CSE215 Foundations of Computer Science

Instructor: Zhoulai Fu

State University of New York, Korea

Plan ahead

• 11.14 Tu:	Sets	- REC on Sets; no homework review in REC
• 11.16	Review Midterm 2	No homework to be announced
• 11.21 Tu	Midterm 2	- REC on Functions
• 11.23	Function	Homework to be announced
• 11.28 Tu	Function	_
• 11.30	Function	Ungraded homework to be announced
• 12.05 Tu	Final Review	-
• 12.07	Final Review	No homework to be announced

• 12.10 Mon Final

Today: Lec+Rec

- Clarification about sets 1: Membership and subsets
- Clarification about sets 2: Power sets
- Clarification about sets 3: infinite union/intersection notation
- Clarification about sets 4: Element argument
- Homework review postponed to midterm review time

Clarification on sets 1: Membership and Subsets

Basic Rules

- $a \in A$ if you can find the exact "a" in A
- Translate $a \notin A$ as ~ (a \in A)
- Translate B ⊆ A to "for any b, b∈ B -> b∈ A"
- Emptyset is a subset of any set

```
      1. 1 \in \{1, \{1\}\}\}
      1 is the first element listed in \{1, \{1\}\}\}

      2. 1 \not\subseteq \{1, \{1\}\}\}
      because 1 is not a set

      3. \{1\} \in \{1, \{1\}\}\}
      1 is the second element listed in \{1, \{1\}\}
```

7.	N ∉ N	N is a set (not a number) and N contains of	nly numbers
8.	$\mathbb{N} \subseteq \mathbb{N} \dots$	\dots because $X \subseteq X$ for	every set X
9.	Ø∉ℕ	. because the set $\mathbb N$ contains only numbers	and no sets

10.	$\emptyset \subseteq \mathbb{N}$	\dots because \emptyset is a subset of every set
11.	$\mathbb{N} \in {\mathbb{N}}$. because $\{\mathbb{N}\}$ has just one element, the set \mathbb{N}
12.	$\mathbb{N} \not\subseteq \{\mathbb{N}\}$	because, for instance, $1 \in \mathbb{N}$ but $1 \notin \{\mathbb{N}\}$

13.	Ø ∉ {ℕ}	. note that the only element of $\{\mathbb{N}\}$ is \mathbb{N} , and $\mathbb{N} \neq \emptyset$
14.	$\emptyset \subseteq \{\mathbb{N}\}$	\dots because \emptyset is a subset of every set
15.	$\emptyset \in \{\emptyset, \mathbb{N}\}$	\emptyset is the first element listed in $\{\emptyset, \mathbb{N}\}$

16.	$\emptyset \subseteq \{\emptyset, \mathbb{N}\}$	because Ø is a subset of every set
17.	$\{\mathbb{N}\}\subseteq \{\emptyset,\mathbb{N}\}\dots$	make subset $\{\mathbb{N}\}$ by selecting \mathbb{N} from $\{\emptyset, \mathbb{N}\}$
18.	$\{\mathbb{N}\} \not\subseteq \{\emptyset, \{\mathbb{N}\}\} \dots$	\dots because $\mathbb{N} \notin \{\emptyset, \{\mathbb{N}\}\}$
19.	$\{\mathbb{N}\}\in\{\emptyset,\{\mathbb{N}\}\}$. $\{\mathbb{N}\}\$ is the second element listed in $\{\emptyset, \{\mathbb{N}\}\}\$

Quiz: True or False

$$\{(1,2),(2,2),(7,1)\}\subseteq \mathbb{N}\times\mathbb{N}$$

Clarification on sets 2: Powerset

Definition: If *A* is a set, the **power set** of *A* is another set, denoted as $\mathscr{P}(A)$ and defined to be the set of all subsets of *A*. In symbols, $\mathscr{P}(A) = \{X : X \subseteq A\}$.

