Lesson 24: Practice Problems - Special Integrating Factors

ODE 1 - Prof. Adi Ditkowski

Part A: Testing for $\mu(xy)$ (Problems 1-5)

- 1. Test for $\mu(xy)$: $(2xy + y^2)dx + (x^2 + 2xy)dy = 0$
- 2. Check if $\mu(xy)$ exists: $(y x^2y)dx + (x xy^2)dy = 0$
- 3. Test the $\mu(xy)$ condition: $(xy^2 + y)dx + (x^2y + x)dy = 0$
- 4. Determine if $\mu(xy)$ works: $(3xy + y^3)dx + (x^3 + 3xy)dy = 0$
- 5. Check for $\mu(xy)$: $(y\cos(xy) + 1)dx + (x\cos(xy) + 1)dy = 0$

Part B: Power Form $\mu = x^a y^b$ (Problems 6-10)

- 6. Find $\mu = x^a y^b$ for: $(y^3) dx + (xy^2) dy = 0$
- 7. Determine powers: $(x^2y)dx + (xy^2)dy = 0$
- 8. Find a, b: $(y + x^2y^3)dx + (x + x^3y^2)dy = 0$
- 9. Power integrating factor: $(2xy^2)dx + (3x^2y)dy = 0$
- 10. Find $\mu = x^a y^b$: $(y^2 + 2xy^3)dx + (xy + x^2y^2)dy = 0$

Part C: Linear Combination $\mu = (ax + by)^n$ (Problems 11-15)

- 11. Try $\mu = (x+y)^n$: (x+2y)dx + (2x+y)dy = 0
- 12. Find n for $\mu = (x y)^n$: (x y + 1)dx + (x y 1)dy = 0
- 13. Linear combination form: (2x + y + 1)dx + (x + 2y + 1)dy = 0
- 14. Test $\mu = (ax + by)^n$: (3x + 2y)dx + (2x + 3y)dy = 0
- 15. Find appropriate linear μ : (x+y+xy)dx+(x+y-xy)dy=0

Part D: Mixed Special Forms (Problems 16-20)

16. Given
$$\mu = \frac{1}{xy}$$
, solve: $(y^2 - x^2)dx + (2xy)dy = 0$

17. Verify
$$\mu = e^{x+y}$$
 works: $(e^{-x-y} + y)dx + (x + e^{-x-y})dy = 0$

18. Use
$$\mu = \frac{1}{x+y}$$
: $(x+y)^2 dx + (x+y)^2 dy = 0$

19. Try
$$\mu = xy$$
: $\left(\frac{y}{x^2} + \frac{1}{y}\right) dx + \left(\frac{x}{y^2} - \frac{1}{x}\right) dy = 0$

20. Given hint
$$\mu = (x^2 + y^2)^{-1}$$
: $(x + y^3)dx + (y - x^3)dy = 0$

Part E: Complete Problem Solving (Problems 21-25)

- 21. Full analysis and solution: (2y)dx + (3x + xy)dy = 0
- 22. Systematic approach: $(xy + y^2)dx + (x^2 + xy)dy = 0$
- 23. Find any integrating factor and solve: $(x^2 + y^2)dx (2xy)dy = 0$
- 24. Complete solution: $(y^2 \cos x + y)dx + (2y \sin x + x)dy = 0$
- 25. Challenge problem: $(y + x^2y^3)dx + (x x^3y^2)dy = 0$

Solutions and Hints

Problem 1: $(M_y - N_x)/(xN - yM) = \frac{(2x+2y)-(2x+2y)}{x(x^2+2xy)-y(2xy+y^2)} = \frac{0}{x^3+2x^2y-2xy^2-y^3}$ Since numerator is 0, this suggests the equation may already be exact.

Problem 6: For $\mu = x^a y^b$ with $(y^3) dx + (xy^2) dy = 0$: $(x^a y^{b+3}) dx + (x^{a+1} y^{b+2}) dy = 0$ Exactness: $x^a (b+3) y^{b+2} = x^a (a+1) y^{b+2}$ So b+3 = a+1, giving a = b+2 Try b = -1: a = 1, so $\mu = \frac{x}{y}$

Problem 11: For $\mu = (x+y)^n$ with (x+2y)dx + (2x+y)dy = 0: After multiplication: $[(x+y)^n(x+2y)]dx + [(x+y)^n(2x+y)]dy = 0$ The algebra becomes complex, but often n=1 or n=-1 work.

Problem 16: With
$$\mu = \frac{1}{xy}$$
: $\left(\frac{y^2 - x^2}{xy}\right) dx + \left(\frac{2xy}{xy}\right) dy = 0$ $\left(\frac{y}{x} - \frac{x}{y}\right) dx + 2dy = 0$ **Key Strategy Tips:**

- Always check exactness first
- Try simple cases: $\mu(x)$, $\mu(y)$ before special forms
- For power forms, work systematically with small integer values
- Verification is essential substitute back into exactness condition
- If hint is given, use it! Prof. Ditkowski usually provides guidance for special forms