

Hearing Aid Compatibility (HAC)
RF Emissions Test Report

APPLICANT: TCL Communication Ltd.

EQUIPMENT: Mobile Phone

BRAND NAME : ALCATEL ONETOUCH

MODEL NAME : 8050E

MARKETING NAME : PIXI 4 6" 3G Android

FCC ID : 2ACCJB036

STANDARD : FCC 47 CFR §20.19

ANSI C63.19-2011

We, SPORTON INTERNATIONAL (SHENZHEN) INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and had been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (SHENZHEN) INC., the test report shall not be reproduced except in full.

Prepared by: Mark Qu / Manager

Mark Qu

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL (SHENZHEN) INC.

1F & 2F, Building A, Morning Business Center, No. 4003 ShiGu Rd., Xili Town, Nanshan District, Shenzhen, Guangdong, P. R. China

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB036 Page Number : 1 of 25
Report Issued Date : Jan. 05, 2016

Report No.: HA5N0302

Report Version : Rev. 01

2353

Table of Contents

Rev	vision History		3
1.	Attestation of	Test Results	4
2.	Administration	ı Data	5
3.	Equipment Une	der Test Information	6
		Information	
	3.2 Air Interf	face and Operating Mode	7
		Standards	
4.	HAC RF Emiss	sion	8
5.	Measurement 9	System Specification	9
	5.1 Test Arch Ph	hantom	9
		oe System	
	E-Field I	Probe Specification	10
	Probe Ti	ip Description:	10
		Hardware	
		orage and Evaluation	
		uipment List	
6.		System Validation	
		of System Performance Check	
		Setup	
		ion Results	
7.		Test Procedure	
8.	Modulation Inte	erference Factor	18
9.	Low-power Exe	emption	20
10.	Conducted RF	Output Power (Unit: dBm)	21
		ion Test Results	
		sessment	
	•		

Appendix A. Plots of System Performance Check Appendix B. Plots of RF Emission Measurement Appendix C. DASY Calibration Certificate Appendix D. Test Setup Photos

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB036 Report No.: HA5N0302

Report Version : Rev. 01

Revision History

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
HA5N0302	Rev. 01	Initial issue of report	Jan. 05, 2016

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB036 Page Number : 3 of 25
Report Issued Date : Jan. 05, 2016
Report Version : Rev. 01

1. Attestation of Test Results

Applicant Name	TCL Communication Ltd.
Equipment Name	Mobile Phone
Brand Name	ALCATEL ONETOUCH
Model Name	8050E
Marketing Name	PIXI 4 6" 3G Android
FCC ID	2ACCJB036
IMEI Code	SIM1: 014574000100618 SIM2: 014574000100626
HW Version	V04
SW Version	1A1D
EUT Stage	Production Unit
HAC Rating	M4
Date Tested	2015/12/08
Test Result	Pass

This device is compliance with HAC limits specified in guidelines FCC 47 CFR §20.19 and ANSI Standard ANSI C63.19.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB036

Page Number : 4 of 25 Report Issued Date: Jan. 05, 2016

Report No.: HA5N0302

Report Version : Rev. 01

2. Administration Data

Testing Laboratory				
Test Site	SPORTON INTERNATIONAL (SHENZHEN) INC.			
Test Site Location	1F & 2F, Building A, Morning Business Center, No. 4003 ShiGu Rd., Xili Town, Nanshan District, Shenzhen, Guangdong, P. R. China TEL: +86-755-8637-9589 FAX: +86-755-8637-9595			
Test Site No.	Sporton Site No. : SAR01-SZ			
	Applicant			
Company Name	TCL Communication Ltd.			
Address	5F, C-Tower, No. 232, Liang Jing Road, ZhangJiang High-Tech Park, Pudong Area, Shanghai, 201203, P.R.China			
Manufacturer				
Company Name	TCL Communication Ltd.			
Address 5F, C-Tower, No. 232, Liang Jing Road, ZhangJiang High-Tech Park, Pudong Are Shanghai, 201203, P.R.China				

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB036 Page Number : 5 of 25
Report Issued Date : Jan. 05, 2016

Report No.: HA5N0302

Report Version : Rev. 01

3. Equipment Under Test Information

3.1 General Information

Product Feature & Specification						
Frequency Band	GSM850: 824.2 MHz ~ 848.8 MHz GSM1900: 1850.2 MHz ~ 1909.8 MHz WCDMA Band II: 1852.4 MHz ~ 1907.6 MHz WCDMA Band V: 826.4 MHz ~ 846.6 MHz WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz Bluetooth: 2402 MHz ~ 2480 MHz					
Mode	 GSM/GPRS/EGPRS(Downlink Only) AMR / RMC 12.2Kbps HSDPA HSUPA HSPA+ (16QAM uplink is not supported) 802.11b/g/n HT20/HT40 Bluetooth v3.0+EDR, Bluetooth v4.1 LE 					

Remark:

- 1. This device supports GRPS / EGPRS mode up to multi-slot class 12 and EGPRS downlink only.
- 2. When hotspot mode is enabled, power reduction will be activated at WCDMA Band II.

