第壹部分:選擇題(占48分)

一、單選題(占18分)

說明:第1題至第3題,每題5個選項,其中只有一個是最適當的答案,畫記在答案卡之「解答欄」。各題答 對得6分;未作答、答錯或畫記多於一個選項者,該題以零分計算。

【1】 設拋物線 $\Gamma: y^2 = 8x$ 的焦點為F,若 A、B 為 Γ 上相異兩點且均在X 軸上方,滿足 $\overline{AF} = 6$, $\overline{BF} = 3$,

則 \overline{AB} = (1) $\sqrt{11}$ (2) $\sqrt{13}$ (3) $\sqrt{15}$ (4) $\sqrt{17}$ (5) $\sqrt{19}$ \circ

Ans: (4)

【2】令橢圓 $\Gamma_1: \frac{x^2}{5^2} + \frac{y^2}{3^2} = 1$ 、 $\Gamma_2: \frac{x^2}{5^2} + \frac{y^2}{3^2} = 2$ 、 $\Gamma_3: \frac{x^2}{5^2} + \frac{y^2}{3^2} = \frac{-2x}{5}$ 的長軸長分別為 $l_1 \cdot l_2 \cdot l_3$ 。請問下列哪一個選項是 正確的?

- $(1)l_1 = l_2 = l_3$ $(2)l_1 = l_2 < l_3$ $(3)l_1 < l_2 < l_3$ $(4)l_1 < l_3 < l_2$ $(5)l_1 = l_3 < l_2$

Ans: (5)

Ans: (4)

【3】如右圖,雙曲線 $\frac{x^2}{16} - \frac{y^2}{9} = 1$ 的兩個焦點為 F_1 , F_2 , 且 \overline{AB} 通過焦點 F_1 。已知 $\overline{AB} = 10$,

則

△ABF₂的周長為(1) 30 (2) 32 (3) 34 (4) 36 (5) 38。

二、多選題(占30分)

說明:第4題至第6題,每題有5個選項,其中至少有一個是正確的選項,選出正確選項畫記在答案卡之「解 答欄」。各題之選項獨立判定,所有選項均答對者,得10分;答錯1個選項者,得6分;答錯2個選項 者,得2分;所有選項均未作答或答錯多於2個選項者,該題以零分計算。

【4】在坐標平面上,圓C的圓心在原點且半徑為2,已知直線L與圓C相交,請問L與下列哪些圖形一定相交?

(1) y 軸

- (2) $y = \log_2 x$ (3) $x^2 + y^2 = 5$

 $(4)(x-2)^2 + y^2 = 16$ $(5)\frac{x^2}{9} + \frac{y^2}{4} = 1$

Ans: (3)(4)(5)

【5】試問下列哪些選項中的二次曲線,其焦點(之一)是拋物線 $y^2 = 2x$ 的焦點?

 $(1) y = \left(x - \frac{1}{2}\right)^2 - \frac{1}{4} \qquad (2) \frac{x^2}{4} + \frac{y^2}{3} = 1 \qquad (3) \frac{4x^2}{3} + y^2 = 1$

 $(4)8x^2 - 8y^2 = 1 (5)4x^2 - 4y^2 = 1 \circ$

Ans: (1)(4)

【6】若 Γ : $\frac{x^2}{4} - \frac{y^2}{9} = 1$,則下列哪些直線與 Γ 有交點?

- $(1)L_1: 3x + 2y = 0$
- $(2)L_2:4x+3y=0$
- $(3)L_3: 3x 2y = -0.001$
- $(4)L_4: 3x y = 3$
- $(5)L_5: 2x + y = 2\sqrt{2}$

Ans (2)(3)(5)

第貳部分:選填題(占52分)

說明:1. 第A至I題,將答案畫記在答案卡之「解答欄」所標示的列號(7-33)。

- 2. A-H 每題完全答對給 6 分。I 題完全答對給 4 分。
- 3. 答錯不倒扣,未完全答對不給分。

A. 已知
$$\sqrt{(x-2)^2+(y+1)^2}+\sqrt{(x+2)^2+(y+1)^2}=10$$
的圖形是一個橢圓,求其短軸長= $\sqrt{8}$

Ans: $2\sqrt{21}$

Ans: $3\sqrt{2}-1$

C. 如右圖所示,A,B為兩圓的圓心,兩圓相切且與L相切;一拋物線過A,B兩點且準線

為L。已知大圓半徑為16,小圓半徑為4,求拋物線的焦距為 13 14 。(化成最簡分

數)

Ans: $\frac{16}{5}$ \circ

D. 求拋物線
$$y^2 = 16x$$
 上與直線 $L: 4x - 3y + 20 = 0$ 最短距離為 $\frac{6}{18}$ 。(化成最簡分數)

Ans: $\frac{11}{5}$

E. 已知 P 點 為 橢 圓 $\frac{x^2}{4} + y^2 = 1$ 上一點,求 P 點 到 直 線 L: 3x + 4y - 12 = 0 的 距離 最 大 值 – 距離 最 小 值 為

Ans: $\frac{4\sqrt{13}}{5}$

F. 如圖,一橢圓 $\frac{x^2}{6}+\frac{y^2}{3}=1$,今在內部置入一正六邊形 ABCDEF,使得正六邊形與橢圓有相同的中心點,且正六邊形的四個頂點 $\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{D} \cdot \mathbf{E}$ 位於橢圓上,則此正六邊形的面積為 ② ② $\sqrt{25}$ 。(化成最簡根式)

Ans: $\frac{36\sqrt{3}}{7}$

G. 右圖是某冷卻塔的截面圖,其頸部 \overline{AB} 為雙曲線的貫軸,且與 \overline{ST} , \overline{PQ} 互相平行。已知 \overline{AB} = 2, \overline{ST} = 4, \overline{PQ} = 12,且 \overline{AB} 與 \overline{ST} 的距離為 3,求 \overline{AB} 與 \overline{PQ} 的距離 = $\sqrt{2}$ ② ② ② 。

Ans: $\sqrt{105}$

H. 設雙曲線 $\frac{x^2}{4} - \frac{y^2}{5} = 1$ 的兩個焦點為 F_1 , F_2 。已知 P 點在雙曲線上,且 $\angle F_1 P F_2 = 60^\circ$, $求 \triangle F_1 P F_2$ 的面積= ③ 0 0 0

Ans: $5\sqrt{3}$

I. 已知橢圓 C_1 與雙曲線 C_2 共焦點 $F_1(3,0),F_2(-3,0)$,且短軸與共軛軸重合,則 C_1 與 C_2 的交點的軌跡所圍成的區域內部 (不含邊界)的格子點(指x,y座標為整數的點)總數為 ③ ③ 個 Ans: 25