The LLL Algorithm

Liam Hardiman

May 28, 2019

Motivation

Setup

• Recall that the **lattice**, L, generated by the linearly independent vectors $x_1, x_2, \ldots, x_n \in \mathbb{R}^n$ is the \mathbb{Z} -span of these vectors:

$$L = \{c_1x_1 + c_2x_2 + \dots + c_nx_n : c_i \in \mathbb{Z}, 1 \le i \le n\}.$$

• Recall that the **lattice**, L, generated by the linearly independent vectors $x_1, x_2, \ldots, x_n \in \mathbb{R}^n$ is the \mathbb{Z} -span of these vectors:

$$L = \{c_1x_1 + c_2x_2 + \cdots + c_nx_n : c_i \in \mathbb{Z}, 1 \le i \le n\}.$$

 Consider the lattices, L and M, generated by the rows of the matrices X and Y, respectively.

$$X = \begin{bmatrix} -168 & 602 & 58 \\ 157 & -564 & -57 \\ 594 & -2134 & -219 \end{bmatrix}, \quad Y = \begin{bmatrix} -6 & 6 & -4 \\ 9 & 4 & 1 \\ -1 & 8 & 6 \end{bmatrix}.$$

• Each row of X is an integer linear combination of the rows of Y, so $L \subseteq M$:

• Each row of X is an integer linear combination of the rows of Y, so $L \subseteq M$:

$$\begin{bmatrix} -168 \\ 602 \\ 58 \end{bmatrix}^{T} = 14 \begin{bmatrix} 4 \\ 2 \\ -9 \end{bmatrix}^{T} + 50 \begin{bmatrix} -1 \\ 8 \\ 6 \end{bmatrix}^{T} - 29 \begin{bmatrix} 6 \\ -6 \\ 4 \end{bmatrix}^{T},$$

$$\begin{bmatrix} 157 \\ -564 \\ -57 \end{bmatrix}^{T} = -13 \begin{bmatrix} 4 \\ 2 \\ -9 \end{bmatrix}^{T} - 47 \begin{bmatrix} -1 \\ 8 \\ 6 \end{bmatrix}^{T} + 26 \begin{bmatrix} 6 \\ -6 \\ 4 \end{bmatrix}^{T},$$

$$\begin{bmatrix} 594 \\ -2134 \\ -219 \end{bmatrix} = -49 \begin{bmatrix} 4 \\ 2 \\ -9 \end{bmatrix}^{T} - 178 \begin{bmatrix} -1 \\ 8 \\ 6 \end{bmatrix} + 102 \begin{bmatrix} 6 \\ -6 \\ 4 \end{bmatrix}^{T}.$$

In particular, we have the matrix equation

$$UY = X,$$

$$\begin{bmatrix} 14 & 50 & -29 \\ -13 & -47 & 27 \\ -49 & -178 & 102 \end{bmatrix} \begin{bmatrix} 4 & 2 & -9 \\ -1 & 8 & -6 \\ 6 & -6 & 4 \end{bmatrix} = \begin{bmatrix} -168 & 602 & 58 \\ 157 & -564 & -57 \\ 594 & -2134 & -219 \end{bmatrix}.$$

In particular, we have the matrix equation

$$UY = X,$$

$$\begin{bmatrix} 14 & 50 & -29 \\ -13 & -47 & 27 \\ -49 & -178 & 102 \end{bmatrix} \begin{bmatrix} 4 & 2 & -9 \\ -1 & 8 & -6 \\ 6 & -6 & 4 \end{bmatrix} = \begin{bmatrix} -168 & 602 & 58 \\ 157 & -564 & -57 \\ 594 & -2134 & -219 \end{bmatrix}.$$

• det U = -1, so U^{-1} is an integer matrix as well. This gives us another matrix equation, $Y = U^{-1}X$.

In particular, we have the matrix equation

$$UY = X,$$

$$\begin{bmatrix} 14 & 50 & -29 \\ -13 & -47 & 27 \\ -49 & -178 & 102 \end{bmatrix} \begin{bmatrix} 4 & 2 & -9 \\ -1 & 8 & -6 \\ 6 & -6 & 4 \end{bmatrix} = \begin{bmatrix} -168 & 602 & 58 \\ 157 & -564 & -57 \\ 594 & -2134 & -219 \end{bmatrix}.$$

- det U=-1, so U^{-1} is an integer matrix as well. This gives us another matrix equation, $Y=U^{-1}X$.
- Since the entries of U^{-1} are integers, this equation expresses the rows of Y as integer linear combinations of the rows of X, so $M \subseteq L$.

