Import Libraries

```
In [1]: import pandas as pd
    import matplotlib.pyplot as plt
    import numpy as np
    from sklearn.preprocessing import StandardScaler, normalize,Imputer,La
    belEncoder
    import warnings
    import seaborn as sb
    warnings.filterwarnings
    %matplotlib inline
```

Step 1: Load the data

```
In [2]: ml_dataset=pd.read_csv('housing.csv')
```

Exploring dataset

```
In [3]: #top rows
ml_dataset.head(15)
```

Out[3]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population
0	-122.23	37.88	41	880	129.0	322
1	-122.22	37.86	21	7099	1106.0	2401
2	-122.24	37.85	52	1467	190.0	496
3	-122.25	37.85	52	1274	235.0	558
4	-122.25	37.85	52	1627	280.0	565
5	-122.25	37.85	52	919	213.0	413
6	-122.25	37.84	52	2535	489.0	1094
7	-122.25	37.84	52	3104	687.0	1157
8	-122.26	37.84	42	2555	665.0	1206
9	-122.25	37.84	52	3549	707.0	1551
10	-122.26	37.85	52	2202	434.0	910
11	-122.26	37.85	52	3503	752.0	1504
12	-122.26	37.85	52	2491	474.0	1098
13	-122.26	37.84	52	696	191.0	345
14	-122.26	37.85	52	2643	626.0	1212

In [4]: #bottom rows
ml_dataset.tail(10)

Out[4]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	populat
20630	-121.32	39.29	11	2640	505.0	1257
20631	-121.40	39.33	15	2655	493.0	1200
20632	-121.45	39.26	15	2319	416.0	1047
20633	-121.53	39.19	27	2080	412.0	1082
20634	-121.56	39.27	28	2332	395.0	1041
20635	-121.09	39.48	25	1665	374.0	845
20636	-121.21	39.49	18	697	150.0	356
20637	-121.22	39.43	17	2254	485.0	1007
20638	-121.32	39.43	18	1860	409.0	741
20639	-121.24	39.37	16	2785	616.0	1387

```
In [5]: ml_dataset.shape
```

Out[5]: (20640, 10)

In [6]: #we create matrix for dependent variables and independent variables.
x = ml_dataset.iloc [:,:-1].values

y = ml_dataset.iloc [:,9].values

In [7]: ml_dataset.dtypes

Out[7]: longitude float64 latitude float64 housing median age int64 total rooms int64 total bedrooms float64 population int64 households int64 median income float64 ocean_proximity object median house value int64 dtype: object

In [8]: #seeing the first row
 ml_dataset.ix[0]

C:\Users\jmohan200\AppData\Local\Continuum\anaconda3\lib\site-packag
es\ipykernel launcher.py:2: DeprecationWarning:

- .ix is deprecated. Please use
- .loc for label based indexing or
- .iloc for positional indexing

See the documentation here:

http://pandas.pydata.org/pandas-docs/stable/indexing.html#ix-indexer
-is-deprecated

-122.23 Out[8]: longitude latitude 37.88 41 housing median age total rooms 880 total bedrooms 129 population 322 households 126 median income 8.3252 ocean proximity NEAR BAY median_house_value 452600 Name: 0, dtype: object

In [9]: #descriptive statistics
ml_dataset.describe()

Out[9]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooi
count	20640.000000	20640.000000	20640.000000	20640.000000	20433.000000
mean	-119.569704	35.631861	28.639486	2635.763081	537.870553
std	2.003532	2.135952	12.585558	2181.615252	421.385070
min	-124.350000	32.540000	1.000000	2.000000	1.000000
25%	-121.800000	33.930000	18.000000	1447.750000	296.000000
50%	-118.490000	34.260000	29.000000	2127.000000	435.000000
75%	-118.010000	37.710000	37.000000	3148.000000	647.000000
max	-114.310000	41.950000	52.000000	39320.000000	6445.000000

In [10]: #histogram
sb.distplot(ml_dataset['median_house_value'])

Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x191a675e4a8>

In [11]: sb.distplot(ml_dataset['median_income'])

