说明: 本视频对应王道书 4.1.6

先学习文件的逻辑结构、文件的物理结构,有助于理解文件管理的其他知识。因此在课程中,我们会先跳学文件的逻辑结构(王道书4.1.5)、文件的物理结构(王道书 4.1.6)

建议: 学完本视频,可以接着阅读王道书 4.1.6

本节内容

文件的物理 结构 (文件分配方式)

知识总览

操作系统需要对磁 盘块进行哪些管理 对非空闲磁盘块的管理(存放了文件数据的磁盘块)

对空闲磁盘块的管理

"文件存储空间 管理"要探讨的 问题 "文件的物理结 构/文件分配方式" 要探讨的问题

知识总览 连续分配 隐式链接 链接分配 文件的物理结构 显式链接 (文件分配方式) 索引分配 即:文件数据应该怎样存放在外存中?

文件块、磁盘块

连续分配方式要求每个文件在磁盘上占有一组连续的块。

用户通过逻辑地址来操作自己 的文件,操作系统如何实现从 逻辑地址到物理地址的映射?

(逻辑块号,块内地址) → (物理块号,块内地址)。只需转换块号就行,块内地址保持不变

用户给出要访问的逻辑块号,操作系统 找到该文件对应的目录项(FCB)... 物理块号 = 起始块号 + 逻辑块号 当然,还需要检查用户提供的逻辑块号 是否合法(逻辑块号≥长度就不合法)

文件名 起始块号 长度
aaa 4 3
bbb 10 4
..... ...

文件目录中记录存放 的起始块号和长度 (总共占用几个块)

可以直接算出逻辑块号对应的物理块号,因此连续分配支持顺序访问和直接访问(即随机访问)

连续分配方式要求每个文件在磁盘上占有一组连续的块。

读取某个磁盘块时,需要移动磁头。访问的两个磁盘块相隔越远,移动磁头所需时间就越长。

结论: 连续分配的文件在顺序读/写时速度最快

连续分配方式要求每个文件在磁盘上占有一组连续的块。

若此时文件A要拓展,需要再增加一个磁盘块(总共需要连续的4个磁盘块)。由于采用连续结构,因此文件A占用的磁盘块必须是连续的。

因此只能将文件A全部"迁移"到绿色区域。

结论:物理上采用连续分配的文件不方便拓展。

连续分配方式要求每个文件在磁盘上占有一组连续的块。

结论:物理上采用连续分配,存储空间利用率低,会产生难以利用的磁盘碎片可以用紧凑来处理碎片,但是需要耗费很大的时间代价。

连续分配(总结)

连续分配方式要求每个文件在磁盘上占有一组连续的块。

优点: 支持顺序访问和直接访问(即随机访问); 连续分配的文件在顺序访问时速度最快

缺点: 不方便文件拓展; 存储空间利用率低, 会产生磁盘碎片

文件分配方式——链接分配

链接分配采取离散分配的方式,可以为文件分配离散的磁盘块。分为隐式链接和显式链接两种。

链接分配——隐式链接

文件名		起始块号	结束块号	•
aaa	•••	9	16	

目录中记录了文件 存放的起始块号和 结束块号。当然, 也可以增加一个字 段来表示文件的长 度

除了文件的最后一个磁盘块之外,每个磁盘块中都会保存指向下一个盘块的指针,这些指针对用户是透明的

如何实现文件的逻辑块号到物理块号的转变?

用户给出要访问的逻辑块号 i,操作系统找到该文件对应的目录项(FCB)...

从目录项中找到起始块号(即0号块),将0号逻辑块读入内存,由此知道1号逻辑块存放的物理块号,于是读入1号逻辑块,再找到2号逻辑块的存放位置……以此类推。因此,读入i号逻辑块,总共需要i+1次磁盘I/O。

结论:采用链式分配(隐式链接)方式的文件,只支持顺序访问,不支持随机访问,查找效率低。另外,指向下一个盘块的指针也需要耗费少量的存储空间。

链接分配——隐式链接

文件名	 起始块号	结束块号
aaa	 9	8

是否方便拓展文件?

