

A função $\arcsin(x)$ é contínua e estritamente crescente. É derivável em]-1,1[

$$f(x) = \arcsin(x) : [-1,1] \rightarrow [-\frac{\pi}{2}, \frac{\pi}{2}]$$

$$\arcsin'(x):\frac{1}{\sqrt{1-x^2}}(-1< x<1)$$

$$f(x) = \arctan(x) : \mathbb{R} \to] - \frac{\pi}{2}, \frac{\pi}{2}[$$

$$\arctan'(x):\frac{1}{1+x^2}(x\in\mathbb{R})$$

$$\begin{split} f(x) &= \operatorname{arccon}(x) : |0, \pi| \to \mathbb{R} \\ \mathbf{A} \text{ função } \cot(x) \ \delta \text{ furpar, estritamente decrescente em } |0, \pi| \\ f(x) &= \cot(x) : \mathbb{R} \setminus \{k\pi|k \in \mathbb{Z}\} \qquad g(x) = f(x)|_{0,\pi|} \to \mathbb{R} \end{split}$$

 $f(x) = \operatorname{arccot}(x) :]0, \, \pi[\to \mathbb{R}$

A função $\sinh(x)$ é impur, continua e estritamente crescente. $f(x)=\sinh(x):\mathbb{R}\to\mathbb{R}$ $f(x)=\sinh(x)=\frac{e^x-e^{-x}}{2}$

$$f(x) = \sinh(x) : \mathbb{R} \to \mathbb{R}$$

$$(\log_a x)' = \frac{1}{x \ln a} \qquad [\log_a f(x)]' = \frac{f'(x)}{f(x) \ln a}$$

$$(\tan x)' = \frac{1}{\cos^2 x}$$
 $[\tan f(x)]' \frac{f'(x)}{\cos^2 [f(x)]}$

$$(\tanh x)' = \frac{1}{\cosh^2 x}$$
 $[\tanh f(x)]' \frac{f'(x)}{\cos^2 h[f(x)]}$

Primitivação por Partes

$$\int f'g = dx = \int f(x)dx + \int g(x)dx$$

A função $\cos(x)$ é estritamente decrescente em $[0,\pi]$ e estritamente crescente em $[\pi,2\pi]$

$$f(x) = \cos(x) : \mathbb{R} \to [-1,1] \qquad g(x) = f(x)|_{[0,\pi]} \to [-1,1]$$

A função $\arccos(x)$ é contínua e estritamente decrescente. É derivável em]-1,1[

$$f(x) = \arccos(x) : [-1,1] \rightarrow [0,\pi]$$

$$\arccos'(x) : -\frac{1}{\sqrt{1-\pi^2}}(-1 < x < 1)$$

 $\arccos(x):-\frac{1}{\sqrt{1-x^2}}(-1<x<1)$ A função $\sin(x)$ é estritamente crescente en $[-\frac{\pi}{2},\frac{\pi}{2}]$ e estritamente decrescente en $[\frac{\pi}{2},\frac{\pi}{2}]$ (estritamente decrescente en $[\frac{\pi}{2},\frac{\pi}{2}]$) $f(x)=\sin(x):\mathbb{R}\to[-1,1]$

$$f(x) = \sin(x) : \mathbb{R} \to [-1, 1]$$
 $q(x) = f(x)_{1-x = x} \to [-1, 1]$

Funções compostas	Funções comp
	Sejam J: A ->
	gio de Ae bur
rappositati i	.0.00
Sejam D um companio rato majorado e $f:D \rightarrow E$ e $g:E \rightarrow F$ dans	
funçtes.	(g) (g)
(a) Seja L ∈ E tal que lin f(x) = L. Se g for continua em L.	· Im s(s)
cessio $\lim_{z\to\infty} s(f(z)) = g(L)$.	Dreito Jun 9(/)
(b) Se $\lim_{z\to +\infty} f(z) = +\infty$, entho $\lim_{z\to +\infty} g(f(z)) = \lim_{z\to +\infty} g(y)$.	Exemplo
(c) Se lim $f(x) = -\infty$, entito lim $o(f(x)) = \lim_{x \to \infty} g(y)$.	Pretendense
2-1-8 2-1-8 2-1-8	- (:) sqo
Exemplos	3(9) = log ₂ p
(i) Como Im $\frac{1}{2} = 0$ e sen é continu, lin sen $\frac{1}{2} = \sin 0 = 0$.	(n+x) con
mine a mine	MODO

