Shrinika Telu

700741742

Predicting the diabetes disease Programming elements:
Keras Basics In class programming:
1. Use the use case in the class:
a. Add more Dense layers to the existing code and check how the accuracy changes.
2. Change the data source to Breast Cancer dataset * available in the source code folder and make required changes.
Report accuracy of the model.
3. Normalize the data before feeding the data to the model and check how the normalization change your accuracy (code given below).
from sklearn.preprocessing import StandardScaler sc = StandardScaler()
Breast Cancer dataset is designated to predict if a patient has Malignant (M) or Benign = B cancer

```
#1 (a)#Use the use case in the class:
   from google.colab import drive
   drive.mount('/content/gdrive')
   path_to_csv = '/content/gdrive/My Drive/NN&DeepLearning_Lesson7_SourceCode/diabetes.csv'
   import keras
   import pandas
   from keras.models import Sequential
   from keras.layers.core import Dense, Activation
   # load dataset
   from sklearn.model_selection import train_test_split
   import pandas as pd
   import numpy as np
   dataset = pd.read_csv(path_to_csv, header=None).values
   X_train, X_test, Y_train, Y_test = train_test_split(dataset[:,0:8], dataset[:,8],
                                         test size=0.25, random state=87)
   np.random.seed(155)
   my first_nn = Sequential() # create model
   my_first_nn.add(Dense(20, input_dim=8, activation='relu')) # hidden layer
   my_first_nn.add(Dense(1, activation='sigmoid')) # output layer
   my_first_nn.compile(loss='binary_crossentropy', optimizer='adam', metrics=['acc'])
   my_first_nn_fitted = my_first_nn.fit(X_train, Y_train, epochs=100,
                              initial_epoch=0)
   print(my first nn.summary())
   print(my first nn.evaluate(X test, Y test))
Epoch 93/100
Epoch 94/100
  Epoch 95/100
  18/18 [============] - 0s 2ms/step - loss: 0.5850 - acc: 0.7153
  Epoch 96/100
  18/18 [==============] - 0s 2ms/step - loss: 0.5660 - acc: 0.7083
  Epoch 97/100
  18/18 [============] - Os 2ms/step - loss: 0.5563 - acc: 0.7378
  Epoch 98/100
  Epoch 99/100
  Epoch 100/100
  Model: "sequential"
   Layer (type)
                    Output Shape
                                       Param #
  _____
   dense (Dense)
                    (None, 20)
```

```
Total params: 201
Trainable params: 201
Non-trainable params: 0
```

(None, 1)

dense 1 (Dense)

6/6 [================] - 0s 3ms/step - loss: 0.7004 - acc: 0.6302 [0.7003840804100037, 0.6302083134651184]

21

```
[2] #1(a). Add more Dense layers to the existing code and check how the accuracy changes.
    # added more dense layers to the above existing code
   from google.colab import drive
    drive.mount('/content/gdrive')
   path_to_csv = '/content/gdrive/My Drive/NN&DeepLearning_Lesson7_SourceCode/diabetes.csv'
   import keras
    import pandas
   from keras.models import Sequential
    from keras.layers.core import Dense, Activation
    # load dataset
   from sklearn.model_selection import train_test_split
    import pandas as pd
   import numpy as np
    dataset = pd.read_csv(path_to_csv, header=None).values
    X_train, X_test, Y_train, Y_test = train_test_split(dataset[:,0:8], dataset[:,8],
                                                  test_size=0.25, random_state=87)
    np.random.seed(155)
    my_first_nn = Sequential() # create model
    my_first_nn.add(Dense(20, input_dim=8, activation='relu')) # hidden layer
    my first nn.add(Dense(10,activation='relu'))#additional hidden layer with node 10
    my_first_nn.add(Dense(5,activation='relu'))#additional hidden layer with node 5
    my_first_nn.add(Dense(1, activation='sigmoid')) # output layer
   my_first_nn.compile(loss='binary_crossentropy', optimizer='adam', metrics=['acc'])
    my_first_nn_fitted = my_first_nn.fit(X_train, Y_train, epochs=100,
                                    initial_epoch=0)
   print(my_first_nn.summary())
   print(my_first_nn.evaluate(X_test, Y_test))
Epoch 93/100
    18/18 [===========] - 0s 2ms/step - loss: 0.5611 - acc: 0.6997
    Epoch 94/100
    18/18 [============ ] - 0s 2ms/step - loss: 0.5764 - acc: 0.6892
    Epoch 95/100
    18/18 [============] - 0s 2ms/step - loss: 0.5629 - acc: 0.6997
    Epoch 96/100
    18/18 [============] - 0s 2ms/step - loss: 0.5645 - acc: 0.6927
    Epoch 97/100
    18/18 [=============] - Os 2ms/step - loss: 0.5638 - acc: 0.6927
    Epoch 98/100
    Epoch 99/100
    Epoch 100/100
    18/18 [======] - Os 2ms/step - loss: 0.5638 - acc: 0.7066
    Model: "sequential_1"
     Layer (type)
                             Output Shape
                                                   Param #
                            (None, 20)
     dense_2 (Dense)
                                                   180
     dense_3 (Dense)
                            (None, 10)
                                                  210
     dense_4 (Dense)
                            (None, 5)
                                                   55
     dense_5 (Dense)
                            (None, 1)
                                                  6
    Total params: 451
    Trainable params: 451
    Non-trainable params: 0
    None
    6/6 [======] - Os 3ms/step - loss: 0.5968 - acc: 0.6771
    [0.5967934727668762, 0.6770833134651184]
```

