《微积分A1》第三十讲

教师 杨利军

清华大学数学科学系

2020年12月25日

n阶齐次线性方程的解空间构成n维线性空间

Theorem

n阶齐次方程

$$y^{(n)} + a_1(x)y^{(n-1)} + \cdots + a_n(x)y = 0.$$
 (*)

的全体解集合构成一个n维线性空间.

证明概要: 证明思想同二阶情形. 固定一点 $x_0 \in J$, 记 $\phi_k(x)$ 为齐次方程 $(*)_{\hat{A}} 满足初值条件 y^{(j)}(x_0) = 0, \ y^{(k)}(x_0) = 1, \ j = 0, 1, \cdots, n-1, \ j \neq k \ \text{ 的}$ 唯一解, $k = 0, 1, \cdots, n-1$, 则不难证明这 n 个解构成解空间的一个基底. 也 就是说, (1) 这 n 个解线性无关; (2) 方程 $(*)_{\hat{A}}$ 的每个解可由这 n 个线性表 出. 定理得证.

基本解组

Definition

n阶齐次线性方程

$$y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_n(x)y = 0. \qquad (*)_{\mathring{R}}$$

的任意 n 个线性无关的解均称为方程 $(*)_{\hat{A}}$ 的一个基本解组 (fundamental solutions).

Wronsky 行列式

Definition

设 $y_1(x)$, $y_2(x)$, ..., $y_n(x)$ 是 n 阶齐次方程(*)_齐 的 n 个解, 称 如下 n 阶行列式 W(x) 为这 n 个解所对应的 Wronsky 行列式.

$$W(x) = \begin{vmatrix} y_1(x) & y_2(x) & \cdots & y_n(x) \\ y'_1(x) & y'_2(x) & \cdots & y'_n(x) \\ \vdots & \vdots & & \vdots \\ y_1^{(n-1)}(x) & y_2^{(n-1)}(x) & \cdots & y_n^{(n-1)}(x) \end{vmatrix}$$

Liouville 定理

$\mathsf{Theorem}$

设W(x)是齐次方程(*)_齐,即方程

$$y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_n(x)y = 0 \qquad (*)_{\mathring{R}}$$

的任意一个Wronsky 行列式,则W(x)可表为

$$W(x) = W(x_0)e^{-\int_{x_0}^x a_1(s)ds}, \quad \forall x_0, x \in J. \qquad (**)$$

注:公式(**)常称为 Liouville 公式. 这个公式表明 Wronsky 行列式或者恒为零,或者处处非零.

定理证明

<u>证</u>: 设 W(x) 是由 n 个解 y₁(x), ···, y_n(x) 所确定的 Wronsky 行列式, 即

$$W(x) = \left| \begin{array}{cccc} y_1(x) & y_2(x) & \cdots & y_n(x) \\ y_1'(x) & y_2'(x) & \cdots & y_n'(x) \\ \vdots & \vdots & & \vdots \\ y_1^{(n-1)}(x) & y_2^{(n-1)}(x) & \cdots & y_n^{(n-1)}(x) \end{array} \right|.$$

考虑W(x)的导数.注意对上述行列式前n-1行中的任意一行求导后,所得行列式由两行相同,故为零.因此

证明续

$$W'(x) = \left| \begin{array}{ccccc} y_1(x) & y_2(x) & \cdots & y_n(x) \\ y_1'(x) & y_2'(x) & \cdots & y_n'(x) \\ \vdots & \vdots & & \vdots \\ y_1^{(n-2)}(x) & y_2^{(n-2)}(x) & \cdots & y_n^{(n-2)}(x) \\ y_1^{(n)}(x) & y_2^{(n)}(x) & \cdots & y_n^{(n)}(x) \end{array} \right|.$$

由方程 $(*)_{\hat{K}}$ 可知 $y_k^{(n)}(x) = -a_1(x)y_k^{(n-1)}(x) - \cdots$. 将其带入上式得 $W'(x) = -a_1(x)W(x)$. 故 $W(x) = W(x_0)e^{-\int_{x_0}^x a_1(s)ds}$. 定理得证.

Hill 方程的每个 Wronsky 行列式均为常数

Example

考虑 Hill 方程 y'' + a(x)y = 0, 其中 a(x) 是区间 (a,b) 上连续函数. 不难看出方程的任何 Wronsky 行列式均为常数. 这是因为对于 Hill 方程而言, 系数函数 $a_1(x) \equiv 0$. 因此根据 Liouville 公式立刻得到结论.

Wronsky行列式与解的线性相关无关性

Theorem

设 $y_1(x)$, $y_2(x)$, ···, $y_n(x)$ 是 n 阶齐次方程(*)_齐 的 n 个解,它们所确定的 Wronsky 行列式记作 W(x),则这 n 个解线性相关(无 关) \iff W(x) \equiv 0 (W(x) 处处非零).

