Malware Assignment

Steps performed:

1. Feature extraction:

Bytesfile

- 1. Unigram feature extraction (BOW)
- 2. Bigram feature extraction

Since the bigram feature are 32896 features so I used svd decomposition to decrease the number of feature and selected only top 1000 features

3. Size of file as a feature

Asmfile

- 1. Asm feature like .data, .exb features
- 2. ASM image pixel features
- 3. Size of file as feature.

2. TSNE Visulization:

• Bigram features:

The bigram features are forming small clusters. Although the features are not well clustered, they can be useful for classification.

• ASM image features:

The top 800 image pixel based features are very well clustered in the above plot indicatine them to be useful for classification.

3. Train test split:

train:val = 75:25 (stratified)

3. Feature Selection:

Even after applying svd on bigram still there are total 2110 features (1000 bigram after svd + 257 unigram features from bytesfile + 1 bytefilesize + 51 asmfile feature + 800 asm-image pixel feature + 1 asm filesize)

So I have use random forest model for feature selection on the basis of feature importance. And after validation on cross-validation data it was found that selecting top 200 features were giving the best result.

4 Modelling:

After using a variety of model It was found that LIGHTGBM worked better.

So later I used again lightgbm for feature selection on the basis of feature importance in place of random forest (top 300 features selected) t and use the selected feature for classification.

5. Result:

Training data:

Logloss = 0.00017021813719157107

Confusion matrix:

Precision matrix:

											-1.0
7	-	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Original Class 9 8 7 6 5 4 3 2	-	0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	- 0.8
	-	0.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	
	-	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	0.000	- 0.6
	-	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	0.000	
	-	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	0.000	- 0.4
	-	0.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	0.000	
	-	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	0.000	- 0.2
	_	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	
		í	2	3	4 Pre	5 dicted Cla	6	7	8	9	- 0.0

Recall metrix:

Validation data:

Logloss = 0.00967886438881175

Confusion Matrix:

Precision Matrix

Recall matrix:

