Particle spectrograph

Wave operator and propagator

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2i}{k(1+2k^2)(r_1+r_5)}$	$\frac{i\sqrt{2}(3k^2(r_1+r_5)+2t_3)}{k(1+2k^2)^2(r_1+r_5)t_3}$	0	$\frac{6k^2(r_1+r_5)+4t_3}{(1+2k^2)^2(r_1+r_5)t_3}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^-\alpha}^{\#2}$	0	0	0	$\frac{\sqrt{2}}{k^2 (1+2 k^2) (r_1+r_5)}$	$\frac{3k^2(r_1+r_5)+2t_3}{(k+2k^3)^2(r_1+r_5)t_3}$	0	$-\frac{i\sqrt{2}(3k^2(r_1+r_5)+2t_3)}{k(1+2k^2)^2(r_1+r_5)t_3}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2 \left(r_1 + r_5 \right)}$	$\frac{\sqrt{2}}{k^2 (1+2 k^2) (r_1 + r_5)}$	0	$-\frac{2i}{k(1+2k^2)(r_1+r_5)}$
$\tau_1^{\#1}_+ \alpha\beta$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}_{\alpha\beta}\ \tau_{1}^{\#1}_{\alpha\beta}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	_	0	0	0	0	0	0
	$r_1^{\#1} + \alpha \beta$	$r_1^{\#2} + \alpha \beta$	$t_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} + ^{\alpha}$	$t_{1}^{#2} + \alpha$

$S_{F} == \\ \iiint \left\{ \left(\frac{1}{3} \left(2 t_{3} \omega_{\mu}^{\ \alpha'} \omega_{\kappa \alpha}^{\ \kappa} + 3 f^{\alpha \beta} \tau_{\alpha \beta} + 3 \omega^{\alpha \beta \chi} \sigma_{\alpha \beta \chi} - 3 r_{5} \partial_{\nu} \omega^{\kappa \lambda}_{\ \kappa} \partial_{\nu} \omega_{\lambda}^{\ \alpha} - 2 r_{1} \right. \\ \left. \partial^{\beta} \omega^{\theta \alpha} \partial_{\theta} \omega_{\mu}^{\ \kappa} - 2 r_{1} \partial_{\theta} \omega_{\mu}^{\ \kappa} \partial_{\kappa} \omega^{\alpha \beta \theta} + 2 r_{1} \partial_{\theta} \omega_{\mu}^{\ \kappa} \partial_{\kappa} \omega^{\theta \alpha \beta} - 3 r_{5} \partial_{\sigma} \omega_{\mu}^{\ \alpha} \right. $
$\iint \left(\frac{1}{3} \left(2 t_3 \ \omega_{\kappa}^{\alpha \prime} \ \omega_{\kappa \alpha}^{\kappa} + 3 f^{\alpha \beta} \ \tau_{\alpha \beta} + 3 \ \omega^{\alpha \beta \chi} \ \sigma_{\alpha \beta \chi} - 3 r_5 \partial_{\iota} \omega^{\kappa \lambda}_{\kappa} \partial_{\iota} \omega_{\lambda}^{\alpha} - 2 r_1 \right) \right)$
$^{eta}\omega^{eta lpha}$ $_{eta eta \omega}$ $_{eta}^{\kappa}$ - 2 $_{\Gamma_1}$ $_{eta \omega}$ $_{eta}^{\kappa}$ $_{eta}$ $_{eta}$ $_{eta}$ $_{eta}^{\kappa}$ $_{eta}$ $_{eta$
$k \circ \alpha \beta = \alpha \beta \circ \alpha \circ \alpha \circ \beta \circ \alpha \circ \beta \circ \alpha \circ \beta \circ \beta \circ \beta$
$\partial_{\kappa}\omega^{\theta\kappa\lambda} + 3r_5\partial_{\theta}\omega_{\lambda}{}^{\alpha}\partial_{\kappa}\omega^{\theta\kappa\lambda} - 3r_5\partial_{\alpha}\omega_{\lambda}{}^{\alpha}_{\theta}\partial_{\kappa}\omega^{\kappa\lambda\theta} + 6r_5\partial_{\theta}\omega_{\lambda}{}^{\alpha}_{\partial\kappa}\omega^{\kappa\lambda\theta} -$
$2t_3 \ \omega_{\kappa\alpha}^{\ \ \alpha} \ \partial^{\kappa} f'_{\ \prime} - 2t_3 \ \omega_{\kappa\lambda}^{\ \ \lambda} \ \partial^{\kappa} f'_{\ \prime} - 4t_3 \ \partial^{\alpha} f_{\kappa\alpha} \ \partial^{\kappa} f'_{\ \prime} + 2t_3 \ \partial_{\kappa} f^{\lambda}_{\ \lambda} \ \partial^{\kappa} f'_{\ \prime} +$
$2t_3\;\omega_{_{l}\alpha}^{\;\;\alpha}\partial^\kappa f_{_{l}}^{\;\;\prime}+2t_3\;\omega_{_{l}\lambda}^{\;\;\lambda}\partial^\kappa f_{_{l}}^{\;\;\prime}+2t_3\partial^\alpha f_{_{\lambda}\alpha}^{\;\;\lambda}\partial^\kappa f_{_{\lambda}\kappa}+2r_1\partial_\kappa\omega^{\alpha\beta\theta}\partial^\kappa\omega_{\alpha\beta\theta}^{\;\;-}$
$2r_1\partial_\kappa\omega^{\thetalphaeta}\partial^\kappa\omega_{lphaeta heta}+2r_1\partial^eta\omega_{lpha}^{\ lpha\lambda}\partial_\lambda\omega_{lphaeta}^{\ \ \prime}-8r_1\partial^eta\omega_{lpha}^{\ \ \lambdalpha}\partial_\lambda\omega_{lphaeta}^{\ \ \prime}+$
$3r_5\partial_{lpha}\omega_{\lambda}^{a}_{}\partial^{\lambda}\omega^{\theta\kappa}_{\kappa}-3r_5\partial_{ heta}\omega_{\lambda}^{a}_{}\partial^{\lambda}\omega^{\theta\kappa}_{\kappa}))[t,x,y,z]dzdydxdt$

	$\omega_1^{\#1}_{+}{}_{\alpha\beta}$	$\omega_{1}^{\#2}_{+} lpha_eta f_{1}^{\#1}_{+}$	$f_{1}^{\#1}{}_{\!$	$\omega_{1^{-}\alpha}^{\#1}$	$\omega_{1^{\bar{-}}\alpha}^{\#2}$	$f_{1}^{\#1}{}_{\alpha}$	$f_{1}^{\#2}$
$\omega_1^{\#1} +^{\alpha\beta}$	$k^2 (2 r_1 + r_5)$	0	0	0	0	0	0
$\omega_1^{\#2} + ^{\alpha\beta}$	0	0	0	0	0	0	0
$\dagger^{\alpha \beta}$	0	0	0	0	0	0	0
$\omega_{1^{ ext{-}1}}^{\#_1} \dagger^{lpha}$	0	0	0	$k^2 (r_1 + r_5) + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	$-\frac{2}{3}$ ikt ₃
$\omega_{1}^{\#2} +^{lpha}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	د ع ع	0	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$f_{1}^{\#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{\#2} +^{\alpha}$	0	0	0	<u>2ikt3</u> 3	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
						#1	_#2 #1

$ au_0^{\#1} \qquad au_0^{\#2} \sigma_0^{\#1}$	$\frac{i\sqrt{2}k}{(1+2)^{2}\sqrt{2}\sqrt{2}}$ 0 0		$\frac{1}{(1+2k^2)^2t_3}$ 0 0	0 0 0	0 0 0	$\sigma_{2}^{\#1}{}_{\alpha\beta} \ \tau_{2}^{\#1}{}_{\alpha\beta} \ \sigma_{2}^{\#1}{}_{\alpha\beta\chi}$			$\sigma_{2}^{#1} + ^{\alpha \beta \chi}$ 0 0 $\frac{1}{k^2 r_1}$	c#1		c#2	41	
$\sigma_0^{\#1}$	$O_{0+}^{#1} + \left \frac{1}{(1+2)^{2/2}t^{2}} \right - \frac{1}{(1+2)^{2/2}t^{2}} \right $	1 VZ K	Ιώ	$\tau_0^{\#2} + 0$	$\sigma_{0}^{\#1}$ † 0	$\omega_{0^{+}}^{\#1}$ $f_{0^{+}}^{\#1}$ $f_{0^{+}}^{\#2}$ $\omega_{0^{-}}^{\#1}$	†	$\omega_{0}^{\#1}$ t_{3} $\sqrt{2} kt$ 0 0	- [^	$f_{0}^{#1} + \sqrt{2} k$ $\frac{k^2 k^2 t_3}{0}$	t ₃	f ^{#2} ₀ + 0 0 0 0	ω₀^{#1}0000	
ts/dalide denerators	Multiplicities	1	1	1	3	3	8	8	2	2	25		$\omega_{2^{-}}^{*1} \alpha eta \chi$	0
Source constraints/a	SO(3) irreps	$\sigma_{0}^{#1} == 0$	$\tau_{0+}^{\#2} == 0$	$t_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} = 0$	$\tau_{1}^{\#2}\alpha == 0$	$t_{1}^{\#1}{}^{\alpha} == 0$	$\tau_1^{\#1}\alpha\beta == 0$	$\sigma_{1}^{\#2}\alpha\beta==0$	$t_2^{\#1}\alpha\beta == 0$	$\sigma_{2+}^{\#1}\alpha\beta==0$	onstraints:		$\omega_2^{\#1}$ $\alpha_2^{\#1}$ $\alpha_3^{\#1}$ $\alpha_2^{\#1}$	$\omega_{2+}^{*1} + \alpha \beta = 0$ 0

Massive and massless spectra

(No massive particles)

Unitarity conditions

 $r_1 < 0 \&\& (r_5 < -r_1 || r_5 > -2 r_1) || r_1 > 0 \&\& -2 r_1 < r_5 < -r_1$