Finding similar items: Locality-sensitive Hashing

COMPCSI 753: Algorithms for Massive Data

Ninh Pham

University of Auckland

Parts of this material are modifications of the lecture slides from

http://mmds.org

Designed for the textbook Mining of Massive Datasets

by Jure Leskovec, Anand Rajaraman, and Jeff Ullman.

Recap: Universal hashing

- Given a random choice of a hash function **h** from the universal family such that $h: U \to \{0, 1, ..., n-1\}$.
- Our dictionary needs O(n) space and O(1) expected time per operation (search, insert, delete).
- Expectation is over the random choice of hash function.
- Independent of input set.

Outline

- Similarity search applications
- Finding similar documents:
 - Shingling
 - MinHash
 - Locality-sensitive hashing (LSH)

• Problem:

• Patch up holes in an image by finding similar image region from a huge image database on the Web.

Source: http://graphics.cs.cmu.edu/projects/scene-completion/

10 nearest neighbors from a collection of 2 million images

Other similarity search applications

• Web crawlers and near-duplicate web pages (mirror pages)

Other similarity search applications

• Collaborative-filtering recommender systems require similar users or items.

Source: https://dataaspirant.com/2015/05/25/collaborative-filtering-recommendation-engine-implementation-in-python/

A common metaphor

- We can present many problems as finding "similar" items or finding near-neighbors in high dimensions.
- More examples in machine learning:
 - k-nearest neighbor models (classification/regression/outlier detection)

Source: https://www.python-course.eu/k nearest neighbor classifier.php

A common metaphor

- We can present many problems as finding "similar" items or finding near-neighbors in high dimensions.
- More examples in machine learning:
 - Clustering

Source: https://data-flair.training/blogs/clustering-in-r-tutorial/

General problem for our today's lecture

- Input:
 - A data set X of n points in high-dimensional space.
 - ullet A similarity function **sim** and a similarity threshold **s**.
- Goal:
 - Find all similar pairs x_i , x_j in X such that $sim(x_i, x_j) \ge s$.
- Solutions:
 - Naïve solution: $O(n^2)$.
 - Magic: This can be done in O(n)?

Jaccard similarity

• The Jaccard similarity of two sets **S** and **T** is the ratio of their intersection size to their union size.

$$J(S,T) = \frac{|S \cap T|}{|S \cup T|}$$

• Example:

4 in intersection

8 in union

$$J(S,T) = 1/2.$$

Finding similar documents

• Input:

- **n** documents (e.g. web pages).
- The Jaccard similarity function $\bf J$ and a similarity threshold $\bf s$.

• Goal:

• Find all near-duplicate pairs S,T such that $J(S,T) \ge s$.

• Problems:

- Many small pieces of a document (e.g. words, phrases...) can appear out of order in another.
- **n** documents are too large to fit into main memory.
- Algorithmic challenge: $O(n^2)$ pairs of documents to compare.

Outline

- Similarity search applications
- Finding similar documents:
 - Shingling
 - MinHash
 - Locality-sensitive hashing (LSH)

3 essential steps

- Shingling:
 - To convert documents to sets.
- MinHash:
 - To convert large sets to short signatures, while preserving Jaccard similarity.
- Locality-sensitive hashing (LSH):
 - To focus on candidate pairs which are likely from similar documents to break the barrier of $O(n^2)$.

Framework picture

Framework picture

Documents as high-dimensional data

- Motivation:
 - A: A rose is red, a rose is white.
 - B: A rose is white, a rose is red.
 - C: A rose is a rose is a rose.
- Simple approaches:
 - Document = set of words in document.
 - Document = set of "important" words in document.
 - Not work well.
- Take into account the order of words.

Shingling: Convert documents to sets

- k-shingle is a sequence of k tokens (e.g. characters, words).
- Document = set of \mathbf{k} -shingles
- Example with $\mathbf{k} = 3$:
 - A: A rose is red, a rose is white.
 - $A' = \{a \text{ rose is, rose is red, is red a, red a rose, rose is white}\}.$
 - B: A rose is white, a rose is red.
 - $B' = \{a \text{ rose is, rose is white, is white a, white a rose, rose is red} \}.$
 - C: A rose is a rose is a rose.
 - $C' = \{a \text{ rose is, rose is a, is a rose}\}.$

Compressing shingles

- To compress long shingles, we can hash them to 4-byte integer.
- ullet Represent a document as a set of hash values (integers) of its ${f k}$ shingles.
- Example with $\mathbf{k} = 3$:
 - $A' = \{a \text{ rose is, rose is red, is red a, red a rose, rose is white}\}.$
 - $A' = \{1, 3, 8, 5, 7\}.$
 - $B' = \{a \text{ rose is, rose is white, is white a, white a rose, rose is red}\}.$
 - $B' = \{1, 7, 9, 2, 3\}.$
 - $C' = \{a \text{ rose is, rose is a, is a rose}\}.$
 - $C' = \{1, 4, 6\}.$

Working assumption

- If documents are similar, they will share many common shingles, hence, will have a high Jaccard similarity.
- ullet We should pick **k** large enough to differentiate documents
 - k = 5 for short documents.
 - k = 10 for long documents.

