

UNCLASSIFIED

Software Cost Metrics Manual

Mr. Wilson Rosa
Dr. Barry Boehm
Mr. Don Reifer
Dr. Brad Clark
Dr. Ray Madachy

21st Systems & Software Technology Conference
April 22, 2009

UNCLASSIFIED

MOTIVATION

- DOD desires more credible estimates
 - Provide for more realistic Program Element budgets
 - Permit better assessment of Contractor proposed costs
 - Reduce bad press and the perception that it is wasteful of taxpayer dollars
- To achieve this goal, DOD needs
 - Benchmarks that can be used to assess reasonableness of budget submissions and Contractor proposals
 - Consistent ways of addressing the many different size and cost parameters used in preparing estimates and cost-to-complete exercises
 - Hard data that is statistically solid that justifies findings
- With this data, improvements can be made in processes used for planning, budgeting and control

Integrity - Service - Excellence

UNCLASSIFIED

Data Quality Challenges

- DoD has many software cost data repositories
 - DCARC, NRO, AFCAA, ODASA-CE, NCCA, NSA, Aerospace, ...
- Despite increased interest in data, it is surprising that so little effort has been committed reconciling inconsistencies within and across data repositories...
 - 1. No reporting of **Equivalent Size Inputs** – CM, DM, IM, SU, UNFM, Type
 - 2. No common SLOC reporting – logical, physical, etc.
 - 3. No standard definitions – Application Domain, Build, Increment, Spiral,...
 - 4. No common effort reporting – analysis, design, code, test, CM, QA,...
 - 5. Product size only reported in lines of code
 - 6. No reporting of quality measures – defect density, defect containment, etc.
- The data needs to be statistically sound and defensible
- A good opportunity to communicate and work towards standardization is the current MIL-STD 881 efforts

The key to standardization is encouraging broader participation among these groups

Integrity - Service - Excellence

UNCLASSIFIED

Limited Research within DoD

1. Other contributors to Productivity besides effort and size, are being ignored by most analysts
 - Operating Environment, Application Domain, and Product Complexity
 - Personnel Capability
 - Required Reliability
 - Quality – Defect Density, Defect Containment
 - Integrating code from previous deliveries – Builds, Spirals, Increments, etc.
 - Requirements Volatility
2. Converting to Equivalent SLOC
 - Categories like Modified, Reused, Adopted, Managed, and Used add no value unless they translate into single or unique narrow ranges of DM, CM, and IM parameter values. We have seen no empirical evidence that they do
 - Other categories like COTS, Converted, Generated and Rehosted are handled differently and there is no consistency when they're used

Integrity - Service - Excellence

UNCLASSIFIED

Model Calibration Challenges

- Most program offices and support contractors rely heavily on software cost models for their estimates
- May have not been calibrated with most recent DoD data
- Calibration with recent data (2002-Present) will help increase program office estimating accuracy

SEER

SLIM-Estimate™

TruePlanning® by PRICE Systems

Integrity - Service - Excellence

UNCLASSIFIED

Consequence: Significant Cost Growth (%)

Statistics	*Total System	**Software Only
Minimum	-64%	-80%
Mean	45%	37%
Maximum	471%	623%
Standard Deviation	71%	107%
Milestone Phase	Development	Development
Sample Size	137	111
Year of Data	1993-2003	2002-2008

Source : *John McCrillis, 36th DOD Cost Analysis Symposium (2003)
**Defense Automated Cost Information System (DACIMS)

Integrity - Service - Excellence

PROPOSED SOLUTION

UNCLASSIFIED

AFCAA in conjunction with USC and other DOD Cost Agencies, will publish a Manual to help analysts develop more credible estimates based on empirical data in a timely and consistent manner

Integrity - Service - Excellence

7

Special Features

UNCLASSIFIED

- **Augment NCCA/AFCAA Software Cost Handbook:**
 - Empirical Productivity Benchmarks by Operating Environment, Application Domain, and Software Size
 - Default Equivalent SLOC Inputs (DM, CM, IM, SU, UNFM); Requirements Volatility derived from empirical data
 - Empirical Code, Effort, and Schedule Growth Measures derived from SRDRs
 - Guidelines and Knowledge Base that capture best practice
 - Empirical Cost Risk and Uncertainty Analysis Metrics
 - **Calibrated SLIM-Estimate™** using most recent DoD data
 - Mapping between COCOMO, SEER, True S cost drivers
 - Empirical Dataset for COCOMO, True S, and SEER Calibration
 - Software Maintenance Cost Model

