Esercitazione di Laboratorio: Amplificatori operazionali con retroazione

Coa Giulio Licastro Dario Montano Alessandra $4~{\rm gennaio}~2020$

1 Scopo dell'esperienza

Gli scopi di questa esercitazione sono:

- Analizzare il comportamento e misurare i parametri di amplificatori reazionati.
- Verificare alcune deviazioni rispetto al comportamento previsto con i modelli ideali.

2 Strumentazione utilizzata

La strumentazione usata durante l'esercitazione è:

Strumento	Marca e Modello	Caratteristiche
Oscilloscopio	Rigol DS1054Z	4 canali,
		$B = 50 \mathrm{MHz},$
		$f_{\rm c} = 1 {\rm G} \frac{{\rm Sa}}{{\rm s}},$
		$R_{\rm i} = 1 { m M} \tilde{\Omega},$
		$C_{\rm i}$ = 13 pF,
		12 Mbps di profondità di memoria
Generatore di segnali	Rigol DG1022	2 canali,
		$f_{\rm uscita} = 20 {\rm MHz},$
		$Z_{ m uscita}$ = 50Ω
Alimentatore in DC	Rigol DP832	3 canali
Scheda premontata	A3	
Cavi coassiali		Capacità dell'ordine dei $80 \div 100 \mathrm{p} \frac{\mathrm{F}}{\mathrm{m}}$
Connettori		- m

3 Premesse teoriche

3.1 Incertezza sulla misura dell'oscilloscopio

La misura del valore di un segnale tramite l'oscilloscopio (sia esso l'ampiezza, la frequenza, il periodo, etc.) presenta un'incertezza che dipende, principalmente, da due fattori:

- l'incertezza strumentale introdotta dall'oscilloscopio (ricavabile dal manuale).
- l'incertezza di lettura dovuta all'errore del posizionamento dei cursori.

Quest'ultima incertezza deriva dal fatto che il segnale visualizzato non ha uno spessore nullo sullo schermo.

3.2 Amplificatore

Un amplificatore è un doppio bipolo unidirezionale caratterizzato dalla seguente relazione

$$y(t) = A \cdot x(t)$$

Dove A è detto guadagno dell'amplifiatore.

(b) Circuito equivalente ad un amplificatore.

In base al tipo di segnale in ingresso e in uscita, possiamo distinguere quattro tipi di amplifiatori:

- Amplificatore di Tensione.
- Amplificatore di Transconduttanza.
- Amplificatore di Transresistenza.
- Amplificatore di Corrente.

3.2.1 Amplificatore operazionale

L'amplificatore operazionale è un amplificatore differenziale, ovvero amplifica la differenza delle tensioni ai suoi capi, che presenta un'amplificazione $A_{\rm d}$ idealmente infinita.

$$A_{\rm d} = \frac{v_{\rm out}}{v_{\rm d}} =$$
$$= \frac{v_{\rm out}}{v_{\rm d}^+ - v_{\rm d}^-}$$

Figura 2: Amplificatore operazionale.

3.2.2 Amplificatore invertente

L'amplificatore invertente è un derivato dell'amplificatore di transresistenza che fornisce, in uscita, un segnale proporzionale al segnale in ingresso ma che presenta fase invertita rispetto ad esso; esso caratterizzato dalle seguenti relazioni

$$\begin{aligned} v_{\rm out} &= A_{\rm v} \cdot v_{\rm in} = \\ &= -\frac{R_2}{R_1} \cdot v_{\rm in} \\ R_{\rm in} &= R_1 \end{aligned}$$

Figura 3: Amplificatore invertente.

$$R_{\rm out} = 0$$

 $\mathbf{N.B.}\ R_{\mathrm{in}}$ non è necessariamente elevata.

3.2.3 Amplificatore differenziale

L'amplificatore differenziale è un amplificatore che fornisce, in uscita, un segnale proporzionale alla differenza rispetto ai segnali in ingresso; esso caratterizzato dalle seguenti relazioni

$$\begin{split} R_{\rm in,v^+} &= R_{\rm a} + R_{\rm b} \\ R_{\rm in,v^-} &= R_{\rm b}^{'} \\ R_{\rm out} &= 0 \\ \frac{R_{\rm a}^{'}}{R_{\rm b}^{'}} &= \frac{R_{\rm a}}{R_{\rm b}} \cdot (1 + \epsilon) \\ v_{\rm out} &= A_{\rm diff} \cdot v_{\rm d} - A_{\rm cm} \cdot v_{\rm cm} = \\ &= \left(\frac{R_{\rm a}}{R_{\rm b}} - \frac{R_{\rm a}}{R_{\rm a} + R_{\rm b}} \cdot \frac{\epsilon}{2}\right) \cdot v_{\rm d} - \frac{R_{\rm a}}{R_{\rm a} + R_{\rm b}} \cdot \epsilon \cdot v_{\rm cm} = \\ &\approx \frac{R_{\rm a}}{R_{\rm b}} \cdot v_{\rm d} - \frac{R_{\rm a}}{R_{\rm a} + R_{\rm b}} \cdot \epsilon \cdot v_{\rm cm} \\ &\leq \frac{R_{\rm a}}{R_{\rm b}} \cdot v_{\rm d} - \frac{R_{\rm a}}{R_{\rm a} + R_{\rm b}} \cdot \epsilon \cdot v_{\rm cm} \end{split}$$

Dove CMRR è il Common-Mode Rejection Ratio, $A_{\rm diff}$ è l'amplificazione differenziale e $A_{\rm cm}$ è l'amplificazione di modo comune.

