

Case Study:
Predictive
Maintenance
for Aircraft
Engines



# Background

Aircraft engine maintenance is a critical aspect of aviation operations, playing a vital role in ensuring the safety, reliability, and efficiency of air travel. The maintenance of aircraft engines is a complex and highly regulated process that involves various preventive and corrective measures to keep engines in optimal working condition.





# **Case Study**

- The goal of this project is to conduct a comprehensive Exploratory Data Analysis (EDA) and data analysis tasks on an aircraft engine maintenance dataset representing different aircraft engine health and operational parameters.
- The dataset simulates real-world scenarios in which engines operate under varying conditions,
   and our objective is to gain insights into the data through EDA, statistical analysis and
   visualizations.
- This is a critical task for the aviation industry, as it not only inform managements on how to enhance safety measures but also helps highlight maintenance costs and increase operational efficiency.



### **Dataset**

- → The aircraft dataset contains historical data from various aircraft engines.
- → Each row in the dataset represents a specific engine at a given point in time.

#### **Data Dictionary:**

- Engine\_ID (Unique identifier for each aircraft engine)
  - > Type: Integer
- Timestamp (Date and time when the data was recorded)
  - > Type: Datetime
- Temperature (Temperature of the aircraft engine in degrees Celsius)
  - > Type: Float
- Pressure (Pressure of the aircraft engine in units relevant to the dataset)
  - > Type: Float
- Rotational\_Speed (Rotational speed of the aircraft engine in revolutions per minute (RPM))
  - > Type: Float
- Engine\_Health (A measure of the overall health of the aircraft engine.)
  - > Type: Float



### **Dataset**

- Engine\_Failure (Binary indicator of engine failure (0 for 'no engine failure', 1 for 'engine failure')
  - Type: Integer (Binary)
- Fuel\_Consumption (Amount of fuel consumed by the engine..)
  - > Type: Float
- Oil Temperature (Temperature of the engine oil.)
  - > Type: Float
- Altitude (Altitude at which the engine operates.)
  - > Type: Float
- Humidity (Humidity level in the environment where the engine operates.)
  - > Type: Float
- Maintenance\_Needed (Indicates whether maintenance is needed for the engine (1 for needed, 0 for not needed).)
  - Type: Integer (Binary)



## Task

- Data Cleaning:
  - Handle missing values, outliers, and any anomalies in the dataset.
- Data Exploration:
  - Perform basic statistical analysis to understand the distribution of each feature.
  - Identify patterns and trends in the data.
- Univariate Analysis:
  - Analyze individual features to gain insights.
  - Examine the distribution of key variables.
- Bivariate Analysis:
  - Explore relationships between pairs of variables.
  - Identify correlations and dependencies.
- Multivariate Analysis:
  - Investigate interactions between three or more variables.
  - Discover complex patterns and dependencies.



## Task

- Data Visualization:
  - Create visualizations to effectively communicate insights.
  - Utilize plots, charts, and graphs to represent the data.
- Feature Engineering:
  - Derive new features that might enhance predictive performance.
  - Consider time-based features, rolling averages, or other relevant transformations.
- Data Summary:
  - Summarize key findings from the exploratory analysis.
  - Highlight insights that could inform the predictive maintenance model.

#### • Predictive Analysis:

 Leverage different machine learning classification algorithms to predict if an engine will require maintenance or not.