EC Assignment #2 (PSO)

Report due on: 12:00am, Oct. 28, 2024

- 1. Assignment #2 should be completed similar to Assignment #1 (GA). That is, refer to the benchmark objective functions selected from Table I (from Adaptive Particle Swarm Optimization). There are 4 unimodal functions (f1,f2,f3,f4), and 4 multimodal functions (f7,f8,f10,f11), where f8 is replaced by the Schwefel function •
- 2. Please use PSO to optimize at least one unimodal function and one multimodal function, according to bench mark problems assigned to you.
- 3. A total of 200000 Function Evaluations (FE) can only be used to allow a fair comparison.
- 4. Prepare a report of no less than 6 pages, including experimental results, analysis, and discussions, including parameters used, accuracy, consistency of experimental results. Submit your report together with your source code before the deadline. Make a comparative analysis of your experimental results obtained by PSO with those by GA.
- 5. Submitting late work will be penalized by a deduction of 10% per day of the total mark awarded for each assignment. (請以 PSO 處理 unimodal 函數與 multimodal 函數各一個,並繳交至少 6 頁之報告,討論其執行結果,包含:各項使用的參數、精確度、所使用的 function evaluations(FE)、執行結果的一致性(每次都可以獲得好結果?)、可以獲致滿意結果的維度(D=10、D=30)等、與 GA 性能之比較等)。作業需準時繳交,包含程式碼與書面報告,逾時成績逐日扣-10%。繳交期限為 2 週。

6. References

- Nai-Jen Li, Wen-June Wang*, Chen-Chien Hsu, Wei Chang, Hao-Gong Chou, and Jun-Wei Chang, "Enhanced Particle Swarm Optimizer Incorporating a Weighted Particle," Neurocomputing, Vol. 124, pp. 218-227, Jan., 2014.
- Nai-Jen Li, Wen-June Wang, and Chen-Chien Hsu, "Hybrid Particle Swarm Optimization Incorporating Fuzzy Reasoning and Weighted Particle," Neurocomputing, Vol. 167, pp. 488-501, April, 2015.

7. Assignment of benchmark problems

7. A33ig 學號	姓名	班級		Assignment
1	81375003H	羅尹均	電機系(博) 一	f1 & f7
2	813K0003C	朱家佑	AI 跨域所 (博) 一	f2 & f8
3	61170010H	李祥樂	工教系(碩) 三	f3 & f10
4	61175005H	張廣億	電機系(碩) 二	f4 & f11
5	61275002H	鄭詠孺	電機系(碩) 二	f1 & f8
6	61275003H	張仲軒	電機系(碩) 二	f2 & f10
7	61275014H	胡庭維	電機系(碩) 二	f3 & f11
8	61275025H	何祐豪	電機系(碩) 二	f4 & f7
9	61275036H	沈尚錡	電機系(碩) 二	f1 & f10
10	61275072H	陳以秀	電機系(碩) 二	f2 & f11
11	61375004H	彭柏凱	電機系(碩) 一	f1 & f7
12	61375017H	陳昕佑	電機系(碩) 一	f2 & f8
13	61375070H	黃柏瑜	電機系(碩) 一	f3 & <mark>f11</mark>
14	61375075H	LE HOANG CONG	電機系(碩) 一	f4 & f7
15	61375079H	李柏叡	電機系(碩) 一	f1 & f7
16	612K0002C	張信中	AI 跨域所 (碩) 一	f2 & f8
17	612K0005C	鄧華予	AI 跨域所 (碩) 二	f3 & <mark>f11</mark>

18	612K0022C	陳柏序	AI 跨域所 (碩) 二	f4 & f7
19	612K0034C	黃宇彤	AI 跨域所 (碩) 一	f1 & f7
20	613K0003C	鄧聖叡	AI 跨域所 (碩) 一	f2 & f8
21	613K0004C	林品睿	Al 跨域所 (碩) 一	f3 & <mark>f11</mark>
22	613K0005C	蔡鎧仲	Al 跨域所 (碩) 一	f4 & f7
23	613K0007C	余品誼	Al 跨域所 (碩) 一	f1 & f8
24	613K0008C	王心泓	Al 跨域所 (碩) 一	f2 & f10
25	613K0010C	陳品妤	Al 跨域所 (碩) 一	f3 & <mark>f7</mark>
26	613K0015C	潘柏睿	Al 跨域所 (碩) 一	f4 & f8
27	41075002H	陳柏安	電機系(學) 四	f1 & f10
28	41075005H	林志鴻	電機系(學) 四	f2 & f11
29	41075008H	陳宥熏	電機系(學) 四	f3 & <mark>f8</mark>
30	41075009H	李文浩	電機系(學) 四	f4 & f10

