Stochastik

Übungsblatt 4

Patrick Gustav Blaneck

Letzte Änderung: 26. Oktober 2021

1.		ei unterscheidbare Würfel werden gleichzeitig geworfen und die Summe der beiden Augenza rachtet.	ahlen
	(a)	Bestimmen Sie die Ereignismenge der möglichen 2er Tupel (zwei Würfel), die eine gerade Asumme bilden.	ugen-
		Lösung:	
	(b)	Berechnen Sie die Wahrscheinlichkeit eine gerade bzw. ungerade Augensumme zu würfeln	
		Lösung:	
	beze	Anschluss wird mit den zwei Würfeln dreimal ein "Doppelwurf" ausgeführt. Die Zufallsvarial eichne die Anzahl der insgesamt geraden Augensumme. Bestimmen Sie von der Zufallsvariable X	ble X
	(c)	i. die Wahrscheinlichkeitsfunktion	
		Lösung:	
		ii. die Verteilungsfunktion	
		Lösung:	
	(d)	Stellen Sie die Funktionen grafisch dar (Stabdiagramm und Verteilungsfunktion).	
		Lösung:	

2. Die Wahrscheinlichkeit, dass die diskrete Zufallsvariable N den Wert k annimmt, sei gegeben durch

$$P(N=k) = \log_{10}\left(\frac{k+1}{k}\right)$$
 für $k = 1, ..., m \in \mathbb{N}$

Welchen Wert muss *m* haben?

Lösung:	

Übungsblatt 4

3. Die Dichtefunktion einer stetigen Verteilung laute

$$f(x) = \begin{cases} ax^2(3-x) & \text{für } 0 \le x \le 3\\ 0 & \text{sonst} \end{cases}$$

(a) Bestimmen Sie den Parameter a.

Lösung:

(b) Wie lautet die zugehörige Verteilungsfunktion?

Lösung:

- (c) Berechnen Sie die Wahrscheinlichkeit, dass die Zufallsvariable X einen Wert kleiner oder gleich 2 annimmt
 - i. über die Dichtefunktion

Lösung:

ii. über die Verteilungsfunktion

Lösung:

Übungsblatt 4

4. Sei X eine Zufallsvariable mit einer stetigen Verteilungsfunktion F(x) der Form

$$F(x) = \begin{cases} 0 & \text{für } x < -2\\ \frac{1}{4} + \frac{x}{8} & \text{für } -2 \le x \le 0\\ c_1 + c_2(1 - e^{-x}) & \text{für } x > 0 \end{cases}$$

(a) Bestimmen Sie die Konstanten c_1 und c_2 .

Lösung:

(b) Berechnen Sie den Erwartungswert E(X).

Lösung:

(c) Berechnen Sie die Wahrscheinlichkeit, dass *X* mindestens den Wert 2 annimmt, wenn man weiß, dass *X* positiv ist.

Lösung:

Zusatzaufgaben

5. Überprüfen Sie, welche der folgenden Funktionen Verteilungsfunktionen sind und finden Sie gegebenenfalls eine passende Dichtefunktion, d.h. eine nichtnegative Funktion f mit $F(x) = \int_{-\infty}^{x} f(d) dt$. Skizzieren Sie F(x) und eventuell f(x).

(a)
$$F(x) = \begin{cases} 0 & \text{für } x \le 0 \\ \frac{1}{8}x^3 & \text{für } 0 < x \le 2 \\ 1 & \text{für } x > 2 \end{cases}$$

Lösung:

(b)
$$F(x) = \begin{cases} 0 & \text{für } x < 0\\ \sin(x) & \text{für } 0 \le x \le \pi\\ 1 & \text{für } x > \pi \end{cases}$$

Lösung:

6. Die "Intaktwahrscheinlichkeiten" (Wahrscheinlichkeit, dass eine Anlage, Baugruppe, Bauelement etc. wie vorgesehen arbeitet), bezogen auf ein festes Zeitintervall, betragen für zwei unabhängig voneinander arbeitende Anlagen 0.9 bzw. 0.8. Die Zufallsgröße X sei die zufällige Anzahl der in einem solchen Zeitintervall intakten Anlagen. Bestimmen Sie

(a) die Verteilungstabelle von X und das entsprechende Stabdiagramm,

Lösung:

Lösung:

(c) die Wahrscheinlichkeit dafür, dass wenigstens eine Anlage intakt ist,

Lösung:

Lösung:

Lösung:

Lösung:

Lösung:

	$\mathcal{L}_{\mathcal{A}}$ ufallsvariable X beschreibe die größte der beiden Augenzahlen beim zwennen Sie	ifachen Würfelwurf.
(a)	$P(X \le 5)$	
	Lösung:	П
(b)	P(X < 5)	
	Lösung:	
(c)	$\mathcal{P}(X < 5.5)$	
	Lösung:	
(d)	$P(X \ge 4)$	
	Lösung:	

8. Die Cauchy-Verteilung ist definiert durch die Dichte

$$f(x) = \frac{1}{\pi(1+x^2)}$$

Diese Verteilung findet Anwendung in der Modellierung von Zufallsexperimenten, bei denen seltene, extrem große Beobachtungswerte auftreten, z.B. bei Schadensversicherungen gegen Naturkatastrophen.

(a) Bestimmen Sie die Verteilungsfunktion F(x) der Cauchy-Verteilung und zeigen Sie, dass $\int_{-\infty}^{\infty} f(x) \, \mathrm{d} \, x = 1$ ist.

Lösung:			

(b) Berechnen Sie $P(2 < X \le 10)$ für eine Cauchy-verteilte Zufallsvariable X.

Lösung:	