An Introduction to Quantum Computing

Lecture 05: Mathematical Structures

Paolo Zuliani

Dipartimento di Informatica Università di Roma "La Sapienza", Rome, Italy

Agenda

- Groups
- Vector spaces
- Scalar products
- Dirac's notation
- Hilbert spaces
- Adjoint operators and projectors
- Spectral theorem
- The rules of Quantum Mechanics

Groups

The 'bedrock' of Quantum Mechanics are particular vector spaces (Hilbert spaces) that are built on top of groups.

Definition

A group is a non-empty set G with a "multiplication" operation that satisfies:

- associativity: a(bc) = (ab)c;
- $oldsymbol{\circ}$ there exists a *unit* element $1 \in G$ such that $\forall a \in G$, a1 = 1a = a:

Groups

The 'bedrock' of Quantum Mechanics are particular vector spaces (Hilbert spaces) that are built on top of groups.

Definition

A group is a non-empty set G with a "multiplication" operation that satisfies:

- associativity: a(bc) = (ab)c;
- ② there exists a *unit* element $1 \in G$ such that $\forall a \in G, a1 = 1a = a$;
- **3** $\forall a \in G$ there exists an *inverse* a^{-1} such that $aa^{-1} = a^{-1}a = 1$.

In an abelian group multiplication is commutative, i.e., $\forall a, b \in G$, ab = ba.

Example: the set of reals \mathbb{R} with the usual multiplication is an abelian group.

Groups

The 'bedrock' of Quantum Mechanics are particular vector spaces (Hilbert spaces) that are built on top of groups.

Definition

A group is a non-empty set G with a "multiplication" operation that satisfies:

- associativity: a(bc) = (ab)c;
- ② there exists a *unit* element $1 \in G$ such that $\forall a \in G, a1 = 1a = a$;

In an abelian group multiplication is commutative, i.e., $\forall a, b \in G$, ab = ba.

Example: the set of reals \mathbb{R} with the usual multiplication is an abelian group. Example: the set of complex invertible square matrices with the row by column product is a group, although not abelian.

Complex Vector Spaces

Definition

A complex vector space is a set V with a vector "sum" denoted u+v and a scalar "multiplication" denoted λv for $\lambda \in \mathbb{C}$ that make V an abelian group:

- associativity: u + (v + w) = (u + v) + w;
- 2 *null* vector 0 (unit element for the group): 0 + v = v + 0;
- **3** every element v has an inverse element -v, i.e., v + (-v) = 0;
- + is commutative.

Complex Vector Spaces

Definition

A complex vector space is a set V with a vector "sum" denoted u+v and a scalar "multiplication" denoted λv for $\lambda \in \mathbb{C}$ that make V an abelian group:

- **1** associativity: u + (v + w) = (u + v) + w;
- 2 *null* vector 0 (unit element for the group): 0 + v = v + 0;
- **3** every element v has an inverse element -v, i.e., v + (-v) = 0;
- \bullet + is commutative.

Scalar multiplication satisfies:

- $(\alpha + \beta) \mathbf{v} = \alpha \mathbf{v} + \beta \mathbf{v};$
- **1** v = v;
- **1** 0v = 0. (Notation abuse: 0 is a scalar on the LHS and a vector on the RHS.)

Complex Vector Spaces

Examples:

- the usual \mathbb{R}^3 space of classical (Newtonian) physics;
- the space $\mathbb{C}^n = \underbrace{\mathbb{C} \times \mathbb{C} \times \ldots \times \mathbb{C}}_{n \text{ times}}$ of *n*-dimensional complex vectors with the "obvious" vector sum and scalar multiplication:
- the set of $n \times n$ complex matrices with the usual matrix sum and scalar multiplication of linear maps.

Linear Maps

Definition

A linear map between vector spaces V and W is a function $L:V\to W$ that satisfies:

$$L(\alpha u + \beta v) = \alpha L(u) + \beta L(v)$$

Linear Maps

Definition

A linear map between vector spaces V and W is a function $L:V\to W$ that satisfies:

$$L(\alpha u + \beta v) = \alpha L(u) + \beta L(v)$$

Note: the set of all linear maps $L:V\to W$ is itself a vector space with the "obvious" sum and scalar multiplication.

