

Rodzaj dokumentu:	Zasady oceniania rozwiązań zadań	
Egzamin:	Egzamin maturalny	
Przedmiot:	Matematyka	
Poziom:	Poziom rozszerzony	
	MMAP-R0-100, MMAP-R0-200,	
Formy arkusza:	MMAP-R0-300, MMAP-R0-400,	
	MMAP-R0-600, MMAP-R0-700,	
	MMAP-R0-Q00, MMAP-R0-Z00	
Termin egzaminu:	2 czerwca 2023 r.	

Uwagi ogólne:

- 1. Akceptowane są wszystkie rozwiązania merytorycznie poprawne i spełniające warunki zadania.
- 2. Jeżeli zdający popełni błędy rachunkowe, które na żadnym etapie rozwiązania nie upraszczają i nie zmieniają danego zagadnienia, lecz stosuje poprawną metodę i konsekwentnie do popełnionych błędów rachunkowych rozwiązuje zadanie, to może otrzymać co najwyżej (n-1) punktów (gdzie n jest maksymalną możliwą do uzyskania liczbą punktów za dane zadanie).

Zadanie 1. (0-2)

Wymagania egzaminacyjne 2023 i 2024¹		
Wymaganie ogólne Wymaganie szczegółowe		
III. Wykorzystanie i interpretowanie reprezentacji.1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycznych.	Zdający: I.R1) stosuje wzór na zamianę podstawy logarytmu.	

Zasady oceniania

2 pkt – poprawne obliczenie a - b: 2023.

1 pkt – obliczenie a: $a = 45^2$

ALBO

– obliczenie b: b = 2.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązanie

Obliczamy a:

$$a = 4^{\log_2 45} = (2^2)^{\log_2 45} = 2^{\log_2 45^2} = 45^2 = 2025$$

Stosujemy wzór na zamianę postawy logarytmu i obliczamy b:

$$b = \frac{\log_3 2023}{\log_9 2023} = \frac{\log_3 2023}{\frac{\log_3 2023}{\log_2 9}} = \log_3 9 = 2$$

Zatem a - b = 2023.

¹Rozporządzenie Ministra Edukacji i Nauki z dnia 10 czerwca 2022 r. w sprawie wymagań egzaminacyjnych dla egzaminu maturalnego przeprowadzanego w roku szkolnym 2022/2023 i 2023/2024 (<u>Dz.U. poz. 1246</u>).

Zadanie 2. (0-3)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja. 4. Stosowanie i tworzenie strategii przy rozwiązywaniu zadań, również w sytuacjach nietypowych.	Zdający: XI.R1) oblicza liczbę możliwych sytuacji, spełniających określone kryteria, z wykorzystaniem reguły mnożenia i dodawania (także łącznie) oraz wzorów na liczbę: permutacji, kombinacji i wariacji, również w przypadkach wymagających rozważenia złożonego modelu zliczania elementów.

Zasady oceniania

- 3 pkt zastosowanie poprawnej metody i poprawny wynik: n = 9.
- 2 pkt zapisanie równania z niewiadomą n, które wynika z warunków zadania, np. $n! = 12 \cdot (n-2)! \cdot 3!$.
- 1 pkt zapisanie, że liczba wszystkich sposobów ustawienia $\,n\,$ osób w kolejce jest równa $\,n!\,$

ALBO

- zapisanie, że trzy kolejne miejsca spośród n miejsc można wybrać na n-3 sposoby (lub na $\binom{n}{n-3}$ sposoby),
 - **ALBO**
- potraktowanie Ani i jej dwóch znajomych jak jednej osoby i zapisanie, że liczba ustawień tych n-2 osób jest równa (n-2)!
- 0 pkt rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązanie

Liczba wszystkich sposobów ustawienia n osób w kolejce jest równa n!.

Liczbę wszystkich tych ciągów, w których Ania i jej dwóch znajomych zajmują trzy sąsiednie miejsca, możemy obliczyć, traktując Anię i jej dwóch znajomych jak "jedną osobę".

W rezultacie mamy ustawić ciąg złożony z n-2 osób, co można zrobić na (n-2)! sposobów. Na ustalonych trzech miejscach Anię i jej dwóch znajomych możemy ustawić na 3! sposobów, więc liczba wszystkich tych ciągów, w których Ania i jej dwóch znajomych zajmują trzy kolejne miejsca jest równa $(n-2)! \cdot 3!$.

Z warunków zadania wynika równanie

$$n! = 12 \cdot (n-2)! \cdot 3!$$

Stad, po podzieleniu obu stron tego równania przez (n-2)!, otrzymujemy:

$$n(n-1) = 12 \cdot 6$$

$$n^2 - n - 72 = 0$$

$$(n-9)(n+8) = 0$$

Ponieważ n jest liczbą całkowitą dodatnią, więc n+8>0. Zatem n-9=0, czyli n=9.

Uwaga.

Liczbę wszystkich ciągów, w których Ania i jej dwóch znajomych zajmują trzy kolejne miejsca, możemy obliczyć też w następujący sposób.

Trzy kolejne miejsca spośród n miejsc możemy wybrać na n-2 sposoby. Na wybranych trzech miejscach Anię i jej dwóch znajomych możemy ustawić na 3! sposobów, a na pozostałych n-3 miejscach możemy pozostałe osoby ustawić na (n-3)! sposobów. Zatem liczba szukanych ciągów jest równa $(n-2)\cdot 3!\cdot (n-3)!=(n-2)!\cdot 3!$

Zadanie 3. (0-3)

Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne Wymagania szczegółowe		
III. Wykorzystanie i interpretowanie reprezentacji.	Zdający: XII.R2) stosuje schemat Bernoullego.	
2. Dobieranie i tworzenie modeli matematycznych przy rozwiązywaniu problemów praktycznych i teoretycznych.		

Zasady oceniania

- 3 pkt zastosowanie poprawnej metody i poprawny wynik: 0,97.
- 2 pkt poprawne zastosowanie wzoru na prawdopodobieństwo uzyskania $\,k\,$ sukcesów w $\,n\,$ próbach Bernoullego i zapisanie prawdopodobieństwa w postaci

$$P(A) = {7 \choose 0} \cdot \left(\frac{1}{10}\right)^0 \cdot \left(\frac{9}{10}\right)^7 + {7 \choose 1} \cdot \left(\frac{1}{10}\right)^1 \cdot \left(\frac{9}{10}\right)^6 + {7 \choose 2} \cdot \left(\frac{1}{10}\right)^2 \cdot \left(\frac{9}{10}\right)^5.$$

1 pkt – ustalenie i zapisanie liczby prób (n), liczby sukcesów (k), prawdopodobieństwa sukcesu (p) i porażki (q) w pojedynczej próbie w schemacie Bernoullego: n=7, $k\leq 2, \ p=\frac{1}{10}$, $q=\frac{9}{10}$.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwaga:

Jeżeli zdający poprawnie zapisze $P(S_7^0) = {7 \choose 0} \cdot \left(\frac{1}{10}\right)^0 \cdot \left(\frac{9}{10}\right)^7$, $P(S_7^1) = {7 \choose 1} \cdot \left(\frac{1}{10}\right)^1 \cdot \left(\frac{9}{10}\right)^6$, oraz $P(S_7^2) = {7 \choose 2} \cdot \left(\frac{1}{10}\right)^2 \cdot \left(\frac{9}{10}\right)^5$, ale z dalszego rozwiązania nie wynika, że $P(A) = P(S_7^0) + P(S_7^1) + P(S_7^2)$, to otrzymuje co najwyżej **1 punkt** za rozwiązanie.

Przykładowe pełne rozwiązanie

Określamy prawdopodobieństwo sukcesu (p) i porażki (q): $p=\frac{1}{10}$, $q=1-p=\frac{9}{10}$.

Niech S_7^k oznacza zdarzenie polegające na wystąpieniu awarii w godzinach porannych dokładnie w k dniach spośród siedmiu rozpatrywanych ($k \in \{0, 1, 2\}$).

