

Intégration

Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

* très facile ** facile *** difficulté moyenne **** difficile **** très difficile I: Incontournable

Exercice 1

Etudier l'existence des intégrales suivantes

1) (**)
$$\int_0^{+\infty} \left(x + 2 - \sqrt{x^2 + 4x + 1} \right) dx$$
 2) (**) $\int_1^{+\infty} \left(e - \left(1 + \frac{1}{x} \right)^x \right) dx$ **3)** (**) $\int_0^{+\infty} \frac{\ln x}{x + e^x} dx$

2) (**)
$$\int_{1}^{+\infty} \left(e - \left(1 + \frac{1}{x} \right)^{x} \right) dx$$

3) (**)
$$\int_0^{+\infty} \frac{\ln x}{x + e^x} dx$$

4) (***)
$$\int_0^{+\infty} \left(\sqrt[3]{x+1} - \sqrt[3]{x}\right)^{\sqrt{x}} dx$$
 5) (**) $\int_1^{+\infty} e^{-\sqrt{x^2-x}} dx$ **6)** (**) $\int_0^{+\infty} x^{-\ln x} dx$

5) (**)
$$\int_{1}^{+\infty} e^{-\sqrt{x^2-x}} dx$$

6) (**)
$$\int_0^{+\infty} x^{-\ln x} dx$$

7) (**)
$$\int_0^{+\infty} \frac{\sin(5x) - \sin(3x)}{x^{5/3}} dx$$

8) (**)
$$\int_0^{+\infty} \frac{\ln x}{x^2 - 1} dx$$

8) (**)
$$\int_0^{+\infty} \frac{\ln x}{x^2 - 1} dx$$
 9) (**) $\int_{-\infty}^{+\infty} \frac{e^{-x^2}}{\sqrt{|x|}} dx$

10) (**)
$$\int_{-1}^{1} \frac{1}{(1+x^2)\sqrt{1-x^2}} dx$$

11) (**)
$$\int_0^1 \frac{1}{\sqrt[3]{x^2 - x^3}} dx$$

11) (**)
$$\int_0^1 \frac{1}{\sqrt[3]{x^2 - x^3}} dx$$
 12) (***) $\int_0^1 \frac{1}{\arccos(1 - x)} dx$.

Correction ▼

[005713]

Exercice 2

Etudier l'existence des intégrales suivantes.

1) (***) I
$$\int_2^{+\infty} \frac{1}{x^a \ln^b x} dx$$
 (Intégrales de BERTRAND) 2) (**) $\int_0^{\pi/2} (\tan x)^a dx$

2) (**)
$$\int_0^{\pi/2} (\tan x)^a dx$$

3) (**)
$$\int_{1}^{+\infty} \left(\left(1 + \frac{1}{x} \right)^{1 + \frac{1}{x}} - a - \frac{b}{x} \right) dx$$

4) (***)
$$\int_0^{+\infty} \frac{1}{x^a(1+x^b)} dx$$

Correction ▼ [005714]

Exercice 3

(Hors programme) Etudier la convergence des intégrales impropres suivantes :

1. (**)
$$\int_0^{+\infty} \frac{\sin x}{x} dx$$

2. (**)
$$\int_0^{+\infty} \frac{\sin x}{x^a} dx$$

3. (**)
$$\int_{0}^{+\infty} e^{ix^2} dx$$

4. (**)
$$\int_0^{+\infty} x^3 \sin(x^8) dx$$

5. (**)
$$\int_0^{+\infty} \cos(e^x) dx$$

6. (***)
$$\int_0^{+\infty} \frac{1}{1 + x^3 \sin^2 x} \, dx$$

Correction ▼ [005715]

Exercice 4

Existence et calcul de :

1) (** I)
$$I_n = \int_0^{+\infty} \frac{1}{(x^2+1)^n} dx$$

1) (** I)
$$I_n = \int_0^{+\infty} \frac{1}{(x^2+1)^n} dx$$
 2) (très long) $\int_2^{+\infty} \frac{1}{(x-1)^3(x^4+1)} dx$ 3) (** I) $\int_0^{+\infty} \frac{1}{x^3+1} dx$ 4) (***) $\int_0^{+\infty} \frac{1}{(x+1)(x+2)...(x+n)} dx$

3) (** **I**)
$$\int_0^{+\infty} \frac{1}{x^3+1} dx$$

4) (***)
$$\int_0^{+\infty} \frac{1}{(x+1)(x+2)...(x+n)} dx$$

5)(*)**
$$\int_0^1 \frac{1}{\sqrt{(1-x)(1+ax)}} dx$$
 6) ()** $\int_0^{+\infty} \frac{1}{(e^x+1)(e^{-x}+1)} dx$

6) (**)
$$\int_0^{+\infty} \frac{1}{(e^x+1)(e^{-x}+1)} dx$$

7) (**)
$$\int_0^{+\infty} \frac{1}{5 \cosh x + 3 \sinh x + 4} dx$$

8) (***)
$$\int_0^{+\infty} \left(2 + (t+3) \ln \left(\frac{t+2}{t+4}\right)\right) dt$$

9) (** I)
$$\int_0^{+\infty} \frac{x \arctan x}{(1+x^2)^2} dx$$

10) (**I très long**)
$$\int_0^{+\infty} \frac{x \ln x}{(x^2+1)^a} dx$$
 (calcul pour $a \in \{\frac{3}{2}, 2, 3\}$)

11) (***)
$$\int_0^{\pi/2} \sqrt{\tan x} \, dx$$

11) (***)
$$\int_0^{\pi/2} \sqrt{\tan x} \, dx$$
 12) (*** **I**) $\int_0^{+\infty} \frac{e^{-at} - e^{-bt}}{t} \, dt$ (0 < a < b)

Correction ▼ [005716]

Exercice 5

Deux calculs de $I = \int_0^{\pi/2} \ln(\sin x) dx$.

1) (** I) En utilisant $J = \int_0^{\pi/2} \ln(\cos x) dx$, calculer I (et J). 2) (*** I) Calculer $P_n = \prod_{k=1}^{n-1} \sin \frac{k\pi}{2n}$ (commencer par P_n^2) et en déduire I.

Correction ▼ [005717]

Exercice 6 ** I

En utilisant un développement de $\frac{1}{1-t}$, calculer $\int_0^1 \frac{\ln t}{t-1} dt$.

Correction ▼ [005718]

Exercice 7 *** I

Calculer $\int_0^1 \frac{t-1}{\ln t} dt$ (en écrivant $\int_0^x \frac{t-1}{\ln t} dt = \int_0^x \frac{t}{\ln t} dt - \int_0^x \frac{1}{\ln t} dt$).

Correction ▼ [005719]

Exercice 8

- 1) (** I) Trouver un équivalent simple quand x tend vers $+\infty$ de $e^{x^2} \int_x^{+\infty} e^{-t^2} dt$.
- 2) (***) Montrer que $\int_a^{+\infty} \frac{\cos x}{x} dx \sim -\ln a$.
- 3) (*) Montrer que $\int_0^1 \frac{1}{x^3 + a^2} dx \sim \frac{1}{a \to +\infty} \frac{1}{a^2}$.

Correction ▼ [005720]

Exercice 9 ***

Etude complète de $f: x \mapsto \int_x^{x^2} \frac{1}{\ln t} dt$.

Correction ▼ [005721]

Exercice 10 ***

(Hors programme) Convergence et calcul de $\int_1^{+\infty} \frac{(-1)^{E(x)}}{x} dx$.

Correction ▼ [005722]

Exercice 11 ***

Soit f définie, continue, positive et décroissante sur $[1, +\infty[$, intégrable sur $[1, +\infty[$.

- 1. Montrer que x f(x) tend vers 0 quand x tend vers $+\infty$.
- 2. Existence et calcul de $\int_{1}^{+\infty} x(f(x+1) f(x)) dx$.

Correction ▼ [005723]

Exercice 12 ***

- 1. Soit f de classe C^1 sur \mathbb{R}^+ à valeurs dans \mathbb{R} telle que l'intégrale $\int_0^{+\infty} f(x) \, dx$ converge en $+\infty$. Montrer que $\int_0^{+\infty} f'(x) \, dx$ converge en $+\infty$ si et seulement si f(x) tend vers 0 quand x tend vers $+\infty$.
- 2. (a) On suppose que f est une fonction de classe C^2 sur \mathbb{R}^+ à valeurs dans \mathbb{R} telle que f et f'' admettent des limites réelles quand x tend vers $+\infty$. Montrer que f' tend vers 0 quand x tend vers $+\infty$.
 - (b) En déduire que si les intégrales $\int_0^{+\infty} f(x) dx$ et $\int_0^{+\infty} f''(x) dx$ convergent alors f tend vers 0 quand x tend vers $+\infty$.

Correction ▼ [005724]

Exercice 13 ***

Soit f de classe C^2 sur $\mathbb R$ à valeurs dans $\mathbb R$ telle que f^2 et $(f'')^2$ soient intégrables sur $\mathbb R$. Montrer que f'^2 est intégrable sur $\mathbb R$ et que $\left(\int_{-\infty}^{+\infty} f'^2(x) \, dx\right)^2 \leqslant \left(\int_{-\infty}^{+\infty} f^2(x) \, dx\right) \left(\int_{-\infty}^{+\infty} f''^2(x) \, dx\right)$. Cas d'égalité?

