Name: NGUEPONWOUO Joseph-Marie

Project : Finite Difference Method for a European Option

```
import warnings
warnings.filterwarnings('ignore')
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from scipy.stats import norm
import time
import numpy.linalg as lng
from scipy.sparse import csr_matrix as sparse
from scipy.sparse.linalg import spsolve
```

1. The Euler Forward Scheme

$$egin{aligned} rac{U_j^{n+1}-U_j^n}{\Delta t} + rac{\sigma^2}{2} s_j^2 rac{-U_{j-1}^n + 2U_j^n - U_{j+1}^n}{h^2} - r s_j rac{U_{j+1}^n - U_{j-1}^n}{2h} + r U_j^n = 0 \ n = 0, \ldots N-1; j = 1, \ldots, I \ \ U_0^n = v_l(t_n) = K e^{-rt_n} - S_{min}; n = 0, \ldots, N \ \ U_{I+1} = v_r(t_n) = 0; n = 0, \ldots, N \ \ U_j^0 = arphi(s_j) = (K-s_j)_+; j = 1, \ldots, I \end{aligned}$$

2. Programming Explicit Euler Scheme

2.2. Programming indications

The class "PutOption" below contains all the attributes and methods useful to solve the questions related to this project.

```
In [15]:
    def __init__(self, r = 0.1, sigma = 0.2, K = 100, T = 1, Smin = 0, Sm
        self.r = r
        self.sigma = sigma
        self.K = K
        self.T = T
        self.Smin = Smin
        self.Smax = Smax
        self.I = I
        self.N = N
        self.scheme = scheme
        self.dt = T / N
        self.h = (Smax - Smin) / (I + 1)
        self.s = Smin + self.h * np.arange(1, I + 1)
```

```
self.U = self.phi(self.s)
    self.alpha = sigma**2 * self.s**2 / (2 * self.h**2)
    self.beta = r * self.s / (2 * self.h)
def phi(self, s):
    return np.maximum(self.K - s, 0).reshape(self.I, 1)
def u left(self, t):
    return self.K * np.exp(-self.r * t) - self.Smin
def u_right(self, t):
    return 0
def construct_A(self):
    A = np.zeros((self.I, self.I))
    for j in range(0, self.I):
      A[j, j] = 2 * self.alpha[j] + self.r
      if j-1 >= 0:
        A[j, j-1] = - self.alpha[j] + self.beta[j]
      if j+1 < self.I:
        A[j, j+1] = - self.alpha[j] - self.beta[j]
    return A
def construct_A_sparse(self):
    row = []
    col = []
    data = []
    for i in range(self.I):
        if i > 0: # Lower diagonal
            row.append(i)
            col.append(i - 1)
            data.append(-self.alpha[i] + self.beta[i])
        # Main diagonal
        row.append(i)
        col.append(i)
        data.append(2 * self.alpha[i] + self.r)
        if i < self.I - 1: # Upper diagonal</pre>
            row.append(i)
            col.append(i + 1)
            data.append(-self.alpha[i] - self.beta[i])
    return sparse((data, (row, col)), shape=(self.I, self.I))
def q(self, t):
    y = np.zeros((self.I, 1))
    y[0] = (-self.alpha[0] + self.beta[0]) * self.u_left(t)
    y[-1] = (-self.alpha[-1] - self.beta[-1]) * self.u_right(t)
    return y
def explicit_euler(self):
    A = self.construct_A()
    for n in range(self.N):
        t = n * self.dt
        self.U = self.U - self.dt * (A @ self.U + self.q(t))
    return self.U
def implicit_euler(self):
    A = self.construct_A()
    Id = np.identity(self.I)
```

```
B = Id + self.dt * A
    for n in range(self.N):
        t = (n+1) * self.dt
        self.U = lng.solve(B, self.U - self.dt * self.q(t))
    return self.U
def crank nicolson(self):
   A = self.construct A()
   Id = np.identity(self.I)
   B = Id + (self.dt / 2) * A
   C = Id - (self.dt / 2) * A
   for n in range(self.N):
       t = (n + 1) * self.dt
       self.U = lng.solve(B, C @ self.U - (self.dt / 2) * (self.q(t -
   return self.U
def black_scholes(self, S, t):
    d1 = (np.log(S / self.K) + (self.r + 0.5 * self.sigma**2) * (self.k)
    d2 = d1 - self.sigma * np.sgrt(self.T - t)
    return self.K * np.exp(-self.r * (self.T - t)) * norm.cdf(-d2) -
def interpolate_value(self, s_bar):
    for i in range(len(self.s) - 1):
        if self.s[i] <= s_bar <= self.s[i + 1]:</pre>
            s_i, s_{ip1} = self.s[i], self.s[i + 1]
            if self.scheme == 'EE':
                temp = self.explicit_euler()
            elif self.scheme == 'IE':
                temp = self.implicit euler()
            elif self.scheme == 'CN':
                temp = self.crank nicolson()
            else:
                raise ValueError("Invalid scheme. Choose 'EE', 'IE',
            U_i, U_i: temp[i], temp[i + 1]
            interpolated_value = ((s_ip1 - s_bar) / self.h) * U_i + (
            return interpolated_value[-1]
    raise ValueError("s_bar is out of bounds.")
def compute_error_table(self, Sval):
    alphas = []
    errex = []
    h vals = []
    Uvals = []
    alphas = [0.0000, 0.00]
    tab = []
    for I_val in [10, 20, 40, 80, 160, 320]:
        N_{val} = (I_{val} ** 2) // 10
        \#N_val = I_val
        dt_val = self.T / N_val
        h_val = (self.Smax - self.Smin) / (I_val + 1)
        s_val = self.Smin + h_val * np.arange(1, I_val + 1)
        # Update parameters
        self.dt = dt_val
        self.h = h_val
        self.s = s_val
        self.I = I_val
        self.N = N_val
        self.alpha = self.sigma**2 * self.s**2 / (2 * self.h**2)
```

```
self.beta = self.r * self.s / (2 * self.h)
        self.U = self.phi(self.s)
        exact = self.black_scholes(Sval, 0)
        start time = time.time()
        U_ = self.interpolate_value(Sval)
        end time = time.time()
        h_vals.append(h_val)
        Uvals.append(U_)
        errex.append(abs(U_ - exact))
        tab.append([I_val, N_val, U_, abs(U_ - exact), end_time - sta
    tab[0][3] = 0
    errors = [abs(Uvals[j+1] - Uvals[j]) for j in range(len(Uvals)-1)
    errors.insert(0, 0)
    orders = []
    for k in range(2, len(Uvals)):
        alpha_k = (np.log(abs(Uvals[k-2] - Uvals[k-1]) / abs(Uvals[k])
        alphas.append(alpha_k)
        beta_k = alpha_k / 2
        orders.append([k, alpha_k, beta_k])
    tab = np.insert(tab, 3, errors, axis=1)
    tab = np.insert(tab, 4, alphas, axis=1)
    tab = np.array(tab)
    df = pd.DataFrame(tab, columns=['I', 'N', 'U(s)', 'error', 'alpha
    return df
def run(self):
    if self.scheme == 'EE':
        self.explicit_euler()
    elif self.scheme == 'IE':
        self.implicit_euler()
    elif self.scheme == 'CN':
        self.crank_nicolson()
    # Plot results
    plt.plot(self.s, self.U, label = 'Scheme')
    plt.plot(self.s, [max(self.K - p, 0) for p in self.s], 'r--', lab
    plt.xlabel('Stock Price')
    plt.ylabel('Option Value')
    plt.title(f'Put Option - {self.scheme} (T = {self.T})')
    plt.legend()
    plt.grid()
    plt.show()
```