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x191a6fb2668>


```
In [12]: sb.distplot(ml_dataset['population'])
```

Out[12]: <matplotlib.axes._subplots.AxesSubplot at 0x191a700e9e8>


```
In [13]: #Skewness and kurtosis
    print("Skewness- %f" % ml_dataset['median_house_value'].skew())
    print("Kurtosis- %f" % ml_dataset['median_house_value'].kurt())

    Skewness- 0.977763
    Kurtosis- 0.327870

In [14]: print("Skewness- %f" % ml_dataset['median_income'].skew())
    print("Kurtosis- %f" % ml_dataset['median_income'].kurt())

    Skewness- 1.646657
    Kurtosis- 4.952524
```

```
In [15]: print("Skewness- %f" % ml_dataset['population'].skew())
print("Kurtosis- %f" % ml_dataset['population'].kurt())
```

Skewness- 4.935858 Kurtosis- 73.553116

In [16]: #scatterplot
 scatterplot = pd.concat([ml_dataset['median_house_value'], ml_dataset[
 'median_income']], axis=1)
 scatterplot.plot.scatter(x='median_house_value', y='median_income');

In [18]: scatterplot = pd.concat([ml_dataset['median_house_value'], ml_dataset[
 'households']], axis=1)
 scatterplot.plot.scatter(x='median_house_value', y='households');

In [19]: #correlations
ml_dataset.corr()

Out[19]:

	longitude	latitude	housing_median_age	total_rooms	total_b
longitude	1.000000	-0.924664	-0.108197	0.044568	0.06960
latitude	-0.924664	1.000000	0.011173	-0.036100	-0.0669
housing_median_age	-0.108197	0.011173	1.000000	-0.361262	-0.3204
total_rooms	0.044568	-0.036100	-0.361262	1.000000	0.93038
total_bedrooms	0.069608	-0.066983	-0.320451	0.930380	1.00000
population	0.099773	-0.108785	-0.296244	0.857126	0.87774
households	0.055310	-0.071035	-0.302916	0.918484	0.97972
median_income	-0.015176	-0.079809	-0.119034	0.198050	-0.0077
median_house_value	-0.045967	-0.144160	0.105623	0.134153	0.04968

```
In [20]: corrmat = ml_dataset.corr()
   plt.subplots(figsize=(10, 10))
   sb.heatmap(corrmat, vmax=.9, square=True);
```



```
In [21]: #covariance
ml_dataset.cov()
```

Out[21]:

	longitude	latitude	housing_median_age	total_roc
longitude	4.014139	-3.957054	-2.728244	1.948037e+
latitude	-3.957054	4.562293	0.300346	-1.682178e
housing_median_age	-2.728244	0.300346	158.396260	-9.919120e
total_rooms	194.803750	-168.217847	-9919.120060	4.759445e+
total_bedrooms	58.768508	-60.299623	-1700.312817	8.567306e+
population	226.377839	-263.137814	-4222.270582	2.117613e+
households	42.368072	-58.010245	-1457.581290	7.661046e+
median_income	-0.057765	-0.323860	-2.846140	8.208524e+
median_house_value	-10627.425205	-35532.559074	153398.801329	3.377289e+

Step 2: Handle missing value

```
In [22]: #checking missing value
ml_dataset.isnull().values.any()
```

Out[22]: True

```
In [23]: ml_dataset.isnull().values.sum()
```

Out[23]: 207

In [24]: #First, let's count the number of null values
 total = ml_dataset.isnull().sum().sort_values(ascending=False)
 # Then, let's calculate the percentage of missing data per feature
 percent = (ml_dataset.isnull().sum()/ml_dataset.isnull().count()).sort
 _values(ascending=False)
 # Finally, let's concatenate Total and Percent into another dataframe
 missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent'])
 missing_data.head(20)

Out[24]:

	Total	Percent
total_bedrooms	207	0.010029
median_house_value	0	0.000000
ocean_proximity	0	0.000000
median_income	0	0.000000
households	0	0.000000
population	0	0.000000
total_rooms	0	0.000000
housing_median_age	0	0.000000
latitude	0	0.000000
longitude	0	0.000000

```
In [25]: #Missing value
    # First create an Imputer
    missingValueImputer = Imputer (missing_values = 'NaN', strategy = 'mea
    n', axis=0)
    # Set which columns imputer should perform
    missingValueImputer = missingValueImputer.fit (x[:,4:5])
    # update values of X with new values
    x[:,4:5] = missingValueImputer.transform(x[:,4:5])
```

Step 3: Encode categorical data

```
In [26]: #encode categorical data
X_labelencoder = LabelEncoder()
x[:, 8] = X_labelencoder.fit_transform(x[:, 8])
print (x)

[[-122.23 37.88 41 ..., 126 8.3252 3]
       [-122.22 37.86 21 ..., 1138 8.3014 3]
       [-122.24 37.85 52 ..., 177 7.2574 3]
       ...,
       [-121.22 39.43 17 ..., 433 1.7 1]
       [-121.32 39.43 18 ..., 349 1.8672 1]
       [-121.24 39.37 16 ..., 530 2.3886 1]]
```

Step 4: Split the dataset

C:\Users\jmohan200\AppData\Local\Continuum\anaconda3\lib\site-packag es\sklearn\cross_validation.py:41: DeprecationWarning: This module w as deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from t hat of this module. This module will be removed in 0.20.

"This module will be removed in 0.20.", DeprecationWarning)

Step 5: Standardize data

```
In [28]:
          #Standardize data
          independent scalar = StandardScaler()
          X train = independent scalar.fit transform (X train)
          X test = independent scalar.transform (X test) # only transform
          print(X train)
                                                                        0.19001247
          \begin{bmatrix} 1.00389865 & -0.8400624 & -1.79507596 & \dots, & -1.1356496 \end{bmatrix}
            -0.11814798]
           [-1.43477229 \quad 0.98536392 \quad 1.85553889 \quad ..., \quad -0.13688171 \quad 0.26931072
             1.28686421]
           [0.77948108 - 0.8400624 - 0.20785212 ..., -0.34343319 0.02989505]
            -0.820654081
           [-1.1654712]
                           0.44709718 0.18895385 ..., -0.27806879 -0.35589721
             1.98937031]
           [ 0.81439048 - 0.93835459 \ 0.42703742 \dots, -0.08197562 \ 0.92053182 ]
            -0.820654081
           [ 1.99632302 -1.32216217 -1.08082523 ..., -0.52645348 -1.30490629 ]
            -0.11814798]]
          C:\Users\jmohan200\AppData\Local\Continuum\anaconda3\lib\site-packag
```

es\sklearn\utils\validation.py:475: DataConversionWarning: Data with input dtype object was converted to float64 by StandardScaler.

warnings.warn(msg, DataConversionWarning)

Step 6: Perform Linear Regression

```
In [29]: # Simple Linear Regression to the Training data set set
         from sklearn.linear model import LinearRegression
         linear regressor = LinearRegression()
         linear regressor.fit(X train, y train)
Out[29]: LinearRegression(copy X=True, fit intercept=True, n jobs=1, normaliz
         e=False)
In [30]: # Predicting the Test set results using simple regression
         y linearpredict = linear regressor.predict(X test)
         y linearpredict
Out[30]: array([ 210776.44901247, 279878.4567539 , 190478.34412314, ...,
                  80625.22422957, 279916.99817768, 207126.990954931)
```

```
In [31]: #root mean squared error (RMSE) from Linear Regression.
         from sklearn.metrics import mean squared error
         from math import sqrt
         Linear rms = sqrt(mean squared error(y test, y_linearpredict))
         Linear rms
```

