```
Math 5364
Data Mining 2
Homework 25
Mary Barker
/*
* Data Mining hw 25
* SAS tutorial-Chapter 1 problems 1-10
/* 1 */
DATA prob1;
        input ID 1
              age 3-4
              gender $ 6
              GPA 8-10
              Cscore 12-14;
        INDEX = GPA + 3 * Cscore / 500;
DATALINES;
1 18 M 3.7 650
2 18 F 2.0 490
3 19 F 3.3 580
4 23 M 2.8 530
5 21 M 3.5 640
proc means data=prob1;
        var GPA Cscore;
run;
proc sort data=prob1;
        by INDEX;
run;
proc print data=prob1;
        var INDEX ID GPA Cscore;
run;
```

Monday, March 14, 2016 01:40:44 PM 1

The MEANS Procedure

Variable	N	Mean	Std Dev	Minimum	Maximum
GPA	5	3.0600000	0.6804410	2.0000000	3.7000000
Cscore	5	578.0000000	69.0651866	490.0000000	650.0000000

```
/* 2 */
DATA prob2;
        input SUBJ 1-3
                  HEIGHT 4-5
                  WT_INIT 6-8
                  WT_FINAL 9-11;
        BMI_INIT = (WT_INIT / (2.2 * HEIGHT * 0.0254))*
                           (WT_INIT / (2.2 * HEIGHT * 0.0254));
        BMI_FINAL = (WT_FINAL / (2.2 * HEIGHT * 0.0254))*
                                (WT_FINAL / (2.2 * HEIGHT * 0.0254));
        BMI_DIFF = BMI_FINAL - BMI_INIT;
DATALINES;
00768155150
00272250240
00563240200
00170345298
proc sort data=prob2;
        by SUBJ;
run;
proc print data=prob2;
        var SUBJ HEIGHT BMI_INIT BMI_FINAL BMI_DIFF;
run;
```

Obs	SUBJ	HEIGHT	BMI_INIT	BMI_FINAL	BMI_DIFF
1	1	70	7779.10	5803.95	-1975.15
2	2	72	3861.02	3558.32	-302.70
3	5	63	4647.60	3227.50	-1420.10
4	7	68	1663.92	1558.30	-105.62

```
/* 3 */
DATA prob3;
        input SSN 1-9 salary 11-15 age 17-18 race $ 20;
        TAX = 0.3 * salary;
DATALINES;
123874414 28000 35 W
464239182 29500 37 B
012437652 35100 40 W
018451357 26500 31 W
proc means data=prob3;
        var salary age;
run;
proc sort data=prob3;
        by SSN;
run;
proc print data=prob3;
        var SSN salary TAX;
run;
```

Monday, March 14, 2016 01:42:36 PM 1

	Variable	N	Mean	Std Dev	Minimum	Maximum
	salary	4	29775.00	3755.33	26500.00	35100.00
ı	age	4	35.7500000	3.7749172	31.0000000	40.0000000

The MEANS Procedure

```
/* 4 */
DATA IQ_AND_TEST_SCORES;
        input ID 1-3
              IQ 4-6
              MATH 7-9
              SCIENCE 10-12;
        OVERALL = (IQ + MATH + (SCIENCE / 500.0)) / 3.0;
        IF IQ GE O AND IQ LE 100 THEN GROUP = 1;
        ELSE IF IQ GT 100 AND IQ LE 140 THEN GROUP = 2;
        ELSE IF IQ GT 140 THEN GROUP = 3;
DATALINES;
001128550590
002102490501
003140670690
004115510510
proc sort data = IQ_AND_TEST_SCORES;
        by IQ;
run;
proc freq data = IQ_AND_TEST_SCORES;
        tables GROUP;
run;
```

Monday, March 14, 2016 01:43:00 PM 1

The FREQ Procedure

GROUP	Frequency	Percent	Cumulative Frequency	Cumulative Percent
2	4	100.00	4	100.00

```
/* 5 */
*************
The problem with the code for this example was
Invalid Syntax on VOTER-TURNOUT
/* 6 */
DATA SURVEY;
      input QUES1 $ 1
           QUES2 $ 2
           QUES3 $ 3
           QUES4 $ 4
           QUES5 $ 5;
DATALINES;
ABCDE
AACCE
BBBBB
CABDA
DDAAC
CABBB
EEBBB
ACACA
proc freq data = SURVEY;
      tables QUES1 QUES2 QUES3 QUES4 QUES5;
run;
```

