Actuarial symbols of life contingencies and financial mathematics*

David Beauchemin david.beauchemin.5@ulaval.ca

Vincent Goulet[†] vincent.goulet@act.ulaval.ca

June 13, 2019

Abstract

The package actuarialsymbol provides facilities to compose actuarial symbols of life contingencies and financial mathematics characterized by subscripts and superscripts on both sides of a principal symbol. The package also features commands to easily and consistently position precedence numbers above or below statuses in symbols for multiple lives contracts.

Since actuarial notation can get quite involved, the package defines a number of shortcut macros to ease entry of the most common elements. Appendix A lists the commands to typeset a large selection of life contingencies symbols.

Contents

1	Intr	oduction	2
2	For	the impatient	4
3	Pacl	kage features	4
	3.1	Actuarial symbol	4
	3.2	Two-letter principal symbols	6
	3.3	Precedence numbers	6

^{*}This document corresponds to actuarial symbol v1.1, dated 2019/06/13.

[†]École d'actuariat, Université Laval

4	Sho	rtcuts		8
	4.1	Basic	symbols of life tables, insurance and annuities	8
	4.2	Symb	ols for premiums, reserves and paid-up insurance	10
	4.3	Auxili	iary symbols	10
	4.4	Symb	ols for varying benefit insurance and annuities	11
	4.5	First,	second and third precedence	11
5	Pacl	kage op	otions	13
A	Con	nprehe	nsive life contingencies symbol list	14
В	Imp	lement	tation	27
	B.1	Requi	red packages	27
	B.2	Packa	ge options	27
	B.3	Actua	rial symbol	27
		B.3.1	User level and parsing commands	27
		B.3.2	Symbol construction	28
		B.3.3	Shortcuts for basic symbols of life tables, insurance	
			and annuities	30
		B.3.4	Shortcuts for premiums, reserves and paid-up insur-	
			ance	31
		B.3.5	Shortcuts for auxiliary symbols	31
	B.4	Two-le	etter symbols	32
	B.5	Preced	dence numbers	32
		B.5.1	User level lengths and commands	33
		B.5.2	Number and status positioning	33
		B.5.3	Shortcuts and aliases	34
Re	eferei	nces		36
Ve	rsior	n histor	У	36

1 Introduction

Actuaries denote various quantities of life contingencies like present values of life insurances and life annuities, annual premiums, or reserves using a whole array of symbols. The highly descriptive, yet compact, notation was standardized as far back as in 1898 (Wolthuis, 2004). Figure 1 shows a creative use of the notation by the graduating class of 1972 in Actuarial Science at Université Laval.

Figure 1: "Actuariat" (French for Actuarial Science) written using actuarial symbols on the 1972 graduating class mosaic at Université Laval

Bowers et al. (1997, Appendix 4) offer an excellent overview of the composition rules for symbols of actuarial functions. In a nutshell, a principal symbol, say *S*, is combined with auxiliary symbols positioned in subscript or in superscript, to the left or to the right. Schematically, we thus have:

$$\begin{array}{c|c}
\hline
\Pi & S & \hline
\hline
\Pi & S & \hline
\hline
\end{array}$$
(1)

The principal symbol is in general a single letter. The letter may be "accented" with a bar (\bar{A}) , double dots (\ddot{a}) or a circle (\mathring{e}) . When the principal symbol consists of two letters, they are grouped between parentheses, as in (IA) or $(D\bar{A})$. Most commonly, there are alphanumeric statuses in the lower-right position $\boxed{\rm III}$. Numerals can be placed above or below the individual statuses to show the order of failure; we will refer to these numerals as *precedence numbers*. Otherwise, auxiliary symbols appear lower-left $\boxed{\rm II}$, upper-left $\boxed{\rm II}$ and upper-right $\boxed{\rm IV}$, in that order of frequency.

Symbols for benefit premiums (P), reserves (V) and amount of reduced paid-up insurance (W), are combined with benefit symbols unless the benefit is a level unit insurance payable at the end of the year of death. In such cases, we have the following symbol structure (replace P by V or W as needed):

$$\begin{array}{c|c}
\hline
II & P & \hline
IV & (S & \hline
III)
\end{array}$$
(2)

Perhaps the most commonly used auxiliary symbol not readily available in LATEX is the "angle" denoting a duration n, as in \overline{n} . The package actuarial angle (Goulet, 2017) provides commands to create this symbol, as

well as an overhead angle bracket¹ (or "roof") used to emphasize the joint status when ambiguity is possible: $\langle xy \rangle$. This package is imported at load time by actuarial symbol.

The package actuarialsymbol provides a generic command to position all subscripts and superscripts easily and consistently around a principal symbol; a command to create two-letter symbols; and two commands to position precedence numbers above and below statuses. Since entering actuarial symbols can get quite involved, the package also defines a number of shortcuts to create the most common actuarial functions of financial mathematics and life contingencies.

2 For the impatient

The hurried reader may jump to section 4 for tables of shortcut macros defined by the package, and to Appendix A for a comprehensive list of symbols of life contingencies along with the LATEX code to compose them with actuarial symbol loaded. That said, in our highly biased view, it remains worth reading along the fine documentation below.

3 Package features

This section describes the generic commands provided by the package to compose actuarial symbols. On a daily basis, one should use the shortcuts of section 4 to ease entry of symbols.

3.1 Actuarial symbol

\actsymb

The generic command \actsymb typesets a principal symbol with surrounding subscripts and superscripts. Its syntax is somewhat unusual for LaTeX, but it serves well the natural order of the building blocks of a symbol and their relative prevalence:

$$\actsymb[\langle ll \rangle][\langle ul \rangle]\{\langle symbol \rangle\}\{\langle lr \rangle\}[\langle ur \rangle]$$

Above, $\langle ll \rangle$ identifies the auxiliary symbol in the lower left subscript position $\boxed{\mathbb{I}}$ (following the notation in the schematic representation (1)); $\langle ul \rangle$ is the upper left superscript $\boxed{\mathbb{II}}$; $\langle symbol \rangle$ is the principal symbol S; $\langle lr \rangle$ is the lower right subscript $\boxed{\mathbb{III}}$; $\langle ur \rangle$ is the upper right superscript

¹Starting with version 2.0 dated 2017/04/10.

IV. The principal symbol and the right subscript are required, the other arguments are optional.

I	$\actsymb{A}{x}$	A_x
Ì	\actsymb[n]{A}{x}	$_{n}A_{x}$
Ì	\actsymb[n][2]{A}{x}	$_{n}^{2}A_{x}$
I	\actsymb[n][2]{A}{x}[(m)]	$_{n}^{2}A_{x}^{(m)}$

The command actually supports one more optional argument, for composing symbols for premiums, reserves and paid-up insurance. The extended command

$$\actsymbol(ll)[\langle ul\rangle][\langle P\rangle]\{\langle symbol\rangle\}\{\langle lr\rangle\}[\langle ur\rangle]$$

puts symbol $\langle P \rangle$ outside the parentheses in the schematic representation (2).

\actsymb[][][P]{\bar{A}}}{x:\angln}	$P(\bar{A}_{x:\overline{n} })$
\actsymb[k][][V]{\bar{A}}{x}[\{1\}]	$_{k}V^{\{1\}}(\bar{A}_{x})$
\actsymb[k][][\bar{W}]{\bar{A}}{x}	$_{k}ar{W}(ar{A}_{x})$

Remark. TEX adjusts the position of a subscript downward when a superscript is present:

$$A_x A_x^2$$
.

The package maintains this behaviour. Therefore, entering the symbols above using the standard operators ^ and _ or with \actsymb yields the same result.

A_x \quad A_x^2
$$A_x = A_x^2$$
 \actsymb{A}{x} \quad \actsymb{A}{x}[2]
$$A_x = A_x^2$$

Furthermore, the package ensures that the left and right subscripts, when both present, are at the same level, something common ad hoc constructions do not provide.

In symbols for premiums, reserves and paid-up insurance, subscripts and superscripts are aligned only around symbol $\langle P \rangle$. Authors who would prefer a uniform subscript position *throughout their document* can load the package subdepth (Robertson, 2007).

Two-letter principal symbols

\twoletsymb Entering two-letter principal symbols like (DA) as (DA) results in letters that are too distant from one another: (DA). To unify presentation, the package provides the command

```
\twoletsymb[\langle length \rangle] \{\langle symbol\_1 \rangle\} \{\langle symbol\_2 \rangle\}
```

to group $\langle symbol_1 \rangle$ and $\langle symbol_2 \rangle$ between parentheses with kerning² reduced by length \twoletkern (see below). One can also reduce spacing by $\langle length \rangle$ for a specific symbol.

```
\twoletsymb{\bar{D}}{\bar{A}}
                                      (\bar{D}\bar{A})
\twoletsymb{I}{\ddot{a}}
                                      (Iä)
\t \ \twoletsymb[0.8pt]{I}{\ddot{a}} (I\ddot{a})
```

We expect authors to use \twoletsymb to define commands, not directly in equations. The package already defines a number of shortcuts for the main two-letter actuarial symbols; see section 4.

