Studentpad

MHT-CET-X1 PHYSICS(FULL PORTION) 2022-23

Time: 150 Min Phy: Full Portion Paper Marks: 50

- 01) Suppose the gravitational force varies inversely as the $\,n^{th}\,$ power of distance. Then the time period of a planet in circular orbit of radius R around the sun will be proportional to
- A) Rⁿ
- B) $R^{\left(\frac{n-2}{2}\right)}$
- C) $R^{\left(\frac{n+1}{2}\right)}$
- D) $R^{\left(\frac{n-1}{2}\right)}$
- 02) If a body gives out 10^9 electrons every second, then find out the time required to get a total charge of 1 C from it.
- A) 98 years
- B) 198 days
- C) 400 years
- D) 198 years
- 03) The ionosphere reflects the
- A) sky waves.
- B) space waves.
- C) ground waves.
- D) very high or ultra-high frequency waves.
- 04) Three identical bodies of mass M are located at the vertices of an equilateral triangle of side L. They revolve under the effect of mutual gravitational force in a circular orbit, circumscribing the triangle while preserving the equilateral triangle. What is their orbital velocity?
- A) $\sqrt{\frac{3GM}{2L}}$
- B) $\sqrt{\frac{GM}{L}}$
- C) $\sqrt{\frac{3GM}{L}}$
- D) $\sqrt{\frac{2GM}{3L}}$
- 05) A block of mass m placed on a rough inclined plane of inclination $\theta=30^{0}$ can just be prevented from sliding down by applying a force F_{1} up the plane and it can be just made to slide up the plane by applying a force F_{2} up the plane. If the coefficient of friction between the block and the

inclined plane is $\frac{1}{2\sqrt{3}}$, find the relation between

 F_1 and F_2 .

A) $F_2 = F_1$

- B) $F_2 = 2F_1$
- C) $F_2 = 3 F_1$
- D) $F_2 = 4 F_1$
- 06) Under normal conditions, the velocity of charge carries of about 1 A in a metallic conductor, is of the order of __
- A) velocity of light
- B) a fraction of mm/s
- C) a few hundred m/s
- D) several thousand m/s
- 07) Two identical rings P and Q of radius 0.1 m are mounted co-axially at a distance of 0.5 m apart. The charges on two rings are $2\,\mu$ C and $4\,\mu$ C respectively. How much work is done in transferring a charge of $5\,\mu$ C from the centre of P to that of Q?
- A) 2 J
- B) 0.72 J
- C) 1.44 J
- D) 1.28 J
- 08) A satellite revolves around the earth in an elliptical orbit. Its speed
- A) is the same at all points in the orbit.
- B) is greatest when it is farthest from the earth.
- C) is greatest when it is closest to the earth.
- D) goes on increasing or decreasing continuously depending upon the mass of the satellite.
- 09) About _____ is the minimum audible wavelength at room temperature.
- A) 5 Å
- B) 0.2 Å
- C) 5 cm to 2 metre
- D) 20 mm
- 10) Why there are three lenses in terrestrial telescope?
- A) To get object more closer
- B) To get final image erect
- C) To get final image inverted
- D) To get larger magnifying power
- 11) An infinite number of charges each equal to $4 \mu C$ are placed along x-axis at x=1m, x=2m, x=4m and so on. What will be the total force on a charge of 1C placed at the origin?
- A) Zero
- B) 4.8×10^{4} N
- C) 3N
- D) 3.2×10^{4} N

- 12) What are the angle of dip at the poles and the equator?
- A) $0^{0}, 90^{0}$
- B) $45^{\circ}, 90^{\circ}$
- C) $30^{0}, 60^{0}$
- D) 90° , 0°
- 13) What is the number of significant figures in 0.0006312?
- A) 5
- B) 3
- C) 4
- D) 2
- 14) Two identical thin bar magnets, each of length 1 and pole strength m, are placed at right angle to each other with north pole of one touching south pole of other. What will be the magnetic moment of system?
- A) 1 ml
- B) 0.5 ml
- C) 2 ml
- D) $\sqrt{2}$ ml
- 15) The volume of a gas at 20°C is 100 cm³ at normal pressure. If it is heated to 100°C, its volume becomes 125 cm³ at the same pressure. What will be the volume coefficient of expansion of the gas at normal pressure?
- A) 0.0015°C⁻¹
- B) 0.0045°C⁻¹
- C) 0.0025°C-1
- D) 0.00310C-1
- 16) Two masses M and m are attached to a vertical axis by weightless threads of combined length 1. They are set in rotational motion in a horizontal plane about this axis with constant angular velocity ω . If the tensions in the threads are the same during motion, the distance of M from the axis is

- 17) If a magnet is suspended at an angle of 30^{0} to the magnet meridian, the dip needle makes an angle of 45^0 with the horizontal. Find the real
- A) $\tan^{-1}(\sqrt{3}/2)$
- B) $\tan^{-1}(\sqrt{3}/\sqrt{2})$
- C) $\tan^{-1}(2/\sqrt{3})$

- D) $tan^{-1}(\sqrt{3})$
- 18) A block of mass 2 kg rests on a horizontal surface. If a horizontal force of 5 N is applied on the block, what is the frictional force on it?
- $(\mu_k = 0.4, \mu_s = 0.5).$
- A) 5 N
- B) 8 N
- C) 10 N
- D) zero
- A) i
- B) 0
- C) k
- D) î
- 20) A rain drops of radius 0.3 mm falls through air with a terminal velocity of 1 m s⁻¹. The viscosity of air is 18×10^{-5} poise. What is the viscous force on the rain drop?
- A) 1.018×10^{-2} dyne
- B) 2.018×10^{-2} dyne
- C) 3.081×10^{-2} dyne
- D) 4.081×10^{-2} dyne
- 21) You are given 'mn' wires of equal resistance, if m wires are in series and n such combinations are in parallel then the resultant resistance is R₁. If n wires are in series and m such combinations are in parallel, then the resultant resistance is R_2 . Then calculate the ratio of R_1/R_2 .
- A) m:n
- B) m²:n²
- C) 1:1
- D) n²:m²
- 22) A uniform horizontal metre scale of mass m is suspended by two vertical strings attached to its two ends. A body of mass 2m is placed on the 75 cm mark. The tensions in the two strings are in which of the following ratio?
- A) 3:4
- B) 2:3
- C) 1:3
- D) 1:2
- 23) Zener breakdown occurs only if
- A) the temperature is increased
- B) it is lightly doped
- C) it is forward biased
- D) it is reverse biased
- 24) A rocket of mass M is launched vertically from the surface of the earth with an initial speed V. Assuming the radius of the earth to be R and negligible air resistance, the maximum height attained by the rocket above the surface of the

earth is

A)
$$R\left(\frac{2gR}{V^2}-1\right)$$

B)
$$R / \left(\frac{2gR}{V^2} - 1 \right)$$

C)
$$R\left(\frac{gR}{2V^2}-1\right)$$

D)
$$R / \left(\frac{gR}{2V^2} - 1 \right)$$

- 25) A wave of frequency 500 Hz has velocity 360 m/s. What is the distance between two nearest point 60° out of phase?
- A) 0.6 cm
- B) 12 cm
- C) 120 cm
- D) 60 cm
- 26) The angle of incidence, emergence and deviation in case of a prism are found to be 55°, 45° and 40° respectively. What will be the refracting angle of prism?
- A) 45°
- B) 50°
- C) 40°
- D) 60°
- 27) A circular road of radius 100 m has banking angle 45°. The maximum safe speed of a car having mass 2000 kg will be, if the coefficient of friction between tyre and road is 0.5
- A) 8.6 m/s
- B) 9.9 m/s
- C) 12.4 m/s
- D) 17.2 m/s
- 28) A metal rod 1.5 m length is clamped at the center. When it is set with longitudinal vibrations it emits a note of 1 KHz. If the density of the material is 8×10^3 then determine the Young's modulus.
- A) $4.5 \times 10^{10} \text{ N/m}^3$
- B) $5.2 \times 10^{10} \,\text{N} \,/\,\text{m}^2$
- C) $7.2 \times 10^{10} \,\mathrm{N}\,/\,\mathrm{m}^2$
- D) $6.5 \times 10^{10} \,\mathrm{N} \,/\,\mathrm{m}^2$
- 29) A man of mass 60 kg is riding in a lift. What are the weights of the man, when the lift is accelerating upwards and downwards at $2 \, \text{m s}^{-2}$?

$$(Take g = 10 m s^{-2}).$$

- A) 600 N and 600 N
- B) 480 N and 720 N
- C) 720 N and 480 N
- D) 600 N and 480 N
- 30) The given two vectors $\vec{A} = a\hat{i} + a\hat{j} + 3\hat{k}$ and $\vec{B} = 2\hat{i} 3\hat{j} + 2\hat{k}$ are perpendicular to each other

then what will be the value of 'a'?

