《大学物理实验》线上实验要求汇总 2022.12

说明:

【实验选择】

12月12日-12月30日: 学生从下列实验列表中,每周完成1个实验(可自己选择实验内容),并将报告提交到学在浙大上对应实验和对应时间的作业处。如果下列实验全部都在线下做过,可以在对应实验周次内,自行选择仿真平台上的其他1个实验进行学习操作,并提交实验报告到"其他实验"作业处。

本学期共完成13个实验项目,各时段需完成的实验个数如下表:

上课时段	线下实验	线上实验	备注
	个数	个数	
周一345 节,678 节	9	4	1) 示波器和分
周二 345 节,678 节		单摆实验+另外	光计仍是必做
周三 345 节,678 节		选做3个	实验;
周五 345 节			2) 光学实验个
周四 345 节,678 节	10	3	数不做要求。
		单摆实验+另外	
		选做2个	

【上课安排】

对应的实验课时间内,有指导老师线上进行指导并解答共性问题。每次课有一位老师在线上主要针对一个实验进行讲解与答疑,如同学选做其他实验,各课程群内均有各实验对应的负责老师,针对具体实验的问题可在课程钉群内提问,由相应的负责老师或助教解答。

【截图说明】

实验记录与草表处应附实验过程截图,具体要求请见下面各实验要求,注意截图时应将平台上的姓名同步接入,类似下图(右上角显示自己的姓名)。

【报告提交】

线上报告都交到学在浙大,请注意看清实验项目以及上课时间,不要交错。每周做完实验后,下一次上课前将报告提交至学在浙大。 最后一次报告提交的时间请在学在浙大作业提交处查看。

(线下的实验报告请 12 月 18 日前交到东四信箱,如已经回家,请联系对应的实验指导老师,拍照提交,并在 12 月 31 日前检查选课系统内是否已录入分数。)

【补做实验】

部分同学因疫情等原因未完成的线下实验,允许线上补做。报告 提交参照线上实验的报告提交方式。请在报告封面上注明是因为什么 原因,补做实验及补交报告。

【虚仿平台】

奥锐虚拟仿真实验平台: http://aryun.ustcori.com:8570/

用户名和初始密码均为: 学号

======= 线上实验可选列表 =============

请注意部分实验存在不同的版本,请仔细阅读下面各实验的要求。

示波器实验 分光计实验 (3D) 钢丝杨氏模量的测定 (3D) 光电效应和普朗克常数的测定 (3D) 密立根油滴实验 (3D) 声速的实验 (3D) 干涉法测微小量 (等厚干涉) 自组直流电桥测量电阻 (惠斯登电桥) 液体表面张力系数的测定 碰撞实验

日期		实验内容	负责直播
		213-13-13	老师
12月12日	周一上午	干涉法测微小量 (等厚干涉)	乐静飞
12月12日	周一下午	示波器实验	张建华
12月13日	周二上午	钢丝杨氏模量的测定 (3D)	黄凯凯
12月13日	周二下午	干涉法测微小量 (等厚干涉)	郭红丽
12月14日	周三上午	分光计实验 (3D)	何国光
12月14日	周三下午	密立根油滴实验 (3D)	潘佰良
12月15日	周四上午	示波器实验	厉位阳
12月15日	周四下午	光电效应和普朗克常数的测定 (3D)	陶前
12月16日	周五上午	声速的实验 (3D)	费莹
12月19日	周一上午	碰撞实验	张寒洁
12月19日	周一下午	光电效应和普朗克常数的测定 (3D)	朱宏博
12月20日	周二上午	自组直流电桥测量电阻 (惠斯登电桥)	王立刚
12月20日	周二下午	钢丝杨氏模量的测定 (3D)	王宙洋
12月21日	周三上午	示波器实验	房若宇
12月21日	周三下午	干涉法测微小量 (等厚干涉)	郭红丽
12月22日	周四上午	干涉法测微小量 (等厚干涉)	张俊香
12月22日	周四下午	密立根油滴实验 (3D)	刘才明
12月23日	周五上午	分光计实验 (3D)	郑远

