#### **DISPERSION SHIFT OPTICAL FIBER**

Publication number: JP2001100056

Publication date: 2001-04-13

Inventor: MATSUO SHOICHIRO; TANIGAWA SHOJI

Applicant: FUJIKURA LTD

Classification:

- international: G02B6/036; G02B6/02; (IPC1-7): G02B6/22

- European:

Application number: JP20000224491 20000725

Priority number(s): JP20000224491 20000725; JP19990212949 19990727

### Report a data error here

#### Abstract of JP2001100056

PROBLEM TO BE SOLVED: To provide a dispersion shift optical fiber which meets the conditions that the optical fiber has a substantially single mode and bending loss of <=100 dB/m and can sufficiently increase Aeff and reduce a dispersion slope. SOLUTION: The dispersion shift optical fiber consisting of a center core with a high refractive index, a stepped core 2 which is provided on its outer periphery and which has a lower refractive index than the center core part 1, and a clad 7 which has a lower refractive index than the stepped core 2 and which has a distributed refractive index shape adopts a large-diameter solution for a core diameter and has Aeff of 45 to 70 &mu m2, a dispersion slope of 0.05 to 0.08 ps/km/nm2, bending loss of <=100 dB/m, a wavelength dispersion value of -0.5 to -8.0 ps/km/nm, and a cutoff wavelength allowing substantially single-mode propagation.





Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-100056 (P2001 - 100056A)

(43)公開日 平成13年4月13日(2001.4.13)

(51) Int.Cl.7

識別記号

FΙ G02B 6/22 テーマコート\*(参考)

G02B 6/22

審査請求 未請求 請求項の数4 OL (全 11 頁)

(21)出願番号

特願2000-224491(P2000-224491)

(22)出願日

平成12年7月25日(2000.7.25)

(31) 優先権主張番号 特願平11-212949

(32)優先日

平成11年7月27日(1999.7.27)

(33)優先権主張国

日本(JP)

(71)出願人 000005186

株式会社フジクラ

東京都江東区木場1丁目5番1号

(72)発明者 松尾 昌一郎

千葉県佐倉市六崎1440番地 株式会社フジ

クラ佐倉事業所内

(72)発明者 谷川 庄二

千葉県佐倉市六崎1440番地 株式会社フジ

クラ佐倉事業所内

(74)代理人 100064908

(外3名) 弁理士 志賀 正武

#### (54) 【発明の名称】 分散シフト光ファイバ

# (57)【要約】

【課題】 実質的にシングルモードであり、かつ曲げ損 失が100dB/m以下であるという条件を満足し、か つ十分にAeffの拡大と分散スロープの低減を図るこ とができる分散シフト光ファイバを提供する。

【解決手段】 高屈折率の中心コア部1と、その外周上 に設けられた、中心コア部1よりも低屈折率の階段コア 部2と、階段コア部2よりも低屈折率のクラッド7とか らなる屈折率分布形状を有する分散シフト光ファイバに おいて、コア径として太径解を採用し、使用波長帯にお いて、Aeffが45~70μm²、分散スロープが 0.05~0.08ps/km/nm²、曲げ損失が1 00dB/m以下、波長分散値が-0.5~-8.0p s/km/nmであり、かつ実質的にシングルモード伝 搬となるカットオフ波長を有するものを構成する。







#### 【特許請求の範囲】

[請求項1] 高屈折率の中心コア部と、その外周上に 設けられた、該中心コア部よりも低屈折率の階段コア部 と、該階段コア部の外周上に設けられた、該階段コア部 よりも低屈折率のクラッドとからなる屈折率分布形状を 有する分散シフト光ファイバにおいて、

コア径として太径解を採用し、1490~1625nm から選択される使用波長帯において、Aeffが45~ 70μm'、分散スロープが0.05~0.08ps/ km/nm²、曲げ損失が100dB/m以下、波長分 散値が-0.5~-8.0ps/km/nmであり、か つ実質的にシングルモード伝搬となるカットオフ波長を 有することを特徴とする分散シフト光ファイバ。

【請求項2】 請求項1に記載の分散シフト光ファイバ において、クラッドが、階段コア部の外周上に設けられ た第1クラッドと、該第1クラッドの外周上に設けられ た、該第1クラッドよりも高屈折率の第2クラッドとか らなることを特徴とする分散シフト光ファイバ。

【請求項3】 請求項1または2に記載の分散シフト光 ファイバにおいて、中心コア部の半径をr1、階段コア 部の半径をr2、最も外側のクラッドの屈折率を基準に したときの中心コア部の比屈折率差を△1、階段コア部 の比屈折率差を△2としたとき、

 $r2/r1 m4 \sim 12$ ,  $\Delta 2/\Delta 1 m0$ .  $05 \sim 0$ . 1 5、△1が0.55~0.85%であることを特徴とす る分散シフト光ファイバ。

