Nonlinear Sequence Processing Deep Learning

Objective

- The linear sequence processing concepts from the previous chapter lead into the nonlinear networks of this chapter.
- These networks are also dynamic they have memory in terms of tapped delay lines.
- Some of these networks are strictly feedforward, and some have feedback – recurrent networks.
- Some networks are of the input-output type and use tapped delay lines.
- Other networks are of the state space type, and use single delays.

Focused time delay neural network

- The TDL is focused at the input to the network.
- An advantage of this dynamic network, because there is no feedback, is that computations can be done in parallel.
- Also, standard backpropagation can be used to compute the gradient.

Distributed time delay neural network

• Because tapped delay lines are distributed throughout the network, the backpropagation algorithm must be adjusted.

Gamma memory elements

Focused gamma memory network

- This network does have some limited feedback, which gives it longer memory.
- Although the feedback is limited, the backpropagation algorithm does have to be somewhat modified.

Nonlinear Autoregressive Network with Exogenous Input

NARX can be trained with standard backprop

Unrolled RNN

Basic RNN for illustration

Dynamic backpropagation

Real Time Recurrent Learning (RTRL)

$$\frac{\partial F}{\partial \mathbf{x}} = \sum_{t=1}^{Q} \left[\frac{\partial \mathbf{a}(t)}{\partial \mathbf{x}^{T}} \right]^{T} \times \frac{\partial^{e} F}{\partial \mathbf{a}(t)}$$
$$\frac{\partial \mathbf{a}(t)}{\partial \mathbf{x}^{T}} = \frac{\partial^{e} \mathbf{a}(t)}{\partial \mathbf{x}^{T}} + \frac{\partial^{e} \mathbf{a}(t)}{\partial \mathbf{a}(t-1)^{T}} \frac{\partial \mathbf{a}(t-1)}{\partial \mathbf{x}^{T}}$$

Backpropagation Through Time (BTT)

$$\frac{\partial F}{\partial \mathbf{x}} = \sum_{t=1}^{Q} \left[\frac{\partial^{e} \mathbf{a}(t)}{\partial \mathbf{x}^{T}} \right]^{T} \times \frac{\partial F}{\partial \mathbf{a}(t)}$$
$$\frac{\partial F}{\partial \mathbf{a}(t)} = \frac{\partial^{e} F}{\partial \mathbf{a}(t)} + \frac{\partial^{e} \mathbf{a}(t+1)}{\partial \mathbf{a}(t)^{T}} \times \frac{\partial F}{\partial \mathbf{a}(t+1)}$$

Example BTT

• Let Q=2, and let $F(\mathbf{x})=(\mathbf{t}-\mathbf{a}(2))^T(\mathbf{t}-\mathbf{a}(2))=\mathbf{e}^T\mathbf{e}$

$$\begin{split} \frac{\partial F}{\partial \mathbf{a}(t)} &= \frac{\partial^e F}{\partial \mathbf{a}(t)} + \frac{\partial^e \mathbf{a}(t+1)}{\partial \mathbf{a}(t)^T} \times \frac{\partial F}{\partial \mathbf{a}(t+1)} \\ \frac{\partial F}{\partial \mathbf{a}(t)} &= \mathbf{0}, t > Q \end{split}$$

$$\begin{split} \frac{\partial F}{\partial \mathbf{a}(2)} &= \frac{\partial^e F}{\partial \mathbf{a}(2)} + \frac{\partial^e \mathbf{a}(3)}{\partial \mathbf{a}(2)^T} \times \frac{\partial F}{\partial \mathbf{a}(3)} = -2\mathbf{e} \\ \frac{\partial F}{\partial \mathbf{a}(1)} &= \frac{\partial^e F}{\partial \mathbf{a}(1)} + \frac{\partial^e \mathbf{a}(2)}{\partial \mathbf{a}(1)^T} \times \frac{\partial F}{\partial \mathbf{a}(2)} = [\mathbf{L}\mathbf{W}]^T \,\dot{\mathbf{F}} \left(\mathbf{n}(2)\right)^T [-2\mathbf{e}] \end{split}$$

