# 3.3V / 5V ECL D Flip-Flop with Reset and Differential Clock

The MC10/100EP51 is a differential clock D flip-flop with reset. The device is functionally equivalent to the EL51 and LVEL51 devices.

The reset input is an asynchronous, level triggered signal. Data enters the master portion of the flip-flop when the clock is LOW and is transferred to the slave, and thus the outputs, upon a positive transition of the clock. The differential clock inputs of the EP51 allow the device to be used as a negative edge triggered flip-flop.

The differential input employs clamp circuitry to maintain stability under open input conditions. When left open, the CLK input will be pulled down to  $V_{EE}$  and the  $\overline{CLK}$  input will be biased at  $V_{CC}/2$ .

The 100 Series contains temperature compensation.

- 350 ps Typical Propagation Delay
- Maximum Frequency > 3 GHz Typical
- PECL Mode Operating Range: V<sub>CC</sub> = 3.0 V to 5.5 V with V<sub>EE</sub> = 0 V
- NECL Mode Operating Range: V<sub>CC</sub> = 0 V with V<sub>EE</sub> = -3.0 V to -5.5 V
- Open Input Default State
- Safety Clamp on Inputs



#### ON Semiconductor™

http://onsemi.com

#### **MARKING DIAGRAMS\***



SO-8 D SUFFIX CASE 751







TSSOP-8 DT SUFFIX CASE 948R





 $\begin{array}{ll} H = MC10 & L = Wafer Lot \\ K = MC100 & Y = Year \\ A = Assembly Location & W = Work Week \end{array}$ 

#### **ORDERING INFORMATION**

| Device        | Package | Shipping         |
|---------------|---------|------------------|
| MC10EP51D     | SO-8    | 98 Units/Rail    |
| MC10EP51DR2   | SO-8    | 2500 Tape & Reel |
| MC100EP51D    | SO-8    | 98 Units/Rail    |
| MC100EP51DR2  | SO-8    | 2500 Tape & Reel |
| MC10EP51DT    | TSSOP-8 | 100 Units/Rail   |
| MC10EP51DTR2  | TSSOP-8 | 2500 Tape & Reel |
| MC100EP51DT   | TSSOP-8 | 100 Units/Rail   |
| MC100EP51DTR2 | TSSOP-8 | 2500 Tape & Reel |

<sup>\*</sup>For additional information, see Application Note AND8002/D



#### PIN DESCRIPTION

| PIN             | FUNCTION               |
|-----------------|------------------------|
| CLK*, CLK*      | ECL Clock Inputs       |
| Reset*          | ECL Asynchronous Reset |
| D*              | ECL Data Input         |
| Q, Q            | ECL Data Outputs       |
| V <sub>CC</sub> | Positive Supply        |
| V <sub>EE</sub> | Negative Supply        |

<sup>\*</sup> Pins will default LOW when left open.

#### **TRUTH TABLE**

| D | R | CLK | Q |
|---|---|-----|---|
| L | L | Z   | L |
| Н | L | Z   | Н |
| Х | Н | Х   | L |

Z = LOW to HIGH Transition

## Figure 1. 8-Lead Pinout (Top View) and Logic Diagram

## **ATTRIBUTES**

| Charact                             | eristics                                                  | Value                             |
|-------------------------------------|-----------------------------------------------------------|-----------------------------------|
| Internal Input Pulldown Resistor    |                                                           | 75 kΩ                             |
| Internal Input Pullup Resistor      |                                                           | N/A                               |
| ESD Protection                      | Human Body Model<br>Machine Model<br>Charged Device Model | > 2 kV<br>> 200 V<br>> 2 kV       |
| Moisture Sensitivity, Indefinite Ti | me Out of Drypack (Note 1.)                               | Level 1                           |
| Flammability Rating<br>Oxygen Index |                                                           | UL-94 code V-0 A 1/8"<br>28 to 34 |
| Transistor Count                    |                                                           | 165 Devices                       |
| Meets or exceeds JEDEC Spec         | EIA/JESD78 IC Latchup Test                                |                                   |

<sup>1.</sup> For additional information, see Application Note AND8003/D.