Figura 4: Amplificatore differenziale.

4 Esperienza in laboratorio

4.1 Amplificatore non invertente

Abbiamo realizzato il circuito richiesto, collegando il modulo A3-1:

- Il generatore di segnali al connettore coassiale J3.
- L'alimentatore duale viene connesso, in modalità tracking, al morsetto nomeMorsetto.
- L'oscilloscopio, tramite due cavi coassiali BNC-coccodrillo, all'ingresso e all'uscita del circuito, rispettivamente gli ancoraggi J4 e J7 (massa) e J2 e J8 (massa).

E posizionando gli interruttori seguendo la seguente tabella

Interruttore	Posizione	Note
S1	1	aperto
S2	2	chiuso
S4	2	chiuso
S5	1	aperto
S6	1	aperto

Abbiamo impostato $V_{\rm pp}=1\,{\rm V}$ e $f=2\,{\rm kHz},$ in seguito abbiamo misurato con l'oscilloscopio $V_{\rm i}$ e $V_{\rm u}.$

4.2 Amplificatore invertente

Abbiamo realizzato il circuito richiesto, collegando il modulo A3-2:

- Il generatore di segnali al connettore coassiale J9.
- L'oscilloscopio, tramite due cavi coassiali BNC-coccodrillo, all'ingresso e all'uscita del circuito, rispettivamente gli ancoraggi J10 e J14 (massa) e J11 e J13 (massa).

E posizionando gli interruttori seguendo la seguente tabella

Interruttore	Posizione	Note
S8	1	aperto
S9	1	aperto
S10	2	chiuso
S11	1	aperto
S12	1	aperto
S13	1	R_{11} non inserita
S14	1	R_{12} non inserita

Abbiamo impostato $V_{\rm pp}$ = 2 V e f = 300 Hz, in seguito abbiamo misurato con l'oscilloscopio $V_{\rm i}$ e $V_{\rm u}$.

4.3 Amplificatore differenziale

Abbiamo realizzato il circuito richiesto, posizionando gli interruttori seguendo la seguente tabella

Interruttore	Posizione	Note
S12	2	chiuso
S13	1	R_{11} non inserita
S14	1	R_{12} non inserita

Abbiamo impostato $V_{\rm pp}$ = 1.6 V e f = 200 Hz, in seguito abbiamo misurato con l'oscilloscopio $V_{\rm i}$ e $V_{\rm u}$.

4.4 Amplificatore AC/DC

Abbiamo realizzato il circuito richiesto, collegando il modulo A3-1:

- Il generatore di segnali al connettore coassiale J3.
- L'oscilloscopio, tramite due cavi coassiali BNC-coccodrillo, all'ingresso e all'uscita del circuito, rispettivamente gli ancoraggi J4 e J7 (massa) e J2 e J8 (massa).

E posizionando gli interruttori seguendo la seguente tabella

Interruttore	Posizione	Note
S3	2	chiuso
S5	2	chiuso
S6	1	aperto

Abbiamo impostato $V_{\rm pp}=300\,{\rm mV},$ in seguito abbiamo misurato con l'oscilloscopio $V_{\rm i}$ e $V_{\rm u}.$

5 Risultati

5.1 Amplificatore non invertente

Dai calcoli abbiamo ricavato che

$$A_{v} = \frac{A_{d}}{1 + \beta \cdot A_{d}} =$$

$$= \frac{A_{d}}{1 + \frac{R_{2}}{R_{1} + R_{2}} \cdot A_{d}} =$$

$$= \frac{200k}{1 + \frac{12k}{100k + 12k} \cdot 200k} =$$

$$= 9.33$$

$$\begin{split} R_{\mathrm{in}} &= \left(R_{\mathrm{id}} + R_3 + \left(R_1 + R_0 \right) \parallel R_2 \right) \cdot \left(1 + A_{\mathrm{d}} \cdot \frac{R_2 \parallel \left(R_{\mathrm{id}} + R_3 \right) + R_0}{R_2 \parallel \left(R_{\mathrm{id}} + R_3 \right) + R_0 + R_1} \right) = \\ &= \left(1M + 4.7k + \left(100k + 100 \right) \parallel 12k \right) \cdot \left(1 + 200k \cdot \frac{12k \parallel \left(1M + 4.7k \right) + 100}{12k \parallel \left(1M + 4.7k \right) + 100 + 100k} \right) = \\ &= 21.7 \, \mathrm{G}\Omega \end{split}$$

