(a)

Calculate $|20|_p$, $|-20/3|_p$, and $|e^p|_p$ for all primes p.

Note that if (a, p) = 1 then $|a|_p = 1$

$$|20|_p = |2^2 \cdot 5|_p = |2|_p^2 \cdot |5|_p = \begin{cases} 1/4 & p = 2, \\ 1 & p = 3, \\ 1/5 & p = 5, \\ 1 & p > 5, \end{cases}$$

and

$$|-20/3|_p = |-1|_p \cdot |2|_p^2 \cdot |5|_p \cdot |3|_p^{-1} = |20/3|_p = \begin{cases} 1/4 & p = 2, \\ 3 & p = 3, \\ 1/5 & p = 5, \\ 1 & p > 5. \end{cases}$$

$$|e^p|_p = 1$$

Proof. Note that $e^p = \sum_{i=0}^{\infty} p^n/n!$. I will prove that the *n*th partial sum has *p*-adic norm 1. Since the partial sums converge to e^p this will imply that $|e^p|_p = 1$.

Here is the idea: I will rewrite $S_n = r/s$ where r and s are integers, then I will show that p does not divide r or s and thus $|S_n|_p = 1$. Notice that $p^n/n!$ upon canceling out p's will continue to have a power of p in the numerator and no factors of p in the denominator. Call the reduced form of $p^n/n!$, p^{k_n}/r_n . Then we have

$$S_m = 1 + p + \frac{p^{k_2}}{r_2} + \dots + \frac{p^{k_m}}{r_m},$$
$$= \frac{\sum_{i=0}^m \left[p^{k_i} \prod_{0=j \neq i}^m r_j \right]}{\prod_{i=0}^m r_i}.$$

Each r_i is not divisible by p, thus the denominator is not. If you notice, every term in the summation of the numerator has a power of p (since $k_i \geq 1$ for i > 1) except for the first term which is a product of all the r_i . Therefore p does not divide the numerator.

(b)

Compute the first 4 digits in the base 3 expansion of $e^6 \in \mathbb{Q}_3$.

$$e^{6} = \sum_{i=0}^{\infty} \frac{6^{i}}{i!},$$

$$= 1 + 2 \cdot 3 + 2 \cdot 3^{2} + 2^{2} \cdot 3^{2} + 2 \cdot 3^{3} + \frac{2^{2}}{5} \cdot 3^{4} + \cdots$$

Since the factors of 3 in n! do not grow as fast as the factors of 3 in 3^n there will not be another term with $3^3, 3^2$, or 3. So

$$= 1 + 2 \cdot 3 + 2 \cdot 3^{2} + 2^{2} \cdot 3^{2} + 2 \cdot 3^{3} + \frac{2^{2}}{5} \cdot 3^{4} + \dots,$$

$$= 1 + 2 \cdot 3 + 6 \cdot 3^{2} + 2 \cdot 3^{3} + \dots,$$

$$= 1 + 2 \cdot 3 + 0 \cdot 3^{2} + (2 + 2) \cdot 3^{3} + \dots,$$

$$= 1 + 2 \cdot 3 + 0 \cdot 3^{2} + 1 \cdot 3^{3} + \dots$$

Thus the first four coefficients are 1, 2, 0, 1.

Problem 2

(a)

Let $f(x) = x^4 2x^3 + 5x^2 + 3x + 6$. Compute f(1) and f'(1) and explain why there is a root of f in \mathbb{Q}_{17} .

Proof. f(1) = 17 so $|f(1)|_{17} = 1/17$. f'(1) = 23 so $|f'(1)|_{17} = 1$ since (23, 17) = 1. Checking the hypothesis of Hensel's lemma with n = 1 we see they are satisfied:

$$|f(1)|_{17} = 1/17 \le (1/17)^1$$
 and $|f'(17)| = 1 > (1/17)^{1/2}$.

Hensel's lemma ensures us a root of f in $\mathbb{Z}_{17} \subseteq \mathbb{Q}_{17}$.

