PROJECT DEVELOPMENT PHASE SPRINT -1

DATE	08-11-2022
TEAM ID	PNT2022TMID31932
PROJECT NAME	A NOVEL METHOD FOR HANDWRITTEN
	DIGIT RECOGNITION SYSTEM
MAXIMUM MARKS	4 MARKS

IMPORTING THE REQUIRED LIBRARIES:

import numpy as np

import tensorflow

from tensorflow.keras.datasets import mnist

from tensorflow.keras.models import Sequential

from tensorflow.keras import layers

from tensorflow.keras.layers import Dense, Flatten

from tensorflow.keras.layers import Conv2D

from keras.optimizers import Adam

from keras.utils import np_utils

import matplotlib.pyplot as plt

LOADING THE DATA

Input:

(x_train, y_train), (x_test, y_test) = mnist.load_data()

Output:

Input:

print(x_train.shape)
print(x_test.shape)

Output:

(60000, 28, 28) (10000, 28, 28)

Analyzing The Data

Input:

x_train[0]

Output:

```
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
   0, 0],
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
   0, 0],
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
   0, 0],
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
   0, 0],
  [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3,
   18, 18, 18, 126, 136, 175, 26, 166, 255, 247, 127, 0, 0,
  [0, 0, 0, 0, 0, 0, 0, 0, 30, 36, 94, 154, 170,
   253, 253, 253, 253, 253, 225, 172, 253, 242, 195, 64, 0, 0,
  253, 253, 253, 253, 251, 93, 82, 82, 56, 39, 0, 0, 0,
   0, 0],
  253, 198, 182, 247, 241, 0, 0, 0, 0, 0, 0, 0, 0,
   [0, 0],
  [0, 0, 0, 0, 0, 0, 0, 80, 156, 107, 253, 253,
   205, 11, 0, 43, 154, 0, 0, 0, 0, 0, 0, 0, 0,
  [0, 0, 0, 0, 0, 0, 0, 0, 14, 1, 154, 253,
   90, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
   0, 0],
  [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 139, 253,
   190, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 190,
   253, 70, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
   0, 0],
  [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 35,
   241, 225, 160, 108, 1, 0, 0, 0, 0, 0, 0, 0, 0,
```

```
0, 0],
81, 240, 253, 253, 119, 25, 0, 0, 0, 0, 0, 0, 0,
0, 0],
0, 45, 186, 253, 253, 150, 27, 0, 0, 0, 0, 0, 0,
0, 0, 16, 93, 252, 253, 187, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 249, 253, 249, 64, 0, 0, 0, 0, 0,
 [0, 0],
0, 46, 130, 183, 253, 253, 207, 2, 0, 0, 0, 0, 0,
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 39,
148, 229, 253, 253, 253, 250, 182, 0, 0, 0, 0, 0, 0,
[0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 114, 221,
253, 253, 253, 253, 201, 78, 0, 0, 0, 0, 0, 0, 0,
[0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 23, 66, 213, 253, 253,
253, 253, 198, 81, 2, 0, 0, 0, 0, 0, 0, 0, 0,
[0, 0],
[ 0, 0, 0, 0, 0, 18, 171, 219, 253, 253, 253, 253,
195, 80, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0,
[ 0, 0, 0, 55, 172, 226, 253, 253, 253, 253, 244, 133,
11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0],
[0, 0, 0, 136, 253, 253, 253, 212, 135, 132, 16, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0],
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0],
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 [0, 0],
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0]], dtype=uint8)
```

Input:

plt.imshow(x_train[5000])

Output:

Input:

np.argmax(y_train[500])

output:

0

Reshaping Dataset:

```
x_train = x_train.reshape(60000, 28, 28, 1).astype('float32')
x_test = x_test.reshape(10000, 28, 28, 1).astype('float32')
```

Applying One Hot Encoding:

```
y_train = np_utils.to_categorical(y_train, number_of_classes)
y_test = np_utils.to_categorical(y_test, number_of_classes)
```