Obliczamy prawdopodobieństwo P wystąpienia awarii w godzinach porannych w co najwyżej dwóch dniach spośród siedmiu:

$$P(A) = P(S_7^0) + P(S_7^1) + P(S_7^2) =$$

$$= {7 \choose 0} \cdot {1 \choose 10}^0 \cdot {9 \choose 10}^7 + {7 \choose 1} \cdot {1 \choose 10}^1 \cdot {9 \choose 10}^6 + {7 \choose 2} \cdot {1 \choose 10}^2 \cdot {9 \choose 10}^5 =$$

$$= {9^7 + 7 \cdot 9^6 + 21 \cdot 9^5 \over 10^7} = {9^5 \cdot 165 \over 10^7} = {9743 \cdot 085 \over 10 \cdot 000 \cdot 000} \approx 0,97$$

Zadanie 4. (0-3)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymagania szczegółowe
IV. Rozumowanie i argumentacja. 3. Dobieranie argumentów do uzasadnienia poprawności rozwiązywania problemów, tworzenie ciągu argumentów, gwarantujących poprawność rozwiązania i skuteczność w poszukiwaniu rozwiązań zagadnienia.	Zdający: XIII.R2) stosuje definicję pochodnej funkcji, podaje interpretację geometryczną pochodnej; XIII.R3) oblicza pochodną funkcji potęgowej o wykładniku rzeczywistym oraz oblicza pochodną, korzystając z twierdzeń o pochodnej sumy, różnicy, iloczynu i ilorazu.

Zasady oceniania

- 3 pkt zastosowanie poprawnej metody i poprawny wynik: $x_0 = 2$ oraz y = 17x 16.
- 2 pkt obliczenie odciętej x_0 punktu P i wyznaczenie pochodnej funkcji f: $x_0 = 2$ oraz $f'(x) = 6x^2 8x + 9$.
- 1 pkt obliczenie odciętej x_0 punktu P: $x_0 = 2$ *ALBO*
 - wyznaczenie pochodnej funkcji f: $f'(x) = 6x^2 8x + 9$.
- 0 pkt rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązanie

Obliczamy odciętą x_0 punktu P:

$$18 = 2x_0^3 - 4x_0^2 + 9x_0$$

$$2x_0^3 - 4x_0^2 + 9x_0 - 18 = 0$$

$$2x_0^2(x_0 - 2) + 9(x_0 - 2) = 0$$

$$(2x_0^2 + 9)(x_0 - 2) = 0$$

$$2x_0^2 + 9 = 0 \quad \text{lub} \quad x_0 - 2 = 0$$

Ponieważ $2x_0^2 + 9 > 0$ dla każdej liczby rzeczywistej x_0 , więc $x_0 = 2$.

Wyznaczamy pochodną funkcji f:

$$f'(x) = 6x^2 - 8x + 9$$

Wyznaczamy równanie kierunkowe stycznej do wykresu funkcji f w punkcie P.Obliczamy współczynnik kierunkowy a w równaniu stycznej:

$$a = f'(2) = 17$$

Obliczamy współczynnik b w równaniu stycznej:

$$18 = 17 \cdot 2 + b$$

$$b = -16$$

Styczna ma równanie y = 17x - 16.

Zadanie 5. (0-3)

Wymagania szczegółowe
ący:) znajduje pierwiastki całkowite nierne wielomianu o współczynnikach owitych. I) rozwiązuje nierówności omianowe typu: $W(x) > 0$, $0 \ge 0$, $W(x) < 0$, $W(x) \le 0$ dla omianów doprowadzonych do postaci oynowej lub takich, które dają się owadzić do postaci iloczynowej metodą oczania wspólnego czynnika przed as lub metodą grupowania.

Zasady oceniania

- 3 pkt spełnienie kryterium oceniania za 2 punkty i uzasadnienie prawdziwości nierówności $\frac{(a-2)^2(a+4)}{a} \geq 0 \;\; \text{lub} \;\; (a-2)^2(a+4) \geq 0, \; \text{lub} \;\; a(a-2)^2(a+4) \geq 0 \;\; \text{z powołaniem się na założenie (dla sposobu I)}$
 - spełnienie kryterium oceniania za 2 punkty i przekształcenie nierówności $\frac{a^2+\frac{8}{a}+\frac{8}{a}}{3} \geq \sqrt[3]{a^2\cdot\frac{8}{a}\cdot\frac{8}{a}}$ do postaci tezy (dla sposobu II),
 - spełnienie kryterium oceniania za 2 punkty oraz obliczenie f(2): f(2) = 12 (dla sposobu III).
- 2 pkt przekształcenie nierówności $a^2+\frac{16}{a}\geq 12$ do postaci $\frac{(a-2)^2(a+4)}{a}\geq 0$ lub $(a-2)^2(a+4)\geq 0$, lub $a(a-2)^2(a+4)\geq 0$ (dla sposobu I) *ALBO*
 - spełnienie kryterium oceniania za 1 punkt oraz zapisanie wielomianu $a^3-12a+16$ w postaci $(a-2)^2(a+4)$ (dla sposobu I), *ALBO*
 - zapisanie, że dla każdego a>0 liczby $a^2,\frac{8}{a},\frac{8}{a}$ są dodatnie oraz zapisanie nierówności między średnimi arytmetyczną i geometryczną liczb dodatnich $a^2,\frac{8}{a},\frac{8}{a}$: $\frac{a^2+\frac{8}{a}+\frac{8}{a}}{3} \geq \sqrt[3]{a^2\cdot\frac{8}{a}\cdot\frac{8}{a}} \text{ (dla sposobu II)},$ ALBO
 - obliczenie miejsca zerowego pochodnej funkcji f oraz wyznaczenie w przedziale $(0,+\infty)$ argumentu, dla którego funkcja osiąga w tym przedziale wartość najmniejszą (wraz z uzasadnieniem): a=2 (dla sposobu III).
- 1 pkt przekształcenie nierówności $a^2+\frac{16}{a}\geq 12$ do postaci $\frac{a^3-12a+16}{a}\geq 0$ lub $a^3-12a+16\geq 0$, lub $a(a^3-12a+16)\geq 0$ (dla sposobu l)

ALBO

- zapisanie, że dla każdego a>0 liczby $a^2,\frac{8}{a},\frac{8}{a}$ są dodatnie (dla sposobu II), *ALBO*
- obliczenie pochodnej funkcji f określonej wzorem $f(a)=a^2+\frac{16}{a}$ dla a>0 (lub w szerszym zakresie), np. $f'(a)=2a-\frac{16}{a^2}$ (dla sposobu III).

0 pkt – rozwiązanie, w którym zastosowano nieprawidłową metodę, albo brak rozwiązania.

Uwaga:

Jeśli zdający opiera swoje rozwiązanie na nierówności między średnimi (sposób III) i stosuje nierówność między średnimi liczb $a^2, \frac{8}{a}, \frac{8}{a}$ bez zapisania, że liczby te są dodatnie, to może otrzymać co najwyżej **2 punkty** za całe rozwiązanie.

Przykładowe pełne rozwiązania

Sposób I

Przekształcamy nierówność $a^2 + \frac{16}{a} \ge 12$:

$$\frac{a^3}{a} + \frac{16}{a} - \frac{12a}{a} \ge 0$$

$$\frac{a^3 - 12a + 16}{a} \ge 0$$

$$a(a^3 - 12a + 16) \ge 0$$
 i $a \ne 0$

Zauważamy, że pierwiastkiem wielomianu $W(a)=a^3-12a+16\,$ jest liczba $\,2.\,$ Stąd $W(a)=(a-2)(a^2+2a-8).\,$ Ponieważ pierwiastkami trójmianu kwadratowego $a^2+2a-8\,$ są liczby $\,2\,$ i $\,(-4),\,$ więc $\,W(a)=(a-2)^2(a+4).\,$ Zatem nierówność $\,a(a^3-12a+16)\geq 0\,$ można równoważnie zapisać w postaci

$$a(a-2)^2(a+4) \ge 0$$

Dla każdej liczby dodatniej a wyrażenie $(a-2)^2$ jest liczbą nieujemną, natomiast wyrażenie (a+4) jest liczbą dodatnią. Zatem dla każdej liczby dodatniej a wyrażenie $a(a-2)^2(a+4)$ jest nieujemne jako iloczyn liczb nieujemnych. Oznacza to, że nierówność $a^2+\frac{16}{a}\geq 12$ jest prawdziwa dla każdej liczby dodatniej a. To należało wykazać.