证明:只证括号外结论. \Longrightarrow : 显然. \Longleftrightarrow : 设 $W(x) \equiv 0$. 任取 一点 $x_0 \in J$, 由 $W(x_0) = 0$ 可知行列式 $W(x_0)$ 的 n 个列线性相 关.于是存在 n 个不全为零的数 c_k , $k=1,\cdots,n$, 使得

$$c_1Y_1(x_0) + \cdots + c_nY_n(x_0) = 0,$$
 (**)

定理证明续

其中 $Y_k(x_0) \stackrel{\triangle}{=} (y_k(x_0), y_k'(x_0), \cdots, y_k^{(n-1)}(x_0))^\mathsf{T}$,即 $Y_k(x_0)$ 为 $W(x_0)$ 的第 k 个列向量, $k=1,\cdots,n$. 令 $y_*(x) \stackrel{\triangle}{=} c_1 y_1(x) + \cdots$ $+c_n y_n(x)$,则 $y_*(x)$ 是齐次方程(*) $_{\hat{T}}$ 的解,且由式 (**) 知 $y_*(x)$ 满足初值条件 $y_*^{(j)}(x_0) = 0$, $j=0,1,\cdots,n-1$. 由 Cauchy 问 题解的唯一性可知, $y_*(x)$ 恒为零.这表明解 $y_1(x)$, $y_2(x)$,…, $y_n(x)$ 线性相关.证毕.

Cauchy 函数定义

定义:假设 $y_1(x)$, ···, $y_n(x)$ 是 n 阶齐次方程 (*) 养 的一个基本解组,它们所确定的 Cauchy 函数定义为

$$H(s,x) \stackrel{\triangle}{=} \frac{W(s,x)}{W(s)},$$

这里 W(s) 为基本解组 $y_1(s)$, …, $y_n(s)$ 对应的 Wronsky 行列式, W(s,x) 是将行列式 W(s) 的最后一行元素依次换为 $y_1(x)$, …, $y_n(x)$ 所得到行列式, 即

Cauchy 函数定义, 续

$$W(s) = \left| \begin{array}{cccc} y_1(s) & y_2(s) & \cdots & y_n(s) \\ y_1'(s) & y_2'(s) & \cdots & y_n'(s) \\ \vdots & \vdots & & \vdots \\ y_1^{(n-1)}(s) & y_2^{(n-1)}(s) & \cdots & y_n^{(n-1)}(s) \end{array} \right|,$$

$$W(s,x) = \left| \begin{array}{ccccc} y_1(s) & y_2(s) & \cdots & y_n(s) \\ \vdots & \vdots & & \vdots \\ y_1^{(n-2)}(s) & y_2^{(n-2)}(s) & \cdots & y_n^{(n-2)}(s) \\ y_1(x) & y_2(x) & \cdots & y_n(x) \end{array} \right|.$$

非齐次方程的一般解,解的结构

定理:考虑非齐次n阶线性方程(*)_非,即方程

$$y^{(n)} + a_1(x)y^{(n-1)} + \cdots + a_n(x)y = f(x).$$
 (*)

假设已知对应齐次方程

$$y^{(n)} + a_1(x)y^{(n-1)} + \cdots + a_n(x)y = 0$$
 (*)

的一个基本解组 $y_1(x)$, ..., $y_n(x)$, 则非齐次方程 $(*)_{\sharp}$ 的一般 解为 $y(x) = y_g(x) + y_p(x)$, 其中 $y_g(x)$ 是 $(*)_{\mathring{r}}$ 的一般解,即 $y_g(x) = c_1 y_1(x) + \cdots + c_n y_n(x)$, $y_p(x) \stackrel{\triangle}{=} \int_{x_0}^x H(s,x) f(s) ds$ 是 $(*)_{\sharp}$ 的一个特解.这里 H(s,x) 为基本解组 $y_1(x)$, ..., $y_n(x)$ 所

确定的 Cauchy 函数,(定理证明基于 Cauchy 函数的性质,这里从略)

例子

例: 求方程 $y''' - 3y'' + 2y' = 2e^x$ 的通解.

解: 稍后将系统讨论常系数线性齐次方程的基本解组的解法.

