

A Formalisation that Z Property implies Confluence

Flávio L. C. de Moura and Leandro Oliveira Rezende September 14, 2018

Universidade de Brasília

Table of contents

- 1. Abstract Rewriting Systems
- 2. Application: Explicit Substitutions

Abstract Rewriting Systems

Confluence and the Z Property

Definition (Z Property)

Let (A, \rightarrow) be an abstract rewriting system (ARS). The system (A, \rightarrow) has the Z property, if there exists a map $wb : A \rightarrow A$ such that:

Definition Zprop {A:Type} (R: Rel A) := ∃ wb:A → A, \forall a b, R a b → ((refltrans R) b (wb a) ∧ (refltrans R) (wb a) (wb b)).

4

Confluence and the Z Property

Definition (Confluence)

An ARS (A, \rightarrow) is confluent if

Definition Confl $\{A: Type\}$ $(R: Rel A) := \forall a b c, (refltrans R) a b <math>\rightarrow$ $(refltrans R) a c \rightarrow (\exists d, (refltrans R) b d \land (refltrans R) c d).$

Confluence and the Z Property

Theorem Zprop_implies_Confl $\{A: Type\}: \forall R: Rel A, Zprop R \rightarrow Confl R.$

Application: Explicit Substitu-

tions

Locally Nameless Representation

- Developed in Coq by Arthur Charguéraud.
- No need for α -conversion.
- Cofinite quantification is used to obtain strong induction principles.

