

FCC PART 22H, PART 24E MEASUREMENT AND TEST REPORT

For

Telepower Communication Co,.Ltd.

5 Bld, Zone A, Hantian Technology Town No.17 ShenHai RD, Nanhai District, Foshan, China

FCC ID: 2AJ2B-TPS390

Report Type:		Product Name:	
Original Report		Handheld POS	
Test Engineer:	Lorin Biar	1	Lorin Dian
Report Number:	RXM1609	19050D	
Report Date:	2016-12-0)7	
Reviewed By:	Henry Din		Homy Ding
Test Laboratory:	5040, Hui JinNiu Dis	Compliance Laborator LongWan Plaza, No. 1 strict, ChengDu, China 55523123, Fax: 028-65 corp.com	, ShaWan Road,

Note: This test report was prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Chengdu). Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. This report was valid only with a valid digital signature.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
TEST METHODOLOGY	
SYSTEM TEST CONFIGURATION	
JUSTIFICATION	
EQUIPMENT MODIFICATIONS	
CONFIGURATION OF TEST SETUP	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	8
FCC §1.1310 & §2.1093- RF EXPOSURE	9
APPLICABLE STANDARD	
Test Result	
FCC §2.1047 - MODULATION CHARACTERISTIC	10
FCC § 2.1046, § 22.913 (A) & § 24.232 (C) - RF OUTPUT POWER	11
APPLICABLE STANDARD	
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC §2.1049, §22.917, §22.905 & §24.238 - OCCUPIED BANDWIDTH	
APPLICABLE STANDARD	
TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC §2.1051, §22.917(A) & §24.238(A) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	
APPLICABLE STANDARD	
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	26
Test Data	
FCC §2.1053, §22.917 & §24.238 - SPURIOUS RADIATED EMISSIONS	32
APPLICABLE STANDARD	
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	
FCC §22.917(A) & §24.238(A) - BAND EDGES	
APPLICABLE STANDARD	
TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC §2.1055, §22.355 & §24.235 - FREQUENCY STABILITY	47

APPLICABLE STANDARD	47
TEST PROCEDURE	47
TEST EQUIPMENT LIST AND DETAILS	
Test Data	48

Report No.: RXM160919050D Page 3 of 51

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Telepower Communication Co,.Ltd.* 's product, model number: *TPS390* (*FCC ID: 2AJ2B-TPS390*) (the "EUT") in this report was a *Handheld POS*, which was measured approximately: 19.6 cm (L) × 8.4 cm (W) × 6.3 cm (H), rated input voltage: DC3.7V rechargeable Li-ion battery or DC5V from adapter.

Adapter information:

Model: SA/12PA/05FUS050200 Input: 100-240V~50/60Hz 0.5A

Output: DC 5.0V, 2.0A

*All measurement and test data in this report was gathered from final production sample, serial number: 160919050 (assigned by the BACL, Chengdu). It may have deviation from any other sample. The EUT supplied by the applicant was received on 2016-09-27, and EUT conformed to test requirement.

Objective

This report is prepared on behalf of *Telepower Communication Co,.Ltd.* in accordance with: Part 2-Subpart J, Part 22-Subpart H, and Part 24-Subpart E of the Federal Communications Commission's rules.

The objective is to determine compliance with FCC rules for output power, modulation characteristic, occupied bandwidth, spurious emissions at antenna terminal, spurious radiated emission, frequency stability and band edge.

Report No.: RXM160919050D Page 4 of 51

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2, Sub-part J, Part 22 Subpart H, Part 24 Subpart E.

Applicable Standards: TIA/EIA 603-D-2010.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Chengdu).

Test Facility

The test site used by BACL to collect test data is located in the 5040, HuiLongWan Plaza, No. 1, ShaWan Road, JinNiu District, ChengDu, China

Test site at BACL has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on April 24, 2015. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 560332. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Report No.: RXM160919050D Page 5 of 51

SYSTEM TEST CONFIGURATION

Justification

The EUT was configured for testing according to TIA/EIA-603-D 2010.

The test items were performed with the EUT operating at testing mode.

Equipment Modifications

No modification was made to the EUT.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
R&S	Universial Radio Communication Tester	CMU200	109038

Configuration of Test Setup

Report No.: RXM160919050D Page 6 of 51

Block Diagram of Test Setup

Report No.: RXM160919050D Page 7 of 51

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§1.1310, §2.1093	RF Exposure	Compliance
§2.1046; § 22.913 (a); § 24.232 (c)	RF Output Power	Compliance
§ 2.1047	Modulation Characteristics	Not Applicable
§ 2.1049; § 22.905 § 22.917; § 24.238	Occupied Bandwidth	Compliance
§ 2.1051, § 22.917 (a); § 24.238 (a)	Spurious Emissions at Antenna Terminal	Compliance
§ 2.1053 § 22.917 (a); § 24.238 (a)	Field Strength of Spurious Radiation	Compliance
§ 22.917 (a); § 24.238 (a)	Out of band emission, Band Edge	Compliance
§ 2.1055 § 22.355; § 24.235	Frequency stability vs. temperature Frequency stability vs. voltage	Compliance

Report No.: RXM160919050D Page 8 of 51

FCC §1.1310 & §2.1093- RF EXPOSURE

Applicable Standard

FCC§1.1310 and §2.1093.

