

École supérieure en Sciences et Technologies de l'Informatique et du Numérique

Durée: 1 heure

1ère année Cycle supérieur Année universitaire: 2022/2023 Module: Analyse numérique

Dr. ALKAMA.L

Interrogation $N^{\circ}2$

N.B: veuillez détailler vos réponses.

Partie I: On considère la fonction $g(x) = x \sqrt{x^2 + 1}$ définie sur [-2, 3].

- 1. Soit $\varepsilon = 10^{-1}$. Déterminer le nombre d'itérations nécessaires pour approcher la racine α tel que $g(\alpha) = 0$.
- 2. Résoudre l'équation g(x) = 0 par la méthode de dichotomie.
- 3. Estimer l'erreur de l'approximation commise.

Partie II: Soit f une fonction passant par les points $(x_i, f(x_i))$ suivants:

i	0	1	2	3
x_i	- 1	0	1	3/2
$f(x_i)$	0	- 3	-6	-135/8

- 1. Déterminer le polynôme d'interpolation de f avec deux méthodes différentes (de votre choix).
- 2. Approcher $f\left(\frac{1}{4}\right)$.
- 3. Donner l'expression analytique de l'erreur estimée.
- 4. Majorer l'estimation de l'erreur de $\left| f\left(\frac{1}{4}\right) \right|$ si $\left| f^{(4)}(x) \right| \leq \frac{1}{1250 \ x^2}$. Conclure.

École supérieure en Sciences et Technologies de l'Informatique et du Numérique

Durée: 1 heure

1ère année Cycle supérieur Année universitaire: 2022/2023 Module: Analyse numérique

Dr. ALKAMA.L

Correction interrogation N°2 (12 points)

Partie I: On considère la fonction $g(x) = x \sqrt{x^2 + 1}$ définie sur [-2, 3]. Et soit $\varepsilon = 10^{-1}$.

1. Déterminer le nombre d'itérations nécessaires pour approcher la racine α tel que $g(\alpha) = 0$.

On a
$$n \ge \frac{\ln\left(\frac{b-a}{\varepsilon}\right)}{\ln 2} - 1 \implies n \ge \frac{\ln\left(\frac{3-(-2)}{10^{-1}}\right)}{\ln 2} - 1 = 4.6438 \implies n = 5....(0.5)$$

2. Résoudre l'équation q(x) = 0 par la méthode de dichotomie.

Vérifions l'existence et l'unicité de la racine:

- Continuité: g est continue sur [-2,3] car c'est le produit de deux fonctions $x\mapsto x$ et $x\mapsto \sqrt{x^2+1}$ continues sur [-2,3].....(0.25)
- Existence: On a $g(-2) = -2\sqrt{5}$ et $g(3) = 3\sqrt{10}$ alors g(-2).g(3) < 0, d'où il existe au moins

Résolution par Dichotomie:

$$x_n = \frac{a_n + b_n}{2}, \quad \Delta_n = \frac{|b - a|}{2^{n+1}} = \frac{5}{2^{n+1}}, \quad \varepsilon = 10^{-1}$$

n	a_n	b_n	x_n	$g(a_n)$	$g(b_n)$	$g(x_n)$	Δ_n	$\Delta_n \le \varepsilon$	
0	-2	3	$\left[\frac{1}{2}\right]$	$-2\sqrt{5}$	$3\sqrt{10}$	0.55	$\frac{5}{2}$	Non	
1	-2	$\frac{1}{2}$	$\left[-\frac{3}{4}\right]$	$-2\sqrt{5}$	0.55	-0.93	$\frac{5}{4}$	Non	
2	$\left[-\frac{3}{4}\right]$	$\frac{1}{2}$	$\left[-\frac{1}{8}\right]$	-0.93	0.55	-0.12	$\frac{5}{8}$	Non	(03)
3	$\left[-\frac{1}{8}\right]$	$\frac{1}{2}$	$\frac{3}{16}$	-0.12	0.55	0.19	$\frac{5}{16}$	Non	
igg 4	$\left[-\frac{1}{8}\right]$	$\frac{3}{16}$	$\left[\frac{1}{32}\right]$	-0.12	0.19	0.03	$\frac{5}{32}$	Non	
5	$\left[-\frac{1}{8}\right]$	$\frac{1}{32}$	$-\frac{3}{64}$	-0.12	0.03	-0.04	$\frac{5}{64}$	Oui	

