train fit test

July 30, 2025

1 CELL 1: Imports & Configuration

```
[1]: import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     from sklearn.model_selection import train_test_split, cross_val_score, __
      →GridSearchCV
     from sklearn.preprocessing import LabelEncoder, StandardScaler
     from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
     from sklearn.linear_model import LinearRegression, Ridge, Lasso
     from sklearn.tree import DecisionTreeRegressor
     from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
     import warnings
     warnings.filterwarnings('ignore')
     plt.style.use('default')
     sns.set_palette("husl")
     %matplotlib inline
     print("All libraries successfully imported!")
```

All libraries successfully imported!

2 CELL 2: Data Loading and Overview

```
[3]: # Load data
df = pd.read_csv('car data.csv')

print("=== GENERAL INFORMATION ===")
print(f"Dataset shape: {df.shape}")
print(f"Columns: {list(df.columns)}")

# Data preview
display(df.head())
print("\n=== DESCRIPTIVE STATISTICS ===")
```

```
display(df.describe())
print("\n=== DATA TYPES ===")
display(df.dtypes)
print("\n=== MISSING VALUES ===")
missing values = df.isnull().sum()
print(missing_values[missing_values > 0] if missing_values.sum() > 0 else " No_
  ⇔missing values!")
=== GENERAL INFORMATION ===
Dataset shape: (301, 9)
Columns: ['Car_Name', 'Year', 'Selling_Price', 'Present_Price', 'Driven_kms',
'Fuel_Type', 'Selling_type', 'Transmission', 'Owner']
  Car_Name Year Selling_Price Present_Price Driven_kms Fuel_Type \
0
      ritz 2014
                           3.35
                                           5.59
                                                      27000
                                                                Petrol
1
       sx4 2013
                           4.75
                                           9.54
                                                      43000
                                                                Diesel
2
      ciaz 2017
                           7.25
                                           9.85
                                                       6900
                                                                Petrol
  wagon r 2011
3
                            2.85
                                           4.15
                                                       5200
                                                                Petrol
                                                                Diesel
                            4.60
                                           6.87
     swift 2014
                                                      42450
  Selling_type Transmission Owner
0
        Dealer
                     Manual
                                  0
                     Manual
                                  0
1
        Dealer
2
                                  0
        Dealer
                     Manual
3
        Dealer
                     Manual
                                  0
4
        Dealer
                     Manual
                                  0
=== DESCRIPTIVE STATISTICS ===
                                   Present_Price
              Year
                    Selling_Price
                                                      Driven_kms
                                                                        Owner
        301.000000
                       301.000000
                                       301.000000
count
                                                      301.000000
                                                                  301.000000
mean
       2013.627907
                         4.661296
                                         7.628472
                                                    36947.205980
                                                                     0.043189
          2.891554
                         5.082812
                                         8.642584
                                                    38886.883882
                                                                     0.247915
std
min
       2003.000000
                         0.100000
                                         0.320000
                                                      500.000000
                                                                     0.000000
25%
       2012.000000
                         0.900000
                                         1.200000
                                                    15000.000000
                                                                     0.00000
50%
                         3.600000
                                                    32000.000000
       2014.000000
                                         6.400000
                                                                     0.000000
75%
       2016.000000
                         6.000000
                                         9.900000
                                                    48767.000000
                                                                     0.000000
       2018.000000
                        35.000000
                                        92.600000
                                                   500000.000000
                                                                     3.000000
max
=== DATA TYPES ===
Car Name
                  object
Year
                   int64
                 float64
Selling_Price
Present_Price
                 float64
Driven kms
                   int64
```

```
Fuel_Type object
Selling_type object
Transmission object
Owner int64
dtype: object

=== MISSING VALUES ===
No missing values!
```

3 CELL 3: Exploratory Analysis - Overview

```
[4]: fig, axes = plt.subplots(2, 2, figsize=(15, 12))
     # Selling price distribution
     axes[0,0].hist(df['Selling_Price'], bins=30, alpha=0.7, color='skyblue', __
      ⇔edgecolor='black')
     axes[0,0].set_title(' Selling Price Distribution', fontsize=14,__

¬fontweight='bold')
     axes[0,0].set_xlabel('Selling Price (Lakhs)')
     axes[0,0].set_ylabel('Frequency')
     # Average price by year
     yearly_avg = df.groupby('Year')['Selling_Price'].mean()
     axes[0,1].plot(yearly_avg.index, yearly_avg.values, marker='o', linewidth=2,__
      ⇒markersize=6)
     axes[0,1].set_title(' Average Price by Year', fontsize=14, fontweight='bold')
     axes[0,1].set xlabel('Year')
     axes[0,1].set_ylabel('Average Price (Lakhs)')
     axes[0,1].grid(True, alpha=0.3)
     # Average price by fuel type
     fuel_avg = df.groupby('Fuel_Type')['Selling_Price'].mean()
     axes[1,0].bar(fuel_avg.index, fuel_avg.values,_

color=['#ff9999','#66b3ff','#99ff99'])
     axes[1,0].set_title(' Average Price by Fuel Type', fontsize=14,__
      axes[1,0].set xlabel('Fuel Type')
     axes[1,0].set_ylabel('Average Price (Lakhs)')
     # Average price by transmission type
     trans_avg = df.groupby('Transmission')['Selling_Price'].mean()
     axes[1,1].bar(trans_avg.index, trans_avg.values, color=['#ffcc99','#ff99cc'])
     axes[1,1].set_title(' Average Price by Transmission Type', fontsize=14, __

¬fontweight='bold')
     axes[1,1].set_xlabel('Transmission Type')
     axes[1,1].set_ylabel('Average Price (Lakhs)')
```

```
plt.tight_layout()
plt.show()

# Key statistics
print("=== KEY STATISTICS ===")
print(f" Average Price: {df['Selling_Price'].mean():.2f} Lakhs")
print(f"Median Price: {df['Selling_Price'].median():.2f} Lakhs")
print(f"Minimum Price: {df['Selling_Price'].min():.2f} Lakhs")
print(f"Maximum Price: {df['Selling_Price'].max():.2f} Lakhs")
print(f"Standard Deviation: {df['Selling_Price'].std():.2f} Lakhs")
```


=== KEY STATISTICS ===
Average Price: 4.66 Lakhs
Median Price: 3.60 Lakhs
Minimum Price: 0.10 Lakhs
Maximum Price: 35.00 Lakhs
Standard Deviation: 5.08 Lakhs

4 CELL 4: Correlation Analysis

```
[5]: # Correlation matrix
     plt.figure(figsize=(12, 8))
     numeric_cols = df.select_dtypes(include=[np.number]).columns
     corr_matrix = df[numeric_cols].corr()
     # Heatmap with annotations
     sns.heatmap(corr_matrix, annot=True, cmap='RdYlBu_r', center=0,
                 square=True, fmt='.2f', cbar_kws={'label': 'Correlation'})
     plt.title(' Correlation Matrix of Numerical Variables',
               fontsize=16, fontweight='bold', pad=20)
     plt.tight_layout()
     plt.show()
     # Top correlations with Selling_Price
     selling_price_corr = corr_matrix['Selling_Price'].abs().
     ⇔sort_values(ascending=False)
     print("=== CORRELATIONS WITH SELLING PRICE ===")
     for var, corr in selling_price_corr.items():
         if var != 'Selling_Price':
            print(f"{var}: {corr:.3f}")
```


=== CORRELATIONS WITH SELLING PRICE ===

Present_Price: 0.879

Year: 0.236 Owner: 0.088 Driven_kms: 0.029

5 CELL 5: Detailed Analysis

```
fig, axes = plt.subplots(2, 3, figsize=(18, 12))

# Present Price vs Selling Price
axes[0,0].scatter(df['Present_Price'], df['Selling_Price'], alpha=0.6, c='blue', s=30)
axes[0,0].set_title('Present Price vs Selling Price')
axes[0,0].set_xlabel('Present Price (Lakhs)')
axes[0,0].set_ylabel('Selling Price (Lakhs)')
```

```
axes[0,0].grid(True, alpha=0.3)
# Mileage vs Selling Price
axes[0,1].scatter(df['Driven_kms'], df['Selling_Price'], alpha=0.6, c='orange',__
 ⇒s=30)
axes[0,1].set title(' Mileage vs Selling Price')
axes[0,1].set xlabel('Mileage (km)')
axes[0,1].set_ylabel('Selling Price (Lakhs)')
axes[0,1].grid(True, alpha=0.3)
# Boxplot: Price by Seller Type
sns.boxplot(data=df, x='Selling_type', y='Selling_Price', ax=axes[0,2])
axes[0,2].set_title(' Price by Seller Type')
axes[0,2].set_xlabel('Seller Type')
axes[0,2].set_ylabel('Selling Price (Lakhs)')
# Year distribution
df['Year'].value_counts().sort_index().plot(kind='bar', ax=axes[1,0],_
 ⇔color='lightgreen')
axes[1,0].set_title(' Year Distribution')
axes[1,0].set_xlabel('Year')
axes[1,0].set_ylabel('Number of Cars')
axes[1,0].tick_params(axis='x', rotation=45)
# Top 10 Brands - Average Price
top_cars = df.groupby('Car_Name')['Selling_Price'].mean().nlargest(10)
top_cars.plot(kind='barh', ax=axes[1,1], color='gold')
axes[1,1].set_title(' Top 10 Brands - Average Price')
axes[1,1].set_xlabel('Average Price (Lakhs)')
axes[1,1].invert_yaxis()
# Price by Number of Previous Owners
owner_avg = df.groupby('Owner')['Selling_Price'].mean()
axes[1,2].bar(owner avg.index, owner avg.values, color='lightcoral')
axes[1,2].set_title(' Price by Number of Previous Owners')
axes[1,2].set xlabel('Number of Previous Owners')
axes[1,2].set_ylabel('Average Price (Lakhs)')
plt.tight_layout()
plt.show()
```


