

## PIZZA SALES DATA ANALYSIS.

TASTE THE FROM THE OVEN



NAME :- VARAD NAIK

MODULE :- SQL



# TOOLS USED

- 1. MySQL Workbench 8.0 For database management and SQL queries.
- 2. Power BI For creating the Entity Relationship Diagram (ERD) and data visualization.
- 3. Canva Pro For designing the presentation slides.
- 4. GitHub For project repository and version control.
- 5. Kaggle Source of the Pizza Sales Data dataset.



## **TABLES**

## PIZZAS

| Re | esult Grid    | Filter Rows: |      |     | Exp     | ort:  |
|----|---------------|--------------|------|-----|---------|-------|
|    | Field         | Type         | Null | Key | Default | Extra |
| •  | pizza_id      | text         | YES  |     | HULL    |       |
|    | pizza_type_id | text         | YES  |     | HULL    |       |
|    | size          | text         | YES  |     | HULL    |       |
|    | price         | double       | YES  |     | HULL    |       |

## PIZZA TYPE

| Result Grid Filter Rows: |               |      |      |     |         |  |
|--------------------------|---------------|------|------|-----|---------|--|
|                          | Field         | Type | Null | Key | Default |  |
| į                        | pizza_type_id | text | YES  |     | NULL    |  |
|                          | name          | text | YES  |     | HULL    |  |
|                          | category      | text | YES  |     | HULL    |  |
|                          | ingredients   | text | YES  |     | HULL    |  |

### ORDERS

| R | esult Grid 📗 | Filter F | lows: |     |         |
|---|--------------|----------|-------|-----|---------|
|   | Field        | Type     | Null  | Key | Default |
| • | order_id     | int      | NO    | PRI | HULL    |
|   | order_date   | date     | NO    |     | MULL    |
|   | order_time   | time     | NO    |     | NULL    |

## ORDER\_DETAILS

| R | esult Grid 📗 🕫   | ter Rows |      |     | Ехро    |
|---|------------------|----------|------|-----|---------|
|   | Field            | Type     | Null | Key | Default |
| ١ | order_id         | int      | NO   |     | HULL    |
|   | order_details_id | int      | NO   | PRI | NULL    |
|   | pizza_id         | text     | NO   |     | HULL    |
|   | quantity         | int      | NO   |     | NULL    |

# SQL QUERIES

- DDL (Data Definition Language):
  - Database creation
- Table creation and constraints (e.g., primary keys, foreign keys)

#### - DML (Data Manipulation Language):

- \*\*Sample Queries:\*\*
  - \*\*SELECT\*\*: Retrieve pizza sales data, customer details, etc.
  - \*\*INSERT\*\*: Add new pizza sales records.
  - \*\*UPDATE\*\*: Modify existing sales or customer information.

#### - Joins and Subqueries:

- Example queries using \*\*INNER JOIN\*\*, \*\*LEFT JOIN\*\*, and subqueries for deeper analysis.
- Other SQL Techniques:
- <u>- LIKE\*\*</u>: Used for pattern matching (e.g., finding pizzas with specific ingredients).
- GROUP BY\*\*: Grouping data for aggregate functions like total sales by pizza type.
  - ORDER BY\*\*: Sorting the results (e.g., by highest sales).
- ALTER: Used to modify table structures (e.g., adding or altering columns).

# CREATE TABLE

create table orders(
order\_id int primary key not null,
order\_date date not null,
order\_time time not null);

### O/P:- TABLE NAME - URDERS

| R           | esult Grid | Filter R | lows: |     |         | Export: |
|-------------|------------|----------|-------|-----|---------|---------|
|             | Field      | Туре     | Null  | Key | Default | Extra   |
| <b>&gt;</b> | order_id   | int      | NO    | PRI | NULL    |         |
|             | order_date | date     | NO    |     | NULL    |         |
|             | order_time | time     | NO    |     | NULL    |         |
|             | order_day  | date     | YES   |     | NULE    |         |

# **CREATE TABLE**

create table orders\_details(
order\_id int not null,
order\_details\_id int primary key not
null,
pizza\_id text not null,
quantity int not null);

## O/P:- TABLE NAME - ORDERS\_DETAILS

| R | esult Grid   III Fi | ter Rows: |      |     | Expo    | ort:  |
|---|---------------------|-----------|------|-----|---------|-------|
|   | Field               | Туре      | Null | Key | Default | Extra |
| Þ | order_id            | int       | NO   |     | MULL    |       |
|   | order_details_id    | int       | NO   | PRI | NULL    |       |
|   | pizza_id            | text      | NO   |     | MULL    |       |
|   | quantity            | int       | NO   |     | HULL    |       |

