22.

PCT

ASAMURA

PATENT OFEIC

From the INTERNATIONAL BUREAU

To:

小 松

NOTIFICATION CONCERNING
SUBMISSION OR TRANSMITTAL
OF PRIORITY DOCUMENT

(PCT Administrative Instructions, Section 411)

ASAMURA, Kiyoshi Room 331, New Ohtemachi Bldg. 2-1, Ohtemachi 2-chome Chiyoda-ku, Tokyo 100-0004 JAPON

Date of mailing (day/month/year) 15 November 2000 (15.11.00)	
Applicant's or agent's file reference E5261-00	IMPORTANT NOTIFICATION
International application No. PCT/JP00/04040	International filing date (day/month/year) 21 June 2000 (21.06.00)
International publication date (day/month/year) Not yet published	Priority date (day/month/year) 23 June 1999 (23.06.99)
Applicant	

MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD. et al

- 1. The applicant is hereby notified of the date of receipt (except where the letters "NR" appear in the right-hand column) by the International Bureau of the priority document(s) relating to the earlier application(s) indicated below. Unless otherwise indicated by an asterisk appearing next to a date of receipt, or by the letters "NR", in the right-hand column, the priority document concerned was submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b).
- 2. This updates and replaces any previously issued notification concerning submission or transmittal of priority documents.
- 3. An asterisk(*) appearing next to a date of receipt, in the right-hand column, denotes a priority document submitted or transmitted to the International Bureau but not in compliance with Rule 17.1(a) or (b). In such a case, the attention of the applicant is directed to Rule 17.1(c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.
- 4. The letters "NR" appearing in the right-hand column denote a priority document which was not received by the International Bureau or which the applicant did not request the receiving Office to prepare and transmit to the International Bureau, as provided by Rule 17.1(a) or (b), respectively. In such a case, the attention of the applicant is directed to Rule 17.1(c) which provides that no designated Office may disregard the priority claim concerned before giving the applicant an opportunity, upon entry into the national phase, to furnish the priority document within a time limit which is reasonable under the circumstances.

Priority date Priority application No. Country or regional Office or PCT receiving Office of priority document

23 June 1999 (23.06.99) 11/176447 JP 13 Octo 2000 (13.10.00)

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland Authorized officer

Shinji IGARASHI

Telephone No. (41-22) 338.83.38

		e	1	

PA 'NT COOPERATION TREAT

	From the INTERNATIONAL BUREAU
PCT	То:
NOTIFICATION OF ELECTION (PCT Rule 61.2)	Commissioner US Department of Commerce United States Patent and Trademark Office, PCT 2011 South Clark Place Room CP2/5C24 Arlington, VA 22202
Date of mailing: 28 December 2000 (28.12.00)	ETATS-UNIS D'AMERIQUE in its capacity as elected Office
International application No.: PCT/JP00/04040	Applicant's or agent's file reference: E5261-00
International filing date: 21 June 2000 (21.06.00)	Priority date: 23 June 1999 (23.06.99)
Applicant: NAKASHIMA, Takuya et al	
in the demand filed with the International preliminar 02 November in a notice effecting later election filed with the Interes 2. The election X was	2000 (02.11.00)
made before the expiration of 19 months from the priority (Rule 32.2(b).	date or, where Rule 32 applies, within the time limit under
The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland	Authorized officer: J. Zahra Telephone No.: (41-22) 338 83 38

¥ ;			
			·

1936,611

WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 7:

C07D 417/06, 403/06, 413/06, A01N 43/76, 43/78, 43/828, 43/647

(11) Internationale Veröffentlichungsnummer:

WO 00/68228

(43) Internationales Veröffentlichungsdatum:

16. November 2000 (16.11.00)

(21) Internationales Aktenzeichen:

PCT/EP00/04040

A1

(22) Internationales Anmeldedatum:

5. Mai 2000 (05.05.00)

(30) Prioritätsdaten:

199 21 240.6

7. Mai 1999 (07.05.99)

DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BASF AK-TIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): MAYER, Guido [DE/DE]; Gutleuthausstrasse 8, D-67433 Neustadt (DE). BAU-MANN, Ernst [DE/DE]; Falkenstrasse 6a, D-67373 Dudenhofen (DE). DEYN, Wolfgang von [DE/DE]; An der Bleiche 24, D-67435 Neustadt (DE). KUDIS, Steffen [DE/DE]; Spelzenstrasse 10, D-68167 Mannheim (DE). LANGEMANN, Klaus [DE/DE]; Goldbergstrasse 18, D-67551 Worms (DE). MISSLITZ, Ulf [DE/DE]; Mandelring 74, D-67433 Neustadt (DE). NEIDLEIN, Ulf [DE/DE]; Brahmsstrasse 3, D-68165 Mannheim (DE). WITSCHEL, Matthias [DE/DE]; Wittelsbachstrasse 81, D-67061 Ludwigshafen (DE). RACK, Michael [DE/DE]; Sandwingert 67, D-69123 Heidelberg (DE). VOLK, Thorsten [DE/DE]; Strassburger Ring 16-18, D-68229

Mannheim (DE). OTTEN, Martina [DE/DE]; Gunterstrasse 28, D-67069 Ludwigshafen (DE). WESTPHALEN, Karl-Otto [DE/DE]; Zum Pfauenturm 17, D-67346 Speyer (DE), WALTER, Helmut [DE/DE]; Grünstadter Strasse 82, D-67283 Obrigheim (DE).

(74) Anwälte: KINZEBACH, Werner usw.; Ludwigsplatz 4, D-67059 Ludwigshafen (DE).

(81) Bestimmungsstaaten: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR. LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO. NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES. FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Mit internationalem Recherchenbericht.

(54) Title: 4-(3',4'-HETEROCYCLYL BENZOYL) PYRAZOLES AS HERBICIDAL AGENTS

(54) Bezeichnung: 4-(3',4'-HETEROCYCLYLBENZOYL) PYRAZOLE ALS HERBIZIDE

(57) Abstract

The invention relates to pyrazolyl derivatives of benzo-condensated, unsaturated 5-membered nitrogen heterocycles of the general formula (I), wherein X represents N or a group C-R3; Y is O, S, SO, SO2 or NR4 or X-Y is S=N, and wherein X means sulfur; and the variables R1, R2 and Pz have the meanings indicated in claim 1. The invention further relates to a method of producing said compounds, to agents that contain them and to their use as herbicidal agents.

 R^1 R²

PECEIVED TC 1700

(57) Zusammenfassung

Die vorliegende Erfindung betrifft Pyrazolyl-Derivate benzokondensierter, ungesättigter 5-Ring-Stickstoffheterocyclen der allgemeinen Formel (I), worin X für N oder eine Gruppe C-R3 steht; Y für O, S, SO, SO2 oder NR4 steht oder X-Y für S=N stehen, und X Schwefel bedeutet; und die Variablen R¹, R² und Pz die in Anspruch 1 angegebenen Bedeutungen aufweisen. Die vorliegende Verbindung betrifft weiterhin ein Verfahren zur Herstellung dieser Verbindungen, Mittel, die diese Verbindungen enthalten, und ihre Verwendung als

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
ΑT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
ΑU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
ΛZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TC	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die chemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	7T	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neusceland	ZW	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PΤ	Portugal		
CU	Kuba	ΚZ	Kasachstan	RO	Rumänien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

4-(3', 4'-HETEROCYCLYLBENZOYL) PYRAZOLE ALS HERBIZIDE

5 Beschreibung

Die vorliegende Erfindung betrifft Pyrazolyl-Derivate benzokondensierter, ungesättigter 5-Ring-Stickstoffheterocyclen, Verfahren zur Herstellung derartiger Pyrazolyl-Derivate, Mittel, die 10 derartige Verbindungen enthalten, sowie die Verwendung der Pyrazolyl-Derivate oder Mittel, die diese enthalten, zur Schadpflanzenbekämpfung.

Aus der WO 96/05197 sind Saccharin-Derivate mit herbizider Wir15 kung bekannt, die am Benzolkern des Saccharingerüstes mit einem
(5-Hydroxy-pyrazol-4-yl)carbonyl-Rest substituiert sind. Die WO
97/30993 und die WO 97/09327 beschreiben Dioxothiochroman-Derivate und Dihydrobenzothiophen-Derivate mit herbizider Wirkung,
die ebenfalls am Benzolkern der Schwefel-Heterocyclen einen
20 (5-Hydroxypyrazol-4-yl)carbonyl-Rest aufweisen.

Aus der WO 97/08164 sind unter anderem benzkondensierte Derivate des γ -Butyrolactams mit herbizider Wirkung bekannt, die ebenfalls einen (5-Hydroxypyrazol-4-yl)carbonyl-Rest aufweisen.

Die herbiziden Eigenschaften der aus den genannten Druckschriften bekannten Verbindungen sowie deren Verträglichkeiten gegenüber Kulturpflanzen vermögen jedoch nur bedingt die Anforderungen an Herbizide zu befriedigen.

Die EP-A-822 187 beschreibt Herbizide auf der Basis arylsubstituierter Pyrazole der allgemeinen Formel

30

worin R¹ für Wasserstoff oder eine für ein Pestizid geeignete

45 Schutzgruppe steht, R⁴ vorzugsweise Wasserstoff bedeutet und R²
sowie R³ für Phenyl, Naphthyl oder heterocyclische Gruppen stehen,
die gegebenenfalls substituiert sein können. R³ steht vorzugsweise

für einen 5- oder 6-gliedrigen heterocyclischen Ring und insbesondere für eine Thiophengruppe. Die herbizide Wirkung der in dieser Schrift beschriebenen Verbindungen sowie ihre Verträglichkeit gegenüber Nutzpflanzen ist ebenfalls nicht zufriedenstel5 lend.

Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde neue Verbindungen mit herbizider Wirkung bereitzustellen, die vorzugsweise eine höhere Wirksamkeit als die herbiziden Substanzen des 10 Standes der Technik und/oder eine bessere Selektivität gegenüber Schadpflanzen aufweisen.

Es wurde nun überraschenderweise gefunden, dass diese Aufgabe durch Pyrazolyl-Derivate benzokondensierter, ungesättigter 15 5-Ring-Stickstoffheterocyclen der nachstehend definierten, allgemeinen Formel I gelöst wird.

Demnach betrifft die vorliegende Erfindung Pyrazolyl-Derivate benzokondensierter, ungesättigter 5-Ring-Stickstoffheterocyclen 20 der allgemeinen Formel I,

$$\begin{array}{c|c}
 & R^1 \\
 & Y \\
 & X \\
 & R^2
\end{array}$$

30

40

worin

X für N oder eine Gruppe C-R3 steht;

35 Y für O, S, SO, SO₂ oder NR⁴ steht;

oder

X-Y für S=N stehen, und X Schwefel bedeutet;

R¹ Wasserstoff, Nitro, Halogen, Cyano, C₁-C₆-Alkyl,
C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy,
C₁-C₆-Alkylthio, C₁-C₆-Halogenalkylthio,
C₁-C₆-Alkylsulfinyl, C₁-C₆-Halogenalkylsulfinyl,
C₁-C₆-Alkylsulfonyl, C₁-C₆-Halogenalkylsulfonyl,

45 $C_1-C_6-Alkylsulfonyl$, $C_1-C_6-Halogenalkylsulfonyl$, Aminosulfonyl, $C_1-C_6-Alkoxy-C_1-C_6-alkyl$, $C_1-C_6-Alkylthio-C_1-C_6-alkyl$,

3

 $C_1-C_6-Alkylsulfinyl-C_1-C_6-alkyl,$ $C_1-C_6-Alkylsulfonyl-C_1-C_6-alkyl,$ $C_1-C_6-Alkylamino-C_1-C_6-alkyl,$ oder $Di-(C_1-C_6-alkyl)$ amino- $C_1-C_6-alkyl;$

5

10

- R² Wasserstoff, Halogen oder C₁-C₆-Alkyl;
- R³ Wasserstoff, Halogen, Nitro, Cyano, Hydroxy, Amino, Mercapto, Rhodano, Hydrazid, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Hydroxyalkyl, C₁-C₆-Aminoalkyl, C₁-C₆-Alkoxy-C₁-C₆-alkyl, C₁-C₆-Alkylcarbonyl-C₁-C₆-alkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, C₁-C₆-Hydroxyalkoxy, C₁-C₆-Alkoxy-C₁-C₆-alkoxy, C₃-C₆-Cycloalkyl,
- C₁-C₆-Alkylamino, Di-C₁-C₆-alkylamino,
 C₃-C₆-Cycloalkylamino, wobei die Alkyl- und
 Cycloalkylgruppen der drei letztgenannten Reste teilweise
 oder vollständig halogeniert und/oder ein, zwei oder drei
 Substituenten, ausgewählt unter C₁-C₄-Alkoxy oder Hydroxy
 tragen können,

 C_1-C_6 -Alkylthio, C_1-C_6 -Halogenalkylthio, C_1-C_6 -Hydroxyalkylthio, C_1-C_6 -Alkoxy- C_1-C_6 -alkylthio, C_1-C_6 -Alkylsulfinyl, C_1-C_6 -Alkylsulfonyl,

25

30

Phenyl, Naphthyl, Heterocyclyl, Phenylamino, Phenoxy, Diphenylamino, wobei die Phenyl- und Heterocyclylgruppen der sechs letztgenannten Reste ihrerseits partiell oder vollständig halogeniert und/oder einen, zwei oder drei Substituenten, ausgewählt unter Nitro, Cyano, Hydroxy, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy und C₁-C₄-Halogenalkoxy, tragen können,

 $C(0)OR^5$, oder $C(0)N(R^6)R^7$;

35

- Wasserstoff, $C_1-C_6-Alkyl$, $C_1-C_6-Halogenalkyl$, $C_1-C_6-Hydroxyalkyl$, $C_1-C_6-Alkoxy-C_1-C_6-alkyl$,
- Phenyl, Naphthyl, wobei die zwei letztgenannten Reste ihrerseits partiell oder vollständig halogeniert und/oder einen, zwei oder drei Substituenten, ausgewählt unter Nitro, Cyano, Hydroxy, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy und C₁-C₄-Halogenalkoxy, tragen können; bedeuten, wobei

4

 R^5 für Wasserstoff, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Hydroxyalkyl, C_1 - C_6 -Alkoxy- C_1 - C_6 -alkyl,

Phenyl, Naphthyl oder Heterocyclyl steht, wobei die drei letztgenannten Reste ihrerseits partiell oder vollständig halogeniert und/oder einen, zwei oder drei Substituenten, ausgewählt unter Nitro, Cyano, Hydroxy, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy und C₁-C₄-Halogenalkoxy, tragen können; und

10

5

 R^6 , R^7 unabhängig voneinander für Wasserstoff, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Hydroxyalkyl, C_1 - C_6 -Alkoxy- C_1 - C_6 -alkyl,

15

20

Phenyl oder Naphthyl stehen, wobei die zwei letztgenannten Reste ihrerseits partiell oder vollständig halogeniert und/oder einen, zwei oder drei Substituenten, ausgewählt unter Nitro, Cyano, Hydroxy, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy und C_1 - C_4 -Halogenalkoxy, tragen können;

und Pz für einen Rest der Formel IIa oder IIb steht,

25

lla

30

worin die Variablen R8, R9 und R10 folgende Bedeutung haben:

IIb

35

Hydroxy, Mercapto, Halogen, OR¹¹, SR¹¹, SOR¹², SO₂R¹², OSO₂R¹², P(O)R¹³R¹⁴, OP(O)R¹³R¹⁴, P(S)R¹³R¹⁴, OP(S)R¹³R¹⁴, NR¹⁵R¹⁶, ONR¹⁵R¹⁶ oder N-gebundenes Heterocyclyl, das partiell oder vollständig halogeniert sein kann und/oder einen, zwei oder drei der folgenden Reste tragen kann: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy;

40

45

Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Cycloalkyl, C₁-C₆-Halogenalkyl, Hydroxy, C₁-C₆-Alkoxy oder C₁-C₆-Halogenalkoxy;

		5
	R ¹⁰	Wasserstoff, Halogen, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl,
		Hydroxy, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkoxy,
		C_1 - C_6 -Alkylthio od r C_1 - C_6 -Halogenalkylthio;
		Cl-Ch-Ministry of 1 of the same 3
5	R ¹¹	$C_1-C_6-Alkyl$, $C_3-C_6-Alkenyl$, $C_3-C_6-Halogenalkenyl$,
5	K	C ₃ -C ₆ -Alkinyl, C ₃ -C ₆ -Halogenalkinyl, C ₃ -C ₆ -Cycloalkyl,
		C_3 - C_6 -Alkylcarbonyl, C_2 - C_6 -Alkenylcarbonyl,
		C ₁ —C ₆ —AlkylCarbonyl, C ₂ —C ₆ —AlkenylCarbonyl,
		C ₂ —C ₆ —Alkinylcarbonyl, C ₃ —C ₆ —Cycloalkylcarbonyl,
		C ₁ -C ₆ -Alkoxycarbonyl, C ₃ -C ₆ -Alkenyloxycarbonyl,
10		C ₃ -C ₆ -Alkinyloxycarbonyl, C ₁ -C ₆ -Alkylthiocarbonyl,
		C_1 - C_6 -Alkylaminocarbonyl, C_3 - C_6 -Alkenylaminocarbonyl,
		C_3 - C_6 -Alkinylaminocarbonyl,
		$N, N-Di-(C_1-C_6-alkyl)-aminocarbonyl,$
		$N-(C_3-C_6-Alkenyl)-N-(C_1-C_6-alkyl)-aminocarbonyl,$
15		$N-(C_3-C_6-Alkinyl)-N-(C_1-C_6-alkyl)-aminocarbonyl,$
		$N-(C_1-C_6-Alkoxy)-N-(C_1-C_6-alkyl)$ -aminocarbonyl,
		$N-(C_3-C_6-Alkenyl)-N-(C_1-C_6-alkoxy)-aminocarbonyl,$
		$N-(C_3-C_6-Alkinyl)-N-(C_1-C_6-alkoxy)-aminocarbonyl,$
		Di-(C1-C6-alkyl)-aminothiocarbonyl oder
20		C ₁ -C ₆ -Alkoxyimino-C ₁ -C ₆ -alkyl, wobei die genannten
20 .		Alkyl-, Cycloalkyl- und Alkoxyreste partiell oder
		vollständig halogeniert sein können und/oder eine,
		zwei oder drei der folgenden Gruppen tragen können:
		Cyano, C ₁ -C ₄ -Alkoxy, C ₁ -C ₄ -Alkylthio,
25		Di- $(C_1-C_4-alkyl)$ -amino, $C_1-C_4-alkyl$ carbonyl,
25		C_1 — C_4 —Alkoxycarbonyl, C_1 — C_4 —Alkoxy— C_1 — C_4 —alkoxycarbonyl,
		C_1 — C_4 —Alkylaminocarbonyl,
		C_1 — C_4 —Alkyl)—aminocarbonyl, Aminocarbonyl,
		C_1 — C_4 —Alkylcarbonyloxy oder C_3 — C_6 —Cycloalkyl;
		C ₁ -C ₄ -Alkylcalbonyloxy oder c ₃ -c ₆ -c ₃ -t ₅
30		Phenyl, Phenyl- C_1 - C_6 -alkyl, Phenylcarbonyl- C_1 - C_6 -alkyl,
		Phenyl, Phenyl—C1—C6—alkyl, Phenylcarbonyl—C1—C6 allyl,
		Phenylcarbonyl, Phenoxycarbonyl,
		Phenyloxythiocarbonyl, Phenylaminocarbonyl,
		N-(C ₁ -C ₆ -Alkyl)-N-(phenyl)-aminocarbonyl,
35		Phenyl-C2-C6-alkenylcarbonyl, Heterocyclyl,
		Heterocyclyl-C ₁ -C ₆ -alkyl,
		Heterocyclylcarbonyl-C ₁ -C ₆ -alkyl, Heterocyclylcarbonyl,
		Heterocyclyloxycarbonyl, Heterocyclyloxythiocarbonyl,
		Heterocyclylaminocarbonyl,
40		N-(C ₁ -C ₆ -Alkyl)-N-(heterocyclyl)-aminocarbonyl, oder
		Heterocyclyl-C2-C6-alkenylcarbonyl, wobei der Phenyl-
		und der Heterocyclyl-Rest der 18 letztgenannten
		Substituenten partiell oder vollständig halogeniert
		sein kann und/oder einen, zwei oder drei der folgenden
45		Reste tragen kann: Nitro, Cyano, C1-C4-Alkyl,
		C ₁ -C ₄ -Halogenalkyl, C ₁ -C ₄ -Alkoxy oder

C₁-C₄-Halogenalkoxy;

C1-C6-Alkyl, C3-C6-Alkenyl, C3-C6-Alkinyl oder R12 C₃-C₆-Cycloalkyl, wobei die vier g nannten Reste partiell oder vollständig halogeniert sein können 5 und/oder eine, zwei oder drei der folgenden Gruppen tragen können: Cyano, C1-C4-Alkoxy, C_1-C_4 -Halogenalkoxy, C_1-C_4 -Alkylthio, C_1-C_4 -Halogenalkylthio, C_1-C_4 -Alkylcarbonyl, $C_1-C_4-Alkoxycarbonyl$ oder $C_1-C_4-Halogenalkoxycarbonyl;$ 10 Phenyl, Phenyl-C1-C6-alkyl, Heterocyclyl oder Heterocyclyl-C1-C6-alkyl, wobei der Phenyl- und der Heterocyclyl-Rest der letztgenannten Substituenten partiell oder vollständig halogeniert sein kann 15 und/oder einen, zwei oder drei der folgenden Reste tragen kann: Nitro, Cyano, C1-C4-Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy oder C₁-C₄-Alkoxycarbonyl; 20 unabhängig voneinander Wasserstoff, Hydroxy, R^{13} , R^{14} C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, Phenyl, Phenyl-C₁-C₄-alkyl oder Phenoxy, wobei die drei letztgenannten Substituenten partiell oder vollständig halogeniert sein können und/oder einen, zwei oder drei 25 der folgenden Reste tragen können: Nitro, Cyano, $C_1-C_4-Alkyl$, $C_1-C_4-Halogenalkyl$, $C_1-C_4-Alkoxy$, C1-C4-Halogenalkoxy oder C1-C4-Alkoxycarbonyl; Wasserstoff, C1-C6-Alkyl, C3-C6-Alkenyl, R15 30 C₃-C₆-Halogenalkenyl, C₃-C₆-Alkinyl, C3-C6-Halogenalkinyl, C3-C6-Cycloalkyl, C₁-C₆-Alkylcarbonyl, Hydroxy, C₁-C₆-Alkoxy, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy, Amino, C₁-C₆-Alkylamino, Di-(C₁-C₆-alkyl)-amino oder 35 C1-C6-Alkylcarbonylamino, wobei die genannten Alkyl-, Cycloalkyl- und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder einen, zwei oder drei Reste der folgenden Gruppe tragen können: Cyano, $C_1-C_4-Alkoxycarbonyl$, $C_1-C_4-Alkylaminocarbonyl$, 40 Di-(C₁-C₄-alkyl)-aminocarbonyl oder C₃-C₆-Cycloalkyl; Phenyl, Phenyl-C1-C4-alkyl, Phenylcarbonyl, Heterocyclyl, Heterocyclyl-C₁-C₄-alkyl oder Heterocyclylcarbonyl, wobei der Phenyl- oder 45

Heterocyclyl-Rest der sechs letztgenannten

Substituenten partiell oder vollständig halogeniert

7

sein kann und/oder einen, zwei oder drei der folgenden Reste tragen kann: Nitro, Cyano, C1-C4-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C_1-C_4 -Halogenalkoxy; und

5

Wasserstoff, C1-C6-Alkyl oder C3-C6-Alkenyl, R16 C3-C6-Alkinyl; bedeutet,

sowie deren landwirtschaftlichen brauchbaren Salze.

10

Ferner wurden herbizide Mittel gefunden, die Pyrazolyl-Derivate der Formel I enthalten und eine sehr gute herbizide Wirkung besitzen. Außerdem wurden Verfahren zur Herstellung dieser Mittel und Verfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs mit 15 den Pyrazolylderivaten der Formel I gefunden.

Die Verbindungen der Formel I können je nach Substitutionsmuster ein oder mehrere Chiralitätszentren enthalten und liegen dann als Enantiomeren oder Diastereomerengemische vor. Gegenstand der Er-20 findung sind sowohl die reinen Enantiomeren oder Diastereomeren als auch deren Gemische.

Die Verbindungen der Formel I können auch in Form ihrer landwirtschaftlich brauchbaren Salze vorliegen, wobei es auf die Art des 25 Salzes in der Regel nicht ankommt. Im allgemeinen kommen die Salze derjenigen Kationen oder die Säureadditionssalze derjenigen Säuren in Betracht, deren Kationen, beziehungsweise Anionen, die herbizide Wirkung der Verbindungen I nicht negativ beeinträchtigen.

30

Es kommen als Kationen insbesondere Ionen der Alkalimetalle, vorzugsweise Lithium, Natrium und Kalium, der Erdalkalimetalle, vorzugsweise Calcium und Magnesium, und der Übergangsmetalle, vorzugsweise Mangan, Kupfer, Zink und Eisen, sowie Ammonium, 35 wobei hier gewünschtenfalls ein bis vier Wasserstoffatome durch $C_1-C_4-Alkyl$, Hydroxy- $C_1-C_4-alkyl$, $C_1-C_4-Alkoxy-C_1-C_4-alkyl$, $Hydroxy-C_1-C_4-alkoxy-C_1-C_4-alkyl$, Phenyl oder Benzyl ersetzt sein können, vorzugsweise Ammonium, Dimethylammonium, Diisopropylammonium, Tetramethylammonium, Tetrabutylammonium, 40 2-(2-Hydroxyeth-1-oxy)eth-1-ylammonium, Di(2-hydroxyeth-1-yl)ammonium, Trimethylbenzylammonium, des weiteren Phosphoniumionen, Sulfoniumionen, vorzugsweise $Tri(C_1-C_4-alkyl)$ sulfonium und Sulfoxoniumionen, vorzugsweise $Tri(C_1-C_4-alkyl)$ sulfoxonium, in Betracht.

Anionen von brauchbaren Säureadditionsalzen sind in erster Linie Chlorid, Bromid, Fluorid, Hydrogensulfat, Sulfat, Dihydrogenphosphat, Hydrogenphosphat, Nitrat, Hydrogencarbonat, Carbonat, Hexafluorosilikat, Hexafluorophosphat, Benzoat sowie 5 die Anionen von C₁-C₄-Alkansäuren, vorzugsweise Formiat, Acetat, Propionat und Butyrat.

Im Falle von R^8 = Hydroxy oder Mercapto {Z = 0,S} steht IIa auch stellvertretend für die tautomeren Formen IIa' und IIa''

10

20 bzw. IIb auch stellvertretend für die tautomeren Formen IIb' und IIb''.

Die für die Substituenten R1 bis R16 oder als Reste an Phenyl- und Heterocyclyl-Resten genannten organischen Molekülteile stellen Sammelbegriffe für individuelle Aufzählungen der einzelnen 35 Gruppenmitglieder dar. Sämtliche Kohlenwasserstoffketten, also alle Alkyl-, Halogenalkyl-, Alkoxy-, Halogenalkoxy-, Alkylthio-, Halogenalkylthio-, Alkylsulfinyl-, Halogenalkylsulfinyl-, Alkylsulfonyl-, Halogenalkylsulfonyl-, N-Alkylamino-, N, N-Dialkylamino-, N-Halogenalkylamino-, N-Alkoxyamino-, 40 N-Alkoxy-N-alkylamino-, N-Alkylcarbonylamino-, Alkylcarbonyl-,

- Halogenalkylcarbonyl, Alkoxycarbonyl-, Halogenalkoxycarbonyl, Alkylthiocarbonyl-, Alkylcarbonyloxy-, Alkylaminocarbonyl-, Dialkylaminocarbonyl-, Dialkylaminothiocarbonyl-, Alkoxyalkyl-, Alkoxyiminoalkyl-, Phenylalkylcarbonyl,
- 45 Heterocyclylalkylcarbonyl, Phenylalkenylcarbonyl-, Heterocyclylalkenylcarbonyl-, N-Alkoxy-N-alkylaminocarbonyl-, N-Alkyl-N-phenylaminocarbonyl-,

N-Alkyl-N-heterocyclylaminocarbonyl-, Phenylalkyl-,
Heterocyclylalkyl-, Phenylcarbonylalkyl-,
Heterocyclylcarbonylalkyl-, Alkoxyalkoxycarbonyl-,
Alkenylcarbonyl-, Alkenyloxycarbonyl-, Alkenylaminocarbonyl-,

N-Alkenyl-N-alkylaminocarbonyl-,
N-Alkenyl-N-alkoxyaminocarbonyl-, Alkinylcarbonyl-,
Alkinyloxycarbonyl-, Alkinylaminocarbonyl-,
N-Alkinyl-N-alkylaminocarbonyl-,
N-Alkinyl-N-alkylaminocarbonyl-, Alkenyl-, Alkinyl-,
Halogenalkenyl-, Halogenalkinyl-, Alkenyloxy-, Alkinyloxy,
Alkandiyl-, Alkendiyl-, Alkadiendiyl- oder Alkindiyl-Teile können
geradkettig oder verzweigt sein. Sofern nicht anders angegeben
tragen halogenierte Substituenten vorzugsweise ein bis fünf
gleiche oder verschiedene Halogenatome. Die Bedeutung Halogen

15 steht jeweils für Fluor, Chlor, Brom oder Iod.

Ferner bedeuten beispielsweise:

- C₁—C₄—Alkyl: z.B. Methyl, Ethyl, Propyl, 1—Methylethyl, Butyl, 1—Methylpropyl, 2—Methylpropyl oder 1,1—Dimethylethyl;
 - C_1 - C_6 -Alkyl, sowie die Alkylteile von C_1 - C_6 -Alkylamino, Di- $(C_1$ - C_6 -alkyl)amino, N- $(C_1$ - C_6 -Alkoxy)-N- $(C_1$ - C_6 -alkyl)amino, N(C_1 - C_6 -Alkoxy)-N- $(C_1$ - C_6 -alkyl)-aminocarbonyl,
- N-(C₃-C₆-Alkenyl)-N-(C₁-C₆-alkyl)-aminocarbonyl,

 (C₃-C₆-Alkinyl)-N-(C₁-C₆-alkyl)-aminocarbonyl,

 N-(C₁-C₆-Alkyl)-N-phenylaminocarbonyl,

 N-(C₁-C₆-Alkyl)-N-heterocyclylaminocarbonyl: C₁-C₄-Alkyl, wie voranstehend genannt, sowie z.B. Pentyl, 1-Methylbutyl,
- 2—Methylbutyl, 3—Methylbutyl, 2,2—Dimethylpropyl,
 1—Ethylpropyl, Hexyl, 1,1—Dimethylpropyl, 1,2—Dimethylpropyl,
 1—Methylpentyl, 2—Methylpentyl, 3—Methylpentyl,
 4—Methylpentyl, 1,1—Dimethylbutyl, 1,2—Dimethylbutyl,
 1,3—Dimethylbutyl, 2,2—Dimethylbutyl, 2,3—Dimethylbutyl,
- 35 3,3—Dimethylbutyl, 1—Ethylbutyl, 2—Ethylbutyl,
 1,1,2—Trimethylpropyl, 1—Ethyl—1—methylpropyl oder
 1—Ethyl—3—methylpropyl;
- C₁—C₄—Halogenalkyl: einen C₁—C₄—Alkylrest, wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. Chlormethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 2-Fluorethyl, 2-Chlorethyl, 2-Bromethyl, 2-Iodethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl,

10

Pentafluorethyl, 2-Fluorpropyl, 3-Fluorpropyl, 2,2-Difluorpropyl, 2,3-Difluorpropyl, 2-Chlorpropyl, 3-Chlorpropyl, 2,3-Dichlorpropyl, 2-Brompropyl, 3-Brompropyl, 3,3,3-Trifluorpropyl, 3,3,3-Trichlorpropyl, 2,2,3,3,3-Pentafluorpropyl, Heptafluorpropyl, 1-(Fluormethyl)-2-fluorethyl, 1-(Chlormethyl)-2-chlorethyl,

10 - C₁-C₆-Halogenalkyl, sowie die Halogenalkylteile von N-C₁-C₆-Halogenalkylamino: C₁-C₄-Halogenalkyl, wie voranstehend genannt, sowie z.B. 5-Fluorpentyl, 5-Chlorpentyl, 5-Brompentyl, 5-Iodpentyl, Undecafluorpentyl, 6-Fluorhexyl, 6-Chlorhexyl, 6-Bromhexyl, 6-Iodhexyl oder Dodecafluorhexyl;

1-(Brommethyl)-2-bromethyl, 4-Fluorbutyl, 4-Chlorbutyl,

4-Brombutyl oder Nonafluorbutyl;

1,1-Dimethylethoxy;

C₁-C₄-Alkoxy: z.B. Methoxy, Ethoxy, Propoxy, 1-Methylethoxy,
 Butoxy, 1-Methylpropoxy, 2-Methylpropoxy oder

20

- C₁-C₆-Alkoxy, sowie die Alkoxyteile von N-C₁-C₆-Alkoxyamino, N-(C₁-C₆-Alkoxy)-N-(C₁-C₆-alkyl)amino, C₁-C₆-Alkoxyimino-C₁-C₆-alkyl, N-(C₁-C₆-Alkoxy)-N-(C₁-C₆-alkyl)-aminocarbonyl,
- N-(C₃-C₆-Alkenyl)-N-(C₁-C₆-alkoxy)-aminocarbonyl und N-(C₃-C₆-Alkinyl)-N-(C₁-C₆-alkoxy)-aminocarbonyl: C₁-C₄-Alkoxy, wie voranstehend genannt, sowie z.B. Pentoxy, 1-Methylbutoxy, 2-Methylbutoxy, 3-Methylbutoxy, 1,1-Dimethylpropoxy, 1,2-Dimethylpropoxy,
- 2,2-Dimethylpropoxy, 1-Ethylpropoxy, Hexoxy, 1-Methylpentoxy, 2-Methylpentoxy, 3-Methylpentoxy, 4-Methylpentoxy, 1,1-Dimethylbutoxy, 1,2-Dimethylbutoxy, 1,3-Dimethylbutoxy, 2,2-Dimethylbutoxy, 2,3-Dimethylbutoxy, 3,3-Dimethylbutoxy, 1-Ethylbutoxy, 2,2-Trimethylpropoxy, 1-Ethylpropoxy, 2,2-Trimethylpropoxy, 3,3-Dimethylpropoxy, 3,3-Dimethylpropoxy, 1,2-Trimethylpropoxy, 2,2-Trimethylpropoxy, 2,2-Trimethylpropoxy, 2,2-Trimethylpropoxy, 2,2-Trimethylpropoxy, 3,3-Dimethylpropoxy, 3,3-Dimethy
- 1,2,2-Trimethylpropoxy, 1-Ethyl-1-methylpropoxy oder
 1-Ethyl-2-methylpropoxy;
- C₁-C₄-Halogenalkoxy: einen C₁-C₄-Alkoxyrest, wie voranstehend genannt, der partiell oder vollständig durch Fluor, Chlor,
 Brom und/oder Iod substituiert ist, also z.B. Fluormethoxy, Difluormethoxy, Trifluormethoxy, Chlordifluormethoxy, Bromdifluormethoxy, 2-Fluorethoxy, 2-Chlorethoxy,
 2-Brommethoxy, 2-Iodethoxy, 2,2-Difluorethoxy,
 2,2,2-Trifluorethoxy, 2-Chlor-2-fluor thoxy,
- 2-Chlor-2,2-difluorethoxy, 2,2-Di-chlor-2-fluorethoxy, 2,2,2-Trichlorethoxy, Pentafluorethoxy, 2-Fluorpropoxy, 3-Fluorpropoxy, 2-Chlorpropoxy, 3-Chlorpropoxy,

PCT/EP00/04040 WO 00/68228

11

2-Brompropoxy, 3-Brompropoxy, 2,2-Difluorpropoxy,

- 2,3-Difluorpropoxy, 2,3-Dichlorpropoxy,
- 3,3,3—Trifluorpropoxy, 3,3,3—Trichlorpropoxy,
- 2,2,3,3,3-Pentafluorpropoxy, Heptafluorpropoxy,
- 1-(Fluormethyl)-2-fluorethoxy, 1-(Chlormethyl)-2-chlorethoxy, 5
 - 1-(Brommethyl)-2-bromethoxy, 4-Fluorbutoxy, 4-Chlorbutoxy,
 - 4-Brombutoxy oder Nonafluorbutoxy;
- C_1-C_6 -Halogenalkoxy: C_1-C_4 -Halogenalkoxy, wie voranstehend genannt, sowie z.B. 5-Fluorpentoxy, 5-Chlorpentoxy, 10 5-Brompentoxy, 5-Iodpentoxy, Undecafluorpentoxy, 6-Fluorhexoxy, 6-Chlorhexoxy, 6-Bromhexoxy, 6-Iodhexoxy oder
 - Dodecafluorhexoxy;

- C_1-C_4 -Alkylthio (C_1-C_4 -Alkylsulfanyl: C_1-C_4 -Alkyl-S-): z.B. 15 -Methylthio, Ethylthio, Propylthio, 1-Methylethylthio, Butylthio, 1-Methylpropylthio, 2-Methylpropylthio oder 1,1-Dimethylethylthio;
- C1-C6-Alkylthio, sowie die Alkylthioteile von 20 — $C_1-C_6-Alkylthiocarbonyl: C_1-C_4-Alkylthio,$ wie voranstehend genannt, sowie z.B. Pentylthio, 1-Methylbutylthio, 2-Methylbutylthio, 3-Methylbutylthio, 2,2-Dimethylpropylthio,
- 1-Ethylpropylthio, Hexylthio, 1,1-Dimethylpropylthio,
 - 1,2-Dimethylpropylthio, 1-Methylpentylthio, 2-Methylpentylthio, 3-Methylpentylthio, 4-Methylpentylthio,
 - 1,1-Dimethylbutylthio, 1,2-Dimethylbutylthio,
 - 1,3-Dimethylbutylthio, 2,2-Dimethylbutylthio,
 - 2,3—Dimethylbutylthio, 3,3—Dimethylbutylthio,
- 1-Ethylbutylthio, 2-Ethylbutylthio, 30
 - 1,1,2-Trimethylpropylthio, 1,2,2-Trimethylpropylthio,
 - 1-Ethyl-1-methylpropylthio oder 1-Ethyl-2-methylpropylthio;
- C_1 — C_4 —Halogenalkylthio: einen C_1 — C_4 —Alkylthiorest, wie
- voranstehend genannt, der partiell oder vollständig durch 35 Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B.
 - Fluormethylthio, Difluormethylthio, Trifluormethylthio, Chlordifluormethylthio, Bromdifluormethylthio,
 - 2-Fluorethylthio, 2-Chlorethylthio, 2-Bromethylthio,
- 2-Iodethylthio, 2,2-Difluorethylthio, 40
 - 2,2,2-Trifluorethylthio, 2,2,2-Trichlorethylthio,
 - 2-Chlor-2-fluorethylthio, 2-Chlor-2,2-difluorethylthio,
 - 2,2-Dichlor-2-fluorethylthio, Pentafluorethylthio,
 - 2-Fluorpropylthio, 3-Fluorpropylthio, 2-Chlorpropylthio,
- 3-Chlorpropylthio, 2-Brompropylthio, 3-Brompropylthio, 45
 - 2,2-Difluorpropylthio, 2,3-Difluorpropylthio,
 - 2,3-Dichlorpropylthio, 3,3,3-Trifluorpropylthio,

5

3,3,3—Tri-chlorpropylthio, 2,2,3,3,3—Pentafluorpropylthio, Heptafluorpropylthio, 1—(Fluormethyl)—2—fluorethylthio, 1—(Chlormethyl)—2—chlorethylthio, 1—(Brommethyl)—2—bromethylthio, 4—Fluorbutylthio, 4—Chlorbutylthio, 4—Brombutylthio oder Nonafluorbutylthio;

- C₁-C₆-Halogenalkylthio: C₁-C₄-Halogenalkylthio, wie vorstehend genannt, sowie 5-Fluorpentylthio, 5-Chlorpentylthio, 5-Brompentylthio, 5-Iodpentylthio, Undecafluorpentylthio, 6-Fluorhexylthio, 6-Chlorhexylthio, 6-Bromhexylthio, 6-Iodhexylthio oder Dodecafluorhexylthio;
- C₁-C₄-Alkylsulfinyl (C₁-C₄-Alkyl-S(=0)-): z.B. Methylsulfinyl, Ethylsulfinyl, Propylsulfinyl, 1-Methylethylsulfinyl,
 Butylsulfinyl, 1-Methylpropylsulfinyl, 2-Methylpropylsulfinyl oder 1,1-Dimethylethylsulfinyl;
- $C_1-C_6-Alkylsulfinyl: C_1-C_4-Alkylsulfinyl,$ wie vorstehend genannt, sowie Pentylsulfinyl, 1-Methylbutylsulfinyl, 2-Methylbutylsulfinyl, 3-Methylbutylsulfinyl, 20 2,2-Dimethylpropylsulfinyl, 1-Ethylpropylsulfinyl, 1,1-Dimethylpropylsulfinyl, 1,2-Dimethylpropylsulfinyl, Hexylsulfinyl, 1-Methylpentylsulfinyl, 2-Methylpentylsulfinyl, 3-Methylpentylsulfinyl, 4-Methylpentylsulfinyl, 1,1-Dimethylbutylsulfinyl, 25 1,2-Dimethylbutylsulfinyl, 1,3-Dimethylbutylsulfinyl, 2,2-Dimethylbutylsulfinyl, 2,3-Dimethylbutylsulfinyl, 3,3-Dimethylbutylsulfinyl, 1-Ethylbutylsulfinyl, 2-Ethylbutylsulfinyl, 1,1,2-Trimethylpropylsulfinyl, 1,2,2—Trimethylpropylsulfinyl, 1—Ethyl-1-methylpropylsulfinyl 30 oder 1-Ethyl-2-methylpropylsulfinyl;
- C_1 — C_4 —Halogenalkylsulfinyl: C_1 — C_4 —Alkylsulfinylrest, wie voranstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. 35 Fluormethylsulfinyl, Difluormethylsulfinyl, Trifluormethylsulfinyl, Chlordifluormethylsulfinyl, Bromdifluormethylsulfinyl, 2-Fluorethylsulfinyl, 2-Chlorethylsulfinyl, 2-Bromethylsulfinyl, 2-Iodethylsulfinyl, 2,2-Difluorethylsulfinyl, 40 2,2,2-Trifluorethylsulfinyl, 2,2,2-Trichlorethylsulfinyl, 2-Chlor-2-fluorethylsulfinyl, 2-Chlor-2,2-difluorethylsulfinyl, 2,2-Dichlor-2-fluorethylsulfinyl, Pentafluorethylsulfinyl, 2-Fluorpropylsulfinyl, 3-Fluorpropylsulfinyl, 45 2-Chlorpropylsulfinyl, 3-Chlorpropylsulfinyl, 2-Brompropylsulfinyl, 3-Brompropylsulfinyl,

13

2,2-Difluorpropylsulfinyl, 2,3-Difluorpropylsulfinyl,
2,3-Dichlorpropylsulfinyl, 3,3,3-Trifluorpropylsulfinyl,
3,3,3-Trichlorpropylsulfinyl,
2,2,3,3,3-Pentafluorpropylsulfinyl, Heptafluorpropylsulfinyl,
1-(Fluormethyl)-2-fluorethylsulfinyl,
1-(Chlormethyl)-2-chlorethylsulfinyl,
1-(Brommethyl)-2-bromethylsulfinyl, 4-Fluorbutylsulfinyl,
4-Chlorbutylsulfinyl, 4-Brombutylsulfinyl oder
Nonafluorbutylsulfinyl;

10

- C₁-C₆-Halogenalkylsulfinyl: C₁-C₄-Halogenalkylsulfinyl, wie vorstehend genannt, sowie 5-Fluorpentylsulfinyl, 5-Chlorpentylsulfinyl, 5-Brompentylsulfinyl, 5-Iodpentylsulfinyl, Undecafluorpentylsulfinyl, 6-Fluorhexylsulfinyl, 6-Chlorhexylsulfinyl,
- 6-Fluorhexylsulfinyl, 6-Chlorhexylsulfinyl, 6-Bromhexylsulfinyl, 6-Iodhexylsulfinyl oder Dodecafluorhexylsulfinyl;
- C₁-C₄-Alkylsulfonyl (C₁-C₄-Alkyl-S(=0)₂-) z.B. Methylsulfonyl, Ethylsulfonyl, Propylsulfonyl, 1-Methylethylsulfonyl, Butylsulfonyl, 1-Methylpropylsulfonyl, 2-Methylpropylsulfonyl oder 1,1-Dimethylethylsulfonyl;
- C₁-C₆-Alkylsulfonyl: C₁-C₄-Alkylsulfonyl, wie vorstehend genannt, sowie Pentylsulfonyl, 1-Methylbutylsulfonyl, 2-Methylbutylsulfonyl, 3-Methylbutylsulfonyl, 1,1-Dimethylpropylsulfonyl, 1,2-Dimethylpropylsulfonyl, 2,2-Dimethylpropylsulfonyl, 1-Ethylpropylsulfonyl, Hexylsulfonyl, 1-Methylpentylsulfonyl,
- 2-Methylpentylsulfonyl, 3-Methylpentylsulfonyl, 4-Methylpentylsulfonyl, 1,1-Dimethylbutylsulfonyl, 1,2-Dimethylbutylsulfonyl, 1,3-Dimethylbutylsulfonyl, 2,2-Dimethylbutylsulfonyl, 2,3-Dimethylbutylsulfonyl, 3,3-Dimethylbutylsulfonyl, 1-Ethylbutylsulfonyl,
- 2-Ethylbutylsulfonyl, 1,1,2-Trimethylpropylsulfonyl, 1,2,2-Trimethylpropylsulfonyl, 1-Ethyl-1-methylpropylsulfonyl oder 1-Ethyl-2-methylpropylsulfonyl;
- C₁-C₄-Halogenalkylsulfonyl einen C₁-C₄-Alkylsulfonylrest, wie voranstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. Fluormethylsulfonyl, Difluormethylsulfonyl, Trifluormethylsulfonyl, Chlordifluormethylsulfonyl, Bromdifluormethylsulfonyl, 2-Fluorethylsulfonyl, 2-Chlorethylsulfonyl, 2-Bromethylsulfonyl, 2-Iodethylsulfonyl, 2,2-Difluorethylsulfonyl, 2,2,2-Trifluorethylsulfonyl, 2-Chlor-2-fluorethylsulfonyl,

```
2-Chlor-2,2-difluorethylsulfonyl,
       2,2-Dichlor-2-fluorethylsulfonyl,
       2,2,2-Trichlor thylsulfonyl, Pentafluorethylsulfonyl,
       2-Fluorpropylsulfonyl, 3-Fluorpropylsulfonyl,
       2-Chlorpropylsulfonyl, 3-Chlorpropylsulfonyl,
5
       2-Brompropylsulfonyl, 3-Brompropylsulfonyl,
       2,2-Difluorpropylsulfonyl, 2,3-Difluorpropylsulfonyl,
       2,3-Dichlorpropylsulfonyl, 3,3,3-Trifluorpropylsulfonyl,
       3,3,3-Trichlorpropylsulfonyl,
       2,2,3,3,3-Pentafluorpropylsulfonyl, Heptafluorpropylsulfonyl,
10
       1-(Fluormethyl)-2-fluorethylsulfonyl,
       1-(Chlormethyl)-2-chlorethylsulfonyl,
       1-(Brommethyl)-2-bromethylsulfonyl, 4-Fluorbutylsulfonyl,
       4-Chlorbutylsulfonyl, 4-Brombutylsulfonyl oder
       Nonafluorbutylsulfonyl;
15
       C_1-C_6-Halogenalkysulfonyl: C_1-C_4-Halogenalkylsulfonyl, wie
       vorstehend genannt, sowie 5-Fluorpentylsulfonyl,
       5-Chlorpentylsulfonyl, 5-Brompentylsulfonyl,
       5-Iodpentylsulfonyl, 6-Fluorhexylsulfonyl,
20
       6-Bromhexylsulfonyl, 6-Iodhexylsulfonyl oder
       Dodecafluorhexylsulfonyl;
       C1-C6-Alkylamino: Methylamino, Ethylamino, Propylamino,
        1-Methylethylamino, Butylamino, 1-Methylpropylamino,
25
        2-Methylpropylamino, 1,1-Dimethylethylamino, Pentylamino,
        1-Methylbutylamino, 2-Methylbutylamino, 3-Methylbutylamino,
        2,2-Dimethylpropylamino, 1-Ethylpropylamino, Hexylamino,
        1,1-Dimethylpropylamino, 1,2-Dimethylpropylamino,
        1-Methylpentylamino, 2-Methylpentylamino,
30
        3-Methylpentylamino, 4-Methylpentylamino,
        1,1-Dimethylbutylamino, 1,2-Dimethylbutylamino,
        1,3-Dimethylbutylamino, 2,2-Dimethylbutylamino,
        2,3-Dimethylbutylamino, 3,3-Dimethylbutylamino,
        1-Ethylbutylamino, 2-Ethylbutylamino,
35
        1,1,2-Trimethylpropylamino, 1,2,2-Trimethylpropylamino,
        1-Ethyl-1-methylpropylamino oder 1-Ethyl-2-methylpropylamino;
        Di-(C<sub>1</sub>-C<sub>4</sub>-alkyl)amino, also z.B. N,N-Dimethylamino,
        N, N-Di-ethylamino, N, N-Dipropylamino,
 40
        N, N-Di-(1-methylethyl)amino, N, N-Dibutylamino,
        N, N-Di-(1-methylpropyl)amino, N, N-Di-(2-methylpropyl)amino,
        N, N-Di-(1,1-dimethylethyl)amino, N-Ethyl-N-methylamino,
        N-Methyl-N-propylamino, N-Methyl-N-(1-methylethyl)amino,
        N-Butyl-N-methylamino, N-Methyl-N-(1-methylpropyl)amino,
 45
        N-Methyl-N-(2-methylpropyl)amino,
        N-(1,1-Di-methylethyl)-N-methylamino, N-Ethyl-N-propylamino,
```

```
N-Ethyl-N-(1-methylethyl)amino, N-Butyl-N-ethylamino,
       N-Ethyl-N-(1-methylpropyl)amino,
       N-Ethyl-N-(2-methylpropyl)amino,
       N-Ethyl-N-(1,1-dimethylethyl)amino,
       N-(1-Methylethyl)-N-propylamino, N-Butyl-N-propylamino,
5
       N-(1-Methylpropyl)-N-propylamino,
       N-(2-Methylpropyl)-N-propylamino,
       N-(1,1-Dimethylethyl)-N-propylamino,
       N-Butyl-N-(1-methylethyl)amino,
       N-(1-Methylethyl)-N-(1-methylpropyl)amino,
10
       N-(1-Methylethyl)-N-(2-methylpropyl)amino,
       N-(1,1-Dimethylethyl)-N-(1-methylethyl)amino,
       N-Butyl-N-(1-methylpropyl)-amino,
       N-Butyl-N-(2-methylpropyl)amino,
       N-Butyl-N-(1,1-dimethylethyl)amino,
15
       N-(1-Methylpropyl)-N-(2-methylpropyl)-amino,
       N-(1,1-Dimethylethyl)-N-(1-methylpropyl)-amino oder
       N-(1,1-Dimethylethyl)-N-(2-methylpropyl)amino;
       Di-(C_1-C_6-alkyl) amino: Di-(C_1-C_4-alkyl) amino wie voranstehend
20 -
       genannt, sowie N,N-Dipentylamino, N,N-Dihexylamino,
       N-Methyl-N-pentylamino, N-Ethyl-N-pentylamino,
       N-Methyl-N-hexylamino oder N-Ethyl-N-hexylamino;
       C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyl: z.B. Methylcarbonyl, Ethylcarbonyl,
25 —
       Propylcarbonyl, 1-Methylethylcarbonyl, Butylcarbonyl,
        1-Methylpropylcarbonyl, 2-Methylpropylcarbonyl oder
        1,1-Dimethylethylcarbonyl;
       C_1-C_6-Alkylcarbonyl, sowie die Alkylcarbonylreste von
30 -
        C_1-C_6-Alkylcarbonyl-C_1-C_6-alkyl, C_1-C_6-Alkylcarbonylamino:
        C_1-C_4-Alkylcarbonyl, wie voranstehend genannt, sowie z.B.
        Pentylcarbonyl, 1-Methylbutylcarbonyl, 2-Methylbutylcarbonyl,
        3-Methylbutylcarbonyl, 2,2-Dimethylpropylcarbonyl,
        1-Ethylpropylcarbonyl, Hexylcarbonyl,
35
        1,1-Dimethylpropylcarbonyl, 1,2-Dimethylpropylcarbonyl,
        1-Methylpentylcarbonyl, 2-Methylpentylcarbonyl,
        3-Methylpentylcarbonyl, 4-Methylpentylcarbonyl,
        1,1-Dimethylbutylcarbonyl, 1,2-Dimethylbutylcarbonyl,
        1,3-Dimethylbutylcarbonyl, 2,2,-Dimethylbutylcarbonyl,
 40
        2,3-Dimethylbutylcarbonyl, 3,3-Dimethylbutylcarbonyl,
        1-Ethylbutylcarbonyl, 2-Ethylbutylcarbonyl,
        1,1,2-Trimethylpropylcarbonyl, 1,2,2-Trimethylpropylcarbonyl,
        1-Ethyl-1-methylpropylcarbonyl oder
        1-Ethyl-2-methylpropylcarbonyl;
 45
```

- C₁—C₄—Halogenalkylcarbonyl: einen C₁—C₄—Alkylcarbonylrest, wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. Chloracetyl, Dichloracetyl, Trichloracetyl, Fluoracetyl,
- Difluoracetyl, Trifluoracetyl, Chlorfluoracetyl,
 Dichlor-fluoracetyl, Chlordifluoracetyl,
 2-Fluorethylcarbonyl, 2-Chlorethylcarbonyl,
 2-Bromethylcarbonyl, 2-Iodethylcarbonyl,
 - 2,2-Difluorethylcarbonyl, 2,2,2-Trifluorethylcarbonyl,
- 2-Chlor-2-fluorethylcarbonyl,
 2-Chlor-2,2-difluorethylcarbonyl,
 2,2-Dichlor-2-fluorethylcarbonyl,
 - 2,2,2—Trichlorethylcarbonyl, Pentafluorethylcarbonyl,
 - 2-Fluorpropylcarbonyl, 3-Fluorpropylcarbonyl,
- 2,2-Difluorpropylcarbonyl, 2,3-Di-fluorpropylcarbonyl,
 - 2-Chlorpropylcarbonyl, 3-Chlorpropylcarbonyl,
 - 2,3-Dichlorpropylcarbonyl, 2-Brompropylcarbonyl,
 - 3-Brompropylcarbonyl, 3,3,3-Trifluorpropylcarbonyl,
 - 3,3,3-Trichlorpropylcarbonyl,
- 20 2,2,3,3,3—Pentafluorpropylcarbonyl, Heptafluorpropylcarbonyl,
 - 1-(Fluormethyl)-2-fluorethylcarbonyl,
 - 1-(Chlormethyl)-2-chlorethylcarbonyl,
 - 1-(Brommethyl)-2-bromethylcarbonyl, 4-Fluorbutylcarbonyl,
 - 4-Chlorbutylcarbonyl, 4-Brombutylcarbonyl oder
- 25 Nonafluorbutylcarbonyl;
 - C₁-C₆-Halogenalkylcarbonyl: einen C₁-C₄-Halogenalkylcarbonylrest wie voranstehend genannt, sowie 5-Fluorpentylcarbonyl, 5-Chlorpentylcarbonyl,
- 5-Brompentylcarbonyl, Perfluorpentylcarbonyl,
 6-Fluorhexylcarbonyl, 6-Chlorhexylcarbonyl,
 6-Bromhexylcarbonyl oder Perfluorhexylcarbonyl;
- C₁-C₄-Alkoxycarbonyl also z.B. Methoxycarbonyl,
 Ethoxycarbonyl, Propoxycarbonyl, 1-Methylethoxycarbonyl,
 Butoxycarbonyl, 1-Methylpropoxycarbonyl,
 2-Methylpropoxycarbonyl oder 1,1-Dimethylethoxycarbonyl;
- C₁-C₆-Alkoxycarbonyl: C₁-C₄-Alkoxycarbonyl, wie vorstehend genannt, sowie z.B. Pentoxycarbonyl, 1-Methylbutoxycarbonyl, 2-Methylbutoxycarbonyl, 3-Methylbutoxycarbonyl, 2,2-Dimethylpropoxycarbonyl, 1-Ethylpropoxycarbonyl, Hexoxycarbonyl, 1,1-Dimethylpropoxycarbonyl, 1,2-Dimethylpropoxycarbonyl, 1-Methylpentoxycarbonyl, 2-Methylpentoxycarbonyl, 3-Methylpentoxycarbonyl,
- 2-Methylpentoxycarbonyl, 3-Methylpentoxycarbonyl, 4-Methylpentoxycarbonyl, 1,1-Dimethylbutoxycarbonyl, 1,2-Dimethylbutoxycarbonyl, 1,3-Dimethylbutoxycarbonyl,

17

2,2-Dimethylbutoxycarbonyl, 2,3-Dimethylbutoxycarbonyl,
3,3-Dimethylbutoxycarbonyl, 1-Ethylbutoxycarbonyl,
2-Ethylbutoxycarbonyl, 1,1,2-Trimethylpropoxycarbonyl,
1,2,2-Trimethylpropoxycarbonyl,
1-Ethyl-1-methyl-propoxycarbonyl oder
1-Ethyl-2-methyl-propoxycarbonyl;

- C₁-C₄-Halogenalkoxycarbonyl: einen C₁-C₄-Alkoxycarbonylrest, wie voranstehend genannt, der partiell oder vollständig durch
 Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. Fluormethoxycarbonyl, Difluormethoxycarbonyl, Trifluormethoxycarbonyl, Chlordifluormethoxycarbonyl, Bromdifluormethoxycarbonyl, 2-Fluorethoxycarbonyl, 2-Chlorethoxycarbonyl, 2-Bromethoxycarbonyl,
 2-Iodethoxycarbonyl, 2,2-Difluorethoxycarbonyl,
- 2,2,2-Trifluorethoxycarbonyl, 2-Chlor-2-fluorethoxycarbonyl,
 2-Chlor-2,2-difluorethoxycarbonyl,
 2,2-Dichlor-2-fluorethoxycarbonyl,
 2,2,2-Trichlorethoxycarbonyl, Pentafluorethoxycarbonyl,
- 20 2—Fluorpropoxycarbonyl, 3—Fluorpropoxycarbonyl,
 2—Chlorpropoxycarbonyl, 3—Chlorpropoxycarbonyl,
 2—Brompropoxycarbonyl, 3—Brompropoxycarbonyl,
 2,2—Difluorpropoxycarbonyl, 2,3—Difluorpropoxycarbonyl,
 2,3—Dichlorpropoxycarbonyl, 3,3,3—Trifluorpropoxycarbonyl,
- 3,3,3—Trichlorpropoxycarbonyl,
 2,2,3,3,3—Pentafluorpropoxycarbonyl,
 Heptafluorpropoxycarbonyl,
 1-(Fluormethyl)-2-fluorethoxycarbonyl,
 1-(Chlormethyl)-2-chlorethoxycarbonyl,
- 1-(Brommethyl)-2-bromethoxycarbonyl, 4-Fluorbutoxycarbonyl,
 4-Chlorbutoxycarbonyl, 4-Brombutoxycarbonyl oder
 4-Iodbutoxycarbonyl;
- C₁-C₆-Halogenoxycarbonyl: einen C₁-C₄-Halogenoxycarbonylrest wie voranstehend genannt, sowie 5-Fluorpentoxycarbonyl, 5-Chlorpentoxycarbonyl, 5-Brompentoxycarbonyl, 6-Fluorhexoxycarbonyl, 6-Chlorhexoxycarbonyl oder 6-Bromhexoxycarbonyl;
- 40 (C₁-C₄-Alkyl)carbonyloxy: Acetyloxy, Ethylcarbonyloxy, Propylcarbonyloxy, 1-Methylethylcarbonyloxy, Butylcarbonyloxy, 1-Methylpropylcarbonyloxy, 2-Methylpropylcarbonyloxy oder 1,1-Dimethylethylcarbonyloxy;
- 45 (C₁-C₄-Alkylamino)carbonyl: z.B. Methylaminocarbonyl, Ethylaminocarbonyl, Propylaminocarbonyl, l-Methyl thylaminocarbonyl, Butylaminocarbonyl,

```
1-Methylpropylaminocarbonyl, 2-Methylpropylaminocarbonyl oder
       1,1-Dimethylethylaminocarbonyl;
       (C_1-C_6-Alkylamino) carbonyl: (C_1-C_4-Alkylamino) carbonyl, wie
       vorstehend genannt, sowie z.B. Pentylaminocarbonyl,
5
       1-Methylbutylaminocarbonyl, 2-Methylbutylaminocarbonyl,
       3-Methylbutylaminocarbonyl, 2,2-Dimethylpropylaminocarbonyl,
       1-Ethylpropylaminocarbonyl, Hexylaminocarbonyl,
       1,1-Dimethylpropylaminocarbonyl,
       1,2-Dimethylpropylaminocarbonyl, 1-Methylpentylaminocarbonyl,
10
       2-Methylpentylaminocarbonyl, 3-Methylpentylaminocarbonyl,
       4-Methylpentylaminocarbonyl, 1,1-Dimethylbutylaminocarbonyl,
        1,2-Dimethylbutylaminocarbonyl,
        1,3-Dimethylbutylaminocarbonyl,
        2,2-Dimethylbutylaminocarbonyl,
15
        2,3-Dimethylbutylaminocarbonyl,
        3,3-Dimethylbutylaminocarbonyl, 1-Ethylbutylaminocarbonyl,
        2-Ethylbutylaminocarbonyl,
        1,1,2-Trimethylpropylaminocarbonyl,
        1,2,2-Trimethylpropylaminocarbonyl,
20
        1-Ethyl-1-methylpropylaminocarbonyl oder
        1-Ethyl-2-methylpropylaminocarbonyl;
        Di-(C<sub>1</sub>-C<sub>4</sub>-alkyl)—aminocarbonyl: z.B.
        N, N-Dimethylaminocarbonyl, N, N-Diethylaminocarbonyl,
25
        N, N-Di-(1-methylethyl)aminocarbonyl,
        N, N-Dipropylaminocarbonyl, N, N-Dibutylaminocarbonyl,
        N, N-Di-(1-methylpropyl)-aminocarbonyl,
        N, N-Di-(2-methylpropyl)-aminocarbonyl,
        N, N-Di-(1,1-dimethylethyl)-aminocarbonyl,
30
        N-Ethyl-N-methylaminocarbonyl,
        N-Methyl-N-propylaminocarbonyl,
        N-Methyl-N-(1-methylethyl)-aminocarbonyl,
        N-Butyl-N-methylaminocarbonyl,
        N-Methyl-N-(1-methylpropyl)—aminocarbonyl,
35
        N-Methyl-N-(2-methylpropyl)—aminocarbonyl,
        N-(1,1-Dimethylethyl)-N-methylaminocarbonyl,
        N-Ethyl-N-propylaminocarbonyl,
        N-Ethyl-N-(1-methylethyl)-aminocarbonyl,
        N-Butyl-N-ethylaminocarbonyl,
 40
        N-Ethyl-N-(1-methylpropyl)-aminocarbonyl,
         N-Ethyl-N-(2-methylpropyl)-aminocarbonyl,
         N-Ethyl-N-(1,1-dimethylethyl)-aminocarbonyl,
         N-(1-Methylethyl)-N-propylaminocarbonyl,
         N-Butyl-N-propylaminocarbonyl,
 45
         N-(1-Methylpropyl)-N-propylaminocarbonyl,
         N-(2-Methylpropyl)-N-propylaminocarbonyl,
```

```
N-(1,1-Dimethylethyl)-N-propylaminocarbonyl,
       N-Butyl-N-(1-methylethyl)-aminocarbonyl,
       N-(1-Methylethyl)-N-(1-methylpropyl)-aminocarbonyl,
       N-(1-Methylethyl)-N-(2-methylpropyl)-aminocarbonyl,
       N-(1,1-Dimethylethyl)-N-(1-methylethyl)-aminocarbonyl,
5
       N-Butyl-N-(1-methylpropyl)-aminocarbonyl,
       N-Butyl-N-(2-methylpropyl)-aminocarbonyl,
       N-Butyl-N-(1,1-dimethylethyl)-aminocarbonyl,
       N-(1-Methylpropyl)-N-(2-methylpropyl)-aminocarbonyl,
       N-(1,1-Dimethylethyl)-N-(1-methylpropyl)-aminocarbonyl oder
10
       N-(1,1-Dimethylethyl)-N-(2-methylpropyl)-aminocarbonyl;
       Di-(C_1-C_6-alkyl)-aminocarbonyl:
       Di-(C_1-C_4-alkyl)-aminocarbonyl, wie voranstehend genannt,
       sowie z.B. N-Methyl-N-pentylaminocarbonyl,
15
       N-Methyl-N-(1-methylbutyl)-aminocarbonyl,
       N-Methyl-N-(2-methylbutyl)-aminocarbonyl,
       N-Methyl-N-(3-methylbutyl)-aminocarbonyl,
        N-Methyl-N-(2,2-dimethylpropyl)-aminocarbonyl,
        N-Methyl-N-(1-ethylpropyl)-aminocarbonyl,
20
        N-Methyl-N-hexylaminocarbonyl,
        N-Methyl-N-(1,1-dimethylpropyl)-aminocarbonyl,
        N-Methyl-N-(1,2-dimethylpropyl)-aminocarbonyl,
        N-Methyl-N-(1-methylpentyl)-aminocarbonyl,
        N-Methyl-N-(2-methylpentyl)-aminocarbonyl,
25
        N-Methyl-N-(3-methylpentyl)-aminocarbonyl,
        N-Methyl-N-(4-methylpentyl)-aminocarbonyl,
        N-Methyl-N-(1,1-dimethylbutyl)-aminocarbonyl,
        N-Methyl-N-(1,2-dimethylbutyl)-aminocarbonyl,
        N-Methyl-N-(1,3-dimethylbutyl)-aminocarbonyl,
30
        N-Methyl-N-(2,2-dimethylbutyl)-aminocarbonyl,
        N-Methyl-N-(2,3-dimethylbutyl)-aminocarbonyl,
        N-Methyl-N-(3,3-dimethylbutyl)-aminocarbonyl,
        N-Methyl-N-(1-ethylbutyl)-aminocarbonyl,
        N-Methyl-N-(2-ethylbutyl)-aminocarbonyl,
 35
        N-Methyl-N-(1,1,2-trimethylpropyl)-aminocarbonyl,
        N-Methyl-N-(1,2,2-trimethylpropyl)-aminocarbonyl,
        N-Methyl-N-(1-ethyl-1-methylpropyl)-aminocarbonyl,
        N-Methyl-N-(1-ethyl-2-methylpropyl)-aminocarbonyl,
        N-Ethyl-N-pentylaminocarbonyl,
 40
        N-Ethyl-N-(1-methylbutyl)-aminocarbonyl,
        N-Ethyl-N-(2-methylbutyl)-aminocarbonyl,
        N-Ethyl-N-(3-methylbutyl)-aminocarbonyl,
        N-Ethyl-N-(2,2-dimethylpropyl)-aminocarbonyl,
         N-Ethyl-N-(1-ethylpropyl)-aminocarbonyl,
 45
         N-Ethyl-N-hexylaminocarbonyl,
         N-Ethyl-N-(1,1-dimethylpropyl)-aminocarbonyl,
```

```
N-Ethyl-N-(1,2-dimethylpropyl)-aminocarbonyl,
       N-Ethyl-N-(1-methylpentyl)-aminocarbonyl,
       N-Ethyl-N-(2-methylpentyl)-aminocarbonyl,
       N-Ethyl-N-(3-m thylpentyl)-aminocarbonyl,
       N-Ethyl-N-(4-methylpentyl)-aminocarbonyl,
5
       N-Ethyl-N-(1,1-dimethylbutyl)-aminocarbonyl,
       N-Ethyl-N-(1,2-dimethylbutyl)-aminocarbonyl,
       N-Ethyl-N-(1,3-dimethylbutyl)-aminocarbonyl,
       N-Ethyl-N-(2,2-dimethylbutyl)-aminocarbonyl,
       N-Ethyl-N-(2,3-dimethylbutyl)-aminocarbonyl,
10
       N-Ethyl-N-(3,3-dimethylbutyl)-aminocarbonyl,
       N-Ethyl-N-(1-ethylbutyl)-aminocarbonyl,
       N-Ethyl-N-(2-ethylbutyl)-aminocarbonyl,
       N-Ethyl-N-(1,1,2-trimethylpropyl)-aminocarbonyl,
       N-Ethyl-N-(1,2,2-trimethylpropyl)-aminocarbonyl,
15
       N-Ethyl-N-(1-ethyl-1-methylpropyl)-aminocarbonyl,
       N-Ethyl-N-(1-ethyl-2-methylpropyl)-aminocarbonyl,
       N-Propyl-N-pentylaminocarbonyl,
       N-Butyl-N-pentylaminocarbonyl, N,N-Dipentylaminocarbonyl,
       N-Propyl-N-hexylaminocarbonyl, N-Butyl-N-hexylaminocarbonyl,
20
       N-Pentyl-N-hexylaminocarbonyl oder N,N-Dihexylaminocarbonyl;
        Di-(C<sub>1</sub>-C<sub>6</sub>-alkyl)-aminothiocarbonyl: z.B.
        N, N-Dimethylaminothiocarbonyl, N, N-Diethylaminothiocarbonyl,
        N, N-Di-(1-methylethyl)aminothiocarbonyl,
25
        N, N-Dipropylaminothiocarbonyl, N, N-Dibutylaminothiocarbonyl,
        N, N-Di-(1-methylpropyl)-aminothiocarbonyl,
        N, N-Di-(2-methylpropyl)-aminothiocarbonyl,
        N, N-Di-(1, 1-dimethylethyl)-aminothiocarbonyl,
        N-Ethyl-N-methylaminothiocarbonyl,
30
        N-Methyl-N-propylaminothiocarbonyl,
        N-Methyl-N-(1-methylethyl)-aminothiocarbonyl,
        N-Butyl-N-methylaminothiocarbonyl,
        N-Methyl-N-(1-methylpropyl)-aminothiocarbonyl,
        N-Methyl-N-(2-methylpropyl)-aminothiocarbonyl,
35
        N-(1,1-Dimethylethyl)-N-methylaminothiocarbonyl,
        N-Ethyl-N-propylaminothiocarbonyl,
        N-Ethyl-N-(1-methylethyl)-aminothiocarbonyl,
        N-Butyl-N-ethylaminothiocarbonyl,
        N-Ethyl-N-(1-methylpropyl)-aminothiocarbonyl,
40
        N-Ethyl-N-(2-methylpropyl)-aminothiocarbonyl,
        N-Ethyl-N-(1,1-dimethylethyl)-aminothiocarbonyl,
        N-(1-Methylethyl)-N-propylaminothiocarbonyl,
        N-Butyl-N-propylaminothiocarbonyl,
        N-(1-Methylpropyl)-N-propylaminothiocarbonyl,
 45
        N-(2-Methylpropyl)-N-propylaminothiocarbonyl,
        N-(1,1-Dimethylethyl)-N-propylaminothiocarbonyl,
```

```
N-Butyl-N-(1-methylethyl)-aminothiocarbonyl,
       N-(1-Methylethyl)-N-(1-methylpropyl)—aminothiocarbonyl,
      N-(1-Methylethyl)-N-(2-methylpropyl)-aminothiocarbonyl,
      N-(1,1-Dimethylethyl)-N-(1-methylethyl)-aminothiocarbonyl,
       N-Butyl-N-(1-methylpropyl)-aminothiocarbonyl,
5
       N-Butyl-N-(2-methylpropyl)-aminothiocarbonyl,
       N-Butyl-N-(1,1-dimethylethyl)-aminothiocarbonyl,
       N-(1-Methylpropyl)-N-(2-methylpropyl)-aminothiocarbonyl,
       N-(1,1-Dimethylethyl)-N-(1-methylpropyl)-aminothiocarbonyl,
       N-(1,1-Dimethylethyl)-N-(2-methylpropyl)-aminothiocarbonyl,
10
       N-Methyl-N-pentylaminothiocarbonyl,
       N-Methyl-N-(1-methylbutyl)-aminothiocarbonyl,
       N-Methyl-N-(2-methylbutyl)-aminothiocarbonyl,
       N-Methyl-N-(3-methylbutyl)-aminothiocarbonyl,
       N-Methyl-N-(2,2-dimethylpropyl)-aminothiocarbonyl,
15
       N-Methyl-N-(1-ethylpropyl)-aminothiocarbonyl,
       N-Methyl-N-hexylaminothiocarbonyl,
       N-Methyl-N-(1,1-dimethylpropyl)-aminothiocarbonyl,
       N-Methyl-N-(1,2-dimethylpropyl)-aminothiocarbonyl,
       N-Methyl-N-(1-methylpentyl)-aminothiocarbonyl,
20
       N-Methyl-N-(2-methylpentyl)-aminothiocarbonyl,
       N-Methyl-N-(3-methylpentyl)-aminothiocarbonyl,
       N-Methyl-N-(4-methylpentyl)-aminothiocarbonyl,
       N-Methyl-N-(1,1-dimethylbutyl)-aminothiocarbonyl,
       N-Methyl-N-(1,2-dimethylbutyl)-aminothiocarbonyl,
25
       N-Methyl-N-(1,3-dimethylbutyl)-aminothiocarbonyl,
       N-Methyl-N-(2,2-dimethylbutyl)-aminothiocarbonyl,
       N-Methyl-N-(2,3-dimethylbutyl)-aminothiocarbonyl,
       N-Methyl-N-(3,3-dimethylbutyl)-aminothiocarbonyl,
       N-Methyl-N-(1-ethylbutyl)-aminothiocarbonyl,
30
       N-Methyl-N-(2-ethylbutyl)-aminothiocarbonyl,
       N-Methyl-N-ethyl-N-(1,1,2-trimethylpropyl)-aminothiocarbonyl,
       N-Methyl-N-(1,2,2-trimethylpropyl)-aminothiocarbonyl,
       N-Methyl-N-(1-ethyl-1-methylpropyl)-aminothiocarbonyl,
       N-Methyl-N-(1-ethyl-2-methylpropyl)-aminothiocarbonyl,
35
       N-Ethyl-N-pentylaminothiocarbonyl,
       N-Ethyl-N-(1-methylbutyl)-aminothiocarbonyl,
       N-Ethyl-N-(2-methylbutyl)-aminothiocarbonyl,
        N-Ethyl-N-(3-methylbutyl)-aminothiocarbonyl,
       N-Ethyl-N-(2,2-dimethylpropyl)-aminothiocarbonyl,
40
        N-Ethyl-N-(1-ethylpropyl)-aminothiocarbonyl,
        N-Ethyl-N-hexylaminothiocarbonyl,
        N-Ethyl-N-(1,1-dimethylpropyl)-aminothiocarbonyl,
        N-Ethyl-N-(1,2-dimethylpropyl)-aminothiocarbonyl,
        N-Ethyl-N-(1-methylpentyl)-aminothiocarbonyl,
 45
        N-Ethyl-N-(2-methylpentyl)-aminothiocarbonyl,
        N-Ethyl-N-(3-methylpentyl)-aminothiocarbonyl,
```

