Estimación y Predicción en Series Temporales

Cota inferior de Cramer-Rao (CRLB)

Departamento de Procesamiento de Señales

Instituto de Ingeniería Eléctrica Facultad de Ingeniería

2022

Agenda

- Repaso MVU
- Octa inferior de Cramér-Rao (CRLB)

Estimación de parámetros

Planteo del Problema:

- Dadas N muestras de una señal discreta x[n] que depende de cierto parámetro θ desconocido.
- Estimar θ a partir de las N muestras $x[0], x[1], \dots, x[N-1]$

Para ello se define un estimador de θ que es función de los datos:

$$\hat{\theta} = g(x[0], x[1], \dots, x[N-1])$$

- g:función a determinar
- $\hat{\theta}$: estimador de θ

Objetivo: Encontrar una función g de formar que $\hat{\theta}$ sea un buen estimador de θ .

- Estimador $\hat{\theta}$ debe ser cercano (en algún sentido a definir) al valor verdadero de θ .
- El criterio de cercanía debe ser especificado teniendo en cuenta que $\hat{\theta}$ es una Variable Aleatoria.

Criterio de Mínima Varianza

- En la búsqueda de estimadores óptimos es necesario algún criterio de optimalidad.
- Uno natural es la minimización del error cuadrático medio (MSE, Mean Square Error)

$$MSE(\hat{\theta}) = \mathbb{E}\left[(\hat{\theta} - \theta)^2\right].$$

Análisis (descomposición) del error cuadrático medio:

$$\begin{split} \mathrm{MSE}(\hat{\theta}) &= \mathbb{E}\left[(\hat{\theta} - \theta)^2 \right] \\ &= \mathbb{E}\left\{ \left[\left(\hat{\theta} - \mathbb{E}(\hat{\theta}) + \left(\mathbb{E}(\hat{\theta}) - \theta \right) \right]^2 \right\} \\ &= \mathbb{E}\left[\left(\hat{\theta} - \mathbb{E}(\hat{\theta}) \right) \right] + 2 \underbrace{\mathbb{E}\left[\left(\hat{\theta} - \mathbb{E}(\hat{\theta}) \left(\mathbb{E}(\hat{\theta}) - \theta \right) \right] \right]}_{\mathbb{E}^2(\hat{\theta}) - \mathbb{E}(\hat{\theta})\theta - \mathbb{E}^2(\hat{\theta}) + \mathbb{E}(\hat{\theta})\theta = 0} + \mathbb{E}\left[\left(\hat{\theta} - \mathbb{E}(\hat{\theta}) \right)^2 \right] \\ &= \mathbb{E}\left[\left(\hat{\theta} - \mathbb{E}(\hat{\theta}) \right)^2 \right] + \left(\mathbb{E}(\hat{\theta}) - \theta \right)^2 \\ &= \mathrm{var}(\hat{\theta}) + b^2(\hat{\theta}) \end{split}$$

Descomposición sumamente útil bias-variance.

Extensión a vector de parámetros

En el problema general de estimación de parámetros, los parámetros desconocidos pueden ser varios.

Estimador insesgado

 Si hay p parámetros desconocidos, se construye el vector de parámetros desconocidos,

$$\boldsymbol{\theta} = [\theta_1, \theta_2, \dots, \theta_p]^T.$$

• Se dice que un estimador $\hat{m{ heta}} = [\hat{ heta}_1, \hat{ heta}_2, \dots, \hat{ heta}_p]^T$ es insesgado, si

$$\mathbb{E}(\hat{\theta}_i) = \theta_i, \qquad a_i < \theta_i < b_i,$$

para todo i=1,2,...,p.

 Si definimos la esperanza de un vector de variables aleatorias como

$$\mathbb{E}(\hat{\boldsymbol{\theta}}) = [\mathbb{E}(\hat{\theta}_1), \mathbb{E}(\hat{\theta}_2), \dots, \mathbb{E}(\hat{\theta}_p)]^T$$

Un estimador insesgado cumple la igualdad vectorial

$$\mathbb{E}(\hat{\boldsymbol{\theta}}) = \boldsymbol{\theta}.$$

MVU: Extensión a vector de parámetros

Estimador $\hat{\theta}$ de parámetro vectorial θ es **MVU** si:

1 Es insesgado, es decir cumple la igualdad vectorial

$$\mathbb{E}(\hat{\boldsymbol{\theta}}) = \boldsymbol{\theta};$$

2 cumple la propiedad de que

$$var(\hat{\theta}_i)$$
 es mínima, para $i = 1, 2, ..., p$,

entre todos los estimadores insesgados.

Cota inferior de Crámer-Rao (CRLB)

La cota inferior de Cramér-Rao establece una cota inferior teórica en la varianza de un estimador insesgado:

$$var(\hat{\theta}) \ge CRLB(\theta),$$

para todo estimador insesgado $\hat{\theta}$.

Utilidad práctica:

- Permite afirmar si un estimador insesgado es el estimador MVU.
- Esto sucede si el estimador alcanza la cota para todos los valores posibles de θ desconocido, $var(\hat{\theta}) = CRLB(\theta)$, para todo valor de θ .
- Provee una referencia contra la cual comparar el desempeño de cualquier estimador insesgado.
- Indica la imposibilidad física de encontrar un estimador insesgado con varianza menor que la cota. Útil en estudios de viabilidad.
- Permite además determinar si existe un estimador que alcanza la cota.

Dependencia de la PDF de los datos (modelo de datos) con el parámetro:

- Toda la información está contenida en los datos observados y en su modelo (función de densidad de probabilidad, PDF)
- La precisión de la estimación depende directamente de la PDF.
- No se puede esperar una estimación con mucha precisión si la PDF depende débilmente del parámetro.
- Cuanto mayor es la influencia del parámetros desconocido sobre la PDF, mejor debería poder estimarse el parámetro.

Ejemplo: Dependencia de la PDF con el parámetro desconocido

Se quiere estimar el nivel de DC (parámetro A) en WGN cuando se observa una sola muestra,

$$x[0] = A + w[0], \text{ donde } w[0] \sim \mathcal{N}(0, \sigma^2).$$

- Se espera que la estimación sea mejor si σ^2 es pequeño (pocoruido).
- Un buen estimador insesgado es:

$$\hat{A} = x[0]$$

La varianza del estimador es:

$$\operatorname{var}(\hat{A}) = \sigma^2.$$

• La precisión del estimador mejora a medida que σ^2 decrece.

Ejemplo: Dependencia de la PDF con el parámetro desconocido

Se considera la PDF para dos valores distintos de varianza

$$p_i(x[0];A) = \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left[-\frac{1}{2\sigma_i^2}(x[0]-A)^2\right], \ \ \text{con } i=1,2.$$

• Supongamos x[0]=3. Se observa la PDF en función de A, para el valor obtenido de x[0]. Se consideran los valores $\sigma_1=1/3$ y $\sigma_2=1$.