SPORTON INTERNATIONAL (SHENZHEN) INC. TEL: 86-755-8637-9589

FAX: 86-755-8637-9595 FCC ID: 2ACCJB036 Page Number : 6 of 25
Report Issued Date : Jan. 05, 2016
Report Version : Rev. 01

3.2 Air Interface and Operating Mode

Air Interface	Band MHz	Туре	C63.19 Tested	Simultaneous Transmitter	ОТТ	Power Reduction
	850	VO	Yes	WLAN, BT	NA	No
GSM	1900	٧٥	162	WLAN, BT	NA	No
	GPRS	DT	No	WLAN, BT	Yes	No
	Band V	VO	No ⁽¹⁾	WLAN, BT	NA	No
WCDMA	Band II	V		WLAN, BT	NA	Yes
	HSPA	DT	No	WLAN, BT	Yes	No
WLAN	2450	VD	No ⁽²⁾	GSM, WCDMA	Yes	No
BT	2450	DT	No	GSM, WCDMA	NA	No

VO=CMRS Voice Service

DT=Digital Transport

VD=CMRS IP Voice Service and Digital Transport

Remark:

- WCDMA is exempted from testing by low power exemption that its average antenna input power plus its MIF is ≤17 dBm, and is rated as M4
- 2. For 2.4GHz WLAN RF emissions testing exemption shall be applied to an RF air interface technology in a device whose Peak antenna input power, averaged over intervals ≤50 µs, is ≤23 dBm.

3.3 Applied Standards

- FCC CFR47 Part 20.19
- · ANSI C63.19 2011-version
- FCC KDB 285076 D01 HAC Guidance v04
- FCC KDB 285076 D02 T Coil testing for CMRS IP v01r01

SPORTON INTERNATIONAL (SHENZHEN) INC. TEL: 86-755-8637-9589

FAX: 86-755-8637-9595 FCC ID: 2ACCJB036 Page Number : 7 of 25
Report Issued Date : Jan. 05, 2016

Report No.: HA5N0302

Report Version : Rev. 01

4. HAC RF Emission

FCC wireless hearing aid compatibility rules ensure that consumers with hearing loss are able to access wireless communications services through a wide selection of handsets without experiencing disabling radio frequency (RF) interference or other technical obstacles.

To define and measure the hearing aid compatibility of handsets, in CFR47 part 20.19 ANSI C63.19 is referenced. A handset is considered hearing aid-compatible for acoustic coupling if it meets a rating of at least M3 under ANSI C63.19, and A handset is considered hearing aid compatible for inductive coupling if it meets a rating of at least T3.

According to ANSI C63.19 2011 version, for acoustic coupling, the RF electric field emissions of wireless communication devices should be measured and rated according to the emission level as below.

Emission Catagories	E-field emissions			
Emission Categories	<960Mhz	>960Mhz		
M1	50 to 55 dB (V/m)	40 to 45 dB (V/m)		
M2	45 to 50 dB (V/m)	35 to 40 dB (V/m)		
М3	40 to 45 dB (V/m)	30 to 35 dB (V/m)		
M4	<40 dB (V/m)	<30 dB (V/m)		

Table 4.1 Telephone near-field categories in linear units

SPORTON INTERNATIONAL (SHENZHEN) INC. TEL: 86-755-8637-9589

FAX: 86-755-8637-9595 FCC ID: 2ACCJB036 Page Number : 8 of 25
Report Issued Date : Jan. 05, 2016
Report Version : Rev. 01

5. Measurement System Specification

Fig 5.1 SPEAG DASY5 System Configurations

5.1 Test Arch Phantom

Construction:	Enables easy and well defined positioning of the phone and validation dipoles as well as simple teaching of the robot.	
Dimensions :	370 x 370 x 370 mm	Fig 5.8 Photo of Arch Phantom

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB036 Page Number : 9 of 25
Report Issued Date : Jan. 05, 2016
Report Version : Rev. 01

5.2 E-Field Probe System

E-Field Probe Specification <ER3DV6>

Construction	One dipole parallel, two dipoles normal to probe axis Built-in shielding against static charges
Calibration	In air from 100 MHz to 3.0 GHz
	(absolute accuracy ±6.0%, k=2)
Frequency	100 MHz to 6 GHz;
	Linearity: ± 2.0 dB (100 MHz to 3 GHz)
Directivity	± 0.2 dB in air (rotation around probe axis)
	± 0.4 dB in air (rotation normal to probe axis)
Dynamic Range	2 V/m to 1000 V/m
	(M3 or better device readings fall well below
	diode compression point)
Linearity	± 0.2 dB
Dimensions	Overall length: 330 mm (Tip: 16 mm)
	Tip diameter: 8 mm (Body: 12 mm)
	Distance from probe tip to dipole centers: 2.5 mm

Report No.: HA5N0302

Fig 5.2 Photo of E-field Probe

Page Number

Report Version

: 10 of 25

: Rev. 01

Report Issued Date: Jan. 05, 2016

Probe Tip Description:

HAC field measurements take place in the close near field with high gradients. Increasing the measuring distance from the source will generally decrease the measured field values (in case of the validation dipole approx. 10% per mm).