(b)

Let b be an integer. If $f(x) \in \mathbb{Z}[x]$ has p divide f(b) but p does not divide f'(b), explain why f(x) has a root α in the p-adic integers \mathbb{Z}_p , such that $\alpha \equiv b \pmod{p}$.

Proof. Since p divides f(b), $\nu_p f(b) \ge 1$. Since p does not divide f'(b), we have $\nu_p f'(b) = 0$. Therefore

$$|f(b)|_p \le \frac{1}{p}$$
 and $|f'(b)|_p = 1 > \left(\frac{1}{p}\right)^{1/2}$.

Hensel's lemma applies to give us a $\xi \in \mathbb{Z}_p$ such that $f(\xi) = 0$ and $d_p(\xi, b) < (1/p)^{1-0} = 1/p$. Since $d_p(\xi, b) = (1/p)^{\nu(\xi-b)}$, we have $\nu_p(\xi-b) > 1$. Therefore $p|\xi-b$ and hence $\xi \equiv b \pmod{p}$.

Find $|\mathbb{Q}_p[\alpha]: \mathbb{Q}_p|$ for p=2,3,5,7,11 and for $\alpha=\sqrt{2},\sqrt[3]{5}$ and i where i is a root of x^2+1 .

Here is a summary of the results

	2	3	5	7	11
$\sqrt{2}$ $\sqrt[3]{5}$	2	2	2	1	2
$\sqrt[3]{5}$	1	3	3	3	1
i	2	2	1	2	2

Case: $\alpha = \sqrt{2}$

Since x^2-2 is satisfied by α , if $\alpha\in\mathbb{Q}_p$ then $|\mathbb{Q}_p[\alpha]:\mathbb{Q}_p|=1$ otherwise $|\mathbb{Q}_p[\alpha]:\mathbb{Q}_p|=2$. Suppose $\alpha\in\mathbb{Q}_p$, then $\alpha=p^ku$ where $k\in\mathbb{Z}$ and u is a unit of \mathbb{Z}_p . We have that $\alpha^2=2$ so $p^{2k}u^2=2$.

When p=2, $\nu_p p^{2k} u^2=2k=\nu_p 2=1$. There is no integer k that satisfies that equation. Therefore $\alpha \notin \mathbb{Q}_2$.

When $p \neq 2$, $\nu_p p^{2k} u^2 = 2k = \nu_p 2 = 0$. Therefore k = 0 and hence we may assume α is a unit in \mathbb{Z}_p . It's an easy check that $x^2 - 2$ has no root in $\mathbb{Z}/3\mathbb{Z}, \mathbb{Z}/5\mathbb{Z}$, or $\mathbb{Z}/11\mathbb{Z}$ – that contradicts $\alpha \in \mathbb{Z}_p$. So $\alpha \notin \mathbb{Q}_3, \mathbb{Q}_5, \mathbb{Q}_{11}$.

Using Hensel's lemma with $x_0 = 4$ we can conclude that $x^2 - 2$ actually has a root in \mathbb{Q}_7 : $x_0^2 - 2 = 14 \equiv 0 \pmod{7}$ and $2x_0 = 8 \equiv 1 \pmod{7}$ so there is a root and thus $\mathbb{Q}_7[\alpha] = \mathbb{Q}_7$.

Case: $\alpha = \sqrt[3]{5}$

Since $f(x) = x^3 - 5$ is satisfied by α , if $\alpha \in \mathbb{Q}_p$ then $|\mathbb{Q}_p[\alpha] : \mathbb{Q}_p| = 1$ otherwise it must be that $|\mathbb{Q}_p[\alpha] : \mathbb{Q}_p| = 3$. Suppose $\alpha \in \mathbb{Q}_p$, then $\alpha = p^k u$ where $k \in \mathbb{Z}$ and u is a unit of \mathbb{Z}_p . We have that $\alpha^3 = 5$ so $p^{3k}u^3 = 5$.

When p = 5, $3k = \nu_5 \alpha^3 = \nu_5 5 = 1$. Since there is no integer k that satisfies that equation we have a contradiction. Therefore $\alpha \notin \mathbb{Q}_5$.

