Question 1: Shopify Data Intern Challenge - Ata Meshkani

The first thing I did was to download the data into my desktop and open it with a R Markdown file in RStudio.

```
knitr::opts_chunk$set(echo = TRUE)
library(readr)
library(ggplot2)
library(dplyr)
shopify <- read_csv("/Users/atameshkani/Desktop/shopify/newdata.csv")</pre>
```

I first took a look at the summary of the order_amount in the data.

```
summary(shopify$order_amount)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 90 163 284 3145 390 704000
```

I noticed that the Mean was far beyond our inter-quartile range. We also see that the Max order value is at 704000. This seems to be an outlier in our case.

```
IQR(shopify$order_amount)
```

```
## [1] 227
```

```
quantile(shopify$order_amount)
```

```
## 0% 25% 50% 75% 100%
## 90 163 284 390 704000
```

```
sd(shopify$order_amount)
```

```
## [1] 41282.54
```

We can see an IQR of 227 and a standard deviation of 41282.54. This means that our data points are very spread out but most purchases are within our IQR.

To visualize this data I created a box-plot.

```
ggplot(shopify,aes(order_amount)) +
  geom_boxplot() +
  xlab("Order Amount")
```



```
ggplot(shopify,aes(order_amount)) +
  geom_boxplot() +
  coord_cartesian(xlim=c(0,1000)) +
  xlab("Order Amount")
```


This helps us vizualize the range for the order amounts and see how far out our outliers are. I then created a box-plot with a limited range so we can get a better look at the IQR.

I also wanted to take a look at why we had these massive outliers within our data set

table(unlist(shopify\$order_amount))

##											
##	90	94	101	111	112	114	116	117	118	122	127
##	18	25	15	16	48	27	23	29	43	21	22
##	128	129	130	131	132	133	134	136	138	140	142
##	30	50	52	35	23	56	29	38	25	8	72
##	144	145	146	147	148	149	153	154	155	156	158
##	19	37	28	18	31	23	87	16	12	75	29
##	160	161	162	163	164	165	166	168	169	171	172
##	75	43	18	46	52	16	17	14	18	18	11
##	173	176	177	178	180	181	184	187	188	190	193
##	35	62	46	37	19	51	20	39	17	12	13
##	195	196	201	202	222	224	228	232	234	236	244
##	25	24	24	18	14	48	17	16	29	41	17
##	254	256	258	260	262	264	266	268	270	272	276
##	15	41	54	66	36	12	56	28	1	47	23
##	280	282	284	288	290	292	294	296	298	303	306
##	26	10	64	9	32	41	20	35	15	8	85
##	308	310	312	316	320	322	324	326	328	330	332
##	21	17	75	41	72	36	16	39	68	26	13

##	333	336	338	342	344	346	348	351	352	354	356
##	7	36	24	28	16	35	11	11	66	82	35
##	360	362	366	368	374	376	380	381	384	386	387
##	3	35	7	18	38	2	13	9	18	18	21
##	390	392	393	396	399	402	404	408	414	420	426
##	40	21	16	8	31	42	1	13	6	18	37
##	432	435	438	441	444	447	448	450	456	459	462
##	10	17	12	12	27	9	7	1	5	67	10
##	464	465	468	470	472	474	480	483	486	488	489
##	7	11	41	1	5	16	44	14	11	5	30
##	492	495	498	504	507	508	512	513	516	519	520
##	34	14	8	6	8	6	4	10	21	19	10
##	524	528	531	532	534	536	543	544	552	560	561
##	8	29	34	5	24	4	22	6	11	5	20
##	568	570	576	579	580	584	585	588	590	592	596
##	14	6	1	10	6	7	7	15	6	10	3
##	603	612	616	620	624	632	640	644	645	648	650
##	7	12	7	2	9	5	10	6	3	2	1
##	652	655	656	660	664	665	670	672	676	684	692
##	5	1	7	3	2	2	3	2	3	2	8
##	704	708	710	712	724	725	730	735	736	740	745
##	22	7	10	12	3	1	1	1	4	1	2
##	748	760	765	772	774	780	784	786	790	800	804
##	5	4	5	2	1	8	2	1	2	3	2
##	805	810	815	816	830	845	865	880	885	890	920
##	2	1	2	1	3	1	2	3	2	1	1
##	935	948	960	965	980	1056	1064	1086	1408	1760	25725
##	3	1	2	1	1	3	1	1	2	1	19
##	51450		102900	154350	704000						
##	16	9	1	1	17						

We can see that there are a few purchases that are above 25000 that are heavily skewing our AOV

```
expensive <- subset(shopify, shopify$order_amount > 25000)
big_orders <- expensive %>% group_by(order_amount, order_id)
head(big_orders)
```

```
## # A tibble: 6 x 7
## # Groups:
               order_amount, order_id [6]
     order_id shop_id user_id order_amount total_items payment_method created_at
##
##
        <dbl>
                 <dbl>
                         <dbl>
                                       <dbl>
                                                    <dbl> <chr>
                                                                          <chr>
## 1
           16
                    42
                           607
                                      704000
                                                     2000 credit_card
                                                                          2017-03-07 4~
                    42
## 2
           61
                           607
                                      704000
                                                     2000 credit_card
                                                                          2017-03-04 4~
## 3
          161
                    78
                           990
                                                        1 credit_card
                                                                          2017-03-12 5~
                                       25725
## 4
          491
                    78
                           936
                                       51450
                                                        2 debit
                                                                          2017-03-26 1~
          494
                    78
                           983
                                                                          2017-03-16 2~
## 5
                                       51450
                                                        2 cash
## 6
          512
                    78
                           967
                                       51450
                                                        2 cash
                                                                          2017-03-09 7~
```

Going through this subset we see that these big purchases share common user_id and shop_id. Every purchase of 704000 has a shop_id of 607 and a shop_id of 42. We can also see that purchases made at 25725 are for 1 item. Meaning the item is extremely expensive compared to other stores.

After this quick analysis we can see the reason for the high mean is the outliers.

Answers:

- 1. The main flaw with this calculation is that because the AOV is taking the mean value, it fails to consider outliers. We can look at the data and see that the highest order value is 704000, which severely skews our mean.
- 2. The metric I would use to figure out the AOV is to look at the median and the interquartile range (IQR). With these metrics we see that the outliers are not able to skew the data.
- 3. By looking at the quantiles we can see that our median = 284 and IQR = 277. The Median allows us to ignore the outliers and the IQR gives us a better picture of the dispersion of the order amounts. These 2 metrics together give us a better picture of what order value to expect and we can visualize this as well with a boxplot.

0% 25% 50% 75% 100%

 $90\ 163\ 284\ 390\ 704000$