

SAR TEST REPORT

Report No.: SET2019-06789

Product: Mobile Computer

Trade Name: Janam

Model No.: XT30

FCC ID: UTWXT30WA

IC: 6914A-XT30WA

Applicant: Janam Technologies LLC

Address: 100 Crossways Park West Suite 105 Woodbury, NY 11797

Issued by: CCIC Southern Electronic Product Testing (Shenzhen) Co., Ltd.

Lab Location:

Building 28/29, East of Shigu, Xili Industrial Zone, Xili Road,

Nanshan District, Shenzhen, Guangdong, China

Tel: 86 755 26627338 Fax: 86 755 26627238

Mail: manager@ccic-set.com Website: http://www.ccic-set.com

This test report consists of 62 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CCIC-SET. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CCIC-SET within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit.

Test Report

Product..... Mobile Computer Model No.: XT30 **Brand Name....:** Janam Applicant....: Janam Technologies LLC 100 Crossways Park West Suite 105 Woodbury, NY 11797 **Applicant Address.....** Manufacturer....: Janam Technologies LLC **Manufacturer Address:** 100 Crossways Park West Suite 105 Woodbury, NY 11797 Test Standards....: **47CFR §2.1093-** Radiofrequency Radiation Exposure Evaluation: Portable Devices; RSS-102 Issue 5, March 2015: Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) **IEEE 1528–2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement **Techniques** IEC62209-2:2010 Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices -Human models, instrumentation, and procedures –Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz) Test Result....: **Pass Test Date....:** 2019.05.15-2019.07.08 Mei Chun 2019-07-08 **Tested by:** Mei Chun, Test Engineer Chris You 2019-07-08 Reviewed by....: Chris You, Senior Engineer Shuangwan Zhames Approved by..... 2019-07-08

Shuangwen Zhang, Manager

Contents

Tes	t Report	2				
1.	Administrative Data	4				
2.	Equipment Under Test (EUT)	5				
3.	SAR Summary	7				
4.	Specific Absorption Rate (SAR)	9				
5.	Tissue check and recommend Dielectric Parameters	3				
6.	SAR measurement procedure	9				
7.	Conducted RF Output Power	0				
8.	SAR test Exclusion and estimate SAR calculation:	9				
9.	Scaling Factor calculation4	2				
10.	Test Results4	4				
11.	Simultaneous Transmissions Analysis	5				
12.	Measurement Uncertainty5	7				
13.	Equipment List6	1				
AN	ANNEX A: Appendix A: SAR System performance Check Plots					
AN	ANNEX B: Appendix B: SAR Measurement results Plots					
AN	ANNEX C: Appendix C: Calibration reports					
AN	ANNEX D: Appendix D: SAR Test Setup					

1. Administrative Data

1.1 Testing Laboratory

Test Site: CCIC Southern Electronic Product Testing (Shenzhen) Co., Ltd.

Address: Electronic Testing Building, No. 43 Shahe Road, Xili Jiedao, Nanshan

District, Shenzhen, Guangdong, China

NVLAP Lab Code: CCIC-SET is a third party testing organization accredited by NVLAP

according to ISO/IEC 17025. The accreditation certificate number is

201008-0.

FCC Registration: CCIC Southern Electronic Product Testing (Shenzhen) Co., Ltd. EMC

Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Designation Number: CN5031,

valid time is until December 31, 2019.

ISED Registration: CCIC Southern Testing Co., Ltd. Ltd. EMC Laboratory has been

registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No.

11185A-1 on Aug. 04, 2016, valid time is until Dec. 31, 2019.

Test Environment Temperature (°C): 21°C

Condition: Relative Humidity (%): 60%

Atmospheric Pressure (kPa): 86KPa-106KPa

2. Equipment Under Test (EUT)

Identification of the Equipment under Test

Device Type: Portable

Exposure Category: Population/Uncontrolled

Sample Name: Mobile Computer

Brand Name: Janam

Model Name: XT30

GSM850MHz/1900MHz/900MHz/1800MHz,

Support Band WCDMA 850MHz/1900MHz/2100MHz/900MHz,

LTE Band 1/2/3/4/5/7/8/20/28, WIFI 2.4G/5G, BT, GPS

GSM850MHz/1900MHz,CDMA BC0,

Test Band WCDMA 850MHz/1900MHz,

LTE Band 2/4/5/7,WIFI2.4G/5G

IMEI No. 867681020778915/867681020778923

Device Class B

Multi Class GPRS: Class 12; EGPRS: Class 12

Development Stage Identical Prototype

General

description:

Accessories Power Supply

Hotspot 2.4GHz WLAN support Hotspot mode

Operation mode GSM /CDMA/WCDMA / LTE /WIFI

GSM(GMSK),CDMA(QPSK)UMTS(QPSK),LTE(QPSK,16Q

Modulation mode AM,64QAM), WIFI(OFDM/DSSS),

BT(GFSK/ π /4-DQPSK/8-DPSK)

DTM mode Not support

Hardware Version SQ51FW_MB_P0

Software Version SQ51FW_EN_XX_WE__DS__R01_D_190527_02

Max. RF Power 32.40dBm

Model No.: HBL6300

Battery options : Capacitance:4500mAh

Rated Voltage:3.8V Charge Limit:4.35V

Max. SAR Value Head: 0.871 W/Kg

Body: 1.040 W/Kg(Limit:1.6W/Kg, 10mm distance)

NOTE:

The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

EUT testing configuration

Tested frequency range(s)	Transmitter Frequency Range	Receiver Frequency Range		
GSM850:	824-849 MHz	869-894 MHz		
GSM1900:	1850-1910 MHz	1930-1990 MHz		
UMTS Band II:	1850-1910 MHz	1930-1990 MHz		
UMTS Band V:	824-849 MHz	869-894 MHz		
LTE Band2:	1850-1910 MHz	1930-1990 MHz		
LTE Band4:	1710-1755 MHz	2110-2155 MHz		
LTE Band5:	824-849 MHz	869-894 MHz		
LTE Band7:	2500-2570 MHz	2620-2690 MHz		
WIFI(tested):	2412-24	62 MHz		
	5150-5250 MHz			
	5250-5350 MHz			
	5470-5725 MHz			
	5745-5825 MHz			
Bluetooth:		80 MHz		
	128-190-251(GSM850)			
	512-661-810(GSM1900)			
	9262-9400-9538(UMTS Band II)			
	4132-4183-4233(UMTS Band V)			
	18700-18900-19100(LTE Band 2 Bandwidth 20M)			
Test channels(low-mid-high):	20050-20175-20300(LTE Band 4 Bandwidth 20M)			
	20450-20525-20600(LTE Band 5 Bandwidth 10M)			
	20850-21100-21350(LTE Band 7 Bandwidth 20M)			
	1-6-11(Wi-Fi 2.4G 802.11b)			
	5190-5270-5590-5795 (WIFI 5G)			
	` ′			

3. SAR Summary

Highest Standalone SAR Summary

Exposure	Frequency	Scaled	Highest Scaled	
Position	Band	1g-SAR(W/kg)	1g-SAR(W/kg)	
	GSM850	0.188		
	GSM1900	0.497		
	WCDMA Band II	0.871		
	WCDMA Band V	0.161		
	LTE Band 2	0.415	0.871	
Head	LTE Band 4	0.115		
	LTE Band 5	0.099		
	LTE Band 7	0.211		
	WIFI 2.4G 802.11b	0.244		
	WIFI 5G	0.395		
	BT	0.061		

Exposure Position	Frequency Band	Scaled 1g-SAR(W/kg)	Highest Scaled 1g-SAR(W/kg)	
FUSILIUIT	Danu	3 (),	Ig-SAR(W/kg)	
	GSM850	1.040		
	GSM1900	0.989		
	WCDMA Band II	0.991		
	WCDMA Band V	0.528		
Dody worn	LTE Band 2	0.415		
Body-worn (10mm Gap)	LTE Band 4	0.782	1.040	
(Torriiri Gap)	LTE Band 5	0.317		
	LTE Band 7	0.537		
	WIFI 2.4G 802.11b	0.076		
	WIFI 5G	0.061		
	BT	0.027		

Exposure Position	Frequency Band	Scaled 1g-SAR(W/kg)	Highest Scaled 1g-SAR(W/kg)
	GSM850	1.040	
	GSM1900	0.989	
	WCDMA Band II	0.991	
Hotopot	WCDMA Band V	0.528	
Hotspot (10mm Gap)	LTE Band 2	0.415	1.040
(Tollilli Gap)	LTE Band 4	0.782	
	LTE Band 5	0.317	
	LTE Band 7	0.537	
	WIFI 2.4G 802.11b	0.076	

Highest Simultaneous SAR Summary

Exposure Position	Frequency Band	Highest Scaled 1g-SAR(W/kg)
Hotspot (10mmGap)	WWAN(GSM 850)&WIFI 2.4G	1.101

4. Specific Absorption Rate (SAR)

4.2. Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (Dw) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C \frac{\delta T}{\delta t}$$

where C is the specific head capacity, δ T is the temperature rise and δ t the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

where σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

4.2 Applicable Standards and Limits

4.2.1 Applicable Standards

47CFR § 2.1093	Radiofrequency Radiation Exposure Evaluation: Portable Devices					
ANSI C95.1–1992	Safety Levels with Respect to Human Exposure to Radio Frequency					
	Electromagnetic Fields, 3 kHz – 300 GHz.(IEEE Std C95.1-1991)					
IEEE 1528–2013	IEEE Recommended Practice for Determining the Peak Spatial-Average					
	Specific Absorption Rate (SAR) in the Human Head from Wireless					
	Communications Devices: Measurement Techniques					
IEC62209-2:2010	Human exposure to radio frequency fields from hand-held and					
	body-mounted wireless communication devices - Human models,					
	instrumentation, and procedures - Part 2: Procedure to determine the					
	specific absorption rate (SAR) for wireless communication devices used in					
	close proximity to the human body (frequency range of 30 MHz to 6 GHz)					
KDB 248227 D01	v02r02 802.11 Wi-Fi SAR					
KDB 447498 D01	v06 General RF Exposure Guidance					
KDB 648474 D04	v01r03 Handset SAR					
KDB 865664 D01	v01r04 SAR Measurement 100MHz to 6GHz					
KDB 865664 D02	v01r02 SAR Exposure Reporting					
KDB 941225 D01	v03r01 3G SAR Procedures					
KDB 941225 D05	v02r05 SAR for LTE Devices					
KDB 941225 D05A	v01r02 LTE Rel.10 KDB Inquiry Sheet					
KDB 941225 D06	v02r01 Hotspot Mode					

4.2.2 RF exposure Limits

Human Exposure	Uncontrolled Environment General Population
Spatial Peak SAR* (Brain/Body)	1.60 mW/g
Spatial Average SAR** (Whole Body)	0.08 mW/g
Spatial Peak SAR*** (Limbs)	4.00 mW/g

The limit applied in this test report is shown in bold letters.

- * The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time
 - ** The Spatial Average value of the SAR averaged over the whole body.
- *** The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

4.3 Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twin-headed "SAM Phantom", manufactured by SATIMO. The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6mm).

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

4.4 Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SATIMO as an integral part of the COMOSAR test system.

The device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder

4.5 Probe Specification

Construction Symmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents,

e.g., DGBE)

Calibration ISO/IEC 17025 calibration service available.

Frequency 700 MHz to 3 GHz;

Linearity: ± 0.5 dB (700 MHz to 3 GHz)

Directivity ± 0.25 dB in HSL (rotation around probe axis)

± 0.5 dB in tissue material (rotation normal to probe

axis)

Dynamic Range 1.5 μ W/g to 100 mW/g;

Linearity: ± 0.5 dB

Dimensions Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 5 mm

Distance from probe tip to dipole centers: <2.7 mm

Application General dosimetry up to 3 GHz

Dosimetry in strong gradient fields Compliance tests of mobile phones

Compatibility COMOSAR

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

5. Tissue check and recommend Dielectric Parameters

5.1 Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness Power drifts in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Table 1: Recommended Dielectric Performance of Tissue

Table 1. Recommended Diciente Lenormance of Tiodae												
Ingredients	Frequency (MHz)											
(% by weight)	450		835		915		1900		2450		2600	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.46	52.4	41.05	56.0	54.9	40.4	62.7	73.2	55.24	64.49
Salt (Nacl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04	0.5	0.024
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0	0.0	0.0
Triton x-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0	44.45	32.25
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.2	52.5	39.0	52.5
Conductivity (s/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.80	1.78	1.96	2.16

MSL/HSL750 (Body and Head liquid for 650 – 850 MHz)

Item	Head Tissue Simulation Liquid HSL750					
	Muscle(body)Tissu	e Simulation Liquid	MSL750			
H2O	Water, 35 - 58%					
Sucrese	Sugar, white, refine	ed, 40-60%				
NaCl	Sodium Chloride, 0-6%					
Hydroxyethel-cellulsoe	Medium Viscosity (CAS# 9004-62-0), <0.3%					
Preventol-D7	Preservative: aqueous preparation, (CAS# 55965-84-9), containing					
	5-chloro-2-methyl-3(2H)-isothiazolone and 2-methyyl-3(2H)-isothiazolone,					
	0.1-0.7%					
Frequency (MHz)	Head εr Head σ(S/m) Body εr Bodyσ(S/m)					
750	41.9 0.89 55.2 0.97					

Note: The liquid of 700MHz&2600MHz typical liquid composition is provided by SATIMO.