【請求項4】 請求項2に記載の分散シフト光ファイバ において、中心コア部の半径を r 1、階段コア部の半径 をr2、第1クラッドの半径をr3、最も外側のクラッ ドの屈折率を基準にしたときの中心コア部の比屈折率差 30 を△1、階段コア部の比屈折率差を△2、第1クラッド の比屈折率差を△3としたとき、

 $r2/r1 m4 \sim 12, \Delta 2/\Delta 1 m0.05 \sim 0.1$  $5, \Delta 1 \% 0, 55 \sim 0, 85\%, \Delta 3 \% - 0, 3 \sim 0$ %、 (r 3 - r 2) / r 1が0. 2~4. 0であること を特徴とする分散シフト光ファイバ。

#### 【発明の詳細な説明】

#### [0001]

【発明の属する技術分野】本発明は分散シフト光ファイ バに関し、大きな有効コア断面積を有し、かつ小さい分 40 散スロープを有するものである。

#### [0002]

【従来の技術】光ファイバ増幅器を用いた光増幅中継伝 送システムなどの長距離システムにおいては、非線形光 学効果を低減することが重要である。非線形光学効果の 程度は非線形定数というパラメータが指針となる。非線 形定数はn2/Aeffで示される。CCでn2は非線 形屈折率、Aeffは有効コア断面積である。n2は材 料によりほぼ一定の値をとるため、Aeffを拡大する ことは非線形光学効果を低減するのに効果的な手法であ 50 径を、屈折率分布形状の相似形を保ったまま拡大してい

る。一方、大容量伝送が可能な波長多重伝送システムに おいては、波長分散値の抑制と、分散スローブの低減が 要求される。波長多重伝送システムにおいて、伝送帯域 に零分散波長が存在すると四光子混合と呼ばれる非線形 効果により伝送品質が低下することが知られている。一 方、大きな波長分散値は信号波形の劣化を伴うため、あ る程度の大きさに抑制することが必要である。これらの 相反する要求を満足するために、使用波長帯における波 長分散値を狭い範囲に制御したノンゼロ分散シフトファ イバと呼ばれる光ファイバが開発されている。また波長 多重伝送システムにおいては、分散スロープの低減も重 要である。分散スロープとは、波長分散値の波長依存性 を示すもので、横軸に波長(nm)、縦軸に波長分散値 (ps/km·nm)をとって分散値をプロットした際 の曲線の勾配である。波長多重伝送システムにおいて は、伝送線路(光ファイバ)の分散スロープが大きい と、各波長間の波長分散値の違いが大きくなる。このた め、波長によっては非常に大きな分散値をとることにな り、チャンネルにより伝送品質が大きく異なる等の不都 合が生じる。したがって分散スロープを小さくすること が要求される。以上のAeffや分散に求められる特性 の具体的な値は、適用されるシステムにより異なってく る。例えば、海底システムのように非常に長い距離の伝 搬を行うシステムでは、Aeff拡大による非線形効果 低減が求められる。一方、数十kmから数百km程度ま でのシステムでは、分散スローブの低減による広い波長 帯での分散値の抑制が求められることがある。さらに、 光通信システムの伝送路として、実質的にシングルモー ドであること、曲げ損失を100dB/m以下に保つこ とが最低限の条件として要求される。

【0003】そこで、最近では、例えば特開平10-6 2640号公報、特開平10-293225号公報、特 開平8-220362号公報、特開平10-24683 0号公報などにおいて、様々な屈折率分布形状(屈折率 プロファイル)を用いて、ある程度Aeffの拡大と分 散スロープの低減を図る提案がなされてきた。

【0004】図4(a)~図4(c)はこのような分散 シフト光ファイバの屈折率分布形状の例を示したもので ある。図4(a)はデュアルシェイプコア型(階段型) の屈折率分布形状の一例を示したもので、符号11は中 心コア部であり、その外周上に、この中心コア部11よ りも低屈折率の階段コア部12が設けられてコア14が 形成されている。そして、このコア14の外周上に、前 記階段コア部12よりも低屈折率のクラッド17が設け られている。本出願人は、デュアルシェイプコア型の屈 折率分布形状を有する分散シフト光ファイバにおて、A effの拡大を目指したものとして、細径解を用いたも のを特開平8-220362号公報に開示した。なお、 従来、ある波長において、分散シフト光ファイバのコア

10

20

40

くと、波長分散値が所望の値になる解が2つ以上存在す ることが知られている。このとき、曲げ損失やカットオ フ波長特性などが比較的実用的な範囲にある解のうち、 相対的にコア径が細い解を細径解、太い解を太径解と呼 んでいる。

【0005】図4(b)は、セグメントコア型の屈折率 分布形状の一例を示したもので、高屈折率の中心コア部 21の外周上に低屈折率の中間部22が設けられ、との 中間部22の外周上に、この中間部22よりも高屈折率 で、かつ前記中心コア部21よりも低屈折率のリングコ ア部23が設けられてコア24が構成されている。さら にこのリングコア部23の外周上に、前記中間部22よ りも低屈折率の第1クラッド25が設けられ、この第1 クラッド25の外周上に、この第1クラッド25よりも 高屈折率で、かつ前記中間部22よりも低屈折率の第2 クラッド26が設けられてクラッド27が構成されてい る。なお、本出願人は、セグメントコア型の屈折率分布 形状において、太径解を用いることにより、Aeffの 拡大よりも分散スロープの低減が厳しく要求される光通 信システムに適した分散シフト光ファイバを、特開平 1 1-119045号公報において開示した。

