

Jogos Matemáticos - Aula 06

Função Quadrática I

Kaique Matias de Andrade Roberto

Administração - Ciências Atuariais - Ciências Contábeis - Ciências Econômicas

HECSA - Escola de Negócios

FIAM-FAAM-FMU

Conteúdo

- 1. Conceitos que aprendemos em Aulas anteriores
- 2. Definição e Primeiras Propriedades
- 3. Zeros
- 4. Máximos e Mínimos
- 5. Comentários Finais
- 6. Referências

Aulas anteriores

Conceitos que aprendemos em

Conceitos que aprendemos em Aulas anteriores

- definimos a noção de produto cartesiano;
- definimos a noção de função;
- lidamos com alguns tipos de função;
- estudamos as propriedades e algumas aplicações das funções afim.

Definição e Primeiras

Propriedades

Definição 2.1

Uma **função quadrática** é uma função $f: \mathbb{R} \to \mathbb{R}$ do tipo $f(x) = ax^2 + bx + c$, com $a, b, c \in \mathbb{R}$.

Exemplo 2.2

Para as funções quadráticas abaixo identifique a, b e c:

a -
$$f(x) = x^2 - 3x + 2$$
; d - $f(x) = x^2 + 1$;
b - $f(x) = x^2 - 4x$; e - $f(x) = 2x^2 + 4x - 3$;
c - $f(x) = -x^2 + x + 1$; f - $f(x) = -3x^2 + 5x + 1$.

Usaremos estas funções durante toda a Aula 06.

Gráfico de uma função quadrática

O gráfico de uma função quadrática $f(x) = ax^2 + bx + c$ é sempre uma parábola.

A parábola representativa da função quadrática $f(x) = ax^2 + bx + c$ pode ter a concavidade voltada para "cima" ou voltada para "baixo".

Se a>0, a concavidade da parábola está voltada para cima.

Se a < 0, a concavidade da parábola está voltada para baixo.

A construção do gráfico da função quadrática $f(x) = ax^2 + bx + c$ com o auxílio de uma tabela de valores x e y, torna-se às vezes um trabalho impreciso, pois na tabela atribuímos a x alguns valores inteiros e pode acontecer que em determinada função quadrática os valores de abscissa (valores de x) não são inteiros.

Para iniciarmos um estudo analítico mais detalhado da função quadrática, vamos primeiramente transformá-la em outra forma mais conveniente, chamada forma canônica.

Definição 2.3

Para uma função quadrática $f(x) = ax^2 + bx + c$, a **forma canônica** de f é

$$f(X) = a\left[\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}\right].$$

Os **zeros** ou **raízes** de uma função quadrática $f(x) = ax^2 + bx + c$ são os valores $\alpha \in \mathbb{R}$ tais que $f(\alpha) = 0$, ou seja, $a\alpha^2 + b\alpha + c = 0$.

Teorema 3.1 (Fórmula de Bháskara)

Para a equação do segundo grau em \mathbb{R} $ax^2 + bx + c = 0$ com $a \neq 0$ e $\Delta = b^2 - 4ac$ temos:

- ullet se $\Delta < 0$ então a equação não tem soluções reais;
- ullet se $\Delta=0$ então a única solução da equação é

$$\alpha = -\frac{b}{2a};$$

ullet se $\Delta>0$ então a equação admite duas soluções

$$\alpha_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 e $\alpha_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

Interpretando geometricamente, dizemos que os zeros da função quadrática são as abscissas dos pontos onde a parábola corta o eixo dos $\mathsf{x}.$

Definição 4.1

Dizemos que o número $y_M \in \operatorname{Im}(f)$ é o **valor máximo** da função y = f(x) se, e somente se, $y_M \ge y$ para qualquer $y \in \operatorname{Im}(f)$. O número $x_M \in \operatorname{Dom}(f)$ tal que $f(x_M) = y_M$ é chamado **ponto de máximo** da função.

Definição 4.2

Dizemos que o número $y_m \in \operatorname{Im}(f)$ é o **valor mínimo** da função y = f(x) se, e somente se, $y_m \leq y$ para qualquer $y \in \operatorname{Im}(f)$. O número $x_m \in \operatorname{Dom}(f)$ tal que $f(x_m) = y_m$ é chamado **ponto de mínimo** da função.

Teorema 4.3

Para uma função quadrática $f(x) = ax^2 + bx + c$, temos:

• se a < 0 então o f admite máximo e

$$(x_M, y_M) = \left(-\frac{b}{2a}, -\frac{\Delta}{4a}\right);$$

• se a < 0 então o f admite mínimo e

$$(x_m, y_m) = \left(-\frac{b}{2a}, -\frac{\Delta}{4a}\right).$$

Definição 4.4

Para uma função quadrática $f(x) = ax^2 + bx + c$ o ponto

$$V = \left(-\frac{b}{2a}, -\frac{\Delta}{4a}\right)$$

é chamado vértice da parábola.

Em resumo, na aula de hoje nós:

- definimos o que é uma função quadrática;
- calculamos os zeros e esboçamos os gráficos de algumas funções quadráticas;
- lidamos com máximos/mínimos e vértices da parábola.

Nas próximas aulas nós vamos focar em:

- imagem de uma função quadrática;
- eixo de simetria;
- aplicações.

Exercícios Recomendados para a Aula de Hoje

Em grupos de até 5 integrantes resolva o Exercício 6.1.

Referências

Referênc<u>ias</u>

Referências

Bons Estudos!