WO 00/68228

22

PCT/EP00/04040

```
N-Ethyl-N-(4-methylpentyl)-aminothiocarbonyl,
       N-Ethyl-N-(1,1-dimethylbutyl)-aminothiocarbonyl,
       N-Ethyl-N-(1,2-dimethylbutyl)-aminothiocarbonyl,
       N-Ethyl-N-(1,3-dimethylbutyl)-aminothiocarbonyl,
       N-Ethyl-N-(2,2-dimethylbutyl)-aminothiocarbonyl,
5
       N-Ethyl-N-(2,3-dimethylbutyl)-aminothiocarbonyl,
       N-Ethyl-N-(3,3-dimethylbutyl)-aminothiocarbonyl,
       N-Ethyl-N-(1-ethylbutyl)-aminothiocarbonyl,
       N-Ethyl-N-(2-ethylbutyl)-aminothiocarbonyl,
       N-Ethyl-N-(1,1,2-trimethylpropyl)-aminothiocarbonyl,
10
       N-Ethyl-N-(1,2,2-trimethylpropyl)-aminothiocarbonyl,
       N-Ethyl-N-(1-ethyl-1-methylpropyl)-aminothiocarbonyl,
       N-Ethyl-N-(1-ethyl-2-methylpropyl)-aminothiocarbonyl,
       N-Propyl-N-pentylaminothiocarbonyl,
       N-Butyl-N-pentylaminothiocarbonyl,
15
       N, N-Dipentylaminothiocarbonyl,
       N-Propyl-N-hexylaminothiocarbonyl,
       N-Butyl-N-hexylaminothiocarbonyl,
       N-Pentyl-N-hexylaminothiocarbonyl oder
20
       N, N-Dihexylaminothiocarbonyl;
       C1-C6-Hydroxyalkyl: durch ein bis drei OH-Gruppen substituier-
       tes C1-C6-Alkyl, z.B Hydroxymethyl, 1-Hydroxyethyl, 2-Hydro-
       xyethyl, 1,2-Bishydroxyethyl, 1-Hydroxypropyl, 2-Hydroxypro-
       pyl, 3-Hydroxypropyl, 4-Hydroxybutyl, 2,2-Dimethyl-3-hydroxy-
25
       propyl;
       Phenyl-C<sub>1</sub>-C<sub>6</sub>-alkyl: durch einen Phenylrest substituiertes
        C_1-C_6-Alkyl, z.B. Benzyl, 1-Phenylethyl und 2-Phenylethyl,
        wobei der Phenylrest in der angegebenen Weise teilweise oder
30
        vollständig halogeniert sein kann oder einen bis drei der für
        Phenyl oben angegebenen Substituenten aufweisen kann;
        Heterocyclyl-C_1-C_6-alkyl steht dementsprechend für ein durch
        einen Heterocyclylrest substituiertes C1-C6-Alkyl;
35
        C_1-C_6-Alkoxy-C_1-C_6-alkyl: durch C_1-C_6-Alkoxy, wie vorstehend
        genannt, substituiertes C1-C6-Alkyl, also z.B. Methoxymethyl,
        Ethoxymethyl, Propoxymethyl, (1-Methylethoxy) methyl,
        Butoxymethyl, (1-Methylpropoxy)methyl,
        (2-Methylpropoxy)-methyl, (1,1-Dimethylethoxy)methyl,
40
        2-(Methoxy)ethyl, 2-(Ethoxy)ethyl, 2-(Propoxy)ethyl,
        2-(1-Methylethoxy)ethyl, 2-(Butoxy)ethyl,
        2-(1-Methylpropoxy)ethyl, 2-(2-Methylpropoxy)ethyl,
        2-(1,1-Dimethylethoxy)ethyl, 2-(Methoxy)-propyl,
        2-(Ethoxy)propyl, 2-(Propoxy)propyl,
45
        2-(1-Methylethoxy)-propyl, 2-(Butoxy)propyl,
        2-(1-Methylpropoxy)propyl, 2-(2-Methylpropoxy)propyl,
```

```
2-(1,1-Dim thylethoxy)propyl, 3-(Methoxy)propyl,
       3-(Ethoxy)-propyl, 3-(Propoxy)propyl,
       3-(1-Methylethoxy)propyl, 3-(Butoxy)propyl,
       3-(1-Methylpropoxy)propyl, 3-(2-Methylpropoxy)propyl,
       3-(1,1-Dimethylethoxy)propyl, 2-(Methoxy)butyl,
5
       2-(Ethoxy)butyl, 2-(Prop-oxy)butyl, 2-(1-Methylethoxy)butyl,
       2-(Butoxy)butyl, 2-(1-Methylpropoxy)butyl,
       2-(2-Methylpropoxy)butyl, 2-(1,1-Dimethylethoxy)butyl,
       3-(Methoxy)butyl, 3-(Ethoxy)butyl, 3-(Propoxy)butyl,
       3-(1-Methylethoxy)butyl, 3-(Butoxy)-butyl,
10
       3-(1-Methylpropoxy)butyl, 3-(2-Methylpropoxy)butyl,
       3-(1,1-Dimethylethoxy)butyl, 4-(Methoxy)butyl,
       4-(Ethoxy)-butyl, 4-(Propoxy)butyl, 4-(1-Methylethoxy)butyl,
       4-(Butoxy)-butyl, 4-(1-Methylpropoxy)butyl,
       4-(2-Methylpropoxy)butyl oder 4-(1,1-Dimethylethoxy)butyl;
15
       C_1-C_6-Alkoxy-C_1-C_6-alkoxy, sowie die Alkoxyalkoxyteile von
       C_1—C_6—Alkoxy—C_1—C_6—alkoxycarbonyl: durch C_1-C_6-Alkoxy, wie
       vorstehend genannt, substituiertes C_1-C_6-Alkoxy, also z.B. für
       Methoxymethoxy, Ethoxymethoxy, Propoxymethoxy,
20
        (1-Methylethoxy) methoxy, Butoxymethoxy,
        (1-Methylpropoxy)methoxy, (2-Methylpropoxy)methoxy,
        (1,1-Dimethylethoxy) methoxy, 2-(Methoxy) ethoxy,
        2-(Ethoxy)ethoxy, 2-(Propoxy)ethoxy,
        2-(1-Methylethoxy)ethoxy, 2-(Butoxy)ethoxy,
25
        2-(1-Methylpropoxy)ethoxy, 2-(2-Methylpropoxy)ethoxy,
        2-(1,1-Dimethylethoxy)ethoxy, 2-(Methoxy)propoxy,
        2-(Ethoxy)propoxy, 2-(Propoxy)propoxy,
        2-(1-Methylethoxy)propoxy, 2-(Butoxy)-propoxy,
        2-(1-Methylpropoxy)propoxy, 2-(2-Methylpropoxy)propoxy,
30
        2-(1,1-Dimethylethoxy)propoxy, 3-(Methoxy)-propoxy,
        3-(Ethoxy)propoxy, 3-(Propoxy)propoxy,
        3-(1-Methylethoxy)propoxy, 3-(Butoxy)propoxy,
        3-(1-Methylpropoxy)-propoxy, 3-(2-Methylpropoxy)propoxy,
        3-(1,1-Dimethylethoxy)propoxy, 2-(Methoxy)butoxy,
35
        2-(Ethoxy)butoxy, 2-(Propoxy)butoxy,
        2-(1-Methylethoxy)butoxy, 2-(Butoxy)-butoxy,
        2-(1-Methylpropoxy)butoxy, 2-(2-Methylpropoxy)butoxy,
        2-(1,1-Dimethylethoxy)butoxy, 3-(Methoxy)butoxy,
        3-(Ethoxy)-butoxy, 3-(Propoxy)butoxy,
40
        3-(1-Methylethoxy)butoxy, 3-(Butoxy)butoxy,
        3-(1-Methylpropoxy)butoxy, 3-(2-Methylpropoxy)butoxy,
        3-(1,1-Dimethylethoxy)butoxy, 4-(M thoxy)-butoxy,
        4-(Ethoxy)butoxy, 4-(Propoxy)butoxy,
        4-(1-Methylethoxy)butoxy, 4-(Butoxy)butoxy,
45
```

24

4-(1-Methylpropoxy)butoxy, 4-(2-Methylpropoxy)butoxy od r 4-(1,1-Dimethylethoxy)butoxy;

- C₁-C₆-Alkylcarbonyl-C₁-C₆-alkyl: Durch eine
- C₁-C₆-Alkylcarbonylgruppe substituiertes C₁-C₆-Alkyl, worin beide der C₁-C₆-Alkylgruppen ein oder mehrere Substituenten, ausgewählt unter C₁-C₄-Alkoxy und/oder Hydroxy aufweisen können: z.B. Acetylmethyl (=2-Oxopropyl), 2-(Acetyl)ethyl (=3-Oxo-n-butyl), 3-Oxo-n-pentyl, 1,1-Dimethyl-2-oxopropyl,
- 3-Hydroxy-2-oxopropyl oder 3-Hydroxy-2-oxobutyl.
 - C₃-C₆-Alkenyl, sowie die Alkenylteile von C₃-C₆-Alkenylcarbonyl, C₃-C₆-Alkenyloxy, C₃-C₆-Alkenyloxycarbonyl, C₃-C₆-Alkenylaminocarbonyl,
- 20 2-Methyl-but-2-en-1-yl, 3-Methyl-but-2-en-1-yl, 1-Methyl-but-3-en-1-yl, 2-Methyl-but-3-en-1-yl, 3-Methyl-but-3-en-1-yl, 1,1-Dimethyl-prop-2-en-1-yl, 1,2-Dimethyl-prop-2-en-1-yl, 1-Ethyl-prop-2-en-1-yl, Hex-3-en-1-yl, Hex-4-en-1-yl, Hex-5-en-1-yl,
- 25 1-Methyl-pent-3-en-1-yl, 2-Methyl-pent-3-en-1-yl, 3-Methyl-pent-3-en-1-yl, 4-Methyl-pent-3-en-1-yl, 1-Methyl-pent-4-en-1-yl, 2-Methyl-pent-4-en-1-yl, 3-Methyl-pent-4-en-1-yl, 4-Methyl-pent-4-en-1-yl,
- 1,1-Dimethyl-but-2-en-1-yl, 1,1-Dimethyl-but-3-en-1-yl,
 1,2-Dimethyl-but-2-en-1-yl, 1,2-Dimethyl-but-3-en-1-yl,
 1,3-Dimethyl-but-2-en-1-yl, 1,3-Dimethyl-but-3-en-1-yl,
 2,2-Dimethyl-but-3-en-1-yl, 2,3-Dimethyl-but-2-en-1-yl,
 - 2,3-Dimethyl-but-3-en-1-yl, 3,3-Dimethyl-but-2-en-1-yl, 1-Ethyl-but-2-en-1-yl, 1-Ethyl-but-3-en-1-yl,
- 2-Ethyl-but-2-en-1-yl, 2-Ethyl-but-3-en-1-yl, 1,1,2-Trimethyl-prop-2-en-1-yl, 1-Ethyl-1-methyl-prop-2-en-1-yl oder 1-Ethyl-2-methyl-prop-2-en-1-yl;
- 40 C₂-C₆-Alkenyl, sowie die Alkenylteile von C₂-C₆-Alkenylcarbonyl, Phenyl-C₂-C₆-alkenylcarbonyl und Heterocyclyl-C₂-C₆-alkenylcarbonyl: C₃-C₆-Alkenyl, wie voranstehend genannt, sowie Ethenyl;
- 45 C₃-C₆-Halogenalkenyl: einen C₃-C₆-Alkenylrest, wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. 2-Chlorallyl,

```
25
```

```
3-Chlorallyl, 2,3-Dichlorallyl, 3,3-Dichlorallyl,
       2,3,3-Tri-chlorallyl, 2,3-Dichlorbut-2-enyl, 2-Bromallyl,
       3-Bromallyl, 2,3-Dibromallyl, 3,3-Dibromallyl,
       2,3,3—Tribromallyl oder 2,3—Dibrombut—2—enyl;
5
       C<sub>3</sub>-C<sub>6</sub>-Alkinyl, sowie die Alkinylteile von
       C<sub>3</sub>-C<sub>6</sub>-Alkinylcarbonyl, C<sub>3</sub>-C<sub>6</sub>-Alkinyloxy,
       C_3-C_6-Alkinyloxycarbony, C_3-C_6-Alkinylaminocarbonyl,
       N-(C_3-C_6-Alkinyl)-N-(C_1-C_6-alkyl)-aminocarbonyl,
       N-(C_3-C_6-Alkinyl)-N-(C_1-C_6-alkoxyaminocarbonyl: z.B.
10
       Propargyl, But-1-in-3-yl, But-1-in-4-yl, But-2-in-1-yl,
       Pent-1-in-3-yl, Pent-1-in-4-yl, Pent-1-in-5-yl,
       Pent-2-in-1-yl, Pent-2-in-4-yl, Pent-2-in-5-yl,
        3-Methyl-but-1-in-3-yl, 3-Methyl-but-1-in-4-yl,
       \text{Hex-l-in-3-yl}, \text{Hex-l-in-4-yl}, \text{Hex-l-in-5-yl}, \text{Hex-l-in-6-yl},
15
        \text{Hex-2-in-1-yl}, \text{Hex-2-in-4-yl}, \text{Hex-2-in-5-yl}, \text{Hex-2-in-6-yl},
        \text{Hex-3-in-1-yl}, \text{Hex-3-in-2-yl}, \text{3-Methyl-pent-1-in-3-yl},
        3-Methyl-pent-1-in-4-yl, 3-Methyl-pent-1-in-5-yl,
        4-Methyl-pent-2-in-4-yl oder 4-Methyl-pent-2-in-5-yl;
20
        C2-C6-Alkinyl, sowie die Alkinylteile von
        C_2—C_6—Alkinylcarbonyl: C_3—C_6—Alkinyl, wie voranstehend
        genannt, sowie Ethinyl;
        C_3-C_6-Halogenalkinyl: einen C_3-C_6-Alkinylrest, wie vorstehend
25 —
        genannt, der partiell oder vollständig durch Fluor, Chlor,
        Brom und/oder Iod substituiert ist, also z.B.
        1,1-Difluor-prop-2-in-1-yl, 3-Iod-prop-2-in-1-yl,
        4-Fluorbut-2-in-1-yl, 4-Chlorbut-2-in-1-yl,
        1,1-Difluorbut-2-in-1-yl, 4-Iod-but-3-in-1-yl,
30
        5-Fluorpent-3-in-1-yl, 5-Iod-pent-4-in-1-yl,
        6-Fluor-hex-4-in-1-yl oder 6-Iod-hex-5-in-1-yl;
        C<sub>1</sub>-C<sub>6</sub>-Alkandiyl: Methandiyl, Ethan-1,1-diyl, Ethan-1,2-diyl,
        Propan-1,1-diyl, Propan-1,2-diyl, Propan-1,3-diyl,
35
        Propan-2,2-diyl, Butan-1,1-diyl, Butan-1,2-diyl,
        Butan-1,3-diyl, Butan-1,4-diyl, 2-Methyl-propan-1,3-diyl,
         2-Methyl-propan-1,2-diyl, 2-Methyl-propan-1,1-diyl,
         1-Methyl-propan-1,2-diyl, 1-Methyl-propan-2,2-diyl,
         1-Methyl-propan-1,1-diyl, Pentan-1,1-diyl, Pentan-1,2-diyl,
 40
         Pentan-1,3-diyl, Pentan-1,5-diyl, Pentan-2,3-diyl,
         Pentan-2,2-diyl, 1-Methyl-butan-1,1-diyl,
         1-Methyl-butan-1,2-diyl, 1-Methyl-butan-1,3-diyl,
         1-Methyl-butan-1,4-diyl, 2-Methyl-butan-1,1-diyl,
         2-Methyl-butan-1,2-diyl, 2-Methyl-butan-1,3-diyl,
 45
         2-Methyl-butan-1,4-diyl, 2,2-Dimethyl-propan-1,1-diyl,
         2,2-Dimethyl-propan-1,3-diyl, 1,1-Dimethyl-propan-1,3-diyl,
```

```
1,1-Dimethyl-propan-1,2-diyl, 2,3-Dim thyl-propan-1,3-diyl,
       2,3-Dimethyl-propan-1,2-diyl, 1,3-Dimethyl-propan-1,3-diyl,
       H xan-1,1-diyl, Hexan-1,2-diyl, Hexan-1,3-diyl,
       Hexan-1,4-diyl-, Hexan-1,5-diyl, Hexan-1,6-diyl,
       Hexan-2,5-diyl, 2-Methyl-pentan-1,1-diyl,
5
       1-Methyl-pentan-1,2-diyl, 1-Methyl-pentan-1,3-diyl,
       1-Methyl-pentan-1,4-diyl, 1-Methyl-pentan-1,5-diyl,
       2-Methyl-pentan-1,1-diyl, 2-Methyl-pentan-1,2-diyl,
       2-Methyl-pentan-1,3-diyl, 2-Methyl-pentan-1,4-diyl,
       2-Methyl-pentan-1,5-diyl, 3-Methyl-pentan-1,1-diyl,
10
       3-Methyl-pentan-1,2-diyl, 3-Methyl-pentan-1,3-diyl,
       3-Methyl-pentan-1,4-diyl, 3-Methyl-pentan-1,5-diyl,
       1,1-Dimethyl-butan-1,2-diyl, 1,1-Dimethyl-butan-1,3-diyl,
       1,1-Dimethyl-butan-1,4-diyl, 1,2-Dimethyl-butan-1,1-diyl,
       1,2-Dimethyl-butan-1,2-diyl, 1,2-Dimethyl-butan-1,3-diyl,
15
       1,2-Dimethyl-butan-1,4-diyl, 1,3-Dimethyl-butan-1,1-diyl,
       1,3-Dimethyl-butan-1,2-diyl, 1,3-Dimethyl-butan-1,3-diyl,
       1,3-Dimethyl-butan-1,4-diyl, 1-Ethyl-butan-1,1-diyl,
       1-Ethyl-butan-1,2-diyl, 1-Ethyl-butan-1,3-diyl,
       1-Ethyl-butan-1,4-diyl, 2-Ethyl-butan-1,1-diyl,
20
       2-Ethyl-butan-1,2-diyl, 2-Ethyl-butan-1,3-diyl,
       2-Ethyl-butan-1,4-diyl, 2-Ethyl-butan-2,3-diyl,
       2,2-Dimethyl-butan-1,1-diyl, 2,2-Dimethyl-butan-1,3-diyl,
       2,2-Dimethyl-butan-1,4-diyl, 1-Isopropyl-propan-1,1-diyl,
       1-Isopropyl-propan-1,2-diyl, 1-Isopropyl-propan-1,3-diyl,
25
       2-Isopropyl-propan-1,1-diyl, 2-Isopropyl-propan-1,2-diyl,
       2-Isopropyl-propan-1,3-diyl, 1,2,3-Trimethyl-propan-1,1-diyl,
       1,2,3-Trimethyl-propan-1,2-diyl oder
       1,2,3-Trimethyl-propan-1,3-diyl;
30
       C2-C6-Alkendiyl: Ethen-1,1-diyl, Ethen-1,2-diyl,
       1-Propen-1,1-diyl, 1-Propen-1,2-diyl, 1-Propen-1,3-diyl,
       2-Propen-1,1-diyl, 2-Propen-1,2-diyl, 2-Propen-1,3-diyl,
        1-Buten-1,1-diyl, 1-Buten-1,2-diyl, 1-Buten-1,3-diyl,
        1-Buten-1,4-diyl, 2-Buten-1,1-diyl, 2-Buten-1,2-diyl,
35
        2-Buten-1,3-diyl, 2-Buten-1,4-diyl, 3-Buten-1,1-diyl,
        3-Buten-1,2-diyl, 3-Buten-1,3-diyl, 3-Buten-1,4-diyl,
        1-Methyl-1-propen-1,2-diyl, 1-Methyl-1-propen-1,3-diyl,
        1-Methyl-2-propen-1,1-diyl, 1-Methyl-2-propen-1,2-diyl,
        1-Methyl-2-propen-1,3-diyl, 2-Methyl-1,1-propen-1,1-diyl,
40
        2-Methyl-1-propen-1,3-diyl, 3-Buten-1,1-diyl,
        3-Buten-1,2-diyl, 3-Buten-1,3-diyl, 3-Buten-1,4-diyl,
        1-Penten-1,1-diyl, 1-Penten-1,2-diyl, 1-Penten-1,3-diyl,
        1-Penten-1,4-diyl, 1-Penten-1,5-diyl, 1-Hexen-1,1-diyl,
        1-Hexen-1,2-diyl, 1-Hexen-1,3-diyl, 1-Hexen-1,4-diyl,
45
        1-Hexen-1,5-diyl oder 1-Hexen-1,6-diyl;
```

27

```
C2-C6-Alkadiendiyl: 1,3-Butadien-1,1-diyl,
       1,3-Butadien-1,2-diyl, 1,3-Butadien-1,3-diyl,
       1,3-Butadien-1,4-diyl, 1,3-Pen-tadien-1,1-diyl,
       1,3-Pentadien-1,2-diyl, 1,3-Pentadien-1,3-diyl,
       1,3-Pentadien-1,4-diyl, 1,3-Pentadien-1,5-diyl,
5
       2,4-Pentadien-1,1-diyl, 2,4-Pentadien-1,2-diyl,
       2,4-Pentadien-1,3-diyl, 2,4-Pentadien-1,4-diyl,
       2,4-Pentadien-1,5-diyl, 1-Methyl-1,3-butadien-1,4-diyl,
       1,3-Hexadien-1,1-diyl, 1,3-Hexadien-1,2-diyl,
       1,3-Hexadien-1,3-diyl, 1,3-Hexadien-1,4-diyl,
10
       1,3-Hexadien-1,5-diyl, 1,3-Hexadien-1,6-diyl,
       1-Methyl-1,3-pentadien-1,2-diyl,
       1-Methyl-1,3-pentadien-1,3-diyl,
       1-Methyl-1,3-pentadien-1,4-diyl oder
       1-Methyl-1,3-pentadien-1,5-diyl;
15
       C2-C6-Alkindiyl: Ethin-1,2-diyl, 1-Propin-1,3-diyl,
       2-Propin-1,1-diyl, 2-Propin-1,3-diyl, 1-Butin-1,3-diyl,
       1-Butin-1,4-diyl, 2-Butin-1,1-diyl, 2-Butin-1,4-diyl,
       1-Methyl-2-propin-1,1-diyl, 1-Methyl-2-propin-1,3-diyl,
20
       1-Pentin-1,3-diyl, 1-Pentin-1,4-diyl, 1-Pentin-1,5-diyl,
       2-Pentin-1,1-diyl, 2-Pentin-1,4-diyl, 2-Pentin-1,5-diyl,
       3-Pentin-1,1-diyl, 3-Pentin-1,2-diyl, 3-Pentin-1,5-diyl,
       4-Pentin-1,1-diyl, 4-Pentin-1,2-diyl, 4-Pentin-1,3-diyl,
       4-Pentin-1,5-diyl, 1-Hexin-1,3-diyl, 1-Hexin-1,4-diyl,
25
        1-Hexin-1,5-diyl, 1-Hexin-1,6-diyl, 2-Hexin-1,1-diyl,
       2-Hexin-1,4-diyl, 2-Hexin-1,5-diyl, 2-Hexin-1,6-diyl,
       3-Hexin-1,1-diyl, 3-Hexin-1,2-diyl, 3-Hexin-1,5-diyl,
        3-Hexin-1,6-diyl, 4-Hexin-1,1-diyl, 4-Hexin-1,2-diyl,
        4-\text{Hexin}-1,3-\text{diyl}, 4-\text{Hexin}-1,6-\text{diyl}, 5-\text{Hexin}-1,1-\text{diyl},
30
        5-Hexin-1,2-diyl, 5-Hexin-1,3-diyl, 5-Hexin-1,4-diyl oder
        5-Hexin-1,6-diyl;
        C3-C6-Cycloalkyl, sowie die Cycloalkylteile von
        C_3-C_6-Cycloalkylamino und C_3-C_6-Cycloalkylcarbonyl: z.B.
35
        Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl;
        Heterocyclyl, sowie Heterocyclylteile von Heterocyclyloxy,
        Heterocyclylcarbonyl, Heterocyclyl-C_1-C_4-alkyl,
        Heterocyclyl-C1-C6-alkyl, Heterocyclylsulfonyl oder
40
        Heterocyclyloxysulfonyl, Heterocyclyloxycarbonyl,
        Heterocyclyloxythiocarbonyl,
        Heterocyclyl-C_2-C_6-alkenylcarbonyl,
        Heterocyclylcarbonyl-C_1-C_6-alkyl,
        N-(C_1-C_6-Alkyl)-N-(heterocyclyl)-aminocarbonyl,
45
        Heterocyclylaminocarbonyl: ein gesättigter, partiell
```

gesättigter oder ungesättigter 5- oder 6-gliedriger,

heterocyclischer Ring, der ein, zwei, drei oder vier gleiche oder verschied ne Heteroatome, ausgewählt aus folgender Gruppe: Sauerstoff, Schwefel oder Stickstoff, enthält, also z.B. C-gebundene 5-gliedrige Ringe wie:

5 Tetrahydrofuran-2-yl, Tetrahydrofuran-3-yl, Tetrahydrothien-2-yl, Tetrahydrothien-3-yl, Tetrahydropyrrol-2-yl, Tetrahydropyrrol-3-yl, 2,3-Dihydrofuran-2-yl, 2,3-Dihydrofuran-3-yl, 2,5-Dihydrofuran-2-yl, 2,5-Dihydrofuran-3-yl, 10 4,5-Dihydrofuran-2-yl, 4,5-Dihydrofuran-3-yl, 2,3-Dihydrothien-2-yl, 2,3-Dihydrothien-3-yl, 2,5-Dihydrothien-2-yl, 2,5-Dihydrothien-3-yl, 4,5-Dihydrothien-2-yl, 4,5-Dihydrothien-3-yl, 2,3-Dihydro-1H-pyrrol-2-yl, 2,3-Dihydro-1H-pyrrol-3-yl, 15 2,5-Dihydro-1H-pyrrol-2-yl, 2,5-Dihydro-1H-pyrrol-3-yl, 4,5-Dihydro-1H-pyrrol-2-yl, 4,5-Dihydro-1H-pyrrol-3-yl, 3,4-Dihydro-2H-pyrrol-2-yl, 3,4-Dihydro-2H-pyrrol-3-yl, 3,4-Dihydro-5H-pyrrol-2-yl, 3,4-Dihydro-5H-pyrrol-3-yl, 2-Furyl, 3-Furyl, 2-Thienyl, 3-Thienyl, Pyrrol-2-yl, 20 Pyrrol-3-yl, Tetrahydropyrazol-3-yl, Tetrahydropyrazol-4-yl, Tetrahydroisoxazol-3-yl, Tetrahydroisoxazol-4-yl, Tetrahydroisoxazol-5-yl, 1,2-Oxathiolan-3-yl, 1,2-Oxathiolan-4-yl, 1,2-Oxathiolan-5-yl, Tetrahydroisothiazol-3-yl, Tetrahydro-isothiazol-4-yl, 25 Tetrahydroisothiazol-5-yl, 1,2-Dithiolan-3-yl, 1,2-Dithiolan-4-yl, Tetrahydroimidazol-2-yl, Tetrahydroimidazol-4-yl, Tetrahydrooxazol-2-yl, Tetrahydrooxazol-4-yl, Tetrahydrooxazol-5-yl, Tetrahydrothiazol-2-yl, Tetrahydrothiazol-4-yl, 30 Tetrahydrothiazol-5-yl, 1,3-Dioxolan-2-yl, 1,3-Dioxolan-4-yl, 1,3-Oxathiolan-2-yl, 1,3-Oxathiolan-4-yl, 1.3-Oxathiolan-5-yl, 1,3-Dithiolan-2-yl, 1,3-Dithiolan-4-yl, 4,5-Dihydro-1H-pyrazol-3-yl, 4,5-Dihydro-1H-pyrazol-4-yl, 4,5-Dihydro-1H-pyrazol-5-yl, 2,5-Dihydro-1H-pyrazol-3-yl, 35 2,5-Dihydro-1H-pyrazol-4-yl, 2,5-Dihydro-1H-pyrazol-5-yl, 4,5-Dihydroisoxazol-3-yl, 4,5-Dihydroisoxazol-4-yl, 4,5-Dihydroisoxazol-5-yl, 2,5-Dihydroisoxazol-3-yl, 2,5-Dihydroisoxazol-4-yl, 2,5-Dihydroisoxazol-5-yl, 2,3-Dihydroisoxazol-3-yl, 2,3-Dihydroisoxazol-4-yl, 40 2,3-Dihydroisoxazol-5-yl, 4,5-Dihydroisothiazol-3-yl, 4,5-Dihydroisothiazol-4-yl, 4,5-Dihydroisothiazol-5-yl, 2,5-Dihydroisothiazol-3-yl, 2,5-Dihydroisothiazol-4-yl, 2,5-Dihydroisothiazol-5-yl, 2,3-Dihydroisothiazol-3-yl, 2,3—Dihydroisothiazol-4-yl, 2,3-Dihydroisothiazol-5-yl, 45 Δ^3 -1,2-Dithiol-3-yl, Δ^3 -1,2-Dithiol-4-yl,

 Δ^3 -1,2-Dithiol-5-yl, 4,5-Dihydro-1H-imidazol-2-yl,

29

```
4,5-Dihydro-1H-imidazol-4-yl, 4,5-Dihydro-1H-imidazol-5-yl,
       2,5-Dihydro-1H-imidazol-2-yl, 2,5-Dihydro-1H-imidazol-4-yl,
       2,5-Dihydro-1H-imidazol-5-yl, 2,3-Dihydro-1H-imidazol-2-yl,
       2,3-Dihydro-1H-imidazol-4-yl, 4,5-Dihydrooxazol-2-yl,
       4,5-Dihydrooxazol-4-yl, 4,5-Dihydrooxazol-5-yl,
5
       2,5-Dihydrooxazol-2-yl, 2,5-Dihydrooxazol-4-yl,
       2,5-Dihydrooxazol-5-yl, 2,3-Dihydrooxazol-2-yl,
       2,3-Dihydrooxazol-4-yl, 2,3-Dihydrooxazol-5-yl,
       4,5-Dihydrothiazol-2-yl, 4,5-Dihydrothiazol-4-yl,
       4,5-Dihydrothiazol-5-yl, 2,5-Dihydrothiazol-2-yl,
10
        2,5-Dihydrothiazol-4-yl, 2,5-Dihydrothiazol-5-yl,
        2,3-Dihydrothiazol-2-yl, 2,3-Dihydrothiazol-4-yl,
        2,3-Dihydrothiazol-5-yl, 1,3-Dioxol-2-yl, 1,3-Dioxol-4-yl,
        1,3-Dithiol-2-yl, 1,3-Dithiol-4-yl, 1,3-Oxathiol-2-yl,
        1,3-Oxathiol-4-yl, 1,3-Oxathiol-5-yl, Pyrazol-3-yl,
15
        Pyrazol-4-yl, Isoxazol-3-yl, Isoxazol-4-yl, Isoxazol-5-yl,
        Isothiazol-3-yl, Isothiazol-4-yl, Isothiazol-5-yl,
        Imidazol-2-yl, Imidazol-4-yl, Oxazol-2-yl, Oxazol-4-yl,
        Oxazol-5-yl, Thiazol-2-yl, Thiazol-4-yl, Thiazol-5-yl,
        1,2,3-\Delta^2-Oxadiazolin-4-yl, 1,2,3-\Delta^2-Oxadiazolin-5-yl,
20
        1,2,4-\Delta^4-Oxadiazolin-3-yl, 1,2,4-\Delta^4-Oxadiazolin-5-yl,
        1,2,4-\Delta^2-Oxadiazolin-3-yl, 1,2,4-\Delta^2-Oxadiazolin-5-yl,
        1,2,4-\Delta^3-Oxadiazolin-3-yl, 1,2,4-\Delta^3-Oxadiazolin-5-yl,
        1,3,4-\Delta^2-Oxadiazolin-2-yl, 1,3,4-\Delta^2-Oxadiazolin-5-yl,
        1,3,4\Delta3\Delta0xadiazolin\Delta2\Delta1,3,4\Delta0xadiazolin\Delta2\Delta1,
25
        1,2,4-\Delta^4-Thiadiazolin-3-yl, 1,2,4-\Delta^4-Thiadiazolin-5-yl,
        1,2,4-\Delta^3-Thiadiazolin-3-yl, 1,2,4-\Delta^3-Thiadiazolin-5-yl,
        1,2,4-\Delta^2-Thiadiazolin-3-yl, 1,2,4-\Delta^2-Thiadiazolin-5-yl,
        1,3,4-\Delta^2-Thiadiazolin-2-yl, 1,3,4-\Delta^2-Thiadiazolin-5-yl,
        1,3,4-\Delta^3-Thiadiazolin-2-yl, 1,3,4-Thiadiazolin-2-yl,
30
        1,3,2—Dioxathiolan—4—yl, 1,2,3—\Delta^2—Triazolin—4—yl,
        1,2,3-\Delta^2-Triazolin-5-yl, 1,2,4-\Delta^2-Triazolin-3-yl,
        1,2,4\Delta^2-Triazolin-5-yl, 1,2,4\Delta^3-Triazolin-3-yl,
        1,2,4-\Delta^3-Triazolin-5-yl, 1,2,4-\Delta^1-Triazolin-2-yl,
        1,2,4-Triazolin-3-yl, 3H-1,2,4-Dithiazol-5-yl,
35
        2H-1,3,4-Dithiazol-5-yl, 2H-1,3,4-Oxathiazol-5-yl,
        1,2,3-Oxadiazol-4-yl, 1,2,3-Oxadiazol-5-yl,
         1,2,4-Oxadiazol-3-yl, 1,2,4-Oxadiazol-5-yl,
         1,3,4-Oxadiazol-2-yl, 1,2,3-Thiadiazol-4-yl,
         1,2,3-Thiadiazol-5-yl, 1,2,4-Thiadiazol-3-yl,
 40
         1,2,4-Thiadiazol-5-yl, 1,3,4-Thiadiazolyl-2-yl,
         1,2,3-Triazol-4-yl, 1,2,4-Triazol-3-yl, Tetrazol-5-yl;
```

C-gebundene 6-gliedrige Ringe wie:

```
T trahydropyran-2-yl, Tetrahydropyran-3-yl,
       Tetrahydropyran-4-yl, Piperidin-2-yl, Piperidin-3-yl,
       Piperidin-4-yl, Tetrahydrothiopyran-2-yl,
       Tetrahydrothiopyran-3-yl, Tetrahydrothiopyran-4-yl,
       2H-3,4-Dihydropyran-6-yl, 2H-3,4-Dihydropyran-5-yl,
5
       2H-3,4-Dihydropyran-4-yl, 2H-3,4-Dihydropyran-3-yl,
       2H-3,4-Dihydropyran-2-yl, 2H-3,4-Dihydropyran-6-yl,
       2H-3,4-Dihydrothiopyran-5-yl, 2H-3,4-Dihydrothiopyran-4-yl,
       2H-3,4-Dihydropyran-3-yl, 2H-3,4-Dihydropyran-2-yl,
       1,2,3,4-Tetrahydropyridin-6-yl,
10
       1,2,3,4-Tetrahydropyridin-5-yl,
       1,2,3,4-Tetrahydropyridin-4-yl,
       1,2,3,4-Tetrahydropyridin-3-yl,
       1,2,3,4-Tetrahydropyridin-2-yl, 2H-5,6-Dihydropyran-2-yl,
       2H-5,6-Dihydropyran-3-yl, 2H-5,6-Dihydropyran-4-yl,
15
       2H-5,6-Dihydropyran-5-yl, 2H-5,6-Dihydropyran-6-yl,
       2H-5,6-Dihydrothiopyran-2-yl, 2H-5,6-Dihydrothiopyran-3-yl,
       2H-5,6-Dihydrothiopyran-4-yl, 2H-5,6-Dihydrothiopyran-5-yl,
       2H-5,6-Dihydrothiopyran-6-yl, 1,2,5,6-Tetrahydropyridin-2-yl,
       1,2,5,6-Tetrahydropyridin-3-yl,
20
       1,2,5,6-Tetrahydropyridin-4-yl,
       1,2,5,6-Tetrahydropyridin-5-yl,
       1,2,5,6-Tetrahydropyridin-6-yl,
       2,3,4,5-Tetrahydropyridin-2-yl,
       2,3,4,5-Tetrahydropyridin-3-yl,
25
       2,3,4,5-Tetrahydropyridin-4-yl,
       2,3,4,5-Tetrahydropyridin-5-yl,
       2,3,4,5-Tetrahydropyridin-6-yl, 4H-Pyran-2-yl, 4H-Pyran-3-yl,
       4H-Pyran-4-yl, 4H-Thiopyran-2-yl, 4H-Thiopyran-3-yl,
       4H-Thiopyran-4-yl, 1,4-Dihydropyridin-2-yl,
30
       1,4-Dihydropyridin-3-yl, 1,4-Dihydropyridin-4-yl,
       2H-Pyran-2-yl, 2H-Pyran-3-yl, 2H-Pyran-4-yl, 2H-Pyran-5-yl,
       2H-Pyran-6-yl, 2H-Thiopyran-2-yl, 2H-Thiopyran-3-yl,
       2H-Thiopyran-4-yl, 2H-Thiopyran-5-yl, 2H-Thiopyran-6-yl,
       1,2-Dihydropyridin-2-yl, 1,2-Dihydropyridin-3-yl,
35
       1,2-Dihydropyridin-4-yl, 1,2-Dihydropyridin-5-yl,
       1,2-Dihydropyridin-6-yl, 3,4-Dihydropyridin-2-yl,
       3,4-Dihydropyridin-3-yl, 3,4-Dihydropyridin-4-yl,
       3,4-Dihydropyridin-5-yl, 3,4-Dihydropyridin-6-yl,
       2,5-Dihydropyridin-2-yl, 2,5-Dihydropyridin-3-yl,
40
       2,5-Dihydropyridin-4-yl, 2,5-Dihydropyridin-5-yl,
       2,5-Dihydropyridin-6-yl, 2,3-Dihydropyridin-2-yl,
        2,3-Dihydropyridin-3-yl, 2,3-Dihydropyridin-4-yl,
        2,3-Dihydropyridin-5-yl, 2,3-Dihydropyridin-6-yl,
        Pyridin-2-yl, Pyridin-3-yl, Pyridin-4-yl, 1,3-Dioxan-2-yl,
45
        1,3-Dioxan-4-yl, 1,3-Dioxan-5-yl, 1,4-Dioxan-2-yl,
        1,3-Dithian-2-yl, 1,3-Dithian-4-yl, 1,3-Dithian-5-yl,
```

```
1,4-Dithian-2-yl, 1,3-Oxathian-2-yl, 1,3-Oxathian-4-yl,
      1,3-Oxathian-5-yl, 1,3-Oxathian-6-yl, 1,4-Oxathian-2-yl,
      1,4-Oxathian-3-yl, 1,2-Dithian-3-yl, 1,2-Dithian-4-yl,
      Hexahydropyrimidin-2-yl, Hexahydropyrimidin-4-yl,
      Hexahydropyrimidin-5-yl, Hexahydropyrazin-2-yl,
5
      Hexahydropyridazin-3-yl, Hexahydropyridazin-4-yl,
      Tetrahydro-1,3-oxazin-2-y1, Tetrahydro-1,3-oxazin-4-y1,
      Tetrahydro-1,3-oxazin-5-yl, Tetrahydro-1,3-oxazin-6-yl,
       Tetrahydro-1,3-thiazin-2-yl, Tetrahydro-1,3-thiazin-4-yl,
       Tetrahydro-1,3-thiazin-5-yl, Tetrahydro-1,3-thiazin-6-yl,
10
       Tetrahydro-1,4-thiazin-2-yl, Tetrahydro-1,4-thiazin-3-yl,
       Tetrahydro-1,4-oxazin-2-yl, Tetrahydro-1,4-oxazin-3-yl,
       Tetrahydro-1,2-oxazin-3-yl, Tetrahydro-1,2-oxazin-4-yl,
       Tetrahydro-1,2-oxazin-5-yl, Tetrahydro-1,2-oxazin-6-yl,
       2H-5,6-Dihydro-1,2-oxazin-3-yl,
15
       2H-5,6-Dihydro-1,2-oxazin-4-yl,
       2H-5,6-Dihydro-1,2-oxazin-5-yl,
       2H-5,6-Dihydro-1,2-oxazin-6-yl,
       2H-5,6-Dihydro-1,2-thiazin-3-y1,
       2H-5,6-Dihydro-1,2-thiazin-4-yl,
20
       2H-5,6-Dihydro-1,2-thiazin-5-yl,
       2H-5,6-Dihydro-1,2-thiazin-6-yl,
       4H-5,6-Dihydro-1,2-oxazin-3-yl,
       4H-5,6-Dihydro-1,2-oxazin-4-yl,
       4H-5,6-Dihydro-1,2-oxazin-5-yl,
25
       4H-5,6-Dihydro-1,2-oxazin-6-y1,
       4H-5,6-Dihydro-1,2-thiazin-3-yl,
       4H-5,6-Dihydro-1,2-thiazin-4-yl,
       4H-5,6-Dihydro-1,2-thiazin-5-yl,
       4H-5,6-Dihydro-1,2-thiazin-6-yl,
30
       2H-3,6-Dihydro-1,2-oxazin-3-yl,
       2H-3,6-Dihydro-1,2-oxazin-4-yl,
       2H-3,6-Dihydro-1,2-oxazin-5-y1,
       2H-3,6-Dihydro-1,2-oxazin-6-yl,
       2H-3,6-Dihydro-1,2-thiazin-3-yl,
35
       2H-3,6-Dihydro-1,2-thiazin-4-yl,
        2H-3,6-Dihydro-1,2-thiazin-5-yl,
        2H-3,6-Dihydro-1,2-thiazin-6-yl,
        2H-3,4-Dihydro-1,2-oxazin-3-yl,
        2H-3,4-Dihydro-1,2-oxazin-4-yl,
40
        2H-3,4-Dihydro-1,2-oxazin-5-yl,
        2H-3,4-Dihydro-1,2-oxazin-6-yl,
        2H-3,4-Dihydro-1,2-thiazin-3-yl,
        2H-3,4-Dihydro-1,2-thiazin-4-yl,
        2H-3,4-Dihydro-1,2-thiazin-5-yl,
 45
        2H-3,4-Dihydro-1,2-thiazin-6-yl,
        2,3,4,5-Tetrahydropyridazin-3-yl,
```

```
2,3,4,5-Tetrahydropyridazin-4-yl,
       2,3,4,5-Tetrahydropyridazin-5-yl,
       2,3,4,5-Tetrahydropyridazin-6-yl,
       3,4,5,6-Tetrahydropyridazin-3-yl,
5
       3,4,5,6-Tetrahydropyridazin-4-yl,
       1,2,5,6-Tetrahydropyridazin-3-yl,
       1,2,5,6-Tetrahydropyridazin-4-yl,
       1,2,5,6-Tetrahydropyridazin-5-yl,
       1,2,5,6-Tetrahydropyridazin-6-yl,
        1,2,3,6-Tetrahydropyridazin-3-yl,
10
        1,2,3,6-Tetrahydropyridazin-4-yl,
        4H-5,6-Dihydro-1,3-oxazin-2-y1,
        4H-5,6-Dihydro-1,3-oxazin-4-yl,
        4H-5,6-Dihydro-1,3-oxazin-5-yl,
        4H-5,6-Dihydro-1,3-oxazin-6-yl,
15
        4H-5,6-Dihydro-1,3-thiazin-2-yl,
        4H-5,6-Dihydro-1,3-thiazin-4-yl,
        4H-5,6-Dihydro-1,3-thiazin-5-yl,
        4H-5,6-Dihydro-1,3-thiazin-6-yl,
        3,4,5-6-Tetrahydropyrimidin-2-yl,
20
        3,4,5,6-Tetrahydropyrimidin-4-yl,
        3,4,5,6-Tetrahydropyrimidin-5-yl,
        3,4,5,6—Tetrahydropyrimidin—6—yl,
        1,2,3,4-Tetrahydropyrazin-2-yl,
        1,2,3,4-Tetrahydropyrazin-5-yl,
25
        1,2,3,4-Tetrahydropyrimidin-2-yl,
        1,2,3,4-Tetrahydropyrimidin-4-yl,
        1,2,3,4-Tetrahydropyrimidin-5-yl,
        1,2,3,4-Tetrahydropyrimidin-6-yl,
        2,3-Dihydro-1,4-thiazin-2-yl, 2,3-Dihydro-1,4-thiazin-3-yl,
30
        2,3-Dihydro-1,4-thiazin-5-yl, 2,3-Dihydro-1,4-thiazin-6-yl,
        2H-1,2-Oxazin-3-y1, 2H-1,2-Oxazin-4-y1, 2H-1,2-Oxazin-5-y1,
        2H-1,2-Oxazin-6-yl, 2H-1,2-Thiazin-3-yl, 2H-1,2-Thiazin-4-yl,
        2H-1,2-Thiazin-5-yl, 2H-1,2-Thiazin-6-yl, 4H-1,2-Oxazin-3-yl,
        4H-1,2-Oxazin-4-yl, 4H-1,2-Oxazin-5-yl, 4H-1,2-Oxazin-6-yl,
35
        4H-1,2-Thiazin-3-yl, 4H-1,2-Thiazin-4-yl,
        4H-1,2-Thiazin-5-yl, 4H-1,2-Thiazin-6-yl, 6H-1,2-Oxazin-3-yl,
        6H-1,2-Oxazin-4-yl, 6H-1,2-Oxazin-5-yl, 6H-1,2-Oxazin-6-yl,
        6H-1,2-Thiazin-3-yl, 6H-1,2-Thiazin-4-yl,
        6H-1,2-Thiazin-5-yl, 6H-1,2-Thiazin-6-yl, 2H-1,3-Oxazin-2-yl,
40
        2H-1,3-Oxazin-4-y1, 2H-1,3-Oxazin-5-y1, 2H-1,3-Oxazin-6-y1,
        2H-1,3-Thiazin-2-yl, 2H-1,3-Thiazin-4-yl,
        2H-1,3-Thiazin-5-yl, 2H-1,3-Thiazin-6-yl, 4H-1,3-Oxazin-2-yl,
        4H-1,3-Oxazin-4-yl, 4H-1,3-Oxazin-5-yl, 4H-1,3-Oxazin-6-yl,
        4H-1,3-Thiazin-2-yl, 4H-1,3-Thiazin-4-yl,
45
        4H-1,3-Thiazin-5-yl, 4H-1,3-Thiazin-6-yl, 6H-1,3-Oxazin-2-yl,
        6H-1,3-Oxazin-4-yl, 6H-1,3-Oxazin-5-yl, 6H-1,3-Oxazin-6-yl,
```

```
6H-1,3-Thiazin-2-yl, 6H-1,3-Oxazin-4-yl, 6H-1,3-Oxazin-5-yl,
       6H-1,3-Thiazin-6-yl, 2H-1,4-Oxazin-2-yl, 2H-1,4-Oxazin-3-yl,
       2H-1,4-Oxazin-5-yl, 2H-1,4-Oxazin-6-yl, 2H-1,4-Thiazin-2-yl,
       2H-1,4-Thiazin-3-yl, 2H-1,4-Thiazin-5-yl,
       2H-1,4-Thiazin-6-yl, 4H-1,4-Oxazin-2-yl, 4H-1,4-Oxazin-3-yl,
 5
       4H-1,4-Thiazin-2-yl, 4H-1,4-Thiazin-3-yl,
       1,4-Dihydropyridazin-3-yl, 1,4-Dihydropyridazin-4-yl,
       1,4-Dihydropyridazin-5-yl, 1,4-Dihydropyridazin-6-yl,
       1,4-Dihydropyrazin-2-yl, 1,2-Dihydropyrazin-2-yl,
       1,2-Dihydropyrazin-3-yl, 1,2-Dihydropyrazin-5-yl,
10
       1,2-Dihydropyrazin-6-yl, 1,4-Dihydropyrimidin-2-yl,
       1,4-Dihydropyrimidin-4-yl, 1,4-Dihydropyrimidin-5-yl,
       1,4-Dihydropyrimidin-6-yl, 3,4-Dihydropyrimidin-2-yl,
       3,4-Dihydropyrimidin-4-yl, 3,4-Dihydropyrimidin-5-yl,
       3,4-Dihydropyrimidin-6-yl, Pyridazin-3-yl, Pyridazin-4-yl,
15
       Pyrimidin-2-yl, Pyrimidin-4-yl, Pyrimidin-5-yl, Pyrazin-2-yl,
       1,3,5-Triazin-2-yl, 1,2,4-Triazin-3-yl, 1,2,4-Triazin-5-yl,
       1,2,4-Triazin-6-yl oder 1,2,4,5-Tetra-zin-3-yl;
       N-gebundene 5-gliedrige Ringe wie:
20
       Tetrahydropyrrol-1-yl, 2,3-Dihydro-1H-pyrrol-1-yl,
       2,5-Dihydro-1H-pyrrol-1-yl, Pyrrol-1-yl,
       Tetrahydropyrazol-1-yl, Tetrahydroisoxazol-2-yl,
       Tetrahydroisothiazol-2-yl, Tetrahydroimidazol-1-yl,
25
       Tetrahydrooxazol-3-yl, Tetrahydrothiazol-3-yl,
        4,5-Dihydro-1H-pyrazol-1-yl, 2,5-Dihydro-1H-pyrazol-1-yl,
        2,3-Dihydro-1H-pyrazol-1-yl, 2,5-Dihydroisoxazol-2-yl,
        2,3-Dihydroisoxazol-2-yl, 2,5-Dihydroisothiazol-2-yl,
        2,3-Dihydroisoxazol-2-yl, 4,5-Dihydro-1H-imidazol-1-yl,
30
        2,5-Dihydro-1H-imidazol-1-yl, 2,3-Dihydro-1H-imidazol-1-yl,
        2,3-Dihydrooxazol-3-yl, 2,3-Dihydrothiazol-3-yl,
        Pyrazol-1-yl, Imidazol-1-yl, 1,2,4-\Delta^4-Oxadiazolin-2-yl,
        1,2,4-\Delta^2-Oxadiazolin-4-yl, 1,2,4-\Delta^3-Oxadiazolin-2-yl,
        1,3,4-\Delta^2-Oxadiazolin-4-yl, 1,2,4-\Delta^5-Thiadiazolin-2-yl,
35
        1,2,4-\Delta^3-Thiadiazolin-2-yl, 1,2,4-\Delta^2-Thiadiazolin-4-yl,
        1,3,4-\Delta^2-Thiadiazolin-4-yl, 1,2,3-\Delta^2-Triazolin-1-yl,
        1,2,4\Delta^2-Triazolin-1-yl, 1,2,4\Delta^2-Triazolin-4-yl,
        1,2,4-\Delta^3-Triazolin-1-yl, 1,2,4-\Delta^1-Triazolin-4-yl,
        1,2,3-Triazol-1-yl, 1,2,4-Triazol-1-yl, Tetrazol-1-yl;
40
        N-gebundene 6-gliedrige Ringe wie:
        Piperidin-1-yl, 1,2,3,4-Tetrahydropyridin-1-yl,
        1,2,5,6-Tetrahydropyridin-1-yl, 1,4-Dihydropyridin-1-yl,
45
        1,2-Dihydropyridin-1-yl, Hexahydropyrimidin-1-yl,
        Hexahydropyrazin-1-yl, Hexahydropyridazin-1-yl,
```

T trahydro-1,3-oxazin-3-yl, Tetrahydro-1,3-thiazin-3-yl, Tetrahydro-1,4-thiazin-4-yl, Tetrahydro-1,4-oxazin-4-yl (Morpholinyl), Tetrahydro-1,2-oxazin-2-yl, 2H-5,6-Dihydro-1,2-oxazin-2-yl, 5 2H-5,6-Dihydro-1,2-thiazin-2-yl, 2H-3,6-Dihydro-1,2-oxazin-2-yl, 2H-3,6-Dihydro-1,2-thiazin-2-yl, 2H-3,4-Dihydro-1,2-thiazin-2-yl, 2,3,4,5-Tetrahydropyridazin-2-yl, 10 1,2,5,6-Tetrahydropyridazin-1-yl, 1,2,5,6-Tetrahydropyridazin-2-yl, 1,2,3,6-Tetrahydropyridazin-1-yl, 3,4,5,6-Tetrahydropyrimidin-3-yl, 1,2,3,4-Tetrahydropyrazin-1-yl, 15 1,2,3,4-Tetrahydropyrimidin-1-yl, 1,2,3,4-Tetrahydropyrimidin-3-yl, 2,3-Dihydro-1,4-thiazin-4-yl, 2H-1,2-Oxazin-2-yl, 2H-1,2-Thiazin-2-yl, 4H-1,4-Oxazin-4-yl, 4H-1,4-Thiazin-4-yl, 1,4-Dihydropyridazin-1-yl, 1,4-Dihydropyrazin-1-yl, 1,2-Dihydropyrazin-1-yl, 1,4-Dihydropyrimidin-1-yl oder 20 3,4—Dihydropyrimidin—3—yl;

sowie N-gebundene cyclische Imide wie:

- Phthalsäureimid, Tetrahydrophthalsäureimid, Succinimid, Maleinimid, Glutarimid, 5-Oxo-triazolin-1-yl, 5-Oxo-1,3,4-oxadiazolin-4-yl oder 2,4-Dioxo-(1H,3H)-pyrimidin-3-yl;
- wobei mit einem ankondensierten Phenylring oder mit einem C_3 - C_6 -Carbocyclus oder einem weiteren 5- bis 6-gliedrigen Heterocyclus ein bicyclisches Ringsystem ausgebildet werden kann,
- wobei gegebenenfalls der Schwefel der genannten Heterocyclen zu S=0 oder S(=0)₂ oxidiert sein kann

und wobei mit einem ankondensierten Phenylring oder mit einem C₃-C₆-Carbocyclus oder mit einem weiteren 5- bis 6-gliedrigen Heterocyclus ein bicyclisches Ringsystem ausgebildet werden kann.

All Phenylringe bzw. Heterocyclylreste sowie alle
Phenylkomponenten in Phenoxy, Phenylalkyl, Phenylcarbonylalkyl,
45 Phenylcarbonyl, Phenylalkenylcarbonyl, Phenoxycarbonyl,
Phenyloxythiocarbonyl, Phenylaminocarbonyl und
N-Alkyl-N-phenylaminocarbonyl, Phenylsulfonyl oder

Phenoxysulfonyl bzw. Heterocyclylkomponenten in Heterocyclyloxy, Heterocyclylalkyl, Heterocyclylcarbonylalkyl, Heterocyclylcarbonyl, Heterocyclyloxythiocarbonyl, Heterocyclylalkenylcarbonyl, Heterocyclyloxycarbonyl,

- 5 Heterocyclylaminocarbonyl, N-Alkyl-N-heterocyclylaminocarbonyl, Heterocyclylsulfonyl oder Heterocyclyloxysulfonyl sind, soweit nicht anders angegeben, vorzugsweise unsubstituiert oder tragen ein, zwei oder drei Halogenatome und/oder eine Nitrogruppe, einen Cyanorest und/oder einen oder zwei Methyl-, Trifluormethyl-,
- 10 Methoxy- oder Trifluormethoxysubstituenten. Im Hinblick auf die Verwendung der erfindungsgemäßen Verbindungen

Im Hinblick auf die Verwendung der erfindungsgemäßen Verbindunger der Formel I als Herbizide haben die Variablen X, Y, R¹ bis R¹⁶ vorzugsweise folgende Bedeutungen, und zwar jeweils für sich alleine oder in Kombination:

15

Wasserstoff, Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkyloxy,
C₁-C₆-Alkylthio, C₁-C₆-Alkylsulfinyl,
C₁-C₆-Alkylsulfonyl, C₁-C₆-Halogenalkyl,
C₁-C₆-Alkoxyalkyl, C₁-C₆-Alkylsulfonyl-C₁-C₆-alkyl,
besonders bevorzugt Methyl, Chlor, Methoxy,
Methylthio, Methylsulfinyl, Methylsulfonyl,
Brommethyl, Methoxymethyl, Methylsulfonylmethyl;

R² Wasserstoff, Halogen, z.B. Chlor oder Brom, C₁-C₆-Alkyl, z.B. Methyl;

X C-R³ mit den für R³ zuvor genannten Bedeutungen oder N;

30 Y S, SO₂ oder NR⁴ mit den für R⁴ zuvor genannten Bedeutungen;

Pz Rest der allgemeinen Formel IIa, worin R⁸, R⁹ und R¹⁰ die zuvor genannten Bedeutungen haben.

35

Bevorzugt sind insbesondere Verbindungen der Formel I, worin Y für O, S, SO_2 oder $N-R^4$ und X für $C-R^3$ stehen. Bevorzugt sind auch Verbindungen der Formel I, worin X für N und Y für S oder $N-R^4$ 40 stehen.

Bevorzugt haben R⁸, R⁹ und R¹⁰ unabhängig voneinander die folgenden Bedeutungen:

45 R8 Hydroxy, Halogen, OR¹¹, SR¹¹, SO₂R¹², OSO₂R¹², NR¹⁵R¹⁶, ONR¹⁵R¹⁶ oder N-gebundenes Heterocyclyl, das partiell oder vollständig halogeniert sein kann und/oder

WO 00/68228 PCT/EP00/04040

inen, zwei oder drei der folgenden Reste tragen kann: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy; insbesondere Hydroxy, OR¹¹ und OSO₂R¹², speziell Hydroxy, C₁-C₄-Alkyloxy, O-CH₂-Phenyl, Phenylcarbonyloxy, 2-, 3- oder 4-Fluorphenylcarbonyloxy, Cyclopropylcarbonyloxy, C₁-C₄-Sulfonyloxy, Phenylsulfonyloxy und 2-, 3- oder 4-Methylphenylsulfonyloxy;

10 R⁹ C₁-C₆-Alkyl, insbesondere C₁-C₄-Alkyl, und

 R^{10} Wasserstoff oder $C_1-C_4-Alkyl$, insbesondere Wasserstoff oder $C_1-C_4-Alkyl$.

15 Bevorzugt sind auch Verbindungen, in denen R^9 für C_3 - C_6 -Cycloal-kyl, insbesondere Cyclopropyl steht.

Besonders bevorzugt sind Verbindungen der allgemeinen Formel I, worin X für $C-R^3$ steht und

20

5

R³ für Wasserstoff, Halogen, Cyano, Rhodano, $C_1-C_6-Alkyl, \ C_1-C_6-Halogenalkyl, \ C_1-C_6-Alkoxy, \\ C_1-C_6-Halogenalkoxy, \ C_1-C_6-Alkylthio, \\ C_1-C_6-Halogenalkylthio, \ C_1-C_6-Alkoxy-C_1-C_6-alkyl,$

25

Phenyl oder Pyridyl, wobei die zwei letztgenannten Reste teilweise oder vollständig halogeniert sein können und/oder einen, zwei oder drei, insbesondere einen der folgenden Reste: Halogen, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkyl, und C_1 - C_4 -Halogenalkoxy, tragen können;

oder

35

30

COOR⁵ mit den für R⁵ zuvor genannten Bedeutungen steht. Hierin steht R⁵ insbesondere für Wasserstoff oder C_1 - C_6 -Alkyl und besonders bevorzugt für Wasserstoff, Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, 2-Butyl, iso-Butyl und tert.-Butyl.

40

Bevorzugt sind auch Verbindungen I, in denen R^3 C_3 - C_6 -Cycloalkyl oder Phenoxy, das wie für Phenyl angegeben substituiert sein kann, bedeutet.

45 Beispiele für bevorzugte Reste R³ sind Wasserstoff, Fluor, Chlor, Brom, Cyano, Rhodano, Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, 2-Butyl, Isobutyl, tert-Butyl, Chlormethyl, Dichlormethyl,

37

Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, 2,2,2-Trifluorethyl, Methoxymethyl, Ethoxymethyl, Methoxy, Ethoxy, 1-Propoxy, 2-Propoxy, 1-Butoxy, 2-Butoxy, 2-Methylprop-1-oxy, tert-Butyloxy, Difluormethyloxy, Trifluormethyloxy, 5 2,2,2-Trifluorethyl-1-oxy, (Methoxy)methyloxy, Methylsulfanyl, Ethylsulfanyl, n-Propylsulfanyl, Isopropylsulfanyl, 1-Butylsulfanyl, 2-Butylsulfanyl, 2-Methylprop-1-ylsulfanyl, tert-Butylsulfanyl, Fluormethylsulfanyl, Trifluormethylsulfanyl, 2,2,2-Trifluorethyl-1-sulfanyl, 2-(Methylcarbonyl)ethyl, Phenyl, 2-, 3- oder 10 4-Fluorphenyl, 2-, 3- oder 4-Chlorphenyl, 2-, 3- oder 4-Hydroxyphenyl, 2-, 3- oder 4-Methoxyphenyl, 2-, 3- oder 4-(Trifluormethoxy)phenyl, 2-, 3- oder 4-(Difluormethoxy)phenyl, 2-, 3- oder 4-(Trifluormethyl)phenyl, 2-, 3- oder 4-Tolyl, 2-, 3- oder 4-Pyridinyl, 2-, 3- oder 4-Fluorphenoxy, 2-, 3- oder 4-Methoxyphe-15 noxy, 2-, 3- oder 4-Trifluormethylphenoxy, 2-, 3- oder 4-Chlorphenoxy, Methoxycarbonyl, Ethoxycarbonyl, Trifluormethoxycarbonyl, Isopropoxycarbonyl, tert-Butoxycarbonyl und Phenoxycarbonyl.

Ganz besonders bevorzugte Verbindungen der allgemeinen Formel I

20 mit X = C-R³ sind solche Verbindungen, worin R³ für Wasserstoff,
Halogen, insbesondere Fluor oder Chlor, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, insbesondere Fluormethyl, Difluormethyl, Trifluormethyl
und 2,2,2-Trifluorethyl, oder für Phenyl oder Phenoxy steht, wobei Phenyl oder Phenoxy einen, zwei oder drei und insbesondere

25 einen Substituenten, ausgewählt unter C₁-C₄-Alkyl, insbesondere
Methyl, Halogen, insbesondere Fluor oder Chlor, C₁-C₄-Alkoxy, insbesondere Methoxy, oder Halogenalkoxy, insbesondere Trifluormethoxy, tragen kann.

30 Unter den vorstehend genannten Pyrazolderivaten der allgemeinen Formel I sind solche Verbindungen besonders bevorzugt, die sich von der Benzothiazol-5-carbonsäure ableiten, also Verbindungen der allgemeinen Formel I, worin X für einen Rest C-R³ steht und Y ausgewählt ist unter S, SO, und SO₂. Unter den Pyrazol-Derivaten 35 des Benzothiazols sind wiederum solche bevorzugt, worin R³ eine der zuvor als bevorzugt genannten Bedeutungen aufweist. Insbesondere steht Y für S oder SO₂.

Erfindungsgemäß bevorzugt sind auch solche Pyrazolylderivate, die 40 sich von der Benzooxazol-5-carbonsäure ableiten, d.h. Verbindungen der allgemeinen Formel I, worin X für eine Gruppe C-R³ mit den zuvor für R³ angegebenen Bedeutungen und Y für ein Sauerstoffatom stehen. Hierunter sind wiederum solche Verbindungen bevorzugt, worin R³ die zuvor als bevorzugt angegebenen Bedeutungen aufweist.

Ebenfalls bevorzugt sind Pyrazolderivate der allgemeinen Formel I, die sich von der Benzimidazol-5-carbonsäure ableiten, also Verbindungen der allgemeinen Formel I, worin X für C-R³ mit den für R³ zuvor genannten Bedeutung n und Y für eine Gruppe N-R⁴ mit 5 den zuvor für R⁴ genannten Bedeutungen stehen. Hierunter sind solche Benzimidazolderivate der allgemeinen Formel I bevorzugt, worin R³ die zuvor als für R³ bevorzugt genannten Bedeutungen aufweist. Ferner sind Benzimidazol-Derivate der allgemeinen Formel I bevorzugt, worin R⁴ für Wasserstoff, C1-C6-Alkyl oder C1-C6-Halogenalkyl, insbesondere für Wasserstoff, Methyl, Ethyl, n-Propyl und iso-Propyl.

Erfindungsgemäß bevorzugt sind auch Pyrazolylderivate der Benzotriazol-5-carbonsäure, also Verbindungen der allgemeinen Formel

15 I, worin X für Stickstoff und Y für eine Gruppe N-R⁴ mit den zuvor für R⁴ angegebenen Bedeutungen steht. Hierunter sind wiederum solche Verbindungen bevorzugt, worin R⁴ die zuvor als bevorzugt angegebenen Bedeutungen aufweist.

20 Erfindungsgemäß bevorzugt sind auch Pyrazolylderivate der Benzothiadiazol-5-carbonsäure, also Verbindungen der allgemeinen Formel I, worin X für N und Y für S steht. Ebenfalls bevorzugt sind Pyrazolderivate der Benzoisothiadiazolcarbonsäure, also Verbindungen der allgemeinen Formel I, worin X-Y für S=N steht und X 25 für S steht.

Unter den als bevorzugt angegebenen Pyrazolyl-Derivaten der allgemeinen Formel I sind wiederum solche Verbindungen bevorzugt,
worin Pz in Formel I für eine Gruppe der allgemeinen Formel IIa
30 steht. Hierunter sind wiederum Verbindungen der allgemeinen Formel I besonders bevorzugt, worin die Variablen R⁸, R⁹ und R¹⁰ in
Formel IIa für sich alleine, und besonders bevorzugt in Kombination miteinander, die folgenden Bedeutungen aufweisen:

Hydroxy, Halogen, OR¹¹, SR¹¹, SO₂R¹², OSO₂R¹², NR¹⁵R¹⁶, ONR¹⁵R¹⁶ oder N-gebundenes Heterocyclyl, das partiell oder vollständig halogeniert sein kann und/oder einen, zwei oder drei der folgenden Reste tragen kann: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy, insbesondere Hydroxy, OR¹¹ und OSO₂R¹²;

R⁹ C₁-C₄-Alkyl oder Cyclopropyl;

45 R^{10} Wasserstoff oder C_1 - C_4 -Alkyl.

Unter den Verbindungen der allgemeinen Formel I, worin Pz für einen Pyrazolylrest der allgemeinen Formel IIa steht, sind solche Verbindungen ganz besonders bevorzugt, worin die Variablen \mathbb{R}^8 , \mathbb{R}^9 und \mathbb{R}^{10} gemeinsam di folgenden Bedeutungen aufweisen:

5

R8

für Hydroxy, C_1 - C_4 -Alkyloxy, O- CH_2 -Phenyl, Phenylcarbonyloxy, 2-, 3- oder 4-Fluorphenylcarbonyloxy, Cyclopropylcarbonyloxy, C_1 - C_4 -Sulfonyloxy, Phenylsulfonyloxy und 2-, 3- oder 4-Methylphenylsulfonyloxy;

10

R9 für C₁-C₄-Alkyl oder Cyclopropyl und

 R^{10} für Wasserstoff oder C_1 - C_4 -Alkyl stehen.

