Rethinking the Reference model in RLHF

YiMing Liu, letusgo126@126.com

March 2025

1 基于策略梯度方法的 PPO 奖励函数推导

1.1 RLHF 目标函数建模

基于人类反馈的强化学习(RLHF)的核心目标可建模为以下优化问题:

$$\arg\max_{\theta} J = \underbrace{\mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{\theta}(y|x)} \left[r(x, y) \right]}_{\text{奖励最大化项}} - \beta \underbrace{\mathbb{E}_{x \sim \mathcal{D}} \mathbb{E}_{\pi_{\theta}(\cdot|s_{t}, x)} \left[\mathbb{D}_{\mathrm{KL}} \left(\pi_{\theta} \mid\mid \pi_{\mathrm{ref}} \right) \right]}_{\text{策略约束项}}$$
(1)

其中 β 为温度系数,控制策略偏离参考模型 π_{ref} 的程度。该目标函数包含两个关键部分:奖励期望的最大化和 KL 散度约束的平衡。

1.2 目标函数分解与分析

首先考虑奖励相关项的损失函数构造。根据策略梯度定理,可建立奖励项的损失函数为:

$$-\mathcal{L}_R(\theta) = \mathbb{E}_{x \sim \mathcal{D}, a_t \sim \pi_{\theta}(a_t | s_t, x)} \left[r(x, y) \log \pi_{\theta}(a_t | s_t, x) \right]$$
 (2)

结合 KL 散度约束项 $\mathcal{L}_{KL_t}(\theta, ref)$, 完整损失函数可表示为:

$$L_{total} = -\arg\min_{\theta} J = -\left(\mathcal{L}_R(\theta) - \beta \mathcal{L}_{\mathrm{KL}_t}(\pi_{\theta}, \pi_{ref})\right)$$
(3)

1.3 梯度推导过程

对目标函数进行梯度分析时,需要分别处理两个组成部分:

1. 奖励项梯度:

$$\nabla_{\theta} \mathcal{L}_{R} = \mathbb{E}_{x \sim \mathcal{D}, a_{t} \sim \pi_{\theta}(a_{t}|s_{t}, x)} \left[r(x, y) \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}, x) \right] \tag{4}$$

2. KL 散度项梯度 (具体推导见引理 eq. (47)):

$$-\nabla_{\theta} \mathcal{L}_{\mathrm{KL}_{t}} = -\mathbb{E}_{x \sim D, a_{t} \sim \pi_{\theta}(a_{t}|s_{t}, x)} \left[\log \frac{\pi_{\theta}(a_{t}|s_{t}, x)}{\pi_{ref}(a_{t}|s_{t}, x)} \cdot \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}, x) \right]$$
(5)

将二者结合可得总梯度:

$$\nabla_{\theta} J = \nabla_{\theta} \mathcal{L}_{R} - \beta \nabla_{\theta} \mathcal{L}_{KL_{t}}$$

$$= \mathbb{E}_{x, a_{t} \sim \pi_{\theta}(a_{t}|s_{t}, x)} \left[\left(r(x, y) - \beta \log \frac{\pi_{\theta}(a_{t}|s_{t}, x)}{\pi_{ref}(a_{t}|s_{t}, x)} \right) \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}, x) \right]$$
(6)

1.4 等效奖励函数构造

通过梯度分析可发现,原始优化问题可等价转换为:

$$\arg\max_{\theta} J' = \mathbb{E}_{x \sim \mathcal{D}, a_t \sim \pi_{\theta}} \left[r(x, y) - \beta \log \frac{\pi_{\theta}(a_t | s_t, x)}{\pi_{ref}(a_t | s_t, x)} \right]$$
(7)

这揭示了 PPO 算法中奖励函数的设计本质:

$$r_t = r(x, y) - \beta \log \frac{\pi_{\theta}(a_t | s_t, x)}{\pi_{ref}(a_t | s_t, x)}$$

$$\tag{8}$$

1.5 关键前提条件

需要特别强调的是,上述推导成立的关键在于 KL 散度项的梯度必须满足K1 及其类似的特定形式。当且仅当形式满足 k1 或类似形式时才成立。若该近似条件不成立,则公式 eq. (7) 和 eq. (8) 的推导过程将失效,因为DPO 的推导基础 eq. (65) 就是该公式。

2 KL 惩罚项的数学性质分析

2.1 奖励函数中 KL 惩罚项的适用性条件

在 PPO 算法设计中,仅特定形式的 KL 散度估计量适合作为奖励函数的惩罚项。根据理论分析,k1 估计量具有数学适用性,其表达式如 eq. (8) 所示。然而,k2 和 k3 估计量由于内在的数学性质缺陷,不适合作为惩罚项,原因如下:

考虑 k2 和 k3 的估计值 klt 具有恒正特性, 其梯度方向始终满足:

$$-\nabla_{\theta} KL_{t}(\pi_{\theta} || \pi_{ref}) = -kl_{t} \nabla_{\theta} \log \pi_{\theta}(a_{t} | s_{t}, x)$$
(9)

此时无论 $\pi_{\theta}(a_t|s_t,x)$ 与 $\pi_{ref}(a_t|s_t,x)$ 的概率分布关系如何,梯度更新方向都会强制降低当前策略 π_{θ} 生成任意动作 a_t 的概率。这种单向的惩罚机制本质上违背了策略优化算法的基本设计原则,即应建立方向可调的奖惩机制来引导策略改进。

2.2 KL 惩罚项的损失函数适配性

k2 估计量的有效性 如 eq. (48) 所示, k2 估计量能够构造有效的 KL 惩罚 损失函数。其数学本质是通过 KL 散度的对称性设计,建立双向调节机制: 当 π_{θ} 偏离 π_{ref} 时,梯度方向会根据偏离方向自动调整,既防止策略过度偏离,又保留必要的优化自由度。

k1 估计量的失效机理 k1 对应的损失函数形式为:

$$\mathcal{L}_{\mathrm{KL}_t}(\pi_{\theta}, \pi_{ref}) = \log \pi_{\theta}(a_t | s_t, x) - \log \pi_{ref}(a_t | s_t, x) \tag{10}$$

其梯度表达式揭示本质缺陷:

$$-\nabla_{\theta} \mathcal{L}_{\mathrm{KL}_{t}} = -\nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}, x) \tag{11}$$

