SEQUENCE LISTINGS

<110>	INJE UNIVERSITY	
<120>	CANCER CELL TARGETING GENE DELIVERY METHOD	
<130>	PCA31275/1JU	
<160>	11	
<170>	Kopatentin 1.71	
<210> <211> <212> <213>	1 36 DNA Artificial Sequence	
<220> <223>	Env F primer	
<400> cgcggatc	1 cg aattecatae etggtgttge tgaeta	36
<210> <211> <212> <213> <220>	2 47 DNA Artificial Sequence	
<223>	597LN primer	
<400> agctggac	2 ect ggetgecace accteegeta tittggteec attitae	47
<210> <211> <212> <213>	3 49 DNA Artificial Sequence	

<223>

<400>

6

ScFvLnkC primer

2

<220> <223> LC597 primer <400> 3 49 caaccccgcc gcaggtggag gaggcagtga atggactcaa aaatttcaa <210> 4 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Spike R2 primer <400> 4 35 tgctctagaa ttcttaaagg ttaccttcgt tctct <210> 5 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> LnkNScFv primer <400> 5 36 ggaggtggtg gcagccaggt ccagctagtg cagtct <210> 6 <211> 36 <212> DNA Artificial Sequence <213> <220>

3

actgcctcct ccacctgcgg cggggttgaa gtccca 36												
<210> 7 <211> 2058 <212> DNA <213> SEATO type of GaLV Env glycoprotein												
<220> <221> sig_peptide <222> (1)(126)												
<220> <221> misc_feature <222> (127)(1467) <223> surface subunit region	•											
<pre><220> <221> misc_feature <222> (1468)(2025) <223> transmembrain domain</pre>												
<400> 7 atggtattgc tgcctgggtc catgcttctc acctcaaacc tgcaccacct tcggcaccag	60											
atgagtcctg ggagctggaa aagactgatc atcctcttaa gctgcgtatt cggcggcggc	120											
gggacgagtc tgcaaaataa gaacccccac cagcccatga ccctcacttg gcaggtactg	180											
tcccaaactg gagacgttgt ctgggataca aaggcagtcc agcccccttg gacttggtgg	240											
cccacactta aacctgatgt atgtgccttg gcggctagtc ttgagtcctg ggatatcccg	300											
ggaaccgatg tetegteete taaacgagte agaceteegg aeteagaeta taetgeeget	360											
tataagcaaa tcacctgggg agccataggg tgcagctacc ctcgggctag gactagaatg	420											
gcaagctcta ccttctacgt atgtccccgg gatggccgga ccctttcaga agctagaagg	480											
tgcggggggc tagaatccct atactgtaaa gaatgggatt gtgagaccac ggggaccggt	540											

tattggctat ctaaatcctc aaaagacctc ataactgtaa aatgggacca aaatagcgaa

tggactcaaa aatttcaaca gtgtcaccag accggctggt gtaaccccct taaaatagat 660 ttcacagaca aaggaaaatt atccaaggac tggataacgg gaaaaacctg gggattaaga 720 780 ttctatgtgt ctggacatcc aggcgtacag ttcaccattc gcttaaaaat caccaacatg 840 ccagctgtgg cagtaggtcc tgacctcgtc cttgtggaac aaggacctcc tagaacgtcc 900 ctegetetee caceteetet teececaagg gaagegeeae egecatetet eecegaetet aactocacag cootggogac tagtgoacaa actoccacgg tgagaaaaac aattgttacc 960 1020 ctaaacactc cgcctcccac cacaggcgac agactttttg atcttgtgca gggggccttc ctaaccttaa atgctaccaa cccaggggcc actgagtctt gctggctttg tttggccatg 1080 1140 ggccccctt attatgaage aatagcetea teaggagagg tegectaete cacegacett 1200 gaccggtgcc gctgggggac ccaaggaaag ctcaccctca ctgaggtctc aggacacggg ttgtgcatag gaaaggtgcc ctttacccat cagcatctct gcaatcagac cctatccatc 1260 aattcctccg gagaccatca gtatctgctc ccctccaacc atagctggtg ggcttgcagc 1320 1380 actggcctca ccccttgcct ctccacctca gtttttaatc agactagaga tttctgtatc 1440 caggiccage tgattecteg catetattae tateetgaag aagtitigit acaggeetat 1500 gacaattoto accocaggao taaaagagag gotgtotoac ttaccotago tgitttactg gggttgggaa tcacggcggg aataggtact ggttcaactg ccttaattaa aggacctata 1560 1620 gacctccagc aaggcctgac aagcctccag atcgccatag atgctgacct ccgggccctc caagactcag tcagcaagtt agaggactca ctgacttccc tgtccgaggt agtgctccaa 1680 aataggagag gccttgactt gctgtttcta aaagaaggtg gcctctgtgc ggccctaaag 1740 gaagagtgct gtttttacat agaccactca ggtgcagtac gggactccat gaaaaaaactc 1800 aaagaaaaac tggataaaag acagttagag cgccagaaaa gccaaaactg gtatgaagga 1860 1920 tggttcaata actoccottg gttcactacc ctgctatcaa ccatcgctgg gcccctatta