15 Ganz besonders bevorzugte Reste der allgemeinen Formel IIa sind die in Tabelle 1 angegebenen Reste IIa1 bis IIa90.

20

__ Tabelle 1

25	Tabelle 1				
	IIa	R ⁸	R ⁹	R ¹⁰	
	IIal	ОН	CH ₃	н	
	IIa2	OCH ₃	CH ₃	н	
	IIa3	OCH ₂ -C ₆ H ₅	CH ₃	H	
30	IIa4	OC(O)CH ₃	CH ₃	H	
	IIa5	OC(0)C ₆ H ₅	CH ₃	H	
	IIa6	$OC(0) - (3 - C_6H_4F)$	CH ₃	H	
	IIa7	OS(O) ₂ CH ₃	CH ₃	Н	
35	IIa8	$OS(0)_2 - (4 - C_6H_4CH_3)$	CH ₃	Н	
	IIa9	OH	C ₂ H ₅	H	
	IIa10	OCH ₃	C ₂ H ₅	H	
	IIall	OCH ₂ -C ₆ H ₅	C ₂ H ₅	Н	
40	IIal2	OC(O)CH ₃	C ₂ H ₅	Н	
	IIa13	OC(0)C ₆ H ₅	C ₂ H ₅	Н	
	IIal4	$OC(0) - (3 - C_6H_4F)$	C ₂ H ₅	Н	
	IIal5	OS(O) ₂ CH ₃	C ₂ H ₅	Н	
45	IIal6	$OS(O)_2 - (4 - C_6H_4CH_3)$	C ₂ H ₅	Н	
43	IIa17	ОН	i-C ₃ H ₇	Н	
	IIal8	OCH ₃	i-C ₃ H ₇	Н	

	IIa	R ⁸	R ⁹	R ¹⁰
	IIa19	OCH ₂ -C ₆ H ₅	i-C ₃ H ₇	Н
	IIa20	OC(O)CH ₃	i-C ₃ H ₇	Н
5	IIa21	OC(O)C ₆ H ₅	i-C ₃ H ₇	Н
5	IIa22	OC(O)-(3-C ₆ H ₄ F)	i-C ₃ H ₇	Н
	IIa23	OS(O) ₂ CH ₃	i-C ₃ H ₇	Н
	IIa24	OS(O) ₂ -(4-C ₆ H ₄ CH ₃)	i-C ₃ H ₇	Н
10	IIa25	OH	t-C ₄ H ₉	Н
10	IIa26	OCH ₃	t-C ₄ H ₉	Н
	IIa27	OCH ₂ -C ₆ H ₅	t-C ₄ H ₉	Н
	IIa28	OC(O)CH ₃	t-C ₄ H ₉	Н
	IIa29	OC(O)C ₆ H ₅	t-C ₄ H ₉	Н
15	IIa30	OC(O)-(3-C ₆ H ₄ F)	t-C ₄ H ₉	Н
	IIa31	OS(O) ₂ CH ₃	t-C ₄ H ₉	н
	IIa32	$OS(O)_2-(4-C_6H_4CH_3)$	t-C ₄ H ₉	н
	IIa33	ОН	CH ₃	CH ₃
20	IIa34	OCH ₃	CH ₃	CH ₃
	IIa35	OCH ₂ -C ₆ H ₅	CH ₃	CH ₃
25	IIa36	OC(O)CH ₃	CH ₃	CH ₃
	IIa37	OC(0)C ₆ H ₅	CH₃	CH ₃
	IIa38	$OC(O) - (3 - C_6H_4F)$	CH ₃	CH ₃
	IIa39	OS(O) ₂ CH ₃	CH ₃	CH ₃
	IIa40	$OS(O)_2-(4-C_6H_4CH_3)$	CH₃	CH ₃
	IIa41	ОН	C ₂ H ₅	CH ₃
30	IIa42	OCH ₃	C ₂ H ₅	CH ₃
30	IIa43	OCH ₂ -C ₆ H ₅	C ₂ H ₅	CH ₃
	IIa44	OC(O)CH ₃	C ₂ H ₅	CH ₃
	IIa45	OC(O)C ₆ H ₅	C ₂ H ₅	CH ₃
	IIa46	$OC(O) - (3 - C_6H_4F)$	C ₂ H ₅	CH ₃
35	IIa47	OS(O) ₂ CH ₃	C ₂ H ₅	CH ₃
	IIa48	$OS(O)_2 - (4 - C_6H_4CH_3)$	C ₂ H ₅	CH ₃
	IIa49	OH	i-C ₃ H ₇	CH ₃
	IIa50	OCH ₃	i-C ₃ H ₇	CH ₃
40	IIa51	OCH ₂ -C ₆ H ₅	i-C ₃ H ₇	CH ₃
	IIa52	OC(O)CH ₃	i-C ₃ H ₇	CH ₃
	IIa53	OC(O)C ₆ H ₅	i-C ₃ H ₇	CH ₃
	IIa54	$OC(O) - (3 - C_6H_4F)$	i-C ₃ H ₇	CH ₃
45	IIa55	OS(O) ₂ CH ₃	i-C ₃ H ₇	CH ₃
-	IIa56	$OS(O)_2 - (4 - C_6H_4CH_3)$	i-C ₃ H ₇	CH ₃
	IIa57	ОН	t-C ₄ H ₉	CH ₃

	IIa	R8	R ⁹	R ¹⁰
	IIa58	осн3	t-C ₄ H ₉	CH ₃
	IIa59	OCH ₂ -C ₆ H ₅	t-C ₄ H ₉	CH ₃
5	IIa60	OC(O)CH ₃	t-C ₄ H ₉	CH ₃
-	IIa61	OC(O)C ₆ H ₅	t-C ₄ H ₉	CH ₃
	IIa62	$OC(0) - (3 - C_6H_4F)$	t-C ₄ H ₉	CH ₃
	IIa63	OS(O) ₂ CH ₃	t-C ₄ H ₉	CH ₃
	IIa64	$OS(O)_2 - (4 - C_6H_4CH_3)$	t-C ₄ H ₉	CH ₃
10	IIa65	ОН	C-C ₃ H ₅	CH ₃
	IIa66	OCH ₃	с-C ₃ H ₅	CH ₃
	IIa67	OCH ₂ -C ₆ H ₅	C-C ₃ H ₅	CH ₃
	IIa68	OC(O)CH ₃	C-C3H5	CH ₃
15	IIa69	OC(O)C ₆ H ₅	с-C ₃ H ₅	CH ₃
	IIa70	OC(O)-(3-C ₆ H ₄ F)	C-C ₃ H ₅	CH ₃
	IIa71	OS(O) ₂ CH ₃	C-C ₃ H ₅	CH ₃
	IIa72	$OS(O)_2 - (4 - C_6H_4CH_3)$	c-C ₃ H ₅	CH ₃
20	IIa73	ОН	с-C ₃ H ₅	H
	IIa74	OCH ₃	C-C3H5	H
	IIa75	OCH ₂ -C ₆ H ₅	с-С ₃ Н ₅	Н
	IIa76	OC(O)CH ₃	C-C ₃ H ₅	H
25	IIa77	OC(0)C ₆ H ₅	c-C ₃ H ₅	H
	IIa78	$OC(0) - (3 - C_6H_4F)$	c-C ₃ H ₅	Н
	IIa79	OS(O) ₂ CH ₃	c-C ₃ H ₅	Н
	IIa80	$OS(O)_2 - (4 - C_6H_4CH_3)$	с-C ₃ H ₅	Н
20	IIa81	OC(0)c-C ₃ H ₅	CH3	Н
30	IIa82	OC(0)-c-C ₃ H ₅	C ₂ H ₅	Н
	IIa83	OC(0)-c-C ₃ H ₅	i-C ₃ H ₇	H
	IIa84	OC(O)-c-C ₃ H ₅	t-C ₄ H ₉	H
	IIa85	OC(O)-c-C ₃ H ₅	C-C ₃ H ₅	H
35	IIa86	OC(0)-c-C ₃ H ₅	CH ₃	CH ₃
	IIa87	OC(O)-c-C ₃ H ₅	C ₂ H ₅	CH ₃
	IIa88	OC(0)-c-C ₃ H ₅	i-C ₃ H ₇	CH ₃
	IIa89	OC(O)-c-C ₃ H ₅	t-C ₄ H ₉	CH ₃
40	IIa90	OC(O)-c-C ₃ H ₅	C-C ₃ H ₅	CH ₃

i-C₃H₇: Isopropyl c-C₃H₅: Cyclopropyl t-C₄H₉: tertiär-Butyl

45 C₆H₅: Phenyl

3-C₆H₄F: 3-Fluorphenyl 4-C₆H₄CH₃: 4-Methylphenyl

Tabelle A: Besonders bevorzugte Kombinationen von \mathbb{R}^1 , \mathbb{R}^2 und \mathbb{R}^3

_ [R ³	R ¹	R ²
5	1	Н	CH ₃	CH ₃
	2	F	CH ₃	CH ₃
10	3	Cl	CH ₃	CH ₃
	4	Br	CH ₃	CH ₃
	5	ОН	CH ₃	CH ₃
[6	SH	CH ₃	CH ₃
	7	NH ₂	CH ₃	CH ₃
	8	CN	CH ₃	CH ₃
15	9	NO ₂	CH ₃	CH ₃
	10	SCN	CH ₃	CH ₃
	11	NH-NH ₂	CH ₃	CH ₃
	12	CH ₃	CH ₃	CH ₃
20	13	C ₂ H ₅	CH ₃	CH ₃
	14	n-C ₃ H ₇	CH ₃	CH ₃
	15	i-C ₃ H ₇	CH ₃	CH ₃
	16	n-C ₄ H ₉	CH ₃	CH ₃
	17	s-C ₄ H ₉	CH ₃	CH ₃
25	18	i-C ₄ H ₉	CH ₃	CH ₃
Ì	19	t-C ₄ H ₉	CH ₃	CH ₃
	20	CH ₂ Cl	CH ₃	CH ₃
	21	CHCl ₂	CH ₃	CH ₃
30	22	CCl ₃	CH ₃	CH ₃
	23	CH₂F	CH ₃	CH ₃
	24	CHF ₂	CH ₃	CH ₃
	25	CF ₃	CH ₃	CH ₃
35	62	CH ₂ CF ₃	CH ₃	CH ₃
	27	CH ₂ OCH ₃	CH ₃	CH ₃
	28	CH ₂ OCH ₂ CH ₃	CH ₃	CH ₃
	29	CH ₂ NH ₂	CH ₃	CH ₃
40	30	OCH ₃	CH ₃	CH ₃
40	31	OC ₂ H ₅	CH ₃	CH ₃
	32	O-n-C ₃ H ₇	CH ₃	CH ₃
[33	O-i-C ₃ H ₇	CH ₃	CH ₃
	34	O-n-C ₄ H ₉	CH ₃	CH ₃
45	35	O-s-C ₄ H ₉	CH ₃	CH ₃
[36	O-i-C ₄ H ₉	CH ₃	CH ₃

i		R ³	R ¹	R ²
	37	O-t-C ₄ H ₉	CH ₃	CH ₃
	38	OCHF ₂	CH ₃	CH ₃
_	39	OCF ₃	CH ₃	CH ₃
5	40	OCH ₂ CF ₃	CH ₃	CH ₃
	41	OCH ₂ OCH ₃	CH ₃	CH ₃
	42	SCH ₃	CH ₃	CH ₃
	43	SC ₂ H ₅	CH ₃	CH ₃
10	44	S-n-C ₃ H ₇	CH ₃	CH ₃
	45	S-i-C ₃ H ₇	CH ₃	CH ₃
	46	S-n-C ₄ H ₉	CH ₃	CH ₃
	47	S-s-C ₄ H ₉	CH ₃	CH ₃
15	48	S-i-C ₄ H ₉	CH ₃	CH ₃
	49	S-t-C ₄ H ₉	CH ₃	CH ₃
	50	SCHF ₂	CH ₃	CH ₃
	51	SCF ₃	CH ₃	CH ₃
20	52	SCH ₂ CF ₃	CH ₃	CH ₃
	53	SCH ₂ OCH ₃	CH ₃	CH ₃
	54	NHCH ₃	CH ₃	CH ₃
25	55	NHC ₂ H ₅	CH ₃	CH ₃
	56	NH-Phenyl	CH ₃	CH ₃
	57	N(CH ₃) ₂	CH ₃	CH ₃
	58	N(CH ₂ CH ₃) ₂	CH ₃	CH ₃
	59	N(Phenyl) ₂	CH ₃	CH ₃
30	60	(CH ₂) ₂ COCH ₃	CH ₃	CH ₃
	61	Phenyl	CH ₃	CH ₃
	62	2-F-Phenyl	CH ₃	CH ₃
	63	3-F-Phenyl	CH ₃	CH ₃
	64	4-F-Phenyl	CH3	CH ₃
35	65	2-Cl-Phenyl	CH ₃	CH ₃
	66	3-Cl-Phenyl	CH ₃	CH ₃
	67	4-Cl-Phenyl	CH ₃	CH ₃
	68	2-OH-Phenyl	CH ₃	CH ₃
40	69	3-OH-Phenyl	CH ₃	CH ₃
	70	4-OH-Phenyl	CH ₃	CH ₃
	7.1	2-OCH ₃ -Phenyl	CH ₃	CH ₃
	72	3-OCH ₃ -Phenyl	CH ₃	CH ₃
45	73	4-OCH ₃ -Phenyl	CH ₃	CH ₃
	74	2-OCF ₃ -Phenyl	CH ₃	CH ₃
	75	3-OCF ₃ -Phenyl	CH ₃	CH ₃

		R ³	R ¹	R ²
	76	4-OCF ₃ -Phenyl	CH ₃	CH ₃
	77	2-OCHF ₂ -Phenyl	CH ₃	CH ₃
5	78	3- OCHF ₂ -Phenyl	CH ₃	CH ₃
٠,	79	4-OCHF ₂ -Phenyl	СН3	CH ₃
	80	2-CF ₃ -Phenyl	CH ₃	CH ₃
	81	3-CF ₃ -Phenyl	CH ₃	CH ₃
	82	4-CF ₃ -Phenyl	CH ₃	CH ₃
10	83	2-CH ₃ -Phenyl	CH ₃	CH ₃
	84	3-CH ₃ -Phenyl	CH ₃	CH ₃
	85	4-CH ₃ -Phenyl	CH ₃	CH ₃
	86	2-NO ₂ -Phenyl	CH ₃	CH ₃
15	87	3-NO ₂ -Phenyl	CH ₃	CH ₃
Ì	88	4-NO ₂ -Phenyl	CH ₃	СН3
	89	2-Pyridyl	CH ₃	CH ₃
Ì	90	3-Pyridyl	CH ₃	CH ₃
20	91	4-Pyridyl	CH ₃	CH ₃
	92	3'-CH ₃ -2-pyridyl	CH ₃	CH ₃
	. 93	4'-CH ₃ -2-pyridyl	CH ₃	CH ₃
	94	5'-CH ₃ -2-pyridyl	CH ₃	CH ₃
25	95	6'-CH ₃ -2-pyridyl	CH ₃	CH ₃
	96	2'-CH ₃ -3-pyridyl	CH ₃	CH ₃
	97	4'-CH ₃ -3-pyridyl	CH ₃	CH ₃
	98	5'-CH ₃ -3-pyridyl	CH ₃	CH ₃
-	99	6'-CH ₃ -3-pyridyl	CH ₃	CH ₃
30	100	2'-CH ₃ -4-pyridyl	CH ₃	CH ₃
	101	3'-CH ₃ -4-pyridyl	CH ₃	CH ₃
	102	3'-Cl-2-pyridyl	CH ₃	CH ₃
	103	4'-Cl-2-pyridyl	CH ₃	CH ₃
35	104	5'-Cl-2-pyridyl	CH ₃	CH ₃
	105	6'-Cl-2-pyridyl	CH ₃	CH ₃
	106	2'-Cl-3-pyridyl	CH ₃	CH ₃
	107	4'-Cl-3-pyridyl	CH ₃	CH ₃
40	108	5'-Cl-3-pyridyl	CH ₃	CH ₃
	109	6'-Cl-3-pyridyl	CH ₃	CH ₃
	110	2'-Cl-4-pyridyl	CH ₃	CH ₃
	111	3'-Cl-4-pyridyl	CH ₃	CH ₃
45	112	Cyclohexylamino	CH ₃	CH ₃
	113	Cyclopentylamino	CH ₃	CH ₃
	114	Morpholino	CH ₃	CH ₃

		R ³	R ¹	R ²
	115	CO ₂ H	CH ₃	CH ₃
5	116	CO ₂ CH ₃	CH ₃	CH ₃
	117	CO ₂ C ₂ H ₅	CH ₃	CH ₃
	118	CO ₂ -n-C ₃ H ₇	CH ₃	CH ₃
	119	CO ₂ -i-C ₃ H ₇	CH ₃	CH ₃
	120	CO ₂ -n-C ₄ H ₉	CH ₃	CH ₃
10	121	CO2-s-C4H9	CH ₃	CH ₃
10	122	CO ₂ -i-C ₄ H ₉	CH ₃	CH ₃
	123	CO ₂ -t-C ₄ H ₉	CH ₃	CH ₃
	124	CO ₂ -Ph	CH ₃	CH ₃
	125	CO ₂ -3-Pyridyl	CH ₃	CH ₃
15	126	CONHCH ₃	CH ₃	CH ₃
	127	CONHC ₂ H ₅	CH ₃	CH ₃
	128	CONHPh	CH ₃	CH ₃
	129	CON(CH ₃) ₂	CH ₃	CH ₃
20	130	CON(CH ₂ CH ₃) ₂	CH ₃	CH ₃
	131	CON(Phenyl) ₂	CH ₃	CH ₃
	132	Н	OCH ₃	CH ₃
	133	F	OCH ₃	CH ₃
25	134	Cl	OCH ₃	CH ₃
	135	Br	OCH ₃	CH ₃
	136	ОН	OCH ₃	CH ₃
	137	SH	OCH ₃	CH ₃
	138	NH ₂	OCH ₃	CH ₃
30	139	CN	OCH ₃	CH ₃
	140	NO ₂	OCH ₃	CH ₃
	141	SCN	OCH ₃	CH ₃
	142	NH-NH ₂	OCH ₃	CH ₃
35	143	CH ₃	OCH ₃	CH ₃
	144	C ₂ H ₅	OCH ₃	CH ₃
	145	n-C ₃ H ₇	OCH ₃	CH ₃
	146	i-C ₃ H ₇	OCH ₃	CH ₃
40	147	n-C ₄ H ₉	OCH ₃	CH ₃
	148	S-C ₄ H ₉	OCH ₃	CH ₃
	149	i-C ₄ H ₉	OCH ₃	CH ₃
	150	t-C ₄ H ₉	OCH ₃	CH ₃
A =	151	CH ₂ Cl	OCH ₃	CH ₃
45	152	CHCl ₂	OCH ₃	CH ₃
	153	CCl ₃	OCH ₃	CH ₃

ſ	· · · · · · · · · · · · · · · · · · ·	R ³	R ¹	R ²
	154			
	154	CH ₂ F	OCH ₃	CH ₃
5	155	CHF ₂	OCH ₃	CH ₃
	156	CF ₃	OCH ₃	CH ₃
	157	CH ₂ CF ₃	OCH ₃	CH ₃
	158	CH ₂ OCH ₃	OCH ₃	CH ₃
	159	CH ₂ OCH ₂ CH ₃	OCH ₃	CH ₃
10	160	CH ₂ NH ₂	OCH ₃	CH ₃
	161	OCH ₃	OCH ₃	CH ₃
	162	OC ₂ H ₅	OCH ₃	CH ₃
	163	O-n-C ₃ H ₇	OCH ₃	CH ₃
	164	O-i-C ₃ H ₇	OCH ₃	CH ₃
15	165	O-n-C ₄ H ₉	OCH ₃	CH ₃
	166	O-s-C ₄ H ₉	OCH ₃	CH ₃
	167	O-i-C ₄ H ₉	OCH ₃	CH ₃
	168	O-t-C ₄ H ₉	OCH ₃	CH ₃
20	169	OCHF ₂	OCH ₃	CH ₃
	170	OCF ₃	OCH ₃	CH ₃
	171	OCH ₂ CF ₃	OCH ₃	CH ₃
	172	OCH ₂ OCH ₃	OCH ₃	CH ₃
25	173	SCH ₃	OCH ₃	CH ₃
23	174	SC ₂ H ₅	OCH ₃	CH ₃
	175	S-n-C ₃ H ₇	OCH ₃	CH ₃
	176	S-i-C ₃ H ₇	OCH ₃	CH ₃
	177	S-n-C ₄ H ₉	OCH ₃	CH ₃
30	178	S-s-C ₄ H ₉	OCH ₃	CH ₃
	179	S-i-C ₄ H ₉	OCH ₃	CH ₃
	180	S-t-C ₄ H ₉	OCH ₃	CH ₃
	181	SCHF ₂	OCH ₃	CH ₃
35	182	SCF ₃	OCH ₃	CH ₃
	183	SCH ₂ CF ₃	OCH ₃	CH ₃
	184	SCH ₂ OCH ₃	OCH ₃	CH ₃
	185	NHCH ₃	OCH ₃	CH ₃
40	186	NHC ₂ H ₅	OCH ₃	CH ₃
10	187	NHPhenyl	OCH ₃	CH ₃
	188	N(CH ₃) ₂	OCH ₃	CH ₃
	189	N(CH ₂ CH ₃) ₂	осн ₃	CH ₃
	190	N(Phenyl) ₂	осн ₃	CH ₃
45	191	(CH ₂) ₂ COCH ₃	OCH ₃	CH ₃
	192	Phenyl	OCH ₃	CH ₃
	L	1		

[R ³	R ¹	R ²
	193	2-F-Phenyl	OCH ₃	CH ₃
	194	3-F-Phenyl	OCH ₃	CH ₃
5	195	4-F-Phenyl	OCH ₃	CH ₃
	196	2-Cl-Phenyl	OCH ₃	CH ₃
	197	3-Cl-Phenyl	OCH ₃	CH ₃
İ	198	4-Cl-Phenyl	OCH ₃	CH ₃
_	199	2-OH-Phenyl	OCH ₃	CH ₃
10	200	3-OH-Phenyl	OCH ₃	CH ₃
Ì	201	4-OH-Phenyl	OCH ₃	CH ₃
Ì	202	2-OCH ₃ -Phenyl	OCH ₃	CH ₃
	203	3-OCH ₃ -Phenyl	OCH ₃	CH ₃
15	204	4-OCH ₃ -Phenyl	OCH ₃	CH ₃
Ī	205	2-OCF ₃ -Phenyl	OCH ₃	CH ₃
Ī	206	3-OCF ₃ -Phenyl	OCH ₃	CH ₃
	207	4-OCF ₃ -Phenyl	OCH ₃	CH ₃
20	208	2-OCHF ₂ -Phenyl	OCH ₃	CH ₃
	209	3-OCHF ₂ -Phenyl	OCH ₃	CH ₃
	210	4-OCHF ₂ -Phenyl	OCH ₃	CH ₃
[211	2-CF ₃ -Phenyl	OCH ₃	CH ₃
25	212	3-CF ₃ -Phenyl	OCH ₃	CH ₃
	213	4-CF ₃ -Phenyl	OCH ₃	CH ₃
}	21.4	2-CH ₃ -Phenyl	OCH ₃	CH ₃
	215	3-CH ₃ -Phenyl	OCH ₃	CH ₃
a [216	4-CH ₃ -Phenyl	OCH ₃	CH ₃
30	217	2-NO ₂ -Phenyl	OCH ₃	CH ₃
	218	3-NO ₂ -Phenyl	OCH ₃	CH ₃
	219	4-NO ₂ -Phenyl	OCH ₃	CH ₃
	220	2-Pyridyl	OCH ₃	CH ₃
35	221	3-Pyridyl	OCH ₃	CH ₃
	222	4-Pyridyl	OCH ₃	CH ₃
	223	3'-CH ₃ -2-pyridyl	OCH ₃	CH ₃
ļ	224	4'-CH ₃ -2-pyridyl	OCH ₃	CH ₃
40	225	5'-CH ₃ -2-pyridyl	OCH ₃	CH ₃
	226	6'-CH ₃ -2-pyridyl	OCH ₃	CH ₃
	227	2'-CH ₃ -3-pyridyl	OCH ₃	CH ₃
	228	4'-CH ₃ -3-pyridyl	OCH ₃	CH ₃
45	229	5'-CH ₃ -3-pyridyl	OCH ₃	CH ₃
	230	6'-CH ₃ -3-pyridyl	OCH ₃	CH ₃
	231	2'-CH ₃ -4-pyridyl	OCH ₃	CH ₃

-			T_1	1-2
Į		R ³	R ¹	R ²
	232	3'-CH ₃ -4-pyridyl	OCH ₃	CH ₃
5	233	3'-Cl-2-pyridyl	OCH ₃	CH ₃
	234	4'-Cl-2-pyridyl	OCH ₃	CH ₃
	235	5'-Cl-2-pyridyl	OCH ₃	CH ₃
	236	6'-Cl-2-pyridyl	OCH ₃	CH ₃
	237	2'-Cl-3-pyridyl	OCH ₃	CH ₃
10	238	4'-Cl-3-pyridyl	OCH ₃	CH ₃
10	239	5'-Cl-3-pyridyl	OCH ₃	CH ₃
Ī	240	6'-Cl-3-pyridyl	OCH ₃	CH ₃
Ī	241	2'-Cl-4-pyridyl	OCH ₃	CH ₃
Ī	242	3'-Cl-4-pyridyl	OCH ₃	CH ₃
15	243	Cyclohexylamino	OCH ₃	CH ₃
	244	Cyclopentylamino	OCH ₃	CH ₃
Ì	245	Morpholino	OCH ₃	CH ₃
Ì	246	CO ₂ H	OCH ₃	CH ₃
20	247	CO ₂ CH ₃	OCH ₃	CH ₃
- 1	248	CO ₂ C ₂ H ₅	OCH ₃	CH ₃
	249	CO ₂ -n-C ₃ H ₇	OCH ₃	CH ₃
Ì	250	CO ₂ -i-C ₃ H ₇	OCH ₃	CH ₃
25	251	CO ₂ -n-C ₄ H ₉	OCH ₃	CH ₃
	252	CO ₂ -s-C ₄ H ₉	OCH ₃	CH ₃
	253	CO ₂ -i-C ₄ H ₉	OCH ₃	CH ₃
.	254	CO ₂ -t-C ₄ H ₉	OCH ₃	CH ₃
	255	CO ₂ -Ph	OCH ₃	CH ₃
30	256	CO ₂ -3-Pyridyl	OCH ₃	CH ₃
	257	CONHCH ₃	OCH ₃	CH ₃
	258	CONHC ₂ H ₅	OCH ₃	CH ₃
	259	CONHPhenyl	OCH ₃	CH ₃
35	260	CON(CH ₃) ₂	OCH ₃	CH ₃
	261	CON(CH ₂ CH ₃) ₂	OCH ₃	CH ₃
	262	CON(Phenyl) ₂	OCH ₃	CH ₃
	263	Н	Cl	CH ₃
40	264	F	Cl	CH ₃
	265	Cl	Cl	CH ₃
	266	Br	C1	CH ₃
	267	ОН	C1	CH ₃
4-	268	SH	C1	CH ₃
45	269	NH ₂	C1	CH ₃
	270	CN	C1	CH ₃

	49			
ſ		R ³	R ¹	R ²
ļ	271	NO ₂	Cl	CH ₃
İ	272	SCN	Cl	CH ₃
5	273	NH-NH ₂	Cl	CH ₃
	274	CH ₃	Cl	CH ₃
Ì	275	C ₂ H ₅	Cl	CH ₃
Ì	276	n-C ₃ H ₇	Cl	CH ₃
	277	i-C ₃ H ₇	Cl	CH ₃
10	278	n-C ₄ H ₉	Cl	CH ₃
	279	s-C ₄ H ₉	Cl	CH ₃
	280	i-C ₄ H ₉	Cl	CH ₃
	281	t-C ₄ H ₉	Cl	CH ₃
15	282	CH ₂ Cl	Cl	CH ₃
	283	CHCl ₂	Cl	CH ₃
	284	CCl ₃	Cl	CH ₃
	285	CH ₂ F	Cl	CH ₃
20	286	CHF ₂	Cl	CH ₃
	287	CF ₃	Cl	CH ₃
	288	CH ₂ CF ₃	Cl	CH ₃
25	289	CH ₂ OCH ₃	Cl	CH ₃
	290	CH ₂ OCH ₂ CH ₃	Cl	CH ₃
23	291	CH ₂ NH ₂	Cl	CH ₃
	292	OCH ₃	Cl	CH ₃
	293	OC ₂ H ₅	Cl	CH ₃
	294	O-n-C ₃ H ₇	Cl	CH ₃
30	295	O-i-C ₃ H ₇	Cl	CH ₃
	296	O-n-C ₄ H ₉	Cl	CH ₃
	297	O-s-C ₄ H ₉	Cl	CH ₃
	298	O-i-C ₄ H ₉	Cl	CH ₃
35	299	O-t-C ₄ H ₉	Cl	CH ₃
	300	OCHF ₂	Cl	CH ₃
	301	OCF ₃	Cl	CH ₃
	302	OCH ₂ CF ₃	Cl	CH ₃
40	303	OCH ₂ OCH ₃	Cl	CH ₃
	304	SCH ₃	Cl	CH ₃
	305	SC ₂ H ₅	Cl	CH ₃
	306	S-n-C ₃ H ₇	Cl	CH ₃
45	307	S-i-C ₃ H ₇	Cl	CH ₃
40	308	S-n-C ₄ H ₉	Cl	CH ₃
	309	S-s-C ₄ H ₉	cl	CH ₃

_				
		R ³	R ¹	R ²
Ī	310	S-i-C ₄ H ₉	Cl	CH ₃
ļ	311	S-t-C ₄ H ₉	Cl	CH ₃
5	312	SCHF ₂	Cl	CH ₃
	313	SCF ₃	Cl	CH ₃
	314	SCH ₂ CF ₃	Cl	CH ₃
	315	SCH ₂ OCH ₃	Cl	CH ₃
	316	NHCH ₃	Cl	CH ₃
10	317	NHC ₂ H ₅	Cl	CH ₃
	318	NH-Phenyl	Cl	CH ₃
l	319	N(CH ₃) ₂	Cl	CH ₃
	320	N(CH ₂ CH ₃) ₂	Cl	CH ₃
15	321	N(Phenyl) ₂	Cl	CH ₃
	322	(CH ₂) ₂ COCH ₃	Cl	CH ₃
	323	Phenyl	Cl.	CH ₃
	324	2-F-Phenyl	Cl	CH ₃
20	325	3-F-Phenyl	Cl	CH ₃
	362	4-F-Phenyl	Cl	CH ₃
	327	2-C1-Phenyl	Cl	CH ₃
	328	3-Cl-Phenyl	Cl	CH ₃
25	329	4-Cl-Phenyl	Cl	CH ₃
	330	2-OH-Phenyl	Cl	CH ₃
	331	3-OH-Phenyl	Cl	CH ₃
	332	4-OH-Phenyl	Cl	CH₃ ·
	333	2-OCH ₃ -Phenyl	Cl	CH ₃
30	334	3-OCH ₃ -Phenyl	Cl	CH ₃
	335	4-OCH ₃ -Phenyl	Cl	CH ₃
	336	2-OCF ₃ -Phenyl	Cl	CH ₃
	337	3-OCF ₃ -Phenyl	Cl	CH ₃
35	338	4-OCF ₃ -Phenyl	Cl	CH ₃
	339	2-OCHF ₂ -Phenyl	Cl	CH ₃
	340	3- OCHF ₂ -Phenyl	Cl	CH ₃
	341	4-OCHF ₂ -Phenyl	Cl	CH ₃
40	342	2-CF ₃ -Phenyl	Cl	CH ₃
	343	3-CF ₃ -Phenyl	Cl	CH ₃
	344	4-CF ₃ -Phenyl	Cl	CH ₃
	345	2-CH ₃ -Phenyl	Cl	CH ₃
45	346	3-CH ₃ -Phenyl	Cl	CH ₃
40	347	4-CH ₃ -Phenyl	Cl	CH ₃
	348	2-NO ₂ -Phenyl	Cl	CH ₃

		R ³	p1	R ²
			R ¹	ļ
	349	3-NO ₂ -Phenyl	Cl	CH ₃
	350	4-NO ₂ -Phenyl	Cl	CH ₃
5	351	2-Pyridyl	Cl	CH ₃
	352	3-Pyridyl	Cl	CH ₃
	353	4-Pyridyl	Cl	CH ₃
	354	3'-CH ₃ -2-pyridyl	Cl	CH ₃
10	355	4'-CH ₃ -2-pyridyl	Cl	CH ₃
10	356	5'-CH ₃ -2-pyridyl	Cl	CH ₃
	357	6'-CH ₃ -2-pyridyl	Cl	CH ₃
	358	2'-CH ₃ -3-pyridyl	Cl	CH ₃
	359	4'-CH ₃ -3-pyridyl	Cl	CH ₃
15	360	5'-CH ₃ -3-pyridyl	Cl	CH ₃
Ì	361	6'-CH ₃ -3-pyridyl	Cl	CH ₃
ļ	362	2'-CH ₃ -4-pyridyl	Cl	CH ₃
l	363	3'-CH ₃ -4-pyridyl	Cl	CH ₃
20	364	3'-Cl-2-pyridyl	Cl	CH ₃
Ì	365	4'-Cl-2-pyridyl	Cl	CH ₃
İ	366	5'-Cl-2-pyridyl	Cl	CH ₃
ļ	367	6'-Cl-2-pyridyl	Cl	CH ₃
25	368	2'-Cl-3-pyridyl	Cl	CH ₃
	369	4'-Cl-3-pyridyl	Cl	CH ₃
	370	5'-Cl-3-pyridyl	Cl	CH ₃
Ì	371	6'-Cl-3-pyridyl	Cl	CH ₃
	372	2'-Cl-4-pyridyl	Cl	CH ₃
30	373	3'-Cl-4-pyridyl	Cl	CH ₃
ļ	374	Cyclohexylamino	Cl	CH ₃
	375	Cyclopentylamino	Cl	CH ₃
Ī	376	Morpholino	Cl	CH ₃
35	377	CO ₂ H	Cl	CH ₃
Ī	378	CO ₂ CH ₃	Cl	CH ₃
	379	CO ₂ C ₂ H ₅	Cl	CH ₃
	380	CO ₂ -n-C ₃ H ₇	Cl	CH ₃
40	381	CO ₂ -i-C ₃ H ₇	Cl	CH ₃
	382	CO ₂ -n-C ₄ H ₉	Cl	CH ₃
	383	CO2-s-C4H9	Cl	CH ₃
ļ	384	CO ₂ -i-C ₄ H ₉	Cl	CH ₃
.	385	CO ₂ -t-C ₄ H ₉	Cl	CH ₃
45	386	CO ₂ -Phenyl	Cl	CH ₃
Ì	387	CO ₂ -3-Pyridyl	Cl	CH ₃
•				

ſ		R ³	R ¹	R ²
ľ	388	CONHCH ₃	Cl	CH ₃
	389	CONHC ₂ H ₅	Cl	CH ₃
5	390	CONH-Phenyl	Cl	CH ₃
	391	CON(CH ₃) ₂	Cl	CH ₃
	392	CON (CH ₂ CH ₃) ₂	Cl	CH ₃
Ţ	393	CON(Phenyl) ₂	Cl	CH ₃
[394	Н	CH ₃	H
10	394	F	CH ₃	Н
	396	Cl	CH ₃	н
Ī	397	Br	CH ₃	H
Ī	398	ОН	CH ₃	H
15	399	SH	CH ₃	Н
Ī	400	NH ₂	CH ₃	Н
Ī	401	CN	CH ₃	Н
Ţ	402	NO ₂	CH ₃	Н
20	403	SCN	CH ₃	Н
	404	NH-NH ₂	CH ₃	Н
	405	CH ₃	CH ₃	Н
	406	C ₂ H ₅	CH ₃	. Н
25	407	n-C ₃ H ₇	CH ₃	Н
	408	i-C ₃ H ₇	CH ₃	H
	049	n-C ₄ H ₉	CH ₃	H
	410	s-C ₄ H ₉	CH ₃	H
	411	i-C ₄ H ₉	CH ₃	Н
30	412	t-C ₄ H ₉	CH ₃	Н
	413	CH ₂ Cl	CH ₃	Н
	414	CHCl ₂	CH ₃	Н
	415	CCl ₃	CH ₃	Н
35	416	CH ₂ F	CH ₃	Н
	417	CHF ₂	CH ₃	H
	418	CF ₃	CH ₃	H
	419	CH ₂ CF ₃	CH ₃	H
40	420	CH ₂ OCH ₃	CH ₃	Н
20	421	CH ₂ OCH ₂ CH ₃	CH ₃	H
	422	CH ₂ NH ₂	CH ₃	H
	423	OCH ₃	CH ₃	H
45	424	OC ₂ H ₅	CH ₃	Н
# J	425	O-n-C ₃ H ₇	CH ₃	Н
	462	O-i-C ₃ H ₇	CH ₃	Н
		•		

ſ		R ³	R ¹	R ²
Ī	427	O-n-C ₄ H ₉	CH ₃	H
Ī	428	O-s-C ₄ H ₉	CH ₃	Н
5	429	O-i-C ₄ H ₉	CH ₃	H
	430	O-t-C ₄ H ₉	CH ₃	Н
	431	OCHF ₂	CH ₃	H
	432	OCF ₃	CH ₃	Н
	433	OCH ₂ CF ₃	CH ₃	Н
10	434	OCH ₂ OCH ₃	CH ₃	Н
	435	SCH ₃	CH ₃	H ·
	436	SC ₂ H ₅	CH ₃	Н
Ī	437	S-n-C ₃ H ₇	CH ₃	Н
15	438	S-i-C ₃ H ₇	CH ₃	H
Ī	439	S-n-C ₄ H ₉	CH ₃	Н
Ī	440	S-s-C ₄ H ₉	СН3	H
ŀ	441	S-i-C ₄ H ₉	CH ₃	H
20	442	S-t-C ₄ H ₉	CH ₃	H
Ī	443	SCHF ₂	CH ₃	H
Ì	444	SCF ₃	CH ₃	H
Ì	445	SCH ₂ CF ₃	CH ₃	Н
25	446	SCH ₂ OCH ₃	CH ₃	H
23	447	NHCH ₃	CH ₃	Н
	448	NHC ₂ H ₅	CH ₃	Н
ı	449	NH-Phenyl	CH ₃	H
Ī	450	N(CH ₃) ₂	CH ₃	H
30	451	N(CH ₂ CH ₃) ₂	CH ₃	Н
	452	N(Phenyl) ₂	CH ₃	H
	453	(CH ₂) ₂ COCH ₃	CH ₃	H
	454	Phenyl	CH ₃	Н
35	455	2-F-Phenyl	CH ₃	Н
	456	3-F-Phenyl	CH ₃	Н
	457	4-F-Phenyl	CH ₃	Н
	458	2-Cl-Phenyl	CH ₃	H
40	459	3-Cl-Phenyl	CH ₃	Н
	460	4-Cl-Phenyl	CH ₃	Н
	461	2-OH-Phenyl	CH ₃	Н
	462	3-OH-Phenyl	CH ₃	Н
A =	463	4-OH-Phenyl	CH ₃	Н
45	464	2-OCH ₃ -Phenyl	CH ₃	Н
	465	3-OCH ₃ -Phenyl	CH ₃	Н

		R ³	R ¹	R ²
l	466	4-OCH ₃ -Phenyl	CH ₃	H
ľ	467	2-OCF ₃ -Phenyl	CH ₃	Н
5	468	3-OCF ₃ -Phenyl	СН3	Н
	469	4-OCF ₃ -Phenyl	CH ₃	Н
	470	2-OCHF ₂ -Phenyl	CH ₃	H
	471	3- OCHF ₂ -Phenyl	CH ₃	Н
	472	4-OCHF ₂ -Phenyl	CH ₃	Н
10	473	2-CF ₃ -Phenyl	CH ₃	Н
	474	3-CF ₃ -Phenyl	СН3	Н
	475	4-CF ₃ -Phenyl	CH ₃	H
	476	2-CH ₃ -Phenyl	CH ₃	H
15	477	3-CH ₃ -Phenyl	CH ₃	H
	478	4-CH ₃ -Phenyl	CH ₃	H
	479	2-NO ₂ -Phenyl	CH ₃	H
	480	3-NO ₂ -Phenyl	CH ₃	H
20	481	4-NO ₂ -Phenyl	CH ₃	H
	482	2-Pyridyl	CH ₃	H
	483	3-Pyridyl	CH ₃	Н
	484	4-Pyridyl	CH ₃	H
25	485	3'-CH ₃ -2-pyridyl	CH ₃	Н
	486	4'-CH ₃ -2-pyridyl	CH ₃	H
	487	5'-CH ₃ -2-pyridyl	CH ₃	H
	488	6'-CH ₃ -2-pyridyl	CH ₃	H
20	489	2'-CH ₃ -3-pyridyl	CH ₃	Н
30	490	4'-CH ₃ -3-pyridyl	CH ₃	H
	491	5'-CH ₃ -3-pyridyl	CH ₃	H
	492	6'-CH ₃ -3-pyridyl	CH ₃	H
	493	2'-CH ₃ -4-pyridyl	CH ₃	H
35	494	3'-CH ₃ -4-pyridyl	CH ₃	Н
	495	3'-Cl-2-pyridyl	CH ₃	Н
	496	4'-Cl-2-pyridyl	CH ₃	Н
	497	5'-Cl-2-pyridyl	CH ₃	Н
40	498	6'-Cl-2-pyridyl	CH ₃	Н
	499	2'-Cl-3-pyridyl	CH ₃	Н
	500	4'-Cl-3-pyridyl	CH ₃	H
	501	5'-Cl-3-pyridyl	CH ₃	Н
45	502	6'-Cl-3-pyridyl	CH ₃	H
2 -	503	2'-Cl-4-pyridyl	CH ₃	H
	504	3'-Cl-4-pyridyl	CH ₃	H

		R ³	R ¹	R ²
	505	Cyclohexylamino	CH ₃	Н
f	506	Cyclopentylamino	CH ₃	н
-	507	Morpholino	CH ₃	н
5	508	CO ₂ H	CH ₃	Н
	509	CO ₂ CH ₃	CH ₃	н
	510	CO ₂ C ₂ H ₅	CH ₃	Н
ļ	511	CO ₂ -n-C ₃ H ₇	CH ₃	Н
10	512	CO ₂ -i-C ₃ H ₇	CH ₃	Н
	513	CO ₂ -n-C ₄ H ₉	CH ₃	Н
	514	CO2-s-C4H9	CH ₃	Н
	515	CO ₂ -i-C ₄ H ₉	CH ₃	н
15	516	CO ₂ -t-C ₄ H ₉	CH ₃	Н
	517	CO ₂ -Ph	CH ₃	Н
	518	CO ₂ -3-Pyridyl	CH ₃	Н
	519	CONHCH ₃	CH ₃	Н
20	520	CONHC ₂ H ₅	CH ₃	Н
	521	CONH-Phenyl	CH ₃	Н
	522	CON(CH ₃) ₂	CH ₃	H
	523	CON(CH ₂ CH ₃) ₂	CH ₃	Н
25	524	CON(Phenyl) ₂	CH ₃	н
	525	H	ОСН3	H
Ī	526	F	OCH ₃	H
	527	Cl	OCH ₃	H .
30	528	Br	OCH ₃	Н
30	529	OH	OCH ₃	H
	530	SH	OCH ₃	H
	531	NH ₂	OCH ₃	H
Ì	532	CN	OCH ₃	Н
35	533	NO ₂	OCH ₃	H
ļ	534	SCN	OCH ₃	H
	535	NH-NH ₂	OCH ₃	H
	536	CH ₃	OCH ₃	H
40	537	C ₂ H ₅	OCH ₃	H
	538	n-C ₃ H ₇	OCH ₃	H
1	539	i-C ₃ H ₇	OCH ₃	Н
ļ	540	n-C ₄ H ₉	ОСН3	Н
45	541	s-C ₄ H ₉	OCH ₃	Н
ļ	542	i-C ₄ H ₉	OCH ₃	H
l	543	t-C ₄ H ₉	OCH ₃	Н

1	- -	R ³	R ¹	R ²
}	544	CH ₂ Cl	ОСН3	Н
ŀ	545	CHCl ₂	ОСН3	Н
_	546	CCl ₃	ОСН3	H
5	547	CH ₂ F	OCH ₃	н
ł	548	CHF ₂	OCH ₃	Н
ł	549	CF ₃	ОСН3	Н
-	550	CH ₂ CF ₃	OCH ₃	Н
10	551	CH ₂ OCH ₃	OCH ₃	н
ŀ	552	CH ₂ OCH ₂ CH ₃	OCH ₃	H
1	553	CH ₂ NH ₂	OCH ₃	н
ł	554	OCH ₃	OCH ₃	н
15	555	OC ₂ H ₅	OCH ₃	н
	556	O-n-C ₃ H ₇	OCH ₃	Н
	557	O-i-C ₃ H ₇	OCH ₃	Н
1	558	O-n-C ₄ H ₉	OCH ₃	н
20	559	O-s-C ₄ H ₉	OCH ₃	Н
20	560	O-i-C ₄ H ₉	OCH ₃	Н
	561	O-t-C ₄ H ₉	OCH ₃	Н
	562	OCHF ₂	OCH ₃	Н
	563	OCF ₃	OCH ₃	Н
25	564	OCH ₂ CF ₃	OCH ₃	Н
	565	OCH ₂ OCH ₃	OCH ₃	Н
ŀ	566	SCH ₃	OCH ₃	Н
	567	SC ₂ H ₅	OCH ₃	Н
30	568	S-n-C ₃ H ₇	осн3	Н
	569	S-i-C ₃ H ₇	OCH ₃	H
	570	S-n-C ₄ H ₉	OCH ₃	Н
	571	S-s-C ₄ H ₉	OCH ₃	Н
35	572	S-i-C ₄ H ₉	OCH ₃	н
i	573	S-t-C ₄ H ₉	OCH ₃	Н
	574	SCHF ₂	OCH ₃	Н
	575	SCF ₃	OCH ₃	Н
40	576	SCH ₂ CF ₃	OCH ₃	Н
	577	SCH ₂ OCH ₃	OCH ₃	Н
	578	NHCH ₃	OCH ₃	H
	579	NHC ₂ H ₅	OCH ₃	Н
	580	NHPh	OCH ₃	Н
45	581	N(CH ₃) ₂	OCH ₃	H
	582	N(CH ₂ CH ₃) ₂	OCH ₃	Н

			, , <u> </u>	
Ī		R ³	R ¹	R ²
Ì	583	N(Phenyl) ₂	OCH ₃	H
	584	(CH ₂) ₂ COCH ₃	OCH ₃	Н
5	585	Phenyl	OCH ₃	H
	586	2-F-Phenyl	OCH ₃	Н
	587	3-F-Phenyl	OCH ₃	H
	588	4-F-Phenyl	OCH ₃	H
	589	2-Cl-Phenyl	OCH ₃	Н
10	590	3-C1-Phenyl	OCH ₃	Н
	591	4-Cl-Phenyl	OCH ₃	H
	592	2-OH-Phenyl	OCH ₃	H
	593	3-OH-Phenyl	OCH ₃	Н
15	594	4-OH-Phenyl	OCH ₃	Н
	595	2-OCH ₃ -Phenyl	OCH ₃	Н
	596	3-OCH ₃ -Phenyl	OCH ₃	Н
	597	4-OCH ₃ -Phenyl	OCH ₃	Н
20	598	2-OCF ₃ -Phenyl	OCH ₃	H .
	599	3-OCF ₃ -Phenyl	OCH ₃	Н
	600	4-OCF ₃ -Phenyl	OCH ₃	H
	601	2-OCHF ₂ -Phenyl	OCH ₃	Н
25	602	3-OCHF ₂ -Phenyl	OCH ₃	H
	603	4-OCHF ₂ -Phenyl	OCH ₃	Н
	604	2-CF ₃ -Phenyl	OCH ₃	H
	605	3-CF ₃ -Phenyl	OCH ₃	H
20	606	4-CF ₃ -Phenyl	OCH ₃	H
30	607	2-CH ₃ -Phenyl	OCH ₃	Н
	608	3-CH ₃ -Phenyl	OCH ₃	H
	609	4-CH ₃ -Phenyl	OCH ₃	H
	610	2-NO ₂ -Phenyl	OCH ₃	H
35	611	3-NO ₂ -Phenyl	OCH ₃	H
	612	4-NO ₂ -Phenyl	OCH ₃	H
	613	2-Pyridyl	OCH ₃	H
40	614	3-Pyridyl	OCH ₃	H
	615	4-Pyridyl	OCH ₃	H
	616	3'-CH ₃ -2-pyridyl	OCH ₃	Н
	617	4'-CH ₃ -2-pyridyl	OCH ₃	H
	618	5'-CH ₃ -2-pyridyl	OCH ₃	H
45	619	6'-CH ₃ -2-pyridyl	OCH ₃	H
	620	2'-CH ₃ -3-pyridyl	OCH ₃	H
	621	4'-CH ₃ -3-pyridyl	OCH ₃	Н

				
		R ³	R ¹	R ²
	622	5'-CH ₃ -3-pyridyl	OCH ₃	H
	623	6'-CH ₃ -3-pyridyl	OCH ₃	H
5	624	2'-CH ₃ -4-pyridyl	OCH ₃	H
	625	3'-CH ₃ -4-pyridyl	OCH ₃	H
	626	3'-Cl-2-pyridyl	OCH ₃	H
	627	4'-Cl-2-pyridyl	OCH ₃	H
10	628	5'-Cl-2-pyridyl	OCH ₃	H
10	629	6'-Cl-2-pyridyl	OCH ₃	H
	630	2'-Cl-3-pyridyl	OCH ₃	H
	631	4'-Cl-3-pyridyl	OCH ₃	H
	632	5'-Cl-3-pyridyl	OCH ₃	H
15	633	6'-Cl-3-pyridyl	OCH ₃	Н
Ī	634	2'-Cl-4-pyridyl	OCH ₃	Н
[635	3'-Cl-4-pyridyl	OCH ₃	Н
	636	Cyclohexylamino	ОСН3	Н
20	637	Cyclopentylamino	OCH ₃	Н
[638	Morpholino	OCH ₃	Н
	639	CO ₂ H	OCH ₃	Н
	640	CO ₂ CH ₃	OCH ₃	Н
25	641	CO ₂ C ₂ H ₅	OCH ₃	Н
į	642	$CO_2-n-C_3H_7$	OCH ₃	H
	643	$CO_2-i-C_3H_7$	OCH ₃	Н
	644	CO ₂ -n-C ₄ H ₉	OCH ₃	Н
30	645	CO ₂ -s-C ₄ H ₉	OCH ₃	Н
30	646	CO ₂ -i-C ₄ H ₉	OCH ₃	H
Į	647	CO_2 -t- C_4H_9	OCH ₃	Н
Į	648	CO ₂ -Ph	OCH ₃	Н
1	649	CO ₂ -3-Pyridyl	OCH ₃	H
35	650	CONHCH ₃	OCH ₃	H
	651	CONHC ₂ H ₅	OCH ₃	H
	652	CONH-Phenyl	OCH ₃	H
	653	CON(CH ₃) ₂	OCH ₃	H
40	654	CON(CH ₂ CH ₃) ₂	OCH ₃	H
į	655	CON(Phenyl) ₂	OCH ₃	H
l	656	Н	Cl	Н
[657	F	Cl	H
45	658	Cl	Cl	Н
[659	Br	Cl	Н
[660	ОН	Cl	H
_				

[R ³	R ¹	R ²
	661	SH	Cl	Н
1	662	NH ₂	Cl	Н
5	663	CN	Cl	Н
_	664	NO ₂	Cl	Н
	665	SCN	Cl	Н
	666	NH-NH ₂	Cl	Н
	667	CH ₃	Cl	Н
10	668	C ₂ H ₅	Cl	Н
	669	n-C ₃ H ₇	Cl	Н
	670	i-C ₃ H ₇	Cl	Н
	671	n-C ₄ H ₉	Cl	Н
15	672	s-C ₄ H ₉	Cl	н
	673	i-C ₄ H ₉	Cl	Н
	674	t-C ₄ H ₉	Cl	Н
	675	CH ₂ Cl	Cl	H
20	676	CHCl ₂	Cl	Н
	677	CCl ₃	Cl	H
	678	CH ₂ F	Cl	Н
	679	CHF ₂	Cl	Н
25	680	CF ₃	Cl	н
	681	CH ₂ CF ₃	Cl	н
	682	CH ₂ OCH ₃	Cl	Н
	683	CH ₂ OCH ₂ CH ₃	Cl	н .
	684	CH ₂ NH ₂	Cl	H
30	685	OCH ₃	Cl	H
	686	OC ₂ H ₅	Cl	Н
	687	O-n-C ₃ H ₇	Cl	Н
	688	O-i-C ₃ H ₇	Cl	Н
35	689	O-n-C ₄ H ₉	C1	Н
	690	O-s-C ₄ H ₉	Cl	H
	691	O-i-C ₄ H ₉	Cl	H
	692	O-t-C ₄ H ₉	Cl	Н
40	693	OCHF ₂	Cl	H
	694	OCF ₃	Cl	H
	695	OCH ₂ CF ₃	Cl	H
	696	OCH ₂ OCH ₃	Cl	Н
45	697	SCH ₃	Cl	H
43	698	SC ₂ H ₅	Cl	H
	699	S-n-C ₃ H ₇	Cl	Н

		R ³	R ¹	R ²
	700	S-i-C ₃ H ₇	Cl	Н
	701	S-n-C ₄ H ₉	Cl	Н
5	702	S-s-C ₄ H ₉	Cl	Н
	703	S-i-C ₄ H ₉	Cl	Н
	704	S-t-C ₄ H ₉	Cl	Н
	705	SCHF ₂	Cl	H
	706	SCF ₃	Cl	Н
10	707	SCH ₂ CF ₃	Cl	Н
	708	SCH ₂ OCH ₃	Cl	Н
	709	NHCH ₃	Cl	Н
	710	NHC ₂ H ₅	Cl	Н
15	711	NHPh	Cl	Н
	712	N(CH ₃) ₂	Cl	Н
	713	N(CH ₂ CH ₃) ₂	Cl	Н
	714	N(Phenyl) ₂	Cl	Н
20	715	(CH ₂) ₂ COCH ₃	Cl	Н
	716	Phenyl	Cl	Н
	717	2-F-Phenyl	Cl	Н
	718	3-F-Phenyl	Cl	H
25	719	4-F-Phenyl	Cl	Н
23	720	2-Cl-Phenyl	Cl	Н
	721	3-Cl-Phenyl	Cl	Н
	722 ·	4-Cl-Phenyl	Cl	Н
	723	2-OH-Phenyl	Cl	H
30	724	3-OH-Phenyl	Cl	H
	725	4-OH-Phenyl	Cl	Н
	726	2-OCH ₃ -Phenyl	Cl	H
	727	3-OCH ₃ -Phenyl	Cl	H
35	728	4-OCH ₃ -Phenyl	Cl	Н
	729	2-OCF ₃ -Phenyl	Cl	Н
	730	3-OCF ₃ -Phenyl	Cl	Н
	731	4-OCF ₃ -Phenyl	Cl	Н
40	732	2-OCHF ₂ -Phenyl	Cl	Н
	733	3- OCHF ₂ -Phenyl	Cl	Н
	734	4-OCHF ₂ -Phenyl	Cl	Н
	735	2-CF ₃ -Phenyl	Cl	Н
45	736	3-CF ₃ -Phenyl	Cl	H
43	737	4-CF ₃ -Phenyl	Cl	Н
	738	2-CH ₃ -Phenyl	Cl	Н

				
		R ³	R ¹	R ²
	739	3-CH ₃ -Phenyl	Cl	H
	740	4-CH ₃ -Phenyl	Cl	Н
5	741	2-NO ₂ -Phenyl	Cl	H
	742	3-NO ₂ -Phenyl	Cl	H
	743	4-NO ₂ -Phenyl	Cl	Н
- [744	2-Pyridyl	Cl	H
10	745	3-Pyridyl	Cl	H
10	746	4-Pyridyl	Cl	Н
ĺ	747	3'-CH ₃ -2-pyridyl	Cl	H
	748	4'-CH ₃ -2-pyridyl	Cl	H
	749	5'-CH ₃ -2-pyridyl	Cl	Н
15	750	6'-CH ₃ -2-pyridyl	Cl	Н
	751	2'-CH ₃ -3-pyridyl	Cl	H
	752	4'-CH ₃ -3-pyridyl	Cl	H
Ī	753	5'-CH ₃ -3-pyridyl	Cl	H
20	754	6'-CH ₃ -3-pyridyl	Cl	Н
Ī	755	2'-CH ₃ -4-pyridyl	Cl	Н
	756	3'-CH ₃ -4-pyridyl	Cl	Н
Ī	757	3'-Cl-2-pyridyl	Cl	H
25	758	4'-Cl-2-pyridyl	Cl	H
	759	5'-Cl-2-pyridyl	Cl	H
Ī	760	6'-Cl-2-pyridyl	Cl	H
	761	2'-Cl-3-pyridyl	Cl	н
[762	4'-Cl-3-pyridyl	Cl	H
30	763	5'-Cl-3-pyridyl	Cl	H
	764	6'-Cl-3-pyridyl	Cl	Н
	765	2'-Cl-4-pyridyl	Cl	H
	766	3'-Cl-4-pyridyl	Cl	H
35	767	Cyclohexylamino	Cl	H
	768	Cyclopentylamino	Cl	Н
	769	Morpholino	Cl	H
	770	CO ₂ H	Cl	Н
40	771	CO ₂ CH ₃	Cl	Н
	772	CO ₂ C ₂ H ₅	Cl	Н
	773	CO ₂ -n-C ₃ H ₇	Cl	H
	774	CO ₂ -i-C ₃ H ₇	Cl	Н
45	775	CO ₂ -n-C ₄ H ₉	Cl	Н
79	776	CO2-s-C4H9	Cl	Н
	777	CO ₂ -i-C ₄ H ₉	Cl	Н

	R ³	R ¹	R ²
778	CO ₂ -t-C ₄ H ₉	Cl	Н
779	CO ₂ -Phenyl	Cl	Н
780	CO ₂ -3-Pyridyl	Cl	Н
781	CONHCH ₃	Cl	Н
782	CONHC ₂ H ₅	Cl	Н
783	CONH-Phenyl	Cl	H
784	CON(CH ₃) ₂	Cl	Н
785	CON(CH ₂ CH ₃) ₂	Cl	Н
786	CON(Phenyl) ₂	Cl	Н
787	2-Fluorphenoxy	CH ₃	CH ₃
788	2-Fluorphenoxy	осн ₃	CH ₃
789	2-Fluorphenoxy	Cl	CH ₃
790	2-Fluorphenoxy	CH ₃	Н
791	2-Fluorphenoxy	OCH ₃	H
792	2-Fluorphenoxy	Cl	Н
793	Phenoxy	CH ₃	CH ₃
794	Phenoxy	OCH ₃	CH ₃
795	Phenoxy	Cl	CH ₃
796	Phenoxy	CH ₃	Н
797	Phenoxy	OCH ₃	Н
798	Phenoxy	Cl	Н
799	2-Methoxyphenoxy	CH ₃	CH ₃
800	2-Methoxyphenoxy	OCH ₃	CH ₃
801	2-Methoxyphenoxy		CH ₃
802	2-Methoxyphenoxy	CH ₃	Н
803	2-Methoxyphenoxy	OCH ₃	H
804	2-Methoxyphenoxy	Cl	Н
805	Cyclopropyl	CH ₃	CH ₃
806	Cyclopropyl	OCH ₃	CH ₃
807	Cyclopropyl	Cl	CH ₃
808	Cyclopropyl	CH ₃	Н
809	Cyclopropyl	OCH ₃	Н
810	Cyclopropyl	Cl	Н
	779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808	778	778

Hier und im folgenden bedeuten beispielsweise:

2-F-Phenyl = 2-Fluorphenyl

45 2-Cl-Phenyl = 2-Chlorphenyl

2-OH-Phenyl = 2-Hydroxyphenyl

2-OCH₃-Phenyl = 2-Methoxyphenyl

```
2-OCF<sub>3</sub>-Phenyl = 2-Trifluormethoxyphenyl
2-OCHF<sub>2</sub>-Phenyl = 2-Difluormethoxyphenyl
2-NO<sub>2</sub>-Phenyl = 2-Nitrophenyl
3'-CH<sub>3</sub>-2-pyridyl = 3'-Methylpyridin-2-yl
5
```

64

Beispiele für erfindungsgemäße besonders bevorzugte Benzothiazol-5-ylcarbonyl-Derivate von Pyrazolen (Verbindungen I-1 = Verbindungen I mit X = C-R³ und Y = S) sind die in den Tabellen 2 bis 5 21 genannten Verbindungen.

- Tabelle 2: Verbindungen I-la.1 bis I-la.810

10

15

I-la

Verbindungen der allgemeinen Formel I-la, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer 20 Zeile der Tabelle A entsprechen.

Tabelle 3: Verbindungen I-lb.1 bis I-lb.810

25

30

I-1b

Verbindungen der allgemeinen Formel I-1b, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer 35 Zeile der Tabelle A entsprechen.

- Tabelle 4: Verbindungen I-1c.1 bis I-1c.810

40

45

I-1c

65

Verbindungen der allgemeinen Formel I-lc, in der die Substitu nten Rl, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

5 - Tabelle 5: Verbindungen I-ld.1 bis I-ld.810

10

I-1d

15

Verbindungen der allgemeinen Formel I-1b, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

20 - Tabelle 6: Verbindungen I-le.1 bis I-le.810

25

I-le

30

Verbindungen der allgemeinen Formel I-le, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

35 - Tabelle 7: Verbindungen I-1f.1 bis I-1f.810

40

I-1f

66

Verbindungen der allgemeinen Formel I-1f, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

5 - Tabelle 8: Verbindungen I-lg.1 bis I-lg.810

I-1g

15

Verbindungen der allgemeinen Formel I-1g, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

20 - Tabelle 9: Verbindungen I-lh.1 bis I-lh.810

25

N

CH2

CH3

CH2

CH3

CH2C6H5

I-1h

30

Verbindungen der allgemeinen Formel I-1h, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

35 - Tabelle 10: Verbindungen I-li.1 bis I-li.810

40 N N CH_3 $C(0) - (3F-C_6H_4)$

I-1i

67

Verbindungen der allgemeinen Formel I-1i, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

5 - Tabelle 11: Verbindungen I-lk.1 bis I-lk.810

10

I-1k

15

Verbindungen der allgemeinen Formel I-lk, in der die Substituenten Rl, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

20 - Tabelle 12: Verbindungen I-11.1 bis I-11.810

25

I-11

30

Verbindungen der allgemeinen Formel I-11, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

35 - Tabelle 13: Verbindungen I-lm.1 bis I-lm.810

40

I-lm

Verbindungen der allgemeinen Formel I-1m, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

5 - Tabelle 14: Verbindungen I-ln.l bis I-ln.810

15

Verbindungen der allgemeinen Formel I-1n, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

20 - Tabelle 15: Verbindungen I-lo.1 bis I-lo.810

I-10

30

Verbindungen der allgemeinen Formel I-1p, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

35 - Tabelle 16: Verbindungen I-lp.1 bis I-lp.810

69

Verbindungen der allgemeinen Formel I-lp, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

5 - Tabelle 17: Verbindungen I-lq.l bis I-lq.810

I-lq

15

Verbindungen der allgemeinen Formel I-1g, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

20 - Tabelle 18: Verbindungen I-lr.1 bis I-lr.810

25
$$H_{3}C$$

$$R^{1}$$

$$N$$

$$R^{2}$$

$$CH_{3}$$

$$CH_{2}C_{6}H_{5}$$

I-1r

30

Verbindungen der allgemeinen Formel I-1r, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

35 - Tabelle 19: Verbindungen I-1s.1 bis I-1s.810

40

$$H_3C$$
 $C = R^1$
 $C = R^3$
 I-1s

70

Verbindungen der allgemeinen Formel I-ls, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tab lle A entsprechen.

5 - Tabelle 20: Verbindungen I-lt.l bis I-lt.810

H₃C
$$\stackrel{O}{\underset{N}{|}}$$
 $\stackrel{R^1}{\underset{N}{|}}$ $\stackrel{N}{\underset{C}{|}}$ $\stackrel{C}{\underset{CH_3}{|}}$ $\stackrel{R^1}{\underset{CH_3}{|}}$ $\stackrel{N}{\underset{CH_3}{|}}$ $\stackrel{R^2}{\underset{CH_3}{|}}$

I-1t

15

Verbindungen der allgemeinen Formel I-1t, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

20 - Tabelle 20a: Verbindungen I-lu.1 bis I-lu.810

I-lu

30

25

Verbindungen der allgemeinen Formel I-lu, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

35 - Tabelle 20b: Verbindungen I-lv.1 bis I-lv.810

I-1v

Verbindungen der allgemeinen Formel I-1v, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

5 - Tabelle 20c: Verbindungen I-1w.1 bis I-1w.810

$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & &$$

I-1w

15

Verbindungen der allgemeinen Formel I-lw, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Beispiele für erfindungsgemäße besonders bevorzugte Pyrazolylde-30 rivate von Benzoxazol-5-carbonylverbindungen (Verbindungen I-2 = Verbindungen I mit $X = C-R^3$ und Y = 0) sind die in den Tabellen 21 bis 40 genannten Verbindungen.

Tabelle 21: Verbindungen I-2a.1 bis I-2a.810

35

40

I-2a

72

Verbindungen der allgemeinen Formel I-2a, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 22: Verbindungen I-2b.1 bis I-2b.810

$$\begin{array}{c|c}
 & O & R^1 \\
 & N & OH & R^2
\end{array}$$

I-2b

15

Verbindungen der allgemeinen Formel I-2b, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 23: Verbindungen I-2c.1 bis I-2c.810 20 -

I-2c

30

Verbindungen der allgemeinen Formel I-2c, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

Tabelle 24: Verbindungen I-2d.1 bis I-2d.810 35 -

73

Verbindungen der allgemeinen Formel I-2b, in der die Substituenten R1, R2 und R3 für j de einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

5 - Tabelle 25: Verbindungen I-2e.1 bis I-2e.810

10
$$N = 0$$

$$CH_3 = R^1$$

$$C = R^3$$

I-le

15

Verbindungen der allgemeinen Formel I-le, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

20 - Tabelle 26: Verbindungen I-2f.1 bis I-2f.810

30

Verbindungen der allgemeinen Formel I-2f, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

35 - Tabelle 27: Verbindungen I-2g.1 bis I-2g.810

I-2g

74

Verbindungen der allgemeinen Formel I-22g, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

5 - Tabelle 28: Verbindungen I-2h.1 bis I-2h.810

I-2h

15

Verbindungen der allgemeinen Formel I-2h, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

20 - Tabelle 29: Verbindungen I-2i.1 bis I-2i.810

25
$$N = \begin{pmatrix} 0 & R^1 & N & C - R^3 \\ N & 0 & R^2 & C(0) - (3F - C_6H_4) \end{pmatrix}$$

I-2i

30

Verbindungen der allgemeinen Formel I-2i, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

35 - Tabelle 30: Verbindungen I-2k.1 bis I-2k.810

I-2k

75

Verbindungen der allgemeinen Formel I-2k, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

5 - Tabelle 31: Verbindungen I-21.1 bis I-21.810

Verbindungen der allgemeinen Formel I-21, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

20 - Tabelle 32: Verbindungen I-2m.1 bis I-2m.810

I-2m

Verbindungen der allgemeinen Formel I-2m, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

35 - Tabelle 33: Verbindungen I-2n.1 bis I-2n.810

40
$$\begin{array}{c|c}
H_3C & O & R^1 \\
N & OH & R^2
\end{array}$$

$$\begin{array}{c|c}
CH_3 & CH_3 & I-2n
\end{array}$$

45

Verbindungen der allg meinen Formel I-2n, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

5 - Tabelle 34: Verbindungen I-20.1 bis I-20.810

$$\begin{array}{c|c} H_3C & O & R^1 \\ \hline N & OCH_3 & R^2 \\ \hline CH_3 & R^2 \end{array}$$

I-20

15

Verbindungen der allgemeinen Formel I-20, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

20 - Tabelle 35: Verbindungen I-2p.1 bis I-2p.810

30

Verbindungen der allgemeinen Formel I-2p, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

35 - Tabelle 36: Verbindungen I-2q.1 bis I-2q.810

$$\begin{array}{c|c} H_3C & & & \\ \hline \\ N & & & \\ \hline \\ CH_3 & & & \\ \hline \\ CH_2C_6H_5 & & \\ \end{array}$$

I-2q

77

Verbindungen der allgemeinen Formel I-2q, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

5 - Tabelle 37: Verbindungen I-2r.1 bis I-2r.810

H₃C
$$R^1$$
 N $C-R^3$ H_3C CH_3 $CH_2C_6H_5$

I-2r

15

Verbindungen der allgemeinen Formel I-2r, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

20 - Tabelle 38: Verbindungen I-2s.1 bis I-2s.810

25
$$H_{3}C \longrightarrow R^{1} \longrightarrow N \longrightarrow C-R^{3}$$

$$CH_{3} \longrightarrow R^{2} \longrightarrow C(O)-(3F-C_{6}H_{4})$$

I-2s

30

Verbindungen der allgemeinen Formel I-2s, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

35 - Tabelle 39: Verbindungen I-2t.1 bis I-2t.810

40

$$H_3C$$
 CH
 R^2
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_4
 CH_4
 CH_5

I-2t

Verbindungen dr allgemeinen Formel I-2t, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

5 - Tabelle 39a: Verbindungen I-2u.1 bis I-2u.810

10
$$\begin{array}{c|c}
N & R^1 \\
N & C - R^3 \\
CH_3 & R^2 \\
C(0)C_6H_5
\end{array}$$

I-2u

15

Verbindungen der allgemeinen Formel I-2u, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

20 - Tabelle 39b: Verbindungen I-2v.1 bis I-2v.810

I-2v

30

Verbindungen der allgemeinen Formel I-2v, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

35 - Tabelle 39c: Verbindungen I-2w.1 bis I-2w.810

I-2w

Verbindungen der allgemeinen Formel I-2w, in der die Substituenten R1, R2 und R3 für jede einzelne Verbindung jeweils einer Zeile der Tabelle A entsprechen.

5 In der folgenden Tabelle B sind besonders bevorzugte Kombinationen \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3 und \mathbb{R}^4 für erfindungsgemäße Pyrazolderivate der allgemeinen Formel I angegeben, die sich von Benzimidazol-5-carbonsäuren ableiten.

