This material takes about 1.5 hours.

1 Suffix Trees

Gusfield: Algorithms on Strings, Trees, and Sequences.

Weiner 73 "Linear Pattern-matching algorithms" IEEE conference on automata and switching theory

McCreight 76 "A space-economical suffix tree construction algorithm" JACM 23(2) 1976

Chen and Seifras 85 "Efficient and Elegegant Suffix tree construction" in Apostolico/Galil $Combininatorial\ Algorithms\ on\ Words$

Another "search" structure, dedicated to strings.

Basic problem: match a "pattern" (of length m) to "text" (of length n)

- goal: decide if a given string ("pattern") is a substring of the text
- possibly created by concatenating short ones, eg newspaper
- application in IR, also computational bio (DNA seqs)
- if pattern avilable first, can build DFA, run in time linear in text
- if text available first, can build suffix tree, run in time linear in pattern.
- applications in computational bio.

First idea: binary tree on strings. Inefficient because run over pattern many times.

- fractional cascading?
- realize only need one character at each node!

Tries:

- Idea like bucket heaps: use bounded alphabet Σ .
- used to store dictionary of strings
- trees with children indexed by "alphabet"
- time to search equal length of query string
- insertion ditto.
- optimal, since even hashing requires this time to hash.
- but better, because no "hash function" computed.
- space an issue:
 - using array increases stroage cost by $|\Sigma|$

- using binary tree on alphabet increases search time by $\log |\Sigma|$
- ok for "const alphabet"
- if really fussy, could use hash-table at each node.
- size in worst case: sum of word lengths (so pretty much solves "dictionary" problem.

But what about substrings?

- idea: trie of all n^2 substrings
- \bullet equivalent to trie of all n suffixes.
- put "marker" at end, so no suffix contained in other (otherwise, some suffix can be an internal node, "hidden" by piece of other suffix)
- means one leaf per suffix
- Naive construction: insert each suffix
- basic alg:
 - text $a_1 \cdots a_n$
 - define $s_i = a_i \cdots a_n$
 - for i = 1 to n
 - insert s_i
- time, space $O(n^2)$

Better construction:

- note trie size may be much smaller: aaaaaaa.
- algorithm with time O(|T|)
- idea: avoid repeated work by "memoizing"
- also shades of finger search tree idea—use locality of reference
- suppose just inserted aw
- \bullet next insert is w
- big prefix of w might already be in trie
- avoid traversing: skip to end of prefix.

Suffix links:

- any node in trie corresponds to string
- \bullet arrange for node corresp to ax to point at node corresp to x

- suppose just inserted aw.
- walk up tree till find suffix link
- follow link (puts you on path corresp to w)
- \bullet walk down tree (adding nodes) to insert rest of w

Memoizing: (save your work)

- can add suffix link to every node we walked up
- (since walked up end of aw, and are putting in w now).
- charging scheme: charge traversal up a node to creation of suffix link
- traversal up also covers (same length) traversal down
- once node has suffix link, never passed up again
- thus, total time spent going up/down equals number of suffix links
- one suffix link per node, so time O(|T|)

half hour up to here.

Amortization key principles:

- Lazy: don't work till you must
- If you must work, use your work to "simplify" data structure too
- force user to spend lots of time to make you work
- use charges to keep track of work—earn money from user activity, spend it to pay for excess work at certain times.

Linear-size structure:

- problem: maybe |T| is large (n^2)
- compress paths in suffix trie
- path on letters $a_i \cdots a_j$ corresp to substring of text
- replace by edge labelled by (i, j) (implicit nodes)
- Example: tree on abab\$
- gives tree where every node has indegree at least 2
- in such a tree, size is order number of leaves = O(n)
- terminating \$ char now very useful, since means each suffix is a node
- Wait: didn't save space; still need to store characters on edge!

• see if someone with prompting can figure out: characters on edge are substring of pattern, so just store start and end indices. Look in text to see characters.

Search still works:

- preserves invariant: at most one edge starting with given character leaves a node
- so can store edges in array indexed by first character of edge.
- walk down same as trie
- called "slowfind" for later

Construction:

- obvious: build suffix trie, compress
- drawback: may take n^2 time and intermediate space
- better: use original construction idea, work in compressed domain.
- as before, insert suffixes in order s_1, \ldots, s_n
- compressed tree of what inserted so far
- to insert s_i , walk down tree
- at some point, path diverges from what's in tree
- may force us to "break" an edge (show)
- tack on *one* new edge for rest of string (cheap!)

MacReight 1976

- use suffix link idea of up-link-down
- problem: can't suffix link every character, only explict nodes
- want to work proportional to real nodes traversed
- need to skip characters inside edges (since can't pay for them)
- introduced "fastfind"
 - idea: fast alg for descending tree if know string present in tree
 - just check first char on edge, then skip number of chars equal to edge "length"
 - may land you in middle of edge (specified offset)
 - cost of search: number of explicit nodes in path

- amortize: pay for with explicit-node suffix links

Amortized Analysis:

- suppose just inserted string aw
- sitting on its leaf, which has parent
- Parent is only node that was (possibly) created by insertion:
 - As soon as walk down preexisting tree falls of tree, create parent node and stop
- invariant: every internal node except for parent of current leaf has suffix link to another explicit node
- plausible?
 - i.e., is there an explicit node for that suffix link to point at?
 - suppose v was created as parent of s_i leaf when it diverged from s_k
 - (note this is only way nodes get created)
 - claim s_{j+1} and s_{k+1} diverge at suffix(v), creating another explicit node.
 - only problem if s_{k+1} not yet present
 - happens only if k is current suffix
 - only blocks parent of current leaf.

