Домашня робота з курсу "Теоретична механіка"

Студента 3 курсу групи МП-31 Захарова Дмитра

30 жовтня 2023 р.

Завдання 2.

Умова. Тіло з масою $m=1\,\mathrm{kg}$ рухається під дією сили $F(t)=f\left(1-\frac{t}{\tau}\right)$ (де $f=10\,\mathrm{N},\,\tau=1\,\mathrm{s}$). Визначте момент зупинки тіла, а також шлях, пройдений тілом до цього моменту. Початкова швидкість тіла дорівнює $v_0=20\,\mathrm{\frac{m}{s}}$ і збігається за напрямом із силою.

Розв'язок. Запишемо другий закон Ньютона:

$$m\frac{dv}{dt} = f\left(1 - \frac{t}{\tau}\right) \implies dv = \frac{f}{m}\left(1 - \frac{t}{\tau}\right)dt$$

Проінтегруємо обидві частини від 0 до t:

$$v(t) - v_0 = \frac{f}{m} \left(t - \frac{t^2}{2\tau} \right) \implies v(t) = v_0 + \frac{ft}{m} \left(1 - \frac{t}{2\tau} \right)$$

Тіло зупиниться у момент T тоді, коли v(T) = 0. Отже:

$$-\frac{f}{2m\tau}T^2 + \frac{f}{m}T + v_0 = 0 \implies T^2 - 2\tau T - \frac{2mv_0\tau}{f} = 0$$

Це є квадратним рівнянням. Його розв'язки:

$$T_{\pm} = \tau \pm \sqrt{\tau^2 + \frac{2mv_0\tau}{f}}$$

Оскільки корінь більший за au, то обираємо додатній розв'язок, що має вид

$$T = \tau + \sqrt{\tau^2 + \frac{2mv_0\tau}{f}}$$

Підставимо числа:

$$T = 1 s + \sqrt{1 + \frac{2 \cdot 20}{10}} s = (1 + \sqrt{5}) s \approx 3.236 s$$

Знайдемо шлях, котре пройшло тіло:

$$s = \int_0^T v(t)dt = \int_0^T \left(v_0 + \frac{ft}{m}\left(1 - \frac{t}{2\tau}\right)\right)dt = v_0 T + \frac{fT^2}{2m} - \frac{fT^3}{6m\tau}$$

Підставивши числа, маємо $s \approx 60.6 \,\mathrm{m}$.

Відповідь. Тіло зупиниться через 3.236 s на відстані 60.6 m від початку.

Завдання 4.

Умова. Визначте закон руху важкої кульки вздовж прямолінійного каналу, який проходить крізь центр Землі, якщо всередині земної кулі сила гравітаційного тяжіння пропорційна відстані від центру Землі. Початкова швидкість кульки дорівнює $v_0=0$. Якою буде швидкість кульки у центрі Землі та за який час вона потрапить до цього центру? Радіус земної кулі становить приблизно $R=6400\,\mathrm{km}$, прискорення вільного падіння на земній поверхні $g_0=9.8\,\frac{\mathrm{m}}{c^2}$.

Розв'язок. За умовою прискорення, що діє на тіло, дорівнює $g(r) = g_0 \cdot \frac{r}{R}$. За другим законом Ньютона:

$$m\ddot{r} = -mg(r) \implies \ddot{r} = -\frac{g_0}{R}r$$

Або, можемо записати як:

$$\ddot{r} + \frac{g_0}{R} \cdot r = 0$$

Бачимо, що перед нами рівняння гармонічних коливань з частотою $\omega^2 = \frac{g_0}{R}$. Якщо початкова швидкість 0, то рівняння руху:

$$r(t) = r_m \cos \omega t$$

де r_m – амплітуда та одночасно відстань в початковий момент часу. За умовою $r_m=R$, тому маємо:

$$r(t) = R\cos\left(\sqrt{\frac{g_0}{R}}t\right)$$

Кулька досягне центр за чверть періоду, тобто за $\frac{T}{4} = \frac{\pi}{2\omega} = \frac{\pi}{2}\sqrt{\frac{R}{g_0}}$. Швидкість у цей момент часу дорівнює $\omega R = \sqrt{g_0 R}$.

Відповідь. За час $\frac{\pi}{2}\sqrt{\frac{R}{g_0}}$ зі швидкістю $\sqrt{g_0R}$.

Завдання 5.

Умова. Визначте, за який час T і на яку висоту H підніметься тіло, що підкинуто вгору зі швидкістю v_0 , якщо сила опору повітря $R = k^2 mgv^2$.

Розв'язок. Запишемо другий закон Ньютона:

$$m\frac{dv}{dt} = -mg - k^2 mgv^2 \implies \frac{dv}{dt} = -g(1 + k^2 v^2)$$

Розділяємо змінні:

$$\frac{dv}{1 + k^2 v^2} = -gdt$$

Проінтегруємо. Права частина має первісну -gt, а ліва частина:

$$\int \frac{dv}{1+k^2v^2} = \begin{vmatrix} \xi = kv \\ dv = \frac{d\xi}{k} \end{vmatrix} = \frac{1}{k} \int \frac{d\xi}{1+\xi^2} = \frac{\arctan \xi}{k} + C = \frac{\arctan kv}{k} + C$$

Отже:

$$\arctan kv = -kgt + C'$$

Підставимо початковий момент часу: $arctan kv_0 = C'$. Отже:

$$\arctan kv = \arctan kv_0 - kgt$$

Потрібно знайти, через який час au швидкість стане нульовою. Отже:

$$\arctan kv_0 = kg\tau \implies \tau = \frac{\arctan kv_0}{kq}$$

Знайдемо висоту. Помітимо, що:

$$\arctan kv(t) = kg\tau - kgt = kg(\tau - t) \implies v(t) = \frac{1}{k}\tan(kg(\tau - t))$$

Отже, висота:

$$H = \frac{1}{k} \int_0^{\tau} \tan kg(\tau - t) dt = \frac{1}{k} \cdot \frac{-\log \cos kg\tau}{gk} = -\frac{\log \cos kg\tau}{k^2 g}$$

Згадаємо, що $kg\tau = \arctan kv_0$, тому:

$$H = -\frac{1}{k^2 g} \cdot \log \cos \arctan k v_0 = -\frac{1}{k^2 g} \log \frac{1}{\sqrt{1 + k^2 v_0^2}} = \frac{\log(1 + k^2 v_0^2)}{2k^2 g}$$

Відповідь. За час $au = \frac{\arctan k v_0}{kg}$ на висоту $H = \frac{\log(1 + k^2 v_0^2)}{2k^2 g}$.