Практическая эконометрика. Лекция 7. Большая размерность

авторы: Георгий Калашнов, Ольга Сучкова, преподаватели 2021: Ольга Сучкова, Алексей Замниус, Анна Ставнийчук

20 октября 2021 г.

План на сегодня

Ridge Regression, LASSO

Надо выбрать λ . Это можно делать с помощью валидационной выборки. Оптимальная $\lambda = \sigma^2/\theta^2$

$$||\mathbf{y} - \mathbf{X}\boldsymbol{\beta}||_2^2 + \lambda ||\boldsymbol{\beta}||_2^2 \rightarrow \min_{\boldsymbol{\beta}}$$

$$\hat{\beta} = (\mathbf{X}^\mathsf{T} \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^\mathsf{T} \mathbf{y}$$

или

$$||\mathbf{y} - \mathbf{X}\boldsymbol{\beta}||_2^2 + \lambda ||\boldsymbol{\beta}||_1 \to \min_{\boldsymbol{\beta}}$$

- вопросы большого количества параметров (и мультиколлинеарность)
- очень много объясняющих переменных, из которых мы не можем выбрать иначе

Почему сжимающие оценки помогают?

Они сужают множество моделей в котором мы ищем

- lacktriangle Это будто мы себе добавили λ бесплатных бесшумных, но смещенных наблюдений y=0, X=1
- Байесовский взгляд: мы верим в простые модели больше, чем в сложные и придаем им больший вес (априорное распределение) $\beta \sim N(0, \frac{\sigma^2}{\lambda})$.

$$P(\beta|X,y) \propto P(X,y|\beta)P(\beta)$$

Или с логарифмами:

$$Log-Likelihood + log(P(\beta))$$

• Оптимизационный взгляд: мы накладываем ограничение на β , чтобы они были не очень большими (λ – множитель лагранжа)

Графически

Lasso

Что если мы особенно верим в модели, в которых почти все переменные равны 0. Давайте дадим им еще больше веса

Пример: мы исследуем дискриминацию. Какая разница между фамилиями Кузнецов и Сидоров? Может, занулить все частые «обычные» фамилии?

$$||\mathbf{y} - \mathbf{X}\boldsymbol{\beta}||_2^2 + \lambda ||\boldsymbol{\beta}||_1 \to \min_{\boldsymbol{\beta}}$$

Регуляризация

Где ещё применяется?

Регуляризация

Как выбрать λ ?

Double Lasso, вариант double selection

- lacktriangle Выбрать набор переменных с помощью Lasso $Y\sim X$
- lacktriangle Выбрать набор переменных с помощью Lasso о $T\sim X$
- Использовать в финальной регрессии только эти переменные

Double LASSO (Belloni et al., 2014)

Модель:

- Y_1 , Y_0 потенциальные исходы
- ► T 1, если наблюдение в treatment и 0 иначе (treatment variable)
- ➤ X Независимые переменные
- ▶ Пусть X имеет большую размерность

Мы хотим средний эффект воздействия (average treatment effect): ATE $= \mathbb{E} \tau$

$$\frac{1}{N_1} \sum Y_1 - \frac{1}{N_0} \sum Y_0 \stackrel{p}{\longrightarrow} \mathbb{E}\tau$$

Double LASSO (Belloni et al., 2014)

Модель:

- ightharpoonup Шаг 1. Лассо-регрессия $_{i}$, на все X.
- ightharpoonup Шаг 2. Лассо-регрессия Y_i , на все X.
- ▶ Шас 3. Линейная регрессия Y_i , на i и все отобранные X с ненулевыми коэффициентами на шаге 1 и 2.

Если ; – рандомизированный в ходе эксперимента, то ... ?

Double LASSO

Partialling-out - второй способ Double LASSO

Влияние родительства на удовлетворённость жизнью (Bhargava et al, 2014):

Table 1. Parents and Well-Being: Replication and Reanalysis of Nelson, Kushlev, English, Dunn, and Lyubomirsky (2013)