Frequency:5200/5400/5600/5800MHz					
Ingredients (% by weight)					
Water	78				
Mineral oil	11				
Emulsifiers	9				
Additives and Salt	2				

Table 2 Recommended Tissue Dielectric Parameters

	Llood.	Tioque	Pody Tionus		
Frequency (MHz)	пеаи	Tissue	Body Tissue		
requeries (Wiriz)	E _r	σ (S/m)	$\boldsymbol{\mathcal{E}_{r}}$	σ(S/m)	
150	52.3	0.76	61.9	0.80	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800-2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5800	35.3	5.27	48.2	6.00	

5.2 Simulate liquid

Dielectric Performance of Head Tissue Simulating Liquid

	Temperature: 23.2°C		•
1	Frequency	Permittivity ε	Conductivity σ (S/m)
Target value	850MHz	41.5±5%	0.90±5%
	825MHz	41.42	0.91
Validation value	835MHz	41.43	0.91
(2019-05-15)	845MHz	41.43	0.91
	850MHz	41.43	0.91
Target value	1800MHz	40.5±5%	1.40±5%
`	1710MHz	40.12	1.40
	1730MHz	40.14	1.40
Validation value (2019-05-22)	1750MHz	40.15	1.40
(2010 00 22)	1760MHz	40.15	1.40
	1800MHz	40.16	1.40
Target value	1900MHz	40.5±5%	1.40±5%
Tangot Value	1850MHz	40.10	1.39
Validation value	1880MHz	40.11	1.39
(2019-05-27)	1900MHz	40.11	1.39
	1910MHz	40.12	1.39
Target value	2450MHz	39.2±5%	1.80±5%
Target value	2410MHz	39.42	1.81
Validation value	2440MHz	39.44	1.81
(2019-05-29)	2450MHz	39.44	1.81
	2460MHz	39.44	1.81
Target value	2600MHz	39.0±5%	1.96±5%
Targot valuo	2500MHz	39.14	1.96
Validation value	2530MHz	39.16	1.96
(2019-05-31)	2540MHz	39.16	1.96
(2010 00 01)	2570MHz	39.17	1.96
	2600MHz	39.17	1.96
Target value	5200MHz	36.0±5%	4.66±5%
Validation value	5200MHz	36.45	4.61
(2019-06-03)	5220MHz	36.45	4.61
, , , , , , , , , , , , , , , , , , ,	5240MHz	36.45	4.61
Target value	5400MHz	35.8±5%	4.86±5%
Validation value	5290MHz	36.08	4.83
(2019-06-03)	5350MHz	36.11	4.83
	5400MHz	36.12	4.83
Target value	5600MHz	35.5±5%	5.07±5%
Validation value	5600MHz	35.78	5.03
(2019-06-04)	5670MHz	35.81	5.03
	5700MHz	35.82	5.03
Target value	5800MHz	35.3±5%	5.27±5%
Validation value	5750MHz	35.34	5.24
(2019-06-05)	5760MHz	35.34	5.24
(∠019-06-05)	5800MHz	35.36	5.24

Dielectric Performance of Body Tissue Simulating Liquid

	Temperature: 23.2°C	; Humidity: 64%;	
1	Frequency	Permittivity ε	Conductivity σ (S/m)
Target value	850MHz	55.2±5%	0.97±5%
	825MHz	55.29	0.95
Validation value	835MHz	55.31	0.95
(2019-05-15)	845MHz	55.31	0.95
	850MHz	55.31	0.95
Target value	1800MHz	53.3±5%	1.52±5%
Tangot Valuo	1710MHz	53.07	1.51
	1730MHz	53.09	1.51
Validation value			
(2019-05-22)	1750MHz	53.10	1.51
	1760MHz	53.10	1.51
	1800MHz	53.12	1.51
Target value	1900MHz	53.3±5%	$1.52 \pm 5\%$
	1850MHz	53.02	1.49
Validation value	1880MHz	53.06	1.49
(2019-05-27)	1900MHz	53.06	1.49
	1910MHz	53.08	1.49
Target value	2450MHz	52.7±5%	1.95±5%
<u> </u>	2410MHz	52.63	1.97
Validation value	2440MHz	52.66	1.98
(2019-05-29)	2450MHz	52.66	1.98
	2460MHz	52.67	1.98
Target value	2600MHz	52.5±5%	2.16±5%
	2500MHz	52.31	2.16
Validation value	2530MHz	52.34	2.16
(2019-05-31)	2540MHz	52.35	2.17
(==:=====;	2570MHz	52.38	2.18
	2600MHz	52.43	2.18
Target value	5200MHz	$49.0 \pm 5\%$	$5.30 \pm 5\%$
Validation value	5200MHz	49.41	5.17
(2019-06-03)	5220MHz	49.40	5.17
,	5240MHz	49.37	5.17
Target value	5400MHz	$48.7 \pm 5\%$	$5.53 \pm 5\%$
Validation value	5290MHz	47.18	5.54
(2019-06-03)	5350MHz	47.17	5.54
,	5400MHz	47.16	5.54
Target value	5600MHz	48.5±5%	5.77±5%
Validation value	5600MHz	48.24	5.67
(2019-06-04)	5670MHz	48.26	5.67
·	5700MHz	48.26	5.67
Target value	5800MHz	48.2±5%	6.0±5%
Validation value	5750MHz	48.11	5.86
(2019-06-05)	5760MHz	48.11	5.87
	5800MHz	48.11	5.87

Dielectric Performance of Head Tissue Simulating Liquid

<u> </u>								
Temperature: 23.2°C; Humidity: 64%;								
1	Frequency	Conductivity σ (S/m)						
Target value	2450MHz	39.2±5%	1.80±5%					
	2400MHz	39.38	1.83					
Validation value	2440MHz	29.36	1.82					
(2019-07-08)	2450MHz	39.35	1.82					
	2480MHz	39.29	1.82					

Dielectric Performance of Body Tissue Simulating Liquid

Temperature: 23.2°C; Humidity: 64%;								
1	Frequency Permittivity ε Conductivity σ (
Target value	2450MHz	52.7±5%	1.95±5%					
	2400MHz	52.78	1.96					
Validation value	2440MHz	52.72	1.95					
(2019-07-08)	2450MHz	52.70	1.95					
	2480MHz	52.65	1.95					

SAR System validation

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of ±10%. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

The following procedure, recommended for performing validation tests using box phantoms is based on the procedures described in the IEEE standard P1528. Setup according to the setup diagram below:

With the SG and Amp and with directional coupler in place, set up the source signal at the relevant frequency and use a power meter to measure the power at the end of the SMA cable that you intend to connect to the balanced dipole. Adjust the SG to make this, say, 0.01W (10 dBm). If this level is too high to read directly with the power meter sensor, insert

a calibrated attenuator (e.g. 10 or 20 dB) and make a suitable correction to the power meter reading.

- Note 1: In this method, the directional coupler is used for monitoring rather than setting the exact feed power level. If, however, the directional coupler is used for power measurement, you should check the frequency range and power rating of the coupler and measure the coupling factor (referred to output) at the test frequency using a VNA.
- Note 2: Remember that the use of a 3dB attenuator (as shown in Figure 8.1 of P1528) means that you need an RF amplifier of 2 times greater power for the same feed power. The other issue is the cable length. You might get up to 1dB of loss per meter of cable, so the cable length after the coupler needs to be quite short.
- Note 3: For the validation testing done using CW signals, most power meters are suitable. However, if you are measuring the output of a modulated signal from either a signal generator or a handset, you must ensure that the power meter correctly reads the modulated signals.

The measured 1-gram averaged SAR values of the device against the phantom are provided in Tables 5 and Table 6. The humidity and ambient temperature of test facility were 64% and 23.2°C respectively. The body phantom were full of the body tissue simulating liquid. The EUT was supplied with full-charged battery for each measurement.

The distance between the back of the EUT and the bottom of the flat phantom is 10 mm (taking into account of the IEEE 1528 and the place of the antenna).

Head SAR system validation (1g)

Frequency	Duty cycle	Target value	Test value (W/kg)		
Frequency	Duty Cycle	(W/kg)	10 mW	1W	
850MHz(2019-05-15)	1:1	9.61±10%	0.0880	8.80	
1800MHz(2019-05-22)	1:1	37.35±10%	0.3816	38.16	
1900MHz(2019-05-27)	1:1	39.35±10%	0.3745	37.45	
2450MHz(2019-05-29)	1:1	52.67±10%	0.5034	50.34	
2600MHz(2019-05-31)	1:1	55.47±10%	0.5595	55.95	
5200MHz(2019-06-03)	1:1	164.1±10%	1.5476	154.76	
5400MHz(2019-06-03)	1:1	171.25±10%	1.5418	154.18	
5600MHz(2019-06-04)	1:1	178.98±10%	1.6526	165.26	
5800MHz(2019-06-05)	1:1	185.54±10%	1.7547	175.47	
2450MHz(2019-05-29)	1:1	52.67±10%	0.5575	55.75	

Body SAR system validation (1g)

F	D 11-	Target value	Test value (W/kg)		
Frequency	Duty cycle	(W/kg)	10 mW 0.0940 0.3886 0.3924	1W	
850MHz(2019-05-15)	1:1	9.88±10%	0.0940	9.40	
1800MHz(2019-05-22)	1:1	37.68±10%	0.3886	38.86	
1900MHz(2019-05-27)	1:1	38.84±10%	0.3924	39.24	
2450MHz(2019-05-29)	1:1	51.42±10%	0.4785	47.85	

2600MHz(2019-05-31)	1:1	53.45±10%	0.5471	54.71
5200MHz(2019-06-03)	1:1	155.78±10%	1.4810	148.10
5400MHz(2019-06-03)	1:1	160.24±10%	1.4705	147.05
5600MHz(2019-06-04)	1:1	167.61 ± 10%	1.6197	161.97
5800MHz(2019-06-05)	1:1	170.49±10%	1.7817	178.17
2450MHz(2019-05-29)	1:1	51.42±10%	0.5653	56.53

^{*} Note: Target value was referring to the measured value in the calibration certificate of reference dipole. Note: All SAR values are normalized to 1W forward power.

6. SAR measurement procedure

The SAR test against the head phantom was carried out as follow:

Establish a call with the maximum output power with a base station simulator, the connection between the EUT and the base station simulator is established via air interface.

After an area scan has been done at a fixed distance of 2mm from the surface of the phantom on the source side, a 3D scan is set up around the location of the maximum spot

SAR. First, a point within the scan area is visited by the probe and a SAR reading taken at the start of testing. At the end of testing, the probe is returned to the same point and a second reading is taken. Comparison between these start and end readings enables the power drift during measurement to be assessed.

Above is the scanning procedure flow chart and table from the IEEEp1528 standard. This is the procedure for which all compliant testing should be carried out to ensure that all variations of the device position and transmission behavior are tested.

7. Conducted RF Output Power

7.1 GSM Conducted Power

GSM850			t-Averaged Power (dBn	•	Division	Frame-Averaged output Power (dBm)		
GSI	VIOOU		,		Contons.	20011	054011	
		128CH	190CH	251CH	Factors	28CH	251CH	
GSN	I (CS)	32.00	32.40	32.20	-9.19	22.81 23.21 23.01		
	1 Tx Slot	32.00	31.60	32.20	-9.19	22.81	22.41	23.01
GPRS	2 Tx Slots	29.34	29.57	29.49	-6.13	23.21	23.44	23.36
(GMSK)	3 Tx Slots	27.45	27.71	27.52	-4.42	23.03	23.29	23.10
	4 Tx Slots	25.86	26.02	25.93	-3.18	22.68	22.84	22.75
	1 Tx Slot	27.4	27.6	27.4	-9.19	18.21	18.41	18.21
EDGE	2 Tx Slots	25.45	25.78	25.62	-6.13	19.32	19.65	19.49
(8PSK)	3 Tx Slots	23.68	23.82	23.71	-4.42	19.26	19.40	19.29
	4 Tx Slots	22.42	22.64	22.53	-3.18	19.24	19.46	19.35
		Burs	t-Averaged	output	Division	Frame-Averaged output Power		
GSN	/l1900	Power (dBm)				(dBm)		
		512CH	661CH	810CH	Factors	512CH	661CH	810CH
GSM	1 (CS)	512CH 29.30	661CH 29.40	810CH 29.60	Factors -9.19	512CH 20.11	661CH 20.21	810CH 20.41
GSM	1 (CS) 1 Tx Slot							
GSM GPRS	1	29.30	29.40	29.60	-9.19	20.11	20.21	20.41
	1 Tx Slot	29.30 28.70	29.40 28.80	29.60 28.50	-9.19 -9.19	20.11 19.51	20.21 19.61	20.41 19.31
GPRS	1 Tx Slot 2 Tx Slots	29.30 28.70 26.56	29.40 28.80 26.72	29.60 28.50 26.47	-9.19 -9.19 -6.13	20.11 19.51 20.43	20.21 19.61 20.59	20.41 19.31 20.34
GPRS	1 Tx Slot 2 Tx Slots 3 Tx Slots	29.30 28.70 26.56 24.67	29.40 28.80 26.72 24.75	29.60 28.50 26.47 24.58	-9.19 -9.19 -6.13 -4.42	20.11 19.51 20.43 20.25	20.21 19.61 20.59 20.33	20.41 19.31 20.34 20.16
GPRS	1 Tx Slot 2 Tx Slots 3 Tx Slots 4 Tx Slots	29.30 28.70 26.56 24.67 23.55	29.40 28.80 26.72 24.75 23.64	29.60 28.50 26.47 24.58 23.48	-9.19 -9.19 -6.13 -4.42 -3.18	20.11 19.51 20.43 20.25 20.37	20.21 19.61 20.59 20.33 20.46	20.41 19.31 20.34 20.16 20.30
GPRS (GMSK)	1 Tx Slot 2 Tx Slots 3 Tx Slots 4 Tx Slots 1 Tx Slot	29.30 28.70 26.56 24.67 23.55 24.50	29.40 28.80 26.72 24.75 23.64 25.60	29.60 28.50 26.47 24.58 23.48 25.40	-9.19 -9.19 -6.13 -4.42 -3.18 -9.19	20.11 19.51 20.43 20.25 20.37 15.31	20.21 19.61 20.59 20.33 20.46 16.41	20.41 19.31 20.34 20.16 20.30 16.21

Note: Per KDB 447498 D01 v06, the maximum output power channel is used for SAR testing and for further SAR test reduction.

For hotspot SAR, EUT was performed at GPRS Class 12 multi-slots(4Tx) mode

For Head and Body-worn SAR testing, EUT was set in GSM Voice mode for both GSM850 and GSM1900

Timeslot consignations

No. Of Slots	Slot 1	Slot 2	Slot 3	Slot 4
Slot Consignation	1Up4Down	2UpDown	3UpDown	4Up1Down
Duty Cycle	1:8	1:4	1:2.67	1:2
Crest Factor	-9.03dB	-6.02dB	-4.26dB	-3.01dB

7.2 WCDMA Conducted output Power

UM	TS1900	Av	Average Power (dBm)				
(B	and II)	9262CH	9400CH	9538cH			
WCDMA	12.2kbps RMC	22.15	22.01	22.34			
	Subtest 1	22.02	21.90	22.16			
HSDPA	Subtest 1 Subtest 2 Subtest 3 Subtest 4 Subtest 5 Subtest 5 Subtest 5 Subtest 5 Subtest 5 Subtest 6 Subtest 7 Subtest 7 Subtest 8 Subtest 9 Subt	22.03					
ПОДРА	Subtest 3	21.77	21.67	21.86			
	Subtest 4	21.65	9262CH 9400CH 22.15 22.01 22.02 21.90 21.91 21.81 21.77 21.67 21.65 21.54 21.53 21.42 21.41 21.33 21.29 21.18 21.05 20.94 Average Power (dBm 4132CH 4183CH 21.06 21.54 20.98 21.34 20.86 21.21 20.77 21.06 20.64 20.92 20.53 20.78 20.41 20.67 20.29 20.53	21.73			
	Subtest 1	21.53	21.42	21.61			
	Subtest 2	21.41	21.33	21.53			
HSUPA	Subtest 3	21.29	21.18	21.37			
	Subtest 4	21.16	21.07	21.26			
	Subtest 5	21.05	20.94	21.13			
UM	ITS850	Av	erage Power (d	Bm)			
(B:	and V)	4132CH	4183CH	4233CH			
WCDMA	12.2kbps RMC	21.06	21.54	21.48			
	Subtest 1	20.98	21.34	21.23			
HSDPA	Subtest 2	20.86	21.21	21.11			
HISDFA	Subtest 3	20.77	21.06	20.93			
	Subtest 4	20.64	20.92	20.84			
	Subtest 1	20.53	20.78	20.69			
	Subtest 2	20.41	20.67	20.55			
HSUPA	Subtest 3	20.29	20.53	20.41			
	Subtest 4	20.17	20.40	20.28			
	Subtest 5	20.05	20.27	20.16			

Note:

- 1. WCDMA SAR was tested under RMC 12.2kbps with HSPA Inactive per KDB Publication 941225 D01v03r01.HSPA SAR was not requires since the average output power of the HSPA subtests was not more than 0.25dB higher than the RMC level and SAR was less than 1.2W/kg.
- 2. It is expected by the manufacturer that MPR for some HSPA subtests may be up to 2dB more than specified by 3GPP, but also as low as 0dB according to the chipset implementation in this model

7.3 LTE Conducted peak output Power

LTE Test Configurations

The CMW500 Wide Band Radio Communication Tester was used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR test were performed with the same number of RB and RB offsets transmitting on all frames.