Definición: PDF vista como una función del parámetro desconocido θ con $\mathbf x$ fijo, se denomina **función de verosimilitud** (*likelihood function*).

Ejemplo: Dependencia de la PDF con el parámetro desconocido

• con $\sigma_1 = 1/3$, los valores de A > 4 tienen una probabilidad de:

$$\Pr\{A > 4 \mid X[0] = 3\} = 1 - \Phi\left(\frac{A - x[0]}{\sigma_1}\right) = 1 - \Phi(3) \approx 0.0013$$

• con $\sigma_2 = 1$, los valores de A > 4 tienen una probabilidad de:

$$\Pr\{A > 4 \mid X[0] = 3\} = 1 - \Phi\left(\frac{A - x[0]}{\sigma_2}\right) = 1 - \Phi(1) \approx 0.1587$$

Ejemplo: Dependencia de la PDF con el parámetro desconocido

- Si $x \sim \mathcal{N}(\mu, \sigma^2)$, entonces $\Pr\{|x \mu| \leq 3\sigma\} \approx 0.9973$.
- Valores de A fuera del intervalo $x[0] \pm 3\sigma_i$ son muy poco probables.
 - con $\sigma_1 = 1/3$, candidatos probables $A \in [2, 4]$,
 - con $\sigma_2 = 1$, candidatos probables $A \in [0, 6]$.

Observaciones:

- La función de verosimilitud $p_{\sigma_2=1}(x[0]=3;A)$ tiene una **dependencia más débil** del parámetro A que $p_{\sigma_1=1/3}(x[0]=3;A)$ por lo que los candidatos probables de A se encuentran en un intervalo más amplio.
- Intuitivamente, la "agudeza" (sharpness) de la función de verosimilitud determina precisión con la cual es posible estimar el parámetro desconocido.
- Una forma de medir la agudeza de la función de verosimilitud es a través del negativo de la derivada segunda del logaritmo de la verosimilitud respecto al parámetro desconocido en el pico.

Ejemplo: Dependencia de la PDF con el parámetro desconocido

Derivada segunda del logaritmo de la función de verosimilitud

La función de verosimilitud es:

$$p(x[0]; A) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(x[0] - A)^2\right].$$

El logaritmo de la función de verosimilitud es

$$\log p(x[0]; A) = -\log \sqrt{2\pi\sigma^2} - \frac{1}{2\sigma^2} (x[0] - A)^2.$$

Tomando la derivada primera,

$$\frac{\partial \log p(x[0]; A)}{\partial A} = \frac{1}{\sigma^2} (x[0] - A),$$

y el opuesto de la derivada segunda queda,

$$-\frac{\partial^2 \log p(x[0]; A)}{\partial A^2} = \frac{1}{\sigma^2}.$$

$$-\frac{\partial^2 \log p(x[0];A)}{\partial A^2} = \frac{1}{\sigma^2}$$

- La curvatura crece a medida que la varianza del ruido σ^2 decrece.
- Teniendo en cuenta que el estimador es $\hat{A}=x[0]$, y por lo tanto su varianza es $\text{var}(\hat{A})=\sigma^2$, para este ejemplo particular se cumple que:

$$\operatorname{var}(\hat{A}) = \frac{1}{-\frac{\partial^2 \log p(x[0]; A)}{\partial A^2}} = \sigma^2$$

• En este ejemplo, la derivada segunda no depende de los datos (x[0]), pero en lo general lo hará. Por lo tanto una medida más apropiada de la curvatura es:

$$-\mathbb{E}\left[\frac{\partial^2 \log p(x[0];A)}{\partial A^2}\right]$$

- Mide la curvatura media de la función de verosimilitud logarítmica.
- La esperanza se toma sobre el modelo de los datos (x[0], V.A.), resultando en una función únicamente de A.

Resumen

- Se dispone de un conjunto de datos y un modelo de los datos que depende de un parámetro desconocido que queremos estimar.
- El modelo impone una PDF de los datos (con un parámetro desconocido).
- Si se considera la PDF como función del parámetro manteniendo fijos los datos, la función se denomina función de verosimilitud (respectivamente función de log-verosimilitud).
- Cuánto más fuerte es la dependencia de la función de verosimilitud con el parámetro, el parámetro se puede estimar con mayor precisión.
- Una forma de medir la dependencia de la log-verosimilitud con el parámetro es a través de la concavidad (opuesto de la derivada segunda respecto al parámetro).
- El estimador del parámetro tendrá menor varianza cuanto mayor sea la concavidad de la función de verosimilitud.

Cota Inferior de Cramér-Rao

Teorema: Cota Inferior de Cramér-Rao, parámetro escalar.

Se asume que la PDF $p(\mathbf{x}; \theta)$ satisface la condición de regularidad,

$$\mathbb{E}_{\mathbf{x}}\left[\frac{\partial \log p(\mathbf{x};\theta)}{\partial \theta}\right] = 0 \quad \text{ para todo } \theta.$$

Entonces,

 $oldsymbol{0}$ la varianza de todo estimador insesgado $\hat{ heta}$ cumple que

$$\operatorname{var}(\hat{\theta}) \ge \frac{1}{-\mathbb{E}_{\mathbf{x}} \left[\frac{\partial^2 \log p(\mathbf{x}; \theta)}{\partial \theta^2} \right]},$$

donde la derivada se evalúa en el valor verdadero de θ .

 $oldsymbol{2}$ existe un estimador que alcanza la cota para todo heta si y solo si

$$\frac{\partial \log p(\mathbf{x}; \theta)}{\partial \theta} = I(\theta) (g(\mathbf{x}) - \theta),$$

para alguna función I y g.

Este estimador, que es el MVU, es $\hat{\theta}=g(\mathbf{x})$ y su varianza es $\frac{1}{I(\theta)}$.

Cota Inferior de Cramér-Rao: Consideraciones

• La esperanza se toma respecto a los datos $\mathbf{x} \sim p(\mathbf{x}; \theta)$,

$$\mathbb{E}_{\mathbf{x}} \left[\frac{\partial^2 \log p(\mathbf{x}; \theta)}{\partial \theta^2} \right] = \int \frac{\partial^2 \log p(\mathbf{x}; \theta)}{\partial \theta^2} p(\mathbf{x}; \theta) d\mathbf{x}.$$

La esperanza reconoce el hecho de que la función de verosimilitud y sus derivadas son variables aleatorias por depender de los datos observados ${\bf x}$.

• La cota depende en general del parámetro desconocido θ .

