

Histogram Processing and Histogram Statistics

Local Histogram Processing

FIGURE 3.26 (a) Original image. (b) Result of global histogram equalization. (c) Result of local histogram equalization applied to (a), using a neighborhood of size 3×3 .

Local Histogram Processing

FIGURE 3.26 (a) Original image. (b) Result of global histogram equalization. (c) Result of local histogram equalization applied to (a), using a neighborhood of size 3×3 .

$$m = \frac{1}{MN} \sum_{n=0}^{M-1} \sum_{n=0}^{N-1} f(n, n)$$

Variance

$$\sigma^{2} = \frac{1}{MN} \sum_{\chi=0}^{M-1} \frac{1}{\sum_{\lambda=0}^{M-1} \left[f(\chi, \chi) - m\right]^{2}}$$

Mean (Avg. Intensity) $m = \begin{cases} L-1 \\ \leq r_i P(r_i) \\ i=0 \end{cases}$

P(Y,') = M/

Variance

(Intensity Contrast) $u_{i}(r) = \frac{L-1}{\sum_{i=0}^{L-1} (r_{i}-m)^{2}} P(r_{i})$

$$M_s = 1.44$$

$$P(r_o) = \frac{6}{25}$$

Local Processing

$$m_{S \times Y} = \frac{\sum_{i=0}^{L-1} Y_i P_{X}(Y_i)}{\sum_{i=0}^{L} P_{X}(Y_i)}$$

$$\frac{2}{S_{XY}} = \frac{2-1}{S_{XY}} \left(Y_{i} - M_{S_{XY}} \right)^{2} I_{S_{XY}}^{R} (Y_{i})$$

Using Histogram Statistics for Image Enhancement

a b c

FIGURE 3.27 (a) SEM image of a tungsten filament magnified approximately 130×. (b) Result of global histogram equalization. (c) Image enhanced using local histogram statistics. (Original image courtesy of Mr. Michael Shaffer, Department of Geological Sciences, University of Oregon, Eugene.)

Using Histogram Statistics for Image Enhancement

$$g(x, y) = \begin{cases} E \cdot f(x, y) & \text{if } m_{S_{xy}} \le k_0 m_G \text{ AND } k_1 \sigma_G \le \sigma_{S_{xy}} \le k_2 \sigma_G \\ f(x, y) & \text{otherwise} \end{cases}$$