# Three Musketeers

IIT Bhubaneswar

Sarthak Gupta, Akshat Gupta, Arihant Garg

August 24, 2024

# Contents

| 1        |         | berTheory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1               |  |  |
|----------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|
|          | 1.1     | extended_euclidean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1               |  |  |
|          | 1.2     | factorizer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1               |  |  |
|          |         | floor_sum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2               |  |  |
|          | 1.4     | cipolla_sqrt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2               |  |  |
| 2        | Strin   | Strings 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |  |  |
| 4        |         | manacher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3               |  |  |
|          |         | suffix_array                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3               |  |  |
|          |         | aho_corasick                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4               |  |  |
|          |         | suffix_automaton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4               |  |  |
|          |         | dama-datematical first f |                 |  |  |
| 3        |         | nomials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5               |  |  |
|          |         | poly_mono                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5               |  |  |
|          |         | poly_arbitrary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6               |  |  |
|          | 3.3     | poly_bitwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7               |  |  |
| 1        | Trees 7 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |  |
| 4        |         | centroid_decomposition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7               |  |  |
|          |         | top_tree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8               |  |  |
|          |         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10              |  |  |
|          | 1.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0              |  |  |
| <b>5</b> | Grap    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11              |  |  |
|          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11              |  |  |
|          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11              |  |  |
|          |         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12              |  |  |
|          |         | 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14              |  |  |
|          |         | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15              |  |  |
|          |         | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15              |  |  |
|          | 5.7     | tarjan_bridges_articulation_points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16              |  |  |
| 6        | Geor    | netry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16              |  |  |
|          |         | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{16}{16}$ |  |  |
|          |         | 3d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |  |  |
|          |         | lichao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |  |  |
|          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |  |
| 7        | STL     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19              |  |  |
|          |         | pbds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |  |  |
|          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19              |  |  |
|          | 7.3     | random                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19              |  |  |
| 8        | Thec    | orv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19              |  |  |
|          |         | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <br>19          |  |  |
|          |         | v 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19              |  |  |
|          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19              |  |  |
|          |         | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20              |  |  |
|          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20              |  |  |
|          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20              |  |  |
|          | 8.7     | Xor Convolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20              |  |  |
|          | 8.8     | Or Convolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20              |  |  |
|          | 8.9     | And Convolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20              |  |  |
|          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20              |  |  |
|          | Q 11    | I CM Convolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20              |  |  |

# 1 NumberTheory

#### 1.1 extended\_euclidean

```
// Find a solution to ax + by = 1
int gcd(int a, int b, int& x, int& y) {
   x = 1, y = 0;
   int x1 = 0, y1 = 1, a1 = a, b1 = b;
   while (b1) {
       int q = a1 / b1;
       tie(x, x1) = make_tuple(x1, x - q * x1);
       tie(y, y1) = make_tuple(y1, y - q * y1);
       tie(a1, b1) = make_tuple(b1, a1 - q * b1);
   return a1;
// find any solution to ax + by = c (g will store their
// Generalized x and y can be given by: x = x0 +
    r*lcm(a,b) and y = y0 - r*lcm(a,b)
bool find_any_solution(long long a, long long b, long
    long c, long long &x0, long long &y0, long long
    &g) {
       g = gcd(abs(a), abs(b), x0, y0);
       if (c % g) {
              return false;
       }
       x0 *= c / g;
       y0 *= c / g;
       if (a < 0) x0 = -x0;
       if (b < 0) y0 = -y0;
       return true;
}
```

#### 1.2 factorizer

```
#define mp make_pair
using i32 = int32_t;
using i64 = int64_t;
using i128 = __int128_t;
namespace factorizer {
constexpr i128 mult(i128 a, i128 b, i128 mod) {
   i128 \text{ ans} = 0;
   while (b) {
       if (b & 1) {
           ans += a;
           if (ans >= mod) ans -= mod;
       }
       a <<= 1;
       if (a \ge mod) a -= mod;
       b >>= 1;
   }
   return ans;
constexpr i64 mult(i64 a, i64 b, i64 mod) {
   return (i128)a * b % mod;
constexpr i32 mult(i32 a, i32 b, i32 mod) {
   return (i64)a * b % mod;
}
template <typename T>
constexpr T f(T x, T c, T mod) {
```

```
T ans = mult(x, x, mod) + c;
   if (ans >= mod) ans -= mod;
   return ans:
}
template <typename T>
constexpr T brent(T n, T x0 = 2, T c = 1) {
   T x = x0;
   T g = 1;
   T q = 1;
   T xs, y;
   int m = 128;
   int 1 = 1;
   while (g == 1) {
       y = x;
       for (int i = 1; i < 1; i++) x = f(x, c, n);
       int k = 0;
       while (k < 1 && g == 1) {
          xs = x;
           for (int i = 0; i < m && i < 1 - k; i++) {</pre>
              x = f(x, c, n);
              q = mult(q, abs(y - x), n);
           g = \_gcd(q, n);
          k += m;
       }
       1 *= 2;
   }
   if (g == n) {
       do {
           xs = f(xs, c, n);
           g = \_gcd(abs(xs - y), n);
       } while (g == 1);
   }
   return g;
}
template <typename T>
T binpower(T base, T e, T mod) {
   T result = 1;
   base %= mod;
   while (e) {
       if (e & 1) result = mult(result, base, mod);
       base = mult(base, base, mod);
       e >>= 1;
   }
   return result;
}
template <typename T>
bool check_composite(T n, T a, T d, int s) {
   T x = binpower(a, d, n);
   if (x == 1 || x == n - 1) return false;
   for (int r = 1; r < s; r++) {</pre>
       x = mult(x, x, n);
       if (x == n - 1) return false;
   }
   return true;
};
template <typename T>
bool MillerRabin(T n, const vector<T>& bases) {
   // returns true if n is prime,
   // else returns false.
   if (n < 2) return false;
```

```
int r = 0;
   T d = n - 1;
   while ((d & 1) == 0) {
       d >>= 1;
       r++:
   for (T a : bases) {
       if (n == a) return true;
       if (check_composite(n, a, d, r)) return false;
    return true;
}
template <typename T>
bool IsPrime(T n, const vector<T>& bases) {
   if (n < 2) {
       return false;
   vector<T> small_primes = {2, 3, 5, 7, 11, 13, 17,
        19, 23, 29};
   for (const auto& x : small_primes) {
       if (n \% x == 0) {
           return n == x;
   }
   if (n < 31 * 31) {
       return true;
   return MillerRabin(n, bases);
}
bool IsPrime(i64 n) {
   return IsPrime(n, {2, 3, 5, 7, 11, 13, 17, 19, 23,
        29, 31, 37});
}
bool IsPrime(i32 n) { return IsPrime(n, {2, 7, 61}); }
template <typename T>
vector<pair<T, int>> MergeFactors(const vector<pair<T,</pre>
    int>>& a,
                                const vector<pair<T,</pre>
                                    int>>& b) {
   vector<pair<T, int>> c;
   int i = 0;
   int j = 0;
    while (i < (int)a.size() || j < (int)b.size()) {</pre>
       if (i < (int)a.size() && j < (int)b.size() &&</pre>
           a[i].first == b[j].first) {
           c.emplace_back(a[i].first, a[i].second +
               b[j].second);
           ++i;
           ++j;
           continue;
       if (j == (int)b.size() ||
           (i < (int)a.size() && a[i].first <
               b[j].first)) {
           c.push_back(a[i++]);
       } else {
           c.push_back(b[j++]);
   }
   return c;
```

```
}
template <typename T>
vector<pair<T, int>> RhoC(T n, T c) {
   if (n <= 1) return {};</pre>
   if (!(n & 1))
       return MergeFactors({mp(static_cast<T>(2), 1)},
            RhoC(n >> 1, c));
   if (IsPrime(n)) return {mp(n, 1)};
   T g = brent(n, static_cast<T>(2), c);
   return MergeFactors(RhoC(g, c + 1), RhoC(n / g, c +
}
template <typename T>
vector<pair<T, int>> Factorize(T n) {
    if (n <= 1) return {};</pre>
   return RhoC(n, static_cast<T>(1));
} // example factorizer::Factorize(35)
```

#### 1.3 floor\_sum

#### 1.4 cipolla\_sqrt

```
template<int p>
class cipolla_sqrt{
private:
   static int const phim = p-2;
   static int const phi = p-1;
   static int const phihalf = phi>>1;
   static int const phalf = (p+1)>>1;
public:
   static int pow(int a,int po=phim){
       int res = 1;
       for(;po;po>>=1,a=normalise(a*111*a))
       if(po&1){
           res=normalise(a*111*res);
       return res;
   }
   static int normalise(ll x){
       if(x>=p){
           x-=p; if(x>=p)x\%=p; return x;
       }
       return x;
   }
   static int get(int x){
       int a = 0,b;
       while(
           pow(b = normalise(a*111*a-x+p),
```

```
phihalf)==1
       )++a;
       int po = phalf;
       pair<int,int> v = {a,1}, res = {1,1};
       while(po){
           if (po&1) {
              int temp = normalise(res.S*111*v.S);
              res.S = normalise((v.F*1ll*res.S)
                      +(res.F*111*v.S));
              res.F = normalise((v.F*1ll*res.F)
                      +(b*111*temp));
           }
           po>>=1;
           int temp = normalise(v.S*1ll*v.S);
           v.S = normalise((v.F*111*v.S))
                              +(v.F*111*v.S)):
           v.F = normalise((v.F*111*v.F)
                             +(b*111*temp));
       if(res.F==1)res.F = p - res.F;
       return res.F;
   }
};
```

