Intégrales Impropres

Convergences

Solution 1

1. On effectue le changement de variable $t = x - n\pi$ et on remarque que

$$\sin^2(t + n\pi) = ((-1)^n \sin t)^2 = \sin^2 t$$

2. Soit $n \in \mathbb{N}$. Pour $0 \le x \le \pi$

$$(n\pi)^4 < (x + n\pi)^4 < ((n+1)\pi)^4$$

puis comme $\sin^2 x \ge 0$

$$(n\pi)^4 \sin^2 x \le (x + n\pi)^4 \sin^2 x \le ((n+1)\pi)^4 \sin^2 x$$

et enfin

$$\frac{1}{((n+1)\pi)^4 \sin^2 x} \le \frac{1}{(x+n\pi)^4 \sin^2 x} \le \frac{1}{(n\pi)^4 \sin^2 x}$$

On intégre les dernières inégalités entre 0 et π de sorte que $v_{n+1} \le u_n \le v_n$

3. Soit $n \in \mathbb{N}$. La fonction $x \mapsto \frac{\mathrm{d}x}{1 + (n\pi)^4 \sin^2 x}$ étant π -périodique, on a

$$v_n = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\mathrm{d}x}{1 + (n\pi)^4 \sin^2 x}$$

Les règles de Bioche nous conseillent d'effectuer le changement de variable $t = \tan x$. On trouve en effet

$$v_n = \int_{-\infty}^{+\infty} \frac{dt}{(1 + (n\pi)^4) t^2 + 1}$$

$$= \left[\frac{1}{\sqrt{1 + (n\pi)^4}} \arctan\left(\sqrt{1 + (n\pi)^4} t\right) \right]_{-\infty}^{+\infty} = \frac{\pi}{\sqrt{1 + (n\pi)^4}}$$

On en déduit que

$$\frac{\pi}{\sqrt{1 + ((n+1)\pi)^4}} \le u_n \le \frac{\pi}{\sqrt{1 + (n\pi)^4}}$$

puis que $u_n \sim \frac{1}{n^2\pi}$.

4. Puisque l'intégrande est positif, $F: x \mapsto \int_0^x \frac{dx}{1+x^4\sin^2 x}$ est croissante et admet donc une limite (éventuellement infinie) en $+\infty$. De plus, $F(N\pi) = \sum_{n=0}^N u_n$ pour $N \in \mathbb{N}$ et $\sum_{n \in \mathbb{N}} u_n$ converge d'après la question précédente. Ainsi $F(N\pi)$ tend vers une limite finie lorsque N tend vers $+\infty$. Cette limite est également celle de F en $+\infty$, ce qui prouve que l'intégrale $\int_0^{+\infty} \frac{dx}{1+x^4\sin^2 x}$ converge.

Solution 2

1. Soit A un réel tel que P' ne s'annule pas sur $[A, +\infty[$. L'intégrale I est de même nature que l'intégrale $\int_A^{+\infty} \cos(P(x)) dx$. On réécrit cette intégrale sous la forme $\int_A^{+\infty} \frac{1}{P'(x)} P'(x) \cos(P(x)) dx$. Puisque $x \mapsto \frac{\sin(P(x))}{P'(x)}$ admet une limite nulle en $+\infty$ (deg $P' \ge 1$), l'intégration par parties montre que l'intégrale $\int_A^{+\infty} \cos(P(x)) dx$ est de même nature que l'intégrale $\int_A^{+\infty} \frac{P''(x)}{P'(x)^2} \sin(P(x)) dx$. Puisque deg $P \ge 2$, $\frac{P''(x)}{P'(x)^2} \sin(P(x)) = \mathcal{O}\left(\frac{1}{x^2}\right)$. L'intégrale $\int_A^{+\infty} \frac{P''(x)}{P'(x)^2} \sin(P(x)) dx$ est donc convergente de même que I.

1

2. Pour tout $x \in \mathbb{R}_+$, $|\cos(P(x))| \ge \cos^2(P(x)) = \frac{1+\cos(2P(x))}{2}$. D'après la première question, $\int_0^{+\infty} \cos(2(P(x))) dx$ converge et $\int_0^{+\infty} dx$ diverge vers $+\infty$ donc $\int_0^{+\infty} |\cos(P(x))| dx$ diverge vers $+\infty$.

3. Par le changement de variable $t=x^2$, $I=\int_0^{+\infty}\frac{\cos t}{2\sqrt{t}}\,dt$ puis, par intégration par parties, $I=\int_0^{+\infty}\frac{\sin t}{t^{\frac{3}{2}}}\,dt$. En posant $u_n=\int_{n\pi}^{(n+1)\pi}\frac{\sin t}{t^{\frac{3}{2}}}\,dt$, on a $I=\sum_{n=0}^{+\infty}u_n$. On vérifie que la série $\sum_{n\in\mathbb{N}}u_n$ vérifie le critère spécial des séries alternées. On en déduit que I est du signe de u_0 , c'est-à-dire positif.

Solution 3

- 1. In est continue sur]0,1] et $\ln(x) = o\left(\frac{1}{\sqrt{x}}\right)$ par croissances comparées. Comme $t \mapsto \frac{1}{\sqrt{t}}$ est intégrable au voisinage de 0^+ ($\frac{1}{2} < 1$), ln est intégrable sur]0,1]. Finalement, $\int_0^1 \ln t \, dt$ converge.
- 2. $t \mapsto e^{-t^2}$ est continue sur $[0, +\infty[$ et $e^{-t^2} = o\left(\frac{1}{t^2}\right)$ (puisque $e^{-u} = o\left(\frac{1}{u}\right)$). Comme $t \mapsto \frac{1}{t^2}$ est intégrable au voisinage de $+\infty$ $(2 > 1), t \mapsto e^{-t^2}$ est intégrable sur $[0, +\infty[$. Finalement, $\int_0^{+\infty} e^{-t^2} dt$ converge.
- 3. Tout d'abord, $x \mapsto x \sin(x)e^{-x}$ est continue sur $[0, +\infty[$. Comme sin est bornée, $x \sin(x)e^{-x} = \mathcal{O}(xe^{-x})$. De plus, $xe^{-x} = \frac{1}{x^2}$ par croissances comparées. Ainsi $x \sin(x)e^{-x} = \frac{1}{x^2}$. Or $x \mapsto \frac{1}{x^2}$ est intégrable au voisinage de $+\infty[$ donc $x \mapsto x \sin(x)e^{-x}$ est intégrable sur $[0, +\infty[$. Finalement, $\int_0^{+\infty} x \sin(x)e^{-x} dx$ converge.
- **4.** Tout d'abord, $t \mapsto \ln(t)e^{-t}$ est continue sur $]0, +\infty[$. De plus, $\ln(t)e^{-t} \underset{t \to +\infty}{\sim} \ln(t)$ et on a vu que ln était intégrable au voisinage de 0^+ donc $t \mapsto \ln(t)e^{-t}$ est également intégrable au voisinage de 0^+ . Par croissances comparées, $\ln(t)e^{-t} \underset{t \to +\infty}{=} o\left(\frac{1}{t^2}\right)$ donc $t \mapsto \ln(t)e^{-t}$ est également intégrable au voisinage de $+\infty$. Finalement, $t \mapsto \ln(t)e^{-t}$ est intégrable sur $]0, +\infty[$. L'intégrable $\int_0^{+\infty} \ln(t)e^{-t}$ dt converge.
- 5. $\frac{1}{(1-t)\sqrt{t}} \sim \frac{1}{t-1}$ et $t \mapsto \frac{1}{1-t}$ n'est pas intégable au voisinage de 1⁻. L'intégrale $\int_0^1 \frac{\mathrm{d}t}{(1-t)\sqrt{t}}$ diverge.
- **6.** Tout d'abord, $t\mapsto \frac{\ln t}{t^2+1}$ est continue sur $]0,+\infty[$. De plus, $\frac{\ln t}{t^2+1} \sim \ln(t)$ et on a vu que ln était intégrable au voisinage de 0^+ donc $t\mapsto \ln(t)e^{-t}$ est également intégrable au voisinage de 0^+ . Par croissances comparées, $\frac{\ln t}{t^2+1} = o\left(\frac{1}{t^2}\right) \operatorname{donc} t\mapsto \frac{\ln t}{t^2+1}$ est également intégrable au voisinage de $+\infty$. Finalement, $t\mapsto \frac{\ln t}{t^2+1}$ est intégrable sur $]0,+\infty[$. L'intégrale $\int_0^{+\infty} \frac{\ln t}{t^2+1} \operatorname{d} t$ converge.
- 7. $\ln x \underset{x \to 1^+}{\sim} x 1$ donc $\frac{\sqrt{\ln x}}{(x-1)\sqrt{x}} \underset{x \to 1^+}{\sim} \frac{1}{(x-1)^{\frac{1}{2}}}$. Ainsi $x \mapsto \frac{\sqrt{\ln x}}{(x-1)\sqrt{x}}$ est intégrable au voisinage de 1^+ par comparaison à une intégrale de Riemann. Par croissances comparées, $\sqrt{\ln x} = \mathcal{O}\left(x^{\frac{1}{4}}\right)$ donc $\frac{\sqrt{\ln x}}{(x-1)\sqrt{x}} = \mathcal{O}\left(\frac{1}{x^{\frac{5}{4}}}\right)$ donc $x \mapsto \frac{\sqrt{\ln x}}{(x-1)\sqrt{x}}$ est intégrable au voisinage de 1^+ par comparaison à une intégrable au voisinage de 1^+ par

Solution 4

1. Supposons $\alpha > 1$. Donnons-nous $\gamma \in]1, \alpha[$ (par exemple $\gamma = \frac{1+\alpha}{2})$. Comme $\gamma < \alpha, \frac{1}{t^{\alpha}(\ln t)^{\beta}} = \frac{1}{t^{\gamma}}$ par croissances comparées. Or $\gamma > 1$ donc $t \mapsto \frac{1}{t^{\gamma}}$ est intégrable sur $[e, +\infty[$. On en déduit que $\int_e^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}(\ln t)^{\beta}}$ converge. Supposons $\alpha < 1$. Alors $\frac{1}{t} = o\left(\frac{1}{t^{\alpha}(\ln t)^{\beta}}\right)$ par croissances comparées. Or $\int_e^{+\infty} \frac{\mathrm{d}t}{t}$ diverge donc $\int_e^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}(\ln t)^{\beta}}$ diverge également. Supposons enfin $\alpha = 1$. Si $\beta \neq 1$,

$$\int_{e}^{x} \frac{\mathrm{d}t}{t(\ln t)^{\beta}} = \frac{1}{1-\beta} \left[\ln(t)^{1-\beta} \right]_{e}^{x} = \frac{1}{1-\beta} \left(\ln(x)^{1-\beta} - 1 \right) \underset{x \to +\infty}{\longrightarrow} \begin{cases} +\infty & \text{si } \beta < 1 \\ \frac{1}{\beta-1} & \text{si } \beta > 1 \end{cases}$$

Enfin, si $\beta = 1$,

$$\int_{e}^{x} \frac{\mathrm{d}t}{t \ln t} = \left[\ln(\ln t)\right]_{e}^{x} = \ln(\ln x) \underset{x \to +\infty}{\longrightarrow} +\infty$$

Pour récapitutler, $\int_e^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}(\ln t)^{\beta}}$ converge si et seulement si $\alpha > 1$ ou $\alpha = 1$ et $\beta > 1$.

2. Via le changement de variable $u = \frac{1}{t}$, l'intégrale $\int_0^{\frac{1}{e}} \frac{\mathrm{d}t}{t^{\alpha |\ln t|\beta}}$ est de même nature que l'intégrale $\int_e^{+\infty} \frac{\mathrm{d}u}{u^{2-\alpha (\ln u)\beta}}$. D'après la question précédente, cette intégrale converge si et seulement si $\alpha < 1$ ou $\alpha = 1$ et $\beta > 1$.

Solution 5

- 1. Posons $f: x \mapsto e^{-x} \ln x$. f est bien continue sur \mathbb{R}_+^* .

 De plus, $f(x) \underset{x \to 0^+}{\sim} \ln x$ et $\ln x = o\left(\frac{1}{\sqrt{x}}\right)$ par croissances comparées. Ainsi $f(x) = o\left(\frac{1}{\sqrt{x}}\right)$ et f est intégrable au voisinage de 0^+ .

 Enfin $f(x) = o\left(\frac{1}{x^2}\right)$ par croissances comparées de sorte que f est intégrable au voisinage de $+\infty$.