## **ALTER COMMANDS**

#### 1. *ADD* :-

alter table orders add order\_day int;

O/P:-

|   | Field      | Type | Null | Key | Default | Extra |
|---|------------|------|------|-----|---------|-------|
| • | order_id   | int  | NO   | PRI | NULL    |       |
|   | order_date | date | NO   |     | NULL    |       |
|   | order_time | time | NO   |     | NULL    |       |
|   | order_day  | date | YES  |     | NULL    |       |

#### 2. MODIFY:-

alter table orders modify order\_day date;

|   | Field      | Type | Null | Key | Default | Extra |
|---|------------|------|------|-----|---------|-------|
| • | order_id   | int  | NO   | PRI | NULL    | 7     |
|   | order_date | date | NO   |     | NULL    |       |
| 1 | order_time | time | NO   |     | NULL    |       |
|   | order_day  | date | YES  |     | NULL    |       |

## **ALTER COMMANDS**

#### 3. CHANGE:-

alter table orders change order\_day weekdays date;

O/P:-

| order_date | order time                                                                       | The second of the Boundary                                                                                                                                    |
|------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | order_ume                                                                        | weekdays                                                                                                                                                      |
| 2015-01-01 | 11:38:36                                                                         | HULL                                                                                                                                                          |
| 2015-01-01 | 11:57:40                                                                         | HULL                                                                                                                                                          |
| 2015-01-01 | 12:12:28                                                                         | HULL                                                                                                                                                          |
| 2015-01-01 | 12:16:31                                                                         | HULL                                                                                                                                                          |
| 2015-01-01 | 12:21:30                                                                         | NULL                                                                                                                                                          |
| 2015-01-01 | 12:29:36                                                                         | HULL                                                                                                                                                          |
| 2015-01-01 | 12:50:37                                                                         | NULL                                                                                                                                                          |
| 2015-01-01 | 12:51:37                                                                         | NULL                                                                                                                                                          |
|            | 2015-01-01<br>2015-01-01<br>2015-01-01<br>2015-01-01<br>2015-01-01<br>2015-01-01 | 2015-01-01 11:38:36<br>2015-01-01 11:57:40<br>2015-01-01 12:12:28<br>2015-01-01 12:16:31<br>2015-01-01 12:21:30<br>2015-01-01 12:29:36<br>2015-01-01 12:50:37 |

### <u>4. DROP</u>

alter table orders modify order\_day date;

|   | order_id | order_date | order_time |
|---|----------|------------|------------|
| • | 1        | 2015-01-01 | 2015-01-01 |
|   | 2        | 2015-01-01 | 11:57:40   |
|   | 3        | 2015-01-01 | 12:12:28   |
|   | 4        | 2015-01-01 | 12:16:31   |
|   | 5        | 2015-01-01 | 12:21:30   |
|   | 6        | 2015-01-01 | 12:29:36   |
|   | 7        | 2015-01-01 | 12:50:37   |
|   | 8        | 2015-01-01 | 12:51:37   |



5. UPDATE:-

UPDATE pizza\_types
SET

name = 'The Medium Meat Pizza' WHERE

pizza\_type\_id = 'big\_meat';

| pizza_type_id | name                     | category | ingredients                                    |
|---------------|--------------------------|----------|------------------------------------------------|
|               | I Marian                 |          |                                                |
| thai_ckn      | The Thai Chicken Pizza   | Chicken  | Chicken, Pineapple, Tomatoes, Red Peppers, T   |
| big_meat      | The Medium Meat Pizza    | Classic  | Bacon, Pepperoni, Italian Sausage, Chorizo Sau |
| classic_dlx   | The Classic Deluxe Pizza | Classic  | Pepperoni, Mushrooms, Red Onions, Red Peppe    |
| hawaiian      | The Hawaiian Pizza       | Classic  | Sliced Ham, Pineapple, Mozzarella Cheese       |

