Wydział	lmię i nazwisko		Rok	Grupa	Zespół
	1.				
	2.				
PRACOWNIA	Temat:				Nr ćwiczenia
FIZYCZNA					
WFiIS AGH					
Data wykonania	Data oddania	Zwrot do popr.	Data oddania	Data zaliczenia	OCENA

Ćwiczenie nr 25: Interferencja fal akustycznych

Cel ćwiczenia

Pomiar prędkości dźwięku w powietrzu przy użyciu rury Quinckego. Wyznaczenie wykładnika κ w równaniu adiabaty.

Pytania kontrolne	Ocena i podpis
1. Podaj definicję ruchu falowego (dla przypadku jednowymiarowego) i omów wielkości fizyczne: amplitudę, fazę, przesunięcie fazowe, okres, częstotliwość, długość fali, wektor falowy.	
2. Czym różni się fala podłużna od poprzecznej? Podaj przykłady takich fal.	
3. Omów zjawisko interferencji fal.	
4. Omów cechy fizyczne dźwięku: wysokość, głośność, barwę. Jaki jest zakres słyszalności (dla ucha ludzkiego) fal dźwiękowych?	
6. Od czego zależy prędkość rozchodzenia się dźwięku w ośrodku?	
7. Opisz przemianę stanu gazu zachodzącą podczas rozchodzenia się w nim fali dźwiękowej.	

1. Układ pomiarowy

- 1. Rura Quinckego
- 2. Generator mocy 20 Hz 20 kHz (tab. 1)
- 3. Licznik do odczytu częstotliwości
- 4. Oscyloskop

W ćwiczeniu wykonywany jest wariant podstawowy – pomiar prędkości dźwięku dla powietrza. Konstrukcja rury Quinckego umożliwia pomiar dla innych gazów, przez odpompowanie powietrza przy pomocy pompy próżniowej i wypełnienie rury gazem pochodzących z baloników napełnionych ze stosownej butli. Rys. 1 pokazuje zawory, do których podłącza się baloniki i pompę.

Rys. w1. Rura Quinckego

2. Wykonanie ćwiczenia:

A. Pomiar prędkości dźwięku w powietrzu.

- 1) Zapoznaj się z zainstalowanym na stanowisku rodzajem generatora (tab. 1)
- 2) Znajdź na korpusie generatora gałkę regulacji amplitudy drgań i skręć ją do pozycji "zero", a następnie włącz jego zasilanie (~ 220 V);
- 3) W międzyczasie odczytaj na termometrze ściennym i zanotuj w tabeli temperaturę powietrza w sali;
- 4) Pomiar wykonujemy dla częstotliwości z przedziału od 800 Hz do 3200 Hz. Ustaw na wyskalowanej tarczy generatora na próbę wybraną częstotliwość i sprawdź występowanie zjawiska maksimów i minimów natężenia dźwięku.
- 5) Wykonaj kilkanaście pomiarów dla kilkunastu różnych częstotliwości mieszczących się w zalecanym przedziale częstotliwości. Potrzebne będzie w tym celu wykorzystanie dwu z dostępnych zakresów częstotliwości. W przypadku generatora PO 28 są to zakresy 2 kHz i 20 kHz, dla generatora PO 21A te same częstotliwości uzyskujem przy użyciu pozycji ×10 oraz ×100 przełącznika mnożników.
- 6) Dla każdej przyjętej do pomiaru częstotliwości drgań przeszukać należy <u>cały dostępny</u> <u>przesuw</u> ruchomej rury. Położenia a_i dla którego występuje minimum ustalamy przez poszukiwanie minimum natężenia obserwując sygnału na ekranie oscyloskopu. Wyniki zapisujemy w tabeli 2 i od razu obliczamy różnice Δ_i między kolejnymi minimami. Odległości te powinny wypaść przy ustalonej częstotliwości mniej więcej jednakowe; warto je na bieżąco w trakcie pomiarów sprawdzać, by uniknąć opuszczenia któregoś minimum przez nieuwagę (wtedy odnośna wartość odległości pomiędzy minimami wypada mniej więcej dwukrotnie większa od pozostałych).