Correction ▼ [005725]

Correction de l'exercice 1

- 1. Pour $x \ge 0$, $x^2 + 4x + 1 \ge 0$ et donc la fonction $f: x \mapsto x + 2 \sqrt{x^2 + 4x + 1}$ est continue sur $[0, +\infty[$. Quand x tend vers $+\infty$, $x+2-\sqrt{x^2+4x+1}=\frac{3}{x+2+\sqrt{x^2+4x+1}}\sim 32x$. Comme la fonction $x\mapsto \frac{3}{2x}$ est positive et non intégrable au voisinage de $+\infty$, f n ?est pas intégrable sur $[0; +\infty[$.
- 2. Pour $x \ge 1$, $1 + \frac{1}{x}$ est défini et strictement positif. Donc la fonction $f: x \mapsto e \left(1 + \frac{1}{x}\right)^x$ est définie et continue sur $[1, +\infty[$.

Quand x tend vers $+\infty$, $\left(1+\frac{1}{x}\right)^x = e^{x\ln(1+\frac{1}{x})} = e^{1-\frac{1}{2x}+o(\frac{1}{x})} = e^{-\frac{e}{2x}} + o\left(\frac{1}{x}\right)$ puis $f(x) \underset{x \to +\infty}{\sim} \frac{e}{2x}$. Puisque la fonction $x \mapsto \frac{e}{2x}$ est positive et non intégrable au voisinage de $+\infty$, f n'est pas intégrable sur $[1, +\infty[$.

- 3. La fonction $f: x \mapsto \frac{\ln x}{x+e^x}$ est continue et positive sur $]0,+\infty[$.
 - En 0, $\frac{\ln x}{x+e^x} \sim \ln x$ et donc $f(x) = o\left(\frac{1}{\sqrt{x}}\right)$. Comme $\frac{1}{2} < 1$, la fonction $x \mapsto \frac{1}{\sqrt{x}}$ est intégrable sur un voisinage de 0 et il en est de même de la fonction f.
 - En $+\infty$, $f(x) \sim \frac{\ln x}{e^x} = o\left(\frac{1}{x^2}\right)$. Comme 2 > 1, la fonction $x \mapsto \frac{1}{x^2}$ est intégrable sur un voisinage de $+\infty$ et il en est de même de la fonction f.

Finalement, f est intégrable sur $]0, +\infty[$.

4. La fonction $x \mapsto \sqrt[3]{x+1} - \sqrt[3]{x}$ est continue et strictement positive sur $[0, +\infty[$. Donc la fonction $f: x \mapsto$ $(\sqrt[3]{x+1} - \sqrt[3]{x})$ est continue sur $[0, +\infty[$.

En $+\infty$, $\ln\left(\sqrt[3]{x+1} - \sqrt[3]{x}\right) = \frac{1}{3}\ln x + \ln\left(\left(1 + \frac{1}{x}\right)^{1/3} - 1\right) = \frac{1}{3}\ln x + \ln\left(\frac{1}{3x} + O\left(\frac{1}{x^2}\right)\right) = -\frac{2}{3}\ln x - \ln 3 + \ln\left(\frac{1}{3x} + O\left(\frac{1}{x^2}\right)\right) = -\frac{2}{3}\ln x - \ln 3 + \ln\left(\frac{1}{3x} + O\left(\frac{1}{x^2}\right)\right) = -\frac{2}{3}\ln x - \ln 3 + \ln\left(\frac{1}{3x} + O\left(\frac{1}{x^2}\right)\right) = -\frac{2}{3}\ln x - \ln 3 + \ln\left(\frac{1}{3x} + O\left(\frac{1}{x^2}\right)\right) = -\frac{2}{3}\ln x - \ln 3 + \ln\left(\frac{1}{3x} + O\left(\frac{1}{x^2}\right)\right) = -\frac{2}{3}\ln x - \ln 3 + \ln\left(\frac{1}{3x} + O\left(\frac{1}{x^2}\right)\right) = -\frac{2}{3}\ln x - \ln 3 + \ln\left(\frac{1}{3x} + O\left(\frac{1}{x^2}\right)\right) = -\frac{2}{3}\ln x - \ln 3 + \ln\left(\frac{1}{3x} + O\left(\frac{1}{x^2}\right)\right) = -\frac{2}{3}\ln x - \ln 3 + \ln\left(\frac{1}{3x} + O\left(\frac{1}{x^2}\right)\right) = -\frac{2}{3}\ln x - \ln 3 + \ln\left(\frac{1}{3x} + O\left(\frac{1}{x^2}\right)\right) = -\frac{2}{3}\ln x - \ln 3 + \ln\left(\frac{1}{3x} + O\left(\frac{1}{x^2}\right)\right) = -\frac{2}{3}\ln x - \ln 3 + \ln\left(\frac{1}{3x} + O\left(\frac{1}{x^2}\right)\right) = -\frac{2}{3}\ln x - \ln 3 + \ln\left(\frac{1}{3x} + O\left(\frac{1}{x^2}\right)\right) = -\frac{2}{3}\ln x - \ln 3 + \ln\left(\frac{1}{3x} + O\left(\frac{1}{x^2}\right)\right) = -\frac{2}{3}\ln x - \ln 3 + \ln\left(\frac{1}{3x} + O\left(\frac{1}{x^2}\right)\right) = -\frac{2}{3}\ln x - \ln 3 + \ln\left(\frac{1}{3x} + O\left(\frac{1}{x^2}\right)\right) = -\frac{2}{3}\ln x - \ln 3 + \ln\left(\frac{1}{3x} + O\left(\frac{1}{x^2}\right)\right) = -\frac{2}{3}\ln x - \ln 3 + \ln\left(\frac{1}{3x} + O\left(\frac{1}{x^2}\right)\right) = -\frac{2}{3}\ln x - \ln 3 + \ln\left(\frac{1}{3x} + O\left(\frac{1}{x^2}\right)\right) = -\frac{2}{3}\ln x - \ln 3 + \ln\left(\frac{1}{3x} + O\left(\frac{1}{x^2}\right)\right) = -\frac{2}{3}\ln x - \ln 3 + \ln\left(\frac{1}{3x} + O\left(\frac{1}{x^2}\right)\right) = -\frac{2}{3}\ln x - \ln 3 + \ln\left(\frac{1}{3x} + O\left(\frac{1}{x^2}\right)\right) = -\frac{2}{3}\ln x - \ln 3 + \ln\left(\frac{1}{3x} + O\left(\frac{1}{x^2}\right)\right) = -\frac{2}{3}\ln x - \ln 3 + \ln\left(\frac{1}{3x} + O\left(\frac{1}{x^2}\right)\right) = -\frac{2}{3}\ln x - \ln 3 + \ln\left(\frac{1}{3x} + O\left(\frac{1}{x^2}\right)\right) = -\frac{2}{3}\ln x - \ln 3 + \ln\left(\frac{1}{3x} + O\left(\frac{1}{x^2}\right)\right) = -\frac{2}{3}\ln x - \ln 3 + \ln\left(\frac{1}{3x} + O\left(\frac{1}{x^2}\right)\right) = -\frac{2}{3}\ln x - \ln 3 + \ln\left(\frac{1}{3x} + O\left(\frac{1}{x^2}\right)\right) = -\frac{2}{3}\ln x - \ln 3 + \ln\left(\frac{1}{3x} + O\left(\frac{1}{x^2}\right)\right) = -\frac{2}{3}\ln x - \ln\left(\frac{1}{3x} + O\left(\frac{1}{x^2}\right)\right) = -\frac{2}{3}\ln x + \ln\left(\frac{1}{x^2} + O\left(\frac{1}{x^2}\right)\right$

 $O\left(\frac{1}{x}\right)$. Par suite, $\sqrt{x}\ln\left(\sqrt[3]{x+1} - \sqrt[3]{x}\right) = -\frac{2}{3}\sqrt{x}\ln x - \ln 3\sqrt{x} + o(1)$. Mais alors $x^2f(x) = \exp\left(-\frac{2}{3}\sqrt{x}\ln x - \ln 3\sqrt{x} + 2\ln x + o(1)\right)$ et donc $\lim_{x\to +\infty} x^2f(x) = 0$. Finalement f(x) est négligeable devant $\frac{1}{x^2}$ en $+\infty$ et f est intégrable sur $[0, +\infty[$.

5. La fonction $f: x \mapsto e^{-\sqrt{x^2-x}}$ est continue sur $[1, +\infty[$.

Quand x tend vers $+\infty$, $x^2 f(x) = \exp\left(-\sqrt{x^2 - x} + 2\ln x\right) = \exp(-x + o(x))$ et donc $x^2 f(x) \underset{x \to +\infty}{\to} 0$. f(x) est ainsi négligeable devant $\frac{1}{x^2}$ au voisinage de $+\infty$ et donc f est intégrable sur $[1,+\infty[$.

- 6. La fonction $f: x \mapsto x^{-\ln x}$ est continue sur $]0, +\infty[$.
 - Quand x tend vers 0, $x^{-\ln x} = e^{-\ln^2 x} \to 0$. La fonction f se prolonge par continuité en 0 et est en particulier intégrable sur un voisinage de 0.
 - Quand x tend vers $+\infty$, $x^2f(x) = \exp\left(-\ln^2 x + 2\ln x\right) \to 0$. Donc f est négligeable devant $\frac{1}{x^2}$ quand x tend vers $+\infty$ et f est intégrable sur un voisinage de $+\infty$.

