ECEN 5053-002

Developing the Industrial Internet of Things

Dave Sluiter – Spring 2018 Presented by Don Matthews

Disclaimer

 All material and options presented by the author and speaker, Don Matthews, are expressly from the author and do not represent any opinions of any employer of the author.

Material

- What Algorithm/Protocols to use
- Anti-Tamper
- Threat Model
- Attacks
- Hard Drives
- Password Tables

Algorithm/Protocol to Use

- Always use a standard algorithm
 - Millions of combined hours of analysis
 - Secret is the KEY not the ALGORITHM
- Always use standard protocols
 - Same arguments
- Use proven code
 - Very hard to get it right with the multiple attack avenues
 - Open SSL is a good choice

Attacks

- eBeam
 - Read out storage elements
 - Read the key or other critical values
- Focused Ion Beam (FIB)
 - Make changes to a chip circuit
 - Bypass security bits
- Light leakage
 - Observed stored values based on emitted light

Attacks – Page 2

- Fault Injection
 - Power glitches, clock glitches, Low power, fast clocks
 - Force the chip to misbehave
 - Clock glitch when software checks an authentication value
 - Side Channel
 - Power usage (raw power, EM radiation)
 - Time

Attacks – Timing on RSA

- RSA: compute Y^X mod
 n
- Y, X, and n are 2, 3, or 4K bits in size (w)
- Series of Square operations and conditional multiply operations

- Let s0 1
- For k = 0 upto w-1
 - If (bit k of x) is 1 then
 - Let $R_k = (s_k^* y) \mod n$
 - Else
 - Let $R_k = s_k$
 - Let $s_{k+1} = R_k^2 \mod n$
- End For
- Return (R_{w-1})

Attacks – RSA Timing Fixes

- Fix
 - Only use multiply (A*A = A²)

Dummy multiplies

- Possible Issues
 - A*A has a different power profile than A*B

 Compiler may remove the dummy operation

Attacks – Discussion Points

- Power/EM analysis
 - Don't need all the bits can use analysis plus brute force
- Cache Attacks
 - Some implementations use tables

Threat Model

- What am I protecting
 - Information
 - Money
- What is the value and to who
 - Stored value card (gift card)
 - I add money, I'm rich
 - I posses the card
 - Credit Card Number
 - Usually doesn't cost me if stolen

Threat Model – Page 2

- What are the attack avenues
 - Who possesses it
 - Owner or User
 - Access
 - Fixed location or mobile
 - Visible location (people might observe someone tampering with it)
 - Internet enabled
 - Wireless

Attacks Again

- Let's go into some additional attacks
- Remember Dave's Electronic lock?
- What can go wrong with it?
- How do I go from 10K combinations to 24?

Push Button Lock

More Attack Discussion Points

- RFID chip (DefCon)
 - Attackers have time on their hands
- Key Fob
 - Man in the middle attack
- EEPROM
 - Reset the security bit
- USB encryption device
 - Do I need to know your key

Hard Drives

- Theory It is hard to build a device to read platters removed from a Hard Drive
- Theory Critical security data is stored on the platters where only WE can access them

Hard Drives – Pg 2

- Data Recovery companies build them and will recover data for you – Thousands of dollars
- Fortunately we don't need to do that, the drive companies have given us a tool to do that – The Hard Drive

Hard Drive – Pg 3

- Q: Who is WE in the theory that states only WE can access?
- A: Whoever controls the hard drive processor

- Attacks
 - Find bugs in the firmware
 - Write your own firmware
 - Make requests through a debug port

Password Table Attacks

- Dave discussed the use of hashing algorithms for password checking
- Can you spot a problem with this password table?

USERNAME	HASHED PW
JOE	DYECAEYFN
Lucy	JZEDHVUE6
Xı	HEIVC83ND
Аміт	C8DNADEVY
Anu	DYECAEYFN

Password Table Attacks

- What Attacks Can I perform?
 - Hash many samples
 - Brute force
 - Dictionary
 - One hash operation compare to all users

- Counter measure
 - Increase the number of times I hash something
 - Make each user hash operation different