Integrity - Service - Excellence

8

Table of Contents

UNCLASSIFIED

- Chapter 1: Software Estimation 101
- Chapter 2: Software Sizing
- Chapter 3: Software Growth Measures
- Chapter 4: Equivalent SLOC Measures
- Chapter 5: Productivity Benchmarks
- Chapter 6: Model Calibration
- Chapter 7: Calibrated SLIM-ESTIMATE
- Chapter 8: Cost Risk and Uncertainty Metrics
- Chapter 9: Data Normalization Guidelines
- Chapter 10: Software Resource Data Report
- Chapter 11: Software Maintenance
- Chapter 12: Lessons Learned

Completed by Sep 09

Integrity - Service - Excellence

9

UNCLASSIFIED

Our Plan of Attack

Step 1: Data Definition Approach

UNCLASSIFIED

1. Review literature/past research results	Lots of really good work already done by variety of sources
2. Update USC's cost model comparisons	Model comparisons done for NASA last year
3. Synthesize Overall Framework	Develop framework that builds on past to achieve goals established for effort
4. Identify Candidate Application Domains	Estimate accuracy have been shown to be better when they are domain-specific
5. Define Counting Rules and Standards	Use framework as basis to relate counting rules and standards
6. Validate Framework Via Trial Use	Make sure it works with real data; else, change it.

→ Software Cost Handbook

Integrity - Service - Excellence

11

Operating Environments:

UNCLASSIFIED

Operating Environments	
1. Avionics	Comparing results from an Avionics development with that of a business project makes no sense what-so-ever
2. Business	
3. Unmanned Ground	
4. Manned Space	
5. Manned Ground	
6. Military Mobile	
7. Missile and Unmanned Airborne	
8. Shipboard	
9. Telecommunications	
10. Unmanned Space	
11. Web	All comparison need to take software quality into consideration to be meaningful (threshold in terms of defects/KSLOC when delivered)

Integrity - Service - Excellence

12

Application Domains:

UNCLASSIFIED

Application Domains	
1. Bus	12. Platform
2. Command & Control	13. Process Control
3. Communications	14. Radar
4. Controls & Displays	15. Signal Processing
5. Database	16. Simulation & Modeling
6. Executive	17. Situation Awareness
7. Information Assurance	18. Sonar
8. Maintenance & Diagnostics	19. Test & Evaluation
9. Mission Management	20. Tool and Tool Systems
10. Mission Planning	21. Training
11. Payload	22. Weapons Delivery

Integrity - Service - Excellence

**Software Sizing:
Counting Rules & Standards**

UNCLASSIFIED

- Define software size measures used as input to cost estimation models, and provide guidelines for counting and normalizing software size.
 - Provide rules and guidelines to convert size inputs between models so projects can be represented in all models in a consistent manner
 - Logical source statements consisting of data declarations executables
 - Rules for considering statement type, how produced, origin, build, etc.
 - Providing automated code counting tools adhering to definition , including initial modified-code counting
 - Providing conversion guidelines for physical statements

Integrity - Service - Excellence

**Equivalent SLOC:
Stutzke's Counting Rules**

UNCLASSIFIED

- For adapted software, apply the parameters:
 - DM: % of design modified
 - CM: % of code modified
 - IM: % of integration required compared to integrating new code
 - Normal Adaptation Adjustment Factor AAF = $0.4^*DM + 0.3^*CM + 0.3^*IM$
- Reused software has $DM = CM = 0$.
 - IM is not applied to the size of the reused software (e.g., 70M SLOC of Windows Vista) but to the size of the other software directly interacting with it (frequently estimated using a %)
- Modified software has $CM > 0$. Since data indicates that the AAF factor tends to underestimate modification effort due to added software understanding effects, two other factors are used:
 - Software Understandability (SU): How understandable is the software to be modified?
 - Unfamiliarity (UNFM): How unfamiliar with the software to be modified is the person modifying it?

