42. Описание алгоритма AKS (6 шагов). Лемма об оценке r (б/д). Оценка сложности алгоритма. Тождество $(X + a)^p = X^p + a \pmod{p}$.

Алгоритм проверки n на простоту: Agarwal, Kayal, Saxena (AKS)

- 1. $n = a^b, b \ge 2 \Rightarrow n$ составное
- 2. Ищем наименьшее r, такое что $\operatorname{ord}_r n > \log_2^2 n$
- 3. Если хотя бы для одного числа a из диапазона $1\dots r$ выполнено $1<(a,n)< n\Rightarrow n$ составное $((a,n):=\mathrm{HOД}(a,n))$
- 4. Если $n \leq r$, то n простое
- 5. Если хотя бы для одного числа a в диапазоне $1 \dots l = \sqrt{\varphi(r)} \cdot \log_2 n$ выполнено $(x+a)^n \neq x^n + a \pmod{x^r-1, n} \Rightarrow n$ составное
- 6. n простое

Лемма: $r \leq \max\{3, \lceil \log_2^5 n \rceil\}$

Сложность:

- 1. $n=a^b\Rightarrow b\leq \log_2 n\Rightarrow$ можно перебрать бинпоиском за $\operatorname{poly}(\log_2 n)$
- 2. Из леммы следует, что шаг 2 можно сделать перебором за $poly(log_2 n)$
- 3. Перебираем числа меньше r и ищем НОД (за логарифм) \Rightarrow этот шаг выполняется за $\operatorname{poly}(\log_2 n)$
- 4. O(1)
- 5. Всего $\operatorname{poly}(\log_2 n)$ итераций. На каждой делаем бинарное возведение в степень $(\operatorname{poly}(\log_2 n))$, как только превышаем r делим на многочлен x^r-1 $(\operatorname{poly}(\log n),$ так как степень делимого $\leq 2r$, то есть у него $\operatorname{poly}(\log_2 n)$ коэффициентов)

Утверждение: $(x + a)^p = x^p + a \pmod{p}$

A

$$(x+a)^p = x^p + a^p + \sum_{i=1}^{p-1} C_p^i x^{p-i} a^i$$

 $a^p=a \pmod p$ (малая теорема Ферма), $C_p^i=0 \pmod p$ (доказывалось в прошлом семестре) $\Rightarrow (x+a)^p=x^p+a \pmod p$