# 2 Strings

#### 2.1 manacher

```
vector<vector<int>> d;
// d[0] contains half the length of max palindrome of
    odd length with centre at i
// d[1] contains half the length of max palindrome of
    even length with right centre at i
void manacher(string s){
   int n = s.size();
   d.resize(n,vector<int>(2));
   for (int t = 0; t < 2; t++) {
       int 1 = 0, r = -1, j;
       for (int i = 0; i < n; i++) {</pre>
           j = (i > r) ? 1 :
              min(d[l+r-i+t][t],r-i+t) + 1;
              while (
              i + j - t < n \&\& i - j >= 0
              && s[i + j - t] == s[i - j]) j++;
              d[i][t] = --i;
               if (i + j + t > r) {
              1 = i - j; r = i + j - t;
          }
       }
   }
}
```

## 2.2 suffix\_array

```
// Time Complexity: O(nlogn)

void count_sort(vector<int> &p,vector<int> &c){ //
    Sorts values in p by keys in c i.e, if c[p[i]] <
    c[p[j]] then i appears before j in p.
    int n = p.size();</pre>
```

```
vector<int> cnt(n);
    for(auto x : c) cnt[x]++;
   vector<int> p_new(n),pos(n);
   pos[0] = 0;
   for(int i=1;i<n;++i) pos[i] = pos[i-1] + cnt[i-1];</pre>
   for(auto x : p){
       int i = c[x];
       p_new[pos[i]] = x;
       pos[i]++;
   p = p_new;
}
// Returns sorted suffix_array of size (n+1) with first
    element = n (empty suffix).
vector<int> suffix_array(string s){
   s += '$';
   int n = s.size();
   vector<int> p(n),c(n); // p stores suffix array and
        c stroes its equivalence class
       // k = 0 phase
       vector<pair<char,int>> a(n);
       for(int i=0;i<n;++i) a[i] = {s[i],i};</pre>
       sort(all(a));
       for(int i=0;i<n;++i) p[i] = a[i].S;</pre>
       c[p[0]] = 0;
       for(int i=1;i<n;++i){</pre>
           if(a[i].F == a[i-1].F) c[p[i]] = c[p[i-1]];
           else c[p[i]] = c[p[i-1]] + 1;
       }
   }
    int k=0;
    while((1 << k) < n){ // k -> k + 1
       // We require to sort p by \{c[i], c[i+(1<< k)]\}
            value. So we use radix sort: Sort the
            second element of pair then count sort
            first element in a stable fashion.
       // Sort by second element: p[i] -= (1<<k). As
            p[i]'s are already sorted by c[i] values.
       for(int i = 0; i < n; ++i) p[i] = (p[i] -
            (1 << k) + n)%n;
       count_sort(p,c);
       vector<int> c_new(n);
       c_new[p[0]] = 0;
       for(int i=1;i<n;++i){</pre>
           pii prev = {c[p[i-1]], c[(p[i-1] +
                (1<<k))n};
           pii now = {c[p[i]], c[(p[i] + (1 << k))%n]};
           if( now == prev) c_new[p[i]] = c_new[p[i-1]];
           else c_new[p[i]] = c_new[p[i-1]] + 1;
       }
       c = c_{new};
       ++k;
   7
    return p;
}
vector<int> lcp_array(vector<int> &p,vector<int>
    &c,string s){
    int n = p.size();
    vector<int> lcp(n-1);
    int k=0;
   for(int i=0;i<n-1;++i){</pre>
       int pi = c[i];
```

```
int j = p[pi-1];
    //lcp[i] = lcp[s[i...],s[j...]]
    while(s[i+k] == s[j+k]) ++k;
    lcp[pi-1] = k;
    k = max(k-1,0);
}
    return lcp;
}
// Finds lcp using p and
// c array defined in suffix array
```

#### 2.3 aho\_corasick

```
const static int K = 26;
// Will change if input is not just lowercase alphabets
struct Vertex {
   int next[K]:
   int leaf = 0:
   // It actually denotes number of leafs reachable
   // from current vertexes using links.
   int p = -1;
   char pch;
   int link = -1;
   int go[K];
   Vertex(int p=-1, char ch='$') : p(p), pch(ch) {
       fill(begin(next), end(next), -1);
       fill(begin(go), end(go), -1);
};
vector<Vertex> t;
// Automation is stored in form of vector.
// Add String s to the automaton.
void add_s(string const& s) {
   int v = 0;
   for (char ch : s) {
       int c = ch - 'a';
       if (t[v].next[c] == -1) {
           t[v].next[c] = t.size();
           t.emplace_back(v, ch);
       v = t[v].next[c];
   t[v].leaf += 1;
}
// Forward declaration of functions
int go(int v, char ch);
// gets the link from vertex v.
int get_link(int v) {
   if (t[v].link == -1) {
       if (v == 0 || t[v].p == 0)
           t[v].link = 0;
       else
           t[v].link = go(get_link(t[v].p), t[v].pch);
   return t[v].link;
}
int go(int v, char ch) {
   int c = ch - 'a';
   // May change if not lowercase alphabet
   if (t[v].go[c] == -1) {
```

```
if (t[v].next[c] != -1)
           t[v].go[c] = t[v].next[c];
           t[v].go[c] = v == 0 ? 0 :
                          go(get_link(v), ch);
   return t[v].go[c];
}
// To calculate links and leafs(exit link) for nodes.
void bfs() {
    queue<int> order;
    order.push(0);
    while(!order.empty()) {
       int cur = order.front(); order.pop();
       t[cur].link = get_link(cur);
       t[cur].leaf += t[t[cur].link].leaf;
       for(int i=0;i<K;++i) {</pre>
           if(t[cur].next[i] != -1) {
               order.push(t[cur].next[i]);
       }
   }
}
```

#### 2.4 suffix\_automaton

```
struct state {
   int len, link;
   map<char, int> next;
};
const int MAXLEN = 100000;
state st[MAXLEN * 2];
int sz, last;
void sa_init() {
   st[0].len = 0;
   st[0].link = -1;
   sz++;
   last = 0;
void sa_extend(char c) {
   int cur = sz++;
   st[cur].len = st[last].len + 1;
   int p = last;
   while (p != -1 && !st[p].next.count(c)) {
       st[p].next[c] = cur;
       p = st[p].link;
   if (p == -1) {
       st[cur].link = 0;
   } else {
       int q = st[p].next[c];
       if (st[p].len + 1 == st[q].len) {
           st[cur].link = q;
       } else {
           int clone = sz++;
           st[clone].len = st[p].len + 1;
           st[clone].next = st[q].next;
           st[clone].link = st[q].link;
           while (p != -1 && st[p].next[c] == q) {
              st[p].next[c] = clone;
              p = st[p].link;
```

```
}
    st[q].link = st[cur].link = clone;
}
last = cur;
}
```