5.3 System Hardware

DAE

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit.

Robot

The SPEAG DASY system uses the high precision robots (DASY5: TX90XL) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY5: CS8c) from Stäubli is used.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB036

FCC HAC RF Emissions Test Report

5.4 Data Storage and Evaluation

The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, and device frequency and modulation data) in measurement files.

Report No.: HA5N0302

Probe parameters : - Sensitivity Norm_i, a_{i0}, a_{i1}, a_{i2}

> - Conversion factor ConvF_i

- Diode compression point dcp_i

Device parameters: - Frequency

> - Crest factor cf

Media parameters : - Conductivity

- Density

The formula for each channel can be given as :

$$V_{i} = U_{i} + U_{i}^{2} \cdot \frac{cf}{dcp_{i}}$$

with V_i = compensated signal of channel i, (i = x, y, z)

 U_i = input signal of channel i, (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated:

$$\text{E-field Probes}: E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

with V_i = compensated signal of channel i, (i = x, y, z)

Norm_i = sensor sensitivity of channel i, (i = x, y, z), $\mu V/(V/m)^2$ for E-field Probes

ConvF = sensitivity enhancement in solution

f = carrier frequency [GHz]

E_i = electric field strength of channel i in V/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

Page Number

Report Version

: 11 of 25

: Rev. 01

Report Issued Date: Jan. 05, 2016

The primary field data are used to calculate the derived field units.

5.5 Test Equipment List

Manufacturer	Name of Equipment	Type/Model	Serial	Calibration	
Manufacturer	Name of Equipment	Type/Model	Number	Last Cal.	Due Date
SPEAG	Dipole	CD835V3	1184	Apr. 22, 2015	Apr. 21, 2016
SPEAG	Dipole	CD1880V3	1170	Apr. 22, 2015	Apr. 21, 2016
SPEAG	Data Acquisition Electronics	DAE4	1490	Sep. 14, 2015	Sep. 13, 2016
SPEAG	Prober	ER3DV6	2528	Mar. 24, 2015	Mar. 23, 2016
SPEAG	Test Arch Phantom	Par phantom	1105	NCR	NCR
SPEAG	Phone Positioner	N/A	N/A	NCR	NCR
Agilent	Base Station	E5515C	MY50267224	Aug. 07, 2015	Aug. 06, 2016
AR	Amplifier	5S1G4	333096	NCR	NCR
Anritsu	Power Sensor	MA2411B	1207253	Jan. 28, 2015	Jan. 27, 2016
Anritsu	Power Meter	ML2495A	1218010	Jan. 28, 2015	Jan. 27, 2016
Anritsu	Power Senor	MA2411B	917070	Jan. 23, 2015	Jan. 22, 2016
Anritsu	Power Meter	ML2495A	1005002	Jan. 23, 2015	Jan. 22, 2016
Agilent	Dual Directional Coupler	778D	50422	NA	NA
MCL	Attenuation1	BW-S10W5	N/A	NA	NA
Weinschel	Attenuation2	3M-20	N/A	NA	NA
Zhongjilianhe	Attenuation3	MVE2214-03	N/A	NA	NA
R&S	Spectrum Analyzer	FSP7	101634	Aug. 07, 2015	Aug. 06, 2016

Table 5.1 Test Equipment List

Note: NCR: "No-Calibration Required"

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB036 Page Number : 12 of 25
Report Issued Date : Jan. 05, 2016
Report Version : Rev. 01

6. Measurement System Validation

Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the test Arch and a corresponding distance holder.

6.1 Purpose of System Performance Check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal HAC measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

6.2 System Setup

- 1. In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator.
- 2. The center point of the probe element(s) is 15mm from the closest surface of the dipole elements.
- 3. The calibrated dipole must be placed beneath the arch phantom. The equipment setup is shown below:

Fig. 6.1 System Validation Setup

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB036 Page Number : 13 of 25
Report Issued Date : Jan. 05, 2016

Report No.: HA5N0302

Report Version : Rev. 01

The output power on dipole port must be calibrated to 20dBm (100mW) before dipole is connected.

Fig 7.2 Dipole Setup

6.3 Verification Results

Comparing to the original E-field value provided by SPEAG, the verification data should be within its specification of 25 %. Table 6.1 shows the target value and measured value. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to appendix A of this report.

