

CAI
IIST 1
- 1988
F 22

INDUSTRY PROFILE

Industry, Science and
Technology Canada

Industrie, Sciences et
Technologie Canada

Ferrous Foundries

Canada

Regional Offices

Newfoundland

Parsons Building
90 O'Leary Avenue
P.O. Box 8950
ST. JOHN'S, Newfoundland
A1B 3R9
Tel: (709) 772-4053

Prince Edward Island

Confederation Court Mall
Suite 400
134 Kent Street
P.O. Box 1115
CHARLOTTETOWN
Prince Edward Island
C1A 7M8
Tel: (902) 566-7400

Nova Scotia

1496 Lower Water Street
P.O. Box 940, Station M
HALIFAX, Nova Scotia
B3J 2V9
Tel: (902) 426-2018

New Brunswick

770 Main Street
P.O. Box 1210
MONCTON
New Brunswick
E1C 8P9
Tel: (506) 857-6400

Quebec

Tour de la Bourse
P.O. Box 247
800, place Victoria
Suite 3800
MONTRÉAL, Quebec
H4Z 1E8
Tel: (514) 283-8185

Ontario

Dominion Public Building
4th Floor
1 Front Street West
TORONTO, Ontario
M5J 1A4
Tel: (416) 973-5000

Manitoba

330 Portage Avenue
Room 608
P.O. Box 981
WINNIPEG, Manitoba
R3C 2V2
Tel: (204) 983-4090

Saskatchewan

105 - 21st Street East
6th Floor
SASKATOON, Saskatchewan
S7K 0B3
Tel: (306) 975-4400

Alberta

Cornerpoint Building
Suite 505
10179 - 105th Street
EDMONTON, Alberta
T5J 3S3
Tel: (403) 420-2944

British Columbia

Scotia Tower
9th Floor, Suite 900
P.O. Box 11610
650 West Georgia St.
VANCOUVER, British Columbia
V6B 5H8
Tel: (604) 666-0434

Yukon

108 Lambert Street
Suite 301
WHITEHORSE, Yukon
Y1A 1Z2
Tel: (403) 668-4655

Northwest Territories

Precambrian Building
P.O. Box 6100
YELLOWKNIFE
Northwest Territories
X1A 1C0
Tel: (403) 920-8568

For additional copies of this profile contact:

*Business Centre
Communications Branch
Industry, Science and
Technology Canada
235 Queen Street
Ottawa, Ontario
K1A 0H5*

Tel: (613) 995-5771

FOREWORD

• • • • •

In a rapidly changing global trade environment, the international competitiveness of Canadian industry is the key to survival and growth. This Industry Profile is one of a series of papers which assess, in a summary form, the current competitiveness of Canada's industrial sectors, taking into account technological and other key factors, and changes anticipated under the Canada-U.S. Free Trade Agreement. Industry participants were consulted in the preparation of the papers.

The series is being published as steps are being taken to create the new Department of Industry, Science and Technology from the consolidation of the Department of Regional Industrial Expansion and the Ministry of State for Science and Technology. It is my intention that the series will be updated on a regular basis and continue to be a product of the new department. I sincerely hope that these profiles will be informative to those interested in Canadian industrial development and serve as a basis for discussion of industrial trends, prospects and strategic directions.

Minister

Canada

1. Structure and Performance

Structure

The Canadian ferrous foundry sector is made up of iron and steel foundries. These foundries produce castings by a manufacturing process in which liquid metal is poured into a mould cavity, allowed to cool and solidify, and separated from the mould for finishing and use. Most castings have some machining before being used in the end product.

Ferrous foundries usually specialize in either iron or steel castings, with a small number, about 10 percent, producing both types. Iron foundries use iron scrap and pig iron, coke and foundry sand, while steel foundries use steel scrap, ferro-alloys and foundry sand as their main primary raw materials.

The ferrous foundries sector is a supplier to most other manufacturing industries. The main markets for iron castings produced in Canada are: automotive, 65 percent (engines, brake parts); construction, 10 percent (manhole covers, catch basins); the agriculture and mining equipment, five percent. The main markets for steel castings produced in Canada are: railways, 50 percent (freight car and engine wheels and trucks); mining, 15 percent (crusher jaws and bucket teeth); automotive, 13 percent (steering and suspension parts); and miscellaneous industrial machinery, 10 percent.

