# Neural SDE: phase trajectories of SDE in the action

#### A Preprint

Papay Ivan papai.id@phystech.edu

Vladimirov Eduard vladimirov.ea@phystech.edu

Strijov Vadim strijov@phystech.edu

2024 год

Данная статья предлагает развить математический аппарат, на котором строится модель Neural SDE. В ней рассмотрено, как вычисление фазовых траекторий стохастических дифференциальных уравнений обеспечивает качественный прогноз аномалий во временном ряду. Таким образом, это предоставит как возможность эффективнее бороться с шумами, так и, в частности, полезный инструмент для упреждения появления так называемых 'черных лебедей' - резких перемен поведения временных рядов, как случайных процессов. Подобного рода аномалии способны нарушить корректную работу Neural SDE в виду высокой корреляции элементов анализируемой выборки между собой.

Keywords SDE  $\cdot$  Stratonovich integral  $\cdot$  Breakdown Points  $\cdot$  More

#### 1 Введение

Сбор данных и подготовка их к последующей обработке являются одной из важнейших задач машинного обучения. Не всегда исследователь может гарантировать их целостность и корректность, ведь для тренировки модели чаще всего требуются выборки из тысяч, а то и десятков тысяч элементов — не удивительно, что в данных допускается наличие шума, влияющего на работу обученной модели. Эта задача остаётся актуальной и для временных рядов. Нужно, имея данные для начала временного ряда, проверить: возможно ли предсказать его на некотором горизонте так, что это предсказание будет точным, и не сломает ли это природу текущего временного ряда в вероятностном смысле?

В данной работе предполагается, что природа данных стохастическая. Входная выборка представляет из себя данные о некоем дискретном случайном процессе. От дискретного процесса корректно будет перейти к непрерывному в силу того факта, что он порождается сигма-алгеброй из конечномерных распределений, которые реально апроксимировать с помощью данных, предоставленных для обучения модели.

Под данными имеются в виду значения n-мерного случайного процесса в фиксированном конечном множестве точек, которые необходимо будет сжать посредством ССА + ССМ (Convergent-Cross Mapping)[6]. В таком случае в качестве варианта апроксимации полученного одномерного временного ряда предлагается взять метод приближения обыкновенными дифференциальными уравнениями, от которых затем уже перейти к стохастическим.

Сама идея использования обыкновенных дифференциальных уравнений ('ОДУ') не нова[1]. Так, примерно с 2017-го года она была использована[2] для создания и теоретического обоснования корректности работы модели Neural ODE. Тем не менее, такой метод был всё ещё слаб в робастном смысле[2]: был уязвим к состязательным атакам. Модель Neural SDE[2-4] уже строилась на использовании стохастических дифференциальных уравнений ('СДУ') и была в этом плане эффективнее своего предшественника.

Главной целью данного исследования является построение decision-rejection (принятие-отрицание) критерия корректности той или иной гипотезы о вероятностном распределении входных данных, как некоторого непрерывного случайного процесса. Для проверки фрагмента временного ряда на наличие аномалий достаточно применить этот критерий для проверки гипотезы о тождественности распределений его и всего остального ряда — разумно будет заключить, что в ряду происходят аномалии, если природа данных в стохастическом смысле резко поменялась.

Таким образом, полагая, что временной ряд порождается определенными конечномерными распределениями, мы сможем приблизить его с помощью стохастических дифференциальных уравнений. То же применимо и к анализируемому диапазону, который требуется проверить на наличие аномалий. Если фазовые траектории полученных дифференциальных уравнений различаются, то есть происходит резкое их возмущение, то очевидно, что в ряду произошла аномалия. Такого рода аномалии отсюда и далее мы будем называть точками разладки.

В прошлых работах, связанных с Neural SDE[2-4], СДУ использовались только для построения доверительных интервалов для элементов временного ряда. Этот подход в статье предлагается развить посредством использования фазовых траекторий полученных СДУ. Таким образом, можно будет проверять большие массивы данных на корреляцию между собой. В работе рассматривается задача — найти точки разладки для фиксированного временного ряда. То есть для каждой из точек временного ряда проверяется decision-rejection критерий о согласованности поведения ряда в этой конкретной точке и всего остального ряда.

