Handling Missing Values in Tree-based Models: A Brief Survey

Yibin Xiong

October 18, 2021

1/14

Table of Contents

General Ideas

2 Imputation/Estimation Techniques

(ロト 4 個 ト 4 差 ト 4 差 ト) 差 · かくで

2/14

Missing Data Mechanisms [6]

- Missing Completely at Random (MCAR)

 Missingness of attribute \mathcal{A} do not depend on the values of \mathcal{A} itself and other attributes.
- Missing at Random (MAR)
 Missingness of attribute A depend on the values of other attributes,
 but not the value of A itself.
- Missing Not at Random (MNAR)
 Missingness of attribute A depend on the value of A itself.
 e.g. People with higher income tend not to disclose their salary

Categories of Solutions

- Discard
 - o Result in overfitting when there are too many missing data
 - Result in bias when missing values are NOT completely random(depend on values of existing attributes or the missing attributes themselves)
- "Leave it empty": build a new category for missing values
 - o Only for discrete random variables
 - For continuous random variables, we can assign 0 to the missing values and add a *binary dummy variable* associated with the imputed attribute
 - e.g. CatBoost [3]
- Imputation
 - o Statistical or learning-based estimates for missing values

Yibin Xiong October 18, 2021 4 / 14

Table of Contents

General Ideas

2 Imputation/Estimation Techniques

5 / 14

- Mean/Median/Mode Imputations

 - This makes strong assumption about the data, for instance all attribute variables are independent to each other.
 - e.g. Random Forests [1]

6/14

- Mean/Median/Mode Imputations

 - This makes strong assumption about the data, for instance all attribute variables are independent to each other.
 - e.g. Random Forests [1]
- Surrogate Tests
 - Use other "relevant", value-existing attributes to predict the missing values of an attribute.
 - o "Relevant" to what degree?
 - i) If some other attributes can completely replace the attribute \mathcal{A} where there are missing values, then we do not even need \mathcal{A} .
 - ii) If other attributes are not so relevant to \mathcal{A} , then the effect of surrogate test is bad.
 - e.g. CART [8]

6/14

- Default Directions
 - > Assign all instances with missing data in an attribute to a *default* child node. Choose the default that maximizes the evaluation metric for a split.
 - It requires test data to have the same pattern of missing values and may overfit to the missingness pattern of the training data
 e.g. XGBoost [2]

7 / 14

- Default Directions
 - > Assign all instances with missing data in an attribute to a *default* child node. Choose the default that maximizes the evaluation metric for a split.
 - It requires test data to have the same pattern of missing values and may overfit to the missingness pattern of the training data
 e.g. XGBoost [2]
- Soft Alignment

Let $O_1, \ldots O_n$ be the outcomes of a test. If x has missing value in this attribute, we assign x to each T_i (corresponding to O_i) by probability $w_{i,x}$, where

$$w_{i,x} = P(x \in T) \ P(x_{\mathcal{A}} \in O_i | x \in T)$$
$$= P(x \in T) \ P(\bar{x} \in T_i | x \in T)$$
$$= w_x \ P(\bar{x} \in T_i | x \in T)$$

Yibin Xiong October 18, 2021 7 / 14

We estimate $P(x_A \in O_i|x)$ using instances that has values of attribute A. Let T_c be the set of instances with value in attribute A

$$P(x_{\mathcal{A}} \in O_i | x) = \frac{\sum_{y \in T_c} w_y \cdot \mathbb{1}\{y_{\mathcal{A}=O_i}\}}{\sum_{y \in T_c} w_y}$$

- Assumes that the unknown test outcome are distributed probabilistically according to the relative frequency of the known outcomes.
- \circ If $|T_c|$ is small, then the estimate is not accurate (sample estimate has high variance).

e.g. C4.5 [5]

8 / 14

Multiple Imputation Methods

Framework [7]:

- Propose multiple possible values (drawn from a distribution) to fill the missing entries and get complete data.
- Get the learned model parameters $\hat{Q}^{(i)}$ associated with each proposal. Combine the results to compute a pooled estimate \bar{Q} and its variance.

Figure 1: Main steps used in multiple imputation.

Parameter Estimation: Joint and Fully Conditional

Let $Y = \{Y_1, \dots Y_n\}$ be the attribute variables. Y_{-j} be all but the j-th variable.

