Laboratory work No. 4: Tuning of PID controller

1. Calculate parameters for PID controller using open-loop method.

PID control of a plant

Transfer function of the plant:

$$G_o(s) = \frac{1}{0,125 s^3 + 0,75 s^2 + 1,5 s + 1}$$

$$L = 0.300$$

$$L = 0.300$$
 $T = 2.860 - 0.3 = 2.560$

Type of Controller	K_p	T_i	T_d
PID	$1.2\frac{T}{L}$	2L	0.5L

$$P=K_{p}; I=K_{p}/T_{i}; D=K_{p}*T_{d}.$$

Type of Controller	K_p	T_i	T_d
PID	10.24	0.6	0.15

$$P = 10.24$$

$$D = 1.536$$

$$L = 0.178$$

$$T = 1.782 - 0.178 = 1.604$$

Type of Controller	K_p	T_i	T_d
PID	10.8135	0.356	0.089

$$P = 10.8135$$

$$I = 30.375$$

$$P = 10.8135$$
 $I = 30.375$ $D = 0.9624015$

2. Calculate parameters for PID controller using closed-loop method.

PID control of a plant

Transfer function of the plant:

$$G_o(s) = \frac{1}{0,0025 s^4 + 0,11 s^3 + 1,413 s^2 + 4,5 s + 5}$$

Type of Controller	K_p	T_{i}	T_d
PID	$0.6K_{\rm cr}$	$0.5P_{\rm cr}$	$0.125P_{\rm cr}$

$$P = K_p$$
; $I = K_p/T_i$; $D = K_p * T_d$.

$$P_{CR} = 4.107 - 2.473 = \underline{1.634}$$

 $K_{CR} = \underline{1.871}$

Type of Controller	K_p	T_i	T_d
PID	1.1226	0.817	0.20425

$$P = 1.1226$$
 $I = 1.3740514076$ $D = 0.23$

$$P_{CR} = 3.039 - 1.057 = 1.982$$

 $K_{CR} = 1$

Type of Controller	K_p	T_i	T_d
PID	0.6	0.991	0.24775

$$P = 0.6$$

$$I = 0.6055$$

$$D = 0.14865$$

