1	冼柽埴空题	
4 .	ベンナンハール	

- (1) 门级组合电路是指 的电路。

 - (a) 由二、三极管开关组成 (b) 由各种门电路组成且无反馈线
 - (c) 由组合器件组成
 - (d) 由各种数字集成电路组成
- (2) 组合电路分析的结果是要获得。
 - (a) 逻辑电路图
 - (b) 电路的逻辑功能
 - (c) 电路的真值表 (d) 逻辑函数式
- (3). 组合电路设计的结果一般是要得到
 - (a) 逻辑电路图
- (b) 电路的逻辑功能
- (c) 电路的真值表
- (d) 逻辑函数式

(5).	10-4线优	先编码器的	最多允许同	司时输入	路编码信号。
	(a) 1	(b) 9	(c) 10	(d) 多	
(6).	74LS138 7	有个	译码输入	端和个	译码输出端。
	(a) 1	(b) 3	(c) 8	(d) 无法确定	
(7).	利用2个	74LS138 ī	可以扩展往	导到 1 个	线译码器。
	(a) 2-4	(b) 3-8	(c) 4-16	(d) 无法确定	0
(8)	用原码输出	出的译码器	字现多输	〕出逻辑函数,	需要增加若干个。
	(a) 非门	(b) 与非	门 (c)	或门 (d) 或	注丰门
(9)	七段译码岩	器 74LS47	的输入是	4位,	输出是。
	(a) 二进制	制码 (b)	八段码((c) 七段反码	(d) BCD 码
(10)) 多路数据	选择器 M	UX 的输力	入信号可以是_	o
	(a) 数字位	言号		(b) 模拟信·	号
	(c) 数模》	昆合信号	(d	l) 数字和模拟	信号
(11) 与 4 位串	3行进位加	法器比较	,使用超前进	位加法器的目的是。
	(a) 完成自	动加法进位	<u>立</u> (1	o) 完成 4 位加	1法

(d) 完成 4 位串行加法

(c) 提高运算速度

2. 填空题(请在空格中填上合适的词语,将题中的论述补充完整)
(1) 所谓组合逻辑电路是指: 在任何时刻,逻辑电路的输出状态只取决于电路各,而与
电路无关。
(2) 在分析门级组合电路时,一般需要先从写出逻辑函数式。
(3) 在设计门级组合电路时,一般需要根据设计要求列出,再写出逻辑函数式。
(4) 要扩展得到 1 个 6-64 线译码器, 需要个 74LS138。
(5) 基本译码电路除了完成译码功能外,还能实现和功能。
(6) 用 74LS138 译码器实现多输出逻辑函数,需要增加若干个。
(7) BCD-七段译码器 74LS47 可以用来驱动极数码管。
(8) 4-1 数据选择器有 4 个数据输入信号 $D_0 \sim D_3$ 和 2 个地址输入信号 A_1A_0 , 当使能信号 \overline{s} 有效时,
输出逻辑函数可表示为_ $Y = D_0 \overline{A_1} \overline{A_0} + D_1 \overline{A_1} A_0 + D_2 A_1 \overline{A_0} + D_3 A_1 A_0$
(9) 用多路数据选择器 MUX 可以方便的实现输出逻辑函数,而用译码器可以方便的实现
输出逻辑函数。
(10) 多路分配器 DMUX 可以直接用来实现
(11) 余三码 $L_3L_2L_1L_0$ 与 8421BCD 码 $A_3A_2A_1A_0$ 相差 0011。因此,用实现将 8421BCD 码转
换到余三码的设计最简单。

作业

7.5 用译码器**74LS47** 驱动七段数码管时,发现数码管只显示1、3、5、7、9。试问故障出在哪里?

当译码器74LS47的输入信号A3A2A1A0中A0固定为高电平时,就会出现只能显示奇数1、3、5、7、9的故障。因此,检查A0线是否开路或与VCC短接。

7.6 试分析图题 7.6,写出 Y 的逻辑表达式,当 CD 为 00~11 时,说明电路的功能。(读者自行查找 74153 的数据手册,了解其逻辑功能)。

C	D	<i>Y</i> ₄ 3
0	0₊	\overline{BA} $_{\leftarrow}$
0	1₽	$\overline{B+A}$
1	0₊	$B \odot A_{^{arphi}}$
1	1	\overline{A} \wp

当DC为00~11时,Y的逻辑表达式见表。 电路实现多功能输出。

数字电子技术基础

7.7 试用一片 3 线-8 线译码器(输出为低电平有效)

和一个与非门设计一个 3 位数 $X_2X_1X_0$ 奇偶校验器。要求

当输入信号为偶数个 1 时(含0个1),输出信号 F为 1,否则为 0。

X_2	X_1	F	
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

$$F = \sum m(0,3,5,6) = \overline{\overline{Y_0} \cdot \overline{Y_3} \cdot \overline{Y_5} \cdot \overline{Y_6}}$$

数字电子技术基础

7.8 将双 4 选 1 数据选择器 74253 扩展为 8 选 1 数据选择器,并实现逻辑函数 $F=AB+B\bar{C}+\bar{A}C$ 。画逻辑电路图,令 CBA 对应着 $A_2A_1A_0$ 。

74LS253 的两个输出 1Y 和 2Y 未被选通时为高阻状态,故两个输出可直接连接作为一个输出端。先将双 4 选 1MUX 扩展为 8 选 1MUX,电路见图解 7.8。当 $A_2A_1A_0$ (CBA)从 000~011 时,1Y 输出 $1D_0$ ~1 D_3 ;当 $A_2A_1A_0$ 从 100~111 时,2Y 输出 $2D_0$ ~2 D_3 。

将逻辑函数 F 写为最小项和的形式: $F = \overline{CBA} + \overline{CBA} + \overline{CBA} + \overline{CBA} + \overline{CBA} + \overline{CBA}$

数字电子技术基础

7.13 选择 MSI 器件,设计一个 4 位奇偶逻辑校验判断电路,当输入为奇数个 1 时,输出为 1;否则输出为 0。。

X_3	<i>X</i> 0₽	$L^{\scriptscriptstyle arphi}$		
0	0	0	0⊷	04
0	0	0	1₊	1.
0	0	1	0⊷	1.
0	0	1	1₊	0₊
0	1	0	0₊	1.
0	1	0	1₊	0⊷
0	1	1	0₊	0₊
0	1	1	1₊	1.
1	0	0	0₊	1.
1	0	0	1₊	0₊
1	0	1	0⊷	0₊
1	0	1	1₊	1.
1	1	0	0₊	0₊
1	1	0	1₊	1.
1	1	1	0⊷	1.
1	1	1	1₽	0₽

$$\begin{split} L &= \overline{X_3}(\overline{X}_2 \overline{X}_1 X_0) + \overline{X}_3(\overline{X}_2 X_1 \overline{X}_0) + \overline{X_3}(X_2 \overline{X}_1 \overline{X}_0) \\ &+ \overline{X}_3(X_2 X_1 X_0) + X_3(\overline{X}_2 \overline{X}_1 \overline{X}_0) + X_3(\overline{X}_2 X_1 X_0) \\ &+ X_3(X_2 \overline{X}_1 X_0) + X_3(X_2 X_1 \overline{X}_0) \end{split}$$

 $\Leftrightarrow A_2A_1A_0 = X_2X_1X_0$, $D_0 = D_3 = D_5 = D_6 = X_3$, $D_1 = D_2 = D_4 = D_7 = \overline{X_3}$, $\emptyset L = Y$

下页

返回