Electrical Actuation Technology Bridging

(NASA-CP-3213) ELECTRICAL ACTUATION TECHNOLOGY BRIDGING (NASA) 753 P

N94-13417

Unclas

H1/20 0186498

446798

780P

Proceedings of a workshop held in Huntsville, Alabama September 29–October 1, 1992

Electrical Actuation Technology Bridging

Monica Hammond and John Sharkey, Compilers NASA, George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama

Proceedings of a workshop sponsored by NASA Headquarters, Office of Space Systems Development and the George C. Marshall Space Flight Center, and held in Huntsville, Alabama, September 29— October 1, 1992

National Aeronautics and Space Administration

Office of Management

Scientific and Technical Information Office

Preface

This document contains the proceedings of the NASA Electrical Actuation Technology Bridging (ELA-TB) Workshop held in Huntsville, Alabama, September 29—October 1, 1992. The workshop was sponsored by NASA Office of Space Systems Development and Marshall Space Flight Center (MSFC). The workshop addressed key technologies bridging the entire field of electrical actuation including systems methodology, control electronics, power source systems, reliability, maintainability, and vehicle health management with special emphasis on thrust vector control (TVC) applications on NASA launch vehicles. Speakers were drawn primarily from industry with participation from universities and government. In addition, prototype hardware demonstrations were held at the MSFC Propulsion Laboratory each afternoon. Splinter sessions held on the final day afforded participants the opportunity to discuss key issues and to provide overall recommendations. All presentations are included in this document.

The workshop organizers express their appreciation to the session chairmen, speakers, and participants, whose efforts contributed to the technical excellence of the workshop.

TABLE OF CONTENTS

	Page
PREFACE	ii
WORKSHOP SUMMARY	vii
Summary	vii
List of Attendance	7
Agenda	xvii
Table of Workshop Prototypes	XX
Photographs	xxi
SESSION I. ELA PROGRAM OVERVIEWS	1
Advanced Development Bridging Programs Overview	-
(Paul Herr/ NASA HQ)	3
STS Hydraulic Versus ELA Operations/SRB Assessments	
(Carey McCleskey/KSC)	27
Electrical Actuation Technology Bridging Program	
(Gale R. Sundberg/LeRC)	44
NLS Keynote Speaker ¹	70
Power-By-Wire Flight Control Actuation Research and	
Development Activities (David B. Homan/Wright Laboratory)	7
SESSION II. ELA SYSTEMS METHODOLOGY	103
ELA/EMA Control With Resonant Power Processors	10.
(Jim Mildice/GDSS)	105
EHA System Design Methodology	10.
(John Anderson/Boeing)	119
Electromechanical Actuator and Motor Optimization Tasks	
(George B. Doane III/UAH)	129
SESSION III. ELA CONTROL ELECTRONICS	173
25 kW Electronic Controller for the 25 hp EMA	
(Justino Montenegro/MSFC)	175
Resonant Power Conversion and Induction Motor Control	
(Ken Schreiner/General Dynamics)	203
Electric Thrust Vector Control for National Launch System	
(Collin Hugget/Allied Signal)	219
TVC Performance Predictions for Electromechanical Actuators	
(Jeff Ring/Honeywell)	247
SESSION IV. ELA PROTOTYPE DESIGNS AND TEST RESULTS	277
Boeing/Allied-Signal EHA TVC Prototype	
(Mike Kirkland)	279
Honeywell Prototype Redundancy TVC and Health Management	,
(Ziggy Zubkow)	302
·	

¹Presentation not available. ²Paper presented in Session V on agenda.

TABLE OF CONTENTS (Continued)

	Page
SESSION V. DEMONSTRATION	325
SESSION VI. ELA POWER SOURCE SYSTEMS	327
MSFC Energy Source Testing Capabilities	
(David K. Hall/MSFC)	329
Bipolar Lead/Acid Batteries	
(William O. Gentry and Douglas C. Pierce/Johnson Controls)	341
Silver Oxide-Zinc Battery	365
High Rate Lithium Battery Technology	
(Franz Goebel/Yardney)	378
Electromechanical Actuation Technologies/Advanced Flywheel	
(David Eisenhaure/SATCON)	401
Power Source Presentation	,
(Cliff Jacobs/Sundstrand)	415
GH2 Turbo-Alternator	
(John Anderson/Boeing)	425
ELA Power Source Simulator	
(Mike Bradway/Lockheed)	438
SESSION VII. ELA OPERATIONS	459
ELA Outside Took Dod	
(Carey M. McCleskey/KSC)	461
ELA Ground Support Applications at the Stennis Space Center	
(Bill St. Cyr/SSC)	467
Lockheed High Technology Test Bed HTTB	480
SESSION VIII. ELA PROTOTYPE DESIGN AND TEST RESULTS	495
LeRC/GDSS Induction Motor Prototype TVC	
(Jim Mildice/GDSS)	497
MSFC TVC Prototype	
(Rusty Cowan, John Sharkey, and Rae Ann Weir/MSFC)	511
ELA Gear Train, Roller, and Ball Screw Components ³	
(Kurt Niederpruem/ITW Spiroid)	551
Boeing Allied-Signal Turboalternator	554
SESSION IX. DEMONSTRATION	57 9
SESSION X. EMA FDIR AND VHM	581
IVHM Advanced Development Program	
(Fred Huffaker/MSFC)	583

³Paper presented in Session IX on agenda.

TABLE OF CONTENTS (Continued)

	Page
EMA Health Management Using Smart Sensors	
(Jeff Schoess/Honeywell)	586
Intelligent Built-In Test for Electric Actuators	
(Irving Hansen/LeRC)	617
Fault Tolerant System Testing	
(Norm Osborne and Dave Wilks/Martin Marietta)	625
FMEA's and Failures in Test	
(Rae Ann Weir/MSFC)	634
Tests Confirmed Operating Characteristics of the EMA Components ⁴	
(Matt Lister/Aerojet)	645
(J),	
SESSION XI. SPLINTER SESSION ASSIGNMENTS	663
System Designs	665
Control Electronics	667
Power Source Systems	668
Operations and Ground Support	672
Redundancy Health Management	675
Laboratory Demonstrated Hardware	677
SESSION XII. ELA PROTOTYPE DESIGN AND TEST RESULTS	681
Moog 38 hp Electromechanical Actuator	
(Mark Davis/Moog)	683
MSFC and Textron SSME Propellant Control Actuators	
(Martha B. Cash/MSFC)	699
Allied-Signal Transient Compensation EMA	
(Bill Fellows/Allied Signal)	731
SESSION XIII. DEMONSTRATION	743

⁴Paper presented in Session V on agenda.

Summary of the Electrical Actuation - Technology Bridging Workshop

The 1992 Electrical Actuation (ELA) - Technology Bridging Workshop was held at the Radisson Suite Hotel in Huntsville, Alabama, September 29 - October 1, 1992. This workshop was sponsored by NASA Headquarters/Code DD and hosted by the Component Development Division of the Propulsion Laboratory at the Marshall Space Flight Center. The workshop addressed key technology issues in the field of electromechanical actuation including system design, control electronics, power source systems, vehicle health monitoring, reliability, and maintainability, with special emphasis on thrust vector control (TVC) applications on NASA launch vehicles. In addition, the workshop provided the opportunity for discussion of near-term power source developments and ELA system requirements between the ELA systems and the power source communities.

Approximately 150 individuals from both government and industry participated in the workshop. Attendance is listed starting on page 3. The final workshop agenda is listed starting on page 11.

One of the more productive outputs of the workshop resulted from the splinter sessions. These sessions afforded participants the opportunity to discuss key issues and to provide overall recommendations. Most frequently emphasized was the need for detailed requirements for actuator, power source, and control electronics. These requirements are essential to perform detailed system trade studies in order to meet the critical element of a hot fire test on the SSME Technology Test Bed (TTB). A listing of suggested topics provided to each splinter session group, along with a summary output from each group, is provided starting on page 1.

Hardware demonstrations were held at the MSFC Propulsion Laboratory each afternoon of the workshop. Basic performance criteria were demonstrated by the following:

- Boeing/Allied Signal EHA TVC Prototype
- Honeywell Prototype Redundant TVC and Health Management
- LeRC/GDSS Induction Motor Prototype TVC
- MSFC Prototype TVC Actuator
- Boeing Turbo-Alternator
- Moog Prototype TVC Actuator
- MSFC and Textron SSME Propellant Control Valve Actuator

The GHe turbo-alternator was developed by Boeing and Allied Signal under the JPO-ADP Program. The primary objective for this program was to demonstrate a helium driven turbo-alternator suitable for powering electrically driven thrust vector control actuators. The hardware consisted of a single stage axial impulse turbine directly driving a 50 kW 2-pole toothless permanent magnet alternator. The power conversion and control scheme used was a 3-phase rectified bridge and speed control loop for adjusting alternator output. The electrical power quality objective for this equipment was a modified version of MIL-STD-704 desired to minimize corona effects during launch vehicle operation. The upper transient value of 2730 was imposed for that reason, and a nominal bus voltage of 220 volts was selected. The GHe turbo-alternator was demonstrated successfully under a multitude of no load and full load conditions and is currently completing tests at Allied Signal's AiResearch Division.

The electromechanical actuator (EMA) developed under contract by HR Textron is to replace the hydraulic main oxidizer valve (MOV) on the space shuttle main engine (SSME). The unit was delivered to MSFC one week prior to the workshop; as a result, no test data was presented other than acceptance test performed at HR Textron. The plans for this EMA for the next year or year and one-half encompass characterization tests, vibration, shock EMI, EMC, flow tests, and flight simulation laboratory (FSL) tests. The summation of these tests assure that the EMA meets the requirements imposed on the hydraulic MOV actuator and qualifies it to go to Technology Test Bed for an engine hot fire test.

A table of TVC prototype hardware comparisons is found on page xvii, along with color photocopies of the demonstrated hardware.

The general consensus of the workshop was that ELA technology has been demonstrated to be feasible for SSME/STME class TVC systems, as shown by the performance capabilities of the workshop prototype hardware. However, an overall strategy towards transferring this technology to a flight program, along with the development of several key tools, is still undefined. Specific requirements must also be provided in order to focus the ELA program. Recommendations were made to hold a power source Technical Interchange Meeting (TIM) within 6 months at Kennedy Space Center. The next ELA workshop was recommended to be held no sooner than 12 months from now, focusing on full-power TVC/ELA demonstrations with redundancy management capabilities.

Proceedings from the 1992 ELA Technology Bridging Workshop are being distributed with a video summary of the prototype hardware demonstrations. The successful completion of this workshop represents a major milestone in the development of ELA systems for TVC applications. The support of NASA Headquarters/Code DD in achieving this success is gratefully acknowledged.

LIST OF ATTENDEES

Mr. Randy L. Bickford Aerojet Propulsion Div D/5154, B/2019 A P.O. Box 13222 Sacramento, CA 95813-6000

Dr. James L. Starr Aerospace Corp MS 559 3350 E. El Segundo Blvd El Segundo, CA 90245

Mr. W. W. Fellows Allied-Signal Dpt. 93240, EMA 2525 W. 190th Torrance, CA 90509

Mr. John Wada Allied-Signal Dpt. 93240 2525 W. 190th Torrance, CA 90509

Mr. David A. Thompson Allied-Signal Aerospace 1300 W. Warner Rd. Tempe, AZ 85284

Mr. C. C. Chi Allied-Signal AiResearch Div. Dpt 93240 2525 W. 190th Torrance, CA 90509-2960

Mr. Mike Kirkland Allied-Signal AiResearch Div Dpt 93240 2525 W. 190th Torrance, CA 90509-2960

Mr. Haley Rushing P.O. Box 3999 Seattle, WA 93124-2499 P.O. Box 21206 KSC, FL 32815-0206

Mr. John Anderson Boeing Aerospace Co. MS 8C-09 Mr. Matthew J. Lister Aerojet Propulsion Div D/5280, B/2019 P.O. Box 13222 Sacramento, CA 95813-6000

Mr. Jaime B. Fernandez Allied-Bendix #150 1525 Perimeter Pkwy Huntsville, AL 35806

Mr. Andrew C. Ptashnik Allied-Signal Dpt. 93240, MS: T-53 2525 W. 190th Torrance, CA 90509

Mr. Larry E. Sheaks Allied-Signal Aerospace Suite 150 1525 Perimeter Pkwy Huntsville, AL 35806

Mr. Peter A Van Hoff Allied-Signal Aerospace Suite 150 1525 Perimeter Pkwy Huntsville, AL 35806

Mr. Collin Hugget Allied-Signal AiResearch Div. Dpt. 93240 2525 W. 190th Torrance, CA 90509-2960

Mr. Allen Young Allied-Signal AiResearch Div. Dpt. 93080, T 45 2525 W. 190th Torrance, CA 90509-6099

Mr. R. Mark Nelms Auburn University Electr. Engr. Dept. 200 Broun Hall Auburn, AL 35849-5201

Mr. Arun K. Trikha Boeing Aerospace Co. MS 60-HP, Actuation P.O. Box 3707 Seattle, WA 98124-2207 Mr. Jeff Ring
Honeywell SS Group
948-5
13350 U.S. Hwy 19N
Clearwater, FL 34624-7290

Mr. Jack A. Battenburg HQ JPO/NLS USAF BMO/NLS/ADP U S A F Norton AFB, CA 92409

Mr. Ron Boe HR Textron 252000 West Rye Canyon Rd Valencia, CA 91355

Dr. William Gentry Johnson Controls X-35 5757 North Green Bay Ave Milwaukee, WI 53201

Mr. Douglas Pierce Johnson Controls X-35 5757 North Green Bay Ave Milwaukee, WI 53201

Mr. Keith A. Holden Lockheed - HSV Engr. Ctr. Missiles & Space, Ste.220 6767 Old Madison Pike Huntsville, AL 35806

Ms. Lydia J. Wenglar Lockheed LESC MS: C 87 P. O. Box 58561 Houston, TX 77258-3711

Mr. Sabbie A. Hossain Lockheed/ESC M/C-C 87 2400 NASA Road 1 Houston, TX 77058-3711

Mr. Charles M. Miller Lockheed/KSC LSO 215 1100 Lockheed Way Titusville, FL 35780 Mr. Zygmunt Zubkow Honeywell SS Group 948-5 13350 U.S. Hwy 19N Clearwater, FL 34624-7290

Capt.Frederick Wylie HQ JPO/NLS USAF BMO/NLS/ADP U S A F Norton AFB, CA 92409

Mr. Kurt Niederpruem ITW Spirod 2601 N. Keeler Avenue Chicago, IL 60639

Mr. Lawrence Haselmaier Johnson Controls Bldg. 4010 SSC Stennis Space Ctr, MS 39529

Mr. Bob Brogdon Lockheed 5251 Hermitage Dr Marietta, GA 303...

Mr. Wayne T. McCandless Lockheed LESC MS: C 87 P. O. Box 58561 Houston, TX 77258-3711

Mr. Michael W. Bradway Lockheed/ESC M/C-C 87 2400 NASA Road 1 Houston, TX 77058-3711

Mr. Wayne N. Heath Lockheed/KSC LSO 212 1100 Lockheed Way Titusville, FL 35780

Mr. Sanford Goldstein Lucas Western P. O. Box 2207 610 Neptune Avenue Brea, CA 92621 Mr. Jonathan C.C. Chao MDSSC A3/L243-12/2 5301 Bolsa Avenue Huntington Beach, CA 92647

Mr. Norm Osborn
MMC, EMA
T 330
P. O. Box 179
Denver, CO 80201

Mr. Dave Wilks
MMC, EMA
T 330
P. O. Box 179
Denver, CO 80201

Mr. Bob Ewel
Moog Inc
Miss.Syst.Div.
Plant 20
East Aurora, NY 14052-0018

Mr. Jerry Kraschinsky Moog Inc Miss.Syst.Div. Plant 20 East Aurora, NY 14052-0018

Mr. John Preble
Moog Inc
Miss.Syst.Div.
Plant 20
East Aurora, NY 14052-0018

Mr. Paul N. Herr NASA HQ Code DD 600 Independence Ave Washington, DC 20546

Mr. R. Wayne McIntyre NASA HQ Code DL 600 Independence Ave Washington, DC 20546

Dr. Douglas B. Price
NASA LaRC
MS:161
NASA LaRC
Hampton, VA 23681-0001

Mr. James D. Hurley Mechanical Technology Inc 968 Albany Shaker Road Latham, NY 12110

Mr. Steven Sasso MMC, EMA T 330 P. O. Box 179 Denver, CO 80201

Mr. Mark Davis
Moog Inc
Miss.Syst.Div.
Plant 20
East Aurora, NY 14052-0018

Mr. Ramji Gupta Moog Inc Miss.Syst.Div. Plant 20 East Aurora, NY 14052-0018

Mr. Ronald J. Livecchi Moog Inc Miss.Syst.Div. Plant 20, ACD East Aurora, NY 14052-0018

Mr. Peter Ahlf NASA HQ Code DD NASA HQ Washington, DC 20546

Mr. Robert Kirchmyer NASA HQ Code DN 600 Independence Ave Washington, DC 20546

Mr. David R. Stone NASA HQ Code DD 600 Independence Ave Washington, DC 20546

Mr. Howard Stone
NASA LaRC
MS:161
NASA LaRC
Hampton, VA 23681-0001

Mr. Jeff Ring Honeywell SS Group 948-5 13350 U.S. Hwy 19N Clearwater, FL 34624-7290

Mr. Jack A. Battenburg HQ JPO/NLS USAF BMO/NLS/ADP U S A F Norton AFB, CA 92409

Mr. Ron Boe HR Textron 252000 West Rye Canyon Rd Valencia, CA 91355

Dr. William Gentry Johnson Controls X-35 5757 North Green Bay Ave Milwaukee, WI 53201

Mr. Douglas Pierce Johnson Controls X-35 5757 North Green Bay Ave Milwaukee, WI 53201

Mr. Keith A. Holden Lockheed - HSV Engr. Ctr. Missiles & Space, Ste.220 6767 Old Madison Pike Huntsville, AL 35806

Ms. Lydia J. Wenglar Lockheed LESC MS: C 87 P. O. Box 58561 Houston, TX 77258-3711

Mr. Sabbie A. Hossain Lockheed/ESC M/C-C 87 2400 NASA Road 1 Houston, TX 77058-3711

Mr. Charles M. Miller Lockheed/KSC LSO 215 1100 Lockheed Way Titusville, FL 35780 Mr. Zygmunt Zubkow Honeywell SS Group 948-5 13350 U.S. Hwy 19N Clearwater, FL 34624-7290

Capt.Frederick Wylie HQ JPO/NLS USAF BMO/NLS/ADP U S A F Norton AFB, CA 92409

Mr. Kurt Niederpruem ITW Spirod 2601 N. Keeler Avenue Chicago, IL 60639

Mr. Lawrence Haselmaier Johnson Controls Bldg. 4010 SSC Stennis Space Ctr, MS 39529

Mr. Bob Brogdon Lockheed 5251 Hermitage Dr Marietta, GA 303...

Mr. Wayne T. McCandless Lockheed LESC MS: C 87 P. O. Box 58561 Houston, TX 77258-3711

Mr. Michael W. Bradway Lockheed/ESC M/C-C 87 2400 NASA Road 1 Houston, TX 77058-3711

Mr. Wayne N. Heath Lockheed/KSC LSO 212 1100 Lockheed Way Titusville, FL 35780

Mr. Sanford Goldstein Lucas Western P. O. Box 2207 610 Neptune Avenue Brea, CA 92621 Ms. Linda Burrows NASA-LeRC 21000 Brookpark Road Cleveland, OH 44135

Mr. David Renz NASA-LeRC 5430 21000 Brookpark Road Cleveland, OH 44135

Mr. Gale Sundberg NASA-LeRC 301-2 21000 Brookpark Road Cleveland, OH 44135

Mr. Jim Akkermann NASA/JSC V E 3 NASA Road 1 Houston, TX 77048

Mr. Carey McCleskey NASA/KSC TV-GDS-22 NASA/KSC KSC, FL 32899

Mr. Rick Bachtel NASA/MSFC EP 55 NASA/MSFC MSFC, Al 35812

Ms. Martha Cash NASA/MSFC NASA/MSFC MSFC, Al 35812

Mr. Rusty Cowan NASA/MSFC EP 64 NASA/MSFC MSFC, AL 35812

Mr. David K. Hall NASA/MSFC EB 12 NASA/MSFC MSFC, Al 35812 Mr. Irving Hanson NASA-LeRC 21000 Brookpark Road Cleveland, OH 44135

Ms. Mary Ellen Roth NASA-LeRC 21000 Brookpark Road Cleveland, OH 44135

Mr. Rick A. Williams
NASA/JPO
QEV
U S A F
Norton AFB, CA 92409

Mr. Don C. Brown
NASA/JSC
EG 1
NASA/JSC
Houston, TX 77058

Mr. W. B. Williams NASA/KSC PT AST NASA/KSC KSC, FL 32899

Mr. Robert Bechtel NASA/MSFC EB 12 NASA/MSFC MSFC, Al 35812

Mr. Charles Cornelius NASA/MSFC EP 61 NASA/MSFC MSFC, AL 35812

Mr. Charles I. Hall NASA/MSFC EB 12 NASA/MSFC MSFC, Al 35812

Ms. Monica Hammond NASA/MSFC EP 64 NASA/MSFC MSFC, AL 35812 Mr. John Harbison NASA/MSFC EP 64 NASA/MSFC MSFC, Al 35812

Mr. Harold J. Huber NASA/MSFC NASA/MSFC MSFC, Al 35812

Mr. William Jacobs NASA/MSFC EB 24 NASA/MSFC MSFC, Al 35812

Mr. Chester Martin NASA/MSFC EP 64 NASA/MSFC MSFC, Al 35812

Mr. Terry G. Minor NASA/MSFC NASA/MSFC MSFC, Al 35812

Mr. Neill Myers NASA/MSFC EP 64 NASA/MSFC MSFC, AL 35812

Mr. Boris A. Pagan NASA/MSFC SRB, TVC NASA/MSFC MSFC, Al 35812

Mr. Shawn E. Reagan NASA/MSFC EL 56 NASA/MSFC MSFC, AL 35812 Mr. David Howard NASA/MSFC EB 24 NASA/MSFC MSFC, AL 35812

Mr. Fred Huffaker NASA/MSFC PT 01 NASA/MSFC MSFC, AL 35812

Mr. Robert K. Kapustka NASA/MSFC EB 12 NASA/MSFC MSFC, Al 35812

Mr. Bradley P. Messer NASA/MSFC EP 64 NASA/MSFC MSFC, AL 35812

Mr. Justino Montenegro NASA/MSFC EB 24 NASA/MSFC MSFC, AL 35812

Mr. Frank Nola NASA/MSFC EB 24 NASA/MSFC MSFC, AL 35812

Mr. Ricky D. Pickett NASA/MSFC EP 64 NASA/MSFC MSFC, Al 35812

Mr. Stephen D. Rose NASA/MSFC EL 56 NASA/MSFC MSFC, Al 35812 Mr. John Sharkey NASA/MSFC ED 12 NASA/MSFC MSFC, Al 35812

Ms. Caroline K. Wang NASA/MSFC EE 83 NASA/MSFC MSFC, Al 35812

Mr. Alvin M. Payne NASA/SSC Bldg 1100,HA 20 NASA/SSC SSC, MS 39529

Mr. Clint Winchester Naval Surface War Ctr Code R 33 10901 New Hampshire Ave Silver Springs, MD 20903-5000

Mr. Ken Ward
Parker Bartea
14300 Alton Parkway
Irvine, CA 92718-1814

Mr. Richard J. Kotalik Parker Hannifin Corp 14300 Alton Pkwy Irvine, CA 92718-1814

Mr. Bill McDermott Rockwell Int'l Dpt. 292, MC: FB 75 12214 Lakewood Blvd Downey, CA 90241

Mr. David Eisenhaure SATCON Techn.Corp. 12 Emily Street Cambridge, MA 02139

Mr. Clifton D. Jacobs Sundstrand Dpt. 877-6 4747 Harrison Avenue Rockford, IL 61125-7002 Mr. Harold D. Stanfield NASA/MSFC NASA/MSFC MSFC, Al 35812

Ms. Rae Ann Weir NASA/MSFC EP 64 NASA/MSFC MSFC, Al 35812

Mr. Bill St.Cyr NASA/SSC Code HA 20, Bldg 1100 NASA/SSC SSC, MS 39529

Mr. John Coyner Oakridge Nat'l Labs MS 7294 P. O. Box 2003, Bldg.9108 Oakridge, TN 37831-7294

Mr. Arvind K. Ahluwalia Parker Hannifin Corp 14300 Alton Pkwy Irvine, CA 92718-1814

Mr. Derek Shephard Precision Kinetics 2533 E. 58th St Huntington Park, CA 90255

Mr. Luke T. Spears S R S Technologies 990 Explorer Blvd Huntsville, AL 35806

Mr. Patrick Curran Sundstrand 4747 Harrison Ave Rockford, Il 61125-7002

Mr. Ted L. Jones
Sundstrand
Dpt. 877-6
4747 Harrison Avenue
Rockford, IL 61125-7002

Mr. Jayant Validya Sundstrand 740-6, P.O.Box 7002 4747 Harrison Ave Rockford, Il 61125-7002

Mr. Scott W. Lukens Sverdrup Techn. Propulsion 620 Discovery Drive Huntsville, AL 35806

Dr. George B. Doane III U A H RI E 47 U A H Huntsville, AL 35899

Mr. John P. Wander University of Alabama Mech.Engr.Dpt. Box 870286 Tuscaloosa, AL 35487-0286

Mr. Douglas A. Shaver USBI, Inc Bldg.C-6008 P. O. Box 1900 Huntsville, AL 35807

Mr. David Homan Wright-Patterson WL/FIGL Wright Patterson AFB, OH 45433-6563 Mr. Tom Beasley Sverdrup Techn. Propulsion 620 Discovery Drive Huntsville, AL 35806

Mr. Merle A. Turner TRW/BMO Bldg. 953/2430 P. O. Box 1310 S.B., CA 92402

Dr. Tim A. Haskew University of Alabama Electr.Engr.Dpt. Box 870286, 317 Houser Hall Tuscaloosa, AL 35487-0286

Mr. A. David Laracuente USBI, Inc Bldg.C-6008 P. O. Box 1900 Huntsville, AL 35807

Mr. Charlie Webster USBI, Inc P. O. Box 1900 Huntsville, AL 35807

Mr. Franz Goebel Yardney Director R&D 82 Mechanic Street Pawcatuck, CT 06379

NASA ELECTRICAL ACTUATION TECHNOLOGY BRIDGING WORKSHOP MARSHALL SPACE FLIGHT CENTER

AGENDA FOR TUESDAY, SEPTEMBER 29, 1992

7:40	Check-in		
8:00	Session I. ELA Program Overv	iews	Chairman: Charles Cornelius/MSFC
	1. NASA HQ Perspecti		Paul Herr/Code DD
	2. KSC/STS Hydraulic		Carey McCleskey/KSC
	3. ELA-TB Program O		Gale Sundberg/LeRC
9:15	Break		
	4. NLS Keynote Speake	er .	Rick Bachtel/MSFC
	5. DOD ELA Program	Overview	David Homan/DOD
10:00	Session II. ELA Systems Metho	odology	Chairman: John Harbison/MSFC
	1. EMA Avionics Design		Jim Mildice/GDSS
	2. EHA Design Method		John Anderson/Boeing
11:00	Lunch		•
12:00	Session III. ELA Control Elect	ronics	Chairman: David Howard/MSFC
12.00	1. DC Motor Control E		Justino Montenegro/MSFC
	2. AC Induction Motor		Ken Schreiner/GDSS
	3. DC Motor Micro-Co		Collin Hugget/Allied Signal
	4. TVC Engine Start Tr		Jeff Ring/Honeywell
1:30	Session IV. ELA Prototype De 1. Boeing/Allied Signal		Chairman: Monica Hammond/MSFC
	2. Honeywell Prototype	e Redundant TVC and Hea	alth Management
2:30	Session V. ELA HARDWARE	DEMONSTRATIONS	
	Group I	Group II	Group III
2:45	Depart Radisson	EMA Motor/Gear Opti	mization - George Doane/UAH
3:00	Boeing/ASAC Demo	Propellant Control Valv	e EMA & BIT - Matt Lister/Aerojet
3:20	Honeywell Demo	Depart Radisson	Depart Radisson
3:45	Depart MSFC	Boeing/ASAC Demo	Space Station Tour
4:05	Open	Honeywell Demo	Space Station Tour (con't)
4:25	Open	Depart MSFC	Boeing/ASAC Demo
4:45	Open	Open	Honeywell Demo
5:05	Open	Open	Depart MSFC
5:15	Close of Business		

NASA ELECTRICAL ACTUATION TECHNOLOGY BRIDGING WORKSHOP MARSHALL SPACE FLIGHT CENTER

AGENDA FOR WEDNESDAY, SEPTEMBER 30, 1992

7:40	Check-in		
8:00	Session VI. ELA Power Sour	ce Systems	Chairman: David Hall/MSFC
	1. Bipolar Lead-Acid		Doug Pierce/Johnson Controls
	2. Silver Zinc Batterie	es	Curtis Brown/Eagle-Picher
	3. Bipolar Lithium Ba	utteries	Franz Goebel/Yardney
	Advanced Flywhee	l Technology	David Eisenhauer/SatCon
9:30	Break		
	5. Turbo-Alternators		Cliff Jacobs/Sundstrand
	NLS GH2 Turbo-A	· ·	John Anderson/Boeing
	7. ELA Power Source	Simulators	Mike Bradway/LESC
10:45	Session VII. ELA Operations		Chairman: Carey McCleskey
	1. ELA Operations Te		Carey McCleskey/KSC
	2. Cryrogenic Ground	Support Applications	Bill St. Cyr/SSC
	3. High Technology T	est Bed	Bob Brogdon/Lockheed
12:00	Lunch		•
1:00	Session VIII. ELA Prototype I 1. LeRC/GDSS Induc 2. MSFC TVC Protot 3. Boeing Turbo-Alter	tion Motor Prototype TVC ype	Chairman: Monica Hammond/MSFC
2:15	Session IX. ELA HARDWAR	E DEMONSTRATIONS	•
	Group I	Group II	Group III
2:15	Depart Radisson	Break	Break
2:30	LeRC/GDSS Demo	ELA Gear Train,	Roller & Ball Screw Components
2:50	MSFC TVC Demo	Kurt Niederpruen	n/ ITW Spiroid
3:10	Boeing Turbo-Alt.	Depart Radisson	Depart Radisson
3:30	Depart MSFC	LeRC/GDSS Demo	Technology Test Bed
3:50	Open	MSFC TVC Demo	Technology Test Bed (con't)
4:10	Open	Boeing Turbo-Alt.	Technology Test Bed (con't)
4:30	Open	Depart MSFC	LeRC/GDSS Demo
4:50	Open	Open	MSFC TVC Demo
5:10	Open ·	Open	Boeing Turbo-Alt.
5:20	Open	'Open	Depart MSFC

Close of Business

5:30

NASA ELECTRICAL ACTUATION TECHNOLOGY BRIDGING WORKSHOP MARSHALL SPACE FLIGHT CENTER

AGENDA FOR THURSDAY, OCTOBER 1, 1992

Check-in		
 EMA Health Manager Intelligent BIT on EM Fault Tolerant System 	nent Using Smart Sensors A Test for ELA	Chairman: Fred Huffaker/MSFC Jeff Schoess/Honeywell Erv Hanson/LeRC Norm Osborn/Martin Marietta Rae Ann Weir/MSFC
 System Designs Control Electronics Power Source Systems Operations and Groun 	s d Support	Dave Renz/LeRC Justino Montenegro/MSFC David Hall/MSFC Carey McCleskey/KSC Don Brown/JSC
ELA Working Lunch (Radisson	Magnolia Room)	
Splinter Session Recommendation	ns	Chairman: John Sharkey/MSFC
 Moog Prototype TVC MSFC & Textron SS 	Actuator SME Propellant Control Va	Chairman: Monica Hammond/MSFC
Session XIII. ELA HARDWAR	E DEMONSTRATIONS	
Depart MSFC Open Open Open Open Open Open	Moog Demo MSFC/Textron Demo Allied-Signal EMA Demo Depart MSFC Open Open	Group III Open Open Open Depart Radisson Large Space Structures Tour Large Space Structures Tour OLarge Space Structures Tour Moog Demo MSFC/Textron Demo Allied-Signal EMA Demo Depart MSFC
	Session X. EMA FDIR and VHM 1. EMA Health Manager 2. Intelligent BIT on EM 3. Fault Tolerant System 4. TVC FMEA and Failu Session XI. Splinter Session Ass 1. System Designs 2. Control Electronics 3. Power Source Systems 4. Operations and Groun 5. Redundancy and Health ELA Working Lunch (Radisson Splinter Session Recommendation Session XII. ELA Prototype Des 1. Moog Prototype TVC 2. MSFC & Textron SS 3. Allied Signal TVC EM Session XIII. ELA HARDWAR Group I Depart Radisson Moog Demo MSFC/Textron Demo Allied-Signal EMA Demo Depart MSFC Open Open Open Open Open	Session X. EMA FDIR and VHM 1. EMA Health Management Using Smart Sensors 2. Intelligent BIT on EMA 3. Fault Tolerant System Test for ELA 4. TVC FMEA and Failures in Test Session XI. Splinter Session Assignments 1. System Designs 2. Control Electronics 3. Power Source Systems 4. Operations and Ground Support 5. Redundancy and Health Management ELA Working Lunch (Radisson Magnolia Room) Splinter Session Recommendations Session XII. ELA Prototype Design & Test Results 1. Moog Prototype TVC Actuator 2. MSFC & Textron SSME Propellant Control Valled Signal TVC EMA Prototype Session XIII. ELA HARDWARE DEMONSTRATIONS Group I Group II Depart Radisson Open Moog Demo Open MSFC/Textron Demo Open Allied-Signal EMA Demo Depart Radisson Depart MSFC Moog Demo Open MSFC/Textron Demo Open MSFC/Textron Demo Open Allied-Signal EMA Demo Open Depart MSFC Open Open Open Open

5:30 Close of Business

Designed Actuator Parameters for Workshop Prototypes

Actuator Parameters	Boeing/Allied Signal EHA TVC Prototype	Honeywell Prototype Redundant TVC	LeRC/GDSS Induction Motor Prototype TVC	MSFC Prototype TVC Actuator	Moog Prototype TVC Actuator
Force (lb)	50,000	40,000	48,000	35,000	48,000 *
Stroke (in)	11.5	14	+/- 5.4	9-/+	+/- 5.5 *
Speed (in/sec)	3.3	12	7.4	* %	5.2 *
Output Power (HP)	25	75	34.6	23	38
Input Power (KW)	35	70	70	27 *	30 *
Weight (lb)	300 *	230 *	300 *	380 *	337.3 *
Bandwidth (Hz)	7	4	3.2	*	* 00
Acceleration (in/sec^2)	180	200	52	62.81 *	* 09
Redundancy	*	*	1	1	
Power Electronic Unit	Digital PWM	Hybrid PWM	Digital PDM	Analog PWM	Analog PWM
Cooling Required	Internal Oil	Passive	Forced Air	Passive	Passive

* NOTE: Test Verified Parameter

ORIGINAL_PAGE COLOR PHOTOGRAPH

ORIGINAL PAGE COLOR PHOTOGRAPH

ORIGINAL PAGE
COLOR PHOTOGRAPH

ORIGINAL PAGE COLOR PHOTOGRAPH

ORIGINAL PAGE COLOR PHOTOGRAPH

SESSION I ELA PROGRAM OVERVIEWS

BRIDGING PROGRAMS OVERVIEW **ADVANCED DEVELOPMENT**

Presentation to:
NASA Electrical Actuation
Technology Bridging Workshop

September 29 - October 1, 1992 Radisson Suite Hotel Huntsville, AL Paul Herr Advanced Programs Division NASA Headquarters

Office Of Space Systems Development

PH-910314-02-DG

ADVANCED DEVELOPMENT

Demonstrate and Apply Promising Technologies And/Or Procedures To a Level That Meets Flight Program Requirements

--- Office Of Space Systems Development

-NSVI-

THE TECHNOLOGY MATURATION PROCESS

LEVEL

DESCRIPTION

- 2. Conceptual Design Formulated
- 3. Conceptual Design Tested Analytically Or Experimentally

TECHNOLOGY DEVELOPMENT

Kummmmik

- 4. Critical Function/Characteristic Demonstration
- 5. Component/Brassboard Tested In Relevant Environment
- 6. Propotype/Engineering Model Tested In Relevant Environment

ADVANCED DEVELOPMENT

- 7. Engineering Model Tested In Space
- 8. "Flight-Qualified" System
- 9. "Flight-Proven" System

OPERATIONAL SYSTEMS

Office Of Space Systems Development

ADVANCED DEVELOPMENT

NSV

TECHNOLOGY TRANSFER/INSERTION PROCESS

--- Office Of Space Systems Development

ANATOMY OF BRIDGING PROGRAMS

- EACH BRIDGING TASK FOCUSED ON AN OBJECTIVE DEFINED BY USER(S)
- Demonstration Payoff Benefits Are Defined "Before The Fact"
- From Both Governemnt and Industry Toward Specific Objective(s) - Leverages and Concentrates Limited Funds and Special Skills
- SMALL GROUP INCLUDES ONLY PARTICIPANTS/CONTRIBUTORS WITHIN PROCESS
 - Establishes A "New Way Of Doing Business"
- PRECIPITATES "CULTURAL CHANGE" WITHIN THE NASA INSTITUTIONAL INTER-CENTER, AND PROGRAM OFFICE STRUCTURE
- INCORPORATES ALL R&T CONSTITUENCIES AT INITIATION OF THE TASK
- OF THE FOUR BRIDGING PROGRAMS, THE ELA TASKS ARE HIGHLY INTEGRATED, TECHNICALLY ADVANCED AND MOST SUCCESSFUL
 - Showcase For The "Bridging Programs" Concept
- Demonstration Model For Other Tasks To Emulate

-Office Of Space Systems Development

-NSV-

ADVANCED DEVELOPMENT "BRIDGING PROGRAM" **Ground Rules**

- · PROJECT DIRECTED TO HIGH PRIORITY OSSD TECHNOLOGY NEEDS
- · PROJECT DIRECTED AT SPECIFIC END POINT TECHNOLOGIES
- · PROJECT SERVING AS A MECHANISM FOR TECHNOLOGY TRANSFER

BRIDGING PROGRAMS ARE "PILOT PROJECTS" WHICH PROVIDE A MECHANISM TO TRANSFER TECHNOLOGY FROM THE TECHNOLOGY DEVELOPER TO THE TECHNOLOGY USER

ADVANCED DEVELOPMENT OVERVIEW

OSSD (OSF) Technology Requirements

- DURING 1991, EARLY 1992 OSF POLLED ALL PROGRAM OFFICES (SSF, STS, ELV's, etc.) TO IDENTIFY AREA'S OF TECHNOLOGY REQUIREMENTS.
- LARGE LIST OF REQUIREMENTS WERE GROUPED & PRIORITIZED INTO 21 MAJOR CATEGORIES
- 16 Were NASA Unique
- 5 Were Industry Driven
- LIST OF 21 WERE PRESENTED TO OAST (Code R)
- OAST Technology Managers Incorporated Majority Within On-going Programs
- BASED ON MULTI-APPLICATIONS AND HIGH PAYOFF POTENTIAL FOUR PILOT BRIDGING PROJECTS WERE SELECTED FOR IMPLEMENTATION
- Three Are Now Underway (Initiated In FY91)
- Fourth (IVHM) Selected For FY93

OSSD (OSF) Technology Requirements Evaluation

Technology Areas

	Program Unique Technologies	
-	Vehicle Health Management	
7	Advanced Turbomachinery Components and Models	
က	Combustion Devices	
4	Advanced Heat Rejection Devices	
2	Water Recovery and Management	
9	High Efficiency Space Power Systems	
7	Advanced Extravehicular Mobility Unit Technologies	
æ	Electromechanical Control Systems/Electrical Actuation	
6	Crew Training Systems	
9	Characterization of Al-Li Alloys	
=	Cryogenic Supply, Storage, and Handling	
12	Thermal Protection Systems for High Temperature Applications	
13	Robotic Technologies	
14	Orbital Debris Protection	
15	Guidance, Navigation and Control	
16	Advanced Avionics Architectures	
	Industry Driven Technologies	
	Signal Transmission and Reception	
	Advanced Avionics Software	
	Video Technologies	
	Environmentally Safe Cleaning Solvents, Refrigerants and Foams	
	Non-Destructive Evaluation	
П	OSSD Bridging Programs	

NSV

ADVANCED DEVELOPMENT "BRIDGING PROGRAMS"

Currently underway:

- · ELECTRICAL ACTUATION (ELA)
- AUTONOMOUS GUIDANCE, NAVIGATION AND CONTROL (AGN&C)
- · ALUMINUM-LITHIUM ALLOYS

Planned:

· INTEGRATED VEHICLE HEALTH MANAGEMENT (IVHM)

- Office Of Space Systems Development

ELECTRICAL ACTUATION Bridging Activities

OBJECTIVES

Develop and demonstrate a high power/high performance electromechanical actuator in primary flight control applications

PAYOFFS

- Elimination of high pressure hydraulic systems
- Elimination of central hydraulic APU's, hazardous/ toxic fluids
- Reduction of labor intensive tests, prep time, and ops.
- Improved dispatch reliability, operability and abort recovery
- Improved launch window (late-hold capability)
- Reduced standdown time-rapid changeout/retest

Office Of Space Systems Development

ELA BRIDGING TEAM

JSC

- Project management & integration
- Flight dynamic requirements definition
- Fault tolerance/redundancy management strategies definition

LeRC

- EMA/power component development
- EMA/power system integration development and demonstration

Bridging Program

ELA

 Thrust vector control and propulsion control valve applications

MSFC

KSC

- EMA checkout and operational concepts
- Costs/benefits analysis

 Development of SSME test stand for valve application for EMA demo

SSC

 Costs/benefits analysis of ground test ops.(quantify saving of elimination of hydraulic valve)

Office Of Space Systems Development

-NSV-

ADVANCED DEVELOPMENT "BRIDGING PROGRAMS"

AGN&C

OBJECTIVE

To develop and demonstrate autonomous guidance, navigation and control technologies in areas of:

-New sensors and sensing devices

-Ground and onboard guidance algorithms -Navigation and control algorithms

-Vehicle monitoring systems for autonomous ascent GN&C systems

PAYOFFS

Increased launch probability

Improved ascent/entry wind measurement technology

Improved abort planning and failure adaptability

Reduced cost from improved operations

-NSN-

AGN&C FY91 LOW POWER LIDAR DEMONSTRATIONS

TEST PLAN

CONDUCT DAILY EXPERIMENTS TO ENABLE EXTRAPOLATION TO A FULL POWER SYSTEM CONSISTING OF CALIBRATION USING HARD TARGET AND BACKSCATTER PROFILES

CONDUCT EXPERIMENTS TO ESTABLISH RELATIVE PERFORMANCE DATA BASE:

- Jimisphere
- Rawindsonde
- Radar Wind Profiler
- Instrumented Shuttle Training Aircraft
- Tower Mounted Anenometer Network

17

Aluminum-Lithium Bridging Activities

OBJECTIVES

Validate the readiness of Aluminum-Lithium(Al-Li) alloys for Space Transportation Needs

Demonstrate the viability of AI-Li alloys by a sublength, full diameter External Tank demo build Identify processes and hardware required for the manufacture of an AI-Li cryotank.

