

Reti di Calcolatori

MODELLI ISO/OSI e TCP/IP

Reti di Calcolatori

- Livelli e Servizi
- Il modello OSI
- Il modello TCP/IP
- Un confronto tra OSI e TCP/IP
- ARPANET
- Ethernet
- Reti ATM reti wireless

Relazione tra Servizi e Protocolli

 Il servizio implementato dal protocollo a livello k viene fornito al livello k+1.

- I servizi sono disponibili presso i SAP.
- Ogni SAP ha un indirizzo univoco.
- I SAP del livello n sono i punti dove il livello n+1 puo' accedere
 ai servizi offerti dal livello n.

Servizi con Connessione e senza Connessione

I livelli possono offrire differenti tipi di servizi.

Con connessione

Senza connessione

SERVIZI	Esempi
Serie di messaggi affidabili	Sequenza di pagine
Serie di byte affidabili	Collegamento remoto
Connessione non affidabile	Voce digitalizzata
Datagram non affidabile	Blocchi di posta elettronica
Datagram con ack	Posta elettronica con ricevuta
Richiesta - Risposta	Interrogazione database

Primitive per i Servizi

 Esempi di primitive per realizzare un semplice servizio con connessione.

Primitive	Meaning
LISTEN	Block waiting for an incoming connection
CONNECT	Establish a connection with a waiting peer
RECEIVE	Block waiting for an incoming message
SEND	Send a message to the peer
DISCONNECT	Terminate a connection

 Pacchetti inviati in una semplice interazione client-server su una rete connection-oriented.

Il Modello ISO-OSI

Il modello OSI (Open Systems Initiative) È composto da 7 livelli.

Modello ISO-OSI

ISO – International Standard Organization OSI – Open System Interconnection

- Tramite l'organizzazione a livelli di definisce un grado di astrazione.
- I livelli devono corrispondere a funzioni definite.
- Le funzioni devono considerare l'insieme degli standard.
- I confini dei livelli devono minimizzare il flusso informazioni.
- Il numero di livelli deve essere ottimale (non troppi né pochi).

Modello ISO-OSI

Livello Fisico

Riguarda la trasmissione dei bit sul canale fisico di trasmissione

Coinvolge aspetti di tipo:

- elettrico (linee comunicazione, propagazione onde)
- comunicazione (simplex, half-, full-duplex, ...)
- meccanico (standards connettori, ...)

Livello Data Link

Le funzionalità di questo livello sono:

- Trasforma la linea fisica in una linea in cui gli errori di trasmissione vengano sempre segnalati.
- 2. Divide le informazioni in pacchetti e li trasmette attraverso il mezzo fisico, attendendo un segnale di "avvenuta ricezione" (ack).
- 3. Gestisce l'eventuale duplicazione dei frame ricevuti, causata dalla perdita dell'ack.
- 4. Sincronizza un mittente veloce con un ricevente lento.
- 5. Gestisce l'accesso al canale di trasmissione condiviso.

Livello Network

Le funzionalità del livello Rete sono:

- 1. Controlla il flusso di pacchetti.
- 2. Gestisce la congestione della rete.
- 3. Gestisce l'accounting dei pacchetti sulle reti a pagamento.
- 4. Implementa l'interfaccia necessaria alla comunicazione di reti di tipo diverso.

Livello Transport

Le funzionalità di questo livello sono:

- Accetta dati dal livello superiore, li spezza in parti più piccole e le trasmette, assicurando un servizio privo di errori e l'ordine corretto di ricomposizione.
- 2. Gestisce la diffusione di messaggi a più destinazioni.
- 3. Realizza il recapito dei messaggi senza garanzia sull'ordine di arrivo.

Livello Session

Le funzionalità di questo livello sono:

- 1. Controlla il dialogo tra due macchine: la comunicazione non può essere sempre full-duplex, questo layer tiene traccia di chi è il turno attuale.
- 2. Gestisce il controllo dei token.
- 3. Gestisce la sincronizzazione del trasferimento dei dati.

Livello Presentation

Le funzionalità di questo livello si limitano

 alla traduzione dei dati che viaggiano sulla rete in formati astratti.

Queste informazioni vengono poi riconvertite nel formato proprietario della macchina destinataria.

Livello Application

I servizi di questo livello sono completamente legati alle applicazioni:

- Quali dati trasmettere
- Quando trasmettere
- Dove trasmettere / a chi
- Significato di bits/bytes.