Figure of Scheme for "EE"

```
In [83]: option = PutOption(r=0.1, sigma=0.2, K=100, T=1, Smin=0, Smax=200, I=80, option.run()
```

Put Option - EE (T = 1)100 Scheme Payoff 80 Option Value 60 40 20 0 0 25 50 75 100 125 150 175 200

Stock Price

d) Program the matrix A of size I st I

```
In [5]: def construct_A(self):
    A = np.zeros((self.I, self.I))
    for j in range(0, self.I):
        A[j, j] = 2 * self.alpha[j] + self.r
        if j-1 >= 0:
        A[j, j-1] = - self.alpha[j] + self.beta[j]
        if j+1 < self.I:
        A[j, j+1] = - self.alpha[j] - self.beta[j]
        return A</pre>
```

3. First numerical tests

a) Test the Euler Forward Scheme (EE)

```
In [6]: # N = 10, I = 50
N = 10
I = 50

option = PutOption(r=0.1, sigma=0.2, K=100, T=1, Smin=0, Smax=200, I=I, N
option.run()
```


Remark : We can see that for some values for N, we have the value of U^n that explodes. So this scheme is not always numerically stable.

b) Let's look at the amplification of $B:=I_d-\Delta tA$.

Check that the coefficients of ${\cal B}$ are not all positive and that they may have a modulus greater than 1.

```
In [7]: # N = 10 , I = 50
    option = PutOption(r=0.1, sigma=0.2, K=100, T=1, Smin=0, Smax=200, I=50,
    B = np.identity(option.I) - option.dt * option.construct_A()
    print(B)

[[ 9.860e-01  7.000e-03  0.000e+00  ...  0.000e+00  0.000e+00  0.000e+00]
    [-2.000e-03  9.740e-01  1.800e-02  ...  0.000e+00  0.000e+00  0.000e+00]
    [ 0.000e+00  3.000e-03  9.540e-01  ...  0.000e+00  0.000e+00  0.000e+00]
    ...

[ 0.000e+00  0.000e+00  0.000e+00  ... -8.226e+00  4.848e+00  0.000e+00]
    [ 0.000e+00  0.000e+00  0.000e+00  ...  4.557e+00  -8.614e+00  5.047e+00]
    [ 0.000e+00  0.000e+00  0.000e+00  ...  0.000e+00  4.750e+00  -9.010e+00]]
```

• Compute the norm $\|B\|_{\infty}$

```
In [8]: print("Norm 1 of B:", np.linalg.norm(option.construct_A(), np.inf))
```

Norm 1 of B: 192.1800000000006

• Compute the norm $||B||_2$

```
In [9]: print("Norm 2 of B:", np.linalg.norm(option.construct_A(), 2))
```

ullet Let's now check that for N=I=10, the coefficients of B are almost all positive and smaller than 1.

```
In [10]: N = I = 10
         option = PutOption(r=0.1, sigma=0.2, K=100, T=1, Smin=0, Smax=200, I=I, N
         B = np.identity(option.I) - option.dt * option.construct_A()
         print(B)
                                 0.
                                                0.
                                                                             0.
         [[ 0.986
                  0.007
                          0.
                                        0.
                                                       0.
                                                              0.
                                                                      0.
                                                                                  1
                  0.974
                                                                                  1
         [-0.002
                         0.018 0.
                                        0.
                                                0.
                                                       0.
                                                              0.
                                                                      0.
                                                                             0.
                   0.003 0.954 0.033 0.
                                                                                  1
         [ 0.
                                                0.
                                                       0.
                                                              0.
                                                                      0.
                                                                             0.
         [ 0.
                   0.
                          0.012 0.926 0.052
                                                0.
                                                       0.
                                                                     0.
                                                                             0.
                                                              0.
         [ 0.
                                 0.025 0.89
                                                0.075 0.
                                                                             0.
                                                                                  ]
                   0.
                          0.
                                                              0.
                                                                     0.
         [ 0.
                  0.
                          0.
                                 0.
                                        0.042 0.846 0.102
                                                              0.
                                                                     0.
                                                                             0.
                                                                                  ]
                  0.
                                                0.063 0.794
                                                              0.133 0.
                                                                                  1
         [ 0.
                          0.
                                 0.
                                        0.
                                                                             0.
                                                       0.088
                                                              0.734
                                                                     0.168
                                                                                  1
         [ 0.
                  0.
                          0.
                                 0.
                                        0.
                                                0.
                                                                             0.
         [ 0.
                                                                             0.2071
                   0.
                                 0.
                                                       0.
                                                              0.117
                                                                     0.666
                          0.
                                        0.
                                                0.
         [ 0.
                   0.
                          0.
                                 0.
                                        0.
                                                0.
                                                       0.
                                                              0.
                                                                      0.15
                                                                             0.59 ]]
```

Remark: We can notice from the matrix B above that all coefficients of B are positive and almost smaller than 1.

c) For the same previous values (N,I)=(10,10) or (10,50), compute the CFL number defined here as:

$$\mu := rac{\Delta t}{h^2} \sigma^2 S_{max}^2$$

```
In [11]: # I = N = 10

I = N = 10

option = PutOption(r=0.1, sigma=0.2, K=100, T=1, Smin=0, Smax=200, I=I, N mu = (option.dt / (option.h ** 2)) * (option.sigma ** 2) * (option.Smax * print("CFL number for (N, I) = (10, 10):", mu)
```

CFL number for (N, I) = (10, 10): 0.484

```
In [12]: # N = 10 ; I = 50
N = 10
I = 50
option = PutOption(r=0.1, sigma=0.2, K=100, T=1, Smin=0, Smax=200, I=I, N
mu = (option.dt / (option.h ** 2)) * (option.sigma ** 2) * (option.Smax *
print("CFL number for (N, I) = (10, 50):", mu)
```

CFL number for (N, I) = (10, 50): 10.404000000000003

Remark: From the computations above, we noticed that the oscillation problem occurs for (10,50) but not for (10,10). Then, we can conclude that there is no stability problem when μ is sufficiently small. This can also be seen by taking Δt very small (N very large) compared to h^2 .

d) Compute the P_1- interpolated value at $\bar{s}=90$. If $\bar{s}\in[s_i,s_{i+1}]$, then this interpolated value can be obtained by using the affine (P_1) approximation.

```
In [13]: s_bar = 90
N = 10
I = 10
option = PutOption(r=0.1, sigma=0.2, K=100, T=1, Smin=0, Smax=200, I=I, N
print("P1 - interpolated value:", option.interpolate_value(s_bar))
```

P1 - interpolated value: 6.296946349254133

e) Numerical order of the scheme (TABLES FOR N=I AND $N=I^2/10$)

In [10]: #
$$N = I$$
 option = PutOption(r=0.1, sigma=0.2, K=100, T=1, Smin=0, Smax=200, I=10, option.compute_error_table(80)

tcı	errex	alpha	error	U(s)	N	I	
0.00029	0.000000e+00	0.000000	0.000000e+00	1.425509e+01	10.0	10.0	0
0.0005	2.416537e-01	0.000000	7.397757e-01	1.351532e+01	20.0	20.0	1
0.00140	4.666637e-02	1.992995	1.949874e-01	1.332033e+01	40.0	40.0	2
0.00182	1.062801e+04	-16.017683	1.062806e+04	-1.061474e+04	80.0	80.0	3
0.0110	8.121408e+69	-220.831897	8.121408e+69	-8.121408e+69	160.0	160.0	4
0.0153	NaN	NaN	NaN	NaN	320.0	320.0	5

Remark: We can easily notice from the table above the stability issue characterised by very large values for the payoff (even negative).