PAYOFFS

Weight reductions allow robust designs and increases in safety and reliability

Design studies indicate 10-15% potential weight savings

AL-LI BRIDGING TEAM

MSFC

- Al-Li Alloy Characterization (ALCOA 2090 and Weldalite)
- Weld Processes/Techniques Definition
- Demo/Build/Test a sub-length full diameter external tank

LaRC

- Al-Li Alloy Characterization
 - -Superplastic forming -Net shaped forming
- Automated Weld Process and NDE Processes for Fabrication

- Office Of Space Systems Development

PROPOSED FY93 NEW BRIDGING TASKS

OSSD TECHNOLOGY ASSESSMENT ACTIVITIES HAVE RESULTED IN IDENTIFICATION OF POTENTIAL NEW BRIDGING TASKS IN:

· INTEGRATED VEHICLE HEALTH MANAGEMENT

- Engine/Propulsion Systems/ Components
- TPS/Structural Element Measurements
- Advanced Transducer/Sensor Demos
- Other Subsystems (Power, GN&C, ECLSS)

IVHM BRIDGING PROGRAMS OBJECTIVE:

Cost Savings Will Be Gained By Implementation Of Future Launch Concepts To Prove That Significant Operational Benefits And To Integrate And Demonstrate Practical Systems Level IVHM Vehicles And Other Space Transportation Elements

TEAM/ MANAGEMENT STRUCTURE

TARGET X Lunar Lander TLI FUTURE (10-20 Yrs) Far Term **TARGET VEHICLE SET TARGET 4** • PLS • HL20 SHUTTLE DERIVED TARGET 3C **FARGET 3A EXPENDABLE TARGET 3B** REUSABLE NEW · ACRV · SSF ·NLS · etc. Near Term (5-10 Yrs) **TARGET 2 EXISTING TARGET 1** SYSTEMS SRB · OMS/RCS ORBITER · Atlas • Delta •Titan SHUTTLE TIME

Integrated Vehicle Health Management Technology Bridging Program

Mars Transfer

· MPS

CTV

BENEFITS/DRIVERS

OPERABILITY X X	××
RELIABILITY X X	
SO × ×	× ××× ××
TOP PRIORITY Real time engine diagnostics Leak detection IVHM Architecture Ground processing Integration IVHM for EMA OMS/RCS	IVHM Cost/Payback analysis* DESIRABLE Post flight/test data analysis for engines IVHM for mission operations Automated Inspection techniques for engines Flight/ground test plume spectroscopy Laser pyros SSF Fault Management system Hybrid Reliability/fault tolerance/cost tool

* Application required for all demos

Integrated Vehicle Health Management Technology Bridging Program

SELECTED DEMONSTRATIONS SUMMARY

	OBJECTIVE	FACILITY	BENEFIT
REAL TIME ENG. DIAG.	SENSOR & SW VALIDATION	MSFC SSME TTB & SSC TESTBEDS	SAFE SHUTDOWNS-TEST, HOLD-DOWNS, FLIGHT
LEAK DETECTION	AUTOMATIC MONITORING FOR LEAKING FLUIDS	MSFC MULTIPURPOSE H2 TESTBED & SSC	REDUCE GND. OPS COST, ENHANCE SAFETY
IVHM ARCHITECTURE	_	JSC - JAEL	HIGH CONFIDENCE /SYST.
	SUPPORT FUNCTIONS		LEVEL IN EGRATION
GROUND PROCESSING INTEGRATION	DEMO GND. PROCESSING FOR PLANNING/SCHED.	KSC ENGINEERING DEVELOPMENT LAB	REDUCE GND. OPS COSTS
IVHM FÖR EMA	DEMO VHM FOR EMA SYST.	MSFC COMPONENET	REDUCE GND. OPS COST,
	INCLUDING PWR. & AV. INTERFACES	LAB, CONTRACTOR LAB	ENHANCE SAFETY
OMS/RCS	DEVELOP NON-INTRUSIVE	OMS/RCS FLEET LEADER	REDUCE TURNAROUND,
	RCS PRESSURE REG. &	ESI ARIICEE - WSI L	MINIMIZE FLUID LINE

CURRENT BRIDGING PROGAMS SUPPORT CENTAUR EVOLUTION

Al-Li Alloy Structures

• 11% Lower weight than 2219 Al

EMA (ELA) TVC

- Enables automated end-to-end C/O
- Assembly & C/O Savings >1000 hours
- Improved reliability Failure probability reduced by factor of 8
- 35 lb. Weight reduction
- Eliminate engine driven hydraulic pumps & system
- Eliminate ground hydraulic support equipment

EMA (ELA) Fluid Systems Valves

- Compatible with automated health monitoring & BIT
- 60% Reduction in C/O time with BIT
- Compatible with fault tolerant design

Automated Ground Health Management System (IVHM)

- · 3 Day reduction in on-stand processing time
 - · Eliminates 30 stripchart recorders
- Modular infrastructure for growth/upgrades
 - Efficient anomaly analysis and isolation
 - Integrated control and display system
- Avoids break in inspection, setup, C/O, analysis and closeout when problems occur

Adaptive Guidance Navigation & Control (AGN&C)

- Automated mission planning with 6:1 reduction in planning time
 - · Reassignment of payloads in 5 days

ADVANCED DEVELOPMENT "BRIDGING PROGRAMS"

Summary

- "BRIDGING" THE GAP BETWEEN TECHNOLOGY DEVELOPERS AND USERS IS KEY TO SUCCESSFUL TECHNOLOGY TRANSFER/INSERTION
- CURRENT BRIDGING PROGRAMS ARE SERVING AS "PILOT PROJECTS" FOR TECHNOLOGY TRANSFER/INSERTION PROCESS WITHIN NASA
- To date, technical progress is good
 Demonstrating how well small intercenter groups work together
 Stimulating significant interest with all NASA centers
- Industry cooperation/cost sharing is gaining momentum
- BRIDGING PROGRAMS OFFER "NEW WAYS OF DOING BUSINESS"
- Leverages technical excellence from NASA centers and industry
 - Places agency "gain sharing" ahead of "not invented here" Focuses on needs of user
- Recognizes budget and schedule constraints
- ATTENTIVE MANAGEMENT OF TECHNOLOGY BRIDGING IS VITAL FOR EFFECTIVE TECHNOLOGY TRANSFER

Office Of Space Systems Development

ELECTRIC ACTUATION

TECHNOLOGY BRIDGING PROJECT WORKSHOP

STS HYDRAULIC VS. ELA OPERATIONS SRB ASSESSMENT

(ELECTRIC SRB AFT SKIRT CONCEPT)

Carey M. McCleskey, NASA/KSC Haley W. Rushing, ASSI/KSC

LAUNCH SITE ELECTRIC ACTUATION STUDY

A SPEANT SAME PRIMARY SRB TVC LAUNCH SITE WORK FLOW / SEQUENCE(S) 8 PAD (S) AFT SKIRT TEST FACILITY VAB LC-39 RPSF

EA_BRB_SITE HDB 4NOV81 Rev. A

SAB REFURBISHMENT OPERATIONS HANGAR AF COMPLEX

ASSEMBLY AND REFURBISHMENT FACILITY (ARF)

MANUFACTURING BUILDING

Fig 2.2.1.2.1-1

APU/HYDRAULICS TYPE TVC AFT SKIRT BAY TUBE & HOSE SHOP W-110 W-128 ARF MANUFACTURING BUILDING TVC AREAS AFT SKIRT BAY TWC SUBASSY \$7.× M-127 CORRIDOR M.119A TYCICATS TYCILAU M-116 TVCSTORAGE ANDINSPECTION PRE CLEAN M-109 AFT SKIRT BAY M 126 M 118 - NON CLEAN AREA (1089 SQ FEET) HYD TEST M-117 M-117.A (10843 SQ FEET) TANK -100 KAREA SYMBOLS

|||||||||||| - EXPLOSIVE PROOF & 100 K AREA

ARF MANUFACTURING BUILDING TVC AREAS

AFT SKIRT TEST FACILITY AREAS VS OPERATIONS

TVC MANUFACTURING APU/HYDRAULICS VS ELECTRICAL ACTUATION	S VS ELECTE	SICAL ACT	UATION	
OPERATION/FUNCTION	CURRENT SRB AREA	IRB AREA	NEW PROJECT WITH	NEW PROJECT WITH
	ROOM	SQ FT*	APU/HYD REQ	REQ.
PRE CLEAN	M109	839*	YES	NO
FINAL CLEAN	M109A**	999	YES	ON
TANK FARM (OUTSIDE AREA SEE NOTE 1)	•	•	YES	ON
TUBE & HOSE FACILITY CLEAN RM ANTE ROOM AREA CORRIDOR	M110 M119A M119	2526 529 155	YES	ON
LRU MAINTENANCE SHOP (COMP ASSEMBLY)	M116	029	YES	ON O
HYDRAULIC PUMP ROOMS (CATS TEST MEDIA)	M117	250*	YES	Q.
HYDRAULIC & HYDRAZINE COMP ACCEPTANCE TEST CLEAN ROOM ANTE ROOM	M118 M117A	898 440	YES	O _N
SUB ASSEMBLY AREA ANTE ROOM (PRE CLEAN TO HOSE SHOP)	M120 M120A	1431 158	YES	O _N
AFT SKIRT TEST BAYS	M126**** M127	1174 1158 1158	YES	1174
TOTAL SQ FT NON CLEAN AREA TOTAL		10843 1089 11932	10843 1089 11932	3490 3490
NORMAL MAUNFACTURING AREA I.e. NOT 100K CLEAN EXPLOSION PROOF AREA M126, ASSEMBLY CELL CURRENTLY USED AS INSP/WORK STATION NOTE 1: OUTSIDE & WEST OF ROOMS 109 & 109A; TANKS FOR THE				

OSION PROOF AREA
ASSEMBLY CELL CURRENTLY USED AS INSP/WORK STATION
OUTSIDE & WEST OF ROOMS 109 & 109A; TANKS FOR THE
DEIONIZED WATER
SUPPLY -3000 GALS
FREON
ALCOLHOL
SUPPLY -3000 GALS
3000 GALS WASTE

SRB CIL LRU'S ASSESSMENT

SUMMARY

V	PU/HYDRAULICS	ELA *
TOP 20	တ	0 TO 1
CRIT 1 (INCLUDES ITEMS IN THE TOP 20)	194	•
	\times	ო
TOTAL TVC	202	4 TO 5

CIL's with deletion of APU/HYD TVC

2% of reduced SRB

34 %

205

TVC + TVC ELECT SUPPORT LRUS

TVC % OF SRB CIL LRU'S

8 TO 9**

^{**} INCLUDES CAT 1 ATVC INTERFACE BOX, + 2 CAT 1R CABLE HARNESS, + 1 CAT 1R POWER HARNESS * ASSUMES NO LRU'S EXPLOSIVE OR WHICH PROPAGATE FIRE

APU/HYDRAULICS vs ELECTROMECHANICAL ACTUATION SRB TVC AFT SKIRT ASSEMBLY AND REFURBISHMENT*

ONE FLIGHT VEHICLE OR 2 AFT SKIRTS

OPERATION	APU/HYDRAULIC WORK DAYS	DAYS ELA WORK DAYS	
DESERVICING	ĸ	NOT APPLICABLE	ш,
DISASSEMBLY FROM AFT SKIRT AND MODULE	1	N	*
OFFLINE BUILDUP	89 87	4	•
IN SKIRT BUILDUP	32	10	
AFT SKIRT SERVICE & CHECKOUT (NOTE FOR ELA NO SERVICING REQUIRED)	0	4	
TOTAL	100	50	

^{*} LRU/COMPONENTS INSPECTION REFURBISHMENT, TEST AND CHECKOUT IS COVERED AS A COST ITEM.

SAB TVC

LRU/COMPONENTS INSPECTION REFURBISHMENT, TEST AND APU/HYDRAULICS VS. ELECTROMECHANICAL ACTUATION CHEKCOUT COSTS

APU/HYDRAULICS

ELECTRIC ACUTATION

LRU/COMPONENT	MISSION SET AVERAGE COST	LRU/COMPONENT	MISSION SET ESTIMATED COST
O Off-Site Vendor O Hyd. Power Unit			
O APU O Hyd. Pump	590,000 22,000	O Electric Power Battery/each mission	\$ 80/160 K*
O Actuators	323,600	O Actuator Assembly	63/125 K
		O Controller**	2.2 K
O On-Site Contract (TBE)(Reservoirs, Accumulators, Mani-	216,328		: .
fests, check valves,filters, etc.)	tc.) \$1,151,928	ELA	\$149,000 to \$287,000

^{*} Depends on Battery Type Selected

^{**} Assumed protected from salt water contact and requires on-site bench test and inspection only.

INTEGRATED OPERATIONS

APU/HYUDRAULICS VS. EMA

OPERATION		APU/HYD	EMA SERIAL HOUR
	Ø	SERIAL HOURS	
RECOVERY/SAFING		4	0
SIT (PART 1) VAB		27	6.5 (1 Shift)
SIT (PART 2) PAD		42	14.5 (2 Shifts)
TVC FUELING PAD		42	O I
	TOTAL	115 eh	20.5 (3 shifts)

STUDY ASSUMPTIONS FOR THE SRB ELECTRICAL ACTUATION THRUST VECTOR CONTROL (TVC)

- There are no launch site operations differences between the ELA schemes being considered.
- o Induction motor with resonant controller
- Permanent magnet brushless DC motor and controller
- The controllers will incorporate a Health Management System
- Manufacturing and electrical shop environment are adequate for ELA (clean bench for LRU internal disassembly for modifications or repair only)
- Items cost economical to refurbish will be recovered and reused (all major functional (The LRUs are protected from internal salt water intrusion.)
- Expendable items are cables and ancillary hardware (fasteners, bonding straps, clamps) which have salt water contact.
- Fueling, servicing, bleeding, pressurizing, and deservicing operations with the associated fluids and gases sampling, certification, and air entrainment checks are not required.

ACTUATION THRUST VECTOR CONTROL (TVC) (Continued) STUDY ASSUMPTIONS FOR THE SRB ELECTRICAL

- TVC "Scape Suit" hazardous operations with associated area clears, and health and fire department support, are eliminated.
- Protection against high voltage DC contact by personnel for launch operations will be provided in the design.

POWER SOURCE

- Chemical batteries (long term) are expendable; require no activation; and can be stored in an ambient environment. Battery life after installation shall nominally be one year with a minimum of 120 days. Short term and interim chemical batteries (primary, reserve, or high temp) will provide a pad stay time which supports 24, 48, and 72 hours' scrub turn-around. Primary and reserve batteries shall accommodate two (2) low-rate trickle charge without requiring removal, throwing away, and replacement in the event of contingency rollback.
- Flywheel battery controller will include a health management system; be capable of being charge up from ground umbilical source; meet 24, 48 and 72 hours' scrub turnaround requirement without spin up (recharge); provide self containment protection against credible failure modes. 0

EMA CONTROL SYSTEMS DESIGN OPERATIONS PROVISIONS

tests. The procedures and software implementing these requirements shall be modular; capable of stand-alone application; provide for new version or technology enhancement; and verified at the post-manufacturing/assembly level. Thermal profiles automatic display of the critical TVC operations and parameters necessary for launch testing. The HMS system, failure provide for access, running of sequences, and display of data to the TVC LPS console for contingency, troubleshooting, and LRUs will be readily accessible for Installation and Removal. The movement of control surfaces and engine nozzles for access contact and for external removal and reinstallation are to be considered. This would facilitate the recovery and reuse of multi-Operations and maintenance requirements at the LRU and system level, including failure detection and isolation, will be implemented in the HMS and Bite (automated test) with no requirement for external stimuli. This will include redundancy The HMS system, OMRS system, and Launch Processing systems shall be "TRULY" operations "USER FRIENDLY" with prediction, failure trend, and LRU component history (waivers/deviations, open work, approved changes) data busses will Factory environment (temperature and cleanliness) shall be adequate for normal LRU processing. Contingency internal LRU LRUs will be internally protected against electrostatic charge during mate/demate of connectors with no requirements for External pods providing for TVC system (controllers, power source, cables, and ancillary hardware) protection from salt water Bonding straps, when required, will be provided with the LRU and nominally installed during Post-Manufacturing, of the LRUs shall be developed and checked during LRU acceptance test and used for failure prediction/health status. Fasteners with locking and self capture features are to used for LRUs' installation and on access covers respectively. shall not be required. Connectors shall be visible and within "easy" reach from personnel support structures. mission hardware and alleviate requirements for complete disassembly and rebuild. operations shall, if required, be performed using "Clean Bench." protective clothing and grounding of personnel. Checkout/ACO PMC buildup and test. engineering evaluation. 0 0 0 0 0 0 0

EMA THRUST VECTOR CONTROL (TVC) SYSTEM LAUNCH SITE VERIFICATION REQ (GENERIC)

REQUIREMENT	Actuator Assembly	Actuator Controller Power Assembly Assembly Supply	Power Supply	TVC Subsystem	Remarks
Isolation				×	Isolation at LRU level performed at post-manufacturing checkout/assembly checkout
Power-Up Sequence	×	×	×	×	Verifies TVC subsystem operation and compatibility with Launch Area GSE power source and Launch Processing System (LPS).
Verify LRU Health and Status	×	×	×	×	Automatic GO-NO GO test with Launch Processing System asking the on-board TVC HMS to perform status check including redundancy. NOTE: On-board and ground processing S/W previously run at post-manufacturing/ACO°
Control System Verification				×	Vehicle guidance and control system previously verified at PMC before delivery for launch operations processing. Launch operations GN&C system health and status checks performed. Test verifies command and proper response of TVC system interfaced to vehicle system, including normal operations and redundancy checks. Test is to be run with actuators unconnected to nozzle. Envelope/clearance tests, if required, have been performed during PMC. Contingency test or re-test at LRU level to be within capability of the control health management system.
Countdown Demonstration			:	×	Performed as separate test on first flow, after major modification affecting launch sequence, etc. Verifies control system network compatibility, system operation, and launch countdown.
FRF	. · · · · · · · · · · · · · · · · · · ·			×	Not required by EM TVC; verifies TVC control in conjunction with engine firing when required for MPS engine changeout, MPS modification, etc. verification.
Launch				*	Verifies TVC system end-to-end performance and readiness for launch while running through the automated power-up, bite checks, HMS self tests, flight critical measurements, and command system test profile. The command system test profile is to be run as soon as practical after transition to internal power.
* TVC system configured for launch and closeout.	1 for launch	and closeo ו	ùt.		

ELECTRICAL ACTUATION $BRIDGING\ PROGRAM$ **TECHNOLOGY**

GALE R. SUNDBERG NASA LEWIS RESEARCH CENTER CLEVELAND, OHIO 44135 ELA-TECHNOLOGY BRIDGING PROJECT WORKSHOP MARSHALL SPACE FLIGHT CENTER, ALABAMA

Lewis Research Center

ELA TECHNOLOGY BRIDGING PROJECT WORKSHOP

 GOVERNMENT/INDUSTRY/ACADEMIA ELECTRICAL ACTUATION/ POWER SYSTEMS TECHNICAL INTERCHANGE MEETING

NASA ELA TECHNOLOGY BRIDGING PROJECT REVIEW

SEVERAL DEMONSTRATIONS OF ELECTRICAL ACTUATION SYSTEM TECHNOLOGIES PROVIDE A FORUM FOR NASA TO SHARE/DISCUSS ELA/POWER GOALS, PROGRESS, ISSUES AND PLANS

OPEN WINDOWS OF OPPORTUNITY FOR TECHNOLOGY ACCEPTANCE AND TRANSFER

Technology "Bridging" Concept

- "Technology Bridging" is a process that was spawned by the Strategic Avionics Technology Working Group (SATWG).
- It is a technology development and demonstration process that 'bridges" technology providers and users.
- It is a joint endeavor between government, industry and academia.
- It employs principles of concurrent engineering.
- It produces credible costs-to-benefits assessment.
- It's objective is to facilitate technology transition, from the lab to the customer's project.
- applications of the technology, or terminates, allowing resources Once the technology is incorporated into a program's advanced development phase, the bridging project focuses on other to be transferred to other technology initiatives.

Electrical Actuation Technology Bridging Project Objectives

- Leverage NLS & industry IRAD ELA technology development to meet multiple NASA program actuation system requirements
- high-power (40-70 Hp) electrical actuation system suited for primary Develop and demonstrate a representative advanced technology, flight control (thrust vector & aerosurface control) applications. Customer/Program targets include: NLS, ASRM, CELVs
- suited for flight/ground fluid control (Propellant Control Valve, GSE) and future space transfer vehicle and remote surface vehicle (SEI) Develop and demonstrate low-energy, high-reliability ELA systems applications. Customer/Program targets include: KSC/SSC-GSE, NLS/ELV PCVs, ACRV F/C, and SEI (Rovers, Excavators, Cranes, OMV, OTV, Lander)
- Develop metrics to assess/validate cost benefits of electrical vs. conventional hydraulic actuation systems (flight and ground)
- Define and implement a cooperative, customer-focused technology development and transition process as a "pilot" for the agency
- Successfully transition proven ELA system technology into first available target program(s)

Electrical Actuation Technology Bridging

Electrical Actuation Technology Bridging

Electrical Actaution Technology Need

· PAYOFFS

- Eliminate maintenance-intensive, high-pressure hydraulic systems
- Eliminate centralized hydraulics and hazardous/toxic fluids
- Reduce labor-intensive testing and vehicle preparation time (support rapid change-out & retest)
- Reduce recurring launch processing & ops costs (~10% labor & GSE)
- Improve program reliability, operability and abort recovery
 - Improve late hold capability and extend launch window
- Reduce stand-down and vehicle turn-around times - Multiple national technology spin-off applications
- -- electric auto
- -- motorized machinery/appliances
- -- more-electric airplane

NATIONAL LAUNCH SYSTEM

EMA'S APPLICABLE TO NATIONAL SET OF LAUNCH VEHICLES

								3		
!		HR	20 No USA POR CO	Market A	NT.	40 Hp EMA	EMA			in the state of th
			ENCANE	TITANI	ATLAB	STS FLT CONT.	CONT.	ALS	grs	
MEQUIREMENTS		CENIAUR	PRE-VALVE	STAGE 1"	Воовтея	OUT ELE	IN ELE	PREL.	TVC	
STALL LOAD	(LBS)	1610	×	29,790	10,750	54 K	65 K	48,000	48,000 74,400	96.840
DYNAMIC LOAD (L	(LBS)	1191	×	11,330	7,510	8	48 K	48 K 32,000 48,000	48,000	,
ACTUATION RATE (DEG/SEC)	SEC)	9	×	10	6	8	30	15	10	10
ACTUATION POWER	(HP)	0.5	2.1	4.3	9	13.7	28.5	32.8	41.6	68

^{(&#}x27;Applicable TVC for ALS and MOOG Position Statement', MOOG, INC.. Missile System Div., East Aurora, NY 14052) X - PARAMETER NOT APPLICABLE/AVAILABLE

NATIONAL LAUNCH SYSTEM

ELECTRICAL ACTUATOR COMPONENT HARDWARE TRADES

INVERTER/CONTROLLER UNIT

HIGH FREQUENCY AC LINK:

PULSE POPULATION DENSITY

PULSE WIDTH MODULATION HIGH VOLTAGE DC LINK:

LOW EMI/EMC

ELECTRIC MOTOR

· INDUCTION

POWER/SIGNAL CABLES

SWITCHED RELUCTANCE

· LOW INDUCTANCE

PERMANENT MAGNET

BALL SCREW

ACTUATOR

ROLLER SCREW

ELECTROHYDROSTATIC

STME/SSME CONTROLS FLIGHT AND

· FUEL CELL

· TURBO ALTERNATOR

SRB HYDRAULIC VS ELECTRIC LIFE CYCLE COST OVERVIEW NASA HO CODE D REVIEW

INTRODUCTION

- SRB TVC LAUNCH SITE PROCESS
- **LIFE CYCLE COST ANALYSIS INTERIM RESULTS**
- LAUNCH SITE OPERATIONS REDUCTIONS
- **HUMAN RESOURCES (MAN-HRS)**
 - EQUIPMENT
 - FACILITY
- BATTERY ISSUES

SRB TVC LIFE CYCLE COST ELEMENTS

(System Costs = \$ 3.3M Per Flight)

SRB TVC WORK FLOW /SEQUENCE 8 PADS LC:39 6 nes

SAB TVC HYD VS ELA (INTERIM RESULTS) (Cost Savings = \$ 2.0M Per Flight)

NASA HO CODE D REVIEW

LAUNCH SITE OPERATIONS REDUCTIONS

HAZARDOUS OPERATIONS

PROCESSING	TIME RE	PROCESSING TIME REDUCTIONS (DAYS)	
PROCESS	APWHYD	ELA	
RECOVERY/SAFING	0.5	0	
DESERVICE/DISASS'Y	9	1	
COMPONENT DISASS'Y	15	4	V.
AFT SKIRT REMANUF			_
OFF-LINE ACTIONS	38	8	-
IN-SKIRT BUILD-UP	32	9	
SERVICE, TEST & C/O	10	4	-
LAUNCH VEHICLE INTEG	1	0.5	
PAD OPERATIONS	3.5	-	S
TOTAL	106	24.5	

SCAPE SUITS/TECHNICIANS **SREATHING AIR SERVICES** TRE/MEDICAL SUPPORT STORAGE & HANDLING IYDRAZINE HAZARD

FURTHER BENEFITS

GROUND SUPPORT EQUIPMENT

APU

77% REDUCTION

HYD

- GSE COUNT CURRENTLY AT 588 ITEMS ELA FAR LESS
- LESS UNSCHEDULED MAINT/PROBLEMS THROUGH LARGE REDUCTIONS IN VEHICLE COMPONENT & GSE COUNTS
- LARGE REDUCTION IN FLUID COMMODITIES HANDLING AND SERVICES:
- HYDRAULIC FLUID
 - · HYDRAZINE
- ALCOHOL, FREON, HP GN2, BREATHING AIR, CLEANING AGENTS, DETERGENTS, ETC.
- FACILITY AREA FROM 12,000 TO 3500 SQ. FT. WITH NO REQUIREMENT FOR TWO OF THE FACILITIES

NATIONAL LAUNCH SYSTEM

AVIONICS

ELECTROMECHANICAL ACTUATORS & INTEGRATED ELECTRICAL POWER SYSTEM - PART I #2401

RESPONSIBLE ORG.: JPO,	EXECUTED BY: NASA/LERC	FUNDING 1.25	FY PRIOR	· VEHICLE, EMA SYSTEM REQUIREMENTS	• 25 Hp BREADBOARD MOTOR DRIVE DEMO • 40 Hp EMA SYSTEM	DEVELOP & DEMO
ELECTRICAL ACTUATION/POWER SYSTEMS	1996/1990 1991 1992 1993	GDSS CONTROLS CONTROL	LeBC Mediummerrs and var post	ARTI	TVC/POWER TRADES-ACTUATOR/POWER SO NO ENACHA. TRADES-ACTUATOR/POWER SO NO ENACHA. THAS SO TO TO NO TENATOR T	

69.0

0.86

1.03

2.53

1.54

8

89

OBJECTIVE:

- DEMONSTRATE EMA/POWER SUBSYSTEMS FOR TVC AND ENGINE EFFECTORS
- INTEGRATE CONTROLS WITH AVIONICS AND PROPULSION INTERFACES

PAY-OFFS:

- EQUIPMENT/FLUIDS
- REDUCE CHECK-OUT FLOWS/OPS. COSTS
- · REDUCE STAND DOWN TIME/COSTS
- . IMPROVE DISPATCH RELIABILITY, LAUNCH ON DEMAND

PRODUCTS/DELIVERABLES:

(1) VEHICLE TVC REQUIREMENTS & EMA/POWER SYSTEM REQUIREMENTS

1

• 60 Hp FULL SCALE EMA SYSTEM DEMO

3

(2)

- (2) 25 Hp INVERTER/CONTROLLER BREADBOARD H/W DEMO (HIGH POWER, 20 kHz RESONANT LINK, FIELD-ORIENTED CONTROL OF MOTOR)
- (3) 40 Hp EMA SUBSYSTEM DEVELOPED AND DEMONSTRATED (MOTOR CONTROLLER, ADVANCED INDUCTION MOTOR AND ACTUATOR)
- (4) 60 Hp FULL SCALE EMA TVC SUBSYSTEM DEMONSTRATED (POWER SOURCE, CONTROLLER, MOTOR, ACTUATOR IN AVIONICS SYSTEM)

NATIONAL LAUNCH SYSTEM

YSTEM

ELECTRICAL ACTUATORS FOR EARTH-TO-ORBIT

BASED UPON NLS ADP DEVELOPMENT

• BATTERIES

- BIPOLAR LITHIUM; MASS = 2 kW/Lb.

POWER PROCESSING - RESONANT LINK

FREQUENCY = 40 to 60 kHz

MASS = 0.5 to 1.5 Lb./Hp

· INDUCTION MOTOR

STEADY-STATE FREQUENCY = AS REQUIRED

FREQUENCY AT PEAK HORSEPOWER = 750 Hz (approx.)

MASS = 0.25 Lb. PER PEAK Hp

SYSTEM MASSES (AT 60 Hp PEAK FOR NLS)

TOTAL SINGLE ENGINE - TWO ACTUATOR SYSTEMS = 520 Lbs.

COMPARABLE, MODERN DISTRIBUTED HYDRAULICS = 850 Lbs.

58

Lewis Research Center

FULL SCALE, 60 HP NLS DEMONSTRATION SYSTEM

MOTOR CONTROLLER

- **DEDICATED DC-LINK, RESONANT POWER PROCESSOR**
- 60 kHz, 75 KVA
- SHARED MICRO-COMPUTER CONTROL, FIBER-OPTIC INTERFACES TO PROCESSOR AND MOTOR
- PRIMARY CONTROL ALGORITHMS CONTAINED IN SOFTWARE

· MOTOR

- ADVANCED, LIGHTWEIGHT (<20 LBS) THREE-PHASE INDUCTION MOTOR
- 38 Hp CONTINUOUS, 70 Hp PEAK AT 14,700 RPM
- LOW LOSS, LOW INERTIA ROTOR
- HIGH TEMPERATURE OPERATION TO 200 C

· LINEAR ACTUATOR

- BALL SCREW WITH DUAL MOTOR DRIVE
- 48,200 LB FORCE, 5.4 INCH EXTENSION
- WEIGHT IS ABOUT 225 LBS

Lewis Research Center

Lerc 40 Hp ELECTROMECHANICAL ACTUATOR FOR THRUST VECTOR CONTROL APPLICATIONS

TECHNOLOGY DIVISION

ELECTRONIC MOTOR DRIVE by GENERAL DYNAMICS SPACE SYSTEMS INDUCTION MOTOR by SUNDSTRAND CORPORATION MECHANICAL ACTUATOR by MOOG, INC.

MSFC ADVANCED DEVELOPMENT PROGRAM

• THRUST VECTOR CONTROL SYSTEMS

- DUAL CHANNEL 50 HP FEASIBILITY DEMONSTRATION UNIT
- QUAD CHANNEL 60 HP SSME/SRB DEMONSTRATION UNIT
- NLS TRIPLE- REDUNDANT DERIVED REQUIREMENTS AND SPECIFICATION

ENGINE CONTROL VALVE SYSTEMS

- MSFC SIMPLEX SSME MAIN OXIDIZER VALVE (MOV)
- HR TEXTRON SSME MOV PROTO-FLIGHT UNITS
- AEROJET STME PROPELLANT CONTROL VAVE UNITS

-NSV-

MSFC 60 Hp EMA Actuator With Quad Permanent Magnetic Motors

- 4 Channel 15 Hp Permanent Magnet DC Motors
- 9.6:1 Single Pass Gear Reduction w / 0.4 Inch Roller Screw Lead
- Rated Load of 60,000 Lbf
- Rated Velocity of 5 inch / sec
- Maximum Stroke of ± 5.25 inch
- 4.2 Hz Control Bandwidth

MSFC / Aerojet Main Engine EMA Propellant Valve Actuator

- Dual Redundant STME PVA
- Microcontroller Design w / BIT
- 0.485 Hp DC Permanent Magnet Motors
- 28 Volts 36 Amps Motor Controller
 - 180:1 Harmonic Gear Reduction
 - 7-9 Hz Control Bandwidth
- Internal Health Monitoring

• MSFC - CONTROL MECHANISMS & PROPELLANT DELIVERY BRANCH - EP64

NASA

EMA TEST FACILITIES AT MSFC:

- INERTIA LOAD SIMULATORS
- SSME AND SRB TEST BEDS
- SRB AND SSME COMMAND PROFILES
- FLIGHT-TYPE (Ag-Zn) BATTERY OPERATIONS (FY 93)

- SRB FLIGHT LOADS AND COMMAND PROFILES (FY-93)

- RATE vs HYDRAULIC LOAD TEST BEDS
- **ENGINE CONTROL VALVE FLOW TEST FIXTURES**
- SSME HUNSTVILLE SIMULATION LABORATORY (HSL)
- SSME TECHNOLOGY TEST BED
- TEST STAND 116 CRYROGENIC FLOW FACILITIES

NASA .

MSFC EMA TEST PROGRAM PARTICIPANTS:

- THRUST VECTOR CONTROL TEST ARTICLES (SSME & LOAD FIXTURES)
- MSFC TVC SYSTEMS (DC PERMANENT MAGNET MOTORS)
- DUAL 50 HP UNIT (TESTING IN PROGRESS)
- QUAD 60 HP UNIT ASSEMBLY & CHECKOUT (AUGUST, 1992)
- Lerc/General Dynamics Dual Redundant 60 HP Induction Motor TVC (JULY, 1992)
- HONEYWELL IRAD 30 HP TVC & VHM DEMONSTRATION (AUGUST, 1992)
- MOOG IRAD TVC DEMONSTRATIONS (TBD)
- BOEING/ ALLIED-SIGNAL TURBO-ALTERNATOR & ELECTRO-HYDROSTATIC TVC (SEPT. 1992)
- **ENGINE CONTROL VALVES TESTING**
- MSFC SIMPLEX PROPELLANT VALVE ACTUATOR TESTING IN FLOW FACILITY AND HSL
- HR TEXTRON MAIN OXIDIZER VALVE SSME QUALIFICATION TEST SERIES (JUNE, 1992 ATP)
- AEROJET PROPELLANT VALVE ACTUATOR TESTING IN THE HSL (FY-93)
- SSME TECHNOLOGY TEST BED DEMONSTRATIONS (FY 94)
- MSFC QUAD 60 HP TVC
 - HR TEXTRON MOV

MSFC - CONTROL MECHANISMS & PROPELLANT DELIVERY BRANCH

/ELECTRO-MECHANICAL ACTUATOR (EMA) ELECTRICAL ACTUATOR (ELA) FEASIBILITY STUDY

Objective

- · Determine the feasibility of replacing hydraulic/pneumatic actuators with ELAs in Ground Testing of Propulsion Systems to enhance operational efficiency of ground operations.
- Perform rigorous test program for ELA hardware evaluation prior to propulsion system and flight vehicle application and to gain early operational experience in a relevant environment.

Need

- Enhance operational efficiency and reliability of facility ground systems.
- · Reduce the cost of labor intensive hydraulic systems in ground operations.

Approach

- · Determine the applicability of EMA technology to support Static Test Firing of Rocket Engines and other test articles at SSC.
- Perform in-house testing to establish capabilities, reliability and cost effectiveness of replacing hydraulic/pneumatic actuators with Electrical Actuators.
- Coordinate SSC ELA activity with JSC, MSFC, LeRC and KSC.

W11101P19

SSC GROUND APPLICATIONS

- Variable position valve for NASP Heat Flux Test Facility
- Automation of High Pressure Gas Facility
- CTF Test Cell
- Seal Configuration Tester
- Selected Facility Support System Valves

SUMMARY

ELECTRICAL ACTUATORS CAN REPLACE HYDRAULICS IN LAUNCH VEHICLES

MAJOR ELECTRICAL ACTUATION ELEMENTS DEVELOPED, UNDER EVALUATION

TECHNOLOGY CAN PROVIDE STANDARDIZED, MODULAR TVC HARDWARE

ELECTRICAL ACTUATION ADVANCES COULD HELP U.S. COMPETITIVE POSITION

NLS Keynote speaker

Paper Not Available

Wright Laboratory

Power-By-Wire Flight Control Actuation Research & Development Activities

Presented By

Mr. David B. Homan

45433-6553 Wright Laboratory WL/FIGS Wright-Patterson AFB, OH

Phone: (513) 255-8679

WHY Power-By-Wire?

