MPI: A Message-Passing Interface Standard Version 3.1

Message Passing Interface Forum

September 21, 2012

This document describes the Message-Passing Interface (MPI) standard, version 3.0. The MPI standard includes point-to-point message-passing, collective communications, group and communicator concepts, process topologies, environmental management, process creation and management, one-sided communications, extended collective operations, external interfaces, I/O, some miscellaneous topics, and a profiling interface. Language bindings for C and Fortran are defined.

Historically, the evolution of the standards is from MPI-1.0 (June 1994) to MPI-1.1 (June 12, 1995) to MPI-1.2 (July 18, 1997), with several clarifications and additions and published as part of the MPI-2 document, to MPI-2.0 (July 18, 1997), with new functionality, to MPI-1.3 (May 30, 2008), combining for historical reasons the documents 1.1 and 1.2 and some errata documents to one combined document, and to MPI-2.1 (June 23, 2008), combining the previous documents. Version MPI-2.2 (September 2009) added additional clarifications and seven new routines. This version, MPI-3.0, is an extension of MPI-2.2.

Comments. Please send comments on MPI to the MPI Forum as follows:

- 1. Subscribe to http://lists.mpi-forum.org/mailman/listinfo.cgi/mpi-comments
- 2. Send your comment to: mpi-comments@mpi-forum.org, together with the URL of the version of the MPI standard and the page and line numbers on which you are commenting. Only use the official versions.

Your comment will be forwarded to MPI Forum committee members for consideration. Messages sent from an unsubscribed e-mail address will not be considered.

©1993, 1994, 1995, 1996, 1997, 2008, 2009, 2012 University of Tennessee, Knoxville, Tennessee. Permission to copy without fee all or part of this material is granted, provided the University of Tennessee copyright notice and the title of this document appear, and notice is given that copying is by permission of the University of Tennessee.

Version 3.0: September 21, 2012. Coincident with the development of MPI-2.2, the MPI Forum began discussions of a major extension to MPI. This document contains the MPI-3 Standard. This draft version of the MPI-3 standard contains significant extensions to MPI functionality, including nonblocking collectives, new one-sided communication operations, and Fortran 2008 bindings. Unlike MPI-2.2, this standard is considered a major update to the MPI standard. As with previous versions, new features have been adopted only when there were compelling needs for the users. Some features, however, may have more than a minor impact on existing MPI implementations.

 $\frac{44}{45}$

Version 2.2: September 4, 2009. This document contains mostly corrections and clarifications to the MPI-2.1 document. A few extensions have been added; however all correct MPI-2.1 programs are correct MPI-2.2 programs. New features were adopted only when there were compelling needs for users, open source implementations, and minor impact on existing MPI implementations.

Version 2.1: June 23, 2008. This document combines the previous documents MPI-1.3 (May 30, 2008) and MPI-2.0 (July 18, 1997). Certain parts of MPI-2.0, such as some sections of Chapter 4, Miscellany, and Chapter 7, Extended Collective Operations, have been merged into the Chapters of MPI-1.3. Additional errata and clarifications collected by the MPI Forum are also included in this document.

Version 1.3: May 30, 2008. This document combines the previous documents MPI-1.1 (June 12, 1995) and the MPI-1.2 Chapter in MPI-2 ;(July 18, 1997). Additional errata collected by the MPI Forum referring to MPI-1.1 and MPI-1.2 are also included in this document.

Version 2.0: July 18, 1997. Beginning after the release of MPI-1.1, the MPI Forum began meeting to consider corrections and extensions. MPI-2 has been focused on process creation and management, one-sided communications, extended collective communications, external interfaces and parallel I/O. A miscellary chapter discusses items that do not fit elsewhere, in particular language interoperability.

Version 1.2: July 18, 1997. The MPI-2 Forum introduced MPI-1.2 as Chapter 3 in the standard "MPI-2: Extensions to the Message-Passing Interface", July 18, 1997. This section contains clarifications and minor corrections to Version 1.1 of the MPI Standard. The only new function in MPI-1.2 is one for identifying to which version of the MPI Standard the implementation conforms. There are small differences between MPI-1 and MPI-1.1. There are very few differences between MPI-1.1 and MPI-1.2, but large differences between MPI-1.2 and MPI-2.

Version 1.1: June, 1995. Beginning in March, 1995, the Message-Passing Interface Forum reconvened to correct errors and make clarifications in the MPI document of May 5, 1994, referred to below as Version 1.0. These discussions resulted in Version 1.1. The changes from Version 1.0 are minor. A version of this document with all changes marked is available.

Version 1.0: May, 1994. The Message-Passing Interface Forum (MPIF), with participation from over 40 organizations, has been meeting since January 1993 to discuss and define a set

of library interface standards for message passing. MPIF is not sanctioned or supported by any official standards organization.

The goal of the Message-Passing Interface, simply stated, is to develop a widely used standard for writing message-passing programs. As such the interface should establish a practical, portable, efficient, and flexible standard for message-passing.

This is the final report, Version 1.0, of the Message-Passing Interface Forum. This document contains all the technical features proposed for the interface. This copy of the draft was processed by LATEX on May 5, 1994.

Contents

A	cknov	vledgments	ix
1	Intr	oduction to MPI	1
	1.1	Overview and Goals	1
	1.2	Background of MPI-1.0	2
	1.3	Background of MPI-1.1, MPI-1.2, and MPI-2.0	2
	1.4	Background of MPI-1.3 and MPI-2.1	3
	1.5	Background of MPI-2.2	4
	1.6	Background of MPI-3.0	4
	1.7	Who Should Use This Standard?	4
	1.8	What Platforms Are Targets For Implementation?	5
	1.9	What Is Included In The Standard?	5
	1.10	What Is Not Included In The Standard?	6
		Organization of this Document	6
2	MPI	Terms and Conventions	9
	2.1	Document Notation	9
	2.2	Naming Conventions	9
	2.3	Procedure Specification	10
	2.4	Semantic Terms	11
	2.5	Data Types	12
		2.5.1 Opaque Objects	12
		2.5.2 Array Arguments	14
		2.5.3 State	14
		2.5.4 Named Constants	15
		2.5.5 Choice	16
		2.5.6 Absolute Addresses and Relative Address Displacements	16
		2.5.7 File Offsets	16
		2.5.8 Counts	17
	2.6	Language Binding	17
		2.6.1 Deprecated and Removed Names and Functions	17
		2.6.2 Fortran Binding Issues	19
		2.6.3 C Binding Issues	19
		2.6.4 Functions and Macros	20
	2.7	Processes	20
	2.8	Error Handling	20
	2.0	Implementation Issues	21

		2.9.1	Independence of Basic Runtime Routines .		 						22
		2.9.2	Interaction with Signals		 						22
	2.10	Examp	$_{ m oles}$		 						22
3			oint Communication								23
	3.1		uction								23
	3.2		ng Send and Receive Operations								24
		3.2.1	Blocking Send								24
		3.2.2	Message Data								25
		3.2.3	Message Envelope								27
		3.2.4	Blocking Receive		 						28
		3.2.5	Return Status		 						30
		3.2.6	Passing MPI_STATUS_IGNORE for Status $\ .$.		 						32
	3.3	Data 7	Гуре Matching and Data Conversion		 						33
		3.3.1	Type Matching Rules		 						33
			Type MPI_CHARACTER		 						34
		3.3.2	Data Conversion		 						35
	3.4	Comm	unication Modes		 						37
	3.5	Seman	tics of Point-to-Point Communication		 						40
	3.6		Allocation and Usage								44
		3.6.1	Model Implementation of Buffered Mode								46
	3.7	Nonblo	ocking Communication								47
		3.7.1	Communication Request Objects								48
		3.7.2	Communication Initiation								48
		3.7.3	Communication Completion								52
		3.7.4	Semantics of Nonblocking Communications								56
		3.7.5	Multiple Completions								57
		3.7.6	Non-destructive Test of status								63
	3.8		and Cancel								64
	3.0	3.8.1	Probe								64
		3.8.2	Matching Probe								67
			Matched Receives								
		3.8.3									69
	2.0	3.8.4	Cancel								71
			tent Communication Requests								73
			Receive								78
	3.11	Null P	rocesses	٠	 	•	• •	• •	٠	 •	80
4	Data	atypes									83
•	4.1	-	d Datatypes								83
	1.1	4.1.1	Type Constructors with Explicit Addresses								85
		4.1.2	Datatype Constructors								85
		4.1.3	Subarray Datatype Constructor								94
		4.1.3	Distributed Array Datatype Constructor								94
		4.1.5	Address and Size Functions								101
		4.1.6	Lower-Bound and Upper-Bound Markers .								104
		4.1.7	Extent and Bounds of Datatypes								106
		4.1.8	True Extent of Datatypes							 •	108
		4.1.9	Commit and Free	_		_			_		109

