Ch 7.8 Positronium lifetime
composed by quark-antiquark.
For example, To 8+8 is electromagnetic decay=
For example, To 8+8 is electromagnetic decay = in this process 9+9 > 8+8 qq annihilation.
= T - 8+8+8 is terboiden by Com
The cleaner example is positronium: ette -> 8+8
et e form bound state,
et et form bound state, moving rather slowly (non-relativistic, V<< C)
for calculating the amplitude we shall assume they are at
This is one of the cases we cannot average over initial
because the composite system is either in the singlet - (1)
or in triplet & (11+11) change conjugate 5=1
or in triplet = (1)+11) charge conjugate s=1 S=1 C= (-1)+15 for ag c=-1 for 8
EX 1.8. ete -) 8+8, assuming et de are at rest, and
the singlet spin configuration
Pz P4
81
3 3.
PI P3
M_1 M_2
g_e^2
$M_1 = \frac{3e}{(P_1 - P_3)^2 - M^2} = V(2) \notin_4 (P_1 - P_3 + M) \notin_3 U(1)$
$M_2 = \frac{g_e^2}{\sqrt{(z)}} = \frac{1}{\sqrt{(z)}} (P_1 - P_4 + m) = \frac{1}{\sqrt{(z)}} \frac{1}{\sqrt{(z)}} \frac{1}{\sqrt{(z)}} = \frac{1}{\sqrt{(z)}} \frac{1}{(z)$
$(R-R_4)^2-m^2$
$M_{tot} = M_1 + M_2$ Q&C

```
With the initial particles at rest, photons come out back-to-back,
and we choose Z axis to coincide of 1st photon:
    P_1 = (M, 0, 0, 0)
P_2 = (M, 0, 0, 0)
    P_{s=(m,0,0,m)}, P_{4}=(m,0,0,-m)
=> (P1-P3) - M2 = (P1-P4)2 - M2 = ->M2.
  Pi $3 = - $3 $1 +2(P1.63)
          8" 8" + 8" 8" = 29 MV.
    E3 has only spatial components ( Coulomb gauge
  => P1. E3 =0.
   > => Fif3 = - $3 Fi
  Similarly
         $3 $3 =- $3$3 +2($3-63)
  P3. E3 = P34 E3 =0 by virtue of Lorentz condition
     > P3 & = - F3 X3
  (P1-P3+M) &3 U(1) = $3 (-P1+P3+M) U(1) = $3 $3 U(1)
                                         (PI-M) ((1)=0.
        ( Fi - F4+M) &4 U(1) = &4 P4 U(1)
                                                             Q&C
```

Putting all togarher $M_{\text{tot}} = -\frac{g_e^2}{V(z)} [\xi_4 \xi_3 \xi_3 + \xi_3 \xi_4 \xi_4] U(1).$ Now \$ = m(80-83) , \$ = m(80+83) m (\$4 \$ + \$5\$4)80 - (\$4\$5 - \$5\$4)83 $=) \quad \notin_{3} \notin_{4} = \begin{pmatrix} 0 & \overrightarrow{\sigma} \cdot \overrightarrow{\epsilon}_{3} \\ -\overrightarrow{\sigma} \cdot \overrightarrow{\epsilon}_{3} & 0 \end{pmatrix} \begin{pmatrix} 0 & \overrightarrow{\sigma} \cdot \overrightarrow{\epsilon}_{4} \\ -\overrightarrow{\sigma} \cdot \overrightarrow{\epsilon}_{3} & 0 \end{pmatrix} = \begin{pmatrix} (\overrightarrow{\sigma} \cdot \overrightarrow{\epsilon}_{3})(\overrightarrow{\sigma} \cdot \overrightarrow{\epsilon}_{4}) \\ 0 & 0 \end{pmatrix}$ using $(\vec{\sigma} \cdot \vec{a})(\vec{\sigma} \cdot \vec{b}) = \vec{a} \cdot \vec{b} + i \vec{\sigma} \cdot (\vec{a} \times \vec{b})$ €4 €3 + €3 €4 = -2 €3. €4 $\xi_4 \xi_3 - \xi_3 \xi_4 = z_1(\vec{\xi}_3 \times \vec{\xi}_4) \cdot (\vec{\xi}_3 \times \vec{\xi}_4) \cdot$ $V = \frac{g^2}{M} \overline{V(2)} \left[(\vec{\xi}_3 \cdot \vec{\xi}_4) 8^0 + i (\vec{\xi}_3 \times \vec{\xi}_4) \cdot \vec{\Sigma} 8^3 \right] U(1). - eq. (7.149)$ Then consider the spins of et & e = singlet state (TJ-IT) (TZ => Msinglet = (MTJ-MJ) (TZ Mry is obtained from eq. (7.149) spin up for e (u(a) m og 1.46)
& spin-down for e (v-12) in eq. 7.47) $U(\underline{A}) = \int_{2m} \begin{pmatrix} \underline{A} \\ \underline{O} \\ \underline{O} \end{pmatrix} \qquad \overline{V(z)} = V_{(z)} \quad \underline{Y}^{0} = \int_{2m} \begin{pmatrix} \underline{O} \\ \underline{O} \end{pmatrix} \underbrace{A}_{,0}$ Q&C

V(2) Z X3 U(1) = -2M Z V(2) 80 ((1) = 0 So MAN = -21,9e (E3x Eq)= $U(\Delta) = \sqrt{2m} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \qquad \overline{V(2)} = -\sqrt{2m}$ => MM = 21g2 (((() = - MN). => Msinglet = - 25 2 1 ge (= x 6) = Since Mrs = - Msr, triplet (N+J1)/= gives zero., confirming two-photon decays is forbidden. Finally, we put in appropriate photon polarization vectors - spin-up, ms = +1. spin-down, ms = -1 $m_s = +1$ spin-down, $M_s = -1$ $\overrightarrow{E}_+ = -\frac{1}{\sqrt{2}}(1, 1, 0)$ $\overrightarrow{E}_- = \frac{1}{\sqrt{2}}(1, -1, 0)$ If photon is traveling in the +2 direction, these correspond to right & lieft - circular polarization, respectively. Since Z component of total angular mementum must be zero, photon spms must be oppositely aligned: 11 or 11 In 11 case: $\vec{\xi}_3 = -\frac{1}{\sqrt{2}}(1, 1, 0)$, $\vec{\xi}_4 = \frac{1}{\sqrt{2}}(1, -1, 0)$ EXEC = tiz (TI-11)/5 So we need antisymmetric combination

Finally, Msinglet = -49e
We calculate the total cross section for et e annihilation In CM frame.
$\frac{d\sigma}{d\Omega} = \frac{1}{8\pi(E_1 + E_2)} \frac{ \vec{P}_1 }{ \vec{P}_1 } \vec{M} ^2$
E_=E_z=M, = M, because of non-relativistic et le
Pl = m v incident et (or e) speed.
$\frac{1}{d\Omega} = \frac{1}{\sqrt{m^2}} = 0 = \frac{4\pi}{\sqrt{m^2}}$
→ 5 × v = more slowly the et & e approach one another the more time is for them to interact, and the greater likelihood of annihilation.
Reminder: when we discussed the non-relativistic py annihilation cross section, we expand $\delta v = a + bv^2 + \cdots$
$\frac{d\sigma}{dR} = \frac{1}{2} \frac{dN}{dR} \text{or} N = 2 \sigma$ $\frac{d\sigma}{dR} = \frac{1}{2} \frac{dN}{dR} \text{or} N = 2 \sigma$ $\frac{d\sigma}{dR} = \frac{1}{2} \frac{dN}{dR} \text{or} N = 2 \sigma$ $\frac{d\sigma}{dR} = \frac{1}{2} \frac{dN}{dR} \text{or} N = 2 \sigma$ $\frac{d\sigma}{dR} = \frac{1}{2} \frac{dN}{dR} \text{or} N = 2 \sigma$ $\frac{d\sigma}{dR} = \frac{1}{2} \frac{dN}{dR} \text{or} N = 2 \sigma$ $\frac{d\sigma}{dR} = \frac{1}{2} \frac{dN}{dR} \text{or} N = 2 \sigma$ $\frac{d\sigma}{dR} = \frac{1}{2} \frac{dN}{dR} \text{or} N = 2 \sigma$ $\frac{d\sigma}{dR} = \frac{1}{2} \frac{dN}{dR} \text{or} N = 2 \sigma$ $\frac{d\sigma}{dR} = \frac{1}{2} \frac{dN}{dR} \text{or} N = 2 \sigma$ $\frac{d\sigma}{dR} = \frac{1}{2} \frac{dN}{dR} \text{or} N = 2 \sigma$
£ = PV # of incident particles per unit volume.
N = PVJ.

Q&C

rate. Positronium decay electron density is atom For a single PVO phrol V J = 4TL X From So the lifetime positronium is. - = 1,25 × 10-1° sec. hydrogen atom.

-

Ch 7.9 renormalization	NO: 1
Let's consider "electron-muon" scatterin	ne again:
Pa Pa	
leadi)	ng-order.
P ₁ -P ₃ = 8 \$1	
P ₁ P ₃	
amplitude Mu= - 3e [U(Ps) 8"U(Ps)] Jun [U	(P4) 8 "U(P2)
There are a number of fourth-order	(armertiens
of which is "vacuum polarization":	12 12 12 16 16 1 1 1 1 1 1 1 1 1 1 1 1 1
Pz P4	ne the virtual
F18	ton splits into an.
V 1 1 9 - K	ng to a modification
-	e effective charge of
Feynm	un rule: for a closed. loop include a factor - ake the trace.
The amplitude for this higher-order	7
MHO = -ige [U(P3) 8" U(P1)]	
$\times \left\{ \int \frac{dk}{(2\pi)^4} \frac{T_r \left[\chi_n (k+m_e) \chi_r (k-x_e) \left(k-y_e \right) \right]}{\left(k^2 - m_e^2 \right) \left[(k-q_e) - m_e^2 \right]} \right\}$	9+Me)] { [U(P4) 8 U(P2)

NO:	2.		
DATE:	1	1	

Muo+MHO > lead to a modification of photon propagator:
$\frac{g_{\mu\nu}}{g^{z}} \rightarrow \frac{g_{\mu\nu}}{g^{z}} - \frac{i}{g^{4}} I_{\mu\nu} , I_{\mu\nu} = -g_{e}^{z} \int \frac{d^{4}k}{(z\pi)^{4}} \frac{T_{\nu} \left[8_{\mu}(k+m_{e})8_{\nu}(k-8+m_{e})\right]}{(k^{2}-m_{e}^{2})\left[(k-q)^{2}-m_{e}^{2}\right]}$
This integral is divergent. Rugh estimate, it should go like
TIKIS dK - KIZ - SIKI dK = IKIZ , as IKI -> 00 quadratically divergent.
But because of cancellations, it goes like ln K1, so It is logarithmically divergent.
The strategy will be to absorb the infinities into "renormalized" masses and coupling constants.
The integral Inv carries two space-time indices; once we have integrated over K, the only four-vector left is qui
Tur must have the form Jur () + 8,18, ()
=> Inv = -igny 82 I(q) + 8,182 J(q2)
The 2nd term contribute zero in MHO., smco go contracts with XM
$\left[\overline{u}(P_3) \times^{n} u(P_1)\right] \mathcal{C}_{\mu} = \left[\overline{u}(P_3) \left(\mathcal{T}_1 - \mathcal{T}_3\right) u(P_1)\right] = 0$
eg. of motion P(U(P1)) = M U(P1), U(P3) P3 = U(P3) M

So we ignore the 2nd term.
After long computation, the 1st term gives
$I(g^{z}) = \frac{g^{2}}{12\pi^{2}} \left\{ \int_{m_{e}^{z}}^{\infty} \frac{dz}{z} - 6 \int_{0}^{1} z(1-z) \ln \left[1 - \frac{g^{2}}{m_{e}^{2}} z(1-z) \right] dz \right\}$
isolates the
logarithmic divergence
commence in the new years of the order
To handle it, we impose a cutoff M, at the end taking M>
$\int_{M^2}^{\infty} \frac{dz}{z} \rightarrow \int_{M^2}^{M} \frac{dz}{z} = \ln \frac{M^2}{M}.$
The 2nd integral is finite:
$f(x) = 6 \int_0^{\infty} z(1-z) \ln \left[1+\alpha z(1-z)\right] dz$
$=-\frac{5}{3}+\frac{4}{\chi}+\frac{2(\chi-2)}{\chi}\int\frac{\chi+4}{\chi}+\tanh^{-1}\sqrt{\chi+4}$
$f(x) \stackrel{\triangle}{=} \begin{cases} \frac{x}{5} & , & x \ll 1 \\ ln x & , & x >> 1 \end{cases}$
Thus: $I(g^2) = \frac{ge^2}{12\pi^2} \left\{ ln(\frac{M^2}{m^2}) - f(\frac{-g^2}{m^2}) \right\}.$
here g^2 is negative: $g^2 = -4 \vec{p} ^2 \sin \frac{g}{2}$
18 AUG 3 * MOD 11 - ** 1 (-]- 17

The amplitude for e-u scattering, including vacuum polarization Muo+Mno = - 9e [U(P3) 8" U(P1)] Jav 1 - ge ln (M2) - f(-92) m2 X [U(P4) X V((P2)) valide to order get Here comes critical step, we absorb the infinity by introducing the "renormalized" coupling constant: $g_R = g_e \left[1 - \frac{g_e^2}{R^{\frac{3}{2}}} \ln \left(\frac{M^2}{M^2} \right) \right]$ Two important things : 1. The infinities are gone. Everything is now written in terms of JR, instead of Ge. IR is what we actually measure in the laboratory. 2. There remains the finite correction term, and it depends on g2. We can absorb this into IR, then IR depends on g2, "running" coupling constant $g_R(g^2) = g_R(0) \int \left[+ \frac{g_R(0)^2}{12\pi^2} f(-\frac{g^2}{m^2}) \right].$ fine structure constant $d = \frac{g_R}{4\pi}$ $\Rightarrow \angle(q^2) = \angle(0) \left\{ 1 + \frac{\angle(0)}{3TL} + \left(\frac{-g^2}{M^2} \right) \right\}$

	DATE: / /
$\chi(g^2=0) = \frac{1}{1}$	
137,035999084	- x /
	[And discuss]
	slight, in non-relativistic
situations:	Family at the N
	Laxed (x=)/
e^{+} $v = \frac{c}{10}$ e^{-}	
Fig. Dit (entre)	
Dd = 6×10-6	
4 . 0 1/10	N-1 -
8	
[n-1-D]	
$d(g^2) = d(0) \left\{ 1 + \frac{d(0)}{3\pi} + \left(\frac{-g^2}{M^2} \right) \right\}$ The effective charge of the	
The effective charge of the depends on the momentum -	transferred in the collision.
Higher momentum transfer men	ans closer approach
the effective charge of how far apart they are.	each particle depends on
This is a consequence of a screens" each charge.	vacuum polarization, which
	test particle
8 E-	
O O	