Linear Analysis Homework 1

Michael Nelson

Problem 1

Proposition 0.1. (*Polarization Identity*) For $x, y \in \mathcal{V}$ we have

$$4\langle x, y \rangle = \|x + y\|^2 + i\|x + iy\|^2 - \|x - y\|^2 - i\|x - iy\|^2$$

Proof. We calculate

$$||x + y||^2 = \langle x + y, x + y \rangle$$

= $\langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$,

and

$$i||x + iy||^2 = i\langle x + iy, x + iy \rangle$$

= $i\langle x, x \rangle + i\langle x, iy \rangle + i\langle iy, x \rangle + i\langle iy, iy \rangle$
= $i\langle x, x \rangle + \langle x, y \rangle - \langle y, x \rangle + i\langle y, y \rangle$,

and

$$-\|x - y\|^{2} = -\langle x - y, x - y \rangle$$

$$= -\langle x, x \rangle - \langle x, -y \rangle - \langle -y, x \rangle - \langle -y, -y \rangle$$

$$= -\langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle - \langle y, y \rangle,$$

and

$$-i\|x - iy\|^2 = -i\langle x - iy, x - iy\rangle$$

$$= -i\langle x, x \rangle - i\langle x, -iy \rangle - i\langle -iy, x \rangle - i\langle -iy, -iy \rangle$$

$$= -i\langle x, x \rangle + \langle x, y \rangle - \langle y, x \rangle - i\langle y, y \rangle.$$

Adding these together gives us our desired result.

Problem 2

Proposition o.2. (Parallelogram Identity) For $x, y \in \mathcal{V}$ we have

$$||x - y||^2 + ||x + y||^2 = 2||x||^2 + 2||y||^2$$

Proof. We calculate

$$||x + y||^2 = \langle x + y, x + y \rangle$$

$$= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$$

$$= ||x||^2 + 2\operatorname{Re}(\langle x, y \rangle) + ||y||^2.$$

and

$$||x - y||^2 = \langle x - y, x - y \rangle$$

$$= \langle x, x \rangle + \langle x, -y \rangle + \langle -y, x \rangle + \langle -y, -y \rangle$$

$$= ||x||^2 - 2\operatorname{Re}(\langle x, y \rangle) + ||y||^2.$$

Adding these together gives us our desired result.

The geometric interpretation of Proposition (0.2) in the case where $\mathcal{V} = \mathbb{R}^3$ can be seen below:

Problem 3

Proposition o.3. (Pythagorean Theorem) Let x and y be nonzero vectors in \mathcal{V} such that $\langle x,y\rangle=0$ (we call such vectors orthogonal to one another). Then

$$||x + y||^2 = ||x||^2 + ||y||^2.$$

Proof. We have

$$||x + y||^2 = \langle x + y, x + y \rangle$$

$$= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$$

$$= \langle x, x \rangle + \langle y, y \rangle$$

$$= ||x||^2 + ||y||^2.$$

Problem 4

Proposition 0.4. Let (x_n) and (y_n) be two sequences in \mathcal{V} . Then the following statements hold:

- 1. If $x_n \to x$ and $y_n \to y$, then $x_n + y_n \to x + y$.
- 2. If $x_n \to x$ and $y_n \to y$, then $\langle x_n, y_n \rangle \to \langle x, y \rangle$. In particular, $||x_n|| \to ||x||$.

Proof.