# 3 Polynomials

## 3.1 poly\_mono

```
const int P1 = 880803841, G1 = 26; //(105*2^23)+1
const int P2 = 897581057, G2 = 3;//(107*2^23)+1
const int P3 = 998244353, G3 = 3;//(119*2^23)+1
const int primitive = 3;
#define u32
                  __uint32_t
#define u64
                   __uint64_t
#define vi
                  vector<int>
#define v64
                  vector<u64>
#define all(x)
                  x.begin(),x.end()
template<int mod>
constexpr int powmod(int a,int p = mod -2){
   int res = 1:
   while(p){
       if(p\&1)res = (res*1ll*a)\mod;
       p>>=1;
       a = (a*111*a)\mod;
   }
   return res;
}
template<int max_base,int mod,int primitive>
class Ntt{
private:
   constexpr static v64 fill(const int o){
       vector<u64> res(max_base);
       const int m = max_base>>1;
       res[m] = (111 << 32) \% mod;
       for(int i = m+1;i<max_base;++i)</pre>
           res[i] = reduce(res[i-1]*1ll*o);
       for(int i = m-1;i;--i) res[i] = res[i<<1];</pre>
       res[0] = (111 << 32) \% mod;
       return res;
    constexpr static v64 init_omegas(){
       const int omega =
           (powmod<mod>(primitive, (mod-1)/
               max_base)*(111<<32))%mod;
       return fill(omega);
   }
   constexpr static v64 init_iomegas(){
       const int omega =
           powmod<mod>(primitive, (mod-1)/max_base);
       const int iomega =
           (powmod<mod>(omega)*(111<<32))%mod;
       return fill(iomega);
   static const v64 omegas, iomegas;
   constexpr static u32 init_mod_inv(){
       u32 inv = mod;
       for(int i=0;i<4;++i)inv*=(2-(mod*inv));</pre>
       return -inv;
   static const u32 mod_inv = init_mod_inv(),
       mod32 = mod;
```

```
static const u64 mod64 = mod;
public:
   // use to combine if using fft explicitly
   // see mul for details
   static const inline u32 reduce(u64 x){
       u32 m = static_cast<u32>(x)*mod_inv;
       u32 t = (x+m*mod64)>>32;
       if(t>=mod)t-=mod;
       return t;
   }
   static void fft(vi &a){
       int n = a.size();
       for(int m=n>>1;m;m>>=1){
          auto it_start = omegas.begin()+m;
          auto it_end = it_start+m;
          for(auto 1 = a.begin();1!=a.end();1+=m){
              for(auto it = it_start;
                  it!=it_end;++it,++l){
                  int e = *l-l[m];
                  if(e<0)e+=mod;</pre>
                  *1+=1[m]:
                  if(*1>=mod)*1-=mod;
                  l[m] = reduce(e* *it);
              }
          }
      }
   }
   static void ifft(vi &a){
       int n = a.size();
       for(int m=1;m<n;m<<=1){</pre>
          auto it_start = iomegas.begin()+m;
          auto it_end = it_start+m;
          for(auto 1 = a.begin();1!=a.end();1+=m){
              for(auto it = it_start;
                  it!=it_end;++it,++1){
                  1[m] = reduce(1[m]* *it);
                  int e = *1-1[m];
                  if(e<0)e+=mod;
                  *1+=1[m];
                  if(*1>=mod)*1-=mod;
                  l[m] = e;
              }
          }
      }
      u64 f = (((111 << 32) * omegas[0])/a.size())%mod;
       for(int i=0;i<a.size();++i)</pre>
          a[i] = reduce(a[i]*f);
   }
   static vi mul(vi a,vi b){
       int need = a.size()+b.size()-1;
       int nbase = 1<<(32-__builtin_clz(need-1));</pre>
       a.resize(nbase);b.resize(nbase);
      fft(a);fft(b);
       for(int i=0;i<nbase;++i)</pre>
          a[i]=reduce(a[i]*1ll*b[i]);
       ifft(a):
       a.resize(need);
       return a:
   }
   static vi inv(vi &a){
      int n = a.size(), k=1;
      vi res(1,powmod<mod>(a[0]));
      while(k<n){</pre>
          int 1 = k<<1;</pre>
          int need = 1<<1;</pre>
          if(l>n)a.resize(l);
          res.resize(need);
```

```
vi temp(a.begin(),a.begin()+1);
           temp.resize(need);fft(res);fft(temp);
           for(int i=0;i<need;++i)</pre>
               res[i] = reduce(temp[i]*111*
                       reduce(res[i]*111*res[i]));
           ifft(res):
           for(int i=k;i<l;++i)</pre>
               if(res[i])res[i]=mod-res[i];
        a.resize(n); res.resize(n);
       return res;
};
template<int max_base,int mod,int primitive> const v64
    Ntt<max_base,mod,primitive>::omegas =
    init_omegas();
template<int max_base,int mod,int primitive> const v64
    Ntt<max_base,mod,primitive>::iomegas =
    init_iomegas();
const int mod = 998244353;
const int base = 1<<20;</pre>
vi& operator *= (vi& a,const vi& b){
    if(a.empty()||b.empty())a.clear();
    else a = Ntt<base,mod,primitive>::mul(a,b);
   return a;
vi operator * (const vi& a,const vi& b){
    vi c = a;return c*=b;
vi& operator /= (vi& a,const vi& b){
    if(a.size()<b.size())a.clear();</pre>
   else{
       vi d = b;
       reverse(d.begin(),d.end());
       reverse(a.begin(),a.end());
       int deg = a.size()-b.size();
       a.resize(deg+1);
       d.resize(deg+1);
       d = Ntt<base,mod,primitive>::inv(d);
        a*=d;a.resize(deg+1);
       reverse(a.begin(),a.end());
   }
   return a;
vi operator / (vi& a,const vi &b){
   vi c = a;return c/=b;
vi& operator += (vi& a,const vi& b){
    if(a.size() < b.size()) a.resize(b.size());</pre>
    for(int i=0;i<b.size();++i){</pre>
       a[i]+=b[i];
        if(a[i] >= mod)a[i] -= mod;
   }
   return a;
vi operator + (const vi& a,const vi& b){
   vi c = a;return c+=b;
vi& operator -= (vi& a,const vi& b){
    if(a.size() < b.size()) a.resize(b.size());</pre>
    for(int i=0;i<b.size();++i){</pre>
       a[i]-=b[i];
       if(a[i]<0)a[i]+=mod;</pre>
   }
```

```
return a;
}
vi operator - (const vi& a,const vi& b){
    vi c = a;
    return c-=b;
}
vi& operator %= (vi& a,const vi& b){
    if(a.size()<b.size())return a;
    vi c = (a/b)*b;
    a -= c;
    a.resize(b.size()-1);
    return a;
}
vi operator % (const vi& a,const vi& b){
    vi c = a;return c%=b;
}</pre>
```

### 3.2 poly\_arbitrary

```
typedef long long i64;
typedef complex<double> im;
const int o = 20, len = 1 << o, mod = 1e9 + 7;
const double pi = acos(-1.0);
namespace poly {
int r[len], up, 1;
im w[len], iw[len], I(0, 1);
void init() {
 w[1] = iw[1] = im(1, 0);
 for (int 1 = 2; 1 != len; 1 <<= 1) {
   double x = cos(pi / 1), y = sin(pi / 1);
   im p(x, y), ip(x, -y);
   for (int i = 0; i != 1; i += 2) {
     w[1 + i] = w[(1 + i) >> 1], iw[1 + i] = iw[(1 + i)]
          i) >> 1];
     w[1 + i + 1] = w[1 + i] * p, iw[1 + i + 1] = iw[1]
          + i] * ip;
   }
 for (int i = (len >> 1) - 1; i; i--)
   w[i] = w[i << 1], iw[i] = iw[i << 1];
 for (int i = 0; i != len; i++)
   r[i] = (r[i >> 1] >> 1) | ((i & 1) << (o - 1));
int pre(int n) {
 1 = 32 - \_builtin\_clz(n), up = 1 << 1;
 return up;
void fft(im *a, int n, bool op, im *w) {
 for (int i = 0; i != n; i++) {
   int t = r[i] >> (o - 1);
   if (i < t)
     swap(a[i], a[t]);
 }
 for (int 1 = 1; 1 != n; 1 <<= 1) {</pre>
   im *k = w + 1;
   for (im *f = a; f != a + n; f += 1)
     for (im *j = k; j != k + 1; j++, f++) {
       im x = *f, y = f[1] * *j;
       f[1] = x - y, *f += y;
```

```
if (op)
   for (int i = 0; i != n; i++)
     a[i] /= n;
vector<int> mul(vector<int> &f, vector<int> &g) {
   int n = f.size()-1,m = g.size()-1;
 static im a[len], b[len], c[len], d[len];
 pre(n + m);
 int mm = sqrt(mod);
 for (int i = 0; i <= n; i++)</pre>
   a[i] = im(f[i] % mm, f[i] / mm);
 for (int i = 0; i <= m; i++)</pre>
   b[i] = im(g[i] \% mm, g[i] / mm);
 fft(a, up, 0, w), fft(b, up, 0, w);
 for (int i = 0; i != up; i++) {
   a[i] /= 2, b[i] /= 2;
   c[i] = im(a[i].real(), -a[i].imag()),
   d[i] = im(b[i].real(), -b[i].imag());
 reverse(c + 1, c + up), reverse(d + 1, d + up);
 for (int i = 0; i != up; i++) {
   im\ a0 = a[i] + c[i],\ a1 = (c[i] - a[i]) * I;
   im b0 = b[i] + d[i], b1 = (d[i] - b[i]) * I;
   a[i] = a0 * b0 + I * a1 * b1,
   b[i] = a0 * b1 + I * a1 * b0;
 fft(a, up, 1, iw), fft(b, up, 1, iw);
 auto num = [](double x) {
   return (i64)round(x) % mod;
 vector<int> h(n+m+1);
 for (int i = 0; i <= n + m; i++){</pre>
   h[i] = (num(a[i].real())
              + num(a[i].imag()) * mm * mm
               + (num(b[i].real())
              + num(b[i].imag())) * mm) % mod;
 }
 for (int i = 0; i != up; i++)
   a[i] = b[i] = c[i] = d[i] = 0;
 return h;
// namespace poly please call poly::init()
// and set o,len,mod accordingly
```

## 3.3 poly\_bitwise

```
void muland(vector<int> &a, int inv) {
   int n = a.size();
   for(int len=2,hlen=1;len<=n;hlen<<=1,len<<=1) {
      for(int i=0;i<n;i+=len) {
        for(int j=0;j<hlen;++j) {
            int str = a[i+j];
            if(!inv) {
                a[i+j] = a[i+j+hlen];
                a[i+j+hlen] = a[i+j+hlen]+str;
            } else {
                a[i+j] = -str+a[i+j+hlen];
                a[i+j+hlen] = str;
            }
        }
    }
}</pre>
```

```
}
void mulor(vector<int> &a, int inv) {
   int n = a.size();
   for(int len=2,hlen=1;len<=n;hlen<<=1,len<<=1) {</pre>
       for(int i=0;i<n;i+=len) {</pre>
           for(int j=0;j<hlen;++j) {</pre>
               int str = a[i+j];
               if(!inv) {
                   a[i+j] += a[i+j+hlen];
                   a[i+j+hlen] = str;
                   a[i+j] = a[i+j+hlen];
                   a[i+j+hlen] = str-a[i+j+hlen];
           }
       }
   }
}
// f[j] = sum_{0}^{n} a[i]*(-1^(bc(i&j)))
// where bc is bitcount
void mulxor(vector<int> &a, int inv) {
   int n = a.size();
   for(int len=2,hlen=1;len<=n;hlen<<=1,len<<=1) {</pre>
       for(int i=0;i<n;i+=len) {</pre>
           for(int j=0; j<hlen; ++j) {
               int str = a[i+j];
               a[i+j] = a[i+j] + a[i+j+hlen];
               a[i+j+hlen] = str - a[i+j+hlen];
       }
    if(inv) for(int i=0;i<n;++i) a[i]/=n;</pre>
}
vector<int> Multiand(vector<int> &a, vector<int> &b) {
   int n = max(b.size(), a.size());
   int i=1;
    while(n > i) {
       i*=2;
    n = i;
    while(a.size()!=n) a.pb(0);
    while(b.size()!=n) b.pb(0);
       muland(a,0); muland(b,0);
       vector<int> ans;
       for(int i=0;i<a.size();++i)</pre>
          ans.pb(a[i]*b[i]);
       muland(ans,1);
       return ans;
}
```

