SENECAFÉALPES

MAURICIO MARTINEZ, JUAN NICOLAS SUAREZ Y DAVID SANTIAGO CARRILLO

PROCESO REALIZADO

Se probaron tres modelos para analizar el rendimiento del agrupado de tres modelos de aprendizaje: KMeans, DBSCAN y GMM. Seleccionando como variables clave: Perímetro, Diámetro, Solidez, Redondez, Factores de Forma, Secado. Y dando como modelo escogido a KMeans.

	modelo	silhouette	davies_bouldin	calinski_harabasz	n_clusters
0	KMeans	0.416212	0.660584	3554.518161	9
1	DBSCAN	0.322433	2.371207	1053.256264	8
2	GMM	0.318804	1.294392	2071.814872	9

RESULTADOS

Al realizar la regla del codo y el uso de métricas como David-Bouldin y Silhouette, en pruebas variando K entre 2 y 20, se llegó a la conclusión de que el mejor KMeans utiliza K = 8, dando los mejores resultados en ambas pruebas.

RECOMENDACIONES

- Adoptar K-Means con K=8 para segmentación automática de granos.
- Integrar el modelo al control de calidad para detectar lotes atípicos.
- Reducir la dependencia de procesos manuales.
- Usar los clústeres para diseñar mezclas diferenciadas.