Roll No.

Total Printed Pages - 6

F - 309

M.A./M.Sc. (First Semester) Examination, Dec.-Jan., 2021-22 MATHEMATICS Paper First (Advanced Abstract Algebra-I)

Max Marks: 80 Min. Marks: 16

Time: Three Hours

Note: Attempt all Parts as directed.

Section-A

1 each

(Objective/Multiple Choice Questions)

Note: Choose one correct answer out of four alternative answers (A) through (D).

- 1. A non-abelian group of order 6 is isomorphic to:
 - (A) S_3
 - (B) S_4
 - (C) S_5
 - (D) None of the above
- 2. If an abelian group G is simple then possible order of G is:
 - (A) 4
 - (B) 9
 - (C) 5
 - (D) 12
- 3. Which one of the following is incorrect?
 - (A) Every cyclic group is abelian.
 - (B) Subgroup of an abelian group is normal.
 - (C) Subgroup of a cyclic group is normal.
 - (D) Every normal subgroup is cyclic.
- 4. A polynomial $f(x) \in F[x]$ is reducible over the field F, then:
 - (A) degree of f(x) is always two
 - (B) it has root in F
 - (C) it has root in F[x]
 - (D) None of the above

- 5. The polynomial $f(x) = x^3 + 5x^2 + 5x + 1$ defined over \mathbb{Z} is:
 - (A) irreducible over Q
 - (B) reducible over Z
 - (C) irreducible over Z
 - (D) reducible over N

6. If
$$\omega = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$$
, and $u = \cos \frac{2\pi}{n}$. Then $[Q(\omega): Q(u)] =$

- (A) 1
- (B) 2
- (C) 3
- (D) 4
- 7. If E is an extension of a field F then
 - (A) E is a subfield of F
 - (B) F is a vector space over E
 - (C) F is a subfield of E
 - (D) None of the above
- 8. If [E:F]=3, then:
 - (A) there exist exactly one proper field K between E and F.
 - (B) there does not exist any proper field between E and F.
 - (C) there exist exactly 2 proper fields between E and F.
 - (D) there exist exactly 3 proper fields between E and F.
- 9. If K is algebraically closed field then every polynomial f(x) of positive degree over K
 - (A) does not have root in K
 - (B) has at least one root in K
 - (C) is irreducible over K
 - (D) None of the above
- 10. If E is field of complex numbers, then:
 - (A) Algebraic closure of E is itself.
 - (B) Algebraic closure of E does not exist.
 - (C) Algebraic closure of E is countable.
 - (D) Algebraic closure of E is field of rational numbers.

11	The	prime	Gald	of a	Gald.	r	٠
11.	1.110	DIME	neiu	OI a	neiu	1'	

- (A) may be isomorphic to Q
- (B) can not be isomorphic to Q
- (C) isomorphic to R always
- (D) isomorphic to C always
- 12. Let F be a field with 5^{15} elements. Then how many subfields does F have?
 - (A) 5
 - (B) 4
 - (C) 1
 - (D) 10
- 13. If F is a field with each of its algebraic extension is separable, then:
 - (A) F is perfect field
 - (B) F is not perfect field
 - (C) such F does not exist
 - (D) F has characteristic 2 always
- 14. Read the following statements:
 - I. Every algebraic extension of a field is finite extension.
 - II. Every finite extension of a field is an algebraic extension.

Choose the correct option.

- (A) Only I is true
- (B) Only II is true
- (C) Both I and II are true
- (D) Both I and II are false
- 15. Every polynomial f(x) over a field of characteristic zero
 - (A) is not separable
 - (B) is separable
 - (C) have multiple roots
 - (D) None of the above
- 16. Any reducible polynomial over set of integers is:
 - (A) reducible over R
 - (B) reducible over C
 - (C) reducible over Q
 - (D) All of the above

- 17. Which of the following statement is incorrect?
 - (A) Any quatric over F is not solvable by radicals.
 - (B) The general polynomial of degree $n \geq 5$ is not solvable by radicals.
 - (C) A finite normal and separable extension E of a field F is a Galois extension of F.)
 - (D) If p is a prime number and if a subgroup G of S_p is a transitive group of permutations containing a transposition (a, b), then $G = S_p$.
- 18. An automorphism is:
 - (A) homomorphism but not one-one.
 - (B) homomorphism, one-one but not onto.
 - (C) One-one, onto but not homomorphism.
 - (D) homomorphism, one-one and onto.
- 19. Which of the following statement is correct?
 - (A) The fixed field of a group of automorphism of field K is not a subfield of K.
 - (B) G(E/F) is a subgroup of the group of all automorphism of E.
 - (C) The fixed field of G(E/F) not contains F.
 - (D) None of the above
- **20.** The group $G(Q(\alpha)/Q)$, where $\alpha^5 = 1$ and $\alpha \neq 1$, is isomorphic to the cyclic group of the order
 - (A) 2
 - (B) 3
 - (C) 4
 - (D) 5

Section - B (Very Short Answer Type Questions)

2 each

- 1. Define maximal normal subgroup.
- 2. Define solvable group.
- 3. Define Eisenstein criterion for irreducibility of a polynomial.
- 4. State Kronecker theorem.
- 5. State Uniqueness theorem for splitting field.

- 6. Define multiplicity of a root.
- 7. Define separable polynomial.
- 8. Define radical extension.

Section - C (Short Answer Type Questions)

3 each

Note: Attempt all questions.

- 1. Show that every finite group has a composition series.
- 2. Let H be a normal subgroup of a group G. Show that, if both H and G/H are solvable, then G is also solvable.
- **3.** Show that $\sqrt{2} + \sqrt[3]{5}$ is algebraic over \mathbb{Q} , also find $[\mathbb{Q}(\sqrt{2} + \sqrt[3]{5}) : \mathbb{Q}]$.
- 4. Prove that an algebraically closed field can not be finite.
- 5. Show that the polynomial $x^7 10x^5 + 15x + 5$ is not solvable by radicals over \mathbb{Q} .
- **6.** If $f(x) \in F[x]$ is an irreducible polynomial over a finite field F, then show that all roots of f(x) are distinct.
- 7. Let $F = \mathbb{Z}/(2)$. Show that the splitting field of $x^3 + x^2 + 1 \in F[x]$ is a finite field with eight elements.
- 8. Any element $a \in K$ is a root of a polynomial p(x) over F of positive degree if and only if (x-a)|p(x) in K[x].

Section - D (Long Answer Type Questions)

5 each

Note: Attempt all questions.

1. State and prove Jordan Holder theorem for finite group.

OR

Let F be a field. Then show that, there exists an algebraically closed field K, containing F as a subfield.

2. Let F be a field, p(x) an irreducible polynomial in F of degree $n \geq 1$. Prove that there exists an extension E of F, such that [E:F]=n, in which p(x) has a root.

OR

Show that every finite separable extension of a field is necessarily a simple extension.

3. Prove that the prime field of a field F is either isomorphic to \mathbb{Q} or $\mathbb{Z}/(p)$, p is prime.

OR

State and prove Artin theorem.

4. Prove that the group of automorphisms of a field F with p^n elements is cyclic of order n and generated by ϕ , where $\phi(x) = x^p$, $x \in F$.

OR

State and prove Fundamental theorem of algebra.

F-309 P.T.O. F-309