Integrity - Service - Excellence

Step 2: Identify Candidate Sources

UNCLASSIFIED

Commodity	Source	Format	Records
Space, Ground, Air	Defense Cost Analysis Resource Center	DD Form 2630	340
Space	AEHF, MILSTAR, GPS	SEER	~100
Air	F-22 Increment II	DD Form 2630	13
Space	FAB-T	DD-Form 2630	24
Space	NPOESS	SEER	67
Space, Air, Ground	Northrop Grumman, Raytheon	COCOMO, SEER	81
Air, Ship, Ground	Naval Center for Cost Analysis	DD Form 2630	68
Air	Lockheed Martin	COCOMO	10
Air	Army Cost and Economics Analysis Center	DD Form 2630	16
Space	NRO CAIG	SEER	40-60
Space	Aerospace, Space & Missile System Center	SEER	TBD
Space	NASA JPL	NASA	TBD
Space, Air, Ground	USC Affiliates	COCOMO	TBD

Integrity - Service - Excellence

Step 3: Collect Data

UNCLASSIFIED

- USC will interview program offices and developers to obtain additional information or resolve data anomalies
 - SLOC reporting – logical, physical, NCSS, etc.
 - Requirements Volatility and Adaptation
 - Modified or Reused using DM, CM, IM; SU, UNFM as appropriate
 - Size Type – Modified, Generated, New, Re-host, COTS, etc.
 - Effort reporting – phase and activity
 - Quality measures – defect density, defect containment, etc.
 - Source – in-house, third party, Prior Build, Prior Spiral, etc.
 - Requirements Volatility -- % of ESLOC reworked or deleted due to requirements volatility
 - Programming Languages
 - Cost Model Parameters – True S, SEER, COCOMO

Integrity - Service - Excellence

UNCLASSIFIED

Step 4: Organizational Taxonomy

Operating Environment

- Similar systems
- Similar products
- Similar operating characteristics
- Similar requirements

Application Domains

- Environment independent
- Application-oriented
- Technology driven
- Characterized differently using model cost drivers

Productivity Groups

- 0-25 KSLOC
- 26-50 KSLOC
- 51-100 KSLOC
- 100+ KSLOC

Meaningful Comparisons

USC Research Results

Productivity comparisons/benchmarks show best results achieved when similar **application domains** in similar **operating environments** are compared using actual data that is consistent and defendable

Integrity - Service - Excellence

19

UNCLASSIFIED

Productivity Benchmarks

(Example 1 – Not Endorsed)

Operating Environment	Application Domain	No. Projects	Size Range (EKSLOC)	ESLOC / SM		
				LOW	AVE	HIGH
Avionics	Command & Control	2	8	506	67	74
	Communications	4	26	125	145	302
	Controls & Displays	3	733	746	183	241
	Maintenance & Diagnostic	3	6	205	259	329
	Mission Management	18	1	1,581	38	155
	Mission Planning	4	43	542	43	376
	Radar	11	6	268	33	111
	Signal Processing	6	13	444	98	213
	Simulation & Modeling	6	32	560	188	683
Test & Evaluation	1	21	21	34	34	34
	Weapons Delivery	2	29	32	88	90

Source: Defense Automated Cost Information System (DACIMS), Proprietary Sources

USC Research Results

Productivity comparisons/benchmarks show best results achieved when similar **application domains** in similar **operating environments** are compared using actual data that is consistent and defensible

UNCLASSIFIED

Productivity Benchmarks (Example 2 – Not Endorsed)

Operating Environment	Application Domain	No. Projects	Size Range (EKSLOC)	ESLOC / SM		
				LOW	AVE	HIGH
Manned Ground	Command & Control	32	20 - 2486	22	296	831
	Controls & Displays	5	8 - 353	110	314	419
	Executive	2	71 - 424	78	264	450
	Logistics	1	231 - 231	290	290	290
	Mission Planning	11	44 - 2395	75	519	1766
	Platform	4	276 - 1517	88	129	161
	Process Control	3	39 - 172	215	352	485
	Signal Processing	1	286 - 286	358	358	358
	Simulation & Modeling	1	81 - 81	98	98	98
	Situational Awareness	2	20 - 1453	140	218	297
	Test & Evaluation	7	1 - 16	33	59	81

UNCLASSIFIED

Productivity Benchmarks

(Example 3 – Not Endorsed)

Operating Environment	Application Domain	No. Projects	Size Range (EKSLOC)	ESLOC / SM		
				LOW	AVE	HIGH
Shipboard	Command & Control	33	1	91	46	128
	Communications	8	0	159	8	171
	Controls & Displays	7	3	41	33	60
	Database	2	5	5	83	129
	Executive	4	12	77	48	85
	Maintenance & Diagnostic	7	0	144	13	444
	Mission Planning	7	5	80	32	104
	Platform	15	2	80	31	134
	Radar	17	1	46	4	66
	Simulation & Modeling	14	1	81	17	78
	Sonar	1	2	2	193	193
	Test & Evaluation	1	56	56	69	69
	Training	6	35	46	55	98
	Weapon Delivery	9	4	369	83	243

