Feedback Control II

lecture 3

Tom Pedersen
Aalborg Universitet

Standard set-up

Closed loop:
$$T(s) = \frac{Y(s)}{R(s)} = \frac{D(s)G(s)}{1 + D(s)G(s)H(s)}$$

Open loop:
$$L(s) = D(s)G(s)H(s)$$

$$Direct\ term:\ D(s)G(s)$$

$$closed \quad loop = \frac{direct \quad term}{1 + open \quad loop}$$

Time domain specifications

Rise time $t_r \sim$ stigetid Settling time $t_s \sim$ indsvingningstid

Overshoot $M_p \sim$ oversving

CLOSED LOOP

Steady state errors system type

Special Case:H(s) = 1

System type=number of poles in 0 in D(s)G(s).

Example:

if $D(s)G(s)=\frac{10}{s(s+5)}$ a pole in 0 (an a pole in -5) system type = 1. If $D(s)G(s)=\frac{10}{(s+10)(s+5)}$ poles in -10 and -5 system type = 0.

Notice that D(s)G(s) = L(s) OPEN LOOP

Special Case:H(s) = 1

Oscillating:

$$D(s)G(s)H(s) = -1 = 1 \angle -180$$

Oscillating:

$$D(s)G(s)H(s) = -1 = 1 \angle -180$$

Unstable:

$$D(s)G(s)H(s) = > 1 \angle -180$$

If there is a frequency ω_1 where the phase, $\angle D(\omega_1)G(\omega_1)H(\omega_1)$, is -180 grader then the gain, $|D(\omega_1)G(\omega_1)H(\omega_1)|$, must be smaller than 1 (0 dB) for stability.

Oscillating:

$$D(s)G(s)H(s) = -1 = 1 \angle -180$$

Oscillating:

$$D(s)G(s)H(s) = -1 = 1 \angle -180$$

Stability margins:

Gain margin (GM) is the number of dB missing before the gain is 0dB at the frequency where the phase is -180 degrees. Gain and phase is calculated on the open loop function!

Oscillating:

$$D(s)G(s)H(s) = -1 = 1 \angle -180$$

Stability margins:

Gain margin (GM) is the number of dB missing before the gain is 0dB at the frequency where the phase is -180 degrees. Gain and phase is calculated on the open loop function!

Phase margin, (PM) is the number of degrees missing before the phase is -180 at the frequency where the gain is 0 dB. Gain and phase is calculated on the open loop function!

Oscillating:

$$D(s)G(s)H(s) = -1 = 1 \angle -180$$

Stability margins:

Gain margin (GM) is the number of dB missing before the gain is 0dB at the frequency where the phase is -180 degrees. Gain and phase is calculated on the open loop function!

Phase margin, (PM) is the number of degrees missing before the phase is -180 at the frequency where the gain is 0 dB. Gain and phase is calculated on the open loop function!

Cross over frequency ω_c is the frequency where the gain is 0 dB.

Example

OPEN LOOP

- Gain margin
- Phase margin
- Cross over frequency

Controller specifications

Specifications:

Time domaine spec's	Frequency domaine spec's		Type of spec.
Closed loop:	Closed loop:	Open loop:	
Overshoot M_p	Resonant peak M_r	Phase margin PM	Stability
Rise time t_r	Bandwidth ω_{BW}	Crossover frequency ω_c	Dynamics
Settling time t_s			Dynamics
Peak time t_p	Resonant frequency ω_r		Dynamics
		Gain margin GM	Stability
Steady state error e_{ss}	Steady state error e_{ss}	Asymptote $\omega \to 0$	Steady state

Controller specifications

For the standard 2. order cloosed loop system $T(s) = \frac{A}{s^2 + 2\zeta\omega_n s + \omega_n^2}$

Specifications	Equations
Overshoot,Resonant peak,Phase margin	$M_p = e^{\frac{-\pi\zeta}{\sqrt{1-\zeta^2}}}$ $M_r \approx \frac{1}{2\sin\frac{PM}{2}}$ $\zeta \approx \frac{PM}{100}$
Rise time, Bandwidth, Cross over frekvens	$t_r \approx \frac{1.8}{\omega_n}$ $\omega_{BW} \approx 1.4 \cdot \omega_n$ $\omega_c \approx 0.5 \cdot \omega_{BW}$
Settling time	$t_s = \frac{-ln(x)}{\zeta\omega_n}$ $x = baand$
Peak time, Resonant frequency	$t_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}} \qquad \omega_r = \omega_n \sqrt{1 - 2\zeta^2}$

Design example

Specifications:

- Steady state error for step = 0
- Phase margin \cong 45 degrees
- Cross over frequency > 0.5 rad/sek

Determine D(s)

Computer implementation

Controller

$$D(s) = 1.11 \frac{s+1}{s}$$

transform to computer form:

```
s=tf('s');\\ D=1.11*(s+1)/s;\\ G=1/((s+1)^2*(0.1*s+1));\\ T=feedback(D*G,-1); \ BW=bandwidth(T); \ % \ To \ determine \ sampling time \\ Wsamplemin=20*BW; \ Tsmax=2*pi/Wsamplemin \ % \ We \ select \ 0.1 \ sek \\ Dd=c2d(D,0.1,'tustin') \ % \ to \ discrete \ filter \ form \\ [nomerator,denominator]=tfdata(Dd,'v'); \ % \ more \ digits \\ nomerator, \ denominator
```

$$u(k) = u(k-1) + 1.1655e(k) - 1.0545e(k-1)$$

Controller type

Controller

$$D(s) = 1.11 \frac{s+1}{s} = 1.11(1 + \frac{1}{s})$$
$$= Proportional(1 + Integral) = PI - controller$$

A standard controller is:

$$D(s) = K_p(1 + \frac{1}{T_i \cdot s} + T_d \cdot s)$$

$$= Proportional(1 + Integral + Differential)$$

$$= PID - controller$$