SLIDES

Concept Checklist – Lecture 1 + Literature

- Gazzaniga, Ivry, Mangun: The Biology of Mind, 4th edition
 - Ch 2. Structure and Function of the Nervous System (pages 37-60)
 - Overview of Nervous system structure
 - · A guided tour of the brain
 - The cerebral cortex

- Nervous system (NS)
 - o Central NS
 - o Peripheral NS
 - Somatic
 - Autonomic
- Neuroanatomy
 - o Planes, Sections
 - Saggital
 - Coronal
 - Transverse/Axial/Horizontal
 - o Sides, Directions
 - Superior/Dorsal
 - Inferior/Ventral
 - Anterior/Rostral
 - Posterior/Caudal
 - Medial
 - Lateral
 - o White matter
 - o Grey matter
 - o Nuclei
 - o Hemispheres
 - o Ventricles
 - o Brainstem
 - Hindbrain
 - Medulla, Cerebellum, Pons
 - Midbrain
 - o Diencephalon
 - Thalamus
 - Hypothalamus
 - o Telencephalon
 - Limbic system
 - Basal ganglia
 - Cerebral cortex

Salientes gy (CDS

• Gyri & sulci — Literature bungs and grooves
• Cortical layers — Literature
• Brodmann's areas

- Lobes & basic functions
 - Occipital
 - Temporal
 - **Parietal**
 - Frontal

SLIDES

Concept Checklist - Lecture 2 + Literature

- Gazzaniga, Ivry, Mangun: The Biology of Mind, 4th edition
 - Ch 2. Structure and Function of the Nervous System (pages 22-37)
 - · The Structure of Neurons
 - Neuronal signaling
 - · Synaptic transmission
 - · The Role of Glial cells
 - · The Bigger picture

- Scales of analysis in the brain
 - o Macroscale:
 - Lobes
 - (Brodmann) areas
 - Mesoscale:
 - Circuits
 - Cortical columns
 - Cortical layers
 - o Microscale:
 - neurons
 - Dendrites
 - Dendritic spines
 - Axons
 - Axon hillock
 - Terminal boutons
 - glia
 - Astrocytes
 - Oligodendrocytes
 - Schwann cells
 - Microglia
 - o Nanoscale:
 - Synapses
 - Neurotransmitters
- Neuron resting potential
 - o Cell membrane
 - o Intracellular & Extracellular
 - o Membrane potential: about -70mV
 - o Ion concentrations at rest (intra & extra-cellular)
 - Sodium (Na⁺)
 - Chloride (Cl⁻)
 - Potassium (K⁺)
 - Negatively charged proteins (A⁻)

- o Concentration pressure
- o Electrostatic pressure
- o Ion channels
 - Non-gated
 - Voltage-gated
- o Na/K pump
- Graded post-synaptic potentials
 - o EPSP: depolarize
 - o IPSP: hyperpolarize
 - o Temporal summation
 - Spatial summation
- Action potential
 - o Threshold potential
 - Order of ion channels opening and closing
 - Na+
 - ≃ K+
 - Direction and times of ion flow
 - Refractory period
 - Absolute
 - Relative
 - o Propagation
 - Myelination
 - Nodes of Ranvier
 - Saltatory conduction
- Synapses
 - o Electrical (sometimes) & Chemical (mostly)
 - o Pre-synaptic
 - o Post-synaptic
 - o Ca+
 - o Synaptic vesicles
 - o Exocytosis
 - o Synaptic cleft
 - o Receptors
 - Neurotransmitters
 - Acetycholine: brain, neuromuscular junction
 - Monoamines
 - Dopamine: pleasure, addiction
 - Norepinephrine: arousal, wakefullness
 - Epinephrine: periphery
 - · Serotonin: sleep, eating
 - Amino acid
 - Glutamate
 - Main brain excitatory
 - GABA
 - o Main brain inhibitory

Concept Checklist - Lecture 3 + Literature

- Gazzaniga
 - Ch 5: Sensation and Perception
- page 184

Page 185

- Only general intro and vision
- Ch 6. Object Recognition
 - Parts on vision

- Visible light spectrum
 - o Longer wavelengths (red) \ Po Ge 165
 - o Shorter wavelengths (blue)
- Eye 7- page 185
 - o Iris, pupil, cornea, lens, retina
 - o Optic nerve ___. Page. 185, 186
 - o Inverted projection on retina
- Retina
 - o Blind spot Pege 485
 - o Fovea --- Page 186
 - o Receptors
 - Rods
 - Cones
 - Short wavelength
 - · Medium wavelength
 - Long wavelength
 - o Ganglion cells Page 185, 186
 - o (Bipolar cell), horizontal cells, Amacrine cells
 - Lateral inhibition & contrast enhancement
- Visual system
 - o Eye
 - o Optic chiasm Page 186,
 - 0 LGN -> Pag 186,187
 - Visual cortex ____ Page 187
- Simple cells
- Complex cells
- End-stopped cells
- Orientation columns
- Contralateral and upside-down projection
- Receptive fields
 - Center-surround
- Retinotopy
- Visual pathways

