Supplemental Amendment Under 37 C.F.R. § 1.116 dated August 27, 2007

Final Office Action dated: April 27, 2007

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

Claims 1-10 (cancelled).

11. (Previously Presented) A method for an optimal one-shot phase and frequency estimation for timing acquisition for signals transmitted over a communications channel, the method comprising:

sampling a preamble comprising a known string of data bits;

estimating the sampled preamble (\vec{Y}), the estimated preamble further comprising an estimated amplitude (\hat{A}), an estimated frequency (\hat{f}), and an estimated phase ($\hat{\Phi}$);

calculating a cost function ($C(\hat{f}, \hat{\Phi})$) as a function of the estimated frequency (\hat{f}) and the estimated phase ($\hat{\Phi}$);

varying at least one of the estimated frequency (\hat{f}) or estimated phase ($\hat{\Phi}$) to calculate a plurality of cost functions; and

selecting the cost function $(C(\hat{f}, \hat{\Phi}))$ having a minimum value, wherein said cost function having the minimum value is a function of an optimal estimated frequency (\hat{f}) and an optimal estimated phase $(\hat{\Phi})$, wherein selecting the minimum value cost function further comprises selecting a plurality of first minimum cost functions such that each of the first minimum cost functions has a different estimated frequency (\hat{f}) .

12. (Original) The method of claim 11, wherein selecting the minimum value cost function further comprises selecting a second minimum cost function from the plurality of first minimum cost functions, and wherein the second minimum cost function is a function of an optimal estimated frequency (\hat{f}) and an optimal estimated phase $(\hat{\Phi})$.

Supplemental Amendment Under 37 C.F.R. § 1.116 dated August 27, 2007

Final Office Action dated: April 27, 2007

(Currently Amended) <u>A method for an optimal one-shot phase and frequency estimation for timing acquisition for signals transmitted over a communications channel, the method comprising: sampling a preamble comprising a known string of data bits;
</u>

estimating the sampled preamble $(\underline{\vec{Y}})$, the estimated preamble further comprising an estimated amplitude (\hat{A}) , an estimated frequency $(\underline{\hat{f}})$, and an estimated phase $(\hat{\Phi})$:

calculating a cost function $(C(\hat{f}, \hat{\Phi}))$ as a function of the estimated frequency (\hat{f}) and the estimated phase $(\hat{\Phi})$;

varying at least one of the estimated frequency (\hat{f}) or estimated phase $(\hat{\Phi})$ to calculate a plurality of cost functions; and

selecting the cost function $(C(\hat{f}, \hat{\Phi}))$ having a minimum value, wherein said cost function having the minimum value is a function of an optimal estimated frequency (\hat{f}) and an optimal estimated phase $(\hat{\Phi})$ The method of claim 11, wherein selecting the minimum value cost function further comprises selecting a plurality of first minimum cost functions such that each of the first minimum cost functions has a different estimated phase $(\hat{\Phi})$.

14. (Original) The method of claim 13, wherein selecting the minimum value cost function further comprises selecting a second minimum cost function from the plurality of first minimum cost functions, and wherein the second minimum cost function is a function of an optimal estimated frequency (\hat{f}) and an optimal estimated phase $(\hat{\Phi})$.

Claims 15-24 (cancelled).

- 25. (Previously Presented) A communications channel for an optimal one-shot phase and frequency estimation for timing acquisition for signals transmitted over the communications channel, the communications channel comprising:
 - a sampler for sampling a preamble comprising a known string of data bits;

Supplemental Amendment Under 37 C.F.R. § 1.116 dated August 27, 2007

Final Office Action dated: April 27, 2007

a first calculator for estimating the sampled preamble (\bar{Y}) , the estimated preamble further comprising an estimated amplitude (\hat{A}) , an estimated frequency (\hat{f}) , and an estimated phase $(\hat{\Phi})$:

