### Lecture 8

### **Transistor Models**

# Computer Systems Laboratory Stanford University horowitz@stanford.edu

Copyright © 2006 Mark Horowitz

M Horowitz EE 371 Lecture 8

### Introduction

- Readings (for next lecture on wires)
  - Arora Capacitance extraction from layout

This is just background reading (read quickly)

Ho The Future of Wires

This covers most of the material in the next lecture (and then some)

- Today's topics
  - Review of transistor models (quick review of EE313)
    - · From the simple to the complex
    - · How to "calibrate" a technology
    - · How to use models to think about technologies and circuits
  - Examination of transistor variations
    - · Local variations, or mismatch between pairs
    - · Run-to-run variations

### **MOS Device Behavior**

- Assume you know MOS device issues from EE313
  - We'll look at some I-V curves, review some important issues
  - Read Hodges & Jackson (EE313 text) if you need to
- For I-V curves we need to understand
  - Basic shapes of the I-V curves
  - Threshold voltage
  - Mobility effects and velocity saturation
  - Subthreshold conduction
  - Scaling
  - Variations in these parameters

M Horowitz EE 371 Lecture 8 3

# EE313 Review: Basic I-V Curves: I<sub>ds</sub> versus V<sub>ds</sub>

- Plot has two regions
  - Linear (low V<sub>ds</sub>)
  - Saturated (high V<sub>ds</sub>)
- Linear region
  - Looks like a resistor
- Saturated region
  - "Constant" current
  - $g_{ds} = 1/r_0$



# EE313 Review: Basic I-V Curves: I<sub>ds</sub> versus V<sub>qs</sub>

- Two typical plots
  - Linear I<sub>ds</sub>
    - For  $V_{as}>V_{th}$
    - Lots of current
    - Can get g<sub>m</sub>
  - Log I<sub>ds</sub>
    - For V<sub>as</sub><V<sub>th</sub>
    - Leakage current
    - Can get V<sub>t</sub>, DIBL
- Measuring V<sub>th</sub>
  - Extrapolate linearly
  - Beware of DIBL



M Horowitz EE 371 Lecture 8

# E313 Review: Mobility

- Mobility (cm<sup>2</sup>/Vsec) relates carrier drift velocity to lateral E-field
- Falls quickly as temperature rises  $\mu = \mu_0 \cdot \left( \frac{T}{T_0} \right)^{-1.5}$

$$\mu = \mu_0 \cdot \left(\frac{T}{T_0}\right)^{-1.5}$$

- As temp rises from 27° to 130°, current falls 0.65x
- Circuit runs 1.6x slower
- Also decreases as vertical field increases (here, T<sub>ox</sub> in nm)

$$\mu_n(V_{gs}, V_{th}, T_{ox}) = \frac{540}{1 + \left(\frac{V_{gs} + V_{th}}{0.54T_{ox}}\right)^{1.85}}$$

- Why (V<sub>as</sub>+V<sub>th</sub>)? That's a strange term...
- B/c E-field proportional to  $Q_b + 0.5Q_{inv} = C_{ox}V_{th} + 0.5C_{ox}(V_{gs} V_{th})$ ; see Chen

# EE313 Review: Velocity Saturation

- · Carrier velocity and E-field relationship is not always linear
  - Saturates out; max velocity around 8x10<sup>6</sup> cm/s





Critical E-field (velocity is ½ down) is about 4V/μm

M Horowitz EE 371 Lecture 8 7

# EE313 Review: Velocity Saturated Current

Drain current is worse when carrier velocity saturates

$$i_{dsat} = W v_{sat} C_{ox} \frac{(V_{gs} - V_{th})^2}{V_{gs} - V_{th} + \frac{2v_{sat}L}{\mu_{eff}}} \underbrace{\qquad}_{E_{crit} \cdot L}$$

- Look at both limits:  $(V_{gs}-V_{th})$ ?  $(E_{crit}\cdot L)$ 
  - When not saturated
  - When saturated

