Mass Spectrometry Data Formats

By Sam LaRue and Will Kumler

The Problem

Raw MS Data Formats Limitations:

- Raw mass-spectrometry data is often stored in vendor-specific formats or .mzML files
- These encode retention time, m/z ratio, and intensity
- Existing formats lack intuitive, rapid, and easy to use search capabilities
- Users must understand idiosyncratic file formats, which hinders accessibility and interoperability

Challenges with Current Methods:

- Difficulty in performing efficient queries and data extractions
- Inefficient handling of multi-file data aggregation
- Limited support for storing processed data alongside raw data
- Reliance on formats not actively supported by larger development communities

Spectrum extraction

```
spec_data = get_spec_mzml_pyteomics("../demo_data/180205_Poo_TruePoo_Full1.mzML", 1)
plt.stem(spec_data["mz"], spec_data["int"])
```

<StemContainer object of 3 artists>

Problematic: only useful if the arbitrary ID number is somehow known in advance

Chromatogram extraction

```
chrom_data = get_chrom_mzml_pyteomics('../demo_data/180205_Poo_TruePoo_Full1.mzML', 118.0865, 10)
plt.plot(chrom_data["rt"], chrom_data["int"])
```

[<matplotlib.lines.Line2D at 0x7f48f289b500>]

RT range queries

```
rtrange_data = get_rtrange_mzml_pyteomics('../demo_data/180205_Poo_TruePoo_Full1.mzML', 6.5, 8)
plt.scatter(rtrange_data["rt"], rtrange_data["int"])
```

<matplotlib.collections.PathCollection at 0x7f48f285b3e0>

*mz5 returns slightly different values

†mzTree/mzMD require manual loading

Do databases perform better than the existing file types?

Fundamental tradeoff between speed and size with DuckDB as an exception!

Future Work

- Multi-file comparisons
 - Existing MS data formats preserve the idea of "one sample = one file"
 - Develop methods for managing MS datasets that contain multiple files
 - Create systems to integrate new data files into existing aggregated datasets without reprocessing
 - Current methods have a linear increase every time a file is added
 - Parallel processing techniques???
 - Bottlenecks or other issues???