Cota Inferior de Cramér-Rao: Consideraciones

Condición de regularidad.

$$\mathbb{E}\left[\frac{\partial \log p(\mathbf{x}; \theta)}{\partial \theta}\right] = \int \frac{\partial \log p(\mathbf{x}; \theta)}{\partial \theta} p(\mathbf{x}; \theta) d\mathbf{x}$$

$$\stackrel{(a)}{=} \int \frac{\partial p(\mathbf{x}; \theta)}{\partial \theta} d\mathbf{x}$$

$$\stackrel{(b)}{=} \frac{\partial}{\partial \theta} \int p(\mathbf{x}; \theta) d\mathbf{x}$$

$$\stackrel{(c)}{=} 0.$$

- (a) Regla de la cadena
- (b) Cambio del orden de integración y diferenciación
- (c) $\forall \theta$, $\int p(\mathbf{x}; \theta) d\mathbf{x} = 1$.
- La condición de regularidad se cumple si es posible cambiar el orden de integración y diferenciación (paso (b)).
- Esto es cierto en general salvo cuando el soporte de p(x; θ) depende del parámetro desconocido θ,
 - se deduce de la regla de integración de Leibniz (ver apéndice I).

CRLB: Prueba simple (1/3)

(1)
$$\mathbb{E}\left[\hat{\theta}\right] = \int p(\mathbf{x}; \theta) g(\mathbf{x}) d\mathbf{x} = \theta$$
 (2) $\int p(\mathbf{x}; \theta) \frac{\partial}{\partial \theta} \log p(\mathbf{x}; \theta) d\mathbf{x} = 0$

Derivando (1) con respecto a θ :

$$\begin{split} \frac{\partial}{\partial \theta} \int p(\mathbf{x}; \theta) g(\mathbf{x}) d\mathbf{x} &\stackrel{(a)}{=} \int \frac{\partial}{\partial \theta} p(\mathbf{x}; \theta) g(\mathbf{x}) d\mathbf{x} \\ &\stackrel{(b)}{=} \int p(\mathbf{x}; \theta) \frac{\partial}{\partial \theta} \log p(\mathbf{x}; \theta) g(\mathbf{x}) d\mathbf{x} \\ &\stackrel{(c)}{=} \int p(\mathbf{x}; \theta) \frac{\partial}{\partial \theta} \log p(\mathbf{x}; \theta) (g(\mathbf{x}) - \theta) d\mathbf{x} \\ &\stackrel{(d)}{=} \frac{\partial}{\partial \theta} \theta = 1 \end{split}$$

- (a) intercambiando el orden de diferenciación e integración
- (b) regla de la cadena $\left(\frac{\partial}{\partial \theta} \log p(\mathbf{x}; \theta) = \frac{1}{p(\mathbf{x}; \theta)} \frac{\partial}{\partial \theta} p(\mathbf{x}; \theta)\right)$
- (c) restando una constante (θ) multiplicada por algo que es igual a 0, por (2)
- (d) por (1)

CRLB: Prueba simple (2/3)

Tenemos que

$$1 = \int p(\mathbf{x}; \theta) \frac{\partial}{\partial \theta} \log p(\mathbf{x}; \theta) (g(\mathbf{x}) - \theta) d\mathbf{x}$$

Cauchy-Schwartz

$$\left[\int w(\mathbf{x}) a(\mathbf{x}) b(\mathbf{x}) d\mathbf{x} \right]^2 \le \int w(\mathbf{x}) a^2(\mathbf{x}) d\mathbf{x} \int w(\mathbf{x}) b^2(\mathbf{x}) d\mathbf{x}$$

- $w(\mathbf{x}) \geq 0, \forall \mathbf{x}$
- Igualdad si y sólo si $a(\mathbf{x}) = c \cdot b(\mathbf{x})$ para c cte. con respecto a \mathbf{x}

CRLB: Prueba simple (2/3)

Tenemos que

$$1 = \int p(\mathbf{x}; \theta) \frac{\partial}{\partial \theta} \log p(\mathbf{x}; \theta) (g(\mathbf{x}) - \theta) d\mathbf{x}$$

Cauchy-Schwartz

$$\left[\int w(\mathbf{x})a(\mathbf{x})b(\mathbf{x})d\mathbf{x}\right]^2 \leq \int w(\mathbf{x})a^2(\mathbf{x})d\mathbf{x} \int w(\mathbf{x})b^2(\mathbf{x})d\mathbf{x}$$

- $w(\mathbf{x}) \geq 0, \forall \mathbf{x}$
- Igualdad si y sólo si $a(\mathbf{x}) = c \cdot b(\mathbf{x})$ para c cte. con respecto a \mathbf{x}

Aplicando C.S.:

$$1 \leq \int p(\mathbf{x}; \theta) \left(\frac{\partial}{\partial \theta} \log p(\mathbf{x}; \theta) \right)^{2} d\mathbf{x} \int p(\mathbf{x}; \theta) (g(\mathbf{x}) - \theta)^{2} d\mathbf{x}$$
$$1 \leq \underbrace{\int p(\mathbf{x}; \theta) \left(\frac{\partial}{\partial \theta} \log p(\mathbf{x}; \theta) \right)^{2} d\mathbf{x}}_{\mathbb{E}\left[\left(\frac{\partial}{\partial \theta} \log p(\mathbf{x}; \theta)\right)^{2}\right]} \underbrace{\int p(\mathbf{x}; \theta) (g(\mathbf{x}) - \theta)^{2} d\mathbf{x}}_{\mathbb{E}\left[\left(g(\mathbf{x}) - \theta\right)^{2}\right]}$$

CRLB: Prueba simple (3/3)

Finalmente:

$$\mathbb{E}\left[\left(g(\mathbf{x}) - \theta\right)^{2}\right] = \operatorname{var}\left[g(\mathbf{x})\right] \ge \frac{1}{\mathbb{E}\left[\left(\frac{\partial}{\partial \theta} \log p(\mathbf{x}; \theta)\right)^{2}\right]}$$
$$= \frac{1}{-\mathbb{E}\left[\frac{\partial^{2}}{\partial \theta^{2}} \log p(\mathbf{x}; \theta)\right]}$$

Ejercicio: probar que $\mathbb{E}\left[\left(\frac{\partial}{\partial \theta}\log p(\mathbf{x};\theta)\right)^2\right] = -\mathbb{E}\left[\frac{\partial^2}{\partial \theta^2}\log p(\mathbf{x};\theta)\right]$.