- A) 6
- B) 2
- C) 3
- D) 5
- 31) An electron charge is revolving in a circular orbit of radius (r) around a nucleus with speed v the equivalent current will be__
- A) $\frac{\text{ev}}{2\pi i}$
- B) 0
- C) $\frac{2e\pi r}{r}$
- D) evr
- 32) A block is gently placed on a long conveyor belt moving with $11\,m\,s^{-1}$. If the coefficient of friction between block and belt is 0.4 , then the block will slide on the belt up to _____ distance.
- A) 25.6 m
- B) 20.3 m
- C) 15.43 m
- D) 10.21 m
- 33) The device used for addition of high frequency carrier wave and information signal is
- A) rectifier.
- B) amplifier.
- C) modulator.
- D) demodulator.
- 34) Mark the correct statement about the value of the zener current.
- A) It is always in the a microampere range
- B) It is determined by the zener voltage
- C) It does not depends upon the temperature
- D) It is limited by the external circuit resistance
- 35) A motor cycle starts from rest and acceleration along a straight path at $2m/s^2$. At the starting point of the motor cycle there is a stationery electric siren. How far has the motor cycle gone when the driver hears the frequency of the siren at 94% of its value when the motor cycle was at rest? (Speed of sound = 330 ms⁻¹)
- A) 49 m
- B) 98 m
- C) 147 m
- D) 196 m
- 36) A ray of light travels from an optically denser medium to a rarer medium. What is the maximum possible deviation of the ray if C is the critical angle?
- A) 900-C
- B) 900-2C
- C) 90°
- D) $\sqrt{90^{\circ} + C}$
- 37) Increase in length of rod on heating does not depends on its ___

- A) material
- B) initial length
- C) mass
- D) rise in temperature
- 38) In a certain place, the vertical component of earth's magnetic field is 0.5 oersted and zip angle is 60^{0} . What is the earth's magnetic field at that place?
- A) $\frac{\sqrt{3}}{2}$ oersted
- B) 2 oersted
- C) 1 oersted
- D) $\frac{1}{\sqrt{3}}$ oersted
- 39) ____ is not transported by the electromagnetic waves.
- A) Charge
- B) Energy
- C) Momentum
- D) Information
- 40) Two vectors \vec{A} and \vec{B} have equal magnitudes. If magnitude of $\vec{A} + \vec{B}$ is equal to n times the magnitude of $\vec{A} \vec{B}$, then find the angle between \vec{A} and \vec{B} .
- A) $\sin^{-1}\left(\frac{n^2-1}{n^2+1}\right)$
- B) $\cos^{-1}\left(\frac{n^2-1}{n^2+1}\right)$
- C) $\sin^{-1}\left(\frac{n-1}{n+1}\right)$
- D) $\cos^{-1}\left(\frac{n-1}{n+1}\right)$
- 41) Height of Ionosphere is up to ___ Km from ground surface.
- A) 80 km
- B) 12 km
- C) 50 km
- D) 400 km
- 42) Two copper wires have the same length but their cross sections are in the ratio of 3:1 .They are joined in series. The resistance of the thick wire is $10\,\Omega$. What will be the total resistance of the combination?
- Α) 20 Ω
- B) 40 Ω
- $C)30\Omega$
- D) $40/3\Omega$
- 43) Certain neutron stars are believed to be rotating at about 1 rev/s. If such a star has a radius of 20 km, the acceleration of an object on the equator of the star will be
- A) $4 \times 10^8 \text{ m/s}^2$

- B) $8 \times 10^5 \text{ m/s}^2$
- C) $20 \times 10^8 \text{ m/s}^2$
- D) $120 \times 10^5 \text{ m/s}^2$
- 44) 1 light year = ____ kilometers.
- A) 11×10^{10}
- B) 9.45×10^{15}
- C) 3×10^{8}
- D) 9.45×10^{12}
- 45) The phenomenon in which heat is transferred from one place to another by molecular collisions without their actual migration is called as:
- A) Condensation
- B) Radiation
- C) Convection
- D) Conduction
- 46) The law of conservation of charge is followed in
- A) nuclear reactions
- B) electrification by Induction
- C) electrification by friction
- D) all of these
- 47) When ______, avalanche breakdown in a semiconducting diode occurs.
- A) the forward current exceeds a certain value
- B) the depletion region is reduced to zero
- C) reverse bias exceeds a certain value
- D) forward bias exceeds a certain value
- 48) A body of mass m moves with speed v collides with wall and recoils with same speed, then due to collision change in its momentum will be ____.
- A) 0
- B) 2 mv
- C) mv
- D) -2 mv
- 49) What will be the length of an aluminium rod is 100 cm at 20°C then its length at 80°C, if coefficient of linear expansion of aluminium is 2.5×10^{-5} per°C?
- A) 100 cm
- B) 100.15 cm
- C) 99.85 cm
- D) 100.30 cm
- 50) The sun looks reddish at the time of sunrise or sunset because:
- A) Of the scattering of light
- B) The sun is hottest at these times
- C) The sun is coldest at these times
- D) Of the effects of reflection and refraction