Test Result

Compliant, please refer to the SAR report: RXM160919050-20.

Report No.: RXM160919050D Page 9 of 51

FCC §2.1047 - MODULATION CHARACTERISTIC

According to FCC § 2.1047(d), Part 22H & 24E, there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

Report No.: RXM160919050D Page 10 of 51

FCC § 2.1046, § 22.913 (a) & § 24.232 (c) - RF OUTPUT POWER

Applicable Standard

According to FCC §2.1046 and §22.913 (a), the ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts.

According to FCC §2.1046 and §24.232 (C), mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications..

According to §24.232 (d) Power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of §24.51. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

Test Procedure

GSM/GPRS/EGPRS

Function: Menu select > GSM Mobile Station > GSM 850/1900

Press Connection control to choose the different menus

Press RESET > choose all the reset all settings

Connection Press Signal Off to turn off the signal and change settings

Network Support > GSM + GPRS or GSM + EGSM

Main Service > Packet Data

Service selection > Test Mode A – Auto Slot Config. off

MS Signal Press Slot Config Bottom on the right twice to select and change the number of time slots and power setting

> Slot configuration > Uplink/Gamma

> 33 dBm for GPRS 850

> 30 dBm for GPRS 1900

> 27 dBm for EGPRS 850

> 26 dBm for EGPRS 1900

BS Signal Enter the same channel number for TCH channel (test channel) and BCCH

channel

Frequency Offset > + 0 Hz

Mode > BCCH and TCH

BCCH Level > -85 dBm (May need to adjust if link is not stable)

BCCH Channel > choose desire test channel [Enter the same channel number for TCH

channel (test channel) and BCCH channel]

Channel Type > Off

P0 > 4 dB

Slot Config > Unchanged (if already set under MS signal)

TCH > choose desired test channel

Hopping > Off Main Timeslot > 3

Network Coding Scheme > CS4 (GPRS) and MCS5 (EGPRS)

Bit Stream > 2E9-1 PSR Bit Stream

AF/RF Enter appropriate offsets for Ext. Att. Output and Ext. Att. Input Connection Press Signal on to turn on the signal and change settings

WCDMA-Release 99

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP

TS34.121-1 specification. The EUT has a nominal maximum output power of 24dBm (+1.7/-3.7).

WCDMA General Settings	Loopback Mode	Test Mode 1
	Rel99 RMC	12.2kbps RMC
	Power Control Algorithm	Algorithm2
	βc / βd	8/15

WCDMA HSDPA

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification.

	Mode	HSDPA	HSDPA	HSDPA	HSDPA
	Subset	1	2	3	4
	Loopback Mode			Test Mode	1
	Rel99 RMC			12.2kbps RM	IC
	HSDPA FRC			H-Set1	
MODMA	Power Control Algorithm			Algorithm2	
WCDMA	βc	2/15	12/15	15/15	15/15
General Settings	βd	15/15	15/15	8/15	4/15
Settings	βd (SF)			64	
	βc/ βd		12/15	15/8	15/4
	βhs	4/15	24/15	30/15	30/15
	MPR(dB)	0	0	0.5	0.5
	DACK	8			
	DNAK			8	
HSDPA	DCQI	8			
Specific	Ack-Nack repetition factor			3	
Settings	CQI Feedback	4ms			
	CQI Repetition Factor	2			
	Ahs=βhs/ βc			30/15	

WCDMA HSUPA

The following tests were conducted according to the test requirements outlines in section 5.2 of the $3\mathsf{GPP}$ TS34.121-1 specification.

