Лабораторная работа № 6

- 1. Тема: решение систем дифференциальных уравнений. Метод Рунге-Кутта.
- 2. Постановка задачи:

Решить систему дифференциальных уравнений вида

$$\begin{cases} \frac{dx}{dy} = -2x + 5z \\ \frac{dy}{dt} = \sin(t - 1)x - y - 3z \\ \frac{dz}{dt} = -x + 2z \end{cases}$$

С начальными условиями

$$x(0) = 2$$

$$y(0) = 1$$

$$z(0) = 1$$

3. Мат. модель:

$$y_{i+1}=y_i+F_i$$
, где F_i — усредненная производная $x_{i+1}=x_i+h_x$
$$F_i=\frac{k_{1i}+2k_{2i}+2k_{3i}+k_{4i}}{6}$$
 $k_{1i}=h*f(x_i,y_i)$ $k_{2i}=h*f(x_i+\frac{h}{2},y_i+\frac{k_{1i}}{2})$ $k_{3i}=h*f(x_i+h,y_i+k_{3i})$

4. Список идентификаторов: (в скобках указаны функции, в которых находится переменная)

Имя	Тип	Смысл
a	const	Левая граница интервала

b	const	Правая граница интервала
x0	const	Начальное значение х(0)
y0	const	Начальное значение у(0)
z0	const	Начальное значение z(0)
xf, yf, zf, t	double	х, у, z, t в функции funcX соответственно
xf, yf, zf, t	double	х, у, z, t в функции funcY соответственно
xf, yf, zf, t	double	х, у, z, t в функции funcZ соответственно
h1, h2, h4	double	Шаг в функциях для вычисления коэффициентов усредненной производной
M1, M2,	double	Функции в функциях для вычисления коэффициентов
M4		усредненной производной
xk, yk, zk, t	double	х, y, z, t в функциях для вычисления коэффициентов усредненной производной
dp, lp	double	Предыдущие коэффициенты в функциях для вычисления
		коэффициентов усредненной производной
a1	double	Левая граница в функции
b1	double	Правая граница в функции
h	double	Шаг
t	double	Аргумент функций
у	double	Значение функции у
X	double	Значение функции х
Z	double	Значение функции z
Fi, Ji, Ri	double	Усредненные производные z и у соответственно
k1, j1, r1	double	Коэффициент для вычисления усредненной производной
k2, j2, r2	double	Коэффициент для вычисления усредненной производной
k3, j3, r3	double	Коэффициент для вычисления усредненной производной
k4, j4, r4	double	Коэффициент для вычисления усредненной производной

5. Код программы:

#include <iostream>

#include <stdlib.h>

#include <math.h>

#include <stdio.h>

#include <iomanip>

#define x0 2

#define y0 1

#define z0 1

#define a 0

#define b 1

using namespace std;

```
 double \ func X (double \ xf, \ double \ yf, \ double \ zf, \ double \ t) \{ \\ return \ -2*xf + 5*zf;
```

```
}
double funcY(double xf, double yf, double zf, double t){
  return \sin(t-1)*xf - yf - 3*zf;
}
double funcZ(double xf, double yf, double zf, double t){
  return -xf + 2*zf;
}
double fk1(double h1, double (*M1)(double, double, double, double),
double xk, double yk, double zk, double t){
  return h1*M1(xk, yk, zk, t);
}
double fk2(double h2, double (*M2)(double, double, double, double),
double xk, double yk, double zk, double xp, double dp, double lp, double t){
  return h2*M2(xk + xp/2, yk + dp/2, zk + lp/2, t + h2/2);
}
double fk4(double h4, double (*M4)(double, double, double, double),
double xk, double yk, double zk, double xp, double dp, double lp, double t){
  return h4*M4(xk + xp, yk + dp, zk + lp, t + h4);
}
double RungeKuttaMethod(double a1, double b1){
  double y = y0, x = x0, z = z0, t = a, h = 0.1;
  double k1, k2, k3, k4, Fi;
  double j1, j2, j3, j4, Ji;
  double r1, r2, r3, r4, Ri;
  while (t < b)
     k1 = fk1(h, funcX, x, y, z, t);
    i1 = fk1(h, funcY, x, y, z, t);
     r1 = fk1(h, funcZ, x, y, z, t);
     k2 = fk2(h, funcX, x, y, z, k1, j1, r1, t);
    j2 = fk2(h, funcY, x, y, z, k1, j1, r1, t);
     r2 = fk2(h, funcZ, x, y, z, k1, j1, r1, t);
     k3 = fk2(h, funcX, x, y, z, k2, j2, r2, t);
    j3 = fk2(h, funcY, x, y, z, k2, j2, r2, t);
     r3 = fk2(h, funcZ, x, y, z, k2, j2, r2, t);
```

```
k4 = fk4(h, funcX, x, y, z, k3, j3, r3, t);
        j4 = fk4(h, funcY, x, y, z, k3, j3, r3, t);
        r4 = fk4(h, funcZ, x, y, z, k3, j3, r3, t);
        Fi = (k1 + 2*k2 + 2*k3 + k4)/6;
        Ji = (i1 + 2*i2 + 2*i3 + i4)/6;
        Ri = (r1 + 2*r2 + 2*r3 + r4)/6;
        cout << "t = " << setw(6) << left << t;
        cout << setw(3) << "x = " << setw(10) << left << x;
        cout << setw(3) << "y = " << setw(12) << left << y;
        cout << setw(3) << "z = " << setw(10) << left << z << endl;
         x += Fi;
        y += Ji;
        z += Ri;
        t += h;
     return 0;
   int main()
     system("chcp 1251 > nul");
     cout << setw(3) << "t";
     cout << setw(12) << "x";
     cout << setw(15) << "y";
     cout << setw(16) << "z" << endl;
     cout << RungeKuttaMethod(a, b);</pre>
     return 0;
6. Результаты:
     III "C:\Users\svmar\Desktop\Study\2year\_√ўшёыш€хы№эр ьр€хьр€шър\_рс
                 = 2
                                                z = 1
                                = 1
               x = 2.08984
        0.1
                                = 0.461559
                                                  = 0.995004
```

```
2.1588
                   -0.0163256
                                    0.980067
  = 2.20619
х
                   -0.432712
X = 2.23154
               y = -0.787216
                                z = 0.921061
x = 2.23459
               y = -1.08013
                                z = 0.877583
                  -1.31248
                  -1.48611
                                    0.696707
                   -1.60366
    2.02655
                                    0.621611
```