 L'intégrale I converge bien.
- 2. Par relation de Chasles,

$$I = \int_0^1 e^{-x} \ln x \, dx + \int_1^{+\infty} e^{-x} \ln x \, dx$$

En effectuant le changement de variable $x \mapsto 1/x$ dans la première intégrale,

$$I = -\int_{1}^{+\infty} \frac{e^{-\frac{1}{x}}}{x^{2}} \ln x \, dx + \int_{1}^{+\infty} e^{-x} \ln x \, dx = \int_{1}^{+\infty} \left(1 - \frac{e^{x - \frac{1}{x}}}{x^{2}}\right) e^{-x} \ln x \, dx = \int_{1}^{+\infty} \left(1 - e^{\varphi}(x)\right) e^{-x} \ln x \, dx$$

en posant

$$\varphi: x \mapsto x - \frac{1}{x} - 2\ln x$$

 φ est dérivable sur \mathbb{R}_+^* et

$$\forall x \in \mathbb{R}_+^*, \ \varphi'(x) = 1 + \frac{1}{x^2} - \frac{2}{x} = \frac{(x-1)^2}{x^2} \ge 0$$

Ainsi φ est croissante sur \mathbb{R}_+^* et comme $\varphi(1) = 1$, φ est positive sur $[1, +\infty[$. On en déduit que

$$\forall x \in [1, +\infty[, (1 - e^{\varphi}(x))e^{-x} \ln x \le 0]$$

Par conséquent, $I \le 0$. Bien entendu, $x \mapsto (1 - e^{\varphi}(x))e^{-x} \ln x$ est continue et non constamment nulle sur $[1, +\infty[$ donc I < 0.

Solution 6

1. On procède par intégration par parties : comme $x \mapsto \frac{\cos x}{\sqrt{x}}$ admet une limite finie (nulle) en $+\infty$, les intégrales $\int_1^{+\infty} \frac{\sin x}{\sqrt{x}} \, dx$ et $\int_1^{+\infty} \frac{\cos x}{x^{\frac{3}{2}}}$ sont de même nature. Puisque $\frac{\cos x}{x^{\frac{3}{2}}} = \mathcal{O}\left(\frac{1}{x^{\frac{3}{2}}}\right)$, la seconde intégrale converge (3/2 > 1) et donc la première également.

Remarquons que, comme $\lim_{x\to +\infty} \frac{\sin x}{\sqrt{x}}$,

$$\frac{\sin x}{\sqrt{x} + \sin x} = \frac{\sin x}{\sqrt{x}} \cdot \frac{1}{1 + \frac{\sin x}{\sqrt{x}}} = \frac{\sin x}{\sqrt{x}} \left(1 - \frac{\sin x}{\sqrt{x}} + \mathcal{O}\left(\frac{\sin^2 x}{x}\right) \right) = \frac{\sin x}{\sqrt{x}} - \frac{\sin^2 x}{x} + \mathcal{O}\left(\frac{1}{\frac{3}{2}}\right)$$

On a vu que $\int_1^{+\infty} \frac{\sin x}{\sqrt{x}} dx$ converge et 3/2 > 1 donc $\int_1^{+\infty} \frac{\sin x}{\sqrt{x} + \sin x} dx$ est de même nature que $\int_1^{+\infty} \frac{\sin^2 x}{x} dx$. Or

$$\frac{\sin^2 x}{x} = \frac{1 - \cos(2x)}{2x} = \frac{1}{2x} - \frac{\cos(2x)}{2x}$$

On montre à nouveau à l'aide d'une intégration par parties que $\int_1^{+\infty} \frac{\cos 2x}{2x} dx$ converge mais $\int_1^{+\infty} \frac{dx}{2x}$ diverge donc $int_1^{+\infty} \frac{\sin^2 x}{x} dx$ diverge. Finalement, $\int_1^{+\infty} \frac{\sin x}{\sqrt{x} + \sin x} dx$ diverge.

Solution 7

Tout d'abord, $t\mapsto \frac{\sin t}{t^{\alpha}}$ est continue sur \mathbb{R}_+^* quelle soit la valeur de α . **Etude en 0.** $\frac{\sin t}{t^{\alpha}} \sim \frac{1}{t^{\alpha-1}}$ donc $\int_0^{\pi} \frac{\sin t}{t^{\alpha}} dt$ converge si et seulement si $\alpha-1 < 1$ i.e. $\alpha < 2$.

Etude en $+\infty$. Supposons d'abord $\alpha > 0$. Comme $\lim_{t \to +\infty} \frac{\cos t}{t^{\alpha}} = 0$, les intégrales $\int_{\pi}^{+\infty} \frac{\sin t}{t^{\alpha}} \, \mathrm{d}t$ et $\int_{\pi}^{+\infty} \frac{\cos t}{t^{\alpha+1}}$ sont de même nature par intégration par parties. Or $\frac{\cos t}{t^{\alpha+1}} = \mathcal{O}\left(\frac{1}{t^{\alpha+1}}\right) \mathrm{donc} \int_{\pi}^{+\infty} \frac{\cos t}{t^{\alpha+1}} \, \mathrm{d}t$ converge. Il en est donc de même de $\int_{p} i^{+\infty} \frac{\sin t}{t^{\alpha}} \, \mathrm{d}t$. Supposons $\alpha \leq 0$. Posons $F(x) = \int_{1}^{x} \frac{\sin t}{t^{\alpha}} \, \mathrm{d}t$. Comme sin est positive sur $[2n\pi, (2n+1)\pi]$ et comme $t \mapsto \frac{1}{t^{\alpha}}$ est croissante sur \mathbb{R}_{+}^{*}

$$F((2n+1)\pi) - F(2n\pi) = \int_{2n\pi}^{(2n+1)\pi} \ge (2n\pi)^{-\alpha} \int_{2n\pi}^{(2n+1)\pi} \sin t \, dt = 2(2n\pi)^{-\alpha}$$

Ainsi $F((2n+1)\pi) - F(2n\pi)$ ne tend pas vers 0 lorsque *n* tend vers $+\infty$. Donc F n'admet pas de limite en $+\infty$ i.e. l'intégrale $\int_0^{+\infty} \frac{\sin t}{t^{\alpha}} dt$

En conclusion, $\int_0^{+\infty} \frac{\sin t}{t^{\alpha}} dt$ converge si et seulement si $0 < \alpha < 2$.

Solution 8

Soit $x \in [1, +\infty[$. Par intégration par parties

$$\int_{1}^{x} g(t) dt = \int_{1}^{x} \frac{f(t)^{2}}{t^{2}} dt = -\left[\frac{f(t)^{2}}{t^{2}}\right]_{1}^{x} + 2 \int_{1}^{x} \frac{f(t)f'(t)}{t} dt = f(1)^{2} - \frac{f(x)^{2}}{x^{2}} + 2 \int_{1}^{x} \frac{f(t)f'(t)}{t} dt \le 2 \int_{1}^{x} \frac{f(t)f'(t)}{t} dt$$

D'après l'inégalité de Cauchy-Schwarz,

$$\int_{1}^{x} g(t) dt \le f(1)^{2} + 2\sqrt{\int_{1}^{x} f(t)^{2} dt} \sqrt{\int_{1}^{x} f'(t)^{2} dt} \le f(1)^{2} + 2\sqrt{\int_{1}^{x} f(t)^{2} dt} \sqrt{\int_{1}^{+\infty} f'(t)^{2} dt}$$

Posons A = $f(1)^2$, B = $\sqrt{\int_1^{+\infty} f'(t)^2 dt}$ et $h(x) = \sqrt{\int_1^x f(t)^2 dt}$. Alors

$$h(x)^2 \le A + 2Bh(x)$$

ou encore

$$(h(x) - B)^2 \le A + B^2$$

puis

$$0 \le h(x) \le B + \sqrt{A + B^2}$$

et enfin

$$\int_{1}^{x} g(t) dt = h(x)^{2} \le (B + \sqrt{A + B^{2}})^{2}$$

L'application $x \mapsto \int_1^x g(t) dt$ est donc croissante (intégrande positive) et majorée : elle admet donc une limite en $+\infty$. L'intégrale $\int_1^{+\infty} g(t) dt$ converge donc i.e. g est intégrable sur $[1, +\infty[$

Solution 9

Soit $n \in \mathbb{N}$. Alors

$$\int_0^n \frac{|\sin t|}{t} dt = \sum_{k=0}^n \int_{(k-1)\pi}^{k\pi} \frac{|\sin t|}{t} dt \ge \sum_{k=1}^n \frac{1}{k\pi} \int_{(k-1)\pi}^{k\pi} |\sin t| dt$$

Or via le changement de variable $u = t - (k - 1)\pi$,

$$\int_{(k-1)\pi}^{k\pi} |\sin t| \, dt = \int_0^{\pi} |\sin(u + (k-1)\pi)| \, du = \int_0^{\pi} |(-1)^{k-1}| \sin u| \, du = \int_0^{\pi} \sin u \, du = 2$$

Finalement,

$$\int_0^n \frac{|\sin t|}{t} \, \mathrm{d}t \ge \frac{2\pi}{\sum_{k=1}^n} \frac{1}{k}$$

Or la série harmonique $\sum \frac{1}{n}$ diverge vers $+\infty$ donc

$$\lim_{n \to +\infty} \int_0^n \frac{|\sin t|}{t} \, \mathrm{d}t = +\infty$$

La fonction $t\mapsto \frac{\sin t}{t}$ n'est donc pas intégrable sur \mathbb{R}_+^* .

Théorie

Solution 10

1. Supposons $\ell \neq 0$. Quitte à changer f en -f, on peut supposer $\ell > 0$. Puisque f admet ℓ pour limite en $+\infty$, il existe $A \in \mathbb{R}_+$ tel que $f(x) \geq \frac{\ell}{2}$ pour $x \geq A$. Mais alors, pour $x \geq A$:

$$\int_{0}^{x} f(t) dt = \int_{0}^{A} f(t) dt + \int_{A}^{x} f(t) dt \ge \int_{0}^{A} f(t) dt + \ell(x - A)$$

Par minoration $\int_0^x f(t) dt \xrightarrow[x \to +\infty]{} +\infty$ ce qui contredit l'énoncé.

2. Supposons que f n'admette pas 0 pour limite en $+\infty$. Il existe donc $\varepsilon > 0$ tel que pour tout $A \in \mathbb{R}_+$, il existe $x \ge A$ tel que $|f(x)| \ge \varepsilon$. Puisque f est uniformément continue, il existe $\alpha > 0$ tel que pour tout $x, y \in \mathbb{R}_+$, $|x - y| \le \alpha \implies |f(x) - f(y)| \le \frac{\varepsilon}{2}$.

Comme l'intégrale $\int_0^{+\infty} f(t) dt$ converge, on peut choisir $A \in \mathbb{R}_+$ tel que pour tout $x, y \ge A$:

$$\left| \int_{x}^{y} f(t) \, \mathrm{d}t \right| \leq \frac{\alpha \varepsilon}{3}$$

Soit alors $x \ge A$ tel que $|f(x)| \ge \varepsilon$. Quitte à changer f en -f, on peut supposer $f(x) \ge \varepsilon$. Pour tout $t \in [x, x + \alpha]$, $|f(t) - f(x)| \le \frac{\varepsilon}{2}$, et en particulier $f(t) \ge f(x) - \frac{\varepsilon}{2} \ge \frac{\varepsilon}{2}$. On en déduit :

$$\int_{x}^{x+\alpha} f(t) \, \mathrm{d}t \ge \frac{\alpha \varepsilon}{2}$$

On aboutit donc à une contradiction.

Solution 11

Supposons que f soit M-lipschitzienne avec $\mathbf{M} \in \mathbb{R}_+^*$. Soit $\mathbf{\epsilon} \in \mathbb{R}_+^*$. Puisque l'intégrale $\int_0^{+\infty} f(t) \ \mathrm{d}t$ converge, il existe $\mathbf{A} \in \mathbb{R}_+$ tel que pour tout $x \geq \mathbf{A}$ et pour tout y > x, $\left| \int_x^y f(t) \ \mathrm{d}t \right| \leq \frac{\mathbf{\epsilon}^2}{2\mathbf{M}}$. Soit donc (x,y) tel que $\mathbf{A} \leq x < y$. Puisque f est M-lipschitzienne,

$$\forall t \in [x, y], -M(t - x) \le f(t) - f(x) \le M(t - x)$$

En intégrant sur [x, y], on obtient

$$-M\frac{(y-x)^2}{2} \le \int_{x}^{y} f(t) dt - (y-x)f(x) \le M\frac{(y-x)^2}{2}$$

On en déduit que pour tout y > x,

$$|f(x)| \le \frac{\varepsilon^2}{2M(y-x)} + M\frac{y-x}{2}$$

Une étude rapide de la fonction $g: t \mapsto \frac{\varepsilon^2}{2Mt} + \frac{Mt}{2}$ sur \mathbb{R}_+^* montre que g admet un minimum en $\frac{\varepsilon}{M}$ valant ε . En posant $y = x + \frac{\varepsilon}{M}$ dans l'inégalité précédente, on obtient donc $|f(x)| \le \varepsilon$ pour tout $x \ge A$. Ceci prouve alors que $\lim f = 0$.