Linear Maps

Definition

A <u>linear map</u> between vector spaces V and W is a function $L:V\to W$ that satisfies:

$$L(\alpha u + \beta v) = \alpha L(u) + \beta L(v)$$

Note: the set of all linear maps $L:V\to W$ is itself a vector space with the "obvious" sum and scalar multiplication.

Definition

The <u>dual</u> of a complex vector space V (denoted V^*) is the set of all linear maps $L:V\to\mathbb{C}$.

Definition

Given a vector space V, a set $W \subset V$ is a <u>linear subspace</u> of V if sum and scalar multiplication are closed in W.

Definition

• Vectors $v_1, \ldots, v_n \in V$ are <u>linearly dependent</u> if there are numbers $\alpha_1, \ldots, \alpha_n$ (not all zero) such that

$$\sum_{i=1}^{n} \alpha_i v_i = 0$$

[otherwise they are said linearly independent];

Definition

• Vectors $v_1, \ldots, v_n \in V$ are <u>linearly dependent</u> if there are numbers $\alpha_1, \ldots, \alpha_n$ (not all zero) such that

$$\sum_{i=1}^{n} \alpha_i \mathsf{v}_i = \mathsf{0}$$

[otherwise they are said linearly independent];

• A vector space if \underline{n} -dimensional if it has a set n linearly independent vectors, but no subset of n+1 such vectors;

Definition

• Vectors $v_1, \ldots, v_n \in V$ are <u>linearly dependent</u> if there are numbers $\alpha_1, \ldots, \alpha_n$ (not all zero) such that

$$\sum_{i=1}^{n} \alpha_i \mathsf{v}_i = \mathsf{0}$$

[otherwise they are said linearly independent];

- A vector space if \underline{n} -dimensional if it has a set n linearly independent vectors, but no subset of n+1 such vectors;
- A set of n linearly independent vectors in a n-dimensional vector space V is called a basis set for V;

Definition

• Vectors $v_1, \ldots, v_n \in V$ are <u>linearly dependent</u> if there are numbers $\alpha_1, \ldots, \alpha_n$ (not all zero) such that

$$\sum_{i=1}^{n} \alpha_i v_i = 0$$

[otherwise they are said linearly independent];

- A vector space if \underline{n} -dimensional if it has a set n linearly independent vectors, but no subset of n+1 such vectors;
- A set of n linearly independent vectors in a n-dimensional vector space V is called a basis set for V;
- Given $S \subset V$, the <u>linear span</u> [S] of S is the set of all *finite* linear combinations of vectors of S.

Proposition

Given a vector space V and a basis set $S = \{e_1, \ldots, e_n\}$ such that [S] = V, then any $v \in V$ can be written as:

$$v = \sum_{i=1}^{n} \alpha_i e_i$$

where the coefficients α_i 's are complex.

Proof: [Exercise. Hint: start by noticing that the vectors $\{e_1, \ldots, e_n, v\}$ are linearly dependent.]

Proposition

Given a vector space V and a basis set $S = \{e_1, \ldots, e_n\}$ such that [S] = V, then any $v \in V$ can be written as:

$$v = \sum_{i=1}^{n} \alpha_i e_i$$

where the coefficients α_i 's are complex.

Proof: [Exercise. Hint: start by noticing that the vectors $\{e_1, \ldots, e_n, v\}$ are linearly dependent.]

Proposition

The coefficients α_i 's are unique (wrt to a basis set).

Proof: [Exercise]

Definition

A scalar product over a vector space V is a function that maps $v,w\in V$ to a complex $\langle v,\overline{w}\rangle$ such that

Definition

A scalar product over a vector space V is a function that maps $v,w\in V$ to a complex $\langle v,\overline{w}\rangle$ such that

Definition

A scalar product over a vector space V is a function that maps $v,w\in V$ to a complex $\langle v,\overline{w}\rangle$ such that

- $\langle u, u \rangle \geqslant 0$ and $\langle u, u \rangle = 0$ iff u = 0.

Definition

A scalar product over a vector space V is a function that maps $v,w\in V$ to a complex $\langle v,w\rangle$ such that

- $\langle u, u \rangle \geqslant 0$ and $\langle u, u \rangle = 0$ iff u = 0.

