Offer Acceptance Prediction

Bartosz Grabek, Izabela Telejko, Grzegorz Zbrzeżny

Agenda

- Project Objectives
- Methodology
- Selected Experiments
- Results and Final Strategy

Project Objectives

Project Objectives

develop a strategy (feature selector + binary classifier) that classifies
the customers that would benefit from a bank marketing offer

 use the developed model trained on historical data to find the 1000 customers out of 5000 customer test data most likely to accept a bank marketing offer

Methodology

Evaluation / Scoring

$$score = 10P \cdot \frac{|X|}{|X_{val}|} - 200N,$$

where:

- |X| size of the whole dataset,
- $|X_{val}|$ size of each validation dataset in cross-validation,
- P number of properly classified clients in validation dataset in given split out of $\frac{|X_{val}|}{5}$ clients with highest probability of benefiting from the offer (division by 5 comes from the fact that in our main task we select 1000 clients out of 5000),
- N number of features selected in given split.

Selected Experiments

Feature Selection Methods

- CMIM Conditional Mutual Information Maximization
- JMIM Joint Mutual Information Maximization
- IGFS Information Gain Feature Selection
- Random Forest Feature Importance (Impurity Decrease and Permutation Importance)
- Boruta
- Chi-Square Test
- Fisher score

Classification Models

- Support Vector Machines (SVMs)
- Logistic Regression
- LDA and QDA
- Naive Bayes
- Tree-based methods such as Random Forest, AdaBoost, Gradient Boosting
- Multi-layer Perceptron
- Ensembles and stacking of the best models

Results

Feat. Sel.	# Feat.	\mathbf{Model}	Average Score
CMIM	4	QDA	5810
	3	SVC	5580
	3	MLP	<mark>5490</mark>
Boruta + JMIM	4	QDA	6230
	3	SVC	6040
	4	MLP	6010
Boruta + IGFS	3	QDA	6270
	4	SVC	6170
	4	MLP	6130
Impurity	4	GaussianNB	6880
	4	QDA	6850
	4	MLP	6850
Boruta + Permutation	3	GaussianNB	6840
	3	SVC	6800
	3	QDA	6830

Selected strategies

Commonly Selected Features

Feat. Sel.	commonly selected features
CMIM	1, 2, 3, 5, 6, 22, 28, 30, 39, 156, 397
Boruta + JMIM	1, 2, 3, 4, 9, 102
Boruta + IGFS	1, 2, 3, 4, 5, 9, 101, 102, 104
Impurity	101, 102, 103, 106
Boruta + Permutation	101, 103, 105, 106

Best models and the Final Strategy

Conclusions

Conclusions and Findings

- 3 variables suffice as predictors for the classification task
- Naive Bayes high score may signify that the features selected are fairly conditionally independent
- Mutual Information-based methods are slow to compute for too large feature spaces, using Boruta before applying them can drastically improve feature selection analysis time
- Stacked classifier provides stability thanks to utilising two various models

Thank you!