Álgebra Linear CC

Licenciatura em Ciências da Computação

Carla Mendes

2022/2023

Departamento de Matemática

Definição e propriedades

O determinante de uma matriz quadrada sobre \mathbb{K} , $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$, é um elemento de \mathbb{K} que, entre outras aplicações, pode ser usado na resolução de certos sistemas de equações lineares e para decidir sobre a invertibilidade de uma matriz.

O determinante de uma matriz pode ser definido de diversas formas. Neste curso optamos por uma definição indutiva deste conceito.

Para uma matriz de ordem 1×1

$$A = [a]$$

é fácil concluir que a matriz é invertível se e só se $a \neq 0$.

1

Dada uma matriz quadrada de ordem 2×2

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

é também simples concluir em que condições a matriz é invertível; aplicando o método de eliminação de Gauss à matriz A, conclui-se que A é invertível se e só se $ad-bc \neq 0$.

Como iremos ver, a qualquer matriz $A \in \mathcal{M}_n(\mathbb{K})$, $n \in \mathbb{N}$, podemos associar um elemento de \mathbb{K} com a propriedade de A ser invertível se e só se esse escalar for não nulo. A este elemento de \mathbb{K} chamaremos o determinante de A.

Para matrizes de ordem superior apresentamos uma definição indutiva para o determinante de uma matriz, i.e., define-se o determinante de uma matriz 2×2 em função do determinante de matrizes de ordem 1×1 , define-se o determinante de uma matriz 3×3 em função do determinante de matrizes de ordem 2×2 , e assim sucessivamente.

Dada uma matriz $A = [a_{ij}] \in \mathcal{M}_n(\mathbb{K})$, $n \in \mathbb{N}$, representa-se por A(i|j) a matriz quadrada de ordem n-1, obtida de A retirando a linha i e a coluna j.

Exemplo

Se
$$A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 1 & 3 \\ 1 & -5 & 1 \end{bmatrix}$$
 então $A(2|3) = \begin{bmatrix} 1 & 1 \\ 1 & -5 \end{bmatrix}$.

4

Definição

Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Chama-se **determinante de A**, e representa-se por det A ou |A|, ao elemento de \mathbb{K} obtido da seguinte forma:

- i) Se n = 1, então $\det A = a_{11}$;
- ii) Se n>1, então $\det A=\sum\limits_{j=1}^{n}\left(-1\right)^{1+j}a_{1j}\det A(1|j).$

Exemplo

Se
$$A = \begin{bmatrix} 2 & 1 \\ 1 & -5 \end{bmatrix}$$
, então

$$\det A = (-1)^{1+1} \times 2 \times \det [-5] + (-1)^{1+2} \times 1 \times \det [1]$$

$$= 1 \times 2 \times (-5) + (-1) \times 1 \times 1$$

$$= -10 - 1$$

$$= -11.$$

Exemplo

$$Se A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 1 & 3 \\ 1 & -5 & 1 \end{bmatrix}, então$$

$$det A = (-1)^{1+1} \times 1 \times det \begin{bmatrix} 1 & 3 \\ -5 & 1 \end{bmatrix}$$

$$+(-1)^{1+2} \times 1 \times det \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix}$$

$$+(-1)^{1+3} \times (-1) \times det \begin{bmatrix} 2 & 1 \\ 1 & -5 \end{bmatrix}$$

$$= 1 \times 1 \times (1 \times 1 - (-5) \times 3)$$

$$-1 \times 1 \times (2 \times 1 - 1 \times 3)$$

$$+1 \times (-1) \times (2 \times (-5) - 1 \times 1)$$

$$= 28.$$

7

Exemplo

Se $A = [a_{ij}]$ é uma matriz real de ordem 3, então

 $\det A =$

 $a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{21}a_{32}a_{13} - a_{13}a_{22}a_{31} - a_{23}a_{32}a_{11} - a_{33}a_{12}a_{21}.$

Dada uma matriz $A = [a_{ij}] \in \mathcal{M}_n(\mathbb{K})$ e dados $i, j \in \{1, ..., n\}$, designa-se por **complemento algébrico** do elemento a_{ij} , e representa-se por \widehat{a}_{ij} , o elemento de \mathbb{K} definido por $(-1)^{i+j}$ det A(i|j).