In [16]: #
$$N = (I ** 2) / 10$$
 option = PutOption(r=0.1, sigma=0.2, K=100, T=1, Smin=0, Smax=200, I=10, option.compute_error_table(80)

Out[16]:		1	N	U(s)	error	alpha	errex	tcpu
	0	10.0	10.0	14.255092	0.000000	0.000000	0.000000	0.000292
	1	20.0	40.0	13.547634	0.707459	0.000000	0.273971	0.000961
	2	40.0	160.0	13.345106	0.202528	1.869520	0.071443	0.003827
	3	80.0	640.0	13.291930	0.053175	1.964063	0.018267	0.009169
	4	160.0	2560.0	13.278284	0.013646	1.979940	0.004621	0.071863
	5	320.0	10240.0	13.274825	0.003459	1.989035	0.001162	0.471527

4. Implicit Euler (IE) Scheme

Demonstration of the IE scheme:

From the "IE" scheme, we have:

$$egin{aligned} rac{U_j^{n+1}-U_j^n}{\Delta t} + rac{\sigma^2}{2} s_j^2 rac{-U_{j-1}^{n+1} + 2U_j^{n+1} - U_{j+1}^{n+1}}{h^2} - r s_j rac{U_{j+1}^{n+1} - U_{j-1}^{n+1}}{2h} + r U_j^{n+1} = 0 \ n = 0, \dots, N-1 \ j = 1, \dots, I \end{aligned}$$

Apart from this term, $\frac{U_j^{n+1}-U_j^n}{\Delta t}$, we identify the same scheme as in the "EE" scheme with U^{n+1} in place of U^n . Hence, we have:

$$egin{aligned} rac{U_j^{n+1} - U_j^n}{\Delta t} + AU^{n+1} + q(t_{n+1}) &= 0 \ n = 0, \dots, N-1 \ U^0 &= (arphi(s_i))_{1 \leq i \leq I} \end{aligned}$$

- a) Check that with the IE scheme, there is no more stability problems
 - Figure of scheme for "IE"

b) Computation Table

In [9]: option = PutOption(r=0.1, sigma=0.2, K=100, T=1, Smin=0, Smax=200, I=I, N
 option.compute_error_table(80)

Out[9]:		1	N	U(s)	error	alpha	errex	tcpu
	0	10.0	10.0	14.448406	0.000000	0.000000	0.000000	0.000393
	1	20.0	20.0	13.642159	0.806247	0.000000	0.368496	0.001068
	2	40.0	40.0	13.386145	0.256015	1.714605	0.112482	0.009551
	3	80.0	80.0	13.310502	0.075642	1.790659	0.036839	0.015228
	4	160.0	160.0	13.287066	0.023436	1.705703	0.013403	0.095420
	5	320.0	320.0	13.279089	0.007977	1.561785	0.005426	0.939561

Out[14]:		1	N	U(s)	error	alpha	errex	tcpu
	0	10.0	1.0	15.115616	0.000000	0.000000	0.000000	0.000202
	1	20.0	2.0	14.135687	0.979929	0.000000	0.862024	0.000332
	2	40.0	4.0	13.667824	0.467863	1.105006	0.394161	0.000515
	3	80.0	8.0	13.456693	0.211131	1.168633	0.183030	0.001723
	4	160.0	16.0	13.360985	0.095708	1.151718	0.087322	0.017526
	5	320.0	32.0	13.316197	0.044788	1.100467	0.042534	0.094994

5. Crank Nicolson Scheme

- a) Program the Crank-Nicolson scheme (CN)
 - Write the CN scheme in vector form :

$$rac{U_{j}^{n+1}-U_{j}^{n}}{\Delta t}+rac{1}{2}\Biggl(rac{\sigma^{2}}{2}s_{j}^{2}rac{-U_{j-1}^{n+1}+2U_{j}^{n+1}-U_{j+1}^{n+1}}{h^{2}}-rs_{j}rac{U_{j+1}^{n+1}-U_{j-1}^{n+1}}{2h}+rU_{j}^{n+1}\Biggr) \ n=0,\ldots,N-j=1,\ldots,I$$

From the "EE" and "IE" schemes, we can see that the vector form of the "CN" scheme is given by :

$$egin{aligned} &rac{U_j^{n+1}-U_j^n}{\Delta t}+rac{1}{2}ig(AU^{n+1}+q(t_{n+1})ig)+rac{1}{2}(AU^n+q(t_n))=0 \ &\Longrightarrow \left(Id+rac{1}{2}\Delta tA
ight)U^{n+1}=(Id-rac{1}{2}\Delta tA)U^n-rac{1}{2}\Delta t\left(q(t_n)+q(t_{n+1})
ight) \end{aligned}$$

• Figure of scheme for "CN"

b) Draw the corresponding table with I=N and N=I/10.