Source: Defense Automated Cost Information System (DACIMS), Proprietary Sources

- A similar table will be provided for the other 8 operating environments
- Descriptive statistics and project descriptions will follow each table

Integrity - Service - Excellence

22

UNCLASSIFIED

Default ESLOC Factors (Example 4 – Not Endorsed)

Size Type	Description	No. Projects	ESLOC Factor		
			Low	Ave	High
Reused	Pre-existing code that is not changed with the adaption parameter settings: • Design Modification % (DM) = 0% • Code Modification % (CM) = 0%	60	0%	9%	40%
Modified (High)	Pre-existing code that is changed with the adaption parameter setting: • Code Modification % (CM) > 25%	21	22%	51%	100%
Modified (Low)	Pre-existing code that is changed with the adaption parameter setting: • Code Modification % (CM) < 25%	38	3%	16%	34%
Generated	Software created with automated source code generators using different technologies. It may consist of the generator statements directly produced by the programmer or the G3L generated statements from automated tools.	40	0%	6%	50%
Re-Host	Rehosting software from one target environment to a similar environment. Assumes no major operating system changes. Development tools may be different between the platforms.	6	10%	16%	25%
COTS	Purchased commercially available software components whereby the source code is not available to application developers. It is not included for equivalent size. Other unmodified software not included in equivalent size are Government Furnished Software (GFS), libraries, operating systems and utilities.	1	1%	1%	1%

ESLOC Factor = Adaptation Adjustment Factor = $0.4 \times DM + 0.3 \times CM + 0.3 \times IM$

Interpretive Summary Form 1000-1

UNCLASSIFIED

Raw Datasets (Example 5 – Not Endorsed)

IOC YR	Record	Operating Environment	CSCI	Application Domain	Productivity (ESLOC/MM)	Total Size (SLOC)	Effective Size (ESLOC)	Effort (Person-Months)	Effort (Peak-Staff)	Schedule (Months)
1999	1	Airborne	Signal Processing	Avionics	60	90000	90000	1000	69	71
2008	2	Unmanned Space	Spot Aircraft Control	Payload	39	78000	5000	2000	95	69
2008	3	Unmanned Space	Bootstrap	Bus	44	35000	31000	800	70	60
2007	4	Manned Ground	Data Handling	C2	230	25000	21000	100	40	33
2007	5	Military Mobile	Display and Control	Radar	100	10000	10000	100	—	—
—	6	Unmanned Space	Classified	Payload	46	36000	29000	807	71	63

*In case you want to challenge or refine the benchmarks and metrics provided in the manual, the raw datasets (**Non Proprietary Version**) will be included in the appendix

Not Real Data Sample

 Current Status UNCLASSIFIED

- **Already collected a significant amount of data**
 - 345 projects --Defense Cost Analysis Resource Center
 - 240 projects – Raytheon, Lockheed, Northrop Grumman, etc.
 - Expecting space software projects from National Reconnaissance Office, NASA, and Military Prime Contractors (>100 projects)
- **Analyzing over 200 projects**
- **Common Data Definitions and Standards**
 - Initial Review (May 2009)
 - Interim Review (International COCOMO Forum, Oct 2009)
- Framework and definitions are done as is the initial data analysis – detailed data analysis is in process as is adding guidelines**
- **Manual Publication**
 - Initial Release (Sep 2009)
 - Subsequent Releases (Sep 2010, Sep 2011, Sep 2012)

Integrity - Service - Excellence 25

 Concluding Remarks UNCLASSIFIED

- Goal is to publish a manual to help analysts develop quick software estimates using empirical metrics from recent programs
- Additional information is crucial for improving data quality across DoD
- We want your input on Productivity Domains and Data Definitions
- **Looking for collaborators**
- **Looking for peer-reviewers**
- **Need more data**
- **Need even more data**

Integrity - Service - Excellence 26

 Questions or Comments? UNCLASSIFIED

- Any questions
- Any pointers
- Any feedback

Contact:

Wilson Rosa, AFCAA
 (703) 604 -0395
 Wilson.Rosa@pentagon.af.mil

Integrity - Service - Excellence 27