

# **Compa Family CPLDs Datasheet**

(DS03001, V1.6) (09.10.2023)

Shenzhen Pango Microsystems Co., Ltd.
All Rights Reserved. Any infringement will be subject to legal action.



## **Revisions History**

## **Document Revisions**

| Version | Date of Release | Revisions        |
|---------|-----------------|------------------|
| V1.6    | 09.10.2023      | Initial release. |
|         |                 |                  |

(DS03001, V1.6) 1/37



#### **About this Manual**

#### **Terms and Abbreviations**

| Terms and Abbreviations | Meaning                           |
|-------------------------|-----------------------------------|
| CPLD                    | Complex Programmable Logic Device |
| CLM                     | Configurable Logic Module         |
| DRM                     | Dedicated RAM Module              |
| IDDR                    | Input Double Data Rate            |
| ODDR                    | Output Double Data Rate           |
| APB                     | Advanced Peripheral Bus           |
| POR                     | Power-On Reset                    |
| ESD                     | Electro-Static Discharge          |
| CRAM                    | Configurable RAM                  |
| NW                      | Normal Write                      |
| TW                      | Transparent Write                 |
| RBW                     | Read Before Write                 |
|                         |                                   |

#### **Related Documentation**

The following documentation is related to this manual:

- 1. UG030001\_Compa Family CPLDs Configurable Logic Module (CLM) User Guide
- 2. UG030002\_Compa Family CPLDs Dedicated RAM Module (DRM) User Guide
- 3. UG030003\_Compa Family CPLDs Clock Resources (Clock&PLL) User Guide
- 4. UG030004\_Compa Family CPLDs Configuration User Guide
- 5. UG030005\_Compa Family CPLDs Input/Output Interface (IO) User Guide
- 6. UG030006\_Compa Family CPLDs Embedded Flash (EFlash) User Guide
- 7. UG030007\_Compa Family CPLDs Embedded Hard Core User Guide
- 8. UG030008\_Compa Family GTP User Guide"
- 9. UG030009\_Compa Family PCB Design User Guide

(DS03001, V1.6) 2 / 37



## **Table of Contents**

| Revisions History                                                           | 1  |
|-----------------------------------------------------------------------------|----|
| About this Manual                                                           | 2  |
| Table of Contents                                                           | 3  |
| Tables                                                                      | 5  |
| Figures                                                                     | 6  |
| Chapter 1 Introduction                                                      | 7  |
| 1.1 Features                                                                | 8  |
| 1.2 Device Resources and Package Information                                | 9  |
| 1.3 Ordering Information                                                    | 10 |
| 1.4 Reference                                                               | 10 |
| Chapter 2 Functional Description                                            |    |
| 2.1 Configurable Logic Module (CLM)                                         |    |
| 2.2 Dedicated Storage Module (DRM)                                          |    |
| 2.3 Clock                                                                   |    |
| 2.4 I/O Cell                                                                |    |
| 2.4.1 IO Buffer (IOB)                                                       |    |
| 2.4.2 IO Logic (IOL)                                                        | 17 |
| 2.4.3 I/O Input/Output Delay Unit                                           |    |
| 2.4.4 High-Speed Data Transfer                                              |    |
| 2.5 On-chip Oscillator                                                      |    |
| 2.6 Embedded Hard Core                                                      | 19 |
| 2.6.1 I <sup>2</sup> C Hard Core                                            |    |
| 2.6.2 SPI Hard Core                                                         | 20 |
| 2.6.3 Timer/Counters                                                        | 20 |
| 2.7 Embedded Flash                                                          | 21 |
| 2.8 Power-On Reset (POR) Circuit                                            | 21 |
| 2.9 Configuration and Test                                                  | 21 |
| 2.10 UID (Unique Identification)                                            | 22 |
| Chapter 3 DC Characteristics                                                | 23 |
| 3.1 Device Absolute Maximum Ratings                                         | 23 |
| 3.2 Recommended Operating Conditions                                        | 23 |
| 3.3 Allowed AC Maximum Overshoot and Undershoot Voltage for V <sub>IN</sub> |    |
| 3.4 ESD and Latch Up Specifications                                         |    |
| 3.5 Power Ramp-up Time                                                      |    |
| 3.6 Power-up Reset Voltage Standard                                         |    |
| 3.7 Hot Socketing Specifications                                            |    |



| 3.8 Single-Ended DC Characteristics               | 25 |
|---------------------------------------------------|----|
| 3.9 Differential DC Electrical Characteristics    | 26 |
| 3.9.1 LVDS DC Characteristics                     | 26 |
| 3.9.2 BLVDS DC Characteristics                    | 26 |
| 3.9.3 LVPECL33 DC Characteristics                 | 27 |
| 3.9.4 MIPI DC Characteristics                     | 27 |
| 3.10 Input DC Characteristics                     | 30 |
| 3.11 Quiescent Current                            | 30 |
| 3.12 Embedded Flash Program and Erase Current     | 30 |
| Chapter 4 AC Switching Characteristics            | 32 |
| 4.1 DRM Switching Characteristics                 | 32 |
| 4.2 Clock AC Characteristics                      | 32 |
| 4.3 PLL AC Characteristics                        | 32 |
| 4.4 Configuration AC Characteristics              | 33 |
| 4.5 I <sup>2</sup> C Interface AC Characteristics | 34 |
| 4.6 SPI Hard Core AC Characteristics              | 35 |
| 4.7 IO Buffer Performance                         | 35 |
| 4.8 High-Speed Data Transfer Performance          | 35 |
| 4.9 Master Self Configuration Time                | 36 |
| Disalaiman                                        | 27 |



## **Tables**

| Table 1-1 Compa Device Resources                                                  | 9  |
|-----------------------------------------------------------------------------------|----|
| Table 1-2 Compa Devices Package and I/O Count                                     | 9  |
| Table 1-3 List of Compa Devices Documentation                                     | 10 |
| Table 2-1 DRM Configuration List                                                  | 13 |
| Table 2-2 List of Dual-Port RAM Mode Mixed Data Width                             | 13 |
| Table 2-3 List of Simple Dual-Port RAM Mode Mixed Data Width                      | 13 |
| Table 2-4 Compa Device Bank Resource Distribution                                 | 16 |
| Table 2-5 I/O Standards Supported by Compa Family CPLDs                           | 17 |
| Table 2-6 Step Delay of I/O Delay Unit                                            | 18 |
| Table 2-7 OSC Output Frequency                                                    | 18 |
| Table 2-8 List of OSC Accuracy for CPLD Devices                                   | 19 |
| Table 3-1 Absolute Maximum Ratings                                                | 23 |
| Table 3-2 Recommended Operating Conditions for Device                             | 23 |
| Table 3-3 Allowed AC Maximum Overshoot and Undershoot Voltage for V <sub>IN</sub> | 24 |
| Table 3-4 ESD and Latch Up Specifications                                         | 24 |
| Table 3-5 Ramp-up Time                                                            | 24 |
| Table 3-6 Power-up Reset Voltage Standard <sup>1,2</sup>                          | 24 |
| Table 3-7 Hot Socketing Specifications                                            | 25 |
| Table 3-8 Single-Ended I/O DC Characteristics                                     | 25 |
| Table 3-9 LVDS DC Characteristics                                                 | 26 |
| Table 3-10 BLVDS DC Characteristics                                               | 26 |
| Table 3-11 LVPECL33 DC Characteristics                                            | 27 |
| Table 3-12 MIPI Receiver DC Characteristics                                       | 28 |
| Table 3-13 MIPI Transmitter DC Characteristics                                    | 29 |
| Table 3-14 Input DC Characteristics under Recommended Operating Conditions        | 30 |
| Table 3-15 Quiescent Current                                                      | 30 |
| Table 3-16 Embedded Flash Program and Erase Current <sup>1,2</sup>                | 30 |
| Table 4-1 DRM AC Characteristics                                                  | 32 |
| Table 4-2 Clock AC Characteristics                                                | 32 |
| Table 4-3 PLL AC Characteristics                                                  | 32 |
| Table 4-4 Configuration AC Characteristics                                        | 33 |
| Table 4-5 I <sup>2</sup> C Interface AC Characteristics                           | 34 |
| Table 4-6 SPI Hard Core AC Characteristics                                        | 35 |
| Table 4-7 IO Buffer Performance                                                   | 35 |
| Table 4-8 List of High-Speed Data Transfer Performance                            |    |
| Table 4-9 Master Self Configuration Time <sup>1</sup>                             | 36 |
|                                                                                   |    |



## **Figures**

| Figure 1-1 Compa Family CPLDs Device Ordering Information    | 10 |
|--------------------------------------------------------------|----|
| Figure 2-1 Top View of PGC1KL Bank Distribution              | 15 |
| Figure 2-2 Top View of PGC1KG/2K/4K/7K/10K Bank Distribution | 16 |
| Figure 3-1 LVDS\BLVDS\LVPECL33 Voltage Waveforms             | 26 |
| Figure 3-2 MIPI Receiver Voltage Waveforms                   | 27 |
| Figure 3-3 MIPI Transmitter Voltage Waveforms                | 29 |

(DS03001, V1.6) 6 / 37



## **Chapter 1 Introduction**

Compa device family is a low-cost and high-density IO family which is designed on a 55nm non-volatile process. The Compa devices utilize advanced package technology and offer instant-on after power-up capabilities. The Compa devices have the equivalent LUT4 densities ranging from 1300 to 9900, dedicated storage modules (DRM), a variety of on-chip clock resources, multi-functional I/O resources, extensive routing resources, and integrated hard cores such as SPI, I<sup>2</sup>C, and timers/counters. The Compa devices also supports various configuration modes, remote upgrade and dual boot, while offering functions such as UID (Unique Identification) to secure user's designs.

The Compa devices are available in three types G (general purpose), L (low power), and D (Master Self Configuration Dual Boot) with two speed grades: -5 and -6, with -6 being the fastest grade. G and D type devices support an external supply voltage  $V_{CC}$  of 2.5V or 3.3V, through an internal LDO circuit to generate the core voltage VCC<sub>CORE</sub> of 1.2 V; L type devices only support a  $V_{CC}$  of 1.2V, with VCC<sub>CORE</sub> being the same as  $V_{CC}$ . Each I/O Bank of the CPLD device is powered by its corresponding  $V_{CCIO}$  independently, supporting 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V.