	Study 1 (World Values Survey)			Study 2 (Data from Carstensen et al., 2011)				
Model and predictor	Satisfaction	Happiness	Thoughts about meaning in life	Happiness	Positive emotion	Depression	Thoughts about meaning in life	
	Main e	ffect of parenthoo	od on well-being fro	om Study 1 and S	tudy 2			
Original analysis (Nelson et al., 2013, pp. 4, 7)			_					
Parenthood	Positive effect, p < .001, N = 6,846	Positive effect, p = .004, N = 6,793	Positive effect, p < .001, N = 6,807	Positive effect, p = .008, N = 327	Positive effect, p < .001, N = 329	Negative effect, p = .003, N = 239	Positive effect, p = .01, N = 178	
Replication with no controls								
Parenthood	$\hat{\beta} = 0.224,$ p < .001, N = 6,846	$\hat{\beta} = 0.050,$ p = .004, N = 6,793	$\hat{\beta} = 0.081,$ p < .001, N = 6,807	$\hat{\beta} = 0.271,$ p = .02, N = 328	$\hat{\beta} = 0.502,$ p < .001, N = 329	$\hat{\beta} = -2.135,$ p = .05, N = 252	$\hat{\beta} = 0.433,$ p = .02, N = 178	
Replication controlling for marital status								
Parenthood	$\hat{\beta} = -0.052,$ $p = .36$	$\hat{\beta} = -0.045,$ $p = .02$	$\hat{\beta} = 0.100,$ $p < .001$	$\hat{\beta} = 0.273,$ $p = .03$	$\hat{\beta} = 0.473,$ $p = .001$	$\hat{\beta} = -1.826,$ $p = .14$	$\hat{\beta} = 0.420,$ $p = .04$	
Replication controlling for marital status and age	,					,		
Parenthood	$\hat{\beta} = -0.138,$ $D = .04$	$\hat{\beta} = -0.042,$ $p = .04$	$\hat{\beta} = 0.096,$ $p = .03$	$\hat{\beta} = 0.061,$ $p = .68$	$\hat{\beta} = 0.100,$ $p = .52$	$\hat{\beta} = -0.888,$ $p = .57$	$\hat{\beta} = 0.186,$ $p = .43$	
Replication controlling for marital status, age, and gender	•	•	,	•	,			
Parenthood	$\hat{\beta} =144,$ $p = .03$	$\hat{\beta} =044,$ $p = .04$	$\hat{\beta} = .073,$ $p < .01$	$\hat{\beta} = 0.038,$ $p = .80$	$\hat{\beta} = 0.134,$ $p = .40$	$\hat{\beta} = -1.142,$ $D = .47$	$\hat{\beta} = 0.135,$ $p = .54$	
Replication controlling for marital status, age, gender, and income				7			,	
Parenthood	$\hat{\beta} = -0.065,$ $p = .34$	$\hat{\beta} = -0.019,$ $p = .38$	$\hat{\beta} = 0.067,$ $p = .02$	_	_	_	_	
		Reanalysis of mo	deration from Stud	v 1 and Study 2				
Moderation		*						
Parenthood × Male	$\hat{\beta} = 0.051$,	$\hat{\beta} = 0.053$,	$\hat{\beta} = 0.073$,	$\hat{\beta} = 0.375$,	$\hat{\beta} = 0.117$,	$\hat{\beta} = -1.851$,	$\hat{\beta} = 0.394$,	
	p = .62	p = .13	p = .11	p = .15	p = .65	p = .48	p = .28	
Parenthood × Marital Status	$\hat{\beta} = 0.193,$ $p = .11$	$\hat{\beta} = 0.110,$ $p = .006$	$\hat{\beta} = 0.033,$ $p = .53$	$\hat{\beta} = -0.351,$ $p = .50$	$\hat{\beta} = 0.220,$ $p = .69$	$\hat{\beta} = 5.449,$ $D = .03$	$\hat{\beta} = -0.345,$ $p = .68$	
Parenthood × Age	$\hat{\beta} = 0.062$.	$\hat{\beta} = 0.002$	$\hat{\beta} = 0.002$,	p = .50 $\hat{\beta} = 0.017$.	$\hat{\beta} = 0.059$,	$\hat{\beta} = -0.511$.	$\hat{\beta} = -0.013$,	
1 memiood 7 rige	p = 0.062, p < .01	p = 0.002, p = .72	p = 0.002, p = .84	p = 0.017, p = .65	p = 0.059, p = .10	p = -0.511, p = .14	p = -0.015, p = .79	
Parenthood × Age ²	$\hat{\beta} = -0.0005$,	$\hat{\beta} = 0.000$,	$\hat{\beta} = 0.000$,	$\hat{\beta} = 0.000$,	$\hat{\beta} = 0.000$,	$\hat{\beta} = 0.004$,	$\hat{\beta} = 0.000$,	

Влияние родительства на удовлетворённость жизнью (Urminksy, Hansen, Chernozhukov)

- ▶ У Bhargava (2014) Без контрольных переменных статус родителя положительно влияет на удовлетворённость жизнью β =-0.224, p<0.001
- ightharpoonup С контролем на семейное положение, пол и возраст связь становится отрицательной β =-0.144, p=0.04, с добавлением доход незначимой β =-0.144, p=0.04
- Контрольные переменные должны быть обоснованы по теории и из логики, но что делать технически?
 Разница в результатах Bhargava et al, 2014 может быть ложной из-за multiple testing и большого количества возможных ковариатов.

