Reliable Data Transfer

Wanjiun Liao March 30 2018

Reliable transfers?

- In sequence, no loss, no error, no duplication etc.
- Acknowledgment + retransmission
 - Two options:
 - Positive ACK (ACK)
 - Negative ACK (NAK)
- Error detection and sequence number
- Timeout

Error Detection

- Internet checksum
 - 1's complement
 - When adding numbers, a carryout from the most significant bit needs to be added to the result

wraparound

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

sum checksum 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1

Automatic Repeat reQuest (ARQ)

- Alternating-bit protocol
 - Stop and wait (S&W)
- Sliding window protocol
 - Go back N (GBN)
 - Selective repeat (selective retransmission, selective reject) (SR)

Stop and Wait

- Two questions to answer
 - How?
 - What if a lossy channel with bit errors?
- Sender
 - Transmit single frame and wait for ACK
 - If no ACK within timeout, retransmit
 - How to tell duplicate ACK from the normal one?
- Receiver
 - If OK, send ACK
 - If received frame damaged, discard it
 - How to tell retransmission from new one?
- One-bit sequence number is fine.

S&W Example

S&W Example (cont.)

Problem with Stop and Wait

- Work well for a few large frames, but become inadequate, when
 - One small frame at a time
 - If a>1, S&W has inefficient link utilization

where a = propagation delay/transmission delay

Solution: pipelining!

Stop and Wait Link Utilization

Stop and Wait Link Utilization

Propagation delay = distance / light speed

S&W Utilization Revisited

Example-1:

- (ATM cell) Data: 424 bits
- Data rate: 155.52 Mbps $t = 424/(155.52 \times 10^6) = 2.7 \times 10^6 = 2.7 \times 10^6$
- 10^6 meters fiber optics
 p = 10^6/(2x10^8) = 0.5x10^-2 sec
 a = p/t ~ 1850

$$U = 1/(1+2a) = 0.00027$$

S&W Utilization Revisited

Example-2:

- (Ethernet frame) Data: 1000 bits
- Data rate: 10 Mbps \sim 1Gbps $t = 1000/(10x10^6) = 10^-4$ sec
- 0.1 to 10 km fiber optics
 p = 1000/(2x10^8) = 0.5x10^-5 sec
 a = p/t ~ 0.05

$$U = 1/(1+2a) = 0.91$$

Sliding Window Mechanism

- Allow multiple frames to be in transit → improve S&W's low utilization as a > 1
- Source can send up to W frames without ACK
- Each frame is numbered and buffered at both sides
- Four intervals in a sliding window
 - Base, next_seq, W
- Sender's window vs. receiver window
- Window size vs. sequence number

Sliding Window Diagram

(a) Sender's perspective

(b) Receiver's perspective

Sliding Window Link Utilization

Go Back N (GBN)

Sender:

- k-bit seq # in pkt header
- "window" of up to N, consecutive unack'ed pkts allowed

Receiver:

- ACK-only: always send ACK for correctly-received pkt with highest in-order seq #
- Discard out-of-order packets -> no buffering

Selective Repeat (SR)

sender

data from above:

if next available seq # in window, send pkt

timeout(n):

resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N]:

- mark pkt n as received
- if n smallest unACKed pkt, advance window base to next unACKed seq #

receiver

pkt n in [rcvbase, rcvbase+N-1]

- send ACK(n)
- out-of-order: buffer
- in-order: deliver (also deliver buffered, in-order pkts), advance window to next notyet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

ACK(n)

otherwise:

ignore

SR: Sender and Receiver's Windows

(b) receiver view of sequence numbers

SR Example

SR Dilemma

Example:

- seq #'s: 0, 1, 2, 3
- window size=3
- receiver sees no difference in two scenarios!
- incorrectly passes duplicate data as new in (a)
- Q: what relationship between seq # size and window size?