Solution 12

1. Puisque $(ff')' = f'^2 + ff''$, le théorème fondamental de l'analyse permet d'affirmer que pour tout $x \in \mathbb{R}$,

$$f(x)f'(x) = f(0)f'(0) + \int_0^x f'^2(t) dt + \int_0^x f(t)f''(t) dt$$

Par ailleurs, ff'' est intégrable sur \mathbb{R} puisque $|ff''| \leq \frac{1}{2} (f^2 + f''^2)$. En particulier, $x \mapsto \int_0^x f(t)f''(t) \, dt$ admet une limite finie en $+\infty$. Par ailleurs, puisque f'^2 étant positive $x \mapsto \int_0^x f'(t)^2 \, dt$ admet une limite finie ou égale à $+\infty$ en $+\infty$. Supposons que cette limite soit $+\infty$. Alors la relation précédente montre que $\lim_{t\to\infty} ff' = +\infty$. Mais comme $(f^2)' = 2ff'$, on peut affirmer que pour tout $x \in \mathbb{R}$,

$$f(x)^2 = f(0)^2 + 2\int_0^x f(t)f'(t) dt$$

Ainsi on peut classiquement montrer que $\lim_{+\infty} f^2 = +\infty$, ce qui contredit l'intégrabilité de f^2 sur \mathbb{R} . Finalement, $x \mapsto \int_0^x f'(t)^2 dt$ admet une limite finie en $+\infty$, ce qui signifie que f' est de carré intégrable sur \mathbb{R}_+ .

On montre de manière similaire que f' est de carré intégrable sur \mathbb{R}_- de telle sorte que f' est de carré intégrable sur \mathbb{R} .

2. On exploite à nouveau le fait que pour tout $x \in \mathbb{R}$,

$$f(x)f'(x) = f(0)f'(0) + \int_0^x f'^2(t) dt + \int_0^x f(t)f''(t) dt$$

Puisque f'^2 et ff' sont intégrables, on peut affirmer que ff' admet une limite finie en $+\infty$. Mais on rappelle alors que pour tout $x \in \mathbb{R}_+$.

$$f(x)^2 = f(0)^2 + 2 \int_0^x f(t)f'(t) dt$$

Ainsi ff' ne peut avoir une limite non nulle en $+\infty$ car alors $\lim_{+\infty} f^2 = +\infty$, ce qui contredirait l'intégrabilité de f^2 . Finalement, ff' admet une limite nulle en $+\infty$. On montre de la même manière que ff' admet une limite nulle en $-\infty$. Par intégration par parties

$$\int_{-\infty}^{+\infty} f'(t)^2 = [ff']_{-\infty}^{+\infty} - \int_{-\infty}^{+\infty} f(t)f''(t) dt = -\int_{-\infty}^{+\infty} f(t)f''(t) dt$$

Par inégalité de Cauchy-Schwarz,

$$\left(\int_{-\infty}^{+\infty} f(t)f''(t) dt\right)^{2} \le \left(\int_{-\infty}^{+\infty} f(t)^{2} dt\right) \left(\int_{-\infty}^{+\infty} f''(t)^{2} dt\right)$$

ce qui permet d'obtenir l'inégalité voulue.

Solution 13

1. Il est clair que si $\int_0^{+\infty} f(t) dt$ converge, alors la suite $n \mapsto \int_0^n f(t) dt$ converge. Réciproquement, supposons que $n \mapsto \int_0^n f(t) dt$ converge. Notons ℓ sa limite. Soit $\epsilon > 0$. Il existe donc $N \in \mathbb{N}$ tel que

$$\forall n \ge N, \left| \int_0^n f(t) dt - \ell \right| \le \frac{\varepsilon}{2}$$

Comme $\lim_{+\infty} f = 0$, il existe $A \in \mathbb{R}_+$ tel que

$$\forall x \ge A, |f(x)| \le \frac{\varepsilon}{2}$$

Posons B = $\max(A + 1, N + 1)$. Soit $x \ge B$. Posons M = $\lfloor x \rfloor$. Alors

$$\left| \int_0^x f(t) \, \mathrm{d}t - \ell \right| = \left| \int_0^M f(t) \, \mathrm{d}t - \ell + \int_M^x f(t) \, \mathrm{d}t \right| \le \left| \int_0^M f(t) \, \mathrm{d}t - \ell \right| + \left| \int_M^x f(t) \, \mathrm{d}t \right|$$

Comme $M \ge x - 1 \ge N$,

$$\left| \int_0^M f(t) \, \mathrm{d}t - \ell \right| \le \frac{\varepsilon}{2}$$

Par inégalité triangulaire et comme $A \le M \le x \le M + 1$

$$\left| \int_{M}^{x} f(t) dt \right| \le \int_{M}^{x} |f(t)| dt \le \int_{M}^{M+1} \frac{\varepsilon}{2} dt = \frac{\varepsilon}{2}$$

On en déduit que

$$\forall x \ge B, \left| \int_0^x f(t) dt - \ell \right| \le \varepsilon$$

Par conséquent $\int_0^{+\infty} f(t) dt$ converge et

$$\int_0^{+\infty} f(t) dt = \ell = \lim_{n \to +\infty} \int_0^n f(t) dt$$

2. Une des implications reste évidemment vraie : si $\int_0^{+\infty} f(t) dt$ converge, alors la suite $n \mapsto \int_0^n f(t) dt$ converge. La réciproque est fausse en genéral. On peut par exemple considérer $f: t \mapsto \cos(\pi t)$. Pour tout $n \in \mathbb{N}$,

$$\int_{0}^{n} f(t) dt = \frac{1}{\pi} \left[\sin(\pi t) \right]_{0}^{n} = 0$$

Mais

$$\int_0^{2n+1/2} f(t) dt = \frac{1}{\pi} \left[\sin(\pi t) \right]_0^{2n+1/2} = \frac{1}{\pi}$$

donc l'intégrale $\int_0^{+\infty} f(t) dt$ diverge.

Calculs

Solution 14

Première méthode:

L'intégrale converge puisque $t\mapsto e^{-a^2t^2-\frac{b^2}{t^2}}$ est prolongeable par continuité en 0 et que $e^{-a^2t^2-\frac{b^2}{t^2}}$ $\underset{t\to+\infty}{\sim} e^{-a^2t^2}$ qui est intégrable sur $[0,+\infty[$. Posons $u=at-\frac{b}{t}$. Ceci définit un \mathcal{C}^1 -difféomorphisme de $]0,+\infty[$ sur \mathbb{R} . On a alors $t=\frac{u+\sqrt{u^2+4ab}}{2a}$ (on retient uniquement la solution positive de l'équation $u=at-\frac{b}{t}$). Remarquons que $u^2=a^2t^2+\frac{b^2}{t^2}-2ab$. On a alors

$$\int_{0}^{+\infty} e^{-a^{2}t^{2} - \frac{b^{2}}{t^{2}}} dt$$

$$= \int_{-\infty}^{+\infty} e^{-u^{2} - 2ab} \left(1 + \frac{u}{\sqrt{u^{2} + 4ab}} \right) \frac{du}{2a}$$

$$= \frac{e^{-2ab}}{2a} \left(\int_{-\infty}^{+\infty} e^{-u^{2}} du + \int_{-\infty}^{+\infty} \frac{ue^{-u^{2}}}{\sqrt{u^{2} + 4ab}} du \right)$$

Le passage a dernière ligne est valide puisque les deux dernières intégrales sont convergentes. De plus, on sait que $\int_{-\infty}^{+\infty} e^{-u^2} du = \sqrt{2\pi}$ et $\int_{-\infty}^{+\infty} \frac{ue^{-u^2}}{\sqrt{u^2+4ab}} du = 0$ car la fonction $u \mapsto \frac{ue^{-u^2}}{\sqrt{u^2+4ab}}$ est impaire. Par conséquent :

$$\int_0^{+\infty} e^{-a^2t^2 - \frac{b^2}{t^2}} dt = \frac{e^{-2ab}\sqrt{2\pi}}{2a}$$

Deuxième méthode : Posons $f(b,t)=e^{-a^2t^2-\frac{b^2}{t^2}}$ et $I(b)=\int_0^{+\infty}f(b,t)\,\mathrm{d}t$. La fonction $b\mapsto f(b,t)$ est dérivable sur $\mathbb R$ et

$$\frac{\partial f}{\partial h}(b,t) = -\frac{2b}{t^2}f(b,t)$$

De plus $b \mapsto \frac{\partial f}{\partial b}(b,t)$ est continue sur \mathbb{R}_+^* pour tout $t \in]0,+\infty[$. Enfin, pour $b \in [b_1,b_2]$ avec $0 < b_1 < b_2$,

$$\left| \frac{\partial f}{\partial b}(b,t) \right| \le \frac{2b_2}{t^2} e^{-a^2 t^2 - \frac{b_1^2}{t^2}}$$

cette dernière expression étant intégrable sur $]0, +\infty[$. Le théorème de dérivation sous l'intégrale nous donne donc $I'(b) = -\int_0^{+\infty} \frac{2b}{t^2} f(b,t) dt$ pour tout b > 0. Posons alors $u = \frac{b}{at}$. On a alors :

$$\int_0^{+\infty} \frac{2b}{t^2} f(b, t) dt = 2a \int_0^{+\infty} e^{-\frac{b^2}{u^2} - a^2 u^2} du = 2a I(b)$$

La fonction $b\mapsto \mathrm{I}(b)$ est donc solution de l'équation différentielle y'=-2ay sur $]0;+\infty[$. Il existe donc $\mathrm{C}\in\mathbb{R}$ tel que $\mathrm{I}(b)=\mathrm{C}e^{-2ab}$ pour tout $b\in\mathbb{R}^*$. Enfin $b\mapsto f(b,t)$ est continue sur \mathbb{R} pour tout $t\in]0,+\infty[$ et $|f(b,t)|\leq e^{-a^2t^2}$ pour tout $b\in\mathbb{R}$. Le théorème de continuité sous l'intégrale nous dit donc que $b\mapsto \mathrm{I}(b)$ est continue sur \mathbb{R} et notamment en 0. Par continuité, $\mathrm{I}(b)=\mathrm{C}e^{-2ab}$ pour tout $b\geq0$. En particulier C = I(0). Or I(0) = $\int_0^{+\infty} e^{-a^2} t^2 dt = \frac{\sqrt{2\pi}}{2a}$ en effectuant le changement de variable u = at. On obtient donc :

$$\int_0^{+\infty} e^{-a^2t^2 - \frac{b^2}{t^2}} dt = \frac{e^{-2ab}\sqrt{2\pi}}{2a}$$

Solution 15

- 1. Posons $f_{n,\alpha}(x) = \frac{x^n}{\sqrt{(1-x)(1+\alpha x)}}$. $f_{n,\alpha}$ est continue sur [0,1[car le dénominateur ne s'y annule pas. De plus, $f_{n,\alpha}(x) \sim \frac{1}{x-1} \frac{1}{\sqrt{1+\alpha}} (1-x)^{-\frac{1}{2}}$. Or $x \mapsto (1-x)^{-\frac{1}{2}}$ est intégrable sur un voisinage de 1. On en déduit que $f_{n,\alpha}$ est intégrable sur [0,1[.
- 2. Tout d'abord

$$I_0(0) = \int_0^1 \frac{\mathrm{d}x}{\sqrt{1-x}} = -2\left[\sqrt{1-x}\right]_0^1 = 2$$

Ensuite,

$$t^2 = \frac{1+\alpha x}{1-x} = \frac{\alpha+1}{1-x} - \alpha$$

On en déduit que

$$2t dt = \frac{\alpha + 1}{(1 - x)^2} dx$$

Or

$$t(1-x) = \sqrt{(1-x)(1+\alpha x)}$$

d'où

$$\frac{dx}{\sqrt{(1-x)(1+\alpha x)}} = \frac{2(1-x)}{\alpha + 1} dt = \frac{2 dt}{t^2 + \alpha}$$

Ainsi

$$I_0(\alpha) = \int_1^{+\infty} \frac{2 dt}{t^2 + \alpha}$$

- Si $\alpha = 0$, on a déjà vu que $I_0(0) = 0$.
- Si $\alpha > 0$, alors

$$I_0(\alpha) = \left[\frac{2}{\sqrt{\alpha}} \arctan \frac{t}{\sqrt{\alpha}}\right]_1^{+\infty} = \frac{\pi}{\sqrt{\alpha}} - \frac{2}{\sqrt{\alpha}} \arctan \frac{1}{\sqrt{\alpha}} = \frac{2}{\sqrt{\alpha}} \arctan \sqrt{\alpha}$$

• Si α < 0, alors on effectue le changement de variable $u = \frac{1}{t}$ et

$$I_0(\alpha) = \int_0^1 \frac{2 \, du}{1 + \alpha u^2} = \frac{2}{\sqrt{-\alpha}} \operatorname{argth} \sqrt{-\alpha}$$

On voit facilement qu'avec les expressions obtenues, les limites à droite et à gauche de I_0 en 0 sont égales à 2. Or $I_0(0) = 2$ donc I_0 est continue en 0.

