

Robot Vision

Robust Estimation/RANSAC

Dr. Chen Feng

<u>cfeng@nyu.edu</u>

ROB-UY 3203, Spring 2024

Overview

- Feature Detection and Matching
- 2D line/3D plane fitting
 - Regular linear regression
 - Total least squares
- Robust fitting RANSAC
 - Intuitions behind RANSAC
 - How RANSAC works
 - Why minimal solution is important
 - More example problems

References

- Hartley & Zisserman 2003:
 - Section 4.7
- Corke 2011:
 - Section 14.1, 14.2.3
- Forsyth & Ponce 2011:
 - Chapter 5, Section 10.4
- Szeliski 2022:
 - Section 7.1, 7.2, 8.1.4

Feature-based SfM Pipeline – Overview

Data Association

General	Planar	Panoramic		
 Fundamental matrix F (uncalibrated) Essential matrix E (calibrated) 	Homography H	Homography H		
7 correspondences5 correspondences	• 4 correspondences	• 4 correspondences		

Data Association

Data association creates a graph of cameras/views and landmark points

A Classic Vision Pipeline

Feature Detection (Harris/FAST/SIFT/SURF/ORB/LSD)

Feature Description/Matching (SIFT/SURF/ORB)

- Homography estimation
- F-matrix estimation
- PnP problem
- ...

Corner/Blob Detection

Corner Detection Criteria Illustrations

Repeatability

Illumination invariance

Scale invariance

Pose invariance

- Rotation
- Affine

Corner Detection Criteria Illustrations

Saliency

Locality

Harris Corner

 C.Harris and M.Stephens. "A Combined Corner and Edge Detector." Proceedings of the 4th Alvey Vision Conference: pages 147--151.

Harris Detector: Basic Idea

Explore intensity changes within a window as the window changes location

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Blob Detector: Difference of Gaussians (DoG)

- Harris corner is rotation invariant
 - But not scale-invariant

 DoG: find extrema in both 2D-space and scale-space

FAST: Machine Learning for Corner Detection

- FAST (Features from Accelerated Segment Test)
 - Corner: if there exists n=12 contiguous pixels in the circle which are all brighter or all darker than the center for a threshold t
- High-speed test
 - quickly exclude many non-corners
- Decision-tree based improvement
- Non-maximum suppression

Edward Rosten, Reid Porter, and Tom Drummond, "Faster and better: a machine learning approach to corner detection" in IEEE Trans. Pattern Analysis and Machine Intelligence, 2010, vol 32, pp. 105-119.

A Classic Vision Pipeline: Description & Matching

Feature Detection (Harris/FAST/SIFT/SURF/ORB /LSD)

Feature Description/Matching (SIFT/SURF/ORB)

- Homography estimation
- F-matrix estimation
- PnP problem
- ...
- RANSAC to reject matching outliers

Feature Description

Depending on the application a descriptor must incorporate information that is:

- Invariant w.r.t:
- Illumination
- Pose
- Scale
- Intraclass variability

• Highly distinctive (allows a single feature to find its correct match with good probability in a large database of features)

SIFT Descriptor

- A standard (but non-free) descriptor
- Location and scale given by DoG detector (SIFT keypoints)

Typically M = 8; N= 4 1 x 128 descriptor

SIFT Descriptor is Robust to Small Variations

- Illumination
 - gradient & normalization
- Pose (small affine variation)
 - orientation histogram
- Scale
 - fixed by DOG
- Intra-class variability
 - histograms (small variations)

This makes the SIFT descriptor rotational invariant

From SIFT to SURF

- SIFT is good in terms of matching quality
 - But it is too slow for real-time applications
- SURF uses integral image to speed up the SIFT computation

Bay, H., Tuytelaars, T. and Van Gool, L., 2006, May. Surf: Speeded up robust features. In European conference on computer vision (pp. 404-417). Springer, Berlin, Heidelberg.

Faster than SURF? BRIEF/ORB

Connecting feature description with machine learning

More specifically, we define test τ on patch \mathbf{p} of size $S \times S$ as

$$\tau(\mathbf{p}; \mathbf{x}, \mathbf{y}) := \begin{cases} 1 & \text{if } \mathbf{p}(\mathbf{x}) < \mathbf{p}(\mathbf{y}) \\ 0 & \text{otherwise} \end{cases}, \tag{1}$$

where $\mathbf{p}(\mathbf{x})$ is the pixel intensity in a smoothed version of \mathbf{p} at $\mathbf{x} = (u, v)^{\top}$. Choosing a set of n_d (\mathbf{x}, \mathbf{y})-location pairs uniquely defines a set of binary tests. We take our BRIEF descriptor to be the n_d -dimensional bitstring

$$f_{n_d}(\mathbf{p}) := \sum_{1 \le i \le n_d} 2^{i-1} \ \tau(\mathbf{p}; \mathbf{x}_i, \mathbf{y}_i) \ . \tag{2}$$

Calonder, Michael, et al. "Brief: Binary robust independent elementary features." European conference on computer vision. Springer, Berlin, Heidelberg, 2010.

