2023년도 제주 위성데이터 활용 경진대회

≫ 어장지킴이: 아쿠아가드

김연준 | 고영희 | 김영지 | 한호준

팀 명 : 맨도롱

어장 생산성 증대 및 관리를 위한 서비스 개발

목차

프로젝트 개요

- 기획배경
- 프로젝트 목적

Chapter.

01 프로젝트 개 요 기획배경

이상기후로 인한 고수온·저수온 현상과 녹·적조로 인해 매년 증가하는 제주도의 해양 및 양식업 피해

고수온과 저수온로 인한 피해 증가

제주에서는 고수온으로 인한 광어 폐사가 매년 늘고 있는 상황이다. 피해 규모는 2021년 10만 마리에 불과했지만, 지난해에는 38만 마리가 폐사했다.

매일경제(2023)

이상기후로 인한 양식업계 피해액 증가

우리나라 연근해에서 이상기후 현상이 두드러지기 시작한 2011년 이후로 12년 동안 양식업계 피해액 이 2천억원을 넘긴 것으로 나타났다. 원인은 고수 온, 적조, 저수온, 태풍, 이상조류 등으로 다양하다.

연합뉴스(2023)

녹조 현상으로 인한 부영양화 현상

녹조 현상이 나타나 미관을 흐리고 악취까지 발생하고 있다. 동문시장과 주택가 등의 일부 오수가 유속이 느려진 하천에 유입돼 부영양화 현상이 발생한 것도 한 원인으로 보고 있다.

한겨레(2021)

01

 프로젝트

 개 요

 기획배경

또한, 제주도는 양식산업 기반을 다져 미래 양식산업 경쟁력 강화를 위한 지속적인 노력을 전개

양식 기반 조성 및 피해 예방 지원

- 1. 양식장 인력절감장비 등 자동화 장비 보급
- 2. 여름철 고수온에 의한 양식피해 예방을 위한 액화산소 공급
- 3. 재해 대비 피해 예바을 위한 재해보험료 지원
- 4. 스마트양식 클러스터 조성

제주도민일보(2023)

어장지킴이: 아쿠아가드

어장 생산성 증대 및 관리를 위한 서비스 개발

제주도의 수온, 부영양화로 인한 클로로필 상태 등을 위성 데이터로 수집

위성 데이터와 접목해 어장관리를 위한 제주 연안 모니터링 & 예측 서비스 제공

서비스기획

- 데이터 플로우
- 서비스 구조도

02 서비스 기 획 데이터 플로우

제주 위성 데이터 기반 수온 &클로로필 모델과 QGIS를 활용한

제주 연안 모니터링 & 예측 서비스 제공

서비스상세

- 위성데이터 활용 방안
- 활용 기술/모델 소개
- 시연영상

Step1. - 이서 데이디에 나 소요리 =

제주 위성 데이터에서 수온과 클로로필을 추출하기 위해 NDVI(정규식생지수)로 활용

▲ PN(NIR 밴드 데이터) : 근외적선 파장밴드

▲ PR(RED 밴드 데이터) : 적색 파장밴드

DEM데이터와 결합하기 위해 해상도(30X30) 변환

* 제주 위성 데이터 : 주최 측 제공 데이터이며 이하 제주 위성 데이터로 명칭 통일

- NDVI(정규식생지수) -

적색, 근적외선 파장 대역에서 식물 반사율 차이를 이용한 식생 활력도

Step2. 제주 위성 데이터를 마스킹해 제주도 지역 추출

▲ DEM(30m)위성영상 확보

Step3.