3. Soit $n \in \mathbb{N}^*$. Posons $u(x) = \sqrt{(1-x)(1+\alpha x)}$ et $g(x) = x^n u(x)$. On a

$$g'(x) = nx^{n-1}u(x) + \frac{1}{2}x^n \frac{\alpha - 1 - 2\alpha x}{u(x)}$$

$$= n\frac{x^{n-1}(1-x)(1+\alpha x)}{u(x)} + \frac{\alpha - 1}{2}\frac{x^n}{u(x)} - \alpha \frac{x^{n+1}}{u(x)}$$

$$= n\frac{x^{n-1}}{u(x)} + \left(n + \frac{1}{2}\right)(\alpha - 1)\frac{x^n}{u(x)} - (n+1)\alpha \frac{x^{n+1}}{u(x)}$$

En intégrant cette dernière égalité sur [0, 1], on obtient :

$$nI_{n-1}(\alpha) + \left(n + \frac{1}{2}\right)(\alpha - 1)I_n(\alpha) - (n+1)\alpha I_{n+1}(\alpha) = g(1) - g(0) = 0$$

• Pour $\alpha = 0$, la relation devient :

$$nI_{n-1}(0) - \left(n + \frac{1}{2}\right)I_n(0) = 0$$

Par récurrence, on a donc

$$I_n(0) = \frac{(2n+1) \times (2n-1) \times \dots \times 5 \times 3}{(2n) \times (2n-2) \times \dots \times 4 \times 2} I_0$$

On a $I_0(0)=2$ et on multiplie au numérateur et au dénominateur par $(2n)\times(2n-2)\times\cdots\times4\times2$ de sorte que :

$$I_n(0) = \frac{(2n+1)!}{2^{2n-1}(n!)^2} = \frac{2n+1}{2^{2n-1}} \binom{2n}{n}$$

• Pour $\alpha = 1$, la relation devient :

$$nI_{n-1}(1) - (n+1)I_{n+1}(1) = 0$$

Par récurrence, on obtient :

$$\mathbf{I}_{2p}(1) = \frac{(2p-1)\times(2p-3)\times\cdots\times3\times1}{(2p)\times(2p-2)\times\cdots\times4\times2}\mathbf{I}_0(1) = \frac{(2p)!}{2^{2p}(p!)^2}\mathbf{I}_0(1) = \frac{\pi}{2^{2p+1}}\binom{2p}{p}$$

car $I_0(1) = \arcsin(1) = \frac{\pi}{2}$. On obtient également par récurrence :

$$I_{2p+1}(1) = \frac{(2p) \times (2p-2) \times \dots \times 4 \times 2}{(2p+1) \times (2p-1) \times \dots \times 5 \times 3} I_1(1) = \frac{2^{2p} (p!)^2}{(2p+1)!} = \frac{2^{2p}}{(2p+1)\binom{2p}{p}}$$

 $car I_1(1) = 1.$

Solution 16

Notons f la fonction intégrée. Cette fonction est continue sur $]0, +\infty[$. De plus,

$$f(t) \underset{t \to 0+}{\sim} -2\ln(t)$$

donc

$$f(t) = o(1/\sqrt{t})$$

Ainsi f est intégrable sur [0, 1]. De plus,

$$f(t) \sim_{t \to +\infty} \frac{1}{t^2}$$

donc f est également intégrable sur $[1, +\infty[$. L'intégrale définissant I converge donc.

On écrit alors

$$I = \int_0^{+\infty} 1 \cdot \ln\left(1 + \frac{1}{t^2}\right) dt$$

et on intègre par parties. D'après les équivalents précédents,

$$tf(t) \underset{t\to 0^+}{\sim} -2t \ln(t)$$

et

$$tf(t) \sim \frac{1}{t}$$

donc

$$\lim_{t \to 0^+} tf(t) = \lim_{t \to +\infty} tf(t) = 0$$

On en déduit que

$$I = [tf(t)]_0^{+\infty} - \int_0^{+\infty} tf'(t) dt$$

$$= -\int_0^{+\infty} t \cdot \frac{-2/t^3}{1 + 1/t^2} dt$$

$$= 2\int_0^{+\infty} \frac{dt}{1 + t^2}$$

$$= 2 \left[\arctan(t) \right]_0^{+\infty} = \pi$$

Solution 17

Posons

$$J(x) = \int_0^{+\infty} \frac{\ln t}{x^2 + t^2} dt$$

pour x > 0. En effectuant le changement de variable $u = \frac{t}{x}$, on trouve

$$J(x) = \frac{\ln x}{x} \int_0^{+\infty} \frac{du}{1 + u^2} + \frac{1}{x} \int_0^{+\infty} \frac{\ln u}{1 + u^2} du$$

D'une part

$$\int_0^{+\infty} \frac{\mathrm{d}u}{1+u^2} = \lim_{+\infty} \arctan - \arctan(0) = \frac{\pi}{2}$$

D'autre part en effectuant le changement de variable $v = \frac{1}{u}$ dans $I = \int_0^{+\infty} \frac{\ln u}{1 + u^2} du$, on obtient I = -I d'où I = 0. Ainsi pour tout x > 0,

$$J(x) = \frac{\pi}{2} \cdot \frac{\ln x}{x}$$

On a

$$J'(x) = \frac{\pi}{2} \cdot \frac{1 - \ln x}{x^2}$$

d'où J'(x) > 0 pour x < e et J'(x) < 0 pour x > e. Ainsi J admet un maximum en e et celui-ci vaut J(e) = $\frac{\pi}{2e}$.

Solution 18

- 1. Posons $f_a(t) = \frac{1}{(1+t^2)(1+t^a)}$ pour $t \in \mathbb{R}_+^*$. Tout d'abord, f_a est clairement continue sur \mathbb{R}_+^* . Lorsque a > 0, $f_a(t) \sim 1$ et $f_a(t) \sim \frac{1}{t^{a+2}}$ donc f_a est intégrable sur \mathbb{R}_+^* (a+2>1). Lorsque a = 0, $f_a(t) \sim \frac{1}{2}$ et $f_a(t) \sim \frac{1}{2t^2}$ donc f_a est intégrable sur \mathbb{R}_+^* . Lorsque a < 0, $f_a(t) \sim \frac{1}{2}$ et $f_a(t) \sim \frac{1}{2}$ donc f_a est intégrable sur \mathbb{R}_+^* .
- 2. Par la relation de Chasles,

$$J(a) = \int_0^1 f_a(t) dt + \int_1^{+\infty} f_a(t) dt$$

Par le changement de variable $t \mapsto \frac{1}{t}$,

$$\int_{1}^{+\infty} f_a(t) dt = \int_{0}^{1} f_{-a}(t) dt$$

On en déduit la formule demandée.

3.

$$\begin{split} \mathrm{I}(a) &= \mathrm{J}(a) + \mathrm{J}(-a) \\ &= \int_0^1 (f_a(t) + f_{-a}(t)) \, \mathrm{d}t \\ &= \int_0^1 \frac{(1+t^{-a}) + (1+t^a)}{(1+t^2)(1+t^a)(1+t^{-a})} \, \mathrm{d}t \\ &= \int_0^1 \frac{2+t^a+t^{-a}}{(1+t^2)(2+t^a+t^{-a})} \, \mathrm{d}t \\ &= \int_0^1 \frac{\mathrm{d}t}{1+t^2} = \frac{\pi}{4} \end{split}$$

Solution 19

- 1. Posons $f(x,t) = \frac{\ln t}{x^2 + t^2}$ pour $(x,t) \in \mathbb{R} \times \mathbb{R}_+^*$. Si $x \neq 0$, $f(x,t) = o\left(\frac{1}{t^{\frac{1}{2}}}\right)$ et $f(x,t) = o\left(\frac{1}{t^{\frac{3}{2}}}\right)$ par croissance comparées donc $t \mapsto f(x,t)$ est intégrable sur \mathbb{R}_+^* . Enfin, $\frac{1}{t} = o\left(\frac{\ln t}{t^2}\right)$ donc $t \mapsto f(0,t)$ n'est pas intégrable au voisinage de 0^+ . Le domaine de définition de F est donc \mathbb{R}^* .
- **2.** Effectuons le changement de variable u = 1/t:

$$F(1) = \int_0^{+\infty} \frac{\ln t}{1 + t^2} dt = -\int_{+\infty}^0 \frac{\ln(1/u)}{1 + (1/u)^2} \cdot \frac{du}{u^2} = -\int_0^{+\infty} \frac{\ln u}{u^2 + 1} du = -F(1)$$

Ainsi F(1) = 0.

3. Soit $x \in \mathbb{R}_+^*$. Effections le changement de variable u = x/t.

$$F(x) = -\int_{+\infty}^{0} \frac{\ln(x/u)}{x^2 + x^2/u^2} \cdot \frac{x \, du}{u^2}$$

$$= \frac{1}{x} \int_{0}^{+\infty} \frac{\ln(x) - \ln(u)}{1 + u^2} \, du$$

$$= \frac{1}{x} \left(\ln(x) \int_{0}^{+\infty} \frac{du}{u^2} - \int_{0}^{+\infty} \frac{\ln u}{u^2} \, du \right)$$

$$= \frac{1}{x} \left(\frac{\pi \ln x}{2} - F(1) \right)$$

$$= \frac{\pi \ln x}{2x}$$

Comme F est clairement paire, $F(x) = \frac{\pi \ln |x|}{2|x|}$ pour $x \in \mathbb{R}^*$.

Solution 20

1. Tout d'abord, $t\mapsto \frac{\sin t}{t}$ est prolongeable en une fonction continue sur $[0,\pi]$ puisque sin $t\sim t$ donc l'intégrale $\int_0^\pi \frac{\sin t}{t}\,\mathrm{d}t$ converge. Ensuite, une primitive de sin sur $[\pi,+\infty[$ est $-\cos$ et la dérivée de $t\mapsto \frac{1}{t}$ est $t\mapsto \frac{1}{t^2}$. De plus, le crochet $\left[-\frac{\cos t}{t}\right]_{\pi}^{+\infty}$ converge car cos est bornée. Par intégrations par parties, $\int_{\pi}^{+\infty} \frac{\sin t}{t}\,\mathrm{d}t$ et $\int_{\pi}^{+\infty} \frac{\cos t}{t^2}\,\mathrm{d}t$ sont de même nature. Comme $\frac{\cos t}{t^2}=\mathcal{O}\left(\frac{1}{t^2}\right)$, $\int_{\pi}^{+\infty} \frac{\cos t}{t^2}\,\mathrm{d}t$ converge donc $\int_{\pi}^{+\infty} \frac{\sin t}{t}\,\mathrm{d}t$ converge également. Finalement, $I=\int_0^{+\infty} \frac{\sin t}{t}\,\mathrm{d}t$ converge.

Remarque. On peut régler les «problèmes» en 0 et en $+\infty$ par une seule intégration par parties en choisissant $t\mapsto 1-\cos t$ comme primitive de sin. Le crochet $\left[\frac{1-\cos t}{t}\right]_0^{+\infty}$ converge car $1-\cos(t)=o(t)$.

2. Puisque

$$\lim_{t \to 0} \frac{\cos(t)\sin(2nt)}{t} = \lim_{t \to 0} \frac{\sin(2nt)}{t} = 2n$$

les fonctions $t\mapsto \frac{\cos(t)\sin(2nt)}{t}$ et $t\mapsto \frac{\sin(2nt)}{t}$ sont prolongeables en des fonctions continues sur $\left[0,\frac{\pi}{2}\right]$. u_n et v_n sont donc bien définies.