#### 4 Trees

#### 4.1 centroid\_decomposition

```
const int N=200005; // Change based on constraint
set<int> G[N]; // adjacency list (note that this is
    stored in set, not vector)
int sz[N], pa[N];
int dfs(int u, int p) {
    sz[u] = 1;
```

```
for(auto v : G[u]) if(v != p) {
   sz[u] += dfs(v, u);
 return sz[u];
}
int centroid(int u, int p, int n) {
 for(auto v : G[u]) if(v != p) {
   if(sz[v] > n / 2) return centroid(v, u, n);
 return u;
}
void build(int u, int p) {
 int n = dfs(u, p);
 int c = centroid(u, p, n);
 if(p == -1) p = c;
 pa[c] = p;
 vector<int> tmp(G[c].begin(), G[c].end());
 for(auto v : tmp) {
   G[c].erase(v); G[v].erase(c);
   build(v, c);
 }
}
```

## 4.2 top\_tree

```
// should have identity transform
struct Transform{
   long long val;
   Transform():val(011){}
   Transform(long long _val):val(_val){}
   Transform& operator +=(Transform &other){
       val+=other.val;
       return *this;
   }
   bool isLazy()const{return val;}
};
// transforming values and summing = summing and
    transforming
// sum is commutative and associative
// transforming identity = identity
struct Val{
   int n;
   long long val;
   Val(int _n, long long _val):n(_n),val(_val){}
   Val(long long _val):n(1),val(_val){}
   Val():n(0),val(0){}
   Val operator +(Val &other)const{
       return Val(n+other.n, val+other.val);};
   Val& operator +=(Transform
        &T){val+=(n*T.val);return *this;}
   bool isIdentity()const{return n==0;}
};
template<typename val, typename transform>
class TopTree{
public:
   struct Splay{
       struct node{
           int 1,r,ar,p;
           bool flip;
           val self, path, sub, all;
           transform lazyPath, lazySub;
           node():
              1(0),r(0),ar(0),p(0),flip(false){}
```

```
node(int _val):
       1(0),r(0),ar(0),p(0),flip(false),
       self(_val), path(_val), all(_val){}
};
int stx;
vector<node> nodes:
Splay(int n,int q){
   nodes.assign(n+q+1,node(0));
   nodes[0] = node();
   for(int i=n+1;i<nodes.size();++i)</pre>
       nodes[i] = nodes[0];
   stx = n;
}
inline void lazyApplyPath(int u, transform &T){
   if(!nodes[u].path.isIdentity()){
       nodes[u].self+=T,nodes[u].path+=T,
       nodes[u].lazyPath+=T;
       nodes[u].all =
           nodes[u].path+nodes[u].sub;
   }
}
inline void lazyApplySub(int u, transform &T){
   if(!nodes[u].sub.isIdentity()){
       nodes[u].sub+=T,nodes[u].lazySub+=T;
       nodes[u].all =
           nodes[u].path+nodes[u].sub;
   }
}
inline void flip(int u){
   swap(nodes[u].1,nodes[u].r);
   nodes[u].flip^=1;
inline void push(int u){
   if(nodes[u].lazyPath.isLazy()){
       lazyApplyPath(nodes[u].1,
           nodes[u].lazyPath),
       lazyApplyPath(nodes[u].r,
           nodes[u].lazyPath);
       nodes[u].lazyPath = transform();
   if(nodes[u].lazySub.isLazy()){
       lazyApplySub(nodes[u].1,
           nodes[u].lazySub),
       lazyApplySub(nodes[u].r,
           nodes[u].lazySub),
       lazyApplySub(nodes[u].ar,
           nodes[u].lazySub),
       lazyApplyPath(nodes[u].ar,
           nodes[u].lazySub);
       nodes[u].lazySub = transform();
   }
   if(nodes[u].flip){
       nodes[u].flip = false;
       flip(nodes[u].1);
       flip(nodes[u].r);
}
inline void pull(int u){
   if(!u)return;
   int lc = nodes[u].1, rc = nodes[u].r,
           ar = nodes[u].ar;
   nodes[u].path = nodes[lc].path
                  +nodes[u].self
                  +nodes[rc].path;
   nodes[u].sub = nodes[lc].sub
                  +nodes[rc].sub
                  +nodes[ar].all;
```

```
nodes[u].all = nodes[u].path+nodes[u].sub;
}
inline void rotate(int u){
   int p = nodes[u].p;
   if(nodes[p].r==u){
       nodes[p].r = nodes[u].1;
       if (nodes [u].1)
           nodes[nodes[u].1].p = p;
       nodes[u].l = p;
   }
   else{
       nodes[p].l = nodes[u].r;
       if (nodes [u].r)
           nodes[nodes[u].r].p = p;
       nodes[u].r = p;
   nodes[u].p = nodes[p].p;
   nodes[p].p = u;
   if(nodes[nodes[u].p].1 == p)
       nodes[nodes[u].p].1 = u;
    else if(nodes[nodes[u].p].r == p)
       nodes[nodes[u].p].r = u;
    else if(nodes[nodes[u].p].ar == p)
       nodes[nodes[u].p].ar = u;
}
inline void splay(int x){
   while((nodes[nodes[x].p].l==x)||
           (nodes[nodes[x].p].r==x)){}
       int y = nodes[x].p;
       int z = nodes[y].p;
       if((nodes[z].l==y)||(nodes[z].r==y)){
           push(z);push(y);push(x);
           if(((nodes[z].l==y)\&\&(
               nodes[y].l==x))||
               ((nodes[z].r==y)\&\&(
                  nodes[y].r==x)))
               rotate(y);
           else
               rotate(x);
           rotate(x):
           pull(z);pull(y);pull(x);
       }
       else{
           push(y);push(x);
           rotate(x);
           pull(y);pull(x);
       }
   }
   push(x);
inline void detach(int u){
   push(u);
    if (nodes [u].r) {
       if (nodes [nodes [u].ar].ar
               ||(!nodes[u].ar)){
           nodes[++stx].r = nodes[u].ar;
           nodes[stx].p = u;
           if(nodes[stx].r)
               nodes[nodes[stx].r].p = stx;
           nodes[u].ar = stx;
       }
           push(nodes[u].ar);
       nodes[nodes[u].ar].ar = nodes[u].r;
       nodes[nodes[u].r].p = nodes[u].ar;
       nodes[u].r = 0;
       pull(nodes[u].ar);
```

```
pull(u);
       }
   }
   inline int access(int u){
       int x = u;
       int v = u;
       while(x){
           splay(x);
           if(u!=x){
               push(nodes[x].ar);
               swap(nodes[x].r,
                  nodes[nodes[x].ar].ar);
               if(nodes[x].r)
                  nodes[nodes[x].r].p = x;
               if (nodes[nodes[x].ar].ar)
                  nodes[nodes[nodes[x].ar].p =
                      nodes[x].ar;
               pull(nodes[x].ar);
              pull(x);
           }
           else
               detach(x);
           v = x;
           x = nodes[x].p;
           if(x){
               splay(x);
               x = nodes[x].p;
       }
       splay(u);
       return v;
   void root(int x){
       access(x);flip(x);push(x);
};
Splay S;
int root;
TopTree(int _n, int _q,int
    _root):S(_n,_q*2),root(_root){}
void updateSub(int x,transform T){
   S.root(root); S.access(x);
   int y = S.nodes[x].1;
   S.nodes[x].1 = 0;
   S.pull(x);
   S.lazyApplyPath(x, T),S.lazyApplySub(x, T);
   S.push(x); S.nodes[x].l = y; S.pull(x);
void updatePath(int x,int y,transform T){
   S.root(x);S.access(y);S.lazyApplyPath(y, T);
void reroot(int r){root = r;}
val getPath(int x,int y){
   S.root(x);S.access(y);
   return S.nodes[y].path;
val getSub(int x){
   S.root(root);S.access(x);
   return S.nodes[x].self
       +S.nodes[S.nodes[x].r].path
       +S.nodes[S.nodes[x].ar].all;
}
void link(int x,int y){
   S.root(x);S.access(y);
   S.nodes[y].r = x,S.nodes[x].p = y;
   S.pull(y);
}
```

```
int lca(int x,int y){
    S.root(root); S.access(y);
    return S.access(x);
}

void changePar(int x,int y){
    if(lca(x,y)!=x){
        S.nodes[S.nodes[x].1].p = 0;
        S.nodes[x].1 = 0; S.pull(x);
        link(x,y);
    }
}

void cut(int u){
    S.root(root); S.access(u);
    S.nodes[S.nodes[u].1].p = 0;
    S.nodes[u].1 = 0; S.pull(u);
}
};
```