### EE313 Review: Subthreshold Conduction

- The threshold voltage V<sub>th</sub> is not a magical place
  - It's just where the channel charge is roughly equal to the doping
  - Device still has channel charge when  $V_{gs} < V_{th}$
- What happens in subthreshold?
  - Gate voltage directly controls  $\Phi_{\rm s}$ , not channel charge
  - Channel charge exponentially related to  $\Phi_{\rm s}$
  - Looks like a BJT
- Current is exponential with  $V_{gs}$ :  $i_{ds} = I_s \cdot e^{\frac{V_{gs} V_{th}}{\alpha V_t}}$ 
  - $-V_t = kT/q = 26mV$  @ room temperature
  - $-~I_s$  depends on definition of  $V_{th},$  around  $0.3\mu A/\mu m$
  - $\alpha$  comes from cap voltage divider ( $C_{ox}$  and  $C_{deol}$ ), around 1.3-1.5

M Horowitz EE 371 Lecture 8

# Predicting Scaled MOS Device Performance

- Shockley quadratic model estimates scaling effects poorly
  - A better model (up until 90nm):

$$I_{dsat} = K \cdot W \cdot L_{eff}^{-0.5} \cdot T_{ox}^{-0.8} (V_{gs} - V_{th})^{1.25}$$

- Scaling example: Assume L,  $T_{\text{ox}}$ , and  $V_{\text{qs}}$  all scale by  $\alpha$ 
  - Current (per micron) will remain constant (0.5-0.8 mA/μm)
    - Current of the scaled transistor scales down by  $\alpha$
  - Voltage scales down by  $\alpha$
  - Capacitance scales down by  $\alpha$
  - So delay scales down, too:  $\Delta t = CV/i = \alpha \Delta t$
- Sub 90nm, this model breaks
  - Vth is not scaling, so Vdd does not scale ...

# Other Currents to Consider $-I_q$

- Also can look at I<sub>a</sub>, gate tunneling current
  - Increasing as oxide thicknesses continue to shrink
  - T<sub>ox</sub> 2nm today (130nm process); research lines at 0.8nm (30nm)
  - This is limiting gate oxide scaling in modern devices





Often not well modeled in SPICE; talk to your process engineers

M Horowitz EE 371 Lecture 8

### Remember Parameter Variations

- No two transistors are exactly the same
  - They vary from wafer to wafer and from die to die
- Parameters of a fabrication run generally normally distributed
- Extract data from real wafers
  - $-3-\sigma$  (or  $4/5/6-\sigma$ ) parameters
  - Use it in design



### **Parameter Variations**

### Variations come from many sources

- 1. Die to die variations
  - All devices in the die are correlated
  - Processing for this die/wafer varies from die to die and run to run
- 2. Across die variations
  - Two transistors on die have different parameters
  - Caused by many layout proximity effects
  - Across die processing variations
- 3. Random variations
  - Random dopant fluctuations, line edge roughness

1 used to dominate, but with scaling 2 and 3 are comparable issues

M Horowitz EE 371 Lecture 8 13

### EE371 Corners

- We write our corners with a 3-letter code
  - nMOS and pMOS can each be Slow, Typical, Fast
  - V<sub>dd</sub> can be low (Slow devices), Typical, or high (Fast devices)
  - Temp can be cold (Fast devices), Typical, or hot (Slow devices)
- Example: TTSS corner
  - Typical nMOS
  - Typical pMOS
  - Slow voltage = Low V<sub>dd</sub>
    - Say, 10% below nominal
  - Slow temperature = Hot
    - Say, 100° C → junction temperature

### Which Corners Matter?

- Really depends on the circuits you are simulating
  - And what you want your die yield to be
- Some important corners
  - TTSS: Must hit the timing specification here
    - · Since this might be how it is used in a system
    - Will mean 50% performance yield loss (1/2 distribution will fail)
  - SSSS: Sometimes need to hit the timing spec here, too
    - · Also worry about signals collapsing from slow risetimes
  - FFFF: See how much power your circuit burns
    - · Also worry about narrow pulses disappearing
  - SFSS: Does pMOS-ratioed logic work? Race conditions
  - FSSS: Does nMOS-ratioed logic work? Race conditions
  - And so on...

