Math 65 HW 2 Wednesday, May 18, 2016

 $6.2.\{20,\ 25,\ 28,\ 38\},\ 6.3.\{7,\ 18,\ 21\},\ Additional\ Problem\ \#1$

6.2.20 In Exercises 18-25, determine whether the set \mathcal{B} is a basis for the vector space V.

$$V = M_{22}, \mathcal{B} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \right\}$$

1

6.2.25 In Exercises 18-25, determine whether the set \mathcal{B} is a basis for the vector space V.

$$V = \mathcal{P}_2, \mathcal{B} = \{1, 2 - x, 3 - x^2, x + 2x^2\}$$

6.2.28 Find the coordinate vector of $p(x) = 1 + 2x + 3x^2$ with respect to the basis $\mathcal{B} = \{1, 1+x, -1+x^2\}$ of \mathcal{P}_2 .

3

6.2.38 In Exercises 34-39, find the dimension of the vector space V and give a basis for V.

 $V = \{A \text{ in } M_{22} : A \text{ is skew-symmetric}\}$

6.3.7 In Exercises 5-8, follow the instructions for Exercises 1-4 using p(x) instead of x.

$$p(x) = 1 + x^2$$
, $\mathcal{B} = \{1 + x + x^2, x + x^2, x^2\}$, $\mathcal{C} = \{1, x, x^2\}$ in \mathscr{P}_2

6.3.18 Express $p(x) = 1 + 2x - 5x^2$ as a Taylor polynomial about a = -2.

6

6.3.21 Let \mathcal{B} , \mathcal{C} , and \mathcal{D} be bases for a finite-dimensional vector space V. Prove that

$$P_{\mathcal{D}\leftarrow\mathcal{C}}P_{\mathcal{C}\leftarrow\mathcal{B}}=P_{\mathcal{D}\leftarrow\mathcal{B}}$$

Additional Problem #1 For each square matrix below, calculate its eigenvalues and eigenvectors. Then verify that PDP^{-1} is equal to the original matrix, where D is a diagonal matrix with your eigenvalues along its diagonal and P is a matrix with your eigenvectors as its columns.

- (a) $\begin{bmatrix} 1 & -0 \\ 0 & 0 \end{bmatrix}$
- (b) $\begin{bmatrix} 0 & -13 & -4 \\ 0 & -3 & 0 \\ 1 & 13 & 0 \end{bmatrix}$