该梯度恒指向降低当前策略概率的方向,形成类似极大似然估计的反向约束。这种单向作用机制会导致策略网络的概率输出持续衰减,最终引发模型坍缩问题。

k3 估计量的近似特性 k3 构造的损失函数具有特殊形式:

$$\mathcal{L}_{\text{KL}_t} = \frac{\pi_{ref}(a_t|s_t, x)}{\pi_{\theta}(a_t|s_t, x)} - \log \frac{\pi_{ref}(a_t|s_t, x)}{\pi_{\theta}(a_t|s_t, x)} - 1$$
 (12)

对应的梯度表达式揭示其近似本质:

$$-\nabla_{\theta} \mathcal{L}_{\mathrm{KL}_{t}} = \left(\frac{\pi_{\mathrm{ref}}}{\pi_{\theta}} - 1\right) \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}, x) \tag{13}$$

令 $x = \pi_{ref}/\pi_{\theta}$, k2 与 k3 的梯度可对比表示为:

$$k2$$
 梯度: $\log x \cdot \nabla_{\theta} \log \pi_{\theta}$ (14)

$$k3 梯度: (x-1) \cdot \nabla_{\theta} \log \pi_{\theta} \tag{15}$$

在策略邻域 $(x \approx 1)$ 进行泰勒展开时, $\log x \approx x - 1$,此时 k3 梯度构成 k2 梯度的线性近似。但这种近似具有两个关键缺陷:1. **有偏性**:当策略显著偏离参考策略 (x 远离 1,也就是训练后期 π_{ref} 离 π_{θ} 较远) 时,近似误差 呈非线性增长 2. **非对称性**:x - 1 对 $\pi_{\theta} > \pi_{ref}$ 和 $\pi_{\theta} < \pi_{ref}$ 的响应特性不对称。

3 Diffusion RLHF 之 DDPO

π 表示概率, 常用符号为 p。

3.1 扩散模型基础

Denoising Diffusion Probabilistic Models (DDPM) 的逆向过程采样公式定义为:

$$\pi_{\theta}\left(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_{t}, \boldsymbol{c}\right) = \mathcal{N}\left(\boldsymbol{x}_{t-1}; \boldsymbol{\mu}_{\theta}\left(\boldsymbol{x}_{t}, \boldsymbol{c}, t\right), \sigma_{t}^{2} \mathbf{I}\right)$$
(16)

其具体采样形式为:

$$\mathbf{x}_{t-1} = \boldsymbol{\mu}_{\theta} \left(\mathbf{x}_{t}, \mathbf{c}, t \right) + \sigma_{t} \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N} \left(\mathbf{0}, \mathbf{I} \right)$$
 (17)

其中 c 为条件信息, σ_t^2 为预定义的方差参数。

3.2 概率密度与梯度推导

当方差固定时,高维高斯分布的概率密度函数可展开为:

$$\pi_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_{t}, \boldsymbol{c}\right) = \frac{1}{(2\pi\sigma_{t}^{2})^{d/2}} \exp\left(-\frac{\|\boldsymbol{x}_{t-1} - \boldsymbol{\mu}_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{t}, \boldsymbol{c}, t\right)\|^{2}}{2\sigma_{t}^{2}}\right)$$
(18)

其中 d 为潜变量维度。取对数概率得:

$$\log \pi_{\boldsymbol{\theta}} \left(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_{t}, \boldsymbol{c} \right) = -\frac{d}{2} \ln(2\pi) - \frac{d}{2} \ln \sigma_{t}^{2} - \frac{\|\boldsymbol{x}_{t-1} - \boldsymbol{\mu}_{\boldsymbol{\theta}} \left(\boldsymbol{x}_{t}, \boldsymbol{c}, t \right) \|^{2}}{2\sigma_{t}^{2}}$$
(19)

对模型参数 θ 求梯度时, 前两项为常数项, 故梯度表达式简化为:

$$\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}} \left(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_{t}, \boldsymbol{c} \right) = -\frac{1}{2\sigma_{t}^{2}} \nabla_{\boldsymbol{\theta}} \| \boldsymbol{x}_{t-1} - \boldsymbol{\mu}_{\boldsymbol{\theta}} \left(\boldsymbol{x}_{t}, \boldsymbol{c}, t \right) \|^{2}$$
(20)

3.3 Diffusion 强化学习目标函数

DDPO (Diffusion Policy Optimization) 的优化目标定义为:

$$\arg \max_{\theta} J = \underbrace{\mathbb{E}_{c \sim \mathcal{D}, x_0 \sim \pi_{\theta}(\cdot|\cdot, c)} \left[r(x_0, \mathbf{c}) \right]}_{\text{奖励最大化项}}$$
(21)

DDPO 的梯度函数定义为:

$$\nabla_{\boldsymbol{\theta}} J = \nabla_{\boldsymbol{\theta}} \mathcal{L}_{DDPO} = \mathbb{E}_{\boldsymbol{c} \sim D, t \sim U(0, T)} \left[r\left(\boldsymbol{x}_{0}, \boldsymbol{c}\right) \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}} \left(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_{t}, \boldsymbol{c}\right) \right]$$
(22)

展开后得到完整表达式:

$$egin{aligned} -\mathcal{L}_{DDPO} &= \mathbb{E}_{oldsymbol{c} \sim D, t \sim U(0, T)} \left[r\left(oldsymbol{x}_0, oldsymbol{c}
ight) \log \pi_{oldsymbol{ heta}}\left(oldsymbol{x}_{t-1} \mid oldsymbol{x}_t, oldsymbol{c}
ight)
ight] \ &= \mathbb{E}_{oldsymbol{c} \sim D, t \sim U(0, T)} \left[r\left(oldsymbol{x}_0, oldsymbol{c}
ight) \left(- \underbrace{rac{d}{2} \ln(2\pi) - rac{d}{2} \ln \sigma_t^2}_{\text{total partition of the partition of the$$

(23)

注意到常数项对优化无贡献,可得等价目标函数:

$$-\mathcal{L}_{DDPO_{equiv}} = \mathbb{E}_{\boldsymbol{c} \sim D, t \sim U(0,T)} \left[-r \left(\boldsymbol{x}_{0}, \boldsymbol{c} \right) \frac{\|\boldsymbol{x}_{t-1} - \boldsymbol{\mu}_{\theta} \left(\boldsymbol{x}_{t}, \boldsymbol{c}, t \right) \|^{2}}{2\sigma_{t}^{2}} \right]$$
(24)

