APPRENTISSAGE SUPERVISÉ

Objectif : induire la démarche de

l'apprentissage par l'exemple.

 Montrer des exemples à votre programme en lui disant de quoi il s'agit.

Objectif : induire la démarche de

- l'apprentissage par l'exemple.Montrer des exemples à votre programme
 - en lui disant de quoi il s'agit.
 - Lui faire apprendre une règle.

Objectif : induire la démarche de

- l'apprentissage par l'exemple.Montrer des exemples à votre programme
 - en lui disant de quoi il s'agit.
 - Lui faire **apprendre** une règle.
 - Appliquer la règle à de nouveaux exemples.

Objectif : induire la démarche de

- Montrer des exemples à votre programme en lui disant de quoi il s'agit.
- Lui faire apprendre une règle.

l'apprentissage par l'exemple.

- Appliquer la règle à de nouveaux exemples.
- Évaluer si les prédictions sont bonnes en les comparant à la réalité.

EXEMPLE 2: RÉGRESSION LINÉAIRE Source: wikipedia.com

Principes

ENTRÉES (X) ET SORTIES (Y) Le principe est toujours le même : X en entrée,

Y en sortie. On cherche f tq Y = f (X).

```
INPUT : X (Informations) MODEL: Y=f(X) (Response)
```

(Informations) Y=f(X) (Response)

Exemples:

emails \rightarrow spam / non spam historique client \rightarrow nombre de clics code génétique \rightarrow état du patient profil: age, sexe,.. \rightarrow salaire

TYPES DE PROBLÉMES

Régression: la réponse est un nombre réel. Exemples : prédiction du salaire, nombre de clics, prix d'un appartement.

Classification : la réponse est une classe. Exemples : catégorie d'un article (classification multiple), spam (classification binaire).

Attention: représenter des classes (chat, chien, rat, mouton) par des nombres (0, 1, 2, 3) ne fait **pas** de votre problème une régression!

ENSEMBLE D'APPRENTISSAGE

On entraîne le modèle sur l'ensemble

- d'apprentissage (training set).
- Il est composé d'exemples de la forme (x_i, y_i) :

nombre)

- pour chaque exemple i, on a donc: la valeur d'entrée x_i : on se ramène le plus
 - souvent à un vecteur, c'est-à-dire une liste de nombres... grâce à la transformation de
 - l'input data en features (Prochain cours!) et la réponse y_i : ce sera un **scalaire** (un

Training set = { n exemples $(x_1, y_1), ..., (x \square, y \square)$

1200

	sexe	âge	diplôme		salaire
X 1	0	30	5	y 1	3000
X_2	1	25	2	y ₂	1800
X 3	1	53	3	Уз	2900
:	:	:	:	:	:

20

 X

Voici un 1^{er} texte \rightarrow pas un spam Voici un 2^{nd} texte \rightarrow pas un spam

Voici un 2^{10} texte \rightarrow pas un span Ce doc a un texte \rightarrow spam!

Voici un 1^{er} texte → pas un spam

Voici un 2nd texte → pas un spam

Ce doc	a un text	e →	span	n!	
	X				
voici un	1 er 10,40	and a	<u> </u>		1

	X											
	voici	un	1 ^{er}	texte	2 nd	се	doc	а				
X 1	1	1	1	1	0	0	0	0	У			
V.	4	4	\sim	4	4	\sim	\sim	$\overline{}$				

X₃

			Γ
			ı
			ı
			Ļ
			ı
			ı
			ı
-			ŀ
			ı
			ı
			ı

1	0
2	0

Voici un 1^{er} texte \rightarrow pas un spam Voici un 2^{nd} texte \rightarrow pas un spam Ce doc a un texte \rightarrow spam!