1) Spectrum Plots for RB configurations

A properly configured base station simulator was used for LTE output power measurements and SAR testing. Therefore, spectrum plots for RB configurations were not required to be included in this report.

2) MPR

When MPR is implemented permanently within the UE, regardless of network requirements, only those RB configurations allowed by 3GPP for the channel bandwidth and modulation combinations may be tested with MPR active. Configurations with RB allocations less than the RB thresholds required by 3GPP must be tested without MPR.

The allowed Maximum Power Reduction(MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101:

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3

Modulation	Channel	Channel bandwidth / Transmission bandwidth configuration [RB]								
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz				
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1			
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1			
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2			

3)A-MPR LTE procedures for SAR testing

A-MPR(Additional MPR) has been disabled for all SAR tests by using Network Signaling Value of "NS 01" on the base station simulator.

4)LTE procedures for SAR testing

A) Largest channel bandwidth standalone SAR test

requirements i) QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

5)LTE CA operation

4.3.1.1.7A FDD reference test frequencies for CA in operating band 7

Table 4.3.1.1.7A-1: Test frequencies for CA_7C

Range	CC-Combo / NRB_agg [RB]		CC1 Note1					CC2 Note1			
		BW [RB]	NuL	f∪∟ [MHz]	NoL	for [MHz]	BW [RB]	NUL	ful [MHz]	NoL	fol [MHz]
Low	50+100	50	20805	2505.5	2805	2625.5	100	20949	2519.9	2949	2639.9
		100	20850	2510	2850	2630	50	20994	2524.4	2994	2644.4
	75+50	75	20825	2507.5	2825	2627.5	50	20945	2519.5	2945	2639.5
	75+75	75	20825	2507.5	2825	2627.5	75	20975	2522.5	2975	2642.5
	75+100	75	20828	2507.8	2828	2627.8	100	20999	2524.9	2999	2644.9
		100	20850	2510	2850	2630	75	21021	2527.1	3021	2647.1
	100+100	100	20850	2510	2850	2630	100	21048	2529.8	3048	2649.8
M id	50+100	50	21006	2525.6	3006	2645.6	100	21150	2540	3150	2660
		100	21051	2530.1	3051	2650.1	50	21195	2544.5	3195	2664.5
	75+50	75	21051	2530.1	3051	2650.1	50	21171	2542.1	3171	2662.1
	75+75	75	21025	2527.5	3025	2647.5	75	21175	2542.5	3175	2662.5
	75+100	75	21003	2525.3	3003	2645.3	100	21174	2542.4	3174	2662.4
		100	21026	2527.6	3026	2647.6	75	21197	2544.7	3197	2664.7
	100+100	100	21001	2525.1	3001	2645.1	100	21199	2544.9	3199	2664.9
High	50+100	50	21206	2545.6	3206	2665.6	100	21350	2560	3350	2680
		100	21251	2550.1	3251	2670.1	50	21395	2564.5	3395	2684.5
	75+50	75	21277	2552.7	3277	2672.7	50	21397	2564.7	3397	2684.7
	75+75	75	21225	2547.5	3225	2667.5	75	21375	2562.5	3375	2682.5
	75+100	75	21179	2542.9	3179	2662.9	100	21350	2560	3350	2680
		100	21201	2545.1	3201	2665.1	75	21372	2562.2	3372	2682.2
	100+100	100	21152	2540.2	3152	2660.2	100	21350	2560	3350	2680
Note 1:	Carriers in inc	reasing f	requency	order.						'	

1. LTE Band 2 Conducted Power Test Verdict:

L'	TE FDD Bar	nd 2		Conducted Power(dBm)			
Dan desidab	Madulation	RB	RB	Cł	nannel/Frequen	су	Tunaum
Bandwidth	Modulation	size	offset	18607/1850.7	18900/1880	19193/1909.3	Tune up
		1	0	23.15	23.14	23.07	
		1	3	23.03	22.75	22.97	22.5 \pm 1.0
		1	5	22.91	22.67	22.75	
	QPSK	3	0	22.75	22.66	22.67	
		3	2	22.63	22.55	22.42	22.0 \pm 1.0
		3	3	22.54	22.48	22.47	
1.4MHz		6	0	22.36	22.45	22.38	22.0 ± 1.0
1.4111172		1	0	22.09	22.09	21.97	
		1	3	22.07	22.05	21.84	21.5 ± 1.0
		1	5	21.95	22.01	21.68	
	16QAM	3	0	2184	21.66	21.83	
		3	2	21.62	21.61	21.69	21.0±1.0
		3	3	21.54	21.55	21.64	
		6	0	21.22	21.29	21.26	20.5 \pm 1.0
Bandwidth	Modulation	RB	RB	Channel/Frequency		Tungun	
Bandwidth	Modulation	size	offset	18615/1851.5	18900/1880	19185/1908.5	Tune up
		1	0	23.02	22.94	23.02	
		1	7	22.96	22.81	22.93	22.5 \pm 1.0
		1	14	22.76	22.9	22.92	
	QPSK	8	0	22.66	22.72	22.58	
		8	4	22.4	22.69	22.54	22.0 \pm 1.0
		8	7	22.51	22.65	22.47	
3MHz		15	0	22.45	22.52	22.54	22.0 ± 1.0
SIVITZ		1	0	22.19	22.19	22.09	
		1	7	21.94	21.95	22.07	21.5 ± 1.0
16QAM	1	14	22	22.07	22.05		
	8	0	21.81	21.79	21.68		
		8	4	21.61	21.72	21.61	21.0±1.0
		8	7	21.62	21.61	21.6	
		15	0	21.3	21.29	21.23	20.5 ± 1.0

	LTE FDD Ba	nd 2			Conducted	Power(dBm)	
Dan desideb	Modulation	RB	RB	Ch	annel/Frequer	псу	T.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Bandwidth	Modulation	size	offset	18625/1852.5	18900/1880	19175/1907.5	Tune up
		1	0	23.04	22.91	22.94	
	j	1	13	22.83	22.75	22.89	22.5 \pm 1.0
	j	1	24	22.77	22.8	22.83	
	QPSK	12	0	22.56	22.72	22.65	
	j	12	6	22.52	22.68	22.51	22.0 ± 1.0
		12	13	22.48	22.51	22.47	
5MHz	·	25	0	22.4	22.6	22.57	22.0 ± 1.0
SIVITZ		1	0	22.09	22.19	22.11	
		1	13	22.05	22.06	21.99	21.5 ± 1.0
		1	24	21.87	22.01	21.88	
	16QAM	12	0	21.85	21.69	21.83	
		12	6	21.64	21.6	21.61	21.0 ± 1.0
		12	13	21.76	21.56	21.75	
	·	25	0	21.21	21.2	21.28	20.5 \pm 1.0
Dandwidth	Modulation	RB	RB	Channel/Frequency			Tungun
Bandwidth	Modulation	size	offset	18650/1855	18900/1880	19150/1905	Tune up
		1	0	22.97	23.13	23.08	
		1	25	22.78	22.79	22.81	22.5 \pm 1.0
		1	49	22.86	22.93	22.75	
	QPSK	25	0	22.65	22.73	22.76	
		25	13	22.57	22.45	22.61	22.0 ± 1.0
		25	25	22.51	22.71	22.53	
10MHz		50	0	22.42	22.35	22.52	22.0 ± 1.0
IUWINZ		1	0	22.2	22.05	22.15	
16QAM	1	25	22.09	21.93	22.06	21.5 ± 1.0	
		1	49	21.95	22.01	22.01	
	16QAM	25	0	21.84	21.78	21.82	
		25	13	21.84	21.67	21.71	21.0 ± 1.0
		25	25	21.65	21.62	21.56	
		50	0	21.25	21.3	21.2	20.5 ± 1.0

	LTE FDD Ba	and 2		Conducted Power(dBm)			
Dan duri déla	Modulation	RB	RB	Ch	annel/Frequer	ісу	Tungun
Bandwidth	iviodulation	size	offset	18675/1857.5	18900/1880	19125/1902.5	Tune up
		1	0	23.02	23.13	22.32	
		1	38	22.99	23.04	22.77	22.5 \pm 1.0
		1	74	23.01	22.87	22.81	
	QPSK	36	0	22.79	22.66	22.8	
		36	18	22.65	22.52	22.68	22.0 ± 1.0
		36	39	22.55	22.49	22.49	
15MHz		75	0	22.54	22.49	22.36	22.0 ± 1.0
I DIVINZ		1	0	22.19	22.18	22.1	
		1	38	22.11	22.07	22.04	21.5 ± 1.0
		1	74	22.1	22.03	21.86	
	16QAM	36	0	21.78	21.85	21.82	
		36	18	21.59	21.66	21.79	21.0 ± 1.0
		36	39	21.75	21.57	21.61	
		75	0	21.25	21.22	21.26	20.5 ± 1.0
Danadari déla	Madulation	RB	RB	Channel/Frequency			Tunaun
Bandwidth	Modulation	size	offset	18700/1860	18900/1880	19100/1900	Tune up
		1	0	22.93	23.21	23.05	
		1	50	23.14	22.75	22.79	22.5 \pm 1.0
		1	99	22.87	23.13	23.01	
	QPSK	50	0	22.76	22.70	22.62	
		50	25	22.68	22.65	22.6	22.0 ± 1.0
		50	50	22.41	22.51	22.51	
2011-		100	0	22.52	22.59	22.46	22.0 ± 1.0
20MHz		1	0	22.17	22.11	22.03	
16Q.		1	50	21.94	22.08	21.99	21.5 ± 1.0
		1	99	22.02	21.94	21.84	
	16QAM	50	0	21.75	21.84	21.7	
		50	25	21.74	21.67	21.68	21.0±1.0
		50	50	21.7	21.52	21.64	
		100	0	21.2	21.3	21.21	20.5 \pm 1.0

2. LTE Band 4 Conducted Power Test Verdict:

	LTE FDD Ban	d 4			Conducted Po	ower(dBm)	
Don dwidth	Modulation	RB	RB	C	hannel/Frequenc	су	Tune up
Bandwidth	IVIOQUIALIOTI	size	offset	19957/1710.7	20175/1732.5	20393/1754.3	Turie up
		1	0	22.05	22.01	21.99	
		1	3	21.88	21.92	21.89	21.5 ± 1.0
		1	5	22.02	21.84	21.82	
	QPSK	3	0	21.72	21.68	21.77	
		3	2	21.64	21.64	21.63	21.0 ± 1.0
		3	3	21.62	21.61	21.73	
1.4MHz		6	0	21.51	21.48	21.55	21.0 ± 1.0
1.411172		1	0	21.19	21.28	21.27	
		1	3	21.05	21.2	21.04	20.5 \pm 1.0
		1	5	21.07	21.08	21.2	
	16QAM	3	0	20.85	20.95	20.85	
		3	2	20.7	20.8	20.75	20.0 ± 1.0
		3	3	20.81	20.85	20.74	
		6	0	20.55	20.64	20.6	20.0 ± 1.0
Bandwidth	Modulation	RB	RB	Channel/Frequency			Tungun
Bandwidth	Modulation	size	offset	19965/1711.5	20175/1732.5	20385/1753.5	Tune up
		1	0	22.01	21.92	22.06	
		1	7	21.92	21.85	22.01	21.5 ± 1.0
		1	14	21.88	21.82	21.99	
	QPSK	8	0	21.78	21.76	21.83	
		8	4	21.7	21.68	21.8	21.0 ± 1.0
		8	7	21.61	21.69	21.73	
3MHz		15	0	21.47	21.53	21.54	21.0 ± 1.0
SIVIFIZ		1	0	21.27	21.22	21.31	
		1	7	21.07	21.2	21.12	20.5 \pm 1.0
		1	14	21.11	21.14	21.26	
	16QAM	8	0	20.95	20.86	20.91	
		8	4	20.74	20.7	20.82	20.0 ± 1.0
		8	7	20.71	20.75	20.78	
		15	0	20.59	20.63	20.62	20.0 ± 1.0

	LTE FDD Ban	d 4			Conducted Po	ower(dBm)	
Dandwidth	Modulation	RB	RB	C	hannel/Frequenc	у	Tungun
Bandwidth	Modulation	size	offset	19975/1712.5	20175/1732.5	20375/1752.5	Tune up
		1	0	22.05	22.1	22.08	
		1	13	22.01	21.98	22.01	21.5 ± 1.0
		1	24	21.92	21.87	22	
	QPSK	12	0	21.74	21.79	21.79	
		12	6	21.66	21.69	21.72	21.0 ± 1.0
		12	13	21.57	21.63	21.65	
5MHz		25	0	21.46	21.48	21.47	21.0 ± 1.0
ЭМП		1	0	21.19	21.13	21.26	
		1	13	21.08	21.06	21.11	20.5 \pm 1.0
		1	24	21.02	21.1	21.02	
	16QAM	12	0	20.83	20.92	20.81	20.0±1.0
		12	6	20.71	20.81	20.73	
		12	13	20.77	20.82	20.75	
		25	0	20.61	20.6	20.6	20.0 ± 1.0
Bandwidth	Modulation	RB	RB	Channel/Frequency		Tungun	
Danuwium	Modulation	size	offset	20000/1715	20175/1732.5	20350/1750	Tune up
		1	0	21.99	21.95	22.12	
		1	25	21.93	21.93	21.95	21.5 ± 1.0
		1	49	21.91	21.87	22.05	
	QPSK	25	0	21.75	21.86	21.77	
		25	13	21.6	21.66	21.73	21.0 ± 1.0
		25	25	21.7	21.81	21.72	
10MHz		50	0	21.49	21.47	21.53	21.0 ± 1.0
IUWINZ		1	0	21.24	21.13	21.24	
16QAM	1	25	21.11	21.05	21.05	20.5 \pm 1.0	
		1	49	21.03	21.1	21.2	1
	16QAM	25	0	20.84	20.94	20.89	20.0±1.0
		25	13	20.72	20.93	20.71	
		25	25	20.8	20.83	20.75	
		50	0	20.64	20.64	20.63	20.0 ± 1.0