6 CELL 6: Data Preparation

```
[7]: print(" === DATA PREPARATION ===")
     # Create a copy of the data
     df_processed = df.copy()
     # Feature Engineering - Create new variables
     df_processed['Car_Age'] = 2024 - df_processed['Year']
     df_processed['Price_Drop'] = df_processed['Present_Price'] -__

¬df_processed['Selling_Price']
     df_processed['Price_Drop_Ratio'] = df_processed['Price_Drop'] /__

¬df_processed['Present_Price']
     df_processed['Kms_per_Year'] = df_processed['Driven_kms'] /__
      ⇔(df_processed['Car_Age'] + 1)
     print(" New features created:")
     print("
               • Car_Age: Age of the car")
               • Price_Drop: Absolute depreciation")
     print("
     print("
              • Price_Drop_Ratio: Relative depreciation")
     print("
               • Kms_per_Year: Kilometers per year")
```

```
# Encode categorical variables
print("\n Encoding categorical variables...")
encoders = {}
categorical_cols = ['Fuel_Type', 'Selling_type', 'Transmission', 'Car_Name']
for col in categorical cols:
    le = LabelEncoder()
    df_processed[f'{col}_Encoded'] = le.fit_transform(df_processed[col])
    encoders[col] = le
    print(f"
              • {col}: {len(le.classes )} classes")
# Select features for the model
feature_names = [
    'Year', 'Present_Price', 'Driven_kms', 'Fuel_Type_Encoded',
    'Selling_type_Encoded', 'Transmission_Encoded', 'Owner', 'Car_Age'
]
X = df_processed[feature_names]
y = df_processed['Selling_Price']
print(f"\n Final dataset:")
print(f" • Features (X): {X.shape}")
print(f" • Target (y): {y.shape}")
print(f" • Selected features: {feature_names}")
# Preview processed data
display(X.head())
 === DATA PREPARATION ===
New features created:
  • Car_Age: Age of the car
  • Price_Drop: Absolute depreciation
  • Price_Drop_Ratio: Relative depreciation
  • Kms_per_Year: Kilometers per year
Encoding categorical variables...
  • Fuel_Type: 3 classes
  • Selling_type: 2 classes
  • Transmission: 2 classes
  • Car_Name: 98 classes
Final dataset:
  • Features (X): (301, 8)
  • Target (y): (301,)
  • Selected features: ['Year', 'Present_Price', 'Driven_kms',
'Fuel_Type_Encoded', 'Selling_type_Encoded', 'Transmission_Encoded', 'Owner',
```

```
'Car_Age']
  Year Present_Price Driven_kms Fuel_Type_Encoded Selling_type_Encoded \
 2014
                  5.59
                             27000
                  9.54
1 2013
                             43000
                                                    1
                                                                           0
2 2017
                  9.85
                                                    2
                                                                           0
                              6900
3 2011
                  4.15
                              5200
                                                    2
                                                                           0
4 2014
                  6.87
                             42450
                                                    1
                                                                           0
  Transmission_Encoded Owner Car_Age
0
                      1
                             0
1
                      1
                                     11
2
                      1
                                     7
3
                                     13
                      1
                             0
4
                      1
                             0
                                     10
```

7 CELL 7: Splitting and Normalization

```
=== DATA SPLITTING ===
Data split:
    • Training: 240 samples
    • Test: 61 samples
Normalization completed
```

Training set statistics:

```
Present_Price
                                                    Fuel_Type_Encoded \
                                        Driven_kms
        240.000000
                        240.000000
                                        240.000000
                                                            240.000000
count
       2013.670833
                          7.512012
                                      37508.558333
                                                              1.795833
mean
                          8.989902
                                      41852.348329
                                                              0.424145
std
          2.884815
min
       2003.000000
                          0.320000
                                        500.000000
                                                              0.000000
25%
       2012.000000
                          1.050000
                                      15000.000000
                                                              2.000000
50%
       2015.000000
                          5.935000
                                      31515.500000
                                                              2.000000
75%
       2016.000000
                          9.400000
                                      48825.250000
                                                              2.000000
       2017.000000
                         92.600000
                                     500000.000000
                                                              2.000000
max
       Selling_type_Encoded
                              Transmission_Encoded
                                                           Owner
                                                                      Car_Age
                  240.000000
                                          240.00000
                                                     240.000000
                                                                  240.000000
count
                    0.358333
                                                                    10.329167
                                            0.87500
                                                        0.050000
mean
std
                    0.480513
                                            0.33141
                                                        0.269821
                                                                     2.884815
min
                    0.000000
                                            0.00000
                                                        0.000000
                                                                     7.000000
25%
                    0.000000
                                            1.00000
                                                        0.000000
                                                                     8.000000
50%
                    0.000000
                                            1.00000
                                                        0.000000
                                                                     9.000000
75%
                    1.000000
                                            1.00000
                                                        0.000000
                                                                    12.000000
                    1.000000
                                            1.00000
                                                        3.000000
                                                                    21.000000
max
```

8 CELL 8: Model Training

```
[9]: print(" === MODEL TRAINING ===")
     # Define models to test
     models = {
         'Linear Regression': LinearRegression(),
         'Ridge Regression': Ridge(alpha=1.0),
         'Lasso Regression': Lasso(alpha=0.1),
         'Decision Tree': DecisionTreeRegressor(random_state=42, max_depth=10),
         'Random Forest': RandomForestRegressor(n_estimators=100, random_state=42),
         'Gradient Boosting': GradientBoostingRegressor(random_state=42)
     }
     # Store results
     results = {}
     for name, model in models.items():
         print(f"\n Training: {name}")
         # Use normalized data for linear models (except Decision Tree)
         if 'Regression' in name and name != 'Decision Tree':
             model.fit(X_train_scaled, y_train)
             y_pred = model.predict(X_test_scaled)
             # Cross-validation on normalized data
             cv_scores = cross_val_score(model, X_train_scaled, y_train, cv=5,_
      ⇔scoring='r2')
```

```
else:
        model.fit(X_train, y_train)
        y_pred = model.predict(X_test)
        # Cross-validation on original data
        cv_scores = cross_val_score(model, X_train, y_train, cv=5, scoring='r2')
    # Calculate metrics
    mae = mean_absolute_error(y_test, y_pred)
    mse = mean_squared_error(y_test, y_pred)
    rmse = np.sqrt(mse)
    r2 = r2_score(y_test, y_pred)
    # Store results
    results[name] = {
        'model': model,
        'mae': mae,
        'mse': mse,
        'rmse': rmse,
        'r2': r2,
        'cv_mean': cv_scores.mean(),
        'cv_std': cv_scores.std(),
        'predictions': y_pred
    }
    print(f" MAE: {mae:.3f}")
print(f" RMSE: {rmse:.3f}")
    print(f"
               R^2: \{r2:.3f\}")
    print(f" CV R² (mean±std): {cv_scores.mean():.3f}±{cv_scores.std():.3f}")
print("\n Training completed!")
=== MODEL TRAINING ===
Training: Linear Regression
   MAE: 1.222
   RMSE: 1.879
   R^2: 0.847
   CV R^2 (mean±std): 0.844±0.039
Training: Ridge Regression
   MAE: 1.223
   RMSE: 1.882
   R^2: 0.846
   CV R^2 (mean \pm std): 0.846 \pm 0.039
Training: Lasso Regression
   MAE: 1.231
```

```
RMSE: 1.916
   R^2: 0.841
   CV R^2 \text{ (mean\pm std)}: 0.849\pm0.043
Training: Decision Tree
   MAE: 0.669
   RMSE: 0.987
   R^2: 0.958
   CV R^2 (mean \pm std): 0.832 \pm 0.082
Training: Random Forest
   MAE: 0.614
   RMSE: 0.933
   R^2: 0.962
   CV R^2 \text{ (mean\pm std)}: 0.880\pm0.064
Training: Gradient Boosting
   MAE: 0.553
   RMSE: 0.886
   R^2: 0.966
   CV R^2 (mean \pm std): 0.888 \pm 0.050
Training completed!
```

9 CELL 9: Model Comparison

```
[10]: | print(" === MODEL COMPARISON ===")
      # Create a comparison DataFrame
      comparison_df = pd.DataFrame({
          'Model': list(results.keys()),
          'MAE': [results[model]['mae'] for model in results],
          'RMSE': [results[model]['rmse'] for model in results],
          'R2': [results[model]['r2'] for model in results],
          'CV_R2_mean': [results[model]['cv_mean'] for model in results],
          'CV_R2_std': [results[model]['cv_std'] for model in results]
      })
      # Sort by R2
      comparison_df = comparison_df.sort_values('R2', ascending=False)
      comparison_df = comparison_df.round(4)
      print(" MODEL RANKING (by R2):")
      display(comparison_df)
      # Comparison plots
      fig, axes = plt.subplots(1, 3, figsize=(18, 6))
```

```
# R2 Score
axes[0].barh(comparison_df['Model'], comparison_df['R2'], color='lightblue')
axes[0].set_title(' R<sup>2</sup> Score by Model', fontweight='bold')
axes[0].set_xlabel('R2 Score')
axes[0].grid(axis='x', alpha=0.3)
# RMSE
axes[1].barh(comparison_df['Model'], comparison_df['RMSE'], color='lightcoral')
axes[1].set_title(' RMSE by Model', fontweight='bold')
axes[1].set xlabel('RMSE')
axes[1].grid(axis='x', alpha=0.3)
# MAE
axes[2].barh(comparison_df['Model'], comparison_df['MAE'], color='lightgreen')
axes[2].set_title(' MAE by Model', fontweight='bold')
axes[2].set_xlabel('MAE')
axes[2].grid(axis='x', alpha=0.3)
plt.tight_layout()
plt.show()
# Identify the best model
best model name = comparison df.iloc[0]['Model']
best_model = results[best_model_name]['model']
print(f" BEST MODEL: {best model name}")
            • R<sup>2</sup>: {comparison_df.iloc[0]['R<sup>2</sup>']:.4f}")
print(f"
print(f"
            • RMSE: {comparison df.iloc[0]['RMSE']:.4f}")
 === MODEL COMPARISON ===
MODEL RANKING (by R2):
               Model
                         MAE
                                 RMSE
                                           \mathbb{R}^2
                                               CV_R2_mean CV_R2_std
5
  Gradient Boosting 0.5534 0.8855 0.9660
                                                   0.8877
                                                               0.0501
4
       Random Forest 0.6145
                              0.9331 0.9622
                                                   0.8804
                                                               0.0643
3
       Decision Tree 0.6694
                              0.9867 0.9577
                                                   0.8320
                                                               0.0815
O Linear Regression 1.2219
                              1.8792 0.8467
                                                   0.8440
                                                               0.0388
   Ridge Regression 1.2229
                              1.8816 0.8463
                                                   0.8462
                                                               0.0389
1
2
    Lasso Regression 1.2315 1.9156 0.8407
                                                   0.8489
                                                               0.0426
```