Ниже детально разобрано, как по СДУ, построенным по временным рядам, получить фазовые траектории путём зануления диффузии СДУ и его семплирования, как случайной величины. В качестве decision-rejection критерия используется сравнение полученных траекторий в плане их главных компонент

# 2 Связанные работы

#### 2.1 Точки разладки

Следует тщательно разобраться в том, что означает такое понятие, как чёрный лебедь, заявленное в аннотации статьи. Пускай имеется некоторый временной ряд. Стохастическая природа его известна, но в определенный момент она меняется. Этот момент называется моментом разладки.



Рис. 1: примеры разладок

Точка разладки является моментом локальной разладки, если при игнорировании её природа всего временного ряда в стохастическом плане останется однородной.

Глобальной же, если по достижению оной всё поведение временного ряда резко меняется.

#### 2.2 Neural ODE

Изначально Neural ODE был разработан как альтернатива методу остаточных нейронных сетей, состоящих из последовательности скрытых слоёв, значения на каждом из которых подчинялись следующей формуле:

$$h_{k+1} = h_k + f(h_k, w_k) (1)$$

— где  $h_k$  - вход k-го слоя для  $k \in [1, K]$ , K-число слоёв и  $f(h_k, w_k)$  - нелинейная функция, параметризованная по  $w_k$  - динамический параметр, задающийся непосредственно перед началом обучения модели.

Было предложено[5] представление (1) в виде:

$$h_t = h_s + \int_s^t f(h_l, l; w) dl, \tag{2}$$

— вычисление такого дифференциального уравнения является задачей для Neural ODE. В данной работе в качестве числа слоев берется число элементов во временном ряду.

#### Algorithm 1 Neural ODE-solver

Require: динамические параметры w, начальное/конечное время  $t_0, t_1$ , конечное значение  $z(t_1)$ , градиент функции потерь в конечной точке  $\frac{\delta L}{\delta z(t_1)}$ 

$$s_0 = [z(t_1), \frac{\delta L}{\delta z(t_1)}, 0_{[w]}]$$
 > Начальное состояние 
$$[z(t_0), \frac{\delta L}{\delta z(t_1)}, \frac{\delta L}{w}] = ODESolve(s_0, [f(z(t), t, w), -a(t)^T \frac{\delta f}{\delta z}, -a(t)^T \frac{\delta f}{\delta w}], t_1, t_0, w)$$
 
$$return \frac{\delta L}{\delta z(t_0)}, \frac{\delta L}{w}$$
 > Возвращаем градиенты

Здесь ODESolve - это черный ящик, возвращающий решение ODE — в качестве него предлагается использовать метод Рунге-Кутта, а L — MSE (mean squared error — среднее квадратов отклонения элементов выборки от их оценок).

#### 2.3 Neural SDE

Для учёта шума в наше дифференциальное уравнение следует добавить недетерменированную компоненту, диффузию. Получится следующее выражение, являющееся интегралом Стратоновича:

$$dX_t^w = h(t, X_t^w; w)dt + \sigma(X_t^w; w)dB_t$$
(3)

— где  $B_t = [B_t^1...B_t^K]$  - Винеровский процесс той же размерности, что и  $X_t$ , а  $\sigma(X_t^w;w)$  - его матрица ковариаций в t-й момент времени

Обобщим это выражение для модели ResNet:

$$dh_t = f(h_t, t, w), (4)$$

— таким образом выражение (1) для (k+1)-го слоя изменится:

$$h_{k+1} = h_k + f(h_k, w_k) + \sigma(X_k^w; w) B_k,$$
 (5)

- соответственно алгоритм остаётся тем же, что и для ODE с поправкой на вычисление матрицы ковариации путём семплирования входной выборки.

#### 3 Постановка задачи

В общем виде для решения поставленной задачи требуется осуществить следующие шаги - применить метод Neural ODE к временному ряду, учесть гауссовский шум и тем самым свести задачу к модели Neural SDE, вычислить фазовые траектории для временного ряда, предварительно свернув исходный многомерный временной ряд к минимально возможному размеру и, наконец, сравнить полученные фазовые траектории временных рядов по поведению с отдельными точками, проверяемыми на элемент разладки. Далее предлагается вкратце их разобрать.