Gradient calculation

$$\begin{split} \frac{\partial F}{\partial \mathbf{x}} &= \sum_{t=1}^{Q} \left[\frac{\partial^e \mathbf{a}(t)}{\partial \mathbf{x}^T} \right]^T \times \frac{\partial F}{\partial \mathbf{a}(t)} \\ \frac{\partial F}{\partial l w_{i,j}} &= \sum_{t=1}^{2} \left[\frac{\partial^e \mathbf{a}(t)}{\partial l w_{i,j}} \right]^T \times \frac{\partial F}{\partial \mathbf{a}(t)} \\ \frac{\partial^e \mathbf{a}^T(t)}{\partial l w_{i,j}} \frac{\partial F}{\partial \mathbf{a}(t)} &= \frac{\partial^e \mathbf{n}^T(t)}{\partial l w_{i,j}} \frac{\partial^e \mathbf{a}^T(t)}{\partial \mathbf{n}(t)} \frac{\partial F}{\partial \mathbf{a}(t)} \\ \frac{\partial^e \mathbf{n}(t)}{\partial l w_{i,j}} &= \epsilon_i a_j (t-1) \\ \frac{\partial^e \mathbf{a}^T(t)}{\partial \mathbf{n}(t)} &= \dot{\mathbf{F}}^T(\mathbf{n}(t)) \end{split}$$

Gradient calculation 2

$$\begin{split} \frac{\partial^{e}\mathbf{a}^{T}(t)}{\partial lw_{i,j}}\frac{\partial F}{\partial \mathbf{a}(t)} &= a_{j}(t-1)\dot{f}(n_{i}(t))\frac{\partial F}{\partial a_{i}(t)} \\ \frac{\partial F}{\partial \mathbf{L}\mathbf{W}} &= \sum_{t=1}^{2}\dot{\mathbf{F}}^{T}(\mathbf{n}(t))\frac{\partial F}{\partial \mathbf{a}(t)}\mathbf{a}^{T}(t-1) \\ &= \dot{\mathbf{F}}^{T}(\mathbf{n}(1))\frac{\partial F}{\partial \mathbf{a}(1)}\mathbf{a}^{T}(0) + \dot{\mathbf{F}}^{T}(\mathbf{n}(2))\frac{\partial F}{\partial \mathbf{a}(2)}\mathbf{a}^{T}(1) \\ &= \dot{\mathbf{F}}^{T}(\mathbf{n}(1))\mathbf{L}\mathbf{W}^{T}\dot{\mathbf{F}}^{T}(\mathbf{n}(2))\left[-2\mathbf{e}\right]\mathbf{a}^{T}(0) \\ &+ \dot{\mathbf{F}}^{T}(\mathbf{n}(2))\left[-2\mathbf{e}\right]\mathbf{a}^{T}(1) \end{split}$$

Unrolled basic RNN

Static backpropagation

Standard Backpropagation for Multilayer Networks

$$\mathbf{s}^{M} = \dot{\mathbf{F}}^{\mathbf{M}} \left(\mathbf{n}^{M} \right)^{T} [-2\mathbf{e}]$$

$$\mathbf{s}^{m} = \dot{\mathbf{F}}^{m} (\mathbf{n}^{m})^{T} (\mathbf{W}^{m+1})^{T} \mathbf{s}^{m+1}$$

$$\frac{\partial \hat{F}(\mathbf{x})}{\partial w_{i,j}^{m}} = s_{i}^{m} a_{j}^{m-1}$$

$$\frac{\partial F(\mathbf{x})}{\partial \mathbf{W}^{m}} = \mathbf{s}^{m} \left(\mathbf{a}^{m-1} \right)^{T}$$

