XÂY DỰNG MÔ HÌNH HỌC LIÊN KẾT THÍCH ỨNG TRONG MÔI TRƯỜNG TÍNH TOÁN BIÊN CÓ TÀI NGUYÊN HẠN CHẾ

Nguyễn Đắc Thiên Ngân - 220202015

Tóm tắt

Nguyễn Đắc Thiên Ngân 220202015

- Lớp: CS2205.CH1702
- Link Github:

https://github.com/nguyendacthienngan/C S2205.CH1702

Link YouTube video:

https://youtu.be/a4PUvonUH7g

Giới thiệu

FL đòi hỏi việc giao tiếp **hiệu quả** giữa các thiết bị và máy chủ trung tâm, điều này có thể là một thách thức trong môi trường có **băng thông thấp hoặc độ trễ cao**.

UIT.CS2205.ResearchMethodology

Giới thiệu

Đề xuất giải pháp cho các hệ thống Edge Computing bằng cách:

- Tối ưu việc giao tiếp giữa các thiết bị và máy chủ trung tâm
- Nghiên cứu với các dữ liệu không đồng nhất (Non-IID data)
- Hệ thống cập nhật **bất đồng bộ**

Mục tiêu

- Nghiên cứu các phương pháp, mô hình học liên kết hiện có.
- Nghiên cứu thuật toán kiểm soát giúp giao tiếp hiệu quả.
- Huấn luyện mô hình học liên kết kết hợp thuật toán kiểm soát.

Nội dung và Phương pháp

- Tìm hiểu và đánh giá các hạn chế của các phương pháp FL truyền thống.
- Xác định các ràng buộc tài nguyên của các thiết bị cạnh.
- Thu thập bộ dữ liệu gồm CIFAR-10, MNIST, MNIST-F.
- Thiết kế thuật toán tối ưu hiệu suất học trong việc tổng hợp thông tin.
- Tiến hành thí nghiệm sử dụng dữ liệu thực và mô phỏng trong môi trường thực tế để đánh giá hiệu quả của AFL.
- Đánh giá kết quả với các phương pháp FL truyền thống.

Nội dung và Phương pháp

Kế hoạch thực hiện được thể hiện dưới dạng Biểu đồ Gantt

Công việc	1/2024				2/2024				3/2024				4/2024				5/2024				6/2024				7/2024			
Tuần	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Nghiên cứu các mô hình học máy hiện có																												
Nghiên cứu các mô hình học liên kết hiện có																												
Thu thập và xử lý bộ dữ liệu không đồng nhất																												
Nghiên cứu thuật toán kiểm soát giao tiếp																												
Huấn luyện một mô hình																												
Xây dựng môi trường thử nghiệm																												
Đánh giá mô hình																												

Kết quả dự kiến

- Hiểu rõ được ý tưởng của FL cho hệ thống biên.
- Mô hình dự đoán huấn luyện đạt được hiệu suất tốt hơn các mô hình hiện có.
- Báo cáo đánh giá của phương pháp Adaptive FL.

Tài liệu tham khảo

- [1] Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K. Leung, Christian Makaya, Ting He, Kevin Chan: Adaptive Federated Learning in Resource Constrained Edge Computing Systems. IEEE J. Sel. Areas Commun. 37(6): 1205-1221 (2019)
- [2] Alexander Brecko, Erik Kajati, Jiri Koziorek, and Iveta Zolotova: Federated Learning for Edge Computing: A Survey. Appl. Sci. 2022, 12(18), 9124, (2022)
- [3] Hangyu Zhu, Jinjin Xu, Shiqing Liu, Yaochu Jin: Federated learning on non-IID data: A survey. Neurocomputing, 465(C), (2021).
- [4] Nefi Alarcon. (2019). NVIDIA and King's College London Debut First Privacy-Preserving Federated Learning System for Medical Imaging. https://developer.nvidia.com/blog/first-privacy-preserving-federated-learning-system/
- [5] Zhao Zhang, Yong Zhang, Da Guo, Shuang Zhao, Xiaolin Zhu: Communication-efficient federated continual learning for distributed learning system with Non-IID data. Sci. China Inf. Sci. 66(2) (2023)
- [6] Shai Shalev-Shwartz, Shai Ben-David: Understanding Machine Learning From Theory to Algorithms. Cambridge University Press 2014, ISBN 978-1-10-705713-5, pp. I-XVI, 1-397
- [7] Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning The MIT Press, 2016, 800 pp, ISBN: 0262035618. Genet. Program. Evolvable Mach. 19(1-2): 305-307 (2018)
- [8] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, Blaise Agüera y Arcas: Communication-Efficient Learning of Deep Networks from Decentralized Data. AISTATS 2017: 1273-1282

Tài liệu tham khảo

- [9] Jianmin Chen, Rajat Monga, Samy Bengio, Rafal Józefowicz: Revisiting Distributed Synchronous SGD. CoRR abs/1604.00981 (2016)
- [10] Zhenguo Ma, Yang Xu, Hongli Xu, Zeyu Meng, Liusheng Huang, Yinxing Xue: Adaptive Batch Size for Federated Learning in Resource-Constrained Edge Computing. IEEE Trans. Mob. Comput. 22(1): 37-53 (2023)
- [11] Hossein Chegini, Ranesh Kumar Naha, Aniket Mahanti, Parimala Thulasiraman: Process Automation in an IoT Fog-Cloud Ecosystem: A Survey and Taxonomy. IoT 2021. 2(1): 92-118
- [12] Liam Collins, Hamed Hassani, Aryan Mokhtari, Sanjay Shakkottai: FedAvg with Fine Tuning: Local Updates Lead to Representation Learning. CoRR abs/2205.13692 (2022)
- [13] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, Zhihua Zhang: On the Convergence of FedAvg on Non-IID Data. ICLR 2020
- [14] Adeb Salh, Razali Ngah, Lukman Audah, Kwang Soon Kim, Qazwan Abdullah, Yahya M. Al-Moliki, Khaled A. Aljaloud, Md. Hairul Nizam Talib: Energy-Efficient Federated Learning With Resource Allocation for Green IoT Edge Intelligence in B5G. IEEE Access 11: 16353-16367 (2023)
- [15] Enrique Mármol Campos, Pablo Fernández Saura, Aurora González-Vidal, José Luis Hernández Ramos, Jorge Bernal Bernabé, Gianmarco Baldini, Antonio F. Skarmeta: Evaluating Federated Learning for intrusion detection in Internet of Things: Review and challenges. Comput. Networks 203: 108661 (2022)
- [16] Syreen Banabilah, Moayad Aloqaily, Eitaa Alsayed, Nida Malik, Yaser Jararweh: Federated learning review: Fundamentals, enabling technologies, and future applications. Inf. Process. Manag. 59(6): 103061 (2022)

UIT.CS2205.ResearchMethodology