Одномерные СВерточные неиросети

Нейросети для анализа текстов

Одномерные сверточные нейросети

Текст необходимо анализировать как последовательность токенов

Порядок слов/символов/предложений в тексте имеет большой смысл

Проблемы анализа текстов:

- Overall, the movie is not bad and has entertainment value.
- Unfortunately, the movie is not so good.
- Ice cream (мороженое, ice лед, cream крем, сливки)

Пути решения проблем

- Рекуррентные нейронные сети LSTM и GRU
- Одномерные сверточные нейронные сети

Одномерная операция свертки

Окно свертки

Одномерный сигнал

Одномерная свертка для анализа текстов

N = 93 * 0.2 + 1655 * 0.2 + 16 * 0.2 + 288 * 0.2 + 4 * 0.2 = 411.2

Одномерная свертка для анализа текстов

N = 1655 * 0.2 + 16 * 0.2 + 288 * 0.2 + 4 * 0.2 + 163 * 0.2 = 425,2

Одномерная свертка для обработки векторов

Окно свертки

Ядро свертки

$$N = 0.13 * 0.1 + (-0.11) * 0.1 + 0.24 * 0.1 + (-0.19) * 0.1 + (-0.01) * 0.1 + (-0.05) * 0.1 + 0.07 * 0.1 + (-0.01) * 0.1 + 0.01 * 0.1 + 0.01 * 0.1 = 0.009$$

Ядра свертки

Как определить ядро свертки?

Ядра свертки

Как определить ядро свертки?

Ручной подбор ядер свертки для компьютерного зрения:

- Размытие
- Повышение четкости
- Выделение границ

В нейронных сетях веса в ядрах сверки определяются автоматически в процессе обучения

- Обучение с учителем
- Ограничение на веса при обучении: веса входов всех нейронов в сверточном слое должны быть одинаковые
- Используется несколько ядер свертки (карта признаков)

Слой подвыборки

Среднее значение

Одномерные сверточные сети в Keras и TensorFlow

```
model = Sequential()
model.add(Embedding(max_words, 8, input_length=200))
model.add(Conv1D(100, 5, activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Conv1D(200, 5, activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
```

Одномерные сверточные сети в Keras и TensorFlow

Layer (type)	Output	Shape	Param #
embedding_5 (Embedding)	(None,	200, 8)	80000
conv1d_10 (Conv1D)	(None,	196, 100)	4100
max_pooling1d_10(MaxPooling	(None,	98, 100)	0
conv1d_11 (Conv1D)	(None,	94, 200)	100200
max_pooling1d_11 (MaxPooling	(None,	47, 200)	0
flatten_4 (Flatten)	(None,	9400)	0
dense_10 (Dense)	(None,	128)	1203328
dense_11 (Dense)	(None,	1)	129

Итоги

Одномерные сверточные нейронные сети

- Используются для анализа последовательностей
- Окно свертки, ядро свертки
- Определение ядер свертки в процессе обучения

Архитектура сверточных сетей

- Слои свертки
- Слои подвыборки
- Полносвязные слои для классификации

Преимущества

• Высокая скорость обучения – сверки можно считать параллельно

Недостатки

• Длина анализируемых данных ограничена окном свертки