【0006】図4(c)は、Oリング型の屈折率分布形 状の一例を示したもので、中心の低屈折率の中心コア部 31の外周上に高屈折率の周辺コア部32が設けられて 2層構造のコア34が構成されている。そして、このコ ア34の外周上に、前記周辺コア部32よりも低屈折率 のクラッド37が設けられることにより、クラッド37 を含めて3層構造の凹型の屈折率分布形状が構成されて いる。

#### [0007]

【発明が解決しようとする課題】しかしながら、従来提 案されている分散シフト光ファイバにおいては、実質的 にシングルモードであることや、曲げ損失を100dB /m以下に保つという条件下では、A e f f の拡大と分 散スロープの低減を同時に十分に満足することは困難で あった。例えば、特開平8-220362号公報に開示 された細径解を用いたデュアルシェイプコア型のもの は、分散スロープが最小で0.10ps/km/nm² 前後程度であったため、分散スロープの低減が厳しく要 求されるシステムに適用するには不十分な場合があっ た。また、特開平11-119045号公報に開示され た太径解を用いたセグメントコア型のものは、ある程度 最近の波長多重伝送システムにおける要求特性に近いも のが得られる。しかしながら、屈折率が増減する5層構 造からなる屈折率分布形状であるため、各層の位置、 幅、形状などによって微妙に特性が変化する。よって、 製造時に、各層の半径、比屈折率差などの構造パラメー タの髙度な制御性が要求され、その結果、製品歩留まり の向上に限界があった。

[0008] 本発明は前記事情に鑑みてなされたもの

で、実質的にシングルモードであり、かつ曲げ損失が1 00 d B/m以下であるという条件を満足し、かつ十分 にAeffの拡大と分散スロープの低減を図ることがで きる分散シフト光ファイバを提供することを目的とす る。さらにはできるだけ簡単な屈折率分布形状で、所望 の特性を効率よく得られる分散シフト光ファイバを提供 することを目的とする。

#### [0009]

【課題を解決するための手段】本発明者らは、鋭意検討 の結果、デュアルシェイプコア型の屈折率分布形状を有 する分散シフト光ファイバにおいて、太径解を用い、各 層の構造パラメータの範囲や、構造パラメータの各層間 の関係を最適化することによって、前記課題を解決でき ることを見い出し、本発明を完成させた。すなわち、前 記課題を解決するために、本発明においては、以下のよ うな解決手段を提案する。第1の発明は、髙屈折率の中 心コア部と、その外周上に設けられた、該中心コア部よ りも低屈折率の階段コア部と、該階段コア部の外周上に 設けられた、該階段コア部よりも低屈折率のクラッドと からなる屈折率分布形状を有する分散シフト光ファイバ において、コア径として太径解を採用し、1490~1 625nmから選択される使用波長帯において、Aef fが45~70μm²、分散スロープが0.05~0. 08ps/km/nm²、曲げ損失が100dB/m以 下、波長分散値が-0.5~-8.0ps/km/nm であり、かつ実質的にシングルモード伝搬となるカット オフ波長を有することを特徴とする分散シフト光ファイ バである。第2の発明は、第1の発明の分散シフト光フ ァイバにおいて、クラッドが、階段コア部の外周上に設 30 けられた第1クラッドと、該第1クラッドの外周上に設 けられた、該第1クラッドよりも高屈折率の第2クラッ ドとからなることを特徴とする分散シフト光ファイバで ある。第3の発明は、第1または第2の発明の分散シフ ト光ファイバにおいて、中心コアの半径をr1、階段コ ア部の半径をr2、最も外側のクラッドの屈折率を基準 にしたときの中心コア部の比屈折率差を△1、階段コア 部の比屈折率差を△2としたとき、r2/r1が4~1 2、 $\Delta 2/\Delta 1$ が0.  $05\sim 0$ . 15、 $\Delta 1$ が0. 55~0.85%であることを特徴とする分散シフト光ファ イバである。第4の発明は、第2の発明の分散シフト光 ファイバにおいて、中心コア部の半径をrl、階段コア 部の半径をr2、第1クラッドの半径をr3、最も外側 のクラッド(第2クラッド)の屈折率を基準にしたとき の中心コア部の比屈折率差を△1、階段コア部の比屈折 率差を△2、第1クラッドの比屈折率差を△3としたと  $\frac{1}{2}$   $\frac{1}$  $0.15, \Delta 1 \% 0.55 \sim 0.85\%, \Delta 3 \% - 0.$ 3~0%、(r3-r2)/r1が0.2~4.0であ ることを特徴とする分散シフト光ファイバである。

