COMP 3721

Tutorial 2

• DFA

1) Prove that $\mathbb{N} \times \mathbb{N}$ is countable.

Suppose we don't know the fact that the Cartesian product of two countable sets is countable.

• Prove that $\mathbb{N} \times \mathbb{N}$ is countable.

- Proof 1:
 - A way to enumerate all elements:
 - enumerate tuple (a, b) where:
 - a + b = 0
 - a + b = 1
 - a + b = 2
 - ..
 - Every (a, b) will be reached in finite step..

(0,0)	(0,1)	(0,2)	(0,3)	
(1,0)	(1,1)	(1,2)	(1,3)	
(2,0)	(2,1)	(2,2)	(2,3)	
(3,0)	(3,1)	(3,2)	(3,3)	

• Prove that $\mathbb{N} \times \mathbb{N}$ is countable.

• Proof 2:

- Let $A_i = \{(i, j): j \in \mathbb{N}\} for i \in \mathbb{N}$
- Then each A_i is equinumerous with \mathbb{N} , so A_i is countably infinite.
- $\mathbb{N} \times \mathbb{N} = A_0 \cup A_1 \cup \cdots$
- Use the fact that countable union of countable sets is countable, we prove that $\mathbb{N} \times \mathbb{N}$ is countable.

- Prove that $\mathbb{N} \times \mathbb{N}$ is countable.
- Proof 3(a little bit complicated):
 - Find a bijection between $\mathbb{N} \times \mathbb{N}$ and \mathbb{N} .
 - The following function is such a bijection:
 - f(a, b) = (a + b 1)*(a + b 2)/2 + a
 - Prove that it is a bijection....

- 1) Construct a DFA for accepting the language with regular expression $b^*a(a\cup b)^*$.
- 2) Construct a DFA for accepting each of the following languages:
 - a) $\{w \in \{a, b\}^* : w \text{ contains the string } abbab\}.$
 - b) $\{w \in \{a, b\}^*: w \text{ don't have } abb \text{ as a substring}\}.$
 - c) $\{w \in \{a, b\}^*: w \text{ has a number of } a'\text{s divisible by 3}\}.$
 - d) $\{w \in \{a, b\}^*: w \text{ has an odd number of } a'\text{s and an even number of } b'\text{s}\}.$

1) Construct a DFA for accepting the language with regular expression $b^*a(a\cup b)^*$.

- 2) Construct a DFA for accepting each of the following languages:
 - a) $\{w \in \{a, b\}^* : w \text{ contains the string } abbab\}.$

- 2) Construct a DFA for accepting each of the following languages:
 - a) $\{w \in \{a, b\}^* : w \text{ contains the string } abbab\}.$
 - b) $\{w \in \{a, b\}^*: w \text{ don't have } abb \text{ as a substring}\}.$

2) Construct a DFA for accepting each of the following languages:

- a) $\{w \in \{a, b\}^* : w \text{ contains the string } abbab\}.$
- b) $\{w \in \{a, b\}^*: w \text{ don't have } abb \text{ as a substring}\}.$
- c) $\{w \in \{a, b\}^*: w \text{ has a number of } a'\text{s divisible by 3}\}.$

2) Construct a DFA for accepting each of the following languages:

- a) $\{w \in \{a, b\}^* : w \text{ contains the string } abbab\}.$
- b) $\{w \in \{a, b\}^*: w \text{ don't have } abb \text{ as a substring}\}.$
- c) $\{w \in \{a, b\}^*: w \text{ has a number of } a'\text{s divisible by 3}\}.$
- d) $\{w \in \{a, b\}^*: w \text{ has an odd number of } a'\text{s and an even number of } b'\text{s}\}.$