- a second calculator for calculating a plurality of cost functions $(C(\hat{f}, \hat{\Phi}))$ as a function of the estimated frequency (\hat{f}) and the estimated phase $(\hat{\Phi})$ by varying at least one of the estimated frequency (\hat{f}) or estimated phase $(\hat{\Phi})$; and
- a selector for determining the cost function $(C(\hat{f}, \hat{\Phi}))$ having a minimum value, wherein said cost function having the minimum value is a function of an optimal estimated frequency (\hat{f}) and an optimal estimated phase $(\hat{\Phi})$, wherein the selector determines the minimum value cost function by selecting a plurality of first minimum cost functions such that each of the first minimum cost functions has a different estimated frequency (\hat{f}) .
- 26. (Original) The communications channel of claim 25, wherein the selector determines the minimum value cost function by selecting a second minimum cost function from the plurality of first minimum cost functions, and wherein the second minimum cost function is a function of an optimal estimated frequency (\hat{f}) and an optimal estimated phase $(\hat{\Phi})$.
- (Currently Amended) <u>A communications channel for an optimal one-shot phase and frequency estimation for timing acquisition for signals transmitted over the communications channel, the communications channel comprising:</u>
 - a sampler for sampling a preamble comprising a known string of data bits; a first calculator for estimating the sampled preamble (\bar{Y}) , the estimated preamble further comprising an estimated amplitude (\hat{A}) , an estimated frequency (\hat{f}) , and an estimated phase $(\hat{\Phi})$;

Supplemental Amendment Under 37 C.F.R. § 1.116 dated August 27, 2007

Final Office Action dated: April 27, 2007

a second calculator for calculating a plurality of cost functions $(C(\hat{f}, \hat{\Phi}))$ as a function of the estimated frequency (\hat{f}) and the estimated phase $(\hat{\Phi})$ by varying at least one of the estimated frequency (\hat{f}) or estimated phase $(\hat{\Phi})$; and

a selector for determining the cost function $(C(\hat{f}, \hat{\Phi}))$ having a minimum value, wherein said cost function having the minimum value is a function of an optimal estimated frequency (\hat{f}) and an optimal estimated phase $(\hat{\Phi})$. The communications channel of claim 25, wherein the selector determines the minimum value cost function by selecting a plurality of first minimum cost functions such that each of the first minimum cost functions has a different estimated phase $(\hat{\Phi})$.

28. (Original) The communications channel of claim 27, wherein the selector determines the minimum value cost function by selecting a second minimum cost function from the plurality of first minimum cost functions, and wherein the second minimum cost function is a function of an optimal estimated frequency (\hat{f}) and an optimal estimated phase $(\hat{\Phi})$.

Claims 29-38 (cancelled).

39. (Previously Presented) A disk drive system for an optimal one-shot phase and frequency estimation for timing acquisition for signals transmitted over a communications channel, the system comprising:

rotating magnetic media for storing data;

- a motor for rotating the magnetic media;
- a recording head for transmitting data;
- an actuator for positioning the recording head; and
- a communications channel for communicating data to be stored on or read from the recording media, wherein the communications channel further comprises a sampler for sampling a preamble comprising a known string of data bits, a first calculator for estimating the sampled preamble (\tilde{Y}) , a second calculator for calculating a plurality of cost functions $(C(\hat{f}, \hat{\Phi}))$ as a

Supplemental Amendment Under 37 C.F.R. § 1.116 dated August 27, 2007

Final Office Action dated: April 27, 2007

function of the estimated frequency (\hat{f}) and the estimated phase $(\hat{\Phi})$ by varying at least one of the estimated frequency (\hat{f}) or estimated phase $(\hat{\Phi})$, and a selector for determining the cost function $(C(\hat{f},\hat{\Phi}))$ having a minimum value, wherein said cost function having the minimum value is a function of an optimal estimated frequency (\hat{f}) and an optimal estimated phase $(\hat{\Phi})$, and wherein the estimated preamble further comprises an estimated amplitude (\hat{A}) , an estimated frequency (\hat{f}) , and an estimated phase $(\hat{\Phi})$,-wherein the selector determines the minimum value cost function by selecting a plurality of first minimum cost functions such that each of the first minimum cost functions has a different estimated frequency (\hat{f}) .