(DS03001, V1.6) 7/37



#### 1.1 Features

#### **➤** Flexible Architecture

- 1300-9900 equivalent LUT4s
- Up to 384 user I/Os

#### ➤ Multi-functional I/O

- Various types of I/O interfaces supported
  - LVCMOS33/LVCMOS25 /LVCMOS18/LVCMOS15 / LVCMOS12
  - LVTTL33
  - PCI33
  - LVDS/MLVDS/LVPECL33 /BLVDS25
  - MIPI
- Optional on-chip differential termination  $100 \Omega$
- Programmable slew rate
- Programmable pull-up or pull-down
- Includes input, output, and tri-state registers
- IDDR (1:2) and ODDR (2:1) supported
- Includes I/O input and output delay units

#### **➤ Dedicated RAM Module**

- A single DRM provides 9Kbits of storage
- Various working modes supported, including Dual-Port (DP) RAM, Simple Dual-Port (SDP) RAM, Single-Port (SP) RAM or ROM mode, as well as FIFO mode
- Dual-port RAM and simple dual-port

RAM support different bit widths for both ports

• Byte Enable supported

#### ➤ High-Speed Data Transfer Supported

- OSERDES supports 4:1, 7:1, 8:1
- ISERDES supports 1:4, 1:7, 1:8

#### **≻** Clock Resources

- Eight global clocks and eight global signals, supporting up to 400MHz
- Four I/O clocks, supporting up to 600MHz
- Up to 2 PLLs supported

#### ➤ Various Configuration Modes and

#### **Applications**

- JTAG configuration supported
- Master self configuration supported
- Master SPI configuration supported
- Slave SPI configuration supported
- Slave I<sup>2</sup>C configuration supported
- Dual boot supported
- Online upgrade supported
- Compressed bitstream supported

#### > Embedded Hard Core

- Two I<sup>2</sup>C hard cores
- One SPI hard core
- One timer/counter
- One on-chip oscillator

#### > Application Areas

- Consumer electronics
- Computing and storage
- Wireless communication
- Industrial control system

(DS03001, V1.6) 8 / 37



#### 1.2 Device Resources and Package Information

The Compa family has five devices. The resource list for different devices is shown in Table 1-1:

Table 1-1 Compa Device Resources

| Resour                                                                 | ce Name                                       | PGC1K           | PGC2K | PGC4K | PGC7K | PGC10K |
|------------------------------------------------------------------------|-----------------------------------------------|-----------------|-------|-------|-------|--------|
|                                                                        | LUT5                                          | 1064            | 2024  | 3968  | 5920  | 8256   |
| CLM                                                                    | Equivalent<br>LUT4                            | 1276            | 2428  | 4761  | 7104  | 9907   |
| CLIVI                                                                  | FF                                            | 1596            | 3036  | 5952  | 8880  | 12384  |
|                                                                        | Distributed<br>RAM (Kbits)                    | 11              | 16    | 39    | 56    | 78     |
|                                                                        | 9K <sup>1</sup>                               | 7               | 8     | 11    | 26    | 45     |
| DRM                                                                    | Maximum<br>Capacity (Kbits)                   | 63              | 72    | 99    | 234   | 405    |
| PLL                                                                    |                                               | 1               | 1     | 2     | 2     | 2      |
| Maximum User-available Capacity of Embedded Flash (Kbits) <sup>2</sup> |                                               | 80 <sup>3</sup> | 80    | 1520  | 2070  | 3016   |
|                                                                        | um Capacity of led Flash (Kbits) <sup>4</sup> | 664             | 664   | 2560  | 3616  | 5120   |
|                                                                        | I <sup>2</sup> C                              | 2               | 2     | 2     | 2     | 2      |
| Hard<br>Cores                                                          | SPI                                           | 1               | 1     | 1     | 1     | 1      |
| Cores                                                                  | Timer/Counters                                | 1               | 1     | 1     | 1     | 1      |
| on-chip Oscillator                                                     |                                               | 1               | 1     | 1     | 1     | 1      |
| Support for MIPI<br>D-PHY                                              |                                               | Yes             | Yes   | Yes   | Yes   | Yes    |

#### Note:

- 1. Each DRM has a capacity of 9 Kbits
- 2. The maximum user-available capacity of embedded Flash refers to the size of the ordinary memory space remaining after removing a set of ordinary bitstreams that do not include initialization data
- 3. The maximum user-available capacity of embedded Flash for PGC1KL is 310Kbits, while for PGC1KG it is 80Kbits
- 4. The maximum capacity of embedded Flash refers to the size of the ordinary memory space, which can be used to store bitstreams or other user data, etc.

The package information for Compa devices is shown in Table 1-2.

Table 1-2 Compa Devices Package and I/O Count

| Device Package Information  | PGC1K<br>L        | PGC1K<br>G         | PGC2K<br>L        | PGC2K<br>G         | PGC4K<br>L         | PGC4K<br>D         | PGC7K<br>D         | PGC10<br>KD |
|-----------------------------|-------------------|--------------------|-------------------|--------------------|--------------------|--------------------|--------------------|-------------|
| UWG36 (2.5mm*2.5mm,0.4mm)   | 29/3 <sup>1</sup> |                    |                   |                    |                    |                    |                    |             |
| UWG49                       |                   |                    | 39/5 <sup>1</sup> |                    |                    |                    |                    |             |
| (3.2mm*3.2mm,0.4mm)         |                   |                    | 39/5              |                    |                    |                    |                    |             |
| UWG81 (3.8mm*3.8mm,0.4mm)   |                   |                    |                   |                    | 64/10 <sup>1</sup> |                    |                    |             |
| LPG100<br>(14mm*14mm,0.5mm) |                   | 80/4 <sup>1</sup>  |                   | 80/4 <sup>1</sup>  |                    |                    |                    |             |
| LPG144                      |                   | 112/9 <sup>1</sup> |                   | 112/9 <sup>1</sup> |                    | 115/9 <sup>1</sup> | 115/9 <sup>1</sup> |             |

(DS03001, V1.6) 9 / 37



| Device              | PGCIK | PGC1K                  | PGC2K                  | PGC2K                  | PGC4K               | PGC4K               | PGC7K                  | PGC10               |
|---------------------|-------|------------------------|------------------------|------------------------|---------------------|---------------------|------------------------|---------------------|
| Package Information | L     | G                      | L                      | G                      | $\mathbf{L}$        | D                   | D                      | KD                  |
| (20mm*20mm,0.5mm)   |       |                        |                        |                        |                     |                     |                        |                     |
| SSBG256             |       |                        | $207/14^{\frac{1}{2}}$ |                        | 207/18 <sup>1</sup> |                     |                        |                     |
| (9mm*9mm,0.5mm)     |       |                        | 207/14                 |                        | 207/10              |                     |                        |                     |
| MBG256              |       | 207/14 <sup>1</sup>    |                        | $207/14^{\frac{1}{2}}$ |                     | 207/18 <sup>1</sup> | $207/20^{\frac{1}{2}}$ |                     |
| (14mm*14mm,0.8mm)   |       | 207/14                 |                        | 207/14                 |                     | 207/10              | 201/20                 |                     |
| MBG324              |       |                        |                        |                        |                     | 280/18 <sup>1</sup> |                        |                     |
| (15mm*15mm,0.8mm)   |       |                        |                        |                        |                     | 200/10              |                        |                     |
| MBG332              |       |                        |                        |                        |                     | 275/18 <sup>1</sup> | 279/21 <sup>1</sup>    |                     |
| (17mm*17mm,0.8mm)   |       |                        |                        |                        |                     | 273/10              | 217/21                 |                     |
| MBG400              |       |                        |                        |                        |                     |                     | 336/21 <sup>1</sup>    |                     |
| (17mm*17mm,0.8mm)   |       |                        |                        |                        |                     |                     | 330/21                 |                     |
| MBG484              |       |                        |                        |                        |                     |                     |                        | 384/24 <sup>1</sup> |
| (19mm*19mm,0.8mm)   |       |                        |                        |                        |                     |                     |                        | 304/24              |
| FBG256              |       | $207/14^{\frac{1}{2}}$ |                        | 207/14 <sup>1</sup>    |                     | 207/18 <sup>1</sup> |                        |                     |
| (17mm*17mm,1.0mm)   |       | 207/14                 |                        | 207/14                 |                     | 207/10              |                        |                     |
| FBG484              |       |                        |                        |                        |                     |                     | 335/21 <sup>1</sup>    |                     |
| (23mm*23mm,1.0mm)   |       |                        |                        |                        |                     |                     | 333/41                 |                     |

Note:

#### 1.3 Ordering Information

The Compa family CPLDs devices ordering information are shown in Figure 1-1.



Figure 1-1 Compa Family CPLDs Device Ordering Information

#### 1.4 Reference

Table 1-3 List of Compa Devices Documentation

| <b>Document Number</b> | Document Name                                                   |
|------------------------|-----------------------------------------------------------------|
| UG030001               | "Compa Family CPLDs Configurable Logic Module (CLM) User Guide" |
| UG030002               | "Compa Family CPLDs Dedicated RAM Module (DRM) User Guide"      |
| UG030003               | "Compa Family CPLDs Clock Resources (Clock&PLL) User Guide"     |

(DS03001, V1.6) 10 / 37

<sup>1.</sup> X/Y indicates X user I/Os, Y pairs of true differential output pins



| <b>Document Number</b> | Document Name                                               |
|------------------------|-------------------------------------------------------------|
| UG030004               | "Compa Family CPLDs Configuration User Guide"               |
| UG030005               | "Compa Family CPLDs Input/Output Interface (IO) User Guide" |
| UG030006               | "Compa Family CPLDs Embedded Flash (EFlash) User Guide"     |
| UG030007               | "Compa Family CPLDs Embedded Hard Core User Guide"          |
| UG030008               | "Compa Family GTP User Guide"                               |
| UG030009               | "Compa Family PCB Design User Guide"                        |

(DS03001, V1.6) 11 / 37



## **Chapter 2 Functional Description**

#### 2.1 Configurable Logic Module (CLM)

CLM (Configurable Logic Module) is the basic logic unit of the Compa devices, each CLM contains 4 LUT5s, 6 registers, bit expansion function selectors, fast carry logic, and four independent cascade chains, which include the fast carry chain (Carry Chain), reset/set control cascade chain (RS Chain), clock enable control cascade chain (CE Chain), and shift register data cascade chain (SR Chain). In each CLM, two LUT5s can implement one LUT6, and two LUT6s can implement one LUT7.

