R Notebook

This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.

Try executing this chunk by clicking the *Run* button within the chunk or by placing your cursor inside it and pressing *Cmd+Shift+Enter*.

```
library(dplyr)
```

```
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
```

```
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
```

```
mechaCar_mpg_df <- read.csv('MechaCar_mpg.csv' , check.names=F, stringsAsFactors = F)</pre>
head(mechaCar mpg df)
```

	vehicle_length <dbl></dbl>	vehicle_weight <dbl></dbl>	spoiler_angle <dbl></dbl>	ground_clearance <dbl></dbl>	A <int></int>	mpg <dbl></dbl>
1	14.69710	6407.946	48.78998	14.64098	1	49.04918
2	12.53421	5182.081	90.00000	14.36668	1	36.76606
3	20.00000	8337.981	78.63232	12.25371	0	80.00000
4	13.42849	9419.671	55.93903	12.98936	1	18.94149
5	15.44998	3772.667	26.12816	15.10396	1	63.82457
6	14.45357	7286.595	30.58568	13.10695	0	48.54268
6 rows						

```
multiple linear regression model
```

lm(mpg ~ vehicle_length + vehicle_weight + spoiler_angle + ground_clearance + AWD, data=mechaCar_mpg_df) #generate

```
##
## Call:
## lm(formula = mpg ~ vehicle length + vehicle weight + spoiler angle +
##
       ground_clearance + AWD, data = mechaCar_mpg_df)
##
## Coefficients:
##
        (Intercept)
                       vehicle length
                                         vehicle_weight
                                                             spoiler angle
##
                                              1.245e-03
         -1.040e+02
                            6.267e+00
                                                                 6.877e-02
## ground clearance
                                  AWD
##
          3.546e+00
                           -3.411e+00
```

```
#generate summary statistics
```

summary(lm(mpg ~ vehicle_length + vehicle_weight + spoiler_angle + ground_clearance + AWD,data=mechaCar_mpg_df))

```
##
## Call:
## lm(formula = mpg ~ vehicle length + vehicle weight + spoiler angle +
      ground clearance + AWD, data = mechaCar mpg df)
##
##
## Residuals:
##
       Min
                 1Q Median
                                  3Q
                                          Max
## -19.4701 -4.4994 -0.0692 5.4433 18.5849
## Coefficients:
##
                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                   -1.040e+02 1.585e+01 -6.559 5.08e-08 ***
## vehicle length 6.267e+00 6.553e-01 9.563 2.60e-12 ***
## vehicle weight 1.245e-03 6.890e-04 1.807 0.0776 .
## spoiler angle
                   6.877e-02 6.653e-02 1.034 0.3069
## ground clearance 3.546e+00 5.412e-01 6.551 5.21e-08 ***
## AWD
                   -3.411e+00 2.535e+00 -1.346 0.1852
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 8.774 on 44 degrees of freedom
## Multiple R-squared: 0.7149, Adjusted R-squared: 0.6825
## F-statistic: 22.07 on 5 and 44 DF, p-value: 5.35e-11
```

```
head(suspension coil table)
     VehicleID
                                         Manufacturing_Lot
                                                                                                                        PSI
                                         <chr>
     <chr>
                                                                                                                       <int>
```

suspension coil table <- read.csv('Suspension Coil.csv', check.names=F, stringsAsFactors = F)</pre>

#Summary Statistics on Suspension Coils

total summary df

Manufacturing_Lot

alternative hypothesis: true mean is not equal to 1500

95 percent confidence interval:

t.test(lot1\$PSI,mu=1500)

mean of x

1500

1 row

<chr>

1	V40858	Lot1	1499				
2	V40607	Lot1	1500				
3	V31443	Lot1	1500				
4	V6004	Lot1	1500				
5	V7000	Lot1	1501				
6	V17344	Lot1	1501				
6 rows							
<pre>total_summary_df <- suspension_coil_table %>% summarize(Mean=mean(PSI), Median=median(PSI), Variance=var(PSI), SD =sd(PSI), .groups = 'keep') #create summary table #head(total_summary_df)</pre>							

```
Median
  Mean
                                                            Variance
                                                                                                     SD
  <dbl>
                            <dbl>
                                                               <dbl>
                                                                                                  <dbl>
1498.78
                             1500
                                                            62.29356
                                                                                               7.892627
```

```
lot summary <- suspension coil table %>% group by(Manufacturing Lot) %>% summarize(Mean=mean(PSI), Median=median(
PSI), Variance=var(PSI), SD=sd(PSI), .groups = 'keep') #create summary table
lot summary
```

Median

< dbl>

Variance

<dbl>

SD

<dbl>

Mean

<dbl>

Lot1	1500.00	1500.0	0.9795918	0.9897433				
Lot2	1500.20	1500.0	7.4693878	2.7330181				
Lot3	1496.14	1498.5	170.2861224	13.0493725				
3 rows								
<pre>#T-Test on Suspension Coils # compare sample versus population means t.test(suspension_coil_table\$PSI,mu=1500)</pre>								

```
##
##
    One Sample t-test
##
## data: suspension coil table$PSI
## t = -1.8931, df = 149, p-value = 0.06028
```

```
1497.507 1500.053
## sample estimates:
## mean of x
     1498.78
# Use t.test() function 3 more times with subset() to determine if PSI for each manufacturing lot is statisticall
y different from the pop. mean of 1,500 PSI
lot1 <- subset(suspension_coil_table, Manufacturing_Lot=="Lot1")</pre>
lot2 <- subset(suspension_coil_table, Manufacturing_Lot=="Lot2")</pre>
lot3 <- subset(suspension_coil_table, Manufacturing_Lot=="Lot3")</pre>
```

```
##
##
   One Sample t-test
## data: lot1$PSI
## t = 0, df = 49, p-value = 1
## alternative hypothesis: true mean is not equal to 1500
## 95 percent confidence interval:
## 1499.719 1500.281
## sample estimates:
```

```
t.test(lot2$PSI,mu=1500)
##
   One Sample t-test
```

```
##
## data: lot2$PSI
## t = 0.51745, df = 49, p-value = 0.6072
## alternative hypothesis: true mean is not equal to 1500
## 95 percent confidence interval:
## 1499.423 1500.977
## sample estimates:
## mean of x
##
     1500.2
```

```
t.test(lot3$PSI,mu=1500)
##
##
   One Sample t-test
##
```

```
## data: lot3$PSI
## t = -2.0916, df = 49, p-value = 0.04168
## alternative hypothesis: true mean is not equal to 1500
## 95 percent confidence interval:
## 1492.431 1499.849
## sample estimates:
## mean of x
    1496.14
```

```
# log10 was not used as the data was not skewed and did not need any smoothing
```

Add a new chunk by clicking the *Insert Chunk* button on the toolbar or by pressing *Cmd+Option+I*.

When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press *Cmd+Shift+K* to preview the HTML file).

The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike Knit, Preview does not run any R code chunks. Instead, the output of the chunk when it was last run in the editor is displayed.