EFFICIENCY

- POWER EXTRACTED
 FROM ENGINES
- HEAT MANAGEMENT

MAINTAINABILIT

- ELIMINATE HYDRAULIC DISCIPLINE
- EQUIPMENT (AGE) - LESS SUPPORT

DESIGN IMPLICATIONS

- WEIGHT SAVINGS
- IMPROVED SURVIVABILITY - REDUCED VULNERABILITY SIMPLER SYSTEM

OPERATIONS

- HIGHER A/C SORTIE RATE
- MOBILITY
 - MANPOWER

- LOWER LIFE CYCLE COSTS

MORE-ELECTRIC **AIRCRAFT**

 FLIGHT LINE SUPPORT EQUIPMENT/ MORE-ELECTRIC TECHNOLOGIES MAINTENANCE REDUCED BY

POWER-BY-WIRE OFFERS MAJOR REPLACING CENTRALIZED SYSTEM LEVEL PAYOFFS HYDRAULICS WITH

MORE ELECTRIC AIRCRAFT VISION

REDUCE/ELIMINATE HIGH MAINTENANCE SUBSYSTEMS/DISCIPLINES (CENTRAL HYDRAULICS, BLEED PNEUMATICS, GEARBOXES, HAZARDOUS FLUIDS, AEROSPACE GROUND EQUIPMENT (AGE))

FOCUS U.S. R&D EFFORTS IN AIRCRAFT POWER, SUBSYSTEMS AND ELECTRIC ACTUATION

- REDUCE LIFE CYCLE COSTS THROUGH IMPROVEMENTS IN COMPONENT RELIABILITY **AND REDUCED O&S COSTS**
- 30 TO 50% REDUCTION IN AEROSPACE GROUND EQUIPMENT (AGE)
- TOLERANCE/MAINTAINABILITY/SUPPORTABILITY/VULNERABILITY MAJOR SYSTEM LEVEL IMPROVEMENTS IN BATTLE DAMAGE
- ELIMINATE CENTRAL HYDRAULIC SYSTEM/HYDRAULIC MAINTENANCE/FIRE HAZARD
- IMPROVED AIRCRAFT PERFORMANCE FROM RESIZED ENGINES AND REDUCED WEIGHT
 - 600-1000#
- · IMPROVED FLIGHT CONTROL, BRAKING, COOLING

SYSTEM LEVEL PAYOFFS

- · FIGHTERS RETROFIT ANALYSIS/750 AIRCRAFT

 - 60 129 ADDITIONAL AIRCRAFT11 15% REDUCED MAINTENANCE MANPOWER
 - 10 12% VULNERABILITY IMPROVEMENT
- **TRANSPORT RETROFIT ANALYSIS ELECTRIC ACTUATION ONLY/267** AIRCRAFT
- 3.3 5.9 ADDITIONAL AIRCRAFT
 UP TO 182 MANPOWER REDUCTION PER FLEET
 UP TO 58% TURNAROUND TIME IMPROVEMENT
- HELICOPTERS
- MORE ELECTRIC ENGINE -15% IMPROVED RELIABILITY, 22% REDUCED **WEIGHT, AND 2% REDUCED FUEL**
- · COMMERCIAL AIRCRAFT
- MORE THAN 2% FUEL SAVINGS

. Electric Generator

2. Hydrazine Servicing Cart

3. Hydraulic Servicing Cart

4. High Pressure Air Cart

5. Air Conditioner

6. Hydraulic Mule

Flight Line Battery Support Shop (Not Shown)

16 C-141s Required to Support 24 F-16s

FLIGHT CONTROL ACTUATION POWER-BY-WIRE

Wright Lab Funded Programs

- Electrically Powered Actuation Design (EPAD) Validation Flight Test Program
- ElectroHydrostatic Actuation (EHA) for Large Aerodynamic Surface Applications
- Reliability & Maintainability Flight Test Program C-141 Electric Starlifter Power-By-Wire
- Flight Control Systems Actuation Technology
- Switch Reluctance Motor Development

FLIGHT CONTROL ACTUATION POWER-BY-WIRE

Other Wright Lab Activities

- Supporting Lockheed HTTB PBW Flight Tests
- OC/ALC & Parker Aileron EHA Demo
- Lucas Rudder IAP Demo
- Support Focusing IRAD for PBW Development
- Plan Stabilator Actuator Flight Test Demo
- FIGS Electric Stab Act'r Program
- MEA Secondary Power + Electric Stab Act'r
- Plan PBW Flight Control System Demo
- More Electric Aircraft Ground/Flt Tests - More Electric AFTI F-22 Demonstrator
- Plan Rotary/Thin Wing PBW Actuator Dev

FLIGHT CONTROL ACTUATION POWER-BY-WIRE

1990 Technology Assessment

CAPABILITY

Moderate Horsepower, Low Power Density

3-5 HP
 1-3 HP/Ft³
 10,000-15,000 LbF
 4-6 In/Sec
 1-3 Hz

IMITATION

Only Trailing Edge Surface Applications

Transport Class Aircraft

NSK

PBW for Fighter Surface Application

EHA from Lab Tests to Flight Tests

IC STARLIFTE

ELECTRIC STARLIFTER

PROJECTED C-141 OPERATIONAL R&M PAYOFFS

OPERATIONAL AVAILABILITY

3.3-5.9 C-141's Additional

SORTIE GENERATION

+2000/YR/Fleet

RELIABILITY & MAINTAINABILITY

MTBMA Increased 28%
MTTR Reduced 50%
MMHrs/A-C/Yr Reduced 55%
2 Level Maint
Troubleshoot Time Cut 83%

ELECTRIC ACTUATION

C-141 ELECTRIC STARLIFTER -- DEMONSTRATE THE R/M/S OF ELECTRIC ACTUATION IN OPERATIONAL ENVIRONMENT (2X RELIABILITY, LRU CONCEPT, 16 ACTUATORS)

FIRST FLIGHT - 4QFY94

DELIVERY TO AMC 1QFY95

FLIGHT CONTROL ACTUATION POWER-BY-WIRE

1993 Technology Assessment

CAPABILITY

Moderate Horsepower, Moderate Power Density

5-7 HP
 15-25 HP/Ft³
 15,000-20,000 LbF
 4-6 In/Sec
 4-7 Hz

LIMITATION

- Only Trailing Edge Surface Applications
- Transport & Fighter Aileron/Rudder

RISK

 High HP PBW Act'r for Stiffness Driven Surface (i.e. Horizontal Stabilator, Elevator, Canard)

FUTURE AIRCRAFT BLOCK UPGRADES DERIVATIVE AIRCRAFT and **OPPORTUNITIES** JOINT AF, NAVY, NASA PROGRAM

GOALS OF EPAD

- CONTROL SURFACE ON A FIGHTER A/C TECHNOLOGY ON PRIMARY FLIGHT FLIGHT TEST DEMONSTRATE PBW
- INDUSTRY AND OTHER GOV AGENCIES TRANSFER PBW TECHNOLOGY TO
- BASELINE PROGRAM FOR MEA
- BASELINE INFORMATION FOR NAVY A/X PROGRAM

FLIGHT TEST OBJECTIVES

MEASURE PERFORMANCE UNDER ACTUAL FLIGHT CONDITIONS

- / COMBINED LOADS (SURFACE): INERTIAL, AERODYNAMIC **AEROEL ASTIC**
- COMBINED ENVIRONMENTS: NOISE, TEMP, VIBRATION
- CHANGES, TRIM CHANGES, REAL FLT DYNAMICS A REAL MANEUVERS/OPERATIONS: RAPID FLT
- V REAL TIME COMPARISON TO ELECTROHYDRAULIC ACTUATOR RESPONSE, TRANSIENTS, TEMP POWER CONSUMED

SEARCH FOR UNEXPECTED

■ DOCUMENT RESULTS

E-0248 - 6

ELECTRIC ACTUATION

 INTEGRATED ACTUATION PACKAGE FOR HTTB RUDDER SUCCESSFULLY DEMONSTRATED FULLY REDUNDANT, POWER-BY-WIRE ACTUATION SYSTEM
- 115 VAC POWERED
- 6750 LBS MAX OUTPUT FORCE
- 4 HZ ± 2% NO LOAD FREQUENCY RESPONSE
- DIGITAL ELECTRONIC PUMP CONTROL UNIT (ECU)
- ADAPTABLE FOR FLY-BY-LIGHT

FLIGHT CONTROL ACTUATION POWER-BY-WIRE

1996 Technology Goals

CAPABILITY

 High Horsepower, High Power Density
 15 - 35 HP
 20-25 HP/Ft³ / 30,000-55,000 LbF
/ 7-20 In/Sec
/ 7-15 Hz

IMITATION

PBW Act'n System Effects on A/C Electric System

Environmental (Thermal/Vibration) Tolerances

RISK

PBW Act'r Embedded Fault Tolerance

No PBW Flight Control Actuation Sys Ground/Flt Test

ElectroHydrostatic Actuator (EHA) or Large Aero Surface Applications

For LARGE AERO SURFACE APPLICATIONS ELECTROHYDROSTATIC ACTUATOR (EHA)

OBJECTIVE

Develop EHA System Capable of Meeting A Fighter Flight Critical Surface Performance AND Control & Power Redundancy Management Requirements

- Select Critical Surface Application (YF-23)
- Trade Study System & Subsystem Technologies
- Design EHA System Using Trade Results
- Develop EHA Subsystems & Test
- Build EHA System Via Subsystems Integration
- Laboratory Test EHA System
- Verify System & Subsystem Models
- Document Results

For LARGE AERO SURFACE APPLICATIONS ELECTROHYDROSTATIC ACTUATOR (EHA)

PURPOSE

Expand Power-By-Wire Actuator Technologies To Include Large, Flight Critical Surface Applications

- Expand PBW Act'n Performance to Flight Control Extreme (EHA/EMA - Fighter Aileron, IAP/EMA/EHA - Transport Aileron) (2-3X Higher Force/Rate, 4-6X Higher HP)
- Provide Tech Base for Future Flight Test Demo (More Electric Stabilator Actuator - Proposed 6.3)
- Provide Opportunity to Address & Answer Redundancy Management Issues & Implement into A Design
- Management And Distribution of More ELectric Power 63216) Provide Electrical Power Loads, Distribution & Management Requirements to MADMEL (WL/POO)
- Impact More Electric Airplane Critical Technology List

FLIGHT CONTROL ACTUATION POWER-BY-WIRE

Wright Lab Funded Programs

- Electrically Powered Actuation Design (EPAD) Validation Flight Test Program
- ElectroHydrostatic Actuation (EHA) for Large Aerodynamic Surface Applications
- Reliability & Maintainability Flight Test Program C-141 Electric Starlifter Power-By-Wire
- Flight Control Systems Actuation Technology
- Switch Reluctance Motor Development

FLIGHT CONTROL SYSTEMS ACTUATION TECHNOLOGY

JON: 24030748

PURPOSE

(Why Are We Doing This?)

 Provide Actuation Technology for Current & Future Military Aircraft Which is Simpler and/or Less Expensive Than Current State of the Art Provide Tech Integration & Test for EPAD Actuators (EHA, EMA & Smart) with Electrical Power, FCC & Aero Space on NASA F/A-18 Testbed Provide Flight Control Actuation Support to Ongoing Wright Laboratory Programs

- WL/FIG (EPAD, VISTA, LAMARS) - WL/MLB (NON-FLAMMABLE FLUID)

FLIGHT CONTROL SYSTEMS ACTUATION TECHNOLOGY

JON: 24030748

BENEFITS

- PROVIDES AF, OTHER DoD & GOV'T AGENCIES, and INDUSTRY with UNIQUE FLIGHT CONTROL ACTUATION INDEPENDENT TEST & EVALUATION CAPABILITY
- PROVIDES ADVANCED FLIGHT CONTROL ACTUATION TECHNOLOGIES FOR MILITARY & COMMERCIAL TRANSPORTATION APPLICATIONS
- GIVES WRIGHT LAB CREDIBILITY AS ACTUATION VOICE
- MAKES A GREAT TOUR STOP IN WRIGHT LAB!

AULTI ACTUATOR SYSTEM TEST RIG

Mr David Homan, WL/FIG DSN 785-8679 **MARIAB**L FOR EL

RESEARCH ISSUES

- Power Requirements
 - Force, Rate, Torque

Measured Motion

- Thermal Environment
- Fly-By-Wire Control
 - Fault Tolerance

PRINCIPAL INVESTIGATOR:

ssachusetts Institute of Technology - Lincoln Laboratory

とうちゃんないかい

SWITCHED VARIABLE RELUCTANCE (SVR) MOTOR FOR ELECTRIC ACTUATION

Mr David Homan, WL/FIGL, DSN 785-8679

RESEARCH ISSUES

- Can A SVR Motor Meet Flight Control Requirements for Actuator Force, Rate, Torque & Environment?
- Develop & Test SVR Motor to Verify Capabilities & Identify Inefficiencies for Further R&D

BENEFITS/PAYOFFS

- Contributes to "More Electric" Aircraft Technology Base
- Simpler & More Robust than Current AC & DC Motors
- Provides Alternative to Current State-of-the-Art AC & Brushless DC Motor Driven Actuators.

FLIGHT CONTROL ACTUATION POWER-BY-WIRE

IN SUMMARY...

- Wright Laboratory Control Systems Development & Applications Branch (WL/FIGS) Is A Technology Leader In Flight Control Actuation Development
- Power-By-Wire Actuation Is The Technology That Makes A More Electric Airplane Feasible
- Inhouse & Contracted Efforts Underway to Expand PBW
- Planning Activities Underway For Future PBW Work
- Supporting Users & Industry To Transition Tech

SESSION II ELA SYSTEMS METHODOLOGY

ELA/EMA Control with Resonant Power Processors

Jim Mildice

September, 1992

PRECEDING PAGE BLANK NOT FILMED

ELA/EMA System Elements

- Fixed force + inertia + rates + acceleration - set primary requirements
- Rotary to linear conversion + gear train for speed matching
- Prime mover electrical to mechanical conversion (several AC téchnologies available)
- Control of motor speed, direction, and output torque
- Energy storage (battery) or conversion (machinery) elements

JWM - 2

September, 1992

The system in this discussion is a large servo-type hardware and software assembly typically found in large launch vehicle TVC applications, or aerosurface control of large aircraft. It can be broken into major elements according to the block diagram above.

The load is defined by the steady-state forces required to provide the actual movement and the acceleration of the inertias of the masses to be moved. The dynamic responses are defined by the vehicle dynamics and the external forces acting on the vehicle. Loads are typically in the 25,000- to 50,000-pound range for an NLS-2 class vehicle.

Because of the short time allocated for this discussion, we have decided to provide a summary of General Dynamics conclusions about the actuator, motor, and power processing and control elements of the block diagram, along with the most important reasons for those choices. There have been detailed presentations and demonstrations about these elements, with full justifications for the selections. If you wish any of that data, please refer to the Bibliography and the end of this data package.

Many power source options are available. because of high peak loads, they are usually sized by the system peak power demands, and technologies having high specific power rather that high specific energy are desirable. The choice between batteries and rotating machines is usually driven by operations and test considerations.

This presentation will then focus on, and discuss the most important considerations driving ELA/EMA system design, system inertias and how they drive the entire configuration and its capability.

Actuator

- Three primary system choices
 - Ballscrew technology is well-established
 - Rollerscrew technology has some performance advantages
 - Electro-hydrostatic actuators are available where the "softness" of hydraulics is still required
- Motor and gear train inertia is the most important mechanical parameter for TVC applications
 - Normal gear reductions isolate the load inertia
 - Design for maximum power transfer makes desirable for the two inertias to be about equal
 - These inertias are the primary driver for peak input power requirements
 - They size the power processor/motor controller
 - · They determine the energy source size and character

JWM - 3 September, 1992

Even though the required motions for most ELA's are rotary (engine rotation about its gimbal point, control surface rotation about its root, etc.), vehicle physical limitations and form factors usually require that the load be moved by a linear thrust. The actuator provides the conversion from rotary motor input to linear output thrust. Rotary power requirements can typically be between 25- and 75-horsepower for our applications.

Three primary rotary-to-linear thrust mechanisms under current use and consideration are listed above. The mechanical "screw" technologies are straight forward.

Electro-hydrostatic, sealed, self-contained, single-actuator hydraulic systems can be mechanically simple and solve many of the present distributed hydraulic system operability, leak, and contamination problems. Since the motors and controllers that drive them are very much the same whether or not variable speed and direction control are included, the most efficient overall system design uses a variable- speed/direction controller, motor, and hydraulic pump, and eliminates the complexities of servo valves, force amplifiers, and other fluids hardware.

It's easy to design a small, high-speed motor/gear train system to drive the steady-state load, and the resulting large-ratio gear system also reduces the reflected usual load inertias so that they become small when compared to other inertias in the system. That means that the motor and gear train inertias dominate the power requirements for inertia acceleration and bandwidth, and the peak power input and peak-to-average ratio are fully under the TVC system designer's control.

Motor Type Characteristics

	Common Name	Stator Power	Rotor Power	AC Syntheses
•	"Classical" DC	DC	AC, sq. wave	Sliding contact, machanical, rotary switch (commutator)
•	"Classical" DC (permanent magnet)	Magnet	AC, sq. wave	Sliding contact, mech, mechanical, rotary switch (commutator)
•	"Brushless DC" (permanent magnet)	AC	Magnet	External electronic switch
٠,	AC Induction	AC	Magnetically-coupled low-frequency, AC	AC power source or external electronic switch
•	AC Synchronous	AC	AC, DC, or permanent magnet	AC power source or external electronic switch
•	Switched Reluctance	Sequenced Pulses	None - rotor is magnetic iron	External electronic switch

JWM - 4 September, 1992

Motors used in modern systems are all AC types, often interfaced to DC power systems with power processors to provide the appropriate input waveforms. The make up a class of so-called "brushless DC" motors which can include any type of AC prime mover. Well-designed motors and actuators for these applications typically require 25- to 50-horsepower for the constant load, and an equal amount of power for acceleration of inertias.

The "classical DC" motors shown above are commutator types. The significance of this configuration is that not even this age-old DC motor actually has DC in the internal fields that cause it to rotate. Its rotor current is actually square-wave AC created by a mechanical reversing switch. That reversing switch has a sliding contact system, mounted on the motor output shaft, and is made up of a "commutator" and brushes.

The development of good power semiconductor switches and high-field magnetic materials allowed a design which eliminated the commutator and brushes. It placed the constant field (produced by a magnet) on the rotor, and switched the alternating AC field to the stator with external switch networks, and we had the so-called "brushless DC" motor; really nothing more than a permanent magnet AC motor with an external switched, multi-phase inverter. When we supply this same motor AC from the power system instead of DC, we eliminate the switches and call it a permanent magnet AC motor, a small version of which we can find in analog electric clocks.

AC induction motors also eliminate the commutator and brushes, and supply power to create the magnetic field on the rotor through transformer action. The transformer frequency is the difference between the rotating magnetic field supplied by the stator and the actual speed on the rotor (the "slip").

Switched reluctance motors use external switches to create a rotating magnetic field from the stator in the same way as the original "brushless DC" permanent magnet design. However, a notched, soft iron rotor replaces the permanent magnets, and it follows the rotating field when the magnetic forces try to minimize the reluctance of the magnetic path, in a way similar to a stepping motor.

ELA/EMA Control with Resonant Power Processors

Control Parameter Comparison

	Common Name	Torque	Speed	Remarks
•	"Classical" DC	No independent control of torque and speed		Input voltage controls output power
•	"Classical" DC (permanent magnet)	No independent control of torque and speed		input voitage controls output power
•	"Brushless DC" Permanent Magnet	Input voltage	Frequency	External electronic switch network synthesizes variable-voltage, variable-frequency inputs to mimic classical DC performance
6	AC Induction	Slip (rotor freq), Input voltage	Stator frequency & slip	External electronic switch network synthesizes variable-voltage, variable-frequency inputs for independent torque/ speed control
•	AC Synchronous	input voitage	Input frequency	External electronic switch (same as AC Induction)
•	Switched Reluctance	Input voltage	Field rotation speed	External electronic switch (same as AC Induction)

JWM - 5 September, 1992

If we want to control both torque and speed independently, The classical DC motors are not really adequate. We only have control of the input voltage, and we get a constant power output for a constant input. The product of torque (load) and speed is a constant for constant inputs. If we increase the load, the speed decreases. The control seems simple. If we have a particular load, we just turn up the voltage until we get the speed we want. But speed or torque are never uniquely related to input.

At first, brushless DC motors had power processors which mimicked the classical DC characteristics, to reinforce the name "brushless DC". But if we have large motors (tens of horsepower), "turning up" DC sources that are 100's of volts and/or 100's of amperes is very undesirable. Therefore, switching regulator functions were incorporated into the control algorithms for the stator switches, and we gained the ability to independently control torque and speed through input voltage and frequency, respectively, with signal level inputs.

The power transferred to the induction motor rotor via transformer action is controlled by both input voltage and the transformation frequency (the slip frequency). For a fixed voltage, the slip changes to vary the output power and match the load. The difference in rotational speeds between the stator field and the rotor is often about 3% to 5%, so the typical slip frequency for a 400-Hz motor would be about 20-Hz.

The switched reluctance motor is not unlike a stepping motor with regard to its control. Windings distributed around the stator are alternately sequenced to produce a rotating field, which "pulls" the magnetic iron rotor along, trying to minimize the reluctance of the motor air gap. Like the classical brushless DC, the input voltage controls the air gap flux (field strength) and the frequency of rotation controls the speed.

Motor Selection Summary

- Optimized motors from all the candidate classes have about the same mass and volume for the same requirements (peak outputs are in the 3-HP/lb. range)
- Basic control parameters are similar for all the candidate classes (motors are multi-phase and we must have independent control of input voltage and frequency)
- Feedback for torque and speed control is simplified for induction motors (speed feedback vs. accurate rotor position for other types)
- Modern control algorithms give induction motors dynamic advantages for servo systems ("field oriented control" provides optimum response)
- Induction or switched-reluctance motors significantly simplify the mechanical designs of redundant systems (eliminate the requirement to decouple an inactive/failed motor)

General Dynamics is focussing on induction motors for ELA/ EMA development and implementation

JWM - 6 September, 1992

The choice of "best" motor for high-power TVC applications cannot be made using the usual trade study approach, since all the usual trade parameters (mass, volume, cost, etc.) are close enough to each other for the primary candidates to make them non-discriminators. Even if they were significantly different, the are small compared to the rest of an EMA TVC system, and do not significantly influence system technology choice. The control algorithms and the design of the power output stage are also about the same for all three types. Even the somewhat easier feedback handling for the induction motor is still not enough to make it an obvious choice. So other considerations lead us to choices for specific applications or power ranges.

The "slip" power transfer relationship makes the induction motor significantly more robust in terms of load changes. For example, when our optimized Sunstrand induction motor is operating at full speed and its most efficient operating point, it has about 2% slip (14, 700 RPM). If its load were doubled, the slip would increase to about 4% to transfer additional output power and the speed would decrease to only 14,400 RPM. A permanent magnet Brushless DC assembly under the same conditions would decrease its speed from 15,000 RPM to 7,500 RPM (half speed), and the switched reluctance motor would stall; until the controller could increase the input to match the new load.

The biggest discriminator has to do with redundant systems, where multiple motors are used to drive a load. If there is a short circuit failure in a motor or its controller, the fixed magnetic field in the permanent magnet rotor makes that motor type function as a generator, supplying power to the fault, and loading the system. If the system is to work properly after one such failure, the remaining motor(s) must provide enough excess power to both drive the real load and the fault load, or the faulted unit must be mechanically decoupled. This added complexity is sufficient to disqualify permanent magnet motors (in the brushless DC design) from use in redundant systems.

Controller Operational Definition

The controller/power processor must provide the following primary functions:

 Synthesize a multi-phase AC waveform appropriate to running several AC motor types

("There is no such thing as a DC Motor")

- Provide variable frequency for speed control
- Provide independent variable voltage/current for output torque control

In TVC applications, it must also:

 Provide closed-loop output position control in response to guidance steering commands

JWM - 7 September, 1992

The power processing and control block provides all the above functions. The power processing/inversion function is obvious if we have AC motors and DC power sources. But in addition to that interface function, we must also control speed and output torque. We have already discussed the desirability of independent control of those quantities.

In addition, typical TVC control loops provide provide engine position control for the outermost loop, in response to steering signals from the guidance and vehicle control function. Good system design demands that we add the additional position control functions into the controller, providing a variable rate/position loop, with rate proportional to position error.

Because of high output powers, high efficiencies and low losses are important to the problem of thermal control in flight.

Power Processor / Controller Selection Summary

- Resonant power processing technology, with pulse-population control, is the only choice for high power systems
 - Highest efficiency / lowest losses -Minimize power source requirements Simplify thermal control
 - Natural commutation minimizes power semiconductor stresses, and maximizes reliability and robustness
 - Controlled, single-frequency sine wave power minimizes EMI and noise
 - Designs are available for both AC and DC power sources and distribution systems
- Resonant power processing technology is applicable to synthesize the required waveforms for all candidate motor types

General Dynamics is focussing on resonant power processors/ motor controllers for EHA/EMA development and implementation

JWM - 8

September, 1992

Resonant power processing has so many advantages, that it would be hard not to select it for high-power applications. The only "con" is the fact that it has not been widely used in our industry, and designers are not as familiar with the technology. For low power applications of motor control (in the limits of much of our present experience) the issue does not have much effect on overall system performance. We can easily remove the heat from a small amount of extra power lost to efficiency, and the effect on energy sources can also be small. A little bit of added high-frequency noise can be filtered, also with little overall system impact.

But these "annoyances" in small systems become major problems in large ones. Going from 10% losses to 5% losses in a 50-KW/50-HP system eliminates 2500-watts that the batteries don't have to supply and the thermal control system doesn't have to accommodate. Clearly, these considerations are no longer negligible for a launch vehicle or aircraft.

Since the two primary motor controller implementations (switched-mode and resonant power processing) both synthesize low-frequency motor currents, they may be selected on their own merits, and not impact the motor interface. Resonant power processing is the obvious choice, for the reasons shown above.

The most important factor influencing EMA TVC design is Motor and Actuator Inertia

JWM - 9

September, 1992

Design Driver Flow

JWM - 10 September, 1992

This flow diagram is designed to show the interrelationships between the various elements from which EMA TVC requirements are derived; and the constrained end product of an EMA implementation.

At the far right are the output products which have the strongest constraints. They are discussed in more detail on Page 12. However, it is obvious that we would like to control the rest of the system to minimize peak power requirements.

On the vehicle requirements side, payload, environment, physical mass and volume, and dynamic response are the base sources for the actuator size and power requirements. But it's the mass acceleration side of the path that has the biggest impact.

For most actuator designs, the large effective gear reduction involved will make the effect of accelerating the engine system mass small when compared to the moments of inertia in the motor rotor and the actuator. About the best we can do is make the vehicle total load and the motor/actuator inertia effects about equal. And if we don't optimize the motor and actuator from a moment of inertia point-of-view, we can easily find an EMA for a 25-horsepower vehicle requirement requiring a 100-horsepower equivalent power input.

Since they are so highly-leveraged, it is fortunate that we have full control over motor and actuator moments of inertia and matching. But also, since they are so highly-leveraged, they are the elements with which we must take the most care, when we design them.

Primary Design Drivers

- Acceleration of system inertias drives peak power requirements
 - Step function response and bandwidth size transient drive torque capability
 - Input power is proportional to drive torque
- Motor and gear train inertia have the greatest effect on peak power requirements
 - Maximum efficiency for power transfer dictates equal power allocations for the load and the inertia
 - Load inertias are small contributors, when reflected to the input through the mechanical advantage of the gear train
 - Maximum efficiency for power transfer dictates equal inertias for the motor and gear train
- Non-optimum designs can have peak powers that are four times the steady-state power

JWM - 11 September, 1992

Physical vehicle component parameters and vehicle dynamics are the base sources for the TVC system requirements. Thrust loads, gimbal bearing friction, feed system constraints, etc. determine the steady-state loads against which the actuator must push or pull. When we add the inertia of the movable masses in the engine system, and how fast we must accelerate them, we can size the actuator and its performance. For example, on NLS, the worst case generates a requirement for a 32,000-lb linear thrust and 32-horsepower if the rates are included. Motor and actuator steady-state mechanical losses are comparatively small (probably less than 5%).

But if we consider the power to accelerate the actuator masses and the motor rotor, we find that its difficult to get them down to 32-horsepower. And if we were to use conventional aerospace PM motor designs, it would not be unusual to get the acceleration power requirement to 100-horsepower by itself; making the total peak input exceed 130-horsepower, for a 32-horsepower system.

Primary Design Limitation Factors

- Even with modern power processing technology and components, systems are primarily limited by "flyable" power processing capability
 - Component limitations
 - Thermal control capability
- Energy storage elements for these applications are primarily sized by peak power demands
 - Battery size or rotating machinery drive components both impact vehicle design
- Motor input power capability limits frequency response and step response

JWM - 12 September, 1992

Power processing capability is limited by the capability of the flight-capable technology currently available in our industry. Signal processing and control capability is more than adequate. But if we look toward power processing components, IGBT's are the most promising, and even they are at their best in the newer resonant circuit topologies. While larger units and parallel controllers are possible, practical equipment design considerations push us toward trying to keep system peak powers below 100-horsepower.

When the energy storage requirements get large (to provide very high peak powers), the mass and volume of batteries get large enough to impact vehicle design. If we choose turbine-driven alternators for greater physical efficiency, the fluid systems to run them add complexity, impact propulsion system design, and compromise operability.

Finally, since input power capability limits torque and actuator acceleration, frequency response and step response are also limited. While our vehicle dynamics analyses have shown that an NLS-type vehicle only requires a 2-Hz system response (and that is no problem), higher bandwidth systems will allow us to have active control of stiffness and damping, to control vehicle high frequency effects.

The bottom line says the we would like to design EMA TVC hardware with low transient power requirements.

ELA/EMA Control with Resonant Power Processors

Summary

- Resonant power processors / motor controllers are the best choice for high-power ELA/EMA's with both DC and AC sources
- Induction motors are best for redundant, high-power, TVC assemblies
- Power capability is the limiting factor in ELA/EMA performance
 - Step response
 - · Frequency response and bandwidth
- Motor/actuator Inertia is the single most important (and often neglected) mechanical design parameter for integrated high-power TVC systems

JWM - 13 September, 1992

Notes:

Bibliography

- "Motor Control for Launch Vehicle TVC"; Jim Mildice, General Dynamics Space Systems Division; Electromechanical Actuators, ALDP TIM, June 9-11, 1992
- "70-KW Motor Controller"; Ken Schreiner, General Dynamics Space Systems Division; Electromechanical Actuators, ALDP TIM, June 9-11, 1992
- "Motor/Gear Box/Actuator"; Joe Rybicki, General Dynamics Space Systems Division; Electromechanical Actuators, ALDP TIM, June 9-11, 1992
- "Induction Motors for Electromechanical Actuation"; Jay Vaidya, Sunstrand Aerospace; High Frequency Power Distribution and Controls Conference; June 5, 1991
- "Electromechanical Actuator Contributions to Operationally Efficient Propulsion"; Jim Mildice, General Dynamics Space Systems Division; presentation at LeRC, August, 1991
- "Electromechanical Actuators for Aerospace Vehicles"; Jim Mildice, General Dynamics Space Systems Division; presentation at MSFC, August, 1991
- "25-HP Inverter/Controller/Motor"; Jim Mildice, General Dynamics Space Systems Division; Electromechanical Actuators, ALDP Avionics Area Review, December, 1990
- "AC Bidirectional Motor Controller"; Ken Schreiner, General Dynamics Space Systems Division; December, 1990

EHA System Design Methodology

Technology Bridging Workshop @ MSFC **NASA Electrical Actuation**

9/29/92

BOEINE

Power Switching "Enabling Technology"

High power devices

Bi-Polar /FET hybrids available 1990 50-100 amp, 600volt

IGBT developed/in testing, available 1992 100-400 amp, 120 volt high voltage/small size

MCT in development, available 1997 100-300 amp, 1200 volt high temp/small size

Electric Actuation (ELA) Options

EMA/EHA Design

Methodology

Requirements Assessment

- System
- Power source
- Actuator
- Requirements Sensitivity

Conceptual Design

- System Schematics
- Thermal Management
 - Concept Layouts
- Preliminary Stress Analysis
 - · Weight Projections Component Sizing

Performance Assessments

- Subsystem Modeling System Simulations
- Control Loop Stability
 - System Response
- Fault Transient Response
 - Growth assessment PSS Power Quality

Operability Assessments

- Interface Connections
- Health Monitoring Test Checkout
- **Control Sensors**
 - Bit Sensors

Prime Reliable Components Preliminary MTBF Preliminary FMEA **Life Limited Parts**

Preliminary System Reliability

Reliability Assessments

Risk Assessments

- · Cost
- Technical Development
 - · Schedule
- Supply Source
- Risk Mitagation

Average Production

· DDT&E

Theoritical First Unit Cost Assessments Expendable LCC Reusable LCC

EHA Selection

- No single point failures
- Non-jamming piston/cylinder
- Fault tolerant redundancy management Relief valve channel disengagement
- Transient Load Relief
- Relief valve instantaneous response
- Thermal Management
- Fluid immersed motor
- Self contained Hydraulics
- no hydraulic lines/fittings
 proven rod seal design
 - limited fluid volume
- Inherent Damping
- Zero Backlash

BOEING

EHA Controller Schematic

Brushless DC Motor/PWM Control Selection

Permanent Magnet Motor Selection

- Options: Permanent Magnet Motor, Induction Motor, Switched Reluctance
- PM lowest inertia/highest torque/best dynamic response
- Highest effeciency
- Highest reliability
- Excellent thermal capacity (low rotor losses)

Digital PWM Control Methodology Selection

- High power density
- PDM in R&D stage/no payoff for this application

Application of Existing Technologies

- Commercial Aircraft
- Space
- Military qualified hardware exists
- J-STARS 15 hp redundant antenna drive
 - Flown in "Desert Storm"

EHA Load-Sharing Simulator Failure

Electric Actuation Drivers

- **Power Switching Technology**
- **Technology Maturity**
- Operability (Test, Checkout, Maintenance)
- Reliability
- Fault Tolerance
- **Channel Load Sharing**
- Redundancy Management
- Thermal Management/Regenerative Energy
- Transient Load Relief
- Packaging/Sizing
- Voltage Level
- Performance (Frequency Response, Load/Stroke, Duty Cycle)

UNIVERSITY OF ALABAMA IN HUNTSVILLE

ELECTROMECHANICAL ACTUATOR

AND

MOTOR OPTIMIZATION

TASKS

PRESENTED TO THE

ELA TECHNOLOGY BRIDGING PROJECT WORKSHOP

<u>م</u>

GEORGE B. DOANE III

HUNTSVILLE AL SEPTEMBER 1992

TASK ONE

Examine EMA-TVC Subsystem Specifications

Prove Feasibility of EMA/TVC Subsystem By Means of a Point Design Meeting NLS/SSME Requirements

Demonstrate Point Design Characteristics by Simulation

Drive Out Potential Problem Areas

Establish Critical Component Specifications

Subsystem Specifications

values are typical. Assuming they are within a representative range it will not be too difficult to tune the to be determined on a definitive basis. However, it is known that many of the physical parameters of the will be attached is likewise undetermined at this time. However, past experience with a number of launch vehicles suggests that at least as far as natural frequencies of the structure are concerned current SSME The static and dynamic specifications applicable to the EMA as applied to the NLS are mostly yet new engine will be close to those of the current SSME. The structure to which the engines designs arising from present knowledge to accommodate the eventual actual values. Following SSME practice leads to a stall force requirement as well as a horsepower rating. It has been customary in the past to rate hydraulic actuators in terms of horsepower even though they are used over a range of speeds i.e. around zero to plus and minus maximum velocity values. In the current design this actuating component because they are capable of delivering much power or torque in off nominal conditions power is to be reached at 5 in/sec actuator stroking velocity. It is more informative to examine torque speed curves over the whole operating envelope. This is particularly true when dealing with electric motors as the (provided the situation requiring much current does not last too long). The number of motors and their horsepower rating was suggested by MSFC and may implement various

Three charts drawn directly from Rockwell documents specifying the SSME actuation system frequency and transient allowable envelopes are shown.

Examine EMA-TVC Subsystem Specifications

Stall Loads Specified by MSFC (60 Kips)

Three Motor Configuration Specified by MSFC

Each Motor to Produce 10 Horsepower at 5 in/sec Actuator Stroking Velocity

Each Motor to be Capable of 15 Horsepower at 5 in/sec

Maximize Power to Load During Accelerated Motion

Posses Robust Recovery From Saturated State

Frequency Domain Specifications

SSME Document Flight Dynamics Requirement Time Domain Specifications
SSME Document
Large and Small Amplitude

2 Hz (- 3 DB)

1 Hz (-1 08)

1 Hz (+1 08)

80) D1179 3001 TaWY

134

**** * : 31 --- -- # # * * 7 10

NLS Derived Specifications

Preliminary work accomplished by the MSFC flight dynamics personnel working in the flight control area produced some preliminary equivalent system small angle response specifications in the frequency domain. While the point design meets these specifications they are included here for completeness sake.

Small Angle Time Domain Specifications From Flight Mechanics

Second Order System

7		
=		
?		
•		
:		
:	-	
:		
:		
:		
:		
:		
:		
•		
:		
•		
:		
:		
:		
믈		
Bandwidth4.2 Hz		
ģ		
Ę		
=		

Specifications Above Translate Into

- 92
S
Ģ0
<u>•</u>
P
-
<u>`</u>
স্
•
:
•
:
:
•
:
:
•
:
>
. =
- 1
Ų
0
0
0
Velo
Velo
Velo
0
mbal Velo
Velo
mbal Velo
mbal Velo
mbal Velo
mbal Velo
mbal Velo
mbal Velo
mbal Velo
mbal Velo
mbal Velo

Minimum Gimbal Acceleration......120 deg/sec/se

DESIGN APPROACH

The mechanical layout used in this study was suggested by various in-house designs extant at MSFC. MSFC also suggested that a range of the roller screw ratio not to exceed one inch per revolution and a spur gear step down ratio not to exceed ten were appropriate.

matching the actuator mechanical impedance to the load mechanical impedance was adopted. A fortuitous byproduct of Because of a desire to minimize the electric current from the supply when accelerating the load, the technique of this approach turned out to be that it yielded, when properly formulated, a unique solution for the two reduction ratios a range of available motors producing the specified horsepower at different speeds. It was found that a relatively more torque which in turn was not necessarily compatible with he impedance matching criteria. This effect was investigated for massive motor turning at slower speed minimized the "detuning" from the matched impedance case necessary to meet the (rather than for the ratio of the two as other formulations do). Of course it was still necessary to produce specified stall required stall force condition. From this investigation a motor specification for speed and inertia was developed

constraint of +-5 inches. Friction was assumed zero or nearly so and gear backlash was not modeled. Modeling this At this early stage of investigation the nonlinearities considered were the torque saturation of the motor and the stroke latter phenomenon awaits laboratory experiment because various anti backlash measures were either being incorporated or contemplated at the time of this design work.

the specifications previously applied to hydraulic actuator designs for the SSME and also followed the well verified To demonstrate that it is feasible to substitute this type of actuator for the previously used hydraulic one the design used design methods of the hydraulic actuators i.e. the type of feedback and the design methods used. This approach proved to produce very acceptable results.

A good deal of digital simulation was used both during the design phase of the work and to verify the designs in off nominal operation. An example of the latter was to perform a check on the unloaded or "out of the box" stability of the actuator servo design.

Design Approach

Assume Use of Roller Screw With Maximum Lead of 1 Inch Per Revolution

Assume Use of One Spur Gear Pass

To Minimize Acceleration Power Use Mechanical Impedance Matching Also Maximizes LOAD Acceleration (Hence Bandwidth) Assume Major Nonlinearities Are Torque Saturation and Stroke Constraint +,- 5 Inches

Generally Base Design On Previous Hydraulic Experience

No Conditional Stability Was Allowed For Any Configuration Use OTT Servo Techniques (Frequency/NYQUIST and Root Locus)

Use Simulation Liberally to Aid In Design and to Verify Results

Modeling Notes

The equations of motion of the actuator system with its motor load were written assuming that the various constituent in the 4656 "iron horse" simulators e.g. the 8 Hz mode. The resulting four state model was constructed so that the pieces behaved as a collection of springs and masses. The motor was modeled as a spring and a mass in series as was and used in the model. In the process some very stiff springs became negligible in the model. This model is implemented physical quantities were readily available. It will be noted that this form of a model makes the actuator and the engine previous practice. The various springs were combined in series/parallel as appropriate and an equivalent spring derived (and their states) readily identifiable. Damping was neglected in the basic model (and was only used very sparingly when numerical problems in such things as frequency responses arose). The justification for this was that structural damping tends in practice to be quite small (0.5% of critical is often used) and that it probably would err on the side of stability conservatism. The drawback was that the simulated system tends to be a little faster in response than is found in the laboratory where some friction is found.

Model Used

Four State Model

Mass of the Actuator
Mass of the Engine (Load)
Spring Constant Representing the Compliance of the
Engine and the Support Structure

Simulation Model Developed From The Equations Of Motion

Gearing Optimization

The gearing was optimized to produce impedance matching or, what is the same thing, maximum load acceleration. The smaller gear times the gear ratio raised to the fourth power. As is seen in the accompanying slides substitution of the method is straight forward and generally follows the seminal work by Petersen in the 1950s. The expression for the load acceleration is written and then maximized with respect to the available gear ratios. The key to obtaining a closed form, unique solution lies in assuming (as Petersen did) that the larger of the spur gears has an inertia equal to that of the proposed design's numerical parameters produces the desired answers. For this design it was shown that the dominating effects are the inertia of the motor and the inertia of the load and that other parameter changes produce negligible perturbations in the design. The details of the differentiations and the solution of the resulting algebraic equation were all carried out by a symbolic manipulation computer program.

Opimization of Gearing

Minimize Acceleration Power Requirement Maximize Load Acceleration

These Produce The Same Result

One Assumes That the Inertia Of the Larger of the the Spur gear and the Roller Screw Ratios IF Spur Gears Is N.4 Times the Inertia of the There is a Unique Closed Form Solution for Proceed By Maximizing The Load Acceleration Smaller Gear

An Example

Acceleration of the Load

 J_3 -Motor $\left[\frac{2\pi n}{l}\right] + \left[J_{\text{Pinion Gear}}(3 + n^2)\right]\left[\frac{2\pi n}{l}\right] + J_{\text{Roller Screw}}\left[\frac{2\pi}{n!}\right] + M_{\text{Engine}}\left[\frac{l}{2\pi n}\right]$ Torque CLoad = -

Mechanical Parameters

JRoller Screw = 0.016 in-lbs-sec² $(5)(3000)^{5/3} = 0.0315598 \text{ in-lbs-sec}^2$ $J_{3-Motor} = \frac{(3)(565)(15)^{3/2}}{}$

 $M_{Engine} = 55 \frac{lbs_f - sec^2}{lose}$

JPinion Gear = 0.00004768 in-lbs-sec²

Substituting to Obtain Denominator Expression

 $[0.0315598][\frac{2 \pi n}{1}] + [(0.00004768)(3 + n^2)][\frac{2 \pi n}{1}] + [0.016][\frac{2\pi}{n}] + [55][\frac{1}{2\pi n}]$ Torque aload = ---

Let Computer Take Derivatives of Denominator With respect to n and I

Set Equal to Zero and Let Machine Find Solutions for n and l

(1 -> 0.663194, n -> 4.28002)

Servo Design

Earlier SSME servo design practice was followed. Note that states of the load are not measured although there are systems in existence which do so. As previously mentioned classical techniques i.e. frequency response and root locus were used in the servo design process. The results were verified by extensive simulations with the aforementioned nonlinearities included. An effort was made to make the electronic or signal gain paths as low gain as possible. However, the desire for high system bandwidth resulted in higher than desired signal gain and therefore some attention to signal noise control will probably be necessary.