When $p \neq 5$. We may assume α is an unit in \mathbb{Z}_p because k = 0. One may check that there is no root of f modulo $3^2, 7$, or 11. Therefore $\alpha \notin \mathbb{Q}_3, \mathbb{Q}_7, \mathbb{Q}_{11}$.

Like before we use Hensel's lemma to conclude there is a root of f in \mathbb{Q}_2 . Use $x_0 = 1$: $f(x_0) \equiv 0 \pmod{2}$ and $f'(x_0) = 3 \equiv 1 \pmod{2}$. Therefore there exists a root of f in \mathbb{Q}_2 .

Case: $\alpha = i$

Let $f(x) = x^2 + 1$. Suppose $\alpha \in \mathbb{Q}_p$ and write $\alpha = p^k u$ as usual. Note $2k = \nu_p p^{2k} u^2 = \nu_p - 1 = 0$ so k = 0 and hence $\alpha \in \mathbb{Z}_p$ and a unit.

Some quick computation shows $x^2 + 1$ has no roots modulo $2^2, 3, 7$, or 11.

However $i \in \mathbb{Q}_5$. This is because $5 \equiv 1 \pmod{4}$ (a sufficient condition as we showed in class).

Let i be a root of $x^2 + 1$. Find the base 13 expansions of i in \mathbb{Q}_{13} . up to the first 4 digits by using Newton's method.

We need to find a number x such that $d_{13}(x,i) < (1/13)^4$ to guarantee that x will have the same expansion in the first 4 digits.

Step 1

Let $x_0 = 5$. Note that x_0 satisfies the conditions of Hensel's lemma

$$|f(5)|_{13} = |26|_{13} = 1/13$$
 and $|f'(5)|_{13} = |10|_{13} = 1 > (1/13)^{1/2}$

therefore $d_{13}(i, x_0) < (1/13)$.

Step 2

Let $x_1 = x_0 - f(x_0)/f'(x_0) = 12/5$. Note that x_1 satisfies the conditions of Hensel's lemma

$$|f(12/5)|_{13} = \left|\frac{13^2}{5^2}\right|_{13} = (1/13)^2$$
 and $|f'(12/5)|_{13} = \left|\frac{2^3 \cdot 3}{5}\right|_{13} = 1$

therefore $d_{13}(i, x_1) < (1/13)^2$.

Step 3

Let $x_2 = x_1 - f(x_1)/f'(x_1) = 119/120$. Note that x_2 satisfies the conditions of Hensel's lemma

$$|f(x_2)|_{13} = \left| \frac{13^4}{2^6 \cdot 3^2 \cdot 5^2} \right|_{13} = (1/13)^4$$
 and $|f'(x_2)|_{13} = \left| \frac{7 \cdot 17}{2^2 \cdot 3 \cdot 5} \right|_{13} = 1$

therefore $d_{13}(i, x_2) < (1/13)^4$.

Expansion

I will write down the expansion of 119/120. It should be easy to check that $119/120 \cdot 120 = 119 = 2 + 9 \cdot 13$.

$$119/120 = 5 + 5 \cdot 13 + 1 \cdot 13^2 + 0 \cdot 13^3 + 4 \cdot 13^4 + \cdots$$

So the first four digits are (5, 5, 1, 0)

RYAN DAHL

(a)

Let $\mathbb{Q}_p \subseteq K$ be a finite unramified extension of degree n. Explain why every element in K can be written uniquely in the form for all i where $D = \{x \in K : x^{p^n} = x\}$.

Proof. Since K is an unramified extension we have $|K^{\times}| = \{|p|^m\}$. Furthermore since n = ef, the residue degree is n. Thus $|k: \mathbb{F}_p| = n$ where k is the residue field of K. A degree n extension of a finite field is simply the splitting field of the polynomial $x^{p^n} - x$, so k = D.

By the representation theorem, every element in K can be written uniquely as $\sum_{i>m}^{\infty} a_i p^i$ where $a_i \in D$.

