» Résumé sur les primitives et les dérivées

*

Tableau de dérivées et primitives

Primitives	Fonction	Dérivée
x	1	0
$\frac{x^2}{2}$	x	1
$\frac{x^3}{3}$	x^2	2 <i>x</i>
$k \times \frac{x^{n+1}}{n+1}$	$k \times x^n$	$k \times nx^{n-1}$
$k \times \frac{-1}{(n-1)x^{n-1}}$	$k \times \frac{1}{x^n}$ avec $n \ge 2$	$k \times \frac{-n}{x^{n+1}}$
$k \times \ln(x)$	$k \times \frac{1}{x}$	$k imes rac{-1}{x^2}$
$-k \times \frac{1}{a}\cos(ax+b)$	$k\sin(ax+b)$ avec $a \neq 0$	$k \times a\cos(ax+b)$
$k \times \frac{1}{a} sin(ax+b)$	$k\cos(ax+b)$	$-k \times a \sin(ax+b)$
	\sqrt{x}	$\frac{1}{2\sqrt{x}}$

Propriétés des primitives

- Pour obtenir celle qui vaut b en x = a, on résout l'équation F(a) = b en remplaçant x par a dans l'expression de F.
- $\ \, \ \, \ \,$ Pour montrer que F est une primitive de f , on doit dériver F et montrer que c'est égal à f

Formules de dérivation et tangente

ightharpoonup Pour $n \ge 1$, on a:

$$(u(x)^n)' = n \times u'(x) \times u(x)^{n-1}$$

 \implies Pour $n \ge 1$, on a:

$$\left(\frac{1}{u(x)^n}\right)' = \frac{-n \times u'(x)}{u(x)^{n+1}}$$

$$(u(x) \times v(x))' = u'(x) \times v(x) + u(x) \times v'(x)$$

$$\left(\frac{u(x)}{v(x)}\right)' = \frac{u'(x) \times v(x) - u(x) \times v'(x)}{v(x)^2}$$

Formulaire TSTI2D

$$(k \times f(x))' = k \times f'(x)$$

$$y = f'(a)(x - a) + f(a)$$

Dérivées et variations

- ightharpoonup Pour déterminer les variations de f, on étudie le signe de f'(x).
- \implies Si $f'(x) \ge 0$ alors la fonction est croissante.
- \implies Si f'(x) s'annule en changeant de signe en x_0 alors la fonction f admet un maximum ou un minimum en x_0 qui a pour valeur $f(x_0)$.

Formulaire 2 Novembre 2016