Programação Ladder I

AUTOMAÇÃO

PROF. GUILHERME FRÓES SILVA

https://guilhermefroes.github.io/automacao

Índice:

Linguagens de Programação de CLPs

Ladder

- Instruções de Bit
- Instruções de Temporizador e Contador
- Instruções Matemáticas
- Instruções Lógicas e de Movimentação

Manuais dos Softwares do Laboratório

Softwares do Laboratório

RSLOGIX MICRO / RSLOGIX 500

Somente linguagem Ladder Controladores

- MicroLogix
- SLC500

RSLOGIX 5000 / STUDIO 5000

Linguagens Ladder, Texto Estruturado, Blocos de Função e Sequência de Fluxo.

Controladores

- CompactLogix, Compact GuardLogix
- ControlLogix, GuardLogix

Instruções de Bit

Instruções Examinar

- Examinar se energizado (XIC)
- Examinar se desernegizado (XIO)
- Instruções Energizar / Desenergizar Saída
- Energizar saída (OTE)
- Energizar saída com retenção (OTL) e desenergizar saída com retenção (OTU)
- Monoestável Sensível á Borda de Subida (ONS)

Instruções Examinar

Examinar se energizado (XIC)

Examinar se desernegizado (XIO)

• Essas instruções possibilitam ao controlador verificar o estado energizado/desenergizado de um endereço específico de bit na memória, sendo "um ou zero" armazenando um bit de memória.

Examinar se energizado (XIC)

RSLOGIX MICRO / RSLOGIX 500

Examinar se desenergizado (XIO)

RSLOGIX MICRO / RSLOGIX 500

Instruções Energizar/Desenergizar Saída

São empregadas para energizar ou desenergizar um bit específico.

Essas instruções são as seguintes

- Energizar Saída (OTE)
- Energizar Saída com Retenção (OTL)
- Desenergizar Saída com Retenção (OTU)

Energizar Saída (OTE)

RSLOGIX MICRO / RSLOGIX 500

Energizar / Desenergizar com Retenção

ENERGIZAR COM RETENÇÃO (OTL)

DESENERGIZAR COM RETENÇÃO (OTU)

RSLogix Micro
RSLogix 5000

RSLogix 5000
Auxiliar_3
Studio 5000
(L)

Instruções de Temporizador e Contador

Generalidades

Descrição

Instruções de Temporizador

Instruções de Contador

Instrução de Rearme de Temporizador/Contador

Generalidades

Temporizador de Energização (TON)

Temporizador de Desenergização (TOF)

Temporizador Retentivo (RTO)

Contador Crescente (CTU)

Contador Decrescente (CTD)

Contador de Alta Velocidade (HSC)

Rearme de Temporizador / Contador (RES)

Descrição

As descrições de temporizador e contador requerem três palavras do arquivo de dados.

- A palavra 0, é a palavra de controle que contém o bit de estado da instrução.
- A palavra 1 é o valor pré-selecionado.
- A palavra 2 corresponde ao valor acumulado.

Quando o valor acumulado for igual ou maior que o valor préselecionado, o bit de estado será energizado.

Pode-se utilizar este bit para controlar um dispositivo de saída.

Instrução de Temporizador

Temporizador na Energização (TON)

Temporizador na Desenergização (TOF)

Temporizador Retentivo (RTO)

Instrução de Temporizador

Estrutura

- .EN Bit de Habilitação
- .TT Bit de Temporização
- .DN Bit de *Realizado* do Temporizador
- .PRE Valor de referência
- .ACC Valor acumulado

Instrução de Temporizador

Base de Tempo

- Para controladores MicroLogix, SLC500, deve-se selecionar uma das bases de tempo disponíveis: 1s, 0.01s, 0.001s
- Para controladores CompactLogix e ControlLogix, deve-se utilizar a base de tempo em milissegundo (0.001s)

Temporizador na Energização (TON)

RSLOGIX MICRO / RSLOGIX 500

Temporizador na Energização (TON)

Temporizador na Desenergização (TOF)

RSLOGIX MICRO / RSLOGIX 500

Temporizador na Desenergização (TOF)

