智能时代的软件测试

3.2 边界值测试

刘辉 教授

- 01 边界值
- 02 边界值测试
- 93 等价类边界值测试

目录 CONTENTS

- 01 边界值
- 02 边界值测试
- 93 等价类边界值测试

■ 黑盒测试技术

- 多等价类划分
- **一边界值分析**
- 〉输入组合法
- **一**因果图
- **基于状态测试**

- 输入范围: [min, max]
- 边界值:
 - →最小值
 - ▶最大值
 - 一中间值
 - 〉比最小值大一点
 - 〉比最大值小一点

■ 输入范围: [0, 100]

■ 边界值:

▶最小值: 0

▶最大值: 100

→中间值: 50

〉比最小值大一点: 1

〉比最大值小一点: 99

- 输入范围: [0, ∝]
- 边界值:
 - →最小值: 0
 - 〉比最小值大一点: 1
 - ▶最大值:?
 - ▶比最大值小一点:?
 - →中间值:?

- 输入范围: [0, ∝]
- 边界值:
 - ▶最小值: 0
 - 〉比最小值大一点: 1
 - ➤最大值: Max(int)
 - ➤比最大值小一点: Max(int)-1
 - →中间值: 99

int var

- 01 边界值
- 02 边界值测试
- 93 等价类边界值测试

02

边界值测试

■定义

一针对各种边界情况设计测试用例。

■ 输入:三个整数a、b和c,表示三角形的边。整数a、b、c必须满足以下条件:

■ 输出:由这三条边确定的三角形类型:等边三角形、等腰三角形、不等边三角形。

			I	
编号	a	b	С	预期输出
1	100	100	1	等腰三角形
2	100	100	2	等腰三角形
3	100	100	100	等边三角形
4	100	100	199	等腰三角形
5	100	100	200	非三角形
6	100	1	100	等腰三角形
7	100	2	100	等腰三角形

编号	a	b	С	预期输出
8	100	100	100	等边三角形
9	100	199	100	等腰三角形
10	100	200	100	非三角形
11	1	100	100	等腰三角形
12	2	100	100	等腰三角形
13	100	100	100	等边三角形
14	199	100	100	等腰三角形
15	200	100	100	非三角形

边界值: 1、2、100、199、200

编号	а	b	С	预期输出
1	100	100	1	等腰三角形
2	100	100	2	等腰三角形
3	100	100	100	等边三角形
4	100	100	199	等腰三角形
5	100	100	200	非三角形
6	100	1	100	等腰三角形
7	100	2	100	等腰三角形

编号	а	b	С	预期输出
8	100	100	100	等边三角形
9	100	199	100	等腰三角形
10	100	200	100	非三角形
11	1	100	100	等腰三角形
12	2	100	100	等腰三角形
13	100	100	100	等边三角形
14	199	100	100	等腰三角形
15	200	100	100	非三角形

- 7点式边界值
- 输入范围: [min, max]
- 边界值:
 - →最小值
 - > 最大值
 - > 中间值
 - > 比最小值大一点
 - > 比最大值小一点
 - > 比最小值小一点
 - > 比最大值大一点

02

边界值测试

■ 输入: 三个整数a、b和c, 表示三角形的边。整数a、b、c必须满足以下条件:

- > 1≤ a≤200
- > 1≤ b≤200
- > 1≤ c≤200

7点式边界值

■ 输出:由这三条边确定的三角形类型:等边三角形、等腰三角形、不等边三角形。

7点式边界值测试

编号	а	b	С	预期输出
	100	100	0	非法
1	100	100	1	等腰三角形
2	100	100	2	等腰三角形
3	100	100	100	等边三角形
4	100	100	199	等腰三角形
5	100	100	200	非三角形
	100	100	201	非法
	100	0	100	非法
6	100	1	100	等腰三角形
7	100	2	100	等腰三角形

编号	а	b	C	预期输出
8	100	100	100	等边三角形
9	100	199	100	等腰三角形
10	100	200	100	非三角形
	100	201	100	非法
	0	100	100	非法
11	1	100	100	等腰三角形
12	2	100	100	等腰三角形
13	100	100	100	等边三角形
14	199	100	100	等腰三角形
15	200	100	100	非三角形
	201	100	100	非法

边界值测试-小结

边界值测试: 针对各种边界情况设计测试用例

可以采用5点式边界值测试

也可以采用7点式边界值测试,测试无效输入

日录 CONTENTS

- 01 边界值
- 02 边界值测试
- 03 等价类边界值测试

■等价类划分方法

▶把所有可能的输入数据划分成若干部分(等价类),然后从每一部分中选取少数有代表性的数据作为测试用例。

■ 软件规约:

〉根据给定体重,确定体型。

• 100kg以上: 肥胖

• 70-100kg: 正常

• 70kg以下: 苗条

■有效等价类

- > (100, \propto]
- **>**[70,100]
- >[1,70)

■无效等价类

$$\triangleright$$
[- \propto ,0]

■ 软件规约:

- 〉根据给定体重,确定体型。
 - 100kg以上: 肥胖
 - 70-100kg: 正常
 - 70kg以下: 苗条

■测试用例选择

- ▶设计一个测试用例,尽可能多地覆盖尚未覆盖的有效等价类。重复这个步骤直到覆盖所有有效等价类为止;
- ▶设计一个测试用例,尽可能少地覆盖尚未被覆盖的无效等价类(大于等于一)。重复这个步骤,直到所有无效等价类都被覆盖为止。

■ 有效等价类

- **>** (100, ∝]
- **>** [70,100]
- **>** [1,70)

■ 无效等价类

 \geq [-\infty,0]

■测试用例

>A: 120

➤B: 85

>C: 65

➤D: -20

■ 有效等价类

➤ A: (100, ∝]

➤ B: [70,100]

> C: [1,70)

■ 无效等价类

 \triangleright D: $[-\infty,0]$

- 输入范围: [min, max]
- 边界值:
 - ▶最小值
 - →最大值
 - 一中间值
 - ▶比最小值大一点
 - 〉比最大值小一点

等价类	最小值	比最小值稍大	正常值	比最大值稍小	最大值
Α	101	102	200	Max int-1	Max int
В	70	71	85	99	100
С	1	2	35	68	69
D	Min int	Min int +1	-100	-1	0

■ 有效等价类

➤ A: (100, ∝]

➤ B: [70,100]

> C: [1,70)

■ 无效等价类

 \triangleright D: $[-\infty,0]$

等价类	最小值	比最小值稍大	正常值	比最大值稍小	最大值
サバス	はない。	トロガメ・フィーロルロンと	— 中间	しはなりくははいり、	以八旦
Α	101	102	200	Max int-1	Max int
В	70	71	85	99	100
С	1	2	35	68	69
D	Min int	Min int +1	-100	-1	0

■ 测试用例

> D: Min int, Min int+1, -100, -1, 0,

> C: 1, 2, 35, 68, 79

> B: 70, 71, 85, 99, 100

> A: 101, 102, 200, Max int -1, max int

■ 有效等价类

➤ A: (100, ∝]

➤ B: [70,100]

 \triangleright C: [1,70)

■ 无效等价类

 \triangleright D: $[-\infty,0]$

多个输入变量的情况

■ 软件规约:

- ► 根据年龄、性别、婚姻状况 等计算绩点。
 - 根据绩点进行退税

	20~39岁	10点
年龄	40~59岁	4点
	60岁以上20岁以下	2点
	男	6点
性别	女	7点
婚姻	己婚	8点
とは、	未婚	3点

等价类测试案例

	数字范围	1~150
	有效等价类	A: 20~39岁
		B: 40~59岁
1.年龄		C: 60岁以上,150岁以下
		D: 20岁以下,1岁以上
		E: 1岁以下
		F: 150岁以上

	/	G: 男
2.性别	有效等价类	H: 女
	无效等价类	l: 非「男」或「女」
	有效等价类	J: 已婚
3.婚姻		K: 未婚
	无效等价类	L: 非「已婚」或「未婚」

等价类	最小值	最小值稍大	正常值	最大值稍小	最大值
Α	20	21	30	38	39
В	40	41	50	58	59
С	60	61	100	149	150
D	1	2	10	18	19

等价类测试案例

等价类	最小值	最小值稍大	正常值	最大值稍小	最大值
Α	20	21	30	38	39
В	40	41	50	58	59
С	60	61	100	149	150
D	1	2	10	18	19

1.年龄	数字范围	1~150
		20~39岁
	有效等价类	40~59岁
		60岁以上,150岁以下 🗸
		20岁以下,1岁以上
	工品签1人坐	1岁以下
	无效等价类	150岁以上

2.性别		男
	有效等价类	女
	无效等价类	非「男」或「女」
3.婚姻		己婚
	有效等价类	未婚
	无效等价类	非「已婚」或「未婚」

■ 测试用例

- ➤ 年龄=20,性别=男,婚姻=已婚
- ➤ 年龄=40,性别=女,婚姻=未婚
- ▶ 年龄=60,性别=女,婚姻=已婚
- ▶ 年龄=2, 性别=女, 婚姻=未婚

■ 测试用例

- ➤ 年龄=21,性别=男,婚姻=未婚
- ▶ 年龄=30,性别=女,婚姻=已婚
- ➤ 年龄=38,性别=男,婚姻=已婚
- ➤ 年龄=39,性别=男,婚姻=已婚

等价类边界值测试-小结

等价类边界值测试方法是结合等价类和边界值的测试方法

每个等价类的边界值都应该予以覆盖

测试充分性优于等价类测试和边界值测试

日录 CONTENTS

- 01 边界值
- 02 边界值测试
- 93 等价类边界值测试

等价类边界值测试-小结

边界值测试:针对各种边界情况设计测试用例

可以采用5点或7点式边界值测试

等价类边界值测试方法是结合等价类和边界值的测试方法

谢谢

https://liuhuigmail.github.io/