Mode	HSUPA	HSUPA	HSUPA	HSUPA	HSUPA	
Subset	1	2	3	4	5	
Loopback Mode			Test Mode 1			
Rel99 RMC	12.2kbps RMC					
HSDPA FRC			H-Set1			
HSUPA Test		HS	UPA Loopba	ack		
Power Control			Algorithm2			
	11/15	6/15	15/15	2/15	15/15	
					0	
					5/15	
		_			3/13	
					5/15	
					1.0	
					0	
	U				l O	
		_				
			3			
	4					
		-	41118			
	2					
	6			<i>E</i>	7	
					0	
			_		_	
					21	
	75	67	92	/1	81	
	242.1	174.9	482.8	205.8	308.9	
Reference E_FCls	E-TFC E-TFCI E-TFCI E-TFCI E-TFCI E-TFCI E-TFCI	I PO 4 CI 67 PO 18 CI 71 I PO23 CI 75 I PO26 CI 81	E-TFCI 11 E-TFCI PO4 E-TFCI 92 E-TFCI PO 18	E-TFC E-TFC E-TFC E-TFC E-TFC E-TFC	EI PO 4 CI 67 I PO 18 CI 71 I PO23 CI 75 I PO26	
	Subset Loopback Mode Rel99 RMC HSDPA FRC HSUPA Test Power Control Algorithm βc βd βec βc/ βd βhs CM(dB) MPR(dB) DACK DNAK DCQI Ack-Nack repetition factor CQI Feedback CQI Repetition Factor Ahs=βhs/βc DE-DPCCH DHARQ AG Index ETFCI Associated Max UL Data Rate kbps	Subset Loopback Mode Rel99 RMC HSDPA FRC HSUPA Test Power Control Algorithm βc 11/15 βd 15/15 βec 209/225 βc/ βd 11/15 βhs 22/15 CM(dB) 1.0 MPR(dB) 0 DACK DNAK DCQI Ack-Nack repetition factor CQI Feedback CQI Repetition Factor Ahs=βhs/ βc DE-DPCCH 6 DHARQ 0 AG Index 20 ETFCI 75 Associated Max UL Data Rate kbps Reference E_FCIs Reference E_FCIs E-TFC	Subset 1 2	Subset 1 2 3	Subset 1 2 3 4	

Report No.: RXM160919050D Page 13 of 51

HSPA+

The following tests were conducted according to the test requirements in Table C.11.1.4 of 3GPP TS 34.121-1

Sub- test	β _c (Note3)	β _d	β _{HS} (Note1)	β_{ec}	β _{ed} (2xSF2) (Note 4)	β _{ed} (2xSF4) (Note 4)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 4)	(Note 5)	E-TFCI (boost)
1	1	0	30/15	30/15	β _{ed} 1: 30/15 β _{ed} 2: 30/15	β _{ed} 3: 24/15 β _{ed} 4: 24/15	3.5	2.5	14	105	105
	Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hs} = 30/15 * β_c .										
Note 2											
l	Note 3: DPDCH is not configured, therefore the β_c is set to 1 and β_d = 0 by default. Note 4: β_{ed} can not be set directly; it is set by Absolute Grant Value.										
Note 4: β _{ed} can not be set directly; it is set by Absolute Grant Value. Note 5: All the sub-tests require the UE to transmit 2SF2+2SF4 16QAM EDCH and they apply for UE using E-											
Note 5	DPDCH category 7. E-DCH TTI is set to 2ms TTI and E-DCH table index = 2. To support these E-DCH										

DC-HSDPA

The following tests were conducted according to the test requirements in Table C.8.1.12 of 3GPP TS 34.121-1

configurations DPDCH is not allocated. The UE is signalled to use the extrapolation algorithm.

Table C.8.1.12: Fixed Reference Channel H-Set 12

	Parameter	Unit	Value	
Nominal	Avg. Inf. Bit Rate	kbps	60	
Inter-TTI	Distance	TTľs	1	
Number (of HARQ Processes	Proces	6	
		ses	0	
Informati	on Bit Payload (N_{INF})	Bits	120	
Number	Code Blocks	Blocks	1	
Binary Cl	hannel Bits Per TTI	Bits	960	
Total Available SML's in UE SML's 19			19200	
Number of SML's per HARQ Proc. SML's 3:				
Coding F		0.15		
Number of Physical Channel Codes Codes 1				
Modulation QPSI				
Note 1:	The RMC is intended to be used for	or DC-HSD	PA	
mode and both cells shall transmit with identical				
parameters as listed in the table.				
Note 2: Maximum number of transmission is limited to 1, i.e.,				
	retransmission is not allowed. The	e redundan	cy and	
	constellation version 0 shall be use	ed.		