- 40. (Original) The system of claim 39, wherein the selector determines the minimum value cost function by selecting a second minimum cost function from the plurality of first minimum cost functions, and wherein the second minimum cost function is a function of an optimal estimated frequency (f) and an optimal estimated phase (\(\hat{\Phi} \)).
- 41. (Currently Amended) <u>A disk drive system for an optimal one-shot phase and frequency estimation for timing acquisition for signals transmitted over a communications channel, the system comprising:</u>

rotating magnetic media for storing data;

a motor for rotating the magnetic media;

a recording head for transmitting data;

an actuator for positioning the recording head; and

a communications channel for communicating data to be stored on or read from the recording media, wherein the communications channel further comprises a sampler for sampling a preamble comprising a known string of data bits, a first calculator for estimating the sampled preamble (\vec{Y}) , a second calculator for calculating a plurality of cost functions $(C(\hat{f}, \hat{\Phi}))$ as a function of the estimated frequency (\hat{f}) and the estimated phase $(\hat{\Phi})$ by varying at least one of the estimated frequency (\hat{f}) or estimated phase $(\hat{\Phi})$, and a selector for determining the cost function

Supplemental Amendment Under 37 C.F.R. § 1.116 dated August 27, 2007

Final Office Action dated: April 27, 2007

 $(C(\hat{f}, \hat{\Phi}))$ having a minimum value, wherein said cost function having the minimum value is a function of an optimal estimated frequency (\hat{f}) and an optimal estimated phase $(\hat{\Phi})$, and wherein the estimated preamble further comprises an estimated amplitude (\hat{A}) , an estimated frequency (\hat{f}) , and an estimated phase $(\hat{\Phi})$. The system of claim 39, wherein the selector determines the cost minimum value function by selecting a plurality of first minimum cost functions such that each of the first minimum cost functions has a different estimated phase $(\hat{\Phi})$.

42. (Original) The system of claim 41, wherein the selector determines the minimum value cost function by selecting a second minimum cost function from the plurality of first minimum cost functions, and wherein the second minimum cost function is a function of an optimal estimated frequency (\hat{f}) and an optimal estimated phase ($\hat{\Phi}$).

Claims 43-52. (Cancelled)

- 53. (Previously Presented) A communications channel for an optimal one-shot phase and frequency estimation for timing acquisition for signals transmitted over the communications channel, the communications channel comprising:
 - a means for sampling a preamble comprising a known string of data bits; a means for estimating the sampled preamble (\bar{Y}) , the estimated preamble further comprising an estimated amplitude (\hat{A}) , an estimated frequency (\hat{f}) , and an estimated phase $(\hat{\Phi})$:
 - a means for calculating a plurality of cost functions $(C(\hat{f}, \hat{\Phi}))$ as a function of the estimated frequency (\hat{f}) and the estimated phase $(\hat{\Phi})$ by varying at least one of the estimated frequency (\hat{f}) or estimated phase $(\hat{\Phi})$; and
- a means for selecting the cost function $(C(\hat{f}, \hat{\Phi}))$ having a minimum value, wherein said cost function having the minimum value is a function of an optimal estimated frequency (\hat{f}) and an

Supplemental Amendment Under 37 C.F.R. § 1.116 dated August 27, 2007

Final Office Action dated: April 27, 2007

optimal estimated phase $(\hat{\Phi})$ -wherein means for selecting selects the minimum value cost function by selecting a plurality of first minimum cost functions such that each of the first minimum cost functions has a different estimated frequency (\hat{f}) .

