ELEC 3300 Introduction to Embedded Systems

Topic 4

Embedded System Structure
Prof. Tim Woo

Expected Outcomes

- On successful completion of this topic, you will be able to
 - Summarize the features of ARM micro-controller
 - Describe the bus architecture
 - Understand the memory organization and its map
 - Introduce the Cyclic Redundancy Check (CRC) calculation unit
 - Illustrate examples of the pin definitions of several features
 - Configure a General Purpose I/O for input / output signal

Microcontroller Features

Processor with memory & I/O ports integrated on the same chip

RAM and SRAM: Volatile memory

ROM: Non Volatile

EPROM: Non Volatile, but erasable by UV light

Flash: Can write (like RAM) but non volatile (like ROM).

Electrically erasable.

Program memory: ROM / **FPROM / Flash**

Data memory: RAM / SRAM /

Flash

You have to write your own device drivers to control the external devices

ARM Microcontroller: Features of STM32

- There are 3 general documents for your reference:
 - Data sheet: STM32F103ZET6-STMicroelectronics-datasheet-7543760.pdf
 - Provides summary of features, pin layouts, pin definitions, electrical characteristics, etc.
 - Reference Manual: STM32 Reference Manual.pdf
 - Provides complete information on how to use the processor such as registration information of communication protocol, ADC, etc.
 - This could help in writing the codes for initialization and implementation.
 - Programming Manual: STM32_Cortex_M3_Programming_Manual.pdf
 - Provides information for application and system-level software, such as efficient processor core, system and memories, fast interrupt handling, etc.

ARM Microcontroller: Features of STM32

Where are they?

CPU

I/O port

ELEC 3300 : Fall 2022-23 Tim Woo

ARM Microcontroller

- The STM32 can support two configurations:
 - general devices (without Ethernet access)
 - connectivity line (with Ethernet access)
- You have to choose the configuration in the beginning.

ARM Microcontroller: Bus architecture

Connected path for communication between Master and Slave

Communication between the processor (master) and peripherals (slave).

ARM Microcontroller: Bus architecture

The **bus matrix** provides access from a master to a slave, enabling concurrent access and efficient operation even when several high-speed peripherals work simultaneously.

ARM Microcontroller: Memory Map

 Memory plays an important role in the micro-controller. It tells you where to store and read the instructions, data, status of information.

Reference: Figure 9 in datasheet *

ELEC 3300: Fall 2022-23

Base addresses Memory map MACCOD DODO - DIMERTE FEFF SMC hard I MICHINGRAM 9 3x4002 2400 - 0x4002 2FFF 64002 1400 - 0x4002 1FFF 0x4002 0400 - 0x4002 0EEE v4002-0000 - 0x4002-03FT v4001-04001-0x4001-FFFT 94001 0000 - 0x4001 03E 64001 3000 - 0x4001 33FF 64001 2C00 - 0x4001 2FFF 512-Mb/b block 7 Cortex-M3's internal 0x4001 2000 - 0x4001 23FF 512-Mbyte 512-Mbyte block 4 4000 SC00 - 0±4000 SFFF & bank4 512-Mbyte s4000 5000 - 0s4000 50FI SMC bank 64000 4000 - 0x4000 48FF 4000 4400 - 0x4000 47FI 0x4000 9C00 - 0x4000 9FFF v4000 9400 - 0x4000 97FI 4000 2000 - 0x4000 2FFF 512-Mbyte 4000 1000 - 0x4000 2755 0x4000 1000 - 0x4000 19FF 4000 0000 - 0±4000 0FFF 512.Mbvt watere edge - ewatere enter 4000 0400 - 0x4000 07FF Reserved SRAM (64 KB allased by bit-bandir 0x0808 0000 0x0807 EEEE

*: STM32F103ZET6-STMicroelectronics-datasheet-7543760.pdf

Tim Woo 10

ARM Microcontroller: Memory Map

- It also tells you the location of the registers for different features.
- Reference: Figure 9 in datasheet *
 Register for ADC1

ELEC 3300: Fall 2022-23

^{*:} STM32F103ZET6-STMicroelectronics-datasheet-7543760.pdf

ARM Microcontroller: CRC

- CRC (Cyclic Redundancy Check)
 - Error-detecting code to detect accidental changes to raw data.
 - Verify data transmission or storage integrity.
 - On retrieval, the calculation is repeated and, in the event the check values do not match, corrective action can be taken against data corruption.
 - CRC uses Generator Polynomial which is available on both sender and receiver side.
 - An example generator polynomial is of the form like x³ + x + 1. This generator polynomial represents key 1011.
 - Another example is $x^2 + 1$ that represents key?

