

4. DERIVEES DIRECTIONNELLES

2014-2015

a) Dérivation par rapport à x, par rapport à y :

Dériver par rapport à x en un point (x_0, y_0) c'est calculer la pente de la surface au point $(x_0, y_0, f(x_0, y_0))$ dans la direction Ox.

On ajoute un petit accroissement à x (y étant fixé égal à $y_{\scriptscriptstyle 0}$) et on étudie le

taux de variation:
$$\frac{f(x,y_0) - f(x_0,y_0)}{x - x_0}$$

b) <u>Dérivation dans une direction donnée</u>

Une direction est la donnée d'un vecteur unitaire : $u=(\cos(t), \sin(t))$. Pour dériver dans la direction donnée par u au point $M_0(x_0, y_0)$, on ajoute un petit accroissement de la forme « h u » et on étudie le taux de variation:

$$\frac{f(x_0 + h\cos t, y_0 + h\sin t) - f(x_0, y_0)}{h}$$

Si ce taux de variation admet une limite finie quand h tend vers 0, on dit que la fonction ${\bf f}$ est dérivable au point $M_0(x_0,y_0)$ dans la direction ${\bf t}$ (direction donnée

par le vecteur u). Et on note cette dérivée : $\frac{\partial f}{\partial u}(x_0,y_0)$

2014-2015

Exemple:

Etude de la dérivée au point (0.5 ; -0,5) dans la direction 45° de f définie : $f(x,y) = x^2 - y^2$.

Quel est le vecteur u qui donne la direction 45°?

Calculer le taux de variation de f au point (0.5; -0,5) dans cette direction:

f est-elle dérivable au point (0.5; -0,5) dans la direction 45°?

Si oui préciser $\frac{\partial f}{\partial u}(0,5;-0,5)$:

Interpréter le graphe suivant :

c) Dérivée suivant un vecteur non nul

Etant donné un vecteur non nul u de coordonnées (a,b), on définit la **dérivée de f suivant le vecteur u** en un point $M_{\dot{a}}(x_0,y_0)$ par la limite du taux de variation quand elle existe :

$$\frac{\partial f}{\partial u}(x_0, y_0) = \lim_{h \to 0} \left(\frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h} \right)$$