Finalement, f est intégrable sur $]0, +\infty[$.

- 7. La fonction $f: x \mapsto \frac{\sin(5x) \sin(3x)}{x^{5/3}}$ est continue sur $]0, +\infty[$.
 - Quand x tend vers 0, $f(x) \sim \frac{5x-3x}{x^5/3} = \frac{2}{x^{2/3}} > 0$. Puisque $\frac{2}{3} < 1$, la fonction $x \mapsto \frac{2}{x^{2/3}}$ est positive et intégrable sur un voisinage de 0 et il en est de même de la fonction f.
 - En $+\infty$, $|f(x)| \le \frac{2}{x^{5/3}}$ et puisque $\frac{5}{3} > 1$, la fonction f est intégrable sur un voisinage de $+\infty$. Finalement, f est intégrable sur $]0, +\infty[$.
- 8. La fonction $f: x \mapsto \frac{\ln x}{x^2-1}$ est continue sur $]0,1[\cup]1,+\infty[$.
 - En 0, $f(x) \sim -\ln x = o\left(\frac{1}{\sqrt{x}}\right)$. Donc f est intégrable sur un voisinage de 0 à droite.
 - En 1, $f(x) \sim \frac{\ln x}{2(x-1)} \sim \frac{1}{2}$. La fonction f se prolonge par continuité en 1 et est en particulier intégrable sur un voisinage de 1 à gauche ou à droite.
 - En $+\infty$, $x^{3/2}f(x) \sim \frac{\ln x}{\sqrt{x}} = o(1)$. Donc f(x) est négligeable devant $\frac{1}{x^{3/2}}$ quand x tend vers $+\infty$ et donc intégrable sur un voisinage de +∞.

Finalement, f est intégrable sur $]0,1[\cup]1,+\infty[$.

9. La fonction $f: x \mapsto \frac{e^x}{\sqrt{|x|}}$ est continue sur $]-\infty, 0[\cup]0, +\infty[$ et paire. Il suffit donc d'étudier l'intégrabilité de f sur $]0, +\infty[$.

f est positive et équivalente en 0 à droite à $\frac{1}{\sqrt{x}}$ et négligeable devant $\frac{1}{x^2}$ en $+\infty$ d'après un théorème de croissances comparées.

f est donc intégrable sur $]0,+\infty[$ puis par parité sur $]-\infty,0[\cup]0,+\infty[$. On en déduit que $\int_{-\infty}^{+\infty}\frac{e^x}{\sqrt{|x|}}\,dx$ existe dans $\mathbb R$ et vaut par parité $2\int_0^{+\infty}\frac{e^x}{\sqrt{|x|}}\,dx$.

- 10. La fonction $f: x \mapsto \frac{1}{(1+x^2)\sqrt{1-x^2}}$ est continue et positive sur]-1,1[, paire et équivalente au voisinage de 1 à droite à $\frac{1}{2\sqrt{2}\sqrt{1-x}}$. f est donc intégrable sur]-1,1[.
- 11. La fonction $f: x \mapsto \frac{1}{\sqrt[3]{x^2-x^3}}$ est continue et positive sur]0,1[, équivalente au voisinage de 0 à droite à $\frac{1}{x^{2/3}}$ et au voisinage de 1 à gauche à $\frac{1}{(1-x)^{1/3}}$. f est donc intégrable sur]0,1[.
- 12. La fonction $f: x \mapsto \frac{1}{\arccos(1-x)}$ est continue et positive sur]0,1].

 En 0, $\arccos(1-x) = o(1)$. Donc $\arccos(1-x) \sim \sin(\arccos(1-x)) = \sqrt{1-(1-x)^2} = \sqrt{2x-x^2} \sim \sqrt{2}\sqrt{x}$.

 Donc $f(x) \underset{x \to 0}{\sim} \frac{1}{\sqrt{2}\sqrt{x}}$ et f est intégrable sur]0,1[.

Correction de l'exercice 2 A

1. Pour tout couple de réels (a,b), la fonction $f: x \mapsto \frac{1}{x^a \ln^b x}$ est continue et positive sur $[2,+\infty[$. Etudions l'intégrabilité de f au voisinage de $+\infty$.

1er cas. Si a > 1, $x^{(a+1)/2}f(x) = \frac{1}{x^{(a-1)/2}\ln^b x} \xrightarrow[x \to +\infty]{} 0$ car $\frac{a-1}{2} > 0$ et d'après un théorème de croissances comparées. Donc $f(x) = o\left(\frac{1}{x^{(a+1)/2}}\right)$. Comme $\frac{a+1}{2} > 1$, la fonction $x \mapsto \frac{1}{x^{(a+1)/2}}$ est intégrable sur un voisinage de $+\infty$ et il en est de même de f. Dans ce cas, f est intégrable sur $[2, +\infty[$.

voisinage de $+\infty$ et il en est de même de f. Dans ce cas, f est intégrable sur $[2, +\infty[$. **2ème cas.** Si a < 1, $x^{(a+1)/2}f(x) = \frac{x^{(1-a)/2}}{\ln^b x} \underset{x \to +\infty}{\to} +\infty$ car $\frac{1-a}{2} > 0$ et d'après un théorème de croissances comparées. Donc f(x) est prépondérant devant $\frac{1}{x^{(a+1)/2}}$ en $+\infty$. Comme $\frac{a+1}{2} < 1$, la fonction $x \mapsto \frac{1}{x^{(a+1)/2}}$ n'est pas intégrable sur un voisinage de $+\infty$ et il en est de même de f. Dans ce cas, f n'est pas intégrable sur $[2, +\infty[$.

3ème cas. Si a=1. Pour X>2 fixé, en posant $t=\ln x$ et donc $dt=\frac{dx}{x}$ on obtient

$$\int_2^X \frac{1}{x \ln^b} dx = \int_{\ln 2}^{\ln X} \frac{dt}{t^b}.$$

Puisque $\ln X$ tend vers $+\infty$ quand X tend vers $+\infty$ et que les fonctions considérées sont positives, f est intégrable sur $[2, +\infty[$ si et seulement si b>1.

En résumé,

la fonction
$$x \mapsto \frac{1}{x^a \ln^b x}$$
 est intégrable sur $[2, +\infty[$ si et seulement si $a > 1$ ou $(a = 1 \text{ et } b > 1)$.

(En particulier, la fonction $x \mapsto \frac{1}{x \ln x}$ n'est pas intégrable sur voisinage de $+\infty$ bien que négligeable devant $\frac{1}{x}$ en $+\infty$).

- 2. Pour tout réel a, la fonction $f: x \mapsto (\tan x)^a$ est continue et strictement positive sur $\left]0, \frac{\pi}{2}\right[$. De plus, pour tout réel x de $\left]0, \frac{\pi}{2}\right[$, on a $f\left(\frac{\pi}{2} x\right) = \frac{1}{f(x)}$.
 - Etude en 0 à droite. $f(x) \underset{x\to 0}{\sim} x^a$. Donc f est intégrable sur un voisinage de 0 à droite si et seulement si a > -1.
 - Etude en $\frac{\pi}{2}$ à gauche. $f(x) = \frac{1}{f(\frac{\pi}{2} x)} \sim_{x \to \frac{\pi}{2}} (\frac{\pi}{2} x)^{-a}$. Donc f est intégrable sur un voisinage de $\frac{\pi}{2}$ à gauche si et seulement si a < 1.

En résumé, f est intégrable sur $\left]0, \frac{\pi}{2}\right[$ si et seulement si -1 < a < 1.

3. Pour $x \ge 1$, $1 + \frac{1}{x}$ est défini et strictement positif. Donc pour tout couple (a,b) de réels, la fonction $f: x \mapsto \left(1 + \frac{1}{x}\right)^{1 + \frac{1}{x}} - a - \frac{b}{x}$ est continue sur $[1, +\infty[$. En $+\infty$, $(1 + \frac{1}{x}) \ln \left(1 + \frac{1}{x}\right) = \left(1 + \frac{1}{x}\right) \left(\frac{1}{x} + O\left(\frac{1}{x^2}\right)\right) = \frac{1}{x} + O\left(\frac{1}{x^2}\right)$. Donc

$$f(x) = (1-a) + \frac{1-b}{x} + O\left(\frac{1}{x^2}\right).$$

- Si $a \neq 1$, f a une limite réelle non nulle en $+\infty$ et n'est donc pas intégrable sur $[1, +\infty[$.
- Si a=1 et $b \neq 1$, $f(x) \sim \frac{1-b}{x}$. En particulier, f est de signe constant sur un voisinage de $+\infty$ et n'est pas intégrable sur $[1, +\infty[$.
- Si a = b = 1, $f(x) = O\left(\frac{1}{x^2}\right)$ et dans ce cas, f est intégrable sur $[1, +\infty[$.

En résumé, f est intégrable sur $[1, +\infty[$ si et seulement si a = b = 1.

- 4. Pour tout couple (a,b) de réels, la fonction $f: x \mapsto \frac{1}{x^a(1+x^b)}$ est continue et positive sur $]0,+\infty[$.
 - Etude en 0.

-Si b > 0, $f(x) \sim \frac{1}{x \to 0} \frac{1}{x^a}$, et donc f est intégrable sur un voisinage de 0 si et seulement si a < 1,

-si b=0, $f(x) \underset{x \to 0}{\sim} \frac{1}{2x^a}$, et donc f est intégrable sur un voisinage de 0 si et seulement si a<1,

-si b < 0, $f(x) \sim \frac{1}{x \to 0} \frac{1}{x^{a+b}}$, et donc f est intégrable sur un voisinage de 0 si et seulement si a+b < 1.

-Si b > 0, $f(x) \sim \frac{1}{x \to 0} \frac{1}{x^{a+b}}$, et donc f est intégrable sur un voisinage de $+\infty$ si et seulement si a+b > 1,

-si $b=0, f(x) \underset{x\to 0}{\sim} \frac{1}{2x^a}$, et donc f est intégrable sur un voisinage de $+\infty$ si et seulement si a>1,

-si b < 0, $f(x) \underset{x \to 0}{\sim} \frac{1}{x^a}$, et donc f est intégrable sur un voisinage de $+\infty$ si et seulement si a > 1.

En résumé, f est intégrable sur $]0,+\infty[$ si et seulement si $((b \ge 0 \text{ et } a < 1) \text{ ou } (b < 0 \text{ et } a + b < 1))$ et $((b>0 \text{ et } a+b>1) \text{ ou } (b \le 0 \text{ et } a>1))$ ce qui équivaut à (b>0 et a+b>1 et a<1) ou (b<0 et a>1)a > 1 et a + b < 1).

Représentons graphiquement l'ensemble des solutions. La zone solution est la zone colorée.

Correction de l'exercice 3

1. Soient ε et X deux réels tels que $0 < \varepsilon < X$. Les deux fonction $x \mapsto 1 - \cos x$ et $x \mapsto \frac{1}{x}$ sont de classe C^1 sur le segment $[\varepsilon, X]$. On peut donc effectuer une intégration par parties et on obtient

$$\int_{\varepsilon}^{X} \frac{\sin x}{x} dx = \left[\frac{1 - \cos x}{x} \right]_{1}^{X} + \int_{\varepsilon}^{X} \frac{1 - \cos x}{x^{2}} dx = \frac{1 - \cos X}{X} - \frac{1 - \cos \varepsilon}{\varepsilon} + \int_{\varepsilon}^{X} \frac{1 - \cos x}{x^{2}} dx.$$

- La fonction $x \mapsto \frac{1-\cos x}{x^2}$ est continue sur $]0, +\infty[$, est prolongeable par continuité en 0 car $\lim_{x\to 0} \frac{1-\cos x}{x^2} =$ $\frac{1}{2}$ et donc intégrable sur un voisinage de 0, est dominée par $\frac{1}{x^2}$ en $+\infty$ et donc intégrable sur un voisinage de $+\infty$. La fonction $x \mapsto \frac{1-\cos x}{x^2}$ est donc intégrable sur $]0, +\infty[$ et $\int_{\varepsilon}^{X} \frac{1-\cos x}{x^2} dx$ a une limite réelle quand ε tend vers 0 et *X* tend vers $+\infty$.
- $\bullet \left| \frac{1 \cos X}{X} \right| \leqslant \frac{1}{X} \text{ et donc } \lim_{X \to +\infty} \frac{1 \cos X}{X} = 0.$ $\bullet \frac{1 \cos \varepsilon}{\varepsilon} \sim \underset{\varepsilon \to 0}{\underline{\varepsilon}} \text{ et donc } \lim_{\varepsilon \to \varepsilon} \frac{1 \cos \varepsilon}{\varepsilon} = 0.$

On en déduit que $\int_0^{+\infty} \frac{\sin x}{x} dx$ est une intégrale convergente et de plus

$$\int_0^{+\infty} \frac{\sin x}{x} \, dx = \int_0^{+\infty} \frac{1 - \cos x}{x^2} \, dx = \int_0^{+\infty} \frac{2 \sin^2(x/2)}{x^2} \, dx = \int_0^{+\infty} \frac{2 \sin^2(u)}{4u^2} \, 2du = \int_0^{+\infty} \frac{\sin^2(u)}{u^2} \, du.$$

L'intégrale
$$\int_0^{+\infty} \frac{\sin x}{x} dx$$
 converge et de plus $\int_0^{+\infty} \frac{\sin x}{x} dx = \int_0^{+\infty} \frac{1 - \cos x}{x^2} dx = \int_0^{+\infty} \frac{\sin^2 x}{x^2} dx$.

- 2. La fonction $f: x \mapsto \frac{\sin x}{x^a}$ est continue sur $]0, +\infty[$.
 - Sur]0,1[, la fonction f est de signe constant et l'existence de $\lim_{\varepsilon \to 0} \int_{\varepsilon}^{1} f(x) \, dx$ équivaut à l'intégrabilité de la fonction f sur]0,1]. Puisque f est équivalente en 0 à $\frac{1}{x^{a-1}}$, l'intégrale impropre $\int_{0}^{1} f(x) \, dx$ converge en 0 si et seulement si a > 0. On suppose dorénavant a > 0.
 - Soit X > 1. Les deux fonction $x \mapsto -\cos x$ et $x \mapsto \frac{1}{x^a}$ sont de classe C^1 sur le segment [1,X]. On peut donc effectuer une intégration par parties et on obtient

$$\int_{1}^{X} \frac{\sin x}{x^{a}} dx = \left[\frac{-\cos x}{x^{a}} \right]_{1}^{X} - a \int_{1}^{X} \frac{\cos x}{x^{a+1}} dx = -\frac{\cos X}{X^{a}} + \cos 1 - a \int_{1}^{X} \frac{\cos x}{x^{a+1}} dx.$$

Maintenant, $\left|\frac{\cos x}{x^{a+1}}\right| \leqslant \frac{1}{x^{a+1}}$ et puisque a+1>1, la fonction $x\mapsto \frac{\cos x}{x^{a+1}}$ est intégrable sur un voisinage de $+\infty$. On en déduit que la fonction $X\mapsto \int_1^X \frac{\cos x}{x^{a+1}}\,dx$ a une limite réelle quand X tend vers $+\infty$. Comme d'autre part, la fonction $X\mapsto -\frac{\cos X}{X^a}+\cos 1$ a une limite réelle quand X tend vers $+\infty$, on a montré que l'intégrale impropre $\int_1^{+\infty} f(x)\,dx$ converge en $+\infty$.

Finalement

l'intégrale
$$\int_0^{+\infty} \frac{\sin x}{x^a} dx$$
 converge si et seulement si $a > 0$.

3. Soit *X* un réel strictement positif. Le changement de variables $t = x^2$ suivi d'une intégration par parties fournit :

$$\int_{1}^{X} e^{ix^{2}} dx = \int_{1}^{X^{2}} \frac{e^{it}}{2\sqrt{t}} dt = \frac{i}{2} \left(-\frac{e^{iX}}{\sqrt{X}} + e^{i} - \frac{1}{2} \int_{1}^{X} \frac{e^{it}}{t^{3/2}} dt \right)$$

Maintenant, $\lim_{X\to +\infty} \frac{e^{iX}}{\sqrt{X}} = 0$ car $\left|\frac{e^{iX}}{\sqrt{X}}\right| = \frac{1}{\sqrt{X}}$. D'autre part, la fonction $t\mapsto \frac{e^{it}}{t^{3/2}}$ est intégrable sur $[1,+\infty[$ car $\left|\frac{e^{it}}{t^{3/2}}\right| = \frac{1}{t^{3/2}}$. Ainsi, $\int_1^{+\infty} e^{ix^2} dx$ est une intégrale convergente et puisque d'autre part la fonction $x\mapsto e^{ix^2}$ est continue sur $[0,+\infty[$, on a montré que

l'intégrale
$$\int_0^{+\infty} e^{ix^2} dx$$
 converge.

On en déduit encore que les intégrales $\int_0^{+\infty} \cos(x^2) dx$ et $\int_0^{+\infty} \sin(x^2) dx$ sont des intégrales convergentes (intégrales de FRESNEL).

4. La fonction $f: x \mapsto x^3 \sin(x^8)$ est continue sur $[0, +\infty[$. Soit X > 0. Le changement de variables $t = x^4$ fournit

$$\int_0^X x^3 \sin(x^8) dx = \frac{1}{4} \int_0^{X^4} \sin(t^2) dt = \frac{1}{4} \operatorname{Im} \left(\int_0^{X^4} e^{it^2} dt \right)$$

D'après 3), $\int_0^{+\infty} e^{it^2} dt$ est une intégrale convergente et donc $\int_0^{+\infty} x^3 \sin(x^8) dx$ converge.

5. La fonction $f: x \mapsto \cos(e^x)$ est continue sur $[0, +\infty[$. Soit X > 0. Le changement de variables $t = e^x$ fournit

$$\int_0^X \cos(e^x) dx = \int_1^{e^X} \frac{\cos t}{t} dt.$$

On montre la convergence en $+\infty$ de cette intégrale par une intégration par parties analogue à celle de la question 1). L'intégrale impropre $\int_0^{+\infty} \cos(e^x) dx$ converge .

6. Pour tout réel $x \ge 0$, $1 + x^3 \sin^2 x \ge 1 > 0$ et donc la fonction $f: x \mapsto \frac{1}{1 + x^3 \sin^2 x}$ est continue sur $[0, +\infty[$.

