### An introduction to probability theory

Reuy-Lin Sheu

Department of Mathematics, National Cheng Kung University, Tainan, Taiwan

September 14th, 2023

#### Probability Theory is a mathematical model

- ► The mathematical theory of probability involves with conceptual experiments such as tossing a fair coin for 100 times; throwing three dice and so forth.
- In a real experiment when a coin is tossed, it does not necessarily fall heads or tails; it might roll away or even stand on its edge.
- ► However, in probability theory, "tossing a coin" is a mathematical model in which we agree that "head" or "tail" are the only possible "outcomes" to be observed. Nothing more!
- ► Therefore, "outcome" in probability theory is more like a hypothetical term than something real that might possibly happen in an experiment.

### A $\sigma$ -algebra in Probability space

- Let  $\Omega$  be a sample space consists of certain outcomes  $\omega \in \Omega$ . A  $\sigma$ -algebra is a collection  $\mathcal G$  of subsets of  $\Omega$  such that
  - (i)  $\emptyset \in \mathcal{G}$ ;
  - (ii) If  $A \in \mathcal{G}$ , then its complement  $A^c \in \mathcal{G}$ ;
  - (iii) Let  $\{A_i\}_{i=1}^{\infty}$  is a sequence of sets in  $\mathcal{G}$ , then  $\bigcup_{i=1}^{\infty} A_i$  also belongs to  $\mathcal{G}$ .
  - (iii)' The above definitions also imply that, if  $\{A_i\}_{i=1}^{\infty}$  is a sequence of sets in  $\mathcal{G}$ , then  $\{A_i^c\}_{i=1}^{\infty}$  is a sequence of sets in  $\mathcal{G}$  (by (ii)). By (iii), we know  $(\bigcup_{i=1}^{\infty}A_i^c) \in \mathcal{G}$ . Again, by (ii),  $(\bigcup_{i=1}^{\infty}A_i^c)^c = \bigcap_{i=1}^{\infty}A_i \in \mathcal{G}$ .
- In other words, a  $\sigma$ -algebra is a set of "subsets of  $\Omega$ " such that, it contains  $\emptyset$ ,  $\Omega$  and it is closed under (a) the complement operation of a set; as well as closed under (b) countable unions; and (c) countable intersections.
- **Elements** in the  $\sigma$ -algebra are called the "events."
- ▶ In general, there are many  $\sigma$ -algebras associated with a sample space  $\Omega$ , among which the most trivial one is  $\mathcal{F}_0 = \{\emptyset, \Omega\}$ .

#### Examples of $\sigma$ -algebras

- ▶ Let  $\Omega_3 = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$  be the sample space (background space) for tossing a coin three times.
- ▶ The trivial  $\sigma$ -algebra is  $\mathcal{F}_0 = \{\emptyset, \Omega_3\}$ .
- ▶ The next simplest  $\sigma$ -algebra associated with  $\Omega_3$  is the  $\sigma$ -algebra  $\mathcal{F}_1$  consisting of information of only the first toss.
- Let us define

$$A_H \triangleq \{HHH, HHT, HTH, HTT\} = \{H \text{ on the first toss }\}$$
  
 $A_T \triangleq \{THH, THT, TTH, TTT\} = \{T \text{ on the first toss }\}$ 

► Then, it is easy to see that  $\mathcal{F}_1 = \{\emptyset, \Omega_3, A_H, A_T\}$  is a  $\sigma$ -algebra which matters only the first coin toss.

