Name: Angkon Dutta Joy ID: 22101024 Section: 03

Subject :	
Date:	

Answer to the ques. no-1

$$T(n) = 2T(n/2) + 1/n$$

= 2T(n/2) + n-1

Now,
$$\log_b a = \log_2 2 = 1 > K = -1$$

.. The time complexity =
$$\theta(n^{log_ba})$$

= $\theta(n^l)$
= $\theta(n)$

Companing if with
$$T(n) = aT(n/b) + o(n/lgfn)$$

$$a = 2, b = 3, k = 1, p = 0$$

Subject :
Date :

.: log a < K. and P=0

: Time complexity = O(nKlogIn)

 $= \theta (n' lg'n)$

= 0 (n)

(answer)

0

T(n)= T(n/2) + T(n/5) + n

$$\frac{n}{5!} = 1000$$

(answen)

Subjec	t	:	 	-	 	*	-				-	~				-	-		-		-	-	-	-	
Date:					 			*	-	-					-	-	*	-	-	_				_	

$$T(n) = 2T(n/4) + n^2$$

$$a = 2$$
, $b = 4$, $K = 2$, $P = 0$

$$lg_{b}^{a} = lg_{4}^{2} = 0.5 < K = 2$$

Time complexity =
$$\Theta(n^{k} \log^{n})$$

= $\Theta(n^{2} \log^{n})$

= $\Theta(n^{2})$

(answer)

Answer to the ques. no -2

As we can see this is a sorted list in a decending orden. Choosing its first element as pirot will be inefficient. As we know pirot helps us to divide the

Subject :
Date:

annay into noughly equal halves. But choosing the first/max element of a tis sonted list can't pentionen the task efficiently causing the time complexity @ O(n') instead of O(n'ogn). Maning it will eneste a world case seenanio.

(b)

The necunnence relation if we choose the first element,

$$T(n) = T(n-1) + O(n)$$

MOW)

$$T(n-1) = T(n-2) + o(n-1)$$

$$T(n-1) = T(n-3) + o(n-2)$$

$$T(2) = T(1) + o(2)$$

$$T(1) = O(1)$$

Subject :	 	
Date :	 	

Summing the equations,

T(n) = O(n) + O(n-1) + O(n-2) + ... + O(2) + O(1)which evenfuelly me leads to $O(n^2)$.

Which is the worst case complexity of this algorithm.

Answer to the question no - 4

(=)0+ (1) r = (0) r

(s 1) 5 + (8 - m) 1 - (3 - m) 1

Subject :	

Date: -----

Adjancy matrix -

•						1.44		
	A	B	C	D	E	F	G	
A	0	1	1	l	1	0	0	0
В	1	0	(0	0	- U	0	0
c A	- 1	1	0	(0	0	(0
D	1	0	(0	1	0	((
E	1	0	0	\	0	0	D	1
F	0	1	0	0	0	0	- (0
G	0	D		1	0	1	0	(
4	. 0	0	0	1		0	1	0

Subject :
Date:

(2)

Pains

A - B

Mutual briends

16

None

A

B,D

Egc

D

A, H

D

A, G

E, G

H,C

D

D

None

Subject :
Date :

== (((() + ()) = - () It we make a tree which is two degree know F it will be

As we can see E @ is not two degree away know F, F can't see il's Post. so, f con't see everyonés Post.

Time complements = E(m

0 = 6 (1-0 (8 - 4 (3 - 1

Subject :	
Date :	

Answer to the ques. no - 3

$$A = A_1 \times 10^{2(\%_3)} + A_2 \times 10^{\%_3} + A_3$$

$$B = B_1 \times 10^{2(\%_3)} + B_2 \times 10^{(\%_3)} + B_3$$

$$\begin{array}{l}
\underline{(b)} \\
A.B = \left(A_{1} \times (0 + A_{2} \times (0 + A_{3}) \times \left(B_{1} \times (0 + B_{2} \times (0 + B_{3}) \times \left(B_{1} \times (0 + B_{2} \times (0 + B_{3}) \times (0 + B_{3}) \times (0 + B_{3} \times (0 + B_{3}) \times (0 + B_{3}) \times (0 + B_{3} \times (0 + B_{3}) \times (0 + B_{3} \times (0 + B_{3}) \times (0 + B_{3}) \times (0 + B_{3} \times (0 + B_{3}) \times (0 + B_{3}) \times (0 + B_{3} \times (0 + B_{3}) \times (0 + B_{3}) \times (0 + B_{3}) \times (0 + B_{3} \times (0 + B_{3}) \times (0 + B_{3}) \times (0 + B_{3}) \times (0 + B_{3} \times (0 + B_{3}) \times (0 + B_{3})$$