Out[31]: 69826.89013012727

Step 7: Perform Decision Tree Regression

```
In [32]: #Decision tree regression to the Training data set
         from sklearn.tree import DecisionTreeRegressor
         decisiontree regressor= DecisionTreeRegressor(random state = 0)
         decisiontree regressor.fit(X train, y train)
Out[32]: DecisionTreeRegressor(criterion='mse', max depth=None, max features=
         None,
                    max leaf nodes=None, min impurity decrease=0.0,
                    min impurity split=None, min samples leaf=1,
                    min samples split=2, min weight fraction leaf=0.0,
                    presort=False, random state=0, splitter='best')
In [33]: # Predicting the Test set results using Decision tree
         y_decisiontreepredict = decisiontree_regressor.predict(X_test)
         y decisiontreepredict
Out[33]: array([ 134800., 267600., 160300., ..., 120100., 250300., 17390
         0.1)
In [34]: #root mean squared error (RMSE) from Decision tree.
         Decisiontree rms = sqrt(mean squared error(y test, y decisiontreepredi
         ct))
         Decisiontree rms
Out[34]: 67116.265343338
```

Step 8: Perform Random Forest Regression

```
In [35]: #Random Forest regression to the Training data set
         from sklearn.ensemble import RandomForestRegressor
         RFregressor = RandomForestRegressor(n estimators = 6, random state = 0
         RFregressor.fit(X train, y train)
Out[35]: RandomForestRegressor(bootstrap=True, criterion='mse', max depth=Non
         e,
                    max features='auto', max leaf nodes=None,
                    min_impurity_decrease=0.0, min impurity split=None,
                    min samples leaf=1, min samples split=2,
                    min weight fraction leaf=0.0, n estimators=6, n jobs=1,
                    oob score=False, random state=0, verbose=0, warm start=Fa
         lse)
In [36]: # Predicting the Test set results using Random Forest
         y RFpredict = RFregressor.predict(X test)
         y RFpredict
Out[36]: array([ 146666.66666667, 224966.66666667, 151416.666666667, ...,
                 149016.66666667, 201066.66666667, 197666.66666667])
In [37]: #root mean squared error (RMSE) from Random forest.
         RF_rms = sqrt(mean_squared_error(y_test, y_RFpredict))
         RF rms
Out[37]: 52898.0450940454
```

Step 9: Perform Linear Regression with one independent variable

```
In [39]:
         #Standardize data
         oneindependent scalar = StandardScaler()
         Z train = oneindependent scalar.fit transform (Z train)
         Z test = oneindependent scalar.transform (Z test) # only transform
         print(Z_train)
         [[ 0.19001247]
          [ 0.26931072]
          [ 0.02989505]
          . . . ,
          [-0.35589721]
          [ 0.92053182]
          [-1.30490629]]
In [40]: # regression(One independent) variable using testing data
         onelinear regressor = LinearRegression()
         onelinear regressor.fit(Z train, y train)
Out[40]: LinearRegression(copy X=True, fit intercept=True, n jobs=1, normaliz
         e=False)
In [41]: # Predicting the Test set results using regression(One independent)
         y onelinearpredict = onelinear regressor.predict(Z test)
         y_onelinearpredict
Out[41]: array([ 218829.83059812, 287249.80945645, 227105.96638704, ...,
                 178937.09074405, 302549.52213887, 184397.07062714])
         #root mean squared error (RMSE) from Linear Regression.
In [42]:
         OneLinear rms = sqrt(mean squared error(y test, y onelinearpredict))
         OneLinear rms
Out[42]: 84941.05152406936
```

```
In [43]: #Plot the fitted model for training data(one independent)
    plt.scatter(Z_train, y_train, color = 'red')
    plt.plot(Z_train, onelinear_regressor.predict(Z_train), color = 'blue'
    )
    plt.title('Income vs Housevalue (Training set)')
    plt.xlabel('Median Income')
    plt.ylabel('Median Housevalue')
    plt.show()
```



```
In [46]: #Plot the fitted model for t data(one independent)
    plt.scatter(Z_test, y_test, color = 'red')
    plt.plot(Z_test, onelinear_regressor.predict(Z_test), color = 'blue')
    plt.title('Income vs Housevalue (Test set)')
    plt.xlabel('Median Income')
    plt.ylabel('Median Housevalue')
    plt.show()
```

