

SEQUENCE LISTING

<110> Barany, Francis Cao, Weiguo Tong, Jie

<120> HIGH FIDELITY THERMOSTABLE LIGASE AND USES THEREOF

<130> 19603/2615

<140> 09/830,502

<141> 1999-10-29

<150> 60/106,461

<151> 1998-10-30

<150> PCT/US99/25437

<151> 1999-10-29

<160> 24

<170> PatentIn Ver. 2.1

<210> 1

<211> 674

<212> PRT

<213> Thermus sp.

<400> 1

Met Thr Leu Glu Glu Ala Arg Arg Arg Val Asn Glu Leu Arg Asp Leu 1 5 10 15

Ile Arg Tyr His Asn Tyr Leu Tyr Tyr Val Leu Asp Ala Pro Glu Ile 20 25 30

Ser Asp Ala Glu Tyr Asp Arg Leu Leu Arg Glu Leu Lys Glu Leu Glu 35 40 $^{\prime}$ 45

Glu Arg Phe Pro Glu Leu Lys Ser Pro Asp Ser Pro Thr Glu Gln Val
50 55 60

Gly Ala Arg Pro Leu Glu Ala Thr Phe Arg Pro Val Arg His Pro Thr
65 70 75 80

Arg Met Tyr Ser Leu Asp Asn Ala Phe Ser Leu Asp Glu Val Arg Ala 85 90 95

Phe Glu Glu Arg Ile Glu Arg Ala Leu Gly Arg Lys Gly Pro Phe Leu

Tyr Th	r Val 115	Glu	Arg	Lys	Val	Asp 120	Gly	Leu	Ser	Val	Asn 125	Leu	Tyr	Tyr
Glu Gl		Ile	Leu	Val	Phe 135	Gly	Ala	Thr	Arg	Gly 140	Asp	Gly	Glu	Thr
Gly Gl	ı Glu	Val	Thr	Gln 150	Asn	Leu	Leu	Thr	Ile 155	Pro	Thr	Ile	Pro	Arg 160
Arg Le	ı Thr	Gly	Val 165	Pro	Asp	Arg	Leu	Glu 170	Val	Arg	Gly	Glu	Val 175	Tyr
Met Pr	o Ile	Glu 180	Ala	Phe	Leu	Arg	Leu 185	Asn	Gln	Glu	Leu	Glu 190	Glu	Ala
Gly Gl	1 Arg 195	Ile	Phe	Lys	Asn	Pro 200	Arg	Asn	Ala	Ala	Ala 205	Gly	Ser	Leu
Arg Gl		Asp	Pro	Arg	Val 215	Thr	Ala	Arg	Arg	Gly 220	Leu	Arg	Ala	Thr
Phe Ty	r Ala	Leu	Gly	Leu 230	Gly	Leu	Glu	Glu	Thr 235	Gly	Leu	Lys	Ser	Gln 240
His As) Leu	Leu	Leu 245	Trp	Leu	Arg	Glu	Arg 250	Gly	Phe	Pro	Val	Glu 255	His
Gly Ph	e Thr	Arg 260	Ala	Leu	Gly	Ala	Glu 265	Gly	Val	Glu	Glu	Val 270	Tyr	Gln
Ala Tr	275	Lys	Glu	Arg	Arg	Lys 280	Leu	Pro	Phe	Glu	Ala 285	Asp	Gly	Val
Val Val		Leu	Asp	Asp	Leu 295	Ala	Leu	Trp	Arg	Glu 300	Leu	Gly	Tyr	Thr
Ala Are	y Thr	Pro	Arg	Phe 310	Ala	Leu	Ala	Tyr	Lys 315	Phe	Pro	Ala	Glu	Glu 320
Lys Gl	ı Thr	Arg	Leu 325	Leu	Ser	Val	Ala	Phe 330	Gln	Val	Gly	Arg	Thr 335	Gly
Arg Ile	e Thr	Pro 340	Val	Gly	Val	Leu	Glu 345	Pro	Val	Phe	Ile	Glu 350	Gly	Ser
Glu Va	Ser	Arg	Val	Thr	Leu	His	Asn	Glu	Ser	Phe	Ile	Glu	Glu	Leu