\twoletkern

The standard kerning between mathematical symbols defined with \twoletsymb is reduced by the length \twoletkern, by default 0.1em. This value can be changed as usual using \setlength.

Precedence numbers

\nthtop Precedence numbers appear above or below individual statuses in the \nthtop* right subscript | III | of a symbol. The commands

```
\nthtop[\langle length \rangle] \{\langle number \rangle\} \{\langle status \rangle\}
```

put a precedence $\langle number \rangle$ above a $\langle status \rangle$, smashed so that the apparent height of the status is its normal height. With \nthtop, the spacing between the precedence number and the status is a constant \nthtopsep (see below). This can result in precedence numbers placed at different heights if one status contains a horizontal rule.

```
\actsymb{A}{\nthtop{1}{x}:\angln}
\actsymb{A}{x:\nthtop{1}{\angln}}
\actsymb{A}{\nthtop{1}{x}y:\nthtop{2}{\angln}}
```

²Spacing adjustment between the characters.

Conversely, \nthtop* always leaves enough space \nthtopskip for intervening horizontal rules, resulting in vertically aligned precedence numbers.

The optional argument $\langle length \rangle$ changes the default spacing for one symbol. The package also defines shortcuts for first, second and third top precedence; see section 4.

\nthbottom \nthbottom* In the same vein as the above two commands,

```
\nthbottom[\langle length\rangle] \{\langle number\rangle\} \{\langle status\rangle\} \\ \\ nthbottom*[\langle length\rangle] \{\langle number\rangle\} \{\langle status\rangle\} \\
```

put a precedence $\langle number \rangle$ below a $\langle status \rangle$. With \nthbottom the spacing between the status and the number is a constant \nthbottomsep, whereas with \nthbottom* enough spacing \nthbottomskip is left to bottom align the precedence numbers. The * variant is most useful in cases involving more than one bottom precedence numbers and statuses with descenders.

```
\label{eq:actsymb} $$ \left( \frac{3}{x} \right) $$ \operatorname{A}_{xyz}^3 $$ \operatorname{A}_
```

The optional argument $\langle length \rangle$ changes the default spacing for one symbol. The package also defines shortcuts for first, second and third bottom precedence; see section 4.

Remark. The fact that top precedence numbers have zero height means they will clash with a right superscript $|\overline{IV}|$:

```
\actsymb{A}{\nthtop{1}{x}:\ngln}[(m)] A_{x:\overline{m}}^{(m)}
```

In such rare circumstances, one needs to insert a *strut* (an invisible vertical rule) in the subscript to push it downward as needed:

This remark also applies to bottom precedence numbers in inline formulas or multiline equations.

\nthtopsep
\nthtopskip
\nthbottomsep
\nthbottomskip

The constant spacing between a top precedence number and the status underneath when using \nthtop is \nthtopsep, by default 0.18em. The constant height of top precedence numbers when using \nthtop* is achieved by setting the baseline skip to \nthtopskip, by default 0.64em.

Similarly, the constant spacing between a bottom precedence number and the status above when using \nthbottom is \nthbottomsep, by default 0.18em, and the constant height of bottom precedence numbers when using \nthbottom* is achieved by setting the baseline skip to \nthbottomskip, by default 0.82em.

These values can be changed as usual using \setlength.

4 Shortcuts

Composing actuarial symbols from scratch using \actsymb can easily get quite involved. For this reason, the package defines a large number of shortcut macros to ease entry of the most common symbols. We encourage authors to define their own shortcuts for cases we did not consider. The package provides powerful facilities to define shortcuts.

4.1 Basic symbols of life tables, insurance and annuities

Table 1 lists shortcuts to compose complete symbols of life tables and benefits of insurance and annuities. For space considerations only the mandatory arguments are given, but it should be noted that all commands of Table 1 accept the optional arguments $\langle ll \rangle$, $\langle ul \rangle$ and $\langle ur \rangle$ of \actsymb.

One will note that shortcuts for insurance benefits come in two variants: one for the benefit payable at the end of the year of death (standard shortcut) and one for the benefit payable at the time of death (* variant). Shortcuts for annuity benefits have three variants: payable at the end of the period (standard), continuously (* variant) and at the beginning of the period (** variant).

\@actinssc \@actannsc \@actothersc One may define additional shortcut macros similar to those of Table 1 using the internal commands

```
\ensuremath{\mbox{\mbol}}\ 
 \ensuremath{\mbox{\mbol}}\ 
 \ensuremath{\mbox{\mbol}}\
```

Table 1: Shortcuts for life table, insurance and annuity symbols. All commands accept the optional arguments $\langle ll \rangle$, $\langle ul \rangle$ and $\langle ur \rangle$ of \actsymb.

Definition	Example	Output
$\ln \langle age \rangle$	\1x{x}	ℓ_x
$Lx{\langle age \rangle}$	$\Lx\{x\}$	$\mathscr{L}_{x}^{\dagger}$
$\dx{\langle age \rangle}$	$\dx[n]{x}$	$_nd_x$
$\Dx{\langle age \rangle}$	$Dx[n]{x}$	$_{n}\mathfrak{D}_{x}^{\dagger}$
$\px{\langle age \rangle}$	\px[t]{x}	$_{t}p_{x}$
$\qx{\langle age \rangle}$	$\qx[t]{x}$	tq_x
\eringx $\{\langle lr angle\}$	\eringx{x:\angln}	$\mathring{e}_{x:\overline{n} }$
$\lambda \{\langle lr \rangle\}$	\Ax{x:\angln}	$A_{x:\overline{n} }$
$\lambda \times \{\langle lr \rangle\}$	\Ax*{x:\angln}	$ar{A}_{x:\overline{n} }$
$\Ex\{\langle lr \rangle\}$	\Ex[n]{x}	$_{n}E_{x}$
$\{\langle lr \rangle\}$	\ax{x:\angln}	$a_{x:\overline{n} }$
$\ax*{\langle lr angle}$	\ax*{x:\angln}	$\bar{a}_{x:\overline{n} }$
$\ax**{\langle lr angle}$	\ax**{x:\angln}	$\ddot{a}_{x:\overline{n} }$
$\st {\langle lr \rangle}$	\sx{x:\angln}	$s_{x:\overline{n} }$
$\st (\langle lr \rangle)$	\sx*{x:\angln}	$\bar{s}_{x:\overline{n} }$
$\sx**{\langle lr \rangle}$	\sx**{x:\angln}	$\ddot{s}_{x:\overline{n} }$
\aringx{ $\langle lr \rangle$ }	\aringx{x:\angln}	$a_{x:\overline{n} }$

[†] Calligraphic letters obtained using \mathcal. These specific versions of \mathcal{L} and \mathcal{D} require the package rsfso (Sharpe, 2015). Standard versions are \mathcal{L} and \mathcal{D} .

Command \@actinssc automatically provides the two shortcuts for insurance benefits, command \@actannsc provides the three shortcuts for annuity benefits and command \@actothersc provides a single shortcut for $\langle symbol \rangle$.

For example, the package defines the shortcut \px with the equivalent of

\newcommand{\px}{\@actothersc{p}}}

shortcuts \Ax and \Ax* with

and shortcuts \ax, \ax* and \ax** with

```
\newcommand{\ax}{\@actannsc{a}}
```

Remark. When used in the preamble of a document, the above commands need to be protected by a \makeatletter ... \makeatother pair since they make use of the reserved character @. Therefore, to define shortcuts, say, \Bx and \Bx* to the imaginary benefits B and \bar{B} , one would write in the preamble

```
\makeatletter
\newcommand{\Bx}{\@actinssc{B}}
\makeatother
```

4.2 Symbols for premiums, reserves and paid-up insurance

Symbols for premiums, reserves and paid-up insurance come in two main variants: without an explicit benefit between parentheses for insurances payable at the end of the year of death, and with the type of benefit specified for all other insurances and annuities.

Table 2 lists two sets of shortcuts to compose symbols for premiums, reserves and paid-up insurance. Shortcuts from the first set take in mandatory argument the content of the $\langle lr \rangle$ subscript of actuarial symbols. Those from the second set require a complete benefit symbol in argument. One may use the shortcuts of Table 1 to this effect. Again, only the mandatory arguments are given in the table, but all commands accept the optional arguments $\langle ll \rangle$, $\langle ul \rangle$ and $\langle ur \rangle$ of \actsymb.

\@actpremres

The package eases definition of additional shortcut macros similar to the second set of Table 2 using the internal command

```
\ensuremath{\mbox{\tt Qactpremres}} \langle P \rangle
```

It defines shortcuts for discrete (default) or continuous (* variant) premiums, reserves and paid-up insurance. For example, the package defines shortcuts \premium and \premium* with the equivalent of

```
\newcommand{\premium}{\@actpremres{P}}
```

The remark at the end of section 4.1 also applies here.