Static backpropagation for unrolled network

$$\begin{split} \mathbf{s}(2) &= \dot{\mathbf{F}} \left(\mathbf{n}(2) \right)^T [-2\mathbf{e}] \\ \mathbf{s}(1) &= \dot{\mathbf{F}} (\mathbf{n}(1))^T \mathbf{L} \mathbf{W}^T \mathbf{s}(2) \\ &= \dot{\mathbf{F}} (\mathbf{n}(1))^T \mathbf{L} \mathbf{W}^T \dot{\mathbf{F}} \left(\mathbf{n}(2) \right)^T [-2\mathbf{e}] \\ \frac{\partial F(\mathbf{x})}{\partial \mathbf{L} \mathbf{W}} \bigg|_{t=2} &= \mathbf{s}(2) \mathbf{a}(1)^T = \dot{\mathbf{F}} \left(\mathbf{n}(2) \right)^T [-2\mathbf{e}] \mathbf{a}(1)^T \\ \frac{\partial F(\mathbf{x})}{\partial \mathbf{L} \mathbf{W}} \bigg|_{t=1} &= \mathbf{s}(1) \mathbf{a}(0)^T = \dot{\mathbf{F}} (\mathbf{n}(1))^T \mathbf{L} \mathbf{W}^T \dot{\mathbf{F}} \left(\mathbf{n}(2) \right)^T [-2\mathbf{e}] \mathbf{a}(0)^T \\ \frac{\partial F(\mathbf{x})}{\partial \mathbf{L} \mathbf{W}} \bigg|_{total} &= \dot{\mathbf{F}} (\mathbf{n}(1))^T \mathbf{L} \mathbf{W}^T \dot{\mathbf{F}} \left(\mathbf{n}(2) \right)^T [-2\mathbf{e}] \mathbf{a}(0)^T \\ &+ \dot{\mathbf{F}} \left(\mathbf{n}(2) \right)^T [-2\mathbf{e}] \mathbf{a}(1)^T \end{split}$$

Learning long term dependencies

- For some recurrent network problems, we would like to predict responses that may be significantly delayed from the corresponding stimulus.
 - A chess game can be lost 12 moves after a mistake.
 - Words in a previous paragraph can provide context for a translation.
- A network structure must enable this possibility (have long term memory).
- Even within a structure that allows long term memory, the actual memory depends on the weights.
- · Long memory systems can flirt with instability.

Simple recurrent network

Network response

Let $lw_{1,1} = 0.5$ and $iw_{1,1} = 1$. Apply the input sequence of a one followed by 9 zeros, with zero initial condition (impulse response).

$$a(t) = iw_{1,1}p(t) + lw_{1,1}a(t-1) = p(t) + 0.5a(t-1)$$

$$a(1) = p(1) = 1$$

$$a(2) = 0.5a(1) = 0.5$$

$$a(t) = 0.5^{(t-1)}$$

Gradient also decays quickly

$$\frac{\partial F}{\partial a(t)} = \frac{\partial^e F}{\partial a(t)} + l w_{1,1} \frac{\partial F}{\partial a(t+1)}$$

If the error only occurs at the 10th time point, and $lw_{1,1}=0.5$, we have

$$\frac{\partial F}{\partial a(t)} = 0.5^{(10-t)} \frac{\partial^e F}{\partial a(10)}$$

- If the network is stable, derivatives decay as you go back in time.
- Because the derivatives are small, it will take a long time to learn long term dependencies.

Nonlinear transfer function increases decay

$$\frac{\partial F}{\partial a(t)} = \frac{\partial^e F}{\partial a(t)} + \dot{f}(n(t)) l w_{1,1} \frac{\partial F}{\partial a(t+1)}, \left| \dot{f}(n(t)) \right| \leq 1$$

Example network with long memory

$$\mathbf{IW}^{1,1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \mathbf{LW}^{1,1} = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}, \mathbf{LW}^{2,1} = \begin{bmatrix} 1 & -1 \end{bmatrix}, \mathbf{b}^1 = \begin{bmatrix} -0.5 \\ -1.5 \end{bmatrix}, \mathbf{b}^2 = \begin{bmatrix} -0.5 \end{bmatrix}$$

- This network computes the parity of a sequence of bits.
- It can remember back as many bits as have been presented.

Difficulties in learning long term dependencies

- Long term memories are network weights short term memories are layer outputs.
- We need a network with long short term memory
- In recurrent networks, as the weights change during training, the length of the short term memory will change.
- If the initial weights produce a network without long short term memory, it will be difficult to increase it.
- This is because the gradient will be small for short short term memory networks.
- If the initial weights produce long short term memory, instabilities can easily occur.

Constant error carousel (CEC)

- To maintain a long memory, we would like the feedback matrix LW^{1,1} to have some eigenvalues very close to one.
- This has to be maintained during training, or the gradients will vanish.
- In addition, to ensure long memories, the derivative of the transfer function should be constant.
- Eigenvalues greater than one \rightarrow unstable.
- Solution: Set $LW^{1,1} = I$ and use linear transfer function.

Gating

- We don't want to indiscriminately remember everything.
- To remember selectively, we introduce several gates (switches).
 - An input gate will allow selective inputs into the CEC.
 - A feedback (or forget) gate will clear the CEC.
 - An output gate will allow selective outputs from the CEC.
- Each gate will be a layer with inputs from the gated ouputs and the network inputs.
- The result is called Long Short Term Memory (LSTM).
- With the CEC, short term memories last longer.

Long Short Term Memory Network

- The ∘ operator is the Hadamard product, which is an element by element matrix multiplication.
- The weights in the CEC are all fixed to the identity matrix.
 They are not trained.
- The output and gating layer weights are also fixed to the identity matrix.
- It has been shown that the best results are obtained when initializing the feedback (forget) gate bias, \mathbf{b}^3 , to all ones or larger values. This turns the gate on initially.
- Other weights and biases are set to small random numbers.
- The output of the gating layer generally connects to another layer or a multilayer network with softmax transfer function.
- Multiple LSTMs can be cascaded together.

LSTM Training

- LSTM is trained with the standard gradient-based algorithms as with other deep networks.
- The original LSTM paper used RTRL for computing the gradient.
- An approximate gradient is used, in which the derivatives are only propagated in time through the CEC delays. Only static derivatives are computed for the remaining terms.

Variations of the LSTM

- There have been many variations of the LSTM
- In the original LSTM, there was no feedback (forget) gate.
- Some variations feeback the CEC output ${\bf a}^5(t)$ to the gate layers. These are called "peephole" connections.
- See http://jmlr.org/proceedings/papers/v37/ jozefowicz15.pdf for an experimental comparison of various alternatives.
- One of the popular alternatives is the Gated Recurrent Unit (GRU), shown on the following page.

GRU Network

GRU Details

- The differencing layer subtracts the delayed network output $\mathbf{a}^6(t-1)$ from the processed input $\mathbf{a}^1(t)$.
- $\mathbf{L}\mathbf{W}^{5,1} = \mathbf{I}$ and $\mathbf{L}\mathbf{W}^{5,6} = -\mathbf{I}$. They are not trained.
- The gating layer weights are fixed to the identity matrix.
- The delayed network output is gated by the reset gate, before
 it is fed into the input layer. This resets the memory.
- The overall output can be considered a weighted average of a candidate potential output ${\bf a}^1(t)$ and the previous output ${\bf a}^6(t-1)$.

$$\mathbf{a}^6(t) = \mathbf{a}^4(t) \times [\mathbf{a}^1(t) - \mathbf{a}^6(t-1)] + \mathbf{a}^6(t-1)$$
$$= \mathbf{a}^4(t) \times \mathbf{a}^1(t) + [1 - \mathbf{a}^4(t)] \times \mathbf{a}^6(t-1)$$

