Indian Institute of Technology, Tirupati

Digital Signal Processing Lab

Labsheet 2: LTI Systems and Convolution

Prelab:

- 1. Are the following statements true or false:
 - (a) The cascade of two LTI systems is also LTI
 - (b) The cascade of two nonlinear systems is also non-linear
- 2. Suppose the following three systems are connected in cascade/series, find the inputoutput relationship of overall system and comment whether the overall system is Linear and/or Time invariant.

System 1: y[n] = x[n/2] for n even 0 for n odd

System 2: y[n] = x[n] + x[n-1]/2 + x[n-2]/4

System 3: y[n] = x[2n]

Lab Exercises:

1. Obtain the convolution of the given finite sequences

$$x_1 = \begin{bmatrix} 4 & 2_{\uparrow} & 6 & 3 & 8 & 1 & 5 \end{bmatrix}$$

 $x_2 = \begin{bmatrix} 3 & 8 & 6_{\uparrow} & 9 & 6 & 7 \end{bmatrix}$

Note: arrow points to zero location in above sequences. Since MATLAB command does not give time index of the convolved result , derive it from the signals to be convolved.

- 2. Find the auto correlation and cross correlation of x_1 and x_2 , with the help of convolution.
- 3. $\exp(x)$ is the exponential of the elements of x (i.e., e^x). For complex number z=x+iy, $\exp(z) = \exp(x)*(\cos(y)+i*\sin(y))$. Taking appropriate values for z,
 - (a) generate and plot a complex-valued exponentially decaying sinusoidal sequence.
 - (b) generate and plot a complex-valued exponentially growing sinusoidal sequence using MATLAB.
- 4. Find solution for y[n] from difference equation y[n] = ay[n-1] + x[n], with $x[n] = \delta[n]$ and simulate it using "filter" command. Can you relate it to any of the standard signals?
- 5. Generate complex exponential signal as impulse response to the following difference equation:

$$y[n] = z_0 y[n-1] + x[n], \text{ where, } z_0 = 0.8e^{j\frac{\pi}{3}}.$$
 (1)

6. Use "filter" function to generate and plot the impulse response h[n] of the following difference equation. Plot h[n] in the range $-10 \le n \le 100$

1

$$y[n] - 1.8\cos(\frac{\pi}{16})y[n-1] + 0.81y[n-2] = x[n] + 0.5x[n-1]$$