∽ Baccalauréat C Aix-Marseille 1 juin 1981 ∾

EXERCICE 1

Le but de cet exercice est de démontrer par l'absurde qu'il existe une infinité de nombres premiers de la forme 4n-1, où n est un élément de \mathbb{N}^* (ensemble des entiers naturels non nuls.

- **1.** Soit E l'ensemble des nombres premiers de la forme 4n-1, où n est élément de \mathbb{N}^* . Montrer que E a au moins deux éléments.
- **2.** *On suppose* E *fini*. Soit *P* le produit de tous les éléments de E et X = 4P 1.
 - **a.** Trouver un minorant de X.
 - **b.** Montrer que X n'est pas divisible par 2, et en déduire que tout facteur premier de X est soit de la forme 4n+1, soit de la forme 4n-1 où n est un élément de \mathbb{N}^* .
 - **c.** Montrer que X possède au moins un facteur premier de la forme 4n-1 où n est un élément de \mathbb{N}^* .
- **3.** En considérant un facteur premier p de X de la forme 4n-1, la définition de P et la relation X = 4P-1, achever la démonstration par l'absurde.

EXERCICE 2

Dans un plan affine P rapporté au repère cartésien $(O; \overrightarrow{\iota}, \overrightarrow{\jmath})$, soit A et B les points de coordonnées respectives (-1; 0) et (0; 1), et soit t un nombre réel non nul.

On désigne par f, g, h les homothéties de rapport t et de centres respectifs O, A, B. À tout point M du plan P, on fait correspondre successivement les points : $M_1 = f(M)$, $M_2 = g(M_1)$, $M_3 = h(M_2)$ et $M_4 = f(M_3)$.

- 1. Représenter sur un même figure les points M_1 , M_2 , M_3 , M_4 dans le cas où t = 2 et $\overrightarrow{OM} = \overrightarrow{i} + \overrightarrow{j}$. (On pourra donner aux représentations de \overrightarrow{i} et \overrightarrow{j} la longueur 0,5 cm).
- **2.** Exprimer le vecteur $\overrightarrow{OM_4}$ en fonction de t et des vecteurs \overrightarrow{i} et \overrightarrow{j} .
- **3.** Soit φ_t l'application du plan P dans lui-même définie par :

pour tout point
$$M$$
 de P, $\varphi_t(M) = f \circ h \circ g \circ f(M)$.

Déterminer suivant les valeurs de t l'ensemble des points de P invariants par φ_t et préciser dans chaque cas la nature de φ_t .

PROBLÈME

On notera \mathbb{N} l'ensemble des entiers naturels, \mathbb{N}^* l'ensemble des entiers naturels non nuls, \mathbb{N}' l'ensemble des entiers naturels privés des nombres 0 et 1.

Partie A

On considère les suites u et v définies sur \mathbb{N}^* par

$$\begin{cases} u_1 &= 1 \\ v_1 &= 1 \end{cases} \text{ et, pour tout } n, \text{ élément de } \mathbb{N}' \begin{cases} u_n &= \frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2} \\ v_n &= 1 + \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \dots + \frac{1}{(n-1)n} \end{cases}$$

^{1.} Nice - Corse - Montpellier - Toulouse

Le baccalauréat de 1981 A. P. M. E. P.

1. Trouver deux réels A et B tels que, pour tout n, élément de \mathbb{N}'

$$\frac{1}{(n-1)n} = \frac{A}{n-1} + \frac{B}{n}.$$

En déduire que, pour tout n, élément de \mathbb{N}' ,

$$v_n = 2 - \frac{1}{n}$$
.

2. Montrer que la suite u est croissante, que, pour tout n, élément de \mathbb{N}' : $u_n \leqslant v_n$, que la suite uest majorée.

Partie B

On rappelle que si q est un nombre complexe différent de 1 et n un élément de $\mathbb N$

$$1+q+q^2+\cdots+q^n=\frac{1-q^{n+1}}{1-q}.$$

1. Soit t un élément de $[0; \pi]$; on pose pour n, élément de \mathbb{N}'

$$C_n(t) = \sum_{k=1}^n \cos kt$$
 et $S_n(t) = \sum_{k=1}^n \sin kt$.

a. Calculer le nombre complexe $C_n(t) + iS_n(t)$. En déduire que si t est un élément de]0; $\pi]$

$$C_n(t) = \frac{\sin\frac{nt}{2}\cos\frac{n+1}{2}t}{\sin\frac{t}{2}}$$

et si t = 0, $C_n(0) = n$.

b. L'application C_n de $[0; \pi]$ dans \mathbb{N} est-elle continue sur $[0; \pi]$.

2. Vérifier que pour tout t, élément de]0; $\pi]$:

$$1 + 2C_n(t) = \frac{\sin\frac{2n+1}{2}t}{\sin\frac{t}{2}}$$

et montrer que l'application de]0; $\pi]$ dans $\mathbb R$ qui à t associe $\frac{\sin\frac{2n+1}{2}t}{\sin\frac{t}{2}}$ peut être prolongée en une fonction π continue π

en une fonction g_n continue sur $[0; \pi]$.

3. Montrer que pour tout n, élément de \mathbb{N}^* ,

$$\int_0^{\pi} \left(\frac{t^2}{2\pi} - t \right) \cos nt \, \mathrm{d}t = \frac{1}{n^2}.$$

En déduire que

$$u_n = \int_0^{\pi} \left(\frac{t^2}{2\pi} - t\right) C_n(t) dt.$$

Le baccalauréat de 1981 A. P. M. E. P.

4. Vérifier que

$$\frac{1}{2} \int_0^{\pi} \left(t - \frac{t^2}{2\pi} \right) dt = \frac{\pi^2}{6}.$$

et que, pour tout n, élément de \mathbb{N}^* :

$$\frac{\pi^2}{6} - u_n = \frac{1}{2} \int_0^{\pi} \left(t - \frac{t^2}{2\pi} \right) g_n(t) dt.$$

Partie C

On considère la fonction numérique f définie sur $[0; \pi]$ par f(0) = 2 et pour tout t, élément de $[0; \pi]$

$$f(t) = \frac{t - \frac{t^2}{2\pi}}{\sin\frac{t}{2}}.$$

1. Montrer que f est continue sur $[0; \pi]$; en déduire l'existence d'un réel M tel que, pour tout t, élément de $[0; \pi]$:

$$0 \leqslant f(t) \leqslant M$$
.

- **2.** Soit α un réel fixé tel que $0 < \alpha < \pi$.
 - **a.** Montrer que, pour tout n, élément de \mathbb{N} ,

$$\left| \int_0^\alpha f(t) \sin \frac{2n+1}{2} t \, \mathrm{d}t \right| \leqslant \alpha M.$$

b. Montrer que f est dérivable sur $[\alpha \ ; \ \pi]$ et que la fonction dérivée f' est continue sur ce segment.

En déduire l'existence d'un réel M' tel que, pour tout t, élément de $[\alpha; \pi]$ $f'(t) \leq M'$.

c. On pose, pour tout n, élément de \mathbb{N} ,

$$I_n = \int_{\alpha}^{\pi} f(t) \sin \frac{2n+1}{2} t \, \mathrm{d}t.$$

Montrer en utilisant une intégration par parties, que

$$\lim_{n\to+\infty}I_n=0.$$

3. Déduire de la question C 2. que

$$\lim_{n\to+\infty}u_n=\frac{\pi^2}{6}.$$