1 2 3 4	mpg cylinders displacement horsepower weight acceleration model year origin car name 1 8.0 8 307.0 130 3504 12.0 70 1 chevrolet chevelle malibu 1 5.0 8 350.0 165 3693 11.5 70 1 buick skylark 320 1 8.0 8 318.0 150 3436 11.0 70 1 plymouth satellite 3 16.0 8 304.0 150 3433 12.0 70 1 amc rebel sst 4 17.0 8 302.0 140 3449 10.5 70 1 ford torino
< R D	#As we can see in the Datatypes we should change the object to the float or int class 'pandas.core.frame.DataFrame'> tangeIndex: 398 entries, 0 to 397 vata columns (total 9 columns): # Column Non-Null Count Dtype
d m m c d h w	7 origin 398 non-null int64 8 car name 398 non-null object ltypes: float64(3), int64(4), object(2) lemory usage: 24.9+ KB #Firstly we can check is there any null values in the dataset df_mpg.isnull().sum() ltpg 0 lylinders 0 lisplacement 0 lorsepower 0 lorsepower 0 lorsepower 0 locceleration 0
m O C d	model year 0 origin 0 origin 0 origin 10 origi
3 3	330 40.9 4 85.0 ? 1835 17.3 80 2 renault lecar deluxe 336 23.6 4 140.0 ? 2905 14.3 80 1 ford mustang cobra 3374 23.0 4 151.0 ? 3035 20.5 82 1 amc concord dl 3374 23.0 4 151.0 ? 3035 20.5 82 1 amc concord dl 338
m c d h w a m o	#and now we can see the horsepower is numeric value as well print(df_mpg.dtypes) pg float64 yylinders int64 lisplacement float64 orsepower float64 reight int64 roceleration float64 ordel year int64 origin int64
d	<pre>drar name</pre>
[a	#In brand we can see some of these are named wrong print(sorted(df_mpg.brand.unique())) 'amc', 'audi', 'bmw', 'buick', 'cadillac', 'capri', 'chevroelt', 'chevrolet', 'chevy', 'chrysler', 'datsun', 'dodge', 'fiat', 'ford', 'hi '', 'maxda', 'mazda', 'mercedes', 'mercedes-benz', 'mercury', 'nissan', 'oldsmobile', 'opel', 'peugeot', 'plymouth', 'pontiac', 'renault', subaru', 'toyota', 'toyouta', 'triumph', 'vokswagen', 'volkswagen', 'volvo', 'vw'] #So we need to fix the brand name wrong_brand = { 'vokswagen' : 'volkswagen', 'volkswagen', 'volkswagen',
[<pre>'toyouta': 'toyota', 'mercedes_benz': 'mercedes', 'chevroelt': 'chevrolet', 'maxda': 'mazda' } df_mpg.brand = df_mpg.brand.map(wrong_brand).fillna(df_mpg.brand) print(sorted(df_mpg.brand.unique())) 'amc', 'audi', 'bmw', 'buick', 'cadillac', 'capri', 'chevrolet', 'chevy', 'chrysler', 'datsun', 'dodge', 'fiat', 'ford', 'hi', 'honda', 'mercedes', 'mercedes-benz', 'mercury', 'nissan', 'oldsmobile', 'opel', 'peugeot', 'plymouth', 'pontiac', 'renault', 'saab', 'subaru', 'to'iumph', 'volkswagen', 'volvo']</pre>
3	#In this section we can see the top 10 most efficient cars #We can make a few assumption with these 4 cylinders means more efficient #The cars that came out 1980 has better fuel consumption #Volkswagen was better at creating cars with less fuel consumption df_mpg.nlargest(10, 'mpg') mpg cylinders displacement horsepower weight acceleration model year origin brand model 22 46.6 4 86.0 65.000000 2110 17.9 80 3 mazda glc 32 44.6 4 91.0 67.000000 1850 13.8 80 3 honda civic 1500 gl
3 2 3 3	44.3 4 90.0 48.000000 2085 21.7 80 2 volkswagen rabbit c (diesel) 44.0 4 97.0 52.000000 2130 24.6 82 2 volkswagen pickup 424 43.4 4 90.0 48.000000 2335 23.7 80 2 volkswagen dasher (diesel) 424 43.1 4 90.0 48.000000 1985 21.5 78 2 volkswagen rabbit custom diesel 409 41.5 4 98.0 76.000000 2144 14.7 80 2 volkswagen rabbit 40.9 4 85.0 104.469388 1835 17.3 80 2 renault lecar deluxe 40.8 4 85.0 65.000000 2110 19.2 80 3 datsun 210 447 39.4 4 85.0 70.000000 2070 18.6 78 3 datsun b210 gx
С	#Describe the data to get an idea about the dataset df_mpg.describe() mpg cylinders displacement horsepower weight acceleration model year origin count 398.00000 398.00000 398.00000 398.00000 398.00000 398.00000 398.00000 398.00000 398.00000 mean 23.514573 5.454774 193.425879 104.469388 2970.424623 15.568090 76.010050 1.572864 std 7.815984 1.701004 104.269838 38.199187 846.841774 2.757689 3.697627 0.802055 min 9.000000 3.000000 68.000000 46.000000 1613.000000 8.000000 70.000000 1.000000
i	25% 17.50000 4.00000 104.25000 76.00000 2223.75000 13.82500 73.00000 1.00000 50% 23.00000 4.00000 148.50000 95.00000 2803.500000 15.500000 76.00000 1.000000 75% 29.00000 8.00000 262.00000 125.00000 3608.00000 17.17500 79.00000 2.000000 max 46.60000 8.00000 455.00000 230.00000 5140.00000 24.80000 82.00000 3.00000 #As we can see from the histogram of mpg, the data is moderately skewed to the right #this implies that the there are more numbers of cars which have low mpg than those with high mpg.
C a n	sns.distplot(df_mpg['mpg']) ::\Users\win7\anaconda3\lib\site-packages\seaborn\distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be relative version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes action for histograms). warnings.warn(msg, FutureWarning) **AxesSubplot:xlabel='mpg', ylabel='Density'> 0.05 0.04
	#lets see the mpg effeciency over the years
<	sns.boxplot(x = 'model year', y = 'mpg', data = df_mpg) AxesSubplot:xlabel='model year', ylabel='mpg'>
i	#Lets look for the other properties sns.distplot(df_mpg['acceleration'])
a n	C:\Users\win7\anaconda3\lib\site-packages\seaborn\distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be related future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes action for histograms). warnings.warn(msg, FutureWarning) CAXesSubplot:xlabel='acceleration', ylabel='Density'> 0.175 0.175 0.125
i	#Lets look for the other properties
C a n	sns.distplot(df_mpg['cylinders']) ::\Users\win7\anaconda3\lib\site-packages\seaborn\distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be relative version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes action for histograms). warnings.warn(msg, FutureWarning) ::\Users\win7\anaconda3\lib\site-packages\seaborn\distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be relative version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes action for histograms). warnings.warn(msg, FutureWarning) ::\Users\win7\anaconda3\lib\site-packages\seaborn\distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be relative version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes action for histograms). warnings.warn(msg, FutureWarning) ::\Users\win7\anaconda3\lib\site-packages\seaborn\displot() or `histplot` (an axes action for histograms). 0.5 -
Density	0.1 - 0.1 -
C a n	#Lets look for the other properties sns.distplot(df_mpg['displacement']) ::\Users\win7\anaconda3\lib\site-packages\seaborn\distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be related turce version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes of the content of the conte
Density	0.002 0.002 0.001 0.000 0 100 200 300 400 500 displacement
C a n	#Lets look for the other properties sns.distplot(df_mpg['weight']) ::\Users\win7\anaconda3\lib\site-packages\seaborn\distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be reconstructed function. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axestation for histograms). warnings.warn(msg, FutureWarning) :AxesSubplot:xlabel='weight', ylabel='Density'> 0.0006
Density	0.0004 0.0002 0.0001 0.0000 1000 2000 3000 4000 5000 6000 weight
C a n	#Lets look for the other properties sns.distplot(df_mpg['horsepower']) ::\Users\win7\anaconda3\lib\site-packages\seaborn\distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be refuture version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axestiction for histograms). warnings.warn(msg, FutureWarning) *AxesSubplot:xlabel='horsepower', ylabel='Density'> 0.016
Density	0.014 0.010 0.008 0.006 0.004 0.002 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.
	Origin = ('USA', 'Japan', 'China') OriginSum = df_mpg['origin'].value_counts().values plt.bar(Origin,OriginSum) plt.title('Origin') plt.ylabel('Count') plt.show() Origin Origin
Count	200 - 150 - 100 - 50 - USA Japan China
	<pre>f, ax = plt.subplots(figsize=(10, 9)) sns.countplot(y = 'brand', data=df_mpg, color = 'c') AxesSubplot:xlabel='count', ylabel='brand'></pre>
paerd	
	chrysler - mazda - volvo - renault - honda - subaru - capri - mercedes-benz - cadillac - mercedes - triumph - nissan -
	#After all this we need to look how the variables are corelated with mpg #This will give an idea on how mpg varies with each given variables col_list = df_mpg.columns[1:8] col_dict = {} for col_name in col_list: col_dict[col_name] = np.float(np.corrcoef(df_mpg['mpg'], df_mpg[col_name])[0,1]) print("\n",col_dict)
a	<pre>for col_name in col_list: abs_col_dict[col_name] = abs(col_dict[col_name]) #and this is the most corelated property with mpg max(abs_col_dict.items(), key = operator.itemgetter(1))[0] {'cylinders': -0.7753962854205545, 'displacement': -0.8042028248058982, 'horsepower': -0.7714371350025525, 'weight': -0.8317409332443345, tion': 0.42028891210165054, 'model year': 0.5792671330833093, 'origin': 0.5634503597738432} weight'</pre>
	<pre>#Creating a new X dataframe without mpg, brand and model #Creating new Y dataframe only with mpg X = df_mpg.drop(columns=['mpg', 'brand', 'model']) Y = df_mpg['mpg'] X_train, X_test, y_train, y_test = train_test_split(X,Y,test_size=0.25,random_state=0) model=LinearRegression() model.fit(X_train,y_train) LinearReg=model.predict(X_train) LinearReg=LinearReg.flatten() fig, ax=plt.subplots() proceedings for the first process for the</pre>
4	ax.scatter(LinearReg,y_train) plt.plot(np.arange(0,45),np.arange(0,45),color='green') plt.title('Linear Regression') plt.show() Linear Regression 00-
1	#Using Linear regression model linear_model = LinearRegression()
L	<pre>linear_model.fit(X_train, y_train) linear_r2 = linear_model.score(X_test, y_test) print('Linear Regression accuracy:{:.5f}'.format(linear_r2)) .inear Regression accuracy:0.81346 predictions=model.predict(X_test) predictions urray([12.92372265, 23.96505563, 11.69165515, 21.0938141 , 17.37956039,</pre>
	30.23997739, 28.62713677, 28.75535114, 17.43655388, 30.60585406, 15.45249115, 24.61882495, 27.03253801, 19.89133655, 29.16656011, 28.29742541, 30.53882381, 30.18895664, 29.05770776, 18.20363647, 20.69122763, 31.16187189, 21.46990495, 32.22486329, 23.79224245, 25.64559344, 21.35265459, 16.92461595, 31.71565227, 8.71275881, 9.94788574, 13.70741104, 25.93158962, 29.86619781, 31.36247232, 22.34979963, 23.03357125, 13.49034307, 22.1046017, 27.93806199, 31.25708709, 26.53945677, 15.37677349, 24.85345291, 14.84249433, 8.33231605, 19.43837965, 26.16862395, 29.91615796, 14.60535057, 21.16189861, 24.67779298, 22.00766782, 18.98821152, 10.57385387, 11.91501754, 10.1650865, 19.60490544, 23.90821299, 9.93054337, 34.92261042, 10.5343814, 20.99840763, 19.01557377, 23.96860455, 27.72096817, 30.57177516, 30.21141843, 28.35750451, 15.70604926,
1	12.35332735, 27.78097329, 31.12867875, 29.20020761, 31.65217545, 33.70138438, 29.50911825, 21.82173113, 26.74385777, 31.65723715, 25.33719578, 9.60337283, 26.20097146, 32.05360537, 27.41492429, 20.28716766, 19.74866665, 25.12546132, 23.86339537, 11.63020133]) df = pd.DataFrame({'Actual':y_test,'Predicted':predictions}) df Actual Predicted 65
2 2 1	74 13.0 11.691655 78 21.0 21.093814 37 18.0 17.379560 286 17.6 20.287168 263 17.7 19.748667 246 28.0 25.125461 259 20.8 23.863395
	63 14.0 11.630201 00 rows × 2 columns #Using Decision Tree model
10	<pre>tree_model = DecisionTreeRegressor() tree_model.fit(X_train, y_train) tree_r2 = tree_model.score(X_test, y_test) print('Decision Tree accuracy:{:.5f}'.format(tree_r2))</pre>
100 iii	<pre>tree_model.fit(X_train, y_train) tree_r2 = tree_model.score(X_test, y_test)</pre>