WÒ 2005/047338 PCT/KR2004/000545

5

ctcctccttc	tgttgctcat	cctcgggcca	tgcatcatca	ataagttagt	tcaattcatc	1980
aatgatagga	taagtgcagt	taaaattotg	gtccttagac	aaaaatatca	ggccctagag	2040
aacgaaggta	acctttaa					2058

<211> 786 <212> DNA <213> Tag-72pS1 <220> <221> misc_feature <222> (346)..(390) (Gly4Ser)3 linker <223> <220> <221> misc_feature (739)..(777) <222>

PreS1 Tag

8

<210>

<223>

<400> 8 caggtccagc tagtgcagtc tggggctgaa gtgaagaagc ctggggcttc agtgaaggtg

60 120

cctggacaac gccttgagtg gatgggatat ttttctcctg gcaacgatga ttttaaatac
tcccagaagt tccagggacg cgtgacaatc actgcagaca aatccgcgag cacagcctac

tcctgcaagg cttctggcta caccttcact gaccatgcaa ttcactgggt gcgccaggcc

180 240

atggagetga geageetgag atetgaggae aeggeggtet attactgtge aagategttg

300

aacatggcat actggggcca agggactctg gtcactgtct cttcaggtgg aggcggttca

360

ggcggaggtg gctctggcgg tggcggatcg gacattgtga tgacccagtc tccagactcc

480

420

ctggctgtgt ctctgggcga gagggccacc atcaactgca agtccagcca gagtgtttta tacagcagca acaataagaa ctacttagct tggtaccagc agaaaccagg acagcctcct

540

aagctgctca tttactgggc	atctacccgg	gaatccgggg	tccctgaccg	attcagtggc	600
agcgggtctg ggacagattt	cactctcacc	atcagcagcc	tgcaggctga	agatgtggca	660
gtttattact gtcagcaata	ttattcctat	ccgttgacgt	tcggccaagg	gaccaaggtg	720
gaaatcaaag cggccgcagg	agccaacgca	aacaatccag	attgggactt	caaccccgcc	780
gcatag					786

<210>	9
<211>	13
<212>	PRT
<213>	PreS1 epitope at C-terminal of Tag-72pS1
<400> Gly Ala 1	9 Asn Ala Asn Asn Pro Asp Trp Asp Phe Asn Pro 5 10

<210> 10 <211> 2871 <212> DNA

<213> Artificial Sequence

<220>

<223> ScFv-GaLV Env GP chimeric peptide (FvGEL199) DNA

<400> 10	
atggtattgc tgcctgggtc catgcttctc acctcaaacc tgcaccacct tcggcaccag	60
atgagtcctg ggagctggaa aagactgatc atcctcttaa gctgcgtatt cggcggcggc	120
gggacgagtc tgcaaaataa gaacccccac cagcccatga ccctcacttg gcaggtactg	180
toccaaactg gagacgttgt ctgggataca aaggcagtcc agcccccttg gacttggtgg	240
cccacactta aacctgatgt atgtgccttg gcggctagtc ttgagtcctg ggatatcccg	300
ggaaccgatg tctcgtcctc taaacgagtc agacctccgg actcagacta tactgccgct	360
tataagcaaa tcacctgggg agccataggg tgcagctacc ctcgggctag gactagaatg	420

gcaagctcta	ccttctacgt	atgtccccgg	gatggccgga	ccctttcaga	agctagaagg	480
tgcggggggc	tagaatccct	atactgtaaa	gaatgggatt	gtgagaccac	ggggaccggt	540
tattggctat	ctaaatcctc	aaaagacctc	ataactgtaa	aatgggacca	aaatagcgga	600
ggtggtggca	gccaggtcca	gctagtgcag	tctggggctg	aagtgaagaa	gcctggggct	660
tcagtgaagg	tgtcctgcaa	ggcttctggc	tacaccttca	ctgaccatgc	aattcactgg	720
gtgcgccagg	cccctggaca	acgccttgag	tggatgggat	atttttctcc	tggcaacgat	780
gattttaaat	actcccagaa	gttccaggga	cgcgtgacaa	tcactgcaga	caaatccgcg	840
agcacagcct	acatggagct	gagcagcctg	agatotgagg	acacggcggt	ctattactgt	900
gcaagatcgt	tgaacatggc	atactggggc	caagggactc	tggtcactgt	ctcttcaggt	960
ggaggcggtt	caggcggagg	tggctctggc	ggtggcggat	cggacattgt	gatgacccag	. 1020
tctccagact	ccctggctgt	gtctctgggc	gagagggcca	ccatcaactg	caagtccagc	1080
cagagtgttt	tatacagcag	caacaataag	aactacttag	cttggtacca	gcagaaacca	1140
ggacagcctc	ctaagctgct	catttactgg	gcatctaccc	gggaatccgg	ggtccctgac	1200
cgattcagtg	gcagcgggtc	tgggacagat	ttcactctca	ccatcagcag	cctgcaggct	1260
gaagatgtgg	cagtttatta	ctgtcagcaa	tattattcct	atccgttgac	gttcggccaa	1320
gggaccaagg	tggaaatcaa	ageggeegea	ggagccaacg	caaacaatcc	agattgggac	1380
ttcaaccccg	ccgcaggtgg	aggaggcagt	gaatggactc	aaaaatttca	acagtgtcac	1440
cagaccggct	ggtgtaaccc	ccttaaaata	gatttcacag	acaaaggaaa	attatccaag	1500
gactggataa	cgggaaaaac	ctggggatta	agattctatg	tgtctggaca	tccaggcgta	1560
cagttcacca	ttcgcttaaa	aatcaccaac	atgccagctg	tggcagtagg	tcctgacctc	1620
gtccttgtgg	aacaaggacc	tcctagaacg	tocctogoto	toccacctcc	tcttcccca	1680
agggaagcgc	caccgccatc	totocccgac	tctaactcca	cagccctggc	gactagtgca	1740

caaactccca	cggtgagaaa	aacaattgtt	accctaaaca	ctccgcctcc	caccacaggc	1800
gacagacttt	ttgatcttgt	gcagggggcc	ttcctaacct	taaatgctac	caacccaggg	1860
gccactgagt	cttgctggct	ttgtttggcc	atgggcccc	cttattatga	agcaatagcc	1920
tcatcaggag	aggtcgccta	ctccaccgac	cttgaccggt	gccgctgggg	gacccaagga	1980
aagctcaccc	tcactgaggt	ctcaggacac	gggttgtgca	taggaaaggt	gccctttacc	2040
catcagcatc	totgcaatca	gaccctatcc	atcaattcct	ccggagacca	tcagtatctg	2100
ctccctcca	accatagctg	gtgggcttgc	agcactggcc	tcacccttg	cctctccacc	2160
tcagtttta	atcagactag	agatttctgt	atccaggtcc	agctgattcc	togcatotat	2220
tactatcctg	aagaagttt	gttacaggcc	tatgacaatt	ctcaccccag	gactaaaaga	2280
gaggctgtct	cacttaccct	agctgtttta	ctggggttgg	gaatcacggc	gggaataggt	2340
actggttcaa	ctgccttaat	taaaggacct	atagacctcc	agcaaggcct	gacaagcctc	2400
cagatcgcca	tagatgctga	cctccgggcc	ctccaagact	cagtcagcaa	gttagaggac	2460
tcactgactt	ccctgtccga	ggtagtgctc	caaaatagga	gaggcct tga	cttgctgttt	2520
ctaaaagaag	gtggcctctg	tgcggcccta	aaggaagagt	gctgtttta	catagaccac	2580
tcaggtgcag	tacgggactc	catgaaaaaa	ctcaaagaaa	aactggataa	aagacagtta	2640
gagcgccaga	aaagccaaaa	ctggtatgaa	ggatggttca	ataactcccc	ttggttcact	2700
accctgctat	caaccatcgc	tgggcccta	ttactcctcc	ttctgttgct	catcctcggg	2760
ccatgcatca	tcaataagtt	agttcaattc	atcaatgata	ggataagtgc	agttaaaatt	2820
ctggtcctta	gacaaaaata	tcaggcccta	gagaacgaag	gtaaccttta	a	2871

<210> 11

<211> 956

<212> PRT

<213> Artificial Sequence

<220>

<223> ScFv-GaLV Env GP chimeric ligand (FvGEL199)