Tabelle B

_		R ³	R ¹	R ²	R ⁴
5	1	CH ₃	CH ₃	CH ₃	Н
	2	C ₂ H ₅	CH ₃	CH ₃	H
	3	n-C ₃ H ₇	CH ₃	CH ₃	Н
	4	i-C ₃ H ₇	CH ₃	CH ₃	H
10	5	n-C ₄ H ₉	CH ₃	CH ₃	Н
	6	s-C ₄ H ₉	CH ₃	CH ₃	н
	7	i-C ₄ H ₉	CH ₃	CH ₃	Н
	8	t-C ₄ H ₉	CH ₃	CH ₃	Н
15	9	CH ₂ Cl	CH ₃	CH ₃	н
	10	CHCl ₂	CH ₃	CH ₃	Н
	11	CCl ₃	CH ₃	CH ₃	H
	12	CH ₂ F	CH ₃	CH ₃	Н
20	13	CHF ₂	CH ₃	CH ₃	Н
20	14	CF ₃	CH ₃	CH ₃	Н
	15	CH ₂ CF ₃	CH ₃	CH ₃	H
	16	CH ₂ OCH ₃	CH ₃	CH ₃	H
	17	CH ₂ OCH ₂ CH ₃	CH ₃	CH ₃	H
25	18	CH ₂ NH ₂	CH ₃	CH ₃	H
	19	(CH ₂) ₂ COCH ₃	CH ₃	CH ₃	Н
	20	Phenyl	CH ₃	CH ₃	Н
	21	2-F-Phenyl	CH ₃	CH ₃	Н
30	22	3-F-Phenyl	CH ₃	CH ₃	Н
	23	4-F-Phenyl	CH ₃	CH ₃	Н
	24	2-Cl-Phenyl	CH ₃	CH ₃	H
	25	3-Cl-Phenyl	CH ₃	CH ₃	Н
35	26	4-Cl-Phenyl	CH ₃	CH ₃	H
	27	2-OH-Phenyl	CH ₃	CH ₃	Н
	28	3-OH-Phenyl	CH ₃	CH ₃	Н
40	29	4-OH-Phenyl	CH ₃	CH ₃	Н
	30	2-OCH ₃ -Phenyl	CH ₃	CH ₃	Н
	31	3-OCH ₃ -Phenyl	CH ₃	CH ₃	Н
	32	4-OCH ₃ -Phenyl	CH ₃	CH ₃	Н
	33	2-OCF ₃ -Phenyl	CH ₃	CH ₃	Н
	34	3-OCF ₃ -Phenyl	CH ₃	CH ₃	Н
45	35	4-OCF ₃ -Phenyl	CH ₃	CH ₃	Н
	36	2-OCHF ₂ -Phenyl	CH ₃	CH ₃	Н

37 3- OCHF2-Phenyl CH3 CH3 B	[R ³	R ¹	R ²	R ⁴
38	}	37				
Section						
10 3-CF3-Phenyl CH3						
1	5					
10						
10 43						
10 44						
45	10					
46 3-NO ₂ -Phenyl CH ₃ CH ₃ H 47 4-NO ₂ -Phenyl CH ₃ CH ₃ H 48 2-Pyridyl CH ₃ CH ₃ H 50 4-Pyridyl CH ₃ CH ₃ H 51 Cyclohexylamino CH ₃ CH ₃ H 52 Cyclopentylamino CH ₃ CH ₃ H 53 H OCH ₃ CH ₃ H 54 CH ₃ OCH ₃ CH ₃ H 55 C ₂ H ₅ OCH ₃ CH ₃ H 56 n-C ₃ H ₇ OCH ₃ CH ₃ H 57 i-C ₃ H ₇ OCH ₃ CH ₃ H 58 n-C ₄ H ₉ OCH ₃ CH ₃ H 60 i-C ₄ H ₉ OCH ₃ CH ₃ H 61 t-C ₄ H ₉ OCH ₃ CH ₃ H 62 CH ₂ Cl OCH ₃ CCH ₃ H 64 CCl ₃ OCH ₃ CH ₃ H 65 CH ₂ C OCH ₃ CH ₃ H 66 CH ₂ C OCH ₃ CH ₃ H 67 CF ₃ OCH ₃ CH ₃ H 68 CH ₂ CF ₃ OCH ₃ CH ₃ H 69 CH ₂ CCH ₃ OCH ₃ CH ₃ H 69 CH ₂ CCCH ₃ OCH ₃ CH ₃ H 61 CH ₂ CCCCH ₃ OCH ₃ CH ₃ H 62 CH ₂ CH 63 CHCl ₂ OCH ₃ CH ₃ H 64 CCl ₃ OCH ₃ CH ₃ H 65 CH ₂ CF OCH ₃ CH ₃ H 66 CHF ₂ OCH ₃ CH ₃ H 67 CF ₃ OCH ₃ CH ₃ H 68 CH ₂ CF ₃ OCH ₃ CH ₃ H 69 CH ₂ CCCH ₃ CCH ₃ CH ₃ H 67 CF ₃ CCH ₃ CCH ₃ CH ₃ H 67 CF ₃ CCH ₃ CCH ₃ CCH ₃ H 67 CF ₃ CCH ₃ CCH ₃ CCH ₃ H 67 CF ₃ CCH ₃ CCH ₃ CCH ₃ H 67 CF ₃ CCH ₃ CCH ₃ CCH ₃ H 67 CF ₃ CCH ₃ CCH ₃ CCH ₃ H 67 CCH ₂ CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC						
15						
15 48 2-Pyridy1 CH3 CH3 H						
49 3-Pyridyl CH ₃ CH ₃ H 50 4-Pyridyl CH ₃ CH ₃ H 51 Cyclohexylamino CH ₃ CH ₃ H 52 Cyclopentylamino CH ₃ CH ₃ H 54 CH ₃ OCH ₃ H 55 C ₂ H ₅ OCH ₃ CH ₃ H 56 n-C ₃ H ₇ OCH ₃ CH ₃ H 57 i-C ₃ H ₇ OCH ₃ CH ₃ H 59 s-C ₄ H ₉ OCH ₃ CH ₃ H 60 i-C ₄ H ₉ OCH ₃ CH ₃ H 61 t-C ₄ H ₉ OCH ₃ CH ₃ H 62 CH ₂ Cl OCH ₃ CH ₃ H 63 CHCl ₂ OCH ₃ CH ₃ H 64 CCl ₃ OCH ₃ CH ₃ H 65 CH ₂ F OCH ₃ CH ₃ H 66 CHF ₂ OCH ₃ CH ₃ H 67 CF ₃ OCH ₃ CH ₃ H 68 CH ₂ CF ₃ OCH ₃ CH ₃ H 69 CH ₂ OCH ₃ OCH ₃ CH ₃ H 69 CH ₂ OCH ₃ OCH ₃ CH ₃ H 61 CH ₂ OCH ₃ OCH ₃ CH ₃ H 62 CH ₂ Cl OCH ₃ CH ₃ H 63 CHCl ₂ OCH ₃ CH ₃ H 64 CCl ₃ OCH ₃ CH ₃ H 65 CH ₂ F OCH ₃ CH ₃ H 66 CHF ₂ OCH ₃ CH ₃ H 67 CF ₃ OCH ₃ CH ₃ H 68 CH ₂ CF ₃ OCH ₃ CH ₃ H 69 CH ₂ OCH ₃ OCH ₃ CH ₃ H 69 CH ₂ OCH ₃ OCH ₃ CH ₃ H 70 CH ₂ OCH ₂ CH ₃ OCH ₃ CH ₃ H 71 CH ₂ NH ₂ OCH ₃ CH ₃ H 72 (CH ₂) ₂ COCH ₃ OCH ₃ CH ₃ H 73 Phenyl OCH ₃ CH ₃ H	15					
50 4-Pyridyl CH ₃ CH ₃ H 51 Cyclohexylamino CH ₃ CH ₃ H 52 Cyclopentylamino CH ₃ CH ₃ H 53 H OCH ₃ CH ₃ H 54 CH ₃ OCH ₃ CH ₃ H 55 C ₂ H ₅ OCH ₃ CH ₃ H 56 n-C ₃ H ₇ OCH ₃ CH ₃ H 57 i-C ₃ H ₇ OCH ₃ CH ₃ H 58 n-C ₄ H ₉ OCH ₃ CH ₃ H 59 s-C ₄ H ₉ OCH ₃ CH ₃ H 60 i-C ₄ H ₉ OCH ₃ CH ₃ H 61 t-C ₄ H ₉ OCH ₃ CH ₃ H 62 CH ₂ Cl OCH ₃ CH ₃ H 63 CHCl ₂ OCH ₃ CH ₃ H 64 CCl ₃ OCH ₃ CH ₃ H 65 CH ₂ F OCH ₃ CH ₃ H 66 CH ₇ C OCH ₃ CH ₃ H 67 CF ₃ OCH ₃ CH ₃ H 68 CH ₂ CF ₃ OCH ₃ CH ₃ H 69 CH ₂ CCH ₃ OCH ₃ CH ₃ H 69 CH ₂ CCH ₃ OCH ₃ CH ₃ H 60 CH ₂ CF ₃ OCH ₃ CH ₃ H 61 CH ₂ CF ₃ OCH ₃ CH ₃ H 62 CH ₂ CF ₃ OCH ₃ CH ₃ H 63 CHCl ₂ OCH ₃ CH ₃ H 64 CCl ₃ OCH ₃ CH ₃ H 65 CH ₂ F OCH ₃ CH ₃ H 67 CF ₃ OCH ₃ CH ₃ H 68 CH ₂ CF ₃ OCH ₃ CH ₃ H 69 CH ₂ OCH ₃ OCH ₃ CH ₃ H 70 CH ₂ OCH ₂ CH ₃ OCH ₃ CH ₃ H 71 CH ₂ NH ₂ OCH ₃ CH ₃ H 72 (CH ₂) ₂ COCH ₃ OCH ₃ CH ₃ H 73 Phenyl OCH ₃ CH ₃ CH ₃ H	19					
S1 Cyclohexylamino						
20 52 Cyclopentylamino CH3 CH3 H 53 H OCH3 CH3 H 54 CH3 OCH3 CH3 H 55 C2H5 OCH3 CH3 H 56 n-C3H7 OCH3 CH3 H 57 i-C3H7 OCH3 CH3 H 58 n-C4H9 OCH3 CH3 H 59 s-C4H9 OCH3 CH3 H 60 i-C4H9 OCH3 CH3 H 61 t-C4H9 OCH3 CH3 H 62 CH2C1 OCH3 CH3 H 63 CHC12 OCH3 CH3 H 64 CC13 OCH3 CH3 H 65 CH2F OCH3 CH3 H 66 CHF2 OCH3 CH3 H 67 CF3 OCH3 CH3 H 69 CH2CH3 OCH3 CH3 H 70 CH2OCH2CH3 OCH3						
53 H OCH3 CH3 H 54 CH3 OCH3 CH3 H 55 C ₂ H ₅ OCH ₃ CH ₃ H 56 n-C ₃ H ₇ OCH ₃ CH ₃ H 57 i-C ₃ H ₇ OCH ₃ CH ₃ H 58 n-C ₄ H ₉ OCH ₃ CH ₃ H 59 s-C ₄ H ₉ OCH ₃ CH ₃ H 60 i-C ₄ H ₉ OCH ₃ CH ₃ H 61 t-C ₄ H ₉ OCH ₃ CH ₃ H 62 CH ₂ C1 OCH ₃ CH ₃ H 63 CHCl ₂ OCH ₃ CH ₃ H 64 CCl ₃ OCH ₃ CH ₃ H 65 CH ₂ F OCH ₃ CH ₃ H 66 CHF ₂ OCH ₃ CH ₃ H 67 CF ₃ OCH ₃ CH ₃ H 68 CH ₂ CF ₃ OCH ₃ CH ₃ H 69 CH ₂ OCH ₃ OCH ₃ CH ₃ H 60 CH ₂ CF ₃ OCH ₃ CH ₃ H 61 CH ₂ CF ₃ OCH ₃ CH ₃ H 62 CH ₂ CF ₃ OCH ₃ CH ₃ H 63 CH ₂ CF ₃ OCH ₃ CH ₃ H 64 CCl ₃ CH ₂ CH ₃ CH ₃ H 65 CH ₂ CF ₃ OCH ₃ CH ₃ H 67 CF ₃ CF ₃ OCH ₃ CH ₃ H 68 CH ₂ CF ₃ OCH ₃ CH ₃ H 69 CH ₂ OCH ₃ OCH ₃ CH ₃ H 70 CH ₂ OCH ₂ CH ₃ OCH ₃ CH ₃ H 71 CH ₂ NH ₂ OCH ₃ CH ₃ H 72 (CH ₂) ₂ COCH ₃ CCH ₃ CH ₃ H 73 Phenyl OCH ₃ CH ₃ CH ₃ H		51				
54	20	52	Cyclopentylamino			
55		53	H	ļ		
25 56 n-C ₃ H ₇ OCH ₃ CH ₃ H		54	CH ₃	OCH ₃	CH ₃	
Solution		55	C ₂ H ₅	OCH ₃	CH ₃	<u> </u>
57 i-C ₃ H ₇ OCH ₃ CH ₃ H 58 n-C ₄ H ₉ OCH ₃ CH ₃ H 59 s-C ₄ H ₉ OCH ₃ CH ₃ H 60 i-C ₄ H ₉ OCH ₃ CH ₃ H 61 t-C ₄ H ₉ OCH ₃ CH ₃ H 62 CH ₂ Cl OCH ₃ CH ₃ H 63 CHCl ₂ OCH ₃ CH ₃ H 64 CCl ₃ OCH ₃ CH ₃ H 65 CH ₂ F OCH ₃ CH ₃ H 66 CHF ₂ OCH ₃ CH ₃ H 67 CF ₃ OCH ₃ CH ₃ H 68 CH ₂ CF ₃ OCH ₃ CH ₃ H 69 CH ₂ OCH ₃ OCH ₃ CH ₃ H 70 CH ₂ OCH ₃ OCH ₃ CH ₃ H 71 CH ₂ NH ₂ OCH ₃ CH ₃ H 72 (CH ₂) ₂ COCH ₃ OCH ₃ CH ₃ H 73 Phenyl OCH ₃ CH ₃ H	25	56	n-C ₃ H ₇	OCH ₃	CH ₃	
59 S-C ₄ H ₉ OCH ₃ CH ₃ H 60 i-C ₄ H ₉ OCH ₃ CH ₃ H 61 t-C ₄ H ₉ OCH ₃ CH ₃ H 62 CH ₂ Cl OCH ₃ CH ₃ H 63 CHCl ₂ OCH ₃ CH ₃ H 64 CCl ₃ OCH ₃ CH ₃ H 65 CH ₂ F OCH ₃ CH ₃ H 66 CHF ₂ OCH ₃ CH ₃ H 67 CF ₃ OCH ₃ CH ₃ H 68 CH ₂ CF ₃ OCH ₃ CH ₃ H 69 CH ₂ OCH ₃ OCH ₃ CH ₃ H 70 CH ₂ OCH ₃ OCH ₃ CH ₃ H 71 CH ₂ NH ₂ OCH ₃ CH ₃ H 72 (CH ₂) ₂ COCH ₃ OCH ₃ CH ₃ H 73 Phenyl OCH ₃ CH ₃ H		57	i-C ₃ H ₇	OCH ₃		
30 i - C ₄ H ₉ OCH ₃ CH ₃ H 61 t - C ₄ H ₉ OCH ₃ CH ₃ H 62 CH ₂ Cl OCH ₃ CH ₃ H 63 CHCl ₂ OCH ₃ CH ₃ H 64 CCl ₃ OCH ₃ CH ₃ H 65 CH ₂ F OCH ₃ CH ₃ H 66 CHF ₂ OCH ₃ CH ₃ H 67 CF ₃ OCH ₃ CH ₃ H 68 CH ₂ CF ₃ OCH ₃ CH ₃ H 69 CH ₂ OCH ₃ OCH ₃ CH ₃ H 70 CH ₂ OCH ₂ CH ₃ OCH ₃ CH ₃ H 71 CH ₂ NH ₂ OCH ₃ CH ₃ H 72 (CH ₂) ₂ COCH ₃ OCH ₃ CH ₃ H 73 Phenyl OCH ₃ CH ₃ H		58	n-C ₄ H ₉	OCH ₃	CH ₃	H
30 61 t-C ₄ H ₉ OCH ₃ CH ₃ H 62 CH ₂ Cl OCH ₃ CH ₃ H 63 CHCl ₂ OCH ₃ CH ₃ H 64 CCl ₃ OCH ₃ CH ₃ H 65 CH ₂ F OCH ₃ CH ₃ H 66 CHF ₂ OCH ₃ CH ₃ H 67 CF ₃ OCH ₃ CH ₃ H 68 CH ₂ CF ₃ OCH ₃ CH ₃ H 69 CH ₂ OCH ₃ OCH ₃ CH ₃ H 70 CH ₂ OCH ₂ CH ₃ OCH ₃ CH ₃ H 71 CH ₂ NH ₂ OCH ₃ CH ₃ H 72 (CH ₂) ₂ COCH ₃ OCH ₃ CH ₃ H 73 Phenyl OCH ₃ CH ₃ H		59	s-C4H9	OCH ₃	CH ₃	Н
62 CH ₂ Cl OCH ₃ CH ₃ H 63 CHCl ₂ OCH ₃ CH ₃ H 64 CCl ₃ OCH ₃ CH ₃ H 65 CH ₂ F OCH ₃ CH ₃ H 66 CHF ₂ OCH ₃ CH ₃ H 67 CF ₃ OCH ₃ CH ₃ H 68 CH ₂ CF ₃ OCH ₃ CH ₃ H 69 CH ₂ OCH ₃ OCH ₃ CH ₃ H 70 CH ₂ OCH ₂ CH ₃ OCH ₃ CH ₃ H 71 CH ₂ NH ₂ OCH ₃ CH ₃ H 72 (CH ₂) ₂ COCH ₃ OCH ₃ CH ₃ H 73 Phenyl OCH ₃ CH ₃ H		60	i-C ₄ H ₉	осн3	CH ₃	H
63 CHCl ₂ OCH ₃ CH ₃ H 64 CCl ₃ OCH ₃ CH ₃ H 65 CH ₂ F OCH ₃ CH ₃ H 66 CHF ₂ OCH ₃ CH ₃ H 67 CF ₃ OCH ₃ CH ₃ H 68 CH ₂ CF ₃ OCH ₃ CH ₃ H 69 CH ₂ OCH ₃ OCH ₃ CH ₃ H 70 CH ₂ OCH ₂ CH ₃ OCH ₃ CH ₃ H 71 CH ₂ NH ₂ OCH ₃ CH ₃ H 72 (CH ₂) ₂ COCH ₃ OCH ₃ CH ₃ H 73 Phenyl OCH ₃ CH ₃ H	30	61	t-C ₄ H ₉	OCH ₃	CH ₃	Н
64 CCl ₃ OCH ₃ CH ₃ H 65 CH ₂ F OCH ₃ CH ₃ H 66 CHF ₂ OCH ₃ CH ₃ H 67 CF ₃ OCH ₃ CH ₃ H 68 CH ₂ CF ₃ OCH ₃ CH ₃ H 69 CH ₂ OCH ₃ OCH ₃ CH ₃ H 70 CH ₂ OCH ₂ CH ₃ OCH ₃ CH ₃ H 71 CH ₂ NH ₂ OCH ₃ CH ₃ H 72 (CH ₂) ₂ COCH ₃ OCH ₃ CH ₃ H 73 Phenyl OCH ₃ CH ₃ H		62	CH ₂ Cl	OCH ₃	CH ₃	H
35 65 CH ₂ F OCH ₃ CH ₃ H 66 CHF ₂ OCH ₃ CH ₃ H 67 CF ₃ OCH ₃ CH ₃ H 68 CH ₂ CF ₃ OCH ₃ CH ₃ H 69 CH ₂ OCH ₃ OCH ₃ CH ₃ H 70 CH ₂ OCH ₂ CH ₃ OCH ₃ CH ₃ H 71 CH ₂ NH ₂ OCH ₃ CH ₃ H 72 (CH ₂) ₂ COCH ₃ OCH ₃ CH ₃ H 73 Phenyl OCH ₃ CH ₃ H		63	CHCl ₂	OCH ₃	CH ₃	H
66 CHF ₂ OCH ₃ CH ₃ H 67 CF ₃ OCH ₃ CH ₃ H 68 CH ₂ CF ₃ OCH ₃ CH ₃ H 69 CH ₂ OCH ₃ OCH ₃ CH ₃ H 70 CH ₂ OCH ₂ CH ₃ OCH ₃ CH ₃ H 71 CH ₂ NH ₂ OCH ₃ CH ₃ H 72 (CH ₂) ₂ COCH ₃ OCH ₃ CH ₃ H 73 Phenyl OCH ₃ CH ₃ H		64	CCl ₃	OCH ₃	CH ₃	Н
67 CF ₃ OCH ₃ CH ₃ H 68 CH ₂ CF ₃ OCH ₃ CH ₃ H 69 CH ₂ OCH ₃ OCH ₃ CH ₃ H 70 CH ₂ OCH ₂ CH ₃ OCH ₃ CH ₃ H 71 CH ₂ NH ₂ OCH ₃ CH ₃ H 72 (CH ₂) ₂ COCH ₃ OCH ₃ CH ₃ H 73 Phenyl OCH ₃ CH ₃ H	35	65	CH ₂ F	OCH ₃	CH ₃	H
68 CH ₂ CF ₃ OCH ₃ CH ₃ H 69 CH ₂ OCH ₃ OCH ₃ CH ₃ H 70 CH ₂ OCH ₂ CH ₃ OCH ₃ CH ₃ H 71 CH ₂ NH ₂ OCH ₃ CH ₃ H 72 (CH ₂) ₂ COCH ₃ OCH ₃ CH ₃ H 73 Phenyl OCH ₃ CH ₃ H		66	CHF ₂	OCH ₃	CH ₃	Н
40 69 CH ₂ OCH ₃ OCH ₃ CH ₃ H 70 CH ₂ OCH ₂ CH ₃ OCH ₃ CH ₃ H 71 CH ₂ NH ₂ OCH ₃ CH ₃ H 72 (CH ₂) ₂ COCH ₃ OCH ₃ CH ₃ H 73 Phenyl OCH ₃ CH ₃ H		67	CF ₃	OCH ₃	CH ₃	H
70 CH ₂ OCH ₂ CH ₃ OCH ₃ CH ₃ H 71 CH ₂ NH ₂ OCH ₃ CH ₃ H 72 (CH ₂) ₂ COCH ₃ OCH ₃ CH ₃ H 73 Phenyl OCH ₃ CH ₃ H		68	CH ₂ CF ₃	OCH3	CH ₃	H
70 CH ₂ OCH ₂ CH ₃ OCH ₃ CH ₃ H 71 CH ₂ NH ₂ OCH ₃ CH ₃ H 72 (CH ₂) ₂ COCH ₃ OCH ₃ CH ₃ H 73 Phenyl OCH ₃ CH ₃ H	40	69	CH ₂ OCH ₃	OCH ₃	CH ₃	Н
72 (CH ₂) ₂ COCH ₃ OCH ₃ CH ₃ H 73 Phenyl OCH ₃ CH ₃ H		70	CH ₂ OCH ₂ CH ₃	OCH ₃	CH ₃	H
73 Phenyl OCH ₃ CH ₃ H		71	CH ₂ NH ₂	OCH ₃	CH ₃	H
45		72	(CH ₂) ₂ COCH ₃	OCH ₃	CH ₃	Н
74 2-F-Phenyl OCH ₃ CH ₃ H	. –	73	Phenyl	OCH ₃	CH ₃	Н
	45	74	2-F-Phenyl	OCH ₃	CH ₃	Н
75 3-F-Phenyl OCH ₃ CH ₃ H		75	3-F-Phenyl	OCH ₃	CH ₃	н

		R ³	R ¹	R ²	R ⁴
	76	4-F-Phenyl	OCH ₃	CH ₃	Н
	77	2-Cl-Phenyl	OCH ₃	CH ₃	Н
_	78	3-Cl-Phenyl	OCH ₃	CH ₃	Н
5	79	4-Cl-Phenyl	OCH ₃	CH ₃	н
	80	2-OH-Phenyl	OCH ₃	CH ₃	Н
	81	3-OH-Phenyl	OCH ₃	CH ₃	Н
	82	4-OH-Phenyl	OCH ₃	CH ₃	Н
10	83	2-OCH ₃ -Phenyl	OCH ₃	CH ₃	H
	84	3-OCH ₃ -Phenyl	OCH ₃	CH ₃	Н
	85	4-OCH ₃ -Phenyl	OCH ₃	CH ₃	н
	86	2-OCF ₃ -Phenyl	OCH ₃	CH ₃	H
15	87	3-OCF ₃ -Phenyl	OCH ₃	CH ₃	Н
	88	4-OCF ₃ -Phenyl	OCH ₃	CH ₃	Н
	89	2-OCHF ₂ -Phenyl	OCH ₃	CH ₃	н
	90	3-OCHF ₂ -Phenyl	OCH ₃	CH ₃	Н
20	91	4-OCHF ₂ -Phenyl	OCH ₃	CH ₃	Н
20	92	2-CF ₃ -Phenyl	OCH ₃	CH ₃	Н
	93	3-CF ₃ -Phenyl	OCH ₃	CH ₃	Н
	94	4-CF ₃ -Phenyl	OCH ₃	CH ₃	Н
	95	2-CH ₃ -Phenyl	OCH ₃	CH ₃	Н
25	96	3-CH ₃ -Phenyl	OCH ₃	CH ₃	Н
	97	4-CH ₃ -Phenyl	OCH ₃	CH ₃	Н
	98	2-NO ₂ -Phenyl	OCH ₃	CH ₃	Н
	99	3-NO ₂ -Phenyl	ОСН3	CH ₃	H
30	00	4-NO ₂ -Phenyl	OCH ₃	CH ₃	H .
	101	2-Pyridyl	ОСН3	CH ₃	H
	102	3-Pyridyl	ОСН3	CH ₃	Н
	103	4-Pyridyl	OCH ₃	CH ₃	H
35	104	Cyclohexylamino	OCH ₃	CH ₃	Н
	105	Cyclopentylamino	OCH ₃	CH ₃	Н
	106	Н	Cl	CH ₃	Н
40	107	CH ₃	Cl	CH ₃	Н
	108	C ₂ H ₅	Cl	CH ₃	н
	109	n-C ₃ H ₇	Cl	CH ₃	Н
	110	i-C ₃ H ₇	Cl	CH ₃	н
	111	n-C ₄ H ₉	Cl	CH ₃	Н
A =	112	S-C4H9	Cl	CH ₃	Н
45	113	i-C ₄ H ₉	Cl	CH ₃	Н
	114	t-C ₄ H ₉	Cl	CH ₃	Н

ſ		- 3	R ¹	R ²	R ⁴
		R ³	Cl	CH ₃	Н
	115	CH ₂ Cl			H
ĺ	116	CHCl ₂	Cl	CH ₃	
5	117	CCl ₃	Cl	CH ₃	H
	118	CH ₂ F	Cl	CH ₃	H
	119	CHF ₂	Cl	CH ₃	H
	120	CF ₃	Cl	CH ₃	H
10	121	CH ₂ CF ₃	Cl	CH ₃	H
10	122	CH ₂ OCH ₃	Cl	CH ₃	H
	123	CH ₂ OCH ₂ CH ₃	Cl	CH ₃	H
ļ	124	CH ₂ NH ₂	Cl	CH ₃	H
	125	(CH ₂) ₂ COCH ₃	Cl	CH ₃	H
15	126	Phenyl	Cl	CH ₃	Н
	127	2-F-Phenyl	Cl	CH ₃	H
	128	3-F-Phenyl	Cl	CH ₃	H
	129	4-F-Phenyl	Cl	CH ₃	H
20	130	2-Cl-Phenyl	Cl	CH ₃	H
	13.1	3-Cl-Phenyl	Cl	CH ₃	H
	132	4-Cl-Phenyl	Cl .	CH ₃	Н
	133	2-OH-Phenyl	Cl	CH ₃	н .
25	134	3-OH-Phenyl	Cl	CH ₃	Н
25	135	4-OH-Phenyl	Cl	CH ₃	H
	136	2-OCH ₃ -Phenyl	Cl	CH ₃	Н
	137	3-OCH ₃ -Phenyl	Cl	CH ₃	H
	138	4-OCH ₃ -Phenyl	Cl	CH ₃	H
30	139	2-OCF ₃ -Phenyl	Cl	CH ₃	Н
	140	3-OCF ₃ -Phenyl	Cl	CH ₃	Н
	141	4-OCF ₃ -Phenyl	Cl	CH ₃	Н
	142	2-OCHF ₂ -Phenyl	Cl	CH ₃	Н
35	143	3-OCHF ₂ -Phenyl	Cl	CH ₃	Н
	144	4-OCHF ₂ -Phenyl	Cl	CH ₃	Н
	145	2-CF ₃ -Phenyl	Cl	CH ₃	Н
	146	3-CF ₃ -Phenyl	Cl	CH ₃	Н
40	147	4-CF ₃ -Phenyl	Cl	CH ₃	Н
10	148	2-CH ₃ -Phenyl	Cl	CH ₃	H
	149	3-CH ₃ -Phenyl	Cl	CH ₃	Н
	150	4-CH ₃ -Phenyl	Cl	CH ₃	Н
	151	2-NO ₂ -Phenyl	Cl	CH ₃	Н
45	152	3-NO ₂ -Phenyl	C1	CH ₃	Н
	153	4-NO ₂ -Phenyl	Cl	CH ₃	Н
	<u> </u>				

		R ³	R ¹	R ²	R ⁴
	154	2-Pyridyl	Cl	CH ₃	Н
	155	3-Pyridyl	Cl	CH ₃	Н
5	156	4-Pyridyl	Cl	СН3	Н
3	157	Cyclohexylamino	Cl	CH ₃	Н
	158	Cyclopentylamino	Cl	CH ₃	Н
	159	CH ₃	CH ₃	н	Н
	160	C ₂ H ₅	CH ₃	Н	H
10	161	n-C ₃ H ₇	CH ₃	Н	H
	162	i-C ₃ H ₇	CH ₃	Н	H
	163	n-C ₄ H ₉	CH ₃	Н	Н
	164	s-C ₄ H ₉	CH ₃	н	Н
15	165	i-C ₄ H ₉	CH ₃	Н	Н
·	166	t-C ₄ H ₉	CH ₃	Н	Н
	167	CH ₂ Cl	CH ₃	Н	H
	168	CHCl ₂	CH ₃	Н	Н
20	169	CCl ₃	CH ₃	Н	Н
	170	CH ₂ F	CH ₃	н	Н
	171	CHF ₂	CH ₃	Н	H
	172	CF ₃	CH ₃	н	Н
25	173	CH ₂ CF ₃	CH ₃	н	H
	174	CH ₂ OCH ₃	СH ₃	H .	H
	175	CH ₂ OCH ₂ CH ₃	CH ₃	н	Н
	176	CH ₂ NH ₂	CH ₃	Н	Н
30	177	(CH ₂) ₂ COCH ₃	CH ₃	Н	н
30	178	Phenyl	CH ₃	Н	H
	179	2-F-Phenyl	CH ₃	Н	Н
	180	3-F-Phenyl	CH ₃	H	H
	181	4-F-Phenyl	CH ₃	Н	H
35	182	2-Cl-Phenyl	CH ₃	H	H
	183	3-Cl-Phenyl	CH ₃	Н	H
	184	4-Cl-Phenyl	CH ₃	H	H
40	185	2-OH-Phenyl	CH ₃	Н	Н
	186	3-OH-Phenyl	CH ₃	Н	H
	187	4-OH-Phenyl	CH ₃	Н	Н
	188	2-OCH ₃ -Phenyl	CH ₃	Н	Н
	189	3-OCH ₃ -Phenyl	CH ₃	Н	Н
45	190	4-OCH ₃ -Phenyl	CH ₃	Н	Н
	191	2-OCF ₃ -Phenyl	CH ₃	н	Н
	192	3-OCF ₃ -Phenyl	CH ₃	Н	н

R3	
194 2-OCHF ₂ -Phenyl CH ₃ H H 195 3- OCHF ₂ -Phenyl CH ₃ H H 196 4-OCHF ₂ -Phenyl CH ₃ H H 197 2-CF ₃ -Phenyl CH ₃ H H 198 3-CF ₃ -Phenyl CH ₃ H H 199 4-CF ₃ -Phenyl CH ₃ H H 199 200 2-CH ₃ -Phenyl CH ₃ H H 201 3-CH ₃ -Phenyl CH ₃ H H 201 3-CH ₃ -Phenyl CH ₃ H H 202 4-CH ₃ -Phenyl CH ₃ H H 203 2-NO ₂ -Phenyl CH ₃ H H 15 204 3-NO ₂ -Phenyl CH ₃ H H	
5 195 3- OCHF2-Phenyl CH3 H H 196 4-OCHF2-Phenyl CH3 H H 197 2-CF3-Phenyl CH3 H H 198 3-CF3-Phenyl CH3 H H 199 4-CF3-Phenyl CH3 H H 200 2-CH3-Phenyl CH3 H H 201 3-CH3-Phenyl CH3 H H 202 4-CH3-Phenyl CH3 H H 203 2-NO2-Phenyl CH3 H H 15 204 3-NO2-Phenyl CH3 H H	
196	
197 2-CF ₃ -Phenyl CH ₃ H H 198 3-CF ₃ -Phenyl CH ₃ H H 199 4-CF ₃ -Phenyl CH ₃ H H 200 2-CH ₃ -Phenyl CH ₃ H H 201 3-CH ₃ -Phenyl CH ₃ H H 202 4-CH ₃ -Phenyl CH ₃ H H 203 2-NO ₂ -Phenyl CH ₃ H H 15 204 3-NO ₂ -Phenyl CH ₃ H H	
198 3-CF ₃ -Phenyl CH ₃ H H 199 4-CF ₃ -Phenyl CH ₃ H H 200 2-CH ₃ -Phenyl CH ₃ H H 201 3-CH ₃ -Phenyl CH ₃ H H 202 4-CH ₃ -Phenyl CH ₃ H H 203 2-NO ₂ -Phenyl CH ₃ H H 15 204 3-NO ₂ -Phenyl CH ₃ H H	
10 199 4-CF ₃ -Phenyl CH ₃ H H H	
200 2-CH ₃ -Phenyl CH ₃ H H 201 3-CH ₃ -Phenyl CH ₃ H H 202 4-CH ₃ -Phenyl CH ₃ H H 203 2-NO ₂ -Phenyl CH ₃ H H 15 204 3-NO ₂ -Phenyl CH ₃ H H	
201 3-CH ₃ -Phenyl CH ₃ H H 202 4-CH ₃ -Phenyl CH ₃ H H 203 2-NO ₂ -Phenyl CH ₃ H H 15 204 3-NO ₂ -Phenyl CH ₃ H H	
202 4-CH ₃ -Phenyl CH ₃ H H 203 2-NO ₂ -Phenyl CH ₃ H H 15 204 3-NO ₂ -Phenyl CH ₃ H H	
203 2-NO ₂ -Phenyl CH ₃ H H 204 3-NO ₂ -Phenyl CH ₃ H H	
15 204 3-NO ₂ -Phenyl CH ₃ H H	
204 3-RO2-2 Heny 1 Ch3 h	
IDDE 14 NO SI 3	
205 4-NO ₂ -Phenyl CH ₃ H	
206 2-Pyridyl CH ₃ H	
207 3-Pyridyl CH ₃ H H	
20 208 4-Pyridyl CH ₃ H H	
209 Cyclohexylamino CH ₃ H	
210 Cyclopentylamino CH ₃ H H	·
211 H OCH ₃ H H	
25 CH ₃ OCH ₃ H	
213 C ₂ H ₅ OCH ₃ H H	
214 n-C ₃ H ₇ OCH ₃ H	
215 i-C ₃ H ₇ OCH ₃ H	
216 n-C ₄ H ₉ OCH ₃ H H	
217 S-C ₄ H ₉ OCH ₃ H	
218 i-C ₄ H ₉ OCH ₃ H H	
219 t-C ₄ H ₉ OCH ₃ H H	
220 CH ₂ Cl OCH ₃ H H	
35 221 CHCl ₂ OCH ₃ H H	
222 CCl ₃ OCH ₃ H H	
223 CH ₂ F OCH ₃ H H	
224 CHF ₂ OCH ₃ H H	
40 225 CF ₃ OCH ₃ H H	
226 CH ₂ CF ₃ OCH ₃ H H	
227 CH ₂ OCH ₃ OCH ₃ H H	
228 CH ₂ OCH ₂ CH ₃ OCH ₃ H H	
229 CH ₂ NH ₂ OCH ₃ H H	
230 (CH ₂) ₂ COCH ₃ OCH ₃ H	
Phenyl OCH ₃ H H	

R3	70					
233 3-F-Phenyl OCH ₃ H H 234 4-F-Phenyl OCH ₃ H H 235 2-Cl-Phenyl OCH ₃ H H 236 3-Cl-Phenyl OCH ₃ H H 237 4-Cl-Phenyl OCH ₃ H H 238 2-OH-Phenyl OCH ₃ H H 239 3-OH-Phenyl OCH ₃ H H 240 4-OH-Phenyl OCH ₃ H H 241 2-OCH ₃ -Phenyl OCH ₃ H H 242 3-OCH ₃ -Phenyl OCH ₃ H H 243 4-OCH ₃ -Phenyl OCH ₃ H H 244 2-OCF ₃ -Phenyl OCH ₃ H H 245 3-OCF ₃ -Phenyl OCH ₃ H H 246 4-OCF ₃ -Phenyl OCH ₃ H H 247 2-OCHF ₂ -Phenyl OCH ₃ H H 248 3-OCHF ₂ -Phenyl OCH ₃ H H 249 4-OCHF ₂ -Phenyl OCH ₃ H H 249 4-OCHF ₂ -Phenyl OCH ₃ H H 250 2-CF ₃ -Phenyl OCH ₃ H H 251 3-CF ₃ -Phenyl OCH ₃ H H 252 4-CCH ₃ -Phenyl OCH ₃ H H 253 2-CH ₃ -Phenyl OCH ₃ H H 254 4-CCH ₃ -Phenyl OCH ₃ H H 255 2-CF ₃ -Phenyl OCH ₃ H H 257 3-CF ₃ -Phenyl OCH ₃ H H 258 4-CH ₃ -Phenyl OCH ₃ H H 259 2-Phenyl OCH ₃ H H 250 3-CH ₃ -Phenyl OCH ₃ H H 250 3-CH ₃ -Phenyl OCH ₃ H H 251 3-CF ₃ -Phenyl OCH ₃ H H 252 4-CF ₃ -Phenyl OCH ₃ H H 253 2-CH ₃ -Phenyl OCH ₃ H H 254 3-CH ₃ -Phenyl OCH ₃ H H 255 4-CH ₃ -Phenyl OCH ₃ H H 257 3-NO ₂ -Phenyl OCH ₃ H H 258 4-NO ₂ -Phenyl OCH ₃ H H 259 2-Pyridyl OCH ₃ H H 250 3-Pyridyl OCH ₃ H H 250 3-Pyridyl OCH ₃ H H 251 4-Pyridyl OCH ₃ H H 252 4-Pyridyl OCH ₃ H H 253 4-Pyridyl OCH ₃ H H 254 4-Pyridyl OCH ₃ H H 255 4-Pyridyl OCH ₃ H H 256 4-Pyridyl OCH ₃ H H 257 3-Pyridyl OCH ₃ H H 258 4-Pyridyl OCH ₃ H H 259 2-Pyridyl OCH ₃ H H 260 3-Pyridyl OCH ₃ H H 261 4-Pyridyl OCH ₃ H H						
5 234 4-F-Phenyl OCH ₃ H H 235 2-Cl-Phenyl OCH ₃ H H 236 3-Cl-Phenyl OCH ₃ H H 237 4-Cl-Phenyl OCH ₃ H H 238 2-OH-Phenyl OCH ₃ H H 239 3-OH-Phenyl OCH ₃ H H 240 4-OH-Phenyl OCH ₃ H H 241 2-OCH ₃ -Phenyl OCH ₃ H H 242 3-OCH ₃ -Phenyl OCH ₃ H H 243 4-OCH ₃ -Phenyl OCH ₃ H H 244 2-OCF ₃ -Phenyl OCH ₃ H H 245 3-OCF ₃ -Phenyl OCH ₃ H H 246 4-OCF ₃ -Phenyl OCH ₃ H H 247 2-OCHF ₂ -Phenyl OCH ₃ H H 248 3-OCHF ₂ -Phenyl OCH ₃ H H 249 4-OCHF ₂ -Phenyl OCH ₃ H H 250 2-CF ₃ -Phenyl OCH ₃ H H 251 3-CF ₃ -Phenyl OCH ₃ H H 252 4-CF ₃ -Phenyl OCH ₃ H H 253 2-CH ₃ -Phenyl OCH ₃ H H 254 3-CHF ₂ -Phenyl OCH ₃ H H 255 4-CF ₃ -Phenyl OCH ₃ H H 257 3-CH ₃ -Phenyl OCH ₃ H H 258 4-CH ₃ -Phenyl OCH ₃ H H 259 2-Pyridyl OCH ₃ H H H 259 2-Pyridyl OCH ₃ H H H 259 2-Pyridyl OCH ₃ H H H 259 2-Pyridyl OCH ₃ H H H 250 3-Pyridyl OCH ₃ H H H 250 3-Pyridyl OCH ₃ H H H 251 3-Pyridyl OCH ₃ H H H 252 4-Pyridyl OCH ₃ H H H 253 3-Pyridyl OCH ₃ H H H 254 4-NO ₂ -Phenyl OCH ₃ H H H 255 4-NO ₂ -Phenyl OCH ₃ H H H 257 3-Pyridyl OCH ₃ H H H 258 4-NO ₂ -Phenyl OCH ₃ H H H 259 2-Pyridyl OCH ₃ H H H 259 2-Pyridyl OCH ₃ H H H						
235 2-Cl-Phenyl OCH ₃ H H 236 3-Cl-Phenyl OCH ₃ H H 237 4-Cl-Phenyl OCH ₃ H H 238 2-OH-Phenyl OCH ₃ H H 239 3-OH-Phenyl OCH ₃ H H 240 4-OH-Phenyl OCH ₃ H H 241 2-OCH ₃ -Phenyl OCH ₃ H H 242 3-OCH ₃ -Phenyl OCH ₃ H H 244 2-OCF ₃ -Phenyl OCH ₃ H H 245 3-OCF ₃ -Phenyl OCH ₃ H H 246 4-OCF ₃ -Phenyl OCH ₃ H H 247 2-OCH ₂ -Phenyl OCH ₃ H H 248 3-OCH ₂ -Phenyl OCH ₃ H H 249 4-OCH ₂ -Phenyl OCH ₃ H H 249 4-OCH ₂ -Phenyl OCH ₃ H H 250 2-CF ₃ -Phenyl OCH ₃ H H 251 3-CF ₃ -Phenyl OCH ₃ H H 252 4-CF ₃ -Phenyl OCH ₃ H H 253 2-CH ₃ -Phenyl OCH ₃ H H 254 3-CH ₃ -Phenyl OCH ₃ H H 255 4-CH ₃ -Phenyl OCH ₃ H H 257 3-CH ₃ -Phenyl OCH ₃ H H 258 4-NO ₂ -Phenyl OCH ₃ H H 259 2-Pyridyl OCH ₃ H H 250 3-Pyridyl OCH ₃ H H 250 3-Pyridyl OCH ₃ H H 251 3-NO ₂ -Phenyl OCH ₃ H H 252 4-NO ₂ -Phenyl OCH ₃ H H 253 3-Pyridyl OCH ₃ H H 254 4-NO ₂ -Phenyl OCH ₃ H H 255 4-NO ₂ -Phenyl OCH ₃ H H 256 3-Pyridyl OCH ₃ H H 257 3-NO ₂ -Phenyl OCH ₃ H H 258 4-NO ₂ -Phenyl OCH ₃ H H 259 2-Pyridyl OCH ₃ H H 250 3-Pyridyl OCH ₃ H H 251 4-Pyridyl OCH ₃ H H 252 4-Pyridyl OCH ₃ H H 253 4-Pyridyl OCH ₃ H H 254 4-Pyridyl OCH ₃ H H 255 4-Pyridyl OCH ₃ H H 256 4-Pyridyl OCH ₃ H H 257 4-Pyridyl OCH ₃ H H 258 4-Pyridyl OCH ₃ H H 259 4-Pyridyl OCH ₃ H H 250 4-Pyridyl OCH ₃ H H 250 4-Pyridyl OCH ₃ H H 251 4-Pyridyl OCH ₃ H H 251 4-Pyridyl OCH ₃ H H 251 4-Pyridyl OCH ₃ H H 251 4-Pyridyl OCH ₃ H H 251 4-Pyridyl OCH ₃ H H 251 4-Pyridyl OCH ₃ H H 251 4-Pyridyl OCH ₃ H H 251 4-Pyridyl OCH ₃ H H 251 4-Pyridyl OCH ₃ H H 252 4-Pyridyl OCH ₃ H H 253 4-Pyridyl OCH ₃ H H 254 4-Pyridyl OCH ₃ H H 255 4-Pyridyl OCH ₃ H H 256 4-Pyridyl OCH ₃ H H						
236 3-Cl-Phenyl						
237 4-Cl-Phenyl OCH ₃ H H 238 2-OH-Phenyl OCH ₃ H H 239 3-OH-Phenyl OCH ₃ H H 240 4-OH-Phenyl OCH ₃ H H 241 2-OCH ₃ -Phenyl OCH ₃ H H 242 3-OCH ₃ -Phenyl OCH ₃ H H 243 4-OCH ₃ -Phenyl OCH ₃ H H 244 2-OCF ₃ -Phenyl OCH ₃ H H 245 3-OCF ₃ -Phenyl OCH ₃ H H 246 4-OCF ₃ -Phenyl OCH ₃ H H 247 2-OCH ₂ -Phenyl OCH ₃ H H 248 3-OCH ₂ -Phenyl OCH ₃ H H 249 4-OCH ₂ -Phenyl OCH ₃ H H 249 4-OCH ₂ -Phenyl OCH ₃ H H 250 2-CF ₃ -Phenyl OCH ₃ H H 251 3-CF ₃ -Phenyl OCH ₃ H H 252 4-CF ₃ -Phenyl OCH ₃ H H 253 2-CH ₃ -Phenyl OCH ₃ H H 254 3-CH ₃ -Phenyl OCH ₃ H H 255 4-CH ₃ -Phenyl OCH ₃ H H 257 3-NO ₂ -Phenyl OCH ₃ H H 258 4-NO ₂ -Phenyl OCH ₃ H H 259 2-Pyridyl OCH ₃ H H 259 2-Pyridyl OCH ₃ H H 259 2-Pyridyl OCH ₃ H H 250 3-Pyridyl OCH ₃ H H 250 3-Pyridyl OCH ₃ H H 251 3-Pyridyl OCH ₃ H H 252 3-Pyridyl OCH ₃ H H 253 3-Pyridyl OCH ₃ H H 254 4-NO ₂ -Phenyl OCH ₃ H H 255 4-NO ₂ -Phenyl OCH ₃ H H 256 3-Pyridyl OCH ₃ H H 257 3-NO ₂ -Phenyl OCH ₃ H H 258 4-NO ₂ -Phenyl OCH ₃ H H 259 2-Pyridyl OCH ₃ H H 250 3-Pyridyl OCH ₃ H H 251 4-Pyridyl OCH ₃ H H						
238 2-OH-Phenyl OCH ₃ H H 239 3-OH-Phenyl OCH ₃ H H 240 4-OH-Phenyl OCH ₃ H H 241 2-OCH ₃ -Phenyl OCH ₃ H H 242 3-OCH ₃ -Phenyl OCH ₃ H H 244 2-OCF ₃ -Phenyl OCH ₃ H H 245 3-OCF ₃ -Phenyl OCH ₃ H H 246 4-OCF ₃ -Phenyl OCH ₃ H H 247 2-OCHF ₂ -Phenyl OCH ₃ H H 248 3-OCHF ₂ -Phenyl OCH ₃ H H 249 4-OCHF ₂ -Phenyl OCH ₃ H H 249 4-OCHF ₂ -Phenyl OCH ₃ H H 250 2-CF ₃ -Phenyl OCH ₃ H H 251 3-CF ₃ -Phenyl OCH ₃ H H 252 4-CF ₃ -Phenyl OCH ₃ H H 253 2-CH ₃ -Phenyl OCH ₃ H H 254 4-CF ₃ -Phenyl OCH ₃ H H 255 4-CF ₃ -Phenyl OCH ₃ H H 257 3-CH ₃ -Phenyl OCH ₃ H H 258 4-CH ₃ -Phenyl OCH ₃ H H 259 2-Phenyl OCH ₃ H H 259 2-Pyridyl OCH ₃ H H 259 2-Pyridyl OCH ₃ H H 250 3-Pyridyl OCH ₃ H H 251 4-Pyridyl OCH ₃ H H 252 4-Pyridyl OCH ₃ H H 253 4-Pyridyl OCH ₃ H H 254 4-Pyridyl OCH ₃ H H 255 4-Pyridyl OCH ₃ H H 256 4-Pyridyl OCH ₃ H H 257 4-Pyridyl OCH ₃ H H 258 4-NO ₂ -Phenyl OCH ₃ H H 259 4-Pyridyl OCH ₃ H H 250 4-Pyridyl OCH ₃ H H 250 4-Pyridyl OCH ₃ H H 250 4-Pyridyl OCH ₃ H H 250 4-Pyridyl OCH ₃ H H 250 4-Pyridyl OCH ₃ H H 250 4-Pyridyl OCH ₃ H H 250 4-Pyridyl OCH ₃ H H 250 4-Pyridyl OCH ₃ H H						
239 3-OH-Phenyl OCH ₃ H H						
239 3-OH-Pheny1 OCH3						
241 2-OCH ₃ -Phenyl OCH ₃ H H 242 3-OCH ₃ -Phenyl OCH ₃ H H 243 4-OCH ₃ -Phenyl OCH ₃ H H 244 2-OCF ₃ -Phenyl OCH ₃ H H 245 3-OCF ₃ -Phenyl OCH ₃ H H 246 4-OCF ₃ -Phenyl OCH ₃ H H 247 2-OCHF ₂ -Phenyl OCH ₃ H H 248 3-OCH ₂ -Phenyl OCH ₃ H H 249 4-OCH ₂ -Phenyl OCH ₃ H H 250 2-CF ₃ -Phenyl OCH ₃ H H 251 3-CF ₃ -Phenyl OCH ₃ H H 252 4-CF ₃ -Phenyl OCH ₃ H H 253 2-CH ₃ -Phenyl OCH ₃ H H 254 3-CH ₃ -Phenyl OCH ₃ H H 255 4-CH ₃ -Phenyl OCH ₃ H H 256 2-NO ₂ -Phenyl OCH ₃ H H 257 3-NO ₂ -Phenyl OCH ₃ H H 258 4-NO ₂ -Phenyl OCH ₃ H H 259 2-Pyridyl OCH ₃ H H 260 3-Pyridyl OCH ₃ H H 261 4-Pyridyl OCH ₃ H H 261 4-Pyridyl OCH ₃ H H						
242 3-OCH ₃ -Phenyl OCH ₃ H H 243 4-OCH ₃ -Phenyl OCH ₃ H H 244 2-OCF ₃ -Phenyl OCH ₃ H H 245 3-OCF ₃ -Phenyl OCH ₃ H H 246 4-OCF ₃ -Phenyl OCH ₃ H H 247 2-OCHF ₂ -Phenyl OCH ₃ H H 248 3-OCH ₂ -Phenyl OCH ₃ H H 249 4-OCH ₂ -Phenyl OCH ₃ H H 250 2-CF ₃ -Phenyl OCH ₃ H H 251 3-CF ₃ -Phenyl OCH ₃ H H 252 4-CF ₃ -Phenyl OCH ₃ H H 253 2-CH ₃ -Phenyl OCH ₃ H H 254 3-CH ₃ -Phenyl OCH ₃ H H 255 4-CH ₃ -Phenyl OCH ₃ H H 256 2-NO ₂ -Phenyl OCH ₃ H H 257 3-NO ₂ -Phenyl OCH ₃ H H 258 4-NO ₂ -Phenyl OCH ₃ H H 259 2-Pyridyl OCH ₃ H H 259 2-Pyridyl OCH ₃ H H 260 3-Pyridyl OCH ₃ H H 261 4-Pyridyl OCH ₃ H H						
15						
244 2-OCF ₃ -Phenyl OCH ₃ H H 245 3-OCF ₃ -Phenyl OCH ₃ H H 246 4-OCF ₃ -Phenyl OCH ₃ H H 247 2-OCHF ₂ -Phenyl OCH ₃ H H 248 3-OCHF ₂ -Phenyl OCH ₃ H H 249 4-OCHF ₂ -Phenyl OCH ₃ H H 250 2-CF ₃ -Phenyl OCH ₃ H H 251 3-CF ₃ -Phenyl OCH ₃ H H 252 4-CF ₃ -Phenyl OCH ₃ H H 253 2-CH ₃ -Phenyl OCH ₃ H H 253 2-CH ₃ -Phenyl OCH ₃ H H 254 3-CH ₃ -Phenyl OCH ₃ H H 255 4-CH ₃ -Phenyl OCH ₃ H H 256 2-NO ₂ -Phenyl OCH ₃ H H 257 3-NO ₂ -Phenyl OCH ₃ H H 258 4-NO ₂ -Phenyl OCH ₃ H H 259 2-Pyridyl OCH ₃ H H 250 3-Pyridyl OCH ₃ H H 260 3-Pyridyl OCH ₃ H H 261 4-Pyridyl OCH ₃ H H						
245 3-OCF ₃ -Phenyl OCH ₃ H H 246 4-OCF ₃ -Phenyl OCH ₃ H H 247 2-OCHF ₂ -Phenyl OCH ₃ H H 248 3-OCHF ₂ -Phenyl OCH ₃ H H 249 4-OCHF ₂ -Phenyl OCH ₃ H H 250 2-CF ₃ -Phenyl OCH ₃ H H 251 3-CF ₃ -Phenyl OCH ₃ H H 252 4-CF ₃ -Phenyl OCH ₃ H H 253 2-CH ₃ -Phenyl OCH ₃ H H 254 3-CH ₃ -Phenyl OCH ₃ H H 255 2-CH ₃ -Phenyl OCH ₃ H H 256 3-CH ₃ -Phenyl OCH ₃ H H 257 3-CH ₃ -Phenyl OCH ₃ H H 258 4-CH ₃ -Phenyl OCH ₃ H H 259 2-Phenyl OCH ₃ H H 259 2-Pyridyl OCH ₃ H H 259 2-Pyridyl OCH ₃ H H 260 3-Pyridyl OCH ₃ H H 261 4-Pyridyl OCH ₃ H H						
246 4-OCF ₃ -Phenyl OCH ₃ H H H 247 2-OCHF ₂ -Phenyl OCH ₃ H H H 248 3-OCHF ₂ -Phenyl OCH ₃ H H H 249 4-OCHF ₂ -Phenyl OCH ₃ H H H 250 2-CF ₃ -Phenyl OCH ₃ H H H 251 3-CF ₃ -Phenyl OCH ₃ H H H 252 4-CF ₃ -Phenyl OCH ₃ H H H 253 2-CH ₃ -Phenyl OCH ₃ H H H 253 2-CH ₃ -Phenyl OCH ₃ H H H 254 3-CH ₃ -Phenyl OCH ₃ H H H 255 4-CH ₃ -Phenyl OCH ₃ H H H 257 3-NO ₂ -Phenyl OCH ₃ H H H 258 4-NO ₂ -Phenyl OCH ₃ H H H 259 2-Pyridyl OCH ₃ H H H 259 2-Pyridyl OCH ₃ H H H 260 3-Pyridyl OCH ₃ H H H						
20 247 2-OCHF ₂ -Phenyl OCH ₃ H H 248 3-OCHF ₂ -Phenyl OCH ₃ H H 249 4-OCHF ₂ -Phenyl OCH ₃ H H 250 2-CF ₃ -Phenyl OCH ₃ H H 251 3-CF ₃ -Phenyl OCH ₃ H H 252 4-CF ₃ -Phenyl OCH ₃ H H 253 2-CH ₃ -Phenyl OCH ₃ H H 254 3-CH ₃ -Phenyl OCH ₃ H H 255 4-CH ₃ -Phenyl OCH ₃ H H 256 2-NO ₂ -Phenyl OCH ₃ H H 257 3-NO ₂ -Phenyl OCH ₃ H H 258 4-NO ₂ -Phenyl OCH ₃ H H 259 2-Pyridyl OCH ₃ H H 259 2-Pyridyl OCH ₃ H H 35 260 3-Pyridyl OCH ₃ H H 261 4-Pyridyl OCH ₃ H H						
248 3-OCHF2-Phenyl OCH3 H H 249 4-OCHF2-Phenyl OCH3 H H 250 2-CF3-Phenyl OCH3 H H 251 3-CF3-Phenyl OCH3 H H 252 4-CF3-Phenyl OCH3 H H 253 2-CH3-Phenyl OCH3 H H 254 3-CH3-Phenyl OCH3 H H 255 4-CH3-Phenyl OCH3 H H 255 4-CH3-Phenyl OCH3 H H 257 3-NO2-Phenyl OCH3 H H 257 3-NO2-Phenyl OCH3 H H 258 4-NO2-Phenyl OCH3 H H 259 2-Pyridyl OCH3 H H 35 260 3-Pyridyl OCH3 H H 261 4-Pyridyl OCH3 H H						
249 4-OCHF ₂ -Phenyl OCH ₃ H H 250 2-CF ₃ -Phenyl OCH ₃ H H 251 3-CF ₃ -Phenyl OCH ₃ H H 252 4-CF ₃ -Phenyl OCH ₃ H H 253 2-CH ₃ -Phenyl OCH ₃ H H 254 3-CH ₃ -Phenyl OCH ₃ H H 255 4-CH ₃ -Phenyl OCH ₃ H H 255 4-CH ₃ -Phenyl OCH ₃ H H 256 2-NO ₂ -Phenyl OCH ₃ H H 257 3-NO ₂ -Phenyl OCH ₃ H H 258 4-NO ₂ -Phenyl OCH ₃ H H 259 2-Pyridyl OCH ₃ H H 35 260 3-Pyridyl OCH ₃ H H 261 4-Pyridyl OCH ₃ H H						
250						
251 3-CF ₃ -Phenyl OCH ₃ H H 252 4-CF ₃ -Phenyl OCH ₃ H H 253 2-CH ₃ -Phenyl OCH ₃ H H 254 3-CH ₃ -Phenyl OCH ₃ H H 255 4-CH ₃ -Phenyl OCH ₃ H H 256 2-NO ₂ -Phenyl OCH ₃ H H 257 3-NO ₂ -Phenyl OCH ₃ H H 258 4-NO ₂ -Phenyl OCH ₃ H H 259 2-Pyridyl OCH ₃ H H 35 260 3-Pyridyl OCH ₃ H H 261 4-Pyridyl OCH ₃ H H 36 4-Pyridyl OCH ₃ H H 37 H 38 H 39 H 20 H 21 H 22 H 23 H 24 H 25 H 25 H 26 H 26 H 27 H 28 H 29 H 20 H 30 H 31 H 32 H 33 H 34 H 35 H 36 H 37 H 38 H 39 H 40 H 40 H 40 H 41 H 41 H 42 H 41 H 42 H 42 H 43 H 44 H 45 H 46 H 47 H 48 H						
252 4-CF ₃ -Phenyl OCH ₃ H H 253 2-CH ₃ -Phenyl OCH ₃ H H 254 3-CH ₃ -Phenyl OCH ₃ H H 255 4-CH ₃ -Phenyl OCH ₃ H H 255 4-CH ₃ -Phenyl OCH ₃ H H 256 2-NO ₂ -Phenyl OCH ₃ H H 257 3-NO ₂ -Phenyl OCH ₃ H H 258 4-NO ₂ -Phenyl OCH ₃ H H 259 2-Pyridyl OCH ₃ H H 35 260 3-Pyridyl OCH ₃ H H 261 4-Pyridyl OCH ₃ H H						
252 4-CF ₃ -Phenyl OCH ₃ H H 253 2-CH ₃ -Phenyl OCH ₃ H H 254 3-CH ₃ -Phenyl OCH ₃ H H 255 4-CH ₃ -Phenyl OCH ₃ H H 255 4-CH ₃ -Phenyl OCH ₃ H H 256 2-NO ₂ -Phenyl OCH ₃ H H 257 3-NO ₂ -Phenyl OCH ₃ H H 258 4-NO ₂ -Phenyl OCH ₃ H H 259 2-Pyridyl OCH ₃ H H 35 260 3-Pyridyl OCH ₃ H H 261 4-Pyridyl OCH ₃ H H						
254 3-CH ₃ -Phenyl OCH ₃ H H 255 4-CH ₃ -Phenyl OCH ₃ H H 256 2-NO ₂ -Phenyl OCH ₃ H H 257 3-NO ₂ -Phenyl OCH ₃ H H 258 4-NO ₂ -Phenyl OCH ₃ H H 259 2-Pyridyl OCH ₃ H H 35 260 3-Pyridyl OCH ₃ H H 261 4-Pyridyl OCH ₃ H H						
255 4-CH ₃ -Phenyl OCH ₃ H H 256 2-NO ₂ -Phenyl OCH ₃ H H 257 3-NO ₂ -Phenyl OCH ₃ H H 258 4-NO ₂ -Phenyl OCH ₃ H H 259 2-Pyridyl OCH ₃ H H 35 260 3-Pyridyl OCH ₃ H H 261 4-Pyridyl OCH ₃ H H						
256 2-NO ₂ -Phenyl OCH ₃ H H 257 3-NO ₂ -Phenyl OCH ₃ H H 258 4-NO ₂ -Phenyl OCH ₃ H H 259 2-Pyridyl OCH ₃ H H 35 260 3-Pyridyl OCH ₃ H H 261 4-Pyridyl OCH ₃ H H						
256						
258 4-NO ₂ -Phenyl OCH ₃ H H 259 2-Pyridyl OCH ₃ H H 35 260 3-Pyridyl OCH ₃ H H 261 4-Pyridyl OCH ₃ H H						
259 2-Pyridyl OCH ₃ H H 260 3-Pyridyl OCH ₃ H H 261 4-Pyridyl OCH ₃ H H						
35 260 3-Pyridyl OCH ₃ H H 261 4-Pyridyl OCH ₃ H H						
261 4-Pyridyl OCH ₃ H H						
262 Cyclohexylamino OCH ₃ H						
263 Cyclopentylamino OCH ₃ H H						
40 264 H Cl H						
265 CH ₃ Cl H						
266 C ₂ H ₅ Cl H						
267 n-C ₃ H ₇ Cl H						
268 i-C ₃ H ₇ Cl H						
269 n-C ₄ H ₉ C1 H						
270 s-C ₄ H ₉ Cl H						

		R ³	R ¹	R ²	R ⁴
	271	i-C ₄ H ₉	Cl	H	H
	272	t-C ₄ H ₉	Cl	H	H
_	273	CH ₂ Cl	Cl	н	Н
5	274	CHCl ₂	Cl	Н	Н
	275	CCl ₃	Cl	Н	Н
	276	CH ₂ F	Cl	Н	Н
	277	CHF ₂	Cl	Н	н
10	278	CF ₃	Cl	H	Н
	279	CH ₂ CF ₃	Cl	Н	н
	280	CH ₂ OCH ₃	Cl	Н	н
	281	CH ₂ OCH ₂ CH ₃	Cl	Н	Н
15	282	CH ₂ NH ₂	Cl	Н	Н
	283	(CH ₂) ₂ COCH ₃	Cl	Н	н
,	284	Phenyl	Cl	Н	н
	285	2-F-Phenyl	Cl	Н	Н
20	286	3-F-Phenyl	Cl	Н	Н
	287	4-F-Phenyl	C1	Н	H
	288	2-Cl-Phenyl	Cl	Н	Н
	289	3-Cl-Phenyl	Cl	H	Н
25	290	4-Cl-Phenyl	Cl	H	Н
23	291	2-OH-Phenyl	C1	Н	Н
	292	3-OH-Phenyl	C1	H	н
	293	4-OH-Phenyl	Cl	H	H
	294	2-OCH ₃ -Phenyl	Cl	н	H
30	295	3-OCH ₃ -Phenyl	Cl	н	H
	296	4-OCH ₃ -Phenyl	Cl	н	H
	297	2-OCF ₃ -Phenyl	Cl	H	Н
	298	3-OCF ₃ -Phenyl	Cl	Н	н
35	299	4-OCF ₃ -Phenyl	C1	H	Н
•	300	2-OCHF ₂ -Phenyl	Cl	H	Н
	301	3-OCHF ₂ -Phenyl	Cl	н	Н
	302	4-OCHF ₂ -Phenyl	Cl	Н	H
40	303	2-CF ₃ -Phenyl	Cl	H	Н
	304	3-CF ₃ -Phenyl	Cl	Н	Н
	305	4-CF ₃ -Phenyl	Cl	н	H
	306	2-CH ₃ -Phenyl	Cl	Н	H
45	307	3-CH ₃ -Phenyl	Cl	Н	H
43	308	4-CH ₃ -Phenyl	Cl	Н	Н
	309	2-NO ₂ -Phenyl	Cl	H	Н

:		R ³	R ¹	R ²	R ⁴
	310	3-NO ₂ -Phenyl	Cl	Н	Н
	311	4-NO ₂ -Phenyl	Cl	Н	Н
5	312	2-Pyridyl	Cl	Н	Н
	313	3-Pyridyl	Cl	Н	H
	314	4-Pyridyl	Cl	Н	Н
	315	Cyclohexylamino	Cl	Н	Н
	316	Cyclopentylamino	Cl	Н	Н
10	317	CH ₃	CH ₃	CH ₃	CH ₃
	318	C ₂ H ₅	CH ₃	CH ₃	CH ₃
	319	n-C ₃ H ₇	CH ₃	CH ₃	CH ₃
	320	i-C ₃ H ₇	CH ₃	CH ₃	CH ₃
15	321	n-C ₄ H ₉	CH ₃	CH ₃	CH ₃
	322	s-C ₄ H ₉	CH ₃	CH ₃	CH ₃
	323	i-C ₄ H ₉	CH ₃	CH ₃	CH ₃
	324	t-C ₄ H ₉	CH ₃	CH ₃	CH ₃
20	325	CH ₂ Cl	CH ₃	CH ₃	CH ₃
	326	CHCl ₂	CH ₃	CH ₃	CH ₃
	327	CCl ₃	CH ₃	CH ₃	CH ₃
	328	CH ₂ F	CH ₃	CH ₃	CH ₃
25	329	CHF ₂	CH ₃	CH ₃	CH ₃
23	330	CF ₃	CH ₃	CH ₃	CH ₃
	331	CH ₂ CF ₃	CH ₃	CH ₃	CH ₃
	332	CH ₂ OCH ₃	CH ₃	CH ₃	CH ₃
	333	CH ₂ OCH ₂ CH ₃	CH ₃	CH ₃	CH ₃
30	334	CH ₂ NH ₂	CH ₃	CH ₃	CH ₃
	335	(CH ₂) ₂ COCH ₃	CH ₃	CH ₃	CH ₃
	336	Phenyl	CH ₃	CH ₃	CH ₃
	337	2-F-Phenyl	CH ₃	CH ₃	CH ₃
35	338	3-F-Phenyl	CH ₃	CH ₃	CH ₃
	339	4-F-Phenyl	CH ₃	CH ₃	CH ₃
	340	2-Cl-Phenyl	CH ₃	CH ₃	CH ₃
	341	3-Cl-Phenyl	CH ₃	CH ₃	CH ₃
40	342	4-Cl-Phenyl	CH ₃	CH ₃	CH ₃
	343	2-OH-Phenyl	CH ₃	CH ₃	CH ₃
	344	3-OH-Phenyl	CH ₃	CH ₃	CH ₃
	345	4-OH-Phenyl	CH ₃	CH ₃	CH ₃
45	346	2-OCH ₃ -Phenyl	CH ₃	CH ₃	CH ₃
43	347	3-OCH ₃ -Phenyl	CH ₃	CH ₃	CH ₃
	348	4-OCH ₃ -Phenyl	CH ₃	CH ₃	CH ₃

ſ		R ³	R ¹	R ²	R ⁴
1	349	2-OCF ₃ -Phenyl	CH ₃	CH ₃	CH ₃
	350	3-OCF ₃ -Phenyl	CH ₃	CH ₃	CH ₃
_	351	4-OCF ₃ -Phenyl	CH ₃	CH ₃	CH ₃
5	352	2-OCHF ₂ -Phenyl	CH ₃	CH ₃	CH ₃
	353	3- OCHF2-Phenyl	CH ₃	CH ₃	CH ₃
	354	4-OCHF ₂ -Phenyl	CH ₃	CH ₃	CH ₃
	355	2-CF ₃ -Phenyl	CH ₃	CH ₃	CH ₃
10	356	3-CF ₃ -Phenyl	CH ₃	CH ₃	CH ₃
	357	4-CF ₃ -Phenyl	CH ₃	CH ₃	CH ₃
	358	2-CH ₃ -Phenyl	CH ₃	CH ₃	CH ₃
	359	3-CH ₃ -Phenyl	CH ₃	CH ₃	CH ₃
15	360	4-CH ₃ -Phenyl	CH ₃	CH ₃	CH ₃
	361	2-NO ₂ -Phenyl	CH ₃	CH ₃	CH ₃
	362	3-NO ₂ -Phenyl	CH ₃	CH ₃	CH ₃
	363	4-NO ₂ -Phenyl	CH ₃	CH ₃	CH ₃
20	364	2-Pyridyl	CH ₃	CH ₃	CH ₃
	365	3-Pyridyl	CH ₃	CH ₃	CH ₃
	366	4-Pyridyl	CH ₃	CH ₃	CH ₃
	367	Cyclohexylamino	CH ₃	CH ₃	CH ₃
25	368	Cyclopentylamino	CH ₃	CH ₃	CH ₃
.2.5	369	Н	OCH ₃	CH ₃	CH ₃
	370	CH ₃	OCH ₃	CH ₃	CH ₃
-	371	C ₂ H ₅	OCH ₃	CH ₃	CH ₃
	372	n-C ₃ H ₇	OCH ₃	CH ₃	CH ₃
30	373	i-C ₃ H ₇	OCH ₃	CH ₃	CH ₃
	374	n-C ₄ H ₉	OCH ₃	СН3	CH ₃
	375	s-C ₄ H ₉	OCH ₃	CH ₃	CH ₃
	376	i-C ₄ H ₉	OCH ₃	CH ₃	CH ₃
35	377	t-C ₄ H ₉	OCH ₃	CH ₃	CH ₃
	378	CH ₂ Cl	OCH ₃	CH ₃	CH ₃
	379	CHCl ₂	OCH ₃	CH ₃	CH ₃
40	380	CCl ₃	OCH ₃	CH ₃	CH ₃
	381	CH ₂ F	OCH ₃	CH ₃	CH ₃
	382	CHF ₂	OCH ₃	CH ₃	CH ₃
	383	CF ₃	OCH ₃	CH ₃	CH ₃
	384	CH ₂ CF ₃	OCH ₃	CH ₃	CH ₃
45	385	CH ₂ OCH ₃	OCH ₃	СН3	CH ₃
33	386	CH ₂ OCH ₂ CH ₃	OCH ₃	CH ₃	CH ₃
	387	CH ₂ NH ₂	OCH ₃	CH ₃	CH ₃

					
		R ³	R ¹	R ²	R ⁴
	388	(CH ₂) ₂ COCH ₃	OCH ₃	CH ₃	CH ₃
	389	Phenyl	OCH ₃	CH ₃	CH ₃
5	390	2-F-Phenyl	OCH ₃	CH ₃	CH ₃
	391	3-F-Phenyl	OCH ₃	CH ₃	CH ₃
	392	4-F-Phenyl	OCH ₃	CH ₃	CH ₃
	393	2-Cl-Phenyl	OCH ₃	CH ₃	CH ₃
	394	3-C1-Phenyl	OCH ₃	CH ₃	CH ₃
10	395	4-Cl-Phenyl	OCH ₃	CH ₃	CH ₃
	396	2-OH-Phenyl	OCH ₃	CH ₃	CH ₃ .
	397	3-OH-Phenyl	OCH ₃	CH ₃	CH ₃
	398	4-OH-Phenyl	OCH ₃	CH ₃	CH ₃
15	399	2-OCH ₃ -Phenyl	OCH ₃	CH ₃	CH ₃
ļ	400	3-OCH ₃ -Phenyl	OCH ₃	CH ₃	CH ₃
	401	4-OCH ₃ -Phenyl	OCH ₃	CH ₃	CH ₃
	402	2-OCF ₃ -Phenyl	OCH ₃	CH ₃	CH ₃
20	403	3-OCF ₃ -Phenyl	OCH ₃	CH ₃	CH ₃
	404	4-OCF ₃ -Phenyl	OCH ₃	CH ₃	CH ₃
	405	2-OCHF ₂ -Phenyl	OCH ₃	CH ₃	CH ₃
	406	3-OCHF ₂ -Phenyl	ОСН3	CH ₃	CH ₃
25	407	4-OCHF ₂ -Phenyl	OCH ₃	CH ₃	CH ₃
23	408	2-CF ₃ -Phenyl	осн ₃	CH ₃	CH ₃
	409	3-CF ₃ -Phenyl	OCH ₃	CH ₃	CH ₃
	410	4-CF ₃ -Phenyl	OCH ₃	CH ₃	CH ₃
	411	2-CH ₃ -Phenyl	OCH ₃	CH ₃	CH ₃
30	412	3-CH ₃ -Phenyl	OCH ₃	CH ₃	CH ₃
	413	4-CH ₃ -Phenyl	OCH ₃	CH ₃	CH ₃
	414	2-NO ₂ -Phenyl	OCH ₃	CH ₃	CH ₃
	415	3-NO ₂ -Phenyl	OCH ₃	CH ₃	CH ₃
35	416	4-NO ₂ -Phenyl	OCH ₃	CH ₃	CH ₃
	417	2-Pyridyl	OCH ₃	CH ₃	CH ₃
	418	3-Pyridyl	OCH ₃	CH ₃	CH ₃
	419	4-Pyridyl	OCH ₃	CH ₃	CH ₃
40	420	Cyclohexylamino	OCH ₃	CH ₃	CH ₃
	421	Cyclopentylamino	OCH ₃	CH ₃	CH ₃
	422	Н	Cl	CH ₃	CH ₃
	423	CH ₃	Cl	CH ₃	CH ₃
۸-	424	C ₂ H ₅	Cl	CH ₃	CH ₃
45	445	n-C ₃ H ₇	Cl	CH ₃	CH ₃
	426	i-C ₃ H ₇	Cl	CH ₃	CH ₃