4.3 Auxiliary symbols

Table 3 lists shortcuts for a few common auxiliary symbols used in the lower right subscript III.

Table 2: Shortcuts for premiums, reserves and paid-up insurance. All commands accept the optional arguments $\langle ll \rangle$, $\langle ul \rangle$ and $\langle ur \rangle$ of \actsymb.

Definition	Example	Output
$\Pr\{\langle lr \rangle\}$	\Px[h]{x}	$_{h}P_{x}$
$\forall x \{\langle lr \rangle\}$	$Vx[k]{x}$	$_{k}V_{x}$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	\Wx[k]{x}	$_kW_x$
$\operatorname{premium}\{\langle \mathit{benefit}\rangle\}$	\premium[t]{\Ax*{x}}	$_tP(ar{A}_x)$
$\operatorname{premium} \{\langle \mathit{benefit} \rangle\}$	\premium*[t]{\Ax*{x:\angln}}	$_{t}ar{P}(ar{A}_{x:\overline{n} })$
$\reserve{\langle benefit \rangle}$	\reserve[t]{\ax**{x}}	$_{t}V(\ddot{a}_{x})$
$\reserve*{\langle benefit \rangle}$	\reserve*[t]{\ax*{x}}	$_tar{V}(ar{a}_x)$
$\displaystyle \begin{array}{l} \ \ \ \ \ \ \ \ \ \ \ \ \ \end{array} $	$\left[k]{\left(x^{x}\right)}$	$_kW(\bar{A}_x)$
\paidup*{ $\langle benefit \rangle$ }	<pre>\paidup*[k][h]{\Ax*{x}}</pre>	$_{k}^{h}\bar{W}(\bar{A}_{x})$

4.4 Symbols for varying benefit insurance and annuities

Table 4 lists shortcuts for common two-letter symbols of varying benefit insurance and annuities. These shortcuts can be used as principal symbol in \actsymb or in the commands of Table 1.

\@twoletinssc
\@twoletannsc

One may define additional shortcuts for two-letter insurance and annuity benefit symbols using the internal commands

```
\enskip \label{eq:continuous} $$ \enskip \en
```

These commands are similar to those of section 4.1: \@twoletinssc provides two shortcuts (standard and * variant), whereas \@twoletannsc provides three (standard, * and ** variants).

4.5 First, second and third precedence

Table 5 lists shortcuts and aliases for the first, second and third precedence numbers, top and bottom. These shortcuts can be used in auxiliary symbols in \actsymb or in the commands of Table 1.

Table 3: Shortcuts for auxiliary symbols

	J J	
Definition	Example	Output
$\term{\langle age \rangle}{\langle duration \rangle}$	\Ax{\term{x}{n}}	$A^1_{x:\overline{n} }$
\termxn	\Ax{\termxn}	$A^1_{x:\overline{n} }$
$\displaystyle \operatorname{pureendow} \{\langle age \rangle\} \{\langle duration \rangle\}$	$\Ax{\scriptstyle x{\scriptstyle x}}$	$A_{x:\overline{n} }$
\pureendowxn	\Ax{\pureendowxn}	$A_{x:\overline{n} }$
$\ensuremath{\mbox{\mbox{\mbox{\sim}}}} {\ensuremath{\mbox{\mbox{\mbox{\sim}}}}} {\ensuremath{\mbox{\mbox{\sim}}}} $	$\ax**{\endow{x}{n}}$	$\ddot{a}_{x:\overline{n} }$
\endowxn	\ax**{\endowxn}	$\ddot{a}_{x:\overline{n} }$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	\Ax*{\joint{xy}z}	$ar{A}_{\overline{x}\overline{y}z}$

[†] Alias for \overline.

Table 4: Shortcuts for varying benefit insurance and annuities

Definition	Output	Definition	Output
\IA	(IA)	\DA	(DA)
\IA*	$(Iar{A})$	\DA*	$(D\bar{A})$
\IbA	$(\bar{I}A)$	\DbA	$(\bar{D}A)$
\IbA*	$(ar{I}ar{A})$	\DbA*	$(\bar{D}\bar{A})$
\ImA	$(I^{(m)}A)$	\DmA	$(D^{(m)}A)$
\ImA*	$(I^{(m)}\bar{A})$	\DmA*	$(D^{(m)}\bar{A})$
\ Ia	(Ia)	\Da	(Da)
\Ia*	$(I\bar{a})$	\Da*	$(D\bar{a})$
\Ia**	$(I\ddot{a})$	\Da**	$(D\ddot{a})$
\Is	(Is)	\Ds	(Ds)
\Is*	$(I\bar{s})$	\Ds*	$(D\bar{s})$
\Is**	$(I\ddot{s})$	\Ds**	$(D\ddot{s})$

Table 5: Shortcuts and aliases for precedence numbers

Definition	Alias	Output
$firsttop{\langle status \rangle}$	$\left\langle itop\{\left\langle status\right\rangle \right\rangle$	$A^1_{x:\overline{n} }$
$\scalebox{secondtop}{\langle status \rangle}$	$\left\langle iitop\{\left\langle status\right\rangle \right\rangle$	A_{xyz}^{2}
$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\langle iiitop{\langle status \rangle}$	A_{xyz}^{3}
$firsttop*{\langle status \rangle}$	$\left\langle itop*{\left\langle status\right\rangle }\right\rangle$	$A^1_{x:\overline{n} }$
$\sc \sc \sc \sc \sc \sc \sc \sc \sc \sc $	$\int {status}$	A_{xyz}^{2}
$ thirdtop*{\langle status \rangle}$	$\int {\langle status \rangle}$	A_{xyz}^{3}
$\verb \firstbottom { } \langle status \rangle \} $	$\verb \ibottom{ } \langle status \rangle \} $	A_{xyz}
$\verb \secondbottom { } \langle status \rangle $	$\left\langle iibottom\left\langle status\right\rangle \right\rangle$	A_{xyz}^{1}
$\verb \thirdbottom{ } \langle status \rangle \} $	$\verb \iiibottom{ } \langle status \rangle \} $	A_{xyz}^2
$\verb \firstbottom*{ } \langle status \rangle $	$\int {\langle status \rangle}$	A_{xyz}
$\verb \secondbottom* \langle status \rangle $	$\verb \iibottom*{ } \langle status \rangle $	A_{xyz}^{1}
$\verb \thirdbottom*{ } \langle status \rangle \} $	$\verb \iiibottom*{ } \langle status \rangle \} $	A_{xyz}^2

5 Package options

The package offers two options to control the placement of precedence numbers:

alignpreced always align top and bottom precedence numbers; makes \nthtop and \nthbottom equivalent to \nthtop* and \nthbottom*, respectively;

compactpreced always put precedence numbers close to the corresponding statuses; makes \nthtop* and \nthbottom* equivalent to \nthtop and \nthbottom, respectively.

Option alignpreced can be useful to simplify entry of uniformly positioned precedence numbers. On the other hand, option compactpreced is merely included as a complement to alignpreced. We do not recommended — nor see a reason — to use it as it basically renders inoperative commands \nthtop* and \nthbottom*.

A Comprehensive life contingencies symbol list

This appendix was inspired by Trivedi (2004). The title is a nod to the immensely useful *Comprehensive LATEX Symbol List* of Pakin (2015).

The table below contains all the life contingencies symbols listed in Appendix 3 of Bowers et al. (1997) along with the code to compose them with actuarialsymbol (and therefore actuarialangle) loaded. Often times there are various ways to obtain a symbol; we tried to always present the most compact and legible option. Not all symbols require features of actuarialsymbol.

Calligraphic letters are typeset using \mathcal. The specific versions of $\mathcal L$ and $\mathcal D$ that appear in this table require the package rsfso (Sharpe, 2015), which is *not* loaded by actuarial symbol. Standard versions of the calligraphic letters are $\mathcal L$ and $\mathcal D$. See Table 299 of Pakin (2015) for other options.