In 1986, the sector consisted of about 119 iron foundries employing 9900 people and 36 steel foundries employing 3200 for a total of 13 100 persons. Shipments of iron and steel castings were about \$817 million and \$134 million respectively for a total of \$951 million. It is estimated that about 60 percent of iron castings and 25 percent of steel castings were exported in 1986, either as castings or in equipment, giving a weighted average export figure for all ferrous castings of about 50 percent of domestic production.* About 98 percent of exports were to the United States, mainly to the northern states. Slightly more than 25 percent of the ferrous castings used in Canada are imported, mainly from the United States, with a large percentage in the form of equipment spares and replacement parts.

* Statistics Canada provides data on the import and export of raw castings. This does not give a complete picture of trade because a large percentage of imports and exports is in the form of machined castings and castings that are equipment components. These are classified not as castings but to the end-product category. Data on exports and imports used in this report, except when referred to as raw castings, are estimates made since 1983 by the Canadian foundry industry.

Industry, Science and
Technology CanadaIndustrie, Sciences et
Technologie Canada

*Imports, Exports and Domestic Shipments**
1986

* Based on industry estimates

Although there are ferrous foundries in every province, they are concentrated in Ontario (52 percent) and Quebec (21 percent). The number of employees at each foundry ranges from five to 2000, with the average being less than 100. The largest foundries are those of General Motors and Ford, which operate highly automated iron foundries producing castings for their own internal use. Two steel companies, Algoma and Dofasco, operate foundries which supply castings for internal use as well as for outside customers. Griffin Canada operates two highly automated steel foundries, one in Manitoba and one in Quebec, which specialize in making wheels for railway locomotives and railway cars.

The majority of firms in the industry are Canadian-owned. However, because of the large size of some of the foreign-owned foundries, such as those of the auto companies, about 50 percent of the production capacity is foreign-owned.

Performance

In the face of declining demand, substantial restructuring has occurred in the industry. Between 1973 and 1986 the number of foundries in Canada decreased from 200 to 155; employment declined from 22 000 to 13 100; and shipments declined from 1 442 000 to 1 145 000 tonnes. Downward adjustments have also taken place in the United States, Europe and Japan. The main causes have been product replacement by other materials, less metals used in the smaller cars produced by the auto industry and increased imports of equipment containing castings. Increased use of capital equipment and automation has raised the productivity and output of those foundries remaining in business.

The Canadian steel foundry industry operated on average at about 50 to 55 percent of capacity between 1983 and 1986. The iron foundry industry has operated at an average capacity of 60 to 65 percent during that period, about the same as in Europe and the United States. The operating level of individual foundries across Canada varies widely, depending mainly on the market niche. Foundries supplying the auto industry are now operating at close to full capacity.

2. Strengths and Weaknesses

Structural Factors

The key factors affecting the competitiveness of Canadian ferrous foundries include economies of scale, labour costs, raw material costs, transportation costs, quality of product, customer service and reliability and prompt delivery.

The methods of producing ferrous castings vary widely, depending on the type and size of the product. It is common for a foundry to have several production methods operating in the same building. Therefore economies of scale are not significant for all parts of the ferrous foundry sector. Iron castings for the automotive industry and many types of steel castings are produced on highly automated production lines with a high capital cost and relatively low labour cost.

Large steel castings, however, such as the turbine rotors used in hydroelectric power plants, are produced individually in large foundry floor cavities. They have high labour costs and relatively low capital costs.

The Canadian ferrous foundry is as modern and efficient as the American and European industries and its other competitors. It competes successfully in the northern U.S. markets. Canadian ferrous foundries, especially the iron foundries active in the automotive market, have made substantial investments to upgrade their production facilities during the past five years.

Production labour costs for ferrous foundries in Canada represented about 26 percent of the value of shipments in 1985. Canadian labour costs were about 10 percent lower than those in U.S. ferrous foundries, after currency exchange rates are taken into account.

In the newly industrialized countries (NICs), labour and pollution control costs are much lower than in Canada; as a result, some of their castings can be exported to and delivered in Canada at prices which Canadian ferrous foundries cannot compete with. As a consequence, since the early 1980s, there has been a flow of standard size, high-volume, iron and steel castings (such as pipe fittings) into Canada from NICs such as South Korea, Taiwan, Brazil and Mexico.

Canadian foundries have been able to retain a great deal of the market to date for most products because of their customer service, reliable quality and prompt delivery. The "just-in-time" delivery of castings is particularly important to the automotive and farm machinery companies and favours North American over offshore ferrous foundries.

