"最美笔记评选"参评笔记

大学物理(B)(第三章)

警宇哲1190202006 计算机与电子通信 19L0220班

目录

1	第三讲 动量定理 动量守恒定律			
	1.1	质点动	力量定理	3
		1.1.1	质点动量定理	3
		1.1.2	质点系动量定理	3
		1.1.3	动量守恒定律	4
	1.2	质心,	质心运动定理	4
		1.2.1	质心	4
		1.2.2	质心运动定理	4
	1.3	碰撞.		5

1 第三讲 动量定理 动量守恒定律

1.1 质点动量定理

动量: $\vec{P} = m\vec{v}$, 单位: $kg \cdot m/s$ 质点动量定理微分形式:

$$\vec{F}dt = d\vec{P}$$

质点动量定理积分形式:

$$\vec{I} = \int_{t_1}^{t_2} \vec{F} dt = \int_{P_1}^{P_2} d\vec{P} = \vec{P_2} - \vec{P_1}$$

1.1.1 质点动量定理

 $\vec{I} = \vec{P_2} - \vec{P_1}$,过程量等于两状态量之差 分量形式: $I_i = P_{2i} - P_{1i}$ (i = x, y, z),只适用于惯性系

1.1.2 质点系动量定理

质点系内部n个质点,外部m个质点 第i个质点所受力

$$ec{F}_i = rac{dec{P}_i}{dt} = \sum_{\substack{i
eq j \ j=i}}^{m+n} ec{F}_{ij} \qquad ec{F}_i = ec{F}_i ec{\mathcal{Y}}_{\uparrow} + ec{F}_i ec{\mathcal{Y}}_{\downarrow}$$

$$\vec{F_{ij}} = \sum_{\substack{i \neq j \ i=n+i}}^{m+n} \vec{F_{ij}} \qquad \vec{F_i} = \frac{d\vec{P_i}}{dt} \qquad \sum_{i+1}^n = \frac{d}{dt} \sum_{i+1}^n \vec{P_i}$$

系统内力之和为零,质点系总动量 $P = \sum_{i=1}^{n} \vec{P}_i$

质点系动量定理: $\vec{F_{fh}} = \frac{d\vec{P}}{dt}$ 系统受到的合外力等于系统动量对时间的变化率

说明:内力能使系统内各个质点的动量发生改变(相互交换动量),但它们对系统的总动量没有任何影响

1.1.3 动量守恒定律

由质点系动量定理 $\vec{F_{yh}} = \frac{d\vec{P}}{dt}$, 当系统所受的合外力为0, 即 $\vec{F_{yh}} = 0$

动量守恒定律: 当一个质点系受到的合外力为零时,该系统的总动量 保持不变

1.2 质心,质心运动定理

1.2.1 质心

质心:

$$\vec{r_c} = \frac{\sum_{i=1}^n m_i \vec{F_i}}{m} \quad (m = \sum_i m_i)$$

质心坐标:

$$x_c = \frac{\sum_i m_i x_i}{m}$$
 $y_c = \frac{\sum_i m_i y_i}{m}$ $z_c = \frac{\sum_i m_i x_i}{m}$

质量连续分布的物体:

$$r_c = \frac{\int \vec{r} dm}{m}$$
 $x_c = \frac{\int x dm}{m}$ $y_c = \frac{\int y dm}{dm}$ $z_c = \frac{\int z dm}{m}$

说明: 质心的定义与坐标原点的选择有关

1.2.2 质心运动定理

由质心定义:

$$\vec{r_c} = \frac{\sum m_i \vec{r_i}}{m}$$

质心速度:

$$\vec{v_c} = \frac{d\vec{r_c}}{dt} = \frac{\sum m_i \vec{v_i}}{m}$$

质心加速度:

$$\vec{a_c} = \frac{d^2 \vec{r_c}}{dt^2} = \frac{\sum_i m_i \vec{a_i}}{m}$$

质点系的动量是质点系内各质点动量的矢量和

$$\vec{P} = \sum_{i} m_i \vec{v_i} = m \frac{\sum_{i} m_i \vec{v_i}}{m} = m \vec{v_c}$$

$$\vec{P} = m\vec{v_c}$$
 $\vec{F_{fh}} = \frac{d\vec{P}}{t} = m\frac{d\vec{v_c}}{dt} = m\vec{a_c}$ $\vec{F_{fh}} = m\vec{a_c}$ 质心运动定理

当物体只做平动时,质心运动代表整个物体的运动

1.3 碰撞

特点:相互作用时间短;冲击力大→其它力相对很小→只有内力→整个系统动量守恒

两球对心碰撞: $m_1\vec{v_{10}} + m_2\vec{v_{20}} = m_1\vec{v_1} + m_2\vec{v_2}$

引入"恢复系数":

$$e = |\frac{\vec{v_2} - \vec{v_1}}{\vec{v_{10}} - \vec{v_{20}}}|$$

可得

$$v_1 = v_{10} - \frac{(1+e)m_2(v_{10} - v_{20})}{m_1 + m_2}$$
 $v_2 = v_{20} + \frac{(1+e)m_1(v_{10} - v_{20})}{m_1 + m_2}$

完全弹性碰撞: e=1;

完全非弹性碰撞: e=0; 损失的机械能→体系的内能

非弹性碰撞: 0 < e < 1;