## **LIKE OPERATOR**

1. You need to retrieve all pizza types from the database that contain the word "Chicken" in their name.

SELECT

\*

FROM
pizza\_types
WHERE

name LIKE '%Chicken%';

|   | pizza_type_id | name                         | category | ingredients                                     |
|---|---------------|------------------------------|----------|-------------------------------------------------|
| ١ | bbq_dkn       | The Barbecue Chicken Pizza   | Chicken  | Barbecued Chicken, Red Peppers, Green Peppe     |
|   | cali_ckn      | The California Chicken Pizza | Chicken  | Chicken, Artichoke, Spinach, Garlic, Jalapeno P |
|   | ckn_alfredo   | The Chicken Alfredo Pizza    | Chicken  | Chicken, Red Onions, Red Peppers, Mushrooms     |
|   | ckn_pesto     | The Chicken Pesto Pizza      | Chicken  | Chicken, Tomatoes, Red Peppers, Spinach, Garl   |
|   | southw_ckn    | The Southwest Chicken Pizza  | Chicken  | Chicken, Tomatoes, Red Peppers, Red Onions,     |
|   | thai_dkn      | The Thai Chicken Pizza       | Chicken  | Chicken, Pineapple, Tomatoes, Red Peppers, T    |



2. You need to retrieve all pizza types from the database that contain the word "VEG" in their name.

SELECT

\*

FROM
pizza\_types
WHERE

name LIKE '%Veg%';



### **ORDER BY**

1. list all pizza names and their categories from the pizza\_types table, sorted in ascending alphabetical order by name. Write an SQL query to achieve this.

SELECT

name, category

FROM

pizza\_types

ORDER BY name ASC;

|          | name                         | category |
|----------|------------------------------|----------|
| <b>*</b> | The Barbecue Chicken Pizza   | Chicken  |
|          | The Brie Carre Pizza         | Supreme  |
| 200      | The Calabrese Pizza          | Supreme  |
|          | The California Chicken Pizza | Chicken  |
|          | The Chicken Alfredo Pizza    | Chicken  |
| MAN TO   | The Chicken Pesto Pizza      | Chicken  |
| 3.       | The Classic Deluxe Pizza     | Classic  |
|          | The Five Cheese Pizza        | Veggie   |
|          | The Four Cheese Pizza        | Veggie   |
| - 31     | The Greek Pizza              | Classic  |
|          | The Green Garden Pizza       | Veggie   |
| (43)     | The Hawaiian Pizza           | Classic  |

## **ORDER BY**

2. You need to retrieve all pizza names and their categories, but this time sorted in descending alphabetical order by name. Write an SQL query for this.

SELECT

name, category

FROM

pizza\_types

ORDER BY name DESC;

|   | name                              | category |
|---|-----------------------------------|----------|
| • | The Vegetables + Vegetables Pizza | Veggie   |
|   | The Thai Chicken Pizza            | Chicken  |
|   | The Spinach Supreme Pizza         | Supreme  |
|   | The Spinach Pesto Pizza           | Veggie   |
|   | The Spinach and Feta Pizza        | Veggie   |
|   | The Spicy Italian Pizza           | Supreme  |
|   | The Southwest Chicken Pizza       | Chicken  |
|   | The Soppressata Pizza             | Supreme  |
|   | The Sicilian Pizza                | Supreme  |
|   | The Prosciutto and Arugula Pizza  | Supreme  |
|   | The Pepperoni, Mushroom, and Pe   | Classic  |
|   | The Pepperoni Pizza               | Classic  |

## **GROUP BY**

1. You want to find the maximum price of pizzas for each type and display the results for the top 3 pizza types.

pizza\_type\_id, MAX(price) AS Max\_Price
FROM
pizzas
GROUP BY pizza\_type\_id
ORDER BY pizza\_type\_id
LIMIT 3;



### **JOINS**

1. You want to retrieve the names, categories, sizes, and prices of pizzas by combining data from the pizza\_types and pizzas tables, even if some pizza types have no corresponding pizzas..

SELECT

PT.name, PT.category, P.size, P.price

**FROM** 

pizza\_types PT

**LEFT JOIN** 

pizzas P ON PT.pizza\_type\_id =

P.pizza\_type\_id;

|   | name                         | category | size | Price |
|---|------------------------------|----------|------|-------|
| ١ | The Barbecue Chicken Pizza   | Chicken  | L    | 20.75 |
|   | The Barbecue Chicken Pizza   | Chicken  | M    | 16.75 |
|   | The Barbecue Chicken Pizza   | Chicken  | S    | 12.75 |
|   | The California Chicken Pizza | Chicken  | L    | 20.75 |
|   | The California Chicken Pizza | Chicken  | M    | 16.75 |
|   | The California Chicken Pizza | Chicken  | S    | 12.75 |
|   | The Chicken Alfredo Pizza    | Chicken  | L    | 20.75 |
|   | The Chicken Alfredo Pizza    | Chicken  | M    | 16.75 |
|   | The Chicken Alfredo Pizza    | Chicken  | S    | 12.75 |
|   | The Chicken Pesto Pizza      | Chicken  | L    | 20.75 |
|   | The Chicken Pesto Pizza      | Chicken  | M    | 16.75 |
|   | The Chicken Pesto Pizza      | Chicken  | S    | 12.75 |