Transportation costs also tend to act as a natural barrier to the trade in ferrous castings because most products have a relatively low value per unit of weight. This tends to limit the geographic area supplied by a foundry. However, the labour and pollution-control cost advantages which the NICs enjoy on standard high-volume items outweigh the transportation cost disadvantages.

The costs of the main raw materials, iron and steel scrap, are approximately equal in Canada and the United States after currency rates are taken into account. Most foundry sand, chemicals for bonding of sand, and coke are imported from the United States. Although there is no duty on most of these items, their costs to Canadian foundries are generally higher than those paid by their U.S. counterparts because of the higher transportation costs.

The Canada-U.S. Auto Pact has been important to the ferrous casting industry because the Canadian content rules and duty-free access to the large U.S. market have enabled Canadian ferrous foundries in the automotive market to enjoy economies of scale.

Trade-related Factors

Approximately 80 percent of all foundry products, both as raw and machined castings and as castings incorporated in equipment, now traded between Canada and its major trading partner, the United States, are free of duty. Products that are traded as original equipment under the Auto Pact are duty-free, as is all agriculture machinery and defence-related equipment.

TARIFFS FOR FERROUS CASTINGS ARE AS FOLLOWS:

Most Favoured Nation (MFN) Tariffs

	Canada	U.S.	E.C.	Japan
Ferrous Castings	9.0-9.5	4.0-5.0	5.0-5.5	5.0-6.0

The Canadian General Preferential Tariff rate, which applies to most NICs is 6.0 percent.

In the United States, the main non-tariff barriers (NTBs) are government procurement policies, such as the "Buy America" provisions, which restrict the imports of certain types of Canadian castings. Canada, the E.C. and Japan have no significant NTBs on imports of castings.

While the United States has not taken countervail action against Canadian producers of ferrous castings, in 1986 the Americans imposed anti-dumping duties on certain types of iron construction castings imported from Canada. In a separate action, the U.S. casting industry tried to reduce imports of castings from a number of countries, including Canada, by means of a Section 201 safeguard action.

Under the Canada-U.S. Free Trade Agreement (FTA), Canadian and U.S. tariffs on ferrous castings will be reduced to zero over a ten-year period. In addition, the remaining tariffs on machinery will be removed mainly over a five- to 10-year period. The trade-dispute settlement mechanisms and safeguard provisions of the FTA are of interest to this industry. In the event of the imposition of a countervail or anti-dumping duty, either government may request a bi-national review panel to ensure that existing laws have been applied correctly and fairly. Moreover, the safeguard provisions of the FTA ensure that Canada will not be sideswiped by actions primarily directed at other countries.

Technological Factors

Recent technological changes in Canada have featured labour reduction through advanced processes and process equipment, statistical quality control, and the use of computers in casting design, inventory and process control and financial analysis.

The level of technology used in the Canadian industry is as high as that in the United States, Europe and other competitors. However, the Canadian industry does very little of its own research and development. Technology is imported with equipment mainly from the United States but also from Europe and Japan. There has been no difficulty in acquiring state-of-the art technology.

3. Evolving Environment

A major problem facing the industry is the increasing importation of items which contain iron and steel castings into the North American market from newly industrialized, low-wage countries. These items include fully machined and finished castings, automotive engine transaxles and running-gear assemblies, farm and industrial tractors, and forklift trucks.

The automotive industry, which is a major consumer of ferrous castings, is undergoing structural adjustment largely resulting from increased outsourcing by North American assemblers, imports and large increases in automotive assembly capacity in North America by Asian companies. In the case of new investors, while they are significantly increasing their local sourcing of components, it will be several years before they have the very high levels of North American content that the traditional American assemblers are achieving. Consequently, a decline, at least during the next three to five years, could occur in the demand for ferrous castings for use in engines, power trains and brake components.

Continued replacement by materials such as aluminum, plastics, and ceramics is also expected to shrink demand for ferrous castings in the automotive, agricultural and mining equipment market in North America. These changes, together with increasing automation, will probably result in a further decrease in the number of foundries (and employees) in the industry.

Under the FTA, the elimination of tariffs will increase the competitiveness of Canadian castings in the United States, although it will also improve access to the Canadian market for U.S. castings. This could cause difficulties for some small, higher-cost Canadian foundries.

The FTA will also reduce the likelihood that safeguard actions will be used unfairly to hinder Canadian exports to the U.S. market. The increased certainty of access will encourage investment in Canadian ferrous foundries and result in improved productivity and product quality. Such improvement would increase the competitiveness of Canadian castings both in the United States and in the domestic market. While this would also make the industry somewhat more competitive in the Canadian market against offshore imports, the latter will continue to enjoy a net cost advantage in certain standard high-volume products.

4. Competitiveness Assessment

Because most ferrous castings have a relatively low value per unit of weight, transportation costs greatly affect their competitiveness. At the existing exchange rate, the Canadian ferrous foundry industry is generally competitive with the U.S. ferrous foundry industry in the northern U.S. market. However, on a cost basis, Canadian iron and steel castings are not competitive on the North American market with some of the castings from newly industrialized countries, mainly because of the very low labour costs in those countries. While there have been increasing imports of certain standard, high-volume items from these countries, customer service, reliable quality and prompt delivery have enabled Canadian foundries to compete successfully in most product lines.

Total Shipments and Employment*

* Shipments are Statistics Canada estimates for all castings. Employment data are based on Canadian Foundry Association estimates for all castings.

Large-scale production by the Asian auto assemblers in North America could reduce the market for both Canadian and U.S. ferrous castings until these firms implement their plans to produce, in North America, automotive components incorporating ferrous castings.

Overall, the FTA will have a moderately positive impact on the industry.

For further information concerning the subject matter contained in this profile, contact:

Resource Processing Industries Branch
Industry, Science and Technology Canada
Attention: Ferrous Foundries
235 Queen Street
Ottawa, Ontario
K1A 0H5

(613) 954-3128

PRINCIPAL STATISTICS

SIC(s) COVERED: 294 and 2912 (1980)

	1973	1982	1983	1984	1985	1986
* Establishments	200	166	157	149	149	155
** Employment	22 000	13 800	13 200	15 100	13 100	13 100
*** Shipments (\$ millions) ('000 tonnes)	535 1442	745 896	835 1 093	966 1 309	957 1 140	951 1 145
Gross Domestic Product (constant 1981 \$ millions)(1)	363.0	209.5	247.6	352.8	363.6	393.0
Investment (\$ millions)(1)	18.0	13.3	13.0	43.2	36.7	47.5
*** Profits after tax (\$ millions)	12.4	-29.2	18.0	30.0	N/A	N/A
*** (% of sales)	4.0	-4.2	3.3	5.1	N/A	N/A

TRADE STATISTICS

	1973	1982	1983	1984	1985	1986
Exports (\$ millions)(2)	83.0	98.4	95.8	126.4	111.0	117.3
**** Exports (\$ millions)(3)	N/A	N/A	N/A	N/A	478.5	475.5
**** Domestic shipments (\$ millions)(3)	N/A	N/A	N/A	N/A	478.5	475.5
Imports (\$ millions)(2)	57.1	61.7	68.3	102.6	88.0	88.6
**** Imports (\$ millions)(3)	N/A	N/A	N/A	N/A	159.5	158.5
**** Canadian market (\$ millions)(3)	N/A	N/A	N/A	N/A	638.0	634.0
* Exports as % of shipments(3)	N/A	N/A	N/A	N/A	50.0	50.0
**** Imports as % of domestic market (3)	N/A	N/A	N/A	N/A	25.0	25.0
Source of imports (% of total value) (Raw castings only)			U.S.	E.C.	Asia	Others
	1982	86.7	10.7	2.1	0.4	
	1983	92.9	4.7	2.1	0.4	
	1984	90.5	5.0	3.6	0.9	
	1985	86.7	5.8	5.6	1.9	
	1986	83.3	5.4	9.9	1.4	
Destination of exports (% of total value) (Raw castings only)		U.S.	E.C.	Asia	Others	
	1982	93.6	0.5	0.2	5.7	
	1983	96.5	0.2	0.0	3.3	
	1984	99.3	0.0	0.1	0.5	
	1985	99.5	0.3	0.0	0.2	
	1986	99.1	0.1	0.0	0.8	

(continued)

REGIONAL DISTRIBUTION — Average over the last 3 years

	Atlantic	Quebec	Ontario	Prairies	B.C.
Establishments – % total	7	21	52	11	9
Employment – % total	5	23	55	9	8
Shipments – % total	4	24	57	8	7