La segunda parte del teorema CRLB se prueba utilizando la condición de igualdad de Cauchy-Schwartz. (Ver Kay, apéndice 3A)

$$\underbrace{\frac{\partial \log p(\mathbf{x}; \theta)}{\partial \theta}}_{\mathbf{a}(\mathbf{x})} = \underbrace{I(\theta)}_{c} \cdot \underbrace{(g(\mathbf{x}) - \theta)}_{b(\mathbf{x})}$$

22 / 1

CRLB: Ejemplos (I)

Ejemplo: CRLB nivel de DC en WGN (una única muestra)

- Estimar A a partir de x[0] = A + w[0] donde $w[0] \sim \mathcal{N}(0, \sigma^2)$.
- Eligiendo $\hat{A} = x[0]$, se tiene que $var(\hat{A}) = \sigma^2$.
- Derivadas primera y segunda de la función de log-verosimilitud:

$$\frac{\partial \log p(x[0];A)}{\partial A} = \frac{1}{\sigma^2}(x[0]-A)$$

$$\frac{\partial^2 \log p(x[0]; A)}{\partial A^2} = -\frac{1}{\sigma^2}$$

Aplicando la CRLB se tiene que,

$$var(\tilde{A}) \geq \sigma^2, \forall A$$
, para cualquier estimador insesgado \tilde{A} .

- No existe un estimador insesgado de varianza menor a σ^2 .
- Conclusión: Como el estimador elegido \hat{A} es insesgado y alcanza la CRLB para todo A, es el estimador MVU.

CRLB: Ejemplos (I)

Ejemplo: CRLB nivel de DC en WGN (una única muestra)

En el caso de no haber descubierto a $\hat{A} = x[0]$ como estimador, se podría haber empleado la segunda parte del teorema de la CRLB.

Es decir, si

$$\frac{\partial \log p(\mathbf{x}; \theta)}{\partial \theta} = I(\theta)(g(\mathbf{x}) - \theta),$$

entonces:

- $\hat{\theta} = q(\mathbf{x})$ es un estimador MVU
- la varianza mínima es $1/I(\theta)$.

Identificando términos:

$$\theta = A$$

•
$$I(\theta) = \frac{1}{\sigma^2}$$

•
$$g(x[0]) = x[0]$$

En este caso.

$$\frac{\partial \log p(\mathbf{x}; \theta)}{\partial \theta} = I(\theta)(g(\mathbf{x}) - \theta), \qquad \frac{\partial \log p(x[0]; A)}{\partial A} = \frac{1}{\sigma^2}(x[0] - A).$$

Por lo que:

- $\hat{A} = q(x[0]) = x[0]$ estimador MVU
- $var(\hat{A}) = \frac{1}{I(A)} = \sigma^2$.
- Además, se cumple la igualdad

$$I(\theta) = -\mathbb{E}\left[\frac{\partial^2 \log p(x[0]; A)}{\partial A^2}\right].$$

CRLB: Ejemplos (II)

Ejemplo: CRLB nivel de DC en WGN (multiples muestras)

Como generalización del ejemplo anterior, en este caso se observan múltiples muestras del nivel de continua en WGN,

$$x[n] = A + w[n] \text{ con } n = 0, 1, \dots, N - 1 \text{ y } w[n] \sim \mathcal{N}(0, \sigma^2)$$

Se quiere determinar la CRLB del problema de estimar A,

La función de verosimilitud es:

$$p(\mathbf{x}; A) = \prod_{n=0}^{N-1} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2} (x[n] - A)^2\right]$$
$$= \frac{1}{(2\pi\sigma^2)^{\frac{N}{2}}} \exp\left[-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x[n] - A)^2\right].$$

Tomando el logaritmo, obtenemos la log-verosimilitud,

$$\log p(\mathbf{x}; A) = -\log \left[(2\pi\sigma^2)^{\frac{N}{2}} \right] - \frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x[n] - A)^2.$$

CRLB: Ejemplos (II)

Ejemplo: CRLB nivel de DC en WGN (multiples muestras)

Calculando la derivada primera de la log-verosimilitud, obtenemos

$$\frac{\partial \log p(\mathbf{x}; A)}{\partial A} = \frac{\partial}{\partial A} \left\{ -\log \left[(2\pi\sigma^2)^{\frac{N}{2}} \right] - \frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x[n] - A)^2 \right\}$$

$$= \frac{1}{\sigma^2} \sum_{n=0}^{N-1} (x[n] - A)$$

$$= \frac{N}{\sigma^2} \left(\frac{1}{N} \sum_{n=0}^{N-1} x[n] - A \right)$$

$$= \frac{N}{\sigma^2} (\bar{x} - A)$$

Diferenciando nuevamente respecto de A,

$$\frac{\partial^2 \log p(\mathbf{x};A)}{\partial A^2} = -\frac{N}{\sigma^2}.$$

CRLB: Ejemplos (II)

Ejemplo: CRLB nivel de DC en WGN (multiples muestras)

 Teniendo en cuenta que la derivada segunda es constante, mediante Teo. de la CRLB se obtiene,

$$\operatorname{var}(\hat{A}) \geq \frac{1}{-\mathbb{E}_{\mathbf{x}} \left[\frac{\partial^2 \log p(\mathbf{x}; A)}{\partial A^2} \right]} = \frac{\sigma^2}{N}.$$

Además, asociando términos podemos reconocer,

$$g(\mathbf{x}) = \bar{x} = \frac{1}{N} \sum_{n=0}^{N-1} x[n]$$
 (media muestral)

alcanza la CRLB, y siendo insesgado, es un estimador MVU.

· La cota se cumple con igualdad

$$\operatorname{var}(\hat{A}) = \frac{1}{I(A)} = \frac{\sigma^2}{N}.$$

 La varianza del estimador es inversamente proporcional a la cantidad de datos observados.

CRLB: Ejemplos (III)

Ejemplo: CRLB estimación de fase

Se quiere estimar la fase ϕ de una sinusoide contamindad con AWGN,

$$x[n] = A\cos(2\pi f_0 n + \phi) + w[n], \text{ con } n = 0, 1, \dots, N-1,$$

donde $w[n] \sim \mathcal{N}(0, \sigma^2)$ para todo n.

(Ejercicio) Mostrar que la derivada de la función de log-verosimilitud es,

$$\frac{\partial \log p(\mathbf{x}; \phi)}{\partial \phi} = -\frac{A}{\sigma^2} \sum_{n=0}^{N-1} \left[x[n] \sin(2\pi f_0 n + \phi) - \frac{A}{2} \sin(4\pi f_0 n + 2\phi) \right].$$

Además,

$$\mathbb{E}_{\mathbf{x}} \left[\frac{\partial^2 \log p(\mathbf{x}; \phi)}{\partial \phi^2} \right] \approx -\frac{NA^2}{2\sigma^2},$$

con lo cual

$$\operatorname{var}(\hat{\phi}) \ge \frac{2\sigma^2}{NA^2}.$$

- No se cumple la condición para alcanzar la cota porque la derivada de la log-verosimilitud no se puede factorizar como $I(\theta)(g(\mathbf{x}) \theta)$.
- Puede que exista un estimador MVU, pero no es posible determinar su existencia ni encontrarlo mediante el Teorema de la CRLB.

