coursera

Partial Derivatives and Differentiability

Chain Rule for Multivariate Case

Second Partial Derivatives

- Video: Second Partial
 Derivatives
 9 min
- Video: Differentials of Multivariate Functions
 13 min
- Video: Convexity
 4 min
- Video: Second Partial
 Derivatives: Convexity
 11 min
- Reading: Convexity: clearing the air

 10 min
- Practice Quiz: Practice Quiz
 #2
 2 questions
- **Quiz:** Forth Week Final Test 6 questions

Convexity: clearing the air

Let us for a moment summarise all we have learned about convexity.

Definition and corrections

Let us address the definition for the single-variate case first (the multi-variate is a simple generalization as we discussed): the function is convex on the segment [a;b] if the function's graph on any subsegment [c;d] is below the segment connecting points (c,f(c)) and (d,f(d)).

We came up with a more algebraic way to write it:

- if we have a segment [c;d], then any point there could be written as $\alpha c + (1-\alpha)d$ where $0 \le \alpha \le 1$; why is it so? One way to think about it is the following: imaging a seesaw which starts at c and end at d: if we put a weight α on one side and $1-\alpha$ on the other, then where should we put the foundation (the fulcrum) so it is in balance? Exactly in $\alpha c + (1-\alpha)d$ (it is known in physics as the center of mass). Now try to change α and you will see how we can get the fulcrum to any point of the segment
- the similar thing applies to the two dimensional segment (e.g. between $\ (c,f(c))$ and $\ (d,f(d))$) -- we still need to sum them with α and $1-\alpha$ weights
- now all we need is to write an inequality for the word "below" in the definition: $f(\alpha c + (1-\alpha)d) \leq \alpha f(c) + (1-\alpha)f(d)$