La fonction f étant positive, la convergence de l'intégrale proposée équivaut à l'intégrabilité de la fonction f sur $[0,+\infty[$, intégrabilité elle-même équivalente à la convergence de la série numérique de terme général $u_n = \int_{n\pi}^{(n+1)\pi} \frac{1}{1+x^3\sin^2 x} \, dx$.

Soit $n \in \mathbb{N}^*$. On a $u_n \geqslant 0$ et d'autre part

$$\mathbf{u}_n = \int_{n\pi}^{(n+1)\pi} \frac{1}{1+x^3 \sin^2 x} \, dx = \int_0^{\pi} \frac{1}{1+(u+n\pi)^3 \sin^2 u} \, du$$

$$\leq \int_0^{\pi} \frac{1}{1+n^3\pi^3 \sin^2} du = 2 \int_0^{\pi/2} \frac{1}{1+n^3\pi^3 \sin^2 u} du$$

 $\leq 2 \int_0^{\pi/2} \frac{1}{1+n^3\pi^3(\frac{2u}{\pi})^2} du$ (par concavité de la fonction sinus sur $[0,\pi]$)

$$=2\times \frac{1}{2\sqrt{\pi}n^{3/2}}\int_0^{(n\pi)^{3/2}}\frac{1}{1+v^2}\,dv\leqslant \frac{1}{\sqrt{\pi}n^{3/2}}\int_0^{+\infty}\frac{1}{1+v^2}\,dv=\frac{\sqrt{\pi}}{2n^{3/2}}.$$

Donc, pour $n \in \mathbb{N}^*$, $0 \le u_n \le \frac{\sqrt{\pi}}{2n^{3/2}}$ et la série de terme général u_n converge. On en déduit que la fonction $f: x \mapsto \frac{1}{1+x^3\sin^2 x}$ est intégrable sur $[0, +\infty[$.

Correction de l'exercice 4 A

Existence et calcul de :

1) (** I)
$$I_n = \int_0^{+\infty} \frac{1}{(x^2+1)^n} dx$$

2) (très long)
$$\int_{2}^{+\infty} \frac{1}{(x-1)^{3}(x^{4}+1)} dx$$

3) (** **I**)
$$\int_0^{+\infty} \frac{1}{x^3+1} dx$$

1) (** I)
$$I_n = \int_0^{+\infty} \frac{1}{(x^2+1)^n} dx$$
 2) (très long) $\int_2^{+\infty} \frac{1}{(x-1)^3(x^4+1)} dx$ 3) (** I) $\int_0^{+\infty} \frac{1}{x^3+1} dx$ 4) (***) $\int_0^{+\infty} \frac{1}{(x+1)(x+2)...(x+n)} dx$

5)(*)**
$$\int_0^1 \frac{1}{\sqrt{(1-x)(1+ax)}} dx$$
 6) ()** $\int_0^{+\infty} \frac{1}{(e^x+1)(e^{-x}+1)} dx$

6) (**)
$$\int_0^{+\infty} \frac{1}{(e^x+1)(e^{-x}+1)} dx$$

7) (**)
$$\int_0^{+\infty} \frac{1}{5 \cosh x + 3 \sinh x + 4} dx$$

7) (**)
$$\int_0^{+\infty} \frac{1}{5 \cosh x + 3 \sinh x + 4} dx$$
 8) (***) $\int_0^{+\infty} \left(2 + (t+3) \ln \left(\frac{t+2}{t+4}\right)\right) dt$

9) (** **I**)
$$\int_0^{+\infty} \frac{x \arctan x}{(1+x^2)^2} dx$$

9) (** I)
$$\int_0^{+\infty} \frac{x \arctan x}{(1+x^2)^2} dx$$
 10) (I très long) $\int_0^{+\infty} \frac{x \ln x}{(x^2+1)^a} dx$ (calcul pour $a \in \left\{\frac{3}{2}, 2, 3\right\}$)

11) (***)
$$\int_0^{\pi/2} \sqrt{\tan x} \, dx$$

11) (***)
$$\int_0^{\pi/2} \sqrt{\tan x} \, dx$$
 12) (*** **I**) $\int_0^{+\infty} \frac{e^{-at} - e^{-bt}}{t} \, dt$ (0 < a < b)

Correction de l'exercice 5

La fonction $f: x \mapsto \ln(\sin x)$ est continue sur $\left]0, \frac{\pi}{2}\right]$. De plus, quand x tend vers 0, $\ln(\sin x) \sim \ln x = o\left(\frac{1}{\sqrt{x}}\right)$. Par suite, f est intégrable sur $\left[0, \frac{\pi}{2}\right]$.

1. Soient $I=\int_0^{\pi/2}\ln(\sin x)\ dx$ et $J=\int_0^{\pi/2}\ln(\cos x)\ dx$. Le changement de variables $x=\frac{\pi}{2}-t$ fournit J

$$\begin{split} 2I &= I + J = \int_0^{\pi/2} \ln(\sin x \cos x) \; dx = -\frac{\pi \ln 2}{2} + \int_0^{\pi/2} \ln(\sin(2x)) \; dx = -\frac{\pi \ln 2}{2} + \frac{1}{2} \int_0^{\pi} \ln(\sin u) \; du \\ &= -\frac{\pi \ln 2}{2} + \frac{1}{2} \left(I + \int_{\pi/2}^{\pi} \ln(\sin u) \; du \right) = -\frac{\pi \ln 2}{2} + \frac{1}{2} \left(I + \int_{\pi/2}^{0} \ln(\sin(\pi - t)) \; (-dt) \right) = -\frac{\pi \ln 2}{2} + I. \end{split}$$

Par suite, $I = -\frac{\pi \ln 2}{2}$.

$$\int_0^{\pi/2} \ln(\sin x) \, dx = \int_0^{\pi/2} \ln(\cos x) \, dx = -\frac{\pi \ln 2}{2}.$$

2. Pour $n \geqslant 2$, posons $P_n = \prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{2n}\right)$. Pour $1 \leqslant k \leqslant n-1$, on a $0 < \frac{k\pi}{2n} < \frac{\pi}{2}$ et donc $P_n > 0$. D'autre part, $\sin\left(\frac{(2n-k)\pi}{2n}\right) = \sin\left(\frac{k\pi}{2n}\right)$ et $\sin\frac{n\pi}{2n} = 1$. On en déduit que

$$P_n^2 = \prod_{k=1}^{2n-1} \sin\left(\frac{k\pi}{2n}\right),$$

puis

$$\begin{split} P_n^2 &= \prod_{k=1}^{2n-1} \frac{e^{ik\pi/(2n)} - e^{-ik\pi/(2n)}}{2i} = \frac{1}{(2i)^{2n-1}} \prod_{k=1}^{2n-1} \left(-e^{-ik\pi/(2n)} \right) \prod_{k=1}^{2n-1} \left(1 - e^{2ik\pi/(2n)} \right) \\ &= \frac{1}{(2i)^{2n-1}} (-1)^{2n-1} (e^{-i\pi/2})^{2n-1} \prod_{k=1}^{2n-1} \left(1 - e^{2ik\pi/(2n)} \right) = \frac{1}{2^{2n-1}} \prod_{k=1}^{2n-1} \left(1 - e^{2ik\pi/(2n)} \right) \end{split}$$

Maintenant, le polynôme Q unitaire de degré 2n-1 dont les racines sont les 2n-1 racines 2n-èmes de l'unité distinctes de 1 est

$$\frac{X^{2n}-1}{X-1} = 1 + X + X^2 + \dots + X^{2n-1}$$

et donc $\prod_{k=1}^{2n-1} (1 - e^{2ik\pi/(2n)}) = Q(1) = 2n$. Finalement,

$$\prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{2n}\right) = P_n = \sqrt{\frac{2n}{2^{2n-1}}} = \frac{\sqrt{n}}{2^{n-1}}.$$

Pour $0 \le k \le n$, posons alors $x_k = \frac{k\pi}{2n}$ de sorte que $0 = x_0 < x_1 < ... < x_n = \frac{\pi}{2}$ est une subdivision de $\left|0,\frac{\pi}{2}\right|$ à pas constant égal à $\frac{\pi}{2n}$.

Puisque la fonction $x \mapsto \ln(\sin x)$ est continue et croissante sur $\left[0, \frac{\pi}{2}\right]$, pour $1 \leqslant k \leqslant n-1$, on a $\frac{\pi}{2n} \ln(\sin(x_k)) \leqslant$ $\int_{x_k}^{x_{k+1}} \ln(\sin x) dx$ puis en sommant ces inégalités, on obtient

$$\frac{\pi}{2n}\ln(P_n) \leqslant \int_{\pi/(2n)}^{\pi/2} \ln(\sin x) \ dx$$

De même, pour $0 \le k \le n-1$, $\int_{x_k}^{x_{k+1}} \ln(\sin x) dx \le \frac{\pi}{2n} \ln(\sin(x_{k+1}))$ et en sommant

$$\int_0^{\pi/2} \ln(\sin x) \, dx \leqslant \frac{\pi}{2n} \ln(P_n).$$

Finalement, $\forall n \geqslant 2$, $\frac{\pi}{2n} \ln(P_n) + \int_0^{\pi/(2n)} \ln(\sin x) dx \leqslant I \leqslant \frac{\pi}{2n} \ln(P_n)$. Mais $\ln(P_n) = \ln n - (n-1) \ln 2$ et donc $\frac{\pi}{2n}\ln(P_n)$ tend vers $-\frac{\pi\ln 2}{2}$ quand n tend vers $+\infty$ et comme d'autre part, $\int_0^{\pi/(2n)}\ln(\sin x)\ dx$ tend vers 0 quand n tend vers $+\infty$ (puisque la fonction $x : \mapsto \ln(\sin x)$ est intégrable sur $\left[0, \frac{\pi}{2}\right]$), on a redémontré que $I = -\frac{\pi \ln 2}{2}$.