12月26日	周一上午	液体表面张力系数的测定	朱蕾
12月26日	周一下午	自组直流电桥测量电阻 (惠斯登电桥)	仇志勇
12月27日	周二上午	示波器实验	王宙洋
12月27日	周二下午	分光计实验 (3D)	王兆英
12月28日	周三上午	碰撞实验	肖婷
12月28日	周三下午	碰撞实验	肖婷
12月30日	周五上午	干涉法测微小量 (等厚干涉)	乐静飞

1. 示波器实验

视频录制:房若宇老师

实验名称: 示波器实验

仿真实验封面截图:

示波器实验

实验要求:根据讲课视频以及仿真实验平台上的要求进行实验,并记录相关数据,如下表所示。

则量示波器自备方								
	发输出信号 的	调期 (时基	赴分别为0.1 ,	0.2, 0.5ms	/cm) ,哪种	中时基测出的	数据更准确	1?
为什么?								
方波信号(单位HZ)							
序号:	1	2	3					
选择时基(ms)								
方波信号(单位HZ)								
			forth BERT	rw. Eos	Sytrall 200	2411- 45		
选择信号发生器的 次),选择示波器 率为X,示波器测量 对应频率的厘米数	合适的时基, 比的频率为Y轴	测量对应频	页率的厘米数	、周期和频率	项率为200 ○(注明X轴)	2KHz (每 的时基)。(隔200Hz测 信号发生器	量一的频
选择信号发生器的 次),选择示波器 率为X,示波器测量	合适的时基, 比的频率为Y轴	测量对应频	页率的厘米数	、周期和频率	页率为200-	2KHz (每 的时基)。 (隔200Hz测信号发生器	量一的频
选择信号发生器的 次),选择示波器 率为X,示波器测量 对应频率的厘米参	合适的时基, 的频率为Y轴	测量对应规 油,作X-Yi	页率的厘米数 曲线,求斜率	、周期和频率 并讨论。	注明X轴	2KHz (每 的时基)。(7	信号发生器	量一的频
选择信号发生器的 次),选择示波器 率为X,示波器测量 对应频率的厘米数 序号: 1	合适的时基, 的频率为Y轴	测量对应规 油,作X-Yi	页率的厘米数 曲线,求斜率	、周期和频率 并讨论。	注明X轴	2KHz (每 的时基)。(信号发生器	量一的频

报告要求:

- (1) 数据表格填写截图 2 张。
- (2) 草表处附 fx/fy=1; 2; 1/2 时的稳定的李萨如图形各 1 张。
- (3) 误差分析应分析影响实验结果的可能因素.
- (4) 思考题
 - 1. 示波器为什么能显示被测信号的波形?
- 2. 在观察李萨如图形时为什么总是不断的来回翻转,翻转快慢受哪种因素所影响?
- 3. 切实理解示波器同步的概念,如果发生波形左移或右移时应该如何调整才能使其稳定下来?

2. 分光计实验(3D)

视频录制:何国光老师

实验名称: 3D 分光计

实验要求:按照仿真平台提供条件,完成自准直法测三棱镜顶角的实验,注意,不能用棱脊分束法(教材中的方法)测。

- (1) 根据讲课视频,正确完成分光计的调整
- (2) 因自准直法测顶角,不用到平行光管,因而平行光管的调整不作要求
- (3) 分光计调整过程中,需要保存3张屏幕截图,分别是反射 镜面置AB中垂线时两个反射像位于上叉丝交点的两张截图, 以及反射镜面平行于AB线时反射像位于上叉丝交点的一张截 图。注意载物台3颗调平螺钉的位置,十字叉丝的位置,截屏 应该有学生姓名。

(4) 测量过程应保存一张屏幕截图。

- (5) 旋转三棱镜一定角度, 重复测量 6 组以上数据
- (6) 数据以纸质记录为准,不使用平台上的评分
- (7) 望远镜、载物台调整过程中,顶角测量时,反射十字像与上叉 丝交点完全重合有一定难度,可适当放宽要求,允许有一定 的偏差。

报告要求:

- (1) 数据记录草表处附上分光计调整过程的 3 张截图,实验过程中的 1 张截图,以及实验原始数据
- (2) 数据处理部分要有完整的计算步骤,计算顶角的平均值,不确定度,写出测量结果表达式
- (3) 误差分析应分析影响实验结果的可能因素
- (4) 思考题
 - 1)用自准直法测三棱镜顶角时,三棱镜置于已调整好的分光计的载物台上,并将游标盘旋转到合适位置,但经三棱镜光洁面反射的像并不一定成像在上叉丝的交点上,为什么?怎样处理?
 - 2) 如果望远镜中看到十字像在上水平叉丝的上面, 而当平台转

过 180 度后看到的十字像在上水平叉丝的下面,试问这时应该调节望远镜倾斜度呢,还是应调整载物平台是倾斜度?

3. 钢丝杨氏模量的测定 (3D)

视频录制: 黄凯凯老师

实验名称:钢丝杨氏模量的测定(3D)

仿真实验封面截图:

用拉伸法测量金属丝的杨氏 模量-3D

实验要求:根据讲课视频以及仿真实验平台上的要求进行实验,并记录相关数据,如下表所示。

-	I.		
	角定度Ud(mm):		
学生答案: [80.4.8%]	t.		
	属丝的预拉力m0(kg):		
学生答案: [#1.455	t.		
☆ 表二			
		力螺母加力,使金属丝所受拉力在mod	
10.00		[Xi于表二中,選闡10组数据(注意金]	以 至 上 所 成 的 最 大 拉 刀 不 安 超 过
学生答案: 序号	50.0	2	3
19.73	绝对视值mi(kg)		
2017	过程标尺刻度X1i(cm)		
施力	过程标尺刻度X2i(cm)		
平均	值Xi(cm)		
		•	
☆ 表三用道	E差法处理表二中的Xi (cm):		
E答案: 測量項	X6-X1	X7-X2	X8-X3
ΔXi (cn	1)		

报告要求:

- (1) 上述数据表格填写截图, 并且给出杨氏模量的计算过程
- (2) 计算各物理分量的不确定度, 计算杨氏模量不确定度值。单次测量的物理量只需考虑 B 类不确定度。质量 m 的不确定度为 0。
 - (3) 误差分析应分析影响实验结果的可能因素.

思考题:从光杠杆的放大倍数考虑,增大 H 与减小 I 都可以增加放大倍数,那么它们有何不同?是否可以增大 H 无限制地增大放大倍数。 光杠杆放大倍数增大有无限制?

4. 光电效应和普朗克常数的测定(3D) 实验名称: 光电效应和普朗克常数/3D 仿真实验封面截图: 视频录制: 陶前老师

实验要求:按照讲课视频及仿真实验平台上的要求,完成普朗克常数的测定以及光电管伏安特性的测量

- (1) 完成包括光电管与光源距离、光阑选择及电流档调零在内的准备 工作
- (2) 测量五种不同波长下的截止电压
- (3) 测量一种固有波长下的光电管伏安特性报告要求:
- (1) 数据记录草表处需附实验数据表格截图,即不同波长下的截止电 压和固有波长下的光电管伏安特性
- (2) 数据处理利用作图法处理不同波长下的截止电压和固有波长下的 光电管伏安特性
- (3) 误差计算及分析可在下述两种方法中任选一种:一种与普朗克常数公认值相比较计算相对误差;另一种为计算普朗克常数的不确定度,其中 A 类不确定度可通过最小二乘法得到斜率的 A 类不确定度后进一步换算, B 类不确定度参考值为 3%(以线下实验仪器说明书为例)。并由此分析影响实验测量误差的可能因素以及避免方法

(4) 思考题:

- 1) 测定普朗克常数的关键是什么
- 2) 怎样根据光电管的特性曲线选择合适的测定遏止电压的方法
- 3) 根据本实验得到的结果,谈谈你对光的量子性的理解
- 5. 密立根油滴实验 (3D)

实验名称:密立根油滴实验(3D版) 仿真实验封面截图:

密立根油滴实验-3D

实验要求:根据讲课视频要求用静态法测 10 颗不同油滴的电量(多次或单次)。用已知的标准基本电荷作比较,得到一个接近整数的数据取整数后,用油滴电量除该整数得到基本电荷,至少有 7 颗以上通过油滴电量计算得到的基本电荷相对误差小于 3%。不考虑 b 类不确定度,给出实验结果表达式。

报告要求:在数据草表中放数据记录表格截图一张。实验内容中放 2 张操作过程截图。

思考题: 完成仿真实验后面的2个思考题。

- 1. 为何密立根油滴实验仪实验前要调水平?
- 2. 实验中如何保证油滴做匀速运动?

