

Agenda

Dataset Introduction & Objectives

Masks Explanation and Challenges

Tiling Images

One Stage Model

Two Stage Model

Results & Conclusion

Further Improvements & QnA

Deep Learning Algorithms in Predicting Prostate Cancer

Dataset Objective

Dataset Objective – Image Classification

What is the input and what are we trying to predict?

Dataset Objective

Severity of Prostate Cancer

Dataset Introduction – What's the source?

Dataset

Source from Organizations ~(50:50)

~10,000 H&E stained prostate biopsy images

• **Size**: 383 GB

Format: TIFF (multi level image)

Labels: Yes (labelled by pathologists)

• Masks: Yes (labelled areas of interest by pathologists)

*Note that these 2 sources have different masking techniques

Masking Explanation - What do the masks mean?

Radbound

Mask colors and description

- 0: background (non tissue) or unknown
- 1: stroma (connective tissue, non-epithelium tissue)
- 2: healthy (benign) epitheliun
- 3: cancerous epithelium (Gleason 3)
- 4: cancerous epithelium (Gleason 4)
- 5: cancerous epithelium (Gleason 5)

Karolinska

Mask colors and description

- [0]: background (non tissue) or unknown
- [1]: benign tissue (stroma and epithelium combined)
- [2]: cancerous tissue (stroma and epithelium combined

Challenges with Masks

Masks are not the same

- From previous slide, obvious that both sources have different masking techniques
- If want to use, just use the more granular source, which is Radboud

No masks in production

- In production, just the image will be available and no masks will be available
- A segmentation model must be trained to produce/predict masks of the images

Dataset Introduction - Image & Mask Resolution

Highest

Medium

Avg size: 20MB

Lowest

Avg size: 10MB

Avg size: 40MB

• Images come in TIFF multilevel format, has 3 resolutions available

Dataset Introduction - Image Resolution

Highest

Medium

Avg size: 20MB

Avg size: 40MB

- Images come in TIFF multilevel format, has 3 resolutions available
- Lowest resolution is chosen for this project due to limited hardware resources (GPU and RAM)
- Lowest resolution is actually already quite large in size

Evaluation – Quadratic Weighted Kappa (QWK)

QWK with N classes

$$\kappa = 1 - rac{\sum_{i,j} w_{i,j} O_{i,j}}{\sum_{i,j} w_{i,j} E_{i,j}}$$

Observed Confusion Matrix

N x N confusion matrix of prediction classification

Expected Confusion Matrix

N x N confusion matrix under the assumption of no correlation among classes. Outer product of actual and predicted labels.

E = np.outer(actual, predicted)

Penalty matrix, N x N

$$w_{i,j} = \frac{(i-j)^2}{(N-1)^2}$$

N x N confusion matrix of penalties. If predicted is equal to actual, zero penalty.

Why use QWK?

- Allocate a higher penalty score if our prediction is further away from the actual value.
- Hierarchy matters in this case. Predicting ISUP grade 1 for sample supposedly grade 5 has huge consequences.

$$\frac{(2-1)^2}{(5-1)^2} = 0.0625$$

$$\frac{(2-4)^2}{(5-1)^2} = 0.25$$

Evaluation – Quadratic Weighted Kappa (QWK)

QWK Values Interpretation

Range of Quadratic Weighted Kappa	Concordance
Negative	poor
0.01-0.20	slight
0.21-0.40	fair
0.41-0.60	moderate
0.61-0.80	substantial
0.81-1	almost perfect

Project target

Usage in Python

From sklearn library

```
cohen_kappa_score(actual, pred, labels=None, weights= 'quadrati
c', sample_weight=None)
```

Data Cleansing – Omitting Suspicious Images

Images with no masks

Image name: e4215cfc8c41ec04a55431cc413688a9 ISUP Grade: 2

Data Provider: karolinska

Original Resolution of Image: (1792, 1248) Original resolution of Mask: (1792, 1248)

4 images

No Cancerous Regions but labelled cancerous

Image name: fe79209ab178c89a9be62bc05b63f083

ISUP Grade: 4

Data Provider: radboud

Original Resolution of Image: (624, 256) Original resolution of Mask: (624, 256)

82 images

Modelling

Modelling Approach

One Stage Model

Modelling Approach Recap

One Stage Model

Why Must Images be Tiled?