Correction de l'exercice 6 ▲

La fonction $f: t \mapsto \frac{\ln t}{t-1}$ est continue et positive sur]0,1[, négligeable devant $\frac{1}{\sqrt{t}}$ quand t tend vers 0 et prolongeable par continuité en 1. La fonction f est donc intégrable sur]0;1[.

1ère solution. (à la main, sans utilisation d'un théorème d'intégration terme à terme) Pour $t \in]0,1[$ et $n \in \mathbb{N}$,

$$\frac{\ln t}{t-1} = \frac{-\ln t}{1-t} = -\sum_{k=0}^{n} t^k \ln t + \frac{t^{n+1} \ln t}{t-1}$$

Pour $t \in]0,1]$ et $n \in \mathbb{N}$, posons $f_n(t) = -t^n \ln t$.

Soit $n \in \mathbb{N}$. Chaque fonction f_k , $0 \le k \le n$, est continue sur]0,1] et négligeable en 0 devant $\frac{1}{\sqrt{t}}$. Donc chaque fonction f_k est intégrable sur]0,1] et donc sur]0,1[. Mais alors, il en est de même de la fonction $t\mapsto \frac{t^{n+1}\ln t}{1-t}=$ $\frac{\ln t}{t-1} + \sum_{k=0}^{n} t^k \ln t$ et

$$\int_0^1 \frac{\ln t}{t-1} dt = -\sum_{k=0}^n \int_0^1 t^k \ln t dt + \int_0^1 \frac{t^{n+1} \ln t}{t-1} dt$$

• La fonction $g: t \mapsto \frac{t \ln t}{t-1}$ est continue sur]0,1[et prolongeable par continuité en 0 et en 1. Cette fonction est en particulier bornée sur]0,1[. Soit M un majorant de la fonction |g| sur]0,1[. Pour $n \in \mathbb{N}$,

$$\left| \int_0^1 \frac{t^{n+1} \ln t}{t-1} \, dt \right| \leqslant \int_0^1 t^n |g(t)| \, dt \leqslant M \int_0^1 t^n \, dt = \frac{M}{n+1}.$$

Par suite, $\lim_{n\to+\infty}\int_0^1 \frac{t^{n+1}\ln t}{t-1}\,dt=0$. On en déduit que la série de terme général $-\int_0^1 t^k \ln t\,dt$ converge et que

$$\int_0^1 \frac{\ln t}{t-1} dt = \sum_{k=0}^{+\infty} \int_0^1 (-t^k \ln t) dt.$$

• Soit $\varepsilon \in]0,1[$. Pour $k \in \mathbb{N}$, une intégration par parties fournit

$$\int_{\varepsilon}^{1} (-t^k \ln t) dt = \left[-\frac{t^{k+1} \ln t}{k+1} \right]_{\varepsilon}^{1} + \frac{1}{k+1} \int_{\varepsilon}^{1} t^k dt = \frac{\varepsilon^{k+1} \ln \varepsilon}{k+1} + \frac{1-\varepsilon^{k+1}}{(k+1)^2}.$$

Quand ε tend vers 0, on obtient $\int_{\varepsilon}^{1} (-t^{k} \ln t) dt = \frac{1}{(k+1)^{2}}$. Finalement,

$$\int_0^1 \frac{\ln t}{t-1} dt = \sum_{k=0}^{+\infty} \frac{1}{(k+1)^2} = \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

$$\int_0^1 \frac{\ln t}{t-1} dt = \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

2ème solution. (utilisation d'un théorème d'intégration terme à terme) Chaque fonction f_n est continue et intégrable sur]0,1[et la série de fonctions de terme général f_n converge simplement vers la fonction f sur]0,1[et de plus, la fonction f est continue sur]0,1[. Enfin

$$\sum_{n=0}^{+\infty} \int_0^1 |f_n(t)| dt = \sum_{n=0}^{+\infty} \frac{1}{(n+1)^2} < +\infty$$

D'après un théorème d'intégration terme à terme, $\int_0^1 f(t) \ dt = \sum_{n=0}^{+\infty} \int_0^1 f_n(t) \ dt = \frac{\pi^2}{6}$.

Correction de l'exercice 7

La fonction $f: t \mapsto \frac{t-1}{\ln t}$ est continue sur]0,1[, prolongeable par continuité en 0 et 1 et donc est intégrable sur]0,1[.

Soit $x \in]0,1[$. Chacune des deux fonctions $t \mapsto \frac{t}{\ln t}$ et $t \mapsto \frac{1}{\ln t}$ se prolonge par continuité en 0 et est ainsi intégrable sur]0,x[. On peut donc écrire

$$\int_0^x \frac{t-1}{\ln t} dt = \int_0^x \frac{t}{\ln t} dt - \int_0^x \frac{1}{\ln t} dt.$$

Dans la première intégrale, on pose $u=t^2$ et on obtient $\int_0^x \frac{t}{\ln t} dt = \int_0^x \frac{2t}{\ln(t^2)} dt = \int_0^{x^2} \frac{1}{\ln u} du$ et donc

$$\int_0^x \frac{t-1}{\ln t} dt = \int_0^{x^2} \frac{1}{\ln t} dt - \int_0^x \frac{1}{\ln t} dt = \int_x^{x^2} \frac{1}{\ln t} dt.$$

On note alors que, puisque $x \in]0,1[$, $x^2 < x$. Pour $t \in [x^2,x]$, on a $t \ln t < 0$ et donc $\frac{x}{t \ln t} \leqslant \frac{t}{t \ln t} = \frac{1}{\ln t} \leqslant \frac{x^2}{\ln t} t$ puis par croissance de l'intégrale, $\int_{x^2}^{x} \frac{x}{t \ln t} dt \leqslant \int_{x^2}^{x} \frac{1}{\ln t} dt \leqslant \int_{x^2}^{x} \frac{x^2}{t \ln t} dt$ et donc

$$x^{2} \int_{x}^{x^{2}} \frac{1}{t \ln t} dt \leqslant \int_{x}^{x^{2}} \frac{1}{\ln t} dt x \leqslant x \int_{x}^{x^{2}} \frac{1}{t \ln t} dt$$

Maintenant, $\int_{x}^{x^2} \frac{1}{t \ln t} dt = \ln |\ln(x^2)| - \ln |\ln x| = \ln 2$ et on a montré que, pour tout réel x de]0,1[,

$$x^2 \ln 2 \leqslant \int_0^x \frac{t-1}{\ln t} \, dt \leqslant x \ln 2$$

Quand x tend vers 1, on obtient

$$\int_0^1 \frac{t-1}{\ln t} \, dt = \ln 2.$$

Correction de l'exercice 8

1. La fonction $t \mapsto e^{-t^2}$ est continue, positive et intégrable sur $[0, +\infty[$. De plus, quand t tend $+\infty$,

$$e^{-t^2} \sim \left(1 + \frac{1}{t^2}\right) = \frac{d}{dt} \left(-\frac{1}{2t}e^{-t^2}\right).$$

D'après un théorème de sommation des relations de comparaison, quand x tend vers $+\infty$,

$$\int_{x}^{+\infty} e^{-t^{2}} dt \sim \int_{x}^{+\infty} \left(-\frac{1}{2t} e^{-t^{2}} \right)' dt = \frac{1}{2x} e^{-x^{2}},$$

et donc

$$e^{x^2 \int_X^{+\infty}} e^{-t^2} dt \underset{x \to +\infty}{\sim} \frac{1}{2x}.$$

2. Pour a > 0 fixé, $\int_a^{+\infty} \frac{\cos x}{x} dx$ converge (se montre en intégrant par parties (voir exercice 3)) puis

$$\int_{a}^{+\infty} \frac{\cos x}{x} dx = -\int_{1}^{a} \frac{\cos x}{x} dx + \int_{1}^{+\infty} \frac{\cos x}{x} dx = -\int_{1}^{a} \frac{\cos x}{x} dx + O(1)$$

$$= -\int_{1}^{a} \frac{1}{x} dx + \int_{1}^{a} \frac{1 - \cos x}{x} dx + O(1) = -\ln a + \int_{1}^{a} \frac{1 - \cos x}{x} dx + O(1).$$

Maintenant, $\frac{1-\cos x}{x} \sim \frac{x}{x \to 0}$ et en particulier, $\frac{1-\cos x}{x}$ tend vers 0 quand x tend vers 0. Par suite, la fonction $x \mapsto \frac{1-\cos x}{x}$ est continue sur]0,1] et se prolonge par continuité en 0. Cette fonction est donc intégrable sur]0,1] et en particulier, $\int_1^a \frac{1-\cos x}{x} dx$ a une limite réelle quand a tend vers 0. On en déduit que $\int_{a}^{+\infty} \frac{\cos x}{x} dx = -\ln a + O(1) \text{ et finalement}$

$$\int_{a}^{+\infty} \frac{\cos x}{x} \, dx \underset{a \to 0}{\sim} -\ln a.$$

3. Soit a > 0.

$$\left| \int_0^1 \frac{1}{x^3 + a^2} \, dx - \frac{1}{a^2} \right| = \left| \int_0^1 \left(\frac{1}{x^3 + a^2} - \frac{1}{a^2} \right) \, dx \right| = \int_0^1 \frac{x^3}{(x^3 + a^2)a^2} \, dx \leqslant \frac{1}{a^4}$$

Donc, $\int_0^1 \frac{1}{x^3 + a^2} dx = \frac{1}{a^2} + o\left(\frac{1}{a^2}\right)$ ou encore

$$\int_0^1 \frac{1}{x^3 + a^2} \, dx \sim_{a \to +\infty} \frac{1}{a^2}.$$

Correction de l'exercice 9 ▲

• Domaine de définition. Soit $x \in \mathbb{R}$.