	LTE FDD Ban	d 4		Conducted Power(dBm)			
Dandwidth	Modulation	RB	RB	C	hannel/Frequenc	у	Tungun
Bandwidth	iviodulation	size	offset	20025/1717.5	20175/1732.5	20325/1747.5	Tune up
		1	0	22.06	21.95	22.09	
		1	38	21.96	21.91	22.01	21.5 ± 1.0
		1	74	21.87	21.86	21.92	
	QPSK	36	0	21.75	21.72	21.68	
		36	18	21.72	21.68	21.63	21.0 ± 1.0
		36	39	21.67	21.63	21.62	
45MU=		75	0	21.5	21.5	21.54	21.0 ± 1.0
15MHz		1	0	21.18	21.28	21.29	
		1	38	21.05	21.22	21.13	20.5 ± 1.0
		1	74	21.14	21.15	21.15	
	16QAM	36	0	20.92	20.93	20.85	
		36	18	20.73	20.85	20.81	20.0 ± 1.0
		36	39	20.85	20.7	20.78	
		75	0	20.64	20.56	20.57	20.0 ± 1.0
Dandwidth	Modulation	RB	RB	Channel/Frequency		Tungun	
Bandwidth	Modulation	size	offset	20050/1720	20175/1732.5	20300/1745	Tune up
		1	0	22.02	22.28	22.16	
		1	50	22.01	22.08	22.12	21.5 ± 1.0
		1	99	21.98	22.01	22.05	
	QPSK	50	0	21.8	21.75	21.79	
		50	25	21.7	21.69	21.76	21.0 ± 1.0
		50	50	21.75	21.73	21.66	
20MU-		100	0	21.51	21.54	21.51	21.0 ± 1.0
20MHz		1	0	21.24	21.3	21.24	
16QAM		1	50	21.12	21	21.13	20.5 \pm 1.0
		1	99	21.09	21.02	21.19	-
	16QAM	50	0	20.94	20.88	20.92	20.0±1.0
		50	25	20.8	20.78	20.78	
		50	50	20.91	20.81	20.89	
		100	0	20.59	20.59	20.63	20.0 ± 1.0

3. LTE Band 5 Conducted Power Test Verdict

L'	TE FDD Bar	nd 5		Conducted Power(dBm)			
Daniel del	Madulatian	RB	RB	С	hannel/Frequenc	cy .	T
Bandwidth	Modulation	size	offset	20407/824.7	20525/836.5	20643/848.3	Tune up
		1	0	22.53	22.61	22.52	
		1	3	22.48	22.64	22.46	22.0 ± 1.0
		1	5	22.59	22.58	22.61	
	QPSK	3	0	22.19	22.35	22.22	
		3	2	22.32	22.29	22.2	21.5 ± 1.0
		3	3	22.15	22.26	22.31	
1.4MHz		6	0	22.06	22.03	22.1	21.5±1.0
1.4111172		1	0	21.76	21.87	21.89	
		1	3	21.88	21.81	21.77	21.0 ± 1.0
		1	5	21.9	21.89	21.81	
	16QAM	3	0	21.62	21.62	21.48	
		3	2	21.47	21.51	21.52	21.0 ± 1.0
		3	3	21.51	21.62	21.6	
		6	0	21.27	21.21	21.27	20.5 ± 1.0
Bandwidth	Modulation	RB	RB	Channel/Frequency			Tune up
Danuwium	Modulation	size	offset	20415/825.5	20525/836.5	20635/847.5	rune up
		1	0	22.54	22.53	22.56	
		1	7	22.55	22.48	22.47	22.0 ± 1.0
		1	14	22.49	22.59	22.62	
	QPSK	8	0	22.25	22.17	22.26	
		8	4	22.25	22.34	22.22	21.5 ± 1.0
		8	7	22.16	22.17	22.18	
3MHz		15	0	22.1	22.07	22.02	21.5 ± 1.0
SIVITIZ		1	0	21.87	21.71	21.78	
	16QAM	1	7	21.77	21.86	21.75	21.0 ± 1.0
		1	14	21.75	21.81	21.8	
		8	0	21.53	21.62	21.46	
	8	4	21.55	21.57	21.51	21.0 ± 1.0	
		8	7	21.46	21.59	21.47	
		15	0	21.2	21.3	21.27	20.5 ± 1.0

	LTE FDD Ban	d 5			Conducted P	ower(dBm)	
Dan de didde	Madulation	RB	RB	С	hannel/Frequenc	су	Tunaun
Bandwidth	Modulation	size	offset	20425/826.5	20525/836.5	20625/846.5	Tune up
		1	0	22.64	22.57	22.61	
		1	13	22.59	22.6	22.64	22.0 ± 1.0
		1	24	22.49	22.48	22.64	
	QPSK	12	0	22.33	22.34	22.25	
		12	6	22.23	22.23	22.33	21.5 ± 1.0
		12	13	22.23	22.17	22.19	
5MHz		25	0	21.96	22.06	21.97	21.5 ± 1.0
SIVIFIZ		1	0	21.86	21.76	21.83	
		1	13	21.9	21.82	21.87	21.0 ± 1.0
		1	24	21.83	21.86	21.77	
	16QAM	12	0	21.61	21.59	21.6	
		12	6	21.58	21.58	21.65	21.0 ± 1.0
		12	13	21.63	21.51	21.49	
		25	0	21.28	21.23	21.2	20.5 ± 1.0
Dan duvi déla	Madulation	RB	RB	Channel/Frequency			Tunaun
Bandwidth	Modulation	size	offset	20450/829	20525/836.5	20600/844	Tune up
		1	0	22.59	22.75	22.63	
		1	25	22.52	22.61	22.46	22.0 ± 1.0
		1	49	22.56	22.5	22.62	
	QPSK	25	0	22.35	22.34	22.31	
		25	13	22.31	22.16	22.16	21.5 ± 1.0
		25	25	22.23	22.29	22.24	
40MU=		50	0	21.98	22.08	22.01	21.5 ± 1.0
10MHz		1	0	21.91	21.9	21.88	
		1	25	21.75	21.76	21.81	21.0 ± 1.0
16QAN		1	49	21.86	21.73	21.73	
	16QAM	25	0	21.65	21.64	21.59	
		25	13	21.61	21.54	21.54	21.0 ± 1.0
		25	25	21.58	21.45	21.5	
		50	0	21.22	21.3	21.29	20.5 ± 1.0

4. LTE Band 7 Conducted Power Test Verdict:

	LTE FDD Ban	d 7		Conducted Power(dBm)			
Don duvidab	Modulation	RB	RB	Cł	nannel/Frequen	су	Tungun
Bandwidth	Modulation	size	offset	20775/2502.5	21100/2535	21425/2567.5	Tune up
		1	0	22.23	22.56	22.31	
		1	13	22.3	22.49	22.38	22.0 ± 1.0
		1	24	22.5	22.46	22.28	
	QPSK	12	0	21.92	21.94	22.01	
		12	6	21.92	22.14	22.09	21.5 ± 1.0
		12	13	21.94	21.95	21.99	
5MHz		25	0	21.81	21.76	21.81	21.0±1.0
SIVITIZ		1	0	21.69	21.36	21.68	
		1	13	21.47	21.56	21.41	21.0 ± 1.0
		1	24	21.6	21.5	21.59	
	16QAM	12	0	21.16	20.95	21.1	
		12	6	20.99	21.13	21.08	20.5 \pm 1.0
		12	13	21.04	21.08	21.03	
		25	0	20.86	20.87	20.87	20.0 ± 1.0
Bandwidth	Modulation	RB	RB	Channel/Frequency			Tune up
Danawiatii	Woddiation	size	offset	20800/2505	21100/2535	21400/2565	Turie up
		1	0	22.49	22.58	22.36	
		1	25	22.34	22.51	22.45	22.0 ± 1.0
		1	49	22.28	22.38	22.47	
	QPSK	25	0	22.06	22.05	22.13	
		25	13	21.95	22.03	22.02	21.5 ± 1.0
		25	25	22.06	22.04	21.98	
10MHz		50	0	21.77	21.77	21.81	21.0 ± 1.0
10141112		1	0	21.65	21.46	21.41	
	1	25	21.63	21.58	21.33	21.0 ± 1.0	
		1	49	21.3	21.58	21.59	
	16QAM	25	0	21.07	21.15	21.11	20.5±1.0
		25	13	21.1	21.01	21.18	
		25	25	21.06	21.05	21.17	
		50	0	20.81	20.86	20.82	20.0 ± 1.0

	LTE FDD Ban	d 7		Conducted Power(dBm)			
Bandwidth	Modulation	RB	RB	CI	nannel/Frequen	су	Tune up
Danuwiuin	Modulation	size	offset	20825/2507.5	21100/2535	21375/2562.5	rane ap
		1	0	22.23	22.61	22.4	
		1	38	22.36	22.38	22.39	22.0 ± 1.0
		1	74	22.23	22.39	22.29]
QPSK	QPSK	36	0	22.14	21.93	22.1	
		36	18	22.08	22.09	22.12	21.5±1.0
		36	39	21.92	21.98	21.92	1
15MHz		75	0	21.84	21.85	21.78	21.0 ± 1.0
I SIVIFIZ		1	0	21.52	21.39	21.62	
		1	38	21.35	21.63	21.41	21.0 ± 1.0
		1	74	21.54	21.38	21.69	_
	16QAM	36	0	20.97	20.96	21.08	20.5±1.0
		36	18	21.08	21.06	21.1	
		36	39	21.05	21.11	21.04	
		75	0	20.88	20.87	20.89	20.0 ± 1.0
Bandwidth	Modulation	RB	RB	CI	Channel/Frequency		Tungun
Dangwigth	Modulation	size	offset	20850/2510	21100/2535	21350/2560	Tune up
		1	0	22.65	22.88	22.75	
		1	50	22.53	22.37	22.47	22.0 \pm 1.
		1	99	22.31	22.47	22.52]
	QPSK	50	0	22.22	22.15	22.31	
		50	25	22.13	21.93	22.13	21.5±1.
		50	50	22.15	21.98	21.91	
20MHz		100	0	21.83	21.83	21.77	21.0±1.
ZUIVITZ		1	0	21.75	21.64	21.69	
		1	50	21.31	21.36	21.52	$21.0\pm1.$
		1	99	21.42	21.62	21.46	1
	16QAM	50	0	21.18	21.15	21.06	20.5±1.0
		50	25	21.03	21.12	20.95	
		50	50	21.1	21.01	20.99	
		100	0	20.86	20.82	20.88	20.0 ± 1.0

7.4 WIFI Conducted Power

WLAN 2.4GHz Band Conducted Power

Channel/Freq.(MHz)	Maximum Conducted Out Power (dBm) Average						
Chamilely Freq.(Minz)	802.11b 802.11g		802.11n(HT20)				
1(2412)	15.12	12.27	12.02				
6(2437)	14.77	11.80	12.19				
11(2462)	15.37	12.85	12.88				
Channel/Freq.(MHz)	Maximum Conducted Out						
Chamilely Freq.(ivinz)	802.11						
3(2422)	12.7						
6(2437)	12.1						
9(2452)	12.0	1					

WLAN 5GHz Band Conducted Power U-NII-1 AVGSA Output Power

Mode	Test Frequency (MHz)	Max Conducted Output Power (dBm)
802.11n (20MHz)	5180	13.53
802.11n (20MHz)	5220	14.02
802.11n (20MHz)	5240	14.44
802.11n (40MHz)	5190	13.42
802.11n (40MHz)	5230	13.55
802.11a (20MHz)	5180	15.19
802.11a (20MHz)	5220	15.82
802.11a (20MHz)	5240	16.22
802.11ac (20MHz)	5180	12.09
802.11ac (20MHz)	5220	12.81
802.11ac (20MHz)	5240	13.19
802.11ac (40MHz)	5190	13.03
802.11ac (40MHz)	5230	13.58
802.11ac (80MHz)	5210	11.54

U-NII-2a AVGSA Output Power

Mode	Test Frequency (MHz)	Max Conducted Output Power (dBm)
802.11n (20MHz)	5260	10.72
802.11n (20MHz)	5300	11.71
802.11n (20MHz)	5320	11.75
802.11n (40MHz)	5270	11.19
802.11n (40MHz)	5310	11.57
802.11a (20MHz)	5260	10.85
802.11a (20MHz)	5300	11.43
802.11a (20MHz)	5320	11.85
802.11ac (20MHz)	5260	10.80
802.11ac (20MHz)	5300	11.24
802.11ac (20MHz)	5320	11.60
802.11ac (40MHz)	5270	11.30
802.11ac (40MHz)	5310	11.62
802.11ac (80MHz)	5290	12.90

U-NII-2C AVGSA Output Power

Mode	Test Frequency (MHz)	Max Conducted Output Power (dBm)
802.11n (20MHz)	5500	11.91
802.11n (20MHz)	5600	12.42
802.11n (20MHz)	5700	13.09
802.11n (40MHz)	5510	12.94
802.11n (40MHz)	5590	13.59
802.11n (40MHz)	5670	14.75
802.11a (20MHz)	5500	12.19
802.11a (20MHz)	5600	12.52
802.11a (20MHz)	5700	13.35
802.11ac (20MHz)	5500	11.80
802.11ac (20MHz)	5600	12.25
802.11ac (20MHz)	5700	13.22
802.11ac (40MHz)	5510	12.67
802.11ac (40MHz)	5590	13.45
802.11ac (40MHz)	5670	14.56
802.11ac (80MHz)	5530	11.68

U-NII-3 AVGSA Output Power

Mode	Test Frequency (MHz)	Max Conducted Output Power (dBm)
802.11a (20MHz)	5745	11.98
802.11a (20MHz)	5785	11.99
802.11a (20MHz)	5825	11.58
802.11n (20MHz)	5745	11.96
802.11n (20MHz)	5785	11.82
802.11n (20MHz)	5825	11.58
802.11n (40MHz)	5755	12.65
802.11n (40MHz)	5795	12.75
802.11ac (20MHz)	5745	11.98
802.11ac (20MHz)	5785	11.83
802.11ac (20MHz)	5825	11.52
802.11ac (40MHz)	5755	13.03
802.11ac (40MHz)	5795	12.78
802.11ac (80MHz)	5775	11.13

Note:

- 1. Per KDB248227 D01 v02r02, choose the highest output power channel to test SAR and determine further SAR exclusion
- 2. For each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 1/4dB higher than those measured at lowest data rate
- 3. Per KDB248227 D01 v02r02, 802.11g /11n-HT20/11n-HT40 is not required. . When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤1.2W/Kg. Thus the SAR can be excluded.