Symbol	Code to compose the symbol
а	a
a(x)	a(x)
a_x	a_x
$a_{\overline{K} }$	$\ax{\angl{K}}$
$\bar{a}_{\overline{n} }$	\ax*{\angln}
\bar{a}_{P_t}	\ax*{P_t}
$ar{a}_{\overline{T} }$	\ax*{\angl{T}}
\bar{a}_x	\ax*{x}
\bar{a}_r^h	\ax*{r}[h]
\bar{a}_{x+t}^i	$\ax*{x + t}[i]$
\bar{a}_{x+t}^r	$\ax*{x + t}[r]$
$\ddot{a}_{\overline{K+1}}$	\ax**{\angl{K + 1}}
$\ddot{a}_{x}^{(m)}$	\ax**{x}[(m)]
$\mathring{a}_{x}^{(m)}$	\aringx{x}[(m)]
$\ddot{a}_{x}^{\{m\}}$	\ax**{x}[\{m\}]
$_{j}\ddot{a}_{x}$	\ax**[j]{x}
$*\ddot{a}_{x}$	\ax**[*]{x}
$a_{x:\overline{n} }$	\ax{\endowxn}

Symbol	Code to compose the symbol
$\bar{a}_{x:\overline{n} }$	\ax*{\endowxn}
$\ddot{a}_{x:\overline{n} }$	\ax**{\endowxn}
$\ddot{a}_{x:\overline{n} }^{(m)}$	\ax**{\endowxn}[(m)]
$\mathring{a}_{x:\overline{n} }^{(m)}$	\aringx{\endowxn}[(m)]
$\ddot{a}_{x:\overline{n}}^{(m)}$ $\ddot{a}_{x:\overline{n}}^{\{m\}}$	\ax**{\endowxn}[\{m\}]
$\bar{a}_{\overline{x}:\overline{n} }$	\ax*{\joint\endowxn}
$2\bar{a}_{x:\overline{n} }$	\ax*[][2]{\endowxn}
$_{n }a_{x}$	\ax[n]{x}
$_{n }\bar{a}_{x}$	\ax*[n]{x}
$n \ddot{a}_x$	\ax**[n]{x}
$n \ddot{a}_x^{(m)}$	\ax**[n]{x}[(m)]
$\bar{a}_{xy z}^1$	\ax*{xy z}[1]
$\ddot{a}_{xy}^{(m)}$	\ax**{xy}[(m)]
$\ddot{a}_{xy:\overline{n} }$	\ax**{xy:\angln}
$^{2}\ddot{a}_{xy:\overline{n} }$	\ax**[][2]{xy:\angln}
$\bar{a}_{x y}$	\ax*{x y}
$\bar{a}_{\overline{x_1x_2x_3}}$	$\ax*{\joint}{x_1 x_2 x_3}}$
(aA)(x)	<pre>\twoletsymb[0.6pt]{a}{A}(x)</pre>
$(aA)_t$	$\t \$ $\t \$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$ $\$
$(aC)_t$	\twoletsymb[0.3pt]{a}{C}_t
$(aF)_t$	\twoletsymb[0.6pt]{a}{F}_t
$(aU)_t$	$\t \ensuremath{$\t$} \t \ensuremath{$\t$} \t \ensuremath{$\t$} \t \ensuremath{$\t$} \t \t \ensuremath{$\t$} \t $
(aV)(x)	\twoletsymb[0.6pt]{a}{V}(x)
$(aV)_t$	\twoletsymb[0.6pt]{a}{V}_t
A(h)	A(h)
A_t	A_t
A_x	\Ax{x}
\bar{A}_{χ}	\Ax*{x}
$A_{x}^{(m)}$	\Ax{x}[(m)]
$\bar{A}_{x}^{\mathrm{PR}}$	\Ax*{x}[\text{PR}]
$A_{x:\overline{n} }^1$	\Ax{\termxn}

Symbol	Code to compose the symbol
$A_{x:\overline{n} }$	\Ax{\endowxn}
$ar{A}_{x:\overline{n} }$	\Ax*{\endowxn}
$A_{x:\overline{n} }$	\Ax{\pureendowxn}
$_{j}A_{x}$	\Ax[j]{x}
$_*A_x$	\Ax[*]{x}
$ar{A}^1_{x:\overline{n} }$	\Ax*{\termxn}
$ ilde{A}^1_{x:\overline{n} }$	\actsymb{\tilde{A}}{\termxn}
$^{2}A_{x:\overline{n}}$	\Ax[][2]{\pureendowxn}
$^{2}A_{x:\overline{n}}^{1}$	\Ax[][2]{\termxn}
$_{m }\bar{A}_{x}$	\Ax*[m]{x}
$_{m n}\bar{A}_{x}$	$\arraycolor{Ax*[m n]{x}}$
A_{xy}	\Ax{xy}
$A_{\overline{x}\overline{y}}$	\Ax{\joint{xy}}
$A_{xy}^{(m)}$	\Ax{xy}[(m)]
\bar{A}_{xy}^{2}	\Ax*{x\iitop{y}}
\bar{A}^1_{xy}	\Ax*{\itop{x}y}
$A_{xy:\overline{n} }$	\Ax{xy:\angln}
$\bar{A}\frac{1}{xy:\bar{n} }$	\Ax*{\itop{\joint{xy}}:\angln}
${}^{2}A_{xy:\overline{n} }$	\Ax[][2]{xy:\angln}
\bar{A}_{wxy}^{2}	\Ax*{wx\iitop{y}}
$\bar{A}_{\overline{x_1x_2x_3}}$	$\Ax*{\joint{x_1 x_2 x_3}}$
$_kAS$	\actsymb[k]{\mathit{AS}}{}
$k\widehat{AS}$	\actsymb[k]{\widehat{\mathit{AS}}}{}
$(AS)_{x+h}$	$\twoletsymb[0pt]{A}{S}_{x + h}$
(AAI)	(\mathit{AAI})
β	\beta
$ar{eta}$	\bar{\beta}
$\Gamma(\alpha)$	\Gamma(\alpha)
b(u)	b(u)
b_j	b_j
b_t	b_t

Symbol	Code to compose the symbol
$b_f(t)$	b_f(t)
B_t	B_t
\hat{B}_{x+k}	$\hat{B}_{x + k}$
$\hat{B}_{x+t}^{(3)}$ $\hat{B}_{x+t}^{(j)}$	$\hat{B}_{x + t}^{(3)}$
$\hat{B}_{x+t}^{(j)}$	$\hat{B}_{x + t}^{(j)}$
$_hBP$	\actsymb[h]{\mathit{BP}}{}
С	С
c_k	c_k
\hat{c}_k	\hat{c}_k
c(t)	c(t)
C_1	C_1
C_2	C_2
C_3	C_3
C_h	C_h
$_kCV$	\actsymb[k]{\mathit{CV}}{}
$d_x^{(j)}$	\dx{x}[(j)]
$_{n}d_{x}$	\dx[n]{x}
$_{n}d_{x}^{(j)}$	\dx[n]{x}[(j)]
$_{n}d_{x}^{(au)}$	\dx[n]{x}[(\tau)]
$_tD_j$	\actsymb[t]{D}{j}
$_{k+1}D$	$\actsymb[k + 1]{D}{}$
$(DA)^1_{x:\overline{n} }$	\DA_{\termxn}
$(D\bar{A})^1_{x:\overline{n} }$	\DA*_{\termxn}
$n\mathfrak{D}_{x}$	\Dx[n]{x}
$_{n}\mathfrak{D}_{x}^{(j)}$	\Dx[n]{x}[(j)]
$_{n}\mathscr{D}_{x}^{(au)}$	\Dx[n]{x}[(\tau)]
е	e
e_{h-1}	$e_{h} - 1$
e_x	e_x
\mathring{e}_{χ}	\eringx{x}

Symbol	Code to compose the symbol
\hat{e}_k	\hat{e}_k
$\mathring{e}_{x:\overline{n} }$	\eringx{\endowxn}
e_{xy}	e_{xy}
$e_{\overline{xy}}$	e_{\joint{xy}}
E	\mathrm{E}
Е	E
E_0	E_0
$_{n}E_{x}$	\Ex[n]{x}
$(ES)_{x+h+t}$	$\twoletsymb[0.6pt]{E}{S}_{x + h + t}$
ELRA	\mathit{ELRA}
f	f
f(u,t)	f(u, t)
$f_S(s)$	f_S(s)
$F_X(x)$	$F_X(x)$
F_t	F_t
$F^{(k)}$	F^{(k)}
$F_S(s)$	$F_S(s)$
$_kF$	\actsymb[k]{F}{}
G	G
Ĝ	\hat{G}
G(b)	G(b)
G(b)	G(b)
$G(x;\alpha,\beta)$	G(x; \alpha, \beta)
h(x)	h(x)
H(r)	H(r)
$H(x; \alpha, \beta, x_0)$	H(x; \alpha, \beta, x_0)
$u(hp)_{x+t}^{(\tau)}$	\actsymb[u]{\twoletsymb{h}{p}}{x + t}[(\tau)]
$(h\mu)_{x+t}^{(j)}(u)$	$\label{twoletsymb} $$ \actsymb{\twoletsymb{h}{\mu}}{x + t}[(j)](u) $$$
i'_{k+1}	i'_{k + 1}
$\hat{\imath}_{k+1}$	$\hat{k + 1}$