[0010] 50

[発明の実施の形態]図1(a)は本発明の分散シフト 光ファイバの屈折率分布形状の第1の例を示したもので ある。この屈折率分布形状は、中心コア部1の外周上に 階段コア部2が設けられてなるコア4と、その外周上に 設けられた一律の屈折率を有する一層構造のクラッド7 とから構成されている。前記中心コア部1は最も高屈折 率であり、前記階段コア部2はこの中心コア部1よりも 低屈折率であり、また、クラッド7はこの階段コア部2 よりも低屈折率である。また、図中符号r1、r2は、 それぞれ、中心コア部1と階段コア部2の半径を示し、 △1、△2は、それぞれ、クラッド7の屈折率を基準に したときの中心コア部1の比屈折率差と階段コア部2の 比屈折率差を示している。

【0011】この例において、例えば中心コア部1と階 段コア部2は屈折率を上昇させる作用を有するゲルマニ ウムを添加したゲルマニウム添加石英ガラス、クラッド 7は純石英ガラスから構成されている。なお、分散シフ ト光ファイバの屈折宰分布形状においては、図l(a) に示したように各層(中心コア部1、階段コア部2、ク ラッド7) の境界が明確ではなく、丸みを帯びた、いわ 20 すくなるため不都合である。 ゆるだれを生じた状態であってもよく、実効的に本発明 の分散シフト光ファイバとしての特性を得ることができ れば特に限定することはない。

【0012】本発明の分散シフト光ファイバは1490 ~1625nm、一般的には1490~1610nmに わたる波長範囲を主たる使用波長帯とし、実施の仕様に 際しては、これらの範囲から適度な波長幅の波長帯が選 択される。これらの波長帯は、光通信システムに用いる 光ファイバ増幅器による増幅波長帯などにより大きく3 つの波長帯に区分されている。すなわち、1490~1 530nmにわたる波長帯をS-band、1530~ 1565nmにわたる波長帯をC-band、1565 ~1625nm、一般的には1490~1610nmに わたる波長帯をL-bandと称することが多い。現在 用いられているシステムは、主としてC-bandを用 いたものであるが、伝送容量増帯の要求に対応するため に、C-bandに加えてL-bandの利用を想定し たシステムの開発が進められている。

[0013] Aeffは以下の式から求められるもので ある。

[0014] 【数1】

Aeff = 
$$\frac{2\pi \left\{ \int_0^\infty a \mid E(a) \mid^2 da \right\}^2}{\int_0^\infty a \mid E(a) \mid^4 da}$$

a:コアの半径 E(a): 半径aでの電界強度

ffが45μm²未満であると、非線形効果の抑制が不 十分である。Aeffが70μm²をこえるものは製造 が困難である。

【0016】また、使用波長帯における分散スロープ は、上述のように小さい程好ましく、本発明において、 使用波長帯における分散スロープは0.05~0.08 ps/km/nm²という非常に小さい値を実現するこ とができる。O.O8ps/km/nm'をこえると波 長分散値の波長依存性が大きくなり、本発明において 10 は、波長多重伝送システムへの適用に不都合となる場合 がある。0.05ps/km/nm<sup>1</sup>未満のものは製造 が困難である。

【0017】曲げ損失は、使用波長帯において曲げ直径 (2R)が20mmの条件の値をいうものとする。曲げ 損失は小さい程好ましく、本発明において、曲げ損失は 100dB/m以下、好ましくは40dB/m以下とさ れる。100dB/mをこえると、分散シフト光ファイ バに加えられる僅かな曲がりなどによって伝送損失が劣 化しやすく、敷設時や取り扱い時に余分な損失を生じや

【0018】波長分散値は、-0.5~-8.0ps/ km/nmの範囲とされる。-0.5ps/km/nm よりも大きいと波長分散値が零に近くなり、非線形効果 の一つである4光子混合が発生しやすくなるため不都合 である。また、-8. 0 p s / k m / n m よりも小さい と、分散による波形歪みが生じ、伝送特性の劣化が大き くなるため不都合が生じる。ただし、中継距離などシス テムの設計により、実際に許容される分散値の範囲は変 化することがある。

【0019】また、本発明の分散シフト光ファイバはシ ングルモード光ファイバであるため、使用波長帯におい て、実質的にシングルモード伝搬を保証するカットオフ 波長を有する必要がある。通常のカットオフ波長は、C CITTの2m法(以下2m法と記す)による値によっ て規定されている。しかし、実際の長尺の使用状態にお いては、この値が使用波長帯の下限値よりも長波長側で あってもシングルモード伝搬が可能である。

【0020】したがって、本発明の分散シフト光ファイ バにおいて、2m法で規定されるカットオフ波長は、分 散シフト光ファイバの使用長さと使用波長帯によってシ ングルモード伝搬可能であるように設定する。具体的に は、例えば2m法におけるカットオフ波長が1.8μm 以下であれば、5000m程度以上の長尺の状態で、上 述の使用波長帯におけるシングルモード伝搬を実現する