M Horowitz EE 371 Lecture 8 15

# A Caution About Matching

- If your circuit depends on matching
  - Either in an analog component (like a sense amplifier)
  - Or a digital component like matched delays
- Simulation is much more difficult
  - Need to simulate the difference in the matched elements
  - Corner files don't do this, since they modify all transistors the same
- Need to do Monte Carlo simulations
  - This is where you do many simulations
  - Computer chooses random parameters for the transistors
    - · You need to provide these models
  - Then you need to compute Mean / Sigma of circuit

# **Providing Matching Statistics**

- If you want two transistors to match you need to be very careful
  - Almost anything will make them different
- · In SPICE all transistors match perfectly
  - You need to add mismatch explicitly
  - Process corners do not help here
- Orientation matters





M Horowitz

EE 371 Lecture 8

17

# More on Matching

Poly alignment is important



- Here, diffusion resistance and diffusion cap will not match
- Make currents flow in the same direction in matched devices
- · Easy if all the transistors are folded

# **Even More Matching**

· Poly width control depends on local environment



- Poly density affects etch rates, so end devices will be different
- To match transistors, add dummy devices
  - SRAMs often use entire dummy rows and dummy columns
- Modern technology need many dummies!

M Horowitz EE 371 Lecture 8 19

# Welcome To Modern Technology

- Feature size is below the wavelength of lithography light
  - Hard to get sharp edges, so preprocess to add serifs





OPC = optical proximity correction

RET = resolution enhancement tech

- Variation is getting larger → foundries imposing rules
  - All transistors must be vertical
  - Poly edges must be far from diffusion
- Moving toward regular arrays of transistors
  - Looks similar to old gate array designs

# **Statistical Matching**

- The errors we have been talking about are systematic
  - You can (in theory) make them zero
  - And you generally can figure out what happened
- But fundamentally even if you do everything right
  - There will still be some random mismatches between transistors
  - These are caused by random doping variations in the device
  - And small random variations in the etching process
- These effects can be models by adding an uncertainty to
  - $-V_{th}$
  - K, or  $\beta$ , the current prefactor in the current equation

M Horowitz EE 371 Lecture 8 21

# **Statistical Matching**

- Read Pelgrom's paper (and Lovett's paper)
  - It is the classic paper in this area
- His equations are still being used today
  - Data indicates that the matching depends on the area of the device
  - $V_{th}$  standard deviation ( $T_{ox}$  in  $\mu$ m)

$$\sigma(V_{th}) = rac{0.6V \cdot T_{ox}}{\sqrt{L_{eff}W_{eff}}}$$

- K (or  $\beta$ ) mismatch is addition to variation from  $V_{th}$ 

$$\sigma(eta) = rac{2\%}{\sqrt{L_{eff}W_{eff}}}$$

# The \$64 Question

### How does one analyze circuits?

- 1. "Use your intuition and your pencil and paper analysis"
  - These are things that you understand
  - SPICE is prone to Garbage In / Very Pretty Garbage Out
  - You need to understand the circuit to check SPICE, and not vice versa

### 2. "Use SPICE"

- VLSI circuitry has enormous complexity and ugly nonlinearity
- Very difficult to do accurate hand analysis
- Competitive market pushes sophisticated circuitry, which needs SPICE
- Relying on hand analysis means you get steamrolled by your competitors
- Kernels of truth in both schools of thought
  - So you end up doing both

M Horowitz EE 371 Lecture 8 23

# Calibrating a Technology

- What do you do when you get a new technology?
  - Run some simple simulations to get a feel for the transistor behavior
  - Generate some rules-of-thumb for reasoning about the circuits
- First look at the basic I-V curves
  - Examine a couple of different channel lengths
  - Do the curves look reasonable?
- What do they say about
  - Velocity saturation and output conduction?
  - V<sub>th</sub>, V<sub>bb</sub> sensitivity, and subthreshold conduction?
  - DIBL and V<sub>th</sub> effects from W and L?