1. Let $\varepsilon > 0$. Choose $N \in \mathbb{N}$ such that $n \geq N$ implies $||x_n - x|| < \varepsilon/2$ and $||y_n - y|| < \varepsilon/2$. Then $n \geq N$ implies

$$||(x_n + y_n) - (x + y)|| \le ||x_n - x|| + ||y_n - y||$$

$$< \varepsilon/2 + \varepsilon/2$$

$$= \varepsilon.$$

2. Since $y_n \to y$, there exists $M \ge 0$ such that $||y_n|| \le M$ for all $n \in \mathbb{N}$. Choose such an M and let $\varepsilon > 0$. Choose $N \in \mathbb{N}$ such that $n \ge N$ implies $||x_n - x|| < \varepsilon/2M$ and $||y_n - y|| < \varepsilon/2||x||$. Then $n \ge N$ implies

$$|\langle x_n, y_n \rangle - \langle x, y \rangle| = |\langle x_n, y_n \rangle - \langle x, y_n \rangle + \langle x, y_n \rangle - \langle x, y \rangle|$$

$$\leq |\langle x_n, y_n \rangle - \langle x, y_n \rangle| + |\langle x, y_n \rangle - \langle x, y \rangle|$$

$$= |\langle x_n - x, y_n \rangle| + |\langle x, y_n - y \rangle|$$

$$\leq ||x_n - x|| ||y_n|| + ||x|| ||y_n - y||$$

$$\leq ||x_n - x|| M + ||x|| ||y_n - y||$$

$$< \varepsilon/2 + \varepsilon/2$$

$$= \varepsilon.$$

To see that $||x_n|| \to ||x||$, we just set $y_n = x_n$. Then

$$||x_n|| = \sqrt{\langle x_n, x_n \rangle}$$

$$\to \sqrt{\langle x, x \rangle}$$

$$= ||x||,$$

where we were allowed to take limits inside the square root function since the square root function is continuous on $\mathbb{R}_{>0}$.

Problem 5

Proposition o.5. Let $\langle \cdot, \cdot \rangle : M_{m \times n}(\mathbb{R}) \times M_{m \times n}(\mathbb{R}) \to \mathbb{R}$ be given by

$$\langle A,B\rangle = Tr(B^{\top}A),$$

for all $A, B \in M_n(\mathbb{C})$. Then the pair $(M_n(\mathbb{C}), \langle \cdot, \cdot \rangle)$ forms an inner-product space.

Proof. Linearity in the first argument follows from distributivity of matrix multiplication and from linearity of the trace function: Let $A, B, C \in M_{m \times n}(\mathbb{R})$. Then

$$\langle A + B, C \rangle = \operatorname{Tr}(C^{\top}(A + B))$$

$$= \operatorname{Tr}(C^{\top}A + C^{\top}B)$$

$$= \operatorname{Tr}(C^{\top}A) + \operatorname{Tr}(C^{\top}B)$$

$$= \langle A, C \rangle + \langle B, C \rangle.$$

Symmetry of $\langle \cdot, \cdot \rangle$ follows from the fact that $\text{Tr}(A) = \text{Tr}(A^{\top})$ for all $A \in M_{m \times n}(\mathbb{R})$: Let $A, B \in M_{m \times n}(\mathbb{R})$. Then

$$\langle A, B \rangle = \operatorname{Tr}(B^{\top}A)$$

= $\operatorname{Tr}((B^{\top}A)^{\top})$
= $\operatorname{Tr}(A^{\top}B)$
= $\langle B, A \rangle$.

Finally, to see positive-definiteness of $\langle \cdot, \cdot \rangle$, let

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \in \mathbf{M}_{m \times n}(\mathbb{R}).$$

Then

$$\langle A, A \rangle = \operatorname{Tr}(A^{\top}A)$$

$$= \operatorname{Tr} \begin{pmatrix} a_{11} & \cdots & a_{m1} \\ \vdots & \ddots & \vdots \\ a_{1n} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

$$= \sum_{j=1}^{n} \sum_{i=1}^{m} a_{ij}^{2}.$$

is a sum of its entries squared. This implies positive-definiteness.

Problem 6a

Proposition o.6. Let $\langle \cdot, \cdot \rangle : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$ be given by

$$\langle x,y\rangle = \langle (x_1,\ldots,x_n), (y_1,\ldots,y_n)\rangle = \sum_{i=1}^n x_i\overline{y}_i.$$

for all $x, y \in \mathbb{C}^n$. Then the pair $(\mathbb{C}^n, \langle \cdot, \cdot \rangle)$ forms an inner-product space.

