1906003022015

Veritabanı Yönetim Sistemleri

BAİBÜ Bilgisayar Müh.

Dr. Öğr. Üyesi İsmail Hakkı Parlak

ismail.parlak@ibu.edu.tr

Oda: 335

Ayrıştırma ile Tasarım

- Her niteliği barındıran "dev" ilişkiler ile başlıyoruz.
- Dev ilişkiyi, aynı bilgileri barındırabileceğimiz daha küçük ilişkilere doğru ayrıştırıyoruz.
- Ayrıştırma işlemini otomatik gerçekleştirebiliriz:
 - Dev ilişkiler + veriye ait özellikler belirlenir.
 - Sistem veriye ait özellikler kullanılarak ayrıştırılır.
 - En son elde edilen ilişkiler *normal formlar*ı sağlar.
 - Bu sayede anomali oluşma ihtimali ortadan kalkar ve veri kaybı yaşanmaz.

Veri Özellikleri ve Normal Formlar

Fonksiyonel bağlılıklar → Boyce-Codd Normal Form

+

Birden çok değerli bağlılıklar → 4. Normal Form

Örnek

- Öğrenciler(TCNo, ad, adres, liseKodu, liseAdı, liseŞehri, ortalama, öncelik)
- Başvurular(TCNo, üniAdı, üniŞehri, tarih, anaDal)
- "öncelik ortalamaya göre belirlenir."
 - ortalama > 4.5 ise öncelik = 1
 - 4 < ortalama \leq 4.5 ise öncelik = 2
 - ortalama ≤ 4 ise öncelik = 3
- Aynı ortalamaya sahip olan 2 öğrenci aynı önceliğe sahip olur.

Örnek

- Öğrenciler(TCNo, ad, adres, liseKodu, liseAdı, liseŞehri, ortalama, öncelik)
- Aynı ortalamaya sahip olan 2 öğrenci aynı önceliğe sahip olur.
- $\forall t, u \in \ddot{O}$ grenciler: $t.ortalama = u.ortalama \rightarrow t.\ddot{o}ncelik = u.\ddot{o}ncelik$
- ortalama → öncelik

Fonksiyonel Bağımlılık (Functional Dependency)

- $\forall t, u \in \mathbb{R}$: $t.A = u.A \rightarrow t.B = u.B$
- $A \rightarrow B$

FB Genel Notasyonu

- $\forall t, u \in R: t[A_1, A_2, ..., An] = u[A_1, A_2, ..., An] \rightarrow t[B_1, B_2, ..., Bm] = u[B_1, B_2, ..., Bm]$
- $A_1, A_2, \dots, An \rightarrow B_1, B_2, \dots, Bm$

Kısaltma

- $A_1, A_2, ..., An = \bar{A}$
- $B_1, B_2, \dots, Bm = \overline{B}$

Fonksiyonel Bağımlılık (Functional Dependency)

- $\overline{A} \rightarrow \overline{B}$
- $R(\overline{A}, \overline{B}, \overline{C})$

\overline{A}	\overline{B}	Ē
\bar{a}	$ar{b}$	\overline{c}_1
ā	$ar{b}$	$\overline{c_2}$

Örnek

- Öğrenciler(TCNo, ad, adres, liseKodu, liseAdı, liseŞehri, ortalama, öncelik)
- FB'ler neler olabilir?

FB (FD) ve Anahtar (Key) Kavramı

- 1. Kopyası olmayan (tekrarsız) kayıtlardan oluşan bir *R* olsun.
- 2. R içinde $\overline{A} \rightarrow T \ddot{\mathbf{u}} m \ nitelikler$ olsun.

Bu 2 şart sağlanıyorsa \overline{A} bir anahtardır (key).