这里先应用这个解法来求 y"' -3y" +2y' =0 的基本解组. 其特征方程为 $\lambda^3-3\lambda^2+2\lambda=0$,即 $\lambda(\lambda-1)(\lambda-2)=0$,特征根为 $\lambda_1=0$, $\lambda_2=1$, $\lambda_3=2$. 由此得基本解 y $_1=1$,y $_2=e^x$, $y_3=e^{2x}$. 对应的 Wronsky 行列式为

$$W(s) = \left| \begin{array}{ccc} y_1(s) & y_2(s) & y_3(s) \\ y_1'(s) & y_2'(s) & y_3'(s) \\ y_1''(s) & y_2''(s) & y_3''(s) \end{array} \right| = \left| \begin{array}{ccc} 1 & e^s & e^{2s} \\ 0 & e^s & 2e^{2s} \\ 0 & e^s & 4e^{2s} \end{array} \right| = 2e^{3s},$$

例子,续一

$$\begin{split} W(s,x) &= \left| \begin{array}{ccc} y_1(s) & y_2(s) & y_3(s) \\ y_1'(s) & y_2'(s) & y_3'(s) \\ y_1(x) & y_2(x) & y_3(x) \end{array} \right| = \left| \begin{array}{ccc} 1 & e^s & e^{2s} \\ 0 & e^s & 2e^{2s} \\ 1 & e^x & e^{2x} \end{array} \right| \\ &= e^{2x+s} - 2e^{x+2s} + e^{3s}. \end{split}$$

于是 Cauchy 函数为

$$\begin{split} H(s,x) &= \frac{W(s,x)}{W(s)} = \frac{e^{2x+s} - 2e^{x+2s} + e^{3s}}{2e^{3s}} \\ &= \frac{1}{2}(e^{2x-2s} - 2e^{x-s} + 1). \end{split}$$

例子,续二

于是方程 $y''' - 3y'' + 2y' = 2e^x$ 有如下特解

$$\begin{split} y_p &= \int_0^x H(s,x) f(s) ds = \int_0^x \frac{1}{2} (e^{2x-2s} - 2e^{x-s} + 1) 2e^s ds \\ &= \int_0^x (e^{2x-s} - 2e^x + e^s) ds = e^{2x} - 2xe^x - 1. \end{split}$$

由于1是齐次方程 y''' - 3y'' + 2y' = 0 的解, 故 $e^{2x} - 2xe^x$ 也是 方程 $y''' - 3y'' + 2y' = 2e^x$ 的特解. 于是所求通解为 $y = c_1 + c_2 e^x + c_3 e^{2x} + e^{2x} - 2xe^x$, 其中 c_1, c_2, c_3 为任意常数. 解答完毕.

高阶线性常系数方程

考虑高阶线性常系数方程

$$y^{(n)} + a_1 y^{(n-1)} + \cdots + a_n y = f(x),$$
 (*)

以及对应的齐次方程

$$y^{(n)} + a_1 y^{(n-1)} + \cdots + a_n y = 0,$$
 $(*)_{3}$

这里a₁,···,a_n 均为常数. 我们将给出齐次方程(*)_非的一个显 式的基本解组.

几个简单事实

关于齐次方程(*)齐

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = 0, \qquad (*)_{\ref{A}}$$

有以下几个简单事实:

- (i) 每个解在 $(-\infty, +\infty)$ 上存在唯一;
- (ii) 解空间是n维线性空间;
- (iii) 每个 Wronsky 行列式 W(x) 可表为 $W(x) = W(0)e^{-a_1x}$.

特征多项式,特征方程和特征根

为方便,记

$$\mathsf{L}(\lambda) \stackrel{\triangle}{=} \lambda^{\mathsf{n}} + \mathsf{a}_1 \lambda^{\mathsf{n}-1} + \cdots + \mathsf{a}_{\mathsf{n}},$$

并称之为齐次方程 (*) $_{\rm A}$ 的特征多项式,方程 $L(\lambda)=0$ 称为特征方程,其根称为特征根.记 $D \stackrel{\triangle}{=} \frac{d}{dx}$ 为微分算子,并且定义

$$L(D) \stackrel{\triangle}{=} D^{n} + a_{1}D^{n-1} + \cdots + a_{n},$$

则非齐方程(*)_非和齐次方程(*)_齐可分别记作

$$\begin{split} L(D)y &= D^ny + a_1D^{n-1}y + \cdots + a_ny = f(x), \\ L(D)y &= D^ny + a_1D^{n-1}y + \cdots + a_ny = 0. \end{split}$$

特征根与指数函数解

Theorem

指数函数 $e^{\lambda_0 x}$ 是齐次方程 L(D)y = 0 的解 $\iff L(\lambda_0) = 0$.

Proof.

$$\begin{split} L(D)e^{\lambda_0x} &= (D^n + a_1D^{n-1} + \dots + a_n)e^{\lambda_0x} \\ &= (\lambda_0^n + a_1\lambda_0^{n-1} + \dots + a_n)e^{\lambda_0x} = L(\lambda_0)e^{\lambda_0x}. \end{split}$$

因此 $e^{\lambda_0 x}$ 是齐次方程 L(D)y = 0 的解 $\iff L(\lambda_0) = 0$.

