目录

2022-2023 学年代数与几何期中试题	1
2022-2023 学年代数与几何期中试题参考答案	6

代数与几何期中试题

A4 标准打印版 (试题完全来源于群友 @MOV AX,'HIT')

注意事项:

1. 本次考试为闭卷考试,考试时间为90分钟,总分30分。

注意行为规范 遵守考场纪律

得分	
阅卷人	

一、填空题:本题共5小题,每小题1分,满分5分。

1. 已知行列式
$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ 1 & 1 & 2 & 1 \\ -2 & 1 & 0 & 2 \\ 1 & -1 & 1 & 1 \end{vmatrix}$$
, A_{ij} 表示行列式 D 中元素 a_{ij} 的代数余子式,则 $2A_{11}+A_{21}+A_{21}+A_{31}+2A_{41}=$

2. 设 A 为 4 阶 可 逆 方 阵 , 将 A 的 第 2 列 和 第 3 列 对 换 而 得 到 矩 阵 B , 则 $B^{-1}A =$

3. 已知 A 为 3 阶方阵,且 $A \neq 0$, $a_{ij} = A_{ij} (i,j = 1,2,3)$,则 $|A| = ______$ 。

4. 设 $A \setminus B$ 为 4 阶方阵,且 |A| = 7, |B| = -5,则 $\begin{vmatrix} A & BA \\ -A & 0 \end{vmatrix}$ ______。

5. 已知 $\mathbf{a} \times \mathbf{b} = \mathbf{c} \times \mathbf{d}$, $\mathbf{a} \times \mathbf{c} = \mathbf{b} \times \mathbf{d}$, 则 $\mathbf{a} - \mathbf{d} = \mathbf{b} - \mathbf{c}$ 的位置关系是

得分 阅卷人

二、选择题:本题共5小题,每小题1分,满分5分。在每小题给出的四 个选项中, 只有一项是符合题目要求的。

1. 设有行列式
$$D = \begin{vmatrix} 0 & b_1 & 0 & a_1 \\ 0 & b_2 & 0 & a_2 \\ b_3 & 0 & a_3 & 0 \\ b_4 & 0 & a_4 & 0 \end{vmatrix}$$
, 则 D 的值为

A. $(a_2b_1 - a_1b_2)(a_4b_3 - a_3b_4)$

B.
$$(a_1b_2 - a_2b_1)(a_3b_4 - a_4b_3)$$

C. 0

D.
$$(a_2b_1 - a_1b_2)(a_3b_4 - a_4b_3)$$

2. 设
$$A = \begin{pmatrix} -1 & 1 & 0 & a \\ 0 & 1 & -1 & b \\ 1 & 0 & -1 & c \end{pmatrix}$$
, 若矩阵 A 的秩为 2 ,则以下正确的是

A. a = b

C. c = a D. b = a + c

$A \cap A \cap$	3.	对 n 阶方阵 A ,	其伴随矩阵为 A^* ,	若矩阵 A 的秩 $R(A) = n - 1$,则	()
---	----	-----------------	----------------	------------------------------	---	---

A. A 可逆;

B. $A^* = 0$;

C. $R(A) + R(A^*) = n$;

D. $A + A^*$ 可逆。

4. 设矩阵
$$A$$
 为 n 阶可逆矩阵,矩阵 B 为 $n \times 1$ 矩阵, b 是常数, 再设 $M = \begin{pmatrix} A & B \\ B' & b \end{pmatrix}$, 则下列正

确的答案是

- A. 若 $b \neq 0$,则矩阵 M 可逆; B. 若矩阵 M 可逆,则 $b \neq 0$;
- C. $b \neq 0$ 当且仅当矩阵 M 可逆; D. 以上说法都不对。

- D. 共面

得分	_ 三、	(5分)
阅卷人	_`	(3)))

求过点
$$M_0(2,1,3)$$
,且与直线 $L: \begin{cases} 2x-y+z-1=0 \\ x+y-z+1=0 \end{cases}$ 垂直相交的直线 L' 的方程。

得分		
	四、	(5分)

已知 n 维列矩阵 α 满足 $\alpha^T\alpha=1$, E_n 为 n 阶单位阵, $n>1,s\in R$, 对于矩阵 $M=\begin{pmatrix} 1 & -\alpha^T \\ \alpha & sE_n \end{pmatrix}$:

- (1) 讨论不同 s 下矩阵 M 的奇异性;
- (2) 在 M 可逆时, 求出 M 的由 α 表示的逆矩阵。

得分	_	(5 (\)
阅卷人	五、	(5分)