		4.1.10 Duplicating a Datatype	 		111
		4.1.11 Use of General Datatypes in Communication	 		111
		4.1.12 Correct Use of Addresses	 		115
		4.1.13 Decoding a Datatype			
		4.1.14 Examples			
	4.2	Pack and Unpack			
	4.3	Canonical MPI_PACK and MPI_UNPACK			
5	Coll	lective Communication			141
	5.1	Introduction and Overview	 		141
	5.2	Communicator Argument	 		144
		5.2.1 Specifics for Intracommunicator Collective Operations .	 		144
		5.2.2 Applying Collective Operations to Intercommunicators .	 		145
		5.2.3 Specifics for Intercommunicator Collective Operations .	 		146
	5.3	Barrier Synchronization	 		147
	5.4	Broadcast			
		5.4.1 Example using MPI_BCAST	 		149
	5.5	Gather			
		5.5.1 Examples using MPI_GATHER, MPI_GATHERV			
	5.6	Scatter			
		5.6.1 Examples using MPI_SCATTER, MPI_SCATTERV			
	5.7	Gather-to-all			
		5.7.1 Example using MPI_ALLGATHER			
	5.8	All-to-All Scatter/Gather			
	5.9	Global Reduction Operations			
		5.9.1 Reduce			
		5.9.2 Predefined Reduction Operations			
		5.9.3 Signed Characters and Reductions			
		5.9.4 MINLOC and MAXLOC			
		5.9.5 User-Defined Reduction Operations			
		Example of User-defined Reduce			
		5.9.6 All-Reduce			
		5.9.7 Process-Local Reduction			
	5.10	Reduce-Scatter			
	0.10	5.10.1 MPI_REDUCE_SCATTER_BLOCK			
		5.10.2 MPI_REDUCE_SCATTER			
	5 11	Scan			
	0.11	5.11.1 Inclusive Scan			
		5.11.2 Exclusive Scan			
		5.11.3 Example using MPI_SCAN			
	5 12	Nonblocking Collective Operations			
	0.12	5.12.1 Nonblocking Barrier Synchronization			
		5.12.2 Nonblocking Broadcast			
		Example using MPI_IBCAST			
		5.12.3 Nonblocking Gather			
		5.12.4 Nonblocking Scatter			
		5.12.5 Nonblocking Gather-to-all			
		5.12.6 Nonblocking All-to-All Scatter/Gather			
		COLLOG TOURS OF THE CONTROL OF THE CONTROL OF CHARLES	 		