基本解组, 特征根互异情形

定理:如果n阶齐次方程 L(D)y=0的n个特征根 $\lambda_1,\dots,\lambda_n$ 互异,则方程有基本解组 $e^{\lambda_1x},\dots,e^{\lambda_nx}$.

证:由之前定理知这n个指数函数都是解.要证它们构成基本解组,只要证明它们线性无关即可.简单计算可知它们对应的Wronsky行列式为

$$\textbf{W}(\textbf{x}) = \left| \begin{array}{ccccc} e^{\lambda_1 \textbf{x}} & e^{\lambda_2 \textbf{x}} & \cdots & e^{\lambda_n \textbf{x}} \\ \lambda_1 e^{\lambda_1 \textbf{x}} & \lambda_2 e^{\lambda_2 \textbf{x}} & \cdots & \lambda_n e^{\lambda_n \textbf{x}} \\ \vdots & \vdots & & \vdots \\ \lambda_1^{n-1} e^{\lambda_1 \textbf{x}} & \lambda_2^{n-1} e^{\lambda_2 \textbf{x}} & \cdots & \lambda_n^{n-1} e^{\lambda_n \textbf{x}} \end{array} \right|.$$

证明续

易见行列式 W(x) 在 x = 0 处的值为 Vandermonde 行列式

$$W(0) = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ \lambda_1 & \lambda_2 & \cdots & \lambda_n \\ \vdots & \vdots & & \vdots \\ \lambda_1^{n-1} & \lambda_2^{n-1} & \cdots & \lambda_n^{n-1} \end{vmatrix} = \prod_{1 \leq i < j \leq n} (\lambda_j - \lambda_i).$$

由假设特征根 $\lambda_1, \dots, \lambda_n$ 互异, 故 $W(0) \neq 0$. 因此这 n 个指数函数解线性无关. 定理得证.

例子

Example

求齐次方程 y''' - 4y'' + 6y' - 4y = 0 的基本解组.

解: 特征方程为 $\lambda^3 - 4\lambda^2 + 6\lambda - 4 = 0$. 作分解因式得

 $(\lambda-2)[(\lambda-1)^2+1]=0$. 由此求得到三个互异的特征根

 $\lambda_1=2$, $\lambda_2=1+\mathsf{i}$, $\lambda_3=1-\mathsf{i}$. 于是方程有的一组复函数基本

解组 e^{2x} , $e^{(1+i)x}$ 和 $e^{(1-i)x}$. 取复函数解的实部和虚部就得到一

组实的基本解祖 e^{2x}, e^x cos x 和 e^x sin x. 解答完毕.

重特征根情形

Theorem

设 λ_1 是齐次方程L(D)y=0的 $k\geq 1$ 重特征根,则 $e^{\lambda_1 x}$, $xe^{\lambda_1 x}$, ..., $x^{k-1}e^{\lambda_1 x}$ 是方程的k个线性无关解.

证: 定理中的 k 个函数的线性无关性显而易见. 往下来证明它们是解. 即要证

$$L(D)[x^j e^{\lambda_1 x}] = 0, \quad j = 0, 1, \cdots, k-1. \tag{**}$$

根据假设 λ_1 是 $k \ge 1$ 重特征根, 可知特征多项式 $L(\lambda)$ 可表为 $L(\lambda) = (\lambda - \lambda_1)^k L_1(\lambda)$, 其中 $L_1(\lambda_1) \ne 0$.

证明,续一

为证明式 (**), 观察知 $xe^{\lambda x}$ 可以表示为 $xe^{\lambda x}=D_{\lambda}e^{\lambda x}$, 这里 D_{λ} 代表关于 λ 的微分算子, 即 $D_{\lambda}\stackrel{\triangle}{=}\frac{d}{d\lambda}$. 由于函数 $e^{\lambda x}$ 足够光滑, 故 $DD_{\lambda}(e^{\lambda x})=D_{\lambda}D(e^{\lambda x})$. 即二阶混合导数相等. 进一步不难证明