#### MAXIMUM RATINGS (Note 2.)

| Symbol            | Parameter                                          | Condition 1                                    | Condition 2                                                                         | Rating      | Units        |
|-------------------|----------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------|-------------|--------------|
| V <sub>CC</sub>   | PECL Mode Power Supply                             | V <sub>EE</sub> = 0 V                          |                                                                                     | 6           | V            |
| V <sub>EE</sub>   | NECL Mode Power Supply                             | V <sub>CC</sub> = 0 V                          |                                                                                     | -6          | V            |
| V <sub>I</sub>    | PECL Mode Input Voltage<br>NECL Mode Input Voltage | V <sub>EE</sub> = 0 V<br>V <sub>CC</sub> = 0 V | $ \begin{array}{c} V_{I} \! \leq \! V_{CC} \\ V_{I} \! \geq \! V_{EE} \end{array} $ | 6<br>-6     | V            |
| l <sub>out</sub>  | Output Current                                     | Continuous<br>Surge                            |                                                                                     | 50<br>100   | mA<br>mA     |
| TA                | Operating Temperature Range                        |                                                |                                                                                     | -40 to +85  | °C           |
| T <sub>stg</sub>  | Storage Temperature Range                          |                                                |                                                                                     | -65 to +150 | °C           |
| $\theta_{JA}$     | Thermal Resistance (Junction to Ambient)           | 0 LFPM<br>500 LFPM                             | 8 SOIC<br>8 SOIC                                                                    | 190<br>130  | °C/W<br>°C/W |
| $\theta_{\sf JC}$ | Thermal Resistance (Junction to Case)              | std bd                                         | 8 SOIC                                                                              | 41 to 44    | °C/W         |
| $\theta_{\sf JA}$ | Thermal Resistance (Junction to Ambient)           | 0 LFPM<br>500 LFPM                             | 8 TSSOP<br>8 TSSOP                                                                  | 185<br>140  | °C/W         |
| $\theta_{\sf JC}$ | Thermal Resistance (Junction to Case)              | std bd                                         | 8 TSSOP                                                                             | 41 to 44    | °C/W         |
| T <sub>sol</sub>  | Wave Solder                                        | <2 to 3 sec @ 248°C                            |                                                                                     | 265         | °C           |

<sup>2.</sup> Maximum Ratings are those values beyond which device damage may occur.

#### 10EP DC CHARACTERISTICS, PECL $V_{CC} = 3.3 \text{ V}$ , $V_{EE} = 0 \text{ V}$ (Note 3.)

|                    |                                                                  |      | –40°C |      |      | 25°C |      |      | 85°C |      |      |
|--------------------|------------------------------------------------------------------|------|-------|------|------|------|------|------|------|------|------|
| Symbol             | Characteristic                                                   | Min  | Тур   | Max  | Min  | Тур  | Max  | Min  | Тур  | Max  | Unit |
| I <sub>EE</sub>    | Power Supply Current                                             | 26   | 34    | 44   | 26   | 35   | 45   | 28   | 37   | 47   | mA   |
| V <sub>OH</sub>    | Output HIGH Voltage (Note 4.)                                    | 2165 | 2290  | 2415 | 2230 | 2355 | 2480 | 2290 | 2415 | 2540 | mV   |
| V <sub>OL</sub>    | Output LOW Voltage (Note 4.)                                     | 1365 | 1490  | 1615 | 1430 | 1555 | 1680 | 1490 | 1615 | 1740 | mV   |
| V <sub>IH</sub>    | Input HIGH Voltage (Single Ended)                                | 2090 |       | 2415 | 2155 |      | 2480 | 2215 |      | 2540 | mV   |
| $V_{IL}$           | Input LOW Voltage (Single Ended)                                 | 1365 |       | 1690 | 1430 |      | 1755 | 1490 |      | 1815 | mV   |
| V <sub>IHCMR</sub> | Input HIGH Voltage Common Mode<br>Range (Differential) (Note 5.) | 2.0  |       | 3.3  | 2.0  |      | 3.3  | 2.0  |      | 3.3  | V    |
| I <sub>IH</sub>    | Input HIGH Current                                               |      |       | 150  |      |      | 150  |      |      | 150  | μΑ   |
| I <sub>IL</sub>    | Input LOW Current                                                | 0.5  |       |      | 0.5  |      |      | 0.5  |      |      | μΑ   |

NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.