De acordo com a definição que apresentámos para o determinante de uma matriz $A \in \mathcal{M}_n(\mathbb{K})$, o determinante de A é igual à soma dos elementos da linha 1 multiplicados pelos respectivos complementos algébricos, ou seja,

$$\det A = \sum_{j=1}^n a_{1j} \widehat{a}_{1j}.$$

O resultado seguinte, que não será aqui demonstrado, estabelece que se procedermos de forma análoga para uma qualquer linha ou uma qualquer coluna de A obtemos também o determinante de A.

Teorema (Teorema de Laplace)

Sejam $n \in \mathbb{N}$ tal que $n \geq 2$ e $A = [a_{ij}] \in \mathcal{M}_n(\mathbb{K})$. Então, para qualquer $k \in \{1, 2, ..., n\}$

$$\det A = \sum_{j=1}^{n} \left(-1\right)^{k+j} a_{kj} \det A(k|j)$$

oи

$$\det A = \sum_{i=1}^{n} (-1)^{i+k} a_{ik} \det A(i|k) \quad \Box$$

Relativamente à primeira expressão do teorema de Laplace, dizemos que estamos a desenvolver o determinante ao longo da linha k de A e, relativamente à segunda expressão, dizemos que estamos a desenvolver o determinante ao longo da coluna k de A.

Exemplo

$$Seja \ A = \left[\begin{array}{ccc} 1 & 1 & -1 \\ 2 & 0 & 0 \\ 1 & -5 & 1 \end{array} \right].$$

Por definição, temos

$$\det A = 1 \begin{vmatrix} 0 & 0 \\ -5 & 1 \end{vmatrix} - 1 \begin{vmatrix} 2 & 0 \\ 1 & 1 \end{vmatrix} + 1 \begin{vmatrix} 2 & 0 \\ 1 & -5 \end{vmatrix}$$
$$= 1(0-0) - 1(2-0) + 1(-10-0)$$
$$= -12.$$

Exemplo (continuação).

Aplicando o teorema de Laplace, desenvolvendo o determinante ao longo da linha k=2, vem

$$\det A = (-1)^{2+1} \times 2 \times \begin{vmatrix} 1 & -1 \\ -5 & 1 \end{vmatrix}$$
$$= -2(1+5)$$
$$= -12.$$

Teorema

Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Então, $\det A^T = \det A$.

Demonstração.

A prova segue por indução sobre a ordem n da matriz.

Observação. Do teorema anterior resulta que, dada uma propriedade sobre determinantes expressa em termos de linhas (respectivamente, colunas), podemos sempre enunciar uma propriedade análoga expressa em termos de colunas (respectivamente, linhas).

Teorema

Sejam $n \in \mathbb{N}$ e $A = [a_{ij}] \in \mathcal{M}_n(\mathbb{K})$ uma matriz triangular superior (respectivamente, inferior). Então det $A = a_{11} \times a_{22} \times \cdots \times a_{nn}$.

Demonstração.

A prova segue por indução sobre a ordem n da matriz.

Teorema

Para $n \in \mathbb{N}$ e $k \in \{1, 2, ..., n\}$, tem-se

$$\det \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k-11} & a_{k-22} & \cdots & a_{k-1n} \\ a_{k1} + b_{k1} & a_{k2} + b_{k2} & \cdots & a_{kn} + b_{kn} \\ a_{k+11} & a_{k+12} & \cdots & a_{k+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} =$$

$$\det \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k-11} & a_{k-22} & \cdots & a_{k-1n} \\ a_{k1} & a_{k2} & \cdots & a_{k+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} + \det \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k-11} & a_{k-22} & \cdots & a_{k-1n} \\ b_{k1} & b_{k2} & \cdots & b_{kn} \\ a_{k+11} & a_{k+12} & \cdots & a_{k+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

Demonstração.

