

IP Address Classes

Class A	1 – 127	(Network 127 is rese	rved for	loopback and internal testing)
		Leading bit pattern	0	00000000.000000000.00000000.0000000000
Class B	128 – 191	Leading bit pattern	10	10000000.00000000.00000000.00000000000
Class C	192 – 223	Leading bit pattern	110	11000000.00000000.00000000.00000000000
Class D	224 – 239	(Reserved for multicast)		
Class E	240 – 255	(Reserved for experi	mental,	used for research)

Private Address Space

Class A	10.0.0.0 to 10.255.255.255
Class B	172.16.0.0 to 172.31.255.255
Class C	192.168.0.0 to 192.168.255.255

Default Subnet Masks

Class A	255.0.0.0
Class B	255.255.0.0
Class C	255.255.255.0

Produced by: Robb Jones jonesr@careertech.net Frederick County Career & Technology Center Cisco Networking Academy Frederick County Public Schools Frederick, Maryland, USA

Special Thanks to Melvin Baker and Jim Dorsch for taking the time to check this workbook for errors, and to everyone who has sent in suggestions to improve the series.

Workbooks included in the series:

IP Addressing and Subnetting Workbooks
ACLs - Access Lists Workbooks
VLSM Variable-Length Subnet Mask IWorkbooks

Binary To Decimal Conversion

128	64	32	16	8	4	2	1	Answers	Scratch Area
1	0	0	1	0	0	1	0	146	128 64 16 32
0	1	1	1	0	1	1	1	119	2 146 4
1	1	1	1	1	1	1	1	255	128 + 64 + 3 2 + 16 + 8 + 4 + 2 + 1
1	1	0	0	0	1	0	1	197	1/9 128 + 64 + 4 + 1
1	1	1	1	0	1	1	0	246	128 + 64 + 32 + 16 + 4 + 2
0	0	0	1	0	0	1	1	19	16 + 2 + 1
1	0	0	0	0	0	0	1	129	128 + 1
0	0	1	1	0	0	0	1		
0	1	1	1	1	0	0	0		
1	1	1	1	0	0	0	0		
0	0	1	1	1	0	1	1		
0	0	0	0	0	1	1	1		
						000	11011		
						101	01010		
						011	01111		
						1111	11000		
						001	00000		
						010	10101		
						001	11110		
							00011	3	2 + 1
							01101		
							00000	192	128 + 64
									4

Decimal To Binary Conversion Use all 8 bits for each problem

128	64	32	16	8	4	2	1 =	255	Scratch Area
/	/	/	0	/	/	/	0	238	238 34 -128 -32
0	0	/	0	0	0	/	0	34	$\begin{array}{ccc} -128 & -32 \\ \hline 110 & 2 \\ -64 & -2 \\ \hline 46 & 0 \end{array}$
0	1	1	1	1	0	1	1	123	$\frac{67}{46} \frac{-2}{0}$
0	0	1	1	0	0	1	0	50	
1	1	1	1	1	1	1	1	255	
1	1	0	0	1	0	0	0	200	14 -8 6 -4 2 -2 0
0	0	0	0	1	0	1	0	10	0
1	0	0	0	1	0	1	0	138	
								1	
								13	
								250	
								107	
								224	
								114	
								192	
								172	
								100	
								119	
								57	
								98	
								179	
								2	
								_	

Address Class Identification

Address	Class
10.250.1.1	_A
150.10.15.0	_ <i>B</i>
192.14.2.0	_ <u>C</u>
148.17.9.1	_B
193.42.1.1	C
126.8.156.0	A
220.200.23.1	C
230.230.45.58	D
177.100.18.4	B
119.18.45.0	_A
249.240.80.78	E
199.155.77.56	C
117.89.56.45	A
215.45.45.0	C
199.200.15.0	C
95.0.21.90	A
33.0.0.0	A
158.98.80.0	_B

219.21.56.0

___C

Network & Host Identification

Circle the network portion of these addresses:

177.100.18.4

119.18.45.0

209.240.8078

199.155.77.56

117.89.56.45

215.45.450

192.200.150

95.0.21.90

33.0.0.0

158.98 80.0

217.21.560

(10)250.1.1

150.10.15.0

192.14.20

(148.17.9.1

(193.42.1)1

126.8.156.0

220.200.231

Circle the host portion of these addresses:

10.15.123.50

171.2(199.31)

198.125.87.177

223.250.200 222

17 45.222.45

126 201.54.231

191.41(35.112)

155.25.169.227

192.15.155(2)

123 102.45.254

148.17.9.155

100(25.1.1)

195.0.21 98

25 250.135.46

171.102.77.77

55 250.5.5

218.155.230.14

10(250.1.1)

Network Addresses

Using the IP address and subnet mask shown write out the network address:

188.10.18.2	188 . 10 . 0 . 0
255.255.0.0	
10.10.48.80	10 . 10 . 48 . 0
255.255.255.0	
192.149.24.191 255.255.255.0	192.149.24.0
150.203.23.19 255.255.0.0	150.203.0.0
10.10.10.10 255.0.0.0	10.0.0.0
186.13.23.110	186.13.23.0
255.255.255.0	
223.69.230.250 255.255.0.0	223.69.0.0
200.120.135.15	200.120.135.0
255.255.255.0	
27.125.200.151 255.0.0.0	27.0.0.0
199.20.150.35	199.20.150.0
255.255.255.0	
191.55.165.135 255.255.255.0	191.55.165.0
28.212.250.254	28.212.0.0
255.255.0.0	

Host Addresses

Using the IP address and subnet mask shown write out the host address:

188.10.18.2	0.0.18.2
255.255.0.0	
10.10.48.80	0.0.0.80
255.255.255.0	
222.49.49.11 255.255.255.0	0.0.0.11
128.23.230.19 255.255.0.0	0.0.230.19
	0.40.40.40
10.10.10.10 255.0.0.0	0.10.10.10
200.113.123.11	0.0.0.11
255.255.255.0	
223.169.23.20	0.0.23.20
255.255.0.0	
203.20.35.215 255.255.255.0	0.0.0.215
117.15.2.51	0.15.2.51
255.0.0.0	
199.120.15.135	0.0.0.135
255.255.255.0	
191.55.165.135 255.255.255.0	0.0.0.135
48.21.25.54	0.0.25.54
255.255.0.0	