### **JOINS**

2. You want to retrieve the names, categories, ingredients, sizes, and prices of pizzas by combining data from the pizza\_types and pizzas tables

SELECT

PT.name, PT.category, PT.ingredients,

P.size, P.price

**FROM** 

pizza\_types PT

**RIGHT JOIN** 

pizzas P ON PT.pizza\_type\_id =

P.pizza\_type\_id;

| name                         | category | ingredients                                     | size | Price |
|------------------------------|----------|-------------------------------------------------|------|-------|
| The Barbecue Chicken Pizza   | Chicken  | Barbecued Chicken, Red Peppers, Green Peppe     | S    | 12.75 |
| The Barbecue Chicken Pizza   | Chicken  | Barbecued Chicken, Red Peppers, Green Peppe     | M    | 16.75 |
| The Barbecue Chicken Pizza   | Chicken  | Barbecued Chicken, Red Peppers, Green Peppe     | L    | 20.75 |
| The California Chicken Pizza | Chicken  | Chicken, Artichoke, Spinach, Garlic, Jalapeno P | S    | 12.75 |
| The California Chicken Pizza | Chicken  | Chicken, Artichoke, Spinach, Garlic, Jalapeno P | M    | 16.75 |
| The California Chicken Pizza | Chicken  | Chicken, Artichoke, Spinach, Garlic, Jalapeno P | L    | 20.75 |
| The Chicken Alfredo Pizza    | Chicken  | Chicken, Red Onions, Red Peppers, Mushrooms     | S    | 12.75 |
| The Chicken Alfredo Pizza    | Chicken  | Chicken, Red Onions, Red Peppers, Mushrooms     | M    | 16.75 |
| The Chicken Alfredo Pizza    | Chicken  | Chicken, Red Onions, Red Peppers, Mushrooms     | L    | 20.75 |
| The Chicken Pesto Pizza      | Chicken  | Chicken, Tomatoes, Red Peppers, Spinach, Garl   | S    | 12.75 |
| The Chicken Pesto Pizza      | Chicken  | Chicken, Tomatoes, Red Peppers, Spinach, Garl   | M    | 16.75 |
| The Chicken Pesto Pizza      | Chicken  | Chicken, Tomatoes, Red Peppers, Spinach, Garl   | L    | 20.75 |



1. Retrieve the total number of orders placed

SELECT
COUNT(order\_id) AS Total\_orders
FROM
orders;



2. Calculate the total revenue generated from pizza sales.

SELECT

ROUND(SUM(O.quantity \* P.price), 2)

AS total

**FROM** 

orders\_details O

JOIN

pizzas P ON P.pizza\_id = O.pizza\_id;



3. Identify the highest-priced pizza.

```
PT.name, P.price
FROM
pizza_types PT

JOIN
pizzas P ON PT.pizza_type_id =
P.pizza_type_id
order by P.price desc limit 1;
```

|   | name            | price |
|---|-----------------|-------|
| Þ | The Greek Pizza | 35.95 |

4. Identify the most common pizza size ordered.

SELECT

P.size, COUNT(O.order\_details\_id) AS

Total

**FROM** 

pizzas P

JOIN

orders\_details O ON P.pizza\_id =

O.pizza\_id

**GROUP BY size** 

ORDER BY total DESC;

|             | esult Gri | Continues. | A. |
|-------------|-----------|------------|----|
|             | size      | Total      |    |
| <b>&gt;</b> | L         | 18526      |    |
|             | M         | 15385      |    |
|             | S         | 14137      |    |
|             | XL        | 544        |    |
|             | XXL       | 28         |    |

## **CONCLUSION:**

The Pizza Sales Data Analysis project successfully utilized SQL to extract, analyze, and interpret valuable information from the pizza sales dataset. By leveraging SQL queries, such as JOINs, GROUP BY, ORDER BY, and aggregation functions, key insights were derived regarding sales trends, popular pizza types, and customer preferences.

The project demonstrated how database management and querying techniques can be used to:

- Identify the best-selling pizzas and pricing strategies.
- Optimize inventory and sales approaches based on data.
- Enable businesses to make informed decisions and improve overall efficiency.