Loss function landscape

Theories of Deep Learning. Part 3

Eugene Golikov

MIPT, spring 2019

Neural Networks and Deep Learning Lab., MIPT

Consider binary classification problem: $y \in \{-1,1\}$, $x \in \mathbb{R}^{d_0}$; Hinge loss: $L(y,\hat{y}) = [1-y\hat{y}]_+$.

Fully-connected feed-forward net:

$$\hat{y} = qW_H\sigma(W_{H-1}\ldots\sigma(W_1x)\ldots)\in\mathbb{R}^1,$$

or, in case of $\sigma(z) = [z]_+$,

$$\hat{y} = q \sum_{i=1}^{d_0} \sum_{j=1}^{\gamma} x_i a_{i,j} \prod_{k=1}^{H} w_{i,j}^{(k)},$$

where q – some normalizing constant.

Let $d_k = \text{width of k-th layer}$;

 $\gamma = \#$ paths from input to output $= d_1 \cdot \ldots \cdot d_{H-1}$;

 $a_{i,j} \in \{0,1\}$ – activation of j-th path from i-th input;

 $N = d_0 d_1 + \ldots + d_{H-2} d_{H-1} + d_{H-1} \cdot 1$ – number of parameters.

1

Hamiltonian of H-spin spherical spin-glass model (Barrat, 1997¹):

$$\mathcal{L}_{\Lambda,H}(\mathbf{w}) = rac{1}{\Lambda^{(H-1)/2}} \sum_{i_1...i_H=1}^{\Lambda} J_{i_{1:H}} \prod_{k=1}^{H} w_{i_k} \quad s.t. \; rac{1}{\Lambda} \sum_{i=1}^{\Lambda} w_i^2 = 1.$$

- Λ number of spins; H max. number of interacting spins;
- $\mathbf{w} \in \mathcal{S}^{\Lambda-1}(\sqrt{\Lambda})$ state of the system;
- $J_{i_{1:H}} \sim \mathcal{N}(0,1)$ interaction strengths (random variable!).

Features:

- Has multiple critical points;
- Structure of critical points for $\Lambda \to \infty$ is studied in Auffinger et al. $(2010)^2$ (more about it later).

¹https://arxiv.org/abs/cond-mat/9701031

²https://arxiv.org/abs/1003.1129

$$\mathcal{L}_{net}(W) = \mathbb{E}_{x,y \sim \mathcal{D}} \left[1 - yq \sum_{i=1}^{d_0} \sum_{j=1}^{\gamma} x_i a_{i,j} \prod_{k=1}^{H} w_{i,j}^{(k)} \right]_+$$

VS

$$\mathcal{L}_{\Lambda,H}(\mathbf{w}) = \frac{1}{\Lambda^{(H-1)/2}} \sum_{i_1...i_H=1}^{\Lambda} J_{i_{1:H}} \prod_{k=1}^{H} w_{i_k} \quad s.t. \ \frac{1}{\Lambda} \sum_{i=1}^{\Lambda} w_i^2 = 1.$$

Differences:

- deterministic vs random;
- non-negative vs unbounded below;
- N parameters vs Λ parameters.

Similarities:

 (Piece-wise) homogeneous polynomials w.r.t w of degree H.

Plan (Choromanska et al., 2014³):

- 1. Introduce a couple of (unrealistic) assumptions to make the loss $\mathcal{L}_{net}(W)$ of the same form as $\mathcal{L}_{\Lambda,H}(\mathbf{w})$;
- 2. Apply analysis from Auffinger et al. (2010) to reason about "goodness" of critical points.

³https://arxiv.org/abs/1412.0233

$$\hat{y} = q \sum_{i=1}^{d_0} \sum_{j=1}^{\gamma} x_i a_{i,j} \prod_{k=1}^{H} w_{i,j}^{(k)}.$$

Rearrange as:

$$\hat{y} = q \sum_{i=1}^{\Psi} x_i a_i \prod_{k=1}^{H} w_i^{(k)},$$

where $\Psi = d_0 \gamma = \#$ paths from all inputs to output.

