Projet 4:

Anticipez les besoins en consommation électrique de bâtiments de Seattle

Nom: TRABIS

Prénom: Mohamed

Table des matières

- 1. Introduction
- 2. Préparation des données
 - a) Évaluation et découverte
 - b) Nettoyage et validation
- 3. Analyse exploratoire des données
- 4. Modèles prédictifs
- 5. Analyse prédictive de La consommation annuelle d'énergie
- 6. Analyse prédictive des émissions de CO2
- 7. Annexe Application

Introduction

Introduction

Contexte :

Vous travaillez pour la **ville de Seattle**. Pour atteindre son objectif de ville neutre en émissions de carbone en 2050, votre équipe s'intéresse de près aux émissions des bâtiments non destinés à l'habitation.

• Problématique de la ville de Seattle :

Des relevés minutieux ont été effectués par des agents en 2015 et en 2016. Cependant, ces relevés sont coûteux à obtenir, et à partir de ceux déjà réalisés, vous voulez tenter de prédire les émissions de CO2 et la consommation totale d'énergie de bâtiments pour lesquels elles n'ont pas encore été mesurées.

Introduction

Mission:

Voici un récapitulatif de la mission :

- → Réaliser une courte analyse exploratoire.
- → Tester différents modèles de prédiction afin de répondre au mieux à la problématique.

Quelques conseils du project lead:

- ✓ Déduire des variables plus simples (nature et proportions des sources d'énergie utilisées).
- ✓ Optimiser les performances en appliquant des transformations simples aux variables (normalisation, passage au log, etc.).
- ✓ Mettre en place une évaluation rigoureuse des performances de la régression, et optimiser les hyperparamètres et le choix d'algorithme de ML à l'aide d'une validation croisée.

03/06/2022 TRABIS Mohamed

5

Préparation des données

Préparation des données - Évaluation et découverte des données

- Les données de consommation énergétique sont à télécharger à <u>cette</u> adresse.
- Des relevés minutieux ont été effectués par des agents en 2015 et en 2016, sous format de deux fichiers CSV :
 - 1. 2015-building-energy-benchmarking.csv
 - 2. 2016-building-energy-benchmarking.csv
- Les fichiers CSV ne sont pas volumineux (3Mo pour les deux fichiers), ils contiennent :
 - → Des relevés d'environ de 3400 bâtiments de la ville de Seattle de 2015 et 2016

La structure des données a changé entre 2015 et 2016.

- Les étapes effectuées pour le nettoyage et la validation des données :
 - Importer les deux fichiers.
 - Vérifier les colonnes des deux fichiers.
 - Mutualiser les colonnes.
 - Détecter et supprimer les valeurs aberrantes.
 - Remplir les valeurs manquantes

Nettoyage du fichier de 2015 :

 Splitter la colonne « Location » qui contient les données de géolocalisation et adresse des batiments en 6 colonnes : 'Latitude', 'Longitude', 'Address', 'City', 'State'

• Renommer les colonnes suivantes :

```
>"Zip Codes": "ZipCode",
>"GHGEmissions(MetricTonsCO2e)":"TotalGHGEmissions",
>"latitude":"Latitude",
>"longitude":"Longitude",
>"city":"City",
>"address":"Address",
>"state":"State",
>"Comment":"Comments",
>"GHGEmissionsIntensity(kgCO2e/ft2)":"GHGEmissionsIntensity"
```

• Supprimer les colonnes ci-dessous, car elles ne sont pas présentent dans le fichiers de 2016 :

'SPD Beats', '2010 Census Tracts', 'City Council Districts', 'OtherFuelUse(kBtu)', 'zip', 'Seattle Police Department Micro Community Policing Plan Areas'

Remarque :

Suite à ce nettoyage nous avons maintenant les même colonnes dans les deux datasets 2015 et 2016.

Pour mieux analyser les données, il faut effectuer une jointure entre les deux datasets .

Notre dataset finale contient 6716 lignes et 46 colonnes.