The numerical order should be clear for N=I.

```
In [8]: # N = I = 10

N = I = 10

option = PutOption(r=0.1, sigma=0.2, K=100, T=1, Smin=0, Smax=200, I=I, N option.compute_error_table(80)
```

:		1	N	U(s)	error	alpha	errex	tcpu
	0	10.0	10.0	14.353451	0.000000	0.000000	0.000000	0.000686
	1	20.0	20.0	13.578892	0.774559	0.000000	0.305229	0.002233
	2	40.0	40.0	13.353140	0.225752	1.842696	0.079477	0.007711
	3	80.0	80.0	13.293944	0.059195	1.965990	0.020281	0.014035
	4	160.0	160.0	13.278788	0.015156	1.983267	0.005125	0.097610
	5	320.0	320.0	13.274951	0.003837	1.990918	0.001288	3.011112

• N = I/10

Out[8]

In [6]:	option = PutOption(r=0.1, sigma=0.2, K=100, T=1, Smin=0, Smax=200, I=I, N	
	<pre>option.compute_error_table(80)</pre>	

Out[6]:		1	N	U(s)	error	alpha	errex	tcpu
	0	10.0	1.0	14.230461	0.000000	0.000000	0.000000	0.000306
	1	20.0	2.0	13.506181	0.724281	0.000000	0.232518	0.004908
	2	40.0	4.0	13.334783	0.171397	2.154094	0.061120	0.000674
	3	80.0	8.0	13.288798	0.045985	1.932315	0.015135	0.002072
	4	160.0	16.0	13.277492	0.011307	2.042244	0.003829	0.010620
	5	320.0	32.0	13.274627	0.002865	1.989305	0.000964	0.091959

Discussion on numerical tests:

We can say that both schemes, in case of stability, we have a good convergence of the solution of the PDE as N and I increase. This can be noticed from errex which tends to 0 as N and I increase. The different schemes are then consistent and coherent with theoretical analysis.

Complement 1: Programmation of the Black Scholes formula done in the class "PutOption" above.

```
In [86]:
def black_scholes(self, S, t):
    d1 = (np.log(S / self.K) + (self.r + 0.5 * self.sigma**2) * (self.T -
    d2 = d1 - self.sigma * np.sqrt(self.T - t)
    return self.K * np.exp(-self.r * (self.T - t)) * norm.cdf(-d2) - S *
```