• insertion step:

- suppose just inserted s_i
- consider parent p_i and grandparent (parent of parent) g_i of current node
- $-g_i$ to p_i link has string w_1
- $-p_i$ to s_i link w_2
- go up to grandparent
- follow suffix link (exists by invariant)
- fastfind w₁
- claim: know w_1 is present in tree!
 - * p_i was created by s_i split from a previous edge (or preexisted)
 - * so aww_1 was in tree before s_i inserted (prefix of earlier suffix)
 - * so ww_1 is in tree after s_i inserted
- create suffix link from p_i (preserves invariant)
- $slowfind w_2$ (stopping when leave current tree)
- break current edge if necessary (may land on preexisting node)

- add new edge for rest of w_2

Analysis:

- First, consider work to reach g_{i+1}
- Mix of fastfind and slowfind, but no worse then cost of doing pure slowfind
- This is it most $|g_{i+1}| |g_i| + 1$ (explain length notation)
- So total is $O(\sum |g_{i+1}| |g_i| + 1) = O(n)$
- Wait: maybe $g_{i+1} g_i + 1 < 0$, and I am cheating on sum?
 - Note s_{i+1} is suffix of s_i
 - so g_i suffix link must point at g_{i+1} or above
 - $\text{ so } |g_{i+1}| \ge |g_i| 1$
- Remaining cost: to reach p_{i+1} .
 - If get there during fastfind, costs at most one additional step
 - If get there during slowfind, means slowfind stopped at or before g_i .
 - So $\operatorname{suf}(p_i)$ is not below g_{i+1} .
 - So remaining cost is $|g_{i+1}| |p_{i+1}| \le |\operatorname{suf}(p_i)| |p_{i+1}| \le |p_i| |p_{i+1}| + 1$
 - telescopes as before to O(n)
 - we mostly used slowfind. when was fastfind important?
 - * in case when p_{i+1} was reached on fastfind step from g_{i+1}
 - * in that case, could not have afforded to do slowfind
 - * however, don't know that the case occurred until after the fact.

Analysis:

- Break into three costs:
 - from $suf(g_i)$ to g_{i+1} (part of fastfind w_1)
 - then g_{i+1} to $\operatorname{suf}(p_i)$ (part of fastfind w_1),
 - then $\operatorname{suf}(p_i)$ to p_{i+1} (slowfind w_2).
 - Note $suf(g_i)$ might not be g_{i+1} !
- slowfind cost
 - is chars to get from $suf(p_i)$ to p_{i+1} (plus const)
 - p_{i+1} is last internal node on path to s_{i+1}
 - so is descendant or equal $suf(p_i)$,
 - $\text{ so } |p_{i+1}| \ge |p_i| + 1$
 - so total cost $O(\sum |p_{i+1}| |p_i| + 1) = O(n)$ by telescoping

- (explain length notation)
- fastfind to g_{i+1}
 - fastfind costs less than slowfind, so at most $|g_{i+1}| |g_i|$ to reach g_{i+1} .
 - Sums to O(n).
 - Wait: maybe $g_{i+1} g_i + 1 < 0$, and I am cheating on sum?
 - * Note p_i gets suffix link to internal node after s_{i+1} inserted
 - * So g_i suffix is not last internal node on path to s_{i+1}
 - * so g_i suffix link must point at g_{i+1} or above
 - * so $|g_{i+1}| \ge |g_i| 1$
- fastfind $suf(p_i)$ from g_{i+1}
 - Already done if g_{i+1} below $suf(p_i)$ (double counts, but who cares)
 - what if g_{i+1} above suf (p_i) ?
 - can only happen if $suf(p_i) = p_{i+1}$ (this is only node below g_{i+1})
 - in this case, fastfind takes 1 step to go from g_{i+1} to p_{i+1} (landing in middle of edge)
 - so O(1) per suffix at worst
 - only case where fastfind necessary, but can't tell in advance.

Weiner algorithm: insert strings "backwards", use prefix links. Ukonnen online version.

Suffix arrays: many of same benefits as suffix trees, but save pointers:

- lexicographic ordering of suffixes
- represent as list of integers: b_1 is (index in text of) lexicographically first suffix, b_2 is (index of) lexicographically second, etc.
- search for pattern via binary search on this sequence
- some clever tricks (and some more space) let you avoid re-checking characters of pattern.
- So linear search (with additive $\log m$ for binary search.
- space usage: 3m integers (as opposed to numerous pointers and integers of suffix tree).

Applications:

- preprocess bottom up, storing first, last, num. of suffixes in subtree
- allows to answer queries: what first, last, count of w in text in time O(|w|).
- enumerate k occurrences in time O(w + |k|) (traverse subtree, binary so size order of number of occurrences (compare to rabin-karp).
- longest common subsequence is probably on homework.