$$= A_{1}B_{1}X_{10} + (A_{1}B_{3} + A_{3}B_{1} + A_{2}B_{2})X_{10} + (A_{1}B_{2} + A_{2}B_{1})X_{10} + (A_{2}B_{3} + A_{3}B_{2})X_{10} + (A_{2}B_{3} + A_{3}B_{2})X_{10} + A_{3}B_{3}$$

 $\langle \rightarrow \rangle$

Subject :	 	
Date :	 	

modified_Kanatsuba & (x, y).

if xc10 on

neturn x* y

else,

n = max (len (str(x)), len (str(8)))

A, = 7//(10** (2×1//3)

A2 = (x//(10** N/3)) /. (10** n//3)

A3 = x1/ (10** n//3)

B1 = 3//(10** (2* m//3))

BZ = (3//((0** n/3)) /. (10 ** (n/3)))

B3 = y-1. (10** m//3)

CA = to modified - Kanatsubu (A1, B1)

C. = modified - Kanatsuba (A3, B3)

P1 = modified - Kanadsuba ((MitAz+Az), $(B_1+B_2+B_3)$

Pe = modified - Kastaru (A, -A2+A3) (B,-B2+B3)

P3 = modified_Karatsuba ((4A1+2A2+A3), (4B1+2A2+3))

Subject :	
Date:	

$$C_{2} = (l_{1}+l_{2})/2 - c_{0} - c_{4}$$

$$C_{3} = (l_{3}-2l_{0} - l_{4}c_{4}-2c_{2}+c_{0})/6$$

$$C_{1} = l_{1}-c_{4}-c_{3}-c_{2}-c_{0}$$

$$(l_{1}+l_{2})/2 + c_{3}-c_{2}-c_{0}$$

$$(l_{2}+l_{1})/2 + c_{3}(l_{2}+l_{1})/2 + c_{3}(l_{2}+l_{1})/2 + c_{1}+c$$

NOW,

$$T(n) = 5T(n/3) + \theta(n)$$

$$T(n) = aT(n/6) + \delta(n^c + eg + n)$$

Subject	:		-	•	-	-	-			-			-	-	-	-	-		-	-	-	-	-
D - 4 -																							

111111111111111111111

Date: -----

Answer to the ques. no -5

Nodes	1	2	3	4	5	6	7
Panent	3	5	5	3	(6
Standing Time	8	11	5	6	4	1	2
finish Time	9	12	(0,	7	(3	14	3
Distance from roo	13	2	2	3		D	

Subject:	
Date :	

Answer to the ques. no - 5

Here, fotal eg-edge, m = 2014 $2m = 2 \times 14 = 28$

Node		Degree (V)
A A		< A 3
B -	\longrightarrow	40
c —	→	4
D —		3
€ -	\rightarrow	3
1 3,3,0 8 F C	\rightarrow	· 3
6	\rightarrow	4
+ A - A - A - A - A - A - A - A - A - A	\rightarrow	2
S		2
	Tota	l = 28

Total = 28

: \(\sum_{deg}(v) = 2m = 28

(amswen)

Subject :
Date :

B	1

			7		
F	nom			TO	
	A		1111	D, E, F, a,	Н
	ß		/	C, F, G,	, н
	<u>.</u>	15 (3)		F, H,S	
	D .			F, G, H	, 5
	E	-5/10-	\rightarrow	F, H, S	
	F	1	-	S	
	G			S	
	H	1	->	S	
	5			· None	
		5	To stal n	ew edge = 2	2_
so we	Con	n add	22 ne a	edge.	
	1.	0. 1			
· Ne w	o edg	sed =	n(n-1) -	$4 = \frac{9(9-1)}{2}$	-19=22
					(moswen)