Projeto Final

- ♦ Você vai desenvolver um script em Python e postar no ambiente
- ♦ O professor pode comentar o seu projeto

Fraude

- ♦ Fraude é um problema Global
- ♦ Em média, 5% do faturamento das empresas é perdido em fraudes
- ♦ A ciência de dados tem tido um papel fundamental no combate e prevenção de fraudes

Lei de Benford

- ♦ Lei Estatística
- ♦ Trata da distribuição esperada dos dígitos de números gerados naturalmente
 - ♦ Exemplo: contas a pagar

Lei de Benford

Primeiro Dígito (Dígito Mais a Esquerda)

R\$ 1.247,80

R\$ 73.000.000,00

R\$ 298,90

♦ Distribuição Esperada

d	P(d)	Relative size of $P(d)$
1	30.1%	
2	17.6%	
3	12.5%	
4	9.7%	
5	7.9%	
6	6.7%	
7	5.8%	
8	5.1%	
9	4.6%	

Não Conformidade

- ♦ Não conformidade é quando a proporção encontrada é diferente da proporção esperada
- ♦ Pode significar:
 - ♦ Fraude
 - Alterações de Dados
 - ♦ Erros Sistêmicos
 - ♦ Etc.

Atividade

- ♦ Você deve desenvolver um programa que leia pelo menos 50 números gerados naturalmente (por exemplo, dados contábeis)
- Estes números deve estar no código fonte e não inseridos pelo usuário
- O programa deve verificar a proporção da ocorrência do primeiro dígito
- ♦ Deve mostrar de cada digito, proporção esperada, de acordo com a tabela da lei de Benford
- Deve mostrar de cada digito, a proporção encontrada
- ♦ O programa deve acusar se a diferença entre o proporção encontrada e esperada é significativa
- ♦ Considerar diferença significativa se for superior a 1%
- O programa pode usar rotinas de arredondamento, tanto para proporção esperada quanto encontrada

Saída

```
Digito 1 Percentual Esperado: 30%
Percentual Encontrado 36.0
Diferença Signficativa!
Dígito 2 Percentual Esperado: 17%
Percentual Encontrado 16.0
Dígito 3 Percentual Esperado: 12%
Percentual Encontrado 10.0
Diferença Signficativa!
Dígito 4 Percentual Esperado: 9%
Percentual Encontrado 11.0
Diferença Signficativa!
Dígito 5 Percentual Esperado: 7%
Percentual Encontrado 8.0
Diferença Signficativa!
Dígito 6 Percentual Esperado: 6%
Percentual Encontrado 7.0
Diferença Signficativa!
Digito 7 Percentual Esperado: 5%
Percentual Encontrado 4.0
Dígito 8 Percentual Esperado: 5%
Percentual Encontrado 4.0
Dígito 9 Percentual Esperado: 4%
Percentual Encontrado 3.0
```


Instruções

- ♦ Você deve desenvolver e postar sua solução no ambiente
- ♦ O programa não deve ter nenhuma dependência, nem necessitar a instalação de módulos
- ♦ O programa deve ser um script único, mas pode implementar funções internamente
- ♦ O programa não deve solicitar a entrada de dados pelo usuário
- ♦ O Instrutor fornece uma solução para você avaliar:
 - ♦ A solução do instrutor vai ser diferente da sua, não se preocupe, o importante é atender o objetivo
 - ♦ Procure desenvolver a sua solução antes de olhar a do instrutor

