Raport z projektu:

Prognozowanie ultra-krótkoterminowe zapotrzebowania na energię systemu elektroenergetycznego z kwantyzacją 15 minutową

1. Prognozowanie ultra-krótkoterminowe i wskaźniki jakości prognozy

Prognozowanie ultra-krótkoterminowe wykorzystywane w elektroenergetyce wykorzystuje się do sterowania produkcją energii w elektrowniach oraz zarządzania siecią elektroenergetyczną. Badania nad prognozowaniem, w tej dziedzinie, istnieją od kilkudziesięciu lat. Podczas prognozowania wykorzystuje się różne dane - głównie dane historyczne o zapotrzebowaniu elektroenergetycznym oraz dane pogodowe (lokalne czy dla całego kraju).

Wskaźniki jakości prognozy - przede wszystkim są to MAE oraz MAPE.

MAE (mean absolute error) - średni błąd bezwzględny, informuje on o ile średnio w okresie prognoz, będzie wynosić odchylenie od wartości rzeczywistej. Krótko mówiąc, jakim błędem miarowym jest obarczona prognoza.

MAPE (mean absolute percentage error) - średni bezwzględny błąd procentowy informuje o średniej wielkości błędów prognoz dla okresu testowego, wyrażonych w procentach. Wartość *MAPE* pozwala na porównanie dokładność prognoz różnych modeli.

2. Dane wykorzystane w projekcie

Cały projekt wykonany został w pakiecie R, wykorzystując odpowiednie biblioteki: readr, MASS, e1071, rpart, randomForest, tidyverse, lubridate, stringr, caret, FNN, plotly

Dane do projektu zostały pobrane z serwisu: https://data.open-power-system-data.org/ Są tam dane *Time Series* z 37 krajów Europy, które mają znaczniki czasowe co 15, 30 i 60 minut. Dane są szczegółowo zebrane z ostatnich kilku lat.

Do projektu wybrane zostały dane z Węgier, z kwantyzacją 15 minutową. W pliku znajdowały się dane:

- 1) Znacznik czasowy UTC
- 2) Teraźniejsze zapotrzebowanie na energie
- 3) Prognoza zapotrzebowania
- 4) Teraźniejsza generacja energii z farm wiatrowych

Podczas wstępnej obróbki danych dokonano podziału i odpowiedniej interpretacji danych. W wyniku wcześniejszych czynności powstała tablica, w której były kolumny z danymi:

- 1) Time = Czas UTC
- 2) Load_Now = Teraźniejsze zapotrzebowanie na energię
- 3) Hour = godziny (wydobyte z kolumny "Time"
- 4) Load_Min15 = dane cofniete o 15 minut
- 5) Load Min30 = dane cofniete o 30 minut
- 6) Load_Min45 = dane cofniete o 45 minut
- 7) Load_Day1B = dane cofniete o 1 dzień
- 8) Load Day1B15min = dane cofniete o 1 dzień i 15 minut
- 9) Load_Day1Bp15min = dane cofniete o 23 godziny i 45 minut

Dane do uczenia modeli obejmowały zakres:

od 2017-04-30 & 23:00

do 2018-04-30 & 22:45

Dane do testowania modeli obejmowały zakres:

od 2018-04-30 & 23:00

do 2019-04-30 & 22:45

3. Wyniki i porównanie modeli

Jako wyznacznik jakości modelu, można każdy z modeli porównać do modelu z metody "naiwnej", która jako wynik podaje wartości, które były 15 minut wcześniej. Modele, których wyniki, są gorsze od metody "naiwnej" można uznać za nie rokujące do dalszych analiz.

Notka: Predykcja modelu musi być cofnięta o 1 wiersz - lepsze pokrycie wyników.