[0021] このような特性を満足するための構成につ いて、検討の経緯とともに以下に説明する。まず、本発 明においては、上述のようにコア径として太径解を用い る。具体的には、シミュレーションによって後述する r  $[0\ 0\ 1\ 5]$  本発明において、使用波長帯におけるAe 50 2/r1、 $\Delta2/\Delta1$ 、 $\Delta1$ の数値範囲を満足する各構 造パラメータを設定するにおいて、コア径が太径解にな るように設定し、かつ、上述の所望の使用波長帯におい て、Aeff、分散スロープなどの特性値を満足する設 計条件を定める。なお、本発明の分散シフト光ファイバ の実際の製造方法としては、CVD法、VAD法などの 従来法を適用することができる。

[0022]図2は、この第1の例の屈折率分布形状を 用いた場合の解析例を示したグラフである。グラフ中に 示されている◇、△、+にそれぞれ対応する5、7、1 Oは、図1(a)に示した中心コア部1と階段コア部2 の半径の比率である r 2/r 1 (階段倍率) の値であ る。横軸はAeff、縦軸は分散スロープを示してい

[0023] このグラフより、r2/r1が大きい程、 Aeffが拡大する傾向があり、かつ分散スロープが小 さくなる傾向があることがわかる。また、上述の波長分 散値と曲げ損失の数値範囲を満足するためには、 r 2/ r 1 は4 倍以上に設定すると好ましい。4 倍未満の場合 は、従来の分散シフト光ファイバよりも良好な特性を実 現することが困難となる。12倍をこえると、製造性が 20 低下するため、不都合である。また、 $\triangle 2/\triangle 1$ は0. 05~0.15であることが望ましい。0.05未満の 場合は、曲げ損失が大きくなるため不都合である。0. 15をこえるとカットオフ波長が長くなり、シングルモ ード伝送を維持できなくなる場合がある。また、△1は 0.55~0.85%とされる。0.55%未満の場合 は波長分散値を所望の値、すなわち使用波長帯において -0.5~-8.0ps/km/nmの範囲内に設定す ることが困難になる。△1を大きくすると、分散値を小 さくすることが可能になるが、0.85%をこえるとA 30 計例を表2に示す。 effを十分に大きくすることが不可能になり不都合で ある。そして、これらr2/r1、 $\Delta2/\Delta1$ および $\Delta$ 1の数値範囲からの数値の組み合わせにおいて、本発明

の分散シフト光ファイバの特性を満足するものを選択し て設計する。なお、本発明の分散シフト光ファイバにお いて、r2、すなわちコアの半径は特に限定するもので はない。通常10~25μmの範囲となる。また、クラ ッド7の外径は、通常約125μmとされる。

【0024】表1に、このような条件を満足する分散シ フト光ファイバの具体的な設計例を示す。表中のλcfは 2m法によるファイバカットオフ波長、λopは特性の測 定波長、MFDはモードフィールド径を示す。いずれの 例においてもAeff、分散スロープ、波長分散値、曲 げ損失、カットオフ波長の好ましい数値範囲を満足し、 波長多重伝送システムに適した特性が得られている。図 5に示したグラフ(a)は、表1に示したプロファイル における波長分散値の波長依存性の例を示したものであ る。表1に示した各プロファイルは、いずれもほぼ同様 な波長依存性を持っており、1570nm付近までのC -bandと呼ばれる領域において、-0.5ps/k m/nm以下の分散値をとっており、C-bandを用 いたWDM(wave\_length division multiplexing;彼 長分割多重 ) 伝送システムに適した光ファイバである ことが分かる。また図5中のグラフ(b)で示されるよ うな波長分散値の波長依存性をとる場合には、-0.5 ps/km/nm以下の波長分散値をとる範囲を160 0 n m付近まで拡大することができる。つまり図5のグ ラフ(a)に示されるような特性を持つ光ファイバに比 べて、図5のグラフ(b)に示されるような特性を持つ 光ファイバによれば、WDM伝送システムに利用可能な 波長範囲を拡大することが可能となる。図5のグラフ (b) に示されるような特性を実現するプロファイル設

[0025]

【表1】

|                            |       |          | 9     |       |       |       |       |       |       |       |       |       |       |          |       |       |       |       |       |       |       |       | _     | 1     | U     |       |       |
|----------------------------|-------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 山損失 at 20¢<br>[dD/m]       | 4.0   | 11.8     | 35.5  | 1.4   | 4.3   | 13.5  | 8.6   | 26.9  | 75.0  | 1.4   | 4.2   | 12.6  | 10.2  | 26.5     | 69.5  | 26.3  | 64.5  | 159.0 | 7.1   | 17.7  | 44.4  | 7.8   | 19.9  | 51.0  | 34.4  | 83.0  | 202.0 |
| 分散スロープ<br>[ps/km/nm²]      | 0.064 | 0.062    | 0.062 | 0.071 | 0.071 | 0.071 | 0.063 | 0.062 | 0.061 | 0.073 | 0.073 | 0.074 | 0.067 | 0.066    | 990:0 | 0.066 | 0.065 | 0.064 | 0.076 | 0.076 | 0.077 | 0.071 | 0.071 | 0.072 | 0.067 | 0.066 | 0.066 |
| 故長分散<br>[ps/km/nm]         | -5.69 | -1.93    | 2.71  | -6.18 | -1.95 | 3.33  | -5.63 | -1.89 | 5.69  | -6.59 | -2.20 | 3.33  | -6.48 | -2.50    | 2.46  | -5.81 | -1.90 | 2.92  | -7.20 | -2.64 | 3.10  | -6.24 | -1.98 | 3.39  | -6.11 | -2.12 | 2.83  |
| MFD<br>[µm]                | 7.76  | 8.21     | 8.83  | 7.76  | 8.22  | 8.83  | 7.78  | 8.23  | 8.86  | 8.11  | 8.62  | 9:30  | 8.12  | 8.63     | 9.33  | 8.14  | 8.65  | 9.35  | 8.30  | 8.84  | 9.57  | 8.29  | 8.83  | 9.56  | 8.30  | 8.84  | 9.58  |
| Α <sub>εί</sub><br>[μm²]   | 44.63 | 50.06    | 58.13 | 44.64 | 50.12 | 58.09 | 44.82 | 50.31 | 58.50 | 48.81 | 55.30 | 64.81 | 48.97 | 55.47    | 65.22 | 49.12 | 55.67 | 65.56 | 51.23 | 58.39 | 68.93 | 51.09 | 58.16 | 68.72 | 51.16 | 58.23 | 96.89 |
| λ <sub>op</sub><br>[nm]    | 1490  | 1550     | 1625  | 1490  | 1550  | 1625  | 1490  | 1550  | 1625  | 1490  | 1550  | 1625  | 1490  | 1550     | 1625  | 1490  | 1550  | 1625  | 1490  | 1550  | 1625  | 1490  | 1550  | 1625  | 1490  | 1550  | 1625  |
| λ <sub>cf</sub><br>[nm]    |       | 1238     |       |       | 1139  |       |       | 995   |       |       | 1563  | -     |       | 1448     |       |       | 1279  |       |       | 1346  |       |       | 1519  |       | 10.0  | 1623  |       |
| 2 × r <sub>2</sub><br>[µm] |       | 35.23    |       |       | 21.27 |       |       | 44.01 |       |       | 25.43 |       |       | 34.81    |       |       | 43.58 |       |       | 24.99 |       |       | 29.93 |       |       | 43.37 |       |
| Δ <sub>1</sub>             |       | 0.635    |       |       | 0.660 |       |       | 0.620 |       |       | 0.655 |       |       | 0.615    |       |       | 0.600 |       |       | 0.630 |       |       | 0.620 |       |       | 0.600 |       |
| Δ2/Δ1                      |       | 0.08     |       |       | 0.10  |       |       | 90.0  |       |       | 0.14  |       |       | 0.10     |       |       | 0.08  |       |       | 0.12  |       |       | 0.12  |       |       | 0.10  |       |
| 1,/21                      |       | <b>∞</b> |       |       | S     |       |       | 21    |       |       | 9     |       |       | <b>∞</b> |       |       | 9     |       |       | 9     |       |       | ~     |       | -     | 01    |       |

【表2】

| 1,    | V/ V      | ۵ ،  | 2×12    | λα   | $\lambda_{op}$ | Aett               |      | 被長分散       | 分散スロープ                   | 曲損失 at 20ф |
|-------|-----------|------|---------|------|----------------|--------------------|------|------------|--------------------------|------------|
| 1,/2, | 1 1 / 2 1 | [%]  | [mm]    | [nm] | [nm]           | [hm <sup>2</sup> ] | [hm] | [ps/km/nm] | [ps/km/nm <sup>2</sup> ] | [dB/m]     |
|       |           |      |         |      | 1490           |                    | 7.83 | -8.36      | 0.073                    | 2.2        |
| 6.5   | 0.114     | 0.70 | 26.13   | 1425 | 1550           | 51.81              | 8.33 | -3.99      | 0.073                    | 6.8        |
|       |           |      |         |      | 1625           |                    | 9.05 | 1.57       | 0.075                    | 20.6       |
|       |           |      |         |      | 1490           |                    | 7.78 | -8.81      | 0.079                    | 5.4        |
| 2.0   | 980.0     | 0.70 | 19.32   | 1004 | 1550           |                    | 8.29 | -4.08      | 0.079                    | 14.5       |
|       |           |      |         |      | 1625           |                    | 8.96 | 1.84       | 0.079                    | 39.0       |
|       |           |      |         |      | 1490           |                    | 7.61 | -8.60      | 0.068                    | 2.7        |
| 7.0   | 0.086     | 0.70 | 28.32   | 1223 | 1550           |                    | 8.09 | -4.53      | 0.068                    | 8.5        |
|       |           |      |         |      | 1625           |                    | 8.75 | 0.61       | 0.070                    | 26.5       |
|       |           |      |         |      | 1490           |                    | 7.49 | -9.62      | 0.075                    | 0.7        |
| 5.5   | 0.107     | 0.75 | . 21.33 | 1234 | 1550           |                    | 7.97 | -5.10      | 0.076                    | 2.5        |
|       |           |      |         |      | 1625           | 1                  | 8.60 | 0.63       | 0.077                    | 8.8        |
|       |           |      |         |      | 1490           |                    | 7.35 | -7.67      | 0.064                    | 1.8        |
| 7.0   | 0.057     | 0.70 | 29.06   | 991  | 1550           |                    | 7.78 | -3.89      | 0.063                    | 5.9        |
| ļ     |           |      |         |      | 1625           |                    | 8.37 | 0.81       | 0.063                    | 20.1       |