3.4 与预训练目标的关联

对比扩散模型预训练目标:

$$-\mathcal{L}_{pretrain}(\theta) = \mathbb{E}_{(\mathbf{x}_0, \mathbf{c}) \sim p(\mathbf{x}_0, \mathbf{c}), t \sim \mathcal{U}\{0, T\}, \mathbf{x}_t \sim q(\mathbf{x}_t | \mathbf{x}_0)} \left[-\frac{\|\tilde{\boldsymbol{\mu}}(\mathbf{x}_0, t) - \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, \mathbf{c}, t)\|^2}{2\sigma_t^2} \right]$$
(25)

可知 DDPO 在预训练目标基础上引入了奖励加权机制,实现对齐优化。

3.5 重要性采样扩展

引入重要性采样比后, DDPO 改进形式为:

$$-\mathcal{L}_{DDPO_{IS}} = \mathbb{E}_{\boldsymbol{c} \sim D, t \sim U(0,T)} \left[r\left(\boldsymbol{x}_{0}, \boldsymbol{c}\right) \frac{p_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_{t}, \boldsymbol{c}\right)}{p_{\boldsymbol{\theta}old}\left(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_{t}, \boldsymbol{c}\right)} \right]$$

$$= \mathbb{E}_{\boldsymbol{c} \sim D, t \sim U(0,T)} \left[r\left(\boldsymbol{x}_{0}, \boldsymbol{c}\right) \exp\left(\frac{\|\boldsymbol{x}_{t-1} - \boldsymbol{\mu}_{\boldsymbol{\theta}old}\left(\boldsymbol{x}_{t}, \boldsymbol{c}, t\right)\|^{2}}{2\sigma_{t}^{2}} - \frac{\|\boldsymbol{x}_{t-1} - \boldsymbol{\mu}_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{t}, \boldsymbol{c}, t\right)\|^{2}}{2\sigma_{t}^{2}} \right) \right]$$

$$(26)$$

其中 θ_{old} 为旧策略参数,通过重要性采样比 $\frac{p_{\theta}}{p_{\theta_{old}}}$ 实现策略的稳定更新。可进一步采用 PPO-2 clip 策略稳定训练。

实现细节说明 注:在理论推导中,L2 范数平方对应的损失函数采用总和归约(reduction='sum'),而实际代码实现中通常采用均值归约(reduction='mean')以增强数值稳定性。这种理论推导与工程实践的差异性在DDPM的标准实现中同样存在,其主要差异体现在梯度幅值的缩放比例,而不会改变优化方向。具体表现为:

- 理论推导: ||·||² 对应元素级平方和 (sum)
- 工程实现: $\frac{1}{d} \| \cdot \|^2$ 对应元素级平方均值 (mean)

其中 d 为特征维度,这种缩放操作通过保持梯度量级在合理范围内,有效避免了训练过程中的数值溢出问题。以上推导中的 μ 替换成 DDPM 中的 ϵ 、Rectified Flow 中的 ν 和 score sde 中的 score 都成立,推导省略。

4 基于参考模型的扩散强化学习对齐方法 (DDPO with Reference Model)

$$\arg \max_{\theta} J = \underbrace{\mathbb{E}_{c \sim \mathcal{D}, x_0 \sim \pi_{\theta}(\cdot|c)} \left[r(x_0, c) \right]}_{\text{奖励最大化项}} - \beta \underbrace{\mathbb{E}_{c \sim \mathcal{D}, t \sim U(0, T)} \left[\mathbb{D}_{\mathrm{KL}} \left(\pi_{\theta}(\cdot | x_t, c) \parallel \pi_{\mathrm{ref}}(\cdot | x_t, c) \right) \right]}_{\text{策略正则化项}}$$

根据 section 8 的推导结果, KL 散度的期望可以显式表达为:

$$\mathcal{L}_{DDPO_{KL}} = \mathbb{E}_{c \sim \mathcal{D}, t \sim U(0,T)} \left[\frac{\|\boldsymbol{\mu}_{\theta}(x_t, c, t) - \boldsymbol{\mu}_{ref}(x_t, c, t)\|^2}{2\sigma_t^2} \right]$$
(28)

因此,完整的 DDPO 目标函数可分解为以下形式:

$$\mathcal{L}_{DDPO_{total}} = -\left(\mathcal{L}_{DDPO} - \beta \mathcal{L}_{DDPO_{KL}}\right)
= -\mathbb{E}_{c \sim D, t \sim U(0,T)} \left[r(x_0, c) \log \pi_{\theta}(x_{t-1} | x_t, c) \right]
+ \beta \mathbb{E}_{c \sim D, t \sim U(0,T)} \left[\frac{\| \boldsymbol{\mu}_{\theta}(x_t, c, t) - \boldsymbol{\mu}_{ref}(x_t, c, t) \|^2}{2\sigma_t^2} \right]
= \mathbb{E}_{c \sim D, t \sim U(0,T)} \left[\frac{r(x_0, c)}{2\sigma_t^2} \| x_{t-1} - \boldsymbol{\mu}_{\theta}(x_t, c, t) \|^2 \right]
+ \frac{\beta}{2\sigma_t^2} \| \boldsymbol{\mu}_{\theta}(x_t, c) - \boldsymbol{\mu}_{ref}(x_t, c, t) \|^2 \right]$$
(29)

5 Diffusion RLHF 中 DiffusionDPO 推导的谬误分析

若直接沿用 PPO 的奖励函数形式 (如 eq. (8) 所示),将推导出错误的 损失函数。其中 SG()为梯度阻断函数,因其参数来自 RL 采样过程而非可 微变量:

$$\mathcal{L}_{DDPO_{wrong}} = -\mathbb{E}_{\boldsymbol{c} \sim D, t \sim U(0, T)} \left[SG \left(r \left(\boldsymbol{x}_{0}, \boldsymbol{c} \right) - \beta \log \frac{\pi_{\boldsymbol{\theta}} \left(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_{t}, \boldsymbol{c} \right)}{\pi_{\boldsymbol{ref}} \left(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_{t}, \boldsymbol{c} \right)} \right) \right.$$

$$\times \log \pi_{\boldsymbol{\theta}} \left(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_{t}, \boldsymbol{c} \right) \right]$$

