Wavelets

Fernando Martínez fernando.martinez@upc.edu

Departament de Matemàtica • Universitat Politècnica de Catalunya

13 de mayo de 2020

Ejemplo

Supongamos 8 píxeles con valores (1, 2, 3, 5, 6, 9, 10, 15), detalle máximo.

- Si nos alejamos $(\frac{1+2}{2}, \frac{3+5}{2}, \frac{6+9}{2}, \frac{10+15}{2}; \frac{1-2}{2}, \frac{3-5}{2}, \frac{6-9}{2}, \frac{10-15}{2})$ $(\frac{3}{2}, \frac{8}{2}, \frac{15}{2}, \frac{25}{2}; \frac{-1}{2}, \frac{-2}{2}, \frac{-3}{2}, \frac{-5}{2})$
- $\begin{array}{l} \bullet \ \ Si \ nos \ volvemos \ a \ alejar \, (\frac{\frac{3}{2} + \frac{8}{2}}{2}, \frac{\frac{15}{2} + \frac{25}{2}}{2}; \frac{\frac{3}{2} \frac{8}{2}}{2}, \frac{\frac{15}{2} \frac{25}{2}}{2}; ; \frac{-1}{2}, \frac{-2}{2}, \frac{-3}{2}, \frac{-5}{2}) \\ (\frac{11}{4}, \frac{40}{4}; \frac{-5}{4}, \frac{-10}{4}; ; \frac{-1}{2}, \frac{-2}{2}, \frac{-3}{2}, \frac{-5}{2}) \end{array}$
- Si nos alejamos definitivamente $(\frac{51}{8}; \frac{-29}{8};; \frac{-5}{4}, \frac{-10}{4};;; \frac{-1}{2}, \frac{-2}{2}, \frac{-3}{2}, \frac{-5}{2})$

Transformada de Haar

Sea
$$f(t) = \begin{cases} 3 & 0 \le t < 1 \\ 1 & 1 \le t < 2 \\ 2 & 3 \le t < 3 \\ 0 & \text{resto} \end{cases}$$

Si definimos (scaling function)
$$\phi(t) = \begin{cases} 1 & 0 \le t < 1 \\ 0 & \text{resto} \end{cases}$$

$$\phi_k^0(t) = \phi(t - k) = \begin{cases} 1 & k \le t < k + 1 \\ 0 & \text{resto} \end{cases}$$

$$f(t) = \sum_{k} a_k \phi_k^0(t) = 3\phi_0^0(t) + \phi_1^0(t) + 2\phi_2^0(t)$$

Con las funciones $\phi_k^0(t)$ podemos construir el espacio de las funciones constantes a trozos¹ de longitud $\frac{1}{20} = 1$.

Llamaremos V_0 a este espacio.

Si tenemos una función constante a trozos de longitud $\frac{1}{2^1}$ (perteneciente a V_1), podemos expresarla como:

$$f(t) = \sum_{k} a_k \phi_k^1(t)$$
 con $\phi_k^1(t) \propto \phi(2t - k)$

$$\phi_0^1(t) = \begin{cases} 1 & 0 \le t < \frac{1}{2} \\ 0 & \text{resto} \end{cases} \qquad \phi_1^1(t) = \begin{cases} 1 & \frac{1}{2} \le t < 1 \\ 0 & \text{resto} \end{cases}$$

Si V_j es el espacio de funciones constantes a trozos de longitud $\frac{1}{2^j}$

$$f(t) = \sum_{k} a_k \phi_k^j(t) \qquad \text{con } \phi_k^j(t) \propto \phi(2^j t - k)$$

¹Para lo que nos interesa, $k \in \mathbb{Z}$ y las funciones son constantes en los intervalos [k, k+1).

$$\phi_k^0(t), k = 0.$$

$$\phi_k^1(t), k = 0, 1$$

$$\phi_k^0(t), k = 0.$$
 $\phi_k^1(t), k = 0, 1.$ $\phi_k^2(t), k = 0, ..., 3.$ $\phi_k^3(t), k = 0, ..., 7$

$$\phi_k^3(t), k = 0, ..., 7$$

$$f(t) = \begin{cases} 5 & 0 \le t < \frac{1}{2} \\ 3 & \frac{1}{2} \le t < 1 \end{cases}$$
$$f(t) = 5\phi_0^1(t) + 3\phi_1^1(t)$$

Ejemplo

$$f(t) = \begin{cases} 4 & 0 \le t < \frac{1}{4} \\ 2 & \frac{1}{4} \le t < \frac{1}{2} \\ 1 & \frac{1}{2} \le t < 1 \end{cases}$$

$$f(t) = 4\phi_0^2(t) + 2\phi_1^2(t) + \phi_2^2(t) + \phi_3^2(t) = 4\phi_0^2(t) + 2\phi_1^2(t) + \phi_2^1(t)$$