Complement 2: Program the sparse matrices.

```
In [20]: class PutOption:
    def __init__(self, r = 0.1, sigma = 0.2, K = 100, T = 1, Smin = 0, Sm
```

```
self.r = r
    self.sigma = sigma
    self.K = K
    self.T = T
    self.Smin = Smin
    self.Smax = Smax
    self.I = I
    self.N = N
    self.scheme = scheme
    self.dt = T / N
    self.h = (Smax - Smin) / (I + 1)
    self.s = Smin + self.h * np.arange(1, I + 1)
    self.U = self.phi(self.s)
    self.alpha = sigma**2 * self.s**2 / (2 * self.h**2)
    self.beta = r * self.s / (2 * self.h)
def phi(self, s):
    return np.maximum(self.K - s, 0).reshape(self.I, 1)
def u_left(self, t):
    return self.K * np.exp(-self.r * t) - self.Smin
def u_right(self, t):
    return 0
def construct_A(self):
    A = np.zeros((self.I, self.I))
    for j in range(0, self.I):
      A[j, j] = 2 * self.alpha[j] + self.r
      if j-1 >= 0:
        A[j, j-1] = - self.alpha[j] + self.beta[j]
      if j+1 < self.I:
        A[j, j+1] = - self.alpha[j] - self.beta[j]
    return A
def construct_A_sparse(self):
    row = []
    col = []
    data = []
    for i in range(self.I):
        if i > 0:
            row.append(i)
            col.append(i - 1)
            data.append(-self.alpha[i] + self.beta[i])
        row.append(i)
        col.append(i)
        data.append(2 * self.alpha[i] + self.r)
        if i < self.I - 1:
            row.append(i)
            col.append(i + 1)
            data.append(-self.alpha[i] - self.beta[i])
    return sparse((data, (row, col)), shape=(self.I, self.I))
def q(self, t):
    y = np.zeros((self.I, 1))
    y[0] = (-self.alpha[0] + self.beta[0]) * self.u_left(t)
    y[-1] = (-self.alpha[-1] - self.beta[-1]) * self.u_right(t)
```

```
return y
def explicit_euler(self):
         A = self.construct_A_sparse()
         for n in range(self.N):
                  t = n * self.dt
                  self.U = self.U - self.dt * (A @ self.U + self.q(t))
         return self.U
def implicit_euler(self):
         A = self.construct_A_sparse()
         Id = np.identity(self.I)
         B = Id + self.dt * A
         for n in range(self.N):
                  t = (n+1) * self.dt
                  self.U = (spsolve (B, self.U - self.dt * self.q(t))).reshape(
         return self.U
def crank nicolson(self):
       A = self.construct_A_sparse()
       Id = np.identity(self.I)
       B = Id + (self.dt / 2) * A
       C = Id - (self.dt / 2) * A
       for n in range(self.N):
                t = (n + 1) * self.dt
                self.U = (spsolve(B, C@self.U - (self.dt / 2) * (self.q(t -
       return self.U
def black_scholes(self, S, t):
         d1 = (np.log(S / self.K) + (self.r + 0.5 * self.sigma**2) * (self.sigma**2) * (sel
         d2 = d1 - self.sigma * np.sqrt(self.T - t)
         return self.K * np.exp(-self.r * (self.T - t)) * norm.cdf(-d2) -
def interpolate_value(self, s_bar):
         for i in range(len(self.s) - 1):
                  if self.s[i] <= s_bar <= self.s[i + 1]:</pre>
                            s_i, s_{i} = self.s[i], self.s[i + 1]
                            if self.scheme == 'EE':
                                     temp = self.explicit_euler()
                            elif self.scheme == 'IE':
                                     temp = self.implicit_euler()
                            elif self.scheme == 'CN':
                                     temp = self.crank_nicolson()
                           else:
                                     raise ValueError("Invalid scheme. Choose 'EE', 'IE',
                           U_i, U_i: temp[i], temp[i + 1]
                            interpolated_value = ((s_ip1 - s_bar) / self.h) * U_i + (
                            return interpolated_value[-1]
         raise ValueError("s_bar is out of bounds.")
def compute_error_table(self, Sval):
         alphas = []
         errex = []
         h_vals = []
         Uvals = []
         alphas = [0.0000, 0.00]
         tab = []
         for I_val in [10, 20, 40, 80, 160, 320]:
                  N_{val} = (I_{val}**2) // 10
```

```
\#N \ val = I \ val
        dt_val = self.T / N_val
        h_val = (self.Smax - self.Smin) / (I_val + 1)
        s_val = self.Smin + h_val * np.arange(1, I_val + 1)
        # Update parameters
        self.dt = dt_val
        self.h = h val
        self.s = s_val
        self.I = I_val
        self.N = N_val
        self.alpha = self.sigma**2 * self.s**2 / (2 * self.h**2)
        self.beta = self.r * self.s / (2 * self.h)
        self.U = self.phi(self.s)
        exact = self.black_scholes(Sval, 0)
        start_time = time.time()
        U = self.interpolate value(Sval)
        end_time = time.time()
        h vals.append(h val)
        Uvals.append(U_)
        errex.append(abs(U_ - exact))
        tab.append([I_val, N_val, U_, abs(U_ - exact), end_time - sta
    tab[0][3] = 0
    errors = [abs(Uvals[j+1] - Uvals[j]) for j in range(len(Uvals)-1)
    errors.insert(0, 0)
    orders = []
    for k in range(2, len(Uvals)):
        alpha_k = (np.log(abs(Uvals[k-2] - Uvals[k-1]) / abs(Uvals[k])
        alphas.append(alpha k)
        beta_k = alpha_k / 2
        orders.append([k, alpha_k, beta_k])
    tab = np.insert(tab, 3, errors, axis=1)
    tab = np.insert(tab, 4, alphas, axis=1)
    tab = np.array(tab)
    df = pd.DataFrame(tab, columns=['I', 'N', 'U(s)', 'error', 'alpha
    return df
def run(self):
    if self.scheme == 'EE':
        self.explicit_euler()
    elif self.scheme == 'IE':
        self.implicit_euler()
    elif self.scheme == 'CN':
        self.crank_nicolson()
    # Plot results
    plt.plot(self.s, self.U, label = 'Scheme')
    plt.plot(self.s, [max(self.K - p, 0) for p in self.s], 'r--', lab
    plt.xlabel('Stock Price')
    plt.ylabel('Option Value')
    plt.title(f'Put Option - {self.scheme} (T = {self.T})')
    plt.legend()
    plt.grid()
    plt.show()
```

In [21]: option = PutOption(r=0.1, sigma=0.2, K=100, T=1, Smin=0, Smax=200, I=I, N
 option.compute_error_table(80)

Out[21]:		I	N	U(s)	error	alpha	errex	tcpu
	0	10.0	10.0	14.255092	0.000000	0.000000	0.000000	0.001168
	1	20.0	40.0	13.547634	0.707459	0.000000	0.273971	0.012897
	2	40.0	160.0	13.345106	0.202528	1.869520	0.071443	0.014936
	3	80.0	640.0	13.291930	0.053175	1.964063	0.018267	0.057537
	4	160.0	2560.0	13.278284	0.013646	1.979940	0.004621	0.132647

ullet Improvement of execution time for "IE" (N=I/10)

