Lineare Algebra 2 Hausaufgabenblatt Nr. 12

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: April 18, 2024)

I. GRUND DER ANNAHME

Weshalb könnte man mit den gegebenen Informationen davon ausgehen, dass die registrierten γ -Quanten einer Poissonverteilung folgen?

Die Population ist unendlich. Die Anzahl von Versuche (hier: 336) ist groß. Die Größe $n \cdot p$ beträgt

$$\frac{1}{2} \cdot 1 \text{ s} \cdot \frac{1}{10 \text{ years}} < 9,$$

also die beste Verteilung ist eine Poissonverteilung.

II. DATENTABELLE

Mittelwert : $\mu = 2,73214$

Standardabweichung : $\sigma = 1,67784$

Ereignisse	0	1	2	3	4	5	6	7	8
Häufigkeit	11	89	65	71	48	28	16	6	2
Relative Häufigkeit	0,032738	0,26488	0,19345	0,21131	0,14286	0,083333	0,047619	0,017857	0,0059524

 $Poisson-Wahrscheinlichkeit\ 0,0650797\ 0,177807\ 0,242897\ 0,22121\ 0,151094\ 0,0825622\ 0,0375953\ 0,0146737\ 0,00501132$

III. HISTOGRAMM

 $^{^{\}ast}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

FIG. 1.