Deep learning model needs to train on same sized images

Option 1: Resize images to fixed size

Original image

Option 2: Tile Images To fixed size

- A lot less white space
- Easier for model to interpret

Static Tiling Algorithm

16 Tiles, each tile 128 x 128 (16 x 128 x 128)

Original Image

Pad Image to nearest multiple of 128, here is 1024 & 512

Grey pad to illustrate, in reality, I use white.

Fill Image with 128 by 128 tiles

Pad the remaining tiles needed to complete 16 tiles Can consider excluding the images that has not enough to tile, doesn't make sense to tile if too little non white.

Select top 16 highest concentration tiles

Good vs Bad Tiles (312 x 312)

- Not too much white space
- Capture a lot of content

Too much white space

 Can't capture a lot of content and too much white space not useful for model

One Stage Model

One Stage Detailed Modelling Workflow

Models Tested for One Stage Modelling

The following models were tested:

- Xception
- ResNet-50
- Inception-ResNet-v2
- Inception-v3
- EfficientNet-B5

Wide range of complexity (in terms of number of parameters)

One Stage Model Results - Tiling improves model

Tiling

* Use pre-trained weights because those weights have been trained over many images and if train from scratch, accuracy increases very slow and will overfit

Tiles	Weight*	Training Time	Epoch	Backbone Model	Train QWK	Validation QWK	Test QWK
25 x 64 x 64	imagenet	8 hrs	25	Xception	0.78	0.76	0.75
25 x 64 x 64	imagenet	8 hrs	25	ResNet50	0.73	0.71	0.73
25 x 64 x 64	imagenet	8 hrs	25	InceptionResNet	0.74	0.73	0.69
25 x 64 x 64	imagenet	8 hrs	25	Inception	0.73	0.69	0.69
25 x 64 x 64	imagenet	9 hrs	25	EfficientNet-B5	0.65	0.68	0.68

No Tiling

Tiles	Weight	Training Time	Epoch	Backbone Model	Train QWK	Validation QWK	Test QWK
None	imagenet	12 hrs	25	Xception	0.62	0.57	0.57

One Stage Model Results - Tiling improves model

Tiling

* Use pre-trained weights because those weights have been trained over many images and if train from scratch, accuracy increases very slow and will overfit

Tiles	Weight*	Training Time	Epoch	Backbone Model	Train QWK	Validation QWK	Test QWK
25 x 64 x 64	imagenet	8 hrs	25	Xception	0.78	0.76	0.75
25 x 64 x 64	imagenet	8 hrs	25	ResNet50	0.73	0.71	0.73
25 x 64 x 64	imagenet	8 hrs	25	InceptionResNet	0.74	0.73	0.69
25 x 64 x 64	imagenet	8 hrs	25	Inception	0.73	0.69	0.69
25 x 64 x 64	imagenet	9 hrs	25	EfficientNet-B5	0.65	0.68	0.68

No Tiling

Tiles	Weight	Training Time	Epoch	Backbone Model	Train QWK	Validation QWK	Test QWK
None	imagenet	12 hrs	25	Xception	0.62	0.57	0.57

One Stage Model Conclusion

- Tiling the images were useful, compared to not tiling them.
- Significant increase in QWK score when tiling. Average of 0.59 vs 0.76
- Xception model performs the best and QWK scores across train, validation, and test shows no signs of overfitting

Two Stage Model

Modelling Approach Recap

One Stage Model

Modelling Approach Recap

One Stage Model

Different Masks

Radbound

Mask colors and description

- 0: background (non tissue) or unknown
- 1: stroma (connective tissue, non-epithelium tissue)
- 2: healthy (benign) epithelium
- 3: cancerous epithelium (Gleason 3)
- 4: cancerous epithelium (Gleason 4)
- 5: cancerous epithelium (Gleason 5)

Karolinska

Mask colors and description

- [0]: background (non tissue) or unknown
- [1]: benign tissue (stroma and epithelium combined)
- [2]: cancerous tissue (stroma and epithelium combined

Different Masks

Radbound

Mask colors and description

- 0: background (non tissue) or unknown
- 1: stroma (connective tissue, non-epithelium tissue)
- 2: healthy (benign) epitheliun
- 3: cancerous epithelium (Gleason 3)
- 4: cancerous epithelium (Gleason 4
- 5: cancerous epithelium (Gleason 5)

Use Radboud to train model as it is more granular

Karolinska

Mask colors and description

- [0]: background (non tissue) or unknown
- [1]: benign tissue (stroma and epithelium combined
- [2]: cancerous tissue (stroma and epithelium combined

