1. Prove via inclusion in both directions that for any three sets A, B, and C

$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$

Solution: First, we must show that

$$(A \cup B) \times C \subseteq (A \times C) \cup (B \times C).$$

We know that sets have the distributive property due to Tautology #29, which states that

$$P \lor (Q \land R) \iff [(P \lor Q) \land (P \lor R)]$$

we know know that

$$C \vee (A \wedge B) \iff [(C \vee A) \wedge (C \vee B)].$$

So

$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$

is proven to be true. Next we must show that

$$(A \times C) \cup (B \times C) \subseteq (A \cup B) \times C.$$

Since Tautology #29 works in reverse as well, this too holds.

Since $(A \times C) \cup (B \times C) \subseteq (A \cup B) \times C$ is true and $(A \cup B) \times C \subseteq (A \times C) \cup (B \times C)$ is true, we have shown that $(A \cup B) \times C = (A \times C) \cup (B \times C)$ is true.

- 2. Let A be the set of all people who have ever lived. For $x, y, \in A$, xRy if and only if x and y share at least one parent. Determine
 - (a) Whether or not the relation R is reflexive;
 - (b) Whether or not the relation R is symmetric;
 - (c) Whether or not the relation R is anti-symmetric;
 - (d) Whether or not the relation R is transitive;
 - (e) Whether or not the relation R is an equivalence relation;
 - (f) Whether or not the relation R is a partial order.

Solution:

- (a) Yes, R is reflexive. $\forall x, x$ shares their parents with themselves. $x \cap x = x$.
- (b) R is symmetric. $\forall x, y \in A$, if x shares one parent with y, then y must share a parent with x. $x \cap y = y \cap x$.

- (c) R is not anti-symmetric. R is anti-symmetric iff $xRy \wedge yRx \implies x = y$. In other words, R is anti-symmetric only if one person can have a certain set of parents. We know this is not true as we have already proven A is symmetric, showing that x and y do not need to be equal to share a parent.
- (d) R is not transitive. Assume x has parents i and j, y has parents j and k, and z has parents k and l. For transitivity to hold, z must either have i or j as a parent. In this case, xRy and yRz hold, but xRz does not, so R is not transitive.
- (e) R is not an equivalence relation. To be an equivalence relation, R must be symmetric, reflexive, and transitive. As R is not transitive, it is not an equivalence relation.
- (f) R is not a partial order. To be a partial order, R must be reflexive, transitive, and anti-symmetric. As R is not anti-symmetric or transitive, it is not a partial order.
- 3. Let $f: [-1,1] \mapsto [-1,0]$ be the function defined by $f(x) = x^2 1$ for all $x \in [-1,1]$. Determine whether or not this function is injective and whether or not it is surjective.

Solution:

End points:

$$x = -1: (-1)^2 - 1 = 1 - 1 = 0$$

 $x = 1: (1)^2 - 1 = 1 - 1 = 0$

Injective

$$f'(x^2 - 1) = x = 0$$
$$f''(x^2 - 1) = f'(x) = 1 > 0$$

So there is a local minimum at x = 0. Substituting x into f(x) gets us:

$$f(0) = (0)^2 - 1 = -1.$$

So $\exists x \in [0,1]$ s.t. f(x) = -1, as $-1 \in [-1,0] = [f(0,1)]$. Let $x^2 - 1 = 0$. Then

$$(x+1)(x-1) = 0.$$

Therefore f(1) = f(-1). Since $1 \neq -1$, f(x) is not injective.

Surjective

The local minimum of f(x) is -1 at x = 0. The values at the end points were also found to be f(-1) = 0 and f(1) = 0. Therefore -1 is the global minimum. Let f(x) = y. Then

$$y = x^2 - 1$$

$$y + 1 = x^2$$

$$\sqrt{y+1} = x$$

Then $f(x) = f(\sqrt{y+1}) = (\sqrt{y+1}^2 - 1) = y$. Squaring a square root removes the square, so we are left with y+1-1=y. Since we are left with y=y, we know that f is surjective.

4. Prove by mathematical induction that if $k \in \mathbb{N}$ and k > 2, then $2^k > 1 + 2k$.

Solution: Fix $k \in N$

Base case: k = 3.

Then

$$2^3 > 1 + 2(3) = 8 > 7$$

as required.

Induction step: Assume true for n = k.

Prove true for n = k + 1.

$$2^{k} \cdot 2 > 2(2k+1) = 4k+2$$
$$4k = 2k+2k > 2k+1$$
$$= 4k+2 > 2k+3$$
$$= 2^{k+1} > 4k+2 > 2k+3$$
$$= 2^{k+1} > 2k+3$$

as required.

- 5. Let $A = \{z \in \mathbb{C} \mid z^6 = 1\}$ with the operation of multiplication.
 - (a) Is (A, \cdot) a semigroup?
 - (b) Is (A, \cdot) a monoid?
 - (c) Is (A, \cdot) a group?
 - (d) Write down an isomorphism between (A, \cdot) and (\mathbb{Z}_6, \oplus_6) .