Sejam
$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k-11} & a_{k-22} & \cdots & a_{k-1n} \\ a_{k1} & a_{k2} & \cdots & a_{kn} \\ a_{k+11} & a_{k+12} & \cdots & a_{k+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

$$e \ B = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k-11} & a_{k-22} & \cdots & a_{k-1n} \\ b_{k1} & b_{k2} & \cdots & b_{kn} \\ a_{k+11} & a_{k+12} & \cdots & a_{k+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

Demonstração (continuação).

$$\mathsf{Ent\~ao},\,\mathsf{se}\,\mathit{C} = \left[\begin{array}{ccccc} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k-11} & a_{k-22} & \cdots & a_{k-1\,n} \\ a_{k1} + b_{k1} & a_{k2} + b_{k2} & \cdots & a_{kn} + b_{kn} \\ a_{k+11} & a_{k+12} & \cdots & a_{k+1\,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array} \right],\,\,\mathsf{temos}$$

$$\det C = \sum_{j=1}^{n} (-1)^{k+j} (a_{kj} + b_{kj}) \det C(k|j)$$

$$= \sum_{j=1}^{n} (-1)^{k+j} a_{kj} \det C(k|j) + \sum_{j=1}^{n} (-1)^{k+j} b_{kj} \det C(k|j)$$

$$= \sum_{j=1}^{n} (-1)^{k+j} a_{kj} \det A(k|j) + \sum_{j=1}^{n} (-1)^{k+j} b_{kj} \det B(k|j)$$

$$= \det A + \det B. \quad \Box$$

Corolário

Para $n \in \mathbb{N}$ e $k \in \{1, 2, ..., n\}$, tem-se

$$\det \begin{bmatrix} a_{11} & cdots & a_{1} & a_{1} & a_{1} & b_{1} & a_{1} & b_{1} & a_{2} & b_{1} & \cdots & a_{1} & a_{1} & a_{2} & b_{2} & b_{2} & a_{2} & b_{2} & b_{$$

Demonstração. Imediato pelo teorema da página 13

Teorema

Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Se B é uma matriz obtida de A, multiplicando uma sua linha por $\alpha \in \mathbb{K}$. Então,

$$\det B = \alpha \det A$$
.

Demonstração.

Sejam $n \in \mathbb{N}$ e

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k-11} & a_{k-22} & \cdots & a_{k-1n} \\ a_{k1} & a_{k2} & \cdots & a_{kn} \\ a_{k+11} & a_{k+12} & \cdots & a_{k+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \text{ e } B = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k-11} & a_{k-22} & \cdots & a_{k-1n} \\ \alpha \cdot a_{k1} & \alpha \cdot a_{k2} & \cdots & \alpha \cdot a_{kn} \\ a_{k+11} & a_{k+12} & \cdots & a_{k+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}.$$

Demonstração.

Então, desenvolvendo o determinante de ${\cal B}$ ao longo da sua linha k, temos que

$$\det B = \sum_{j=1}^{n} (-1)^{k+j} (\alpha \cdot a_{kj}) \det B(k|j)$$

$$= \alpha \sum_{j=1}^{n} (-1)^{k+j} a_{kj} \det A(k|j)$$

$$= \alpha \det A.$$

Corolário

Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Se B é uma matriz obtida de A, multiplicando uma sua coluna por $\alpha \in \mathbb{K}$. Então,

$$\det B = \alpha \det A$$
. \square

Demonstração. Imediato pelo teorema da página 13

Corolário

Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Se A tem uma linha ou coluna só com zeros, então det A = 0. \square

Demonstração.

Se A tem uma linha ou coluna só com zeros, então A tem uma linha ou uma coluna multiplicada por $\alpha=0$. Logo, o resultado é imediato pelo teorema corolário anterior.