Symbol	Code to compose the symbol
$\overline{i(s,s+t)}$	i(s, s + t)
I_k	I_k
I_d	I_d
$I_d(x)$	$I_d(x)$
$_{j}i_{k}$	\actsymb[j]{i}{k}
$(IA)_x$	\IA_x
$(I\bar{A})_{x}$	\IA*_x
$(\bar{I}\bar{A})_{x}$	\IbA*_x
$(I^{(m)}\bar{A})_{\chi}$	\ImA*_x
$(IA)^1_{x:\overline{n} }$	\IA_{\termxn}
J	Л
j(s, s+t, s+u)	j(s, s + t, s + u)
$_tar{k}_x$	\actsymb[t]{\bar{k}}{x}
K	K
K(x)	K(x)
K(xy)	K(xy)
$K(\overline{xy})$	<pre>K(\joint{xy})</pre>
ℓ_x	\1x{x}
$\ell_{[x]+k} \ \ell_x^{(au)}$	$\label{eq:lambda} \\ \label{eq:lambda} \\ \lab$
$\ell_x^{(au)}$	\lx{x}[(\tau)]
l(x, u)	l(x, u)
$l_f(x, u)$	$l_f(x, u)$
L	L
L_1	L_1
L_x	L_x
L(h)	L(h)
$_{t}L$	\actsymb[t]{L}{}
$_{t}L^{2}$	$\actsymb[t]{L}{}[\underline{2}]$
$_{t}L_{e}$	\actsymb[t]{L}{e}
$_{t}L_{e}^{2}$	\actsymb[t]{L}{e}[\underline{2}]

Symbol	Code to compose the symbol
$\mathcal{L}(x)$	$\mathcal{L}_{L}(x)$
$\mathscr{L}_{x}^{(au)}$	\Lx{x}[(\tau)]
m(x)	m(x)
m_{χ}	m_x
$m_x^{(j)}$	m_x^{(j)}
$m_x^{(au)}$	m_x^{(\tau)}
$m_x^{\prime(j)}$	<pre>m_x^{\prime (j)}</pre>
$M_X(t)$	\mathrm{M}_X(t)
M(x)	M(x)
n(u)	n(u)
N	N
N(t)	N(t)
p(j)	p(j)
p(x)	p(x)
p_k	p_k
$p_{[x]+r}$	\px{[x] + r}
$p^{*n}(x)$	p^{*n}(x)
$_{t}p_{x}$	\px[t]{x}
$_{t}p_{x}^{(au)}$	\px[t]{x}[(\tau)]
$_{t}p_{x}^{\prime (j)}$	\px[t]{x}[\prime (j)]
$_{t}p_{xy}$	\px[t]{xy}
$_{t}p_{\overline{xy}}$	\px[t]{\joint{xy}}
$up_{\overline{xy}+t}$	\px[u]{\joint{xy} + t}
$_{t}p_{\overline{x_{1}x_{2}x_{3}}}^{\underline{k}}$	$\px[t]{\pint{x_1 x_2}\\nthtop{k}{\joint{x_3}}}$
P(x)	P(x)
P(s,t)	P(s, t)
P_t	P_t
$^{T}P_{t}$	\actsymb[][T]{P}{t}
P^a	P^a
P_x	P_x

Symbol	Code to compose the symbol
$_{j}P_{x}$	\Px[j]{x}
$_*P_x$	\Px[*]{x}
$P_{x:\overline{n} }^{A}$	\Px{\endowxn}[A]
$P_{x:\overline{n} }$	\Px{\endowxn}
$P_{\overline{xy}}$	\Px{\joint{xy}}
$P^1_{x:\overline{n} }$	\Px{\:\termxn}
$P_{x:\overline{n} }$	\Px{\pureendowxn}
$P^{*n}(x)$	P^{*n}(x)
$_{h}P_{x}$	\Px[h]{x}
$_{h}P_{x:\overline{n} }$	\Px[h]{\endowxn}
(Pa)(x)	<pre>\twoletsymb[0.6pt]{P}{a}(x)</pre>
$(Pa)_t$	\twoletsymb[0.6pt]{P}{a}_t
$P(ar{A}_{x:\overline{n} })$	<pre>\premium{\Ax*{\endowxn}}</pre>
$P(n \ddot{a}_x)$	\premium{\ax**[n]{x}}
$P(n \bar{a}_x)$	$\displaystyle \max_{x\in [n]} x}$
$P^{(m)}(ar{A}_x)$	\premium{\Ax*{x}}[(m)]
$P^{\{m\}}(ar{A}_{\chi})$	$\operatorname{\operatorname{NY}}_{M} \operatorname{\operatorname{NY}}_{M}$
$P(\bar{A}_x^{\mathrm{PR}})$	<pre>\premium{\Ax*{x}[\text{PR}]}</pre>
$ar{P}(ar{A}_{x:\overline{n} })$	<pre>\premium*{\Ax*{\endowxn}}</pre>
$\bar{P}(\bar{A}^1_{x:\overline{n} })$	\premium*{\Ax*{\termxn}}
$ar{P}(ar{A}_{x:\overline{n} })$	<pre>\premium*{\Ax*{\pureendowxn}}</pre>
$P^{(m)}(ar{A}_{x:\overline{n} })$	<pre>\premium{\Ax*{\endowxn}}[(m)]</pre>
$P^{(m)}(ar{A}^1_{x:\overline{n} })$	\premium{\Ax*{\termxn}}[(m)]
$_{h}ar{P}(ar{A}_{x})$	\premium*[h]{\Ax*{x}}
$_{h}ar{P}(ar{A}_{x:\overline{n} })$	<pre>\premium*[h]{\Ax*{\endowxn}}</pre>
$_{h}P^{(m)}(\bar{A}_{x})$	\premium[h]{\Ax*{x}}[(m)]
$_{h}P^{(m)}(\bar{A}_{x:\overline{n} })$	\premium[h]{\Ax*{\endowxn}}[(m)]
$_{h}^{h}P^{(m)}(ar{A}_{x:\overline{n} }) \ _{h}^{h}P^{\{m\}}(ar{A}_{x:\overline{n} })$	\premium[h]{\Ax*{\endowxn}}[\{m\}]
$P(\bar{A}_{\overline{x}\overline{y}\overline{z}})$	\premium{\Ax*{\joint{xy}\iitop{\joint{z}}}}
$P(\bar{A}_{xyz}^2)$	<pre>\premium{\Ax*{\ibottom{x}\iitop{y}z}}</pre>
$P(\bar{A}_{xyz}^{2})$ $\tilde{P}_{x:\overline{n} }^{1}$	<pre>\tilde{P}_{\:\termxn}</pre>

Symbol	Code to compose the symbol
$q_{[x]+r}$	\qx{[x] + r}
$q_x^{(d)}$	\qx{x}[(d)]
$q_x^{(i)}$	\qx{x}[(i)]
$q_x^{(r)}$	\qx{x}[(r)]
$q_x^{(w)}$	\qx{x}[(w)]
$\hat{q}_{x+k}^{(j)}$	$\actsymb{ \hat{q}}{x + k}[(j)]$
q_{xy}	\qx{xy}
$_{k }q_{x}$	\qx[k]{x}
tqx	\qx[t]{x}
$_{t}q_{x}^{(j)}$	\qx[t]{x}[(j)]
$_{t}q_{x}^{(au)}$	\qx[t]{x}[(\tau)]
$_{t}q_{x}^{\prime(j)}$	\qx[t]{x}[\prime (j)]
$_{t u}q_x$	\qx[t u]{x}
$_{n}q_{xy}^{1}$	$\qx[n]{ iny}$
nqx_y^2	$\qx[n]{x\leq y}$
$_{k }q_{xy}$	\qx[k]{xy}
$nq \frac{2}{xyz}$	$\qx[n]{\ibottom{x}\in y}z}$
$ \begin{array}{c} $	$\qx[\infty]{\infty}{$
r	r
r_C	r_C
r_F	r_F
r_N	r_N
$(rA)_t$	\twoletsymb[0.6pt]{r}{A}_t
$(rF)_t$	\twoletsymb[0.6pt]{r}{F}_t
$(rV)_t$	\twoletsymb[0.6pt]{r}{V}_t
R	R
$ ilde{R}$	<pre>\tilde{R}</pre>
R(x,h,y)	R(x, h, y)
s(x)	s(x)

Symbol	Code to compose the symbol
$\ddot{s}_{\overline{n} }$	\sx**{\angln}
s(x, u)	s(x,u)
$ar{s}_{\chi:\overline{n} }$	\sx*{\endowxn}
$\ddot{s}_{x:\overline{n} }$	\sx**{\endowxn}
S	S
S(t)	S(t)
S_y	S_y
$_kSC$	\actsymb[k]{\mathit{SC}}{}
T	Т
$ ilde{T}$	\tilde{T}
T_x	T_x
T_{xy}	T_{xy}
$T_{\overline{xy}}$	T_{\joint{xy}}
U(t)	U(t)
U_t	U_t
Ût	\hat{U}_{t}
v_t	v_t
\tilde{v}_n	\tilde{v}_n
V_{i}	V_i
V_t	V_t
$_{k}V_{x}$	\Vx[k]{x}
$_{k}V_{x:\overline{n} }$	\Vx[k]{\endowxn}
$_{k}V_{x:\overline{n} }^{1}$	<pre>\Vx[k]{\:\termxn}</pre>
$_{k}V_{x:\overline{n} }$	<pre>\Vx[k]{\pureendowxn}</pre>
$_{k}V_{x}^{\mathrm{FPT}}$	<pre>\Vx[k]{x}[\text{FPT}]</pre>
$_{t}V_{\overline{xy}:\overline{n} }^{1}$	<pre>\Vx[t]{\itop{\group{xy}}:\angln}</pre>
$_{k}^{h}V_{x}$	\Vx[k][h]{x}
$_{k}^{h}V_{x:\overline{n} }$	\Vx[k][h]{\endowxn}
$_{k}^{h}V_{x:\overline{n} }^{(m)}$	<pre>\Vx[k][h]{\endowxn}[(m)]</pre>
$_{k}^{h}V_{x:\overline{n} }^{\mathrm{Mod}}$	<pre>\Vx[k][h]{\endowxn}[\text{Mod}]</pre>