			Y							
	voici	un	1 ^{er}	texte	2 nd	се	doc	а		spa
X ₁	1	1	1	1	0	0	0	0	y ₁	C
741	I	l	I	I	U	U	U	U	7 -	<u> </u>

 $(x_3,y_3) = ([0,1,0,1,0,1,1,1], 1)$

Voici un 2nd texte → pas un spam Ce doc a un texte → spam!

Voici un 1^{er} texte \rightarrow pas un spam

	voici	un	1 ^{er}	texte	2 nd	се	doc	а		S
X ₁	1	1	1	1	0	0	0	0	y ₁	•
V.	4	4	\sim	4	4	\sim		$\overline{}$	1/2	

 X2
 1
 1
 0
 1
 1
 0
 0
 0
 Y2
 0

 X3
 0
 1
 0
 1
 0
 1
 1
 1
 Y3

On veut apprendre à l'algorithme ce qui fait

On veut apprendre à l'algorithme ce qui fait que les 2 premiers messages ne sont pas des spams, le 3ème oui, etc.

LE MODELE

C'est ici que l'on fait des hypothèses sur la

forme de f . Par exemple:

ullet f est linéaire: $y_i=w_1x_{i,1}+\ldots+w_dx_{i,d}$

 \rightarrow II faut trouver les valeurs de $\omega_1, \omega_2, \omega_3 \dots$

LE MODELE

C'est ici que l'on fait des hypothèses sur la

forme de f . Par exemple:

ullet f est linéaire: $y_i=w_1x_{i,1}+\ldots+w_dx_{i,d}$

 \rightarrow II faut trouver les valeurs de $\omega_1, \omega_2, \omega_3 \dots$

ullet f quadratique: $y_i=w_{1,1}x_{i,1}^2+w_{2,2}x_{i,2}^2+\ldots$

ightarrow À nouveau, on $+ w_{1,2} x_{i,1} x_{i,2} + \dots$

cherche les $\omega_{i,i}$.

LE MODELE

(eq. Naive Bayes)

C'est ici que l'on fait des hypothèses sur la forme de f . Par exemple:

ullet f est linéaire: $y_i=w_1x_{i,1}+\ldots+w_dx_{i,d}$

 \rightarrow II faut trouver les valeurs de ω_1 , ω_2 , ω_3 ...

ullet f quadratique: $y_i=w_{1,1}x_{i.1}^2+w_{2,2}x_{i.2}^2+\ldots$

ightarrow À nouveau, on $+ w_{1,2} x_{i,1} x_{i,2} + \dots$

cherche les ω_{i} .

Mais aussi et **surtout**: formulations indirectes!

LE MODÈLE: CONTRAINTES ? Soit on a une connaissance a priori ou une

hypothèse pertinente sur la forme de f : alors on peut contraindre f, souvent sous la forme d'un data model (ou modèle statistique):

d'un data model (ou modèle statistique):
 → Régression Linéaire, Régression Logistique, Naive Bayes, ...
 Soit on ne sait rien de f : on ne pose aucune

contrainte. On se tournera plutôt vers des modèles algorithmiques (cours 7):

→ Plus Proches Voisins, Arbres de Décision, Random Forests, SVM, Neural Nets, ...

DEUX ÉCOLES

Statistical Science 2001, Vol. 16, No. 3, 199-231

Statistical Modeling: The Two Cultures

Leo Breiman

Abstract. There are two cultures in the use of statistical modeling to reach conclusions from data. One assumes that the data are generated by a given stochastic data model. The other uses algorithmic models and treats the data mechanism as unknown. The statistical community has been committed to the almost exclusive use of data models. This commitment has led to irrelevant theory, questionable conclusions, and has kept statisticians from working on a large range of interesting current problems. Algorithmic modeling, both in theory and practice, has developed rapidly in fields outside statistics. It can be used both on large complex data sets and as a more accurate and informative alternative to data modeling on smaller data sets. If our goal as a field is to use data to solve problems, then we need to move away from exclusive dependence on data models and adopt a more diverse set of tools.

