NOTES ON CLASSICAL MECHANICS

YANNAN MAO

8TH MARCH 2024

CONTENTS

1 7	The Equations of Motion	1
1.1	Generalised Coordinates	1
1.2	The Stationary-Action Principle	1

THE EQUATIONS OF MOTION

The position of a particle in three-dimensional Euclidean space is defined by a vector $\mathbf{r} \in \mathbb{R}^3$. Its derivative $\mathbf{v} = \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}$ with respect to time $t \in \mathbb{R}$ is the *velocity of the particle*, denoted by a dot above: $\mathbf{v} = \dot{\mathbf{r}}$. The second derivative $\ddot{\mathbf{r}} = \frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}t^2}$ is the *acceleration of the particle*.

1.1 GENERALISED COORDINATES

In general, the number of independent quantities which are necessary to uniquely define the position of a system is the number of *degrees of freedom of the system*. Any $n \in \mathbb{Z}_{>0}$ quantities q_1, \ldots, q_n , each of which is in some subset of \mathbb{R} , which completely define the position of a system with n degrees of freedom are referred to as *generalised coordinates of the system*, and the derivatives $\dot{q}_1, \ldots, \dot{q}_n$ are its *generalised velocities*. Generalised coordinates span the *configuration space of the system*. We denote generalised coordinates by an n-dimensional vector \mathbf{q} .

In principle, if all the coordinates \mathbf{q} and velocities $\dot{\mathbf{q}}$ of a system are simultaneously specified for some instant, then accelerations $\ddot{\mathbf{q}}$ for that instant are uniquely determined. The relations between the coordinates, velocities, and accelerations are the *equations of motions of the system*, which are second-order differential equations for the function $\mathbf{q}(t)$. Solving for $\mathbf{q}(t)$ makes possible the determination of the motion of the system.

1.2 THE STATIONARY-ACTION PRINCIPLE

The most general formulation of the law governing the motion of mechanical systems is the *stationary-action principle* or the *principle of least action*, according to which every mechanical system is characterised by a definite function $L(\mathbf{q}(t), \dot{\mathbf{q}}(t), t)$, referred to as the *Lagrangian*, and the motion of the system is such that a certain condition is satisfied.

Let the system occupy, at the instants t_0 and t_1 , positions defined by two sets of values of the coordinates, q_0 and q_1 . Then the condition is that the system moves between these

positions in such a way that

$$S[\boldsymbol{q}] = \int_{t_0}^{t_1} L(\boldsymbol{q}(t), \dot{\boldsymbol{q}}(t), t) dt$$

is stationary. The functional $S[\boldsymbol{q}]$ is referred to as the *action*.