Medical Neuroscience | Tutorial Notes

Modulation of Movement by the Cerebellum

MAP TO NEUROSCIENCE CORE CONCEPTS¹

- NCC1. The brain is the body's most complex organ.
- NCC3. Genetically determined circuits are the foundation of the nervous system.
- NCC4. Life experiences change the nervous system.

LEARNING OBJECTIVES

After study of the assigned learning materials, the student will:

- 1. Identify and discuss the basic parts of the cerebellum.
- 2. Characterize in general terms the major functions performed by the cerebellum.
- 3. Sketch the major inputs and output of the cerebellum.
- 4. Describe the circuitry involved in the main excitatory loop and inhibitory side-loop through the cerebellum.
- 5. Discuss the means by which circuitry in the cerebellum aid to increase the success of volitional motor performance.
- 6. Describe the clinical signs and symptoms associated with cerebellar damage.

TUTORIAL OUTLINE

I. Introduction

- A. although the cerebellum's elegant neural circuitry has been known for nearly a century, a general understanding of function has been slow in coming
 - 1. it is a massive brain structure (~10% of entire brain) and it contains ~50% of all the neurons in the entire CNS
 - 2. nevertheless, symptoms of cerebellar damage (e.g., ataxia; see below) are relatively minor
- B. general sense of cerebellar function
 - "error correction" = integrates executive commands with sensory feedback regarding the external and internal environment for the moment-to-moment adjustment of behavior

Visit **BrainFacts.org** for *Neuroscience Core Concepts* (©2012 Society for Neuroscience) that offer fundamental principles about the brain and nervous system, the most complex living structure known in the universe.

- 2. learns new behavioral programs (both motor and non-motor behaviors) when errors are numerous
- 3. coordinates ongoing multi-jointed movements (motor agility)
- 4. assists the premotor cortex in planning movements when motor learning has been stored and errors are few
- 5. coordinates ongoing sequential cognitive processes (cognitive agility)

II. The circuitry

- A. Overview of the basic components of the cerebellum
 - 1. overall organization (see Figure 19.1A-C² and Table 19.1)
 - a. major parts
 - (i) cerebellar cortex
 - (ii) deep cerebellar nuclei
 - (iii) cerebellar peduncles
 - b. three functional divisions (see Figure 19.4 and 19.5)
 - (i) **spinocerebellum**: receives proprioceptive information from muscle spindles, as well as visual and auditory information
 - (ii) **cerebrocerebellum** (also called the neocerebellum): mainly related to processing in the cerebral cortex
 - (iii) vestibulocerebellum (also called the flocculonodular lobe): receives and sends input to the vestibular nuclei; closely related to vestibular function
 - c. two levels of processing
 - (i) cerebellar cortex
 - (ii) **deep cerebellar nuclei** (the dentate nucleus, the interposed nuclei, and the fastigial nucleus)
- B. a closer look at cerebellar circuits
 - 1. functional overview of inputs to the cerebellum
 - a. "executive" signals relayed from widespread parts of cerebral cortex in the frontal and parietal lobes via the **pontine nuclei**: conveys the commands for (motor) behavior
 - b. "feedback" signals from proprioceptive systems: *conveys sensory information about ongoing behavior*
 - c. "learning" signals derived from the **inferior olivary nucleus** of the medulla: *facilitates adaptation (error correction)*
 - 2. anatomical overview of inputs to the cerebellum (see Figure 19.3)

² Figure references to Purves et al., *Neuroscience*, 5th Ed., Sinauer Assoc., Inc., 2012. [click here]

- a. two types of afferent projections (see Figure 19.9 and 19.10)
 - (i) mossy fibers
 - quantitatively, the most important source of input
 - all inputs from brainstem and spinal cord, except inputs from the inferior olivary nucleus

(ii) climbing fibers

- distinct inputs from the **inferior olivary nucleus**
- modulate the output of the cerebellar cortex
- b. both types of afferents *terminate* in the cerebellar cortex and the deep cerebellar nuclei
- 3. inputs reflect tripartite organization of cerebellum
 - a. spinocerebellum
 - (i) proprioceptive information about *ipsilateral* body, mainly signals related to muscle spindles (see *Lab Guide*, **Appendix 1**)
 - (ii) for lower extremities, relayed via second order neurons in dorsal nucleus of Clark (thoracic cord)
 - (iii) for upper extremities, relayed via second order neurons in the external cuneate nucleus
 - (iv) also receives visual and auditory signals from brainstem processing centers
 - (v) axons of second order neurons reach cerebellum as mossy fibers through the *ipsilateral* inferior cerebellar peduncle
 - b. cerebrocerebellum
 - receives highly processed sensory information (somatic sensory, visual, auditory) and executive commands from widespread regions of the contralateral cerebral cortex
 - (ii) relayed via corticobulbar fibers that terminate in the ipsilateral pontine nuclei in the base of the pons
 - (iii) axons of pontine neurons *decussate* and project to the cerebellar cortex as mossy fibers through the middle cerebellar peduncle
 - c. vestibulocerebellum
 - (i) information about the **position** and **movements of the head**
 - (ii) inputs come mainly from vestibular nuclei in the brainstem
 - (iii) axons of second order neurons reach cerebellum as mossy fibers through the *ipsilateral* inferior cerebellar peduncle

