





# Design of a diagnosis and follow-up platform for patients with chronic headaches

Kiani Lannoye & Gilles Vandewiele

Faculty of Engineering and Architecture







Intro

Current process UH Ghent

Platform requirements

Mobile application

Backend and data exposure

Genetic merging of DT's

Visualization

Conclusion & future work

2 / 41







FACULTY OF ENGINEERING AND
ARCHITECTURE

# Headaches









FACULTY OF ENGINEERING AND ARCHITECTURE

## Headaches

(Headaches)







FACULTY OF ENGINEERING AND
ARCHITECTURE

#### Headaches

Headaches

Primary headaches







FACULTY OF ENGINEERING AND ARCHITECTURE

#### Headaches









FACULTY OF ENGINEERING AND
ARCHITECTURE

#### Headaches









FACULTY OF ENGINEERING AND
ARCHITECTURE

#### Headaches









# Current process UH Ghent

#### Current process at UH Ghent is:

- ► Not digital
- **▶** cumbersome
- ► long-lasting







**ARCHITECTURE** 









So there is need for a better (digital) alternative! This alternative has to:

- ▶ capture at least the same information as current solution
- ▶ be more efficient.
- provide a second opinion for the doctors (auto-diagnose)







Intro

Platform requirements

Mobile application

Backend and data exposure

Genetic merging of DT's

Visualization

Conclusion & future work

Platform requirements 7 / 41







# Platform requirements

#### Our proposed alternative consists of:

- ► Headache journal: mobile app
- ► Doctor Dashboard: web application
- ► Machine learning module: auto-classify

#### Solution non-functional requirements:

- ► Security
- Availability
- ► Performance

► Usability

Platform requirements 8 / 41







# Platform requirements

**ARCHITECTURE** 



Platform requirements 9 / 41







Intro

Platform requirements

Mobile application Chronicals

Backend and data exposure

Genetic merging of DT's

Visualization

Conclusion & future work

Mobile application 10 / 41







## Mobile Application

Why create a new application?

#### Competition

- ► Migraine Buddy
- ► Headache Diary
- ► Pfizer headache journal

Mobile application 11 / 41







# Mobile Application

Why create a new application?

#### Competition

- ► Migraine Buddy
- ► Headache Diary
- ► Pfizer headache journal

All good, but:

Mobile application 11 / 41







# Mobile Application

Why create a new application?

#### Competition

- ► Migraine Buddy
- ► Headache Diary
- ► Pfizer headache journal

#### All good, but:

- ▶ none offers usable data export
- ▶ none captures all data needed

Mobile application 11 / 41







# Cross platform vs Native

|   | Native                     | Cross-platform               |
|---|----------------------------|------------------------------|
|   | + Native UX                | + 1 language                 |
| + | + device-specific features | + Write once, run everywhere |
|   | + Better performance       | + Less maintenance           |
|   |                            | - Slower (lower performance) |
|   | - Multiple languages       | - Less device specific       |
| - | - Time consuming           | features                     |
|   | (development)              | - Harder to release online   |
|   |                            | (Play Store/App Store)       |

Mobile application 12 / 41







# Cross platform vs Native

|   | Native                     | Cross-platform               |
|---|----------------------------|------------------------------|
|   | + Native UX                | + 1 language                 |
| + | + device-specific features | + Write once, run everywhere |
|   | + Better performance       | + Less maintenance           |
|   |                            | - Slower (lower performance) |
|   | - Multiple languages       | - Less device specific       |
| - | - Time consuming           | features                     |
|   | (development)              | - Harder to release online   |
|   |                            | (Play Store/App Store)       |

Mobile application 12 / 41





**ARCHITECTURE** 

























# Chronicals

**ARCHITECTURE** 









#### FACULTY OF ENGINEERING AND ARCHITECTURE

#### Chronicals







## Chronicals









#### ARCHITECTURE













Intro

Platform requirements

Visualization

Mobile application

Conclusion & future work

Backend and data exposure







## Backend and data exposure

#### Components

- ► Database
- ► Connection to App
- ► Connection to Docter Dashboard
- ► Connection Machine learning module







FACULTY OF ENGINEERING AND
ARCHITECTURE

# System

17 / 41









# System

**ARCHITECTURE** 









Intro

Platform requirements

Mobile application

Backend and data exposure

Genetic merging of DT's

Visualization

Conclusion & future work







# Many different induction algorithms



→ Which tree is the most beautiful?

