Лабораторная работа №4

Плоская задача теории упругости.

Цель работы: Для плоской задачи определить напряженнодеформированное состояние методом конечных элементов.

Задание на лабораторную работу.

Для выбранного варианта необходимо:

- 1. Построить математическую модель физической системы. Рассматривается задача моделирования плоского напряжённо деформированного состояния пластины с вырезами при различных граничных условиях.
- 2. Разработать методику исследования математической модели методом конечных элементов.
- 3. Разработать программное обеспечение, которое должно удовлетворять следующим требованиям:
 - обеспечить ввод исходных данных с помощью GUI;
 - решать задачу методом конечных элементов;
 - отобразить в виде графиков (двумерного и трёхмерного) результаты решения;
 - все результаты решения сохранять как в тестовые файлы (для претендующих на оценки 4-5), так и в файлы специальных форматов (для всех остальных).
- 4. Провести верификацию полученных результатов с помощью конечноэлементного комплекса ANSYS. Вывести эпюры перемещений, деформаций и напряжений.
- 5. Оформить отчет о проделанной работе.

Содержание отчета.

- 1. Название, цель работы.
- 2. Задание к лабораторной работе.
- 3. Описание математической модели задачи.
- 4. Приложение к отчету:
 - а) программа для определения напряженно-деформированного состояния методом конечных элементов;
 - б) результаты решения задачи в виде графиков (двумерного и трёхмерного);
 - в) log-файл решения задачи в ANSYS;
 - г) результаты решения задачи в ANSYS, сравнением с результатами из п. б);
 - д) провести указанное в задании исследование математической модели (таблица 1).
- 5. Сделать выводы по работе.

Контрольные вопросы

- 1. Дайте определение плоской задачи. Приведите примеры.
- 2. Каковы исходные данные и результаты при решении задачи.
- 3. Опишите структуру программного комплекса для решения задачи с помощью метода конечных элементов.
- 4. Опишите методы оптимизации вычислительного процесса.
- 5. Расскажите о методе Гаусса для решения СЛАУ. Приведите пример распараллеливания алгоритма.
- 6. Расскажите о методе сопряженных градиентов для решения СЛАУ. Приведите пример распараллеливания алгоритма.
- 7. Расскажите о методе Холесского для решения СЛАУ. Приведите пример распараллеливания алгоритма.
- 8. Расскажите о решении задачи в ANSYS.
- 9. Расскажите о верификации задачи.

Варианты заданий для лабораторной работы

№ вар иан та	Физическая система	Материа л пластинк и	Предмет исследования	Формат сохранени я результато в	Тип конечного элемента
1	Пластинка с круглым отверстием в центре	медь	Влияние размера отверстия на максимальное значение перемещений	XML Exell	Кубический треугольны й элемент
2	Пластинка в двумя круглыми отверстиями в центре, центры которых находятся на расстоянии 3 радиусов друг от друга	бронза	Влияния близости расположения отверстий на максимальное значение перемещений	XML MathCAD	Квадратичн ый треугольны й элемент
3	Пластинка с прямоугольным отверстием в центре	латунь	Влияние размера отверстия на максимальное значение напряжений	XML Exell	Квадратичн ый четырёхугол ьный элемент
4	Пластинка в двумя квадратными отверстиями в центре, центры которых находятся на расстоянии 2 длин сторон друг от друга	сталь	Влияния близости расположения отверстий на максимальное значение напряжений	XML MathCAD	Линейный четырёхугол ьный элемент
5	Пластинка с шестигранным отверстием в центре	аллюмини й	Влияние размера отверстия на максимальное значение деформаций	XML Exell	Линейный треугольны й элемент
6	Пластинка в двумя шестигранными отверстиями в центре, центры которых находятся на расстоянии 3 радиусов друг от друга	золото	Влияния близости расположения отверстий на максимальное значение деформаций	XML MathCAD	Линейный треугольны й элемент
7	Пластинка с круглым отверстием в центре	сталь	Влияния граничных условий на значение максимального перемещения	XML Exell	Линейный треугольны й элемент