Framework picture

Encoding a set as bit vectors

- Encoding for ease of presenting MinHash idea:
 - Encode a set by a binary vector.
 - Each dimension is an element in the universal set.
- Examples:
 - $\mathbf{A} = \{1, 2, 5, 6, 7\}$
 - $\mathbf{B} = \{1, 2, 3, 6\}$
 - $\mathbf{C} = \{1, 6, 7\}$
 - Universal set: $\mathbf{U} = \{1, 2, 3, 4, 5, 6, 7\}$
 - A = 1100111
 - $\mathbf{B} = 1110010$
 - $\mathbf{C} = 1000011$

From sets to a boolean matrix

6

$$A = \{1, 2, 5, 6, 7\}$$
 $B = \{1, 2, 3, 6\}$
 $C = \{1, 6, 7\}$
 $D = \{2, 3, 4, 5\}$

A	B	C	D
1	1	1	0
1	1	0	1
0	1	0	1
0	0	0	1
1	0	0	1
1	1	1	0
1	0	1	0

Min-Hashing vs. general hashing

• General hashing:

• Min-hashing:

MinHash's idea

• MinHash:

- Algorithm's idea:
 - Use MinHash to hash each set/document into a hash table.
 - Only compute Jaccard similarity of any pair of sets in the same bucket.

MinHash

- Goal: find a hash function **h** such that
 - If J(S,T) is high, then with high probability h(S) = h(T) (collision).
 - If J(S,T) is low, then with high probability $h(S) \neq h(T)$ (no collision).
- MinHash for the Jaccard similarity:

$$\Pr[h(S) = h(T)] = J(S,T)$$

MinHash's signature

- Permute the Boolean matrix with a random permutation π .
- MinHash function:

 $h_{\pi}(S)$ = the index of the first row with value 1 of S (in the permuted order π)

$$h_{\pi}(S) = \min_{\pi} \pi(S)$$

• Use several independent MinHash (i.e. permutation π) to construct the signature of each set.

A	B	C	D
1	1	1	0
1	1	0	1
0	1	0	1
0	0	0	1
1	0	0	1
1	1	1	0
1	0	1	0

Shingles

 π

A	B	C	D
1	1	1	0
1	1	0	1
О	1	0	1
О	0	0	1
1	0	0	1
1	1	1	0
1	0	1	0

Signature matrix M

A B C D

Shingles

Signature matrix M

Shingles

A	B	C	D
1	1	1	0
1	1	0	1
0	1	0	1
0	0	0	1
1	0	0	1
1	1	1	0
1	0	1	0

Signature matrix M

A	B	C	D
			1

Shingles

Signature matrix M

A	В	C	D
			1

Shingles

Signature matrix M

A	В	C	D
2	2		1

Shingles

Signature matrix M

A	В	C	D
2	2	3	1

π		A	B	C	
4	1	1	1	1	(
2	2	1	1	0	1
7	3	0	1	0]
1	4	0	0	0	1
6	5	1	0	0	1
3	6	1	1	1	(
5	7	1	0	1	(

Signature matrix M

3rd element of the permutation is the first to map to a 1.

Documents

Shingles

π

A	B	C	D
1	1	1	0
1	1	0	1
0	1	0	1
0	0	0	1
1	0	0	1
1	1	1	0
1	0	1	0

Shingles

Signature matrix M

A	B	C	D
2	2	3	1

Documents

	π	
2	3	4
3	4	4
7	7	
6	2	
1	6	(
5	1	()
4	5	- ,

A	
1	
1	
0	
0	
1	
1	
1	

A	B	C	D
1	1	1	0
1	1	0	1
0	1	0	1
0	0	0	1
1	0	0	1
1	1	1	0
1	0	1	0

Signature matrix M

A B C D

2	2	3	1
1	1	1	2
1	2	2	1

Documents

MinHash property

• Claim: $Pr_{\pi}[h_{\pi}(S) = h_{\pi}(T)] = J(S,T)$

• Observation after permutation:

	S	T
a-type	1	1
b-type	1	0
c-type	0	1
d-type	0	0

- Look down the column,
 - If we observe a-type: $h_{\pi}(S) = h_{\pi}(T)$
 - If we observe b-type or c-type: $h_{\pi}(S) \neq h_{\pi}(T)$
 - $Pr[h_{\pi}(S) = h_{\pi}(T)] = (a-type) / (a-type + b-type + c-type) = J(S,T)$

Similarity of signatures

MinHash property:

$$Pr_{\pi}[h_{\pi}(S) = h_{\pi}(T)] = J(S,T)$$

- We use **d** MinHash functions (i.e. random permutations) to achieve a signature of size **d** for each set.
- The similarity of two signatures = the fraction of hash functions in which they agree (the number of collisions / **d**).
- The Jaccard similarity of two sets (columns) equals to the expected similarity of their signatures.

	π	
2	3	
3	4	
7	7	
6	2	
1	6	
5	1	
4	5	

A	B	C	D
1	1	1	0
1	1	0	1
0	1	0	1
0	0	0	1
1	0	0	1
1	1	1	0
1	0	1	0

Signature matrix M

A B C D

2	2	3	1
1	1	1	2
1	2	2	1

Similarities:

Shingles

	A-B	C-D
Col/Col	0.5	0
Sig/Sig	0.67	0

MinHash signatures

- Pick d = 100 random permutations, we can represent a document as a short integer vector.
 - The corresponding column of the signature matrix M.
 - Preserve the pairwise Jaccard similarity.
 - The size of signature is very small, i.e. \sim 100 bytes.
- Important note of implementation:
 - Permute rows even once is very expensive.
 - One-pass implementation (reading 3.3.5, chapter 3 of Mining of Massive Datasets).

One-pass MinHash signatures

- Idea: For each column S and a universal hash function h_i , keep a "slot" for the min-hash value.
- Algorithm:
 - Initialize all $sig(S)[i] = \infty$.
 - Scan rows looking for 1s.
 - o Suppose row j has 1 in column 5.
 - o Then for each h_i:
 - If $h_i(j) < sig(S)[i]$, then $sig(S)[i] \leftarrow h_i(j)$.
- How to pick a universal hash function h(x)?
 - $h_{a,b}(x)=((a*x+b) \mod p) \mod n$ where $0 \le a, b < p$ and p is a large prime > n.

Exercise (section 3.3.5)

• Compute MinHash signatures using the two hash function $h_1(x) = x + 1 \mod 5$ and $h_2(x) = 3x + 1 \mod 5$.

Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x+1 \mod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Framework picture

Motivation of MinHash/LSH

- n = 1 million documents.
- A naïve solution needs to compute $n(n-1) / 2 \sim 5*10^{11}$ Jaccard similarities.
- A standard PC computes 10⁶ Jaccard similarities/sec, then we need approximate 5 days.
- Nowadays, the internet has $n \approx 4.5$ billion pages \otimes .

LSH: First cut

- Input:
 - The MinHash signature matrix **M**.
- Goal:
 - Find all pairs of documents with Jaccard similarity $\geq s = 0.8$.
- LSH idea:
 - The higher Jaccard similarity, the larger fractions of identical hash values.
 - A pair of signatures is a candidate (which needs to compute the actual Jaccard similarity) if their hash values are the same on at least **r** fractions.
- Problem:
 - Choose r such that we do not have many false negatives (pairs with $J \ge 0.8$ but not candidates) and false positives (pairs with J < 0.8 but candidates).

Naïve solution and analysis

```
• r = 1:
                                                                              False negatives
      • J(S,T) = 0.8 (should be retrieved)
             o Probability that (S,T) is a candidate: 0.8
             o Probability that (S,T) is not a candidate: 1-0.8=0.2
      • J(S',T') = 0.5 (should not be retrieved)
                                                                              False positives
             o Probability that (S',T') is a candidate: 0.5
             o Probability that (S',T') is not a candidate: 1 - 0.5 = 0.5
• r = 5:
      • J(S,T) = 0.8 (should be retrieved)
                                                                              False negatives
             o Probability that (S,T) is a candidate: 0.8^5 = 0.328
             o Probability that (S,T) is not a candidate: 1 - 0.8^5 = 0.672
      • J(S',T') = 0.5 (should not be retrieved)
                                                                              False positives
             o Probability that (S',T') is a candidate: 0.5^5 = 0.031
             o Probability that (S',T') is not a candidate: 1 - 0.5^5 = 0.969
                                                                                        49
```

Partition M into b bands

Partition M into b bands

- **M** contains **b** bands, each band has **r** rows.
- For each band, hash its **r** rows of each column into a hash table (using general hash functions) with very large buckets.
 - The collision probability of two different rows is super tiny.
- For each band, candidates are column pairs those hash to the same bucket.
 - Candidate pairs might be on the same bucket for more than 1 band.
- ullet Tune **b** and **r** to return most similar pairs but few dissimilar pairs.