DILEMME PERFORMANCE/COMPLEXITÉ

Plus le modèle est **simple**, plus il est facile de l'estimer mais moins il est proche de la réalité.

Plus le modèle est **complexe**, plus il s'approche de la réalité mais plus on risque de faire des erreurs (humaines) en l'estimant.

Dilemme complexité/performance : trouver la complexité optimale.

ESTIMATION

La phase d'estimation (fit) consiste, en fonction des hypothèses faites sur f, à estimer la meilleure fonction f dans le cadre des contraintes imposées.

La meilleure fonction est celle qui se **généralise** le mieux et donne les meilleures prédictions. On appelle cette fonction f.

La manière de l'estimer dépend du modèle. Nous reviendrons là-dessus plus tard.

ENSEMBLE DE TEST

Comme l'ensemble d'apprentissage, l'ensemble de **test** est composé d'exemples de la forme (x_i, y_i) : pour chaque exemple i, on connaît la valeur d'entrée **x**i **et la réponse y**i .

Ce sont des exemples que l'on a mis de côté au départ.

Ils ne doivent **surtout pas** faire partie de l'ensemble d'entraînement!

PREDICTION

Une fois le modèle estimé sur l'ensemble d'apprentissage, on l'utilise pour **prédire** les valeurs de l'ensemble de test.

Pour chaque x_i du test, on prédit la réponse ŷ_i

 $\hat{y}_i = f(x_i)$

avec f :

$$y_i = I(x_i)$$

On va ensuite **comparer** le \hat{y}_i prédit avec le "vrai" y_{i.}

EVALUATION

On **compare** les ŷ_i prédits avec les "vrai" y_i. Cette comparaison se fait rigoureusement, avec des métriques prédéfinies.

Ce n'est surtout pas "on vérifie sur 3 ou 4 exemples" !!

Il faut que l'ensemble de test soit assez grand pour que notre évaluation soit **très** solide.

EVALUATION

Régression : distance moyenne entre les

prédictions et les vraies valeurs : n_{test}

$$erreur = rac{1}{n_{test}}\sum_{i=1}^{n_{test}}{(y_i - \hat{y}_i)^2}$$

FVALUATION

Régression : distance moyenne entre les

prédictions et les vraies valeurs :

$$erreur = rac{1}{n_{test}} \sum_{i=1}^{n_{test}} {(y_i - \hat{y}_i)^2}$$

Classification: taux d'erreur:

$$erreur=rac{1}{n_{test}}\sum_{i=1}^{n_{test}}\delta(y_i
eq \hat{y}_i)$$
 (où $\delta(\mathsf{A})$ = on singular constants)

ion : taux d'erreur:
$$n_{test}$$
 (où $\delta(A)=1$

0 si faux)

EVALUATION

Régression : distance moyenne entre les prédictions et les vraies valeurs :

 $erreur = rac{1}{n_{test}} \sum_{i=1}^{n_{test}} {(y_i - \hat{y}_i)^2}$

$$n_{test}$$
 $\stackrel{\frown}{i=1}$ Classification : taux d'erreur:

$$erreur=rac{1}{n_{test}}\sum_{i=1}^{n_{test}}\delta(y_i
eq \hat{y}_i)$$
 (où $\delta(A)$ =1 si A vrai, 0 si faux)

0 si faux)

Nous verrons plus tard des manières plus

avancées pour évaluer l'algorithme.

APPRENTISSAGE: SOMMAIRE Concept de l'apprentissage supervisé : faire

apprendre une règle à un programme à partir d'exemples.

Phase d'apprentissage : on connaît l'entrée X et la sortie/réponse Y, on estime une fonction qui les lie, i.e. Y = f(X)

Optimisation des paramètres d'apprentissage: pendant la phase d'apprentissage, grâce à la validation croisée [plus tard!]

Phase de test : on fait prédire des valeurs à l'algorithme f et on les compare aux vraies.