There are two types of CLMs:

- > CLMA, capable of implementing logic, arithmetic, shift registers, and ROM function
- CLMS, capable of implementing logic, arithmetic, shift registers, ROM function and distributed RAM function

CLMs can be configured in different functional modes:

Two adjacent CLMs can implement one LUT8.

- Logic Functional Mode
- ➤ Arithmetic Functional Mode
- ROM Memory Mode
- Distributed RAM Memory Mode
- Multiplexer Mode
- Output Register

For detailed information, please refer to the "UG030001\_Compa Family CPLDs Configurable Logic Module (CLM) User Guide".

#### 2.2 Dedicated Storage Module (DRM)

Compa devices contain up to 45 DRMs, each DRM has 9Kbits of storage, as well as input and output registers.

Various Working Modes

DRM supports various working modes, including Dual-Port RAM, Simple Dual-Port RAM, Single-Port RAM or ROM mode, and FIFO mode. Table 2-1 shows the configuration modes supported by DRM.

(DS03001, V1.6) 12 / 37



| Table 2-1 | DRM | Configuration | List |
|-----------|-----|---------------|------|
|-----------|-----|---------------|------|

| DRM Mode       | Single-Port RAM | Dual-Port RAM | Simple Dual-Port<br>RAM | FIFO       |
|----------------|-----------------|---------------|-------------------------|------------|
|                | 8K*1            | 8K*1          | 8K*1                    | 8K*1       |
|                | 4K*2            | 4K*2          | 4K*2                    | 4K*2       |
| Configurations | 2K*4            | 2K*4          | 2K*4                    | 2K*4       |
|                | 1K*9(8)         | 1K*9(8)       | 1K*9(8)                 | 1K*9(8)    |
|                | 512*18(16)      | N/A           | 512*18(16)              | 512*18(16) |

#### Mixed Data Width

DRM supports dual-port mixed data width in dual-port RAM and simple dual-port RAM modes.

Table 2-2 List of Dual-Port RAM Mode Mixed Data Width

| Dowt A | Port B | Port B |      |      |      |  |  |  |  |
|--------|--------|--------|------|------|------|--|--|--|--|
| Port A | 8K x 1 | 4K x 2 | 2Kx4 | 1Kx8 | 1Kx9 |  |  |  |  |
| 8Kx1   | V      | √      | √    | √    |      |  |  |  |  |
| 4Kx2   | √      | √      | √    | √    |      |  |  |  |  |
| 2Kx4   | V      | √      | √    | √    |      |  |  |  |  |
| 1Kx8   | V      | √      | √    | √    |      |  |  |  |  |
| 1Kx9   |        |        |      |      | √    |  |  |  |  |

Table 2-3 List of Simple Dual-Port RAM Mode Mixed Data Width

| Read Port | Write Port |          |           |           |           |      |        |  |  |
|-----------|------------|----------|-----------|-----------|-----------|------|--------|--|--|
| Read Port | 8Kx1       | 4Kx2     | 2Kx4      | 1Kx8      | 512x16    | 1Kx9 | 512x18 |  |  |
| 8Kx1      | √          | √        | √         | <b>√</b>  | √         |      |        |  |  |
| 4Kx2      |            |          | $\sqrt{}$ | $\sqrt{}$ | $\sqrt{}$ |      |        |  |  |
| 2Kx4      | √          | √        | √         | <b>√</b>  | √         |      |        |  |  |
| 1Kx8      | √          | √        | √         | V         | √         |      |        |  |  |
| 512x16    | <b>√</b>   | <b>√</b> | <b>√</b>  | <b>√</b>  | <b>√</b>  |      |        |  |  |
| 1Kx9      |            |          |           |           |           | √    | √      |  |  |
| 512x18    |            |          |           |           |           | √    | V      |  |  |

#### > Byte Enable

DRM supports Byte Enable function for write operations, which allows writing to selected data bytes through enable signals while masking the write operations to other bytes at the same address index.

#### Optional Output Registers

For data output ports, DRM provides an optional Output Register for improved timing performance.

## DRM Cascading and Extension

(DS03001, V1.6) 13 / 37



Multiple DRMs can be combined into larger Dual-Port RAM, Simple Dual-Port RAM, Single-Port RAM or ROM, and FIFO through cascading and extension. For this, DRM provides an additional 3-bit address extension for deeply-extended applications.

For detailed information, please refer to the "UG030002\_Compa Family CPLDs Dedicated RAM Module (DRM) User Guide".

#### 2.3 Clock

Compa devices have up to 8 pairs of dedicated clock differential input pins, which can receive differential input signals as well as single-ended input signals. When a single-ended clock signal is input, the P side of the differential signal is used. As clock inputs, these pins are used to drive clock network, and when not needed to drive clock network, they can also be used as general I/O.

#### Global Clock Network

The global clock network supports 8 global clocks as well as 8 global signals, which can also be used as global clocks.

The global clock can provide clock signals for various resources within the device, such as CLM, DRM, and IO Logic. The global clock supports a clock frequency of up to 400MHz. The global clock supports dynamic clock enable and dynamic switching.

Global signals are used as global control signals, such as clock enable signals, synchronous/asynchronous clear, reset, or output enable signals.

#### ➤ I/O Clock Network

There are 4 I/O clock networks, with 2 in BANK0 and 2 in BANK2. The clock signal can reach the IO Logic through the I/O clock, serving as the signal's high-speed sampling clock. The I/O clock has the characteristics of a high frequency (600 MHz) and low skew. The I/O clock supports dynamic enable.

#### > PLL

Compa devices have up to 2 PLLs. The PLL of CPLD is the core subsystem that provides clock resources, its main functions include clock frequency synthesis, clock skew reduction, clock phase adjustment, and low power management.

The PLL's input clock supports input from external I/O and internal routing. The PLL's feedback clock supports input from external I/O and internal routing.

The PLL supports multiple clock outputs, each with an independent divider supporting division by 1-128; each clock output can be cascaded, and each PLL can be cascaded with one another; each clock output has an optional dynamic clock enable control; the PLL also supports fractional division clock output with 16-bit precision, allowing users to generate non-integer

(DS03001, V1.6) 14/37



output clocks. For the fractional division calculation method and usage restrictions, please refer to the "UG030003\_Compa Family CPLDs Clock Resources (Clock & PLL) User Guide".

The PLL supports both static configuration and dynamic control of clock phase. Among these, the dynamic adjustment of the PLL's phase can be overridden via the APB interface or controlled through the corresponding port. The PLL can dynamically and continuously implement a gradual increase or decrease in phase, and there are no glitches in the clock output during phase adjustment.

PLL supports Standby mode, which allows the PLL to be powered down when not needed in the design to save power.

PLL allows users to change the PLL's operating parameters dynamically via the APB interface, providing users with another way to dynamically configure the PLL. For detailed information, please refer to the "UG030003\_Compa Family CPLDs Clock Resources (Clock & PLL) User Guide".

#### 2.4 I/O Cell

#### 2.4.1 IO Buffer (IOB)

IO Buffers have varying numbers of I/O Banks depending on the device scale (see Table 2-4), with the bank distribution for each device as shown in Figure 2-1 and Figure 2-2.



Figure 2-1 Top View of PGC1KL Bank Distribution

(DS03001, V1.6) 15 / 37





Figure 2-2 Top View of PGC1KG/2K/4K/7K/10K Bank Distribution

| I/O Bank Resources      | PGC1KL1 | PGC1KG | PGC2K1 | PGC4K1 | PGC7K | PGC10K |
|-------------------------|---------|--------|--------|--------|-------|--------|
| I/O Banks on the left   | 1       | 3      | 3      | 3      | 3     | 3      |
| I/O Banks on the right  | 1       | 1      | 1      | 1      | 1     | 1      |
| I/O Banks on the top    | 1       | 1      | 1      | 1      | 1     | 1      |
| I/O Banks on the bottom | 1       | 1      | 1      | 1      | 1     | 1      |
| Total Number of I/O     | 4       | 6      | 6      | 6      | 6     | 6      |

Table 2-4 Compa Device Bank Resource Distribution

Note: 1. Devices in UWG package only support 3 banks, for detailed information, please refer to the package manual.

Each bank independently supports 1.2V-3.3V bank voltage. When the I/O in the entire bank is not in use, the bank power can be left floating or connected to the normal operating voltage. It is recommended to connect the bank power to  $V_{CC}$ . Each bank supports various single-ended and differential interface standards to accommodate different application scenarios. The IO Buffer is powerful, supports flexible configuration of I/O standards, output drive strength, slew rate, input hysteresis, and bus hold states. Furthermore, the IO Buffer supports an internal differential termination resistor of  $100\Omega$ , as well as LVDS and MIPI level standards.

All I/Os of the Compa devices support differential inputs, but only the I/Os on the bottom side (Bank2) support internal differential termination resistor. Some I/Os on the top side (Bank0) support true differential output (pins defined as DIFFIO support true differential output, for specific pin definitions, please refer to the PK family package manual). The I/O standards supported by the CPLD are shown in Table 2-5.

