Assignment 2: Binary KNN classifier with 10-Fold Cross Validation

Sourav Sarker (201892985) & Isaac Adeuwon (200925352)

Date: 16 February 2019

Introduction: In this assignment, we used libraries named sys, pandas & numpy for implementing cross-validation from scratch. For the KNN, performance matrix and graphical representations for the performance of the KNN, we used different sci-kit learn libraries and matplotlib. To execute the program from the command prompt:

\$ python A2_t2.py A2_t2_dataset.tsv

<u>Data Handling:</u> Our approach was to select features to eradicate low variance from the dataset with the "VarianceThreshold" feature selection function where we used .6 * (1 - .6) as a threshold parameter.

We have split the dataset as follows:

- 1: Load the dataset into → data_frame
- 2: a ← from data_frame slice dataset based on '0' class
- 3: b ← from data_frame slice dataset based on '1' class
- 4: np.array_split ('a' into 10 parts where axis = 0)
- yes_1 yes_2 yes_10 5: np.array_split ('b' into parts where axis = 0)

no_1 no_2 no_10 get testing set by concatenating using

np.vstack as:

7: get training set by concatenating using np.vstack as:

yes_no_10 yes_no_1 yes_no_2 yes_no_3 yes_no_4 yes_no_5 yes_no_6 yes_no_7 yes_no_8	yes_no_9		
yes_no_2 yes_no_3 yes_no_4 yes_no_5	yes_no_10		
yes_no_2 yes_no_3 yes_no_4 yes_no_5			
yes_no_3 yes_no_4 yes_no_5	yes_no_1		
yes_no_4 yes_no_5	yes_no_2		
yes_no_5	yes_no_3		
yes_no_6 yes_no_7	yes_no_4		
yes_no_7	yes_no_5	yes_no_10 →	fold_10
	yes_no_6		
yes_no_8	yes_no_7		
	yes_no_8		
yes_no_9	yes_no_9		

Accuracy Calculation of KNN:

For the function cross_fold Requires: training_set, test_set, k

- 1: x_train ← remove the last column from training_set
- 2: y_train ← keep only the last column from training_set
- 3: x_test ← remove the last column from test_set
- 4: y_test ← keep only the last column from test set
- 5: classifier ← neighbors.KNeighborsClassifier(value of k, 2 is for binary classification) 6: classifier ← classifier.fit with
- x_train,y_train
- y_p ← classifier.predict using x_test
- score ← get classifier.score from
- x_test & y_test return metric.accuracy_score from y_test and y_p

For a value of K call the cross_fold function

with each fold:

- 1: get the metic.accuracy_score & append a list knn_score[]
- 2: get the mean score of knn_score[]

Model Selection: For the binary classification on a highly imbalanced data to select a better model can be tricky, where average accuracy score of KNN is not the key factor. Therefore, we have decided to use other metrics for our assignment follows: performance metric, per-class

precision and recall, log loss function and roc curve.

Binary Class Performance Matric: For building this matric, we used the libraries 'pandas.m1' which 'pandas.crosstab' and requires y_predicted, actual_y.

For the function **y_prediction Requires:** training_set, test_set, k

- 1: x_train ← pandas slicing to remove the last column from training_set
- 2: y_train ← pandas slicing to keep only the last column from training_set
- 3: $x_{\text{test}} \leftarrow \text{slice to remove the last}$ column from test_set
- 4: classifier ← neighbors.KNeighborsClassifier(value of k, 2 is for binary classification)
- 5: classifier ← classifier.fit with x_train,y_train
- 6: classifier ← classifier.predict using x_train and y_train
- 7: y_pred ← get classifier.predict from x test
- 8: return y_pred
 For a value of K call the y_prediction function with each fold
 - 1: get the y_pred & append a list
 predicted_y[]

For the function y_actual Requires: dataset

- 1: y_dataset ← keep only last column from dataset
- 2: return y_dataset

From our dataset

- 1: get y_dataset
- 2: store class dataset → actual_y[]
- 3: for the value k:
 - a. use pd.crosstab with actual_y & predicted_y, store confusion matric → confusion_mat_list[]
 - use classification_report with actual_y & predicted_y → print performance matric

This performance metrics consists Precision and Recall value for each class.

Log Loss function & ROC Curve: We chose the logarithmic loss function for performance measurement for this binary classification model. A higher value of log loss means the divergence from the actual class to predicted class. So, we required a ration predicted probability of a label within all the original label.

For the function predict_proba Requires: training_set,test_set,k

- 1: x_train ← remove the last column from training_set
- y_train ← keep only the last column from training_set

- 3: $x_{\text{test}} \leftarrow \text{remove the last column from}$ test set
- 4: y_test ← keep only the last column from test set
- 5: classifier ← neighbors.KNeighborsClassifier(value of k, 2 is for binary classification)
- 6: classifier ← classifier.fit with x_train,y_train
- 7: pre_proba ← classifier.predict_proba with x_test
- pre_proba ← from pre_proba keep all row and 1st column
- 9: return pre_proba

with training_set, test_set & k call the predict_proba

- get predict_proba
 calculate_ log_loss with each index actual_y[] and proba
- store value → t_logloss[]
- 4: calculate mean value of t_logloss[] &

Output:

```
For Value K = 13
The Average Accuracy Score is: 0.92
CONFUSION MATIRX:
Actual
Predicted
           88 121
PERFORMANCE MATRIX:
                                                 348
  micro avg
                  0.92
                            0.92
                                      0.92
  macro avg
                            0.66
                                      0.69
Log Loss: 0.71
```

Fig-1: Output

Fig-2: ROC Curve

Conclusion: From our observation, for K=13 we got better performance metric as well as in the ROC curve.