Concept Checklist - Lecture 4 + Literature

- Gazzaniga
 - Chapter 7: Attention

Concept Checklist – Lecture 5 + Literature

- Gazzaniga
 - Chapter 9: Memory
 - Anatomy of memory
 - Memory deficits
 - Mechanisms of memory

Concepts

- Learning & SLIDE 4
- Memory
 - o Ecoding
 - Acquisition
 - Consolidation
 - o Storage
 - o Retrieval
- Types of Memory ____ SLIDE 8
 - o Long term memory
- Declarative (explicit) memory
 - Episodic memory
- Nondeclarative (implicit) memory

 Procedure! Procedural memory ? SLEDE 20
 - Priming Stip 5 27
 - o Short term memory ------ SLIDE /--Sensory memory
 - Iconic memory
 - Echoic memory
 - Working memory
- Atkinson & Shiffrin's modal (or multi-store) model SLIDE 17
 - o Attention & Rehearsal
- Baddeley's working memory model -- Supe 18, 19
 - o Phonological loop ocucades information accossitionly in working measury o Visuospatial sketchpad men wates information visually in working memory
 - Consolidation by studying/rehearsal
 - SLIDE 29 o Elaborative or maintenance rehearsal
 - o Distributed or massed practice
 - o Mnemonics
- Free recall experiments
 - Primacy effect
 - o Recency effect

ScIDE 30

0

- Constructive memory 7 SLIDE 31 o Prior experience o Encoding specificity o Flashbulb memories -- 5 LIDE 32 Anatomy of memory o Hippocampus SLIDES Place cells
 - 35, 37, 38 Entorhinal cortex Grid cells
- Other parts of cortex
- Memory deficits
 - o Amnesia
 - SLIDE7 Anterograde Retrograde Ribot's law .
 - o Alzheimer's disease 🛶 SLIDE 39

Concept Checklist – Lecture 6 + Literature

- · Gazzaniga
 - Chapter 9: Memory
 - Cellular basis of learning and memory
- Ballard: An Introduction to Natural Computation (as pdf)
 - Chapter 1: Natural Computation
 - 1.1 Introduction
 - 1.2 The Brain
 - 1.4.2 Learning
 - 1.5 Overview
 - Intermezzo
 - THE CORTEX AS A HIERARCHICAL MEMORY
 - NEURAL NETWORK MODELS
 - Chapter 8: Supervised learning
 - 8.2 Perceptrons

Concepts

Learning over different timescales

 Developmental learning
 Behavioral learning
 Evolutionary learning

 Hebbian learning — Stipt 5

 Hebbian learning — Stipt 5
 Hebbis rule — If a synapse is active when a post ynaptic newow is active. The synapse will be stronglibered

 LTP / LTD

 Synapse strengthening and weakening
 Associative LTP
 Cooperativity
 Associativity
 Specificity
 NMDA receptor

- 3 projection pathways in the Hippocampus
 - o Perforant pathway
 - o Mossy fiber pathway
 - o Schaffer collateral pathway

Types of Learning in Machines (SLIPE 12 o Supervised learning o Reinforcement learning o Unsupervised learning Content addressable memories Artificial Neural Networks o Units/Nodes o Connection weights Activation function Lavers o Bias node -- Always set to "on" Types of general structure Fully connected Feed-forward Recurrent o Perceptron Perceptron weight learning rule - SYLOE 12, 72 Linear separability ールシロロモ RS Multi-layer perceptron ___ \$CIDE 31 Hidden layers • Continuous (differentiable) activation function Back-propagation rule o Weight changes for hidden layers • Pro's and Con's - Stipe 35, 15 o Deep learning - SLIDE 86 Many layers, analogous to human visual system ■ Combination of supervised and unsupervised -> SCIDE 35

Concept Checklist - Lecture 7 + Literature

- Gazzaniga
 - Chapter 3: methods of cognitive neuroscience
 - · Methods to perturb neural function
 - · Structural analysis of the brain
 - Methods for the study of neural function
 - · The marriage of Function and Structure: Neuroimaging
 - · Converging methods

