$X = (X_1, \dots, X_n), Y = (Y_1, \dots, Y_n), Z = (X_1, \dots, X_n, Y_1, \dots, Y_n).$

$$K_1(Z) = \sum_{i,j=1}^{n} |X_i - Y_j|, \tag{1}$$

$$K_2(Z) = (\overline{X} - \overline{Y})^2, \tag{2}$$

$$L_1(Z) = \sum_{i,j=1}^n \ln(1 + |X_i - Y_j|)$$
(3)

$$L_1^C(Z) = \sum_{i,j=1}^n \ln\left(1 + \left(\frac{|X_i - Y_j|}{C}\right)\right), \qquad C = \sum_{1 \le i < j \le 2n} |Z_i - Z_j| / (n(2n-1)), \tag{4}$$

$$L_2(Z) = \sum_{i,j=1}^n \ln(1+|X_i-Y_j|^2)$$
 (5)

$$L_2^C(Z) = \sum_{i,j=1}^n \ln\left(1 + \left(\frac{|X_i - Y_j|}{C}\right)^2\right), \qquad C = \sum_{1 \le i \le j \le 2n} |Z_i - Z_j| / (n(2n-1)), \tag{6}$$

$$T_1(Z) = -\left(\sum_{i=1}^n \ln(1 + [X_i - Z_{cen}]_+) + \sum_{j=1}^n \ln(1 + [Z_{cen} - Y_j]_+)\right), \quad X_{cen} \le Y_{cen}, \quad [a]_+ = a \quad if \quad a > 0,$$
 (7)

$$NC = \frac{S_X^2 + (\bar{X} - \bar{Y})^2}{S_Y^2} + \frac{S_Y^2 + (\bar{X} - \bar{Y})^2}{S_X^2}, \tag{8}$$

$$CC^{C} = \sum_{i=1}^{n} \left\{ \ln \left(1 + \frac{|X_i - Y_{cen}|}{Y_{sd}} \right) + \ln \left(1 + \frac{|Y_i - X_{cen}|}{X_{sd}} \right) \right\}, \tag{9}$$

$$CC_2^C = \sum_{i=1}^n \left\{ \ln \left(1 + \left(\frac{|X_i - Y_{cen}|}{Y_{sd}} \right)^2 \right) + \ln \left(1 + \left(\frac{|Y_i - X_{cen}|}{X_{sd}} \right)^2 \right) \right\}, \tag{10}$$

$$CC_3^C = \sum_{i,j=1}^n \ln\left(1 + \left|\frac{X_i}{Y_{sd}} - \frac{Y_j}{X_{sd}}\right|^2\right),\tag{11}$$

(12)

(13)

 X_{cen}, X_{sd} — max likelihood estimations of mean and standard deviation with starting points the 24% trimmed mean and the interquartile range respectively.

Таблица 1: Мощность тестов при размерах выборок n=5

F_2	K_1	K_2	L_1	L_1^C	L_2	L_2^C	T_1	NC	CC^C	CC_2^C	CC_3^C	t	w	ks	f
C(0, 1)	0.049	0.048	0.059	0.059	0.054	0.05	0.05	0.057	0.059	0.06	0.054	0.012	0.034	0.011	0.456
C(1, 1)	0.139	0.132	0.133	0.134	0.138	0.128	0.133	0.101	0.117	0.12	0.09	0.045	0.093	0.036	0.45
C(2, 1)	0.301	0.255	0.338	0.333	0.343	0.29	0.261	0.258	0.272	0.272	0.185	0.144	0.194	0.1	0.432
C(3, 1)	0.498	0.424	0.577	0.552	0.575	0.494	0.44	0.439	0.45	0.447	0.318	0.269	0.335	0.216	0.463
C(4, 1)	0.629	0.526	0.72	0.688	0.723	0.618	0.542	0.554	0.543	0.545	0.41	0.353	0.417	0.3	0.46
C(0, 1)	0.06	0.052	0.047	0.054	0.05	0.051	0.059	0.053	0.058	0.061	0.064	0.018	0.036	0.005	0.459
C(0, 3)	0.086	0.061	0.171	0.144	0.162	0.088	0.065	0.19	0.149	0.151	0.17	0.016	0.036	0.01	0.584
C(0, 5)	0.114	0.066	0.291	0.249	0.304	0.104	0.077	0.309	0.227	0.238	0.306	0.017	0.039	0.017	0.677
C(0, 7)	0.13	0.077	0.392	0.346	0.395	0.121	0.096	0.397	0.264	0.279	0.334	0.016	0.048	0.026	0.756
C(0, 9)	0.18	0.102	0.483	0.434	0.484	0.162	0.107	0.493	0.355	0.375	0.46	0.019	0.057	0.036	0.784
C(0, 1)	0.062	0.065	0.056	0.06	0.063	0.063	0.068	0.06	0.052	0.053	0.047	0.022	0.035	0.007	0.405
C(1, 2)	0.108	0.093	0.148	0.137	0.152	0.101	0.096	0.12	0.121	0.129	0.142	0.024	0.053	0.025	0.502
C(2, 3)	0.18	0.159	0.266	0.24	0.259	0.176	0.151	0.238	0.199	0.202	0.217	0.058	0.106	0.062	0.552
C(3, 4)	0.211	0.159	0.39	0.35	0.392	0.202	0.171	0.37	0.289	0.3	0.318	0.058	0.107	0.061	0.649
C(4, 5)	0.297	0.217	0.459	0.442	0.46	0.278	0.224	0.42	0.341	0.346	0.38	0.075	0.152	0.088	0.662
C(0, 1)	0.06	0.058	0.051	0.055	0.056	0.066	0.06	0.057	0.049	0.051	0.049	0.01	0.029	0.007	0.438
C(1, 3)	0.116	0.09	0.208	0.189	0.205	0.114	0.089	0.204	0.158	0.161	0.187	0.02	0.056	0.02	0.569
C(2, 5)	0.173	0.118	0.337	0.311	0.339	0.168	0.131	0.352	0.246	0.259	0.306	0.038	0.075	0.032	0.686
C(3, 7)	0.172	0.111	0.447	0.387	0.457	0.162	0.117	0.464	0.317	0.337	0.405	0.032	0.069	0.042	0.772
C(4, 9)	0.24	0.141	0.521	0.472	0.522	0.214	0.17	0.522	0.365	0.383	0.466	0.034	0.093	0.061	0.782

