Лабораторная работа 2.1.6 Эффект Джоуля-Томсона

Симанкович Александр Б01-104

15.02.2021

Цель работы

- 1) Определение изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях давления и температуры;
 - 2) Вычисление по результатам опытов коэффициентов Ван-дер-Ваальса 'a' и 'b'.

Оборудование и приборы

Трубка с пористой перегородкой; труба Дьюара; термостат; термометры; дифференциальная термопара; микровольтметр; балластный баллон; манометр.

Теоретическое введение

Эффектом Джоуля—Томсона называется изменение температуры газа, медленно протекающего из области высокого в область низкого давления в условиях хорошей тепловой изоляции. В разреженных газах, которые приближаются по своим свойствам к идеальному газу, при таком течении температура газа не меняется. Эффект Джоуля—Томсона демонстрирует отличие исследуемого газа от идеального.

В работе исследуется изменение температуры углекислого газа при медленном его течении по трубке с пористой перегородкой (рис. 1). Трубка 1 хорошо теплоизолирована. Величина эффекта Джоуля—Томсона определяется по разности температуры газа до и после перегородки.

Рассмотрим стационарный поток газа между произвольными сечениями I и II трубки. Пусть, для определенности, через трубку прошел 1 моль углекислого газа; μ – его молярная масса. Молярные объемы газа, его давления и отнесенные к молю внутренние энергии газа в сечениях I и II обозначим соответственно V_1, P_1, U_1 и V_2, P_2, U_2 . Для того чтобы ввести в трубку объем V_1 , над газом нужно совершить работу $A_1 = P_1 V_1$. Проходя через сечение II, газ сам совершает работу $A_2 = P_2 V_2$. Так как через боковые стенки не происходит ни обмена теплом, ни передачи механической энергии, то

$$A_1 - A_2 = \left(U_2 + \frac{\mu v_2^2}{2}\right) - \left(U_1 + \frac{\mu v_1^2}{2}\right). \tag{1}$$

В уравнении (1) учтено изменение как внутренней (первые члены в скобках), так и кинетической (вторые члены в скобках) энергии газа. Подставляя в (1) написанные выражения для A_1 и A_2 и перегруппировывая члены, найдем

$$H_1 - H_2 = (U_1 + P_1 V_1) - (U_2 + P_2 V_2) = \frac{1}{2} \mu \left(v_2^2 - v_1^2 \right). \tag{2}$$

Сделаем несколько замечаний. Прежде всего отметим, что в процессе Джоуля—Томсона газ испытывает в пористой перегородке существенное трение, приводящее к ее нагреву. Потери энергии на нагрев трубки в начале процесса могут быть очень существенными и сильно искажают ход явления. После того как температура трубки установится и газ станет уносить с собой все выделенное им в пробке тепло, формула (1) становится точной, если, конечно, теплоизоляция трубки достаточно хороша и не происходит утечек тепла наружу через ее стенки.

Второе замечание связано с правой частью (2). Процесс Джоуля—Томсона в чистом виде осуществляется лишь в том случае, если правой частью можно пренебречь, т. е. если макроскопическая скорость газа с обеих сторон трубки достаточно мала. У нас сейчас нет критерия, который позволил бы установить, когда это можно сделать. В силу сохранения энтропии в случае реального газа получаем:

$$\mu_{\text{Д-T}} = \frac{\Delta T}{\Delta P} \approx \frac{\frac{2a}{RT} - b}{C_P}.$$
(3)

Из формулы (3) видно, что эффект Джоуля—Томсона для не очень плотного газа зависит от соотношения величин a и b, которые оказывают противоположное влияние на знак эффекта. Если силы взаимодействия между молекулами велики, так что превалирует «поправка на давление», то основную роль играет член, содержащий a, и

$$\frac{\Delta T}{\Delta P} > 0,$$

т. е. газ при расширении охлаждается ($\Delta T < 0$, так как всегда $\Delta P < 0$). В обратном случае (малые a)

$$\frac{\Delta T}{\Delta P} < 0,$$

т. е. газ нагревается ($\Delta T > 0$, так как по-прежнему $\Delta P < 0$).