101.

ARM Microcontroller: CRC Calculation Unit

- Gets a CRC code from a 32-bit data word and a fixed generator polynomial.

Basic CRC Algorithm:

- 1. Start with an initial CRC value (example: 0xFF).
- 2. Then XOR it with your data.
- 3. If the result of step 2 has MSB = 0, then simply left shift that number by 1.
- 4. If the result from step 2 has MSB = 1, then left shift by 1 and also XOR it with a chosen polynomial.

Tim Woo

5. The final value is check sum or CRC value.

13

ARM Microcontroller: CRC Illustration

- The Transmitter (TX) will run the data it wants to send through a CRC algorithm.
- It will then have a CRC code that will be unique to that data. So TX sends its data along with the CRC code to the RX.
- Now RX receives the data and CRC code.
- RX will run the data through the same CRC algorithm.
- RX now will compare the CRC it received with the one it calculated and if they match then the data is not corrupted.
- If the CRC codes do not match then something is corrupted.

About High density pin definitions

ARM Microcontroller: High density pin definitions

- Pin assignment from Data Sheets
- Reference: Table 5 in datasheet *
- General Purpose I/O

Recall the overview pictures

STM32F1037FT6-STMicroelectronics-datasheet-7	543760 ndf

GPIO	Pin numbers
PA0- PA15	23,24,25, 26, 29, 30, 31, 32, 67,68, 69, 70, 71,72, 76, 77
PB0- PB15	
PC0- PC15	15,16,17,18, 33,34,63,64, 65,66,78,79, 80, 7, 8, 9
PD0- PD15	
PE0- PE15	

STM32F103VE, LQFP-100

ELEC 3300 : Fall 2022-23

Tim Woo

16

ARM Microcontroller: High density pin definitions

- In general, all the tasks are not executed simultaneously.
- This allows the sharing of pin definition for several tasks. (multiple roles in same pin)
- Analogy:

ARM Microcontroller: High density pin definitions

Example: We have 3 ADCs, and they may share same pins.

ELEC 3300 : Fall 2022-23 Tim Woo 18

CubeMX version 5.20

A graphical tool that allows a very easy configuration of STM32 microprocessors.

STM model: STM32F103VE, LQFP100

In class activity: Design architecture of an embedded system

In-class activities

For Android devices, search **HKUST iLearn** at Play Store.

For iOS devices, search **HKUST iLearn** at App Store.

Topic 4 – Question 1

Now, we have got a designed gadget.

Design architecture of an embedded system

• Let's go through 6 components in the design process

	Description	Choices in this course
Products	Abstract idea of project (Define the functionality of the system)	Many
	Data format / representation	Many
	Programming Language	C-language
	Communication Protocol	Many
	Physical connection (Pins assignment)	Many
	Hardware devices (Microcontroller, Peripherals)	Microcontroller: STM32 ARM Platform Peripherals: 7 switches, LCD, Buzzer,

Components

In-class activities

For Android devices, search **HKUST iLearn** at Play Store.

For iOS devices, search **HKUST iLearn** at App Store.

Topic 4 – Questions 2-6

More about connecting a switch to MCU board

Physical Devices	Pin Assignment	Signal Type	Initialization (Configuration)	Signals at Physical connection	Data format
Micro Switch	General Purpose Input & Output	Input / Output	General Purpose IO setting	On/Off	
After assigning a	a pin for the swi	tch,	Initialization	implemen Y ning Language	tation

ELEC 3300 : Fall 2022-23 Tim Woo 25

Description

Abstract idea of project (Define the functionality of the system)

Data format / representation

Programming Language

Communication Protocol

Physical connection (Pins assignment)

Hardware devices (Microcontroller, Peripherals)

Description

Abstract idea of project (Define the functionality of the system)

Data format / representation

Programming Language

Communication Protocol

Physical connection (Pins assignment)

Hardware devices (Microcontroller, Peripherals)

What is the signal format of the digital signal?