6. 声速的实验 (3D)

视频录制: 费莹老师

实验名称: 声速的测量-3D

仿真实验封面截图:

声速的测量-3D

◆ 实验内容:

- (1) 调节换能器的共振频率
 - ① 将接收端调至最左侧,并打开信号发生器和示波器。
- ② 将信号发生器的 CH1 输入通道先调节为:正弦波, f=35000Hz, Vpp=2V
- ③ 输出信号后,将示波器上 CH1 和 CH2 的波形调至大小合适, 形态稳定。
 - ④ 微调发射信号的频率,找到一个频率,使 CH2 的振幅最大。
 - ⑤ 在实验报告中记录**谐振频率并截图**。

截图要求:信号发生器截图,上

面要能看到调至换能器谐振时,信号发生器输出的频率与振幅,以及示波器窗口上的稳定波形。

(2) 驻波法测量声速

- ① **先向右**移动换能器接收端,记录 **10** 个振幅极大值所在的换能器位置读数。
 - ② 再向左移动接收端,同样记录 10 个振幅极大值的位置读数。
 - ③ 用逐差法处理数据,计算出波长;再根据测量波长计算声速。
- ④ 实验报告的这一部分需要有**数据记录表格**,一张**截图**,以及逐差法计算波长和声速计算的**表达式**。

截图要求:某一个最大振幅处的换能器截图,截图上要能看到最大振幅的示波器波形,主尺以及手轮读数。

- (3) 相位法测量声速
 - ① 示波器改为 X-Y 模式。
- ② **先向右**移动换能器接收端,记录 **10** 个出现一三象限或二四 象限直线图形时换能器所在的位置读数。
 - ③ 再向左移动接收端,同样记录 10 个直线图形的位置读数。
 - ④ 用逐差法处理数据,计算出波长;再根据测量波长计算声速。
- ⑤ 实验报告的这一部分需要有**数据记录表格**,一张**截图**,以及 逐差法计算波长和声速计算的**表达式**。

截图要求:某一个出现直线处的截图,截图上要能看到示波器上的直线图形,主尺以及手轮读数。

◆ 实验报告要求:

- (1) 报告中要记录谐振频率和两种测量方式的数据表格。
- (2) 逐差法计算波长以及声速,需要有计算公式和过程表达式。
- (3) 报告中附上三张截图:
 - ① 调至谐振频率后的信号发生器视角截图

- ② 驻波法振幅极大值的手轮调节视角截图
- ③ 相位法出现直线图形时的手轮调节视角截图

◆ 误差分析:

- (1) 计算两种方法测量得到的声速结果与声速真值的相对误差,声速真值取 340m/s。
 - (2) 分析本次虚拟实验中,影响实验结果的可能因素及其具体影响。

◆ 思考题:

- (1) 在本实验中,固定距离,改变频率,以求声速。是否可行?
- (2) 实验前为什么要调整测试系统的谐振频率?
- (3) 如果超声波发生器的平均频率 f=40kHz,不确定度 uf=10Hz,测 λ 时引起波长的不确定度为 $u\lambda=0.030mm$,平均波长 $\lambda=8.560mm$,则实验中所测得的声速相对不确定度 uv/v 可达多少?

