Outline of each step

- 1. First wave of Data
 - a. Site weather Dep netcdf files format for use (all variables are in induvial data frames)
 - i. Process_NETCDF_Data_For_Use.R
 - 1. ## This script process NETCDF data output from CMAQ bidi
 - 2. ## Format:
 - 3. ## Set Up lists of variables and File names
 - 4. ## Function to pull them from NETCDF (Pull Var)
 - 5. ## Function to convert Var to data frame (Mat_to_Data_Frame)
 - ## Loop to apply Pull_Var and use same Loop to apply Mat_to_Data_Frame *applys to all variables
 - 7. # previously applied to Pull_Var because a list of variables was created in the Pull_Var loop
 - 8. ## CSV FILES WILL BE FOUND IN WORKING DIRECTORY
 - ii. Process_Individual_CSV_Var_Data_Over_Watershed.R
 - 1. ## This script takes the watersheds and aggragates the variables across each and then writes a CSV file for each variable that includes the
 - 2. # new number, date, and watershed id
 - iii. Grabbing ALL Points.R
 - 1. ## This script is to grab the closest grid point to the stations and make a dataframe for that variable and a .CSV for each variable
 - b. Nutrient data, csv file format for use
 - i. Process_CSV_Nutrient_Data.R made a key in this file to deal with the lat and long col row thing that Ellen explained in an email once upon a time
- Merge data
 - a. Hydrology, excel sheet converted to separate csv files and formatted in r for use (all stations are in one data frame)
- 3. Regression model
 - a. Load_Dataframe
 - b. GLS With Function
 - i. Outline what this is...
 - c. CV_Custom
 - i. This is a cool code, what it does is split the regression model up in to n sample groups, and regresses leaving each group out once. Then it predicts the left out group and plots the predicted vs measured values.
 - 1. Special note, if n is a factor of total sample size comment out the remainder portion, if it is not make sure remainder is included