# $\sigma$ -algebra $\mathcal{F}_2$ consisting of information up to the second toss.

Similarly, we can define

```
A_{HH} \triangleq \{HHH, HHT\} = \{HH \text{ on the first two tosses }\}
A_{HT} \triangleq \{HTH, HTT\} = \{HT \text{ on the first two tosses }\}
A_{TH} \triangleq \{THH, THT\} = \{TH \text{ on the first two tosses }\}
A_{TT} \triangleq \{TTH, TTT\} = \{TT \text{ on the first two tosses }\}
```

- ▶ Then, the information of the first toss is  $A_H = A_{HH} \cup A_{HT}$  and  $A_T = A_{TH} \cup A_{TT}$ . The information of the second toss is  $A_{HH} \cup A_{TH}$  and  $A_{HT} \cup A_{TT}$ . There are also information about two tosses are the same:  $A_{HH} \cup A_{TT}$ ; two tosses are different:  $A_{HT} \cup A_{TH}$ ; at least one tail in two tosses:  $A_{HH}^c$ ; at least one head in two tosses:  $A_{TT}^c$ ; etc.
- All types of information generated up to the second toss form the following  $\sigma$ -algebra:

$$\mathcal{F}_{2} = \left\{ \begin{array}{l} \emptyset, \Omega, A_{HH}, A_{HT}, A_{TH}, A_{TT}, \\ A_{H}, A_{T}, A_{HH} \cup A_{TH}, A_{HT} \cup A_{TT}, A_{HH} \cup A_{TT}, A_{HT} \cup A_{TH}, \\ A_{HH}^{c}, A_{HT}^{c}, A_{TH}^{c}, A_{TT}^{c} \right\}.$$

# Complete information arising from all three coin tosses in $\Omega_3$

Notice that the  $\sigma$ -algebra  $\mathcal{F}_2$  can be viewed as the set of all subsets of  $\{A_{HH}, A_{HT}, A_{TH}, A_{TT}\}$ . That is,

$$\mathcal{F}_2 = 2^{\{A_{HH}, A_{HT}, A_{TH}, A_{TT}\}}.$$

- ▶ In this sense, we say that the  $\sigma$ -algebra  $\mathcal{F}_2$  is generated by the subsets  $\{A_{HH}, A_{HT}, A_{TH}, A_{TT}\} \subset \Omega_3$  (and their complements, countable unions and countable intersections).
- ▶ The total number of elements in  $\mathcal{F}_2$  is  $2^4 = 16$ .
- The complete information for all three coin tosses in  $\Omega_3$  is the  $\sigma$ -algebra  $\mathcal{F}_3$  that contains all subsets of  $\Omega_3$ . That is,

$$\mathcal{F}_3 = 2^{\Omega_3}, \ |\mathcal{F}_3| = 2^8 = 256.$$

Notice that

$$\mathcal{F}_0 \subset \mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_3$$
.

### The Borel $\sigma$ -algebra and a random variable

- ▶ The Borel  $\sigma$ -algebra, or just called Borel-algebra, denoted by  $\mathcal{B}(\mathbb{R})$ , is the smallest  $\sigma$ -algebra "generated" by all open intervals in  $\mathbb{R}$ .
- ▶ Members in  $\mathcal{B}(\mathbb{R})$  are called Borel sets.
- ▶ Let us emphasize that, the word "generate" means to take all the complements, countable unions and countable intersections.
- The Borel-algebra thus consists of all types of sets, including all open intervals (a,b) in  $\mathbb{R}$ ; all open half lines  $(a,\infty)=\bigcup_{n=1}^{\infty}(a,a+n),\ (-\infty,a)$ ; all closed intervals [a,b], closed half lines; half-open half-closed intervals (a,b]; and any singleton set  $\{a\}$ .
- Let  $\Omega$  be a sample space and  $\mathcal{F}=2^{\Omega}$  be the largest  $\sigma$ -algebra consisting of all the subsets of  $\Omega$ . A random variable X is a real value function  $X: (\Omega, \mathcal{F}) \mapsto (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ .



#### $\sigma$ -algebras generated by random variables

▶ The  $\sigma$ -algebra  $\sigma(X)$  generated by X is defined by

$$\sigma(X) = \{X^{-1}(B) : B \text{ is a Borel set in } \mathbb{R}\}$$

where  $X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\}$  is the pre-image of B.

