Spark Programação Funcional para Big Data

2023

Agenda

- Spark
- Histórico
- Componentes
- Deployment
- RDDs, Dataframes, Datasets
- Configuração local
- Exemplos

Ecossistema Spark e Hadoop

Programação para Big Data

- Hadoop usado extensivamente pela indústrica
 - Modelo de programação simples (MapReduce)
 - Escalável, flexível, tolerante a falhas, econômico
- Mas algumas questões sobre manter desempenho no processamento de datasets muito grandes
 - Tempo de espera entre as queries
 - Tempo de espera para iniciar programas
 - Google passou a usar Big Table por conta disso
 - API Map/Reduce nem sempre adequada a todos os casos

Programação para Big Data

- Hadoop adotado no Yahoo!
 - E logo disseminado para diversos outros ambientes
 - Doado à Apache Software Foundation em 2006
- MapReduce framework tinha algumas questões
 - Difícil administração, complexidade operacional
 - Muito código para operações simples e padronizadas
 - Boilerplate code
 - Leituras e gravações intermitentes

Spark

- AMPLab
 - https://amplab.cs.berkeley.edu/
 - UC Berkeley
 - Hoje RISELab
- Projeto Spark
 - Iniciado em 2009
 - Desenvolvido por Matei Zaharia, orientado por Ion Stoica
 - Reconhecimento que MR pode ser ineficiente para jobs interativos
 - Além da complexidade do framework
 - Papers iniciais mostraram desempenho 10 a 20 x melhor

Spark

- Código aberto em licença BSD em 2010
- Passou a ser amplamente utilizado em torno de 2013
 - Quando foi doado para a Apache Software Foundation
 - Passou a projeto top-level em 2014
- Um grupo dos criadores originais fomentou a doação para a ASF
 - Matei Zaharia, Ali Ghodsi, Reynold Xin, Patrick Wendell, Ion Stoica e Andy Konwinski
 - E fundaram a Databricks no mesmo ano
- Apache Spark 1.0 foi lançado em 2014
 - Desenvolvedores da comunidade e da Databricks

Spark – Histórico

Spark – Papers seminais

- Spark: Cluster Computing with Working Sets
 - Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, Ion Stoica
 - University of California, Berkeley
- Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing
 - Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, Ion Stoica
 - University of California, Berkeley

- Computação em cluster rápida
 - "lightning-fast"

 Projetado para tratar diversos tipos de workloads

 Aplicações batch, algoritmos interativos, queries interativas, streaming, machine learning, grafos

 Reduz a sobrecarga de gerenciamento de manter diversas ferramentas separadas

- Unified Engine
 - Processamento de dados distribuídos em larga escala
 - On premises ou na nuvem
- Processamento intermediário com armazenamento in-memory
 - Calcanhar de aquiles do framework MapReduce
- Diversas APIs disponíveis
 - MLlib, Spark SQL, stream processing, GraphX
- Filosofia de projeto centrada em 4 características
 - Desempenho
 - Facilidade de uso
 - Modularidade
 - Extensibilidade

- Desempenho
 - Uso de múltiplos cores e memória
 - DAG
 - Directed Acyclic Graph
 - DAG scheduler, otimização de queries, tarefas paralelas
 - Tungsten
 - Physical execution engine
 - Geração de código compacto para execução
 - In-memory
 - Resultados intermediários em memória
 - Redução de I/O de disco

- Desempenho
 - Uso de múltiplos cores e memória
 - DAG
 - Directed Acyclic Graph
 - DAG scheduler, otimização de queries, ta
 - Tungsten
 - Physical execution engine
 - Geração de código compacto para execução
 - In-memory
 - Resultados intermediários em memória
 - Redução de I/O de disco

- Facilidade de uso
 - Abstração fundamental: RDDs
 - Resilient Distributed Dataset
 - Estrutura lógica simples
 - Abstrações estruturadas de dados baseadas em RDDs
 - DataFrames e Datasets
 - Operações de transformações e ações
 - Modelo de programação simples
 - Fácil adaptação para os DAGs
 - Inclusão em diversas linguagens

Modularidade

- Diversas linguagens, diversas bibliotecas
 - Scala, Java, Python, SQL, R
 - Spark SQL, Spark Structured Streaming, Spark MLlib, GraphX
- Uma única aplicação Spark pode usar todas essas ferramentas

Extensibilidade

- Não é fortemente acoplado a componentes
- Pode se conectar a Hadoop, Cassandra, HBase, MongoDB, Hive, bancos relacionais, etc
- Fontes de dados em Kafka, Kinesis, Azure Storage, Amazon S3
- Pacotes de terceiros podem ser incluídos
 - https://spark.apache.org/third-party-projects.html

O que Spark não é?

