Problems

7.1 A vertical countercurrent spray chamber has a 2.0m contact zone and operates with a liquid/gas ratio of 1.0 L/m^3 and an average droplet diameter of 200 microns. During a test run, the following data were taken on the unit:

average scrubber temperature = 25°C

gas velocity 0.4 m/s

inlet loading $3.5g/m^3$

The following particle size distribution was obtained from a cascade impactor.

Size Range, μm	< 4	4 - 8	8 - 16	16 - 30	30 - 50	> 50
Mass, mg	25	125	100	80	20	10

Estimate the overall efficiency of the unit, assuming 20% spray utilization.

solution

From Table B. 2 in Appendix B, $\mu_g = 0.0447 \, \text{lb}_{\text{m}}/\text{hr} \cdot \text{ft} = 1.85 \times 10^{-5} P_a \cdot s$, $\rho_{air} = 1.183 \, \text{kg/m}^3$.

the settling velocity of an 2μ m particle(Assuming Stokes regime flow), Assuming $\rho_p = 1000 \text{ g/m}^3$.

$$V_p = \frac{\rho_p d_{pi}^2}{18\mu} g = \frac{1000 \times (2 \times 10^{-6})^2}{18 \times 1.85 \times 10^{-5}} \times 9.81 = 1.178 \times 10^{-4} \, \text{m/s}$$

the settling velocity of an $200\mu m$ droplets (Assuming Transition regime flow) ,

$$V_d = \frac{0.153 d_p^{1.14} \rho_p^{0.71} \mathrm{g}^{0.71}}{\mu^{0.43} \rho^{0.29}} = \frac{0.153 \times (200 \times 10^{-6})^{1.14} \times (1000 \times 9.81)^{0.71}}{(1.85 \times 10^{-5})^{0.43} \times 1.183^{0.29}} = 0.654 \, m/s$$

Check
$$Re_d = \frac{200 \times 10^{-6} \times 1.183 \times 0.654}{1.85 \times 10^{-5}} = 8.36$$
 $2 \le Re_d \le 500$ **OK**

$$stk_i = \frac{C\rho_p d_{pi}^2 (V_d - V_p)}{9\mu_g D} = \frac{1000 \times (2 \times 10^{-6})^2 \times (0.654 - 0.0001178)}{9 \times 1.85 \times 10^{-5} \times 200 \times 10^{-6}} = 0.079$$

$$\eta_{Ti} = \left(\frac{stk_i}{stk_i + 0.7}\right)^2 = \left(\frac{0.079}{0.079 + 0.7}\right)^2 = 0.010$$

$$\eta_i = 1 - exp(-\frac{3}{2} \frac{Q_l}{Q_g} \cdot \frac{H}{D} \cdot \frac{V_d - V_p}{V_d - V_g} \cdot \eta_{Ti})$$

$$= 1 - exp(-\frac{3}{2} \times 0.001 \times 20\% \times \frac{2}{200 \times 10^{-6}} \times \frac{0.654}{0.654 - 0.4} \times 0.010)$$

$$= 0.076$$

And so on for the rest

Size Range, μm	$\overline{m{d}}_{pi}$, $\mu m{m}$	stk_i	η_{Ti}	η_i	m_i , %	$\eta_i m{m}_i$, %
< 4	2.0	0.079	0.010	0.076	6.94	0.5
4 – 8	6.0	0.706	0.252	0.857	34.72	29.7
8 – 16	12.0	2.812	0.641	0.993	27.78	27.6
16 – 30	24.0	10.15	0.875	0.999	22.22	22.2
30 – 50	40.0	29.182	0.954	0.999	5.56	5.5
> 50	50	43.607	0.969	0.999	2.78	2.8

$$\eta_T = \sum_{i=1}^6 \, \eta_i m_i = 88.4\%$$

7.2 Determine the overall removal efficiency of a venturi scrubber for the particle distribution given below. Operating parameters are $V_g = 90 \text{m/s}$, $Q_L/Q_G = 1.5 \text{L/m}^3$, and f = 0.5. The operating temperature is 20°C.

Size Range, μ m	0 – 2	2 – 4	4 – 8	8 – 10	10 – 20	> 20
Mass %	15	30	37	6	10	2

solution

At 20° C, $\sigma = 7.2 \times 10^{-2}$ N/m and $\mu_L = 0.001$ Pa·s. Therefore,

$$D = \frac{586 \times 10^{3}}{V_{g}} \left(\frac{\sigma}{\rho_{l}}\right)^{0.5} + 1682 \left(\frac{\mu_{l}}{\sqrt{\sigma \rho_{l}}}\right)^{0.45} L^{1.5}$$

$$= \frac{586000}{90} \times \left(\frac{7.2 \times 10^{-2}}{1000}\right)^{0.5} + 1682 \left(\frac{0.001}{\sqrt{7.2 \times 10^{-2} \times 1000}}\right)^{0.45} \times 1.5^{1.5}$$

$$= 55.25 + 52.73 = 108.0 \mu m$$

For dp=1um

$$stk_i = \frac{\rho_{pi}d_{pi}^2V_T}{9\mu_g D} = \frac{1000 \times (1 \times 10^{-6})^2 \times 90}{9 \times 1.8 \times 10^{-5} \times 108.0 \times 10^{-6}} = 5.14$$

$$F(stk_{i'}f) = \frac{1}{stk_{i}} \left[-0.7 - stk_{i}f + 1.4 \ln \left(\frac{stk_{i}f + 0.7}{0.7} \right) + \frac{0.49}{0.7 + stk_{i}f} \right] = -0.187$$

$$\eta_{i} = 1 - exp \left[\frac{2}{55} \frac{Q_{l}}{Q_{g}} \frac{D\rho_{l}}{\mu_{g}} V_{T}F(stk_{i'}f) \right]$$

$$= 1 - exp \left[\frac{2}{55} \times 0.0015 \times \frac{108.0 \times 10^{-6} \times 1000}{1.8 \times 10^{-5}} \times 90 \times (-0.187) \right]$$

$$\approx 0.9959$$

And so on for the rest

Size Range, µm	$\overline{m{d}}_{pi}$, $\mu m{m}$	stk _i	$F(stk_{i'}f)$	η_i	m_i , %	$\eta_i m{m}_i,\%$
0 – 2	1.0	5.145	-0.1873	0.996	15	0.1494
2 – 4	3.0	46.305	-0.4080	1.000	30	0.3
4 – 8	6.0	185.221	-0.4668	1.000	37	0.37
8 – 10	9.0	416.747	-0.4825	1.000	6	0.06
10 – 20	15.0	1157.63	-0.4925	1.000	10	0.10
> 20	20	2058.009	-0.4954	1.000	2	0.02

$$\eta_T = \sum_{i=1}^6 \, \eta_i m_i = 99.94\%$$