Default Subnet Masks

Write the correct default subnet mask for each of the following addresses:

177.100.18.4	255 . 255 . O . O
119.18.45.0	255.0.0.0
191.249.234.191	255.255.0.0
223.23.223.109	255.255.255.0
10.10.250.1	255.0.0.0
126.123.23.1	255.0.0.0
223.69.230.250	255.255.255.0
192.12.35.105	255.255.255.0
77.251.200.51	255.0.0.0
189.210.50.1	255.255.0.0
88.45.65.35	255.0.0.0
128.212.250.254	255.255.0.0
193.100.77.83	255.255.255.0
125.125.250.1	255.0.0.0
1.1.10.50	255.0.0.0
220.90.130.45	255.255.255.0
134.125.34.9	255.255.0.0
95.250.91.99	255.0.0.0

ANDING With

Default subnet masks

Every IP address must be accompanied by a subnet mask. By now you should be able to look at an IP address and tell what class it is. Unfortunately your computer doesn't think that way. For your computer to determine the network and subnet portion of an IP address it must "AND" the IP address with the subnet mask.

Default Subnet Masks:

Class A 255.0.0.0 Class B 255.255.0.0 Class C 255.255.255.0

ANDING Equations:

1 AND 1 = 1

1 AND 0 = 0

0 AND 1 = 0

0 AND 0 = 0

Sample:

What you see...

IP Address: 192 . 100 . 10 . 33

What you can figure out in your head...

Address Class: C

Network Portion: <u>192.100.10</u>.33 Host Portion: 192.100.10.<u>33</u>

In order for you computer to get the same information it must AND the IP address with the subnet mask in binary.

Matricali

	Network Host	
	11000000.01100100.00001010.0010	
Default Subnet Mask:	<u>11111111.01111111.11111111.0000</u>	0000 (255 . 255 . 255 . 0)
AND:	11000000.01100100.00001010 .	0 0 0 0 (192 . 100 . 10 . 0)

ANDING with the default subnet mask allows your computer to figure out the network portion of the address.

ANDING With

Custom subnet masks

When you take a single network such as 192.100.10.0 and divide it into five smaller networks (192.100.10.16, 192.100.10.32, 192.100.10.48, 192.100.10.64, 192.100.10.80) the outside world still sees the network as 192.100.10.0, but the internal computers and routers see five smaller subnetworks. Each independent of the other. This can only be accomplished by using a custom subnet mask. A custom subnet mask borrows bits from the host portion of the address to create a subnetwork address between the network and host portions of an IP address. In this example each range has 14 usable addresses in it. The computer must still AND the IP address against the custom subnet mask to see what the network portion is and which subnetwork it belongs to.

IP Address: 192 . 100 . 10 . 0 Custom Subnet Mask: 255.255.255.240

Address Ranges: 192.10.10.0 to 192.100.10.15

192.100.10.16 to 192.100.10.31

192.100.10.32 to 192.100.10.47 (Range in the sample below)

192.100.10.48 to 192.100.10.63 192.100.10.64 to 192.100.10.79 192.100.10.80 to 192.100.10.95 192.100.10.96 to 192.100.10.111 192.100.10.112 to 192.100.10.127 192.100.10.128 to 192.100.10.143 192.100.10.144 to 192.100.10.159 192.100.10.160 to 192.100.10.175 192.100.10.176 to 192.100.10.191 192.100.10.192 to 192.100.10.207 192.100.10.208 to 192.100.10.223

192.100.10.224 to 192.100.10.239 192.100.10.240 to 192.100.10.255

The ANDING process of the four borrowed bits shows which range of IP addresses this particular address will fall into.

In the next set of problems you will determine the necessary information to determine the correct subnet mask for a variety of IP addresses.

How to determine the number of subnets and the number of hosts per subnet

Two formulas can provide this basic information:

Number of subnets = 2^{s} (Second subnet formula: Number of subnets = 2^{s} - 2)

Number of hosts per subnet = $2^h - 2$

Both formulas calculate the number of hosts or subnets based on the number of binary bits used. For example if you borrow three bits from the host portion of the address use the *number of subnets* formula to determine the total number of subnets gained by borrowing the three bits. This would be 2^3 or $2 \times 2 \times 2 = 8$ subnets

To determine the number of hosts per subnet you would take the number of binary bits used in the host portion and apply this to the *number of hosts per subnet* formula If five bits are in the host portion of the address this would be 2^5 or $2 \times 2 \times 2 \times 2 \times 2 = 32$ hosts.

When dealing with the *number of hosts per subnet* you have to subtract two addresses from the range. The first address in every range is the subnet number. The last address in every range is the broadcast address. These two addresses cannot be assigned to any device in the network which is why you have to subtract two addresses to find the number of usable addresses in each range.

For example if two bits are borrowed for the network portion of the address you can easily determine the number of subnets and hosts per subnets using the two formulas.

What about that second subnet formula:

Number of subnets = 2 s - 2

In some instances the first and last subnet range of addresses are reserved. This is similar to the first and last host addresses in each range of addresses.

The first range of addresses is the **zero subnet**. The subnet number for the **zero subnet** is also the subnet number for the classful subnet address.

The last range of addresses is the **broadcast subnet**. The broadcast address for the last subnet in *the broadcast subnet* is the same as the classful broadcast address.

The primary reason the the zero and broadcast subnets were not used had to do pirmarily with the broadcast addresses. If you send a broadcast to 195.223.255 are you sending it to all 255 addresses in the classful C address or just the 62 usable addresses in the broadcast range?

The **CCNA** and **CCENT** certification exams may have questions which will require you to determine which formula to use, and whether or not you can use the first and last subnets. Use the chart below to help decide.