Assumptions:

Model hinge loss as Bernoulli RV M:

$$L(y,\hat{y}) = [1 - y\hat{y}]_{+} = M(1 - y\hat{y}) = M - q \sum_{i=1}^{\Psi} (yx_i)(Ma_i) \prod_{k=1}^{H} w_i^{(k)}.$$

Denote $z_i = yx_i$, $b_i = Ma_i$.

$$L(y, \hat{y}(x, W)) = M - q \sum_{i=1}^{\Psi} z_i b_i \prod_{k=1}^{H} w_i^{(k)}.$$

Assumptions (Choromanska et al., 20154):

- **A1p**: $b_i \sim \text{Bernoulli}(\rho) \ \forall i$;
- **A2p:** $z_i \sim \mathcal{N}(0,1) \ \forall i;$
- A3p: (weight redundancy) We can leave only Λ = ^H√Ψ unique weights w without sufficient loss of accuracy;
- A4p: Every combination of H unique weights appears in the loss.

Given this, we rewrite:

$$L(\mathbf{w}) = M - q \sum_{i_1...i_H=1}^{\Lambda} z_{i_1..H} b_{i_1.H} \prod_{k=1}^{H} w_{i_k}.$$

⁴http://proceedings.mlr.press/v40/Choromanska15.pdf

$$L(\mathbf{w}) = M - q \sum_{i_1...i_H=1}^{\Lambda} z_{i_1:H} b_{i_1:H} \prod_{k=1}^{H} w_{i_k}.$$

• **A5u:** $b_{i_{1:H}}$ is independent from $z_{i_{1:H}}$:

$$\mathbb{E}_{M,b_{i_{1:H}}}L(\mathbf{w}) = \rho' - q \sum_{i_{1}...i_{H}=1}^{\Lambda} z_{i_{1:H}} \rho \prod_{k=1}^{H} w_{i_{k}};$$

- **A6u:** All z_{i_k} are independent;
- **A7p:** Spherical weight constraint: $\sum_{i=1}^{\Lambda} w_i^2 = \Lambda$.

$$\mathbb{E}_{M,b_{i_{1:H}}}L(\mathbf{w}) = \rho' - q \sum_{i_{1}...i_{H}=1}^{\Lambda} z_{i_{1:H}} \rho \prod_{k=1}^{H} w_{i_{k}};$$

Defining $q=-rac{1}{
ho\Lambda^{(H-1)/2}}$, $J_{i_{1:H}}=z_{i_{1:H}}$, we get:

$$\mathbb{E}_{M,b_{i_{1:H}}}L(\mathbf{w}) = \frac{1}{\Lambda^{(H-1)/2}} \sum_{i_{1}...i_{H}=1}^{\Lambda} J_{i_{1:H}} \prod_{k=1}^{H} w_{i_{k}} + C \quad s.t. \sum_{i=1}^{\Lambda} w_{i}^{2} = \Lambda.$$

Note: $\Lambda = \sqrt[H]{\Psi} \to \infty \Leftrightarrow N \to \infty$.

Ok, that's spin-glass Hamiltonian ...

... however, we've cheated a lot.

What do we know about energy landscape of spin-glasses?

$$\mathcal{L}_{\Lambda,H}(\mathbf{w}) = \frac{1}{\Lambda^{(H-1)/2}} \sum_{i_1...i_H=1}^{\Lambda} J_{i_1:H} \prod_{k=1}^{H} w_{i_k} \quad s.t. \ \frac{1}{\Lambda} \sum_{i=1}^{\Lambda} w_i^2 = 1.$$

Index of critical point w:

$$\operatorname{ind} \mathbf{w} = \#\operatorname{negative} \text{ eigenvalues of } \nabla^2 \mathcal{L}_{\Lambda,H}(\mathbf{w}).$$

