Name		
	Section	

Estimating Derivative of a Function

Recall there are three ways to estimate the derivative (or the rate of change) of a given function f(x) when we ONLY know a table of values of f(x). We have the:

Forward Difference formula

Backward Difference formula

Central Difference formula

Consider a particle moving on a straight line. Its displacement s(t) from a fixed point O on the straight line the table of values below

	t	0	0.5	1.0	2.0	2.5	3.0	3.5
ſ	s(t)	-4.0	-2.0	-1.0	0	1.2	1.8	2.2

a. Give all possible estimates for the instantaneous velocity at t = 0.5. State which estimate you apply.

b. Give all possible estimates for the instantaneous velocity at t = 3.5. How does your conclusion differ from Part (a).

c. Give all possible estimates for the instantaneous velocity at t = 0. How does your conclusion differ from Parts (a) and (b).

Section ____

- 1. The graph of the function g(x) is given above.
- (a) What is the value of g(3)? Answer: _____
- (b) What is the **instantaneous** rate of change of g(x) at x = 3? Answer: _____
- (c) Find the slope of the graph of $f(x) = \frac{e^{g(x)-2}}{x+1}$ at x = 3.

Section

2. Consider a particle P moving **counterclockwise** around the ellipse

$$x^2 + 4y^2 = 5.$$

Fill in below the sign (> 0 or < 0) of $\frac{dx}{dt}$ and $\frac{dy}{dt}$ in quadrants of the xy-plane.

2e. For the same Particle P above, find $\frac{dx}{dt}$ at (1,-1) if $\frac{dy}{dt}=2$ units per second.

Name		
	Section	

3. A huge spherical snowball is melting such that its radius is **reducing** at a constant rate of 2 cm per minute. At what rate is the volume changing at the instant when the radius of the snowball is 10 cm? (You may leave your answers in terms of π and use the formula $V = \frac{4}{3}\pi r^3$.)

10350 Tutorial Week 07 - Set 04

Name ______Section _____

4. Consider the curve given by $x^2y^2 - x^4 = 6e^{y-2} - 3$.

4a. Find
$$\frac{dy}{dx}$$
.

4b. Find the equation of the tangent line to the curve given by $x^2y^2 - x^4 = 6e^{y-2} - 3$ at the point (-1,2).