Symbol	Code to compose the symbol
$\frac{1}{k}V(n \ddot{a}_x)$	\reserve[k]{\ax**[n]{x}}
$_{t}\bar{V}(_{n }\bar{a}_{x})$	\reserve*[t]{\ax*[n]{x}}
$_{t}ar{V}(ar{A}_{x})$	\reserve*[t]{\Ax*{x}}
$_{t}ar{V}(ar{A}_{x:\overline{n} })$	\reserve*[t]{\Ax*{\endowxn}}
$_{t}ar{V}(ar{A}_{x:\overline{n} }^{1})$	\reserve*[t]{\Ax*{\termxn}}
$_{t}ar{V}(ar{A}_{x:\overline{n} })$	\reserve*[t]{\Ax*{\pureendowxn}}
$_tar{V}(ar{A}_x)^{\mathrm{Mod}}$	<pre>\reserve*[t]{\Ax*{x}}^{\text{Mod}}</pre>
$_{t}V(ar{A}_{\overline{x}\overline{y}})$	\reserve[t]{\Ax*{\joint{xy}}}
$_tV^{\{1\}}(\bar{A}_x)$	\reserve[t]{\Ax*{x}}[\{1\}]
$_kV(ar{A}_{x}^{ ext{PR}})$	\reserve[k]{\Ax*{x}[\text{PR}]}
$_{k}^{h}V(A_{x:\overline{n} }^{1})$	<pre>\reserve[k][h]{\Ax{\termxn}}</pre>
$_{t}^{h}ar{V}(ar{A}_{x})$	\reserve*[t][h]{\Ax*{x}}
$_{t}^{h}ar{V}(ar{A}_{x:\overline{n} })$	\reserve*[t][h]{\Ax*{\endowxn}}
$_{t}^{h}ar{V}^{(m)}(ar{A}_{x:\overline{n} })$	\reserve*[t][h]{\Ax*{\endowxn}}[(m)]
w(x)	w(x)
W_i	W_i
W_t	W_t
$_kW$	\Wx[k]{}
$_kW_x$	\Wx[k]{x}
$_kW_{x:\overline{n} }$	\Wx[k]{\endowxn}
$_{k}^{h}W_{x}$	\Wx[k][h]{x}
$(Wa)_t$	\twoletsymb{W}{a}_t
$_kar{W}(A_x)$	$\paidup*[k]{\Ax{x}}$
$_{k}ar{W}(A_{x:\overline{n} })$	$\paidup*[k]{\Ax{\endowxn}}$
$_{k}^{h}\bar{W}(A_{x})$	\paidup*[k][h]{\Ax{x}}
(x)	(x)
$(x_1x_2\cdots x_m)$	$(x_1 x_2 \cdot x_m)$
· · · · · · · · · · · · · · · · · · ·	$(\int x_1 x_2 \cdot x_m)$
$\frac{k}{x_1x_2\cdots x_m}$	$\label{linear_section} $$ \ \sum_{x_1x_2 \ \mbox{dotsm}} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $

Symbol	Code to compose the symbol
$ \frac{[k]}{x_1 x_2 \cdots x_m} \\ X_i \\ X(\theta) $	<pre>\joint{x_1x_2 \dotsm}\nthtop{[k]}{\joint{x_m}} X_i X(\theta)</pre>
Y $y(s, s + m)$ $Y(t, n)$	Y y(s, s + m) Y(t, n)
$egin{array}{c} z_t \ Z \ _m Z_t \end{array}$	<pre>z_t Z \actsymb[m]{Z}{t}</pre>
α $\alpha(m)$ $\bar{\alpha}$ α^{CRVM}	<pre>\alpha \alpha(m) \bar{\alpha} \alpha^{\text{CRVM}}}</pre>
$eta \ eta(m) \ ar{eta} \ eta^{ ext{CRVM}} \ eta(x,u)$	<pre>\beta \beta(m) \bar{\beta} \beta^{\text{CRVM}} \beta(x, u)</pre>
$\Gamma(\alpha)$	\Gamma(\alpha)
$rac{\delta}{\delta_t}$	\delta \delta_t
θ	\theta
$\lambda(t) \ \lambda(t,n) \ \Lambda \ \Lambda_h$	<pre>\lambda(t) \lambda(t, n) \Lambda \Lambda_h</pre>
$\mu(x)$ $\mu_x(t)$	\mu(x) \mu_x(t)

Symbol	Code to compose the symbol
$\mu_x^{(d)}$	\mu_x^{(d)}
$\mu_x^{(i)}$	\mu_x^{(i)}
$\mu_x^{(w)}$	\mu_x^{(w)}
$\mu_x^{(j)}(t)$	$\mu_x^{(j)}(t)$
$\mu_x^{(au)}(t)$	$\mu_x^{(\lambda)}(t)$
$\mu_{xy}(t)$	$\mu_{xy}(t)$
$\mu_{\overline{xy}}(t)$	<pre>\mu_{\joint{xy}}(t)</pre>
$\mu(x,u)$	\mu(x, u)
π_h	\pi_h
π_t	\pi_t
ρ	\rho
τ	\tau
$\phi(x)$	\phi(x)
$\phi(x,u)$	\phi(x, u)
$\Psi(u)$	\Psi(u)
$\tilde{\Psi}(u)$	<pre>\tilde{\Psi}(u)</pre>
$\Psi(u,t)$	\Psi(u, t)
$\Psi(u;w)$	\Psi(u; w)
$\tilde{\Psi}(u;w)$	<pre>\tilde{\Psi}(u; w)</pre>
ω	\omega

Implementation B

This appendix contains the annotated source code of the package. Most readers can stop reading here.

B.1 Required packages

\RequirePackage

The package depends on packages amsmath (American Mathematical Society, 2002) and actuarial angle (Goulet, 2017).

- 1 \RequirePackage{amsmath}
- 2 \RequirePackage{actuarialangle}

Package options

\ifacts@alignpreced \ifacts@compactpreced

We define two flags to keep track of the type of alignment for precedence numbers. Both are false by default.

- 3 \newif\ifacts@alignpreced \acts@alignprecedfalse
- 4 \newif\ifacts@compactpreced \acts@compactprecedfalse

\DeclareOption Declaration of the package options and processing.

- 5 \DeclareOption{alignpreced}{\acts@alignprecedtrue}
- 6 \DeclareOption{compactpreced}{\acts@compactprecedtrue}
- 7 \ProcessOptions

B.3 Actuarial symbol

We face three main challenges when trying to compose actuarial symbols: position a subscript and a superscipt to the left of a main symbol; ensure that the left and right subscripts and superscripts are vertically aligned; maintain consistency with the placement of subscripts and superscripts elsewhere in the document.

B.3.1 User level and parsing commands

\actsymb

We first define the user level command.

8 \DeclareRobustCommand{\actsymb}{\acts@actsymb}

\acts@@actsymb \acts@@@actsymb

\acts@actsymb With its unusual syntax, \actsymb requires four parsing macros to pass the arguments to the actual workhorse \@actsymbol.

9 \newcommand*\acts@actsymb{%

\acts@@@@actsymb 10 \new@ifnextchar[{\acts@@actsymb}%

```
{\acts@@actsymb[]}}
11
12 \newcommand*\acts@@actsymb{}
13 \def\acts@@actsymb[#1]{%
    \new@ifnextchar[{\acts@@@actsymb[#1]}%
                    {\acts@@actsymb[#1][]}}
15
16 \newcommand*\acts@@@actsymb{}
17 \def\acts@@@actsymb[#1][#2]{%
    \new@ifnextchar[{\acts@@@@actsymb[#1][#2]}%
                    {\acts@@@actsymb[#1][#2][]}}
20 \newcommand*\acts@@@@actsymb{}
21 \def\acts@@@actsymb[#1][#2][#3]#4#5{%
   \new@ifnextchar[{\@actsymbol[#1][#2][#3]{#4}{#5}}%
23
                    {\@actsymbol[#1][#2][#3]{#4}{#5}[]}}
```

B.3.2 Symbol construction

\@actsymbol

We now define the workhorse to compose an actuarial symbol allowing for auxiliary symbols on all four corners around a principal symbol. The macro \@actsymbol has the following six arguments, using the notation from of the schematics representations (1) and (2):

- 1. lower left subscript [I]; may be empty;
- 2. upper left superscript II; may be empty;
- 3. symbol *P*; when empty a standard symbol is typeset;
- 4. principal symbol *S*; assumed present;
- 5. lower right subscript III ; assumed present;
- 6. upper right superscript IV; may be empty.