$$R_{\text{out}} = \frac{R_{\text{o}}}{1 + \beta \cdot A_{\text{d}}} \parallel (R_1 + R_2) =$$

$$= \frac{R_{\text{o}}}{1 + \frac{R_2}{R_1 + R_2} \cdot A_{\text{d}}} \parallel (R_1 + R_2) =$$

$$= \frac{100}{1 + \frac{12k}{100k + 12k} \cdot 200k} \parallel (100k + 12k) =$$

$$= 4.67 \,\text{m}\Omega$$

$\mathbf{S3}$	S7	$V_{\rm i}$ [V]	$V_{\rm u}$ [V]	$A_{\rm v}$
1	1	1.08	9.80	9.07
1	2	1.08	9.80	9.07
2	1	1.08	10.0	9.26
2	2	1.08	10.0	9.26

Sfruttando il partitore di tensione formatosi all'ingresso dell'amplifiatore quando la resistenza R_3 è inserita, possiamo scrivere

$$\begin{split} w &= \frac{v_{\text{out}, R_3}}{v_{\text{out}}} = \\ &= \frac{A_{\text{v}} \cdot V_{\text{i}, R_3}}{A_{\text{v}} \cdot V_{\text{i}}} = \\ &= \frac{V_{\text{i}, R_3}}{V_{\text{i}}} = \\ &= \frac{v_{\text{s}} \cdot \frac{R_{\text{i}}}{R_3 + R_{\text{i}}}}{v_{\text{s}}} = \\ &= \frac{R_{\text{i}}}{R_3 + R_{\text{i}}} = \\ &= 0.98 \end{split}$$

Da cui

$$R_{\rm i} = w \cdot R_3 \cdot \frac{1}{1 - w} =$$

$$= 0.98 \cdot 4.7k \cdot \frac{1}{1 - 0.98} =$$

$$= 230 \,\mathrm{k}\Omega$$

Il valore ottenuto ci conferma che la resistenza in ingresso è elevata e che, dato che le due tensioni misurate quando R_5 è inserita sono uguali, il valore di $R_{\rm u}$ è trascurabile.

5.2 Amplificatore invertente

Dai calcoli abbiamo ricavato che

$$A_{\rm v} = \frac{A_{\rm d}}{1+\beta\cdot A_{\rm d}} =$$

$$= \frac{A_{\rm d}}{1-\frac{R_9}{R_{10}}\cdot A_{\rm d}} =$$

$$= \frac{200k}{1-\frac{22k}{100k}\cdot 200k} =$$

$$= -4.55$$

$$R_{\rm in} = R_9 + \frac{R_{\rm o} + R_{10}}{1+A_{\rm d}} =$$

$$= 22k + \frac{100+100k}{1+200k} =$$

$$\approx 22\,{\rm k}\Omega$$

$$R_{\rm out} = \frac{R_{\rm o} + R_9 + R_{10}}{R_{\rm o} + R_9 \cdot (1+A_{\rm d}) + R_{10}} \cdot [R_{\rm o} \parallel (R_9 + R_{10})] =$$

$$= \frac{100+22k+100k}{100+22k\cdot (1+200k) + 100k} \cdot [100 \parallel (22k+100k)] =$$

$$= 2.77\,{\rm m}\Omega$$

5.3 Amplificatore differenziale

Dai calcoli abbiamo ricavato che

$$A_{v,S8} = 1 + \frac{R_{10}}{R_9} - \frac{R_{10}}{R_9} =$$

$$= 1 + \frac{100k}{22k} - \frac{100k}{22k} =$$

$$= 1$$

$$A_{v,S9} = \frac{2}{3} \cdot (1 + \frac{R_{10}}{R_9}) - \frac{R_{10}}{R_9} =$$

$$= \frac{2}{3} \cdot (1 + \frac{100k}{22k}) - \frac{100k}{22k} =$$

$$= -0.85$$

$$A_{v,S10} = \frac{1}{3} \cdot (1 + \frac{R_{10}}{R_9}) - \frac{R_{10}}{R_9} =$$

$$= \frac{1}{3} \cdot (1 + \frac{100k}{22k}) - \frac{100k}{22k} =$$

$$= -2.7$$

$$A_{v,S11} = -\frac{R_{10}}{R_9} =$$

$$= -\frac{100k}{22k} =$$

$$= -4.55$$

S8	S9	S10	S11	$V_{\rm i}$ [V]	$V_{\rm u}$ [V]	$A_{ m v}$
2	1	1	1	1.66	1.64	0.99
1	2	1	1	1.66	1.40	0.84
1	1	2	1	1.64	4.36	2.66
1	1	1	2	1.64	7.32	4.46

5.4 Amplificatore AC/DC

.