Math 20E Midterm 1, Fall 98, Lindblad.

- 1. Given three points P = (-1, 2, 0), Q = (1, 2, 2) and R = (0, 3, 2)
- (a) Find the equation of the plane containing the three points.
- (b) Find the area of the triangle with vertices at the three points.
- 2. Consider the curve C given in parametric form by

$$\mathbf{R}(\mathbf{t}) = \mathbf{i}(1+t)^{3/2} + \mathbf{j}(1-t)^{3/2} + \mathbf{k}t, \ 0 \le t \le 1.$$

- (a) Find the arc length of the curve C.
- (b) Find the line integral $\int_C \mathbf{F} \cdot d\mathbf{R}$, where $\mathbf{F} = y\mathbf{i} + x\mathbf{j} + x\mathbf{k}$.
- 3. Let $\mathbf{F} = y\mathbf{i} + x\mathbf{j}$.
- (a) Find the flow line C for \mathbf{F} that passed through (1,2,2).
- (b) Is there a scalar field ϕ such that $\nabla \phi = \mathbf{F}$?

If there is such a ϕ find it otherwise explain why there is none.

(c) Let C be a line segment from (0,0,0) to (1,2,2).

Find the line integral $\int_C \mathbf{F} \cdot d\mathbf{R}$.

4. Let
$$\mathbf{F} = \frac{-y\mathbf{i}}{\sqrt{x^2 + y^2}} + \frac{x\mathbf{j}}{\sqrt{x^2 + y^2}}$$
.

- (a) Find $\nabla \times \mathbf{F}$.
- (b) Find $\nabla \cdot \mathbf{F}$.
- (c) Is there a scalar field ϕ such that $\nabla \phi = \mathbf{F}$?

If there is such a ϕ find it otherwise explain why there is none.