Chapter 2

Conventional Encryption Message Confidentiality

Henric Johnson
Blekinge Institute of Technology, Sweden
http://www.its.bth.se/staff/hjo/
henric.johnson@bth.se

Outline

- Conventional Encryption Principles
- Conventional Encryption Algorithms
- Cipher Block Modes of Operation
- Location of Encryption Devices
- Key Distribution

Conventional Encryption Principles

- An encryption scheme has five ingredients:
 - Plaintext
 - Encryption algorithm
 - Secret Key
 - Ciphertext
 - Decryption algorithm
- Security depends on the secrecy of the key, not the secrecy of the algorithm

3

Conventional Encryption Principles

Figure 2.1 Simplified Model of Symmetric Encryption

Cryptography

- Classified along three independent dimensions:
 - The type of operations used for transforming plaintext to ciphertext
 - substitution
 - transposition
 - The number of keys used
 - symmetric (single key)
 - asymmetric (two-keys, or public-key encryption)
 - The way in which the plaintext is processed
 - Block cipher
 - Stream cipher

5

Cryptanalysis

- Cryptanalysis
 - The process of attempting to discover the plaintext or key
 - Attacks depend on the nature of the encryption scheme and the information available to the cryptanalyst.
 - Table 2.1
- Computationally secure

Types of Attacks on Encrypted Messages

Type of Attack

Known to Cryptanalyst

Ciphertext only	-Enametica descritors		
Cipheriext only	•Encryption algorithm		
	•Ciphertext to be decoded		
Known plaintext	•Encryption algorithm		
	•Ciphertext to be decoded		
	•One or more plaintext-ciphertext pairs formed with the secret key		
Chosen plaintext	•Encryption algorithm		
	•Ciphertext to be decoded		
	Plaintext message chosen by cryptanalyst, together with its corresponding ciphertext generated with the secret key		
Chosen ciphertext	•Encryption algorithm		
	•Ciphertext to be decoded		
	Purported ciphertext chosen by cryptanalyst, together with its corresponding decrypted plaintext generated with the secret key		
Chosen text	Encryption algorithm Ciphertext to be decoded		
	Plaintext message chosen by cryptanalyst, together with its corresponding ciphertext generated with the secret key		
	Purported ciphertext chosen by cryptanalyst, together with its corresponding decrypted plaintext generated with the secret key		

7

Average time required for exhaustive key search

Key Size (bits)	Number of Alternative Keys	Time required at 1 encryption/μs	Time required at 10^6 encryptions/ μ s
32	$2^{32} = 4.3 \times 10^9$	$2^{31} \mu s = 35.8 \text{ minutes}$	2.15 milliseconds
56	$2^{56} = 7.2 \times 10^{16}$	$2^{55} \mu s = 1142 \text{ years}$	10.01 hours
128	$2^{128} = 3.4 \times 10^{38}$	$2^{127} \mu s = 5.4 \times 10^{24} \text{ years}$	$5.4 \times 10^{18} \text{ years}$
168	$2^{168} = 3.7 \times 10^{50}$	$2^{167} \mu s = 5.9 \times 10^{36} \text{ years}$	$5.9 \times 10^{30} \text{ years}$
26 characters (permutation)	$26! = 4 \times 10^{26}$	$2 \times 10^{26} \ \mu \text{s} = 6.4 \times 10^{12} \ \text{years}$	$6.4 \times 10^6 \text{ years}$

Feistel Cipher Structure

- Virtually all conventional block encryption algorithms, including DES have a structure first described by Horst Feistel of IBM in 1973
- The realisation of a Fesitel Network depends on the choice of the following parameters and design features (see next slide):

9

Feistel Cipher Structure

- Block size: larger block sizes mean greater security
- Key Size: larger key size means greater security
- Number of rounds: multiple rounds offer increasing security
- Subkey generation algorithm: greater complexity will lead to greater difficulty of cryptanalysis.
- Fast software encryption/decryption: the speed of execution of the algorithm becomes a concern

11

Conventional Encryption Algorithms

- Data Encryption Standard (DES)
 - The most widely used encryption scheme
 - The algorithm is reffered to the Data Encryption Algorithm (DEA)
 - DES is a block cipher
 - The plaintext is processed in 64-bit blocks
 - The key is 56-bits in length

13

General Depiction of DES Encryption Algorithm

DES

- The overall processing at each iteration:
 - Li = Ri-1
 - $Ri = Li-1 \oplus F(Ri-1, Ki)$
- Concerns about:
 - The algorithm and the key length (56-bits)

1

Time to break a code (10⁶ decryptions/µs)

Triple DES

 Use three keys and three executions of the DES algorithm (encrypt-decrypt-encrypt)

$$C = E_{K3}[D_{K2}[E_{K1}[P]]]$$

- C = ciphertext
- \bullet P = Plaintext
- $E_K[X]$ = encryption of X using key K
- $D_K[Y] = \text{decryption of } Y \text{ using key } K$
- Effective key length of 168 bits

17

Triple DES

(a) Encryption

19

Advanced Encryption Standard (AES)

- 3DES's strength
 - 168-bit key length V.S. brute-force attack
 - Encryption algorithm in 3DES is the same as in DES
- 3DES's drawback
 - Relatively sluggish in software
 - 64-bit block size
- AES
 - A symmetric block cipher with a 128-bit block length
 - Key lengths of 128, 192, and 256 bits

- Evaluation criteria
 - Security
 - Computational efficiency
 - Memory requirements
 - Hardware and software suitability
 - Flexibility
- Comments on AES
 - It's not a Feistel structure.
 - Four different stages are used.
 - Substitute bytes
 - Shift rows
 - Mix columns
 - Add round key

substitution

permutation substitution

substitution

Advanced Encryption Standard (AES)

- Only the Add Round Key stage makes use of the key.
- The decryption algorithm is not identical to the encryption algorithm.
- The final round of both encryption and decryption consists of only three stages.