若此时要拓展文件,则可以随便 找一个空闲磁盘块,挂到文件的 磁盘块链尾,并修改文件的FCB

结论:采用隐式链接的链接分配方式,很方便文件拓展。另外,所有的空闲磁盘块都可以被利用,不会有碎片问题,外存利用率高。

链接分配——隐式链接

链接分配采取离散分配的方式,可以为文件分配离散的磁盘块。分为隐式链接和显式链接两种。

<mark>隐式链接——除文件的最后一个盘块之外,每个盘块中都存有指向下一个盘块的指针。文件目录包括文件第一块的指针和最后一块的指针。</mark>

优点: 很方便文件拓展,不会有碎片问题,外存利用率高。

<mark>缺点:</mark> 只支持顺序访问,不支持随机访问,查找效率低,指向下一个盘块的指针也需要耗费少量的存储空间。

链接分配——显式链接

文件名	 起始块号
aaa	 2
bbb	 4

目录中只需记录 文件的起始块号

0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15
16	17	18	19
20	21	22	23

物理块号	下一块
0	1
1	-1
2	5
3	-1
4	23
5	0/4/
•••••	
22	
23	3

FAT (文件分配表)

把用于链接文件各物理块的指针显式地存放在一张表中。即 文件分配表(FAT,File Allocation Table)

假设某个新创建的文件"aaa"依次存放在磁盘块 2 →5 →0 →1

假设某个新创建的文件"bbb"依次存放在磁盘块 4 →23 →3

注意:一个磁盘仅设置一张FAT。 开机时,将FAT读入内存,并常驻 内存。FAT 的各个表项在物理上 连续存储,且每一个表项长度相 同,因此"物理块号"字段可以 是隐含的。

链接分配——显式链接

文件名		起始块号
aaa		2
bbb	•••	4

物理块号	下一块
0	1
1	-1
2	5
3	-1
4	23
5	0
22	
23	3

FAT (文件分配表)

如何实现文件的逻辑块号到物理块号的转变?

用户给出要访问的逻辑块号 i,操作系统找到该文件对应的目录项(FCB)...

从目录项中找到起始块号,若i>0,则查询内存中的文件分配表FAT, 往后找到i号逻辑块对应的物理块号。逻辑块号转换成物理块号的过 程不需要读磁盘操作。

结论:采用链式分配(显式链接)方式的文件,支持顺序访问,也支持随机访问(想访问i号逻辑块时,并不需要依次访问之前的0~i-1号逻辑块),由于块号转换的过程不需要访问磁盘,因此相比于隐式链接来说,访问速度快很多。

显然,显式链接也不会产生外部碎片,也可以很方便地对文件进行拓展。

链接分配(总结)

链接分配采取离散分配的方式,可以为文件分配离散的磁盘块。分为隐式链接和显式链接两种。

隐式链接——除文件的最后一个盘块之外,每个盘块中都存有指向下一个盘块的指针。文件目录包括文件第一块的指针和最后一块的指针。

优点: 很方便文件拓展,不会有碎片问题,外存利用率高。

缺点: 只支持顺序访问, 不支持随机访问, 查找效率低, 指向下一个盘块的指针也需要耗费少量

的存储空间。

考试题目中遇到未指明隐式/显式的"链接分配",默认指的是隐式链接的链接分配

显式链接——把用于链接文件各物理块的指针显式地存放在一张表中,即 文件分配表(FAT,File Allocation Table)。一个磁盘只会建立一张文件分配表。开机时文件分配表放入内存,并常驻内存。

优点: 很方便文件拓展, 不会有碎片问题, 外存利用率高, 并且支持随机访问。相比于隐式链接

来说,地址转换时不需要访问磁盘,因此文件的访问效率更高。

缺点: 文件分配表的需要占用一定的存储空间。

本节内容

文件的物理 结构 (文件分配方式)

知识总览 连续分配 隐式链接 链接分配 文件的物理结构 显式链接 (文件分配方式) 索引分配 即:文件数据应该怎样存放在外存中?

