Examen Intra MAT7381

(2 heures)

Mars 2020

Exercice 1. On a simulé les données suivantes : $x_i = i$ pour $i = 1, \dots, 50$, les ε_i sont tirés suivant des lois $\mathcal{N}(0,1)$, et $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ avec $\beta_0 = 2$ et $\beta_1 = 1$. On obtient la sortie donnée ci-dessous. Que vaut le biais de $\widehat{\beta}_1$, estimé par moindres carrés (associé à la variable x)?

Exercice 2. On travaille ici avec le modèle linéaire homoscédastique $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ satisfaisant les hypothèses $\mathcal{H}_1 - \mathcal{H}_2$ du cours, et soit $\hat{\boldsymbol{\beta}}$ l'estimateur des MCO:

- 1. Si les covariables sont orthogonales, rappelez ce que vaut $Var(\hat{\beta}_j)$ pour $j=1,\ldots,p$.
- 2. Supposons p = 2, montrer que $\operatorname{Var}(\hat{\beta}_1) \ge \frac{\sigma^2}{\mathbf{x}_1^{\top} \mathbf{x}_1}$ (indication: calculer le 1er terme diagonal de $(\mathbf{X}^{\top} \mathbf{X})^{-1}$).

Exercice 3. Considérons \mathbf{X} une matrice $n \times p$ de covariances, et notons \mathbf{x}_i^{\top} la ième ligne de la matrice \mathbf{X} , et $\mathbf{X}_{(i)}$ la matrice $(n-1) \times p$ la matrice \mathbf{X} privée de la ligne i. De manière similaire, \mathbf{y} est un vecteur de taille n, y_i désigne la ième observation, et $\mathbf{y}_{(i)}$ le vecteur de taille n-1 obtenu à partir de \mathbf{y} en enlevant la ième observation. On notera H_{ii} le ième terme sur la diagonale de la matrice H de projection (tel que les prévision obtenues par moindres carrés s'écrivent $\hat{\mathbf{y}} = H\mathbf{y}$). On appelle M le modèle construit à partir des n observations $\{\mathbf{y}, \mathbf{X}\}$ et M_i le modèle construit à partir des n-1 observations $\{\mathbf{y}_{(i)}, \mathbf{X}_{(i)}\}$

- 1. Montrer que $\mathbf{X}^{\top}\mathbf{X} = \mathbf{X}_{(i)}^{\top}\mathbf{X}_{(i)} + \mathbf{x}_{i}\mathbf{x}_{i}^{\top}$ pour tout $i = 1, \dots, n$
- 2. Montrer que $\mathbf{X}_{(i)}^{\top}\mathbf{y}_{(i)} = \mathbf{X}^{\top}\mathbf{y} + \mathbf{x}_{i}y_{i}$ pour tout $i = 1, \dots, n$
- 3. Montrez que

$$\left(\mathbf{X}_{(i)}^{\top}\mathbf{X}_{(i)}\right)^{-1} = \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1} + \frac{1}{1 - H_{ii}}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{x}_{i}\mathbf{x}_{i}^{\top}\left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}$$

4. Montrez que la prévision de l'observation \mathbf{x}_i à l'aide du modèle M_i est

$$\widehat{y}_i^{(i)} = \frac{1}{1 - H_{ii}} \widehat{y}_i - \frac{H_{ii}}{1 - H_{ii}} y_i$$

où \hat{y}_i est la prévision obtenue par M.