Genetic merging of DT's Introduction 19 / 41







## Current ensembles lack interpretability

**Boosting, bagging, random forests,** etc. require majority voting (classification) or mean calculation (regression) to obtain prediction





Genetic merging of DT's

Introduction







## Current ensembles lack interpretability

The final decision tree obtained by **stacking** contains uninterpretable internal nodes



Genetic merging of DT's Introduction 21 / 41





## Decision tree $\rightarrow$ decision space

#### Converting decision trees to decision spaces

We can define a one-to-one mapping between a decision tree and a set of k-dimensional hyperplanes (k = # features), called **decision space**. Each node in the decision tree corresponds to a hyperplane in the decision space.





## Decision tree $\rightarrow$ decision space









FACULTY OF ENGINEERING AND ARCHITECTURE

# Merging decision spaces









# Merging decision spaces









# ARCHITECTURE

# Pruning decision spaces







# Decision space $\rightarrow$ decision tree

#### Converting decision spaces to decision trees

One-to-one mapping from decision tree to space is lost during conversion because the order is lost. Therefore, a heuristic approach must be taken, identifying hyperplane candidates and calculating a metric to choose the 'best' plane.

#### Candidate hyperplanes

In order for a plane to be the next candidate node, it must be unbounded in all dimensions but one.





# Decision space $\rightarrow$ decision tree







# Decision space $\rightarrow$ decision tree







# Decision space $\rightarrow$ decision tree

#### Finding 'best' candidate hyperplane

Apply metric function to each plane, these include:

- ▶ information gain and Gini from C4.5 and CART respectively
- ▶ pick plane from most correlated feature ( $\chi^2$  and ANOVA F-test from QUEST)
- ▶ pick plane that divide space in two most equal subspaces (using surface/volume or counting number of planes)
- ▶ combination











# Splitting the data







#### Generate different decision trees







**ARCHITECTURE** 

# Generate different decision trees







# Genetic merging

**ARCHITECTURE** 







# Final iteration

















# Evaluating our algorithm

5 datasets from UCI optimal parameters, feature selection when needed and k-fold CV

| Name    | <b>#Samples</b> | #Disc | #Cont | #Class | Imbalance rate |
|---------|-----------------|-------|-------|--------|----------------|
| Heart   | 270             | 7     | 6     | 2      | 0.058          |
| Car     | 1728            | 6     | 0     | 4      | 0.225          |
| Iris    | 150             | 0     | 4     | 3      | 0              |
| Shuttle | 14500           | 0     | 9     | 7      | 0.18308        |
| Nursery | 12960           | 8     | 0     | 5      | 0.1498         |

Genetic merging of DT's

Genetic algorithm





**ARCHITECTURE** 

| Dataset       | Folds | C4.5   | CART   | QUEST  | Genetic       |
|---------------|-------|--------|--------|--------|---------------|
| Heart disease | 5     | 0.8067 | 0.7844 | 0.7844 | 0.8067        |
| Heart disease | 10    | 0.8104 | 0.7732 | 0.7881 | 0.7993        |
| Iris          | 3     | 0.9533 | 0.9467 | 0.9467 | 0.96          |
| IIIS          | 5     | 0.9467 | 0.9333 | 0.9467 | 0.9533        |
|               | 3     | 0.9722 | 0.9693 | 0.9229 | 0.9693        |
| Cars          | 5     | 0.9711 | 0.9682 | 0.9241 | <u>0.9786</u> |
|               | 10    | 0.9756 | 0.9751 | 0.9265 | 0.9803        |
|               | 3     | 0.9987 | 0.9983 | 0.9964 | 0.9988        |
| Shuttle       | 5     | 0.9986 | 0.9981 | 0.9962 | 0.9988        |
|               | 10    | 0.9990 | 0.9987 | 0.9941 | 0.9992        |
|               | 3     | 0.9890 | 0.9431 | 0.9147 | 0.9914        |
| Nursery       | 5     | 0.9918 | 0.9498 | 0.9251 | <u>0.9958</u> |
|               | 10    | 0.9937 | 0.9568 | 0.9259 | 0.9954        |





#### Accuracy on nursery dataset using 10 folds









Intro

Platform requirements

Mobile application

Backend and data exposure

Genetic merging of DT's

Visualization

Conclusion & future work







## Doctor Dashboard

# Maarten Vanden Berghe









#### ARCHITECTURE

#### Doctor Dashboard

# Maarten Vanden Berghe









## Doctor Dashboard

# Maarten Vanden Berghe









#### Doctor Dashboard

# Maarten Vanden Berghe









Intro

Platform requirements

Mobile application

Backend and data exposure

Genetic merging of DT's

Visualization

Conclusion & future work

Conclusion & future work







#### **Bedankt**

# Bedank voor uw aandacht

No written word,
No spoken plea,
Can teach the youth what they should be,
Nor all the books on all the shelves,
It's what the teachers are themselves

Conclusion & future work 40 / 41







Intro

Platform requirements

Mobile application

Backend and data exposure

Genetic merging of DT's

Visualization

Conclusion & future work