CSE-170 Computer Graphics

Lecture 6

Projections, Picking, and Polygon Triangulation

Dr. Renato Farias rfarias 2@ucmerced.edu

Quick Review

Dot Product

The dot product between a and $\mathbf{b} = \mathbf{a} \cdot \mathbf{b} = \mathbf{a}^T \mathbf{b}$

Therefore, the square of the norm has a dot product form: $\|\mathbf{v}\|^2 = \mathbf{v}^T \mathbf{v}$

If \mathbf{u} and \mathbf{v} are perpendicular $\Rightarrow \mathbf{u} \cdot \mathbf{v} = 0$

Acute angle: $\cos(\theta) > 0 \Rightarrow \mathbf{u} \cdot \mathbf{v} > 0$

Obtuse angle: $\cos(\theta) < 0 \Rightarrow \mathbf{u} \cdot \mathbf{v} < 0$

Dot product and the angle between two vectors:

$$\cos(\theta) = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

$$h = \|\mathbf{u}\|\sin(\theta), \mathbf{p} = (\|\mathbf{u}\|\cos(\theta))\frac{\mathbf{v}}{\|\mathbf{v}\|}$$

- \Rightarrow **p** is the projection of **u** on vector **v**.
- \Rightarrow If **u** and **v** are unit vectors, the length of the projection is simply the dot product: $\|\mathbf{o} \mathbf{p}\| = \mathbf{u} \cdot \mathbf{v}$ (Note that the norm of \mathbf{o} - \mathbf{p} gives the distance between \mathbf{o} and \mathbf{p} .)

Quick Review

Cross product

The cross product between a and b is

$$\mathbf{v} = \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = \begin{pmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{pmatrix}$$

 $\underline{\underline{v}}$ is perpendicular to \underline{a} and \underline{b} , and has length $\|\underline{v}\| = \|\underline{a} \times \underline{b}\| = \|\underline{a}\| \|\underline{b}\| \sin(\theta)$, theta being the angle between \underline{a} and \underline{b} . The length is 2 times the area of the triangle with sides \underline{a} and \underline{b} .

The direction of v follows the right hand rule, assuming we are working on a right-hand coordinate system.

Projections

Projections

Parallel Projection

- Same direction, different origins
- Point **p** is projected by direction **v** in a plane (**q**,**n**)
- Projection can be of two types:
 - Orthographic (θ=90°), or Oblique

Perspective Projection

- Same origin, different directions
- Assumes the camera "eye" is at the origin o
- For each point **p**, the direction of projection is **p** (line from the origin to **p**)

Parallel Projection

Parallel Projection

Point **p** is projected by direction **v** in a plane (**q**,**n**)

From the plane equation:
$$(\mathbf{x} - \mathbf{q}) \cdot \mathbf{n} = 0$$
 (1)

From the ray definition:
$$\exists t : \mathbf{x} = \mathbf{p} + t\mathbf{v}$$
 (2)

=> replacing (2) in (1):

$$((\mathbf{p} + t\mathbf{v}) - \mathbf{q}) \cdot \mathbf{n} = 0 \Rightarrow t = \frac{(\mathbf{q} - \mathbf{p}) \cdot \mathbf{n}}{\mathbf{v} \cdot \mathbf{n}}$$

$$\Rightarrow \mathbf{x} = \mathbf{p} + \frac{(\mathbf{q} - \mathbf{p}) \cdot \mathbf{n}}{\mathbf{v} \cdot \mathbf{n}} \mathbf{v}$$
(3)

Parallel Projection

Parallel Projection

$$\Rightarrow \mathbf{x} = \mathbf{p} + \frac{(\mathbf{q} - \mathbf{p}) \cdot \mathbf{n}}{\mathbf{v} \cdot \mathbf{n}} \mathbf{v}$$
 (3)

Rewriting as an affine map:

$$\mathbf{x} = \mathbf{p} + \frac{\mathbf{q} \cdot \mathbf{n}}{\mathbf{v} \cdot \mathbf{n}} \mathbf{v} - \frac{\mathbf{p} \cdot \mathbf{n}}{\mathbf{v} \cdot \mathbf{n}} \mathbf{v} = \mathbf{p} - \frac{\mathbf{n}^{\mathrm{T}} \mathbf{p}}{\mathbf{v} \cdot \mathbf{n}} \mathbf{v} + \frac{\mathbf{q} \cdot \mathbf{n}}{\mathbf{v} \cdot \mathbf{n}} \mathbf{v} = \mathbf{p} - \frac{\mathbf{v} \mathbf{n}^{\mathrm{T}}}{\mathbf{v} \cdot \mathbf{n}} \mathbf{p} + \frac{\mathbf{q} \cdot \mathbf{n}}{\mathbf{v} \cdot \mathbf{n}} \mathbf{v} = \left(\mathbf{I} - \frac{\mathbf{v} \mathbf{n}^{\mathrm{T}}}{\mathbf{v} \cdot \mathbf{n}}\right) \mathbf{p} + \frac{\mathbf{q} \cdot \mathbf{n}}{\mathbf{v} \cdot \mathbf{n}} \mathbf{v}$$