The resulting system's step and frequency responses are shown in two slides. It is seen that the system meets the linear specifications.

Saturation Nonlinearity Effects On Commanded Response

No Unexpected Happenings

THIS PAGE INTENTIONALLY LEFT BLANK

Disturbance Response

for example, reveals a highly oscillatory response of the strut force and the engine position. This is probably due to the fact that the so-called struts or stiff arms are anything but stiff. They are in reality a pre stressed spring made up of a forces as seen by the actuator. Inspection of raw force data obtained during firings of the MSFC Technology Test Bed, It has proven impossible, at least for this author, to obtain accurate characterization of the engine start/stop transient series stack of Bellville like washers. Indeed a little reflection shows that the arms and hence the actuators when used must give or yield to relieve loads on the engine structure so as not to damage it.

loads may be incorporated in the form of pressure relief valves and so on but never the less they are relatively immune to Hydraulic actuators have very high output impedance to motion caused by forces applied to them. Pressure relief to limit start/stop transient caused motion. This is not inherently true of this form of electric actuator. The gearing used in them is of high efficiency and therefore may be back driven. This latter fact means that large amplitudes of motion are possible by the start/stop transients depending upon magnitude, duration and one supposes on the particular function of the force unless something is done to prevent them. Of course the amplitude of the motion is a direct function of the force applied

MSFC suggested that square shouldered pulses of 20, 40 and 60 kip amplitude and 400 milliseconds duration be investigated. This was done using the model developed from the servo design effort. At the 60 kip amplitude unacceptably large engine motion response occurred.

This result leads to the largest potential problem arising from the investigation. There are two approaches to understanding it better and coping with it. First some effort expended in investigating the start/stop transients is in order and second some overt response limiting measures should be undertaken. One simple scheme is explained later.

DISTURBANCE RESPONSES

Disturbance Pulse Charactization

Sharp Cornered Rectangular Pulses 20, 40, 60 KIPS Amplitude 400 Milliseconds Duration

Notes

Amplitude Uncertain Duration Unspecified In Engine Specifications LARGEST POTENTIAL PROBLEM ARISING IN THE ENTIRE INVESTIGATION

A Possible Start/Stop Transient Motion Limiting Solution

It is well known that shorting a separately excited e.g. permanent magnet electric motor across its terminals inhibits motion of the motor shaft. This is due to the back emf causing large currents to flow in the armature. Discussion with controller electroniga design with little modification. Given a discrete signal announcing engine start or stop then the controller could be reconfigured for some small length of time to absorb the transient and then reconfigured back to its MSFC electronics experts revealed that a current limited "short circuit" could be implemented with the existing MSFC primary or position controlling mode,

velocity to current) loop. It was found that up to a point increasing the gain produced desired results but that higher and higher gains became progressively ineffective. However the amplitude of motion resulting was quite acceptable especially With this established the simulation was exercised with a variety of gains in the short circuit current (i.e. actuator in view of the fact that discussions with the configuration designers disclosed that the engines would not hit each other (at least in the design as it then stood) regardless of the phase of the various motors' motion. One Simple Solution to Start/Stop

Transient Phenomenon

Reconfigured Controller Approach to Controlling

Response to Start/Stop Transient

Mechanical Stop Design

It is generally understood that limits will be built into the command software to prevent commanding an against the stop condition for the actuator. It is also understood that limits will be built into the servo electronics so that they will not attempt to respond to commands of an against the stop nature. If in spite of all the foregoing precautions the actuator does go against the stop it is good practice to incorporate mechanical stops in the design which would enable the electronics to regain control or at least not allow the actuator to was found that indeed if a soft enough stop could be built the desired stable response would be obtained. This is oscillate. To investigate this possibility the simulation was built with elastic stops whose compliance could be varied. It documented in the following slides which at least bracket the desired value.

Mechanical Stop Design Considerations

Hard or Mechanical Stop Design To Prevent Limit Cycles or Instability

Elastic Stop Assumed

Three Different Compliance Values Were Investigated And The Results Are Displayed Below

ENCINE POSITION

ENCINE NÉFOCILA

CONCLUSIONS OF TASK ONE

Electromechanical Actuator Is Feasible

Conventional Design Techniques Based on Previous Actuators Are Applicable

Serious Effort Should be Expended to Characterize Start/Stop Transient **Force Parameters**

TASK TWO

Based On the Results of the First Task
Examine Various Motor Design Approaches
Design a Motor for the Actuator

Verify Techniques Used in the Motor Design Area Validating Against Existing Motors Construct/Test Designed Motor

General Approach

Take Conservative Approach to Initial Motor Design

Meet Motor Specifications Laid Down in Task One

Use Finite Element Analysis Techniques Especially for the Magnetic Circuit Analyses

Amplifier Controlled Terminal Voltage So That Amplifier Can Control Allow Sufficient Difference Between Peak Back EMF and Maximum Phase Currents

Investigate Analytically Promising Unconventional or Different Approaches to Motor Configurations e.g. Slotless Motor

Air Gap Flux Density vs. Various Radial Air Gap Widths

SESSION III ELA CONTROL ELECTRONICS

MARSHALL SPACE FLIGHT CENTER

Electromechanical Actuator Electronic Controller

Justino Montenegro

September 29, 1992

ELECTROMECHANICAL ACTUATOR (EMA) ELECTRONIC CONTROLLER

STME EMA PERFORMANCE REQUIREMENTS

STALL FORCE: 60,000 LBS

RATED LOAD: 40,000 LBS

EFFECTIVE MOMENT ARM: 29.8 INCHES

RATED VELOCITY: 5.0 IN. /SEC.

DYNAMIC FORCE: 40,000 LBS AT 5 IN./SEC. = 30.3HP

STROKE: +/- 4.4 INCHES

ACCELERATION: 2 RAD/SEC²

BANDWIDTH: 4Hz AT +/-2% OF FULL STROKE

REDUNDANCY: FAIL OPERATE 3 CHANNELS REGUIRED

SUPPLY VOLTAGE: 270 VDC, NOMINAL ACCEPTABLE TO CORONA EXPERTS

11.11 V. 11.11.11

	Elec	Electromechanical Actuator	Justino Montenegro September 29, 1992
	DE	DERIVED REQUIREMENTS	
_	EQUIVALENT GEA 8,000: 1 (TYPICA	EQUIVALENT GEAR RATIO (SPUF + SCREW): 8,000: 1 (TYPICAL)	
_	MAXIMUM MOTOR	ر SPEED: 12,000 - 14,000 RPM	, M
	PEAK POWER: 87K WATTS TOTAL	'K WATTS TOTAL	
	29 K WA'	29 K WATTS/CHANNEL	
	PEAK SUPPLY CUI	PEAK SUPPLY CURRENT: 365 AMPS @ 240VDC (3 CHANNELS)	
	MOTOR ROTOR IN	MOTOR ROTOR INERTIA: 3 X 10 ⁻⁴ FT LB SEC ²	

PM MOTOR/FLYWHEEL FLOATING ON POWER BUS HAS

POTENTIAL FOR SUPPLYING CURRENT SURGE.

Electronic Controller

ELECTRONIC CONTROLLER TYPES

- 6 TRANSISTOR, 6 STEP, PULSE WIDTH MODULATED (PWM)
- 6 TRANSISTOR, SINUSOIDAL PWM
- 8 TRANSISTOR, 6 STEP, PWM

Electromechanical Actuator Electronic Controller

Justino Montenegro

September 29, 1992

6 TRANSISTOR SINUSOIDAL PWM

REQUIRES LINEAR RESOLVER

HIGHER BANDWIDTH

MOST EFFICIENT

MOTORS NOT READILY AVAILABLE FOR TESTING

The I A State of the State of t

HO, AMIZATION	MARSHALL SPACE FLIGHT CENTER	1,1,1,1,1
EB24	Elec	Justino Montenegro
C Z	Electronic Controller	September 29, 1992
	25KW CONTROLLER FEATURES	RES
•	CURRENT LOOP OPERATION	
•	POSITION LOOP OPERATION WITH RESOLVER	LVER
•	14KHZ PWM FREGUENCY	
•	FOUR GUADRANT OPERATION	
•	OPTICALLY ISOLATED IGBT DRIVERS	•
•	ADJUSTABLE CURRENT LIMIT	
•	OPERATING VOLTAGE: 270VDC	
•	RATED CURRENT: 100 AMPS	
•	PEAK CURRENT: 150 AMPS	
•	POWER SWITCHES: IGBT'S	
•	DYNAMIC BRAKING LOAD BANK (CONTROLLED)	ROLLED)
•	ANALOG LOW POWER ELECTRONICS	

	EB24		Justino Montenegro
CHARLINO		Electronic Controller	September 29, 1992
		25HP MOTOR *	
•	PERMANENT M	PERMANENT MAGNET, 3 PHASE BRUSHLESS D. C. MOTOR	D. C. MOTOR
•	12 POLE		
•	SAMARIUM CO	SAMARIUM COBALT MAGNETS	
•	HALL EFFECT I	HALL EFFECT DEVICES FOR COMMUTATION SENSING	SENSING
•	9200 RPM NO LOA	OAD SPEED	
•	EFFICIENCY (M	EFFICIENCY (MEASURED) >92%	
•	4000 OZ-IN @ 7000	000 RPM	
*	OFF THE SHELF.	OFF THE SHELF, INEXPENSIVE, NOT OPTIMIZED FOR EFFICIENCY) FOR EFFICIENCY

		September 29, 1992
	TEST RESULTS	
•	CONTROLLER (POWER INVERTER) HAS BEEN DEMONSTRATED AŢ 54 HP PEAK	DEMONSTRATED
•	RESPONSE TIME: 130m SEC, FROM 7,000 RPM TO -7,000 RPM	1 TO -7,000 RPM
•	CONTROLLER EFFICIENCY: >95%	
•)	LINEARITY TEST WITH AND WITHOUT INTEGRATOR IN POSITION LOOP	ATOR IN

1-11-11-11-11-11-11-11

\$ =

196

1 . C. contraction and Marketin 101 A.

AS 0407 C.

3

Ξ 2

and the second of the second o

Justino Montenegro September 29, 1992 MOTOR/CONTROLLER IN CLOSE PROXIMITY MOTOR/CONTROLLER TOTALLY ENCLOSED DEDICATED POWER SHIELDED CABLE SOURCE Ξ PAVG= .5 X 6750 X 1x10 ⁻⁶ X 15x10 ⁻³ Electromechanical Actuator -6750 WATTS PEAK = 50.6 WAITISElectronic Controller TRANSISTOR LOSS AND EMI 100 AMI'S MARSHALL SPACE FLIGHT CENTER 200 WATTS 270 VOLTS, 15 KHZ SWITCHING LOSS AT 100 AMI'S POWER - Insec 270 V CONDUCTION LOSS 200 AMP CONT., 400 \$00 AMP, 600 VOLT, UNITS AVAILABLE 600 AMP, 600 VOLT = 301 WATTS PEAK AVAILABLE THIS 2.5 VOLTS X 100 AT 100 AMI'S TRANSISTOR TOTAL LOSS 250 WATIS 800 WATTS 1400 WATT SUMMER RATING T.10V 00a 250 + 51PEAK NOTI V ZITANI DITO CHART NO.

RESONANT POWER CONVERSION

and

INDUCTION MOTOR CONTROL

Ken Schreiner

General Dynamics Space Systems Division

Resonant Power Conversion Advantages vs. PWM

- Lower component stresses and improved efficiency with zero voltage or zero current switching
- Increased switching frequency to control high frequency, low inertia motors
- Lower noise and EMI
- Decreased thermal loads
- Decreased battery capacity requirements

There are Two Resonant Converter Options

High-frequency AC resonant distribution

- Uses zero current switching resonant inverter to generate high frequency bus
- Motor controller 'steers' AC half-sine pulses to low frequency output
- Advantages where redundancy required and high fault currents may need to be interrupted

Resonant DC converter

- switch bridge to perform resonant zero voltage switching Adds an inductor and capacitor to the normal six
 - Advantages where high efficiency and high power required in dedicated configuration

NASA Electrical Actuation Technology Bridging Workshop

DC Resonant Topology

, j

-NASA Electrical Actuation Technology Bridging Workshop

DC Resonant Link Operation

- Bridge switches conduct build up inductor current
- (25) Resonant rise/fail of link voltage
- Clamp dlode conducts turn on clamp switch
- Clamp switch conducts
- Bridge diodes conduct turn on bridge switches

The Resonant DC LinkConverter Has

- Higher overall efficiency than PWM or AC Resonant Topologies
- Fewer Switches and Reactive Components Than AC Resonant
- No-Load Switch Losses are Light
- ALS Will be Using a Single-String Actuator Topology
- Easy to Synchronize Zero Voltage Switching

Resonant switching is superior to hard switching

- Better switch utilization
- Lower losses
- Lower device stresses

Resonant switching (No snubber)

Induction Motor Control

Why Induction Machines?

- Motor is rugged
- Motor temperature limited by insulation rating only
- Field extinguished by reducing motor voltage
- Motor losses comparable to dc motor losses

Induction Machine Control Concepts

$$= \frac{3 \cdot p \cdot Lm \cdot \lambda^{e}dr}{4 \cdot Lr} \cdot lqs = Kt \cdot lqs = \frac{m \cdot Lm \cdot lqs}{Lr \cdot \lambda^{e}dr} = Ks \cdot lqs$$

State Variable Position Controller

Generates motor torque command

÷:

Current 2 to 3 Axis Frame Transformation

 Transforms dc torque and flux currents to three phase current commands

NASA Electrical Actuation Technology Bridging Workshop-

Machine Parameter Sensitivity

Proper motor control requires knowing the following parameters:

– Lm

– R

 Lm and Lr are a function of flux level and can be obtained from lookup tables

Ar can be determined from measurements of rotor flux

Slip Gain Controller Implementation

Maintains proper vector orientation of the induction machine

-NASA Electrical Actuation Technology Bridging Workshop

SUMMARY

Use of Emerging Technologies has Resulted in:

- Power converters with reduced losses and increased reliability
- Induction machines that are rugged and efficient
- Increased controller performance

Construction of the full scale controller is nearing completion with design verification early next year at MOOG.

ELECTRIC THRUST VECTOR CONTROL NATIONAL LAUNCH SYSTEM (NLS) FOR

SEPTEMBER 28, 1992

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GEORGE C. MARSHALL SPACE FLIGHT CENTER

AGENDA

ALLIED-SIGNAL AEROSPACE COMPANY

ELECTRIC ACTUATION NEEDS

POWER SOURCE/ACTUATION CAPABILITIES

ELECTRIC ACTUATION SYSTEM SOLUTIONS

SUMMARY/RECOMMENDATIONS

Allied-Signal Aerospace Company

AIResearch Los Angeles Division

IG-03291-1

AiResearch Los Angeles Division

ELECTRICAL ACTUATION

- Signal

HOW TO SIGNIFICANTLY REDUCE COST OF FUTURE SPACE FLIGHT

IMPLEMENTATION OF FAULT TOLERANT

OPERATION IN PRESENCE OF FAULTS (FAULT MASKING)

BUILT-IN-SYSTEM/COMPONENT TEST

W-19379

Allied-Signal Aerospace Company

AIResearch Los Angeles Division

POWER SOURCE/ACTUATOR CAPABILITIES

-----Signal

WHAT DOES FAULT TOLERANCE IMPOSE ON SUCH **SYSTEMS AS TVC**

- POWER SOURCE
- MULTIBUS DISTRIBUTION
- FAILURE OF SINGLE BUS DOES NOT IMPACT PERFORMANCE
- **ACTUATION**
- MULTI CHANNEL APPROACH
- FIRST CHANNEL FAILURE TRANSPARENT
- **SECOND CHANNEL FAILURE RESULTS IN SAFE** (NULL) SYSTEM

Allied-Signal Aerospace Company

AIResearch Los Angeles Division

3 CHANNEL FAULT TOLERANCE TWO ENGINE T.V.C. SYSTEM

WHAT ARE POWER SOURCE REQUIREMENTS

BIDIRECTIONAL POWER BUS

TIGHT VOLTAGE REGULATION (MIN. LOAD KVA)

PROVIDE DISSIPATION/STORAGE FOR REGENERATED POWER

FULLY TESTABLE WITH ONLY ELECTRICAL POWER SUPPLIED

IG-14424

POSSIBLE SOLUTION – GH₂ TURBOALTERNATOR/ POWER CONDITIONER

Allied-Signal Aerospace Company

228

WHAT ARE ACTUATOR REQUIREMENTS?

- FULLY TESTABLE WITH ELECTRICAL POWER
- FULL REGENERATIVE CAPABILITY (MINIMIZES HEAT LOAD)
- HIGH EFFICIENCY
- FIRST FAULT TRANSPARENT (REPORTED) TO VEHICLE
- SECOND FAULT CAUSES SAFE (NULL) OF ACTUATION
- FREQUENCY RESPONSE

TORQUE LOOP > 1000 HZ POSITION LOOP > 10 HZ SPEED LOOP > 50 HZ

Allied-Signal Aerospace Company

AIResearch Los Angeles Division

Miled Signal POWER AMP

BLOCK DIAGRAM FOR MULTICHANNEL FAULT **TOLERANT SYSTEM**

HOW IS REDUNDANCY IMPLEMENTED?

- ALL CHANNELS ARE SYNCHRONIZED WITH RESPECT TO COMPUTATIONAL FRAME
- DATA IS EXCHANGED BETWEEN CHANNELS AT FRAME RATE SO THAT LOCAL CHANNEL HAS GLOBAL DATA
- **LOCAL CHANNEL USES IDENTICAL GLOBAL DATA TO COMPUTE** SPEED AND TORQUE COMMANDS
- **LOCAL SPEED/TORQUE TRANSMITTED GLOBALLY**
- TORQUE COMMANDS ARE IDENTICAL, AND THIS USED TO **BALANCE MULTI CHANNEL ACTUATOR**

IW-19400-1

HOW IS REDUNDANCY IMPLEMENTED? (CONT'D)

- GLOBAL DATA IS VOTED AT "VOTING PLANE" THAT HAS ABILITY TO ELIMINATE FAULTY DATA BUT MAINTAIN CHANNEL INTEGRITY
- FOR TVC VOTING PLANE IS AT TORQUE CMD
- IF NON IDENTICAL COMPUTED GLOBAL DATA, FAULTY COMPUTATION IS REJECTED
- IF SENSED STATE VARIABLE DIFFER BY > " \in ", FEEDBACK IS **ELIMINATED**
- RESYNCHRONIZATION OF CHANNEL IS AUTOMATIC IF FAILURE CLEARS ITSELF - (P/S FAILURES)

- Signal

AiResearch Los Angeles Division

HOW IS HEALTH MANAGEMENT ACCOMPLISHED

EACH CHANNEL HAS GLOBAL DATA AND LOCAL DATA **AVAILABLE**

HEALTH EVALUATION BASED UPON GLOBAL AND LOCAL DATA COMPARISON OF DATA ENABLES COMPLETE CHANNEL

HEALTH MAINTAINENCE RESIDES AT SUBSYSTEM LEVEL AND **IS NOT PASSED "UP THE LINE"**

IW-19401

Millied Signal

Miled Signal

WHAT DOES THIS IMPOSE UPON ACTUATOR DEVICES

MULTI-CHANNEL APPROACH

ALL CHANNELS EQUALLY SHARE LOAD

 $\binom{1}{N-1}$ SYSTEM REQUIREMENTS EACH CHANNEL IS RATED (

FAULT TOLERANT ARCHITECTURE BE UTILIZED

FROM SYSTEM PERSPECTIVE – WHAT IS IMPACT ON PEAK POWER UTILIZING 3 CHANNELS

CONSIDER ALL MOTORS ARE DESIGNED WITH CONSTANT L/D PARAMETERS. FOR SINGLE MOTOR TO PERFORM TASK L_I, D_I

TORQUE =
$$K_1 D^2 L$$

INERTIA =
$$K_2 D^4 L$$

 $= 1/2 K_1 D_1^2 L_1$

 $= K_1 D^2 L_2$

WHAT IS IMPACT ON PEAK POWER - (CONT'D)

TORQUE/3 MOTOR =
$$K_1D_2^2 L_2 = 1/2 K_1 D_1^2 L_1$$

$$\frac{L}{D}$$
 IS CONSTANT, $\frac{L_1}{D_1} = \frac{L_2}{D_2}$

$$\therefore$$
 D₂ = D₁ (1/2)^{1/3}

$$\frac{K_{1}}{1 \text{ MOTOR}} = \frac{K_{2} D_{1}^{2}}{K_{1}} = \frac{(1/2)^{2/3}}{K_{2} D_{1}^{2}}$$
3 MOTOR $K_{2} D_{1}^{2} = 0.63$

i.e., POWER TO ACCELERATE MOTOR INERTIA IS REDUCED BY 37% FOR SINGLE MOTOR CONFIGURATION

AiResearch Los Angeles Division

ELECTRICAL ACTUATION

237

Allied-Signal Aerospace Company

ALAD/BOEING PROVIDES STATE-OF-THE-ART **ELECTRICAL ACTUATION SUBSYSTEMS**

Alled-Signal Aerospace Company AiResearch Los Angeles Division

- Signal

WHAT ARE POSSIBLE T.V.C. SYSTEM SOLUTIONS?

ACTUATOR: ELECTROMECHANICAI

ELECTROHYDRAULIC

MOTOR: PERMANENT MAGNET

INDICTION

SWITCHED RELUCTANCE

HARD SWITCH

NVERTER:

SOFT SWITCH

PULSE WIDTH MODULATION
PULSE DENSITY MODULATION

CONTROL:

IW-19387

Allied-Signal Aerospace Company

AiResearch Los Angeles Division

HOW TO EVALUATE THE DIFFERENT MOTORS

	INDUCTION	РМ	S/R	IMPACT	SIG-TVC
TORQUE/INERTIA	нівн	нідн	MOT	POWER SOURCE	нісн
POWER FACTOR	0.6 - 0.7	0.8 – 1	ė	CONTROLLER KVA SYSTEM WT.	ндн
TORQUE PULSATIONS	NONE	NONE	нын	CONTROL LOOP	нвн
EFFICIENCY	G00D	BETTER	g005	THERMAL DESIGN SYSTEM WT.	ндн
SENSORS	SPEED	ROTOR POS SPEED	ROTOR POS SPEED	RELIABILITY	ГОМ
VARIABLE FLUX	YES	ON	YES	NONE	ГОМ
SELF EXCITATION	OZ	YES	ON	ACTUATOR DESIGN UNDER FAULT	нвн
HIGH TEMP. ROTOR	YES	ON	YES	ACTUATOR TEMP < 200°C	TOW

Allied-Signal Aerospace Company

HARD SWITCHING VS. SOFT SWITCHING

- SWITCHING LOSSES ARE ELIMINATED WHEN SOFT SWITCHING IS INCORPORATED
- RESONANT CIRCUIT MUST OPERATE CONTINUOUSLY AND HAS LOSSES ASSOCIATED WITH IT

IG-14425

Allied-Signal Aerospace Company

HARD SWITCHING INVERTER SCHEMATIC

SOFT SWITCHING INVERTER SCHEMATIC

ADDED PARTS INCREASE COST, WEIGHT, REDUCE RELIABILITY

Signal

IG-14427

Allied-Signal Aerospace Company

AiResearch Los Angeles Division

PULSE WIDTH COMPARED TO PULSE DENSITY **MODULATION**

- AVERAGE VALUE OF OUTPUT IS INFINTELY ADJUSTABLE
- **CONTROLLABILITY IS EXCELLENT**
- FREQUENCY LIMITED TO 20 50 KHZ

- AVERAGE VALUE OF OUTPUT CONTROLLED BY MISSING PULSES
- ADEO'JATE CONTROLABILITY AT HIGH FREQUENCY
- FREQUENCY > 50 KHZ

Allied-Signal Aerospace Company

AIResearch Los Angeles Division

HOW TO EVALUATE THE DIFFERENT CONTROL OPTIONS

	PDM	PWM	IMPACT	SIGNIFICANCE
MOTOR EMI	MOJ	нын	NONE	ТОМ
SUPPLY EMI	нсн	ГОМ	SUBHARMONIC FREQUENCIES EMI FILTER	нідн
OPERATING FREG.	>50 KHZ	> 20 KHZ	LOAD RIPPLE	ГОМ
LEAKAGE DISPLACE- MENT CURRENTS	LOWER dv/db	HIGHER dv/db	FILTER WEIGHT (COMMON MODE)	ГОМ
FAULT TOLERANCE	ТОМ	нвн	S.E.E. BECOME BURN OUT	нівн
DEVICE RATING	>1.5 PU VOLTAGE + CURRENT	1 PU	COST, SIZE	нісн
LOOP FREQUENCY RESPONSE	APPROX. 200 HZ	> 2000 HZ	CONTROLLABILITY	ндн

Allied-Signal Aerospace Company

98

06561

- Signal

WHAT ARE RECOMMENDATIONS FOR TVC

- PWM/PM MOTORS ARE MATURE SYSTEM
- ANY POWER LEVEL REQUIRED FOR TVC IS ACHIEVABLE WITH **TODAYS TECHNOLOGY**
- TECHNOLOGY IS DEVELOPED AND WELL UNDERSTOOD
- PWM/PM PROVIDES ROBUST SYSTEM
- ALL ADVANCES IN POWER AND CONTROL ELECTRONICS WILL **EQUALLY HELP PWM/PDM**
- WHERE TEMPERATURES < 200 °C ARE ENCOUNTERED, PWM, PM IS THE PREFERRED SYSTEM
- FOR TEMPERATURES > 200 °C INDUCTION MOTORS/PWM **BECOMES PREFERRED SYSTEM**

IW-19390

TITAN IV STAGE 1 BOOSTER

TVC PERFORMANCE PREDICTIONS

FOR

ELECTROMECHANICAL ACTUATORS

Jeff Ring

Advanced Programs

(813) 539 - 5672

TITAN IV TVC STAGE 1 BOOSTER EMA PERFORMANCE STUDY

Honeywell

Specified Performance Requirements (Cylinder Assembly, Actuating, Linear - Booster Engine Control, PD4600008)

Stroke = \pm 1", Figure 11

No Load Velocity Limit = 3.5 in/sec, Para. 3.1.1.14.3

Loaded Velocity Limit = 2.5 to 3.5 in/sec, Para. 3.1.1.14.3

Output Load Capability = 30000 lb, Para. 3.1.1.2

Closed Loop Bandwidtn = 8 hz, Table 1

Specified Load Parameters

Engine Inertia = 518 slug - ft², Para. 3.1.1.20

Engine Natural Frequency = 13.5 hz, Para. 3.1.1.20

Engine Moment Arm = 14.34 in, Para. 3.1.1.20

Motor/Actuator Design Conducted

Closed Loop Feedback Controller Designed

Motor/Actuator/Load/Controller modeled and simulated

Performance evaluation conducted

Martin Marietta Cylinder Assembly, Actuating, Linear - Booster Engine Control, PD4600008 document. The key The procedure for evaluating EMA performance for the Titan IV stage 1 booster TVC involved several steps. requirements for stroke, no-load and loaded velocity limits, output load capability, and closed loop bandwidth The first step was to determine the performance requirements. These requirements were obtained from the were extracted from this document as indicated above.

The EMA is coupled to a compliant load. This load is characterized by the engine inertia, natural frequency, and moment parameters listed above. This information is used as a data base to construct a dynamic load. The next step was to develop a "strawman" motor/actuator design that can achieve the specified performance requirements. A math model of the strawman motor/actuator and compliant load was used to conduct a closed loop feedback control algorithm. This algorithm was incorporated into the motor/actuator/load model and a stability and performance analysis was conducted.

INTEGRATED DESIGN APPROACH IS NECESSARY

INTEGRATED DESIGN APPROACH IS NECESSARY

capabilities, and load coupling dynamics. Off the shelf actuation systems will not be "optimized" for performance, control loop, actuator, and motor designs are dependent on the performance requirements, motor state of the art analysis is therefor necessary when maximum performance and minimum size, weight, and power are crucial. interrelationships. A custom design which utilizes an integrated design approach and comprehensive system interrelationships which exist between the functional elements of the EMA system block diagram above. The An integrated design approach should be followed for EMA TVC systems. This is apparent from the size, weight, power, and etc. because they have not taken fully into consideration application specific

SUMMARY OF STAGE 1 EMA PARAMETERS

Honeywell

<u>Value</u> <u>Units</u>	ear Ratio 50.86 rad/in	100000 lb/in	.41 volt/rad/sec	ity .303 ft-lb/amp	5.41 x 10 ⁻³ slug-ft ²	73 volts	ent 81 amps	r Speed 1700 rpm	ance .23 ohms	ance .23 mhenries
<u>Description</u>	Roller Screw Gear Ratio	Actuator Stiffness	Back EMF	Torque Sensitivity	Motor Inertia	Battery Voltage	Maximum Current	Maximum Motor Speed	Winding Resistance	Winding Inductance
<u>Parameter</u>	z	ΑĀ	~°	K	_m ر	VBATTERY	lmax	Отах	C	-

SUMMARY OF STAGE 1 EMA PARAMETERS

limitations and which will meet the specified Titan IV stage 1 booster TVC performance requirements. Defining A "strawman" motor/actuator design was conducted which does not violate current state of the art motor EMA parameters, their description and numerical values are listed.

LOAD CAPABILITY AND VELOCITY LIMITS REQUIREMENTS ACHIEVED

Honeywell

Output Load Capability Verification

Velocity Limits Verification

LOAD CAPABILITY AND VELOCITY LIMITS REQUREMENTS ACHIEVED

by the gear ratio. The loaded motor speed of 1411 rpm was obtained using the torque-speed curve shown above rad/in), and number of motors (2). The velocity limits are calculated by dividing the no load/loaded motor speed speed, and loaded motor speed performance requirements are satisfied. The output load capability (29960) is The "strawman" motor/actuator design is validated by verifying that the output load capability, no load motor computed by multiplying the stall current (81 amps) by the torque sensitivity (.303 ft-lb/amp), gear ratio (50.86 and selecting the spec'd load torque corresponding to a 20000 lb force.

MOTOR/ACTUATOR/LOAD DYNAMICS MODELED & SIMULATED

Honeywell

MOTOR/ACTUATOR/LOAD DYNAMICS MODELED & SIMULATED

therefor defined by a quartic equation containing a single complex root pair describing the load dynamics and a The block diagram above mathematically represents the dynamic behavior of the motor, actuator, and load. The open loop transfer function between the motor input command voltage and the position outputs defines a fourth order system (4 integrators, where S is the Laplace transform variable). The characteristic roots are single first order root and free integrator root defining the motor/actuator.

computed by dividing the commanded torque by the motor inertia (Jm) and integrating. Integrating the motor rate The motor drive circuitry bandwidth is very high with respect to the motor/actuator/load dynamics and can be motors (n) and the torque sensitivity (Km) and then subtracting the load torque feedback (Tm). The motor rate is (1/N1N2). The developed force across the actuator is computed by multiplying the actuator stiffness (Kt) by the modeled as a simple gain Kd. The motor torque is computed by multiplying the motor current by the number of difference between the screw and engine positions. The engine load acceleration is computed by dividing the yields the motor position. The screw position is computed by dividing the motor position by the coupling ratio developed force by the load mass (La2/ (12 * JL)). The load dynamics are modeled as a second order very lightly damped system. Load damping is defined by the magnitude of the parameter B.

Two sensors are used for feedback control. An LVDT senses screw position and a Hall Sensor/Tach senses

Filter phase stabilizes motor/load dynamics (quadratic dipole) Patent Awarded

MINIMAL ORDER FEEDBACK CONTROL STRUCTURE MINIMIZES IMPLEMENTATION COMPLEXITY AND COST

LVDT and motor rate from a Hall/Tach sensor. This not only results in an excellent broadband estimate of engine position but also phase stabilizes the motor/load dynamics (lag/lead quadratic dipole). Desired stability margins A unique control structure has been defined that results in a minimal order system and as a result reduces implementation complexity and cost. The structure includes a filter which combines sensed position from an are achieved by simple lead/lag loop shaping and gain selection.

STABILITY MARGINS ARE ACCEPTABLE

Honeywell

OPEN LOOP DAIN

96.4

STABILITY MARGINS ARE ACCEPTABLE

gain and phase margins are computed from these two plots. At the 0 db crossover frequency of 3 hz, the system phase is -130 deg. Therefore, the phase margin is -130° + 180° = 50° . The system phase never reaches -180°, The open loop frequency response with the control loop broken at the position sensor is shown above. The therefore the gain margin is infinite.

Honeywell

COMPARABLE DYNAMIC RESPONSE IS PREDICTED

COMPARABLE DYNAMIC RESPONSE IS PREDICTED

is shown above. A 9 Hz bandwidth (frequency @ -3db) exceeds the 8 hz bandwidth specification for Titan IV stage 1. The response is relatively flat out to 9 hz and then rolls off at 80 db/decade. The closed loop frequency response (sensed position/commanded position)

STEP RESPONSE IS FAST AND WELL BEHAVED

Honeywell

STEP RESPONSE IS FAST AND WELL BEHAVED

The load position time response to a unit position step command is shown above. The rise time (60 msec) is mode. The "ringing" present is due to a very lightly damped second order mode that represents the engine load dynamics. These oscillations become negligible after 2 seconds. The load position overshoot is approximately very fast - indicative of the high bandwidth. The response shape is dominated by a well damped second order

STAGE 1 TVC ACTUATION PERFORMANCE REQUIREMENTS CANDIDATE ENGINE STARTUP TRANSIENT SOLUTIONS EVALUATED

Honeywell

Approach	Philosophy	Implementation	Evaluation/Comments
Active Control	"Back drive" Actuator during startup transient	Sense load force, pass sensor output through a high pass filter and feedback as additional component of motor command	 Adds system damping Force sensor dynamic range limit Motor accelerations required exceed current state of the art capabilities Motor inertia must be reduced by a factor of 5 to 10 for this approach to be feasible
Passive Control	Dissipate startup transient energy using passive mechanical elements	Spring/Damper in series with actuator	 Smaller actuator required when space is allocated for passive mechanical elements Position offset for static loads Weight penalty
Soften Actuator	Reducing stiffness reduces force developed at actuator	Appropriate material selection, screw cross section	 Constrains achievable bandwidth However, Stage 1 bandwidth rqmt's Lowest cost, weight, technical risk solution

STAGE 1 TVC ACTUATION PERFORMANCE REQUIREMENTS CANDIDATE ENGINE STARTUP TRANSIENT SOLUTIONS EVALUATED

frequency response performance, start up transient considerations, and position offsets under static loads can be requirements are presented above. At the present time, we believe that adjusting the actuator stiffness (to soften) is the best approach. We have been able to demonstrate for Titan IV stage 1 booster TVC, both closed loop A single active control and two passive control design approaches for attenuating the transient loads at engine startup have been evaluated. The philosophy behind each approach along with implementation met with current state of the art EMA's.

STAGE 1 ENGINE START TRANSIENT MODELED AND SIMULATED BASED ON TEST DATA

Honeywell

ORIGINAL PAGE IS OF POOR QUALITY

STAGE 1 ENGINE START TRANSIENT MODELED AND SIMULATED BASED ON TEST DATA

pressure (Δp) is plotted versus time (sec). The maximum Δp is seen to be approximately 6375 psid. For a piston area of 9.88 sq in, we can predict a worse case force of 63000 lb on the EMA. The engine start transient can be seen to have a duration of approximately 20 msec and be triangular in shape. The subsequent ringing after the A worse case Titan IV stage 1 engine startup transient time history signature is shown above. Differential startup transient (time > 20 msec) represents the hydraulic actuator response.

0.4

ACTUATOR STIFFNESS EFFECTS FORCE APPLIED TO STRUCTURE AND CLOSED LOOP BANDWIDTH (63,000 LB STARTUP TRANSIENT)

ACTUATOR STIFFNESS EFFECTS FORCE APPLIED TO STRUCTURE AND CLOSED LOOP BANDWIDTH (63,000 LB STARTUP TRANSIENT

functions of actuator stiffness as shown above. Cutting the transient induced force developed across the EMA in half requires reducing the actuator stiffness by a factor of 10. But reducing the actuator stiffness by a factor of 10 EMA developed force to a 63000 lb startup transient and achievable closed loop bandwidth are logarithmic induced EMA forces must be made. The range of suitable actuator stiffnesses (Ka) is bounded by the 30000 lb maximum developed force envelope and the 8 hz closed loop bandwidth requirement s. The actuator stiffness cuts the achievable bandwidth by a factor of two. Therefore, a compromise between bandwidth and transient corresponding to these two requirements can be directly read off the above plots, i.e.

45000 lb/in < Ka < 130000 lb/in.

An actuator stiffness of 100000 lb/in was selected for subsequent analysis.

ACTUATOR STALL FORCE NOT EXCEEDED DURING (ACTUATOR STIFFNESS = 100,000 LB/IN) WORST CASE STARTUP TRANSIENT

Honeywell

ACTUATOR STALL FORCE NOT EXCEEDED DURING WORST CASE STARTUP TRANSIENT (ACTUATOR STIFFNESS = 100,000 LB/IN)

force (28000lb) occurs just prior to 50 msec. Given an actuator with a 100000 lb/in stiffness, our analysis predicts disturbance. The dashed line represents the resulting developed force across the EMA. The peak developed The solid line in the above time history trace represents the engine start transient applied as a load force that the developed force to a worse case startup transient will not exceed the 30000 lb specification.

SATURATION CURRENT AND STROKE LIMITS AVOIDED **JURING WORST CASE STARTUP TRANSIENT** (ACTUATOR STIFFNESS = 100,000 LB/IN)

ORIGINAL PAGE IS OF POOR QUALITY

SATURATION CURRENT AND STROKE LIMITS AVOIDED DURING WORST CASE STARTUP TRANSIENT (ACTUATOR STIFFNESS = 100,000 LB/IN)

The above two plots demonstrate that the engine startup transient load alleviation is accomplished without exceeding the current capabilities of the motor (81 amps) and the actuator stroke (\pm 1 in).

. in the second ••

SESSION IV ELA PROTOTYPE DESIGNS AND TEST RESULTS

EHA Prototype Demonstration

Technology Bridging Workshol NASA Electrical Actuation @ MSFC

9/29/92

1992 IR&D ELECTROHYDROSTATIC ACTUATOR (EHA)

BASIC COMPONENTS OF THE 3-CHANNEL SYSTEM

Allied-Signal Aerospace Company

1992 IR&D EHA DESIGN

· FAIL OPERATE - FAIL-SAFE

· NO SINGLE POINT FAILURE MODES OTHER THAN STRUCTURE/MOUNTING

A SINGLE FAILURE LEAVES TWO CHANNELS FULLY OPERATIONAL. AFTER A SECOND FAILURE, ONE CHANNEL IS STILL OPERATIONAL AT DIMINISHED HP.

· MODULARIZED DESIGN

THREE 8.3-HP POWER MODULES MOUNTED ON A TRIPLEX ACTUATOR (25-HP TOTAL)

NOMINAL LENGTH: 47.33 INCHES

STROKE: ± 5.7 INCHES

Allied-Signal Aerospace Company

EHA PERFORMANCE

PRESENT CONFIGURATION: HAL

HALF-SIZE MOTOR/PUMPS FULL-SIZE ACTUATOR/MANIFOLDING

OUTPUT HP: 25 (3 CH)

25 (3 CHANNELS FORCE SUMMED)

RATE: 3.3 IN./SEC

50,000 LB. GENERATED (ABLE TO WITHSTAND 100,000 LB.) FORCE:

Allied-Signal Aerospace Company

The EHA is presently configured with motors one-half the horsepower of the eventual NLS configuration. Upgrade can be accomplished by replacing the motor/pump assemblies.

IR&D EHA SYSTEM SCHEMATIC

EHA schematic illustrates redundancy and isolation of the three channels for fault-tolerant operation.

pressure sides of the piston to reservoir effectively disconnecting Operation of the bypass valve of any one channel connects both the failed channel.

EHA ADVANTAGES

HIGH RELIABILITY

- No Single-Point Failure Mode

MATURE TRANSIENT LOAD PROTECTION

- Hydraulic Relief Valve

MATURE FAILED CHANNEL DECOUPLER

Hydraulic Bypass Valve (solenoid operated)

WET MOTOR

- Hydraulic Fluid Cools Motor
- Cóoler Running Motor is More Reliable
 Allows Smaller Motors with Lower Inertia
- Lower Weight Motors and Controllers

HYDRAULIC CHARACTERISTICS

- Inherent Damping
 - Zero Backlash

The EHA provides the well understood advantages of hydraulics along with the energy-saving advantage of power on demand electric actuation.

