Introdução a Machine Learning 2

Semana 2:

- Modelos
- Função custo
- Método do gradiente
- Conjunto de treinamento, validação e teste
- O trade-off entre viés e variância
- Não existe almoço grátis

O que é um modelo?

Representação de um modelo

- Detalhes do modelo:
- Uma variável objetivo, y; também chamada de rótulo, ou output (é o que queremos prever).
- Variáveis X, características ou input (o que vamos usar para explicar)
- N exemplos $(x^{(i)}, y^{(i)})$
- Valores estimados tem um chapéu: ŷ

Observação	Anos de escolaridade (x)	Renda anual (y)
1	8	60,000
2	16	116,000
N	12	97,000

Anos de escolaridade

Exemplo de modelo

Exemplo de regressão linear:

O que é um bom modelo?

- Campos de estudo diferentes tem noções diferentes do que é um bom modelo.
- Algumas características de bons modelos:
 - Poder explicativo mapa do metro
 - Poder predictivo quão boas são as previsões do modelo
 - Falseabilidade sabemos se o model está errado
 - Simplicidade navalha de Occam
 - Generalizável se aplica a situações diferentes
- Em machine learning bom modelo é aquele que faz boas previsões em uma nova base de dados (out of sample).

Conjuntos de treino, validação e teste

Conjuntos de Treino, Validação e teste

Educação (x)	Renda (y)
8	60,000
16	116,000
8	80,000
12	146,000
10	125,000
15	146,000
12	136,000
10	125,000
15	146,000
15	146,000

Conjuntos de Treino, Validação e teste

Educação (x)	Renda (y)
8	60,000
16	116,000
8	80,000
12	146,000
10	125,000
15	146,000
12	136,000
10	125,000
15	146,000
15	146,000

- O conjunto de treino é usado para estimar os parâmetros do seu modelo.
- O conjunto de validação serve escolhermos os hiperparâmetros e decidir qual modelo vamos usar.
- O conjunto teste funciona como a medida final da performance do modelo.

Qual a proporção dos dados irá para cada conjunto

Educação (x)	Renda (y)
8	60,000
16	116,000
8	80,000
12	146,000
10	125,000
15	146,000
12	136,000
10	125,000
15	146,000
15	146,000

- Se conjunto de treino for pequeno, a variância dos parâmetros será grande.
- Se o conjunto de validação for pequeno a variância da estatística de seleção de modelos será grande.
- Se co conjunto teste for pequeno a variância do seu teste do modelo será grande.
- Em prática vários manuais recomendam dividir (70,15,15).
- Se você tiver muitos dados, a proporção de dados no conjunto de treino tende a aumentar.

Como dividir os dados em 3 partes

Observações independentes

Educação (x)	Renda (y)
8	60,000
16	116,000
8	80,000
12	146,000
10	125,000
15	146,000
12	136,000
10	125,000

Séries temporais

Tempo (x)	Preço (y)
1	60
2	62
3	65
4	64
5	68
6	66
7	69
8	71

Função Custo e como avaliar um modelo

Função custo: motivação

N= número de observações

$$h_{ heta}(x) = heta_0 + heta_1 x$$

 $\theta_i's$: parâmetros

Como parâmetros diferentes geram modelos diferentes?

Como escolher parâmetros?

Anos de escolaridade

Erro quadrático médio (EQM)

Função custo Intuição

Suponha y = 2 * x

Só há um parâmetro, a inclinação da curva, que nesse caso é igual a 2.

Como a função custo (EQM) muda de acordo com o nosso parâmetro estimado $\hat{\theta}$?

Método do gradiente ajuda a minimizar a função custo.

O que é método do gradiente?

- Podemos minimizar a função custo usando o método do gradiente.
- Relembrando: gradiente é um vetor com a derivada da função com respeito a cada uma das variáveis.
- O gradiente sempre aponta na direção de maior aumento da função (logo a gente sempre se move na direção oposta)

Computed by Wolfram Alpha

Um exemplo mais complicado

Método do gradiente pseudo código

Objetivo: $\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$

Comece com valores aleatórios: θ_0 , θ_1

Enquanto não estiver em um mínimo:

calcule of gradiente de $J(\theta_0, \theta_1)$

atualize θ_0 , θ_1 conforme sua derivada

Matemática do método do gradiente

Atualize os parâmetros simultaneamente até convergir:

$$\theta_0 := \theta_0 - \alpha \frac{\partial J(\theta_0, \theta_1)}{\partial \theta_0}$$
$$\theta_1 := \theta_1 - \alpha \frac{\partial J(\theta_0, \theta_1)}{\partial \theta_1}$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial J(\theta_0, \theta_1)}{\partial \theta_1}$$

O que é alpha?

Hyperparâmetro: velocidade do aprendizado

Velocidade de aprendizado pequena demais

Velocidade de aprendizado muito grande

gradiente é muito lento

gradiente pode saltar o mínimo

Método do gradiente na regressão linear

$$egin{aligned} h_{ heta}(x) &= heta_0 + heta_1 x \ J(heta_0, heta_1) &= rac{1}{2N} \sum_{i=1}^N \left(h_{ heta}(x^i) - y^i
ight)^2 \end{aligned}$$

Tipos diferentes do método do gradiente

- 1. Gradiente em lotes (batches)Batch Gradient: Em cada iteração o algoritmo usa todas as N observações do conjunto de treinamento (baixo custo computacional, alto custo de memória).
- 2. Gradiente em mini-lotes (mini batches): em cada iteração usamos um subconjunto de K observações para atualizar os parâmetros.
- 3. Gradiente estocástico: calcula o gradiente e atualiza o modelo depois de cada observação (custo computacional alto, baixo custo de memória).

Usando a função custo para escolher o modelo

Relembrando sobre-adequação e sub-adequação

- Sobre-adequação (overfitting)
 ocorre quando o modelo é muito
 complexo, ele explica o conjunto
 de treinamento bem demais e não
 extrapola bem para outras bases
 de dados.
- Sub-adequação (underfitting)
 ocorre quando o modelo é muito
 simples e nem mesmo explica bem
 o conjunto de treinamento.

Usando a função custo para escolher o modelo

Podemos usar o custo no conjunto de treino e de validação para julgar se o modelo está sobre ou sub adequado.

Se o modelo tem uma performance ruim no conjunto de treino, ele provavelmente está sub-adequado.

Se a diferença entre o custo no conjunto treino e validação for grande, o modelo está sobre-adequado.

Dicotomia entre viés e variância

Viés e Variância

Modelo menos complexo

Modelo mais complexo

Dicotomia entre viés e variância

Não há almoço grátis teorema (No free lunch)

Não há almoço grátis teorema

- Não há almoço grátis teorema.
- Em economia, não há almoço grátis se refere ao custo de oportunidade
- Paper: "The Lack of A Priori Distinctions Between Learning Algorithms".
- Em ML: sem nenhuma suposição sobre a base de dados, não há razão alguma para preferir um modelo ao outro.

Não há almoço grátis

- Para alguma base de dados, o melhor modelo é uma regressão linear, para outra é uma floresta aleatória.
- Não há um modelo que podemos garantir que sempre funcionará melhor
- Quão pertinente esse teorema é na prática? Há modelos que são melhores que outros na maioria dos problemas que estamos interessados?

