Finite Automata - Programs that can read the input once - The values stored in any variable is a constant, independent of the length of the rigarit Q: Write a program - that checks if - the length of - the riport is even P = 0while inplied $\pm L$ P = 1-p 0,1 0,1refurn p * Captures many simple computational problems - Lexical analyzer of a compiler -> As a language L = Set of all binary strings of even length if $z \in L$, accept -> after neading The injent should be in an accepting Ly after neading state - The might should be in a non-accepting state

Definition: A Deterministic Finite Automaton (DFA) is a 5-tuple $(Q, \Sigma, S, 20, F)$ where
is a 5-tuple (Q, \S, 8, 20, F) where
* Q - set of states
* 5 - alphabet * 5 - transition function
* 0 - Transition function
$S: QX \Sigma \to Q$
* 9- Start state * FCQ- Set of final/accepting States
* FCQ - SEF of final / accepting stalls