Københavns Universitet. Økonomisk Institut

1. årsprøve 2017 S-1A ex ret

Rettevejledning til skriftlig eksamen i Matematik A

Tirsdag den 13. juni 2017

Opgave 1. Integration ved substitution.

Lad $I \subseteq \mathbf{R}$ være et åbent, ikke-tomt interval, og lad $f, g: I \to \mathbf{R}$ være to kontinuerte funktioner. Lad $F: I \to \mathbf{R}$ være en stamfunktion til funktionen f, og antag, at funktionen g er differentiabel på hele intervallet I, og at den afledede funktion g' er kontinuert.

(1) Vis, at formlen

$$\int (f \circ g)(x)g'(x) dx = F(g(x)) + k, \text{ hvor } k \in \mathbf{R},$$

er opfyldt.

Løsning. Vi ser, at

$$\int (f \circ g)(x)g'(x) dx = \int f(g(x))d(g(x)) = F(g(x)) + k, \text{ hvor } k \in \mathbf{R},$$

hvoraf resultatet aflæses.

(2) Udregn f

ølgende ubestemte integraler

$$\int (x^2 + 2x - 3)^5 \cdot (2x + 2) \, dx, \int \frac{21x^2 + 4x}{7x^3 + 2x^2 + 9} \, dx \text{ og } \int x \ln(x^2 + 1) \, dx.$$

Løsning. Vi ser, at

$$\int (x^2 + 2x - 3)^5 \cdot (2x + 2) \, dx = \int (x^2 + 2x - 3)^5 \, d(x^2 + 2x - 3) =$$

$$\frac{1}{6} (x^2 + 2x - 3)^6 + k, \text{ hvor } k \in \mathbf{R},$$

$$\int \frac{21x^2 + 4x}{7x^3 + 2x^2 + 9} dx = \int \frac{1}{7x^3 + 2x^2 + 9} d(7x^3 + 2x^2 + 9) = \ln|7x^3 + 2x^2 + 9| + k, \text{ hvor } k \in \mathbf{R},$$

og

$$\int x \ln(x^2 + 1) dx = \frac{1}{2} \int \ln(x^2 + 1) d(x^2 + 1) = \frac{1}{2} ((x^2 + 1) \ln(x^2 + 1) - (x^2 + 1)) + k, \text{ hvor } k \in \mathbf{R}.$$

(3) Idet a > 0 skal man løse ligningen

$$\int_0^a \frac{4x}{x^2 + 1} \, dx = \int_0^a \frac{2x + 6x^5}{1 + x^2 + x^6} \, dx$$

med hensyn til a.

Løsning. Vi finder, at

$$\int_0^a \frac{4x}{x^2 + 1} dx = 2 \int_0^a \frac{1}{x^2 + 1} d(x^2 + 1) = 2 \left[\ln(x^2 + 1) \right]_0^a = 2 \ln(a^2 + 1) = \ln(a^2 + 1)^2 = \ln(a^4 + 2a^2 + 1),$$

og at

$$\int_0^a \frac{2x + 6x^5}{1 + x^2 + x^6} dx = \int_0^a \frac{d(1 + x^2 + x^6)}{1 + x^2 + x^6} = \left[\ln(1 + x^2 + x^6)\right]_0^a = \ln(1 + a^2 + a^6).$$

Herefter får vi, at

$$\ln(a^4 + 2a^2 + 1) = \ln(1 + a^2 + a^6) \Leftrightarrow a^4 + 2a^2 + 1 = 1 + a^2 + a^6 \Leftrightarrow$$

$$a^6 - a^4 - a^2 = 0 \Leftrightarrow a^2(a^4 - a^2 - 1) = 0 \Leftrightarrow a = 0 \lor a^4 - a^2 - 1 = 0 \Leftrightarrow$$

$$a = 0 \lor a^2 = \frac{1 + \sqrt{5}}{2} \Leftrightarrow a = 0 \lor a = \pm \sqrt{\frac{1 + \sqrt{5}}{2}}.$$
Da $a > 0$, ser vi, at $a = \sqrt{\frac{1 + \sqrt{5}}{2}}$.