7. 干涉法测微小量 (等厚干涉)

视频录制: 张俊香老师

实验名称: 干涉法测微小量

仿真实验封面截图:

实验要求:根据讲课视频以及仿真实验平台实验内容,完成如下测量:

- 1) 牛顿环测量透镜曲率半径;
- 2) 劈尖干涉测量细丝直径。并将测量结果记录在仿真实验(记录数

据)表格中,如下图:

报告要求:

- 1) 实验报告中附以上已添加测量数据的界面截图;
- 2) 牛顿环和劈尖干涉分别附上二张实验过程截图,如牛顿环第5环和第30环截图;劈尖干涉20条暗纹的始末测量截图。格式可参见以下截图;

- 3) 误差分析应分析影响实验结果的可能因素;
- 4) 思考题:
 - (1) 牛顿环实验中, 半波损耗的起因;
 - (2) 牛顿环中心暗纹和哪些因素有关;
 - (3) 劈尖干涉条纹是绝对等间距条纹吗?分析原因。
- 8. 自组直流电桥测量电阻 (惠斯登电桥) 视频录制: 王立刚老师 **实验名称**: 自组式直流电桥测电阻 (惠斯登电桥) 进入实验仿真的实验界面如下:

实验内容:

- 1、按直流电桥实验的实验电路图,正确连线。
- 2、线路连接好以后,检流计调零。

- 3、调节直流电桥平衡。
- 4、测量并计算出待测电阻值 Rx,微调电路中的电阻箱,测量并根据电桥灵敏度公式: $S=\Delta n/(\Delta R_x/R_x)$ 或 $S=\Delta n/(\Delta R_0/R_0)$ 计算出直流电桥的电桥灵敏度。
 - 5、记录数据,并计算出待测电阻值。
- **实验要求**: 1) 按照仿真平台提供条件,连接电路,正确无误后,进行检流计调零。设定比例臂倍率为 1: 1 (即在 R1=R2 的情况下),通过改变 R1、R2 的值,调节 R0(电阻箱 R3)的阻值使电桥平衡,记录 R1、R2、R0;交换 R1、R2,再使电桥平衡记录 R0'(电阻箱 R3)的值,计算得待测电阻 Rx,重复 6 次,得到 Rx 的测量值及不确定度(只计算 A 类不确定度即可)。
- 2) 设定好 R1、R2、R0, 电压固定在 U=3 伏, 微调 R0,得到不同的 \triangle R₀使检流计分别偏转 1 格、2 格、3 格。计算该电桥的灵敏度 S。
- 3)操作过程中截图 3 张 (R1、R2 交换前后的测量状态图各 1 张、灵敏度测量 1 张)

交换前

交换后

测灵敏度

注意事项:

- 1、交换 R1、R2, 先要断开开关。
- 2、检流计要尽可能调零(有的可能会偏一点,估计是仿真问题)。
- 3、检流计不要持续工作在满偏状态,当检流计偏转角较小时可以按下电计,方便调节。
- 4、实验过程中不可以中断, 若中断, Rx 会变, 会导致重做。

思考题:

1、如果取桥臂电阻 $R_1 = R_2$,调节 R_0 从 0 到最大,检流计指针始终偏在零点的一侧,这说明什么问题?应作怎样的调整,才能使电桥达到平衡?

9. 液体表面张力系数的测定

视频录制:王宙洋老师

实验名称: 拉脱法测定液体表面张力系数 仿真实验封面截图:

液体表面张力系数的测定

实验要求:根据讲课视频以及仿真实验平台上的要求进行实验,部分数据需要进行多次测量,表格如下所示

1.倔强系数 k 的测量(只用测量1次)

砝码质量/mg	增重读数/cm	减重读数/cm	平均值/cm
0			
500			
1000			
1500			
2000			
2500			
3000			
3500			

每增加4个砝 码读数差	L5-L1	L6-L2	L7-L3	L8-L4
读数差/cm				

用逐差法计算出倔强系数 K(N/m)(也可用其他方法)

2.用金属框测量液体表面张力系数(多次测量)

多次测量金属框长度和直径

次数	1	2	3	4	5	6	平均
长度L/cm							
直径d/cm							

多次拉脱法测量表面张力

测量次 数	拉脱读数h1/cm	初始读数h0/cm	表面张力读数 △ h= h1-h0/cm
1			
2			
3			
4			
5			
6			
平均值			

3.用金属圆环测量液体表面张力系数(多次测量)