Concepts

- - o Experimental
- Computer modeling
 - Symbolic modeling
 - o Connectionism
- Y SLIDE
- o Realistic neuronal modeling
- o Braitenberg vehicles → SUDE 4
- o Pro's and Con's -> SLIDE 6
- Lesion Studies
 - o Dissociations
 - No dissociation
 - Single dissociationDouble dissociation
- ciation SLIDE 7
 - o Pro's and Con's SLIDE &
- Structural Imaging
 - O CT/CAT → SLIDE 10
 - o Structural MRI
 - MRI system
 - Magnet (1.5T 9.4T)
 Why higher fields?
 - Gradient coils
 - Radio frequency coil
 - Protons/spins → SLIDE 12
 - Larmour frequency
 - Gyromagnetic ratio
 - T1 weighted, T2 weighted, T2* weighted
 - Diffusion MRI/DTI SLIDE 15 (complement with book) Pages 93,94

· Anistropic diffusion - Page 94 Pro's and Con's ----Functional Imaging o Single cell recording
■ Pro's and Con's SLIDE 18 o EEG ■ ERP -- SLIDE 21 Time-frequency analysis -- SLIDE /9 ■ ECOG - Electrocorticography (book) - Pages 102, 103, 104 Pro's and Con's - SLIDE 20 o MEG ■ Pro's and Con's - SLIDE 22 PET ■ Anihilation & gamma rays } Book Subtraction method ■ Pro's and Con's - SLIPE 26 o fMRI ■ BOLD, oxyHb and deoxyHb — SLIPE 28 ■ Block design & event-related design - Page 108 ■ Rt-fMRI, BCI & Neurofeedback → SLIPE 34 ■ Pro's and Con's - SLIPE 27 o Spatial & temporal resolution Relative resolutions of modalities \? • Log size vs. log time plot ~ Methods to perturb function o Pharmacological studies - Page 87 TMS Pulsed TMS 3 SLIDE 32
Repetitive TMS tDCS - Page 89 Knockout procedures J Pages 89,90 o Genetic manipulation

Concept Checklist – Lecture 8 + Literature

- Gazzaniga
 - Chapter 2: Structure and Function of the nervous system
 - Development of the nervous system
- Ballard: An Introduction to Natural Computation (as pdf)
 - Intermezzo
 - **GENE PRIMER**
 - LEARNING ACROSS GENERATIONS: SYSTEMS
 - Chapter 12: Genetic Algorithms

Concepts

- Brain evolution
 - o Brain size to body size ratio -- SLIPE S
 - O Brain size increase in hominids SLIPE 6
 - o Bigger brains
 - Number of neurons

SLIDES 15,16

- Arborization of dendrites
- Number of synapses
- Radial Unit Hypothesis
 - o Symmetrical & assymmetrical division
 - o Radial glia cells & radial migration
 - o Radial unit & cortical column
 - o Inside-out formation of cortex
 - o Ventricular zone, sub-ventricular zone, intermediate zone
 - o Cortical plate, marginal zone
- Synaptogenesis
- Synapse elimination/pruning -> SLIDE 17
- Myelination
- o Differential timing in human development 3 SUIDE 20
- **Brain Plasticity**
 - o Learning
- SUDES 20,22,23
- Reorganization
 - Phantom limbs *
- **Basic Genetics**
 - o Chromosomes
 - Genes
 - o DNA
 - o Genotype & Phenotype → SCIDE 2子, 399

5UDES 9,10,11,12,13,14

Fitness value/function
 Reproduction
 Cross-over
 Inversion *

Inversion * SUIDE TO 39

Mutation * SUIDE 40

Selection strategies

- Elitist SLIDE 34
- Roulette wheel → SCIDES 3.5,36
- Tournament → SLIDE 37
- Pro's and Con's
- o GA: Pro's and Con's ー SCIDE Yス

Concept Checklist - Lecture 9 + Literature

- Gazzaniga
 - Chapter 11: Language
 - The anatomy of language
 - Brain damage and language deficits
 - The fundamentals of language in the human brain
 - Language comprehension
 - Neural Models of speech production

Concepts

- Language & Linguistics
 - o Syntax
 - Phoneme SLIDE 6
 - o Semantics
 - 3 SUDE 6 Morpheme
 - Lexicon → SUDE 7
 - Semantic network → SUDE 21

- Prosody
- 4 SLIDE 6 o Pragmatics
- Language acquisition
 - o Stages SLIDE 9
 - O Overextension error 3 SUDE 10