(b)

Let $\mathbb{Q}_p \subseteq K$ be an extension of degree n with ramification index e and residue degree f. Write $|K^{\times}| = \{|\pi|^m : m \in \mathbb{Z}\}$ with $0 < |\pi| < 1$. Show every element in K can be written uniquely in the form $\sum_{i \geq m}^{\infty} \sum_{j=0}^{e-1} a_{ij} p^i \pi^j$ where $a_{ij} \in D$ for all i, j.

Proof. Let $R = B_{\leq}^K$. We can write any element in K as $\sum_{i \geq m} b_i p^i$ where b_i come from the set of representatives of the cosets R/pR. We have that $pR = \pi^e R$ (by definition) so $R/pR = R/\pi^e R$. By the canonical representation of elements in K, each $b_i = \sum_{j \geq m} a_{ij} \pi^j$ where a_{ij} are taken as representatives from the residue field k. However each b_i is only unique modulo $\pi^e R$ so we may write $b_i = \sum_{j=0}^{e-1} a_{ij} \pi^j$. As in (a) we can say $a_{ij} \in D$ (which is now a degree f extension). Substituting into the original representation we get that every element in K can be written as $\sum_{i\geq m}^{\infty} (\sum_{j=0}^{e-1} a_{ij} p^i) \pi^j$

Problem 6

(a)

Show that any element $\alpha \in \overline{\mathbb{Q}}_p$ is a root of a polynomial in $\mathbb{Z}_p[x]$ such that at least one of the coefficients is a unit of \mathbb{Z}_p .

Proof. α is algebraic over \mathbb{Q}_p so there exists $f \in \mathbb{Q}_p[x]$ with $f(\alpha) = 0$. Suppose $f(x) = a_n x^n + \cdots + a_0$. Let a_i be the element of the set $\{a_0, \ldots, a_n\}$ of maximal p-adic norm. Then let

$$g(x) = \frac{f(x)}{a_i} = \frac{a_n}{a_i} x^n + \dots + \frac{a_i}{a_i} x^i + \dots + \frac{a_0}{a_i}$$

Clearly the *i*th coefficient is a unit, namely 1. Every other coefficient has $|a_j/a_i| \leq 1$ since $|a_j| \leq |a_i|$. So all the coefficients are in \mathbb{Z}_p .

(b)

1/p is not integral over \mathbb{Z}_p .

Proof. Suppose for contradiction that 1/p was integral over \mathbb{Z}_p . Let $f(x) \in \mathbb{Z}_p[x]$ be the monic polynomial that 1/p satisfies. We could factor f(x) = (x-1/p)g(x) where $g(x) \in \mathbb{Q}_p[x]$. Clearly g must be monic. Also we may assume that $g(0) \neq 0$ for it were we could just factor out x^j and the remaining polynomial would work instead. So we can assume the constant term of g is nonzero. Let $g(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$. Then

$$(x-1/p)g(x) = x^{n+1} + (c_{n-1} - 1/p)x^n + \dots + (c_0 - c_1/p)x + (-c_0/p) \in \mathbb{Z}_p[x]$$

Therefore $-c_0/p \in \mathbb{Z}_p$ so $p|c_0$ which implies $c_0 \in \mathbb{Z}_p$. Since $c_0 \in \mathbb{Z}_p$, $c_0 - c_1/p \in \mathbb{Z}_p$ implies that $c_1 \in \mathbb{Z}_p$. Continuing this way we can conclude that every coefficient is in \mathbb{Z}_p .

(c)

Let X be the integral closure of \mathbb{Z}_p in $\overline{\mathbb{Q}}_p$. Show that X is contained in the closed unit ball of $\overline{\mathbb{Q}}_p$, B.