- Spark NÃO É uma versão modificada do Hadoop
 - Na realidade, nem sequer é dependente do Hadoop
 - Tem seu próprio gerenciador de clusters, baseado no Mesos
 - Pode ser implementado em outros gerenciadores também
- Pode usar Hadoop (ou partes dele) em duas maneiras
 - Storage (HDFS)
 - Processing (YARN)

Azure

Blob

Amazon

S3

Google

Cloud

HDFS

Unified Analytics

- Em 2016, os criadores do Spark receberam o ACM Award
 - Association for Computing Machinery
 - Pelo paper descrevendo Spark como um "Unified Engine for Big Data Processing"
- Vários diferentes componentes de Big Data podem ser unificados com o Spark
 - Menor complexidade, custos de manutenção, operação, treinamento, etc.

Spark SQL

Spark Streaming MLlib (machine learning) GraphX (graph)

Apache Spark

Spark Streaming Spark SQL and Graph Machine Learning (Structured DataFrames + Processing MLlib Graph X Streaming) **Datasets** Spark Core and Spark SQL Engine SQL Python Scala Java

- Spark SQL
 - Usado em Java, Python, Scala ou R
 - Dados estruturados
 - Formatos
 - RDBMs, NoSQL (MongoDB, Cassandra)
 - Arquivos
 - Texto puro, CSV, JSON, Avro, ORC, Parquet
 - Também combina dados de fontes estruturadas com DataFrames existentes
 - SQL ANSI 2003

- Spark MLlib
 - MLlib Project
 - Dois packages
 - spark.mllib até versão 1.6
 - · Baseada em RDD
 - spark.ml após isso
 - Baseada em DataFrames
 - Desempenho melhorou bastante após a versão 2.x do Spark
 - API em desenvolvimento
 - Extrair e transformar features, construir pipelines, persistir modelos, deployment, etc
 - Maior fomento a desenvolvimento após versão 2.x

- Spark Structured Streaming
 - Iniciado no Spark 2.0
 - Modelo de streaming contínuo
 - Construído sobre Spark SQL e DataFrames
 - Vê o streaming como uma tabela que cresce continuadamente

GraphX

- Manipulação de grafos
 - Análise de redes sociais, rotas, pontos de conexão, topologias de rede, etc
- Operações paralelizadas em grafos
- Algoritmos padronizados
 - Page Rank, Connected Components, Triangle Couting, centralidades, cliques, etc

- Aplicação Spark consiste em:
 - Driver program
 - Orquestração das tarefas
 - Acessa componentes distribuídos no cluster
 - Spark executors
 - Workers
 - Cluster Manager
 - Master
 - Acesso através de uma SparkSession

- Spark Driver
 - Inicia a SparkSession

- Acesso unificado aos recursos de operações e dados do Spark
 - Em versões anteriores, tarefa era dividida entre SparkContext, SQLContext, HiveContext, SparkConf, StreamingContext
 - Classes da versão 1.x continuam a funcionar, por componentes da SparkSession
- Operações das aplicações são feitas através da SparkSession
- Criada por operações das APIs
 - Spark shell cria uma session por default

Spark Application

Spark Driver

Cluster Manage

- Cluster manager
 - Gerenciamento e alocação de recursos
 - Spark suporta diversos cluster managers
 - Built-in
 - Apache Hadoop Yarn
 - Apache Mesos
 - Kubernetes
- Spark executor
 - Ativo em cada nó do cluster
 - Executa as tarefas agendadas pelo Driver Program

Spark – deployment

Spark – deployment

GraphX Spark SQL Mllib Streaming Graph **Data Frames** Machine Learning Computation Spark Core Scala Java R **Python Spark Engine** YARN | Kubernetes | Mesos HDFS | S3 | Azure Blob | GCS | CFS **Compute Cluster**

lapti

Modos de Deployment

Local

- Driver e executor rodam em uma mesma JVM local
- Geralmente em um só computador (ou nó)

