ANALYSIS

NAOKI YANO

Contents

Part 1. 実数と連続 1. 実数の公理	1 1
Part 2. 微分法	2
Part 3. 積分法	2
2. 逆三角関数	2
3. 有理関数	2
4. 多変数関数の積分	3
5. 累次積分	3
6. 広義積分	3
7. 変数変換	3
8. 体積	3
9. 質量と重心	3
10. 慣性モーメント	3
11. 曲面積	3
12. ベクトル解析	3
Part 4. 線績分·面積分	4
Part 5. 積分定理	5
13. グリーン [Green] の定理	5
14. ガウス [Gauss] の定理	5
15. ストークス [Stokes] の定理	5
References	5

Part 1. 実数と連続

1. 実数の公理

```
Def. 1.1. 加群
(1) 交換律
a+b=b+a.
(2) 結合律
(1.1) (a+b)+c=a+(b+c)
(3) 零元の存在
(1.2) \exists 0 \in \mathbb{R}, \forall a \in \mathbb{R}, a+0=a.
```

Date: January 21, 2018.

NAOKI YANO

(4) 逆元の存在

 $\forall a \in \mathbb{R}, \exists -a \in \mathbb{R}, a + (-a) = 0$

Part 2. 微分法

Part 3. 積分法

2. 逆三角関数

Def. 2.1. 逆三角関数

(2.1)
$$x = \sin y, -\frac{\pi}{2} \le y \le \frac{\pi}{2}$$

には逆関数が存在して,これを

(2.2)
$$y = \sin^{-1} x, -1 \le x \le 1$$
 と書く. また

$$(2.3) x = \cos y, 0 \le y \le \pi$$

と書く. また
$$(2.3) & x = \cos y, 0 \le y \le \pi$$
 にも逆関数が存在して、
$$(2.4) & y = \cos^{-1} x, -1 \le x \le 1$$
 と書く.

Prop. 2.1. 逆三角関数の表示

$$\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1}x + \text{const.}$$

(2.5)
$$\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1}x + \text{const.}$$

$$\int \frac{dx}{\sqrt{1-x^2}} = -\cos^{-1}x + \text{const.}$$

(2.7)
$$x = \tan y, -\frac{\pi}{2} < y < \frac{\pi}{2}$$

$$(2.8) y = \operatorname{Tan}^{-1} x, -\infty < x < \infty$$

(2.9)
$$\int \frac{1}{1+x^2} = \text{Tan}^{-1}x + \text{const.}$$

3. 有理関数

Def. 3.1.

$$(3.1) R()$$

ANALYSIS

- 4. 多変数関数の積分
 - 5. 累次積分
 - 6. 広義積分
 - 7. 変数変換

Def. 7.1. ヤコビ行列式

 $x = \varphi(u, v), y = \psi(u, v)$ と変数変換したときのヤコビ行列式は

(7.1)
$$J(u,v) = \frac{\partial(\varphi,\psi)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial\varphi}{\partial u} & \frac{\partial\varphi}{\partial v} \\ \frac{\partial\psi}{\partial u} & \frac{\partial\psi}{\partial v} \end{vmatrix}$$

Def. 7.2. 変数変換

 $x = \varphi(u, v), y = \psi(u, v)$ と変数変換したとき

$$\iint_{\mathcal{D}} f(x,y) dx dy = \iint_{\mathcal{D}'} f(\varphi(u,v),\psi(u,v)) J(u,v) du dv$$

- 8. 体積
- 9. 質量と重心
- 10. 慣性モーメント
 - 11. 曲面積

Thm. 11.1. 曲面積 $\mathcal{D} \subset \mathbb{R}^2$ から \mathbb{R} への写像を

 $f: \mathcal{D} \to \mathbb{R}$

(11.2)
$$\mathcal{A} = \{(x, y, z) | (x, y) \in \mathcal{D}, z = f(x, y)\}$$

で表される曲面の面積は

(11.3)
$$S = \iint_{\mathcal{D}} \sqrt{1 + f_x^2 + f_y^2} dx dy$$
で表される.

Prf. 1.

Prop. 11.1. 曲面の法線ベクトル

$$\mathcal{D}: f(x, y, z) = \text{const.}$$

上の点 (x, y, z) における法線ベクトルは

 $\nabla f(x, y, z)$

である.

12. ベクトル解析

Def. 12.1. スカラー場 ベクトルからスカラーへの写像を

$$(12.1) f: V \to K$$

としたとき,組み合わせ

$$(12.2) (x, f(x))$$

をスカラー場という.

4

Def. 12.2. ベクトル場ベクトルからベクトルへの写像を

$$(12.3) f: V \to V$$

としたとき,組み合わせ

(12.4) (x, f(x))

をベクトル場という.

Def. 12.3. 微分演算子ベクトル (ナブラ)

(12.5)
$$\nabla := \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{bmatrix}$$

Def. 12.4. 勾配 [gradient]

(12.6)
$$\nabla f$$

Def. 12.5. 発散

$$(12.7) \nabla \cdot f$$

Def. 12.6. 回転

$$(12.8) \nabla \times f$$

Part 4. 線績分・面積分

Def. 12.7. 曲線

$$\Gamma := \{x\}(t) \mid a \le t \le b\}$$

を曲線という.

Def. 12.8. 線績分

(12.9)
$$\int_{\Gamma} f ds := \int f(\boldsymbol{x}(s)) \sqrt{\left(\frac{dx_1(s)}{ds}\right)^2 + \left(\frac{dx_2(s)}{ds}\right)^2 + \left(\frac{dx_3(s)}{ds}\right)^2} ds$$
を線績分という.

Def. 12.9. ベクトル場の線積分

ANALYSIS

ベクトル場の線積分は
$$(12.10) \int_{\Gamma} \mathbf{f} \cdot d\mathbf{S} = \int_{\Gamma} \mathbf{f} \cdot \mathbf{n} dS = \int \mathbf{f} \cdot \mathbf{n} \sqrt{\left(\frac{dx_1(s)}{ds}\right)^2 + \left(\frac{dx_2(s)}{ds}\right)^2 + \left(\frac{dx_3(s)}{ds}\right)^2} ds$$

Def. 12.10. 面積分
$$z = \varphi(x, y)$$
で表される曲面における f の面積分は
$$\iint_{\mathcal{D}} f dS = \iint_{\mathcal{D}} f \sqrt{1 + \varphi_x^2 + \varphi_y^2} dx dy$$
 (12.11)

Def. 12.11. ベクトル場の面積分
$$z = \varphi(x,y)$$
 で表される曲面における f の面積分は
$$\iint_{\mathcal{D}} f dS = \iint_{\mathcal{D}} f \cdot n \sqrt{1 + \varphi_x^2 + \varphi_y^2} dx dy$$

Part 5. 積分定理

13. グリーン [GREEN] の定理

(13.1)
$$\oint_{\Gamma} f_1 dx_1 + f_2 dx_2 = \iint_{D} \left(-\frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} \right)$$

14. ガウス [Gauss] の定理

(14.1)
$$\iiint_{V} \operatorname{div} \mathbf{f} dv = \iint_{A} \mathbf{f} \cdot d\mathbf{S}$$

15. ストークス [Stokes] の定理

(15.1)
$$\iint_{A} \operatorname{rot} \mathbf{f} \cdot \mathbf{n} dS = \oint_{\partial A} \mathbf{f} \cdot d\mathbf{r}$$

[1] 杉浦光夫. 解析入門 I. 初版, 東京大学出版会, 1980, 428p.