$$= \mathbb{E}_{\boldsymbol{c} \sim D, t \sim U(0, T)} \left[SG \left(r \left(\boldsymbol{x}_{0}, \boldsymbol{c} \right) - \beta \left(\frac{\| \boldsymbol{x}_{t-1} - \boldsymbol{\mu}_{ref} \left(\boldsymbol{x}_{t}, \boldsymbol{c}, t \right) \|^{2}}{2\sigma_{t}^{2}} - \frac{\| \boldsymbol{x}_{t-1} - \boldsymbol{\mu}_{\boldsymbol{\theta}} \left(\boldsymbol{x}_{t}, \boldsymbol{c}, t \right) \|^{2}}{2\sigma_{t}^{2}} \right) \right) \right.$$

$$\times \frac{\| \boldsymbol{x}_{t-1} - \boldsymbol{\mu}_{\boldsymbol{\theta}} \left(\boldsymbol{x}_{t}, \boldsymbol{c}, t \right) \|^{2}}{2\sigma_{t}^{2}} \right]$$

$$(30)$$

显然 $\mathcal{L}_{DDPO_{wrong}} \neq \mathcal{L}_{DDPO_{total}}$ 成立。

特别考察 $\mathcal{L}_{DDPO_{wrong}}$ 中的 KL 惩罚项:

$$-\mathcal{L}_{DDPO_{wrong_{KL}}}$$

$$= \frac{\beta}{4\sigma_t^4} \mathbb{E}_{\boldsymbol{c} \sim D, t \sim U(0,T)} \left[SG \left(\|\boldsymbol{x}_{t-1} - \boldsymbol{\mu}_{ref} \left(\boldsymbol{x}_t, \boldsymbol{c}, t \right) \|^2 - \|\boldsymbol{x}_{t-1} - \boldsymbol{\mu}_{\theta} \left(\boldsymbol{x}_t, \boldsymbol{c}, t \right) \|^2 \right) \times \|\boldsymbol{x}_{t-1} - \boldsymbol{\mu}_{\theta} \left(\boldsymbol{x}_t, \boldsymbol{c}, t \right) \|^2 \right]$$

$$(31)$$

其梯度表达式为:

$$-\nabla_{\boldsymbol{\mu}_{\theta}(\boldsymbol{x}_{t},\boldsymbol{c},t)}\mathcal{L}_{DDPO_{wrong_{KL}}}$$

$$=\frac{\beta}{4\sigma_{t}^{4}}\mathbb{E}_{\boldsymbol{c}\sim D,t\sim U(0,T)}\left[SG\left(\|\boldsymbol{x}_{t-1}-\boldsymbol{\mu}_{ref}\left(\boldsymbol{x}_{t},\boldsymbol{c},t\right)\|^{2}-\|\boldsymbol{x}_{t-1}-\boldsymbol{\mu}_{\theta}\left(\boldsymbol{x}_{t},\boldsymbol{c},t\right)\|^{2}\right)\right]$$

$$\cdot\nabla_{\boldsymbol{\mu}_{\theta}}\|\boldsymbol{x}_{t-1}-\boldsymbol{\mu}_{\theta}\|^{2}$$

$$=\frac{\beta}{4\sigma_{t}^{4}}\mathbb{E}\left[SG\left(\|\boldsymbol{x}_{t-1}-\boldsymbol{\mu}_{ref}\|^{2}-\|\boldsymbol{x}_{t-1}-\boldsymbol{\mu}_{\theta}\|^{2}\right)(\boldsymbol{\mu}_{\theta}-\boldsymbol{x}_{t-1})\right]$$
(32)

构造反例: 当 $\mu_{ref} > x_{t-1} > \mu_{\theta}$ 且 $\|x_{t-1} - \mu_{ref}\|^2 > \|x_{t-1} - \mu_{\theta}\|^2$ 时,可得 $-\nabla_{\mu_{\theta}} \mathcal{L}_{DDPO_{wrong_{KL}}} < 0$ 。这表明即使 $\mu_{ref} > \mu_{\theta}$, μ_{θ} 仍会朝减小的方向更新,存在明显逻辑悖论。

需特别注意,如 section 1.5 所述, DPO 的理论基础 eq. (65) 依赖于 eq. (8) 的有效性。若扩散模型的 RLHF 场景中 eq. (8) 不成立,则基于此导出的扩散 DPO 公式 eq. (33) (引自Diffusion-DPO) 将丧失理论支撑:

$$L(\theta) = -\mathbb{E}_{(\boldsymbol{x}_{0}^{w}, \boldsymbol{x}_{0}^{l}) \sim \mathcal{D}, t \sim \mathcal{U}(0, T), \boldsymbol{x}_{t}^{w} \sim q(\boldsymbol{x}_{t}^{w} | \boldsymbol{x}_{0}^{w}), \boldsymbol{x}_{t}^{l} \sim q(\boldsymbol{x}_{t}^{l} | \boldsymbol{x}_{0}^{l})}$$

$$\log \sigma \left(-\beta T \omega(\lambda_{t}) \left(\| \boldsymbol{\epsilon}^{w} - \boldsymbol{\epsilon}_{\theta}(\boldsymbol{x}_{t}^{w}, t) \|_{2}^{2} - \| \boldsymbol{\epsilon}^{w} - \boldsymbol{\epsilon}_{\text{ref}}(\boldsymbol{x}_{t}^{w}, t) \|_{2}^{2} - \left\| \boldsymbol{\epsilon}^{w} - \boldsymbol{\epsilon}_{\text{ref}}(\boldsymbol{x}_{t}^{w}, t) \|_{2}^{2} \right\| \right)$$

$$- \left[\| \boldsymbol{\epsilon}^{l} - \boldsymbol{\epsilon}_{\theta}(\boldsymbol{x}_{t}^{l}, t) \|_{2}^{2} - \| \boldsymbol{\epsilon}^{l} - \boldsymbol{\epsilon}_{\text{ref}}(\boldsymbol{x}_{t}^{l}, t) \|_{2}^{2} \right] \right)$$

$$(33)$$

6 修正的 DiffusionDPO

原始 DPO 梯度:

$$\nabla_{\theta} \mathcal{L}_{\text{DPO}}(\pi_{\theta}; \pi_{\text{ref}}) = -\beta \mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\underbrace{\sigma(\hat{r}_{\theta}(x, y_l) - \hat{r}_{\theta}(x, y_w))}_{\text{higher weight when reward estimate is wrong}} \left[\underbrace{\nabla_{\theta} \log \pi(y_w \mid x)}_{\text{increase likelihood of } y_w} - \underbrace{\nabla_{\theta} \log \pi(y_l \mid x)}_{\text{decrease likelihood of } y_l} \right] \right],$$
(34)

