MIN-291 Engineering Analysis and Design Autumn 2023-24 **Tutorial 1**

Mathematical Preliminaries and Index Notation (All questions carry 2 marks)

1) Matrix **A** and Vector **t** are given below. Expand and find the following quantities:

$$A_{ii}$$
 , $A_{ij}t_j$

$$A = \begin{bmatrix} 10 & 5 & 7 \\ 5 & 3 & 9 \\ 7 & 9 & 0 \end{bmatrix} \quad t = \begin{cases} 1 \\ 1 \\ 1 \end{cases}$$

- 2) Write the expression $c_i = A_{ij}b_j b_i$ in the form of $c_i = B_{ij}b_j$ and hence find the expression for B_{ii}
- 3) Discuss the validity of the following relations:

1)
$$a_m b_s = c_m (d_r - f_r)$$
, 2) $a_i = b_j c_i d_i$

2)
$$a_i = b_j c_i d_i$$

3)
$$x_i x_i = r^2$$

4)
$$a_i b_j c_j = 3$$

4) Components of a first order and second order tensor are given below. Determine the components of each tensor in a new coordinate system found through a rotation of 60° about x_3 axis. Choose a counter-clockwise rotation when viewing along the negative x_3

$$a_{ij} = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 2 & 2 \\ 3 & 2 & 4 \end{bmatrix} \qquad a_i = \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix}$$

5) Matrix A is said to be symmetric if $A_{ii} = A_{ii}$. Matrix B is said to be antisymmetric/skew symmetric if $B_{ij} = -B_{ji}$. Prove that for the aforementioned pair of symmetric and antisymmetric matrices, $A_{ii}B_{ii} = 0$.