【0026】図1(b)は本発明の分散シフト光ファイ バの屈折率分布形状の第2の例を示したものである。と の屈折率分布形状が上述の第1の例の屈折率分布形状と 異なるところは、クラッド7が第1クラッド5と第2ク ラッド6とからなる2層構造となっている点である。と のクラッド7において、最も外側の第2クラッド6の屈 折率が高く、第1クラッド5は、この第2クラッド6よ りも低屈折率となっている。また、図中符号 r 3 は第1 クラッド5の半径、Δ3は、最も外側の第2クラッド6 の屈折率を基準にしたときの第1クラッド5の比屈折率 50 段コア部2、第1クラッド5、第2クラッド6)の境界

差である。なお、r1、r2は図1(a)に示したもの と同様であり、△1、△2は、それぞれ、第2クラッド 6の屈折率を基準にしたときの中心コア部1の比屈折率 差と階段コア部2の比屈折率差を示している。

【0027】との例において、例えば中心コア部1と階 段コア部2はゲルマニウム添加石英ガラス、第1クラッ ド5は屈折率を下降させる作用を有するフッ素を添加し たフッ素添加石英ガラス、第2クラッド6は純石英ガラ スから構成されている。なお、各層(中心コア部1、階

が明確ではなく、丸みを帯びた、いわゆるだれを生じた 状態であってもよいことは、第1の例と同様である。第 2の例の屈折率分布形状を有する分散シフト光ファイバ においては、中心コア部1と階段コア部2のそれぞれの 構造パラメータ(r1、Δ1)および(r2、Δ2) が、上述の第1の例において示した r 2/r 1、Δ2/ △1、△1の数値範囲を満足するように、かつ、本発明 のAeffなどの特性値を実現できるように設定するこ とにより、第1の例と同様の効果が得られる。

13

【0028】さらに、第1クラッド5を付加した構成と したことにより、第1の例と比較して、より曲げ損失を 低減することが可能となる。特に限定するものではない が、この第2の例の屈折率分布形状を採用することによ り、曲げ損失は100dB/m以下、好ましくは40d B/m以下に設定することができる。また、構造パラメ ータの設定(組み合わせ)によっては、さらにカットオ フ波長を短くすることができ、また、さらにAeffを 拡大できるという効果を得ることができる。

【0029】図3は、Δ1、Δ2、r1、r2を固定  $\cup$ 、 $\triangle$ 3  $\lor$  r 3  $\lor$  を変化させたときの、 $\triangle$ 3  $\lor$  (r 3  $\lor$  r 20 フト光ファイバの具体的な設計例を示したものである。 2) / r 1の組み合わせによる曲げ損失の変化を示した グラフである。 横軸は (r3-r2) / r1、 縦軸は △ 3の値を示している。このグラフより、△3が零からマ イナスにシフトする程、すなわち第1クラッド5の屈折 率が小さくなり、第1クラッド5による屈折率の落ち込 みが大きくなる程、曲げ損失が小さくなる傾向がある。 また、(r3-r2)/r1、すなわちr3の値が大き くなる程、曲げ損失が小さくなる傾向がある。

【0030】このように、曲げ損失は△3と(r3-r 2) / r 1 との組み合わせによって変化するため、曲げ 30

損失の好ましい数値範囲を満足するための第1クラッド 5の構造パラメータ(△3、ょ3)の設定においては、 比較的自由度が大きい。例えば図3において、(r3r2)/r1が0.6、△3が-0.18%の組み合わ せと、(r3-r2)/rが1.8、 $\triangle3が-0.05$ %の組み合わせとでは、いずれも30dB/m程度の曲 げ損失を得ることができる。よって、曲げ損失のみを考 えれば、これらのうちのいずれの組み合わせを採用して もよいことになる。しかしながら、△3が小さくなると (マイナス側にシフトすると) 伝送損失が悪化する傾向 があるため、△3は-0.3%以上であることが望まし い。また、(r3-r2)/r1が大きくなると(r3 が大きくなると)、製造上問題が生じるので、(r3r2)/r1は4. O以下に設定すると好ましい。さら に、(r3-r2)/r1が小さくなると、 $\triangle 3$ を小さ く設定する必要があるため、伝送損失が劣化する傾向が あり、また、製造上においても問題が生じるため、(r 3-r2)/r1は0.2以上であることが好ましい。 【0031】表3は、このような条件を満足する分散シ いずれも本発明のAeff、分散スロープ、波長分散 値、曲げ損失、カットオフ波長の好ましい数値範囲を満 足し、波長多重伝送システムに適した特性が得られてい る。この表の設計例は主としてC-bandでの適用を 想定した例となっている。第1の例と同様に、C-ba ndのみならずL-bandでの仕様も想定した設計が 可能である。

