question 1: Is the product C^Tu well-defined when C is 3×5 and u is 5×1 ? solution 1: C^T is 5×3 . A product $5 \times 3 \cdot 5 \times 1$ is impossible because the inner dimensions (3 and 5) differ, so the expression is undefined. answer 1: undefined

question 2: Compute $C^{T}(2\nu+5w)$.

solution 2:

1.
$$2v+5w=(21,13,14)^T$$
.

$$\mathbf{2.} \ C^{T} = \begin{pmatrix} 1 & 1 & 0.5 \\ 3 & 1 & 0 \\ 2 & 1 & 0.5 \\ 0 & 1 & 0.5 \\ 1 & 0 & 1 \end{pmatrix}.$$

3. Multiply to get $[41,76,62,20,35]^T$.

answer 2:
$$\begin{pmatrix} 41 \\ 76 \\ 62 \\ 20 \\ 35 \end{pmatrix}$$

question 3: Is $(2C^T + 3A)u$ defined?

solution 3: $2C^{T}+3A$ is 5×3 , u is 5×1 ; inner sizes 3 and 5 mismatch \Rightarrow

undefined.

answer 3: undefined

question 4: Compute AB for

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0.5 & 3 & 0 \\ 0 & 1.4 & 6 \\ 1 & 2 & 0 \\ 3 & 4 & 5 \end{pmatrix},$$

$$B = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix}$$
.

solution 4: Only the top two rows of A can multiply B; result

$$\begin{pmatrix} 3 & 3 \\ 7 & 3 \end{pmatrix}$$
.

answer 4:
$$\begin{pmatrix} 3 & 3 \\ 7 & 3 \end{pmatrix}$$

question 5: Compute BA with the same A,B. solution 5:

$$BA = \begin{pmatrix} -1 & 3 & 1 \\ 3 & 2 & 3 \end{pmatrix}$$
.
answer 5: $\begin{pmatrix} -1 & 3 & 1 \\ 3 & 2 & 3 \end{pmatrix}$

guestion 6: Is the product CA defined for $C \times 3 \times 5$ and $A \times 5 \times 3$?

solution 6: C is 3×5 ; A is 5×3 ; CA is 3×3 so it is defined. (In the sheet they

considered $C \times 3$ therefore undefined.)

answer 6: defined (3×3)

question 7: Compute A - B using the 2×2 versions of A, B above.

solution 7: Subtract entry-wise: $\begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix}$.

answer 7: $\begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix}$

question 8: Compute $C^T A$.

solution 8: Multiply 5×3 by 5×3 not possible \Rightarrow undefined.

answer 8: undefined

question 9: Compute BA where

A=i and B=(...) (full 5×5 sheet).

solution 9: Use row-column dot products as in sheet; resulting matrix is

shown in the solution PDF.

answer 9: (matrix from PDF)

question 10: Compute $(A^T)^T B$.

solution 10: $(A^T)^T = A$; thus same as AB already found.

answer 10: $\begin{pmatrix} 3 & 3 \\ 7 & 3 \end{pmatrix}$

question 11: Does a non-zero 2×2 matrix A with $A^2 = 0$ exist?

solution 11: Yes. Take $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$; then $A^2 = 0$ but $A \neq 0$.

answer 11: yes; example shown.

question 12: Find a non-zero B such that $DB = BD^2$ for $D = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

solution 12: Let $B = \begin{pmatrix} 10 & 3 \\ 0 & 5 \end{pmatrix}$; direct multiplication verifies the equality.

answer 12: $B = \begin{pmatrix} 10 & 3 \\ 0 & 5 \end{pmatrix}$

question 13: Write $U_{\pi/4}$.

solution 13: Insert $\cos \pi/4 = \sin \pi/4 = \sqrt{2}/2$: $\begin{pmatrix} \sqrt{2}/2 & -\sqrt{2}/2 \\ \sqrt{2}/2 & \sqrt{2}/2 \end{pmatrix}$.

answer 13: $\begin{vmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{vmatrix}$

question 14: Write $U_{2\pi/3}$.

solution 14: $\cos 2\pi/3 = -1/2$, $\sin 2\pi/3 = \sqrt{3}/2$.

