Cleveland's hierarchy

Cleveland's Graphical Features Hierarchy

Source: Presentation Graphics, Leland Wilkinson, SPSS Inc & Northwestern University

Revised 18Feb2010 tobar

http://sfew.websitetoolbox.com/post/clevelands-graphical-features-hierarchy-4598555

Outline

Scales

Anchors

Transformations

Exploring data

Bivariate data

► The top of the hierarchy involves putting things on scales

- ▶ The top of the hierarchy involves putting things on scales
- ▶ But what scale do we use?

- ▶ The top of the hierarchy involves putting things on scales
- ▶ But what scale do we use?
 - ► Are our data anchored to zero?

- ▶ The top of the hierarchy involves putting things on scales
- ▶ But what scale do we use?
 - ► Are our data anchored to zero?
 - If so, are we interested in differences or ratios?

- ▶ The top of the hierarchy involves putting things on scales
- ▶ But what scale do we use?
 - Are our data anchored to zero?
 - If so, are we interested in differences or ratios?
 - ► Are they anchored somewhere else?

- ▶ The top of the hierarchy involves putting things on scales
- ▶ But what scale do we use?
 - Are our data anchored to zero?
 - If so, are we interested in differences or ratios?
 - Are they anchored somewhere else?

Outline

Scales

Anchors

Transformations

Exploring data

Bivariate data

Golem bait call

Climate lessons

► Choosing an anchor is a scientific decision

Climate lessons

- ► Choosing an anchor is a scientific decision
- ► Remember: graphic design is communication

Climate lessons

- ► Choosing an anchor is a scientific decision
- ▶ Remember: graphic design is communication

Magazine circulation (advertisement)

Magazine circulation (absolute amount)

Magazine circulation (trend)

Area and volume

Adapted by courtesy of STEELWAYS.

How to Lie with Statistics

► Use area to indicate fair comparisons

- ▶ Use area to indicate fair comparisons
 - On a physical scale

- Use area to indicate fair comparisons
 - On a physical scale
- ► Areas that can be compared linearly should be preferred

- Use area to indicate fair comparisons
 - On a physical scale
- ▶ Areas that can be compared linearly should be preferred
 - Depends on importance of feature

- Use area to indicate fair comparisons
 - On a physical scale
- Areas that can be compared linearly should be preferred
 - Depends on importance of feature
- ► Avoid using (or hinting at) volume

- Use area to indicate fair comparisons
 - On a physical scale
- Areas that can be compared linearly should be preferred
 - Depends on importance of feature
- Avoid using (or hinting at) volume

Outline

Scales

Anchors

Transformations

Exploring data

Bivariate data

▶ 1 is to 10 as 10 is to what?

▶ 1 is to 10 as 10 is to what?

> 3

- ▶ 1 is to 10 as 10 is to what?
 - ▶ * If you said 19, you are thinking on a linear scale

- ▶ 1 is to 10 as 10 is to what?
 - ▶ * If you said 19, you are thinking on a linear scale
 - *

- ▶ 1 is to 10 as 10 is to what?
 - ▶ * If you said 19, you are thinking on a linear scale
 - ▶ * If you said 100, you are thinking on a log scale

- ▶ 1 is to 10 as 10 is to what?
 - ▶ * If you said 19, you are thinking on a linear scale
 - ▶ * If you said 100, you are thinking on a log scale
- ► The log scale is often good for physical quantities:

- ▶ 1 is to 10 as 10 is to what?
 - ▶ * If you said 19, you are thinking on a linear scale
 - ▶ * If you said 100, you are thinking on a log scale
- The log scale is often good for physical quantities:
 - When zero means zero

- ▶ 1 is to 10 as 10 is to what?
 - ▶ * If you said 19, you are thinking on a linear scale
 - ▶ * If you said 100, you are thinking on a log scale
- The log scale is often good for physical quantities:
 - When zero means zero

Log vs. linear

Making room

► There are a lot of different ways to show data shape

- ▶ There are a lot of different ways to show data shape
- ► Choices will depend on your data set:

- ▶ There are a lot of different ways to show data shape
- ► Choices will depend on your data set:
 - ► Overall size

- ▶ There are a lot of different ways to show data shape
- ► Choices will depend on your data set:
 - Overall size
 - ► Number of replicates

- ▶ There are a lot of different ways to show data shape
- Choices will depend on your data set:
 - Overall size
 - Number of replicates
 - ► Number of levels, predictor variables, etc.