When to use which formula to determine the number of subnets				
Use the 2^s - 2 formula and don't use the zero and broadcast ranges if	Use the 2^s formula and <u>use</u> the zero and broadcast ranges if			
Classful routing is used	Classless routing or VLSM is used			
RIP version 1 is used	RIP version 2, EIGRP, or OSPF is used			
The no ip subnet zero command is configured on your router	The <i>ip subnet zero</i> command is configured on your router (default setting)			
	No other clues are given			

Bottom line for the CCNA exams; if a question does not give you any clues as to whether or not to allow these two subnets, assume you can use them.

This workbook has you use the number of subnets = 2^{s} formula.

Problem 1

Number of needed subnets 14
Number of needed usable hosts 14
Network Address 192.10.10.0

Show your work for **Problem 1** in the space below.

Add the binary value numbers to the left of the line to create the custom subnet mask.

Observe the total number of hosts.

Subtract 2 for the number of usable hosts.

Problem 2

Number of needed subnets 1000

Number of needed usable hosts 60

Network Address 165.100.0.0

Show your work for **Problem 2** in the space below.

Problem 3

Network Address 148.75.0.0 /26

/26 indicates the total number of bits used for the network and subnetwork portion of the address. All bits remaining belong to the host portion of the address.

Default subnet mask _____255 . 255 . 0 . 0

Custom subnet mask _____255 . 255 . 255 . 192

Total number of host addresses _____64

Number of usable addresses _____62

Show your work for **Problem 3** in the space below.

Problem 4

Number of needed subnets 6
Number of needed usable hosts 30
Network Address 210.100.56.0

Address class _____C

Default subnet mask _____255.255.255.0

Custom subnet mask _____255.255.224

Total number of subnets _____8

Total number of host addresses _____32

Number of usable addresses _____30____

Number of bits borrowed _____3____

Show your work for **Problem 4** in the space below.

Adding binary values to the left of the line 128+64+32=224

Problem 5

Number of needed subnets 6
Number of needed usable hosts 30
Network Address 195.85.8.0

Address class _____C

Default subnet mask _____255.255.255.0

Custom subnet mask _____255.255.255.192

Total number of subnets _____8

Total number of host addresses ______32

Number of usable addresses ______30

Number of bits borrowed ______3

Show your work for **Problem 5** in the space below.

Problem 6

Number of needed subnets 126
Number of needed usable hosts 131,070
Network Address 118.0.0.0

Address class __A___

Default subnet mask _____255.0.0.0

Custom subnet mask _____255.254.0.0

Total number of subnets _____128

Total number of host addresses _____131072

Number of usable addresses _____131070

Number of bits borrowed _____7

Show your work for **Problem 6** in the space below.

Problem 7

Number of needed subnets 2000

Number of needed usable hosts 15

Network Address 178.100.0.0

Address class ____B ____

Default subnet mask ____255.255.0.0 ______

Custom subnet mask ____255.255.224 ______

Total number of subnets _____32 _____

Number of usable addresses _____30 _____

Number of bits borrowed _____11

Show your work for **Problem 7** in the space below.

Problem 8

Number of needed subnets 3
Number of needed usable hosts 45
Network Address 200.175.14.0

Address class	<u>C</u>
Default subnet mask	255.255.255.0
Custom subnet mask	255.255.255.192
Total number of subnets	4
Total number of host addresses .	64
Number of usable addresses	62
Number of bits borrowed	2

Show your work for **Problem 8** in the space below.

Problem 9

Number of needed subnets **60**Number of needed usable hosts **1,000**Network Address **128.77.0.0**

Address class _	<u>B</u>
Default subnet mask _	255.255.0.0
Custom subnet mask _	255.255.252.0
Total number of subnets _	64
Total number of host addresses _	1024
Number of usable addresses _	1022
Number of bits borrowed _	6

Show your work for **Problem 9** in the space below.

Problem 10

Number of needed usable hosts **60**Network Address **198.100.10.0**

Address class	<u>C</u>
Default subnet mask	255.255.255.0
Custom subnet mask	255.255.255.192
Total number of subnets	4
Total number of host addresses	64
Number of usable addresses	62
Number of bits borrowed	2

Show your work for **Problem 10** in the space below.

Problem 11

Number of needed subnets **250**Network Address **101.0.0.0**

Address class _	A	
Default subnet mask _	255.0.0.0	
Custom subnet mask _	255.255.255.0	
Total number of subnets _	65536	
Total number of host addresses _	256	
Number of usable addresses _	254	
Number of bits borrowed _	16	

Show your work for **Problem 11** in the space below.

Problem 12

Number of needed subnets 5
Network Address 218.35.50.0

Address class
Default subnet mask
Custom subnet mask
Total number of subnets
Total number of host addresses
Number of usable addresses
Number of bits borrowed

Show your work for <u>Problem 12</u> in the space below.

Problem 13

Number of needed usable hosts 25 Network Address 218.35.50.0

Address class	
Default subnet mask	
Custom subnet mask	_
Total number of subnets	
Total number of host addresses	
Number of usable addresses	
Number of bits borrowed	

Show your work for **Problem 13** in the space below.

Problem 14

Number of needed subnets 10
Network Address 172.59.0.0

Address class	
Default subnet mask	
Custom subnet mask	
Total number of subnets	
Total number of host addresses	
Number of usable addresses	
Number of bits borrowed	

Show your work for **Problem 14** in the space below.

Problem 15

Number of needed usable hosts **50**Network Address **172.59.0.0**

Address class
Default subnet mask
Custom subnet mask
Total number of subnets
Total number of host addresses
Number of usable addresses
Number of bits borrowed

Show your work for <u>Problem 15</u> in the space below.

Problem 16

Number of needed usable hosts 29

Network Address 23.0.0.0

Address class	
Default subnet mask	_
Custom subnet mask	_
Total number of subnets	
Total number of host addresses	
Number of usable addresses	
Number of bits borrowed	

Show your work for **Problem 16** in the space below.

