Space Efficient TREC for Enabling Deep Learning on Microcontrollers

Jiawei Guan, Feng Zhang, Jiesong Liu, Hsin-Hsuan Sung, Ruofan Wu, Xiaoyong Du, Xipeng Shen

♦Key Laboratory of Data Engineering and Knowledge Engineering (MOE),
 and School of Information, Renmin University of China
 ★Computer Science Department, North Carolina State University

Outline

- Motivation
- TREC Architecture
- Experiments
- Results

Motivation

AloT

• CNN Inference on the edge.

Motivation

AloT

- CNN Inference on the edge.
- Computation-intensive.

Motivation

AloT

- CNN Inference on the edge.
- Computation-intensive.
- Resource-constrained devices.

Memory Hierarchy for Cortex-M4.

Motivation

AloT

- CNN Inference on the edge.
- Computation-intensive.
- · Resource-constrained devices.
- Large models are required to be compressed.

Memory Hierarchy for Cortex-M4.

Motivation

AloT

- CNN Inference on the edge.
- Computation-intensive.
- Resource-constrained devices.
- Large models are required to be compressed.

Redundancy

Lasting redundancy

Transient redundancy

Convolutional Layer

Motivation

AloT

- CNN Inference on the edge.
- · Computation-intensive.
- Resource-constrained devices.
- Large models are required to be compressed.

Redundancy

- Lasting redundancy
 - Arises from DNN parameters.
 - Removed during training mostly.
 - Pruning, quantization, etc.
- Transient redundancy

Convolutional Layer

Motivation

AloT

- CNN Inference on the edge.
- · Computation-intensive.
- Resource-constrained devices.
- Large models are required to be compressed.

Redundancy

- Lasting redundancy
 - Arises from DNN parameters.
 - Removed during training mostly.
 - Pruning, quantization, etc.
- Transient redundancy
 - Arises from Input data / activation maps.
 - Removed during inference.

Convolutional Layer

Motivation

DeepReuse

- Treat transient redundancy in an Ad-hoc manner.
- Over 5% accuracy fluctuations in different runs.

Concept

Can the detection and elimination of transient redundancy be integrated into the CNN training process, so that they become part of its inherent architecture?

$$X$$
 Hash Projected $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 3 & 2 \end{bmatrix} \times \begin{bmatrix} -1 & 1 \\ 1 & 2 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & -1 \\ 2 & 3 \\ 2 & 5 \end{bmatrix}$

Backward Pass

1. Binary Mapping → Binary Approximation

$$sigmoid(x) = \frac{1}{1 + e^{-\alpha x}}$$

Backward Pass

2. Bindec Mapping → Bindec Conversion

Transformation matrix

$$\begin{bmatrix} 2^{H-1}/1 & 2^{H-1}/2 & \cdots & 2^{H-1}/2^H \\ \vdots & \vdots & \ddots & \vdots \\ 2^1/1 & 2^1/2 & \cdots & 2^1/2^H \\ 2^0/1 & 2^0/2 & \cdots & 2^0/2^H \end{bmatrix}$$

Backward Pass

Bindec Conversion

Bit Transformation Quotient
$$(\frac{1}{4} \times 2^{\frac{1}{4}})$$

$$\begin{bmatrix}
 \begin{bmatrix}
 1 & 1 \\
 0 & 0 \\
 1 & 1 \\
 1 & 1
\end{bmatrix} + \begin{bmatrix}
 0 & 1 \\
 0 & 1 \\
 0 & 1 \\
 0 & 1
\end{bmatrix} \times \begin{bmatrix}
 2^{1}/1 & 2^{1}/2 & 2^{1}/3 & 2^{1}/4 \\
 2^{0}/1 & 2^{0}/2 & 2^{0}/3 & 2^{0}/4
\end{bmatrix} = \begin{bmatrix}
 4 & 2 & 4/3 & 1 \\
 1 & 1/2 & 1/3 & 1/4 \\
 4 & 2 & 4/3 & 1 \\
 4 & 2 & 4/3 & 1
\end{bmatrix}$$

