Universidade Estadual de Campinas Faculdade de Engenharia Agrícola

Nome: Renan da Silva Guedes

RA: 223979

1 Início

2 Volume da trincheira

$$V_{\text{trincheira}} = A_{\text{trincheira}} \cdot L = \frac{(10+5)\cdot 2}{2} \cdot 600 = 9000 \,\text{m}^3$$
 (1)

3 Cálculo dos volumes de aterro

3.1 Áreas

3.1.1 Seção central

$$A_1 = \frac{(B+b) \cdot h}{2}$$

$$= \frac{(18+15+10+10) \cdot 8}{2} = 212 \,\mathrm{m}^2$$
(3)

3.1.2 Seção transversal em $L/6 = \frac{100}{100}$ m

$$A_2 = \frac{(12+10+10+10) \cdot 5.333}{2}$$

$$= 111.73 \,\mathrm{m}^2$$
(4)

3.1.3 Seção transversal em $2L/6 = 200 \,\mathrm{m}$

$$A_3 = \frac{(10+10+6+5) \cdot 2.666}{2}$$

$$= 41.33 \,\mathrm{m}^2$$
(6)

3.2 Volumes

$$V_1 = \left(\frac{A_1 + A_2}{2}\right) \cdot \frac{L}{6} = 16\,196.5\,\mathrm{m}^3$$
 (8)

$$V_2 = \left(\frac{A_2 + A_3}{2}\right) \cdot \frac{L}{6} = 7663 \,\mathrm{m}^3$$
 (9)

$$V_1 = \left(\frac{A_2 + A_3}{2}\right) \cdot \frac{L}{6} = 2066.5 \,\mathrm{m}^3$$
 (10)

Somando as três porções de volume, obtemos metade do total

$$V_T' = \sum_{i=1}^3 V_i = 25\,926\,\mathrm{m}^3 \tag{11}$$

portanto o volume de aterro total será

$$V_T = 2V_T' = 51\,852\,\mathrm{m}^3\tag{12}$$

Volume do rip-rap 4

$$V_{rip\text{-}rap} = \sqrt{H^2 + V^2} \cdot L \cdot \text{espessura}$$
 (13)

$$= \sqrt{2.5^2 + 7.5^2 \cdot 600 \cdot 0.3} \tag{14}$$

$$= \sqrt{2.5^2 + 7.5^2} \cdot 600 \cdot 0.3 \tag{14}$$

$$\therefore V_{rip-rap} = 1423.025 \,\mathrm{m}^3 \tag{15}$$

Área de grama **5**

$$A_{\text{grama}} = \frac{\sqrt{8^2 + 15^2 \cdot 600}}{2}$$

$$= = 5100 \,\text{m}^2$$
(16)

$$= = 5100 \,\mathrm{m}^2 \tag{17}$$

Filtro horizontal 6

$$V_{FH} = \frac{l L \text{ espessura}}{2}$$
 (18)
= $\frac{15 \cdot 600 \cdot 0.7}{2}$ (19)
= $3150 \,\text{m}^3$ (20)

$$= \frac{15 \cdot 600 \cdot 0.7}{2} \tag{19}$$

$$= 3150 \,\mathrm{m}^3$$
 (20)

Filtro vertical

$$V_{FV} = \frac{8 \cdot 600 \cdot 0.5}{2}$$

$$= 1200 \,\mathrm{m}^3 \tag{21}$$

$$= 1200 \,\mathrm{m}^3 \tag{22}$$

Seção do sangradouro 8

Para o cálculo, considerou-se H = 0.5 (mínimo permitido para pequenas barragens), logo

$$Q = 1.55 L H^{1.5} (23)$$

$$Q = 1.55 L H^{1.5}$$

$$1 = 1.55 \cdot L \cdot 0.5^{1.5}$$
(23)
(24)