Solution:

(a) Yes, (A, \cdot) is a semigroup. In order to be a semigroup, A must be endowed with an associative binary operation. To prove \cdot is associative, let x = a + bi, y = c + di, and z = e + fi, where $x, y, z \in \mathbb{C}$ and $x^6 = y^6 = z^6 = 1$. If \cdot is associative, then x(yz) = (xy)z. In other words,

$$(a+bi)[(c+di)(e+fi)] = [(a+bi)(c+di)](e+fi).$$

So

$$(a+bi)[(c+di)(e+fi)]$$

$$= (a+bi)[c(e+fi)+di(e+fi)]$$

$$= (a+bi)[ce+cfi+dei-df]$$

$$= (a+bi)(ce-df+(cf+de)i)$$

$$= a(ce-df+(cf+de)i)+bi(ce-df+(cf+de)i)$$

$$= ace-adf+acfi+adei+bcei-bdfi-bcf-bde$$

$$= ace-adf+bcf+bde+(acf+ade+bce-bdf)i$$

$$= [e(ac-bd)+f(ad-bc)]+[e(ad+bc)+f(ac-bd)]i$$

$$= (e+fi)[(ac-db)+(ad+bc)i]$$

$$= (e+fi)[(a+bi)(c+di)]$$

$$= [(a+bi)(c+di)](e+fi).$$

Thus (a+bi)[(c+di)(e+fi)] = [(a+bi)(c+di)](e+fi) as required.

(b) Yes, (A, \cdot) is a monoid. The identity element e under multiplication is 1. Proof:

$$1 = 1 + 0i$$

$$(a + bi)(1 + 0i) = a + bi$$

$$= a(1 + 0i) + bi(1 + 0i)$$

$$= a(1) + bi(1)$$

$$= a + bi$$

Since $1 + 0i \in \mathbb{C}$ and $(1)^6 = 1, A$ is a monoid.

(c) If A is a group, then it must be a monoid and every element in A must be invertible. Let $z \in \mathbb{C}$, where $z^6 = 1$. Let z^{-1} be the inverse of z, such that $zz^{-1} = z^{-1}z = 1$. z can be written in the form a + bi, where $a, b \in \mathbb{R}$. So

$$z^{-1}(a+bi) = 1$$

$$z^{-1} = \frac{1}{a+bi}$$

$$= \frac{a-bi}{(a+bi)(a-bi)}$$

$$= \frac{a-bi}{a^2+b^2}$$

So $z^{-1} = \frac{a-bi}{a^2+b^2}$. To confirm this, we will test if $z^{-1}z = 1$.

$$zz^{-1} = (a+bi)\frac{a-bi}{a^2+b^2}$$

$$= \frac{a^2 - abi + abi - b^2 i^2}{a^2 + b^2}$$
$$= \frac{a^2 + b^2}{a^2 + b^2}$$
$$= 1$$

So as long as $a^2 + b^2 \neq 0$, there exists an inverse of $z \in \mathbb{C}$. Since $(0)^6 = 0 \neq 1$ and $0 \notin A$, it is a group.

(d) An isomorphism between (A, \cdot) and (\mathbb{Z}_6, \oplus_6) is

$$f(k) = \cos\left(\frac{2\pi k}{6}\right) + i \cdot \sin\left(\frac{2\pi k}{6}\right)$$

To justify this, take some $z \in \mathbb{C}$ such that $z^6 = 1$. According to De Moivre's theorem, $z^k = r^k(\cos k\theta + i \cdot \sin k\theta) = r^k e^{ki\theta}$, so then $e^{ki\theta} = \cos k\theta + i \cdot \sin k\theta$, for some $k \in \mathbb{Z}$. Let $\theta = 2\pi$. Then

$$e^{2\pi ik} = \cos 2\pi ik + i \cdot \sin 2\pi ik$$

= 1

Then $e^{2\pi ik}=1$. According to De Moivre's theorem, $z^6=r^6e^{6i\theta}=1$. For any $z,\ z=a+bi,\ a,b\in\mathbb{R}$. Since $r=|\sqrt{a^2+b^2}|$ is a positive real number and for any $z^n,\ n\in\mathbb{Z},\ z^n=1,\ r^n=1$. So r=1 and $e^{6i\theta}=e^{2\pi ik}$. Taking the natural logarithm of of both sides gets us $6i\theta=2\pi ik$. Solving for θ , we end up with

$$\theta = \frac{2\pi k}{6}$$

Substituting this back into trigonometric form gets us

$$z = \cos\left(\frac{2\pi k}{6}\right) + i \cdot \sin\left(\frac{2\pi k}{6}\right)$$

for some integer k. So any $z \in \mathbb{C}$ where $z^6 = 1$ can be expressed as this formula given some integer k. Substituting $\{0,1,2,\ldots,5\}$ into k returns each unique root of z. If k > 5, the results repeat. In other words, for some integer $k = \{0,1,2,\ldots,5\}$ using a number greater than n-1 still returns a root of z. For example, z when k=3 is the same as z when k=9, or $3 \equiv 9 \pmod 6$. So

$$f(k) = \cos\left(\frac{2\pi k}{6}\right) + i \cdot \sin\left(\frac{2\pi k}{6}\right)$$

is an isomorphism from (\mathbb{Z}_6, \oplus_6) to (A, \cdot) as any $f(a) \cdot f(b) = f(a \oplus b)$ and each k gives a unique root of z.