Homework 3 Solutions

Zheming Gao

September 20, 2017

Problem 4

- (1) Proof. If $d \in E$, then for any $x^0 \in P$, $x^0 + \lambda d \in P$, for all $\lambda \geqslant 0$. This implies that $Ax^0 = b, x^0 \geqslant 0$, and $A(x^0 + \lambda d) = b, x^0 + \lambda d \geqslant 0$. Eliminate Ax^0 from the last equality and get $\lambda Ad = 0$. Since $\lambda \geqslant Ad = 0$ is proved. Also, $x^0 \geqslant 0$ and $\forall \lambda \geqslant 0$, hence $d \geqslant 0$. Conversely, we need to show that for $d \in \mathbb{R}^n$, if $d \geqslant 0$ and Ad = 0, then $d \in E$. Take d that satisfies the given condition. For any $y \in P$, $Ay = b, y \geqslant 0$. Hence, we will have $A(y + \lambda d) = b, \forall \lambda \geqslant 0$. Also, it is true that $y + \lambda d \geqslant 0$, due to the positiveness of y, λ and d. In conclusion, d is a extremal direction of P.
- (2) *Proof.* We need to express E in a form of set.

$$E = \{ d \in \mathbb{R}^n | y + \lambda d \in P, \forall \lambda \geqslant 0, y \in P \}.$$

Take any $d \in E$, need to check if $\alpha d \in E$, $\forall \alpha \geq 0$. Actually, this is true. For any $y \in P$, $y + \lambda(\alpha d) = y + (\lambda \alpha)d \in P$ because $\lambda \alpha \geq 0$. Thus, $\lambda d \in E$, which proves that E is a cone.

(3) Proof. Take two points $d_1, d_2 \in E$ and $\beta \in (0, 1)$. For any $y \in P, \lambda \geqslant 0$,

$$y + \lambda(\beta d_1 + (1 - \beta)d_2) = \beta(y + \lambda d_1) + (1 - \beta)(y + \lambda d_2).$$

Let $x^1 = y + \lambda d_1$ and $x^2 = y + \lambda d_2$. Hence, the convex combination of x^1 and x^2 are in P since P is a convex polyhedron. This implies that E is convex.

Problem 5

- (1) We plot the graph of F_3 .
- (2) $B = \{(x_1, x_2, x_3)^T \in \mathbb{R}^3 | |x_1| + |x_3| = x_2 \}.$

(3)
$$I = \{(x_1, x_2, x_3)^T \in \mathbb{R}^3 | |x_1| + |x_3| < x_2 \}.$$

- (4) Extreme point: $(0, 0, 0)^T$. Vertex: $(0, 0, 0)^T$.
- (5) *Proof.* First, we show that F_3 is a cone. Take $x = (x_1, x_2, x_3)^T \in F_3$ and $\forall \lambda \geq 0$, check if $\lambda x \in F_3$.

$$|\lambda x_1| + |\lambda x_3| = \lambda |x_1| + \lambda |x_3| = \lambda (|x_1| + |x_3|) \le \lambda x_2.$$

Hence, λx is in F_3 . In conclusion, F_3 is a cone.

Next, we need to show F_3 is convex. Take $x, y \in F_3$ and $\forall \eta \in (0, 1), \eta x + (1 - \eta)y = (\eta x_1 + (1 - \eta)y_1, \eta x_2 + (1 - \eta)y_2, \eta x_3 + (1 - \eta)y_3)$. Use triangle inequality of absolute value and we get

$$|\eta x_1 + (1 - \eta)y_1| + |\eta x_3 + (1 - \eta)y_3| \leq \eta |x_1| + (1 - \eta)|y_1| + \eta |x_3| + (1 - \eta)|y_3|$$
$$= \eta(|x_1| + |x_3|) + (1 - \eta)(|y_1| + |y_3|)$$
$$\leq \eta x_2 + (1 - \eta)y_2.$$

Hence, $\eta x + (1 - \eta)y \in F_3$. This implies that F_3 is convex.

(6) (Any reasonable answers will be fine for this question.)

Example answer:

 \mathbb{R}^3_+ are different from F_3 and $\mathbb{R}^3_+ \cap F_3 \neq \phi$. $(-1,2,-1)^T \notin \mathbb{R}^3_+$ but in F_3 . $(2,1,2)^T \notin F_3$, but in \mathbb{R}^3_+ .

Problem 6

We plot the region of P_1 .

Figure 1: Region P_1 .

(a) Convert P_1 to standard equality form.

$$\begin{cases} 2x_1 - 4x_2 + a_1 & = 1 \\ 3x_1 - x_2 & -a_2 = -3 \\ x_1, x_2, a_1, a_2 & \geqslant 0. \end{cases}$$

(b) Basic solutions (in the form of (x_1, x_2, a_1, a_2)):

$$(-13/10, -9/10, 0, 0)$$

$$(-1, 0, 3, 0)$$

$$(1/2, 0, 0, 9/2) \star$$

$$(0, 3, 13, 0) \star$$

$$(0, -1/4, 0, 13/4)$$

$$(0, 0, 1, 3) \star$$

- (c) Basic feasible solutions are those basic solutions with " \star ".
- (d) Let V be the set of all extremal directions.

$$V = \{ v \in \mathbb{R}^2 | v = (1, d)^T, d \in [1/2, 3] \}.$$

(e) From the figure, we can see that there are two moving directions to the adjacent points. u_1 is to point $(1/2,0)^T$ and u_2 is to point $(0,3)^T$.

$$u_1 = (1,0)^T$$

 $u_2 = (0,1)^T$

Problem 7

We plot the region of P_2 .

Figure 2: Region P_2 .

(a) Convert P_2 to standard equality form.

$$\begin{cases} 2x_1 - 2x_2^+ + 2x_2^- + a_1 & = 3\\ 8x_1 - x_2^+ + x_2^- & -a_2 = -4\\ x_1, x_2^+, x_2^-, a_1, a_2 & \geqslant 0. \end{cases}$$

(b) Basic solutions (in the form of (x_1, x_2, a_1, a_2)):

$$(-1/2, -1, 0, 0, 0)$$

$$(-1/2, 1, 0, 0, 0)$$

$$(-1/2, 0, 0, 4, 0)$$

$$(3/2, 0, 0, 0, 16) \star$$

$$(0, 4, 0, 11, 0) \star$$

$$(0, -3/2, 0, 0, 11/2)$$

$$(0, 0, -4, 11, 0)$$

$$(0, 0, 3/2, 0, 11/2) \star$$

$$(0, 0, 0, 3, 4) \star$$

- (c) Basic feasible solutions are those basic solutions with " \star ".
- (d) Let V be the set of all extremal directions.

$$V = \{ v \in \mathbb{R}^2 | v = (1, d)^T, d \in [1, 8] \}.$$

(e) From the figure, we can see that there is only one moving directions to the adjacent point $(0, -3/2)^T$.

$$u = (0, -1)^T$$