 Even though the rows of X and Y generate the same lattice, something about the Y-basis "feels" nicer.

$$X = \begin{bmatrix} -168 & 602 & 58 \\ 157 & -564 & -57 \\ 594 & -2134 & -219 \end{bmatrix}, \quad Y = \begin{bmatrix} -6 & 6 & -4 \\ 9 & 4 & 1 \\ -1 & 8 & 6 \end{bmatrix}.$$

 Even though the rows of X and Y generate the same lattice, something about the Y-basis "feels" nicer.

$$X = \begin{bmatrix} -168 & 602 & 58 \\ 157 & -564 & -57 \\ 594 & -2134 & -219 \end{bmatrix}, \quad Y = \begin{bmatrix} -6 & 6 & -4 \\ 9 & 4 & 1 \\ -1 & 8 & 6 \end{bmatrix}.$$

- Two qualities that make a basis desirable are:
 - Length: how long are the basis vectors?
 - Orthogonality: are the basis vectors nearly orthogonal to each other?

• Suppose $v_1, v_2, \dots, v_n \in \mathbb{R}^n$ are pairwise orthogonal.

- Suppose $v_1, v_2, \ldots, v_n \in \mathbb{R}^n$ are pairwise orthogonal.
- If $x = c_1v_1 + c_2v_2 + \cdots + c_nv_n$, $c_i \in \mathbb{Z}$, is in the lattice L generated by v_1, \ldots, v_n then

$$|x|^2 = c_1^2 |v_1|^2 + c_2^2 |v_2|^2 + \dots + c_n^2 |v_n|^2.$$

- Suppose $v_1, v_2, \dots, v_n \in \mathbb{R}^n$ are pairwise orthogonal.
- If $x = c_1v_1 + c_2v_2 + \cdots + c_nv_n$, $c_i \in \mathbb{Z}$, is in the lattice L generated by v_1, \ldots, v_n then

$$|x|^2 = c_1^2 |v_1|^2 + c_2^2 |v_2|^2 + \dots + c_n^2 |v_n|^2.$$

 This completely solves the shortest vector problem (SVP) since

$$\underset{x \in L}{\operatorname{arg\,min}} |x| = \underset{x \in \{\pm v_1, \pm v_2, \dots, \pm v_n\}}{\operatorname{arg\,min}} |x|.$$

Say we want to find a vector in L that is closest to

$$x = t_1v_1 + t_2v_2 + \cdots + t_nv_n,$$

where the t_i are real numbers.

Say we want to find a vector in L that is closest to

$$x=t_1v_1+t_2v_2+\cdots+t_nv_n,$$

where the t_i are real numbers.

• If $y = c_1v_1 + c_2v_2 + \cdots + c_nv_n$, $c_i \in \mathbb{Z}$, is any vector in L then by the orthogonality of the v_i we have

$$|x-y|^2 = (t_1-c_1)^2|v_1|^2 + (t_2-c_2)^2|v_2|^2 + \cdots + (t_n-c_n)^2|v_n|^2.$$

Say we want to find a vector in L that is closest to

$$x=t_1v_1+t_2v_2+\cdots+t_nv_n,$$

where the t_i are real numbers.

• If $y = c_1v_1 + c_2v_2 + \cdots + c_nv_n$, $c_i \in \mathbb{Z}$, is any vector in L then by the orthogonality of the v_i we have

$$|x-y|^2 = (t_1-c_1)^2|v_1|^2 + (t_2-c_2)^2|v_2|^2 + \cdots + (t_n-c_n)^2|v_n|^2.$$

• If we take c_i to be the closest integer to t_i then we solve the closest vector problem (CVP).

Motivation

2 Setup

Gram-Schmidt

Definition

Let $x_1, \ldots, x_m \in \mathbb{R}^n$ be a basis for a nonzero subspace, H. The **Gram-Schmidt process** produces an orthogonal basis for H:

$$x_{1}^{*} = x_{1}$$

$$x_{2}^{*} = x_{2} - \frac{x_{2} \cdot x_{1}^{*}}{x_{1}^{*} \cdot x_{1}^{*}} x_{1}^{*}$$

$$x_{3}^{*} = x_{3} - \frac{x_{3} \cdot x_{1}^{*}}{x_{1}^{*} \cdot x_{1}^{*}} x_{1}^{*} - \frac{x_{3} \cdot x_{2}^{*}}{x_{2}^{*} \cdot x_{2}^{*}} x_{2}^{*}$$

$$\vdots$$

$$x_{m}^{*} = x_{m} - \frac{x_{m} \cdot x_{1}^{*}}{x_{1}^{*} \cdot x_{1}^{*}} x_{1}^{*} - \dots - \frac{x_{m} \cdot x_{m-1}^{*}}{x_{m-1}^{*} \cdot x_{m-1}^{*}} x_{m-1}^{*}.$$

We call $\{x_1^*, \dots, x_m^*\}$ the **Gram-Schmidt orthogonalization** (**GSO**) of $\{x_1, \dots, x_m\}$.