Number of critical points of index k with energy in a set ΛB :

$$\mathcal{C}_{\Lambda,k}(B) = \sum_{\mathbf{w}: \ \nabla \mathcal{L}_{\Lambda,H}(\mathbf{w}) = 0} [\mathcal{L}_{\Lambda,H}(\mathbf{w}) \in \Lambda B][\operatorname{ind} \mathbf{w} = k], \quad B \subset \mathbb{R};$$

$$C_{\Lambda,k}(u) := C_{\Lambda,k}((-\infty,u)).$$

9

 $C_{\Lambda,k}(B)$ is a random variable; Auffinger et al. (2010) derived the following form of its expectation:

$$\mathbb{E} C_{\Lambda,k}(B) = some \ complicated \ expression,$$

which has the following asymptotics for $B = (-\infty, u)$ and $H \ge 2$:

$$\lim_{\Lambda \to \infty} \frac{1}{\Lambda} \log \mathbb{E} \, \mathcal{C}_{\Lambda,k}(u) = \Theta_{k,H}(u),$$

where $\Theta_{k,H}(u)$ is non-decreasing.

Figure 1: The functions $\Theta_{k,H}$, for H=3 and k=0 (solid), k=1 (dashed), k=2 (dash-dotted), k=10, k=100 (both dotted). All these functions agree for $u\geq -E_{\infty}$.

$$\lim_{\Lambda \to \infty} \frac{1}{\Lambda} \log \mathbb{E} \, \mathcal{C}_{\Lambda,k}(u) = \Theta_{k,H}(u).$$

Define $E_k(H)$ such that $\Theta_{k,H}(-E_k(H)) = 0$.

Properties of $E_k(H)$:

- $\forall H \geq 2 \ \forall k \geq 0$ $E_{k+1}(H) < E_k(H)$;
- $\forall H \geq 2$ $\lim_{k \to \infty} E_k(H) = E_{\infty}(H) = 2\sqrt{\frac{H-1}{H}}$.

Facts about distribution of critical points of spin-glasses:

In the limit of $\Lambda \to \infty$:

- $-\Lambda E_0(H)$ is an energy of global minimum;
- All critical points of non-diverging index lie within the band $[-\Lambda E_0(H), -\Lambda E_\infty(H)];$
- All critical points of index k lie within the band $[-\Lambda E_k(H), -\Lambda E_{\infty}(H)];$
- Number of local minima in [-ΛE₀(H), -ΛE_∞(H)] dominates the number of saddle points in [-ΛE₀(H), -ΛE_∞(H)].

Idea:

Link the loss surface of a multi-layer network with a Hamiltonian of a physical model.

Why good:

- Connecting ML to physics is cool;
- Tells us why local minima of a loss-surface cannot be arbitrarily bad.

Why bad:

- Applies only to ReLU nonlinearity and Hinge loss;
- Bases on a couple of unrealistic assumptions;
- Length of the band of local minima diverges with Λ (hence with N).

Arbitrary model

Consider finite dataset $(x_i, y_i)_{i=1}^m$, $x_i \in \mathbb{R}^{d_x}$, $y_i \in \mathbb{R}^{d_y}$; Loss $L(y, \hat{y})$ – convex, differentiable wrt \hat{y} .

The most general case:

$$\mathcal{L}(\theta) = \frac{1}{m} \sum_{i=1}^{m} L(y_i, \hat{y}(x_i, \theta)),$$

where $\hat{y}(x, \theta)$ – any model.

Introduce modified loss:

$$\tilde{\mathcal{L}}(\theta, W, a, b) = \frac{1}{m} \sum_{i=1}^{m} L(y_i, \hat{y}(x_i, \theta) + a \odot \exp(Wx_i + b)) + \lambda ||a||_2^2.$$

Arbitrary model

$$\mathcal{L}(\theta) = \frac{1}{m} \sum_{i=1}^{m} L(y_i, \hat{y}(x_i, \theta));$$

$$\tilde{\mathcal{L}}(\theta, W, a, b) = \frac{1}{m} \sum_{i=1}^{m} L(y_i, \hat{y}(x_i, \theta) + a \odot \exp(Wx_i + b)) + \lambda ||a||_2^2.$$

Theorem (Kawaguchi & Kaelbling, 2019⁵):

If (θ, W, a, b) is a local minimum of $\tilde{\mathcal{L}}$, all $w_{jk}, a_j, b_j \in \mathbb{R}$, then θ is a global minimum of \mathcal{L} .

Where is the catch?

⁵https://arxiv.org/abs/1901.00279