Wintersemester 2015/16 Blatt 12, Abgabe 26.1.2016

1 Gradient (6P)

- a) (2 P) An welchen Punkten ist der Gradient von $\mathbf{V}(\mathbf{r}) = x^3 + y^3 + z^3 3xyz$ senkrecht zur x-Achse? Wo ist er gleich 0?
- b) (2 P) Berechnen Sie $\nabla f(r)$ für $r=\sqrt{x^2+y^2+z^2}$ und eine einmal stetig differenzierbare Funktion f.
- c) (2P) Gegeben sei das Potential $\phi(x, y, z) = \frac{1}{r}$ für $r = \sqrt{x^2 + y^2 + z^2}$. In welchen Raumpunkten $\mathbf{r} \in \mathbb{R}^3$ gilt $\|\nabla \phi(\mathbf{r})\| = 1$?
- **2** Gradientenfelder I (10 P) In der Vorlesung haben Sie den Begriff des *Gradientenfeldes* kennengelernt. Ein Gradientenfeld im \mathbb{R}^N ist eine Funktion $\mathbf{V} \colon \mathcal{D}(\mathbf{V}) \to \mathbb{R}^N$, für die es ein *Potential* $\phi \colon \mathcal{D}(\mathbf{V}) \to \mathbb{R}$ gibt, so dass

$$\mathbf{V}(\mathbf{r}) = \nabla \phi(\mathbf{r}). \tag{*}$$

Hierbei bezeichnen $\mathcal{D}(\mathbf{V}) \subset \mathbb{R}^N$ den Definitionsbereich der Funktion V. Eine notwendige Bedingung, dass \mathbf{V} ein Gradientenfeld ist sind die sogenannten Integrabilitätsbedingungen (Formel (5.18) im Skript für N=3)

$$\frac{\partial V_i}{\partial x_j} = \frac{\partial V_j}{\partial x_i} \quad (i, j = 1, \dots, N).$$

- a) (1P) Zeigen Sie, dass jedes Gradientenfeld die Integrabilitätsbedingungen erfüllt.
- b) (4P) Berechnen Sie die Vektorfelder der folgenden Potentiale

$$\phi_1(x, y, z) = x^2 y + z \cos xy,$$
 $\phi_2(x, y, z) = r^n \text{ mit } r = \sqrt{x^2 + y^2 + z^2}$

c) (5P) Berechnen Sie jeweils ein Potential für die nachfolgenden Gradientenfelder

$$\mathbf{V}_{1}(x,y,z) = \left(x^{2} + y^{2} + z^{2}\right)^{-\frac{3}{2}} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
$$\mathbf{V}_{2}(x,y) = \begin{pmatrix} 6x \cos y \\ -3x^{2} \sin y + 2y \end{pmatrix}.$$

Hinweis Zu c): Schreiben Sie Gleichung (*) komponentenweise auf und lösen Sie nach ϕ auf, indem Sie über die Variable integrieren, nach der ϕ abgeleitet wird. Beachten Sie, dass Integration über eine Variable eine Konstante erzeugt, die u.U. von den anderen Variablen abhängt.

3 Gradientenfelder II (14 P) Als nächstes betrachten wir eine wichtige Eigenschaft von Gradientenfeldern. Ein Vektorfeld $\mathbf{V} \colon \mathcal{D}(\mathbf{V}) \to \mathbb{R}^N$ heißt konservativ, wenn das Wegintegral $\int_{\gamma} d\mathbf{r} \cdot V(\mathbf{r})$ nur vom Anfangs- und Endpunkt von γ abhängt. Genauer: Betrachte Wege $\gamma_i \colon [0,1] \to \mathcal{D}(\mathbf{V})$ (i=1,2), die ganz in $\mathcal{D}(\mathbf{V})$ verlaufen und die gleichen Anfangs-/Endpunkte haben:

$$\gamma_1(0) = \gamma_2(0)$$
 und $\gamma_1(1) = \gamma_2(1)$.

Dann gilt

$$\int_{\gamma_1} d\mathbf{r} \cdot \mathbf{V}(\mathbf{r}) = \int_{\gamma_2} d\mathbf{r} \cdot \mathbf{V}(\mathbf{r}).$$

Ein Vektorfeld ist dann und nur dann konservativ, wenn es ein Gradientenfeld ist.

a) (6 P) Entscheiden Sie ob die Vektorfelder vom letzten Übungsblatt, Aufgabe 4 konservativ sind:

$$\mathbf{F}_1(x,y) = \begin{pmatrix} 4x + xy \\ \frac{x^2}{2} \end{pmatrix}$$
 und $\mathbf{F}_2(x,y) = \begin{pmatrix} 4x + xy \\ x^2 \end{pmatrix}$

Geben Sie auch entweder ein Potential an oder weisen Sie nach, dass die Integrabilitätsbedingungen nicht erfüllt sind.

b) (2P) Zeigen Sie, dass das Vektorfeld

$$\mathbf{V}(x,y) = \left(-\frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)^T$$

die Integrabilitätsbedingungen erfüllt.

c) (6P) Berechnen Sie das Wegintegral über V über den oberen und unteren Halb-kreisbogen von (1,0) nach (-1,0) mit Radius 1(siehe Skizze).

Bemerkung Die Umkehrung: V erfüllt Integrabilitätsbedingungen \Longrightarrow V Gradientenfeld gilt nur falls V einen einfach zusammenhängenden Definitionsbereich $\mathcal{D}(\mathbf{V})$ hat. Eine Menge $A \subset \mathbb{R}^N$ heißt dabei einfach zusammenhängend, wenn man jeden geschlossenen Weg (d.h. Anfangs- = Endpunkt) auf einen Punkt stetig zusammenziehen kann ohne A dabei zu verlassen. Als Beispiel dienen die folgende Mengen im \mathbb{R}^2 :

Während A einfach zusammenhängend ist, kann man bei B die eingezeichnete Kurve γ nicht auf einen Punkt zusammen ziehen, da sie das "Loch" innerhalb von B umschließt. Natürlich gibt es auch in B Kurven, die auf einen Punkt zusammenziehbar sind.

Überlegen Sie sich, warum das Vektorfeld V in b) zwar die Integrabilitätsbedingungen erfüllt, aber nach c) nicht konservativ ist.

2