- 1. Model the joint probability of attribute variables given missingness
- 2. Model the *univariate conditional* probability iteratively Here is one iteration of iterative fully conditional specification methods

Algorithm 1 Iterative FCS sampler from Liu et al. (2014)

For $1 \le j \le p$,

- 1. Sample $\theta_j \sim \pi_j(\theta_j \mid Y_{j,\text{obs}}, Y_{(-j),\text{imp}}) \propto g_j(Y_{j,\text{obs}} \mid Y_{(-j),\text{imp}}, \theta_j)\pi_j(\theta_j)$
- 2. Sample $Y_{j,\text{imp}} \sim g_j(Y_{j,\text{imp}} \mid Y_{j,\text{obs}}, Y_{(-j),\text{imp}}, \theta_j)$

Yibin Xiong October 18, 2021 10 / 14

MI Methods: Probabilistic Full Imputation [4]

Idea: Try every possible imputation and combine the results weightedly according to P(X) (probability of completed data).

Advantage: Does not need strong assumptions; Tree-type independent

• Training time: minimize the expected loss over all imputations

$$\mathcal{L}(\Theta; \mathsf{D}_{\mathsf{train}}) = \frac{1}{|\mathsf{D}_{\mathsf{train}}|} \sum_{\mathbf{x}^o, y \in \mathsf{D}_{\mathsf{train}}} \mathbb{E}_{p_{\Phi}(\mathbf{X}^m | \mathbf{x}^o)} \big[l(y, f_{\Theta}(\mathbf{x})) \big]$$

For MSE loss, the optimal parameter has the following closed-form:

$$\theta_{\ell}^* = \frac{\sum_{\mathbf{x}^o, y \in \mathsf{D}_{\mathsf{train}}} y \cdot p_{\ell}(\mathbf{x}^o) / p(\mathbf{x}^o)}{\sum_{\mathbf{x}^o, y \in \mathsf{D}_{\mathsf{train}}} p_{\ell}(\mathbf{x}^o) / p(\mathbf{x}^o)}$$

for each leaf $\ell \in \mathsf{leaves}(\mathcal{T})$.

Yibin Xiong October 18, 2021 11/14

MI Methods: Probabilistic Full Imputation

Test time: find the expected prediction over all imputations

Proposition 1 (Expected predictions for decision trees). Given a decision tree (\mathcal{T}, Θ) encoding $f_{\Theta}(\mathbf{x})$, a distribution $p(\mathbf{X})$, and a partial assignment \mathbf{x}^{o} , the expected prediction of f w.r.t. p can be computed as follows:

$$\begin{split} \mathbb{E}_{\mathbf{x}^m \sim p(\mathbf{X}^m | \mathbf{x}^o)} \left[f_{\Theta}(\mathbf{x}^o, \mathbf{x}^m) \right] &= \frac{1}{p(\mathbf{x}^o)} \sum_{\ell \in \mathsf{leaves}(\mathcal{T})} \theta_\ell \cdot p_\ell(\mathbf{x}^o) \\ \text{where } p_\ell(\mathbf{x}^o) &= p(\mathbf{x}^{\mathsf{path}(\ell)}, \mathbf{x}^o) \text{ and } \mathbf{x}^{\mathsf{path}(\ell)} \text{ is the assignment to the RVs in } \mathsf{path}(\ell) \text{ that evaluates } \mathcal{I}_\ell(\mathbf{x}') &= \prod_{(n,j) \in \mathsf{path}(\ell)} [\![x'_n = j]\!] \text{ to } I. \end{split}$$

To model $p_{\ell}(x^o)$, we need to marginalize over RVs that are not on path ℓ . • Possible models for tractable marginalization: Gaussian, GMM, decomposable probabilistic circuits(PC)

Yibin Xiong October 18, 2021

12 / 14

References I

- Leo Breiman. "Random forests". In: *Machine learning* 45.1 (2001), pp. 5–32.
- Tianqi Chen and Carlos Guestrin. "Xgboost: A scalable tree boosting system". In: *Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining.* 2016, pp. 785–794.
- Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. "CatBoost: gradient boosting with categorical features support". In: arXiv preprint arXiv:1810.11363 (2018).
- Pasha Khosravi et al. "Handling missing data in decision trees: A probabilistic approach". In: arXiv preprint arXiv:2006.16341 (2020).
- J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.
- Donald B Rubin. "Inference and missing data". In: *Biometrika* 63.3 (1976), pp. 581–592.

Yibin Xiong October 18, 2021

13 / 14

References II

Xindong Wu et al. "Top 10 algorithms in data mining". In: Knowledge and information systems 14.1 (2008), pp. 1–37.

Yibin Xiong October 18, 2021 14/14