Разбор билетов. Алгебра

(SE) Основная теорема арифметики. Малая теорема Ферма, функция Эйлера. Мультипликативность функции Эйлера. Теорема Эйлера.

Основная теорема арифметики.

Лемма. Если $x \cdot y$ делится на простое число p, то p делит x или y.

 \blacksquare Пусть x не делится на p, тогда найдутся числа u,v такие, что

$$xu + pv = 1.$$

Домножим обе части на y: (xy)u + ypv = y. Оба слагаемых в левой части делятся на p, поэтому y делится на p. Существование такой пары чисел u, v можно доказать с помощью алгоритма Евклида. \blacktriangleright

Теорема. Основная теорема арифметики. Каждое натуральное число n>1 представляется в виде $n=p_1p_2...p_k$, где p_i — простое число. Такое представление единственно с точностью до порядка следования сомножителей.

∢ Существование. Пусть n > 1 — наименьшее число, неразложимое на простые множители. Тогда n не может быть простым, так как простое число очевидным образом раскладывается на простые. Если n — составное, то оно является произведением двух меньших натуральных чисел, каждое из которых можно разложить на простые множители. Тогда n можно представить как произведение всех простых. Противоречие.

Единственность. Пусть n — наименьшее натуральное число, допускающее два разных разложения на простые множители:

$$n = p_1 p_2 ... p_k = q_1 q_2 ... q_l.$$

Если множитель p_1 есть среди множества $\{q_1, ..., q_k\}$, то их можно сократить, тогда получим разные разложения меньшего числа. Противоречие. Если p_1 нет среди множителей $\{q_1, ..., q_k\}$, то левая часть не делится на p_1 по доказанной лемме. Противоречие. \blacktriangleright

Функция Эйлера.

Определение. Функция Эйлера $\varphi(n)$ определяется как количество натуральных чисел, не превосходящих n и взаимно простых с n.

Формула для функции Эйлера.

Теорема. Функция Эйлера мультипликативна, то есть для любых двух взаимно простых чисел m,n выполняется соотношение $\varphi(nm) = \varphi(n)\varphi(m)$.

 \blacktriangleleft Запишем $n \cdot m$ натуральных чисел в таблицу с n столбцами и m строками (см. ниже).

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{vmatrix}$$

Число, находящееся на месте (i,j) можно представить как x=n(i-1)+j. Если x взаимно просто с n, то j взаимно просто с n. Значит весь столбец j взаимно прост с n. Так как внутри столбца остаток не меняется, то разные остатки при делении на n соответствуют разным столбцам, значит взаимно простых с n столбцов в таблице ровно $\varphi(n)$.

Числа внутри каждого столбца образуют геометрическую прогрессию с разностью d=n: $a,\ a+n,\ a+2n,\ ...,\ a+(m-1)n$. Если числа из одного столбца в строках k,l дают одинаковые остатки при делении на m, то (k-l)n делится на m, при условии (n,m)=1 это возможно только при k=l. Значит, числа в одном столбце образуют полную систему остатков по m. Таким образом, в каждом столбце ровно $\varphi(n)$ взаимно простых с m чисел. Следовательно, среди первых $n\cdot m$ чисел ровно $\varphi(n)\varphi(m)$ взаимно просты с $n\cdot m$. \blacktriangleright

Теорема Эйлера. Пусть n и a- взаимно простые, тогда

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$
.

Отношение сравнимости по модулю n — это отношение эквивалентности. Класс эквивалентности, содержащий число a называется euvemom числа a по модулю n и обозначается $[a]_n$. Вычет $[x]_n$ называется обратимым, если существует $[y]_n$ такой, что $[x]_n[y]_n \equiv 1 \pmod{n}$. Решение уравнения $[x]_n[y]_n - 1 = mn$ существует только при (n,x) = 1. Тогда у числа n ровно $\varphi(n)$ обратимых вычетов.