		5.12.7	Nonblocking Reduce	209
			Nonblocking All-Reduce	210
			Nonblocking Reduce-Scatter with Equal Blocks	211
			0 Nonblocking Reduce-Scatter	212
			1 Nonblocking Inclusive Scan	213
			2 Nonblocking Exclusive Scan	214
	5 13		ctness	214
	0.10	Correc	7011055	
6	Gro	ups, C	Contexts, Communicators, and Caching	223
	6.1		luction	223
		6.1.1	Features Needed to Support Libraries	223
		6.1.2	MPI's Support for Libraries	224
	6.2	Basic	Concepts	226
		6.2.1	Groups	226
		6.2.2	Contexts	226
		6.2.3	Intra-Communicators	227
		6.2.4	Predefined Intra-Communicators	227
	6.3	Group	Management	228
		6.3.1	Group Accessors	228
		6.3.2	Group Constructors	230
		6.3.3	Group Destructors	235
	6.4		nunicator Management	235
	0.1	6.4.1	Communicator Accessors	235
		6.4.2	Communicator Constructors	$\frac{237}{237}$
		6.4.3	Communicator Destructors	248
		6.4.4	Communicator Info	248
	6.5	•	ating Examples	250
	0.0	6.5.1	Current Practice #1	250
		6.5.2	Current Practice #2	250
		6.5.2	(Approximate) Current Practice #3	251
		6.5.4	Example #4	251
		6.5.5		$\frac{252}{253}$
		6.5.6	Library Example #1	$\frac{255}{255}$
	6 6		Library Example #2	$\frac{255}{257}$
	6.6			
		6.6.1	Inter-communicator Accessors	259
		6.6.2	Inter-communicator Operations	260
		6.6.3	Inter-Communication Examples	263
			Example 1: Three-Group "Pipeline"	263
	0.7	G 1:	Example 2: Three-Group "Ring"	264
	6.7		ng	265
		6.7.1	Functionality	266
		6.7.2	Communicators	267
		6.7.3	Windows	272
		6.7.4	Datatypes	275
		6.7.5	Error Class for Invalid Keyval	279
		6.7.6	Attributes Example	279
	6.8		ng Objects	281
	6.9	Forma	dizing the Loosely Synchronous Model	285

		6.9.1	Basic Statements	35
		6.9.2	Models of Execution	36
			Static Communicator Allocation	36
			Dynamic Communicator Allocation	36
			The General Case	37
7	Dro	coss T	opologies 28	20
•	7.1		uction	
	$7.1 \\ 7.2$		d Topologies	
	7.2		1 0	
	7.3		ullet	
	7.4 7.5			
	7.5			
		7.5.1		
		7.5.2	Cartesian Convenience Function: MPI_DIMS_CREATE	
		7.5.3	Graph Constructor	
		7.5.4	Distributed Graph Constructor	
		7.5.5	Topology Inquiry Functions	
		7.5.6	Cartesian Shift Coordinates	
		7.5.7	Partitioning of Cartesian Structures	
		7.5.8	Low-Level Topology Functions	
	7.6		borhood Collective Communication	
		7.6.1	Neighborhood Gather	
		7.6.2	Neighbor Alltoall	
	7.7	Nonbl	ocking Neighborhood Communication	
		7.7.1	Nonblocking Neighborhood Gather	24
		7.7.2	Nonblocking Neighborhood Alltoall	26
	7.8	An Ap	oplication Example	29
8	MPI	Envi	conmental Management 33	33
	8.1		mentation Information	
		8.1.1	Version Inquiries	
		8.1.2	Environmental Inquiries	
		0.1.2	Tag Values	
			Host Rank	
			IO Rank	
			Clock Synchronization	
			Inquire Processor Name	
	8.2	Momo	ry Allocation	
	8.3		Handling	
	0.5	8.3.1	<u> </u>	
		0.0		
		8.3.2	Error Handlers for Windows	
		8.3.3	Error Handlers for Files	
	0.4	8.3.4	Freeing Errorhandlers and Retrieving Error Strings	
	8.4		Codes and Classes	
	8.5		Classes, Error Codes, and Error Handlers	
	8.6		s and Synchronization	
	8.7	Startu	1	
		871	Allowing User Functions at Process Termination 36	ί٦

