# Universidade Estadual de Campinas Instituto de Computação

Introdução ao Processamento Digital de Imagem (MC920 / MO443)

Professor: Hélio Pedrini

### Trabalho 1

# 1 Especificação do Problema

O objetivo deste trabalho é realizar alguns processamentos básicos em imagens digitais. Quando pertinente, a vetorização de comandos deve ser empregada nas operações.

## 1.1 Transformação de Intensidade

Dada (a) uma imagem monocromática, transformar seu espaço de intensidades (níveis de cinza) para (b) obter o negativo da imagem, ou seja, o nível de cinza 0 será convertido para 255, o nível 1 para 254 e assim por diante, (c) converter o intervalo de intensidades para [100, 200], (d) inverter os valores dos pixels das linhas pares da imagem, ou seja, os valores dos pixels da linha 0 serão posicionados da direita para esquerda, os valores dos pixels da linha 2 serão posicionados da direita para a esquerda e assim por diante, (e) espelhar as linhas da metade superior da imagem na parte inferior da imagem e (f) aplicar um espelhamento vertical na imagem levando-se em conta todas as linhas da imagem.



(a) imagem original



(b) negativo da imagem



(c) imagem transformada



(d) linhas pares invertidas



(e) reflexão de linhas



(f) espelhamento vertical

### 1.2 Ajuste de Brilho

Aplicar a correção gama para ajustar o brilho de uma imagem monocromática A de entrada e gerar uma imagem monocromática B de saída. A transformação pode ser realizada (i) convertendo-se as intensidades dos pixels para o intervalo de [0,255] para [0,1], (ii) aplicando-se a equação  $B=A^{(1/\gamma)}$  e (iii) convertendo-se os valores resultantes de volta para o intervalo [0,255]. Realizar a correção com diferentes valores de  $\gamma$ .









(a) imagem

(b)  $\gamma = 1.5$ 

(c)  $\gamma = 2.5$ 

(d)  $\gamma = 3.5$ 

### 1.3 Planos de Bits

Extrair os planos de bits de uma imagem monocromática. Os níveis de cinza de uma imagem monocromática com m bits podem ser representados na forma de um polinômio de base 2:

$$a_{m-1} 2^{m-1} + a_{m-2} 2^{m-2} + \ldots + a_1 2^1 + a_0 2^0$$
 (1)

O plano de bits de ordem 0 é formado pelos coeficientes  $a_0$  de cada pixel, enquanto o plano de bits de ordem m-1 é formado pelos coeficientes  $a_{m-1}$ .









(a) imagem

(b) plano de bit 0

(c) plano de bit 4

(d) plano de bit 7

### 1.4 Mosaico

Construir um mosaico de  $4 \times 4$  blocos a partir de uma imagem monocromática. A disposição dos blocos deve seguir a numeração mostrada na figura (c).

4

8

12

16



|   | 5                | 6  | 7  |  |  |  |  |
|---|------------------|----|----|--|--|--|--|
|   | 9                | 10 | 11 |  |  |  |  |
|   | 13               | 14 | 15 |  |  |  |  |
| • | (b) ordem dos bl |    |    |  |  |  |  |





(a) imagem

locos

3

(c) nova ordem dos blocos

(d) mosaico

#### Combinação de Imagens 1.5

Combinar duas imagens monocromáticas de mesmo tamanho por meio da média ponderada de seus níveis de cinza.



## 1.6 Filtragem de Imagens

A filtragem aplicada a uma imagem digital é uma operação local que altera os valores de intensidade dos pixels da imagem levando-se em conta tanto o valor do pixel em questão quanto valores de pixels vizinhos.

No processo de filtragem, utiliza-se uma operação de convolução de uma máscara pela imagem. Este processo equivale a percorrer toda a imagem alterando seus valores conforme os pesos da máscara e as intensidades da imagem.