BEST MODEL: Gradient Boosting

R²: 0.9660RMSE: 0.8855

10 CELL 10: Best Model Analysis

```
[11]: print(f" === DETAILED ANALYSIS: {best_model_name} ===")
      # Retrieve predictions from the best model
      best_predictions = results[best_model_name]['predictions']
      # Analysis plots
      fig, axes = plt.subplots(2, 2, figsize=(15, 12))
      # 1. Predictions vs Actual
      axes[0,0].scatter(y_test, best_predictions, alpha=0.6, s=50)
      axes[0,0].plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()],__
       \rightarrow'r--', lw=2)
      axes[0,0].set_xlabel('Actual Price (Lakhs)')
      axes[0,0].set_ylabel('Predicted Price (Lakhs)')
      axes[0,0].set_title(' Predictions vs Actual')
      axes[0,0].grid(True, alpha=0.3)
      # 2. Residuals Analysis
      residuals = y_test - best_predictions
      axes[0,1].scatter(best_predictions, residuals, alpha=0.6, s=50)
      axes[0,1].axhline(y=0, linestyle='--', linewidth=2)
      axes[0,1].set xlabel('Predicted Price (Lakhs)')
      axes[0,1].set_ylabel('Residuals (Actual - Predicted)')
      axes[0,1].set title(' Residuals Analysis')
      axes[0,1].grid(True, alpha=0.3)
      # 3. Error Distribution
```

```
axes[1,0].hist(residuals, bins=20, alpha=0.7, edgecolor='black')
axes[1,0].set_xlabel('Residuals (Actual - Predicted)')
axes[1,0].set_ylabel('Frequency')
axes[1,0].set_title(' Error Distribution')
axes[1,0].axvline(x=0, linestyle='--', linewidth=2)
# 4. Feature Importance (if available)
if hasattr(best_model, 'feature_importances_'):
   feature_importance = pd.DataFrame({
        'Feature': feature_names,
        'Importance': best model.feature importances
   }).sort_values('Importance', ascending=True)
   axes[1,1].barh(feature_importance['Feature'],__

→feature_importance['Importance'])
   axes[1,1].set_title(' Feature Importance')
   axes[1,1].set xlabel('Importance')
else:
   axes[1,1].text(0.5, 0.5, 'Feature Importance\nnot available\nfor thisu
 →model',
                   ha='center', va='center', transform=axes[1,1].transAxes,__
 ⇔fontsize=12)
   axes[1,1].set_title(' Information')
plt.tight_layout()
plt.show()
# Residual statistics
print(" RESIDUAL STATISTICS:")
print(f" • Mean: {residuals.mean():.4f}")
print(f"
          • Std Dev: {residuals.std():.4f}")
print(f" • Median: {residuals.median():.4f}")
print(f" • Min: {residuals.min():.4f}")
print(f" • Max: {residuals.max():.4f}")
```

=== DETAILED ANALYSIS: Gradient Boosting ===

RESIDUAL STATISTICS:

Mean: -0.1271
Std Dev: 0.8836
Median: -0.0562
Min: -3.8204
Max: 2.3491

11 CELL 11: Analysis of Important Features

```
[15]: if hasattr(best_model, 'feature_importances_'):
    print(" === FEATURE IMPORTANCES ===")

feature_importance_df = pd.DataFrame({
        'Feature': feature_names,
        'Importance': best_model.feature_importances_,
        'Importance_Pct': best_model.feature_importances_ * 100
}).sort_values('Importance', ascending=False)

print(" Feature ranking by importance:")
```

```
display(feature_importance_df)
  # Pie chart
  plt.figure(figsize=(12, 8))
  colors = plt.cm.Set3(np.linspace(0, 1, len(feature_names)))
  plt.pie(feature_importance_df['Importance'],
         labels=feature_importance_df['Feature'],
         autopct='%1.1f%%',
         colors=colors,
         startangle=90)
  plt.title('Feature Importance Distribution', fontsize=16, __
plt.axis('equal')
  plt.show()
  # Insights
  print(" INSIGHTS:")
  top_feature = feature_importance_df.iloc[0]
  print(f" • Top feature: {top_feature['Feature']}_
top_3_importance = feature_importance_df.head(3)['Importance_Pct'].sum()
           • Top 3 features account for {top_3_importance:.1f}% of__
⇔importance")
```

=== FEATURE IMPORTANCES === Feature ranking by importance:

	Feature	Importance	<pre>Importance_Pct</pre>
1	Present_Price	0.884041	88.404115
0	Year	0.051927	5.192671
7	Car_Age	0.035197	3.519658
2	Driven_kms	0.023832	2.383247
3	Fuel_Type_Encoded	0.004341	0.434052
5	Transmission_Encoded	0.000463	0.046309
4	Selling_type_Encoded	0.000178	0.017760
6	Owner	0.000022	0.002188

Feature Importance Distribution

INSIGHTS:

- Top feature: Present_Price (88.4%)
- Top 3 features account for 97.1% of importance

```
from sklearn.linear_model import LinearRegression, Ridge, Lasso
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.preprocessing import StandardScaler
import warnings
warnings.filterwarnings('ignore')
# Configuration for improved visuals
plt.style.use('default')
sns.set palette("husl")
plt.rcParams['figure.figsize'] = (12, 8)
print("COMPLETE OVERFITTING ANALYSIS")
print("="*50)
# ------
# 1. DATA PREPARATION (Adapt to your dataset)
# -----
print("Loading data...")
# REPLACE THIS SECTION WITH YOUR REAL DATA:
# df = pd.read_csv('car_data.csv')
# X = df[['Year', 'Present_Price', 'Driven_kms', 'Fuel_Type_Encoded',
         'Selling_type_Encoded', 'Transmission_Encoded', 'Owner', 'Car_Age']]
# y = df['Selling_Price']
# For demonstration, create simulated data
np.random.seed(42)
n_samples = 301
X = pd.DataFrame({
   'Year': np.random.randint(2003, 2019, n_samples),
    'Present_Price': np.random.uniform(0.32, 92.6, n_samples),
   'Driven_kms': np.random.randint(500, 500000, n_samples),
   'Fuel_Type_Encoded': np.random.randint(0, 3, n_samples),
    'Selling_type_Encoded': np.random.randint(0, 2, n_samples),
   'Transmission_Encoded': np.random.randint(0, 2, n_samples),
   'Owner': np.random.randint(0, 4, n_samples),
   'Car_Age': 2024 - np.random.randint(2003, 2019, n_samples)
})
y = (X['Present Price'] * 0.7 +
    (2024 - X['Year']) * -0.3 +
    X['Driven kms'] / 50000 * -1 +
    np.random.normal(0, 1, n_samples))
print(f"Data loaded: {X.shape[0]} samples, {X.shape[1]} features")
```

```
# -----
# 2. DEFINE MODELS TO TEST
# -----
models = {
   'Linear Regression': LinearRegression(),
   'Ridge': Ridge(alpha=1.0),
   'Lasso': Lasso(alpha=0.1),
   'Decision Tree': DecisionTreeRegressor(random_state=42),
   'Random Forest': RandomForestRegressor(n_estimators=100, random_state=42),
   'Gradient Boosting': GradientBoostingRegressor(n_estimators=100, ___
→random_state=42)
}
# 3. OVERFITTING ANALYSIS FUNCTION
def analyze_overfitting(X, y, models, cv_folds=5):
   Complete overfitting analysis for multiple models
   results = {}
   # Data normalization
   scaler = StandardScaler()
   X_scaled = scaler.fit_transform(X)
   print(f"\nPerforming {cv_folds}-fold cross-validation analysis...")
   for name, model in models.items():
      print(f"\nModel: {name}")
      print("-" * 30)
      # 1. Cross-validation scores
      cv_scores = cross_val_score(model, X_scaled, y, cv=cv_folds,
                             scoring='r2', n_jobs=-1)
      # 2. Fit on all data for training score
      model.fit(X_scaled, y)
      train_score = model.score(X_scaled, y)
      # 3. Compute metrics
      y_pred = model.predict(X_scaled)
      train_rmse = np.sqrt(mean_squared_error(y, y_pred))
      train_mae = mean_absolute_error(y, y_pred)
```

```
# 4. Store results
       results[name] = {
           'train_r2': train_score,
           'cv_r2_mean': cv_scores.mean(),
           'cv_r2_std': cv_scores.std(),
           'cv_scores': cv_scores,
           'train_rmse': train_rmse,
           'train_mae': train_mae,
           'overfitting_gap': train_score - cv_scores.mean(),
           'stability': cv_scores.std()
       }
       # 5. Interpretation
       gap = train_score - cv_scores.mean()
       if gap > 0.1:
           status = "OVERFITTING DETECTED"
       elif gap > 0.05:
           status = "Mild overfitting"
       else:
           status = "No overfitting"
       print(f" R<sup>2</sup> Train: {train_score:.4f}")
       print(f" R<sup>2</sup> CV (mean±std): {cv_scores.mean():.4f}±{cv_scores.std():.
 <4f}")
       print(f" Gap Train-CV: {gap:.4f}")
       print(f" Status: {status}")
   return results
# -----
# 4. LEARNING CURVES
def plot_learning_curves(X, y, models, cv_folds=5):
   Plot learning curves to detect overfitting
   scaler = StandardScaler()
   X_scaled = scaler.fit_transform(X)
   fig, axes = plt.subplots(2, 3, figsize=(18, 12))
   axes = axes.ravel()
   for idx, (name, model) in enumerate(models.items()):
       train_sizes, train_scores, val_scores = learning_curve(
           model, X_scaled, y, cv=cv_folds, n_jobs=-1,
           train_sizes=np.linspace(0.1, 1.0, 10),
```

```
scoring='r2'
       )
       train_mean = train_scores.mean(axis=1)
       train_std = train_scores.std(axis=1)
       val_mean = val_scores.mean(axis=1)
       val_std = val_scores.std(axis=1)
       ax = axes[idx]
       ax.plot(train_sizes, train_mean, 'o-', label=f'Train (final:
 \hookrightarrow{train mean[-1]:.3f})')
       ax.fill_between(train_sizes, train_mean - train_std,
                     train_mean + train_std, alpha=0.1)
       ax.plot(train_sizes, val_mean, 'o-', label=f'Validation (final:u
 \hookrightarrow {val_mean[-1]:.3f})')
       ax.fill_between(train_sizes, val_mean - val_std,
                     val_mean + val_std, alpha=0.1)
       final_gap = train_mean[-1] - val_mean[-1]
       ax.text(0.7, 0.1, f'Gap: {final_gap:.3f}',
               transform=ax.transAxes, fontsize=10,
               bbox=dict(boxstyle='round', facecolor='wheat', alpha=0.8))
       ax.set_title(f'{name}')
       ax.set_xlabel('Dataset Size')
       ax.set ylabel('R<sup>2</sup> Score')
       ax.legend(loc='lower right')
       ax.grid(True, alpha=0.3)
   plt.tight_layout()
   plt.show()
# -----
# 5. VALIDATION CURVES (HYPERPARAMETERS)
# -----
def plot_validation_curves(X, y):
    HHHH
    Validation curves for key hyperparameters
   scaler = StandardScaler()
   X_scaled = scaler.fit_transform(X)
   fig, axes = plt.subplots(1, 3, figsize=(18, 6))
   # Decision Tree - max_depth
```

```
param_range = range(1, 21)
  train_scores, val_scores = validation_curve(
       DecisionTreeRegressor(random_state=42), X_scaled, y,
      param_name='max_depth', param_range=param_range,
      cv=5, scoring='r2', n_jobs=-1
  axes[0].plot(param_range, train_scores.mean(axis=1), 'o-', label='Train')
  axes[0].plot(param_range, val_scores.mean(axis=1), 'o-', label='Validation')
  axes[0].fill_between(param_range, train_scores.mean(axis=1) - train_scores.
⇔std(axis=1),
                       train_scores.mean(axis=1) + train_scores.std(axis=1),__
⇒alpha=0.1)
  axes[0].fill_between(param_range, val_scores.mean(axis=1) - val_scores.
⇔std(axis=1),
                       val_scores.mean(axis=1) + val_scores.std(axis=1),__
\Rightarrowalpha=0.1)
  axes[0].set_title('Decision Tree - max_depth')
  axes[0].set xlabel('max depth')
  axes[0].set_ylabel('R<sup>2</sup> Score')
  axes[0].legend()
  axes[0].grid(True, alpha=0.3)
  # Random Forest - n estimators
  param_range = [10, 25, 50, 100, 200, 300]
  train_scores, val_scores = validation_curve(
      RandomForestRegressor(random_state=42), X_scaled, y,
      param_name='n_estimators', param_range=param_range,
      cv=5, scoring='r2', n_jobs=-1
  axes[1].plot(param_range, train_scores.mean(axis=1), 'o-', label='Train')
  axes[1].plot(param_range, val_scores.mean(axis=1), 'o-', label='Validation')
  axes[1].fill_between(param_range, train_scores.mean(axis=1) - train_scores.
⇔std(axis=1),
                       train_scores.mean(axis=1) + train_scores.std(axis=1),__
⇒alpha=0.1)
  axes[1].fill_between(param_range, val_scores.mean(axis=1) - val_scores.
⇔std(axis=1),
                       val_scores.mean(axis=1) + val_scores.std(axis=1),__
⇒alpha=0.1)
  axes[1].set_title('Random Forest - n_estimators')
  axes[1].set_xlabel('n_estimators')
  axes[1].set_ylabel('R2 Score')
  axes[1].legend()
  axes[1].grid(True, alpha=0.3)
  # Gradient Boosting - learning_rate
```

```
param_range = [0.01, 0.05, 0.1, 0.2, 0.3, 0.5]
    train_scores, val_scores = validation_curve(
        GradientBoostingRegressor(n_estimators=100, random_state=42), X_scaled,__
 ∽у,
        param_name='learning_rate', param_range=param_range,
        cv=5, scoring='r2', n jobs=-1
    axes[2].plot(param_range, train_scores.mean(axis=1), 'o-', label='Train')
    axes[2].plot(param_range, val_scores.mean(axis=1), 'o-', label='Validation')
    axes[2].fill_between(param_range, train_scores.mean(axis=1) - train_scores.
 ⇔std(axis=1),
                        train_scores.mean(axis=1) + train_scores.std(axis=1),__
 ⇒alpha=0.1)
    axes[2].fill_between(param_range, val_scores.mean(axis=1) - val_scores.
 ⇔std(axis=1),
                        val_scores.mean(axis=1) + val_scores.std(axis=1),__
 ⇒alpha=0.1)
    axes[2].set_title('Gradient Boosting - learning_rate')
    axes[2].set_xlabel('learning_rate')
    axes[2].set_ylabel('R2 Score')
    axes[2].legend()
    axes[2].grid(True, alpha=0.3)
    plt.tight_layout()
    plt.show()
# 6. MAIN EXECUTION
if __name__ == "__main__":
    # Run the complete analysis
    print("\nStarting complete overfitting analysis...")
    # 1. Perform overfitting analysis
    results = analyze_overfitting(X, y, models, cv_folds=5)
    # 2. Display summary table
    print("\n" + "="*80)
    print("OVERFITTING ANALYSIS SUMMARY")
    print("="*80)
    print(f"{'Model':<20} {'Train R2':<10} {'CV R2':<10} {'Gap':<8} {'Status':</pre>
 <20}")
    print("-" * 80)
    for name, result in results.items():
```

```
gap = result['overfitting_gap']
        if gap > 0.1:
            status = "OVERFITTING"
        elif gap > 0.05:
            status = "Mild overfitting"
        else:
            status = "No overfitting"
        print(f"{name:<20} {result['train_r2']:<10.4f} {result['cv_r2_mean']:</pre>
  <10.4f} "
              f"{gap:<8.4f} {status:<20}")
    # 3. Plot learning curves
    print("\nGenerating learning curves...")
    plot_learning_curves(X, y, models, cv_folds=5)
    # 4. Plot validation curves
    print("Generating validation curves...")
    plot_validation_curves(X, y)
    print("\nAnalysis complete!")
    print("Review the plots and summary table to identify overfitting issues.")
    print("Recommendation: Choose models with small Train-CV gaps and stable⊔
  ⇔performance.")
COMPLETE OVERFITTING ANALYSIS
______
```

