Thermodynamique de l'ingénieur

Table des matières

1 N	Notions fondamentales	9
1.1	Notion d'énergie	11
1.2	L'énergie mécanique	16
1.3	Le travail	18
1.4	La chaleur	21
1.5	Le chaud et le froid	25
1.6	Un peu d'histoire : mesurer le degré de chaleur	27
1.7	Exercices	30
2 I	Les systèmes fermés	35
2.1	Pourquoi utiliser un système fermé?	37
2.2	Conventions de comptabilité	39
2.3	Le premier principe dans un système fermé	41
2.4	Quantifier le travail avec un système fermé	43
2.5	Quantifier la chaleur avec un système fermé	57
2.6	Un peu d'histoire : le moteur compound	58
2.7	Exercices	60
3 I	Les systèmes ouverts	65
3.1	Pourquoi utiliser un système ouvert?	67
3.2	Conventions de comptabilité	68
3.3	Le premier principe dans un système ouvert	69
3.4	Quantifier le travail avec un système ouvert	74
3.5	Quantifier la chaleur avec un système ouvert	81
3.6	Un peu d'histoire : degré et quantité de chaleur	82
3.7	Exercices	83
4 I	Le gaz parfait	89
4.1	Définition	91
4.2	Propriétés des gaz parfaits	96
4.3	Énergie et température	99
4.4	Transformations élémentaires réversibles	103
4.5	Un peu d'histoire : les questionnements de Lavoisier et Laplace	116
4.6	Exercices	118
5 I	Liquides et vapeurs	125
5.1	Ébullition et liquéfaction	127
5.2	Description qualitative des propriétés de l'eau	132
5.3	Quantification des propriétés de l'eau	139
5.4	Transformations élémentaires réversibles	147
5.5	Un peu d'histoire : le cheval-vapeur	157

5.6	Exercices	159		
6 C	Cycles thermodynamiques	167		
6.1	Conventions graphiques	169		
6.2	Transformer chaleur et travail	171		
6.3	Rendement des cycles	179		
6.4	Un peu d'histoire : le nombre de temps moteur	185		
6.5	Exercices	188		
7 Le second principe				
7.1	Le second principe	201		
7.2	Le second principe et les machines thermiques	203		
7.3	Le cycle de Carnot	208		
7.4	L'échelle de température thermodynamique	219		
7.5	Efficacité maximale des machines	224		
7.6	Un peu d'histoire : le rêve de Rudolf Diesel	227		
7.7	Exercices	230		
8 L	'entropie	235		
8.1	Le concept de l'entropie	237		
8.2	Définition	239		
8.3	Les variations d'entropie	242		
8.4	Prédire le sens des transformations	254		
8.5	L'entropie, le temps, et l'univers	260		
8.6	Un peu d'histoire : l'aventurier Rumford	263		
8.7	Exercices	264		
9 C	Cycles moteurs à vapeur	269		
9.1	Pourquoi utiliser un moteur à vapeur?	271		
9.2	Critères d'évaluation des moteurs	272		
9.3	Composants des installations à vapeur	275		
9.4	Cycles moteurs à vapeur	284		
9.5	Un peu d'histoire : de la turbine à vapeur à la turbine à gaz	295		
9.6	Exercices	299		
10 C	Cycles moteurs à gaz	303		
10.1	Pourquoi utiliser un moteur à gaz?	305		
10.2	Critères d'évaluation des moteurs à gaz	306		
10.3	Moteurs alternatifs	310		
10.4	Composants des turbomachines	316		
	Les configurations des turbomachines	324		
10.6		331		
10.7	Un peu d'histoire : le Napier Nomad	337		
10.8	Exercices	339		

Annexes		345	
A1	Abaques de vapeur	346	
A2	Pression indiquée et pression réelle	355	
A3	Conventions de notation	356	
A4	Construction de ce livre	357	
A5	Réutilisation de ce livre	358	
Bibliographie			

Ce document est placé sous licence Creative Commons CC-BY-SA. Les conditions de sa ré-utilisation sont détaillées en annexe A5.

Ce document est actuellement édité par un groupe de travail *Framabook* en vue de sa publication sous forme de livre début 2015.