_					-4
		R ³	R ¹	R ²	R ⁴
	427	n-C ₄ H ₉	Cl	CH ₃	CH ₃
	428	s-C ₄ H ₉	Cl	CH ₃	CH ₃
5	429	i-C ₄ H ₉	C1	CH ₃	CH ₃
	430	t-C4H9	Cl	CH ₃	CH ₃
	431	CH ₂ Cl	Cl	CH ₃	CH ₃
	432	CHC12	Cl	CH ₃	CH ₃
	433	CCl ₃	Cl	CH ₃	CH ₃
10	434	CH ₂ F	Cl	CH ₃	CH ₃
	435	CHF ₂	Cl	CH ₃	CH ₃
	436	CF ₃	Cl	CH ₃	CH ₃
	437	CH ₂ CF ₃	Cl	CH ₃	CH ₃
15	438	CH ₂ OCH ₃	Cl	CH ₃	CH ₃
•	439	CH ₂ OCH ₂ CH ₃	Cl	CH ₃	CH ₃
	440	CH ₂ NH ₂	Cl	CH ₃	CH ₃
•	441	(CH ₂) ₂ COCH ₃	Cl	CH ₃	CH ₃
20	442	Phenyl	Cl	CH ₃	CH ₃
	443	2-F-Phenyl	Cl	CH ₃	CH ₃
	444	3-F-Phenyl	Cl	CH ₃	CH ₃
,	445	4-F-Phenyl	Cl	CH ₃	CH ₃
25	446	2-C1-Phenyl	Cl	CH ₃	CH ₃
	447	3-Cl-Phenyl	C1	CH ₃	CH ₃
	448	4-Cl-Phenyl	Cl	CH ₃	CH ₃
	449	2-OH-Phenyl	Cl	CH ₃	CH ₃
	450	3-OH-Phenyl	Cl	CH ₃	CH ₃
30	451	4-OH-Phenyl	Cl	CH ₃	CH ₃
	452	2-OCH ₃ -Phenyl	Cl	CH ₃	CH ₃
	453	3-OCH ₃ -Phenyl	Cl	CH ₃	CH ₃
	454	4-OCH ₃ -Phenyl	Cl	CH ₃	CH ₃
35	455	2-OCF ₃ -Phenyl	Cl	CH ₃	CH ₃
	456	3-OCF ₃ -Phenyl	Cl	CH ₃	CH ₃
	457	4-OCF ₃ -Phenyl	Cl	CH ₃	CH ₃
	458	2-OCHF ₂ -Phenyl	Cl	CH ₃	CH ₃
40	459	3-OCHF ₂ -Phenyl	Cl	CH ₃	CH ₃
	460	4-OCHF ₂ -Phenyl	Cl	CH ₃	CH ₃
	461	2-CF ₃ -Phenyl	Cl	CH ₃	CH ₃
	462	3-CF ₃ -Phenyl	Cl	CH ₃	CH ₃
<u></u>	463	4-CF ₃ -Phenyl	Cl	CH ₃	CH ₃
45	464	2-CH ₃ -Phenyl	Cl	CH ₃	CH ₃
	465	3-CH ₃ -Phenyl	Cl	CH ₃	CH ₃

					154
		R ³	R ¹	R ²	R ⁴
[466	4-CH ₃ -Phenyl	Cl	CH ₃	CH ₃
ſ	467	2-NO ₂ -Phenyl	Cl	CH ₃	CH ₃
5	468	3-NO ₂ -Phenyl	Cl	CH ₃	CH ₃
	469	4-NO ₂ -Phenyl	Cl	CH ₃	CH ₃
	470	2-Pyridyl	Cl	CH ₃	CH ₃
	471	3-Pyridyl	Cl	CH ₃	CH ₃
	472	4-Pyridyl	Cl	CH ₃	CH ₃
10	473	Cyclohexylamino	Cl	CH ₃	CH ₃
	474	Cyclopentylamino	Cl	CH ₃	CH ₃
	475	CH ₃	CH ₃	Н	CH ₃
	476	C ₂ H ₅	CH ₃	Н	CH ₃
15	477	n-C ₃ H ₇	CH ₃	H	CH ₃
	478	i-C ₃ H ₇	CH ₃	н	CH ₃
	479	n-C ₄ H ₉	CH ₃	Н	CH ₃
	480	s-C ₄ H ₉	CH ₃	. Н	CH ₃
20	481	i-C ₄ H ₉	CH ₃	Н	CH ₃
	482	t-C ₄ H ₉	CH ₃	H	CH ₃
	483	CH ₂ Cl	CH ₃	H	CH ₃
	484	CHCl ₂	CH ₃	Н	CH ₃
25	485	CCl ₃	CH ₃	Н	CH ₃
43	486	CH ₂ F	CH ₃	H	CH ₃
•	487	CHF ₂	CH ₃	Н	CH ₃
	488	CF ₃	CH ₃	Н	CH ₃
	489	CH ₂ CF ₃	CH ₃	H	CH ₃
30	490	CH ₂ OCH ₃	CH ₃	Н	CH ₃
	491	CH2OCH2CH3	CH ₃	H	CH ₃
	492	CH ₂ NH ₂	CH ₃	Н	CH ₃
	493	(CH ₂) ₂ COCH ₃	CH ₃	Н	CH ₃
35	494	Phenyl	CH ₃	Н	CH ₃
	495	2-F-Phenyl	CH ₃	н	CH ₃
	496	3-F-Phenyl	CH ₃	Н	CH ₃
	497	4-F-Phenyl	CH ₃	Н	CH ₃
40	498	2-Cl-Phenyl	CH ₃	Н	CH ₃
	499	3-C1-Phenyl	CH ₃	H	CH ₃
	500	4-Cl-Phenyl	CH ₃	Н	CH ₃
	501	2-OH-Phenyl	CH ₃	H	CH ₃
	502	3-OH-Phenyl	CH ₃	н	CH ₃
45	503	4-OH-Phenyl	CH ₃	Н	CH ₃
	504	2-OCH ₃ -Phenyl	CH ₃	Н	CH ₃

[R ³	R^1	R ²	R ⁴
	505	3-OCH ₃ -Phenyl	CH ₃	Н	CH ₃
5	506	4-OCH ₃ -Phenyl	CH ₃	н	CH ₃
	507	2-OCF ₃ -Phenyl	CH ₃	H	CH ₃
	508	3-OCF ₃ -Phenyl	CH ₃	Н	CH ₃
	509	4-OCF ₃ -Phenyl	CH ₃	Н	CH ₃
	510	2-OCHF ₂ -Phenyl	CH ₃	Н	CH ₃
	511	3- OCHF ₂ -Phenyl	CH ₃	Н	CH ₃
10	512	4-OCHF ₂ -Phenyl	CH ₃	H	CH ₃
	513	2-CF ₃ -Phenyl	CH ₃	H	CH ₃
	514	3-CF ₃ -Phenyl	CH ₃	Н	CH ₃
	515	4-CF ₃ -Phenyl	CH ₃	Н	CH ₃
15	516	2-CH ₃ -Phenyl	CH ₃	Н	CH ₃
	517	3-CH ₃ -Phenyl	CH ₃	H	CH ₃
	518	4-CH ₃ -Phenyl	CH ₃	Н	CH ₃
	519	2-NO ₂ -Phenyl	CH ₃	Н	CH ₃
20	520	3-NO ₂ -Phenyl	CH ₃	H	CH ₃
	521	4-NO ₂ -Phenyl	CH ₃	Н	CH ₃
	522	2-Pyridyl	CH ₃	H	CH ₃
	523	3-Pyridyl	CH ₃	Н	CH ₃
25	524	4-Pyridyl	CH ₃	H	CH ₃
23	525	Cyclohexylamino	CH ₃	Н	CH ₃
	526	Cyclopentylamino	CH ₃	Н	CH ₃
	527	Н	OCH ₃	Н	CH ₃
	528	CH ₃	OCH ₃	Н	CH ₃
30	529	C ₂ H ₅	OCH ₃	Н	CH ₃
	530	n-C ₃ H ₇	OCH ₃	H	CH ₃
	531	i-C ₃ H ₇	OCH ₃	H	CH ₃
	532	n-C ₄ H ₉	OCH ₃	H	CH ₃
35	533	S-C4H9	OCH ₃	Н	CH ₃
	534	i-C ₄ H ₉	OCH ₃	Н	CH ₃
	535	t-C ₄ H ₉	OCH ₃	Н	CH ₃
	536	CH ₂ Cl	OCH ₃	H	CH ₃
40	537	CHCl ₂	OCH ₃	H	CH ₃
	538	CCl ₃	OCH ₃	Н	CH ₃
	539	CH ₂ F	OCH ₃	H	CH ₃
	540	CHF ₂	OCH ₃	Н	CH ₃
45	541	CF ₃	OCH ₃	H	CH ₃
40	542	CH ₂ CF ₃	OCH ₃	H	CH ₃
	543	CH ₂ OCH ₃	OCH ₃	Н	СН3

_					
		R ³	R ¹	R ²	R ⁴
	544	CH ₂ OCH ₂ CH ₃	OCH ₃	Н	CH ₃
	545	CH ₂ NH ₂	OCH ₃	Н	CH ₃
5	546	(CH ₂) ₂ COCH ₃	OCH ₃	Н	CH ₃
	547	Phenyl	OCH ₃	H	CH ₃
Ī	548	2-F-Phenyl	OCH ₃	H	CH ₃
ſ	549	3-F-Phenyl	OCH ₃	H	CH ₃
	550	4-F-Phenyl	OCH ₃	Н	CH ₃
10	551	2-Cl-Phenyl	осн3	Н	CH ₃
Ī	552	3-C1-Phenyl	OCH ₃	Н	CH ₃
Ī	553	4-Cl-Phenyl	OCH ₃	Н	CH ₃
	554	2-OH-Phenyl	OCH ₃	Н	CH ₃
15	555	3-OH-Phenyl	OCH ₃	Н	CH ₃
. [556	4-OH-Phenyl	OCH ₃	Н	CH ₃
	557	2-OCH ₃ -Phenyl	OCH ₃	H	CH ₃
Ī	558	3-OCH ₃ -Phenyl	OCH ₃	H	CH ₃
20	559	4-OCH ₃ -Phenyl	OCH ₃	H	CH ₃
Ī	560	2-OCF ₃ -Phenyl	OCH ₃	H	CH ₃
	561	3-OCF ₃ -Phenyl	OCH ₃	H	CH ₃
	562	4-OCF ₃ -Phenyl	OCH ₃	H	CH ₃
25	563	2-OCHF ₂ -Phenyl	OCH ₃	Н	CH ₃
23	564	3-OCHF ₂ -Phenyl	OCH ₃	H	CH ₃
	565	4-OCHF ₂ -Phenyl	OCH ₃	H	CH ₃
	566	2-CF ₃ -Phenyl	OCH ₃	H	CH ₃
	567	3-CF ₃ -Phenyl	OCH ₃	H	CH ₃
30	568	4-CF ₃ -Phenyl	OCH ₃	Н	CH ₃
	569	2-CH ₃ -Phenyl	OCH ₃	H	CH ₃
	570	3-CH ₃ -Phenyl	OCH ₃	H	CH ₃
	571	4-CH ₃ -Phenyl	OCH ₃	н	CH ₃
35	572	2-NO ₂ -Phenyl	OCH ₃	H	CH ₃
	573	3-NO ₂ -Phenyl	OCH ₃	н	CH ₃
	574	4-NO ₂ -Phenyl	OCH ₃	H	CH ₃
	575	2-Pyridyl	OCH ₃	Н	CH ₃
40	576	3-Pyridyl	OCH ₃	Н	CH ₃
	577	4-Pyridyl	OCH ₃	H	CH ₃
	578	Cyclohexylamino	OCH ₃	H	CH ₃
	579	Cyclopentylamino	OCH ₃	H	CH ₃
AF	580	Н	Cl	H	CH ₃
45	581	CH ₃	Cl	Н	CH ₃
	582	C ₂ H ₅	Cl	H	CH ₃

58 58	33	R ³ n-C ₃ H ₇			
<u> </u>		D_('aHa i	Cl	H	CH ₃
50	2 A	i-C ₃ H ₇	Cl	Н	CH ₃
5 8		n-C ₄ H ₉	Cl	Н	CH ₃
5 58		s-C ₄ H ₉	Cl	Н	CH ₃
58		i-C ₄ H ₉	Cl	Н	CH ₃
58		t-C ₄ H ₉	Cl	Н	CH ₃
58		CH ₂ Cl	Cl	Н	CH ₃
10 59		CHCl ₂	Cl	Н	CH ₃
<u> </u>		CCl ₃	Cl	Н	CH ₃
		CH ₂ F	Cl	н	CH ₃
		CHF ₂	Cl	Н	CH ₃
		CF ₃	Cl	Н	CH ₃
	95	CH ₂ CF ₃	Cl	Н	CH ₃
L	96	CH ₂ OCH ₃	Cl	н	CH ₃
<u> </u>	97	CH ₂ OCH ₂ CH ₃	Cl	Н	CH ₃
<u> </u>	98	CH ₂ NH ₂	Cl	Н	CH ₃
	99	(CH ₂) ₂ COCH ₃	Cl	Н	CH ₃
<u> </u>	00	Phenyl	Cl	Н	CH ₃
	01	2-F-Phenyl	C1	Н	CH ₃
7	02	3-F-Phenyl	Cl	Н	CH ₃
25 📖	03	4-F-Phenyl	Cl	Н	CH ₃
<u> </u>	04	2-Cl-Phenyl	Cl	Н	CH ₃
<u> </u>	05	3-Cl-Phenyl	Cl	Н	CH ₃
ļ	06	4-Cl-Phenyl	Cl	Н	CH ₃
30 7	07	2-OH-Phenyl	Cl	Н	CH ₃
7	08	3-OH-Phenyl	Cl	Н	CH ₃
7	709	4-OH-Phenyl	Cl	Н	CH ₃
. 7	710	2-OCH ₃ -Phenyl	Cl	Н	CH ₃
35 7	711	3-OCH ₃ -Phenyl	Cl	Н	CH ₃
7	712	4-OCH ₃ -Phenyl	Cl	Н	CH ₃
7	713	2-OCF ₃ -Phenyl	Cl	H	CH ₃
7	714	3-OCF ₃ -Phenyl	Cl	Н	CH ₃
40 7	715	4-OCF ₃ -Phenyl	Cl	Н	CH ₃
	716	2-OCHF ₂ -Phenyl	Cl	Н	CH ₃
17	717	3-OCHF ₂ -Phenyl	Cl	H	CH ₃
T	718	4-OCHF ₂ -Phenyl	Cl	Н	CH ₃
, t	719	2-CF ₃ -Phenyl	Cl	H	CH ₃
45	720	3-CF ₃ -Phenyl	Cl	H	CH ₃
ļ-	721	4-CF ₃ -Phenyl	Cl	Н	CH ₃

_	J6						
		R ³	R ¹	R ²	R ⁴	4	
Ī	722	2-CH ₃ -Phenyl	C1	H	CH ₃	4	
ţ	723	3-CH ₃ -Phenyl	Cl	Н	CH ₃	4	
5	724	4-CH ₃ -Phenyl	Cl	H	CH ₃	4	
	725	2-NO ₂ -Phenyl	Cl	H	CH ₃	4	
	726	3-NO ₂ -Phenyl	Cl	Н	CH ₃	4	
	727	4-NO ₂ -Phenyl	Cl	H	CH ₃	4	
	728	2-Pyridyl	Cl	H	CH ₃	_	
10	729	3-Pyridyl	Cl	H	CH ₃		
	730	4-Pyridyl	Cl	H	CH ₃		
	731	Cyclohexylamino	C1	H	CH ₃	_	
	732	Cyclopentylamino	Cl	H	CH ₃		
15	733	CH ₃	CH ₃	CH ₃	C ₂ H ₅		
	734	C ₂ H ₅	CH ₃	CH ₃	C ₂ H ₅	_	
	735	n-C ₃ H ₇	CH ₃	CH ₃	C ₂ H ₅	_	
	736	i-C ₃ H ₇	CH ₃	CH ₃	C ₂ H ₅	_	
20	737	n-C ₄ H ₉	CH ₃	CH ₃	C ₂ H ₅	_	
	738	s-C ₄ H ₉	CH ₃	CH ₃	C ₂ H ₅		
	739	i-C ₄ H ₉	CH ₃	CH ₃	C ₂ H ₅		
	740	t-C ₄ H ₉	CH ₃	CH ₃	C ₂ H ₅	_	
25	741	CH ₂ Cl	CH ₃	CH ₃	C ₂ H ₅		
23	742	CHCl ₂	CH ₃	CH ₃	C ₂ H ₅		
	743	CCl ₃	CH ₃	CH ₃	C ₂ H ₅	_	
	744	CH ₂ F	CH ₃	CH ₃	C ₂ H ₅	_	
	745	CHF ₂	CH ₃	CH ₃	C ₂ H ₅	_	
30	746	CF ₃	CH ₃	CH ₃	C ₂ H ₅	\dashv	
	747	CH ₂ CF ₃	CH ₃	CH ₃	C ₂ H ₅	_	
	748	CH ₂ OCH ₃	CH ₃	CH ₃	C ₂ H ₅		
	749	CH ₂ OCH ₂ CH ₃	CH ₃	CH ₃	C ₂ H ₅	_	
35	750	CH ₂ NH ₂	CH ₃	CH ₃	C ₂ H ₅		
	751	(CH ₂) ₂ COCH ₃	CH ₃	CH ₃	C ₂ H ₅	_	
	752	Phenyl	CH ₃	CH ₃	C ₂ H ₅		
	753	2-F-Phenyl	CH ₃	CH ₃	C ₂ H ₅	_	
40	754	3-F-Phenyl	CH ₃	CH ₃	C ₂ H ₅		
	755	4-F-Phenyl	CH ₃	CH ₃	C ₂ H ₅		
	756	2-C1-Phenyl	CH ₃	CH ₃	C ₂ H ₅		
	757	3-Cl-Phenyl	CH ₃	CH ₃	C ₂ H ₅		
	758	4-Cl-Phenyl	CH ₃	CH ₃	C ₂ H ₅		
45	759	2-OH-Phenyl	CH ₃	CH ₃	C ₂ H ₅		
	760	3-OH-Phenyl	CH ₃	CH ₃	C ₂ H ₅		

Γ		R ³	R ¹	R ²	R ⁴
	761	4-OH-Phenyl	CH ₃	CH ₃	C ₂ H ₅
5	762	2-OCH ₃ -Phenyl	CH ₃	CH ₃	C ₂ H ₅
	763	3-OCH ₃ -Phenyl	CH ₃	CH ₃	C ₂ H ₅
<u>_</u>	764	4-OCH ₃ -Phenyl	CH ₃	CH ₃	C ₂ H ₅
L	765	2-OCF ₃ -Phenyl	СН3	CH ₃	C ₂ H ₅
L	766	3-OCF ₃ -Phenyl	CH ₃	CH ₃	C ₂ H ₅
30 F	767	4-OCF ₃ -Phenyl	CH ₃	CH ₃	C ₂ H ₅
Ļ	768	2-OCHF ₂ -Phenyl	CH ₃	CH ₃	C ₂ H ₅
L L	769	3- OCHF ₂ -Phenyl	CH ₃	CH ₃	C ₂ H ₅
	770	4-OCHF ₂ -Phenyl	CH ₃	CH ₃	C ₂ H ₅
15	771	2-CF ₃ -Phenyl	CH ₃	CH ₃	C ₂ H ₅
t	772	3-CF ₃ -Phenyl	CH ₃	CH ₃	C ₂ H ₅
İ	773	4-CF ₃ -Phenyl	CH ₃	CH ₃	C ₂ H ₅
1	774	2-CH ₃ -Phenyl	CH ₃	CH ₃	C ₂ H ₅
20	775	3-CH ₃ -Phenyl	CH ₃	CH ₃	C ₂ H ₅
20	776	4-CH ₃ -Phenyl	CH ₃	CH ₃	C ₂ H ₅
	777	2-NO ₂ -Phenyl	CH ₃	CH ₃	C ₂ H ₅
	778	3-NO ₂ -Phenyl	CH ₃	CH ₃	C ₂ H ₅
	779	4-NO ₂ -Phenyl	CH ₃	CH ₃	C ₂ H ₅
25	780	2-Pyridyl	CH ₃	CH ₃	C ₂ H ₅
	781	3-Pyridyl	CH ₃	CH ₃	C ₂ H ₅
	782	4-Pyridyl	CH ₃	CH ₃	. C ₂ H ₅
	783	Cyclohexylamino	CH ₃	CH ₃	C ₂ H ₅
30	784	Cyclopentylamino	CH ₃	CH ₃	C ₂ H ₅
	785	Н	OCH ₃	CH ₃	C ₂ H ₅
	786	CH ₃	OCH ₃	CH ₃	C ₂ H ₅
	787	C ₂ H ₅	OCH ₃	CH ₃	C ₂ H ₅
35	788	n-C ₃ H ₇	OCH ₃	CH ₃	C ₂ H ₅
	789	i-C ₃ H ₇	OCH ₃	CH ₃	C ₂ H ₅
	790	n-C ₄ H ₉	OCH ₃	CH ₃	C ₂ H ₅
	791	s-C4H9	OCH ₃	CH ₃	C ₂ H ₅
40	792	i-C ₄ H ₉	OCH ₃	CH ₃	C ₂ H ₅
40	793	t-C ₄ H ₉	OCH ₃	CH ₃	C ₂ H ₅
	794	CH ₂ Cl	OCH ₃	CH ₃	C ₂ H ₅
	795	CHCl ₂	OCH ₃	CH ₃	C ₂ H ₅
	796	CCl ₃	OCH ₃	CH ₃	C ₂ H ₅
45	797	CH ₂ F	OCH ₃	CH ₃	C ₂ H ₅
	798	CHF ₂	OCH ₃	CH ₃	C ₂ H ₅

		30			
[,	R ³	R ¹	R ²	R ⁴
Ì	799	CF ₃	OCH ₃	CH ₃	C ₂ H ₅
Ì	800	CH ₂ CF ₃	OCH ₃	CH ₃	C ₂ H ₅
5	801	CH ₂ OCH ₃	OCH ₃	CH ₃	C ₂ H ₅
	802	CH ₂ OCH ₂ CH ₃	OCH ₃	CH ₃	C ₂ H ₅
	803	CH ₂ NH ₂	OCH ₃	CH ₃	C ₂ H ₅
	804	(CH ₂) ₂ COCH ₃	OCH ₃	CH ₃	C ₂ H ₅
	805	Phenyl	OCH ₃	CH ₃	C ₂ H ₅
10	806	2-F-Phenyl	OCH ₃	CH ₃	C ₂ H ₅
;	807	3-F-Phenyl	OCH ₃	CH ₃	C ₂ H ₅
	808	4-F-Phenyl	OCH ₃	CH ₃	C ₂ H ₅
	809	2-Cl-Phenyl	OCH ₃	CH ₃	C ₂ H ₅
15	810	3-Cl-Phenyl	OCH ₃	CH ₃	C ₂ H ₅
	811	4-Cl-Phenyl	OCH ₃	CH ₃	C ₂ H ₅
	812	2-OH-Phenyl	OCH ₃	CH ₃	C ₂ H ₅
	813	3-OH-Phenyl	OCH ₃	CH ₃	C ₂ H ₅
20	814	4-OH-Phenyl	OCH ₃	CH ₃	C ₂ H ₅
	815	2-OCH ₃ -Phenyl	OCH ₃	CH ₃	C ₂ H ₅
	816	3-OCH ₃ -Phenyl	OCH ₃	CH ₃	C ₂ H ₅
	817	4-OCH ₃ -Phenyl	OCH ₃	CH ₃	C ₂ H ₅
25	818	2-OCF ₃ -Phenyl	OCH ₃	CH ₃	C ₂ H ₅
25	819	3-OCF ₃ -Phenyl	OCH ₃	CH ₃	C ₂ H ₅
	820	4-OCF ₃ -Phenyl	OCH ₃	CH ₃	C ₂ H ₅
	821	2-OCHF ₂ -Phenyl	OCH ₃	CH ₃	C ₂ H ₅
	822	3-OCHF ₂ -Phenyl	OCH ₃	CH ₃	C ₂ H ₅
30	823	4-OCHF ₂ -Phenyl	OCH ₃	CH ₃	C ₂ H ₅
	824	2-CF ₃ -Phenyl	OCH ₃	CH ₃	C ₂ H ₅
	825	3-CF ₃ -Phenyl	OCH ₃	CH ₃	C ₂ H ₅
	826	4-CF ₃ -Phenyl	OCH ₃	CH ₃	C ₂ H ₅
35	827	2-CH ₃ -Phenyl	OCH ₃	CH ₃	C ₂ H ₅
	828	3-CH ₃ -Phenyl	OCH ₃	CH ₃	C ₂ H ₅
	829	4-CH ₃ -Phenyl	OCH ₃	CH ₃	C ₂ H ₅
	830	2-NO ₂ -Phenyl	OCH ₃	CH ₃	C ₂ H ₅
40	831	3-NO ₂ -Phenyl	OCH ₃	CH ₃	C ₂ H ₅
	832	4-NO ₂ -Phenyl	OCH ₃	CH ₃	C ₂ H ₅
	833	2-Pyridyl	OCH ₃	CH ₃	C ₂ H ₅
	834	3-Pyridyl	OCH ₃	CH ₃	C ₂ H ₅
	835	4-Pyridyl	OCH ₃	CH ₃	C ₂ H ₅
45	836	Cyclohexylamino	OCH ₃	CH ₃	C ₂ H ₅
	837	Cyclopentylamino	OCH ₃	CH ₃	C ₂ H ₅

r		3,	R ¹	R ²	R ⁴
		R ³			C ₂ H ₅
L	838	H	Cl	CH ₃	
	839	CH ₃	C1	CH ₃	C ₂ H ₅
5	840	C ₂ H ₅	Cl	CH ₃	C ₂ H ₅
	841	n-C ₃ H ₇	cl	CH ₃	C ₂ H ₅
	842	i-C ₃ H ₇	cl	CH ₃	C ₂ H ₅
	843	n-C ₄ H ₉	Cl	CH ₃	C ₂ H ₅
10	844	s-C ₄ H ₉	Cl	CH ₃	C ₂ H ₅
10	845	i-C ₄ H ₉	Cl	CH ₃	C ₂ H ₅
	846	t-C ₄ H ₉	Cl	CH ₃	C ₂ H ₅
	847	CH ₂ Cl	Cl	CH ₃	C ₂ H ₅
	848	CHCl ₂	Cl	CH ₃	C ₂ H ₅
15	849	CCl ₃	Cl	CH ₃	C ₂ H ₅
	850	CH ₂ F	Cl	CH ₃	C ₂ H ₅
	851	CHF ₂	Cl	CH ₃	C ₂ H ₅
	852	CF ₃	Cl	CH ₃	C ₂ H ₅
20	853	CH ₂ CF ₃	Cl	CH ₃	C ₂ H ₅
	854	CH ₂ OCH ₃	Cl	CH ₃	C ₂ H ₅
	855	CH ₂ OCH ₂ CH ₃	Cl	CH ₃	C ₂ H ₅
	856	CH ₂ NH ₂	Cl	CH ₃	C ₂ H ₅
25	857	(CH ₂) ₂ COCH ₃	Cl	CH ₃	C ₂ H ₅
. 23	858	Phenyl	Cl	CH ₃	C ₂ H ₅
	859	2-F-Phenyl	Cl	CH ₃	C ₂ H ₅
	860	3-F-Phenyl	Cl	CH ₃	C ₂ H ₅
	861	4-F-Phenyl	Cl	CH ₃	C ₂ H ₅
30	862	2-C1-Phenyl	Cl	CH ₃	C ₂ H ₅
	863	3-C1-Phenyl	Cl	CH ₃	C ₂ H ₅
	864	4-C1-Phenyl	Cl	CH ₃	C ₂ H ₅
	865	2-OH-Phenyl	Cl	CH ₃	C ₂ H ₅
35	866	3-OH-Phenyl	Cl	CH ₃	C ₂ H ₅
	867	4-OH-Phenyl	Cl	CH ₃	C ₂ H ₅
	868	2-OCH ₃ -Phenyl	Cl	CH ₃	C ₂ H ₅
	869	3-OCH ₃ -Phenyl	Cl	CH ₃	C ₂ H ₅
40	870	4-OCH ₃ -Phenyl	Cl	CH ₃	C ₂ H ₅
40	871	2-OCF ₃ -Phenyl	Cl	CH ₃	C ₂ H ₅
	872	3-OCF ₃ -Phenyl	Cl	CH ₃	C ₂ H ₅
	873	4-OCF ₃ -Phenyl	Cl	CH ₃	C ₂ H ₅
	874	2-OCHF ₂ -Phenyl	Cl	CH ₃	C ₂ H ₅
45	875	3-OCHF ₂ -Phenyl	Cl	CH ₃	C ₂ H ₅
	876	4-OCHF ₂ -Phenyl	Cl	CH ₃	C ₂ H ₅

		R ³	R ¹	R ²	R ⁴
	877	2-CF ₃ -Phenyl	Cl	CH ₃	C ₂ H ₅
	878	3-CF ₃ -Phenyl	Cl	CH ₃	C ₂ H ₅
5	879	4-CF ₃ -Phenyl	Cl	CH ₃	C ₂ H ₅
	880	2-CH ₃ -Phenyl	Cl	CH ₃	C ₂ H ₅
	881	3-CH ₃ -Phenyl	Cl	CH ₃	C ₂ H ₅
	882	4-CH ₃ -Phenyl	Cl	CH ₃	C ₂ H ₅
	883	2-NO ₂ -Phenyl	Cl	CH ₃	C ₂ H ₅
10	884	3-NO ₂ -Phenyl	Cl	CH ₃	C ₂ H ₅
	885	4-NO ₂ -Phenyl	Cl	CH ₃	C ₂ H ₅
	886	2-Pyridyl	Cl	CH ₃	C ₂ H ₅
	887	3-Pyridyl	Cl	CH ₃	C ₂ H ₅
15	888	4-Pyridyl	Cl	CH ₃	C ₂ H ₅
15	889	Cyclohexylamino	Cl	CH ₃	C ₂ H ₅
	890	Cyclopentylamino	Cl	CH ₃	C ₂ H ₅
	891	CH ₃	CH ₃	н	C ₂ H ₅
20	892	C ₂ H ₅	CH ₃	Н	C ₂ H ₅
20	893	n-C ₃ H ₇	CH ₃	н	C ₂ H ₅
	894	i-C ₃ H ₇	СН3	н	C ₂ H ₅
	895	n-C ₄ H ₉	CH ₃	H	C ₂ H ₅
	896	s-C ₄ H ₉	CH ₃	Н	C ₂ H ₅
25	897	i-C ₄ H ₉	CH ₃	Н	C ₂ H ₅
	898	t-C ₄ H ₉	CH ₃	Н	C ₂ H ₅
	899	CH ₂ Cl	CH ₃	Н	C ₂ H ₅
	900	CHCl ₂	CH ₃	Н	C ₂ H ₅
30	901	CCl ₃	CH ₃	Н	C ₂ H ₅
	902	CH ₂ F	CH ₃	н	C ₂ H ₅
	903	CHF ₂	CH ₃	н	C ₂ H ₅
	904	CF ₃	CH ₃	Н	C ₂ H ₅
35	905	CH ₂ CF ₃	CH ₃	н	C ₂ H ₅
	906	CH ₂ OCH ₃	CH ₃	Н	C ₂ H ₅
	907	CH ₂ OCH ₂ CH ₃	CH ₃	Н	C ₂ H ₅
	908	CH ₂ NH ₂	CH ₃	Н	C ₂ H ₅
40	1000	(CH ₂) ₂ COCH ₃	CH ₃	Н	C ₂ H ₅
40	910	Phenyl	CH ₃	Н	C ₂ H ₅
	911	2-F-Phenyl	CH ₃	Н	C ₂ H ₅
	912	3-F-Phenyl	CH ₃	Н	C ₂ H ₅
	913	4-F-Phenyl	СН3	н	C ₂ H ₅
45	914	2-Cl-Phenyl	CH ₃	н	C ₂ H ₅
	915	3-Cl-Phenyl	CH ₃	н	C ₂ H ₅

Γ		R ³	R ¹	R ²	R ⁴
ŀ	916	4-Cl-Phenyl	CH ₃	Н	C ₂ H ₅
į	917	2-OH-Phenyl	CH ₃	H	C ₂ H ₅
_	918	3-OH-Phenyl	CH ₃	H	C ₂ H ₅
5	919	4-OH-Phenyl	CH ₃	H	C ₂ H ₅
1	920	2-OCH ₃ -Phenyl	CH ₃	Н	C ₂ H ₅
	921	3-OCH ₃ -Phenyl	CH ₃	Н	C ₂ H ₅
	922	4-OCH ₃ -Phenyl	CH ₃	H	C ₂ H ₅
10	923	2-OCF ₃ -Phenyl	CH ₃	Н	C ₂ H ₅
	924	3-OCF ₃ -Phenyl	CH ₃	н	C ₂ H ₅
	925	4-OCF ₃ -Phenyl	CH ₃	H	C ₂ H ₅
	926	2-OCHF ₂ -Phenyl	CH ₃	Н	C ₂ H ₅
15	927	3- OCHF ₂ -Phenyl	CH ₃	H	C ₂ H ₅
	928	4-OCHF ₂ -Phenyl	CH ₃	H	C ₂ H ₅
	929	2-CF ₃ -Phenyl	CH ₃	H	C ₂ H ₅
	930	3-CF ₃ -Phenyl	CH ₃	H	C ₂ H ₅
	931	4-CF ₃ -Phenyl	CH ₃	Н	C ₂ H ₅
20	932	2-CH ₃ -Phenyl	CH ₃	Н	C ₂ H ₅
	933	3-CH ₃ -Phenyl	CH ₃	Н	C ₂ H ₅
	934	4-CH ₃ -Phenyl	CH ₃	Н	C ₂ H ₅
	935	2-NO ₂ -Phenyl	CH ₃	Н	C ₂ H ₅
25	936	3-NO ₂ -Phenyl	CH ₃	Н	C ₂ H ₅
	937	4-NO ₂ -Phenyl	CH ₃	Н	C ₂ H ₅
	938	2-Pyridyl	CH ₃	H	C ₂ H ₅
	939	3-Pyridyl	CH ₃	H	C ₂ H ₅
30	940	4-Pyridyl	CH ₃	Н	C ₂ H ₅
	941	Cyclohexylamino	CH ₃	H	C ₂ H ₅
	942	Cyclopentylamino	CH ₃	Н	C ₂ H ₅
	943	Н	OCH ₃	Н	C ₂ H ₅
35	944	CH ₃	ОСН3	Н	C ₂ H ₅
	945	C ₂ H ₅	OCH ₃	н	C ₂ H ₅
	946	n-C ₃ H ₇	ОСН3	Н	C ₂ H ₅
	947	i-C ₃ H ₇	ОСН3	Н	C ₂ H ₅
	948	n-C ₄ H ₉	OCH ₃	Н	C ₂ H ₅
40	949	s-C ₄ H ₉	OCH ₃	Н	C ₂ H ₅
	950	i-C ₄ H ₉	OCH ₃	Н	C ₂ H ₅
	951	t-C ₄ H ₉	OCH ₃	H	C ₂ H ₅
	952	CH ₂ Cl	OCH ₃	Н	C ₂ H ₅
45	953	CHCl ₂	OCH ₃	Н	C ₂ H ₅
	954	CCI3	OCH ₃	н	C ₂ H ₅

		•			
ſ		R ³	\mathbb{R}^1	R ²	R ⁴
ŀ	955	CH ₂ F	OCH ₃	H	C ₂ H ₅
ļ	956	CHF ₂	OCH ₃	н	C ₂ H ₅
5	957	CF ₃	OCH ₃	Н	C ₂ H ₅
1	958	CH ₂ CF ₃	OCH ₃	Н	C ₂ H ₅
ŀ	959	CH ₂ OCH ₃	OCH ₃	Н	C ₂ H ₅
ŀ	960	CH ₂ OCH ₂ CH ₃	OCH ₃	н	C ₂ H ₅
	961	CH ₂ NH ₂	OCH ₃	Н	C ₂ H ₅
10	962	(CH ₂) ₂ COCH ₃	OCH ₃	Н	C ₂ H ₅
Ì	963	Phenyl	OCH ₃	Н	C ₂ H ₅
	964	2-F-Phenyl	OCH ₃	Н	C ₂ H ₅
	965	3-F-Phenyl	осн3	Н	C ₂ H ₅
15	966	4-F-Phenyl	OCH ₃	Н	C ₂ H ₅
	967	2-C1-Phenyl	OCH ₃	Н	C ₂ H ₅
	968	3-Cl-Phenyl	OCH ₃	Н	C ₂ H ₅
	969	4-Cl-Phenyl	OCH ₃	Н	C ₂ H ₅
20	970	2-OH-Phenyl	OCH ₃	Н	C ₂ H ₅
	971	3-OH-Phenyl	OCH ₃	Н	C ₂ H ₅
	972	4-OH-Phenyl	OCH ₃	H	C ₂ H ₅
	973	2-OCH ₃ -Phenyl	OCH ₃	Н	C ₂ H ₅
	974	3-OCH ₃ -Phenyl	OCH ₃	Н .	C ₂ H ₅
25	975	4-OCH ₃ -Phenyl	OCH ₃	Н	C ₂ H ₅
	976	2-OCF ₃ -Phenyl	OCH ₃	Н	C ₂ H ₅
	977	3-OCF ₃ -Phenyl	OCH ₃	Н	C ₂ H ₅
	978	4-OCF ₃ -Phenyl	OCH ₃	Н	C ₂ H ₅
30	979	2-OCHF ₂ -Phenyl	ОСН3	Н	C ₂ H ₅
	980	3-OCHF ₂ -Phenyl	OCH ₃	Н	C ₂ H ₅
	981	4-OCHF ₂ -Phenyl	OCH ₃	H	C ₂ H ₅
	982	2-CF ₃ -Phenyl	OCH ₃	Н	C ₂ H ₅
35	983	3-CF ₃ -Phenyl	OCH ₃	Н	C ₂ H ₅
	984	4-CF ₃ -Phenyl	OCH ₃	Н	C ₂ H ₅
	985	2-CH ₃ -Phenyl	OCH ₃	Н	C ₂ H ₅
	986	3-CH ₃ -Phenyl	OCH ₃	Н	C ₂ H ₅
40	987	4-CH ₃ -Phenyl	осн3	Н	C ₂ H ₅
	988	2-NO ₂ -Phenyl	ОСН3	Н	C ₂ H ₅
	989	3-NO ₂ -Phenyl	OCH ₃	Н	C ₂ H ₅
	990	4-NO ₂ -Phenyl	OCH ₃	Н	C ₂ H ₅
	991	2-Pyridyl	ОСН3	Н	C ₂ H ₅
45	992	3-Pyridyl	OCH ₃	Н	C ₂ H ₅
	993	4-Pyridyl	OCH ₃	H	C ₂ H ₅

			102		
ſ		R ³	R ¹	R ²	R ⁴
ŀ	994	Cyclohexylamino	OCH ₃	H	C ₂ H ₅
ļ	995	Cyclopentylamino	OCH ₃	H	C ₂ H ₅
5	996	Н	Cl	н	C ₂ H ₅
	997	CH ₃	Cl	H	C ₂ H ₅
	998	C ₂ H ₅	Cl	Н	C ₂ H ₅
	999	n-C ₃ H ₇	Cl	Н	C ₂ H ₅
	999	i-C ₃ H ₇	Cl	Н	C ₂ H ₅
10	1000	n-C ₄ H ₉	Cl	Н	C ₂ H ₅
	1001	s-C ₄ H ₉	Cl	н	C ₂ H ₅
	1002	i-C ₄ H ₉	Cl	Н	C ₂ H ₅
	1003	t-C ₄ H ₉	Cl	Н	C ₂ H ₅
15	1004	CH ₂ Cl	Cl	Н	C ₂ H ₅
	1005	CHCl ₂	Cl	Н	C ₂ H ₅
	1006	CCl ₃	Cl	Н	C ₂ H ₅
	1007	CH ₂ F	Cl	Н	C ₂ H ₅
20	1008	CHF ₂	Cl	Н	C ₂ H ₅
20	1009	CF ₃	Cl	Н	C ₂ H ₅
	1010	CH ₂ CF ₃	Cl	H	C ₂ H ₅
	1011	CH ₂ OCH ₃	Cl	н	C ₂ H ₅
	1012	CH ₂ OCH ₂ CH ₃	Cl	H	C ₂ H ₅
25	1013	CH ₂ NH ₂	Cl	H	C ₂ H ₅
	1014	(CH ₂) ₂ COCH ₃	Cl	H	C ₂ H ₅
	1015	Phenyl	Cl	Н	C ₂ H ₅
	1016	2-F-Phenyl	Cl	H	C ₂ H ₅
30	1017	3-F-Phenyl	Cl	Н	C ₂ H ₅
	1018	4-F-Phenyl	Cl	Н	C ₂ H ₅
10 15 20	1019	2-Cl-Phenyl	Cl	H	C ₂ H ₅
	1020	3-Cl-Phenyl	Cl	Н	C ₂ H ₅
35	1021	4-Cl-Phenyl	Cl	Н	C ₂ H ₅
	1022	2-OH-Phenyl	Cl	H	C ₂ H ₅
	1023	3-OH-Phenyl	Cl	H	C ₂ H ₅
	1024	4-OH-Phenyl	Cl	H	C ₂ H ₅
40	1025	2-OCH ₃ -Phenyl	Cl	H	C ₂ H ₅
	1026	3-OCH ₃ -Phenyl	Cl	H	C ₂ H ₅
	1027	4-OCH ₃ -Phenyl	Cl	Н	C ₂ H ₅
	1028	2-OCF ₃ -Phenyl	Cl	Н	C ₂ H ₅
	1029	3-OCF ₃ -Phenyl	Cl	Н	C ₂ H ₅
45	1030	4-OCF ₃ -Phenyl	Cl	H	C ₂ H ₅
	1031	2-OCHF ₂ -Phenyl	Cl	Н	C ₂ H ₅

104

		R ³	R ¹	R ²	R ⁴
	1032	3-OCHF ₂ -Phenyl	Cl	Н	C ₂ H ₅
	1033	4-OCHF ₂ -Phenyl	Cl	H	C ₂ H ₅
5	1034	2-CF ₃ -Phenyl	Cl	H	C ₂ H ₅
	1035	3-CF ₃ -Phenyl	Cl	Н	C ₂ H ₅
	1036	4-CF ₃ -Phenyl	Cl	H	C ₂ H ₅
	1037	2-CH ₃ -Phenyl	Cl	H	C ₂ H ₅
	1038	3-CH ₃ -Phenyl	Cl	H	C ₂ H ₅
10	1039	4-CH ₃ -Phenyl	Cl	н	C ₂ H ₅
	1040	2-NO ₂ -Phenyl	Cl	Н	C ₂ H ₅
	1041	3-NO ₂ -Phenyl	Cl	Н	C ₂ H ₅
	1042	4-NO ₂ -Phenyl	Cl	н	C ₂ H ₅
15	1043	2-Pyridyl	Cl	H	C ₂ H ₅
	1044	3-Pyridyl	Cl	Н	C ₂ H ₅
	1045	4-Pyridyl	Cl	H	C ₂ H ₅
	1046	Cyclohexylamino	Cl	H .	C ₂ H ₅
20	1047	Cyclopentylamino	Cl	Н	C ₂ H ₅
	1048	CH ₃	CH ₃	H H H H H H H H H H H H H H H H	i-C ₃ H ₇
	1049	C ₂ H ₅	CH ₃	CH ₃	i-C ₃ H ₇
	1050	n-C ₃ H ₇	CH ₃	CH ₃	i-C ₃ H ₇
25	1051	i-C ₃ H ₇	CH ₃	CH ₃	i-C ₃ H ₇
	1052	n-C ₄ H ₉	CH ₃	CH ₃	i-C ₃ H ₇
	1053	s-C ₄ H ₉	CH ₃	CH ₃	i-C ₃ H ₇
	1054	i-C ₄ H ₉	CH ₃	CH ₃	i-C ₃ H ₇
20	1055	t-C ₄ H ₉	CH ₃	ļ	i-C ₃ H ₇
30	1056	CH ₂ Cl	CH ₃	CH ₃	i-C ₃ H ₇
	1057	CHCl ₂	CH ₃	<u> </u>	i-C ₃ H ₇
	1058	CCl ₃	CH ₃		i-C ₃ H ₇
	1059	CH ₂ F	CH ₃	 	i-C ₃ H ₇
35	1060	CHF ₂	CH ₃		i-C ₃ H ₇
	1061	CF ₃	CH ₃		i-C ₃ H ₇
	1062	CH ₂ CF ₃	CH ₃		i-C ₃ H ₇
	1063	CH ₂ OCH ₃	CH ₃		i-C ₃ H ₇
40	1064	CH ₂ OCH ₂ CH ₃	CH ₃	+	i-C ₃ H ₇
20	1065	CH ₂ NH ₂	CH ₃		i-C ₃ H ₇
	1066	(CH ₂) ₂ COCH ₃	CH ₃		i-C ₃ H ₇
	1067	Phenyl	CH ₃		i-C ₃ H ₇
45	1068	2-F-Phenyl	CH ₃		i-C ₃ H ₇
	1069	3-F-Phenyl	CH ₃		i-C ₃ H ₇
	1070	4-F-Phenyl	CH ₃	CH ₃	i-C ₃ H ₇

ſ		R ³	R ¹	R ²	R ⁴
-	1071	2-Cl-Phenyl	CH ₃	CH ₃	i-C ₃ H ₇
Ì	1072	3-Cl-Phenyl	CH ₃	CH ₃	i-C ₃ H ₇
5	1073	4-Cl-Phenyl	CH ₃	CH ₃	i-C ₃ H ₇
5	1074	2-OH-Phenyl	CH ₃	CH ₃	i-C ₃ H ₇
	1075	3-OH-Phenyl	CH ₃	CH ₃	i-C ₃ H ₇
	1076	4-OH-Phenyl	CH3	CH ₃	i-C ₃ H ₇
	1077	2-OCH ₃ -Phenyl	CH ₃	CH ₃	i-C ₃ H ₇
10	1078	3-OCH ₃ -Phenyl	CH ₃	CH ₃	i-C ₃ H ₇
	1079	4-OCH ₃ -Phenyl	CH ₃	CH ₃	i-C ₃ H ₇
	1080	2-OCF ₃ -Phenyl	CH ₃	CH ₃	i-C ₃ H ₇
	1081	3-OCF ₃ -Phenyl	CH ₃	CH ₃	i-C ₃ H ₇
15	1082	4-OCF ₃ -Phenyl	CH ₃	CH ₃	i-C ₃ H ₇
	1083	2-OCHF ₂ -Phenyl	CH ₃	CH ₃	i-C ₃ H ₇
	1084	3- OCHF ₂ -Phenyl	CH ₃	CH ₃	i-C ₃ H ₇
	1085	4-OCHF ₂ -Phenyl	CH ₃	CH ₃	i-C ₃ H ₇
20	1086	2-CF ₃ -Phenyl	CH ₃	CH ₃	i-C ₃ H ₇
	1087	3-CF ₃ -Phenyl	CH3 CH3 i CH3 CH3 CH3 i CH3 CH3 CH3 i CH3 CH3 CH3 i CH3 CH3 CH3 i CH3 CH3 CH3 i CH3 CH3 CH3 i CH3 CH3 CH3 i CH3 CH3 CH3 i CH3 CH3 CH3 i CH3 CH3 CH3 i CH3 CH3 CH3 i CH3 CH3 CH3 i CH3 CH3 CH3 i CH3 CH3 CH3 i CH3 CH3 CH3 i CH3 CH3 CH3 i CH3 CH3 CH3 i CH3 CH3 CH3 CH3 i CH3 CH3 CH3 CH3 i CH3 CH3 CH3 CH3 i CH3 CH3 CH3 CH3 I CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4	i-C ₃ H ₇	
	1088	4-CF ₃ -Phenyl	CH ₃	CH ₃	i-C ₃ H ₇
	1089	2-CH ₃ -Phenyl	CH ₃	CH ₃	i-C ₃ H ₇
25	1090	3-CH ₃ -Phenyl	CH ₃	CH ₃	i-C ₃ H ₇
25	1091	4-CH ₃ -Phenyl	CH ₃	CH ₃	i-C ₃ H ₇
	1092	2-NO ₂ -Phenyl	СН3	CH ₃	i-C ₃ H ₇
	1093	3-NO ₂ -Phenyl	CH ₃	CH ₃	i-C ₃ H ₇
	1094	4-NO ₂ -Phenyl	CH ₃	CH ₃	i-C ₃ H ₇
30	1095	2-Pyridyl	CH ₃	CH ₃	i-C ₃ H ₇
	1096	3-Pyridyl	CH ₃	CH ₃	i-C ₃ H ₇
	1097	4-Pyridyl	CH ₃	CH ₃	i-C ₃ H ₇
	1098	Cyclohexylamino	CH ₃	CH ₃	i-C ₃ H ₇
35	1099	Cyclopentylamino	CH ₃	CH ₃	i-C ₃ H ₇
	1100	Н	OCH ₃	CH ₃	i-C ₃ H ₇
	1101	CH ₃	OCH ₃	CH ₃	i-C ₃ H ₇
	1102	C ₂ H ₅	OCH ₃	CH ₃	i-C ₃ H ₇
40	1103	n-C ₃ H ₇	OCH ₃	CH ₃	i-C ₃ H ₇
40	1104	i-C ₃ H ₇	OCH ₃	CH ₃	i-C ₃ H ₇
	1105	n-C ₄ H ₉	OCH ₃	CH ₃	i-C ₃ H ₇
	1106	s-C ₄ H ₉	ОСН3	CH ₃	i-C ₃ H ₇
	1107	i-C ₄ H ₉	ОСН3	CH ₃	i-C ₃ H ₇
45	1108	t-C ₄ H ₉	OCH ₃	CH ₃	i-C ₃ H ₇
	1109	CH ₂ Cl	OCH ₃	CH ₃	i-C ₃ H ₇

106

ſ		R ³	R ¹	R ²	R ⁴
	1110	CHCl ₂	OCH ₃	CH ₃	i-C ₃ H ₇
	1111	CCl ₃	OCH ₃	CH ₃	i-C ₃ H ₇
5	1112	CH ₂ F	OCH ₃	CH ₃	i-C ₃ H ₇
_	1113	CHF ₂	OCH ₃	CH ₃	i-C ₃ H ₇
	1114	CF ₃	OCH ₃	CH ₃	i-C ₃ H ₇
Ì	1115	CH ₂ CF ₃	OCH ₃	CH ₃	i-C ₃ H ₇
_	1116	CH ₂ OCH ₃	OCH ₃	CH ₃	i-C ₃ H ₇
10	1117	CH ₂ OCH ₂ CH ₃	OCH ₃	CH ₃	i-C ₃ H ₇
	1118	CH ₂ NH ₂	OCH ₃	CH ₃	i-C ₃ H ₇
	1119	(CH ₂) ₂ COCH ₃	OCH ₃	CH ₃	i-C ₃ H ₇
	1120	Phenyl	OCH ₃	CH₃	i-C ₃ H ₇
15	1121	2-F-Phenyl	OCH ₃	CH ₃	i-C ₃ H ₇
	1122	3-F-Phenyl	OCH ₃	CH ₃	i-C ₃ H ₇
	1123	4-F-Phenyl	OCH ₃	CH ₃	i-C ₃ H ₇
	1124	2-Cl-Phenyl	OCH ₃	CH ₃	i-C ₃ H ₇
20	1125	3-Cl-Phenyl	OCH ₃	CH ₃	i-C ₃ H ₇
	1126	4-Cl-Phenyl	OCH ₃	CH ₃	i-C ₃ H ₇
	1127	2-OH-Phenyl	OCH ₃	CH ₃	i-C ₃ H ₇
	1128	3-OH-Phenyl	OCH ₃	CH ₃	i-C ₃ H ₇
25	1129	4-OH-Phenyl	OCH ₃	CH ₃	i-C ₃ H ₇
23	1130	2-OCH ₃ -Phenyl	OCH ₃	CH ₃	i-C ₃ H ₇
	1131	3-OCH ₃ -Phenyl	OCH ₃	CH ₃	i-C ₃ H ₇
	1132	4-OCH ₃ -Phenyl	OCH ₃	CH ₃	i-C ₃ H ₇
	1133	2-OCF ₃ -Phenyl	OCH ₃	CH ₃	i-C ₃ H ₇
30	1134	3-OCF ₃ -Phenyl	OCH ₃	CH ₃	i-C ₃ H ₇
	1135	4-OCF ₃ -Phenyl	OCH ₃	CH ₃	i-C ₃ H ₇
	1136	2-OCHF ₂ -Phenyl	OCH ₃	CH ₃	i-C ₃ H ₇
	1137	3-OCHF ₂ -Phenyl	OCH ₃	CH ₃	i-C ₃ H ₇
35	1138	4-OCHF ₂ -Phenyl	OCH ₃	CH ₃	i-C ₃ H ₇
	1139	2-CF ₃ -Phenyl	OCH ₃	CH ₃	i-C ₃ H ₇
	1140	3-CF ₃ -Phenyl	OCH ₃	CH ₃	i-C ₃ H ₇
	1141	4-CF ₃ -Phenyl	OCH ₃	CH ₃	i-C ₃ H ₇
40	1142	2-CH ₃ -Phenyl	OCH ₃	CH ₃	i-C ₃ H ₇
20	1143	3-CH ₃ -Phenyl	OCH ₃	CH ₃	i-C ₃ H ₇
	1144	4-CH ₃ -Phenyl	OCH ₃	CH ₃	i-C ₃ H ₇
	1145	2-NO ₂ -Phenyl	OCH ₃	CH ₃	i-C ₃ H ₇
45	1146	3-NO ₂ -Phenyl	OCH ₃	CH ₃	i-C ₃ H ₇
43	1147	4-NO ₂ -Phenyl	OCH ₃	CH ₃	i-C ₃ H ₇
	1148	2-Pyridyl	OCH ₃	CH ₃	i-C ₃ H ₇

		•	U T		
İ		R ³	R1	R ²	R ⁴
	1149	3-Pyridyl	OCH ₃	CH ₃	i-C ₃ H ₇
	1150	4-Pyridyl	OCH ₃	CH ₃	i-C ₃ H ₇
5	1151	Cyclohexylamino	OCH ₃	CH ₃	i-C ₃ H ₇
2	1152	Cyclopentylamino	OCH ₃	CH ₃	i-C ₃ H ₇
	1153	H	Cl	CH ₃	i-C ₃ H ₇
	1154	CH ₃	Cl	CH ₃	i-C ₃ H ₇
	1155	C ₂ H ₅	Cl	CH₃	i-C ₃ H ₇
10	1156	n-C ₃ H ₇	Cl	CH ₃	i-C ₃ H ₇
	1157	i-C ₃ H ₇	Cl	CH ₃	i-C ₃ H ₇
,	1158	n-C ₄ H ₉	Cl	CH ₃	i-C ₃ H ₇
	1159	s-C ₄ H ₉	Cl	CH ₃	i-C ₃ H ₇
15	1160	i-C ₄ H ₉	Cl	CH ₃	i-C ₃ H ₇
	1161	t-C ₄ H ₉	Cl	CH ₃	i-C ₃ H ₇
	1162	CH ₂ Cl	Cl	CH ₃	i-C ₃ H ₇
	1163	CHCl ₂	Cl	CH ₃	i-C ₃ H ₇
20	1164	CCl ₃	Cl	CH ₃	i-C ₃ H ₇
	1165	CH ₂ F	Cl	CH ₃	i-C ₃ H ₇
	1166	CHF ₂	Cl	CH ₃	i-C ₃ H ₇
	1167	CF ₃	Cl	CH ₃	i-C ₃ H ₇
25	1168	CH ₂ CF ₃	Cl	CH ₃	i-C ₃ H ₇
25	1169	CH ₂ OCH ₃	Cl	CH ₃	i-C ₃ H ₇
	1170	CH ₂ OCH ₂ CH ₃	Cl	CH ₃	i-C ₃ H ₇
	1171	CH ₂ NH ₂	Cl	СН3	i-C ₃ H ₇
	1172	(CH ₂) ₂ COCH ₃	Cl	CH ₃	i-C ₃ H ₇
30	1173	Phenyl	Cl	CH ₃	i-C ₃ H ₇
	1174	2-F-Phenyl	Cl	CH ₃	i-C ₃ H ₇
	1175	3-F-Phenyl	Cl	CH ₃	i-C ₃ H ₇
	1176	4-F-Phenyl	Cl	CH ₃	i-C ₃ H ₇
35	1177	2-Cl-Phenyl	Cl	CH ₃	i-C ₃ H ₇
	1178	3-Cl-Phenyl	Cl	CH ₃	i-C ₃ H ₇
	1179	4-Cl-Phenyl	Cl	CH ₃	i-C ₃ H ₇
	1180	2-OH-Phenyl	Cl	CH ₃	i-C ₃ H ₇
40	1181	3-OH-Phenyl	Cl	CH ₃	i-C ₃ H ₇
	1182	4-OH-Phenyl	Cl	CH ₃	i-C ₃ H ₇
	1183	2-OCH ₃ -Phenyl	Cl	CH ₃	i-C ₃ H ₇
	1184	3-OCH ₃ -Phenyl	Cl	CH ₃	i-C ₃ H ₇
	1185	4-OCH ₃ -Phenyl	Cl	CH ₃	i-C ₃ H ₇
45	1186	2-OCF ₃ -Phenyl	Cl	CH ₃	i-C ₃ H ₇
	1187	3-OCF ₃ -Phenyl	Cl	CH ₃	i-C ₃ H ₇

				_ 1	-4
Į		R ³	R ¹	R ²	R ⁴
	1188	4-OCF ₃ -Phenyl	Cl	CH ₃	i-C ₃ H ₇
[1189	2-OCHF ₂ -Phenyl	Cl	CH ₃	i-C ₃ H ₇
5	1190	3-OCHF ₂ -Phenyl	Cl	CH ₃	i-C ₃ H ₇
	1191	4-OCHF ₂ -Phenyl	Cl	CH ₃	i-C ₃ H ₇
	1192	2-CF ₃ -Phenyl	Cl	CH ₃	i-C ₃ H ₇
	1193	3-CF ₃ -Phenyl	Cl	CH ₃	i-C ₃ H ₇
	1194	4-CF ₃ -Phenyl	Cl	CH ₃	i-C ₃ H ₇
10	1195	2-CH ₃ -Phenyl	Cl	CH ₃	i-C ₃ H ₇
	1196	3-CH ₃ -Phenyl	Cl	CH ₃	i-C ₃ H ₇
	1197	4-CH ₃ -Phenyl	Cl	CH ₃	i-C ₃ H ₇
	1198	2-NO ₂ -Phenyl	Cl	CH ₃	i-C ₃ H ₇
15	1199	3-NO ₂ -Phenyl	Cl	CH ₃	i-C ₃ H ₇
	1200	4-NO ₂ -Phenyl	Cl	CH ₃	i-C ₃ H ₇
	1201	2-Pyridyl	Cl	CH ₃	i-C ₃ H ₇
	1202	3-Pyridyl	Cl	CH ₃	i-C ₃ H ₇
20	1203	4-Pyridyl	Cl	CH ₃	i-C ₃ H ₇
	1204	Cyclohexylamino	C1	CH ₃	i-C ₃ H ₇
	1205	Cyclopentylamino	Cl ·	CH ₃	i-C ₃ H ₇
	1206	СН3	CH ₃	Н	i-C ₃ H ₇
25	1207	C ₂ H ₅	CH ₃	н	i-C ₃ H ₇
25	1208	n-C ₃ H ₇	CH ₃	н	i-C ₃ H ₇
	1209	i-C ₃ H ₇	CH ₃	H	i-C ₃ H ₇
	1210	n-C ₄ H ₉	CH ₃	H	i-C ₃ H ₇
	1211	s-C ₄ H ₉	CH ₃	Н	i-C ₃ H ₇
30	1212	i-C ₄ H ₉	CH ₃	Н	i-C ₃ H ₇
	1213	t-C ₄ H ₉	CH ₃	Н	i-C ₃ H ₇
	1214	CH ₂ Cl	CH ₃	H	i-C ₃ H ₇
	1215	CHC12	CH ₃	Н	i-C ₃ H ₇
35	1116	CCl ₃	CH ₃	Н	i-C ₃ H ₇
	1217	CH ₂ F	CH ₃	Н	i-C ₃ H ₇
	1218	CHF ₂	CH ₃	H	i-C ₃ H ₇
	1219	CF ₃	CH ₃	H	i-C ₃ H ₇
40	1220	CH ₂ CF ₃	CH ₃	Н	i-C ₃ H ₇
	1221	CH ₂ OCH ₃	CH ₃	H	i-C ₃ H ₇
	1222	CH ₂ OCH ₂ CH ₃	CH ₃	Н	i-C ₃ H ₇
	1223	CH ₂ NH ₂	CH ₃	Н	i-C ₃ H ₇
	1224	(CH ₂) ₂ COCH ₃	CH ₃	Н	i-C ₃ H ₇
45	1225	Phenyl	CH ₃	Н	i-C ₃ H ₇
	1226	2-F-Phenyl	CH ₃	Н	i-C ₃ H ₇
	L,				

ſ		R ³	R ¹	R ²	R ⁴
Ì	1227	3-F-Phenyl	CH ₃	H	i-C ₃ H ₇
	1228	4-F-Phenyl	CH ₃	H	i-C ₃ H ₇
5	1229	2-Cl-Phenyl	CH ₃	H	i-C ₃ H ₇
١	1230	3-Cl-Phenyl	CH ₃	H	i-C ₃ H ₇
	1231	4-Cl-Phenyl	CH ₃	Н	i-C ₃ H ₇
	1232	2-OH-Phenyl	CH ₃	Н	i-C ₃ H ₇
	1233	3-OH-Phenyl	CH ₃	H	i-C ₃ H ₇
10	1234	4-OH-Phenyl	CH ₃	Н	i-C ₃ H ₇
	1235	2-OCH ₃ -Phenyl	CH ₃	Н	i-C ₃ H ₇
	1236	3-OCH ₃ -Phenyl	CH ₃	H	i-C ₃ H ₇
	1237	4-OCH ₃ -Phenyl	CH ₃	Н	i-C ₃ H ₇
15	1238	2-OCF ₃ -Phenyl	CH ₃	Н	i-C ₃ H ₇
	1239	3-OCF ₃ -Phenyl	CH ₃	H	i-C ₃ H ₇
	1240	4-OCF ₃ -Phenyl	CH ₃	Н	i-C ₃ H ₇
	1241	2-OCHF ₂ -Phenyl	CH ₃	Н	i-C ₃ H ₇
20	1242	3- OCHF2-Phenyl	CH ₃	H	i-C ₃ H ₇
	1243	4-OCHF ₂ -Phenyl	CH ₃	H	i-C ₃ H ₇
	1244	2-CF ₃ -Phenyl	CH ₃	H	i-C ₃ H ₇
	1245	3-CF ₃ -Phenyl	CH ₃	H	i-C ₃ H ₇
	1246	4-CF ₃ -Phenyl	CH ₃	Н	i-C ₃ H ₇
25	1247	2-CH ₃ -Phenyl	CH ₃	Н	i-C ₃ H ₇
	1248	3-CH ₃ -Phenyl	CH ₃	Н	i-C ₃ H ₇
	1249	4-CH ₃ -Phenyl	CH ₃	H	i-C ₃ H ₇
	1250	2-NO ₂ -Phenyl	CH ₃	H	i-C ₃ H ₇
30	1251	3-NO ₂ -Phenyl	CH ₃	Н	i-C ₃ H ₇
	1252	4-NO ₂ -Phenyl	CH ₃	H	i-C ₃ H ₇
	1253	2-Pyridyl	CH ₃	Н	i-C ₃ H ₇
	1254	3-Pyridyl	CH ₃	Н	i-C ₃ H ₇
35	1255	4-Pyridyl	CH ₃	H	i-C ₃ H ₇
	1256	Cyclohexylamino	CH ₃	Н	i-C ₃ H ₇
	1257	Cyclopentylamino	CH ₃	H	i-C ₃ H ₇
	1258	Н	OCH ₃	H	i-C ₃ H ₇
40	1259	CH ₃	OCH ₃	H	i-C ₃ H ₇
	1260	C ₂ H ₅	OCH ₃	H	i-C ₃ H ₇
	1261	n-C ₃ H ₇	OCH ₃	Н	i-C ₃ H ₇
	1262	i-C ₃ H ₇	OCH ₃	Н	i-C ₃ H ₇
	1263	n-C ₄ H ₉	OCH ₃	Н	i-C ₃ H ₇
45	1264	s-C ₄ H ₉	OCH ₃	Н	i-C ₃ H ₇
	1265	i-C ₄ H ₉	OCH ₃	Н	i-C ₃ H ₇

			•		
۲		R ³	R ¹	R ²	R ⁴
ŀ	1266	t-C ₄ H ₉	OCH ₃	Н	i-C ₃ H ₇
ŀ	1267	CH ₂ Cl	OCH ₃	Н	i-C ₃ H ₇
_	1268	CHCl ₂	OCH ₃	н	i-C ₃ H ₇
5	1269	CCl ₃	OCH ₃	H	i-C ₃ H ₇
1	1270	CH ₂ F	OCH ₃	H	i-C ₃ H ₇
ł	1271	CHF ₂	OCH ₃	H	i-C ₃ H ₇
ł	1272	CF ₃	OCH ₃	Н	i-C ₃ H ₇
10	1273	CH ₂ CF ₃	OCH ₃	Н	i-C ₃ H ₇
}	1274	CH ₂ OCH ₃	OCH ₃	Н	i-C ₃ H ₇
	1275	CH ₂ OCH ₂ CH ₃	OCH ₃	Н	i-C ₃ H ₇
	1276	CH ₂ NH ₂	OCH ₃	н	i-C ₃ H ₇
15	1277	(CH ₂) ₂ COCH ₃	ОСН3	Н	i-C ₃ H ₇
	1278	Phenyl	OCH ₃	Н	i-C ₃ H ₇
	1279	2-F-Phenyl	OCH ₃	H	i-C ₃ H ₇
	1280	3-F-Phenyl	OCH ₃	H	i-C ₃ H ₇
	1281	4-F-Phenyl	OCH ₃	H	i-C ₃ H ₇
20	1281	2-Cl-Phenyl	ОСН3	H	i-C ₃ H ₇
	1282	3-Cl-Phenyl	OCH ₃	Н	i-C ₃ H ₇
	1284	4-Cl-Phenyl	OCH ₃	Н	i-C ₃ H ₇
	1284	2-OH-Phenyl	OCH ₃	Н	i-C ₃ H ₇
25	1286	3-OH-Phenyl	OCH ₃	Н	i-C ₃ H ₇
	1287	4-OH-Phenyl	OCH ₃	H	i-C ₃ H ₇
		2-OCH ₃ -Phenyl	OCH ₃	H	i-C ₃ H ₇
	1288	3-OCH ₃ -Phenyl	OCH ₃	H	i-C ₃ H ₇
30	1289	4-OCH ₃ -Phenyl	OCH ₃	Н	i-C ₃ H ₇
	1290	2-OCF ₃ -Phenyl	OCH ₃	Н	i-C ₃ H ₇
	1291	3-OCF ₃ -Phenyl	OCH ₃	н	i-C ₃ H ₇
	1292	4-OCF ₃ -Phenyl	OCH ₃	Н	i-C ₃ H ₇
25	1293	2-OCHF ₂ -Phenyl	OCH ₃	Н	i-C ₃ H ₇
35	1294	3-OCHF ₂ -Phenyl	OCH ₃	Н	i-C ₃ H ₇
	1295		OCH ₃	Н	i-C ₃ H ₇
	1296	4-OCHF ₂ -Phenyl	OCH ₃	Н	i-C ₃ H ₇
	1297	2-CF ₃ -Phenyl	OCH ₃	Н	i-C ₃ H ₇
40	1298	3-CF ₃ -Phenyl	OCH ₃	Н	i-C ₃ H ₇
	1299	4-CF ₃ -Phenyl	OCH ₃	Н н	i-C ₃ H ₇
	1300	2-CH ₃ -Phenyl	OCH ₃	H	i-C ₃ H ₇
	1301	3-CH ₃ -Phenyl		H	i-C ₃ H ₇
45	1302	4-CH ₃ -Phenyl	OCH ₃	H H	i-C ₃ H ₇
	1303	2-NO ₂ -Phenyl	OCH ₃		i-C ₃ H ₇
	1304	3-NO ₂ -Phenyl	OCH ₃	Н	1-03117

			111		R ⁴
		R ³	R ¹	R ²	
	1305	4-NO ₂ -Phenyl	OCH ₃	H	i-C ₃ H ₇
[1306	2-Pyridyl	OCH ₃	H	i-C ₃ H ₇
5	1307	3-Pyridyl	OCH ₃	Н	i-C ₃ H ₇
	1308	4-Pyridyl	OCH ₃	H	i-C ₃ H ₇
Ī	1309	Cyclohexylamino	OCH ₃	Н	i-C ₃ H ₇
F	1310	Cyclopentylamino	OCH ₃	H	i-C ₃ H ₇
	1311	Н	Cl	Н	i-C ₃ H ₇
10	1312	CH ₃	Cl	Н	i-C ₃ H ₇
ľ	1313	C ₂ H ₅	Cl	Н	i-C ₃ H ₇
t	1314	n-C ₃ H ₇	Cl	H	i-C ₃ H ₇
ŀ	1315	i-C ₃ H ₇	Cl	Н	i-C ₃ H ₇
15	1316	n-C ₄ H ₉	Cl	Н	i-C ₃ H ₇
ŀ	1317	s-C ₄ H ₉	Cl	H	i-C ₃ H ₇
	1318	i-C ₄ H ₉	Cl	H	i-C ₃ H ₇
ł	1319	t-C ₄ H ₉	Cl	Н	i-C ₃ H ₇
20	1320	CH ₂ Cl	Cl	Н	i-C ₃ H ₇
20	1321	CHC1 ₂	Cl	Н	i-C ₃ H ₇
	1322	CH ₃	Cl	н	i-C ₃ H ₇
	1323	CH ₂ F	C1	Н	i-C ₃ H ₇
	1324	CHF ₂	Cl	Н	i-C ₃ H ₇
25	1325	CF ₃	Cl	Н	i-C ₃ H ₇
	1326	CH ₂ CF ₃	Cl	Н	i-C ₃ H ₇
	1327	CH ₂ OCH ₃	Cl	Н	i-C ₃ H ₇
	1328	CH ₂ OCH ₂ CH ₃	Cl	Н	i-C ₃ H ₇
30	1329	CH ₂ NH ₂	Cl	н	i-C ₃ H ₇
	1330	(CH ₂) ₂ COCH ₃	Cl	Н	i-C ₃ H ₇
	1331	Phenyl	Cl	Н	i-C ₃ H ₇
	1332	2-F-Phenyl	Cl	Н	i-C ₃ H ₇
35	1333	3-F-Phenyl	Cl	Н	i-C ₃ H ₇
	1334	4-F-Phenyl	Cl	Н	i-C ₃ H ₇
	1335	2-C1-Phenyl	Cl	Н	i-C ₃ H ₇
	1336	3-C1-Phenyl	Cl	Н	i-C ₃ H ₇
	1337	4-Cl-Phenyl	Cl	Н	i-C ₃ H ₇
40	1338	2-OH-Phenyl	Cl	Н	i-C ₃ H ₇
	1339	3-OH-Phenyl	c1	H	i-C ₃ H ₇
	1340	4-OH-Phenyl	Cl	H	i-C ₃ H ₇
	1341	2-OCH ₃ -Phenyl	Cl	Н	i-C ₃ H ₇
45	1342	3-OCH ₃ -Phenyl	Cl	Н	i-C ₃ H ₇
	1342	4-OCH ₃ -Phenyl	Cl	Н	i-C ₃ H ₇
	1343	4-0013-FHEHYI			·

		R ³	R ¹	R ²	R ⁴
	1344	2-OCF ₃ -Phenyl	Cl	H	i-C ₃ H ₇
	1345	3-OCF ₃ -Phenyl	OCH ₃	Н	i-C ₃ H ₇
5	1346	4-OCF ₃ -Phenyl	OCH ₃	H	i-C ₃ H ₇
	1347	2-OCHF ₂ -Phenyl	OCH ₃	H	i-C ₃ H ₇
	1348	3-OCHF ₂ -Phenyl	OCH ₃	Н	i-C ₃ H ₇
	1349	4-OCHF ₂ -Phenyl	OCH ₃	H	i-C ₃ H ₇
	1350	2-CF ₃ -Phenyl	OCH ₃	H	i-C ₃ H ₇
10	1351	3-CF ₃ -Phenyl	OCH ₃	Н	i-C ₃ H ₇
	1352	4-CF ₃ -Phenyl	OCH ₃	Н	i-C ₃ H ₇
	1353	2-CH ₃ -Phenyl	OCH ₃	Н	i-C ₃ H ₇
	1353	3-CH ₃ -Phenyl	OCH ₃	Н	i-C ₃ H ₇
15	1354	4-CH ₃ -Phenyl	OCH ₃	H	i-C ₃ H ₇
	1355	н	CH ₃	н	Н
	1356	3-NO ₂ -Phenyl	OCH ₃	Н	i-C ₃ H ₇
	1357	Н	CH ₃	CH ₃	CH ₃
20	1358	2-Pyridyl	OCH ₃	H	i-C ₃ H ₇
	1359	Н	CH ₃	CH ₃	C ₂ H ₅
	1360	Н	CH ₃	Н	C ₂ H ₅
	1361	Н	CH ₃	CH ₃	i-C ₃ H ₇
25	1362	Н	CH ₃	Н	i-C ₃ H ₇
~ J	1363	H	CH ₃	н	CH ₃

Beispiele für erfindungsgemäße besonders bevorzugte Benzimidazol-5-ylcarbonyl-Derivate von Pyrazolen (Verbindungen I-3 = Verbindungen I mit $X = C-R^3$ und $Y = N-R^4$) sind die in den Tabellen 40 5 bis 58 genannten Verbindungen.

Tabelle 40: Verbindungen I-3a.1 bis I-3a.1363

15 I-3a

Verbindungen der allgemeinen Formel I-3a, in der die Substituenten R^1 , R^2 R^3 und R^4 für jede einzelne Verbindung jeweils einer 20 Zeile der Tabelle B entsprechen.

Tabelle 41: Verbindungen I-3b.1 bis I-3b.1363

Verbindungen der allgemeinen Formel I-3b, in der die Substituenten R^1 , R^2 R^3 und R^4 für jede einzelne Verbindung jeweils einer 35 Zeile der Tabelle B entsprechen.

- Tabelle 42: Verbindungen I-3c.1 bis I-3c.1363

Verbindungen der allgemeinen Formel I-3c, in der die Substituenten \mathbb{R}^1 , \mathbb{R}^2 \mathbb{R}^3 und \mathbb{R}^4 für jede einzelne Verbindung jeweils einer Zeile der Tabelle B entsprechen.

5 - Tabelle 43: Verbindungen I-3d.1 bis I-3d.1363

Verbindungen der allgemeinen Formel I-3d, in der die Substituenten R^1 , R^2 R^3 und R^4 für jede einzelne Verbindung jeweils einer Zeile der Tabelle B entsprechen.

20 - Tabelle 44: Verbindungen I-3e.1 bis I-3e.1363

I-3e

Verbindungen der allgemeinen Formel I-3e, in der die Substituenten R^1 , R^2 R^3 und R^4 für jede einzelne Verbindung jeweils einer Zeile der Tabelle B entsprechen.

35 - Tabelle 45: Verbindungen I-3f.1 bis I-3f.1363

45

Verbindungen dr allgemeinen Formel I-3f, in der die Substituenten R^1 , R^2 R^3 und R^4 für jede einzelne Verbindung jeweils einer Zeile der Tabelle B entsprechen.

5 - Tabelle 46: Verbindungen I-3g.1 bis I-3g.1363

Verbindungen der allgemeinen Formel I-3g, in der die Substituenten R^1 , R^2 R^3 und R^4 für jede einzelne Verbindung jeweils einer Zeile der Tabelle B entsprechen.

20 - Tabelle 47: Verbindungen I-3h.1 bis I-3h.1363

Verbindungen der allgemeinen Formel I-3h, in der die Substituenten R^1 , R^2 R^3 und R^4 für jede einzelne Verbindung jeweils einer Zeile der Tabelle B entsprechen.

35 - Tabelle 48: Verbindungen I-3i.1 bis I-3i.1363

40
$$R^{1}$$
 $C-R^{3}$
 CH_{3}
 R^{2}
 R^{4}
 $C(0)-(3F-C_{6}H_{4})$
 R^{2}
 R^{4}

Verbindungen der allgem inen Formel I-3i, in der die Substituenten R^1 , R^2 R^3 und R^4 für jede einzelne Verbindung jeweils einer Zeile der Tabelle B entsprechen.

5 - Tabelle 49: Verbindungen I-3k.1 bis I-3k.1363

10
$$R^{1}$$
 $C-R^{3}$
 CH_{2}
 CH_{2}
 CH_{3}
 $C(0)-(3F-C_{6}H_{4})$
 CH_{3}
 $C(0)$

Verbindungen der allgemeinen Formel I-3k, in der die Substituenten \mathbb{R}^1 , \mathbb{R}^2 \mathbb{R}^3 und \mathbb{R}^4 für jede einzelne Verbindung jeweils einer Zeile der Tabelle B entsprechen.

20 - Tabelle 50: Verbindungen I-31.1 bis I-31.1363

Verbindungen der allgemeinen Formel I-31, in der die Substituenten \mathbb{R}^1 , \mathbb{R}^2 \mathbb{R}^3 und \mathbb{R}^4 für jede einzelne Verbindung jeweils einer Zeile der Tabelle B entsprechen.

35 - Tabelle 51: Verbindungen I-3m.1 bis I-3m.1363

$$\begin{array}{c|c}
H_3C & O & R^1 \\
N & OH & R^2 & R^4
\end{array}$$

I-3m

117

Verbindungen der allgemeinen Formel I-3m, in der die Substituenten R^1 , R^2 R^3 und R^4 für jede einzelne Verbindung jeweils einer Zeile der Tabelle B entsprechen.

5 - Tabelle 52: Verbindungen I-3n.1 bis I-3n.1363

Verbindungen der allgemeinen Formel I-3n, in der die Substituenten R^1 , R^2 R^3 und R^4 für jede einzelne Verbindung jeweils einer Zeile der Tabelle B entsprechen.

20 - Tabelle 53: Verbindungen I-30.1 bis I-30.1363

25
$$\begin{array}{c|c} H_3C & & & & \\ \hline N & & & & \\ \hline CH_3 & & & & \\ \hline CH_3 & & & & \\ \end{array}$$

I-30

Verbindungen der allgemeinen Formel I-3p, in der die Substituenten R^1 , R^2 R^3 und R^4 für jede einzelne Verbindung jeweils einer Zeile der Tabelle B entsprechen.

35 - Tabelle 54: Verbindungen I-3p.1 bis I-3p.1363

45

15

Verbindungen der allgemeinen Formel I-3p, in der die Substituenten \mathbb{R}^1 , \mathbb{R}^2 \mathbb{R}^3 und \mathbb{R}^4 für jede einzelne Verbindung jeweils einer Zeil der Tabelle B entsprechen.

5 - Tabelle 55: Verbindungen I-3q.1 bis I-3q.1363

10
$$H_3C$$
 CH_3
 R^2
 R^4
 $CH_2C_6H_5$
 R^2
 R^4

Verbindungen der allgemeinen Formel I-3g, in der die Substituenten R^1 , R^2 R^3 und R^4 für jede einzelne Verbindung jeweils einer Zeile der Tabelle B entsprechen.

20 - Tabelle 56: Verbindungen I-3r.1 bis I-3r.1363

25
$$H_{3}C$$

$$R^{1}$$

$$N$$

$$H_{3}C$$

$$CH_{3}$$

$$CH_{2}C_{6}H_{5}$$

$$I-3r$$

Verbindungen der allgemeinen Formel I-3r, in der die Substituenten \mathbb{R}^1 , \mathbb{R}^2 \mathbb{R}^3 und \mathbb{R}^4 für jede einzelne Verbindung jeweils einer Zeile der Tabelle B entsprechen.

35 - Tabelle 57: Verbindungen I-3s.1 bis I-3s.1363

40

$$H_3C$$
 C_{H_3}
 C_{H_3}
 C_{R^2}
 C_{R^4}
 C_{R^4}
 C_{R^4}
 C_{R^4}
 C_{R^4}
 C_{R^4}
 C_{R^4}

45

119

Verbindungen der allgemeinen Formel I-3s, in der die Substituenten \mathbb{R}^1 , \mathbb{R}^2 \mathbb{R}^3 und \mathbb{R}^4 für jede einzeln Verbindung jeweils einer Zeile der Tabelle B entsprechen.

Tabelle 58: Verbindungen I-3t.1 bis I-3t.1363

10

$$H_3C$$
 CH_3
 R^1
 N
 $C-R^3$
 R^4
 CH_3
 $C(0)-(3F-C_6H_4)$
 R^2
 R^4
 CH_3
 R^2
 R^4

Verbindungen der allgemeinen Formel I-3t, in der die Substituenten R^1 , R^2 , R^3 und R^4 für jede einzelne Verbindung jeweils einer Zeile der Tabelle B entsprechen.

20 Tabelle C

	Tabelle C					
		\mathbb{R}^1	R ²	X	Y	
Ì	1	Н	Н	N	s	
	2	CH ₃	Н	N	S	
25	3	Cl	Н	N	S	
i	4	OCH ₃	H	N	S	
	5	SCH ₃	H	N	S	
	6	S(O) ₂ CH ₃	H	N	S	
30	7	H	Cl	N	S	
	8	CH ₃	Cl	N	S	
	9	Cl	Cl	N	S	
	10	OCH ₃	Cl	N	S	
35	11	SCH ₃	Cl	N	S	
	12	S(O) ₂ CH ₃	Cl	N	S	
	13	H	CH ₃	N	S	
	14	CH ₃	CH ₃	N	S	
	15	Cl	CH ₃	N	S	
40	16	OCH ₃	CH ₃	N	s	
	17	SCH ₃	CH ₃	N	S	
	18	S(O) ₂ CH ₃	CH ₃	N	S	
	19	Н	Н	N	NH	
45	20	CH ₃	Н	N	NH	
	21	Cl	H	N	NH	

120

		R ¹	R ²	х	Y
	22	OCH ₃	Н	N	NH
	23	SCH ₃	Н	N	NH
5	24	S(O) ₂ CH ₃	Н	N	NH
	25	H	Cl	N	NH
	26	CH ₃	Cl	N	NH
	27	Cl	Cl	N	ИН
	28	OCH ₃	Cl	N	NH
10	29	SCH ₃	Cl	N	ИН
	30	S(O) ₂ CH ₃	Cl	N	NH
	31	Ħ	CH ₃	N	NH
	32	CH ₃	CH ₃	N	NH
15	33	Cl	CH ₃	N	NH
	34	OCH ₃	CH ₃	N	NH
	35	SCH ₃	CH ₃	N	NH
	36	S(O) ₂ CH ₃	CH ₃	N	NH
20	37	Н	Н	N	NCH ₃
	38	CH ₃	Н	N	NCH ₃
	39	Cl	Н	N	NCH ₃
	40	OCH ₃	Н	N _.	NCH ₃
25	41	SCH ₃	н	N	NCH ₃
23	42	S(O) ₂ CH ₃	Н	N	NCH ₃
	43	H	Cl	N	NCH ₃
	44	CH ₃	Cl	N ·	NCH ₃
	45	Cl	Cl	N	NCH ₃
30	46	OCH ₃	Cl	N	NCH ₃
	47	SCH ₃	Cl	N	NCH ₃
	48	S(0) ₂ CH ₃	Cl	N	NCH ₃
	49	Н	CH ₃	N	NCH ₃
35	50	CH ₃	CH ₃	N	NCH ₃
	51	Cl	CH ₃	N	NCH ₃
	52	OCH ₃	CH ₃	N	NCH ₃
	53	SCH ₃	CH ₃	N	NCH ₃
40	54	S(0) ₂ CH ₃	CH ₃	N	NCH ₃
	55	Н	H	N	NC ₂ H ₅
	56	CH ₃	H	N	NC ₂ H ₅
	57	Cl	Н	N	NC ₂ H ₅
A ==	58	OCH ₃	Н	N	NC ₂ H ₅
45	59	SCH ₃	H	N	NC ₂ H ₅
	60	S(0) ₂ CH ₃	Н	N	NC ₂ H ₅

		R ¹	R ²	x	Y
5	61	Н	Cl	N	NC ₂ H ₅
	62	CH ₃	Cl	N	NC ₂ H ₅
	63	Cl	Cl	N	NC ₂ H ₅
	64	OCH ₃	Cl	N	NC ₂ H ₅
	65	SCH ₃	Cl	N	NC ₂ H ₅
10	66	S(O) ₂ CH ₃	Cl	N	NC ₂ H ₅
	67	Н	CH₃	N	NC ₂ H ₅
	68	CH ₃	CH ₃	N	NC ₂ H ₅
	69	Cl	CH ₃	N	NC ₂ H ₅
15	70	OCH ₃	CH ₃	N	NC ₂ H ₅
	71	SCH ₃	CH ₃	N	NC ₂ H ₅
	72	S(O) ₂ CH ₃	CH ₃	N	NC ₂ H ₅
	73	Н	Н	N	N-i-C ₃ H ₇
	74	CH ₃	Н	N	N-i-C ₃ H ₇
20	75	Cl	Н	N	N-i-C ₃ H ₇
	76	OCH ₃	Н	N	N-i-C ₃ H ₇
	77	SCH ₃	H	N	N-i-C ₃ H ₇
	78	S(O) ₂ CH ₃	Н	N	N-i-C ₃ H ₇
25	79	Н	Cl	N	N-i-C ₃ H ₇
	80	CH ₃	Cl	N	N-i-C ₃ H ₇
	81	Cl	Cl	N	N-i-C ₃ H ₇
	82	OCH ₃	Cl	N	N-i-C ₃ H ₇
30	83	SCH ₃	Cl	N	N-i-C ₃ H ₇
	84	S(O) ₂ CH ₃	Cl	N	N-i-C ₃ H ₇
	85	Н	CH ₃	N	N-i-C ₃ H ₇
	86	CH ₃	CH ₃	N	N-i-C ₃ H ₇
35	87	Cl	CH ₃	N	N-i-C ₃ H ₇
	88	OCH ₃	CH ₃	N	N-i-C ₃ H ₇
	89	SCH ₃	CH ₃	N	N-i-C ₃ H ₇
	90	S(0) ₂ CH ₃	CH ₃	N	N-i-C ₃ H ₇

Weitere Beispiele für erfindungsgemäße bevorzugte Benzthiadiazol-5-ylcarbonyl-Derivate von Pyrazolen (X = N, Y = S) und Benzotriazol-5-ylcarbonyl-Derivate von Pyrazolen (X = N, Y = N-R⁴) sind die in den Tabellen 59 bis 77 genannten Verbindungen (Ver-5 bindungen I-4).

- Tabelle 59: Verbindungen I-4a.1 bis I-4a.90

10
$$\begin{array}{c|c} & & & & \\ & & & & \\ N & & & & \\ CH_3 & & & R^2 \end{array}$$

15 I-4a

Verbindungen der allgemeinen Formel I-4a, in der die Substituenten \mathbb{R}^1 , \mathbb{R}^2 , X und Y für jede einzelne Verbindung jeweils einer 20 Zeile der Tabelle C entsprechen.

- Tabelle 60: Verbindungen I-4b.1 bis I-4b.90

Verbindungen der allgemeinen Formel I-4b, in der die Substituenten \mathbb{R}^1 , \mathbb{R}^2 , X und Y für jede einzelne Verbindung jeweils einer 35 Zeile der Tabelle C entsprechen.

- Tabelle 61: Verbindungen I-4c.1 bis I-4c.90

Verbindungen der allgemeinen Formel I-4c, in der die Substituenten \mathbb{R}^1 , \mathbb{R}^2 , X und Y für jede einzeln Verbindung jeweils einer Zeile der Tabelle C entsprechen.

5 - Tabelle 62: Verbindungen I-3d.1 bis I-3d.1363

Verbindungen der allgemeinen Formel I-4d, in der die Substituenten R^1 , R^2 X und Y für jede einzelne Verbindung jeweils einer Zeile der Tabelle C entsprechen.

20 - Tabelle 63: Verbindungen I-4e.1 bis I-4e.90

I-4e

Verbindungen der allgemeinen Formel I-4e, in der die Substituenten \mathbb{R}^1 , \mathbb{R}^2 X und Y für jede einzelne Verbindung jeweils einer Zeile der Tabelle C entsprechen.

35 - Tabelle 64: Verbindungen I-4f.1 bis I-4f.90

Verbindungen der allgemeinen Formel I-4f, in der die Substituenten \mathbb{R}^1 , \mathbb{R}^2 X und Y für jede einzelne Verbindung jeweils einer Zeile der Tabelle C entsprechen.

5 - Tabelle 65: Verbindungen I-4g.1 bis I-4g.90

10
$$\begin{array}{c|c} & & & & \\ & & & \\ N & & & \\ CH_3 & & & \\ CH_2C_6H_5 & & \\ \end{array}$$

Zeile der Tabelle C entsprechen.

I-4g

Verbindungen der allgemeinen Formel I-4g, in der die Substituenten \mathbb{R}^1 , \mathbb{R}^2 , X und Y für jede einzelne Verbindung jeweils einer

20 - Tabelle 66: Verbindungen I-4h.1 bis I-4h.90

I-4h

Verbindungen der allgemeinen Formel I-4h, in der die Substituenten \mathbb{R}^1 , \mathbb{R}^2 , X und Y für jede einzelne Verbindung jeweils einer Zeile der Tabelle C entsprechen.

35 - Tabelle 67: Verbindungen I-4i.1 bis I-4i.90

45

40

25

Verbindungen der allgemeinen Formel I-4i, in der die Substituenten \mathbb{R}^1 , \mathbb{R}^2 , X und Y für jede einzelne Verbindung jeweils einer Zeile der Tabelle C entsprechen.

5 - Tabelle 68: Verbindungen I-4k.1 bis I-4k.90

10
$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

15

Verbindungen der allgemeinen Formel I-4k, in der die Substituenten \mathbb{R}^1 , \mathbb{R}^2 , X und Y für jede einzelne Verbindung jeweils einer Zeile der Tabelle C entsprechen.

20 - Tabelle 69: Verbindungen I-41.1 bis I-41.90

30

Verbindungen der allgemeinen Formel I-41, in der die Substituenten \mathbb{R}^1 , \mathbb{R}^2 , X und Y für jede einzelne Verbindung jeweils einer Zeile der Tabelle C entsprechen.

35 - Tabelle 70: Verbindungen I-4m.1 bis I-4m.90

$$\begin{array}{c|c}
H_3C & O & R^1 \\
N & OH & R^2
\end{array}$$

I-4m

126

Verbindungen der allgemeinen Formel I-4m, in der die Substituenten \mathbb{R}^1 , \mathbb{R}^2 , X und Y für jede einzelne Verbindung jeweils einer Zeile der Tabelle C entsprechen.

5 - Tabelle 71: Verbindungen I-4n.1 bis I-4n.90

10
$$\begin{array}{c|c}
H_3C & O & R^1 \\
N & OH & R^2
\end{array}$$

$$\begin{array}{c|c}
CH_3 & CH_3 & I-4n
\end{array}$$

Verbindungen der allgemeinen Formel I-4n, in der die Substituenten R^1 , R^2 , X und Y für jede einzelne Verbindung jeweils einer Zeile der Tabelle C entsprechen.

20 - Tabelle 72: Verbindungen I-40.1 bis I-40.90

I-40

Verbindungen der allgemeinen Formel I-40, in der die Substituenten R^1 , R^2 , X und Y für jede einzelne Verbindung jeweils einer Zeile der Tabelle C entsprechen.

35 - Tabelle 73: Verbindungen I-4p.1 bis I-4p.90

45

15

Verbindungen der allgemeinen Formel I-4p, in der die Substituenten \mathbb{R}^1 , \mathbb{R}^2 , X und Y für jede einzelne Verbindung jeweils einer Zeile der Tabelle C entsprechen.

5 - Tabelle 74: Verbindungen I-4q.1 bis I-4q.90

10
$$H_{3}C$$

$$N$$

$$CH_{3}$$

$$CH_{2}C_{6}H_{5}$$

$$I-4q$$

Verbindungen der allgemeinen Formel I-4q, in der die Substituenten \mathbb{R}^1 , \mathbb{R}^2 , X und Y für jede einzelne Verbindung jeweils einer Zeile der Tabelle C entsprechen.

20 - Tabelle 75: Verbindungen I-4r.1 bis I-4r.90

25
$$H_{3}C$$

$$R^{1}$$

$$N$$

$$N$$

$$H_{3}C$$

$$CH_{3}$$

$$CH_{2}C_{6}H_{5}$$

$$I-4r$$

Verbindungen der allgemeinen Formel I-4r, in der die Substituenten \mathbb{R}^1 , \mathbb{R}^2 , X und Y für jede einzelne Verbindung jeweils einer Zeile der Tabelle B entsprechen.

35 - Tabelle 76: Verbindungen I-4s.1 bis I-4s.90

40
$$\begin{array}{c|c}
H_3C & & & & \\
N & & & & \\
\hline
CH_3 & & & R^2 \\
\hline
C(O)-(3F-C_6H_4) & & I-4s
\end{array}$$

Verbindungen der allgemeinen Formel I-4s, in der die Substituenten \mathbb{R}^1 , \mathbb{R}^2 , X und Y für jede einzelne Verbindung jeweils ein r Zeile der Tabelle C entsprechen.

5 - Tabelle 77: Verbindungen I-4t.1 bis I-4t.90

H₃C
$$\stackrel{\bigcirc{}}{\underset{N}{|}} \stackrel{R^1}{\underset{N}{|}} \stackrel{N}{\underset{N}{|}} \times$$

H₃C $\stackrel{\bigcirc{}}{\underset{CH_3}{|}} \stackrel{R^1}{\underset{C(0)-(3F-C_6H_4)}{|}} \times$

1-4t

Verbindungen der allgemeinen Formel I-4t, in der die Substituenten \mathbb{R}^1 , \mathbb{R}^2 , X und Y für jede einzelne Verbindung jeweils einer Zeile der Tabelle C entsprechen.

20 Die Darstellung von Verbindungen der Formel I, worin R⁸ für Hydroxy steht, erfolgt durch Umsetzung einer aktivierten Carbonsäure IVb oder einer Carbonsäure IVa, die vorzugsweise in situ aktiviert wird, mit 5-Hydroxypyrazol der Formel III zu dem Acylierungsprodukt und anschließende Umlagerung.

30

25

15

35

L¹ steht für eine nucleophil verdrängbare Abgangsgruppe, wie Halogen z.B. Brom oder Chlor, Hetaryl, z.B. Imidazolyl oder Pyridyl, Carboxylat, z.B. Acetat oder Trifluoracetat etc.

130

Die aktivierte Carbonsäure IVa kann direkt eingesetzt werden, wie im Fall der Benzoylhalogenide oder in situ erzeugt werden, z.B. mit einem Carbodiimid wie Ethyl-(3'-dimethylaminopropyl)carbodiimid, Dicyclohexylcarbodiimid, Triphenylphosphin/Azodicarbonsäure-ester, 2-Pyridindisulfid/Triphenylphosphin, Carbonyldiimidazol etc.

Gegebenenfalls kann es von Vorteil sein, die Acylierungsreaktion in Gegenwart einer Base auszuführen. Die Reaktanden und die 10 Hilfsbase werden dabei zweckmäßigerweise in äquimolaren Mengen eingesetzt. Ein geringer Überschuß der Hilfsbase z.B. 1,2 bis 1,5 Moläquivalente, bezogen auf IVa bzw. IVb, kann unter Umständen vorteilhaft sein.

- 15 Als Hilfsbasen eignen sich tertiäre Alkylamine, Pyridin 4-Dimethylaminopyridin oder Alkalimetallcarbonate. Als Lösungsmittel können z.B. chlorierte Kohlenwasserstoffe, wie Methylenchlorid oder 1,2-Dichlorethan, aromatische Kohlenwasserstoffe, wie Toluol, Xylol oder Chlorbenzol, Ether, wie Diethylether, Methyletert.-butylether, Tetrahydrofuran oder Dioxan, polare aprotische Lösungsmittel, wie Acetonitril, Dimethylformamid oder Dimethylsulfoxid oder Ester wie Essigsäureethylester oder Gemische hiervon verwendet werden.
- 25 Werden Halogenide als aktivierte Carbonsäurekomponente eingesetzt, so kann es zweckmäßig sein, bei Zugabe dieses Reaktionspartners die Reaktionsmischung auf 0 bis 10°C abzukühlen. Anschließend rührt man bei 20 bis 100°C, vorzugsweise bei 25 bis 50°C, bis die Umsetzung vollständig ist. Die Aufarbeitung erfolgt in üblicher Weise, z.B. wird das Reaktionsgemisch auf Wasser gegossen, das Wertprodukt extrahiert. Als Lösungsmittel eignen sich hierfür besonders Methylenchlorid, Diethylether und Essigsäureethylester. Nach Trocknen der organischen Phase und Entfernen des Lösungsmittels kann der rohe Ester ohne weitere Reinigung zur Um-35 lagerung eingesetzt werden.

Die Umlagerung der Ester zu den Verbindungen der Formel I erfolgt zweckmäßigerweise bei Temperaturen von 20 bis 100°C in einem Lösungsmittel und in Gegenwart einer Base sowie gegebenenfalls 40 mit Hilfe einer Cyanoverbindung als Katalysator.

Als Lösungsmittel können z.B. Acetonitril, Methylenchlorid, 1,2-Dichlorethan, Dioxan, Essigsäureethylester, Toluol oder Gemische hiervon verwendet werden. Bevorzugte Lösungsmittel sind 45 Acetonitril und Dioxan.

131

Geeignete Basen sind tertiäre Amine wie Triethylamin, aromatische Amine wie Pyridin oder Alkalicarbonate, wie Natriumcarbonat oder Kaliumcarbonat, die vorzugsweise in äquimolarer Menge oder bis zu einem vierfachen Überschuß, bezogen auf den Ester, eingesetzt werden. Bevorzugt werden Triethylamin oder Alkalicarbonat verwendet, vorzugsweise in doppelt äquimolaren Verhältnis in Bezug auf den Ester.

Als Cyanoverbindungen kommen anorganische Cyanide, wie Natrium10 cyanid oder Kaliumcyanid und organische Cyanoverbindungen, wie
Acetoncyanhydrin oder Trimethylsilylcyanid in Betracht. Sie werden in einer Menge von 1 bis 50 Molprozent, bezogen auf den
Ester, eingesetzt. Vorzugsweise werden Acetoncyanhydrin oder Trimethylsilylcyanid, z.B. in einer Menge von 5 bis 15, vorzugsweise
15 etwa 10 Molprozent, bezogen auf den Ester, eingesetzt.

Die Aufarbeitung kann in an sich bekannter Weise erfolgen. Das Reaktionsgemisch wird z.B. mit verdünnter Mineralsäure, wie 5 %ige Salzsäure oder Schwefelsäure, angesäuert, mit einem organischen Lösungsmittel, z.B. Methylenchlorid oder Essigsäureethylester extrahiert. Der organische Extrakt kann mit 5-10%iger Alkalicarbonatlösung, z.B. Natriumcarbonat- oder Kaliumcarbonatlösung extrahiert werden. Die wäßrige Phase wird angesäuert und der sich bildende Niederschlag abgesaugt und/oder mit Methylen25 chlorid oder Essigsäureethylester extrahiert, getrocknet und eingeengt.

B. Die Darstellung von Verbindungen der Formel I mit R⁸ = Halogen erfolgt durch Umsetzung von Pyrazol-Derivaten der Formel
 I (mit R⁸=Hydroxy) mit Halogenierungsmitteln:

Hier und im folgenden steht "Verbindung la" für eine Verbindung der allgemeinen Formel I, worin Pz für einen Pyrazolylrest der allgemeinen Formel IIa steht und Verbindung lb entsprechend für eine Verbindung der allgemeinen Formel I, worin Pz für einen Rest IIb steht.

35

40

45

Als Halogenierungsmittel eignen sich beispielsweise Phosgen, Diphosgen, Triphosgen, Thionylchlorid, Oxalylchlorid, Phosphoroxychlorid, Phosphorpentachlorid, Mesylchlorid, Chlormethylen-N,N-dimethylammoniumchlorid, Oxalylbromid, Phosphoroxybromid etc.

C. Die Darstellung von Verbindungen der Formel I mit R⁸ = OR¹¹, OSO₂R¹², OPOR¹³R¹⁴ oder OPSR¹³R¹⁴ durch Umsetzung von Pyrazol-Derivaten der Formel I (mit R⁸=Hydroxy) mit Alkylierungs-,
 Sulfonylierungs- bzw. Phosphonylierungsmitteln Vα, Vβ, Vγ beziehungsweise Vδ.

L² steht für eine nucleophil verdrängbare Abgangsgruppe, wie Halogen, z.B. Chlor oder Brom, Hetaryl, z.B. Imidazolyl, Carboxylat, z.B. Acetat, oder Sulfonat, z.B. Mesylat oder Triflat etc.

Bei der Herstellung von Verbindungen der Formel I mit $R^8 = OR^{11}$ aus Verbindungen der Formel I mit $R^8 = OH$ arbeitet man vorzugsweise in Gegenwart einer Base.

Die Reaktanden und die Base werden dabei zweckmäßigerweise in äquimolaren Mengen eingesetzt. Ein geringer Überschuß der Base, z.B. 1,1 - 1,5 Moläquivalente, bezogen auf I kann unter Umständen vorteilhaft sein.

Als Basen eignen sich tertiäre Amine, Pyridine, Alkalimetallcarbonate oder Alkalimetallhydride. Als Lösungsmittel eignen sich z.B. chlorierte Kohlenwasserstoffe wie Methylenchlorid oder 1,2-Dichlorethan, aromatische Kohlenwasserstoffe wie Toluol, Xylol oder Chlorbenzol, Ether wie Diethylether, Methyl-tert-butylether, Tetrahydrofuran, Dioxan oder Dimethoxyethan, polare aprotische Lösungsmittel wie Acetonitril, Dimethylformamid oder Dimethylsulfoxid oder Ester wie Essigsäureethylester und Gemische hiervon.

133

Werden anstelle des Alkohols I (R⁸ = OH) Halogenide (R⁸ = Halogen) oder aktivierte Alkohole wie Mesylate oder Tosylate (R⁸ = OSO₂CH₃ oder OSO₂-Tolyl) zur Derivatisierung eingesetzt, so kann es zw ckmäßig sein, bei Zugabe des Reaktionspartners die Reaktionsmischung auf O bis 10°C abzukühlen. Anschließend rührt man bei 20 bis 100°C, vorzugsweise bei 20 bis 75°C bis die Umsetzung vollständig ist.

Die Aufarbeitung erfolgt in üblicher Weise, z.B. wird das Reaktionsgemisch auf Wasser gegossen, das Wertprodukt extrahiert. Als Lösungsmittel eignen sich hierfür besonders Lösungsmittel wie Methylenchlorid, Essigsäureethylester, Methyl-tert-butylether oder Diethylether. Nach Trocknen der organischen Phase und Entfernen des Lösungsmitel kann das Rohprohdukt gegebenenfalls noch durch Säulenchromatographie an
Kieselgel gereinigt werden. Als Eluenten eignen sich Lösungsmittel wie Methylenchlorid, Essigsäureethylester, Cyclohexan,
Petrolether, Methanol, Aceton oder Chloroform und Gemische
hiervon.

20

5

Die Verbindungen der Formel Va, V β , V γ oder V δ können direkt eingesetzt werden wie z.B. im Fall der Carbonsäurehalogenide oder in situ erzeugt werden, z.B. aktivierte Carbonsäuren (mit Carbonsäure und Dicyclohexylcarbodiimid etc.).

25

30

D. Die Darstellung von Verbindungen der Formel I mit $R^8 = OR^{11}$, SR^{11} , $POR^{13}R^{14}$, $NR^{15}R^{16}$, $ONR^{15}R^{16}$ oder N-gebundenes Heterocyclyl erfolgt durch Umsetzung von Verbindungen der Formel I mit $R^8 = Halogen$, OSO_2R^{12} mit Verbindungen der Formel VI α , VI β , VI γ , VI δ , VI ϵ oder VI η , gegebenenfalls in Gegenwart einer Base oder unter vorangehender Salzbildung.

35	<pre>Ia und/oder Ib (mit R⁸ = Halogen, OSO₂R¹²)</pre>	$ extsf{HOR}^{11} extsf{VI}lpha$ oder		Ia	Ia und/oder Ib (mit $R^8 = OR^{11}$, SR^{11} ,
		+ HSR ¹¹ oder	$\begin{array}{ccc} \text{VI}\beta & \longrightarrow & \text{POR}^{13}\text{R}^{14}, \\ & \text{ONR}^{15}\text{R}^{16}, \end{array}$		POR ¹³ R ¹⁴ , NR ¹⁵ R ¹⁶ , ONR ¹⁵ R ¹⁶ oder N-gebundenes
		HPOR ¹³ R ¹⁴	VΙγ		Heterocyclyl)
40		oder	_		
		HNR ¹⁵ R ¹⁶	VΙδ		
		oder			
		HONR ¹⁵ R ¹⁶	VΙε		
		od r			
45		H (N-gebur Heterocycl		VIη	

134

E. Die Darstellung von Verbindungen der Formel I mit $R^8 = SOR^{12}$, SO_2R^{12} erfolgt beispielsweise durch Umsetzung von Verbindungen der Formel I mit $R^8 = SR^{12}$ mit einem Oxidationsmittel.

5

```
Ia und/oder Ib (mit R^8 = SR^{12}) Oxidationsmittel Ia und/oder Ib (mit R^8 = SOR^{12}, SO_2R^{12})
```

- Als Oxidationsmittel kommen beispielsweise m-Chlorperbenzoesäure, Peroxyessigsäure, Trifluorperoxyessigsäure, Wasserstoffperoxid, ggf. in Gegenwart eines Katalysators wie Wolframat, in Betracht.
- 15 Für die unter den Punkten B bis E genannten Reaktionen gelten folgende Bedingungen:

Die Ausgangsverbindungen werden in der Regel im äquimolaren Verhältnis eingesetzt. Es kann aber auch von Vorteil sein, die 20 eine oder andere Komponente im Überschuß einzusetzen.

Gegebenenfalls kann es von Vorteil sein, die Umsetzungen in Gegenwart einer Base durchzuführen. Die Reaktanden und die Base werden dabei zweckmäßigerweise in äquimolaren Mengen eingesetzt.

25

Im Hinblick auf die Verfahren C und D kann es unter Umständen vorteilhaft sein, ein Überschuß der Base z.B. 1,5 bis 3 Moläquivalente jeweils bezogen auf das Edukt einzusetzen.

- 30 Als Basen eignen sich tertiäre Alkylamine, wie Triethylamin, aromatische Amine, wie Pyridin, Alkalimetallcarbonate, z.B. Natriumcarbonat oder Kaliumcarbonat, Alkalimetallhydrogencarbonate, wie Natriumhydrogencarbonat und Kaliumhydrogencarbonat, Alkalimetallalkoholate wie Natriummethanolat, Natriumethanolat, Kalium-tert.
 35 butanolat oder Alkalimetallhydride, z.B. Natriumhydrid. Bevorzugt verwendet werden Triethylamin oder Pyridin.
- Als Lösungsmittel kommen z.B. chlorierte Kohlenwasserstoffe, wie Methylenchlorid oder 1,2-Dichlorethan, aromatische Kohlenwasser-40 stoffe, z.B. Toluol, Xylol oder Chlorbenzol, Ether, wie Diethylether, Methyl-tert.-butylether, Tetrahydrofuran oder Dioxan, polare aprotische Lösungsmittel, wie Acetonitril, Dimethylformamid oder Dimethylsulfoxid oder Ester, wie Essigsäureethylester, oder Gemische hiervon in Betracht.

In der Regel liegt die Reaktionstemperatur im Bereich von 0°C bis zur Höhe des Siedepunktes des Reaktionsgemisches.

Die Aufarbeitung kann in an sich bekannter Weise zum Produkt hin 5 erfolgen.

In Abhängigkeit von den Reaktionsbedingungen können bei den Verfahren B bis D die Verbindungen Ia, Ib oder Gemische hiervon gebildet werden. Letztere können durch klassische Trennmethoden, 10 wie z.B. Kristallisation, Chromatographie etc., getrennt werden.

F. Die Darstellung von Verbindungen der Formel I, worin Pz für eine Gruppe der allgemeinen Formel IIa steht, kann auch durch Umsetzung eines metallierten Pyrazol-Derivats der Formel VII mit einem Carbonsäure-Derivat der Formel IVa erfolgen:

20
$$R^{10}$$
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}

15

25 M steht hierbei für ein Metall, insbesondere für ein Alkalimetall wie Lithium oder Natrium, ein Erdalkalimetall wie z.B. Magnesium oder ein Übergangsmetall wie Palladium, Nickel etc. und L¹ für eine nukleophil verdrängbare Abgangsgruppe wie Halogen, z.B. Chlor oder Brom, Alkylsulfonat wie Mesylat, Halogenalkylsulfonat wie Triflat oder Cyanid. R⁸ weist vorzugsweise keine aziden Wasserstoffatome auf.

Die Umsetzung wird in der Regel bei Temperaturen von -100°C bis Rückflußtemperatur des Reaktionsgemisches durchgeführt. Als

35 Lösungsmittel eignen sich inerte aprotische Lösungsmittel, wie Ether, z.B. Diethylether, Tetrahydrofuran. Die Verbindungen der Formel IVa werden in der Regel im Überschuß eingesetzt, es kann aber auch von Vorteil sein, diese in äquimolaren Mengen oder im Unterschuß einzusetzen. Die Aufarbeitung erfolgt zum Produkt hin.

Die metallierten Pyrazol-Derivate der Formel VII können auf an sich bekannte Art und Weise durch Umsetzung von in 4-Position halogenierten Pyrazolen mit Metallen wie Lithium, Natrium, Magnesium etc. oder mit metallorganischen Verbindungen wie z.B. Butyl-1ithium gebildet werden. Es ist aber auch möglich Pyrazole, die in 4-Position mit Wasserstoff verknüpft sind, direkt zu metallieren, z.B. mit den voranstehend genannten Metallen bzw. metall-

136

organischen Verbindungen. Die Umsetzungen werden in der Regel in einem inerten aprotischen Lösungsmittel durchgeführt, bevorzugt in Ether wie Diethylether, Tetrahydrofuran etc.. Die Reaktionstemperatur liegt im Bereich von -100°C bis zur Höhe des Siedepunktes des Reaktionsgemisches. Die Verbindungen der Formel VII werden vorzugsweise in situ erzeugt und direkt umgesetzt.

Die als Ausgangsmaterialien verwendeten 5-Hydroxypyrazole der Formel III sind bekannt oder können an sich nach bekannten Ver
10 fahren hergestellt werden, wie sie beispielsweise in der EP-A

240 001, in J. Chem. Soc. 315, S.383 (1997), J. Prakt. Chem. 315,

S. 382 (1973) beschrieben sind (siehe auch Übersichten in Advances Heterocycle. Chem. 48, S. 223-299 (1990) und Katritzky, Rees (Hrsg.), Comprehensive Heterocyclic Chem. Vol. 5, Pergamon Press

15 1984, Oxford, S. 167-343 und dort zitierte Literatur). 1,3-Dimethyl-5-hydroxypyrazol ist überdies eine käufliche Verbindung.

Die Alkylierungsmittel Vα, Sulfonylierungsmittel Vβ, Phosphonylierungsmittel Vγ beziehungsweise Vδ, sowie die Verbindungen VIα,

20 VIβ, VIγ, VIδ und VIε sind ebenfalls bekannt oder können nach bekannten Verfahren hergestellt werden.

Die Carbonsäuren der allgemeinen Formel IVa beziehungsweise ihre aktivierten Derivate IVb sind entweder aus der Literatur bekannt 25 oder lassen sich in Analogie zu bekannten Verfahren herstellen.

In Schema 1 ist ein üblicher Zugang zu Benzothiazol-5-carbonsäuren (Verbindungen IV-1) dargestellt.

30

35

Schema 1

$$R_1$$
 R_2
 R_3
 R_4
 R_5
 R_5
 R_5
 R_6
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7

25

$$R^{1}$$
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}

In der Formel IV-1 steht R für Wasserstoff (Verbindung IV-1a) oder einen verseifbaren Kohlenwasserstoffrest, z.B. für Methyl 45 (Verbindung IV-1b). Verbindungen der allgemeinen Formel IV-1 lassen sich beispielsw ise gemäß Reaktionsschritt a) durch Kondensation von ortho-Aminothiophenolen der allgemeinen Formel VIII

138

(R' = H) oder von ortho-Aminothioethern der allgemeinen Formel VIII (R' = C₁-C₄-Alkyl, z.B. Methyl) mit einem Carbonsäureäquivalent "R³-CO₂H" also einer Carbonsäure R³CO₂H oder aktivierten Derivaten R³COL¹, R³C(L³)₃ davon, worin L¹ für eine reaktive Abgangsgruppe steht und L³ für eine C₁-C₄-Alkoxygruppe steht, herstellen. Beispiele für L¹ sind Chlor, Brom, Carboxylat, wie Acetat, Trifluoracetat, N-Heterocyclyl, wie Imidazolyl, Pyridyl etc. Beispiele für R³COL¹ und R³C(L³)₃ sind die Säurehalogenide, Carbonsäureester und Carbonsäureanhydride sowie die Orthoester der Carbonsäuren R³CO₂H.

Die Kondensationsreaktion a) erfolgt vorzugsweise unter neutralen bis sauren Reaktionsbedingungen, vorzugsweise in Gegenwart einer anorganischen oder organischen Säure, wie beispielsweise Salz
15 säure, Schwefelsäure, p-Toluolsulfonsäure und Pyridinium-p-toluolsulfonat in einem organischen Lösungsmittel bei Temperaturen im Bereich von 0 bis 150°C und vorzugsweise im Bereich von 20 bis 120°C. Als Lösungsmittel kommen insbesondere gesättigte Kohlenwasserstoffe, halogenierte Kohlenwasserstoffe, aromatische Kohlenwasserstoffe wie Benzol, aliphatische Ether wie Diethylether und tert-Butyl-methylether oder Pyridin in Betracht. Zur Herstellung von Bezothiazolen aus o-Aminothiophenolen beziehungsweise entsprechenden Thiomethylethern siehe auch Houben-Weyl, Methoden der Organischen Chemie, Bd. E 8b, S.869-871.

Schritt a) kann auch zweistufig durchgeführt werden, wobei zunächst die Aminofunktion in VIII mit einer Carbonsäure R9-COOH oder einem Derivat davon zum Carbonsäureamid umgesetzt wird, das anschließend zum Benzothiazol der allgemeinen Formel IV-1 cycli-30 siert wird.

25

Die Umsetzung zum Amid gelingt unter den dür die Amidbildung üblichen Bedingungen, beispielsweise durch Umsetzung einer Säure in Gegenwart eines wasserbindenden Mittels. Die Cyclisierung gelingt 35 mit Lewissäuren oder Phosgen. Die Cyclisierung wird dann vorzugsweise in einem inerten organischen Lösungsmittel, beispielsweise einem aliphatischen oder aromatischen Kohlenwasserstoff oder in einem Halogenkohlenwasserstoff durchgeführt.

40 Ortho-Aminothiophenole der allgemeinen Formel VIII (R' = H) können gemäß Schema 1 ausgehend von 3-Nitrotoluolen der allgemeinen Formel IX hergestellt werden. Hierin kann die Methylgruppe in bekannter Weise katalytisch oder stöchiometrisch zur Carbonsäure oxidiert werden (Schritt b). Als Oxidationsmittel können beispielsweise Metalloxide von Übergangsmetallen, beispielsweise Mangandioxid, Chromtrioxid sowie deren anionische Komplexsalze, z.B. Natriumdichromat oder Chromylchlorid, Pyridiniumchromat,

139

weiterhin oxidierende Säuren, beispielsweise HNO3, oxidierende Gase wie Sauerstoff oder Chlor, gegebenenfalls in Anwesenheit von Übergangsmetallen (beziehungsweise der Salze, z.B. der Oxide oder Chloride) als Katalysatoren eingesetzt werden. Je nach Löslich-

- 5 keit der zu oxidierenden Verbindung und abhängig von dem Verwendeten Oxidationsmittel arbeitet man vorzugsweise in wässrigen Lösungen, einphasigen Systemen aus Wasser und mit Wasser mischbaren organischen Lösungsmitteln oder in mehrphasigen Systemen aus Wasser und organischen Lösungsmitteln unter Phasentransferkatalyse.
- 10 Abhängig vom gewählten Oxidationsmittel wird man die Oxidation in der Regel bei Temperaturen im Bereich von -15 bis +150°C und vorzugsweise im Bereich von 0 bis 100°C durchführen. Zur Oxidation von aromatischen Methylgruppen zu Benzoesäuren siehe beispielsweise (Houben-Weyl: "Methoden der organischen Chemie", V. Band,
- 15 IV/la 1981; Bd. VIII 1952; E. Bengtsson, Acta Chem. Scand. 1953,
 7, 774; Singer et al. Org. Synth. Coll. Vol III, 1955, 740;
 B.A.S. Hay et al. Can. J. Chem. 1965, 43, 1306)

Die so erhaltenen 3-Nitro-benzoesäurederivate werden anschließend 20 in Schritt c) zu den 3-Aminobenzoesäuren reduziert. Die selektive Reduktion von aromatischen Nitrogruppen in Anwesenheit von Carbonsäuregruppen ist grundsätzlich bekannt. Als Reduktionsmittel kommen beispielsweise Hydrazine, Metallhydride wie Aluminiumhydrid, und davon abgeleitete Komplexverbindungen wie Lithiumalumi-25 niumhydrid, Diisobutylaluminiumhydrid, oder Borane in Betracht. Bevorzugtes Reduktionsmittel ist Wasserstoff in Gegenwart von katalytischen Mengen an Übergangsmetallen beispielsweise Ni, Pd, Pt, Ru oder Rh, die in geträgerter Form, beispielsweise auf Aktivkohle, in Form aktivierter Metalle, z.B. Raney-Nickel, oder in 30 Form löslicher Komplexverbindungen eingesetzt werden können. Geeignete Lösungsmittel für die Reduktion sind abhängig von der Löslichkeit des zu hydrierenden Substrates und dem gewählten Reduktionsmittel C1-C4-Alkohole, wie Methanol, Ethanol, n-Propanol, Isopropanol oder n-Butanol, halogenierte C1-C6-Kohlenwasserstoffe, 35 wie Dichlormethan, Trichlormethan, Trichlorethylen, aromatische Kohlenwasserstoffe, wie Benzol, Toluol, Xylole, Chlorbenzol, wässrige Lösungen anorganischer oder organischer Säuren, wie wässrige Salzsäure. Üblicherweise erfolgt die Reduktion bei Temperaturen im Bereich von -15 bis +100°C, vorzugsweise 40 im Bereich von 0 bis 40°C. Die Reduktion mit Wasserstoff erfolgt üblicherweise bei einem Wasserstoffdruck im Bereich von 1 bis 50 bar, vorzugsweise im Bereich von 1 bis 10 bar. Zur katalytischen Hydrierung aromatischer Nitrogruppen siehe beispielsweise Rylan-

der in "Catalytic Hydrogenation over Platinum Metals", Academic 45 Press, New York, 1967, 168-202; Furst et al., Chem. Rev. 1965,

65, 52; Tepko et al., J. Org. Chem. 1980, 45, 4992.

140

Die so erhalten n o-Aminobenzoesäuren der allgemeinen Formel Xa (R = H) werden dann in einem weiteren Reaktionsschritt d) mit einem organischen Isothiocyanat (in Schema 1 Methylisothiocyanat) zu einem substituierten Thioharnstoffderivat umgesetzt, das ohne 5 weitere Isolierung oxidativ zur Benzothiazol-5-carbonsäure der allgemeinen Formel IX-la (in Schema 1 mit R³ = NH-CH₃) cyclisiert wird.

Der erste Reaktionsschritt in Stufe d), nämlich die Umsetzung der 10 m-Aminobenzoesäure der allgemeinen Formel Xa zum substituierten Harnstoff erfolgt durch Umsetzung mit einem C1-C6-Alkylisothiocyanat oder einem gegebenenfalls substituierten Phenylisothiocyanat in einem wasserfreien, organischen Lösungsmittel bei Temperaturen im Bereich von -15°C bis 150°C und vorzugsweise im Bereich von 15 -15°C bis 100°C. Geeignete Lösungsmittel sind beispielsweise aliphatische oder cycloaliphatische Kohlenwasserstoffe, wie n-Hexan oder Cyclohexan, halogenierte Kohlenwasserstoffe, wie Dichlormethan, Trichlormethan, Trichlorethan, Trichlorethylen, aromatische Kohlenwasserstoffe wie Benzol oder Anisol, Dialkylether oder cy-20 clische Ether wie Diethylether, Methyl-tert.-butylether, Tetrahydrofuran oder Dioxan, wasserfreie Carbonsäuren wie Eisessig oder in Pyridin. Zur Herstellung substituierter Thioharnstoffe siehe beispielsweise: Kurzer, F., Org. Synth. 1951, 31, 21; R.R. Gupta et al., Synth. Commun. 17(2) ,229-240 (1987); Rathke, Ber. Dtsch. 25 Chem. Ges. 1885, 18, 3102; Schiff, Justus Liebigs Ann. Chem., 1868, 148, 338; Frank, R.L., Smith, P.V.; Org. Synth. 1955, III, 735, N.B. Ambati et al., Synth. Commun. 1997, 27 (9), 1487-1493; W.O. Foye, J. Pharm.. Sci., 1977, 66, No. 7, 923-926.

30 Das so erhaltene, substituierte Thioharnstoff-Derivat wird dann in einem zweitem Reaktionsschritt von Schritt d) mit einem halogenhaltigen Oxidationsmittel wie Brom, Sulfurylchlorid oder Chlor in einem inerten organischen Lösungsmittel zur substituierten 2-Aminobenzothiazol-5-carbonsäure der allgemeinen Formel IV-1a
35 (in Schema 1 steht R³ für NH-CH₃) cyclisiert. Die Cyclisierung erfolgt in der Regel bei Temperaturen im Bereich von -15 bis +150°C und vorzugsweise im Bereich von 0 bis 120°C. Geeignete Lösungsmittel sind insbesondere die vorgenannten aliphatischen oder cycloaliphatischen Kohlenwasserstoffe, die vorgenannten aromatischen
40 Kohlenwasserstoffe, die vorgenannten wasserfreien Carbonsäuren, ferner C¹-C⁴-Alkanole, z.B. Methanol, Ethanol oder Isopropanol, Dialkylether, cyclische Ether und Mischungen der vorgenannten Lösungsmittel. Zur oxidativen Cyclisierung substituierter Thioharnstoffe zu Benzothiazolen siehe beispielsweise Houben-Weyl: "Me-

45 thoden der organischen Chemie V, Bd.E8B, 1994, S.865 f.

141

Die substituierte 2-Aminobenzothiazol-5-carbonsäure der allgemeinen Formel IV-la kann entweder direkt mit einem Hydroxypyrazol der allgemeinen Formel III oder einem aktivierten Derivat davon in der oben beschriebenen Weise zur erfindungsgemäßen Verbindung 5 I (mit Y = S und X = C-NH-R'', wobei R'' für C₁-C₆-Alkyl oder gegebenenfalls substituiertes Phenyl steht) umgesetzt werden.

Sofern R3 in Formel IV-la für NH-CH3 steht, können durch Hydrolyse gemäß Schritt e) auch die o-Aminothiobenzoesäuren der allgemeinen 10 Formel VIII (mit R = R' = H) hergestellt werden. Der Hydrolyse folgt in der Regel noch die Methylierung zum Methylthioether VIII $(R = H, R' = CH_3)$. Die Hydrolyse in Schritt e) erfolgt beispielsweise durch Umsetzung der Verbindung IV-la (mit R3 = NH-CH3) mit einem Alkalihydroxid, z.B. Lithium-, Natrium- oder Kaliumhydro-15 xid, einem Erdalkalihydroxid oder Alkaliiodiden, wie Natriumiodid in einem geeigneten Lösungsmittel bei erhöhter Temperatur, wobei vorzugsweise in Abwesenheit von Sauerstoff gearbeitet wird. Übliche Reaktionstemperaturen liegen im Bereich von 0 bis 200°C, insbesondere im Bereich von 20 bis 180°C. Geeignete Lösungsmittel 20 sind neben den vorgenannten aliphatischen oder cycloaliphatischen Kohlenwasserstoffen, den halogenierten Kohlenwasserstoffen, den aromatischen Kohlenwasserstoffen, den vorgenannten Ethern und Alkoholen insbesondere wässrige, einphasige Systeme und Pyridin. Zur Verseifung der substituierten 2-Aminobenzothiazol-5-carbon-25 säuren siehe beispielsweise: Organikum, 16. Aufl. 1986, S. 415; Mc Murry, Org. React. 1976, 24, 187; Taschner et al., Rocz. Chem. 1956, 30, 323; z.B. Houben-Weyl: "Methoden der organischen Chemie", Band E8b, 1994; S.1010 f.; J. Chem. Soc. Perkin Trans., Part 1, 1976, No. 12, 1291-1296, insbesondere A.R. Katritzky et 30 al., J. Heterocycl. Chem. 30 (1) 135-139, 1993. Die Umsetzung zum Methylthioether VIII mit R = H und $R' = CH_3$ gelingt in einfacher Weise durch Umsetzung mit Methyliodid oder Dimethylsulfat.

In ähnlicher Weise können Verbindungen der allgemeinen Formel

35 VIII mit R = H erhalten werden, wenn man zunächst die 3-Aminobenzoesäure der allgemeinen Formel Xa mit einem C₁-C₄-Alkanol, z.B.
mit Methanol in bekannter Weise verestert. Der so erhaltene Ester
der allgemeinen Formel Xb (R = C₁-C₄-Alkyl, insbesondere Methyl)
wird dann in Schritt f) mit Isothiocyansäure oder einem geeigne40 ten Salz der Isothiocyansäure, z.B. Natriumrhodanid in Gegenwart
einer konzentrierten Mineralsäure, zum Thioharnstoff-Derivat umgesetzt. Die Reaktionsbedingungen entsprechen dem unter Schritt
d) für die Harnstoffderivate angegebenen Reaktionsbedingungen.
Das Thioharnstoffderivat wird anschließend in Schritt g) unter
45 den oben genannten Bedingungen zum 2-Aminobenzothiazol-5-carbonsäureester der allgemeinen Formel IV-1b (R³ = NH₂) cyclisiert. Die
so erhaltene Verbindung der allgemeinen Formel IV-1b mit R³ = NH₂

142

kann ntweder in Schritt e' zur Verbindung VIII hydrolysiert und gegebenenfalls anschließend methyliert werd n (VIII: R = H, $R' = CH_3$) werden.

- 5 Sie kann auch in der oben beschriebenen Weise zur erfindungsgemäßen Verbindung I (mit X = C-NH2 und Y = S) umgesetzt werden. Zudem besteht die Möglichkeit, die 2-Aminogruppe der Verbindung IV-lb zunächst zu diazotieren und auf diesem Wege weitere Funktionalitäten in die 2-Position des Benzothiazolgerüstes einzuführen. Die 10 Umwandlung von R³ = NH2 in R³ = Halogen gelingt in bekannter Weise unter Sandmeyer-Bedingungen. Die Umwandlung von R³ = NH2 in R³ = H gelingt in bekannter Weise durch sukzessive Umsetzung des 2-Aminobenzothiazol-5-carbonsäureesters mit Nitrit unter sauren Bedingungen und anschließend einem Reduktionsmittel wie Hypophosphoriger Säure, Natriumborhydrid, Trialkylsilane, Trialkylstannane, SnCl2, NO, Wilkinsonkatalysatoren; siehe auch J. Am. Chem. Soc. 1949, 71, S.2137; J. Am. Chem. Soc. 1950, 72, S.3013; 1954, Bd.76, S.290.
- 20 Ein weiterer Zugang zu Verbindungen der allgemeinen Formel VIII wird in Schema 2 aufgezeigt.

25

NC

$$R^1$$
 CN
 HO_2C
 $CONH_2$
 SCH_3
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2

Ausgehend von 2,4-Dicyanothioanisolen der allgemeinen Formel XI wird durch selektive Hydrolyse im Schritt h) das Amid der allgemeinen Formel XII hergestellt. Aufgrund der unterschiedlichen

35 Reaktivität der beiden Methylgruppen gelingt die Darstellung unter üblichen, alkalischen Verseifungsbedingungen, wobei man vorzugsweise das Fortschreiten der Reaktion kontrolliert. Verfahren zur alkalischen Verseifung von Nitrilen sind beispielsweise aus Org. Synth. Coll. Vol. 1, 1941, S.321 bekannt. In einem weiteren Schritt i) wird dann die Amidfunktion in den Verbindungen der allgemeinen Formel XII im Sinne eines Hofmann-Abbaus in eine Aminofunktion umgewandelt. Hierbei werden Verbindungen der allgemeinen Formel VIII mit R=H und R'=CH3 erhalten. Typische Bedingungen für den Hofmann-Abbau sind: wässrig alkalische Chlor- oder Hypochloridlösungen, Temperaturen im Bereich von 0 bis 150°C und

vorzugsweise im Bereich von 20 bis 120° C (siehe auch Organikum 16. Auflage 1986, S. 572).

Ein weiterer Zugang zu Benzothiazol-5-carbonsäuren wird in 5 Schema 3 gezeigt. Dieser Zugang macht von der Umwandlung von Benzothiazolen der allgemeinen Formel XIV in entsprechende Carbonsäuren gemäß Reaktionsschritt o) Gebrauch.

Schema 3

10
$$R^{1}$$

$$NO_{2}$$

$$R^{2}$$

$$NO_{2}$$

$$R^{2}$$

$$NO_{2}$$

$$R^{2}$$

$$SCH_{3}$$

$$R^{1}$$

$$R^{1}$$

$$R^{2}$$

$$SCH_{3}$$

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{2}$$

$$R^{4}$$

$$R^{2}$$

$$R^{4}$$

$$R^{2}$$

$$R^{4}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{4}$$

$$R^{4}$$

$$R^{2}$$

$$R^{4}$$

$$R^{2}$$

$$R^{4}$$

$$R^{2}$$

$$R^{4}$$

$$R^{5}$$

$$R^$$

Die Umwandlung des Brombenzothiazols der allgemeinen Formel XIV

25 in die Carbonsäure der allgemeinen Formel IV-1 (R=H) gelingt beispielsweise durch sukzessive Umsetzung von XIV mit Magnesium zur
entsprechenden Grignard-Verbindung und anschließender Umsetzung
der Grignard-Verbindung mit Kohlendioxid. Alternativ kann die
Verbindung XIV durch Halogen-Metallaustausch mit einem Alkalime30 tallalkyl, z.B. einem Lithiumalkyl, wie Methyllithium, n-Butyllithium oder tert-Butyllithium, und anschließende Umsetzung des Reaktionsproduktes mit CO2 in die Verbindung IV-1 überführt werden.

Reaktionsschritt o) in Schema 3 kann auch durch Umsetzung des 35 5-Brombenzothiazols der allgemeinen Formel XIV mit Kohlenmonoxid, einer Base und Wasser unter erhöhtem Druck in Gegenwart eines Pd-, Ni-, Co- oder Rh-Katalysators realisiert werden.

Die Katalysatoren Nickel, Cobalt, Rhodium und insbesondere

40 Palladium können metallisch oder in Form üblicher Salze wie in
Form von Halogenverbindungen, z.B. PdCl₂, RhCl₃·H₂O, Acetaten,
z.B. Pd(OAc)₂, Cyaniden usw. in den bekannten Wertigkeitsstufen
vorliegen. Ferner können Metallkomplexe mit tertiären Phosphinen,
Metallalkylcarbonyle, Metallcarbonyle, z.B. CO₂(CO)₈, Ni(CO)₄,

45 Metallcarbonyl-Komplexe mit tertiären Phosphinen, z.B.

 $(PPh_3)_2Ni(CO)_2$, oder mit tertiären Phosphinen komplexierte Übergangsmetallsalze vorliegen. Die letztgenannte Ausführungsform ist

insbesondere im Fall von Palladium als Katalysator bevorzugt.

Dabei ist die Art der Phosphinliganden breit variabel. Beispielsweise lassen sie sich durch folgende Formeln wiedergeben:

5
$$P \leftarrow \frac{R^{24}}{R^{25}}$$
 oder $\frac{R^{24}}{R^{25}} P - (CH_2)_n - P = \frac{R^{26}}{R^{27}}$

wobei n die Zahlen 1, 2, 3 oder 4 bedeutet und die Reste R²⁴ bis R²⁶ für niedermolekulares Alkyl, z.B. C₁-C₆-Alkyl, Aryl,

10 C₁-C₄-Alkylaryl, z.B. Benzyl, Phenethyl oder Aryloxy stehen. Aryl ist z.B. Naphthyl, Anthryl und vorzugsweise gegebenenfalls substituiertes Phenyl, wobei man hinsichtlich der Substituenten nur auf deren Inertheit gegenüber der Carboxylierungsreaktion zu achten hat, ansonsten können sie breit variiert werden und

15 umfassen alle inerten C-organischen Reste wie C₁-C₆-Alkylreste, z.B. Methyl, Carboxylreste wie COOH, COOM (M ist z.B. ein Alkali-, Erdalkalimetall oder Ammoniumsalz), oder C-organische Reste über Sauerstoff gebunden wie C₁-C₆-Alkoxyreste.

20 Die Herstellung der Phosphinkomplexe kann in an sich bekannter Weise, z.B. wie in den eingangs genannten Dokumenten beschrieben, erfolgen. Beispielsweise geht man von üblichen kommerziell erwerblichen Metallsalzen wie PdCl₂ oder Pd(OCOCH₃)₂ aus und fügt das Phosphin z.B. P(C₆H₅)₃, P(n-C₄H₉)₃, PCH₃(C₆H₅)₂,
25 1,2-Bis(diphenylphosphino)ethan hinzu.

Die Menge an Phosphin, bezogen auf das Übergangsmetall, beträgt üblicherweise 0 bis 20, insbesondere 0,1 bis 10 Moläquivalente, besonders bevorzugt 1 bis 5 Moläquivalente.

30

35

Die Menge an Übergangsmetall ist nicht kritisch. Natürlich wird man aus Kostengründen eher eine geringe Menge, z.B. von 0,1 bis 10 Mol.-%, insbesondere 1 bis 5 Mol.-%, bezogen auf den Ausgangsstoff IV.

Zur Herstellung der Benzothiazol-5-carbonsäuren IV-1 (R = OH) führt man die Umsetzung mit Kohlenmonoxid und mindestens äquimolaren Mengen an Wasser, bezogen auf die Ausgangsstoffe XIV durch. Der Reaktionspartner Wasser kann gleichzeitig auch als 40 Lösungsmittel dienen, d.h. die maximale Menge ist nicht kritisch.

Es kann aber auch je nach Art der Ausgangsstoffe und der verwendeten Katalysatoren von Vorteil sein, anstelle des Reaktionspartners ein anderes inertes Lösungsmittel oder die für die 45 Carboxylierung verwendet Base als Lösungsmittel zu verwenden.

145

Als inerte Lösungsmittel kommen für Carboxylierungsreaktionen übliche Lösungsmittel wie Kohlenwasserstoffe, z.B. Toluol, Xylol, Hexan, Pentan, Cyclohexan, Ether z.B. Methyl-tert.butylether, Tetrahydrofuran, Dioxan, Dimethoxyethan, substituierte Amide wie Dimethylformamid, persubstituierte Harnstoffe wie Tetra-C₁-C₄-alkylharnstoffe oder Nitrile wie Benzonitril oder Acetonitril in Betracht.

In einer bevorzugten Ausführungsform des Verfahrens verwendet man 10 einen der Reaktionspartner, insbesondere die Base, im Überschuß, so daß kein zusätzliches Lösungsmittel erforderlich ist.

Für das Verfahren geeignete Basen sind alle inerten Basen, die den bei der Umsetzung freiwerdenden Jodwasserstoff bzw. Brom15 wasserstoff zu binden vermögen. Beispielsweise sind hier tertiäre Amine wie tert.-Alkylamine, z.B. Trialkylamine wie Triethylamin, cyclische Amine wie N-Methylpiperidin oder N,N'-Dimethylpiperazin, Pyridin, Alkali- oder -hydrogencarbonate, oder tetra-alkylsubstituierte Harnstoffderivate wie Tetra-C1-C4-alkylharnstoff, z.B. Tetramethylharnstoff, zu nennen.

Die Menge an Base ist nicht kritisch, üblicherweise werden 1 bis 10, insbesondere 1 bis 5 Mol verwendet. Bei gleichzeitiger Verwendung der Base als Lösungsmittel, wird die Menge in der Regel 25 so bemessen, daß die Reaktionspartner gelöst sind, wobei man aus Praktikabilitätsgründen unnötig hohe Überschüsse vermeidet, um Kosten zu sparen, kleine Reaktionsgefäße einsetzen zu können und den Reaktionspartnern maximalen Kontakt zu gewährleisten.

- 30 Während der Umsetzung wird der Kohlenmonoxiddruck so eingestellt, daß immer ein Überschuß an CO, bezogen auf XIV vorliegt. Vorzugsweise liegt der Kohlenmonoxiddruck bei Raumtemperatur bei 1 bis 250 bar, insbesondere 5 bis 150 bar CO.
- 35 Die Carbonylierung wird in der Regel bei Temperaturen von 20 bis 250°C, insbesondere bei 30 bis 150°C kontinuierlich oder diskontinuierlich durchgeführt. Bei diskontinuierlichem Betrieb wird zweckmäßigerweise zur Aufrechterhaltung eines konstanten Druckes kontinuierlich Kohlenmonoxid auf das Umsetzungsgemisch aufge-

Die als Ausgangsverbindungen benutzten 5-Brombenzothiazole XIV sind bekannt oder können leicht durch geeignete Kombination bekannter Synthesen sowie nach der in Schema 3 beschriebenen Reaktionsfolge hergestellt werden.

146

Gemäß Schema 3 kann man beispielsweise o-Chlornitrobenzole der allgemeinen Formel XIII mit Alkalisalzen von Alkylmercaptanen in die entsprechenden o-Nitrothioether umwandeln (Schritt k). Der so erhaltene Thioether kann selektiv in der 3-Position zur Nitro-5 gruppe bromiert werden (Schritt 1). Übliche Bromierungsreagenzien sind für diesen Zweck neben Brom - gegebenenfalls in Kombination mit einer Lewis-Säure wie FeBr3, auch N-Bromsuccinimid, N-Bromhydantoin und Pyridiniumperbromid. Die Bromierung erfolgt vorzugsweise in einem organischen Lösungsmittel, beispielsweise einem 10 aliphatischen oder cycloaliphatischen Kohlenwasserstoff, Halogenkohlenwasserstoff oder wasserfreien organischen Säuren bei Temperaturen im Bereich von -15 bis 150°C, vorzugsweise im Bereich von -15 bis 100°C (siehe z.B. Organikum, 16. Aufl., 1986, S. 315). Anschließend wird in Schritt m) die Nitrogruppe zur Aminogruppe re-15 duziert. Die Bedingungen für Schritt m) entsprechen den für Schritt c) in Schema 1 angegebenen Bedingungen. Anschließend wird der o-Aminothioether aus Schritt m) in Schritt n) zum 5-Brombenzothiazol XIV cyclisiert. Die hierfür erforderlichen Reaktionsbedingungen entsprechen den für Schritt a) in Schema 1 angegebenen 20 Bedingungen.

Zur Herstellung der Benzothiazol-S-dioxid-Verbindungen der allgemeinen Formel I (Y = SO₂) werden beispielsweise die Benzothiazol-5-carbonsäuren IV-la oder IV-lb oder die 5-Brombenzothia25 zol-5-carbonsäuren XIV mit einem Oxidationsmittel umgesetzt, wobei das entsprechende S-Dioxid erhalten wird, das dann weiter wie
beschrieben zur Zielverbindung der Formel I mit Y = SO₂ weiterverarbeitet wird. Bevorzugt wird jedoch zunächst der Thiomethylether
der allgemeinen Formel VIII (Schema 1, Formel VIII mit R = H und
30 R' = CH₃) zum S-Dioxid VIIIc oxidiert und anschließend zur Benzothiazol-S-dioxid-5-carbonsäure der Formel IV-lc cyclisiert.

35

147

5

$$R^1$$
 HO_2C
 NH_2
 $S-CH_3$
 R^2
 NH_2
 R^2
 NH_2
 R^2
 NH_2
 R^2
 NH_2
 ie Oxidation von VIII zum S-Dioxid gelingt mit Oxidationsmitteln

20 wie Peroxysäuren, z.B. m-Chlorperbenzosäure, Peroxyessigsäure,
Trifluorperoxyessigsäure oder mit Wasserstoffperoxid, das vorzugsweise zusammen mit einem Übergangsmetall-Katalysator, z.B.
Natriumwolframat(VI), eingesetzt wird. Die Cyclisierung von o-Methylsulfonylaminobenzolen der Formel VIIIc gelingt in Anlehnung

25 an die in Chem. Heterocycl. Comp. Bd.3, 1967, S.197 ff beschriebene Methode.

Eine Synthese für Benzoxazol-5-carbonsäurederivate der allgemeinen Formel IV-2 ($X = C-R^3$, Y = 0) wird in Schema 4 beschrieben. 30 Hierbei wird zunächst ausgehend von 3-Nitrotoluolen der allgemeinen Formel IX in der für Schema 1 beschriebenen Weise ein 3-Aminobenzoesäureester der allgemeinen Formel Xb (R = C1-C4-Alkyl) hergestellt. In Schritt p) wird zunächst die Aminogruppe in Xb in bekannter Weise diazotiert und anschließend mit Alkaliaziden zu 35 den entsprechenden 3-Azidobenzoesäuren der allgemeinen Formel XV umgesetzt. Das Azid XV wird anschließen in Reaktionsschritt q) mit einer Alkancarbonsäure, die gegebenenfalls auch halogeniert sein kann, z.B. Ameisensäure, Essigsäure, Trifluoressigsäure oder Propionsäure zum Benzoxazol-5-carbonsäureester der allgemeinen 40 Formel IV-2a (R^3 : C_1 - C_4 -Alkyl) umgesetzt. Die Verbindung IV-2a kann entweder direkt zum erfindungsgemäßen Pyrazolylderivat der allgemeinen Formel I mit $X = CR^3$ und Y = O umgesetzt werden oder alternativ in Reaktionsschritt r) zum o-Aminophenol der allgemeinen Formel XVI hydrolysiert werden. Die Verbindungen XVI können 45 dann ähnlich wie die o-Aminothiophenole der allgemeinen Formel

148

VIII zu den Benzoxazol-5-carbonsäureestern der allgemeinen Formel IV-2 umgesetzt werden.

5

$$R^{1}$$
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}

In Reaktionsschritt p) wird zunächst aus dem Amin der allgemeinen Formel Xb in wässriger saurer Lösung oder in einer wasserfreien 35 Säure wie z.B. Ameisensäure, Essigsäure oder Trifluoressigsäure mit einem anorganischen Nitrit wie Natriumnitrit oder einem organischen Nitrit wie Isoamylnitrit eine aromatische Diazoniumverbindung hergestellt. Diese wird durch Zugabe eines Alkaliazids, beispielsweise Natriumazid zu der Lösung oder Suspension der Diazoniumverbindung umgesetzt, wobei man den 3-Azidobenzoesäureester gemäß Schema 4 erhält. Die Reaktionstemperatur der Umsetzung liegt in der Regel im Bereich von -15 bis +50°C, vorzugsweise im Bereich von 0 bis 20°C. Siehe auch K. G. Pinney et al., J. Org. Chem. [JOCEAH] 1991, 56 (9), 3125-3133.

Schema 4

Reaktionsschritt q) wird vorzugsweise in der zur Kondensation gewünschten wasserfreien Säure HOOC-R³ in einem aromatischen Kohlenwasserstoff, wie Benzol, Toluol, Xylol oder Chlorbenzol durchgeführt. Die Reaktionstemperatur liegt in der Regel im Bereich von 50 bis 150°C und vorzugsweise im Bereich von 50 bis 145°C. (Siehe hierzu auch B. Decroix et al., Bull. Soc. Chim. Fr. 1976, 621; S. Chaudhury et al., Can. J. Chem. 1982, 60, 1122). Die Verseifung des in Schritt q) erhaltenen Benzoxazol-5-carbonsäureesters zum 3-Amino-4-hydroxybenzoesäureester der allgemeinen Formel XVI erfolgt beispielsweise unter den für Reaktionschritt e) in Schema 1 angegebenen Bedingungen. Die Kondensation von Verbindung XVI zum Benzoxazol-5-carbonsäureester in Schritt s) erfolgt beispielsweise unter den für Schritt a) in Schema 1 angegebenen Reaktionsbedingungen. (Siehe zu Schritt s) auch Houben-Weyl "Methoden der organischen Chemie, Bd.E8a, 1993, S.1020 f.)

Ein anderer Zugang zu Benzoxazol-5-carbonsäuren der allgemeinen Formel IV ($X = C-R^3$, Y = O) ist in Schema 5 angegeben.