修正的 DiffusionDPO loss:

$$\mathcal{L}_{\text{Diffusion}_{\text{DPO}}}(\boldsymbol{\mu}_{\theta}\left(\boldsymbol{x}_{t},\boldsymbol{c},t\right);\boldsymbol{\mu}_{ref}\left(\boldsymbol{x}_{t},\boldsymbol{c},t\right)) = \\ -\beta \mathbb{E}_{(\boldsymbol{c},\boldsymbol{x}_{t}^{w},\boldsymbol{x}_{t}^{l}) \sim \mathcal{D}} \left[\underbrace{SG[\sigma(\hat{r}_{\theta}(\boldsymbol{c},\boldsymbol{x}_{t}^{l}) - \hat{r}_{\theta}(\boldsymbol{c},\boldsymbol{x}_{t}^{w}))]}_{\text{higher weight when reward estimate is wrong}} \left[\underbrace{-\frac{\|\boldsymbol{x}_{t-1}^{w} - \boldsymbol{\mu}_{\theta}\left(\boldsymbol{x}_{t}^{w},\boldsymbol{c},t\right)\|^{2}}{2\sigma_{t}^{2}}}_{\text{increase likelihood of } \boldsymbol{x}_{t}^{w}} \right] \\ + \underbrace{\frac{\|\boldsymbol{x}_{t-1}^{l} - \boldsymbol{\mu}_{\theta}\left(\boldsymbol{x}_{t}^{l},\boldsymbol{c},t\right)\|^{2}}{2\sigma_{t}^{2}}}_{\text{decrease likelihood of } \boldsymbol{x}_{t}^{l}} \right],$$

$$\hat{r}_{\theta}(\boldsymbol{c},\boldsymbol{x}_{t}) = \beta \frac{\|\boldsymbol{\mu}_{\theta}(\boldsymbol{x}_{t},\boldsymbol{c},t) - \boldsymbol{\mu}_{ref}(\boldsymbol{x}_{t},\boldsymbol{c},t)\|^{2}}{2\sigma^{2}}$$

$$(35)$$

7 分类模型 KL 散度梯度推导

7.1 KL 散度的定义

KL 散度衡量两个离散概率分布 π_{θ} 和 π_{ref} 之间的差异,定义为:

$$KL(\pi_{\theta} || \pi_{ref}) = \mathbb{E}_{x \sim D, a_t \sim \pi_{\theta}(a_t | s_t, x)} \left[\log \frac{\pi_{\theta}(a_t | s_t, x)}{\pi_{ref}(a_t | s_t, x)} \right]$$

$$= \mathbb{E}_{x \sim D} \sum_{a_t \in \mathcal{V}} \pi_{\theta}(a_t | s_t, x) \log \frac{\pi_{\theta}(a_t | s_t, x)}{\pi_{ref}(a_t | s_t, x)},$$
(36)

其中 \mathcal{Y} 为离散类别空间。

7.2 KL 散度梯度推导步骤

步骤 1: 展开 KL 表达式 直接写出离散求和形式:

$$KL\left(\pi_{\theta}(\cdot|s_t, x) \| \pi_{ref}(\cdot|s_t, x)\right) = \sum_{a_t} \pi_{\theta}(a_t|s_t, x) \log \frac{\pi_{\theta}(a_t|s_t, x)}{\pi_{ref}(a_t|s_t, x)}.$$
 (37)

步骤 2: 应用梯度算子 对 θ 求梯度:

$$-\nabla_{\theta} \text{KL}\left(\pi_{\theta}(\cdot|s_t, x) \| \pi_{ref}(\cdot|s_t, x)\right) = -\nabla_{\theta} \sum_{a_t} \pi_{\theta}(a_t|s_t, x) \log \frac{\pi_{\theta}(a_t|s_t, x)}{\pi_{ref}(a_t|s_t, x)}.$$
(38)

步骤 3: 交換求和与梯度 由于求和项有限且 $\pi_{\theta}(y|x)$ 光滑,可交换求和与梯度:

$$-\nabla_{\theta} \text{KL}\left(\pi_{\theta}(\cdot|s_{t},x) \| \pi_{ref}(\cdot|s_{t},x)\right) = -\sum_{a_{t}} \nabla_{\theta} \left[\pi_{\theta}(a_{t}|s_{t},x) \log \frac{\pi_{\theta}(a_{t}|s_{t},x)}{\pi_{ref}(a_{t}|s_{t},x)} \right].$$
(39)

步骤 4: 乘积法则分解 对每一项应用乘积法则:

$$-\nabla_{\theta} \left[\pi_{\theta}(a_{t}|s_{t}, x) \log \frac{\pi_{\theta}(a_{t}|s_{t}, x)}{\pi_{ref}(a_{t}|s_{t}, x)} \right] = -\underbrace{\left[\nabla_{\theta} \pi_{\theta}(a_{t}|s_{t}, x) \cdot \log \frac{\pi_{\theta}(a_{t}|s_{t}, x)}{\pi_{ref}(a_{t}|s_{t}, x)}\right]}_{\text{Term 1}} + \underbrace{\pi_{\theta}(a_{t}|s_{t}, x) \cdot \nabla_{\theta} \log \frac{\pi_{\theta}(a_{t}|s_{t}, x)}{\pi_{ref}(a_{t}|s_{t}, x)}}_{\text{Term 2}} \right].$$

$$(40)$$

步骤 5: 简化 Term 2 由于 $\pi_{ref}(y|x)$ 与 θ 无关,有:

$$\nabla_{\theta} \log \frac{\pi_{\theta}(a_t|s_t, x)}{\pi_{ref}(a_t|s_t, x)} = \nabla_{\theta} \log \pi_{\theta}(a_t|s_t, x) = \frac{\nabla_{\theta} \pi_{\theta}(a_t|s_t, x)}{\pi_{\theta}(a_t|s_t, x)}. \tag{41}$$

因此 Term 2 简化为:

$$\pi_{\theta}(a_t|s_t, x) \cdot \frac{\nabla_{\theta} \pi_{\theta}(a_t|s_t, x)}{\pi_{\theta}(a_t|s_t, x)} = \nabla_{\theta} \pi_{\theta}(a_t|s_t, x). \tag{42}$$