7.5 Bluetooth Output Power

Channel	Frequency	BT3.0 Output Power(dBm)				
Channel	(MHz)	GFSK	π /4-DQPSK	8-DPSK		
CH 0	2402	8.61	8.43	8.64		
CH 39	2441	8.34	8.08	8.31		
CH 78	2480	7.23	7.30	7.44		
Channel	Frequency	BT4.0 Outp	ut Power(dBm)			
Chamer	(MHz)	G				
CH 0	2402	-(0.809			
CH 20	2442	-(
CH 39	2480	-2	2.092			

8. SAR test Exclusion and estimate SAR calculation:

1. According to RSS102 Issue5

SAR evaluation is required if the separation distance between the user and/or bystander and the antenna and/or radiating element of the device is less than or equal to 20 cm, except when the device operates at or below the applicable output power level (adjusted for tune-up tolerance) for the specified separation distance defined in

Frequency		Exemption Limits (mW)									
(MHz)	At separation distance of										
	≤5 mm	10 mm	15 mm	20 mm	25 mm						
≤300	71 mW	101 mW	132 mW	162 mW	193 mW						
450	52 mW	70 mW	88 mW	106 mW	123 mW						
835	17 mW	30 mW	42 mW	55 mW	67 mW						
1900	7 mW	10 mW	18 mW	34 mW	60 mW						
2450	4 mW	7 mW	15 mW	30 mW	52 mW						
3500	2 mW	6 mW	16 mW	32 mW	55 mW						
5800	1 mW	6 mW	15 mW	27 mW	41 mW						

2. Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100MHz to 6GHz at test separation distances ≤ 50mm are determined by:[(max. power of channel, including tune-up tolerance,

mW)/(min. test separation distance, mm)] • [$^{\sqrt{f}}$ (GHz)] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR

- (1) f(GHz) is the RF channel transmit frequency in GHz
- (2) Power and distance are round to the nearest mW and mm before calculation
- (3) The result is rounded to one decimal place for comparison
- (4) If the test separation distance(antenna-user) is < 5mm, 5mm is used for excluded SAR calculation

BT4.0 Max Power (dBm)	mW	Test Distance (mm)	Frequency(GHz)	Exclusion Thresholds
-0.5	0.891	5	2.45	0.279

Per KDB 447498 D01v06 exclusion thresholds is 0.279<3, RF exposure evaluation is not required. BT estimated SAR value=Exclusion Thresholds/7.5=0.279/7.5=**0.037**W/Kg

BT4.0 Max Power (dBm)	Max Power (dBm) mW Test Distance		Frequency(GHz)	Exclusion Thresholds
-0.5	0.891	10	2.45	0.140

Per KDB 447498 D01v06 exclusion thresholds is 0.140<3, RF exposure evaluation is not required.

BT estimated SAR value=Exclusion Thresholds/7.5=0.140/7.5=0.019W/Kg

The estimated SAR value is used for simultaneous transmission analysis.

Antenna Location:

Edge A

Edge D

Antenna-to-User (Edge Side) distance (mm):

Antenna	Front	Back	Edge A	Edge B	Edge C	Edge D
WWAN Main Antenna	2	2	148	9	8	12
WIFI2.4G/BT	2	2	12	71	136	71
WIFI 5G	4.5	2	12	71	136	71

Note: The diagonal distance of the overall section is 15cm.

The Body SAR measurement positions of each band are as below:

Antenna	Front	Back	Edge A	Edge B	Edge C	Edge D
WWAN Antenna Body-worn	Yes	Yes	No	No	No	No
WWAN Antenna hotspot	Yes	Yes	No	Yes	Yes	Yes
WIFI Antenna Body-worn	Yes	Yes	No	No	No	No
WIFI 2.4G Antenna hotspot	Yes	Yes	Yes	Yes	No	No
WIFI 5G Antenna Body-worn	Yes	Yes	No	No	No	No

Note: According to KDB 941225 D06 v02r01, when antenna-to-edge>2.5cm, SAR is not required.

9. Scaling Factor calculation

Operation Mode	Channel /Frequency	Output Power(dBm)	Tune up Power in tolerance (dBm)	Max. Tune up(dBm)	Scaling Factor
	128/824.2	32.00	31.5 ± 1.0	32.50	1.122
GSM850	190/836.6	32.40	31.5 ± 1.0	32.50	1.023
	251/848.8	32.20	31.5 ± 1.0	32.50	1.072
	128/824.2	29.34	29.0 ± 1.0	30.00	1.164
GPRS850	190/836.6	29.57	29.0 ± 1.0	30.00	1.104
(GPRS 2Tx)	251/848.8	29.49	29.0 ± 1.0	30.00	1.125
	512/1850.2	29.30	29.0 ± 1.0	30.00	1.175
GSM1900	661/1880.0	29.40	29.0 ± 1.0	30.00	1.148
	810/1909.8	29.60	29.0 ± 1.0	30.00	1.096
	512/1850.2	26.56	26.0 ± 1.0	27.00	1.107
GPRS1900	661/1880.0	26.72	26.0 ± 1.0	27.00	1.067
(GPRS 2Tx)	810/1909.8	26.47	26.0 ± 1.0	27.00	1.130
	4132/826.4	21.06	21.0 ± 1.0	22.00	1.242
WCDMA850	4183/836.6	21.54	21.0 ± 1.0	22.00	1.112
	4233/846.6	21.48	21.0 ± 1.0	22.00	1.127
	9262/1852.4	22.15	21.5 ± 1.0	22.50	1.084
WCDMA1900	9400/1880.0	22.01	21.5 ± 1.0	22.50	1.119
	9538/1907.6	22.34	21.5 ± 1.0	22.50	1.038
	18700/1860	22.93	22.5 ± 1.0	23.50	1.140
LTE B2 20MHz	18900/1880	23.21	22.5 ± 1.0	23.50	1.069
1RB#0	19100/1900	23.05	22.5 ± 1.0	23.50	1.109
	18700/1860	22.76	22.0 ± 1.0	23.00	1.057
LTE B2 20MHz	18900/1880	22.70	22.0 ± 1.0	23.00	1.072
50RB#0	19100/1900	22.62	22.0 ± 1.0	23.00	1.091
LTE DA COMU	20050/1720	22.02	21.5 ± 1.0	22.50	1.117
LTE B4 20MHz 1RB#0	20175/1732.5	22.28	21.5 ± 1.0	22.50	1.052
ΠΩπυ	20300/1745	22.16	21.5 ± 1.0	22.50	1.081
LTE B4 20MHz	20050/1720	21.80	21.0 ± 1.0	22.00	1.047
50RB#0	20175/1732.5	21.75	21.0 ± 1.0	22.00	1.059
	20300/1745	21.79	21.0 ± 1.0	22.00	1.050

LTE B5 10MHz	20450/829	22.59	22.0 ± 1.0	23.00	1.099
1RB#0	20525/836.5	22.75	22.0 ± 1.0	23.00	1.059
IND#0	20600/844	22.63	22.0 ± 1.0	23.00	1.089
LTE B5 10MHz	20450/829	22.35	21.5 ± 1.0	22.50	1.035
25RB#0	20525/836.5	22.34	21.5 ± 1.0	22.50	1.038
23ND#0	20600/844	22.31	21.5 ± 1.0	22.50	1.045
LTE B7 20MHz	20850/2510	22.65	22.0 ± 1.0	23.00	1.084
1RB#0	21100/2535	22.88	22.0 ± 1.0	23.00	1.028
IND#0	21350/2560	22.75	22.0 ± 1.0	23.00	1.059
LTE B7 20MHz	20850/2510	22.22	21.5 ± 1.0	22.50	1.067
50RB#0	21100/2535	22.15	21.5 ± 1.0	22.50	1.084
30Kb#0	21350/2560	22.31	21.5 ± 1.0	22.50	1.045
WIFI 2.4G	1/2412	15.12	14.5 ± 1.0	15.50	1.091
802.11b	6/2437	14.77	14.5 ± 1.0	15.50	1.183
002.110	11/2462	15.37	14.5 ± 1.0	15.50	1.030
	0/2402	8.64	8.0 ± 1.0	9.00	1.086
BT 3.0 8-DPSK	39/2441	8.31	8.0 ± 1.0	9.00	1.172
	78/2480	7.44	8.0 ± 1.0	9.00	1.432
WIFI 5G BAND I	48/5240	16.22	15.5 ± 1.0	16.50	1.067
WIFI 5G BAND II	58/5290	12.90	12.0 ± 1.0	13.00	1.023
WIFI 5G BAND III	134/5670	14.75	13.9 ± 1.0	14.90	1.035
WIFI 5G BAND IV	151/5755	13.03	12.5 ± 1.0	13.50	1.114

Note: for LTE power tolerance, only QPSK modulation mode was provide here.

10.Test Results

Results overview of GSM850

Test Position of Head	Channel /Frequency	Mode	SAR Value (W/kg)1-g	Power drift(%)	Scaled Factor	Scaled SAR (W/Kg)1-g	SAR Plot.
Right Cheek	128/824.2	Voice	0.164	3.42	1.122	0.184	1
Right Cheek	190/836.6	Voice	0.184	4.06	1.023	0.188	Yes
Right Cheek	251/848.8	Voice	0.167	1.05	1.072	0.179	1
Right Tilt 15°	190/836.6	Voice	0.104	-4.90	1.023	0.106	1
Left Cheek	190/836.6	Voice	0.118	-4.81	1.023	0.121	1
Left Tilt 15°	190/836.6	Voice	0.091	-4.79	1.023	0.093	1
Body-worn(10mm)	Channel /Frequency	Mode	SAR Value (W/kg)1-g	Power drift(%)	Scaled Factor	Scaled SAR (W/Kg)1-g	SAR Plot.
Back Upward	128/824.2	GPRS 2Tx	0.864	-3.47	1.164	1.006	1
Back Upward	190/836.6	GPRS 2Tx	0.942	-0.86	1.104	1.040	Yes
Back Upward	251/848.8	GPRS 2Tx	0.911	-2.15	1.125	1.025	1
Back Upward Repeated	128/824.2	GPRS 2Tx	0.857	-2.66	1.164	0.998	1
Back Upward Repeated	190/836.6	GPRS 2Tx	0.939	-0.53	1.104	1.037	1
Back Upward Repeated	251/848.8	GPRS 2Tx	0.910	-2.34	1.125	1.024	1
Face Upward	190/836.6	GPRS 2Tx	0.397	0.73	1.104	0.438	/
Hotspot(10mm)	Channel /Frequency	Mode	SAR Value (W/kg)1-g	Power drift(%)	Scaled Factor	Scaled SAR (W/Kg)1-g	SAR Plot.
Back Upward	128/824.2	GPRS 2Tx	0.864	-3.47	1.164	1.006	1
Back Upward	190/836.6	GPRS 2Tx	0.942	-0.86	1.104	1.040	Yes
Back Upward	251/848.8	GPRS 2Tx	0.911	-2.15	1.125	1.025	1
Back Upward Repeated	128/824.2	GPRS 2Tx	0.857	-2.66	1.164	0.998	1
Back Upward Repeated	190/836.6	GPRS 2Tx	0.939	-0.53	1.104	1.037	1
Back Upward Repeated	251/848.8	GPRS 2Tx	0.910	-2.34	1.125	1.024	/
Face Upward	190/836.6	GPRS 2Tx	0.397	0.73	1.104	0.438	/
Edge B	190/836.6	GPRS 2Tx	0.729	-3.73	1.104	0.805	1
Edge C	190/836.6	GPRS 2Tx	0.314	3.68	1.104	0.347	1
Edge D	190/836.6	GPRS 2Tx	0.413	-1.83	1.104	0.456	1

Results overview of GSM1900

Results overvi	ew or Gain	1 300					
Test Position of Head	Channel /Frequency	Mode	SAR Value (W/kg)1-g	Power drift(%)	Scaled Factor	Scaled SAR (W/Kg)1-g	SAR Plot.
Left Cheek	512/1850.2	Voice	0.417	2.21	1.175	0.490	/
Left Cheek	661/1880.0	Voice	0.433	-4.32	1.148	0.497	Yes
Left Cheek	810/1909.8	Voice	0.425	0.78	1.096	0.466	1
Left Tilt 15°	661/1880.0	Voice	0.206	4.17	1.148	0.237	1
Right Cheek	661/1880.0	Voice	0.290	-4.08	1.148	0.333	1
Right Tilt 15°	661/1880.0	Voice	0.289	-4.45	1.148	0.332	/
Body-worn(10mm)	Channel /Frequency	Mode	SAR Value (W/kg)1-g	Power drift(%)	Scaled Factor	Scaled SAR (W/Kg)1-g	SAR Plot.
Face Upward	512/1850.2	GPRS 2Tx	0.886	1.59	1.107	0.980	/
Face Upward	661/1880.0	GPRS 2Tx	0.927	0.53	1.067	0.989	Yes
Face Upward	810/1909.8	GPRS 2Tx	0.845	-0.67	1.130	0.955	1
Face Upward Repeated	512/1850.2	GPRS 2Tx	0.882	0.78	1.107	0.976	1
Face Upward Repeated	661/1880.0	GPRS 2Tx	0.923	0.34	1.067	0.985	1
Face Upward Repeated	810/1909.8	GPRS 2Tx	0.841	-0.88	1.130	0.950	1
Back Upward	512/1850.2	GPRS 2Tx	0.733	0.35	1.107	0.811	1
Back Upward	661/1880.0	GPRS 2Tx	0.765	-1.20	1.067	0.816	/
Back Upward	810/1909.8	GPRS 2Tx	0.724	1.24	1.130	0.818	1
Hotspot(10mm)	Channel /Frequency	Mode	SAR Value (W/kg)1-g	Power drift(%)	Scaled Factor	Scaled SAR (W/Kg)1-g	SAR Plot.
Face Upward	512/1850.2	GPRS 2Tx	0.886	1.59	1.107	0.980	/
Face Upward	661/1880.0	GPRS 2Tx	0.927	0.53	1.067	0.989	Yes
Face Upward	810/1909.8	GPRS 2Tx	0.845	-0.67	1.130	0.955	1
Face Upward Repeated	512/1850.2	GPRS 2Tx	0.882	0.78	1.107	0.976	/
Face Upward Repeated	661/1880.0	GPRS 2Tx	0.923	0.34	1.067	0.985	/
Face Upward Repeated	810/1909.8	GPRS 2Tx	0.841	-0.88	1.130	0.950	/
Back Upward	512/1850.2	GPRS 2Tx	0.733	0.35	1.107	0.811	/
Back Upward	661/1880.0	GPRS 2Tx	0.765	-1.20	1.067	0.816	1
Back Upward	810/1909.8	GPRS 2Tx	0.724	1.24	1.130	0.818	1
Edge B	661/1880.0	GPRS 2Tx	0.299	-3.12	1.067	0.319	1
Edge C	661/1880.0	GPRS 2Tx	0.723	-2.09	1.067	0.771	1
Edge D	512/1850.2	GPRS 2Tx	0.742	0.68	1.107	0.821	1
Edge D	661/1880.0	GPRS 2Tx	0.788	-1.79	1.067	0.840	1
Edge D	810/1909.8	GPRS 2Tx	0.735	1.02	1.130	0.831	1

