FUNDAMENTOS DE LOS COMPUTADORES

PRACTICA 4: BIESTABLES. SISTEMAS SECUENCIALES

Francisco Joaquín Murcia Gómez 48734281H Grupo 3 practicas

Ejercicios:

1. Construye un biestable RS síncrono activo por nivel alto mediante puertas lógicas. El circuito debe estar compuesto únicamente por puertas NAND. Implementa el diseño mediante LogiSim y comprueba que el funcionamiento es correcto.

Un circuito biestable RS síncrono de nivel alto con puertas NAND seria tal que asi:

La parte redondeada es la parte del biestable RS

Al iniciar el circuito la salida Q da error porque en la memoria no hay nada almacenado.

El circuito seguiría la siguiente tabla (cada fila es un reste en el reloj)

R	S	Q	¬Q	
ESTADO	INICIAL	ERROR		
1	0	1	0	
0	1	0	1	
1	1	ERROR		
0*	0*	SE MANTIENE EN EL		
		ESTADO ANTERIOR		

*suponiendo que no se esta en el estado inicial

El error al activar R y S se da porque Q y \neg Q no pueden valer lo mismo, ya que una es la negación de la otra.

2. Modifica el circuito del ejercicio anterior y añádele entradas de Preset y Clear activas a nivel bajo. Comprueba que estas entradas asíncronas prevalecen sobre las síncronas.

Un circuito biestable RS síncrono de nivel alto con preset u clear seria tal que asi:

Al iniciar el circuito la salida Q da error porque en la memoria no hay nada almacenado.

El preset fuerza al circuito a que Q sea 0 y clear a que Q sea 1. En el circuito se le da prioridad a las entradas preset y clear en nuvel alto

Cada click es una subida y bajada de flanco

3. Coloca un biestable JK de los que dispone LogiSim en el área de trabajo y comprueba e identifica la funcionalidad de cada una de sus entradas y salidas. Escribe una tabla de verdad que las comprenda. Utiliza el elemento "Reloj" para proporcionar la señal necesaria en su entrada de reloj.

En el biestable JK cuando J y K valen 0 Q valdrá 0 y \neg Q 1; al activar J Q valdrá 1 y \neg Q 0; de lo contrario si se activa K Q valdrá 0 y \neg Q valdrá 1 ; y si se activan J y K cada vez que haya un flanco de subida se alternara Q y \neg Q.

4. Máquina de monedas

Para la resolución de este ejercicio he construido el siguiente grafo A=0€ en la maquina B=50cent en la máquina y C=1€ en la maquina

Después del grafo he construido una tabla simbólica tabla simbólica:

Estado actual	Entrada	Siguiente estado	salida
Α	00 A		00
Α	01 B		00
Α	10 X		Χ
Α	11	С	00
В	00	В	00
В	01	С	00
В	10	X	Χ
В	11	Α	10
С	00	С	00
С	01	Α	10
С	10	X	Χ
С	11	Α	11

Esta tabla la he codificado de esta manera:

A=00 B=01 C=11

A=UU B=UT C=TT							
Estado	o actual	ent	rada	siguient	e estado	sal	ida
Q1	Q0	E1	E0	Q′1	Q′0	S1	SO
0	0	0	0	0	0	0	0
0	0	0	1	0	1	0	0
0	0	1	0	X	X	X	X
0	0	1	1	1	1	0	0
0	1	0	0	0	1	0	0
0	1	0	1	1	1	0	0
0	1	1	0	X	X	X	X
0	1	1	1	0	0	1	0
1	0	0	0	X	X	X	X
1	0	0	1	X	X	X	X
1	0	1	0	X	X	X	X
1	0	1	1	X	X	X	X
1	1	0	0	1	1	0	0
1	1	0	1	0	0	1	0
1	1	1	0	X	X	X	X
1	1	1	1	0	0	1	1

Después he construido las ecuaciones de entrada Q'1 y Q'0 y las ecuaciones de salida S1 y S0

Q0 E1 + Q1 E0

Q1 E1

El circuito de salida se nos quedaría asi;

En cuanto al circuito de entrada, se ha dividido en dos:

Q′0

En cuanto a los biestables, al usar JK debemos de utilizar esta tabla:

Q(t)	Q(t+1)	J	K
0	0	0	Χ
0	1	1	Χ
1	0	Χ	1
1	1	Χ	0

Se separan por J0 y K0, y J1 yK1 y se saca las tablas de excitacion:

Dando como resultado el siguiente circuito:

