6. Foliensatz Computernetze

Prof. Dr. Christian Baun

Frankfurt University of Applied Sciences (1971-2014: Fachhochschule Frankfurt am Main) Fachbereich Informatik und Ingenieurwissenschaften christianbaun@fb2.fra-uas.de

Sicherungsschicht

- Aufgaben der Sicherungsschicht (Data Link Layer):
 - Sender: Pakete der Vermittlungsschicht in Rahmen (Frames) verpacken
 - Empfänger: Rahmen im Bitstrom der Bitübertragungsschicht erkennen
 - Korrekte Übertragung der Rahmen innerhalb eines physischen Netzes gewährleisten durch Fehlererkennung mit Prüfsummen
 - Physische Adressen (MAC-Adressen) bereitstellen
 - Zugriff auf das Übertragungsmedium regeln

0	0 0		0		
TCP/IP-Referenzmodell	Hybrides Referenzmodell		OSI-Referenzmodell		
		111	Anwendungsschicht		
		100	Darstellungsschicht	ſ	
Anwendungsschicht	 Anwendungsschicht		Sitzungsschicht	v	
Transportschicht	Transportschicht		Transportschicht	c	
Internetschicht	Vermittlungsschicht		Vermittlungsschicht	r	
Netzzugangsschicht	 Sicherungsschicht	T	Sicherungsschicht	C	
	 Bitübertragungsschicht	T	Bitübertragungsschicht		

Übungsblatt 3 wiederholt die für die Lernziele relevanten Inhalte dieses Foliensatzes

- Geräte: Bridge, Layer-2-Switch (Multiport-Bridge), Modem
- Protokolle: Ethernet, Token Ring, WLAN, Bluetooth, PPP

Lernziele dieses Foliensatzes

- Sicherungsschicht (Teil 3)
 - Medienzugriffsverfahren
 - Medienzugriffsverfahren bei Ethernet
 - Medienzugriffsverfahren bei WLAN
 - Adressauflösung mit ARP

Medienzugriffsverfahren

- Bei Ethernet 10BASE2/5, WLAN und PowerLAN (Powerline Communication) verwenden die Netzwerkgeräte bzw. Stationen ein gemeinsames Übertragungsmedium
 - Um den Medienzugriff zu koordinieren und Kollisionen zu vermeiden, sind Medienzugriffsverfahren nötig
 - Ethernet verwendet das Medienzugriffsverfahren CSMA/CD
 - WLAN und PowerLAN verwenden das Medienzugriffsverfahren CSMA/CA
- Bluetooth wird hier nicht behandelt, da sich Bluetooth-Geräte in Piconetzen organisieren
 - In jedem Piconetz koordiniert ein Master den Medienzugriff

Medienzugriffsverfahren CSMA/CD

- Anders als bei Token Ring sind bei Ethernet die Wartezeit und übertragbare Datenmenge nicht eindeutig vorhersagbar
- Alle Teilnehmer stehen in Bezug auf den Medienzugriff im direktem
 Wettbewerb
- Wartezeit und Datenmenge hängen ab von...
 - der Anzahl der Teilnehmer und
 - der Datenmenge, die die einzelnen Teilnehmer versenden
- Ethernet verwendet das Medienzugriffsverfahren Carrier Sense Multiple Access / Collision Detection (CSMA/CD)

Bedeutung von CSMA/CD

Carrier Sense (CS) heißt:

- Jedes Netzwerkgerät hört vor dem Senden den Kanal ab, und sendet nur dann, wenn der Kanal frei ist
- Die Netzwerkgeräte können also zwischen einer freien und einer besetzten Verbindungsleitung unterscheiden

Multiple Access (MA) heißt:

 Alle Netzwerkgeräte greifen auf dasselbe Übertragungsmedium konkurrierend zu

Collision Detection (CD) heißt:

 Jedes Netzwerkgerät hört auch während des Sendens den Kanal ab, um auftretende Kollisionen zu entdecken und wenn nötig eine Fehlerbehandlung durchzuführen

Arbeitsweise von CSMA/CD (1/2)

Bildquelle: Wikipedia

- Will ein Netzwerkgerät via Ethernet Datenrahmen übertragen, hält es folgenden Ablauf ein
- Übertragungsmedium überwachen
 - Übertragungsmedium frei ⇒ Schritt 2
 - Übertragungsmedium belegt ⇒ Schritt 3
- Rahmen senden und Übertragungsmedium weiter abhören
 - Erfolgreiche Übertragung
 - Erfolgsmeldung an höhere Netzwerkschichten melden \Longrightarrow Schritt 5
 - Kollision wird entdeckt
 - Sendevorgang abbrechen und das 48 Bits lange Störsignal (Jam-Signal) senden, um die Kollision bekannt zu geben ⇒ Schritt 3

Arbeitsweise von CSMA/CD (2/2)

Bildquelle: Wikipedia

- Übertragungsmedium belegt. Anzahl der Übertragungsversuche prüfen:
 - Maximum nicht erreicht
 - Zufällige Zeit abwarten \Longrightarrow Schritt 1
 - Die zufällige Zeit wird mit dem Backoff-Verfahren berechnet
 - Maximum erreicht ⇒ Schritt 4
- Fehler
 - Maximale Anzahl der Übertragungsversuchen erreicht
 - Fehler an höhere Netzwerkschichten melden ⇒ Schritt 5
- Übertragungsmodus verlassen

Beispiel zu CSMA/CD

Netzwerkausdehnung und Kollisionserkennung

- Eine Kollision muss vom Sender erkannt werden
 - Es ist wichtig, dass ein Rahmen noch nicht fertig gesendet ist, wenn es zur Kollision kommt
 - Sonst ist das sendende Netzwerkgerät vielleicht schon mit dem Aussenden des Rahmens fertig und nimmt eine erfolgreiche Übertragung an
- Jeder Rahmen muss eine gewisse **Mindestlänge** haben
 - Diese muss so dimensioniert sein, dass die Übertragungsdauer für einen Rahmen minimaler Länge, die maximale RTT (Round Trip Time) nicht unterschritten wird
 - RTT ist die Zeit, die ein Rahmen benötigt, um vom einen Ende des Netzes zum weitest entfernten anderen Ende des Netzes und wieder zurück zu gelangen
 - So ist sichergestellt, dass sich eine Kollision noch bis zum Sender ausbreiten kann, ohne dass dieser mit dem Senden fertig ist
 - Erkennt der Sender eine Kollision, weiß er, dass sein Rahmen nicht richtig beim Empfänger angekommen ist, und kann es später erneut versuchen

 $\label{thermodel} \mbox{Ethernet definiert eine maximale Netzwerkausdehnung und eine minimale Rahmenlänge}$

Minimale Rahmenlänge und Kollisionserkennung (Beispiel)

- Für Ethernet ist eine maximal zulässige Netzwerkausdehnung und eine minimale Rahmenlänge festgelegt
- Um die minimale Rahmenlänge zu berechnen, bei der die Kollisionserkennung noch möglich ist, gilt:

$$P=2*U*rac{D}{V}$$
 $P=0$ Minimale Rahmenlänge in Bits $U=0$ Detenübertragungsgeschwindigkeit des Übertragungsmediums in Bits pro Sekunde $D=0$ Länge des Netzes in Metern $V=0$ Signalgeschwindigkeit auf dem Übertragungsmedium in Metern pro Sekunde

- Rechenbeispiel für 10BASE5 mit 10 MBit/s und Koaxialkabeln:
 - $U = 10 \, \text{MBit/s} = 10.000.000 \, \text{Bits/s}$
 - D = 2.500 m (das ist die Maximallänge für 10BASE5)
 - ullet V = Lichtgeschwindigkeit * Ausbreitungsfaktor
 - Lichtgeschwindigkeit = 299.792.458 m/s
 - Ausbreitungsfaktor = 0,77 für Koaxialkabel
 - $V = 299.792.458 \,\mathrm{m/s} * 0.77 \approx 231.000.000 \,\mathrm{m/s}$

$$P=2*10*10^6\,\mathrm{Bits/s}*rac{2.500\,\mathrm{m}}{231*10^6\,\mathrm{m/s}}pprox$$
 217 Bits $pprox$ 28 Bytes

 Schlussfolgerung: Die minimale Rahmenlänge von 64 Bytes bei Ethernet ist mehr als ausreichend

Ausbreitungsfaktor

- Der Ausbreitungsfaktor, der auch Verkürzungsfaktor heißt, hängt vom Übertragungsmedium ab und ist:
 - 1 für Vakuum
 - 0,64 für Twisted-Pair-Kabel Cat-5e
 - 0,66 für Koaxialkabel RG-58 (\Longrightarrow Ethernet 10BASE2)
 - 0,67 für Glasfaser
 - 0,77 für Koaxialkabel RG-8 (⇒ Ethernet 10BASE5)
- Beschreibt die Signalgeschwindigkeit in einem Übertragungsmedium in Relation zur Lichtgeschwindigkeit

Netzwerkausdehnung und Kollisionserkennung (Beispiel)

 Um die maximale Ausdehnung zwischen zwei Netzwerkgeräten zu berechnen, bei der die Kollisionserkennung noch funktioniert, gilt:

$$2 * S_{max} = V * t_{Rahmen}$$

$$S_{max}=$$
 Maximale Ausdehnung mit Kollisionserkennung $V=$ Signalgeschwindigkeit auf dem Übertragungsmedium in Metern pro Sekunde $t_{Rahmen}=$ Übertragungsdauer eines Rahmens in Sekunden

- Rechenbeispiel für 10BASE5 mit 10 MBit/s und Koaxialkabeln:
 - $V = 231.000.000 \,\mathrm{m/s} = 231 * 10^6 \,\mathrm{m/s}$
 - Übertragungsdauer $t_{Rahmen} =$ Übertragungsdauer für ein Bit multipliziert mit der Anzahl der Bits in einem Rahmen (\Longrightarrow 512 Bits = 64 Byte)
 - Die Übertragungsdauer für ein Bit bei 10 MBit/s ist 0,1 Mikrosekunden
 - Ein Rahmen mit der kleinsten erlaubten Rahmenlänge vom 64 Byte benötigt somit 51, 2μ s, um vollständig gesendet zu werden
 - ullet Ein 51,2 μ s langer Rahmen legt im Koaxialkabel folgende Strecke zurück:

$$231*10^6 \frac{m}{s}*51, 2*10^{-6} \, s = 11.827, 20 \, m = 11,83 \, km$$

 Schlussfolgerung: Bei einer maximal erlaubten Ausdehnung von 2,5 km ist Kollisionserkennung möglich

CSMA/CD heute

- Das Medienzugriffsverfahren CSMA/CD ist nur bei Ethernet mit der Bus-Topologie zwingend nötig
 - Grund: Dort sind alle Netzwerkgeräte direkt mit einem gemeinsamen Medium verbunden
- Fast alle auf Ethernet basierenden Netze sind heute vollständig geswitcht und darum frei von Kollisionen

Medienzugriffsverfahren CSMA/CA bei Wireless LAN

- CSMA/CD versagt bei Funknetzen
- Bei CSMA/CD stellt der Sender auftretende Kollisionen fest
 - Bei kabelgebundenen Netzen mit gemeinsamem Übertragungsmedium empfängt jeder Teilnehmer die Übertragungen aller anderer Teilnehmer
 - Darum bekommt auch jeder Teilnehmer jede Kollision mit
 - Bei Funknetzen wie WLAN ist das nicht immer der Fall
 - Aus diesem Grund will man das Entstehen von Kollisionen mit dem Medienzugriffsverfahren Carrier Sense Multiple Access / Collision Avoidance (CSMA/CA) minimieren
- Spezielle Eigenschaften des Übertragungsmediums führen bei Funknetzen zu unerkannten Kollisionen beim Empfänger
 - Hidden-Terminal-Problem
 - Fading

Auch PowerLAN bzw. Powerline verwendet CSMA/CA als Medienzugriffsverfahren

Quelle: Analysis of CSMA/CA used in Power Line Communication. Martin Koutny, Petr Mlynek, Jiri Misurec. IEEE (2013)