◄ Достаточно доказать теорему Эйлера только для вычетов. Рассмотрим вычеты по модулю n. Если (a,n)=1, то вычет [a] обратим. Пусть $[b_1],...,[b_{\varphi(n)}]$ — все обратимые вычеты по модулю n. Тогда вычет $[b]=[b_1\cdot...\cdot b_{\varphi(k)}]$ тоже обратим. Тогда $[ab_1][ab_2]...[ab_{\varphi(n)}]=a^{\varphi(n)}[b]=[b]$,

так как умножение всех вычетов $[b_i]$ на a просто меняет их порядок. Домножим обе части на $[b]^{-1}$, получим требуемое равенство $a^{\varphi(n)} \equiv 1$.

Малая теорема Ферма после теоремы Эйлера доказывается легко. Очевидно, что $\varphi(p)=p-1$ для любого простого p. Тогда для взаимно простых a и p справедливо соотношение $a^{\varphi(p)}\equiv 1\ (mod\ p)\Rightarrow$

$$a^{p-1} \equiv 1 \pmod{p}$$
.

(YA, SE) Понятие линейного пространства (ЛП). Линейная зависимость и независимость. Базис и размерность ЛП, их связь. Координаты элемента ЛП в базисе. Замена базиса, матрица перехода, преобразование координат при замене базиса.

Определение. Пусть \Re — произвольное поле. Векторным (или линейным) пространством над \Re называется множество V, элементов (векторов), удовлетворяющее следующим аксиомам:

- а) На V задана бинарная операция $V \times V \to V$, наделяющая V строением абелевой группы. Стало быть:
 - 1. x + y = y + x (коммутативность);
 - 2. (x+y)+z=x+(y+z) (ассоциативность);
 - 3. в V существует *нулевой* вектор 0 такой, что x+0=x для любого $x\in V$;
 - 4. для каждого вектора x из V существует *обратный* -x такой, что x+(-x)=0;
- б) На множестве $\Re \times V$ задано умножение векторов на скаляры из \Re обладающее свойствами
 - 1. $1 \cdot x = x$ (унитарность);
 - 2. $(\alpha\beta)x = \alpha(\beta x)$ для всех $\alpha, \beta \in \Re$, и $x \in V$ (ассоциативность);
 - 3. $(\alpha + \beta)x = \alpha x + \beta x$ (дистрибутивность);
 - 4. $\alpha(x+y) = \alpha x + \alpha y$ (дистрибутивность).

Пусть имеется конечный набор скаляров $\lambda_1,...,\lambda_n \in \Re$ и векторов $x_1,...,x_n \in V.$ Тогда выражение

$$\lambda_1 x_1 + \dots + \lambda_n x_n = \sum_{i=1}^n \lambda_i x_i$$

называется линейной комбинацией векторов x_i с коэффициентами λ_i . При этом множество $\langle M \rangle_{\Re}$ всевозможных линейных комбинаций векторов $x_i \in M$ замкнуто относительно операций сложения векторов и умножения их на скаляры:

$$\lambda \in \Re, \ x, y \in \langle M \rangle \Rightarrow x + y \in \langle M \rangle, \ \lambda x \in \langle M \rangle.$$

Принято говорить, что $\langle M \rangle$ — линейная оболочка множества $M \subset V$.

Определение. Пусть V — векторное пространство над \Re , $U \subset V$ — его подмножество, являющееся аддитивной подгруппой V и переходящее в себя при умножении на скаляры. Тогда ограничение на U операций, определенных в V, наделяет U строением векторного пространства. Оно называется векторным (или линейным) подпространством в V.

Определение. Векторы $v_1,...,v_n$ пространства V называются линейно зависимыми, если некоторая их нетривиальная линейная комбинация равна нулю, то есть найдутся такие скаляры $\alpha_1,...,\alpha_n$, не все равные нулю, что

$$\alpha_1 v_1 + \dots + \alpha_n v_n = 0.$$

В противном случае система векторов называется линейно независимой.

Определение. Число векторов, содержащихся в любой максимальной (не допускающей расширения до линейно независимой системы системы из большего числа векторов) линейно независимой подсистеме данной системы векторов, называется рангом системы.