QGIS를 활용해 DEM 데이터 등고선 데이터로 변환 및 연안 추출

Step4. 매우 유사한 추출한 등고선 연안과 실제 어장정보 분포

▲ 추출한 등고선 연안 데이터

▲ 실제 어장 정보 분포

03 상세 서비스 학용 기술

활용 기술/ 모델 소개 - 모델링 개요 -

다양한 알고리즘의 성능을 RMSE로 평가해 최적의 모델 선정

수온·클로로필 추<mark>정</mark> 모델 (with 위성 데이터)

- ① KNN
- ② Random Forest
 - ③ MLP

평가지표: RMSE

모델이 예측한 값과 실제 값 사이를 측정해 모델의 정확성을 신뢰성있게 평가할 수 있기 때문

수온·클로로필 예측 모델 (with 외부 데이터)

- ① LSTM
- (2) MLP

03 상세 서비스

활용 기술/ 모델 소개

- 추정 모델링 개요 -

Input

- ① NDVI(정규식생지수) : 날짜, 위도, 경속, 풍향, 합계일사도, NDVI값
- ① <u>종관기상관측(ASOS)</u> : 대기온도, 풍량

Labeling

① <u>해양환경</u> <u>측정망 관측자료</u> (해양환경정보포털)

K-D Tree를 이용해 위경도 별 가장 가까 운 관측소의 해수면 온도와 클로로필 농도를 활용

03 상세 서비스 활용 기술/ 모델 소개

- 추정 모델링 -

KNN은 가장 가까운 이웃 데이터를 기반으로 예측하기에 수온과 클로로필 공간적 특성을 잘 반영한 결과를 얻을 수 있음

[KNN 적합값과 예측값 비교]

모델링 과정

① Elbow Method를 진행하며 최적의 클러스터 값을 찾고 K=5로 선정

[KNN 성능평가_RMSE 기준]

	수온 SST(°C)	클로로필 Chl-a(μg/L)
Train- RMSE	0.05252	0.01303
Test- RMSE	0.06640	0.01751

03 상세 서비스 활용 기술/ 모델 소개

- 추정 모델링 -

대규모 데이터 처리에 적합한 Random Forest를 사용해 공간/측정 데이터를 효과적으로 모델링

[Random Forest 적합값과 예측값 비교]

모델링 과정

① 충분한 의사결정 나무 개수 조절을 통해 최적의 결과값을 도출할 수 있도록 함

[Random Forest 성능평가_RMSE 기준]

	수온 SST(°C)	클로로필 Chl-a(µg/L)
Train- RMSE	0.00764	0.00235
Test- RMSE	0.01954	0.00008

03 상세 서비스 활용 기술/

모델 소개

- 추정 모델링 -

Multi-Layer Perceptron의 경우 복잡한 패턴 학습에 용이해 공간 데이터 패턴을 학습하는데 효과적일 것으로 예상

[MLP 적합값과 예측값 비교]

모델링 과정

- 4-layer(dim:64,32,16,8,1)과
 2-layer(dim:64,32) 중 과적합이
 발생하지 않는 2-layer 모델 사용
- ② 활성화 함수는 relu, optimization은 RMSprop 사용

[MLP 성능평가_RMSE 기준]

	수온 SST(°C)	클로로필 Chl-a(µg/L)
Train- RMSE	0.14965	0.01840
Test- RMSE	0.22809	0.03733

03 상세 서비스 활용 기술/ 모델 소개

- 추정 모델링 -

수온 추정과 클로로필 추정 모델 모두 Random Forest의 성능이 가장 우수

03 상세 서비스

활용 기술/ 모델 소개

- 예측 모델링 개요 -

03 상세 서비스 활용 기술/ 모델 소개

- 예측 모델링 -

LSTM와 MLP 를 비교했으며, LSTM의 성능이 더 우수한 것으로 확인되어 최종 예측 모델로 선정

LSTM 모델링 과정

- ① ECWMF ERA5 데이터를 활용해 시계열성 확보
- ② Learing-rate, Epochs, Windows, Layer 등 하이퍼 파라미터를 조절해가며 학습 시간과 성능에 적합한 값을 도출
- ③ 최종 파라미터: epochs=30, batch_size=64, learning_rate=0.01, 64-32 레이어 활용

[LSTM 성능평가_RMSE 기준]

