vid stora stickprov följer Chi-två statistikan en χ^2 -fördelning med m-1 frihetsgrader, om Exp(k) > 5 för alla k.
- ▶ Kan även testa om data kommer från $F_0(\theta)$ där θ är en okänd parameter som skattas med en konsistent estimator. Frihetsgrader = n 1 d.
- ▶ Kontinuerliga fördelningar kan hanteras genom diskretisering (men se till att Exp(k) > 5 för alla k.