How to Handle Wrong Matching?

Feature Detection (Harris/FAST/SIFT/SURF/ORB /LSD) Feature Description/Matching (SIFT/SURF/ORB)

- Homography estimation
- F-matrix estimation
- PnP problem
- ...
- RANSAC to reject matching outliers

Let's start from fitting a 2D line

Linear Regression (Linear Least Squares)

Solving Ax=b

- A: design matrix
 - shape: m x n
 - m>>n
 - Typically full column-rank
- x: unknowns
 - shape: n x 1
- b: observed data
 - shape: m x 1
- Solve by least squares: x* = inv(A'A)A'b
 - Solving normal equation: A'Ax=A'b

Orthogonal Regression (Total Least Squares)

$$\epsilon_i = \boldsymbol{n}^T(\boldsymbol{p}_i - \boldsymbol{q})$$

$$[n, q]^* = \underset{n,q}{\operatorname{argmin}} \sum_{i} ||\epsilon_i||^2$$

 $s. t. ||n||^2 = 1$

perpendicular offsets

Orthogonal Regression for Line Estimation

• Given a set of 3D points $\{p_i\}$, we want to find out a line/plane (i.e., unit normal \mathbf{n} and center \mathbf{q}) that describes this set of points as

$$egin{aligned} n^\intercal(p_i-q) &= 0, orall i \ \cot(n,q) & ext{$\stackrel{>}{=}$ $\sum_i ext{dist}^2(p_i;n,q)$} \ &= \sum_i (n^\intercal(p_i-q))^2 \ &= n^\intercal[\cdots,p_i-q,\cdots][\cdots,p_i^\intercal-q^\intercal,\cdots]^\intercal n \ &= n^\intercal A(q) A(q)^\intercal n \end{aligned}$$

Orthogonal Regression for Line Estimation

Solving q

$$\mathbf{0} = rac{\partial \mathrm{cost}(n,q)}{\partial q} \equiv \sum_i (2nn^\intercal q - 2nn^\intercal p_i)$$

$$q^* = rac{1}{|\{p_i\}|}\sum_i p_i$$

Orthogonal Regression for Line Estimation

Solving n

$$\operatorname{cost}(n;q^*) \triangleq n^\intercal A(q^*) A(q^*)^\intercal n = n^\intercal B(q^*) n$$

• Equivalent to solve:

$$n^* = rg \min_n \qquad n^\intercal B(q^*) n$$
 s.t. $n^\intercal n = 1$

- Solve by SVD
 - Optimal n is B's eigenvector corresponding to the smallest eigenvalue.
 - So, this is also referred to as the PCA-based solution.

Solving Ax=0

- A: data matrix
 - shape: m x n
 - m >> n
 - rank(A) = n when data contains noise: full column-rank
- x: unknowns
 - shape: n x 1
- Seek for an approximation instead of exact non-trivial solutions
- Add a constraint: ||x||=1
- Solve by SVD: A=UDV'
 - x*=last column of V, if diag(D) is descending order

But Least Squares is NOT Robust to Outliers!

http://www.unige.ch/ses/sococ/cl/////stat/action/nonlin5.jpg

How to Solve This Intuitively?

- Mitigating outlier's influence/weight in the estimation
 - Iteratively Re-weighted Least Squares (IRLS)
- Detect outlier and remove it from estimation
 - RANdom SAmple Consensus (RANSAC)

How to Detect an Outlier?

- Enumeration strategy
 - Leave one out
- Voting strategy
 - Hypothesis and test

Hypothesis and Test

- Randomly select two points to generate a hypothesis line
- Test how good the current hypothesis is
 - Consensus set = {supporting points}
 - Score by #(supporting points)= |Consensus set|

Hypothesis and Test

- Randomly select two points to generate a hypothesis line
- Test how good the current hypothesis is

Hypothesis and Test

- Randomly select two points to generate a hypothesis line
- Test how good the current hypothesis is

RANSAC Framework

Objective

Line/Plane/Homography/etc.

Robust fit of a model to a data set S which contains outliers.

Algorithm

- (i) Randomly select a sample of s data points from S and instantiate the model from this subset.
- (ii) Determine the set of data points S_i which are within a distance threshold t of the model. The set S_i is the consensus set of the sample and defines the inliers of S. Often simplified as:
- (iii) If the size of S_i (the number of inliers) is greater than some threshold T, re-estimate the model using all the points in S_i and terminate.
- (iv) If the size of S_i is less than T, select a new subset and repeat the above.
- (v) After N trials the largest consensus set S_i is selected, and the model is re-estimated using all the points in the subset S_i .

(iii) Update S_i if the size grows.
(iv) repeat (i), (ii), (iii) for N times.