Report No.: RXM160919050D Page 14 of 51

Radiated method:

ANSI/TIA-603-D section 2.2.17

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100028	2015-12-02	2016-12-01
Sunol Sciences	Broadband Antenna	JB3	A101808	2016-04-10	2019-04-09
Rohde & Schwarz	Spectrum Analyzer	FSEM30	100018	2015-12-02	2016-12-01
ETS	Horn Antenna	3115	003-6076	2015-12-02	2016-12-01
ETS	Horn Antenna	3115	6751	2014-06-16	2017-06-15
EMCO	Adjustable Dipole Antenna	3121C	9109-258	N/A	N/A
HP	Signal Generator	8648C	3623A04150	2016-5-23	2017-5-22
WILTRON	SWEPT FREQUENCY SYNTHESIZER	6737	213001	2016-5-23	2017-5-22
EMCT	Semi-Anechoic Chamber	966	N/A	2015-04-24	2018-04-23
N/A	RF Cable (below 1GHz)	NO.1	N/A	2016-11-10	2017-11-09
N/A	RF Cable (below 1GHz)	NO.4	N/A	2016-11-10	2017-11-09
N/A	RF Cable (above 1GHz)	NO.2	N/A	2016-11-10	2017-11-09
R&S	Universal Radio Communication Tester	CMU200	11-9435686- 111	2016-07-28	2017-07-27

^{*} **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Report No.: RXM160919050D Page 15 of 51

Test Data

Environmental Conditions

Temperature:	26.1 °C
Relative Humidity:	34%
ATM Pressure:	101.5 kPa

The testing was performed by Lorin Bian on 2016-11-29.

Conducted Output Power

Cellular Band (Part 22H) & PCS Band (Part 24E)

			Peak Output Power (dBm)										
Band	Channel No.	GSM	GPRS 1 TX Slot	GPRS 2 TX Slot	GPRS 3 TX Slot	GPRS 4 TX Slot	EDGE 1 TX Slot	EDGE 2 TX Slot	EDGE 3 TX Slot	EDGE 4 TX Slot			
	128	-	29.43	28.21	27.67	27.11	26.68	25.64	23.48	22.15			
Cellular	190	-	29.15	28.02	27.65	27.08	26.47	25.43	23.37	21.96			
	251	-	29.18	28.04	27.55	27.03	26.61	25.62	23.38	22.08			
	512	-	28.93	26.85	25.35	24.28	24.63	23.34	21.58	19.72			
PCS	661	-	29.22	27.11	25.51	24.42	24.53	23.22	21.49	19.62			
	810	ı	29.55	27.12	25.55	24.55	24.69	23.33	21.57	19.70			

WCDMA Band II

			Avei	rage Outpu	t Power (dl	Bm)	_
Mode	3GPP Sub Test	Low Channel (Ave. Power)	Low Channel (PAR)	Middle Channel (Ave. Power)	Middle Channel (PAR)	High Channel (Ave. Power)	High Channel (PAR)
Rel 99	1	21.65	3.17	21.96	2.97	22.16	2.77
	1	21.24	3.24	21.67	2.17	21.71	3.09
HSDPA	2	20.87	2.45	21.16	3.02	21.56	2.63
(QPSK)	3	21.00	3.39	22.02	3.02	21.14	2.73
	4	20.94	2.62	21.34	2.90	21.43	2.51
	1	20.96	3.34	21.25	3.42	22.01	3.13
LICLIDA	2	21.19	2.72	21.17	2.57	22.22	3.15
HSUPA (QPSK)	3	21.06	3.51	21.14	2.49	22.20	2.26
(Qi Oit)	4	21.75	3.74	20.93	2.85	21.32	2.36
	5	21.06	2.47	21.17	3.24	21.85	2.85
DO	1	21.64	3.30	21.38	3.33	21.18	3.19
DC- HSDPA	2	20.71	3.11	20.92	3.41	21.76	3.22
(QPSK)	3	21.33	3.09	21.66	3.32	22.14	2.72
(QI OIL)	4	21.35	2.95	21.80	2.19	21.36	3.17
HSPA+ (16QAM)	1	20.65	3.03	21.02	3.21	22.19	2.64

Report No.: RXM160919050D Page 16 of 51

WCDMA Band V

			Ave	rage Outpu	t Power (dl	Bm)	
Mode	3GPP Sub Test	Low Channel (Ave. Power)	Low Channel (PAR)	Middle Channel (Ave. Power)	Middle Channel (PAR)	High Channel (Ave. Power)	High Channel (PAR)
Rel 99 (QPSK)	1	22.39	3.01	22.52	2.93	22.59	3.17
	1	22.07	2.88	22.24	3.33	21.80	3.06
HSDPA	2	21.83	2.35	22.18	2.76	21.59	3.34
(QPSK)	3	21.55	3.02	21.56	2.73	21.95	3.03
	4	22.07	3.27	22.17	3.40	21.60	3.13
	1	21.71	3.23	22.26	2.29	21.88	2.91
HSUPA	2	21.97	3.13	22.26	2.59	21.67	2.45
(QPSK)	3	21.91	2.91	21.76	3.30	21.58	3.14
	4	21.88	2.90	22.30	3.13	22.67	2.86
	1	22.26	3.25	22.19	2.52	22.48	2.48
	2	21.52	3.14	21.74	2.25	21.61	2.92
DC-HSDPA	3	21.85	3.10	21.90	2.87	22.45	3.76
(QPSK)	4	21.99	3.51	21.56	2.41	22.02	3.45
	5	22.02	3.15	22.19	2.56	21.73	2.76
HSPA+ (16QAM)	1	21.39	3.37	22.23	2.41	22.29	3.27

Peak-to-average ratio (PAR)< 13dB.