#### 4.3 hld

```
#include<bits/stdc++.h>
using namespace std;
class HLD {
   vector<int> segtree, parent, depth, heavy, head,
        pos, maxdepth;
   int cur_pos;
   int combine(int lval, int rval) {
       return max(lval, rval);
   void segtree_update(int v, int 1, int r, int x, int
        val) {
       if (x < 1 || r < x)return;</pre>
       if (1 == r) {
           segtree[v] = val;
           return;
       int mid = (1 + r) >> 1;
       int z = (mid + 1 - 1) << 1;</pre>
       if (x <= mid)
           segtree_update(v + 1, 1, mid, x, val);
           segtree_update(v + z, mid + 1, r, x, val);
       segtree[v] = combine(segtree[v + 1], segtree[v
           + zl):
   }
   int segtree_query(int v, int 1, int r, int L, int
        R) {
       if (R < 1 || r < L)return 0;</pre>
       if (L <= 1 && r <= R) return segtree[v];</pre>
       int mid = (1 + r) >> 1;
       int z = (mid + 1 - 1) << 1;
       return combine(segtree_query(v + 1, 1, mid, L,
           R), segtree_query(v + z, mid + 1, r, L, R));
   }
   // HLD Template
   // Taken from cp-algorithms
   int dfs(int v, vector<vector<int>> const& adj) {
```

```
int size = 1;
       int max_c_size = 0;
       maxdepth[v] = depth[v];
       for (int c : adj[v]) {
           if (c != parent[v]) {
              parent[c] = v, depth[c] = depth[v] + 1;
               int c_size = dfs(c, adj);
               size += c_size;
               if (c_size > max_c_size) {
                  \max_{c} = c_size,
                      heavy[v] = c, maxdepth[v] =
                           maxdepth[c];
           }
       }
       return size;
   }
   void decompose(int v, int h, vector<vector<int>>
        const& adj) {
       head[v] = h, pos[v] = cur_pos++;
                                             // Now v is
           present at pos[v]
       if (heavy[v] != -1)
           decompose(heavy[v], h, adj);
       for (int c : adj[v]) {
           if (c != parent[v] && c != heavy[v])
              decompose(c, c, adj);
       }
   }
public:
   HLD(vector<vector<int>> const& adj) {
       int n = adj.size();
       parent = depth = head = pos = maxdepth =
           vector<int>(n);
       heavy = vector<int>(n, -1);
       segtree = vector<int>(n << 1);</pre>
       cur_pos = 0;
       dfs(0, adj);
       decompose(0, 0, adj);
   int query(int a, int b) {
       int res = 0;
       for (; head[a] != head[b]; b = parent[head[b]])
           if (depth[head[a]] > depth[head[b]])
               swap(a, b);
           int cur_heavy_path_res =
               segtree_query(pos[head[b]] << 1,</pre>
               depth[head[b]], maxdepth[b],
               depth[head[b]], depth[b]);
           res = combine(res, cur_heavy_path_res);
       }
       if (depth[a] > depth[b])
           swap(a, b);
       int last_heavy_path_max =
           segtree_query(pos[head[b]] << 1,</pre>
            depth[head[b]], maxdepth[b], depth[a],
            depth[b]);
       res = combine(res, last_heavy_path_max);
       return res;
   }
```

```
void update(int x, int val) { // 0 based indexing
    segtree_update(pos[head[x]] << 1,
          depth[head[x]], maxdepth[x], depth[x], val);
};</pre>
```

# 5 Graphs

## 5.1 max\_flow

```
/*
Implementation of Dinic's blocking algorithm
for the maximum flow.
Complexity: V^2 E (faster on real graphs).
please add edges not related to input first
to improve constants
This class accepts a graph
(costructed calling AddEdge) and then solves
the maximum flow problem for any source and sink.
Both directed and undirected graphs are supported.
In case of undirected graphs,
each edge must be added twice.
To compute the maximum flow just call
GetMaxFlowValue(source, sink).
template <typename T>
struct Dinic {
   struct Edge {
       int u, v;
       T cap, flow;
       Edge() {}
       Edge(int u, int v, T cap): u(u), v(v),
           cap(cap), flow(0) {}
   };
   int N;
   vector<Edge> edges; // The "inverse" edge of
        edges[i] is edges[i^1].
   vector<vector<int>> aa; // Stores the index of the
        edge in the edges vector.
   // dist is the distance in the bfs.
   // pt is used internally to save time in the dfs.
   vector<int> dist, pt;
   Dinic(int N): N(N), edges(0), aa(N), dist(N), pt(N)
        {}
   void AddEdge(int u, int v, T cap) {
       assert(0 \le u \text{ and } u \le N);
       assert(0 <= v and v < N);</pre>
       // dbg(u, v, cap);
       if (u != v) {
           edges.push_back(Edge(u, v, cap));
           aa[u].push_back(edges.size() - 1);
           // The inverse edge has 0 capacity.
           edges.push_back(Edge(v, u, 0));
           aa[v].push_back(edges.size() - 1);
   }
```

```
// Computes all distances from source and stores
        them in dist.
   // It returns true if sink is reachable from source.
   bool BFS(int source, int sink) {
       queue<int> q({source});
       fill(dist.begin(), dist.end(), N + 1);
       dist[source] = 0;
       while(!q.empty()) {
           int u = q.front(); q.pop();
           if (u == sink) break;
           for (int k : aa[u]) {
              Edge &e = edges[k];
              if (e.flow < e.cap && dist[e.v] >
                   dist[e.u] + 1) {
                  dist[e.v] = dist[e.u] + 1;
                  q.push(e.v);
           }
       }
       return dist[sink] != N + 1;
   T DFS(int u, int sink, T flow = -1) {
       if (u == sink || flow == 0) return flow;
       // ACHTUNG: Be careful of using references (&)
           where needed!
       for (int &i = pt[u]; i < (int)aa[u].size();</pre>
           i++) {
           Edge &e = edges[aa[u][i]];
           Edge &oe = edges[aa[u][i] ^ 1];
           if (dist[e.v] == dist[e.u] + 1) {
              T amt = e.cap - e.flow;
               if (flow != -1 && amt > flow) amt = flow;
               if (T pushed = DFS(e.v, sink, amt)) {
                  e.flow += pushed;
                  oe.flow -= pushed;
                  return pushed;
           }
       }
       return 0;
   }
   T GetMaxFlowValue(int source, int sink) {
       for (Edge& e : edges) e.flow = 0;
       T res = 0;
       while (BFS(source, sink)) {
           fill(pt.begin(), pt.end(), 0);
           while (T flow = DFS(source, sink)) res +=
       return res;
   }
};
```

## 5.2 edmond\_blossom\_unweighted

```
struct edmond {
   int n, m , nE, n_matches,q_n,book_mark;
   vector<int> adj,nxt,go,mate,q,book,type,fa,bel;

edmond(int n,int m):n(n),m(m){
   nE=0;
   n_matches=0;
```

```
adj.resize(n+1);
   mate.resize(n+1);
   q.resize(n+1);
   book.resize(n+1);
   type.resize(n+1);
   fa.resize(n+1);
   bel.resize(n+1);
   go.resize((m<<1)|1);</pre>
   nxt.resize((m<<1)|1);</pre>
void addEdge(const int &u, const int &v) {
   nxt[++nE] = adj[u], go[adj[u] = nE] = v;
   nxt[++nE] = adj[v], go[adj[v] = nE] = u;
void augment(int u) {
   while (u) {
       int nu = mate[fa[u]];
       mate[mate[u] = fa[u]] = u;
       u = nu:
   }
}
int get_lca(int u, int v) {
   ++book_mark;
   while (true) {
       if (u) {
           if (book[u] == book_mark) return u;
           book[u] = book_mark;
           u = bel[fa[mate[u]]];
       swap(u, v);
   }
}
void go_up(int u, int v, const int &mv) {
   while (bel[u] != mv) {
       fa[u] = v;
       v = mate[u];
       if (type[v] == 1) type[q[++q_n] = v] = 0;
       bel[u] = bel[v] = mv;
       u = fa[v];
   }
}
void after_go_up() {
   for (int u = 1; u <= n; ++u) bel[u] =</pre>
        bel[bel[u]];
}
bool match(const int &sv) {
   for (int u = 1; u <= n; ++u) bel[u] = u,</pre>
        type[u] = -1;
   type[q[q_n = 1] = sv] = 0;
   for (int i = 1; i <= q_n; ++i) {</pre>
       int u = q[i];
       for (int e = adj[u]; e; e = nxt[e]) {
           int v = go[e];
           if (!~type[v]) {
               fa[v] = u, type[v] = 1;
               int nu = mate[v];
               if (!nu) {
                   augment(v);
                   return true;
               type[q[++q_n] = nu] = 0;
```

```
} else if (!type[v] && bel[u] != bel[v])
                   int lca = get_lca(u, v);
                   go_up(u, v, lca);
                   go_up(v, u, lca);
                   after_go_up();
           }
       }
       return false;
    void calc_max_match() {
       n_{matches} = 0;
       for (int u = 1; u <= n; ++u)</pre>
           if (!mate[u] && match(u)) ++n_matches;
   }
};
/*
int main() {
   int n,m;
   cin >> n >> m;
   edmond er(n, m);
   while(m--) {
       int x,y; cin >> x >> y;
       er.addEdge(x+1, y+1); // Input should be
            strictly 1-based indexed node.
   er.calc_max_match();
    cout << er.n_matches << endl;</pre>
    for(int u = 1; u \le er.n; ++u)
       if(er.mate[u] > u) cout << er.mate[u]-1 << ', '
            << u-1 << '\n';
   return 0:
}
*/
```

