Logica computazionale

Matricola	Primo midterm	Secondo midterm	Valutazione Finale
238204	30 e lode	30 e lode	30 e lode
236285	27	29	28
231830	27	24	26
231822	24	11	18
231770	21	15	18
231489	30	24	27
231488	27	28	28
231382	28	24	26
231271	27	20	24
231219	12		
231121	25	27	26
230749	26	30 e lode	28
230527	20	18	19
228686	17	24	21
228397	19	28	24
228394	21	22	22
228304	19	29	24
228097	19		
228096	23	23	23
228055	11		
227839	26		
227818	22	17	20
227778	24	29	27
227743	17	14	16
227739	20	23	22
227738	24	30 e lode	27
227689	21	25	23
227666	30 e lode	27	29
227629	24	27	26
227624	30 e lode	30	30 e lode
227616	20	18	19
227573	23	25	24
227569	24	30 e lode	27
227545	22	20	21
227526	26	30 e lode	28
227444	30 e lode	30 e lode	30 e lode
227436	27	27	27
227381	24	13	19
227345	22	25	24

227222	27	27	
227224	25	30 e lode	:
227220	16	25	
227215	22	30	
227202	21	22	,
227201	20	24	
227152	30	30 e lode	30 e lo
227150	24	20	
227116	30	30 e lode	30 e lo
227114	14		
227108	15	24	
227102	24	24	
227030	25	27	
227020	21	20	
227000	29	30 e lode	
226999	24	24	
226991	21	30 e lode	
226983	20		
226982	20	21	
226975	25	25	
226969	21	26	
226942	14		
226940	19	20	
226937	18	24	
226934	24		
226927	27	30 e lode	
226921	26	28	
226904	22	20	
226899	21	25 23	
226885	20	20	
226883	24	24	

226865	27	30	
226861	22	30	
226857	25	28	
226847	22	15	
226846	21	27	
226844	20	21	
226830	20	22	
226817	20	19	
226814	29	30	
226776	17	30	
226772	22	18	
226755	18		
226746	15	15	
226733	21	29	
226730	27	27	
226720	28	20	
226699	16		
226696	17	18	
226673	24	30 e lode	
226650	22	30 e lode	
226641	30 e lode	26	
226640	23	27	
226638	27	25	
226635	22	22	
226623	16		
226621	19	16	
226617	23	20	
226613	21	29	
221648	29	29	
221628	20	22	
221451	21	23	
218821	26	19	
218622	18	22	
218555	22	29	
218546	21	29	
218313	14		
218184	21	16	

Soluzioni secondo MidTerm, Dicembre 2023

TOTALE: 36pt durata 100 minuti

1. (T) definizione di espansione e unfolding in LODE (3pt)

Dire quale delle seguenti affermazioni sono vere (una o più):

- 1. (T) L'espansione concettuale ("expansion") di una ABox rispetto ad una TBox definizionale LODE di riferimento si applica solo dopo che la TBox è stata sviluppata ("unfolded").
- 2. (T) il risultato dell'espansione ("expansion") esaustiva di una ABox rispetto a tutti i concetti definiti in una TBox di riferimento è sempre e solo un Entity Graph (EG).
- 3. (F) L'espansione ("expansion") di una ABox rispetto ad una TBox di riferimento non può estendere l'Entity Graph originale, come formalizzato dalla ABox, con nuovi archi ("link").
- 4. (F) L'espansione ("expansion") di una ABox rispetto ad una TBox di riferimento può estendere l'Entity Graph originale, come formalizzato dalla ABox, con un nuovo nodo la cui entità non è anonima.

SOLUZIONE:

- 1. Vera: come da definizione
- 2. Vera: si aggiungono nodi ed archi estendendo l'Entity Graph iniziale
- 3. Falsa: ogni quantificatore esistenziale crea sempre un arco
- 4. Falsa: l'arco generato da un quantificatore esistenziale non consente di identificare l'entità target, in quanto genera sempre un nodo anonimo

2. Entailment in LODE (4 pt.)

Data la seguente TBOX in linguaggio LODE:

Mother ≡ Woman ⊓ ∃hasChild.Person Father ≡ Man ⊓ ∃hasChild.Person Wife ≡ Woman ⊓ ∀marriedWith.Father Husband ≡ Man □ ∃marriedWith.Mother

e la seguente ABOX in linguaggio LODE:

Father(Paul)
Person(Mary)

Person(Tom) hasChild(Mary, Tom) marriedWith(Paul, Mary)

Indicare quale delle sequenti affermazioni sono vere (una o più):

- 1. T = Man(Tom)
- 2. $T \models Man(Paul)$
- 3. $T \models Husband(Paul)$
- 4. T ⊨ hasChild(Paul, Tom)
- 5. T = Mother(Mary)

SOLUZIONE: Solo la 2. è vera. Infatti, l'unfolding della TBOX genera la seguente TBOX, dove la definizione di Father è l'unica rilevante per l'espansione della ABOX.

Mother ≡ Woman ⊓ ∃hasChild.Person

Father ≡ Man □ ∃hasChild.Person

Wife ≡ Woman □ ∀marriedWith.(Man □ ∃hasChild.Person)
Husband ≡ Man □ ∃marriedWith.(Woman □ ∃hasChild.Person)

L'espansione A della ABOX rispetto alla TBOX unfolded è: hasChild(Mary, Tom), marriedWith(Paul, Mary), Person(Mary), Person(Tom), Father(Paul), Man(Paul), hasChild(Paul, X), Person(X)

La (1) è falsa perché non è in A e non può essere derivata dalle definizioni della TBOX. La (2) è vera perché Man(Paul) è in A. La (3) e la (5) sono false perché seppure marriedWith(Paul, Mary) è in A, non sappiamo se Mother(Mary). La (4) è falsa perché nell'espansione abbiamo un anonimo X che non possiamo assegnare a Tom (avremmo potuto farlo se nella definizione di Husband ci fosse stato un quantificatore universale, anziché l'esistenziale).

3. Logica LODE e Entity Graphs (3 pt.)

Dato il LOD etype graph (ETG) corrispondente alla seguente TBOX:

Mother ≡ Woman □ ∃hasChild.Person Father ≡ Man □ ∃hasChild.Person Wife ≡ Woman □ ∀marriedWith.Father Husband ≡ Man □ ∃marriedWith.Mother

e dato il LOE entity graph (EG) rappresentato in figura:

Costruire il LODE Entity Graph (EG) che risulta dalla composizione, attraverso lo sviluppo ("unfolding") della TBOX e espansione ("expansion") della ABOX ed indicare quale delle seguenti affermazioni sono vere (una o più):

- 1. L'EG è costituito da 6 archi e 8 nodi
- 2. L'EG è costituito da 8 archi e 7 nodi
- 3. L'EG è costituito da 8 archi e 6 nodi
- 4. L'EG contiene due nodi che rappresentano entità anonime
- 5. L'EG contiene un nodo che rappresenta un'entità anonima
- 6. L'EG contiene 4 entità di tipo Persona

SOLUZIONE: L'espansione A della ABOX rispetto alla TBOX è: hasChild(Mary, Tom), marriedWith(Paul, Mary), Person(Mary), Person(Tom), Father(Paul), Man(Paul), hasChild(Paul, X), Person(X) Di conseguenza, L'EG che se ne deriva è il seguente:

Da cui si evince banalmente che le vere sono unicamente la (2) e la (5).

4. (T) Relazioni fra LODE e LOP (3pt) (5-10min)

Dire quali delle seguenti affermazioni sono vere:

- 1. (T) Se un fatto è un elemento di un dominio LODE allora la proposizione che lo rappresenta nel linguaggio LOP che descrive il dominio è vera
- 2. (T) Se una proposizione in un linguaggio LOP è vera allora il fatto rappresentato nel dominio LODE descritto dal linguaggio LOP è vero
- 3. (F) Dato un EG formalizzato in una logica LODE, per ogni asserzione nel linguaggio LODE possono esistere più proposizioni (atomiche) nella corrispondente teoria formalizzata in LOP
- 4. (F) Un Entity Graph (ABOX) formalizzato nella logica LODE può avere più modelli.

