Tìm đường đi

- **2.1 Đường đi** (*Tệp chương trình: TK.CPP; Thời gian chạy chương trình* ≤ 1 *giây*) Cho đồ thị G = (V, E) gồm n đỉnh biểu diễn dưới dạng ma trận kề và hai đỉnh u, v. Yêu cầu:
- (1) Tìm số lượng đường đi độ dài 2 trên G từ đỉnh u đến v.
- (2) Tìm đường đi trên G từ đỉnh u đến v sử dụng thuật toán tìm kiếm theo chiều sâu (DFS). Dữ liệu: Vào từ tệp TK.INP:
- Dòng đầu chứa số nguyên dương t nhận giá trị 1 hoặc 2.
- Dòng thứ hai chứa ba số nguyên dương n, u và v. Trong đó, n là số đỉnh của G, u và v là hai đỉnh của G, với $1 \le u$, $v \le n \le 100$ và u khác v.
- Trong n dòng tiếp theo, mỗi dòng chứa n số 0 hoặc 1 mô tả ma trận kề của G. Kết quả: Ghi ra tệp TK.OUT:
- Nếu t = 1 thì ghi ra giá trị là số lượng đường đi độ dài 2 trên G từ đỉnh u đến v.
- Nếu t = 2 thì ghi ra trên một dòng gồm dãy các đỉnh mô tả đường đi trên G từ u đến v. Trong trường hợp không có đường đi trên G từ u đến v thì ghi số 0.

Ví dụ:

TK.INP	TK.OUT	Giải thích
1	2	Có 2 đường đi độ dài 2 trên G từ đỉnh 2 đến 4 theo các cạnh
4 2 4		là (2,1), (1,4) và (2,3), (3,4).
0 1 0 1		
1010		
0 1 0 1		
1 0 1 0		
2	1 3 2 4	Đường đi từ đỉnh 1 đến đỉnh 4 tìm được theo DFS qua các
4 1 4		cạnh theo thứ tự (1,3), (3,2) và (2,4).
0 0 1 0		
0 0 0 1		
0 1 0 1		
1000		

2.2 (Têp chương trình: TK.CPP; Thời gian chay chương trình ≤ 1 giây)

Cho đồ thi vô hướng G = (V, E) gồm n đỉnh biểu diễn dưới dang danh sách canh và hai đỉnh u, v.

Yêu cầu:

- (1) Tìm số lượng đường đi độ dài 2 trên G từ đỉnh u đến v.
- (2) Tìm đường đi trên G từ đỉnh u đến v sử dụng thuật toán tìm kiếm theo chiều sâu (DFS).

Dữ liệu: Vào từ tệp TK.INP:

- Dòng đầu chứa số nguyên dương t nhân giá tri 1 hoặc 2.

- Dòng thứ hai chứa bốn số nguyên dương n, m, u và v. Trong đó, n là số đỉnh, m là số cạnh của G, u và v là hai đỉnh của G, với $1 \le u$, $v \le n \le 100$, $m \le n(n-1)/2$ và u khác v.
- Trong m dòng tiếp theo, mỗi dòng thứ i $(1 \le i \le m)$ chứa hai số nguyên ui, vi là đỉnh đầu và đỉnh cuối của cạnh ei, với $1 \square$ ui < vi \square n.

Kết quả: Ghi ra tệp TK.OUT:

- Nếu t = 1 thì ghi ra giá tri là số lương đường đi đô dài 2 trên G từ đỉnh u đến v.
- Nếu t=2 thì ghi ra trên một dòng gồm dãy các đỉnh mô tả đường đi trên G từ u đến v. Trong trường hợp không có đường đi trên G từ u đến v thì ghi số 0.

Ví dụ:

TK.INP	TK.OUT	Giải thích
1	2	Có 2 đường đi độ dài 2 trên G từ đỉnh 2 đến 4 theo các cạnh
4 4 2 4		là (2,1), (1,4) và (2,3), (3,4).
1 2		
1 4		
2 3		
3 4		
2	1 2 3 4	Đường đi từ đỉnh 1 đến đỉnh 4 tìm được theo DFS qua các
4 4 1 4		cạnh theo thứ tự (1,2), (2,3) và (3,4).
1 2		
1 4		
2 3		
3 4		

2.3. Đường đi. (Tệp chương trình: TK.CPP; Thời gian chạy chương trình $\leq l$ giây)

Cho đồ thị vô hướng G = (V, E) gồm n đỉnh biểu diễn dưới dạng danh sách cạnh và hai đỉnh u, v.

