Topic Models

Lecture 3
Data Analysis
E0 259 - Fall 2022
Vikram Srinivasan
Indian Institute of Science, needl.ai

Why This Model?

- In PLSA, essentially modeling each document in the training set comes from a point distribution over topics
- Hence for new unseen documents, there is no way to have a generative model
- LDA addresses this by having a generative model for the topic distribution of a document (essentially instead of a point, it is a distribution over the simplex).
- This gives it way more flexibility.
- Still the parameter space is large, how do we estimate it efficiently?

LDA Inference

- α is a hyper parameter
- We need to infer:
 - Per word topic assignment Z (Multinomial)
 - \circ Per **document** topic distribution π (Dirichlet simplex with K dimensions)
 - \circ Per **topic** word distribution β (Dirichlet simplex with |V| dimensions)

Computing the Hidden Variable Distributions

$$p(\beta, \pi, \mathbf{Z}, \mathbf{W}) = \prod_{i=1}^{K} \mathbf{p}(\beta_i) \prod_{i=1}^{D} \mathbf{p}(\pi_d)$$

$$(\prod_{n=1}^{N} \mathbf{p}(\mathbf{Z}_{d,n} | \pi_d) \mathbf{p}(\mathbf{w}_{d,n} | \beta, \mathbf{z}_{d,n}))$$

$$p(\beta, \pi, \mathbf{Z} | \mathbf{W}) = \frac{\mathbf{p}(\beta, \pi, \mathbf{Z}, \mathbf{W})}{\mathbf{p}(\mathbf{W})}$$
Joint probability distribution from graphical model

$$p(\beta, \pi, \mathbf{Z} | \mathbf{W}) = \frac{\mathbf{p}(\beta, \pi, \mathbf{Z}, \mathbf{W})}{\mathbf{p}(\mathbf{W})}$$
 Posterior Distribution

Sampling Techniques

- How do we approximate complex multi dimensional distributions?
- Monte Carlo methods
- Sample from the distribution and estimate E[f(X)], where X is drawn from some arbitrary distribution?

E.g. estimate area of circle.

Rejection Sampling

- Want to approximate some complex distribution p(x)
- Want to sample high probability events more often.
- How do we know which are high probability events?
- Sample from a uniform distribution q(x)
- Accept all samples such that 0 <= p(x) <= Mq(x)

Importance Sampling

- Some values of f(X) may be unlikely and have very large values
- Expected values gets biased by these samples.
- Standard Monte Carlo doesn't capture these well.
- Draw samples from some approximate distribution q
- Assign higher probability to "important" values
- Down weight them in sample averages

$$E[f(X)] = \frac{1}{N} \sum_{i=1}^{N} \frac{p(X_i)}{q(X_i)} f(X_i)$$

Issues with Importance and Rejection Sampling

- Rejection sampling rejects too many samples in high dimensions
- Importance sampling has high variance in high dimensions

Markov Chain Monte Carlo Methods

- Why Markov chain based sampling?
- If chain is regular, then converges to stationary distribution
 - Regular => >0 probability to go from any state to another state k hops away
- Allows for sampling from complex high dimensional distributions

Gibbs Sampling

- Consider T20 World Cup
- England in Group A and India in Group B
- Probabilities of each qualifying for Semi Finals is given below
- How do you sample from the distribution to get accurate estimates of P(I | E)
 and P(E | I)

India/England	Qualify (1)	Knocked Out (0)
Qualify (1)	0.1	0.4
Knocked Out (0)	0.2	0.3

Gibbs Sampling (contd.)

- Iterative process (the Markov comes from here).
- For t = 1:T:
 - \circ E^t ~ P(E | I^{t-1})
 - $\circ I^t \sim P(I \mid E^t)$

- In general, if we have a multivariate distribution $(X_1, X_2, ..., X_n)$, then the sampling works as follows:
- For t = 1:T:
 - o For i 1:n:
 - $\circ X_{i}^{t} \sim P(X_{i} | X_{1}^{t}, ..., X_{i-1}^{t}, X_{i+1}^{t-1}, ..., X_{n}^{t-1})$

Dirichlet Distribution - Recall

Gibbs Sampling for LDA - Example

- Two Goals:
 - For each word in document, figure out which topic it belongs to.
 - For each document, figure out mixture of topics.

Gibbs Sampling for LDA

- Pick a word in a document say "Batter" in Document 1. What Topic does it belong to?
- Consider only Document 1, how frequently do Topic 1, 2 and 3 appear in Document 1?
- Answer: 5, 3 and 2.
- "Batter" should more likely be same as frequently occurring Topics in Document 1

Gibbs Sampling for LDA (contd.)

- What is the Topic associated with Batter across all Documents?
- Answer: 2, 0, 1

Gibbs Sampling for LDA (Contd.)

```
Galaxy,
                                          Idly, Idly,
Ball, Ball,
                     Galaxy,
Ball, Ball,
                                          Dosa,
Batter,
                     Star, Star,
                                          Dosa,
Batter.
                     Star,
                                          Batter,
Star, Star,
                     Planet,
                                          Batter
Drive, Drive,
                     Sun
Cover
```

- Batter in Document 1: 5, 1 and 3.
- Batter across Documents: 2, 0, 1
- Assign green with probability = 5*2/(5*2 + 1*0 + 3*1) = 10/13

Gibbs Sampling for LDA (Contd.)

- Assign topic distribution to each document based on colors of words in document
- Keep iterating

Gibbs Sampling - Formally

Recall:

Gibbs Sampling (contd.)

- Define a |V|XK matrix, C^V
- $C_{v,j}^V$, number of times word v is assigned to topic j, excluding current word v under consideration.
- Define a |D|XK matrix, C^D
- $C_{d,j}^D$, fraction of words in d assigned to topic j, excluding current word v under consideration.

Gibbs Sampling (contd.)

$$p(z_v = j | z_{-v}, \{v, d\}) = \frac{C_{v,j}^V + \eta_v}{\sum_{v' \in V} C_{v',j}^V + |V| \eta_v} * \frac{C_{d,j}^D + \alpha_j}{\sum_{d' \in D} C_{d',j}^D + |D| \alpha_j}$$

- Add dirichlet parameter to avoid 0 values
- Dirichlet parameter is prior to multinomial

Similarities

- Document Document
 - Use KL divergence between topic distribution of 2 documents to cluster/compare similarity between documents.
- Query Document

$$p(q|d) = \prod_{w \in q} p(w|d)$$

=
$$\prod_{w \in q} \sum_{j \in K} p(w|z=j)p(z=j|d)$$

Correlated Topic Models

- The Dirichlet model assumes topics are independent of each other.
- Typically topics are correlated.
 - E.g. Topic on macroeconomics maybe correlated with topic on geo-politics
- How do we model such correlated topic models?
- Slight alteration to the graphical model does the trick

Correlated Topic Models

• Model the topic mixture as a multivariate normal $\sim N_k(\mu, \Sigma)$

Dynamic Topic Models

https://medium.com/the-die-is-forecast/topic-modeling-as-osint-exploring-russian-presidential-sp eech-topics-over-time-ad6018286d37

Dynamic Topic Models

- Divide time into discrete chunks of time duration L (e.g. a year, a decade etc.)
- Do topic modeling on each corpus in that time duration L
- Assume topics evolve slowly
- Word topic distribution at time tL, depends on word topic distribution at (t-1)L

