- 1. Prove the following:
 - (a) Prove that $(A-B) \cup (B-A) = (A \cup B) \cap \overline{(A \cap B)}$. Recall that $A-B = A \cap \overline{(A \cup B)}$
 - (b) Prove that $A \times (B \cap C) = (A \times B) \cap (A \times C)$
 - (c) Suppose that $a, b, c \in \mathbb{Z}$. If $a^2 + b^2 = c^2$, then a and b are even.
 - (d) If n is odd, then n^2 is odd
 - (e) Suppose $a, b \in \mathbb{Z}$, then $a^2 4b 2 \neq 0$
- 2. Suppose that $\Sigma = \{0, 1\}$. Describe the following languages in words:
 - (a) $\{00x \mid x \in \Sigma^2\}$
 - (b) $\{0x1 \mid x \in \Sigma^*\}$
 - (c) $\{0^n 1^n \mid n \in \mathbb{N}\}$
 - (d) $\{0^n1^m \mid n+m=2^k \text{ where } n,m,k\in\mathbb{N}\}$
 - (e) $\{x \mid x \in \Sigma^* \land |x| \text{ is divisble by } 2\}$
- 3. For the languages in 2., state which of these languages contain the empty string ϵ