A SIMPLE FPTAS FOR COUNTING EDGE COVERS

Chengyu Lin¹ Jingcheng Liu¹ Pinyan Lu²

¹Shanghai Jiao Tong University

²Microsoft Research Asia

ACM-SIAM Symposium on Discrete Algorithms, 2014

Overview

Introduction

Edge cover

Definition

For an undirected input graph G=(V,E), an **edge cover** of G is a set of edges C covering all vertices.

Example

Figure: Example of an edge cover

Edge cover is related to many other problems such as:

- Matching problem.
- Holant problem.
- Rtw-Mon-CNF. (read twice monotone CNF)

Edge cover

Definition

For an undirected input graph G=(V,E), an **edge cover** of G is a set of edges C covering all vertices.

Example

Figure : Example of an edge cover, with edges chosen being highlighted in red.

Edge cover is related to many other problems such as:

- Matching problem.
- Holant problem.
- Rtw-Mon-CNF. (read twice monotone CNF)

Relation to Matching

Example

Find edge covers by maximal matching?

(a) G has a perfect matching.

(b) ${\cal G}$ doesn't have a perfect matching.

Relation to Matching

Example

Find edge covers by maximal matching?

(a) G has a perfect matching.

(b) ${\cal G}$ doesn't have a perfect matching.

Relation to Matching

Example

Find edge covers by maximal matching?

(a) G has a perfect matching.

(b) ${\cal G}$ doesn't have a perfect matching.

Approximation Schemes

We are interested primarily in two type of polynomial time approximation scheme:

Definition

(Informally) For given parameter $\varepsilon>0$ and an instance of a particular problem class, if the algorithm outputs a number \hat{N} such that $(1-\varepsilon)N\leq \hat{N}\leq (1+\varepsilon)N$, where N is the accurate answer of the problem instance, and the running time is bounded by $poly(n,1/\varepsilon)$ with n being the size of instance, this is called the **FPTAS** (fully polynomial time approximation scheme).

A randomized relaxation of FPTAS is known as **FPRAS** (fully polynomial time randomized approximation scheme), which uses random bits and only outputs \hat{N} to the desired precision with high probability.

Approximation Schemes

We are interested primarily in two type of polynomial time approximation scheme:

Definition

(Informally) For given parameter $\varepsilon>0$ and an instance of a particular problem class, if the algorithm outputs a number \hat{N} such that $(1-\varepsilon)N\leq \hat{N}\leq (1+\varepsilon)N$, where N is the accurate answer of the problem instance, and the running time is bounded by $poly(n,1/\varepsilon)$ with n being the size of instance, this is called the **FPTAS** (fully polynomial time approximation scheme).

A randomized relaxation of FPTAS is known as **FPRAS** (fully polynomial time randomized approximation scheme), which uses random bits and only outputs \hat{N} to the desired precision with high probability.