- 3. Input and output parameters vary 1:1 with  $V_{CC}$ .  $V_{EE}$  can vary +0.3 V to -2.2 V.
- 4. All loading with 50 ohms to  $V_{CC}$ -2.0 volts.
- 5. V<sub>IHCMR</sub> min varies 1:1 with V<sub>EE</sub>, V<sub>IHCMR</sub> max varies 1:1 with V<sub>CC</sub>. The V<sub>IHCMR</sub> range is referenced to the most positive side of the differential input signal.

#### 10EP DC CHARACTERISTICS, PECL $V_{CC} = 5.0 \text{ V}$ , $V_{EE} = 0 \text{ V}$ (Note 6.)

|                    |                                                               |      | –40°C |      |      | 25°C |      |      | 85°C |      |      |
|--------------------|---------------------------------------------------------------|------|-------|------|------|------|------|------|------|------|------|
| Symbol             | Characteristic                                                | Min  | Тур   | Max  | Min  | Тур  | Max  | Min  | Тур  | Max  | Unit |
| I <sub>EE</sub>    | Power Supply Current                                          | 26   | 34    | 44   | 26   | 35   | 45   | 28   | 37   | 47   | mA   |
| V <sub>OH</sub>    | Output HIGH Voltage (Note 7.)                                 | 3865 | 3990  | 4115 | 3930 | 4055 | 4180 | 3990 | 4115 | 4240 | mV   |
| V <sub>OL</sub>    | Output LOW Voltage (Note 7.)                                  | 3065 | 3190  | 3315 | 3130 | 3255 | 3380 | 3190 | 3315 | 3440 | mV   |
| $V_{IH}$           | Input HIGH Voltage (Single Ended)                             | 3790 |       | 4115 | 3855 |      | 4180 | 3915 |      | 4240 | mV   |
| $V_{IL}$           | Input LOW Voltage (Single Ended)                              | 3065 |       | 3390 | 3130 |      | 3455 | 3190 |      | 3515 | mV   |
| V <sub>IHCMR</sub> | Input HIGH Voltage Common Mode Range (Differential) (Note 8.) | 2.0  |       | 5.0  | 2.0  |      | 5.0  | 2.0  |      | 5.0  | V    |
| I <sub>IH</sub>    | Input HIGH Current                                            |      |       | 150  |      |      | 150  |      |      | 150  | μΑ   |
| I <sub>IL</sub>    | Input LOW Current                                             | 0.5  |       |      | 0.5  |      |      | 0.5  |      |      | μΑ   |

NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.

- 6. Input and output parameters vary 1:1 with  $V_{CC}$ .  $V_{EE}$  can vary +2.0 V to -0.5 V.
- 7. All loading with 50 ohms to  $V_{CC}$ -2.0 volts.
- 8. V<sub>IHCMR</sub> min varies 1:1 with V<sub>EE</sub>, V<sub>IHCMR</sub> max varies 1:1 with V<sub>CC</sub>. The V<sub>IHCMR</sub> range is referenced to the most positive side of the differential input signal.

