EXPLORING FOUNDATION MODELS FINE-TUNING FOR CYTOLOGY CLASSIFICATION

Manon Dausort, et al.

ICTEAM, Universite' Catholique de Louvain, Belgium

ILIA, Université de Mons, Belgium CMMI, Université Libre de Bruxelles, Belgium

ISBI 25

Introduction

- > Cytology slides are vital for diagnosing and staging cancer, offering detailed views of abnormal cells to guide treatment decisions.
- Analyzing these slides is labor- intensive and costly, leading to delays in the reporting process, making automation essential to improve both classification efficiency and accuracy.
- An effective approach to automate classification involves using deep learning models. However, the performance of these models is highly dependent on the quantity and diversity of data.
- => ways to utilize limited labeled data by few-shot learning, pretrained-model and fine-tuning

Introduction

- They evaluate five foundational models pre-trained on natural, biomedical and histopathological images on four cytology classification on 4 benchmark datasets.
- Fine-tuned the foundational models with LoRA in few-shot settings which can reduce trainable parameters.

Mendeley LBC Cervical Cancer

963 images sub-divided into four sets of images representing the four classes of precancerous and cancerous lesions

Body cavity fluid cytology images

160 benign and 533 maglinant images, Leishman stained, photographed at 40X magnification, then resized to 256 x 192 pixel

HiCervix Dataset:

Includes **4,496 whole slide images** from 40,229 cervical cells, categorized into 29 annotated classes within a three-level hierarchical tree to capture fine-grained subtype information

Cervical Cancer largest dataset (SipakMed)

4049 images of isolated cells that have been manually cropped from 966 cluster cell images of Pap smear slides, five categories containing normal, abnormal and benign cells

Mendeley LBC Cervical Cancer

Body cavity fluid cytology images

D. Cai *et al.*, "HiCervix: An Extensive Hierarchical Dataset and Benchmark for Cervical Cytology Classification," in *IEEE Transactions on Medical Imaging*, vol. 43, no. 12, pp. 4344-4355, Dec. 2024

HiCervix Dataset

The three-level hierarchical structure of the cervical cytological cells in HiCervix. The root node of cervical cytological cells is at level-0 and the granularity goes from coarse- to fine-grained in a top-down way.

Cervical Cancer largest dataset (SipakMed)

Introduction

Foundation models:

- CLIP
- ViT
- BiomedCLIP
- QUILT
- UNI

Xu, H., Usuyama, N., Bagga, J. *et al.* A whole-slide foundation model for digital pathology from real-world data. *Nature* **630**, 181–188 (2024).

LoRA (Low rank Adaptation)

Linear classifier:

Assume we have a pretrained model with parameter θ , and feature extractor $z = f_{\theta}(x)$. To do classification, learn a projection $W \colon y = Wz$ $z \in \mathbb{R}^n, W \in \mathbb{R}^{c \times n}$.

• LoRA:

```
Update weight: W \in \mathbb{R}^{m \times n} -> W = W + \Delta W, \Delta W \in \mathbb{R}^{m \times n}
Represent weight update with submatrices: W = BA, B \in \mathbb{R}^{m \times r}, A \in \mathbb{R}^{r \times n}
The output: h = Wx + \gamma \Delta Wx = Wx + \gamma BAx, \gamma is the scaling factor Assume m>n, the trainable parameter: mn \rightarrow r(m+n). mn > n^2 > 2rm > r(m+n)
If r \ll n, 2rm \ll n^2.
```

Few-shot learning

• Train: The support set contains K labeled training samples for each of the N classes. The model uses these support samples to learn generalized representations for each class.

For example, the dataset for a 3-way-2-shot classification task contains 3 classes of images and provides 2 examples of each.

• Test: The query set contains one or more new examples for each of the N classes. Using representations learned from the support set, the model predicts classification for each example in the query set.

Few-shot learning

Few-shot learning

Example:

Suppose the support set composed of K examples per category. We want to learn the representation for each category: "CAR", "BIRD", "ANIMAL", "FLOWER".

At test time, examples from query set are used for prediction with representation learned.

Experiments

Experiment 1: Fine-tune the linear classifier layer while freezing the backbone (Results are averaged over 3 seeds. Top-1 accuracy is evaluated on the validation set)

Table 1. Mean accuracy of fine-tuned classifiers, evaluated on five models and four datasets.

	Models				
Datasets	CLIP	QUILT	BiomedCLIP	UNI	ViT
BCFC	94.74 ±0	100±0	96.17±0	99.04±0	98.72±0.28
MLCC	93.95 ± 0.52	97.95 ± 0	95.1 ± 0.52	99.2 ± 0.4	96.8 ± 0.2
SIPaKMed	90.5 ± 0.16	92 ± 0.57	87.62 ± 0.33	93.33 ± 0.16	89.71 ± 0.49
HiCervix	$55.2{\pm}0.2$	54.64 ± 0.08	$46.39{\pm0.1}$	$64.07 \!\pm\! 0.25$	57.64 ± 0.14
Average	83.59	86.15	81.32	88.91	85.72

Histopathology-pre-trained FMs are better to extract discriminant features for cytology tasks. (UNI, QUILT)

Experiments

Experiment 2: LoRA few-shot adaptation

Mean accuracy of fine-tuned foundation models, evaluated on four datasets in a few-shot setting with a varying numbers of shots. The black horizontal line reports the mean accuracy from Experiment 1.

- Models pre-trained on medical or histopathological images require more data to reach comparable performance to those trained on more diverse datasets.
- Fine-tune backbone > only classification head (apply LoRA to the query and value matrices of each attention block in the visual encoder)

Experiments

Experiment 3:Pushingmodelfine-tuninglimits

Mean accuracy of CLIP finetuned with LoRA and a VIT-L/14 backbone on different percentage of the HiCervix dataset. The black horizontal line represents the state-ofthe- art accuracy (HierSwin).

Model fine-tuned on 70% of the HiCervix dataset equals HierSwin in terms of both parameter efficiency and data usage.

Trained with 100% -> outperforms HierSwin

Mayo cytology slide

THANK YOU!