1. Suppose $r \ge 2$ is even. Show that no r-regular graph contains a bridge.

Solution:

Suppose *G* is *r*-regular.

2. Given integers m and k where $2 \le m \le k$, show that there exists a graph G where G has a clique number of m and a chromatic number of k.

Solution:

3. Suppose G is a graph. Show that G or the complement of G is connected.

Solution:

Define G^C to be the complement of G. Suppose G is not connected. Let $\{C_k\}_{k=1}^n$ be the connected components of G where $n \geq 2$. Choose $u, v \in V(G)$. We show there exists a uv-path in G^C . If $uv \notin E(G)$, then $uv \in E(G^C)$, which is a uv-path. Suppose that $uv \in E(G)$. Without loss of generality, $u, v \in V(C_1)$. Choose component C_k where 1 < k < n and $w \in V(C_k)$. Since $uw, wv \notin E(G)$, $uw, wv \in E(G^C)$. Hence, (uw, wv) is a uv-path in G^C . Therefore, G^C is connected.

4. Let *M* be a matching in a graph *G* and let *u* be an *M*-unsaturated vertex of *G*. Prove that if *G* has no *M*-augmenting path that starts at *u*, then *u* is unsaturated in some maximum matching in *G*.

Solution:

Without loss of generality, suppose G is connected. Suppose u is saturated in every maximum matching in G. We show that G has an M-augmenting path that starts at u. Since u is not M-saturated, M is not a maximum matching. There exist an M-augmenting