Proposition

$$\langle \alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w} \rangle = \alpha^* \langle \mathbf{u}, \mathbf{w} \rangle + \beta^* \langle \mathbf{v}, \mathbf{w} \rangle$$

Proof: [Exercise]

Definition

Given two vectors $u=(u_1\ldots u_n)\in\mathbb{C}^n$ and $v=(v_1\ldots v_n)\in\mathbb{C}^n$ we define the scalar product:

$$\langle u, v \rangle = \sum_{i=1}^{n} u_i^* v_i$$

Definition

Given two vectors $u=(u_1\ldots u_n)\in\mathbb{C}^n$ and $v=(v_1\ldots v_n)\in\mathbb{C}^n$ we define the scalar product:

$$\langle u, v \rangle = \sum_{i=1}^{n} u_i^* v_i$$

Note: $\langle u, v \rangle$ can be written as the product of an $1 \times n$ matrix (row vector) and a $n \times 1$ matrix (column vector)

$$\langle u, v \rangle = (u_1^* \dots u_n^*) \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

The Dirac Notation

After Paul Dirac (1902-1984; Nobel Prize in Physics).

The Dirac Notation

After Paul Dirac (1902-1984; Nobel Prize in Physics).

 $\langle u, v \rangle = \langle u | v \rangle$ is the "braket" made by the "bra" $\langle u |$ and the "ket" $| v \rangle$.

The ket $|v\rangle$ is just a regular vector $v \in V$.

The Dirac Notation

After Paul Dirac (1902-1984; Nobel Prize in Physics).

$$\langle u, v \rangle = \langle u | v \rangle$$
 is the "braket" made by the "bra" $\langle u |$ and the "ket" $| v \rangle$.

The ket $|v\rangle$ is just a regular vector $v \in V$.

The bra $\langle u|$ is a map from V to $\mathbb{C}!!$ (The bra is actually an element of V^* .)

$$\langle u|v\rangle = (u_1^* \dots u_n^*) \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

Thus $\langle u| = (u_1^* \dots u_n^*)$ and $|v\rangle = (v_1 \dots v_n)^T$.

Schwarz's Inequality

Theorem (Schwarz's Inequality)

For any two vectors u, v of a complex vector space it holds that:

$$|\langle u|v\rangle| \leqslant \sqrt{\langle u|u\rangle\,\langle v|v\rangle}$$

where equality holds iff u, v are linearly dependent.

Schwarz's Inequality

Theorem (Schwarz's Inequality)

For any two vectors u, v of a complex vector space it holds that:

$$|\langle u|v\rangle| \leqslant \sqrt{\langle u|u\rangle\,\langle v|v\rangle}$$

where equality holds iff u, v are linearly dependent.

Definition

The <u>norm</u> of vector u is $||u|| = \sqrt{\langle u|u\rangle}$.

Theorem (Triangular Inequality)

For any two vectors u, v of a complex vector space it holds that:

$$||u + v|| \le ||u|| + ||v||$$

Orthogonal Vectors

Definition

Two vectors u, v of a complex vector space are orthogonal if $\langle u|v\rangle = 0$.

Orthogonal Vectors

Definition

Two vectors u, v of a complex vector space are orthogonal if $\langle u|v\rangle = 0$.

Definition

The vectors set $\{u_1, \ldots, u_m\}$ is <u>orthonormal</u> if $\langle u_i | u_j \rangle = \delta_{ij}$ for all $i, j \in \{1, \ldots, m\}$.

The Kronecker delta is defined as $\delta_{ii} = 1$ if i = j and 0 otherwise.

Let $\{e_1,\ldots,e_n\}$ be an orthonormal basis for an n-dimensional vector space V. We know that for any $u\in V$ we can write

$$u=\sum_{i=1}^n\alpha_ie_i.$$

Let $\{e_1,\ldots,e_n\}$ be an orthonormal basis for an n-dimensional vector space V. We know that for any $u\in V$ we can write

$$u=\sum_{i=1}^n\alpha_ie_i.$$

$$\langle e_i | u \rangle =$$

Let $\{e_1,\ldots,e_n\}$ be an orthonormal basis for an n-dimensional vector space V. We know that for any $u\in V$ we can write

$$u=\sum_{i=1}^n\alpha_ie_i.$$

$$\langle e_j | u \rangle = \langle e_j | \sum_{i=1}^n \alpha_i e_i \rangle$$

Let $\{e_1,\ldots,e_n\}$ be an orthonormal basis for an n-dimensional vector space V. We know that for any $u\in V$ we can write

$$u=\sum_{i=1}^n\alpha_ie_i.$$

$$\langle e_j | u \rangle = \langle e_j | \sum_{i=1}^n \alpha_i e_i \rangle = \sum_{i=1}^n \alpha_i \langle e_j | e_i \rangle =$$

