SAP for Can you taste the difference?

(this is one possible approach, there are others, and depends on how you designed the experiment)

Population

 Statistics students (this might be more restrictive by specifying in Glasgow)

Primary Objective:

• To test if Statistics students can tell the difference between caffeinated and de-caffeinated coffee

Secondary Objectives:

 None additionally stated, but we could imagine differences between males and females, or between those who regularly drink coffee and those who do not

Data Collection:

- Random sample of students could describe how such a random sample would be generated, and also some justification or discussion of how many students might be needed.
- Decide how many trials each student should have, e.g. 8 coffee samples (4 DC and 4C), so there is replication and would also need to discuss the order that the samples are presented in (random? Or DC followed by C)
- Definition of response, C, DC, a third possibility would be don't know

Variables Under Consideration:

- Number of correct answers in total for each individual (perhaps also the number of DC and number of C correct **Primary outcome variable**
- Could be sex (M/F), could be whether the individual drinks coffee (Y/N) both are binary **Primary explanatory variable**

Missing Data Procedures:

None described and unlikely to be an issue

Summaries to be presented:

- Table of Counts and Percentages of number of correct answers for each individual
- For the experiment, as a whole could show a frequency histogram of the number of individuals getting 0,1, 2, ...,8 correct answers
- Cross-tabulations of true answer (DC, C) against individual's answer (DC, C)

Models to be fitted

• The natural model to consider here is whether or not someone is guessing. If guessing, then the model for the number of correct answers is

- Bi(n, 0.5), so a Binomial model could be fitted and the probability of giving a correct answer estimated
- Under the guessing hypothesis we can then evaluate the probability of getting x answers correct
- For the cross-tabulation, we could carry out a Chi-squared test (this is formally called a McNemar test for this case)