<400> 11

- Met Val Leu Leu Pro Gly Ser Met Leu Leu Thr Ser Asn Leu His His 1 5 10 15
- Leu Arg His Gln Met Ser Pro Gly Ser Trp Lys Arg Leu IIe IIe Leu 20 25 30
- Leu Ser Cys Val Phe Gly Gly Gly Gly Thr Ser Leu Gln Asn Lys Asn 35 40 45
- Pro His Gln Pro Met Thr Leu Thr Trp Gln Val Leu Ser Gln Thr Gly 50 55 60
- Asp Val Val Trp Asp Thr Lys Ala Val Gln Pro Pro Trp Trp 65 70 75 80
- Pro Thr Leu Lys Pro Asp Val Cys Ala Leu Ala Ala Ser Leu Glu Ser 85 90 95
- Trp Asp IIe Pro Gly Thr Asp Val Ser Ser Ser Lys Arg Val Arg Pro
 100 105 110
- Pro Asp Ser Asp Tyr Thr Ala Ala Tyr Lys Gln Ile Thr Trp Gly Ala 115 120 125
- lle Gly Cys Ser Tyr Pro Arg Ala Arg Thr Arg Met Ala Ser Ser Thr 130 135 140
- Phe Tyr Val Cys Pro Arg Asp Gly Arg Thr Leu Ser Glu Ala Arg Arg 145 150 155 160
- Cys Gly Gly Leu Glu Ser Leu Tyr Cys Lys Glu Trp Asp Cys Glu Thr 165 170 175
- Thr Gly Thr Gly Tyr Trp Leu Ser Lys Ser Ser Lys Asp Leu Ile Thr 180 185 190
- Val Lys Trp Asp Gin Asn Ser Gly Gly Gly Gly Ser Gin Val Gin Leu 195 200 205

Val	GIn 210	Ser	Gly	Ala	Glu	Va I 215	Lys	Lys	Pro	Gly	Ala 220	Ser	Val	Lys	Val
Ser 225	Cys	Lys	Ala	Ser	Gly 230	Tyr	Thr	Phe	Thr	Asp 235	His	Ala	He	His	Trp 240
Val	Arg	GIn	Ala	Pro 245	Gly	GIn	Arg	Leu	Glu 250	Trp	Met	Gly	Tyr	Phe 255	Ser
Pro	Gly	Asn	Asp 260	Asp	Phe	Lys	Tyr	Ser 265	Gin	Lys	Phe	Gln	Gly 270	Arg	Val
Thr	He	Thr 275	Ala	Asp	Lys	Ser	Ala 280	Ser	Thr	Ala	Tyr	Met 285	Glu	Leu	Ser
Ser	Leu 290	Arg	Ser	Glu	Asp	Thr 295	Ala	Val	Tyr	Tyr	Cys 300	Ala	Arg	Ser	Leu
Asp 305	Met	Ala	Туг	Trp	Gly 310	GIn	Gly	Thr	Leu	Va I 315	Thr	Val	Ser	Ser	Gly 320
Gly	Gly	Gly	Ser	Gly 325	Gly	Gly	Gly	Ser	Gly 330	Gly	Gly	Gly	Ser	Asp 335	He
Val	Met	Thr	GI n 340	Ser	Pro	Asp	Ser	Leu 345	Ala	Val	Ser	Leu	Gly 350	Glu	Arg
Ala	Thr	11e 355	Asn	Cys	Lys	Ser	Ser 360	GIn	Ser	Val	Leu	Tyr 365	Ser	Ser	Asn
Asn	Lys 370	Asn	Tyr	Leu	Ala	Trp 375	Туг	GIn	Gin	Lys	Pro 380	Gly	GIn	Pro	Pro
Lys 385	Leu	Leu	He	Tyr	Trp 390	Ala	Ser	Thr	Arg	G1u 395	Ser	Gly	Val	Pro	Asp 400
Arg	Phe	Ser	Gly	Ser 405	Gly	Ser	Gly	Thr	Asp 410	Phe	Thr	Leu	Thr	1 le 415	Ser
Ser	Leu	Gln	Ala 420	Glu	Asp	Val	Ala	Va I 425	Tyr	Tyr	Cys	Gln	GIn 430	Tyr	Tyr