Inna realizacja rozkładu wielomianu $a^3 - 12a + 16$ na czynniki:

$$a^{3} - 12a + 16 = a^{3} - 16a + 4a + 16 = a(a^{2} - 16) + 4(a + 4) =$$

$$= a(a - 4)(a + 4) + 4(a + 4) = (a + 4)[a(a - 4) + 4] =$$

$$= (a + 4)(a^{2} - 4a + 4) = (a + 4)(a - 2)^{2}$$

Sposób II

Dla każdego a>0 liczby $a^2,\frac{8}{a},\frac{8}{a}$ są dodatnie. Korzystamy z nierówności między średnimi arytmetyczną i geometryczną liczb $a^2,\frac{8}{a},\frac{8}{a}$ i otrzymujemy:

$$\frac{a^2 + \frac{8}{a} + \frac{8}{a}}{3} \ge \sqrt[3]{a^2 \cdot \frac{8}{a} \cdot \frac{8}{a}}$$
$$\frac{a^2 + \frac{16}{a}}{3} \ge \sqrt[3]{64}$$
$$a^2 + \frac{16}{a} \ge 12$$

To należało wykazać.

Sposób III

Niech f będzie funkcją określoną wzorem $f(a) = a^2 + \frac{16}{a}$ dla każdej liczby rzeczywistej a > 0.

Obliczamy pochodną funkcji f:

$$f'(a) = 2a - \frac{16}{a^2} = \frac{2a^3 - 16}{a^2}$$

Obliczamy miejsca zerowe pochodnej funkcji f:

$$\frac{2a^3-16}{a^2}=0$$

$$2a^3 - 16 = 0$$

$$a = 2$$

Ponieważ f'(a)>0 dla $a\in(2,+\infty)$ oraz f'(a)<0 dla $a\in(0,2)$, więc funkcja f jest malejąca w przedziale (0,2] oraz jest rosnąca w przedziale $[2,+\infty)$. Zatem dla argumentu a=2 funkcja przyjmuje wartość najmniejszą równą $f(2)=2^2+\frac{16}{2}=12$. Stąd $f(a)\geq 12$ dla każdej liczby dodatniej a.

To oznacza, że nierówność $a^2 + \frac{16}{a} \ge 12$ jest prawdziwa dla każdego a > 0.

Zadanie 6. (0-3)

Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne Wymaganie szczegółowe		
IV. Rozumowanie i argumentacja.	Zdający:	
1. Przeprowadzanie rozumowań, także	VIII.1) wyznacza promienie i średnice	
kilkuetapowych, podawanie argumentów	okręgów, długości cięciw okręgów oraz	
uzasadniających poprawność rozumowania,	odcinków stycznych, w tym	
odróżnianie dowodu od przykładu.	z wykorzystaniem twierdzenia Pitagorasa.	

Zasady oceniania

- 3 pkt spełnienie kryterium oceniania za 2 punkty oraz uzasadnienie, że |AC| = |BC|.
- 2 pkt wyznaczenie długości odcinków AP, AQ, BD, CD, CQ w zależności od tej samej zmiennej, np. |AP| = 5x, |AQ| = 5x, |BD| = x, |CD| = 2x, |CQ| = 2x.
- 1 pkt zapisanie równości wynikającej z twierdzenia o odcinkach stycznych: |BD| = |BP| (lub |AP| = |AQ|, lub |CQ| = |CD|).
- 0 pkt rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązanie

Niech |BP| = x.

Z twierdzenia o odcinkach stycznych wnioskujemy, że |BD| = |BP| = x.

Z założenia $|CD| = 2 \cdot |BD|$ otrzymujemy |CD| = 2x. Z twierdzenia o odcinkach stycznych wnioskujemy, że |CQ| = |CD| = 2x (zobacz rysunek).

Ponieważ $|AQ|=5\cdot |BP|$, więc |AQ|=5x. Ponownie z twierdzenia o odcinkach stycznych wnioskujemy, że |AP|=|AQ|=5x.

Zatem |AC| = |AQ| - |CQ| = 5x - 2x = 3x oraz |BC| = |BD| + |CD| = x + 2x = 3x. Wobec tego |AC| = |BC|, więc trójkąt ABC jest równoramienny. To należało wykazać.

Zadanie 7. (0-4)

Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne Wymaganie szczegółowe		
III. Wykorzystanie i interpretowanie reprezentacji. 2. Dobieranie i tworzenie modeli matematycznych przy rozwiązywaniu problemów praktycznych i teoretycznych.	Zdający: VI.R2) rozpoznaje zbieżne szeregi geometryczne i oblicza ich sumę.	

Zasady oceniania

- 4 pkt poprawne wyznaczenie wszystkich wartości zmiennej x, dla których suma szeregu istnieje $(x \in (-\infty, -2) \cup (4, +\infty))$ oraz poprawne wyznaczenie wszystkich wartości zmiennej x, dla których suma jest równa $\frac{15}{2}$: x = 6.
- 3 pkt wyznaczenie zbioru wszystkich wartości x, dla których istnieje skończona suma szeregu ($x \in (-\infty, -2) \cup (4, +\infty)$) oraz zastosowanie wzoru na sumę szeregu geometrycznego, wyznaczenie tej sumy i zapisanie równania z niewiadomą x: $\frac{2x}{1-\left(-\frac{3}{x-1}\right)} = \frac{15}{2}$ ALBO
 - zapisanie warunku zbieżności szeregu (|q|<1) oraz zastosowanie wzoru na sumę szeregu geometrycznego, wyznaczenie tej sumy, zapisanie równania z niewiadomą $x \ (\frac{2x}{1-\left(-\frac{3}{x-1}\right)}=\frac{15}{2})$ i rozwiązanie tego równania: $x=-\frac{5}{4}$, x=6.
- 2 pkt wyznaczenie zbioru wszystkich wartości x, dla których istnieje skończona suma szeregu: $x \in (-\infty, -2) \cup (4, +\infty)$ ALBO
 - zapisanie warunku zbieżności szeregu (|q| < 1) oraz zastosowanie wzoru na sumę szeregu geometrycznego, wyznaczenie tej sumy i zapisanie równania z niewiadomą x:

$$\frac{2x}{1-\left(-\frac{3}{x-1}\right)} = \frac{15}{2}$$

1 pkt – zapisanie ilorazu: $q = -\frac{3}{x-1}$.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwagi:

- **1.** Jeśli zdający rozwiąże odpowiednie równanie i zapisze: $x = -\frac{5}{4}$ V x = 6, a następnie obliczy iloraz szeregu dla każdej z wyznaczonych wartości zmiennych i na tej podstawie dokona właściwego wyboru rozwiązania, to otrzymuje **4 punkty**.
- **2.** Jeśli zdający rozwiąże zadanie bez rozważenia warunku |q| < 1, to może otrzymać maksymalnie **2 punkty**.
- **3.** Jeśli zdający zapisze poprawny warunek zbieżności szeregu: $\left|-\frac{3}{x-1}\right| < 1$, ale popełni błąd przy wyznaczaniu przedziału zbieżności i konsekwentnie rozwiąże zadanie do końca, to może otrzymać **3 punkty**.

