- **Problem 1.** (Concurrent circles) Consider a triangle ABC which has inscibed circle ω with center I. Let H_a , H_b and H_c denote the feet of altitudes from A,B and C respectively. Let line AI meet ω at summe A_1 , line BI meet ω at point B_1 , line CI meet ω at point C_1 . Let Ω_a be a circumcircle of triangle AH_aA_1 . Similarly, we define Ω_b and Ω_c . Prove, that Ω_a , Ω_b and Ω_c are coaxial.
- **Problem 2.** (Ellipse's property) Consider an ellipse \mathcal{P} with foci A and B and an arbitrary point S outside of \mathcal{P} . Let C be an arbitrary point on \mathcal{P} . Let D be point on \mathcal{P} , such that $\angle ASC = \angle BSD$ and C, D belong the same half-plane of the line AB. Then tangent lines at C and D to \mathcal{P} intersect on the angle bisecor of $\angle ASB$.
- **Problem 3.** (Poncelet porism property) Hypothesis. Consider a n-gon $\mathcal{A} = A_1 A_2 ... A_n$, inscribed in and circumscribed about two conics \mathcal{C}_1 and \mathcal{C}_2 respectively. Consider now all intersection points of the diangonals $A_i A_{i+2}$ and let $A_{n+j} = A_j$ for $j \ge 1$. They form a n-gon $\mathcal{B} = B_1 B_2 ... B_n$ for $n \ge 5$. By the Poncelet theorem, we can «rotate» polygon \mathcal{A} between conics \mathcal{C}_1 and \mathcal{C}_2 . Then, as it turns out, polygon \mathcal{B} rotates between some fixed conics \mathcal{V}_1 and \mathcal{V}_2 .
- **Note**. If n = 4, then polygon \mathcal{B} degenerates into a point \mathcal{B} . By this theorem we can conclude, that as long as quadrilateral \mathcal{A} rotates, point \mathcal{B} is fixed. We will get well-known fact, if we let conics \mathcal{C}_1 and \mathcal{C}_2 be a circles.
 - P.S. It's checked for cases n = 4, 5, 6.
- **Problem 4.** (Property of Pascal Theorem for 4 points) Consider a cyclic quadrilateral ABCD, which is inscribed in circle ω . Let $\ell_a, \ell_b, \ell_c, \ell_d$ be the tangent lines to the ω at points A, B, C, D respectively. Denote the intersection point of the lines ℓ_b and ℓ_c by F, the intersection point of the lines ℓ_a and ℓ_d by H. Let E be the common point of the lines AB and CD, G the common point of the lines BD and AC. Let I be an arbitrary point on ω . Lines IE, IF, IG, IH intersect ω at points M, L, K, J.
- (a) Prove, that the points E, F, G, H are collinear. Moreover, (E, G; F, H) is harmonic. (Show that)
- (b) Let ℓ be the line, passing through the points E, F, G, H. Prove, that the tangent lines at $K, M \ell_k, \ell_m$ to ω , the line ℓ and the line JL are concurrent.