已知矩阵
$$A$$
 的伴随矩阵 $A^* = \begin{pmatrix} 1 & 1 & 0 & -1 \\ -2 & 0 & 2 & 0 \\ 0 & -2 & 2 & 0 \\ 1 & 1 & -2 & 1 \end{pmatrix}$, 矩阵 $B = \begin{pmatrix} 1 & 2 \\ 1 & 2 \\ 2 & 1 \\ 2 & 1 \end{pmatrix}$

- (1) 证明 R(A) = 4;
- (2) 计算乘积矩阵 AB。

得分	六、	(5分)
阅卷人	/ \\	(3)))

设A是n阶方阵。

(1)
$$\ddot{A} A^{-1} = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 2 & 3 \\ 3 & 1 & -1 \end{pmatrix}, \ \vec{\mathcal{R}} A^*;$$

- (2) 若 $A^* = 0$, 判断 A 是否为零矩阵, 并说明理由;
- (3) 记 B' 是 B 的转置,若存在 $n \times m$ 非零矩阵 B,使得 B'A = 0,求 R(A) 的范围。

哈尔滨工业大学(深圳)2022/2023 学年秋季学期

代数与几何期中试题参考答案

Oliver 撰写, 感谢群友@最幸福的珂朵莉提供思路和解法。

一、填空题

1. **解答** 法一: 直接计算。 $A_{11} = -7$, $A_{21} = -5$, $A_{31} = 8$, $A_{41} = 3$ (注意代数余子式的正负号),可得结果为 -5.

此时 A_{11} , A_{21} , A_{31} , A_{41} 都不变,我们发现这个行列式的值刚好就是题中要求的 $2A_{11}+A_{21}+A_{31}+2A_{41}$,所以计算该行列式的值也可得答案为 -5。

2. **解答** 考查初等矩阵。要将 A 的第二列和第三列对换,只需在其**右边**乘上 $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$,所以

$$B = A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad B^{-1}A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}^{-1} A^{-1}A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \Box$$

3. **解答** 考查伴随矩阵的概念。 $A^*=\begin{pmatrix}A_{11}&A_{21}&A_{31}\\A_{12}&A_{22}&A_{32}\\A_{13}&A_{23}&A_{33}\end{pmatrix}$,考虑到 $a_{ij}=A_{ij}(i,j=1,2,3)$,所以

$$A^* = \begin{pmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{pmatrix} = A^T$$
,所以 $AA^T = AA^* = |A|E_3$,两边取行列式得 $|A|^2 = |A|^3$ 。所以

|A|=0 或 1。将 |A| 按第一行展开,发现 $|A|=\sum_{j=1}^3 a_{1j}A_{1j}=\sum_{j=1}^3 a_{1j}^2$,由于按照每行展开都有

这样的形式,所以可得 $3|A|=\sum_{i,j=1,2,3}a_{ij}^2$,又由于 A 非零,所以 a_{ij} 中一定有非零的数,所

以一定有 $|A| \neq 0$,所以 |A| = 1。

4. **解答** 目标: 化到上三角阵的形式便于计算。先将行列式右半部分通过初等列变换与左半部分互换,一共要互换 4 次(一列一列地换),所以行列式的值不变(相当于乘 $(-1)^4$),得到 $\begin{vmatrix} BA & A \\ 0 & -A \end{vmatrix}$;接着,再把行列式的下半部分(即第二"大行")加到上半部分(即第一"大

(-5)*7*7 = -245. (亦可对后四行做 Laplace 展开,很快能获得结果)

5. 解答 $(\mathbf{a} - \mathbf{d}) \times (\mathbf{b} - \mathbf{c}) = \mathbf{a} \times \mathbf{b} - \mathbf{a} \times \mathbf{c} - \mathbf{d} \times \mathbf{b} + \mathbf{d} \times \mathbf{c} = \mathbf{a} \times \mathbf{b} - \mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{d} - \mathbf{c} \times \mathbf{d}$,由题设 $\mathbf{a} \times \mathbf{b} = \mathbf{c} \times \mathbf{d}$, $\mathbf{a} \times \mathbf{c} = \mathbf{b} \times \mathbf{d}$,所以 $(\mathbf{a} - \mathbf{d}) \times (\mathbf{b} - \mathbf{c}) = 0$,所以两个向量是平行/共线的。 (亦可用原始式相减再移项得到目标式)

二、选择题

- 1. 解答 按照行列式展开定理计算即可。答案是 D。 □
- 2. **解答** 将第三行加上第一行再减去第二行得到 $\begin{pmatrix} -1 & 1 & 0 & a \\ 0 & 1 & -1 & b \\ 0 & 0 & c+a-b \end{pmatrix}$,此时已经是行阶梯

形矩阵, 秩等于其非零行数, 所以若 A 的秩为 2, 只要 b = a + c 即可。选 D。

3. 解答 重要结论: 若 A 为 n 阶方阵,则 $R(A^*) = \begin{cases} n & R(A) = n, \\ 1 & R(A) = n-1, \circ A$ 显然不可逆; A^* 不 $0 & R(A) < n-1. \end{cases}$

