Calcul numeric - temă de laborator

Gabriel Luican, grupa 10LD521

Februarie - Iunie 2024

Enunt: Capitolul 12, Subcapitolul II, Problema 1

Să se calculeze functiile de aproximare construite prin metoda celor mai mici patrate pentru metoda Gauss-Newton de forma si datele indicate (t=0.9)

$$\varphi(t) = a \ln(bt + c)$$
 $y = 2 \ln(3t + 1)$

Soluţie

$$t = 0:9 \\ y = 2*log(3*t+1) \\ errors = @(params)y - model(params,t) \\ init_params = [1,1,1] \\ errors = @(params)y - model(params,t) \\ options = optimoptions('lsqnonlin',' Display',' iter') \\ estim_params = lsqnonlin(errors, init_params, [], [], options)$$

/Iter	Func-count	Resnorm	Norm of step	First-Orderoptim
0	4	118.355		56.9
1	8	1.35224	3.12972	10.1
2	12	0.463972	1.41045	5.22
3	16	0.00089738	0.313499	0.24
4	20	1.70337e - 10	0.00984437	0.000105
\ 5	24	1.30888e - 24	2.06829e - 06	9.03e - 12

 $estim_p aram = \begin{pmatrix} 2.0000 & 3.0000 & 1.0000 \end{pmatrix}$

```
y_real
               y_apprx
    0
            5.7732e - 15
1 \quad 2.7726
                2.7726
2 \quad 3.8918
               3.8918
3 \quad 4.6052
                4.6052
4 5.1299
               5.1299
5 \quad 5.5452
               5.5452
6 5.8889
                5.8889
7 - 6.1821
                6.1821
   6.4378
                6.4378
  6.6644
                6.6644
```

Observații

```
>> t = 0:9;
>> y = 2 * log(3 * t + 1);
>> model = @(params, t) params(1) * log(params(2) * t + params(3));
>> errors = @(params) y - model(params, t);
>> init_params = [1,1,1];
>> options = optimoptions('lsqnonlin', 'Display', 'iter');
>> estim_params = lsqnonlin(errors, init_params, [], [], options);
```

			Norm of	First-order
Iteration	Func-count	Resnorm	step	optimality
0	4	118.355		56.9
1	8	1.35224	3.12972	10.1
2	12	0.463972	1.41045	5.22
3	16	0.00089738	0.313499	0.24
4	20	1.70337e-10	0.00984437	0.000105
5	24	1.30888e-24	2.06829e-06	9.03e-12

Local minimum found.

Optimization completed because the size of the gradient is less than the value of the optimality tolerance.

```
<stopping criteria details>
>> disp('Parametrii estimati:');
disp(estim_params);
Parametrii estimati:
    2.0000    3.0000    1.0000

>> apprx_y = model(estim_params, t);
>> disp('Valorile reale si approximate');
disp(table(t', y', apprx_y', 'VariableNames', {'t', 'y_real', 'y_apprx'}));
```

Valorile reale si approximate

t	y_real	y_apprx
-		
0	0	5.7732e-15
1	2.7726	2.7726
2	3.8918	3.8918
3	4.6052	4.6052
4	5.1299	5.1299
5	5.5452	5.5452
6	5.8889	5.8889
7	6.1821	6.1821
8	6.4378	6.4378
9	6.6644	6.6644