21 Semidirect products (11/10)

Construction 21.1 (The normal action). Let G be a group and let N be a normal subgroup, with automorphism group Aut(N). Then, conjugation induces a group homomorphism

$$G \to \operatorname{Aut}(N)$$
,

which we will also denote by $g \mapsto c_q$. The kernel of $c_q : G \to \operatorname{Aut}(N)$ is

$$C_G(N) = \{ g \in G \mid gng^{-1} = n \text{ for all } n \in N \},$$

which is a subgroup of $N_G(N)$. The group $C_G(N)$ is called the centralizer of N in G.

Example 21.2 (Normal abelian subgroups). A very important example of the previous construction is when the normal subgroup $N \subseteq G$ is abelian. In this case, N is in the kernel of $G \to \operatorname{Aut}(N)$ and so there is an induced homomorphism $G/N \to \operatorname{Aut}(N)$.

Example 21.3 (The center). The center $Z(G) \subseteq G$ is always normal, but the homomorphism $G \to \operatorname{Aut}(Z(G))$ is trivial, so one does not learn much from this construction in this case.

Example 21.4 (The dihedral reflection). Consider the dihedral group D_{2n} as an extension

$$1 \to \mathbf{Z}/n \to D_{2n} \to \mathbf{Z}/2 \to 1$$

of $\mathbb{Z}/2$ by \mathbb{Z}/n . As the normal subgroup \mathbb{Z}/n is abelian, there is an induced group homomorphism $D_{2n}/(\mathbb{Z}/n) \cong \mathbb{Z}/2 \to \operatorname{Aut}(\mathbb{Z}/n)$. This homomorphism corresponds to multiplication by -1.

Notation 21.5. If σ is an automorphism of G and $g \in G$ we write g^{σ} for $\sigma(g)$.

Construction 21.6. Let $\varphi \colon H \to \operatorname{Aut}(N)$ be a group homomorphism. We define a group structure, denoted by $N \rtimes_{\varphi} H$ or $N \rtimes H$, on the set $N \times H$ by decreeing that

$$(n_0, h_0) \cdot (n_1, h_1) = (n_0 n_1^{\varphi(h_0)}, h_0 h_1).$$

Lemma 21.7. Given $\varphi \colon H \to \operatorname{Aut}(N)$, the binary operation on $N \rtimes_{\varphi} H$ makes it into a group.

Proof. The operation has an identity element (e_N, e_H) . The inverse of (n, h) is $((n^{-1})^{\varphi(h)^{-1}}, h^{-1})$ as

$$(n,h)((n^{-1})^{\varphi(h)^{-1}},h^{-1}) = (n((n^{-1})^{\varphi(h)^{-1}})^{\varphi(h)},hh^{-1}) = (nn^{-1},hh^{-1}) = (e_N,e_H),$$

and the other order is the same. We leave associativity for the reader as Exercise 21.1.

Lemma 21.8. Given a group homomorphism $\varphi \colon H \to \operatorname{Aut}(N)$, the semidirect product $N \rtimes_{\varphi} H$ fits into an exact sequence

$$1 \to N \xrightarrow{i} N \rtimes_{\varphi} H \xrightarrow{q} H \to 1.$$

In particular, $N \subseteq N \rtimes_{\varphi} H$ is normal.

Proof. We define i by $i(n) = (n, e_H)$. This defines a group homomorphism as

$$i(n_0)i(n_1) = (n_0, e_H)(n_1, e_H) = (n_0(n_1)^{\varphi(e_H)}, e_H^2) = (n_0n_1, e_H) = i(n_0n_1).$$

as $\varphi(e_H)$ is the identity automorphism. The group homomorphism i is injective, by definition of $N \rtimes_{\varphi} H$. We identify N with its image under i. This subgroup is normal. Rather than check this directly, we check that i(N) is the kernel of a homomorphism q, which is defined by q(n,h)=h. That q is a homomorphism follows from the definition of multiplication on $N \rtimes_{\varphi} H$. The kernel of q consists of those elements (n,h) of $N \rtimes_{\varphi} H$ where $h=e_H$. But, this is precisely N. In particular, N is normal. Since q is also surjective, the lemma is complete.

Definition 21.9 (Split extensions). An exact sequence

$$1 \to N \xrightarrow{i} G \xrightarrow{q} H \to 1$$

of groups is **split** if there is a group homomorphism $f: H \to G$ such that $q \circ f = \mathrm{id}_H$. We illustrate this as

$$1 \longrightarrow N \xrightarrow{i} G \xrightarrow{f} H \longrightarrow 1$$
.

Semidirect products are very special extensions: they are split.

Lemma 21.10. If $\varphi \colon H \to \operatorname{Aut}(N)$, then the exact sequence

$$1 \to N \to N \rtimes_{\varnothing} H \to H \to 1$$

is split.

Proof. We define $f: H \to N \rtimes_{\varphi} H$ by $f(h) = (e_N, h)$. Evidently, $q \circ f = \mathrm{id}_H$ and f is a group homomorphism.

Example 21.11 (Not every extension is split). Consider

$$1 \to \mathbf{Z}/2 \xrightarrow{i} \mathbf{Z}/8 \xrightarrow{q} \mathbf{Z}/4 \to 1.$$

This is extension is not split. Indeed, a group homomorphism $f: \mathbb{Z}/4 \to \mathbb{Z}/8$ must send $1 \in \mathbb{Z}/4$ to an element of order dividing 4 in $\mathbb{Z}/8$, i.e., one of $\{0, 2, 4, 6\} \subseteq \mathbb{Z}/8$. As q(1) = 1, it follows that q(f(4)) is in $\{0, 2\}$, so $q \circ f$ is not the identity. In particular, we see that $\mathbb{Z}/8$ is **not** the semidirect product of $\mathbb{Z}/2$ and $\mathbb{Z}/4$.

Proposition 21.12. (i) An extension G of H by N is isomorphic to $N \rtimes_{\varphi} H$ for some $\varphi \colon H \to \operatorname{Aut}(N)$ if and only if the extension

$$1 \to N \xrightarrow{i} G \xrightarrow{q} H \to 1$$

is split.

(ii) A group G is isomorphic to a semidirect product $N \rtimes_{\varphi} H$ if and only if it contains N and H as subgroups with N normal, $N \cap H = \{e\}$, and NH = G.

Proof. We have already seen that if $G \cong N \rtimes_{\varphi} H$, then the corresponding exact sequence is split. Thus, assume that we have an extension as in (i), split by $f \colon H \to G$. Let φ be the composition $H \xrightarrow{f} G \xrightarrow{c} \operatorname{Aut}(N)$ of f with the normal action homomorphism and set $G' = N \rtimes_{\varphi} H$. Define a function $a \colon G' \to G$ by a(n,h) = nf(h). This is a group homomorphism as

$$a(n_0(n_1)^{\varphi(h_0)},h_0h_1) = n_0(n_1)^{\varphi(h_0)}f(h_0h_1) = n_0f(h_0)n_1f(h_0)^{-1}f(h_0)f(h_1) = n_0f(h_0)n_1f(h_1) = a(n_0,h_0)a(n_1,h_1).$$

It is injective as $a(n,h) = nf(h) = e_G$ implies $q(nf(h)) = q(n)q(f(h)) = h = e_H$, so $h = e_H$ and then $n = e_N$. It is surjective as any element of G is isomorphic to nf(h) for some n and h. To see this, fix $g \in G$ and then note that $gf(q(g))^{-1}$ is in N. This completes the proof of (i). The proof of (ii) is left to the reader as Exercise 21.3.

21.1 Exercises

Exercise 21.1. Prove that if $\varphi \colon H \to \operatorname{Aut}(N)$ is a homomorphism, then the binary operation of Construction 21.6 is associative. This completes the proof of Lemma 21.7.

Exercise 21.2. Let G be a group with subgroups N and H. Find necessary and sufficient conditions for the function $f: N \times H \to G$ defined by f(n,h) = nh to be a group isomorphism.

Exercise 21.3. Prove part (ii) of Proposition 21.12.