Two Stage Model Detailed Workflow

Two Stage Model Detailed Workflow

Can try to used train model on Radboud images to predict on Karolinksa images to see if we get good results

Image Segmentation Workflow

Features Extracted

Features Extracted

Mask colors and description

- 0: background (non tissue) or unknown
- 1: stroma (connective tissue, non-epithelium tissue)
- 2: healthy (benign) epithelium
- 3: cancerous epithelium (Gleason 3)
- 4: cancerous epithelium (Gleason 4)
- 5: cancerous epithelium (Gleason 5)

Feature extraction

features	
3f29085f41b10d165a46ad437	image_id
radboud	data_provider
	isup_grade
0.7943	percent_1
0.0477429	percent_2
0.0590833	percent_3
0.0910798	percent_4
0.00778406	percent_5
75716	count_1
455	count_2
5632	count_3
8682	count_4
742	count_5

Count and % of mask colors

Segmentation Model – U-Net Model

- Common segmentation model used in medical imaging
- Convolutional layers with encoders and decoders
- U shaped architecture

2 Stage Model Results & Findings

Tiles	Pre-trained Weight	Segmentation Model	Classifier Model	Train QWK	Validation QWK	Test QWK	Karolinska QWK
25 x 64 x 64	imagenet	U-Net	XGBOOST	0.70	0.68	0.63	-0.002
25 x 64 x 64	imagenet	U-Net	Logistic Regression	0.64	0.63	0.62	-0.006
25 x 64 x 64	imagenet	U-Net	Random Forest	0.90	0.62	0.59	-0.012
25 x 64 x 64	imagenet	U-Net	KNN Classifier	0.62	0.61	0.61	-0.017
25 x 64 x 64	imagenet	U-Net	Support Vector Classifier	0.54	0.50	0.50	-0.021

- U-Net with XGBOOST model performs the best
- Scores not as good as 1 stage model. But bear in mind, we have less data to train on since only using images from Radboud
- Using model trained on Radboud images are not useful to predict Karolinska

Examples of Accurate Predictions

img_id: ecad7ce730fc63ac02df4a9da719fa1c ISUP Grade: 5, Predicted ISUP Grade: 5

Model is very accurate when cancerous regions are very obvious from images

Examples of Inaccurate Predictions

img_id: da781e50e8bab82212e5724e387f49f4 ISUP Grade: 5, Predicted ISUP Grade: 0

- Model is not accurate when very little cancer regions but labelled as highly cancerous
- Perhaps a mistake or mislabel? But it is hard to identify such cases

Examples of Inaccurate Predictions

- Model completely fails to predict cancerous masks
- Image resolution is too low, could be fixed with high resolution images and more hardware resources

Further Improvements

Use Higher Resolution Images

- Higher resolution images will enable larger tiles and more granular information to be captured
- Will make it easier for model to pick up on cancerous areas not detectable by lower resolution

Low Res Image and Smaller Tiles

- 16 tiles, each 128 x 128 on lowest resolution of image
- Tiling will result in more padded white tiles

High Res Image and Larger Tiles

- 25 tiles, each 256 x 256 on highest resolution of image
- Can afford to have more tiles
- Tiling results are most utilized

Further Improvements

Standardize Masks

- Find a way to standardize masks
- Allows usage of all images in dataset for 2 stage model. Has potential to improve 2 stage model
- Apple to apple and fair comparison

More GPU Resources

- With more VRAM in GPU, can train deeper models, reduce training time
- Load and train over high resolution images. Improve both 1 stage and 2 stage models
- Reduced training time and tune hyperparameters more frequently

Conclusion

Tiling Adds Value to Predictions

- Tiling the images improves the predictions compared to not tiling
- Tiling reduces the white spaces in final image and zoom into area of interest
- Actually part of pathologist job that is being replicated by tiling

One Stage Model Produced Best Results

- Xception model in one stage modelling produced the best results (QWK 0.7 on test set)
- Uses all images in the dataset

Two Stage Model Has Potential

- Successfully built two stage model, consists of image segmentation and classifier model
- Best model has QWK of 0.63 on test set
- Although not as good as one stage model, but bear in mind only used Radboud images (50% of dataset

Further Improvements

- Use high resolution images more tiles and larger tiles, more granular
- Standardize masks use all images in training of 2 stage model
- More GPU resources reduce training time, deeper models and can load and train over high resimages

QnA Session