Status	Voltage at PA0	Digital Signal
Pressed (ON)		
Released (OFF)		

Description

Abstract idea of project (Define the functionality of the system)

Data format / representation

Programming Language

Communication Protocol

Physical connection (Pins assignment)

Hardware devices (Microcontroller, Peripherals)

Status	Voltage at PA0	Digital Signal
Pressed (ON)		
Released (OFF)		

Description

Abstract idea of project (Define the functionality of the system)

Data format / representation

Programming Language

Communication Protocol

Physical connection (Pins assignment)

Hardware devices (Microcontroller, Peripherals)

Status	Voltage at PA0	Digital Signal
Pressed (ON)		
Released (OFF)		

Description

Abstract idea of project (Define the functionality of the system)

Data format / representation

Programming Language

Communication Protocol

Physical connection (Pins assignment)

Hardware devices (Microcontroller, Peripherals)

Status	Voltage at PA0	Digital Signal
Pressed (ON)		
Released (OFF)		

Description

Abstract idea of project (Define the functionality of the system)

Data format / representation

Programming Language

Communication Protocol

Physical connection (Pins assignment)

Hardware devices (Microcontroller, Peripherals)

Status	Voltage at PA0	Digital Signal
Pressed (ON)		
Released (OFF)		

In-class activities

For Android devices, search **HKUST iLearn** at Play Store.

For iOS devices, search **HKUST iLearn** at App Store.

Topic 4 – Question 7

In-class activity – Question 9

Example: General-purpose I/O (GPIO)

ELEC 3300 : Fall 2022-23 Tim Woo 34

GPIO – Push-Pull Configuration

- When you enable GPIO port by default, its pin will be in input mode.
- If you set any pin as the output mode, then by default it will be in push-pull configuration.
- Push-pull means: Output will be pulled actively between low and high by using two transistors.
- The top transistor will be ON when the output has to be driven high.
- The bottom transistor will turn ON when the output has to go low.

GPIO - Open Drain Configuration

- Output mode with Open drain means the top P-MOS transistor (T1) is deactivated.
- When T2 is ON, output pin will be pulled to ground (0 V).
- When T2 is OFF, drain D is floating, output pin is floating → open drain.
- Open drain configuration can only pull down the pin, but cannot pull it up.
- Hence there are only two states either GROUND or FLOAT → Useless.
- Open drain can be made useful by activating pull up using pull up resistor internal/external.

GPIO – Open Drain Configuration with Pull-up Resistor

Internal pull up resistor

External pull up resistor

You have to do the GPIO configuration for activating the internal pull up resistor.

Example: Connect a switch to MCU board

 All GPIO pins have an internal weak pull-up and weak pull-down which can be activated or not when configured as input.

Table 20. Port bit configuration table #

Configuration mode		CNF1	CNF0	MODE1	MODEO	PxODR register
General purpose output	Push-pull	0	0	01 10 11 see <i>Table 21</i>		0 or 1
	Open-drain		1			0 or 1
Alternate Function output	Push-pull	1	0			don't care
	Open-drain		1			don't care
Input	Analog	0	0			don't care
	Input floating		1		10	don't care
	Input pull-down	1	0	00		0
	Input pull-up					1

Initialization

#: STM32_Reference_Manual.pdf

Example: General-purpose I/O (GPIO)

ELEC 3300 : Fall 2022-23 Tim Woo 39

Example: Connect a switch to MCU board

- In the programming, we have two steps
 - Initialization for digital input

Port bit configuration table

- Set CNF1 = 1, CNF0 = 0, Mode1/0 = 00
- Set PxODR = 0 or 1 (depends on the connection of switch)

Table 21. Output MODE bits

Implementation

Table 20.