Description des colonnes de la base de données :

Colonnes	Description			
OSEBuildingID	Un identifiant unique attribué à chaque propriété couverte par la Seattle à des fins de suivi et d'identification.			
DataYear	Année de la collection des données			
BuildingType	Classification du type de bâtiment de la ville de Seattle.			
	L'utilisation principale d'une propriété (par exemple, un bureau, un magasin de détail). L'usage principal est défini			
	comme une fonction qui représente plus de 50 % d'un bien. Il s'agit du champ Type de propriété - EPA calculé de			
PrimaryPropertyType	Portfolio Manager.			
PropertyName	Nom officiel ou de propriété commune.			
TaxParcelIdentificationNumber	NIP du comté de King de la propriété			
Location	Emplacement			
CouncilDistrictCode	Propriété District municipal de la ville de Seattle.			
Neighborhood	Quartier			
YearBuilt	Année au cours de laquelle une propriété a été construite ou a subi une rénovation complète.			
NumberofBuildings	Nombre de bâtiments			
NumberofFloors	Nombre d'étages			
PropertyGFATotal	Superficie totale du bâtiment et du stationnement.			
	Espace total en pieds carrés de tous les types de stationnement (entièrement fermé, partiellement fermé et			
PropertyGFAParking	ouvert).			
	Espace au sol total en pieds carrés entre les surfaces extérieures des murs d'enceinte d'un bâtiment. Cela			
	comprend toutes les zones à l'intérieur du ou des bâtiments, telles que l'espace des locataires, les espaces			
PropertyGFABuilding(s)	communs, les cages d'escalier, les sous-sols, le stockage, etc.			
ListOfAllPropertyUseTypes	Toutes les utilisations de la propriété signalées dans Portfolio Manager			
LargestPropertyUseType	La plus grande utilisation d'une propriété (par exemple, bureau, magasin de détail) par GFA			
LargestPropertyUseTypeGFA	La surface de plancher brute (GFA) de la plus grande utilisation de la propriété.			
SecondLargestPropertyUseType	La deuxième plus grande utilisation d'une propriété (par exemple, bureau, magasin de détail) par GFA			
SecondLargestPropertyUseTypeGFA	La troisième plus grande utilisation d'une propriété (par exemple, bureau, magasin de détail) par GFA.			
YearsENERGYSTARCertified	Années où la propriété a reçu la certification ENERGY STAR.			

