回帰直線

regression line

回帰直線

- data の裏にある隠された法則を見つる
 - 。 二次元の data に当てはめ \rightarrow **線形回帰直線** \rightarrow **予測 data の取得**

営業所	広告費 (万円)	売上 (万円)
Α	12.5	141
В	20.2	188
С	11.1	111
D	18.2	150
Е	19.9	156
F	14.3	154

y = bx + a

 \downarrow

手持ちのdataで 傾き・切片 を求める

 \downarrow

予測 data 取得

最小二乗法

• 誤差が二乗の総和 が最小になる様な直線を見つける

值 	公式
実際の値	\mathcal{Y}_i
直線上の値	$\hat{y_i} = bx_i + a$
誤差	$e_i = y_i - (bx_i + a)$
誤差の二乗の総和	$\sum e_i^2$

公式

回帰直線の特徴

- 決定係数 r^2 : 求めた回帰直線の 当てはまりの良さ を表す値
 - ightarrow 相関係数 r の二乗 $0 \le r \le 1$ ightarrow 1 に近いほど当てはまりが良い

y の変動数

回帰直線の説明力

因果関係

- 回帰分析でも因果関係の有無に注意
 - 。 原因
 - 説明変数,独立変数
 - 。 結果
 - 被説明変数,従属変数

原因(x) = 結果(y)

結果(y) \neq 原因(x)

cars data

• 車の speed(速さ): x軸 と dist(制動距離): y軸 の関係

。 相関係数: 0.8068949

Hide

cars

speed <dbl></dbl>	dist <dbl></dbl>
4	2
4	10
7	4
7	22
8	16
9	10
10	18
10	26
10	34
11	17
1-10 of 50 rows	Previous 1 2 3 4 5 Next

Hide

x <- cars\$speed

y <- cars\$dist

plot(x, y)

Hide

cor(x, y)

[1] 0.8068949

線形回帰直線を求めて plot

• 誤差が最小になる値の直線を引く

傾き: 3.9324088切片: -17.5790949

Hide

```
b <- cov(x, y) / var(x)
a <- mean(y) - b*mean(x)
c(b, a)
```

[1] 3.932409 -17.579095

Hide

```
plot(x, y)
abline(a, b, colors = "red")
```

"colors" is not a graphical parameter

線形回帰直線

• R言語の関数

```
Im(目的変数 \sim 説明変数) Hide res <- Im(y \sim x) plot(x, y) abline(res)
```


重回帰分析

- 説明変数が(原因)が2つ以上の回帰分析
 - 変数が1つの時は 直線 → 2つの時は 平面 を当てはめる

1つの結果に対して...

 \downarrow

複数の原因がある

$$y = a + b_1 x_1 + b_2 x_2$$

• a, b_1 , b_2 を求めると式が決定

公式

重回帰分析 paramerter

$$\sum e_i^2 = \{y_i - (a + b_1 x_1 + b_2 x_2)\}^2$$

- 最小になる a, b1, b2 を求めるのだが... -> 難しいので pc に任せよう!

標準回帰係数

- あらかじめ説明変数を 標準化 することで比較が可能になる
 - 。 scale を合わせる事により, category が違うものを比較可能に出来る
 - 広告費, 人員数, 販売個数 etc...

標準化 =
$$\frac{X - \mu}{\sigma}$$

- 各值:X
- 平均: μ
- 標準偏差: σ

重回帰分析を計算

• R で計算

lm(目的変数~説明変数1,説明変数2,...)

Hide

$$res1 \leftarrow lm(y1\sim x1+x2)$$

$$res1$$

Call•

 $Im(formula = y1 \sim x1 + x2)$

Coefficients:

(Intercept) x1 x2 6.876 5.387 8.100

標準化して重回帰分析

```
ys <- scale(y1)
xs1 <- scale(x1)
xs2 <- scale(x2)
res2 <- lm(ys~xs1+xs2)
res2
```

```
Call: Im(formula = ys \sim xs1 + xs2) Coefficients: (Intercept) xs1 xs2 \\ -1.734e-16 7.068e-01 4.263e-01
```

重回帰分析の注意点

説明変数はなるべく 独立 になる様に

 \downarrow

多重共線性

 \downarrow

相関係数を使用して 説明変数 の確認

 \downarrow

同じような変数は1に近くなる

説明変数は多いほど良いのか?

関係が薄い項目があると 重回帰分析の当てはまりが悪くなる

 \downarrow

相関係数を使用して 説明変数 の確認

1

当てはまりが悪い変数は0に近くなる

 \downarrow

目的変数と相関関係に着目して 相関係数が低い項目は削除