Temporizador Retentivo (RTO)

RSLOGIX MICRO / RSLOGIX 500

Temporizador Retentivo (RTO)

Contador Crescente/Decrescente (CTU/CTD)

FORMATO DA INSTRUÇÃO CTU

FORMATO DA INSTRUÇÃO CTD

Contador Crescente/Decrescente (CTU/CTD)

RSLOGIX MICRO / RSLOGIX 500

Instruções Matemáticas

As instruções de saída que permitem realizar operações matemáticas em palavras específicas são

- Adição (ADD)
- Subtração (SUB)
- Multiplicação (MUL)
- Divisão (DIV)
- Negação (NEG)
- Raiz Quadrada (SQR)

06/04/2018 PROF. GUILHERME FRÓES SILVA 25

Adição (ADD)

RSLOGIX MICRO / RSLOGIX 500

Subtração (SUB)

RSLOGIX MICRO / RSLOGIX 500

Multiplicação (MUL)

RSLOGIX MICRO / RSLOGIX 500

RSLOGIX 5000 / STUDIO 5000

Multiply
Source A ?

Source B ?

Dest ?

Divisão (DIV)

RSLOGIX MICRO / RSLOGIX 500

Negação (NEG)

RSLOGIX MICRO / RSLOGIX 500

Raíz Quadrada (SQR)

RSLOGIX MICRO / RSLOGIX 500

Instruções de Lógica e de Movimentação

Instruções de saída que permitem realizar operações lógicas de movimentação

- Movimentação (MOV)
- Movimentação com máscara (MVM)

Movimentação (MOV)

RSLOGIX MICRO / RSLOGIX 500

34

Movimentação com Máscara (MVM)

RSLOGIX MICRO / RSLOGIX 500

RSLOGIX 5000 / STUDIO 5000

Masked Move
Source ?

Mask ?

Dest ?

ESCOLA POLITÉCNICA

Instruções de Comparação

Instrução Menor Que (LES)

Instrução Menor ou Igual A (LEQ)

Instrução Maior Que (GRT)

Instrução Maior ou Igual A (GEQ)

Instrução de Igual A (EQU)

RSLogix 5000 ou Studio 5000

Endereçamento dos CompactLogix

Tag names follow these formats:

For a	Specify
Tag	tag_name
Bit number of a larger data type	tag_name.bit_number
Member of a structure	tag_name.member_name
Element of a one dimension array	tag_name[x]
Element of a two dimension array	tag_name[x,y]
Element of a three dimension array	tag_name[x,y,z]
Element of an array within a structure	tag_name.member_name[x]
Member of an element of an array	tag_name[x,y,z].member_name

where:

- x is the location of the element in the first dimension.
- y is the location of the element in the second dimension.
- z is the location of the element in the third dimension.

Endereços Físicos (IOs)

An I/O address follows this format:

Location

:Slot

:Туре

.Member

.SubMember

.Bit

= Optional

Where	ls
Location	Network location
	LOCAL = same chassis or DIN rail as the controller
	ADAPTER_NAME = identifies remote communication adapter or bridge module
Slot	Slot number of I/O module in its chassis or DIN rail
Туре	Type of data
	I = input
	0 = output
	C = configuration
	S = status
Member	Specific data from the I/O module; depends on what type of data the module can store.
	•For a digital module, a Data member usually stores the input or output bit values.
	•For an analog module, a Channel member (CH#) usually stores the data for a channel.
SubMember	Specific data related to a Member.
Bit	Specific point on a digital I/O module; depends on the size of the I/O module (031 for a 32-point module)

Min and Max for DINT, INT, LINT, SINT, and REAL Data Types

Data Type	Range
DINT	-2,147,483,6482,147,483,647
INT	-32,76832,767
LINT	032535129599999999
SINT	-128127
REAL	-3.402823E38 to -1.1754944E-38 (negative values)
	and
	0
	and 1.1754944E-38 to 3.402823E38 (positive values)

41

Consulta

"Literatura Adicional" no site

https://guilhermefroes.github.io/automacao