	Une note de 1 à 100 calculée par l'EPA évalue la performance énergétique globale d'une propriété, sur la base de
	données nationales pour contrôler les différences entre le climat, les utilisations du bâtiment et les opérations. Un
ENERGYSTARScore	score de 50 représente la médiane nationale.
	La consommation énergétique du site est la quantité annuelle de toute l'énergie consommée par la propriété sur le
	site, telle qu'elle est indiquée sur les factures de services publics. Le site EUI est mesuré en milliers d'unités thermiques
SiteEUI(kBtu/sf)	britanniques (kBtu) par pied carré.
	La consommation d'énergie à la source est l'énergie annuelle utilisée pour exploiter la propriété, y compris les pertes
	de production, de transmission et de distribution. La source EUI est mesurée en milliers d'unités thermiques
SourceEUI(kBtu/sf)	britanniques (kBtu) par pied carré.
	L'énergie du site WN correspond à la consommation d'énergie du site que la propriété aurait consommée dans des
	conditions météorologiques moyennes sur 30 ans. WN Site EUI est mesuré en milliers d'unités thermiques britanniques
SiteEUIWN(kBtu/sf)	(kBtu) par pied carré.
	L'énergie de la source WN est la consommation d'énergie de la source que la propriété aurait consommée dans des
SourceEUIWN(kBtu/sf)	conditions météorologiques moyennes sur 30 ans.
SiteEnergyUse(kBtu)	La quantité annuelle d'énergie consommée par la propriété à partir de toutes les sources d'énergie.
	La quantité annuelle d'énergie consommée par la propriété à partir de toutes les sources d'énergie, ajustée à ce que la
SiteEnergyUseWN(kBtu)	propriété aurait consommé dans des conditions météorologiques moyennes sur 30 ans.
	La quantité annuelle de vapeur urbaine consommée par la propriété sur place, mesurée en milliers d'unités thermiques
SteamUse(kBtu)	britanniques (kBtu).
	La quantité annuelle d'électricité consommée par la propriété sur place, y compris l'électricité achetée au réseau et
Electricity(kWh)	produite par les systèmes renouvelables sur place, mesurée en kWh.
Electricity(kBtu)	La quantité annuelle d'électricité consommée par la propriété sur place,
NaturalGas(therms)	La quantité annuelle de gaz naturel fourni par les services publics consommée par la propriété, mesurée en therm.
	La quantité annuelle de gaz naturel fourni par les services publics consommée par la propriété, mesurée en milliers
NaturalGas(kBtu)	d'unités thermiques britanniques (kBtu).
TotalGHGEmissions	La quantité totale d'émissions de gaz à effet de serre, y compris le dioxyde de carbone,
	Émissions totales de gaz à effet de serre divisées par la surface de plancher brute de la propriété, mesurée en
GHGEmissionsIntensity(kgCO2e/f	kilogrammes d'équivalent de dioxyde de carbone par pied carré. Ce calcul utilise un facteur d'émissions de GES du
t2)	portefeuille de ressources de production de Seattle City Light
DefaultData	La propriété a utilisé des données par défaut pour au moins une caractéristique de propriété.
ComplianceStatus	Si une propriété a satisfait aux exigences d'analyse comparative énergétique pour l'année de déclaration en cours.
Outlier	Si une propriété est une valeur aberrante élevée ou faible.
Outlier	Si une propriete est une valeur aberrante elevee ou faible.

- Les étapes effectuées pour conserver que les bâtiments non destinés à l'habitation :
 - Dans la colonne «*BuildingType*» nous avons les types de bâtiments ci-dessous : 'NonResidential', 'Nonresidential COS', 'Multifamily MR (5-9)', 'SPS-District K-12', 'Multifamily LR (1-4)', 'Campus', 'Multifamily HR (10+)', 'Nonresidential WA'
 - Suppression des lignes qui contiennent la chaîne de caractère « *Multifamily* ».

Remarque :

Suite à cette suppression la dataset contient 3318 lignes et 46 colonnes, ce qui représente environ 50% des données initiales.

Ci-dessous Les statistiques descriptives de la dataset :

	PropertyGFAParking	PropertyGFABuilding(s)	SourceEUI(kBtu/sf)	SourceEUIWN(kBtu/sf)	Electricity(kBtu)	TotalGHGEmissions
count	3318.00	3318.00	3309.00	3309.00	3309.00	3309.00
mean	13303.30	102363.90	175.44	178.66	5636555.58	177.04
std	43596.62	234074.87	180.79	180.63	17409003.50	666.44
min	-2.00	-50550.00	-2.00	-2.10	-115417.00	-0.80
25%	0.00	28507.75	76.20	80.80	723667.00	19.72
50%	0.00	47368.00	131.30	134.80	1623657.00	49.16
75%	0.00	94471.50	204.90	207.80	4878886.00	138.87
max	512608.00	9320156.00	2620.00	2620.00	657074389.00	16870.98

Remarque:

On constate la présence des valeurs négatives pour des colonnes de consommations et de surfaces.

Nous allons conserver que les lignes avec des valeurs supérieurs à 0.

- Détecter et supprimer les valeurs aberrantes :
 - Supprimer les lignes avec les valeurs renseignés dans la colonne «Outlier » puis supprimer cette colonne :

Outlier	% Dataset		
Low Outlier	0.64%		
High Outlier	0.36%		
NaN	99%		

• Supprimer les lignes qui sont inférieurs au dernier centile de la colonne «*Electricity(kBtu)*».