索引分配允许文件离散地分配在各个磁盘块中,系统会为每个文件建立一张索引表,索引表中记录了文件的各个逻辑块对应的物理块(索引表的功能类似于内存管理中的页表——建立逻辑页面到物理页之间的映射关系)。索引表存放的磁盘块称为索引块。文件数据存放的磁盘块称为数据块。

文件名	 索引块
aaa	 7
bbb	 23

0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15
16	17	18	19
20	21	22	23

目录中需要记录 文件的索引块是 几号磁盘块

逻辑块号	物理块号
0	2
1	5
2	13
3	9

类似的,文件"bbb"的索引块是23号磁盘块,其中存放了文件"bbb"的索引表

文件"aaa"的索引表

假设某个新创建的文件"aaa"的数据依次存放在磁盘块 2→5→13→9。 7号磁盘块作为"aaa"的索引块,索引块中保存了索引表的内容。

注:在显式链接的链式分配方式中,文件分配表FAT是一个磁盘对应一张。而索引分配方式中,索引表是一个文件对应一张。

可以用固定的长度表示物理块号(如:假设磁盘总容量为1TB=2⁴⁰B,磁盘块大小为1KB,则共有 2³⁰个磁盘块,则可用4B表示磁盘块号),因此,索引表中的"逻辑块号"可以是隐含的。

王道考研/CSKAOYAN.COM

索引分配允许文件离散地分配在各个磁盘块中,系统会为每个文件建立一张索引表,索引表中记录了文件的各个逻辑块对应的物理块。索引表存放的磁盘块称为索引块。文件数据存放的磁盘块称为数据块。

文件名	 索引块
aaa	 7
bbb	 23

目录中需要记录 文件的索引块是 几号磁盘块

0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15
16	17	18	19
20	21	22	23

如何实现文件的逻辑块号到物理块号的转换?

用户给出要访问的逻辑块号 i,操作系统找到该文件对应的目录项(FCB)...

从目录项中可知索引表存放位置,将索引表 从外存读入内存,并查找索引表即可只 i 号 逻辑块在外存中的存放位置。

可见,索引分配方式可以支持随机访问。 文件拓展也很容易实现(只需要给文件分配 一个空闲块,并增加一个索引表项即可) 但是索引表需要占用一定的存储空间

索引分配允许文件离散地分配在各个磁盘块中,系统会为每个文件建立一张索引表,索引表中记录了文件的各个逻辑块对应的物理块。索引表存放的磁盘块称为索引块。文件数据存放的磁盘块称为数据块。

文件名	 索引块	ı
aaa	 7	

目录中需要记录 文件的索引块是 几号磁盘块

若每个磁盘块1KB,一个索引表项4B,则一个磁盘块只能存放 256 个索引项。

逻辑块号	物理块号
0	2
1	5
2	13
3	9

文件"aaa"的索引表

如果一个文件的大小超过了256 块,那么一个磁盘块是装不下 文件的整张索引表的,如何解 决这个问题?

- ①链接方案
- ②多层索引
- ③混合索引

①链接方案:如果索引表太大,一个索引块装不下,那么可以将多个索引块链接起来存放。

文件名	•••	索引	块			
aaa		7				
					逻辑块号	物理块号
					0	2
0	1	2	3		1	5
4	5	6	7			
8	9	10	11		255	
12	13	14	15			
16	17	18			256	
8					257	<u> </u>
(0)						
					511	

假设磁盘块大小为1KB,一个索引表项占4B,则一个磁盘块只能存放256个索引项。

若一个文件大小为 256*256KB = 65,536 KB = 64MB

该文件共有 256*256 个块,也就对应 256*256个索引项,也就需要 256 个 索引块来存储,这些索引块用链接方案连起来。

若想要访问文件的最后一个逻辑块, 就必须找到最后一个索引块(第256 个索引块),而各个索引块之间是用 指针链接起来的,因此必须先顺序地 读入前 255 个索引块。

这显然是很低效的。如何解决呢?

②<mark>多层索引</mark>:建立多层索引(<mark>原理类似于多级页表</mark>)。使第一层索引块指向第二层的索引块。还可根据 文件大小的要求再建立第三层、第四层索引块。

假设磁盘块大小为1KB,一个索引表项占4B,则一个磁盘块只能存放256个索引项。

若某文件采用<mark>两层索引</mark>,则该文件的最大长度可以到 256*256*1KB = 65,536 KB = 64MB

可根据逻辑块号算出应该查找索引表中的哪个表项。如:要访问1026号逻辑块,则

1026/256 = 4, 1026%256 = 2

因此可以先将一级索引表调入内存,查询 4 号表项,将其对应的二级索引表调入内存,再查询二级索引表的2号表项即可知道 1026 号逻辑块存放的磁盘块号了。访问目标数据块,需要3次磁盘I/O。