(DS03001, V1.6) 16 / 37



Table 2-5 I/O Standards Supported by Compa Family CPLDs

| I/O Std           | Typical Operating<br>Voltage of I/O | Position                    | Comment                                                                                                             |
|-------------------|-------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------|
| Input Single-End  | ded Standard                        |                             |                                                                                                                     |
| LVTTL33           | 3.3 V                               | Top, Bottom, Left,<br>Right |                                                                                                                     |
| LVCMOS            | 3.3/2.5/1.8/1.5/1.2 V               | Top, Bottom, Left,<br>Right |                                                                                                                     |
| PCI33             | 3.3 V                               | Bottom                      |                                                                                                                     |
| Input Differentia | al Standard                         |                             |                                                                                                                     |
| LVDS              | 3.3/2.5 V                           | Top, Bottom, Left,<br>Right | Only the differential pairs on the bottom side (BANK2) support internal termination resistors                       |
| BLVDS             | 3.3/2.5 V                           | Top, Bottom, Left,<br>Right |                                                                                                                     |
| MLVDS             | 3.3/2.5 V                           | Top, Bottom, Left,<br>Right |                                                                                                                     |
| LVPECL33          | 3.3/2.5 V                           | Top, Bottom, Left,<br>Right |                                                                                                                     |
| MIPI(D-PHY)       | 1.2 V                               | Top, Bottom, Left,<br>Right | Only the differential pairs on the bottom side (BANK2) support internal termination resistors                       |
| Output Single-E   | nded Standard                       |                             |                                                                                                                     |
| LVTTL33           | 3.3 V                               | Top, Bottom, Left,<br>Right |                                                                                                                     |
| LVCMOS            | 3.3/2.5/1.8/1.5/1.2 V               | Top, Bottom, Left,<br>Right |                                                                                                                     |
| PCI33             | 3.3 V                               | Bottom                      |                                                                                                                     |
| Output Different  | tial Standard                       |                             |                                                                                                                     |
| LVDS              | 3.3/2.5 V                           | Тор                         | True differential output, only pins with the function name DIFFIO are supported, see the package manual for details |
| BLVDS             | 2.5 V                               | Top, Bottom, Left,<br>Right | LVCMOS analogue                                                                                                     |
| MLVDS             | 2.5 V                               | Top, Bottom, Left,<br>Right | LVCMOS analogue                                                                                                     |
| LVPECL33          | 3.3 V                               | Top, Bottom, Left,<br>Right | LVCMOS analogue                                                                                                     |
| MIPI(D-PHY)       | 2.5 V                               | Тор                         |                                                                                                                     |
| Bidirectional Le  | vel Standard                        |                             |                                                                                                                     |
| LVTTL33           | 3.3 V                               | Top, Bottom, Left,<br>Right |                                                                                                                     |
| LVCMOS            | 3.3/2.5/1.8/1.5/1.2 V               | Top, Bottom, Left,<br>Right |                                                                                                                     |

#### 2.4.2 IO Logic (IOL)

IO Logic mainly includes the following functions:

- > Input, output, and tri-state combinatorial logic
- > Input registers (flip-flops/latches), output registers (flip-flops), and tri-state registers (flip-flops)
- > IDDR (1:2) and ODDR (2:1), where ODDR includes both output and tri-state ODDR

(DS03001, V1.6) 17 / 37



#### 2.4.3 I/O Input/Output Delay Unit

The I/O input delay function and output delay function of the CPLD are respectively implemented by the same delay unit. All I/Os support static configuration for input and output delays, but only the I/Os on the bottom side support dynamically adjustable input and output delay.

Table 2-6 Step Delay of I/O Delay Unit

| Symbol        | Description                                | Min.  | Тур.  | Max.   |
|---------------|--------------------------------------------|-------|-------|--------|
| $T_{IODELAY}$ | The delay for each input/output delay step | 55 ps | 79 ps | 125 ps |

#### 2.4.4 High-Speed Data Transfer

I/O units, in conjunction with ISERDES and OSERDES modules, can implement high-speed data transmission and reception.

- ➤ ISERDES: For high-speed interfaces, supports 1:4, 1:7, 1:8
- ➤ OSERDES: For high-speed interfaces, supports 4:1, 7:1, 8:1

All Banks support IDDR/ODDR and input/output/tri-state registers. For high-speed interface applications, the bottom Bank supports ISERDES, while the top Bank supports OSERDES.

### 2.5 On-chip Oscillator

Each Compa device has an on-chip Oscillator (OSC). The output of the OSC can be programmed to connect to the global clock network or to the PLL as a reference clock for the PLL. The output of the OSC can also provide a programmable clock for the configuration system, used as the main configuration clock. The output of the OSC can also provide a fixed frequency clock for embedded Flash.

Users can perform clock division for the OSC by instantiating GTP\_OSC\_E2. The intrinsic frequency of the OSC is 266MHz, with an integer division factor range of 2-128, and the output frequency range of the OSC is 2.08MHz-133MHz; these frequency points are discontinuous, with a default value of 2.08MHz. When the OSC output clock serves as the user clock, the frequency that can be output is shown in Table 2-7.

Table 2-7 OSC Output Frequency

| OSC Output | OSC Output Frequency (Division Factor), in MHz |           |           |           |           |           |           |  |  |  |  |
|------------|------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--|--|
| 2.08(128)  | 2.09(127)                                      | 2.11(126) | 2.13(125) | 2.15(124) | 2.16(123) | 2.18(122) | 2.20(121) |  |  |  |  |
| 2.22(120)  | 2.24(119)                                      | 2.25(118) | 2.27(117) | 2.29(116) | 2.31(115) | 2.33(114) | 2.35(113) |  |  |  |  |
| 2.38(112)  | 2.40(111)                                      | 2.42(110) | 2.44(109) | 2.46(108) | 2.49(107) | 2.51(106) | 2.53(105) |  |  |  |  |
| 2.56(104)  | 2.58(103)                                      | 2.61(102) | 2.63(101) | 2.66(100) | 2.69(99)  | 2.71(98)  | 2.74(97)  |  |  |  |  |
| 2.77(96)   | 2.80(95)                                       | 2.83(94)  | 2.86(93)  | 2.89(92)  | 2.92(91)  | 2.96(90)  | 2.99(89)  |  |  |  |  |

(DS03001, V1.6) 18 / 37



| OSC Output | OSC Output Frequency (Division Factor), in MHz |           |           |           |           |           |           |  |  |  |
|------------|------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--|
| 3.02(88)   | 3.06(87)                                       | 3.09(86)  | 3.13(85)  | 3.17(84)  | 3.20(83)  | 3.24(82)  | 3.28(81)  |  |  |  |
| 3.33(80)   | 3.37(79)                                       | 3.41(78)  | 3.45(77)  | 3.50(76)  | 3.55(75)  | 3.59(74)  | 3.64(73)  |  |  |  |
| 3.69(72)   | 3.75(71)                                       | 3.80(70)  | 3.86(69)  | 3.91(68)  | 3.97(67)  | 4.03(66)  | 4.09(65)  |  |  |  |
| 4.16(64)   | 4.22(63)                                       | 4.29(62)  | 4.36(61)  | 4.43(60)  | 4.51(59)  | 4.59(58)  | 4.67(57)  |  |  |  |
| 4.75(56)   | 4.84(55)                                       | 4.93(54)  | 5.02(53)  | 5.12(52)  | 5.22(51)  | 5.32(50)  | 5.43(49)  |  |  |  |
| 5.54(48)   | 5.66(47)                                       | 5.78(46)  | 5.91(45)  | 6.05(44)  | 6.19(43)  | 6.33(42)  | 6.49(41)  |  |  |  |
| 6.65(40)   | 6.82(39)                                       | 7.00(38)  | 7.19(37)  | 7.39(36)  | 7.60(35)  | 7.82(34)  | 8.06(33)  |  |  |  |
| 8.31(32)   | 8.58(31)                                       | 8.87(30)  | 9.17(29)  | 9.50(28)  | 9.85(27)  | 10.23(26) | 10.64(25) |  |  |  |
| 11.08(24)  | 11.57(23)                                      | 12.09(22) | 12.67(21) | 13.30(20) | 14.00(19) | 14.78(18) | 15.65(17) |  |  |  |
| 16.63(16)  | 17.73(15)                                      | 19.00(14) | 20.46(13) | 22.17(12) | 24.18(11) | 26.60(10) | 29.56(9)  |  |  |  |
| 33.25(8)   | 38.00(7)                                       | 44.33(6)  | 53.20(5)  | 66.50(4)  | 88.67(3)  | 133.00(2) |           |  |  |  |

The accuracy of the OSC in Compa devices is shown in Table 2-8.

Table 2-8 List of OSC Accuracy for CPLD Devices

| Device Temperature Grade |       | PGC1KG | PGC2KL | PGC2KG | PGC4KL | PGC4KD | PGC7KD | PGC10KD |
|--------------------------|-------|--------|--------|--------|--------|--------|--------|---------|
| Commercial (C)           | ±5.5% | ±10%   | ±5.5%  | ±10%   | ±5.5%  | ±10%   | ±10%   | ±10%    |
| Industrial (I)           | ±10%  | ±10%   | ±10%   | ±10%   | ±10%   | ±10%   | ±10%   | ±10%    |

For detailed information, please refer to the "UG030003\_Compa Family CPLDs Clock Resources (Clock & PLL) User Guide".

#### 2.6 Embedded Hard Core

Compa devices have multiple embedded hard cores, such as I<sup>2</sup>C, SPI, and timers/counters. Users can access these hard cores via the APB interface.

#### 2.6.1 I<sup>2</sup>C Hard Core

Each CPLD device includes 2 I<sup>2</sup>C Hard Cores, each of which can be configured as a master or slave device. When the I<sup>2</sup>C Hard Core is configured as a master device, it can control other devices via the I<sup>2</sup>C bus interface.

The I<sup>2</sup>C Hard Core mainly supports the following functions:

- ➤ Configurable as master or slave, supports master-slave operation
- > 7-bit and 10-bit addressing
- ➤ Arbitration among multiple masters

(DS03001, V1.6) 19 / 37



- Fast mode/standard mode I<sup>2</sup>C bus protocols, with data transfer speeds up to 400KHz
- > 8-bit APB bus user interface
- Soft reset
- > Interrupt
- ➤ All-Call addressing

#### 2.6.2 SPI Hard Core

Each CPLD device includes 1 SPI Hard Core, which can be configured as a master or slave device. When acting as a master device, it can control other chips with SPI interfaces via the SPI bus. The SPI Hard Core supports the following functions:

- ➤ Configurable as master or slave, supports master-slave operation
- > Interrupt
- > Serial clock with programmable polarity and phase
- > Data transfer supports least significant bit first or most significant bit first
- ➤ 8-bit APB bus user interface
- ➤ Controls up to 8 slave devices

#### 2.6.3 Timer/Counters

Each CPLD device provides a general, bidirectional 16-bit timer/counter Hard Core. It has an independent output compare unit and supports pulse width modulation. This Hard Core supports the following functions:

- > Supports the following working modes
  - Watchdog
  - Auto clear timer
  - Fast pulse width modulation
  - Phase and frequency correction pulse width modulation
- > Programmable clock input
- > Interrupt request
- > Auto reload
- > Time stamps
- ➤ 8-bit APB bus user interface

For more information, please refer to the "UG030007\_Compa Family CPLDs Embedded Hard Core User Guide".

(DS03001, V1.6) 20 / 37



#### 2.7 Embedded Flash

Compa devices include an embedded Flash that can be used to store configuration information or provide general Flash storage space for the user. Embedded Flash has the following functions:

- ➤ 1.2V Supply voltage, provided by VCC<sub>CORE</sub>
- Storage space up to 5120 Kbits
- At least 100,000 erase/write cycles
- ➤ Auto-incrementing addressing
- ➤ Supports JTAG, I<sup>2</sup>C, SPI, and APB interfaces

For detailed information, please refer to the "UG030006\_Compa Family CPLDs Embedded Flash (EFlash) User Guide".