MAJOR FIRMS

Name	Ownership	Location of Major Plants	Type of Foundry
General Motors	U.S.	Ontario	Iron
Ford Motor Co. of Canada	U.S.	Ontario	Iron
Hawker Siddeley Canada Inc., Canadian Steel Foundries Division	U.K.	Quebec	Steel
Dofasco Inc., Foundry Division	Canadian	Ontario	Steel
Griffin Canada Inc.	U.S.	Quebec, Manitoba	Steel
Abex Industries Ltd.	U.S.	Quebec, Manitoba	Steel
Canron Inc.	Canadian	Ontario	Iron
Esco Ltd.	U.S.	British Columbia, Ontario	Steel
Norcast Inc.	Canadian	Ontario, Quebec	Iron
Bibby-Ste Croix Foundries Inc.	Canadian	Ontario, Quebec	Iron

* Industry, Science and Technology Canada estimates

** Canadian Foundry Association

*** Statistics Canada

**** Based on industry's estimates, which include castings incorporated in equipment.

(1) Iron Foundries only.

(2) Raw Castings only.

(3) All Castings - raw, machined and in equipment.

RÉPARTITION RÉGIONALE — Moyenne des 3 dernières années

Établissements (en %)	7	21	52	11	9	Établissements (en %)	7	24	57	8	7
Emplois (en %)	5	23	55	9	8	Expéditions (en %)	4	24	57	8	7
Pratiques	7	21	52	11	9	Pratiques	4	24	57	8	7
C.-B.						Ontario	5	23	55	9	8

PRINCIPALES SOCIETES

- * Estimations : Industrie, Sciences et Technologie Canada.
- ** Association des fondatrices et canadiennes.
- *** Statistique Canada.
- **** Les montants indiqués sont exprimés en millions de dollars.
- ***** Selon les estimations de l'Industrie métallurgique, comprenant les places courantes et servant de compositions.
- ***** Selon les estimations de l'Industrie métallurgique, comprenant les places brutes et fondatrices de fonte seulement.
- ***** Selon les estimations de l'Industrie métallurgique, comprenant les places brutes seulement.
- ***** Selon les estimations de l'Industrie métallurgique, comprenant les places brutes, fondatrices et servantes de fonte seulement.
- ***** Selon les estimations de l'Industrie métallurgique, comprenant les places brutes et fondatrices.

PRINCIPALES STATISTIQUES

CTI 294 et 2912 (1980)

Emplois**	22	000	13	800	13	200	15	100	13	100
Établissements*	200	166	157	149	149	149	155			
Expéditions ***/****	535	745	835	966	1 093	1 093	957	951	(en milliers de tonnes)	
Produit interne brut ***/a	363,0	209,5	247,6	352,8	363,6	393,0				
Chantiers ***/a	18,0	13,3	13,0	43,2	36,7	47,5				
Bénéfices après impôts ***/****	12,4	-29,2	18,0	30,0	-4,2	3,3	5,1	n.d.	n.d.	(en % des revenus)

Pour de plus amples renseignements sur ce dossier, s'adresser à :

Etant donné que les pièces coulées ont, pour la plupart, une valeur par unite de poids peu élevée, les frais de transport influent directement sur leur compétitivité. Compte tenu du taux de change actuel et comparable à sa rivale américaine, l'industrie canadienne est concurrencée sur le marché du nord des Etats-Unis. Cependant, au chapitre des coûts, les pièces coulées ne peuvent soutenir la concurrence sur le marché des pièces coulées provenant des États-Unis.

4. Evaluation de la compétitivité

L'Accord réduira aussi la possibilité que des concurrents américains innoveront de façon déloyale des mesures protectrices pour entraver les exportations canadiennes sur leur marché. Un accès plus sûr à ce marché devrait encourager les investissements dans les fondées canadiennes de métaux ferreux et entraîner une hausse de la productivité et de la qualité des produits, permettant du même coup que les pièces courtes canadiennes soutiennent la concurrence à la fois sur le marché américain et sur le marché international. En outre, l'industrie canadienne pourrait livrer une concurrence plus serrée aux importations d'outre-mer sur son marché terrestre si les produits étrangers continuent de jouir de nets avantages quant au prix des expéditions d'importants volumes de certains produits normalisés.