In [18]:
$$I = N = 10$$
 option = PutOption(r=0.1, sigma=0.2, K=100, T=1, Smin=0, Smax=200, I=I, N option.compute_error_table(80)

5 320.0 10240.0 13.274825 0.003459 1.989035 0.001162 0.272238

Out[18]:		- 1	N	U(s)	error	alpha	errex	tcpu
	0	10.0	1.0	15.115616	0.000000	0.000000	0.000000	0.019329
	1	20.0	2.0	14.135687	0.979929	0.000000	0.862024	0.001873
	2	40.0	4.0	13.667824	0.467863	1.105006	0.394161	0.002576
	3	80.0	8.0	13.456693	0.211131	1.168633	0.183030	0.008545
	4	160.0	16.0	13.360985	0.095708	1.151718	0.087322	0.015194
	5	320.0	32.0	13.316197	0.044788	1.100467	0.042534	0.069265

ullet Improvement of execution time for "CN" (N=I/10)

In [19]:	<pre>option = PutOption(r=0.1,</pre>	sigma=0.2,	K=100,	T=1,	Smin=0,	Smax=200,	Ι=Ι,	N
	option.compute_error_tabl	e(80)						

Out[19]:		- 1	N	U(s)	error	alpha	errex	tcpu
	0	10.0	1.0	14.230461	0.000000	0.000000	0.000000	0.002608
	1	20.0	2.0	13.506181	0.724281	0.000000	0.232518	0.004488
	2	40.0	4.0	13.334783	0.171397	2.154094	0.061120	0.002958
	3	80.0	8.0	13.288798	0.045985	1.932315	0.015135	0.011206
	4	160.0	16.0	13.277492	0.011307	2.042244	0.003829	0.026732
	5	320.0	32.0	13.274627	0.002865	1.989305	0.000964	0.117092

Conclusion: Compared to the values obtained before, we can notice a good improvement of execution time by using sparse matrices.

Complement 3: Program the Call option

a) Adequate left and right boundary conditions for the call option

$$egin{split} v(t,S_{min}) &= v_l(t) = 0, t \in (0,T) \ v(t,S_{max}) &= v_r(t) = S_{max} - Ke^{-rt}, t \in (0,T) \ v(0,s) &= arphi(s) = (s-K)_+, s \in (S_{min},S_{max}) \end{split}$$

b) PDE with boundary conditions for the call option

$$egin{aligned} rac{\partial c}{\partial t} + rsrac{\partial c}{\partial s} + rac{\sigma^2}{2}s^2rac{\partial^2 c}{\partial s^2} - rc &= 0 \ v(t,S_{min}) = v_l(t) &= 0 \ v(t,S_{max}) = v_r(t) = S_{max} - Ke^{-rt} \ v(0,s) &= arphi(s) = (s-K)_+, s \in (S_{min},S_{max}) \end{aligned}$$