Teorema

Sejam
$$n \in \mathbb{N}$$
, $A \in \mathcal{M}_n(\mathbb{K})$ e $\alpha \in \mathbb{K}$. Então,

$$\det\left(\alpha A\right)=\alpha^n\det A.$$

Demonstração.

A prova é realizada por indução sobre n.

Teorema

Sejam $n \in \mathbb{N}$ tal que $n \geq 2$ e seja $A \in \mathcal{M}_n(\mathbb{K})$. Se B é uma matriz obtida de A trocando duas das suas linhas, então

$$\det B = -\det A$$
.

Demonstração.

A prova é realizada por indução sobre a ordem n da matriz.

Corolário

Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Se B é uma matriz obtida de A trocando duas das suas colunas, então

$$\det B = -\det A$$
.

Corolário

Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Se A tem duas linhas iguais, então det A = 0.

Demonstração.

Se trocarmos as duas linhas iguais da matriz A, obtemos a mesma matriz A. Mas, pelo teorema anterior, $\det A = -\det A$, pelo que $\det A = 0$. \square

Corolário

Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Se A tem duas colunas iguais, então det A = 0.

Teorema

Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Se B é uma matriz obtida de A, substituindo uma sua linha pela sua soma com um múltiplo de outra linha, então

$$\det B = \det A$$
.

Demonstração.

Sejam $n, k, p \in \mathbb{N}$ tais que $1 \leq k e$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p1} & a_{p2} & \cdots & a_{pn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \\ e B = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p1} + \alpha \cdot a_{k1} & a_{p2} + \alpha \cdot a_{k2} & \cdots & a_{pn} + \alpha \cdot a_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

Demonstração.

Então

$$\det B \quad = \quad \det \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p1} + \alpha \cdot a_{k1} & a_{p2} + \alpha \cdot a_{k2} & \cdots & a_{pn} + \alpha \cdot a_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

$$= \quad \det \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p1} & a_{p2} & \cdots & a_{pn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} + \alpha \det \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

$$= \quad \det A + \alpha \cdot 0 = \det A.$$

Corolário

Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Se B é uma matriz obtida de A, substituindo uma sua coluna pela sua soma com um múltiplo de outra coluna, então

$$\det B = \det A$$
. \square

Considerando algumas das propriedades dos determinantes referidas anteriormente, o cálculo do determinante de uma matriz pode ser realizado recorrendo ao método de eliminação de Gauss.

Teorema

Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Se U é uma matriz em escada obtida de A por aplicação do método de eliminação de Gauss, então $\det A = \det U$ ou $\det A = -\det U$.

Demonstração.

Verificámos atrás que o determinante de uma matriz A não se altera se substituirmos uma das suas linhas pela sua soma com outra multiplicada por um escalar. Assim, se U é uma matriz em escada obtida de A por aplicação do método de eliminação de Gauss, tem-se $\det A = (-1)^I \det U$, onde I é o número de trocas de linhas efetuadas até à obtenção da matriz U. Se o número de trocas de linhas realizadas for par, tem-se $\det A = \det U$; se o número de trocas de linhas for ímpar, então $\det A = -\det U$.

De um modo geral, se $U=[u_{ij}]\in\mathcal{M}_n(\mathbb{K})$ é uma matriz triangular superior (inferior) obtida de uma matriz $A\in\mathcal{M}_n(\mathbb{K})$ efectuando operações elementares sobre as linhas (ou colunas) de A, tem-se

$$\det A = (-1)^{l} \times \beta \times u_{11} \times u_{22} \times \cdots \times u_{nn},$$

onde I é o número de vezes que trocamos duas linhas ou duas colunas e β é o inverso do produto dos escalares pelos quais multiplicamos as linhas ou colunas.

Exemplo

$$Seja A = \begin{bmatrix} 1 & 1 & 2 & 2 \\ 2 & 2 & 2 & 5 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \end{bmatrix}. Então$$

$$\begin{vmatrix} 1 & 1 & 2 & 2 \\ 2 & 2 & 2 & 5 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \end{vmatrix} \xrightarrow{t_2 \to t_2 - 2t_2} \begin{vmatrix} 1 & 1 & 2 & 2 \\ 0 & 0 & -2 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \end{vmatrix} \xrightarrow{t_2 \leftrightarrow t_3} - \begin{vmatrix} 1 & 1 & 2 & 2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & -2 & 1 \\ 0 & 0 & 1 & 2 \end{vmatrix}$$

$$\stackrel{l_3 \to \frac{1}{2} l_3}{=} - 2 \begin{vmatrix} 1 & 1 & 2 & 2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & -1 & \frac{1}{2} \\ 0 & 0 & 1 & 2 \end{vmatrix} \stackrel{l_4 \to l_4 + l_3}{=} - 2 \begin{vmatrix} 1 & 1 & 2 & 2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & -1 & \frac{1}{2} \\ 0 & 0 & 0 & \frac{5}{2} \end{vmatrix}$$

$$=-2\times\left(1\times1\times(-1)\times\frac{5}{2}\right)=5$$
.

Facilmente se encontram exemplos de matrizes quadradas A e B tais que $\det(A+B) \neq \det A + \det B$. No entanto, como iremos verificar mais à frente, o determinante do produto de matrizes quadradas é sempre igual ao produto dos determinantes das matrizes fatores.

Teorema

Sejam $n \in \mathbb{N}$, $A \in \mathcal{M}_n(\mathbb{K})$ e E_1, \ldots, E_s matrizes elementares de $\mathcal{M}_n(\mathbb{K})$. Então

$$\det(E_1 \dots E_s A) = \det(E_1 \dots E_s) \det A.$$

Demonstração.

A prova é feita por indução sobre s.

Teorema

Sejam
$$n \in \mathbb{N}$$
 e A, $B \in \mathcal{M}_n(\mathbb{K})$. Então,

$$\det(AB) = \det A \det B.$$

Demonstração.

Consultar as notas da unidade curricular.

Cálculo da inversa a partir da adjunta

No capítulo anterior foram apresentadas várias condições para a caracterização de matrizes invertíveis e apresentou-se um processo para o cálculo da inversa de matrizes invertíveis. Seguidamente apresentamos mais uma caracterização de matrizes invertíveis e um processo para o cálculo da inversa de uma matriz invertível, mas neste caso recorrendo a determinantes.

Definição

Sejam $n \in \mathbb{N}$ e $A = [a_{ij}] \in \mathcal{M}_n(\mathbb{K})$. Chama-se **matriz adjunta de A**, e representa-se por Adj A, à matriz

$$\mathsf{Adj} A = \left[\hat{a}_{ij}\right]^T$$
.

Exemplo

$$Seja \ A = \left[\begin{array}{ccc} 1 & 0 & 3 \\ 0 & 5 & 0 \\ 4 & 0 & 7 \end{array} \right].$$

Como

$$\hat{a}_{11} = (-1)^2 \begin{vmatrix} 5 & 0 \\ 0 & 7 \end{vmatrix} = 35, \quad \hat{a}_{12} = (-1)^3 \begin{vmatrix} 0 & 0 \\ 4 & 7 \end{vmatrix} = 0,$$

$$\hat{a}_{13} = (-1)^4 \begin{vmatrix} 0 & 5 \\ 4 & 0 \end{vmatrix} = -20, \quad \hat{a}_{21} = (-1)^3 \begin{vmatrix} 0 & 3 \\ 0 & 7 \end{vmatrix} = 0,$$

$$\hat{a}_{22} = (-1)^4 \begin{vmatrix} 1 & 3 \\ 4 & 7 \end{vmatrix} = -5, \quad \hat{a}_{23} = (-1)^5 \begin{vmatrix} 1 & 0 \\ 4 & 0 \end{vmatrix} = 0,$$

Exemplo (continuação).