Nord. Quant aux nouveaux investisseurs, même si ils augmentent leurs approvisionnements en pièce s'abstient de faire des systèmes de freinage. et les organes de transmission basseur pour les moteurs, les groupes de transmission et les organes des systèmes de freinage. Il est prévu que des matériaux comme l'aluminium, les plastiques et les céramiques continuent à faire baisser la demande de pièces automobiles sur les marchés de l'Amérique du Nord. Ces changements, de même que l'accroissement de l'automatisation, entraîneront une nouvelle baisse du nombre des emplois dans ce secteur. L'élimination des tarifs prévus par l'Accord canadien pour le marché américain, mais ouverte aux américaines, ce qui pourraient donner des avantages au marché canadien aux importations européennes pour les petites fondries dont les frais de production sont élevés.

L'industrie automobile, grande consommatrice de pièces coulées, a annoncé une restructuration de ses usines. La mesure due au fait que de plus en plus d'usines nord-américaines de montage s'approvisionnent sur les marchés étrangers, due aussi à l'accroissement des importations et au nombre d'usines assistées de montage venues s'installer en Amérique du sud.

des tracteurs et des chariots à fourches.
et de trains de roulement pour moteurs d'automobile,
usines et finies, des assemblages de boîtes-ponts.
Entre autres, notons des pièces coulées entièrement
industrielles ou la main-d'œuvre est bon marché.
pièces coulées en provenance de pays importants des
marché nord-américain de produits comportant des
sérieuses difficultés reliées à l'importation sur le
Geste industrie fait actuellement face à de

3. Evolution de l'environnement

La technologie la plus poussée s'acquiert aisément.
Unis, mais aussi d'Europe de l'Ouest ou du Japon.
de même que le matériel, en particulier des États-
pou de R-D. Les techniques de pointe sont importées
concurrents. Cependant, cette industrie ne fait que
Unis, qui en Europe de l'Ouest et que dans les pays
l'industrie canadienne est aussi élevée qu'aux États-
Le niveau de la technologie en usage dans
fabrication, analyse financière et contrôle des stocks.
controle statistique de la qualité, conception
ordinaires sont notables dans les secteurs suivants :
changements survenus en raison de l'utilisation des
de procédés de matière première de pointe. Les
compréssions des effectifs à la suite de l'implantation
Les changements technologiques ont entraîné la
mesures destinées avant tout à d'autres pays.
L'Accord, le Canada ne devrait pas être vaincu par des
en vertu des clauses protectionnistes stipulées dans
l'application équitable des lois en vigueur. De plus,
mesures destinées avant tout à d'autres pays.
faire appel à un comité bipartite pour assurer
d'un droit antidumping, chaude gouvernement pourra
soit donc d'un très grand intérêt pour cette industrie.
et les mesures protectionnistes prévues par l'Accord
principe de l'arbitrage des différends commerciaux
sur la machine échappe d'ici 5 à 10 ans. Le
États-Unis prévoit l'élimination, d'ici 10 ans, des tarifs
L'Accord de libre-échange entre le Canada et les
vérifiée de l'article 201.
américaine a introduit la clause de la protection en
sur les pièces coulées. Par ailleurs, les derniers tarifs
États-Unis prévoit l'élimination, d'ici 10 ans, des tarifs
L'Accord de libre-échange entre le Canada et les
vérifiée de l'article 201.

Les États-Unis n'ont pas pris de mesures
complémentaires à l'égard des producteurs canadiens
de pièces coulées, mais en 1986, ils ont imposé des
droits antidumping sur certaines pièces de fonte
coulées servant à la construction et importées du
Canada. D'autre part, pour redire les importations
de pièces coulées en provenance d'un certain
nombre de pays, dont le Canada, l'industrie

acquiert barre importante sur les importations de
canadiennes. Le Canada, la CEE et le Japon n'imposent
importations de certains types de pièces coulées
» politique d'achat aux États-Unis », limitant les
est la politique officielle en matière d'achat, telle la
industrielles, est de 6 p. 100.
qui s'applique aussi à la plupart des pays reconnus
Il faut noter que le Tarif de préférence générale,
Pièces coulées Canada E.-U. CEE Japon 9-9,5 4-5 5-5,5 5-6

Tarif de la nation la plus favorisée (TNP)

PIÈCES COULÉES—TARIFS EN VIGUEUR

matiel agricole et au matériel de défense.
en vertu du Pacte de l'automobile, tout comme au
entre autres au commerce de l'équipement d'origine
s'effectuent en franchises. La franchise s'applique
principal partenaire commercial. Les États-Unis
80 p. 100 du commerce entre le Canada et les États-Unis
les pièces usinées et les composantes, près de
fondre des métaux ferreux, dont les pièces brutes,
Dans le domaine des produits dérivés des

