Презентация по лабораторной работе №2

НКНбд-01-21

Подлесный Иван Сергеевич

Введение

- 1. Вычислили расстояние между лодкой (браконьеров) и катером (охрана), используя формулу $\frac{x}{\nu}=\frac{s\pm x}{k*\nu}$, где s = начальное расстояние между лодкой и катером равный 11.5 км и k = коэффициент во сколько раз скорость катера выше чем скорость лодки. В итоге получили значения $x_1=\frac{11.5}{4.5}$ и $x_2=\frac{11.5}{2.5}$
- 2. Полагая, что катер береговой охраны окажется на одном расстоянии от полюса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса удаляясь от него со скоростью лодки u. Для этого скорость катера раскладываем на две составляющие: ν_r - радиальная скорость и ν_t - тангенциальная скорость. $\nu_r = \frac{dr}{dt}$. Нам нужно, чтобы эта скорость была равна скорости лодки, поэтому полагаем $\frac{dr}{dt} = \nu$. Тангенциальная скорость – это линейная скорость вращения катера относительно полюса. Она равна произведению угловой скорости $\frac{d\theta}{dt}$ на радиус то есть $\nu_{t} = r \frac{d\theta}{dt}$

Ход Работы ч.2

- 2. Отсюда, используя теорему Пифагора находим u_t , которая равна $\sqrt{(k*\nu)^2-\nu^2}$. В данном варианте получаем $u_t=\sqrt{11.25}\nu$.
- 3. Решение исходной задачи сводится к решению системы из двух дифференциальных уравнений $\begin{cases} \frac{d\nu}{dt}=\nu\\ r\frac{d\theta}{dt}=\sqrt{11.25}\nu \end{cases}$. После интегрирования получаем $\mathbf{r}=Ce^{\frac{\theta}{\sqrt{11.25}}}$
- 4. Переписали в julia.
- 5. Получили результаты в виде графиков.

Итоговые графики ч.1

6. Результат случая s + x (рис. 1)

Figure 1: Результат при случае s + x

Итоговые графики ч.2

7. Результат случая s - x (рис. 2)

Figure 2: Результат при случае s - x

Результат