Frequency (MHz)	Input Power (dBm)	Target Value (V/m)	E-Field above high end (V/m)	E-Field above low end (V/m)	Average Value (V/m)	Deviation (%)	Date
835	20	106.5	113.2	115.3	114.25	7.28	Dec. 08, 2015
1880	20	88.7	94.8	97.12	95.96	8.18	Dec. 08, 2015

Table 6.1 Test Results of System Validation

Note: Deviation = ((Average E-field Value) - (Target value)) / (Target value) * 100%

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB036 Page Number : 14 of 25
Report Issued Date : Jan. 05, 2016
Report Version : Rev. 01

RF Emissions Test Procedure

Referenced from ANSI C63.19 -2011 section 5.5.1

- Confirm the proper operation of the field probe, probe measurement system, and other instrumentation and the positioning system.
- Position the WD in its intended test position. b)
- C) Set the WD to transmit a fixed and repeatable combination of signal power and modulation characteristic that is representative of the worst case (highest interference potential) encountered in normal use. Transiently occurring start-up, changeover, or termination conditions, or other operations likely to occur less than 1% of the time during normal operation, may be excluded from consideration.
- d) The center sub-grid shall be centered on the T-Coil mode perpendicular measurement point or the acoustic output, as appropriate. Locate the field probe at the initial test position in the 50 mm by 50 mm grid, which is contained in the measurement plane, refer to illustrated in Figure 8.2. If the field alignment method is used, align the probe for maximum field reception.
- Record the reading at the output of the measurement system. e)
- Scan the entire 50 mm by 50 mm region in equality spaced increments and record the reading at f) each measurement point, The distance between measurement points shall be sufficient to assure the identification of the maximum reading.
- Identify the five contiguous sub-grids around the center sub-grid whose maximum reading is the lowest of all available choices. This eliminates the three sub-grids with the maximum readings. Thus, the six areas to be used to determine the WD's highest emissions are identified.
- h) Identify the maximum reading within the non-excluded sub-grids identified in step g).
- Indirect measurement method i)
 - The RF audio interference level in dB (V/m) is obtained by adding the MIF (in dB) to the maximum steady-state rms field-strength reading, in dB (V/m)
- Compare this RF audio interference level with the categories in ANSI C63.19-2011 clause 8 and j) record the resulting WD category rating.
- For the T-Coil mode M-rating assessment, determine whether the chosen perpendicular measurement point is contained in an included sub-grid of the first scan. If so, then a second scan is not necessary. The first scan and resultant category rating may be used for the T-Coil mode M rating.

Otherwise, repeat step a) through step i), with the grid shifted so that it is centered on the perpendicular measurement point. Record the WD category rating.

SPORTON INTERNATIONAL (SHENZHEN) INC. TEL: 86-755-8637-9589

FAX: 86-755-8637-9595 FCC ID: 2ACCJB036

Page Number : 15 of 25 Report Issued Date: Jan. 05, 2016 Report Version

: Rev. 01

Report No.: HA5N0302

Fig 8.1 Flow Chart of HAC RF Emission

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB036

Page Number : 16 of 25 Report Issued Date: Jan. 05, 2016

Report Version : Rev. 01

Fig 8.2 EUT reference and plane for HAC RF emission measurements

Fig. 8.3 Gauge block with E-field probe

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB036 Page Number : 17 of 25
Report Issued Date : Jan. 05, 2016
Report Version : Rev. 01

8. Modulation Interference Factor

The HAC Standard ANSI C63.19-2011 defines a new scaling using the Modulation Interference Factor (MIF).

For any specific fixed and repeatable modulated signal, a modulation interference factor (MIF, expressed in dB) may be developed that relates its interference potential to its steady-state rms signal level or average power level. This factor is a function only of the audio-frequency amplitude modulation characteristics of the signal and is the same for field-strength and conducted power measurements. It is important to emphasize that the MIF is valid only for a specific repeatable audio-frequency amplitude modulation characteristic. Any change in modulation characteristic requires determination and application of a new MIF

The Modulation Interference factor (MIF, in dB) is added to the measured average E-field (in dBV/m) and converts it to the RF Audio Interference level (in dBV/m). This level considers the audible amplitude modulation components in the RF E-field. CW fields without amplitude modulation are assumed to not interfere with the hearing aid electronics. Modulations without time slots and low fluctuations at low frequencies have low MIF values, TDMA modulations with narrow transmission and repetition rates of few 100 Hz have high MIF values and give similar classifications as ANSI C63.19-2007.

ER3D, EF3D and EU2D E-field probes have a bandwidth <10 kHz and can therefore not evaluate the RF envelope in the full audio band. DASY52 is therefore using the indirect measurement method according to ANSI C63.19-2011 which is the primary method. These near field probes read the averaged E-field measurement. Especially for the new high peak-to-average (PAR) signal types, the probes shall be linearized by PMR calibration in order to not overestimate the field reading. Probe Modulation Response (PMR) calibration linearizes the probe response over its dynamic range for specific modulations which are characterized by their UID and result in an uncertainty specified in the probe calibration certificate. The MIF is characteristic for a given waveform envelope and can be used as a constant conversion factor if the probe has been PMR calibrated.