Tab. 1. Istotne dla wykonywania ćwiczenia elementy generatorów napięcia przemiennego używanych w ćwiczeniu.

	GENERATOR MOCY typ PO-21 A	POWER GENERATOR typ PO-28
regulacja ciągła częstotliwości	tarcza ze skalą 20 ÷ 200	tarcza ze skalą 20 ÷ 200
regulacja skokowa częstotliwości	przełącznik z mnożnikami ×1, ×10, ×100	przełącznik zakresów 20 Hz, 200 Hz, 2 kHz, 20 kHz
zalecane napięcie wyjściowe	7,75 V	28 V / 3.6 A
regulacja ciągła napięcia	pokrętło: regulacja napięcia wyjściowego	pokrętło: OUT LEVEL

3. Wyniki pomiarów

Tabela 2

Częstotli- wość f		Położe 1	enie kol minimó [mm]	ejnych w			óżnica kolej ninimó	nych		Dłu- gość fali λ	Prędkość dźwięku v
[Hz]	a_1	a_2	a_3	a_4	a_5	Δ_1	Δ_2	Δ_3	Δ_4	[mm]	[m/s]

Temperatura [°C]

4. Opracowanie wyników pomiarów

- 1. Dla każdego wiersza tabeli z zamieszczonych w nim wyników pomiarów oblicz:
 - a) różnice $\Delta_i = a_{i+1} a_i$ położeń kolejnych minimów,
 - b) średnią wartość długości fali z wzoru $\overline{\lambda} = 2 \frac{\sum \Delta_i}{n}$ (*n* jest liczbą uzyskanych różnic Δ_i).

Dwójka w powyższym wzorze wynika stąd, że różnica długości dróg przebywanych przez falę w stałej i w ruchomej rurze jest dwukrotnie większa od mierzonego przesunięcia rury ruchomej. Jeżeli dla danej częstotliwości są tylko dwa minima, suma sprowadza się do jednego składnika.

- c) prędkość dźwięku dla danej częstotliwości.
- 2. Wykonać wykres otrzymanych wartości *v* w funkcji częstotliwości drgań źródła *f*. Wykres ten ma na celu sprawdzenie, czy prędkość dźwięku zależy od częstotliwości i wyeliminowania z dalszego opracowania wyników pomiaru tych rezultatów, co do których istnieje podejrzenie błędu grubego.
- 3. Obliczyć wartość średnią \overline{v} i niepewność standardową u(v). Stosowanie metody typu A dla obliczenia niepewności jest uzasadnione tym, że w pomiarze dominuje błąd przypadkowy związany z określeniem położenia minimum natężenia dźwięku, zatem niedokładność określenia częstotliwości f dźwięku można zaniedbać.
- 4. Przeliczyć uzyskaną wartość v na prędkość dźwięku dla temperatury $t_0=0^{\circ}\mathrm{C}$ przy użyciu formuły

$$v_0 = \overline{v} \sqrt{\frac{T_0}{T}}$$
,

wynikającej z wzoru (7) na prędkość dźwięku w gazach.

- 5. Porównać obliczoną prędkość dźwięku z wartością tablicową $v_0 = 331,5$ m/s (dla suchego powietrza w $t_0 = 0$ °C) z wykorzystaniem pojęcia niepewności rozszerzonej.
- 6. Oblicz ze związku (7) wartość wykładnika adiabaty κ . Dla powietrza, które jest mieszaniną gazów, masę molową μ przyjąć jako średnią ważoną. Średnią ważoną obliczamy jako $\mu = \Sigma$ μ_i w_i , gdzie przez wagi w_i rozumiemy względne udziały jego najważniejszych składników: azotu ($w_i = 0.78$), tlenu (0,21) i argonu (0,01).

Obliczenia i wnioski: