Lecture 3-2 Timing

Outlines

- Timing definition
- How to read a timing report

SOME DEFINTIONS

Edge-Triggered D Flip Flop

Setup time: inputs become stable before rising clock; Hold time: inputs remain stable after rising clock;

How Fast My Design Can Run?

- Up to 100MHz? 200MHz?
- Slower at 10KHz, 20KHz? Any speed?

How Fast My Design Can Run?

Fastest clock cycle time: T_c

Max Delay

Min-Delay: Flip-Flops

Active Path is 1 - 2 - 3 - 4 - 1 and 2 - 5 - 6 - 7 - 8

$$t_{cd} + t_{ccq} \ge t_{hold}$$

$$t_{cd} \ge t_{hold} - t_{ccq}$$

If not hold, (comb. Logic delay is too short)

- \Rightarrow hold time violation
- ⇒ DFF will catch the wrong value
- 1. Decreasing clock rate does not work
- 2. Increase tcd (e.g. add delay, buffer)

Timing Paths

- Input to register, register to register, register to output
 - Start from or end to DFFs
- Input to output

SYNOPSYS°

Timing paths

In the example, each logic cloud represents a combinational logic network. Each path starts at a data launch point, passes through some combinational logic, and ends at a data capture point.

Path	Startpoint	Endpoint
Path 1	Input port	Data input of a sequential element
Path 2	Clock pin of a sequential element	Data input of a sequential element
Path 3	Clock pin of a sequential element	Output port
Path 4	Input port	Output port

Example

$$\begin{aligned} t_{\text{dCQ}} &= t_{\text{cCQ}} = t_{\text{s}} = 150 \text{ps} \\ t_{\text{h}} &= 250 \text{ps} \\ t_{\text{dMax}} &= 850 \text{ps} \\ t_{\text{cMin}} &= 100 \text{ps} \end{aligned}$$

Is hold time constraint met?

$$t_h \le t_{cCQ} + t_{cMin}$$
 250ps <= 100+ 150ps

What is the minimum cycle time?

$$t_{cy} \ge t_{dCQ} + t_{dMax} + t_s$$
 $t_{cy} >= 1150ps$

Add Clock Skew tk

clk

С

d

clkd

Clock skew: arrival time of clock signal difference

$$t_{cy} > t_{dCQ} + t_{dMax} + t_{s} + t_{k}$$
 Cycle get larger
 $t_{h} < t_{cCQ} + t_{cMin} - t_{k}$ Hold time tigher

Skew always reduces slack (margin)

check timing path as in timing report

Minimum Delay along the clock path.

Delay in Data path

= max(wire delay to the clock input of FF1) + max(Clk-to-Q delay of FF1) +max(cell delay of inverter) + max(2 wire delay- "Qof FF1-to-inverter" and "inverter-to-D of FF2")

$$=Td = 2+11+9+(2+2) = 26ns$$

Clock path Delay

= (Clock period) + min(wire delay from CLK to Buffer input) + min(cell delay of Buffer) + min(wire delay from Buffer output to FF2/CLK pin) -(Setup time of FF2)

$$=$$
Tclk $=$ 15+2+5+2-4=20ns

Setup Slack = Tclk - Td = 20ns - 26ns = -6ns.

Since Setup Slack is negative -> Setup violation.

If Clock period is 22ns then

Tclk = 22+2+5+2-4=31-4=27ns AND Td = 26ns

Setup Slack = Tclk - Td = 27-26=1ns (No Violation)

Hold Analysis

Minimum Delay along the data path. Maximum Delay along the clock path.

Delay in Data path

= min(wire delay to the clock input of FF1) + min(Clk-to-Q delay of FF1) + min(cell delay of inverter) + min(2 wire delay- "Qof FF1-to-inverter" and "inverter-to-D of FF2")

=Td = 1+9+6+(1+1)=18ns

Clock path Delay

= max(wire delay from CLK to Buffer input) + max(cell delay of Buffer) + max(wire delay from Buffer output to

FF2/CLK pin) + (hold time of FF2)

=Tclk = 3+9+3+2 = 17 ns

Hold Slack = Td - Tclk = 18ns -17ns = 1ns

Since Hold Slack is positive-> No hold Violation.

Note:

If the hold time had been 4 ns instead of 2 ns, then there would have been a hold violation.

