Clase Práctica 2: Espacios vectoriales

Temas relacionados a los ejercicios 5-17 de la Guía Práctica 1.

Introducción

Por lo general trabajaremos con los \mathbb{K} -espacios vectoriales \mathbb{K}^n y $\mathbb{K}^{m \times n}$, pero en los siguientes enunciados V representará cualquier espacio de dimensión finita, la cual denotamos por $\dim(V)$. Usamos la notación $W \leq V$ para indicar que W es un subespacio vectorial de V. Para estas notas se asumen conocidas las definiciones básicas de combinación lineal, conjuntos generadores, bases, dimensión, dependencia e independencia lineal, entre otros. Algunas propiedades puntuales serán enunciadas en la medida que se resuelvan los ejercicios. Si alguna de estas no les resultan familiares, insto a que las intenten demostrar, o que busquen sus demostraciones en los libros de la materia (o pídanle la demostración a la IA de su preferencia, pero como último recurso).

Ejercicios

Ejercicio 1. Sea
$$B = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
. Demuestre que

$$COM(B) = \left\{ A \in \mathbb{R}^{2 \times 2} \mid AB = BA \right\}$$

es un subespacio de $\mathbb{R}^{2\times 2}$ y halle una base de este espacio.

Solución. Primero, veamos que si $A, A' \in COM(B)$ y $\lambda \in \mathbb{R}$, entonces $\lambda A + A' \in COM(B)$. En efecto, por propiedades de multiplicación de matrices tenemos que

$$(\lambda A + A')B = (\lambda A)B + A'B$$
$$= \lambda(AB) + A'B$$
$$= \lambda(BA) + BA'$$
$$= B(\lambda A) + BA'$$
$$= B(\lambda A + A')$$

lo que demuestra que COM(B) es subespacio de $\mathbb{R}^{2\times 2}$.

Para hallar una base de este espacio, consideremos una matriz genérica $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, y veamos las condiciones sobre los términos a, b, c, d para los cuáles AB = BA. Como veremos, esto se reduce a resolver un sistema de ecuaciones lineales.

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 2a+b & a+2b \\ 2c+d & c+2d \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 2a+c & 2b+d \\ a+2c & b+2d \end{bmatrix}$$

Igualando coeficiente a coeficiente las matrices de la derecha obtenemos que necesariamente

$$a = d$$

$$b = c$$

En otras palabras, para que A conmute con B debe ocurrir que

$$A = \begin{bmatrix} a & b \\ b & a \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Notemos que las matrices de la derecha son linealmente independientes (l.i.) pues A=0 implica que a=b=0. Entonces,

$$COM(B) = \left\langle \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\rangle^*$$

En las notas de la clase anterior se definió el rango de una matriz en términos de *pivotes* y de cómo se pueden obtener estos a partir de operaciones elementales. Un concepto equivalente de rango se puede dar en términos más algebraicos.

Definición 1. Sea $A \in \mathbb{K}^{m \times n}$. Definimos el espacio fila de A como $F(A) = \langle F_1(A), \dots, F_m(A) \rangle$, es decir, el subespacio de \mathbb{K}^n generado por los vectores filas de A. Definimos el rango de A como rango $(A) = \dim(F(A))$.

Ejercicio 2. Determine si los vectores $(i, 3, -1, 2+i), (1, -i, -1, -i), (1, i, -2-i, -1) \in \mathbb{C}^4$ son l.i. Si no lo son, escribir a uno de ellos como combinación lineal de los otros.

Solución. Por definición, si estos vectores fuesen l.i. ocurriría que

$$\alpha(i,3,-1,2+i) + \beta(1,-i,-1,-i) + \gamma(1,i,-2-i,-1) = (0,0,0,0)$$
(1)

solo sucede cuando $\alpha = \beta = \gamma = 0$. Notemos que (1) se puede escribir como el sistema homogéneo $A\mathbf{x} = \mathbf{0}$, donde

$$A = \begin{bmatrix} i & 1 & 1 \\ 3 & -i & i \\ -1 & -1 & -2 - i \\ 2 + i & -i & -1 \end{bmatrix} \quad \mathbf{y} \quad \mathbf{x} = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$$
 (2)