Remarque :

La dataset contient 3226 lignes et 46 colonnes.

- Traiter les valeurs manquantes :
 - Remplacer les valeurs manquantes de la colonne «ListOfAllPropertyUseTypes » par les valeurs de la colonne «PrimaryPropertyType »
 - Remplacer les 'NaN' de la colonne 'NumberofFloors' par 0.

Graphique des valeurs manquantes :

Analyse exploratoire des données

03/06/2022 TRABIS Mohamed

17

Analyse exploratoire des données

Graphique de l'évolution énergétique entre 2015 et 2016 :

 Remarque: On constate que La quantité annuelle d'énergie consommée a augmenter de 13% de 2015 à 2016

03/06/2022

Analyse exploratoire des données - ENERGY Star

Le Score ENERGY STAR :

Le score ENERGY STAR (sur une échelle de 1 à 100), est un outil d'évaluation qui vous aide à évaluer les performances de votre propriété par rapport à des bâtiments similaires à l'échelle nationale. Cela vous aidera à identifier les propriétés de votre portefeuille à cibler pour une amélioration ou une reconnaissance. Un score de 50 est la médiane. Ainsi, si votre propriété obtient un score inférieur à 50, cela signifie qu'elle est moins performante que 50 % des propriétés similaires à l'échelle nationale, tandis qu'un score supérieur à 50 signifie qu'elle fonctionne mieux que 50 % par rapport aux autres propriétés. Un score de 75 ou plus signifie qu'elle est la plus performante et qu'elle peut être éligible à la certification ENERGY STAR.

 Le score ENERGY STAR donne un aperçu complet de la performance énergétique de votre propriété. Il évalue les actifs physiques du bâtiment, les opérations et le comportement des occupants, basé sur des données réelles et mesurées.

Analyse exploratoire des données - ENERGY Star

Ci-dessous le graphique représentant le Score ENERGY Star:

Energy Score 2015/16

Remarque: On constate que la valeur médiane du score énergétique est d'environ 73 sur 100, on constate ausi une légère amélioration du score en 2016.

100

Energy Score 2015/16

Analyse exploratoire des données - ENERGY Star

► Le Score ENERGY Star par type de bâtiment:

Type de propriété

 Remarque: Les bâtiments de type « Education » ont un bon score énergétique(une médiane d'environ 83 sur 100), contrairement aux centres de distribution et stockage.

Analyse exploratoire des données - Emissions de CO2

■ Graphique des émissions de CO2 (2015/2016):

La quantité totale d'émissions de CO2 (MetricTonsCO2e) - 2015/16

 Remarque: La majorité des bâtiments ont une quantité totale des émissions de CO2 entre 0 et 300 MetricTonsCO2e;

03/06/2022

Analyse exploratoire des données - Emissions de CO2

► Les émissions de CO2 par type de bâtiment:

La quantité totale des émissions de CO2 (MetricTonsCO2e) - 2015/16

Type de propriété

 <u>Remarque</u>: Les bâtiments qui émettent une quantité élevée de CO2 sont : les hôtels, les hôpitaux et les laboratoire

Analyse exploratoire des données - Consommation d'énergie

Graphique de La quantité annuelle d'énergie consommée :

 Remarque: La valeur médiane de la consommation annuelle d'énergie est de 0.25le7.

Analyse exploratoire des données - Consommation d'énergie

 La quantité annuelle d'énergie consommée par pied carrée et par type de bâtiment:

La quantité annuelle d'énergie consommée par pied carrée et par type de bâtiment

<u>Remarque</u>: Comme pour les émissions de CO2 les hôtels, les hôpitaux et les laboratoires sont les plus gros consommateurs d'énergie.

Analyse exploratoire des données – Ecart site / source

L'écart d'intensité de consommation d'énergie entre le site et la source :

L'écart d'énergies utilisée entre la source et le site (en %) par pied carré

Type de propriété

 Remarque: La médiane de l'écart d'intensité de consommation est d'environ de 52% pour la catégorie « Restaurant » et d'environ de 33% pour la catégorie « Bureau ».

