Численный эксперимент

Константинов Остап Б8203а

16 июня 2014

Постановка задачи

Требуется провести числовой эксперимент интерполяции функций интерполяционными полиномами.

Решение задачи

Мы рассмотрим только линейную интерполяцию, т.е. такую, при которой функция разыскивается в виде линейной комбинации некоторых функций. Одним из способов записи интерполяционного полинома является форма Лагранжа. Возьмем в качестве примера полиноминальную функцию четвертой степени

$$f(x) = 2x^4 + 4x^3 - 8x^2 - 16x - 32$$

И построим его график на промежутке [-1,2]. После чего, будем строить интерполяционные полиномы, по равностоящим точкам.

Теже действия производим с функцией

$$\dot{f}(x) = \ln(x) + x^{\frac{3}{5}} - |x|$$

Взяв новый промежуток [-1, 2.9].

Рис. 1: График функции $f(x) = 2x^4 + 4x^3 - 8x^2 - 16x - 32$ на [-1, 2].

Рис. 2: Интерполяция функции $f\left(x\right)$ полиномом 2-ой степени.

Рис. 3: Интерполяция функции $f\left(x\right)$ полиномом 3-ой степени.

Рис. 4: Интерполяция функции f(x) полиномом 4-ой степени. В результате получаем, чем больше степень интерполяционного полинома, тем лучше приближение.

Рис. 5: График функции $\dot{f}\left(x\right)=\ln\left(x\right)+x^{\frac{3}{5}}-|x|.$

Рис. 6: Интерполяция функции $\dot{f}\left(x\right)$ полиномом 2-ой степени.

Рис. 7: Интерполяция функции $\dot{f}\left(x\right)$ полиномом 3-ой степени.

Рис. 8: Интерполяция функции $\dot{f}(x)$ полиномом 4-ой степени. В результате замечаем, что для негладкой функции интерполирование дает большую погрешность.