F8 is replaced by the Schwefel function with dimension d=30 below:

$$f(\mathbf{x}) = 418.9829d - \sum_{i=1}^{d} x_i \sin(\sqrt{|x_i|})$$

Description:

Dimensions: d

The Schwefel function is complex, with many local minima. The plot shows the two-dimensional form of the function.

Input Domain:

The function is usually evaluated on the hypercube $x_i \in [-500, 500]$, for all i = 1, ..., d.

Global Minimum:

$$f(\mathbf{x}^*) = 0$$
, at $\mathbf{x}^* = (420.9687, \dots, 420.9687)$

https://www.sfu.ca/~ssurjano/schwef.html

SCHWEFEL FUNCTION

$$f(\mathbf{x}) = 418.9829d - \sum_{i=1}^{d} x_i \sin(\sqrt{|x_i|})$$

 $TABLE\ \ I$ Twelve Test Functions Used in This Paper, the First Six Being Unimodal and the Remaining Being Multimodal

Test function		D	Search Space	Global f_{\min}	Acceptance	Name of function
Unimodal	$f_{1}(x) = \sum_{i=1}^{D} x_{i}^{2}$	30	$[-100,100]^D$	0	0.01	Sphere [53]
	$f_2(x) = \sum_{i=1}^{D} x_i + \prod_{i=1}^{D} x_i $	30	$[-10,10]^D$	0	0.01	Schwefel's P2.22 [53]
	$f_3(x) = \sum_{i=1}^{D} (\sum_{j=1}^{i} x_j)^2$	30	$[-100, 100]^D$	0	100	Quadric [53]
	$f_4(x) = \sum_{i=1}^{D-1} [100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2]$	30	$[-10,10]^D$	0	100	Rosenbrock [53]
	$f_3(x) = \sum_{i=1}^{D} \left(x_i + 0.5 \right)^2$	30	$[-100, 100]^D$	0	0	Step [53]
	$f_0(x) = \sum_{i=1}^{D} ix_i^4 + random[0,1)$	30	$[-1.28, 1.28]^D$	0	0.01	Quadric Noise [53]
	$f_7(x) = \sum_{i=1}^{n} -x_i \cdot \sin\left(\sqrt{ x_i }\right)$	30	$[-500,500]^D$	-12569.5	-10000	Schwefel [53]
Multimodal	<i>i</i> =1 (V11)	30	$[-5.12, 5.12]^D$	0	50	Rastrigin [53]
	f8 is replaced by Schwefel function	30	$[-5.12,5.12]^D$	0	50	Noncontinuous Rastrigin [12]
	$f_{10}(x) = -20 \exp(-0.2\sqrt{1/D\sum_{i=1}^{D} x_i^2})$ $-\exp(1/D\sum_{i=1}^{D} \cos 2\pi x_i) + 20 + e$	30	$[-32,32]^D$	0	0.01	Ackley [53]
	$f_{11}(x) = 1/4000 \sum_{i=1}^{D} x_i^2 - \prod_{i=1}^{D} \cos(x_i / \sqrt{i}) + 1$	30	$[-600,600]^D$	0	0.01	Griewank [53]
	$\frac{f_{12}(x) = \frac{\pi}{D} \{10 \sin^2(\pi y_i) + \sum_{l=1}^{D-1} (y_l - 1)^2 [1 + 10 \sin^2(\pi y_{i+1})] + (y_D - 1)^2 \} + \sum_{l=1}^{D} u(x_l, 10, 100, 4)}{(x_l, x_l) + (x_l, x$	30	$[-50,50]^D$	0	0.01	Generalized Penalized [53]