Estimador eficiente

Definición (Estimador eficiente). Un estimador que es insesgado y alcanza la cota de Cramér-Rao para todos los valores del parámetro desconocido se dice que es eficiente.

Observación. Un estimador MVU puede ser o no ser eficiente

- $\hat{\theta}_1$ alcanza la CRLB y por lo tanto es el MVU.
- θ_1 es eficiente y MVU.

- Ningún estimador alcanza CRI B.
- Varianza de $\hat{\theta}_1$ es menor que la de los otros estimad. insesgados.
- θ₁ es MVU pero no es

Información de Fisher

Definición (Información de Fisher). La información de Fisher para los datos $\mathbf{x} \sim p(\mathbf{x}; \theta)$ se define como:

$$I(\theta) = -\mathbb{E}_{\mathbf{x}} \left[\frac{\partial^2 \log p(\mathbf{x}; \theta)}{\partial \theta^2} \right].$$

Cuando un estimador alcanza la CRLB, su varianza es:

$$\mathrm{var}(\hat{\theta}) = \frac{1}{-\mathbb{E}_{\mathbf{x}} \left[\frac{\partial^2 \log p(\mathbf{x}; \theta)}{\partial \theta^2} \right]} = \frac{1}{I(\theta)}.$$

Propiedades. $I(\theta)$ tiene las propiedades de una medida de información.

• Es no-negativa. Esto puede verse a partir de la siguiente igualdad

$$-\mathbb{E}_{\mathbf{x}}\left[\frac{\partial^2 \log p(\mathbf{x}; \theta)}{\partial \theta^2}\right] = \mathbb{E}_{\mathbf{x}}\left[\left(\frac{\partial \log p(\mathbf{x}; \theta)}{\partial \theta}\right)^2\right]$$

(Ejercicio, ver Apéndice 3A en Kay, Vol I.)

• Es aditiva para observaciones independientes. Si $I(\theta)$ es la información de N observaciones IID e $i(\theta)$ de una única observación, se tiene que $I(\theta) = Ni(\theta)$.

Información de Fisher

La densidad de probabilidad de N observaciones IID cumple que

$$p(\mathbf{x}; \theta) = p(x[0], x[1], \dots, x[N-1]; \theta) = \prod_{n=0}^{N-1} p(x[n]; \theta).$$

La información de Fisher es entonces:

$$I(\theta) = -\mathbb{E}\left[\frac{\partial^2 \log p(\mathbf{x}; \theta)}{\partial \theta^2}\right] = -\sum_{n=0}^{N-1} \mathbb{E}\left[\frac{\partial^2 \log p(x[n]; \theta)}{\partial \theta^2}\right] = Ni(\theta),$$

$$\mathrm{con}\ i(\theta) = -\mathbb{E}\left[\tfrac{\partial^2\log p(x[n];\theta)}{\partial \theta^2}\right] \text{ la información de Fisher de una muestra}.$$

La CRLB al observar N muestras IID es N veces menor que al observar una muestra. En general,

- Independencia: $I(\theta) = Ni(\theta)$
- No Independencia: $I(\theta) < Ni(\theta)$
- Dependencia completa: $I(\theta) = i(\theta)$

Señales con AWGN: Caso muy frecuente en la práctica

• Sea una señal determinística con un parámetro desconocido θ observada en AWGN (ruido aditivo blanco Gaussiano),

$$x[n] = s[n; \theta] + w[n], \text{ con } n = 0, 1, ..., N-1 \text{ y } w[n] \sim \mathcal{N}(0, \sigma^2).$$

La función de verosimilitud es

$$p(\mathbf{x}; \theta) = \frac{1}{(2\pi\sigma^2)^{\frac{N}{2}}} \exp\left[-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x[n] - s[n; \theta])^2\right].$$

Tomando el logaritmo queda

$$\log p(\mathbf{x}; \theta) = -\log \left[(2\pi\sigma^2)^{\frac{N}{2}} \right] - \frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x[n] - s[n; \theta])^2$$

Diferenciando una vez se tiene que

$$\frac{\partial \log p(\mathbf{x}; \theta)}{\partial \theta} = \frac{1}{\sigma^2} \sum_{n=0}^{N-1} (x[n] - s[n; \theta]) \frac{\partial s[n; \theta]}{\partial \theta}.$$

Señales con AWGN: Caso muy frecuente en la práctica

Diferenciando una segunda vez obtenemos

$$\frac{\partial^2 \log p(\mathbf{x}; \theta)}{\partial \theta^2} = \frac{1}{\sigma^2} \sum_{n=0}^{N-1} \left[(x[n] - s[n; \theta]) \frac{\partial^2 s[n; \theta]}{\partial \theta^2} - \left(\frac{\partial s[n; \theta]}{\partial \theta} \right)^2 \right]$$

y tomando el valor esperado,

$$\mathbb{E}_{\mathbf{x}}\left(\frac{\partial^{2} \log p(\mathbf{x}; \theta)}{\partial \theta^{2}}\right) = \frac{1}{\sigma^{2}} \sum_{n=0}^{N-1} \left[\left(\mathbb{E}(x[n]) - s[n; \theta]\right) \frac{\partial^{2} s[n; \theta]}{\partial \theta^{2}} - \left(\frac{\partial s[n; \theta]}{\partial \theta}\right)^{2} \right]$$

$$\stackrel{(a)}{=} -\frac{1}{\sigma^{2}} \sum_{n=0}^{N-1} \left(\frac{\partial s[n; \theta]}{\partial \theta}\right)^{2},$$

donde en (a) se empleó que $\mathbb{E}(x[n]) = s[n; \theta)$ (ruido tiene media nula).

La CRLB es por lo tanto:

$$\operatorname{var}(\hat{\theta}) \ge \frac{\sigma^2}{\sum_{n=0}^{N-1} \left(\frac{\partial s[n;\theta]}{\partial \theta}\right)^2}$$

• Observar que se obtiene una mejor estimación cuando la señal $s[n;\theta]$ cambia más rápidamente con el parámetro θ .

Ejemplo: Estimación de la frecuencia de una sinusoide

 Se considera una señal sinusoidal en AWGN y se quiere estimar su frecuencia. Es decir.

$$x[n] = s[n; \theta] + w[n], \text{ con } n = 0, 1, ..., N-1 \text{ y } w[n] \sim \mathcal{N}(0, \sigma^2).$$

donde

$$s[n; f_0] = Acos(2\pi f_0 n + \phi) \quad \text{con } 0 < f_0 < \frac{1}{2},$$

con la amplitud A y la fase ϕ conocida.