Partition M into b bands

Simplifying assumption

- The number of buckets is sufficiently large so that two different columns will hash into different buckets.
- Hence, the "same bucket" means "identical in that band".
- The assumption will simplify analysis, not for correctness of algorithms.

Analysis for J(S, T) = 0.8

- Input: Divide matrix M of d = 100 rows into b = 20, r = 5.
- Goal: (S,T) is a candidate, i.e. S and T hashed into the same bucket for at least 1 band.

Analysis:

- Probability that (S,T) identical in 1 band: $0.8^5 = 0.328$
- Probability that (S,T) not identical in 1 band: $1 0.8^5 = 0.672$
- Probability that (S,T) not identical in all 20 bands: $(1-0.8^5)^{20} = 0.00035$
- Probability that (S,T) identical in at least 1 band: 1 0.00035 = 0.99965

• Conclusion:

- About 1/3000 of the 80%-similar column pair are false negatives (not return).
- We can find **99.965**% truly similar pairs of documents.

Analysis for J(S, T) = 0.3

- Input: Divide matrix M of d = 100 rows into b = 20, r = 5.
- Goal: (S,T) is not a candidate, i.e. S and T are not hashed into the same bucket for all bands.

Analysis:

- Probability that (S,T) identical in 1 band: $0.3^5 = 0.00243$
- Probability that (S,T) not identical in 1 band: $1 0.3^5 = 0.99757$
- Probability that (S,T) not identical in all 20 bands: $(1-0.3^5)^{20} = 0.9525$
- Probability that (S,T) is a candidate: 1 0.9525 = 0.0475

• Conclusion:

- Approximately **4.75**% of the **30**%-similar column pair are false positives (candidate pair).
- We will not report them since we can compute their actual Jaccard similarity.

Tradeoff of LSH

- Parameter settings to balance the false negatives/positives:
 - The number of MinHash (\mathbf{d}) to construct the signature matrix \mathbf{M} .
 - The number of bands **b.**
 - The number of rows **r** per band.
- Exercise:
 - If we set b = 15, r = 5 rows:
 - o What is the probability 80%-similar pair is not a candidate?
 - o What is the probability 30%-similar pair is a candidate?
 - o False negatives increase, false positives decrease.

General analysis for J(S, T) = t

- Parameters:
 - **b** bands and **r** rows per band.
- Analysis:
 - Probability that (S,T) identical in 1 band: t^r
 - Probability that (S,T) not identical in 1 band: $1 t^r$
 - Probability that (S,T) not identical in all b bands: $(1-t^r)^b$
 - Probability that (S,T) is not a candidate: $(1-t^r)^b$
 - Probability that (S,T) is a candidate: $1 (1 t^r)^b$

Ideal case - what we want

Similarity t = sim(S,T) of two sets

b = 1, r = 1

General b and r

General b and r form the S-curse

• Pick **r** and **b** to get the best S-curse.

• Example: b = 10, r = 5, d = 50

Blue area: False Negative rate

Green area: False Positive rate

LSH summary

- Tune **b** and **r** such that
 - Decrease false negatives: get almost all pairs with similar signatures.
 - Decrease false positives: eliminate most pairs that do not have similar signatures.
- Check in main memory that candidate pairs really do have similar signatures (i.e. estimate Jaccard similarity)
- Optional: In another pass through data, compute the actual Jaccard similarity of candidate pairs to return the result.

Summary of 3 steps

- Shingling: Convert documents to sets
 - We used hashing to assign each shingle an integer ID.
- Min-Hashing: Convert large sets to short signatures, while preserving Jaccard similarity.
 - We used similarity preserving hashing to generate signatures with property $\Pr_{\pi}[h_{\pi}(S) = h_{\pi}(T)] = J(S,T)$.
 - We used hashing to get around generating random permutations (efficient implementation).
- Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents.
 - We used hashing to find candidate pairs of Jaccard similarity $\geq s$.