3. Remarquons que

$$u_{n+1} - u_n = \int_0^{\frac{\pi}{2}} \frac{\cos(t) \left(\sin((2n+2)t) - \sin(2nt) \right)}{\sin(t)} dt$$

Or $\sin(a) - \sin(b) = 2\sin\left(\frac{a-b}{2}\right)\cos\left(\frac{a+b}{2}\right)$ donc

$$u_{n+1} - u_n = \int_0^{\frac{\pi}{2}} 2\cos(t)\cos((2n+1)t) dt$$

Or $cos(a) cos(b) = \frac{1}{2} (cos(a+b) + cos(a-b))$ donc

$$u_{n+1} - u_n = \int_0^{\frac{\pi}{2}} \cos((2n+2)t) dt + \int_0^{\frac{\pi}{2}} \cos(2nt) dt = \left[\frac{\sin((2n+2)t)}{2n+2}\right]_0^{\frac{\pi}{2}} + \left[\frac{\sin(2nt)}{2n}\right]_0^{\frac{\pi}{2}} = 0$$

La suite (u_n) est donc constante. De plus,

$$u_1 = \int_0^{\frac{\pi}{2}} \frac{\cos(t)\sin(2t)}{\sin(t)} dt = 2 \int_0^{\frac{\pi}{2}} \cos^2(t) dt = \int_0^{\frac{\pi}{2}} (1 + \cos(2t)) dt = \frac{\pi}{2}$$

4. Il s'agit du lemme de Riemann-Lebesgue (hors programme). Soit $\lambda \in \mathbb{R}_+^*$. Comme φ est de classe \mathcal{C}^1 , on peut intégrer par parties :

$$\int_{a}^{b} \varphi(t) \sin(\lambda t) \ \mathrm{d}t = -\frac{1}{\lambda} \left[\varphi(t) \cos(\lambda t) \right]_{a}^{b} + \frac{1}{\lambda} \int_{a}^{b} \varphi'(t) \cos(\lambda t) \ \mathrm{d}t = \frac{\varphi(a) \cos(\lambda a)}{\lambda} - \frac{\varphi(b) \cos(\lambda b)}{\lambda} + \frac{1}{\lambda} \int_{a}^{b} \varphi'(t) \cos(\lambda t) \ \mathrm{d}t$$

Comme cos est bornée,

$$\lim_{\lambda \to +\infty} \frac{\varphi(a)\cos(\lambda a)}{\lambda} = \lim_{\lambda \to +\infty} \frac{\varphi(b)\cos(\lambda b)}{\lambda} = 0$$

Enfin, par inégalité triangulaire,

$$\left| \int_a^b \varphi'(t) \cos(\lambda t) \ \mathrm{d}t \right| \leq \int_a^b |\varphi'(t)| |\cos(\lambda t)| \ \mathrm{d}t \leq \int_a^b |\varphi'(t)| \ \mathrm{d}t$$

donc

$$\lim_{\lambda \to +\infty} \frac{1}{\lambda} \int_{a}^{b} \varphi'(t) \cos(\lambda t) dt = 0$$

Par conséquent

$$\lim_{\lambda \to +\infty} \int_{a}^{b} h(t) \sin(\lambda t) \, dt = 0$$

5. h est bien continue sur $\left[0, \frac{\pi}{2}\right]$. De plus,

$$h(t) = \frac{\sin t - t \cos t}{t \sin t}$$

et $t \sin(t) \sim t$ et $\sin t - t \cos(t) = o(t^2)$ donc h(t) = o(1) i.e. $\lim_{t \to 0} h(t) = 0$.

Par ailleurs, h est de classe \mathcal{C}^1 sur $\left[0, \frac{\pi}{2}\right]$ et

$$h'(t) = -\frac{1}{t^2} + \frac{1}{\sin^2 t} = \frac{t^2 - \sin^2(t)}{t^2 \sin^2(t)}$$

Or $t^2 \sin^2(t) \sim_{t\to 0} t^4$ et

$$\sin^2(t) = t^2 \left(1 - \frac{t^2}{6} + o(t^2) \right)^2 = t^2 - \frac{t^4}{3} + o(t^4)$$

donc $t^2 - \sin^2(t) \underset{t \to 0}{\sim} \frac{1}{3} t^4$. Par conséquent, $\lim_{t \to 0} h'(t) = \frac{1}{3}$.

D'après le théorème de prolongement \mathcal{C}^1 , h se prolonge en une fonction de classe \mathcal{C}^1 sur $\left[0, \frac{\pi}{2}\right]$ que l'on notera encore h dans la suite.

6. Remarquons que

$$u_n - v_n = \int_0^{\frac{\pi}{2}} h(t) \sin(2nt) dt$$

Comme h est \mathcal{C}^1 sur $\left[0, \frac{\pi}{2}\right]$, $\lim_{n \to +\infty} u_n - v_n = 0$ d'après le lemme de Riemman-Lebesgue. Or (u_n) est constante égale à $\frac{\pi}{2}$ donc $\lim_{n \to +\infty} v_n = \frac{\pi}{2}$.

7. Par le changement de variable u = 2nt,

$$v_n = \int_0^{n\pi} \frac{\sin t}{t} \, dt$$

Comme l'intégrale I converge

$$I = \int_{0}^{+\infty} \frac{\sin t}{t} dt = \lim_{n \to +\infty} \int_{0}^{n\pi} \frac{\sin t}{t} dt = \lim_{n \to +\infty} v_n = \frac{\pi}{2}$$

Solution 21

1. Soit $x \in [1, +\infty[$.

$$\int_{1}^{x} \frac{f(at) - f(t)}{t} dt = \int_{1}^{x} \frac{f(at)}{t} dt - \int_{1}^{x} \frac{f(t)}{t} dt$$

En effectuant le changement de variable u = at dans la première intégrale

$$\int_{1}^{x} \frac{f(at) - f(t)}{t} dt = \int_{a}^{ax} \frac{f(t)}{t} dt - \int_{1}^{x} \frac{f(t)}{t} dt$$

Enfin, d'après la relation de Chasles,

$$\int_{1}^{x} \frac{f(at) - f(t)}{t} dt = \int_{x}^{ax} \frac{f(t)}{t} dt - \int_{1}^{a} \frac{f(t)}{t} dt$$

2. Soit $x \in [1, +\infty[$. Comme f est continue, elle admet un minimum m_x et un maximum M_x sur le segment [x, ax]. Alors

$$m_x \int_{x}^{ax} \frac{\mathrm{d}t}{t} \le \int_{x}^{ax} \frac{f(t)}{t} \, \mathrm{d}t \le M_x \int_{x}^{ax} \frac{\mathrm{d}t}{t}$$

ou encore

$$m_x \ln(a) \le \int_x^{ax} \frac{f(t)}{t} dt \le M_x \ln(a)$$

Si a > 1,

$$m_x \le \frac{1}{\ln(a)} \int_x^{ax} \frac{f(t)}{t} \, \mathrm{d}t \le \mathrm{M}_x$$

D'après le théorème des valeurs intermédiaires, il existe donc $c_x \in [x, a_x]$ tel que

$$f(c_x) = \frac{1}{\ln(a)} \int_{x}^{ax} \frac{f(t)}{t} dt$$

ou encore

$$\int_{x}^{ax} \frac{f(t)}{t} dt = f(c_x) \ln(a)$$

Ceci est encore valable si a=1 (prendre $c_x=x$ par exemple). Comme $c_x\geq x$, $\lim_{x\to+\infty}f(c_x)=\ell$ de sorte que

$$\lim_{x \to +\infty} \int_{x}^{ax} \frac{f(t)}{t} dt = \ell \ln(a)$$

On en déduit que $\int_1^{+\infty} \frac{f(at) - f(t)}{t} dt$ converge et que

$$\int_{1}^{+\infty} \frac{f(at) - f(t)}{t} dt = \ell \ln(a) - \int_{1}^{a} \frac{f(t)}{t} dt$$

Solution 22

1. Tout d'abord, $t \mapsto \ln(\sin t)$ est bien continue sur $\left[0, \frac{\pi}{2}\right]$. Par ailleurs,

$$\sin t = t + o(t)$$

donc

$$\ln(\sin t) = \lim_{t \to 0^+} \ln(t) + \ln(1 + o(1)) = \lim_{t \to +\infty} \ln(t) + o(1)$$

A fortiori, comme $\lim_{t\to 0^+} \ln(t) = -\infty$

$$\ln(\sin t) \sim \ln(t)$$

Par croissances comparées, on a donc

$$\ln(\sin t) = o(1/\sqrt{t})$$

Par conséquent, $t \mapsto \ln(\sin t)$ est intégrable sur]0,1]. L'intégrale définissant I converge.

2. Il suffit d'effectuer le changement de variable $u = \pi/2 - t$.

3. Via le changement de variable $u = \pi - t$,

$$I = \int_{\frac{\pi}{2}}^{\pi} \ln(\sin u) \, du$$

Via la relation de Chasles

$$2I = \int_0^{\frac{\pi}{2}} \ln(\sin t) dt + \int_{\frac{\pi}{2}}^{\pi} \ln(\sin t) dt = \int_0^{\pi} \ln(\sin t) dt$$

4.

$$2I = \int_0^{\frac{\pi}{2}} \ln(\sin t) dt + \int_0^{\frac{\pi}{2}} \ln(\cos t) dt$$

$$= \int_0^{\frac{\pi}{2}} \ln(\sin(t)\cos(t)) dt$$

$$= \int_0^{\frac{\pi}{2}} \ln(\sin(2t)/2) dt$$

$$= \int_0^{\frac{\pi}{2}} \ln(\sin(2t)) dt - \frac{\pi \ln 2}{2}$$

$$= \frac{1}{2} \int_0^{\pi} \ln(\sin u) du - \frac{\pi \ln 2}{2} \quad \text{via le changement de variable } u = 2t$$

$$= I - \frac{\pi \ln 2}{2}$$

Finalement, $I = -\frac{\pi \ln 2}{2}$.

Solution 23

Tout d'abord, l'intégrande est continu sur \mathbb{R}_+^* . Par croissances comparées,

$$\frac{e^{-at} - e^{-bt}}{t} = o(1/t^2)$$

et par DL usuel

$$\frac{e^{-at} - e^{-bt}}{t} = b - a + o(1)$$

On en déduit que $t\mapsto \frac{e^{-at}-e^{-bt}}{t}$ est intégrable sur \mathbb{R}_+^* .

Ensuite, pour $\varepsilon > 0$,

$$\int_{c}^{+\infty} \frac{e^{-at} - e^{-bt}}{t} dt = \int_{c}^{+\infty} \frac{e^{-at}}{t} dt - \int_{c}^{+\infty} \frac{e^{-bt}}{t} dt$$

Les deux intégrales convergent encore par croissances comparées. Via les changements de variables u = at et u = bt,

$$\int_{c}^{+\infty} \frac{e^{-at} - e^{-bt}}{t} dt = \int_{ac}^{+\infty} \frac{e^{-u}}{u} du - \int_{bc}^{+\infty} \frac{e^{-u}}{u} dt = \int_{ac}^{b\epsilon} \frac{e^{-u}}{u} du$$

Comme $\frac{e^{-u}}{u} = \frac{1}{u \to 0^+} + \varphi(u)$ avec $\varphi(u) = \mathcal{O}(1)$,

$$\int_{\varepsilon}^{+\infty} \frac{e^{-at} - e^{-bt}}{t} dt = \int_{a\varepsilon}^{b\varepsilon} \frac{dt}{t} + \int_{a\varepsilon}^{b\varepsilon} \varphi(u) du = \ln\left(\frac{b}{a}\right) + \int_{a\varepsilon}^{b\varepsilon} \varphi(u) du$$

et

$$\lim_{\varepsilon \to 0^+} \int_{a\varepsilon}^{b\varepsilon} \varphi(u) \, \mathrm{d}u = 0$$

Finalement.

$$I = \ln\left(\frac{b}{a}\right)$$

Solution 24

• Notons, pour tout *x* positif

$$f(x) = \frac{1}{1+x^3}$$

La fonction f est continue sur \mathbb{R}_+ et

$$f(x) \sim \frac{1}{x^{3}}$$

On déduit donc du théorème de comparaison aux intégrales de Riemann que I converge.