Results overview of WCDMA1900

Test Position of Head	Channel /Frequency	Mode	SAR Value (W/kg)1-g	Power drift(%)	Scaled Factor	Scaled SAR (W/Kg)1-g	SAR Plot.
Left Cheek	9262/1852.4	RMC	0.774	-4.33	1.084	0.839	/
Left Cheek	9400/1880.0	RMC	0.778	-2.50	1.119	0.871	Yes
Left Cheek	9538/1907.6	RMC	0.775	-4.63	1.038	0.804	/
Left Tilt 15°	9400/1880.0	RMC	0.260	-2.78	1.119	0.291	/
Right Cheek	9400/1880.0	RMC	0.376	-3.08	1.119	0.421	/
Right Tilt 15°	9400/1880.0	RMC	0.422	-4.52	1.119	0.472	/
Body-worn(10mm)	Channel /Frequency	Mode	SAR Value (W/kg)1-g	Power drift(%)	Scaled Factor	Scaled SAR (W/Kg)1-g	SAR Plot.
Face Upward	9262/1852.4	RMC	0.843	-1.68	1.084	0.914	/
Face Upward	9400/1880.0	RMC	0.885	1.10	1.119	0.991	Yes
Face Upward	9538/1907.6	RMC	0.821	-0.79	1.038	0.852	/
Face Upward Repeated	9262/1852.4	RMC	0.834	-3.22	1.084	0.904	1
Face Upward Repeated	9400/1880.0	RMC	0.869	0.45	1.119	0.972	1
Face Upward Repeated	9538/1907.6	RMC	0.816	0.22	1.038	0.847	/
Back Upward	9262/1852.4	RMC	0.748	0.36	1.084	0.811	/
Back Upward	9400/1880.0	RMC	0.762	-4.32	1.119	0.853	1
Back Upward	9538/1907.6	RMC	0.761	0.87	1.038	0.790	1
Hotspot(10mm)	Channel /Frequency	Mode	SAR Value (W/kg)1-g	Power drift(%)	Scaled Factor	Scaled SAR (W/Kg)1-g	SAR Plot.
Face Upward	9262/1852.4	RMC	0.843	-1.68	1.084	0.914	/
Face Upward	9400/1880.0	RMC	0.885	1.10	1.119	0.991	Yes
Face Upward	9538/1907.6	RMC	0.821	-0.79	1.038	0.852	/
Face Upward Repeated	9262/1852.4	RMC	0.834	-3.22	1.084	0.904	1
Face Upward Repeated	9400/1880.0	RMC	0.869	0.45	1.119	0.972	/
Face Upward Repeated	9538/1907.6	RMC	0.816	0.22	1.038	0.847	/
Back Upward	9262/1852.4	RMC	0.748	0.36	1.084	0.811	/
Back Upward	9400/1880.0	RMC	0.762	-4.32	1.119	0.853	/
Back Upward	9538/1907.6	RMC	0.761	0.87	1.038	0.790	/
Edge B	9400/1880.0	RMC	0.128	-3.26	1.119	0.143	/
Edge C	9400/1880.0	RMC	0.478	-1.90	1.119	0.535	/
Edge D	9400/1880.0	RMC	0.707	-0.88	1.119	0.791	1

Results overview of WCDMA850

Test Position of	Channel		SAR Value	Power	Scaled	Scaled SAR	SAR
Head	/Frequency	Mode	(W/kg)1-g	drift(%)	Factor	(W/Kg)1-g	Plot.
Left Cheek	4183/836.6	RMC	0.104	4.42	1.112	0.116	1
Left Tilt 15°	4183/836.6	RMC	0.069	-4.54	1.112	0.077	1
Right Cheek	4132/826.4	RMC	0.128	1.25	1.242	0.159	1
Right Cheek	4183/836.6	RMC	0.145	-4.28	1.112	0.161	Yes
Right Cheek	4233/846.6	RMC	0.137	0.57	1.127	0.154	1
Right Tilt 15°	4183/836.6	RMC	0.096	-4.82	1.112	0.107	1
Body-worn(10mm)	Channel /Frequency	Mode	SAR Value (W/kg)1-g	Power drift(%)	Scaled Factor	Scaled SAR (W/Kg)1-g	SAR Plot.
Back Upward	4132/826.4	RMC	0.423	1.25	1.242	0.525	1
Back Upward	4183/836.6	RMC	0.475	-1.01	1.112	0.528	Yes
Back Upward	4233/846.6	RMC	0.466	0.54	1.127	0.525	1
Face Upward	4183/836.6	RMC	0.115	-3.59	1.112	0.128	1
Hotspot(10mm)	Channel /Frequency	Mode	SAR Value (W/kg)1-g	Power drift(%)	Scaled Factor	Scaled SAR (W/Kg)1-g	SAR Plot.
Back Upward	4132/826.4	RMC	0.423	1.25	1.242	0.525	1
Back Upward	4183/836.6	RMC	0.475	-1.01	1.112	0.528	Yes
Back Upward	4233/846.6	RMC	0.466	0.54	1.127	0.525	1
Face Upward	4183/836.6	RMC	0.115	-3.59	1.112	0.128	1
Edge B	4183/836.6	RMC	0.177	-2.24	1.112	0.197	1
Edge C	4183/836.6	RMC	0.084	-3.84	1.112	0.093	1
Edge D	4183/836.6	RMC	0.115	-2.81	1.112	0.128	1

Results overview of FDD LTE Band 2, QPSK, 20MHz Bandwidth	ı
---	---

results over view	OI I DD EIE E	Jana 2, G	er Ort, Zumiriz	- Danawi	atti		
Test Position of	Channel	Mode	SAR Value	Power	Scaled	Scaled SAR	SAR
Head	/Frequency	Mode	(W/kg)1-g	drift(%)	Factor	(W/Kg)1-g	Plot.
			1RB#0				
Left Cheek	18700/1860	Data	0.344	0.24	1.140	0.392	/
Left Cheek	18900/1880	Data	0.388	-2.57	1.069	0.415	Yes
Left Cheek	19100/1900	Data	0.367	1.35	1.109	0.407	/
Left Tilt 15°	18900/1880	Data	0.161	-4.25	1.069	0.172	/
Right Cheek	18900/1880	Data	0.240	-3.06	1.069	0.257	/
Right Tilt 15°	18900/1880	Data	0.206	1.38	1.069	0.220	/
			50%RB#0				
Left Cheek	18900/1880	Data	0.361	-3.15	1.072	0.387	/
Left Tilt 15°	18900/1880	Data	0.152	-2.87	1.072	0.163	/
Right Cheek	18900/1880	Data	0.221	-1.98	1.072	0.237	/
Right Tilt 15°	18900/1880	Data	0.188	-0.38	1.072	0.201	/
Dody worn(10mm)	Channel	Mode	SAR Value	Power	Scaled	Scaled SAR	SAR
Body-worn(10mm)	/Frequency	Mode	(W/kg)1-g	drift(%)	Factor	(W/Kg)1-g	Plot.
			1RB#0				
Back Upward	18900/1880	Data	0.343	-0.67	1.069	0.367	/
Face Upward	18700/1860	Data	0.361	1.34	1.140	0.411	/
Face Upward	18900/1880	Data	0.388	-2.37	1.069	0.415	Yes
Face Upward	19100/1900	Data	0.381	0.21	1.109	0.407	/
			50%RB#0				
Back Upward	18900/1880	Data	0.321	2.58	1.072	0.344	/
Face Upward	18900/1880	Data	0.364	-1.62	1.072	0.390	/
Hotspot(10mm)	Channel	Mode	SAR Value	Power	Scaled	Scaled SAR	Limit
Ποιδροι(Τοιπιπ)	/Frequency	Mode	(W/kg)1-g	drift(%)	Factor	(W/Kg)1-g	(W/kg)
			1RB#0				
Back Upward	18900/1880	Data	0.343	-0.67	1.069	0.367	/
Face Upward	18700/1860	Data	0.361	1.34	1.140	0.411	/
Face Upward	18900/1880	Data	0.388	-2.37	1.069	0.415	Yes
Face Upward	19100/1900	Data	0.381	0.21	1.109	0.407	/
Edge B	18900/1880	Data	0.093	0.41	1.069	0.099	/
Edge C	18900/1880	Data	0.248	-1.92	1.069	0.265	/
Edge D	18900/1880	Data	0.303	-1.32	1.069	0.324	/
			50%RB#0				
Back Upward	18900/1880	Data	0.321	2.58	1.072	0.344	/
Face Upward	18900/1880	Data	0.364	-1.62	1.072	0.390	/
				-	1		1
Edge B	18900/1880	Data	0.084	-2.40	1.072	0.090	/
Edge B Edge C		Data Data	0.084 0.218	-2.40 -3.69	1.072 1.072	0.090 0.234	<i>I</i>

Results overview of FDD LTE Band 4, QPSK, 20MHz Bandwidth

Results overview	OI I DD EIE D	ana +, &	1 O11, 20111112	Danawi	4111		
Test Position of	Channel	Mode	SAR Value	Power	Scaled	Scaled SAR	SAR
Head	/Frequency	Wode	(W/kg)1-g	drift(%)	Factor	(W/Kg)1-g	Plot.
			1RB#0				
Left Cheek	20050/1720	Data	0.094	2.05	1.117	0.105	/
Left Cheek	20175/1732.5	Data	0.109	-3.86	1.052	0.115	Yes
Left Cheek	20300/1745	Data	0.098	1.57	1.081	0.106	/
Left Tilt 15°	20175/1732.5	Data	0.063	-3.90	1.052	0.066	/
Right Cheek	20175/1732.5	Data	0.065	-4.97	1.052	0.068	/
Right Tilt 15°	20175/1732.5	Data	0.066	-4.95	1.052	0.069	/
			50%RB#0				
Left Cheek	20175/1732.5	Data	0.101	-2.11	1.059	0.107	/
Left Tilt 15°	20175/1732.5	Data	0.058	-1.89	1.059	0.061	/
Right Cheek	20175/1732.5	Data	0.061	-1.67	1.059	0.065	/
Right Tilt 15°	20175/1732.5	Data	0.062	-2.85	1.059	0.066	/
Body-worn(10mm)	Channel	Mode	SAR Value	Power	Scaled	Scaled SAR	SAR
Body-worn(Tornin)	/Frequency	Mode	(W/kg)1-g	drift(%)	Factor	(W/Kg)1-g	Plot.
			1RB#0				
Back Upward	20050/1720	Data	0.700	3.05	1.117	0.782	1
Back Upward	20175/1732.5	Data	0.743	-3.20	1.052	0.782	Yes
Back Upward	20300/1745	Data	0.721	1.07	1.081	0.779	/
Face Upward	20175/1732.5	Data	0.109	-4.20	1.052	0.115	/
			50%RB#0				
Back Upward	20175/1732.5	Data	0.712	-3.80	1.059	0.754	/
Face Upward	20175/1732.5	Data	0.102	-1.60	1.059	0.108	1
Listanat/10mm)	Channel	Mada	SAR Value	Power	Scaled	Scaled SAR	Limit
Hotspot(10mm)	/Frequency	Mode	(W/kg)1-g	drift(%)	Factor	(W/Kg)1-g	(W/kg)
			1RB#0				
Back Upward	20050/1720	Data	0.700	3.05	1.117	0.782	/
Back Upward	20175/1732.5	Data	0.743	-3.20	1.052	0.782	Yes
Back Upward	20300/1745	Data	0.721	1.07	1.081	0.779	/
Face Upward	20175/1732.5	Data	0.109	-4.20	1.052	0.115	/
Edge B	20175/1732.5	Data	0.066	-3.37	1.052	0.069	/
Edge C	20175/1732.5	Data	0.091	-0.63	1.052	0.096	/
Edge D	20175/1732.5	Data	0.127	-3.55	1.052	0.134	/
		-	50%RB#0	-		•	
Back Upward	20175/1732.5	Data	0.712	-3.87	1.059	0.754	/
Face Upward	20175/1732.5	Data	0.102	-1.68	1.059	0.108	1
Edge B	20175/1732.5	Data	0.063	-3.11	1.059	0.067	1
Edge C	20175/1732.5	Data	0.084	-4.96	1.059	0.089	1
Edge D	20175/1732.5	Data	0.117	1.73	1.059	0.124	/
	1	l		1			

