Part 1:

$$X = \{ \begin{cases} for \ 1 = 1 : n \\ for \ j = 1 : n \end{cases}$$

$$X = \{ for \ j = 1 : n \\ X = K + 1 \end{cases}$$

$$X = \{ for \ j = 1 : n \\ X = K + 1 \end{cases}$$

$$X = \{ for \ j = 1 : n \\ X = K + 1 \end{cases}$$

$$X = \{ for \ j = 1 : n \\ X = K + 1 \end{cases}$$

$$X = \{ for \ j = 1 : n \\ X = K + 1 \end{cases}$$

$$X = \{ for \ j = 1 : n \\ X = \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \\ X = \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \\ X = \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \\ X = \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \\ X = \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ for \ j = 1 : n \}$$

$$= \{ f$$

So the runtime should be $1+n^2$ or $\theta(n^2)$.

Part 2:

Part 3: I chose the upper bound to be $2(n^2)$ and the lower bound to be $(1/2)(n^2)$ where the estimate curve fits inside between them.

The value of f(n) are $O(n^2)$, $\Omega(n^2)$, $\theta(n^2)$.

Part 4: n_0 should be at x=35 where the curves are touching or very close to touching and doesn't seem to follow the trend before x=35.

Part 4(for modified function):

Yes this will increase the time or the runtime the function takes.

Part 5: Yes it will affect the results from number 1 by increasing it. Although it will still be a polynomial and in theta form the runtime will still be $\theta(n^2)$. So eventually it will be bigger and won't matter as much for runtime.

Part 6: Mergesort shown here:

```
Test array before: [5, 2, 4, 7, 1, 3, 2, 6]
Sorted: [2, 5]
Sorted: [4, 7]
Sorted: [2, 4, 5, 7]
Sorted: [1, 3]
Sorted: [2, 6]
Sorted: [1, 2, 3, 6]
Sorted: [1, 2, 2, 3, 4, 5, 6, 7]
Test array after: [1, 2, 2, 3, 4, 5, 6, 7]
Process finished with exit code 0
```