- **4.** Jeżeli zdający popełni błąd przy wyznaczaniu ilorazu ciągu, który będzie wyrażeniem wymiernym zmiennej x, np. zapisze, że $q = -\frac{3x}{x-1}$, i konsekwentnie rozwiąże zadanie do końca, to może otrzymać maksymalnie **2 punkty**.
- **5.** Jeśli zdający zapisze dany szereg jako sumę dwóch szeregów postaci $2x + \frac{18x}{(x-1)^2} + \frac{172x}{(x-1)^4} + \dots$ oraz $-\frac{6x}{x-1} \frac{54x}{(x-1)^3} \frac{516x}{(x-1)^5} \dots$ bez odpowiedniego komentarza i rozwiąże zadanie konsekwentnie do końca, obliczając sumę dwóch szeregów, to może otrzymać maksymalnie **3 punkty**.

Przykładowe pełne rozwiązanie

Pierwszy wyraz i iloraz tego szeregu są równe, odpowiednio, $a_1=2x$ oraz $q=-\frac{3}{x-1}$. Ponieważ $x\neq 1$ i $x\neq 0$, to szereg ten jest zbieżny wtedy i tylko wtedy, gdy $\left|-\frac{3}{x-1}\right|<1$, czyli |x-1|>3. Stąd $x\in (-\infty,-2)\cup (4,+\infty)$.

Wtedy suma S tego szeregu jest skończona i równa

$$S = \frac{a_1}{1 - q} = \frac{2x}{1 - \left(-\frac{3}{x - 1}\right)} = \frac{2x(x - 1)}{x + 2}$$

Rozwiązujemy równanie $\frac{2x(x-1)}{x+2} = \frac{15}{2}$ w zbiorze $(-\infty, -2) \cup (4, +\infty)$:

$$\frac{2x(x-1)}{x+2} = \frac{15}{2}$$

$$4x(x-1) = 15(x+2)$$

$$4x^2 - 19x - 30 = 0$$

$$x = -\frac{5}{4} \notin (-\infty, -2) \cup (4, +\infty)$$
 lub $x = 6 \in (-\infty, -2) \cup (4, +\infty)$

Zatem x = 6.

Zadanie 8. (0-4)

Wymagania egzaminacyjne 2023 i 2024	
Wymagania ogólne	Wymaganie szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
2. Używanie języka matematycznego do	VII.R6) rozwiązuje równania
tworzenia tekstów matematycznych, w tym	trygonometryczne o stopniu trudności nie
do opisu prowadzonych rozumowań	większym niż w przykładzie
i uzasadniania wniosków, a także do	$4\cos 2x\cos 5x = 2\cos 7x + 1.$
przedstawiania danych.	
IV. Rozumowanie i argumentacja.	
4. Stosowanie i tworzenie strategii przy	
rozwiązywaniu zadań, również w sytuacjach	
nietypowych.	

Zasady oceniania

- 4 pkt poprawne metoda rozwiązania równania i poprawny wynik: $-\frac{\pi}{8}$, $\frac{3\pi}{8}$, $-\frac{5\pi}{12}$, $-\frac{\pi}{12}$, $\frac{\pi}{4}$.
- 3 pkt rozwiązanie równania $\sin(5x)=\sin\left(x-\frac{\pi}{2}\right)$ (lub równania $\cos x=\cos\left(5x+\frac{\pi}{2}\right)$) w zbiorze liczb rzeczywistych: $x=-\frac{\pi}{8}+\frac{k\pi}{2}$ lub $x=\frac{\pi}{4}+\frac{k\pi}{3}$, gdzie $k\in\mathbb{Z}$ ALBO
 - przekształcenie równania do alternatywy elementarnych równań trygonometrycznych i rozwiązanie jednego z tych równań w zbiorze $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$, *ALBO*
 - przekształcenie równania do alternatywy elementarnych równań trygonometrycznych i rozwiązanie wszystkich równań tej alternatywy w zbiorze R.
- 2 pkt równoważne przekształcenie równania do postaci, która jest równością sinusów lub cosinusów, np. $\sin(5x) = \sin\left(x \frac{\pi}{2}\right)$, $\cos x = \cos\left(5x + \frac{\pi}{2}\right)$ *ALBO*
 - zastosowanie wzoru na sumę sinusów lub na sumę cosinusów i przekształcenie równania do postaci alternatywy elementarnych równań trygonometrycznych, np. $\sin\left(2x+\frac{\pi}{4}\right)=0$ lub $\cos\left(3x-\frac{\pi}{4}\right)=0$, $\cos\left(\frac{\pi}{4}-2x\right)=0$ lub $\cos\left(\frac{\pi}{4}-3x\right)=0$.
- 1 pkt zastosowanie wzoru redukcyjnego i przekształcenie równania do postaci, w której występuje tylko jedna funkcja trygonometryczna, np. $\sin(5x) + \sin\left(\frac{\pi}{2} x\right) = 0$, $\cos\left(\frac{\pi}{2} 5x\right) + \cos x = 0$.
- 0 pkt rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązania

Sposób I (równość sinusów)

Zapisujemy równanie w postaci równoważnej, w której występuje tylko jedna funkcja trygonometryczna zmiennej x:

$$\sin(5x) + \cos x = 0$$

Egzamin maturalny z matematyki na poziomie rozszerzonym – termin dodatkowy 2023 r.

$$\sin(5x) + \sin\left(\frac{\pi}{2} - x\right) = 0$$
$$\sin(5x) = -\sin\left(\frac{\pi}{2} - x\right)$$

Ponieważ funkcja sinus jest nieparzysta, więc

$$\sin(5x) = \sin\left(x - \frac{\pi}{2}\right)$$

Stad

$$5x = x - \frac{\pi}{2} + 2k\pi$$
 lub $5x = \pi - (x - \frac{\pi}{2}) + 2k\pi$
 $x = -\frac{\pi}{8} + \frac{k\pi}{2}$ lub $x = \frac{\pi}{4} + \frac{k\pi}{3}$

gdzie $k \in \mathbb{Z}$.

Wyznaczamy rozwiązania równania $\sin(5x) + \cos x = 0$ w zbiorze $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$:

$$-\frac{\pi}{8}$$
, $\frac{3\pi}{8}$, $-\frac{5\pi}{12}$, $-\frac{\pi}{12}$, $\frac{\pi}{4}$

Sposób II (poprzez sumę sinusów)

Zapisujemy równanie w postaci równoważnej, w której występuje tylko jedna funkcja trygonometryczna zmiennej x:

$$\sin(5x) + \cos x = 0$$
$$\sin(5x) + \sin\left(\frac{\pi}{2} - x\right) = 0$$

Korzystamy ze wzoru na sumę sinusów i otrzymujemy

$$2\sin\left(\frac{5x + \frac{\pi}{2} - x}{2}\right) \cdot \cos\left(\frac{5x - \left(\frac{\pi}{2} - x\right)}{2}\right) = 0$$

$$\sin\left(2x + \frac{\pi}{4}\right) = 0 \quad \text{lub} \quad \cos\left(3x - \frac{\pi}{4}\right) = 0$$

$$2x + \frac{\pi}{4} = k\pi \quad \text{lub} \quad 3x - \frac{\pi}{4} = \frac{\pi}{2} + k\pi$$

$$x = -\frac{\pi}{8} + \frac{k\pi}{2} \quad \text{lub} \quad x = \frac{\pi}{4} + \frac{k\pi}{3}$$

gdzie $k \in \mathbb{Z}$.

Wyznaczamy rozwiązania równania $\sin(5x) + \cos x = 0$ w zbiorze $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$:

$$-\frac{\pi}{8}$$
, $\frac{3\pi}{8}$, $-\frac{5\pi}{12}$, $-\frac{\pi}{12}$, $\frac{\pi}{4}$

Zadanie 9. (0-4)

Wymagania egzaminacyjne 2023 i 2024	
Wymagania ogólne	Wymagania szczegółowe
IV. Rozumowanie i argumentacja. 3. Dobieranie argumentów do uzasadnienia poprawności rozwiązywania problemów, tworzenie ciągu argumentów, gwarantujących poprawność rozwiązania i skuteczność w poszukiwaniu rozwiązań zagadnienia. 4. Stosowanie i tworzenie strategii przy	Zdający: VIII.5) stosuje własności kątów wpisanych i środkowych. IX.4) posługuje się równaniem okręgu $(x-a)^2+(y-b)^2=r^2$.
rozwiązywaniu zadań, również w sytuacjach nietypowych.	