355	360	365

•																
	-															
			355					360					365			
	Asp	Val 370	Arg	Ile	Gly	Asp	Trp 375	Val	Leu	Val	His	Lys 380	Ala	Gly	Gly	Val
	Ile 385	Pro	Glu	Val	Leu	Arg 390	Val	Leu	Lys	Glu	Arg 395	Arg	Thr	Gly	Glu	Glu 400
	Lys	Pro	Ile	Ile	Trp 405	Pro	Glu	Asn	Cys	Pro 410	Glu	Cys	Gly	His	Ala 415	Leu
	Ile	Lys	Glu	Gly 420	Lys	Val	His	Arg	Cys 425	Pro	Asn	Pro	Leu	Cys 430	Pro	Ala
	Lys	Arg	Phe 435	Glu	Ala	Ile	Arg	His 440	Tyr	Ala	Ser	Arg	Lys 445	Ala	Met	Asp
	Ile	Gln 450	Gly	Leu	Gly	Glu	Lys 455	Leu	Ile	Glu	Lys	Leu 460	Leu	Glu	Lys	Gly
	Leu 465	Val	Arg	Asp	Val	Ala 470	Asp	Leu	Tyr	Arg	Leu 475	Lys	Lys	Glu	Asp	Leu 480
	Val	Asn	Leu	Glu	Arg 485	Met	Gly	Glu	Lys	Ser 490	Ala	Glu	Asn	Leu	Leu 495	Arg
·	Gln	Ile	Glu	Glu 500	Ser	Lys	Gly	Arg	Gly 505	Leu	Glu	Arg	Leu	Leu 510	Tyr	Ala
	Leu	Gly	Leu 515	Pro	Gly	Val	Gly	Glu 520	Val	Leu	Ala	Arg	Asn 525	Leu	Ala	Leu
	Arg	Phe 530	Gly	His	Met	Asp	Arg 535		Leu	Glu	Ala	Gly 540	Leu	Glu	Asp	Leu
	Leu 545	Glu	Val	Glu	Gly	Val 550	Gly	Glu	Leu	Thr	Ala 555	Arg	Ala	Ile	Leu	Asn 560
	Thr	Leu	Lys	Asp	Pro 565	Glu	Phe	Arg	Asp	Leu 570	Val	Arg	Arg	Leu	Lys 575	Glu
	Ala	Gly	Val	Glu 580	Met	Glu	Ala	Lys	Glu 585	Arg	Glu	Gly	Glu	Ala 590	Leu	Lys
	Gly	Leu	Thr 595	Phe	Val	Ile	Thr	Gly 600	Glu	Leu	Ser	Arg	Pro 605	Arg	Glu	Glu
	Val	Lys	Ala	Leu	Leu	Arg	Arg	Leu	Gly	Ala	Lys	Val	Thr	Asp	Ser	Val

610 615 620

Ser Arg Lys Thr Ser Phe Leu Val Val Gly Glu Asn Pro Gly Ser Lys 625 630 635 640

Leu Glu Lys Ala Arg Ala Leu Gly Val Pro Thr Leu Ser Glu Glu Glu 645 650 655

Leu Tyr Arg Leu Ile Glu Glu Arg Thr Gly Lys Asp Pro Arg Ala Leu 660 665 670

Thr Ala

<210> 2

<211> 2025

<212> DNA

<213> Thermus sp.