Определение. Линейное пространство V, в котором существует n линейно независимых векторов, но нет линейно независимых систем большего ранга, называется n-мерным ($\dim V = n$). Если такого числа n нет, то векторное пространство называется бесконечномерным. Пример бесконечномерного пространства — множество всех непрерывных функций. Из него всегда можно выделить бесконечное число линейно независимых векторов $1, x, x^2, ..., x^n, ...$

Определение. Пусть V-n-мерное векторное пространство над полем \Re . Любая система из n независимых векторов $e_1,...,e_n\in V$ называется (конечным линейным) базисом пространства V.

Теорема. Пусть V — векторное пространство над полем \Re с базисом $(e_1,...,e_n)$ тогда имеют место следующие утверждения:

- 1. каждый вектор $v \in V$ можно представить, и притом единственным образом, в виде линейно комбинации векторов $e_1, ..., e_n$;
- 2. всякую систему из $s \leq n$ линейно независимых векторов можно дополнить до базиса.
- **◄** 1) Присоединим к базису вектор v. По определению базиса система из векторов $(v, e_1, ..., e_n)$ линейно зависима, поэтому найдутся скаляры λ_i , $\lambda_0 \neq 0$ такие, что

$$\lambda_0 v + \lambda_1 e_1 + \dots + \lambda_n e_n = 0,$$

тогда

$$v = \left(-\frac{\lambda_1}{\lambda_0}\right)e_1 + \dots + \left(-\frac{\lambda_n}{\lambda_0}\right)e_n.$$

Если вектор v допускает два разложения по базису, то

$$\alpha_1 e_1 + \dots + \alpha_n e_n = v = \beta_1 e_1 + \dots + \beta_n e_n,$$

значит

$$(\alpha_1 - \beta_1)e_1 + \dots + (\alpha_n - \beta_n)e_n = 0,$$

что по определению базиса возможно лишь при $\alpha_i = \beta_i$.

2) Пусть $f_1, ..., f_s$ — система линейно независимых векторов. Рассмотрим систему $f_1, ..., f_s, e_1, ..., e_n$. Удалим из нее все векторы, которые выражаются через предыдущие. Тогда по условию все векторы f_i останутся. Получаем

$$f_1, ..., f_s, e_{i_1}, ..., e_{i_t}.$$

Если теперь

$$\alpha_1 f_1 + \dots + \alpha_s f_s + \beta_1 e_{i_1} + \dots + \beta_t e_{i_t} = 0,$$

то существовал бы $\beta_k \neq 0$ с наибольшим номером k, значит e_{i_k} можно выразить через предыдущие, что исключено по построению. Значит такая система линейно независима. Очевидно, что через нее выражается любой вектор. Значит она максимальна, следовательно $f_1, ..., e_{i_k}$ образуют базис. \blacktriangleright

В силу теоремы о единственности разложения вектора ЛП по базису имеет место следующее

Определение. Пусть $(e_1,...,e_n)$ — базис векторного пространства V над \Re . Скаляры $\lambda_1,...,\lambda_n \in \Re$, входящие в разложение

$$v = \lambda_1 e_1 + \dots + \lambda_n e_n$$

называются координатами вектора $v \in V$ в данном базисе.

Если $x = \alpha_1 e_1 + ... + \alpha_n e_n$, $y = \beta_1 e_1 + ... + \beta_n e_n$, то $x + y = (\alpha_1 + \beta_1)e_1 + ... + (\alpha_n + \beta_n)e_n$ (коммутативность + дистрибутивность). При этом $\lambda x = \lambda(\alpha_1 e_1 + ... + \alpha_n e_n) \Rightarrow$ (дистрибутивность) $\Rightarrow \lambda x = \lambda \alpha_1 e_1 + ... + \lambda_n \alpha_n e_n$.

Замена базиса.