I)
$$\phi(t) = \phi_0^1(t) + \phi_1^1(t) \equiv \sum_k h_k \phi_k^1(t)$$
, i.e.

$$\phi(t) = \sum_{k} h_k \phi(2t - k)$$
 Multi Resolution Analysis Equation (MRA)

II) $V_0 \subset V_1 \subset V_2 \subset \cdots \subset V_i \subset \cdots$

 $V_1 = V_0 \oplus W_0$ $V_2 = V_1 \oplus W_1 = V_0 \oplus W_0 \oplus W_1$

. . .

$$V_{j+1} = V_j \oplus W_j = V_0 \oplus W_0 \oplus \cdots \oplus W_j$$

III) $\phi_0^1(t) = \frac{1}{2} [\phi(t) + \psi(t)], \qquad \phi_1^1(t) = \frac{1}{2} [\phi(t) - \psi(t)]$ siendo

$$\psi(t) = \begin{cases} 1 & 0 \le t < \frac{1}{2} \\ -1 & \frac{1}{2} \le t < 1 \end{cases}$$
 mother wavelet

IV) Podemos definir

$$\psi_k^j(t) \propto \psi(2^j - k)$$

$$\psi_k^0(t)$$
 $\psi_k^1(t)$

$$\psi_k^2(t)$$

$$\psi_k^3(t)$$

$$\psi_k^4(t)$$

$$f(t) = \begin{cases} 5 & 0 \le t < \frac{1}{2} \\ 3 & \frac{1}{2} \le t < 1 \end{cases}$$

$$f(t) = \underbrace{5\phi_0^1(t) + 3\phi_1^1(t)}^{V_1} = \underbrace{4\phi(t)}^{V_0} + \underbrace{\psi(t)}^{W_0}$$

Baja resolución: $4(V_0)$

Alta resolución (detalle): $5,3 (V_1)$

$$f(t) = \begin{cases} 4 & 0 \le t < \frac{1}{4} \\ 2 & \frac{1}{4} \le t < \frac{1}{2} \\ 1 & \frac{1}{2} \le t < 1 \end{cases}$$

$$f(t) = \overbrace{4\phi_0^2(t) + 2\phi_1^2(t) + \phi_2^2(t) + \phi_3^2(t)}^{V_2}$$

$$= \overbrace{3\phi_0^1(t) + \phi_1^1(t)}^{V_1} + \overbrace{\psi_0^1(t)}^{W_1}$$

$$= \overbrace{2\phi_0^0(t) + \psi_0^0(t) + \psi_0^1(t)}^{V_2}$$

Baja resolución: 2 (V_0)

Media resolución: $3,1 (V_1)$

Alta resolución (detalle): 4,2,1,1 (V_2)

Supongamos 8 píxeles con valores (1, 2, 3, 5, 6, 9, 10, 15), detalle máximo.

- $V_3:(1,2,3,5,6,9,10,15)$
- $V_2 \oplus W_2 : (\frac{3}{2}, \frac{8}{2}, \frac{15}{2}, \frac{25}{2}) \oplus (\frac{-1}{2}, \frac{-2}{2}, \frac{-3}{2}, \frac{-5}{2})$
- $V_1 \oplus W_1 \oplus W_2 : (\frac{11}{4}, \frac{40}{4}) \oplus (\frac{-5}{4}, \frac{-10}{4}) \oplus (\frac{-1}{2}, \frac{-2}{2}, \frac{-3}{2}, \frac{-5}{2})$
- $\bullet \ V_0 \oplus W_0 \oplus W_1 \oplus W_2 : (\tfrac{51}{8}) \oplus (\tfrac{-29}{8}) \oplus (\tfrac{-5}{4}, \tfrac{-10}{4}) \oplus (\tfrac{-1}{2}, \tfrac{-2}{2}, \tfrac{-3}{2}, \tfrac{-5}{2})$

En el caso 2D hay varias formas de aplicar la transformación

- Standard: Primero aplicamos a columnas y después a filas
- Piramidal: Aplicamos a columnas y filas alternadamente

Wavelets

Definición Scaling function $\phi(t)$: función tal que si

$$f(t) = \sum_{k} a_k \phi(t - k) \equiv \sum_{k} a_k \phi_k^0(t), \qquad \phi_k^0(t) = \phi(t - k)$$

entonces

$$f(t) = \sum_k b_k^j \phi_k^j(t), \qquad \phi_k^j(t) = \sqrt{2^j} \phi(2^j t - k).$$

Ecuación MRA

Si $V_0 = \langle \{\phi_k^0(t)\} \rangle$, $V_j = \langle \{\phi_k^j(t)\} \rangle$, $V_0 \subset V_1 \subset \cdots$. De esta inclusión tenemos la ecuación MRA:

$$\phi(t) = \sum_{k} h_k \sqrt{2} \ \phi(2t - k) \tag{2}$$

Daubechis 4:
$$h_0 = \frac{1+\sqrt{3}}{4\sqrt{2}}$$
, $h_1 = \frac{3+\sqrt{3}}{4\sqrt{2}}$, $h_2 = \frac{3-\sqrt{3}}{4\sqrt{2}}$, $h_3 = \frac{1-\sqrt{3}}{4\sqrt{2}}$