$$L = 1.82 \,\mathrm{m} \tag{25}$$

9 Tabela de custos

	Nome Renan Guedes	RA 223979	Valor de L 900m	Valor de H 9m
Item	Atividade	Volume	Custo Unitário (R\$)	Custo Total (R\$)
01	Solo Compactado - Trincheira	9000	20,33	182 970,00
02	Solo Compactado - Aterro	51852	20,33	1 054 151,00
03	Tal. Montante Pedras - Rip-rap	1423	90,00	128 070,00
04	Tal. Jusante Grama (m²)	5100	6,00	30 600,00
05	Areia - Filtro Vertical	1200	90,00	108 000,00
06	Areia - Filtro Horizontal	3150	90,00	283 500,00
07	Topografia	1	10 000,00	10 000,00
08	Controle - Tecnológico Aterro - Filtro	1	15 000,00	15 000,00
09	Ensaio de Campo-SPT- Trado (No eixo-1 a cada 50m)	1	1000,00 (p/ 10m profund.)	6 000,00
10	Ensaio de Campo: - Permeabilidade in situ - Ensaio de perda d'água	≥ 3	650,00	3 900,00
11	Ensaios Laboratoriais: - Granulometria - Lim. Liquidez - Lim. Plasticidade - Massa específica dos Sólidos	≥ 3 ≥ 3 ≥ 3 ≥ 3	147,00 149,00 149,00 125,00	882,00 894,00 894,00 750,00
	- Umidade - Densidade Natural	≥ 3 ≥ 3	50,00 50,00	300,00
12	Ensaios Laboratoriais: - Proctor Normal	≥ 3	135,00	810,00
13	Ensaios Laboratoriais: - Ensaio de compressão triaxial - Ensaio de permeabilidade	≥ 3 ≥ 3	1 150,00 1 250,00	6 900,00 7 500,00
14	Sangradouro e Canal (Escavação e lajes de concreto) (Depende do tamanho)	1	-	30 000,00

15	Tubulação de fundo (Custo da tubulação: $m \times R$ \$) (Comprimento > largura da barragem no centro) (Diâmetro $\geq 0.8 \text{ m}$)	metros	R\$250,00 (1,5m× 80cm)	150 000,00
16	Vista inicial ai local (R\$)	horas	250,00	3 000,00
17	Deslocamento inicial ao local	1	1 000,00	1 000,00
18	Licenciamento Ambiental	1	25 000,00	25 000,00
19	Anteprojeto	1	30 000,00	30 000,00
20	Projeto Executivo	1	1% (Custo total)	20 804,21
	Fornecim. de ART - Anotação de responsabilidade técnica (CREA)	1	600,00	600,00
	Custo Total			2 101 825,21

10 Orçamento de terraplenagem

10.1 Equipamentos para terraplenagem

- 01 escavadeira hidráulica sobre esteiras (limpeza e preparo da área de implantação) $\rightarrow 50\,\mathrm{h}$
- 01 escavadeira hidráulica + 03 a 04 caminhões traçados com capacidade de $12\,\mathrm{m}^3$ (na área de empréstimo) \to 360 horas

(quantidade de caminhões considerando distância de transporte de até 1 km)

- 01 trator de lâmina sobre esteiras (CAT D6) espalhamento do aterro $\rightarrow 360 \,\mathrm{h}$
- 01 rolo compactador corrugado auto propelido (CA25 ou similar) para compactação $\rightarrow 360\,\mathrm{h}$
- 01 trator agrícola com grade para homogeneização do de solo \rightarrow 360 h
- 01 caminhão irrigadeira com bomba de capacidade 8000 L (depende da umidade do solo da jazida) \rightarrow 200 h

10.1.1 Custo estimado

- 01 escavadeira hidráulica sobre esteiras: $410 \,\mathrm{h} \times \mathrm{R}\$300,00$
- 03 a 04 caminhões traçados ($12 \,\mathrm{m}^3$): $1200 \,\mathrm{h} \times \mathrm{R}\$140,00$
- 01 trator de lâmina sobre esteiras (CAT D6): $360 \,\mathrm{h} \times \mathrm{R}\$250,00$
- 01 rolo compactador (CA25 ou similar): $360 \,\mathrm{h} \times \mathrm{R}$180,00$
- 01 trator agrícola com grade: $360 \,\mathrm{h} \times \mathrm{R}130,00$
- 01 caminhão irrigadeira: $200 \,\mathrm{h} \times \mathrm{R}140,00$
- Valor total estimado dos equipamentos: