Self-Trained Image-to-HTML Convertor

Ali Davody*, Homa Davoudi*, Mihai S. Baba, Răzvan V. Florian Romanian Institute of Science and Technology, Cluj-Napoca, Romania {davody,homa.davoudi, baba, florian}@rist.ro

* contributed equally

Automatic HTML Code Generation

- Front-end web development: Time consuming and skill-based
 - → Can we use machine learning techniques?
- Most methods require **ground-truth programs**:
 - Variant algorithms, variable names, etc.
- Model learns to generate programs similar to the training set
- Supervised RNN-based methods ignore inconsistency between training and testing [1]
- Reinforcement learning for code generation
 - Supervision directed by a reward signal.
- Generating programs of desired characteristics.

Model Architecture

- Actions : Set of all possible tokens
- State at time t: Goal image I_g

 $[T_{t-1},...,T_0]$ $I_r(t-1)$ I_g

- Code generated until t
- Rendered image $I_r(t)$

Policy and value networks are trained by (MCTS) [2]

Proposed Approach

Generator is an RL agent, which:

Training

- Writes a code based on its current policy,
- Checks to see if the code gives the desired result,
- Modifies its policy accordingly.

Testing

- Generates code by running the policy network.
- Can continue searching.
- Reward: Comparison of rendered and goal images

Database left column column_item-blue_bg DSL: col_item_title col_item_text 18 tokens col_item_text 35-token-length codes column_item-blue_bg col_item_title col_item_text col_item_text right_grid grid_row-yellow_bg Sample Image for RL Agent grid_item_button grid_item_button grid_item_text grid_row-blue_bg grid item button grid_item_image # of total Training Testing grid_item_text web pages size size grid_row-blue_bg 10M 4000 400 grid_item_text

header

10

MCTS steps

Experiment 0.95 Pre-training with 0.9 supervised learning 0.85 **Accuracy** Baseline **Proposed** 0.8 (Supervised) method 86% 95% 0.75

References

[1] Bahdanau, D., Brakel, P., et al. An actor-critic algorithm for sequence prediction, arXiv:1607.07086, 2016.

[2] Silver, D., Huang, A, et al. Mastering the game of go with deep neural networks and tree search. nature, 529(7587):484-489, 2016.

This work was supported by the European Regional Development Fund and the Romanian Government through the Competitiveness Operational Programme 2014–2020, project ID P_37_679, MySMIS code 103319, contract no. 157/16.12.2016.