<400> 2

atgaccctag aggaggcccg caggcgcgtc aacgaactca gggacctgat ccgttaccac 60 aactacctct attacgtctt ggacgccccc gagatctccg acgccgagta cgaccggctc 120 cttagggagc ttaaggagct ggaggagcgc tttcccgagc tcaaaagccc cgactccccc 180 cgcatgtact ccctggacaa cgccttttcc ttggacgagg tgagggcctt tgaggagcgc 300 atagagcggg ccctggggcg gaaggggccc ttcctctaca ccgtggagcg caaggtggac 360 ggtctttccg tgaacctcta ctacgaggag ggcatcctcg tctttggggc cacccggggc 420 gacggggaga ccggggagga ggtgacccag aacctcctca ccatccccac cattccccgc 480 cgcctcacgg gcgttccgga ccgcctcgag gtccggggcg aggtctacat gcccatagag 540 gccttcctca ggctcaacca ggagctggag gaggcggggg agcgcatctt caaaaacccc 600 aggaacgccg ccgccgggtc cttgcggcag aaagacccca gggtcacggc caggcggggc 660 ctgagggcca ccttttacgc cctggggctg ggcctggagg aaaccgggtt aaaaagccag 720 cacgacette tectatgget aagagagegg ggettteeeg tggageaegg etttaeeegg 780 gccctggggg cggaggggt ggaggaggtc taccaggcct ggctcaagga gaggcggaag 840 cttccctttg aggccgacgg ggtggtggtc aagctggacg acctcgccct ctggcgggag 900 ctggggtaca ccgcccgcac cccccgcttc gccctcgcct acaagttccc ggccgaggag 960 aaggagaccc gcctcctctc cgtggccttc caggtggggc ggaccgggcg catcaccccc 1020 gtgggcgttc tggagcccgt cttcatagag ggcagcgagg tgagccgggt caccctccac 1080 aacgagagct tcattgagga gctggacgtg cgcatcggcg actgggtgct ggtccacaag 1140 gcgggcgggg tgattcccga ggtgctgagg gtcctgaaag agcgccgcac cggggaggag 1200 aagcccatca tctggcccga gaactgcccc gagtgcggcc acgccctcat caaggagggg 1260 aaggtecace getgeeceaa eeeettgtge eeegeeaage getttgagge cateegeeae 1320 tacgcctccc gcaaggccat ggacatccag ggcctggggg agaagctcat agaaaagctt 1380 ctggaaaagg gcctggtccg ggacgtggcc gacctctacc gcctgaagaa ggaggacctg 1440 gtgaacctgg agcgcatggg ggagaagagc gcagagaacc tcctccgcca gatagaggag 1500 agcaagggcc gcggcctgga gcgcctcctt tacgccctgg gccttcccgg ggtgggggag 1560 gtgctggccc ggaacctggc cctccgcttc ggccacatgg accgccttct ggaggcgggc 1620

```
accctaaagg acccggagtt ccgggacctg gtgcgccgcc tgaaggaggc cggggtggag 1740
atggaggcca aagagcggga gggcgaggcc ttgaaggggc tcaccttcgt catcaccggg 1800
gagctttccc ggccccggga ggaggtgaag gccctcctta ggcggcttgg ggccaaggtg 1860
acggactcgg tgagccgcaa gacgagcttc ctggtggtgg gggagaaccc ggggagcaag 1920
ctggaaaagg cccgcgcctt gggggtcccc accctgagcg aggaggagct ctaccgcctc 1980
attgaggaga ggacgggcaa ggacccaagg gccctcacgg cctag
                                                                   2025
<210> 3
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: probe or
      primer
<220>
<221> tRNA
<222> (4)
<223> w at position 4 can be T or A
<220>
<221> unsure
<222> (5)
<223> s at position 5 can be C or G
<220>
<221> unsure
<222> (12)
<223> s at position 12 can be C or G
<220>
<221> unsure
<222> (15)
<223> r at position 15 can be G or A
<220>
<221> unsure
<222> (18)
<223> y at position 18 can be T or C
<400> 3
atcwscgacg csgartayga
                                                                   20
```

ctcgaggacc tcctggaggt ggaggggtg ggcgagctca ccgcccgggc catcctgaat 1680

<210> 4

```
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: protein
<400> 4
Ile Ser Asp Ala Glu Tyr Asp
                  5
<210> 5
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: probe or
      primer
<220>
<221> unsure
<222> (3)
<223> s at position 3 can be C or G
<220>
.<221> unsure
<222> (6)
<223> s at position 6 can be C or G
<220>
<221> unsure
<222> (8)
<223> k at position 8 can be G or T
<220>
<221> unsure
<222> (9)
<223> s at position 9 can be G or C
<220>
<221> unsure
<222> (12)
<223> s at position 12 can be G or C
<220>
```

