Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Estadística

Temporada Académica de Verano 2016

Curso : Probabilidad y Estadística

Sigla : EYP1113

Pauta : I2

Profesores : Ricardo Aravena C. y Ricardo Olea O.

Problema 1

A un ejecutivo de cuentas le entregan una cartera con n clientes para vender un nuevo producto financiero. Si X representa la probabilidad que una venta resulte exitosa e Y la cantidad de ellas en la cartera, obtenga la función de probabilidad marginal de Y cuando X es una variable aleatoria Beta(q, r) y calcule su varianza de Y. Asuma independencia entre cada venta.

Solución

Tenemos que

$$X \sim \text{Beta}(q, r)$$
 y $Y \mid X = x \sim \text{Binomial}(n, x)$ [0.5 Ptos]

con
$$x \in [0,1]$$
 e $y = 0, 1, \dots, n$.

Por teorema de probabilidades totales

$$p_{Y}(y) = \int_{-\infty}^{\infty} p_{Y|X=x}(y) \cdot f_{X}(x) dx$$

$$= \int_{0}^{1} \binom{n}{y} x^{y} (1-x)^{n-y} \cdot \frac{1}{B(q,r)} x^{q-1} (1-x)^{r-1} dx \quad [1.5 \text{ Ptos}]$$

$$= \binom{n}{y} \frac{B(q+y,n-y+r)}{B(q,r)} \int_{0}^{1} \frac{1}{B(q+y,n-y+r)} x^{(q+y)-1} (1-x)^{(n-y+r)-1} dx$$

$$= \binom{n}{y} \frac{B(q+y,n-y+r)}{B(q,r)} \cdot 1$$

$$= \binom{n}{y} \frac{B(q+y,n-y+r)}{B(q,r)}, \quad [1.0 \text{ Ptos}] \quad y = 0,1,\dots,n \quad [0.5 \text{ Ptos}]$$

Se pide además

$$Var(Y) = E[Var(Y | X)] + Var[E(Y | X)] \quad [\textbf{0.5 Ptos}]$$

$$= E[n X (1 - X)] + Var[n X]$$

$$= nE(X) - n E(X^{2}) + n^{2}Var(X) \quad [\textbf{0.5 Ptos}]$$

$$= \frac{n q}{q + r} - \frac{n q r}{(q + r)^{2} (q + r + 1)} - \frac{n q^{2}}{(q + r)^{2}} + \frac{n^{2} q r}{(q + r)^{2} (q + r + 1)} \quad [\textbf{0.5 Ptos}]$$

$$= \frac{n q r (n + q + r)}{(q + r)^{2} (q + r + 1)} \quad [\textbf{1.0 Ptos}]$$

+ 1 Punto Base

Problema 2

Sean X e Y dos variables aleatorias independientes con distribución $\operatorname{Gamma}(\alpha, \nu)$ y $\operatorname{Gamma}(\beta, \nu)$. En inferencia estadística, una función muy utilizada para la toma de decisiones en términos de X e Y es $Z = \frac{X/\alpha}{Y/\beta}$. Muestre que la función de densidad de Z es:

$$f_Z(u) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \cdot \left(\frac{\alpha}{\beta}\right)^{\alpha} \cdot \frac{u^{\alpha - 1}}{\left(\frac{\alpha}{\beta} \cdot u + 1\right)^{\alpha + \beta}}, \quad u > 0$$

Solución

Tenemos que

$$X \sim \text{Gamma}(\alpha, \nu)$$
 e $Y \sim \text{Gamma}(\beta, \nu)$

у

$$X = g(X,Y) = \frac{X/\alpha}{Y/\beta} \to X = g^{-1}(Z,Y) = \frac{\alpha Y Z}{\beta}$$
 [0.5 Ptos]