Facteurs liés au commerce

secteur de l'industrie automobile.
permis de réaliser des économies d'échelle dans le
franchise à l'important marché canadien leur ont
réglés portant sur le contenu canadien l'accès en
Pacte de l'automobile a été capital, puisque les
Pour les fondre des canadiennes, la signature du
plus élevée pour les fondre canadiennes.
général, à cause des frais de transport, leur coût est
importes des États-Unis en franchise, mais en
produits assurant la liaison chimique du sable sont
établi, le sable de fondre et les
États-Unis. Le coke, le sable de la même au Canada et aux
recycler est peu près le même au Canada et aux
principales matières premières et des déchets à
compte tenu du taux de change, le prix des
élevés à payer pour exporter leurs pièces coulées.
contre la pollution compensent largement les frais
chaptre des couts de la main-d'œuvre et de la lutte
don't bénéficient les pays en développement au
limiter leur zone de desserte. Toutefois, les avantages
élevée, aussi les fondre ont-elles tendance à
des produits, la valeur par unité de poids est peu
au commerce des pièces coulées. Pour la majorité
Les frais de transport sont souvent un obstacle
américaines sur leurs rivales étrangères.

qui confère un certain avantage aux fondre nord-
secteurs du matériel agricole et de l'automobile, ce
temps » sont d'une importance primordiale dans les
et à leurs livraisons rapides. Les livraisons « frites à
canadiennes ont réussi à préserver leur marché grâce
à leur service à la clientèle, à la qualité stable du produit
Pour la plupart de leurs produits, les fondre

2. Forces et faiblesses

De 1983 à 1986, les fondreuses canadiennes d'acier ont fonctionné à la moitié de leur capacité, soit de 50 à 55 p. 100. Au cours de cette période, les fondreuses de fonte ont, pour leur part, fonctionné à une capacité variant de 60 à 65 p. 100, tout comme les fondreuses de céramique en Europe de l'Ouest et aux États-Unis. Au Canada, le niveau d'activité a atteint 70 p. 100 en 1986. Les fondreuses du marché canadien ont profité de l'essor de l'industrie automobile fonctionnant presque à pleine capacité.

acteurs structurels

Parmi les principaux facteurs de la compétitivité des fondreuses canadiennes, notons les économies d'échelle, les coûts de la main-d'œuvre et des matières premières, les frais de transport, la qualité des produits. Le service à la clientèle et la fiabilité et la disponibilité des fournisseurs sont également des éléments importants pour assurer la compétitivité.

considérablement. Une même fondrière peut utiliser plusieurs d'un procédé à la fois. Les économies d'échelle n'ont donc pas la même importance. Les pièces de monte coulées pour le marché de l'automobile et certaines types de pièces d'acier coulées sont fabriquées par des chaînes de production hautement automatisées; leur coût de capital est élevé, mais leur coût de main-d'œuvre est relativement faible.

Sur certains marchés, certaines pièces coulées déclinent

Le rôle et le coût en capital l'est moins. La modernité de cette industrie et son efficacité

celui des fondées américaines.

Alors, depuis le début des années 80, un grand volume de pièces coulées normalisées, telles les pièces servant au montage et à l'assemblage des tuyaux, est entré au Canada en provenance de la Corée du Sud, de Taiwan, du Brésil et du Mexique.

Ces dernières années, la baisse de la demande a entraîné une importante restructuration de cette industrie. De 1973 à 1986, le nombre des fondries est passé de 200 à 155, celui des emplois, de 222 000 à 13 100 et les expéditions, de 1 442 000 à 1 145 000 tonnes. Les Etats-Unis, l'Europe de l'Ouest et le Japon ont connu des baisses semblables dues au remplacement de ces produits par d'autres matériaux. À cela, il faut ajouter la diminution de la demande en raison de la réduction des modèles automobiles et l'augmentation des importations de matière première fabriquée à partir de pièces coulées. Par ailleurs, l'utilisation accrue d'outillage et d'automatisation ont permis d'améliorer la productivité et la production out des fondries encore en activité.

