DATA 514 Homework 4: Entity Relationship Diagrams and Query Plans Cathy Jia

Part 1: Theory

1. Design an E/R diagram for geography that contains the objects or entities together with the listed attributes.

2. Translate the diagram above by writing the SQL CREATE TABLE statements to represent this E/R diagram.

```
CREATE TABLE Person (
ssn INT,
name VARCHAR(20),
PRIMARY KEY (ssn)
);

CREATE TABLE Driver (
driverID INT,
driverSSN INT,
```

```
PRIMARY KEY (driverID),
  FOREIGN KEY (driverSSN) REFERENCES Person
);
CREATE TABLE NonProfessionalDriver(
  driverID INT,
  PRIMARY KEY (driverID),
  FOREIGN KEY (driverID) REFERENCES Driver
);
CREATE TABLE Professional Driver(
  driverID INT,
  medicalHistory VARCHAR(20),
  PRIMARY KEY (driverID),
  FOREIGN KEY(driverID) REFERENCES Driver
);
CREATE TABLE InsuranceCo (
  name VARCHAR(20),
  phone INT,
  PRIMARY KEY (name)
);
CREATE TABLE Vehicle (
  licensePlate VARCHAR(20),
  year INT,
  insuranceName VARCHAR(20),
  maxLiability FLOAT,
  ownerSSN INT,
  PRIMARY KEY (licensePlate),
  FOREIGN KEY (insuranceName) REFERENCES InsuranceCo,
  FOREIGN KEY (ownerSSN) REFERENCES Person
);
CREATE TABLE Car (
  carLicensePlate VARCHAR(20),
  make VARCHAR(20),
  PRIMARY KEY (carLicensePlate),
  FOREIGN KEY (carLicensePlate) REFERENCES Vehicle
);
CREATE TABLE CarDriver (
  carLicensePlate VARCHAR(20),
  carDriverID INT,
```

```
PRIMARY KEY (carLicensePlate),
FOREIGN KEY (carLicensePlate) REFERENCES Vehicle,
FOREIGN KEY (carDriverID) REFERENCES NonProfessionalDriver);

CREATE TABLE Truck (
   truckLicensePlate VARCHAR(20),
   truckDriverID INT,
   capacity VARCHAR(20),
   PRIMARY KEY (truckLicensePlate),
   FOREIGN KEY (truckLicensePlate) REFERENCES Vehicle,
   FOREIGN KEY (truckDriverID) REFERENCES ProfessionalDriver);
```

Which relation in your relational schema represents the relationship "insures" in the E/R diagram and why is that your representation?

The relationship "insures" is represented by the name of insurance company and the maximum liability for the vehicle entity. The vehicle entity has a column insuranceName which is a foreign key referencing the name in the insuranceCo entity, and the column maxLiability. I make this representation because each vehicle can only hold one insurance information including the insurance company name and maximum liability.

Compare the representation of the relationships "drives" and "operates" in your schema, and explain why they are different.

In the relationship "drives", a car can have multiple drivers, so I represent the Car entity (carLicensePlate, make) and the CarDriver entity (carLicensePlate, carDriverID) separately. In the relationship "operates", a truck can be operated by only one driver, so I represent the Truck entity including both truck information and truck driver information (truckLicensePlate, truckDriverID, capacity).

3. Write the equivalent SQL query to the relational algebra query plan.

```
SELECT d.p1 AS p1, MAX(d.y) AS z

FROM (SELECT a.p1 AS p1, b.p3 AS p3, COUNT(*) AS y
FROM (SELECT *
FROM person_living AS pl, parent_child AS pc
WHERE pl.x = pc.p1) AS a,
(SELECT p1 AS p3, p2 AS p4
FROM parent_child) AS b
WHERE a.p2 = b.p3
GROUP BY a.p1, b.p3) AS d
GROUP BY d.p1
```

4. Write a relational algebra plan

```
T1(p) = person_living(p) Join[p=name] male(name)
T2(p1,p2) = parent_child(p1,p2) Join[p1=name] female(name)
T3(p) = T2(p1,p2) Join[p2=p] T1(p)
T4(p) = T1(p) Difference T3(p)
```