

Introduction to ROS + MATLAB

Software requirements

- Matlab 2022a(recommended) / 2022b
- Type in command window: rosinit

```
>> rosinit
Launching ROS Core...
Invalid Python executable: ''. Use pyenv function to set the path to the Python executable and retry the command.
```



```
>> pyenv('Version','/usr/bin/python3.9')
```


Software requirements

Matlab 2022a(recommended) / 2022b

Type in command window (again): rosinit

```
>> rosinit
Launching ROS Core...
Creating a Python virtual environment...Done.
Adding required Python packages to virtual environment...Done.
Done in 0.60235 seconds.
Initializing ROS master on http://192.168.1.77:11311.|
Initializing global node /matlab_global_node_70367 with NodeURI http://arrige66:59118/ and MasterURI htt
>> |
```

If you install 2022b you will have to fix a couple of things more...

Intro

Modified Publisher (python)

```
#!/usr/bin/env python
import rospy
from std msgs.msg import Float32
def say something():
pub = rospy.Publisher('rndm number', Float32, queue size=10)
rospy.init node('publisher node', anonymous=False)
rate = rospy.Rate(1) # 10hz
start=rospy.get_time()
while not rospy.is shutdown():
         timer=rospy.get time()
         msg = timer-start
         rospy.loginfo(msg)
         pub.publish(msg)
         rate.sleep()
if name == ' main ':
try:
          say something()
except rospy.ROSInterruptException:
         pass
```

Float type

New topic name and frequency

Loginfo: display and store in /rosout

Verify

Compile the node and run it!

Check nodes rosnode list

Check topics rostopic list

See topic rostopic echo /rndm_number

```
^Craibuntu@RaiBuntu66:~/ws_folder$ rostopic echo /rndm_number data: 9.001220703125
---
data: 10.001298904418945
---
data: 11.001474380493164
---
data: 12.00144100189209
---
data: 13.001433372497559
---
data: 14.001218795776367
---
data: 15.001434326171875
---
data: 16.001399993896484
```

Let's connect Matlab to ROS

Initialize Ros Master

rosinit

rosinit('ip_address of the master if any')

>> rosinit

The value of the ROS_MASTER_URI environment variable, http://localhost:11311, will be used to connect to the ROS master.
The value of the ROS_HOSTNAME environment variable, localhost, will be used to set the advertised address for the ROS node.
Initializing global node /matlab_global_node_83857 with NodeURI http://localhost:44665/ and MasterURI http://localhost:11311.

Let's connect Matlab to ROS

Check if it's working

rostopic list rostopic echo

```
>> rostopic list
/rndm_number
/rosout
/rosout_agg
/tf
>> rostopic echo /rndm_number

Data : 212.0012664794922
---

Data : 213.00146484375
---

Data : 214.0012359619141
```

Let's define a Simulink node

Initialize Simulink with ROS Toolbox 1/3

Let's define a Simulink node

Initialize Simulink with ROS Toolbox 2/3

Let's define a Simulink node

Initialize Simulink with ROS Toolbox 3/3

Let's define the subscriber

Subscriber block

Let's define the publisher: blank message

Let's add some data in the message

Bus assignment

Let's complete the publisher

computation block

Verify

Run the node and check it!

Check topics rostopic list

see topic rostopic echo /simulink_topic

verify frequency rostopic hz / simulink_topic

```
^Craibuntu@RaiBuntu66:~/ws_folder$ rostopic list
/rndm_number
/rosout
/rosout_agg
/simulink_topic
/tf
```

```
^Craibuntu@RaiBuntu66:~/ws_folder$ rostopic echo /simulink_topic x: 37.000980377197266 y: 216.0 z: 0.0
```


Intro

Let's start an example in ROS 1/2

Open a new terminal and initialize gazebo

```
export TURTLEBOT3_MODEL=burger
roslaunch turtlebot3_gazebo turtlebot3_world.launch
```

Gazebo

Let's start an example in ROS 2/2

in a new terminal let's run a control example

```
### /home/raibuntu/catkin_ws/src/turtlebot3_simulations/turtlebot3_gazebo/launch/turtlebot3_world.launclexport TURTLEBOT3_MODEL=burger
raibuntu@RaiBuntu66:~$ export TURTLEBOT3_MODEL=burger
raibuntu@RaiBuntu66:~$ roslaunch turtlebot3_gazebo turtlebot3_world.launch
... logging to /home/raibuntu/.ros/log/27224486-419d-11ed-a03d-61cb0b8aef52/roslaunch
```

```
raibuntu@RaiBuntu66:~80x24

raibuntu@RaiBuntu66:~$ export TURTLEBOT3_MODEL=burger
raibuntu@RaiBuntu66:~$ roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch
... logging to /home/raibuntu/.ros/log/27224486-419d-11ed-a03d-61cb0b8aef52/rosl
aunch-RaiBuntu66-17757.log
```

Expected result...