Let $\{e_1,\ldots,e_n\}$ be an orthonormal basis for an n-dimensional vector space V. We know that for any $u\in V$ we can write

$$u=\sum_{i=1}^n\alpha_ie_i.$$

$$\langle e_j | u \rangle = \langle e_j | \sum_{i=1}^n \alpha_i e_i \rangle = \sum_{i=1}^n \alpha_i \langle e_j | e_i \rangle = \sum_{i=1}^n \alpha_i \delta_{ji} = \alpha_j.$$

Let $\{e_1,\ldots,e_n\}$ be an orthonormal basis for an n-dimensional vector space V. We know that for any $u\in V$ we can write

$$u=\sum_{i=1}^n\alpha_ie_i.$$

How to compute the α_i 's?

$$\langle e_i | u \rangle = \langle e_i | \sum_{i=1}^n \alpha_i e_i \rangle = \sum_{i=1}^n \alpha_i \langle e_i | e_i \rangle = \sum_{i=1}^n \alpha_i \delta_{ii} = \alpha_i.$$

In Dirac notation:

$$|u\rangle = \sum_{i=1}^{n} |e_i\rangle \langle e_i|u\rangle \quad \Rightarrow \quad \langle v|u\rangle = \sum_{i=1}^{n} \langle v|e_i\rangle \langle e_i|u\rangle$$

After David Hilbert (mathematician; 1862-1943).

Definition

A vector sequence $v_m \in V$ converges strongly to $v \in V$ (denoted $v_m \to v$) if $\lim_{m \to \infty} \|v - v_m\| = 0$

After David Hilbert (mathematician; 1862-1943).

Definition

A vector sequence $v_m \in V$ converges strongly to $v \in V$ (denoted $v_m \to v$) if $\lim_{m \to \infty} \|v - v_m\| = 0$

Proposition

If $(v_m \rightarrow v)$ then:

- ① If $(v_m \to v)$ then $\lim_{m \to \infty} \|v_m\| = \|v\|$ (this is weak convergence; the converse holds in finite-dimensional spaces.)
- $\langle u|v\rangle = \lim_{m\to\infty} \langle u|v_m\rangle$ (scalar products are continuous)

Definition

A vector sequence $v_i \in V$ is a Cauchy sequence if for any $\epsilon > 0$ there exists n_{ϵ} such that $\forall n, m > n_{\epsilon} \|v_n - v_m\| < \overline{\epsilon}$.

Definition

A vector sequence $v_i \in V$ is a Cauchy sequence if for any $\epsilon > 0$ there exists n_{ϵ} such that $\forall n, m > n_{\epsilon} \|v_n - v_m\| < \epsilon$.

Definition

A <u>Hilbert space</u> is a *complete* scalar product space, *i.e.*, every Cauchy sequence converges strongly to an element in the space.

Definition

A vector sequence $v_i \in V$ is a Cauchy sequence if for any $\epsilon > 0$ there exists n_{ϵ} such that $\forall n, m > n_{\epsilon} \|v_n - v_m\| < \overline{\epsilon}$.

Definition

A <u>Hilbert space</u> is a *complete* scalar product space, *i.e.*, every Cauchy sequence converges strongly to an element in the space.

Proposition

Finite-dimensional vector spaces are always complete.

Quantum mechanics is developed over Hilbert spaces with *countable* bases. However, for quantum computing we need finite-dimensional Hilbert spaces only.

Definition

Let ${\mathcal H}$ be a Hilbert space.

- A linear operator A is a linear function $A: \mathcal{H} \to \mathcal{H}$;
- Operator sum: $\forall v \in \mathcal{H} \quad (A+B)v = Av + Bv$;
- Operator product: $\forall v \in \mathcal{H} \quad (AB)v = A(Bv)$.

Definition

Let \mathcal{H} be a Hilbert space.

- A linear operator A is a linear function $A: \mathcal{H} \to \mathcal{H}$;
- Operator sum: $\forall v \in \mathcal{H} \quad (A+B)v = Av + Bv$;
- Operator product: $\forall v \in \mathcal{H} \quad (AB)v = A(Bv)$.

Definition

The adjoint of an operator A is the operator A^{\dagger} defined by:

$$\forall u, v \in \mathcal{H} \quad \langle u|A^{\dagger}v\rangle = \langle Au|v\rangle$$

Definition

An operator A is self-adjoint (or Hermitian) if $A = A^{\dagger}$.

If A is self-adjoint then $\langle u|Av\rangle = \langle Au|v\rangle = \langle v|Au\rangle^*$.

Definition

A <u>unitary</u> operator U is a linear operator that satisfies $UU^{\dagger} = U^{\dagger}U = I$, where I is the identity operator.

Definition

A <u>unitary</u> operator U is a linear operator that satisfies $UU^{\dagger} = U^{\dagger}U = I$, where I is the identity operator.

An equivalent definition is:

Definition

A unitary operator U is a linear operator that satisfies

- U is surjective; and
- ② $\forall x, y \in \mathcal{H} \ \langle Ux|Uy \rangle = \langle x|y \rangle$ (or equivalently, $\forall x \in \mathcal{H} \ \|Ux\| = \|x\|$)

Definition

A <u>unitary</u> operator U is a linear operator that satisfies $UU^{\dagger} = U^{\dagger}U = I$, where I is the identity operator.

An equivalent definition is:

Definition

A unitary operator U is a linear operator that satisfies

- $oldsymbol{0}$ U is surjective; and

Note: The linearity assumption in either definition is not needed: if U satisfies $UU^{\dagger} = U^{\dagger}U = I$ then U must be linear [Exercise].

Eigenvectors and eigenvalues for operators are defined as usual.

Definition

An eigenvalue λ of an operator A is d-fold degenerate if there are d linearly independent eigenvectors u_1, \ldots, u_d associated to λ .

Note that for any $\alpha_i \in \mathbb{C}$ we have $A(\sum_{i=1}^d \alpha_i u_i) = \lambda(\sum_{i=1}^d \alpha_i u_i)$.

Eigenvectors and eigenvalues for operators are defined as usual.

Definition

An eigenvalue λ of an operator A is d-fold degenerate if there are d linearly independent eigenvectors u_1, \ldots, u_d associated to λ .

Note that for any $\alpha_i \in \mathbb{C}$ we have $A(\sum_{i=1}^d \alpha_i u_i) = \lambda(\sum_{i=1}^d \alpha_i u_i)$.

Definition

The eigenvectors of a given eigenvalue form a linear subspace (the eigenspace).

Linear Operators: Dirac Notation

$$\langle u|Av\rangle = \langle u|A|v\rangle = \begin{cases} (\langle u|A)|v\rangle \\ \langle u|(A|v\rangle) \end{cases}$$

We can think that A right-multiplies the bra $\langle u|$ or left-multiplies the ket $|v\rangle$.

Linear Operators: Dirac Notation

$$\langle u|Av\rangle = \langle u|A|v\rangle = \begin{cases} (\langle u|A)|v\rangle \\ \langle u|(A|v\rangle) \end{cases}$$

We can think that A right-multiplies the bra $\langle u|$ or left-multiplies the ket $|v\rangle$.

If λ is a non-degenerate eigenvalue of A we write $A|\lambda\rangle = \lambda |\lambda\rangle$.

We have that $\langle \lambda | A^{\dagger} = \lambda^* \langle \lambda |$. [Exercise]

Proposition

Any linear operator A on a scalar product vector space with an orthonormal basis e_i 's can be represented in matrix form by:

$$A_{ij} = \langle e_i | A e_j
angle \qquad A_{ij}^{\dagger} = A_{ji}^*$$

Proposition

Any linear operator A on a scalar product vector space with an orthonormal basis e_i 's can be represented in matrix form by:

$$A_{ij} = \langle e_i | A e_j
angle \qquad A_{ij}^\dagger = A_{ji}^*$$

Note that $\langle u|v\rangle w = \langle u|v\rangle |w\rangle = (|w\rangle \langle u|) |v\rangle$.

