Курсовая работа по дискретной математике Четвертая задача

Клименко В. М. – M8O-103Б-22 – 11 вариант Март, 2023

Дано

Матрица длин дуг A:

$$\begin{pmatrix} \infty & 2 & \infty & 5 & \infty & 6 & \infty & \infty \\ 6 & \infty & 12 & 3 & \infty & \infty & \infty & \infty \\ 7 & \infty & \infty & \infty & 1 & \infty & \infty & 1 \\ 5 & 3 & \infty & \infty & 6 & 2 & \infty & \infty \\ \infty & \infty & 1 & \infty & \infty & \infty & 3 & 4 \\ 3 & \infty & \infty & 2 & \infty & \infty & 2 & \infty \\ \infty & \infty & \infty & \infty & \infty & 3 & \infty & \infty & 6 \\ 8 & \infty & \infty & \infty & 13 & \infty & \infty & \infty \end{pmatrix}$$

Задание

Используя алгоритм Φ орда, найти минимальные пути из первой вершины во все достижимые вершины в нагруженном графе, заданном матрицей длин дуг A.

Решение

	V1	V2	V3	V4	V5	V6	V7	V8	$\lambda_i^{(0)}$	$\lambda_i^{(1)}$	$\lambda_i^{(2)}$	$\lambda_i^{(3)}$	$\lambda_i^{(4)}$	$\lambda_i^{(5)}$	$\lambda_i^{(6)}$	$\lambda_i^{(7)}$
V1	∞	2	∞	5	∞	6	∞	∞	0 /	0 > 2	0	0	0	0	0	0
V2	6	∞	12	3	∞	∞	∞	∞	∞	$^{\searrow} 2$	2	2	2	2	2	2
V3	7	∞	∞	∞	1	∞	∞	1	∞ \	\sim	14	$_{\nearrow}12$	12	12	12	12
V4	5	3	∞	∞	6	2	∞	∞	∞	¹ √5 \	5 /	$^{\prime}$ 5	5	5	5	5
V5	∞	∞	1	∞	∞	∞	3	4	∞	∞	→ 11 /	11	11	11	11	11
V6	3	∞	∞	2	∞	∞	2	∞	∞	$6 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	6	6	6	6	6	6
V7	∞	∞	∞	∞	3	∞	∞	6	∞	∞	×8 <	8	8	8	8	8
V8	8	∞	∞	∞	13	∞	∞	∞	∞	∞	∞	→ 14	14	14	14	14

1. Из v_1 в v_2 - $v_1 - v_2$, длина равна 2

(a)
$$\lambda_1^{(0)} + c_{12} = 0 + 2 = \lambda_2^{(1)}$$

2. Из v_1 в v_3 - $v_1 - v_4 - v_5 - v_3$, длина равна 12

(a)
$$\lambda_1^{(0)} + c_{14} = 0 + 5 = \lambda_4^{(1)}$$

(b)
$$\lambda_4^{(1)} + c_{45} = 5 + 6 = \lambda_5^{(2)}$$

(c)
$$\lambda_5^{(2)} + c_{53} = 11 + 1 = \lambda_3^{(3)}$$

- 3. Из v_1 в v_4 $v_1 v_4$, длина равна 5
 - (a) $\lambda_1^{(0)} + c_{14} = 0 + 5 = \lambda_4^{(1)}$
- 4. Из v_1 в v_5 $v_1-v_4-v_5$, длина равна 11
 - (a) $\lambda_1^{(0)} + c_{14} = 0 + 5 = \lambda_4^{(1)}$
 - (b) $\lambda_4^{(1)} + c_{45} = 5 + 6 = \lambda_5^{(2)}$
- 5. Из v_1 в v_6 $v_1 v_6$, длина равна 6
 - (a) $\lambda_1^{(0)} + c_{16} = 0 + 6 = \lambda_6^{(1)}$
- 6. Из v_1 в v_7 $v_1 v_6 v_7$, длина равна 8
 - (a) $\lambda_1^{(0)} + c_{16} = 0 + 6 = \lambda_6^{(1)}$
 - (b) $\lambda_6^{(1)} + c_{67} = 6 + 2 = \lambda_7^{(2)}$
- 7. Из v_1 в v_8 $v_1 v_6 v_7 v_8$, длина равна 14
 - (a) $\lambda_1^{(0)} + c_{16} = 0 + 6 = \lambda_6^{(1)}$
 - (b) $\lambda_6^{(1)} + c_{67} = 6 + 2 = \lambda_7^{(2)}$
 - (c) $\lambda_7^{(2)} + c_{78} = 8 + 6 = \lambda_8^{(3)}$