ELEC 3300 Introduction to Embedded System MINI-V3 Development Board

MINI-V3 is a development board for Cortex-M3 Series MCU design. It is using STM32F103VET6 from ST Microelectronics as the core MCU controller.

Figure 1: MINI-V3 Development Board

Highlighted Features

- 3.2" 320x240 Color LCD
- ESP8266 WiFi Module
- TTL, CAN, USB interfaces
- One 8MB SPI Flash
- One 2k-bit EEPROM
- One RGB LED
- Micro SD Card socket that support max 32GB SD Card

Figure 2: MINI-V3 Development Board without LCD

Figure 3: MINI-V3 Features

(Acknowledgement. Figure 3 is extracted and modified from the Manufacturer's image)

Detailed Features

System

• Main MCU: STM32F103VET6, 512kB Flash, 64kB SRAM, 72MHz Clock, LQFP100 Package

Communication

• WiFi: ESP8266, on board antenna

• USB to Serial: CH340, with mini USB connector

• USB: mini USB connector

• Infra-red: 1838 Infra-red connector

• 2.4G: NRF24L01 connector

Interface

• Display: FSMC support (1) 3.2" 240x320 resolution (2) 5" 800x480 resolution

• LED: One Full Color RGB LED

• KEY: Three tradition Keys and ONE Capacitive Key

• Buzzer : One Buzzer

Storage

SPI Flash : One W25Q64, 8MBEEPROM : One AT24C02, 2k-bit

• SD Card : Micro SD, max support 32GB

Program Download

• JTAG Connector : Support JLink, ULink, STLink

• SWD Connector: Support ARM-OB

• ISP Download Connector: i.e. USB to Serial connector, support download via Serial Port

Sensor

• Variable Resistor: On board 100k VR

• Temp/Humidity Connector: Support DHT11/DS18B20

• Camera Connector: Support OV7725 Camera

Power

• 5V Supply: Two MicroUSB connectors, can be used to supply power.

Jumper Setting

There are few jumpers for connections and easy setting.

Figure 4: MINI-V3 Jumper Setting

(Acknowledgement. Figure 4 is extracted from the Manufacturer's image)

Jumper Location 1.

Left most jumper. Default as shown.

PC1 <----> VR

By default connects PC1 to on board VR. If PC1 have other use, the jumper needs to be removed.

Jumper Location 2.

Bottom two jumpers. Default as shown.

PB10 <----> URX PB11 <----> UTX

By default connects PB10, PB11 to ESP8266. If PB10, PB11 connects to Camera and interfered by ESP8266, these jumpers need to be removed.

Jumper Location 3

Default as shown

Left <J18-J19> PA1 <----> Cap T_KEY Right <J20-J21> PA8 <----> Buzzer

By default connects PA1 to Cap T_KEY, if PA1 has other use, the jumper needs to be removed.

By default connects PA8 to Buzzer, if PA8 has other use, the jumper needs to be removed.

Jumper Location 4

Default as shown

PA10 <----> TXD

PA9 <----> RXD

B0(Boot0) < ----> GND

B1(Boot1) <----> GND

By default PA10, PA9 connect to CH340, USB to TTL, for serial port I/O. If PA10, PA9 has other use, the jumpers need to be removed.

B0, B1 is used for System Boot Up select

Boot0	Boot1	Boot Select
0	X	Internal Flash
1	0	System Memory / ISP
1	1	Embedded SRAM

By default Boot0, Boot1 connect to GND, so that it would start from Flash. If there is other needs, the jumpers need to be set according to above table.