步骤 6: 合并两项 将 Term 1 和 Term 2 相加:

$$\sum_{a_t} \left[\nabla_{\theta} \pi_{\theta}(a_t | s_t, x) \cdot \log \frac{\pi_{\theta}(a_t | s_t, x)}{\pi_{ref}(a_t | s_t, x)} + \nabla_{\theta} \pi_{\theta}(a_t | s_t, x) \right]. \tag{43}$$

步骤 7: 处理归一化条件 由于 $\sum_{a_t} \pi_{\theta}(a_t|s_t,x) = 1$, 其梯度为 0:

$$\sum_{a_t} \nabla_{\theta} \pi_{\theta}(a_t | s_t, x) = \nabla_{\theta} \sum_{a_t} \pi_{\theta}(a_t | s_t) = \nabla_{\theta} 1 = 0.$$
 (44)

因此第二项求和为 0, 仅保留第一项:

$$-\nabla_{\theta} \text{KL}(\pi_{\theta}(\cdot|s_t, x) || \pi_{ref}(\cdot|s_t, x)) = -\sum_{y} \nabla_{\theta} \pi_{\theta}(a_t|s_t, x) \cdot \log \frac{\pi_{\theta}(a_t|s_t, x)}{\pi_{ref}(a_t|s_t, x)}.$$
(45)

步骤 8: 对数导数技巧 利用 $\nabla_{\theta}\pi_{\theta}(a_t|s_t,x) = \pi_{\theta}(y|x)\nabla_{\theta}\log \pi_{\theta}(a_t|s_t,x)$, 改 写为:

$$-\nabla_{\theta} \text{KL}(\pi_{\theta}(\cdot|s_t, x) || \pi_{ref}(\cdot|s_t, x)) = -\sum_{a_t} \pi_{\theta}(a_t|s_t, x) \nabla_{\theta} \log \pi_{\theta}(a_t|s_t, x) \cdot \log \frac{\pi_{\theta}(a_t|s_t, x)}{\pi_{ref}(a_t|s_t, x)}.$$
(46)

步骤 9: 期望形式 最终梯度可表示为期望:

$$-\nabla_{\theta} KL_{t}(\pi_{\theta} \| \pi_{ref}) = -\mathbb{E}_{x \sim D, a_{t} \sim \pi_{\theta}(a_{t}|s_{t}, x)} \left[\nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}, x) \cdot \log \frac{\pi_{\theta}(a_{t}|s_{t}, x)}{\pi_{ref}(a_{t}|s_{t}, x)} \right]$$
$$= \mathbb{E}_{x \sim D, a_{t} \sim \pi_{\theta}(a_{t}|s_{t}, x)} \left[\nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}, x) \cdot \log \frac{\pi_{ref}(a_{t}|s_{t}, x)}{\pi_{\theta}(a_{t}|s_{t}, x)} \right].$$

$$(47)$$

损失函数形式 根据梯度公式 eq. (47), 损失函数可推导为:

$$\mathcal{L}_{\mathrm{KL}_{t}}(\theta, \mathrm{ref}) = \mathbb{E}_{x \sim D, a_{t} \sim \pi_{\theta}(a_{t}|s)} \left[\log \pi_{\theta}(a_{t}|s_{t}, x) \cdot \mathrm{SG} \left(\log \frac{\pi_{\theta}(a_{t}|s_{t}, x)}{\pi_{\mathrm{ref}}(a_{t}|s_{t}, x)} \right) \right]$$

$$= \mathbb{E}_{x \sim D} \mathbb{E}_{a_{t} \sim \pi_{\theta}(a_{t}|s_{t}, x)} \frac{1}{2} \left[\log \frac{\pi_{\theta}(a_{t}|s_{t}, x)}{\pi_{\mathrm{ref}}(a_{t}|s_{t}, x)} \right]^{2}$$

$$(48)$$

其中 SG(·) 表示阻断梯度(代码实现中对应 '.detach()' 函数)。

8 高维高斯分布的 KL 散度和梯度的推导

考虑两个 k 维各向同性高斯分布: $P \sim \mathcal{N}(\boldsymbol{\mu}_{\theta}, \sigma_1^2 \mathbf{I}), Q \sim \mathcal{N}(\boldsymbol{\mu}_{ref}, \sigma_2^2 \mathbf{I})$ 其概率密度函数分别为:

$$P(\mathbf{x}) = (2\pi\sigma_1^2)^{-k/2} \exp\left(-\frac{\|\mathbf{x} - \boldsymbol{\mu}_{\theta}\|^2}{2\sigma_1^2}\right)$$

$$Q(\mathbf{x}) = (2\pi\sigma_2^2)^{-k/2} \exp\left(-\frac{\|\mathbf{x} - \boldsymbol{\mu}_{\text{ref}}\|^2}{2\sigma_2^2}\right)$$
(49)

8.1 KL 散度定义

KL 散度定义为:

$$D_{\mathrm{KL}}(P \parallel Q) = \mathbb{E}_{\mathbf{x} \sim P} \left[\ln \frac{P(\mathbf{x})}{Q(\mathbf{x})} \right]$$
 (50)

将密度函数代入,展开对数比:

$$\ln \frac{P(\mathbf{x})}{Q(\mathbf{x})} = \frac{k}{2} \ln \frac{\sigma_2^2}{\sigma_1^2} + \left[-\frac{\|\mathbf{x} - \boldsymbol{\mu}_\theta\|^2}{2\sigma_1^2} + \frac{\|\mathbf{x} - \boldsymbol{\mu}_{\text{ref}}\|^2}{2\sigma_2^2} \right]$$
(51)

8.2 逐项计算期望

将 KL 散度拆分为常数项与二次项之和:

$$D_{\mathrm{KL}} = \underbrace{\frac{k}{2} \ln \frac{\sigma_2^2}{\sigma_1^2}}_{\text{\text{\text{$\graph}$}}} + \underbrace{\mathbb{E}_P \left[-\frac{\|\mathbf{x} - \boldsymbol{\mu}_{\theta}\|^2}{2\sigma_1^2} + \frac{\|\mathbf{x} - \boldsymbol{\mu}_{\mathrm{ref}}\|^2}{2\sigma_2^2} \right]}_{=: \text{\text{$\sigma}}}$$
(52)

计算 $\mathbb{E}_P[||\mathbf{x} - \boldsymbol{\mu}_{\theta}||^2]$ 由于 $\mathbf{x} \sim P$, 协方差矩阵为 $\sigma_1^2 \mathbf{I}$, 故:

$$\mathbb{E}_P[\|\mathbf{x} - \boldsymbol{\mu}_{\theta}\|^2] = \operatorname{tr}(\sigma_1^2 \mathbf{I}) = k\sigma_1^2$$
(53)

