

Kurs:Mathematik für Anwender/Teil I/58/Klausur

Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 \(\sum_{\text{1}}\)

Punkte 3320422244 8 4 2 0 4 2 0 0 4 50

 \equiv Inhaltsverzeichnis \vee

Aufgabe * (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

1. Eine injektive Abbildung

$$f:L\longrightarrow M.$$

2. Die komplexe Konjugation.

- 3. Der Tangens hyperbolicus.
- 4. Das Unterintegral einer nach unten beschränkten Funktion

$$f:[a,b]\longrightarrow \mathbb{R}.$$

- 5. Die *Dimension* eines K-Vektorraums V (V besitze ein endliches Erzeugendensystem).
- 6. Das charakteristische Polynom zu einer n imes n-Matrix M mit Einträgen in einem Körper K.

Aufgabe * (3 Punkte)

Formuliere die folgenden Sätze.

- 1. Der Zwischenwertsatz.
- 2. Die Ableitung der reellen Exponentialfunktion.
- 3. Der Satz über die Transformation eines linearen Gleichungssystems in Dreiecksgestalt.

Aufgabe (2 Punkte)

Es sollen drei Häuser jeweils mit Leitungen an Wasser, Gas und Elektrizität angeschlossen werden. Beschreibe eine Möglichkeit, bei der es nur eine Überschneidung gibt.

Aufgabe (0 Punkte)

Aufgabe * (4 Punkte)

Beweise die Formel

$$2^n = \sum_{k=0}^n \binom{n}{k}$$

durch Induktion nach n.

Aufgabe * (2 Punkte)

Berechne das Quadrat des Polynoms

$$1 + \frac{1}{2}x - \frac{1}{8}x^2$$
.

Aufgabe * (2 Punkte)

Es sei K ein angeordneter Körper und x,y>0. Zeige, dass $x\geq y$ genau dann gilt, wenn

$$x/y \geq 1$$

gilt.

Aufgabe * (2 Punkte)

Drücke

$$\sqrt[3]{4}\cdot\sqrt[5]{7}$$

mit einer einzigen Wurzel aus.

Aufgabe * (4 Punkte)

Zeige, dass die Gleichung

$$x^2 + \frac{1}{x} = 3$$

eine reelle Lösung im Intervall [1,2] besitzt und bestimme diese bis auf einen Fehler von maximal ein Achtel.

Aufgabe * (4 Punkte)

Im \mathbb{R}^3 sei durch

$$\left\{egin{pmatrix} 2 \ 4 \ 5 \end{pmatrix} + t egin{pmatrix} 1 \ -3 \ 4 \end{pmatrix} \mid t \in \mathbb{R}
ight\}$$

eine Gerade G gegeben. In der x-y-Ebene E sei K der Kreis mit dem Mittelpunkt (0,0) und dem Radius S. Liegt der Durchstoßungspunkt der Geraden G mit der Ebene E innerhalb, außerhalb oder auf dem Kreis K?

Aufgabe * (8 (1+1+1+2+3) Punkte)

Es sei

$$P=\left\{ (x,y)\in\mathbb{R}^{2}\mid y=x^{2}
ight\}$$

die Standardparabel und K der Kreis mit dem Mittelpunkt (0,1) und dem Radius 1.

- 1. Skizziere $m{P}$ und $m{K}$.
- 2. Erstelle eine Gleichung für $oldsymbol{K}$.
- 3. Bestimme die Schnittpunkte $P \cap K$.
- 4. Beschreibe die untere Kreisbogenhälfte als Graph einer Funktion von [-1,1] nach $\mathbb R$.
- 5. Bestimme, wie die Parabel relativ zum unteren Kreisbogen verläuft.

Aufgabe * (4 Punkte)

Beweise den Mittelwertsatz der Differentialrechnung.

Aufgabe * (2 Punkte)

Beweise den Satz über die Ableitung von Potenzfunktionen $x\mapsto x^{lpha}$.

Aufgabe (0 Punkte)

Aufgabe * (4 Punkte)

Löse das inhomogene Gleichungssystem

Aufgabe * (2 Punkte)

Bestimme die 2 imes 2-Matrizen über einem Körper K der Form

$$M = \left(egin{matrix} a & b \ 0 & d \end{matrix}
ight)$$

mit

$$M^2=0$$
.

Aufgabe (0 Punkte)

Aufgabe (0 Punkte)

Aufgabe * (4 Punkte)

Es sei $m{K}$ ein Körper und es sei $m{V}$ ein $m{n}$ -dimensionaler $m{K}$ -Vektorraum. Es sei

$$arphi \colon V \longrightarrow V$$

eine lineare Abbildung. Zeige, dass $\lambda \in K$ genau dann ein Eigenwert von φ ist, wenn λ eine Nullstelle des charakteristischen Polynoms χ_{φ} ist.

Zuletzt bearbeitet vor einem Monat von Bocardodarapti

Wikiversity

Der Inhalt ist verfügbar unter CC BY-SA 3.0 ☑, sofern nicht anders angegeben.

Datenschutz • Klassische Ansicht