Esempi di applicazioni sono: File Transfer, Posta elettronica, World Wide Web, Multimedialità, File System distribuiti, ecc.

Comunicazione nel modello OSI

TCP/IP vs OSI

Applicazione

(FTP, SMTP, TELNET, HTTP, DNS,)

Trasporto (TCP, UDP)

Internet (IP)

Host-to-Network

(non specificato)

Non presenti nel modello TCP/IP

TCP/IP

Applicazioni e comunicazioni in TCP/IP

Livello di TRASPORTO

TCP Transmission Control Protocol

- flusso di byte bidirezionale canale virtuale,
- · dati non duplicati,
- · affidabili, con controllo di flusso

UDP User Datagram Protocol

Scambio di messaggi

livello di RETE

IP Internet Protocol

 Scambio di datagrammi senza garanzia di consegna.

TCP/IP vs OSI

I vantaggi del TCP/IP sull'OSI sono fondamentalmente due:

- Quando nacque OSI, TCP/IP era già presente nel mondo accademico.
- 2. Lo stack TCP/IP è enormemente più semplice dello stack OSI.

Il TCP/IP parte dai protocolli mentre l'OSI parte dai livelli.

TCP/IP vs OSI

Protocolli e reti originali nel modello TCP/IP.

Confronto tra OSI e TCP/IP

- Concetti centrali nel modello OSI
 - Servizi
 - Interfacce
 - Protocolli

 Il modello TCP/IP originale non aveva una chiara distinzione tra questi concetti.

- Perchè l'OSI è rimasto solo un modello di riferimento ?
 - Momento sbagliato
 - Cattiva tecnologia
 - Non buone implementazioni
 - Cattiva politica.

Problemi del modello TCP/IP

- Limiti del modello:
 - Non è generale.
 - Non distingue tra livelli, interfacce e protocolli.
 - Il livello Host-to-Network non è un livello.
 - Non sono definiti i livelli Fisico e Data link.
 - Vi sono protocolli (TELNET) e implementazioni non efficienti.

Modello OSI e Protocolli reali

01011

Modello Ibrido

 Il modello usato nel testo di Tanenbaum è basato su cinque livelli.

Esempi di reti

ARPANET, NFSNET, Internet

Reti Connection-Oriented :
 X.25, Frame Relay, e ATM

Ethernet

Wireless LAN 82.11

ARPANET

La struttura originale di ARPANET.

IMP = Interface Message Processor

ARPANET

Dicembre 1969

Luglio 1970

MCCLELLAN ✓ UTAH LINCOLN CASE SRI **NCAR GWC** RADC LLINOIS CARN O AMES O ბusc LINC **ഗ**UCSB MITRE \diamondsuit ₽міт STANO OSDC ETAC O **UCLA** RAND **TINKER** BBN **HARVARD** NBS

Marzo 1971

April 1972

(d)

September 1972.

NSFNET

La dorsale NSFNET nel 1988.

Uso di Internet

- Applicazioni Tradizionali (1970 1990)
 - E-mail
 - News
 - Remote login
 - File transfer

Non ancora World Wide Web!

Reti ATM

- Negli anni '80 è stato definito il modello ATM (Asynchronous Transfer Mode) per trasmissioni voci e dati.
- Principi delle reti ATM:
 - celle piccole (48 byte + 5 byte header) di lunghezza fissa
 - Rete a circuito virtuale
 - interfaccia ben definita tra rete e utente

Reti ATM

Un circuito virtuale.

Il Modello ATM

CS: Convergence sublayer

SAR: Segmentation and reassembly sublayer

TC: Transmission convergence

sublayer

PMD: Physical medium dependent sublayer

Il Modello ATM

OSI layer	ATM layer	ATM sublayer	Functionality
3/4	AAL	cs	Providing the standard interface (convergence)
		SAR	Segmentation and reassembly
2/3	АТМ		Flow control Cell header generation/extraction Virtual circuit/path management Cell multiplexing/demultiplexing
2	Physical	TC	Cell rate decoupling Header checksum generation and verification Cell generation Packing/unpacking cells from the enclosing envelope Frame generation
1	, 5.54	PMD	Bit timing Physical network access

I livelli e i sottolivelli ATM e le loro funzioni.

Ethernet

Architettura originale di Ethernet.

LAN Wireless

- (a) Rete Wireless con una stazione base.
- (b) Rete wireless ad hoc.

LAN Wireless

Una rete multicella 802.11.

