Methods of classification and dimensionality reduction - Report 1

March 18, 2022

1. Description of methods

SVD1. We get a $n \times d$ dimensional matrix Z that we want to approximate by a different matrix \tilde{Z} . We want somehow \tilde{Z} to maintain only "the most important" informations from Z. That's what we can get using SVD decomposition of matrix and cutting out the smallest eigenvalues.

Presidely, we want to find matrix \tilde{Z}_r of rank r (r < rank(Z)), so that $||Z - \tilde{Z}_r||$ is small. Using SVD decomposition $Z = U\Lambda^{\frac{1}{2}}V^T$ we construct \tilde{Z} as

$$\tilde{Z}_r = U_r \Lambda_r^{\frac{1}{2}} V_r^T,$$

where Λ_r contains r biggest eigenvalues of Z and U_r , V_r contains only columns corresponding to those eigenvalues.

NMF. We get a real $n \times d$ dimensional matrix Z, such that $n \geq d$. The aim is to approximate Z as

$$Z \approx WH$$
,

where

- W is $n \times r$ matrix of nonegative elements,
- H is $r \times d$ matrix of nonnegative elements.

Precisely, we look for

$$\underset{W,H}{\arg\min} \, \|Z - WH\|^2,$$

where $||A||^2 = \sum_{i,j} A_{ij}^2$.

SVD2.

2. Our data

Description.

Performing methods.

Choosing parameters.

3. Results