$$L(D)D_{\lambda}^{j}(e^{\lambda x}) = D_{\lambda}^{j}L(D)(e^{\lambda x}).$$

于是

证明,续二

$$\begin{split} \mathsf{L}(\mathsf{D})[\mathsf{x}^{\mathsf{j}}\mathsf{e}^{\lambda_1\mathsf{x}}] &= \mathsf{L}(\mathsf{D})[\mathsf{x}^{\mathsf{j}}\mathsf{e}^{\lambda\mathsf{x}}]\Big|_{\lambda = \lambda_1} \\ &= \mathsf{L}(\mathsf{D})[\mathsf{D}^{\mathsf{j}}_{\lambda}\mathsf{e}^{\lambda\mathsf{x}}]\Big|_{\lambda = \lambda_1} = \mathsf{D}^{\mathsf{j}}_{\lambda}\mathsf{L}(\mathsf{D})\mathsf{e}^{\lambda\mathsf{x}}\Big|_{\lambda = \lambda_1} \\ &= \mathsf{D}^{\mathsf{j}}_{\lambda}\mathsf{L}(\lambda)\mathsf{e}^{\lambda\mathsf{x}}\Big|_{\lambda = \lambda_1} = \mathsf{D}^{\mathsf{j}}_{\lambda}\Big[(\lambda - \lambda_1)^{\mathsf{k}}\mathsf{L}_1(\lambda)\Big]\mathsf{e}^{\lambda\mathsf{x}}\Big|_{\lambda = \lambda_1} = 0. \\ \\ \mathsf{这就证明7}\;\mathsf{x}^{\mathsf{j}}\mathsf{e}^{\lambda_1\mathsf{x}},\;\mathsf{j} &= 0,1,\cdots,\mathsf{k}-1,\; \textit{是方程的}\;\mathsf{k}\; \mathsf{\wedge}\mathsf{M}. \end{split}$$

一般结论

Theorem

定理:设 n 阶线性齐次方程 L(D)y=0 有 s 个互异的特征根 $\lambda_1,\cdots,\lambda_s$,对应的重数为 k_1,\cdots,k_s ,其中 $k_1+\cdots+k_s=n$,则 如下 n 个函数组构成了齐次方程 L(D)y=0 的一个基本解组.

证明: 根据前一个定理可知上述n个函数都是解. 再根据本次课的选作题之

结论, 可知它们的线性无关性. 证毕.

例子

Example

例: 求方程 $y^{(5)} - 2y^{(4)} - 16y' + 32y = 0$ 的基本解组.

解: 方程的特征多项式为 $L(\lambda) = \lambda^5 - 2\lambda^4 - 16\lambda + 32$. 为求特征值, 需对 $L(\lambda)$ 作分解因式得 $L(\lambda) = \lambda^4(\lambda - 2) - 16(\lambda - 2)$ $= (\lambda - 2)(\lambda^4 - 16) = (\lambda - 2)^2(\lambda + 2)(\lambda^2 + 4)$. 于是特征值为 $\lambda_1 = \lambda_2 = 2$, $\lambda_3 = -2$, $\lambda_4 = 2i$, $\lambda_5 = -2i$. 进而得到方程实的基本解组为 e^{2x} . xe^{2x} . e^{-2x} , $\cos 2x$, $\sin 2x$. 解答完毕.

某些非齐方程的快速求解, 待定系数法

回忆对非齐次方程 L(D)y=f(x),若已知齐次方程 L(D)y=0的一个基本解组,那么 $y_p(x)=\int_{x_0}^x H(s,x)b(s)ds$ 就是非齐方程一个特解. 这里 H(s,x) 是基本解组所对应的 Cauchy 函数.

以下针对函数类 $f(x) = e^{\lambda_0 x} \phi(x)$, 用待定系数法, 直接求方程 L(D)y = f(x) 的特解, 这里 $\phi(x)$ 为多项式. 待定系数法可能比计算 Cauchy 形式的特解 $y_p(x) = \int_{x_0}^x H(s,x) f(s) ds$ 来得更简单快捷. 方法的理论基础是如下的两个定理.

待定系数法的理论基础

定理一的证明稍后给出.

定理一: 若 λ_0 不是齐次方程 L(D)y=0 的特征值,则非齐次方程 $L(D)y=e^{\lambda_0x}\phi(x)$ 有唯一解具有形式 $y_p(x)=e^{\lambda_0x}\psi(x)$,其中 $\psi(x)$ 为多项式,且 $\deg\psi(x)=\deg\phi(x)$.

定理二:设 λ_0 是齐次方程 L(D)y=0 的 k 重特征值,则非齐次方程 $L(D)y=e^{\lambda_0x}\phi(x)$ 有唯一解有形式 $y_p(x)=e^{\lambda_0x}x^k\psi(x)$,其中 $\psi(x)$ 为多项式,且 $deg\psi(x)=deg\phi(x)$.

定理二的证明思想同定理一. 略去.

例一

例一: 求方程 $y'' - y = e^{2x}(x^2 + 1)$ 的通解.

