

インストール

\$ tar xzf FrontISTR-v5.1.tar.gz

\$ cd FrontISTR-v5.1

\$ mkdir build; cd build

\$ cmake .. -

DCMAKE_INSTALL_PREFIX=\$HOME/local

\$ make -j2; make install

並列実行

\$ hecmw_part1

\$ mpirun -np <4> fistr1

入力

	ファイルの種類	ファイル名
	全体制御ファイル	hecmw_ctrl.dat
	メッシュデータ	.msh
ľ	解析制御データ	.cnt
	領域分割制御データ	hecmw_part_ctrl.dat

出力

ファイルの種類	ファイル名	
ログファイル	<0>.log	
解析結果ファイル	.res.<0>.	
可視化用ファイル	_vis_psfpvtu	

全体制御ファイル(hecmw ctrl.dat)

!MESH, NAME=part_in, TYPE=HECMW-ENTIRE

<ModelName>.msh

!MESH, NAME=part_out, TYPE=HECMW-DIST

<ModelName>.p

!MESH, NAME=fstrMSH, TYPE=HECMW-DIST,

REFINE=<1>

<ModelName>.p

!CONTROL, NAME=fstrCNT

<ModelName>.cnt

!RESTART, NAME=restart in, IO=INOUT

<ModelName>.restart

!RESULT, NAME=fstrTEMP, IO=IN

<ModelName>.res

!RESULT, NAME=fstrRES, IO=OUT, TYPE=BINARY

<ModelName>.res

!RESULT, NAME=vis out, IO=OUT

<ModelName>_vis

!SUBDIR, ON

領域分割制御データ(hecmw_part_ctrl.dat)

!PARTITION, TYPE=NODE-BASED, METHOD=PMETIS, DOMAIN=<4>

メッシュファイル

!HFADER

<TITLE>

!NODE

<NODE_ID>, <x>, <y>, <z>

!ELEMENT, TYPE=<341>, EGRP=<E1>

<ELEM_ID>, <node1>, <node2>, <node3>, ...

!MATERIAL, NAME=<STRMAT>, ITEM=<3>

!ITEM=1, SUBITEM=2

<YoungModulus>, <PoissonRatio>

!ITEM=2

<Density>

!ITEM=3

<ExpansionCoeff>

!MATERIAL, NAME=<HEATMAT>, ITEM=<3>

!ITEM=1, SUBITEM=2

<Density>, <Temperature>

!ITEM=2, SUBITEM=2

<SpecificHeat>, <Temperature>

!ITEM=3, SUBITEM=2

<Conductivity>, <Temperature>

!SECTION, TYPE=<SOLID>, EGRP=<E1>,

MATERIAL=<STRMAT>

!NGROUP, NGRP=<NG1>

<node1>, <node2>, ...

!SGROUP, SGRP=<SG1>

<elem1>, <localsurf1>, <elem2>, <localsurf2>, ...

!EGROUP. EGRP=<EG1>

<elem1>, <elem2>, ...

!CONTACT PAIR, NAME=<CP1>

<Slave NodeGroup>, <Master SurfaceGroup>

!AMPLITUDE, NAME=<AMP1>, VALUE=

<RELATIVE|ABSOLUTE>

<value1>, <time1>, <value2>, <time2>, ...

!EQUATION

<Num terms>, <RHS>

<NODE ID>, <dof>, <coeff>, ...