SUR-APPRENTISSAGE

On parle de sur-apprentissage (over-fitting) lorsque l'algorithme apprend "par coeur" l'ensemble d'apprentissage mais n'arrive pas à généraliser sur l'ensemble de test.

→ Très important de bien tester le modèle!

COMMENT APPRENDRE?

Les techniques d'apprentissage dépendent du problème.

Plusieurs techniques peuvent fonctionner.

La performance d'un algorithme dépend beaucoup de vos **données** et de leur **encodage**.

Dans ce module, nous allons voir différentes classes d'algorithmes qui ne **réfléchissent pas de** la même manière.

MODÈLES STATISTIQUES

APPRENTISSAGE SUPERVISÉ:

Naive Bayes

PROBABILITÉS CONDITIONNELLES Si A et B sont deux événements, la probabilité

que A se produise conditionnellement au fait que B se produise se dit: **probabilité de A sachant B**,

- et s'écrit : P(A|B) . Ex<mark>emple </mark>1: ● A : "il pleut aujourd'hui"

 - P(A|B): probabilité qu'il pleuve aujourd'hui sachant qu'il pleuvait hier.
 - P(B|A): probabilité qu'il ait plu hier sachant qu'il pleut aujourd'hui.
 P(A et B) = P(A O B): probabilité jointe qu'il
 - P(A et B) = P(A ∩ B) : probabilité jointe qu'il ait plu hier et qu'il pleuve aujourd'hui.

PROBABILITÉS CONDITIONNELLES Si A et B sont deux événements, la probabilité

que A se produise conditionnellement au fait que B se produise se dit: **probabilité de A sachant B**,

- et s'écrit : P(A|B) . Exemple 2: ● A : "j'achète le produit"
 - B: "j'ai vu une pub pour ce produit"
 - P(A|B): probabilité que j'achète le produit sachant que j'ai vu une pub pour lui.
 - sachant que j'ai vu une pub pour lui.
 P(B|A): probabilité que j'aie vu une pub pour ce produit sachant que je l'achète.
 - P(A et B) = P(A ∩ B) : probabilité jointe que j'aie vu une pub et que je l'achète.

|--|

	1	2	3	4	5	6	7	8
Pub	Oui	Non	Oui	Oui	Oui	Non	Oui	Oui

Achat Non Oui Non Oui Non Non Non Non

	1	2	3	4	5	6	7	8
Pub	Oui	Non	Oui	Oui	Oui	Non	Oui	Oui
Achat	Non	Oui	Non	Oui	Non	Non	Non	Non

Probas simple: P(pub) = 6/8, P(achat) = 2/8

Probabilité jointe: P(pub ∩ achat) = 1/8 (≠ 3/16) Probabilités conditionnelles: P(achat | pub) =

$$orall$$
 A et B événements : $P(A|B) = rac{P(A \cap B)}{P(B)}$

	1	2	3	4	5	6	7	8
Pub	Oui	Non	Oui	Oui	Oui	Non	Oui	Οι
Achat	Non	Oui	Non	Oui	Non	Non	Non	No

Probas simple: P(pub) = 6/8, P(achat) = 2/8

Probabilité jointe: P(pub \cap achat) = 1/8 (\neq 3/16)

Probabilités conditionnelles:

P(achat | pub) =

$$orall$$
 A et B événements : $P(A|B) = rac{P(A \cap B)}{P(B)}$

	1	2	3	4	5	6	7	8
Pub	Oui	Non	Oui	Oui	Oui	Non	Oui	Ou
Achat	Non	Oui	Non	Oui	Non	Non	Non	No

Probabilities conditionments: P(achat | pub) = P(pub \cappa achat) / P(pub) = $\frac{1/8}{6/8}$

