Advanced Beam Analysis System Documentation

Engineering Team

April 9, 2025

${\bf Contents}$

1	Intr		2
	1.1	System Overview	2
	1.2	Key Features	2
2	The		2
	2.1	Beam Analysis Fundamentals	2
		2.1.1 Reaction Forces	2
		2.1.2 Shear Force Calculation	2
		2.1.3 Bending Moment Calculation	2
3	Sys	tem Implementation	3
	3.1	Software Architecture	3
	3.2	Class Structure	3
	3.3	Key Components	3
		3.3.1 User Interface	3
			4
	3.4		4
4	Installation and Execution 4		
	4.1		4
	4.2		4
5	Coc	de Implementation	4
	5.1	Main Application Class	4
	5.2		5
	5.3		5
6	Usa	age Instructions	5
	6.1		5
	6.2	Controls	5
	6.3		5
7	Exa	ample Scenarios	6
	7.1		6
	7.2	Example 2: Unequal Loads	6
8	Tro	ubleshooting	6
9	Cor	nclusion	6
Α	Cor	mplete Source Code	6

1 Introduction

1.1 System Overview

The Advanced Beam Analysis System is a Python-based application that simulates and visualizes the behavior of a simply supported beam under moving loads. The system provides real-time analysis of:

- Shear force diagrams
- Bending moment diagrams
- Reaction forces at supports
- Envelope diagrams for maximum/minimum values

1.2 Key Features

- Interactive GUI with parameter controls
- Real-time animation of moving loads
- Calculation of maximum shear and moment values
- Visualization of force envelopes
- Dark mode interface with modern styling

2 Theoretical Background

2.1 Beam Analysis Fundamentals

The system analyzes a simply supported beam with two moving loads. The key equations used are:

2.1.1 Reaction Forces

For loads W_1 and W_2 at positions a and b respectively on a beam of length L:

$$R_A = W_1 \left(1 - \frac{a}{L} \right) + W_2 \left(1 - \frac{b}{L} \right)$$
$$R_B = W_1 \left(\frac{a}{L} \right) + W_2 \left(\frac{b}{L} \right)$$

2.1.2 Shear Force Calculation

The shear force V(x) at any point x along the beam:

$$V(x) = \begin{cases} R_A & \text{if } x < a \\ R_A - W_1 & \text{if } a \le x < b \\ R_A - W_1 - W_2 & \text{if } x \ge b \end{cases}$$

2.1.3 Bending Moment Calculation

The bending moment M(x) at any point x:

$$M(x) = \begin{cases} R_A \cdot x & \text{if } x < a \\ R_A \cdot x - W_1 \cdot (x - a) & \text{if } a \le x < b \\ R_A \cdot x - W_1 \cdot (x - a) - W_2 \cdot (x - b) & \text{if } x \ge b \end{cases}$$

3 System Implementation

3.1 Software Architecture

The application is built using:

- $\bullet\,$ Python 3 with PyQt6 for the GUI
- Matplotlib for visualization
- NumPy for numerical calculations

3.2 Class Structure

The main components are:

- BeamAnalysisApp: Main application window
- MplCanvas: Custom matplotlib canvas for embedding plots

3.3 Key Components

3.3.1 User Interface

The GUI consists of:

- Input panel for parameters (beam length, loads, spacing)
- Control buttons (Start, Stop, Reset)
- Results display area
- Visualization canvas with multiple plots

Figure 1: Application user interface layout

3.3.2 Visualization Components

The application displays six main plots:

- 1. Beam diagram with moving loads
- 2. Reaction force at support A
- 3. Reaction force at support B
- 4. Shear force diagram
- 5. Bending moment diagram
- 6. Envelope diagrams

3.4 Color Scheme

The application uses a consistent color palette:

- Beam loads: Red and blue squares
- Shear diagram: Green line
- Moment diagram: Purple line
- Maximum values: Highlighted with annotations

4 Installation and Execution

4.1 Prerequisites

Ensure you have Python 3.8+ installed with the following packages:

```
pip install pyqt6 matplotlib numpy
```

4.2 Running the Application

Execute the Python script:

```
python beam_analysis.py
```

5 Code Implementation

5.1 Main Application Class

The core functionality is implemented in the BeamAnalysisApp class:

```
class BeamAnalysisApp(QMainWindow):
    def __init__(self):
        super().__init__()
        self.setWindowTitle("Advanced Beam Analysis System")
        self.setGeometry(100, 100, 1400, 1000)
        # ... initialization code ...

def create_input_panel(self, main_layout):
        # ... GUI creation code ...

def create_plots(self, main_layout):
        # ... Plot setup code ...

def start_animation(self):
        # ... Animation control code ...

# ... Animation control code ...
```

Listing 1: Main application class

5.2 Visualization Class

The MplCanvas class handles the plotting:

Listing 2: Plotting canvas class

5.3 Animation Logic

The animation updates are handled by the update function:

```
def update(frame):
    current_pos = frame % (params['L'] - params['x'])
    a = current_pos
    b = current_pos + params['x']

# Calculate reactions
Ra = params['W1']*(1 - a/params['L']) + params['W2']*(1 - b/params['L'])
Rb = params['W1']*(a/params['L']) + params['W2']*(b/params['L'])

# Update visualizations
self.update_beam_diagram(a, b, params['L'])
self.update_reaction_plots(current_pos, Ra, Rb)
self.update_diagrams(x_vals, shear, moment)
self.update_envelopes()
```

Listing 3: Animation update function

6 Usage Instructions

6.1 Input Parameters

- Beam Length (L): Total length of the beam in meters
- Load W1: Magnitude of first load in kN
- Load W2: Magnitude of second load in kN
- Load Spacing (x): Distance between loads in meters
- Speed: Animation speed in milliseconds per frame

6.2 Controls

- Start: Begins the animation
- Stop: Pauses the animation
- Reset: Clears all plots and results

6.3 Interpreting Results

The application displays:

- Current and maximum shear forces
- Current and maximum bending moments
- Position of maximum values
- Envelope diagrams showing extreme values

7 Example Scenarios

7.1 Example 1: Equal Loads

For two 50 kN loads spaced 3 m apart on a 10 m beam:

- Maximum shear occurs when one load is at a support
- Maximum moment occurs when loads are centered

7.2 Example 2: Unequal Loads

For a 70 kN load followed by a 30 kN load:

- Maximum shear occurs when the larger load is at a support
- Maximum moment position depends on the load ratio

8 Troubleshooting

- Animation not starting: Check input values are valid numbers
- Plots not updating: Ensure speed parameter is reasonable (20-100 ms)
- Loads disappearing: Verify load spacing is less than beam length

9 Conclusion

The Advanced Beam Analysis System provides an interactive tool for visualizing beam behavior under moving loads. The system combines theoretical calculations with real-time visualization, making it valuable for engineering education and analysis.

A Complete Source Code

The full source code is available in the accompanying beam_analysis.py file.