解: 对应齐次方程的特征多项式为 $L(\lambda)=\lambda^2-1$, 特征值为 $\lambda_{1,2}=\pm 1$. $\lambda_0=2$ 不是特征值. 根据定理一可知方程有唯一解 具有形式 $y_p(x)=e^{2x}(ax^2+bx+c)$, 其中 a,b,c 为待定常数. 将 $y_p(x)$ 代入方程 $y''-y=e^{2x}(x^2+1)$, 约去指数函数并加以 整理得 $3ax^2+(8a+3b)x+(2a+4b+3c)=x^2+1$. 比较两边的系数得到关于 a,b,c 的线性代数方程组

例一续

$$\begin{bmatrix} 3 & 0 & 0 \\ 8 & 3 & 0 \\ 2 & 4 & 3 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}.$$

解之得
$$a=\frac{1}{3}$$
, $b=\frac{-8}{9}$, $c=\frac{35}{27}$. 特解 $y_p=e^{2x}\left(\frac{x^2}{3}-\frac{8x}{9}+\frac{35}{27}\right)$. 因此非齐次方程 $y''-y=e^{2x}(x^2+1)$ 的通解为

$$y(x) = c_1 e^x + c_2 e^{-x} + e^{2x} \Big(\frac{x^2}{3} - \frac{8x}{9} + \frac{35}{27} \Big).$$

解答完毕.

例二

例二: 求方程 (*) $y'' - y = e^{-x}(x+1)$ 的一般解.

解: 对应齐次方程的特征多项式为 $L(\lambda)=\lambda^2-1$, 特征值为 $\lambda_1,\lambda_2=\pm 1$, $\lambda_0=-1$ 是单重特征值. 由定理二可知方程有唯 一解具有形式 $y_p(x)=e^{-x}x(ax+b)$, 其中 a,b 为待定常数. 将 $y_p(x)$ 代入方程 (*), 约去 e^{-x} 得 -4ax+2(a-b)=x+1. 比 较两边的系数得到关于 $a=-\frac{1}{4}$, $b=-\frac{3}{4}$. 故所求特解为 $y_p(x)=-e^{-x}(\frac{x^2}{4}+\frac{3x}{4})$. 于是非齐次方程 (*) 的一般解为

$$y(x) = c_1 e^x + c_2 e^{-x} - e^{-x} \Big(\frac{x^2}{4} + \frac{3x}{4} \Big).$$

解答完毕.

定理一之证明

证: 定义m+1维线性空间

$$\mathcal{S} \stackrel{\triangle}{=} \text{span} \Big\{ e^{\lambda_0 x}, x e^{\lambda_0 x}, \cdot \cdot \cdot, x^m e^{\lambda_0 x} \Big\},$$

以及映射 L(D): $\mathcal{S} \to \mathcal{S}$, $p(x) \mapsto L(D)p(x)$, $\forall p(\cdot) \in \mathcal{S}$. 显然 L(D) 是线性的. 记映射 L(D) 在基底 $e^{\lambda_0 x}$, $xe^{\lambda_0 x}$, \cdots , $x^m e^{\lambda_0 x}$ 下的表示矩阵记作 A, 即

$$L(D)(e^{\lambda_0x},xe^{\lambda_0x},\cdot\cdot\cdot,x^me^{\lambda_0x})=(e^{\lambda_0x},xe^{\lambda_0x},\cdot\cdot\cdot,x^me^{\lambda_0x})\textbf{A}.$$

证明续

经过一些初等但有些繁琐的计算可知, 矩阵 A 为如下 m + 1 阶的上三角矩阵

$${f A} = \left[egin{array}{ccccc} {\sf L}(\lambda_0) & * & \cdots & * \ & {\sf L}(\lambda_0) & \cdots & * \ & & \ddots & dots \ & & {\sf L}(\lambda_0) \end{array}
ight].$$

矩阵 A 中的元素 * 代表某些我们目前并不感兴趣的常数. 由于 λ_0 不是特征值, 即 L (λ_0) \neq 0. 故矩阵 A 可逆. 于是线性映射 L(D) 可逆. 定理一得证. 证毕.

Euler 方程

形如

$$x^ny^{(n)} + a_1x^{n-1}y^{(n-1)} + \cdots + a_ny = f(x), \quad x>0,$$

的方程称为 Euler 型方程, 其中 a₁,···, a_n 为常数. 对应的齐次方程为

$$x^{n}y^{(n)} + a_{1}x^{n-1}y^{(n-1)} + \cdots + a_{n}y = 0, \quad x > 0,$$

一个引理

Lemma

引理: 函数 x^{λ_0} 是齐次 Euler 方程

$$x^ny^{(n)}+a_1x^{n-1}y^{(n-1)}+\cdots+a_{n-1}y'+a_ny=0,\, x>0,\, (*)$$

的解, 当且仅当 λ_0 是如下n次代数方程的根

$$\lambda(\lambda-1)(\lambda-2)\cdots(\lambda-n+1)+a_1\lambda(\lambda-1)\cdots(\lambda-n+2)$$

$$+\cdots+a_{n-1}\lambda+a_n=0.\quad (**)$$

引理证明显而易见. 细节略去. 方程 (**) 称为齐次 Euler 方程 (*) 的特征方程, 其根称作特征根.