Этот результат нетрудно понять из энергетических соображений. Как мы уже знаем, у идеального газа эффект Джоуля—Томсона отсутствует. Идеальный газ отличается от реального тем, что в нем можно пренебречь потенциальной энергией взаимодействия молекул. Наличие этой энергии приводит к охлаждению или нагреванию реальных газов при расширении. При больших a велика энергия притяжения молекул. Это означает, что потенциальная энергия молекул при их сближении уменьшается, а при удалении — при расширении газа — возрастает. Возрастание потенциальной энергии молекул происходит за счет их кинетической энергии — температура газа при расширении падает. Аналогичные рассуждения позволяют понять, почему расширяющийся газ нагревается при больших значениях b.

Как следует из формулы (3), при температуре

$$T_i = \frac{2a}{Rb}$$

коэффициент $\mu_{\text{Д-T}}$ обращается в нуль. По формулам связи параметров газа Ван-дер-Ваальса с критическими параметрами получаем:

$$T_{\text{\tiny MHB}} = \frac{27}{4} T_{\text{\tiny KP}}.\tag{4}$$

При температуре $T_{\text{инв}}$ эффект Джоуля–Томсона меняет знак: ниже температуры инверсии эффект положителен ($\mu_{\text{Д-T}} > 0$, газ охлаждается), выше $T_{\text{инв}}$ эффект отрицателен ($\mu_{\text{Д-T}} < 0$, газ нагревается).

Вернемся к влиянию правой части уравнения (2) на изменение температуры расширяющегося газа. Для этого сравним изменение температуры, происходящее вследствие эффекта Джоуля—Томсона, с изменением температуры, возникающим из-за изменения кинетической энергии газа. Увеличение кинетической энергии газа вызывает заметное и приблизительно одинаковое понижение его температуры как у реальных, так и у идеальных газов. Поэтому при оценках нет смысла пользоваться сложными формулами для газа Ван-дер-Ваальса.

Заменяя в формуле (2) U через $C_V T$ и PV через RT, найдем

$$(R + C_V) (T_1 - T_2) = \mu (v_2^2 - v_1^2) / 2$$

или

$$\Delta T = \frac{\mu}{2C_P} \left(v_2^2 - v_1^2 \right).$$

В условиях нашего опыта расход газа Q на выходе из пористой перегородки не превышает $10 \, {\rm cm}^3/{\rm c},$ а диаметр трубки равен $3 \, {\rm mm}.$ Поэтому

$$v_2 <= \frac{4Q}{\pi d^2} = \frac{4 \cdot \text{cm}^3/\text{c}}{3,14 \cdot (0,3)^2 \text{ cm}^2} \approx 140 \text{ cm/c}.$$

Скорость v_1 газа у входа в пробку относится к скорости v_2 у выхода из нее как давление P_2 относится к P_1 . В нашей установке $P_1=4$ атм, а $P_2=1$ атм, поэтому

$$v_1 = \frac{P_2}{P_1} v_2 = 35 \text{ cm/c}.$$

Для углекислого газа $\mu = 44$ г/моль, $C_P = 40$ Дж/(моль·К); имеем

$$\Delta T = \frac{\mu}{2C_P} \left(v_2^2 - v_1^2 \right) \approx 7 \cdot 10^{-4} \text{ K}.$$

Это изменение температуры ничтожно мало по сравнению с измеряемым эффектом (несколько градусов).

В данной лабораторной работе исследуется коэффициент дифференциального эффекта Джоуля—Томсона для углекислого газа. По экспериментальным результатам оценивается коэффициент теплового расширения, постоянные в уравнении Ван-дер-Ваальса и температура инверсии углекислого газа. Начальная температура газа T_1 задается термостатом. Измерения проводятся при четырех температурах: 20 °C, 30 °C, 40 °C и 50 °C.

Экспериментальная установка

Рис. 1: Схема установки

Схема установки для исследования эффекта Джоуля—Томсона в углекислом газе представлена на рисунке 1. Основным элементом установки является трубка 1 с пористой перегородкой 2, через которую пропускается исследуемый газ. Трубка имеет длину 80 мм и сделана из нержавеющей стали, обладающей, как известно, малой теплопроводностью. Диаметр трубки d=3 мм, толщина стенок 0,2 мм. Пористая перегородка расположена в конце трубки и представляет собой стеклянную пористую пробку со множеством узких и длинных каналов. Пористость и толщина пробки (l=5 мм) подобраны так, чтобы обеспечить оптимальный поток газа при перепаде давлений $\Delta P \leqslant 4$ атм (расход газа составляет около $10~{\rm cm}^3/{\rm c}$); при этом в результате эффекта Джоуля—Томсона создается достаточная разность температур.

Углекислый газ под повышенным давлением поступает в трубку через змеевик 5 из балластного баллона 6. Медный змеевик омывается водой и нагревает медленно протекающий через него газ до температуры воды в термостате. Температура воды измеряется термометром $T_{\rm B}$, помещенным в термостате. Требуемая температура воды устанавливается и поддерживается во время эксперимента при помощи контактного термометра $T_{\rm K}$.

Давление газа в трубке измеряется манометром M и регулируется вентилем B (при открывании вентиля B, т. е. при повороте ручки против часовой стрелки, давление P_1 повышается). Манометр M измеряет разность между давлением внутри трубки и наружным (атмосферным) давлением. Так как углекислый газ после пористой перегородки выходит в область с атмосферным давлением P_2 , то этот манометр непосредственно измеряет перепад давления на входе и на выходе трубки $\Delta P = P_1 - P_2$.

Разность температур газа до перегородки и после нее измеряется дифференциальной термопарой медь – константан. Константановая проволока диаметром 0,1 мм соединяет спаи 8 и 9, а медные проволоки (того же диаметра) подсоединены к цифровому вольтметру 7. Отвод тепла через проволоку столь малого сечения пренебрежимо мал. Для уменьшения теплоотвода трубка с пористой

перегородкой помещена в трубу Дьюара 3, стенки которой посеребрены, для уменьшения теплоотдачи, связанной с излучением. Для уменьшения теплоотдачи за счет конвекции один конец трубы Дьюара уплотнен кольцом 4, а другой закрыт пробкой 10 из пенопласта. Такая пробка практически не создает перепада давлений между внутренней полостью трубы и атмосферой.

Ход работы

Приборные погрешности измерений:

$$\sigma_U=0.5$$
 мкВ $\sigma_{\Delta P}=0.05$ атм $\sigma_T=0.005$ К $\sigma_{lpha}=0.45$ $\frac{{
m MKB}}{{
m K}}$

$$\sigma(\mu_{D-T})^{(\text{chct})} = \mu_{D-T} \cdot \sqrt{\left(\frac{\sigma_U}{\overline{U}}\right)^2 + \left(\frac{\sigma_\alpha}{\alpha}\right)^2 + \left(\frac{\sigma_{\Delta P}}{\overline{\Delta P}}\right)^2}$$

Измерения проводились при четырех температурах: $T_1=293\mathrm{K},\,T_2=303\mathrm{K},\,T_3=313\mathrm{K},\,T_4=323\mathrm{K}.$ Для каждой температуры вычислим $\mu_{D-T}.$

$T = 293 \text{ K } (20^{\circ}C) \alpha = 40.0 \frac{\text{MKB}}{\text{K}}$					
ΔP , atm	U, мкВ	ΔT , K	T^{-1}, K^{-1}		
4.00	168	4.35	0.229		
3.50	143	3.73	0.268		
3.00	120	3.15	0.317		
2.50	98	2.60	0.384		
2.00	77	2.08	0.481		
1.50	55	1.53	0.655		
1.00	35	1.03	0.975		

$$\mu_{D-T} = 1.104 \text{ K/атм} \quad \sigma(\mu_{D-T})^{\text{случ}} = 0.016 \text{ K/атм}$$

$$\sigma(\mu_{D-T})^{(\text{chct})} = 1.104 \cdot \sqrt{\left(\frac{0.5}{105}\right)^2 + \left(\frac{0.45}{40}\right)^2 + \left(\frac{0.05}{2.5}\right)^2} = 0.026 \; \text{K/atm}$$

$$\mu_{D-T} = (1.10 \pm 0.04) \; \mathrm{K/atm}$$

$T = 303 \text{ K } (30^{\circ}C) \alpha = 41.0 \frac{\text{MKB}}{\text{K}}$					
ΔP , atm	U, мкВ	ΔT , K	T^{-1}, K^{-1}		
4.00	147	3.70	0.269		
3.50	126	3.19	0.312		
3.00	105	2.68	0.372		
2.50	83	2.14	0.465		
2.00	65	1.70	0.585		
1.50	49	1.31	0.759		
1.00	29	0.82	1.205		

$$\mu_{D-T} = 0.955 \; \mathrm{K/arm} \quad \sigma(\mu_{D-T})^{\mathrm{cлуq}} = 0.020 \; \mathrm{K/arm}$$

$$\sigma(\mu_{D-T})^{(\text{chct})} = 0.955 \cdot \sqrt{\left(\frac{0.5}{91}\right)^2 + \left(\frac{0.45}{41}\right)^2 + \left(\frac{0.05}{2.5}\right)^2} = 0.022 \; \text{K/atm}$$