	수온 SST(°C)	클로로필 Chl-a(µg/L)
Train- RMSE	0.01296	-
Test- RMSE	0.01501	-

MLP 모델링 과정

- ① 실시간 해양환경 관측정보 데이터 2023-01-01 00:00부터 2023.12.31 23:30분 까지 관측소 8개별, 30분 간격 별 수온 데이터 학습
 - ② 결측값은 직전 관측값으로 대체
 - ③ 관측소 별 하루치 즉, 직전 48개 데이터로 다음 시간의 SST 예측

[MLP 성능평가_RMSE 기준]

	수온 SST(°C)	클로로필 Chl-a(µg/L)
Train- RMSE	0.55673	-
Test- RMSE	0.60656	-

적용 및 기대효과

- 아이디어 적용
- 기대효과
- 한계점

04 적용 및 기대효과 아이디어 적용

♡ 어장지킴이:아쿠아 가드의 우수성

제한된 관측소 보완

추가 관측소 설치할 필요없어, 제한된 관측소의 개수로 모니터링 가능한 어장의 개수가 한정적이 라는 단점을 보완할 수 있음

미래 어장 환경 예측

과거 데이터를 바탕으로 미래의 수온을 예측하여 고수온, 저수온에 대응가능, 클로로필 예측을 통한 적녹조 탐지 가능 **04** 적용 및 기대효과 아이디어 적용

♡ 어장지킴이: 아쿠아가드를 활용할 수 있는

적용 방안 3가지

1. 녹/적조 발생 가능성 예측

제주 해역 수온 데이터와 위성 영상 데이터를 활용하여 클로로필을 탐지하고, 이를 활용한 인공지능 모델로 녹/적조 발생 가능성을 예측 2. 녹/적조 탐지 서비스 제공

3. 수온 자동 제어 시스템 구현

수온 예측 모델에 기반해 자동 제어 시스템 구현하고, 고수온 및 저수온 상황에 대한 예측 정보를 활용해 냉각장치, 난방장치 등을 자동으로 제어해 해양 환경을 안정화

04 적용 및 기대효과 기대효과

♡ 어장지킴이: 아쿠아가드의 기대효과 3가지

작물과 어종에 최적의 환경에 제공함으로 써 생산성이 향상되고 수확량이 증가

1. 어장의 생산성 향상

녹/적조 발생 예측 및 수온 조절을 통해 자연재해로 인한 피해 최소화

2. 자연재해로 인한 피해 최소화

수온 조절과 낭비 최소화로 지속 가능한 자원 활용과 생태계 균형 유지에 기여

> 3. 지속가능한 어업환경 조성 및 환경보전 기여

04적용 및기대효과한계점

♡ 어장지킴이: 아쿠아가드의 한계점

- 사용자가 위성 데이터 전처리 필요로 함
- 제주 위성 데이터가 4, 5, 10, 11월에 한정되어 있음 - 고수온/적조가 문제되는 7, 8월 데이터로 학습되지 않은 데이터로 정확성에 한계 존재

> 참고자료

- LSTM을 이용한 한반도 근해 이상수온 예측모델, 최혜민 외 2인(2022)
- Estimation of Surface Alr Temperature from MODIS 1km Resolution Land Surface Temperature over Northern Chlna, Suhung Shen 외 2인(2010)
- 위성영상과 머신러닝 모델을 이용한 폭염시간 고해상도 기온 추정 연구, 이달근 외 5인(2020)
- Sea surface temperature(SLSTR) Algorithm Theoretical Basis Document, Philippe Goryl 외 4 인(2012)
- ISPRS Journal of Photogrammetry and Remote Sensing, Swathy Sunder 외 2인(2020)
- 시계열 UAV 영상을 활용한 연안지역 침식·퇴적 변화 모니터링, 조기성 외 2인(2020)

▶ 사용된 외부 데이터

- 국립수산 과학원, 실시간 해양환경 어장 정보 시스템
- 기상청, 기상자료 개방포털, 종관기상관측(ASOS)
- 해양환경정보 포털, 해양환경 측정망 정보-연안
- ECWMF ERA5 (2013~2023 12:00)

Q&A 감사합니다

맨도롱 팀