Proposition

Any linear operator A on a scalar product vector space with an orthonormal basis e_i 's can be represented in matrix form by:

$$A_{ij} = \langle e_i | A e_j \rangle$$
 $A_{ij}^{\dagger} = A_{ji}^*$

Note that $\langle u|v\rangle\,w=\langle u|v\rangle\,|w\rangle=(|w\rangle\,\langle u|)\,|v\rangle.$

Now, considering an orthonormal basis e_i we have $|v\rangle = \sum_i |e_i\rangle \langle e_i|v\rangle$, and hence

$$I = \sum_{i} \ket{e_i} ra{e_i}$$
 (resolution of identity)

Proposition

For operators A, B and complex λ , we have:

$$(AB)^{\dagger} = B^{\dagger}A^{\dagger}$$

 $(\lambda A)^{\dagger} = \lambda^*A^{\dagger}$
 $(A^{\dagger})^{\dagger} = A$

Definition

A linear subspace W of a Hilbert space \mathcal{H} is topologically closed if any sequence of vectors in W converges in W.

Definition

A linear subspace W of a Hilbert space \mathcal{H} is topologically closed if any sequence of vectors in W converges in W.

Definition

Two linear subspaces $V, W \subset \mathcal{H}$ are <u>orthogonal</u> if every vector of V is orthogonal to every vector of W.

The orthogonal complement of V is $V^{\perp} = \{u \in \mathcal{H} \text{ s.t. } \forall v \in V, \langle u | v \rangle = 0\}$

Proposition

If \mathcal{H} is finite-dimensional, then $(V^{\perp})^{\perp} = V$.

Given a closed subspace $W \subset \mathcal{H}$, we would like to write any $v \in \mathcal{H}$ as $v_W + v_{W^{\perp}}$, where $v_W \in W$ and $v_{W^{\perp}} \in W^{\perp}$.

Definition

Let f_i be an orthonormal basis for W. Define:

$$v_W = \sum_i \langle f_i | v \rangle f_i \qquad v_{W^{\perp}} = v - v_W$$

Given a closed subspace $W \subset \mathcal{H}$, we would like to write any $v \in \mathcal{H}$ as $v_W + v_{W^{\perp}}$, where $v_W \in W$ and $v_{W^{\perp}} \in W^{\perp}$.

Definition

Let f_i be an orthonormal basis for W. Define:

$$v_W = \sum_i \langle f_i | v \rangle f_i \qquad v_{W^{\perp}} = v - v_W$$

Exercise: show that v_{W} does not depend on the choice of basis f_i .

Given a closed subspace $W \subset \mathcal{H}$, we would like to write any $v \in \mathcal{H}$ as $v_W + v_{W^{\perp}}$, where $v_W \in W$ and $v_{W^{\perp}} \in W^{\perp}$.

Definition

Let f_i be an orthonormal basis for W. Define:

$$v_W = \sum_i \langle f_i | v \rangle f_i \qquad v_{W^{\perp}} = v - v_W$$

Exercise: show that v_W does not depend on the choice of basis f_i .

Definition

The map $P_W: \mathcal{H} \to W$ defined as $P_W v = v_W$ is the <u>projection operator</u> on W.

The projector on the orthogonal complement of W is $P_{W^{\perp}} = I - P_{W}$.

Proposition

$$v \in W$$
 iff $P_W v = v$ $v \in W^{\perp}$ iff $P_W v = 0$

Thus P_W has only two eigenvalues: 0 and 1 (in general degenerate).

In addition, we have that $P_W^2 = P_W$ and $P_W^{\dagger} = P_W$. (We could use these two conditions to define a projector.)

Definition

Two projectors P, Q are orthogonal if PQ = QP = 0 (the two subspaces are \perp).

If $P \perp Q$ then P + Q is also a projector. (Exercise)

Given a family P_i of projectors such that $P_iP_i=\delta_{ij}$, then

$$I = \sum_{i} P_{i}$$
 (resolution of identity)

Theorem

- The eigenvalues of a self-adjoint operator are <u>real numbers</u>.
- 2 The eigenvalues of a unitary operator are complex numbers of modulus 1.
- Eigenvectors (of self-adjoint and unitary operators) associated to different eigenvalues are orthogonal.

Theorem

- The eigenvalues of a self-adjoint operator are <u>real numbers</u>.
- 2 The eigenvalues of a unitary operator are complex numbers of modulus 1.
- Eigenvectors (of self-adjoint and unitary operators) associated to different eigenvalues are orthogonal.

What's special about self-adjoint operators and unitary operators?

Theorem

- The eigenvalues of a self-adjoint operator are <u>real numbers</u>.
- 2 The eigenvalues of a unitary operator are complex numbers of modulus 1.
- Eigenvectors (of self-adjoint and unitary operators) associated to different eigenvalues are orthogonal.

What's special about self-adjoint operators and unitary operators?

Definition

An operator A is <u>normal</u> if it satisfies $A^{\dagger}A = AA^{\dagger}$.

Clearly, both self-adjoint and unitary operators are normal.

Theorem (Spectral Theorem for finite-dimensional Hilbert Spaces)

The set of all eigenvectors u_{ij} of a normal operator is an orthonormal basis for \mathcal{H} , i.e., for any $v \in \mathcal{H}$:

$$v = \sum_{i=1}^{m} \sum_{j=1}^{d_i} \alpha_{ij} u_{ij}$$

where $\alpha_{ij} = \langle u_{ij} | v \rangle$.

Note that dim $\mathcal{H} = \sum_{i=1}^{m} d_i$.

Spectral Theory: Dirac Notation

$$v = \sum_{i=1}^m \sum_{j=1}^{d_i} lpha_{ij} u_i$$
 where $lpha_{ij} = \langle u_{ij} | v
angle$

In Dirac notation:

$$|v\rangle = \sum_{i=1}^{m} \sum_{i=1}^{d_i} \langle \lambda_i, j | v \rangle |\lambda_i, j \rangle$$

Spectral Theory: Dirac Notation

$$v = \sum_{i=1}^m \sum_{j=1}^{d_i} lpha_{ij} u_i$$
 where $lpha_{ij} = \langle u_{ij} | v
angle$

In Dirac notation:

$$|v\rangle = \sum_{i=1}^{m} \sum_{i=1}^{d_i} \langle \lambda_i, j | v \rangle |\lambda_i, j \rangle$$

Exercise: prove that $A = \sum_{i=1}^{m} \lambda_i P_i$, where P_i is the projector of the eigenspace of λ_i .

Rule 1: The state space of Quantum Mechanics is a Hilbert space \mathcal{H} (the "physical" state of a system is a complex vector).

Rule 1: The state space of Quantum Mechanics is a Hilbert space \mathcal{H} (the "physical" state of a system is a complex vector).

Rule 2: Observables are represented mathematically by self-adjoint operators on \mathcal{H} .

Rule 1: The state space of Quantum Mechanics is a Hilbert space \mathcal{H} (the "physical" state of a system is a complex vector).

Rule 2: Observables are represented mathematically by self-adjoint operators on \mathcal{H} .

Rule 3: Given an observable A and a state $v \in \mathcal{H}$, then the *expected result* of measuring A is

$$\langle v|Av\rangle$$

(results are probabilistic).

Rule 1: The state space of Quantum Mechanics is a Hilbert space \mathcal{H} (the "physical" state of a system is a complex vector).

Rule 2: Observables are represented mathematically by self-adjoint operators on \mathcal{H} .

Rule 3: Given an observable A and a state $v \in \mathcal{H}$, then the *expected result* of measuring A is

$$\langle v|Av\rangle$$

(results are probabilistic).

Rule 4: A closed system evolves through time according to the Schrödinger equation:

$$i\hbar \frac{dv(t)}{dt} = Hv(t)$$

where H is the system Hamiltonian (a self-adjoint operator describing the total energy of the system).

Rule 3 is equivalent to:

Rule 3': Given an observable A and a state $v \in \mathcal{H}$:

- The only possible results of measuring A are one of its eigenvalues
- ② The probability of measuring eigenvalue λ in state v is:

$$\mathsf{Prob}(A = \lambda; v) = \langle v | P_{\lambda} v \rangle$$

Tensor Products

Definition

The tensor product of two *n*-dimensional vectors u, v is the n^2 -dimensional vector $w = u \otimes v$ defined by:

$$w_i = u_{i \text{ div } n} v_{i \text{ mod } n}$$

Definition

The scalar product of tensor vectors is defined by:

$$\langle u \otimes v | w \otimes z \rangle = \langle u | w \rangle \langle v | z \rangle$$

Definition

The tensor product of operators (or matrices) A, B is defined by:

$$(A \otimes B)u \otimes v = Au \otimes Bv$$

Tensor Products

Proposition

For suitably sized matrices (or operators) L, M, N, and P, we have that:

$$(M \cdot N) \otimes (L \cdot P) = (M \otimes L) \cdot (N \otimes P)$$