# $I_{ds}$ vs. $V_{ds}$ (nMOS)





- Different channel length nMOS devices
  - Difference in output slope
  - Linear g<sub>m</sub> in longer channel device

M Horowitz EE 371 Lecture 8 25

# $I_{ds}$ vs. $V_{ds}$ (pMOS)



- Different channel length pMOS devices
  - Difference in saturation voltage from nMOS
  - Linear g<sub>m</sub> in longer channel device, change in output slope

# $I_{ds}$ vs. $V_{gs}$ (nMOS)

# Sweep V<sub>ds</sub> \* BPTM310 TT NMOS DIBL 28/0 10, VDS-0 1 - 2V 25 C/V88-8.0 2.1C-02 1.0C-02 1.0C-03 1.0C-04 1.0C-05 1.0C-06 1.0C-06 1.0C-07 1.0C-08 1.0C-09 1.0C-09 1.0C-09 1.0C-09 1.0C-112 2.0C-13



- $V_{\rm ds}$  plot ightarrow DIBL (drain-induced barrier lowering)  $V_t = V_t \eta V_{ds}$
- $V_{bs}$  plot  $\rightarrow \gamma$  (body effect)

$$V_t = V_t + \gamma \left( \sqrt{\phi_s - V_{bs}} - \sqrt{\phi_s} \right)$$

M Horowitz

EE 371 Lecture 8

07

# $I_{ds}$ vs. $V_{gs}$ (pMOS)



# Sweep $V_{\rm bs}$





Scale on sim run was wrong – Max L should be probably 1μ

M Horowitz EE 371 Lecture 8 29

# **Beware of Model Binning**



- Plot of g<sub>ds</sub> versus L for a 350nm technology
- Odd (un-natural) kinks as we move from size "bin" to size "bin"

# Threshold Voltage nMOS (0.35µ)





- V<sub>th</sub>(w) depends on type of isolation and dopant segregation
  - In nMOS, Boron segregates into oxide, lowering V<sub>th</sub> for small W
  - With LOCOS, V<sub>th</sub> rises as W falls due to prop. excess Si to deplete
  - With trench isolation, V<sub>th</sub> falls as W falls due to prop. greater C<sub>gate</sub>

M Horowitz EE 371 Lecture 8 31

# Threshold Voltage pMOS 0.35µ





- V<sub>th</sub>(w) still depends on type of isolation and dopant segregation
  - $-\:$  In pMOS, P/As pile up in Silicon, increasing  $V_{th}$  for small W

# Threshold Voltage in Newer Processes





Reverse short-channel effect

M Horowitz EE 371 Lecture 8 33

# Calibrating a Technology - Next Steps

- Now we have a feeling of how the transistors behave
  - Believe the process/device model (more or less)
  - Or at least understand its limitations
- · Move on to thinking about circuit-level issues
  - Timing
  - Parasitics
- · We know how to think about digital circuit delays
  - RC trees and logical effort
  - So now calibrate technology for effective R and C values

# C<sub>a</sub> Calibration for Delay

- · Gate capacitance is nonlinear and bias dependant
  - But we can curve-fit a single number (fF/μm) that works for delay
  - Will depend on input slope, output slope, temp, V...



- Find C so delay of 2<sup>nd</sup> gate (4x) gate is the same in both paths
  - Can change pre/post gate to change input/output slope
  - Fanout of 4 at each stage

M Horowitz EE 371 Lecture 8 35

# C<sub>q</sub> Calibration for Power

- If we measured current from V<sub>dd</sub> at the drive gate we include
  - Current into the load inverter gate (good)
  - Short circuit current due to the drive gate (bad)
  - Current into the drive gate's parasitic diodes and gate overlap (bad)
- Instead, measure the current going into M=8 gate
  - Add a 0V voltage source between driver and gate
  - Average current through the source will be zero (rising and falling)
  - Measure the one-way current (to charge capacitor, for example)
  - C= Q/Vdd and Q = integral of current
  - This should give you the correct answer
- Note that C<sub>g</sub> for delay and C<sub>g</sub> for power are different

# Parasitic Capacitance Calibration

- Effective capacitance of transistor parasitics
  - Can be fF/μm or fF/μm² (edge or area)
- Complicated because may depend on gate W
  - Gate overlap, diffusion edge under gate
  - Avoid optimization of using very small W to reduce parasitics
    - You end up adding Source or Drain series parasitic resistances
- To extract cap of gate overlap, diffusion edge, and diffusion area
  - Replace M=8 inverter with diode (transistor with grounded gate)
  - Changing gate width, PS, and AS can allow you to estimate caps
  - E.g., setting AS=0, PS=0 gives gate overlap + junction under gate
- Note: diffusion cap for rising and falling transitions are different

M Horowitz EE 371 Lecture 8 37

# **Using MOS Capacitances**

- A 0.1μm technology has a 2.5nm gate oxide
  - $C_{ox} = 14 \text{ fF/}\mu\text{m}^2 = 1.4 \text{fF/}\mu\text{m} \text{ width}$
  - -~ Gate overlap cap  $\sim 0.35~\text{fF/}\mu\text{m}$  (per edge)
  - Diffusion cap
    - 1.5 fF/μm² bottom plate
    - 0.2 fF/μm sidewall
- Total

$$\begin{array}{lll}
- & C_{\text{gate}} & = 1.4 \text{ W} \\
- & C_{\text{overlap}} & = 0.7 \text{ W} \\
- & C_{\text{bot}} & = 0.4 \text{W}
\end{array}$$

 $-C_{\text{side}} = 0.4\text{W} + \text{small constant}$ 

Counts both gate and non-gate sides of the diffusion



# R<sub>tran</sub> Calibration

- Resistance of a transistor measured in Ωμm
  - Know gate effective cap, so R = GateDelay/C<sub>eff</sub>
  - Will vary with input slope, temp, V



- We can also check how R's add (two transistors in series)
  - Replace inverter with enabled tristate inverter. Beware parasitic cap
- Better method: measure delay vs fanout; R<sub>eff</sub> comes from slope
  - Just change the fanout of all the gates in the chain

M Horowitz EE 371 Lecture 8 39

### Now What?

- Use your simple RC models to reason about circuit
  - Look at different trade-offs
  - Try to determine what is important
  - If you need more information, do some sims to build new model
  - Come up with 'good' first pass design
- Simulate it
  - First look at a few of the corners that might be interesting
  - Do the results make sense?
    - If they don't match your model, something is wrong!
    - If not, check the schematics, SPICE files, and your models
  - Check it over many corners

### Simulation Issues

- Complexity gives rise to a conflict in simulating ICs
- 1. "Simulation is cheap, silicon is VERY expensive"
  - Don't scrimp when you construct a SPICE deck
  - Simulate the real circuit under real conditions (temp, power, clock)
  - Include the real input waveform and real output load devices
- 2. "SPICE decks that are too complex have too confusing results"
  - Very easy to make mistakes in entry
  - You may be simulating the wrong thing
  - Big decks have lots of interacting small mistakes → hard to debug
  - Simulations run very slowly

M Horowitz EE 371 Lecture 8 4

### Start Simple and Add Complexity

- Incremental simulation is a design compromise
  - Start with an understandable and predictable simulation deck
  - Add more complexity
  - Check at each step that the results make sense
  - End up with complete simulation file
- Make sure to eventually add all the effects you need to model

