ANNEXE 2

TABLE DES TRANSFORMÉES DE LAPLACE À l'USAGE DES AUTOMATICIENS ET ELECTRONICIENS

1 Transformations usuelles - fonctions continues

Toutes les fonctions du temps s'entendent multipliées par l'échelon unité u(t). Autrement dit, toutes les fonctions sont causales.

f(t)	F(p)
d(t)	1
$d^{(n)}(t)$	$p^n \qquad n > 0$
A	<u>A</u>
	p
A.t	<u>A</u>
	p^2
t^{n-1}	<u>A</u>
$\frac{t^{n-1}}{(n-1)!} n \text{ entier } n \ge 1$	$ \frac{P}{A} \\ \frac{A}{p^2} \\ \frac{A}{p^n} $
$1_{e^{-t/T}}$	1
$\frac{1}{T}e^{-t/T}$	$\overline{1+Tp}$
	1
$1 - e^{-t/T}$	$\overline{p(1+Tp)}$
$t - T + Te^{-t/T}$	$\frac{1}{p^2(1+Tp)}$
1 / /// ///	1
$\frac{1}{T_1 - T_2} \left(e^{-t/T_1} - e^{-t/T_2} \right)$	$\frac{1}{\left(1+T_{1}p\right)\left(1+T_{2}p\right)}$
1 2	
$1 - rac{1}{T_1 - T_2} ig(T_1 e^{-t/T_1} - T_2 e^{-t/T_2} ig)$	$\frac{1}{p(1+T_{1}p)(1+T_{2}p)}$
	$p(1+I_1p)(1+I_2p)$
$t - (T_1 + T_2) - \frac{1}{T_1 - T_2} (T_2^2 e^{-t/T_2} - T_1^2 e^{-t/T_1})$	1
$T_1 - T_2$	$\overline{p^2(1+T_1p)(1+T_2p)}$

$\frac{1}{T^{3}}(T-t)e^{-t/T}$ $\frac{1}{T^{2}}e^{-t/T}$ $1-\left(1+\frac{t}{T}\right)e^{-t/T}$	$\frac{p}{\left(1+Tp\right)^{2}}$ $\frac{1}{\left(1+Tp\right)^{2}}$ $\frac{1}{p(1+Tp)^{2}}$ $\frac{1}{p^{2}\left(1+Tp\right)^{2}}$
$t-2T+(t+2T)e^{-t/T}$	$p^{2}(1+Tp)^{2}$
$\frac{\mathbf{w}_{n}^{2}}{\sqrt{1-\mathbf{x}^{2}}} \cdot e^{-\mathbf{x}\mathbf{w}_{n}t} \cdot Sin(\mathbf{w}_{n}\sqrt{1-\mathbf{x}^{2}}t + \mathbf{q})$ $\mathbf{q} = \mathbf{p} - ArcCos\mathbf{x}$ $\frac{\mathbf{w}_{n}}{\sqrt{1-\mathbf{x}^{2}}} \cdot e^{-\mathbf{x}\mathbf{w}_{n}t} \cdot Sin(\mathbf{w}_{n}\sqrt{1-\mathbf{x}^{2}}t) 0 < \mathbf{x} < 1$	$ \frac{p}{1 + \frac{2\mathbf{x}}{\mathbf{w}_n} p + \frac{p^2}{\mathbf{w}_n^2}} $ $ \frac{1}{1 + \frac{2\mathbf{x}}{\mathbf{w}_n} p + \frac{p^2}{\mathbf{w}^2}} $
$1 - \frac{1}{\sqrt{1 - \boldsymbol{x}^2}} \cdot e^{-\boldsymbol{x} \boldsymbol{w}_n t} \cdot \sin \left(\boldsymbol{w}_n \sqrt{1 - \boldsymbol{x}^2} t + \boldsymbol{y} \right)$	$\frac{\mathbf{W}_{n}^{1} \mathbf{W}_{n}^{2}}{p\left(1 + \frac{2\mathbf{X}}{\mathbf{W}_{n}} p + \frac{p^{2}}{\mathbf{W}_{n}^{2}}\right)}$
$\mathbf{y} = \operatorname{ArcCos} \mathbf{x}$ $t - \frac{2\mathbf{x}}{\mathbf{w}_n} + \frac{1}{\mathbf{w}_n \sqrt{1 - \mathbf{x}^2}} \cdot e^{-\mathbf{x}\mathbf{w}_n t} \cdot Sin(\mathbf{w}_n \sqrt{1 - \mathbf{x}^2} t + 2\mathbf{y})$	$\frac{1}{p^2 \left(1 + \frac{2\boldsymbol{x}}{\boldsymbol{w}_n} p + \frac{p^2}{\boldsymbol{w}_n^2}\right)}$
$((b-a)t+1)e^{-at}$	$\frac{p+b}{\left(p+a\right)^2}$
t^n	$\frac{n!}{p^{n+1}}$
Cosat	$\frac{p}{p^2 + a^2}$
$Cos(at + \boldsymbol{j})$	$\frac{pCos\mathbf{j} - aSin\mathbf{j}}{p^2 + a^2}$
Sinat	$\frac{a}{p^2 + a^2}$
$Sin(at + \mathbf{j})$	$\frac{pSin\mathbf{j} + aCos\mathbf{j}}{p^2 + a^2}$