FD Türleri

• Önemsiz (trivial) FB:

$$\overline{A} \to \overline{B}$$
 ve $\overline{B} \subseteq \overline{A}$

• Önemsiz olmayan (nontrivial) FB:

$$\overline{A} \to \overline{B}$$
 ve $\overline{B} \subsetneq \overline{A}$

• Tamamen önemsiz olmayan (completely nontrivial) FB:

$$\overline{A} \rightarrow \overline{B}$$
 ve $\overline{B} \cap \overline{A} = \emptyset$

Ayırma (splitting) kuralı:

$$ar{A}
ightarrow B_1, B_2, \ldots, Bm$$
 ise: $ar{A}
ightarrow B_1$ $ar{A}
ightarrow B_2$... $ar{A}
ightarrow Bm$

Sol tarafı parçalayabilir miyiz?

 $A_1, A_2, ..., An \rightarrow B ise: A1 \rightarrow B???$

• Birleştirme (combining) kuralı:

$$ar{A}
ightarrow B_1$$
 $ar{A}
ightarrow B_2$
 \dots
 $ar{A}
ightarrow Bm$

- Önemsiz (trivial) FD kuralları:
- $\overline{A} \to \overline{B}$ ve $\overline{B} \subseteq \overline{A}$
- 1. $\overline{A} \rightarrow \overline{B}$ ise $\overline{A} \rightarrow \overline{A} \cup \overline{B}$
- 2. $\overline{A} \to \overline{B}$ ise $\overline{A} \to \overline{A} \cap \overline{B}$

- Geçişlilik (transitive) kuralı:
- $\overline{A} \to \overline{B}$ ve $\overline{B} \to \overline{C}$ ise $\overline{A} \to \overline{C}$

\overline{A}	\overline{B}	$ar{\mathcal{C}}$	\overline{D}

Nitelik Kapanımı (Closure of Attributes)

- Bir ilişki için FB'ler ve bir nitelik kümesi \overline{A} verilmiş olsun.
- $\overline{A} \to B$ 'yi sağlayan tüm B'lerin kümesi \overline{A} 'nın kapanımını oluşturur.
- \overline{A} 'nın kapanımı \overline{A}^{+} sembolü ile gösterilir.

Nitelik Kapanımı Örnek

- Öğrenciler(TCNo, ad, adres, liseKodu, liseAdı, liseŞehri, ortalama, öncelik)
- TCNo → ad, adres, ortalama
- ortalama → öncelik
- liseKodu → liseAdı, liseŞehri
- {TCNo, liseKodu}+ = ?

Kapanım ve Anahtar Kavramı

- \overline{A} , R için bir anahtar mıdır?
 - Eğer \overline{A}^+ = R'nin tüm nitelikleri ise \overline{A}^- anahtardır.
- R üzerinde tanımlı bir FD kümesi verildiğinde tüm anahtarlar nasıl bulunabilir?
 - Tüm nitelik alt kümelerinin kapanımlarının tek tek tüm nitelikleri kapsayıp kapsamadığı test edilebilir. Ancak çok verimli bir yöntem değildir.
 - Daha verimli çalışmak için alt küme boyutları küçükten büyüğe test edilebilir. Eğer AB → tüm nitelikler ise AB'nin tüm süper setleri → tüm nitelikler olacaktır.

Takipçi FB Kavramı

- S1 ve S2 iki FB kümesi olsun.
- S1'i sağlayan bütün ilişkiler S2'yi de sağlıyorsa, S2,
 S1'in takipçisidir denir.
- Ör:
 - S2: {TCNo → öncelik}
 - S1: {TCNo → ortalama, ortalama → öncelik}
- Takipçilik testi: $\overline{A} \rightarrow \overline{B}$ FB'si S'in takipçisi midir?
 - S üzerinde \overline{A}^+ hesaplanır, eğer \overline{B} hesaplanan \overline{A}^+ içindeyse $\overline{A}^- \to \overline{B}$, S'in takipçisidir.