#### 10EP DC CHARACTERISTICS, NECL $V_{CC} = 0 \text{ V}$ , $V_{EE} = -5.5 \text{ V}$ to -3.0 V (Note 9.)

|                    |                                                                   |                 | –40°C |       |                 | 25°C  |       |                 | 85°C  |       |      |
|--------------------|-------------------------------------------------------------------|-----------------|-------|-------|-----------------|-------|-------|-----------------|-------|-------|------|
| Symbol             | Characteristic                                                    | Min             | Тур   | Max   | Min             | Тур   | Max   | Min             | Тур   | Max   | Unit |
| I <sub>EE</sub>    | Power Supply Current                                              | 26              | 34    | 44    | 26              | 35    | 45    | 28              | 37    | 47    | mA   |
| V <sub>OH</sub>    | Output HIGH Voltage (Note 10.)                                    | -1135           | -1010 | -885  | -1070           | -945  | -820  | -1010           | -885  | -760  | mV   |
| V <sub>OL</sub>    | Output LOW Voltage (Note 10.)                                     | -1935           | -1810 | -1685 | -1870           | -1745 | -1620 | -1810           | -1685 | -1560 | mV   |
| $V_{IH}$           | Input HIGH Voltage (Single Ended)                                 | -1210           |       | -885  | -1145           |       | -820  | -1085           |       | -760  | mV   |
| $V_{IL}$           | Input LOW Voltage (Single Ended)                                  | -1935           |       | -1610 | -1870           |       | -1545 | -1810           |       | -1485 | mV   |
| V <sub>IHCMR</sub> | Input HIGH Voltage Common Mode<br>Range (Differential) (Note 11.) | V <sub>EE</sub> | +2.0  | 0.0   | V <sub>EE</sub> | +2.0  | 0.0   | V <sub>EE</sub> | +2.0  | 0.0   | V    |
| I <sub>IH</sub>    | Input HIGH Current                                                |                 |       | 150   |                 |       | 150   |                 |       | 150   | μΑ   |
| I <sub>IL</sub>    | Input LOW Current                                                 | 0.5             |       |       | 0.5             |       |       | 0.5             |       |       | μΑ   |

NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.

- 9. Input and output parameters vary 1:1 with V<sub>CC</sub>.
- 10. All loading with 50 ohms to V<sub>CC</sub>-2.0 volts.
- 11. V<sub>IHCMR</sub> min varies 1:1 with V<sub>EE</sub>, V<sub>IHCMR</sub> max varies 1:1 with V<sub>CC</sub>. The V<sub>IHCMR</sub> range is referenced to the most positive side of the differential input signal.

#### 100EP DC CHARACTERISTICS, PECL $V_{CC} = 3.3 \text{ V}$ , $V_{EE} = 0 \text{ V}$ (Note 12.)

|                    |                                                                |      | –40°C |      |      | 25°C |      |      | 85°C |      |      |
|--------------------|----------------------------------------------------------------|------|-------|------|------|------|------|------|------|------|------|
| Symbol             | Characteristic                                                 | Min  | Тур   | Max  | Min  | Тур  | Max  | Min  | Тур  | Max  | Unit |
| I <sub>EE</sub>    | Power Supply Current                                           | 26   | 34    | 44   | 26   | 35   | 45   | 28   | 37   | 47   | mA   |
| V <sub>OH</sub>    | Output HIGH Voltage (Note 13.)                                 | 2155 | 2280  | 2405 | 2155 | 2280 | 2405 | 2155 | 2280 | 2405 | mV   |
| V <sub>OL</sub>    | Output LOW Voltage (Note 13.)                                  | 1355 | 1480  | 1605 | 1355 | 1480 | 1605 | 1355 | 1480 | 1605 | mV   |
| V <sub>IH</sub>    | Input HIGH Voltage (Single Ended)                              | 2075 |       | 2420 | 2075 |      | 2420 | 2075 |      | 2420 | mV   |
| V <sub>IL</sub>    | Input LOW Voltage (Single Ended)                               | 1355 |       | 1675 | 1355 |      | 1675 | 1355 |      | 1675 | mV   |
| V <sub>IHCMR</sub> | Input HIGH Voltage Common Mode Range (Differential) (Note 14.) | 2.0  |       | 3.3  | 2.0  |      | 3.3  | 2.0  |      | 3.3  | V    |
| I <sub>IH</sub>    | Input HIGH Current                                             |      |       | 150  |      |      | 150  |      |      | 150  | μΑ   |
| I <sub>IL</sub>    | Input LOW Current                                              | 0.5  |       |      | 0.5  |      |      | 0.5  |      |      | μΑ   |

NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.