是零矩阵; C 正确; D 项可举反例: $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} (反例构造思路: 将 <math>A + A^*$ 左乘 A,得

 $A^2 + |A|E$,由于 |A| = 0,所以 $A(A + A^*) = A^2$ 。如果 $A + A^*$ 可逆,则 $R(A) = R(A^2)$,因此 如果 $R(A) \neq R(A^2)$,一定有 $A + A^*$ 不可逆。而 $R(A) \neq R(A^2)$ 可能发生,因为 $R(A) \geqslant R(A^2)$,又因为 $R(A) + R(A) - n \leqslant R(A^2)$,结合 R(A) = n - 1 知 $n - 2 \leqslant R(A^2) \leqslant n - 1$,所以只要让 $R(A^2) = n - 2$ 即可。)

(附结论证明: 当 R(A) = n 时,A 可逆, A^* 也可逆,则 $R(A^*) = n$; 当 R(A) = n-1 时,|A| = 0, 故 $AA^* = |A|E = 0$, $R(A) + R(A^*) \le n$, 则 $R(A^*) \le n - R(A) = 1$; 又 R(A) = n-1, 故 A 存在 n-1 阶非零子式,即 A^* 有非零元, $R(A^*) \ge 1$. 综上, $R(A^*) = 1$. 当 R(A) < n-1 时,A 的 所有 n-1 阶子式都等于 0, 则 $A^* = 0$, $R(A^*) = 0$.

- 4. 解答 $|M| = \frac{r_2 B^T A^{-1} \times r_1}{|D|} = |A|(b B^T A^{-1} B), M$ 可逆 $\iff b \neq B^T A^{-1} B,$ ABC 都错误,选 D。
- 5. 解答 l_1 的方向向量 $\mathbf{s}_{l_1}=(1,2,3)$, l_2 的方向向量 $\mathbf{s}_{l_2}=(1,1,1)$,取 l_1 、 l_2 上的特殊点: $M_{l_1}=(0,0,0)$, $M_{l_2}=(2,0,3)$, $\mathbf{M}_{\mathbf{l}_1}\mathbf{M}_{\mathbf{l}_2}=(2,0,3)$,取混合积 $[\mathbf{s}_{l_1}\quad \mathbf{s}_{l_2}\quad \mathbf{M}_{\mathbf{l}_1}\mathbf{M}_{\mathbf{l}_2}]\neq 0$,所以选 \mathbf{C} 。 □ 三、(5 分)

解答 l 的方向向量 $\mathbf{s} = (2, -1, 1) \times (1, 1, -1) = (0, 3, 3), L$ 上一点 M(0, 0, 1), 则 $\mathbf{MM_0} = (2, 1, 2)$, 则 $\mathbf{MM_0}$ 在 L 上的投影向量为 $\overrightarrow{\alpha} = \frac{(\mathbf{MM_0}, \mathbf{s})}{(\mathbf{s}, \mathbf{s})} \mathbf{s} = (0, \frac{3}{2}, \frac{3}{2})$,则 L' 的方向向量 $\mathbf{s'} = \mathbf{MM_0} - \overrightarrow{\alpha} = (2, -\frac{1}{2}, \frac{1}{2})$,则 L' : $\frac{x-2}{2} = \frac{y-1}{-\frac{1}{2}} = \frac{z-3}{\frac{1}{2}}$ 。

四、(5分)

解答 (1) $|M| = \begin{vmatrix} 1 & -\alpha^T \\ \alpha & sE_n \end{vmatrix} = \frac{r_2 - \alpha r_1}{0} \begin{vmatrix} 1 & -\alpha^T \\ 0 & sE_n + \alpha \alpha^T \end{vmatrix} = |sE_n + \alpha \alpha^T| \xrightarrow{\text{降阶公式}} s^{n-1}(s+1), 可知当$ s = 0 或 s = -1 时,|M| = 0,M 为奇异矩阵;其他情况下 M 为非奇异矩阵。

$$\begin{pmatrix} 1 & 0 \\ 0 & E_n \end{pmatrix} = E, \quad 即有 \begin{pmatrix} \frac{s}{s+1} & 0 \\ 0 & E_n \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{s}E_n \end{pmatrix} \begin{pmatrix} 1 & \frac{1}{s}\alpha^T \\ 0 & E_n \end{pmatrix} M \begin{pmatrix} 1 & 0 \\ -\frac{1}{s}\alpha & E_n \end{pmatrix} = E, \quad 记为 P_1P_2P_3MQ = E,$$