Zasady oceniania (dla sposobu I)

- 4 pkt poprawna metoda rozwiązania i poprawny wynik: P = 20.
- 3 pkt obliczenie wysokości CD trójkąta ABC: |CD| = 4.
- 2 pkt obliczenie (podanie) długości odcinków AD i BD: |AD| = 8 oraz |DB| = 2.
- 1 pkt zapisanie, że bok $\it AB$ trójkąta $\it ABC$ jest średnicą danego okręgu $\it ALBO$
 - zapisanie, że środek S=(1,2) danego okręgu leży na prostej o równaniu 4x-3y+2=0.
- 0 pkt rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Zasady oceniania (dla sposobu II)

- 4 pkt poprawna metoda rozwiązania i poprawny wynik: P = 20.
- 3 pkt obliczenie współrzędnych wierzchołka C trójkąta ABC: C = (6,2) lub $C = \left(-\frac{2}{5}, \frac{34}{5}\right)$.
- 2 pkt obliczenie współrzędnych punktu *D*: $D = \left(\frac{14}{5}, \frac{22}{5}\right)$.
- 1 pkt obliczenie współrzędnych punktów A i B, np. A = (-2, -2) i B = (4, 6).
- 0 pkt rozwiązanie, w którym zastosowano niepoprawną metodę albo brak rozwiązania.

Uwaga:

Jeśli zdający popełnia w rozwiązaniu błąd merytoryczny albo błędnie odgaduje np. długości odcinków *AD* i *BD*, to za całe rozwiązanie może otrzymać co najwyżej **2 punkty**.

Przykładowe pełne rozwiązania

Sposób I

Ponieważ prosta o równaniu 4x-3y+2=0 przechodzi przez środek S=(1,2) danego okręgu, więc bok AB jest średnicą tego okręgu. Zatem |AB|=10. Wysokość CD dzieli bok AB tak, że |AD|=4|DB|. Stąd i z |AD|+|DB|=10 wynika, że |AD|=8 oraz |DB|=2. Ponieważ kąt ACB jest kątem wpisanym w okrąg, opartym na średnicy, więc jest kątem prostym. Wysokość opuszczona z wierzchołka kąta prostego dzieli przeciwprostokątną AB tak, że $|CD|=\sqrt{|AD|\cdot |DB|}=\sqrt{8\cdot 2}=4$. Zatem pole P trójkąta ABC jest równe

$$P = \frac{1}{2} \cdot |AB| \cdot |CD| = \frac{1}{2} \cdot 10 \cdot 4 = 20$$

Sposób II

Ponieważ prosta o równaniu 4x - 3y + 2 = 0 przechodzi przez środek S = (1,2) danego okręgu, więc bok AB jest średnicą tego okręgu. Obliczamy współrzędne punktów A i B, rozwiązując układ równań: 4x - 3y + 2 = 0 i $(x - 1)^2 + (y - 2)^2 = 25$.

Z pierwszego z równań układu wyznaczamy x: $x = \frac{3y-2}{4}$ i podstawiamy do drugiego z równań układu, otrzymując kolejno:

$$\left(\frac{3y-2}{4}-1\right)^2 + (y-2)^2 = 25$$

$$\left(\frac{3y-6}{4}\right)^2 + (y-2)^2 = 25$$

$$\frac{9}{16}(y-2)^2 + (y-2)^2 = 25$$

$$(y-2)^2 = 16$$

$$|y-2| = 4$$

$$y = -2 \quad \text{lub} \quad y = 6$$

Gdy y = -2, to x = -2. Gdy y = 6, to x = 4.

Ze względu na symetrię, możemy przyjąć, że A=(-2,-2) i B=(4,6). Wtedy |AB|=10.

Ponieważ $\overrightarrow{AD} = \frac{4}{5} \cdot \overrightarrow{AB}$, więc $\overrightarrow{AD} = \frac{4}{5} \cdot [6, 8] = \left[\frac{24}{5}, \frac{32}{5}\right]$. Stąd wynika, że $D = \left(\frac{14}{5}, \frac{22}{5}\right)$. Wyznaczamy równanie prostej, która zawiera wysokość CD trójkąta ABC: y = ax + b

Prosta ta jest prostopadła do prostej 4x - 3y + 2 = 0, więc $\frac{4}{3} \cdot a = -1$. Stąd $a = -\frac{3}{4}$.

Wykorzystując współrzędne punktu D, otrzymujemy $\frac{22}{5} = -\frac{3}{4} \cdot \frac{14}{5} + b$, czyli $b = \frac{13}{2}$. Wyznaczamy współrzędne punktu C, rozwiązując układ równań

$$y = -\frac{3}{4}x + \frac{13}{2}$$
 i $(x-1)^2 + (y-2)^2 = 25$

Otrzymujemy

$$(x-1)^{2} + \left(-\frac{3}{4}x + \frac{13}{2} - 2\right)^{2} = 25$$

$$(x-1)^{2} + \left(-\frac{3}{4}x + \frac{9}{2}\right)^{2} = 25$$

$$x^{2} - 2x + 1 + \frac{9}{16}x^{2} - \frac{27}{4}x + \frac{81}{4} - 25 = 0$$

$$5x^{2} - 28x - 12 = 0$$

$$(x-6)(5x+2) = 0$$

$$x = 6$$
 lub $x = -\frac{2}{5}$

Stąd C = (6,2) lub $C = \left(-\frac{2}{5}, \frac{34}{5}\right)$. Obliczamy wysokość trójkąta ABC.

Dla
$$C = (6,2)$$
 otrzymujemy $|DC| = \sqrt{\left(6 - \frac{14}{5}\right)^2 + \left(2 - \frac{22}{5}\right)^2} = 4$.

Dla $C = \left(-\frac{2}{5}, \frac{34}{5}\right)$ otrzymujemy $|DC| = \sqrt{\left(-\frac{2}{5} - \frac{14}{5}\right)^2 + \left(\frac{34}{5} - \frac{22}{5}\right)^2} = 4$.

Zatem pole P trójkąta ABC jest równe

$$P = \frac{1}{2} \cdot |AB| \cdot |CD| = \frac{1}{2} \cdot 10 \cdot 4 = 20$$

Uwaga:

Przyjmując A=(4,6) i B=(-2,-2), otrzymujemy $D=\left(-\frac{4}{5}\,,-\frac{2}{5}\right)$. Wtedy prosta, która zawiera wysokość CD trójkąta ABC, ma równanie $y=-\frac{3}{4}x-1$. Współrzędne punktu C obliczamy, rozwiązując układ równań: $y=-\frac{3}{4}x-1$ i $(x-1)^2+(y-2)^2=25$. Otrzymujemy: C=(-4,2) lub $C=\left(\frac{12}{5}\,,-\frac{14}{5}\right)$. Dla obu tych przypadków |CD|=4 i pole $P=\frac{1}{2}\cdot 10\cdot 4=20$.

Zadanie 10. (0-5)

Wymagania egzaminacyjne 2023 i 2024	
Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	III.R5) analizuje równania i nierówności
2. Dobieranie i tworzenie modeli	liniowe z parametrami oraz równania
matematycznych przy rozwiązywaniu	i nierówności kwadratowe z parametrami,
problemów praktycznych i teoretycznych.	w szczególności wyznacza liczbę rozwiązań
3. Tworzenie pomocniczych obiektów	w zależności od parametrów, podaje
matematycznych na podstawie istniejących,	warunki, przy których rozwiązania mają
w celu przeprowadzenia argumentacji lub	żądaną własność, i wyznacza rozwiązania
rozwiązania problemu.	w zależności od parametrów.

Zasady oceniania

Rozwiązanie zadania składa się z trzech etapów.

Pierwszy etap polega na rozwiązaniu warunku $\Delta > 0$. Za poprawne wykonanie tego etapu zdający otrzymuje **1 punkt**.

1 pkt – poprawne rozwiązanie warunku $\Delta > 0$: $m \in \left(-\infty, \frac{1}{9}\right) \cup (1, +\infty)$.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Drugi etap polega na wyznaczeniu wszystkich wartości parametru m, dla których jest spełniony warunek $\frac{1}{x_1^2} + \frac{1}{x_2^2} < 1$.

Podział punktów za drugi etap rozwiązania:

3 pkt – wyznaczenie tych wszystkich wartości m, dla których spełniony jest warunek $\frac{1}{x_1^2} + \frac{1}{x_2^2} < 1$: $m \in \left(-4 - 2\sqrt{6}, 0\right) \cup \left(0, -4 + 2\sqrt{6}\right)$.

2 pkt – zapisanie nierówności z jedną niewiadomą m, która odpowiada warunkowi

$$\frac{1}{x_1^2} + \frac{1}{x_2^2} < 1, \text{ np. } \frac{\left(\frac{m+1}{m}\right)^2 - 2 \cdot \frac{(-2m+3)}{m}}{\left(\frac{-2m+3}{m}\right)^2} < 1.$$

1 pkt – przekształcenie wyrażenia $\frac{1}{x_1^2}+\frac{1}{x_2^2}<1$ do postaci pozwalającej na bezpośrednie zastosowanie wzorów Viète'a, np. $\frac{(x_1+x_2)^2-2x_1x_2}{(x_1x_2)^2}<1$ (lub innej równoważnej, ale zawierającej jedynie zmienne x_1+x_2 oraz x_1x_2).

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Trzeci etap polega na wyznaczeniu wszystkich wartości parametru m, dla których spełnione są jednocześnie warunki: $\Delta > 0$ i $\frac{1}{x_1^2} + \frac{1}{x_2^2} < 1$.

Za poprawne wykonanie tego etapu zdający otrzymuje 1 punkt.

1 pkt – poprawne wyznaczenie wszystkich wartości m, dla których $\Delta > 0$ i $\frac{1}{x_1^2} + \frac{1}{x_2^2} < 1$:

$$m \in \left(-4 - 2\sqrt{6}, 0\right) \cup \left(0, \frac{1}{9}\right)$$
.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwagi:

- **1.** Jeżeli zdający rozwiązuje warunek $\Delta \ge 0$ (zamiast $\Delta > 0$), to za I etap rozwiązania otrzymuje **0 punktów**.
- **2.** Jeżeli zdający w II etapie rozwiązania rozważa niepoprawną nierówność wymierną i rozwiązanie tej nierówności jest zbiorem rozłącznym ze zbiorem rozwiązań nierówności z I etapu, to zdający otrzymuje **0 punktów** za III etap.
- **3.** Jeżeli w rozwiązaniu zdającego nie ma zapisu $m \neq 0$ albo $m \neq \frac{3}{2}$, albo zdający nie uwzględnia w rozwiązaniu warunku $m \neq 0$, albo $m \neq \frac{3}{2}$, to zdający może otrzymać co najwyżej **4 punkty** za całe rozwiązanie.

Przykładowe pełne rozwiązanie

Równanie $mx^2 - (m+1)x - 2m + 3 = 0$ ma dokładnie dwa różne rozwiązania rzeczywiste wtedy i tylko wtedy, gdy $m \neq 0$ i wyróżnik Δ trójmianu kwadratowego $mx^2 - (m+1)x - 2m + 3$ jest dodatni.

I etap

Rozwiązujemy warunek $\Delta > 0$:

$$[-(m+1)]^{2} - 4m \cdot (-2m+3) > 0$$

$$9m^{2} - 10m + 1 > 0$$

$$(m-1)(9m-1) > 0$$

$$m \in \left(-\infty, \frac{1}{9}\right) \cup (1, +\infty)$$

Zatem równanie $mx^2-(m+1)x-2m+3=0$ ma dokładnie dwa różne rozwiązania rzeczywiste, gdy $m\in (-\infty,0)\cup \left(0,\frac{1}{9}\right)\cup (1,+\infty).$

II etap

Wyznaczymy wszystkie wartości m, dla których jest spełniony warunek: $\frac{1}{x_1^2} + \frac{1}{x_2^2} < 1$.

Przekształcamy nierówność $\frac{1}{x_1^2} + \frac{1}{x_2^2} < 1$ do postaci, która pozwoli na bezpośrednie zastosowanie wzorów Viète'a:

$$\frac{x_{1+}^2 x_2^2}{(x_1 x_2)^2} < 1$$

$$\frac{(x_1 + x_2)^2 - 2x_1 x_2}{(x_1 x_2)^2} < 1$$

Stąd, po zastosowaniu wzorów Viète'a, otrzymujemy:

$$\frac{\left(\frac{m+1}{m}\right)^2 - 2 \cdot \frac{(-2m+3)}{m}}{\left(\frac{-2m+3}{m}\right)^2} < 1$$

i dalej

Egzamin maturalny z matematyki na poziomie rozszerzonym – termin dodatkowy 2023 r.

$$\left(\frac{m+1}{m}\right)^2 - 2 \cdot \frac{(-2m+3)}{m} < \left(\frac{-2m+3}{m}\right)^2 \quad \text{i} \quad m \neq 0 \quad \text{i} \quad m \neq \frac{3}{2}$$

$$(m+1)^2 - 2m(-2m+3) < (-2m+3)^2 \quad \text{i} \quad m \neq 0 \quad \text{i} \quad m \neq \frac{3}{2}$$

$$m^2 + 8m - 8 < 0 \quad \text{i} \quad m \neq 0 \quad \text{i} \quad m \neq \frac{3}{2}$$

$$m \in \left(-4 - 2\sqrt{6}, -4 + 2\sqrt{6}\right) \quad \text{i} \quad m \neq 0 \quad \text{i} \quad m \neq \frac{3}{2}$$

Zatem warunek $\frac{1}{x_1^2} + \frac{1}{x_2^2} < 1$ jest spełniony tylko dla $m \in \left(-4 - 2\sqrt{6}, 0\right) \cup \left(0, -4 + 2\sqrt{6}\right)$.

III etap

Wyznaczamy te wszystkie wartości m, które jednocześnie spełniają warunki: $m \neq 0$ i $m \in \left(-\infty, \frac{1}{9}\right) \cup (1, +\infty)$ i $m \in \left(-4 - 2\sqrt{6}, -4 + 2\sqrt{6}\right)$ i $m \neq \frac{3}{2}$:

$$m \in \left(-4 - 2\sqrt{6}, 0\right) \cup \left(0, \frac{1}{9}\right)$$

Zadanie 11. (0-5)

Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne Wymaganie szczegółowe		
III. Wykorzystanie i interpretowanie	Zdający:	
reprezentacji.	VI.6) wykorzystuje własności ciągów, w tym	
2. Dobieranie i tworzenie modeli	arytmetycznych i geometrycznych, do	
matematycznych przy rozwiązywaniu problemów praktycznych i teoretycznych.	rozwiązywania zadań, również osadzonych w kontekście praktycznym.	

Zasady oceniania

- 5 pkt obliczenie a, b oraz c: a = 1 i b = 3 i c = 9.
- 4 pkt rozwiązanie równania z jedną niewiadomą, np. $a=-\frac{49}{2}$ oraz a=1, q=3 oraz $q=\frac{4}{7}$.
- 3 pkt zapisanie równania z jedną niewiadomą, np. $\left(\frac{2}{3}a+\frac{7}{3}\right)^2=a\left(\frac{2}{3}a+\frac{25}{3}\right)$, $4\cdot\frac{6}{q^2-q}\cdot q=2\cdot\frac{6}{q^2-q}+\frac{6}{q^2-q}\cdot q^2+1$.
- 2 pkt wykorzystanie związku między wyrazami ciągu arytmetycznego oraz związku między wyrazami ciągu geometrycznego i zapisanie układu warunków z trzema niewiadomymi prowadzącego do rozwiązania zadania, np. $b^2=ac$ i $2b=\frac{2a+c+1}{2}$ i c-b=6 ALBO
 - zapisanie wyrazów ciągu geometrycznego za pomocą jednej zmiennej/niewiadomej, np. $\left(a, \frac{2}{3}a + \frac{7}{3}, \frac{2}{3}a + \frac{25}{3}\right)$,
 - zapisanie wyrazów ciągu arytmetycznego za pomocą jednej zmiennej/niewiadomej, np. $\left(\frac{b^2}{b+6}, 2b, b+6\right)$,
 - wykorzystanie związku między wyrazami ciągu arytmetycznego oraz związku między wyrazami ciągu geometrycznego i zapisanie układu warunków z dwiema niewiadomymi prowadzącego do rozwiązania zadania, np.

$$2aq = \frac{2a+aq^2+1}{2}$$
 i $aq^2 - aq = 6$.