Probabilités conditionnelles:

orall A et B événements : $P(A|B) = rac{P(A \cap B)}{P(B)}$

	1	2	3	4	5	6	7	8
Pub	Oui	Non	Oui	Oui	Oui	Non	Oui	Ou
A chat	Nlan	Oui	Man	Oui	Nlan	Man	Nlan	NIO

|Non|Oui|Non|Non|Non|Non

Probas simple: P(pub) = 6/8, P(achat) = 2/8

Probabilité jointe: P(pub ∩ achat) = 1/8

Probabilités conditionnelles:

 $P(achat \mid pub) = P(pub \cap achat) / P(pub) = 1/6$

 $P(pub \mid achat) = P(pub \cap achat) / P(achat) = 1/2$

$$P(A|B) = rac{P(A \cap B)}{P(B)}$$
Lundi Mardi Merc. Jeudi Vend.

$$P(A|B) = rac{P(A \cap B)}{P(B)}$$
Lundi Mardi Merc. Jeudi Vend.

Hier

P(hier | auj') = (1/5) / (2/3) = 1/2

 $P(B|A) \times P(A)$

P(B)

THEOREME DE BAYES

∀ A et B événements,

 $P(A|B) = rac{P(A \cap B)}{P(B)}$

THEOREME DE BAYES

∀ A et B événements.

$P(A|B) = \frac{P(A \cap B)}{P(B)}$ $P(B|A) \times P(A)$

Exemple:

- Dans une université, il y a 34% de femmes.
- Parmi les étudiants en informatique, 22% sont
- des femmes. 20% des étudiants de la fac sont en info.
- → Question: Quelle est la proportion d' étudiantes en informatique parmi les femmes de l'université?

THEOREME DE BAYES

$P(A|B) = \frac{P(A \cap B)}{P(B)}$ $P(B|A) \times P(A)$ P(B)

- Exemple:
- Dans une université, il y a 34% de femmes. • Parmi les étudiants en informatique, 22% sont
- des femmes. 20% des étudiants de la fac sont en info.
- Autrement dit: sachant que l'étudiante est une femme, quelle est la proba qu'elle fasse de

l'info? On la note P(info | Q).

THEOREME DE BAYES

∀ A et B événements.

$$P(A|B) = rac{P(A \cap B)}{P(B)} = rac{P(B|A) imes P(A)}{P(B)}$$

- Exemple:
- Dans une université, il y a 34% de femmes. • Parmi les étudiants en informatique, 22% sont
- des femmes.

des femmes.
• 20% des étudiants de la fac sont en info.

$$P(info|\coloredge) = rac{P(\coloredge) info) imes P(info)}{P(\coloredge)} rac{O(22 imes O)}{O(22 imes O)}$$

NAIVE BAYES

% de messages contenant W

Pour chaque mot W rencontré dans l'ensemble d'apprentissage, on calcule la probabilité qu'un message soit un spam **sachant** qu'il contient le mot W:

$$P(S|W) = rac{P(W|S)}{P(W)} imes rac{P(S)}{P(W)}$$

P(W|S) / P(W) ="spamicité" du mot W.

NAIVE BAYES - TEST

On généralise à plusieurs mots:

Pour chaque message, on va calculer la **probabilité que ce message soit un spam** sachant qu'il contient les mots $W_1.W_2.W_3...W \square$:

Au tableau!

REMARQUES

Le classifieur Naive Bayes considère que tous les mots sont indépendants entre eux. C'est la raison pour laquelle il est naïf.

Pourtant, malgré cela et son age (1960!), il reste utilisé et donne de bons résultats. Il peut classifier les documents dans plusieurs catégories, le cas binaire du spam étant un cas

On recommande de supprimer des mots apparaissant trop peu ou trop souvent, qui peuvent poser problème ou l'induire en erreur.

particulier.

UNE GÉNÉRALISATION

L'Analyse discriminante linéaire (LDA) est similaire à Naive Bayes, avec la distinction fondamentale que les variables ne sont plus considérées comme indépendantes, mais comme suivant une loi normale avec des covariances non nulle au sein de chaque classe.