TRANSIENT TEMPERATURES FOR EHA MOTOR / PUMP

Allied-Signal Aerospace Company

Chart shows the advantage of the EHA wet motor. Without coolant,

the motor winding temperature would be considerably higher.

Analysis was performed for continuous 70% (extremely

conservative) of peak horsepower for a 10-minute mission.

Winding temperature remains below 300°F.

IR&D EHA BUILT-IN TEST CAPABILITY

EXISTING CAPABILITIES

ROMTEST
RAMTEST
A/D Test
CPU Test
Power Supply Test
Watch Dog Timer Test
Inverter Test
Motor Overcurrent

Motor Overspeed
Reservoir Level Sensor
Position Sensor Fail
Bypass Valve Continuity
Excitation Fail
Motor Rotor Position
LVDT
Current Sensor

ADDITIONAL FAULT TOLERANT CONTROLLER TECHNOLOGY

Comparison of Multiple Position Feedback Signals

Comparison of Multiple Motor Speed Signals

Eliminate Faulty Feedback Signals Using Only Healthy Signals for All Control Channels

Soft Failure Detection - Degraded Performance of One Channel Compared to Others

Allied-Signal Aerospace Company

The EHA digital controller provides extensive health monitoring

communication and exchange of data provides more reliable load capabilities. Recent advancements incorporating interchannel

sharing, fault masking capability and soft failure detection.

EHA DEMONSTRATION at NASA 9/29/92

Test Configuration: Speed Limit - 2.9 in/sec; Current Limit - 15 amps/motor

1) OPERATION WITH TWO CHANNELS (SINGLE FAULT SIMULATION)

A. Sine Command, 0.1 Hz, ± 3 in amplitude
B. Sine Command, 0.5 Hz, ± 1 in amplitude
C. Frequency Sweep 1 to 10 Hz, ± 0.1 in amplitude
D. Step Command ± 0.5 in, ± 1.0 in, ± 2.0 in at 0.15 Hz

2) SINGLE CHANNEL OPERATION (SIMULATION OF SECOND FAULT)

A. Sine Command, 0.1 Hz, \pm 3 in amplitude B. Sine Command, 0.5 Hz, \pm 1 in amplitude

IMPROVED PERFORMANCE IS EXPECTED IN FUTURE TESTING WITH INCREASED SPEED AND CURRENT LIMITS

Sequence of tests for demonstration of the EHA at NASA MSFC.

The actuator has just begun development testing and has not yet been adjusted to its full capacity.

Miled Signal

EHA STEP RESPONSE (20,000 lb. load; 1-inch step) Speed Limited to 2.3 in/sec

fundance condection in the control

Preliminary test results at Allied Signal with 20,000 lb. load mass

and 2.3 in/sec speed limit. Step response data shows zero

overshoot.

Allied-Signal Aerospace Company

EHA FREQUENCY RESPONSE (± 0.1 in.; NASA Test Load 9/27/92)

Allied-Signal Aerospace Company

AiResearch Los Angeles Division

OMGINAL PAGE IS OF POOR QUALITY

EHA frequency response testing at NASA MSFC. Data illustrates

actuator capability of 6.7 Hz at -3 dB.

EHA IR&D PLANS THRU 1992

- · COMPLETE PERFORMANCE CAPABILITY TESTING
- Peak Load/Stall Load Testing
 Increased Speed and Current Limit Testing
 - Testing with Increased Gains
- · COMPLETE FABRICATION OF FAULT-TOLERANT CONTROLLER
- FAULT INJECTION/FAULT-TOLERANT DEMONSTRATION

Testing has just begun on the EHA. Testing to the full limits of the actuator capability are planned for this year.

Z. Zubkow - Marshall Space Flight Center

HONEYWELL EMA SYSTEM OVERVIEW

PRESENTED AT MARSHALL SPACE FLIGHT CENTER SEPTEMBER 29, 1992

PRESENTED BY Z. ZUBKOW HONEYWELL SPACE SYSTEMS GROUP CLEARWATER, FLORIDA

- ACTUATOR IS BACK-DRIVEABLE

VERY HIGH ACCELERATIONS ARE POSSIBLE DUE TO

LOW GEAR RATIO

USE REDUNDANT MOTOR WINDINGS ON COMMON SHAFT

NO CLUTCHES OR SPUR GEARS

FAILED MOTORS CAN BE ELECTRICALLY DISCONNECTED

USE DC BRUSHLESS MOTOR

GOOD THERMAL DISSIPATION (NO COOLING REQUIRED)

SIMPLE ELECTRONICS (CAN BE MOUNTED RIGHT ON

ACTUATOR)

DUAL REDUNDANT MOTORS, DRIVERS AND ELEX Honeywell

BENEFITS OF INTEGRATED CONTROLLER

· REDUCED EMI

- HIGH POWER PWM LINES ARE VERY SHORT

POWER LOSSES MINIMIZED SINCE PWM LINES ARE SHORT

REDUCED LINE LENGTH OF LVDT SIGNALS

· NO EXTRA CONTROLLER BOX(S) REQUIRED

SIMPLE CONSOLIDATED DESIGN

Dual Redundant 270 Volt 100 Amp Per Channel Controller

Z. Zubkow - Marshall Space Flight Center

Integrated EMA and Controller

Integrated EMA and Controller In Testbed

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Space Systems Group

Honeywell

HONEYWELL SSG SYNERGY REDUNDANT ELECTRO-MECHANICAL ACTUATOR

HONEYWELL / DURHAM

HONEYWELL / CLEARWATER

30Mac56752

Redundancy
Architecture
Analog Control Loop
Torque Averager
Command Interface

DC Brushless Motor

Actuator PWM Drive

LVDT Controller Power Supplies Computer Interface Control / Display Software

> Electronics LVDT Tachometer

EMAZZ1020

EMA CONTROLLER SIZE/WEIGHT/POWER REDUCTION

28 HP EMA MECHANICAL OUTLINE

CRUCIAL SIGNALS ARE MONITORED AND SENT BACK VIA MIL-STD 1553 INTERFACE

- MOTOR CURRENTS

- LVDT POSITIONS (ACTUAL POSITION)

- COMMANDED POSITION (CHECKS D/A AND A/D FUNCTIONS)

- CURRENT COMMAND SIGNAL (FOR COMPARISON WITH ACTUAL MOTOR CURRENT)

- TEMPERATURE (THERMISTORS EMBEDDED IN WINDINGS OF EACH MOTOR)

- 1553 BUILT-IN-TEST

- LOW VOLTAGE POWER SUPPLY VOLTAGES

- TACHOMETER

Designer: Richard Herrera 5/7/91

SECOND STAGE

DESIGNER: RICHARD HERRERA 5/7/91

RECEIVE DATA FORMAT

RECEIVE FROM BUS CONTROLLER

A COMMAND TO RECEIVE THREE DATA WORDS WILL BE ISSUED BY THE BUS CONTROLLER TO THE EMA RTU EVERY 50HZ.

POSITION COMMAND (D/A CONVERTER)

OUTPUT VOLTAGE

DATAWORD

0.00 V

٠ د

3FFH

-10

DIGITAL INPUT CODING

LSB

4

φ

×

×

FIRST WORD RECEIVED

THIRD WORD RECEIVED

TRANSMIT DATA FORMAT

DESIGNER: RICHARD HERRERA 5/7/91

IRANSMIT TO BUS CONTROLLER

SECOND STAGE EMA

■ A COMMAND TO TRANSMIT ELEVEN DATA WORDS TO THE BUS CONTROLLER WILL BE ISSUED EVERY 50 HZ.

SUBADO SUBADO FILLD WORD COUNT 00010 | 01011

MAJOR FUNCTIONS

- POSITION COMPARATOR
 COMPARES LVDT TO COMMANDED POSITION
- CONDITIONS POSITION COMPARATOR SIGNAL INTO TORQUE COMMAND · LEAD-LAG
- DETECTS IF ACTUATOR POSITION IS AT STROKE LIMIT · LVDT LIMIT DETECT
- · ANALOG STATUS ENCODER
- ALLOWS 1553 TO MONITOR POSSIBLE ANALOG

EMA Overview

DESIGNER: Z. ZUBKOW

SECOND STAGE
EMA

Space Systems Group

MOTOR CONTROLLER BASELINE

• DESIGN GOAL OF 100 AMPS CONTINUOUS AT 270VDC

QUAD-REDUNDANT OUTPUT TRANSISTOR DESIGN: 4 X 30 AMPS

• 20 KHZ PULSE-WIDTH-MODULATOR (PWM) FREQUENCY MIN

• SIX-STEP COMMUTATION

• ±10VDC TORQUE COMMAND INPUT: 0V = NO TORQUE

1V = 10 AMPS MOTOR CURRENT

• CONTROL ELECTRONICS ELECTRICALLY ISOLATED FROM 270 VDC SUPPLY AND MOTOR

OVERCURRENT DETECTION FOR EACH OF FOUR OUTPUT TRANSISTOR MODULES

ACTIVE LOW SHUTDOWN SIGNAL WILL PREVENT SPURIOUS TORQUE APPLICATION AT POWER-UP

SECOND STAGE EMA TEMPERATURE PROFILE

SESSION V DEMONSTRATION

SESSION VI ELA POWER SOURCE SYSTEMS

GEORGE C. MARSHALL SPACE FLIGHT CENTER

MARSHALL SPACE FLIGHT CENTER

ENERGY SOURCE TESTING CAPABILITIES

DAVID K. HALL

SEPTEMBER 30, 1992

BATTERIES: BLDG 4475

FLYWHEELS: BLDG 4487

TURBO-ALTERNATORS: BLDG 4656

BATTERIES:

HISTORY

CURRENT TESTING

BLDG. 4475 FACILITIES

y	Remarks	Explorer 1 First free-world satellite, solar array, and Ni-Cd battery power system	Three satellites with multi-battery SA/Ni-Cd system for large micro-meteroid satellite	First manned space station; two SA/Ni-Cd power systems (ATM & OWS) with total capability of >8 kW; operated in parallel; EPS reactivated after more than 4 years in "orbital storage"	Three satellites with multi-battery SA/Ni-Cd power system built by TRW for MSFC; no battery failures
Histor	Battery Manuf.			MSFC MDAC-E	TRW TRW TRW
SFC Flight Program History	Cell Manuf.	Sonotone Sonotone Sonotone	Gulton? Gulton? Gulton?	GE EPLJ	SAFT-Amer. SAFT-Amer. SAFT-Amer.
Flight	Capacity			20 Ah 33 Ah	
MSFC	Battery Type	Ni-Cd Ni-Cd Ni-Cd	Ni-Cd Ni-Cd Ni-Cd	NI-Cd NI-Cd	Ni-Cd Ni-Cd Ni-Cd
	Regime	LEO LEO LEO	LEO LEO LEO	LEO	LEO LEO LEO
	Time of Operation	4 mos. 3 mos. 4 mos.	3+ yrs. 3+ yrs. 3+ yrs.	6 yrs. Incl. 4 yrs. storage	19 mos. 30 mos. 27 mos.
	Launch Date	2/58 3/58 7/58	2/65 5/65 7/65	5/73 5/73	8/77 11/78 9/79
	Program Name	Explorer 1 3 4	Pegasus 1 2 3	Skylab ATM OWS	HEAO 1 2 3

ISFC Flight Program History Battery Capacity Manuf. Manuf. Manuf.	88 Ah EPI-J First reported, non-experimental use of Ni-H ₂ batteries in LEO; multi-battery SA/Ni-H ₂ 2.4 kW power system built by LMSC for MSFC; first flight-qualified BPRC (MSFC patent) developed for Ni-Cd batteries before change to Ni-H ₂	15 Ah GAB Ford Battery 1 failed after 5 months of operation; Aerospace battery 2 failed after 15 months of operation; excessive on-orbit overcharge likely major contributor to failures	30 Ah TBD TRW is the prime contractor for this effort	TBD TBD This is an MSFC in-house project
MSFC Battery Regime Type	LEO NI-II2	MEO NI-CA	Elliptical TBD	Polar TBD
Time of Operation	30 mos. (active)	B1-5 mos. B2-15 mos.		
Launch Date	4/90	7/90	-1999	1999
Program .Name	HST	CRRES	AXAF-I *	AXAF-S *

* – Planned flights

	MSFC Se	condary Bat	ttery / (MSFC Secondary Battery / Cell Testing Summary	Summary	1	
Hubble Space Telescope Support:	scope Support:						
Test Name	Cell Manufacturer	Cell Type	Capacity	Completed Cycles	Regime	dod%	# of Cells
Type 40 Battery 1 *1	EPI-J	Ni-Cd RSN55	55 Ah	23211	LEO	13 - 16	22
Type 40 Battery 2 *2	EPI-J	Ni-Cd RSN55	55 Ah	6641	LEO	13 - 16	22
Type 41 *4	EPI-J	Ni-Cd RSN55	55 Alı	25891	LEO	91 - EI	22
GE Battery *3	GE	Ni-Cd	50 Ah	23872	LEO	91 - EI	22
Six Battery System *5	EPI-J	NI-Cd RSN55-15	55 Ah	21856	LEO	13 - 16	132
Six Four-Cell Packs 6	EPI-J	Ni-Cd RSN55-15	55 Ah	29850	LEO	13 - 16	24
Fourteen-Cell Pack	EPI-J	Ni-H ₂ RNH30-1	30 Ah	31000	LEO	6-9	14
Three Four-Cell Packs	EPI-J	Ni-11 ₂ RN1190-3	90 Ah	20145	LEO	6 - 9	12
Six Battery System	EPI-J	Ni-H ₂ RNH90-3	90 Ah	18100	LEO	6-9	132
Flight Spare Battery	EPI-J	Ni-112 RN1190-3	90 Ah	17600	LEO	6-9	22

Test has been terminated

First cell failure at 14 months

First cell failure at 14 months; DPA showed excessive cadmium migration 1 - 2 - 3 - 3 -

5 – Built with reject positive plates; met system reqt. of 36 Ah/battery thru 4 yrs.; had cell short in B3 at 18,300 orbits Cell divergence at >14,000 orbits; >100 mV at 19,000 orbits; capacity as 6 - Cells from flight battery lots; continues to meet system reqt. after 51k yrs. low as 30 Ah

4 - Cell divergence at > 10,000 orbits; capacity as low as 20 Ah

	MSFC Sec	condary Bat	tery / (ondary Battery / Cell Testing Summary	Summary		
Other Testing:							
Test Name	Cell Manufacturer	Cell Type	Capacity	Completed Cycles	Regime	%DOD	# of Cells
Twelve-Cell Pack	EPI-J	Ni-H ₂ RNH35-3	33 Ah	21315	LEO	22	12
Four Four-Cell Packs	EPI-J	Ni-H ₂ RNH90-3	90 Ah	58	Elliptical	30	16
Reconditioning	EPI-J	Ni-H ₂ RNH90-3	90 Ah	5500	LEO	30	∞
Parametric Tests	EPI-J	Ni-MH RMH10-1	10 Ah				24
AXAF-S Ni-MH	EPI-J	NI-MH RMH10-1	10 Ah		LEO		8
SEDS / UAH	EPI-J	NI-MH RMHI0-1	46 01		LEO		22
SEDS Satellite	EPI-J	NI-MH RMH10-1	10 Ah		LEO		22

GEORGE C. MARSHALL SPACE FLIGHT CENTER

FLYWHEELS:

BLDG 4487;

TWO CONTAINMENT VAULTS

ON-GOING CMG TESTING

ORIGINAL PAGE COLOR PHOTOGRAPH

ORIGINAL PAGE COLOR PHOTOGRAPH

GEORGE C. MARSHALL SPACE FLIGHT CENTER

TURBO-ALTERNATORS:

BLDG 4656;

HIGH PRESSURE HELIUM

HIGH PRESSURE NITROGEN

3000 PSI HYDRAULICS

JOHNSON CONTROLS BATTERY GROUP INC.

BIPOLAR LEAD/ACID BATTERY

NASA ELECTRICAL ACTUATION TECHNOLOGY BRIDGING WORKSHOP

AT

MARSHALL SPACE AND FLIGHT CENTER HUNTSVILLE, ALABAMA

SEPTEMBER 30, 1992

PRESENTED BY

WILLIAM O. GENTRY DOUGLAS C. PIERCE

MONOPOLAR AND BIPOLAR CURRENT PATH SCHEMATICS

MONOPOLAR CONFIGURATION

TWO CELL / 4-VOLT SYSTEM

BIPOLAR CONFIGURATION

TWO CELL / 4-VOLT SYSTEM

JCBGI BIPOLAR LEAD/ACID ADVANTAGES

- PROVEN LEAD-ACID CHEMISTRY
- SEALED, MAINTENANCE FREE OPERATION
- SHORTER CURRENT PATH
 - LOWER INTERNAL BATTERY RESISTANCE
- REDUCED WEIGHT AND VOLUME
- SUBSTANTIAL POWER ADVANTAGES OVER MONOPOLAR
 - ≥100% INCREASE IN POWER DENSITY FOR QUASI
 - ≃140% INCREASE IN POWER DENSITY FOR TRUE
 - ≃75% INCREASE IN SPECIFIC POWER FOR QUASI
 - ≥150% INCREASE IN SPECIFIC POWER FOR TRUE
- MEANS OF VARYING STACK VOLTAGE WITHOUT RE-TOOLING
- PACKAGING FLEXIBILITY

BIPOLAR BATTERY COMPARISON

FOLDED BIPOLAR PLATE

TRUE BIPOLAR PLATE

TRUE/QUASI BIPOLAR COMMON POINTS

- LEAD-ACID TECHNOLOGY
- FRAME DESIGN
- ASSEMBLY TECHNIQUES
 - IR WELDING
 - VIBRATION WELDING
- ACTIVE MATERIAL
- SEPARATOR
- FORMATION AND ACID FILL TECHNIQUES
- TERMINATION DESIGN
- INITIAL CONTAINMENT DESIGN

TRUE/QUASI BIPOLAR DIFFERENCES

- INSERT MATERIAL
 - QUASI- FOLDED LEAD GRID ELECTRODE
 - TRUE- COMPOSITE TRUE BIPOLAR SUBSTRATE
- MANUFACTURABILITY
- FAILURE MODES
 - QUASI- GRID CORROSION, FOLD SEAL LEAK
 - TRUE- ACTIVE MATERIAL DEGRADATION
- CELL SPACING AND CELL SIZE WILL BE SMALLER IN TRUE BIPOLAR
- HIGHER PERFORMANCE CHARACTERISTICS IN TRUE BIPOLAR
- SMALLER MASS, SMALLER VOLUME

JCBGI QUASI BIPOLAR STATUS

- CURRENTLY HAVE TWO DIFFERENT SIZE PLATES: 520, 940 cm²
- DEMONSTRATED 30 SEC AVERAGE POWER OF 210 W/kg at 80% DOD
- DEMONSTRATED HIGH SPECIFIC POWER: 1.5 kW/kg FOR 12 SECONDS
- DEMONSTRATED OVER 100 CYCLES AT TWO INDEPENDENT LOCATIONS
- BUILT NINE 430 VOLT BATTERY STRINGS
- INCREASED PRODUCTION FROM FIFTY 12 VOLT BATTERIES PER YEAR TO THIRTY 40 VOLT BATTERIES PER WEEK
- INCREASED FORMATION SUCCESS RATE FROM 10% TO 80%
- CONTAMINATION DURING PROCESSING HAS CAUSED CYCLE LIFE PROBLEMS

POROSITY IN PLASTIC COMPOSITES

- HIGH FILLER LOADINGS LEAD TO POROSITY
- DIFFICULT TO PREVENT
- PROCESS/PRODUCT INVESTIGATIONS
 - RESIN IMPREGNATION OF POROUS COMPOSITES
 - COMPRESSION MOLDING IMPROVEMENTS
 - LOWER FILLER LOADINGS THROUGH BETTER DISPERSION
 - HIGHER CONDUCTIVITY FILLERS

JCBGI QUASI BIPOLAR FUTURE WORK

- ELIMINATE MATERIAL PROBLEMS THAT HAVE CAUSED CYCLE LIFE PROBLEMS THROUGH HIGH LEVELS OF CONTAMINATION
- DEMONSTRATE 100 CYCLE CAPABILITY ON 20 CELL BATTERY AND A 200 CELL STRING
- OVERCOME CELL INCONSISTENCIES WHICH LIMIT BATTERY PERFORMANCE
- DEVELOP A RECHARGE REGIME THAT WILL ENSURE UNIFORM CHARGING OF HIGH VOLTAGE STRINGS
 - LARGER DATA BASE IS NEEDED
- REFINE ACID MANAGEMENT SYSTEM TO PERMIT A TOTALLY CLOSED SYSTEM
- IMPLEMENT RECENT DESIGN MODIFICATIONS

TRUE BIPOLAR ADVANTAGES

- LOWER INTERNAL RESISTANCE THAN QUASI BIPOLAR
- SHORTER, MORE UNIFORM CURRENT PATH
- LARGER ACTIVE AREA
- SUBSTANTIAL VOLUME AND WEIGHT SAVINGS
- HIGHER POWER APPLICATIONS QUASI
- LOWER LEAD CONTENT: LOWER MASS
- IMPROVED MANUFACTURABILITY
- ELIMINATES PRESENT FAILURE MECHANISMS
 - LEAD GRID CORROSION ON CHARGING
 - FOLD SEAL LEAKS
 - CONTAMINATION

TRUE

SPECIFIC POWER (kW/kg)

TRUE BIPOLAR DEVELOPMENT

- POSITIVE SUBSTRATE COMPONENT DEVELOPMENT
 - ELECTROCHEMICAL STABILITY AT POSITIVE POTENTIALS
 - HIGH CONDUCTIVITY
 - NON-POROUS
 - MANUFACTURABLE
 - HUNDREDS OF MATERIALS HAVE BEEN SCREENED: FEW QUALIFIED
- POSITIVE SUBSTRATE COMPONENTS HAS BEEN IDENTIFIED
 - IMPROVE CONDUCTIVITY OF MATERIAL
 - OPTIMIZE COMPOUNDING PROCEDURES

TRUE BIPOLAR DEVELOPMENT

- NEGATIVE SUBSTRATE MATERIAL ALREADY IDENTIFIED
 - STABLE AT NEGATIVE POTENTIALS
 - HIGHLY CONDUCTIVE
 - NON-POROUS
 - EASY TO MANUFACTURE
 - NOT STABLE AT POSITIVE POTENTIALS
- NO MATERIAL HAS BEEN IDENTIFIED THAT IS STABLE AT BOTH ELECTRODES
- INTERFACE BETWEEN POSITIVE AND NEGATIVE
 - PROTECT NEGATIVE FROM POSITIVE POTENTIAL AND POSITIVE FROM NEGATIVE POTENTIAL
 - MAINTAIN CONDUCTIVITY WITH EACH SIDE

JCBGI TRUE BIPOLAR DEVELOPMENT FOR WPAFB

- A 270 VOLT BATTERY SYSTEM IS TARGETED FOR THE MORE ELECTRIC AIRCRAFT
- DEVELOP A LEAD-ACID TRUE BIPOLAR SUBSTRATE WITH THE FOLLOWING GOALS
 - 0.025" TOTAL SUBSTRATE THICKNESS
 - ≤ 2 ohm-cm RESISTIVITY
 - 400 cm² ACTIVE AREA
 - ≤ 150 mg/cm² AREA DENSITY
- DELIVER TWO INTERIM TRUE BIPOLAR BATTERIES. A 54 VOLT BATTERY IS SCHEDULED FOR DELIVERY IN AUGUST 1994.

BMET PERFORMANCE REQUIREMENTS BIPOLAR BATTERY SPECIFICATIONS Near Term Projections (within 5 years) 330 Volt Battery Systems

REQUIREMENTS MET	BATTERY DIMENSIONS	BATTERY VOLUME	BATTERY WEIGHT	W/kg	W/cm3	W-hr/kg	W- hr/cm3
Main Engine Starting APU Starting Hybrid Emergency	17.6"x15.5"x15.5"	2.45 ft3	450 lbs	747.9	2.2	12.25	0.036
Main Engine Starting Ground Power Emergency Power APU Starting Hybrid Emergency							
Scenario 1 30 minute ground power capacity	27.4"x19.7"x19.7"	6.15 ft3	1000 lbs	62.2	0.16	31.08	0.081
Scenario 2 45 minute ground power capacity	36.2"x19.7"x19.7"	8.13 ft3	1349 lbs	46.1	0.12	34.56	0.092
APU Starting	16.5"x4.33"x4.33"	0.18 ft3	33 lbs	705.0	2.1	11.75	0.036

WPAFB TRUE BIPOLAR PROGRESS

- PERFORMANCE MODELING
- CONDUCTIVE FILLER DEVELOPMENT
- POROSITY CONTINUES TO BE A PROBLEM
- ORDERED AN ENHANCED COMPRESSION MOLD
- RECEIVED CONDUCTIVE FILLER IN PROTOTYPE SIZED BATCHES
 - ALLOWS FOR LARGER COMPOUNDING TRIALS
 - CAN BE USED IN NEW COMPRESSION MOLD
- INTERFACE MATERIAL HAS BEEN IDENTIFIED

WPAFB NEXT STEPS

- STATISTICALLY DESIGNED COMPOUNDING TRIALS TO OPTIMIZE LOADING LEVEL
- REFINE COMPOUNDING PROCEDURES
- TEST DIFFERENT PLASTIC RESINS
- USE MATERIAL FROM COMPOUNDING TRIALS IN COMPRESSION MOLD
- STABILITY TEST TO QUALIFY NEW FORMULATIONS

Advanced Battery Characteristics for ELA Applications

Johnson Controls Bipolar Lead/Acid Battery

	QUASI BIPOLAR	TRUE BIPOLAR
Output Voltage	1.0-2.15 V/cell	1.0-2.15 V/cell
Nominal Voltage	2 V/cell	2 V/cell
Plateau Voltage	1.2-2.1 V/cell	1.2-2.1 V/cell
Voltage Rise Time (delay)	NA	NA
Average Current	as needed	as needed
Maximum Pulse Current	1000 amps; 15 sec	1500 amps; 20 sec
Rated Discharge Current	0 to 1000 amps	0 to 1500 amps
Current Density	max 1.2 A/cm ²	max 1.5 A/cm ²
Specific Energy (Wh/kg)	<i>38</i>	44
Inverse Power Density (L/kW)	0.253	0.088
Maximum Pulse Power	1.2 kW/cell; 15 sec	1.8 kW/cell; 20 sec
Transient Response Time	NA	NA
Specific Power (kW/kg)	1.5 to 2.0	3.0 to 3.5
Total Energy Storage Capacity	90 Wh/cell	120 Wh/cell
Cycle Life	100+	300+
Open Circuit Voltage	2.15 V/cell	2.15 V/cell
Safety Issues	Lead;Acid	Lead;Acid
Thermal Operating Range (C)	-30 to +65	-30 to +65
Charging Time; Retention	3 hours; weeks	2 hours; weeks
Capacity	15 Ah; 940cm ²	20 Ah; 1000cm ²
Mass	0.85 kg/cell	0.60 kg/cell
Stage of Development	6	3

ELECTROMECHANICAL ACTUATION

POWER SOURCE STUDY

SILVER OXIDE - ZINC

SECONDARY

RESERVE PRIMARY

BIPOLAR

POWER SOURCE REQUIREMENTS

BASE ELECTRICAL LOAD: 5.7 KW FOR 570 No Special Provisions for Shipping, Storage, or PULSE LOAD: (5) 0.5 Sec. pulses of 53.2 KW Minimum Maintenance After Installation Testable at All Points Before Launch 60 Day Minimum Activated Life Spaced By 10 Sec. Minimum **Low Weight and Volume VOLTAGE 260 - 200 VDC** Seconds (9.5 Minutes) High Reliability Proven Safety Testing

DESIGN FOR MINIMUM WEIGHT SECONDARY SILVER ZINC

MAXIMUM ENERGY POINT ON CURVE APPROX. 20 C SUPPLY 53.2 KW AT 200 VDC MIN MAXIMUM VOLTAGE NOT REGULATED

318 CELLS 12.3 AH

WEIGHT - 170 LB.

VOLUME - 1.53 FT³

AT 53.2 KW LOAD

210 VDC, 253 AMPS

AT 5.7 KW LOAD

478 VDC, 11.9 AMPS

DESIGN FOR VOLTAGE CONTROL SECONDARY SILVER ZINC

SUPPLY 53.2 KW AT 200 VDC MIN SUPPLY 5.7 KW AT 260 VDC MAX

162 CELLS, 50 AH WEIGHT - 358 LB. VOLUME - 3.16 FT³ AT 53.2 KW LOAD 210 VDC, 253 AMPS AT 5.7 KW LOAD 250 VDC, 22.8 AMPS

RESERVE PRIMARY SILVER ZINC

SUPPLY 53.2 KW AT 200 VDC MIN

SUPPLY 5.7 KW AT 260 VDC MAX

158 CELLS, 5.7 AH

WEIGHT - 88 LB.

VOLUME - .85 FT³

APPROXIMATE 15 MINUTE ACTIVATED LIFE

ACTIVATED LIFE UP TO 6 HR AVAILABLE WITH 20% WEIGHT AND VOLUME INCREASE

BIPOLAR SECONDARY SILVER ZINC

SUPPLY 53.2 KW AT 200 VDC MIN

SUPPLY 5.7 KW AT 260 VDC MAX

162 CELLS, 12.8 AH

WEIGHT 114 LB, VOLUME .70 FT3

120 DAY ACTIVATED LIFE

CONVENTIONAL SECONDARY SILVER - ZINC WEIGHT REDUCTION FOR

1. ACTIVATED LIFE 30 TO 60 DAYS

2. RAISE OPERATING TEMPERATURE

3. REFINE PHYSICAL CONFIGURATION

A. MULTICELL MONOBLOCK

B. INTERNAL INTERCELL CONNECTORS

C. LIGHTWEIGHT CONTAINER MATERIAL - TITANIUM

4. INCREASE MAXIMUM VOLTAGE LIMIT

200 000 000 000 000 000 000 000 000 000						
200 000 000 000 000 000 000 000 000 000						
200 000 000 000 000 000 000 000 000 000					- · · · · ·	
200 000 000 000 000 000 000 000 000 000						1
200 000 000 000 000 000 000 000 000 000			İ			
200 000 000 000 000 000 000 000 000 000						
200 000 000 000 000 000 000 000 000 000						1
200 000 000 000 000 000 000 000 000 000		· .				
200 000 000 000 000 000 000 000 000 000						 N
2000 000 0000 0000 0000 0000 0000 0000		<u> </u>				
2000 000 0000 0000 0000 0000 0000 0000						1
2000 000 0000 0000 0000 0000 0000 0000						
2000 000 0000 0000 0000 0000 0000 0000						L
2000 000 0000 0000 0000 0000 0000 0000						
2000 000 0000 0000 0000 0000 0000 0000	<u> </u>					
2000 000 0000 0000 0000 0000 0000 0000						0
2000 000 0000 0000 0000 0000 0000 0000	;					
100 100		· · · · · · · · · · · · · · · · · · ·				
100 100			* .			l
100 100						
100 100		ļ 			<u></u>	
100 100		1		.		1
100 100		7				
Cell Output Very Cell Ou	· · · · · · · · · · · · · · · · · · ·	ļ			· · · · · · · · · · · · · · · · · · ·	<u> </u>
Cell Output Very Cell Ou				1		lΞ
200 Cell Output vs Temperature Eagle Picher Ind. Temperature - %P Temperature - %P Temperature - %P						
200 Cell Output vs Temperature Eagle Picher Ind. Temperature - %P Temperature - %P Temperature - %P	· · · · · · · · · · · · · · · · · · ·					
200 Cell Output vs Temperature Eagle Picher Ind. Temperature - %P Temperature - %P Temperature - %P			· I.		*	
200 Cell Output vs Temperature Eagle Picher Ind. Temperature - %P Temperature - %P Temperature - %P		<u> </u>		<u></u> -	····· · · · · · · · · · · · · · ·	
200 Cell Output vs Temperature Eagle Picher Ind. Temperature - %P Temperature - %P Temperature - %P		ļ_ , , , , , , , , ,		<u> </u>		
200 Cell Output vs Temperature Eagle Picher Ind. Temperature - %P Temperature - %P Temperature - %P		. 1		_:		
200 Cell Output vs Temperature Eagle Picher Ind. Temperature - %P Temperature - %P Temperature - %P					- : 	 %
200 200		<u></u>				
200 200			Ĭ			
200 000 000 000 000 000 000 000 000 000		 				
200 000 000 000 000 000 000 000 000 000		L				
200 000 000 000 000 000 000 000 000 000		Γ , Γ	6		- Fei	
200 000 000 000 000 000 000 000 000 000		 	<u> </u>	-	-1 1 1 1 1 1 1 1 1 1 1	
200 000 000 000 000 000 000 000 000 000			le e	¥		٥
Cell Output Watte Coll Output Watte Coll Output Volume Cell Output Cell Output Volume Cell Output			1 : 1	2 -	<u>e</u>	8
200 Celli Output Watte Colli Output Watte Colli Output Watte Colli Output Watte Collidary C					· · · · · · · · · · · · · ·	
100 100			> ,	5 H	at I	
100 100			ي بد	O H	i i	
20 06 00 00 00 00 00 00 00 00 00 00 00 00		ļ				
20 06 00 00 00 00 00 00 00 00 00 00 00 00				ן כ	in in	
20 06 00 00 00 00 00 00 00 00 00 00 00 00			6	g 6	Te	
200 000 000 000 000 000 000 000 000 000		ļ -		3 1	-	Q
20 00 00 00 00 00 00 00 00 00 00 00 00 0			- je	116		
20 00 00 00 00 00 00 00 00 00 00 00 00 0			- t	0 d		
20 00 00 00 00 00 00 00 00 00 00 00 00 0				л_ш <u>. </u>		
Cell Output Watte 3300 440 520 520		1	!	•		
Cell Output Watte 3300 440 520 520		 				
Cell Output Watte 3300 440 520 520						
Cell Output Watte 3300 440 520 520				*-		
Cell Output Watte 3300 440 520 520			- 1			79
Cell Output Watte 20 30 30 40 70 70 70 70 70 70 70 70 7		L L				
Cell Output Watte 20 30 30 40 70 70 70 70 70 70 70 70 7		,				
Cell Output Watte 20 30 30 40 70 70 70 70 70 70 70 70 7			1 !			
Cell Output Watte 20 30 30 40 70 70 70 70 70 70 70 70 7				·		
Cell Output Watte 20 30 30 40 70 70 70 70 70 70 70 70 7						
Cell Output Watte 20 30 30 40 70 70 70 70 70 70 70 70 7			······································			
Cell Output Watte 200 200 200 200 200 200 200						
Cell Output Watte						0
Cell Output Watte						20
Cell Output Watte						2.0
Cell Output Watte						20
Cell Output Watte						20
S S S S S S S S S S S S S S S S S S S						20
Cell Output Watte						.
Cell Output Watte						
Cell Output Watte						
Cell Output Watte					1	.
Cell Output Watts			300		1	.
	007		300		1	
	007				1	.
	007				. 200	40 5
	007				. 200	5 40 5

[:	 .	,		<u> </u>
		<u> </u>				
		<u></u>	1		i	
	_ , , ,					
	<u> </u>	<u> </u>				
	·					:
	<u> </u>					
		<u> </u>	<u> </u>			
		<u> </u>				0
						2 10
	:				:	
			1	1		:
. : :						
		 				180
			 			
			 	 		
	! :		O O	: ; ;		
			Life			150
			H			
			S Activated 60AH		-	
					9	
.					Days	
			P P P P P P P P P P P P P P P P P P P			120
	<u> </u>		N S P I	1		1.
	<u> </u>		H 502		Life	
			ha s		!	
			Output ary SOZ Picher,		t ec	
			e ud		tivated	06
			Power Output v Secondary SOZ, Eagle-Picher,		Ţ	6
			면 있 명		AG	
						1
						. :
					;	0
			:		• :	09
				:		
					;	
	, ,					
<u> </u>	 	† <i> </i>				
						8
	 	 				
		 				
 	 	<u> </u>	· · · · · · · · · · · · · · · · · · ·	·		
		 			 	
<u> </u>						0
	604		300		200	
		<u> </u>	L			
		L_l	ut - Watts	dano treo	_	

High Rate Lithium Battery Technology

presented to the

Electrical Actuation Technology Bridging Workshop

September 29 – October 1, 1992 Marshall Space Flight Center Hunstville AL Yardney Technical Products, Inc.

82 Mechanic Street Pawcatuck CT 06379

SI	Nickel						
Aqueous Systems	Mercury Alkaline Carbon Nickel				A		
Aqueous	Alkaline						
	Mercury						
	Li/I ₂	TO THE					
eries	Li/MnO ₂	10000					
Lithium Batteries	Li/Cl _x Li/MnO ₂						
Lithiu	Li/SOCI ₂ Li/SO ₂			ENERGY	DENSITY		
	Li/SOCI ₂	to.		ENE	DEN		100000
	SYSTEM:	Wh/kg:	400	300	200	100	

VOLTS: 4.0	3.0 OPERATING	2.0	1.0 VOLTAGE	SEALING Hermetically Hermetically Crimped Welded Welded Elastomeric
				Crimped Elastomeric Seal
				Crimped Elastomeric Seal
				Her metically Welded
				Crimped Elastomeric Seal
				Crimped Elastomeric Seal
				Bitumen
				Crimped Elastomeric Seal

Energy Density and Operating Voltage of Lithium Batteries and Most Common Commerical Batteries

Vardney

Cell and Battery Technology Summary of Lithium

Active and Reserve Batteries

Monopolar and Bipolar

Bobbin Cells

Wound Cells

Disc Cells

High Rate Batteries

Special Applications (ALWT)

20 - 100 mA/cm2

500 mA/cm2

3 - 10 mA/cm2

3 - 10 mA/cm2

I mA/cm2

Catalyzed Thickness from .001 inch to .125 inch Cathode Development Standard and

Electrolyte Development - Balanced and Acitic

Mechancial Designs to withstand up to 30,000 G's

Batteries from 3.65 Volts to 120 Volts

Capacity Losses on Storage at Room Temeprature after One Year

Туре

Leclanche

Approximate Loss

12 - 15% per year

3 -5% per year

5 - 10% per year

Mercury-Zinc

Silveroxide-Zinc

Alkali-Mn-O₂

2 – 3% per year

Lithium

0.5 - 2% per year

Advantages of Lithium Thionyl Choride

-40° to +150° C. operating temperatures

Long storage life

High energy density Stable voltage

Hermetically sealed

Design versatility Reliable Excellent safety record

Manufacturability

Disadvantages of Lithium Thionyl Chloride

- Toxidity of Electrolyte
- Passivation of Anodes
- Hazardous above 180°C

Development of a High Power Bipolar Li/SOCI₂ Battery

Yardney Technical Products, Inc. 82 Mechanic Street Pawcatuck CT 06379 Sponsors: Wright Patterson Air Force Base September 1986 – July 1990

General Dynamics May 1991 – October 1991

High Rate Primary Lithium Battery

Achievements Under WRDC Sponsorship

- Design and evolution of a sealed high rate bipolar Li/SOC12 battery
- 25kW pulsed discharge of an 80 cell module using 20ms pulses at 10% duty cycles
- Demonstration of practical pulse energy density of 1.9kW/lb.
- Demonstration of 100mA/cm² continuous and 400mA/cm² pulsed discharge
- Development of procedures for:
- making .002-.010 inch carbon cathodes
- heat sealing Tefzel insulators
- filling electrolytes

High Rate Pulse Discharge of 25kW 80 Cell Module

Specific ^[3]	Power (kW/lb)	-		- .	6.	1.9	6.1
Max ^[3] Pulse	Power (kW)	20.6	21.1	21.0	34.6	35.0	35.0
Average Power	Output (kW)	19.5	20.4	20.5	29.4	30.9	28.8
Average ¹² 1 Pulse	Voltage (V)	189	198	190	143	150	140
	Time (sec)						
Pulse	Length (ms)	N	4	50	2	4	20
Current	Density (mA/cm²)	206	506	206	412	412	412
	Current (A)	103	103	103	506	206	506
	Test	-	2	ෆ	4	ß	9

[1] 10% duty cycle
[2] Pulse voltage increased as battery warmed
[3] Based on highest pulse voltage. Battery weight is 18.6 lbs.
[4] Battery vented during previous pulse train. Lost current capability after six seconds. However, it delivered maximum power of 35kW.

Vardney

Effect of Platinized Carbon on Cell Voltages vs Current Density in 1.6M LiGaCl₄/SOCl₂

Cathode	Current		Puls	Pulse #5 at End of Pulse Voltage (V)	nd of Pul	se Volta	ge (V)	:	
Composition	in mA/cm²	25	20	75	100	150	200	250	300
Standard		3.27	3.04	2.85	2.70	2.44	2.21	1.99	1.75
BP W/5.3% Pt		3.26	3.07	2.92	2.78	2.55	2.40	2.26	2.11
SAB w/8.5% Pt	,	3.36	3.25	3.15	3.06	2.91	2.76	2.63	2.48
Both carbons platinized	nized	3.32	3.23	3.15	3.08	2.94	2.81	2.69	2.57

Full—Size [1] Single Cell Test Summary Table 1

TEST Composition Separator Thionyl chloride Voltage @ Discharge Standard Avg. Thk. Separator Thionyl chloride Voltage @ Discharge Standard R.4 G.8 1.6M LiGaCl4 1.99 19.45 4.52 0.46 Standard R.4 G.8 1.57M LiAlCl4 1.93 11.00 2.77 0.298 SAB w/8.5% Pt R.3 S.3 1.6M LiGaCl4 2.63 14.33[7] 3.44 0.343 Both carbons 7.2 4.9 1.6M LiGaCl4 2.69 17.50 4.12 0.461									
ROLLED CATHODE	Cathode	Capacity	(Ah/cc) IVI	0.46	0.298	0.458	0.343		0.461
ROLLED CATHODE	Total	Capacity	(Ar)	4.52	2.77	4.62	3.44		4.12
ROLLED CATHODE	Continuous	Discharge [5]	Time(min.)	19.45	11.00	19.91	14.33[7]		17.50
ROLLED CATHODE	Fifth pulse [4]	Voltage @	250mA/cm²(V)	1.99	1.93	2.26	2.63		2.69
Standard 8.4 Standard 8.4 Standard 7.6 BP w/5.4% Pt 8.2 SAB w/8.5% Pt 8.3 Both carbons 7.2	***	Thionyl chloride	Electrolyte	1.6M LiGaCl4	1.57M LIAICI4	1.6M LiGaCl4	1.6M LiGaCl4		1.6M LiGaCl4
ROLLED C Composition[2] Standard Standard BP w/5.4% Pt SAB w/8.5% Pt Both carbons platinized	H8V				÷ 9.9	6.4	: W:		4.9
Stande Stande Stande BP w/5.4 SAB w/8 Both car	CATHODE	Avg. Thk.	(mil) [3]	8.4	9.2	8.2	8.3		7.2
1 1 2 3 3 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ROLLED		Composition [2]	Standard	Standard	BP w/5.4% Pt	SAB w/8.5% Pt	Both carbons	platinized
		· .	TEST	-	8	: m	4	က	

[1] Ten-inch diameter electrode components

[2] 80% SAB / 20% BP [3] Inital thickness; test cell thickness was adjusted so that the combined cathode/separator final thickness was 90% of their combined initial thicknesses.

[4] The 53 2kW power output requires a load current density of 250mA/cm²

Continuous discharge 24.5 mA/cm² follows the last series of five half—second pulses at ten second intervals (5% of dury cycle) Pulse series were run at current densities of 25,50,75,100,150,200,250 and 300mA/cm². These current densities are basedon full - size cathodes with no channels. [2]

[6] Cathode volume corrected for channels[7] Cell leaked electrolyte through plug in anode steel endplate.

 Low temperature storage **VOLTAGE DELAY:**

Pre—discharge conditioning

MESP

Centaur

1.6M LiGaCl₄ / platinized cathodes

Additives: PVC, SO₂, GaCl₃ • SO₂, Li₂O • GaCl₃

RECHARGEABLE:

No problem with millisecond charge pulses

 Designed for shock and vibration Insulate terminals HANDLING:

Low temperature storage

 Battery will not overheat within load range SAFETY:

· 000 **BATTERY CHECK** PRIOR TO LAUNCH: Leaks/corrosion

Pre-discharge conditioning

Verify rate by pulse load testing

YARDNEY TECHNICAL PRODUCTS

EMA Performance Requirements

- 200 Volts
- 53 kW Pulses (Five pulses, 0.5 seconds each)
- 12.5 Amp background current for 600 seconds

Design Approach:

- Bipolar Li/SOCI Battery
- Two parallel battery stacks, with 80 cells in each stack
- 125 Ampere (maximum current)
- 250 mA/cm² (maximum current density)

HIGH RATE SOCI2 CELL

VOLTAGE (voits)

HIGH RATE SOCI2 CELI

Figure 5A: Tefzel/nickel sandwich prior to compression molding

Figure 5B: Tefzel/nickel substrate configuration after compression molding

EMA Power Module Design Concept

ELECTRICAL

- Voltage Range 200 to 260 volts
- Base Power 5.7kW for 570 seconds
- Pulse Power 53.2kW, 5 pulses (each 0.5 sec. with 10 sec. separation

MECHANICAL

- 2 Parallel Submodules 80 cells each
- Module Diameter 11.5 inches
- Module Height 7.5 inches
- Module Weight < 30 lbs.

ELECTROMECHANICAL ACTUATION TECHNOLOGIES

Presented by:

SatCon Technology Corporation 12 Emily Street Cambridge, MA 02139

Presented to:

Electrical Actuation Technology Bridging Workshop September 29 - October 1, 1992 Huntsville, Alabama

FLYWHEEL ENERGY STORAGE SYSTEM ASSEMBLED SYSTEM

FLYWHEEL ON HUB

INTEGRATED FLYWHEEL HUB MOTOR/GENERATOR ROTOR

CENTRAL SHAFT FOR INTEGRATING MOTOR/GENERATOR STATOR, MAGNETIC BEARINGS AND TOUCH-DOWN CERAMIC BEARING

Weight measurements of the IPACS assembly (wheel energy 7.2 MJ)

Weights as measured and best estimates (*)

Mechanical System

Flywheel (Fiber structure only)	25.0 kg
Motor/Generator Hub	5.0 kg
Central Shaft + Bearing Assembly + Motor/Generator Backiron	13.6 kg
Frame	12.0 kg
	55.6 kg
Containment (*) Estimate of light, thin shell containment	10.0 kg
	65.6 kg
Electronics System	
Inverter for Motor/Generator (3kW)	5.0 kg
Magnet Bearing Switching Amplifiers (*) + Sensor Electronics (*)	10.0 kg
	15.0 kg
Analog Amplifiers currently in use (extreme conservative choice to cover all possible variations of power and frequency response requirements)	60.0 kg

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

HUB AND BACK IRON

ONE MAGNETIC BEARING + MOUNTING SHAFT

MAGNETICALLY SUSPENDED MOMENTUM WHEEL COMPONENT LAYOUT

DISTURBANCE ACCOMMODATING CONTROLLER BLOCK DIAGRAM

	TELDIX DR-68 Momentum Wheel	SatCon Low Vibration Momentum Wheel
Total Mass	8 Kg	8.3 Kg
Dimensions	350 mm Diameter 120 mm Height	384 mm Diameter 88 mm Height
Steady State Power	< 26.5 Watts	< 10 Watts in 1g < 5 Watts in 0g
Maximum Wheel Precession Rate		0.03 rad/sec in 1g 0.08 rad/sec in 0g (min. required 7.6x10 ⁻³)
Torque Vibration at GOES Spacecraft Mass Center	Forces at 6000 rpm with 0.75 gm cm residual static imbalance F = 4.7 N	Forces at 6600 rpm assuming 0.75 gm cm static imbalance F = 0.27 N
	Measured at 6000 rpm Tx = 7.46 Nm Ty = 6.83 Nm Tz = 7.46 Nm	Simulated including measurement error Tx = Ty = Tz < 0.7 Nm

MOMENTUM WHEEL PARAMETERS.

INDUCTION-MACHINE/FLYWHEEL ENERGY STORAGE SYSTEM

Objective:

Design flywheel energy storage system based on induction machine to interface with 20 kHz pulse-

density modulation (PDM) converter.

Specifications:

Usable energy

250 kJ

Peak output power

36 kW

Output power risetime

1 kW/mSec

Average output power

4 kW

Goals:

Efficiency (round trip)

80%

Power density

2 kW/kg

Energy density

100 kJ/kg

Absorb energy at 40 kHz

Low machine loss with PDM waveform

High-efficiency machine-control algorithm

FLYWHEEL ASSEMBLY LAYOUT

SIZE: 12 inch dia. X 4 inch ht.

BASELINE SYSTEM WITH DC PRIME SOURCE

SUMMARY

SPEED 24,000 rpm

MASS 22 kg

VOLUME 450 cubic inches

ROUND-TRIP EFFICIENCY 85%

VACUUM 16 torr

TEMPERATURE RISE 15 deg. K

Power Source Presentation

A 270 Volt DC System With a High Speed Turboalternator Is a Practical Option for Launcher TVC Power, as Shown by

DC Power System Development

- Progress in Turboalternator Technologies

HERESPACE ->

Hybrid 270 Vdc Technology **Demonstration System**

F-22 Electric Power System

270 Vdc System Issues

Power System Transients 100 V/div

Power System Stability SOURCE AND LOAD IMPEDANCE PLOT FREQUENCY (Hz) MAGNITUDE (db)

Voltage Distortion

Launcher TVC Power Issues

Generator/Regulator Architecture

• Conductor Layout

EMI Suppression and Control

Electromagnetics

Switched

Permanent Magnet Brushless

High Speed Machinery

Turbomachinery

Summary

The State-of-the-Art in 270 Vdc Power Can Support the Weight, Cost, Reliability, and Performance Goals for New Helicopters and Fighter Aircraft Enabling Technologies Exist for Development of Very Densely Packaged Turboalternator Power Sources for Launcher TVC

John Anderson (206) 773-0188

BOEING

GH2 Turbo-Alternator

Technology Bridging Workshop @ MSFC NASA Electrical Actuation

9/30/92

- **Turbo-Alternators**
- GH2
- H2O2Hydrazine
- Batteries
- AgZnBipolar LithiumAdvanced AgZn
- Others
- Fuel CellsFlywheels

TVC PSS Comparisons

- **Continuous Power Supply**
- Peak Power Load Capability
- Voltage Droop Control
- Low Weight
- Test & Checkout
- On Pad Power-up
- Application of Existing Technologies

GH2 PSS Operations Savings

Shuttle Hydrazine APU									
	`.	/	9/16	_	NLS GHZ Power Source			9	
Generic Vehicle Function	Hours	T YOOV H	Man		Common Core Function *	Hours	10000	Man	
APU H2O VLVS R&R/Deservice POSU	32.0	2	160.0	<u> </u>	APU H20 VI VS B&B/Deservice POSII		士		
APU H20 Deservice/Service	80.0	æ	640.0		APU H20 Deservice/Service				
APU H20 Service Secure	4.0	4	16.0		APU H20 Service Secure				
APU Lube Oil Service POSU	8.0	2	40.0	2	No Equivalent Function				
APU Lube Oil Service	26.0	9	260.0	. Z	No Equivalent Function				
APU Lube Oil Service POI	8.0	4	32.0		No Equivalent Conding				
APU Catch Bottle Drain	96.0	23	2208.0		No Equivalent Function		-		
APU Lube Oil Deservice POSU	64.0	10	640.0	<u> </u>	No Equivalent Eurogian				
APU Lube Oil Deservice	9.0	10	0.06				_		
APU Fuel Valve Resistance Check	40.0	ĸ	0.000		No Facilities :				
APU Leak and Functional POSU	16.0	, 5	160.0		No Equivalent Function				
APU Leak and Functional	176.0	2 \$	160.0	4	APU Leak and Functional POSU	16.0	9	160.0	
APU Leak and Functional POI	78.0	2 0	786.0	4	APU Leak and Functional	176.0	9	1760.0	
Launch Pad	?	9	0.400	₹	APU Leak and Functional POI	48.0	80	384.0	
Service Auxiliary Power Unit	24.0	S	816.0	Ž	No Equivalent Function				
Retract RSS	8.0	=	84.0		No Equivalent Function				
"Hot Fire" Auxiliary Power Unit Extend RSS	8.0	180	<u>- </u>	ž	No Equivalent Function				
	0.0 0.0	=	0.72	ž	No Equivalent Function				
Total	655.0		7574.0	<u> </u>	Total	240 n	+	2304.0	
	←		 	*	7	-	4	2.1.2	
			Possi	ble Sav	Possible Saving of 415 Processing Hours	'			
		<u></u>							
			Possible S	aving o	Possible Saving of 5270 Processing Man Hours				
Generic Vehicle Data Extracted from									

Functional Data based on STS Orbiter (3 Main Engine System) Processing Operations and Maintenance Instructions. Generic Vehicle Data Extracted from Operationally Efficient Propulsion System Study (OEPSS) Data Book.

GH2 Turbo-Alternator

GH2 Turbo-Alternator Block Diagram

GH2 Turbo-Alternator Voltage Regulation

Power Output

- Regulation for steady state and increases in load current provided by turbine speed control
- Regulation for decreases in load current providedby PLR (transient) and turbine speed (steady state)

Regeneration

Regulation provided by PLR

Output/Internal Fault

Turbine shut down limits fault current to safe duration

GH2 Voltage Response Opposing load

00 x

 $0.36 \text{ lb}_{\text{m}/\text{S}}$ 2500 psia psia 59450 rpm K≷ 515 320 217 93.1 **Operating Condition** Steady-State Load resistor power Turbine mass flow Exhaust pressure --- RPUS Supply pressure Turbine speed Bus voltage **Bus current** TVC power •- CURBUS

---- MIL-STD-704D voltage limits scaled for 220V

00 OS

ALTERNATOR SPEED.

GH2 PSS Distribution

GH2 System Schematic

GH2 Turbo-Alternator ADP Focus

Issue	SEP 92 GHe Demo	Oct 92 GH2 Design	FY 93 GH2 Fab/Test
Voltage Control	×	×	×
GHe Operation	×	×	×
GH2 Operation		×	×
GH2 Materials Compatibility		×	×
Foil Bearing GH2 Operation		×	×
Control Valve Performance		×	×
GH2 Static Sealing		×	×
PLR thermal Management		×	×
Size		×	×
Weight		×	×
Cost		×	

TVC Power Source Design Drivers

- Voltage Level / corona effects
- Duty Cycle Margin / available energy
- Voltage Droop Control / actuator performance
- · Distribution & Redundancy / single-fault-tolerant, fault isolation
- Weight / total system
- Test & Checkout / operability
- Prelaunch Power-Up Capablity
- Technology Maturity

ELECTRICAL ACTUATION

technology bridging program

POWER SOURCE SIMULATOR

Presented at

ELA & Power Systems Workshop

NASA - MSFC

September 30, 1992

NASA-JSC: Don Brown

Lockheed ESC: Mike Bradway

ELA Technology Bridging Program Power Source Simulator

ELA-TB & ELAPSS Principals & Roles

NASA-JSC ELAPSS PROJECT

- ELAPSS Project Mgmt.,
- ELA-TB Program Interface,
- System Engrg. & Integration,
 H/W & S/W Procure. & Devel.
 - ELAPSS Assembly & Test

ELA Technology Bridging Program Power Source SImulator

September '92 Review

Potential ELA Technology Space Applications

ELA Space Applications	Actuator Size
Space Transfer Vehicles (PLS, ACRV)	.5 - 5.0 kW
Propellent Control Valve	5 KW
Orbiter Nose-Wheel Steering	10 - 12 kW
Commercial ELVs (Atlas, Titan, Delta)	12 - 20 kW
Obtiter Main Engine (SSME)	23 KW
Orbiter Elevons	28 KW
Space Shuttle SRB Thrust Vector Control	83 kW (pk)
NLS Thrust Vector Control (configuration dependant)	50 - 70 kW
Heavy Lift Launch Vehicle	70 - 120 kW
Planetary Surface Vehicles (Rover, Digger, etc.)	5 - ? kW

Baseline ELA Requirements for NLS and SRB

Requirement	NLS TVC Reqmts.	SRB TVC Reqmts.
Peak Power:	59 KW	83 KW
Base Power	5.7 kW	6.8 K
Average Power	8.2 KW	33.1 KW
Voltage	200 Vdc	200 Vdc
Pulse Duration	.5 sec.	1.5 sec.
Pulse Frequency	10 sec.	4.25 sec.
Energy / Pulse	7.4 Wh	32 Wh
Max. No. of Pulses	54	29
Operating Time	9.5	2.1
Total Energy	1.3 kWh	1.16 kWh

ELA System Power Source Alternatives

- are being considered for many different applications (launch vehicle TVC, PCV, Orbiter flight control, steering, braking, GSE fluid control, A variety of ELA systems and requisite power source combinations planetary surface equipment)
- Each ELA and system application means unique power characteristics to maximize system operation and efficiency, while minimizing costs
- ELA power source alternatives include:
- high power density batteries
- advanced fuel cells
- gH₂ turbine-driven alternators
- flywheel energy storage devices
- · Each power source type is viable and appropriate for a specific ELA application and set of program/vehicle constraints

ELA Technology Bridging Program Power Source Simulator

ELAPSS Purpose & Scope

- The ELA Technology Bridging Programs integrated ELA & power capability which characterizes all power source options for the systems test & demonstration plans require power output variety of ELA applications
- practical within ELA-TB Program budget and schedule constraints Acquisition or development of actual power source devices is not
- The ELAPSS will provide a programmable power source emulation capability to meet all NASA ELA application/system test & demonstration needs
- characteristics of any power source using commercially available hardware and applications software One ELAPSS can be developed to emulate the defined operating

ELAPSS Purpose & Scope (cont'd.)

- A modular design will allow the ELAPSS to be reconfigured to support multiple ELA system sizes, redundancy schemes, and integrated ELA/power system performance and fault testing
- The ELAPSS will provide a permanent power source simulator capability for use on current and future NASA programs
- The ELAPSS will be a portable piece of NASA GSE for use at any NASA center with the facility to support it
- more timely development & use, more cost effective replication, The ELAPSS will be developed with commercial components for and future expansion of power source emulation capability
- capability via automated test sequences or manual commands from The ELAPSS allows very robust power degradation and fault testing an operator control console

ELAPSS Development Approach

Industry ELA Power Reqmts.

ELA-TB Power Reqmts. Def.

ELAPSS Systems Requirements Battery Reqmts. Analysis Fuel Cell Reqmts. Analysis Alternator/Flywheel Reqmts. Analysis

ELAPSS System Design Concept ELAPSS Design/ Cost Trades

ELA Technology Bridging Program Coordination, ELAPSS Reviews,

> Project Technical Coordination & Integration

ELAPSS

Review by Committee
 Task Agreements via EMs

& Direction

Iterate ELAPSS Reqmts. & Design

ELA Technology Bridging Program Power Source Simulator September '92 Review

ELAPSS Functional Diagram

ELAPSS FUNCTIONAL BLOCK DIAGRAM

ELA Technology Bridging Program Power Source Simulator

Electrical Actuation Power Source Simulator

(ELAPSS)

REQUIREMENTS

- ELAPSS will provide power for a variety of non-flight Electrical Actuators up to 120 kW at 28, 120, 200 and 270 Vdc.
- ELAPSS will be able to provide nominal power or emulate Batteries, Fuel Cells, Turbo Alternators and Flywheels
- ELAPSS will be able to provide off-nominal power in either could be EMI injection, power source faults and line faults. nominal or emulation power modes. Off-nominal power
- ELAPSS will be able to absorb returned energy from the ELA
- * ELAPSS will be able to support redundant ELA testing

ELA Technology Bridging Program Power Source Simulator

BASIC DESIGN CONCEPT

The proposed Electrical Actuator Power Source Simulator will have following basic components:

- A programmable switch-mode DC Power Supply
- **PWM Power Amplifiers**
- A microcomputer based instrumentation and control system

449

450

ELA Technology Bridging Program Power Source Simulator September '92 Review

DC POWER SUPPLY:

power amplifiers from the utility power. To insure that the terminal. The DC power supply is separate module in the The DC Power Supply provides variable dc power for the ELAPSS system and hence, can be reconfigured easily. system output will respond as fast as the amplifiers are capable, it has a large capacitor bank at the output

PWM POWER AMPLIFIERS:

need. Each amplifier contains power modules consisting of amplifiers that can be designed as master-slave system to allow paralleling multiple modules to meet high power These are high power Pulse Width Modulated switching power module is a series of power current pulses at 81 a full H-bridge switching stage. The input to the power module is a 81 kHz control signal. The output of each rate whose width is proportional to the analog control

PWM POWER AMPLIFIERS (Contd):

The resultant The PWM output is then applied to a low pass filter to eliminate the 81 kHz and its harmonics. output is DC with little ripple content.

this design because it allows a large output voltage range The PWM switchmode type of amplifiers is important for without dissipating excessive amounts of heat.

ELA Technology Bridging Program Power Source Simulator

Power Simulator (without PWM Amp) Output Transisent Response with Step Control Input

Load Volts 120Vdc

.5 sec/div

Power Simulator (with PWM Amp) Output Transisent Response with Step Control Input

Load Volts 120Vdc

.5 sec/div

ELA Technology Bridging Program Power Source Simulator

September '92 Review

ELA Technology Bridging Program Power Source Simulator

MICROPROCESSOR CONTROLLER:

monitored by current sensor and processed by an analog to digital converter (ADC). The data read from the ADC module is used by the microprocessor to calculate the voltage control signal for proper simulation output. This control signal is then sent to the power amplifiers This consists of an industrial PC and instrumentation and control modules. The system load current is via a digital-to-analog converter.

OFF-NOMINAL OPERATION

FOLLOWING MODULES ARE REQUIRED FOR DEGRÁDED OR IN ADDITION TO THE BASIC SYSTEM COMPONENTS, THE **OFF-NOMINAL MODE OF OPERATION:**

NOISE GENERATOR:

A signal generator and wide band amplifiers may be used to inject noise into the output line to degrade output power.

LOAD BANKS:

the ELA under test. These devices are turned on by the which act as current sinks to absorb return energy from These are active control MOSFET off the shelf modules micro-computer controller.

Both the noise generator and the load banks are commercially available modules. ELA Technology Bridging Program Power Source Simulator

September '92 Review

ELAPSS Design Drivers

- High power output capability:
- 60 90 kW TVC requirements for NLS, ASRM (SRB)
- 90 kW peak power required to meet SRB TVC ELA regmts. (SRB start transient and roll manuever load profiles)
- Dual & Quad redundant ELA system test capability
- NASA-MSFC building a quad 60 kW system (4 15 kW motors)
- NASA-LeRC building dual 60 & 80 kW systems
- EMI characteristics of the power bus with switching loads
- Return energy absorption capability (from each channel)
- response time of fastest programmable power supply available · ELA power transients (engine start, roll manuever) exceed the

ELAPSS Project Schedule (FY'92)

			=	992		-					18	993				
Activity Name	٦	٦	V	S	0	z	٥	7	F	<u>`</u>	٧	7	7	4	S	
			- '		-				- ;							
- 1	\parallel	1	2	5₹		$\dagger \end{bmatrix}$	\top	5 1		+	+	+	+ 8	ļ ;	┦ •	T
roject resi	<i>m</i>		777	5								•	Closeour	0 0 0 1	5 -	
		MOS —	≥	-	Update	a										
ELA/PS Reqmts. Survey			S		× ×	→ <u>E</u>	Final				+			_	_	
	-		aitia-	=						-						
					_ م _	Prel. SDR	S	Œ	\dashv	\dashv			-			
ELAPSS System Reqmts.			-13	una			1	4	Final		SDR					
			Γ-	Draft 	=					-		ქვ-	Complete	8 -		
						PDR	Œ							_		Ĭ
ELAPSS Design & Devel.				*			1						Complete	2		
			ے ی	Initial Concept	- <u>ā</u>		<u> </u>	- COR								
		1	\top	1	\top						+	٥	Delivered	- 6	- <mark>-</mark> 8	
ELAPSS Assembly & Test						2				ž		minim		_	_	Ī
					·	S	SCPR		• '	Test &	45					
									-	၃_ ပ	_	-	-			T
	1	1	1	1	4	1	1	1		+	$\frac{1}{2}$	$\frac{1}{1}$	$\frac{1}{1}$	1	-	1

ELA Technology Bridging Program Power Source Simulator

ELAPSS Value To NASA

- Supports verification of any NASA ELA systems performance & fault tolerance/redundancy with appropriate representative power source emulation
- A programmable portable ELAPSS capability supports multiple ELA applications testing at any NASA site with supporting facility
- ELAPSS provides a permanent resource to NASA a link in the chain of end-to-end integrated power/avionics advanced development and test capability for any vehicle/surface system
- Modular, commercial ELAPSS design provides multiple ELA/power system testing flexibility, and allows easy reconfiguration, expansion or replication as required
- Supports the NASA "bridging" concept new way of doing business resource sharing among centers & programs

SESSION VII ELA OPERATIONS

ELECTRIC ACTUATION

TECHNOLOGY BRIDGING PROJECT WORKSHOP

STS HYDRAULIC VS. ELA OPERATIONS SRB ASSESSMENT

(ELECTRIC SRB AFT SKIRT CONCEPT)

Carey M. McCleskey, NASA/KSC Haley W. Rushing, ASSI/KSC

WHY AN ELA OPERATIONS TEST BED?

IF A **CONCURRENT ENGINEERING** APPROACH TO DESIGN IS TO BE USED, THE LAUNCH SITE OPERATIONS CUSTOMERS WILL NEED TO GAIN **KNOWLEDGE**, **SKILLS AND ABILITIES** IN THE FOLLOWING AREAS:

1. SKILL IN HANDLING HIGH POWER BUSSES

- SIGNAL MEASUREMENT BETWEEN LRU'S GSE REQUIREMENTS & CHARACTERISTICS
- SWITCHING AND BUS REDUNDANCY/ISOLATION CHARACTERISTICS

2. Knowledge of Power Source Characteristics

- BATTERY HANDLING AND MAINTENANCE
- FLYWHEEL OPERATION

3. ABILITY TO HANDLE PERSONNEL SAFETY ISSUES

- BATTERIES
- HIGH VOLTAGE LINES

4. KNOWLEDGE OF ACTUATOR OPERATION

- LOCKING OPERATION AND CHARACTERISTICS
- ACTUATOR INITIALIZATION
- GENERAL OPERATING CHARACTERISTICS (CURRENT MONITORING / TORQUE EQUALIZATION / VELOCITY SUMMING)

5. EXPERIENCE IN SYSTEM-LEVEL ISSUES

- DATA MANAGEMENT
- FAULT MANAGEMENT
- ENERGY MANAGEMENT (CHARGE/DISCHARGE CYCLES)

73 July 1514

Agenda

Motivation

SRB TVC Ops Study Results & Video

Future Plans

Motivation

Operational experience with Shuttle

- Heavy servicing and deservicing requirements
- Replacement often difficult
- Heavy infrastructure overhead
 - · Facility
- Ground Support Equipment
- · Toxic Commodities

Objective

- Identify Life Cycle Cost of Current Technology
- Conduct specific one-for-one trades with electric actuation technology Life Cycle Cost opportunities

Flight Control Candidates for study:

- Orbiter (APU/Hyd Aero/TVC/Prop/Ldg-Decel)
- SRB Thrust Vector Control System

SEPT 29 - OCT 1, 1992

APPROVED FOR FY 1992

HYDRAULIC VS ELECTRIC LIFE CYCLE IMPACT

ELECTRICAL ACTUATION LECTROCLOGY BRIDGING WORKSHOP

せいせる

REFURBISHMENT COSTS APPROX 2/3 REDUCTION OPERATIONAL BENEFITS SUMMARY

- REFURBISHMENT/CHECKOUT TIME 3/4 REDUCTION
 - REQUIREMENTS (+ CLEAN ROOM + FLUID SERVICES) 8400 SQ FT REDUCTION IN FACILITY
- HUNDREDS AND HUNDREDS OF GSE ITEMS ELIMINATED - VERY FEW INTRODUCED

SPENT SAB SRB TVC WORK FLOW/SEQUENCE CCAES 7 VAB LC.39 6 APSF

SAB TVC HYD VS. ELA (INTERIM RESULTS)

(Cost Savings = \$ 2.0M Per Flight)

Future Plans

Continue updating SRB TVC Life Cycle Costs

Support New Launch System studies

Begin identifying Orbiter costs in greater detail

Establish capability to support operational demonstrations for the investigation ot:

Safety

Ground support equipment (GSE)

Facility requirements

Operability investigations:

Installation

Replacement

Test and problem isolation

Servicing & maintenance

Processing flow analysis & resource usage

Launch commit criteria and hold impact

SEPT 29 - OCT 1, 1992

NASA Electrical Actuation

Technology Bridging Workshop

ELA Ground Support Applications

at the

John C. Stennis Space Center

W. W. St. Cyr

Technology Development Division Science & Technology Laboratory

POTENTIAL ELA GROUND APPLICATIONS AT SSC

Variable position valve of NASP High Heat Flux Test Facility

Automation of High Pressure Gas Facility

● CTF Test Cell

Seal Configuration Tester

Selected Facility Support System Valves

GOALS OF ELA PROGRAM AT SSC

- Determine significant advantages and disadvantages of using ELA's for facility valve actuation.
- Compare operating characteristics of ELA's to those of hydraulic control valves.
- Establish reliability of commercially available ELA hardware when used on facility control valves.
- Determine the compatibility of ELA control interfaces with existing facility data acquisition and control systems.

PROGRESS TO DATE / PROGRAM STATUS

- Requirements have been established for specific applications.
- Identified commercial hardware for ground support applications.
- Developed test plan.
- Electrical Actuator (commercial hardware) in Procurement.
- Adapting test plan to commercial hardware.
- Commercial hardware to be evaluated:
- ELA hardware to be tested Oct/Nov on Seal Configuration Tester,
- Field application and evaluation of ELA during 2nd, 3rd and 4th quarter of FY93.

ELECTRICAL ACTUATOR ASSESSMENT

= NASA National Aeronautics and Space Administration

- Stennis Space Center

ACO INTERNATIONAL

ELA SPECIFICATIONS

Raco International, Bethel Park, PA Manufacturer:

Stroke: 7

5000 lbs

Thrust:

6 ips peak running (5.5 Hz max) Rod Speed:

12 mm Ball Screw

Brushless Digital Servo Direct Drive, 1550 RPM

Motor:

Lead:

Front Flange & Trunnion Brackets

Mounting: Length:

Accessories:

Approx. 6'

clevis, Stroke limit switches, Rotary encoder Power Release Brake, Spring loaded front

for linear displacement

ELA SERVO MOTOR HIGHLIGHTS

- 3 Phase Brushless Servo Motor
- ▶ Position Repeatability: Better than one arc-minute
- Maximum Speed: 1550 RPM
- Continuous Torque: 80 lb.ft.
- Rotor Inertia: 0.0093 lb.ft.sec²
- ▶ Load Inertia Range: 0 to 0.0465 lb.ft.sec²

ELA CONTROLLER HIGHLIGHTS

- 10 kHz PMW Switching Frequency
- 55 Amp/Phase Continuous Current
- 110 Amp/Phase Peak Current
- 230 V RMS Nominal Voltage

ELECTRICAL ACTUATOR TESTBED

LABVIEW CONTROL PANEL

ELA TESTBED MEASUREMENTS

- Load (10 kHz sampling)
- Linear Position (10 kHz sampling)
- Linear speed and acceleration (derived from position)
- Motor current draw
- Motor temperature
- Total run time
- Wear characteristics of critical ELA drive components

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

POWER-BY-WIRE FLIGHT DEMONSTRATIONS ON LASC'S HTTB

Lockheed High Technology Test Bed HTTB

न्त्र High Technology Test Bed Program

Provides a Flying, Operational-Environment Laboratory

Goals

- Establish Real-World Mission Characteristics

- Develop Flight-Tested Hardware

Serve as a Focus for Systems Integration

- Demonstrate Technological Commitment

Conduct Applicable Research Projects

HTTB Technologies

Fly-by-Wire

Voice I/O

Infrared

High Pressure Hydraulics

High Speed Data BusFiber Optics

Autonomous Navigation

Head-Up Display

Digital Flight Control

矿

Lockheed Airborne Data System (LADS)

Multiple Measurements Available

Modular/Expandable

Real-Time Data

Processed Output in Engineering Units

Scan Rates to 160/Sec

The Lockheed Airborne Data System

OF POOR QUALITY

6596-31
11-19-92
obt 32a

HTTB Advanced Avionics

- Baseline Delco

- Laser Nav

- High Accuracy Gimbal

E E - Litton LN92/Collins GPS

Head Up Display (HUD)

Forward Looking Infrared (FLIR)

Digital Flight Control System (DFCS)

Doppler/Kalman

Digital ADF

TACAN

HTTB Advanced Avionics

- Cockpit Management System
- MIL-STD-1553B Data Bus
- Radar Bendix APS-133
 High Resolution Radar
- Radar Altimeter
- Digital Air Data Computer
- Global Positioning System

Avionics Bay

ORIGINAL PAGE IS OF POOR QUALITY

Mobile Data Center

Power-by-Wire Flight **Demonstrations**

Power-by-Wire Advantages for C-130

- Better Reliability and Supportability
- Damage Tolerance Design (Reduced Vulnerability)
- Jam Resistant
- Energy Efficient (Power "On-Demand")
- Rapid Deployment Capability at Low Temperatures
- Backdrive Capability
- Reduced Fire Risk
- Field Level Hazardous Waste Reduction

Electro Hydrostatic Actuator - Left Aileron

Integrated Actuator Package-Rudder

SESSION VIII ELA PROTOTYPE DESIGN AND TEST RESULTS

Jim Mildice

Space Systems Division **General Dynamics**

Test System Description

Motor Controller Design - (General Dynamics,

Power Output Stage

- Three-phase, bidirectional motor interface
- High-frequency (20-KHz) AC power input
- input rectification, and low-frequency motor current synthesis and Bilateral output switches, to perform integral, synchronized AC
- Pulse-population regulation, with zero current switching

• Control

- Embedded microprocessor control for all functions except motor current regulation
- Software in ROM
- Analog motor current regulation loop, with computer-generated reference
- All communications and interfaces via serial data busses

Space Systems Division

General Dynamics EMA Testing at MSFC

Motor Controller Capability

Power Inputs

- Power Stage Voltage = 300-V, RMS, single-phase, AC
- Frequency = 20-KHz
- Total Power = 44.0-KVA (maximum)

Command Inputs

Digital, serial data bus - RS-232

Feedback

- Analog, motor resolver outputs
- Analog, motor current

Outputs

- Variable Voltage = zero to 200-V, RMS, L-L; three-phase AC
- Variable Frequency = zero to 750-Hz
- Power = 40-KVA (maximum)

October, 1992

Induction Motor - (Sunstrand)

Electrical Characteristics

- Input Voltage = 115-volt, RMS, L-N; three-phase
- Input Frequency at Full Speed = 750-Hz
- Power Factor = 0.753
- Efficiency = 89.9%

Mechanical Characteristics

- Rated Power = 69.3-HP(peak); 34.6-HP(steady state)
- Full Rated Speed = 14,700RPM @ Full Load
- Operating Torque = 148.4 in-lb
- Maximum Torque = 400 in-lb
- Specific Weight = 3.32-HP/lb(peak); 1.7-HP/lb(steady state)
- Specific Volume = 1.6-HP/cu.in(peak); 3.1-HP/cu.in(steady state)
- Moment of Inertia = 0.0103 in-lb-sec-sec

Redundant Actuator - (Moog)

Performance

- Force Rating = 48,000-lb (operating); 100,000-lb (maximum)
- Extension = ± 5.4 -inches
- Maximum required Rate = 7.4-inches/second
- Engine Start Transient relief = force feedback with integral load cell

Mechanical Design

- Design compatible with roller screw or ball screw output
- Dual (redundant) motor mounts with torque summing in the gear train (no mechanical decoupling)
- Length = 47.33-inches, pin-to-pin
- Weight = 300-lb (non-optimized prototype)
- Moment of Inertia (at the motor shaft) = 0.0089 in-lb-sec-sec

Tests Performed

Compatible Operation

- Low power test to verify EMA/Controller/Facility compatibility
- Full power operation to verify EMA/Controller/Facility compatibility

Step Response

- Step function position commands from (+) to (-) 0.05- to 2.5-inches
- Maximum rate achieved ≈ 6-inches/second (consistent with input power limitation)

Frequency Response for various displacements

- Combinations of frequencies and displacements from 0.1-Hz @ ± 0.05 -inch to 4.0-Hz @ ± 0.25 inch
- Small signal bandwidth ≈ 20-radians
- Typical power (slew rate) limited frequency response $\approx 2.0\text{-Hz}$ @ $\pm 0.5\text{-inches}$

Special Conditions and Limits (for This Test Only)

- Engine position control loop software/system response designed to NLS-2 requirements
- Position control loop bandwidth limited to 20-radians
- High-frequency AC controller input power limited to 10-KVA by the inverter capability
- Step response limited to approximately 6-inches/second
- Large signal frequency response is slew-rate limited. Limiting typically starts at about 2.0-Hz @ ±0.5-inches

Small Signal Frequency Response

Frequency

Data is consistent with the design for a critically-damped, second-order system with a 20-radian (3.2-Hz) bandwidth

Frequency Response Limit

Frequency Response

- Limited input power limits the torque available for acceleration
- Torque(accel) = Torque(total) Torque(load+friction)
- At the limit, acceleration is constant, the maximum rate change slope is constant, and the system becomes "slew rate" limited
- The constant value rate change slope, for a "slew rate" limited system (Maximum Slope Capability) must be larger than the Maximum Required Slope for the rate output
- If it is not, the output amplitude is limited
- After we work through the math, Slew Rate limit for frequency $(2\pi \times B_{pk})$ Isn < response is:

General Dynamics EMA Testing at MSFC

Step Response Average Rates

Step Response is consistent with power limits

Step Response Typical Characteristic

Max Power-limited Step = 2.0-inches

14.5

rate = 6.0-in/sec

Step = 0.5-inches Max Rate = 4.5-in/sec

(no power limiting)

Summary

- General Dynamics EMA testing at MSFC was satisfactorily completed during the week of September 8-11
- Evaluated test results were within expected ranges
- Small-signal bandwidth ≈ 20-radians
- Power-limited maximum rate ≈ 6.0-inches/second
- Accuracy & Linearity are better than the resolution of the data
- Maximum potential capability was not demonstrated due to the following:
- Control system bandwidth was designed to meet the NLS-2 requirement of 20-radians
- the source, which resulted in a limited large-signal amplitude-Motor controller power input was limited by the capability of bandwidth

Prototype Electromechanical Actuator For Thrust Vector Control Design of A High Power

Rusty Cowan

George C. Marshall Space Flight Center

NASA ELA-TB Workshop September 29 - October 1, 1992

AGENDA EMTVC Actuator

- Introduction Why EMA?
- Design EMTVC Actuator
- Baseline Parameters
 - Major Components
- Testing
- **EMTVC Actuator Program Development**
- Conclusions

WHY ELECTROMECHANICAL ?

- HYDRAULIC SYSTEM INSPECTION TIME
- ORBITER ON BOARD HYDRAULIC COMPONENTS-APPROX 300
 - ORBITER GROUND SUPPORT COMPONENTS-APPROX 140
- CLEANER, LESS CUMBERSOME
- PROVIDES ALTERNATE TVC SYSTEM
- LOW MAINTENANCE
- PROVEN TECHNOLOGY
- HISTORICAL HYDRAULIC HEADACHES
- EXCESSIVE MAINTENANCE AND GROUND SUPPORT (INCREASES COST AND MAN-HOURS)
 - FLUID CONTAMINATION (FILTERING)

DESIGN

MSFC EMTVC Actuator

PROPULSION LABORATORY EP64 Branch

BASELINE REQUIREMENTS

SRM, SSME, NLS CLASS

- PROTOTYPE PHILOSOPHY
- LOW COST
- QUICK TURNAROUND
- LEARN FROM EXPERIENCE
- ESTABLISHED PARAMETERS
- RATED DYNAMIC CAPACITY OF 35KLB (SRM, SSME, NLS CLASS)
- MAXIMUM STROKE OF +/-6.00 IN
- RATED VELOCITY OF 5 IN/SEC
- CONTROL TWO CHANNEL REDUNDANT (FAIL/OP REDUNDANCY)
- POSITION ACCURACY < 0.050 IN

EMTVC ACTUATOR

MAJOR COMPONENTS/SCHEMATIC DIAGRAM

LINEAR SCREW ROLLER/BALL SCREW COMPARISON

- ROLLER SCREW
- ABILITY TO HANDLE TRANSIENT LOADS
- HIGHER LOAD CAPACITY
- SLEEK NUT DESIGN (No Recirculation Channel)
 - SKF SP/PR 48/10
 - 1.89 DIA. SHAFT
- 0.4 IN. LEAD
- RATED LOAD OF 40095 LB

GEAR TRAIN

- SPUR, 20 DEG INVOLUTE
- CALCULATED TORQUESOUTPUT = 2228 IN-LB
- INTERMEDIATE = 303.9 IN-LB
- INPUT = 243.1 IN-LB
- REQUIRED OUTPUT RPM TO MAINTAIN VELOCITY OF 5 IN/SEC, RPM = 761
- HORSEPOWER REQUIRED = 26.9
- MATERIAL 8620 Steel Alloy (Case Hardening Qualities)
- GEAR REDUCTIONS (8.75:1 Total)
- 1ST GEAR PASS, 1.25:1, 7000-5600 RPM
 - 2ND GEAR PASS, 7.00:1, 5600-800 RPM

MOTORS

THREE-PHASE, PERMANENT MAGNET, BRUSHLESS, DC

BASIC CHARACTERISTICS:

NO LOAD SPEED: 9300 RPM @ 270v

5.5 in. O.D. x 5.045 in. L

WEIGHT: 17 lb

OFF-THE-SHELF

• EASILY CONTROLLED - KNOWN DESIGN

HIGH EFFICIENCY

• BROAD SPEED RANGE

HIGH TORQUE/WEIGHT/EFFICIENCY

GOOD THERMAL PROPERTIES

(NOMINAL DRAG TORQUE IN REDUNDANT SYSTEM) LARGE # OF POLES

TESTING

- DYNAMIC TESTS
- LINEARITY, GAIN, HYSTERESIS
- FREQUENCY RESPONSE (OUTPUT/INPUT)
 - PISTON VELOCITY
- STEP RESPONSE WITH INERTIAL LOAD APPLIED
- REDUNDANCY MANAGEMENT CONFIGURATION
- DYNAMIC LOAD SIMULATOR MSFC, HUNTSVILLE, AI.

EMA DEVELOPMENT

GOALS

- 60HP QUAD EMA NEXT GENERATION
- NLS Prototype Subsystem
- FAIL/OP, FAIL/OP, FAIL/SAFE
- 30HP (500K LB-1500K LB THRUST VEHICLE)
- **ASRM**
- SSME
 - STN

- LUNAR MARS TRANSPORT
- 1HP (RL-10 CLASS, 20K LB THRUST) LUNAR MARS LANDER

CONCLUSIONS

EMA

- **ESSONS LEARNED**
- GEAR TRAIN (BACKLASH, MANUFACTURING) MOTOR (SHAFTS)
- FEASIBILITY?
- DATA LOOKS GOOD! (John Sharkey)
- DEVELOP DEFINITION & SPECIFICATIONS FOR TVC **EM CONTROL SYSTEM**
 - LAB, SIMULATION TEST
- VALIDATION TEST (ENGINE HOT FIRE)
- THINGS TO CONSIDER
 - SYSTEM WEIGHT
 - POWER SOURCE
 - MAINTENANCE

MSFC IN-HOUSE ACTUATOR TEST RESULTS

John P. Sharkey / Rae Ann Weir EP64 205-544-7146

SYSTEM DESIGN SPECIFICATIONS

- 3 Hz. Bandwidth (2 to 5% of full stroke)
- Less than 25 degrees of Phase Lag at 1 Hz.
- .050 in. accuracy
- Rate of 5 in/sec.
- Less than 20% overshoot
- Load of 35,000 lbs.

PLAN. DUE TO A FAILURE OF THE LOAD-VS-RATE TEST UPON MODIFICATION OF THE TEST BED, THESE TESTS A MSFC TEST PLAN WAS WRITTEN TO COMPLY WITH BED, THE LAST TWO TESTS WERE NOT PERFORMED THE ELA ROCKWELL DEVELOPED ACTUATOR TEST WILL BE RUN AND THE RESULTS DOCUMENTED

MSFC TVC ACTUATOR TEST PLAN

- Frequency Response Tests
- Linearity/Hysteresis Tests Step Response Tests
- Rate -vs- Load Tests
- Backdrive and Breakaway Friction Tests

28 VOLT POWER SUPPLY. COMMAND WAS PROVIDED BY WITH A 200 HZ SAMPLE RATE. DATA TAKEN INCLUDED BATTERY BANK AND LOW OR AVIONIC POWER FROM A GENERATED. THE ACTUATOR WAS MOUNTED IN THE ACQUISITION CONSISTED OF AN 8-CHANNEL SYSTEM ACTUATOR POSITION) FROM THE ACTUATOR. DATA THIS IS A BLOCK DIAGRAM OF MSFC'S TEST SETUP. COMMAND, ACTUATOR POSITION, LOAD POSITION, RECEIVES TWO SIGNALS (MOTOR COMMUTATION, A FUNCTION GENERATOR OR IT WAS COMPUTER INERTIA LOAD SIMULATOR. THE CONTROLLER HIGH POWER WAS PROVIDED FROM A 270 VOLT BATTERY CURRENT, AND MOTOR CURRENT.

HZ. THE RESPONSE ALSO MEETS THE > -25 DEGREES OF THE ENVELOPE ON THE FREQUENCY RESPONSE CHART THE BANDWIDTH OF THE SYSTEM IS APPROXIMATELY 4 SHOWS THE RESPONSE MEETS SSME SPECIFICATIONS. COHERENCE, AS CAN BE SEEN IN THE NEXT CHART. IS THE SSME SMALL SIGNAL REQUIREMENT. DATA DATA ABOVE 4 OR 5 HZ HAS STARTED LOSING PHASE LAG AT 1 HZ REQUIREMENT.

Frequency Response with SSME Envelope Requirements

Frequency Response Coherence

THE BASIC CONTROL SYSTEM BLOCK DIAGRAM SHOWS CORRESPONDS TO THE SSME WITH SLIGHTLY MORE THE THREE CONTROL LOOPS (CURRENT, RATE, AND CONTROLLER CONFIGURATION LACKING THE RATE TAKEN AFTER THE RATE LOOP WAS IMPLEMENTED. DAMPING DUE TO FRICTION IN THE INERTIA LOAD LOOP. TEST DATA IS LATER SHOWN, WHICH WAS SIMULATOR. THE FIRST SET OF DATA IS WITH A POSITION), ACTUATOR, AND LOAD. THE LOAD

THE MODEL FOLLOWS ACTUAL TEST DATA CLOSELY FREQUENCY RESPONSE (FREQUENCY IN RADIANS). THE NEXT VIEWGRAPH SHOWS THE SIMULATED

MSFC 25 H.P. Actuator System Block Diagram

Simulated Frequency Response

HAS A 13 PERCENT OVERSHOOT. THE MAXIMUM RATE SSME SMALL STEP REQUIREMENTS. THE LAYER STEP THESE ARE EXAMPLES OF BOTH SMALL AND LARGE OVERSHOOT OF 16 PERCENT AND ALSO MEETS THE IS ALMOST 7 IN/SEC WHICH EXCEEDS THE DESIGN STEP RESPONSES. THE SMALL STEP SHOWS AN REQUIREMENT.

IDENTICAL. THIS SHOWS THAT THE CAPACITOR ON THE SOURCE. ALSO, NOTE THAT BATTERY CURRENT IS NOT CONTROLLER ACCOMMODATES THE INITIAL CURRENT INSTANTANEOUS CURRENT DRAIN FROM THE POWER THE NEXT TWO VIEWGRAPHS COMPARE MOTOR AND POLARITY ON BATTERY CURRENT IS REVERSED AND STEP RESPONSE, EVEN THOUGH THE MOTOR ITSELF REQUIRED DURING THE BRAKING PORTION OF THE BATTERY CURRENT FOR THE 0.25 INCH STEP. THE REQUIREMENT. ONE CAN SEE BATTERY CURRENT SLIGHTLY OFFSET, BUT THE TIME AXES ARE CONTINUES TO CARRY CURRENT IN THE RAMPS UP AND THERE IS NOT A LARGE REGENERATION MODE.

BOTH SMALL AND LARGE EXCURSIONS. THE POSITION ERROR FALLS WITHIN THE NOISE OF THE DATA AND THE NEXT TWO VIEWGRAPHS SHOW LINEARITY FOR MEETS THE 0.050 INCH ACCURACY REQUIRED, WITH THE LARGE EXCURSION ERROR BEING ABOUT 0.030 INCH.

THAN 4 IN/SEC AND ALSO A REDUCTION IN BANDWIDTH. RESULTS EFFECTIVELY REDUCE THE OVERSHOOT BUT DECIDED TO IMPLEMENT A RATE LOOP. PRELIMINARY THE NEXT STEP WILL BE TO TUNE THE RATE LOOP TO SHOW THE MAXIMUM RATE WAS REDUCED TO LESS AFTER COMPLETION OF THE TEST PLAN ON THE INITIAL CONTROLLER CONFIGURATION, IT WAS MEET ALL DESIRED SPECIFICATIONS.

Step Response With Rate Loop

THE EMA ERROR IS SMALLER, ALTHOUGH FOR THE EMA COMMAND AND RESOLVER DATA FOR THE ACTUATOR. VIEWGRAPH SHOWS THE POSITION ERROR BETWEEN SYSTEM NO FLIGHT TYPE LOADS (WIND GUSTS, ETC.) THIS VIEWGRAPH SHOWS THE STS-44 SRB COMMAND IN COMPARISON TO THE ACTUAL HYDRAULIC DATA, PROFILE AND THE TVC/EMA RESPONSE. THE NEXT WERE APPLIED.

STS - 44- SRB Command Profile

Position Error of 25 H.P. TVC EMA For Command Profile

ADDITION TO TEST DATA TO DEFINE AND IMPLEMENT A A NEW GEAR SYSTEM IS ON ORDER WHICH WILL ALLOW THESE GEARS, THE RATE AND POSITION LOOPS OF THE MSFC TO IMPLEMENT A TWO MOTOR CONFIGURATION SPECIFICATIONS. TESTING WILL RESUME WITH DATA CONTROLLER WILL BE TUNED TO MEET ALL DESIRED ON THIS ACTUATOR. WHILE AWAITING DELIVERY OF REDUNDANCY MANAGEMENT SCHEME FOR THE TWO BEING USED TO VALIDATE THE ACTUATOR MODEL. THIS MODEL WILL BE USED FOR SIMULATION IN MOTOR ACTUATOR.

FUTURE PLANS

- Tune rate and position loops to meet desired specifications
- Demonstrate Rate vs Load capability
- Demonstrate Simulated Flight Load Capability
- Use test data to validate model
- Implement a two motor configuration
- Using model and test data, define and implement redundancy management scheme

ITW Spiroid An Illinois Tool Works Company 2801 North Kooler Avenue Chicago, Illinois 60639 Telephone 312.227.2200 FAX 312.227.0535

Proid Spiroid

ITW SPIROID

ITW Spiroid, A Division of Illinois Tool Works, is a manufacturer of proprietary, custom gear forms, roller screws, and index rings. These products come in the form of Spiroid + Helicon right angle gearing, Concurve spur gears, Spiracon roller screws, and Endicon index rings.

ITW Spiroid provides their products for a large number of divarse applications. Approximately 50% of our volume goes to both military and commercial markets. Military applications include such equipment as the Apache Helicopter, M109 Howitzer, F15 Fighter Aircraft, and the Harpoon and RAM Missiles. Commercial applications include Hand Tools, Laser Imaging Devices, Machine Tool + Fixturing Devices, Tundish Car Actuators, and Aircraft Flap Actuators.

Spiroid/Helicon - Right Angle Gearing

Spiroid Helicon
10:1 - 400:1 4:1 - 400:1
High Contact Ratio High Contact Ratio
Higher Capacity High Capacity
Good Efficiency Better Efficiency

Possible Cross Shaft Design Backlash Control Material Variability

These gear forms have the widest center distance of any right angle, face type gear form thereby producing the highest contact ratios possible. This allows for high capacity in small space envelopes thus affecting packaging, weight, and power density.

Concurve Spur Tooth Gears

This gear form is a variation of an involute spur tooth form where the tooth profile has a relatively constant radius of curvature from the tip of the tooth to the root of the tooth. This distributes the contact stress evenly up + down tha tooth flank. Involute spur gear teeth tend to have ever increasing contact stress as you move from tip to root of the tooth.

Spirold, Helicon. Concurve and Spiracon are registered trademarks and Endicon is a trademark of Illinois Tool Works Inc.

The even distribution of stress in Concurve gears allows for higher loads and lower numbers of pinion teeth due to this feature. Therefore, pinions with as few as 4 teeth and ratios up into the 20's: 1 are possible. Removal of gear passes, higher loads, higher ratios and downsizing are all possible.

Spiracon Roller Screws

Spiracon Roller Screws offer several advantages over Ball Screws and Acme Screws. The basis for these advantages lie in a discussion of the type of contact that exists between members within the nut itself.

Acme Screws have line contact between members. They have great capacity for this reason. However, there is so much contact and with the elements sliding upon each other, the efficiency is extremely low, usually around 20%. Thus motors tend to be very large to overcome this inefficiency.

Ball screws have point type contact between members. Imagine a ball riding in a trough of slightly larger curvature. A small point exists between these two members upon which the load will be carried. For this reason they have limited capacity. However, due to this small contact area and the rotation of all internal components, ball screws are generally very efficient.

Spiracon Roller Screws have line type contact between members. These lines create a large area over which the load is carried thus decreasing the stresses on the components. Higher capacities, longer life and reduced size are all possible. All internal components do rotate however, because of the increase in contact area, roller screws are slightly less efficient that ball screws.

Endicon Index Rings

Endicon Index Rings consist of 2 mirror image gear halves with teeth machined such that intimate contact exists between the two halves. They can be used as indexing devices, couplings, centering devices, etc. They have been used previously in such applications as Indexing Tables, Multi-Stage Turbine Blade Alignment devices, Robotic end effector joints and Blind Assembly Robotic couplings.

NATIONAL LAUNCH SYSTEM **TURBOALTERNATOR PSS**

DEMONSTRATOR UNIT

SEPT. 29, 1992

Allied-Signal Aerospace Company

AiResearch Los Angeles Division

HIGH-SPEED, DIRECT-DRIVE **TURBINE-DRIVEN PSS**

Allied-Signal Aerospace Company

AiReseu. . h Los Angeles Division

The basic components of the PSS are shown here along with how they interface with each other and the exterior load.

HIGH-SPEED PSS BLOCK DIAGRAM

45 AiResearch Los Angeles Division Allied-Signal Aerospace Company

shows the single two pole toothless alternator rotor directly driven provides passive overspeed protection. Also shown are the radial speed control electronics are installed around the periphery of the turboalternator. All cooling is provided by the gaseous hydrogen. and the axial foil bearings. The electrical power conditioning and This cross section of the hydrogen powered PSS turboalternator by the single stage axial impulse turbine. A vortex venturi

HIGH-SPEED PERMANENT-MAGNET ALTERNATOR PSS CROSS SECTION

IG-11198-A

G AIResearch Los Angeles Division Allied-Signal Aerospace Company

This schematic shows the simple rectifier design power

conditioner. The output voltage level is a function of the electrical

load and the rpm.

HIGH SPEED PSS WITH RECTIFIER

This alternate inverter-type power conditioner is less dependent on

rpm. The inverter operates in an upchopping mode, eliminating voltage droop due to speed and load changes.

HIGH SPEED PSS WITH INVERTER

arrangement of the turboalternator components is similar to that of and utilizes oil mist lubricated angular contact ball bearings. The demonstration unit. It consists of heavy hogged out structures This is a cross-section of the helium powered turboalternator the hydrogen demonstrator unit.

NLS PSS TURBOALTERNATOR

Allied-Signal Aerospace Company

AiResearch Los Angeles Division

Pictured are the details and subassemblies which make up the

PSS helium demonstrator turboalternator.

F-65574

Signal

Allied-Signal Aerospace Company

AiResearch Los Angeles Division

This is the schematic of the PSS setup for the development and demonstration tests. The power converter can be operated in either the rectifier or inverter (upchopper) mode.

Allied-Signal Aerospace Company

The majority of these tests have been accomplished. Application and shedding of the maximum electrical load as a step function under various conditions is not yet complete.

GHe TEST PLAN OVERVIEW

- VIBRATION SURVEYS
- VORTEX VENTURI EFFECTIVENESS
- TURBINE PERFORMANCE
- WINDING RESISTANCE AND INDUCTANCE
- **NO LOAD VOLTAGES**
- SPINDOWN TESTING
- STEADY STATE LOADS
- TRANSIENT LOADS
- ▶ LOAD REGULATION
- **OPERATING AND SOAKBACK TEMPERATURES**
- PRESSURE DIFFERENTIALS

W-17887

partial load applied and shed as step changes, and was shut down. in the rectifier mode, accomplished an output voltage (and current) turbine as the turboalternator; was started up under load, was run increase by switching to the upchopper mode, had additional Shown here are the traces of rpm and helium pressure to the

previous page. It shows traces of the currents, DC output voltage, This is another stripchart recording of the test described on the rpm and turbine nozzle pressure. The output voltage is closely regulated during the load changes.

OF BOSE CHES

BOEING/ALLIED-SIGNAL

The major similarities and differences between the helium and hydrogen powered PSS demonstrator units are shown.

PSS TURBOALTERNATOR DESIGN COMPARISONS

	Helium Demonstrator	Hydrogen Demonstrator
Power Output	35 kw at 220 vdc	35 kw at 220 vdc
RPM	65,000	000'09
Voltage Control	Rectifier & Upchopper	Rectifier or Upchopper
Speed Control Valve	Limit Cycling	Proportional
Bearings	Ball/Oil Mist	Foil/GH2
Weight	180 lbs.	75 lbs.
Packaging	Two Separate Components	Wrap-Around Electronics

THE CAPABILITY TO DEVELOP THE REQUIRED 35 KW ELECTRICAL POWER HAS BEEN DEMONSTRATED

Allied-Signal Aerospace Company

AiResearch Los Angeles Division

SESSION IX DEMONSTRATION

PRECEDING PAGE BLANK NOT FILMED

SESSION X EMA FDIR AND VHM

PRECEDING PAGE BLANK NOT FILMED

in-the-loop demo Integrated Vehicle Health Management Technology Bridging Program Phase 3 Loop Demos Subsystems for Selected Hardware HW in the IVHM ADVANCED DEVELOPMENT PROGRAM Data to support verification Verification that selected VHM features will work Initiation of adv. dev for features/technologies selected VHM items Refined evaluation of of cost/benefit est. simulations VHM Adv Dev. & Simulations Phase 2 Software for Selected alternative VHM Veh/SS Supporting Tools Development Cost/benefits quantification Technology:adv dev needs VHM conceptual designs demonstration of VHM Methodologies & tools feasibility & potential Des & Analysis Implementation Phase 1 VHM Concep Metrics for demo's Early Demo for Selected anly high impact Veh/SS High leverage VHM INTEGRATED PLAN Cardomer needs Lady Demo opportunities Integrated plan 18 September 92 Selection eqet Veh SS Phase 0 VIIM Needs. Pront.:ation! Sedection 8

ORIGINAL PAGE OF POOR QUALITY

6/30/92 1-2257-2-271

VHIM Development Plan Schedule

Integrated Vehicle Health Management Technology Bridging Program

TASK PRIORITY PHASE 0

TOP PRIORITY	TARGETS SUPPORTED
Real time engine diagnostics	ELV, STS
Leak detection	ELV, STS
IVHM Architecture	ELV, STS
Ground processing Integration	STS
IVHM for EMA	ELV, STS
OMS/RCS	STS
IVHM Cost/Payback analysis*	STS

DESIRABLE

Post flight/test data analysis for engines IVHM for mission operations
Automated Inspection techniques for engines Flight/ground test plume spectroscopy
Laser pyros
SSF Fault Management system
Hybrid Reliability/fault tolerance/cost tool

Application required for all demos

585

EMA Health Management Using Smart Sensors

NASA Electrical Actuation Technology Workshop

Honeywell Systems & Research Center

Jeff Schoess

1 October 1992

EMA Health Management Agenda

Role of Health Management -- A Honeywell Perspective

Launch Vehicle Management Approach

* NLS Avionics Configuration

* Vehicle Integration Logic Flow

* Functionality Definition

Key Building Block Technology --- Smart Sensors

Recent Technical Progress

* 2 HP EMA Motor Current Health Monitoring

* 28 HP EMA Test Evaluation

Smart Structures Technology --- Launch Vehicle

Application

Summary

Systems and Research Center

Applied research for Honeywell's space and aviation business Mission:

Minneapolis

Phoenix

Bloomington

Technologies

Resources

people \$45M Total Funding engineers/ \$32M Contracts scientists/ \$ 9M IR&D technicians \$ 4M Divisions

Sensors
Microsystems/Circuits
Signal Processing

Control Systems
Displays
Computer Systems

Honeywell

Honeywell Inc.

Health management is more than not being sick—it's a way of life aimed at

Honeywell

C910511-51

Honeywell

Honeywell Perspective A Systems View

A health management system—

- Monitors, evaluates and diagnoses system health; it integrates the following elements:
- Nominal system status/ configuration/nominal operation/ checkout data
- -On-line condition and safety monitoring
- -Predictive and preventive diagnosis
 - Fault detection, isolation, recovery (including BIT)
- -Explanation and recommendation facility
 - -Integrated maintenance database
- Is part of an integrated launch system controls architecture that provides life-extending control to maintain assets and reduce replacement costs, as required

Honeywell

Health-Monitoring Systems

The Present Situation

Honeywell

Health-Monitoring Systems

The Future

B620386-10

Honeywel

C910368-34

HLV Baseline Avionics Configuration

My S

Honeywel

B820261-01

Systems and Research Center

VHM Integration Logic Flow

Bezosee-0

Systems and Research Center

Smart Structures Functionality Definition

Vehicle Goals

- Fault avoidance
- Reduced maintenance on schedule/demand
- Remaining life

System Goals

- Automated checkout
- · Real-time monitoring
- · Integrated Maintenance
- · Fault prognosis/diagnosis
- Information management and control

Subsystem Goals

- Resource allocation
- Fault prediction, detection, isolation Redundancy management
 - Local data management and control
 Significant event detection

Smart Sensor

- Fault detection and isolation
 Self-test
 Local data qualification
 - · Time-stamping of data
- Data reasonability tests
- Honeywell

Honeywell

Systems and Research Center

B920327-10

598

Smart Sensor Microsystems

BE200940-07

Measurement Device Time and Stress

Honeywell

Measurement Device (TSMD) Time and Stress

environmental stress parameters that can cause failures in electronic A TSMD is a miniature electronic device or component which senses systems. These parameters are

- · Vibration
- · Shock
- Temperature
- · DC voltage
- Voltage transients

TSMD processes the stress data and stores it in nonvolatile memory

The TSMD is designed to accumulate stress data for months or years of use

A real-time reference maintained by the TSMD can show the date and time of particular stress events

Smart Sensor Electronics Core

Smart Sensor Electronics Core

Honeywell

602

ORIGINAL PAGE IS OF POOR QUALITY

B920327-16

Systems and Research Center

Electromechanical Actuator Two-Horsepower

PAGE IS ORIGINAL OF POOR QUALITY

Systems and Research Center

Health Assessment Matrix **Motor Current**

		Motor Curr	Motor Current Signature	
Effects		Time	Frequency Domain	Type of Failure
Loss of power due to open/short circuit	R.	Random transients	t	Degraded
Torque loss, power supply transient	<u> </u>	Decreasing trend	Frequency shift	Catastrophic
Loss of motor actuation	<u>.</u>	Decressing trend	Amplitude increase/decrease	Catastrophic
Gear wear		Random transients	Amplitude frequency shift	Degraded
Motor gear lockup	ਲ 	Start transient	ı	Catastrophic
Shaft wear	ਲ 	Start transient	ı	Degraded
Bearing race wear, ball bearing wear		ı	Amplitude increase/decrease	Catastrophic
Gear wear	<u> </u>	Start/stop transients	Frequency shift	Degraded
Intermittent operation		ı	Frequency shift	Degraded
Actuator wear	\$ £	Start/stop translants	1	Degraded
Burn-out motor mechanisms	<u> </u>	Increasing trend	Frequency shift	Catastrophic

EMA Test 1: Loose Actuator Bearing Anomaly

Detailed View of Motor Current

Honeywell

Actuator Bearing Characteristics EMA Test 2: Tightened

B920027-23

Honeywel

EMA Bearing Wear Failure Prediction Example

C910511-48

EMA Motor Winding Failure

Priority 2

Test Objective—to detect a motor winding failure due to emulated failure of winding conductor or motor slot insulation

EMA Failure Mode—a failure of the EMA motor winding assembly; three possible failure scenarios:

- Normal to open circuit due to winding conductor failure (vibration, fatigue) or mechanical disconnect
- Normal to short circuit due to insulation breakdown, wear Three types of shorts
 - 1. Turn-to-turn short
- 2. Short-to-stator frame
- 3. Winding-to-winding short
- Short to open circuit due to excessive conductor heating

FMEA Characterization Procedure

- 1. Attach load to EMA actuator and command to move attached load at frequency of 0.5 Hz
 - 2. Perform test sequence in table and record results

Winding-to-Winding Short		
Short-to-Stator Frame	\$ 000	25 CO
Turn-to-Turn Short	<u>₹</u>	18 10

	Type of Fallure Mode	Characterization	Circuit Designation	Messured Parameters	Expected Results
	Short Circuit	Short-to-station (local test)	1A to ground	• Current_1A • Torque • Temp_IR	Significant torque loss (1/2 of submotor)
<u> </u>		Winding-to- winding (local test)	1A to 1B	• Current_1A 1B • Torque • Temp_IR	Current_1A, 1B · Torque loss (2/3 of submotor) • Temp_IR · Torque drag effect
		Submotor-to- submotor (global test)	1A to 2A	Current_1A, 2A · Increased • Torque • Temp_IR • Torque rip effect • Ground cu	Increased equivalent inductive load Torque ripple effect Ground current fault
	Open Circuit	Winding node 1A	1	• Current_1A • Torque	Torque loss (torque ripple effect)

Honeywell

Systems and Research Center

Motor Winding Failure Schematic

Power Transistor Failure Schematic

Loose Connector Failure Schematic

Sveteme and Research Panter

Signal and Data Acquisition Systems

CANACIA VERICLES

Objective: Smart Sensor Networks for Vehicle Health Monitoring Features: Detect and Isolate Potential Fault Anomalies via Built In Test (BIT)

Applications

Evaluate Subsystem Health Status/

Recommend Corrective Action

Structural Monitoring of Aging Aircraft
Launch Vehicle Integrity Assessment
Helicopter Mechanical System Monitoring
Space Platform Damping and Pointing
Nuclear Reactor Monitoring

B920396-07

Systems and Research Center

Smart Structure Concept

Skin-Deep, Smart Sensors May Blanket Future Aircraft to Detect and Isolate Internal Structural Damage Characteristics

> Piezo AE Sensing Array Elements

TSMD Hybrid

C910511.37

Smart Sensors

Lessons Learned

- Reduces wire weight significantly
- Supports multisensor commonality and modularity
- Supports significant local information processing, communication, and integration
- · Permits low-power implementations

9 7 8

THE S

- Permits BIT at low system levels
- Allows I/O interface standardization
- Permits multiple applications to be met by one package (e.g., through reranging)
- Supports fault tolerance through redundant transducer packaging

Technology Neadiness Level

Needs

- · Selection of applications
- Selection of packaging approach

TRL 9

 Development of hightemperature components

TRL 8

TRL 7

Selection of standards

C910511-39

Maintenance Diagnostics and Intelligent Algorithms

Lessons Learned

- Health monitoring algorithms do not require dedicated health monitoring sensors
- Predictive diagnostic algorithms cases for systems that have a can be developed for specific design heritage
- themselves through productivity Maintenance systems pay for improvements
- trend monitoring algorithms are Data filter state monitoring and computationally efficient
- experts, users, and maintenance Development requires close cooperation among domain system designers

Needs

- Language selection
- methodology development Verification and validation
- System-level demonstration maintenance aiding Diagnosis through

TRL 8

TRL 7

TRL 9

technology building Incorporation of blocks

Intelligent Built-In Test for Electric Actuators

Irving Hansen NASA Lewis Research Center Cleveland, Ohio

SPACE STATION EXPERIENCE

LESSON:

2 200 COMBINATIONS - 1.5 MILLION LINES OF CODE WHEN ABANDONED

THREE MILE ISLAND - SENSED THAT COMMAND WAS SENT NOT THAT VALVE HAD MOVED BROWNS FERRY - PUT POWER WIRE AND CONTROL WIRE IN SAME CONDUIT LESSON;

BUILT IN TEST

CALIBRATION AND VERIFICATION OF BIT AT EVERY CHECKOUT CONTINUOUSLY SYSTEM STATUS, REDUNDANCY STATUS, PROBABLE HEALTH NON INTRUSIVE - ("FIRST DO NO HARM") FROM DESIGN TO DEPLOYMENT

(e.g. TESTBED, ACCEPTANCE, QUALITY TEST, PREFLIGHT)

SYSTEM ELEMENTS MODELED AS TWO PORT, FOUR TERMINAL NETWORKS RAPID RESPONSE, HIGH PROBABILITY OF CORRECT DECISION

INPUT PARAMETER
OUTPARAMETER
FORWARD GAIN
REVERSE GAIN

(TOP DOWN) - SYSTEM REQUIREMENTS

VEHICLE HEALTH MANAGEMENT

GENERAL:

(QUAD REDUNDANCY A SOLUTION NOT A REQUIREMENT) · FAILURE TOLERANCE (ROBUSTNESS e.g., FAIL OP, FAIL OP, FAIL SAFE)

• DETECTION

- BUILT IN TEST

CONTAINMENT

- DESIGN AND PROTECTION

ACCOMMODATION - REDUNDANCY MANAGEMENT

FUZZY LOGIC

ADJECTIVES - MORE, LESS, FASTER, SLOWER (FUZZY QUANTIZATION) **CRISP DATA** APPLICATION TO BUILT IN TEST OF TWO PORT NETWORKS THE LOGIC OF HANDLING FUZZY INFORMATION **FORWARD GAIN - RATIO OF OUTPUT TO INPUT CRISP SETS - 0,1 PRECISE QUANTIZATION** INPUT - ERROR SIGNAL (OR COMMAND) **OUTPUT - CURRENT OR VOLTAGE**

e.g. FUZZY LOGIC AND EXPERT SYSTEM APPLICATIONS - B. K. BOSE, UNIVERSITY OF TENNESSEE, KNOXVILLE

"IF SPEED LOOP IS NEAR ZERO, AND ERROR RATE OF CHANGE IS SLIGHTLY POSITIVE, THEN CONTROL SHOULD BE A SMALL NEGATIVE"

RESULT - CONTINUOUS NON INTRUSIVE MONITOR OF SERVO GAIN

FUZZY LOGIC RULE TABLE

☐ OUT OF TOLERANCE

8 0

FAILURE

EMA SPECIFIC REQUIREMENTS

(BOTTOM UP) - DESIGN ARCHITECTURE FOR:

(EVENTUAL INCIPIENT FAILURE DETECTION) COMPONENT LEVEL - DIAGNOSTICS (NEURAL NETWORK, NOT IN REAL TIME)

SUBSYSTEM LEVEL - RAPID DETECTION (NOT INTRUSIVE MEASUREMENT, WIDE DYNAMIC RANGE, FOUR QUADRANT OPERATION) APPROACH TAKEN - FUZZY LOGIC OBSERVED (CONTINUOUS MONITOR OF INPUT (COMMAND) AND OUTPUT (CURRENTS & POSITION)

(ALLOWS MAJOR FAULTS TO BE INTRODUCED WITHOUT EVALUATION & CALIBRATION - HYBRID ANALOG COMPUTER AT PURDUE UNIVERSITY ENDANGERING PERSONNEL OR EQUIPMENT)

Rapid, VHM System For Electrical Actuation/Power/Avionics **Demonstration/Bridging Approach**

Task Objectives/Benefits

Develop and demonstrate automated, rapid self-check systems for advanced electrical actuators and effectors, power and avionic systems including moreelectric ground support equipment (GSE)

simulations of vehicle and GSE systems under normal and fault conditions

1. Develop specific elements to existing (SBIR II) detailed models/

Task(s):

Test/demonstrate BIT under fault conditions and selected fault modes to

validate technology/models

က

2. Integrate HW/SW for rapid BIT on existing DSPs to demonstrate health indicators on selected electrical equipment (EMAs and power system)

b. Validate model predictions, characteristics on subsystem hardware

a. Insert fault, document parameter variations

Develop interfaces to top level IHM system and automate responses to detected fault modes

Validation assessment of technology

Available Facilities:

LeRC Technology Demonstration Facility, Autonomous Power System, EMA Laboratory, and University of Purdue Hybrid Computer Facility

Schedule/Cost

Applicable Vehicles:

ELV, NLS, Upper Stages, STS Upgrades, AMLS, ACRV

- Transfer rapid prototyping steps to improve vehicle assembly, ground operations and launch sequencing
- Demonstrate "bottoms-up" HW/SW platform for interface to total IHM system
- Reduce launch system costs
- Improve launch system operability, reliability and safety

Technology Description

NASA Technology Readiness Level: 5

Specifications:

- Distributed intelligence/controls/monitoring in electrical equipment both on vehicle and in GSE
- Rapid, smart Built-in-Test (BIT) using embedded microprocessors (DSP) with fuzzy logic for self-check and correction
- Minimize requirements for sensors, data transfer/storage and centralized computing
- Real-time pre-, post-, and in-flight health assessment and analysis
- Accurate and reduced-order models/simulations for rapid prototyping, testing and fault studies
- Use LeRC developed Framemaker for graphic visualization LeRC Contact: Gale R. Sundberg, (216) 433-6152

TASK	FY 93	FY 94	FY 95 '
•		7	Δ
_			7
12	· · · - ·		
			ΔΔ
15			
c			_
4			
က			
			Δ
₹			
လ			
RESOURCES	0.15 M	0.3 M	0.3 M

FAULT TOLERANT

SYSTEM TESTING

Norm Osborne

and

Dave Wilks

Fault-Tolerant System Test Bed

- Objective of Test Bed
- Fault Detection Functional Tests
- Health Monitoring Function Tests
- System Performance Testing
- System Optimation Demonstration
- System Development
- Subsystem Development

Relationship with IR&D/ CR&D--Real-Time Lab Fault-Tolerant System Test Bed

Fault-Tolerant System Test Bed Redundancy with Induction Motors

- All Software Approach Allows Fault Tolerant Embeded Computer Applications--such as Pair-of-Pairs or FTPP
- Motor Drive Can Be EitherPulse Placement or Pulse Width Modulation
- INDUCTION Motor Output Drives a Simple Gear Train

nontropies de la company de 1993 FTA/HM Lab Demonstration Overview

Fault-Tolerant System Test Bed Summary

- Flexible Test Bed
- Systems
- Component
- Functional
- Performance
- Multiple User
- Internal Research and Development
- Airforce
- NASA (multiple center)

FMEA'S AND FAILURES IN TEST

hardware brought into the lab. High power electronic problems accounted for the lab, with the rotational forces associated with these actuators, that more attention shorted motor would not be a credible failure, but failures of that nature have not largest number of failures. This may be due to the fact that some development must be paid to the structural interfacing, at least for test purposes. The other categories. The first category includes problems identified as areas which still off-the-shelf and not necessarily optimized hardware. This is not to say that a failures were documented for this presentation. It was soon discovered in the failures were recorded during testing of EMA's. Failures documented include applicable to a flight type actuator. These are the Noncredible Failures. For During the time frame from November 1991 to the time of this workshop, 20 Problems associated with EMI and grounding were seen with each piece of example, the motor failures which were documented occurred due to using those during the development and test of Marshall's in-house actuator and require investigation. These are listed under Credible Failures/Problems. category contains failures which include problems considered not to be hardware brought in for test and demo. Failures were divided into two been seen in test.

FAILURES IN TEST

test of Marshall's actuator and failures in hardware brought 20 Failures were recorded at Marshall during EMA testing activities. These include failures during development and in for test and demo.

Credible Failures/Problems

EMI/Grounding
High Power Electronics
Testing/Vehicle Structural Interfacing

NON CREDIBLE FAILURES

Motor Low power circuitry Power

with the first level being generic to all designs. Each actuation system may each actuator may have a different design philosophy, each utilizes some be broken down into sub-components: a power source, the control electronics, motor, actuation mechanism, sensors, and interfaces. While would probably exclude some of the failure modes of those designs I am ess familiar with. What has been prepared are two levels of a fault tree to the different design philosophies, including EHA's, a single fault tree particular to the design philosophy. This level includes a breakdown of An attempt was made to determine a plausible fault tree for the EMA. each actuation sub-component into the elements which could cause a failure. The next step would be to identify each fault particular to an element. With each fault, a signature of the failure and a means of from of each of the sub-components listed. The next level is more detecting it is important

ELECTRICAL ACTUATION SYSTEM FAULT TREE Structural Attach Points Supporting Electronics Commutation Sensors Roller/Ball Screw **Current Bridge** Avionics Power Regeneration Connectors High Power **Drive Shaft** Gear Train Low Power High Power Explosion Windings Magnets • Sensors Cabling Position Current PWM • Force Open Short Rate **ELECTRONICS** INTERFACES ACTUATOR CONTROL SENSORS POWER MOTOR

EP64

using actual hardware and vehicle simulations in the loop. Electromechanical TVC actuation systems Task: Develop and implement a Vehicle Health Management (VHM) platform for

hardware simulation. The first step will be to determine the requirements and tools to implement MSFC is proposing to upgrade existing facilities in order to implement a platform for the testing and development of Vehicle Health Management (VHM) for electromechanical actuators. The used by MSFC to investigate VHM algorithms, redundancy, etc. It is our hope that NASA and a VHM hiearchy, working with a bottoms up philosophy. From there, each level of technology will be demonstrated until a full actuation system VHM level is attained. This platform will be proposed platform will incorporate hardware, including power sources and vehicle as well as ndustry will take advantage of these facilities for further development of EMA's.

HARDWARE DEMONSTRATION OF VHM SYSTEM

Establish Requirements, Sensor Suites, and Algorithms for VHM hierarchy

BIT

Component Level

System Level

Implement VHM Platform with hardware in the loop

Component Level Health Management

Vehicle Simulation

System Level VHM

Demonstrations

TVC EMA System

(MSFC, Moog, Honeywell, Allied Signal, Boeing, GD) Actuation Apply similar techniques to EMA Valve System

641

FACILITIES, HARDWARE AND SUPPORT

Component Development Laboratory (Bldg. 4656) equipped with programmable force generators. Two inertia load simulators, soon to be

Prototype EMA hardware

In-house support may be obtained from EB and laboratories

Contractor support will be required for software development.

Contractors will be invited to use test platform.

Summary/Status

- Detailed Design Of The EMA Assembly Complete
- Digital Closed Loop Control Approach Demonstated
- Performance Characteristics For Major Components **Demonstrated**
- Fabrication Of Electronics In Progress
- Fabrication/Assembly Of EMA Scheduled For Completion In FY 1993

SENCORP AEROJET

Characteristics Of The EMA Components **Tests Confirmed Operating**

Motor Driver Circuit Board

- Test Of Basic Drive Circuit Functionality
 - **Output Commutation**
- PWM Frequency Characterization
 - Speed vs. Input Voltage Linearity
 - Forward /Reverse Operation
- Test Of Health Monitoring Circuitry
- Drive Current Sensing
 Board Temperature Sensing/Conditioning
- Motor Temperature Sensing/Conditioning

Microcontroller Circuit Board

- Evaluation Of 87C196KC As The Controller For EMA System
 - Closed Loop Control
 - Sensor Interfacing
- Test Of RTD Converter Circuit With 87C196KC Microcontroller

SENCORP AEROJET

Characteristics Of The EMA Components **Tests Confirmed Operating**

Gear Reducer

- Acceptance Tests For Efficiency, Backlash, Torque, Torsional Stiffness, And Input Speed
- Cryogenic Tests Of The Gear Reducer To Verify Thermal Resistance
- **Efficiency Tests At Low Temperature**

Motor Assembly

- **Speed-Torque Characterization Tests**
- Test Of Drag Torque Resulting From Failed Motor

SenCorp Aercoet

EMA Temperature Profile Has Been Characterized By Test

SENCORP AEROJET

Performance Tests Demonstrated Stable Operation Over Load Range

GENCORP

Microcontroller PCB Design Is Based Upon The 87C196KC Microcontroller AEROJET

Velocity Gains From Set Direction FWD Recall Position and If Velocity .GT. 0 & Low Byte Through Port 1 Read Analog Signal At Port 0 Recall UL & LL From Memory Multiplex High Memory Velocity Command Command Sign Calculate Motor Position CMD Read Resolver Check Velocity Check Velocity Read Input Read Motor Cmd Limits Position Velocity SENCORP AEROJET Major Cycle Interrupt

If Velocity .LT. LLThen Equal LL Effector Status Monitoring **Embedded Software Performs** Position In Register Perform Analog To Digital Conversion Read And Store If Velocity .GT. UL Then Equal UL CMD = (Kp)(Ep) + Set Direction REV If Velocity .LT. 0 Calculate: **EMA Control Functions** (Kv)(V)Sub Tasks Perform Scaling And Conversion Sensor Data Retrieve **Direction To Driver** Update Sensor Data Registers **Output Velocity** Cmd and Return Control Function Status Function

651

SENCORP

Dual Redundant Electronics Provide Reliable Control System Design AEROJET

Microcontroller PCB

- Functions As RTU For MIL-STD-1553B Serial Data Link
- Performs Basic Control And Health Monitoring Functions Using **Embedded Firmware**
- Performs Resolver To Digital Conversion For Position Feedback
- Highly Integrated Design

Motor Driver PCB

- Performs Motor Commutation And Power Switching
- Serves As Power Source (DC-DC Conversion, Filtering And Distribution) For On-Board Components

Provides Signal Conditioning For Sensor Signals

SENCORP AEROJET POSI

Performed By Motor Controller IC **Basic Commutation Function Is**

Motor Selection Provides Ample Margin

SENCORP AEROJET

Motor Assembly Design Focuses On Reliability

FEATURES

- Redundant High Torque Brushless DC Motors
- Common Motor Drive Shaft (Eliminates Clutch Mechanisms)
- Duplex Bearings For High Vibration Environment
- Mounting Cavities For Integral Dual Channel Electronics

SENCORP

Gear Reduction Is Accomplished Using Harmonic Drive Design

FEATURES

- Single Stage Reduction
- High Torque Capacity
- High Torsional Stiffness
 Zero Backlash
- Compact Design

SENCORP AEROJET

EMA Provides Redundant Closed Loop Digital Control

SENCORP AEROJET

Combined EMA Features Provide A Unique Technology

Technology

Modular, Self Contained Actuator

- Electromechanical Design Eliminates Problems Associated With Hydraulics And Pneumatics
- Complete Electrical/ Electromechanical Redundancy For Increased Reliability
- Integrated Electronic/ Mechanical Package Which Can Be Mounted Directly To Cryogenic Valves
- Application Of Digital Technology For Local Closed Loop Control, Communication And Health Monitoring

Replaces

Hydraulic And Pneumatic Actuator Technology

Application

 Modular Design And Simplified Interface Allows Adaptation To Any On/Off Or Modulating Valve Application

Objective

 Demonstrate A Reliable, Low Cost Propellant Effector System Using An Electromechanical Actuator

Approach

- Phase I Preliminary Design
 - Requirements Definition
- Preliminary Design of Valve And EMA Testing Of Low Cost Technologies Trade Studies
- Phase II Detailed Design Detailed Design Of EMA
- Detailed Analyses; Reliability, Thermal, Structural, Vibration

 - Dynamic Model EMA Fabricate Three Full Size EMA Assemblies
 - **Test Valves At MSFC**

AEROJET

Space Transportation Main Engine Electromechanical Actuator Design

29 September 1992

SESSION XI SPLINTER SESSIONS

ELA SYSTEMS SESSION I:

- Assess ELA technology readiness as demonstrated by the performance capabilities of the Workshop prototype Has feasibility been definitively established? hardware.
- Identify Critical Path elements on completing ELA Technology Bridging development by FY-95, ς.
 - ELA systems demonstrations (actuator/controller/power source)
 - SSME Technology Test Bed (TTB) hot fire demonstration
- a mechanism for NASA & Industry to down-select candidate ELA systems for TTB
- Discuss the utility of a NASA ELA System Design Handbook as an output from ELA Technology Bridging. 3
- early HLLV by FY-96, including industry supported cost/schedule/procurement plans. Outline an ELA advocacy strategy for transformation of ELA-TB development into flight systems for:

4.