Yêu cầu:

- (1) Tìm số lương đường đi đô dài 2 trên G từ đỉnh u đến v.
- (2) Tìm đường đi trên G từ đỉnh u đến v sử dụng thuật toán tìm kiếm theo chiều rộng (BFS).

Dữ liệu: Vào từ tệp TK.INP:

- Dòng đầu chứa số nguyên dương t nhân giá tri 1 hoặc 2.
- Dòng thứ hai chứa bốn số nguyên dương n, m, u và v. Trong đó, n là số đỉnh, m là số cạnh của G, u và v là hai đỉnh của G, với $1 \le u$, $v \le n \le 100$, $m \le n(n-1)/2$ và u khác v.
- Trong m dòng tiếp theo, mỗi dòng thứ i $(1 \le i \le m)$ chứa hai số nguyên ui, vi là đỉnh đầu và đỉnh cuối của cạnh ei, với $1 \le u_i < v_i \le n$.

Kết quả: Ghi ra tệp TK.OUT:

- Nếu t=1 thì ghi ra giá trị là số lượng đường đi độ dài 2 trên G từ đỉnh u đến v.
- Nếu t=2 thì ghi ra trên một dòng gồm dãy các đỉnh mô tả đường đi trên G từ u đến v. Trong trường hợp không có đường đi trên G từ u đến v thì ghi số 0.

Ví dụ:

TK.INP	TK.OUT	Giải thích
1	2	Có 2 đường đi độ dài 2 trên G từ đỉnh 2 đến 4 theo các cạnh
4 4 2 4		là (2,1), (1,4) và (2,3), (3,4).
1 2		
1 4		
2 3		
3 4		
2	1 3 4	Đường đi từ đinh 1 đến đỉnh 4 tìm được theo BFS qua các
4 4 1 4		cạnh theo thứ tự (1,3) và (3,4).
1 2		
1 3		
2 3		
3 4		

2.4. **Liên thông** (*Tệp chương trình: TK.CPP; Thời gian chạy chương trình* $\leq l$ *giây*)

Cho đồ thị vô hướng G = (V, E) gồm n đỉnh biểu diễn dưới dạng ma trận kề.

Yêu cầu: Tìm các thành phần liên thông của G sử dụng thuật toán tìm kiếm theo chiều sâu (DFS).

Dữ liệu: Vào từ tệp TK.INP:

- Dòng đầu chứa số nguyên dương n là số đỉnh của G, $n \le 100$.
- Trong n dòng tiếp theo, mỗi dòng chứa n số 0 hoặc 1 mô tả ma trận kề của G.

Kết quả: Ghi ra tệp TK.OUT:

- Dòng đầu ghi ra giá trị l_t là số lượng các thành phần liên thông của G.
- Trong lt dòng tiếp theo, mỗi dòng thứ i $(1 \le i \le l_t)$ ghi các đỉnh thuộc thành phần liên thông thứ i theo thứ tư tăng.

Ví dụ:

TK.INP	TK.OUT	Giải thích
5	2	Đồ thị có hai thành phần liên thông.
0 1 1 0 0	1 2 3	Thành phần liên thông thứ 1 gồm các đỉnh 1, 2 và 3.
10100	4 5	Thành phần liên thông thứ 2 gồm các đỉnh 4 và 5.
1 1 0 0 0		
00001		
0 0 0 1 0		

2.5. **Liên thông** (Tệp chương trình: TK.CPP; Thời gian chạy chương trình ≤ 1 giây)

Cho trước đồ thị vô hướng G = (V, E) gồm n đỉnh biểu diễn dưới dạng ma trận kề.

Yêu cầu: Tìm các thành phần liên thông của G sử dụng thuật toán tìm kiếm theo chiều rộng (BFS).

Dữ liệu: Vào từ tệp TK.INP:

- Dòng đầu chứa số nguyên dương n là số đỉnh của G, $n \le 100$.
- Trong n dòng tiếp theo, mỗi dòng chứa n số 0 hoặc 1 mô tả ma trận kề của G.

Kết quả: Ghi ra tệp TK.OUT:

- Dòng đầu ghi ra giá trị l_t là số lượng các thành phần liên thông của G.
- Trong lt dòng tiếp theo, mỗi dòng thứ i $(1 \le i \le l_t)$ ghi các đỉnh thuộc thành phần liên thông thứ i theo thứ tư tăng.