Proof. For linearity in the first argument follows from linearity, let $x, y, z \in \mathbb{C}^n$. Then

$$\langle x + y, z \rangle = \sum_{i=1}^{n} (x_i + y_i) \overline{z}_i$$
$$= \sum_{i=1}^{n} x_i \overline{z}_i + \sum_{i=1}^{n} y_i \overline{z}_i$$
$$= \langle x, z \rangle + \langle y, z \rangle.$$

For conjugate symmetry of $\langle \cdot, \cdot \rangle$, let $x, y \in \mathbb{C}^n$. Then

$$\langle x, y \rangle = \sum_{i=1}^{n} x_{i} \overline{y}_{i}$$

$$= \sum_{i=1}^{n} \overline{\overline{x_{i}} \overline{y}_{i}}$$

$$= \sum_{i=1}^{n} \overline{y_{i}} \overline{x}_{i}$$

$$= \overline{\langle y, x \rangle}.$$

For positive-definiteness of $\langle \cdot, \cdot \rangle$, let $x \in \mathbb{C}^n$. Then

$$\langle x, x \rangle = \sum_{i=1}^{n} x_i \overline{x}_i$$

= $\sum_{i=1}^{n} |x_i|^2$.

is a sum of its components absolute squared. This implies positive-definiteness.

Problem 6b

This follows from an easy application of Cauchy-Schwarz, but here's another method (which turns out to be equivalent to Cauchy-Schwarz). We need the following two lemmas:

Lemma 0.1. Let a and b be nonnegative real numbers. Then we have

$$2ab \le a^2 + b^2. \tag{1}$$

Proof. We have

$$0 \le (a-b)^2$$
$$= a^2 - 2ab + b^2.$$

Therefore the inequality (1) follows from adding 2ab.

Lemma 0.2. Let a_1, \ldots, a_n and b_1, \ldots, b_n be nonnegative real numbers. Then

$$\left(\sum_{i=1}^n a_i b_i\right)^2 \le \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right).$$

Proof. We have

$$\left(\sum_{i=1}^{n} a_i b_i\right)^2 = \sum_{i=1}^{n} a_i^2 b_i^2 + \sum_{1 \le i < j \le n} 2a_i b_j a_j b_i$$

$$\le \sum_{i=1}^{n} a_i^2 b_i^2 + \sum_{1 \le i < j \le n} (a_i^2 b_j^2 + a_j^2 b_i^2)$$

$$= \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right)$$

where the inequality in the second line follows from Lemma (0.1) applied to a_ib_i and a_ib_i .

Corollary. Let $x, y \in \mathbb{C}^n$. Then

$$\sum_{i=1}^{n} |x_i| |y_i| \le \sqrt{\sum_{i=1}^{n} |x_i|^2} \sqrt{\sum_{i=1}^{n} |y_i|^2}.$$

Proof. This follows from by taking squares on both sides and applying Lemma (0.2) since the $|x_i|$ and $|y_i|$ are nonnegative real numbers.

Problem 7a

Proposition 0.7. Let $\ell^2(\mathbb{N})$ be the set of all sequence (x_n) in \mathbb{C} such that

$$\sum_{n=1}^{\infty} |x_n|^2 < \infty$$

and let $\langle \cdot, \cdot \rangle \colon \ell^2(\mathbb{N}) \times \ell^2(\mathbb{N}) \to \mathbb{C}$ be given by

$$\langle (x_n), (y_n) \rangle = \sum_{n=1}^{\infty} x_n \overline{y}_n.$$

for all $(x_n), (y_n) \in \ell^2(\mathbb{N})$. Then the pair $(\ell^2(\mathbb{N}), \langle \cdot, \cdot \rangle)$ forms an inner-product space.