SOLUZIONE

- 1. Vera, come da definizione di funzione di interpretazione di LOP
- 2. Vera, come da definizione di funzione di interpretazione di LOP
- 3. Falsa, come da definizione di funzione di interpretazione di LOP, la funzione di traduzione Translate è uno-a-uno.
- 4. Falsa, in LODE per ogni teoria esiste uno ed uno solo modello che ne codifica il significato inteso.

5. Proprietà di LOP ("basic facts entailment") (3pt). (20min)

Utilizzando le proprietà della logica delle proposizioni in linguaggio LOP indicare se

$$((p \lor s) \supset \neg q) \supset r \equiv (p \land r) \lor (s \land r) \lor (q \land r)$$

NOTA: si suggerisce di riscrivere la formula di sinistra, usando le proprietà della logica, sino a quando non si giunge alla formula di destra.

SOLUZIONE: E' falsa perché:

$$((p \lor s) \supset \neg q) \supset r \equiv (\neg (p \lor s) \lor \neg q) \supset r \qquad \text{Implication and disjunction}$$

$$\equiv \neg (\neg (p \lor s) \lor \neg q) \lor r \qquad \text{Implication and disjunction}$$

$$\equiv ((p \lor s) \land q) \lor r \qquad \text{De Morgan}$$

$$\equiv (p \land q) \lor (s \land q) \lor r \qquad \text{Distributivity}$$

$$\text{FALSE}$$

Le due formule ottenute sono chiaramente diverse ed hanno diversi valori di verità.

6. Modelli e teorie LOP (7pt.)

Date le proposizioni X, Y e Z e due teorie T1 = $\{\neg(X \equiv Y), Y \land Z\}$ e T2= $\{\neg X, Y, Z \supset Y\}$ in linguaggio LOP, indicare quali delle seguenti affermazioni sono vere (una o più).

- A. T1 ha 2 modelli
- B. T2 ha 2 modelli
- C. T1 e T2 hanno 1 modello in comune
- D. T1 ⊨ T2
- E. T2 ⊨ T1
- F. $M = \{Y, Z\}$ è un modello per T1
- G. $M = \{X, Y\}$ è un modello per T2
- H. Il modello minimo ("minimal model") di T2 esiste ed è M = {Y}

SOLUZIONE. Costruendo le tabelle di verità delle formule indicate, possiamo chiaramente osservare che T1 ha 1 modello (A è falsa) e che T2 ha 2 modelli (B è vera), di cui uno in comune che corrisponde al terzo assegnamento (C è vera).

Siccome T2 è vera per tutti i modelli di T1, abbiamo che D è vera, mentre E è falsa. L'unico modello di T1 è M1 = $\{Y, Z\}$. I modelli di T2 sono M1 = $\{Y, Z\}$ e M2 = $\{Y\}$. Di conseguenza, F è vera (M = M1), G è falsa, e H è vera (M = M1 \cap M2).

			T1		T2		
X	Υ	z	¬(X ≡ Y)	Y ^ Z	¬X	Υ	Z⊃Y
Т	Т	Т	F	Т	F	Т	Т
Т	F	Т	Т	F	F	F	F
F	Т	Т	Т	Т	Т	Т	Т
F	F	Т	F	F	Т	F	F
Т	Т	F	F	F	F	Т	Т
Т	F	F	Т	F	F	F	Т
F	Т	F	Т	F	Т	Т	Т
F	F	F	F	F	Т	F	Т

7. Dall'informale al formale in LOP (2pt.)

Indicare quale singolo connettivo logico deve essere utilizzato nella traduzione in logica delle proposizioni (LOP) della frase

"Vado a Roma in treno o in aereo".

- 1. ∧ (and)
- 2. v (or)
- 3. ¬ (not)
- 4. + (xor)
- 5. ⊃ (implicazione)
- 6. ≡ (equivalenza)
- 7. Nessun connettivo logico

SOLUZIONE. La frase si traduce come P: Treno + Aereo. Di conseguenza la risposta corretta è (4).

8. Dall'informale al formale in LOP (2pt.)

Indicare quale singolo connettivo logico deve essere utilizzato nella traduzione in logica delle proposizioni (LOP) della frase

"Ho preso l'ombrello ma mi sono bagnato".