	8.8	8.7.2 Determining Whether MPI Has Finished	361 362
9	The	Info Object	365
10	Pro	cess Creation and Management	371
		Introduction	371
		The Dynamic Process Model	372
		10.2.1 Starting Processes	372
		10.2.2 The Runtime Environment	372
	10.3	Process Manager Interface	374
		10.3.1 Processes in MPI	374
		10.3.2 Starting Processes and Establishing Communication	374
		10.3.3 Starting Multiple Executables and Establishing Communication	379
		10.3.4 Reserved Keys	382
		10.3.5 Spawn Example	383
		Manager-worker Example Using MPI_COMM_SPAWN	383
	10 4	Establishing Communication	385
	10.1	10.4.1 Names, Addresses, Ports, and All That	385
		10.4.2 Server Routines	386
		10.4.3 Client Routines	388
		10.4.4 Name Publishing	390
		10.4.5 Reserved Key Values	392
		10.4.6 Client/Server Examples	392
		Simplest Example — Completely Portable	392
		Ocean/Atmosphere — Relies on Name Publishing	393
		Simple Client-Server Example	393
	10.5	Other Functionality	395
	10.0	10.5.1 Universe Size	395
		10.5.2 Singleton MPI_INIT	396
		10.5.3 MPI_APPNUM	396
		10.5.4 Releasing Connections	397
		10.5.5 Another Way to Establish MPI Communication	399
		10.5.5 Throther Way to Establish Will Communication	000
11			401
	11.1	Introduction	401
	11.2	Initialization	402
		11.2.1 Window Creation	403
		11.2.2 Window That Allocates Memory	405
		11.2.3 Window That Allocates Shared Memory	407
		11.2.4 Window of Dynamically Attached Memory	410
		11.2.5 Window Destruction	413
		11.2.6 Window Attributes	414
		11.2.7 Window Info	415
	11.3	Communication Calls	417
		11.3.1 Put	418
		11.3.2 Get	420
		11.3.3 Examples for Communication Calls	421

	11.3.4 Accumulate Functions	423
	Accumulate Function	424
	Get Accumulate Function	426
	Fetch and Op Function	427
	Compare and Swap Function	429
		430
11.4		435
	· ·	436
		440
		441
	0 1	445
		448
	·	450
		451
11.6		452
11.0		452
		452
11 7		452
11.7		460
	v	
		461
	0	461
11.0		463
11.8	Examples	464
12 Ext	ernal Interfaces	175
		475
		475
12.2		479
19.3	1	482
		484
12.4		484
		485
		487
	12.4.5 IIIItianzation	401
13 I/O		191
•		491
1011		491
13.2		493
10.2	*	493
	1 0	495
		496
		$490 \\ 497$
		498
	0 1	
	• • •	498
	• • •	499
		500
10.0		502
13.3	File Views	503

	13.4	Data A	$\Lambda_{ ext{ccess}}$. 50)6
		13.4.1	Data Access Routines	 				. 50)6
			Positioning	 				. 50)7
			Synchronism	 				. 50	8(
			Coordination	 				. 50	8(
			Data Access Conventions	 				. 50	8(
		13.4.2	Data Access with Explicit Offsets	 				. 50)9
		13.4.3	Data Access with Individual File Pointers	 				. 51	4
		13.4.4	Data Access with Shared File Pointers	 				. 52	22
			Noncollective Operations	 				. 52	22
			Collective Operations	 				. 52	25
			Seek	 				. 52	26
		13.4.5	Split Collective Data Access Routines	 				. 52	27
	13.5	File In	teroperability	 				. 53	34
	13.6			 				. 53	36
		13.6.1	Datatypes for File Interoperability	 				. 53	36
			External Data Representation: "external32".						38
		13.6.3	User-Defined Data Representations	 				. 53	39
			Extent Callback	 				. 54	ŧ1
			Datarep Conversion Functions	 				. 54	12
		13.6.4	Matching Data Representations						14
	13.7	Consis	tency and Semantics	 				. 54	14
		13.7.1	File Consistency	 				. 54	14
			Random Access vs. Sequential Files						<u>1</u> 7
		13.7.3	Progress	 				. 54	18
		13.7.4	Collective File Operations	 				. 54	18
			Nonblocking Collective File Operations						18
			Type Matching						19
			Miscellaneous Clarifications						19
			MPI_Offset Type						19
			Logical vs. Physical File Layout						60
			File Size						50
			l Examples						60
			Asynchronous I/O						53
	13.8	I/O E	rror Handling	 				. 55	55
			rror Classes						55
			$_{ m oles}$						55
		13.10.1	Double Buffering with Split Collective I/O	 				. 55	55
		13.10.2	2Subarray Filetype Constructor	 				. 55	58
	13.13	L		 				. 55	59
14		Supp						56	
			uction						
	14.2		$\operatorname{ng} \operatorname{Interface} \ldots \ldots \ldots \ldots$						
			Requirements						
			Discussion						
			Logic of the Design						
		14.2.4	Miscellaneous Control of Profiling	 				. 56	i3