- 4. this arrangement of inputs means that the cerebellar hemisphere is concerned with the ipsilateral side of the body
- 5. cerebellar processing
 - a. organization of the cerebellar cortex
 - (i) principal neurons: Purkinje cells
 - provides output from cerebellar cortex to deep cerebellar nuclei (and vestibular nuclei)
 - inhibitory; use GABA as neurotransmitter
 - high level of tonic activity at rest that is modulated during movements (see Figure 19.11)
 - (ii) interneurons
 - granule cells
 - receive mossy fiber input
 - give rise to parallel fibers that synapse on Purkinje cells (and other interneurons)
 - excitatory (glutamatergic)
 - other inhibitory interneurons are present (stellate cells, basket cells, Golgi cells)
 - b. flow of information through cerebellum circuits: *processing through a main excitatory loop and an inhibitory side-loop*
 - (i) mossy fiber inputs
 - mossy fibers send a collateral to neurons in the deep nuclei of the cerebellum (= main excitatory loop)
 - also synapse in cortical glomeruli (encapsulated, specialized synaptic complexes) containing dendrites of granule cells and other interneurons
 - provide the information about the executive command and the feedback sensory cues that are fundamental to cerebellar processing
 - (ii) climbing fiber inputs
 - make powerful synaptic contacts on the proximal dendrites of Purkinje cells (hence, "climbing")
 - climbing fibers also send a collateral to neurons in the deep nuclei of the cerebellum
 - provide the "contextual" information to the cerebellum (especially the Purkinje cells) for learning
 - (iii) granule cells drive an elongated "beam" of Purkinje cells via their lengthy parallel fibers

- (iv) Purkinje cells integrate parallel fiber and climbing fiber inputs and send inhibitory projections to the deep cerebellar nuclei (= inhibitory side-loop)
 - lateral parts of cerebellar cortex (mainly cerebrocerebellum) projects to the **dentate nucleus**
 - paramedian parts of the cerebellar cortex (lateral spinocerebellum) project to the interposed nuclei
 - medial cerebellar cortex (medial spino-cerebellum)
 project to fastigial nucleus
 - and flocculonodular lobe (vestibulocerebellum) projects directly to vestibular nuclei
- (v) thus, deep cerebellar nuclei are *excited* by mossy (and climbing) fiber inputs and *inhibited* by Purkinje cell inputs
- (vi) strength of Purkinje cell output to deep cerebellar nuclei is subject to use-dependent modification (plasticity):
 - pairing of climbing fiber activation and parallel fiber activity leads to a depression of Purkinje cell responses to parallel fibers
 - this means that activation of this inhibitory side-loop may be weakened and, therefore, the output for the deep cerebellar nuclei may be strengthened
 - this is the cellular basis of learning in the cerebellum
- C. outputs of cerebellar (see Figures 19.6-8): arise from the deep cerebellar nuclei
 - 1. ascending output is directed toward thalamocortical circuits (see Figure 19.6)
 - a. dentate nucleus (and interposed nuclei)
 - (i) sends its axons out of the cerebellum through the superior cerebellar peduncle, which then *decussate*
 - (ii) most dentate axons project directly to the contralateral **ventral** lateral complex of the thalamus
 - influence thalamocortical circuits concerned with motor control and cognition in the motor cortex and prefrontal cortex, respectively
 - adjusts the planning and mental rehearsal of complex motor movements and other cognitive tasks involving the sequencing of multiple steps
 - 2. "descending" output is directed toward brainstem circuits (see Figure 19.7)
 - a. fastigial nuclei
 - (i) project to medial upper motor neuron systems in the brainstem reticular formation

- (ii) output adjusts the control of posture, balance, gaze (i.e., typical "medial" functions)
- b. each deep cerebellar nucleus also projects to the red nucleus, which in turn provides feedback signals to the source of the learning signals, the inferior olivary nucleus (see Figure 19.6; see also Figure 19.3)
- 3. vestibulocerebellum (an exceptional division of the cerebellum)
 - a. as noted above, Purkinje cells in the flocculonodular lobe project directly to vestibular nuclei in the brainstem
 - b. vestibular nuclei, as you know, then project to lower motor circuits that govern eye movements and posture (see **Figure 19.7**)

III. Cerebellar function

- A. coordination of ongoing, **multi-jointed** movement (error correction)
 - 1. control of stability
 - 2. actively damp oscillations
- B. *learning of new movements*
 - 1. adaptation of hand-eye coordination (Friday PM's session)
 - 2. learning can be remarkably specific
 - a. type of movements
 - b. body parts involved
- C. initiation and planning of movements
- D. cognition
 - 1. timing judgements
 - 2. sequencing of multiple steps (e.g., pegboard puzzle)
 - 3. acquisition of mental skills that require repeated practice (cognitive agility)
- IV. Cerebellar lesions: deficits in coordinating movements
 - A. because of the arrangement of inputs and outputs of the cerebellum, clinical (motor) signs of cerebellar lesions are *always ipsilateral* to the lesion
 - B. cerebellar **ataxia**: incoordination of ongoing movements
 - 1. intentional tremor: tremor during movement
 - dysmetria: instability of a limb as it approaches a target (overshooting or undershooting)
 - 3. rapid, repetitive movements impaired
 - 4. decomposition of movements
 - C. cognitive deficits are possible (impairments of cognitive agility)

STUDY QUESTIONS

- Q1. Which of the following events are critical for motor learning in the cerebellum?
 - A. insertion of new AMPA receptors in the dendritic spines of Purkinje neurons
 - B. insertion of new GABA receptors in the dendritic spines of Purkinje neurons
 - C. removal of GABA receptors from the dendritic spines of Purkinje neurons
 - D. activation of climbing fibers
 - E. induction of long-term potentiation at the parallel fiber-Purkinje neuron synapse
- Q2. Which of the following signs and symptoms is indicative of dysfunction in cerebellar modulation of movement?
 - A. hyporeflexia
 - B. hypereflexia
 - C. rigidity
 - D. flaccidity
 - E. ataxia
 - F. atonia
 - G. spasticity