POWER SETS

- If S is the set {a, b, c} then {a,c} is a subset of S. There
 are other subsets of S; the complete list is as follows:
 - {} (the empty set or null set)
 - {a}
 - $\{b\}$
 - {c}
 - $\{a, b\}$
 - {a, c}
 - $\{b, c\}$
 - {a, b, c} or S
- So the power set of S, written P(S), is the set containing all the subsets above. Written out this would be the set:
- $P(S) = \{ \{ \}, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\} \}$

Fact

If A is a finite set, then $|\mathscr{P}(A)| = 2^{|A|}$.

A refers to # of elements in a set A

Basic Rules

- Know how to get the powerset of N elements, for N>=0.
- Emptyset is always an element of the powerset
- The set itself is also always an element of powerset

- 1. $\mathscr{P}(\{0,1,3\}) = \{\emptyset, \{0\}, \{1\}, \{3\}, \{0,1\}, \{0,3\}, \{1,3\}, \{0,1,3\}\}\$
- 2. $\mathscr{P}(\{1,2\}) = \{ \emptyset, \{1\}, \{2\}, \{1,2\} \}$
- 3. $\mathscr{P}(\{1\}) = \{\emptyset, \{1\}\}$

4.
$$\mathscr{P}(\emptyset) = \{\emptyset\}$$

5.
$$\mathscr{P}(\lbrace a \rbrace) = \lbrace \emptyset, \lbrace a \rbrace \rbrace$$

6.
$$\mathscr{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}$$

```
    $\mathcal{P}(\{a\}) \times \mathcal{P}(\{\phi\}) = \{(\phi, \phi), (\phi, \{\phi\}), (\{a}\{\phi\}), (\{a}\{\phi\}), (\{a}\{\phi\})\}
    $\mathcal{P}(\{\phi\})) = \{\phi, \{\phi\}, \{\phi\}, \{\phi\}\}
    $\mathcal{P}(\{1, \{1,2\}\}) = \{\phi, \{1\}, \{\{1,2\}\}\}
    $\mathcal{P}(\{\mathcal{Z}, \mathbb{N}\}) = \{\phi, \{\mathcal{Z}\}, \{\mathbb{N}\}, \{\mathcal{Z}, \mathbb{N}\}\}
```

The following are wrong. Explain why

```
11. \mathscr{P}(1) = \{ \emptyset, \{1\} \} \dots
```

12.
$$\mathscr{P}(\{1,\{1,2\}\}) = \{\emptyset,\{1\},\{1,2\},\{1,\{1,2\}\}\}\} \dots$$

13.
$$\mathscr{P}(\{1,\{1,2\}\}) = \{\emptyset,\{\{1\}\},\{\{1,2\}\},\{\emptyset,\{1,2\}\}\}\$$

Solution

```
meaningless because 1 is not a set ....wrong because \{1,2\} \not\subseteq \{1,\{1,2\}\} ... wrong because \{\{1\}\} \not\subseteq \{1,\{1,2\}\}
```

Clarification on sets 3: Infinite union/intersection notation

Notations

```
\bigcup_{i=1}^{\infty} A_i = A_1 \cup A_2 \cup A_3 \cup \cdots = \{x : x \in A_i \text{ for at least one set } A_i \text{ with } 1 \le i\}.
```

$$\bigcap_{i=1}^{\infty} A_i = A_1 \cap A_2 \cap A_3 \cap \cdots = \{x : x \in A_i \text{ for every set } A_i \text{ with } 1 \le i\}.$$

$$A_1 = \{-1,0,1\}, \quad A_2 = \{-2,0,2\}, \quad A_3 = \{-3,0,3\}, \quad \cdots, \quad A_i = \{-i,0,i\}, \quad \cdots$$
Observe that $\bigcup_{i=1}^{\infty} A_i = \mathbb{Z}$, and $\bigcap_{i=1}^{\infty} A_i = \{0\}$.