Schema 5

25
$$R^{1} \longrightarrow NO_{2} \longrightarrow NO_{2} \longrightarrow NO_{2} \longrightarrow NO_{2} \longrightarrow NO_{2} \longrightarrow NO_{2} \longrightarrow NO_{2} \longrightarrow NO_{2} \longrightarrow NO_{2} \longrightarrow NO_{2} \longrightarrow NO_{2} \longrightarrow NO_{2} \longrightarrow NO_{3} \longrightarrow NO_{4} \longrightarrow NO_{4} \longrightarrow NO_{4} \longrightarrow NO_{4} \longrightarrow NO_{4} \longrightarrow NO_{4} \longrightarrow NO_{4} \longrightarrow NO_{5} \longrightarrow$$

Hierbei wird zunächst ein o-Chlornitrobenzol der allgemeinen For-45 mel XIII durch nukleophilen Austausch von Halogen gegen Methoxy in ein o-Nitroanisol überführt (Schritt t)). Dieses wird dann unter den für Schritt 1) in Schema 3 angegebenen Reaktionsbedingun-

gen bromiert, wobei das Bromatom selektiv in die p-Position zur Methoxygruppe entritt. Das bromierte Nitroanisol wird dann zunächst selektiv zur Aminoverbindung reduziert und anschließ nd die Hydroxyfunktion durch Etherspaltung freigesetzt. Hierbei erbält man 2-Amino-4-bromphenole. Diese werden dann unter den für Schritt s) angegebenen Reaktionsbedingungen zum 5-Brombenzoxazol der allgemeinen Formel XVII cyclisiert. Die Verbindung XVII wird dann unter den für Schritt o) in Schema 3 beschriebenen Reaktionsbedingungen zu der Benzoxazol-5-carbonsäure der allgemeinen 10 Formel IV (X = C-R³ und Y = 0) umgesetzt.

Ein Verfahren zur Herstellung von Benzimidazol-5-carbonsäureestern ist in Schema 6 angegeben.

Hierbei geht man zunächst wieder von 3-Nitrotoluolen aus, die in der zuvor beschriebenen Weise in 3-Aminobenzoesäureester der allgemeinen Formel Xb überführt werden. Die Verbindungen Xb werden dann in Reaktionsschritt y) mit einer Carbonsäure der allgemeinen Formel R³-CO₂H oder einem reaktiven Carbonsäureäquivalent RCOL¹, worin L¹ die zuvor genannte Bedeutung hat, zu einem Carbonsäureamid der allgemeinen Formel XVIII umgesetzt. Hierin hat R³ eine der zuvor angegebenen Bedeutungen. XVIII wird dann unter sauren Bedingungen, z.B. mit Phosgen oder Phosphorylchlorid, in ein Nitriliumion überführt, das mit einem Amin der allgemeinen Formel R⁴-NH₂ oder mit Ammoniak abgefangen wird, wobei ein Iminoamid der Formel XIX entsteht. Die Verbindung XIX kann dann unter oxidierenden Bedingungen, wie beispielsweise für Reaktionsschritt b) oder g) in Schema 1 beschrieben, zum Benzimidazol-5-carbonsäuree-

151

ster umgesetzt werden, der seinerseits zur Carbonsäure verseift werden kann.

Schritt y) wird in der Regel unter den für die Bildung von Amiden 5 aus Carbonsäuren oder Carbonsäurederivaten und aromatischen Aminen üblichen Reaktionsbedingungen hergestellt. Die Reaktionstemperatur liegt in der Regel im Bereich von -15 bis 200°C, vorzugsweise im Bereich von 20 bis 150°C.

- 10 Zur Herstellung des Iminoamids der allgemeinen Formel XIX wird zunächst das Amid der allgemeinen Formel XVIII unter Wasserausschluß in einem organischen Lösungsmittel, beispielsweise einem der vorgenannten cycloaliphatischen oder aromatischen Kohlenwasserstoffe oder einem Ether gelöst und mit einer anorganischen
- 15 Säure, beispielsweise Salzsäure oder Schwefelsäure, einer LewisSäure wie Titantetrachlorid oder einem Säurechlorid wie Sulfonylchlorid, Sulfurylchlorid, Phosphorylchlorid oder Phosgen in
 das Nitriliumion überführt. Die hierfür erforderlichen Temperaturen liegen in der Regel im Bereich von -15 bis 150°C und vorzugs-
- 20 weise im Bereich von 20 bis 140° C. Das Nitriliumion wird dann mit Ammoniak oder einem Amin der allgemeinen Formel R^4 -NH₂ abgefangen.

Die Cyclisierung der Verbindung XIX zum Benzimidazol-5-carbonsäureester der allgemeinen Formel IV ($X=C-R^3$, $Y=C-R^4$) wird in der

- 25 Regel mittels eines Oxidationsmittels wie Bleitetraacetat, Thallium(III)nitrit, Sulfurylchlorid oder Natriumhypochlorid unter wasserfreien Bedingungen durchgeführt. Als Lösungsmittel dienen beispielsweise aliphatische oder cycloaliphatische Kohlenwasserstoffe, aromatische Kohlenwasserstoffe oder Ether. Die Umsetzung
- 30 erfolgt in der Regel bei Temperaturen im Bereich -15 bis +150°C und vorzugsweise im Bereich von 0 bis 140°C. Zur Herstellung von Benzimidazolen aus Iminoamiden siehe auch (Can. J. Chem. 1982, 60, S.1122).
- 35 Die Herstellung von Benzoisothiodiazolen der allgemeinen Formel IV-4 (X-Y = S=N) gelingt beispielsweise ausgehend von Benzimida-zol-5-carbonsäuren oder ihren Estern in der in Schema 7 beschriebenen Weise.

Schema 7
$$R0_{2}C$$

$$R0_{2}C$$

$$R0_{2}C$$

$$R1$$

$$R0_{2}C$$

$$R1$$

$$R0_{2}C$$

$$NH_{2}$$

$$R1$$

$$NH_{2}$$

IV-3 (X = C-R³, Y = C-R⁴) R = H oder C₁-C₄-Alkyl

Hierbei wird zunächst ein Benzimidazol-carbonsäureester oder die freie Carbonsäure zu 3,4-Diaminobenzoesäure verseift. Diese wird anschließend mit schwefliger Säure oder ihren Derivaten, z.B. SO₂ oder SO₂Cl₂, zur Benzoisothiadiazol-5-carbonsäure der allgemeinen Formel IV-4 cyclisiert. Üblicherweise wird die Cyclisierung bei Temperaturen im Bereich von 0 bis 200°C und vorzugsweise im Bereich von 50 bis 150°C, z.B. in einem Lösungsmittel oder in der Schmelze, durchgeführt (siehe auch: Chem. Ber. 1967, Bd.100, S. 2164).

40

Benzothiadiazol-5-carbonsäuren der allgemeinen Formel IV-5 (X = N, Y = S) können ausgehend von 2-Aminothiophenol-5-carbonsäuren der allgemeinen Formel VIII (R = R' = H) hergestellt werden. Hierzu wird man die Verbindungen d r allgemeinen Formel VIII zu-5 nächst diazotieren, beispielsweise durch Umsetzung mit organischem oder anorganischem Nitrit in einem wässrigen, neutralen Reaktionsmedium bei Temperaturen im Bereich von -15 bis +20°C. Die wässrige Lösung oder Suspension des Diazoniumsalzes wird anschließend angesäuert, wobei sich die Verbindung der allgemeinen 10 Formel IV-5 bildet. Diese kann in konventioneller Weise aus der Reaktionmischung, beispielsweise durch Extraktion mit einem organischen Lösungsmittel, gewonnen werden. Die Herstellung der Ausgangsverbindungen VIII ist in Schema 1 beschrieben. Die Herstellung der Benzothiadiazolcarbonsäuren IV-5 (X = N, Y = S) kann 15 beispielsweise in Anlehnung an das in der US 5,770,758 beschriebene Verfahren erfolgen.

Beispiele

20 4-[4'-Methylbenzothiazol-5'-ylcarbonyl]-5-hydroxy-1-methylpyrazol (Beispiel 1)

1.1 2-Methyl-4-thiocyano-isophthalsäuredinitril

30 Unter Erwärmen wurden 189 g (1 Mol) 2-Methyl-3-cyano-4-thiocyanoanilin in 1 kg Eisessig gelöst und danach wurden 400 g (4 Mol) konz. HCl und nach 15 min Rühren 400 ml Wasser zu so zugefügt, daß eine feinverteilte Supension des Hydrochlorids entstand. Nach kurzem Rühren (15 bis 30 min) wurde bei -5 bis 35 0°C langsam eine Lösung von 69 g (1 Mol) Natriumnitrit in 140 ml Wasser zugetropft. In einem separatem Rührkolben wurden 245 g (5 Mol) NaCN in einer Mischung aus 1,5 l Wasser und 136 g (2 Mol) 25 proz. Ammoniakwasser gelöst und anschließend 250 g (1 Mol) CuSO₄·5 $\rm H_2O$ zugegeben. Danach wurden bei 25°C 40 eine zuvor bereitete und bei 0°C gehaltene Diazoniumlösung zügig in den Cu-Komplex zugetropft, wobei die Temperatur 40°C nicht überstieg. Nach Beendigung der Gasabspaltung wurde noch 30 min nachrühren gelassen. Man saugte den ausgefallenen Feststoff ab und wusch ihn dreimal mit Wasser. Das Filtrat 45 wurde mit 2 1 Methylenchlorid extrahiert. Der Feststoff wurde dann in ein Rührgefäß gegeben und mit 1 l konz. HCl versetzt. Anschließend goß man den Methylenchlorid-Extrakt zu und ließ

154

15 min rühren. Nach Abtrennen der organischen Phase und Abfiltrieren ungelöst gebliebener Anteile wurde dreimal mit Wasser gewaschen und nach Trocknung über Natriumsulfat eingeengt. Zur Abtrennung unerwünschter Bestandteile wurde das Rohprodukt in Ethylacetat gelöst, vom Ungelösten filtriert und die Lösung anschließend eingeengt. Ausbeute: 170 g (85%). Smp.: 95 - 107°C

1.2 3-Methyl-2,4-dicyanothiophenol

10

15

20

5

Zu einer Lösung von 170 g (0,85 Mol) 2 Methyl-4-thiocyanoisophthalsäuredinitril in 850 ml Methanol, wurden bei 25 bis
35°C eine Lösung von 110,5 g (0.85 Mol) 60 proz. Natriumsulfid in 425 ml Wasser zugetropft und drei Stunden bei Raumtemperatur nachrühren gelassen. Danach wurde mit 1000 ml Wasser
versetzt und mit Methyl-tert.-butylether extrahiert. Die
wässrige Phase wurde durch Ansäuern mit HCl auf pH l gebracht
und das Thiophenol mit Methylenchlorid extrahiert. Nach dreimaligem Waschen des Extraktes mit Wasser wurde die organische
Phase abgetrennt, über Natriumsulfat getrocknet und eingeengt. Ausbeute: 150 g (99%).

Smp.: 172 - 179°C

1.3 3-Methyl-2,4-dicyano-thioanisol

25

30

40

50g (0,29 Mol) 3-Methyl-2,4-dicyano-thiophenol wurden in eine Lösung von 23 g (0,58 Mol) NaOH in 400 ml Wasser gegeben und dann wurden bei 25 bis 35°C 73 g (0,58 Mol) Dimethylsulfat zugetropft. Nach 16 h Nachrühren bei 25°C war ein Feststoff ausgefallen, der abgesaugt wurde, zweimal mit Wasser gewaschen und dann aus Eisessig/Wasser umkristallisiert wurde. Ausbeute: 43 g (80%).

Smp.: 176 - 181°C

35 1.4 2-Methyl-3-aminocarbonyl-4-methylsulfanylbenzoesäure

34g (0,181 Mol) 3-Methyl-2,4-dicyanothioanisol wurden in einer Lösung von 21,7 g (0,54 Mol) NaOH in 200 ml Wasser suspendiert und 8 h zum Sieden erhitzt. Nach dem Abkühlen fiel ein Teil des Produktes aus und wurde durch Absaugen und Waschen mit Wasser isoliert. Das noch alkalische Filtrat wurde mit MTBE extrahiert, der Extrakt wurde verworfen. Die wässrige Phase wurd mit konz. HCl angesäuert (pH 1) und mit Ethylacetat extrahiert. Ausbeute: 29 g (71%).

45 Smp.: 230 — 240°C

- 1.5 3-Amino-2-methyl-4-methylsulfanylbenzoesäure
 - a) aus 2-Methyl-3-aminocarbonyl-4-methylsulfanylbenzoesäure
- 5 Zu einer Lösung von 3,64 g NaOH (0.09 mol) in 40 ml Wasser wurden bei 0°C 2,9 g Brom (0.018 mol) getropft. Anschließend wurden 4,1 g 2-Methyl-3-aminocarbonyl-4-methylsulfanylbenzoesäure (0,018 mol) bei 0°C portionsweise zugegeben. Man ließ 1 h bei 0°C rühren und erwärmte danach auf 20°C. Anschließend wurde die Reaktionsmischung mit 10 %iger HCl sauer gestellt und mit Ethylacetat extrahiert. Der anfallende Niederschlag wurde mehrmals mit Ethylacetat aufgeschlämmt und getrocknet. Ausbeute: 0,95 g (27%).
- b) aus 2-Amino-4-methylbenzothiazol-5-carbonsäuremethylester
- 10 g 2-Amino-4-methyl-benzothiazol-5-carbonsäure-methylester (0,045 mol) wurden in einer Mischng aus 120 ml Wasser, 120 ml Ethylenglykol und 50 g NaOH gelöst und 20 h bei 130°C gerührt. Danach wurde mit 50 g Eis verdünnt, 3 Tropfen (n-Bu)4N*OH- Lösung zugegeben und zum Schluß wurden bei 20°C 6,25 ml Dimethylsulfat ((0,05 mol) in 15 ml Toluol zugetropft. Nach 30 min wurde mit konz. HCl angesäuert und der Niederschlag abgesaugt, mit Wasser gewaschen und getrocknet.

 25 Ausbeute: 7 g (71%).
 - Smp.: 225°C (Zers.)
 - 1.6 3-Amino-2-methyl-4-methylsulfanylbenzoesäuremethylester
- 2 g 3-Amino-2-methyl-4-methylsulfanylbenzoesäure (0,01 mol) wurden in 20 ml Methanol gelöst, mit 2,0 g konz. Schwefelsäure versetzt und für 2 h auf 60°C erwärmt. Nach dem Abkühlen wurde die Reaktionsmischung auf Wasser gegeben, neutralisiert und mit Ethylacetat extrahiert. Nach Waschen, Trocknen wurde das Lösungsmittel entfernt. Ausbeute: 1,3 g (62%). Smp.: 98 103°C
 - 1.7 3-Formamidyl-2-methyl-4-methylsulfanylbenzoesäuremethylester
- Ameisensäure (0,05 mol) wurde bei 40°C portionsweise 4,75 g
 3-Amino-2-methyl-4-methylsulfanylbenzoesäuremethylester (0,05
 mol) gegeben. Nach 5 h ließ man abkühlen, gab die Lösung auf
 Eiswasser und extrahierte erschöpfend mit Methylenchlorid.

 Die organischen Phasen wurden gewaschen, getrocknet und an-
- schließend wurde das Lösungsmittel entfernt. Ausbeute: 4,7 g (0,044 mol).

WO 00/68228

156

PCT/EP00/04040

smp.: 170 - 176°C

- 1.8 4-Methylbenzothiazol-5-carbonsäuremethylester
- a) aus 3-Formamidyl-2-methyl-4-methylsulfanylbenzoesäuremethylester
- 2,4 g 3-Formamidyl-2-methyl-4-methylsulfanylbenzoesäuremethylester (0,01 mol) wurden in Methylenchlorid gelöst. Phosgen wurde bis zur Sättigung eingegast und anschließend wurde
 überschüssiges Phosgen mit Stickstoff vertrieben. Danach wurden 1,5 g Triethylamin zugetropft. Nach Entfernen des Lösungsmittels im Vakuum wurde der Rückstand in Ethylacetat
 aufgenommen, das Salz abfiltriert und die organische Phase
 erneut eingeengt. Der Rückstand wurde säulenchromatographisch
 an Kieselgel gereinigt. Ausbeute: 1,6 g (77%).
 - b) aus 2-Amino-4-methylbenzothiazol-5-carbonsäuremethylester
- - 1.9 4-Methylbenzothiazol-5-carbonsäure
- 16,6 g 4-Methylbenzothiazol-5-carbonsäure-methylester
 (0,08 mol) wurden in 280 ml 5 %iger Kalilauge gelöst und für
 2,5 h auf Rückfluß erhitzt. Nach dem Abkühlen wird mit Phosphorsäure sauer gestellt. Das Produkt wurde abfiltriert und
 anschließend getrocknet. Ausbeute: 14,34 g (93%).

 Smp.: 260 265°C
 - 1.10 4-Methylbenzothiazol-5-carbonsäure-(1'-methylpyra-zol-5-yl)-ester

20

0,65 g 4-Methylbenzothiazol-5-carbonsäure (0,004 mol) und
0,33 g 1-Methyl-5-hydroxy-pyrazol (0,004 mol) wurden in 30 ml abs. Acetonitril gelöst und mit 0,65 g EDC (0,004 mol),
0,5 ml Triethylamin und einer kat. Menge DMAP versetzt. Nach beendeter Reaktion wurde die Lösung auf Wasser gegeben und mit Ethylacetat extrahiert. Nach Waschen und Trocknen der organischen Phase wurde das Produkt durch säulenchromatographisch an Kieselgel gereinigt. Ausbeute: 0,42 g (41%).
1H-NMR (CDCl₃, TMS): δ = 3,18 (s, 3H); 3,83 (s, 3H); 6,24 (d, 1H); 7,49 (d, 1H); 7,94 (d, 1H); 8,21 (d, 1H); 9,08 (s, 1H) ppm.

157

EDC = Ethyl-(3'-Dimethylaminopropyl)carbodiimid
DMAP = 4-Dimethylaminopyridin

1.11 4-(4'-Methylbenzothiazol-5'-ylcarbonyl)-5-hydroxy-1-methylpyrazol

25

0,38 g 4-Methylbenzothiazol-5-carbonsäure-(1'-methylpyrazol-5-yl)-ester (1,39 mmol) wurden in 25 ml Dioxan gelöst und
mit 0,28 g K₂CO₃ (2 mmol) versetzt. Man refluxierte bis zum
vollständigen Umsatz, entfernte das Lösungsmittel im Vakuum
und nahm den Rückstand mit Wasser auf. Die wässrige Phase
wurde mit Methylenchlorid extrahiert, auf pH 2 eingestellt
und mit Ethylacetat extrahiert. Nach Entfernen des Lösungsmittels wurde das Produkt durch Ausrühren gereinigt. Ausbeute: 0,25 g (66%)
Smp.: 149 - 150°C

35
4-(2'-Chlor-4'-methylbenzothiazol-5'-ylcarbonyl)-5-hydroxy-1-methylpyrazol (Beispiel 2)

2.1 3-Amino-2-methylbenzoesäuremethylester
45

158

210 g 2-Methyl-3-nitrob nzoesäuremethylester (1,08 mol) wurden in 4 l Methanol glöst, mit 21 g Pd/C versetzt und anschließend bei Raumdruck hydriert. Nach beendeter Reaktion wurde vom Katalysator abfiltriert und das Lösungsmittel entfernt. Ausbeute: 178 g (quant.).

¹H-NMR (CDCl₃, TMS): $\delta = 2.34$ (s, 3H); 3.60 (s, br, 2H, NH₂); 3.84 (s, 3H); 6.80 (d, 1H); 7.04 (dd, 1H); 7.21 (d, 1H) ppm.

2.2 N-(2-Methyl-3-methoxycarbonylphenyl)thioharnstoff

10

15

5

90,7 g 3-Amino-2-methylbenzoesäuremethylester (0,55 mol) wurden in 510 ml Chlorbenzol gelöst und bei -5°C mit 14 ml konz. Schwefelsäure und 49 g Natriumrhodanid (0,6 mol) versetzt. Anschließend wurden 2 ml 15-Krone-5 zugegeben und die Reaktionsmischung wird für 13 h auf 100°C erhitzt. Nach dem Abkühlen wurde der Feststoff abgesaugt, mit Wasser gewaschen und getrocknet. Ausbeute: 104,8 g (85%). Smp.: 198°C

20 2.3 2-Amino-4-methylbenzothiazol-5-carbonsäuremethylester

56 g N-(2-Methyl-3-methoxycarbonylphenyl]thioharnstoff
(0,25 mol) wurden in 2 l Chlorbenzol gelöst und auf 0°C abgekühlt. Anschließend wurden 40 g Brom (0,25 mol) in 100 ml
Chlorbenzol zugetropft. Die Reaktionsmischung wurde für 3 h
auf 90°C erhitzt, der Niederschlag abgesaugt und mit Methylenchlorid gewaschen. Anschließend wurde er in Ethylacetat
gelöst und mit Natriumhydrogencarbonat-Lösung ausgeschüttelt.
Nach Waschen und Trocknen wurde das Produkt durch Entfernen
des Lösungsmittels erhalten. Ausbeute: 43 g (80%).
Smp.: 220°C

2.4 2-Chlor-4-methylbenzothiazol-5-carbonsäuremethylester

Zu einer Lösung von 5 g 2-Amino-4-methylbenzothiazol-5-carbonsäuremethylester (0,02 mol) in 150 ml Phosphorsäure wurde bei -8°C eine Lösung von 9,3 g NaNO₂ (0,14 mol) in 10 ml Wasser getropft. Anschließend wurde bei 5°C eine Lösung aus 3 g CuCl und 12 ml konz. HCl zugetropft. Die Reaktionsmischung wurde auf 100°C erwärmt. Nach dem Abkühlen wird der Rückstand abgesaugt, mit Wasser gewaschen und getrocknet. Das Produkt wurde durch Säulenchromatographie an Kieselgel gereinigt. Ausbeute: 3 g (55, %).

¹H-NMR (CDCl₃, TMS) δ = 2,98 (s, 3H); 3,95 (s, 3H); 7,67 (d, 1H); 7,95 (d, 1H) ppm.

2.5 2-Chlor-4-methylb nzothiazol-5-carbonsäure

3 g 2-Chlor-4-methylbenzothiazol-5-carbonsäuremethylester (0,012 mol) wurden in 50 ml THF gelöst, auf 0°C abgekühlt und mit einer Lösung von 0,6 g LiOH in 20 ml Wasser versetzt. Nach 1 h ließ man auf 20°C erwärmen und rührte weitere 20 h nach. Anschließen wurde das Lösungsmittel im Vakuum entfernt, die wässrige Phase mit Phosphorsäure angesäuert und mit Ethylacetat extrahiert. Nach Waschen und Trocknen wird das Produkt durch Entfernen des Lösungsmittels erhalten. Ausbeute: 2,6 g (92%).

Smp.: >250°C

¹H-NMR (D₆-DMSO, TMS) δ = 2,85 (s, 3H); 7,90 (d, 1H); 8,02 (d, 1H) ppm.

15

10

5

2.6 3-Chlor-4-methylbenzothiazol-5-carbonsäure-(1'-methylpyra-zol-5'-yl)ester

25

30

1 g 3-Chlor-4-methylbenzothiazol-5-carbonsäure (4,4 mol) und 0,46 g 1-Methyl-5-hydroxy-pyrazol (4,7 mol) wurden in 50 ml abs. Acetonitril gelöst und mit 1 g EDC, 0,7 ml Triethylamin und einer kat. Menge DMAP versetzt. Nach beendeter Reaktion wurde die Lösung auf Wasser gegeben und mit Ethylacetat extrahiert. Nach Waschen und Trocknen der organischen Phase wurde das Produkt durch Kristallisation/Säulenchromatographie gereinigt. Ausbeute: 0,22 g (16%). 1 H-NMR (CDCl₃, TMS) δ = 3,08 (s, 3H); 3,80 (s, 3H); 6,25 (s, 1H); 7,46 (s, 1H); 7,77 (d, 1H); 8,17 (d, 1H) ppm.

35

2.7 4-(3'-Chlor-4'-methylbenzothiazol-5'-ylcarbonyl)-5-hy-droxy-1-methylpyrazol

40

45

0,22 g 3-Chlor-4-methyl-benzothiazol-5-carbonsäure-(1'-methylpyrazol-5-yl)-ester (0,7 mol) wurden in 35 ml Dioxan gelöst und mit 0,5 g $\rm K_2CO_3$ versetzt. Man refluxierte bis zum vollständigen Umsatz, entfernte das Lösungsmittel im Vakuum und nahm den Rückstand mit Wasser auf. Die wässrige Phase wurde mit Methylenchlorid extrahiert, auf pH 2 eingestellt

und mit Ethylacetat extrahiert. Nach Entfernen des Lösungsmittels wurde das Produkt durch Ausrühren gereinigt. Ausbeute: 0,19 g (86%).

¹H-NMR (CDCl₃, TMS) δ = 2,82 (s, 3H); 3,76 (s, 3H); 7,40 (s, 1H); 7,52 (d, 1H); 7,73 (d, 1H) ppm.

4-(4'-Methylbenzothiadiazol-5'-ylcarbonyl)-5-hydroxy-1-methylpy-razol (Beispiel 3)

10

15

30

35

40

5

3.1 4-Methylbenzothiadiazol-5-carbonsäure

5 g 2-Amino-4-methylbenzothiazol-5-carbonsäuremethylester (0,02 mol) wurden in 28,6 g 50 %iger KOH bei 120°C 4 h gerührt. Anschließend wurde mit 10 %iger HCl neutralisiert und mit einem Überschuß 40 %iger NaNO2-Lösung bei 0 bis 10°C versetzt. Die Reaktionsmischung wurde angesäuert und mit Ethylacetat extrahiert. Nach Waschen und Trocknen wurde das Produkt durch Entfernen des Lösungsmittels erhalten. Ausbeute: 1,3 g (28%).

3.2 4-(4'-Methylbenzothiadiazol-5'-ylcarbonyl)-5-hydroxy-1-me-thylpyrazol

1,3 g 4-Methylbenzothiadiazol-5-carbonsäure (6,3 mmol) und 0,65 g 1-Methyl-5-hydroxy-pyrazol (6,6 mmol) wurden in 50 ml abs. Acetonitril gelöst und mit 1,4 g EDC (7,5 mmol), 1 ml Triethylamin und einer kat. Menge DMAP versetzt. Nach beendeter Reaktion wurde die Lösung auf Wasser gegeben und mit Ethylacetat extrahiert. Nach Waschen und Trocknen der organischen Phase wurde das Produkt säulenchromatographisch an Kieselgel gereinigt. Ausbeute: 0,7 g (39%). Smp.: 152-153°C

3.3 4-(4'-Methylbenzothiadiazol-5'-ylcarbonyl)-5-hydroxy-1-me-thylpyrazol

0,7 g 4-Methyl-benzothiadiazol-5-carbonsäure-(1'-methylpyra-zol-5-yl)-ester (2,4 mmol) wurden in 40 ml Dioxan gelöst und mit 0,5 g K₂CO₃ versetzt. Man refluxierte bis zum vollständigen Umsatz, entfernte das Lösungsmittel im Vakuum und nahm

161

den Rückstand mit Wasser auf. Die wässrige Phase wurde mit Methylenchlorid extrahiert, auf pH 2 eingestellt und mit Ethylacetat extrahiert. Nach Entfernen des Lösungsmitt 1s wurde das Produkt durch Ausrühren gereinigt. Ausbeute: 0,65 g (93%).

Smp.: 207-209°C

4-(2'-Methylamino-4'-methylbenzothiazol-5'-ylcarbonyl)-5-hy-droxy-1-methylpyrazol (Beispiel 4)

10

5

15

4.1 2-Methylamino-4-methyl-benzothiazol-5-carbonsäure

20

25

99 g 3-Amino-2-methylbenzoesäure (0,655 mol) aus wurden in 500 ml Essigsäure vorgelegt und bei 80°C mit 51 g Methylisothiocyanat (7 mol) in 100 ml Essigsäure versetzt. Nach 2h wurden 106 g Brom (0,66 mol) in 20 ml Essigsäure bei 50°C zugetropft. Anschließend wurde für 2 h ca. 100°C erhitzt und nach beendeter Reaktion abkühlen lassen. Der Niederschlag wurde abfiltriert, das Filtrat auf ca. 50 ml eingeengt und das restliche Filtrat sowie den Niederschlag auf Wasser gegeben. Die wäßrige Phase wurde auf pH 5 eingestellt und bei 80°C wurde der Niederschlag abfiltriert. Anschließend wurde dieser mit Wasser gewaschen und getrocknet. Ausbeute: 66 g (42%).

30

 1 H-NMR (D₆-DMSO, TMS) δ = 2,72 (s, 3H); 2,95 (d, 3H); 7,46 (d, 1H); 7,57 (d, 1H); 8,04 (q, 1H, NH) ppm.

35

4.2 2-Methylamino-4-methyl-benzothiazol-5-carbonsäure-(1'-methyl-pyrazol-5-yl)-ester

40

3,1 g 2-Methylamino-4-methyl-benzothiazol-5-carbonsäure (0,014 mol) und 1,4 g 1-Methyl-5-hydroxypyrazol (0,015 mol) wurden in 110 ml abs. Acetonitril gelöst und mit 2,67 g EDC (0,014 mol), 1,2 ml Triethylamin und einer kat. Menge DMAP versetzt. Nach beendeter Reaktion wurde die Lösung auf Wasser gegeben und mit Ethylacetat extrahiert. Nach Waschen und Trocknen der organischen Phase wurde das Produkt durch Kristallisation gereinigt. Ausbeute: 2,2 g (52%). 1 H-NMR (D₆-DMSO): δ = 2,80 (s, 3H); 3,00 (d, 3H); 3,73 (s, 3H); 6,22 (d, 1H); 7,43 (d, 1H); 7,72 (d, 1H); 7,84 (d, 1H); 8,20 (s, br, 1H) ppm.

4-(1'-Methylbenzotriazol-5-ylcarbonyl)-5-hydroxy-1-methylpyrazol (Beispiel 5)

15

10

5

20

5.1 1-Methylbenzotriazol-5-carbonsäure-(1'-methylpyra-zol-5-yl)ester

30

35

25

1,5 g 1-Methylbenzotriazol-5-carbonsäure (8,5 mmol) und 0,87 g 1-Methyl-5-hydroxy-pyrazol (8,9 mmol) wurden in 70 ml abs. Acetonitril gelöst und mit 1,62 g EDC (8,5 mmol), 2 ml Triethylamin und einer kat. Menge DMAP versetzt. Nach beendeter Reaktion wurde die Lösung auf Wasser gegeben und mit Ethylacetat extrahiert. Nach Waschen und Trocknen der organischen Phase wurde das Produkt durch Kristallisation gereinigt. Ausbeute: 0,77 g (35%). $^{1}\text{H-NMR} \text{ (CDCl}_3, \text{ TMS): } \delta = 3,82 \text{ (s, 3H); 4,40 (s, 3H); 6,28 (d, 3H); 4,40 (s, 3H); 4,40 (s, 3H); 6,28 (d, 3H); 4,40 (s, 3H); 4,40$

40

1H); 7,48 (d, 1H); 7,67 (d, 1H); 8,36 (d, 1H); 8,98 (s, 1H) ppm.

- 5.2 4-(1'-Methylb nzotriazol-5-ylcarbonyl)-5-hydroxy-1-methylpy-razol
- 5 0,53 g 1-Methyl-benzotriazol-5-carbonsäure-(1'-methylpyra-zol-5-yl)-ester (2 mmol) wurden in 30 ml Dioxan gelöst und mit 0,43 g K₂CO₃ (3 mmol) versetzt. Man refluxierte bis zum vollständigen Umsatz, entfernte das Lösungsmittel im Vakuum und nahm den Rückstand mit Wasser auf. Die wässrige Phase wurde mit Methylenchlorid extrahiert, auf pH 2 eingestellt und mit Ethylacetat extrahiert. Nach Entfernen des Lösungsmittels wurde das Produkt durch Ausrühren gereinigt. Ausbeute: 0,31 g (58%).
- $^{1}\text{H-NMR}$ (CDCl₃, TMS): $\delta = 3.78$ (s, 3H); 4,39 (s, 3H); 4,75 (s, br, 1H); 7,63 (d, 1H); 7,86 (s, 1H); 8,08 (d, 1H); 8,56 (s, 1H) ppm.
 - 6. 4-(4'-Methylbenzothiazol-5'-ylcarbonyl)-5-methoxy-1-methylpy-razol (Beispiel 6)

25

40

45

zu einer Mischung aus 0,3 g 4-(4'-Methylbenzothiazol-5'-ylcarbonyl)-5-hydroxy-1-methylpyrazol aus Beispiel 1 und 0,18 g
Kaliumcarbonat in 15 ml Dimethylformamid wurden bei Raumtemperatur 0,26 g Iodmethan getropft. Die Mischung wurde 75 min
bei 50°C und über Nacht bei Raumtemperatur gerührt. Zur Aufarbeitung wurde die Reaktionsmischung auf Wasser gegeben und
mit Methyl-tert.-butylether extrahiert. Nach Waschen und
Trocknen der vereinigten organischen Phasen und Entfernen des
Lösungsmittels erhielt man die Verbindung I-le.394 in Form
weißlich-gelber Kristalle. Ausbeute: 0,15 g (48%).
Smp.: 138-141°C.

In analoger Weise wurden durch Umsetzung der Verbindung I-1a.394 aus Beispiel 1 mit Benzylbromid die Verbindung des Beispiels 13 (I-1g.394) und durch Umsetzung mit dem jeweiligen Säurechlorid die Verbindungen I-1i.394 (Beispiel 16), I-1u.394 (Beispiel 15) und I-1v.394 (Beispiel 18) hergestellt.

164

Die Verbindungen der Beispiele 7 bis 12, 14, 17 und 19 bis 52 wurden analog der in Beispiel 1, Schritte 1.10 und 1.11 beschriebenen Sequenz durch Umsetzung derjeweiligen Carbonsäure IVb mit dem entsprechenden 5-Hydroxypyrazol III hergestellt.

10	Bsp.	Struktur / Verbindung-Nr.	Smp. [°C] oder ¹ H-NMR [ppm]
15	1	N OH S	149-150 °C
		н _э с I-la.394	
20	2	N OH S C1	135-137 °C
		н _э с' I-la.396	
25	3	N N S N N	207-209 °C
30		/ `OH В н,с I-4a.2	
35	4	N OH CH ₃ NH CH ₃	
40	5	I-1a.447	CDCl ₃ , TMS: 3.78 (s, 3H), 4.39 (s, 3H), 4.75 (OH), 7.63 (d, 1H), 7.86 (s, 1H), 8.08 (d, 1H), 8.56 (s, 1H) ppm.
45		H ₃ C CH ₃ I-4a.38	

	 -		
5	6	N CH ₃ N S I-1e.394	138-141 °C
10	7	H ₃ C OH CH ₃	141-143 °C
15		сн, I-4c.2	
20	8	H ₃ C OH S N	122-125 ∘C
		н ₃ с сн ₃ I-4d.2	
25	9	O CH ₃ N OH S 1-1c.396	118-122 °C
30	10	O CH ₃ F	CDCl ₃ , TMS: 2.6 (s, 3H), 3.78 (s, 3H), 5,5 (OH), 7.2 – 7.38 (m, 3H), 7.4 – 7.55 (m, 3H), 7.6 (d, 1H) ppm.
35		л он I-la.790	
40	11	O CH ₃ F N OH S I-1c.790	CDCl ₃ , TMS: 1.55 (d, 6H), 2.62 (s, 3H), 4.6 (m, 1H), 5,5 (OH), 7.2 – 7.38 (m, 3H), 7.4 – 7.55 (m, 3H), 7.6 (d, 1H) ppm.

5	12	H ₃ C CH ₃ I-1c.394	135-137 °C
10	13	N CH ₃	CDCl ₃ , TMS: 2.81 (s, 3H), 3.79 (s, 3H), 5.2 (s, 2H) 7.08 (d, 1H), 7.2 – 7.45 (m, 6H), 7.65 (d, 1H), 9.1 (s, 1H) ppm.
15		I-1g.394	
20	14	CH ₃ CH ₃ CH ₃	148-152 °C
		н ₃ с I-1a.405	
25	15	N N S	CDCl ₃ , TMS: 2.78 (s, 3H), 3.78 (s, 3H), 7.25 - 7.55 (m, 4H), 7.65 (d, 1H), 7.8 - 7.9 (m, 3H), 8.9 (s, 1H) ppm.
30		I-1u.394	
35	16	N CH ₃	CDCl ₃ , TMS: 2.78 (s, 3H), 3.78 (s, 3H), 7.2 – 7.38 (m, 3H), 7.58 (d, 1H), 7.67 – 7.78 (m, 2H), 7.82 (s, 1H), 8.99 (s, 1H) ppm.
		I-1i.394	
40	17	H ₃ C OH CH ₃	98-101 °C
		H ₃ C CH ₃ I-1d.394	
45			

5	18	N N S S I-1v.394	CDCl ₃ , TMS: 0.8 (m, 2H), 1.05 (m, 2H), 1.66 (m, 1H), 2.8 (s, 3H), 3.75 (s, 3H), 5,6 (OH), 7.45 (d, 1H), 7.8 (s, 1H), 7.82 (d, 1H), 9.03 (s, 1H) ppm.
10	19	OH CH ₃ CH ₃ CH ₃ CH ₃	145-148 °C
15		`CH, I-1c.412	
20	20	OH CH ₃ N OH S I-1c.457	CDCl ₃ , TMS: 1.58 (d, 6H), 2.90 (s, 3H), 4.62 (m, 1H), 7.2 (m, 2H), 7.48 (s, 1H), 7.54 (d, 1H), 7.8 (d, 1H), 8.14 (m, 2H) ppm.
25	21	H,C CH ₃ I-1c.466	CDCl ₃ , TMS: 1.56 (d, 6H), 2.92 (s, 3H), 3.9 (s, 3H), 4.62 (m, 1H), 7.02 (d, 2H), 7.46 (s, 1H), 7.5 (d, 1H), 7.80 (d, 1H), 8.08 (d, 2H) ppm.
30	22	H ₃ C O CH ₃ N OH S CH ₃	CDCl ₃ , TMS: 1.72 (s, 3H), 2.88 (s, 3H), 3.64 (s, 3H), 3.88 (s, 3H), 7.0 (m, 2H), 7.22 (d, 1H), 7.78 (d, 1H), 8.06 (d, 2H) ppm.
ļ		I-1m.466	
40	23	N CH ₃ N CH ₃ N CH ₃ I-la.466	204-205 °C

5	24	H ₂ C CH ₃	CDCl ₃ , TMS: 1.64 (s, 9H), 2.92 (s, 3H), 7.20 (m, 2H), 7.48 (s, 1H), 7.62 (d, 1H), 7.82 (d, 1H), 8.16 (m, 2H) ppm.
		I-1d.457	
10	25	H ₃ C OH S	127-128 °C
15		`CH ₃ I-1c.456	
20	26	H ₃ C OH CH ₃ N N OH I-lm.456	123-127 °C
25	27	H ₃ C CH ₃ N N CH ₃ N F I-1d.456	153-154 °C
30 35	28	N OH S	CDCl ₃ , TMS: 2.78 (s, 3H), 3.78 (s, 3H), 3.88 (s, 3H), 7.0 - 7.12 (m, 2H), 7.2 - 7.4 (m, 4H), 7.46 (d, 1H), 8.85 (OH) ppm.
		н ₃ с I-1a.802	
40	29	H ₃ C OH S I-1c.802	CDCl ₃ , TMS: 1.61 (d, 6H), 2.80 (s, 3H), 3.90 (s, 3H), 4.63 (m, 1H), 7.0 - 7.12 (m, 2H), 7.25 - 7.48 (m, 4H), 7.55 (d, 1H), 8.95 (OH) ppm.

5	30	OH CH ₃ N CH ₃ I-2a.406	134-137 °C
10	31	N CH ₃	CDCl ₃ , TMS: 1.53 (t, 3H), 1.55 (d, 6H), 2.78 (s, 3H), 3.03 (q, 2H), 4.62 (m, 1H), 738 (d, 1H), 7.42 (s, 1H), 7.53 (d, 1H) ppm.
15		н ₃ с—— Сн ₃ I-2с.406	
20	32	OH CH3 CH3 CH3 CH3 I-1c.408	102-105 °C
25	33	O CH ₃ N CH ₃ CH ₃ I-1c.405	107-110 °C
30 35	34	N N OH S O H ₃ C I-1a.420	CDCl ₃ , TMS: 2.82 (s, 3H), 3.58 (s, 3H), 3.70 (s, 3H), 4.88 (s, 2H); 742 (s, 1H), 7.52 (d, 1H), 7.82 (d, 1H), 7.90 (OH) ppm.
40	35	H ₃ C OH S F F F F F F F F F F F F F F F F F F	197-200 ℃

5	36	N CH ₃ O -CH ₃ N CH ₂ CH ₃ I-1c.420	100-104 oc
10	37	N OH S F	108-112 °C
15		I-la.418	
20	38	H ₃ C CH ₃ F F F I-1c.418	84-87 °C
25	39	OH CH ₃ N C ₂ H ₅ CH ₃ I-1c.406	105-107 °C
35	40	CH ₃ CH ₃ F I-1b.418	81-85 °C
	41	N CH3	125-128 °C
40		OH S I-la.406	1

5	42	H ₃ C I-1b.394	105-110 °C
10	43	N OH S CH ₃	139-143 °C
15		^{CH} ₃ I-1c.435	
20	44	O CH ₃ N O CH ₃ N O CH ₃ I-1c.435a	172-177 °C
25	45	O CH ₃ N CH ₃ S CH ₃ I-1a.435	138-144 °C
30	46	OH S CH ₃ OH S CH ₃ I-la.435a	208-210 °C
40	47	OH C1 N N OH S I-1a.457	235 – 236 °C

5	48	CH ₃ N Br S I-1c.397	CDCl ₃ , TMS: 1.55 (d, 6H), 2.82 (s, 3H), 4.61 (m, 1H), 7.39 (s, 1H), 7.56 (d, 1H), 7.77 (d, 1H) ppm.
10	49	OH CH3 N N OH S 1-1w.394	CDCl ₃ , TMS: 1.08 (m, 2H), 1.22 (m, 2H), 2.90 (s, 3H), 3.40 (m, 1H), 7.38 (s, 1H), 7.56 (d, 1H), 7.90 (d, 1H), 8.95 (OH), 9.03 (s, 1H) ppm.
15		1-1W.394	
20	50	OH CH ₃ N OH I-la.808	69-71 °C
25	51	N N OH S I-1c.808	115-118 °C
30			
35	52	OH C1 N CH ₃ CH ₃ I-la.667	141-144 °C

Die Verbindungen der Formel I und deren landwirtschaftlich brauchbaren Salze eignen sich sowohl als Isomerengemische als auch in Form der reinen Isomeren – als Herbizide. Die herbiziden Mittel, die Verbindungen der Formel I enthalten, bekämpfen Pflanzenwuchs auf Nichtkulturflächen sehr gut, besonders bei hohen Aufwandmengen. In Kulturen wie Weizen, Reis, Mais, Soja und Baumwolle wirken sie gegen Unkräuter und Schadgräser, ohne die Kulturpflanzen nennenswert zu schädigen. Dieser Effekt tritt vor allem bei niedrigen Aufwandmengen auf.

10

In Abhängigkeit von der jeweiligen Applikationsmethode können die Verbindungen der Formel I bzw. sie enthaltenden herbiziden Mittel noch in einer weiteren Zahl von Kulturpflanzen zur Beseitigung unerwünschter Pflanzen eingesetzt werden. In Betracht kommen

15 beispielsweise folgende Kulturen:

Allium cepa, Ananas comosus, Arachis hypogaea, Asparagus officinalis, Beta vulgaris spec. altissima, Beta vulgaris spec. rapa, Brassica napus var. napus, Brassica napus var.

- 20 napobrassica, Brassica rapa var. silvestris, Camellia sinensis, Carthamus tinctorius, Carya illinoinensis, Citrus limon, Citrus sinensis, Coffea arabica (Coffea canephora, Coffea liberica), Cucumis sativus, Cynodon dactylon, Daucus carota, Elaeis guineensis, Fragaria vesca, Glycine max, Gossypium hirsutum,
- 25 (Gossypium arboreum, Gossypium herbaceum, Gossypium vitifolium), Helianthus annuus, Hevea brasiliensis, Hordeum vulgare, Humulus lupulus, Ipomoea batatas, Juglans regia, Lens culinaris, Linum usitatissimum, Lycopersicon lycopersicum, Malus spec., Manihot esculenta, Medicago sativa, Musa spec., Nicotiana tabacum
- 30 (N.rustica), Olea europaea, Oryza sativa, Phaseolus lunatus, Phaseolus vulgaris, Picea abies, Pinus spec., Pisum sativum, Prunus avium, Prunus persica, Pyrus communis, Ribes sylvestre, Ricinus communis, Saccharum officinarum, Secale cereale, Solanum tuberosum, Sorghum bicolor (s. vulgare), Theobroma cacao, Trifo-
- 35 lium pratense, Triticum aestivum, Triticum durum, Vicia faba, Vitis vinifera und Zea mays.

Darüber hinaus können die Verbindungen der Formel I auch in Kulturen, die durch Züchtung einschließlich gentechnischer Methoden 40 gegen die Wirkung von Herbiziden tolerant sind, verwandt werden.

Die Verbindungen der Formel I bzw. die sie enthaltenden herbiziden Mittel können beispielsweise in Form von direkt versprühbaren wäßrigen Lösungen, Pulvern, Suspensionen, auch hochprozentigen wäßrigen, öligen oder sonstigen Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten durch Versprühen, Vernebeln, Ver-

174

stäuben, Verstreuen oder Gießen angewendet werden. Die Anw ndungsformen richten sich nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

5

Die herbiziden Mittel enthalten eine herbizid wirksame Menge mindestens einer Verbindung der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I und in der Regel die für die Formulierung von Pflanzenschutzmitteln üblichen Hilfsmittel.

10

Als inerte Hilfsstoffe kommen im Wesentlichen in Betracht:

Mineralölfraktionen von mittlerem bis hohem Siedepunkt wie Kerosin und Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen 15 oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline und deren Derivate, alkylierte Benzole oder deren Derivate, Alkohole wie Methanol, Ethanol, Propanol, Butanol und Cyclohexanol, Ketone wie Cyclohexanon, stark polare 20 Lösungsmittel, z.B. Amine wie N-Methylpyrrolidon und Wasser.

Wäßrige Anwendungsformen können aus Emulsionskonzentraten, Suspensionen, Pasten, netzbaren Pulvern oder wasserdispergierbaren Granulaten durch Zusatz von Wasser bereitet werden. Zur Her25 stellung von Emulsionen, Pasten oder Öldispersionen können die Verbindungen der Formel I als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz, Netz-, Haft-, Dispergier- oder
30 Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

Als oberflächenaktive Stoffe kommen die Alkali-, Erdalkali-,
35 Ammoniumsalze von aromatischen Sulfonsäuren, z.B. Lignin-,
Phenol-, Naphthalin- und Dibutylnaphthalinsulfonsäure, sowie von
Fettsäuren, Alkyl- und Alkylarylsulfonaten, Alkyl-, Lauryletherund Fettalkoholsulfaten, sowie Salze sulfatierter Hexa-, Heptaund Octadecanolen sowie von Fettalkoholglykolether, Kondensati40 onsprodukte von sulfoniertem Naphthalin und seiner Derivate mit
Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der
Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctyl-, Octyl- oder
Nonylphenol, Alkylphenyl-, Tributylphenylpolyglykolether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylen- oder
Polyoxypropylenalkylether, Laurylalkoholpolyglykoletheracetat,

175

Sorbitester, Lignin-Sulfitablaugen oder Methylcellulose in Betracht.

Pulver-, Streu- und Stäubemittel können durch Mischen oder ge-5 meinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate können durch Bindung der Wirkstoffe an feste Trägerstoffe her
10 gestellt werden. Feste Trägerstoffe sind Mineralerden wie Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat,

15 Harnstoffe und pflanzliche Produkte wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver oder andere feste Trägerstoffe.

Die Konzentrationen der Verbindungen der Formel I in den

20 anwendungsfertigen Zubereitungen können in weiten Bereichen variiert werden. Im allgemeinen enthalten die Formulierungen etwa
von 0,001 bis 98 Gew.-%, vorzugsweise 0,01 bis 95 Gew.-%, mindestens eines Wirkstoffs. Die Wirkstoffe werden dabei in einer
Reinheit von 90% bis 100%, vorzugsweise 95% bis 100% (nach NMR
25 Spektrum) eingesetzt.

Die folgenden Formulierungsbeispiele verdeutlichen die Herstellung solcher Zubereitungen:

- 30 I. 20 Gewichtsteile der jeweiligen Verbindung der Formel I werden in einer Mischung gelöst, die aus 80 Gewichtsteilen alkyliertem Benzol, 10 Gewichtsteilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 5 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure und 5 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Rizinusöl besteht. Durch Ausgießen und feines Verteilen der Lösung in 100000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des Wirkstoffs enthält.
- II. 20 Gewichtsteile der jeweiligen Verbindung der Formel I werden in einer Mischung gelöst, die aus 40 Gewichtsteilen Cyclohexanon, 30 Gewichtsteilen Isobutanol, 20 Gewichtsteilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 10 Gewichtsteilen des Anlagerungsprodukt s von 40 Mol Ethylenoxid an 1 Mol Rizinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in

176

100000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des Wirkstoffs enthält.

- III. 20 Gewichtsteile der jeweiligen Verbindung der Formel I werden in einer Mischung gelöst, die aus 25 Gewichtsteilen Cyclohexanon, 65 Gewichtsteilen einer Mineralölfraktion vom Siedepunkt 210 bis 280°C und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des Wirkstoffs enthält.
- IV. 20 Gewichtsteile der jeweiligen Verbindung der Formel I werden mit 3 Gewichtsteilen des Natriumsalzes der Diisobutylnaphthalinsulfonsäure, 17 Gewichtsteilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 60 Gewichtsteilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermahlen. Durch feines Verteilen der Mischung in 20000 Gewichtsteilen Wasser erhält man eine Spritzbrühe, die 0,1 Gew.-% des Wirkstoffs enthält.
- V. 3 Gewichtsteile der jeweiligen Verbindung der Formel I werden mit 97 Gewichtsteilen feinteiligem Kaolin vermischt.
 25 Man erhält auf diese Weise ein Stäubemittel, das 3 Gew.-% des Wirkstoffs enthält.
- VI. 20 Gewichtsteile der jeweiligen Verbindung der Formel I werden mit 2 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure, 8 Gewichtsteilen Fettalkoholpolyglykolether, 2 Gewichtsteilen Natriumsalz eines Phenol-Harnstoff-Formaldehyd-Kondensates und 68 Gewichtsteilen eines paraffinischen Mineralöls innig vermischt. Man erhält eine stabile ölige Dispersion.

35

- VII. 1 Gewichtsteil der jeweiligen Verbindung der Formel I wird in einer Mischung gelöst, die aus 70 Gewichtsteilen Cyclohexanon, 20 Gewichtsteilen ethoxyliertem Isooctylphenol und 10 Gewichtsteilen ethoxyliertem Rizinusöl besteht. Man erhält ein stabiles Emulsionskonzentrat.
- VIII. 1 Gewichtsteil der jeweiligen Verbindung der Formel I wird in einer Mischung gelöst, di aus 80 Gewichtsteilen Cyclohexanon und 20 Gewichtsteilen Wettol^R EM 31 (= nichtionischer Emulgator auf der Basis von ethoxyliertem Rizinusöl) besteht. Man erhält ein stabiles Emulsionskonzentrat.

177

Die Applikation der Verbindungen der Formel I bzw. der herbiziden Mittel kann im Vorauflauf- oder im Nachauflaufverfahren erfolgen. Sind die Wirkstoffe für gewisse Kulturpflanzen weniger verträglich, so können Ausbringungstechniken angewandt werden, bei welchen die herbiziden Mittel mit Hilfe der Spritzgeräte so gespritzt werden, daß die Blätter der empfindlichen Kulturpflanzen nach Möglichkeit nicht getroffen werden, während die Wirkstoffe auf die Blätter darunter wachsender unerwünschter Pflanzen oder die unbedeckte Bodenfläche gelangen (post-directed, 10 lay-by).

Die Aufwandmengen an Verbindung der Formel I betragen je nach Bekämpfungsziel, Jahreszeit, Zielpflanzen und Wachstumsstadium 0,001 bis 3,0 vorzugsweise 0,01 bis 1,0 kg/ha aktive Substanz 15 (a.S.).

Zur Verbreiterung des Wirkungsspektrums und zur Erzielung synergistischer Effekte können die erfindungsgemäßen Verbindungen der Formel I mit zahlreichen Vertretern anderer herbizider oder 20 wachstumsregulierender Wirkstoffgruppen gemischt und gemeinsam ausgebracht werden. Beispielsweise kommen als Mischungspartner 1,2,4-Thiadiazole, 1,3,4-Thiadiazole, Amide, Aminophosphorsäure und deren Derivate, Aminotriazole, Anilide, Aryloxy-/Heteroaryloxyalkansäuren und deren Derivate, Benzoesäure und deren 25 Derivate, Benzothiadiazinone, 2-Aroyl-1,3-cyclohexandione, Heteroaryl-Aryl-Ketone, Benzylisoxazolidinone, meta-CF3-Phenylderivate, Carbamate, Chinolincarbonsaure und deren Derivate, Chloracetanilide, Cyclohexan-1,3-dion-Derivate, Cyclohexenonoximetherderivate, Diazine, Dichlorpropionsäure und deren Derivate, 30 Dihydrobenzofurane, Dihydrofuran-3-one, Dinitroaniline, Dinitrophenole, Diphenylether, Dipyridyle, Halogencarbonsäuren und deren Derivate, Harnstoffe, 3-Phenyluracile, Imidazole, Imidazolinone, N-Phenyl-3,4,5,6-tetrahydrophthalimide, Oxadiazole, Oxirane, Phenole, Aryloxy- und Heteroaryloxyphenoxypropionsäureester, 35 Phenylessigsäure und deren Derivate, 2-Phenylpropionsäure und deren Derivate, Pyrazole, Phenylpyrazole, Pyridazine, Pyridincarbonsäure und deren Derivate, Pyrimidylether, Sulfonamide, Sulfonylharnstoffe, Triazine, Triazinone, Triazolinone, Triazolcarboxamide und Uracile in Betracht.

40

Außerdem kann es von Nutzen sein, die Verbindungen der Formel I allein oder in Kombination mit anderen Herbiziden auch noch mit weiteren Pflanzenschutzmitteln gemischt, gemeinsam auszubringen, beispielsweise mit Mitteln zur Bekämpfung von Schädlingen oder phytopathogenen Pilzen bzw. Bakterien. Von Interesse ist ferner die Mischbarkeit mit Mineralsalzlösungen, welche zur Behebung von Ernährungs- und Spurenelementmängeln eingesetzt werden. Es können

178

auch nichtphytotoxische Öle und Ölkonzentrate zugesetzt werden.

Anwendungsbeispiele

5 Die herbizide Wirkung der erfindungsgemäßen Verbindungen der Formel I ließ sich durch die folgenden Gewächshausversuche zeigen:

Als Kulturgefäße dienten Plastikblumentöpfe mit lehmigem Sand mit etwa 3,0 % Humus als Substrat. Die Samen der Testpflanzen wurden 10 nach Arten getrennt eingesät.

Bei Vorauflaufbehandlung wurden die in Wasser suspendierten oder emulgierten Wirkstoffe direkt nach Einsaat mittels fein verteilender Düsen aufgebracht. Die Gefäße wurden leicht beregnet, um 15 Keimung und Wachstum zu fördern, und anschließend mit durchsichtigen Plastikhauben abgedeckt, bis die Pflanzen angewachsen waren. Diese Abdeckung bewirkt ein gleichmäßiges Keimen der Testpflanzen, sofern dies nicht durch die Wirkstoffe beeinträchtigt wurde.

20

Zum Zweck der Nachauflaufbehandlung wurden die Testpflanzen je nach Wuchsform erst bis zu einer Wuchshöhe von 3 bis 15 cm angezogen und erst dann mit den in Wasser suspendierten oder emulgierten Wirkstoffen behandelt. Die Testpflanzen wurden dafür entweder direkt gesät und in den gleichen Gefäßen aufgezogen oder sie wurden erst als Keimpflanzen getrennt angezogen und einige Tage vor der Behandlung in die Versuchsgefäße verpflanzt. Die Aufwandmenge für die Nachauflaufbehandlung betrug 0,5 bzw. 0,25 kg/ha a.S. (aktive Substanz).

30

Die Pflanzen wurden artenspezifisch bei Temperaturen von 10 bis 25°C bzw. 20 bis 35°C gehalten. Die Versuchsperiode erstreckte sich über 2 bis 4 Wochen. Während dieser Zeit wurden die Pflanzen gepflegt, und ihre Reaktion auf die einzelnen Behandlungen wurde 35 ausgewertet.

Bewertet wurde nach einer Skala von 0 bis 100. Dabei bedeutet 100 kein Aufgang der Pflanzen bzw. völlige Zerstörung zumindest der oberirdischen Teile und 0 keine Schädigung oder normaler 40 Wachstumsverlauf.

Die in den Gewächshausversuchen verwendeten Pflanzen setzten sich aus folgenden Arten zusammen:

	Bayercode	Deutscher Name	Englischer Name
	AMARE	Zurückgekrümmter Fuchsschwanz	redroot pigweed
5	AVEFA	Flughafer	wild oats
	CHEAL	Weißer Gänsefuß	lambsquarters (goosefoot)
	CAPBP	Hirtentäschelkraut	shepherd's purse
	DIGSA	Blutfingerhirse	Fingergrass ,hairy
10	ECHCG	Hühnerhirse	barnyardgrass
	EPHHL	Wolfsmilchart	spurge
	GASPA	Knopfkraut	smallflower
15	GALAP	Klettenlabkraut	catchweed bedstraw
15	LAMAM	Taubnessel,stengelumfassende	henbit
	MYOAR	Vergißmeinnicht	forget-me-not
	PAPRH	Klatschmohn	corn poppy
20	POLPE	Flohknöterich	ladysthumb
	SETIT	Borstenhirse	foxtail
	STEME	Vogelsternmiere	Common chickweed
	SOLNI	Schwarzer Nachtschatten	blach nightshade
25	THLAR	Hellerkraut	fanweed
	TRZAS	Sommer Weizen	spring wheat

Bei Aufwandmengen von 0,5 bzw. 0,25 kg/ha (a.S.) zeigte die Ver30 bindung 4-(4'-Methylbenzothiazol-5'-ylcarbonyl)-5-hydroxy-1-methylpyrazol (Beispiel 1) im Nachauflauf eine sehr gute herbizide
Wirkung gegen die Schadpflanzen AVEFA, CHEAL, POLPE, SOLNI und
GALAP.

- 35 Bei Aufwandmengen von 0,125 bzw. 0,0625 kg/ha zeigt die Verbindung 4-(2',4'-Dimethylbenzothiazol-5'-ylcarbonyl)-5-hydroxy-1-methylpyrazol (Beispiel 14) im Nachauflauf eine sehr gute herbizide Wirkung gegen GASPA, LAMAM, STEME, THLAR.
- 40 Bei Aufwandmengen von 0,125 bzw. 0,0625 kg/ha zeigt die Verbindung 4-(4'-Methylbenzothiazol-5'-ylcarbonyl)-5-benzyloxy-1-methylpyrazol (Beispiel 13) im Nachauflauf eine sehr gute herbizide Wirkung gegen CHEAL, EPHHL, MYOAR, PAPRH, SOLNI bei Selektivität in Weizen.
- Bei Aufwandmengen von 0,25 bzw. 0,125 kg/ha zeigt die Verbindung 4-(2'-Ethyl-4'-methylbenzoxazol-5'-ylcarbonyl)-5-hydroxy-1-iso-

180

propylpyrazol (Beispiel 31) im Nachauflauf eine sehr gute herbizide Wirkung gegen AMARE, CHEAL, LAMAM, PAPRH, POLPE, THLAR.

Bei Aufwandmengen von 0,25 bzw. 0,125 kg/ha zeigt die Verbindung 5 4-(2',4'-Dimethylbenzothiazol-5'-ylcarbonyl)-5-hydroxy-l-isopropylpyrazol (Beispiel 33) im Nachauflauf eine sehr gute herbizide Wirkung gegen AMARE, CHEAL, LAMAM, MYOAR, PAPRH, THLAR.

Bei Aufwandmengen von 0,25 bzw. 0,125 kg/ha zeigt die Verbindung 10 4-(2'-Methoxymethyl-4'-methylbenzothiazol-5'-ylcarbonyl)-5-hydroxy-1-methylpyrazol (Beispiel 34) im Nachauflauf eine sehr gute herbizide Wirkung gegen CHEAL, LAMAM, PAPRH, STEME, THLAR.

Bei Aufwandmengen von 0,25 bzw. 0,125 kg/ha zeigt die Verbindung 15 4-(2'-Ethyl-4'-methylbenzoxazol-5'-ylcarbonyl)-5-hydroxy-1-me-thylpyrazol (Beispiel 30) im Nachauflauf eine sehr gute herbizide Wirkung gegen CHEAL, LAMAM, PAPRH, POLPE, THLAR.

Bei Aufwandmengen von 0,25 bzw. 0,125 kg/ha zeigt die Verbindung 20 4-(2'-Methoxymethyl-4'-methylbenzothiazol-5'-ylcarbonyl)-5-hydroxy-1-isopropylpyrazol (Beispiel 36) im Nachauflauf eine sehr gute herbizide Wirkung gegen CHEAL, EPHHL, MYOAR, PAPRH, SOLNI, STEME.

- 25 Bei Aufwandmengen von 0,25 bzw. 0,125 kg/ha zeigt die Verbindung 4-(4'-Methylbenzothiazol-5'-ylcarbonyl)-5-hydroxy-1-isopropylpy-razol (Beispiel 12) im Nachauflauf eine sehr gute herbizide Wirkung gegen CHEAL, LAMAM, PAPRH, STEME, THLAR.
- 30 Bei Aufwandmengen von 0,5 bzw. 0,25 kg/ha zeigt die Verbindung 4-(4'-Methylbenzothiazol-5'-ylcarbonyl)-5-(3''-fluorben-zoyl)-oxy-1-methylpyrazol (Beispiel 16) im Nachauflauf eine sehr gute herbizide Wirkung gegen AMARE, ECHCG, CHEAL, GALAP, POLPE.
- 35 Bei Aufwandmengen von 0,25 bzw. 0,125 kg/ha zeigt die Verbindung 4-(4'-Methylbenzothiazol-5'-ylcarbonyl)-5-benzoyloxy-1-methylpy-razol (Beispiel 15) im Nachauflauf eine sehr gute herbizide Wirkung gegen AVEFA, AMARE, ECHCG, CHEAL, POLPE.
- 40 Bei Aufwandmengen von 0,25 bzw. 0,125 kg/ha zeigt die Verbindung 4-(4'-Methylbenzothiazol-5'-ylcarbonyl)-5-cyclopropylcarbonyl-oxy-1-methylpyrazol (Beispiel 18) im Nachauflauf eine sehr gute herbizide Wirkung gegen AVEFA, AMARE, ECHCG, CHEAL, POLPE.

Patentansprüche

5 1. Pyrazolyl-Derivate benzokondensierter, ungesättigter 5-Ring-Stickstoffheterocyclen der allgemeinen Formel I,

10
$$Pz$$
 N
 Y
 X
 I

worin

15

X für N oder eine Gruppe C-R³ steht;

25 X-Y für S=N stehen, und X Schwefel bedeutet;

- - R² Wasserstoff, Halogen oder C₁-C₆-Alkyl;

R³ Wasserstoff, Halogen, Nitro, Cyano, Hydroxy, Amino,
Mercapto, Rhodano, Hydrazid, C₁-C₆-Alkyl,
C₁-C₆-Halogenalkyl, C₁-C₆-Hydroxyalkyl, C₁-C₆-Aminoalkyl,
C₁-C₆-Alkoxy-C₁-C₆-alkyl, C₁-C₆-Alkylcarbonyl-C₁-C₆-alkyl,
C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, C₁-C₆-Hydroxyalkoxy,
C₁-C₆-Alkoxy-C₁-C₆-alkoxy, C₃-C₆-Cycloalkyl,

182

C₁-C₆-Alkylamino, Di-C₁-C₆-alkylamino,
C₃-C₆-Cycloalkylamino, wobei die Alkyl- und
Cycloalkylgruppen der drei letztgenannten Reste teilweise
oder vollständig halogeniert und/oder ein bis drei
Substituenten, ausgewählt unter C₁-C₄-Alkoxy oder Hydroxy
tragen können,

 $C_1-C_6-Alkylthio$, $C_1-C_6-Halogenalkylthio$, $C_1-C_6-Hydroxyalkylthio$, $C_1-C_6-Alkoxy-C_1-C_6-alkylthio$, $C_1-C_6-Alkylsulfonyl$, $C_1-C_6-Alkylsulfinyl$,

Phenyl, Naphthyl, Heterocyclyl, Phenylamino, Phenoxy, Diphenylamino, wobei die Phenyl- und Heterocyclylgruppen der sechs letztgenannten Reste ihrerseits partiell oder vollständig halogeniert und/oder einen, zwei oder drei Substituenten, ausgewählt unter Nitro, Cyano, Hydroxy, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy und C₁-C₄-Halogenalkoxy, tragen können,

20 $C(O)OR^5$, oder $C(O)N(R^6)R^7$; und

5

10

15

45

- R⁴ Wasserstoff, $C_1-C_6-Alkyl$, $C_1-C_6-Halogenalkyl$, $C_1-C_6-Hydroxyalkyl$, $C_1-C_6-Alkoxy-C_1-C_6-alkyl$,
- 25 Phenyl, Naphthyl, wobei die zwei letztgenannten Reste ihrerseits partiell oder vollständig halogeniert und/oder einen, zwei oder drei Substituenten, ausgewählt unter Nitro, Cyano, Hydroxy, C₁-C₄-Alkyl, C₁-C₄-Balogenalkyl, C₁-C₄-Alkoxy und C₁-C₄-Halogenalkoxy, tragen können;
 30 bedeuten, wobei
 - für Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Hydroxyalkyl, C₁-C₆-Alkoxy-C₁-C₆-alkyl,
- Phenyl, Naphthyl oder Heterocyclyl steht, wobei die drei letztgenannten Reste ihrerseits partiell oder vollständig halogeniert und/oder einen, zwei oder drei Substituenten, ausgewählt unter Nitro, Cyano, Hydroxy, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy und C₁-C₄-Halogenalkoxy, tragen können;
 - R6, R7 unabhängig voneinander für Wasserstoff, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Hydroxyalkyl, C_1 - C_6 -Alkoxy- C_1 - C_6 -alkyl,

5

Phenyl oder Naphthyl stehen, wobei die zwei letztgenannten Reste ihrerseits partiell oder vollständig halogeniert und/oder einen, zwei oder drei Substituenten, ausgewählt unter Nitro, Cyano, Hydroxy, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy und C₁-C₄-Halogenalkoxy, tragen können;

und Pz für einen Rest der Formel IIa oder IIb steht,

10

15

30

lla llb

worin die Variablen R8, R9 und R10 folgende Bedeutung haben:

- P8 Hydroxy, Mercapto, Halogen, OR¹¹, SR¹¹, SOR¹², SO₂R¹²,
 OSO₂R¹², P(O)R¹³R¹⁴, OP(O)R¹³R¹⁴, P(S)R¹³R¹⁴, OP(S)R¹³R¹⁴,
 NR¹⁵R¹⁶, ONR¹⁵R¹⁶ oder N-gebundenes Heterocyclyl, das
 partiell oder vollständig halogeniert sein kann
 und/oder einen, zwei oder drei der folgenden Reste
 tragen kann: Nitro, Cyano, C₁-C₄-Alkyl,
 C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder
 C₁-C₄-Halogenalkoxy;
 - R^9 Wasserstoff, C_1 — C_6 —Alkyl, C_1 — C_6 —Halogenalkyl, C_3 — C_6 — C_6 —Alkoxy oder C_1 — C_6 —Halogenalkoxy;
 - R¹⁰ Wasserstoff, Halogen, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, Hydroxy, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkoxy, C_1 - C_6 -Alkylthio oder C_1 - C_6 -Halogenalkylthio; wobei

 $N-(C_3-C_6-Alkinyl)-N-(C_1-C_6-alkyl)$ -aminocarbonyl, $N-(C_1-C_6-Alkoxy)-N-(C_1-C_6-alkyl)$ -aminocarbonyl,

R¹¹ C₁-C₆-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Halogenalkenyl,
C₃-C₆-Alkinyl, C₃-C₆-Halogenalkinyl, C₃-C₆-Cycloalkyl,
C₁-C₆-Alkylcarbonyl, C₂-C₆-Alkenylcarbonyl,
C₂-C₆-Alkinylcarbonyl, C₃-C₆-Cycloalkylcarbonyl,
C₁-C₆-Alkoxycarbonyl, C₃-C₆-Alkenyloxycarbonyl,
C₃-C₆-Alkinyloxycarbonyl, C₁-C₆-Alkylthiocarbonyl,
C₁-C₆-Alkylaminocarbonyl, C₃-C₆-Alkenylaminocarbonyl,
C₃-C₆-Alkinylaminocarbonyl,
N,N-Di-(C₁-C₆-alkyl)-aminocarbonyl,
N-(C₃-C₆-Alkenyl)-N-(C₁-C₆-alkyl)-aminocarbonyl,

184

 $N-(C_3-C_6-Alkenyl)-N-(C_1-C_6-alkoxy)-aminocarbonyl$, $N-(C_3-C_6-Alkinyl)-N-(C_1-C_6-alkoxy)-aminocarbonyl$, Di-(C₁-C₆-alkyl)-aminothiocarbonyl oder C₁-C₆-Alkoxyimino-C₁-C₆-alkyl, wobei die genannten 5 Alkyl-, Cycloalkyl- und Alkoxyreste partiell oder vollständig halogeniert sein können und/oder eine bis drei der folgenden Gruppen tragen können: Cyano, $C_1-C_4-Alkoxy$, $C_1-C_4-Alkylthio$, $Di-(C_1-C_4-alkyl)-amino$, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkoxycarbonyl, 10 $C_1-C_4-Alkoxy-C_1-C_4-alkoxycarbonyl$, C_1 — C_4 —Alkylaminocarbonyl, Di-(C1-C4-alkyl)-aminocarbonyl, Aminocarbonyl, C₁-C₄-Alkylcarbonyloxy oder C₃-C₆-Cycloalkyl; 15 Phenyl, Phenyl-C₁-C₆-alkyl, Phenylcarbonyl-C₁-C₆-alkyl, Phenylcarbonyl, Phenoxycarbonyl, Phenyloxythiocarbonyl, Phenylaminocarbonyl, $N-(C_1-C_6-Alkyl)-N-(phenyl)-aminocarbonyl,$ Phenyl-C2-C6-alkenylcarbonyl, Heterocyclyl, 20 Heterocyclyl-C1-C6-alkyl, Heterocyclylcarbonyl-C₁-C₆-alkyl, Heterocyclylcarbonyl, Heterocyclyloxycarbonyl, Heterocyclyloxythiocarbonyl, Heterocyclylaminocarbonyl, N-(C₁-C₆-Alkyl)-N-(heterocyclyl)-aminocarbonyl, oder 25 Heterocyclyl-C2-C6-alkenylcarbonyl, wobei der Phenylund der Heterocyclyl-Rest der 18 letztgenannten Substituenten partiell oder vollständig halogeniert sein kann und/oder einen, zwei oder drei der folgenden Reste tragen kann: Nitro, Cyano, C1-C4-Alkyl, 30 C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkoxy; R^{12} C1-C6-Alkyl, C3-C6-Alkenyl, C3-C6-Alkinyl oder C3-C6-Cycloalkyl, wobei die vier genannten Reste 35 partiell oder vollständig halogeniert sein können und/oder eine, zwei oder drei der folgenden Gruppen tragen können: Cyano, C₁-C₄-Alkoxy, C_1-C_4 -Halogenalkoxy, C_1-C_4 -Alkylthio, C₁-C₄-Halogenalkylthio, C₁-C₄-Alkylcarbonyl, 40 $C_1-C_4-Alkoxycarbonyl$ oder $C_1-C_4-Halogenalkoxycarbonyl;$ Phenyl, Phenyl-C1-C6-alkyl, Heterocyclyl oder Heterocyclyl-C1-C6-alkyl, wobei der Phenyl- und der Heterocyclyl-Rest der letztgenannten Substituenten 45 partiell oder vollständig halogeniert sein kann und/oder inen, zwei oder drei der folgenden Reste tragen kann: Nitro, Cyano, C1-C4-Alkyl,

185

 C_1 — C_4 —Halogenalkyl, C_1 — C_4 —Alkoxy, C_1 — C_4 —Halogenalkoxy oder C_1 - C_4 -Alkoxycarbonyl;

R¹³, R¹⁴ unabhängig voneinander Wasserstoff, Hydroxy,

C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, Phenyl,
Phenyl-C₁-C₄-alkyl oder Phenoxy, wobei die drei
letztgenannten Substituenten partiell oder vollständig
halogeniert sein können und/oder einen, zwei oder drei
der folgenden Reste tragen können: Nitro, Cyano,
C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy,
C₁-C₄-Halogenalkoxy oder C₁-C₄-Alkoxycarbonyl;

Wasserstoff, C₁-C₆-Alkyl, C₃-C₆-Alkenyl,
C₃-C₆-Halogenalkenyl, C₃-C₆-Alkinyl,
C₃-C₆-Halogenalkinyl, C₃-C₆-Cycloalkyl,
C₁-C₆-Alkylcarbonyl, Hydroxy, C₁-C₆-Alkoxy,
C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy, Amino,
C₁-C₆-Alkylamino, Di-(C₁-C₆-alkyl)-amino oder
C₁-C₆-Alkylcarbonylamino, wobei die genannten Alkyl-,
Cycloalkyl- und Alkoxyreste partiell oder vollständig
halogeniert sein können und/oder einen, zwei oder drei
der folgenden Reste tragen können: Cyano,
C₁-C₄-Alkoxycarbonyl, C₁-C₄-Alkylaminocarbonyl,
Di-(C₁-C₄-alkyl)-aminocarbonyl oder C₃-C₆-Cycloalkyl;

15

20

25

30

35

40

Phenyl, Phenyl-C₁-C₄-alkyl, Phenylcarbonyl,
Heterocyclyl, Heterocyclyl-C₁-C₄-alkyl oder
Heterocyclylcarbonyl, wobei der Phenyl- oder
Heterocyclyl-Rest der sechs letztgenannten
Substituenten partiell oder vollständig halogeniert
sein kann und/oder einen, zwei oder drei der folgenden
Reste tragen kann: Nitro, Cyano, C₁-C₄-Alkyl,
C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder
C₁-C₄-Halogenalkoxy; und

 R^{16} Wasserstoff, $C_1-C_6-Alkyl$ oder $C_3-C_6-Alkenyl$, $C_3-C_6-Alkinyl$; bedeuten;

sowie deren landwirtschaftlichen brauchbaren Salze.