Aplique os filtros  $h_1$  e  $h_{11}$  em uma imagem digital monocromática.



| U | 0                     | 0                                             | 0                                                     | 0                                                                   |
|---|-----------------------|-----------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------|
| 0 | 0                     | 0                                             | 0                                                     | 0                                                                   |
| 0 | 0                     | 0                                             | 0                                                     | 0                                                                   |
| 0 | 0                     | 0                                             | 0                                                     | 0                                                                   |
| 1 | 0                     | 0                                             | 0                                                     | 0                                                                   |
| 0 | 1                     | 0                                             | 0                                                     | 0                                                                   |
| 0 | 0                     | 1                                             | 0                                                     | 0                                                                   |
| 0 | 0                     | 0                                             | 1                                                     | 0                                                                   |
| 0 | 0                     | 0                                             | 0                                                     | 1                                                                   |
|   | 0<br>0<br>1<br>0<br>0 | 0 0<br>0 0<br>0 0<br>1 0<br>0 1<br>0 0<br>0 0 | 0 0 0   0 0 0   0 0 0   1 0 0   0 1 0   0 0 1   0 0 0 | 0 0 0 0   0 0 0 0   0 0 0 0   1 0 0 0   0 1 0 0   0 0 1 0   0 0 0 1 |

$$h_{10} = \frac{1}{8} \begin{vmatrix} -1 & -1 & -1 & -1 & -1 \\ -1 & 2 & 2 & 2 & -1 \\ -1 & 2 & 8 & 2 & -1 \\ -1 & 2 & 2 & 2 & 2 & -1 \\ -1 & -1 & -1 & -1 & -1 & -1 \end{vmatrix}$$

$$h_{11} = \begin{array}{|c|c|c|c|c|} \hline -1 & -1 & 0 \\ \hline -1 & 0 & 1 \\ \hline 0 & 1 & 1 \\ \hline \end{array}$$

Explique os efeitos de cada filtro. Os filtros  $h_3$  e  $h_4$  deverão ser aplicados à imagem tanto individualmente quanto de forma combinada somando-se as respostas de cada um dos filtros por meio da expressão:  $\sqrt{(h_3)^2 + (h_4)^2}$ .

### 2 Entrada de Dados

As imagens de entrada estão no formato PNG (*Portable Network Graphics*). Alguns exemplos encontram-se disponíveis no diretório: http://www.ic.unicamp.br/~helio/imagens\_png/

### 3 Saída de Dados

As imagens de saída devem estar no formato PNG (*Portable Network Graphics*). Resultados intermediários podem ser também exibidos na tela.

## 4 Especificação da Entrega

- A entrega do trabalho deve conter os seguintes itens:
  - código fonte: o arquivo final deve estar no formato zip ou no formato tgz, contendo todos os programas ou dados necessários para sua execução.
  - relatório: deve conter uma descrição dos algoritmos e das estruturas de dados, considerações adotadas na solução do problema, testes executados, discussão dos resultados, eventuais limitações ou situações especiais não tratadas pelo programa.
- O trabalho deve ser submetido por meio da plataforma *Google Classroom*.
- Data de entrega: 09/09/2022.

## 5 Observações Gerais

 Os programas serão executados em ambiente Linux. Os formatos de entrada e saída dos dados devem ser rigorosamente respeitados pelo programa, conforme definidos anteriormente.

| • Os segr | uintes aspecto<br>do código, qu | s serão considera<br>nalidade do relat | ados na avaliação<br>cório técnico. | : funcionamento d | a implementação, |
|-----------|---------------------------------|----------------------------------------|-------------------------------------|-------------------|------------------|
|           |                                 |                                        |                                     |                   |                  |
|           |                                 |                                        |                                     |                   |                  |
|           |                                 |                                        |                                     |                   |                  |
|           |                                 |                                        |                                     |                   |                  |
|           |                                 |                                        |                                     |                   |                  |
|           |                                 |                                        |                                     |                   |                  |
|           |                                 |                                        |                                     |                   |                  |
|           |                                 |                                        |                                     |                   |                  |
|           |                                 |                                        |                                     |                   |                  |
|           |                                 |                                        |                                     |                   |                  |
|           |                                 |                                        |                                     |                   |                  |
|           |                                 |                                        |                                     |                   |                  |
|           |                                 |                                        |                                     |                   |                  |
|           |                                 |                                        |                                     |                   |                  |
|           |                                 |                                        |                                     |                   |                  |