- For example, in the binomial asset pricing model, the stock prices  $S_1, S_2, S_3$  at time 1, 2, 3, respectively, are random variables on  $(\Omega_3, \mathcal{F}_3 = 2^{\Omega_3})$ .
- ▶  $S_1$  takes values only on  $\{uS_0, dS_0\}$ .  $S_2$  takes values on  $\{u^2S_0, udS_0, d^2S_0\}$ .  $S_3$  takes values on  $\{u^3S_0, u^2dS_0, ud^2S_0, d^3S_0\}$ .
- ▶ Suppose  $S_0 = 4$ , u = 2, d = 0.5. Then,  $S_1$  takes values on  $\{8, 2\}$ . If we take the Borel set as  $(-\infty, 0)$ , Obviously,  $S_1^{-1}((-\infty, 0)) = \emptyset$ .
- Moreover,  $S_1^{-1}((0,3)) = A_T = \{THH, THT, TTH, TTT\}$ , and  $S_1^{-1}((4,30]) = A_H$ ,  $S_1^{-1}(\{2,4,6,8\}) = \Omega_3$ .
- ▶ It is not difficult to see that the  $\sigma$ -algebra  $\sigma(S_1)$  generated by  $S_1$  is exactly  $\mathcal{F}_1$ .



#### $\sigma$ -algebras generated by random variables



► For  $S_2$ , it generates  $\sigma(S_2) \subset \mathcal{F}_2 \subset \mathcal{F}_3$  $\sigma(S_2) = \{\emptyset, \Omega, A_{HH}, A_{TT}, A_{HH}^c, A_{TT}^c, A_{HH} \cup A_{TT}, A_{HT} \cup A_{TH}\}.$ 

$$\mathcal{F}_{2} = \{ \emptyset, \Omega, A_{HH}, A_{HT}, A_{TH}, A_{TT}, \\ A_{H}, A_{T}, A_{HH} \cup A_{TH}, A_{HT} \cup A_{TT}, A_{HH} \cup A_{TT}, A_{HT} \cup A_{TH}, \\ A_{HH}^{c}, A_{TT}^{c}, A_{TH}^{c}, A_{TT}^{c} \}.$$

▶ We say that X is  $\mathcal{G}$ -measurable if  $\sigma(X) \subset \mathcal{G}$ . Therefore,  $S_2$  is both  $\mathcal{F}_2$ -measurable and  $\mathcal{F}_3$ -measurable, but is not  $\mathcal{F}_1$ -measurable.

# Probability measure P on $(\Omega, \mathcal{F})$

- Let  $\Omega$  be a sample space and the  $\sigma$ -algebra  $\mathcal F$  contains some partial information of the experiment.
- A probability measure P is a real value function on the  $\sigma$ -algebra  $\mathcal F$  so that measure P(A) for  $A \in \mathcal F$  gives a quantitative description for the chance of event A to happen.
- ▶ A probability measure P on  $(\Omega, \mathcal{F})$  must satisfy
  - 1.  $P(A) \in [0,1], \forall A \in \mathcal{F};$
  - 2.  $P(\Omega) = 1$ ;
  - 3. if  $A_1, A_2, \ldots$  is a sequence of disjoint sets in  $\mathcal{F}$ , then

$$P(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} P(A_k).$$

# Probability measure P on $(\Omega, \mathcal{F})$

- ▶ In most of the occasions, we do not (cannot) specify the probability measure for every event in the sigma algebra.
- Rather, we only specify the probability measure for certain events, but require to compute the probability for others that might interest us.
- For example, in the probability space  $(\Omega_3, \mathcal{F}_3)$ , we only define  $P(H) = \frac{1}{3}, P(T) = \frac{2}{3}$ . Then, by assuming the independence among different coin tosses, we can compute

$$P(HHH) = (\frac{1}{3})^3, \ P(HHT) = P(HTH) = P(THH) = (\frac{1}{3})^2(\frac{2}{3})$$
  
 $P(TTT) = (\frac{2}{3})^3, \ P(TTH) = P(THT) = P(HTT) = (\frac{1}{3})^2(\frac{2}{3})$ 