Proof. We first need to show that $\ell^2(\mathbb{N})$ is indeed a vector space. In fact, we will show that $\ell^2(\mathbb{N})$ is a subspace of \mathbb{C}^N , the set of all sequences in \mathbb{C} . Let $(x_n), (y_n) \in \ell^2(\mathbb{N})$ and $\lambda \in \mathbb{C}$. Then Lemma (0.1) implies

$$\sum_{n=1}^{\infty} |\lambda x_n + y_n|^2 \le \sum_{n=1}^{\infty} |\lambda x_n|^2 + \sum_{n=1}^{\infty} |y_n|^2 + \sum_{n=1}^{\infty} 2|\lambda x_n| |y_n|$$

$$\le \lambda^2 \sum_{n=1}^{\infty} |x_n|^2 + \sum_{n=1}^{\infty} |y_n|^2 + \lambda^2 \sum_{n=1}^{\infty} |x_n|^2 + |y_n|^2$$

$$< \infty.$$

Therefore $(\lambda x_n + y_n) \in \ell^2(\mathbb{N})$, which implies $\ell^2(\mathbb{N})$ is a subspace of $\mathbb{C}^{\mathbb{N}}$.

Next, let us show that the inner product converges, and hence is defined everywhere. Let (x_n) , $(y_n) \in \ell^2(\mathbb{N})$. Then it follows from Lemma (0.1) that

$$\sum_{n=1}^{\infty} |x_n \overline{y}_n| = \sum_{n=1}^{\infty} |x_n| |y_n|$$

$$\leq \sum_{n=1}^{\infty} \frac{|x_n|^2 + |y_n|^2}{2}$$

$$= \frac{1}{2} \sum_{n=1}^{\infty} |x_n|^2 + \frac{1}{2} \sum_{n=1}^{\infty} |y_n|^2$$

$$< \infty$$

Therefore $\sum_{n=1}^{\infty} x_n \overline{y}_n$ is absolutely convergent, which implies it is convergent. (We can't use Cauchy-Schwarz here since we haven't yet shown that $\langle \cdot, \cdot \rangle$ is in fact an inner-product).

Finally, let us shows that $\langle \cdot, \cdot \rangle$ is an inner-product. Linearity in the first argument follows from distrubitivity

of multiplication and linearity of taking infinite sums. For conjugate symmetry, let (x_n) , $(y_n) \in \ell^2(\mathbb{N})$. Then

$$\langle (x_n), (y_n) \rangle = \sum_{n=1}^{\infty} x_n \overline{y}_n$$

$$= \lim_{N \to \infty} \sum_{n=1}^{N} x_n \overline{y}_n$$

$$= \lim_{N \to \infty} \sum_{n=1}^{N} x_n \overline{y}_n$$

$$= \lim_{N \to \infty} \sum_{n=1}^{N} \overline{x}_n \overline{y}_n$$

$$= \lim_{N \to \infty} \sum_{n=1}^{N} y_n \overline{x}_n$$

$$= \sum_{n=1}^{\infty} y_n \overline{x}_n$$

$$= \overline{\langle (y_n), (x_n) \rangle},$$

where we were allowed to bring the conjugate inside the limit since the conjugate function is continuous on \mathbb{C} . For positive-definiteness, let $(x_n) \in \ell^2(\mathbb{N})$. Then

$$\langle (x_n), (x_n) \rangle = \sum_{n=1}^{\infty} x_n \overline{x}_n$$
$$= \sum_{n=1}^{\infty} |x_n|^2$$
$$\geq 0.$$

If $\sum_{n=1}^{\infty} |x_n|^2 = 0$, then clearly we must have $x_n = 0$ for all n.

Problem 7b

Proposition o.8. Let $(x_n) \in \ell^2(\mathbb{N})$ such that $\sum_{n=1}^{\infty} |x_n|^2 = 1$. Then

$$\sum_{n=1}^{\infty} \frac{|x_n|}{2^n} \le \frac{1}{\sqrt{3}}.\tag{2}$$

where the inequality (2) becomes an equality if and only if $|x_n| = \sqrt{3} \cdot 2^{-n}$ for all n.