- 1. ∧ (and)
- 2. V (or)
- 3. ¬ (not)
- 4. + (xor)
- 5. ⊃ (implicazione)
- 6. \equiv (equivalenza)
- 7. Nessun connettivo logico

SOLUZIONE. La frase si traduce come P: Ombrello ∧ Bagnato. Di conseguenza, l'unica risposta corretta è la (1).

9. Dall'informale al formale (2pt.)

Indicare quale singolo connettivo logico deve essere utilizzato nella traduzione in logica delle proposizioni (LOP) della frase

"La casa di Fausto e la casa di Vincenzo sono vicine".

- 1. ∧ (and)
- 2. V (or)
- 3. ¬ (not)
- 4. + (xor)
- 5. ⊃ (implicazione)
- 6. ≡ (equivalenza)
- 7. Nessun connettivo logico

SOLUZIONE. La frase va necessariamente tradotta come una proposizione atomica. Di conseguenza, l'unica risposta corretta è la (7).

10. Formule in CNF (2 pt.)

Indicare quali delle seguenti formule in logica delle proposizioni (LOP) non sono in CNF.

- 1. $(X \lor Z) \land (\neg X \lor Y) \land (\neg X \land Y \lor \neg Z)$
- 2. $(X \wedge Z) \vee (\neg X \wedge Y) \vee (\neg X \wedge Y \wedge \neg Z)$
- 3. $X \wedge (\neg X \vee Y) \wedge (\neg X \vee Y \vee \neg Z) \wedge Z$

SOLUZIONE.Le risposte corrette sono la (1) e la (2). Per definizione, è in CNF solo la (3). La (1) non lo è perché nell'ultima clausola c'è anche un ∧. La (2) non lo è perché è una disgiunzione di congiunzioni.

11. (E) Soddisfacibilità usando DPLL (5pt)

Uso di DPLL. Data la formula P in CNF $\{\{A,B,C\}, \{A,B,\neg C\}, \{A,\neg B,C\}, \{A,\neg B,\neg C\}, \{\neg A,D\}, \{A,\neg D,\neg E,F\}, \{\neg A,G\}\},$ indicare quali delle seguenti affermazioni sono vere (una o più):

- 1. La formula P è soddisfacibile
- 2. La formula P non è soddisfacibile
- 3. ¬E, F, G, D, A è una possibile sequenza di assegnamenti generati dalla procedura
- 4. F, G, ¬E, D, A è una possibile sequenza di assegnamenti generati dalla procedura
- 5. D, A, ¬E, F, G è una possibile sequenza di assegnamenti generati dalla procedura

SOLUZIONE. Applicando l'algoritmo osserviamo che non ci sono unit clause. Ci sono però pure literals. Di conseguenza, dobbiamo necessariamente partire da uno tra ¬E, F e G, non necessariamente in questo stesso ordine:

$$\{\{A,B,C\},\{A,B,\neg C\},\{A,\neg B,C\},\{A,\neg B,\neg C\},\{\neg A,D\},\{A,\neg D,\neg E,F\},\{\neg A,G\}\}\}$$

Siccome ¬E e F si trovano nella stessa clausola, si potrà applicare solo uno dei due. Di seguito le clausole che si ottengono scegliendo G e F (oppure G e ¬E):

$$\{\{A,B,C\},\{A,B,\neg C\},\{A,\neg B,C\},\{A,\neg B,\neg C\},\{\neg A,D\}\}\}$$

Osserviamo che non ci sono unit clause. Questa volta D è l'unico pure literal.

$$\{\{A,B,C\},\{A,B,\neg C\},\{A,\neg B,C\},\{A,\neg B,\neg C\}\}$$

Osserviamo che non ci sono unit clause. A è l'unico pure literal.

Si riduce a {}. Di conseguenza l'algoritmo ritorna true (vero).

Quindi la formula è soddisfacibile e pertanto la (1) è vera, mentre la (2) è falsa.

Dall'applicazione dei passi, si evince anche che nessuna delle sequenze indicate sono possibili, di conseguenza sono false anche la (3), (4) e (5). Infatti, ¬E e F non possono esserci contemporaneamente.