The FREQ Procedure

QUES1	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Α	3	37.50	3	37.50
В	1	12.50	4	50.00
С	2	25.00	6	75.00
D	1	12.50	7	87.50
E	1	12.50	8	100.00

QUES2	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Α	3	37.50	3	37.50
В	2	25.00	5	62.50
С	1	12.50	6	75.00
D	1	12.50	7	87.50
E	1	12.50	8	100.00

QUES3	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Α	2	25.00	2	25.00
В	4	50.00	6	75.00
С	2	25.00	8	100.00

QUES4	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Α	1	12.50	1	12.50
В	3	37.50	4	50.00
С	2	25.00	6	75.00
D	2	25.00	8	100.00

QUES5	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Α	2	25.00	2	25.00
В	3	37.50	5	62.50
С	1	12.50	6	75.00
E	2	25.00	8	100.00

```
/* 7 */
data BUYER;
        input age 1-2
                  gender $ 3
                  race $ 4
                  income 5-10
                  marital_status $ 11
                  own_home $ 12;
DATALINES;
proc means data=BUYER;
        var age gender income;
run;
/* 8 */
data EMPLOYEE;
        input EMPID
                  SALARY
                  JCLASS;
        IF JCLASS EQ 1 THEN BONUS = 0.1 * SALARY;
        ELSE IF JCLASS EQ 2 THEN BONUS = 0.15 * SALARY;
        ELSE IF JCLASS EQ 3 THEN BONUS = 0.2 * SALARY;
        NEW_SALARY = SALARY + BONUS;
datalines;
137 2800 1
214 9800 3
199 150000 3
355 57000 2
proc print data=EMPLOYEE;
run;
```

	IVIO
SALARY	
3080	
11760	

Obs	EMPID	SALARY	JCLASS	BONUS	NEW_SALARY
1	137	2800	1	280	3080
2	214	9800	3	1960	11760
3	199	150000	3	30000	180000
4	355	57000	2	8550	65550

```
/* 9 */
data prob9;
        input ID 1-3 RACE $ 4 SBP 5-7 DBP 8-9 HR 10-11;
datalines;
001W1308060
002B1409070
003W1207064
004W1509076
005B1248672
proc sort data=prob9;
       by SBP;
run;
proc print data = prob9 NOOBS;
        TITLE "RACE AND HEMODYNAMIC VARIABLES";
       var ID RACE SBP DBP;
run;
```

	_	_	
ID	RACE	SBP	DBP
3	W	120	70
5	В	124	86
1	W	130	80
2	В	140	90
4	W	150	90

```
/* 10 */
data RAIN;
        input CITY $
                  RAIN_JUNE
                  RAIN_JULY
                  RAIN_AUGUST;
        AVERAGE = (RAIN_JUNE + RAIN_JULY + RAIN_AUGUST) / 3.0;
        PERCENT_JUNE = 100 * RAIN_JUNE / AVERAGE;
        PERCENT_JULY = 100 * RAIN_JULY / AVERAGE;
        PERCENT_AUGUST = 100 * RAIN_AUGUST / AVERAGE;
datalines;
TRENTON 23 25 30
NEWARK 18 27 22
ALBANY 22 21 27
proc sort data=RAIN;
        by CITY;
run;
proc means maxdec=2 clm mean stddev alpha=0.05 data=RAIN;
        var RAIN_JUNE RAIN_JULY RAIN_AUGUST;
run;
```

Monday, March 14, 2016 01:44:52 PM 1

Variable	Lower 95% CL for Mean	Upper 95% CL for Mean	Mean	Std Dev
RAIN_JUNE	14.43	27.57	21.00	2.65
RAIN_JULY	16.74	31.92	24.33	3.06
RAIN_AUGUST	16.29	36.37	26.33	4.04

The MEANS Procedure