Maximum Likelihood Estimation

1. INTRODUCTION

- Scientists use **models** to understand the phenomena they study.
- Any number computed with sample data → statistics.
- We can distinguish between **DETERMINISTIC MODELS & STATISTICAL MODELS**.
- Probability:
 - Known Population → **DEDUCTION** → Sample.
- Statistics:
 - Unknown Population ←INDUCTION ←Sample.
- **Parameters** → are fixed, unknown quantities that specify the population.
- **Estimators** → statistics that are used to estimate the unknown parameters.

2. MODEL ESTIMATION

- Statistical models have unknown parameters that need to be specified:
 - **Point Estimation** → estimating a population parameter with a **single value**.
 - MAXIMUM LIKELIHOOD ESTIMATOR.
 - METHOD OF MOMENTS.
 - Interval Estimation →estimating a population parameter with a range of plausible values.

3.MAXIMUM LIKELIHOOD ESTIMATOR

- Let X_1, \ldots, X_n be a random sample from a distribution $f(x|\theta_1,\ldots,\theta_k)$. K= Number of parameters

 • The likelihood function $L(\theta|\mathbf{x})$ is defined as

- This is in fact, the joint density function considering the data as given.
- We will often work with the log-likelihood function $\ell(\boldsymbol{\theta}|\mathbf{x})$, defined correspondingly as

defined correspondingly as
$$\ell(\boldsymbol{\theta}|\mathbf{x}) = \ln\left(L(\boldsymbol{\theta}|\mathbf{x})\right) = \ln\left(L(\boldsymbol{\theta}_1,\dots,\boldsymbol{\theta}_k|x_1,\dots,x_n)\right) = \sum_{i=1}^n \ln\left(f(x_i|\theta_1,\dots,\theta_k)\right)$$

EXAMPLE BERNOULLI DISTRIBUTION:

Let X_1, \ldots, X_n be a random sample with $X_i \sim Bern(p)$

$$P(X_1 = x_1 | p) = p^{x_1} (1-p)^{1-x_1}$$

$$P(X_1 = x_1, ..., X_n = x_n | p) = \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i}$$

= $p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i}$

$$L(p | x_1,...,x_n) = p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i}$$

- The maximum likelihood estimator $\hat{\theta}$ maximizes $L(\theta|x)$ as a function of θ .
- The method selects a value for θ such that the sample is most likely.
- Obtaining a maximum likelihood estimator is an optimization problem.
- In practice, it is often easier (and equivalent) to maximize the natural logarithm of the likelihood function, thus maximize ℓ(θ|x).
 - To find candidates for MLE:
 - 1. Partial derivative of the parameter and equal to 0.
 - 2. Do the second derivative and check if it's negative →maximum.

find what
$$\frac{\partial}{\partial \theta} L(\theta|\mathbf{x}) = 0, \qquad i = 1, \dots, k. \text{ and } \frac{\partial^2}{\partial \theta^2} L(\theta|\mathbf{x})|_{\theta = \hat{\theta}} < 0$$

- A point estimate obtained by ML is, by itself, not very informative.
- We need to specify its precision with incators
- The precision depends on the variance or the Fisher information of the ML estimator.

FISCHER INFORMATION:

Let
$$X_1, \ldots, X_n$$
 be a random sample with

andom sample with
$$f(\mathbf{x} \mid \theta) = \prod_{i=1}^{n} f(x_i \mid \theta)$$

The Fisher information about θ contained in x is defined by

permation/about
$$\theta$$
 contained in x is defined by

$$I_{x}(\theta) = E_{\theta} \left[\left(\frac{\partial}{\partial \theta} \ln (f(x \mid \theta)) \right)^{2} \right]$$

The period of th

INFORMATION FISHER

CRAMÉR-RAO LOWER BOUND:

Listells which is the loubil variance

- For any unbiased estimator $(E(\hat{\theta}) = \theta)$, there exists a lower bound on its variance.
- This bound equals the reciprocal of the Fisher information.

$$V\left(\hat{ heta}
ight) \geq rac{1}{I_{\mathbf{x}}(heta)}$$
 * chose the estimator with lowest variance.

 $V\left(\hat{\theta}\right) \geq \frac{1}{I_{\mathbf{x}}(\theta)}$ where the estimator with tower of variance. Definition • An unbiased estimator that attains the Cramér-Rao lower ped extends bound is called efficient.

CONFIDENCE-INTERVALS:

- Having the variance and the distribution of the ML estimator, we can now say something about uncertainty. -DPPC196
- A confidence interval is an expression of the uncertainty of the estimate
- A classical result, with $X_i \sim N(\mu, \sigma^2)$, is

$$CI(\mu)_{\underline{1-\alpha}} = \overline{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$
 (1)

- where $\overline{X} = \hat{\mu}_{ML}$, and $\frac{\sigma}{\sqrt{n}} = \sqrt{\frac{\sigma^2}{n}} = \sqrt{V(\hat{\mu})}$.

 Term $\frac{\sigma}{\sqrt{n}}(\sigma)$ estimated by s) is called the standard error of the mean.

 Term $z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \approx 2 \frac{\sigma}{\sqrt{n}}$ when $\alpha = 0.05$ is the error margin. $\frac{\sigma}{\sqrt{n}} \approx 2 \frac{\sigma}{\sqrt{n}} = 0.05$
- Equation (1) holds in general for ML estimators:

$$CI(\theta)_{1-\alpha} = \hat{\theta} \pm z_{\alpha/2} \sqrt{V(\hat{\theta})}$$
(2)

R EXAMPLE OF MLE:

- What is the rate of decay?
- What is the precision of a rate estimate?
- > fitdistr(x, "exponential")
 rate

0.498116487

(0.004981165)

Density and likelihood:

$$f(x|\lambda) = \lambda e^{-\lambda x}$$
 $L(\lambda|\mathbf{x}) = \lambda^n e^{-\lambda \sum x_i}$

With some algebra, it follows that

 $\sum_{\lambda} \lambda = 1/\bar{x}, \quad I_n(\lambda) = n/\lambda^2 \quad V(\hat{\lambda}) = \lambda^2/n$ $\sum_{\lambda} \lambda = 1/\bar{x}, \quad I_n(\lambda) = n/\lambda^2 \quad V(\hat{\lambda}) = \lambda^2/n$ $\sum_{\lambda} \lambda = 1/\bar{x}, \quad I_n(\lambda) = n/\lambda^2 \quad V(\hat{\lambda}) = \lambda^2/n$

Descriptive statistics of a sample of n = 10.000 waiting

N N* Mean Stdev Med Q1 Q3 Min Max X 10000 0 2.0075 2 1.397 0.579 2.768 0.001 18.163

 $\hat{\lambda} = 1/2.0075 = 0.49812$

 $\mathit{Cl}_{0.95}(\lambda) = 0.49812 \pm 1.96 \frac{0.49812}{\sqrt{10000}} = (0.4884; 0.5079)$