

Visión por Computadora II

Clasificación de habitaciones del hogar

Por Lionel Gutiérrez y Anahi Bazet

Tabla de contenidos

Introducción

La detección de habitaciones puede ser muy útil como base para sistemas de realidad aumentada utilizados por personas con discapacidad visual.

Se desean identificar diferentes habitaciones en un hogar en base a imágenes posiblemente capturadas desde fuentes diferentes.

Conjunto de datos

Solución propuesta

Problema

Es un problema de clasificación multiclase que se abordará con diferentes modelos.

Métrica

Accuracy (average='macro'). Calcula la métrica por cada clase en forma separada, y luego hace el promedio (con igual peso para cada clase). Ideal para clases desbalanceadas.

Inferencia

Devuelve el nombre de la habitación correspondiente para cada imagen.

Modelos y experimentos

Modelos: con transfer learning y data augmentation

- o VGG19
- o ResNet50
- AlexNet
- o InceptionV3

Transfer learning y data augmentation: modelo AlexNet

- o Con ambos
- Con ninguno
- Solo con transfer learning
- Solo con data augmentation

Combinaciones de data augmentation: modelo AlexNet con transfer learning

- Solo rotaciones.
- Solo color jitter (brillo, matiz y contraste).
- Solo desenfoque gaussiano.
- Rotaciones + color jitter.
- Rotaciones + desenfoque gaussiano.
- Color jitter + desenfoque gaussiano.
- o GrayScale.
- o AutoAugment.

Grad-CAM: modelo VGG19

Análisis de una imágen y su HeatMap

Modelos de clasificación - Resultados y conclusiones

En este caso, todos los modelos fueron entrenados con transfer learning y data augmentation.

	Accuracy Validación	Accuracy Test	Parámetros totales	Parámetros entrenados
VGG19	0.857334	0.806908	139.590.725	20.485
ResNet50	0.810761	0.776204	23.518.277	10.245
AlexNet	0.801950	0.737030	57.024.325	20.485
InceptionV3	0.760259	0.704206	21.795.813	10.245

El modelo que obtuvo la mejor accuracy fue VGG19. ResNet50 con la mitad de parámetros a entrenar aprox., se coloca inmediatamente por detrás en el ranking.

Modelo de clasificación ganador: VGG19

Grad-CAM: VGG19

Combinaciones de data augmentation - Resultados y conclusiones

En este caso, se utilizó el modelo AlexNet aplicando transfer learning.

De varias a ninguna	Accuracy Test
Solo rotación	0.824155
Solo color jitter (matiz, brillo y contraste)	0.801612
Solo desenfoque gaussiano	0.777613
Color jitter + desenfoque gaussiano	0.768727
Rotación + desenfoque gaussiano	0.767155
Rotación + color jitter	0.747537
Todas	0.73703
Ninguna	0.71198

Los modelos con una única transformación obtuvieron mejores métricas de test que aquellos que tuvieron dos, seguidos por la de aplicar todas.

La estrategia de no utilizar data augmentation fue la de peor accuracy.

Combinaciones de data augmentation - Resultados y conclusiones

En este caso, se utilizó el modelo AlexNet aplicando transfer learning.

Color vs. escala de grises	Accuracy Test	
Solo color jitter (matiz, brillo y contraste)	0.801612	
Escala de grises	0.756872	
Podio	Accuracy Test	
Solo rotación	0.824155	
Solo color jitter (matiz, brillo y contraste)	0.801612	
AutoAugmentation	0.777680	

La estrategia de modificar el matiz, el brillo y el contraste en una imagen a color es mejor que aplicar escala de grises.

En el podio encontramos AutoAugmentation. Por lo tanto, parecía una buena alternativa sobre intentar encontrar las transformaciones a aplicar manualmente.

Uso del transfer learning y data augmentation - Resultados y conclusiones

En este caso, se utilizó el modelo AlexNet.

Transfer Learning	Data Augmentation	Accuracy Test	Parámetros totales	Parámetros entrenados
8	(%)	0.737030	57.024.325	20.485
8	(%)	0.71798	57.024.325	20.485
(33)	8	0.646306	57.024.325	57.024.325
3	&	0.608515	57.024.325	57.024.325

El modelo que obtuvo la mejor accuracy de test fue aquel que aplicó, tanto transfer learning, como data augmentation.

Los modelos con transfer learning lograron una mejor métrica, y además, entrenan menos parámetros.

¡Gracias!

¿Preguntas?

lionelgutierrez@gmail.com anahibazet@gmail.com

CREDITS: This presentation template was created by <u>Slidesgo</u>, including icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>