Proof. By Cauchy-Schwarz, we have

$$\sum_{n=1}^{\infty} \frac{|x_n|}{2^n} = |\langle (|x_n|), (2^{-n}) \rangle|$$

$$\leq \|(|x_n|)\| \|(2^{-n})\|$$

$$= \sqrt{\sum_{n=1}^{\infty} |x_n|^2} \sqrt{\sum_{n=1}^{\infty} 2^{-2n}}$$

$$1 \cdot \sqrt{\sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^n - 1}$$

$$= \sqrt{\frac{1}{1 - 1/4} - 1}$$

$$= \sqrt{\frac{4}{3} - 1}$$

$$= \frac{1}{\sqrt{3}}.$$

where the inequality becomes an equality if and only if $(|x_n|)$ and (2^{-n}) are linearly dependent. This means that there is a $\lambda \in \mathbb{C}$ such that $|x_n| = \lambda 2^{-n}$ for all n. To find this λ , write

$$1 = \sum_{n=1}^{\infty} |x_n|^2$$

$$= \sum_{n=1}^{\infty} |\lambda 2^{-n}|^2$$

$$= |\lambda|^2 \sum_{n=1}^{\infty} \left(\frac{1}{4}\right)^n$$

$$= \frac{|\lambda|^2}{3}.$$

Thus, any $\lambda \in \mathbb{C}$ such that $|\lambda| = \sqrt{3}$ works. (Actually, we must have $\lambda = \sqrt{3}$ since $\lambda = |x_n| 2^n$ is positive).

Problem 8

Proposition o.9. Let $f \in C[0,1]$ such that $\int_0^1 |f(x)|^2 dx = 1$. Then

$$\int_0^1 |f(x)| \sin(\pi x) dx \le \frac{1}{\sqrt{2}},$$

where the inequality becomes an equality if and only if $|f(x)| = \sqrt{2}\sin(\pi x)$.

Proof. First note that

$$\int_0^1 \sin^2(\pi x) dx = \int_0^1 \cos^2(\pi x) dx$$
$$= \int_0^1 (1 - \sin^2(\pi x)) dx$$

implies $\int_0^1 \sin^2(\pi x) dx = 1/2$, where in the first equality above we used integration by parts with $u = \sin(\pi x)$ and $dv = \sin(\pi x) dx$. Therefore, by Cauchy-Schwarz, we have

$$\int_0^1 |f(x)| \sin(\pi x) dx \le \sqrt{\int_0^1 |f(x)|^2 dx} \cdot \sqrt{\int_0^1 \sin^2(\pi x) dx}$$
$$= 1 \cdot \frac{1}{\sqrt{2}}$$
$$= \frac{1}{\sqrt{2}}'$$

where the inequality becomes an equality if and only if |f(x)| and $\sin(\pi x)$ and linearly dependent. This means that there is a $\lambda \in \mathbb{C}$ such that $|f(x)| = \lambda \sin(\pi x)$ for all x. To find this λ , write

$$1 = \int_0^1 |f(x)|^2 dx$$
$$= \int_0^1 |\lambda \sin(\pi x)|^2 dx$$
$$= |\lambda|^2 \int_0^1 \sin^2(\pi x) dx$$
$$= \frac{|\lambda|^2}{2}.$$

Thus, any $\lambda \in \mathbb{C}$ such that $|\lambda| = \sqrt{2}$ works. (Actually, we must have $\lambda = \sqrt{2}$ since $\lambda = |f(x)|/\sin(\pi x)$ is positive).

Remark. If we tried to apply Lemma (0.1) at each $x \in [0,1]$, we'd only get the weaker result:

$$\int_0^1 |f(x)| \sin(\pi x) dx \le \frac{1}{2} \left(\int_0^1 |f(x)|^2 dx + \int_0^1 \sin^2(\pi x) dx \right)$$
$$= \frac{1}{2} + \frac{1}{4}$$
$$= \frac{3}{4}.$$