 - o Critical period SLIDE 11
- Anatomy of Language
 - Lateralization
 - o Peri-sylvian language network
 - Inferior frontal cortex
 - Broca's area
 - Inferior parietal lobule
 - Superior temporal gyrus
 - Wernicke's area
 - Arcuate fasciculus
- Aphasia SLIDE 14
 - o Broca's aphasia → Subes 15,16
 - o Wernicke's aphasia → SUDES 17,18
 - o Conduction aphasia SLIDE 19

Language Comprehension

Concept Checklist - Lecture 10 + Literature

- Sternberg
 - Chapter 11: Problem solving & Creativity
 - Expertise: Knowledge & problem solving 🗸
 - Chapter 12: Decision making & Reasoning
 - Deductive reasoning
 - Inductive reasoning \

Concepts

- Deductive Reasoning
 - o Premises, Conclusion, Quantifier SHOF Y

a SLIDE 3

- o Atmosphere effect
- o Categorical reasoning SUDEY
- o Conditional reasoning SUDE 6
 - Syllogistic reasoning

Modus ponens (Method of affirming) } SUDE ∃

Modus Tollens (Method of denying)

- Denying the antecedent error SLIDE 8
 - Affirming the consequent error __ SLIDE 9

SLIDE 18

SLIDE 28

- Wason selection task —o SLIDES AA, 12,13,14
- Inductive Reasoning → SCIDE 3
 - Availability heuristic SI (DE 16
 - Representativeness heuristic → SCIDE X7
- Expertise
 - o Three stages of skill acquisition:
 - Cognitive stage
 - Associative stage
 - Autonomous stage
 - o Power law of learning _____ SCIDE 19
 - o Tactical learning 2- SLIDE 21
 - o Strategic learning SLIDES 21, 21
 - o Deliberate practice → SCIDE 23
- Intelligence
 - o IQ test
 - Relative/Normative
 - Subtests → SLIPE 26
 - Factors —PSUPE27
 - Only one: g (IQ)
 - More

Crystallized & Fluid intelligence

to Illusory Correlation:

Spurious cause-effect relationships

categories that are going

bugether...

to Overconfidence: overevaluation of skills, knowledge or judgement

Hindsight Birs: when loveing at a silvation retrospectively, we believe we easily can see all the signs and events leading up to a particular outcome

shortents they may lead to ? Hearistics and Biusos inacorate conclusions) in deductive reasoning.

o Flynneffect! - Substantial and long-sustained increase in both fluid and crystallized intelligence test scores measured in many parts of o Construct validity the world from 1930 to the present day. Artificial Intelligence: the degree to which a test measures what it claims

o Consistent | SLIDE 34

or purports to be measuring.

INDUCE

- Medin, Wattenmaker & Michalski (1987)
- Categorization algorithm
- Category validity vs. Cue validity
- Humans tend to category validity
- INDUCE tends to cue validity
- Product- Process- equivalence
- DEEP BLUE War Kasperov Chess
- Dijkstra "Asking if computers can think is like asking if submarines can swim".

Concept Checklist - Lecture 11 + Literature

- Gazzaniga
 - Chapter 14: Consciousness, Free Will and the Law
 - Anatomical Orientation \checkmark
 - Consciousness 🗸
 - Neurons, Neuronal groups and Conscious experience
 - Abandoning the concept of free will

Concepts

- Anatomy of consciousness e consciousness

 Brianstem, thalamas, RAS

 ended consciousness o Core consciousness Extended consciousness Cerebral cortex
- Clinical perspective
 - o Impairments
 - Somnolence Sopor
 - (Brain death) .
 - Vegetative state SUDE Y
 - Locked-in syndrome SLIDE 5
- Terri Schiavo case 🕳 Fright-to-die legal case in USA Inversible persistent vegetative state. Sleep Stages 0

- Sleep spindles, K-complexes
- 3&4
 - Slow wave sleep
- REM/ paradoxical sleep sude 13
 - Dreaming
- Eye movements and EEG
- Cycle change through the night SLIDE 12 Sleep cycles through the stages
- o Functions of sleep
 - Save energy
 - Restore the brain
 - Memory: strengthen and meaken connections

Blindsight: phenomenon that patients suffering a lesion in their visual cortex can respond to a visual stimuli presented in the blind part of their visual field. (these activities happen outside the realm of consciousness. Patients will day that they can do a task, yet their performance is clearly above that of chance. Such patients have access to information but do not experience it).