Discrete Mathematics

MATH1064, Lecture 36

Types of grammars: The Chomsky Hierarchy

Type 0: no restrictions Type 1: context-sensitive

 $L = \{0^n 1^n 2^n \mid n > 0\}$ has a context-sensitive grammar

Type 2: context-free

 $L = \{0^n 1^n \mid n > 0\}$ has a context-free grammar

Type 3: regular

 $L = \{0^n 1^m \mid m, n > 0\}$ has a regular grammar Discrete Mathematics

Types of grammars (Details)

Type	Restrictions on productions
0	No restrictions
1	Either $IAr \rightarrow Iwr$ where $A \in N$ non-terminal, and $I, r, w \in V^*$ arbitrary
	words over V , $w \neq \emptyset$; or $S \rightarrow \emptyset$ and S cannot be the right hand side of
	another production.
2	$A o w$ where $A \in N$ non-terminal, and $w \in V^*$ arbitrary
3	$A \rightarrow aB$ or $A \rightarrow a$ where $A, B \in N$ non-terminal and $a \in T$ terminal;
	or $S \to \emptyset$.

Claim:
$$L = \{0^n 1^m \mid m, n > 0\}$$
 is of type 3 (regular)

Proof:
$$P = \{S \rightarrow 0A, S \rightarrow 0S, A \rightarrow 1A, A \rightarrow 1\}$$

Claim:
$$L = \{0^n 1^n \mid n > 0\}$$
 is of type 2 (context-free)

Proof:
$$P = \{S \to 0S1, S \to 01\}.$$

Types of grammars (Details)

Type	Restrictions on productions
0	No restrictions
1	Either $IAr \rightarrow Iwr$ where $A \in N$ non-terminal, and $I, r, w \in V^*$ arbitrary
	words over V , $w \neq \emptyset$; or $S \rightarrow \emptyset$ and S cannot be the right hand side of
	another production.
2	$A ightarrow w$ where $A \in \mathcal{N}$ non-terminal, and $w \in V^*$ arbitrary
3	$A \rightarrow aB$ or $A \rightarrow a$ where $A, B \in N$ non-terminal and $a \in T$ terminal;
	or $S \to \emptyset$.

Claim: $L = \{0^n 1^n 2^n \mid n > 0\}$ is of type 1 (context-sensitive)

What's next?

- This concludes the material for MATH1064
- ullet The story about models of computation continues in COMP2 $\{0,9\}$ 22

Alan Turing: A mathematician;)

• All the other mathematical topics you have learned in this course will re-appear frequently (even though sometimes in disguise)

7/7