$$\hat{a}_{31} = (-1)^4 \begin{vmatrix} 0 & 3 \\ 5 & 0 \end{vmatrix} = -15, \quad \hat{a}_{32} = (-1)^5 \begin{vmatrix} 1 & 3 \\ 0 & 0 \end{vmatrix} = 0,$$
 $\hat{a}_{33} = (-1)^6 \begin{vmatrix} 1 & 0 \\ 0 & 5 \end{vmatrix} = 5,$

temos

$$AdjA = \begin{bmatrix} 35 & 0 & -20 \\ 0 & -5 & 0 \\ -15 & 0 & 5 \end{bmatrix}^{T} = \begin{bmatrix} 35 & 0 & -15 \\ 0 & -5 & 0 \\ -20 & 0 & 5 \end{bmatrix}.$$

Teorema

Sejam $n \in \mathbb{N}$ e $A = [a_{ij}]_n$ uma matriz quadrada de ordem n sobre \mathbb{K} . Então, se $i \neq j$,

- i) $a_{i1}\hat{a}_{j1} + a_{i2}\hat{a}_{j2} + \cdots + a_{in}\hat{a}_{jn} = 0$.
- ii) $a_{1i}\hat{a}_{1j} + a_{2i}\hat{a}_{2j} + \cdots + a_{ni}\hat{a}_{nj} = 0.$

Teorema

Sejam $n \in \mathbb{N}$ e A uma matriz quadrada de ordem n sobre \mathbb{K} . Então

- i) A é invertível se e só se $\det A \neq 0$.
- ii) $AAdjA = (\det A)I_n$.
- iii) Se A é invertível, então

$$A^{-1} = \frac{1}{\det A} A \operatorname{dj} A.$$

Exemplo

Seja

$$A = \left[\begin{array}{rrr} 1 & 0 & 3 \\ 0 & 5 & 0 \\ 4 & 0 & 7 \end{array} \right].$$

Como det A = -25 e

$$AdjA = \begin{bmatrix} 35 & 0 & -15 \\ 0 & -5 & 0 \\ -20 & 0 & 5 \end{bmatrix},$$

tem-se

$$A^{-1} = \begin{bmatrix} -\frac{35}{25} & 0 & \frac{15}{25} \\ 0 & \frac{5}{25} & 0 \\ \frac{20}{25} & 0 & -\frac{5}{25} \end{bmatrix} = \begin{bmatrix} -\frac{7}{5} & 0 & \frac{3}{5} \\ 0 & \frac{1}{5} & 0 \\ \frac{4}{5} & 0 & -\frac{1}{5} \end{bmatrix}.$$

Exemplo

Seja
$$A=\begin{bmatrix}1&2\\3&6\end{bmatrix}$$
. Como det $A=1\times 6-3\times 2=0$, então a matriz A não é invertível.

Regra de Cramer

Um sistema de *n* equações lineares em *n* incógnitas que seja possível e determinado diz-se um *sistema de Cramer*. O resultado seguinte estabelece como calcular a única solução de um sistema de Cramer recorrendo a determinantes.

Definição

Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Um sistema de equações lineares Ax = b diz-se um **sistema de Cramer** se A é uma matriz invertível.

Teorema

Sejam $n \in \mathbb{N}$, $A \in \mathcal{M}_n(\mathbb{K})$ e Ax = b um sistema de equações lineares. Se A é invertível, então o sistema é possível e determinado e a única solução do sistema é o n-uplo $(\alpha_1, \alpha_2, ..., \alpha_n)$, onde

$$\alpha_i = \frac{\det\left(A^{(i)}\right)}{\det A}, \qquad i = 1, 2, ..., n,$$

e $A^{(i)}$ é a matriz quadrada de ordem n obtida de A substituíndo a sua coluna i pela coluna b.

Demonstração.

