Definition 2.9. Given $z=(z_1,\ldots,z_n)\in\mathbb{C}^n$, define $\overline{z}^h:=(z_1,\ldots,z_{h-1},\overline{z}_h,z_{h+1},\ldots,z_n)$, for any $h\in\{1,\ldots,n\}$. A set $D\subset\mathbb{C}^n$ is called symmetric if it is invariant with respect to complex conjugation in any variable, i.e. if $z\in D\iff \overline{z}^h\in D$, for every $h=1,\ldots,n$.

Let $\{e_1,\ldots,e_n\}$ be an orthonormal basis of \mathbb{R}^n and denote with $\{e_K\}_{K\in\mathcal{P}(n)}$ a basis of \mathbb{R}^{2^n} .

Definition 2.10. Let $D \subset \mathbb{C}^n$ be an open symmetric set and consider a function $F: D \subset \mathbb{C}^n \to \mathbb{R}_m \otimes \mathbb{R}^{2^n}$, $F(z) = \sum_{K \in \mathcal{P}(n)} e_K F_K(z)$ with $F_K: D \to \mathbb{R}_m$. We call F a stem function if $F_K(\overline{z}^h) = (-1)^{|K \cap \{h\}|} F_K(z)$ or equivalently

$$F_K(\overline{z}^h) = \begin{cases} F_K(z) & \text{if } h \notin K \\ -F_K(z) & \text{if } h \in K, \end{cases}$$
 (8)

for every $z \in D$, every $K \in \mathcal{P}(n)$ and any $h \in \{1, ..., n\}$. Again, we use the symbol Stem(D) to denote the set of stem functions $F: D \to \mathbb{R}_m \otimes \mathbb{R}^{2^n}$.

Equip \mathbb{R}^{2^n} with the family of commutative complex structures $\mathcal{J} = \left\{ \mathcal{J}_h : \mathbb{R}^{2^n} \to \mathbb{R}^{2^n} \right\}_{h=1}^n$, where each \mathcal{J}_h is defined over any basis element e_K of \mathbb{R}^{2^n} as

$$\mathcal{J}_h(e_K) := (-1)^{|K \cap \{h\}|} e_{K\Delta\{h\}} = \begin{cases} e_{K \cup \{h\}} & \text{if } h \notin K \\ -e_{K \setminus \{h\}} & \text{if } h \in K, \end{cases}$$

where $K\Delta H = (K \cup H) \setminus (K \cap H)$ and extend it by linearity to all \mathbb{R}^{2^n} . \mathcal{J} induces a family of commutative complex structure on $\mathbb{R}_m \otimes \mathbb{R}^{2^n}$ (by abuse of notation, we use the same symbol) $\mathcal{J} = \left\{ \mathcal{J}_h : \mathbb{R}_m \otimes \mathbb{R}^{2^n} \to \mathbb{R}_m \otimes \mathbb{R}^{2^n} \right\}_{h=1}^n$ according to the formula

$$\mathcal{J}_h(x \otimes a) := x \otimes \mathcal{J}_h(a) \qquad \forall x \in \mathbb{R}_m, \quad \forall a \in \mathbb{R}^{2^n}.$$

We can associate two Cauchy-Riemann operators to each complex structure \mathcal{J}_h .

Definition 2.11. Given a stem function $F \in Stem(D) \cap \mathcal{C}^1(D)$, we define

$$\partial_h F := \frac{1}{2} \left(\frac{\partial F}{\partial \alpha_h} - \mathcal{J}_h \left(\frac{\partial F}{\partial \beta_h} \right) \right), \qquad \overline{\partial}_h F := \frac{1}{2} \left(\frac{\partial F}{\partial \alpha_h} + \mathcal{J}_h \left(\frac{\partial F}{\partial \beta_h} \right) \right).$$

We call $F = \sum_{K \in \mathcal{P}(n)} e_K F_K$ h-holomorphic (with respect to \mathcal{J}) if $F \in \ker \overline{\partial}_h$ and it is called holomorphic if it is h-holomorphic for every h = 1, ..., n.

We can give the definition of holomorphic stem function through a system of Cauchy-Riemann equations.

Proposition 2.3 ([18],Lemma 3.12). Let F be a stem function. Then F is h-holomorphic if and only if

$$\frac{\partial F_K}{\partial \alpha_h} = \frac{\partial F_{K \cup \{h\}}}{\partial \beta_h}, \qquad \frac{\partial F_K}{\partial \beta_h} = -\frac{\partial F_{K \cup \{h\}}}{\partial \alpha_h}, \qquad \forall K \in \mathcal{P}(n), h \notin K.$$
 (9)

For any $J_1, \ldots J_n \in \mathbb{S}$, define

$$\phi_{J_1} \times ... \times \phi_{J_n} : \mathbb{C}^n \ni (z_1, ..., z_n) \mapsto (\phi_{J_1}(z_1), ..., \phi_{J_n}(z_n)) \in (\mathbb{R}^{m+1})^n$$

where ϕ_J is defined in (3).