PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: H04B 3/32, H04L 5/14 // H04J 3/10

A1 (11) International Publication Number:

WO 00/48331

4J 3/10

(43) International Publication Date:

17 August 2000 (17.08.00)

(21) International Application Number:

PCT/SE00/00226

(22) International Filing Date:

7 February 2000 (07.02.00)

(30) Priority Data:

99850018.5

9 February 1999 (09.02.99)

EP

(71) Applicants (for all designated States except US): TELIA AB [SE/SE]; Mårbackagatan 11, S-123 86 Farsta (SE). STMI-CROELECTRONICS S.A. [FR/FR]; 7, Avenue Galliéni, F-94250 Gentilly (FR).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): ISAKSSON, Mikael [SE/SE]; Borgmästarevägen 7, S-97342 Luleå (SE). JOHANSSON, Magnus [SE/SE]; Timmermansgatan 34, S-97241 Luleå (SE). MESTDAGH, Denis, Julien, Gilles [FR/FR]; 2606, Route du Bouloud, F-38410 Saint-Martin d'Uriage (FR). MAZZONI, Simone [FR/FR]; 2, Place des Tilleuls, F-38000 Grenoble (FR).
- (74) Agents: ALBIHNS PATENTBYRÅ MALMÖ AB et al.; P.O. Box 4289, S-20314 Malmö (SE).

(81) Designated States: JP, US.

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: A METHOD AND ARRANGEMENT FOR REDUCING CYCLO-STATIONARY CROSS-TALK NOISE

(57) Abstract

The invention relates to a method and arrangement for reducing cyclo-stationary cross-talk noise and more particularly to mitigate the effects of cyclo-stationary cross-talk noise from narrow band time divided duplex (TDD) systems into a wide band transmission system within a copper wire-pair transmission network. The TDD system operates in a lower part of the spectrum. In accordance with the invention, the wide band transmission system operates with frequency divided duplex (FDD). The wide band is divided in at least two bands, such that the lower band is at least partly overlapping the time divided duplex system. The lower and the higher band are transmitting no poposite directions. The transmission direction of the frequency bands is switched so that the lower band of the wide band transmission system always transmits in the same direction as the time divided duplex system. With this arrangement the near end cross-talk from the TDD system will be the limiting noise source.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albaлia	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal .
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	ΙE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Кепуа	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore	•	

WO 00/48331 PCT/SE00/00226

A METHOD AND ARRANGEMENT FOR REDUCING CYCLO-STATIONARY CROSS-TALK NOISE

Field of the invention

The present invention relates to a method and arrangement for reducing cyclo-stationary cross-talk noise and more particularly to mitigate the effects of cyclo-stationary cross-talk noise from narrow band time divided duplex systems into a wide band transmission system within a copper wire-pair transmission network. The wide band transmission system utilises frequency division duplex and the frequency band is divided into pairs of frequency bands having opposite transmission directions. The transmission directions of the frequency bands are switched in synchronism with the cyclo-stationary cross-talk noise from the time divided duplex systems.

15 State of the art

In certain copper access networks there exist narrow band TDD systems (a.k.a ping-pong systems) at low frequencies that introduces a rather complex crosstalk noise in neighbouring copper pairs in the same cable. One highly relevant example is an ISDN variant called TCM-ISDN (TCM – Time Compressed Mode) that is used primarily in Japan. Such TDD system operates in such a way that the signalling up-stream (from the premises to the central office) and downstream (from the central office to the premises) is divided in different time slots, i.e. all the systems in the same cable is time synchronised.

The cross-talk noise from the TDD system introduced in neighbouring copper pairs will be time variant according to the direction of transmission of the TDD system, i.e. the TDD causes cyclo-stationary cross-talk noise in neighbouring pairs. In certain time periods there will be NEXT (Near End Cross-Talk) and in the other time periods there will be FEXT (Far End Cross-Talk). From a channel capacity point of view, the NEXT is far more damaging than the FEXT since the power spectral density of NEXT is stronger than the power spectral density of FEXT.

Systems that uses higher band width might however be installed in the same cable and overlap the spectrum of the TDD cross-talk noise, e.g. VDSL (Very high bit-rate Digital Subscriber Lines) systems or ADSL (Asymmetric Digital Subscriber Lines). In this case, the lower part of the spectrum will be affected by this cyclostationary cross-talk noise. A VDSL system uses frequencies up to about 10 MHz, while the TDM-ISDN perhaps affects the frequencies up to about 2 MHz.

The optimum performance will be achieved when the new installed system is synchronised with the TDD system in such a way that only FEXT is introduced

PCT/SE00/00226 WO 00/48331

2

between the two systems. This is the same as arranging the signalling on the new systems in such a way that the direction of transmission is the same as in the TDD system.

One possibility to optimise VDSL according to the TCM-ISDN is to design 5 VDSL as a TDD system with the same time synchronisation as TCM-ISDN, i.e. only transmit VDSL downstream when TCM-ISDN transmits down stream and vice versa. One problem doing so is that the period time for TDM-ISDN is 400 Hz which causes a system delay, or system latency, that is too high than specified for VDSL and can in most cases not be accepted.