多次测量金属圆环内外直径

次数	1	2	3	4	5	6	平均
外径D1/cm							
内径D2/cm							

多次拉脱法测量表面张力

测量次 数	拉脱读数h1/cm	初始读数h0/cm	表面张力读数 △ h= h1-h0/cm
1			
2			
3			
4			
5			
6			
平均值			

实验平台上的表格中只用填入1次测量的数据,也不用填不确定度。实验平台表格如下:

金属框测量液体的	的表面张力系数	效				
游标卡尺测量金	属框横梁的	长度L(cm)=_	_			
螺旋测微器测量	金属框金属金	丝的直径d(cm)=			
				0		
移除砝码,测量	金属框机砝	的社盘在空气中	中三线对齐时为	长尺的初始读数	(h0(cm)=	
移除砝码盘中的	础码,重复)	则量金属框脱落	禽液面时米尺的	勺读数数据表格	i:	
测量次数	1	2	3	4	5	6
h1(cm)						
14 107						
h1-h0(cm) 液体表面张力系	数α(N/m)=		70/14			
液体表面张力系金属环测量液体的	的表面张力系数	th the second	VA.			
液体表面张力系	的表面张力系统 展环外径D1	数 (cm)=				
液体表面张力系金属环测量液体的游标卡尺测量金	的表面张力系统 属环外径D1 定属环内径D2	数 (cm)= (cm)=		刃始读数h0(cm	1)=	
液体表面张力系 金属环测量液体的 游标卡尺测量金 游标卡尺测量金 移除砝码托盘, 重复测量金属环	的表面张力系统 属环外径D1 :属环内径D2 测量金属环径	数 (cm)= (cm)= 在空气中三线)	—— 时齐时米尺的被	刀始读数h0(cm	1)=	
液体表面张力系 金属环测量液体的 游标卡尺测量金 游标卡尺测量金	的表面张力系统 属环外径D1 :属环内径D2 测量金属环径	数 (cm)= (cm)= 在空气中三线)	—— 时齐时米尺的被	刀始读数h0(cm	n)=	- 6
液体表面张力系 金属环测量液体的 游标卡尺测量金 游标卡尺测量金 移除砝码托盘, 重复测量金属环	的表面张力系 展环外径D1 展环内径D2 测量金属环 脱离液面时	数 (cm)= (cm)= 左空气中三线》 *尺的读数数数	对齐时米尺的衫 居表格:		701	6

报告要求:

- 1) 草表处附实验原始数据截图 3 张,以及实验过程截图 3-5 张。
- 2) 逐差法或其他方法计算弹簧的倔强系数 K。
- 3)用金属环测量方法计算出液体表面张力系数,计算不确定度,写出结果表达式。
- 4)用金属框测量方法计算出液体表面张力系数,计算不确定度,写出结果表达式。

思考题:

- 1. 拉脱法测量模型中没有考虑浮力的作用,这一近似合理吗?
- 2. 如果使用圆环之外的物体测量,可行吗?要注意什么问题,结果会有什么区别?
- 3. 测量时,如果想设计测量不同温度下的表面张力,如何改进?

10. 碰撞实验

视频录制: 肖婷老师

实验名称:碰撞

仿真实验封面截图:

碰撞

实验要求:根据讲课视频以及仿真实验平台上的要求,进行轨道调平,用完全弹性碰撞验证动量守恒,分为两种情形:

- 1) 两滑块质量相等
- 2) 两滑块质量不等

报告要求:

- 1) 草表处附实验过程截图 3-5 张,包括平台上数据表格填写截图,和实验过程截图。
- 2) 数据处理部分,计算滑块速度、碰撞前后总动量、总动能,恢复 系数、动量损耗 E,动能损耗 R。写出必要的计算公式与计算过程。
- 3) 误差分析应分析影响实验结果的可能因素以及具体影响。
- 4) 思考题:
 - (1) 是否可能出现碰撞后总动量大于碰撞前总动量的情况? 为什么?
 - (2) 实验中两光电门的位置和间距对实验结果有什么影响? 气垫导轨气流大小对实验有什么影响?
 - (3) 本实验要验证动量守恒定律,应当怎样设计实验比较合理?