GESTIÓN DE PROYECTOS. MODELO DETERMINISTA. CPM

Grafo Direccional AOA (Activity on Arc)

Tarea ficticia. Duración 0

\longrightarrow		
Tarea	Precedente	Duración
Α	-	3
В	Α	12
C	A C C	4
D	C	10
C D E	C	2
F	D, E	10 2 3 2 4 3
G	-	2
H	A, G	4
I	G	3
J K L M	H	16
K	Н	2
L	J, K	2
M	F, L	2
	B, M	2
N O P Q	I, M	2 2 2 2 1 2 3
P	O	2
Q	N, P	3

MODELO CPM. FORMULACIÓN EN P.L.

 t_j = instante en el que deben finalizar las tareas (i, j).

 $\tau_{i,j} = \text{duración de la tarea } (i,j).$

 $t_j - t_i - \tau_{i,j}$ tiempo de inactividad para la tarea (i,j).

minimización del tiempo total del proyecto t_n

$$\begin{array}{lll} t_{1}+\tau_{12}-t_{2} & \leq 0 & \text{Min } t,\tau & t_{n} \\ t_{1}+\tau_{13}-t_{3} & \leq 0 & & t_{i}+\tau_{i,j}-t_{j} \leq 0, & (i,j) \in A \\ t_{2}+\tau_{24}-t_{4} & \leq 0, & (\tau_{24}=0) & & \underline{\tau}_{i,j} \leq \tau_{i,j} \leq \hat{\tau}_{i,j} \\ t_{3}+\tau_{34}-t_{4} & \leq 0, & (\tau_{34}=0) & & \underline{\tau}_{i,j} \leq \tau_{i,j} \leq \hat{\tau}_{i,j} \\ & \vdots & & (t_{1}=0) & & & \end{array}$$

MODELO CPM. FORMULACIÓN EN P.L.

Identificación del camíno crítico: arcos (i, j) con tiempo de inactividad cero

$$t_i + \tau_{i,j} - t_j = 0$$

A M K G

Solución del CPM: Carta de Gantt (Gantt's Chart)

Coste monetario de la actividad (i,j): $c(\tau_{i,j}) = k_{i,j} - c_{i,j} \tau_{i,j}$ $Min_{t,\tau} - \sum_{(i,j)\in A} c_{i,j} \tau_{i,j}$ $t_i + \tau_{i,j} - t_j \le 0, \ (i,j) \in A$ $\underline{\tau}_{i,j} \leq \tau_{i,j} \leq \hat{\tau}_{i,j}$ $t_n \leq T$, $(t_1 = 0)$ Costes de dirección e Coste **Coste** indirectos ejec. total

MÉTODO PERT. (Program Evaluation & Review Technique)

Las duraciones t_{ij} de las tareas son v. a. independientes entre sí. distribución β .

Se conoce:

- un valor mínimo a.
- un valor máximo b.
- el valor más frecuente $m \pmod{a}$.

$$E[t_{ij}] = \frac{1}{3} \left(2m + \frac{1}{2} (a+b) \right), \quad Var[t_{ij}] = \left[\frac{1}{6} (b-a) \right]^2$$

El método PERT determina el camino crítico usando el modelo CPM tomando como tiempos para cada tarea $E[t_{ij}]$.

Deben evaluarse entonces las varianzas de los caminos alternativos al crítico.

En caso de proyectos con número alto de tareas la distribución de los tiempos de los caminos se toma $\sim N(\mu, \sigma)$

MÉTODO PERT. (Program Evaluation & Review Technique)

$$4 + 9 + 5 = 18$$

$$4 + 8 + 5 = 17$$

Si se quiere terminar antes de 21 días, ¿cuál es el camino crítico?