## 5.3 edmond\_blossom\_weighted

```
struct Blossom {
   const long long inf = 1e18;
   static const int N = 105; // > Max number of
        vertices.
   struct edge {
       int u, v;
       long long w;
   } g[N * 2][N * 2];
   int n, n_x, match[N * 2], slack[N * 2], st[N * 2],
       pa[N * 2], flower_from[N * 2][N * 2], S[N * 2],
       vis[N * 2];
   long long lab[N * 2];
   long long dist(edge const& e) { return lab[e.u] +
        lab[e.v] - g[e.u][e.v].w * 2; }
   vector<int> flower[N * 2];
   deque<int> q;
   Blossom(int _n) {
      n = _n;
       q = deque<int>();
       for (int u = 1; u <= n * 2; ++u) {</pre>
          match[u] = slack[u] = st[u] = pa[u] = S[u] =
               vis[u] = lab[u] = 0;
           for (int v = 1; v <= n * 2; ++v) {</pre>
              g[u][v] = edge\{u, v, 0\};
              flower_from[u][v] = 0;
```

```
}
       flower[u].clear();
}
void add_edge(int u, int v, long long w) {
   ++u; ++v;
   g[u][v].w = max(g[u][v].w, w);
   g[v][u].w = max(g[v][u].w, w);
inline void update_slack(int u, int x) {
    if (!slack[x] || dist(g[u][x]) <</pre>
        dist(g[slack[x]][x])) slack[x] = u;
inline void set_slack(int x) {
   slack[x] = 0;
   for (int u = 1; u <= n; ++u) {</pre>
       if (g[u][x].w > 0 && st[u] != x && S[st[u]]
            == 0) update_slack(u, x);
}
inline void q_push(int x) {
   if (x <= n) return q.push_back(x);</pre>
   for (int i = 0; i < (int)flower[x].size(); i++)</pre>
        q_push(flower[x][i]);
}
inline void set_st(int x, int b) {
   st[x] = b;
   if (x <= n) return;</pre>
   for (int i = 0; i < (int)flower[x].size(); ++i)</pre>
        set_st(flower[x][i], b);
inline int get_pr(int b, int xr) {
   int pr = find(flower[b].begin(),
        flower[b].end(), xr) - flower[b].begin();
    if (pr % 2 == 1) {
       reverse(flower[b].begin() + 1,
           flower[b].end());
       return (int)flower[b].size() - pr;
   } else return pr;
inline void set_match(int u, int v) {
   match[u] = g[u][v].v;
   if (u <= n) return;</pre>
   edge e = g[u][v];
   int xr = flower_from[u][e.u], pr = get_pr(u,
        xr);
   for (int i = 0; i < pr; ++i)</pre>
        set_match(flower[u][i], flower[u][i ^ 1]);
   set_match(xr, v);
   rotate(flower[u].begin(), flower[u].begin() +
        pr, flower[u].end());
inline void augment(int u, int v) {
   int xnv = st[match[u]];
    set_match(u, v);
   if (!xnv) return;
   set_match(xnv, st[pa[xnv]]);
   augment(st[pa[xnv]], xnv);
inline int get_lca(int u, int v) {
   static int t = 0;
   for (++t; u || v; swap(u, v)) {
       if (u == 0) continue;
       if (vis[u] == t) return u;
       vis[u] = t;
       u = st[match[u]];
       if (u) u = st[pa[u]];
```

```
}
   return 0;
}
inline void add_blossom(int u, int lca, int v) {
   int b = n + 1;
   while(b <= n_x && st[b]) ++b;</pre>
   if (b > n_x) ++n_x;
   lab[b] = 0, S[b] = 0;
   match[b] = match[lca];
   flower[b].clear();
   flower[b].push_back(lca);
   for (int x = u, y; x != lca; x = st[pa[y]]) {
       flower[b].push_back(x),
            flower[b].push_back(y = st[match[x]]),
            q_push(y);
   reverse(flower[b].begin() + 1, flower[b].end());
   for (int x = v, y; x != lca; x = st[pa[y]]) {
       flower[b].push_back(x),
            flower[b].push_back(y = st[match[x]]),
            q_push(y);
   set_st(b, b);
   for (int x = 1; x \le n_x; ++x) g[b][x].w =
        g[x][b].w = 0;
   for (int x = 1; x <= n; ++x) flower_from[b][x]</pre>
        = 0:
   for (int i = 0; i < (int)flower[b].size(); ++i)</pre>
       int xs = flower[b][i];
       for (int x = 1; x <= n_x; ++x) {</pre>
           if (g[b][x].w == 0 || dist(g[xs][x]) <</pre>
               dist(g[b][x])
               g[b][x] = g[xs][x], g[x][b] =
                   g[x][xs];
       for (int x = 1; x <= n; ++x) {</pre>
           if (flower_from[xs][x])
               flower_from[b][x] = xs;
   }
   set_slack(b);
inline void expand_blossom(int b) { // S[b] == 1
   for (int i = 0; i < (int)flower[b].size(); ++i)</pre>
        set_st(flower[b][i], flower[b][i]);
   int xr = flower_from[b][g[b][pa[b]].u], pr =
        get_pr(b, xr);
   for (int i = 0; i < pr; i += 2) {</pre>
       int xs = flower[b][i], xns = flower[b][i +
            1];
       pa[xs] = g[xns][xs].u;
       S[xs] = 1, S[xns] = 0;
       slack[xs] = 0, set_slack(xns);
       q_push(xns);
   S[xr] = 1, pa[xr] = pa[b];
   for (int i = pr + 1; i < (int)flower[b].size();</pre>
        ++i) {
       int xs = flower[b][i];
       S[xs] = -1, set_slack(xs);
   }
   st[b] = 0;
inline bool on_found_edge(const edge &e) {
   int u = st[e.u], v = st[e.v];
   if (S[v] == -1) {
```

```
pa[v] = e.u, S[v] = 1;
       int nu = st[match[v]];
       slack[v] = slack[nu] = 0;
       S[nu] = 0, q_push(nu);
   } else if (S[v] == 0) {
       int lca = get_lca(u, v);
       if (!lca) return augment(u, v), augment(v,
            u). 1:
       else add_blossom(u, lca, v);
   }
   return 0;
}
inline bool matching() {
   fill(S, S + n_x + 1, -1), fill(slack, slack +
        n_x + 1, 0);
   q.clear();
   for (int x = 1; x \le n_x; ++x) {
       if (st[x] == x && !match[x]) pa[x] = 0, S[x]
            = 0, q_push(x);
   }
   if (q.empty()) return 0;
   for (;;) {
       while ((int)q.size()) {
           int u = q.front();
           q.pop_front();
           if (S[st[u]] == 1) continue;
           for (int v = 1; v <= n; ++v) {</pre>
               if (g[u][v].w > 0 && st[u] != st[v]) {
                   if (dist(g[u][v]) == 0) {
                       if (on_found_edge(g[u][v]))
                           return 1;
                   } else update_slack(u, st[v]);
               }
           }
       }
       long long d = inf;
       for (int b = n + 1; b <= n_x; ++b) {</pre>
           if (st[b] == b && S[b] == 1) d = min(d,
               lab[b] / 2);
       for (int x = 1; x <= n_x; ++x) {</pre>
           if (st[x] == x && slack[x]) {
               if (S[x] == -1) d = min(d,
                   dist(g[slack[x]][x]));
               else if (S[x] == 0) d = min(d,
                   dist(g[slack[x]][x]) / 2);
           }
       }
       for (int u = 1; u <= n; ++u) {</pre>
           if (S[st[u]] == 0) {
               if (lab[u] <= d) return 0;</pre>
               lab[u] -= d;
           } else if (S[st[u]] == 1) lab[u] += d;
       for (int b = n + 1; b \le n_x; ++b) {
           if (st[b] == b) {
               if (S[st[b]] == 0) lab[b] += d * 2;
               else if (S[st[b]] == 1) lab[b] -= d *
                   2;
           }
       }
       q.clear();
       for (int x = 1; x <= n_x; ++x) {</pre>
           if (st[x] == x && slack[x] &&
               st[slack[x]] != x &&
               dist(g[slack[x]][x]) == 0)
```

```
if (on_found_edge(g[slack[x]][x]))
                        return 1;
           }
           for (int b = n + 1; b \le n_x; ++b) {
               if (st[b] == b && S[b] == 1 && lab[b] ==
                    0) expand_blossom(b);
           }
       }
       return 0;
   pair<long long, int> solve() {
       fill(match, match + n + 1, 0);
       n_x = n;
       int cnt = 0;
       long long ans = 0;
       for (int u = 0; u <= n; ++u) st[u] = u,</pre>
            flower[u].clear();
       long long w_max = 0;
       for (int u = 1; u <= n; ++u) {</pre>
           for (int v = 1; v <= n; ++v) {</pre>
               flower_from[u][v] = (u == v ? u : 0);
               w_max = max(w_max, g[u][v].w);
       }
       for (int u = 1; u <= n; ++u) lab[u] = w_max;</pre>
       while (matching()) ++cnt;
       for (int u = 1; u <= n; ++u) {</pre>
           if (match[u] && match[u] < u) ans +=</pre>
                g[u][match[u]].w;
       for (int i = 0; i < n; ++i)</pre>
           match[i] = match[i + 1] - 1;
       return make_pair(ans, cnt);
   }
};
/*
int main() {
   ios_base::sync_with_stdio(false);
   cin.tie(nullptr);
   int n, m;
    cin >> n >> m;
   Blossom g(n);
    for (int i = 0; i < m; ++i) {
       int u, v, w;
       cin >> u >> v >> w;
       g.add_edge(u-1, v-1, w);
        // pass 0-based index here.
   }
   auto ans = g.solve();
    // {max_weight, matching size}
    cout << ans.second << ', ' << ans.first << '\n';</pre>
    for (int i = 0; i < n; ++i) {
       if (g.match[i] > i) cout << i+1 << ' ' <<</pre>
            g.match[i]+1 << '\n'; // print 1-based
            index.
   }
}
*/
```

