IN THE CLAIMS

A listing of all claims and their current status in accordance with 37 C.F.R. § 1.121(c) is provided below.

1. (currently amended) A method for preparing polyphenylene sulfide polymer, comprising:

reacting an aqueous metal hydroxide with a polar organic compound within a metal vessel comprising one or more of iron, chromium and nickel and within a first temperature range to form a solution having a reaction product of the metal hydroxide and the polar organic compound;

dehydrating the solution such that at least a portion of the water is removed from the solution without isolating a solid from the solution;

adding contacting a sulfur source with to the solution to form a mixture;

dehydrating the mixture at a temperature greater than 100° <u>C</u> such that at least a portion of the water is removed from the mixture; and

adding contacting one or more polymerization reactants, comprising at least one a dihaloaromatic compound[[,]] to with the mixture under polymerization conditions to form polyphenylene sulfide polymers, wherein the corrosiveness of at least one of the solution and or the mixture to the metal vessel is such that the polyphenylene sulfide polymers comprise less than 55 ppm iron, less than 15 ppm chromium, or less than 15 ppm nickel, or any combination thereof.

2-34. (cancelled).

- 35. (currently amended) The method as recited in claim 1, wherein the first temperature range is 50° to 118200° C to form the solution.
- 36. (currently amended) The method as recited in claim <u>1</u>35, wherein the temperature range is 75° to 105125° C to form the solution.
- 37. (previously presented) The method as recited in claim 1, wherein the aqueous metal hydroxide comprises sodium hydroxide.
- 38. (previously presented) The method as recited in claim 1, wherein the polar organic compound comprises N-methyl-2-pyrrolidone.
- 39. (currently amended) The method as recited in claim 1, wherein the reaction product comprises sodium N-methyl-4-aminobutanoate.
- 40. (previously presented) The method as recited in claim 1, wherein the sulfur source comprises an alkali metal bisulfide.
- 41. (previously presented) The method as recited in claim 1, wherein dehydrating the mixture occurs at less than 240° C.
 - 42. (currently amended) A method for polymerizing polyphenylene sulfide, comprising:

reacting an aqueous metal hydroxide with a polar organic compound within a temperature range of 50° to 200118° C to form a solution comprising an alkali metal aminoalkanoate;

dehydrating the solution to remove such that at least a portion of the water is removed from the solution without isolating the alkali metal aminoalkanoate;

adding contacting a sulfur source to with the solution to form a mixture;

maintaining the mixture at greater than 100° C, such that at least a portion of the water is removed from the mixture; and

contacting the mixture with one or more polymerization reactants, comprising at least one a dihaloaromatic compound[[,]] under polymerization conditions to form polyphenylene sulfide.

- 43. (currently amended) The method as recited in claim 42, wherein the temperature range is 75° 125105° C.
- 44. (previously presented) The method as recited in claim 42, wherein maintaining the mixture occurs at less than 240° C.
- 45. (previously presented) The method as recited in claim 42, wherein the aqueous metal hydroxide comprises sodium hydroxide.
- 46. (previously presented) The method as recited in claim 42, wherein the polar organic compound comprises N-methyl-2-pyrrolidone.

- 47. (currently amended) The method as recited in claim 42, wherein the alkali metal aminoalkanoate comprises sodium N-methyl-4-aminobutanoate.
- 48. (previously presented) The method as recited in claim 42, wherein the sulfur source comprises an alkali metal bisulfide.
- 49. (previously presented) The method as recited in claim 42, maintaining the mixture occurs at a pressure range from atmospheric pressure to about 30 p.s.i.g.
- 50. (currently amended) The method as recited in claim 42, wherein the polyphenylene sulfide comprises less than 55 ppm iron, less than 15 ppm chromium, or less than 15 ppm nickel, or any combination thereof.
 - 51-59. (cancelled).
- 60. (previously presented) A method for producing polyphenylene sulfide polymers in a metal reactor vessel, comprising:

providing a reactor vessel comprising a metal surface comprising one or more of iron, chromium and nickel suitable for contacting at least a dehydrated solution of an aqueous metal hydroxide and a polar organic compound, a dehydrated mixture of the dehydrated solution and a sulfur source, and polymerization reactants comprising at least one dihaloaromatic compound; and

forming polyphenylene sulfide polymers in the reactor vessel, wherein polyphenylene sulfide polymers prepared in the metal reactor vessel contain less than 55 ppm iron, less than 15 ppm chromium, or less than 15 ppm nickel.