▶ Moreover, we can compute, using definition 3., e.g.,

$$P(A_{H}) = P(\{HHH, HHT, HTH, HTT\})$$

$$= P(HHH) + P(HHT) + P(HTH) + P(HTT)$$

$$= (\frac{1}{3})^{3} + 2(\frac{1}{3})^{2}(\frac{2}{3}) + (\frac{1}{3})(\frac{2}{3})^{2} = \frac{1}{3}.$$



<sup>&</sup>lt;sup>1</sup>to be elaborated soon

## Induced measure on Borel sets by a random variable

- Let  $(\Omega, \mathcal{F}, P)$  be probability space and  $X: (\Omega, \mathcal{F}, P) \mapsto (\mathbb{R}, \mathcal{B}(\mathbb{R}))$  be a random variable on  $\Omega$ .
- We can utilize P on  $\mathcal{F}$  to define an induced measure  $\mathcal{L}_X$  by X on the Borel algebra  $\mathcal{B}(\mathbb{R})$  by

$$\mathcal{L}_X(B) = P(X^{-1}(B)) = P(X \in B).$$

For example, in the binomial asset pricing model with  $S_0=4$ , u=1/d=2 and  $P(H)=\frac{1}{3}$ , we can use the stock price at time 3,  $S_3$ , to induce the following measure  $\mathcal{L}_{S_3}$  on Borel sets

#### Induced measure on Borel sets by a random variable



▶ The induced measure  $\mathcal{L}_{S_3}$  evaluates  $\emptyset$  as 0, while the whole  $\mathbb{R}$  has a total measure of 1 under  $\mathcal{L}_{S_3}$ :

$$\mathcal{L}_{S_3}(\emptyset) = P(S_3 \in \emptyset) = P(\emptyset) = 0; \; \mathcal{L}_{S_3}(\mathbb{R}) = P(S_3 \in \mathbb{R}) = P(\Omega_3) = 1;$$

▶ For other Borel sets,  $\mathcal{L}_{S_3}$  gives a measure which might be quite different for the usual Borel measure:

$$\mathcal{L}_{S_3}((8,50)) = P(HHH) = (\frac{1}{3})^3$$
; and   
  $\mathcal{L}_{S_3}([8,50)) = P(\{HHH, HHT, HTH, THH\}) = \frac{1}{3}^3 + 3\frac{1}{3}^2 \cdot \frac{2}{3} = \frac{7}{27}$ .

# Induced measure represented by a cumulative distribution function



A common way to record the information from the induced measure is to give the *cumulative distribution function*  $F_{S_3}(x)$  defined as  $F_{S_3}(x) = P(S_3 \in (-\infty, x])$ 

$$F_{S_3}(x) = P(S_3 \le x) = \begin{cases} 0, & \text{if } x < 0.5, \\ \frac{8}{27}, & \text{if } 0.5 \le x < 2, \\ \frac{20}{27}, & \text{if } 2 \le x < 8, \\ \frac{26}{27}, & \text{if } 8 \le x < 32, \\ 1, & \text{if } 32 \le x. \end{cases}$$

#### Homework Exercise: Prob. Review #1

- ▶ The same random variable can have many different distributions. Suppose we set  $p=q=\frac{1}{2}$ . Then, the same random variable  $S_3$  induces a different measure (from the one induced by  $p=\frac{1}{3}$  in the above example) on the Borel sets. Please write down the cumulative distribution function  $F_{S_3}(x)$  in this case.
- Two different random variables can have the same distribution. Consider the following two securities:
  - (A) An European call with strike price 14 expiring at time 2. The value of this call option at time 2 is a random variable  $(S_2 14)^+$ .
  - (B) An European put with strike price 3 expiring at time 2, which allows the buyer to sell the stock at price 3 to the agent. The value of this put option at time 2 is a random variable  $(3 S_2)^+$ .

Show that, with the probability for one toss set at  $p=q=\frac{1}{2}$ , and  $S_0=4$ , u=1/d=2, the two options have the same cumulative distribution function.

The End for the section of Probability Theory Review Thank you for listening!

Any question?