Loading data...

Data loaded: 301 samples, 8 features

Starting complete overfitting analysis...

Performing 5-fold cross-validation analysis...

Model: Linear Regression

R² Train: 0.9974

R² CV (mean±std): 0.9971±0.0004

Gap Train-CV: 0.0003 Status: No overfitting

Model: Ridge

R² Train: 0.9973

R² CV (mean±std): 0.9971±0.0004

Gap Train-CV: 0.0003 Status: No overfitting

Model: Lasso

R² Train: 0.9972

 R^2 CV (mean±std): 0.9970±0.0003

Gap Train-CV: 0.0002
Status: No overfitting

Model: Decision Tree

R² Train: 1.0000

 R^2 CV (mean±std): 0.9708±0.0023

Gap Train-CV: 0.0292
Status: No overfitting

Model: Random Forest

R² Train: 0.9982

R² CV (mean±std): 0.9864±0.0013

Gap Train-CV: 0.0118
Status: No overfitting

Model: Gradient Boosting

R² Train: 0.9988

 R^2 CV (mean±std): 0.9921±0.0005

Gap Train-CV: 0.0067
Status: No overfitting

OVERFITTING ANALYSIS SUMMARY

Model	Train R ²	CV R ²	Gap	Status		
Linear Regression	0.9974	0.9971	0.0003	No overfitting		
Ridge	0.9973	0.9971	0.0003	No overfitting		
Lasso	0.9972	0.9970	0.0002	No overfitting		
Decision Tree	1.0000	0.9708	0.0292	No overfitting		
Random Forest	0.9982	0.9864	0.0118	No overfitting		
Gradient Boosting	0.9988	0.9921	0.0067	No overfitting		

Generating learning curves...

Generating validation curves...

Analysis complete!

Review the plots and summary table to identify overfitting issues. Recommendation: Choose models with small Train-CV gaps and stable performance.

[]:

12 CELL 14: Final Repor

```
[17]: print(" === FINAL REPORT ===")
      print(f"\n SELECTED MODEL: {best model name}")

    Accuracy (R<sup>2</sup>): {comparison_df.iloc[0]['R<sup>2</sup>']:.4f}")

                 • Mean Error (MAE): {comparison_df.iloc[0]['MAE']:.4f} Lakhs")
      print(f"
      print(f" • Root Mean Squared Error (RMSE): {comparison_df.iloc[0]['RMSE']:.
       →4f} Lakhs")
      print(f"\n PERFORMANCE:")
      if comparison_df.iloc[0]['R2'] > 0.9:
          performance = "Excellent"
      elif comparison_df.iloc[0]['R2'] > 0.8:
          performance = "Very Good"
      elif comparison_df.iloc[0]['R2'] > 0.7:
          performance = "Good"
      else:
          performance = "Acceptable"
      print(f"
                 • {performance} ({comparison_df.iloc[0]['R2']*100:.1f}% variance_
       ⇔explained)")
      print(f"\n USAGE:")
      print(" • Use predict_car_price() for new predictions")
      print(" • The model is stored in the variable 'best model'")
      print(" • Encoders are available in 'encoders'")
      print(f"\n TRAINING DATA:")
      print(f" • {len(df)} cars in total")
      print(f" • {X_train.shape[0]} for training")
      print(f" • {X_test.shape[0]} for testing")
                 • {len(feature_names)} features used")
      print(f"
      === FINAL REPORT ===
      SELECTED MODEL: Gradient Boosting
        • Accuracy (R2): 0.9660
        • Mean Error (MAE): 0.5534 Lakhs
        • Root Mean Squared Error (RMSE): 0.8855 Lakhs
      PERFORMANCE:
        • Excellent (96.6% variance explained)
      USAGE:
```

• Use predict_car_price() for new predictions

- The model is stored in the variable 'best_model'
- Encoders are available in 'encoders'

TRAINING DATA:

- 301 cars in total
- 240 for training
- 61 for testing
- 8 features used

exp

```
[20]: def predict_car_price(year, present_price, driven_kms, fuel_type, selling_type,_u

→transmission, owner):
          11 11 11
          Predict car price
          Parameters:
          - year: Year of the car (e.g., 2020)
          - present_price: Current price (e.g., 8.5)
          - driven_kms: Mileage in kilometers (e.g., 25000)
          - fuel_type: 'Petrol', 'Diesel', or 'CNG'
          - selling_type: 'Dealer' or 'Individual'
          - transmission: 'Manual' or 'Automatic'
          - owner: Number of previous owners (0, 1, 2, etc.)
          # Calculate car age
          car_age = 2024 - year
          # Encode categorical variables
          try:
              fuel_encoded = encoders['Fuel_Type'].transform([fuel_type])[0]
              seller_encoded = encoders['Selling_type'].transform([selling_type])[0]
              transmission_encoded = encoders['Transmission'].
       ⇔transform([transmission])[0]
          except ValueError as e:
              print(f" Encoding error: {e}")
              return None
          # Construct feature vector
          features_vector = np.array([[
              year, present_price, driven_kms, fuel_encoded,
              seller_encoded, transmission_encoded, owner, car_age
          ]])
          # Make prediction
          predicted_price = best_model.predict(features_vector)[0]
```

```
return predicted_price
     # Test the function with examples
     print(" === PREDICTION TEST ===")
     # Example 1: Recent car
     print("\n Example 1: Recent car")
     example1_price = predict_car_price(
         year=2020,
         present_price=8.5,
         driven_kms=15000,
         fuel_type='Petrol',
         selling_type='Dealer',
         transmission='Manual',
         owner=0
     )
     print(f"Predicted Price: {example1_price:.2f} Lakhs")
     # Example 2: Older car
     print("\n Example 2: Older car")
     example2_price = predict_car_price(
         year=2015,
         present_price=12.0,
         driven_kms=45000,
         fuel_type='Diesel',
         selling_type='Individual',
         transmission='Automatic',
         owner=1
     print(f"Predicted Price: {example2_price:.2f} Lakhs")
     === PREDICTION TEST ===
     Example 1: Recent car
    Predicted Price: 7.10 Lakhs
     Example 2: Older car
    Predicted Price: 8.09 Lakhs
[]:
```