- 1. Encontrar una fórmula para la transformación adjunta de las siguientes transformaciones lineales (considerar en cada caso el producto interno usual). Determine cuáles son autoadjuntas.
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x_1, x_2) = (x_1 + 3x_2, 3x_1 + x_2)$,
 - (b) $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x_1, x_2) = (3x_1, +x_2, -x_1 + x_2)$,
 - (c) $T: \mathbb{C}^3 \to \mathbb{C}^3$, $T(z_1, z_2, z_3) = (2z_1 + (1-i)z_2, z_2 + (3+2i)z_3, z_1 + iz_2 + z_3)$,
 - (d) $T: \mathbb{C}^3 \to \mathbb{C}^3$, $T(z_1, z_2, z_3) = (z_1 + iz_2, -iz_1 + z_2 + (1+3i)z_3, (1-3i)z_2 + z_3)$,
 - (e) $T: \mathbf{F}^3 \to \mathbf{F}^3$, $T(x_1, x_2, x_3) = (2x_1 + x_3, -x_1 + x_2, x_1 + x_2 + x_3)$,
 - (f) $T: \mathbf{F}^n \to \mathbf{F}^n$, $F(x_1, ..., x_n) = (0, x_1, ..., x_{n-1})$, para $n \ge 2$.
- 2. Consideremos el espacio $\mathbb{R}_2[x]$ con el producto interno (de las funciones continuas) definido por

$$\langle p, q \rangle = \int_0^1 p(x)q(x)dx.$$

Definimos $T: \mathbb{R}_2[x] \to \mathbb{R}_2[x], T(ax^2 + bx + c) = bx.$

- (a) Probar que T no es autoadjunta.
- (b) La matriz de T con respecto a la base $\{1, x, x^2\}$ es

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Esta matriz es hermítica, pero T no es autoadjunta. Explicar por qué esto no es una contradicción.

- 3. Para la transformación adjunta del Ejercicio 1a, dar una base ortonormal \mathfrak{B} tal que $[T]_{\mathfrak{B}}$ sea una matriz diagonal real.
- 4. (a) En cada uno de los siguientes casos, encontrar una matriz $O \in \mathbb{R}^{n \times n}$ ortogonal tal que OAO^t sea diagonal:

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}, \qquad A = \begin{pmatrix} 1 & 3 \\ 3 & -1 \end{pmatrix},$$

$$A = \begin{pmatrix} 5 & 0 & -2 \\ 0 & 7 & -2 \\ -2 & -2 & 6 \end{pmatrix}.$$

(b) En cada uno de los siguientes casos, encontrar una matriz $U \in \mathbb{C}^{n \times n}$ unitaria tal que UAU^* sea diagonal:

$$A = \begin{pmatrix} 4 & 1 & i & 0 \\ 1 & 3 & 2i & 1 \\ -i & -2i & 3 & i \\ 0 & 1 & -i & 2 \end{pmatrix},$$

$$A = \begin{pmatrix} 2 & -1 & -i & 0 \\ -1 & 2 & -i & 0 \\ i & i & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

- 5. Sea $(V, \langle \cdot, \cdot \rangle)$ un espacio vectorial de dimensión finita con producto interno. Sean $T_1, T_2 \in L(V)$ y $k \in \mathbf{F}$. Demostrar las siguientes propiedades:
 - (a) $(T_1 + T_2)^* = T_1^* + T_2^*$.
 - (b) $(kT_1)^* = \overline{k}T_1^*$.
 - (c) $(T_1 \circ T_2)^* = T_2^* \circ T_1^*$.
 - (d) $(T_1^*)^* = T_1$.
- 6. Sea $(V, \langle \cdot, \cdot \rangle)$ un espacio vectorial de dimensión finita con producto interno y $S, T \in L(V)$ autoadjuntas. Probar que $S \circ T$ es autoadjunta si y solo si $S \circ T = T \circ S$.
- 7. Sean $(V, \langle \cdot, \cdot \rangle)$ espacio vectorial de dimensión finita con producto interno, $T \in L(V)$ y T^* su transformación adjunta. Probar las siguiente propiedades:
 - (a) $\ker(T^*) = (\operatorname{Im}(T))^{\perp}$,
 - (b) λ es un autovalor de T si y sólo si $\overline{\lambda}$ es un autovalor de la transformación adjunta.
- 8. Sea $(V, \langle \cdot, \cdot \rangle)$ un espacio vectorial de dimensión finita con producto interno, y sea $T: V \to V$ una transformación autoadjunta. Probar que si v y w son autovectores asociados a autovalores distintos, entonces $\langle v, w \rangle = 0$.