例子

Example

例: 求解齐次 Euler 方程 $x^3y''' + x^2y'' - 4v' = 0$. x > 0. 解: 考虑其特征方程 $\lambda(\lambda-1)(\lambda-2)+\lambda(\lambda-1)-4\lambda=0$. 整理得 $\lambda(\lambda+1)(\lambda-3)=0$. 于是 Euler 方程的特征根为 $\lambda_1 = 0, \lambda_2 = -1, \lambda_3 = 3.$ 由此得方程的三个解 $v_1 = x^0 = 1$, $v_2 = x^{-1}, v_3 = x^3$. 显然这三个解在 $(0, +\infty)$ 上线性无关. 故 所考虑的齐次 Euler 方程的通解为 $y = c_1 + c_2 x^{-1} + c_3 x^3$, 其中 C1, C2, C3 为任意实常数.

Euler型方程的另一种处理方式

对齐次 Euler 方程

$$x^{n}y^{(n)}+a_{1}x^{n-1}y^{(n-1)}+\cdots+a_{n-1}y'+a_{n}y=0,\,x>0,\,(*)$$

可以通过变量替换 $x = e^u$ 或 $u = \ln x$ 化为常系数线性方程. 理由基于如下引理.

一个引理

<u>引理</u>: 设 y(x) 在 $(0,+\infty)$ 无穷连续可微函数, 记 $z(u) \stackrel{\triangle}{=} y(e^u)$, $u \in (-\infty,+\infty)$, 则对任意正整数 k > 1 下式成立

$$\left. \mathsf{x}^k \frac{\mathsf{d}^k \mathsf{y}(\mathsf{x})}{\mathsf{d} \mathsf{x}^k} \right|_{\mathsf{x} = e^u} = \left(\frac{\mathsf{d}}{\mathsf{d} \mathsf{u}} - (\mathsf{k} - 1) \right) \cdots \left(\frac{\mathsf{d}}{\mathsf{d} \mathsf{u}} - 1 \right) \left(\frac{\mathsf{d}}{\mathsf{d} \mathsf{u}} - 0 \right) \! \mathsf{z}(\mathsf{u}).$$

证明用归纳法. 细节略去. 根据上述引理, 不难看出新的未知函数 z(u) 满足一个常系数线性方程, 并且这个常系数线性方程所对应的特征方程, 正是之前我们假设解的形式 x^{\(\lambda\)} 所导出的特征方程.

例一

例一: 求 Euler 方程 $x^2y'' + \frac{1}{4}y = 0$ (x > 0) 的基本解组.

解: 作变量代换 $x = e^t$, $z(t) = y(e^t)$, 则由引理知

$$\left. x^2 \frac{d^2 y}{dx^2} \right|_{x=e^t} = \left(\frac{d}{dt} - 1 \right) \left(\frac{d}{dt} - 0 \right) z(t) = z''(t) - z'(t).$$

于是新的未知函数 $z(t)=y(e^t)$ 所满足的常系数线性方程为 $z''-z'+\frac{1}{4}z=0$. 其特征根为 $\lambda_1=\frac{1}{2}$, 二重. 根据常系数情形的结论可知, 方程 $z''-z'+\frac{1}{4}z=0$ 的基本解组为 $e^{\frac{t}{2}}$, $te^{\frac{t}{2}}$. 由此得到原 Euler 方程 $x^2y''+\frac{y}{4}=0$ 的基本解组为 \sqrt{x} , $\ln x\sqrt{x}$. 解答完毕.

例二

课本第 237 页例 7.5.9: 求方程 $x^2y'' + xy' + y = 2x$ 的通解, 其中 x > 0.

解: <u>方法一</u>: 作变量代换 $x = e^t$, 或 $t = \ln x$, $z(t) = y(e^t)$. 由引理知

$$\left. x \frac{dy}{dx} \right|_{x=e^t} = \left(\frac{d}{dt} - 0 \right) z(t) = z'(t)$$

$$\left.x^2\frac{d^2y}{dx^2}\right|_{x=e^t}=\left(\frac{d}{dt}-1\right)\!\left(\frac{d}{dt}-0\right)\!z(t)=z''(t)-z'(t).$$

将上式代入方程 $x^2y'' + xy' + y = 2x$ 得 $z'' - z' + z' + z = 2e^t$, 即 $z'' + z = 2e^t$.