Proof. Let $\alpha \in X$. Suppose α satisfies $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0 \in \mathbb{Z}_p[x]$. For a contradiction suppose that $|\alpha| > 1$. Then we have

$$|\alpha^{n}| = |\alpha|^{n} = |-1| \cdot |a_{n-1}\alpha^{n-1} + \dots + a_{0}|,$$

$$\leq \max\{|a_{n-1}| \cdot |\alpha|^{n-1}, \dots, |a_{0}|\},$$

$$\leq \max\{|\alpha|^{n-1}, \dots, 1\} \quad \text{(since } |a_{i}| \leq 1),$$

$$= |\alpha|^{n-1}$$

So $|\alpha|^n \leq |\alpha|^{n-1}$, a contradiction.

(d)

Show that X = B

Proof. Let $\alpha_1 \in B$. Let $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0 \in \mathbb{Q}_p[x]$ be its minimal polynomial. Let $\alpha_1, \dots, \alpha_n \in \mathbb{Q}_p$ be all the roots of f.

Since Galois automorphisms are isotropies (with respect to the p-adic norm) and they act transitively on the roots of f, we have $|\alpha_1| = \cdots = |\alpha_n| \le 1$.

Every coefficient is a sum and product of a number of roots. Hence

$$|c_i| = \left| \sum_{i \in I} \prod_{j \in J_i} \alpha_j \right| \le \max_{i \in I} \left\{ \left| \prod_{j \in J_i} \alpha_j \right| \right\} = \max_{i \in I} \left\{ \prod_{j \in J_i} |\alpha_j| \right\} = 1$$

For some index sets I and J_i . Therefore α_1 is integral over \mathbb{Z}_p and thus is inside of X.

Ryan Dahl

(a)

Show that $\Phi_5(x) = x^4 + x^3 + x^2 + x + 1$ is an irreducible polynomial over \mathbb{Q}_5 .

Proof. Suppose $z \in \mathbb{Q}_5$ is a root of Φ_5 . Then $z = 5^k u$ for $k \in \mathbb{Z}$ and $u \in \mathbb{Z}_p^{\times}$. Note that $z^5 = 1$, so $5^{5k}u^5 = 1$ which taking the valuation of both sides implies 5k = 0. Therefore $z \in \mathbb{Z}_p^{\times}$. Now simply check that Φ_5 has no roots modulo 5^2 .

Find a p such that Φ_5 factors completely into linear factors over \mathbb{Q}_p . p = 11.

Proof. Note $\Phi_5(3) \equiv 0 \pmod{11}$ and $\Phi_5'(3) = 142 \equiv 10 \pmod{11}$. By Hensel's lemma there is a root of $\Phi_5 \in \mathbb{Q}_{11}$. Since the roots of Φ_5 are the primitive roots of unity, the fact that \mathbb{Q}_{11} contains one means it must contain them all (since they all generate the group of roots of unity).

(b)

Find the minimum distance between distinct roots of Φ_5 in $\overline{\mathbb{Q}}_5$. The minimal distance is 1.

Proof. Let ξ_5 be a primitive 5th root of unity. The roots of Φ_5 are $\xi_5, \xi_5^2, \xi_5^3, \xi_5^4$. As we mentioned above $|\xi_5^i| = |\xi_5| = 1$. Note for i < j, $|\xi_5^i - \xi_5^j| = |\xi_5|^i \cdot |1 - \xi_5^{j-i}| = |1 - \xi_5^{j-i}|$. Hence

$$r(\xi_5) = \min_{1 \le i \le 3} |1 - \xi_5^i|.$$

Since $d(\xi_5^i, 0) = 1$ and d(1, 0) = 1 the ultra-metric property gives us that $d(\xi_5^i, 1) = 1$. Thus $r(\xi_5) = 1$.

(c)

Find an $\epsilon > 0$ such that if f is a monic quartic in $\mathbb{Z}_5[x]$ with $d(f, \Phi_5) < \epsilon$ then at least one root α of f has $\mathbb{Q}_5[\alpha] = \mathbb{Q}_5[\xi_5]$.