Ser Tyr Pro Leu Thr Phe Gly Gln Gly Thr Lys Val Glu lle Lys Ala

		435	;	•			440)				445	· 5		
Ala	A1a 450		Ala	Asn	Ala	Asn 455		Pro	Asp	Trp	Asp 460		Asn	Pro	Ala
Ala 465		Gly	Gly	Gly	Ser 470		Trp	Thr	Gin	Lys 475		Gin	Gin	Cys	His 480
GIn	Thr	Gly	Trp	Cys 485		Pro	Leu	Lys	11e 490		Phe	Thr	Asp	Lys 495	
Lys	Leu	Ser	Lys 500		Trp	He	Thr	Gly 505		Thr	Trp	Gly	Leu 510	_	Phe
Tyr	Val	Ser 515		His	Pro	Gly	Va I 520		Phe	Thr	He	Arg 525	Leu	Lys	He
Thr	Asn 530	Met	Pro	Ala	Val	Ala 535	Val	Gly	Pro	Asp	Leu 540	Val	Leu	Val	Glu
GI n 545	Gly	Pro	Pro	Arg	Thr 550	Ser	Leu	Ala	Leu	Pro 555	Pro	Pro	Leu	Pro	Pro 560
Arg	Glu	Ala	Pro	Pro 565	Pro	Ser	Leu	Pro	Asp 570	Ser	Asn	Ser	Thr	Ala 575	Leu
Ala	Thr	Ser	Ala 580	Gln	Thr	Pro	Thr	Va I 585	Arg	Lys	Thr	He	Va I 590	Thr	Leu
Asn	Thr	Pro 595	Pro	Pro	Thr	Thr	Gly 600	Asp	Arg	Leu	Phe	Asp 605	Leu	Val	Gln
Gly	Ala 610	Phe	Leu	Thr	Leu	Asn 615	Ala	Tḥr	Asn	Pro	Gly 620	Ala	Thr	Glu	Ser
Cys 625	Trp	Leu	Cys	Leu	Ala 630	Met	Gly	Pro	Pro	Tyr 635	Tyr	Glu	Ala	He	A1a 640
Ser	Ser	Gly	Glu	Va I 645	Ala	Tyr	Ser		Asp 650	Leu	Asp	Arg	Cys	Arg 655	Trp
Gly	Thr				Leu						Ser		His	Gly	Leu

Cys	He	Gly 675	Lys	Val	Pro	Phe	Thr 680	His	Gln	His	Leu	Cys 685	Asn	Gln	Thr
	Ser 690	Пe	Asn	Ser	Ser	Gly 695	Asp	His	GIn	Tyr	Leu 700	Leu	Pro	Ser	Asn
His 705	Ser	Trp	Trp	Ala	Cys 710	Ser	Thr	Gly	Leu	Thr 715	Pro	Cys	Leu	Ser	Thr 720
Ser	Val	Phe	Asn	GIn 725	Thr	Arg	Asp	Phe	Cys 730	lle	GIn	Val	Gln	Leu 735	lle
Pro	Arg	He	Tyr 740	Tyr	Tyr	Pro	Glu	Glu 745	Val	Leu	Leu	GIn	Ala 750	Tyr	Asp
Asn	Ser	His 755	Pro	Arg	Thr	Lys	Arg 760	Glu	Ala	Val	Ser	Leu 765	Thr	Leu	Ala
Val	Leu 770	Leu	Gly	Leu	Gly	11e 775	Thr	Ala	Gly	He	Gly 780	Thr	Gly	Ser	Thr
A1a 785	Leu	lle	Lys	Gly	Pro 790	He	Asp	Leu	Gln	Gln 795	Gly	Leu	Thr	Ser	Leu 800
GIn	He	Ala	He	Asp 805	Ala	Asp	Leu	Arg	A1a 810	Leu	GIn	Asp	Ser	Val 815	Ser
Lys	Leu	Glu	Asp 820		Leu	Thr	Ser	Leu 825	Ser	Glu	Val	Val	Leu 830	Gln	Asn
Arg	Arg	Gly 835	Leu	Asp	Leu	Leu	Phe 840		Lys	Glu	Gly	Gly 845		Cys	Ala
Ala	Leu 850		Glu	Glu	Cys	Cys 855	Phe	Tyr	He	Asp	His 860	Ser	Gly	Ala	Val
Arg 865		Ser	Met	Lys	Lys 870		Lys	Glu	Lys	Leu 875		Lys	Arg	GIn	Leu 880
Glu	Arg	GIn	Lys	Ser 885		Asn	Trp	Tyr	G1u 890		Trp	Phe	Asn	Asn 895	Ser

Pro Trp Phe Thr Thr Leu Leu Ser Thr IIe Ala Gly Pro Leu Leu Leu 900 905 910

Leu Leu Leu Leu lle Leu Gly Pro Cys IIe IIe Asn Lys Leu Val 915 920 925

Gln Phe lle Asn Asp Arg lle Ser Ala Val Lys lle Leu Val Leu Arg 930 935 940

Gln Lys Tyr Gln Ala Leu Glu Asn Glu Gly Asn Leul 945 950 955