[0032]

【表3】

| 政長分散 分散スローブ 曲損失 at 20φ<br>ps/km/nm] [ps/km/nm²] [dB/m]<br>-5.93 0.067 5.5<br>-1.92 0.067 14.9<br>3.10 0.072 4.2<br>-6.69 0.072 4.2<br>-2.40 0.072 10.9<br>3.03 0.071 3.5<br>-1.93 0.071 9.2<br>3.43 0.072 24.3<br>-6.48 0.072 24.3<br>-6.48 0.072 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.064          | 0.064 132.5<br>3 0.066 5.7<br>5 0.065 14.7 |                         |                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------|-------------------------|-------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                            | 0.065                   | 0.066<br>0.065<br>0.065 |
| 分校<br>Mwnm]<br>93<br>92<br>92<br>92<br>69<br>69<br>69<br>17<br>17<br>17<br>17<br>13<br>13<br>13<br>16<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -6.22          | 2 20 2                                     |                         |                         |
| 成为 (DS/K) (DS/K |                | 2.46<br>-5.88<br>-1.96                     | -6.15<br>-2.23<br>2.64  | -6.20<br>-2.30<br>2.52  |
| MFD [μm] 8.03 8.52 8.52 8.61 8.10 8.61 8.61 8.59 8.59 8.59 8.59 8.59 8.59 8.59 8.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.09           | 8.10<br>8.60<br>9.30                       | 8.60<br>9.30            | 8.09<br>8.60<br>9.29    |
| Aeff [µm2] 47.80 54.02 63.27 48.75 55.25 64.83 48.51 54.99 64.41 48.84 55.36 64.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 48.55<br>54.94 | 64.57<br>48.64<br>55.06<br>64.71           | 48.64<br>55.06<br>64.71 | 48.58<br>54.98<br>64.62 |
| A op [nm] 1490 1490 1550 1625 1625 1625 1625 1625 1625 1625 1625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1550           | 1625<br>1490<br>1550                       | 1490                    | 1490<br>1550<br>1625    |
| λcf [nm] 1346 1235 1259 1304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1488           | 1496                                       | 1567                    | 1491                    |
| 2×r <sub>3</sub> [µm]<br>30.41<br>31.96<br>34.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 43.7           | 47.99                                      | 50.17                   | \$2.41                  |
| 63<br>0<br>0 0.0.3<br>-0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0              | -0.3                                       | -0.3                    | -0.06                   |
| 0.625<br>0.625<br>0.625<br>0.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.61           | 0.61                                       | 0.61                    | 0.61                    |
| 0.1<br>0.1<br>0.1<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.09           | 0.09                                       | 0.09                    | 0.09                    |
| 0 0.5 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0              | -                                          | 1.5                     | 2                       |
| 1,1/2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10             | 10                                         | 10                      | 10                      |

#### [0033]

【発明の効果】以上説明したように本発明においては、 実質的にシングルモードであり、かつ曲げ損失が100 dB/m以下であるという条件を満足し、かつ十分にA effの拡大と分散スロープの低減を図ることができる 分散シフト光ファイバが得られ、特に本発明において は、非常に小さい分散スローブの値を実現することがで きる。よって、特に波長多重伝送システムに対して最適 な分散シフト光ファイバを提供することができる。ま た、比較的簡単な屈折率分布形状を有するため、製造時 に制御すべき構造バラメータの数が少なく、製造上有利 50 【図4】 図4(a)~図4(c)は、従来の分散シフ

40 であり、所望の特性を効率よく得られる。

【図面の簡単な説明】

【図1】 図1(a)、図1(b)は、それぞれ、本発 明の分散シフト光ファイバの屈折率分布形状の第1の例 と第2の例を示した図である。

【図2】 図1(a)に示した第1の例の屈折率分布形 状を用いた場合の解析例を示したグラフである。

【図3】 図1(b)に示した第2の例の屈折率分布形 状を用いた場合の△3と(Γ3-Γ2)/Γ1の組み合 わせによる曲げ損失の変化を示したグラフである。

ト光ファイバの屈折率分布形状の例を示した図である。 【図5】 本発明に係る分散シフト光ファイバの波長分 散値の波長依存性の例を示したグラフである。

17

## \*【符号の説明】

1…中心コア部、2…階段コア部、4…コア、5…第1 クラッド、6…第2クラッド、7…クラッド。

[図1]



[図2]



(b)



[図4]



【図3】



(c)

[図5]

