5/14/24, 12:58 PM fe630-fp-html-v11

of the 'Market' (environment/regime) or an aforementioned strategy.

For example, the (mathematical) notation  $S_{40}^{90}$  is just fancy jargon to visually illustrate that we are using **40 days** for the covariance estimation and **90 days** for the expected returns estimations—it's not that deep.

Overall, the goal of this fun, entertaining project is to conceptualize, visualize, understand, analyze, and compare the behavior of our ideas; we want to *see* if we can (actually) make some \$\$\$, especially during momentous, historical (time) periods such as the **Subprime**Mortgage Crisis of 2008, the horrendous commencement of Coronavirus SARS-CoV-2

Disease of 2019, et cetera.

## 2. (Investment) Strategy

Alrighty, let's get to the fun, juicy portion; shall we?

## 2.1 (Mathematical) Strategic Formulation

Let's make things interesting—spicy, one may say.

Consider two strats [(clipping) of 'strategies,' as embodied in *Morphology*)]:

$$\left( \text{Strategy I} \right) \quad \begin{cases} \max_{\omega \in \mathbb{R}^n} \, \rho^T \omega - \lambda \sqrt{\omega^T \Sigma \omega} \\ \\ -0.5 \le \sum_{i=1}^n \beta_i^m \omega_i \le 0.5 \\ \\ \sum_{i=1}^n \omega_i = 1, \quad -2 \le \omega_i \le 2, \end{cases}$$
 (1)

and

$$(\text{Strategy II}) \quad \begin{cases} \max_{\omega \in \mathbb{R}^n} \ \frac{\rho^T \omega}{TEV(\omega)} - \lambda \sqrt{\omega^T \Sigma \omega} \\ -2 \leq \sum_{i=1}^n \beta_i^m \omega_i \leq 2 \\ \sum_{i=1}^n \omega_i = 1, \quad -2 \leq \omega_i \leq 2, \end{cases}$$
 (2)