#### 2.8 Power-On Reset (POR) Circuit

Each Compa device has a Power-On Reset circuit (POR), which monitors  $VCC_{CORE}$  and  $V_{CCIO0}$  voltage levels during power-up and operation. At power-up, once the POR circuit detects that  $VCC_{CORE}$  and  $V_{CCIO0}$  reach  $V_{PUP}$  (as shown in Table 3-6), the device will start initialization.

Shared I/O can be set as configuration I/O or user I/O by setting the feature control bits. All I/Os are at a low level during power-up; before and during configuration, user I/Os are held in tri-state with a weak pull-down, and configuration I/Os have a weak pull-up or their inherent state; after configuration is complete and the device enters user mode, user I/Os are then released for user use.

After entering user mode, the POR circuit continues to monitor  $VCC_{CORE}$ . If  $VCC_{CORE}$  drops to the specified voltage  $V_{PDN}$ , the device is not guaranteed to work properly; should this occur, the POR circuit resets the entire chip and monitors  $VCC_{CORE}$  and  $V_{CCIO0}$  again.

#### 2.9 Configuration and Test

#### Configuration

Compa devices include various configuration interfaces, such as JTAG, SPI, and I<sup>2</sup>C. JTAG supports the IEEE 1149.1 boundary scan specification and the IEEE 1532 in-system configuration specification. With the support of these configuration interfaces, there are multiple modes available to configure Compa Family devices.

Master Self Download

#### JTAG mode

(DS03001, V1.6) 21 / 37



- Master SPI mode
- > Slave SPI mode
- ➤ Slave I<sup>2</sup>C mode

After the device is powered up, it starts initialization, then selects a configuration mode after reading feature control bits; once the configuration mode is determined, the corresponding pins are set as configuration pins, users can use them to download the bitstream to the configuration memory; when the bitstream is loaded successfully, the device enters user mode.

All configuration pins can be shared, and when some configuration pins are not used for configuration functions, they can be used as general I/Os after entering user mode.

CPLD devices support compressed bitstreams.

CPLD devices support readback functionality to read configuration data from CRAM. The readback process does not affect the system's normal operation. They also support disabling readback of CRAM to secure user information.

CPLD devices support dual boot.

CPLD devices support remote upgrade.

#### Boundary Scan Test

Compa devices integrate a boundary scan unit that supports IEEE 1149.1, which users can access via JTAG. JTAG includes four signals: TDI, TDO, TCK, and TMS.

Each I/O inside the device comes with a boundary scan unit, and these units are interconnected internally through the input and output pins. Test data flows through the TDI port, accesses each I/O via serial shifting, and then flows out from the TDO port. By analyzing the test response, fault diagnosis of the circuit under test can be performed.

The JTAG port is powered by  $V_{CCIO0}$  and supports LVCMOS33/LVCMOS25/LVCMOS18/LVCMOS15/LVCMOS12. For detailed information, please refer to the " $UG030004\_Compa\ Family\ CPLDs$  Configuration User Guide".

#### 2.10 UID (Unique Identification)

Each Compa device has a unique UID, which can be used to track information or guarantee IP security. The UID has 64 bits and is read-only. The UID can be read via the on-chip UID interface or the on-chip APB interface, as well as through SPI, I<sup>2</sup>C, or JTAG interfaces.

For detailed information, please refer to the "UG030004\_Compa Family CPLDs Configuration User Guide".

(DS03001, V1.6) 22 / 37



## **Chapter 3 DC Characteristics**

#### 3.1 Device Absolute Maximum Ratings

The absolute maximum ratings for Compa devices are shown in Table 3-1:

**Table 3-1 Absolute Maximum Ratings** 

| Parameter Description1,2                       | L type (1.2V) | G type/D type (2.5V or 3.3V) | Unit          |
|------------------------------------------------|---------------|------------------------------|---------------|
| External supply voltage V <sub>CC</sub>        | -0.5 ~ 1.32   | -0.5 ~ 3.75                  | V             |
| I/O Bank voltage V <sub>CCIO</sub>             | -0.5 ~ 3.75   | -0.5 ~ 3.75                  | V             |
| I/O tri-state voltage                          | -0.5 ~ 3.75   | -0.5 ~ 3.75                  | V             |
| Input I/O voltage V <sub>IN</sub>              | -0.5 ~ 3.75   | -0.5 ~ 3.75                  | V             |
| Storage ambient temperature (T <sub>A</sub> )  | -55 ~ 125     | -55 ~ 125                    | $\mathcal{C}$ |
| Junction temperature T <sub>J</sub>            | -40 ~ 125     | -40 ~ 125                    | С             |
| Maximum soldering temperature T <sub>SOL</sub> | 260           | 260                          | $\mathcal{C}$ |

#### Note:

2. All voltage values are with respect to GND

#### 3.2 Recommended Operating Conditions

Table 3-2 Recommended Operating Conditions for Device

| Symbol                   | Description                                       | Min.  | Тур.    | Max.  | Unit          |
|--------------------------|---------------------------------------------------|-------|---------|-------|---------------|
| $V_{CC}^{\underline{1}}$ | External supply voltage for L-type devices        | 1.14  | 1.2     | 1.26  | V             |
| V CC                     | External supply voltage for G-type/D-type devices | 2.375 | 2.5/3.3 | 3.465 | V             |
| $V_{CCIO}^{\frac{1}{2}}$ | I/O Bank voltage                                  | 1.14  |         | 3.465 | V             |
| т                        | Commercial operating junction temperature         | 0     |         | 85    | $\mathcal C$  |
| $T_J$                    | Industrial operating junction temperature         | -40   |         | 100   | $\mathcal{C}$ |

Note:

1. In PCB design, unused I/O Bank  $V_{\text{CCIO}}$  pins can be left floating or powered; it is recommended to connect them to  $V_{\text{CC}}$ ; to ensure the chip functions properly,  $V_{\text{CCIO0}}$  must be powered correctly.

(DS03001, V1.6) 23 / 37

<sup>1.</sup> Exceeding the limits specified in the table above may cause permanent damage to the device; operating within the absolute maximum ratings will not damage the device, but does not guarantee normal operation at these limits; prolonged operation at these limits will drastically impact the device's reliability.



## 3.3 Allowed AC Maximum Overshoot and Undershoot Voltage for $V_{\rm IN}$

Table 3-3 Allowed AC Maximum Overshoot and Undershoot Voltage for  $V_{\rm IN}$ 

| Overshoot Voltage (V) | %UI (-40 ℃~100 ℃) | Undershoot Voltage (V) | %UI (-40 ℃~100 ℃) |
|-----------------------|-------------------|------------------------|-------------------|
| 3.75                  | 100               | -0.45                  | 100               |
| 3.8                   | 86                | -0.5                   | 86                |
| 3.85                  | 58                | -0.55                  | 58                |
| 3.9                   | 39.5              | -0.6                   | 39.5              |
| 3.95                  | 27                | -0.65                  | 27                |
| 4                     | 18.5              | -0.7                   | 18.5              |
| 4.05                  | 12.75             | -0.75                  | 12.75             |
| 4.1                   | 8.81              | -0.8                   | 8.81              |
| 4.15                  | 6.13              | -0.85                  | 6.13              |
| 4.2                   | 4.28              | -0.9                   | 4.28              |

## 3.4 ESD and Latch Up Specifications

Table 3-4 ESD and Latch Up Specifications

| ESD (HBM) | ESD (CDM) | Latch-up |
|-----------|-----------|----------|
| ±2000 V   | ±500 V    | ±100 mA  |

#### 3.5 Power Ramp-up Time

Table 3-5 Ramp-up Time

| Symbol                                                                            | Description                       | Min. | Тур. | Max.  | Unit |  |  |
|-----------------------------------------------------------------------------------|-----------------------------------|------|------|-------|------|--|--|
| $T_{VCCR}$                                                                        | Ramp-up time for V <sub>CC</sub>  | 0.20 |      | 100.0 | ms   |  |  |
| T <sub>CCIOR</sub>                                                                | Ramp-up time for I/O Bank voltage | 0.20 |      | 100.0 | ms   |  |  |
| There is no power-up sequence requirement for $V_{CC}$ and each bank's $V_{CCIO}$ |                                   |      |      |       |      |  |  |

#### 3.6 Power-up Reset Voltage Standard

Table 3-6 Power-up Reset Voltage Standard 1.2

| Symbol           | Description                                                             | Min. | Тур. | Max. | Unit |
|------------------|-------------------------------------------------------------------------|------|------|------|------|
| $V_{PUP}$        | Power-up reset trigger level (monitoring $VCC_{CORE}$ and $V_{CCIOO}$ ) | 0.9  |      | 1.06 | V    |
| $V_{PUPEXT}$     | Power-up reset trigger level (monitoring V <sub>CC</sub> )              | 1.5  |      | 2.1  | V    |
| V <sub>PDN</sub> | Power-down reset trigger level (monitoring VCC <sub>CORE</sub> )        | 0.75 |      | 0.93 | V    |
| $V_{PDNEXT}$     | Power-down reset trigger level (monitoring V <sub>CC</sub> )            | 1.6  |      | 1.85 | V    |

(DS03001, V1.6) 24 / 37



#### Note:

- 1. L-type devices do not have an internal LDO, thus  $VCC_{CORE}$  are same with  $V_{CC}$ ; for G-type/D-type devices,  $VCC_{CORE}$  is generated from  $V_{CC}$  by the LDO
- 2.  $V_{\mbox{\scriptsize PUPEXT}}$  and  $V_{\mbox{\scriptsize PDNEXT}}$  are only applicable to G-type/D-type devices

## 3.7 Hot Socketing Specifications

Table 3-7 Hot Socketing Specifications

| Symbol   | Description         | Condition                  | Min.  | Max.  | Unit |
|----------|---------------------|----------------------------|-------|-------|------|
| $I_{DK}$ | I/O Leakage current | $0 < V_{IN} < V_{IH}(Max)$ | -1000 | +1000 | μΑ   |