 Usando la ecuación general de la CRLB en señales con AWGN, tenemos:

$$\operatorname{var}(\hat{f}_0) \ge \frac{\sigma^2}{A^2 \sum_{n=0}^{N-1} \left[2\pi n \sin(2\pi f_0 n + \phi) \right]^2}.$$

Ejemplo: Estimación de la frecuencia de una sinusoide

Observaciones:

- En la precisión del estimador hay frecuencias preferidas.
- Cuando $f_0 \to 0$, CRLB $\to \infty$. Esto es porque para $f_0 \approx 0$, pequeños cambios en f_0 no alteran la señal significativamente.
- Mediante el teorema de Cramér-Rao, se encontró una cota de la varianza de todo estimador insesgado, sin embargo no es posible encontrar el estimador en este ejemplo.

Transformación de parámetros

- En la práctica es bastante común que querramos estimar una función de algún parámetro más fundamental.
- Nos interesa estimar un parámetro $\alpha = f(\theta)$ estimando primero θ .
- ¿Es suficiente con aplicar la transformación al resultado estimado $\hat{\theta}$?
- Es, decir es $\hat{\alpha}=f(\hat{\theta})$ un buen estimador de α , si $\hat{\theta}$ es buen estimador de θ ?

Ejemplo: Potencia de DC en WGN

Supongamos que en lugar de estimar el de DC dado por A en WGN,

$$x[n] = A + w[n], \quad n = 0, 1, \dots, N - 1 \text{ donde } w[n] \sim \mathcal{N}(0, \sigma^2),$$

nos interesa estimar la potencia A^2 .

- Vimos que $\hat{A} = \frac{1}{N} \sum_{n=0}^{N-1} x[n]$ es un estimador *eficiente* de A.
- ¿Es entonces \hat{A}^2 buen estimador de A^2 ? ¿Es eficiente?
- ¿Cuál es la CRLB para la estimación del parámetro A^2 ?

Transformación de parámetros

Ejemplo: Potencia de DC en WGN

- Recordar que \hat{A} es *eficiente* y por lo tanto $var(\hat{A}) = CRLB(A) = \sigma^2/N$.
- La varianza se puede escribir como:

$$\operatorname{var}(\hat{A}) = \mathbb{E}(\hat{A}^2) - \mathbb{E}(\hat{A})^2$$

Es decir:

$$\begin{split} \mathbb{E}(\hat{A}^2) &= \mathrm{var}(\hat{A}) + \mathbb{E}(\hat{A})^2 \\ &= \frac{\sigma^2}{N} + A^2 \end{split}$$

- Por lo tanto, \hat{A}^2 ni siguiera es un estimador insesgado. de A^2 .
- Una transformación no lineal destruye la eficiencia de un estimador.

Transformación de parámetros

Teorema. La CRLB para cualquier estimador insesgado de $\alpha = f(\theta)$, es

$$\operatorname{var}(\hat{\alpha}) \geq \frac{\left(\frac{\partial f}{\partial \theta}\right)^2}{-\mathbb{E}\left[\frac{\partial^2 \log p(\mathbf{x};\theta)}{\partial \theta^2}\right]} = \left(\frac{\partial f}{\partial \theta}\right)^2 CRLB_{\hat{\theta}}(\theta).$$

Demostración en Kay, 1993 (Apéndice 3A)

Ejemplo: Potencia de DC en WGN

En el caso del ejemplo, $\alpha = f(A) = A^2$ y por lo tanto,

$$\operatorname{var}\left(\widehat{A^2}\right) \ge \frac{(2A)^2}{N/\sigma^2} = \frac{4A^2\sigma^2}{N}.$$

Transformación *afín* de parámetros

• Supongamos que $\hat{\theta}$ es un estimador *eficiente* de θ y gueremos estimar $\alpha = f(\theta) = a\theta + b$. Cualquier estimador insesgado $\hat{\alpha}$ de α cumple,

$$\operatorname{var}(\hat{\alpha}) \stackrel{(a)}{\geq} \frac{\left(\frac{\partial f}{\partial \theta}\right)^2}{I(\theta)}$$

$$\stackrel{(b)}{=} \left(\frac{\partial f}{\partial \theta}\right)^2 \operatorname{var}(\theta)$$

(a) CRLB para
$$\alpha = f(\theta)$$
.

- $\stackrel{(b)}{=} \left(\frac{\partial f}{\partial \theta}\right)^2 \text{var}(\hat{\theta}) \qquad \qquad \text{(b)} \quad \hat{\theta} \text{ es estimador } eficiente \text{ de } \theta.$ $\stackrel{(b)}{=} \left(\frac{\partial f}{\partial \theta}\right)^2 \text{var}(\hat{\theta}) \qquad \qquad \text{(c) definición de } \frac{\partial f}{\partial \theta}.$
- Vamos a estudiar $\widehat{f(\theta)} = a\widehat{\theta} + b$ como estimador de $\alpha = f(\theta)$

Esperanza

$$\mathbb{E}(\widehat{f(\theta)}) = \mathbb{E}(a\widehat{\theta} + b)$$

$$= a\mathbb{E}(\widehat{\theta}) + b$$

$$= a\theta + b = f(\theta)$$

 $\stackrel{(c)}{=} a^2 \operatorname{var}(\hat{\theta})$

Varianza

$$\operatorname{var}(\widehat{f(\theta)}) = \operatorname{var}(a\hat{\theta} + b)$$

= $a^2 \operatorname{var}(\hat{\theta})$

- Estimador $f(\theta)$ es insesgado y alcanza la CRLB. Por lo tanto es eficiente.
- Transformaciones afínes mantienen la eficiencia de los estimadores.

Transformación de parámetros: caso asintótico

La eficiencia es *aproximadamente* mantenida bajo transformaciones no afínes si la cantidad de observaciones es suficientemente grande.

• Un estimador $\hat{\theta}$ del parámetro θ es asintóticamente insesgado si

$$\lim_{N \to \infty} \mathbb{E}(\hat{\theta}) = \theta.$$

• Un estimador $\hat{\theta}$ del parámetro θ es asintóticamente eficiente si

$$\lim_{N \to \infty} \operatorname{var}(\hat{\theta}) = CRLB(\theta).$$

Ejemplo: Potencia de DC en WGN

- Previamente vimos que $\hat{A}^2 = \left(\sum_{n=0}^{N-1} x[n]\right)^2$ es un estimador sesgado de A^2 .
- Sin embargo, la esperanza es,

$$\mathbb{E}(\hat{A}^2) = A^2 + \frac{\sigma^2}{N} \xrightarrow{N \to \infty} A^2$$

por lo que \hat{A}^2 es un estimador *asintóticamente* insesgado de A^2 .