Will be identity after division

$$\mathbf{x} = \begin{pmatrix} \mathbf{v} \cdot \mathbf{n} & 0 & 0 \\ 0 & \mathbf{v} \cdot \mathbf{n} & 0 \\ 0 & 0 & \mathbf{v} \cdot \mathbf{n} \end{pmatrix} - \begin{pmatrix} \mathbf{v} \mathbf{n}^{\mathrm{T}} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{q} \cdot \mathbf{n} \end{pmatrix} \mathbf{v} \begin{pmatrix} \mathbf{p} \\ \mathbf{p} \end{pmatrix}$$

translation

division

Perspective Projection

- Perspective Projection
 - Assumes the camera "eye" is at the origin o

From (3):
$$\mathbf{x} = \mathbf{p} + \frac{(\mathbf{q} - \mathbf{p}) \cdot \mathbf{n}}{\mathbf{v} \cdot \mathbf{n}} \mathbf{p} = \mathbf{p} + \frac{\mathbf{q} \cdot \mathbf{n}}{\mathbf{p} \cdot \mathbf{n}} \mathbf{p} - \frac{\mathbf{p} \cdot \mathbf{n}}{\mathbf{p} \cdot \mathbf{n}} \mathbf{p} \Rightarrow \mathbf{x} = \frac{\mathbf{q} \cdot \mathbf{n}}{\mathbf{p} \cdot \mathbf{n}} \mathbf{p}$$

Perspective Projection

Perspective Projection

 $\mathbf{x} = \frac{\mathbf{q} \cdot \mathbf{n}}{\mathbf{p} \cdot \mathbf{n}} \mathbf{p}$, writing as a matrix multiplication, we have:

$$\mathbf{x} = \begin{pmatrix} \begin{pmatrix} \mathbf{q} \cdot \mathbf{n} & 0 & 0 \\ 0 & \mathbf{q} \cdot \mathbf{n} & 0 \\ 0 & 0 & \mathbf{q} \cdot \mathbf{n} \end{pmatrix} & 0 \\ 0 & 0 & 0 & \mathbf{p} \cdot \mathbf{n} \end{pmatrix} \begin{pmatrix} \mathbf{p} \\ 1 \end{pmatrix}$$

Note that the previous matrix obtained still depends on **p**. Fortunately, we can further manipulate its elements to achieve the following equivalent result:

$$\mathbf{x} = \begin{pmatrix} \begin{pmatrix} \mathbf{q} \cdot \mathbf{n} & 0 & 0 \\ 0 & \mathbf{q} \cdot \mathbf{n} & 0 \\ 0 & 0 & \mathbf{q} \cdot \mathbf{n} \end{pmatrix} & 0 \\ \mathbf{n}^{\mathrm{T}} & 0 \end{pmatrix} \begin{pmatrix} \mathbf{p} \\ 1 \end{pmatrix}$$

Summary

Parallel projection by direction v into a plane(q,n):

$$\begin{pmatrix}
\mathbf{v} \cdot \mathbf{n} & 0 & 0 \\
0 & \mathbf{v} \cdot \mathbf{n} & 0 \\
0 & 0 & \mathbf{v} \cdot \mathbf{n}
\end{pmatrix} - (\mathbf{v} \mathbf{n}^T) \quad (\mathbf{q} \cdot \mathbf{n}) \mathbf{v} \\
\hline
0 & 0 & 0 & \mathbf{v} \cdot \mathbf{n}
\end{pmatrix}$$

Perspective projection into a plane(q,n):

$$\begin{pmatrix} \mathbf{I}(\mathbf{q} \cdot \mathbf{n}) & 0 \\ \mathbf{n}^{\mathrm{T}} & 0 \end{pmatrix}$$

Example

Shadow generation by projecting triangles to the floor:

(http://graphics.ucmerced.edu/~mkallmann/courses/eecs267-17f/proj2.html)

Example

– Examples with smooth shading (upcoming topic):

(http://graphics.ucmerced.edu/~mkallmann/courses/eecs267-17f/proj2.html)

 How to select 3D objects in the scene when we do a mouse click?

mouse click on the screen plane, for ex. here:

→ corresponding ray going into the scene:

- p = (500,250) → the pixel coordinates you would receive in the callback function
- assuming a window of 1000x1000:
 - normalized **p** = (0.0,0.5)

- 500/1000 = 0.5
- **250/1000** = 0.25
- 0.5 0.5 = 0.0
- (1 0.25) 0.5 = 0.25
- 0.0 * 2 = 0.0
- 0.25 * 2 = 0.5

w,h) in pixels

First, normalize p as per the previous slide

- Second, compute the ray endpoints:
 - Recall our viewing transformation: M = P M_{cam}
 - Given p in normalized 2D window coordinates:
 - Ray p1 = M^{-1} (p.x, p.y, near plane z)
 - Ray p2 = p1-eye
- Then:
 - Intersect ray with all objects (triangles) in the scene
 - Return the object with closest intersection to the eye position of the camera

Triangulation

Triangulation

- It is much easier to work with triangles than with entire surfaces or planes
- Most of the algorithms in graphics pre-suppose we are working with triangles
- The graphics pipeline and hardware is also built for working with triangles
- Therefore, triangulation the division of a surface into triangles – is extremely important

Simple Polygon Triangulation

- Many methods exist...
- Fastest
 - Linear O(n) time [Chazelle 1991], however the algorithm is complex
- Quality
 - We prefer triangles of good shape, not too "thin"
 - Constrained Delaunay Triangulation very popular, it optimizes the minimum internal angle of all triangles
 - Can be implemented in O(n log n)
- Easiest
 - "Ear triangulation"
 - Simple implementation: O(n³)
 - Keeping track of convex and concave lists: O(n²)

Ear Triangulation:

