

Fig. 1A

Fig. 1B

Fig. 1C

Fig. 2

Fig. 2A

Fig. 2B

Fig. 3

Fig. 4

Fig. 5

Fig. 6

NOTE: Each READ command may be to either bank. DQM is LOW.

DON'T CARE

Fig. 7

NOTE: Each READ command may be to either bank. DQM is LOW.

DON'T CARE

Fig. 8

NOTE: A CAS latency of three is used for illustration. The READ command may be to any bank, and the WRITE command may be to any bank. If a CAS latency of one is used, then DQM is not required.

☒ DON'T CARE

Fig. 9

Fig. 10

Fig. 11

NOTE: A CAS latency of two is used for illustration. The WRITE command may be to any bank and the READ command may be to any bank. DQM is LOW. A READ to the bank undergoing the WRITE ISM operation may output invalid data.

DON'T CARE

Fig. 12

Fig. 13

NOTE: For this example, CAS latency = 2, burst length = 4 or greater, and DQM is LOW.

■ DON'T CARE

Fig. 14

ADDRESS RANGE

		Bank	Row	Column	
		3	FFF C00 BFF 800 7FF 400 3FF 000	FFH 00H FFH 00H FFH 00H FFH 00H	256K-Word Block 15 256K-Word Block 14 256K-Word Block 13 256K-Word Block 12 256K-Word Block 11 256K-Word Block 10 256K-Word Block 9 256K-Word Block 8 256K-Word Block 7 256K-Word Block 6 256K-Word Block 5 256K-Word Block 4 256K-Word Block 3 256K-Word Block 2 256K-Word Block 1 256K-Word Block 0
		2	FFF C00 BFF 800 7FF 400 3FF 000	FFH 00H FFH 00H FFH 00H FFH 00H	256K-Word Block 15 256K-Word Block 14 256K-Word Block 13 256K-Word Block 12 256K-Word Block 11 256K-Word Block 10 256K-Word Block 9 256K-Word Block 8 256K-Word Block 7 256K-Word Block 6 256K-Word Block 5 256K-Word Block 4 256K-Word Block 3 256K-Word Block 2 256K-Word Block 1 256K-Word Block 0
		1	FFF C00 BFF 800 7FF 400 3FF 000	FFH 00H FFH 00H FFH 00H FFH 00H	256K-Word Block 15 256K-Word Block 14 256K-Word Block 13 256K-Word Block 12 256K-Word Block 11 256K-Word Block 10 256K-Word Block 9 256K-Word Block 8 256K-Word Block 7 256K-Word Block 6 256K-Word Block 5 256K-Word Block 4 256K-Word Block 3 256K-Word Block 2 256K-Word Block 1 256K-Word Block 0
		0	FFF C00 BFF 800 7FF 400 3FF 000	FFH 00H FFH 00H FFH 00H FFH 00H	256K-Word Block 15 256K-Word Block 14 256K-Word Block 13 256K-Word Block 12 256K-Word Block 11 256K-Word Block 10 256K-Word Block 9 256K-Word Block 8 256K-Word Block 7 256K-Word Block 6 256K-Word Block 5 256K-Word Block 4 256K-Word Block 3 256K-Word Block 2 256K-Word Block 1 256K-Word Block 0

Word-wide (x16)

Software Lock = Hardware-Lock Sectors
 RP# = V_{HH} to unprotect if either the block protect or device protect bit is set.

Software Lock = Hardware-Lock Sectors
 RP# = V_{CC} to unprotect but must be V_{HH} if the device protect bit is set.

See BLOCK PROTECT/UNPROTECT SEQUENCE for detailed information.

Fig. 15

Fig. 16

Fig. 17

Fig. 18

Fig. 19

Fig. 20

Fig. 21

Fig. 22

Fig. 23

Fig. 24

Fig. 25

Fig. 26

Fig. 27

Fig. 28

Fig. 29

Fig: 30

Fig. 31

300

Fig. 32

Fig. 33

Fig. 34