

RELATIONEN

Fragen?

Quiz zu Relation.

Gegeben sei die Menge $M=\{1,2,3\}$ und die Relation R auf M mit $R=\{(1,2),(2,1),(2,3),(1,3)\}$. Kreuze alle wahren Aussagen an!

lacksquare R ist asymmetrisch.					
lacksquare R ist antisymmetrisch.					
R ist transitiv.					
lacksquare R ist irreflexiv.					
Lösung überprüfen					

Lösung.

Eigener Lösungsversuch.

* Relationen auf $\mathbb Z$. Betrachten Sie die Relationen auf $\mathbb Z$ in der linken Spalte der folgenden Tabelle. Füllen Sie dann folgende Tabelle aus:

	reflexiv?	irrefl.?	symm.?	asymm.?	antisymm.?	trans.?	Äqu. Rel.?	Ordnung?
<								
<u><</u>								
=								
≡								

Eigener Lösungsversuch.

	reflexiv?	irrefl.?	symm.?	asymm.?	antisymm.?	trans.?	Äqu. Rel.?	Ordnung?
<								
<u>≤</u>								
=								
=								

Zusammenhang: Funktion und Relation

Von einer Funktion

$$f: A \to B$$

 $x \mapsto f(x)$

bildet der Graph

$$R_f := \{(x, f(x)) \mid x \in A\} \subseteq A \times B$$

eine Relation, die sogenannte von f induzierte Relation. Beispiel:

Graph der Parabel als Relation. Geben Sie die von $f : \mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$ induzierte Relation an und skizzieren Sie diese.

Lösung.

Dagegen kann man aus einer Relation i.A. keine Funktion konstruieren. Beispiel:

$$R = \{(-2,4), (0,5), (-2,6), (1,8)\} \subseteq \{-2,0,1\} \times \{4,5,6,8\}$$

Ein weiteres Beispiel wird in den Übungen besprochen.

Anwendung: relationale Datenbanken. Eine Relation kann man als auch eine Tabelle interpretieren, also:

Beispiel: Tabellen product und manuf als Relationen

id	name	price	id_manuf
1	iPhone	600.59	
2	PC	499.0	
3	Server AIX	9999.00	
4	Drucker	95.0	

id	name	city
1	Apple	Cupertino
2	IBM	NY
3	HP	Palo Alto

Verschiedene Operationen (\rightarrow relationale Algebra und SQL) liefern daraus neue Tabellen, z.B. ein JOIN der beiden Tabellen liefert eine neue Tabelle/Relation:

 SQL : SELECT * FROM product JOIN manuf ON product.id_manuf=manuf.id

liefert das Ergebnis

<pre>product.id</pre>	name	price	id_manuf	manuf.id	name	city
1	iPhone	600.59	1	1	Apple	Cupertino
2	PC	499.0	2	2	IBM	NY
3	Server AIX	9999.00	2	2	IBM	NY
4	Drucker	95.0	3	3	HP	Palo Alto

Demo Datenbank-Skript.

```
_____
-- DDL --
_____
CREATE TABLE manuf (
   id INTEGER NOT NULL,
  name varchar(45) DEFAULT NULL,
   city varchar(45) DEFAULT NULL,
  PRIMARY KEY (id)
);
CREATE TABLE product (
 id INTEGER NOT NULL,
 name varchar(45) DEFAULT NULL,
 price float DEFAULT NULL,
 id_manuf INTEGER DEFAULT NULL,
 PRIMARY KEY (id),
 CONSTRAINT fk_manuf FOREIGN KEY (id_manuf) REFERENCES manuf (id)
);
_____
-- DATA --
INSERT INTO manuf (id,name,city) VALUES (1,'Apple','Cupertino');
INSERT INTO manuf (id,name,city) VALUES (2,'IBM','NY');
INSERT INTO manuf (id,name,city) VALUES (3,'HP','Palo Alto');
INSERT INTO product (id,name,price,id_manuf) VALUES (1,'iPhone',600,1);
INSERT INTO product (id,name,price,id_manuf) VALUES (2,'PC',500,2);
INSERT INTO product (id,name,price,id_manuf) VALUES (3,'Server',10000,2);
INSERT INTO product (id,name,price,id_manuf) VALUES (4,'Drucker',400,3);
COMMIT;
_____
-- SQL --
SELECT * FROM product; -- Eine ganze Tabelle lesen
SELECT * FROM product WHERE price < 5000; -- Einen Teil einer Tabelle lesen
SELECT city FROM manuf; -- Projektion auf eine Spalte
-- JOIN zweier Tabellen:
SELECT * FROM product
   LEFT JOIN manuf
    ON product.id_manuf = manuf.id;
-- LEFT JOIN zweier Tabellen:
SELECT * FROM product
    LEFT JOIN manuf
    ON product.id_manuf = manuf.id;
```