Proof. Choose $\epsilon = 1$. Let $g \in \mathbb{Z}_5[x]$ a monic degree 4 polynomial with $d(f, \Phi_5) < \epsilon$. Write $g(x) \prod (x - b_i)$ where $b_i \in \overline{\mathbb{Q}}_p$. Then we have

$$g(\xi_5) = \prod_{i=1}^4 (\xi_5 - b_i) = g(\xi_5) - \Phi(\xi_5).$$

Let $M = \max_i |\xi_5|^i$. From part (b) we saw that $|\xi_5|^i = 1$ so M = 1. Then we have

$$\prod_{i=1}^{4} |\xi_5 - b_i| = |g(\xi_5) - \Phi_5(\xi_5)| \le M \cdot ||g - \Phi_5|| = ||g - \Phi_5||.$$

Let $|\xi_5 - b_j|$ be the smallest of all the $|\xi_5 - b_i|$. Then

$$|\xi_5 - b_j|^4 \le \prod_i |\xi_5 - b_i| \le ||g - \Phi_5|| < 1.$$

By Krasner's lemma $\mathbb{Q}_p(b_j) \supseteq \mathbb{Q}_p(\xi_5)$. But since $|\mathbb{Q}_p(b_j) : \mathbb{Q}_p| = 4 = |\mathbb{Q}_p(\xi_5) : \mathbb{Q}_p|$ we have $\mathbb{Q}_p(b_j) = \mathbb{Q}_p(\xi_5)$.

Problem 8

Let $f_i \in \mathbb{Z}_p[x,y]$ for i=1,2 and $f(x,y)=(f_1(x,y),f_2(x,y))$. Note f will give us a function $f:\mathbb{Q}_p^2 \to \mathbb{Q}_p^2$.

(a)

Show that we can write

$$f(x+h_1,y+h_2) = f(x,y) + Df(x,y) \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} + \begin{pmatrix} h_1^2 E + h_2^2 F + h_1 h_2 G \\ h_1^2 H + h_2^2 I + h_1 h_2 J \end{pmatrix}$$

where

$$Df(x,y) = \begin{pmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{pmatrix}$$

and $E, F, G, H, I, J \in \mathbb{Z}_p[x, y, h_1, h_2]$.

Proof. I will show equality in the first component, the equality in the other component will be a symmetric argument. Let

$$f_1(x,y) = \sum_{i=0}^n \sum_{j=0}^m a_{ij} x^i y^j$$
 and $f_2(x,y) = \sum_{i=0}^n \sum_{j=0}^m b_{ij} x^i y^j$.

Then we have $f_1(x + h_1, y + h_2)$ equal to

$$= \sum_{i=0}^{n} \sum_{j=0}^{m} a_{ij} x^{i} y^{j},$$

$$= \sum_{i=0}^{n} \sum_{j=0}^{m} a_{ij} [x^{i} + ih_{1}x^{i-1} + h_{1}^{2}(\cdots)][y^{j} + jh_{2}y^{j-1} + h_{2}^{2}(\cdots)],$$

$$= \sum_{i=0}^{n} \sum_{j=0}^{m} a_{ij} [x^{i}y^{j} + jh_{2}x^{i}y^{j-1} + ih_{1}x^{i-1}y^{j} + h_{1}h_{2}(\cdots) + h_{1}^{2}(\cdots) + h_{2}^{2}(\cdots)],$$

$$= f_{1}(x, y) + h_{1} \sum_{i \neq 0, j} ia_{ij}x^{i-1}y^{j} + h_{2} \sum_{i, j \neq 0} ja_{ij}x^{i}y^{j-1} + h_{1}^{2}E + h_{2}^{2}F + h_{1}h_{2}G,$$

$$= f_{1}(x, y) + h_{1} \frac{\partial f_{1}}{\partial x}(x, y) + h_{2} \frac{\partial f_{1}}{\partial y}(x, y) + h_{1}^{2}E + h_{2}^{2}F + h_{1}h_{2}G.$$

Which if you check is the first component of left side of the equation we're trying to prove. (whew - that was a lot of typing.) $\hfill\Box$

(b)

If we use the $L^i nfty$ -norm on \mathbb{Q}_p^2 show that for any 2×2 matrix A and vector x we have $||Ax|| \leq ||A|| \cdot ||x||$ where $||A|| = \max_{i,j} |a_{ij}|_p$.