Subnetting

Problem 1

Number of needed subnets 14
Number of needed usable hosts 14
Network Address 192.10.10.0

Address class
Default subnet mask255 . 255 . 255 . 0
Custom subnet mask255 . 255 . 255 . 240
Total number of subnets
Total number of host addresses
Number of usable addresses
Number of bits borrowed4
What is the 4th subnet range? 192.10.10.48 to 192.10.10.63
What is the subnet number for the 8th subnet?
What is the subnet broadcast address for the 13th subnet?
What are the assignable addresses for the 9th subnet? 192.10.10.129 to 192.10.10.142

Show your work for **Problem 1** in the space below.

The binary value of the last bit borrowed is the range. In this problem the range is 16.

The first address in each subnet range is the subnet number.

The last address in each subnet range is the subnet broadcast address.

Subnetting

Problem 2

Number of needed subnets 1000

Number of needed usable hosts 60

Network Address 165.100.0.0

Address class _____B____ Default subnet mask _____255 . 255 . 0 . 0 Custom subnet mask _____255 . 255 . 255 . 192 Total number of host addresses _____64 Number of usable addresses _____62 What is the 15th subnet range? 165.100.3.128 to 165.100.3.191 What is the subnet number for the 6th subnet? ____165 . 100 . 1 . 64 What is the subnet broadcast address for the 6th subnet? _____165 . 100 . 1 . 127 What are the assignable addresses for the 9th subnet? 165.100.2.1 to 165.100.0.62

		Sho	w	yo	ur w	ork	fo	r <u>P</u> ı	<u>rob</u>						ace		elow			
					0.0.63	, O , O	2	9.1.0	70.1.127	 			0.0.1	0 0 1		0.0 0.0 0.0) ()) () ! ()			255.191 255.255
					65.1		0	65.1	9	165.10		165.70	9	65.1	165.10	0 U	65.1	40)	165.100.
	2	65,5 ³⁶	_	0	to	40	to			40	7	40	to	to	to	440	40	30		to
	4	32,768	2	0	0,	128	0		40	910	ſ	70	128	0		ナク	92	Q		128
	00	16,384	4	0	00	0	0	~	 	``	6	iU	S	N	wi	'nω	jm			255
	9/	8,192	00	0	00/	_	00/		000	000	0) 0 0 0	100		00/)) (100
	¥ 32	4,096	9/	0	65					60 00		00 N			62					50
-	8	2048	32	0	~ `	_	_					_				_				99
	12	1024	64	0	0-	-0	<u> </u>	0	-(7 ~	(/	0	\	0.	-0) ~			0 ~
	256	512	128	0		_	<u> </u>	0	0 -	\	Ç	0	<u>_</u>	\	00	7 ~				\
5	. 12 -	25 6.		0	•				\ `		(0	0			\`\				
1,0		00	7	0							~		<u>_</u>	\	<u> </u>		. ~			\ \
20	48 -	<i>‡</i>	4	0	2	5	3/	12.	5	16	$\tilde{\omega}$	2,9	D	5	J. L.	Z	2			\
20	96 -	<i>2</i>	80	2																\
4,0	n 2 -	<i>»</i>	9/	0		128	64	22	0 00	4	N	7 + 0	100							
8,1	9 Z 0/L -	~ ~~~~~ %	•	0			1.		Ç	1 / 1 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /	192	,	1	the	the					
16,3	8-1		1 32	0		64	2	9		- +		rowed	is 64.	ınge is	nge is					
32.7	68 -	4	8 64	0			Usable	hosts		Custom	tmas	bit bor	e range	bnet ra	bnet ra				•	30
65,5	36 ⁻		- 128	0			Us	\subseteq		O .	subnet mask	The binary value of the last bit borrowed is	the range. In this problem the range is 64	The first address in each subnet range is the subnet number.	The last address in each subnet range is the	adress.				1022)
	ts 1			100							S	lue of t	his pro	ess in e	ess in e	cast ac			•	
	ber i Host	umber or Subnets	valu	2/ .								nary va	nge. In t	The first addres subnet number.	st addre	subnet broadcast address.				
	Number of Hosts	Number of Subnets	Binary values	,69,								The bir	the ran	The firs subnet	The las	subner				

Subnetting

Problem 3

Number of needed subnets 2
Network Address 195.223.50.0

Addre	ss class ₋	<u>C</u>		
Default subr	net mask ₋	255.255.255	.0	
Custom subn	net mask ₋	255.255.255	.192	
Total number of	subnets ₋	4		
Total number of host ac	ddresses ₋	64		
Number of usable ac	ddresses ₋	62		
Number of bits b	orrowed ₋	2		
What is the 3rd subnet range? _	195.2	23.50.128 to	195.223.50.	l91
What is the subnet number for the 2nd subnet?	195.2	23.50.64		
What is the subnet broadcast address for the 1st subnet?	19	5.223.50.63		
What are the assignable addresses for the 3rd	195	.223.50.129 to	195.223.50.1	90

Show your work for **Problem 3** in the space below.

Number of

Number of
Subnets - 2 4 8 16 32 64 128 256

128 64 32 16 8 4 2 1 - Binary values

195. 223.50.00000000

Subnetting

Problem 4

Number of needed subnets **750**Network Address **190.35.0.0**

Address clas	SS
Default subnet mas	sk
Custom subnet mas	sk
Total number of subne	ts
Total number of host addresse	es
Number of usable addresse	es
Number of bits borrowe	ed
What is the 15th subnet range?	
What is the subnet number for the 13th subnet?	
What is the subnet broadcast address for the 10th subnet?	
What are the assignable addresses for the 6th subnet?	

Show your work for <u>Problem 4</u> in the space below.

Problem 5

Number of needed usable hosts 6
Network Address 126.0.0.0

Address clas	SS
Default subnet mas	sk
Custom subnet mas	sk
Total number of subne	ts
Total number of host addresse	es
Number of usable addresse	es
Number of bits borrowe	d
What is the 2nd subnet range?	
What is the subnet number for the 5th subnet?	
What is the subnet broadcast address for the 7th subnet?	
What are the assignable addresses for the 10th subnet?	

Show your work for <u>Problem 5</u> in the space below.