Si x < 0, la fonction $t \mapsto \frac{1}{\ln t}$ n'est pas définie sur $[x,0] \subset [x,x^2]$ et f(x) n'est pas défini. Si 0 < x < 1, $[x^2,x] \subset]0,1[$. Donc la fonction $t \mapsto \frac{1}{\ln t}$ est continue sur $[x^2,x]$. Dans ce cas, f(x) existe et est de plus strictement positif car $\ln t < 0$ pour tout t de]0,1[.

Si x > 1, $[x, x^2] \subset]1, +\infty[$. Donc la fonction $t \mapsto \frac{1}{\ln t}$ est continue sur $[x, x^2]$. Dans ce cas aussi, f(x) existe et est strictement positif.

Enfin, f(0) et f(1) n'ont pas de sens.

$$f$$
 est définie sur $D =]0,1[\cup]1,+\infty[$ et strictement positive sur $D.$

• **Dérivabilité.** Soit I l'un des deux intervalles]0,1[ou $]1,+\infty[$. La fonction $t\mapsto \frac{1}{\ln t}$ est continue sur I. Soit F une primitive de cette fonction sur I.

Si $x \in]0,1[$, on a $[x^2,x] \subset]0,1[$ et donc $f(x) = F(x^2) - F(x)$. De même, si $x \in]1,+\infty[$.

On en déduit que f est de classe C^1 sur D. De plus, pour $x \in D$,

$$f'(x) = 2xF'(x^2) - F'(x) = \frac{2x}{\ln(x^2)} - \frac{1}{\ln x} = \frac{x-1}{\ln x}.$$

- Variations. f' est strictement positive sur $]0,1[\cup]1,+\infty[$ et donc f est strictement croissante sur]0,1[et sur $]1,+\infty[$ (mais pas nécessairement sur D).
- Etude en 0. Soit $x \in]0,1[$. On a $0 < x^2 < x < 1$ et de plus la fonction $t \mapsto \frac{1}{\ln t}$ est décroissante sur $[x^2,x] \subset$]0,1[en tant qu'inverse d'une fonction strictement négative et strictement croissante sur]0,1[. Donc, $\frac{x-x^2}{\ln x} \le$ $\int_{x^2}^{x} \frac{1}{\ln t} dt \leqslant \frac{x - x^2}{\ln(x^2)} \text{ puis}$

$$\forall x \in]0,1[,\frac{x^2-x}{2\ln x} \le f(x) \le \frac{x^2-x}{\ln x}.$$

On en déduit que $\lim_{x\to 0^+} f(x) = 0$ et on peut prolonger f par continuité en 0 en posant f(0) = 0 (on note encore f le prolongement).

Quand x tend vers 0 par valeurs supérieures, $f'(x) = \frac{x-1}{\ln x}$ tend vers 0. Ainsi,

- f est continue sur [0, 1],
- f est de classe C^1 sur]0,1[,
- f' a une limite réelle quand x tend vers 0 à savoir 0.

D'après un théorème classique d'analyse, f est de classe C^1 sur [0,1] et f'(0)=0.

• **Etude en 1.** On a vu à l'exercice 7 que $\lim_{x\to 1} f(x) = \ln 2$ (la limite à droite en 1 se traite de manière analogue). On prolonge f par continuité en 1 en posant $f(1) = \ln 2$ (on note encore f le prolongement obtenu).

Ensuite quand x tend vers 1, f'(x) tend vers 1. Donc f est de classe C^1 sur \mathbb{R}^+ et f'(1) = 1.

En particulier, f est continue sur \mathbb{R}^+ et d'après plus haut f est strictement croissante sur \mathbb{R}^+ .

- Etude en $+\infty$. Pour x > 1, $f(x) \ge x^2 x \ln x$. Donc f(x) et $\frac{f(x)}{x}$ tendent vers $+\infty$ quand x tend vers $+\infty$. La courbe représentative de f admet en $+\infty$ une branche parabolique de direction (Oy).
- Convexité. Pour $x \in D$, $f''(x) = \frac{\ln x \frac{x-1}{x}}{\ln^2 x}$.

En 1, en posant x = 1 + h où h tend vers 0, on obtient

$$f''(1+h) = \frac{(1+h)\ln(1+h)-h}{(1+h)\ln^2(1+h)} = \frac{(1+h)\left(h-\frac{h^2}{2}+o(h^2)\right)-h}{h^2+o(h^2)} = \frac{1}{2}+o(1).$$

f est donc de classe C^2 sur $]0,+\infty[$ et $f''(1)=\frac{1}{2}$. Pour $x\neq 1,$ f''(x) est du signe de $g(x)=\ln x-1+\frac{1}{x}$ dont la dérivée est $g'(x)=\frac{1}{x}-\frac{1}{x^2}=\frac{x-1}{x^2}$. La fonction g est stictement décroissante sur]0,1] et strictement croissante sur $[1,+\infty[$. Donc pour $x\neq 1,$ g(x)>g(1)=0. On en déduit que pour tout $x \in]0, +\infty[$, f''(x) > 0 et donc que f est strictement convexe sur \mathbb{R}^+ .

• Graphe.

Correction de l'exercice 10 ▲

La fonction $f: x \mapsto \frac{(-1)^{E(x)}}{x}$ est continue par morceaux sur $[1, +\infty[$ et donc localement intégrable sur $[1, +\infty[$. Soient X un réel élément de $[2, +\infty[$ et n=E(X).

$$\int_{1}^{X} \frac{(-1)^{E(x)}}{x} dx = \sum_{k=1}^{n-1} \int_{k}^{k+1} \frac{(-1)^{E(x)}}{x} dx + \int_{n}^{X} \frac{(-1)^{E(x)}}{x} dx = \sum_{k=1}^{n-1} (-1)^{k} \ln\left(1 + \frac{1}{k}\right) + \int_{n}^{X} \frac{(-1)^{E(x)}}{x} dx.$$

Or, $\left| \int_n^X \frac{(-1)^{E(x)}}{x} \, dx \right| \leqslant \frac{X-n}{n} \leqslant \frac{1}{E(X)}$. Cette dernière expression tend vers 0 quand le réel X tend vers $+\infty$ et donc

 $\lim_{X\to +\infty} \int_n^X \frac{(-1)^{E(x)}}{x} \, dx = 0.$ D'autre part, la suite $\left((-1)^k \ln\left(1+\frac{1}{k}\right)\right)_{k\geqslant 1}$ est de signe alternée et sa valeur absolue tend vers 0 en décroissant. La série de terme général $(-1)^k \ln (1 + \frac{1}{k})$, $k \ge 1$, converge en vertu du critère spécial aux séries alternées ou encore, quand le réel X tend vers $+\infty$, $\sum_{k=1}^{n-1} (-1)^k \ln \left(1 + \frac{1}{k}\right)$ a une limite réelle. Il en est de même de $\int_1^X \frac{(-1)^{E(x)}}{x} dx$ et l'intégrale $\int_1^{+\infty} \frac{(-1)^{E(x)}}{x} dx$ converge. De plus

$$\int_{1}^{+\infty} \frac{(-1)^{E(x)}}{x} dx = \sum_{n=1}^{+\infty} (-1)^{n} \ln \left(1 + \frac{1}{n}\right).$$

Calcul. Puisque la série converge, on a $\sum_{k=1}^{+\infty} (-1)^k \ln\left(1+\frac{1}{k}\right) = \lim_{n\to+\infty} \sum_{k=1}^{2n} (-1)^k \ln\left(1+\frac{1}{k}\right)$. Pour $n\in\mathbb{N}^*$,

$$\begin{split} \sum_{k=1}^{2n} (-1)^k \ln \left(1 + \frac{1}{k} \right) &= \sum_{k=1}^n \left(-\ln \left(1 + \frac{1}{2k-1} \right) + \ln \left(1 + \frac{1}{2k} \right) \right) = \sum_{k=1}^n \ln \left(\frac{(2k-1)(2k+1)}{(2k)^2} \right) \\ &= \ln \left(\frac{(1 \times 3 \times \ldots \times (2n-1))^2 \times (2n+1)}{(2 \times 4 \times \ldots \times (2n))^2} \right) = \ln \left(\frac{1}{2^{4n}} \times \left(\frac{(2n)!}{(n!)^2} \right)^2 \times (2n+1) \right). \end{split}$$