Исходный временной ряд соответственно:

$$\{X_{t_i}\}_{i=1}^n \tag{6}$$

— где  $t_i$  - временные метки, упорядоченные по возрастанию. Предполагается, что траектория ряда подчиняется некоторому СДУ (см. 2.2)

Решив СДУ с помощью SDE-solver-а мы получим точные значения  $f(h_n, w_n) = C_n - \text{const}(\text{см. }(4))$  для  $\forall n$ . Тогда в той же формуле (4) приняв во внимание факт того, что  $EB_t = 0$ , занулим коэффицент диффузии и получим следующее выражение:

$$h_{n+1} = h_n + C_n \tag{7}$$

— это оценки приращений элементов временного ряда. По ним строится матрица Ганкеля, описывающая фазовые траектории процесса, размера n/2 на n/2 вида:

$$\begin{bmatrix} C_1 & C_2 & \cdots & C_{n/2} \\ C_2 & C_3 & \cdots & C_{n/2+1} \\ \vdots & \vdots & \ddots & \vdots \\ C_{n/2} & C_{n/2+1} & \cdots & C_n \end{bmatrix}$$
(8)

Таким образом аналогично методу SSA получим оценки на значения исходного временного ряда. Среднее каждого из элементов оценивается выборочным средним значений на соответствующей антидиагонали матрицы Ганкеля, а его разброс выборочной дисперсией.

В таком случае - хоть и в силу неточности приближения мы неспособны прогнозировать дальнейшее поведение временного ряда, но момент разладки найти возможно. Если сэмплировать получить оценки 95-й и 5-й квантили, зная средние и дисперсии каждого из элементов ряда, то тем самым возможно получить доверительный интервал для его значений. Если в тот или иной момент ряда он резко вышел из этого диапазона, то можно сказать, что произошла разладка.

# 4 Вычислительный эксперимент

Эксперимент проводится над выборкой из N=150 элементов. В качестве тестовой выборки берётся искусственно зашумленный ряд синусов.



Рис. 2: тестовая выборка

Таким образом явное выражение *n*-ого члена временного ряда выражается по формуле:

$$X_n = \sin(n) + \xi_n \tag{9}$$

$$\xi_n \sim \begin{cases} \mathcal{N}(0,1) : n < 50 \text{ or } n > 100 \\ \mathcal{U}(0,1) : 50 \le n \le 100 \end{cases}$$

 ${\bf C}$  помощью модели Neural SDE, реализованной библиотекой torchsde, строится прогноз продолжения полученного ряда.

По приращениям элементов прогноза получим матрицу фазовых траекторий процесса и сравнивая её с целевой матрицей Ганкеля на фиксированном окне запустим процесс обучения модели. Цель: подобрать параметры drift и diffusion такие, чтобы отклонение от target-а было минимальным.



процесс обучения

# 5 Заключение

По итогу обучения получаем следующий результат работы алгоритма на исходном временном ряду.



ИТОГ

Доверительные интервалы пускай и не точно, но позволяют оценить примерное число точек разладки и место их наибольшего сосредоточения, как раз тот самый отрезок ряда от 50-го до 100-го элементов, который был зашумлен нормальным шумом, а не равномерным в отличие от остальных.

Итоговое сравнение с другими методами поисками точек разладки показывает то, что NeuralSDE выигрывает в плане точности, но уступает в плане скорости. Плюсы и минусы метода ясны, и зная их, исследователь способен использовать его как новый и полезный инструмент.

$$\begin{bmatrix} Model & Speed(sec) & Error \\ NeuralSDE & 47.2 & 0.044 \\ SSA & 6.48 & 0.12 \\ CuSum & 3.56 & 0.08 \\ CuSumSqr & 20.03 & 0.061 \end{bmatrix}$$
(10)

# Список литературы

- [1] "Neural Ordinary Differential Equations Ricky" T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, David Duvenaud
- [2] "Neural SDE: Stabilizing Neural ODE Networks with Stochastic Noise" Xuanqing Liu, Tesi Xiao, Si Si, Qin Cao, Sanjiv Kumar, Cho-Jui Hsieh
- [3] "Riemannian Neural SDE: Learning Stochastic Representations on Manifolds" Sung Woo Park , Hyomin Kim , Kyungjae Lee , Junseok Kwon
  - [4] "Riemannian Diffusion Models" Chin-Wei Huang, Milad Aghajohari, Avishek Joey Bose, Prakash Panangaden, Aaron Courville
- [5] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential equations. In Advances in Neural Information Processing Systems, pages 6572–6583, 2018.
  - [6] F.Yu. Yaushev, R. V. Isachenko, V. V. Strijov. Concordant models for latent space projections in forecasting, 2020.