

"Circuitos Lógicos Combinacionais - Cont."

Prof. Dr. Emerson Carlos Pedrino emerson@dc.ufscar.br DC/UFSCar

- É uma exposição visual de produtos fundamentais necessários para uma solução de uma soma de produtos.
- Para duas variáveis:

Mapa K: 3 variáveis

Mapa K: 4 variáveis

Tabela Verdade x Mapa K

Tab	ela Ver	dade	Mapa K			
A	В	S	A	0	1	
0	0	0	0	0	0	
0	1	0	The state of the s			
1	0	1	1	1	1	
1	1	1				

Mapa K: Exemplo com 3 variáveis

A	В	С	S	\c	0	
0	0	0	0	AB	0	
0	0	1	0	00	0	
0	1	0	1	01	1	
0	1	1	0	11	1	
1	0	0	0		•	
1	0	1	0	10	0	
1	1	0	1			
1	1	1	1			

Mapa K: Exemplo com 4 variáveis

Obtenção e Simplificação de Expressões por Mapas K

- Baseia-se no fato de que: X + X' = 1.
- No exemplo a seguir, a entrada C se torna irrelevante:

$$S = ABC + AB\overline{C} = AB(C+\overline{C}) = AB$$

Exemplo para duas variáveis

Obtenção da Expressão

- Unir blocos de l's adjacentes.
- Deve-se buscar a formação de blocos com a maior quantidade possível de l's (respeitando-se a regra de N=2ⁿ, onde N é quantidade de l's no bloco).
- Expressão final -> Soma das expressões de cada bloco.

Simplificação

- Usar o menor número de blocos possível.
- Na expressão de cada bloco, eliminam-se as variáveis que mudam de estado dentro do bloco.
- As variáveis que não mudam de estado são mantidas na expressão, representando o seu respectivo valor fixo no bloco: A=I -> A e A=0 -> A'.

- Quanto maior o bloco, maior o número de variáveis eliminadas e mais simplificada fica a expressão final.
 - Unidade: nenhuma variável eliminada.
 - Par: uma variável eliminada.
 - Quadra: duas variáveis eliminadas.
 - Oitava: três variáveis eliminadas.

Agrupamentos

Agrupamentos

• Pares: uma variável eliminada.

• Quadras: duas variáveis eliminadas.

• Quadras e Pares:

Quadras:

Quadras:

• Oitavas: três variáveis eliminadas.

Octetos e Quartetos:

Exercício I

• Encontre a equação simplificada, por mapa K, da tabela dada a seguir:

Α	В	С	S
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Exercício 2

• Idem ao Exercício I.

ABCD	S	ABCD S
0000	1	1000 1
0001	1	1001 1
0010	0	1010 0
0011	0	1011 0
0100	0	1100 1
0101	0	1101 1
0110	0	1110 0
0111	0	1111 0

Exercício 3

 Use o mapa K para simplificar a expressão dada a seguir:

$$S = \overline{ABCD} + \overline{CD} + \overline{ABC} + \overline{D}$$

Exercício 3 - Solução

- Normalmente não se usa Mapa de Karnaugh para problemas envolvendo mais que 6 variáveis.
- Para 5 e 6 variáveis, usa-se a Teoria da Superposição.

Para 5 variáveis

- Mapa final -> sobreposição de 2 mapas (E0 e E1) de 4 variáveis.
- Mapa E0 -> parte inferior da linha diagonal de divisão das células do mapa final.
- Mapa EI -> parte superior da linha diagonal de divisão das células do mapa final.
- Cada mapa apresenta a sua leitura individual. Se a leitura em um dos mapas for igual (sobreposta) à leitura do outro mapa, estas duas leituras formam uma única leitura.

Mapa K – 5 variáveis

Para 6 variáveis

 O mapa final pode ser visualizado como sendo quatro mapas de quatro variáveis sobrepostos. Um dos mapas, referente a EF=00, corresponde à parte superior das células do mapa final. O outro mapa, referente a EF=01, corresponde à parte direita das células do mapa final. O terceiro mapa, referente a EF=10, corresponde à parte esquerda das células do mapa final. Finalmente, o último mapa, referente a EF=II, corresponde à parte inferior das células do mapa final.

Para 6 variáveis

• Cada mapa apresenta a sua leitura individual. Se a leitura em um dos mapas for igual (sobreposta) à leitura de outro mapa vizinho, estas duas leituras formam uma única leitura. Por mapa vizinho, entende-se aquele que tenha somente uma variável diferente. Assim, como exemplo, os vizinhos de EF=10 são EF=11 e EF=00. Da mesma forma, se as leituras dos quatro mapas estiverem sobrepostas, estas formam uma única leitura.

Mapa K – 6 variáveis

- Condições de entrada para as quais não existem níveis de saída especificados.
- Condições de entrada que nunca ocorrerão.

Α	В	С	z	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	ΧÌ	"don't
1	0	0	χJ	care"
1	0	1	1	
1	1	0	1	
1	1	1	1	

Condição Irrelevante

 Utiliza-se "X" como "0" ou "1" convenientemente, de modo a tornar a expressão mais simples.

- Projetar um circuito lógico para controle da porta de um elevador de um prédio de 2 andares.
- Sinal "M" indica se o elevador está parado(M=0) ou se movendo (M=1).
- Os sensores FI e F2 indicam se o elevador está posicionado no andar correspondente (I) ou não (0).
- A porta se abre se a saída do circuito for 1.

Exercício 4 - Solução

Referências

- I. Tocci, R. J. Sistemas Digitais Princípios e Aplicações. Pearson,
 Prentice Hall, 2011.
- Mapas de Karnaugh. SEL 0414 Sistemas Digitais. Prof. Dr. Marcelo Andrade da Costa Vieira.