Basis of a topology

Deti Basis, a basis for a topology
on X is a collection B of

5165ets 5 con thut:

(1) for each $x \in X$, there is at legst one basis element B s.t. $x \in B$.

(2) if $X \in B_1 \cap B_2$ then there exists a basis element B_3 s.t. $X \in B_3$ and $B_3 \subset B_1 \cap B_2$.

long Story Short: a basis is a collection of subsets of X which always contains every element of X.

and if any intersection of busis elements $B_i \cap B_j$ contains an element of x then

there is a smulter BK which contains this element.

How to generate a topology from a basis?

the topology I on X is famed as a collection of all unions of elevents of the basis B.

	another book into the def. of a topo. buis
•	
	Jivn a 1000 Space X
)1000 4 1 (1000 /)
	Live (con home a collection of open sets G on X To openset in X there is an about CEG Such that X ECCG, then G is a basis for the topology of X. I a basis for a topology of X is a collection of opensets of X such that at least one element of G contains any element of X.
	1 0 spensor in 1 there is an element ccd
That	Such that x & C C G. Then G is a
200	Lbasis for the topology of X.
\	a buse for a formound of X is a collection
4	of open sets of X such that at least
\sim	one element of Contring any element of
	X .
	/\ b
	How can we compute topologies bused on their basis?
	(2) their basis)
	if for each $\chi \in \chi$ and bosis $\beta \in \beta$ which contains χ there is a bosis $\beta \in \beta$ s.t. $\chi \in \beta$ $\subset \beta$
	there is a basis B' & B' s.t. x & B' CB
	We say J' Generated by B' is finer than J.
	When telking about the real numbers which is its
	When telking about the real numbers which is its
	the basis for the standard topology on the real
	the basis for the standard topology on the real numbers is the set of open intervals over type

what happens if you start with a given
collection of sets and take finite intersections of them as well urbitrary unions?
of them as well urbitiary unions?
well, a subbasis happers
- Wen, a 300 suss 10-4 (000
Def: Subbasis
is a collection of substitute of X whose union
equals X.
Car Con quarter a topology T with
coe Can governite a topology Justh the subbusis S by making a collection
of all unions of finite intersections of elemants
o) S.