- ▶ There are a lot of different ways to show data shape
- Choices will depend on your data set:
 - Overall size
 - Number of replicates
 - Number of levels, predictor variables, etc.

Different scales

More detail

► Choices about log vs. linear scale are scientific choices

- ► Choices about log vs. linear scale are scientific choices
 - Neither is more valid, or closer to the data

- ► Choices about log vs. linear scale are scientific choices
 - Neither is more valid, or closer to the data
- ► You can also make choices about

- ► Choices about log vs. linear scale are scientific choices
 - Neither is more valid, or closer to the data
- You can also make choices about
 - sending a simple message

- ► Choices about log vs. linear scale are scientific choices
 - Neither is more valid, or closer to the data
- You can also make choices about
 - sending a simple message
 - providing more information about shape

- Choices about log vs. linear scale are scientific choices
 - Neither is more valid, or closer to the data
- You can also make choices about
 - sending a simple message
 - providing more information about shape
- Log scales are almost never physical

- Choices about log vs. linear scale are scientific choices
 - Neither is more valid, or closer to the data
- You can also make choices about
 - sending a simple message
 - providing more information about shape
- Log scales are almost never physical
 - ▶ Don't mislead with area information on a log scale

- Choices about log vs. linear scale are scientific choices
 - Neither is more valid, or closer to the data
- You can also make choices about
 - sending a simple message
 - providing more information about shape
- Log scales are almost never physical
 - Don't mislead with area information on a log scale

► 1% is to 2% as 50% is to what?

▶ 1% is to 2% as 50% is to what?

- ▶ 1% is to 2% as 50% is to what?
 - ► * 51% is way too small

- ▶ 1% is to 2% as 50% is to what?
 - ► * 51% is way too small
 - **▶** *

- ▶ 1% is to 2% as 50% is to what?
 - ► * 51% is way too small
 - ▶ * 100% is way too large

- ▶ 1% is to 2% as 50% is to what?
 - ► * 51% is way too small
 - ► * 100% is way too large
- ► The natural distance to use on a probability scale is log odds

- ▶ 1% is to 2% as 50% is to what?
 - ► * 51% is way too small
 - ► * 100% is way too large
- The natural distance to use on a probability scale is log odds
 - **>** ,

- ▶ 1% is to 2% as 50% is to what?
 - ► * 51% is way too small
 - ► * 100% is way too large
- ▶ The natural distance to use on a probability scale is log odds
 - ► * 1% is to 2% as 50% is to 67%

- ▶ 1% is to 2% as 50% is to what?
 - ► * 51% is way too small
 - ► * 100% is way too large
- ▶ The natural distance to use on a probability scale is log odds
 - ► * 1% is to 2% as 50% is to 67%
 - *

- ▶ 1% is to 2% as 50% is to what?
 - ► * 51% is way too small
 - ► * 100% is way too large
- ▶ The natural distance to use on a probability scale is log odds
 - ► * 1% is to 2% as 50% is to 67%
 - ▶ * ... as 2% is to 4%

- ▶ 1% is to 2% as 50% is to what?
 - ► * 51% is way too small
 - ► * 100% is way too large
- ▶ The natural distance to use on a probability scale is log odds
 - ► * 1% is to 2% as 50% is to 67%
 - ▶ * ... as 2% is to 4%

- ▶ 1% is to 2% as 50% is to what?
 - ► * 51% is way too small
 - ► * 100% is way too large
- ▶ The natural distance to use on a probability scale is log odds
 - ► * 1% is to 2% as 50% is to 67%
 - ▶ * ... as 2% is to 4%
 - ▶ * ... as 98% is to 99%

- ▶ 1% is to 2% as 50% is to what?
 - ► * 51% is way too small
 - ► * 100% is way too large
- ▶ The natural distance to use on a probability scale is log odds
 - ► * 1% is to 2% as 50% is to 67%
 - ▶ * ... as 2% is to 4%
 - ▶ * ... as 98% is to 99%

► Odds are a ratio between the probability of something and the probability of its opposite:

Odds are a ratio between the probability of something and the probability of its opposite:

•
$$o = p/(1-p)$$

Odds are a ratio between the probability of something and the probability of its opposite:

•
$$o = p/(1-p)$$

► Log odds give a natural distance on probability space

Odds are a ratio between the probability of something and the probability of its opposite:

•
$$o = p/(1-p)$$

Log odds give a natural distance on probability space

Extreme values

▶ Our transformations take extreme values to infinity.