#### 100EP DC CHARACTERISTICS, PECL $V_{CC} = 5.0 \text{ V}$ , $V_{EE} = 0 \text{ V}$ (Note 15.)

|                    |                                                                |      | -40°C | _    |      | 25°C | _    |      | 85°C |      |      |
|--------------------|----------------------------------------------------------------|------|-------|------|------|------|------|------|------|------|------|
| Symbol             | Characteristic                                                 | Min  | Тур   | Max  | Min  | Тур  | Max  | Min  | Тур  | Max  | Unit |
| I <sub>EE</sub>    | Power Supply Current                                           | 26   | 34    | 44   | 26   | 35   | 45   | 28   | 37   | 47   | mA   |
| V <sub>OH</sub>    | Output HIGH Voltage (Note 16.)                                 | 3855 | 3980  | 4105 | 3855 | 3980 | 4105 | 3855 | 3980 | 4105 | mV   |
| V <sub>OL</sub>    | Output LOW Voltage (Note 16.)                                  | 3055 | 3180  | 3305 | 3055 | 3180 | 3305 | 3055 | 3180 | 3305 | mV   |
| $V_{IH}$           | Input HIGH Voltage (Single Ended)                              | 3775 |       | 4120 | 3775 |      | 4120 | 3775 |      | 4120 | mV   |
| $V_{IL}$           | Input LOW Voltage (Single Ended)                               | 3055 |       | 3375 | 3055 |      | 3375 | 3055 |      | 3375 | mV   |
| V <sub>IHCMR</sub> | Input HIGH Voltage Common Mode Range (Differential) (Note 17.) | 2.0  |       | 5.0  | 2.0  |      | 5.0  | 2.0  |      | 5.0  | V    |
| I <sub>IH</sub>    | Input HIGH Current                                             |      |       | 150  |      |      | 150  |      |      | 150  | μΑ   |
| I <sub>IL</sub>    | Input LOW Current                                              | 0.5  |       |      | 0.5  |      |      | 0.5  |      |      | μΑ   |

NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.

#### 100EP DC CHARACTERISTICS, NECL $V_{CC} = 0 \text{ V}$ , $V_{EE} = -5.5 \text{ V}$ to -3.0 V (Note 18.)

|                    |                                                                |                 | –40°C |       |                 | 25°C  |       |                 | 85°C  |       |      |  |
|--------------------|----------------------------------------------------------------|-----------------|-------|-------|-----------------|-------|-------|-----------------|-------|-------|------|--|
| Symbol             | Characteristic                                                 | Min             | Тур   | Max   | Min             | Тур   | Max   | Min             | Тур   | Max   | Unit |  |
| I <sub>EE</sub>    | Power Supply Current                                           | 26              | 34    | 44    | 26              | 35    | 45    | 28              | 37    | 47    | mA   |  |
| V <sub>OH</sub>    | Output HIGH Voltage (Note 19.)                                 | -1145           | -1020 | -895  | -1145           | -1020 | -895  | -1145           | -1020 | -895  | mV   |  |
| V <sub>OL</sub>    | Output LOW Voltage (Note 19.)                                  | -1945           | -1820 | -1695 | -1945           | -1820 | -1695 | -1945           | -1820 | -1695 | mV   |  |
| V <sub>IH</sub>    | Input HIGH Voltage (Single Ended)                              | -1225           |       | -880  | -1225           |       | -880  | -1225           |       | -880  | mV   |  |
| $V_{IL}$           | Input LOW Voltage (Single Ended)                               | -1945           |       | -1625 | -1945           |       | -1625 | -1945           |       | -1625 | mV   |  |
| V <sub>IHCMR</sub> | Input HIGH Voltage Common Mode Range (Differential) (Note 20.) | V <sub>EE</sub> | +2.0  | 0.0   | V <sub>EE</sub> | +2.0  | 0.0   | V <sub>EE</sub> | +2.0  | 0.0   | V    |  |
| I <sub>IH</sub>    | Input HIGH Current                                             |                 |       | 150   |                 |       | 150   |                 |       | 150   | μΑ   |  |
| I <sub>IL</sub>    | Input LOW Current                                              | 0.5             |       |       | 0.5             |       |       | 0.5             |       |       | μΑ   |  |

NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.

<sup>12.</sup> Input and output parameters vary 1:1 with  $V_{CC}$ .  $V_{EE}$  can vary +0.3 V to -2.2 V.

<sup>13.</sup> All loading with 50 ohms to  $V_{CC}$ –2.0 volts.