$$\mu_{D-T} = (0.96 \pm 0.04) \text{ K/atm}$$

$T = 313 \text{ K } (40^{\circ}C) \alpha = 42.0 \frac{\text{MKB}}{\text{K}}$				
ΔP , atm	U, мкВ	ΔT , K	T^{-1}, K^{-1}	
4.00	128	3.16	0.315	
3.50	108	2.69	0.371	
3.00	86	2.16	0.461	
2.50	68	1.73	0.575	
2.00	50	1.30	0.763	
1.50	34	0.92	1.076	
1.00	20	0.59	1.680	

$$\mu_{D-T} = 0.864 \; {
m K/aтм} \quad \sigma(\mu_{D-T})^{
m cлуч} = 0.027 \; {
m K/aтм}$$

$$\sigma(\mu_{D-T})^{(\text{chct})} = 0.864 \cdot \sqrt{\left(\frac{0.5}{75}\right)^2 + \left(\frac{0.45}{42}\right)^2 + \left(\frac{0.05}{2.5}\right)^2} = 0.020 \; \text{K/atm}$$

$$\mu_{D-T} = (0.86 \pm 0.05) \text{ K/atm}$$

$T = 323 \text{ K } (50^{\circ}C) \alpha = 43.0 \frac{\text{MKB}}{\text{K}}$					
ΔP , atm	U, мкВ	ΔT , K	T^{-1}, K^{-1}		
4.00	101	2.46	0.405		
3.50	82	2.02	0.494		
3.00	62	1.55	0.641		
2.50	47	1.20	0.826		
2.00	36	0.95	1.048		
1.50	26	0.72	1.387		
1.00	16	0.48	2.047		

$$\mu_{D-T} = 0.653 \; \mathrm{K/atm} \;\;\; \sigma(\mu_{D-T})^{\mathrm{случ}} = 0.045 \; \mathrm{K/atm}$$

$$\sigma(\mu_{D-T})^{(\text{chct})} = 0.653 \cdot \sqrt{\left(\frac{0.5}{58}\right)^2 + \left(\frac{0.45}{43}\right)^2 + \left(\frac{0.05}{2.5}\right)^2} = 0.016 \; \text{K/atm}$$

$$\mu_{D-T} = (0.65 \pm 0.06) \; \mathrm{K/atm}$$

Рис. 2: Объединенный график зависимостей

Из формулы (3) имеем линейную зависимость $\mu_{D-T}=\frac{\Delta T}{\Delta P}=\frac{2a}{RC_p}\cdot\frac{1}{T}-\frac{b}{C_p}$

Рис. 3: Зависимость коэффициента Джоуля-Томсона от температуры

$$\frac{2a}{RC_p} = 1361 \frac{K^2}{a_{TM}} \quad \sigma \left(\frac{2a}{RC_p}\right)^{c_{ЛУЧ}} = 170 \frac{K^2}{a_{TM}}$$
$$a = (1.16 \pm 0.15) \frac{H \cdot M^4}{MOJIb^2} \quad a_{th} = 0.36088 \frac{H \cdot M^4}{MOJIb^2}$$

$$\frac{b}{C_p} = 3.531 \frac{K}{a_{TM}} \sigma \left(\frac{b}{C_p}\right)^{c_{JY^4}} = 0.020 \frac{K}{a_{TM}}$$

$$b = (7.24 \pm 0.04) \cdot 10^{-4} \frac{M^3}{MOJID} b_{th} = 0.4284 \cdot 10^{-4} \frac{M^3}{MOJID}$$

Определим также критическую температуру и температуру инверсии:

$$T_i = \frac{2a}{Rb} = \frac{\frac{2a}{RC_p}}{\frac{b}{C_p}} = 390 \text{ K}$$
 $T_i^{th} = 2050 \text{ K}$ $T_{cr} = \frac{4}{27}T_i = 60 \text{ K}$ $T_{cr}^{th} = 304 \text{ K}$

Выводы

Из результатов эксперимента видно, что модель газа Ван-дер-Ваальса плохо описывает поведение газа в данных условиях. Тем не менее модель позволяет предсказать эффект с точностью до двух порядков и правильно предсказывает знак эффекта. Отклонения коэффицентов a и b также могут быть вызваны малым диапазоном измеренных температур. Следует отметить, что сами коэффиценты μ_{D-T} довольно хорошо линеаризуют эффект в заданном диапазоне температур.