Fisica 2 – Corso di Laurea Triennale in Ingegneria Industriale Seconda Prova Parziale 22 dicembre 2017

Prova A

Nome	Cognome
	CFU
Numero di Matricola	

Esercizio 1. Una sbarretta lunga L = 20 cm che chiude un circuito di resistenza $R = 25 \Omega$ viene trascinata a velocità costante $v_0 = 5$ m/s in una regione con un campo magnetico normale al piano del circuito e entrante nel foglio che varia secondo la legge $B(x) = B_0 e^{-x/\alpha}$, dove $B_0 = 0.2$ T, $\alpha = 10$ cm e l'asse x ha l'origine sul lato fermo del circuito. Calcolare, ad una distanza $x_0 = 10$ cm, la forza elettromotrice, la corrente che circola con il suo verso e la forza che trascina la barretta.

EXTRA PER 6 CFU. Calcolare inoltre la potenza dissipata nel circuito nella stessa posizione nonché la carica Δq che passa nel circuito quando la barretta si sposta dalla posizione $x_1 = 5$ cm alla posizione $x_2 = 10$ cm.

Esercizio 2. Una lente convergente di focale f = 20 cm si trova ad una distanza L = 25 cm da uno specchio convesso di raggio R = 20 cm. Ponendo un oggetto alla distanza $p_1 = 25$ cm dalla lente, calcolare posizione e ingrandimento dell'immagine formata dallo specchio.

EXTRA PER 6 CFU. Calcolare anche posizione e ingrandimento dell'immagine formata nuovamente dalla lente con i raggi riflessi dallo specchio.

Esercizio 3. Un pipistrello che vola alla velocità $v_p = 10$ m/s emette un ultrasuono di frequenza $v_0 = 40$ kHz mentre insegue una falena in fuga con velocità $v_f = 3$ m/s. Supponendo la velocità del suono pari a c = 340 m/s, calcolare la frequenza v del suono percepito dal mammifero in seguito alla riflessione sul lepidottero.

Esercizio 4. Un interferometro di Young posto a D=1.5 m uno schermo produce due figure di interferenza con le lunghezze d'onda $\lambda_1=550$ nm e $\lambda_2=600$ nm. Se la distanza fra il massimo del terzo ordine di λ_1 e il massimo del secondo ordine di λ_2 è $\Delta x=4$ mm, calcolare la distanza d fra le fenditure.

- 1) Nome e cognome vanno scritti in stampatello maiuscolo sul foglio con il testo per gli esercizi e su tutti i fogli consegnati.
- 2) <u>Va consegnato il foglio con il testo e solo i fogli di bella copia.</u>
- 3) E' obbligatorio riportare i passaggi algebrici con un breve commento, per permettere di individuare il procedimento che avete adottato.
- 4) <u>Indicate se NON siete iscritti su ESSE3.</u>