Proof. If

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad \text{and} \quad x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

then

$$\begin{split} ||A||\cdot||x|| &= \max\{|a|,|b|,|c|,|d|\} \cdot \max\{|x_1|,|x_2|\}, \\ &= \max\{|ax_1|,|ax_2|,|bx_1|,|bx_2|,|cx_1|,|cx_2|,|dx_1|,|dx_2|\}, \\ &\geq \max\{|ax_1|,|bx_2|,|cx_1|,|dx_2|\}, \\ &= \max\{\max\{|ax_1|,|bx_2|\},\max\{|cx_1|,|dx_2|\}\}, \\ &\geq \max\{|ax_1+bx_2|,|cx_1+dx_2|\}, \\ &= ||Ax|| \end{split}$$

where $|\cdot|$ is the *p*-adic norm.

(c)

For a matrix $A \in GL_2(\mathbb{Q}_p)$ what is the relationship between ||A|| and $||A^{-1}||$? $||A|| = |\det A| \cdot ||A^{-1}||$.

Proof. Let A be as in part (b). Then

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Therefore

$$\begin{aligned} ||A^{-1}|| &= \max \left\{ \left| \frac{a}{\det A} \right|, \left| \frac{-b}{\det A} \right|, \left| \frac{-c}{\det A} \right|, \left| \frac{d}{\det A} \right| \right\}, \\ &= \frac{1}{|\det A|} \cdot \max\{|a|, |b|, |c|, |d|\}, \\ &= \frac{||A||}{|\det A|}. \end{aligned}$$

So $||A|| = |\det A| \cdot ||A^{-1}||$.

(d)

Let $N(v) = v - (Df(v))^{-1}f(v)$ be the Newton map. What conditions do you need to ensure that N(v) is a well-defined in \mathbb{Q}_p^2 ?

We need det $Df(v) \neq 0$ so that $(Df(v))^{-1}$ exists. Otherwise it's easy to see that the vector you get out of N(v) is actually in \mathbb{Q}_p^2 .

What conditions do you need to ensure that N(v) is well-defined in \mathbb{Z}_p^2 ?

We require that $||Df(v)|| \le |\det Df(v)|$ (and of course that $\det Df(v) \ne 0$). If this is the case then

$$1 \geq \frac{||Df(v)||}{|\det Df(v)|}$$

$$\geq \frac{||Df(v)||}{|\det Df(v)|} \cdot ||f(v)|| \quad \text{(since } ||f(v)|| \leq 1)$$

$$= ||(Df(v))^{-1}|| \cdot ||f(v)|| \quad \text{(using part c)}$$

$$\geq ||(Df(v))^{-1}f(v)|| \quad \text{(using part b)}.$$

Therefore $(Df(v))^{-1}f(v) \in \mathbb{Z}_p$, and hence $N(v) \in \mathbb{Z}_p$.

What conditions do you need to ensure that ||f(N(v))|| < ||f(v)||?

We require that $||Df(v)|| < |\det Df(v)|$. Let h = N(v) - v. Denote the first and second components of h as h_1 and h_2 , respectively. Note that

$$|h_{1}| = \left| \frac{d}{\det Df(v)} f_{1}(v) - \frac{b}{\det Df(v)} f_{2}(v) \right|$$

$$\leq \max \left\{ \left| \frac{d}{\det Df(v)} f_{1}(v) \right|, \left| \frac{b}{\det Df(v)} f_{2}(v) \right| \right\}$$

$$\leq \frac{||Df(v)||}{|\det Df(v)|} \max\{|f_{1}(v)|, |f_{2}(v)|\}$$

$$< \max\{|f_{1}(v)|, |f_{2}(v)|\}$$

$$= ||f(v)||$$

And similarly $|h_2| < ||f(v)||$. Now we have

$$||f(N(v))|| = ||f(v+h)||,$$

$$= \left| \left| f(v) - Df(v)(Df(v))^{-1} f(v) + \left(\frac{h_1^2 E + h_2^2 F + h_1 h_2 G}{h_1^2 H + h_2^2 I + h_1 h_2 J} \right) \right| \right|$$