两边右乘
$$Q^{-1}$$
,再右乘 M^{-1} ,再左乘 Q ,即得 $M^{-1} = QP_1P_2P_3 = \begin{pmatrix} \frac{s}{s+1} & \frac{\alpha^T}{s+1} \\ -\frac{\alpha}{s+1} & \frac{1}{s}E_n - \frac{\alpha\alpha^T}{s(s+1)} \end{pmatrix}$ 。 \square

五、(5分)

解答 (1) 思路: 证明 A^* 可逆, 进而证明 A 可逆。

$$\begin{vmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 1 & 1 & 1 \end{vmatrix} = 2 \times (-2) \times (-2) = 8$$
,所以 A^* 可逆。下面证明 A 可逆:由 $AA^* = |A|E$,得 $R(A)$ +

 $R(A^*)-4 \le R(|A|E)$,又 $R(A^*)=4$,所以 $R(A) \le R(|A|E)$ 。若 A 不可逆,则有 R(|A|E)=0, $R(A) \le 0$,即 A 只能为零矩阵。又 A^* 非零,所以 A 非零【因为一个零矩阵的伴随矩阵必是零矩阵,所以其逆否命题:伴随矩阵不是零矩阵推出原矩阵一定不是零矩阵,就是正确的】,所以 A 可逆。验证得 A 可逆时的确有 A 与 A^* 同时可逆,因此 A 可逆, R(A)=4。

(2) $AA^* = |A|E$,A 可逆,所以 $A = |A|(A^*)^{-1}$,而对式 $AA^* = |A|E$ 两边取行列式又有 $|A||A^*| = |A|^n(|A| \neq 0)$,因此 $|A^*| = |A|^{n-1}$ 。所以 |A| = 2,所以有 $AB = |A|(A^*)^{-1}B = 2(A^*)^{-1}B$

$$\begin{pmatrix}
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 2
\end{pmatrix}
\begin{pmatrix}
1 & 2 \\
1 & 2 \\
2 & 1 \\
2 & 1
\end{pmatrix}
=
\begin{pmatrix}
5 & 4 \\
4 & 5 \\
6 & 6 \\
7 & 5
\end{pmatrix}$$

六、(5分)

解答 (1) 由 $AA^* = |A|E$,此时 A 可逆,得 $A^* = |A|A^{-1}$,而 $|A| = \frac{1}{|A^{-1}|} = -\frac{1}{21}$,所以

$$A^* = \begin{pmatrix} -\frac{1}{7} & 0 & -\frac{1}{21} \\ 0 & -\frac{2}{21} & -\frac{1}{7} \\ -\frac{1}{7} & -\frac{1}{21} & \frac{1}{21} \end{pmatrix}$$

(2)
$$A$$
 不一定是零矩阵。例如 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $A^* = 0$, 但 A 明显不是零矩阵。(事实上,若 A

为 n 阶方阵,则当 R(A) < n-1 时 $R(A^*) = 0$ 即 $A^* = 0$

(3) 若存在非零的 B,则 $R(B')+R(A)-n \le R(B'A)=0$,结合 R(B')=R(B),也即 $R(A) \le n-R(B)$,又 B 非零,所以 $0 \le R(A) \le n-1$ 。下面证明对于 $0 \le R(A) \le n-1$ 一定存在非零的 B:

由 R(A) = r < n 可知存在有限个初等矩阵 $P_1, ..., P_n, Q_1, ..., Q_m$ 使得 $P_1...P_nAQ_1...Q_m = \begin{pmatrix} E_r & 0 \\ 0 & 0_{n-r} \end{pmatrix}$,由 $P_1, ..., P_n, Q_1, ..., Q_m$ 都是可逆矩阵,所以令 $P = P_1...P_n, Q = Q_1...Q_m$,知 P,Q 也是可逆阵,即存在可逆阵 P,Q 使 $PAQ = \begin{pmatrix} E_r & 0 \\ 0 & 0_{n-r} \end{pmatrix}$,两边右乘 Q^{-1} 得 $PA = \begin{pmatrix} E_r & 0 \\ 0 & 0_{n-r} \end{pmatrix} Q^{-1}$ 。构造 $m \times n$ 矩阵 $M = \begin{pmatrix} 0 & 0 \\ 0 & 1_{n-r} \end{pmatrix}$,在上式两边左乘 M,由于 $M \begin{pmatrix} E_r & 0 \\ 0 & 0_{n-r} \end{pmatrix} = 0$,可得 MPA = 0。下面证明 MP 非零: $R(MP) \geqslant R(M) + R(P) - n$,因为 P 可逆,故 $R(MP) \geqslant R(M) > 0$,所以 MP 非零,所以 MP 即为我们所求的 B'。因此对于 $0 \leqslant R(A) \leqslant n-1$ 一定存在非零的 B,也即 B(A) 的范围是 $B \in B(A) \leqslant n-1$ 。