Olivier Cleynen a construit et rédigé l'ouvrage, et réalisé la plupart des schémas. Ses plus vifs remerciements vont aux personnes suivantes pour leurs contributions :

- Philippe Depondt a écrit quatre sections historiques (§1.6, §3.6, §4.5, §8.6);
- Nicolas Horny a effectué une relecture critique des aspects techniques et scientifiques de l'ouvrage;
- Christophe Masutti et Mireille Bernex ont particulièrement contribué à la finalisation de l'ouvrage;
- De nombreuses personnes, en corrigeant des erreurs ou proposant des améliorations, ont réduit l'entropie de ce document, parmi lesquelles : *Antoine L., Hamassala David Dicko, Kévin R., Florianne B., Julien D., Anthony Jouny, Thomas N., Amazigh.L.H, Victor D., Daniel C.-N., Pierrick Degardin, Arthur A., Ulrick M., Solène J., Florian Paupert, Gatien Bovyn, Mehdi Z., Jean-Bernard Marcon, Luc Benoit, Thibault Mattera, Arnaud Gallant.*
- De nombreuses autres personnes, en publiant leurs photos et figures sous licence libre, ont contribué à illustrer le livre, sans y être toutefois associées.

Toutes les erreurs restantes dans le présent document sont le fait d'Olivier Cleynen. Vous pouvez envoyer vos retours d'expérience, signalements, critiques et autres, toujours très vivement appréciés, à l'adresse olivier.cleynen@ariadacapo.net.

Organisation de l'ouvrage

Ce livre a pour objectif de vous permettre de comprendre, décrire et quantifier le fonctionnement des machines thermodynamiques, c'est-à-dire les réfrigérateurs, les pompes à chaleur, et surtout les moteurs. Il est conçu pour être abordable en première année d'études supérieures et couvert en deux semestres environ. Il est destiné à de futur/es ingénieur/es curieux/ses de comprendre le pourquoi et le comment des machines qui les entourent et des équations qu'ils ou elles utilisent.

Il y a dix chapitres dans ce livre. Le chapitre 1 (notions fondamentales) recense les notions indispensables à notre étude.

Le chapitre le plus important est le chapitre 6 (cycles thermodynamiques) : c'est là que nous apprenons à transformer de la chaleur en travail et réciproquement. Cependant, pour pouvoir appliquer les concepts de ce chapitre à des cas concrets —par exemple pour pouvoir prédire par le calcul l'efficacité d'un moteur— nous avons besoin de plusieurs outils, auxquels sont consacrés les chapitres qui précèdent. Il nous faut d'abord disposer d'une méthode robuste de comptabilité de l'énergie : dans le chapitre 2 (les systèmes fermés) nous comptabilisons les transferts dans une quantité fixe de fluide, et dans le chapitre 3 (les systèmes ouverts) nous comptabilisons ces transferts dans un fluide en flux continu. Il nous faut également savoir prédire la température et quantifier l'énergie dans les fluides utilisés en pratique, ce que nous faisons pour l'air dans le chapitre 4 (le gaz parfait) et pour l'eau dans le chapitre 5 (liquides et vapeurs). Ainsi, à la fin du chapitre 6, vous saurez quantifier la transformation de chaleur et de travail au sein de tous types de machines.

Une particularité des machines thermodynamiques est qu'elles sont toutes très inefficaces. L'exploration des causes de ces inefficacités et la quantification de leurs limites théoriques font l'objet du chapitre 7 (le second principe). Cette exploration culmine avec le chapitre 8 où nous apprenons à nous servir de l'entropie, un extraordinaire et puissant concept physique, pour décrire les transformations dans nos machines.

Avec ces notions, vous serez à même de comprendre et quantifier le fonctionnement de deux grands types de moteurs utilisés dans l'industrie : les centrales à vapeur, décrites dans le chapitre 9 (cycles moteurs à vapeur), et les moteurs à combustion interne, décrits dans le chapitre 10 (cycles moteurs à gaz).

À la fin de chaque chapitre, une série de problèmes concrets est présentée. Ces exercices sont là pour votre entraînement, mais aussi pour votre motivation : ils présentent le type de problème que nous cherchons à résoudre avec le chapitre. Afin de vous permettre de vous former seul/e, la solution de chaque exercice est brièvement décrite en dernière page. Je vous conseille de ne jamais y avoir recours avant d'avoir transpiré au moins une heure, car une fois que l'on a lu la méthode de résolution, il est impossible de faire comme si l'on ne la connaissait pas!

Vous trouverez aussi à la fin de chaque chapitre une courte section historique. Ces petits éléments de contexte nous ont semblé, à moi-même et Philippe Depondt, pouvoir contribuer à votre culture de scientifique et d'ingénieur/e.