- Our transformations take extreme values to infinity.
- ► Use link functions

- Our transformations take extreme values to infinity.
- Use link functions
 - this is like using estimated values instead of observed

- Our transformations take extreme values to infinity.
- Use link functions
 - this is like using estimated values instead of observed
 - rarely infinite

- Our transformations take extreme values to infinity.
- Use link functions
 - this is like using estimated values instead of observed
 - rarely infinite
 - matches analysis

- Our transformations take extreme values to infinity.
- Use link functions
 - this is like using estimated values instead of observed
 - rarely infinite
 - matches analysis
- ▶ Extend the scale (e.g., use log(1 + x) instead of log(x))

- Our transformations take extreme values to infinity.
- Use link functions
 - this is like using estimated values instead of observed
 - rarely infinite
 - matches analysis
- Extend the scale (e.g., use log(1+x) instead of log(x))
 - ► This usually involves arbitrary choices

- Our transformations take extreme values to infinity.
- Use link functions
 - this is like using estimated values instead of observed
 - rarely infinite
 - matches analysis
- Extend the scale (e.g., use log(1+x) instead of log(x))
 - This usually involves arbitrary choices
 - ► Should often be *avoided* for analysis

- Our transformations take extreme values to infinity.
- Use link functions
 - this is like using estimated values instead of observed
 - rarely infinite
 - matches analysis
- Extend the scale (e.g., use log(1+x) instead of log(x))
 - ► This usually involves arbitrary choices
 - Should often be avoided for analysis
 - ► But can be good for visualization

- Our transformations take extreme values to infinity.
- Use link functions
 - this is like using estimated values instead of observed
 - rarely infinite
 - matches analysis
- Extend the scale (e.g., use log(1+x) instead of log(x))
 - ► This usually involves arbitrary choices
 - Should often be avoided for analysis
 - But can be good for visualization

Outline

Scales

Anchors

Transformations

Exploring data

Bivariate data

Rote analysis vs. snooping

Spurious correlations

There's a whole website about this

The best you can

► Identify scientific questions

- ► Identify scientific questions
- ▶ Distinguish between exploratory and confirmatory analysis

- Identify scientific questions
- ▶ Distinguish between exploratory and confirmatory analysis
- ► Pre-register studies when possible

- Identify scientific questions
- Distinguish between exploratory and confirmatory analysis
- Pre-register studies when possible
- ► Keep an exploration and analysis journal

- Identify scientific questions
- Distinguish between exploratory and confirmatory analysis
- Pre-register studies when possible
- Keep an exploration and analysis journal
- Explore predictors and responses separately at first

- Identify scientific questions
- Distinguish between exploratory and confirmatory analysis
- Pre-register studies when possible
- Keep an exploration and analysis journal
- Explore predictors and responses separately at first

Bike example

Standard errors

Standard errors

Standard deviations

Data shape and weight

► In general:

- ► In general:
 - ► If your logged data span < 3 decades, use human-readable numbers (e.g., 10-5000 kilotons per hectare)

- ► In general:
 - ► If your logged data span < 3 decades, use human-readable numbers (e.g., 10-5000 kilotons per hectare)
 - ► If not, just embrace "logs" (log10 particles per ul is from 3–8)

- ► In general:
 - ► If your logged data span < 3 decades, use human-readable numbers (e.g., 10-5000 kilotons per hectare)
 - ▶ If not, just embrace "logs" (log10 particles per ul is from 3–8)
 - But remember these are not physical values

- ► In general:
 - ▶ If your logged data span < 3 decades, use human-readable numbers (e.g., 10-5000 kilotons per hectare)
 - ▶ If not, just embrace "logs" (log10 particles per ul is from 3–8)
 - But remember these are not physical values
- ► I love natural logs, but not as axis values

- ► In general:
 - ▶ If your logged data span < 3 decades, use human-readable numbers (e.g., 10-5000 kilotons per hectare)
 - ▶ If not, just embrace "logs" (log10 particles per ul is from 3–8)
 - But remember these are not physical values
- ▶ I love natural logs, but not as axis values

Outline

Scales

Anchors

Transformations

Exploring data

Bivariate data

Smoking data

Smoking data

► Depending on how many data points you have, scatter plots may indicate relationships clearly

- Depending on how many data points you have, scatter plots may indicate relationships clearly
- ► They can often be improved with trend interpolations

- Depending on how many data points you have, scatter plots may indicate relationships clearly
- ▶ They can often be improved with trend interpolations
 - ► Interpolations may be particularly good for discrete responses (count or true-false)

- Depending on how many data points you have, scatter plots may indicate relationships clearly
- They can often be improved with trend interpolations
 - Interpolations may be particularly good for discrete responses (count or true-false)

Seeing the density better

Seeing the density worse

Use area in a principled way!