- 54. (Original) The communications channel of claim 53, wherein the means for selecting selects the minimum value cost function by selecting a second minimum cost function from the plurality of first minimum cost functions, and wherein the second minimum cost function is a function of an optimal estimated frequency (\hat{f}) and an optimal estimated phase ($\hat{\Phi}$).
- 55. (Currently Amended) <u>A communications channel for an optimal one-shot phase and frequency estimation for timing acquisition for signals transmitted over the communications channel, the communications channel comprising:</u>

a means for sampling a preamble comprising a known string of data bits; a means for estimating the sampled preamble (\hat{Y}) , the estimated preamble further comprising an estimated amplitude (\hat{A}) , an estimated frequency (\hat{f}) , and an estimated phase $(\hat{\Phi})$;

a means for calculating a plurality of cost functions $(C(\hat{f}, \hat{\Phi}))$ as a function of the estimated frequency (\hat{f}) and the estimated phase $(\hat{\Phi})$ by varying at least one of the estimated frequency (\hat{f}) or estimated phase $(\hat{\Phi})$; and

a means for selecting the cost function $(C(\hat{f}, \hat{\Phi}))$ having a minimum value, wherein said cost function having the minimum value is a function of an optimal estimated frequency (\hat{f}) and an optimal estimated phase $(\hat{\Phi})$. The communications channel of claim 53, wherein the means for selecting selects the minimum value cost function by selecting a plurality of first minimum cost functions such that each of the first minimum cost functions has a different estimated phase $(\hat{\Phi})$.

56. (Original) The communications channel of claim 55, wherein the means for selecting selects the minimum value cost function by selecting a second minimum cost function from the

Supplemental Amendment Under 37 C.F.R. § 1.116 dated August 27, 2007

Final Office Action dated: April 27, 2007

plurality of first minimum cost functions, and wherein the second minimum cost function is a function of an optimal estimated frequency (\hat{f}) and an optimal estimated phase $(\hat{\Phi})$.

Claims 57-66. (Cancelled)

67. (Previously Presented) A computer program product encoded with a computer program for performing a method for an optimal one-shot phase and frequency estimation for timing acquisition for signals transmitted over a communications channel, the method comprising:

sampling a preamble comprising a known string of data bits; estimating the sampled preamble (\bar{Y}), the estimated preamble further comprising an

estimated amplitude (\hat{A}), an estimated frequency (\hat{f}), and an estimated phase ($\hat{\Phi}$);

calculating a cost function ($C(\hat{f},\hat{\Phi})$) as a function of the estimated frequency (\hat{f})

and the estimated phase $(\hat{\Phi})$;

varying at least one of the estimated frequency (\hat{f}) or estimated phase ($\hat{\Phi}$) to calculate a plurality of cost functions; and

selecting the cost function $(C(\hat{f},\hat{\Phi}))$ having a minimum value, wherein said cost function having the minimum value is a function of an optimal estimated frequency (\hat{f}) and an optimal estimated phase $(\hat{\Phi})$, wherein selecting the minimum value cost function further comprises selecting a plurality of first minimum cost functions such that each of the first minimum cost functions has a different estimated frequency (\hat{f}) .

68. (Original) The computer program product of claim 67, wherein selecting the minimum value cost function further comprises selecting a second minimum cost function from the plurality of first minimum cost functions, and wherein the second minimum cost function is a function of an optimal estimated frequency (\hat{f}) and an optimal estimated phase ($\hat{\Phi}$).

Supplemental Amendment Under 37 C.F.R. § 1.116 dated August 27, 2007

Final Office Action dated: April 27, 2007

69. (Currently Amended) <u>A computer program product encoded with a computer program for performing a method for an optimal one-shot phase and frequency estimation for timing acquisition for signals transmitted over a communications channel, the method comprising:</u>

sampling a preamble comprising a known string of data bits; estimating the sampled preamble (\hat{Y}) , the estimated preamble further comprising an estimated amplitude (\hat{A}) , an estimated frequency (\hat{f}) , and an estimated phase $(\hat{\Phi})$; calculating a cost function $(C(\hat{f}, \hat{\Phi}))$ as a function of the estimated frequency (\hat{f}) and the estimated phase $(\hat{\Phi})$; varying at least one of the estimated frequency (\hat{f}) or estimated phase $(\hat{\Phi})$ to calculate a plurality of cost functions; and

selecting the cost function $(C(\hat{f}, \hat{\Phi}))$ having a minimum value, wherein said cost function having the minimum value is a function of an optimal estimated frequency (\hat{f}) and an optimal estimated phase $(\hat{\Phi})$. The computer program product of claim 67, wherein selecting the minimum value cost function further comprises selecting a plurality of first minimum cost functions such that each of the first minimum cost functions has a different estimated phase $(\hat{\Phi})$.