Отбор из >400 параметров по double-lasso (Urminksy, Hansen, Chernozhukov)

Variable	β	SE	t	p	Low CI	High CI
Primary variables:						
Constant	6.750	0.128	52.57	.000	6.498	7.001
Parent	-0.196	0.071	-2.75	.006	-0.336	-0.056
Main effect covariates:						
Married						
(including living together as married)	0.513	0.157	3.27	.001	0.206	0.821
Income (3 point scale)	0.582	0.119	4.90	.000	0.349	0.815
Age	0.912	0.235	3.88	.000	0.451	1.373
Age=18	0.300	0.213	1.41	.159	-0.117	0.717
Age=19	0.129	0.213	0.61	.544	-0.288	0.547
Age=20	0.521	0.191	2.73	.006	0.147	0.896
Age=21	0.175	0.175	1.00	.319	-0.169	0.518
Age=22	0.545	0.169	3.23	.001	0.214	0.876
Age=23	0.187	0.171	1.09	.274	-0.148	0.523
Gender (Male)	-0.142	0.063	-2.24	.025	-0.267	-0.018
Employment: Housewife	0.066	0.123	0.54	.590	-0.175	0.308
Chief wage earner	0.144	0.070	2.07	.038	0.008	0.281
Interaction covariates:						
Married x Age	0.143	0.352	0.41	.685	-0.547	0.833
Married x Age to fourth power	0.491	0.608	0.81	.419	-0.701	1.684
Married x Income rating (3 point)	-0.106	0.181	-0.59	.557	-0.461	0.248
Married x Income rating (11 point)	0.303	0.221	1.37	.170	-0.130	0.737
Employment: Student x Male	0.344	0.269	1.28	.202	-0.184	0.871

Про вопрос Лизы с прошлой лекции

Что делать, если X влияет только на Т ? (см. 4 схемы на доске)

Ориентироваться можно по Backdoor-критерию (J. Pearl)

Для упорядоченной пары переменных (T, Y) в ориентированном ациклическом графе G, набор переменных X удовлетворяет критерию backdoor относительно пары (T, Y), если ни один узел из X не является «потомком» от T, и X блокирует все цепочки между T и Y, которые содержат стрелку, входящую в узел T.

Backdoor-критерий (J. Pearl)

- Post-treatment не удовлетворяет этому критерию. Это «плохие контрольные переменные»
- Pre-treatment под вопросом: зависит от структуры графа G
- Вывод: перед оценкой регрессий нарисуйте схему взаимодействия между показателями

Double Robustness

А еще можно сделать и то и другое (выкладки на доске)

Double Robustness

- e(X) = P(T = 1|X) по определению настоящая (postulated) мера склонности к попаданию в тритмент-группу.
- $m_1(X) = E[Y|T=1,X], m_0(X) = E[Y|T=0,X]$ истинная зависимость Y от X в двух группах.
- $ightharpoonup ATE = E[Y_1 Y_0]$ по определению истинный эффект воздействия.

$$\widehat{ATE}_{DR} = \frac{1}{n} \Big[\sum_{i=1}^{n} \Big(\frac{T_{i} * Y_{i}}{e(X_{i}, \hat{\alpha})} - \frac{(T_{i} - e(X_{i}, \hat{\alpha})) * m_{1}(X_{i}, \hat{\beta}_{1})}{e(X_{i}, \hat{\alpha})} \Big] - \frac{1}{n} \Big[\sum_{i=1}^{n} \Big(\frac{(1 - T_{i}) * Y_{i}}{(1 - e(X_{i}, \hat{\alpha}))} + \frac{(T_{i} - e(X_{i}, \hat{\alpha})) * m_{0}(X_{i}, \hat{\beta}_{0})}{(1 - e(X_{i}, \hat{\alpha}))} \Big]$$

- $e(X, \hat{\alpha})$ оценённая на данных вероятность попадания в тритмент-группу в зависимости от характеристик.
- $m_1(X, \hat{eta}_1)$ и $m_0(X, \hat{eta}_0)$ оценённые на данных зависимости Y в тритмент- и контрольной группе от характеристик.

Double Robustness

$$\widehat{ATE_{DR}} = \frac{1}{n} \Big[\sum_{i=1}^{n} \Big(\frac{T_i * Y_i}{e(X_i, \hat{\alpha})} - \frac{(T_i - e(X_i, \hat{\alpha})) * m_1(X_i, \hat{\beta_1})}{e(X_i, \hat{\alpha})} \Big] - \frac{1}{n} \Big[\sum_{i=1}^{n} \Big(\frac{(1 - T_i) * Y_i}{(1 - e(X_i, \hat{\alpha}))} + \frac{(T_i - e(X_i, \hat{\alpha})) * m_0(X_i, \hat{\beta_0})}{(1 - e(X_i, \hat{\alpha}))} \Big]$$

lacktriangle Достаточно оценить правильно либо e(X) , либо $m_1(X) = E[Y|T=1,X], \ m_0(X) = E[Y|T=0,X].$

Литература: книжки и образовательные

материалы I

Литература: статьи I