

HTTP: Kommunikation im WWW zwischen Browser und Server

Interaktion zwischen Browser und Server erfolgt vermittels des Hypertext Transfer Protocol - HTTP

- HTTP ist sehr einfaches und zustandsloses, darum schnelles Protokoll Interaktion erfolgt lediglich in Form eines einfachen
 Frage/Antwort-Verfahrens
- Zugriff auf die Ressourcen des WWW wird durch das HTTP-Protokoll geregelt, das Prozeduren zum Abruf und zur Anlieferung der durch URIs eindeutig gekennzeichneten Ressourcen bereitstellt
- HTTP unterliegt stetem Entwicklungsprozess
 - erste HTTP-Version (HTTP/0.9) entstand 1989/90 am CERN
 - derzeit ist größtenteils noch Version HTTP/1.1 im Einsatz
 - aktuell: neue Version HTTP/2.0 ist fertig und wird von den meisten aktuellen Browsern bereits unterstützt
 - heute sind HTTP/1.1 und HTTP/2 im Einsatz

Kurze Entwicklungsgeschichte HTTP

HTTP-Protokoll ist zusammen mit Adressierungskonzept der URI/URL und Markup-Sprache HTML Grundpfeiler des WWW

- Erste HTTP-Version HTTP/0.9 stammt von 1989/90 und wurde am CERN zusammen mit URL entwickelt
- 1992 wurde erste ausgereiftere Version HTTP/1.0 eingeführt (RFC 1945). Sie bietet folgende Methoden:
- GET zum Anfordern von Server-Daten, POST zur Datenübertragung an den Server
- 1997 Einführung von HTTP/1.1 (RFCs 2068, 2616)
- Neu: Persistente Verbindungen, Content Negotiation, nicht-IP-basierte virtuelle Hosts, ...
- Beginnend ab 2015: Einführung von HTTP/2
- Erhöhung der gefühlten Geschwindigkeit, Multiplexing, Server Push, ...

Hochschule Furtwangen heute 2

HTTP Protokoll: Basisoperationen und Zwischensysteme

HTTP setzt auf zuverlässigem, verbindungsbasierten Transportdienst TCP auf

Ablauf:

- Browser initiiert als Client eine Kommunikation durch Anforderung einer Informationsressource bei einem WWW-Server (Request)
- WWW-Server nimmt Anforderung entgegen, verarbeitet sie und antwortet entsprechend (Response)
 - Ist Ressource verfügbar und darf der Browser auf sie zugreifen, sendet der Server die Ressource zusammen mit einem positivem Statuscode
 - Ist Ressource nicht verfügbar oder ist Zugriff für Browser verboten, sendet der Server einen negativen Statuscode
- HTTP ist ein zustandsloses Protokoll, d.h. besitzt keine Kenntnis von bereits erfolgten Anfragen-Antworten-Zyklen

Browser fordert Ressource an

WWW-Server

WWW-Server liefert Ressource bzw. sendet entsprechenden Status-Code

In der Praxis ist Interaktion zwischen Browser und Server komplexer, da verschiedene Zwischensysteme – Proxy-Server und Gateways – in die Kommunikation eingebunden sind

Proxy-Server

- Zwitterstellung in der Kommunikation zwischen Browser und Server
 - arbeitet gegenüber Client als Server, wenn er Anforderung aufgrund einer früheren Kommunikation aus seinem Cache-Speicher bedienen kann
 - arbeitet gegenüber Server Origin Server als Client, indem er Client-Anforderungen, die er nicht bedienen kann, weiterleitet
- Alle Browser-Anfragen können über einen Proxy-Server weitergeleitet werden (einstellbar)

Gateways

- Arbeiten wie Proxy-Server nur ohne Kenntnis des Clients
- Gateways werden WWW-Servern vorgeschaltet, um diese zu entlasten oder sicherheitsbedingte Zugriffsrestriktionen zu implementieren
- Auch Load Balancer sind Beispiel f
 ür HTTP Gateways

Hochschule Furtwangen heute 3

HTTP Protokoll: Basic und Secure Authentifikation

Soll auf sicherheitsrelevante Daten des WWW-Servers zugegriffen werden, ist korrekte Authentifikation und Autorisierung des Clients erforderlich

HTTP muss **Authentifikation** und **Autorisation** mit **zustandslosen Methoden** regeln:

- Client sendet Anforderung f
 ür gesch
 ützte Ressource
- Server prüft Verfügbarkeit der Ressource und antwortet mit Status Code
 401 Unauthorized zusammen mit WWW-Authenticate Response-Headerfeld
- Client sendet neuen Request mit Authorization-Headerfeld, das die vom Server im Authenticate-Response-Headerfeld angeforderten Credentials in der verlangten Form beinhaltet

Sichere Alternative: HTTPS (RFC 2818)

- Hypertext Transfer Protocol Secure
- Verschlüsselung und Authentifizierung der Kommunikation zwischen Webserver und Browser (Client)
- Prinzip ist einfach: HTTP über TLS
- Realisierung über zusätzliche (Teil-)Schicht im TCP/IP-Stack
- TLS (Transport Layer Security), früher bekannt als SSL, sorgt für Verschlüsselung
- Passwörter und andere vertrauliche Daten können bei HTTPS nicht mehr ohne weiteres von unberechtigten Dritten mitgelesen werden

Basic Authentication

Benutzername und Passwort werden bei unverschlüsselter Verbindung im Klartext übertrager

Anwendung		HTTP	
		TLS	
Transport	TCP		
Internet	IP		
Nieterman	Eth amark	Token	
Netzzugang	Ethernet	Ring	

Hochschule Furtwangen heute 4

