

The title

Solo-product: Detect Lung nodule

By Noritsugu Yamada 2019/04/03

Conclusion:

肺のnoduleを検出するモデルを作成する!

Evaluate the Malignancy of Pulmonary Nodules Using the 3D Deep Leaky Noisy-or Network

2017kaggleコンペで優勝した3DCNNmodelの論文を実装

What is this thesis for?

肺のnoduleを自動で検出するmodelの実装

Where is an important point compared to previous researches?

3DCNNを使用しUnet構造と3D-RPNを使用する

Where are the key points of technology and method?

検出ネットワークと分類ネットワークを組み合 わせる

How to verified whether it is valid?

IOUかどちらか

Is there discussions?

期間内に終わると思えない

なぜ肺CT画像の結節自動検出をするか?

レントゲン検査とCT検査の違い

レントゲン検査 胸部レントゲンでは骨との重なりで、 腫瘍を発見することは難しいです。

CT検査 胸部CTスキャンでは腫瘍を発見できます。

CT検診による肺がん発見率は、胸部エックス線検診に比べて10倍程度高く、発見された肺がんは早期の比率が高く、その治療成績も良好であることが知られている

また、CTの方が被ばく量が多いとされるが検診でCTを使用する場合診断の時よりも1/10程度に抑えられている

なぜ肺CT画像の結節自動検出をするか?

レントゲン検査とCT検査の違い

レントゲン検査 胸部レントゲンでは骨との重なりで、 腫瘍を発見することは難しいです。

CT検査 胸部CTスキャンでは腫瘍を発見できます。

CT画像の場合1人当たりの画像は数百枚になるところもあり、 医師の読影に負担がかかる.

そこでComputer Aided Detection(CAD)という自動検出技術が研究されている

Deeplearning以前の方法

Quoitフィルタ

- noduleの形状を凸状のガウス分布と仮定し、 リングフィルタ・ディスクフィルタの最大値の差 を出力値とする。
- 3次元に拡張して適用する.

Deeplearning以前の方法

テンプレートマッチング

- ・ テンプレート画像とnoduleの類似度を相互相関係数によって計算してnoduleの検出を行う方法.
- ・ テンプレートは3次元のガウス関数により作成する.

テンプレート画像とその鳥瞰図

nodule画像の一例とその鳥瞰図

Deeplearning以前の方法

3次元曲率に基づく自動検出 (shape index)

- ・ 3次元ボリュームデータより3次元曲面形状を 求めることによりnoduleを検出する方法.
- shape indexとは3次元曲率による曲面の形状 指標であり、球状に近い形状をもつnoduleと円 柱状に近い形状をもつ血管のshape indexの 違いを利用する。

shape indexと表面形状との関係

Samples

Dataset Kaggle Data Science Bowl 2017

前処理

- (a) 画像をHUに変換
- (b) 閾値処理により画像を2値化
- (c) 肺に対応する領域を選択
- (d) 左右の肺をセグメント化
- (e) 各肺の形状を計算

- (f) 2つのマスクを拡張して組み合わせる、
- (g) 画像にマスクを掛け、マスクされた領域 を組織の輝度で満たし、そして画像を UINT8に変換する、
- (h) 画像を切り取って骨の輝度をクリップ

Architecture

左が検出アルゴリズムUnetをバックボーンとした,3D-RPNを用いた 2-stage型の検出アルゴリズム

右は残差ブロックの内部構造