Parsing Algorithms

Human Language from a Computational Perspective May 30, 2018

Data structures so far

• Lists [3, 16, 8, 0]

[HE, GAVE, HER, A, BOOK]

• Tables [THE: 462, FISH: 31, SEE: 9]

Reminder: phrase structure

Graphs

Undirected

Directed

Graphs

Graphs

At most one incoming edge per node

Leaf

Phrase structure trees

Syntactic theory based on phrases.

Nodes have labels.

Tokens are leaves.

Dependency parsing

Also syntax, but based on dependencies, not phrases.

Dependency parsing

Also a tree, but edges are labeled

Tokens are all the nodes (not just leaves)

Syntactic ambiguity

universaldependencies.org

Universal dependencies

http://universaldependencies.org/u/dep/index.html

		Ancient Greek	182K	٥	Hebrew	106K	6	Spanish	411K
universaldependencies.org		Ancient Greek-PROIEL	198K		Hindi	316K	.6.	Spanish-AnCora	495K
	©	Arabic	217K		Hungarian	37K	+	Swedish	76K
	©	Arabic-NYUAD	629K	-	Indonesian	110K	+	Swedish-LinES	64K
		Basque	97K		Irish	13K	+	Swedish Sign Language	<1K
		Belarusian	6K		Italian	195K	*	Tamil	8K
		Bulgarian	140K		Italian-ParTUT	39K	O-	Turkish	46K
		Catalan	472K	•	Japanese	173K		Ukrainian	12K
	•	Chinese	111K	•	Japanese-KTC	189K	2	Urdu	123K
Many	*	Coptic	3K		Kazakh	<1K	*	Uyghur	1K
Ivially		Croatian	183K	(0)	Korean	63K	*	Vietnamese	31K
		Czech	1,330K	(0)	Korean-Sejong	89K			
□ languages		Czech-CAC	482K	4	Latin	18K			
languages parsed manually.		Czech-CLTT	26K	2	Latin-ITTB	280K			
10 0 100 0 d		Danish	94K	-	Latin-PROIEL	159K			
parsed		Dutch	197K		Latvian	44K			
Jo 311 0 0 0.		Dutch-LassySmall	93K		Lithuanian	40K			
monually		English FSI	229K 88K	#	Norwegian-Bokmaal	280K			
IIIallually.		English-ESL English-LinES	67K	#	Norwegian-Nynorsk	276K			
		English-ParTUT	38K	9	Old Church Slavonic	47K			
	*	Estonian	34K	-	Persian	135K			
	Ŧ	Finnish	181K		Polish	72K			
		Finnish-FTB	143K	•	Portuguese	201K			
		French	381K	•	Portuguese-BR	268K			
	П	French-ParTUT	17K		Romanian	202K			
	n	French-Sequoia	58K		Russian	87K			
	1	Galician	109K		Russian-SynTagRus	988K			
	1	Galician-TreeGal	14K		Sanskrit	1K			
		German	277K	-0-	Slovak	93K			
	## T	Gothic	45K		Slovenian	126K			
		Greek	51K	-	Slovenian-SST	19K			

Resources: Treebanks

Many text corpora parsed by humans

Used for training automatic parsers

Treebank conversion

Trees can be automatically converted to save manual work

Dependency Parsing algorithm

Input: sentence (list of tokens)

Output: dependency tree

or simply, for each word, what is its head and arc label

Dependency Parsing algorithm

[alice, saw, bob] →

Use the index for each token.

The root node is denoted by 0.

Evaluation

We have a corpus to train the algorithm,

And another labeled corpus to test it.

What if it returned an incorrect tree?

Evaluation

Labeled Attachment Score (LAS):

% of words with correct head and label

Unlabeled Attachment Score (UAS):

% of words with correct head

Always $0 \le LAS \le UAS \le 100\%$

Evaluation example

Correct tree:

LAS =
$$\frac{5}{7} \approx 71\%$$

Evaluated tree:

$$UAS = {}^{6}/_{7} \cong 86\%$$

"hat" has an incorrect head
"man" has a correct head but incorrect label

Parser scores (English)

Parser	UAS (%)	LAS (%)
MaltParser	90.93	88.95
MSTParser	92.17	89.86
ZPar	92.93	91.28
TurboParser	93.80	92.00
Parsey McParseface	94.41	92.55

Incremental parsing algorithms:

Build the tree one arc at a time.

Apply transitions until the full tree is built.

Using two lists: stack and buffer.

The stack keeps nodes being processed.

The input tokens are taken from the buffer.

Possible transitions at each time step:

(Move node from buffer to stack)

(Create left/right arc between two rightmost stack nodes, and delete child)

SHIFT

LEFT-ARC

RIGHT-ARC

Need to say the label to create (e.g. dobj)

ARC dobj

Dependency Parsing

Where is the learning in the algorithm?

When we have a labeled tree, we know which transitions we need to get to it.

The parser learns how to make these decisions so it can parse new sentences correctly.

If we see the state on the left here, we need to know to apply **RIGHT-ARC**_{dobj}

Machine learning

Learning: getting better in a task based on experience.

Examples we have seen in this course:

Language modeling, I WISH I WISH I HAD 10 SLEEP WELL NN RB

Part-of-speech tagging

WISH I COULD 20
WISH I HAD 10
SLEEP WELL NN RB

Machine learning

Count-based learning would not work well for transition-based parsing

Machine learning

Learning algorithms used for parsing:

- Perceptron
- Neural networks

• ...

