1 Estimation of Entropy

I now wish to more explicitly introduce the Kozachenko-Leonenko estimator of the entropy H. Let $X_1, X_2, ..., X_N, N \geq 1$ be independent and identically distributed random vectors in \mathbb{R}^d , and denote $\|.\|$ the Euclidean norm on \mathbb{R}^d .

• For i=1,2,...,N, let $X_{(1),i},X_{(2),i},..,X_{(N-1),i}$ denote an order of the X_k for $k=\{1,2,...,N\}\setminus\{i\}$, such that $\|X_{(1),i}-X_i\|\leq \cdots \leq \|X_{(N-1),i}-X_i\|$. Let the metric ρ , defined as;

$$\rho_{(k),i} = \|X_{(k),i} - X_i\| \tag{1}$$

denote the kth nearest neighbour or X_i .

• For dimension d, the volume of the unit d-dimensional Euclidean ball is defined as;

$$V_d = \frac{\pi^{\frac{d}{2}}}{\Gamma(1 + \frac{d}{2})} \tag{2}$$

• For the kth nearest neighbour, the digamma function is defined as;

$$\Psi(k) = -\gamma + \sum_{j=1}^{k-1} \frac{1}{j}$$
 (3)

where $\gamma=0.577216$ is the Euler-Mascheroni constant (where the digamma function is chosen so that $\frac{e^{\Psi(k)}}{k} \to 1$ as $k \to \infty$).

Then the Kozachenko-Leonenko estimator for entropy, H, is given by;

$$\hat{H}_{N,k} = \frac{1}{N} \sum_{i=1}^{N} log \left[\frac{\rho_{(k),i}^{d} V_d(N-1)}{e^{\Psi(k)}} \right]$$
 (4)

where, $\rho_{(k),i}^d$ is defined in (1), V_d is defined in (2) and $\Psi(k)$ is defined in (3). This estimator for entropy, when $d \leq 3$, under a wide range of k and some regularity conditions, satisfies some theorems.

Theorem ?? holds, according to the central limit theorem, on the estimator for entropy $\hat{H}_{N,k}$;

$$\frac{\hat{H}_{N,k} - \mathbb{E}\hat{H}_{N,k}}{\sqrt{Var(\hat{H}_{N,k})}} \xrightarrow{d} N(0, \sigma^2)$$

By Theorem ??, we can assume that $Var(\hat{H}_{N,k}) = \frac{Var(\log f(x))}{N} \approx \frac{1}{N}$, as for large N, the variance of the logarithm of the density function stays constant. Thus, the left side of the central limit theorem above can be written as;

$$\frac{\hat{H}_{N,k} - \mathbb{E}\hat{H}_{N,k}}{\sqrt{Var(\hat{H}_{N,k})}} = \sqrt{N}(\hat{H}_{N,k} - \mathbb{E}\hat{H}_{N,k})$$

$$= \sqrt{N}[(\hat{H}_{N,k} - H) + (H - \mathbb{E}\hat{H}_{N,k})]$$

$$= \sqrt{N}(\hat{H}_{N,k} - H) + \sqrt{N}(H - \mathbb{E}\hat{H}_{N,k})$$

and as $N \to \infty$ this tends to the normal distribution, $N(0, \sigma^2)$. So we can say that $\sqrt{N}(\hat{H}_{N,k} - H) \xrightarrow{d} N(0, \sigma^2)$ while $\sqrt{N}(H - \mathbb{E}\hat{H}_{N,k}) \to \sigma^2$, which is equivalent to the properties stated in Theorem ??.

Later, I will further discuss this estimator for the specific dimensions d=1 and d=2; however, it is important to note that for larger dimensions this estimator is not accurate. When d=4, equations (??) and (??) no longer hold but the estimator $\hat{H}_{N,k}$, defined by (4), is still root-N consistent, provided k is bounded. Also, when $d \geq 5$ there is a non trivial bias, regardless of the choice of k. There is a new proposed estimator, formed as a weighted average of $\hat{H}_{N,k}$ for different values of k, where k depends on the choice of N, explored in PAPER 4 (TODO reference).

Moreover, this paper focuses only on distributions for $d \leq 3$, more specifically, I will first be considering samples from 1-dimensional distributions, d=1. Therefore, the volume of the 1-dimensional Euclidean ball is given by $V_1=\frac{\pi^{\frac{1}{2}}}{\Gamma(\frac{3}{2})}=\frac{\sqrt{\pi}}{\frac{\sqrt{\pi}}{2}}=2$. Hence the Kozachenko-Leonenko estimator is of the form;

$$\hat{H}_{N,k} = \frac{1}{N} \sum_{i=1}^{N} log \left[\frac{2\rho_{(k),i}(N-1)}{e^{\Psi(k)}} \right]$$
 (5)

Later, I will be considering samples from 2-dimensional distributions; thus, d=2 and the volume of the 2-dimensional Euclidean ball is given by $V_2 = \frac{\pi^{\frac{2}{2}}}{\Gamma(2)} = \frac{\pi}{1} = \pi$. Hence, the estimator takes the form;

$$\hat{H}_{N,k} = \frac{1}{N} \sum_{i=1}^{N} log \left[\frac{\pi \rho_{(k),i}^{2}(N-1)}{e^{\Psi(k)}} \right]$$
 (6)