Results overview of FDD LTE Band 5, QPSK, 10MHz Bandwidth

OI I DD LIL L	pariu J, G	(1 011, 10111112	- Danawi	dtii				
Channel	Modo	SAR Value	Power	Scaled	Scaled SAR	SAR		
/Frequency	Mode	(W/kg)1-g	drift(%)	Factor	(W/Kg)1-g	Plot.		
		1RB#0						
20450/829	Data	0.088	1.24	1.099	0.097	/		
20525/836.5	Data	0.093	-2.25	1.059	0.098	Yes		
20600/844	Data	0.091	0.24	1.089	0.099	1		
20525/836.5	Data	0.070	-4.18	1.059	0.074	1		
20525/836.5	Data	0.089	-4.39	1.059	0.094	1		
20525/836.5	Data	0.063	-4.26	1.059	0.067	1		
		50%RB#0						
20525/836.5	Data	0.087	-3.17	1.038	0.090	1		
20525/836.5	Data	0.061	-2.99	1.038	0.063	/		
20525/836.5	Data	0.082	-1.66	1.038	0.085	/		
20525/836.5	Data	0.059	-2.85	1.038	0.061	/		
Channel	N 4 = -1 =	SAR Value	Power	Scaled	Scaled SAR	SAR		
/Frequency	Mode	(W/kg)1-g	drift(%)	Factor	(W/Kg)1-g	Plot.		
		1RB#0						
20450/829	Data	0.284	2.01	1.099	0.312	/		
20525/836.5	Data	0.299	-1.35	1.059	0.317	Yes		
20600/844	Data	0.287	3.24	1.089	0.313	/		
20525/836.5	Data	0.083	-1.77	1.059	0.088	1		
50%RB#0								
20525/836.5	Data	0.283	-1.94	1.038	0.294	1		
20525/836.5	Data	0.076	-1.85	1.038	0.079	1		
Channel	NA l .	SAR Value	Power	Scaled	Scaled SAR	Limit		
/Frequency	Mode	(W/kg)1-g	drift(%)	Factor	(W/Kg)1-g	(W/kg)		
		1RB#0						
20450/829	Data	0.284	2.01	1.099	0.312	/		
20525/836.5	Data	0.299	-1.35	1.059	0.317	Yes		
20600/844	Data	0.287	3.24	1.089	0.313	/		
20525/836.5	Data	0.083	-1.77	1.059	0.088	/		
20525/836 5	Data	0.422	2.05	4.050	0.120	/		
20020/000.0	Data	0.122	3.05	1.059	0.129	,		
20525/836.5	Data	0.122	0.44	1.059	0.073	1		
20525/836.5	Data	0.069	0.44	1.059	0.073	1		
20525/836.5	Data	0.069 0.085	0.44	1.059	0.073	/		
20525/836.5 20525/836.5	Data Data	0.069 0.085 50%RB#0	0.44 -0.95	1.059 1.059	0.073 0.090	1		
20525/836.5 20525/836.5 20525/836.5	Data Data Data	0.069 0.085 50%RB#0 0.283	0.44 -0.95 -1.94	1.059 1.059 1.038	0.073 0.090 0.294	1		
20525/836.5 20525/836.5 20525/836.5 20525/836.5	Data Data Data Data	0.069 0.085 50%RB#0 0.283 0.076	0.44 -0.95 -1.94 -1.85	1.059 1.059 1.038 1.038	0.073 0.090 0.294 0.079	/ /		
	Channel /Frequency 20450/829 20525/836.5 20600/844 20525/836.5 20525/836.5 20525/836.5 20525/836.5 20525/836.5 20525/836.5 20525/836.5 Channel /Frequency 20450/829 20525/836.5 20525/836.5 20525/836.5 20600/844 20525/836.5 Channel /Frequency	Channel /Frequency Mode 20450/829 Data 20525/836.5 Data 20500/844 Data 20525/836.5 Data 20450/829 Data 20525/836.5 Data 20450/829 Data 20525/836.5 Data	Channel /Frequency Mode SAR Value (W/kg)1-g 1RB#0 1RB#0 20450/829 Data 0.088 20525/836.5 Data 0.093 20600/844 Data 0.070 20525/836.5 Data 0.089 20525/836.5 Data 0.063 50%RB#0 20525/836.5 Data 0.087 20525/836.5 Data 0.087 20525/836.5 Data 0.082 20525/836.5 Data 0.082 20525/836.5 Data 0.059 Channel /Frequency Mode SAR Value (W/kg)1-g 20525/836.5 Data 0.284 20525/836.5 Data 0.083 20525/836.5 Data 0.283 20525/836.5 Data 0.076 Channel /Frequency Mode SAR Value (W/kg)1-g 1RB#0 20450/829 Data 0.284 20525/836.5 Data 0.284 20525/836.5 Data 0.284	Frequency Mode (W/kg)1-g drift(%)	Channel /Frequency Mode (W/kg)1-g SAR Value drift(%) Power Factor Scaled Factor 1RB#0 20450/829 Data 0.088 1.24 1.099 20525/836.5 Data 0.093 -2.25 1.059 20600/844 Data 0.091 0.24 1.089 20525/836.5 Data 0.089 -4.39 1.059 20525/836.5 Data 0.063 -4.26 1.059 50%RB#0 20525/836.5 Data 0.087 -3.17 1.038 20525/836.5 Data 0.087 -3.17 1.038 20525/836.5 Data 0.082 -1.66 1.038 20525/836.5 Data 0.082 -1.66 1.038 20525/836.5 Data 0.059 -2.85 1.038 20525/836.5 Data 0.284 2.01 1.099 20525/836.5 Data 0.284 2.01 1.059 20600/844 Data 0.283 <	Channel /Frequency Mode (W/kg)1-g SAR Value drift(%) Power Factor Scaled (W/Kg)1-g Scaled drift(%) Scaled Factor Scaled (W/Kg)1-g 20450/829 Data 0.088 1.24 1.099 0.097 20525/836.5 Data 0.093 -2.25 1.059 0.098 20600/844 Data 0.091 0.24 1.089 0.099 20525/836.5 Data 0.070 -4.18 1.059 0.074 20525/836.5 Data 0.063 -4.26 1.059 0.067 50%RB#0 20525/836.5 Data 0.063 -4.26 1.059 0.067 50%RB#0 20525/836.5 Data 0.087 -3.17 1.038 0.090 20525/836.5 Data 0.087 -2.85 1.038 0.063 20525/836.5 Data 0.059 -2.85 1.038 0.063 20525/836.5 Data 0.059 -2.85 1.038 0.061		

Results overview of FDD LTE Band 7, QPSK, 20MHz Bandwidth

Test Position of	Channel		SAR Value	Power	Scaled	Scaled SAR	SAR				
Head	/Frequency	Mode	(W/kg)1-g	drift(%)	Factor	(W/Kg)1-g	Plot.				
1,550			1RB#0	2(/2)		(****3)**3					
Left Cheek	20850/2510	Data	0.188	0.27	1.084	0.204	/				
Left Cheek	21100/2535	Data	0.205	-3.26	1.028	0.211	Yes				
Left Cheek	21350/2560	Data	0.199	1.65	1.059	0.211	/				
Left Tilt 15°	21100/2535	Data	0.103	-4.72	1.028	0.106	/				
Right Cheek	21100/2535	Data	0.114	-4.32	1.028	0.117	1				
Right Tilt 15°	21100/2535	Data	0.081	-4.64	1.028	0.083	1				
		•	50%RB#0	•	•		•				
Left Cheek	21100/2535	Data	0.178	-1.25	1.084	0.193	/				
Left Tilt 15°	21100/2535	Data	0.094	-1.11	1.084	0.102	/				
Right Cheek	21100/2535	Data	0.103	-2.97	1.084	0.112	/				
Right Tilt 15°	21100/2535	Data	0.072	-3.44	1.084	0.078	/				
Dad	Channel	NAl -	SAR Value	Power	Scaled	Scaled SAR	SAR				
Body-worn(10mm)	/Frequency	Mode	(W/kg)1-g	drift(%)	Factor	(W/Kg)1-g	Plot.				
			1RB#0								
Back Upward	20850/2510	Data	0.495	2.04	1.084	0.536	1				
Back Upward	21100/2535	Data	0.522	1.53	1.028	0.537	Yes				
Back Upward	21350/2560	Data	0.501	1.07	1.059	0.536	/				
Face Upward	21100/2535	Data	0.196	0.73	1.028	0.201	/				
			50%RB#0								
Back Upward	21100/2535	Data	0.432	1.68	1.084	0.468	/				
Face Upward	21100/2535	Data	0.167	-1.02	1.084	0.181	/				
Hotopot(10mm)	Channel	Mode	SAR Value	Power	Scaled	Scaled SAR	Limit				
Hotspot(10mm)	/Frequency	/Frequency	/Frequency	/Frequency	/Frequency		(W/kg)1-g	drift(%)	Factor	(W/Kg)1-g	(W/kg)
			1RB#0								
Back Upward	20850/2510	Data	0.495	2.04	1.084	0.536	1				
Back Upward	21100/2535	Data	0.522	1.53	1.028	0.537	Yes				
Back Upward	21350/2560	Data	0.501	1.07	1.059	0.536	/				
Face Upward	21100/2535	Data	0.196	0.73	1.028	0.201	1				
Edge B	21100/2535	Data	0.026	-3.84	1.028	0.027	/				
Edge C	21100/2535	Data	0.147	1.84	1.028	0.151	/				
Edge D	21100/2535	Data	0.098	0.14	1.028	0.101	/				
			50%RB#0								
Back Upward	21100/2535	Data	0.432	1.68	1.084	0.468	1				
Face Upward	21100/2535	Data	0.167	-1.02	1.084	0.181	1				
Edge B	21100/2535	Data	0.021	-1.66	1.084	0.023	1				
Edge C	21100/2535	Data	0.123	-0.33	1.084	0.133	1				
Edge D	21100/2535	Data	0.091	-3.07	1.084	0.099	1				

Results overview of WIFI2.4G 802.11b

Test Position of Head	Channel /Frequency	Mode	SAR Value (W/kg)1-g	Power drift(%)	Scaled Factor	Scaled SAR (W/Kg)1-g	SAR Plot.
Left Cheek	6/2437	DSSS	0.101	-3.39	1.183	0.119	1
Left Tilt 15°	6/2437	DSSS	0.109	3.13	1.183	0.129	1
Right Cheek	6/2437	DSSS	0.143	4.95	1.183	0.169	1
Right Tilt 15°	1/2412	DSSS	0.198	2.35	1.091	0.216	1
Right Tilt 15°	6/2437	DSSS	0.206	-1.74	1.183	0.244	Yes
Right Tilt 15°	11/2462	DSSS	0.203	0.36	1.030	0.209	1
Body-worn(10mm)	Channel /Frequency	Mode	SAR Value (W/kg)1-g	Power drift(%)	Scaled Factor	Scaled SAR (W/Kg)1-g	SAR Plot.
Back Upward	1/2412	DSSS	0.062	3.20	1.091	0.068	1
Back Upward	6/2437	DSSS	0.064	-4.93	1.183	0.076	1
Back Upward	11/2462	DSSS	0.061	1.54	1.030	0.063	1
Face Upward	6/2437	DSSS	0.038	-4.83	1.183	0.045	1
Hotspot(10mm)	Channel /Frequency	Mode	SAR Value (W/kg)1-g	Power drift(%)	Scaled Factor	Scaled SAR (W/Kg)1-g	SAR Plot.
Back Upward	6/2437	DSSS	0.064	-4.93	1.183	0.076	1
Face Upward	6/2437	DSSS	0.038	-4.83	1.183	0.045	1
Edge A	6/2437	DSSS	0.028	4.79	1.183	0.033	1
Edge D	1/2412	DSSS	0.078	1.24	1.091	0.085	1
Edge D	6/2437	DSSS	0.091	-2.07	1.183	0.108	Yes
Edge D	11/2462	DSSS	0.084	0.27	1.030	0.087	1

Results overview of 5G WI-FI802.11a-20MHz -5240

Test Position of	Channel	Mode	SAR Value	Power	Scaled	Scaled SAR	SAR
Head	/Frequency	wode	(W/kg)1-g	drift(%)	Factor	(W/Kg)1-g	Plot.
Left Cheek	48/5240	OFDM	0.312	-2.16	1.067	0.333	1
Left Tilt 15°	48/5240	OFDM	0.254	-1.03	1.067	0.271	1
Right Cheek	48/5240	OFDM	0.370	-4.13	1.067	0.395	Yes
Right Tilt 15°	48/5240	OFDM	0.291	1.36	1.067	0.310	1
Body-worn(10mm)	Channel	Mode	SAR Value	Power	Scaled	Scaled SAR	SAR
Body-worn(Tornin)	/Frequency	Mode	(W/kg)1-g	drift(%)	Factor	(W/Kg)1-g	Plot.
Back Upward	48/5240	OFDM	0.045	-2.12	1.067	0.048	1
Face Upward	48/5240	OFDM	0.032	-0.78	1.067	0.035	1

Results overview of 5G WI-FI802.11ac-VHT80 -5290

Channel /Frequency	Mode	SAR Value (W/kg)1-g	Power drift(%)	Scaled Factor	Scaled SAR (W/Kg)1-g	SAR Plot.
58/5290	OFDM	0.239	-1.33	1.023	0.244	1
58/5290	OFDM	0.188	-0.86	1.023	0.192	1
58/5290	OFDM	0.278	-2.60	1.023	0.284	/
58/5290	OFDM	0.211	0.18	1.023	0.216	/
Channel /Frequency	Mode	SAR Value (W/kg)1-g	Power drift(%)	Scaled Factor	Scaled SAR (W/Kg)1-g	SAR Plot.
58/5290	OFDM	0.039	-2.65	1.023	0.040	1
58/5290	OFDM	0.025	-3.15	1.023	0.026	/
	/Frequency 58/5290 58/5290 58/5290 58/5290 Channel /Frequency 58/5290	/Frequency Mode 58/5290 OFDM 58/5290 OFDM 58/5290 OFDM 58/5290 OFDM Channel /Frequency Mode 58/5290 OFDM	/Frequency Mode (W/kg)1-g 58/5290 OFDM 0.239 58/5290 OFDM 0.188 58/5290 OFDM 0.278 58/5290 OFDM 0.211 Channel /Frequency Mode (W/kg)1-g 58/5290 OFDM 0.039	/Frequency Mode (W/kg)1-g drift(%) 58/5290 OFDM 0.239 -1.33 58/5290 OFDM 0.188 -0.86 58/5290 OFDM 0.278 -2.60 58/5290 OFDM 0.211 0.18 Channel /Frequency Mode SAR Value (W/kg)1-g Power drift(%) 58/5290 OFDM 0.039 -2.65	/Frequency Mode (W/kg)1-g drift(%) Factor 58/5290 OFDM 0.239 -1.33 1.023 58/5290 OFDM 0.188 -0.86 1.023 58/5290 OFDM 0.278 -2.60 1.023 58/5290 OFDM 0.211 0.18 1.023 Channel /Frequency Mode SAR Value (W/kg)1-g Power drift(%) Factor 58/5290 OFDM 0.039 -2.65 1.023	/Frequency Mode (W/kg)1-g drift(%) Factor (W/Kg)1-g 58/5290 OFDM 0.239 -1.33 1.023 0.244 58/5290 OFDM 0.188 -0.86 1.023 0.192 58/5290 OFDM 0.278 -2.60 1.023 0.284 58/5290 OFDM 0.211 0.18 1.023 0.216 Channel /Frequency Mode SAR Value (W/kg)1-g drift(%) Power Grift(%) Scaled SAR (W/Kg)1-g 58/5290 OFDM 0.039 -2.65 1.023 0.040

Results overview of 5G WI-FI802.11n-40MHz -5670

Test Position of Head	Channel /Frequency	Mode	SAR Value (W/kg)1-g	Power drift(%)	Scaled Factor	Scaled SAR (W/Kg)1-g	SAR Plot.
Left Cheek	134/5670	OFDM	0.321	-3.61	1.035	0.332	/
Left Tilt 15°	134/5670	OFDM	0.267	-2.59	1.035	0.276	/
Right Cheek	134/5670	OFDM	0.365	-4.60	1.035	0.378	/
Right Tilt 15°	134/5670	OFDM	0.304	-1.52	1.035	0.315	1
Body-worn(10mm)	Channel /Frequency	Mode	SAR Value (W/kg)1-g	Power drift(%)	Scaled Factor	Scaled SAR (W/Kg)1-g	SAR Plot.
Back Upward	134/5670	OFDM	0.053	4.33	1.035	0.055	1
Face Upward	134/5670	OFDM	0.033	2.38	1.035	0.034	/

Results overview of 5G WI-FI802.11ac-VHT40 -5755

Test Position of Head	Channel /Frequency	Mode	SAR Value (W/kg)1-g	Power drift(%)	Scaled Factor	Scaled SAR (W/Kg)1-g	SAR Plot.
Left Cheek	151/5755	OFDM	0.330	-2.15	1.114	0.368	/
Left Tilt 15°	151/5755	OFDM	0.282	-1.66	1.114	0.314	/
Right Cheek	151/5755	OFDM	0.374	-3.65	1.114	0.417	1
Right Tilt 15°	151/5755	OFDM	0.305	-0.89	1.114	0.340	/
Body-worn(10mm)	Channel /Frequency	Mode	SAR Value (W/kg)1-g	Power drift(%)	Scaled Factor	Scaled SAR (W/Kg)1-g	SAR Plot.
Back Upward	151/5755	OFDM	0.055	-4.63	1.114	0.061	Yes
Face Upward	151/5755	OFDM	0.036	1.38	1.114	0.040	1

SAR Values of BT 3.0 8-DPSK

Test Position of Head	Channel /Frequency	Mode	SAR Value (W/kg)1-g	Power drift(%)	Scaled Factor	Scaled SAR (W/Kg)1-g	SAR Plot.
Left Cheek	0/2402	OFDM	0.056	-4.37	1.086	0.061	Yes
Left Cheek	39/2441	OFDM	0.051	-3.22	1.172	0.060	/
Left Cheek	78/2480	OFDM	0.040	-2.89	1.432	0.057	1
Left Tilt 15°	0/2402	OFDM	0.054	-3.49	1.086	0.059	1
Right Cheek	0/2402	OFDM	0.049	2.11	1.086	0.053	1
Right Tilt 15°	0/2402	OFDM	0.047	1.04	1.086	0.051	1
Body-worn(10mm)	Channel /Frequency	Mode	SAR Value (W/kg)1-g	Power drift(%)	Scaled Factor	Scaled SAR (W/Kg)1-g	SAR Plot.
Back Upward	0/2402	OFDM	0.025	4.30	1.086	0.027	Yes
Back Upward	39/2441	OFDM	0.021	3.14	1.172	0.025	1
Back Upward	78/2480	OFDM	0.016	-2.65	1.432	0.023	1
Face Upward	0/2402	OFDM	0.016	3.73	1.086	0.017	1

Note:

Per KDB941225 D06 v02r01, When the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested. As the manufacture requirement the separation distance use 5mm for Hotspot mode.