• Après une décomposition en éléments simples élémentaires, on aboutit à :

$$\forall x \in \mathbb{R}_+, \ f(x) = \frac{1}{3} \left(\frac{1}{x+1} + \frac{-x+2}{x^2 - x + 1} \right)$$

d'où, pour tout $x \in \mathbb{R}$

$$f(x) = \frac{1}{3} \left(\frac{1}{x+1} - \frac{1}{2} \cdot \frac{2x-1}{x^2 - x + 1} + \frac{3}{2} \cdot \frac{1}{x^2 - x + 1} \right)$$
$$= \frac{1}{3} \left(\frac{1}{x+1} - \frac{1}{2} \cdot \frac{2x-1}{x^2 - x + 1} + \frac{3}{2} \cdot \frac{1}{(x-1/2)^2 + (\sqrt{3}/2)^2} \right)$$

ainsi, pour tout u positif

$$I(u) = \frac{1}{3} \left(\ln(u+1) - \ln\left(\sqrt{u^2 - u + 1}\right) \right) + \frac{1}{\sqrt{3}} \left(\arctan(2(u-1/2)/\sqrt{3}) + \arctan(1/\sqrt{3}) \right)$$

puis

$$I = \lim_{u \to +\infty} I(u) = \frac{2\pi}{3\sqrt{3}}$$

Solution 25

Pour tout $t \in \mathbb{R}$,

$$|\cos(t)e^{-at}| \le e^{-at}$$
 et $|\sin(t)e^{-at}| \le e^{-at}$

et $t \mapsto e^{-at}$ est intégrable sur \mathbb{R}_+ (par exemple, $e^{-at} = o(1/t^2)$). Ainsi $t \mapsto \cos(t)e^{-at}$ et $t \mapsto \sin(t)e^{-at}$ sont intégrables sur \mathbb{R}_+ . Remarquons que

$$I + iJ = \int_0^{+\infty} e^{it} e^{-at} dt = \int_0^{+\infty} e^{(i-a)t} dt = \left[\frac{e^{(i-a)t}}{i-a} \right]_0^{+\infty} = \frac{1}{a-i} = \frac{a+i}{a^2+1}$$

En effet,

$$\left| \frac{e^{(i-a)t}}{i-a} \right| = \frac{e^{-at}}{|i-a|}$$

donc $\lim_{t\to+\infty} \frac{e^{(i-a)t}}{i-a} = 0$. Comme Let L sont réelles

$$I = \operatorname{Re}\left(\frac{a+i}{a^2+1}\right) = \frac{a}{a^2+1}$$
$$J = \operatorname{Im}\left(\frac{a+i}{a^2+1}\right) = \frac{1}{a^2+1}$$

Solution 26

1.

$$I = \frac{1}{2} \left[\arctan(t/2) \right]_0^{+\infty} = \frac{\pi}{4}$$

2. Par décomposition en éléments simples :

$$\frac{1}{4-t^2} = \frac{1}{4} \left(\frac{1}{2-t} + \frac{1}{2+t} \right)$$

Une primitive de $t\mapsto \frac{1}{4-t^2}$ est donc $t\mapsto \frac{1}{4}\left(-\ln(2-t)+\ln(2+t)\right)$. Puisque $\lim_{t\to 2^-}\frac{1}{4}\left(-\ln(2-t)+\ln(2+t)\right)=+\infty$, l'intégrale J diverge.

3. Une primitive de sin est $-\cos$, qui n'admet pas de limite en $+\infty$ donc l'intégrale K diverge.

4.

$$L = [t \ln t - t]_0^1 = -1$$

5.

$$\mathbf{M} = -\frac{1}{a} \left[e^{-at} \right]_0^{+\infty} = \frac{1}{a}$$

6.

$$N = \frac{1}{3} \left[\arcsin(3t) \right]_0^{\frac{1}{3}} = \frac{\pi}{6}$$

7. Par une décomposition en éléments simples :

$$\frac{1}{t^2 - 3t + 2} = \frac{1}{t - 2} - \frac{1}{t - 1}$$

Ainsi

$$O = \left[\ln \left(\frac{t-2}{t-1} \right) \right]_3^{+\infty} = -\ln \left(\frac{1}{2} \right) = \ln 2$$

8. Une primitive de $t\mapsto \frac{1}{t\ln t} \sup [2,+\infty[$ est $t\mapsto \ln(\ln t)$, qui admet une limite infinie en $+\infty$. L'intégrale P diverge.

Comportements asymptotiques

Solution 27

Notons F l'unique primitive de f sur \mathbb{R}_+ s'annulant en 0. On a donc $F' + F = \varphi$. Par variation de la constante, il existe $\lambda \in \mathbb{R}$ tel que

$$\forall x \in \mathbb{R}_+, \ F(x) = e^{-x} \int_0^x e^t \varphi(t) \ dt + \lambda e^{-x}$$

Notons ℓ la limite de φ en $+\infty$. On a donc

$$\forall x \in \mathbb{R}_+, \ \int_0^x \varphi(t)e^t \ \mathrm{d}t = \int_0^x \ell e^t \ \mathrm{d}t + \int_0^x (\varphi(t) - \ell)e^t \ \mathrm{d}t = \ell(e^x - 1) + \int_0^x (\varphi(t) - \ell)e^t \ \mathrm{d}t$$

Puisque $(\varphi(t)-\ell)e^t = o(e^t)$, que $t \mapsto e^t$ est positive et que l'intégrale $\int_0^{+\infty} e^t dt$ diverge, on a par intégration des relations de comparaison

$$\int_0^x (\varphi(t) - \ell) e^t dt = o\left(\int_0^x e^t dt\right)$$

ou encore

$$\int_0^x (\varphi(t) - \ell)e^t dt = o(e^x)$$

Ainsi

$$\int_0^x \varphi(t)e^t dt = \ell e^x + o(e^x)$$

puis

$$F(x) = \ell + o(1)$$

Ainsi F admet également pour limite ℓ en $+\infty$. Puisque $f = \varphi - F$, f admet pour limite θ en $+\infty$.

Solution 28

1. Posons g = f' + af. Par variation de la constante, il existe $\lambda \in \mathbb{C}$ tel que $f(x) = e^{-ax} \int_0^x e^{at} g(t) dt + \lambda e^{-ax}$ pour $x \in \mathbb{R}_+$. Puisque g = o(1),

$$\int_0^x e^{at} g(t) dt = o\left(\int_0^x |e^{at}| dt\right)$$

Or pour $x \in \mathbb{R}_+$,

$$\int_{0}^{x} |e^{at}| dt = \int_{0}^{x} e^{\text{Re}(a)t} dt = \frac{1}{\text{Re}(a)} (e^{\text{Re}(a)x} - 1)$$

On en déduit que

$$\int_0^x e^{at} g(t) dt = o(e^{\operatorname{Re}(a)x})$$

puis finalement que

$$\lim_{x \to +\infty} e^{-ax} \int_0^x e^{at} g(t) dt = 0$$

Par ailleurs, il est clair que $\lim_{x\to +\infty} e^{-ax} = 0$ puisque $\operatorname{Re}(a) < 0$. Finalement, on a bien $\lim_{+\infty} f = 0$.

- 2. Posons $j = e^{\frac{2i\pi}{3}}$ et g = f' jf. Alors $g' \bar{j}g = f'' + f' + f$ admet une limite nulle en $+\infty$. Puisque $\text{Re}(\bar{j}) < 0$, la première question montre que g admet une limite nulle en $+\infty$. Puisque g = f' jf et Re(j) < 0, la première question montre à nouveau que f admet une limite nulle en $+\infty$.
- 3. Soient $P \in \mathbb{C}[X]$ dont les racines sont toutes de parties réelles strictement négatives et D l'opérateur de dérivation. Si f est une fonction de classe \mathcal{C}^n (avec $n = \deg P$) telle que $\lim_{t \to \infty} P(D)(f) = 0$, alors $\lim_{t \to \infty} f = 0$. Il suffit de raisonner par récurrence sur le degré n de P.

Si n=0, il n'y a rien à démontrer. Supposons le résultat vrai pour un certain $n\in\mathbb{N}$. Soit alors $P\in\mathbb{C}[X]$ de degré n+1 dont les racines sont de parties réelles strictement négatives et f une fonction de classe C^{n+1} sur \mathbb{R}_+ telle que $\lim_{n\to\infty} P(D)(f)=0$. Soit a une racine de P. On peut donc écrire P=(X-a)Q avec deg Q=n. Posons g=Q(a)(f). Alors g'-ag=P(D)(f) admet une limite nulle en $+\infty$. Puisque Re(a)<0, la première question montre que $\lim_{n\to\infty} g=0$. Or g=Q(D)(f) et deg Q=n donc, par hypothèse de récurrence, $\lim_{n\to\infty} f=0$. Par récurrence, le résultat est vrai pour tout $n\in\mathbb{N}$.

Solution 29

1. D'après la théorème fondamental de l'analyse, F: $x \mapsto \int_0^x f(t) dt$ est une primitive de f sur \mathbb{R}_+ . De plus,

$$\forall x \in \mathbb{R}_+^*, \ \frac{F(x) - F(0)}{x - 0} = g(x)$$

donc $\lim_{x\to 0} g(x) = F'(0) = f(0)$.

2. D'après l'inégalité de Cauchy-Schwarz,

$$\forall x \in \mathbb{R}_+, \ |\mathbf{F}(x)| = \left| \int_0^x 1 \cdot f(t) \ \mathrm{d}t \right| \leq \sqrt{\int_0^x \mathrm{d}t} \sqrt{\int_0^x f(t)^2} \ \mathrm{d}t \leq \sqrt{x} \sqrt{\int_0^{+\infty} f(t)^2 \ \mathrm{d}t}$$

En posant C = $\sqrt{\int_0^{+\infty} f(t)^2 dt}$,

$$\forall x \in \mathbb{R}_+^*, \ |g(x)| \le \frac{C}{\sqrt{x}}$$

donc $\lim_{x \to +\infty} g(x) = 0$.

3. Soit $x \in \mathbb{R}_+^*$. Par intégration par parties,

$$\int_0^x g(t)^2 dt = \int_0^x \frac{1}{t^2} F(t)^2 dt = -\left[\frac{F(t)^2}{t}\right]_0^x + 2 \int_0^x \frac{F(t)F'(t)}{t} dt$$

L'intégration par parties est légitime car, par continuité de F en 0,

$$\lim_{t \to 0} \frac{F(t)^2}{t} = \lim_{t \to 0} g(t)F(t) = g(0)F(0) = 0$$

Ainsi

$$\int_0^x g(t)^2 dt = -\frac{F(x)^2}{x} + 2 \int_0^x g(t) f(t) dt \le 2 \int_0^x g(t) f(t) dt$$

Par inégalité de Cauchy-Schwarz,

$$\int_0^x g(t)^2 dt \le 2\sqrt{\int_0^x g(t)^2 dt} \sqrt{\int_0^x f(t)^2 dt} \le 2C\sqrt{\int_0^x g(t)^2 dt}$$

puis

$$\int_0^x g(t)^2 dt \le 4C^2$$

La fonction $x \mapsto \int_0^x g(t)^2 dt$ est croissante (intégrande positive) et majorée donc admet une limite en $+\infty$. L'intégrale $\int_0^{+\infty} g(t)^2 dt$ converge donc i.e. g est de carré intégrable sur \mathbb{R}_+ .

Solution 30

En remarquant que $e^{t^2} \ge 1$, il est clair que $\lim_{t \to \infty} F = +\infty$. Par commodité, on posera dans la suite G = F - F(1). Par intégration par parties,

$$G(x) = \int_{1}^{x} e^{t^{2}} dt = \int_{1}^{x} \frac{2te^{t^{2}}}{2t} dt = \left[\frac{e^{t^{2}}}{2t}\right]_{1}^{x} + \int_{1}^{x} \frac{e^{t^{2}}}{2t^{2}} dt = \frac{e^{x^{2}}}{2x} - \frac{e}{2} + \int_{1}^{x} \frac{e^{t^{2}}}{2t^{2}} dt$$

Il est clair que $\frac{e}{2} = o(G(x))$. De plus, $\frac{e^{t^2}}{2t^2} = o(e^{t^2})$. Or $t \mapsto e^{t^2}$ est positive et $\int_1^{+\infty} e^{t^2} dt$ diverge donc

$$\int_{1}^{x} \frac{e^{t^2}}{2t^2} dt = o(G(x))$$

Ainsi

$$G(x) = \frac{e^{x^2}}{2x} + o(G(x))$$

ou encore

$$G(x) \sim_{x \to +\infty} \frac{e^{x^2}}{2x}$$

Comme $\lim_{+\infty} F = +\infty$, $G = F - F(1) \sim_{+\infty} F$. Ainsi $F(x) \sim_{x \to +\infty} \frac{e^{x^2}}{2x}$

Solution 31

- 1. Il suffit par exemple de remarquer que $e^{-t^2} = o(\frac{1}{t^2})$.
- **2.** Soit $x \in \mathbb{R}_+^*$. Par intégration par parties

$$g(x) = \int_{x}^{+\infty} e^{-t^2} dt = \int_{x}^{+\infty} \frac{-2te^{-t^2}}{-2t} dt = \left[-\frac{e^{-t^2}}{2t} \right]_{x}^{+\infty} - \int_{x}^{+\infty} \frac{e^{-t^2}}{2t^2} dt = \frac{e^{-x^2}}{2x} - \int_{x}^{+\infty} \frac{e^{-t^2}}{2t^2} dt$$

L'intégration par parties est légitimée car $t\mapsto -\frac{e^{-t^2}}{2t}$ admet une limite (nulle) en $+\infty$. De plus, $\frac{e^{-t^2}}{2t^2}=0$ et $t\mapsto e^{-t^2}$ est positive et intégrable au voisinage de $+\infty$. Ainsi

$$\int_{x}^{+\infty} \frac{e^{-t^2}}{2t^2} dt = o(g(x))$$

On en déduit donc que $g(x) \sim \frac{e^{-x^2}}{2x}$.