№ вар иан та	Физическая система	Материа л пластинк и	Предмет исследования	Формат сохранени я результато в	Тип конечного элемента
8	Пластинка в двумя круглыми отверстиями в центре, центры которых находятся на расстоянии 3 радиусов друг от друга	аллюмини й	Влияния граничных условий на значение максимального перемещения	XML MathCAD	Квадратичн ый треугольны й элемент
9	Пластинка с прямоугольным отверстием в центре	золото	Влияния граничных условий на значение максимального перемещения	XML Exell	Линейный четырёхугол ьный элемент
10	Пластинка в двумя квадратными отверстиями в центре, центры которых находятся на расстоянии 2 длин сторон друг от друга	медь	Влияния граничных условий на значение максимального перемещения	XML MathCAD	Линейный треугольны й элемент
11	Пластинка с шестигранным отверстием в центре	бронза	Влияния граничных условий на значение максимального перемещения	XML Exell	Линейный треугольны й элемент
12	Пластинка в двумя шестигранными отверстиями в центре, центры которых находятся на расстоянии 3 радиусов друг от друга	латунь	Влияния граничных условий на значение максимального перемещения	XML MathCAD	Линейный треугольны й элемент
13	Пластинка с круглым отверстием в центре	бронза	Влияния вида нагрузки на значение максимального напряжения	XML Exell	Квадратичн ый треугольны й элемент
14	Пластинка в двумя круглыми отверстиями в центре, центры которых находятся на расстоянии 3 радиусов друг от	латунь	Влияния вида нагрузки на значение максимального напряжения	XML MathCAD	Квадратичн ый треугольны й элемент

№ вар иан та	Физическая система	Материа л пластинк и	Предмет исследования	Формат сохранени я результато в	Тип конечного элемента
	друга				
15	Пластинка с прямоугольным отверстием в центре	сталь	Влияния вида нагрузки на значение максимального напряжения	XML Exell	Кубический треугольны й элемент
16	Пластинка в двумя квадратными отверстиями в центре, центры которых находятся на расстоянии 2 длин сторон друг от друга	аллюмини й	Влияния вида нагрузки на значение максимального напряжения	XML MathCAD	Кубический треугольны й элемент
17	Пластинка с шестигранным отверстием в центре	золото	Влияния вида нагрузки на значение максимального напряжения	XML MathCAD	Линейный треугольны й элемент
18	Пластинка в двумя шестигранными отверстиями в центре, центры которых находятся на расстоянии 3 радиусов друг от друга	сталь	Влияния вида нагрузки на значение максимального напряжения	XML Exell	Линейный треугольны й элемент
19	Пластинка с круглым отверстием в центре	бронза	Влияние точки приложения сосредоточенной нагрузки на величину максимальных деформаций	XML MathCAD	Кубический треугольны й элемент
20	Пластинка в двумя круглыми отверстиями в центре, центры которых находятся на расстоянии 3 радиусов друг от друга	латунь	Влияние точки приложения сосредоточенной нагрузки на величину максимальных деформаций	XML Exell	Квадратичн ый треугольны й элемент
21	Пластинка с прямоугольным отверстием в центре	сталь	Влияние точки приложения сосредоточенной нагрузки на величину максимальных	XML MathCAD	Кубический четырёхугол ьный элемент

№ вар иан та	Физическая система	Материа л пластинк и	Предмет исследования	Формат сохранени я результато в	Тип конечного элемента
22	Пластинка в двумя квадратными отверстиями в центре, центры которых находятся на расстоянии 2 длин	аллюмини й	деформаций Влияние точки приложения сосредоточенной нагрузки на величину максимальных	XML Exell	Кубический треугольны й элемент
23	Пластинка с шестигранным отверстием в центре	золото	деформаций Влияние точки приложения сосредоточенной нагрузки на величину максимальных деформаций	XML MathCAD	Линейный треугольны й элемент
24	Пластинка в двумя шестигранными отверстиями в центре, центры которых находятся на расстоянии 3 радиусов друг от друга	сталь	Влияние точки приложения сосредоточенной нагрузки на величину максимальных деформаций	XML Exell	Линейный треугольны й элемент
25	Пластинка с круглым отверстием в центре	латунь	Влияние материала пластинки на величину максимальных деформаций	XML MathCAD	Квадратичн ый треугольны й элемент
26	Пластинка в двумя круглыми отверстиями в центре, центры которых находятся на расстоянии 3 радиусов друг от друга	сталь	Влияние материала пластинки на величину максимальных деформаций	XML Exell	Кубический треугольны й элемент
27	Пластинка с прямоугольным отверстием в центре	аллюмини й	Влияние материала пластинки на величину максимальных деформаций	XML MathCAD	Кубический четырёхугол ьный элемент
28	Пластинка в двумя квадратными отверстиями в центры которых находятся на расстоянии 2 длин	золото	Влияние материала пластинки на величину максимальных деформаций	XML Exell	Линейный четырёхугол ьный элемент