Td=18ns and Tclk = 3+9+3+4=19ns

So Hold Slack=Td - Tclk = 18ns - 19ns = -1ns (Violation)

Summary

- Delays in digital systems
 - Propagation delay
 - Contamination delay
- Flip-flop timing constraints
 - Setup time (t_s)
 - Hold time (t_h)
- Cycle time determined by maximum delay
- t_{cy} > t_{dCQ} + t_{dMax} + t_s
 Correct operation depends on minimum delay
- Clock skew affects both

$$t_{h} < t_{cCQ} + t_{cMin}$$
 $t_{cy} > t_{dCQ} + t_{dMax} + t_{s} + t_{k}$ $t_{h} < t_{cCQ} + t_{cMin} - t_{k}$

HOW TO READ YOUR TIMING REPORT

How to Read and Interpret Timing Report

report timing

Header	Startpoint: FF1 (rising edge-triggered Endpoint: FF2 (rising edge-triggered fl Path Group: Clk Path Type: max		_
	Point	Incr	Path
Data arrival	clock Clk (rise edge) clock network delay (propagated) FF1/CLK (fdef1a15) FF1/Q (fdef1a15) U2/Y (buf1a27) U3/Y (buf1a27) FF2/D (fdef1a15) data arrival time	0.00 1.10 * 0.00 0.50 * 0.11 * 0.11 *	1.10 r 1.60 r 1.71 r
required	clock Clk (rise edge) clock network delay (propagated) FF2/CLK (fdef1a15) library setup time data required time data required time data arrival time	4.00 1.00 * -0.21 *	5.00 5.00 r
Slack	slack (MET)		2.92

Constraint File (note. These numbers may not match the following slides)

```
//設定clock, I/O 限制
create_clock "clk" -name clk -period 2 -waveform {0 1.7}
set_clock_uncertainty 0.2 clk
set_fix_hold all_clocks()
set_input_delay 0.5 -clock clk {in}
set_output_delay -max 0.8 -clock clk {isprime}
//設定 loading
set_load -pin_load 5 {isprime}
```

//Note: these commands are for practical applications to include // clock jitter, input/output loading capacitances

Global
Target_library
Set_operating_conditions
Set_wire_load
Set_max_transition

Clock

Create_clock

Set_dont_touch_network
Set_ideal_net (for sdf)
Set_clock_uncertainty

Timing Exception

Set_false_path
Set_multicycle_path

Data required times

set_output_delay

Point	Incr	Path
input external delay a (in) m1/Z (MUX21H) u1/S (FA1) c_d/Z (AN2) c_d (out) data arrival time	10.00 0.00 1.00 1.00 0.00	10.00 r 10.00 r 11.00 r 12.00 r 13.00 r 13.00 r
<pre>max_delay output external delay data required time</pre>	15.00 -10.00	15.00 5.00 5.00
data required time data arrival time		5.00 -13.00
slack (VIOLATED)	-8.00	

Clock Network and Clock Skew

report_clock_timing -type skew

For each clock, report REAL skew

Specify Timing Assertions

Timing Verification of Synchronous Designs

All "registers" must reliably capture data at the desired clock edges.

Four Sections in a Timing Report

report timing

Header	Startpoint: FF1 (rising edge-triggered Endpoint: FF2 (rising edge-triggered Path Group: Clk Path Type: max		_
;	Point	Incr	Path
Data arrival	clock Clk (rise edge) clock network delay (propagated) FF1/CLK (fdef1a15) FF1/Q (fdef1a15) U2/Y (buf1a27) U3/Y (buf1a27) FF2/D (fdef1a15) data arrival time	0.00 1.10 * 0.00 0.50 * 0.11 * 0.11 *	1.10 r 1.60 r 1.71 r 1.82 r
Data required	clock Clk (rise edge) clock network delay (propagated) FF2/CLK (fdef1a15) library setup time data required time	4.00 1.00 * -0.21 *	5.00 5.00 r
Slack	data required time data arrival time slack (MET)		4.79 -1.87 -2.92

Data Arrival Section

Data Required Section

Summary - Slack

report timing

Startpoint: FF1 (rising edge-triggered flip-flop clocked by Clk) Endpoint: FF2 (rising edge-triggered flip-flop clocked by Clk)

Path Group: Clk Path Type: max

Point	Incr	Path
clock Clk (rise edge)	0.00	0.00
clock network delay (propagated)	1.10 *	1.10
FF1/CLK (fdef1a15)	0.00	1.10 r
FF1/Q (fdef1a15)	0.50 *	1.60 r
U2/Y (buf1a27)	0.11 *	1.71 r
U3/Y (buf1a27)	0.11 *	1.82 r
FF2/D (fdef1a15)	0.05 *	1.87 r
data arrival time		1.87
clock Clk (rise edge)	4.00	4.00
clock network delay (propagated)	1.00 *	5.00
FF2/CLK (fdef1a15)		5.00 r
library setup time	-0.21 *	4.79
data required time		4.79
data required time		4.79
data arrival time		-1.87
slack (MET)		2.92

Slack