The present invention solves the above problem by dividing the frequency range of the wide band transmission system into at least two bands transmitting in opposite directions. The lower band, which is affected by the cross-talk from the TDD system, is synchronised with the TDD system such that they always transmit in the same direction. With this arrangement the near end cross-talk from the TDD 15 system into the wide band transmission system is avoided and the far end cross-talk from the TDD system will be the limiting noise source. The simultaneous switching of transmission directions in the two frequency bands does not add extra latency to the wide band transmission signal.

20 Summary of the invention

10

25

35

Thus, the present invention provides a method for reducing cyclo-stationary cross-talk noise from a narrow band time divided duplex system into a wide band transmission system in a copper wire-pair network, wherein the TDD system operates in a lower part of the spectrum.

In accordance with the invention, the wide band transmission system operates with frequency divided duplex. The wide band is divided in at least two bands, such that the lower band is at least partly overlapping the time divided duplex system. The lower and the higher band are transmitting in opposite directions. The transmission direction of the frequency bands is switched so that the 30 lower band of the wide band transmission system always transmits in the same direction as the time divided duplex system.

The invention also relates to an arrangement for performing a method. The invention is defined in the independent claims 1 and 7, while preferred embodiments are set forth in the dependent claims.

Brief description of the drawings

The invention will be described below in detail with reference to the attached drawing, of which the only figure is a signal frequency diagram relating to an arrangement in accordance with the invention.

Detailed description of preferred embodiments

For ease of reference we herewith give a list of the abbreviations used throughout the specification:

15

TDD	Time Division Duplex
FDD	Frequency Division Duplex
TCM	Time Compressed Mode
NEXT	Near End Cross-Talk
FEXT	Far End Cross-Talk
VDSL	Very high bit-rate Digital Subscriber Line
ADSL	Asymmetric Digital Subscriber Line

The present invention describes how the effects of cyclo-stationary cross-talk noise from a narrow band TDD system can be mitigated by letting the wide band transmission system use an FDD system where the direction of transmission in two frequency bands can switch transmission direction simultaneously synchronised to the noise. The invention assumes that the cyclo-stationary cross-talk noise is concentrated to lower frequencies, and further that the FDD system uses a larger signal bandwidth that overlaps the narrower TDD signal bandwidth that is located at lower frequencies.

This invention describes a way to avoid NEXT from a narrow band TDD system into an FDD system by simultaneously switching transmission direction in two frequency bands synchronously to the TDD systems.

With reference to Figure 1, let us assume that we divide the FDD spectrum in two frequency bands, A and B, where A is the lower frequency band and B the higher frequency band. Figure 1 shows a wide band FDD system with two signalling bands A and B and cross-talk noise, NEXT and FEXT, from a narrow band TDD system. The TDD system has less signal bandwidth than the FDD system and operates in the lower part of the spectrum. The FDD system spectrally overlaps the TDD cross-talk noise. Since the TDD systems cause cross-talk, NEXT and FEXT, in the lower part of the frequency spectrum, band A in the FDD system suffers more from this than frequency band B that is located in the upper part of the spectrum.

The FDD direction of transmission should optimally be arranged in such a way that the FDD system transmit downstream in band A and upstream in band B when the TDD system transmit downstream. In the same way the FDD system should transmit upstream in A and downstream in B when the TDD systems transmits upstream. The FDD wide band transmission system is associated with a switching means adapted to switch the transmission direction in the frequency

PCT/SE00/00226 WO 00/48331 4

bands. The switch of transmission direction for both bands can be trigged by a synchronisation provided by the TDD system equipment. The FDD system can switch transmission direction in the two frequency bands synchronously to the cyclo-stationary cross-talk noise from a TDD system operating in the same cable 5 (network). The switching of transmission direction in the frequency bands should be arranged so that the lower band of the FDD system always transmits in the same direction as the TDD system and the higher frequency band hence transmit in the opposite direction to the TDD system.

The invention is not limited to an FDD system with only two bands. There 10 might exist more frequency bands at upper part of the spectrum that actually do not need to be switched. The invention requires, however, that the switching of direction is done in pairs and that the transmission direction of one band is always the opposite of the other. Each frequency band of the FDD system can be used for either upstream of for downstream transmission.

One benefit with this invention is that it does not cause long latency in the FDD system if the TDD system switches direction with a low periodicity. The simultaneous switching of transmission directions in the two frequency bands does not add extra latency to the wide band transmission signal. With this arrangement the near end cross-talk from the TDD system into the wide band transmission 20 system is avoided and the far end cross-talk from the TDD system will be the limiting noise source.