Per KDB Publication 941225 D01v03r01. RMC 12.2kbps was as primary mode SAR, when the primary mode SAR less than 1.2W/kg, secondary SAR (HSPA) was not requires.

When the 1-g SAR for the mid-band channel or the channel with the highest output power satisfy the following conditions, testing of the other channels in the band is not required. (Per KDB 447498 D01 General RF Exposure Guidance v06)

- \leq 0.8 W/kg, when the transmission band is \leq 100 MHz
- ≤ 0.6 W/kg, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg, when the transmission band is ≥ 200 MHz

11. Simultaneous Transmissions Analysis

Localized Specific Absorption Rate (SAR) of this portable wireless device has been measured in all cases requested by the relevant standards cited in Clause 6 of this report. Maximum localized SAR is **below** exposure limits specified in the relevant standards.

Simultaneous SAR

No.	Transmitter Combinations	Scenario	Supported for Mobile
INO.	Transmitter Combinations	Supported or not	Hotspot or not
1	GSM + BT	Yes	No
2	GSM + WIFI 2.4G	Yes	Yes
3	WCDMA +BT	Yes	No
4	WCDMA +WIFI2.4G	Yes	Yes
5	LTE+BT	Yes	No
6	LTE+WIFI2.4G	Yes	Yes
7	WIFI+BT	No	No
8	GSM/WCDMA/LTE+WIFI 5G	Yes	No

Simultaneous Tx Combination of GSM/WCDMA/LTE and BT/WIFI (Head)

	Test Position	Left Cheek	Left Tilt	Right Cheek	Right Tilt
	GSM850	0.121	0.093	0.188	0.106
	GSM1900	0.497	0.237	0.333	0.332
	WCDMA 850	0.116	0.077	0.161	0.107
	WCDMA 1900	0.871	0.291	0.421	0.472
Head	LTE Band2	0.415	0.172	0.257	0.220
MAX 1-g	LTE Band4	0.115	0.066	0.068	0.069
SAR(W/Kg)	LTE Band5	0.099	0.074	0.094	0.067
	LTE Band7	0.211	0.106	0.117	0.083
	2.4G WIFI 802.11b	0.119	0.129	0.169	0.244
	5G WIFI 802.11ac	0.333	0.271	0.395	0.310
	BT	0.061	0.059	0.053	0.051
WIFI2.4G Si	WIFI2.4G Simultaneous Σ 1-g SAR(W/Kg)		0.420	0.590	0.716
WIFI5G Sir	multaneous ∑ 1-g SAR(W/Kg)	1.204	0.562	0.816	0.782
BT Simu	ltaneous∑1-g SAR(W/Kg)	0.932	0.350	0.474	0.523

Simultaneous Tx Combination of GSM/WCDMA/LTE and BT/WIFI (Body).

Test Position		Face	Back	Edge A	Edge B	Edge C	Edge D
	GSM850	0.438	1.040	/	/	1	1
	GSM1900	0.989	0.816	/	1	1	1
	WCDMA 850	0.128	0.528	/	1	1	1
Body-worn	WCDMA 1900	0.991	0.853	/	1	1	1
10mm	LTE Band2	0.415	0.367	/	1	1	1
separation	LTE Band4	0.115	0.782	/	1	1	1
MAX 1-g	LTE Band5	0.088	0.317	/	/	1	1
SAR(W/Kg)	LTE Band7	0.201	0.537	/	1	1	1
	2.4G WIFI 802.11b	0.045	0.076	/	/	1	1
	5G WIFI 802.11ac	0.040	0.061	/	/	1	/
	BT	0.027	0.017	/	/	1	/
WIFI Simulta	WIFI Simultaneous Σ 1-g SAR(W/Kg)		1.101	/	1	1	1
BT Simulta	neous∑1-g SAR(W/Kg)	1.018	1.057	/	1	1	1

Simultaneous Tx Combination of GSM/WCDMA/LTE and WIFI (Body).

	Test Position		Back	Edge A	Edge B	Edge C	Edge D
	GSM850	0.438	1.040	1	0.805	0.347	0.456
	GSM1900	0.989	0.816	1	0.319	0.771	0.840
Hotspot	WCDMA 850	0.128	0.528	1	0.197	0.093	0.128
10mm	WCDMA 1900	0.991	0.853	1	0.143	0.535	0.791
separation	LTE Band2	0.415	0.367	1	0.099	0.265	0.324
MAX 1-g	LTE Band4	0.115	0.782	1	0.069	0.096	0.134
SAR(W/Kg)	LTE Band5	0.088	0.317	1	0.129	0.073	0.090
	LTE Band7	0.201	0.537	1	0.027	0.151	0.101
	2.4G WIFI 802.11b	0.045	0.076	0.033	0.019	1	0.108
WIFI Simulta	neous Σ 1-g SAR(W/Kg)	1.029	1.101	0.033	0.824	0.771	0.958

The estimated SAR value with * Signal

SAR to Peak Location Separation Ratio (SPLSR)

As the Sum of the SAR is not greater than 1.6 W/kg SPLSR assessment is not required

12.Measurement Uncertainty

No.	Uncertainty Component	Туре	Uncertainty Value (%)	Probability Distribution	k	ci	Standard Uncertainty (%) ui(%)	Degree of freedom Veff or vi		
	Measurement System									
1	- Probe Calibration	В	5.8	N	1	1	5.8	8		
2	- Axial isotropy	В	3.5	R	$\sqrt{3}$	0.5	1.43	8		
3	—Hemispherical Isotropy	В	5.9	R	$\sqrt{3}$	0.5	2.41	∞		
4	- Boundary Effect	В	1	R	$\sqrt{3}$	1	0.58	∞		
5	- Linearity	В	4.7	R	$\sqrt{3}$	1	2.71	8		
6	- System Detection Limits	В	1.0	R	$\sqrt{3}$	1	0.58	∞		
7	Modulation response	В	3	N	1	1	3.00			
8	- Readout Electronics	В	0.5	N	1	1	0.50	80		
9	- Response Time	В	1.4	R	$\sqrt{3}$	1	0.81	80		
10	- Integration Time	В	3.0	R	$\sqrt{3}$	1	1.73	8		
11	- RF Ambient Conditions	В	3.0	R	$\sqrt{3}$	1	1.73	80		
12	- Probe Position Mechanical tolerance	В	1.4	R	$\sqrt{3}$	1	0.81	8		
13	- Probe Position with respect to Phantom Shell	В	1.4	R	$\sqrt{3}$	1	0.81	8		
14	- Extrapolation, Interpolation and Integration Algorithms for Max. SAR evaluation	В	2.3	R	$\sqrt{3}$	1	1.33	80		

	Uncertainties of the DUT							
15	- Position of the DUT	А	2.6	N	$\sqrt{3}$	1	2.6	5
16	- Holder of the DUT	А	3	N	$\sqrt{3}$	1	3.0	5
17	- Output Power Variation -SAR drift measurement	В	5.0	R	$\sqrt{3}$	1	2.89	∞
		Р	hantom and Ti	ssue Paramet	ers			
18	- Phantom Uncertainty(shape and thickness tolerances)	В	4	R	$\sqrt{3}$	1	2.31	∞
19	Uncertainty in SAR correction for deviation(in permittivity and conductivity)	В	2	N	1	1	2.00	
20	- Liquid Conductivity Target -tolerance	В	2.5	R	$\sqrt{3}$	0.6	1.95	8
21	- Liquid Conductivity -measurement Uncertainty)	В	4	N	$\sqrt{3}$	1	0.92	9
22	- Liquid Permittivity Target tolerance	В	2.5	R	$\sqrt{3}$	0.6	1.95	∞
23	- Liquid Permittivity -measurement uncertainty	В	5	N	$\sqrt{3}$	1	1.15	∞
Con	nbined Standard Uncertainty			RSS			10.63	
((Expanded uncertainty Confidence interval of 95 %)			K=2			21.26	

System Check Uncertainty

No.	Uncertainty Component	Туре	Uncertainty Value (%)	Probability Distribution	k	ci	Standard Uncertainty (%) ui(%)	Degree of freedom Veff or vi
	Measurement System							
1	- Probe Calibration	В	5.8	N	1	1	5.8	80

							JUILING, JL 12	
2	- Axial isotropy	В	3.5	R	$\sqrt{3}$	0.5	1.43	∞
3	—Hemispherical Isotropy	В	5.9	R	$\sqrt{3}$	0.5	2.41	8
4	- Boundary Effect	В	1	R	$\sqrt{3}$	1	0.58	∞
5	- Linearity	В	4.7	R	$\sqrt{3}$	1	2.71	8
6	- System Detection Limits	В	1	R	$\sqrt{3}$	1	0.58	∞
7	Modulation response	В	0	N	1	1	0.00	
8	- Readout Electronics	В	0.5	N	1	1	0.50	8
9	- Response Time	В	0.00	R	$\sqrt{3}$	1	0.00	8
10	- Integration Time	В	1.4	R	$\sqrt{3}$	1	0.81	8
11	- RF Ambient Conditions	В	3.0	R	$\sqrt{3}$	1	1.73	8
12	- Probe Position Mechanical tolerance	В	1.4	R	$\sqrt{3}$	1	0.81	8
13	- Probe Position with respect to Phantom Shell	В	1.4	R	$\sqrt{3}$	1	0.81	8
14	- Extrapolation, Interpolation and Integration Algorithms for Max. SAR evaluation	В	2.3	R	$\sqrt{3}$	1	1.33	∞
			Uncertair	nties of the DU	Γ			
15	Deviation of experimental source from numberical source	A	4	N	1	1	4.00	5
16	Input Power and SAR drift measurement	Α	5	R	$\sqrt{3}$	1	2.89	5
17	Dipole Axis to Liquid Distance	В	2	R	$\sqrt{3}$	1	1.2	8

	Phantom and Tissue Parameters							
18	 Phantom Uncertainty(shape and thickness tolerances) 	В	4	R	$\sqrt{3}$	1	2.31	∞
19	Uncertainty in SAR correction for deviation(in permittivity and conductivity)	В	2	N	1	1	2.00	
20	- Liquid Conductivity Target -tolerance	В	2.5	R	$\sqrt{3}$	0.6	1.95	∞
21	- Liquid Conductivity -measurement Uncertainty)	В	4	N	$\sqrt{3}$	1	0.92	9
22	- Liquid Permittivity Target tolerance	В	2.5	R	$\sqrt{3}$	0.6	1.95	∞
23	- Liquid Permittivity -measurement uncertainty	В	5	N	$\sqrt{3}$	1	1.15	∞
Cor	nbined Standard Uncertainty			RSS			10.15	
((Expanded uncertainty Confidence interval of 95 %)			K=2			20.29	

13. Equipment List

This table is a complete overview of the SAR measurement equipment. Devices used during the test described are marked \square .

	EQUIPMENT	Model	Serial number	Calibration Date	Due Date
\boxtimes	SAR Probe	SSE2	SN27/15 EPGO261	2019/03/04	2020/03/03
	Dipole	SID750	SN 23/15 DIP0G750-378	2017/11/27	2019/11/26
	Dipole	SID835	SN 09/13 DIP0G835-217	2017/11/27	2019/11/26
	Dipole	SID900	SN 09/13 DIP0G900-215	2017/11/27	2019/11/26
\boxtimes	Dipole	SID1800	SN 09/13 DIP1G800-216	2017/11/27	2019/11/26
\boxtimes	Dipole	SID1900	SN 09/13 DIP2G000-218	2017/11/27	2019/11/26
	Dipole	SID2000	SN 09/13 DIP2G000-219	2017/11/27	2019/11/26
\boxtimes	Dipole	SID2450	SN_09/13_DIP2G450-220	2017/11/27	2019/11/26
	Dipole	SID2600	SN 32/14_DIP2G600-338	2017/11/27	2019/11/26
\boxtimes	Dipole	SWG5500	SN15/15 WGA39	2017/11/27	2019/11/26
	Multimeter	Keithley-2000	4085310	2018/09/06	2019/09/05
	System Simulator(Agilent 8960)	E5515C	GB 47200710	2017/11/08	2019/11/07
	System Simulator(R&S)	CMW500	130805	2017/08/29	2019/08/28
	KEYSIGHT	E7515A	MY56040357	2019/04/01	2020/04/01
	Vector Network Analyzer(R&S)	ZVB8	A0802530	2019/04/17	2020/04/17
	PC 3.5 Fixed Match Calibration Kit	ZV-Z32	100571	2017/11/29	2019/11/28
	Dielectric Probe Kit	SCLMP	SN 09/13 OCPG51	2017/11/27	2019/11/26
	Signal Generator	SMU200A	A140801888	2019/04/01	2020/04/01
	Amplifier	Nucletudes	143060	2019/03/26	2020/03/25
	Directional Coupler	DC6180A	305827	2019/03/26	2020/03/25
\boxtimes	Power Meter	NRP2	A140401673	2019/03/26	2020/03/25
	Power Sensor	NPR-Z11	1138.3004.02-114072-nq	2019/03/26	2020/03/25
\boxtimes	Power Meter	NRVS	A0802531	2019/03/26	2020/03/25
\boxtimes	Power Sensor	NRV-Z4	100069	2019/03/26	2020/03/25

ANNEX A:	Appendix A:	SAR S	ystem performan	ce Check Plots
1 11 11 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1			, scom portornam	

(Please See Appendix A)

ANNEX B: Appendix B: SAR Measurement results Plots

(Please See Appendix B)

ANNEX C: Appendix C: Calibration reports

(Please See Appendix C)

ANNEX D: Appendix D: SAR Test Setup

(Please See Appendix D)

-End of the Report-