Transformación de parámetros: caso asintótico

Ejemplo: Potencia de DC en WGN

• Además, como $\hat{A} \sim \mathcal{N}(A, \sigma^2/N)$, podemos calcular su varianza

$$var(\hat{A}^2) = \mathbb{E}(\hat{A}^4) - \mathbb{E}^2(\hat{A}^2)$$

Observación. Si $\zeta \sim \mathcal{N}(\mu, \sigma^2)$, entonces

$$\mathbb{E}(\zeta^2) = \mu^2 + \sigma^2, \quad \mathbb{E}(\zeta^4) = \mu^4 + 6\mu^2\sigma^2 + 3\sigma^4,$$

y por lo tanto

$$\operatorname{var}(\zeta^2) = \mathbb{E}(\zeta^4) - \mathbb{E}(\zeta^2)^2 = 4\mu^2\sigma^2 + 2\sigma^4.$$

Entonces.

$$\mathrm{var}(\hat{A}^2) = \frac{4A^2\sigma^2}{N} + 2\frac{\sigma^4}{N^2} \xrightarrow{N \to \infty} \frac{4A^2\sigma^2}{N} = CRLB_{\widehat{A^2}}(A^2)$$

• Es decir. \hat{A}^2 es un estimador asintóticamente eficiente de A^2 .

Transformación de parámetros: caso asintótico

Linealidad estadística de una transformación no afín

- A medida que crece N, la PDF de \hat{A} se concentra alrededor de A.
- Valores observados de \hat{A} están en pequeño intervalo en torno de A.
- Transformación no afín es aproximadamente afín en intervalo pequeño.
- Los valores de \hat{A} en la región no afín ocurren raramente.

Transformación de parámetros: Resumen

- Una transformación afín de un estimador eficiente mantiene la eficiencia.
- Es decir el estimador transformado es un estimador eficiente del parámetro transformado.
- Una transformación no afín de un estimador eficiente destruye la eficiencia, e incluso puede hacerlo sesgado.
- Sin embargo, el estimador transformado es asintóticamente insesgado y eficiente.
- Es decir, cuando la cantidad de observaciones $N \to \infty$, el estimador limite es insesgado y eficiente.

CRLB: Extensión a vector de parámetros

- Supongamos que queremos estimar vector de parámetros $\boldsymbol{\theta} = [\theta_1, \theta_2, ..., \theta_p]^T$.
- Si asumimos que tenemos un estimador $\hat{\theta}$ que es insesgado, la CRLB para un vector de parámetros establece una cota en la varianza de cada elemento.

$$\operatorname{var}(\hat{\theta}_i) \geq [\mathbf{I}^{-1}(\boldsymbol{\theta})]_{ii},$$

donde $I(\theta)$ es la matriz de información de Fisher de tamaño $p \times p$.

La matriz de información de Fisher se define como

$$[\mathbf{I}(\boldsymbol{\theta})]_{ij} = -\mathbb{E}\left[\frac{\partial^2 \log p(\mathbf{x}; \boldsymbol{\theta})}{\partial \theta_i \partial \theta_j}\right], \quad \text{con } (i, j) \in \left\{1, 2, \dots, p\right\}^2,$$

en donde al evaluar la ecuación se debe emplear el valor verdadero de θ .

• En el caso escalar p=1, se tiene $\mathbf{I}(\boldsymbol{\theta})=I(\boldsymbol{\theta})$ tal como se definió previamente (CRLB escalar).

CRLB: Ejemplos (IV)

Ejemplo: CRLB para nivel de DC en WGN

Como una extensión al Ejemplo II, se considera la observación de ${\cal N}$ muestras de continua en WGN,

$$x[n] = A + w[n] \text{ con } n = 0, 1, ..., N - 1 \text{ y } w[n] \sim \mathcal{N}(0, \sigma^2)$$

pero ahora, además de desconocerse A también se desconoce σ^2 .

- En este caso, el vector de parámetros a estimar es $\theta = [A, \sigma^2]^T$, y p=2.
- La matriz de información de Fisher (tamaño 2 x 2),

$$\mathbf{I}(\boldsymbol{\theta}) = \begin{bmatrix} -\mathbb{E}\left[\frac{\partial^2 \log p(\mathbf{x};\boldsymbol{\theta})}{\partial(A)^2}\right] & -\mathbb{E}\left[\frac{\partial^2 \log p(\mathbf{x};\boldsymbol{\theta})}{\partial A \partial(\sigma^2)}\right] \\ -\mathbb{E}\left[\frac{\partial^2 \log p(\mathbf{x};\boldsymbol{\theta})}{\partial(\sigma^2)\partial A}\right] & -\mathbb{E}\left[\frac{\partial^2 \log p(\mathbf{x};\boldsymbol{\theta})}{\partial(\sigma^2)^2}\right] \end{bmatrix},$$

es simétrica y semi-definida positiva (ejercicio).

CRLB: Ejemplos (IV)

Ejemplo: CRLB para nivel de DC en WGN

La función de log-verosimilitud, es

$$\log p(\mathbf{x}; \boldsymbol{\theta}) = -\frac{N}{2} \log 2\pi - \frac{N}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x[n] - A)^2.$$

Las respectivas derivadas son (ejercicio),

$$\begin{split} \frac{\partial^2 \log p(\mathbf{x}; \theta)}{\partial (A)^2} &= -\frac{N}{\sigma^2} \\ \frac{\partial^2 \log p(\mathbf{x}; \theta)}{\partial \partial A(\sigma^2)} &= -\frac{1}{\sigma^4} \sum_{n=0}^{N-1} (x[n] - A) \\ \frac{\partial^2 \log p(\mathbf{x}; \theta)}{\partial (\sigma^2)^2} &= \frac{N}{2\sigma^4} - \frac{1}{\sigma^6} \sum_{n=0}^{N-1} (x[n] - A)^2. \end{split}$$

CRLB: Ejemplos (IV)

Ejemplo: CRLB para nivel de DC en WGN

Tomando el negativo de la esperanza, se construye la matriz de Fisher

$$\mathbf{I}(\boldsymbol{\theta}) = \begin{bmatrix} \frac{N}{\sigma^2} & 0\\ 0 & \frac{N}{2\sigma^4} \end{bmatrix}.$$

 En este caso la Matriz de Fisher es diagonal (en general no es así), por lo que invertirla es directo

$$\mathbf{I}(\boldsymbol{\theta})^{-1} = \begin{bmatrix} \frac{\sigma^2}{N} & 0\\ 0 & \frac{2\sigma^4}{N} \end{bmatrix}.$$

• Entonces la CRLB para \hat{A} y $\widehat{\sigma^2}$,

$$\operatorname{var}(\hat{A}) \ge \frac{\sigma^2}{N}, \quad \operatorname{var}(\widehat{\sigma^2}) \ge \frac{2\sigma^4}{N}.$$

Observaciones:

- La CRLB de \hat{A} es la misma que en el caso en que σ^2 es conocido (Ejemplo II).
- Este es un caso particular (matriz de Fisher diagonal), en general no es así. En este caso la información de un parámetro respecto del otro en media es nula.