61. (currently amended) A method for polymerizing polyphenylene sulfide, comprising:

placing an aqueous metal hydroxide and a polar organic compound within a metal vessel comprising one or more of iron, chromium, and nickel;

degassing the metal-vessel containing the aqueous metal-hydroxide and the polar organic compound;

heating the aqueous metal hydroxide and the polar organic compound in the vessel to a reaction temperature of less than 200110° C for a time interval sufficient to substantially react the metal hydroxide with the polar organic compound to form a solution comprising the polar organic solvent compound, water, and an alkali metal aminoalkanoate;

increasing the temperature of the vessel to at least 110° C and opening one or more vents on the vessel such that a portion of water is removed from the solution;

eooling the vessel containing the solution and closing one or more vents on the vessel; adding a sulfur source to the vessel to form a mixture of the sulfur source and the solution;

degassing the metal vessel containing dehydrating the mixture[[;]] within the vessel at a temperature of less than 240° C such that a portion of water is removed from the vessel; and

heating the vessel to at least 105° C and opening the one or more vents on the vessel such that a portion of water is removed from the mixture; and

adding one or more polymerization reactants, comprising contacting at least one a dihaloaromatic compound, to with the mixture in the vessel under polymerization conditions to form polyphenylene sulfide polymers comprising less than 40 ppm iron, less than 7 ppm chromium, or less than 9 ppm nickel, or any combination thereof.

- 62. (previously presented) The method as recited in claim 61, wherein the aqueous metal hydroxide comprises sodium hydroxide.
- 63. (previously presented) The method as recited in claim 61, wherein the polar organic compound comprises N-methyl-2-pyrrolidone.
- 64. (previously presented) The method as recited in claim 61, wherein the vessel containing the aqueous metal hydroxide and the polar organic compound is degassed with nitrogen.
- 65. (previously presented) The method as recited in claim 61, wherein the reaction temperature is approximately 100° C.
- 66. (previously presented) The method as recited in claim 61, wherein the time interval is approximately one hour.
- 67. (currently amended) The method as recited in claim 61, wherein the alkali metal aminoalkanoate comprises sodium N-methyl-4-aminobutanoate.

- 68. (currently amended) The method as recited in claim 61, wherein increasing the temperature of the vessel comprises increasing the temperature to between 110° and 205° C lithium halide is not added to the vessel.
- 69. (currently amended) The method as recited in claim 61, wherein heating the vessel comprises heating the aqueous metal hydroxide and the polar organic compound in the vessel to between 50105° and 200205° C.
- 70. (new) A method for preparing polyphenylene sulfide polymer, comprising: reacting an aqueous metal hydroxide with a polar organic compound outside of the presence of a sulfur source within a first temperature range of about 50° to about 200° C to form a solution comprising an alkali metal aminoalkanoate and the polar organic compound;

contacting a sulfur source with the solution to form a mixture;

dehydrating the mixture within a second temperature range of about 100° to about 240° C such that at least a portion of the water is removed from the mixture; and

contacting at least a dihaloaromatic compound with the mixture under polymerization conditions to form polyphenylene sulfide.

- 71. (new) The method of claim 70, wherein a lithium halide is not added to the sulfur source, to the solution, or to the mixture.
- 72. (new) The method of claim 70, wherein the polyphenylene sulfide comprises less than 40 ppm iron, less than 7 ppm chromium, or less than 9 ppm nickel, or any combination

Serial No. 10/609,087 Response to Official Action mailed on January 13, 2005

thereof.