<sup>14.</sup> V<sub>IHCMR</sub> min varies 1:1 with V<sub>EE</sub>, V<sub>IHCMR</sub> max varies 1:1 with V<sub>CC</sub>. The V<sub>IHCMR</sub> range is referenced to the most positive side of the differential input signal.

<sup>15.</sup> Input and output parameters vary 1:1 with  $V_{CC}$ .  $V_{EE}$  can vary +2.0 V to -0.5 V.

<sup>16.</sup> All loading with 50 ohms to  $V_{CC}$ –2.0 volts.

<sup>17.</sup> V<sub>IHCMR</sub> min varies 1:1 with V<sub>EE</sub>, V<sub>IHCMR</sub> max varies 1:1 with V<sub>CC</sub>. The V<sub>IHCMR</sub> range is referenced to the most positive side of the differential input signal.

<sup>18.</sup> Input and output parameters vary 1:1 with  $V_{CC}$ .

<sup>19.</sup> All loading with 50 ohms to V<sub>CC</sub>-2.0 volts.

<sup>20.</sup> V<sub>IHCMR</sub> min varies 1:1 with V<sub>EE</sub>, V<sub>IHCMR</sub> max varies 1:1 with V<sub>CC</sub>. The V<sub>IHCMR</sub> range is referenced to the most positive side of the differential input signal.

 $\textbf{AC CHARACTERISTICS} \ \, \text{V}_{\text{CC}} = 0 \ \, \text{V}; \ \, \text{V}_{\text{EE}} = -3.0 \ \, \text{V to} \, \, -5.5 \ \, \text{V} \quad \text{or} \quad \, \text{V}_{\text{CC}} = 3.0 \ \, \text{V to} \, \, 5.5 \ \, \text{V}; \ \, \text{V}_{\text{EE}} = 0 \ \, \text{V} \, \, \text{(Note 21.)}$ 

|                                        | 00 , EE                                                                                                                                    |                   | U                 | •                 |                   |                   |                   | •                 |                   |                   |      |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
|                                        |                                                                                                                                            |                   | –40°C             |                   |                   | 25°C              |                   |                   | 85°C              |                   |      |
| Symbol                                 | Characteristic                                                                                                                             | Min               | Тур               | Max               | Min               | Тур               | Max               | Min               | Тур               | Max               | Unit |
| f <sub>max</sub>                       | Maximum Frequency<br>(See Figure 2. F <sub>max</sub> /JITTER)                                                                              |                   | > 3               |                   |                   | > 3               |                   |                   | > 3               |                   | GHz  |
| t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | Propagation Delay to Output Differential CLK, $\overline{\text{CLK}}$ to Q, $\overline{\text{Q}}$ 10 100 RESET to Q, $\overline{\text{Q}}$ | 250<br>275<br>300 | 300<br>340<br>380 | 350<br>425<br>450 | 270<br>300<br>325 | 320<br>375<br>400 | 370<br>450<br>475 | 300<br>350<br>350 | 350<br>425<br>425 | 420<br>500<br>500 | ps   |
| t <sub>RR</sub>                        | Reset Recovery                                                                                                                             | 150               |                   |                   | 150               |                   |                   | 150               |                   |                   | ps   |
| t <sub>S</sub>                         | Setup Time<br>Hold Time                                                                                                                    | 100<br>100        |                   |                   | 100<br>100        | 80<br>40          |                   | 100<br>100        |                   |                   | ps   |
| t <sub>PW</sub>                        | Minimum Pulse Width RESET                                                                                                                  | 500               | 440               |                   | 500               | 440               |                   | 500               | 440               |                   | ps   |
| t <sub>JITTER</sub>                    | Cycle-to-Cycle Jitter<br>(See Figure 2. F <sub>max</sub> /JITTER)                                                                          |                   | .2                | < 1               |                   | .2                | < 1               |                   | .2                | < 1               | ps   |
| t <sub>r</sub><br>t <sub>f</sub>       | Output Rise/Fall Times Q, $\overline{\mathbb{Q}}$ (20% – 80%)                                                                              | 70                | 120               | 170               | 80                | 130               | 180               | 100               | 150               | 200               | ps   |

<sup>21.</sup> Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 ohms to V<sub>CC</sub>-2.0 V.