Spezielle Eigenschaften des Übertragungsmediums

- Hidden-Terminal-Problem (verursacht durch unsichtbare/versteckte Endgeräte)
 - X und Y senden an die Basisstation (Access Point)
 - Wegen Hindernissen können die Stationen X und Y ihre Übertragungen gegenseitig nicht erkennen, obwohl sie an der Basisstation interferieren
- Hindernis
 Y AP

- Fading (abnehmende Signalstärke)
 - X und Y senden an die Basisstation
 - Die elektromagnetischen Wellen werden durch Hindernisse und im freien Raum allmählich abgeschwächt
 - Durch die Positionen der Stationen X und Y zueinander sind deren Signale zu schwach, als dass sie ihre Übertragungen gegenseitig wahrnehmen können

Quelle: Computernetzwerke, James F. Kurose, Keith W. Ross, Pearson (2008)

WLAN (802.11) kennt drei verschiedene Medienzugriffsverfahren

- O CSMA/CA
 - Vorgehensweise: "erst hören, dann sprechen" (listen before talk)
 - Kollisionsvermeidung durch zufällige Backoffzeit
 - Mindestabstand zwischen aufeinanderfolgenden Rahmen
 - Empfangsbestätigung durch ACK (nicht bei Broadcast)
 - Standardmäßiges Medienzugriffsverfahren bei WLAN und bei allen WLAN-Geräten implementiert
- **2** CSMA/CA RTS/CTS (Request To Send/Clear To Send)
 - Vermeidung des Problems versteckter Endgeräte
 - Optional und meistens implementiert
- CSMA/CA PCF (Point Coordination Function)
 - Access Point steuert den Medienzugriff zentral
 - Optional und selten implementiert

Quellen: Vorlesungsfolien von Prof. Dr. Michael Massoth und Wikipedia

Übertragung von Rahmen

- Erkennt bei CSMA/CD (Ethernet) ein sendender Teilnehmer eine Kollision, bricht er das Senden des Rahmens ab
- WLAN verwendet aber keine Kollisionserkennung, sondern mit CSMA/CA eine Kollisionsvermeidung (eigentlich ist es nur eine Kollisionsminimierung)
 - Hat eine Station mit dem Senden eines Rahmens begonnen, überträgt sie den vollständigen Rahmen in jedem Fall
 - Hat eine Station einmal mit dem Senden begonnen gibt kein Zurück
 - Der Sender muss darum erkennen können, wenn ein Rahmen nicht korrekt beim Empfänger angekommen ist
 - Lösung: Der Empfänger bestätigt den korrekten Empfang des Rahmens mit ACK

Ablauf von CSMA/CA – 1/5

- ullet Zuerst horcht der Sender am Übertragungsmedium (\Longrightarrow Carrier Sense)
- Das Medium muss für einen kurzen Zeitraum frei sein
 - Der Zeitraum heißt **Distributed Interframe Spacing (DIFS)** $\approx 50 \mu s$
- Ist das Medium einen DIFS lang frei, kann der Sender einen Rahmen aussenden

Ablauf von CSMA/CA – 2/5

- Empfängt eine Station einen Rahmen, der die CRC-Prüfung besteht, wartet sie einen kurzen Zeitraum ab
 - Der Zeitraum heißt **Short Interframe Spacing (SIFS)** $pprox 10 \mu s$
 - Danach sendet der Empfänger einen Bestätigungsrahmen (ACK)
- DIFS und SIFS garantieren bei CSMA/CA einen Mindestabstand zwischen aufeinanderfolgenden Rahmen

Ablauf von CSMA/CA - 3/5

- Nach Ablauf eines weiteren DIFS mit freiem Übertragungsmedium wird eine Backoffzeit berechnet
 - Die Backoffzeit wird berechnet, indem ein zufälliger Wert zwischen minimalem und maximalem Wert des Contention Window bestimmt wird, und dieser zufällige Wert wird mit der Slot Time multipliziert
 - Nach dem Ablauf der Backoffzeit wird der Rahmen gesendet

Quelle: Grundkurs Computernetzwerke, Jürgen Scherff, Vieweg + Teubner (2010)

Belegt während der Backoffzeit eine andere Station das Übertragungsmedium, wird der Zähler so lange angehalten, bis das Medium mindestens ein DIFS lang wieder frei ist.