Cota Inferior de Cramér-Rao (vectorial)

Teorema: Cota Inferior de Cramér-Rao, parámetro vectorial.

Se asume que la PDF $p(\mathbf{x}; \boldsymbol{\theta})$ satisface la condición de regularidad,

$$\mathbb{E}_{\mathbf{x}}\left[\frac{\partial \log p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right] = \mathbf{0} \quad \text{ para todo } \boldsymbol{\theta}.$$

Entonces,

 $oldsymbol{0}$ la matriz de covarianza de todo estimador insesgado $\hat{ heta}$ cumple que

$$\mathbf{C}_{\hat{\boldsymbol{\theta}}} - \mathbf{I}^{-1}(\boldsymbol{\theta}) \geq \mathbf{0}, \quad \text{donde } [\mathbf{I}(\boldsymbol{\theta})]_{ij} = -\mathbb{E}_{\mathbf{x}} \left[\frac{\partial^2 \log p(\mathbf{x}; \boldsymbol{\theta})}{\partial \theta_i \partial \theta_j} \right],$$

- $I(\theta)$ es la matriz de información de Fisher,
- ">" se interpreta en el sentido de matriz semidefinida positiva,
- derivada se evalúa en el valor verdadero de θ .
- $oxed{2}$ existe un estimador que alcanza la cota para todo $oldsymbol{ heta}$ si y solo si

$$\frac{\partial \log p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \mathbf{I}(\boldsymbol{\theta}) (\mathbf{g}(\mathbf{x}) - \boldsymbol{\theta}),$$

para alguna función $\mathbf{g}:\mathbb{R}^N \to \mathbb{R}^p$ y matriz I de tamaño $p \times p$. Ese

Cota Inferior de Cramér-Rao (vectorial)

Consecuencias.

 Como en una matriz semidefinida positiva todos los elementos de la diagonal son no negativos (ejercicio), la cota matricial implica,

$$[\mathbf{C}_{\hat{\boldsymbol{\theta}}} - \mathbf{I}^{-1}(\boldsymbol{\theta})]_{ii} \ge 0.$$

 Por lo tanto, la varianza de cada elemento del vector estimado cumple que,

$$\operatorname{var}(\hat{\theta}_i) = [\mathbf{C}_{\hat{\boldsymbol{\theta}}}]_{ii} \ge [\mathbf{I}^{-1}(\boldsymbol{\theta})]_{ii}$$

 Si se cumple la condición de factorización, entonces la cota se alcanza y por lo tanto

$$\operatorname{var}(\hat{\theta}_i) = [\mathbf{I}^{-1}(\boldsymbol{\theta})]_{ii}$$

En este caso, el estimado $\hat{\theta} = \mathbf{g}(\mathbf{x})$ es eficiente y por lo tanto MVU.

Apéndice I

Regla de Integración de Leibniz

$$\frac{d}{d\theta} \int_{a(\theta)}^{b(\theta)} f(x,\theta) dx = \int_{a(\theta)}^{b(\theta)} \frac{\partial f(x,\theta)}{\partial \theta} dx + f(b(\theta),\theta) \cdot b'(\theta) - f(a(\theta),\theta) \cdot a'(\theta).$$

- De la regla surge que el orden de derivación e integración puede cambiarse si los límites de integración no dependen de θ.
- Es decir, si $a(\theta) = a$ y $b(\theta) = b$, entonces,

$$\frac{d}{d\theta} \int_{a}^{b} f(x,\theta) dx = \int_{a}^{b} \frac{\partial f(x,\theta)}{\partial \theta} dx.$$

• Notar que, por ejemplo, la distribución $\mathcal{U}[0,\theta]$ va a generar inconvenientes.

Apéndice II

Covarianza

• La covarianza entre dos variables aleatorias $x \in \mathbb{R}$ e $y \in \mathbb{R}$ se define como:

$$cov(x, y) = \mathbb{E} [(x - \mathbb{E}(x))(y - \mathbb{E}(y))]$$
$$= \mathbb{E}[xy] - \mathbb{E}[x]\mathbb{E}[y].$$

- Es una medida de la dependencia entre variables aleatorias.
- Dos variables aleatorias x e y se dicen no correlacionadas si cov(x, y) = 0.
- Si dos variables aleatorias x e y son independientes se cumple que,

$$cov(x, y) = \mathbb{E}[xy] - \mathbb{E}[x]\mathbb{E}[y]$$
$$= \mathbb{E}[x]\mathbb{E}[y] - \mathbb{E}[x]\mathbb{E}[y]$$
$$= 0$$

Recíproco no es cierto (salvo si (x,y) tiene distribución normal bivariante).

Apéndice II

Matriz de Covarianza

• Sea el vector de variables aleatorias $\mathbf{x} = [x_1, x_1, \dots, x_n]^T$, la matriz de covarianza se define como

$$\mathbf{C} = \mathbb{E}\left[(\mathbf{x} - \mathbb{E}[\mathbf{x}])(\mathbf{x} - \mathbb{E}[\mathbf{x}])^T \right],$$

donde la esperanza de un vector (matriz) con entradas aleatorias se define como el vector (matriz) con la esperanza de cada variable aleatoria.

• Ejemplo $\mathbf{x} = [x_1, x_2]^T$,

$$\mathbf{C} = \begin{bmatrix} \mathbb{E}[(x_1 - \mu_1)(x_1 - \mu_1)] & \mathbb{E}[(x_1 - \mu_1)(x_2 - \mu_2)] \\ \mathbb{E}[(x_2 - \mu_2)(x_1 - \mu_1)] & \mathbb{E}[(x_2 - \mu_2)(x_2 - \mu_2)] \end{bmatrix}$$
$$= \begin{bmatrix} \operatorname{var}(x_1) & \operatorname{cov}(x_1, x_2)] \\ \operatorname{cov}(x_1, x_2) & \operatorname{var}(x_2)]. \end{bmatrix}$$

Referencias

 Kay, S. M. (1993)
 Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory, Capítulo 3.