$si a^2 > b^2: \frac{1}{p_1 - p_2} \left(e^{p_1 t} - e^{p_2 t} \right)$	$\frac{1}{p^2 + 2ap + b^2}$
avec $\begin{cases} p_1 = -a + \sqrt{a^2 - b^2} \\ p2 = -a - \sqrt{a^2 - b^2} \end{cases}$	
$\operatorname{si} a^2 = b^2 : te^{-at}$	
$\operatorname{si} a^{2} < b^{2} : \frac{1}{\mathbf{w}} e^{-at} \operatorname{Sin} \mathbf{w} \text{avec } \mathbf{w} = \sqrt{b^{2} - a^{2}}$	
si $a^2 > b^2 : \frac{1}{b^2} + \frac{1}{p_1 - p_2} \left(\frac{1}{e^{p_1 t}} - \frac{1}{e^{p_2 t}} \right)$	$\frac{1}{\left(p^2+2ap+b^2\right)^2}$
avec $\begin{cases} p_1 = -a + \sqrt{a^2 - b^2} \\ p2 = -a - \sqrt{a^2 - b^2} \end{cases}$	
si $a^2 = b^2 : \frac{1}{a^2} (1 - e^{-at} - ate^{-at})$	
$\operatorname{si} a^{2} < b^{2} : \frac{1}{b^{2}} \left(1 - \frac{e^{-at}}{\mathbf{w}} (aSin\mathbf{w} + \mathbf{w}Cos\mathbf{w}) \right)$	
$= \frac{1}{b^2} \left(1 - \frac{be^{-at}}{\mathbf{w}} Sin(\mathbf{w} + \mathbf{j}) \right)$	
avec $\mathbf{w} = \sqrt{b^2 - a^2}$ et $tg\mathbf{j} = \frac{\mathbf{w}}{a}$	
1	1
$\frac{1}{a}e^{bt}\sin at$	$\frac{1}{\left(p-b\right)^2+a^2}$
$e^{bt}Cos$ at	$\frac{p-b}{\left(p-b\right)^2+a^2}$
$\frac{1}{a}Sh \ at$	$\frac{1}{p^2 - a^2}$
Ch at	$\frac{p}{p^2 - a^2}$
$\frac{1}{a}e^{bt}Sh \ at$	$\frac{1}{\left(p-b\right)^2-a^2}$
e ^{bt} Ch at	$ \frac{1}{p^2 - a^2} $ $ \frac{p}{p^2 - a^2} $ $ \frac{1}{(p-b)^2 - a^2} $ $ \frac{p-b}{(p-b)^2 - a^2} $ $ 1 $
$e^{bt}-e^{at}$	1
b-a	$\overline{(p-a)(p-b)}$
$\frac{be^{bt} - ae^{at}}{b - a}$	$\frac{p}{(p-a)(p-b)}$
$ b-a $ $ (c-a)e^{-at} - (c-b)e^{-bt} $	$\frac{(p-a)(p-b)}{p+c}$
$\frac{(c-a)c}{b-a}$	$\frac{p+c}{(p+a)(p+b)}$

