Институт интеллектуальных кибернетических систем НИЯУ МИФИ

Группа: М24-525

Студент: Колесников

Владислав Вячеславович

Курсовая работа: классическое машинное обучение для прогнозирования фармакологических показателей

Введение

Фармакологические тесты оценивают эффективность и токсичность веществ несколькими ключевыми показателями. IC50 (half-maximal inhibitory concentration) — это концентрация вещества, при которой наблюдается $50\,\%$ ингибирование активности целевого фермента или вируса. CC50 ($50\,\%$ cytotoxic concentration) определяет концентрацию, при которой количество жизнеспособных клеток уменьшается наполовину по сравнению с контролем. Selectivity Index (SI) — отношение CC50 к IC50; чем выше SI, тем безопаснее соединение для клеток, поскольку оно обеспечивает желаемый эффект при минимальной токсичности. Цель работы — на основании химических дескрипторов из файла data.xlsx построить модели, которые могут предсказывать эти показатели и выполнять их двоичную классификацию по пороговым значениям.

Файл data.xlsx содержит 1001 строку и 213 столбцов, включая три целевых переменных. Столбец Unnamed: 0 оказался индексом и был удалён. Пропуски обнаружены в 12 дескрипторах, но число пропусков не превышает трёх в каждом, поэтому они заполнялись медианой.

Исследовательский анализ данных (EDA)

Обзор данных

После удаления индексного столбца в данных осталось 212 дескрипторов. Значения IC50 и CC50 распределены крайне неравномерно (рис. 1); большинство соединений обладают низкой активностью, а доля высокоактивных/высокотоксичных мала. SI варьирует на четыре порядка величины и имеет сильную правостороннюю асимметрию. В регрессионных задачах использовалась десятичная логарифмизация целей, что уменьшает разброс и облегчает обучение моделей.

Рис. 1. Распределения IC50, CC50 и SI. По часовой стрелке: IC50, CC50, SI.

Корреляционный анализ

Для каждой цели были рассчитаны коэффициенты корреляции Пирсона между целью и дескрипторами. Выявленные связи невелики: наибольшая корреляция для IC50 составляет ~0,27, для CC50 — ~0,31, для SI — ~0,16. Это говорит об отсутствии сильно линейно связанных дескрипторов и оправдывает использование нелинейных моделей.

Топ-5 дескрипторов для ІС50:

Дескриптор Коэфф. Пирсона

VSA_EState4 \approx 0,274 Chi2n \approx 0,257 PEOE_VSA7 \approx 0,256 Chi2v \approx 0,249 fr_Ar_NH \approx 0,246

Топ-5 дескрипторов для СС50:

Дескриптор	Коэфф. Пирсона				
MolMR	≈0,310				
LabuteASA	≈ 0,309				
MolWt	≈ 0,306				
ExactMolWt	≈0,306				
HeavyAtomCount ≈ 0,305					

Топ-5 дескрипторов для SI:

Дескриптор Коэфф. Пирсона

BalabanJ $\approx 0,163$ fr_NH2 $\approx 0,160$ RingCount $\approx 0,124$ fr_Al_COO $\approx 0,102$ fr_COO2 $\approx 0,101$

Тепловая карта десяти наиболее коррелированных признаков с IC50 (рис. 2) подтверждает, что корреляции между признаками и целью невелики и не образуют простых линейных закономерностей.

Рис. 2. Корреляции между ІС50 и десятью наиболее связанными дескрипторами.

Постановка задач и методология

Задание включает три задачи регрессии (предсказание IC50, CC50 и SI) и четыре задачи классификации (определить, превышает ли каждая цель медиану выборки и превышает ли SI порог 8). Входными признаками были все дескрипторы, кроме целевых переменных. Пропуски заполнялись медианой. Для линейных моделей применялось стандартизирование, для ансамблевых деревьев — только импутация.

Модели регрессии. Были протестированы гребневая регрессия (Ridge), Lasso, Random Forest, Gradient Boosting и XGBoost. Гиперпараметры подбирались с помощью GridSearchCV (5-кратная кросс-валидация). Модели оценивались по среднеквадратичной ошибке (RMSE), средней абсолютной ошибке (MAE) и коэффициенту детерминации R^2 .