Ví dụ:

TK.INP	TK.OUT	Giải thích
5	2	Đồ thị có 2 thành phần liên thông.
0 1 1 0 0	1 2 3	Thành phần liên thông thứ 1 gồm các đinh 1, 2 và 3.
10100	4 5	Thành phần liên thông thứ 2 gồm các đỉnh 4 và 5.
1 1 0 0 0		
0 0 0 0 1		
0 0 0 1 0		

2.6. Đỉnh trụ (Tệp chương trình: TK.CPP; Thời gian chạy chương trình ≤ 1 giây)

Cho trước đồ thị vô hướng G = (V, E) gồm n đỉnh biểu diễn dưới dạng danh sách kề.

Yêu cầu: Tìm các đỉnh trụ của G sử dụng thuật toán tìm kiếm theo chiều sâu (DFS).

Dữ liệu: Vào từ tệp TK.INP:

- Dòng đầu chứa số nguyên dương n số đỉnh của G, với n \leq 100.
- Trong n dòng tiếp theo, mỗi dòng thứ i $(1 \le i \le n)$ chứa số tự nhiên k $(1 \le k < n)$ là số lương đỉnh kề với đỉnh i và k số tự nhiên theo thứ tự tăng v_1, \ldots, v_k là số hiệu các đỉnh kề tương ứng.

Kết quả: Ghi ra tệp TK.OUT:

- Dòng đầu ghi ra giá trị t là số lượng các đỉnh trụ của G.
- Trong trường hợp t > 0, dòng tiếp theo ghi các đỉnh trụ tìm được theo thứ tự tăng.

Ví dụ:

TK.INP	TK.OUT	Giải thích
5	2	Đồ thị có hai đỉnh trụ là 2 và 3.
1 2	2 3	
2 1 3		
3 2 4 5		
2 3 5		
2 3 4		

2.7. **Cạnh cầu** (*Tệp chương trình: TK.CPP; Thời gian chạy chương trình* ≤ 1 *giây*)

Cho trước đồ thị vô hướng G = (V, E) gồm n đỉnh biểu diễn dưới dạng danh sách cạnh.

Yêu cầu: Tìm các cạnh cầu của G sử dụng thuật toán tìm kiếm theo chiều sâu (DFS).

Dữ liệu: Vào từ tệp TK.INP:

- Dòng đầu chứa hai số nguyên dương n
 và m. Trong đó, n là số đỉnh và m là số cạnh của G, với n ≤ 100 và m ≤ n(n-1)/2.
- Trong m dòng tiếp theo, mỗi dòng thứ i $(1 \le i \le m)$ chứa hai số ui và vi là đỉnh đầu và đỉnh cuối của cạnh ei, với $1 \le u_i < v_i \le n$.

Kết quả: Ghi ra tệp TK.OUT:

- Dòng đầu ghi ra giá trị c là số lượng các cạnh cầu của G.
- Trong trường hợp c>0, trong c dòng tiếp theo, mỗi dòng thứ i $(1 \le i \le c)$ ghi hai số nguyên dương ui và vi là đỉnh đầu và đỉnh cuối của cạnh cầu thứ i tìm được. Các cạnh cầu được ghi ra theo thứ tự từ điển.

Ví dụ:

TK.INP	TK.OUT	Giải thích
5 5	2	Đồ thị có hai cạnh cầu là (1,2) và (2,3).
1 2	1 2	
2 3	2 3	
3 4		
3 5		
4 5		

2.8. Đình thắt (Tệp chương trình: TK.CPP; Thời gian chạy chương trình $\leq l$ giây)

Cho đồ thị vô hướng liên thông G = (V, E) gồm n đỉnh biểu diễn dưới dạng danh sách cạnh và hai đỉnh u, v. Một đỉnh s của G gọi là đỉnh thắt của cặp u, v nếu mọi đường đi trên G từ u đến v đều phải đi qua đỉnh s.

Yêu cầu: Tìm các đỉnh thắt của cặp đỉnh u và v sử dụng thuật toán tìm kiếm theo chiều sâu (DFS).

Dữ liệu: Vào từ tệp TK.INP:

- Dòng đầu chứa bốn số nguyên dương n, m, u và v. Trong đó, n là số đỉnh, m là số cạnh, u và v là hai đỉnh khác nhau của G, với $1 \le u$, $v \le n \le 100$ và $m \le n(n-1)/2$.
- Trong m dòng tiếp theo, mỗi dòng thứ i $(1 \le i \le m)$ chứa hai số ui và vi là đỉnh đầu và đỉnh cuối của cạnh ei, với $1 \le u_i < v_i \le n$.

Kết quả: Ghi ra tệp TK.OUT:

- Dòng đầu ghi ra giá trị t là số lượng các đỉnh thắt của cặp đỉnh u và v.
- Trong trường hợp t > 0, dòng tiếp theo ghi các đỉnh thắt tìm được theo thứ tự tăng.