Ablauf von CSMA/CA – 4/5

Modulationsverfahren	SIFS	$DIFS^1$	Slot Time	Minimales CW	Maximales CW
FHSS (802.11)	$28\mu s$	128μ s	$50\mu \mathrm{s}$	15	1023
DSSS (802.11b)	10μ s	50μ s	20μ s	31	1023
OFDM (802.11a/h/n/ac)	$16\mu s$	$34\mu s$	$9\mu s$	15	1023
OFDM (802.11g) ²	$16\mu \mathrm{s}$	$34\mu s$	$9\mu s$	15	1023
OFDM (802.11g) ³	$10\mu\mathrm{s}$	50μ s	$20\mu \mathrm{s}$	15	1023
1 DIEC CIEC - A CL. T.					

 $^{^{1}}$ DIFS = SIFS + 2 * Slot Time

- Der minimale und maximale Wert des CW sowie die Slot Time hängen vom verwendeten Modulationsverfahren ab und sind fest vorgegeben
- Die untere und obere Schranke des CW sind immer Zweierpotenzen, wobei vom Ergebnis der Wert 1 abgezogen wird
 - Verwendet ein WLAN z.B. das Modulationsverfahren OFDM ist beim. . .
 - ullet 1. Sendeversuch das CW ein Wert \geq 15 und \leq 31
 - 2. Sendeversuch das CW ein Wert \geq 31 und \leq 63
 - ullet 3. Sendeversuch das CW ein Wert \geq 63 und \leq 127

² Mit Unterstützung für Übertragungsraten 1-54 Mbit/s

 $^{^3}$ Mit ausschließlicher Unterstützung für Übertragungsraten $> 11\,\mathrm{Mbit/s}$

Ablauf von CSMA/CA – 5/5

Modulationsverfahren	SIFS	$DIFS^1$	Slot Time	Minimales CW	Maximales CW
FHSS (802.11)	$28\mu s$	128μ s	$50\mu \mathrm{s}$	15	1023
DSSS (802.11b)	10μ s	50μ s	$20\mu s$	31	1023
OFDM (802.11a/h/n//ac)	$16\mu \mathrm{s}$	$34\mu s$	9μ s	15	1023
OFDM (802.11g) ²	$16\mu \mathrm{s}$	$34\mu s$	$9\mu s$	15	1023
OFDM (802.11g) ³	10μ s	50μ s	$20\mu \mathrm{s}$	15	1023
1 DIEC CIEC A . Cl-+ T					

 $^{^{1}}$ DIFS = SIFS + 2 * Slot Time

- Weitere Sendeversuche lassen den Wert von CW weiter exponentiell ansteigen, bis der maximale Wert erreicht ist
- Wurde ein Rahmen durch ACK bestätigt (perfolgreiche Übertragung), wird die untere Schranke des CW wieder auf den Wert des minimalen CW in der Tabelle zurückgesetzt

Quelle: Wireless LANs, Jörg Rech, Heise (2012)

² Mit Unterstützung für Übertragungsraten 1-54 Mbit/s

 $^{^3}$ Mit ausschließlicher Unterstützung für Übertragungsraten $>11\,\mathrm{Mbit/s}$

CSMA/CA RTS/CTS

- CSMA/CA verringert die Anzahl der Kollisionen
 - Es kann aber nicht alle Kollisionen vermeiden
- Eine bessere Kollisionsvermeidung ermöglicht CSMA/CA RTS/CTS
 - Sender und Empfänger tauschen zuerst Kontrollrahmen aus
 - Das informiert alle erreichbaren Stationen, dass demnächst eine Übertragung beginnt
 - Kontrollrahmen: Request To Send (RTS) und Clear To Send (CTS)
 - \bullet Beide Kontrollrahmen beinhalten ein Datenfeld, das die Belegungsdauer des Übertragungsmediums (des Kanals) angibt \Longrightarrow siehe Folien 28 + 29

- Kollisionen sind nur während dem Senden von RTS- und CTS-Rahmen möglich
 - Wegen des Hidden-Terminal-Problems

Abbildung auf der linken Seite...

