Exercises 12

Exercise 2.1

$$\begin{aligned} &\text{i) } S^2 \leq \frac{1}{n-1} \sum_i^n (X_i - a)^2 \text{ for any } a \in \mathbb{R} \\ S^2 &= \frac{1}{n-1} \sum_i^n (X_i - \overline{X})^2 \leq \frac{1}{n-1} \sum_i^n (X_i - a)^2 \\ &\sum_i^n (X_i - \overline{X})^2 \leq \sum_i^n (X_i - a)^2 \\ &\sum_i^n (-2X_i \overline{X} + \overline{X}^2) \leq \sum_i^n (-2X_i a + a^2) \\ &\sum_i^n (-2X_i \overline{X}) + n \overline{X}^2 \leq -2a \sum_i^n (X_i) + \sum_i^n (a^2) \\ &-2n \overline{X}^2 + n \overline{X}^2 \leq -2an \overline{X} + na^2 \\ &-n \overline{X}^2 \leq -2an \overline{X} + na^2 \\ &-\overline{X}^2 \leq -2a \overline{X} + n^2 a^2 \\ &0 \leq \overline{X}^2 - 2a \overline{X} + n^2 a^2 (\star) \end{aligned}$$

if a and X have the opposite sign the inequality (\star) is true because a sum of positive numbers is ≥ 0 .

otherwise:

$$\overline{X}^2-2a\overline{X}+n^2a^2\geq^{(n\geq 1)}\overline{X}^2-2an\overline{X}+n^2a^2=(\overline{X}-na)^2\geq 0$$

$$egin{aligned} & ext{ii)} \ rac{(n-1)S^2}{n} = rac{1}{n} \sum_i^n (X_i - \overline{X})^2 \ & = rac{1}{n} \sum_i^n (X_i^2 - 2X_i \overline{X} + \overline{X}^2) \ & = \overline{X^2} - 2\overline{X}^2 + \overline{X}^2 = \overline{X^2} - \overline{X}^2 \end{aligned}$$

Exercise 2.2

 X_1,\ldots,X_n iid random sample with $X_i\sim F$ with continuous F

i)

 $\min: \mathbb{R}^n o \mathbb{R}$

I call Z the rv $X_{(1)}$

$$B_z = \{x_1,\ldots,x_n: \min(x_1,\ldots,x_n) \leq z\}$$

we have that B_Z is the set of points in which at least one component is less than z

$$egin{aligned} {B_z}^C &= (z,+\infty) imes \cdots imes (z,\infty) \ F_Z(z) &= 1 - \int\limits_{B_z^C} \prod\limits_{i=1}^n f(x_i) dx_1 dx_2 \cdots dx_n = 1 - (1-F(z))^n \end{aligned}$$

Now we can take the derivative:

$$f_Z(z) = -n(1-F(z))^{n-1}(-f(z)) = n(1-F(z))^{n-1}f(z)$$

 $\max: \mathbb{R}^n \to \mathbb{R}$

$$B_z = \{x_1,\ldots,x_n: \max(x_1,\ldots,x_n) \leq z\}$$

which means that B_z is the set of points in which all components are smaller than z (definition of minimum)

$$B_z = (-\infty, z] \times \cdots \times (-\infty, z]$$

we can find the df of Z,

$$F_Z = \int\limits_{B_z} \prod\limits_{i=1}^n f(x_i) dx_1 dx_2 \cdots dx_n = (F(z))^n$$

Now we can take the derivative:

$$f(z) = n(F(z))^{n-1}f(z)$$
 \square

iii) if they are not independent we cannot factorize the pdfs and we would need the joint pdf to be able to calculate the integrals.

iv) Bz??????

Exercise 2.5

discrete

- Bernoulli: coin toss that either gives heads (1) with probability θ or tails (0) with probability $1-\theta$
- Binomial: number of successes in n independent trials (that either succeed or fail) each with probability θ , for example number of heads when tossing a coin n times
- NegBin: it's a generalized version of geometric rv that models the number of failures until r successes happen (in n independent binary trials like the binomial). For

- example the number of trials until we get r non consecutive heads when tossing a coin
- Poisson: number of events that happen independently from each other in a fixed amount of time. For example the number of connections to a server in a second.

continuous

- Gaussian: for example the height of humans.
- Exponential: for example the time a client waits in queue before being served by a server.
- Gamma: it's a generalization of the exponential distribution. It is also used to model waiting times.
- Weibull: for example it can model the time an electronic device lasts.
- Uniform: in telecommunications it can model the granular error of a symmetrical quantizer.