计算 $\mathbb{E}_P[||\mathbf{x} - \boldsymbol{\mu}_{ref}||^2]$ 展开二次型并取期望:

$$\|\mathbf{x} - \boldsymbol{\mu}_{\text{ref}}\|^2 = \|\mathbf{x} - \boldsymbol{\mu}_{\theta} + \boldsymbol{\mu}_{\theta} - \boldsymbol{\mu}_{\text{ref}}\|^2$$
$$= \|\mathbf{x} - \boldsymbol{\mu}_{\theta}\|^2 + 2(\mathbf{x} - \boldsymbol{\mu}_{\theta})^{\top} (\boldsymbol{\mu}_{\theta} - \boldsymbol{\mu}_{\text{ref}}) + \|\boldsymbol{\mu}_{\theta} - \boldsymbol{\mu}_{\text{ref}}\|^2$$
(54)

取期望后,交叉项因 $\mathbb{E}_P[\mathbf{x} - \boldsymbol{\mu}_{\theta}] = 0$ 而消失:

$$\mathbb{E}_P[\|\mathbf{x} - \boldsymbol{\mu}_{\text{ref}}\|^2] = k\sigma_1^2 + \|\boldsymbol{\mu}_{\theta} - \boldsymbol{\mu}_{\text{ref}}\|^2$$
 (55)

代入二次项

$$\mathbb{E}_{P}\left[-\frac{\|\mathbf{x} - \boldsymbol{\mu}_{\theta}\|^{2}}{2\sigma_{1}^{2}} + \frac{\|\mathbf{x} - \boldsymbol{\mu}_{\text{ref}}\|^{2}}{2\sigma_{2}^{2}}\right] = -\frac{k\sigma_{1}^{2}}{2\sigma_{1}^{2}} + \frac{k\sigma_{1}^{2} + \|\boldsymbol{\mu}_{\theta} - \boldsymbol{\mu}_{\text{ref}}\|^{2}}{2\sigma_{2}^{2}}$$

$$= -\frac{k}{2} + \frac{k\sigma_{1}^{2}}{2\sigma_{2}^{2}} + \frac{\|\boldsymbol{\mu}_{\theta} - \boldsymbol{\mu}_{\text{ref}}\|^{2}}{2\sigma_{2}^{2}}$$
(56)

合并所有项 将常数项与二次项合并:

$$D_{KL} = \frac{k}{2} \ln \frac{\sigma_2^2}{\sigma_1^2} - \frac{k}{2} + \frac{k\sigma_1^2}{2\sigma_2^2} + \frac{\|\boldsymbol{\mu}_{\theta} - \boldsymbol{\mu}_{ref}\|^2}{2\sigma_2^2}$$

$$= \frac{k}{2} \left[2 \ln \frac{\sigma_2}{\sigma_1} + \frac{\sigma_1^2}{\sigma_2^2} - 1 \right] + \frac{\|\boldsymbol{\mu}_{\theta} - \boldsymbol{\mu}_{ref}\|^2}{2\sigma_2^2}$$
(57)

最终公式 整理后得到:

$$D_{\mathrm{KL}}(P \parallel Q) = \underbrace{k \left(\ln \frac{\sigma_2}{\sigma_1} + \frac{\sigma_1^2}{2\sigma_2^2} - \frac{1}{2} \right)}_{\text{7.25 fiff}} + \underbrace{\frac{\|\boldsymbol{\mu}_{\theta} - \boldsymbol{\mu}_{\mathrm{ref}}\|^2}{2\sigma_2^2}}_{\text{Each right}}$$
(58)

当 $\sigma = \sigma_1 = \sigma_2$ 时,

$$D_{\mathrm{KL}}(P \parallel Q) = \frac{\|\boldsymbol{\mu}_{\theta} - \boldsymbol{\mu}_{\mathrm{ref}}\|^2}{2\sigma^2} \tag{59}$$

8.3 对 μ_{θ} 的梯度推导

从 KL 散度公式中提取与 μ_{θ} 相关的项:

$$D_{\mathrm{KL}}(P \parallel Q) = \underbrace{\frac{\|\boldsymbol{\mu}_{\theta} - \boldsymbol{\mu}_{\mathrm{ref}}\|^{2}}{2\sigma_{2}^{2}}}_{\text{唯一与}\;\boldsymbol{\mu}_{\theta}\;\mathrm{相关的项}} + 其他与\;\boldsymbol{\mu}_{\theta}\;\mathrm{无关的项}. \tag{60}$$

步骤 1: 展开二次型 对 $\|\boldsymbol{\mu}_{\theta} - \boldsymbol{\mu}_{\mathrm{ref}}\|^2$ 展开:

$$\|\boldsymbol{\mu}_{\theta} - \boldsymbol{\mu}_{\text{ref}}\|^2 = (\boldsymbol{\mu}_{\theta} - \boldsymbol{\mu}_{\text{ref}})^{\mathsf{T}} (\boldsymbol{\mu}_{\theta} - \boldsymbol{\mu}_{\text{ref}}). \tag{61}$$

步骤 2: 计算关于 μ_{θ} **的梯度** 利用二次型的梯度公式:

$$-\nabla_{\boldsymbol{\mu}_{\theta}} \left[(\boldsymbol{\mu}_{\theta} - \boldsymbol{\mu}_{ref})^{\top} (\boldsymbol{\mu}_{\theta} - \boldsymbol{\mu}_{ref}) \right] = -2(\boldsymbol{\mu}_{\theta} - \boldsymbol{\mu}_{ref}). \tag{62}$$

步骤 3: 组合梯度分量 将梯度结果代入 KL 散度表达式:

$$-\nabla_{\boldsymbol{\mu}_{\theta}} D_{\mathrm{KL}} = -\frac{1}{2\sigma_{2}^{2}} \cdot 2(\boldsymbol{\mu}_{\theta} - \boldsymbol{\mu}_{\mathrm{ref}}) = -\frac{\boldsymbol{\mu}_{\theta} - \boldsymbol{\mu}_{\mathrm{ref}}}{\sigma_{2}^{2}}.$$
 (63)

最终梯度表达式

$$-\nabla_{\boldsymbol{\mu}_{\theta}} D_{\mathrm{KL}}(P \parallel Q) = -\frac{\boldsymbol{\mu}_{\theta} - \boldsymbol{\mu}_{\mathrm{ref}}}{\sigma_{2}^{2}}$$
 (64)