Analyse exploratoire des données – Type de bâtiment

Graphique des propriétés par type de bâtiment :

 <u>Remarque</u>: Les bureaux représentent 30% des bâtiments, les restaurants ne représentent que 0,71%.

03/06/2022

Analyse exploratoire des données – Quartier

Graphique des bâtiments par quartier:

 <u>Remarque</u>: Le quartier du centre ville compte 21% des propriétés suivi du quartier « Greater Duwamish »

03/06/2022

Analyse exploratoire des données – Quartier

Graphique de la consommation annuelle des bâtiments par quartier:

La quantité annuelle d'énergie consommée Par quartier

Remarque: Le centre ville à la valeur médiane de consommation la plus élevée.

Analyse exploratoire des données – ENERGIE-GRADE

 Pour rendre l' « ENERGYSTAR» visible et facile à comprendre j'ai crée une échelle graphique qui le divise en 5 classes (A+, A, B, C, D), ce système de classification est inspiré de « l'<u>Étiquette-énergie européenne</u> ».

Ce système de classification dépend du score ENERGY STAR:

ENERGIE-GRADE	A+	Α	В	С	D
ENERGYSTAR	81 à 100	61 à 80	41 à 60	21 à 40	1 à 20

Analyse exploratoire des données – ENERGIE-GRADE

Graphique de la classification énergétique des bâtiments :

Analyse univariée Energie-grade

 Remarque: 25% des bâtiment ont une classification A+, et seulement 7% ont une classification D

03/06/2022

Analyse exploratoire des données – Cartographie

 La cartographie des bâtiments de la ville de SEATTLE avec la Heatmap des émissions de CO2 'TotalGHGEmissions'

32

Analyse exploratoire des données – Cartographie

 Un exemple de l'emplacement des bâtiments de la catégorie « Résidence » sur la carte de SEATTLE avec la Heatmap de la consommation totale d'énergie :

03/06/2022

Analyse exploratoire des données – Corrélation

Ci-dessous la matrice de corrélation 2D entre les variables :

03/06/2022

TRABIS Mohamed

- 0.0

Analyse exploratoire des données – Analyse Bivariée

 Graphique pour identifier la relation entre la consommation totale d'énergie et les émission de CO2:

 Remarque: Si la consommation d'énergie augmente les émissions de CO2 augmente aussi

Analyse exploratoire des données – Analyse Bivariée

 Graphique pour identifier la relation entre la consommation totale d'énergie et la superficie totale :

 Remarque: Si La superficie du bâtiment augmente la consommation d'énergie augmente aussi.

Modèles prédictifs

Modèles prédictifs – Présentation

Définition:

Une régression a pour objectif d'expliquer une variable Y par le moyen d'une autre variable X. Par exemple, le salaire d'une personne peut être expliqué à travers son niveau universitaire.

Les étapes effectuées pour la prédiction des valeurs cibles :

- Importation des packages (pandas, numpy, sklearn, xgboost....)
- Préparation des données
- Transformation et encodage des données avec le pipeline
- Exploration des différents modèles prédictifs suivants :
 - 1. Modèle de régression linéaire
 - 2. Modèle de régression Ridge
 - 3. Modèle de régression Lasso
 - 4. Modèle Random Forest (Forêt d'arbres décisionnels)
 - 5. Modèle XGBoost (Extreme Gradient Boosting)

Modèles prédictifs – Transformation et encodage

- Les étapes de transformation et encodage des données avec le pipeline :
 - 1. Séparer les colonnes numériques des colonnes catégorielles.
 - 2. Définir des pipelines numériques et catégorielles, pour effectuer la standardisation et l'encodage des variables :
 - a) Standardiser les variables numériques
 - **Encoder les variables catégorielles**
 - 3. Assembler les deux pipelines (numérique et catégorielle) dans un transformateur.

