AUTO-PRUNE: Automated DNN Pruning and Mapping for ReRAM-Based Accelerator

Siling Yang*, Weijian Chen*, Xuechen Zhang[#], Shuibing He*, Yanlong Yin^{\$}, Xian-He Sun⁺

Accelerating the DNN

Deep neural network (DNN) is popular in various fields.

- **GPU**
- **TPU**
- **ASIC**
- **Novel architectures and emerging devices** 2

Von Neumann Architecture vs. Processing-in-Memory

Energy Wall

Operation	Energy(pJ)
16b Add	0.05
32b Add	0.1
16b FP Add	0.4
32b FP Add	0.9
32b Mult	3.1
16b FP Mult	1.1
32b FP Mult	3.7
32b SRAM Read(8KB)	5
32b DRAM Read	640

Processing in Memory

PIM and emerging devices can alleviate the energy wall.

ReRAM-based Accelerator

ReRAM-based DNN accelerator architecture.[SRE-19]

Mapping Filter Weights of DNNs in ReRAMbased Accelerators

Illustration of mapping filter weights to a crossbar array used in the architecture of ReRAM-based accelerators.

Filter weight matrices of DNN models are sparse.

Related Work & Motivation

Pruning techqiue	Method	Hardware customization	Pattern for pruning	Use OU in data-path
LSR[ASPDAC19]	heuristics	×	Unimportant weight groups	×
SRE[ISCA20]	heuristics	×	All-zero row/column vectors	✓
PIM-Prune[DAC20]	heuristics	Unimportant rows and columns		×
Pattern pruning[arxiv20]	heuristics	×	Patterns	✓

- 1. They use heuristics to prune the weights, leading to suboptimal pruning policies.
- 2. They mostly focus on improving compression ratio, thus may not meet accuracy constraints.
- 3. They ignore direct feedback of hardware, e.g., the number of occupied crossbars or energy consumption.

Objectives of Our Work

Make a global optimal pruning policy

Make a pruning

 and mapping
 policy tailored for
 different hardware

Avoid the dislocation problem

Design of AUTO-PRUNE

Main Design

- ➤ DDPG Algorithm for ReRAM-based Accelerator
- ➤ Column-Vector Based Pruning and OU Formation
- ➤ Data-Path Design

Overview of AUTO-PRUNE

1. DDPG Algorithm for ReRAM-based Accelerator

- State Space: identify a layer with its characteristics $(k, t, inc, outc, ks, h, w, s, xb[k], xb_{saved}[k], xb_{rest}[k], a_{k-1})$
- Action Space: pruning rate for a specified layer $a_k \in (0,1]$
- > Reward Function: related with compression rate and accuracy

$$Reward = (1 - \frac{1}{rate_{compression}^{xb}})^{\alpha} \times acc_{reram}$$

Symbol	Meaning			
k	layer index			
t	layer type: CONV:1; FC: 0			
inc	number of channels in the input feature map			
outc	number of channels produced by the convolution			
ks	number of elements of a convolving kernel			
h	height of the input feature maps			
w	width of the input feature maps			
S	stride of the convolution			
xb[k]	number of crossbars required for mapping layer k			
$xb_{saved}[k]$	accumulated number of the crossbar saved from			
	the first layer to layer $k-1$			
$xb_{rest}[k]$	number of crossbars required from layer $k + 1$ to			
	the last layer			
$size_{xb}$	length of the crossbar size			
acc_{reram}	accuracy reported by the ReRAM-based accelera-			
	tor simulator			
a_{k-1}	action from the last time step			

2. Column-Vector Based Pruning and OU Formation

> OU List

3. Data-Path Design

An overview of the data-path for Auto-prune.

Experimental Setting

- ➤ simulator: MNSIM-2.0
 - Crossbar size: 128 x 128
 - bit-per-cell: 1 bits
 - OU size: 32 x 32

- **≻**Counterparts
 - Naïve
 - PIM-Prune[DAC-20]
 - Pattern-Prune[Arxiv-20]

- ➤ Workloads and datasets
 - NN: AlexNet, VGG16, Plain20
 - Dataset: CIFAR10, MNIST

- **≻**Metrics
 - Compression rate
 - Energy & area efficiency
- **→** Discussion
 - Sensitivity & Overhead

Compression rate

Network	Method	CR on XBs	Acc5	Acc Drop
AlexNet	Naïve	1	99.36%	-
	PIM-Prune	4.3	98.81%	0.55%
	Pattern-Prune	1.1	96.48%	2.88%
	Auto-Prune	14.3	99.10%	0.26%
VGG16	Naïve	1	99.29%	-
	PIM-Prune	6.1	98.62%	0.67%
	Pattern-Prune	2.6	98.43%	0.86%
	Auto-Prune	11.9	98.62%	0.67%
Plain20	Naïve	1	98.14%	-
	PIM-Prune	7.3	98.19%	-0.05%
	Pattern-Prune	1.2	98.24%	-0.10%
	Auto-Prune	10.3	98.29%	-0.15%

the same or higher accuracy, compression rate up to:
3.3X PIM-Prune
13X Pattern-Prune

Energy efficiency & area efficiency

the result of energy efficiency on CIFAR10

12.2 Pattern-Prune2.3 PIM-Prune

the result of area efficiency on CIFAR10

3.1X Pattern-Prune 9.6X PIM-Prune

Sensitivity study

granularity of column-vector

•

Figure 10: Compression rate, area efficiency and energy efficiency for AlexNet with various granularities of column-vectors.

The smaller granularity of column-vector, the higher compression rate.

Index overhead

Figure 12: The storage overhead of Weight Index Buffer for different networks on CIFAR10 and MNIST respectively.

The index overhead is ignorable.

Conclusions

- AUTO-PRUNE is a hardware-aware automated DNN pruning and mapping framework for ReRAM-based accelerators. It leverages RL to automatically determine a global optimum pruning policy, considering the direct hardware feedback.
- We propose a new data-path to correctly index and feed input to matrix-vector computation.
- AUTO-PRUNE achieves up to 3.3X compression rate, 3.1X area efficiency, and 3.3X energy efficiency compared to PIM-Prune while maintaining a similar or even higher accuracy.

Thanks for your attention!

Siling Yang@ZJU slingzjunet@zju.edu.cn