15

WO 00/48331 PCT/SE00/00226

5

CLAIMS

- A method for reducing cyclo-stationary cross-talk noise from a narrow band time divided duplex (TDD) system into a wide band transmission system in a copper wire-pair network, wherein the TDD system operates in a lower part of the spectrum, characterised in that the wide band transmission system operates with frequency divided duplex (FDD), the wide band being divided in at least two bands (A, B), such that the lower band (A) is at least partly overlapping the TDD system and the lower (A) and the higher band (B) are transmitting in opposite directions, and in that the transmission direction in the frequency bands is switched so that the lower band of the wide band transmission system always transmits in the same direction as the TDD system.
 - 2. A method in accordance with claim 1, characterised in that the frequency bands of the wide band transmission system is switched by means of a synchronisation signal derived from the TDD system.
- 3. A method in accordance with claim 2, characterised in that the synchronisation signal is substantially synchronous with the cyclo-stationary cross-talk noise from the TDD system.
- 4. A method in accordance with claim 1, 2 or 3, characterised in that the wide band is divided into an even number of bands, arranged in pairs, such that the lower and the higher band in each pair are transmitting in opposite directions.
 - 5. A method in accordance with any one of the previous claims, **characterised** in that the wide band transmission system is a very high bit-rate digital subscriber line (VDSL) system or an asymmetric digital subscriber line (ADSL) system.
- 6. A method in accordance with any one of the previous claims, **characterised** in that the narrow band transmission system is a time compressed mode integrated services digital network (TCM ISDN) system.
- 7. An arrangement for reducing cyclo-stationary cross-talk noise from a narrow band time divided duplex (TDD) system into a wide band transmission system in a copper wire-pair network, wherein the TDD system operates in a lower part of the spectrum, **characterised** in that the wide band transmission system is adapted to operate with frequency divided duplex (FDD), the wide band being divided in at least two bands (A, B), such that the lower band (A) is at least partly overlapping the TDD system, and the lower (A) and the higher band (B) are transmitting in opposite directions, and in that the wide band transmission system is associated with a switching means adapted to switch the transmission direction in the frequency bands, so that the lower band of the wide band transmission system always transmits in the same direction as the TDD system.
 - 8. An arrangement in accordance with claim 7, characterised in that the switching means is trigged by a synchronisation signal derived from the TDD

WO 00/48331 PCT/SE00/00226

6

system to switch the frequency bands of the wide band transmission system.

5

- 9. An arrangement in accordance with claim 8, **characterised** in that the synchronisation signal is substantially synchronous with the cyclo-stationary crosstalk noise from the TDD system.
- 10. An arrangement in accordance with claim 7, 8 or 9, characterised in that the wide band is divided into an even number of bands, arranged in pairs, such that the lower and the higher band in each pair are transmitting in opposite directions.
- 11. An arrangement in accordance with any one of claims 7 to 10, **characterised** in that the wide band transmission system is a very high bit-rate digital subscriber line (VDSL) system or an asymmetric digital subscriber line (ADSL) system.
- 12. An arrangement in accordance with any one of claims 7 to 11, **characterised** in that the narrow band transmission system is a time compressed mode integrated services digital network (TCM ISDN) system.

1/1

INTERNATIONAL SEARCH REPORT

International application No.

PCT/SE 00/00226

A. CLASSIFICATION OF SUBJECT MATTER IPC7: H04B 3/32, H04L 5/14 // H04J 3/10 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC7: H04B, H04J, H04L Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched SE,DK,FI,NO classes as above Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Α GB 2311196 A (NORTHERN TELECOM LIMITED), 1-12 17 Sept 1997 (17.09.97), page 1, line 5 - page 4, WO 9852312 A2 (AMATI COMMUNICATIONS CORPORATION), Α 1-12 19 November 1998 (19.11.98), abstract EP 0987852 A2 (NORTEL NETWORKS CORPORATION), A 1-12 22 March 2000 (22.03.00), abstract Further documents are listed in the continuation of Box C. See patent family annex. later document published after the international filing date or priority date and not in conflict with the application but cited to understand Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance the principle or theory underlying the invention "E" erlier document but published on or after the international filing date document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other step when the document is taken alone special reason (as specified) document of particular relevance; the claimed invention cannot be "O" document referring to an oral disclosure, use, exhibition or other considered to involve an inventive step when the document is combined with one or more other such documents, such combination document published prior to the international filing date but later than being obvious to a person skilled in the art the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report **2000** -07- 2 5 21 July 2000 Name and mailing address of the ISA/ Authorized officer **Swedish Patent Office** Box 5055, S-102 42 STOCKHOLM Tomas Erlandsson/MN Facsimile No. +46 8 666 02 86 Telephone No. + 46 8 782 25 00

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

02/12/99 . PCT/SE 00/00226

	Patent document cited in search report		Publication date	n Patent family member(s)		Publication date	
GB	2311196	A	17/09/97	EP GB WO	0886926 A 9605564 D 9735399 A	30/12/98 00/00/00 25/09/97	
WO	9852312	A2	19/11/98	AU CN EP	7376898 A 1227022 T 0934638 A	08/12/98 25/08/99 11/08/99	
EP	0987852	A2	22/03/00	NONE	: :		