Modèles prédictifs - Méthodologie

La méthodologie d'exploration pour chaque modèle de régression :

- ✓ Définir X (les valeurs explicatives) et y (la valeur cible)
- ✓ Splitter les données en données d'entrainement (80%), et données de test (20%)
- ✓ Instancier le modèle
- ✓ Entraîner le modèle sur les données d'entraînement
- ✓ Tester le modèle de prédiction sur les données de test
- ✓ Effectuer une validation croisée avec :
 - GridSearchCV pour le réglage des hyperparamètres afin de déterminer les valeurs optimales pour un modèle donné
 - RandomizedSearchCV Contrairement à GridSearchCV, toutes les valeurs de paramètres ne sont pas testées avec un temps d'exécution plus faible
- ✓ Comparer les résultats pour définir le meilleur modèle

Analyse prédictive de La consommation annuelle d'énergie «SiteEnergyUse»

Analyse prédictive - La consommation totale d'énergie

Définir X et y :

	Colonnes catégorielles	Colonnes numériques
х	PrimaryPropertyType, Neighborhood, LargestPropertyUseType, SecondLargestPropertyUseType, ThirdLargestPropertyUseType,	YearBuilt, NumberofBuildings, NumberofFloors, PropertyGFAParking, PropertyGFABuilding(s), Count_List, HOTEL, POLICE STATION, OTHER, EDUCATION, HEALTH, OFFICE, COURTHOUSE, AUTOMOBILE DEALERSHIP, WAREHOUSE, STORE, RESIDENCE, MUSEUM, DISTRIBUTION CENTER, PARKING, RESTAURANT, DATA CENTER, CONVENTION CENTER, STRIP MALL, WHOLESALE CLUB/SUPERCENTER, MANUFACTURING/INDUSTRIAL PLANT, LIFESTYLE CENTER, FIRE STATION, PERFORMING ARTS, BANK BRANCH, MOVIE THEATER, PRISON/INCARCERATION,
Υ		SiteEnergyUse(kBtu)

Les 20 caractéristiques les plus importantes (XGBoost) :

Analyse prédictive - La consommation totale d'énergie

Ci-dessous les scores « r2 » des différents modèles:

SiteEnergyUse					
Modèle de régression	RMSE	Score r2	Modèle sans CV	GridSearchCV	RandomizedSearchCV
Dégracion linéaire	4844313	Score test	0.839	0.839	0.839
Régression linéaire		Score train	0.736	0.736	0.736
Démassion vides	4824161	Score test	0.841	0.843	0.841
Régression ridge		Score train	0.736	0.730	0.736
Págrassian lassa	4842296	Score test	0.840	0.840	0.840
Régression lasso		Score train	0.736	0.736	0.736
Págrassian Pandam Farast	2855653	Score test	0.925	0.927	0.925
Régression Random Forest		Score train	0.973	0.972	0.972
VGPoort	2235856	Score test	0.879	0.953	0.953
XGBoost		Score train	0.883	0.993	0.993

Analyse prédictive - Conclusion

Conclusions:

Suite à l'analyse des scores le modèle de régression « **XGBoost** » est le modèle le plus performant pour la prédiction de la quantité annuelle d'énergie consommée avec un score « r2 » de 95,3% sur les données de test et 99.3% sur les données d'entrainement, comme le montre le graphique ci-dessous :

03/06/2022

Analyse prédictive des émissions de CO2 «TotalGHGEmissions»

Analyse prédictive - Les émissions de CO2

Définir X et y :

	Colonnes catégorielles	Colonnes numériques
Х	LargestPropertyUseType, Second argestPropertyUseType	YearBuilt, NumberofBuildings, NumberofFloors, PropertyGFAParking, PropertyGFABuilding(s), Count_List, HOTEL, POLICE STATION, OTHER, EDUCATION, HEALTH, OFFICE, COURTHOUSE, AUTOMOBILE DEALERSHIP, WAREHOUSE, STORE, RESIDENCE, MUSEUM, DISTRIBUTION CENTER, PARKING, RESTAURANT, DATA CENTER, CONVENTION CENTER, STRIP MALL, WHOLESALE CLUB/SUPERCENTER, MANUFACTURING/INDUSTRIAL PLANT, LIFESTYLE CENTER, FIRE STATION, PERFORMING ARTS, BANK BRANCH, MOVIE THEATER, PRISON/INCARCERATION,
Υ		TotalGHGEmissions