	Composição de funções	Sejam X, Y e Z subconjumns de R e $f: X \to Y$ e $g: Y \to Z$ dans funções. A função $g \circ f: X \to Z$ definida por			 Exemplo Consideration a fingle f: R = 10,+∞c data par f(x) = x² e a Condition of 10 storius R data not of coll = -f₀ A feedby community 		$(g \circ f)(x) = \sqrt{x^2} = x $.
Segum $f \colon A \to B \in g \colon B \to C$ than funções, a um peeto de acumula- ção de A e le um peeto de acumulação de B tais que	\bullet $b \notin B$: \bullet In $f(s) = b$:	• Im $g(y) = +\infty$ $(-\infty)$. Darko $\lim_{x \to 0} g(f(x)) = +\infty$ $(-\infty)$.	Exemplo	Pretende-se calcular lim log ₂ cos z. Considerence as fun-	cobs. $f: -f_1, \frac{1}{2}(+ 0, +\infty , f(z) = \cos x \ e \ g:)), +\infty \to \mathbb{R},$ $g(g) = \log_3 g \ e \ on perton de accumulação \frac{1}{2} \ de \ -f_1, \frac{1}{2} = 0 \ de[0, +\infty , Como \ 0 \ e]), +\infty , [10, cos x = 0 \ e] (in bos x = -\infty)$	was a series	$\lim_{x\to \frac{1}{2}} \log_2 \cos x = -\infty.$
	to majorado e $f:D\to E$ e $g:E\to F$ dians	$\lim_{x\to+\infty} f(x) = L. \text{ Se } g \text{ for continus en } L.$ $() = g(L).$	∞ , entio $\lim_{x\to\infty} g(f(x)) = \lim_{x\to\infty} g(y)$.	∞ , eath $\lim_{x \to 0} g(f(x)) = \lim_{x \to 0} g(y)$.		s sen é continua, lim sem ; = sem 0 = 0.	W-18 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1

A função $\cosh(x)$ é par, contínua e estritamente decrescente em

imagem [1, +\infty]
$$f(x) = \cosh(x) : \mathbb{R} \to \mathbb{R}$$

$$f(x) = \cosh(x) = \frac{e^x + e^{-x}}{2}$$

A função $\tanh(x)$ ó impar, continua e estritamente crescente. A imagem b = 1, 1, 1 cosh $x + \sinh x = e^x$ $\cosh x - \sinh^2 x = 1$ $\cosh(x) : \mathbb{R} \to \mathbb{R}$ $\sinh x + \sinh x = e^x$ $\cosh x - \sinh^2 x = 1$ $\cosh(x + y) = \cosh x \cosh y + \sinh x \sinh y$ $\sinh(x + y) = \sinh x \cosh y + \cosh x \sinh y - 1 - \sinh^2 x = \frac{1}{x + x + x}$

Sinh $(x + y) = \lim_{t \to \infty} \frac{1}{t^2} \ln x \cos y + \cos h \sin y $ 1 - $\tan h^2 x = \frac{\cos h^2 T}{\cos h^2} \frac{1}{t^2}$ There are a variety in the properties of the propert	$\ln^{x} x = \frac{1}{\cosh^{2} x}$		Teorema do valor intermédio	Condition 2: Teorems do nomo fixo	Solid $f: [a,b] \rightarrow [a,b]$ area furpito continue. Enalto extine prior are $x \in [a,b]$ to lose $f(x) = x$.	-		J. J		
	$y = 1 - \tan y$		$x f(a) f(b) \le 0$. Enths	0		1			admite um zero. Com miteza e $f(-1)$ e $f(0)$	existe x @ [-1,0] tal
	$= \sinh x \cosh y + \cosh x \sinh$	Teorema do valor intermédio	Cecelário 1: Teorema de Bolzano Seja f.: [o,0] → R anna fanção continas no qu	exists puls rerace are $x \in [a,b]$ and gas $f(x) =$	V			Formula	A finação $f: [-1, (f] \rightarrow \mathbb{R}, f(x) = x^2 + x + 1]$ efeito, $f(-1) = -1$ o $f(0) = 1$. Como f 4 oc	ten sinnis opostos, pelo Teorerra de Bolzano, que $f(x) = 0$.
	sinh(x+y):	Teorema do valor intermédio		Tecrema. Sejx f : [a,b] -> R uwa fanjab cantitaar e c uw reaf comproradido	exter $f(a)$ o $f(b)$. Evalo extire polo versus are $x \in [a,b]$ set gas $f(x) = c$.	0	, N	f(e)	1000	

A contrast again, if Thequit spings is stated to introve que quentions again, if Thequit spings is stated to introve que quention and the properties of the	Furgices composition P(x,y) = P(x,y)
where the properties of the p	County (1) and the description (h, h, h') is the model of (h, h') is the model of (h') is the model of (h') is the model of (h') in (h')
$\begin{aligned} & \text{total constraints} \\ & total constra$	Since the state of the state o