2018 TSTST #5

Tristan Shin

3 July 2018

Let ABC be an acute triangle with circumcircle ω , and let H be the foot of the altitude from A to \overline{BC} . Let P and Q be the points on ω with PA = PH and QA = QH. The tangent to ω and P intersects lines AC and AB at E_1 and F_1 respectively; the tangent to ω at Q intersects lines AC and AB at E_2 and F_2 respectively. Show that the circumcircles of $\triangle AE_1F_1$ and $\triangle AE_2F_2$ are congruent, and the line through their centers is parallel to the tangent to ω at A.

Let M, N be the midpoints of AB, AC, and let O be the circumcenter of AB, AC. Observe that $MOQF_2$ is cyclic because $\angle F_2MO = \angle F_2QO = \frac{\pi}{2}$ and AMON is clearly cyclic. Then

$$\angle OF_2E_2 = \angle OF_2Q = \angle OMQ = \angle OMN = \angle OAN = \angle OAE_2$$

so OAF_2E_2 cyclic. Similarly, OAE_1F_1 cyclic. So the radical axis of (AE_1F_1) and (AE_2F_2) is AO, so the line through their centers is parallel to the tangent to ω at A.

Now, observe that O is the center of spiral similarity sending E_1F_1 to E_2F_2 , and OP = OQ are the altitudes from O to each of these segments, so this is actually just a rotation. Then $E_1F_1 = E_2F_2$, so since $\angle E_1AF_1 = \angle E_2AF_2$, the circles (AE_1F_1) and (AE_2F_2) are congruent.