İlişkisel Şemayı Ayrıştırmak

• R(A₁, A₂, ..., A_n)

Ayrıştırma Örneği 1

```
Öğrenciler(TCNo, ad, adres, liseKodu, liseAdı, liseŞehri, ortalama, öncelik)
```

```
S1(TCNo, ad, adres, liseKodu, ortalama, öncelik)
S2(liseKodu, liseAdı, liseŞehri)
```

S1'in nitelikleri ∪ S2'nin nitelikleri = Öğrenciler'in nitelikleri S1 ⋈ S2 = Öğrenciler

Ayrıştırma Örneği 2

```
Öğrenciler(TCNo, ad, adres, liseKodu, liseAdı, liseŞehri, ortalama, öncelik)
```

```
S1(TCNo, ad, adres, liseKodu, liseAdı, liseŞehri)
S2(ad, liseAdı, ortalama, öncelik)
```

```
S1'in nitelikleri ∪ S2'nin nitelikleri = Öğrenciler'in nitelikleri 
S1 ⋈ S2 = Öğrenciler ???
```

Boyce-Codd Normal Form (BCNF)

- Dev ilişkileri ayrıştırma doğru yapılmalıdır (oluşan parçalar birleştirilince dev ilişki kayıpsız olarak tekrar oluşturulabilmeli).
- Ayrıştırma sonucu oluşan ilişkiler BCNF'ye uygun olmalıdır.
- **BCNF**: FB'leri bulunan bir R, BCNF'i şu şartlar altında sağlar:
 - Tüm $\overline{A} \to B$ için \overline{A} anahtar olmalıdır.

\overline{A}	В	XYZ	
			BCNF ihlali örne

BCNF Örneği 1

- Öğrenciler(TCNo, ad, adres, liseKodu, liseAdı, liseŞehri, ortalama, öncelik)
- TCNo → ad, adres, ortalama
- ortalama → öncelik
- liseKodu → liseAdı, liseŞehri
- Anahtarlar = {TCNo, liseKodu}
- Tüm FB'lerin sol tarafında anahtar bulunuyor mu?

BCNF Örneği 2

- Başvurular(TCNo, üniAdı, üniŞehri, tarih, anaDal)
- TCNo, üniAdı, üniŞehri → tarih, anaDal (her öğrenci her üniversiteye sadece 1 kere ve 1 ana dala başvurabilir)
- Anahtarlar =
- Tüm FB'lerin sol tarafında anahtar bulunuyor mu?

BCNF Ayrıştırma Algoritması

- Girdi: R + R'deki FB'ler.
- Çıktı: R'nin geri kayıpsız birleştirilebilen BCNF'e uyan ayrışımları.
- 1. R'nin anahtarlarını bul.
- 2. Tüm ayrışım ilişkileri BCNF'e uyana kadar tekrar et:
 - A → B'ye sahip BCNF'i ihlal eden bir R' seç.
 - R' ilişkisini R₁(A, B) ve R₂(A, geriye kalanlar) diye ayrıştır.
 - R₁ ve R₂ için FB'leri hesapla.
 - R₁ ve R₂'nin anahtarlarını hesapla.

- Öğrenciler(TCNo, ad, adres, liseKodu, liseAdı, liseŞehri, ortalama, öncelik)
- TCNo → ad, adres, ortalama
- ortalama → öncelik
- liseKodu → liseAdı, liseŞehri
- Anahtar = {TCNo, liseKodu}

- Öğrenciler(TCNo, ad, adres, liseKodu, liseAdı, liseŞehri, ortalama, öncelik)
- TCNo → ad, adres, ortalama
- ortalama → öncelik
- liseKodu → liseAdı, liseŞehri
- Anahtar = {TCNo, liseKodu}

- Öğrenciler(TCNo, ad, adres, liseKodu, liseAdı, liseŞehri, ortalama, öncelik)
- TCNo → ad, adres, ortalama
- ortalama → öncelik
- liseKodu → liseAdı, liseŞehri
- Anahtar = {TCNo, liseKodu}

- Öğrenciler(TCNo, ad, adres, liseKodu, liseAdı, liseŞehri, ortalama, öncelik)
- TCNo → ad, adres, ortalama
- ortalama → öncelik
- liseKodu → liseAdı, liseŞehri
- Anahtar = {TCNo, liseKodu}