- SRM/ASRM retro-fits
- Centaur retro-fit
- Assess the vitality of Industry supported ELA prototype developments; will NASA support be necessary? 5.
- Assess the pros & cons of ELA technology fly-offs under ELA-TB, including 6.
 - EMA vs EHA
- ELA and PSS systems compatibility
- Roller vs Ball screw transmissions
- Recommend the format for the next ELA TIM/Workshop/Conference: WHAT, WHEN & WHERE.

considering:

SESSION I. ELA SYSTEMS

October 1, 1992

Question 1. Yes, ELA has demonstrated technology readiness and has established feasibility. Note: The whole group agreed with this.

Question 2. The critical element of the ELA Bridging program is the hot fire test. This is not the only thing but it is essential if we are to sell this technology to a program manager.

Question 4. NASA has to focus in on a target and provide system requirements. This is a must for evaluating various system fairly.

Question 5. Industry can not continue to support this kind of effort very long without a program to aim toward. Money is tight.

Question 6. Have to do system studies to drive out system requirements.

Question 7. TIM - Yes, where or when?

SESSION II: ELA CONTROL ELECTRONICS

- Assess ELA technology readiness as demonstrated by the performance capabilities of the Workshop prototype hardware. Has feasibility been definitively established?
- Identify Critical Path elements on completing ELA Technology Bridging development by FY-95, considering:
 - ELA systems demonstrations (actuator/controller/power source)
 - SSME Technology Test Bed (TTB) hot fire demonstration
- a mechanism for NASA & Industry to down-select candidate ELA systems for TTB
 - special emphasis on EMI
- Discuss the utility of a NASA ELA System Design Handbook as an output from ELA Technology Bridging.
- Assess the vitality of Industry supported ELA prototype developments; will NASA support be necessary
- Assess the pros & cons of ELA technology fly-offs under ELA-TB, including Permanent Magnet vs Induction Motors
- PWM vs PDM
- Analog vs digital vs hybrid electronics
 - IGBTs vs MCTs
- Recommend the format for the next ELA TIM/Workshop/Conference: WHAT, WHEN & WHERE. 6

SESSION II: ELA CONTROL ELECTRONICS

October 1, 1992

Question 1. Feasibility has been established, but full power level has not been demonstrated. Before full power can be demonstrated the following issues must be resolved:

- a. EMI must be addressed
- b. Packaging of power devices (Air Force is currently working on packaging)
- c. Motor optimization
- d. Flight current sensors
- e. Single event upset
- f. Start transients
- g. Batteries.

Question 2. FY 95 is feasible if funding and above questions are answered.

- Must identify (EMI, performance, etc.) requirements and specifications.
- In order to meet FY 95, there must be cost sharing between government and industry.
- On TTB hot fire demonstrations, a common TTB requirement for all vendors is needed.
 - a. Is TTB our most effective/realistic test?
 - b. Does it simulate flight profiles?
 - c. Could performance requirements be full demonstrated at vendor

facilities?

- Each company should be allowed access to TTB/test fixture.
- Government splinter session recommendation is demonstration at a common test facility.
- Question 3. NASA ELA System Design Handbook is not recommended. A system requirements and specification document is preferred.
- Question 4. Program Office should show time and hardware commitments for ELA hardware. Recommend cost sharing and Cooperative Research Agreements.
- Question 5. Fly-offs should not be required. Requirements should be to meet performance requirements at full power. System design should not be a factor, rather system requirements.
- Question 6. Next ELA meeting should be a full power demonstration (approximately 1 year from now with location yet to be selected).

SESSION III: ELA POWER SOURCE SYSTEMS

Identify the critical PSS parameters/requirements which need to be provided by ELA designers in order to "optimize" the combined ELA/PSS systems.

Outline the means by which NASA's ELA Technology Bridging can elicit these requirements,

Identify any specific ELA (performance) requirements that would distinguish ELA PSS developments from other, related PSS developments, such as DOE and automobile manufacturers. Discuss the utility & implementation of an ELA-TB consignment unit for PSS prototype development:

a programmable IGBT-based power load with power-demand profiles

a "portable" ELA test unit (Motor/controller/geared loads, etc)

power profiles to simulate worst case flight trajectories & launch pad checkouts (steps, slews, FRFs, et

Discuss the utility & implementation of an ELA-TB Power Source Simulator for PSS prototype development:

generation of analytical models for a programmable Power Source Simulator

protection of proprietary data in supplying such data (eg, a floppy disc data transfer with execute-only

Sketch a Timeline of related Power Source technology development with respect to:

ELA - Technology Bridging with a completion date in FY-95.

early HLLV ELA systems to support a CY-96/97 launch

Recommend the format for the next ELA TIM/Workshop/Conference: WHAT, WHEN & WHERE. 6

ELA-TB WORKSHOP ELA POWER SOURCE SYSTEMS SPLINTER SESSION OUTPUT

OUESTIONS 1 & 2:

The PSS parameters/requirements needed by both NASA's ELA Technology Bridging Team and PSS vendors for definition and design are as follows:

- Power profiles which include; base power, voltage limits, peak power, total energy, rise times, regulation requirements, and frequency/spacing of current pulses.
- Start transient loads.
- Ascent profiles/worst case scenarios from Flight Dynamics area.
- Corona and EMI Specs and allowances.
- Redundancy and reliability numbers.
- Failure modes.
- Environmental requirements, acoustics, vibration, thermal, etc.
- Processing, handling, shelf life, pad access, and activation.
- Regeneration tolerance.
- Propellant availability.
- Pre-launch check-out, start-up times, GSE availability and use.
- Load impedances.
- Data and documentation expected from vendors.

Ouestion 3:

ELA PSS requirements that are specifically ELA demands include; launch/flight environments, high current spikes, high voltage, and rise times.

Question 4:

The implementation of an ELA-TB consignment unit for PSS development was decided to be non-advantageous to NASA ELA-TB.

Question 5:

The development of a power source simulator is a good idea. This type project is currently underway with JSC's ELAPSS project.

Ouestion 6:

A credible timeline can not be generated until more Power Source requirements are defined.

Question 7:

The Feb/Mar time frame was decided upon for the next ELA-TB TIM. Requirement updates and technology advancements should be the main topics for the Power Source Systems session.

SESSION IV: ELA OPERATIONS

- Outline the means by which ELA operational requirements may be identified under ELA-Technology Bridging and ultimately translated into CEI specifications.
- Discuss the means to effective utilize an ELA Operations Test Bed at KSC, including તં
- use of NASA and Industry consignment units
- pros & cons of focusing on a specific mission/application (SRM/ASRM aft skirt)
- Assess the requirements, pros & cons of an ELA-TB sponsored development of a GSE-CART unit (BIT, power source simulator, ground handling & installation, etc)
- Assess the NASA need, and the commercial/industry technology readiness, to support SSC/KSC/MSFC/JSC cryogenic flow control operations.
- Recommend the format for the next ELA TIM/Workshop/Conference: WHAT, WHEN & WHERE. ς.

SESSION IV. ELA OPERATIONS

October 1, 1992

OBJECTIVES - CONCURRENT ENGINEERING

- * Need a representative hardware platform to drive out real operational requirements and prioritize.
- * Need operation environment for:
 - Feedback to designers (and researchers)
 - Safety design feedback
 - Realistic timelines
 - Validate/recommend changes to prototype OMRSD/LCC.
- * Near term/mid-term/long-term approach to concurrent engineering.

IMPLEMENTATION

Two pronged approach:

- 1. Form process improvement and design improvement teams.
- 2. Consider utilizing SRB AFT skirt as platform to meet the objectives.

Organization

d	TEAM COMPOSITION	NASA MSFC/EE11	NASA Fit Ctls/TV-GDS-22	NASA APU-Hyd/TV-FSD-21	USBI-DAE/TO-1	LSOC Fit Ctls/LSO-215	LSOC APU-Hyd/LSO-356		Design Sponsors:	1. MSFC Propulsion Lab	2. USBI/MSFC	NASA MSFC/EP64	NASA MSFC/EL	NASA MSFC/EB	RIC-DNY/APU-Hyd		Processing Sponsors:	1. NASA FIt Ctls/TV-GDS-22	2. NASA APU-Hyd/TV-FSD-21	3. USBI-LSS			•							
Solid Rocket Booster TVC Group	СНАВТЕВ	To take action to reduce	remanufacturing and processing task	durations, man-hrs and IPR/PR count	of the Solid Rocket Booster's thrust	vector control system by 25% in 24	months. Also, recommends any needed	OMRS changes, vehicle design changes	(large, medium and small), and retrofit	approaches as coordinated with the	Design Improvement Team.	To take actions needed to modify the	SRB TVC system such that a 25%	reduction within 48 months (and	another 25% within 96 months) occurs	in the following areas:	Aft Skirt TVC Build-up & ACO	Weh Processing Task Durations	3. Man-hrs	4. FMEA/CIL count	5. LMGRU count	6. Logistics recurring costs	7. GSE count	The Design Team will coordinate and	reach agreement with the Processing	Team on all, design modification and	retrofit strategies. The Design Team will	also aid the Processing Team on	recommendations for OMRSD	improvements.
5	TEAM	Processing Improvement Team										Design Improvement Team															-			

ELA REDUNDANCY & HEALTH MANAGEMENT

- Assess the state-of-the-art and technology readiness level of Health management systems in supporting ELA-TB development by FY-95, including - Built-in-Test
- Redundancy Management
- Vehicle Health & TVC subsystem Health Management
- Assess the redundancy management levels/capabilities/limitations of ELA prototype systems as demonstrated - three channel EHA actuator (Boeing/Allied Signal) at the Workshop, including:
- eight channel Permanent Magnet EMA (Honeywell) three channel Permanent Magnet EMA (Allied Signal)
- Discuss the means to effective utilize an ELA/TVC Health Management Test Bed at MSFC/JSC, including - use of NASA and Industry ELA prototype systems (actuators & power source)
 - protection of vendor proprietary data/software in a NASA test bed
- Assess the vitality of Industry/IRAD health Management development w.r.t ELA/TVC systems; will NASA support be mandatory?
- Recommend the format for the next ELA TIM/Workshop/Conference: WHAT, WHEN & WHERE.

ELA REDUNDANCY & HEALTH MANAGEMENT SPLINTER SESSION

Don Brown/NASA JSC

1 October 1992

OBJECTIVES:

•Identify technology requirements associated with ELA redundancy management (RM) and health management (HM) and those areas that represent a potential high return on investment for Bridging Program funds.

Technology shortfalls
Technology demonstrations
Tools and other support requirements

What cost: benefit metrics can we identify?

- •Define the interfaces between ELA RM & HM and overall Integrated Vehicle Health Management (IVHM).
- •Identify proper relationship(s) between the following technologies/disciplines:

Design for Testability
BIT/BITE
Boundary Scan
Smart Sensor technology insertion options
Sensor reduction/elimination (i.e. commutation support sensors)

•Discuss recommended NASA approach to fault tolerance and RM for actuators.

i.e. should a single EMA be used in a flight critical application?

What guidelines should drive selection of actuation technology, i.e. EMA vs. EHA, PM DC vs. induction, etc.?

•Identify white paper products that would be valuable:

EMA vs. EHA selection considerations and criteria Motor selection Failure recovery approaches (i.e. lock-up vs. return to null)

PARTICIPANTS

MDSSC - Delta Launch Vehicle EMA
Univ. of Alabama - characterize roller screws and ball screws
R A Weir MSFC CDL
Aerojet
LeRC
LaRC - GN&C avionics I/F
Allied Bendix
Moog Boeing NLS TVC
Jack B NLS
Bill St. Cyr SSC
Fred H.

Good x-section of disciplines and interests.

APPROACH

Answer J Sharkey questions. Identify significant omissions.

ELA requirements id and collection mechanism required. Support immediate term, through demos, to long term. MSFC ELA requirements QFD (joint team in place). Focus is on NLS. Target completion by February 1993.

Q1

Subsystem level maturity is good - global strategies and tools are still lacking. Integration of technologies is not mature; the technology elements are.

White papers. Concentrate on the way we do fault management. Concern on what audience would be. ELATB would collect, catalog and publish. Don will generate a list of potential targets.

Standalone versus "cooperative" VHM approaches.

NLS says need integrating glue to transition from health monitoring to IVHM. Elimination of unnecessary sensors; use data captured in normal control signals, etc. LeRC has started this effort (university supported study); would use excess controller processing power.

Realistic failure analysis/fault tree data required. - Follow up to Rae Ann's data.

FOUR TRACKS FOR IVHM DEVELOPMENT

ARCHITECTURE
FLIGHT SUPPORT SYSTEMS (GROUND/FLIGHT)
TOOLS

ELA TECHNOLOGY is ready now - Boeing. Architectural decisions will drive subsystem design philosophies. Work is required to tie operations and development together. NLS says smart sensors have option to do processing at lowest level but there must be reporting to a central level to support launch processing, flight control. Local analysis with avionics suite for coordination. This seems to be a uniform approach.

FDIR and data requirements are different for ELV Vs reusable.

How much reliability is needed? Tied to human rating issues.

Q2

Boeing/Allied EHA - advantages of hydraulic bypass are undeniable. Fail op/fail safe (return to null). No real RM demo has been offered yet. How far down must we take redundancy? Should rotor shafts and bearings be considered? What are credible failures? Up front involvement of R&QA needed.

For 8 channel, they have had several failures and the system continued to run. This is really used as a 4 channel device. The motor shaft is common to all.

Trade between redundancy content and HM.

Q3

MAST approach is to not allow proprietary content. To date, there have been no proprietary issues associated with ELA TB. Use of vendor/contractor facilities and capabilities as appropriate is desirable (in fact, mandatory). Networking of facilities would be valuable and cost effective to support specific end-to-end test objectives.

Would ELAPSS be a good asset for the CDL? There is not a problem in getting power for actuators (batteries, power supplies). The ELAPSS will never obviate final integrated system test requirement, however.

Facility here will continue to be a place we use to demo items. Proprietary issues should not be a problem. Do we need to address EMI/EMC issues? Can ELAs and avionics devices share the same power sources? Group seems to feel no.

Q4

Budgets are universally slim and getting slimmer. This includes IRAD funding as well. Question exists as to where resources will come from to "customize" ELA development to date to conform to desired architectures and IVHM requirements. NLS seems to be the only "carrot" out there. Maybe we should let aircraft people take (or maintain) the lead for ELA development.

TTB I/F would be a good demo to "sell" ELA capabilities since we are essentially proposing a replacement of something that does work.

Q5

Papers and demo mix was good. Recommend continued emphasis on demos in future TIMs and other forums.

Avoid having meeting span fiscal year transition!

SESSION XII ELA PROTOTYPE DESIGN AND TEST RESULTS

MOOG INC.

MISSILE SYSTEMS DIVISION

38 HP ELECTROMECHANICAL ACTUATOR

IR&D PROGRAM OVERVIEW

NASA ELECTRICAL ACTUATION TECHNOLOGY BRIDGING WORKSHOP

SEPTEMBER 29 - OCTOBER 1, 1992

-INTRODUCTION-

Objectives of Moog's 38 HP EMA IR&D PROGRAM

Design Criteria

Hardware Description

Test Results

MOOO

Missile Systems Division

- Demonstrate EMA Performance for 30-50 HP TVC Application
- Design, Build, and Test Single String EMA Hardware
- Compare to Known Hydraulic System Performance
- **Baseline SSME TVC Requirements**
- Ballscrew

Design Actuator To Accommodate

Rollerscrew

MOOG

Missile Systems Division

Initiated Moog Funded IR&D Activity 1990

Demonstrate Single String EMA

No Effort to Optimize Weight

Include Dual Motor Capability

Utilize "Bolt-On" Motors to Permit Motor Comparison

Designed to Handle Start-up Transient Loads Structurally

Controller not Flight Packaged

Future Considerations

Redundancy

Impact Loads

Motor Selection

Power Source

Flight Weight Controller and Actuator

(Based on SSME TVC Requirements)

Supply Voltage	270 VDC
Output Travel	±5.5 in.
Rated Power	38 HP
- Output Force	48,000 lb.
· Output Velocity	5.2 in/sec.
Impulse Load Capacity	100,000 lb.
Frequency Response	
at ±2% Command	<80 deg. phase at 3 Hz
Acceleration	60 in/sec^2
Pin to Pin Length	
at Mid stroke	47 in.

Missile Systems Division

688

OUTPUT TRAVEL ±5.5 IN	STALL FORCE 48,000 LB	MAXIMUM IMPULSE LOAD 100,000 LB	ACCELERATION60 IN/SEC ²

38 HP	48,000 LB	5.2 IN/SEC	10 MIN	15,000 LBS	270 VDC
38	00	18	2	OL	>
:	3,0	Z	7	00	270
	48	5.2	:	15,0	:
	:	:	:	:	
:		:	:	:	:
:	:	:			:
:	:	:	:	:	
:	:	:	- :	:	
:	:	>	:	:	
:	111	片	:	:	:
:	CE	00	:	DA	E
E	OR	E	:	0	AG
NE	F	>	H	E	7
0	5	5	5	0	8
DF	P	FP	0	RA	>
H	5	5	7	VE	PP
RATED POWER	-OUTPUT FORCE	-OUTPUT VELOCITY	DUTY CYCLE	-AVERAGE LOAD	SUPPLY VOLTAGE
П					S

Electromechanical Actuator Dual Torque - Summed Motors

MOOG

FORCE - VELOCITY TEST DATA

MOOG 38 HP EM TVC SYSTEM

ON SSME TEST FIXTURE

LOAD POSITION FREQUENCY RESPONSE (±2% COMMAND)
MOOG 38HP EM TVC ACTUATION SYSTEM ON SSME SIMULATOR

OXCORING PAGE IS OF #OOR QUALITY ORIGINAL PAGE IS OF POOR QUALITY

MOOG 38HP EM TVC ACTUATION SYSTEM ON SSME SIMULATOR LOAD POSITION FREQUENCY RESPONSE (±5% COMMAND) **TEST DATA**

17E505 S/N 001 7-17-92

TO SERVICE COMPANY OF

0.25 IN STEP RESPONSE ON SSME SIMULATOR (LOAD POSITION)

694

17E505 S/N 1 7-17-92

0.5 IN STEP RESPONSE ON SSME SIMULATOR (LOAD POSITION)

ORIGINAL PAGE IS

EM TVC ACTUATOR TEST DATA

	BALLSCREW ACTUATOR	ROLLERSCREW ACTUATOR
Mechanical Efficiency at Stall at Power Point	70%	61%
Friction	1650 lbs.	1500 lbs.
Stiffness (Locked Rotor) Midstroke Extend	1.47 x 10 ⁶ lb/in 1.34 x 10 ⁶ lb/in	1.5 x 10 ⁶ lb/in 1.38 x 10 ⁶ lb/in
Acceleration One Motor Two Motors (One Driving)	130 in/sec ² 65 in/sec ²	

PERFORMANCE RESULTS OF MOOG_BRUSHLESS EM TVC SYSTEM

Test Results	Meets Requirement	Meets Requirement	Meets Requirement	Meets Requirement
SSME Spec	<25 deg. Phase at 1 Hz <80 deg. Phase at 3 Hz	48,000 lbs. 5.2 in/sec.	±5.5 in.	790,000 lb/in.
<u>Parameter</u>	Frequency Response (±2% Command)	Rated Power Point Output Force Output Velocity	Output Travel	Actuator Stiffness

OCTOBER 1, 1992

ELECTROMECHANICAL PROPELLANT CONTROL ACTUATORS

MARTHA B. CASH

EP/64

ELECTROMECHANICAL PROPELLANT CONTROL ACTUATORS

IIN-HOUSE SIMPLEX

HR TEXTRON

AEROJET

ORIGINAL PAGE COLOR PHOTOGRAPH

Control (See Calle) Control (See Calle)

DESIGN REQUIREMENTS

EMENT	E TRAVEL CCURACY	SEC.) SSURF (TORR)
DESIGN REQUIREMENT	ALVE OPEN/CLOSE TRAVEL	MLVE RATE (DEG./SEC.) TIMOSPHERIC PRESSURF (TORR)

ALVE OPEN/CLOSE TRAVEL	84° 45' - 85° 30'
ALVE POSITION ACCURACY	± 3% OF 85° (MAX.)
	± 1.3% OF TOTAL TRAVEL FROM 50-60% OPEN
ALVE RATE (DEG./SEC.)	360 (MAX.)
IMOSPHERIC PRESSURE (TORR)	SEA LEVEL TO 1 X 107
MBIENT OPERATING TEMP. (°F)	-50 TO 130
STUATOR CONTROLLER AMBIENT SPERATING TEMP. (°F)	40 TO 110
STUATOR NON-OPERATING TEMP	
°F) FOR 2 HRS.	-200 TO 10
FE (HRS)	8
)AD (MAX.) (INLB.)	4500
EIGHT (LBS.)	20

DESIGN PARAMETERS

DESIGN PARAMETERS

RVDT ERROR BAND RVDT EXCITATION GEAR RATIO
CLOSED LOUP THRESHOLD
UNDER LOADING

MAX. CURRENT (AMP.) LINE BUS VOLTAGE (VOLT)

WALVE RATE (DEG./SEC.)

RESOLVER EXCITATION

FREQUENCY RESPONSE

ACTUATOR LOADING (IN.-LB.)
HELIUM PRESSURE (PSI)
PNEUMATIC SHUTDOWN VALVE
CLOSING TIME (FROM FULL

OPEN)(SEC.)

WALUE

2% OF THE FULL SCALE

20 VOLTS, PEAK TO PEAK AT 2000 Hz

85:1

0.025% OF FULL TRAVEL

40

070

245 (NOMINAL)

4 VOLTS RMS PEAK TO PEAK AT 10 kHz

-3 db AT 10 Hz (NOMINAL) 90° PHASE LAG AT 10 Hz (MAX.)

AS DEFINED IN FIGURE 1

700 TO 800

1.4 TO 3.1

FAILURE DETECTION BLOCK DIAGRAM

HR TEXTRON

HR TEXTRON INC. A SUBBIDIARY OF TEXTRON INC.

25200 WEST RYE CANYON ROAD . VALENCIA, CALIFORNIA 81366

(805) 259-4030 * TWX 910-336-1428 * TELEX 66/1492

DOCUMENT NO. HR77700072

EXTENDED LOCKUP TEST (ATP para. 4.11.4)

P/N X41009110

Date SEP 1 5 1992 Operator

148

Comments Loaded

SN _ X 001

· · · · · · · · · · · · · · · · · · ·		
Item	Required	Actual
Load Direction Sense	CCW	ccw
Load	MOVA	MOVA
Reduced Power	Minimum	MIN
Encoder Reading (Start of Lockup	1894 ± 2 bits	1894
Encoder Reading After 10 Min Lockup	111111111111	1846
Total Drift After 10 Min Lockup	82 bits max	48
Load Direction Sense	Active	ACTIVE
MOV Load	Remove	Removed

A SUBSIDIARY OF TEXTRON INC

25200 WEST RYE CANYON ROAD . VALENCIA, CALIFORNIA \$1355

1806) 259-4030 + TWX 910-336-1438 + TELEX 65/1492

ACTUATOR SLEW RATE (ATP Para 4.9) (Page 1 of 3)

DI	V	X 4	1	റല	Q.	1	10
$\Gamma / 1$	ı V	A+	1	υU	7.	į.	w

Date \$EP 1 5 1992	Operator (148)		·	
Serial No. X.001		•		
Comments: Loaded			.·	

· : .	Shaft Position	Input Signal	MFVA Load	Slew Rate %/Sec		
Required	Open-Close- Open	+30 ±1 mA	MOVA Load Fig. 11	143 min.		
	Open-Close- Close		. 18. 11	340 max.		-
	Close to Open	+30	Data Fig.	161 %		
(Failsafe Switch only Energized)	Open to Close	-30	Data Fig. 2	172%	·	
	Reversal to Closed	+30	Data Fig. 3	152 %		·
(Failop and Failsafe Switch Energized)	Reversal to Opened	-30	Data Fig.	1577		

HR TEXTRON

A SUBSIDIARY OF TEXTRON INC.

26200 WEST RYE CANYON ROAD . VALENCIA, CALIFORNIA \$1366

(806) 259-4030 . TWX 910-336-1438 . TELEX 68/1492

DOCUMENT NO. HR77700072

ACTUATOR SLEW RATE (ATP Para 4.9)

 $\Delta t = 308.0 ms$

HR TEXTRON

HR TEXTRON INC. A SUBSIDIARY OF TEXTRON INC.

25200 WEST RYE CANYON ROAD . VALENCIA, CALIFORNIA 91358

(806) 259-4030 + TWX 910 336-1438 + TELEX 65/1492

DOCUMENT NO. HR77700072

HRIEXTRON

HE TEXTECH INC. A SUBSIDIARY OF TEXTEON INC.

35200 WEST RYE CANYON FOAD . VALENCIA, CALIFORNIA 31355

825/ 259-4030 + TWX 910-336 1438 + TELEX 69/1492

DOCUMENT NO. HR77700072

PNEUMATIC SHUTDOWN DATA SHEET (ATP Para 4.11.3)

PN X41009110

Date SEP 1 5 1992 Operator

Serial No. XOOL

Comments: Loanen

Item		Required	Actual
Pneumatic Pressure, psig		695 ± 10	695
	MPVA	2185 to 2196	
Starting Encoder, bits*		2168 to 2179	2171
	MPVA	256 to 299	
Ending Encoder, bits*		253 to 276	253
Shutdown Time, sec		1.17 to 2.27	1.58

^{*} Cross out non-applicable line.

HA TEXTRON

HR TEXTRON INC. A SUBSIDIARY OF TEXTRON INC.

25200 WEST RYE CANYON ROAD . VALENCIA, CALIFORNIA 91355

18051 288-4030 * TWX 910 338-1428 * TELEX 88/1482

DOCUMENT NO. HR77700072

P/N X41009110	FAIL-OPERATE	E PERFORMANCE (ATP Para 4.	11)
Date	SEP 1 5 1992	Operator (148)	
Serial No	XOOL		
Comments:	Loaded		

ltem .	Required	Actual
#1 Input	+24 M amp	+24
#2 Input	-24 M amp	-74
Fail-Op Energized	20 M amp	20
Failsafe Energized	20 M amp	20
Ending Encoder Reading		777
Starting Encoder Reading		758
Diff. = Uncontrolled Actuator Travel	78 bits max.	19

Encoder Reading @ Travel Reversal:	777	Bits
Encoder Reading @ Fail-Op Energized:	758	Bits
Δ Position = Uncontrolled Actuator Travel:	19	Bits

-UTURE TEST PLANS

FUNCTIONAL

FREQUENCY RESPONSE RATED LOAD/VELOCITY LINEARITY STABILITY PERFORMANCE

ENVIRONMENTAL

VIBRATION/SHOCK EMI/EMC

FLIGHT SIMULATION LABORATORY

REDUNDANCY FAULT INJECTIONS ENGINE SIMULATIONS (HARDWARE IN-THE-LOOP)

FLOW

WATER FLOW/CRYOGENICS WITH MOV

118

ENGINE HOT FIRE

EMA DESIGN GROUPS

MECHANICAL

ELECTRONIC CONTROLLER

Information & Electronics Systems Laboratory Control Electronics Branch

Propulsion Laboratory
Control Mechanisms &
Propellant Delivery Branch
(EP64)

(EB24)

ELECTROMECHANICAL PROPELLANT CONTROL SYSTEM ACTUATOR

- DESIGN
- MECHANICAL
- ELECTRONICS/CONTROLLER
- TESTING
- STATUS
- FUTURE PLANS

MECHANICAL COMPONENTS

Motor

Harmonic Drive

Resolver

Output Spline

-ECTRONIC CONTROLLER

PROVIDES CONTROL TO MOTOR

PROVIDES EXCITATION TO RESOLVER

CONTAINS ENERGY DISSIPATING DEVICE

Space Autili listiation

2 2 Administration

TESTING

- Developed and Verified Model
- Unloaded Testing
- Frequency Response
 - Velocity
- Loaded Testing
- Frequency Response

MODEL AND EMA FREQUENCY RESPONSE TESTS

EMA NO-LOAD VELOCITY TEST

EQUIPMENT NEEDED TO COMPLETE TESTING

4000 Watt Controller

Valve Simulator

FUTURE TEST PLANS

Steady State Position Accuracy

Temperature Tests

Vibration Tests

Comparison Between EMA And Hydraulic

Milied Signal

TRANSIENT COMPENSATION EMA

Bill Fellows

September 29, 1992

Allied-Signal Aerospace Company

M-00280

ALLIED-SIGNAL RESEARCH ELECTROMECHANICAL ACTUATOR (EMA)

SPECIFICATIONS

TRIPLE 11HP MOTORS

POWER: 270 VDC 570 VDC 35,000 LB TRAVEL: 10 INCHES

TRAVEL TIME: 2 SECS
BANDWIDTH: 13 HZ
WEIGHT: 102 LB

LENGTH: 46 INCHES (EXTENDED)

FEATURES

- REPLACES HYDRAULIC ACTUATORS
 - FAULT TOLERANT ELECTRONICS
 - BUILT-IN TEST CAPABILITY
- RATE AND POSITION COMMANDS
- FORM AND FIT COMPATIBLE WITH HYDRAULIC ACTUATORS
- HIGH EFFICIENCY

Allied-Signal Aerospace Company

SYSTEM DESCRIPTION

FOR THE PURPOSE OF MODELING, A SYSTEM COMPRISED OF TWO ALLIED-SIGNAL F20 MOTORS WAS UTILIZED. THIS SYSTEM WILL MEET THE PERFORMANCE REQUIREMENTS THE REDUNDANCY ASPECTS OF HAVING TWO MOTORS IS NOT SHOWN - THE MOTORS THIS PROVIDES A 30,000 LB. OUTPUT OF THE ACTUATOR AT 3.5 IN-SEC. THE LIMIT LOAD OR STRUCTURAL CAPACITY OF THE ACTUATOR IS ASSUMED TO BE ARE LUMPED INTO ONE FOR THIS STUDY. THE GEAR RATIO IS APPROXIMATELY 37:1 INTO A 0.625 LEAD BALLSCREW, FOR AN OVERALL GEAR RATIO OF 5400:1. OF THE TITAN IV FIRST STAGE. THE BLOCK DIAGRAM FOR THE SYSTEM IS SHOWN. FORCE FEEDBACK INTO THE CONTROLLER HAS AN ELECTRICAL BIAS OF 40,000 LBS. 60,000 LBS. MINIMUM, WHICH IS AT LEAST TWICE THE RATED OUTPUT.

- Signal

EM TVC TRANSIENT LOAD COMPENSATION

IF THE REACTED FORCE ON THE ACTUATOR IS INSTRUMENTED, IT MAY BE FED BACK TO THE SERVO LOOP TO CAUSE A REDUCTION IN STIFFNESS WHEN THE LOAD TRIES TO EXCEED THE RATED LOAD

Allied-Signal Aerospace Company

791-3481

GENERAL DESCRIPTION OF ACTIVE COMPENSATION

TO CAUSE THE TVC HAVE A TRANSIENT LOAD, THE ENGINE INERTIA IS THE MOVER AND THE RESPONSE CAPABILITY OF THE THE BASIC PHILOSOPHY OF THE COMPENSATION IS TO DETECT THE APPLIED LOAD AND WHEN IT THAT A MAY HAVE NO PROBLEM ACTUATOR TO MOVE OUT OF THE WAY IS THE RESPONSE OF THE ACTUATOR MOTOR ALONE, I.E., WHEN REACTING TO SYSTEM WHILE OPERATING UNDER NORMAL LOADS DOES NOT HAVE TO BE AS HIGH AS THIS MEANS IN NORMAL OPERATION, THE ENGINE INERTIA AND LOADS THE RESPONSE OF IS GOING TO EXCEED THE MAXIMUM ACTUATOR REQUIRED OUTPUT USE THIS LOAD TERM THE MOTOR MUST ACCELERATE WITH THE HELP OF AN AIDING LOAD. SIGNIFICANT EFFECT ON THE ACTUATOR RESPONSE CAPABILITIES. OF 4 Hz THE ACTUATOR TO BACK AWAY FROM THE EXCESS TRANSIENT. SYSTEM WITH AN OPERATIONAL FREQUENCY RESPONSE COMPENSATING FOR A 15 HZ TRANSIENT LOAD. TRANSIENT LOAD.

AS AN EXAMPLE OF THE ABOVE, A PRELIMINARY SIZING INDICATES THAT A TVC ACTUATOR PERFORMANCE THIS IS COMPATIBLE WITH THE RESPONSE CAPABILITY WHEN WHEN IN NORMAL OPERATION AND MOVING THE TITAN IV ENGINE, BRUSHLESS DC MOTORS WILL MEET THE REACTING TO A TRANSIENT LOAD IS IN THE ORDER OF 19 Hz. REQUIREMENTS FOR COMPENSATING A 12 HZ TRANSIENT INPUT. THE FREQUENCY RESPONSE IS IN THE ORDER OF 7 OR 8 HZ. ALLIED-SIGNAL F20 REQUIREMENTS OF TITAN IV. TWO USING

EM TRANSIENT LOAD COMPENSATION MODEL

NOMENCLATURE

Ľ	LOAD	L E	9
×	POSITION COMMAND	<u>~</u>	$\overline{0}$
×	ACTUAL POSITION	ΚŢ	TO
	BACK EMF CONSTANT	- E	8
,	MOTOR SPEED	G G G G GA	GA
: Œ	RESISTANCE	T ₁ , T ₂	LE/

MOTOR POLAR MOMENT OF INERTIA

COMBINED GEAR RATIO

TORQUE CONSTANT

MOTOR CURRENT

Sp. Gc. Gf GAIN CONSTANTS

T LEAD COMPENSATOR TIME CONSTANTS

Allied-Signal Aerospace Company

INDUCTANCE

MODEL AND RESULTS

THIS LEVEL WAS SELECTED HIGH A 1500 IN-LB. AND A 7500 IN-LB. THE CONTROLLER IN THE MODEL HAS A LOADS UNDER 40,000 LBS. THE REACTION AND RESULTS OF THE MODELED SYSTEM TO THE 1500 IN-LB. LEVEL IS SHOWN. THE ABILITY OF THE SYSTEM TO REDUCE MEANS THAT UNDER STATIC CONDITIONS, THE ACTUATOR WILL BE RIGID FOR ANY AVAILABLE. FOR COMPARISON, TWO ENERGY LEVELS OF TRANSIENTS WERE USED: THE LOAD AT THE 7500 IN-LB. LEVEL IS LIMITED BY THE SPEED LIMITATION OF THE ACTUATOR, NOT ITS FREQUENCY RESPONSE. IN OTHER WORDS, IT CANNOT WITH THIS LIMITATION, THE LOAD WAS REDUCED FROM ABOUT 105,000 LBS. TO AT THE 1500 IN EITHER CASE, IT CAN BE SEEN THAT THE COMPENSATION SIGNIFICANTLY REDUCES THE USING THE SYSTEM DESCRIBED, A 12 HZ TRANSIENT WAS APPLIED WHICH HAD ARE MOVE ENOUGH DISTANCE IN THE TIME TO FURTHER REDUCE THE TRANSIENT. 40,000 LB. DEADBAND WHICH IS 10,000 LBS. OVER THE RATED OUTPUT. PEAK LOAD TO WITHIN STRUCTURAL LIMITATIONS WHICH IS TAKEN TO BE THE TRANSIENT CHARACTERISTICS IN-LB. ENERGY LEVEL, THE FORCE WAS REDUCED TO 40,000 LBS. 55,000 LBS., WELL WITHIN THE STRUCTURAL LIMIT REQUIREMENTS. PEAK UNCOMPENSATED FORCE OF 105,000 LBS. COMPLETE DATA ON BECAUSE

Allied-Signal Aerospace Company

NO LOAD STEP RESPONSE

AiResearch Los Angeles Division

Allied-Signal Aerospace Company

AiResearch Los Angeles Division

FREQUENCY RESPONSE

RUN BOTH UNLOADED AND WITH A 6600 LB. INERTIA THE FREQUENCY RESPONSE OF THE TEST UNIT WAS LOAD. THE RESULTS SHOW THAT THE RESPONSE EXCEEDS 10 Hz IN BOTH CASES.

GAIN AND PHASE
6600 POUND LOAD AND NO - LOAD

Allied-Signal Aerospace Company

AiResearch Los Angeles Division

SESSION XIII DEMONSTRATION

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this Collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Page-work Reduction Project (0704-0188) Washington, DC 2015

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE May 1993	3. REPORT TYPE AND Conference Public	DATES COVERED Cation
4. TITLE AND SUBTITLE Electrical Actuation Technolo	gy Bridging		5. FUNDING NUMBERS
6. AUTHOR(S) Monica Hammond and John S	harkey, Compilers		
7. PERFORMING ORGANIZATION NAME(8	PERFORMING ORGANIZATION REPORT NUMBER
George C. Marshall Space Flig Marshall Space Flight Center,	ht Center Alabama 35812		M-720
9. SPONSORING/MONITORING AGENCY National Aeronautics and Spac Washington, DC 20546) 10	0. SPONSORING/MONITORING AGENCY REPORT NUMBER NASA CP-3213
11. SUPPLEMENTARY NOTES Prepared by Propulsion Labora held in Huntsville, Alabama, So	eptember 29-October	ineering Directorate. I	Proceedings of a conference
Unclassified — Unlimited Subject Category: 20	MENT	12	2b. DISTRIBUTION CODE
13. ABSTRACT (Maximum 200 words)			

This document contains the proceedings of the NASA Electrical Actuation Technology Bridging (ELA-TB) Workshop held in Huntsville, Alabama, September 29–October 1, 1992. The workshop was sponsored by NASA Office of Space Systems Development and Marshall Space Flight Center (MSFC). The workshop addressed key technologies bridging the entire field of electrical actuation including systems methodology, control electronics, power source systems, reliability, maintainability, and vehicle health management with special emphasis on thrust vector control (TVC) applications on NASA launch vehicles. Speakers were drawn primarily from industry with participation from universities and government. In addition, prototype hardware demonstrations were held at the MSFC Propulsion Laboratory each afternoon. Splinter sessions held on the final day afforded the opportunity to discuss key issues and to provide overall recommendations. Presentations are included in this document.

14. SUBJECT TERMS Electrical Actuator Valve Control, Electrical Actuator, Electrical 15. NUMBER OF PAGES						
Electrical	15. NUMBER OF PAGES					
Actuator Power Systems	s. Electrical Actuator Thrus	t Vector Control, Electrical	772			
Actuator Health Monito	16. PRICE CODE A99					
OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT			
Unclassified	Unclassified	Unclassified	Unlimited			