Solution 32

Remarquons que f est solution de l'équation différentielle y'+y=g avec g=f+f'. Les solutions de l'équation différentielle homogène sont les fonctions $x\mapsto \lambda e^{-x}$ avec $\lambda\in\mathbb{R}$. On applique alors la méthode de variation de la constante. La fonction $x\mapsto \varphi(x)e^{-x}$ où φ est une fonction dérivable sur \mathbb{R} est solution de y'+y=g si et seulement si $\varphi'(x)e^{-x}=g(x)$ pour tout $x\in\mathbb{R}$. On peut donc choisir $\varphi(x)=\int_0^x e^tg(t)\,dt$ pour tout $x\in\mathbb{R}$. Une solution particulière de y'+y=g est donc la fonction $x\mapsto e^{-x}\int_0^x e^tg(t)\,dt$. Les solutions de y'+y=g sont donc les fonctions

$$x \mapsto \lambda e^{-x} + e^{-x} \int_0^x e^t g(t) dt$$

Puisque f est solution de cette équation différentielle, il existe $\lambda \in \mathbb{R}$ telle que

$$\forall x \in \mathbb{R}, \ f(x) = \lambda e^{-x} + e^{-x} \int_0^x e^t g(t) \ dt$$

Puisque g(t) = o(1), $e^t g(t) = o(e^t)$. Or $t \mapsto e^t$ est positive et l'intégrale $\int_0^{+\infty} e^t dt$ diverge donc

$$\int_0^x e^t g(t) dt = o\left(\int_0^x e^t dt\right)$$

ou encore

$$\int_0^x e^t g(t) dt = o(e^x)$$

Ainsi

$$e^{-x} \int_0^x e^t g(t) dt = o(1)$$

On en déduit donc que $\lim_{+\infty} f = 0$.

Solution 33

- 1. Soit $x \in I$. $t \mapsto \frac{e^{-t}}{t}$ est continue sur $[x, +\infty[$ et $\frac{e^{-t}}{t} = o\left(\frac{1}{t^2}\right)$ par croissances comparées. L'intégrale $\int_x^{+\infty} \frac{e^{-t}}{t} dt$ converge donc et f est définie sur I.
- 2. On peut remarquer que

$$\forall x \in I, \ f(x) = f(1) - \int_1^x \frac{e^{-t}}{t} dt$$

donc f est dérivable sur I d'après le théorème fondamental de l'analyse et

$$\forall x \in I, \ f'(x) = -\frac{e^{-x}}{x}$$

3. On sait que $\frac{e^{-t}}{t} \sim \frac{1}{t}$ et l'intégrale $\int_0^1 \frac{dt}{t}$ diverge donc

$$f(x) - f(1) = \int_{x}^{1} \frac{e^{-t}}{t} dt \underset{x \to 0^{+}}{\sim} \int_{x}^{1} \frac{dt}{t} = -\ln(x)$$

 $Comme \lim_{x \to 0^+} -\ln(x) = +\infty,$

$$f(x) \sim_{x\to 0^+} -\ln(x)$$

Par intégration par parties

$$f(x) = \int_{x}^{+\infty} \frac{e^{-t}}{t} dt = -\left[\frac{e^{-t}}{t}\right]_{x}^{+\infty} - \int_{x}^{+\infty} \frac{e^{-t}}{t^{2}} dt = \frac{e^{-x}}{x} - \int_{x}^{+\infty} \frac{e^{-t}}{t^{2}} dt$$

Comme $\frac{e^{-t}}{t^2} = o\left(\frac{e^{-t}}{t}\right)$ et que $\int_1^{+\infty} \frac{e^{-t}}{t} dt$ diverge,

$$\int_{x}^{+\infty} \frac{e^{-t}}{t^{2}} dt = o\left(\int_{x}^{+\infty} \frac{e^{-t}}{t} dt\right)$$

Ainsi

$$f(x) \sim \frac{e^{-x}}{x \to +\infty}$$

4. Tout d'abord, f est continue sur I. De plus, $f(x) \sim -\ln(x)$ donc $f(x) = o\left(\frac{1}{\sqrt{x}}\right)$ par croissances comparées. Enfin, $f(x) \sim \frac{e^{-x}}{x}$ donc $f(x) = o\left(\frac{1}{x^2}\right)$ par croissances comparées. Ainsi f est intégrable sur I et $\int_0^{+\infty} f(t) dt$ converge. Par intégration par parties,

$$\int_0^{+\infty} f(t) dt = [tf(t)]_0^{+\infty} - \int_0^{+\infty} tf'(t) dt$$

Cette intégration par parties est légitime car

$$tf(t) \underset{t \to 0^+}{\sim} -t \ln t$$
 et $tf(t) \underset{t \to +\infty}{\sim} e^{-t}$

de sorte que

$$\lim_{t \to 0^+} tf(t) = \lim_{t \to +\infty} tf(t) = 0$$

Ainsi

$$\int_0^{+\infty} f(t) \, dt = -\int_0^{+\infty} t f'(t) = \int_0^{+\infty} e^{-t} \, dt = 1$$

Solution 34

L'intégrale $\int_1^{+\infty} \frac{1-e^{-t}}{t^2} dt$ converge puisque $\frac{1-e^{-t}}{t^2} \sim \frac{1}{t^2}$. Alors, en posant

$$G(x) = \int_{x}^{+\infty} \frac{1 - e^{-t}}{t^2} dt$$

on a donc $\lim_{x\to +\infty} G(x) = 0$. Par conséquent,

$$F(x) = G(x) - G(7x) \xrightarrow[x \to +\infty]{} 0$$

Remarquons que

$$\frac{1 - e^{-t}}{t^2} = \frac{1}{t} + \mathcal{O}(1)$$

On en déduit que l'intégrale $\int_0^1 \left(\frac{1-e^{-t}}{t^2} - \frac{1}{t}\right) dt$ converge. Notons C sa valeur. Alors en posant pour x > 0

$$H(x) = \int_{x}^{1} \left(\frac{1 - e^{-t}}{t^{2}} - \frac{1}{t} \right) dt$$

on a $\lim_{x\to 0^+} H(x) = C$. Par conséquent,

$$F(x) = H(7x) - H(x) + \int_{x}^{7x} \frac{dt}{t} = H(7x) - H(x) + \ln(7) \xrightarrow[x \to 0^{+}]{} C - C + \ln(7) = \ln(7)$$

Solution 35

1. Remarquons que $\frac{\arctan t}{t} \sim \frac{\pi}{2t}$ et $\int_{1}^{+\infty} \frac{dt}{t}$ diverge. Par intégration de relation d'équivalence pour des fonctions positives

$$\int_{1}^{x} \frac{\arctan t}{t} dt \sim \int_{1}^{x} \frac{\pi dt}{2t} = \frac{\pi \ln x}{2}$$

2. Remarquons que $\frac{\ln t}{t^2} \sim \frac{1}{t^2} \operatorname{et} \int_1^{+\infty} \frac{\mathrm{d}t}{t^2}$ converge. Par intégration de relation d'équivalence pour des fonctions positives

$$\int_{x}^{+\infty} \frac{\operatorname{th} t}{t^{2}} \, \mathrm{d}t \underset{x \to +\infty}{\sim} \int_{x}^{+\infty} \frac{\mathrm{d}t}{t^{2}} = \frac{1}{x}$$

3. Remarquons que $\frac{e^t}{t^3} \sim_{t\to 0^+} \frac{1}{t^3}$ et $\int_0^1 \frac{dt}{t^3}$ diverge. Par intégration de relation d'équivalence pour des fonctions positives

$$\int_{x}^{1} \frac{e^{t}}{t^{3}} dt \underset{x \to 0^{+}}{\sim} \int_{x}^{1} \frac{dt}{t^{3}} = -\frac{1}{2} + \frac{1}{2x^{2}} \underset{x \to 0^{+}}{\sim} \frac{1}{2x^{2}}$$

4. Remarquons que $\frac{\sin t}{t^{\frac{3}{2}}} \sim \frac{1}{t^{\frac{1}{2}}}$ et $\int_0^1 \frac{dt}{t^{\frac{1}{2}}}$ converge. Par intégration de relation d'équivalence pour des fonctions positives

$$\int_0^x \frac{\sin t}{t^{\frac{3}{2}}} \ \mathrm{d}t \underset{x \to 0^+}{\sim} \int_0^x \frac{\mathrm{d}t}{t^{\frac{1}{2}}} = 2\sqrt{x}$$

Suites d'intégrales

Solution 36

- 1. Soit $n \in \mathbb{N}^*$. L'application $t \mapsto f(t)e^{-t/n}$ est continue sur le segment $[0,\pi]$ donc u_n est défini. Cette application est également continue sur \mathbb{R}_+ et $f(t)e^{-t/n} = o(1/t^2)$ de sorte que v_n est défini.
- 2. Soit $n \in \mathbb{N}^*$. Puisque l'intégrale définissant v_n converge, on peut écrire que

$$v_n = \sum_{k=0}^{+\infty} \int_{k\pi}^{(k+1)\pi} f(t)e^{-t/n} dt$$

Mais en effectuant un changement de variable dans chaque intégrale, on obtient

$$v_n = \sum_{k=0}^{+\infty} \int_0^{\pi} f(t + k\pi) e^{-(t + k\pi)/n} dt$$

Par π -périodicité de f, on en déduit que

$$v_n = \sum_{k=0}^{+\infty} e^{-k\pi/n} \int_0^{\pi} f(t)e^{-t/n} dt = u_n \sum_{k=0}^{+\infty} e^{-k\pi/n} = u_n a_n$$

avec

$$a_n = \sum_{k=0}^{+\infty} e^{-k\pi/n} = \frac{1}{1 - e^{-\pi/n}}$$

3. Il s'agit jute d'un équivalent classique, à savoir $e^u-1 \underset{u\to 0}{\sim} u$. On en déduit immédiatement que $a_n \underset{n\to +\infty}{\sim} \frac{n}{\pi}$.

4. Remarquons tout d'abord que comme $\int_0^{\pi} f(t) dt = 0$,

$$u_n = \int_0^{\pi} f(t)(e^{-t/n} - 1) dt$$

On remarque que $e^{-t/n}-1 \sim -\frac{t}{n}$, ce qui permet de conjecturer que $u_n \sim -\frac{1}{n} f_0^\pi t f(t)$ dt (ce qui précède n'est en aucun cas une preuve). On en déduirait alors la limite de (v_n) . On propose alors deux méthodes. **Avec le théorème de convergence dominée.** Posons $f_n: t \mapsto (e^{-t/n}-1)f(t)$. La suite de fonctions (f_n) converge simplement vers

Avec le théorème de convergence dominée. Posons $f_n: t \mapsto (e^{-t/n} - 1)f(t)$. La suite de fonctions (f_n) converge simplement vers la fonction nulle. De plus, pour tout $n \in \mathbb{N}^*$, $|f_n| \le |f| \sup [0, \pi]$ et |f| est évidemment intégrable sur $[0, \pi]$. D'après le théorème de convergence dominée, (u_n) converge vers 0.

On remarque ensuite que la suite de fonctions (nf_n) converge simplement vers la fonction $t \mapsto -f(t)$. De plus,

$$\forall n \in \mathbb{N}^*, \ \forall t \in [0, \pi], \ |nf_n(t)| = n(1 - e^{-t/n})|f(t)| \le t|f(t)|$$

en utilisant la convexité de exp. La fonction $t\mapsto t|f(t)|$ est à nouveau intégrable sur le segment $[0,\pi]$ donc, par convergence dominée, (nu_n) converge vers $-\int_0^\pi t f(t) \, dt$. Puisque $v_n = a_n u_n$ et $a_n \sim \int_{n\to+\infty}^\pi \frac{n}{\pi}$, $\lim_{n\to+\infty} v_n = -\frac{1}{\pi} \int_0^\pi t f(t) \, dt$.

