Estudo de Caso 02: Avaliação e comparação do retorno médio de ações

Diego Pontes, Elias Vieira, Matheus Bitarães

Fevereiro, 2021

Descrição do problema

Introdução

Design do Experimento

Os dados de entrada do experimento são as informações de preços de fechamento mensais de 5 ações diferentes, onde cada coluna representa uma ação e cada linha representa um mes de fechamento. O que se deseja é comparar o potencial de cada ação em gerar maior ganho mensal ao investidor. Como modelos regressivos de previsão não são o escopo deste trabalho, pode-se realizar uma transformação nestes dados, de forma que haja um vetor com as flutuações percentuais das ações em cada mês. Por exemplo, se houver uma ação com preços de fechamento [10,11,12,10], pode-se gerar o seguinte vetor de flutuações percentuais: [10%, 9%, -16%].

Desta forma, é possivel realizar uma análise estatistica entre as 5 ações e identificar a que apresenta maior incidencia de flutuação positiva, o que será considerado como a ação de maior potencial para gerar retornos.

Análise Estatística

Importação dos dados

Os dados das ações foram importados do arquivo Dados Acoes Grupo C.csv.

```
# importação dos dados
data <- read.csv(file = 'DadosAcoesGrupoC.csv', header = FALSE)
colnames(data) <- c("A1","A2","A3","A4","A5") # Adicionando nomes às colunas
# plot dos primeiros 6 dados da tabela
head(data)</pre>
```

```
## A1 A2 A3 A4 A5

## 1 26.649 12.302 21.006 18.553 33.937

## 2 26.057 12.250 21.032 18.385 33.443

## 3 25.545 12.541 20.816 18.555 33.018

## 4 25.143 12.649 20.790 18.513 33.050

## 5 25.124 12.531 20.553 18.376 32.758

## 6 24.451 12.511 20.520 18.490 32.094
```

Cada coluna representa uma ação e cada linha representa o preço de fechamento das ações no mes anterior. Portanto, a linha 1 indica o preço de fechamento do mes atual - 1, a linha 2 representa o mes atual - 2, e assim sucessivamente.

[matheus] preciso melhorar o grafico abaixo. Ainda nao consegui colocar ele mais bonito

```
theme_set(theme_minimal())

# Plot
plt <- ggplot(data=data, aes(x=1:36, y=A1)) +
    geom_line(aes(y = A1), color = "darkred") +
    geom_line(aes(y = A2), color = "steelblue") +
    geom_line(aes(y = A3), color = "red") +
    geom_line(aes(y = A4), color = "black") +
    geom_line(aes(y = A5), color = "green") +
    theme(legend.position="bottom") +
    labs(title = "Progressão das Ações", x = "Tempo (meses)", y = "Preço de fechamento das ações")
plt</pre>
```


Tratamento dos dados

Os dados brutos serão transformados em flutuações percentuais para que se possa realizar a análise estatística.

algum comentario aqui

```
# boxplot
boxplot(data_a1, data_a2, data_a3, data_a4, data_a5,
main = "Boxplots das flutuações percentuais",
at = c(1,2,3,4,5),
names = c("Ação 1", "Ação 2", "Ação 3", "Ação 4", "Ação 5"),
las = 2,
horizontal = TRUE,
notch = FALSE
)
```

Boxplots das flutuações percentuais

algum comentario sobre o boxplot

Dados estatísticos

comparação entre as ações aqui

Discussão e Conclusão

Atividades dos membros

Diego

Elias

Matheus

Todos

Elaboração das hipóteses e definição das premissas.