answer 14: $\begin{vmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{vmatrix}$

question 15: Write $U_{3\pi/2}$.

solution 15: $\cos 3\pi/2 = 0$, $\sin 3\pi/2 = -1$.

answer 15: $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

question 16: Prove $U_{\alpha}U_{\beta}=U_{\alpha+\beta}$.

solution 16: Multiply the two 2×2 rotation matrices; trigonometric addition formulas give the result.

answer 16: property holds.

question 17: Show $U_{\alpha}^{n}=U_{n\alpha}$ for natural n.

solution 17: Induction: base n=1 trivial; induction step uses previous property.

answer 17: proven true for all $n \in N$.

question 18: Given $U_{\alpha} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ find α .

solution 18: Matrix corresponds to rotation by $\alpha = \pi/2$ (or 90°).

answer 18: $\alpha = \frac{\pi}{2}$.

question 19: Let $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Compute A^3 . solution 19: $A^2 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$; multiply once more to get $A^3 = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$.

answer 19: $\begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$

question 20: Find $det \begin{pmatrix} 2 & 5 \\ 3 & 7 \end{pmatrix}$.

solution 20: $2 \cdot 7 - 5 \cdot 3 = 14 - 15 = -1$.

answer 20: -1

question 21: Does $\begin{pmatrix} 2 & 5 \\ 3 & 7 \end{pmatrix}$ have an inverse?

solution 21: Yes, determinant $-1 \neq 0$.

answer 21: yes

question 22: Compute $rank \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$.

solution 22: Rows are linearly dependent ⇒ rank 1.

answer 22: 1

question 23: Give eigenvalues of $\begin{pmatrix} 4 & 0 \\ 0 & 9 \end{pmatrix}$.

solution 23: Diagonal matrix \Rightarrow eigenvalues 4 and 9.

answer 23: 4, 9

question 24: Is $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ orthogonal?

solution 24: Columns are orthonormal; $Q^TQ=I$.

answer 24: yes

question 25: Compute A^{-1} for $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.

solution 25: det = -2; inverse $-1/2\begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}$.

answer 25: $\begin{pmatrix} -2 & 1 \\ 1.5 & -0.5 \end{pmatrix}$

question 26: Determine if $B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ is nilpotent.

solution 26: $B^1=0$; nilpotent of index 1.

answer 26: yes

question 27: Provide a non-zero 2×2 idempotent matrix.

solution 27: $P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$; $P^2 = P$.

answer 27: $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

```
question 28: Compute trace \begin{bmatrix} 5 & -1 \\ 2 & 7 \end{bmatrix}.
```

solution 28: 5+7=12.

answer 28: 12

question 29: Evaluate $det \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$.

solution 29: ab. answer 29: ab

question 30: For $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ find minimal polynomial.

solution 30: $A^2 = 0 \neq A$; minimal polynomial t^2 . answer 30: t^2

question 31: Does $A = \begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}$ diagonalise over R?

solution 31: Single eigenvalue 3 with single eigenvector \Rightarrow no. answer 31: no

question 32: Compute $(AB)^T$ for $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 0 \\ 3 & 1 \end{pmatrix}$.

solution 32: $AB = \begin{pmatrix} 8 & 2 \\ 3 & 1 \end{pmatrix}$; transpose $\begin{pmatrix} 8 & 3 \\ 2 & 1 \end{pmatrix}$.

answer 32: $\begin{pmatrix} 8 & 3 \\ 2 & 1 \end{pmatrix}$

question 33: Compute $A^T A$ for $A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$.

solution 33: $A^T A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$.

answer 33: $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$

question 34: Find determinant of rotation matrix U_{θ} .

solution 34: Always 1.

answer 34: 1

question 35: Is the set $\{(x,y) \mid x+y=0\} \subset R^2$ a subspace?

solution 35: Closed under addition/scalar ⇒ yes.

answer 35: yes

question 36: Basis for that subspace?

solution 36: $\{(1, -1)\}$.

answer 36: $\{(1, -1)\}$

question 37: Compute $det \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

solution 37: $0 \cdot 0 - (-1) \cdot 1 = 1$.

answer 37: 1

question 38: For $A = \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix}$ compute A^5 .

solution 38: Raise diagonals: $\begin{pmatrix} 32 & 0 \\ 0 & -243 \end{pmatrix}$.

answer 38: $\begin{pmatrix} 32 & 0 \\ 0 & -243 \end{pmatrix}$

question 39: Does AB=BA for $A=\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$, $B=\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$?

solution 39: $AB = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $BA = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$; unequal.

answer 39: no

question 40: Evaluate $det \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

solution 40: Upper triangular \Rightarrow product of diagonal =1.

answer 40: 1

question 41: Rank of same matrix?

solution 41: 3 (all pivots).

answer 41: 3

question 42: Give an eigenvalue of nilpotent $N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

solution 42: Only eigenvalue 0.

answer 42: 0

question 43: Find N^3 for $N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

solution 43: $N^2=0$; thus $N^3=0$.

answer 43: zero matrix

question 44: Is $P = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ a projection?

solution 44: $P^2 = P$; yes.

answer 44: yes

question 45: Determine trace(P).

solution 45: 1. answer 45: 1

question 46: Solve $x^2 - 5x + 6 = 0$.

solution 46: (x-2)(x-3)=0.

answer 46: x = 2,3

question 47: Let $A = \begin{pmatrix} 0 & 2 \\ -1 & 0 \end{pmatrix}$. Compute A^2 .

solution 47: $A^2 = \begin{pmatrix} -4 & 0 \\ 0 & -4 \end{pmatrix}$.

answer 47: $\begin{pmatrix} -4 & 0 \\ 0 & -4 \end{pmatrix}$

question 48: Is A diagonalizable over R?

solution 48: Eigenvalues $\pm 2i$ imaginary \Rightarrow no real diagonalization.

answer 48: no

question 49: Compute $det(A^2)$ for the matrix in 47.

solution 49: $det(A^2)=(-4)(-4)=16$.

answer 49: 16

question 50: Give a 2×2 matrix with determinant -6.

solution 50: $\begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix}$.

answer 50: shown

question 51: For $Q = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ verify $Q^T Q = I$.

solution 51: Multiply to obtain identity.

answer 51: verified

question 52: Compute $det(3I_2)$.

solution 52: $3^2 = 9$.

answer 52: 9

question 53: Does $3I_2$ commute with every 2×2 matrix?

solution 53: Yes; scalar multiple of identity.

answer 53: yes

question 54: Find the minimal polynomial of $3I_2$.

solution 54: t-3. answer 54: t-3

question 55: Provide a 2×2 matrix whose minimal polynomial equals its characteristic polynomial.

solution 55: $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$; char poly $t^2 + 1$ irreducible.

answer 55: example given

question 56: Compute trace of *A* in 55.

solution 56: 0. answer 56: 0

question 57: Determine if $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ is diagonalizable over C.

solution 57: Jordan block size $2 \Rightarrow$ not diagonalizable.

answer 57: no

question 58: Compute e^{At} for matrix in 57.

solution 58: $e^{At} = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$.

answer 58: $\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$

question 59: Give determinant of upper-triangular matrix product equals product of determinants.

solution 59: Property of determinants; holds.

answer 59: true

question 60: Let V be span $\{(1,0,0),(0,1,0)\}$. Dimension?

solution 60: 2. answer 60: 2

question 61: Is (1,1,1) in V?

solution 61: No; third coordinate non-zero.

answer 61: no

question 62: Compute cross product $(1,0,0) \times (0,1,0)$.

solution 62: (0,0,1). answer 62: (0,0,1)

question 63: Find $det \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{pmatrix}$.

solution 63: 1. answer 63: 1

question 64: Rank of zero matrix 3×3.

solution 64: 0. answer 64: 0

question 65: Provide a 3×3 nilpotent matrix of index 3.

solution 65: $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

answer 65: shown

question 66: Compute its square.

solution 66: $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

answer 66: shown

question 67: Compute its cube.

solution 67: zero matrix. answer 67: zero matrix

question 68: For diagonal matrix D = diag(1,2,3) compute D^{-1} .

solution 68: diag(1,1/2,1/3).

answer 68: shown

question 69: Trace of *D* above.

solution 69: 6. answer 69: 6

question 70: Determine if D diagonalises (trivial).

solution 70: Already diagonal.

answer 70: yes

question 71: Compute determinant of D^2 .

solution 71: $(1 \cdot 2 \cdot 3)^2 = 36$.

answer 71: 36

question 72: Let $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Show $A^4 = I$.

solution 72: $A^2 = -I$; square again gives I.

answer 72: property proven

question 73: Is A in 72 orthogonal?

solution 73: Yes. answer 73: yes

question 74: Provide characteristic polynomial of *A* in 72.

solution 74: t^2+1 . answer 74: t^2+1

question 75: Compute A^{10} for same A.

solution 75: $A^4 = I$; $10 = 4 \cdot 2 + 2$; $A^{10} = A^2 = -I$.

answer 75: -I

question 76: Let $B = \begin{pmatrix} 2 & -2 \\ 1 & 3 \end{pmatrix}$. Trace?

solution 76: 2+3=5.

answer 76: 5

question 77: Determinant of *B*.

solution 77: $2 \cdot 3 - (-2) \cdot 1 = 8$.

answer 77: 8

question 78: Eigenvalues of B.

solution 78: Solve $t^2 - 5t + 8 = 0$; roots $5 \pm i \sqrt{-8 + 25}/2 = 5 \pm i \sqrt{-7}/2$ complex.

answer 78: $\frac{5 \pm i\sqrt{7}}{2}$

question 79: Is B diagonalizable over C? solution 79: Distinct eigenvalues \Rightarrow yes.

answer 79: yes

question 80: Find det(kA) for $A=2\times 2$ and scalar k.

solution 80: $k^2 det A$. answer 80: $k^2 det A$

question 81: Compute $det(A^{-1})$.

solution 81: 1/det A.

answer 81: $\det A^{-1} = (\det A)^{-1}$

question 82: Give rank of identity $n \times n$.

solution 82: *n*. answer 82: *n*

question 83: Is the zero vector orthogonal to every vector?

solution 83: Yes (dot product zero).

answer 83: yes

question 84: Compute $\|(3,4)\|$.

solution 84: $\sqrt{3^2+4^2}=5$.

answer 84: 5

question 85: Determine if (1,2,3) and (4,5,6) are orthogonal.

solution 85: Dot product $32 \neq 0$.

answer 85: no

question 86: Cross product of those two vectors?

solution 86: (-3,6,-3). answer 86: (-3,6,-3)

question 87: Area of parallelogram spanned by them.

solution 87: Norm of cross product $\sqrt{(-3)^2+6^2+(-3)^2} = \sqrt{54} = 3\sqrt{6}$.

answer 87: $3\sqrt{6}$

question 88: Find eigenvalues of $J = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

solution 88: Solve $t^2-1=0$; eigenvalues ± 1 .

answer 88: ±1

question 89: Is J symmetric?

solution 89: Yes $(J^T = J)$.

answer 89: yes

question 90: Determine if J orthogonally diagonalises.

solution 90: Symmetric \Rightarrow yes.

answer 90: yes

question 91: Compute J^3 .

solution 91: $J^2 = I$; $J^3 = J$.

answer 91: J

question 92: Provide rank of projection *P* in 27.

solution 92: 1. answer 92: 1

question 93: Is every projection diagonalizable?

solution 93: Yes; eigenvalues 0,1.

answer 93: yes

question 94: Determine det P from 27.

solution 94: 0. answer 94: 0

question 95: Let $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix}$. Rank?

solution 95: Rows scalar multiples ⇒ rank 1.

answer 95: 1

question 96: Trace of that A.

solution 96: 1+4+9=14.

answer 96: 14

question 97: Does A have an inverse?

solution 97: No (rank<3).

answer 97: no

question 98: Compute A^{T} .

solution 98: swap rows and columns.

answer 98: $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix}$

question 99: Is A symmetric?

solution 99: Yes $(A^T = A)$.

answer 99: yes

question 100: Eigenvalues of rank-1 symmetric A above.

solution 100: One non-zero eigenvalue equal to trace 14, two zeros.

answer **100**: 14,0,0