Basic Electronics (ECE113) Tutorial 5

Q1. For each circuit shown in Fig. 1, calculate the voltage labeled $v_{\rm c}$.

Q2. Calculate v_L and i_L for each of the circuits depicted in Fig. 2, if i_s = 1 mA and v_s = 2.1 V.

Q3. Making the assumption that the circuits in Fig. 3 have been connected for a very long time, determine the value for each current labeled i_{φ} .

- (a) compute the Thévenin equivalent seen by the inductor
- (b) determine the power being dissipated by both resistors
- (c) calculate the energy stored in the inductor.

Q4. For the circuit shown in Fig. 4,

Q5. Reduce the circuit represented in Fig. 5 to the smallest possible number of components.

Q6. The switch shown in Fig. 6 has been closed for 6 years prior to being flipped open at t=0. Determine i_L , v_L , and v_R at t equal to (a) 0^- (b) 0^+ (c) 1 μ s (d) 10 μ s.

Q7. The circuit depicted in Fig. 7 contains two independent sources, one of which is only active for t > 0. (a) Obtain an expression for $i_L(t)$ valid for all t; (b) calculate $i_L(t)$ at t = 10 μ s, 20 μ s, and 50 μ s.

Q8. For the circuit represented in Fig. 8, (a) obtain an expression for v which is valid for all values of t; (b) sketch your result for $0 \le t \le 3$ s.

Fig.8