Selected Problems Chapter 1 Linear Algebra Done Right, Sheldon Axler, 3rd Edition

Mustaf Ahmed

August 15, 2020

Problem 1.A.2. Show that $\frac{-1+\sqrt{3i}}{2}$ is a cube root of 1 (meaning that its cube equals 1.) *Proof.* We can use the definition of complex multiplication :

$$\left(\frac{-1+\sqrt{3}i}{2}\right)^3 = \left(\frac{-1+\sqrt{3}i}{2}\right)^2 \left(\frac{-1+\sqrt{3}i}{2}\right)$$

$$= \left(\frac{-1-\sqrt{3}i}{2}\right) \left(\frac{-1+\sqrt{3}i}{2}\right)$$

$$= \frac{1}{4} + \frac{-\sqrt{3}i}{2} + \frac{\sqrt{3}i}{2} + \frac{3}{4}$$

$$= 1$$

Problem 1.A.3. Find two distinct roots of i.

Let z = (a + bi) be some root of i. We have :

$$z^2 = (a+bi)^2 = a^2 - b^2 + 2abi = i$$

Since i has no real component, this means that $a^2 - b^2 = 0$. Also, since the coefficient of i is 1, 2ab = 1, which also means that a, b must have the same sign. Thus, a = b, and

$$2ab = 2a^{2} = 1$$

$$a^{2} = \frac{1}{2}$$

$$a = b = \pm \frac{1}{\sqrt{2}}$$

so the two solutions are $z = (\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}})$ and $z = (-\frac{1}{\sqrt{2}} + \frac{-i}{\sqrt{2}})$.

1

Problem 1.B.1. Prove that -(-v) = v for each $v \in V$.

Proof. Given $v \in V$, we have :

$$-(-v) = -1(-1v) = (-1^2)v = 1(v) = v.$$

Problem 1.B.1. Suppose $a \in F, v \in V$, and av = 0. Prove that a = 0 or v = 0.

Proof. There are two cases : a = 0 or $a \neq 0$.

Case 1: a = 0. We are done.

Case 2: $a \neq 0$. Since F is a field and $a \neq 0$, the multiplicative inverse of a exists. We have that

$$v = (\frac{1}{a})av = (\frac{1}{a})0 = 0.$$

The first equality holds because $\frac{1}{a}$ is the multiplicative inverse of a, and the third equality holds because the vector 0 is invariant to scalar multiplication.

Problem 1.B.1. Suppose $a \in F, v \in V$, and av = 0. Prove that a = 0 or v = 0.

Proof. There are two cases : a = 0 or $a \neq 0$.

Case 1: a = 0. We are done.

Case 2: $a \neq 0$. Since F is a field and $a \neq 0$, the multiplicative inverse of a exists. We have that

$$v = (\frac{1}{a})av = (\frac{1}{a})0 = 0.$$

The first equality holds because $\frac{1}{a}$ is the multiplicative inverse of a, and the third equality holds because the vector 0 is invariant to scalar multiplication.

Problem 1.C.4. Suppose $b \in \mathbb{R}$. Show that the set of continuous real-valued functions f on the interval [0,1] such that $\int_0^1 f = b$ is a subspace of $\mathbb{R}^{[0,1]}$ if and only if b = 0.

Proof. Define the set

$$C = \{ f \in \mathbb{R}^{[0,1]} \mid \int_0^1 f = b \}.$$

For the forward direction, assume C is a subspace of the real-valued functions from the interval [0,1] to \mathbb{R} . Since C is a subspace, $0 \in C$, defined as 0(x) = 0 for all $x \in [0,1]$. Thus, $0+0 \in C$ because addition is an operation on C, and

$$b = \int_0^1 0 = \int_0^1 (0+0) = \int_0^1 0 + \int_0^1 0 = b + b = 2b.$$

Subtracting b from both side, we get b = 0.

Conversely, assume b=0. We must show that C is a subspace. We define the zero vector as above. Given $f \in C$, we have

$$\int_0^1 (f+0) = \int_0^1 f + \int_0^1 0 = 0,$$

so $f + 0 \in C$, meaning C contains an additive identity.

We must now show that addition and scalar multiplication are operations on C. Given $f, g \in C$, we have :

$$\int_0^1 (f+g) = \int_0^1 f + \int_0^1 g = 0 + 0 = 0,$$

so $f + g \in C$. Also, Given $\lambda \in F$ and $f \in C$, we have :

$$\int_0^1 \lambda(f) = \lambda \int_0^1 f = \lambda * 0 = 0,$$

so $\lambda(f) \in C$. Thus, The minimum properties for C to be a subspace of $\mathbb{R}^{[0,1]}$ are satisfied.

Problem 1.C.24. A function $f: \mathbb{R} \to \mathbb{R}$ is called even if

$$f(-x) = f(x)$$

for all $x \in \mathbb{R}$. A function $f : \mathbb{R} \to \mathbb{R}$ is called odd if

$$f(-x) = -f(x)$$

for all $x \in \mathbb{R}$. Let U_e denote the set of real-valued even functions on \mathbb{R} and let U_o denote the set of real-valued odd functions on \mathbb{R} . Show that $\mathbb{R}^{\mathbb{R}} = U_e \oplus U_o$.

Proof.

We will first show that U_e and U_o are subspaces of $\mathbb{R}^{\mathbb{R}}$. The zero element of $\mathbb{R}^{\mathbb{R}}$ is defined to be z(x) = 0, for all $x \in \mathbb{R}$. We have that

$$z(-x) = 0$$

because z(x) is constant, so $z(x) \in U_e$. We also have that

$$z(-x) = -0 = 0$$

because z(x) is constant, so $z(x) \in U_o$. Next, we must show that addition and scalar multiplication are valid operations on U_e and U_o . Given $f, g \in U_e$, we have :

$$(f+g)(-x) = f(-x) + g(-x) = f(x) + g(x) = (f+g)(x),$$

since f and g are even. Also, Given