Station Y kann nicht den RTS-Rahmen von X empfangen, aber den CTS-Rahmen der Basisstation (Access Point)

Ablauf von CSMA/CA RTS/CTS – 1/3

- Der Sender sendet nach dem DIFS einen RTS-Rahmen zum Empfänger
 - Der RTS-Rahmen enthält ein Feld, das angibt wie lange der Sender das Übertragungsmedium (den Kanal) zum Senden des Rahmens reservieren (benutzen) will
- Der Empfänger bestätigt die Reservierungsanfrage nach Abwarten des SIFS mit einem CTS-Rahmen, der ebenfalls die Belegungsdauer für das Übertragungsmedium enthält
 - Der Empfänger bestätigt somit die Belegungsdauer für den zu übertragenden Datenrahmens

Ablauf von CSMA/CA RTS/CTS – 2/3

- Nach dem erfolgreichem Erhalt des Datenrahmens, wartet der Empfänger ein SIFS und sendet ein ACK an den Sender
- Ist das Übertragungsmedium (der Kanal) belegt, finden bis zum Ablauf des Netzbelegungsvektors – Network Allocation Vectors (NAV) – keine weiteren Sendeversuche statt
 - Der NAV ist eine Zählvariable, die jede Station selbst verwaltet
 - Verringert die Anzahl der Kollisionen
 - Enthält die voraussichtliche Belegungszeit des Übertragungsmediums
 - Wird mit der Zeit dekrementiert, bis er den Wert 0 erreicht

Ablauf von CSMA/CA RTS/CTS – 3/3

- Vorteile:
 - Weniger Kollisionen, weil es das Hidden-Terminal-Problem löst
 - Weniger Energieverbrauch, weil keine Sendeversuche während des NAV
- Nachteile:
 - Reservierungen des Übertragungsmediums verursachen Verzögerungen
 - RTS- und CTS-Rahmen sind Overhead

WLAN Kontrollrahmen (Special Frames) – RTS-Rahmen

Die Kontrollrahmen RTS, CTS und ACK haben einen anderen Aufbau, als die Datenrahmen

- Länge der RTS-Rahmen: 20 Bytes
- Mit ihm kann ein Sender eine Reservierungsanfrage für das Übertragungsmedium an die Basisstation senden
- Erstes Adressfeld = MAC-Adresse der Basisstation
- Zweites Adressfeld = MAC-Adresse des anfragenden Station

RTS-Rahmen

CTS-Rahmen

ACK-Rahmen

WLAN Kontrollrahmen (Special Frames) – CTS-Rahmen

- Länge der CTS-Rahmen: 14 Bytes
- Mit einem CTS-Rahmen bestätigt eine Basisstation die Reservierungsanfrage für das Übertragungsmedium
- adresse = MAC-Adresse der Station, die die Reservierungsanfrage gesendet hatte

RTS-Rahmen

CTS-Rahmen

ACK-Rahmen

WLAN Kontrollrahmen (Special Frames) – ACK-Rahmen

- Länge der ACK-Rahmen: 14 Bytes
- Mit einem ACK-Rahmen bestätigt der Empfänger die erfolgreiche Übertragungen eines Rahmens beim Sender
- adresse = MAC-Adresse der Station, die den Rahmen erfolgreich übertragen hat

RTS-Rahmen

CTS-Rahmen

ACK-Rahmen

CSMA/CA RTS/CTS in der Praxis

- CSMA/CA RTS/CTS ist bei WLAN optional und meistens implementiert
 - Es wird in der Praxis zur Reservierung von Kanälen zur Übertragung langer
 Datenrahmen verwendet
- Man kann für jede Station einen RTS-Schwellenwert festlegen (Treiber?!)
 - So definiert man, dass RTS/CTS nur dann verwendet wird, wenn ein Rahmen länger ist, als der Schwellenwert groß ist
- Häufig ist der voreingestellte Schwellenwert größer als die maximale Rahmenlänge (2.346 Bytes) bei IEEE 802.11
 - Die RTS/CTS-Sequenz wird dann für alle gesendeten Datenrahmen weggelassen

7760 Access Point

Advanced Wireless Settings

Screenshot der Weboberfläche eines Netgear WGPS606 Wireless Router

CSMA/CA PCF

- PCF = Point Coordination Function
- Die Basisstation (Access Point) steuert den Medienzugriff zentral
 - Sie fordert die angemeldeten Stationen zum Senden von Datenrahmen auf
 - Das Vorgehen heißt Polling
- CSMA/CA PCF ist ein optionales Verfahren und wird selten implementiert
 - Darum wird es an dieser Stelle nicht weiter näher beschrieben

Arbeitsweise von ARP (1/2)

- Das Address Resolution Protocol (ARP) übersetzt IP-Adressen der Vermittlungsschicht in MAC-Adressen der Sicherungsschicht
- Will ein Netzwerkgerät Daten an einen Empfänger senden, gibt es auf der Vermittlungsschicht die IP-Adresse des Empfängers an
- Auf der Sicherungsschicht ist aber die MAC-Adresse nötig
 - Darum muss in der Sicherungsschicht die **Adressauflösung** erfolgen
 - Um die MAC-Adresse eines Geräts im LAN zu erfahren, sendet ARP einen Rahmen mit der MAC-Broadcast-Adresse FF-FF-FF-FF-FF als Zieladresse
 - Diesen Rahmen nimmt jedes Netzwerkgerät entgegen und wertet ihn aus
 - Der Rahmen enthält die IP-Adresse des gesuchten Netzwerkgeräts
 - Fühlt sich ein Gerät mit dieser IP-Adresse angesprochen, schickt es eine ARP-Antwort an den Sender
 - Die gemeldete MAC-Adresse speichert der Sender im lokalen ARP-Cache

Arbeitsweise von ARP (2/2)

- Der ARP-Cache dient zur Beschleunigung der Adressauflösung
 - Er enthält eine Tabelle mit folgenden Informationen für jeden Eintrag:
 - Protokolltyp (IP)
 - Protokolladresse des Senders (IP-Adresse)
 - Hardware-Adresse des Sender (MAC-Adresse)
 - Ablaufzeit Time To Live (TTL)
 - Die TTL legt das Betriebssystem fest
 - Wird ein Eintrag in der Tabelle verwendet, verlängert sich die TTL
- ullet Aktuelle Linux-Distributionen verwerfen Einträge nach pprox 5 Minuten

ARP-Cache ausgeben: arp -n oder alternativ ip neighbour

```
# arp -n
Address
                       HWtype HWaddress
                                                Flags Mask
                                                                    Tface
192,168,178,1
                       ether 9c:c7:a6:b9:32:aa C
                                                                    wlan0
192 168 178 24
                      ether d4:85:64:3b:9f:65 C
                                                                    wlan0
192.168.178.41
                      ether ec:1f:72:70:08:25 C
                                                                    wlan0
192,168,178,25
                      ether cc:3a:61:d3:b3:bc C
                                                                    wlan0
```

Mit arping kann man manuell Anforderungen zur Adressauflösung versenden

Aufbau von ARP-Nachrichten

 ARP-Nachrichten werden als Nutzdaten in Ethernet-Rahmen übertragen (Typ = 0x0806 für das ARP-Protokoll)

- H-Länge = Länge der HW-Adressen (MAC-Adressen) in Bytes
 - Bei Ethernet: 6 Bytes
- P-Länge = Länge der IP-Adressen in **Bytes**
 - Bei IPv4: 4 Bytes

	Hardware	adresstyp	Protokolladresstyp		
	H-Länge	P-Länge	Operation		
ı	MAC-Adresse (Sender)				
	MAC-Adress	se (Sender)	IP-Adresse (Sender)		
	IP-Adresse	(Sender)	IP-Adresse (Ziel)		
	IP-Adres	se (Ziel)	MAC-Adresse (Ziel)		
	MAC-Adresse (Ziel)				

32 Bit (4 Bytes)