## 3.8 Single-Ended DC Characteristics

Table 3-8 Single-Ended I/O DC Characteristics

| C4an dand             | V <sub>IL</sub> (V) |                              | V <sub>IH</sub> (V)   |                     | V <sub>OL</sub> Max. | V <sub>OH</sub> Min.   | $I_{OL}$ | $I_{OH}$ |   |    |
|-----------------------|---------------------|------------------------------|-----------------------|---------------------|----------------------|------------------------|----------|----------|---|----|
| Standard              | Min.                | Max.                         | Min.                  | Max.                | ( <b>V</b> )         | ( <b>V</b> )           | (mA)     | (mA)     |   |    |
| PCI33                 | -0.3                | $0.3V_{\rm CCIO}$            | $0.5V_{\rm CCIO}$     | 3.465               | $0.1V_{\text{CCIO}}$ | 0.9V <sub>CCIO</sub>   | 1.5      | -0.5     |   |    |
|                       |                     |                              |                       |                     |                      |                        | 4        | -4       |   |    |
| LVCMOS33<br>LVCMOS33D | -0.3                | 0.8                          | 2.0                   | 3.465               | 0.4                  | V <sub>CCIO</sub> -0.4 | 8        | -8       |   |    |
| LVTTL33               | -0.3                | 0.8                          | 2.0                   | 3.403               | 0.4                  | V CCIO-U.4             | 12       | -12      |   |    |
|                       |                     |                              |                       |                     |                      |                        | 16       | -16      |   |    |
|                       | -0.3 0.7            | 0.7                          |                       |                     |                      |                        | 4        | -4       |   |    |
| LVCMOS25              |                     |                              | 1.7                   | 3.465 0.4           | 0.4                  | V <sub>CCIO</sub> -0.4 | 8        | -8       |   |    |
| LVCMOS25D             |                     | 0.7                          |                       |                     | V CCIO-0.4           | 12                     | -12      |          |   |    |
|                       |                     |                              |                       |                     |                      |                        | 16       | -16      |   |    |
|                       |                     |                              |                       |                     | 3.465 0.4            |                        |          |          | 4 | -4 |
| LVCMOS18              | -0.3                | $0.35V_{\rm CCIO}$           | $0.65V_{\text{CCIO}}$ | 3.465               |                      | V <sub>CCIO</sub> -0.4 | 8        | -8       |   |    |
|                       |                     |                              |                       |                     |                      |                        | 12       | -12      |   |    |
| LVCMOS15              | -0.3                | 0.251/                       | 0.65V                 | 0.65V 2.465 0.4 V 0 | V 04                 | 4                      | -4       |          |   |    |
| LVCMOS15              | -0.3                | $0.35V_{CCIO}$               | $0.65V_{CCIO}$        | 3.465               | 0.4                  | $V_{\rm CCIO}$ -0.4    | 8        | -8       |   |    |
| LVCMOS12              | 0.2                 | 0.25V                        | 0.65V                 | 3.465               | 0.4                  | V 04                   | 2        | -2       |   |    |
| LVCIVIOS12            | -0.3                | $-0.3$ $0.35V_{\text{CCIO}}$ | $0.65V_{CCIO}$        | 3.403               | 0.4                  | $V_{\text{CCIO}}$ -0.4 | 6        | -6       |   |    |

(DS03001, V1.6) 25 / 37



#### 3.9 Differential DC Electrical Characteristics

The main electrical parameters of LVDS, BLVDS, and LVPECL33 are defined as shown in Figure 3-1.



Figure 3-1 LVDS\BLVDS\LVPECL33 Voltage Waveforms

#### 3.9.1 LVDS DC Characteristics

Table 3-9 LVDS DC Characteristics

| Symbol              | Description                                   | <b>Test Conditions</b>  | Min.  | Тур.  | Max.  | Unit |
|---------------------|-----------------------------------------------|-------------------------|-------|-------|-------|------|
| V V                 | Innut Valtage                                 | V <sub>CCIO</sub> =3.3V | 0     |       | 2.605 | V    |
| $V_{IP}, V_{IN}$    | Input Voltage                                 | V <sub>CCIO</sub> =2.5V | 0     |       | 2.05  | V    |
| V <sub>ID</sub>     | Input Differential<br>Mode Voltage            |                         | 0.1   |       |       | V    |
| <b>V</b> 7          | V <sub>ICM</sub> Input Common<br>Mode Voltage | V <sub>CCIO</sub> =3.3V | 0.4   |       | 2.4   | V    |
| V ICM               |                                               | V <sub>CCIO</sub> =2.5V | 0.4   |       | 1.9   | V    |
| V <sub>OD</sub>     | Output Differential Mode Voltage              | (Vop-Von), Rt=100 Ω     | 0.245 | 0.350 | 0.455 | V    |
| $\triangle V_{OD}$  | V <sub>OD</sub> Variation<br>Range            |                         |       |       | 0.050 | V    |
| V <sub>OCM</sub>    | Output Common<br>Mode Voltage                 | (Vop+Von)/2, Rt=100 Ω   | 1.0   | 1.2   | 1.4   | V    |
| $\triangle V_{OCM}$ | V <sub>OCM</sub> Variation<br>Range           |                         |       |       | 0.050 | V    |

## 3.9.2 BLVDS DC Characteristics

Table 3-10 BLVDS DC Characteristics

| Symbol  | Description                      | Min.  | Тур. | Max.  | Unit |
|---------|----------------------------------|-------|------|-------|------|
| VIP,VIN | Input Voltage                    | 0     |      | 2.05  | V    |
| VID     | Input Differential Mode Voltage  | 0.1   |      |       | V    |
| VICM    | Input Common Mode Voltage        | 0.4   |      | 1.9   | V    |
| VOD     | Output Differential Mode Voltage | 0.230 |      | 0.460 | V    |

(DS03001, V1.6) 26 / 37



| Symbol            | Description                     | Min. | Тур. | Max. | Unit |
|-------------------|---------------------------------|------|------|------|------|
| VIP,VIN           | Input Voltage                   | 0    |      | 2.05 | V    |
| VID               | Input Differential Mode Voltage | 0.1  |      |      | V    |
| VOCM              | Output Common Mode Voltage      | 1.1  |      | 1.4  | V    |
| R <sub>left</sub> | Left Terminal Resistance        | 40   |      | 100  | Ω    |
| $R_{right}$       | Right Terminal Resistance       | 40   |      | 100  | Ω    |
| $R_S$             | Driver Serial Resistance        |      | 80   |      | Ω    |

#### 3.9.3 LVPECL33 DC Characteristics

Table 3-11 LVPECL33 DC Characteristics

| Symbol           | Description                         | Min. | Тур. | Max. | Unit |
|------------------|-------------------------------------|------|------|------|------|
| V <sub>ICM</sub> | Input Common Mode Voltage           | 0.4  |      | 2.4  | V    |
| V <sub>OD</sub>  | Output Differential Mode<br>Voltage | 0.78 |      | 1.0  | V    |
| $V_{OCM}$        | Output Common Mode<br>Voltage       | 1.3  |      | 2.1  | V    |
| $R_S$            | Driver Serial Resistance            |      | 100  |      | Ω    |
| R <sub>P</sub>   | Driver Parallel Resistance          |      | 200  |      | Ω    |
| R <sub>T</sub>   | Receiver Terminal Resistance        |      | 100  |      | Ω    |

#### 3.9.4 MIPI DC Characteristics

Compa devices support unidirectional HS (High Speed) and bidirectional LP (Low Power) input and output for MIPI D-PHY. The electrical parameters for the MIPI receiver are defined as shown in Figure 3-2.



Figure 3-2 MIPI Receiver Voltage Waveforms

(DS03001, V1.6) 27 / 37



Table 3-12 lists the DC characteristics of the MIPI receiver.

Table 3-12 MIPI Receiver DC Characteristics

| Symbol               | Description                                    | Min. | Typ. | Max. | Unit |  |  |  |  |  |
|----------------------|------------------------------------------------|------|------|------|------|--|--|--|--|--|
| High Spee            | High Speed RX                                  |      |      |      |      |  |  |  |  |  |
| V <sub>ICM</sub>     | HS Input Common Mode Voltage                   | 70   |      | 330  | mV   |  |  |  |  |  |
| V <sub>CCIO</sub>    | I/O Bank voltage                               |      | 1.2  |      | V    |  |  |  |  |  |
| $V_{\text{IDTH}}$    | Differential Input High Level Threshold        |      |      | 70   | mV   |  |  |  |  |  |
| $V_{IDTL}$           | Differential Input Low Level Threshold         | -70  |      |      | mV   |  |  |  |  |  |
| V <sub>IHHS</sub>    | Single-Ended Input High Level Voltage          |      |      | 460  | mV   |  |  |  |  |  |
| V <sub>ILHS</sub>    | Single-Ended Input Low Level Voltage           | -40  |      |      | mV   |  |  |  |  |  |
| V <sub>TERM-EN</sub> | Termination Enabled Voltage Threshold          |      |      | 450  | mV   |  |  |  |  |  |
| $Z_{\text{ID}}$      | Differential Input Impedance                   | 80   | 100  | 125  | Ω    |  |  |  |  |  |
| Low Powe             | er RX                                          |      |      |      |      |  |  |  |  |  |
| $V_{\mathrm{IH}}$    | Input High Level Voltage                       | 880  |      |      | mV   |  |  |  |  |  |
| V <sub>CCIO</sub>    | I/O Bank voltage                               |      | 1.2  |      | V    |  |  |  |  |  |
| $V_{\rm IL}$         | Input Low Level Voltage                        |      |      | 550  | mV   |  |  |  |  |  |
| V <sub>IL-ULPS</sub> | Input Low Level Voltage (Ultra-Low Power Mode) |      |      | 300  | mV   |  |  |  |  |  |
| V <sub>HYST</sub>    | Input Hysteresis                               | 25   |      |      | mV   |  |  |  |  |  |

Table 3-13 lists the DC characteristics of the MIPI transmitter. The electrical parameters for the MIPI transmitter are defined as shown in Figure 3-3.