#1(b) Change the data source to Breast Cancer dataset * available in the source code folder and make required #changes. Report accuracy of the model. [3] #1(b) Change the data source to Breast Cancer dataset * available in the source code folder and make required #changes. Report accuracy of the model. from google.colab import drive drive.mount('/content/gdrive') path_to_csv = '/content/gdrive/My Drive/NN&DeepLearning_Lesson7_SourceCode/breastcancer.csv' import pandas as pd import numpy as np from keras.models import Sequential from keras.layers import Dense from sklearn.model_selection import train_test_split from sklearn.datasets import load_breast_cancer #read the data data = pd.read_csv(path_to_csv, header=None).values data = load breast cancer() X = data.data Y = data.target X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25, random_state=87) np.random.seed(155) model = Sequential() model.add(Dense(20, input_dim=30, activation='relu')) model.add(Dense(10, activation='relu')) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(X_train, Y_train, epochs=100, initial_epoch=0) loss, accuracy = model.evaluate(X_test, Y_test) print("Test Loss:", loss) print("Test Accuracy:", accuracy) Epoch 91/100
14/14 [===========] - Os 3ms/step - loss: 0.1796 - accuracy: 0.9249 □ Epoch 92/100 14/14 [==============] - 0s 2ms/step - loss: 0.1725 - accuracy: 0.9319 Epoch 93/100 14/14 [=============] - 0s 2ms/step - loss: 0.1705 - accuracy: 0.9319 Epoch 94/100 14/14 [============ - 0s 2ms/step - loss: 0.1692 - accuracy: 0.9272 Epoch 95/100 14/14 [============ - 0s 3ms/step - loss: 0.1778 - accuracy: 0.9390 Epoch 96/100 14/14 [=============] - 0s 2ms/step - loss: 0.1671 - accuracy: 0.9296 Epoch 97/100 14/14 [============ - 0s 2ms/step - loss: 0.1833 - accuracy: 0.9296 Epoch 98/100 14/14 [=============] - 0s 2ms/step - loss: 0.1971 - accuracy: 0.9202 Epoch 99/100 14/14 [===========] - 0s 2ms/step - loss: 0.1981 - accuracy: 0.9366 Epoch 100/100 14/14 [============ - 0s 3ms/step - loss: 0.1981 - accuracy: 0.9178 5/5 [========] - 0s 3ms/step - loss: 0.2879 - accuracy: 0.9091 Test Loss: 0.287893682718277

Test Accuracy: 0.9090909361839294

1(c) Normalize the data before feeding the data to the model and check how
the normalization change your
accuracy (code given below).
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()

```
🗶 🕟 #1(c) Normalize the data before feeding the data to the model and check how the normalization change your
       #accuracy (code given below).
       #from sklearn.preprocessing import StandardScaler
       #sc = StandardScaler()
       from google.colab import drive
       drive.mount('/content/gdrive')
       path_to_csv = '/content/gdrive/My Drive/NN&DeepLearning_Lesson7_SourceCode/breastcancer.csv'
       import pandas as pd
       import numpy as np
       from keras.models import Sequential
       from keras.layers import Dense
       from sklearn.model_selection import train_test_split
       from sklearn.datasets import load_breast_cancer
       from sklearn.preprocessing import StandardScaler
       #read the data
       data = pd.read csv(path to csv, header=None).values
       data = load breast cancer()
       X = data.data
       Y = data.target
       scaler = StandardScaler()
       X = scaler.fit_transform(X)
       X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25, random_state=87)
       np.random.seed(155)
       model = Sequential()
       model.add(Dense(20, input_dim=30, activation='relu'))
       model.add(Dense(10, activation='relu'))
       model.add(Dense(1, activation='sigmoid'))
       model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X_train, Y_train, epochs=100, initial_epoch=0)
       loss, accuracy = model.evaluate(X_test, Y_test)
       print("Test Loss:", loss)
       print("Test Accuracy:", accuracy)
```

```
Epoch 93/100
     14/14 [============ ] - 0s 3ms/step - loss: 0.0120 - accuracy: 0.9977
     Epoch 94/100
     14/14 [============== ] - 0s 3ms/step - loss: 0.0115 - accuracy: 0.9977
     Epoch 95/100
     14/14 [============ ] - 0s 3ms/step - loss: 0.0114 - accuracy: 0.9953
     Epoch 96/100
     14/14 [============= ] - 0s 3ms/step - loss: 0.0113 - accuracy: 0.9953
     Epoch 97/100
     14/14 [============ ] - 0s 3ms/step - loss: 0.0109 - accuracy: 0.9977
     Epoch 98/100
     14/14 [=============] - 0s 3ms/step - loss: 0.0107 - accuracy: 0.9977
     Epoch 99/100
     Epoch 100/100
     14/14 [============== ] - 0s 3ms/step - loss: 0.0103 - accuracy: 0.9977
     5/5 [========] - 0s 5ms/step - loss: 0.2211 - accuracy: 0.9650
     Test Loss: 0.2210734635591507
     Test Accuracy: 0.9650349617004395
```