EN PYTHON

```
from sklearn.naive_bayes import\
   BernoulliNB
model = BernoulliNB()
model.fit(Xtrain,Ytrain)
predictions = model.predict(Xtest)
```

EVALUATION

Classification binaire ou multiple équilibrée

- K≥2 classes ≈ équi-réparties, même importance.
 Orientation politique d'un tweet: gauche / droite
- Thème d'un article ∈ {tech, santé, monde, ... }
 → le taux de réussite (ou d'erreur) marche bien

Classification binaire déséguilibrée

- Classification binaire déséquilibrée 2 classes, mais pas du tout équivalentes. Ex:
- Mon email est-il un spam ou pas?
- → Recall : taux des spams détectés.
 → Precision : parmi les doc classifiés comme
 - étant des spams, quel ratio l'était réellement?

RECALL / PRECISION

Exemple:

- Ensemble de test = 10000 SMS
- 1000 Spam, 9000 "Ham" (des non-spams)

Mon algo de classification prédit:

- Sur les 1000 Spams: 930 "Spam", 70 "Ham".
- Sur les 9000 Hams: 17 "Spam", 8983 "Ham".
- Recall: taux des spams détectés
- = 930 / 1000 = 0.93 = **93**%
- Precision: parmi les SMS classifiés comme span, quel ratio était réellement des spams?
 = 930 / (930 + 17) ≈ 0.982 = 98.2%

CONCLUSIONS SUR NAIVE BAYES

- Avantages:
 - Modèle très simple.
 - Très rapide: très peu de calculs.
 - Marche bien, dans certains cas.

Inconvénients

- Sa naïveté ne s'applique pas à tous les problèmes.
 - Pour bien marcher, il nécessite de bien préprocesser le texte (comme tous les algorithmes, en fait)

Régression linéaire

A partir de n exemples $(x_1, y_1), ... (x_n, y_n)$, trouver la droite qui passe au milieu : $\hat{y} = \beta 0 + \beta 1x + \epsilon$

•
$$\beta$$
0 : biais (valeur en x = 0)

- ß1: pente

A partir de n exemples $(x_1, y_1), ... (x_n, y_n)$, trouver la

droite qui passe au milieu :
$$\hat{y} = \beta 0 + \beta 1x + \epsilon$$

• $\beta 0$: biais (valeur en x = 0)
• $\beta 1$: pente
• ϵ : erreur

RÉGRESSION LINÉAIRE MULTIPLE

On généralise: au lieu d'une seule variable réelle

x on peut en avoir
$$d$$
 (la dimension):
 $\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_d x_d$

ightarrow en notation vectorielle: $\; \hat{y} = eta_0 + ec{eta} \cdot ec{X} \;$

Et la regression devient:

 $\hat{eta_0},\hat{oldsymbol{eta}}) = rg\min_{eta_0 \in \mathbb{R}, \ ec{eta} \in \mathbb{R}^d} \ \ \sum_{i=1}^n (y_i - (eta_0 + ec{oldsymbol{eta}} \cdot \overrightarrow{X_i}))^2$

...la fonction de coût Trouver (β_0 , β) qui minimise...

TROUVER LA SOLUTION

Trouver (β_0 , β) qui minimise...

$$(\hat{eta_0}, \hat{ec{eta}}) = rg\min_{eta_0 \in \mathbb{R}, \ ec{eta} \in \mathbb{R}^d} \ \ \ \underbrace{\sum_{i=1}^n (y_i - (eta_0 + \overrightarrow{eta} \cdot \overrightarrow{X_i}))^2}_{... ext{la fonction de coût}}$$

Pour un ensemble donné (même grand) de (X_i, y_i) , c'est une fonction **convexe** de d+1 variables $(\beta_0 = 1 \text{ var}, \beta = d \text{ var})$, et **dérivable**.

TROUVER LA SOLUTION

Il suffit donc de dériver la fonction par rapport aux β et de trouver la solution de l'équation dérivée = 0.

Pour la régression linéaire, on est chanceux: cette solution a une forme fermée, c'est-à-dire qu'on peut trouver la solution de cette équation à la main. Elle s'exprime de manière matricielle (pas besoin de retenir cette formule!): $\hat{\beta} = (X^T X)^{-1} X^T y$

PHASE DE TEST

Quand un **nouveau** point x est donné, on peut **prédire** le **ŷ** correspondant:

INTERPRÉTATION

Supposons un modèle :

 $\beta 0 = 900$, $\beta 1 = 100$, $\beta 2 = 200$

Salaire = β 0 + β 1 × expérience + β 2 × études + ϵ Et supposons que les résultats soient :

On interprète que :

- Quelqu'un qui n'a ni études ni expérience touchera 900 euros en moyenne.
- Une année d'expérience supplémentaire rapporte en moyenne 100 euros de plus.
- Une année d'études supplémentaire rapporte en moyenne 200 euros de plus.

ÉVALUATION

 $erreur = rac{1}{n_{test}}\sum_{i=1}^{rest}{(y_i - \hat{y}_i)^2}$

 n_{test}

ÉVALUATION: le R²

"C'est quoi le R² de ta régression linéaire?"

$$R^2=1-rac{\sum(\hat{y}-y)^2}{\sum(y-ar{y})^2}-rac{ ext{Erreur quadratique}}{ ext{Variance}}$$

EVALUATION: le R² "C'est quoi le R² de ta régression linéaire?"

Erreur $- \; rac{\sum (\hat{y} - y)^2}{\sum (y - \overline{y})^2}$ quadratique

Variance

$$R^2 \in [0,1]$$
:

 $R^2 = 0 \Rightarrow pas$
mieux que
"Moyenne".

 $R^2 = 1 \Rightarrow$

Parfait

"C'est quoi le R² de ta régression linéaire?"

EVALUATION: le R²

$$R^2=1-rac{\sum(\hat{y}-y)^2}{\sum(y-\overline{y})^2}$$
 — Erreur (quadratique) — Variance $\mathbb{R}^2\in[0,1]$: $\mathbb{R}^2=0\Rightarrow \mathrm{pas}$ mieux que

R² a plein de problèmes

"Moyenne".

 $R^2 = 1 \Rightarrow$ Parfait

LIMITES

Le modèle linéaire est séduisant par sa simplicité mais vite limité :

- Ne marche pas si # variables > # observations.
- Si des variables sont corrélées, cela peut nuire à l'interprétation, ex: jours vacance/experience
- Plus on ajoute de variables, plus le modèle est **instable** et risque le **sur-apprentissage**.

PÉNALISER LA COMPLEXITÉ

nouvelles données (e.g. l'ensemble test).

certaine manière. Par exemple:

Un modèle linéaire avec de nombreuses variables peut être quasi parfait sur l'ensemble d'apprentissage. Mais il sera alors **mauvais** sur de

Une solution : **pénaliser** la complexité du modèle en forçant les poids à se comporter d'une

la régression Ridge force les variables corrélées à avoir des poids similaires;
la régression Lasso limite le nombre de poids non-nuls (→le nb de variables "qui comptent").

EN PYTHON

from sklearn.linear_model import \
 LinearRegression
model = LinearRegression()
model.fit(Xtrain,Ytrain)

predictions = model.predict(Xtest)

CONCLUSION SUR LA REGRESSION LINÉAIRE

Avantages:

- Modèle simple, facile à estimer, solution "exacte".
 Interprétable.
 - Adapté pour les problèmes simples.

Inconvénients:

- Impossible en très grande dimension
- En grande dimension, sur-apprentissage
 - fréquent (mitigé par Ridge / Lasso)
 On se trouve rarement dans des situations où ce modèle est le meilleur.