Модели классификации. Для бинарных задач использовались логистическая регрессия, Random Forest, Gradient Boosting и XGBoost. Качество оценивалось по Accuracy, Precision, Recall, F1-мере и площади под ROC-кривой (ROC-AUC). Порог медианы рассчитывался по всей выборке; для SI > 8 использовался фиксированный порог 8.

Результаты регрессионных моделей

Прогнозирование ІС50

Модель	RMSE (cp.)	RMSE (std)	MAE (cp.)	MAE (std)	R ² (cp.)	R² (std)
Gradient Boosting	0,8651	0,1955	0,6748	0,1325	0,0534	0,2121
XGBoost	0,8656	0,1783	0,6766	0,1297	0,0427	0,2161
Random Forest	0,8695	0,2032	0,6794	0,1395	0,0421	0,2407
Lasso	0,9122	0,1523	0,7197	0,0887	-0,0577	0,1203
Ridge	1,0738	0,1972	0,8282	0,1275	-0,4690	0,2455

Наиболее точной оказалась модель градиентного бустинга: её RMSE немного меньше, чем у XGBoost и Random Forest, а $R^2 \approx 0.053$ является единственным положительным среди методов. Линейные модели (Ridge и Lasso) предсказывают хуже и имеют отрицательные значения R^2 .

Прогнозирование СС50

Модель	RMSE (cp.)	RMSE (std)	MAE (cp.)	MAE (std)	R ² (cp.)	R ² (std)
XGBoost	0,6986	0,1284	0,5440	0,0838	-0,0898	0,2380
Random Forest	0,7063	0,1252	0,5601	0,0836	-0,1036	0,1895
Lasso	0,7122	0,1255	0,5848	0,0884	-0,1183	0,1849
Gradient Boosting	0,7215	0,1212	0,5683	0,0864	-0,1637	0,2378
Ridge	0,8417	0,2242	0,6213	0,1201	-0,6592	0,7771

Все R^2 оказались отрицательными, что говорит о слабой предсказуемости СС50. Лучшими по RMSE и MAE являются XGBoost и Random Forest. В то же время Ridge демонстрирует существенно худшие результаты, подтверждая, что линейные модели не подходят для этой задачи.

Прогнозирование SI

Модель	RMSE (cp.)	RMSE (std)	MAE (cp.)	MAE (std)	R ² (cp.)	R ² (std)
Random Forest	0,7522	0,1387	0,5900	0,1083	-0,1073	0,1152
Lasso	0,7555	0,1386	0,6046	0,0950	-0,1201	0,1445
XGBoost	0,7613	0,1269	0,5951	0,0970	-0,1441	0,1411
Gradient Boosting	0,7723	0,1253	0,5989	0,0989	-0,1805	0,1498
Ridge	0,9070	0,1472	0,6948	0,0848	-0,6767	0,4488

Для прогноза SI все модели показывают отрицательные R^2 ; лучшее качество по RMSE и MAE даёт Random Forest. Однако точность далека от удовлетворительной, поэтому для SI разумнее рассматривать задачу классификации по порогам.

Результаты классификационных моделей

Превышает ли ІС50 медиану?

	Accuracy	Precision	Recall		ROC-AUC
Модель	(cp.)	(cp.)	(cp.)	F1 (cp.)	(cp.)
Gradient Boosting	0,5893	0,5922	0,5980	0,5849	0,5721
XGBoost	0,5653	0,5601	0,5840	0,5589	0,5621
Random Forest	0,5664	0,5579	0,5980	0,5652	0,5537
Logistic Regression	0,5333	0,5568	0,4820	0,5118	0,5231

Градиентный бустинг лидирует по всем показателям, но AUC всего ~0,57, что немного выше случайного угадывания. Это отражает слабую информативность дескрипторов для точного разделения IC50 относительно медианы.

Превышает ли СС50 медиану?

Модель	Accuracy (cp.)	Precision (cp.)	Recall (cp.)	F1 (cp.)	ROC-AUC (cp.)
Gradient Boosting	0,5733	0,5727	0,6496	0,6050	0,5960
Logistic Regression	0,5644	0,5683	0,6175	0,5864	0,5939
Random Forest	0,5593	0,5608	0,6335	0,5919	0,5719
XGBoost	0,5673	0,5671	0,6635	0,6070	0,5776

Лучшие результаты по большинству метрик показывает градиентный бустинг (AUC≈0,60), хотя отрыв от логистической регрессии невелик. Случайный лес и XGBoost дают сопоставимые показатели.