Extended Notation

Here is a useful twist on our new notation. We can write

$$\bigcup_{i=1}^{3} A_{i} = \bigcup_{i \in \{1,2,3\}} A_{i},$$

as this takes the union of the sets A_i for i = 1, 2, 3. Likewise:

$$\bigcap_{i=1}^{3} A_{i} = \bigcap_{i \in \{1,2,3\}} A_{i}$$

$$\bigcup_{i=1}^{\infty} A_{i} = \bigcup_{i \in \mathbb{N}} A_{i}$$

$$\bigcap_{i=1}^{\infty} A_{i} = \bigcap_{i \in \mathbb{N}} A_{i}$$

Extended Notations

Here we are taking the union or intersection of a collection of sets A_i where i is an element of some set, be it $\{1,2,3\}$ or \mathbb{N} . In general, the way this works is that we will have a collection of sets A_i for $i \in I$, where I is the set of possible subscripts. The set I is called an **index set**.

```
If A_{\alpha} is a set for every \alpha in some index set I, then \bigcup_{\alpha \in I} A_{\alpha} = \{x : x \in A_{\alpha} \text{ for at least one set } A_{\alpha} \text{ with } \alpha \in I\}\bigcap_{\alpha \in I} A_{\alpha} = \{x : x \in A_{\alpha} \text{ for every set } A_{\alpha} \text{ with } \alpha \in I\}.
```

Exercise 1

(a)
$$\bigcup_{i \in \mathbb{N}} [0, i+1] =$$

(b)
$$\bigcap_{i \in \mathbb{N}} [0, i+1] =$$

Solution

- [0, infinity)
- [0, 2]

Exercise 2

(a)
$$\bigcup_{i\in\mathbb{N}}\mathbb{R}\times[i,i+1]=$$

(b)
$$\bigcap_{i\in\mathbb{N}}\mathbb{R}\times[i,i+1]=$$

Solution

- R * [1, infinity)
- \emptyset

Exercise 3

(a)
$$\bigcup_{\alpha \in \mathbb{R}} \{\alpha\} \times [0,1] =$$

(b)
$$\bigcap_{\alpha \in \mathbb{R}} \{\alpha\} \times [0,1] =$$

Solution

- R * [0,1]
- \emptyset

Writing element arguments more efficiently for proving some proof properties

 Prove De morgen law: Complement of A intersection B = Complement of A union Complement of B

```
(A \cap B)^c = \{x | x \notin A \cap B\}  (Def. set complement)

= \{x | \sim (x \in A \cap B)\}  (Def. of \notin)

= \{x | \sim (x \in A \land x \in B)\}  (Def. \cap)

= \{x | x \notin A \lor x \notin B\}\}  (Def. set complement)

= \{x | x \in A^c \lor x \in B^c\}\}  (Def. set complement)

= A^c \cup B^c  (Def. \cup)
```

Given sets A, B, and C, prove $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

Proof

```
 A \times (B \cap C) = \{(x,y) : (x \in A) \land (y \in B \cap C)\}  (def. of \times) 
 = \{(x,y) : (x \in A) \land (y \in B) \land (y \in C)\}  (def. of \cap) 
 = \{(x,y) : (x \in A) \land (x \in A) \land (y \in B) \land (y \in C)\}  (P = P \land P) 
 = \{(x,y) : ((x \in A) \land (y \in B)) \land ((x \in A) \land (y \in C))\}  (rearrange) 
 = \{(x,y) : (x \in A) \land (y \in B)\} \cap \{(x,y) : (x \in A) \land (y \in C)\}  (def. of \cap) 
 = (A \times B) \cap (A \times C) (def. of \times)
```

QED.

Exercise

 Prove De morgen law: Complement of A union B = Complement of A intersection Complement of B

Example (This one has to be proved by the old-style element argument)

- Let Z be the set of integers
- Let A be the set of {7a + 8b | a \in Z and b \in Z}
- Prove Z = A

Solution

- Proof.
 - A is clearly a subset of Z
 - So we only need to prove Z is a subset of A
 - Suppose n is arbitrary element of Z, n can be written as
 7 (-n) + 8 (n), Therefore Z is a subset of A
- QED.

Exercise (This one has to be proved by the old-style element argument)

- Let Z be the set of integers
- Let A be the set of {7a + 3b | a \in Z and b \in Z}
- Prove Z = A