<221> unsure

```
<222> (15)
<223> y at position 15 can be C or T
<220>
<221> unsure
<222> (18)
<223> r at position 18 can be A or G
<400> 5
                                                                    20
ccsgtscksc csacytgraa
<210> 6
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: probe or
      primer
<220>
<221> unsure
<222> (9)
<223> v at position 9 can be C, G, or A
<220>
<221> unsure
<222> (11)
<223> r at position 11 can be A or G
<220>
<221> unsure
<222> (12)
<223> y at position 12 can be T or C
<220>
<221> unsure
<222> (16)
<223> s at position 16 is C or G
<220>
<221> unsure
<222> (17)
<223> w at position 17 can be A or T
<220>
```

<221> unsure

```
<222> (18)
<223> s at position 18 can be G or C
<400> 6
                                                                   20
gccttctcva ryttgswscc
<210> 7
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: probe or
      primer
<400> 7
Phe Gln Val Gly Arg Thr Gly
                  5
<210> 8
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: probe or
      primer
<400> 8
Gly Ser Lys Leu Glu Lys Ala
 1
<210> 9
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: probe or
      primer
<400> 9
gcgatttcat atgaccctag aggaggcccg
                                                                    30
```

<210>	10		
<211>	29		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	Description of Artificial Sequence:	probe or	
	primer		
<400>			0.0
geggg	atccg aggccttgga gaagctctt		29
<210>	11		
<211>			
<212>			
	Artificial Sequence		
	•		
<220>			
<223>	Description of Artificial Sequence:	probe or	
	primer		
<400>	11		
aaaac	ectgt tecagegtet geggtgttge gte		33
.010	10		
<210>			
<211> <212>			
	Artificial Sequence		
\213/	Artificial Sequence		
<220>			
<223>	Description of Artificial Sequence:	probe or	
	primer	-	
<400>	12		
agttg	tcata gtttgatcct ctagtctggg		30
<210>			
<211>			
<212>			
<213>	Artificial Sequence		
/22 0 >			
<220>	Description of Artificial Sequence:	nrohe or	
~ ∠∠3/	primer	brone or	
	<u>r</u>		

29

<210> 14 <211> 59 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: probe or primer <400> 14 gggacaaggt cgcagacgcc acaacgcagt caacagtatc aaactaggag atcagaccc 59 <210> 15 <211> 184 <212> PRT <213> Thermus aquaticus <220> <221> UNSURE <222> (18)..(120) <223> Xaa at positions 18-120 is any amino acid <220> <221> UNSURE <222> (126)..(172) <223> Xaa at positions 126-172 is any amino acid <400> 15 Tyr Thr Val Glu His Lys Val Asp Gly Leu Ser Val Asn Leu Tyr Tyr 5 10 15 20 25 35 45 40 50 55 60

70

65

75

85 90 105 100 110 Xaa Xaa Xaa Xaa Xaa Xaa Xaa Leu Glu Glu Thr Gly Xaa Xaa Xaa 115 120 125 135 130 150 155 165 170 175 Asp Gly Val Val Lys Leu Asp 180 <210> 16 <211> 187 <212> PRT <213> Thermus flavus <220> <221> UNSURE <222> (18)..(120) <223> Xaa at positions 18-120 is any amino acid <220> <221> UNSURE <222> (129)..(175) <223> Xaa at positions 129-175 is any amino acid <400> 16 Tyr Thr Val Glu His Lys Val Asp Gly Leu Ser Val Asn Leu Tyr Tyr 10

20 25

40

50 55 60

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Leu Glu Glu Val Glu Arg Glu Gly
115 120 125

Phe Glu Ala Asp Gly Val Val Val Lys Leu Asp 180 185

<210> 17

<211> 184

<212> PRT

<213> Thermus filiformis

<220>

<221> UNSURE

<222> (18)..(120)

<223> Xaa at positions 18-120 is any amino acid

<220>

<221> UNSURE

<222> (126)..(172)