The evaluation method for the MIF is defined in ANSI C63.19-2011 section D.7. An RMS demodulated RF signal is fed to a spectral filter (similar to an A weighting filter) and forwarded to a temporal filter acting as a quasi-peak detector. The averaged output of these filtering is scaled to a 1 kHz 80% AM signal as reference. MIF measurement requires additional instrumentation and is not well suited for evaluation by the end user with reasonable uncertainty. It may alliteratively be determined through analysis and simulation, because it is constant and characteristic for a communication signal. DASY52 uses well-defined signals for PMR calibration. The MIF of these signals has been determined by simulation and it is automatically applied.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB036

Page Number : 18 of 25 Report Issued Date: Jan. 05, 2016

Report No.: HA5N0302

Report Version : Rev. 01

MIF values applied in this test report were provided by the HAC equipment provider, SPEAG, and the values are listed below

UID	UID Communication System Name	
10021	GSM-FDD(TDMA,GMSK)	3.63
10011	10011 UMTS-FDD(WCDMA)	

The MIF measurement uncertainty is estimated as follows, declared by HAC equipment provider SPEAG, for modulation frequencies from slotted waveforms with fundamental frequency and at least 2 harmonics within 10 kHz:

i) 0.2 dB for MIF: -7 to +5 dB, ii) 0.5 dB for MIF: -13 to +11 dB iii) 1 dB for MIF: > -20 dB

SPORTON INTERNATIONAL (SHENZHEN) INC. TEL: 86-755-8637-9589

FAX: 86-755-8637-9595 FCC ID: 2ACCJB036

Page Number : 19 of 25 Report Issued Date: Jan. 05, 2016

Report No.: HA5N0302

Report Version : Rev. 01

9. Low-power Exemption

<Max Tune-up Limit>

(Full Power)

Mode		Average Power (dBm)		
GSM 850		33.50		
GSIVI	1900	30.50		
WCDMA	Band V	24.00		
WCDMA	Band II	24.00		
2.4GHz WLAN		17.00		

Report No.: HA5N0302

(Hotspot Reduced Power)

Mode		Average Power (dBm)		
WCDMA	Band II	21.00		

<Low Power Exemption>

-zen i ener zxempuen				
Air Interface	Max Average Antenna Input Power (dBm)	Worst Case MIF (dB)	Power + MIF(dB)	C63.19 test required
GSM850	33.50	3.63	37.13	Yes
GSM1900	30.50	3.63	34.13	Yes
WCDMA Band V	24.00	-27.23	-3.23	No
WCDMA Band II	24.00	-27.23	-3.23	No

Air Interface	Max Average Antenna Input Power (dBm)	C63.19 test required
2.4GHz WLAN	17.00	No

General Note:

- 1. According to ANSI C63.19 2011-version, for WWAN RF air interface technology of a device is exempt from testing when its average antenna input power plus its MIF is ≤17 dBm for any of its operating modes.
- 2. For WWAN operation the worst case MIF plus the worst case average antenna input power for all modes are investigated to determine the testing requirements for this device.
- 3. According to ANSI C63.19 2011, for WLAN RF emissions testing exemption shall be applied to an RF air interface technology in a device whose Peak antenna input power, averaged over intervals ≤50 µs, is ≤23 dBm.
- 4. HAC RF rating is M4 for the air interface which meets the low power exemption.

 SPORTON INTERNATIONAL (SHENZHEN) INC.
 Page Number
 : 20 of 25

 TEL: 86-755-8637-9589
 Report Issued Date
 : Jan. 05, 2016

 FAX: 86-755-8637-9595
 Report Version
 : Rev. 01

FCC ID: 2ACCJB036

10. Conducted RF Output Power (Unit: dBm)

SIM 1: (Full Power)

Air Interface	GSM850			GSM1900			
Channel	128	189	251	512	661	810	
Frequency (MHz)	824.2	836.4	848.8	1850.2	1880.0	1909.8	
Average Antenna Input Power(dBm)	32.55	32.59	32.56	29.95	29.98	29.99	

Air Interface	WCDMA Band V			WCDMA Band II			
Channel	4132 4182 4233		4233	9262	9400	9538	
Frequency (MHz)	826.4	836.4	846.6	1852.4	1880.0	1907.6	
Average Antenna Input Power(dBm)	23.10	23.01	23.12	23.55	23.45	23.50	

(Reduced Power)

Air Interface	WCDMA Band II				
Channel	9262	9400	9538		
Frequency (MHz)	1852.4	1880.0	1907.6		
Average Antenna Input Power(dBm)	20.72	20.60	20.65		

SIM 2: (Full Power)

Air Interface	GSM850			GSM1900		
Channel	128 189 251			512	661	810
Frequency (MHz)	824.2	836.4	848.8	1850.2	1880.0	1909.8
Average Antenna Input Power(dBm)	32.53	32.56	32.54	29.90	29.94	29.97

Air Interface	WCDMA Band V			WCDMA Band II			
Channel	4132 4182 4233		9262	9400	9538		
Frequency (MHz)	826.4	836.4	846.6	1852.4	1880.0	1907.6	
Average Antenna Input Power(dBm)	23.07	23.01	23.10	23.52	23.40	23.51	

(Reduced Power)

Air Interface	WCDMA Band II					
Channel	9262	9400	9538			
Frequency (MHz)	1852.4	1880.0	1907.6			
Average Antenna Input Power(dBm)	20.71	20.56	20.61			

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB036

Page Number : 21 of 25 Report Issued Date: Jan. 05, 2016 Report Version : Rev. 01