Standalone

- Executa em qualquer nó, em JVM separada
- Lança ao menos um master e um worker
- Conexão e submissão de jobs por protocolo próprio

YARN

- Cliente ou cluster
 - Driver Executando em um nó do cluster ou no YARN Application Master
- Workers executando nos containers alocados pelos NodeManagers

Kubernetes

- Usa o Kubernetes Master como cluster manager
- Driver executa em um pod Kubernetes
- Cada worker executa em seu próprio pod

Modos de Deployment

- Acesso a armazenamento
 - Local e standalone
 - Armazenamento local
 - YARN
 - HDFS
 - Kubernetes
 - HDFS
 - Nuvem
 - Armazenamento distribuído em nuvem

Modos de Deployment

- Acesso a armazenamento
 - Local e standalone
 - Armazenamento local
 - YARN
 - HDFS
 - Kubernetes
 - HDFS
 - Nuvem
 - Armazenamento distribuído em nuvem

Databricks oferece sua própria nuvem

Dados distribuídos e partições

- Dados particionados
 - Em HDFS ou armazenamento em nuvem
 - Permite eficiência em paralelismo
 - Cada worker procura tratar uma partição local

Dados distribuídos e partições

- Método repartition em DataFrames
 - Permite acesso local, minimizando uso de rede

Utilização e comunidade

- Criado para tarefas de manipulação de dados e Big Data
 - Data science
 - Limpeza, exploração de dados
 - Descoberta de padrões, modelos de ML
 - · Data wrangle
 - Grandes volumes de dados
 - Project Hydrogen
 - Modelos de deep learning distribuídos
 - Spark 3.0 suporta GPUs em cluster

Utilização e comunidade

- Engenharia de dados
 - Pipelines
 - Acesso e processamento de dados, streams, modelos ML
- Comunidade ativa
 - Mais de 600 Apache Spark Meetup groups
 - Globalmente
 - Spark + Al Summit
 - Conferência para uso de Spark em ML e data science
 - 1500 contribuidores para código no projeto

Spark RDD

- RDD Resilient Distributed Datasets
 - Estrutura de dados fundamental do Spark
- Coleção imutável de objetos
 - Pode conter qualquer tipo de objetos Scala, Java ou Python
 - Incluindo user-defined classes
 - Cada dataset em RDD é dividido em partições lógicas
 - Cada partição pode ser tratada em diferentes nós do cluster
- Formalmente: coleção particionada de registro somente para leitura
 - read-only, partitioned collection of records
 - Criada através de operações determinísticas sobre dados em armazenamento ou outros RDDs
 - Coleção tolerante a falhas que pode ser tratada com paralelização

Porque RDDs?

- Ou qualquer outra collection...
 - Já não temos opções demais disponíveis?
- MapReduce (e soluções similares) é muito adotado
 - Processar datasets grandes com um algoritmo distribuído e paralelizado em um cluster
 - API de alto nínel
 - Não é necessário se preocupar com distribuição, tolerância a falhas, etc
- Mas...
 - No Hadoop MapReduce, a única maneira de se reusar dados entre operações é gravando para um armazenamento estável externo (como HDFS)

Porque RDDs?

MapReduce workflow

Shuffle Sort + Send Merge Key/Value Мар Split Key/Value Key/Value Reduce Key/Value Key/Value Key/Value Key/Value Input Мар Split Data Key/Value Key/Value Reduce Key/Value Key/Value Key/Value Map Key/Value Split Key/Value Distributed **Distributed** File System File System Map Node **Reduce Node**

Porque RDDs?

