Notes de cours de M305-Algèbre $2\,$

18 janvier 2015

$T_{\mathbb{Z}}$	ABLE DES MATIERES	2
\mathbf{T}	able des matières	
1	rappels de théorie des groupes	3
2	Groupes abéliens de type fini	3

1 rappels de théorie des groupes

À compléter

2 Groupes abéliens de type fini

Le but de cette section est de donner une classification des groupes abéliens. On va s'intéresser pour cela à une sous-catégorie de groupes abéliens : les groupes abliens de type fini. Dans toutes cette section la loi des groupes considérés sera + sauf mention contraire explicite.

Remarque 1. Tout groupe abélien $(G, +, 0_G)$ peut s'identifier à un \mathbb{Z} -module en posant :

$$\forall (n,g) \in \mathbb{Z} \times G, \ n \cdot g := \begin{cases} 0_G & si \ n = 0 \\ ((n-1) \cdot g) + g & si \ n > 0 \\ ((n+1) \cdot g) + (-g) & si \ n < 0 \end{cases}$$

On vérifie aisément que · est bien définie et vérifie :

$$\forall n \in \mathbb{Z}, \forall (h, g) \in G \times G, \ n \cdot (h + g) = (n \cdot g) + (n \cdot h)$$

Définition-proposition 1. Soient G un groupe abélien et S une partie de G. Alors il existe un unique sous-groupe H de G qui contient S minimal (pour l'inclusion). H est appelé le sous-groupe de G engendré par la partie S, et noté S > 0.

Démonstration. On note $\mathcal E$ l'ensemble des sous-groupes de G contenant S. $\mathcal E$ est non vide (car $G \in \mathcal E$). Alors $\bigcap_{H \in \mathcal E} H$ est un sous-groupe de G contenant S qui contenu dans tout autre élément de $\mathcal E$.

Remarque 2. Soit G un groupe abélien, soit S une partie de G. Alors < S > contient l'élément neutre, et stable par additivité et passage à l'inverse. Comme G est abélien, < S > contient donc toutes les combinaisons linéaires d'éléments de $S: < S > = \left\{ \sum n_i s_i \mid (s_i)_{1 \leqslant i \leqslant r} \in S^r, (n_i)_{1 \leqslant i \leqslant r} \in \mathbb{Z}^r, r \in \mathbb{N} \right\}$ (un tel ensemble est bien un sous-groupe de G d'où l'égalité par unicité).

Définition 1. Soit G un groupe abélien, soit S une partie de G.

- On dit que S est une partie génératrice de G, ou encore que S engendre G, si $G = \langle S \rangle$.
- On dit que le groupe abélien G est de type fini s'il admet une partie génératrice finie.

Pour tout $r \in \mathbb{N}^*$, on note $e = (e_i)_{1 \leq i \leq r} \in (\mathbb{Z}^r)^r$ la base canonique de \mathbb{Z}^r (chaque vecteur a pour ième coordonnée 1 et 0 ailleurs).

Exemple : Un groupe G abélien fini est de type fini (engendré par la partie G finie). Soit $r \in \mathbb{N}^*$. Alors \mathbb{Z}^r est un groupe abélien de type fini (engendré par la partie $\{e_1, \dots, e_r\}$ finie).

Lemme 1. Soit G un groupe abélien, soit $r \in \mathbb{N}^*$, soit $(x_1, \ldots, x_r) \in G^r$. Alors il existe un unique morphisme de groupes f du groupe \mathbb{Z}^r dans le groupe G qui, pour tout $i \in [1, r]$, envoie

unique morphisme de groupes
$$f$$
 du groupe \mathbb{Z}^r dans le grou $e_i \ sur \ x_i \ (\star)$, donné par f :
$$\begin{cases} \mathbb{Z}^r & \longrightarrow & G \\ (a_i)_{1 \leqslant i \leqslant r} & \longmapsto & \sum_{i=1}^r a_i x_i \end{cases}$$
De plus, $\operatorname{Im} f = <\{x_1, \dots, x_r\} >$.

Démonstration. Un morphisme de groupes de \mathbb{Z}^r dans G vérifiant (\star) est uniquement déterminé par l'image de la base canonique e par décomposition d'un vecteur de \mathbb{Z}^r dans cette base et linéarité du morphisme.

Corollaire 1. Un groupe abélien est de type fini si et seulement si il existe un morphisme de groupes surjectif du groupe \mathbb{Z}^r dans le groupe G (où $r \in \mathbb{N}$).

 $D\acute{e}monstration.$ On conserve les notations de la proposition précédente.