The definition below is heavily inspired by the code of \prescript from the package mathtools (Høgholm and Madsen, 2015) which, as reported by the author, is itself based on a posting to comp.text.tex by Michael J. Downes. Some of the comments below are still his.

```
24 \newcommand*\@actsymbol{}
25 \def\@actsymbol[#1][#2][#3]#4#5[#6]{%
```

We put symbol P and all subscripts and superscript into horizontal boxes using $\ensuremath{\mbox{Qmathmeasure}}$ of the package amsmath.

```
26 \@mathmeasure\z@\displaystyle{#3}%
27 \@mathmeasure\tw@\scriptstyle{#1}%
28 \@mathmeasure4\scriptstyle{#2}%
29 \@mathmeasure6\scriptstyle{#5}%
30 \@mathmeasure8\scriptstyle{#6}%
```

Do not let a preceding mathord symbol approach without any intervening space.

```
31 \mathord{}%
```

Right align the left subscript and superscript (if there is a superscript) by adjusting the width of their horizontal boxes.

```
32 \ifdim \wd4>\z@ \ifdim \wd4>\wd\tw@
33 \setbox\tw@\hbox to\wd4{\hfil\unhbox\tw@}%
34 \else
35 \setbox4\hbox to\wd\tw@{\hfil\unhbox4}%
36 \fi\fi
```

Bottom align the left and right subscripts by making their heights equal.

```
37 \ifdim \ht\tw@>\ht6
38 \ht6=\ht\tw@
39 \else
40 \ht\tw@=\ht6%
41 \fi
```

Actual symbol construction. First the case where there is at least one superscript (the nested conditionals emulate an OR condition).

```
42 \ifnum\ifdim \wd4>\z@ 1\else\ifdim \wd8>\z@ 1\else \emptyset\fi\fi 43 =1 %
```

To ensure equal spacing with the subscripts on both sides of the principal symbol, make the depths of the left and right supercripts equal.

```
d\phi = \frac{d\phi}{d\phi} \d\phi = \frac{d\phi}{d
```

Typesetting of the left subscript and superscript. Use \mathopen to suppress space between those and the principal symbol even when the latter is not of type ord. (We use \textstyle inside \vphantom to avoid bad positioning of subscripts with XaTeX; see the discussion on StackExchange for details.)

```
45 \mathopen{\vphantom{\textstyle #4}\sp{\box4}\sb{\box\tw@}}%
```

Typesetting of the principal symbol and the right subscript and superscript. The principal symbol is either a principal symbol alone or a premium (or reserve, or paid-up insurance) symbol and a benefit symbol between parentheses. In the latter case, we make sure to align the subscripts and superscripts only around the premium symbol.

```
46  \ifdim\wd\z@=\z@
47    #4\sp{\box8}\sb{\box6}%
48    \else
49    #3\sp{\box8}\sb{\vphantom{\copy6}}(#4\sb{\box6})%
50  \fi
51  \else
```

Same ideas as above in the simpler case without superscripts. That way, TEX's default placement of subscripts and superscripts is maintained.

```
52 \mathopen{\vphantom{\textstyle #4}\sb{\box\tw@}}%
53 \ifdim\wd\z@=\z@
54  #4\sb{\box6}%
55 \else
56  #3(#4\sb{\box6})%
57 \fi
58 \fi
59 }
```

B.3.3 Shortcuts for basic symbols of life tables, insurance and annuities

```
\@actinssc
                       We first define the internal macros and parsing macros used to define short-
                       cuts for insurance benefits (\@actinssc), annuity benefits (\@actannsc)
           \@actannsc
                       and simple symbols (\@actothersc).
         \@actothersc
          \acts@actsc
                       60 \newcommand*\@actinssc[1]{%
         \acts@@actsc
                       61 \@ifstar{\acts@actsc{\bar{#1}}}%
                       62
                                    {\acts@actsc{#1}}}
        \acts@@@actsc
                        63 \newcommand*\@actannsc[1]{%
                            \@ifstar{\@ifstar{\acts@actsc{\ddot{#1}}}}%
                        65
                                             {\acts@actsc{\bar{#1}}}}%
                                    {\acts@actsc{#1}}}
                        66
                        67 \newcommand*\acts@actsc[1]{%
                            \new@ifnextchar[{\acts@@actsc{#1}}%
                                            {\acts@@actsc{#1}[]}}
                        69
                        70 \newcommand*\@actothersc{}
                        71 \let\@actothersc\acts@actsc
                        72 \newcommand*\acts@@actsc{}
                        73 \def\acts@@actsc#1[#2]{%
                            \new@ifnextchar[{\acts@@@actsc{#1}[#2]}%
                                            {\acts@@actsc{#1}[#2][]}}
                        76 \newcommand*\acts@@@actsc{}
                        77 \def\acts@@@actsc#1[#2][#3]#4{%
                           \new@ifnextchar[{\@actsymbol[#2][#3][]{#1}{#4}}%
                                            {\@actsymbol[#2][#3][]{#1}{#4}[]}}
\DeclareRobustCommand
                       We can now define all the shortcuts of Table 1.
                        80 \DeclareRobustCommand{\lx}{\@actothersc\ell}
                        81 \DeclareRobustCommand{\Lx}{\@actothersc{\mathcal{L}}}
                        82 \DeclareRobustCommand{\dx}{\@actothersc d}
                        83 \DeclareRobustCommand{\Dx}{\@actothersc{\mathcal{D}}}}
```

```
84 \DeclareRobustCommand{\px}{\@actothersc p}
85 \DeclareRobustCommand{\qx}{\@actothersc q}
86 \DeclareRobustCommand{\Ax}{\@actinssc A}
87 \DeclareRobustCommand{\Ex}{\@actinssc E}
88 \DeclareRobustCommand{\ax}{\@actannsc a}
89 \DeclareRobustCommand{\sx}{\@actannsc s}
90 \DeclareRobustCommand{\aringx}{\@actothersc{\mathring{a}}}}
91 \DeclareRobustCommand{\eringx}{\@actothersc{\mathring{e}}}}
```

B.3.4 Shortcuts for premiums, reserves and paid-up insurance

\@actpremres \acts@actpremres \acts@@actpremres \acts@@@actpremres Not unlike above, we first define the internal and parsing macros used to create shortcut for premiums, reserves and paid-up insurance symbols.

```
92 \newcommand*\@actpremres[1]{%
    \@ifstar{\acts@actpremres{\bar{#1}}}%
            {\acts@actpremres{#1}}}
95 \newcommand*\acts@actpremres[1]{%
    \new@ifnextchar[{\acts@@actpremres{#1}}%
97
                     {\acts@@actpremres{#1}[]}}
98 \newcommand*\acts@@actpremres{}
99 \def\acts@@actpremres#1[#2]{%
100
    \new@ifnextchar[{\acts@@@actpremres{#1}[#2]}%
101
                     {\acts@@@actpremres{#1}[#2][]}}
102 \newcommand*\acts@@@actpremres{}
103 \def\acts@@@actpremres#1[#2][#3]#4{%
    \new@ifnextchar[{\@actsymbol[#2][#3][#1]{{#4}}{}}%
104
                     {\@actsymbol[#2][#3][#1]{{#4}}{}[]}}
Then we can define the shortcuts of Table 2.
106 \DeclareRobustCommand{\Px}{\@actothersc P}
```

\DeclareRobustCommand

107 \DeclareRobustCommand{\Vx}{\@actothersc V}
108 \DeclareRobustCommand{\Wx}{\@actothersc W}
109 \DeclareRobustCommand{\premium}{\@actpremres P}
110 \DeclareRobustCommand{\reserve}{\@actpremres V}

111 \DeclareRobustCommand{\paidup}{\@actpremres W}

B.3.5 Shortcuts for auxiliary symbols

\DeclareRobustCommand

Here we define the shortcuts for common auxiliary symbols listed in Table 3. Command \joint is simply defined as an alias of \overline.

```
112 \DeclareRobustCommand{\term}[2]{\itop{#1}{:}\angl{#2}}
113 \DeclareRobustCommand{\termxn}{{\itop{x}{:}\angln}}
114 \DeclareRobustCommand{\pureendow}[2]{#1{:}\itop{\angl{#2}}}
```

```
115 \DeclareRobustCommand{\pureendowxn}{{x{:}\itop{\angln}}}
116 \DeclareRobustCommand{\endow}[2]{#1{:}\angl{#2}}
117 \DeclareRobustCommand{\endowxn}{{x{:}\angln}}
118 \let\joint\overline
```

