HIDK 4()5():

In the news

The New York Times Magazine

Not the Bots We Were Looking For

New Book: The Monsters of Education Technology 4 The MIT Press Journals
The Smartness Mandate:
Notes toward a Critique

BloombergTechnology

Silicon Valley Tried to Reinvent Schools. Now It's Rebooting

PBS

glassdoor 50 Best Jobs in America

WIRED

Audrey Watters on 31 Oct 2017

Big data meets Big Brother as China moves to rate its citizens

UNDARK Truth, Beauty, Science.

Streams of Data

On Rewarding 'Bullshit': Why Algorithms Should Not Be Grading Essays

Best-Ever Algorithm Found for Huge

Streams of Data

Quantamagazine

ALGORITHMIC JUSTICE LEAGUE

JOY BUOLAMWINI

Mark Cuban Talks About Funding Packback And The Future Of EdTech

Europe's Brighteye Ventures closes €50M fund to invest in edtech startups

New Data

Center for American Progress

INSIDE HIGHER ED

A Data Paradox

New Data Reveal 250 Preschoolers Are Suspended or Expelled Every Day

E.U. Data-Protection Law Looms

That Ghostly, Glowing Light Above Canada? It's Just Steve

The New York Times

Events

Event	Date	Time	Location	URL
The Provost's Conversation on Online Learning	November 8	4:00pm	Davis Auditorium, Schapiro CEPSR	https://columbia.us11.list-manage.com/track/click?u=8e1c6110b489f734b9985bec5&id=d0b52b0629&e=1cc15b53eb
Funny as Tech	November 7	7:00pm	The People's Improv Theater	https://thepit-nyc.com/event/2017-11-07-funny-as-tech-with-david-ryan-polgar-and-joe-leonardo
The People's Disruption: Platform Co-Ops for Global Challenges	November 10/11	all day	The New School	https://platform.coop/2017
KPMG Technology Career Forum	November 14	1:00pm	Online	https://app.brazenconnect.com/events/X1r8O? utm_medium=Marketing&utm_source=Data+Science+Asso ciation#!eventLanding;eventCode=X1r8O
The Role od Ed Research in EdTech	November 9	6:30pm	GDH 177/179	TCCS Link

Plans

- Next week: prediction
- Assignment 5
- November 30 last formal class
- Formative test: Dec 5
- Assignment 6: Group project Dec 7 & 12
- December 14: Everything due

Domain Structure Discovery

 Identifying the structure of knowledge in a(n) (educational) domain

Quantified epistemology

सांख्य ~500BCE

Plato ~300BCE

孟轲~200BCE

Domain Structure Discovery

Bibliometrics

(scientometrics, librametry, statistical bibliography)

- Citation patterns
- Raw number (impact score), Erdős Number
- Co-word analysis
- Network representation

Bibliographic Coupling

(Eigenvectors again!)

Alfonzo, Sakraida, Hastings-Tolsma (2014)

Alfonzo, Sakraida, Hastings-Tolsma (2014)

Latent Variable

Latent variables are variables that are not directly observed but are rather inferred from other variables that are observed and directly measured.

(What isn't a latent variable?)

Skills

Fischer & Yan, 1980

(There is also the whole world of construct validity)

Anderson, 1982

Prolonged learning (memory) about a family of events

Mostly defined by experts/definitionally true

Knowledge Components

A description of a mental structure or process that a learner uses, alone or in combination with other knowledge components, to accomplish steps in a task or a problem (Koedinger & Nathan, 2004)

Q-Matrices

History

- Interested in student misconceptions
- Devised the "Rule Space Method"
- RSM converts item
 response patterns into
 probabilities of mastering
 particular "skills" or concepts

Kikumi Tatsuoka

Concepts are defined by experts. Very time consuming & domain specific

Q-Matrix

	q1	q2	q3	q4	q5	q6
con1	1	0	0	0	0	1
con2	1	1	0	1	0	0
con3	1	1	1	0	0	0

(Tatsuoka, 1983;1996)