<223> Xaa at positions 126-172 is any amino acid

<400> 17

Tyr Thr Val Glu His Lys Val Asp Gly Leu Ser Val Asn Leu Tyr Tyr

1 5 10 15

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Leu Glu Glu Ser Gly Xaa Xaa Asp Gly Val Val Lys Met Asp <210> 18 <211> 184 <212> PRT <213> Thermus filiformis <220>

<220>
<221> UNSURE
<222> (18)..(120)
<223> Xaa at positions 18-120 is any amino acid
<220>
<221> UNSURE
<222> (126)..(172)
<223> Xaa at positions 126-172 is any amino acid

<400> 18

Tyr Thr Val Glu His Lys Val Asp Gly Leu Ser Val Asn Leu Tyr Tyr Xaa Xaa Xaa Xaa Xaa Xaa Xaa Leu Glu Glu Ser Gly Xaa Xaa Xaa

Asp Gly Val Val Lys Leu Asp

<210> 19

<211> 184

<212> PRT

<213> Thermus sp.

<220>

<221> UNSURE

<222> (18)..(120)

<223> Xaa at positions 18-120 is any amino acid

<220>

<221> UNSURE

<222> (126)..(172)

<223> Xaa at positions 126-172 is any amino acid

<400> 19

Tyr Thr Val Glu His Lys Val Asp Gly Leu Ser Val Asn Leu Tyr Tyr
1 5 10 15

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Leu Glu Glu Ser Gly Xaa Xaa Xaa 115 120 125

Asp Gly Val Val Lys Leu Asp 180

<210> 20

<211> 184

<212> PRT

<213> Thermus sp.

<220>

```
<221> UNSURE
<222> (18)..(120)
<223> Xaa at posi
```

<223> Xaa at positions 18-120 is any amino acid

<220>

<221> UNSURE

<222> (126)..(172)

<223> Xaa at positions 126-172 is any amino acid

<400> 20

Tyr Thr Val Glu His Lys Val Asp Gly Leu Ser Val Asn Leu Tyr Tyr 1 5 10 15

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Leu Glu Glu Ser Gly Xaa Xaa Xaa 115
120
125

Asp Gly Val Val Lys Leu Asp 180

<210> 21

<211> 184 <212> PRT <213> Thermus sp. <220> <221> UNSURE <222> (18)..(120) <223> Xaa at positions 18-120 is any amino acid <220> <221> UNSURE <222> (126)..(172) <223> Xaa at positions 126-172 is any amino acid <400> 21 Tyr Thr Val Glu His Lys Val Asp Gly Leu Ser Val Asn Leu Tyr Tyr Xaa Xaa Xaa Xaa Xaa Xaa Xaa Leu Glu Ser Gly Xaa Xaa Xaa

Asp Gly Val Val Lys Leu Asp

<210> 22 <211> 184 <212> PRT <213> Thermus aquaticus <220> <221> UNSURE <222> (18)..(120) <223> Xaa at positions 18-120 is any amino acid <220> <221> UNSURE <222> (126)..(172) <223> Xaa at positions 126-172 is any amino acid <400> 22 Tyr Thr Val Glu Arg Lys Val Asp Gly Leu Ser Val Asn Leu Tyr Tyr Xaa Xaa Xaa Xaa Xaa Xaa Xaa Leu Glu Glu Thr Gly Xaa Xaa Xaa

145 150 155 160

Asp Gly Val Val Lys Leu Asp 180

<210> 23

<211> 187

<212> PRT

<213> Thermus flavus

<220>

<221> UNSURE

<222> (18)..(120)

<223> Xaa at positions 18-20 is any amino acid

<220>

<221> UNSURE

<222> (129)..(175)

<223> Xaa at positions 129-175 is any amino acid

<400> 23

Tyr Thr Val Glu His Lys Val Asp Gly Leu Ser Val Asn Leu Tyr Tyr
1 5 10 15

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Leu Glu Glu Val Glu Arg Glu Gly
115 120 125

Phe Glu Ala Asp Gly Val Val Val Lys Leu Asp 180 185

<210> 24

<211> 4

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Peptide

<220>

<221> VARIANT

<222> (2)

<223> X at position 2 is any amino acid

<400> 24

Lys Xaa Asp Gly