B.4 Two-letter symbols

\twoletkern \twoletsymb The definition of the user level command \twoletsymb is pretty straighforward.

```
119 \newlength{\twoletkern}
120 \setlength{\twoletkern}{0.1em}
121 \DeclareRobustCommand{\twoletsymb}[3][\twoletkern]{(#2\kern-#1#3)}
```

\@twoletinssc Following the same lines as above, we define two internal macros to create \@twoletannsc shortcuts for two-letter insurance and annuity benefit symbols.

```
122 \newcommand*\@twoletinssc[3][\twoletkern]{%
                                      \ensuremath{\tt 0} \@ifstar{\twoletsymb[#1]{#2}{\bar{#3}}}%
123
                                                                                                         {\twoletsymb[#1]{#2}{#3}}}
125 \newcommand*\@twoletannsc[3][\twoletkern]{%
126
                                    \ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ens
                                                                                                                                                                                  {\twoletsymb[#1]{#2}{\bar{#3}}}}%
127
                                                                                                        {\twoletsymb[#1]{#2}{#3}}}
128
```

\newcommand*

Follow the shortcuts of Table 4. Note that we used a smaller negative kerning adjustment for symbols annuity symbols.

```
129 \newcommand*{\IA}{\@twoletinssc IA}
130 \newcommand*{\IbA}{\@twoletinssc{\bar{I}}A}
131 \newcommand*{\ImA}{\Qtwoletinssc{I^{(m)}}A}
132 \newcommand*{\DA}{\@twoletinssc DA}
133 \newcommand*{\DbA}{\@twoletinssc{\bar{D}}A}
134 \newcommand*{\DmA}{\@twoletinssc{D^{(m)}}A}
135 \newcommand*{\Ia}{\@twoletannsc[0.5\twoletkern]Ia}
136 \newcommand*{\Is}{\@twoletannsc[0.5\twoletkern]Is}
137 \newcommand*{\Da}{\@twoletannsc[0.5\twoletkern]Da}
138 \newcommand*{\Ds}{\@twoletannsc[0.5\twoletkern]Ds}
```

B.5 Precedence numbers

The system of precedence numbers builds on a backbone that used to be part of the package actuarial angle. The original author of the code is unknown. Some of the comments on \@precedence, below, are his or hers.

B.5.1 User level lengths and commands

```
\nthtopsep Let us start by defining the lengths needed to position the precedence
  \nthtopskip numbers above or below the statuses.
\nthbottomsep 139 \newlength{\nthtopsep}
\nthbottomskip 140 \setlength{\nthtopsep}{0.18em}
              141 \newlength{\nthtopskip}
              142 \setlength{\nthtopskip}{0.64em}
              143 \newlength{\nthbottomsep}
              144 \setlength{\nthbottomsep}{0.18em}
              145 \newlength{\nthbottomskip}
              146 \setlength{\nthbottomskip}{0.82em}
      \nthtop Next up are the two user level commands and the internal commands that
   \nthbottom call the workhorse \@precedence.
              147 \DeclareRobustCommand{\nthtop}{\@ifstar\@varnthtop\@nthtop}
              148 \DeclareRobustCommand{\nthbottom}{\@ifstar\@varnthbottom\@nthbottom}
              149 \newcommand*{\@nthtop}[3][\nthtopsep]{%
                  \mbox{mathpalette}(\ensuremath{\ensuremath{\$}}{\#3})
              151 \newcommand*{\@varnthtop}[3][\nthtopskip]{%
                  \mathbf{t}_{41}\z@{\#2}}{\#3}
              \mathbf{b}_{41}_{42}_{43}
              155 \newcommand*{\@varnthbottom}[3][\nthbottomskip]{%
                  \@nthtop With the internal commands defined we can now process the package
  \@nthbottom options. Option alignpreced makes the internal macros \@nthtop and
              \@nthbottom equivalent to \@varnthtop and \@varnthbottom, respectively.
              157 \ifacts@alignpreced
              158 \let\@nthtop\@varnthtop
              159 \let\@nthbottom\@varnthbottom
              160 \fi
  \@varnthtop Option compactpreced does the opposite.
\@varnthbottom 161 \ifacts@compactpreced
              162 \let\@varnthtop\@nthtop
              163 \let\@varnthbottom\@nthbottom
              164 \fi
```

B.5.2 Number and status positioning

\@precedence We now define the workhorse to position precedence numbers above or below statuses, smashed so that the height of the auxiliary symbol

containing the call remains unaffected. The macro \@precedence has the following six arguments:

- 1. t for top or b for bottom;
- 2. baseline skip between the top and bottom symbols;
- 3. spacing between the top and bottom symbols;
- 4. first argument from the user;
- 5. one of math style selecting commands (\displaystyle, \textstyle, \scriptstyle, \scriptstyle) from \mathpalette;
- 6. second argument given by the user.

This peculiar ordering of the arguments is done to work around the restriction of \mathpalette that it only reads two arguments.

```
165 \newcommand*\@precedence[6]{%
    \setbox\tw@\hbox{\$\m@th#5#4\$}%
167
    \setbox\z@\hbox{\$\m@th#5#6\$}%
    \dimen@\wd\z@
168
   \vbox to\ht\z@{%
169
170
      \baselineskip=#2%
      \lineskip=#3%
171
      \lineskiplimit\lineskip
      \if b#1\relax\box\z@\else\vss\fi
173
174
       \hbox to\dimen@{\hss\unhbox\tw@\hss}%
      \if t#1\relax\box\z@\else\vss\fi
175
176 }%
177 }
```

B.5.3 Shortcuts and aliases

\DeclareRobustCommand We finish off by defining the shortcuts and aliases of Table 5.

```
178 \DeclareRobustCommand{\firsttop}{%
179 \@ifstar{\@varnthtop{1}}{\@nthtop{1}}}
180 \DeclareRobustCommand{\secondtop}{%
181 \@ifstar{\@varnthtop{2}}{\@nthtop{2}}}
182 \DeclareRobustCommand{\thirdtop}{%
183 \@ifstar{\@varnthtop{3}}{\@nthtop{3}}}
184 \DeclareRobustCommand{\firstbottom}{%
185 \@ifstar{\@varnthbottom{1}}{\@nthbottom{1}}}
186 \DeclareRobustCommand{\secondbottom}{%
187 \@ifstar{\@varnthbottom{2}}{\@nthbottom{2}}}
188 \DeclareRobustCommand{\thirdbottom}{%
189 \@ifstar{\@varnthbottom{3}}{\@nthbottom{3}}}
190 \let\itop\firsttop
191 \let\iitop\secondtop
192 \let\iitop\thirdtop
```

- 193 \let\ibottom\firstbottom
- 194 \let\iibottom\secondbottom
- 195 \let\iiibottom\thirdbottom

References

- American Mathematical Society. *User's Guide for the amsmath Package*, 2002. URL https://www.ctan.org/pkg/amsmath/.
- N. L. Bowers, H. U. Gerber, J. C. Hickman, D. A. Jones, and C. J. Nesbitt. *Actuarial Mathematics*. Society of Actuaries, Shaumburg, IL, second edition, 1997. ISBN 0-9389594-6-8.
- V. Goulet. Actuarial angle symbol for life contingencies and financial mathematics, 2017. URL https://www.ctan.org/pkg/actuarialangle/.
- M. Høgholm and L. Madsen. *The mathtools package*, 2015. URL https://www.ctan.org/pkg/mathtools/.
- S. Pakin. *The Comprehensive LTEX Symbol List*, 2015. URL https://www.ctan.org/pkg/comprehensive/.
- W. Robertson. *Unify subscript depths*, 2007. URL https://www.ctan.org/pkg/subdepth/.
- M. Sharpe. *An acute script font based on rsfs*, 2015. URL https://www.ctan.org/pkg/rsfso/.
- E. Trivedi. Life Contingencies' Symbols, 2004. 1ifecon 2.1 User Guide.
- H. Wolthuis. International actuarial notation. In Jozef Teugels and Bjørn Sundt, editors, *Encyclopedia of Actuarial Science*. Wiley, 2004. ISBN 978-0-47001250-5. URL https://onlinelibrary.wiley.com/book/10.1002/9780470012505.

Version history

1.0	\@varnthbottom: Add missing
General: Initial release	1 @'s in macro names 33
1.0a	\DeclareRobustCommand: The
\@actsymbol: Fix left subscript	colons used here are not
positioning with xetex 2	9 \mathrel's
1.1	\acts@@@actsymb: Use
\@actsymbol: Use local box	amsmath's $\new@ifnextchar. 27$
registers 2	8 \nthbottomskip: Use relative

lengths	bar 1
\twoletsymb: Use relative	
length 32	Various improvements to the
General: Code samples	code contributed by Ruixi
displayed in a box with a left	Zhang 1