Metoda Naiwna:

MAE = 43,704

MAPE = 0.907

• Wyniki dla modeli wykorzystujących: Load_Now ~ Load_Min15 + Load_Day1B

1

Model	MAE	MAPE
kNN (k=43)	21,241	0,443
Drzewo (ANOVA)	24,879	0,526
Lasy Losowe (n=10)	27,747	0,581
Lasy Losowe (n=100)	24,777	0,518
SVM (□=5·10 ⁻⁵ C=2·10 ³)	22,416	0,474
SVM (□=1 · 10 ⁻⁵ C=2 · 10 ³)	17,422	0,371
SVM (□=5·10 ⁻⁶ C=5·10 ³)	15,547	0,333
SVM (□=1 · 10 ⁻⁶ C=1 · 10 ⁴)	14,258	0,308

SVM (□=5·10 ⁻⁷ C=1·10 ⁴)	14,047	0,303
SVM (□=1 · 10 ⁻⁷ C=1 · 10 ⁵)	13,707	0,297
SVM (□=1 · 10 ⁻⁸ C=1 · 10 ⁵)	12,071	0,261
SVM (□=1 · 10 ⁻⁹ C=1 · 10 ⁶)	11,579	0,246
SVM (□=1 · 10 ⁻⁹ C=1 · 10 ⁵)	10,132	0,216
SVM (□=1 · 10 ⁻⁹ C=1 · 10 ⁴)	8,103	0,171
SVM (□=1 · 10 ⁻⁹ C=1 · 10 ³)	8,184	0,169
SVM (□=1·10 ⁻¹⁰ C=1·10 ⁴)	7,980	0,165
Best SVM (Tuning)	4,325	0,089

Wykres dla SVM *(Load_Min15 + Load_Day1B)* Zależność *MAPE* (oś Z) od *Gammy* (oś X) i *Kosztu* (oś Y)

Wyniki dla modeli wykorzystujących: Load_Now ~ Load_Min15 + Load_Day1B + Hour

Model	MAE	MAPE
Drzewo (ANOVA)	35,173	0,749
Lasy Losowe (n=10)	47,469	1,014
Lasy Losowe (n=100)	44,716	0,951
SVM (□=1 · 10 ⁻⁷ C=1 · 10 ⁵)	15,388	0,328
SVM (□=1·10 ⁻⁷ C=1·10 ⁴)	13,522	0,272
SVM (□=1 · 10 ⁻⁸ C=1 · 10 ⁴)	11,772	0,257
SVM (□=1 · 10 ⁻¹⁰ C=1 · 10 ⁴)	7,985	0,165
SVM (□=1·10 ⁻¹⁰ C=1·10 ³)	7,981	0,165
SVM (□=1·10 ⁻¹⁰ C=1·10 ⁵)	7,446	0,155

Wyniki dla modeli wykorzystujących: Load_Now ~ Load_Min15 + Load_Min30 + Load_Day1B + Hour

Model	MAE	MAPE
Drzewo (ANOVA)	37,275	0,789
Lasy Losowe (n=10)	41,307	0,879
Lasy Losowe (n=100)	36,756	0,777
SVM (□=1·10 ⁻⁷ C=1·10 ⁵)	32,393	0,685
SVM (□=1 · 10 ⁻⁷ C=1 · 10 ⁴)	32,459	0,686
SVM (□=1 · 10 ⁻⁸ C=1 · 10 ⁴)	32,479	0,685
SVM (□=1·10 ⁻¹⁰ C=1·10 ⁴)	17,254	0,356
SVM (□=1·10 ⁻¹⁰ C=1·10 ³)	31,348	0,649
SVM (□=1·10 ⁻¹⁰ C=1·10 ⁵)	24,361	0,496

Wyniki dla modeli wykorzystujących: Load_Now ~ Load_Min15 + Load_Min30 + Load_Day1B

Model	MAE	MAPE
Drzewo (ANOVA)	34,147	0,724
Lasy Losowe (n=10)	31,613	0,667
Lasy Losowe (n=100)	29,298	0,619
SVM (□=1 · 10 ⁻⁷ C=1 · 10 ⁵)	32,403	0,685
SVM (□=1 · 10 ⁻⁷ C=1 · 10 ⁴)	32,287	0,682
SVM (□=1 · 10 ⁻⁸ C=1 · 10 ⁴)	32,479	0,685
SVM (□=1·10 ⁻¹⁰ C=1·10 ³)	24,360	0,495
SVM (□=1·10 ⁻¹⁰ C=1·10 ⁴)	17,255	0,356
SVM (□=1·10 ⁻¹⁰ C=1·10 ⁵)	31,349	0,649

Wyniki dla modeli wykorzystujących: Load_Now ~ Load_Min15 + Load_Min30 + Load_Min45 + Load_Day1B

Model	MAE	MAPE
Drzewo (ANOVA)	35,296	0,749
Lasy Losowe (n=10)	34,165	0,722
Lasy Losowe (n=100)	31,339	0,665
SVM (□=1 · 10 ⁻⁷ C=1 · 10 ⁵)	33,275	0,703
SVM (□=1·10 ⁻⁷ C=1·10 ⁴)	33,388	0,705
SVM (□=1 · 10 ⁻⁸ C=1 · 10 ⁴)	32,940	0,697
SVM (□=1·10 ⁻¹⁰ C=1·10 ³)	26,779	0,545
SVM (□=1·10 ⁻¹⁰ C=1·10 ⁴)	25,662	0,531
SVM (□=1·10 ⁻¹⁰ C=1·10 ⁵)	32,474	0,675

Wyniki dla modeli wykorzystujących:
Load_Now ~ Load_Min15 + Load_Day1B + Load_Day1B15min + Load_Day1Bp15min

Model	MAE	MAPE
Drzewo (ANOVA)	35,321	0,744
Lasy Losowe (n=10)	51,816	1,073
Lasy Losowe (n=100)	44,728	0,930
SVM (□=1 · 10 ⁻⁷ C=1 · 10 ⁵)	37,888	0,790
SVM (□=1 · 10 ⁻⁷ C=1 · 10 ⁴)	37,918	0,791
SVM (□=1 · 10 ⁻⁸ C=1 · 10 ⁴)	38,277	0,798
SVM (□=1·10 ⁻¹⁰ C=1·10 ³)	27,032	0,557
SVM (□=1·10 ⁻¹⁰ C=1·10 ⁴)	34,105	0,715
SVM (□=1·10 ⁻¹⁰ C=1·10 ⁵)	37,592	0,786

4. Podsumowanie i wnioski

Model predykcyjny prognozujący ultra-krótkoterminowe zapotrzebowania na energię systemu elektroenergetycznego musi być bardzo dokładny. Takie modele potrzebują dużej ilości danych, by ich prognoza była warta uwagi. W branży elektroenergetycznej do prognozowania wykorzystuje się skomplikowane sieci neuronowe, które są badane i również rozwijane pod tym kątem.

Wyniki osiągnięte przez Drzewo Decyzyjne, bazujące na regresji ANOVA, osiąga wyniki lepsze od metody Naiwnej, lecz nie wystarczające by mówić o zadowalającym prognozowaniu.

Lasy Losowe - model, który osiągał współczynniki jakości gorsze od Drzewa Decyzyjnego. Wykorzystanie funkcji do szukania najlepszego modelu nie dały lepszych rezultatów. SVM - Maszyna Wektorów Nośnych - teoretycznie modele, które dostały w danych treningowych więcej zmiennych powinny uzyskiwać lepsze wyniki. Jednakże model SVM nauczony na 2 zmiennych - Load_Min15 + Load_Day1B - uzyskał wynik MAPE na poziomie 0,089%. Odchylenia tego rzędu pozwalają na ponowne spojrzenie na klasyczne modele predykcyjne. Możliwe, że dla 3 zmiennych - Load_Min15 + Load_Day1B + Hour - najlepszy model uzyskałby lepsze współczynniki jakości niż model uczący się na 2 zmiennych.

Czas uczenia poszczególnych modeli oscylował od 20 minut do 40 minut. Problematyczne, aczkolwiek możliwe, zrównoleglenie obliczeń nie było wykonane przez brak znajomości narzędzi w pakiecie R. Niektóre fragmenty kodu nie zostały wykonane przez czas wykonywania oraz sprzęt.