Prof. Alexander Huth 2/13/2020

LAST TIME

- * Experimental design
- * Deductive
 - * Contrast- and hypothesis-driven
- * Inductive
 - * Natural stimuli
 - * Data-driven

TODAY

- * Spike triggered average (\(\frac{\frac{1}{7}}{7}\)
- * Correcting for confounding variables
- * System identification

SPIKE-TRIGGERED AVERAGE

- * Suppose we are doing an experiment where we record from one neuron in primary visual cortex (V1) while we show images
- * How do we characterize the **receptive field** of this neuron?

SPIKE-TRIGGERED AVERAGE

Spike-triggered average (STA)

SPIKE-TRIGGERED AVERAGE

- * What can go wrong with the spiketriggered average (STA)?
- * Correctly using STA puts a strong requirement on our experimental design. What is it?

VARIABLES ARE **CORRELATED?**

VARIABLES ARE CORRELATED?

RESPONSE VARIABLES WEIGHTS NOISE
$$Y=X\beta+\epsilon$$

$$\hat{\beta} = (X^\top X)^{-1} X^\top Y$$

Moore-Penrose pseudoinverse

 $\hat X^{-1} X^{top X}$

$$\hat{\beta} = (X^{\top}X)^{-1}X^{\top}Y$$

~precision matrix

un-mixes the variables

spike-triggered average

correlation between X & Y

 Regression is the process of correcting for correlations between variables (as much as possible)

SIMPLE EXAMPLE

$$B1 = ?$$

$$B2 = ?$$

$$Y = f(X)$$

* What kind of a function is f?

READ THIS PAPER for next Tuesday (2/18):

Complete Functional
Characterization of Sensory
Neurons by System
Identification

Michael C.-K. Wu,¹ Stephen V. David,² and Jack L. Gallant^{3,4}

https://github.com/alexhuth/neuralcomputation-sp2020/

* Linear model

$$Y = X\beta$$

* Linearized model

$$Y = \mathbb{L}(X)\beta$$

* Nonlinear model

$$Y = \Theta(X)$$

LINEAR MODELS

$$Y = X\beta$$
image pixels

X1, Y=0.7

X2, Y=0.3

X3, Y=0.0

LINEAR MODELS

LINEAR MODELS

Retinal ganglion cell responses

LINEARIZED MODELS

$$Y = \mathbb{L}(X)\beta$$

- * L is some non-linear function of the stimulus X that gives us features
 - * We call L a linearizing transform
- * **Beta** is a linear weighting of the features that gives us the response **Y**

LINEARIZED MODELS

$$Y = \mathbb{L}(X)\beta$$

LINEARIZED MODELS

$$Y = \mathbb{L}(X)\beta$$

NONLINEAR MODELS

$$Y = \Theta(X)$$

X1, Y="cat"

X2, Y="dog"

X3, Y="owl"

NONLINEAR MODELS

$$Y = \Theta(X)$$

X1,
$$Y=[1,0,0]$$
 X2, $Y=[0,1,0]$ X3, $Y=[0,0,1]$

NONLINEAR MODELS

$$Y = \Theta(X)$$
image pixels

- * Linear model
 - * easy, usually pointless
- * Linearized model
 - * sweet spot, but requires hypothesis!
- * Nonlinear model
 - * very expensive, need lots of data

LINEARIZING TRANSFORMATION

FEATURE SPACE

HYPOTHESIS

RECAP

- * Spike-triggered average
- * Regression
- * System identification
 - * Linear
 - * Linearized
 - * Non-linear

NEXT TIME

- * spatiotemporal models
- * model fitting