Alors la valeur approchée à la racine α par la méthode de dichotomie à 10^{-1} près est $x^* = x_5 = -\frac{3}{64} \simeq$ 0 avec $g(x^*) = -0.04 \simeq 0...(0.5)$

3. Estimer l'erreur de l'approximation commise.

$$|\alpha - x_n| \le \frac{|b - a|}{2^{n+1}}$$

$$\iff |\alpha - x_5| \le \frac{|3 - (-2)|}{2^{5+1}}$$

$$\iff |\alpha - 0| \le \frac{5}{64} \dots (0.5)$$

Partie II: Soit f une fonction passant par les points $(x_i, f(x_i))$ suivants:

i	0	1	2	3
x_i	-1	0	1	3/2
$f(x_i)$	0	- 3	- 6	-135/8

- 1. Déterminer le polynôme d'interpolation de f avec deux méthodes différentes (de votre choix).
 - On a 4 points, ce qui veut dire que le polynôme d'interpolation sera d'ordre 3.....(0.25)
 - On a aussi $-1 \neq 0 \neq 1 \neq \frac{3}{2}$, d'où le polynôme P_3 est unique.....(0.25)

En utilisant la méthode directe:

On a
$$P_3(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 \dots (0.25)$$
.

Et

$$P_3(-1) = a_0 - a_1 + a_2 - a_3 = f(-1) = 0$$

$$P_3(0) = a_0 = f(0) = -3$$

$$P_3(1) = a_0 + a_1 + a_2 + a_3 = f(1) = -6$$

$$P_3\left(\frac{3}{2}\right) = a_0 + \frac{3}{2}a_1 + \frac{9}{4}a_2 + \frac{27}{8}a_3 = f\left(\frac{3}{2}\right) = -\frac{135}{8}$$

Les coefficients a_i vont être déterminés par la résolution du système linéaire:

$$\begin{pmatrix} 1 & -1 & 1 & -1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & \frac{3}{2} & \frac{9}{4} & \frac{27}{8} \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} 0 \\ -3 \\ -6 \\ -\frac{135}{8} \end{pmatrix}$$

La solution de système est $a = {}^{t}(-3, 2, 0, -5)$(1) D'où :

$$P_3(x) = -3 + 2x - 5x^3 \dots (0.25).$$

En utilisant la formule de Lagrange

$$P_3(x) = \sum_{j=0}^{3} f(x_j) L_i(x)$$

On a

$$L_{0}(x) = \frac{(x-x_{1})(x-x_{2})(x-x_{3})}{(x_{0}-x_{1})(x_{0}-x_{2})(x_{0}-x_{3})} = \frac{(x-0)(x-1)(x-\frac{3}{2})}{(-1-0)(-1-1)(-1-\frac{3}{2})} = \frac{-1}{5} x(x-1)(x-\frac{3}{2})$$

$$L_{1}(x) = \frac{(x-x_{0})(x-x_{2})(x-x_{3})}{(x_{1}-x_{0})(x_{1}-x_{2})(x_{1}-x_{3})} = \frac{(x+1)(x-1)(x-\frac{3}{2})}{(0+1)(0+1)(0-\frac{3}{2})} = \frac{2}{3} (x^{2}-1)(x-\frac{3}{2}).....(1).$$

$$L_{2}(x) = \frac{(x-x_{0})(x-x_{1})(x-x_{3})}{(x_{2}-x_{0})(x_{2}-x_{1})(x_{2}-x_{3})} = \frac{(x+1)(x-0)(x-\frac{3}{2})}{(1-0)(1+1)(1-\frac{3}{2})} = -x(x+1)(x-\frac{3}{2})$$

$$L_{3}(x) = \frac{(x-x_{0})(x-x_{1})(x-x_{2})}{(x_{3}-x_{0})(x_{3}-x_{1})(x_{3}-x_{2})} = \frac{(x+1)(x-0)(x-1)}{(\frac{3}{2}+1)(\frac{3}{2}-0)(\frac{3}{2}-1)} = \frac{8}{15} x(x^{2}-1)$$

