Attorney's Docket No.: 14603-022US1 / P2003,0796

Applicant: Rainer Minixhofer Serial No.: 10/578,960 : March 30, 2007

Page : 2 of 12

Amendments to the Specification:

Please replace the paragraph beginning at page 7, line 3 with the following amended paragraph:

Preferably the zone plate is a binary phase zone plate, wherein alternate zones are each comprised of one of two respective transparent materials. E.g., these materials may comprise a silicon oxide or a silicon nitride. Because with a phase zone plate, in contrast to the situation with an amplitude zone plate, one does not have half of the zones shielded by absorption, with a phase zone plate the amplitude of the radiation at the focal loci is [[c.]]about 2 times greater than the amplitude at the focal loci of an amplitude zone plate; and thus the intensity is [[c.]] about 4 times greater.

Please replace the paragraph beginning at page 12, line 21 with the following amended paragraph:

TABLE 1

$\lambda_0(nm)$	D(µm)	l _{min} (nm)	$f(\mu m)$ $\lambda = 850 \text{ nm}$	$f(\mu m)$ $\lambda = 650 \text{ nm}$	$f(\mu m)$ $\lambda = 550 \text{ nm}$	$f(\mu m)$ $\lambda = 450 \text{ nm}$	$f(\mu m)$ $\lambda = 300 \text{ nm}$
850	17.61	550	7	9.27	11.01	13.51	20.36
650	14.98	451	5.62	7	9.33	10.23	15.44
550	13.57	401	4.41	5.88	7	8.61	13.01
450	12.09	350	3.55	4.76	5.68	7	10.59
300	10.59	297	2.28	3.10	3.72	4.60	7