(DS03001, V1.6) 28 / 37





Figure 3-3 MIPI Transmitter Voltage Waveforms

Table 3-13 MIPI Transmitter DC Characteristics

| Symbol             | Description                                                                              | Min. | Тур. | Max. | Unit |  |  |  |  |
|--------------------|------------------------------------------------------------------------------------------|------|------|------|------|--|--|--|--|
| High Speed TX      |                                                                                          |      |      |      |      |  |  |  |  |
| V <sub>OCM</sub>   | HS Output Common Mode Voltage                                                            | 150  | 200  | 250  | mV   |  |  |  |  |
| V <sub>CCIO</sub>  | I/O Bank voltage                                                                         |      | 2.5  |      | V    |  |  |  |  |
| ∆Vcmtx(1,0)        | Difference in Output Common Mode Voltage between<br>Differential 1 and Differential 0    |      |      | 5    | mV   |  |  |  |  |
| Vod                | Output Differential Mode Voltage                                                         | 140  | 200  | 270  | mV   |  |  |  |  |
| ∆Vod               | Difference in Output Differential Mode Voltage between Differential 1 and Differential 0 |      |      | 10   | mV   |  |  |  |  |
| Vohhs              | HS Output High Level Voltage                                                             |      |      | 360  | mV   |  |  |  |  |
| Z <sub>OS</sub>    | Single-Ended Output Impedance                                                            | 40   | 50   | 62.5 | Ω    |  |  |  |  |
| $\triangle Z_{OS}$ | Difference in Single-End Output Impedance                                                |      |      | 10%  |      |  |  |  |  |
| Low Power TX       |                                                                                          |      |      |      |      |  |  |  |  |
| V <sub>OH</sub>    | Output High Level                                                                        | 1.1  | 1.2  | 1.3  | V    |  |  |  |  |
| V <sub>CCIO</sub>  | I/O Bank voltage                                                                         |      | 1.2  |      | V    |  |  |  |  |
| V <sub>OL</sub>    | Output Low Level                                                                         | -50  |      | 50   | mV   |  |  |  |  |
| Z <sub>OLP</sub>   | LP Mode Output Impedance                                                                 | 110  |      |      | Ω    |  |  |  |  |

(DS03001, V1.6) 29 / 37



#### 3.10 Input DC Characteristics

Table 3-14 Input DC Characteristics under Recommended Operating Conditions

| Symbol            | Description                                | Condition                                | Min.                     | Typ. | Max.                     | Unit |
|-------------------|--------------------------------------------|------------------------------------------|--------------------------|------|--------------------------|------|
| $I_{\rm IL}$      | Leakage Current during<br>Input Low Level  | $0 \le V_{IN} \le (V_{CCIO} - 0.2V)$     | -10                      |      | 10                       | μΑ   |
| $I_{IH}$          | Leakage Current during Input High Level    | $(V_{CCIO} - 0.2V) < V_{IN} \le 3.6V$    |                          |      | 175                      | μΑ   |
| $C_{IN}$          | I/O Input Capacitor                        | 25 °C, 1MHz Signal<br>Frequency          |                          |      | 10                       | pF   |
| $I_{\mathrm{PU}}$ | I/O Pull-Up Current                        | 0≤V <sub>IN</sub> ≤0.7 V <sub>CCIO</sub> | -30                      |      | -310                     | μΑ   |
| $I_{PD}$          | I/O Pull-Down Current                      | $V_{IL}(Max) \leq V_{IN} \leq V_{CCIO}$  | 30                       |      | 310                      | μΑ   |
| I <sub>BKL</sub>  | Sustaining Current during<br>Bus Keep Low  | $V_{IN} = V_{IL} (Max)$                  | 30                       |      |                          | μΑ   |
| $I_{BKH}$         | Sustaining Current during<br>Bus Keep High | $V_{\rm IN} = 0.7 \ V_{\rm CCIO}$        | -30                      |      |                          | μΑ   |
| $I_{BKLOD}$       | Overdrive Current during<br>Bus Keep Low   | $0 \le V_{IN} \le V_{CCIO}$              |                          |      | 310                      | μΑ   |
| $I_{BKHOD}$       | Overdrive Current during<br>Bus Keep High  | $0 \le V_{IN} \le V_{CCIO}$              |                          |      | -310                     | μΑ   |
| V <sub>BKV</sub>  | Bus Keep Threshold                         |                                          | V <sub>IL</sub><br>(Max) |      | V <sub>IH</sub><br>(Min) |      |

## 3.11 Quiescent Current

At an ambient temperature of 25  $^{\circ}$ C and with the device unconfigured, the quiescent current is shown in Table 3-15.

Table 3-15 Quiescent Current

| Symbol            | Description                                   | Device      | Тур. | Unit |
|-------------------|-----------------------------------------------|-------------|------|------|
|                   |                                               | PGC1KL      | 3    | mA   |
|                   |                                               | PGC1KG      | 4.6  | mA   |
|                   | External Power Supply                         | PGC2KL      | 4    | mA   |
| T                 |                                               | PGC2KG      | 4.6  | mA   |
| $I_{VCC}$         | Current                                       | PGC4KL      | 4.6  | mA   |
|                   |                                               | PGC4KD      | 7.2  | mA   |
|                   |                                               | PGC7KD      | 9    | mA   |
|                   |                                               | PGC10KD     | 12   | mA   |
| I <sub>CCIO</sub> | I/O Bank Current, I/O<br>Bank Voltage at 2.5V | All devices | 0    | mA   |

### 3.12 Embedded Flash Program and Erase Current

Table 3-16 Embedded Flash Program and Erase Current 1.2

| Symbol    | Description           | Device | Тур. |
|-----------|-----------------------|--------|------|
| $I_{VCC}$ | External Power Supply | PGC1KL |      |

(DS03001, V1.6) 30 / 37



| Symbol     | Description                                   | Device      | Тур.   |
|------------|-----------------------------------------------|-------------|--------|
|            | Current                                       | PGC1KG      | 8.4 mA |
|            |                                               | PGC2KL      |        |
|            |                                               | PGC2KG      |        |
|            |                                               | PGC4KL      |        |
|            |                                               | PGC4KD      |        |
|            |                                               | PGC7KD      |        |
| $I_{CCIO}$ | I/O Bank Current, I/O<br>Bank Voltage at 2.5V | All devices | 0 mA   |

#### Note:

- 1. Bitstream function is implemented in a marquee form.
- 2. Test conditions: room temperature at 25 °C,  $V_{CCIO}$  =2.5V, JTAG interface frequency at 15MHz

(DS03001, V1.6) 31 / 37



## **Chapter 4 AC Switching Characteristics**

## **4.1 DRM Switching Characteristics**

Table 4-1 DRM AC Characteristics

| Camab al       | Description           | Speed Gr | TI-s:4 |      |
|----------------|-----------------------|----------|--------|------|
| Symbol         | Description           | -5       | -6     | Unit |
|                | Single DRM, NW Mode   | 235      | 280    | MHz  |
| E              | Single DRM, TW Mode   | 235      | 280    | MHz  |
| $F_{MAX\_DRM}$ | Single DRM, RBW Mode  | 168      | 200    | MHz  |
|                | Single DRM, FIFO Mode | 235      | 280    | MHz  |

#### **4.2 Clock AC Characteristics**

Table 4-2 Clock AC Characteristics

| Donomotor Dogovintion                    | -5                                                          |      |       | -6                                                          |      |      | T1:4   |
|------------------------------------------|-------------------------------------------------------------|------|-------|-------------------------------------------------------------|------|------|--------|
| Parameter Description                    | Min.                                                        | Тур. | Max.  | Min.                                                        | Тур. | Max. | - Unit |
| Global Clock Frequency                   |                                                             |      | 340   |                                                             |      | 400  | MHz    |
| Global Clock Pulse Width                 | 0.575                                                       |      |       | 0.5                                                         |      |      | ns     |
| Global Clock Skew                        |                                                             |      | 920   |                                                             |      | 800  | ps     |
| Global Clock Duty Cycle                  | 45%                                                         | 50%  | 55%   | 45%                                                         | 50%  | 55%  |        |
| Global Clock Dynamic Switching Hold Time | $\begin{array}{c} 2(T_{CLKIN0} \\ +T_{CLKIN1}) \end{array}$ |      |       | $\begin{array}{c} 2(T_{CLKIN0} \\ +T_{CLKIN1}) \end{array}$ |      |      |        |
| I/O Clock Frequency                      |                                                             |      | 510   |                                                             |      | 600  | MHz    |
| I/O Clock Skew                           |                                                             |      | 40.25 |                                                             |      | 35   | ps     |
| I/O Clock Duty Cycle                     | 43%                                                         | 50%  | 57%   | 43%                                                         | 50%  | 57%  |        |

### **4.3 PLL AC Characteristics**

Table 4-3 PLL AC Characteristics

| Symbol                            | Description                                  | Conditions | Min.   | Тур. | Max. | Unit |
|-----------------------------------|----------------------------------------------|------------|--------|------|------|------|
| $f_{IN}$                          | Input Clock Frequency                        |            | 10     |      | 500  | MHz  |
| $f_{OUT}$                         | Output Clock Frequency                       |            | 3.125  |      | 600  | MHz  |
| f <sub>OUT-CAS</sub> <sup>1</sup> | Cascaded Output Clock<br>Frequency (Stage 1) |            | 0.0244 |      | 600  | MHz  |
| f                                 | VCO Frequency (G/D)                          |            | 400    |      | 1200 | MHz  |
| $f_{VCO}$                         | VCO Frequency (L)                            |            | 400    |      | 800  | MHz  |
| $f_{ m PFD}$                      | PFD Frequency (Integer Division)             |            | 10     |      | 500  | MHz  |
| 112                               | PFD Frequency (Fractional                    |            | 20     |      | 40   | MHz  |

(DS03001, V1.6) 32 / 37



| Symbol               | Description                                                 | Conditions                                             | Min.     | Typ. | Max.     | Unit   |
|----------------------|-------------------------------------------------------------|--------------------------------------------------------|----------|------|----------|--------|
|                      | Division)                                                   |                                                        |          |      |          |        |
| $t_{DUTY}$           | Output Clock Duty Cycle                                     |                                                        | 45%      | 50%  | 55%      |        |
|                      | Input Clock Cycle-to-Cycle                                  | f <sub>PFD</sub> ≥20<br>MHz                            |          |      | 0.01     | UIPP   |
| t <sub>IJITTER</sub> | Jitter                                                      | $\begin{array}{c} f_{PFD} < 20 \\ MHz \end{array}$     |          |      | 500      | ps p-p |
|                      | Output Clock Period Jitter                                  | $\begin{array}{c} f_{OUT}{\geq}100\\ MHz \end{array}$  |          |      | 155      | ps p-p |
|                      | (Integer Division)                                          | f <sub>OUT</sub> < 100<br>MHz                          |          |      | 0.008    | UIPP   |
|                      | Output Clock Cycle-to-Cycle<br>Jitter<br>(Integer Division) | $\begin{array}{c} f_{OUT}{\geq}100\\ MHz \end{array}$  |          |      | 185      | ps p-p |
|                      |                                                             | f <sub>OUT</sub> < 100<br>MHz                          |          |      | 0.010    | UIPP   |
|                      | Output Clock Period Jitter                                  | $\begin{array}{c} f_{OUT}{\geq}100\\ MHz \end{array}$  |          |      | 235      | ps p-p |
| t <sub>OJITTER</sub> | (Fractional Division)                                       | f <sub>OUT</sub> < 100<br>MHz                          |          |      | 0.13     | UIPP   |
|                      | Output Clock Cycle-to-Cycle Jitter                          | f <sub>OUT</sub> ≥ 100<br>MHz                          |          |      | 235      | ps p-p |
|                      | (Fractional Division)                                       | f <sub>OUT</sub> < 100<br>MHz                          |          |      | 0.13     | UIPP   |
|                      | Output Clock Phase Jitter                                   | $\begin{array}{c} f_{PFD} \geq 100 \\ MHz \end{array}$ |          |      | 165      | ps p-p |
|                      | (Integer Division)                                          | $\begin{array}{c} f_{PFD} < 100 \\ MHz \end{array}$    |          |      | 0.012    | UIPP   |
| $t_{PH}$             | Phase Shift Accuracy                                        |                                                        | -6% Tvco |      | +6% Tvco |        |
| t <sub>LOCK</sub>    | PLL Lock Time                                               |                                                        |          |      | 5        | ms     |
| t <sub>RST</sub>     | RST Pulse Width                                             |                                                        | 10       |      |          | ns     |

Note:

## 4.4 Configuration AC Characteristics

Table 4-4 Configuration AC Characteristics

| Configuration Mode | Description                                                                                    | Min. | Тур. | Max.  | Unit |
|--------------------|------------------------------------------------------------------------------------------------|------|------|-------|------|
|                    | TCK Frequency                                                                                  |      |      | 50    | MHz  |
|                    | TCK Low Pulse Width                                                                            | 10   |      |       | ns   |
| ITAC               | TCK High Pulse Width                                                                           | 10   |      |       | ns   |
| JTAG               | TMS/TDI Setup Time (TCK Rising Edge)                                                           |      |      |       | ns   |
|                    | TMS/TDI Hold Time (TCK Rising Edge)                                                            | 2    |      |       | ns   |
|                    | TCK Falling Edge to Valid TDO Output                                                           |      |      | 8     | ns   |
|                    | SCK Initial Frequency                                                                          |      |      | 2.08  | MHz  |
| Mastan CDI         | SCK Frequency (High Speed Mode)                                                                |      |      | 53.2  | MHz  |
| Master SPI         | SCK Frequency (Low Speed Mode, Max 5ns from SPI Flash Clock Falling Edge to Valid Data Output) |      |      | 29.55 | MHz  |

(DS03001, V1.6) 33 / 37

<sup>1.</sup> For each additional stage of cascade, divide by 128 based on the output clock of the previous stage.



| Configuration Mode    | Description                                                                                          | Min. | Тур. | Max.  | Unit |
|-----------------------|------------------------------------------------------------------------------------------------------|------|------|-------|------|
|                       | SCK Frequency (Low Speed Mode, Max 6ns<br>from SPI Flash Clock Falling Edge to Valid Data<br>Output) |      |      | 26.6  | MHz  |
|                       | SCK Frequency (Low Speed Mode, Max 7ns from SPI Flash Clock Falling Edge to Valid Data Output)       |      |      | 26.6  | MHz  |
|                       | SCK Frequency (Low Speed Mode, Max 8ns<br>from SPI Flash Clock Falling Edge to Valid Data<br>Output) |      |      | 24.18 | MHz  |
|                       | SCK Duty Cycle                                                                                       | 45%  | 50%  | 55%   |      |
|                       | SCK Frequency Deviation                                                                              |      |      | 5%    |      |
|                       | MISO Setup Time (SCK Rising Edge)                                                                    | 10   |      |       | ns   |
|                       | MISO Hold Time (SCK Rising Edge)                                                                     | 0    |      |       | ns   |
|                       | MISO Setup Time (SCK Falling Edge)                                                                   |      |      |       | ns   |
|                       | MISO Hold Time (SCK Falling Edge)                                                                    | 0    |      |       | ns   |
|                       | SCK Falling Edge to Valid MOSI Output                                                                |      |      | 4     | ns   |
|                       | SCK Falling Edge to Valid CS_N Output                                                                |      |      | 4     | ns   |
|                       | SCK Frequency                                                                                        |      |      | 100   | MHz  |
|                       | SCK Low Pulse Width                                                                                  | 5    |      |       | ns   |
| GI GDI                | SCK High Pulse Width                                                                                 | 5    |      |       | ns   |
| Slave SPI             | MOSI Setup Time (SCK Rising Edge)                                                                    | 3    |      |       | ns   |
|                       | MOSI Hold Time (SCK Rising Edge)                                                                     | 2    |      |       | ns   |
|                       | SCK Falling Edge to Valid MISO Output                                                                |      |      | 10    | ns   |
| Reset Pulse Width     |                                                                                                      | 384  |      |       | ns   |
| Delay from Completion | Delay from Completion of Device Initialization to SCK Output                                         |      |      |       | ns   |
|                       | PGC1K                                                                                                |      |      | 964   | μs   |
|                       | PGC2K                                                                                                |      |      | 964   | μs   |
| INIT_FLAG_N Low Time  | PGC4K                                                                                                |      |      | 600   | μs   |
|                       | PGC7K                                                                                                |      |      | 870   | μs   |
|                       | PGC10K                                                                                               |      |      | 1500  | μs   |

## 4.5 I<sup>2</sup>C Interface AC Characteristics

Table 4-5 I<sup>2</sup>C Interface AC Characteristics

| Description <sup>(1)</sup> | Standard Mode |      | Fast Mode |      | TT *4 |  |
|----------------------------|---------------|------|-----------|------|-------|--|
| Description -              | Min.          | Max. | Min.      | Max. | Unit  |  |
| SCL Frequency              |               | 100  |           | 400  | KHz   |  |
| SCL Low Pulse Width        | 4.7           |      | 1.3       |      | μs    |  |
| SCL High Pulse Width       | 4             |      | 0.6       |      | μs    |  |

Note:

(DS03001, V1.6) 34 / 37

<sup>1.</sup> Other parameters are as specified in the  $I^2C$  protocol



#### 4.6 SPI Hard Core AC Characteristics

Table 4-6 SPI Hard Core AC Characteristics

| Description                | Fast Mode | Unit |      |
|----------------------------|-----------|------|------|
| Description                | Min.      | Max. | UIII |
| SCK Frequency <sup>1</sup> |           | 45   | MHz  |

Note:

#### 4.7 IO Buffer Performance

Table 4-7 IO Buffer Performance

| C4am Jam J        | Maximum Speed  | TT\$4          |      |
|-------------------|----------------|----------------|------|
| Standard          | -5 -6          |                | Unit |
| LVDS <sup>1</sup> | 1080 (540 MHz) | 1200 (600 MHz) | Mbps |
| MIPI <sup>2</sup> | 810 (405 MHz)  | 900 (450 MHz)  | Mbps |
| BLVDS25           | 270 (135 MHz)  | 300 (150 MHz)  | Mbps |
| MLVDS25           | 270 (135 MHz)  | 300 (150 MHz)  | Mbps |
| LVPECL33          | 270 (135 MHz)  | 300 (150 MHz)  | Mbps |
| LVTTL33           | 270 (135 MHz)  | 300 (150 MHz)  | Mbps |
| LVCMOS33          | 270 (135 MHz)  | 300 (150 MHz)  | Mbps |
| LVCMOS25          | 270 (135 MHz)  | 300 (150 MHz)  | Mbps |
| LVCMOS18          | 270 (135 MHz)  | 300 (150 MHz)  | Mbps |
| LVCMOS15          | 270 (135 MHz)  | 300 (150 MHz)  | Mbps |
| LVCMOS12          | 180 (90 MHz)   | 200 (100 MHz)  | Mbps |
| PCI33             | 59             | 66             | MHz  |

Note:

## 4.8 High-Speed Data Transfer Performance

Table 4-8 List of High-Speed Data Transfer Performance

| High-Speed Data Transfer Application | Transfer Rate |     | TI-:4 |
|--------------------------------------|---------------|-----|-------|
|                                      | -5            | -6  | Unit  |
| LVDS 2: 1                            | 360           | 400 | Mbps  |
| LVDS 4: 1                            | 630           | 700 | Mbps  |
| LVDS 7: 1                            | 693           | 770 | Mbps  |
| LVDS 8: 1                            | 720           | 800 | Mbps  |
| MIPI D-PHY                           | 810           | 900 | Mbps  |

(DS03001, V1.6) 35 / 37

<sup>1.</sup> For performance specifications of configuration mode, see Table 4-4 Configuration AC Characteristics

<sup>1.</sup> G-type/D-type devices support such performance

<sup>2.</sup> L-type devices support such performance



## **4.9 Master Self Configuration Time**

Table 4-9 Master Self Configuration Time<sup>1</sup>

| Device | Configuration Time1 | Unit |
|--------|---------------------|------|
| PGC1K  | 1.3                 | ms   |
| PGC2K  | 1.3                 | ms   |
| PGC4K  | 2.4                 | ms   |
| PGC7K  | 3.8                 | ms   |
| PGC10K | 5.8                 | ms   |

Note:

(DS03001, V1.6) 36 / 37

<sup>1.</sup> Master Self Configuration Time refers to the time from the completion of CPLD initialization to entering user mode



#### **Disclaimer**

#### **Copyright Notice**

This document is copyrighted by Shenzhen Pango Microsystems Co., Ltd., and all rights are reserved. Without prior written approval, no company or individual may disclose, reproduce, or otherwise make available any part of this document to any third party. Non-compliance will result in the Company initiating legal proceedings.

#### **Disclaimer**

- 1. This document only provides information in stages and may be updated at any time based on the actual situation of the products without further notice. The Company assumes no legal responsibility for any direct or indirect losses caused by improper use of this document.
- 2. This document is provided "as is" without any warranties, including but not limited to warranties of merchantability, fitness for a particular purpose, non-infringement, or any other warranties mentioned in proposals, specifications, or samples. This document does not grant any explicit or implied intellectual property usage licence, whether by estoppel or otherwise.
- 3. The Company reserves the right to modify any documents related to its family products at any time without prior notice.

(DS03001, V1.6) 37 / 37