- 1 pkt wykorzystanie własności ciągu arytmetycznego i zapisanie równania $2b=\frac{2a+c+1}{2}$ ALBO
 - wykorzystanie własności ciągu arytmetycznego i zapisanie równania $2b=\frac{2a+b+6+1}{2}$,
 - wykorzystanie własności ciągu geometrycznego i zapisanie równania $\,b^2=ac,\,\,$ ALBO
- wykorzystanie własności ciągu geometrycznego i zapisanie równania $aq^2 aq = 6$. 0 pkt rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązania

Sposób I

Z warunku c - b = 6 wyznaczamy c: c = b + 6.

Zatem ciąg (2a,2b,b+7) jest arytmetyczny. Korzystamy z własności ciągu arytmetycznego i otrzymujemy $2b=\frac{2a+b+7}{2}$. Stąd 4b=2a+b+7, czyli $b=\frac{2}{3}a+\frac{7}{3}$.

Z zależności c=b+6 oraz $b=\frac{2}{3}a+\frac{7}{3}$ otrzymujemy $c=\frac{2}{3}a+\frac{25}{3}$. Zatem ciąg $\left(a,\frac{2}{3}a+\frac{7}{3},\frac{2}{3}a+\frac{25}{3}\right)$ jest geometryczny.

Korzystamy z własności ciągu geometrycznego i otrzymujemy

$$\left(\frac{2}{3}a + \frac{7}{3}\right)^2 = a \cdot \left(\frac{2}{3}a + \frac{25}{3}\right) / 9$$

$$(2a+7)^2 = a \cdot (6a+75)$$

$$0 = 2a^2 + 47a - 49$$

$$\Delta = 47^2 - 4 \cdot 2 \cdot (-49) = 2601, \quad \sqrt{\Delta} = 51$$

$$a = -\frac{49}{2} \quad \text{lub} \quad a = 1$$

Ponieważ wszystkie wyrazy ciągu (a, b, c) są dodatnie, więc a = 1.

Wtedy
$$b = \frac{2}{3} \cdot 1 + \frac{7}{3} = 3$$
 i $c = 3 + 6 = 9$. Stąd $(a, b, c) = (1, 3, 9)$

i(2a, 2b, c + 1) = (2, 6, 10).

Ciąg (1,3,9) ma wszystkie wyrazy dodatnie i jest geometryczny (o ilorazie 3), ciąg (2,6,10) jest arytmetyczny (o różnicy 4).

Zatem ostatecznie a = 1, b = 3 oraz c = 9.

Sposób II

Ciąg (a,b,c) jest geometryczny, więc ze wzoru ogólnego ciągu geometrycznego otrzymujemy b=aq oraz $c=aq^2$. Z warunku c-b=6 otrzymujemy $aq^2-aq=6$. Stąd aq(q-1)=6.

Z warunków zadania $a \neq 0$. Gdyby q = 0 lub q = 1, to równanie aq(q - 1) = 6 byłoby sprzeczne. Zatem $q \neq 0$ oraz $q \neq 1$. Wtedy $a = \frac{6}{q^2 - q}$.

Ciąg (2a, 2b, c+1) jest arytmetyczny, więc korzystamy z własności ciągu arytmetycznego i otrzymujemy $2aq=\frac{2a+aq^2+1}{2}$, czyli $4aq=2a+aq^2+1$.

Wykorzystując związki $a=\frac{6}{q^2-q}$ i $4aq=2a+aq^2+1$, otrzymujemy

$$4 \cdot \frac{6}{q^2 - q} \cdot q = 2 \cdot \frac{6}{q^2 - q} + \frac{6}{q^2 - q} \cdot q^2 + 1$$

Stad dalej otrzymujemy:

$$\frac{24q}{q^2 - q} = \frac{12}{q^2 - q} + \frac{6q^2}{q^2 - q} + 1$$
$$24q = 12 + 6q^2 + q^2 - q$$
$$7q^2 - 25q + 12 = 0$$

$$(q-3)(7q-4) = 0$$

$$q=3$$
 lub $q=\frac{4}{7}$

Gdy $q=rac{4}{7}$, to wtedy $a=rac{6}{\left(rac{4}{7}
ight)^2-rac{4}{7}}<0$, więc dla tej wartości q warunki zadania nie są

spełnione.

Gdy
$$q = 3$$
, to wtedy $a = \frac{6}{3^2 - 3} = 1$, $b = 3$ i $c = 9$.

Ciąg (1,3,9) ma wszystkie wyrazy dodatnie i jest geometryczny (o ilorazie 3), ciąg (2,6,10) jest arytmetyczny (o różnicy 4).

Zatem ostatecznie a = 1, b = 3 oraz c = 9.

Uwaga:

Jeżeli zdający nie odrzuci ujemnego rozwiązania $a = -\frac{49}{2}$ i w konsekwencji poda dwie trójki liczb a, b i c, to może otrzymać co najwyżej **4 punkty**.

Zadanie 12. (0-5)

Wymagania egzaminacyjne 2023 i 2024	
Wymagania ogólne	Wymagania szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
4. Stosowanie i tworzenie strategii przy	VIII.R1) stosuje własności czworokątów
rozwiązywaniu zadań, również w sytuacjach	wpisanych w okrąg i opisanych na okręgu.
nietypowych.	

Zasady oceniania

- 5 pkt poprawna metoda rozwiązania oraz poprawny wynik: $|AB| = 2\sqrt{10}$, $|BC| = 3\sqrt{6}$, $|CD| = \sqrt{10}$, $|AD| = 2\sqrt{6}$.
- 4 pkt obliczenie długości boków AB i AD: $|AB| = 2\sqrt{10}$ i $|AD| = 2\sqrt{6}$ oraz spełnienie jednego z poniższych kryteriów I–III:
 - I. obliczenie długości odcinka CE: |CE| = 3,
 - II. wyznaczenie skali podobieństwa trójkątów *DEC* i *AEB*: $\frac{1}{2}$,
 - III. obliczenie długości jednego z boków tego czworokąta i zapisanie wyrażenia arytmetycznego opisującego długości pozostałych boków w zależności od długości tego obliczonego boku.
- 3 pkt obliczenie długości boków AB i AD: $|AB| = 2\sqrt{10}$ i $|AD| = 2\sqrt{6}$.
- 2 pkt obliczenie wysokości AP trójkąta ASE: $|AP| = \sqrt{15}$ ALBO
 - obliczenie długości odcinka CE: |CE| = 3, ALBO
 - wyznaczenie skali podobieństwa trójkątów DEC i AEB: $\frac{1}{2}$, ALBO
 - obliczenie długości odcinków DE, BE, AE: |DE|=2, |BE|=6 i |AE|=4 oraz zapisanie układu równań prowadzącego do wyznaczenia długości boków a oraz d: $a^2+d^2=8^2$, $a^2=6^2+4^2-2\cdot 6\cdot 4\cdot \cos \beta$ oraz $d^2=2^2+4^2-2\cdot 2\cdot 4\cdot \cos(180^\circ-\beta)$.
- 1 pkt obliczenie długości odcinków DE, BE oraz AE: |DE| = 2, |BE| = 6 oraz |AE| = 4 ALBO
 - zapisanie, że trójkąty DEC oraz AEB (albo trójkąty BEC oraz AED) są podobne,
 ALBO
 - zapisanie równości wynikającej z twierdzenia o odcinkach siecznych: $|AE| \cdot |CE| = |BE| \cdot |DE|$.
- 0 pkt rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwaga:

Jeśli zdający zapisze, że |DE|=1 i konsekwentnie rozwiąże zadanie do końca, to może otrzymać co najwyżej **3 punkty**.