5. En notant $\widehat{\varepsilon}_i$ les résidus estimés du modèle M, les résidus studentisés sont

$$\widehat{t}_i = \frac{\widehat{\varepsilon}_i}{\widehat{\sigma}\sqrt{1 - H_i i}}$$

Montrez qu'on peut les écrire

$$\widehat{t}_i = \frac{\widehat{y}_i - \widehat{y}_i^{(i)}}{\widehat{\sigma} \sqrt{1 + \mathbf{x}_i^{\mathsf{T}} (\mathbf{X}_{(i)}^{\mathsf{T}} \mathbf{X}_{(i)})^{-1} \mathbf{x}_i}}$$

6. Si $\varepsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbb{I})$, quelle est la loi des \hat{t}_i

Indice: on admettra que si \mathbf{M} est une matrice symétrique inversible $p \times p$, et si \mathbf{u} et \mathbf{v} sont deux vecteurs de dimension p,

$$\left(\mathbf{M} + \mathbf{u}\mathbf{v}^{\top}\right)^{-1} = \mathbf{M}^{-1} - \frac{\mathbf{M}^{-1}\mathbf{u}\mathbf{v}^{\top}\mathbf{M}^{-1}}{1 + \mathbf{u}^{\top}\mathbf{M}\mathbf{v}}$$

Exercice 4. Soit $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ un modèle de régression linéaire homoscédastique gaussien. On suppose que la matrice de design $\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2)$ est de taille (n,2). Le vecteur des paramètres $\boldsymbol{\beta}$ est donc de dimension 2. On notera σ^2 le paramètre de variance du bruit. Enfin, on supposera en outre que \mathbf{x}_1 , \mathbf{x}_2 sont centrés et que, pour ρ est un paramètre réel,

$$\mathbf{X}^{\top}\mathbf{X} = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$$

- 1. Quelle est la condition sur n et ρ pour que la matrice de design \mathbf{X} soit de rang plein et que $\mathbf{X}^{\top}\mathbf{X}$ soit définie positive? Cette condtion sera supposée par la suite.
- 2. Soit $\hat{\boldsymbol{\beta}} = (\hat{\beta}_1, \hat{\beta}_2)$ l'estimateur obtenu par moindres carrés ordinaires de ce modèle. Montrez que pour j = 1, 2

$$\hat{\beta}_j = \frac{1}{1 - \rho^2} \mathbf{z}_j^{\mathsf{T}} \mathbf{Y}, \quad avec \ \mathbf{z}_1 = \mathbf{x}_1 - \rho \mathbf{x}_2 \ et \ \mathbf{z}_2 = \mathbf{x}_2 - \rho \mathbf{x}_1.$$

- 3. Calculez $\operatorname{Var}(\hat{\beta}_j)$ en fonction de σ^2 et ρ , pour j=1,2.
- 4. On rappelle que le critère du facteur d'augmentation de la variance du jème régresseur VIF_j vaut $((\mathbf{X}^{\top}\mathbf{X})^{-1})_{jj}$. Pour quelle condition sur ρ , VIF_j est-il supérieur à 4? supérieur à 10?
- 5. Soit $\hat{\sigma}^2$ l'estimateur de la variance du bruit (= RSS/(n 2)). Définir les statistiques des tests de significativité des paramètres β_1 et β_2 en fonction de ρ . Que se passe-t-il lorsque $|\rho| \to 1$? Commentez.

Exercice 5. On dispose de n observations $(y_1, \mathbf{x}_1), \ldots, (y_n, \mathbf{x}_n)$, et on estime un modèle linéaire par moindres carrés. Soit \mathbf{X} la matrix $n \times p$ associée. On suppose que $\mathcal{H}_1 - \mathcal{H}_2$ sont vérifiées. On obtient une nouvelle observation (y_{n+1}, bx_{n+1}) .

- 1. Montrez que l'erreur de prédiction $e_{n+1} = Y_{n+1} \hat{Y}_{n+1}$ vérifie $e_{n+1} = \varepsilon_{n+1} \mathbf{x}_{n+1}^{\top} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \varepsilon, \quad \text{Var}(e_{n+1}) = \sigma^2 \left(1 + \mathbf{x}_{n+1}^{\top} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{x}_{n+1} \right).$
- 2. Montrez également que dans le cas p = 2, i.e. $\mathbf{x} = (1, x)$

$$Var(e_{n+1}) = \sigma^2 \left(1 + \frac{1}{n} + \frac{(x_{n+1} - \overline{x})^2}{\sum (x_i - \overline{x})^2} \right).$$