02 Force Vectors

Engineering Statics

Updated on: August 21, 2025

Scalars versus Vectors

- Physical quantities in this course are measured using either scalars or vectors.
- A scalar quantity can be fully specified by its magnitude (or size) and units alone.
 Examples are temperature, speed, mass, time,

length, volume, density and energy.

- A vector quantity requires both magnitude and direction - in addition to units - to be fully specified.
 - Examples are displacement, velocity, force and momentum.
- ► 110 km/h is a speed. 110 km/h in a north-easterly direction is a vector.
- The vector quantity that is of most interest to us is force.

Graphical Vector Representation

- To represent a vector on a diagram, we draw a directed line segment – a line with an arrow tip.
- ► The length of the line segment is proportional to the magnitude of the vector.
- ▶ The direction of the line segment shows the direction of the vector.
- ► The arrow head gives the sense of that direction (up and rightwards in this case).

Graphical Vector Representation

- ➤ To represent a vector on a diagram, we draw a directed line segment – a line with an arrow tip.
- The length of the line segment is proportional to the magnitude of the vector.
- ▶ The direction of the line segment shows the direction of the vector.
- ► The arrow head gives the sense of that direction (up and rightwards in this case).

 θ indicates the direction of the line of action of the vector v relative to some reference.

(I.e., the horizontal axis in this case.)

Multiplication of a vector by a scalar

Multiplication of a vector by a scalar affects the magnitude and, if the scalar is negative, the sense of the direction of the vector.

Consider two vectors, \boldsymbol{A} and \boldsymbol{B} :

Consider two vectors, A and B:

To add vectors ${\bf A}$ and ${\bf B}$, written ${\bf A}+{\bf B}$, place the tail of ${\bf B}$ at the tip of ${\bf A}$.

Consider two vectors, A and B:

To add vectors ${\bf A}$ and ${\bf B}$, written ${\bf A}+{\bf B}$, place the tail of ${\bf B}$ at the tip of ${\bf A}$.

The sum, A + B, is obtained by drawing a vector R from the tail of A to the tip of B.

$$A + B = R$$

Consider two vectors, \mathbf{A} and \mathbf{B} :

To add vectors ${\bf A}$ and ${\bf B}$, written ${\bf A}+{\bf B}$, place the tail of ${\bf B}$ at the tip of ${\bf A}$.

The sum, A + B, is obtained by drawing a vector R from the tail of A to the tip of B.

$$A + B = R$$

Note that the sum of two vectors is itself a vector.

$Addition\ of\ Vectors:: It's\ commutative!$

$$B + A = R$$

$Addition\ of\ Vectors:: It's\ commutative!$

Example 1: Displacement Vectors

A displacement is a change in position. It has a magnitude (the distance moved) and a direction, so displacement is a vector quantity.

A truck drives due east on a straight road for 40 km, then drives north on a straight road for 30 km before stopping.

What is the resultant displacement of the truck?

Example 2: Velocity Vectors

A plane flies NNW (i.e., 22.5° west of north) with a velocity of 275 km/h. There is a wind blowing at 55 km/h from the NW (i.e., 45° west of north).

Determine the resultant velocity of the plane relative to the ground.

Determine the wind speed that would cause the plane to fly due north. What is the ground speed in this case?

The Parallelogram Law and the Triangle Law of Vector Addition

The Parallelogram Law:

- 1. Draw the vectors with their tails at the same point.
- 2. Form a parallelogram
- The diagonal of the parallelogram, starting from the tails of the two vectors, is the resultant.

The Parallelogram Law and the Triangle Law of Vector Addition

The Parallelogram Law:

- 1. Draw the vectors with their tails at the same point.
- 2. Form a parallelogram
- The diagonal of the parallelogram, starting from the tails of the two vectors, is the resultant.

The Triangle Law:

- 1. This is what we have been doing
- To do the calculations on the parallelogram above, we end up working with the triangle(s) anyway
- 3. Use the triangle law.

