

Outline

- Motivation and aim of this module.
- Administration trivia Contact hours, Assessment structure, ...
- Resources

Enumeration Relations & Functions

Outline

1. Module Introduction	2
1.1. Resources	3

Resources — Moodle

- URL: moodle.wit.ie/course/view.php?id=201785
- Used for all notices, assignment and practical work submissions.

Resources — Github

- URL: SETU-DiscreteMathematics.github.io/live
- Used for all content (slides, notebooks, tutorial sheets).

- URL: moodle.wit.ie/course/view.php?id=201785
- Used for all notices, assignment and practical work submissions.

GitHub

- URL: SETU-DiscreteMathematics.github.io/live
- Used for all content (slides, notebooks, tutorial sheets).

- URL: discretemathe-7co3349.slack.com
- Used for instant messaging, one-on-one sessions, etc.

+pyTutor

We will use python for all of our computational work.

- We will use the online Google Colab* environment for python, to code in python and for all of our practical work.
- You can open a notebook from these slides by clicking the "Open in COLAB" icon or clicking/scanning the QR code

^{*}Alternatively, if you want to install python on your laptop you could use the anaconda distribution from www.anaconda.com (just install the latest 64-bit, version 3.+).

I like the following textbooks on discrete mathematics and expect that my notes will overlap significantly with these books. I do encourage you to read* them[†], however, be aware they may use different notation or cover different topics.

Discrete Mathematics Demystified

by Steven Krantz

Touches on nearly all of the topics that we hope to cover. We will probably go into greater depth in places, but a very nice and short read.

Fundamental Approach to Discrete Mathematics

by D. P. Acharjya Sreekumar

I also liked this book, however, due to time constraints, this module only focuses on material in chapter 1–4, 8, and 10.

^{*}or skim them over a coffee or two.

[†]I also like *Applied Discrete Structures* by Alan Doerr and Kenneth Levasseur — it is a good source of exercises. (and is free (legally))

- Discrete Mathematics concepts appear either directly or indirectly in approximately 22 of the 30 modules on your degree.
 - ⇒ Knowing Discrete Mathematics concepts greatly simplfies rest of the course.
- The module is intended to be an introduction to a large number of topics, so treatment is broad rather then deep.
 - Most of material is at an introductory level.
 - **A** Keeping in sync with material, practicals and tutorials is important.
- The continuous assessment (the practicals) is intended to reenforce the connections between programming and discrete mathematics.

The CA is a "carrot not a stick" — we want you to enjoy the module and keep up to date with the material.

8 of 8