Write a routine for reading signal (Polling or Interrupt Driven)

Write a routine for reading signal (I onling of interrupt bi

MODE[1:0]	Meaning
00	Reserved
01	Max. output speed 10 MHz
10	Max. output speed 2 MHz
11	Max. output speed 50 MHz

Configuration mode		CNF1	CNF0	MODE1	MODE0	PxODR register
General purpose output	Push-pull	0	0	01 10 11 see <i>Table 21</i>		0 or 1
	Open-drain] "	1			0 or 1
Alternate Function output	Push-pull	1	0			don't care
	Open-drain		1			don't care
Input	Analog	0	0	00		don't care
	Input floating	0	1			don't care
	Input pull-down			- 00		0
	Input pull-up		0			1

Initialization (input port)

Read

Yes

Next operation?

No

End

Start

#: STM32_Reference_Manual.pdf

ELEC 3300 : Fall 2022-23 Tim Woo 40

Example: Connect a switch to MCU board

Implementation

Write a routine for reading signal (Polling or Interrupt Driven)

Either polling or interrupt driven I/O, we can implement following flow

charts.

Which one do you prefer?

Abstract idea of project (Define the functionality of the system)

Data format / representation

Programming Language

Communication Protocol

Physical connection (Pins assignment)

Hardware devices (Microcontroller, Peripherals)

Note:

The data is stored in Data Input Register.

Example: Connect a LED to MCU board

Physical Devices	Pin Assignment	Signal Type	Initialization (Configuration)	Signals at Physical connection
LED	General Purpose Input & Output	Input / Output	General Purpose IO setting	On/Off
	·		Initialization Programmin	implementation a Language

Example: Connect a LED to MCU board

- When configured as output, the value written to the Output Data register (GPIOx_ODR) is output on the I/O pin.
- It is possible to use the output driver in Push-Pull mode or Open-Drain mode (only the N-MOS is activated when outputting 0).

Table 21. Output MODE bits

MODE[1:0]	Meaning
00	Reserved
01	Max. output speed 10 MHz
10	Max. output speed 2 MHz
1 1	Max. output speed 50 MHz

Table 20. Port bit configuration table

Configuration mode		CNF1	CNF0	MODE1	MODE0	PxODR register
General purpose	Push-pull	0	0	01 10 11 see <i>Table 21</i>		0 or 1
output	Open-drain		1			0 or 1
Alternate Function output	Push-pull	1	0			don't care
	Open-drain	7 '	1			don't care
Input	Analog	0	0	- 00		don't care
	Input floating	0	1			don't care
	Input pull-down		0			0
	Input pull-up	1				1
ELEC 3300 : Fall 2		Tim '	Woo			

Initialization (output port)

Write

Yes
Next operation?

No

End

#: STM32 Reference Manual.pdf

43

In-class activities

For Android devices, search **HKUST iLearn** at Play Store.

For iOS devices, search **HKUST iLearn** at App Store.

Topic 4 – Questions 8, 9

Example: Bi-directional I/O port

- How can we initialize a general purpose I/O pin as a bi-directional one?
- If yes, how does the flow chart look like?

Example: Bi-directional I/O port

- Can we initialize a general purpose I/O pin as a bi-directional one?
- If yes, how does the flow chart look like?

Review of laboratory experiments

One External LED

Can you fill in information in the following table?

			THE RESERVE	
Description	Lab 2	Hints		One 220Ω Res
Features		What are the objectives of this lab?	K1	One Externa
Data format		Is it digital or analog signal at the inpuls it digital or analog signal at the output if it is digital signal, how many bits are	out port?	
Programming Language		Refer to programming language of S	ГМ32	
Communication Protocol		For the output signal, how do you har For the input signal, which methods d status of switches (pressed or release	o you use for detecting	g the
Physical connection		Which type of physical pins do you us (GPIO, ADC, etc) Which mode (pull-up or push-down) of		
Hardware devices (Microcontroller, Peripherals)		Which components do you have?		

ELEC 3300 : Fall 2022-23 Tim Woo 47

Reflection (self-evaluation)

Do you

- Describe the features of ARM micro-controller?
- Illustrate other examples of the pin definitions of multiple features?
- Describe the bus architecture?
- Understand the memory organization and its map?
- Introduce the CRC calculation unit?
- Configure General Purpose I/Os for reading 3 digital input signals and 4 digital output signals?
- The difference between pull-up and push-down configurations?