70. (Original) The computer program product of claim 69, wherein selecting the minimum value cost function further comprises selecting a second minimum cost function from the plurality of first minimum cost functions, and wherein the second minimum cost function is a function of an optimal estimated frequency (\hat{f}) and an optimal estimated phase $(\hat{\Phi})$.

Claims 71-80. (Cancelled)

81. (Previously Presented) A disk drive system for an optimal one-shot phase and frequency estimation for timing acquisition for signals transmitted over a communications channel, the system comprising:

means for storing data;

Supplemental Amendment Under 37 C.F.R. § 1.116 dated August 27, 2007

Final Office Action dated: April 27, 2007

means for rotating the means for storing;

means for transmitting data to and from the means for storing:

means for positioning the means for transmitting data; and

means for communicating data to be stored on or read from the means for storing, wherein said means for communicating further comprises means for sampling a preamble comprising a known string of data bits, means for estimating the sampled preamble (\vec{Y}) , means for calculating a plurality of cost functions $(C(\hat{f}, \hat{\Phi}))$ as a function of the estimated frequency (\hat{f}) and the estimated phase $(\hat{\Phi})$ by varying at least one of the estimated frequency (\hat{f}) or estimated phase $(\hat{\Phi})$, and means for determining the cost function $(C(\hat{f}, \hat{\Phi}))$ having a minimum value, wherein said cost function having the minimum value is a function of an optimal estimated frequency (\hat{f}) and an optimal estimated phase $(\hat{\Phi})$, and wherein the estimated preamble further comprises an estimated amplitude (\hat{A}) , an estimated frequency (\hat{f}) , and an estimated phase $(\hat{\Phi})$,-wherein the means for selecting determines the minimum value cost function by selecting a plurality of first minimum cost functions such that each of the first minimum cost functions has a different estimated frequency (\hat{f}) .

- 82. (Original) The system of claim 81, wherein the means for selecting determines the minimum value cost function by selecting a second minimum cost function from the plurality of first minimum cost functions, and wherein the second minimum cost function is a function of an optimal estimated frequency (\hat{f}) and an optimal estimated phase $(\hat{\Phi})$.
- 83. (Currently Amended) A disk drive system for an optimal one-shot phase and frequency estimation for timing acquisition for signals transmitted over a communications channel, the system comprising:

means for storing data;

means for rotating the means for storing;

means for transmitting data to and from the means for storing;

means for positioning the means for transmitting data; and

Supplemental Amendment Under 37 C.F.R. § 1.116 dated August 27, 2007

Final Office Action dated: April 27, 2007

means for communicating data to be stored on or read from the means for storing, wherein said means for communicating further comprises means for sampling a preamble comprising a known string of data bits, means for estimating the sampled preamble (\vec{Y}) , means for calculating a plurality of cost functions $(C(\hat{f}, \hat{\Phi}))$ as a function of the estimated frequency (\hat{f}) and the estimated phase $(\hat{\Phi})$ by varying at least one of the estimated frequency (\hat{f}) or estimated phase $(\hat{\Phi})$, and means for determining the cost function $(C(\hat{f}, \hat{\Phi}))$ having a minimum value, wherein said cost function having the minimum value is a function of an optimal estimated frequency (\hat{f}) and an optimal estimated phase $(\hat{\Phi})$, and wherein the estimated preamble further comprises an estimated amplitude (\hat{A}) , an estimated frequency (\hat{f}) , and an estimated phase $(\hat{\Phi})$. The system of elaim 81, wherein the means for selecting determines the cost minimum value function by selecting a plurality of first minimum cost functions such that each of the first minimum cost functions has a different estimated phase $(\hat{\Phi})$.

84. (Original) The system of claim 83, wherein the means for selecting determines the minimum value cost function by selecting a second minimum cost function from the plurality of first minimum cost functions, and wherein the second minimum cost function is a function of an optimal estimated frequency (\hat{f}) and an optimal estimated phase $(\hat{\Phi})$.