## 5.4 minimum\_directed\_spanning\_tree

```
struct E { int s, t; ll w; }; // O-base
struct PQ {
   struct P {
```

```
11 v; int i;
   bool operator>(const P &b) const { return v > b.v; }
 }:
 priority_queue<P, vector<P>, greater<>> pq; ll tag;
      // min heap
 void push(P p) { p.v -= tag; pq.emplace(p); }
 P top() { P p = pq.top(); p.v += tag; return p; }
 void join(PQ &b) {
   if (pq.size() < b.pq.size())</pre>
     swap(pq, b.pq), swap(tag, b.tag);
   while (!b.pq.empty()) push(b.top()), b.pq.pop();
};
vector<int> dmst(const vector<E> &e, int n, int root) {
 vector<PQ> h(n * 2);
 for (int i = 0; i < int(e.size()); ++i)</pre>
   h[e[i].t].push({e[i].w, i});
 vector<int> a(n * 2); iota(all(a), 0);
 vector<int> v(n * 2, -1), pa(n * 2, -1), r(n * 2);
 auto o = [&](auto Y, int x) -> int {
   return x==a[x] ? x : a[x] = Y(Y, a[x]); };
 auto S = [&](int i) { return o(o, e[i].s); };
 int pc = v[root] = n;
 for (int i = 0; i < n; ++i) if (v[i] == -1)
   for (int p = i; v[p]<0 \mid \mid v[p]==i; p = S(r[p])) {
     if (v[p] == i)
       for (int q = pc++; p != q; p = S(r[p])) {
         h[p].tag = h[p].top().v; h[q].join(h[p]);
         pa[p] = a[p] = q;
     while (S(h[p].top().i) == p) h[p].pq.pop();
     v[p] = i; r[p] = h[p].top().i;
   }
 vector<int> ans;
 for (int i = pc - 1; i >= 0; i--) if (v[i] != n) {
   for (int f = e[r[i]].t; f!=-1 && v[f]!=n; f = pa[f])
     v[f] = n:
   ans.push_back(r[i]);
 }
 return ans; // default minimize, returns edgeid array
// return ids of edges in mdst
```

#### 5.5 directed\_eulerian\_cycle

```
class DirectedEulerianCircuit{
   int n;
   vector<stack<int>> adj;
   int get(int u){
       return adj[u].top();
public:
   DirectedEulerianCircuit(int _n):n(_n){
       adj.resize(n);
       for(int i=0;i<n;++i)</pre>
           adj[i].push(-1);
   void addEdge(int u,int v){
       adj[u].push(v);
   int findFirst(){
       int u = 0;
       for(int i=0;i<n;++i){</pre>
           if(adj[i].size()==1)continue;
```

```
if(!(adj[i].size()&1))break;
       }
       return u;
   }
   vector<int> eulerCircuit(){
       stack<int> st;
       int u = 0:
       for(int i=0;i<n;++i){</pre>
           if(adj[i].size())u = i;
       vector<int> circuit;
       st.push(u);
       while(!st.empty()){
           int x = get(st.top());
           if(x!=-1){
               adj[st.top()].pop();
               st.push(x);
           }
           else{
               circuit.push_back(st.top());
               st.pop();
           }
       }
       reverse(circuit.begin(),circuit.end());
       return circuit;
   }
};
```

## 5.6 eulerian\_cycle

```
class EulerianCircuit{
   int n,e;
    vector<vector<int>> adj;
    vector<bool> visit;
    vector<int> edges;
    int get(int u){
       while(visit[adj[u].back()])adj[u].pop_back();
       return adj[u].back();
   }
public:
   EulerianCircuit(int _n):n(_n),e(0){
       adj.resize(n);
       for(int i=0;i<n;++i)</pre>
           adj[i].push_back(0);
       edges.resize(2);
       visit.resize(2);
   }
    void addEdge(int u,int v){
       ++e:
       adj[u].push_back(e<<1);
       edges.push_back(v);
       adj[v].push_back((e<<1)|1);
       edges.push_back(u);
       visit.push_back(false);
       visit.push_back(false);
   }
   int findFirst(){
       int u = 0;
       for(int i=0;i<n;++i){</pre>
           if(adj[i].size()==1)continue;
           u = i:
           if(!(adj[i].size()&1))break;
       }
       return u;
```

```
}
   vector<int> eulerCircuit(int u){
       if(!e)return vector<int>();
       stack<int> st;
       vector<int> circuit;
       st.push(u);
       while(!st.empty()){
           int x = get(st.top());
           if(x){
               visit[x] = visit[x^1] = true;
               st.push(edges[x]);
           }
           else{
              circuit.push_back(st.top());
               st.pop();
       }
       return circuit;
   vector<int> eulerCircuit(){
       if(!e)return vector<int>();
       return eulerCircuit(findFirst());
   }
};
```

## 5.7 tarjan\_bridges\_articulation\_points

```
int n;
vector<vector<int>> adi:
vector<bool> visited;
vector<int> tin, low;
vector<pair<int,int>> bridge;
vector<int> cutpoint;
int timer;
void IS_BRIDGE(int v,int to) {
    bridge.push_back({v,to});
void dfs_bridge(int v, int p = -1) {
   visited[v] = true;
   tin[v] = low[v] = timer++;
   for (int to : adj[v]) {
       if (to == p) continue;
       if (visited[to]) {
           low[v] = min(low[v], tin[to]);
       } else {
           dfs_bridge(to, v);
           low[v] = min(low[v], low[to]);
           if (low[to] > tin[v])
               IS_BRIDGE(v, to);
       }
   }
}
void find_bridges() {
   timer = 0;
   visited.assign(n, false);
   tin.assign(n, -1);
   low.assign(n, -1);
   for (int i = 0; i < n; ++i) {</pre>
       if (!visited[i])
           dfs_bridge(i);
}
```

```
void IS_CUTPOINT(int v) {
    cutpoint.push_back(v);
void dfs_points(int v, int p = -1) {
   visited[v] = true;
    tin[v] = low[v] = timer++;
   int children=0;
   for (int to : adj[v]) {
       if (to == p) continue;
       if (visited[to]) {
           low[v] = min(low[v], tin[to]);
       } else {
           dfs_points(to, v);
           low[v] = min(low[v], low[to]);
           if (low[to] >= tin[v] && p!=-1)
               IS_CUTPOINT(v);
           ++children;
       }
    if(p == -1 \&\& children > 1)
       IS_CUTPOINT(v);
}
void find_cutpoints() {
   timer = 0;
   visited.assign(n, false);
   tin.assign(n, -1);
   low.assign(n, -1);
    for (int i = 0; i < n; ++i) {</pre>
       if (!visited[i])
           dfs_points(i);
   }
}
```

# 6 Geometry

#### 6.1 convex\_hull

```
#include<bits/stdc++.h>
using namespace std;
struct pt {
   double x, y;
    pt(double x=0, double y=0): x(x),y(y) {}
   bool operator == (const pt &rhs) const {
       return (x == rhs.x && y == rhs.y);
   }
   bool operator < (const pt &rhs) const {</pre>
       return y < rhs.y || (y==rhs.y && x < rhs.x);</pre>
   }
   bool operator > (const pt &rhs) const {
       return y > rhs.y || (y==rhs.y && x > rhs.x);
   }
};
double area(const vector<pt> &poly) {
   int n = static_cast<int>(poly.size());
   double area = 0;
   for(int i=0;i<n;++i) {</pre>
       pt p = i ? poly[i-1] :poly.back();
       pt q = poly[i];
       area += (p.x - q.x) * (p.y - q.y) ;
```

```
area = fabs(area)/2;
   return area ;
}
int orientation(pt a, pt b, pt c) {
   double v = a.x*(b.y-c.y)+
               b.x*(c.y-a.y)+c.x*(a.y-b.y);
   if (v < 0) return -1; // clockwise
   if (v > 0) return +1; // counter-clockwise
   return 0;
}
bool cw(
   pt a, pt b, pt c, bool include_collinear=false) {
   int o = orientation(a, b, c);
   return o < 0 || (include_collinear && o == 0);</pre>
bool collinear(pt a, pt b, pt c) {
   return orientation(a, b, c) == 0;
// Returns square of distance between point a and b
long double square_dist(pt a, pt b) {
   return (a.x-b.x)*111*(a.x-b.x)
       + (a.y-b.y)*1ll*(a.y-b.y);
}
// Returns points in clokwise order with a[0] as
// left lowermost point(Minimum point)
void convex_hull(
   vector<pt>& a, bool include_collinear = false) {
   pt p0 = *min_element(a.begin(), a.end(),
       [](pt a,pt b) {
       return make_pair(a.y, a.x)
               < make_pair(b.y, b.x);
   auto square_dist_from_p0 = [&p0](pt& a){
       return square_dist(p0,a);
   sort(a.begin(), a.end(), [&p0](
       const pt% a, const pt% b) {
       int o = orientation(p0, a, b);
       if (o == 0)
           return square_dist_from_p0(a)
               < square_dist_from_p0(b);
       return o < 0;</pre>
   });
   if (include_collinear) {
       int i = (int)a.size()-1;
       while (i >= 0 &&
           collinear(p0, a[i], a.back())) i--;
       reverse(a.begin()+i+1, a.end());
   }
   vector<pt> st;
   for (int i = 0; i < (int)a.size(); i++) {</pre>
       while (st.size() > 1 && !cw(st[st.size()-2],
           st.back(), a[i], include_collinear))
           st.pop_back();
       st.push_back(a[i]);
   }
   a = st;
}
```

```
// poly: Contains points of polygon in counter
// clockwise order, with poly[0] as lower
// leftmost point(minimum point) and top is the index
// of top rightmost point(maximum point).
// Min/Max are defined by comparator operator
// defined for points.
// It returns 1: Point outside, 0: Point in boundary,
// -1: Point inside.
int pointVsConvexPolygon(
   pt &point, vector<pt> &poly, int top) {
   if(point < poly[0] || point > poly[top]) return 1;
   int o = orientation(point, poly[top], poly[0]);
   if(o == 0) {
       if(point == poly[0] || point == poly[top])
            return 0;
       return (top == 1 || top+1==poly.size())
           ? 0 : -1;
   } else if(o < 0) {</pre>
       auto itLeft = upper_bound(
           poly.rbegin(), poly.rend() - top-1, point);
       return orientation((itLeft == poly.rbegin() ?
           poly[0]:itLeft[-1]), itLeft[0], point);
   } else {
       auto itRight = lower_bound(poly.begin()+1,
                      poly.begin()+top,point);
       return orientation(point,
           itRight[0], itRight[-1]);
   }
}
// a and b represent direction:
// Returns 1 if direction is ccw, 0 is coolinear
// and -1 is direction is cw (clockwise).
int ccw(const pt &a, const pt&b) {
   long double ans = (long double)a.x*b.y
                      - (long double)a.y*b.x;
   if(ans < 0) return -1;</pre>
   return (ans > 0);
}
// Maximum distance (squared) between
// given sets of points
// in O(N) or O(N*log(N))
// (first make them a convex polygon)
long double maxSquareDist(vector<pt> &poly) {
   int n = static_cast<int>(poly.size());
   long double res = 0;
   for(int i = 0, j = n < 2 ? 0 : 1; <math>i < j; ++i)
       for(;; j = (j+1)%n) {
           res = max(res, square_dist(
              poly[i], poly[j]));
           pt dir1 = pt(poly[i+1].x-poly[i].x,
               poly[i+1].y-poly[i].y);
           pt dir2 = pt(poly[(j+1)%n].x-poly[j].x,
               poly[(j+1)%n].y-poly[j].y);
           if(ccw(dir1, dir2) <= 0) break;</pre>
       }
   return res;
}
```