Figure 2. F<sub>max</sub>/Jitter



Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 – Termination of ECL Logic Devices.)

#### **Resource Reference of Application Notes**

AN1404 – ECLinPS Circuit Performance at Non–Standard V<sub>IH</sub> Levels

AN1405 – ECL Clock Distribution Techniques

AN1406 – Designing with PECL (ECL at +5.0 V)

AN504 – Metastability and the ECLinPS Family

AN1568 – Interfacing Between LVDS and ECL

AN1650 – Using Wire–OR Ties in ECLinPS Designs

AN1672 – The ECL Translator Guide

AND8001 – Odd Number Counters Design

AND8002 – Marking and Date Codes

AND8009 – ECLinPS Plus Spice I/O Model Kit

AND8020 – Termination of ECL Logic Devices

For an updated list of Application Notes, please see our website at http://onsemi.com.

#### **PACKAGE DIMENSIONS**

### SO-8 **D SUFFIX** PLASTIC SOIC PACKAGE CASE 751-07



#### NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
  Y14.5M. 1982.
- 2. CONTROLLING DIMENSION: MILLIMETER.
  3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.

  MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER
- SIDE.

  DIMENSION D DOES NOT INCLUDE DAMBAR
  PROTRUSION. ALLOWABLE DAMBAR
  PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN
  EXCESS OF THE D DIMENSION AT MAXIMUM
  MATERIAL CONDITION.

|     | MILLIMETERS |      | INCHES    |       |  |
|-----|-------------|------|-----------|-------|--|
| DIM | MIN         | MAX  | MIN       | MAX   |  |
| Α   | 4.80        | 5.00 | 0.189     | 0.197 |  |
| В   | 3.80        | 4.00 | 0.150     | 0.157 |  |
| С   | 1.35        | 1.75 | 0.053     | 0.069 |  |
| D   | 0.33        | 0.51 | 0.013     | 0.020 |  |
| G   | 1.27 BSC    |      | 0.050 BSC |       |  |
| Н   | 0.10        | 0.25 | 0.004     | 0.010 |  |
| J   | 0.19        | 0.25 | 0.007     | 0.010 |  |
| K   | 0.40        | 1.27 | 0.016     | 0.050 |  |
| M   | 0 °         | 8 °  | 0 °       | 8 °   |  |
| N   | 0.25        | 0.50 | 0.010     | 0.020 |  |
| S   | 5.80        | 6.20 | 0.228     | 0.244 |  |

#### TSSOP-8 **DT SUFFIX** PLASTIC TSSOP PACKAGE CASE 948R-02 ISSUE A



- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETER.
  3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.
  PROTRUSIONS OR GATE BURRS. MOLD FLASH
  OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.

  4. DIMENSION B DOES NOT INCLUDE INTERLEAD
- FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

  5. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.

  6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

|     | MILLIMETERS |      | INCHES    |       |
|-----|-------------|------|-----------|-------|
| DIM | MIN         | MAX  | MIN       | MAX   |
| Α   | 2.90        | 3.10 | 0.114     | 0.122 |
| В   | 2.90        | 3.10 | 0.114     | 0.122 |
| С   | 0.80        | 1.10 | 0.031     | 0.043 |
| D   | 0.05        | 0.15 | 0.002     | 0.006 |
| F   | 0.40        | 0.70 | 0.016     | 0.028 |
| G   | 0.65 BSC    |      | 0.026 BSC |       |
| K   | 0.25        | 0.40 | 0.010     | 0.016 |
| L   | 4.90 BSC    |      | 0.193 BSC |       |
| M   | 0°          | 6 °  | 0°        | 6°    |

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

#### **PUBLICATION ORDERING INFORMATION**

#### NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

**Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

**EUROPE:** LDC for ON Semiconductor – European Support

German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)
Email: ONlit–german@hibbertco.com

ch Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)
Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS\*: 00-800-4422-3781

\*Available from Germany, France, Italy, UK, Ireland

#### CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

Toll-Free from Mexico: Dial 01-800-288-2872 for Access -

then Dial 866-297-9322

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001-800-4422-3781 Email: ONlit-asia@hibbertco.com

IABAN ON O : I I I O I

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700

Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.