A loess trend line

Two loess trend lines

Many loess trend lines

► Contours

- Contours
 - use _density_2d() to fit a two-dimensional kernel to the density

- Contours
 - use _density_2d() to fit a two-dimensional kernel to the
 density
- ▶ hexes

- Contours
 - use _density_2d() to fit a two-dimensional kernel to the density
- hexes
 - use geom_hex to plot densities using hexes

- Contours
 - use _density_2d() to fit a two-dimensional kernel to the density
- hexes
 - use geom_hex to plot densities using hexes
 - this can also be done using rectangles for data with more discrete values

- Contours
 - use _density_2d() to fit a two-dimensional kernel to the density
- hexes
 - use geom_hex to plot densities using hexes
 - this can also be done using rectangles for data with more discrete values

Contours

Contours

Hexes

Hexes

► Use clear gradients

- Use clear gradients
- ► If zero has a physical meaning (like density), go in just one direction

- Use clear gradients
- If zero has a physical meaning (like density), go in just one direction
 - e.g., white to blue, white to red

- Use clear gradients
- If zero has a physical meaning (like density), go in just one direction
 - e.g., white to blue, white to red
 - ► If the map contrasts with a background, zero should match the background

- Use clear gradients
- If zero has a physical meaning (like density), go in just one direction
 - e.g., white to blue, white to red
 - If the map contrasts with a background, zero should match the background
- ► If there's a natural *middle*, you can use blue to white to red, or something similar

- Use clear gradients
- If zero has a physical meaning (like density), go in just one direction
 - e.g., white to blue, white to red
 - If the map contrasts with a background, zero should match the background
- ► If there's a natural *middle*, you can use blue to white to red, or something similar

► Graphs tell stories better than tables do

- Graphs tell stories better than tables do
 - ► Use graphs to illustrate comparisons

- Graphs tell stories better than tables do
 - Use graphs to illustrate comparisons
 - ► Be careful about *units*

- Graphs tell stories better than tables do
 - Use graphs to illustrate comparisons
 - ► Be careful about *units*
- ► Distinguish between (scientific) variables and (statistical) parameters

- Graphs tell stories better than tables do
 - Use graphs to illustrate comparisons
 - Be careful about units
- Distinguish between (scientific) variables and (statistical) parameters
- ► Show data when you can do it without obscuring the key patterns

- Graphs tell stories better than tables do
 - Use graphs to illustrate comparisons
 - Be careful about units
- Distinguish between (scientific) variables and (statistical) parameters
- Show data when you can do it without obscuring the key patterns

Choosing what to show

Choosing what to show

Provide users with alternatives

- Provide users with alternatives
 - ► Supplementary material for the curious

- Provide users with alternatives
 - Supplementary material for the curious
- ► Avoid choices by providing more information

- Provide users with alternatives
 - Supplementary material for the curious
- Avoid choices by providing more information
 - ► Use more than one figure

- Provide users with alternatives
 - Supplementary material for the curious
- Avoid choices by providing more information
 - Use more than one figure
 - Or dynamic features in figures

- Provide users with alternatives
 - Supplementary material for the curious
- Avoid choices by providing more information
 - Use more than one figure
 - Or dynamic features in figures

► Give thought to your goals

- ► Give thought to your goals
- ► Give thought to your decisions

- ► Give thought to your goals
- ► Give thought to your decisions
- ► Be conscious when you are withholding information

- Give thought to your goals
- ► Give thought to your decisions
- Be conscious when you are withholding information
 - ▶ Be willing to use more than one picture

- ► Give thought to your goals
- Give thought to your decisions
- Be conscious when you are withholding information
 - Be willing to use more than one picture
 - ► Use dynamic features to give access to detail

- ► Give thought to your goals
- ► Give thought to your decisions
- Be conscious when you are withholding information
 - Be willing to use more than one picture
 - Use dynamic features to give access to detail