Report No.: RXM160919050D Page 17 of 51

ERP & EIRP

		Descione	Su	bstituted Me	ethod	Absolute					
Frequency (MHz)	Polar (H/V)	Receiver Reading (dBµV)	S.G. Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)			
	GPRS 850 Middle Channel										
836.6	Н	106.26	29.2	0.0	0.6	28.6	38.5	9.9			
836.6	V	102.14	27.1	0.0	0.6	26.5	38.5	12.0			
			EDGE	850 Middle C	hannel						
836.6	Н	102.15	25.1	0.0	0.6	24.5	38.5	14.0			
836.6	V	89.62	14.6	0.0	0.6	14.0	38.5	24.5			
			WCDMA E	Band V Midd	le Channel						
836.6	Н	100.25	23.2	0.0	0.6	22.6	38.5	15.9			
836.6	V	96.69	21.7	0.0	0.6	21.1	38.5	17.4			
			GPRS 1	900 Middle	Channel		1				
1880.0	Н	96.92	23.3	8.0	0.9	30.4	33.0	2.6			
1880.0	V	93.53	21.1	8.0	0.9	28.2	33.0	4.8			
			EGPRS	1900 Middle	Channel						
1880	Н	92.65	19	8.0	0.9	26.1	33.0	6.9			
1880	V	88.73	16.3	8.0	0.9	23.4	33.0	9.6			
			WCDMA	Band II Midd	le Channel						
1880	Н	89.18	15.6	8.0	0.9	22.7	33.0	10.3			
1880	V	85.59	13.2	8.0	0.9	20.3	33.0	12.7			

Note:

Report No.: RXM160919050D Page 18 of 51

The unit of Antenna Gain is dBd for frequency below 1GHz, and the unit of Antenna Gain is dBi for frequency above 1GHz.
 Absolute Level = SG Level - Cable loss + Antenna Gain
 Margin = Limit-Absolute Level

FCC §2.1049, §22.917, §22.905 & §24.238 - OCCUPIED BANDWIDTH

Applicable Standard

FCC §2.1049, §22.917 and §22.905, §24.238.

Test Procedure

The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

The 26 dB & 99% bandwidth was recorded.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2016-09-21	2017-09-20
N/A	RF Cable	N/A	N/A	Each Time	1
N/A	Two-way Spliter	N/A	OE0120121	Each Time	1
N/A	10dB Attenuator	N/A	N/A	Each Time	1

^{*} **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Report No.: RXM160919050D Page 19 of 51

Test Data

Environmental Conditions

Temperature:	26.1 °C
Relative Humidity:	34%
ATM Pressure:	101.5 kPa

The testing was performed by Lorin Bian on 2016-11-29.

Test Mode: Transmitting

Test Result: Compliant. Please refer to the following table and plots.

Band	Test Channel	Mode	99% Occupied Bandwidth (kHz)	26 dB Occupied Bandwidth (kHz)
Cellular		GPRS	246	317
Celiulai		EDGE	251	313
PCS		PCS	244	317
F03		EDGE	248	317
WCDMA Band		Rel 99	4208	4910
WCDIVIA BAIIU	M	HSDPA	4208	4910
11	_	Mode Bandwic (kHz) GPRS 246 EDGE 251 PCS 244 EDGE 248 Rel 99 4208	4208	4930
MODMA David		Rel 99		4910
WCDMA Band		HSDPA	4208	4910
V		HSUPA	4228	4890

Report No.: RXM160919050D Page 20 of 51

GMSK 850 Cellular Band

GMSK PCS Band

EDGE 850 Cellular Band

EDGE PCS Band

REL99 Band II

HSDPA Band II

HSUPA Band II

HSDPA Band V

.....

FCC §2.1051, §22.917(a) & §24.238(a) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standard

FCC §2.1051, §22.917(a) and §24.238(a).

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in § 2.1051.

Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

Test Equipment List and Details

Manufacturer	Description	escription Model Serial Calibration Date		Calibration Due Date	
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2016-09-21	2017-09-20
N/A	RF Cable	N/A	N/A	Each Time	1
N/A	Two-way Spliter	N/A	OE0120121	Each Time	1
N/A	10dB Attenuator	N/A	N/A	Each Time	/

^{*} **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Report No.: RXM160919050D Page 26 of 51

Test Data

Environmental Conditions

Temperature:	26.1 °C
Relative Humidity:	34%
ATM Pressure:	101.5 kPa

The testing was performed by Lorin Bian on 2016-11-29.

Please refer to the following plots.

GPRS850_Middle Channel

Report No.: RXM160919050D Page 27 of 51

PCS 1900_ Middle Channel

REL99 Band V_ Middle Channel

FCC §2.1053, §22.917 & §24.238 - SPURIOUS RADIATED EMISSIONS

Applicable Standard

FCC § 2.1053, §22.917 and § 24.238.

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB = 10 lg (TXpwr in Watts/0.001) – the absolute level

Spurious attenuation limit in dB = $43 + 10 \text{ Log}_{10}$ (power out in Watts)

Report No.: RXM160919050D Page 32 of 51

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	Amplifier	8447D	2944A10442	2015-12-02	2016-12-01
Rohde & Schwarz	EMI Test Receiver	ESCI	100028	2015-12-02	2016-12-01
Sunol Sciences	Broadband Antenna	JB3	A101808	2016-04-10	2019-04-09
Rohde & Schwarz	Spectrum Analyzer	FSEM30	100018	2015-12-02	2016-12-01
ETS	Horn Antenna	3115	003-6076	2015-12-02	2016-12-01
ETS	Horn Antenna	3115	6751	2014-06-16	2017-06-15
EMCO	Adjustable Dipole Antenna	3121C	9109-258	N/A	N/A
HP	Signal Generator	8648C	3623A04150	2016-5-23	2017-05-22
WILTRON	SWEPT FREQUENCY SYNTHESIZER	6737	213001	2016-5-23	2017-5-22
Mini-circuits	Amplifier	ZVA-183-S+	771001215	2016-05-20	2017-05-19
HP	Amplifier	8449B	3008A00277	2015-12-02	2016-12-01
EMCT	Semi-Anechoic Chamber	966	N/A	2015-04-24	2018-04-23
N/A	RF Cable (below 1GHz)	NO.1	N/A	2016-11-10	2017-11-09
N/A	RF Cable (below 1GHz)	NO.4	N/A	2016-11-10	2017-11-09
N/A	RF Cable (above 1GHz)	NO.2	N/A	2016-11-10	2017-11-09
Ducommun Technolagies	Horn Antenna	ARH-4223- 02	1007726-01 1315	2016-08-18	2017-08-18
Ducommun Technolagies	Horn Antenna	ARH-2823- 02	1007726-01 1312	2016-08-18	2017-08-18

^{*} **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	26.1 °C
Relative Humidity:	34%
ATM Pressure:	101.5 kPa

The testing was performed by Lorin Bian on 2016-11-29.

Report No.: RXM160919050D Page 33 of 51

EUT Operation Mode: Transmitting

30 MHz-10 GHz:

Cellular Band (PART 22H)

		December	Su	bstituted Me	ethod	Alasalast		
Frequency (MHz)	Polar (H/V)	Receiver Reading (dBµV)	S.G. Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
		G	PRS850, F	requency:836	.600 MHz			
1673.2	Н	62.83	-40.3	7.9	0.8	-33.2	-13.0	20.2
1673.2	V	61.61	-39.8	7.9	0.8	-32.7	-13.0	19.7
2509.8	Н	62.13	-37.6	8.9	1.3	-30.0	-13.0	17.0
2509.8	V	56.19	-41.3	8.9	1.3	-33.7	-13.0	20.7
3346.4	Н	51.41	-45.3	8.7	1.3	-37.9	-13.0	24.9
3346.4	V	44.37	-52.4	8.7	1.3	-45.0	-13.0	32.0
4183	Н	42.22	-53.4	9.3	1.6	-45.7	-13.0	32.7
4183	V	39.57	-56	9.3	1.6	-48.3	-13.0	35.3
5019.6	Н	36.43	-57.5	9.8	1.7	-49.4	-13.0	36.4
5019.6	V	34.25	-59.7	9.8	1.7	-51.6	-13.0	38.6
152.22	Н	35.28	-79.7	0.0	0.2	-79.9	-13.0	66.9
103.72	V	33.46	-77.4	0.0	0.1	-77.5	-13.0	64.5
		WCDM	A Band V F	R99,Frequenc	y:836.600 MH	Z		
1673.2	Н	65.99	-37.1	7.9	0.8	-30.0	-13.0	17.0
1673.2	V	68.49	-32.9	7.9	0.8	-25.8	-13.0	12.8
2509.8	Н	59.58	-40.2	8.9	1.3	-32.6	-13.0	19.6
2509.8	V	62.21	-35.3	8.9	1.3	-27.7	-13.0	14.7
3346.4	Н	44.26	-52.4	8.7	1.3	-45.0	-13.0	32.0
3346.4	V	46.84	-49.9	8.7	1.3	-42.5	-13.0	29.5
152.22	Н	35.99	-78.9	0.0	0.2	-79.1	-13.0	66.1
103.72	V	41.02	-69.8	0.0	0.1	-69.9	-13.0	56.9

