ECE 5730 Memory Systems Spring 2009

Hard Disk Drives

Announcements

- Quiz averages
 - Quiz 10 average = 8.1
 - Quiz 11 average = 10.0
- Quiz 12 on Tuesday
- Status report due tomorrow, 5pm EDT
- Classes on 4/22 and 4/30, 6:00-7:15pm
 - Pizza
 - No material will show up on a quiz or the exam

Announcements

- Exam II
 - Scheduled for 4/29, 6:30-9:30pm
 - Alternative: 5/7, 7:00-10:00pm

Recall the Memory Hierarchy

 Multiple levels of memory, each optimized for an appropriate cost/performance design point

[ov.1] Lecture 20: 4

Recall the Memory Hierarchy

 Multiple levels of memory, each optimized for an appropriate cost/performance design point

Technology	Bytes per access	Latency per access	Energy per access	Cost per MB
On-chip cache	10	100's of ps	1 nJ	\$1-100
Off-chip cache	100	ns	10-100 nJ	\$1-10
DRAM	1000 (internally fetched)	10-100 ns	1-100 nJ per device	\$0.1
Disk	1000	ms	100-1000 nJ	\$0.001

Hard Disk Drives ~50 platter, 2ft. diameter

- Permanent backing storage
- Introduced in 1956 in the IBM RAMAC 305 - accounting machine
- **Incorporated into original PCs**

IBM RAMAC 305

- Many applications
 - Servers, PCs, laptops
 - DVRs, video consoles, network routers
 - MP3 players, digital cameras, cell phones
 - Now flash is taking over

Major Hard Drive Components

- Platters: Media that holds the recording material
- Spindle motor: Rotates the platters to the desired disk position
- Head assembly: Arm with transducers (heads) that convert media signals to electrical signals
- Controller: Receives commands from the drive interface and coordinates disk actions

Major Hard Drive Components

Writing Data on a Disk

- Disk surface is coated with a ferromagnetic material (can be permanently magnetized)
- Data pattern is formed by storing magnetic charges of different polarities

 Binary value represented by presence or absence of transition to different polarity

[17.6, 17.7]

Writing Data on a Disk

[17.12,17.13] Lecture 20: 10

Reading Data from a Disk

Magnetoresistive materials change their resistance depending on magnetic flux

Magnetic flux is strong at transitions

[17.7] Lecture 20: 11

Reading Data from a Disk

 By driving current through the material, can detect voltage changes at transitions

[17.7,17.16,17.17] Lecture 20: 12

0

Track Pitch and Bit Pitch

Areal density depends on tracks per inch and bits per inch

data/in2

Lecture 20: 13

TPI and BPI Growth Trends

Exponential like Moore's Law!

[16.5] Lecture 20: 14

Areal Density Growth Trend

Known as Kryder's Law

[16.4]

Lecture 20: 15

Locating Data on a Disk Surface

[16.7] Lecture 20: 16

Different ways to Increase Corpacity

Multiple Platters

- Increasing disk diameter to increase capacity
 - Longer seek distance requires thicker arms
 - More air friction with larger surface
 - Disk must be thicker to obtain necessary stiffness
 - ⇒ Longer seek time or more required power
- Better choice is multiple smaller platters
 - Shorter seek distance
 - Less weight increase from multiple thinner platters than one thick platter
 - But requires more heads (expensive component)

Multiple Platters

Data maps to a three dimensional space

[16.8] Lecture 20: 18

Reading Data from a Disk Drive

- Host sends command over interface
- Controller orchestrates operation
- Head moved to the radial position (seek)

- Electric motor rotates the disk platter, passing the head over the desired data
- Data is sensed, converted, and passed to the controller
- Controller delivers data over the interface

Disk Performance Overview

Simple disk drive model

Time components of a read

[16.9,19.1] Lecture 20: 20

Disk Performance Overview

- Factors influencing disk performance
 - Access patterns (sequential, random, streams)
 - Command arrival rate
 - Read/write mix
 - Data footprint
 - Block size
 - Command queue depth
 - Latency and transfer rates of disk components
 - Management of disk components

Disk Performance Overview

- Performance metrics
 - Response time: Time between I/O command issue and completion of data transfer
 - Throughput: rate of data transfer (MB/s) Simple disk drive queuing model
- Response time versus disk drive utilization

Throughput, arrival rate, or utilization

Disk Blocks

- Disk storage space is partitioned into blocks
- Most systems use a fixed block size or sector
- Block (sector) size tradeoff
 - Smaller blocks have less internal fragmentation for small files
 - Large blocks have better sequentiality for large files
 - Large blocks allow more powerful ECC protection for the same amount of storage overhead
 - Moving to 1-4KB sectors in addition to usual 512B

Sector Organization

Disk drives used fixed block size or sector

Sector Size Tradeoffs

- Smaller blocks
 - Less internal fragmentation for small files
- Large blocks
 - Better locality of access for large files
 - Allow more powerful ECC protection for the same amount of check bit overhead
- 512B has been standard sector size for years
- Recent OS's allow larger (1-4KB) sectors

Tracks and Cylinders

• Tracks: Circles containing sectors

[18.2] Lecture 20: 26

Tracks and Cylinders

 Cylinder: All tracks with same track number on all all disk surfaces

- Cylinder 0 is first user cylinder
- Drive reserves first n cylinders for drive info
 - Negative cylinders

[pcguide.com] Lecture 20: 27

Address Mapping

- A disk drive is internally addressed using a physical block address (PBA)
- PBA consists of the cylinder, head, and sector
 - CHS addressing
 - Location of the sector in three dimensional space

Address Mapping

- External Logical Block Address (LBA) from the host gets mapped into the PBA
 - Necessary due to presence of defective sectors
- Logically sequential blocks are laid out physically sequential on a track
- Where get the next block when reach the end of a track?
 - Cylinder mode
 - Serpentine format

Cylinder Mode

Move in the z-axis direction

[18.3] Lecture 20: 30

Cylinder Mode

Works well in theory if tracks are aligned

Situation with current high density drives

difficult to alive heads with high density draw

Serpentine Format

Move in radial direction

May have to wast a full dish notation before we can continue this Lecture 20:32 pattern

[18.5]

Banded Serpentine Format

Reduces seek distance for contiguous data

[18.5] Lecture 20: 33

Track Skew

Accounts for time to move head to new track

[18.6] Lecture 20: 34

Next Time

Defect

Defet Management Drive Interfaces