Таблица 2: Мощность тестов при размерах выборок n=50

F_2	K_1	K_2	L_1	L_1^C	L_2	L_2^C	T_1	NC	CC^C	CC_2^C	CC_3^C	t	w	ks	f
C(0, 1)	0.046	0.057	0.046	0.046	0.048	0.046	0.052	0.05	0.046	0.046	0.051	0.026	0.055	0.039	0.833
C(0.5, 1)	0.157	0.059	0.282	0.227	0.267	0.15	0.176	0.056	0.341	0.328	0.18	0.028	0.26	0.301	0.818
C(1, 1)	0.533	0.136	0.825	0.72	0.806	0.438	0.5	0.051	0.83	0.825	0.602	0.077	0.737	0.821	0.8
C(1.5, 1)	0.875	0.205	0.99	0.969	0.985	0.725	0.804	0.071	0.933	0.933	0.871	0.129	0.951	0.985	0.831
C(2, 1)	0.972	0.299	1	0.998	1	0.873	0.937	0.093	0.983	0.983	0.948	0.201	0.996	1	0.833
C(0, 1)	0.061	0.051	0.048	0.054	0.047	0.055	0.063	0.054	0.046	0.045	0.042	0.024	0.059	0.041	0.82
C(0, 2)	0.25	0.044	0.512	0.403	0.509	0.196	0.044	0.161	0.295	0.411	0.608	0.015	0.045	0.182	0.852
C(0, 3)	0.596	0.042	0.902	0.799	0.896	0.453	0.058	0.31	0.666	0.795	0.895	0.02	0.066	0.435	0.888
C(0, 4)	0.801	0.04	0.989	0.947	0.988	0.645	0.053	0.421	0.872	0.92	0.946	0.02	0.068	0.709	0.906
C(0, 5)	0.901	0.045	0.999	0.988	0.999	0.744	0.072	0.52	0.93	0.946	0.965	0.018	0.081	0.85	0.927
C(0, 1)	0.048	0.045	0.036	0.039	0.037	0.044	0.043	0.049	0.035	0.033	0.043	0.015	0.042	0.027	0.824
C(0.5, 1.5)	0.193	0.072	0.358	0.306	0.349	0.174	0.133	0.097	0.309	0.34	0.346	0.038	0.2	0.244	0.835
C(1, 2)	0.507	0.092	0.807	0.706	0.802	0.405	0.274	0.177	0.718	0.748	0.777	0.051	0.412	0.639	0.847
C(1.5, 2.5)	0.756	0.122	0.964	0.901	0.964	0.621	0.411	0.296	0.895	0.912	0.932	0.068	0.577	0.848	0.867
C(2, 3)	0.872	0.135	0.996	0.971	0.997	0.747	0.563	0.353	0.942	0.951	0.957	0.068	0.728	0.944	0.9
C(0, 1)	0.036	0.041	0.05	0.049	0.048	0.043	0.048	0.054	0.061	0.059	0.045	0.015	0.046	0.039	0.837
C(0.5, 2)	0.321	0.055	0.629	0.51	0.623	0.258	0.106	0.177	0.449	0.54	0.685	0.016	0.14	0.315	0.852
C(1, 3)	0.729	0.078	0.964	0.908	0.961	0.578	0.198	0.337	0.824	0.869	0.926	0.034	0.252	0.722	0.883
C(1.5, 4)	0.899	0.097	0.996	0.985	0.997	0.746	0.304	0.451	0.934	0.941	0.953	0.052	0.388	0.892	0.919
C(2, 5)	0.946	0.089	0.999	0.994	0.999	0.809	0.339	0.543	0.956	0.96	0.971	0.049	0.43	0.949	0.935