- Pyrazolderivate gemäß Anspruch 1, worin X in Formel I für C-R³ steht, wobei
- für Wasserstoff, Halogen, Cyano, Rhodano, $C_1-C_6-Alkyl$, $C_1-C_6-Halogenalkyl$, $C_1-C_6-Alkoxy$, $C_1-C_6-Alkoxy-C_1-C_6-al-kyl$, $C_3-C_6-Cycloalkyl$, $C_1-C_6-Halogenalkoxy$, $C_1-C_6-Al-kyl$

186

kylthio, C1-C6-Halogenalkylthio,

Phenyl, Phenoxy oder Pyridyl, wobei die drei letztgenannten Reste teilweise oder vollständig halogeniert sein können und/oder einen der folgenden Reste: $C_1-C_4-Alkoxy$, $C_1-C_4-Halogenalkyl$, und $C_1-C_4-Halogenalkoxy$, tragen können;

oder

10

5

 ${\tt COOR^5}$ mit den für ${\tt R^5}$ in Anspruch 1 angegebenen Bedeutungen steht.

- 3. Pyrazolderivate gemäß Anspruch 1 oder 2, worin X in Formel I für C-R³ steht und Y ausgewählt ist unter S, SO und SO₂.
- Pyrazolderivate gemäß einem der Ansprüche 1 oder 2, worin Y in Formel I für N-R⁴ mit der für R⁴ in Anspruch 1 angegebenen Bedeutung steht und X für C-R³ mit den in Anspruch 1 oder 2 für R³ angegebenen Bedeutungen steht.
 - 5. Pyrazolderivate gemäß Anspruch 1, worin X für N steht und Y ausgewählt ist unter S, SO, SO_2 oder $N-R^4$.
- 25 6. Pyrazolderivate gemäß einem der Ansprüche 1 bis 5, worin Pz in Formel I für einen Rest der Formel IIa steht, worin R⁸ ausgewählt ist unter Hydroxy, OR¹¹ und OSO₂R¹² mit den für R¹¹ und R¹² in Anspruch 1 angegebenen Bedeutungen, wobei R⁹ und R¹⁰ die in Anspruch 1 angegebenen Bedeutungen haben.

30

- 7. Pyrazolderivate gemäß Anspruch 6, wobei in Formel IIa
- für Hydroxy, C₁-C₄-Alkyloxy, O-CH₂-Phenyl, Phenylcarbonyloxy, 2-, 3- oder 4-Fluorphenylcarbonyloxy, Cyclopropylcarbonyloxy, C₁-C₄-Sulfonyloxy, Phenylsulfonyloxy und 2-, 3- oder 4-Methylphenylsulfonyloxy;
 - R9 für C₁-C₄-Alkyl oder Cyclopropyl und
- 40 R10 für Wasserstoff oder C1-C4-Alkyl stehen.
 - 8. Verfahren zur Herstellung von Verbindungen der Formel I mit R⁸ = Hydroxy, gemäß Anspruch 1, dadurch gekennzeichnet, daß man ein 5-Hydroxypyrazol der Formel III,

5

10

30

35

45

187

wobei die Variablen R⁹ und R¹⁰ die in Anspruch 1 genannte Bedeutung haben, mit einer aktivierten Carbonsäure IVa oder einer Carbonsäure IVb

$$\begin{array}{c|c}
 & R^1 \\
 & N \\
 & R^2 \\
 & IVa
\end{array}$$

wobei die Variablen X, Y, R^1 und R^2 die unter Anspruch 1 genannte Bedeutung haben und L^1 für eine nukleophil verdrängbare Abgangsgruppe steht, acyliert und das Acylierungsprodukt gegebenenfalls in Gegenwart eines Katalysators zu den

- 25 Verbindungen I mit R⁸ = Hydroxy umlagert.
 - 9. Verfahren zur Herstellung von Verbindungen der Formel I gemäß Anspruch 1 mit R⁸ = Halogen, dadurch gekennzeichnet, dass man ein Pyrazol-Derivat der Formel I, mit R⁸ = Hydroxy mit einem Halogenierungsmittel umsetzt.
 - 10. Verfahren zur Herstellung von Verbindungen der Formel I gemäß Anspruch 1 mit $R^8 = OR^{11}$, OSO_2R^{12} , $OP(O)R^{13}R^{14}$ oder $OP(S)R^{13}R^{14}$ dadurch gekennzeichnet, dass man ein Pyrazol-Derivat der Formel I mit $R^8 = Hydroxy$ mit einem Alkylierungsmittel $V\alpha$, Sulfonylierungsmittel $V\beta$ oder Phosphonylierungsmittel $V\gamma$ bzw. $V\delta$,

wobei die Variablen R^{11} bis R^{14} die in Anspruch 1 genannte Bedeutung haben und L^2 für eine nukleophil verdrängbare Abgangsgruppe steht, umsetzt.

11. Verfahren zur Herstellung von Verbindungen der Formel I gemäß Anspruch 1 mit $R^8 = OR^{11}$, SR^{11} , $P(O)R^{13}R^{14}$, $NR^{15}R^{16}$, $ONR^{15}R^{16}$ oder N-gebundenes Heterocyclyl, dadurch gekennzeichnet, daß man ein Pyrazol-Derivat der Formel I mit $R^8 =$ Halogen oder OSO_2R^{12} mit einer Verbindung der Formel VI α , VI β , VI γ , VI δ , VI ϵ oder VI η

HOR¹¹ HSR¹¹ HPOR¹³R¹⁴ HNR¹⁵R¹⁶ HONR¹⁵R¹⁶
VI α VI β VI γ VI δ VI ϵ

10

5

H(N-gebundenes
Heterocyclyl)

VIη

15

wobei die Variablen R^8 , R^{11} bis R^{16} die in Anspruch 1 genannte Bedeutung haben, gegebenenfalls in Gegenwart einer Base, umsetzt.

20 12. Verfahren zur Herstellung von Verbindungen der Formel I, worin P_z = IIa gemäß Anspruch 1 ist, dadurch gekennzeichnet, dass man ein metalliertes Pyrazol-Derivat der Formel VII, worin M für ein Metall steht und R⁸ bis R¹⁰ die in Anspruch 1 genannte Bedeutung haben, mit einem Carbonsäure-Derivat der Formel IVa, worin R¹, R², X und Y die in Anspruch 1 genannte Bedeutung haben und L¹ für eine nucleophil verdrängbare Abqangsgruppe steht, umsetzt.

13. Mittel, enthaltend mindestens ein Pyrazol-Derivat der Formel I oder ein landwirtschaftlich brauchbares Salz von I gemäß einem der Ansprüche 1 bis 7, und übliche Hilfsmittel.

40

45

14. Verfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs, dadurch gekennzeichnet, daß man eine herbizid wirksame Menge mindestens eines Pyrazol-Derivates der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I gemäß einem der Ansprüche 1 bis 7, auf Pflanzen, deren Lebensraum und/oder auf Samen einwirken läßt.

15. Verwendung von Pyrazol-Derivaten der Formel I oder deren landwirtschaftlich brauchbaren Salzen gemäß einem der Ansprüche 1 bis 7 als Herbizide.

INTERNATIONAL SEARCH REPORT

national Application No PCT/EP 00/04040

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07D417/06 C07D403/06 C07D413/06 A01N43/76 A01N43/78
A01N43/828 A01N43/647

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 C07D A01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT				
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
A	WO 97 08164 A (DU PONT ;GEE STEPHEN KENNETH (US); HANAGAN MARY ANN (US); HONG WON) 6 March 1997 (1997-03-06) cited in the application claims 1,5	1,15		
A	EP 0 822 187 A (NISSAN CHEMICAL IND LTD) 4 February 1998 (1998-02-04) cited in the application claims 1,14	1,15		
A	WO 96 05197 A (BASF AG; PLATH PETER (DE); DEYN WOLFGANG VON (DE); ENGEL STEFAN (D) 22 February 1996 (1996-02-22) cited in the application claim 1	1,15		

X Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
"Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filling date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filling date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search 9 August 2000	Date of mailing of the international search report 18/08/2000
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer De Jong, B

INTERNATIONAL SEARCH REPORT

PCT/EP 00/04040

ategory °	citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	WO 97 09327 A (BASF AG; OTTEN MARTINA (DE); DEYN WOLFGANG VON (DE); ENGEL STEFAN) 13 March 1997 (1997-03-13) cited in the application abstract; claim 1	1,15

INTERNATIONAL SEARCH REPORT

Information on patent family members

PCT/EP 00/04040

Pat nt document cit d in search report		Publication date	Patent family member(s)		Publication dat
WO 9708164	Α	06-03-1997	AU	6777896 A	19-03-1997
			EP	0846112 A	10-06-1998
EP 0822187	Α	04-02-1998	AU	4632696 A	27-08-1996
			US	5939559 A	17-08-1999
			WO	9624589 A	15-08-1996
			US	6030926 A	29-02-2000
WO 9605197	Α	22-02-1996	DE	4427997 A	15-02-1996
			AU	3166695 A	07-03-1996
			BR	9508553 A	11-11-1997
			CA	2197118 A	22-02-1996
			CN	1157616 A	20-08-1997
			EP	0775136 A	28-05-1997
			HU	77177 A,B	02-03-1998
			JP	10506618 T	30-06-1998
			US	5723415 A	03-03-1998
WO 9709327	Α	. 13-03-1997	DE	19532312 A	06-03-1997
			AU	710278 B	16-09-1999
			AU	6929696 A	27-03-1997
			BR	9610210 A	02-02-1999
			CA	2227946 A	13-03-1997
			CZ	9800602 A	12-08-1998
			EP	0961774 A	08-12-1999
			HU	9802345 A	28-01-1999
			JP	11512105 T	19-10-1999
			PL	325279 A	20-07-1998
			SK	24498 A	04-11-1998

		And Section
. No.		
		,
		1
		基
	얼마, 프로젝트 아이는 속이들의 그 이 아이는 이번 사람이 그렇게 있다면 이번 속이 되었다.	
	하게 하는 사람들이 되었다. 그 사람들은 사람들이 되었다. 그 사람들이 되었다. 그 사람들이 되었다. 그 사람들이 되었다. 그 사람들이 되었다. 精神하는 사람들이 하는 사람들이 가득하는 것이 되었다. 그 사람들이 가득하는 것이 되었다. 그 사람들이 되었다.	
erio esta La Seguina de Seguina de Seguina de Seguina de Seguina de Seguina de Seguina de Seguina de Seguina de Seguina d La Seguina de Seguina de Seguina de Seguina de Seguina de Seguina de Seguina de Seguina de Seguina de Seguina		. ** . **
		production is a
	ring to the control of the control of the control of the control of the control of the control of the control o The control of the control of	
and the same of th	militar de l'Alia de la calacte de la Romina de la Maria de la Maria de la compansión de la compansión de la c	
	요즘 요즘 사람들은 사람들이 되었다. 그는 사람들은 그는 사람들이 그렇게 되고 있다면 하는 사람들이 되었다. 그는 사람들은 사람들은 그는 사람들은 사람들은 사람들이 되었다. 그는 것이 없었다. 	
	요하는 이 전혀선 생물에 가져가 있는 것이 되었다. 그 사람들이 되었다면 하는 이 사람들이 되었다. 그 모든 사람들은 모든 모든 모든 사람들이 되었다. 	1144

INTERNATIONALER RECHERCHENBERICHT

mationales Aktenzeichen PCT/EP 00/04040

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C07D417/06 C07D403/06 C07D413/06 A01N43/76 A01N43/78 A01N43/647 A01N43/828

Nach der Internationalen Patentidassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) CO7D A01N

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN				
Kategorie®	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.		
A	WO 97 08164 A (DU PONT ;GEE STEPHEN KENNETH (US); HANAGAN MARY ANN (US); HONG WON) 6. März 1997 (1997-03-06) in der Anmeldung erwähnt Ansprüche 1,5	1,15		
A	EP 0 822 187 A (NISSAN CHEMICAL IND LTD) 4. Februar 1998 (1998-02-04) in der Anmeldung erwähnt Ansprüche 1,14	1,15		
A	WO 96 05197 A (BASF AG ;PLATH PETER (DE); DEYN WOLFGANG VON (DE); ENGEL STEFAN (D) 22. Februar 1996 (1996-02-22) in der Anmeldung erwähnt Anspruch 1	1,15		
	-/			

in aufgrund dieser Veröffentlichung nicht als neu oder auf cher Tätigkeit beruhend betrachtet werden cher Tätigkeit beruhend betrachtet werden thung von besonderer Bedeutung; die beanspruchte Erfindung ist als auf erfindenscher Tätigkeit beruhend betrachtet wenn die Veröffentlichung mit einer oder mehreren anderen lichungen dieser Kategorie in Verbindung gebracht wird und rohndung für einen Fachmann naheliegend ist lichung, die Mitglied derselben Patentfamilie ist
datum des internationalen Recherchenberichts
/08/2000
chtigter Bediensteter Jong, B

Siehe Anhang Patentfamilie

INTERNATIONALER RECHERCHENBERICHT

PCT/EP 00/04040

/Forte -	Une) ALC WECCHELOU ANGES	PCI/EP O	37 04040
(rortsetz	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommend		
	and the second s	leu ieile	Betr. Anspruch Nr.
	WO 97 09327 A (BASF AG; OTTEN MARTINA (DE); DEYN WOLFGANG VON (DE); ENGEL STEFAN) 13. März 1997 (1997-03-13) in der Anmeldung erwähnt Zusammenfassung; Anspruch 1		1,15

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröttentlichungen, die zur selben Patentfamilie gehören

PCT/EP 00/04040

Im Recherchenbericht angeführtes Pat ntdokum nt		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum d r Veröff ntlichung
WO 9708164	A	06-03-1997	AU	6777896 A	19-03-1997
			EP	0846112 A	10-06-1998
EP 0822187	A	04-02-1998	AU	4632696 A	27-08-1996
			US	5939559 A	17-08-1999
			WO	9624589 A	15-08-1996
			US	6030926 A	29-02-2000
WO 9605197	Α	22-02-1996	DE	4427997 A	15-02-1996
			AU	3166695 A	07-03-1996
			BR	9508553 A	11-11-1997
			CA	2197118 A	22-02-1996
			CN	1157616 A	20-08-1997
			ΕP	0775136 A	28-05-1997
			HU	77177 A,B	02-03-1998
			JP	10506618 T	30-06-1998
			US	5723415 A	03-03-1998
WO 9709327	Α	13-03-1997	DE	19532312 A	06-03-1997
			AU	710278 B	16-09-1999
			AU	6929696 A	27-03-1997
			BR	9610210 A	02-02-1999
			CA	2227946 A	13-03-1997
			CZ	9800602 A	12-08-1998
			EP	0961774 A	08-12-1999
			HU	9802345 A	28-01-1999
			JP	11512105 T	19-10-1999
			PL	325279 A	20-07-1998
			SK	24498 A	04-11-1998

RECEIVED
APR-1 2007
OIPE/JCWS

PCT

NOTICE INFORMING THE APPLICANT OF THE COMMUNICATION OF THE INTERNATIONAL APPLICATION TO THE DESIGNATED OFFICES

(PCT Rule 47.1(c), first sentence)

Date of mailing (day/month/year)

28 December 2000 (28.12.00)

Applicant's or agent's file reference

E5261-00

International application No.

PCT/JP00/04040

International filing date (day/month/year)

21 June 2000 (21.06.00)

Priority date (day/month/year)

From the INTERNATIONAL BUREAU

Room 331, New Ohtemachi Bldg.

ASAMURS

IMPORTANT NOTICE

ASAMURA, Kiyoshi

JAPON

2-1, Ohtemachi 2-chome

Chiyoda-ku, Tokyo 100-0004

23 June 1999 (23.06.99)

Applicant

MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD. et al

Notice is hereby given that the International Bureau has communicated, as provided in Article 20, the international application to the following designated Offices on the date indicated above as the date of mailing of this Notice:

In accordance with Rule 47.1(c), third sentence, those Offices will accept the present Notice as conclusive evidence that the communication of the international application has duly taken place on the date of mailing indicated above and no copy of the international application is required to be furnished by the applicant to the designated Office(s).

2. The following designated Offices have waived the requirement for such a communication at this time:

CN,EP

The communication will be made to those Offices only upon their request. Furthermore, those Offices do not require the applicant to furnish a copy of the international application (Rule 49.1(a-bis)).

3. Enclosed with this Notice is a copy of the international application as published by the International Bureau on 28 December 2000 (28.12.00) under No. WO 00/79620

REMINDER REGARDING CHAPTER II (Article 31(2)(a) and Rule 54.2)

If the applicant wishes to postpone entry into the national phase until 30 months (or later in some Offices) from the priority date, a demand for international preliminary examination must be filed with the competent International Preliminary Examining Authority before the expiration of 19 months from the priority date.

It is the applicant's sole responsibility to monitor the 19-month time limit.

Note that only an applicant who is a national or resident of a PCT Contracting State which is bound by Chapter II has the right to file a demand for international preliminary examination.

REMINDER REGARDING ENTRY INTO THE NATIONAL PHASE (Article 22 or 39(1))

If the applicant wishes to proceed with the international application in the national phase, he must, within 20 months or 30 months, or later in some Offices, perform the acts referred to therein before each designated or elected Office.

For further important information on the time limits and acts to be performed for entering the national phase, see the Annex to Form PCT/IB/301 (Notification of Receipt of Record Copy) and Volume II of the PCT Applicant's Guide.

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland

Authorized officer

J. Zahra

Telephone No. (41-22) 338.83.38

Facsimile No. (41-22) 740.14.35

Form PCT/IB/308 (July 1996)

3736461

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2000 年12 月28 日 (28.12.2000)

PCT

(10) 国際公開番号 WO 00/79620 A1

(51) 国際特許分類7:

(21) 国際出願番号:

PCT/JP00/04040

(22) 国際出願日:

2000年6月21日(21.06.2000)

H01M 4/02, 4/38, 4/62, 10/40

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願平11/176447

1999年6月23日(23.06.1999) JP

(71) 出願人 (米国を除く全ての指定国について): 松下電器産業株式会社 (MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.) [JP/JP]; 〒571-8501 大阪府門真市大字門真1006番地 Osaka (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 中嶋琢也 (NAKASHIMA, Takuya) [JP/JP]; 〒534-0024 大阪府大阪市都島区東野田町1丁目20-11 アブレスト京橋903 Osaka (JP). 有元真司 (ARIMOTO, Shinji) [JP/JP]; 〒536-0004 大阪府大阪市城東区今福西1-15-30-917 Osaka (JP). 永山雅敏 (NAGAYAMA, Masatoshi) [JP/JP]; 〒576-0054 大阪府交野市幾野4-9-301 Osaka (JP). 新田芳明 (NITTA, Yoshiaki) [JP/JP]; 〒573-1122 大阪府枚方市西船橋1-53-6 Osaka (JP).

/続葉有/

(54) Title: RECHARGEABLE NONAQUEOUS ELECTROLYTIC BATTERY

(54) 発明の名称: 非水電解質二次電池

(57) Abstract: A rechargeable nonaqueous electrolytic battery comprises a positive plate containing a compound oxide of lithium and manganese, a negative plate capable of occluding and releasing lithium, and a nonaqueous electrolytic solution. The negative plate contains at least any of sodium (Na), potassium (K), calcium (Ca) and strontium (Sr), which decreases the deterioration of the negative plate and maintains battery performances if the battery is stored at high temperature and if it charges and discharges at high temperature.

(57) 要約:

リチウムマンガン複合酸化物を正極材料とする正極と、リチウムの吸蔵・放出が可能な材料からなる負極と、非水系電解液とを備えた非水電解質二次電池において、上記負極にナトリウム (Na),カリウム (K),カルシウム (Ca),ストロンチウム (Sr) の少なくとも1種を含有させることで負極の劣化を抑制し、高温環境下での保存や高温での充放電サイクルによっても優れた電池性能を維持する。

WO 00/79620 A1

WO 00/79620 A1

(74) 代理人: 浅村 皓, 外(ASAMURA, Kiyoshi et al.); 〒 添付公開 類: 100-0004 東京都千代田区大手町2丁目2番1号 新大手 — 国際調査報告 町ビル331 Tokyo (JP).

- (81) 指定国 (国内): CN, KR, US.
- DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

2 文字コード及び他の略語については、 定期発行される (84) 指定国 (広域): ヨーロッパ特許 (AT, BE, CH, CY, DE, 各 PCT ガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

1

明 細書

非水電解質二次電池

5 発明の詳細な説明

技術分野

本発明は、リチウムマンガン複合酸化物を正極材料とする非水電解質二次電池に関し、特に、その負極の改良に関するものである。

背景技術

10 近年、移動体通信機器,携帯電子機器の主電源として利用されている非水電解 質二次電池は、起電力が高く、高エネルギー密度である特長を有している。この 非水電解質二次電池に用いる正極材料としては、コバルト酸リチウム

 $(LiCoO_2)$, ニッケル酸リチウム $(LiNiO_2)$, マンガン酸リチウム $(LiMn_2O_4$ 等) のリチウムと 3 d 軌道に電子を有する遷移金属との複合酸 化物が知られている。特に、リチウムマンガン複合酸化物は、他の酸化物に比べ、低公害性で安価であるという利点を有し、この観点から研究開発が盛んになってきている。

この研究開発では、電池容量や安全性を向上させる検討の他に、以下のような 課題に対しても検討がなされている。

20 非水電解質二次電池は、特に携帯用移動端末の電源としてニーズが高いため、 様々な使用環境が想定される。したがって、電池開発においては、環境試験が必 要不可欠な要素となっている。例えば、高温多湿の雰囲気での使用や低温環境で の使用を想定した試験等が必要である。

特に、夏期の車内といった高温環境下において、非水電解質二次電池が使用さ 25 れたり、または保存されたりすると、電池容量やサイクル特性といった電池性能 が損なわれることがある。

また、このような高温環境下に保存された非水電解質二次電池が、その電池性能を劣化させることは、リチウムマンガン複合酸化物を正極材料に用いた非水電解質二次電池において、さらに深刻な問題となってきている。

これは高温環境下に保存することによって、正極活物質であるリチウムマンガン複合酸化物中からマンガンイオンが溶出することが直接的な原因となっている。この観点より、正極材料からのマンガンイオンの溶出を抑制させるような材料の検討がなされてきた。例えば、特開平9-73902号公報においては、正極のリチウムマンガン複合酸化物中に含まれるナトリウムを0.1~0.8重量%にすることにより、原材料中に含まれる不純物を取り除いてマンガンイオンの溶出を抑制する技術が開示されている。また、特開平9-82360号公報においては、正極材料であるリチウムマンガン複合酸化物の表面にリチウムイオン伝導性固体電解質を被覆することにより、マンガンイオンの溶出を抑制する技術が開示されている。

これらの技術は、電解液と正極活物質との反応性を低減させるという観点に立ったものであり、高温環境下において使用したり、保存したりした場合、電池特性の劣化を抑えるのには効果がある。

発明の開示

5

10

15 しかしながら、これら従来の技術にあっては、正極材料としての原材料を調製する過程やリチウムマンガン複合酸化物を合成する過程で、洗浄や再熱処理といった工程の追加が必要である。このことから原材料や正極活物質の調製に対して合成時間とコストがかかるという問題点を有していた。さらに、これら従来の技術では、電池を高温環境下に保存した場合の電池特性の劣化は抑制されるが、マンガンイオンの溶出を完全に止めることはできないという問題点があった。

本発明はこのような従来の問題点を解決するものであり、夏期の自動車内のような高温環境下で使用したり、保存されたりした場合でも、高い電池容量を維持できる非水電解質二次電池を提出することを目的としている。

上記の課題を解決するために本発明の非水電解質二次電池は、リチウムマンガン複合酸化物を正極に用い、負極にリチウムを吸蔵・放出可能な材料を用い、さらにナトリウム、カリウム、カルシウム、ストロンチウムの少なくとも1種を含有させたものである。これにより、正極から溶出したマンガンイオンが負極上に絶縁性の高いマンガン化合物を形成することが抑制され、高温環境下における電池の保存特性およびサイクル特性を改善することができる。

図面の簡単な説明

15

図1は本発明の実施例ならびに比較例における円筒型電池の縦断面図である。 発明を実施するための最良の形態

本発明は、正極材料にリチウムマンガン複合酸化物を、負極材料にリチウムを 5 吸蔵・放出可能な材料を備えた非水電解質二次電池において、負極に、ナトリウム,カリウム,カルシウム,ストロンチウムの群から選ばれた元素の少なくとも 1 種を含有させたものである。

上記のような本発明の非水電解質二次電池の高温環境下における劣化メカニズムの理由について、以下に述べる。

10 一般に、三価の酸化状態を含むマンガン酸化物は、酸等の共存下では、式1のような不均化反応を起こして溶解する。

このマンガンの溶解現象は、非水電解液中においても生じ、非水電解液二次電池の場合も、正極材料中にあるマンガンと非水電解液が反応してマンガンの一部が溶解し、さらに、高温の環境下においては、この溶解をもたらす不均化反応は加速される。

溶解したマンガンは、式1のMn (二価)として電解液中に溶解し、プラス電荷を有したこのマンガンイオンは、卑な電位である負極材料側へと移動し、その後、負極材料上でマンガン化合物を生成する。この負極材料上で生成したマンガ20 ン化合物が、非水電解質二次電池における本来の電荷移動体であるリチウムイオンの移動を阻害する。さらに、生成したマンガン化合物は絶縁体に近いので、電池のインピーダンスが上昇する原因ともなっている。以上のようにして、高温環境下における非水電解質二次電池は、保存後の電池容量の損失を惹起するものと考えられる。

25 したがって、非水電解質二次電池の高温環境下における保存後の電池特性の劣化を低減させるには、正極材料からマンガンイオンを溶出させないこと、あるいは、マンガンイオンが溶出したとしても負極上に電池特性を劣化させる絶縁性の高いマンガン化合物が生成しないようにすることが必要不可欠となる。

しかし、正極からのマンガンイオンの溶出を完全に止めることは難しいので、

負極上で絶縁性の高いマンガン化合物が生成しないような状態にすることが必要 となる。

そこで、本発明では負極中にナトリウム、カリウム、カルシウム、ストロンチウムのいずれかの元素を含有させることとした。これらの元素を含有させると絶縁性の高い上記マンガン化合物とは異なるマンガン化合物、すなわち、絶縁性の低い別のマンガン化合物が負極上に生成するため、電池のインピーダンスの上昇は少なく、容量損失は少なくなると考えられる。

本発明の負極において含有させるナトリウム、カリウム、カルシウム、ストロンチウムの群からなる元素の含有量は、負極材料、結着剤、添加剤等からなる負10 極合剤全体に対して0.01重量%以上10重量%であることが好ましい。含有量が少量すぎると電池性能の改善の十分な効果が得られず、含有量が多量すぎると負極全体に対する負極材料の量が減り実用的な電池容量が得られないからである。さらに好ましい含有量は0.01重量%以上5重量%以下である。

ナトリウムの場合は、例えば、NaOH, Na2O, Na2O2, NaO2,

Na₂CO₃, NaHCO₃, Na₂SiO₃, NaNH₂, NaN₃, Na₂C₂, NaHC₂のような化合物を用いることができる。カリウムの場合は、例えばKOH, K₂O, K₂O₂, KO₂, KN₃, KNH₂, K₂C₂, KHC₂のような化合物を用いることができる。カルシウムの場合は、例えば、Ca (OH)₂, CaO, CaO₂, CaCO₃, Ca₃N₂, CaNH,

20 CaC_2 のような化合物を用いることができる。さらに、ストロンチウムの場合は、例えば、 $Sr(OH)_2$, SrO_2 , $SrCO_3$ のような化合物を用いることができる。

負極中にナトリウム、カリウム、カルシウム、ストロンチウム等を含ませる方法としては、上記化合物を負極材料、結着剤等に添加して負極合剤層中に含ませる方法、または、負極材料の製造工程で上記化合物を混合し焼成することにより、負極材料の結晶中に含ませる方法等があげられる。

本発明で用いられるリチウムマンガン複合酸化物としては、例えば、 Li Mn_2O_4 , Li MnO_2 (斜方晶系, 六方晶系), Li $_2Mn_4O_9$, Li $_4Mn_5O_{12}$, Li $_2MnO_3$, Li Mn_3O_6 等があげられる。特に

 $LiMn_2O_4$ (立方晶系)、斜方晶系の $LiMnO_2$ が電気容量の損失の原因となるマンガン(二価)イオンの溶出が比較的少なく好ましい。

さらに、 $LiMn_2O_4$ (立方晶系)は、比表面積が2. $0m^2/g$ 以下、平均粒径が 3μ m以上 30μ m以下、および格子定数a が8.25 Å以下であることが好ましく、斜方晶系の $LiMnO_2$ は、比表面積が5. $0m^2/g$ 以下、平均粒径が 3μ m以上 30μ m以下、および格子定数a, b, cがそれぞれ2.75 Å以上, 5.70 Å以上, 4.55 Å以上であるのが好ましい。これらの物性値を有するものを用いると、マンガン(二価)イオンの溶出がさらに少ないからである。

10 本発明に用いられる正極および負極は、リチウムイオンを電気化学的かつ可逆 的に挿入・放出できる正極材料や負極材料に導電剤,結着剤等を含む合剤層を集 電体の表面に塗着して作製されたものである。

本発明に用いられる正極材料には、上記リチウムマンガン複合酸化物を用いることができる。

- 15 本発明で使用される正極用導電剤は、用いる正極材料の充放電電位において、 化学変化を起こさない電子伝導性材料であれば何でもよい。例えば、天然黒鉛 (鱗片黒鉛等),人造黒鉛等のグラファイト類、アセチレンブラック,ケッチェ ンブラック,チャンネルブラック,ファーネスブラック,ランプブラック,サー マルブラック等のカーボンブラック類、炭素繊維,金属繊維等の導電性繊維類、
- 20 フッ化カーボン、アルミニウム等の金属粉末類、酸化亜鉛、チタン酸カリウム等の導電性ウィスカー類、酸化チタン等の導電性金属酸化物あるいはポリフェニレン誘導体等の有機導電性材料等を単独またはこれらの混合物として含ませることができる。これらの導電剤のなかで、人造黒鉛、アセチレンブラックが特に好ましい。導電剤の添加量は、特に限定されないが、正極材料に対して1~50重量
 25 %が好ましく、特に1~30重量%が好ましい。カーボンやグラファイトでは、2~15重量%が特に好ましい。

本発明に用いられる正極用結着剤としては、熱可塑性樹脂,熱硬化性樹脂のいずれであってもよい。本発明において好ましい結着剤は、例えば、ポリエチレン,ポリプロピレン,ポリテトラフルオロエチレン(PTFE),ポリフッ化ビニリ

20

25

6

デン(PVDF),スチレンブタジエンゴム,テトラフルオロエチレンーヘキサ フルオロエチレン共重合体、テトラフルオロエチレンーへキサフルオロプロピレ ン共重合体(FEP),テトラフルオロエチレンーパーフルオロアルキルビニル エーテル共重合体(PFA),フッ化ビニリデンーヘキサフルオロプロピレン共 - 重合体,フッ化ビニリデンークロロトリフルオロエチレン共重合体.エチレンー テトラフルオロエチレン共重合体 (ETFE樹脂), ポリクロロトリフルオロエ チレン(PCTFE),フッ化ビニリデンーペンタフルオロプロピレン共重合体、 プロピレンーテトラフルオロエチレン共重合体、エチレンークロロトリフルオロ エチレン共重合体(ECTFE)、フッ化ビニリデンーへキサフルオロプロピレ 10 ンーテトラフルオロエチレン共重合体、フッ化ビニリデンーパーフルオロメチル ビニルエーテルーテトラフルオロエチレン共重合体、エチレンーアクリル酸共重 合体または前記材料の(Na⁺)イオン架橋体,エチレンーメタクリル酸共重合 体または前記材料の(Na^+)イオン架橋体、エチレン-アクリル酸メチル共重 合体または前記材料の(Na⁺)イオン架橋体、エチレンーメタクリル酸メチル 共重合体または前記材料の(Na⁺)イオン架橋体をあげることができ、これら 15 の材料を単独または混合物として用いることができる。またこれらの材料のなか でより好ましい材料はポリフッ化ビニリデン (PVDF), ポリテトラフルオロ エチレン(PTFE)である。

本発明に用いられる正極用集電体としては、用いる正極材料の充放電電位において化学変化を起こさない電子伝導体であれば何でもよい。例えば、材料としてステンレス鋼、アルミニウム、チタン、炭素、導電性樹脂等の他に、アルミニウムやステンレス鋼の表面にカーボンあるいはチタンを処理させたものが用いられる。特に、アルミニウムあるいはアルミニウム合金が好ましい。これらの材料の表面を酸化して用いることもできる。また、表面処理により集電体表面に凸凹を付けることが望ましい。形状は、フォイルの他、フィルム、シート、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群、不織布体の成形体等が用いられる。厚みは、特に限定されないが、1~500μmのものが用いられる。

本発明に用いられる負極材料としては、リチウム金属、リチウム合金、合金、

金属間化合物,炭素,有機化合物,無機化合物,金属錯体,有機高分子化合物等

5

のリチウムイオンを吸蔵・放出できる化合物であればよい。これらは単独でも、 また組み合わせて用いてもよい。

リチウム合金としては、Li-M (M=Al, Ga, Cd, In, Pb, Bi, Mg), Li-Al-M (M=Mn, Mg, Sn, In, Cd, Te) 等があげられる。

合金、金属間化合物としては珪素、亜鉛、アルミニウムもしくはスズと遷移金 属の化合物等があげられる。

炭素質材料としては、コークス,熱分解炭素類,天然黒鉛,人造黒鉛,メソカーボンマイクロビーズ,黒鉛化メソフェーズ小球体,気相成長炭素,ガラス状炭 10 素類,炭素繊維(ポリアクリロニトリル系,ピッチ系,セルロース系,気相成長炭素系),不定形炭素,有機物の焼成された炭素等があげられ、これらは単独でも、組み合わせて用いてもよい。なかでもメソフェーズ小球体を黒鉛化したもの,天然黒鉛,人造黒鉛等の黒鉛材料が好ましい。

無機化合物としては例えば、スズ化合物, 珪素化合物, 無機酸化物としては、 15 例えば、チタン酸化物類, タングステン酸化物類, モリブデン酸化物類, ニオブ酸化物類, バナジウム酸化物類, 鉄酸化物類等があげられる。また、無機カルコゲナイドとしては、例えば、硫化鉄, 硫化モリブデン, 硫化チタン等があげられる。有機高分子化合物としては、ポリチオフェン, ポリアセチレン等の高分子化合物、窒化物としては、コバルト窒化物類, 銅窒化物類, ニッケル窒化物類, 鉄 20 窒化物類, マンガン窒化物類等を用いることができる。

本発明に用いられる負極用導電剤は、電子伝導性材料であれば何でもよい。例

えば、天然黒鉛、(鱗片状黒鉛等)、人造黒鉛、膨張黒鉛等のグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類、炭素繊維、25 金属繊維等の導電性繊維類、銅、ニッケル等の金属粉末類およびポリフェニレン誘導体等の有機導電性材料等を単独またはこれらの混合物として含ませることができる。これらの導電剤のなかで、人造黒鉛、アセチレンブラック、炭素繊維が特に好ましい。導電剤の添加量は、特に限定されないが、負極材料に対して1~50重量%が好ましく、特に1~30重量%が好ましい。また本発明の負極材料

はそれ自身電子伝導性を有するため、導電剤を添加しなくても電池として機能させることは可能である。

本発明に用いられる負極用結着剤としては、熱可塑性樹脂、熱硬化性樹脂のい ずれであってもよい。本発明において好ましい結着剤は、例えば、ポリエチレン、 ポリプロピレン, ポリテトラフルオロエチレン (PTFE), ポリフッ化ビニリ デン (PVDF), スチレンブタジエンゴム, テトラフルオロエチレン-ヘキサ フルオロエチレン共重合体、テトラフルオロエチレンーへキサフルオロプロピレ ン共重合体(FEP)、テトラフルオロエチレンーパーフルオロアルキルビニル エーテル共重合体(PFA),フッ化ビニリデンーへキサフルオロプロピレン共 重合体、フッ化ビニリデンークロロトリフルオロエチレン共重合体、エチレンー 10 テトラフルオロエチレン共重合体(ETFE樹脂), ポリクロロトリフルオロエ チレン(PCTFE),フッ化ビニリデンーペンタフルオロプロピレン共重合体, プロピレンーテトラフルオロエチレン共重合体、エチレンークロロトリフルオロ エチレン共重合体(ECTFE), フッ化ビニリデンーへキサフルオロプロピレ ンーテトラフルオロエチレン共重合体、フッ化ビニリデンーパーフルオロメチル 15 ビニルエーテルーテトラフルオロエチレン共重合体、エチレンーアクリル酸共重 合体または前記材料の(Na⁺)イオン架橋体,エチレン-メタクリル酸共重合 体または前記材料の(Na⁺)イオン架橋体,エチレン-アクリル酸メチル共重 合体または前記材料の(Na⁺)イオン架橋体,エチレンーメタクリル酸メチル 20 共重合体または前記材料の (Na^+) イオン架橋体をあげることができ、これら の材料を単独または混合物として用いることができる。またこれらの材料のなか でより好ましい材料は、スチレンブタジエンゴム, ポリフッ化ビニリデン, エチ レン-アクリル酸共重合体または前記材料の(Na⁺)イオン架橋体, エチレン ーメタクリル酸共重合体または前記材料の (Na⁺) イオン架橋体, エチレンー アクリル酸メチル共重合体または前記材料の(Na⁺)イオン架橋体, エチレン 25 ーメタクリル酸メチル共重合体または前記材料の(Na⁺)イオン架橋体である。 本発明に用いられる負極用集電体としては、構成された電池において化学変化 を起こさない電子伝導体であれば何でもよい。例えば、材料としてステンレス鋼, ニッケル、銅、チタン、炭酸、導電性樹脂等の他に、銅やステンレス鋼の表面に

10

カーボン、ニッケルあるいはチタンを処理させたもの等が用いられる。特に、銅ある、いは銅合金が好ましい。これらの材料の表面を酸化して用いることもでき、また、表面処理により集電体表面に凹凸を付けてもよい。形状は、フォイルの他、フィルム、シート、ネット、パンチングされたもの、ラス体、多孔質体、発泡体、繊維群の成形体等が用いられる。厚みは、特に限定されないが、 $1\sim500\,\mu\,\mathrm{m}$ のものが用いられる。

正極または負極の電極合剤には、導電剤や結着剤の他、フィラー、分散剤、イオン伝導体、圧力増強剤およびその他の各種添加剤を用いることができる。フィラーは、構成された電池において、化学変化を起こさない繊維状材料であれば何でも用いることができる。通常、ポリプロピレン、ポリエチレン等のオレフィン系ポリマー、ガラス、炭素等の繊維が用いられる。フィラーの添加量は特に限定されないが、電極合剤に対して0~30重量%が好ましい。

本発明における負極板と正極板の構成は、少なくとも正極合剤面の対向面に負極合剤面が存在していることが好ましい。

本発明に用いられる非水電解質は、溶媒と、その溶媒に溶解するリチウム塩と 15 から構成されている。非水溶媒としては、例えば、エチレンカーボネート(E C), プロピレンカーボネート (PC), ブチレンカーボネート (BC), ビニ レンカーボネート(VC)等の環状カーボネート類、ジメチルカーボネート(D MC), ジエチルカーボネート (DEC), エチルメチルカーボネート (EM 20 C), ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル, 酢酸メチル,プロピオン酸メチル,プロピオン酸エチル等の樹脂族カルボン酸エ ステル類,γーブチロラクトン等のγーラクトン類,1,2-ジメトキシエタン (DME),1,2-ジエトキシエタン(DEE),エトキシメトキシエタン (EME)等の鎖状エーテル類、テトラヒドロフラン,2-メチルテトラヒドロ 25 フラン等の環状エーテル類、ジメチルスルホキシド、1、3-ジオキソラン、ホ ルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニト リル,プロピルニトリル,ニトロメタン,エチルモノグライム,リン酸トリエス テル,トリメトキシメタン,ジオキソラン誘導体,スルホラン,メチルスルホラ ン、1、3-ジメチル-2-イミダゾリジノン、3-メチル-2-オキサゾリジ

ノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1、3ープロパンサルトン、アニソール、ジメチルスルホキシド、Nーメチルピロリドン等の非プロトン性有機溶媒をあげることができ、これらの1種または2種以上を混合して使用する。なかでも環状カーボネートと鎖状カーボネートとの混合系または環状カーボネートと鎖状カーボネートおよび脂肪族カルボン酸エステルとの混合系が好ましい。

これらの溶媒に溶解するリチウム塩としては、例えばLiClO₄, LiBF₄, LiPF₆, LiAlCl₄, LiSbF₆, LiSCN, LiCF₃SO₃, LiCF₃CO₂, Li (CF₃SO₂)₂, LiAsF₆,

10 LiN (CF₃SO₂)₂, LiB₁₀Cl₁₀, 低級脂肪族カルボン酸リチウム, LiCl, LiBr, LiI, クロロボランリチウム, 四フェニルホウ酸リチウム, イミド類等をあげることができ、これらを使用する電解液等に単独または 2 種以上を組み合わせて使用することができるが、特に

LiPF₆を含ませることがより好ましい。

5

本発明における特に好ましい非水電解質は、エチレンカーボネートとエチルメチルカーボネートを少なくとも含み、支持塩としてLiPF6を含む電解液である。これら電解質を電池内に添加する量は、特に限定されないが、正極材料や負極材料の量や電池のサイズによって必要量を用いることができる。支持電解質の非水溶媒に対する溶解量は、特に限定されないが、0.2~2モル/リットルが20 好ましい。特に、0.5~1.5モル/リットルとすることがより好ましい。

また、電解液の他に次のような固体電解質を用いることができる。固体電解質としては、無機固体電解質と有機固体電解質に分けられる。無機固体電解質には、Liの窒化物、ハロゲン化物、酸素酸塩等がよく知られている。なかでも、

 Li_4SiO_4 , Li_4SiO_4 - $Li_1I-LiOH$, xLi_3PO_4 -(1-25) x) Li_4SiO_4 , Li_2SiS_3 , Li_3PO_4 - Li_2S-SiS_2 , 硫化 リン化合物等が有効である。有機固体電解質では、例えば、ポリエチレンオキサイド, ポリプロピレンオキサイド, ポリホスファゼン, ポリアジリジン, ポリエチレンスルフィド, ポリビニルアルコール, ポリフッ化ビニリデン, ポリヘキサフルオロプロピレン等やこれらの誘導体, 混合物, 複合体等のポリマー材料が有

効である。

また、電解質にアルミニウム、ホウ素、カルシウム等の元素を添加することにより、負極上への絶縁体であるマンガン酸化物の生成をさらに抑制することができる。これは、添加元素のイオン種がマンガンイオンよりも優先的に溶媒和させることにより、電解液中をマンガンイオンが移動できなくなるからである。例えば、 $LiAl(OCH_3)_4$, AlF_3 , $LiAlH_4$, $LiBF_4$, $LiBH_4$, LiB_4O_7 , $Ca(BF_4)_2$, CaB_4O_7 , $Ca(ClO_4)_2$, $CaCO_3$, CaF_2 等の化合物を用いることができる。添加量としては0.01モル%以上5モル%以下であることが好ましい。

- 10 さらに、放電容量や充放電特性を改良する目的で、他の化合物を電解質に添加することも有効である。例えば、トリエチルフォスファイト、トリエタノールアミン、環状エーテル、エチレンジアミン、nーグライム、ビリジン、ヘキサリン酸トリアミド、ニトロベンゼン誘導体、クラウンエーテル類、第四級アンモニウム塩、エチレングリコールジアルキルエーテル等をあげることができる。
- 15 本発明に用いられるセパレータとしては、大きなイオン透過度を持ち、所定の機械的強度を持ち、絶縁性の微多孔性薄膜が用いられる。また、一定温度以上で孔を閉塞し、抵抗をあげる機能を持つことが好ましい。耐有機溶剤性と疎水性からポリプロピレン、ポリエチレン等の単独または組み合わせたオレフィン系ポリマーあるいはガラス繊維等から作られたシートや不織布または織布が用いられる。
- 20 セパレータの孔径は、電極シートより脱離した正負極材料、結着剤、導電剤が透過しない範囲であることが望ましく、例えば、 $0.01\sim1~\mu$ mであるものが望ましい。セパレータの厚みは、一般的には、 $10\sim300~\mu$ mが用いられる。また、空孔率は、電子やイオンの透過性と素材や膜圧に応じて決定されるが、一般的には $30\sim80\%$ であることが望ましい。
- 25 また、ポリマー材料に、溶媒とその溶媒に溶解するリチウム塩とから構成される有機電解液を吸収保持させたものを正極合剤, 負極合剤に含ませ、さらに有機電解液を吸収保持するポリマーからなる多孔性のセパレータを正極, 負極と一体化した電池を構成することも可能である。このポリマー材料としては、有機電解液を吸収保持できるものであればよいが、特にフッ化ビニリデンとヘキサフルオ

ロプロピレンの共重合体が好ましい。

電池の形状はコイン型,ボタン型,シート型,積層型,円筒型,偏平型,角型, 電気自動車等に用いる大型のもの等いずれにも適用できる。

また、本発明の非水電解質二次電池は、携帯情報端末,携帯電子機器,家庭用 5 小型電力貯蔵装置,自動二輪車,電気自動車,ハイブリッド電気自動車等に用い ることができるが、特にこれらに限定されるわけではない。

実施例

以下、実施例により本発明をさらに詳しく説明する。ただし、本発明はこれらの実施例に限定されるものではない。

10 実施例1

15

20

図1に本実施例で用いた円筒型電池の縦断面を示す。図1において1は耐有機電解液性のステンレス鋼板を加工した電池ケース、2は安全弁を設けた封口板、3は絶縁パッキングを示す。4は極板群であり、正極5および負極板6がセパレータ7を介して複数回渦巻状に巻回されて電池ケース1内に収納されている。そして上記正極板5からは正極リード5aが引き出されて封口板2に接続され、負極板6からは負極リード6aが引き出されて電池ケース1の底部に接続されている。8は絶縁リングで極板群4の上下部にそれぞれ設けられている。

負極板6は、負極材料としてのロンザ社製人造黒鉛94重量%と結着剤であるポリフッ化ビニリデン樹脂6重量%に、添加剤として水酸化ナトリウム(NaOH)を、負極合剤全体に対しNa含有量が5重量%となるように混合し、これらを脱水N-メチルピロリジノンに分散させてスラリーを作製し、銅箔からなる負極集電体上に塗布し、乾燥後、圧延して作製した。このとき乾燥状態の負極合剤中のNa含有量は5重量%であった。

一方、正極板 5 は、比表面積 0.95 m^2/g , 平均粒径 $11.5 \mu m$, 立方 25 晶系(空間群 F d 3 m)に属する格子定数が $a=8.20 \mbox{ Å}$ のマンガン酸リチウム粉末 90 重量%に対し、導電剤の炭素粉末 5 重量%と結着剤のポリフッ化ビニリデン樹脂 5 重量%を混合し、これらを脱水N-メチルピロリジノンに分散させてスラリーを作製し、アルミニウム箔からなる負極集電体上に塗布し、乾燥後、圧廷して作製した。

また、非水電解液には、エチレンカーボネートとエチルメチルカーボネートの体積比1:1の混合溶媒、 $LiPF_6$ を1.5モル/リットルの濃度になるように溶解したものを使用した。

正極板5と負極板6を、セパレータ7を介して渦巻上に巻回し、直径18mm, 5 高さ65mmの電池ケース1に収納した。そして、上記電解液を極板群4に注入 した後、電池を密封口し、円筒型電池を作製した。

実施例2

乾燥状態の負極合剤中のNa含有量を10重量%とした以外は、実施例1と同様に円筒型電池を作製した。

10 実施例3

乾燥状態の負極合剤中のNa含有量を0.01重量%とした以外は、実施例1 と同様に円筒型電池を作製した。

実施例4

負極の添加剤を炭酸ナトリウム(Na_2CO_3)とした以外は、実施例1と同 15 様に円筒型電池を作製した。

実施例5

負極の添加剤をナトリウムアミド ($NaNH_2$) とした以外は、実施例1と同様に円筒型電池を作製した。

実施例6

20 負極の添加剤を酸化ナトリウム(Na_2O_2)とした以外は、実施例 1 と同様 に円筒型電池を作製した。

実施例7

負極の添加剤を水酸化ナトリウム (KOH) とし、乾燥状態の負極合剤中のK 含有量を5重量%とした以外は、実施例1と同様に円筒型電池を作製した。

25 実施例 8

乾燥状態の負極合剤中のK含有量を10重量%とした以外は、実施例7と同様 に円筒型電池を作製した。

実施例9

乾燥状態の負極合剤中のK含有量を0.01重量%とした以外は、実施例7と

14

同様に円筒型電池を作製した。

実施例10

負極の添加剤を水酸化カルシウム(Ca (OH)₂)とし、乾燥状態の負極合剤中のCa含有量を5重量%とした以外は、実施例1と同様に円筒型電池を作製した。

実施例11

5

乾燥状態の負極合剤中のCa含有量を10重量%とした以外は、実施例10と同様に円筒型電池を作製した。

実施例12

10 乾燥状態の負極合剤中のCa含有量を0.01重量%とした以外は、実施例1 0と同様に円筒型電池を作製した。

実施例13

負極の添加剤を水酸化ストロンチウム [Sr (OH)₂] とし、乾燥状態の負極合剤中のSr含有量を5重量%とした以外は、実施例1と同様に円筒型電池を15 作製した。

実施例14

乾燥状態の負極合剤中のSr含有量を10重量%とした以外は、実施例13と同様に円筒型電池を作製した。

実施例15

20 乾燥状態の負極合剤中のSr含有量を0.01重量%とした以外は、実施例1 3と同様に円筒型電池を作製した。

実施例16

正極板 5 に、比表面積 2. $0 \text{ 2 m}^2 / g$, 平均粒径 $1 \text{ 0.} 7 \mu \text{ m}$, 立方晶系(空間群 F d. 3 m)に属する格子定数が a = 8. 2 0 Åのマンガン酸リチウム粉末を用いる以外は、実施例 1 と同様に円筒型電池を作製した。

実施例17

25

正極板 5 に、比表面積 2 . 9 3 m 2 / g , 平均粒径 1 0 . 9 μ m , 立方晶系(空間群 F d 3 m)に属す格子定数が a = 8 . 2 0 Åのマンガン酸リチウム粉末を用いる以外は、実施例 1 と同様に円筒型電池を作製した。

実施例18

正極板 5 に、比表面積 0.9 $7 \text{ m}^2/\text{g}$, 平均粒径 3.1 μ m, 立方晶系(空間群 F d 3 m)に属す格子定数が a=8.2 0 Åのマンガン酸リチウム粉末を用いる以外は、実施例 1 と同様に円筒型電池を作製した。

5 実施例19

正極板 5 に、比表面積 $1.05 \,\mathrm{m}^2/\mathrm{g}$, 平均粒径 $1.2 \,\mu$ m, 立方晶系(空間群 F d 3 m)に属す格子定数が $a=8.20 \,\mathrm{\AA}$ のマンガン酸リチウム粉末を用いる以外は、実施例 1 と同様に円筒型電池を作製した。

実施例20

10 正極板 5 に、比表面積 $1.08 \, \text{m}^2 / \, \text{g}$ 、平均粒径 $30.5 \, \mu \, \text{m}$ 、立方晶系(空間群 $F \, d \, 3 \, \text{m}$)に属す格子定数が $a = 8.20 \, \text{Å}$ のマンガン酸リチウム粉末を用いる以外は、実施例 1 と同様に円筒型電池を作製した。

実施例21

正極板 5 に、比表面積 0 . 9 5 m 2 / g , 平均粒径 9 . 7 μ m , 立方晶系(空 15 間群 F d 3 m)に属す格子定数が a = 8 . 2 5 Åのマンガン酸リチウム粉末を用いる以外は、実施例 1 と同様に円筒型電池を作製した。

実施例22

正極板 5 に、比表面積 1.0 3 m²/g, 平均粒径 10.3 μ m, 立方晶系 (空間群 F d 3 m) に属す格子定数が a = 8.3 0 Åのマンガン酸リチウム粉末 20 を用いる以外は、実施例 1 と同様に円筒型電池を作製した。

比較例1

負極板6に、添加剤の水酸化ナトリウム (NaOH) を混合しないこと以外は 実施例1と同様に円筒型電池を作製した。

これらの電池を100mAの定電流で、まず4.3Vになるまで充電した後、

25 100mAの定電流で3.0Vになるまで放電する充放電サイクルを繰り返した。 また充放電は60℃の恒温槽の中で行った。なお、充放電は100サイクルまで 繰り返し行い、初期の放電容量に対する100サイクル目の放電容量の比を容量 維持率として表1および表2に示した。

表 1

無加化合物 含有元素とその量 60℃、100サイクル 後の容量維持率 実施例 1 NaOH Na、5重量% 87% 87% 89% 89% 89% 89% 76% 89% 76% 86% 86% 86% 86% 86% 86% 86% 86% 86% 8				
実施例 2 NaOH Na、10重量% 89% 実施例 3 NaOH Na、0.01重量% 76% 実施例 4 Na ₂ CO ₃ Na、5重量% 86% 実施例 5 NaNH ₂ Na、5重量% 85% 実施例 6 Na ₂ O ₂ Na、5重量% 86% 実施例 7 KOH K、5重量% 87% 実施例 8 KOH K、10重量% 89% 実施例 9 KOH K、0.01重量% 77% 実施例 10 Ca(OH) ₂ Ca、5重量% 85% 実施例 11 Ca(OH) ₂ Ca、10重量% 87% 実施例 12 Ca(OH) ₂ Ca、0.01重量% 75% 実施例 13 Sr(OH) ₂ Sr、5重量% 84% 実施例 14 Sr(OH) ₂ Sr、10重量% 86% 実施例 15 Sr(OH) ₂ Sr、0.01重量% 75%		添加化合物	含有元素とその量	
実施例 3 NaOH Na、0.01重量% 76% 実施例 4 Na ₂ CO ₃ Na、5重量% 86% 実施例 5 NaNH ₂ Na、5重量% 85% 実施例 6 Na ₂ O ₂ Na、5重量% 86% 実施例 7 KOH K、5重量% 87% 実施例 8 KOH K、10重量% 89% 実施例 9 KOH K、0.01重量% 77% 実施例 10 Ca(OH) ₂ Ca、5重量% 85% 実施例 11 Ca(OH) ₂ Ca、10重量% 87% 実施例 12 Ca(OH) ₂ Ca、0.01重量% 75% 実施例 13 Sr(OH) ₂ Sr、5重量% 84% 実施例 14 Sr(OH) ₂ Sr、10重量% 86% 実施例 15 Sr(OH) ₂ Sr、0.01重量% 75%	実施例 1	NaOH	Na、5重量%	87%
実施例 4 Na ₂ CO ₃ Na、5重量% 86% 実施例 5 NaNH ₂ Na、5重量% 85% 実施例 6 Na ₂ O ₂ Na、5重量% 86% 実施例 7 KOH K、5重量% 87% 実施例 8 KOH K、10重量% 89% 実施例 9 KOH K、0.01重量% 77% 実施例 10 Ca(OH) ₂ Ca、5重量% 85% 実施例 11 Ca(OH) ₂ Ca、10重量% 87% 実施例 12 Ca(OH) ₂ Ca、0.01重量% 75% 実施例 13 Sr(OH) ₂ Sr、5重量% 84% 実施例 14 Sr(OH) ₂ Sr、10重量% 86% 実施例 15 Sr(OH) ₂ Sr、0.01重量% 75%	実施例 2	NaOH	Na、10重量%	89%
実施例 5 NaNH ₂ Na、5重量% 85% 実施例 6 Na ₂ O ₂ Na、5重量% 86% 実施例 7 KOH K、5重量% 87% 実施例 8 KOH K、10重量% 89% 実施例 9 KOH K、0.01重量% 77% 実施例10 Ca(OH) ₂ Ca、5重量% 85% 実施例11 Ca(OH) ₂ Ca、10重量% 87% 実施例12 Ca(OH) ₂ Ca、0.01重量% 75% 実施例13 Sr(OH) ₂ Sr、5重量% 84% 実施例14 Sr(OH) ₂ Sr、10重量% 86% 実施例15 Sr(OH) ₂ Sr、0.01重量% 75%	実施例 3	NaOH	Na、0.01重量%	76%
実施例 6 Na ₂ O ₂ Na、5重量% 86% 実施例 7 KOH K、5重量% 87% 実施例 8 KOH K、10重量% 89% 実施例 9 KOH K、0.01重量% 77% 実施例10 Ca(OH) ₂ Ca、5重量% 85% 実施例11 Ca(OH) ₂ Ca、10重量% 87% 実施例12 Ca(OH) ₂ Ca、0.01重量% 75% 実施例13 Sr(OH) ₂ Sr、5重量% 84% 実施例14 Sr(OH) ₂ Sr、10重量% 86% 実施例15 Sr(OH) ₂ Sr、0.01重量% 75%	実施例 4	Na ₂ CO ₃	Na、5重量%	86%
実施例 7 KOH K、5重量% 87% 実施例 8 KOH K、10重量% 89% 実施例 9 KOH K、0.01重量% 77% 実施例10 Ca(OH)2 Ca、5重量% 85% 実施例11 Ca(OH)2 Ca、10重量% 87% 実施例12 Ca(OH)2 Ca、0.01重量% 75% 実施例13 Sr(OH)2 Sr、5重量% 84% 実施例14 Sr(OH)2 Sr、10重量% 86% 実施例15 Sr(OH)2 Sr、0.01重量% 75%	実施例 5	NaNH ₂	Na、5重量%	85%
実施例 8 KOH K、10重量% 89% 実施例 9 KOH K、0.01重量% 77% 実施例10 Ca(OH)2 Ca、5重量% 85% 実施例11 Ca(OH)2 Ca、10重量% 87% 実施例12 Ca(OH)2 Ca、0.01重量% 75% 実施例13 Sr(OH)2 Sr、5重量% 84% 実施例14 Sr(OH)2 Sr、10重量% 86% 実施例15 Sr(OH)2 Sr、0.01重量% 75%	実施例 6	Na ₂ 0 ₂	Na、5重量%	86%
実施例 9 KOH K、0.01重量% 77% 実施例10 Ca(OH) ₂ Ca、5重量% 85% 実施例11 Ca(OH) ₂ Ca、10重量% 87% 実施例12 Ca(OH) ₂ Ca、0.01重量% 75% 実施例13 Sr(OH) ₂ Sr、5重量% 84% 実施例14 Sr(OH) ₂ Sr、10重量% 86% 実施例15 Sr(OH) ₂ Sr、0.01重量% 75%	実施例 7	КОН	K、5重量%	87%
実施例10 Ca(OH)2 Ca、5重量% 85% 実施例11 Ca(OH)2 Ca、10重量% 87% 実施例12 Ca(OH)2 Ca、0.01重量% 75% 実施例13 Sr(OH)2 Sr、5重量% 84% 実施例14 Sr(OH)2 Sr、10重量% 86% 実施例15 Sr(OH)2 Sr、0.01重量% 75%	実施例 8	КОН	K、10重量%	89%
実施例11 Ca(OH) ₂ Ca、10重量% 87% 実施例12 Ca(OH) ₂ Ca、0.01重量% 75% 実施例13 Sr(OH) ₂ Sr、5重量% 84% 実施例14 Sr(OH) ₂ Sr、10重量% 86% 実施例15 Sr(OH) ₂ Sr、0.01重量% 75%	実施例 9	КОН	K、0.01重量%	77%
実施例12 Ca(OH) ₂ Ca、0.01重量% 75% 実施例13 Sr(OH) ₂ Sr、5重量% 84% 実施例14 Sr(OH) ₂ Sr、10重量% 86% 実施例15 Sr(OH) ₂ Sr、0.01重量% 75%	実施例10	Ca(OH) ₂	Ca、5重量%	85%
実施例13 Sr (OH) 2 Sr 、5重量% 84% 実施例14 Sr (OH) 2 Sr 、10重量% 86% 実施例15 Sr (OH) 2 Sr 、0.01重量% 75%	実施例11	Ca(OH) ₂	Ca、10重量%	87%
実施例14 Sr (OH) 2 Sr、10重量% 86% 実施例15 Sr (OH) 2 Sr、0.01重量% 75%	実施例12	Ca(OH) ₂	Ca、0.01重量%	75%
実施例15 Sr (OH) 2 Sr 、 0. 01重量% 75%	実施例13	Sr(OH) ₂	Sr、5重量%	84%
	実施例14	Sr (OH) ₂	Sr、10重量%	86%
比較例 1 なし 73%	実施例15	Sr(OH) ₂	Sr、0.01重量%	75%
	比較例 1	なし		73%

表 2

	負極中の含有 元素とその量	正極の比表 面積(m²/g)	正極の平均 粒径(μm)	正極の格子 定数(Å)	60℃、100サイクル後 の容量維持率
実施例 1	Na、5重量%	0. 95	11.5	8. 20	87%
実施例16	Na、5重量%	2. 02	10. 7	8. 20	85%
実施例17	Na、5重量%	2. 93	10. 9	8. 20	78%
実施例18	Na、5重量%	0. 97	3. 1	8. 20	84%
実施例19	Na、5重量%	1.05	1. 2	8. 20	77%
実施例20	Na、5重量%	1. 08	30. 5	8. 20	89%
実施例21	Na、5重量%	0. 95	9. 7	8. 25	85%
実施例22	Na、5重量%	1.03	10. 3	8. 30	76%
比較例 1	なし	0. 95	11.5	8. 20	73%

表1より、実施例1~12で作製した非水電解質二次電池は、比較例1で作製した電池に比べて、高温環境下でのサイクル劣化が抑制されていることがわかる。また、表1の実施例1と実施例2、実施例7と実施例8、実施例10と実施例11、実施例13と実施例14の結果から、Na, K, Ca, Srは乾燥状態の負極合剤に対して10重量%を超える量で含有させてもさらなる劣化抑制効果が見込めないことが予測できる。また、Na, K, Ca, Srの含有量を増加させると、負極活物質量が相対的に減少して電池容量が低下する。従って、Na, K, Ca, Srの含有量を10重量%以下とすることが好ましいことがわかる。

また、比較例1と実施例3,実施例9,実施例12,実施例15の結果から、

10 Na, K, Ca, Srは乾燥状態の負極合剤に対して0.01重量%を超える量で含有させないと十分な劣化抑制効果が得られないことがわかる。

以上のことから、乾燥状態の負極合剤中のNa, K, Ca, Sr含有量を0. $01\sim10$ 重量%とすることが合理的であることがわかる。

また、実施例1,実施例4,実施例5,実施例6の結果から、負極合剤に添加 15 する際、その化合物種の如何を問わず、Naの含有量が同一であれば、同様の劣 化抑制効果を得られることがわかる。

表2の実施例1と実施例16,実施例17,実施例21,実施例22の結果から、正極のマンガンリチウム複合酸化物の比表面積が2m²/gより大きいとNaを含有させても劣化抑制効果は小さくなり、正極格子定数が8.25Åより20 大きい場合も同様に、劣化抑制効果が小さくなることがわかる。

実施例1と実施例18,実施例19,実施例20の結果から、正極のマンガン リチウム複合酸化物の平均粒径が3μmより小さいと劣化抑制効果は小さくなり、 逆に平均粒径が大きくなると容量維持率は上昇することがわかる。しかし、正極 平均粒径が30μmを超える電池作製が困難であった。

25 以上のことから、正極のマンガンリチウム複合酸化物は、比表面積 2.0 m 2 / g以下,平均粒径 $3\sim30~\mu$ m,立方晶系(空間群 F d 3 m)に属する格子定数が a=8.25 Å以下とすることが好ましいことがわかる。

なお、斜方晶系のL i Mn O $_2$ においても同様の実験を行ったところ、比表面積が 5. 0 m 2 / g 以下、平均粒径が 3 μ m以上 3 0 μ m以下、および格子定数

a, b, cがそれぞれ2.75Å以上, 5.70Å以上, 4.55Å以上であるもので、Na等を含有させることによる容量維持率の上昇がみられた。

産業上の利用可能性

本発明によれば、非水電解質二次電池の特にリチウムマンガン複合酸化物を正 極活物質とした非水電解質二次電池の高温環境下での保存特性,高温サイクル特 性を改善することができる。

請求の範囲

- 1. リチウムマンガン複合酸化物を含む正極;リチウムの吸蔵・放出が可能な 材料を含む負極合剤を含む負極;非水電解質を含む非水電解質二次電池であって、 5 負極がナトリウム,カリウム,カルシウム,ストロンチウムの群から選ばれた元 素の少なくとも1種を含む、非水電解質二次電池。
 - 2. ナトリウム,カリウム,カルシウム,ストロンチウムの群から選ばれた少なくとも1種の元素の含有量は、負極合剤に対して0.01重量%以上10重量%以下である請求項1記載の非水電解質二次電池。
- 10 3. リチウムマンガン複合酸化物が立方晶系であり、比表面積が 2. 0 m ²/g以下、平均粒径が 3 μ m以上 3 0 μ m以下、格子定数 a が 8. 2 5 Å以下である請求項 1 または 2 記載の非水電解質二次電池。
- 4. リチウムマンガン複合酸化物が斜方晶系であり、比表面積が5.0 m²/g以下、平均粒径が3μm以上30μm以下、格子定数aが2.75Å以上、b
 15 が5.70Å以上、cが4.55Å以上である請求項1または2記載の非水電解質二次電池。

				•
				۶
			·	
				•
				٠

FIG. 1

THE THE STATE OF THE THE STATE OF THE STATE

And the second second

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/04040

	A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ . H01M 4/02, H01M 4/38-4/62, H01M 10/40					
According to	o International Patent Classification (IPC) or to both nat	tional classification and IDC				
	S SEARCHED	ional classification and if C				
Minimum do Int .	ocumentation searched (classification system followed to Cl ⁷ . H01M 4/02, H01M 4/38-4/62,	H01M 10/40				
Jits Koka	ion searched other than minimum documentation to the uyo Shinan Koho 1926-1996 i Jitsuyo Shinan Koho 1971-2000	Toroku Jitsuyo Shinan K Jitsuyo Shinan Toroku K	oho 1994-2000 oho 1996-2000			
	ata base consulted during the international search (name	e of data base and, where practicable, sea	rch terms used)			
C. DOCU	MENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.			
EX	JP, 2000-113877, A (Hitachi, Lt 21 April, 2000 (21.04.00), Claims 1 to 12, etc. (Family: none)	d.),	1-4			
х	JP, 11-111342, A (YUASA CORPORATION), 23 April, 1999 (23.04.99), Claims 1, 2; Par. Nos. 0006, 0015, 0016, etc. (Family: none)					
х	JP, 9-283180, A (Fuji Photo Fil 31 October, 1997 (31.10.97), Claims 1 to 11; Par. No. 0005, (Family: none)	1-4				
EX	JP, 2000-12015, A (Mitsubishi C 14 January, 2000 (14.01.00), Claims 1, 2; Par. No. 0028, etc (Family: none)	1,3,4				
EX	JP, 2000-12014, A (Mitsubishi C 14 January, 2000 (14.01.00),	Chemical Corporation),	1,3,4			
Furthe	r documents are listed in the continuation of Box C.	See patent family annex.				
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combination being obvious to a person skilled in the art document member of the same patent family Date of the actual completion of the international search O1 September, 2000 (01.09.00) Date of mailing of the international search report 12 September, 2000 (12.09.00)						
Japanese Patent Office		Authorized officer				
Facsimile N		Teleph ne No.				

INTERNATIONAL SEARCH REPORT

Internati nal application No.
PCT/JP00/04040

ategory*	Citati n of document, with indication, where appropriate, f the relevant passages	Relevant to claim N
	Claims 1, 2; Par. No. 0024, etc. (Family: none)	
EX	JP, 11-343109, A (Osaka Gas Co., Ltd.), 14 December, 1999 (14.12.99), Claims 1, 4; Par. No. 0047, etc. (Family: none)	1,3,4
	•	

国際調査報告 国際出願番号 PCT/JP00/04040 発明の属する分野の分類(国際特許分類(IPC)) Int.Cl'. H01M 4/02, H01M 4/38-4/62, H01M 10/40В. 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int.Cl'. H01M 4/02, H01M 4/38-4/62, H01M 10/40最小限資料以外の資料で調査を行った分野に含まれるもの 日本国実用新案 1926-1996年 日本国公開実用新案公報 1971-2000年 日本国登録実用新案公報 1994-2000年 日本国実用新案登録公報 1996-2000年 国際調査で使用した電子データベース (データベースの名称、調査に使用した用語) 関連すると認められる文献 引用文献の 関連する カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 EXJP, 2000-113877, A、(株式会社日立製作所)、21. 4月. 2000 (21. 04. 00) 1 - 4請求項1-12など (ファミリーなし) X JP, 11-111342, A、(株式会社ユアサコーポ レーション)、23.4月.1999(23.04.99) 1 - 4請求項1,2、段落0006、0015、0016など (ファミリーなし) ✓ C欄の続きにも文献が列挙されている。 引用文献のカテゴリー の日の後に公表された文献 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 「E」国際出願日前の出願または特許であるが、国際出願日 の理解のために引用するもの 以後に公表されたもの 「X」特に関連のある文献であって、当該文献のみで発明 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以 文献 (理由を付す) 上の文献との、当業者にとって自明である組合せに 「〇」口頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献 12.0900 国際調査を完了した日 国際調査報告の発送日 01.09.00 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 4 X 9445 日本国特許庁(ISA/JP) 即一 植前 充 司 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3477

C(続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
х	JP, 9-283180, A、(富士フィルム株式会社)、31. 10月. 1997 (31. 10. 97) 請求項1-11、段落0005など (ファミリーなし)	1-4
EX	JP, 2000-12015, A、(三菱化学株式会社)、14. 1月. 2000(14. 01. 00) 請求項 1 , 2 、段落 0 0 2 8 など (ファミリーなし)	1, 3, 4
EX	JP, 2000-12014, A、(三菱化学株式会社)、14.1月.2000(14.01.00) 請求項1,2、段落0024など (ファミリーなし)	1, 3, 4
ΕX	JP, 11-343109, A、(大阪瓦斯株式会社)、14. 12月. 1999 (14. 12. 99) 請求項 1 , 4 、段落 O O 4 7 など (ファミリーなし)	1, 3, 4
,		
1		