№ вар иан та	Физическая система	Материа л пластинк и	Предмет исследования	Формат сохранени я результато в	Тип конечного элемента
	сторон друг от друга				
29	Пластинка с шестигранным отверстием в центре	сталь	Влияние материала пластинки на величину максимальных деформаций	XML MathCAD	Линейный треугольны й элемент
30	Пластинка в двумя шестигранными отверстиями в центре, центры которых находятся на расстоянии 3 радиусов друг от друга	аллюмини й	Влияние материала пластинки на величину максимальных деформаций	XML Exell	Линейный треугольны й элемент
31	Пластинка с четырмя круглыми отверстиями в углах, центры которых находятся на расстоянии 1.5 радиуса от сторон	сталь	Влияние размера отверстия на максимальный прогиб	XML MathCAD	Квадратичн ый треугольны й элемент
32	Пластинка с четырмя квадратными отверстиями в углах, центры которых находятся на расстоянии 1.5 длины стороны отверстия от сторон пластинки	аллюмини й	Влияния близости расположения отверстий на максимальный прогиб	XML Exell	Линейный четырёхугол ьный элемент
33	Пластинка с четырмя шестигранными отверстиями в углах, центры которых находятся на расстоянии 1.5 радиуса отверстия от сторон пластинки	золото	Влияние размера отверстия на максимальное значение напряжений	XML MathCAD	Линейный треугольны й элемент
34	Пластинка с четырмя круглыми отверстиями по центру сторон, центры которых находятся на расстоянии 1.5 радиуса от стороны	сталь	Влияния близости расположения отверстий на максимальное значение напряжений	XML Exell	Квадратичн ый треугольны й элемент
35	Пластинка с четырмя квадратными	аллюмини й	Влияние размера отверстия на	XML MathCAD	Линейный треугольны

№ вар иан та	Физическая система	Материа л пластинк и	Предмет исследования	Формат сохранени я результато в	Тип конечного элемента
	отверстиями по центру сторон, центры которых находятся на расстоянии 1.5 длины стороны отверстия от стороны		максимальное значение деформаций		й элемент
36	Пластинка с четырмя шестигранными отверстиями по центру сторон, центры которых находятся на расстоянии 1.5 радиуса отверстия от стороны пластинки	золото	Влияния близости расположения отверстий на максимальное значение деформаций	XML Exell	Линейный треугольны й элемент
37	Пластинка с четырмя круглыми отверстиями в углах, центры которых находятся на расстоянии 1.5 радиуса от сторон	медь	Влияния граничных условий на значение максимального перемещения	XML MathCAD	Квадратичн ый треугольны й элемент
38	Пластинка с четырмя квадратными отверстиями в углах, центры которых находятся на расстоянии 1.5 длины стороны отверстия от сторон пластинки	бронза	Влияния граничных условий на значение максимального перемещения	XML Exell	Линейный четырёхугол ьный элемент
39	Пластинка с четырмя шестигранными отверстиями в углах, центры которых находятся на расстоянии 1.5 радиуса отверстия от сторон пластинки	латунь	Влияния граничных условий на значение максимального перемещения	XML MathCAD	Линейный треугольны й элемент
40	Пластинка с четырмя круглыми отверстиями по центру сторон, центры которых находятся на расстоянии 1.5 радиуса от стороны	сталь	Влияния граничных условий на значение максимального перемещения	XML Exell	Квадратичн ый треугольны й элемент

№ вар иан та	Физическая система	Материа л пластинк и	Предмет исследования	Формат сохранени я результато в	Тип конечного элемента
41	Пластинка с четырмя квадратными отверстиями по центру сторон, центры которых находятся на расстоянии 1.5 длины стороны отверстия от стороны	аллюмини й	Влияния граничных условий на значение максимального перемещения	XML MathCAD	Линейный четырёхугол ьный элемент
42	Пластинка с четырмя шестигранными отверстиями по центру сторон, центры которых находятся на расстоянии 1.5 радиуса отверстия от стороны пластинки	золото	Влияния граничных условий на значение максимального перемещения	XML Exell	Линейный треугольны й элемент
43	Пластинка с четырмя круглыми отверстиями в углах, центры которых находятся на расстоянии 1.5 радиуса от сторон	медь	Влияния вида нагрузки на значение максимального напряжения	XML MathCAD	Квадратичн ый треугольны й элемент
44	Пластинка с четырмя квадратными отверстиями в углах, центры которых находятся на расстоянии 1.5 длины стороны отверстия от сторон пластинки	бронза	Влияния вида нагрузки на значение максимального напряжения	XML Exell	Квадратичн ый четырёхугол ьный элемент
45	Пластинка с четырмя шестигранными отверстиями в углах, центры которых находятся на расстоянии 1.5 радиуса отверстия от сторон пластинки	латунь	Влияния вида нагрузки на значение максимального напряжения	XML MathCAD	Линейный треугольны й элемент