Social Networks Analysis Maciej Medyk

What is Social Network?

- A social structure made of individuals and organizations represented as nodes
- Each are connected by one or more specific types of interdependency such as friendship, beliefs, knowledge, or prestige
- Has a structure of undirected graph
- Analysis often evaluates density, network diameter, betweenness centrality, closeness centrality, edge density, clustering coefficient of nodes and network, and degree distribution of the network.

Social Network Graph Representation

- Social Network is made of interconnected nodes
- It can be stored as adjacency list or adjacency matrix
- Network connection can be measured by network diameter that shows how far nodes are from each other
- Network can be loosely or closely connected through node degree measurements

List of nodes: V={A, B, C, D, E} List of edges: E={(A,B), (A,C), (B,C), (B,D), (C,D), (D,E)}

Adjacency list:

A: {B, C}; B: {A, C, D}; C: {A, B, D}; D: {B, C, E}; E: {D}

Adjacency matrix: $A_{ii} = 1$ if (i,j) is an edge, else = 0

	Α	В	С	D	Ε
Α	0	1	1	0	0
В	1	0	1	1	0
С	1	1	0	1	0
D	0	1	1	0	1
Е	0	0	0	1	0

Node Edges and Degree of Distribution

- Connection between nodes is called edge
- For node to be connected it has to have at least one edge
- Usually there is small amount of nodes with high amount of edges and large amount of nodes with low amount of edges

Shortest Path and Network Diameter

- Shortest path is the least amount of hops between two nodes
- Network diameter is the biggest shortest path which identifies how closely the network is connected

Betweenness Centrality

 Betweenness Centrality defines how important node is in connecting other nodes

NODE	SCORE	NORMAL
А	0	0.000
В	5	0.076
С	5	0.076
D	27	0.409
E	48	0.727
F	27	0.409
G	5	0.076
Н	0	0.000
1	5	0.076
J	27	0.409
К	5	0.076
L	5	0.076
М	0	0.000

Closeness Centrality

 Closeness Centrality defines how easy it can reach other nodes in the network

			_															
		А	В	С	D	Е	F	G	Н	I	J	К	L	М				
	Α	0	1	1	2	3	4	5	6	5	4	5	5	6				
	В	1	0	1	1	2	3	4	5	4	3	4	4	5				
	С	1	1	0	1	2	3	4	5	4	3	4	4	5				
	D	2	1	1	0	1	2	3	4	3	2	3	3	4				
	Е	3	2	2	1	0	1	2	3	2	1	2	2	3				
	F	4	3	3	2	1	0	1	2	1	2	3	3	4				
	G	5	4	4	3	2	1	0	1	1	3	4	4	5				
	Н	6	5	5	4	3	2	1	0	1	4	5	5	6				
	- 1	5	4	4	3	2	1	1	1	0	3	4	4	5				
	J	4	3	3	2	1	2	3	4	3	0	1	1	2				
	K	5	4	4	3	2	3	4	5	4	1	0	1	1				
	L	5	4	4	3	2	3	4	5	4	1	1	0	1				
	М	6	5	5	4	3	4	5	6	5	2	1	1	0				
	SUM	47	37	37	29	24	29	37	47	37	29	37	37	47	SUM(A:M)			
1	SCORE	3.917	3.083	3.083	2.417	2.000	2.417	3.083	3.917	3.083	2.417	3.083	3.083	3.917	SUM(A:M) / N-1			
	NORMAL	0.255	0.324	0.324	0.414	0.500	0.414	0.324	0.255	0.324	0.414	0.324	0.324	0.255	N-1 / SUM(A:M)			
•					-0				10					- 200				

Graph Edge Density

 Edge density describes the portion of the potential connections in a network that are actual connections. It shows how much percentage of complete graph is achieved

Graph edge density = # of edges / (# of nodes * ((# of nodes - 1) / 2))

		ENTIRE NETWORK
EDG	ge density	18 / (13 * ((13 - 1) / 2)) = 18 / (13 * (12 / 2) = 18 / (13 * 6) = 18 / 78 = 0.230769

Clustering Coefficient

- Clustering coefficient of a node is the fraction of its neighbors that are connected and create clusters (triangles)
- Clustering coefficient of the network is average clustering coefficient of all of its nodes

$$C_{i} = \begin{cases} \frac{k_{i}}{d_{i} \times (d_{i} - 1)/2} & d_{i} > 1\\ 0 & d_{i} = 0 \text{ or } 1 \end{cases}$$

	CLUSTERING COEFFICIENT OF NODES												
	А	В	C	D	Е	F	G	Н	1	J	К	L	М
DISTRIBUTION	2	3	3	3	3	3	3	2	3	3	3	3	2
CLUSTERS	1	2	2	1	0	1	2	1	2	1	2	2	1
(DISTRIBUTION - 1) / 2	0.5	1	1	1	1	1	1	0.5	1	1	1	1	0.5
COEFFICIENT	1	0.6667	0.6667	0.3333	0	0.3333	0.6667	1	0.6667	0.3333	0.6667	0.6667	1

CLUSTERING COEFFICIENT OF NODES							
COEFFICIENT	(1 + 0.6667 + 0.6667 + 0.3333 + 0.3333 + 0.6667 + 1 + 0.6667 + 0.3333 + 0.6667 + 0.6667 + 1)/13 = 0.615385						

Degree Distribution of Network

- Degree of a node is the number of the connection it has to other nodes
- Degree distribution is a probability of distribution of these degrees over entire network

INDIVIDUAL NODES													
	А	В	С	D	Е	F	G	Н	_	J	К	L	М
DISTRIBUTION	2	3	3	3	3	3	3	2	3	3	3	3	2

ENTIRE NETWORK							
DISTRIBUTION	(2+3+3+3+3+3+3+2+3+3+3+3+2)/13=2.769231						

Gephi Social Network Analysis Software 1/4

Gephi Social Network Analysis Software 2/4

Gephi Social Network Analysis Software 3/4

Gephi Social Network Analysis Software 4/4