D'où

$$P_{3}(x) = f(x_{0})L_{0}(x) + f(x_{1})L_{1}(x) + f(x_{2})L_{2}(x) + f(x_{3})L_{3}(x).....(0.25).$$

$$= 0 \times L_{0}(x) - 3L_{1}(x) - 6L_{2}(x) - \frac{135}{8}L_{3}(x)$$

$$= -2\left(x^{3} - \frac{3}{2}x^{2} + \frac{3}{2}x\right) + 6\left(x^{3} - \frac{1}{2}x^{2} - \frac{3}{2}x\right) - 9\left(x^{3} - x\right)$$

$$= -5x^{3} + 2x - 3.....(0.25).$$

En utilisant la formule de Newton

2. Approcher $f\left(\frac{1}{4}\right)$.

On a $f(x) \simeq P_3(x)$, alors

$$P_3\left(\frac{1}{4}\right) = -5\left(\frac{1}{4}\right)^3 + 2\left(\frac{1}{4}\right) - 3 = -\frac{165}{64} = -2.5781...$$
(0.75)

D'où

$$f\left(\frac{1}{4}\right) \simeq -\frac{165}{64} = -2.5781$$

3. Donner l'expression analytique de l'erreur estimée.

On a

$$E_n = f(x) - P_n(x) = \frac{f^{(n+1)}(\varepsilon_x)}{(n+1)!} \prod_{j=0}^n (x - x_j), \quad \varepsilon_x \in [a, b].$$

Alors

$$E_3 = f(x) - P_3(x) = \frac{f^{(3+1)}(\varepsilon_x)}{(3+1)!} \prod_{i=0}^{3} (x - x_i) = \frac{f^{(4)}(\varepsilon_x)}{24} x (x+1)(x-1) \left(x - \frac{3}{2}\right), \quad \varepsilon_x \in \left[-1, \frac{3}{2}\right] \dots (0.75).$$

4. Majorer l'estimation de l'erreur de $f\left(\frac{1}{4}\right)$ si $\left|f^{(4)}(x)\right| \leq \frac{1}{1250 \ x^2}$. Conclure.

On a
$$E_n(x) \le \frac{\max_{\varepsilon_x \in [-1, \frac{3}{2}]} |f^{(n+1)}(\varepsilon_x)|}{(n+1)!} \prod_{j=0}^n |(x - x_j)|$$

$$\implies E_4(x) \le \frac{\max_{\varepsilon_x \in [-1, \frac{3}{2}]} |f^{(4)}(\varepsilon_x)|}{24} x(x+1)(x-1) \left(x - \frac{3}{2}\right)$$

$$\le \frac{1}{24} \frac{1}{1250} \frac{1}{x^2} \left|x (x-1)(x+1) \left(x - \frac{3}{2}\right)\right|$$

La majoration de l'erreur estimée de $f\left(\frac{1}{4}\right)$ est

$$E_4\left(\frac{1}{4}\right) \le \frac{1}{24} \frac{1}{1250 \left(\frac{1}{4}\right)^2} \left| \frac{1}{4} \left(\frac{1}{4} - 1\right) \left(\frac{1}{4} + 1\right) \left(\frac{1}{4} - \frac{3}{2}\right) \right|$$

$$\le 1.5625 * 10^{-4} \dots (1)$$

Conclusion:(0.5)

La majoration d'erreur est autour de 10^{-4} , qui signifie que le polynôme d'interpolation trouvé est précis. En d'autre terme, il s'agit d'une bonne approximation.