!ZERO

<AbsoluteZero>

!END

バージョン

!VERSION

5

静解析

!SOLUTION, TYPE=STATIC

!STATIC

!BOUNDARY,GRPID=<1>

<NODE ID>, <開始自由度>, <終了自由度>, <拘束値

>

!CLOAD,GRPID=<1>

<NODE ID>, <自由度>, <荷重值>

!DLOAD,GRPID=<1>

<SGRP>, <荷重タイプ>, <荷重パラメータ>

!SPRING,GRPID=<1>

<NODE_ID>, <拘束自由度>, <ばね定数>

接触

!CONTACT_ALGO, TYPE=

<SLAGRANGE|ALAGRANGE>

!CONTACT, GRPID=<1>, NTOL=<法線方向閾値>,

TTOL=<接線方向閾値>, NPENALTY=<法線方向ペナル

ティ>, TPENALTY=<接線方向ペナルティ>

<接触ペア名>, <摩擦係数>, <摩擦のペナルティ剛性>

熱応力

!REFTEMP

<温度>

!TEMPERATURE, READRESULT=<結果ステップ数>,

SSTEP=<開始ステップ>, INTERVAL=<ステップ間隔>

固有値

!SOLUTION, TYPE=EIGEN

!EIGEN

<固有値数>, <許容差>, <最大反復数>

!BOUNDARY

熱伝導

!SOLUTION, TYPE=HEAT

!HEAT

<DT>, <計算時間>, <時間增分>, <許容変化>, <最大 反復>. <判定値>

!INITIAL_CONDITION, TYPE=<TEMPERATURE>

<NODE ID>, <温度>

!FIXTEMP

<NODE_ID>, <温度>

!CFLUX

<NODE ID>, <熱流束>

!DFLUX

<ELEMENT_ID>, <荷重タイプ>, <熱流束>

!SFLUX

<SGRP>, <熱流束>

I IFTI M

<ELEMENT_ID>, <荷重タイプ>, <熱伝達係数>, <雰

ISFI IM

<SGRP>, <熱伝達係数>, <雰囲気温度>

!RADIATE

<ELEMENT ID>, <荷重タイプ>, <輻射係数>, <雰囲

気温度>

!SRADIATE

<SGRP>, <輻射係数>, <雰囲気温度>

!WELD LINE

<電流>, <電圧>, <入熱効率>, <トーチ移動速度>

<EGRP>, <DOF>, <始点座標>, <終点座標>, <溶接源

の幅>, <溶接開始時刻>

動解析

!SOLUTION, TYPE=DYNAMIC

!BOUNDARY

!CLOAD

!DLOAD

!SPRING !VELOCITY, TYPE=<INITIAL|TRANSIT>, AMP=

<NAME>

<NODE ID>, <自由度>, <自由度>, <拘束値>

!ACCELERATION, TYPE=<INITIAL|TRANSIT>, AMP=

<NAME>

<NODE_ID>, <自由度>, <自由度>, <拘束値>

!INITIAL_CONDITION, TYPE=

<VELOCITY|ACCELERATION>
<NODE_ID>, <DOF>, <value>

時刻歴応答

!DYNAMIC, TYPE=<LINEAR|NONLINEAR>

<陰解法1|陽解法11>, <時刻歴1>

< 開始時刻 > , <終了時刻 > , <全ステップ数 > , <時間増分

<γ>, <β>

<集中質量1|consistent質量2>, 1, <Rm>, <Rk>

1, <モニタリング節点>, <モニタリング出力間隔>

周波数応答

!DYNAMIC, TYPE=NONLINEAR

<陰解法1|陽解法11>, <周波数2>

<下限周波数>, <上限周波数>, <応答計算点数>, <変位 測定周波数>

<振動開始時刻>, <振動終了時刻>

<集中質量1>, 1, <Rm>, <Rk>

<サンプリング数>, <モード空間1|物理空間2>, <モニ

タリング節点> <変位>, <速度>, <加速度>, 0, 0, 0 !EIGENREAD <固有値解析のログファイル> <モード始点>, <モード終点> !FLOAD

<NODE_ID>, <自由度>, <荷重值>

!AUTOINC PARAM, NAME=<AP1>

解析ステップ

!STEP, TYPE=<STATIC|VISCO>, SUBSTEPS=<最大サブステップ数>, CONVERG=<判定値>, MAXITER=<最大反復回数> <時間増分値>, <ステップ時間幅> BOUNDARY, <GRPID> LOAD, <GRPID> CONTACT, <GRPID>

自動時間増分

<時間増分減少率>, <最大反復数>, <合計反復数>, <接 触反復数>, <減少条件成立サブステップ> <時間増分増加率>, <最大反復数>, <合計反復数>, <接 触反復数>, <増加条件成立サブステップ> <カットバック時間増分減少率>, <カットバック回数> !TIME POINTS, NAME=<時刻リスト>, TIME= <STEP|TOTAL> <TIME> !STEP, TYPE=<STATIC|VISCO>, SUBSTEPS=<最大サ ブステップ数>, CONVERG=<判定値>, MAXITER=<最 大反復回数>, INC TYPE=AUTO, MAXRES=<最大許容 残差>, TIME POINTS=<時刻リスト名>, AUTOINCPARAM=<自動増分パラメータ名>, MAXCONTITER=<最大接触反復回数> <初期時間増分値>, <ステップ時間幅>, <時間増分下限 >, <時間増分上限> BOUNDARY, <GRPID> LOAD, <GRPID> CONTACT, <GRPID>