c) Program and test the Implicit Euler Scheme for the call option

```
In [25]: class CallOption:
             def __init__(self, r = 0.1, sigma = 0.2, K = 100, T = 1, Smin = 0, Sm
                 self.r = r
                 self.sigma = sigma
                 self.K = K
                 self.T = T
                 self.Smin = Smin
                 self.Smax = Smax
                 self.I = I
                 self.N = N
                 self.scheme = scheme
                 self.dt = T / N
                 self.h = (Smax - Smin) / (I + 1)
                 self.s = Smin + self.h * np.arange(1, I + 1)
                 self.U = self.phi(self.s)
                 self.alpha = sigma**2 * self.s**2 / (2 * self.h**2)
                 self.beta = r * self.s / (2 * self.h)
             def phi(self, s):
                 return np.maximum(s - self.K, 0).reshape(self.I, 1)
             def u_left(self, t):
                 return 0
             def u_right(self, t):
                 return self.Smax - self.K * np.exp(-self.r * t)
             def construct_A(self):
                 A = np.zeros((self.I, self.I))
                 for j in range(0, self.I):
                   A[j, j] = 2 * self.alpha[j] + self.r
                   if j-1 >= 0:
```

```
A[j, j-1] = - self.alpha[j] + self.beta[j]
             if j+1 < self.I:
                 A[j, j+1] = - self.alpha[j] - self.beta[j]
         return A
def q(self, t):
         y = np.zeros((self.I, 1))
         y[0] = (-self.alpha[0] + self.beta[0]) * self.u_left(t)
         y[-1] = (-self.alpha[-1] - self.beta[-1]) * self.u_right(t)
         return y
def explicit euler(self):
         A = self.construct A()
         for n in range(self.N):
                 t = n * self.dt
                 self.U = self.U - self.dt * (A @ self.U + self.q(t))
         return self.U
def implicit euler(self):
         A = self.construct_A()
         Id = np.identity(self.I)
         B = Id + self.dt * A
         for n in range(self.N):
                 t = (n+1) * self.dt
                  self.U = lng.solve(B, self.U - self.dt * self.q(t))
         return self.U
def crank nicolson(self):
      A = self.construct_A()
      Id = np.identity(self.I)
      B = Id + (self.dt / 2) * A
      C = Id - (self.dt / 2) * A
      for n in range(self.N):
               t = (n + 1) * self.dt
               self.U = lng.solve(B, C@self.U - (self.dt / 2) * (self.q(t -
       return self.U
def black_scholes(self, S, t):
         d1 = (np.log(S / self.K) + (self.r + 0.5 * self.sigma**2) * (self.sigma**2) * (sel
         d2 = d1 - self.sigma * np.sqrt(self.T - t)
         return S * norm.cdf(d1) - self.K * np.exp(-self.r * (self.T - t))
def interpolate_value(self, s_bar):
         for i in range(len(self.s) - 1):
                  if self.s[i] <= s_bar <= self.s[i + 1]:</pre>
                           s_i, s_{i} = self.s[i], self.s[i + 1]
                           if self.scheme == 'EE':
                                   temp = self.explicit_euler()
                          elif self.scheme == 'IE':
                                    temp = self.implicit_euler()
                          elif self.scheme == 'CN':
                                   temp = self.crank_nicolson()
                          else:
                                    raise ValueError("Invalid scheme. Choose 'EE', 'IE',
                          U_i, U_i: temp[i], temp[i + 1]
                           interpolated_value = ((s_ip1 - s_bar) / self.h) * U_i + (
                           return interpolated_value[-1]
         raise ValueError("s_bar is out of bounds.")
def compute_error_table(self, Sval):
```

```
alphas = []
    errex = []
    h_vals = []
    Uvals = []
    alphas = [0.0000, 0.00]
    tab = []
    for I_val in [10, 20, 40, 80, 160, 320]:
        N_{val} = (I_{val}) // 10
        dt_val = self.T / N_val
        h_val = (self.Smax - self.Smin) / (I_val + 1)
        s_val = self.Smin + h_val * np.arange(1, I_val + 1)
        # Update parameters
        self.dt = dt_val
        self.h = h_val
        self.s = s_val
        self.I = I_val
        self.N = N_val
        self.alpha = self.sigma**2 * self.s**2 / (2 * self.h**2)
        self.beta = self.r * self.s / (2 * self.h)
        self.U = self.phi(self.s)
        exact = self.black_scholes(Sval, 0)
        start_time = time.time()
        U = self.interpolate_value(Sval)
        end_time = time.time()
        h_vals.append(h_val)
        Uvals.append(U)
        errex.append(abs(U-exact))
        tab.append([I_val, N_val, U, abs(U-exact), end_time - start_t
    errors = [abs(Uvals[j+1] - Uvals[j]) for j in range(len(Uvals)-1)
    errors.insert(0, 0)
    tab[0][3] = 0
    orders = []
    for k in range(2, len(Uvals)):
        alpha_k = (np.log(abs(Uvals[k-2] - Uvals[k-1]) / abs(Uvals[k])
        alphas.append(alpha_k)
        beta_k = alpha_k / 2
        orders.append([k, alpha_k, beta_k])
    tab = np.insert(tab, 3, errors, axis=1)
    tab = np.insert(tab, 4, alphas, axis=1)
    tab = np.array(tab)
    df = pd.DataFrame(tab, columns=['I', 'N', 'U(s)', 'error', 'alpha
    return df
def run(self):
    if self.scheme == 'EE':
        self.explicit_euler()
    elif self.scheme == 'IE':
        self.implicit_euler()
    elif self.scheme == 'CN':
        self.crank_nicolson()
    # Plot results
    plt.plot(self.s, self.U, label = 'Scheme')
    plt.plot(self.s, [max(p - self.K, 0) for p in self.s], 'r--', lab
    plt.xlabel('Stock Price')
```

```
plt.ylabel('Option Value')
plt.title(f'Call Option - {self.scheme} (T = {self.T})')
plt.legend()
plt.grid()
plt.show()
```

In [23]: I = N = 640
call = CallOption(r=0.1, sigma=0.2, K=100, T=1, Smin=0, Smax=200, I=I, N=
call.run()

In [26]: option = CallOption(r=0.1, sigma=0.2, K=100, T=1, Smin=0, Smax=200, I=I, option.compute_error_table(80)

Out[26]:		1	N	U(s)	error	alpha	errex	tcpu
	0	10.0	1.0	4.209675	0.000000	0.000000	0.000000	0.000215
	1	20.0	2.0	3.433124	0.776551	0.000000	0.643203	0.002359
	2	40.0	4.0	3.072803	0.360322	1.147695	0.282881	0.002280
	3	80.0	8.0	2.916853	0.155950	1.229979	0.126932	0.003799
	4	160.0	16.0	2.849080	0.067773	1.213137	0.059159	0.014741
	5	320.0	32.0	2.818345	0.030735	1.145964	0.028424	0.091108