若采用 采用 K 层索引结构,且顶级索引表未调入 256*2 内存,则访问一个数据块只需要 K+1次 读磁盘操作

③<mark>混合索引:</mark> 多种索引分配方式的结合。例如,一个文件的顶级索引表中,既包含<mark>直接地址索引</mark>(直接 指向数据块),又包含一级间接索引(指向单层索引表)、还包含两级间接索引(指向两层索引表)。

索引分配(总结)

索引分配允许文件离散地分配在各个磁盘块中,系统会为每个文件建立一张索引表,索引表中记录了文件的各个逻辑块对应的物理块(索引表的功能类似于内存管理中的页表——建立逻辑页面到物理页之间的映射关系)。索引表存放的磁盘块称为索引块。文件数据存放的磁盘块称为数据块。若文件太大,索引表项太多,可以采取以下三种方法解决:

- ①链接方案:如果索引表太大,一个索引块装不下,那么可以将多个索引块链接起来存放。缺点:若文件很大,索引表很长,就需要将很多个索引块链接起来。想要找到 i 号索引块,必须先依次读入 0~i-1 号索引块,这就导致磁盘I/O次数过多,查找效率低下。
- ②<mark>多层索引</mark>:建立多层索引(<mark>原理类似于多级页表</mark>)。使第一层索引块指向第二层的索引块。还可根据文件大小的要求再建立第三层、第四层索引块。采用 K 层索引结构,且<mark>顶级索引表未调入内存</mark>,则访问一个数据块只需要 K + 1 次读磁盘操作。缺点:即使是小文件,访问一个数据块依然需要K+1次读磁盘。
- ③<mark>混合索引</mark>:多种索引分配方式的结合。例如,一个文件的顶级索引表中,既包含<mark>直接地址索引</mark>(直接 指向数据块),又包含一级间接索引(指向单层索引表)、还包含两级间接索引(指向两层索引表)。 优点:对于小文件来说,访问一个数据块所需的读磁盘次数更少。

超级超级超级重要考点:①要会根据多层索引、混合索引的结构计算出文件的最大长度(Key:各级索引表最大不能超过一个块);②要能自己分析访问某个数据块所需要的读磁盘次数(Key:FCB中会存有指向顶级索引块的指针,因此可以根据FCB读入顶级索引块。每次读入下一级的索引块都需要一次读磁盘操作。另外,要注意题目条件——顶级索引块是否已调入内存)

知识点回顾与重要考点

		How?	目录项内容	优点	缺点
顺序分配		为文件分配的必须是连续 的磁盘块	起始块号、文件长度	顺序存取速度快, 支持随机访问	会产生碎片,不利于文件 拓展
链接 分配	隐式 链接	除文件的最后一个盘块之外,每个盘块中都存有指向下一个盘块的指针	起始块号、结束块号	可解决碎片问题, 外存利用率高,文 件拓展实现方便	只能顺序访问,不能随机 访问。
	显式链接	建立一张文件分配表(FAT), 显式记录盘块的先后关系 (开机后FAT常驻内存)	起始块号	除了拥有隐式链接的优点之外,还可通过查询内存中的 FAT实现随机访问	FAT需要占用一定的存储空 间
索引分配		为文件数据块建立索引表。 若文件太大,可采用链接 方案、多层索引、混合索 引	链接方案记录的是第一个索引块的块号,多层/混合索引记录的是顶级索引块的块号	支持随机访问,易于实现文件的拓展	索引表需占用一定的存储 空间。访问数据块前需要 先读入索引块。若采用链 接方案,查找索引块时可 能需要很多次读磁盘操作。

易混难点: 支持随机访问

假设这个文件的逻辑结构是"顺序文件", 并且是定长记录,每个记录长度16B。那么, i 号记录的逻辑地址是多少? (从0开始编号)

每块大小为1KB, 定长记录长度为16B, 因此一块有

1KB/16B = 64 个记录。则...

逻辑块号 m = i / 64

块内地址 n = (i % 64) * 16

i号记录的逻辑地址=(m,n)

"定长记录的顺序文件支持随机访问"——可以直接算出;号记录对应的逻辑地址

若文件记录不定长,则只能先顺序遍历前 i-1 个记录,因此记录不定长时不支持随机访问

"文件的某种逻辑结构支持随机存取/随机访问"是指:采用这种逻辑结构的文件,可以根据记录号直接算出该记录对应的逻辑地址(逻辑块号,块内地址)。

△ 公众号: 王道在线

b站: 王道计算机教育

抖音:王道计算机考研