Subtraction of Vectors

► Consider two vectors, **A** and **B**:

Subtraction of Vectors

► Consider two vectors, **A** and **B**:

Now consider —B, which is obtained by reversing the sense of B.

Subtraction of Vectors

► Consider two vectors, **A** and **B**:

Now consider —B, which is obtained by reversing the sense of B.

▶ Then, add A to -B:

$$A - B = A + (-B)$$
$$= R$$

Consider the sum of vectors **A**, **B**, **C**, **D**, **E** and **F**:

Place all the vectors nose to tail.

- Place all the vectors nose to tail.
- Analyze the triangles. There are five sets of triangle calculations to do.

- Place all the vectors nose to tail.
- Analyze the triangles.
 There are five sets of triangle calculations to do.

- Place all the vectors nose to tail.
- Analyze the triangles.
 There are five sets of triangle calculations to do.

- Place all the vectors nose to tail.
- Analyze the triangles. There are five sets of triangle calculations to do.

- Place all the vectors nose to tail.
- Analyze the triangles.
 There are five sets of triangle calculations to do.

- Place all the vectors nose to tail.
- Analyze the triangles.
 There are five sets of triangle calculations to do.
- ➤ This is too much work! We will find a more efficient way soon :)

Vector Addition of Forces

- Force is a vector quantity. It has a magnitude and a direction.
- Consider your weight. It is a force; it has a magnitude (newtons or pounds). It has a direction (along a line of action that passes between you and the centre of the earth). And it has a sense: down, towards the centre of the earth. If you step off a diving board, you will accelerate downwards in a predictable fashion.
- We have seen that we can add vectors together so we can do the same for forces.
- Multiple forces acting on an object through a point have a resultant force (the net force, which is the combined result of the summing together of the multiple forces).
- The forces which, when combined, sum to this resultant are known as component forces.

Consider forces A and B acting at point 0, as shown.

- Consider forces A and B acting at point 0, as shown.
- ► The resultant force, R, of forces A and B is the vector sum of A and B.

- Consider forces A and B acting at point 0, as shown.
- ► The resultant force, R, of forces A and B is the vector sum of A and B.
- ► A and B are component forces of R.

- ► Consider forces **A** and **B** acting at point 0, as shown.
- ► The resultant force, R, of forces A and B is the vector sum of A and B.
- ► A and B are component forces of R.
- C and D are also component forces of R.

- Consider forces A and B acting at point 0, as shown.
- ► The resultant force, R, of forces A and B is the vector sum of A and B.
- ► A and B are component forces of R.
- C and D are also component forces of R.
- ► ...as are E and F

- ► Consider forces **A** and **B** acting at point 0, as shown.
- ► The resultant force, R, of forces A and B is the vector sum of A and B.
- ► A and B are component forces of R.
- C and D are also component forces of R.
- ► ...as are E and F
- There are infinitely many possible component forces for each force R

Finding Resultants and Components

▶ In each of the examples just given, there were only two components but there can be many components for each resultant.

Finding Resultants and Components

▶ In each of the examples just given, there were only two components but there can be many components for each resultant.

► In this case, R is the resultant of 6 component forces: A, B, C, D, E and F

Finding Resultants and Components

▶ In each of the examples just given, there were only two components but there can be many components for each resultant.

- In this case, R is the resultant of 6 component forces: A, B, C, D, E and F
- ► For each force *R*, we shall generally need only two components.

Resultant Forces

Example 3

Determine the magnitude and the direction (measured clockwise from the the positive x-axis) of the resultant of the two forces.

(One kilonewton is one thousand newtons, i.e., $1 \, \text{kN} = 1000 \, \text{N}$)

hello

Resultant Forces

Mass, Force and Weight

- ► From Newton's Second Law of Motion, F = ma (force = mass x acceleration)
- ► The weight of an object is a force. It is the gravitational attractive force between the object and the earth.
- ▶ If we denote the acceleration due to gravity by g ($g = 9.81 \text{ m/s}^2 = 32.2 \text{ ft/s}^2$) and denote the mass of the object by m, then the weight of the object, W, is given by:

$$W = mg$$