Si el sistema (2) es determinado, entonces los vectores son l.i. y el sistema (2) es determinado si y solo si rango(A) = 3. Entonces reduzcamos la matriz con operaciones elementales:

$$\begin{bmatrix} i & 1 & 1 \\ 3 & -i & i \\ -1 & -1 & -2 - i \\ 2 + i & -i & -1 \end{bmatrix} \xrightarrow{E_{13}(i)} \begin{bmatrix} 0 & 1 - i & 2 - 2i \\ 0 & -3 - i & -6 - 2i \\ -1 & -1 & -2 - i \\ 0 & -2 - 2i & -4 - 4i \end{bmatrix} \xrightarrow{E_{1}((1-i)^{-1})} \begin{bmatrix} 0 & 1 & 2 \\ E_{2}((-3-i)^{-1}) \\ E_{3}(-1) \\ E_{4}((-2-2i)^{-1}) \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ 1 & 1 & 2 + i \\ 0 & 1 & 2 \end{bmatrix}$$

$$\xrightarrow{E_{21}(-1)} \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 0 \\ 1 & 1 & 2 + i \\ 0 & 0 & 0 \end{bmatrix}} \xrightarrow{E_{31}(-1)} \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 0 \\ 1 & 0 & i \\ 0 & 0 & 0 \end{bmatrix}$$

De esta última matriz tenemos que el sistema (1) se cumple cuando $\alpha = -i\gamma$ y $\beta = -2\gamma$, por lo que el sistema es indeterminado. Por otra parte, cuando tomamos $\gamma = -1$, podemos reescribir (1) como

$$(1, i, -2 - i, -1) = i \cdot (i, 3, -1, 2 + i) + 2 \cdot (1, -i, -1, -i).$$
(3)

^{*}La notación $\langle \mathbf{v}_1, \dots, \mathbf{v}_n \rangle$ indica el espacio generado por los vectores $\mathbf{v}_1, \dots, \mathbf{v}_n$. Si estos son l.i. entonces queda implícito que $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ es una base del espacio generado.

[†]Como bien saben, también se puede definir el *espacio columna* de A, pero este es isomorfo al espacio fila de A^t . Un resultado conocido dice que rango(A) = rango (A^t) para toda matriz A.

En el ejercicio anterior, notemos que existen infinitos valores α, β, γ que hacen verdadera a la igualdad (1), pero $\alpha = i$ y $\beta = 2$ son los únicos valores para los cuales se cumple (3) (analice esto). Esto implica que los vectores (i, 3, -1, 2+i), (1, -i, -1, -i) forman una base de $F(A^t)$. Por otra parte, el conjunto solución de $A\mathbf{x} = \mathbf{0}$ es

$$\left\{ \begin{bmatrix} -i\gamma \\ -2\gamma \\ \gamma \end{bmatrix} \middle| \gamma \in \mathbb{C} \right\} = \left\langle \begin{bmatrix} i \\ 2 \\ -1 \end{bmatrix} \right\rangle \subseteq \mathbb{C}^3.$$

Más generalmente, trabajaremos con la siguiente noción.

Definición 2. Sea $A \in \mathbb{K}^{m \times n}$. Definimos el *kernel* o *espacio nulo* de A como $\ker(A) = \{\mathbf{x} \in \mathbb{K}^n \mid A\mathbf{x} = \mathbf{0}\}$, es decir, el espacio de soluciones del sistema homogéneo asociado a A. Definimos la *nulidad* de A como $\operatorname{nul}(A) = \dim(\ker(A))$.

Algunas propiedades bastante conocidas que vinculan los conceptos de rango y nulidad de una matriz son los siguientes:

Proposición 1. Sea $A \in \mathbb{K}^{m \times n}$. Entonces

- $\mathbb{K}^n = F(A) \oplus \ker(A)$, y
- $\operatorname{rango}(A) + \operatorname{nul}(A) = n$.

Por ejemplo, para la matriz A del Ejercicio 2 se cumple que

$$\underbrace{\left\langle \begin{bmatrix} 1\\0\\i \end{bmatrix}, \begin{bmatrix} 0\\1\\2 \end{bmatrix} \right\rangle}_{F(A)} \oplus \underbrace{\left\langle \begin{bmatrix} i\\2\\-1 \end{bmatrix} \right\rangle}_{\ker(A)} = \mathbb{C}^3.$$

La descomposición de un espacio en suma directa de subespacios será un tema central de este curso, en especial cuando lidiemos con problemas de diagonalización. Un problema vinculado a esto último es el de representabilidad o cambio de base. En \mathbb{K}^n como \mathbb{K} -espacio vectorial contamos con la llamada base canónica, que es el conjunto ordenado[‡]

$$\left\{ \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\\vdots\\0 \end{bmatrix}, \dots, \begin{bmatrix} 0\\0\\\vdots\\1 \end{bmatrix} \right\}$$

Todo elemento de \mathbb{K}^n se puede escribir trivialmente como combinación lineal de estos vectores, pero esta base puede resultar inapropiada para representar matricialmente operadores lineales de \mathbb{K}^n , o para realizar operaciones complejas sobre matrices, como potenciación o inversión de matrices no singulares. Con esta motivación, recordemos la noción de vector coordenado y de cambio de base.

Definición 3. Sea V un \mathbb{K} -espacio vectorial de dimensión n y $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ una base de V. Para todo $\mathbf{v} \in V$, definimos el *vector coordenado* de \mathbf{v} respecto a la base \mathcal{B} como

$$[\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{bmatrix} \in \mathbb{K}^n$$

donde los coeficientes λ_i son tales que $\mathbf{v} = \lambda_1 \mathbf{v}_1 + \cdots + \lambda_n \mathbf{v}_n$.

[‡]Si bien una base en general es simplemente un conjunto sin estructura, la condición de orden resulta necesaria para conceptualizar y computar varias herramientas, como la matriz cambio de base.

Por propiedades de base y de independencia lineal, $[\cdot]_{\mathcal{B}}: V \to \mathbb{K}^n$ es un isomorfismo de espacios vectoriales. Notemos que si $V = \mathbb{K}^n$ y \mathcal{C} es la base canónica, entonces $[\cdot]_{\mathcal{C}}$ es la función identidad.

Ejercicio 3. Halle el vector coordenado de cualquier $\mathbf{v} \in \mathbb{C}^3$ respecto a la base (ordenada)

$$\left\{ \begin{bmatrix} 1\\0\\i \end{bmatrix}, \begin{bmatrix} 0\\1\\2 \end{bmatrix}, \begin{bmatrix} i\\2\\-1 \end{bmatrix} \right\}$$

Solución. Supongamos que $\mathbf{v} = [a, b, c]^t$ y hallemos coeficientes α, β, γ tales que

$$\alpha \begin{bmatrix} 1 \\ 0 \\ i \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} + \gamma \begin{bmatrix} i \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

el cual se puede reescribir como el sistema matricial

$$\begin{bmatrix} 1 & 0 & i \\ 0 & 1 & 2 \\ i & 2 & -i \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

Procedemos a reducir la matriz asociada al sistema[§]

$$\begin{bmatrix} 1 & 0 & i & a \\ 0 & 1 & 2 & b \\ i & 2 & -1 & c \end{bmatrix} \xrightarrow{E_{31}(-i)} \begin{bmatrix} 1 & 0 & i & a \\ 0 & 1 & 2 & b \\ 0 & 2 & 0 & c - ai \end{bmatrix} \xrightarrow{E_{32}(-2)} \begin{bmatrix} 1 & 0 & i & a \\ 0 & 1 & 2 & b \\ 0 & 0 & -4 & c - ai - 2b \end{bmatrix}$$

$$\xrightarrow{E_{3}(-\frac{1}{4})} \begin{bmatrix} 1 & 0 & i & a \\ 0 & 1 & 2 & b \\ 0 & 0 & 1 & \frac{E_{23}(-2)}{4} \xrightarrow{E_{23}(-2)} \begin{bmatrix} 1 & 0 & 0 & \frac{5a - (2b - c)i}{4} \\ 0 & 1 & 0 & \frac{4}{-ai + c} \\ 0 & 0 & 1 & \frac{ai + 2b - c}{4} \end{bmatrix}$$

De donde obtenemos que

$$\begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \underbrace{\begin{bmatrix} \frac{5}{4} & -\frac{i}{2} & \frac{i}{4} \\ -\frac{i}{2} & 0 & \frac{1}{2} \\ \frac{i}{4} & \frac{1}{2} & -\frac{1}{4} \end{bmatrix}}_{P} \underbrace{\begin{bmatrix} a \\ b \\ c \end{bmatrix}}_{\mathbf{V}}$$