Soit G un groupe abélien de type fini. Alors G possède une partie génératrice finie $S = \{x_1, \ldots, x_r\}$ (où $r \in \mathbb{N}$), d'où $\operatorname{Im} f = \langle S \rangle = G$, ie le morphisme de groupes f de \mathbb{Z}^r dans G est surjectif. Réciproquement, soit g un morphisme de groupes surjectif de \mathbb{Z}^r (où $r \in \mathbb{N}$) dans G, alors $S = \{f(e_1), \ldots, f(e_r)\}$ est une partie génératrice de G (car tout élément de G possède un antécédent dans \mathbb{Z}^r qui se décompose dans la base canonique e, donc son image, ie g, s'écrit comme combinaison linéaire d'éléments de S).

Proposition 1. Soient G et H deux groupes abéliens. Soit f un morphisme de groupes de G dans H. On suppose que le groupe abélien G est de type fini. Alors le groupe abélien $\operatorname{Im} f$ est de type fini.

Démonstration. Soit S une partie génératrice de G. Alors f(S) est une partie génératrice de Im f.

Corollaire 2.

Proposition 2. Soient G et H deux groupes abéliens. Soit f un morphisme de groupes de G dans H. On suppose que les groupes abéliens $\operatorname{Im} f$ et $\operatorname{Ker} f$ sont de $\operatorname{type} fini$. Alors G est un groupe abélien de type fini.

Démonstration. Par hypothèse, il existe $(x_1, \ldots, x_r) \in G^r$ tel que la partie finie $\{f(x_1), \ldots, f(x_r)\}$ engendre Im f et il existe $(y_1, \ldots, y_r) \in (\text{Ker } f)^s$ tel que la partie finie $\{y_1, \ldots, y_s\}$ engendre

Ker
$$f$$
. Soit $g \in G$. Alors il existe $(n_1, \ldots, n_r) \in \mathbb{Z}^r$ tel que $f(g) = \sum_{i=1}^r n_i f(x_i) = f\left(\sum_{i=1}^r n_i x_i\right)$.

On conclut en décomposant l'élément
$$g - \sum_{i=1}^{r} n_i x_i \in \text{Ker } f$$
 selon la famille $\{y_1, \dots, y_s\}$.

Proposition 3. Soit G un groupe abélien de type fini. Soit H un sous-groupe de G. Alors le groupe abélien H est de type fini.

 $D\'{e}monstration.$

- On suppose le groupe G monogène. Si G est cyclique, on sait alors que H est cyclique. Sinon, on se donne un générateur g de G (qui sont tous d'ordre infinis). On sait que l'application $\varphi:\left\{\begin{array}{ccc}\mathbb{Z}&\longrightarrow&G\\n&\longmapsto&ng\end{array}\right. \text{ est un isomorphisme de groupes. } H \text{ est isomorphe au sous-groupe}$ $\varphi^{-1}(H)\text{ de }\mathbb{Z}\text{ qui s'écrit } \varphi^{-1}(H)=m\mathbb{Z}\text{ (où }m\in\mathbb{N})\text{, ie }H=\varphi(m\mathbb{Z})=\{ng\mid n\in m\mathbb{Z}\}=< mg>\text{ est monogène.}$
- Dans le cas contraire, on considère un morphisme de groupes f surjectif de \mathbb{Z}^r dans G, où $r \in \mathbb{N}^*$ désigne le cardinal de la partie génératrice de G (cf preuve du corollaire précédent). Montrons par récurrence sur $r \in \mathbb{N}^*$ que H est de type fini. Le cas r = 1, d'après la remarque précédente, a été traité dans le premier tiret.
 - On suppose le résultat vrai pour r-1 $(r \in \mathbb{N}^*)$. On considère groupe \mathbb{Z}^{r-1} comme sous-groupe de \mathbb{Z}^r (via l'injection de $\mathbb{Z}^{r-1} \times \{0\}$ dans \mathbb{Z}^r). Par hypothèse de récurrence,

tout sous-groupe de $K=f(\mathbb{Z}^{r-1})$ est de type fini. Montrons que G/K est monogène : considérons le morphisme de groupes $\psi: \left\{ \begin{array}{l} \mathbb{Z} & \longrightarrow & G/K \\ a & \longmapsto & f(0,\dots,0,a) \end{array} \right.$ Soit $\overline{g} \in G/K$. Par surjectivité de f, il existe $(a_1,\dots,a_r) \in \mathbb{K}^r$ tel que $g=f(a_1,\dots,a_r)$. Donc $g=\underbrace{f(a_1,\dots,a_{r-1},0)}_{\in K} + f(0,\dots,0,a_r)$, ie $\overline{g}=f(0,\dots,0,a_r)=\psi(a_r)$. Ainsi, ψ est surjectif. On considère πv le morphisme 1

On considère π_H le morphisme de groupes canonique (surjectif) de projection de H dans G/K. Im π_H est un sous-groupe de G/K monogène donc Im π_H est monogène. Ker $\pi_H = \mathbb{K} \cap H \subset K$ est de type fini par hypothèse de récurrence. D'où, d'après la proposition précédente, H est de type fini.