Other Symmetric Block Ciphers

International Data Encryption Algorithm (IDEA)

- 128-bit key
- Used in PGP

Blowfish

- Easy to implement
- High execution speed
- Run in less than 5K of memory

23

Other Symmetric Block Ciphers

RC5

- Suitable for hardware and software
- Fast, simple
- Adaptable to processors of different word lengths
- Variable number of rounds
- Variable-length key
- Low memory requirement
- High security
- Data-dependent rotations

Cast-128

- Key size from 40 to 128 bits
- The round function differs from round to round

Cipher Block Modes of Operation

- Cipher Block Chaining Mode (CBC)
 - The input to the encryption algorithm is the XOR of the current plaintext block and the preceding ciphertext block.
 - Repeating pattern of 64-bits are not exposed

$$C_{i} = E_{k}[C_{i-1} \oplus P_{i}]$$

$$D_{K}[C_{i}] = D_{K}[E_{K}(C_{i-1} \oplus P_{i})]$$

$$D_{K}[C_{i}] = (C_{i-1} \oplus P_{i})$$

$$C_{i-1} \oplus D_{K}[C_{i}] = C_{i-1} \oplus C_{i-1} \oplus P_{i} = P_{i}$$

25

Cipher Block Chaining (CBC) Mode

Decrypt K Decrypt

(b) Decryption

Cipher Feedback Mode (CFB)

- To convert any block cipher into a stream cipher by CFB mode.
- To eliminate the need to pad a message to be an integral number of blocks.
- The ciphertext is of the same length as the plaintext.
- Note that it is the *encryption* function that is used, not the *decryption* function.

27

s-bit Cipher Feedback (CFB) Mode

Location of Encryption Device

Link encryption:

- A lot of encryption devices
- High level of security
- Decrypt each packet at every switch

End-to-end encryption

- The source encrypt and the receiver decrypts
- Payload encrypted
- Header in the clear
- High Security: Both link and end-to-end encryption are needed (see Figure 2.9)

PSN
Packet-switching PSN
end-to-end encryption device
PSN = packet switching node

Figure 2.9 Encryption Across a Packet-Switching Network

Key Distribution

- A key could be selected by A and physically delivered to B.
- 2. A third party could select the key and physically deliver it to A and B.
- If A and B have previously used a key, one party could transmit the new key to the other, encrypted using the old key.
- 4. If A and B each have an encrypted connection to a third party C, C could deliver a key on the encrypted links to A and B.

31

Key Distribution (See Figure 2.10)

Session key:

 Data encrypted with a one-time session key. At the conclusion of the session the key is destroyed

Permanent key:

 Used between entities for the purpose of distributing session keys

Stream Ciphers

- process the message bit by bit (as a stream)
- typically have a (pseudo) random stream key
- combined (XOR) with plaintext bit by bit
- randomness of stream key completely destroys any statistically properties in the message
 - C_i = M_i XOR StreamKey_i
- what could be simpler!!!!
- but must never reuse stream key
 - otherwise can remove effect and recover messages

Stream Cipher Diagram

35

Stream Cipher Properties

- some design considerations are:
 - long period with no repetitions
 - statistically random
 - depends on large enough key

RC4

- a proprietary cipher owned by RSA DSI
- another Ron Rivest design, simple but effective
- variable key size, byte-oriented stream cipher
- widely used (web SSL/TLS, wireless WEP)
- key forms random permutation of all 8-bit values
- uses that permutation to scramble input info processed a byte at a time

37

RC4 Key Schedule

- starts with an array S of numbers: 0..255
- use key to well and truly shuffle
- S forms internal state of the cipher
- given a key k of length I bytes

```
/* Initialization */
for i = 0 to 255 do
    S[i] = i;
    T[i] = K[ i mod keylen ];

/* Initial Permutation of S */
j = 0
for i = 0 to 255 do
    j = (j + S[i] + T[i]) mod 256;
    swap (S[i], S[j]);
```

RC4 Encryption

- encryption continues shuffling array values
- sum of shuffled pair selects "stream key" value
- XOR with next byte of message to en/decrypt

```
/* Stream Generation */
i, j = 0;
while (true)
i = (i + 1) \mod 256;
j = (j + S[i]) \mod 256;
swap(S[i], S[j]);
t = (S[i] + S[j]) \mod 256;
k = S[t]
Ci = Mi \ XOR \ S[t]
```

20

RC4 Security

- claimed secure against known attacks
 - have some analyses, none practical
- result is very non-linear
- since RC4 is a stream cipher, must never reuse a key
- have a concern with WEP, but due to key handling rather than RC4 itself

- Stallings, W. *Cryptography and Network Security: Principles and Practice, 2nd edition.* Prentice Hall, 1999
- Scneier, B. *Applied Cryptography*, New York: Wiley, 1996
- Mel, H.X. Baker, D. *Cryptography Decrypted*. Addison Wesley, 2001