Al igual que hemos hecho antes, podemos escribir $V_1 = V_0 \oplus W_0$ y si $g(t) \in V_1$ entonces:

$$g(t) = \sum_{k} a_{k} \phi_{k}^{1}(t) = \sum_{k} c_{k} \phi_{k}^{0}(t) + \sum_{k} d_{k} \psi_{k}^{0}(t),$$

$$\phi_k^1(t) \in V_1, \qquad \phi_k^0(t) \in V_0, \quad \psi_k^0(t) \in W_0$$

Ahora $\psi_k^j(t) = \sqrt{2^j}\psi(2^jt-k)$ siendo $\psi(t)$ la mother wavelet:

$$1) \int_{-\infty}^{\infty} \psi(t)dt = 0$$

$$2) \int_{-\infty}^{\infty} |\psi(t)| dt < \infty$$

3)
$$\int_{-\infty}^{\infty} \frac{|\Psi(\omega)|^2}{\omega} d\omega < \infty, \quad \Psi(\omega) \text{ transformada de Fourier de } \psi(t).$$

Como $\psi(t) \in W_0 \subset V_1$ tendremos

$$\psi(t) = \sum_{k} w_k \phi_k^1(t) = \sum_{k} w_k \sqrt{2} \ \phi_k(2t - k) \tag{3}$$

Por lo tanto $\phi(t)$ y $\psi(t)$ están relacionadas por (3).

Veamos algunas condiciones para los coeficientes h_k y w_k .

I) Si integramos (2):

$$\sum_{k} h_k = \sqrt{2} \tag{C.1}$$

II) Si imponemos $\int_{-\infty}^{\infty} \phi(t-k)\phi(t-r)dt = \delta_{kr}$ (ortogonalidad):

$$\sum_{k} h_k^2 = 1 \tag{C.2}$$

III) De la condición de ortogonalidad $\delta_{m0} = \int_{-\infty}^{\infty} \phi(t)\phi(t-m)dt$,

$$\sum_{k} h_k h_{k-2m} = \delta_{m0} \tag{C.3}$$

Las wavelets que cumplen C.3, pero no necesariamente C.2, reciben el nombre de wavelets biortogonales.

$$N=2$$

C.1
$$h_0 + h_1 = \sqrt{2}$$

C.2
$$h_0^2 + h_1^2 = 1$$

C.3 No tiene sentido ya que si m = 1 entonces k - 2m < 0.

Por lo tanto $h_0 = h_1 = \frac{1}{\sqrt{2}}$, (Haar).

Ejemplo

$$N=3$$

C.1
$$h_0 + h_1 + h_2 = \sqrt{2}$$

C.2
$$h_0^2 + h_1^2 + h_2^2 = 1$$

C.3 m = 1 entonces $h_2 \cdot h_0 = 0$. Por lo tanto $h_0 = 0$ o $h_2 = 0$, caso anterior.

N=4

C.1
$$h_0 + h_1 + h_2 + h_3 = \sqrt{2}$$

C.2
$$h_0^2 + h_1^2 + h_2^2 + h_3^2 = 1$$

C.3
$$m = 1$$
 entonces $h_3 \cdot h_1 + h_2 \cdot h_0 = 0$.

Multiples soluciones.

Daubechis 4:
$$h_0 = \frac{1+\sqrt{3}}{4\sqrt{2}}$$
, $h_1 = \frac{3+\sqrt{3}}{4\sqrt{2}}$, $h_2 = \frac{3-\sqrt{3}}{4\sqrt{2}}$, $h_3 = \frac{1-\sqrt{3}}{4\sqrt{2}}$.

Ejemplo

N=6

C.1
$$h_0 + h_1 + h_2 + h_3 + h_4 + h_5 = \sqrt{2}$$

C.2
$$h_0^2 + h_1^2 + h_2^2 + h_3^2 + h_4^2 + h_5^2 = 1$$

C.3 Para
$$m = 1$$
: $h_5 \cdot h_3 + h_4 \cdot h_2 + h_3 \cdot h_1 + h_2 \cdot h_0 = 0$.
Para $m = 2$: $h_5 \cdot h_1 + h_4 \cdot h_0 = 0$.

Multiples soluciones.

I) Si integramos (3):

$$\sum_{k} \omega_k = 0$$

II) Ortogonalidad:

$$w_k = \pm (-1)^k h_{N-k}$$

III)

$$\sum_{k} h_k w_{N-k} = 0$$

Con N=4 la DWT quedaría $\vec{y}=\mathbf{W}\vec{x}$

Teniendo en cuenta $w_0 = h_3$, $w_1 = -h_2$, $w_2 = h_1$, $w_3 = -h_0$,