Report No.: RXM160919050D Page 34 of 51

PCS Band (PART 24E)

30 MHz-20 GHz:

	Polar (H/V)	Receiver Reading (dBµV)	Su	bstituted Me	ethod	About 4		
Frequency (MHz)			S.G. Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
GPRS1900, Frequency:1880.000 MHz								
3760	Н	42.09	-52.8	8.8	1.4	-45.4	-13.0	32.4
3760	V	43.85	-51	8.8	1.4	-43.6	-13.0	30.6
5640	Н	43.44	-49.7	10.3	1.8	-41.2	-13.0	28.2
5640	V	49.86	-43.3	10.3	1.8	-34.8	-13.0	21.8
152.22	Н	42.01	-72.9	0.0	0.2	-73.1	-13.0	60.1
103.72	V	43.69	-67.1	0.0	0.1	-67.2	-13.0	54.2
WCDMA Band II, R99, Frequency:1880.000 MHz								
3760	Н	39.11	-55.8	8.8	1.4	-48.4	-13.0	35.4
3760	V	40.39	-54.5	8.8	1.4	-47.1	-13.0	34.1
5640	Н	45.78	-47.3	10.3	1.8	-38.8	-13.0	25.8
5640	V	51.67	-41.5	10.3	1.8	-33.0	-13.0	20.0
7520	Н	39.62	-50	10.3	2.3	-42.0	-13.0	29.0
7520	V	41.86	-49.1	10.3	2.3	-41.1	-13.0	28.1
152.22	Н	42.58	-72.4	0.0	0.2	-72.6	-13.0	59.6
103.72	V	43.67	-67.1	0.0	0.1	-67.2	-13.0	54.2

Note:

- 1) The unit of Antenna Gain is dBd for frequency below 1GHz, and the unit of Antenna Gain is dBi for frequency above 1GHz.
- 2) Absolute Level = SG Level Cable loss + Antenna Gain
- 3) Margin = Limit-Absolute Level

Report No.: RXM160919050D Page 35 of 51

FCC §22.917(a) & §24.238(a) - BAND EDGES

Applicable Standard

According to § 22.917(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

According to §24.238(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The center of the spectrum analyzer was set to block edge frequency.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date				
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2016-09-21	2017-09-20				
N/A	RF Cable	N/A	N/A	Each Time	1				
N/A	Two-way Spliter	N/A	OE0120121	Each Time	1				
N/A	10dB Attenuator	N/A	N/A	Each Time	1				

^{*} **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	26.1 °C		
Relative Humidity:	34%		
ATM Pressure:	101.5 kPa		

The testing was performed by Lorin Bian on 2016-11-29.

Report No.: RXM160919050D Page 36 of 51

Test Mode: Transmitting

Test Result: Compliant. Please refer to the following plots.

GPRS 850, Left Band Edge

GPRS 850, Right Band Edge

Report No.: RXM160919050D Page 37 of 51

GPRS 1900, Left Band Edge

GPRS 1900, Right Band Edge

EDGE 850, Left Band Edge

EDGE 850, Right Band Edge

Page 39 of 51

EDGE 1900, Left Band Edge

EDGE 1900, Right Band Edge

WCDMA Band II:

REL99 Band II, Left Band Edge

REL99 Band II, Right Band Edge

Report No.: RXM160919050D Page 41 of 51

HSDPA Band II, Left Band Edge

HSDPA Band II, Right Band Edge

HSUPA Band II, Left Band Edge

HSUPA Band II, Right Band Edge

WCDMA Band V

REL99 Band V, Left Band Edge

REL99 Band V Right Band Edge

Report No.: RXM160919050D Page 44 of 51

HSDPA Band V, Left Band Edge

HSDPA Band V, Right Band Edge

HSUPA Band V, Left Band Edge

HSUPA Band V, Right Band Edge

FCC §2.1055, §22.355 & §24.235 - FREQUENCY STABILITY

Applicable Standard

FCC § 2.1055 (a), § 2.1055 (d), §22.355, §24.235

According to §22.355, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table below:

	T-1 f	. T	.:ا مارين 🗖 امالا منا	- Makila Oamiaaa
Franciancy	I DIETANCE TO	r i ranemittare	IN THE PLINII	' \/ CDIIA \Ar\/ CAC
1 I CUUCIICV	TOICIALICE IO	Hansiiiiiii		Mobile Services

Frequency Range (MHz)	Base, fixed (ppm)	Mobile > 3 watts (ppm)	Mobile ≤ 3 watts (ppm)
25 to 50	20.0	20.0	50.0
50 to 450	5.0	5.0	50.0
450 to 512	2.5	5.0	5.0
821 to 896	1.5	2.5	2.5
928 to 929.	5.0	N/A	N/A
929 to 960.	1.5	N/A	N/A
2110 to 2220	10.0	N/A	N/A

According to §24.235, the frequency stability shall be sufficient to ensure that the fundamental emissions stays within the authorized frequency block.

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the communication test set.

Frequency Stability vs. Voltage: An external variable DC power supply was connected to the battery terminals of the equipment under test. The voltage was set from 85% to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the battery end point. The output frequency was recorded for each battery voltage.

Report No.: RXM160919050D Page 47 of 51

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
FLUKE	Multimeter	1587	27870099	2015-12-30	2016-12-29
R&S	Universal Radio Communication Tester	CMU200	11-9435686- 111	2016-07-28	2017-07-27
N/A	RF Cable	N/A	N/A	Each Time	1
BACL	High Temperature Test Chamber	BTH-150	30024	2015-12-02	2016-12-01

^{*} **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	26.1 °C
Relative Humidity:	34%
ATM Pressure:	101.5 kPa

The testing was performed by Lorin Bian on 2016-11-29.

Cellular Band (Part 22H)

GMSK, Middle Channel, f _c = 836.6 MHz				
Temperature	Voltage	Frequency Error	Frequency Error	Limit
${\mathbb C}$	V _{DC}	Hz	ppm	ppm
-30		13	0.016	
-20		15	0.018	
-10		10	0.012	
0		15	0.018	
10	3.7	12	0.014	
20		21	0.025	2.5
30		18	0.022	
40		14	0.017	
50		24	0.029	
20	3.5	24	0.029	
20	4.2	20	0.024	

Report No.: RXM160919050D Page 48 of 51

Cellular Band (Part 22H)

EDGE, Middle Channel, f _c = 836.6 MHz					
Temperature	Voltage	Frequency Error	Frequency Error	Limit	
°C	V _{DC}	Hz	ppm	ppm	
-30		18	0.022		
-20		13	0.016		
-10		8	0.010		
0		12	0.014		
10	3.7	9	0.011		
20		17	0.020	2.5	
30		15	0.018		
40		11	0.013		
50		21	0.025		
20	3.5	20	0.024		
20	4.2	16	0.019		

PCS Band (Part 24E)

	GMSK, Middle Channel, f _c = 1880.0 MHz					
Temperature	Voltage	Frequency Error	Frequency Error	Result		
℃	V _{DC}	Hz	ppm			
-30		17	0.009			
-20		25	0.013			
-10		22	0.012			
0		27	0.014			
10	3.7	25	0.013			
20		22	0.012	Compliance		
30		17	0.009			
40		22	0.012			
50		12	0.006			
20	3.5	16	0.009			
20	4.2	15	0.008			

Report No.: RXM160919050D Page 49 of 51

PCS Band (Part 24E)

EDGE, Middle Channel, f _c = 1880.0 MHz					
Temperature	Voltage	Frequency Error	Frequency Error	Result	
℃	V _{DC}	Hz	ppm		
-30		17	0.003		
-20		18	0.006		
-10		15	0.007		
0		13	0.004		
10	3.7	18	0.006		
20		15	0.004	Compliance	
30		15	0.005		
40		21	0.007		
50		17	0.006		
20	3.5	13	0.005		
20	4.2	19	0.005		

WCDMA Band V: Re99

	Middle Channel, f _c = 836.6 MHz				
Temperature	Voltage	Frequency Error	Frequency Error	Limit	
${\mathbb C}$	V _{DC}	Hz	ppm	ppm	
-30		10	0.012	2.5	
-20		3	0.004	2.5	
-10		8	0.010	2.5	
0		9	0.011	2.5	
10	3.7	6	0.007	2.5	
20		14	0.017	2.5	
30		4	0.005	2.5	
40		10	0.012	2.5	
50		10	0.012	2.5	
20	3.5	8	0.010	2.5	
20	4.2	8	0.010	2.5	

Report No.: RXM160919050D Page 50 of 51

WCDMA Band II: Re99

Middle Channel, f _c = 1880.0 MHz					
Temperature	Voltage	Frequency Error	Frequency Error	Result	
℃	V _{DC}	Hz	ppm		
-30		6	0.003		
-20		11	0.006		
-10		13	0.007		
0		8	0.004		
10	3.7	11	0.006		
20		8	0.004	Compliance	
30		10	0.005		
40		13	0.007		
50		12	0.006		
20	3.5	9	0.005		
20	4.2	10	0.005		

***** END OF REPORT *****

Report No.: RXM160919050D Page 51 of 51