$\frac{e^{-at}}{(b-a)(c-a)} + \frac{e^{-bt}}{(a-b)(c-b)} + \frac{e^{-ctt}}{(a-c)(b-c)}$	$\frac{1}{(p+a)(p+b)(p+c)}$
	(p+a)(p+b)(p+c)
Sin at – at Cos at	<u> </u>
$2 a^3$	$\overline{\left(p^2+a^2\right)^2}$
1	p
$\frac{1}{2a}t$ Sin at	$\frac{p}{\left(p^2+a^2\right)^2}$
Sin at + at Cos at	p^2
<u> 2a</u>	$\frac{1}{\left(p^2+a^2\right)^2}$
1	n^3
$Cos \ at - \frac{1}{2}at \ Sin \ at$	$\frac{p}{\left(p^2+a^2\right)^2}$ p^2-a^2
t Cos at	$n^2 - a^2$
r cos ar	$\frac{p}{\left(p^2+a^2\right)^2}$
$ Sin \ ix = +i \ sh \ x $	1
avec	formules en $\frac{1}{p^2 - a^{2^{-1}}}$ changer a en ia
Cos ix = ch x	p-a
$\frac{e^{at/2}}{3a^2} \left(\sqrt{3} \sin \frac{\sqrt{3}}{2} at - \cos \frac{\sqrt{3}}{2} at + e^{-3at/2} \right)$	$\frac{1}{p^3 + a^3}$
$\frac{e^{at/2}}{3a}\left(Cos\frac{\sqrt{3}}{2}at + \sqrt{3}Sin\frac{\sqrt{3}}{2}at - e^{-3at/2}\right)$	$\frac{p}{p^3 + a^3}$
$\frac{1}{3}\left(e^{at} + 2e^{-at/2}Cos\frac{\sqrt{3}}{2}at\right)$	$\frac{p^2}{p^3 - a^3}$
$e^{-bt}-e^{-at}$	1
$\frac{2(b-a)\sqrt{\mathbf{p}t^3}}{e^{-a^2/4t}}$	$\overline{\sqrt{p+a}+\sqrt{p+b}}$
$e^{-a^2/4t}$	$e^{-a\sqrt{p}}$
	-
\ \mu	$rac{\sqrt{p}}{e^{-a\sqrt{p}}}$
$ \frac{a}{2\sqrt{\boldsymbol{p}^{3}}}e^{-a^{2}/4t} $ $ \frac{1}{t}(e^{-bt}-e^{-at}) $	$e^{-a\sqrt{p}}$
1/	$\binom{n+a}{n}$
$\frac{1}{t}(e^{-bt}-e^{-at})$	$\ln\!\!\left(\frac{p+a}{p+b}\right)$
	· · · · · · · · · · · · · · · · · · ·

2 Transformations usuelles - fonctions discontinues

f(t)	F(p)
0 a 2a 3a 4a 5a 6a t	$\frac{1}{p}th\left(\frac{ap}{2}\right)$
$f(t) = u(t) + 2\sum_{k=1}^{\infty} (-1)^k t(t - ka)$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{1}{ap^2}Th\left(\frac{ap}{2}\right)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{1}{ap^{2}} \left(1 - e^{-ap} - ape^{-ap} \right) \frac{1}{1 - e^{-ap}}$
$f(t) = \sum_{k=0}^{\infty} \frac{t}{a} \left[u(t - ka) - u(t - (k+1)a) \right]$	