Seja $A = [a_{ij}]_n$ uma matriz invertível. Então c(A) = n. Como $A \in \mathcal{M}_n(\mathbb{K})$ e c(A) = c(A|b) = n, o sistema é possível e determinado. Sendo $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n)$ a única solução do sistema, tem-se $A\alpha = b$. Considerando que $A^{-1} = \frac{1}{\det A} \operatorname{Adj} A$, também se tem

$$A\alpha = b \implies \alpha = A^{-1}b$$

$$\Rightarrow \alpha = \frac{1}{\det A} \begin{bmatrix} \hat{a}_{11} & \hat{a}_{21} & \cdots & \hat{a}_{n1} \\ \hat{a}_{12} & \hat{a}_{22} & \cdots & \hat{a}_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ \hat{a}_{1n} & \hat{a}_{2n} & \cdots & \hat{a}_{nn} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

$$\Rightarrow \alpha = \frac{1}{\det A} \begin{bmatrix} \hat{a}_{11}b_1 + \hat{a}_{21}b_2 + \cdots + \hat{a}_{n1}b_n \\ \hat{a}_{12}b_1 + \hat{a}_{22}b_2 + \cdots + \hat{a}_{n2}b_n \\ \vdots \\ \hat{a}_{1n}b_1 + \hat{a}_{2n}b_2 + \cdots + \hat{a}_{nn}b_n \end{bmatrix}.$$

Demonstração (continuação).

Assim, para cada i = 1, 2, ..., n,

$$\alpha_{i} = \frac{1}{\det A} \left(\hat{a}_{1i} b_{1} + \hat{a}_{2i} b_{2} + \dots + \hat{a}_{ni} b_{n} \right)$$

$$= \frac{1}{\det A} \begin{vmatrix} a_{11} & \dots & a_{1i-1} & b_{1} & a_{1i+1} & \dots & a_{1n} \\ a_{21} & \dots & a_{2i-1} & b_{2} & a_{2i+1} & \dots & a_{2n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{ni-1} & b_{n} & a_{ni+1} & \dots & a_{nn} \end{vmatrix}.$$

Exemplo

Consideremos o sistema de equações lineares a seguir indicado

$$\begin{cases} x_1 + 2x_2 - 3x_3 + x_4 = -5 \\ x_2 + 3x_3 + x_4 = 6 \\ 2x_1 + 3x_2 + x_3 + x_4 = 4 \\ x_1 + x_3 + x_4 = 1 \end{cases}$$

O sistema pode ser representado matricialmente por Ax = b, onde

$$A = \begin{bmatrix} 1 & 2 & -3 & 1 \\ 0 & 1 & 3 & 1 \\ 2 & 3 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} -5 \\ 6 \\ 4 \\ 1 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}.$$

Exemplo (continuação).

Uma vez que $|A|=20\neq 0$, a matriz A é invertível e o sistema indicado é um sistema de Cramer. A única solução deste sistema é $(\alpha_1,\alpha_2,\alpha_3,\alpha_4)$, onde

$$\alpha_{1} = \frac{\begin{vmatrix} -5 & -2 & -3 & 1 \\ 6 & 1 & 3 & 1 \\ 4 & 3 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{vmatrix}}{\begin{vmatrix} 1 & 0 & 1 & 1 \\ 20 & 1 & 6 & 1 \\ 2 & 3 & 4 & 1 \\ 1 & 1 & 0 & 1 & 1 \end{vmatrix}} = \frac{0}{20} = 0, \quad \alpha_{2} = \frac{\begin{vmatrix} 1 & -5 & -3 & 1 \\ 0 & 6 & 3 & 1 \\ 2 & 4 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{vmatrix}}{\begin{vmatrix} 1 & 1 & 1 & 1 \\ 20 & 1 & 3 & 6 \\ 2 & 3 & 1 & 4 \\ 1 & 0 & 1 & 1 \end{vmatrix}} = \frac{20}{20} = 1,$$

$$\alpha_{3} = \frac{\begin{vmatrix} 1 & 2 & -3 & -5 \\ 0 & 1 & 3 & 6 \\ 2 & 3 & 1 & 4 \\ 1 & 0 & 1 & 1 \end{vmatrix}}{\begin{vmatrix} 1 & 0 & 1 & 1 \\ 20 & 0 & 1 & 3 \end{vmatrix}} = \frac{-20}{20} = -1$$