Opgave 2. Vi betragter den funktion $f: \mathbf{R}^2 \to \mathbf{R}$, som er defineret ved forskriften

$$\forall (x,y) \in \mathbf{R}^2 : f(x,y) = x^4 + x^2 - y^2.$$

(1) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

i et vilkårligt punkt $(x, y) \in \mathbf{R}^2$.

Løsning. Vi finder straks, at

$$\frac{\partial f}{\partial x}(x,y) = 4x^3 + 2x = 2x(2x^2 + 1) \text{ og } \frac{\partial f}{\partial y}(x,y) = -2y.$$

(2) Bestem det eneste stationære punkt for funktionen f.

Løsning. Det er oplagt, at (0,0) er det eneste stationære punkt.

(3) Bestem Hessematricen f''(x,y) for funktionen f i et vilkårligt punkt $(x,y) \in \mathbf{R}^2$.

Løsning. Vi ser, at

$$f''(x,y) = \begin{pmatrix} 12x^2 + 2 & 0 \\ 0 & -2 \end{pmatrix}$$
, så $f''(0,0) = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$.

(4) Afgør, om det stationære punkt er et maksimumspunkt, et minimumspunkt eller et sadelpunkt for funktionen f.

Løsning. Vi ser, at f''(0,0) er indefinit, så (0,0) er et sadelpunkt for f.

(5) Bestem værdimængden for funktionen f.

Løsning. Idet $f(x,0) = x^4 + x^2$ og $f(0,y) = -y^2$, er det klart, at f har værdimængden $R(f) = \mathbf{R}$.

(6) Bestem en ligning for tangentplanen til grafen for funktionen f gennem punktet (1, 2, f(1, 2)).

Løsning. Vi ser, at $f(1,2)=-2, \frac{\partial f}{\partial x}(1,2)=6$ og $\frac{\partial f}{\partial y}(1,2)=-4$. Den søgte ligning er derfor

$$z = f(1,2) + \frac{\partial f}{\partial x}(1,2)(x-1) + \frac{\partial f}{\partial y}(1,2)(y-2) = 6x - 4y.$$

Opgave 3. Vi betragter ligningen

(§)
$$F(x,y) = e^{xy} + e^x + y^2 - x - 3 = 0.$$

(1) Vis, at punktet (x, y) = (0, 1) er en løsning til (\S) .

Løsning. Dette fremgår ved at indsætte (0,1) i ligningen.

(2) Vis, at ligningen (§) definerer den variable y implicit som en funktion y = y(x) i en omegn af punktet (0, 1), og bestem y'(0).

Løsning. Vi ser, at

$$\frac{\partial F}{\partial x}(x,y) = ye^{xy} + e^x - 1 \text{ og } \frac{\partial F}{\partial y}(x,y) = xe^{xy} + 2y,$$

så

$$\frac{\partial F}{\partial x}(0,1) = 1 \text{ og } \frac{\partial F}{\partial y}(0,1) = 2.$$

Da $\frac{\partial F}{\partial y}(0,1)\neq 0$ er påstanden opfyldt, og vi ser, at

$$y'(0) = -\frac{\frac{\partial F}{\partial x}(0,1)}{\frac{\partial F}{\partial y}(0,1)} = -\frac{1}{2}.$$

(3) Godtgør, at den implicit givne funktion y=y(x) er aftagende i en omegn U(0) af x=0.

Løsning. Det er oplagt, at der eksisterer en omegn U(0) af x = 0, hvor y'(x) er kontinuert og negativ, og heraf fremgår det, at y = y(x) er aftagende på U(0).

Vi betragter funktionen $z=z(x)=(y(x))^2$, som er defineret på omegnen U(0).

(4) Bestem differentialkvotienten z'(0).

Løsning. Vi ser, at z'(x) = 2y(x)y'(x), så z'(0) = -1.