Rajalakshmi Engineering College

Name: JAGADISH S A

Email: 241501071@rajalakshmi.edu.in

Roll no: 241501071 Phone: 9245831133

Branch: REC

Department: I AI & ML FA

Batch: 2028

Degree: B.E - AI & ML

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 5_COD_Question 4

Attempt : 1
Total Mark : 10
Marks Obtained : 10

Section 1: Coding

1. Problem Statement

John, a computer science student, is learning about binary search trees (BST) and their properties. He decides to write a program to create a BST, display it in post-order traversal, and find the minimum value present in the tree.

Help him by implementing the program.

Input Format

The first line of input consists of an integer N, representing the number of elements to insert into the BST.

The second line consists of N space-separated integers data, which is the data to be inserted into the BST.

Output Format

The first line of output prints the space-separated elements of the BST in postorder traversal.

The second line prints the minimum value found in the BST.

Refer to the sample output for formatting specifications.

```
Sample Test Case
Input: 3
5 10 15
Output: 15 10 5
The minimum value in the BST is: 5
Answer
#include <stdio.h>
#include <stdlib.h>
struct Node {
   int data:
   struct Node* left;
   struct Node* right;
struct Node* createNode(int data) {
   struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
   newNode->data = data;
   newNode->left = newNode->right = NULL;
   return newNode;
}
// You are using GCC
struct Node* insert(struct Node* root, int data) {
   if(root == NULL)
     struct Node* nn = (struct Node*)malloc(sizeof(struct Node));
     nn -> data = data;
     nn -> left = NULL;
     nn -> right = NULL;
```

```
root = nn;
       else if(root -> data > data)
         root -> left = insert(root -> left , data);
       else if(root -> data < data)
         root -> right = insert(root -> right , data);
       return root;
     }
     void displayTreePostOrder(struct Node* root) {
    if(root != NULL)
          displayTreePostOrder(root -> left);
          displayTreePostOrder(root -> right);
          printf("%d ",root -> data);
       }
     }
     int findMinValue(struct Node* root) {
       //Type your code here
       while(root -> left != NULL)
return root -> left;
}return root -> data;
     int main() {
       struct Node* root = NULL;
       int n, data;
       scanf("%d", &n);
       for (int i = 0; i < n; i++) {
         scanf("%d", &data);
         root = insert(root, data);
       }
امدیت printf("\n");
       displayTreePostOrder(root);
```

int minValue = 1 printf("The mini return 0; } Status : Correct	findMinValue(root); imum value in the BS	24,75	2 ^{A1501011} Marks: 10/10
2A1501011	241501011	247507077	2A1501011
241501017	241501011	241501011	241501017