Enfin, le livre que vous avez entre les mains est véritablement \grave{a} vous : il est publié sous une licence libre dont les termes sont détaillés en annexe A5. Il me paraît en effet important que vous puissiez non seulement le partager librement et gratuitement (en le photocopiant, en en faisant des copies numériques, etc.) mais aussi le remixant d'une façon ou d'une autre (en l'améliorant, le raccourcissant ou l'adaptant à d'autres formes par exemple) en fonction de vos besoins, vous appropriant ainsi véritablement son contenu.

Mon espoir est qu'après avoir utilisé ce livre, le son d'une turbomachine en fonctionnement ne puisse vous laisser ni perplexe ni insensible. Bon courage!

Olivier Cleynen *février 2015*

Introduction

*

La thermodynamique est l'étude de la conversion de l'énergie entre deux formes, chaleur et travail. Pourtant, ses débuts remontent bien avant que ces trois concepts ne soient établis : pendant longtemps il ne s'agissait que de se pencher sur *la nature de la chaleur*. Autrement dit, que veut dire « chaud » exactement ? Peuton le mesurer ?

Les premières réflexions sur la nature de la matière et celle du feu datent de la Grèce antique et donnent déjà naissance à la théorie atomique. Mais il ne s'agit alors que de constructions philosophiques, plus fondées sur une vision spirituelle organisée du monde que sur de réels travaux d'observation.

Il faudra attendre le xVII^e siècle pour que débutent de sérieux travaux de recherche sur ce sujet. C'est la température, dont on se fait plus facilement une idée que de la chaleur, qui est d'abord le centre d'intérêt. La conception du thermomètre soulève en effet de nombreux problèmes d'ingénierie et de physique : comment lier cette idée de « température » à un phénomène observable directement, de façon prévisible et reproductible?

Pendant ces années et jusqu'en 1850, la thermodynamique reste à l'échelle macroscopique – il n'est pas encore question d'atome ou de molécule. Elle suscite beaucoup d'intérêt parce qu'elle aborde directement les phénomènes de frottement et de transfert de chaleur, qui ne se produisent jamais que dans un seul sens, et auxquels une vision mécanique newtonienne de l'univers ne peut fournir d'explication.

Le grand essor des machines thermiques, au début du XIX^e siècle, prend la science de court. Les premiers moteurs pompent l'eau hors des mines, mais la thermodynamique – qui ne porte alors même pas son nom – ne sait pas expliquer comment. Il faudra une trentaine d'années avant que la théorie ne rattrape la

pratique et que l'on établisse une vision cohérente de la thermodynamique permettant, par exemple, de prévoir le rendement d'un moteur.

En 1865, le physicien allemand Rudolf Clausius clôture près d'un siècle de tâtonnements en explicitant les grandes bases de ce que l'on commence à appeler « thermodynamique » : c'est ce que nous connaissons aujourd'hui sous le nom des deux principes. Il généralise, ce faisant, ses observations sur un ballon de gaz à l'univers tout entier. De leur côté, l'écossais James Clerk Maxwell et l'autrichien Ludwig Boltzmann réconcilieront la thermodynamique avec la physique des particules en travaillant au niveau microscopique. Au fur et à mesure du xxe siècle, le concept d'incertitude se fait accepter et la thermodynamique devient affaire de probabilités et de quantification du désordre ; elle sert même à poser les bases de la théorie de l'information.

Entre temps, la révolution industrielle a eu lieu. Délaissant la pompe à eau, le moteur thermique est passé à la propulsion des locomotives, puis des navires, automobiles, génératrices de courant et aéronefs. Notre mode de vie, dans lequel la force physiologique humaine n'a plus la moindre importance, montre à quel point nous sommes devenus dépendants de la puissance et de la précision que ce moteur permet. En somme, il est la raison pour laquelle notre environnement diffère tant de celui de nos ancêtres, et de celui que connaîtront nos descendants. La thermodynamique permet de comprendre le fonctionnement déroutant de cet engin à la fois banal et effroyable.

Au cours de cette série de dix chapitres sur la *thermodynamique de l'ingénieur*, nous passerons du comportement élémentaire des fluides à la théorie des moteurs – l'objectif étant de fournir à l'étudiant/e une bonne compréhension du fonctionnement des machines à chaleur et une base solide pour pouvoir aborder la conception moteur et la mécanique des fluides.