境界条件種類	属するカード
BOUNDARY	!BOUNDARY, !SPRING
LOAD	!CLOAD, !DLOAD, !TEMPERATURE
CONTACT	!CONTACT

出力

!WRITE, VISUAL, FREQUENCY=<出力間隔> !WRITE, RESULT, FREQUENCY=<出力間隔> !OUTPUT_VIS <出力変数名>, <ON|OFF> !OUTPUT_RES <出力変数名>, <ON|OFF> !OUTPUT_SSTYPE, TYPE=<SOLUTION|MATERIAL>

主な出力変数名

li .		
変数名	物理量	対象
DISP	変位	VIS,RES
REACTION	節点反力	VIS,RES
NSTRAIN	節点ひずみ	VIS,RES
NSTRESS	節点応力	VIS,RES
NMISES	節点Mises応力	VIS,RES
ESTRAIN	要素ひずみ	RES
ESTRESS	要素応力	RES
EMISES	要素Mises応力	RES
VEL	速度	VIS,RES
ACC	加速度	VIS,RES
TEMP	温度	VIS,RES

リスタート

!RESTART, FREQUENCY=<n>

局所座標

!ORIENTATION, NAME=<座標系名>, DEFINITION=COORDINATES <ax,ay,az>,<bx,by,bz>,<cx,cy,cz>

!ORIENTATION, NAME=<座標系名>, DEFINITION=NODES <a,b,c>

!MATERIAL, NAME=<材料名>

セクション

!SECTION, SECNUM=<メッシュデータのSECTION順>, ORIENTATION=<局所座標系名>, FORM361= <FBAR|IC|BBAR|FI>

材料物性値

!ELASTIC, TYPE=<ISOTROPIC|ORTHOTROPIC>,
DEPENDENCIES=<0>
<ヤング率>, <ポアソン比>
!DENSITY
<質量密度>
!EXPANSION_COEFF, TYPE=
<ISOTROPIC|ORTHOTROPIC>, DEPENDENCIES=
<0>
<線膨張係数>

!PLASTIC, YIELD=MISES, HARDEN=BILINEAR, DEPENDENCIES=<0>

<初期降伏応力>, <	更化係数>
-------------	-------

!PLASTIC, YIELD=MISES, HARDEN=SWIFT, DEPENDENCIES=<0> <ε0>, <K>, <n>

!PLASTIC, YIELD=<Mohr-Coulomb|Drucker-Prager>, HARDEN=BILIENAR, DEPENDENCIES=<0> <粘着力>, <内部摩擦角>, <硬化係数>

!HYPERELASTIC, TYPE=NEOHOOKE <C10>, <D>

!VISCOELASTIC <せん断緩和弾性率>, <緩和時間>

!CREEP, TYPE=Norton, DEPENDENCIES=<0>
<A>, <n>, <m>

ソルバー制御

!SOLVER, METHOD=<CG>, PRECOND=<1>, MPCMETHOD=<3> <反復回数>, <前処理繰り返し数>, <クリロフ>, <目標色数>, <セットアップ再利用> <打切り誤差>, <対角成分倍率>, 0.0

解法	備考
CG	
BiCGSTAB	
GMRES	クリロフ部分空間数を設定すること
GPBiCG	
DIRECT	
DIRECTmkl	接触解析で使う
MUMPS	

値	前処理
1,2	SSOR
3 Diagonal Scaling	
5	AMG
10 Block ILU(0)	
11	Block ILU(1)
12	Block ILU(2)

	値	MPC手法
	1	ペナルティ法
	2	MPC-CG法
	3	陽的自由度消去法

ソルバー制御(AMG)

|SOLVER, METHOD=<CG>, PRECOND=5, MPCMETHOD=<3>
<反復回数>, <前処理繰り返し数>, <クリロフ>, <目標色数>, <セットアップ再利用>
<打切り誤差>, <対角成分倍率>, 0.0
<粗グリッドソルバ>, <スムーザー>, <マルチグリッドサイクル>, <最大レベル>, <コースニングスキーム>, <スムーザースィーブ数>

ポスト処理(ParaView用データ出力)

!VISUAL !output_type=VTK

ポスト処理(BMP画像出力)

!VISUAL, method=PSR
!surface_num=1
!surface
!surface = 1
!display_method=1
!color_comp_name=STRESS
!color_comp=7
!x_resolution=800
!y_resolution=600
loutput_type=BMP

非線形解析

解析の種	重類	関連するカード
静解析		!SOLUTION, TYPE=NLSTATIC !STEP
動解析		!DYNAMIC, TYPE=NONLINEAR !STEP
接触解	折	!CONTACT !CONTACT_ALGO !STEP
材料非統	湶形	IPLASTIC IHYPERELASTIC IVISCOELASTIC ICREEP