Assignment 3: Assigned Wed 09/19. Due Wed 09/26

- 1. Let X be a topological space, and μ be a regular Borel measure on X. Show that X has a maximal open set of measure 0. Namely, show that there exists $U \subseteq X$, such that U open set, $\mu(U) = 0$ and further for any open set $V \subseteq X$ with $\mu(V) = 0$, we must have $V \subseteq U$. [The complement of U is defined to be the support of the measure μ , and denoted by $\sup(\mu)$.]
- 2. Let $\Sigma \supseteq \mathcal{B}(\mathbb{R}^d)$, and μ be a regular measure on (\mathbb{R}^d, Σ) . Suppose $A \in \Sigma$ is σ -finite (i.e. $A = \bigcup_{1}^{\infty} A_n$, and $\mu(A_n) < \infty$). Show that $\mu(A) = \sup\{\mu(K) \mid K \subseteq A \text{ is compact}\}$. [This remains true if we replace \mathbb{R}^d with any Hausdorff space.]
- 3. Let μ, ν be two measures on (X, Σ) . Suppose $\mathcal{C} \subseteq \Sigma$ is a π -system such that $\mu = \nu$ on \mathcal{C} .
 - (a) Suppose $\exists C_i \in \mathcal{C}$ such that $\bigcup_{1}^{\infty} C_i \in X$ and $\mu(C_i) = \nu(C_i) < \infty$. Show that $\mu = \nu$ on $\sigma(\mathcal{C})$.
 - (b) If we drop the finiteness condition $\mu(C_i) < \infty$ is the previous subpart still true? Prove or find a counter example.
- 4. Let $\kappa \in (0,1)$. Does there exist $E \in \mathcal{L}(\mathbb{R})$ such that for all $a < b \in \mathbb{R}$, we have $\kappa(b-a) \leq \lambda(I \cap (a,b)) \leq (1-\kappa)(b-a)$? Prove or find a counter example. [I'm aware that this looks suspiciously like a homework problem you already did. Also, this problem has a short, elegant solution using only what we've seen in class so far.]
- 5. For $i \in \{1, 2\}$, let (X_i, Σ_i, μ_i) be two measure spaces with $\mu_i(X_i) < \infty$. Define $\Sigma_1 \otimes \Sigma_2 = \sigma\{A_1 \times A_2 \mid A_i \in \Sigma_i\}$.
 - (a) Let $x_1 \in X_1$ and $A \in \Sigma_1 \otimes \Sigma_2$. Let $S_{x_1}(A) = \{x_2 \in X_2 \mid (x_1, x_2) \in A\}$, and $T_{x_2}(A) = \{x_1 \in X_1 \mid (x_1, x_2) \in A\}$. Show that $S_{x_1}(A) \in \Sigma_2$ and $T_{x_2}(A) \in \Sigma_1$.
 - (b) If $A \in \mathcal{P}(X_1 \times X_2)$ is such that for all $x_i \in X_i$, $S_{x_1}(A) \in \Sigma_2$ and $S_{x_2}(A) \in \Sigma_1$. Must $A \in \Sigma_1 \otimes \Sigma_2$?
 - (c) Show that there exists a measure ν on $(X_1 \times X_2, \Sigma_1 \otimes \Sigma_2)$ such that for all $A_i \in \Sigma_i$ we have $\nu(A_1 \times A_2) = \mu_1(A_1)\mu_2(A_2)$.
- 6. (An alternate approach to λ -systems.) Let $\mathcal{M} \subseteq P(X)$. We say \mathcal{M} is a Monotone Class, if whenever $A_i, B_i \in \mathcal{M}$ with $A_i \subseteq A_{i+1}$ and $B_i \supseteq B_{i+1}$ then $\bigcup_{1}^{\infty} A_i \in \mathcal{M}$ and $\bigcap_{1}^{\infty} B_i \in \mathcal{M}$. If $\mathcal{A} \subseteq P(X)$ is an algebra, then show that the smallest monotone class containing \mathcal{A} is exactly $\sigma(A)$. [You should also address existence of a smallest monotone class containing \mathcal{A} .]

Optional problems, and details in class I left for you to check.

- * Let X be a second countable locally compact Hausdorff space, and μ be a Borel measure on X that is finite on compact sets. Show that μ is regular.
- * Is any σ -finite Borel measure on \mathbb{R}^d regular?
- * Show that any λ -system that is also a π -system is a σ -algebra.
- * If Π is a π -system, then $\lambda(\Pi) = \sigma(\Pi)$. (We only proved $\lambda(\Pi) \subseteq \sigma(\Pi)$.)