A ATM 316: Dynamic Meteorology I, Fall 2014

Section references: HH = Holton and Hakim, MP = Marshall and Plumb, M = Martin

- 1) Introduction and motivation (HH1.1, MP0)
- 2) Review of mathematical tools (M1, HH1.5)
 - a) vectors and vector operations
 - b) partial derivatives
 - c) Taylor Series approximation
 - d) vector derivatives: gradient, divergence and curl
 - e) kinematics of flow field: divergence / convergence, vorticity, deformation
 - f) the definite integral in one variable
- 3) Forces in the atmosphere (HH1.2, MP6.2.1, M2.1)
 - a) Pressure and pressure gradient force
 - b) Viscous force
 - c) Gravitational force
- 4) Equation of motion for a non-rotating fluid (MP6.1-3, HH2.1-2, 2.5, M1.2.4, M3.2.2)
 - a) Differentiation following the motion
 - b) Material derivative of a vector field
 - c) Momentum equations for non-rotation fluid
 - d) Continuity equation
 - e) Scale analysis: hydrostatic balance
- 5) Equation of motion for a rotating fluid (MP6.6, HH1.3, M2.2)
 - a) Radial inflow lab
 - b) force balance in inertial versus rotating reference frame
 - c) transformation into rotating coordinates
 - d) Solid Body Rotation tank experiment
 - e) gravity and geopotential
 - f) Coriolis force
 - g) Inertial oscillations
- 6) Equation of motion on the sphere (HH2.3, MP6.6.5-6, M3.2.1)
 - a) Spherical coordinates
 - b) Centrifugal force, geopotential surfaces and modified gravity on a sphere
 - c) Components of the Coriolis force on the sphere
 - d) Acceleration terms in spherical coordinates
 - e) Effects of curvature terms
- 7) Balanced flow (HH3.1-2, MP7.1, M4.1, M4.4)
 - a) Governing equations in isobaric (pressure) coordinates
 - b) Natural coordinates
 - c) Geostrophic balance
 - d) Cyclostrophic and gradient wind balances
- 8) Vertical structure of rotating fluids (MP7.2-3, HH3.4, M4.3)
 - a) The Taylor-Proudman theorem, Taylor columns in the tank
 - b) Barotropic vs. baroclinic fluids
 - c) Thermal Wind equation; Thermal Wind in the tank
 - d) Meteorological application of thermal wind concept