Luego

$$\begin{split} f_{Z}(u) &= \int_{-\infty}^{\infty} f_{X,Y}(g^{-1},y) \cdot \left| \frac{\partial}{\partial u} \, g^{-1} \right| \, dy \quad \textbf{[0.5 Ptos]} \\ &= \int_{0}^{\infty} \frac{\nu^{\alpha}}{\Gamma(\alpha)} \left(\frac{\alpha \, y \, u}{\beta} \right)^{\alpha - 1} \, e^{-\nu \, (\alpha \, y \, u)/\beta} \cdot \frac{\nu^{\beta}}{\Gamma(\beta)} \, y^{\beta - 1} \, e^{-\nu \, y} \cdot \left| \frac{\alpha \, y}{\beta} \right| \, dy, \quad \text{por independencia} \quad \textbf{[2.0 Ptos]} \\ &= \frac{\nu^{\alpha + \beta}}{\Gamma(\alpha) \Gamma(\beta)} \left(\frac{\alpha}{\beta} \right)^{\alpha} \, u^{\alpha - 1} \int_{0}^{\infty} y^{\alpha + \beta - 1} \, e^{-\nu \left(\frac{\alpha}{\beta} \cdot u + 1 \right) y} \, dy \\ &= \frac{\nu^{\alpha + \beta}}{\Gamma(\alpha) \Gamma(\beta)} \left(\frac{\alpha}{\beta} \right)^{\alpha} \, u^{\alpha - 1} \cdot \frac{\Gamma(\alpha + \beta)}{\left[\nu \left(\frac{\alpha}{\beta} \cdot u + 1 \right)\right]^{\alpha + \beta}} \int_{0}^{\infty} \frac{\left[\nu \left(\frac{\alpha}{\beta} \cdot u + 1 \right)\right]^{\alpha + \beta}}{\Gamma(\alpha + \beta)} \, y^{\alpha + \beta - 1} \, e^{-\nu \left(\frac{\alpha}{\beta} \cdot u + 1 \right) y} \, dy \quad \textbf{[1.0 Ptos]} \\ &= \frac{\nu^{\alpha + \beta}}{\Gamma(\alpha) \Gamma(\beta)} \left(\frac{\alpha}{\beta} \right)^{\alpha} \, u^{\alpha - 1} \cdot \frac{\Gamma(\alpha + \beta)}{\left[\nu \left(\frac{\alpha}{\beta} \cdot u + 1 \right)\right]^{\alpha + \beta}} \cdot 1, \quad \text{por Gamma} \left(\alpha + \beta, \nu \left(\frac{\alpha}{\beta} \cdot u + 1 \right) \right) \quad \textbf{[1.0 Ptos]} \\ &= \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)} \cdot \left(\frac{\alpha}{\beta} \right)^{\alpha} \cdot \frac{u^{\alpha - 1}}{\left(\frac{\alpha}{\beta} \cdot u + 1 \right)^{\alpha + \beta}}, \quad u > 0 \quad \textbf{[1.0 Ptos]} \end{split}$$

+ 1 Punto Base

Problema 3

Como han de saber, hoy en día muchos hinchas chilenos están desencantados con la posición de Sampaoli. Usted, buscando conocer la opinión - y el sentimiento - de los chilenos decide consultar a 100 hinchas, dentro de los cuales hay 60 que se declaraban acérrimos fanáticos de Sampaoli y los restantes se identifican como críticos del proceso llevado a cabo por Sampaoli. Basado en la opinión de expertos, asigna una probabilidad de apoyo a Sampaoli de 0.8 entre los declarados acérrimos fanáticos, valor que disminuye en un 70 % entre los críticos. Determine la probabilidad aproximada que la mayoría de los entrevistados apoye a Sampaoli.

Solución

Sean X los fanáticos que apoyan e Y los críticos que apoyan.

Del enunciado se tiene que

Por teorema del límite central y suma de normales independientes se tiene que

$$X + Y \stackrel{\text{aprox}}{\sim} \text{Normal} \left(60 \cdot 0.80 + 40 \cdot 0.24, \sqrt{60 \cdot 0.80 \cdot 0.20 + 40 \cdot 0.24 \cdot 0.76} \right)$$
 [2.0 Ptos]

Luego

$$\boxed{ \textbf{[0.5 Ptos]} \quad P(X+Y>50) \approx 1 - \Phi\left(\frac{50-57.6}{4.110474}\right) = 1 - \Phi(-1.848935) \approx 1 - \Phi(-1.85) = \Phi(1.85) = 0.9678 \quad \textbf{[0.5 Ptos]} }$$

+ 1 Punto Base

Formulario

Propiedades función $\Gamma(\cdot)$

(1)
$$\Gamma(k) = \int_0^\infty u^{k-1} e^{-u} du;$$
 (2) $\Gamma(a+1) = a \Gamma(a);$

(3)
$$\Gamma(n+1) = n!$$
, si $n \in \mathbb{N}_0$; (4) $\Gamma(1/2) = \sqrt{\pi}$

Propiedades función $B(\cdot, \cdot)$

(1)
$$B(q, r) = \int_0^1 x^{q-1} (1-x)^{r-1} dx;$$
 (2) $B(q, r) = \frac{\Gamma(q) \Gamma(r)}{\Gamma(q+r)}$

Igualdades

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}, \qquad \sum_{k=x}^\infty \phi^k = \frac{\phi^x}{1-\phi} \quad \text{si } |\phi| < 1, \qquad \sum_{k=0}^\infty \frac{\lambda^k}{k!} = \exp(\lambda)$$

Propiedad distribución Gamma

Si
$$T \sim \text{Gamma}(k, \nu)$$
, con $k \in \mathbb{N} \longrightarrow F_T(t) = 1 - \sum_{x=0}^{k-1} \frac{(\nu t)^x e^{-\nu t}}{x!}$

Transformación

Sea Y = g(X) una función cualquiera, con k raíces:

$$f_Y(y) = \sum_{i=1}^k f_X\left(g_i^{-1}(y)\right) \cdot \left| \frac{d}{dy} g_i^{-1}(y) \right|$$
$$p_Y(y) = \sum_{i=1}^k p_X\left(g_i^{-1}(y)\right)$$