#### 6.2 3d

```
using 11 = long long;
```

```
using ld = long double;
using uint = unsigned int;
template<typename T>
using pair2 = pair<T, T>;
using pii = pair<int, int>;
using pli = pair<ll, int>;
using pll = pair<ll, 11>;
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
const ld eps = 1e-8;
bool eq(ld x, ld y) {
       return fabsl(x - y) < eps;</pre>
bool ls(ld x, ld y) {
       return x < y && !eq(x, y);
bool lseq(ld x, ld y) {
       return x < y \mid \mid eq(x, y);
}
ld readLD() {
       int x:
       scanf("%d", &x);
       return x;
struct Point {
       ld x, y, z;
       Point() : x(), y(), z() {}
       Point(ld _x, ld _y, ld _z) : x(_x), y(_y),
           z(_z) \{ \}
       void scan() {
              x = readLD();
              y = readLD();
               z = readLD();
       }
       Point operator + (const Point &a) const {
              return Point(x + a.x, y + a.y, z + a.z);
       }
       Point operator - (const Point &a) const {
              return Point(x - a.x, y - a.y, z - a.z);
       }
       Point operator * (const ld &k) const {
              return Point(x * k, y * k, z * k);
       }
       Point operator / (const ld &k) const {
               return Point(x / k, y / k, z / k);
       ld operator % (const Point &a) const {
              return x * a.x + y * a.y + z * a.z;
       }
       Point operator * (const Point &a) const {
              return Point(
                      y * a.z - z * a.y,
                      z * a.x - x * a.z,
                      x * a.y - y * a.x
                      );
       }
       ld sqrLen() const {
```

```
return *this % *this;
       }
       ld len() const {
              return sqrtl(sqrLen());
       }
       Point norm() const {
              return *this / len();
};
ld ANS;
//triangle contains 4 points, 4th point is a copy of 1st
Point A[4], B[4];
// P lies on plane, n is perpendicular, return A' such
// that AA' is parallel plane,
// PA' is perpendicular
Point getHToPlane(Point P, Point A, Point n) {
       n = n.norm();
       return P + n * ((A - P) \% n);
}
// Checks if point P is in traingle t
bool inTriang(Point P, Point* t) {
       1d S = 0;
       S += ((t[1] - t[0]) * (t[2] - t[0])).len();
       for (int i = 0; i < 3; i++)</pre>
              S = ((t[i] - P) * (t[i + 1] - P)).len();
       return eq(S, 0);
// Assuming A,B,C are on same line,
// it finds if C is between B
bool onSegm(Point A, Point B, Point C) {
       return lseq((A - B) % (C - B), 0);
}
//A is a point on line, a is direction of line, B is
// point on plane,
//b is normal to plane, l is used to store result in
// case intersection exists
bool intersectLinePlane(Point A, Point a, Point B,
    Point b, Point &I) {
       if (eq(a % b, 0)) return false;
       1d t = ((B - A) \% b) / (a \% b);
       I = A + a * t;
       return true;
//A is point on line, a is direction of line
//returns projection of P on line
Point getHToLine(Point P, Point A, Point a) {
       a = a.norm();
       return A + a * ((P - A) % a);
//get minimum distance of A from PQ
ld getPointSegmDist(Point A, Point P, Point Q) {
       Point H = getHToLine(A, P, Q - P);
       if (onSegm(P, H, Q)) return (A - H).len();
       return min((A - P).len(), (A - Q).len());
}
11
ld getSegmDist(Point A, Point B, Point C, Point D) {
       ld res = min(
              min(getPointSegmDist(A, C, D),
                      getPointSegmDist(B, C, D)),
              min(getPointSegmDist(C, A, B),
                      getPointSegmDist(D, A, B)));
       Point n = (B - A) * (D - C);
       if (eq(n.len(), 0)) return res;
```

#### 6.3 lichao

```
// Important : Here range l,r denotes [l,r). With this
    a bug is avoided which is if we take [1,r] then
    when both 1 and r are negative the update [1,mid]
    can result in infinite
             recursion. E.g: l = -7, r = -6. mid =
    (1+r)/2 = -6 so [1,mid] = [-7,-6], resulting in
    infinite recursion.
typedef long long 11;
struct line {
   11 m, c;
   11 operator()(11 x) { return m * x + c; }
};
class Lichao {
   vector<line> lc_tree;
public:
   Lichao(int N) {
       lc_tree = vector<line>(N << 1, { 0, -(11)(1e18)</pre>
           });
   void insert(int v, int l, int r, line cur) {
       if (1 + 1 == r) {
           if (lc_tree[v](l) < cur(l)) lc_tree[v] = cur;</pre>
       }
       int mid = (1 + r) >> 1;
       int z = (mid - 1) << 1;
       if (lc_tree[v].m > cur.m) swap(lc_tree[v], cur);
       if (cur(mid) > lc_tree[v](mid)) {
           swap(lc_tree[v], cur);
           insert(v + 1, l, mid, cur);
       }
       else
           insert(v + z, mid, r, cur);
   }
   11 query(int v, int l, int r, int pt) {
                                              // Finding
        maximum value of function at x = pt
       if (1 + 1 == r) return lc_tree[v](pt);
       int mid = (1 + r) >> 1;
       int z = (mid - 1) << 1;</pre>
       if (pt <= mid) return max(lc_tree[v](pt),</pre>
           query(v + 1, 1, mid, pt));
       else return max(lc_tree[v](pt), query(v + z,
           mid, r, pt));
   }
};
```

### $7 \quad STL$

## 7.1 pbds

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;

#define ordered_set tree<int, null_type, less<int>,\
    rb_tree_tag, tree_order_statistics_node_update>

// strict less than is recommonded to avoid problems
// with equality
// order_of_key(T key):number of elements less than key
// find_by_order(int): gives the 0 based index elem
```

## 7.2 pragmas

```
#pragma GCC optimize("03,unroll-loops")
#pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt")
```

#### 7.3 random

# 8 Theory

#### 8.1 Taylor function approximation

```
y_{n+1} = y_n + [A(x) - g(y)/g'(y_n)]
```

#### 8.2 Pentagonal Theorem

$$\prod_{n=1}^{\infty} (1 - x^n) = \sum_{k=-\infty}^{\infty} (-1)^k x^{k(3k-1)/2}$$
$$= 1 + \sum_{k=1}^{\infty} (-1)^k \left( x^{k(3k+1)/2} + x^{k(3k-1)/2} \right)$$

## 8.3 Arithmetic Polynomial Evaluation

```
let degree(p(x)) = n;
\exists g(x) \ with \ d(g(x)) = n + 1
such \ that \ e^x g(x) = \sum_{i=1}^{\infty} (p(i)x^i/i!)
```

## 8.4 Lagrange Theorem

$$let f(g(x)) = x, f(0) = g(0) = 0,$$
  
$$f'(0) = g'(0) = 1;$$

$$[x^n]H(f(x)) = [x^{n-1}]H'(x)/((g(x)/x)^n)$$

# 8.5 Chirp Z Transform

$$ij = {}^{i+j}C_2 - {}^{i}C_2 - {}^{j}C_2$$

## 8.6 Mobius Transform

$$\mu(p^k) = [k == 0] - [k == 1]$$
 
$$\sum_{d|n} \mu(d) = [n == 1]$$

## 8.7 Xor Convolution

$$b_j = \sum a_i (-1)^{bitcount(i\&j)}$$
  
inverse is the same

#### 8.8 Or Convolution

$$b_j = \sum a_i [i \& j == i]$$

## 8.9 And Convolution

$$b_j = \sum a_i[i|j == i]$$

## 8.10 GCD Convolution

$$b_j = \sum_{j|i} a_i$$
; inverse: reverse of code

## 8.11 LCM Convolution

$$b_j = \sum_{i|j} a_j$$
; inverse: reverse of code