9 DPO 推导

本节基于 KL 约束的奖励最大化目标,推导出可操作的直接偏好优化目标函数。首先建立基础优化问题:

$$\max_{\pi} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi} [r(x, y)] - \beta D_{\text{KL}} [\pi(y|x) || \pi_{\text{ref}}(y|x)]$$

$$= \max_{\pi} \mathbb{E}_{x \sim \mathcal{D}} \mathbb{E}_{y \sim \pi(y|x)} \left[r(x, y) - \beta \log \frac{\pi(y|x)}{\pi_{\text{ref}}(y|x)} \right]$$

$$= \min_{\pi} \mathbb{E}_{x \sim \mathcal{D}} \mathbb{E}_{y \sim \pi(y|x)} \left[\log \frac{\pi(y|x)}{\pi_{\text{ref}}(y|x)} - \frac{1}{\beta} r(x, y) \right]$$
(65)

为求解该优化问题,引入配分函数 Z(x) 构造概率分布:

$$Z(x) = \sum_{y} \pi_{\text{ref}}(y|x) \exp\left(\frac{1}{\beta}r(x,y)\right)$$
 (66)

定义新的参考分布 π* 为:

$$\pi^*(y|x) = \frac{1}{Z(x)} \pi_{\text{ref}}(y|x) \exp\left(\frac{1}{\beta} r(x,y)\right)$$
(67)

将目标函数重构为:

$$\min_{\pi} \mathbb{E}_{x \sim \mathcal{D}} \left[D_{\text{KL}}(\pi(y|x) || \pi^*(y|x)) - \log Z(x) \right]$$
 (68)

由于 Z(x) 与策略 π 无关, 优化目标简化为最小化 KL 散度项。根据 KL 散度的非负性, 当 $\pi = \pi^*$ 时取得全局最优解。

9.1 从奖励建模到偏好学习

实际应用中直接求解 π^* 存在两大障碍: 1) 真实奖励函数 r^* 未知; 2) 配分函数 Z(x) 的计算涉及全响应空间积分。为此,我们引入偏好学习框架。

采用 Bradley-Terry 模型,对于输入 x 和响应对 (y_w, y_l) ,偏好概率建模为:

$$p^*(y_w \succ y_l|x) = \frac{\exp(r^*(x, y_w))}{\exp(r^*(x, y_w)) + \exp(r^*(x, y_l))}$$
(69)

关键突破在于建立奖励函数与最优策略的显式关联。由式(2)可得:

$$r(x,y) = \beta \log \frac{\pi^*(y|x)}{\pi_{\text{ref}}(y|x)} + \beta \log Z(x)$$
(70)

将奖励差表达式代入偏好概率模型:

$$p^{*}(y_{w} \succ y_{l}|x) = \frac{1}{1 + \exp\left(\beta \log \frac{\pi^{*}(y_{l}|x)}{\pi_{\text{ref}}(y_{l}|x)} - \beta \log \frac{\pi^{*}(y_{w}|x)}{\pi_{\text{ref}}(y_{w}|x)}\right)}$$
(71)

9.2 最终目标函数

通过极大似然估计,得到直接优化策略的参数化目标函数:

$$\mathcal{L}_{\text{DPO}}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(y_w | x)}{\pi_{\text{ref}}(y_w | x)} - \beta \log \frac{\pi_{\theta}(y_l | x)}{\pi_{\text{ref}}(y_l | x)} \right) \right]$$
(72)

10 重要性采样

10.1 基本概念与动机

重要性采样(Importance Sampling)是强化学习中实现离策略(off-policy)学习的关键技术, 其核心思想是通过引入行为策略 (behavior policy) 的采样分布来估计目标策略(target policy)的期望值。这一方法在策略优化中具有双重意义:

1. ** 样本复用 **: 允许利用历史策略生成的旧样本进行当前策略更新,显著提升数据利用率 2. ** 方差控制 **: 通过重要性权重修正新旧策略的概率分布偏差,维持无偏估计特性

10.2 策略梯度推导

考虑策略梯度基本形式:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{(s_t, a_t) \sim \pi_{\theta}} \left[A_{\theta}(s_t, a_t) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right] \tag{73}$$

当转换为离策略更新时,需要引入重要性权重(Importance Weight) $\rho_t = \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta'}(a_t|s_t)}$:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{(s_t, a_t) \sim \pi_{\theta'}} \left[\frac{\pi_{\theta}(s_t, a_t)}{\pi_{\theta'}(s_t, a_t)} A_{\theta}(s_t, a_t) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right]$$

$$= \mathbb{E}_{(s_t, a_t) \sim \pi_{\theta'}} \left[\frac{\pi_{\theta}(a_t | s_t) \pi_{\theta}(s_t)}{\pi_{\theta'}(a_t | s_t) \pi_{\theta'}(s_t)} A_{\theta}(s_t, a_t) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right]$$

$$\approx \mathbb{E}_{(s_t, a_t) \sim \pi_{\theta'}} \left[\frac{\pi_{\theta}(a_t | s_t)}{\pi_{\theta'}(a_t | s_t)} A_{\theta'}(s_t, a_t) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right]$$

$$(74)$$

推导过程中包含两个重要近似:

- 状态分布抵消假设: $\pi_{\theta}(s_t) \approx \pi_{\theta'}(s_t)$, 在策略更新幅度较小时成立
- 优势函数近似: $A_{\theta}(s_t, a_t) \approx A_{\theta'}(s_t, a_t)$, 要求新旧策略差异可控

10.3 目标函数形式化

今 $\theta' = \theta_{old}$, 得到离策略目标函数:

$$J(\theta) = \mathbb{E}_{(s_t, a_t) \sim \pi_{\theta_{\text{old}}}} \left[\frac{\pi_{\theta}(a_t | s_t)}{\pi_{\theta_{\text{old}}}(a_t | s_t)} A_{\theta_{\text{old}}}(s_t, a_t) \right]$$
(75)

该目标函数具有以下特性:

- 1. **无偏性**: 当 π_{θ} 与 $\pi_{\theta_{\text{old}}}$ 的支撑集相同时保持无偏估计
- 2. **方差敏感性**: 重要性权重 ρ_t 的数值稳定性直接影响梯度质量
- 3. **策略约束**: 需通过 KL 散度等度量限制 π_{θ} 与 $\pi_{\theta_{old}}$ 的差异