D'après la formule de STIRLING,

$$\frac{1}{2^{4n}} \times \left(\frac{(2n)!}{(n!)^2}\right)^2 \times (2n+1) \underset{n \to +\infty}{\sim} \frac{1}{2^{4n}} \times \frac{\left(\frac{2n}{e}\right)^{4n}(\sqrt{4\pi n})^2}{\left(\frac{n}{e}\right)^{4n}(\sqrt{2\pi n})^4} \times (2n) = \frac{2}{\pi}.$$

Donc $\sum_{n=1}^{+\infty} (-1)^n \ln \left(1 + \frac{1}{n}\right) = \ln \left(\frac{2}{\pi}\right)$ et on a montré que

$$\int_{1}^{+\infty} \frac{(-1)^{E(x)}}{x} dx = \sum_{n=1}^{+\infty} (-1)^{n} \ln\left(1 + \frac{1}{n}\right) = \ln\left(\frac{2}{\pi}\right).$$

Correction de l'exercice 11

1. Puisque f est continue, positive et décroissante sur $[1, +\infty[$, pour $x \ge 2$ on a

$$0 \leqslant xf(x) = 2\left(x - \frac{x}{2}\right)f(x) \leqslant 2\int_{x/2}^{x} f(t) dt = 2\left(\frac{1}{2} \int_{x}^{x} f(t) dt - \int_{x}^{+\infty} f(t) dt\right)$$

Cette dernière expression tend vers 0 quand x tend vers $+\infty$ car f est intégrable sur $[1, +\infty[$. Donc si f est continue, positive, décroissante et intégrable sur $[1, +\infty[$ alors f(x) = 0 $(\frac{1}{x})$.

2. La fonction $x \mapsto x(f(x) - f(x+1))$ est continue et positive sur $[1, +\infty[$. Soit $X \geqslant 1$.

$$\int_{1}^{X} x(f(x) - f(x+1)) dx = \int_{1}^{X} xf(x) dx - \int_{2}^{X+1} (x-1)f(x) dx = \int_{1}^{X} xf(x) dx - \int_{2}^{X+1} xf(x) dx + \int_{2}^{X+1} f(x) dx$$

$$= \int_{1}^{2} xf(x) dx - \int_{X}^{X+1} xf(x) dx + \int_{2}^{X+1} f(x) dx.$$

Maintenant $0 \le \int_X^{X+1} x f(x) dx \le (X+1-X)(X+1)f(X) \le 2Xf(X)$. D'après 1), cette dernière expression tend vers 0 quand X tend vers $+\infty$. Donc, quand X tend vers $+\infty$, $\int_1^X x(f(x)-f(x+1)) dx$ tend vers $\int_1^2 x f(x) dx + \int_2^{+\infty} f(x) dx$.

Puisque la fonction $x \mapsto x(f(x) - f(x+1))$ est continue et positive sur $[1, +\infty[$, on sait que $x \mapsto x(f(x) - f(x+1))$ est intégrable sur $[1, +\infty[$ si et seulement si la fonction $X \mapsto \int_1^X x(f(x) - f(x+1)) \ dx$ a une limite réelle quand X tend vers $+\infty$. Donc la fonction $x \mapsto x(f(x) - f(x+1))$ est intégrable sur $[1, +\infty[$ et

$$\int_{1}^{+\infty} x(f(x) - f(x+1)) dx = \int_{1}^{2} xf(x) dx + \int_{2}^{+\infty} f(x) dx.$$

Correction de l'exercice 12 ▲

- 1. Puisque f est de classe C^1 sur \mathbb{R}^+ , pour $x\geqslant 0$, $\int_0^x f'(t)\,dt=f(x)-f(0)$. Donc l'intégrale $\int_0^{+\infty} f'(t)\,dt$ converge en $+\infty$ si et seulement si f a une limite réelle ℓ quand x tend vers $+\infty$. Si de plus l'intégrale $\int_0^{+\infty} f(t)\,dt$ converge, il est exclus d'avoir $\ell\neq 0$ et réciproquement si $\ell=0$ alors $\int_0^x f'(t)\,dt$ tend vers -f(0) quand x tend vers $+\infty$. Donc l'intégrale $\int_0^{+\infty} f'(t)\,dt$ converge si et seulement si $\lim_{x\to +\infty} f(x)=0$.
- 2. (a) Soit $x \ge 0$. D'après la formule de TAYLOR-LAGRANGE, il existe un réel $\theta_x \in]x, x+1[$

$$f(x+1) = f(x) + (x+1-x)f'(x) + \frac{1}{2}f''(\theta_x).$$

ce qui s'écrit encore $f'(x) = f(x+1) - f(x) - \frac{1}{2}f''(\theta_x)$. Quand x tend vers $+\infty$, f(x+1) - f(x) tend vers 0 et d'autre part, θ_x tend vers $+\infty$. Ainsi, si f et f'' ont une limite réelle quand x tend vers $+\infty$, f' a également une limite réelle et de plus $\lim_{x\to +\infty} f'(x) = -\frac{1}{2}\lim_{x\to +\infty} f''(x)$.

Ensuite, puisque pour $x \ge 0$, $\int_0^x f'(t) dt = f(x) - f(0)$ et $\int_0^x f''(t) dt = f'(x) - f'(0)$, les intégrales $\int_0^{+\infty} f'(t) dt$ et $\int_0^{+\infty} f''(t) dt$ convergent et d'après 1), $\lim_{x \to +\infty} f'(x) = 0$ (= $\lim_{x \to +\infty} f''(x)$).

(b) Soit $F: x \mapsto \int_0^x f(t) \, dt$. F est de classe C^3 sur \mathbb{R}^+ . De plus, $F(x) = \int_0^x f(t) \, dt$ tend vers $\int_0^{+\infty} f(t) \, dt$ et $F''(x) = f'(x) = f'(0) + \int_0^x f''(t) \, dt$ tend vers $f'(0) + \int_0^{+\infty} f''(t) \, dt$. Donc F et F'' ont des limites réelles en $+\infty$. D'après a), f = F' tend vers 0 quand x tend vers $+\infty$.

Correction de l'exercice 13 ▲

L'inégalité $|ff''| \le \frac{1}{2}(f^2 + f''^2)$ montre que la fonction ff'' est intégrable sur \mathbb{R} puis, pour X et Y tels que $X \le Y$, une intégration par parties fournit

$$\int_{X}^{Y} f'^{2}(x) dx = [f(x)f'(x)]_{X}^{Y} - \int_{X}^{Y} f(x)f''(x) dx.$$

Puisque la fonction f'^2 est positive, l'intégrabilité de f'^2 sur $\mathbb R$ équivaut à l'existence d'une limite réelle quand X tend vers $+\infty$ et Y tend vers $-\infty$ de $\int_X^Y f'^2(x) \, dx$ et puisque la fonction ff'' est intégrable sur $\mathbb R$, l'existence de cette limite équivaut, d'après l'égalité précédente, à l'existence d'une limite réelle en $+\infty$ et $-\infty$ pour la fonction ff'.

Si f'^2 n'est pas intégrable sur \mathbb{R}^+ alors $\int_0^{+\infty} f'^2(x) dx = +\infty$ et donc $\lim_{x \to +\infty} f(x) f'(x) = +\infty$. En particulier, pour x suffisament grand, $f(x)f'(x) \ge 1$ puis par intégration $\frac{1}{2}(f^2(x) - f^2(0)) \ge x$ contredisant l'intégrabilité de la fonction f^2 sur \mathbb{R} . Donc la fonction f'^2 est intégrable sur \mathbb{R}^+ et la fonction ff' a une limite réelle quand x tend vers $+\infty$.

De même la fonction f'^2 est intégrable sur \mathbb{R}^- et la fonction ff' a une limite réelle quand x tend vers $-\infty$. Si cette limite est un réel non nul ℓ , supposons par exemple $\ell > 0$. Pour x suffisament grand, on a $f(x)f'(x) \geqslant \ell$ puis par intégration $\frac{1}{2}(f^2(x) - f^2(0)) \geqslant \ell x$ contredisant de nouveau l'intégrabilité de la fonction f^2 . Donc la fonction ff' tend vers 0 en $+\infty$ et de même en $-\infty$.

Finalement, la fonction f'^2 est intégrable sur \mathbb{R} et $\int_{-\infty}^{+\infty} f'^2(x) dx = -\int_{-\infty}^{+\infty} f(x) f''(x) dx$. D'après l'inégalité de CAUCHY-SCHWARZ, on a

$$\left(\int_{-\infty}^{+\infty} f'^2(x) \, dx\right)^2 = \left(-\int_{-\infty}^{+\infty} f(x) f''(x) \, dx\right)^2 \leqslant \left(\int_{-\infty}^{+\infty} f^2(x) \, dx\right)^2 \left(\int_{-\infty}^{+\infty} f''^2(x) \, dx\right)^2.$$

Puisque les fonctions f et f'' sont continues sur \mathbb{R} , on a l'égalité si et seulement si la famille (f, f'') est liée.

Donc nécessairement, ou bien f est du type $x \mapsto A\operatorname{ch}(\omega x) + B\operatorname{sh}(\omega x)$, ω réel non nul, qui est intégrable sur $\mathbb R$ si et seulement si A = B = 0, ou bien f est affine et nulle encore une fois, ou bien f est du type $x \mapsto A\cos(\omega x) + B\sin(\omega x)$ et nulle encore une fois.

Donc, on a l'égalité si et seulement si f est nulle.