Превышает ли SI медиану?

Модель	Accuracy (cp.)	Precision (cp.)	Recall (cp.)	F1 (cp.)	ROC-AUC (cp.)
Random Forest	0,5234	0,5426	0,5200	0,5034	0,5294
XGBoost	0,5054	0,5065	0,5040	0,4901	0,5137
Gradient Boosting	0,5134	0,5214	0,5080	0,4991	0,5046
Logistic Regression	0,4923	0,4805	0,5340	0,5026	0,4924

Разделение выборки по медиане SI оказалось самой трудной задачей: AUC едва превышает 0,53. Случайный лес показывает наибольший ROC-AUC, хотя по F1 он уступает логистической регрессии.

Превышает ли SI порог 8?

	Accuracy	Precision	Recall		ROC-AUC
Модель	(cp.)	(cp.)	(cp.)	F1 (cp.)	(cp.)
Random Forest	0,6194	0,4525	0,2675	0,2849	0,5656
Gradient Boosting	0,6013	0,3492	0,2983	0,2996	0,5768
XGBoost	0,6043	0,3519	0,2761	0,2889	0,5675
Logistic Regression	0,6003	0,3696	0,3880	0,3644	0,5714

Задача SI > 8 предсказуема лучше: AUC приближается к 0,58. Случайный лес обеспечивает максимальную точность и наибольшую точность среди моделей, в то время как градиентный бустинг даёт чуть лучший ROC-AUC. Выбор модели зависит от приоритетов (баланс между положительной предсказательной ценностью и чувствительностью).

Обсуждение и выводы

- 1. **Сложность задач.** Входные дескрипторы демонстрируют слабые линейные связи с IC50, CC50 и SI; соответственно линейные методы (Ridge, Lasso) оказываются наименее эффективными. Ансамбли деревьев и бустинг-модели дают лучшие результаты, но даже они имеют низкие R² и AUC, что указывает на высокую сложность задачи и необходимость дополнительных признаков.
- 2. **Оптимальные модели.** Для IC50 лучшим оказался градиентный бустинг, обеспечивающий минимальный RMSE и положительный R^2 . В случае CC50 XGBoost немного опережает другие модели по ошибкам, но все R^2 отрицательны. Для SI минимальную ошибку обеспечивает Random Forest, хотя и с отрицательным R^2 .
- 3. **Классификация.** Задачи классификации показали умеренные результаты. Для IC50 > медианы лучшим оказался градиентный бустинг. Для CC50 > медианы он также лидирует, хотя логистическая регрессия лишь немного уступает. В задачах с SI медиана Random Forest обеспечивает наибольший ROC-AUC, а при пороге 8 наибольшую точность показывает тоже Random Forest, тогда как градиентный бустинг немного выигрывает по AUC.
- 4. Рекомендации по улучшению. Для повышения качества моделей следует:
- 5. провести детальный отбор и генерацию признаков, включая нелинейные комбинации и доменные химические индексы;
- 6. расширить датасет за счёт дополнительных соединений;
- 7. изучить методы отбора признаков (Recursive Feature Elimination, Permutation Importance) и снизить размерность до наиболее информативных дескрипторов;
- 8. протестировать альтернативные алгоритмы, такие как CatBoost и LightGBM, а также нейронные сети, которые могут лучше раскрыть сложные зависимости.

Заключение

Работа продемонстрировала полный цикл решения задач классического машинного обучения: от исследовательского анализа химических данных до построения и оценки нескольких регрессионных и классификационных моделей. Полученные результаты показывают, что предсказание точных количественных значений IC50, CC50 и SI трудно из-за слабых корреляций и ограниченного объёма данных. Тем не менее градиентный бустинг и Random Forest позволяют ранжировать соединения и давать приближённые оценки. Для практического использования необходимо продолжить исследование, улучшая признаки и расширяя набор данных. Наиболее перспективными направлениями являются применение более современных алгоритмов (LightGBM, CatBoost), а также создание доменно-специфических дескрипторов, отражающих биологическую активность соединений.