Redemption

Les fondreuses d'Algoma et de Dofasco fabriquent des pièces d'aérage pour leur propre production et sur commande pour des clients. Griffin Canada est propriétaire de deux fondreuses d'aérage et automatisées : l'une au Manitoba et l'autre au Québec, toutes deux spécialisées dans la fabrication de roues de locomotive et de wagon. La majorité des fondreuses sont de propriété canadienne. Cependant, étant donné le caractère de certaines fondreuses de propriété étrangère, notamment celles des constructeurs d'automobiles, 50 p. 100 de la capacité de production sont de propriété étrangère.

* Selon les estimations de l'Industrie.

1988 - Impôts, expatriations et expatriations

Bureaux régionaux

PU 3006

Terre-Neuve

St. JOHN'S (Terre-Neuve)
A1B 3R9
Tél. : (709) 772-4053

C.P. 8950
Parsons Building
90, avenue O'Leary
Tour de la Bourse
800, place Victoria
C.P. 11610
650, rue Georges-Étienne
VANCOUVER
V6B 5H8
H4Z 1E8
MONTRÉAL (Québec)
Tél. : (514) 283-8185

Ontario

CHARLOTTEOWN
C.P. 1115
bureau 400
134, rue Kent
Confédération Cour de Justice
CIA TM8
Tél. : (902) 566-7400

C.P. 940, succ. M
1496, rue Lower Water
HALIFAX
B3J 2V9
(Nouvelle-Écosse)

Nouveau-Brunswick
C.P. 1210
770, rue Main
MONCTON
Tél. : (306) 975-4400

(Nouveau-Brunswick)
E1C 8P9
C.P. 1210
770, rue Main
MONCTON
Tél. : (506) 857-6400

Alberta

EDMONTON (Alberta)
T5J 3S3
bureau 505
10179, 105e Rue
Gomperz Building
Centre des entreprises
communications et
industrie, Sciences et
Technologie Canada
235, rue Queen
OTTAWA (Ontario)
K1A 0H5
Tél. : (403) 420-2944

SASKATOON (Saskatchewan)
SK 703
6e étage
105, 21e Rue est
Saskatchewan
Tél. : (306) 975-4400

Saskatchewan

WINNIPEG (Manitoba)
RC 2V2
C.P. 981
bureau 608
Prairiebank Building
Sac postal 6100
YELLOWKNIFE
X1A 1C0
(Territoires du Nord-Ouest)
Tél. : (403) 920-8568

Territoires du Nord-Ouest

HALIFAX
B3J 2V9
(Nouvelle-Écosse)
C.P. 940, succ. M
1496, rue Lower Water
HALIFAX
B3J 2V9
(Nouvelle-Écosse)

Manitoba

TORONTO (Ontario)
M5J 1A4
bureau 301
108, rue Lambert
Y1A 1Z2
WHITEHORSE (Yukon)
Tél. : (403) 668-4655

Yukon

TORONTO (Ontario)
M5J 1A4
bureau 301
108, rue Lambert
Y1A 1Z2
WHITEHORSE (Yukon)
Tél. : (403) 668-4655

Dominion Public Building
1, rue Frontenac Ouest
Dominion Public Building
Yukon
Tél. : (604) 666-0434

Yukon

Colombie-Britannique

Tél. : (613) 995-5771
Technologie, Sciences et
industrie, Sciences et
communications et
communications
Centre des entreprises
de ce profil, s'adresser au :
Pour obtenir des exemplaires
Centre des entreprises
de la générale des
Télé. : (403) 420-2944
bureau 505
10179, 105e Rue
Gomperz Building
Centre des entreprises
communications et
industrie, Sciences et
Technologie Canada
235, rue Queen
OTTAWA (Ontario)
K1A 0H5
Tél. : (403) 420-2944

Technologie, Sciences et
communications et
communications
Centre des entreprises
de la générale des
Télé. : (613) 995-5771
Technologie, Sciences et
industrie, Sciences et
communications et
communications
Centre des entreprises
de ce profil, s'adresser au :
Pour obtenir des exemplaires
Centre des entreprises
de la générale des
Télé. : (403) 420-2944
bureau 505
10179, 105e Rue
Gomperz Building
Centre des entreprises
communications et
industrie, Sciences et
Technologie Canada
235, rue Queen
OTTAWA (Ontario)
K1A 0H5
Tél. : (403) 420-2944

Canada

Fonction et acier — fondries

Industry, Sciences et Technologie Canada

DE L'INDUSTRIE PROFI