Sans le théorème de convergence dominée. Remarquons que f est continue donc bornée sur le segment $[0, \pi]$ (elle est même bornée sur \mathbb{R}_+ puisqu'elle est π -périodique). En notant M un majorant de |f| sur $[0, \pi]$,

$$|u_n| \le K \int_0^{\pi} (1 - e^{-t/n}) dt = K (\pi + n(e^{-\pi/n} - 1))$$

Or via le même équivalent usuel que précédemment,

$$\lim_{n \to +\infty} n(e^{-\pi/n} - 1) = -\pi$$

de sorte que (u_n) converge bien vers 0.

On constate que

$$u_n + \frac{1}{n} \int_0^{\pi} t f(t) dt = \int_0^{\pi} f(t) \left(e^{-\frac{t}{n}} - 1 + \frac{t}{n} \right) dt$$

L'inégalité de Taylor-Lagrange donne pour $t \in \mathbb{R}_+$

$$\left| e^{-\frac{t}{n}} - 1 + \frac{t}{n} \right| \le \frac{t^2}{2n^2}$$

Par inégalité triangulaire, on obtient donc

$$\left| u_n + \frac{1}{n} \int_0^{\pi} t f(t) \, dt \right| \le \frac{K}{2n^2} \int_0^{\pi} t^2 \, dt = \frac{K\pi^3}{6n^2}$$

En particulier,

$$u_n + \frac{1}{n} \int_0^{\pi} t f(t) dt = \mathcal{O}\left(\frac{1}{n^2}\right)$$

A fortiori

$$u_n \underset{n \to +\infty}{\sim} -\frac{1}{n} \int_0^{\pi} t f(t) dt$$

Via l'équivalent de (a_n) précédemment trouvé, on en déduit que

$$\lim_{n \to +\infty} v_n = -\frac{1}{\pi} \int_0^{\pi} t f(t) \, dt$$

Solution 37

1. Tout d'abord, $\cos(2nt) \sim 1$. De plus,

$$\ln(\sin t) = \ln(t + o(t))$$

$$= \ln(t(1 + o(1)))$$

$$= \ln t + \ln(1 + o(1))$$

$$= \ln t + o(1)$$

$$= \ln t + o(\ln t)$$

$$\sim \ln t$$

$$t \to 0$$

Finalement, $f_n(t) \sim \ln t$. Par croissances comparées, $f_n(t) = o\left(1/\sqrt{t}\right)$. Puisque f_n est également continue sur $\left]0, \frac{\pi}{2}\right]$, elle est intégrable sur cet intervalle par comparaison à une fonction de Riemann intégrable.

2. On intègre par parties. La fonction $t \mapsto \ln(\sin t)$ est de classe \mathcal{C}^1 sur $\left[0, \frac{\pi}{2}\right]$ et sa dérivée est $t \mapsto \frac{\cos t}{\sin t}$. De même, la fonction $t \mapsto \sin(2nt)$ est de classe \mathcal{C}^1 sur $\left[0, \frac{\pi}{2}\right]$ et sa dérivée est $t \mapsto 2n\cos(2nt)$. Enfin, $\sin(2nt)\ln(\sin t) \approx 2nt \ln t$ donc $\lim_{t\to 0}\sin(2nt)\ln(\sin t) = 0$ par croissances comparées. Cela légitime l'intégration par parties.

$$J_n = 2nI_n = \int_0^{\frac{\pi}{2}} 2n\cos(2nt)\ln(\sin t) dt = \left[\sin(2nt)\ln(\sin t)\right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} \frac{\cos t}{\sin t} \cdot \sin(2nt) dt = -\int_0^{\frac{\pi}{2}} \frac{\cos t}{\sin t} \cdot \sin(2nt) dt$$

3.

$$J_{n+1} - J_n = -\int_0^{\frac{\pi}{2}} \frac{\cos t}{\sin t} \cdot (\sin((2n+2)t) - \sin(2nt)) dt$$

$$= -2\int_0^{\frac{\pi}{2}} \frac{\cos t}{\sin t} \cdot \sin(t) \cos((2n+1)t) dt$$

$$= -2\int_0^{\frac{\pi}{2}} \cos t \cos((2n+1)t) dt$$

$$= -\int_0^{\frac{\pi}{2}} (\cos((2n+2)t) + \cos(2nt)) dt = 0$$

Ainsi la suite (J_n) est constante. De plus,

$$J_1 = -2 \int_0^{\frac{\pi}{2}} \frac{\cos t}{\sin t} \cdot \sin(2t) dt = -4 \int_0^{\frac{\pi}{2}} \cos^2(t) dt = -2 \int_0^{\frac{\pi}{2}} (\cos(2t) + 1) dt = -\pi$$

Finalement, pour tout $n \in \mathbb{N}^*$, $J_n = -\pi$ et $I_n = -\frac{\pi}{2n}$.

Solution 38

De manière plus générale, posons $J_{n,p} = \int_0^1 t^n \ln(t)^p dt$ pour $(n,p) \in \mathbb{N}^2$. $J_{n,0}$ est clairement définie et, pour p > 0, $t^n \ln(t)^p = o\left(\frac{1}{\sqrt{t}}\right)$ par croissances comparées donc $t \mapsto t^n \ln(t)^p$ est intégrable sur]0,1]. $J_{n,p}$ est donc également définie pour p > 0. Par intégration par parties, lorsque p > 0,

$$\int_0^1 t^n \ln(t)^p dt = \left[\frac{t^{n+1}}{n+1} \ln(t)^p \right]_0^1 - \frac{p}{n+1} \int_0^1 t^n \ln(t)^{p-1} dt$$

Cette intégration par parties est légitime car la seconde intégrale, à savoir $J_{n,p-1}$ converge. De plus, le crochet est nul par croissances comparées. Ainsi

 $\mathbf{J}_{n,p} = -\frac{p}{n+1} \mathbf{J}_{n,p-1}$

Par une récurrence facile

$$J_{n,p} = \frac{(-1)^p p!}{(n+1)^p} J_{n,0} = \frac{(-1)^p p!}{(n+1)^{p+1}}$$

En particulier,

$$I_n = J_{n,n} = \frac{(-1)^n n!}{(n+1)^{n+1}}$$

Solution 39

- 1. Par croissances comparées, $\ln^n(x) = o(1/\sqrt{1})$ donc I_n converge.
- **2.** Soit $n \in \mathbb{N}^*$. On écrit

$$I_n = \int_0^1 1 \cdot \ln^n(x) \, \mathrm{d}x$$

et on intégre par parties. Par croissances comparées, $\lim_{x\to 0^+} x \ln^n(x) = 0$ donc

$$I_n = \left[x \ln^n(x) \right]_0^1 - \int_0^1 x \cdot \frac{1}{x} \cdot n \cdot \ln^{n-1}(x) \, dx = -nI_{n-1}$$

3. Comme $I_0 = 1$. Une récurrence évidente montre que $I_n = (-1)^n n!$.

Fonctions définies par des intégrales

Solution 40

- **1.** Tout d'abord, la fonction $t \mapsto t^{x-1}e^{-t}$ est continue sur \mathbb{R}_+^* .
 - De plus, $t^{x-1}e^{-t} \sim t^{x-1}$ et la fonction positive $t \mapsto t^{x-1}$ est intégrable au voisinage de 0^+ si et seulement si x > 0.
 - Enfin, $t^{x-1}e^{-t} = o(1/t^2)$ et la fonction positive $t \mapsto 1/t^2$ est intégrable au voisinage de $+\infty$.

Ainsi $t \mapsto t^{x-1}e^{-t}$ est intégrable sur \mathbb{R}_+^* si et seulement si x > 0. Comme cette fonction est positive, l'intégrale $\int_0^{+\infty} t^{x-1}e^{-t} dt$ converge si et seulement si x > 0. Le domaine de définition de Γ est donc \mathbb{R}_+^* .

2. Soit $x \in \mathbb{R}_+^*$. La fonction $t \mapsto t^x$ est de classe \mathcal{C}^1 sur \mathbb{R}_+^* de dérivée $t \mapsto xt^{x-1}$. La fonction $t \mapsto -e^{-t}$ est également de classe \mathcal{C}^1 sur \mathbb{R}_+^* de dérivée $t \mapsto e^{-t}$. Par intégration par parties,

$$\int_0^{+\infty} t^x e^{-t} dt = \left[-t^x e^{-t} \right]_0^{+\infty} + \int_0^{+\infty} x t^{x-1} e^{-t} dt$$

L'égalité est assurée par la convergence des deux intégrales. De plus, comme x > 0

$$\lim_{t\to 0^+} t^x e^{-t} = 0$$

et, par croissances comparées,

$$\lim_{t \to +\infty} t^x e^{-t} = 0$$

On en déduit que

$$\Gamma(x+1) = \int_0^{+\infty} t^x e^{-t} dt = x \int_0^{+\infty} t^{x-1} e^{-t} dt = x \Gamma(x)$$

3. On a donc $\Gamma(n+1) = n\Gamma(n)$ pour tout $n \in \mathbb{N}^*$. Comme $\Gamma(1) = 1$, une récurrence évidente montre que $\Gamma(n) = (n-1)!$ pour tout $n \in \mathbb{N}^*$.

On peut vérifier avec Python.

```
from scipy.integrate import quad
from math import factorial
from numpy import exp,inf
def gamma(x):
    return quad(lambda t:t**(x-1)*exp(-t),0,inf)[0]

for n in range(1,10):
    print(gamma(n),factorial(n-1))
```

Solution 41

- 1. Tout d'abord, la fonction $t \mapsto t^{x-1}(1-t)^{y-1}$ est continue sur [0,1].
 - De plus, $t^{x-1}(1-t)^{y-1} \sim_{t\to 0^+} t^{x-1}$ et la fonction positive $t\mapsto t^{x-1}$ est intégrable au voisinage de 0^+ si et seulement si x>0.
 - Enfin, $t^{x-1}(1-t)^{y-1} \underset{t\to 1^-}{\sim} (1-t)^{y-1}$ et la fonction positive $t\mapsto (1-t)^{y-1}$ est intégrable au voisinage de 1- si et seulement si y>0.

Ainsi $t \mapsto t^{x-1}(1-t)^{y-1}$ est intégrable sur]0,1[si et seulement si x > 0 et y > 0. Comme cette fonction est positive, l'intégrale $\int_0^1 t^{x-1}(1-t)^{y-1}$ converge si et seulement si x > 0 et y > 0.

- **2.** Il suffit d'effectuer le changement de variable u = 1 t.
- 3. Les fonctions $t \mapsto t^x$ et $t \mapsto (1-t)^y$ sont de classe \mathcal{C}^1 sur]0,1[de dérivées respectives $t \mapsto xt^{x-1}$ et $t \mapsto -y(1-t)^{y-1}$. Par intégrations par parties,

$$\int_0^1 y t^x (1-t)^{y-1} dt = -\left[t^x (1-t)^y\right]_0^1 + \int_0^1 x t^{x-1} (1-t)^y dt$$

L'égalité est assurée par la convergence des deux intégrales. Puisque x > 0 et y > 0,

$$\lim_{t \to 0^+} t^x (1-t)^y = \lim_{t \to 1^-} t^x (1-t)^y = 0$$

Ainsi

$$yB(x+1,y) = \int_0^1 xt^{x-1}(1-t)^y dt$$

$$= x \int_0^1 t^{x-1}(1-t)^{y-1}(1-t) dt$$

$$= x \int_0^1 t^{x-1}(1-t)^{y-1} dt - x \int_0^1 t^x(1-t)^{y-1} dt \qquad \text{car ces deux intégrales convergent}$$

$$= xB(x,y) - xB(x+1,y)$$

ou encore

$$B(x+1,y) = \frac{x}{x+y}B(x,y)$$

4. D'après la question précédente

$$B(n+1, p+1) = \frac{n}{n+p+1}B(n, p+1)$$

Par une récurrence facile

$$B(n+1, p+1) = \frac{n!(p+1)!}{(n+p+1)!}B(1, p+1) = \frac{n!p!}{(n+p+1)!}$$

On peut vérifier avec Python.

```
from scipy.integrate import quad
from math import factorial
def beta(x,y):
    return quad(lambda t:t**(x-1)*(1-t)**(y-1),0,1)[0]

for n in range(1,10):
    for p in range(1,10):
        print(beta(n+1,p+1),factorial(n)*factorial(p)/factorial(n+p+1))
```