RANSAC Details – Distant Threshold t

- If data is known to be distributed as a Gaussian of standard deviation σ :
 - Use the 3σ rule
- Otherwise:
 - Determined manually from experience
 - Try-and-error

RANSAC Details – #Samples N

- Basic idea: more #trials (N) is better
 - Because it means larger RANSAC success probability p (at least one successful sampling)
 - Success sample: all the s sampled data points are inliers
- If we want to achieve a particular RANSAC success probability p
- And assume the outlier ratio ∈ is known
- How many #trials do we need i.e., N = ?
- Probability of one successful sampling: $(1 \epsilon)^s$
- Probability of at least one successful sampling: $1 [1 (1 \epsilon)^s]^N$
- Thus: $N = \ln(1-p) / \ln[1 (1-\epsilon)^s]$

Why Minimal Solution is Important

• For p=0.99

San	ple size	Proportion of outliers ϵ						_	
	s	5%	10%	20%	25%	30%	40%	50%	_
	2	2	3	5	6	7	11	17	-
	3	3	4	7	9	11	19	35	
	4	3	5	9	13	17	34	72	
	5	4	6	12	17	26	57	146	
	6	4	7	16	24	37	97	293	
	7	4	8	20	33	54	163	588	_
	8	5	9	26	44	78	272	1177	E

RANSAC Details – Adaptive Sampling

What if outlier ratio ∈ is NOT known?

- $N = \infty$, sample_count = 0.
- While $N > \text{sample_count Repeat}$
 - Choose a sample and count the number of inliers.
 - Set $\epsilon = 1 \text{(number of inliers)/(total number of points)}$
 - Set N from ϵ and (4.18) with p = 0.99.
 - Increment the sample_count by 1.
- Terminate.

More Examples – Homography

Objective

Compute the 2D homography between two images.

Algorithm

- (i) Interest points: Compute interest points in each image.
- (ii) **Putative correspondences:** Compute a set of interest point matches based on proximity and similarity of their intensity neighbourhood.
- (iii) **RANSAC robust estimation:** Repeat for N samples, where N is determined adaptively as in algorithm 4.5:
 - (a) Select a random sample of 4 correspondences and compute the homography H.
 - (b) Calculate the distance d_{\perp} for each putative correspondence.
 - (c) Compute the number of inliers consistent with H by the number of correspondences for which $d_{\perp} < t = \sqrt{5.99} \, \sigma$ pixels.

Choose the H with the largest number of inliers. In the case of ties choose the solution that has the lowest standard deviation of inliers.

- (iv) **Optimal estimation:** re-estimate H from all correspondences classified as inliers, by minimizing the ML cost function (4.8-p95) using the Levenberg–Marquardt algorithm of section A6.2(p600).
- (v) **Guided matching:** Further interest point correspondences are now determined using the estimated H to define a search region about the transferred point position.

The last two steps can be iterated until the number of correspondences is stable.

h

More Examples – F-matrix

Objective Compute the fundamental matrix between two images.

Algorithm

- (i) Interest points: Compute interest points in each image.
- (ii) **Putative correspondences:** Compute a set of interest point matches based on proximity and similarity of their intensity neighbourhood.
- (iii) **RANSAC robust estimation:** Repeat for N samples, where N is determined adaptively as in algorithm 4.5(p121):
 - (a) Select a random sample of 7 correspondences and compute the fundamental matrix F as described in section 11.1.2. There will be one or three real solutions.
 - (b) Calculate the distance d_{\perp} for each putative correspondence.
 - (c) Compute the number of inliers consistent with F by the number of correspondences for which $d_{\perp} < t$ pixels.
 - (d) If there are three real solutions for F the number of inliers is computed for each solution, and the solution with most inliers retained.

Choose the F with the largest number of inliers. In the case of ties choose the solution that has the lowest standard deviation of inliers.

- (iv) **Non-linear estimation:** re-estimate F from all correspondences classified as inliers by minimizing a cost function, e.g. (11.6), using the Levenberg–Marquardt algorithm of section A6.2(p600).
- (v) **Guided matching:** Further interest point correspondences are now determined using the estimated F to define a search strip about the epipolar line.

The last two steps can be iterated until the number of correspondences is stable.

11

Issues in RANSAC

- RANSAC could be time-consuming
 - Too many trials
- RANSAC will fail if the problem is multi-model
 - i.e., the data is sampled from multiple models (lines/planes/homography/...)

The RANSAC Song

References

- Szeliski 2011
 - Section 14.4
- (BoVW)Jupyter notebook by Olga Vysotska: https://github.com/ovysotska/in_simple_english/bl ob/master/bag_of_visual_words.ipynb
- (VLAD) Jégou, H., Douze, M., Schmid, C. and Pérez, P., 2010, June. Aggregating local descriptors into a compact image representation. In 2010 IEEE computer society conference on computer vision and pattern recognition (pp. 3304-3311). IEEE.
- (NetVLAD) Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T. and Sivic, J., 2016. NetVLAD: CNN architecture for weakly supervised place recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 5297-5307).
- Kendall, A., Grimes, M. and Cipolla, R., 2015. Posenet: A convolutional network for real-time 6-dof camera relocalization. In *Proceedings of the IEEE international conference on computer vision* (pp. 2938-2946).