Bit Transformation
$$(H \times 2^{H})$$

$$\begin{bmatrix}
1 & 1 \\
0 & 0 \\
1 & 1 \\
1 & 1
\end{bmatrix} + \begin{bmatrix}
0 & 1 \\
0 & 1 \\
0 & 1 \\
0 & 1
\end{bmatrix} \times \begin{bmatrix}
2^{1}/ & 2^{1}/ & 2^{1}/ & 2^{1}/ \\
2^{0}/ & 2^{0}/ & 2^{0}/ & 2^{0}/
\end{bmatrix} = \begin{bmatrix}
4 & 4 & 4 & 4 \\
1 & 1 & 1 & 1 \\
4 & 4 & 4 & 4
\end{bmatrix}$$

$$\begin{bmatrix} 4 & 4 & 4 & 4 \\ 1 & 1 & 1 & 1 \\ 4 & 4 & 4 & 4 \\ 4 & 4 & 4 & 4 \end{bmatrix} \times \begin{bmatrix} 1/1 & 1/2 & 1/3 & 1/4 \\ 1/1 & 1/2 & 1/3 & 1/4 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 4/3 & 1 \\ 1 & 1/2 & 1/3 & 1/4 \\ 4 & 2 & 4/3 & 1 \\ 4 & 2 & 4/3 & 1 \end{bmatrix}$$

Bit Transformation (H×2^H) Quotient
$$\begin{bmatrix} 1 & 1 \\ 0 & 0 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} 2^{1}/1 & 2^{1}/2 & 2^{1}/3 & 2^{1}/4 \\ 2^{0}/1 & 2^{0}/2 & 2^{0}/3 & 2^{0}/4 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 4/3 & 1 \\ 1 & 1/2 & 1/3 & 1/4 \\ 4 & 2 & 4/3 & 1 \\ 4 & 2 & 4/3 & 1 \end{bmatrix}$$
Space waste

Backward Pass

Clustering

$$\begin{bmatrix} 1/3 & 0 & 1/3 & 1/3 \\ 0 & 1 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 3 & 2 \end{bmatrix} = \begin{bmatrix} 2/3 & 7/3 & 2 \\ 2 & 1 & 1 \end{bmatrix}$$

Experiments

Platforms

- Training: A server machine with an Intel Core i7-12700K processor and an NVIDIA GeForce RTX A6000 GPU.
- Inference: An STM32F469NI MCU.

Datasets

- Cifar-10
- ImageNet-64x64

End-to-end Performance Comparison

Network	Conv Method	Average Time per Image (ms)	Top-1 Accuracy (%)
CifarNet	Conventional	217.32	78.2
	Deep Reuse	154.44	$73.2 \sim 76.1$
	TREC	153.92	76.5
ZfNet	Conventional	3557.32	80.1
	Deep Reuse	814.03	$72.5 \sim 76.6$
	TREC	814.01	78.9
Vanilla SqueezeNet	Conventional	1639.51	83.5
	Deep Reuse	328.97	$79.8 \sim 81.9$
	TREC	327.90	83.0
SqueezeNet + Complex Bypass	Conventional	1998.86	85.3
	Deep Reuse	543.71	$80.5 \sim 83.1$
	TREC	544.03	84.6
ResNet-34 (ImageNet-64×64)	Conventional	4242.77	52.6
	Deep Reuse	1379.26	$46.7 \sim 49.9$
	TREC	1378.75	52.2

Experiments

Benefits

- Speedup with minor accuracy loss.
- Stable performance and high accuracy.
- A plug-and-play replacement for convolutional layers in mainstream CNNs.
- Orthogonal to lasting redundancy elimination methods (e.g. pruning, quantization).

End-to-end Performance Comparison

		- · · · · · · · · · · · · · · · · · · ·	
Network	Conv Method	Average Time per Image (ms)	Top-1 Accuracy (%)
CifarNet	Conventional	217.32	78.2
	Deep Reuse	154.44	$73.2 \sim 76.1$
	TREC	153.92	76.5
ZfNet	Conventional	3557.32	80.1
	Deep Reuse	814.03	$72.5 \sim 76.6$
	TREC	814.01	78.9
Vanilla SqueezeNet	Conventional	1639.51	83.5
	Deep Reuse	328.97	$79.8 \sim 81.9$
	TREC	327.90	83.0
SqueezeNet + Complex Bypass	Conventional	1998.86	85.3
	Deep Reuse	543.71	$80.5 \sim 83.1$
	TREC	544.03	84.6
ResNet-34 (ImageNet-64×64)	Conventional	4242.77	52.6
	Deep Reuse	1379.26	$46.7 \sim 49.9$
	TREC	1378.75	52.2

Thanks for listening

guanjw@ruc.edu.cn