例二,续一

根据待定系数法求特解的理论知,方程 $z''+z=2e^t$ 有形如 Ae^t 的解. 代入方程得 $Ae^t+Ae^t=2e^t$. 由此得待定系数为 A=1. 于是方程 $z''+z=2e^t$ 的一般解为 $z=c_1\cos t+c_2\sin t+e^t$. 再回到变量 $t=\ln x$ 得到原方程 $x^2y''+xy'+y=2x$ 的通解为 $y=c_1\cos\ln x+c_2\sin\ln x+x$.

例二,续二

方法二. 考虑对应齐次方程 $x^2y'' + xy' + y = 0$ 的解. 设方程有形如 x^λ 的解. 代入方程得 $\lambda(\lambda-1)x^\lambda + \lambda x^\lambda + x^\lambda = 0$. 由此得 $\lambda^2 + 1 = 0$. 即特征值为 $\pm i$. 故齐次方程有解 $x^{\pm i} = e^{\pm i \ln x} = \cos \ln x \pm i \sin \ln x$. 从而方程有基本解组 $\cos \ln x$, $\sin \ln x$. 由观察知方程 $x^2y'' + xy' + y = 2x$ 有特解 y = x. 因此方程的通解为 $y = c_1 \cos \ln x + c_2 \sin \ln x + x$. 解答完毕.

 \underline{i} : 也可以用特解的 Cauchy 形式求特解. 先将方程 $x^2y'' + xy'$ +y = 2x 写作标准形式 $y'' + \frac{1}{x}y' + \frac{1}{x^2}y = \frac{2}{x}$. 再计算 Cauchy 函数. 基本解组 cos ln x, sin ln x 对应的 Wronsky 行列式为

例二,续三

$$\begin{split} W(s) &= \left| \begin{array}{c} \cos \ln s & \sin \ln s \\ \frac{-1}{s} \sin \ln s & \frac{1}{s} \cos \ln s \end{array} \right| = \frac{1}{s} \\ W(s,x) &= \left| \begin{array}{c} \cos \ln s & \sin \ln s \\ \cos \ln x & \sin \ln x \end{array} \right| = \cos \ln s \sin \ln x - \sin \ln s \cos \ln x \\ &= \sin (\ln x - \ln s) = \sin \ln (x/s). \end{split}$$

$$\Rightarrow$$
 Cauchy 函数为 $H(s,x) = \frac{W(s,x)}{W(s)} = \frac{\sinh \frac{x}{s}}{1/s} = s \cdot \sinh \frac{x}{s}.$
于是方程 $y'' + \frac{1}{x}y' + \frac{1}{x^2}y = \frac{2}{x}$ 有特解

例二,续四

$$\begin{split} y_p &= \int_1^x H(s,x) f(s) ds = \int_1^x s \cdot sinln \frac{x}{s} \cdot 2s ds = 2 \int_1^x sinln \frac{x}{s} ds \\ &= 2x \int_1^x \frac{sinln\,u}{u^2} du = 2x \int_0^{ln\,x} e^{-v} sin\,v dv \\ &= x \Bigg[-e^{-v} (cos\,v + sin\,v) \bigg|_0^{ln\,x} \Bigg] = x \Bigg[-\frac{1}{x} (cos\,ln\,x + sin\,ln\,x) + 1 \Bigg] \end{split}$$

 $= x - \cos \ln x - \sin \ln x$.

由于 $\cos \ln x$ 和 $\sin \ln x$ 均为齐次方程 $y'' + \frac{1}{x}y' + \frac{1}{x^2}y = 0$ 的解. 故非齐次方程 $y'' + \frac{1}{x}y' + \frac{1}{x^2}y = \frac{2}{x}$ 有特解 $y_p = x$. 解答完毕.

作业+ Merry Christmas + Happy New Year 2021

习题7.4: 第230-231页, 1, 4, 5(奇), 6, 7, 8.

习题7.5: 第238页, 4(1)(3), 5, 6, 7.

选作题: 设 $\lambda_1, \dots, \lambda_s$ 为 s 个 互 异 的 实 数, 设 k_1, \dots, k_s 为 s 个 正 整 数. 证 明 以 下 $k := k_1 + \dots + k_s$ 个 函 数 在 \mathbb{R} 上 线 性 无 关 .

$$\begin{array}{llll} e^{\lambda_1 t}, & te^{\lambda_1 t}, & \cdots, & t^{k_1-1}e^{\lambda_1 t}, \\ e^{\lambda_2 t}, & te^{\lambda_2 t}, & \cdots, & t^{k_2-1}e^{\lambda_2 t}, \\ & \vdots & & \vdots & & \vdots \\ e^{\lambda_s t}, & te^{\lambda_s t}, & \cdots & t^{k_s-1}e^{\lambda_s t}. \end{array}$$

(提示: 可考虑对 s 用归纳法.)