Algebra/Geometrie II, Übungsblatt 9

Bitte geben Sie die Lösungen in Ihrer Übungsgruppe entweder am 15.6. oder am 17.6. ab. Jede Aufgabe ist 4 Punkte wert.

Aufgabe 1. Seien $U_1, U_2 \subseteq V$ Unterräume eines endlichdimensionalen \mathbb{K} -Vektorraums V. Zeigen Sie, dass $\mathrm{Ann}(U_1+U_2)=\mathrm{Ann}(U_1)\cap\mathrm{Ann}(U_2)$ und $\mathrm{Ann}(U_1\cap U_2)=\mathrm{Ann}(U_1)+\mathrm{Ann}(U_2)$. (Hier sind $\mathrm{Ann}(U_1),\mathrm{Ann}(U_2)$ Unterräume von V^* .)

Aufgabe 2. Sei V ein \mathbb{K} -Vektorraum, nicht unbedingt endlichdimensional, und ℓ eine lineare Funktion auf V, $\ell \neq 0$. Zeigen Sie, dass $V = \operatorname{Ker} \ell \oplus \mathbb{K} u$ für jeden Vektor $u \in V$, s.d. $u \notin \operatorname{Ker} \ell = \{v \in V \mid \ell(v) = 0\}$).

Aufgabe 3. Seien $\ell_1, \ell_2 \in V^*$, s.d. $\ell_1, \ell_2 \neq 0$, $\operatorname{Ker} \ell_1 = \operatorname{Ker} \ell_2$. Hier ist V ein \mathbb{K} -Vektorraum, nicht unbedingt endlichdimensional. Zeigen Sie, dass $\ell_1 = a\ell_2$, wo $a \in \mathbb{K}$, $a \neq 0$.

Aufgabe 4. Sei nun V ein \mathbb{K} -Vektorraum von Dimension $n, n < \infty$. Seien weiter $\ell_1, \ldots, \ell_n \in V^*$. Zeigen Sie, dass die Vektoren ℓ_1, \ldots, ℓ_n genau dann linear unabhängig sind, wenn gilt: $\bigcap_{i=1}^n \operatorname{Ker} \ell_i = \{\bar{0}_V\}$.