$$= \left| \left| \left(\frac{h_1^2 E + h_2^2 F + h_1 h_2 G}{h_1^2 H + h_2^2 I + h_1 h_2 J} \right) \right| \right|$$

$$= ||h_1^2 E + h_2^2 F + h_1 h_2 G|| \quad \text{(WLOG)}$$

$$\leq \max\{|h_1|^2 |E|, |h_2|^2 |F|, |h_1||h_2||G|\}$$

$$\leq \max\{|h_1|^2, |h_2|^2, |h_1||h_2|\} \quad \text{(since } E, F, G \text{ have norm } \leq 1)$$

$$\leq ||f(v)||^2$$

$$< ||f(v)|| \quad \text{(since } ||f(v)|| \leq 1)$$

(e)

Prove a versions of Hensel's lemma for polynomial functions $f: \mathbb{Q}_p^2 \to \mathbb{Q}_p^2$

Lemma 1. Let $v \in \mathbb{Z}_p^2$ be such that $||f(v)|| \equiv 0 \pmod{p^n}$. If $||Df(v)|| < |\det Df(v)| \neq 0$ then w = N(v) has the following properties: $w \in \mathbb{Z}_p^2$, $||f(w)|| \equiv 0 \pmod{p^{n+1}}$, $w \equiv v \pmod{p^{n+1}}$, and ||Df(v)|| = ||Df(w)||.

Proof. We showed above that $w \in \mathbb{Z}_p^2$. Note that $w - v = -(Df(v))^{-1}f(v)$, so

$$||w - v|| = || - (Df(v))^{-1}f(v)||,$$

 $\leq \frac{||Df(v)||}{|\det Df(v)|} ||f(v)||,$
 $\leq (1/p) \cdot (1/p)^{n}.$

So we see that $w \equiv v \pmod{p^{n+1}}$. Because $||f(w)|| < ||f(v)|| \le (1/p)^n$ we have that $||f(w)|| \le (1/p)^{n+1}$.

(unsure of how to prove
$$||Df(v)|| = ||Df(w)||$$
)

Theorem. With the conditions of the lemma, there exists a root of f in \mathbb{Z}_n^2

Proof. Same as proof of Hensel's lemma: Keep iterating the above lemma to get a sequence of points v_1, v_2, \ldots From the conditions we see that the sequence is Cauchy and hence has a p-adic limit which must satisfy the polynomial.

(f)

Find a prove a Hensel's lemma for a function $f \in \mathbb{Z}_p[x,y]$ where $f: \mathbb{Q}_p^2 \to \mathbb{Q}_p$.

Theorem. If there exists $v \in \mathbb{Z}_p^2$ with $f(v) \equiv 0 \pmod{p^n}$ and

$$\left|\frac{\partial f}{\partial x}(v) - \frac{\partial f}{\partial y}(v)\right| > 1$$

and $v_1 + v_2 \equiv 0 \pmod{p^n}$ then there exists a root in \mathbb{Z}_p^2 of f.

Proof. Define a function $g: \mathbb{Q}_p^2 \to \mathbb{Q}_p^2$ by

$$g\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} f(x,y) \\ x+y \end{pmatrix}.$$

We want to apply the Hensel's lemma from part (e) to this function so we must check the conditions:

$$Dg(v) = \begin{pmatrix} \frac{\partial f}{\partial x}(v) & \frac{\partial f}{\partial y}(v) \\ 1 & 1 \end{pmatrix}$$

So

$$|\det Dg(v)| = \left|\frac{\partial f}{\partial x}(v) - \frac{\partial f}{\partial y}(v)\right| > \max\{1, |\partial f/\partial x(v)|, |\partial f/\partial y(v)|\} = ||Dg(v)||.$$

Finally $||g(v)|| = \max\{|f(v)|, |v_1 + v_2|\} \le (1/p)^n$. Apply the Hensel's lemma from (e) to get a root of g, which will be a root of f!