Analyse prédictive - Les émissions de CO2

Ci-dessous les scores « r2 » des différents modèles:

Modèle de régression	RMSE	Score r2	Modèle sans CV	GridSearchCV	RandomizedSearchCV
Dáguagaiga limágina	174	Score test	0.699	0.699	0.699
Régression linéaire		Score train	0.577	0.577	0.577
Démossion video	155	Score test	0.754	0.754	0.754
Régression ridge		Score train	0.567	0.567	0.567
Démassien lesse	149	Score test	0.767	0.767	0.767
Régression lasso		Score train	0.545	0.545	0.545
Démanda Dandan Fanat	97	Score test	0.892	0.891	0.893
Régression Random Forest		Score train	0.956	0.959	0.956
VCDoost	72	Score test	0.831	0.936	0.936
XGBoost		Score train	0.867	0.995	0.995

Analyse prédictive - Conclusion

Ci-dessous le graphique de performance des modèles prédictifs :

Remarque :

Suite à l'analyse des score, le modèle de régression XGBoost est le modèle le plus performant pour la prédiction des émissions de CO2 avec un score « r2 » de 93,5% sur les données de test et 99.5% sur les données d'entrainement

Analyse prédictive – Modèle XGBoost avec «ENERGY STAR Score»

 Ci-dessous les scores « r2 » du modèle XGBoost avec la variables explicative «ENERGY STAR Score» pour évaluer l'impact de cette variable sur le modèle de prédiction de la consommation annuelle d'énergie «SiteEnergyUse» et les émissions de CO2 «TotalGHGEmissions » :

	Site	eEnergyUse	TotalGHGEmissions		
Modèle de régression	Score r2	RandomizedSearchCV	Score r2	RandomizedSearchCV	
VCDoort	Score test	0.953	Score test	0.888	
XGBoost	Score train	0.998	Score train	0.998	

Remarque :

On constate que les scores du modèle XGBoost n'ont pas été améliorés malgré l'ajout de cette variable explicative.

Il n'est pas nécessaire d'intégrer cette variable dans le modèle de prédiction, en sachant que son calcul est très fastidieux.

Annexe – Application

Application - Présentation

- La ville de <u>SEATTLE</u> veut atteindre son objectif de ville neutre en émissions de CO2 en 2050.
- Mon application (<u>lien</u>) «<u>SEATTLE-ECO2</u> » a pour objectif :
 - ✓ Donner une vision énergétique globale de la ville.
 - ✓ Analyser les données de référence pour identifier les installations qui sont sousperformant.
 - ✓ Aider à créer une approche ciblée pour améliorer le score *ENERGYSTAR*.
 - ✓ Permettre de faire une analyse comparatives de la consommation énergétique et les émissions de CO2.
 - Ãvaluer et comparer la performance énergétique des bâtiments.

Application - Présentation

Page d'accueil :

Analyse univariée des variables :

03/06/2022 TRABIS Mohamed

53

Analyse univariée par type de bâtiment :

03/06/2022

Analyse univariée par quartier :

03/06/2022

Graphique boxplot par type de bâtient:

03/06/2022

• Graphique pour identifier la relation entre deux variables :

03/06/2022

Application – Map / Cluster

La cartographie des bâtiments de la ville de SEATTLE avec la Heatmap :

03/06/2022

Application – Map / Cluster

▶ La cartographie des bâtiments de la ville de SEATTLE avec la Heatmap :

03/06/2022

Application – Prédiction de la consommation annuelle d'énergie

Prédiction de La quantité annuelle d'énergie consommée «SiteEnergyUse» :

