4MEF03/MFC: TD1 Ecoulements Q1D

Exercices

1. Grandeurs totales

Un écoulement isentropique supersonique dans une tuyère divergente est caractérisé par les conditions d'entrées suivantes: $M_1 = 2$ et $P_1 = 2 \times 10^5$ Pa. On souhaite obtenir une nombre de Mach en sortie $M_2 = 3$.

Donner la valeur de la pression statique de sortie P_2 permettant de satisfaire cette condition.¹

2. Grandeurs critiques

On considère une conduite convergente-divergente dont la pression totale d'entrée est fixée à $P_{t_1}=2.2\times 10^5$ Pa. La valeur du nombre de Mach en sortie est $M_2 = 0.4$. Les diamètres des sections au col et en sortie valent respectivement $D_{col} = 10 \text{ mm et } D_2 = 12 \text{ mm.}$

Calculer la valeur de la pression au col P_{col} sachant que l'écoulement est isentropique.²

3. Soufflerie supersonique

Une soufflerie composée d'un convergent puis d'un divergent est alimentée par un écoulement tq: $M_1 \approx 0$, $P_{t_1} = 8 \times 10^5$ Pa et $T_{t_1} = 300$ K. Ces conditions permettent d'obtenir en sortie de convergent un écoulement supersonique (i.e. $M_2 > 1$). La section au col est $A_{col} = 0.15 \text{ m}^2$ et la section de sortie (en bout de divergent) est $A_2 = 0.253 \text{ m}^2$.

- 1. Décrire le régime de l'écoulement dans toute la tuyère en précisant la valeur du nombre de Mach au col.
- 2. Calculer les grandeurs suivantes au col: ρ , P, T, U et a.
- 3. En déduire la valeur du débit massique.
- 4. Comment déterminer le nombre de Mach M_2 en sortie ?
- 5. Etablir alors les valeurs de ρ , P, T, U et a en sortie de tuyère.

¹Astuce: faire apparaitre le produit de rapports afin de pouvoir utiliser les relations isentropiques 2 Astuce: utiliser la relation $A/A_{col} = f(M)$