Пусть V — линейное пространство и $(e_1, ..., e_n)$, $(e'_1, ..., e'_n)$ — его базисы. Векторы одного базиса выражаются через векторы другого:

$$\begin{cases} e'_1 = a_{11}e_1 + a_{21}e_2 + \dots + a_{n1}e_n \\ \dots \\ e'_n = a_{1n}e_1 + a_{2n}e_2 + \dots + a_{nn}e_n. \end{cases}$$

Коэффициенты $a_{ij} \in \Re$ определяют матрицу

$$A = (a_{ij}) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}.$$

Важно! Координаты вектора e'_j составляют j-ый **столбец** матрицы A. Матрица A называется матрицей перехода от базиса $(e_1, ..., e_n)$ κ базису $(e'_1, ..., e'_n)$.

Если вектор v задан в старом базисе координатами $[\lambda_1, ..., \lambda_n]$, то есть

$$v = \lambda_1 e_1 + \ldots + \lambda_n e_n$$

то можно выразить его координаты через новый базис. Для этого нужно решить уравнение

$$X = AX'. (1)$$

Здесь $X = [\lambda_1, ..., \lambda_n]$ — координаты вектора в старом базисе, A — матрица перехода от старого базиса к новому, $X' = [\lambda'_1, ..., \lambda'_n]$ — координаты вектора в новом базисе.

Данное уравнение не сложно получить, заменив старые базисные векторы на новые

$$v = \lambda_1'(a_{11}e_1 + \dots + a_{n1}e_n) + \dots + \lambda_n'(a_{1n}e_1 + \dots + a_{nn}e_n) = \lambda_1e_1 + \dots + \lambda_ne_n.$$

Уравнение (1) можно переписать в виде $A^{-1}X=X^{\prime}$. Итак, справедлива

Теорема. При переходе от базиса $(e_1, ..., e_n)$ пространства V к базису $(e'_1, ..., e'_n)$, определяемом матрицей A, координаты вектора в **новом** базисе выражаются через **старые** координаты при помощи обратимого линейного преобразования с матрицей A^{-1} .

Важно отметить, что старые координаты выражаются через новые естественным образом (зная X' легко получить X), в то время как получение новых координат через старые требует трудоемкой операции обращения матрицы перехода.

- (SE) Системы линейных алгебраических уравнений. Теорема Кронекера-Капелли. Общее решение системы алгебраических уравнений.
- (YA, SE) Понятие линейного пространства (ЛП). Линейная зависимость и независимость. Базис и размерность ЛП, их связь. Координаты элемента ЛП в базисе. Замена базиса, матрица перехода, преобразование координат при замене базиса.
- (YA) Матрицы. Транспонированная матрица. Обратная матрица. Ранг матрицы. Специальные виды матриц. Линейные и нелинейные операции над матрицами: сложение, умножение матрицы на число, умножение матриц, транспонирование матриц. Их свойства.
- (YA) Евклидовы и унитарные пространства. Свойства скалярного произведение, неравенство Коши-Буняковского. Норма, ортонормированный базис. Разложение пространства в прямую сумму подпространства и его ортогонального дополнения.
- (YA) Понятие линейного оператора, матрицы линейного оператора, нормы. Преобразование матрицы при замене базиса, характеристический многочлен. Собственные векторы и собственные значения, геометрический смысл.
- (YA) Квадратичные формы, их знакоопределенность и канонический вид. Унитарные и нормальные операторы.

Вопросы из программы НОД-ВШЭ.

Линейная зависимость системы векторов. Базис линейного пространства. Скалярное произведение.

Определитель квадратной матрицы. Вычисление определителей. Разложение определителя по строке и по столбцу.

Транспонированная матрица. Обратная матрица. Ранг матрицы. Специальные виды матриц.

Системы линейных уравнений. Метод Крамера. Метод Гаусса. Фундаментальная система решений.

Линейные преобразования векторных пространств и их матрицы. Изменение матриц линейного пространства и квадратичной формы при смене базиса.

Собственные числа и собственные векторы матрицы. Собственные и инвариантные подпространства.

Характеристический многочлен. Аннулирующий и минимальный многочлены. Теорема Гамильтона-Кэли.

Квадратичные формы. Матрица квадратичной формы. Условие положительной (отрицательной) определенности квадратичной формы. Критерий Сильвестра. Индексы инерции квадратичных форм.