Przykładowe pełne rozwiązanie

Ponieważ trójkąty ABD i BCD są prostokątne, to ich wspólna przeciwprostokątna BD jest średnicą okręgu opisanego na czworokącie ABCD. Zatem |BD|=8. Stąd i z warunków $|BE|=3\cdot |DE|$ oraz $|BD|=2\cdot |AE|$ otrzymujemy |DE|=2, |BE|=6 i |AE|=4. Oznaczmy przez S środek okręgu opisanego na czworokącie ABCD. Prowadzimy wysokość AP trójkąta ASE i przyjmijmy pozostałe oznaczenia jak na rysunku.

Ponieważ |AE| = 4 = |AS|, więc trójkąt ASE jest równoramienny. Zatem spodek P wysokości trójkąta ASE jest środkiem podstawy ES tego trójkąta. Stąd wynika, że |EP| = |PS| = 1.

Z twierdzenia Pitagorasa dla trójkata ASP otrzymujemy

$$|AS|^2 = |AP|^2 + |PS|^2$$

 $4^2 = h^2 + 1^2$
 $h^2 = 15$

Z twierdzenia Pitagorasa dla trójkątów ABP i ADP otrzymujemy

$$|AB|^2 = |AP|^2 + |PB|^2$$
 oraz $|AD|^2 = |AP|^2 + |PD|^2$ $a^2 = h^2 + 5^2$ oraz $d^2 = h^2 + 3^2$ $a^2 = 15 + 25$ oraz $d^2 = 15 + 9$ $a = \sqrt{40} = 2\sqrt{10}$ oraz $d = \sqrt{24} = 2\sqrt{6}$

Kąty DCA i ABD są równe, gdyż są to kąty wpisane oparte na tym samym łuku AD. Kąty DEC i BEA są równe, gdyż są to kąty wierzchołkowe. Zatem trójkąty DEC i BEA są podobne (cecha kkk). Wynika stąd, że

$$\frac{|CD|}{|DE|} = \frac{|AB|}{|AE|}$$

$$\frac{c}{2} = \frac{2\sqrt{10}}{4}$$

$$c = \sqrt{10}$$

Z twierdzenia Pitagorasa dla trójkąta BCD otrzymujemy

$$|BD|^{2} = |CD|^{2} + |BC|^{2}$$

$$8^{2} = c^{2} + b^{2}$$

$$64 = (\sqrt{10})^{2} + b^{2}$$

$$b = \sqrt{54} = 3\sqrt{6}$$

Uwagi:

- **1.** Długości boków CD i BC można obliczyć, wykorzystując twierdzenie o odcinkach siecznych. Wynika z niego, że $|AE| \cdot |CE| = |BE| \cdot |DE|$, więc |CE| = 3. Ponieważ $\cos \angle AEP = \frac{|EP|}{|AE|} = \frac{1}{4}$, to z twierdzenia cosinusów wynika, że $|CD|^2 = 2^2 + 3^2 2 \cdot 2 \cdot 3 \cdot \frac{1}{4} = 10$ oraz $|BC|^2 = 6^2 + 3^2 + 2 \cdot 6 \cdot 3 \cdot \frac{1}{4} = 54$.
- **2.** Po wyznaczeniu odcinków |DE|=2, |BE|=6 i |AE|=4 można wyznaczyć długości boków a oraz d, korzystając z twierdzenia cosinusów. Przyjmując $\beta=4AEB$, możemy zapisać układ trzech równań: $a^2+d^2=8^2$, $a^2=6^2+4^2-2\cdot 6\cdot 4\cdot \cos \beta$ oraz $d^2=2^2+4^2-2\cdot 2\cdot 4\cdot \cos(180^\circ-\beta)$. Wtedy $\cos \beta=\frac{1}{4}$ oraz $a=2\sqrt{10}$ i $d=2\sqrt{6}$.

Zadanie 13. (0-6)

Wymagania egzaminacyjne 2023 i 2024	
Wymagania ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja. 3. Dobieranie argumentów do uzasadnienia poprawności rozwiązywania problemów, tworzenie ciągu argumentów, gwarantujących poprawność rozwiązania i skuteczność w poszukiwaniu rozwiązań zagadnienia. III. Wykorzystanie i interpretowanie reprezentacji. 2. Dobieranie i tworzenie modeli	Zdający: XIII.R5) rozwiązuje zadania optymalizacyjne z zastosowaniem pochodnej.
matematycznych przy rozwiązywaniu problemów praktycznych i teoretycznych.	

Zasady oceniania

6 pkt – poprawne wyznaczenie wzoru funkcji V(h) oraz jej dziedziny, oraz wyznaczenie wysokości graniastosłupa o największej objętości wraz z uzasadnieniem.

5 pkt – obliczenie miejsca zerowego pochodnej funkcji V: $h = \frac{\sqrt{3}}{3}d$.

4 pkt – wyznaczenie pochodnej funkcji V, np. $V'(h) = 2(d^2 - 3h^2)$.

3 pkt – wyznaczenie dziedziny funkcji V(h): (0, d).

2 pkt – wyznaczenie objętości V graniastosłupa jako funkcji jego wysokości, np. $V(h) = 2(d^2 - h^2) \cdot h$.

1 pkt – wyznaczenie długości krawędzi podstawy w zależności od wysokości graniastosłupa: $a=\sqrt{2}\cdot\sqrt{d^2-h^2}$.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązanie

Oznaczmy przez $\,a\,$ długość krawędzi podstawy graniastosłupa, natomiast przez $\,h\,$ – wysokość tego graniastosłupa.

a)

Korzystamy z twierdzenia Pitagorasa dla trójkąta *ODH* i otrzymujemy:

$$d^2 = h^2 + |OD|^2$$

$$|OD| = \sqrt{d^2 - h^2}$$

Ponieważ $|OD| = \frac{1}{2}|BD| = \frac{a\sqrt{2}}{2}$, więc $\frac{a\sqrt{2}}{2} = \sqrt{d^2 - h^2}$.

Stad $a = \sqrt{2} \cdot \sqrt{d^2 - h^2}$ i $h \in (0, d)$.

Pole P_P podstawy graniastosłupa jest równe

$$P_P = \left(\sqrt{2 \cdot \sqrt{d^2 - h^2}}\right)^2 = 2(d^2 - h^2)$$

Egzamin maturalny z matematyki na poziomie rozszerzonym – termin dodatkowy 2023 r.

Wyznaczamy objętość graniastosłupa jako funkcję zmiennej h:

$$V(h) = 2(d^2 - h^2) \cdot h = 2(d^2h - h^3)$$
 dla $0 < h < d$.

b)

Wyznaczamy pochodną funkcji V:

$$V'(h) = 2(d^2 - 3h^2)$$

Obliczamy miejsce zerowe pochodnej funkcji V:

$$V'(h) = 0$$
$$2(d^2 - 3h^2) = 0 \quad i \quad h \in (0, d)$$
$$h = \frac{d}{\sqrt{3}}$$

Ponieważ V'(h)>0 dla $h\in \left(0,\frac{d}{\sqrt{3}}\right)$ oraz V'(h)<0 dla $h\in (\frac{d}{\sqrt{3}},d)$, więc funkcja V jest rosnąca w przedziale $\left(0,\frac{d}{\sqrt{3}}\right]$ oraz malejąca w przedziale $\left[\frac{d}{\sqrt{3}},d\right)$. Zatem funkcja V osiąga wartość największą dla $h=\frac{d}{\sqrt{3}}$.

Spośród rozważanych graniastosłupów największą objętość ma graniastosłup o wysokości $h=rac{d}{\sqrt{3}}$.