- Vários frameworks já fornecem acesso rápido para dados em trânsito
 - Com sucesso limitado
- Compartilhamento de dados é lento em MapReduce devido as mesmas características que fazem o framework ser útil
 - Replicação
 - Serialização
 - Disk IO
- Aplicações Hadoop gastam mais de 90% do tempo em operações read/write em HDFS

Operações iterativas em MapReduce

Reutilizando resultados intermediários ao longo de múltiplas operações

Operações iterativas em MapReduce

Queries ad-hoc nos mesmos dados

Usando Spark RDDs

- Compartilhamento de dados é lento em MapReduce
 - Replicação, serialização, I/O de disco
- Spark procura tratar essas questões
- Resilient Distributed Dataset
 - Ideia principal
 - Suporta "in memory processing computation"
- Armazena o estado da memória como objetos ao longo da execução dos jobs
 - Objeto é compartilhável entre os jobs
- Compartilhamento de memória é de 10 a 100 vezes mais rápido que rede e disco

Operações iterativas em RDDs

Resultados intermediários armazenados em memória distribuída

Operações iterativas em RDDs

Se queries diferentes são executadas sobre o mesmo dataset repetidamente, esses dados podem ser mantidos em memória

Operações em RDDs

- Memória distribuída (RAM) pode não ser suficiente para armazenar resultados intermediários
 - Que serão eventualmente armazenados em disco
- A execução das operações em RDDs ocorrem somente quando a ação final é chamada
 - Lazy computation
- RDDs podem ser persistidos em memória
 - Podem ser também persistidos em disco e/ou replicados nos nós do cluster

Spark – Modelo de programação

- Programadores escrevem um driver program
 - Implementa um fluxo de alto nível
- Duas abstrações principais para programação paralela
 - RDDs
 - E DataFrames e DataSets
 - Operações paralelas
- Suporta carregamento de dados de diversas fontes
 - Além de acesso a bancos de dados relacionais e NoSQL

RDDs, DataFrames, DataSets

- RDD
 - API primária em Spark
 - Parecida com collections em Scala
 - Muito flexível
 - Unstructured data
- MAS...
 - Eventualmente, seus dados SÃO estruturados
 - XML, JSON, CSV
 - E você precisa de operações de alto nível
 - SQL

RDDs, DataFrames, DataSets

- DataFrames
 - Collection organizada em colunas
 - Determina estrutura
 - Fornece um API específica para um domínio específico
- DataSets
 - Spark 2.0
 - Strongly-typed API
 - Coleções de strongly-typed JVM objects
 - Integra DataFrame como DataSet[Row]

RDDs, DataFrames, DataSets

Spark – Configuração Local

- Mais adequado a sistemas baseados em Linux
- Passos:
 - Instalar JDK (8/11/17)
 - Instalar suporte a linguagem específica
 - Se necessário
 - Scala, Python
 - Baixar o pacote Spark (spark+hadoop)
 - Extrair o conteúdo do arquivo em um diretório
 - Verificar a instalação
 - Executar Spark shell
 - \$SPARK_HOME/bin/spark-shell (ou pyspark, ou sparkR, ou spark-sql)
 - Usar a webconsole local
 - http://localhost:4040

Spark – Configuração Local

- Shells disponíveis
 - Acesso interativo
 - Exploração inicial
- Para programação
 - Em Java
 - Maven
 - Jars disponíveis na instalação
 - Em Python
 - PySpark instalável via pip install
 - Uso em notebooks ou IDEs

Exemplo – WordCount (em spark-shell)

```
# leitura de dados de um arquivo
texto = sc.textFile("/home/leandro/Documentos/datasets/2600-0.txt")
# quebrar todas as linhas em palavras
palavras = texto.flatMap(lambda line: line.split(" "))
# contar as ocorrencias de cada palavra
contadores = palavras.map(lambda palavra: (palavra, 1)).reduceByKey(lambda a,b:a+b)
# salvar os contadores para um diretorio
contadores.saveAsTextFile("/home/leandro/Documentos/datasets/contagem")
```


Exemplo – dados em CSV (em pyspark)

```
# carregar um CSV em um dataframe, usando o header e com o separador como ;
df = spark.read.csv("/home/leandro/datasets/employees/employees100.csv", header=True, sep=';')
# mostrar as primeiras linhas do dataframe
df.show()
# mostrar estatísticas sobre o dataframe
df.summary().show()
# filtrar por um campo
df f = df.filter(df.gender == "F")
df f.show()
df m = df.where("gender = 'M'")
df m.show()
# referenciar o dataframe como uma tabela relacional
df.createOrReplaceTempView("employees")
# executar uma consulta em SQL sobre a tabela
spark.sql("select * from employees where emp no = 10002").show()
```


Obrigado

leandro@utfpr.edu.br