11. HAC RF Emission Test Results

Plot No.	Air Interface	Operating Mode	Channel	Average Antenna Input Power (dBm)	MIF	RF audio interference level dB(V/m)	Margin to FCC M3 limit (dB)	Battery	M-Rating
01	GSM850	GSM Voice	128	32.55	3.63	35.21	9.79	1	M4
02	GSM850	GSM Voice	189	32.59	3.63	35.73	9.27	1	M4
03	GSM850	GSM Voice	251	32.56	3.63	36.16	8.84	1	M4
04	GSM850	GSM Voice	251	32.56	3.63	35.69	9.31	2	M4
05	GSM1900	GSM Voice	512	29.95	3.63	26.07	8.93	1	M4
06	GSM1900	GSM Voice	661	29.98	3.63	26.05	8.95	1	M4
07	GSM1900	GSM Voice	810	29.99	3.63	25.67	9.33	1	M4
08	GSM1900	GSM Voice	512	29.95	3.63	27.00	8.00	2	M4

Remark:

- **1.** The HAC measurement system applies MIF value onto the measured RMS E-field, which is indirect method in ANSI C63.19 2011 version, and reports the RF audio interference level.
- 2. The uncertainty is 0.2dB of MIF ranges from -7dB to +5dB.GSM850 band with rating M4, GSM1900 band with rating M4 would not be affected considering the MIF uncertainty.
- 3. There is special HAC mode software on this EUT.

Test Engineer: Luke Lu.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB036 Page Number : 22 of 25 Report Issued Date : Jan. 05, 2016

Report No.: HA5N0302

Report Version : Rev. 01

12. <u>Uncertainty Assessment</u>

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type A evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances. Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is showed in Table 12.1.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB036 Page Number : 23 of 25
Report Issued Date : Jan. 05, 2016
Report Version : Rev. 01

Error Description	Uncertainty Value (±%)	Probability Distribution	Divisor	Ci (E)	Standard Uncertainty (E)
Measurement System					
Probe Calibration	5.1	Normal	1	1	± 5.1 %
Axial Isotropy	4.7	Rectangular	√3	1	± 2.7 %
Sensor Displacement	16.5	Rectangular	√3	1	± 9.5 %
Boundary Effects	2.4	Rectangular	√3	1	± 1.4 %
Phantom Boundary Effects	7.2	Rectangular	√3	1	± 4.1 %
Linearity	4.7	Rectangular	√3	1	± 2.7 %
Scaling with PMF Calibration	10.0	Rectangular	√3	1	± 5.77 %
System Detection Limit	1.0	Rectangular	√3	1	± 0.6 %
Readout Electronics	0.3	Normal	1	1	± 0.3 %
Response Time	0.8	Rectangular	√3	1	± 0.5 %
Integration Time	2.6	Rectangular	√3	1	± 1.5 %
RF Ambient Conditions	3.0	Rectangular	√3	1	± 1.7 %
RF Reflections	12.0	Rectangular	√3	1	± 6.9 %
Probe Positioner	1.2	Rectangular	√3	1	± 0.7 %
Probe Positioning	4.7	Rectangular	√3	1	± 2.7 %
Extrap. and Interpolation	1.0	Rectangular	√3	1	± 0.6 %
Test Sample Related					
Device Positioning Vertical	4.7	Rectangular	√3	1	± 2.7 %
Device Positioning Lateral	1.0	Rectangular	√3	1	± 0.6 %
Device Holder and Phantom	2.4	Rectangular	√3	1	± 1.4 %
Power Drift	5.0	Rectangular	√3	1	± 2.9 %
Phantom and Setup Related					
Phantom Thickness	2.4	Rectangular	√3	1	± 1.4 %
Combined Standard Uncertain	± 16.30 %				
Coverage Factor for 95 %	K = 2				
Expanded Std. Uncertainty on	± 32.6 %				
Expanded Std. Uncertainty on	± 16.3 %				

Table 12.1 Uncertainty Budget of HAC free field assessment

Remark:

Worst-Case uncertainty budget for HAC free field assessment according to ANSIC63.19 [1], [2]. The budget is valid for the frequency range 700 MHz - 3 GHz and represents a worst case analysis.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB036 Page Number : 24 of 25
Report Issued Date : Jan. 05, 2016
Report Version : Rev. 01

13. References

- [1] ANSI C63.19-2011, "American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids", 27 May 2011
- [2] SPEAG DASY System Handbook

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB036 Page Number : 25 of 25
Report Issued Date : Jan. 05, 2016
Report Version : Rev. 01

Appendix A. Plots of System Performance Check

The plots are shown as follows.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB036 Page Number : A1 of A1
Report Issued Date : Jan. 05, 2016
Report Version : Rev. 01

HAC E Dipole 835 151208

DUT: HAC-Dipole 835 MHz

Communication System: UID 0, CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: Air Medium parameters used: $\sigma=0$ S/m, $\epsilon_r=1$; $\rho=0$ kg/m³

Ambient Temperature: 23.5 °C

DASY5 Configuration:

- Probe: ER3DV6 - SN2528; ConvF(1, 1, 1); Calibrated: 2015.03.24;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn1490; Calibrated: 2015.09.14

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

E Scan - measurement distance from the probe sensor center to CD835

=15mm/Hearing Aid Compatibility Test at 15mm distance (41x361x1): Interpolated

Date: 2015.12.08

grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm

Reference Value = 113.3 V/m; Power Drift = -0.01 dB

E-field emissions = 114.9 V/m

Average value of Total=(113.2+115.3)/2=114.25 V/m

MIF scaled E-field

Grid 1 M4 114.1 V/m	
Grid 4 M4 68.58 V/m	
Grid 7 M4 113.3 V/m	

Cursor:

Total = 113.2 V/m E Category: M4 Location: 0.5, -69.5, 9.7 mm

0 dB = 115.9 V/m = 41.28 dBV/m

HAC_E_Dipole_1880_151208

DUT: HAC Dipole 1880 MHz

Communication System: UID 0, CW; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature: 23.5 °C

DASY5 Configuration:

- Probe: ER3DV6 - SN2528; ConvF(1, 1, 1); Calibrated: 2015.03.24;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn1490; Calibrated: 2015.09.14

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

E Scan - measurement distance from the probe sensor center to CD1880 =15mm/Hearing Aid Compatibility Test at 15mm distance (41x181x1): Interpolated

Date: 2015.12.08

grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm

Reference Value = 166.9 V/m; Power Drift = 0.00 dB

E-field emissions = 97.62 V/m

Average value of Total=(94.8+97.12)/2=95.96 V/m

MIF scaled E-field

Grid 1 M3 95.33 V/m		
Grid 4 M3		
75.46 V/m		
Grid 7 M3	Grid 8 M3	Grid 9 M3
92.57 V/m	97.12 V/m	97.55 V/m

Cursor:

Total = 101.0 V/m E Category: M3

Location: -3.5, -30.5, 9.7 mm

0 dB = 101.0 V/m = 40.09 dBV/m

Appendix B. Plots of RF Emission Measurement

The plots are shown as follows.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: 2ACCJB036 Page Number : B1 of B1
Report Issued Date : Jan. 05, 2016
Report Version : Rev. 01

01 HAC RF GSM850 GSM Voice Ch128

Communication System: UID 10021 - DAB, GSM-FDD (TDMA, GMSK); Frequency: 824.2

Date: 2015.12.08

MHz;Duty Cycle: 1:8.3

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature: 23.5 °C

DASY5 Configuration:

- Probe: ER3DV6 - SN2528; ConvF(1, 1, 1); Calibrated: 2015.03.24;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn1490; Calibrated: 2015.09.14

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch128/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 42.63 V/m; Power Drift = -0.09 dB

Applied MIF = 3.63 dB

RF audio interference level = 35.21 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4 32.63 dBV/m		Grid 3 M4 34 02 dRV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
33.89 dBV/m		
Grid 7 M4 34.87 dBV/m		Grid 9 M4 35.86 dBV/m

Cursor:

Total = 35.91 dBV/m E Category: M4 Location: -5.5, 25, 8.7 mm

02 HAC RF GSM850 GSM Voice Ch189

Communication System: UID 10021 - DAB, GSM-FDD (TDMA, GMSK); Frequency: 836.4

Date: 2015.12.08

MHz;Duty Cycle: 1:8.3

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.5 °C

DASY5 Configuration:

- Probe: ER3DV6 - SN2528; ConvF(1, 1, 1); Calibrated: 2015.03.24;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn1490; Calibrated: 2015.09.14

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch189/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 44.80 V/m; Power Drift = -0.04 dB

Applied MIF = 3.63 dB

RF audio interference level = 35.73 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4 32.89 dBV/m	Grid 3 M4 34.39 dBV/m
Grid 4 M4 34.3 dBV/m	Grid 6 M4 35.72 dBV/m
Grid 7 M4 35.37 dBV/m	Grid 9 M4 36.43 dBV/m

Cursor:

Total = 36.50 dBV/m E Category: M4 Location: -5.5, 25, 8.7 mm

0 dB = 66.80 V/m = 36.50 dBV/m

03_HAC RF_GSM850_GSM Voice_Ch251

Communication System: UID 10021 - DAB, GSM-FDD (TDMA, GMSK); Frequency: 848.8

Date: 2015.12.08

MHz;Duty Cycle: 1:8.3

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature: 23.5 °C

DASY5 Configuration:

- Probe: ER3DV6 - SN2528; ConvF(1, 1, 1); Calibrated: 2015.03.24;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn1490; Calibrated: 2015.09.14

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch251/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 46.25 V/m; Power Drift = -0.15 dB

Applied MIF = 3.63 dB

RF audio interference level = 36.16 dBV/m

Emission category: M4

MIF scaled E-field

		Grid 3 M4
32.97 dBV/m	34.56 dBV/m	34.56 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
34.68 dBV/m	36.16 dBV/m	36.16 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
36 dBV/m	37.12 dBV/m	37.06 dBV/m

Cursor:

Total = 37.12 dBV/m E Category: M4 Location: -5.5, 25, 8.7 mm

0 dB = 71.75 V/m = 37.12 dBV/m

04 HAC RF GSM850 GSM Voice Ch251

Communication System: UID 10021 - DAB, GSM-FDD (TDMA, GMSK); Frequency: 848.8

Date: 2015.12.08

MHz;Duty Cycle: 1:8.3

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.5 °C

DASY5 Configuration:

- Probe: ER3DV6 - SN2528; ConvF(1, 1, 1); Calibrated: 2015.03.24;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn1490; Calibrated: 2015.09.14

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch251/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 44.08 V/m; Power Drift = 0.03 dB

Applied MIF = 3.63 dB

RF audio interference level = 35.69 dBV/m

Emission category: M4

MIF scaled E-field

		Grid 3 M4
32.63 dBV/m	34.18 dBV/m	34.18 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
34.28 dBV/m	35.69 dBV/m	35.69 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
35.52 dBV/m	36.59 dBV/m	36.55 dBV/m

Cursor:

Total = 36.59 dBV/m E Category: M4 Location: -5, 25, 8.7 mm

05_HAC RF_GSM1900_GSM Voice_Ch512

Communication System: UID 10021 - DAB, GSM-FDD (TDMA, GMSK); Frequency: 1850.2

Date: 2015.12.08

MHz;Duty Cycle: 1:8.3

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature: 23.5 °C

DASY5 Configuration:

- Probe: ER3DV6 - SN2528; ConvF(1, 1, 1); Calibrated: 2015.03.24;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn1490; Calibrated: 2015.09.14

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch512/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 10.78 V/m; Power Drift = 0.17 dB

Applied MIF = 3.63 dB

RF audio interference level = 26.07 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4 28.06 dBV/m	Grid 3 M4 29 dBV/m
Grid 4 M4 26.05 dBV/m	Grid 6 M4 25.2 dBV/m
Grid 7 M4 25.32 dBV/m	Grid 9 M4 26.07 dBV/m

Cursor:

Total = 29.06 dBV/m E Category: M4 Location: -4.5, -25, 8.7 mm

0 dB = 28.38 V/m = 29.06 dBV/m

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2015.12.08

06 HAC RF GSM1900 GSM Voice Ch661

Communication System: UID 10021 - DAB, GSM-FDD (TDMA, GMSK); Frequency: 1880

MHz;Duty Cycle: 1:8.3

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature : 23.5 °C

DASY5 Configuration:

- Probe: ER3DV6 - SN2528; ConvF(1, 1, 1); Calibrated: 2015.03.24;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn1490; Calibrated: 2015.09.14

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch661/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 10.57 V/m; Power Drift = 0.05 dB

Applied MIF = 3.63 dB

RF audio interference level = 26.05 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4 27.83 dBV/m	Grid 3 M4 29.18 dBV/m
Grid 4 M4 26.05 dBV/m	Grid 6 M4 25.42 dBV/m
Grid 7 M4 25.42 dBV/m	Grid 9 M4 24.87 dBV/m

Cursor:

Total = 29.23 dBV/m E Category: M4 Location: -6.5, -25, 8.7 mm

07_HAC RF_GSM1900_GSM Voice_Ch810

Communication System: UID 10021 - DAB, GSM-FDD (TDMA, GMSK); Frequency: 1909.8

Date: 2015.12.08

MHz;Duty Cycle: 1:8.3

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature: 23.5 °C

DASY5 Configuration:

- Probe: ER3DV6 - SN2528; ConvF(1, 1, 1); Calibrated: 2015.03.24;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn1490; Calibrated: 2015.09.14

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch810/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 11.70 V/m; Power Drift = -0.01 dB

Applied MIF = 3.63 dB

RF audio interference level = 25.67 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
26.48 dBV/m	28.27 dBV/m	28.27 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
25.67 dBV/m	25.51 dBV/m	25.52 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
25.23 dBV/m	22.96 dBV/m	21.8 dBV/m

Cursor:

Total = 28.27 dBV/m E Category: M4 Location: -8, -25, 8.7 mm

08 HAC RF GSM1900 GSM Voice Ch512

Communication System: UID 10021 - DAB, GSM-FDD (TDMA, GMSK); Frequency: 1850.2

MHz;Duty Cycle: 1:8.3

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature: 23.5 °C

DASY5 Configuration:

- Probe: ER3DV6 - SN2528; ConvF(1, 1, 1); Calibrated: 2015.03.24;

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn1490; Calibrated: 2015.09.14

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch512/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 11.23 V/m; Power Drift = -0.01 dB

Applied MIF = 3.63 dB

RF audio interference level = 27.00 dBV/m

Emission category: M4

MIF scaled E-field

		Grid 3 M4
28.26 dBV/m	29.27 dBV/m	29.12 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
26.01 dBV/m	25.33 dBV/m	25.33 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
25.29 dBV/m	27 dBV/m	27 dBV/m

Cursor:

Total = 29.27 dBV/m E Category: M4 Location: -4, -25, 8.7 mm