Problem 6

Number of needed subnets 10
Network Address 192.70.10.0

Addre	ess class
Default sub	net mask
Custom sub	net mask
Total number o	f subnets
Total number of host a	ddresses
Number of usable a	ddresses
Number of bits	borrowed
What is the 9th	
subnet range?	
What is the subnet number	
for the 4th subnet?	
What is the subnet	
broadcast address for	
the 12th subnet?	
What are the assignable	
addresses for the 10th	
Subilet! _	

Show your work for <u>Problem 6</u> in the space below.

Problem 7

Network Address 10.0.0.0 /16

Addre	ss class
Default subr	net mask
Custom subr	net mask
Total number of	subnets
Total number of host ac	ddresses
Number of usable ad	ddresses
Number of bits b	orrowed
What is the 11th	
subnet range?	
What is the subnet number for the 6th subnet?	
What is the subnet broadcast address for the 2nd subnet?	
What are the assignable	

Show your work for <u>Problem 7</u> in the space below.

Problem 8

Number of needed subnets 5
Network Address 172.50.0.0

Address class	
Default subnet mask	
Custom subnet mask	
Total number of subnets	
Total number of host addresses	
Number of usable addresses	
Number of bits borrowed	
What is the 4th	
subnet range?	
What is the subnet number	
for the 5th subnet?	
What is the subnet	
broadcast address for	
the 6th subnet?	
What are the assignable	
addresses for the 3rd subnet?	

Show your work for <u>Problem 8</u> in the space below.

Problem 9

Number of needed usable hosts 28 Network Address 172.50.0.0

Show your work for **Problem 9** in the space below.

Problem 10

Number of needed subnets 45
Network Address 220.100.100.0

Address class	
Default subnet mask	
Custom subnet mask	
Total number of subnets	
Total number of host addresses	
Number of usable addresses	
Number of bits borrowed	
What is the 5th subnet range?	
What is the subnet number for the 4th subnet?	
What is the subnet broadcast address for the 13th subnet?	
What are the assignable addresses for the 12th subnet?	

Show your work for <u>Problem 10</u> in the space below.

Problem 11

Number of needed usable hosts **8,000**Network Address **135.70.0.0**

Addre	ess class
Default sub	net mask
Custom sub	net mask
Total number o	f subnets
Total number of host a	iddresses
Number of usable a	iddresses
Number of bits	borrowed
What is the 6th subnet range?	
What is the subnet number for the 7th subnet?	
What is the subnet broadcast address for the 3rd subnet?	
What are the assignable addresses for the 5th subnet?	

Show your work for <u>Problem 11</u> in the space below.

Problem 12

Number of needed usable hosts 45 Network Address 198.125.50.0

Address class	
Default subnet mask	
Custom subnet mask	
Total number of subnets	
Total number of host addresses	
Number of usable addresses	
Number of bits borrowed	
What is the 2nd subnet range?	
Vhat is the subnet number for the 2nd subnet?	
What is the subnet broadcast address for the 4th subnet?	
What are the assignable addresses for the 3rd subnet?	

Show your work for <u>Problem 12</u> in the space below.

Problem 13

Network Address 165.200.0.0 /26

Addre	ess class
Default sub	net mask
Custom sub	net mask
Total number o	f subnets
Total number of host a	ddresses
Number of usable a	ddresses
Number of bits	borrowed
What is the 10th subnet range?	
What is the subnet number	
for the 11th subnet?	
What is the subnet broadcast address for	
the 102310 Subhet?	
What are the assignable addresses for the 1022nd subnet?	

Show your work for <u>Problem 13</u> in the space below.

Problem 14

Number of needed usable hosts 16
Network Address 200.10.10.0

Address class	Addre
Default subnet mask	Default sub
Custom subnet mask	Custom sub
Total number of subnets	Total number of
mber of host addresses	Total number of host a
per of usable addresses	Number of usable a
lumber of bits borrowed	Number of bits
Vhat is the 7th subnet range?	What is the 7th subnet range?
	What is the subnet number for the 5th subnet?
	What is the subnet broadcast address for the 4th subnet?
<u> </u>	What are the assignable addresses for the 6th subnet?

Show your work for <u>Problem 14</u> in the space below.

Problem 15

Network Address 93.0.0.0 \19

Addres	ss class
Default subn	et mask
Custom subn	et mask
Total number of	subnets
Total number of host ad	ldresses
Number of usable ad	ldresses
Number of bits b	orrowed
What is the 15th subnet range? _	
What is the subnet number for the 9th subnet?	
What is the subnet broadcast address for the 7th subnet?	
What are the assignable addresses for the 12th subnet?_	

Show your work for <u>Problem 15</u> in the space below.

Practical Subnetting 1

Based on the information in the graphic shown, design a network addressing scheme that will supply the <u>minimum number of subnets</u>, and allow enough extra subnets and hosts for 100% growth in both areas. Circle each subnet on the graphic and answer the questions below.

Minimum number of subnets needed ______

Extra subnets required for 100% growth + 4

Total number of subnets needed = 8

Number of host addresses 60 in the largest subnet group

Number of addresses needed for 100% growth in the largest subnet (Round up to the next whole number) + 60

Total number of address needed for the largest subnet = 120

Start with the first subnet and arrange your sub-networks from the largest group to the smallest.

IP address range for Router A to Router B serial connection 172.16.96.0 to 172.127.255

Show your work for Practical Subnetting 1 in the space below.

N 65,536 D	
* 32.768 N O	222222222 2222222222222222222222222222
∞ _{16,384} → 0	255 3.255 3.255 3.255 1.255 23.255 55.255
% 8,192 ° o	202729W
m 4,096 9 0	00000000
\$ 2048 N	NNNNNNN
87 1024 \$	
7952	+++++++ 0 0 0 0 0 0 0
<i>°</i>	
512 8	000000
1,024 80 0	20.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
2,048 \$ * 0	0000000 0 w 0 c 2 - 2 - 2 i
4,096 N 0	
8,192 \$ \$	
16.384 & N	0-0-0-0-
32,768 + 7 0	~~00~~
-36 N N	
65,53	
Number of Hosts – Number of Subnets – Binary values –	0,5,0,6,2,0,6,0
mbe mbe ubn vy vo	
S S S 1	
ω	
	40 4 00 X
	×

Practical Subnetting 2

Based on the information in the graphic shown, design a network addressing scheme that will supply the <u>minimum number of hosts per subnet</u>, and allow enough extra subnets and hosts for 30% growth in all areas. Circle each subnet on the graphic and answer the questions below.

Custom subnet mask 255.255.254

Minimum number of subnets needed _____5_

Extra subnets required for 30% growth + 2
(Round up to the next whole number)

Total number of subnets needed = 7

Number of addresses needed for 30% growth in the largest subnet (Round up to the next whole number)

Total number of address needed for the largest subnet = 26

Start with the first subnet and arrange your sub-networks from the largest group to the smallest.

IP address range for English <u>/35./26.0.32 to /35./26.0.63</u>

IP address range for Science 135.126.0.64 to 135.126.0.95

IP address range for Router A to Router B serial connection /35./26.0.96 to /35./26.0.127

IP address range for Router A to Router B serial connection /35./26.0./28 to /35./26.0./59

Show your work for <u>Problem 2</u> in the space below.

	ra-wr
	202112000000000000000000000000000000000
	77777777777777777777777777777777777777
N 65,536 - O	
₹ 32,768 N O	74.0 74.0 74.0 75.0
∞ _{16,384} ₩ 0	00000000
	000000000000000000000000000000000000000
2 8,172	22222222222222 22222222222222222222222
7 4,096 9 0	0-0-0-0-0-0-0-
87 1024 \$ 0	0000
9 -12 80	
	0000
512 \(\cdot \)	~~~~
1,024 × N N	のころがもでのとめをひらびあまで
2,048 \$ + 0	
4,096 N & O	
8,192 9 9 0	
16,384 ® N O	
671	x x 5 5 0 x 0
Number of Established Number of Subnets - 2 Binary values - 128	Round up to 2. S.
Ho. Ho. nber nber nber nber	buso
Nay Nay Sy	, X
à	

Practical Subnetting 3

Based on the information in the graphic shown, design a classfull network addressing scheme that will supply the <u>minimum number of hosts per subnet</u>, and allow enough extra subnets and hosts for 25% growth in all areas. Circle each subnet on the graphic and answer the

Address class ___B_____

Custom subnet mask __255.255.224.0

Minimum number of subnets needed __4____

Extra subnets required for 25% growth (Round up to the next whole number) + 1

Total number of subnets needed = $\frac{5}{2}$

Number of host addresses in the largest subnet group 185

Number of addresses needed for 25% growth in the largest subnet (Round up to the next whole number) + 47

Total number of address needed for the largest subnet = $\frac{232}{}$

Start with the first subnet and arrange your sub-networks from the largest group to the smallest.

 IP address range for Sales
 172.16.0.0
 to 172.16.31.255

 IP address range for Marketing
 172.16.32.0
 to 172.16.63.255

 IP address range for Administrative
 172.16.64.0
 to 172.16.95.255

 IP address range for Router A to Router B serial connection
 172.16.96.0
 to 172.16.127.255

Show your work for <u>Problem 3</u> in the space below.

# subnets	2	4	8	16 32	64	128	256	6							
binary values	128	64	32	16 8	4	2	1	128 6	64	32	16	8	4	2	1
172 . 16	. 0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0
(0)	0	0	0	172.1	6.0.	0	to	172	.16	.31	.255				
(1)	0	0	1	172.1	6.32	2.0	to	172	2.16	6.63	3.25	5			
(2)	0	1	0	172.1	6.64	1.0	to	172	2.16	3.95	5.25	5			
(3)	0	1	1	172.1	6.96	6.0	to	172	2.16	3.12	27.2	55			
(4)	1	0	0	172.1	6.12	28.0	to	172	2.16	3.15	59.2	55			
(5)	1	0	1	172.1	6.16	0.0	to	172	2.16	5.19	91.2	55			
(6)	1	1	0	172.1	6.19	92.0	to	172	2.16	5.22	23.2	55			
(7)	1	1	1	172.1	6.22	24.0	to	172	2.16	5.25	55.2	55			

Practical Subnetting 4

Based on the information in the graphic shown, design a network addressing scheme that will supply the <u>minimum number of subnets</u>, and allow enough extra subnets and hosts for 70% growth in all areas. Circle each subnet on the graphic and answer the questions below.

IP Address 135.126.0.0 S0/0/0 F0/0 S0/0/1 S0/0/1 F0/0 S0/0/0 F0/0 F0/1 **Dallas New York** 150 Hosts 325 Hosts Washington D.C. 220 Hosts Address class ______ Custom subnet mask ______ Minimum number of subnets needed _____ Extra subnets required for 70% growth (Round up to the next whole number) Total number of subnets needed = Number of host addresses in the largest subnet group Number of addresses needed for 70% growth in the largest subnet (Round up to the next whole number) Total number of address needed for the largest subnet = Start with the first subnet and arrange your sub-networks from the largest group to the smallest. IP address range for New York IP address range for Washington D. C. IP address range for Dallas IP address range for Router A to Router B serial connection IP address range for Router A to Router C serial connection

Show your work for <u>Problem 4</u> in the space below.

Practical Subnetting 5

Based on the information in the graphic shown, design a network addressing scheme that will supply the **minimum number of hosts per subnet**, and allow enough extra subnets and hosts for 100% growth in all areas. Circle each subnet on the graphic and answer the questions below.

IP Address 210.15.10.0

Show your work for <u>Problem 5</u> in the space below.

Practical Subnetting 6

Based on the information in the graphic shown, design a network addressing scheme that will supply the <u>minimum number of subnets</u>, and allow enough extra subnets and hosts for 20% growth in all areas. Circle each subnet on the graphic and answer the questions below.

S0/0/0	IP Addre	SS 10.0.C).0		
F0/0 S0/0/1	\$0/0/0	S0/0/1	\$0/0/1 \$0/0/0	Router B F0/1	Technology Building 320 Hosts
Science Building 225 Hosts	Art & Drama 75 Hosts F0/0	3	Administration 35 Hosts		
	Address class	i			
C	ustom subnet mask	<u> </u>			
Minimum number	of subnets needed	l			
Extra subnets requ	ired for 20% growth	+			
Total number	of subnets needed	<u>=</u>			
Start with the first subn	et and arrange your sub	-network	s from the largest	group to th	ne smallest.
IP address ra	nge for Technology	<i>'</i>			
IP address	s range for Science	;			
IP address rang	ge for Arts & Drama	l			
IP Address ra	ange Administration	l			
IP address to Router	range for Router A B serial connection	\ I			
IP address to Router	range for Router A C serial connection	\ I			
IP address to Router	range for Router B C serial connection	, I			

Show your work for <u>Problem 6</u> in the space below.

Practical Subnetting 7

Based on the information in the graphic shown, design a network addressing scheme that will supply the <u>minimum number of hosts per subnet</u>, and allow enough extra subnets and hosts for 125% growth in all areas. Circle each subnet on the graphic and answer the questions below.

Show your work for <u>Problem 7</u> in the space below.

Practical Subnetting 8

Based on the information in the graphic shown, design a network addressing scheme that will supply the <u>minimum number subnets</u>, and allow enough extra subnets and hosts for 85% growth in all areas. Circle each subnet on the graphic and answer the questions below.

Show your work for <u>Problem 8</u> in the space below.

Practical Subnetting 9

Based on the information in the graphic shown, design a network addressing scheme that will supply the minimum number of hosts per subnet, and allow enough extra subnets and hosts for 15% growth in all areas. Circle each subnet on the graphic and answer the questions below.

IP Address	s 148.55.0.0
<u>\$50/0/0</u>	S0/0/1 F0/1
S0/0/1	F0/0 RouterB
36,6,7	
	S0/0/0 Dallas
F0/0	1500 Hosts
Router D 21 V	S0/0/1
Ft. Worth 2300 Hosts Address class	
Custom subnet mask	
Minimum number of subnets needed	
Extra subnets required for 15% growth	
(Round up to the next whole number)	
Total number of subnets needed	=
Number of host addresses	
in the largest subnet group	
Number of addresses needed for 15% growth in the largest subnet	+
(Round up to the next whole number)	
Total number of address	
needed for the largest subnet	
Start with the first subnet and arrange your sub-	networks from the largest group to the smallest.
IP address range for Ft. Worth	
to Router B serial connection	
IP address range for Router A	
to Router C serial connection	
IP address range for Router C to Router D serial connection	

Show your work for <u>Problem 9</u> in the space below.

Practical Subnetting 10

Based on the information in the graphic shown, design a network addressing scheme that will supply the **minimum number of subnets**, and allow enough extra subnets and hosts for 110% growth in all areas. Circle each subnet on the graphic and answer the questions below.

IP Address	s 172.16.0.0
Sales 115 Hosts	Marketing 56 Hosts
F0/0 Router A S0/0/0	F0/0 S0/0/1
Management 25 Hosts	Research 35 Hosts
Address class	
Custom subnet mask	
Minimum number of subnets needed	
Extra subnets required for 110% growth (Round up to the next whole number)	+
Total number of subnets needed	=
Number of host addresses in the largest subnet group	
Number of addresses needed for 110% growth in the largest subnet (Round up to the next whole number)	+
Total number of address needed for the largest subnet	=
Start with the first subnet and arrange your sub-	networks from the largest group to the smallest.
IP address range for Sales/Managemnt	
IP address range for Marketing	
IP address range for Research	
IP address range for Router A to Router B serial connection	

Show your work for <u>Problem 10</u> in the space below.

Valid and Non-Valid IP Addresses

Using the material in this workbook identify which of the addresses below are correct and usable. If they are not usable addresses explain why.

IP Address: 0.230.190.192 Subnet Mask: 255.0.0.0 Reference Page Inside Front Cover	The network ID cannot be O.
IP Address: 192.10.10.1 Subnet Mask: 255.255.255.0 Reference Pages 28-29	OK
IP Address: 245.150.190.10 Subnet Mask: 255.255.255.0 Reference Page Inside Front Cover	Reserved IP for research
IP Address: 135.70.191.255 Subnet Mask: 255.255.254.0 Reference Pages 48-49	Ok
IP Address: 127.100.100.10 Subnet Mask: 255.0.0.0 Reference Pages Inside Front Cover	Not Ok
IP Address: 93.0.128.1 Subnet Mask: 255.255.224.0 Reference Pages 56-57	Ok
IP Address: 200.10.10.128 Subnet Mask: 255.255.255.224 Reference Pages 54-55	Ok
IP Address: 165.100.255.189 Subnet Mask: 255.255.255.192 Reference Pages 30-31	Ok
IP Address: 190.35.0.10 Subnet Mask: 255.255.255.192 Reference Pages 34-35	Ok
IP Address: 218.35.50.195 Subnet Mask: 255.255.0.0 Reference Page Inside Front Cover	Not Ok
IP Address: 200.10.10.175 /22 Reference Pages 54-55 and/or Inside Front Cover	
IP Address: 135.70.255.255 Subnet Mask: 255.255.224.0	

IP Address Breakdown

/24 8+8+8 255.255.255.0	/25 8+8+8+1 255.255.255.128	/26 8+8+8+2 255.255.255.192	/27 8+8+8+3 255.255.255.224	/28 8+8+8+4 255.255.255.240	/29 8+8+8+5 255.255.255.248	/30 8+8+8+6 255.255.255.252
255.255.255.0 256 Hosts	128 Hosts	64 Hosts	32 Hosts	255.255.255.240 16 Hosts	255.255.255.246 8 Hosts	255.255.255.252 4 Hosts
					0-7	0-3
				0-15		4-7 8-11
					8-15	12-15
					16-23	16-19
				16-31		20-23 24-27
		0-63			24-31	28-31
		0.03			32-39	32-35 36-39
				32-47	40.47	40-43
					40-47	44-47
					48-55	48-51 52-55
				48-63	50.00	56-59
	0-127				56-63	60-63
	-				64-71	64-67 68-71
				64-79	72-79	72-75
					12-19	76-79
				00.05	80-87	80-83 84-87
				80-95	88-95	88-91
		64-127			00-93	92-95 96-99
				00.444	96-103	100-103
				96-111	104-111	104-107
				112-127		108-111 112-115
					112-119	116-119
				112-127	120-127	120-123
0-255						124-127 128-131
				128-143	128-135	132-135
					136-143	136-139
						140-143 144-147
				144-159	144-151	148-151
		128-191			152-159	152-155 156-159
					40.407	160-163
				160-175	16-167	164-167
					168-175	168-171 172-175
			ļ		176-183	176-179
				176-191	170-103	180-183
					184-191	184-187 188-191
	128-255				192-199	192-195
				192-207		196-199 200-203
					200-207	204-207
					208-215	208-211
				208-223		212-215 216-219
		192-255			216-223	220-223
		192-200			224-231	224-227
				224-239		228-231 232-235
					232-239	236-239
					240-247	240-243
				240-255		244-247 248-251
					248-255	252-255

Visualizing Subnets Using The Box Method

The box method is the simplest way to visualize the breakdown of subnets and addresses into smaller sizes.

Start with a square. The whole square is a single subnet comprised of 256 addresses.

/24 255.255.255.0 256 Hosts 1 Subnet

Split the box in half and you get two subnets with 128 addresses,

/25 255.255.255.128 128 Hosts 2 Subnets

Divide the box into quarters and you get four subnets with 64 addresses,

/26 255.255.255.192 64 Hosts 4 Subnets

Split each individual square and you get eight subnets with 32 addresses,

/27 | 31 | 6 | 64 | 96 | 255.255.255.224 | 32 Hosts | 8 Subnets | 95 | 12

Split the boxes in half again and you get sixteen subnets with sixteen addresses,

/28 255.255.255.240 16 Hosts 16 Subnets

The next split gives you thirty two subnets with eight addresses,

/29 255.255.255.248 8 Hosts 32 Subnets

0		8		32	40	128	136	160	168
	7		15	39	47	135	143	167	175
16		24	10		56		152		184
	23		31	55	63	151	159	183	191
64		72	01		104		200		232
	71		79	103	111	199	207	321	239
80		88		112	120	208	216	240	248
	87		95	119	127	215	223	247	255

The last split gives sixty four subnets with four addresses each,

/30 255.255.255.252 4 Hosts 64 Subnets

0		8		32	40	128	136	160	168
	3		11	35	43	131	139	163	171
4		12		36	44	132	140	164	172
	7		15	39	47	135	143	167	175
16		24		48	56	144	152	176	184
	19		27	51	59	147	155	179	187
20		28		52	60	148	156	180	188
	23		31	55	63	151	159	183	191
64		72		96	104	192	200	224	232
	67		75	99	107	195	203	227	235
68		76		100	108	196	204	228	236
	71		79	103	111	199	207	321	239
80		88		112	120	208	216	240	248
	83		91	115	123	211	219	243	251
84		92		116	124	212	220	244	252
	87		95	119	127	215	223	247	255

Class A Addressing Guide							
	# of Bits	Subnet	Total # of	Total # of	Usable # of		
CIDR	Borrowed	Mask	Subnets	Hosts	Hosts		
/8	0	255.0.0.0	1	16,777,216	16,777,214		
/9	1	255.128.0.0	2	8,388,608	8,388,606		
/10	2	255.192.0.0	4	4,194,304	4,194,302		
/11	3	255.224.0.0	8	2,097,152	2,097,150		
/12	4	255.240.0.0	16	1,048,576	1,048,574		
/13	5	255.248.0.0	32	524,288	524,286		
/14	6	255.252.0.0	64	262,144	262,142		
/15	7	255.254.0.0	128	131,072	131,070		
/16	8	255.255.0.0	256	65,536	65,534		
/17	9	255.255.128.0	512	32,768	32,766		
/18	10	255.255.192.0	1,024	16,384	16,382		
/19	11	255.255.224.0	2,048	8,192	8,190		
/20	12	255.255.240.0	4,096	4,096	4,094		
/21	13	255.255.248.0	8,192	2,048	2,046		
/22	14	255.255.252.0	16,384	1,024	1,022		
/23	15	255.255.254.0	32,768	512	510		
/24	16	255.255.255.0	65,536	256	254		
/25	17	255.255.255.128	131,072	128	126		
/26	18	255.255.255.192	262,144	64	62		
/27	19	255.255.255.224	524,288	32	30		
/28	20	255.255.255.240	1,048,576	16	14		
/29	21	255.255.255.248	2,097,152	8	6		
/30	22	255.255.255.252	4,194,304	4	2		

	Class B Addressing Guide							
	# of Bits	Subnet	Total # of	Total # of	Usable # of			
CIDR	Borrowed	Mask	Subnets	Hosts	Hosts			
/16	0	255.255.0.0	1	65,536	65,534			
/17	1	255.255.128.0	2	32,768	32,766			
/18	2	255.255.192.0	4	16,384	16,382			
/19	3	255.255.224.0	8	8,192	8,190			
/20	4	255.255.240.0	16	4,096	4,094			
/21	5	255.255.248.0	32	2,048	2,046			
/22	6	255.255.252.0	64	1,024	1,022			
/23	7	255.255.254.0	128	512	510			
/24	8	255.255.255.0	256	256	254			
/25	9	255.255.255.128	512	128	126			
/26	10	255.255.255.192	1,024	64	62			
/27	11	255.255.255.224	2,048	32	30			
/28	12	255.255.255.240	4,096	16	14			
/29	13	255.255.255.248	8,192	8	6			
/30	14	255.255.255.252	16,384	4	2			

Class C Addressing Guide								
	# of Bits	# of Bits Subnet Total # of Total # of Usable # of						
CIDR	Borrowed	Mask	Subnets	Hosts	Hosts			
/24	0	255.255.255.0	1	256	254			
/25	1	255.255.255.128	2	128	126			
/26	2	255.255.255.192	4	64	62			
/27	3	255.255.255.224	8	32	30			
/28	4	255.255.255.240	16	16	14			
/29	5	255.255.255.248	32	8	6			
/30	6	255.255.255.252	64	4	2			