Definición 4. Sean $\mathcal{B}, \mathcal{B}'$ bases de V. Denotamos por $C_{\mathcal{B}'\mathcal{B}}$ a la única matriz cuadrada tal que

$$[\mathbf{v}]_{\mathcal{B}'} = C_{\mathcal{B}'\mathcal{B}} \cdot [\mathbf{v}]_{\mathcal{B}},$$

para todo $\mathbf{v} \in V$ y denominamos a $C_{\mathcal{B}'\mathcal{B}}$ la matriz cambio de base de \mathcal{B} a \mathcal{B}' .

Por ejemplo, la matriz P del Ejercicio 3 es igual a $C_{\mathcal{BC}}$ donde \mathcal{C} es la base canónica de \mathbb{C}^3 . En general, puede ser útil la siguiente propiedad:

Proposición 2. Las matrices $C_{\mathcal{B}'\mathcal{B}}$ son invertibles y

$$C_{\mathcal{B}'\mathcal{B}}^{-1} = C_{\mathcal{B}\mathcal{B}'}.$$

[§]La siguiente reducción es análoga a invertir la matriz de la izquierda.

En el siguiente ejercicios abordaremos propiedades de suma de espacios y dimensión. Recordemos que dado un par de espacios vectoriales V_1, V_2 , la suma $V_1 + V_2$ se define como

$$\{v_1 + v_2 \mid v_1 \in V_1 \text{ y } v_2 \in V_2\}.$$

Ejercicio 4. Sea V un espacio vectorial. Probar que si la dimensión de la suma de dos subespacios de V es una unidad mayor que la dimensión de su intersección entonces la suma coincide con uno de ellos y la intersección con el otro.

Solución. Sean $L_1 \leq V$ y $L_2 \leq V$ tales que $\dim(L_1 + L_2) = \dim(L_1 \cap L_2) + 1$. Para ver que cualquiera de los L_i coincide con $L_1 \cap L_2$ o $L_1 + L_2$, usaremos la siguiente propiedad:

Afirmación

Si
$$V_1 \leq V_2$$
 y dim (V_1) = dim (V_2) , entonces $V_1 = V_2$.

Sabemos que

$$L_1 \cap L_2 \le L_i \le L_1 + L_2$$

y por propiedades de dimensión (e hipótesis)

$$\dim(L_1 \cap L_2) \le \dim(L_i) \le \dim(L_1 + L_2) = \dim(L_1 \cap L_2) + 1.$$

De esta desigualdad y de la Afirmación se deduce que

- si dim (L_i) < dim $(L_1 \cap L_2)$ + 1 entonces $L_i = L_1 \cap L_2$ y
- si dim $(L_1 \cap L_2)$ < dim (L_i) entonces $L_i = L_1 + L_2$.

Solo queda por demostrar que si $\dim(L_1 + L_2) = \dim(L_1 \cap L_2) + 1$ entonces $L_i = L_1 \cap L_2$ y $L_i = L_1 + L_2$ con $i \neq j$, pero esto es equivalente a ver que

$$L_1 \subsetneq L_2$$
 o $L_2 \subsetneq L_1$.

Notemos que no puede suceder que $L_1 = L_2$, ya que en este caso $L_1 + L_2 = L_1 \cap L_2$ y no se cumpliría la hipótesis de la dimensión. Supongamos que $L_1 \not\subseteq L_2$ y probemos que $L_2 \subsetneq L_1$. Sea $u \in L_1 - L_2$ y \mathcal{B} una base de $L_1 \cap L_2$. Entonces $\mathcal{B}' = \mathcal{B} \cup \{u\}$ es l.i. y por hipótesis, \mathcal{B}' es una base de $L_1 + L_2$. Como todos los elementos de \mathcal{B}' también son elementos de L_1 , entonces $L_1 = L_1 + L_2$. De acá se obtiene directamente que $L_2 \subsetneq L_1$.

[¶]Esta propiedad es consecuencia directa del siguiente hecho bien conocido: Si un espacio vectorial V es de dimensión n, entonces cualquier conjunto linealmente independiente de n elementos es base de V.