Sea Z = g(X, Y) una función cualquiera:

$$p_Z(z) = \sum_{g(x,y)=z} p_{X,Y}(x,y)$$

Sea Z = g(X, Y) una función invertible para X o Y fijo:

$$f_{Z}(z) = \int_{-\infty}^{\infty} f_{X,Y}(g^{-1}, y) \left| \frac{\partial}{\partial z} g^{-1} \right| dy$$
$$= \int_{-\infty}^{\infty} f_{X,Y}(x, g^{-1}) \left| \frac{\partial}{\partial z} g^{-1} \right| dx$$

Teorema del Límite Central

Sean X_1, \ldots, X_n variables aleatorias independientes e idénticamente distribuidas, entonces

$$Z_n = \frac{\sum_{i=1}^n X_i - n \cdot \mu}{\sqrt{n} \, \sigma} = \frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}} \longrightarrow Z \sim \text{Normal}(0, 1),$$

cuando $n \to \infty$, $E(X_i) = \mu$ y $Var(X_i) = \sigma^2$.

		0	1	7
Distribucion	Densidad de Frobabilidad	×	Farametros	Esperanza y varianza
Binomial	$\binom{n}{x} p^x (1-p)^{n-x}$	$x = 0, \dots, n$	u, p	$\mu X = n p$ $\sigma_X^2 = n p (1 - p)$ $M(t) = [p e^t + (1 - p)]^n, t \in \mathbb{R}$
Geométrica	$p (1-p)^{x-1}$	$x=1,2,\dots$	d	$M(t) = p e^{t} / [1 - (1 - p)/p^{2}]$ $M(t) = p e^{t} / [1 - (1 - p) e^{t}], t < -\ln(1 - p)$
Binomial-Negativa	$\binom{x-1}{r-1} p^r (1-p)^{x-r}$	$x = r, r + 1, \dots$	r, p	$\mu X = r/p$ $\frac{\sigma_X^2 = r (1 - p)/p^2}{r (1 - p) (1 - p)} M(t) = \left\{ p e^t / [1 - (1 - p) e^t] \right\}^T, t < -\ln(1 - p)$
Poisson	$\frac{(\nu t)^x e^{-\nu t}}{x!}$	$x = 0, 1, \dots$	7	$\mu X = \nu t$ $\sigma_X^2 = \nu t$ $M(t) = \exp \left[\lambda \left(e^t - 1 \right) \right], t \in \mathbb{R}$
Exponencial	V e - V B	0 ∧I 8	7	$\mu_X = 1/\nu$ $\sigma_X = 1/\nu^2$ $\sigma_X = 1/\nu^2$ $M(t) = \nu/(\nu - t), t < \nu$
Gamma	$\frac{\nu^k}{\Gamma(k)} x^{k-1} e^{-\nu} x$	О ЛІ в	k, v	$\mu_X = k/\nu$ $\sigma_X^2 = k/\nu^2$ $\sigma_X^2 = k/\nu^2$ $M(t) = [\nu/(\nu - t)]^k, t < \nu$
Normal	$\frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$	8 V e V 8	μ, σ	$\mu_X = \mu$ $\sigma_X^2 = \sigma^2$ $M(t) = \exp(\mu t + \sigma^2 t^2/2), t \in \mathbb{R}$
Log-Normal	$\frac{1}{\sqrt{2\pi}\left(\zetax\right)}\exp\left[-\frac{1}{2}\left(\frac{\lnx-\lambda}{\zeta}\right)^2\right]$	s VI O	У, С	$\mu_X = \exp\left(\lambda + \frac{1}{2}\zeta^2\right)$ $\sigma_X^2 = \mu_X^2 \left(e^{\zeta^2} - 1\right)$ $E(X^r) = e^{r\lambda} M_Z(r\zeta), \text{ con } Z \sim \text{Normal}(0,1)$
Uniforme	$\frac{1}{(b-a)}$	a	a, b	$\begin{split} \mu X &= (a+b)/2 \\ \sigma_X^2 &= (b-a)^2/12 \\ M(t) &= [e^t b^* - e^t a]/[t (b-a)], t \in \mathcal{R} \end{split}$
Beta	$\frac{1}{B(q,r)} \frac{(x-a)^{q-1} (b-x)^{r-1}}{(b-a)^{q+r-1}}$	a A A A A A A A A A	ę.	$\mu_X = a + \frac{q}{q+r} (b-a)$ $\sigma_X^2 = \frac{q r (b-a)^2}{(q+r)^2 (q+r+1)}$
Hipergeométrica	$\frac{\binom{m}{x}\binom{N-m}{n}}{\binom{n}{n}}$	$\max\{0,n+m-N\}\leq x\leq \min\{n,m\}$	$N,\ m,\ n$	$\mu_X = n \stackrel{\mathcal{R}}{X}$ $\sigma_X^2 = \left(\frac{N-n}{N-1}\right) n \stackrel{\mathcal{R}}{Y} \left(1 - \frac{m}{Y}\right)$

Tabla Percentiles Distribución Normal Estándar

S_p	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998