Ví dụ:

TK.INP	TK.OUT	Giải thích
6716	2	Căp đỉnh 1, 6 có hai đỉnh thắt là 2 và 5.
1 2	2 5	
2 3		
2 4		
3 4		
3 5		
4 5		
5 6		

2.9. Định chiều đồ thị (*Tệp chương trình: TK.CPP; Thời gian chạy chương trình* $\leq l$ *giây*)

Cho đồ thị vô hướng G = (V, E) gồm n đỉnh biểu diễn dưới dạng danh sách cạnh. Khi đó, G gọi là định chiều được nếu có thể biến đổi G thành đồ thị có hướng liên thông mạnh G' = (V, E') bằng cách định chiều mỗi cạnh vô hướng thành một cung (cạnh) có hướng. Phép biến đổi như trên gọi là phép định chiều.

Yêu cầu:

- (1) Kiểm tra G có phải là đồ thị định chiều được hay không?
- (2) Tìm một phương án định chiều G sử dụng phép định chiều dựa trên thuật toán tìm kiếm theo chiều sâu (DFS) bắt đầu tại đỉnh 1.

Dữ liệu: Vào từ tệp TK.INP:

- Dòng đầu chứa số nguyên t nhận giá trị 1 hoặc 2.
- Dòng sau chứa hai số nguyên dương n và m. Trong đó, n là số đỉnh, m là số cạnh của G, với n ≤ 100 và m $\leq n(n-1)/2$.
- Trong m dòng tiếp theo, mỗi dòng thứ i $(1 \le i \le m)$ chứa hai số ui và vi là đỉnh đầu và đỉnh cuối của cạnh ei, với $1 \le u_i < v_i \le n$.

Kết quả: Ghi ra tệp TK.OUT:

- Nếu t = 1 thì ghi ra giá trị 1 hoặc 0 tùy thuộc G là đồ thị định chiều được hoặc không.
- Nếu t = 2 thì ghi ra danh sách cạnh của đồ thị G' theo quy cách:
- + Dòng đầu ghi ra hai số nguyên dương n và m là số đỉnh và số canh của G';
- + Trong m dòng tiếp theo, mỗi dòng thứ i $(1 \le i \le m)$ chứa hai số u_i và v_i là đỉnh đầu và đỉnh cuối của cạnh có hướng e_i . Các cạnh được liệt kê theo thứ tự từ điển.

TK.INP	TK.OUT	Giải thích
1	1	Đồ thị vô hướng đã cho liên
4 5		thông và không chứa cạnh cầu nên định chiều được.
1 2		
1 3		
1 4		
2 4		
3 4		
2	4 5	Các cung thuận được định
4 5	1 2	chiều là (1,2), (2,4), (4,3).

1 2	2 4	Các cung nghịch được định
1 3	3 1	chiều là (3,1), (4,1).
1 4	4 1	
2 4	4 3	
3 4		

2.10. Thành phần liên thông mạnh (Tệp chương trình: TK.CPP; Thời gian chạy chương trình $\leq I$ giây)

Cho đồ thị có hướng G = (V, E) gồm n đỉnh biểu diễn dưới dạng danh sách cạnh.

Yêu cầu: Tìm các thành phần liên thông mạnh của đồ thị G sử dụng thuật toán tìm kiếm theo chiều sâu (DFS).

Dữ liệu: Vào từ tệp TK.INP:

- Dòng đầu chứa hai số nguyên dương n và m. Trong đó, n là số đỉnh, m là số cạnh của G, với n ≤ 100 và m ≤ n(n-1)/2.
- Trong m dòng tiếp theo, mỗi dòng thứ i $(1 \le i \le m)$ chứa hai số nguyên dương u_i và v_i là đỉnh đầu và đỉnh cuối của cạnh e_i , với $1 \le u_i$, $v_i \le n$.

Kết quả: Ghi ra tệp TK.OUT:

- Dòng đầu ghi ra ghi ra giá trị k là số thành phần liên thông mạnh của G.
- Trong k dòng tiếp theo, mỗi dòng thứ i $(1 \le i \le k)$ ghi các đỉnh thuộc thành phần liên thông thứ i theo thứ tự tăng.

Ví du:

TK.INP	TK.OUT	Giải thích
67	2	Tập hợp các đỉnh {1, 2, 3} và {4, 5, 6} tương ứng tạo thành
1 2	1 2 3	2 thành phần liên thông mạnh của đồ thi đã cho.
1 4	456	
2 3		
3 1		
4 5		
5 6		
61		