Probability a student is correct given mastery of a given concept

Q-Matrix

	q1	q2	q3	q4	q5	q6
con1	1	0.01	0.6	0	0.7	1
con2	0.8	0.7	0.8	0.76	0.5	0.42
con3	0.5	0.6	1	0.55	0.5	0.67

(Brewer, 1996)

One Solution

- Create idealized patterns
- Compare the observed pattern to the idealized
- Use difference between them as an indicator of "model fit"

Hill Climbing Algorithm

- If we stop too early might only capture a local maxima
- This is a "heuristic" algorithm when problem is not algebraically solvable or would take too long
- · State description contains all the information needed to find a solution

Idealized Pattern

	q1	q2	q3	q4	q5	q6
c1	1	0	0	0	0	1
c2	1	1	0	1	0	0
c 3	1	1	1	0	0	0

$$L_1 = d(p,IDR) = \sum_{q} |p(q) - IDR(q)|$$

$$L_1 = 1$$

Student Answer: 101110

Concept State	Ideal Response Vector
000	000010
001	001010
010	000110
011	011 10
100	000011
101)	001011
110	000111
111	111111

Idealized Pattern

	q1	q2	q3	q4	q5	q6
c1	1	0	0	0	0	1
c2	1	1	0	1	0	0
c 3	1	1	1	0	0	0

$$L_1 = d(p,IDR) = \sum_{q} |p(q) - IDR(q)|$$

Concept State	Students
000	A,D,X
001	B,M,N
010	C,E
011	F,G,H
100	I,J,K,L
101	O,W
110	P,Q,R,S
111	T,U,V,Z

Answers

	Q1	Q2	Q3	Q4	Q5	Q8	Q9	Q8	Q9	Q10	Q11	
Ans	2	4	3	4	2	4	2	2	3	3	4	

Q-Matrix

	q1	q2	q3	q4	q5	q6	q7	q8	q9	q10	q11	
c1	1	1	1	0	1	0	0	1	0	0	0	
c2	0	0	0	0	1	1	0	0	0	0	0	
сЗ	1	0	0	0	0	0	0	0	1	1	1	
c 4	0	1	0	1	0	1	0	0	0	0	0	
c 5	0	0	0	0	0	0	1	1	0	1	0	

Concept State	IDR
00000	000000000
00001	00000010000
00010	0001000000
00011	00010010000
10100	10100000101
10101	10100010111
10111	11110011111
11000	00101000000
11100	10101000101
11110	11111100101
01111	00010110111
01000	000000000
01010	00000100000
01101	00010010111
01110	00010100101
11111	1111111111

- Find the IDR closest to your own
- There are two "all zero"
- Count how many digits are different to your answer

Problem

Correspondence between expert-derived Q-matrices and student responses is not 100%

(Hubal, 1992)

Question: Can we use the Q-matrix method to derive valid "student metal states" (constructs? knowledge states? skill definitions?)

Can this problem be solved? Yes

Divergence by Domain

Tutoring Systems
Automation
Identifying KS

Large scale assessments
Identifying cognitive states
for use by instructors

Activity: Build Q-M

- Get into groups
- Agree on a topic
- Agree on concepts within that topic
- Devise some questions that relate to the concepts
- Map the concepts to those questions
- Email your answer to me with TEAM NAME

One Solution

- Create idealized patterns
- Compare the observed pattern to the idealized
- Use difference between them as an indicator of "model fit"

Idealized Pattern

	q1	q2	q3	q4	q5	q6
c1	1	0	0	0	0	1
c2	1	1	0	1	0	0
c 3	1	1	1	0	0	0

$$L_1 = d(p, IDR) = \sum_{q} |p(q) - IDR(q)|$$

$$L_1 = 1$$

Student Answer: 101110

Concept State	Ideal Response Vector
000	000010
001	001010
010	000110
011	011 10
100	000011
101)	001110
110	000111
111	111111