	14.2.5	Profiler Implementation Example	564
	14.2.6	MPI Library Implementation Example	564
			564
			565
	14.2.7		565
	-	•	565
		-	566
			566
	1/1 9 8		566
1/1/3		1	567
14.0			568
			568
		·	569
		9 9	570
			571
	14.5.0		573
			573
		1	576
			577
			578
	- 4 A -	•	579
	14.3.7		580
			580
		· ·	582
		*	585
			585
			587
			588
		Example: Tool to Detect Receives with Long Unexpected Message	
		Queues	590
	14.3.8	Variable Categorization	592
	14.3.9	Return Codes for the MPI Tool Information Interface	596
	14.3.10	Profiling Interface	596
_			599
	_		599
15.2	Depre	cated since MPI-2.2	602
10 D		T	
			603
16.1		0	603
			603
			603
		<i>v</i> 1	603
			603
		V 1	604
16.2	C++1	Bindings	604

17 Lan	guage Bindings	605
17.1	Fortran Support	605
	17.1.1 Overview	605
	17.1.2 Fortran Support Through the mpi_f08 Module	606
	17.1.3 Fortran Support Through the mpi Module	609
	17.1.4 Fortran Support Through the mpif.h Include File	611
	17.1.5 Interface Specifications, Procedure Names, and the Profiling Interface	612
	17.1.6 MPI for Different Fortran Standard Versions	617
	17.1.7 Requirements on Fortran Compilers	621
	17.1.8 Additional Support for Fortran Register-Memory-Synchronization .	622
	17.1.9 Additional Support for Fortran Numeric Intrinsic Types	623
	Parameterized Datatypes with Specified Precision and Exponent Rang	ge624
	Support for Size-specific MPI Datatypes	627
	Communication With Size-specific Types	630
	17.1.10 Problems With Fortran Bindings for MPI	631
	17.1.11 Problems Due to Strong Typing	633
	17.1.12 Problems Due to Data Copying and Sequence Association with Sub-	
	script Triplets	633
	17.1.13 Problems Due to Data Copying and Sequence Association with Vector	
	Subscripts	636
	17.1.14 Special Constants	637
	17.1.15 Fortran Derived Types	637
	17.1.16 Optimization Problems, an Overview	639
	17.1.17 Problems with Code Movement and Register Optimization	640
	Nonblocking Operations	640
	Persistent Operations	641
	One-sided Communication	641
	MPI_BOTTOM and Combining Independent Variables in Datatypes	641
	Solutions	641
	The Fortran ASYNCHRONOUS Attribute	643
	Calling MPI_F_SYNC_REG	644
	A User Defined Routine Instead of MPI_F_SYNC_REG	645
	Module Variables and COMMON Blocks	646
	The (Poorly Performing) Fortran VOLATILE Attribute	646
	The Fortran TARGET Attribute	646
	17.1.18 Temporary Data Movement and Temporary Memory Modification .	646
	17.1.19 Permanent Data Movement	648
	17.1.20 Comparison with C	648
17.2	Language Interoperability	653
	17.2.1 Introduction	653
	17.2.2 Assumptions	653
	17.2.3 Initialization	653
	17.2.4 Transfer of Handles	654
	17.2.5 Status	656
	17.2.6 MPI Opaque Objects	658
	Datatypes	659
	Callback Functions	660
	Error Handlers	660

		Reduce Operations	661
		17.2.7 Attributes	661
		17.2.8 Extra-State	665
		17.2.9 Constants	665
		17.2.10 Interlanguage Communication	666
A	Lang	guage Bindings Summary	669
	A.1	Defined Values and Handles	669
		A.1.1 Defined Constants	669
		A.1.2 Types	682
		A.1.3 Prototype Definitions	684
		C Bindings	684
		Fortran 2008 Bindings with the mpi_f08 Module	684
		Fortran Bindings with mpif.h or the mpi Module	687
		A.1.4 Deprecated Prototype Definitions	689
		A.1.5 Info Keys	690
		A.1.6 Info Values	690
	A.2	C Bindings	692
	A.3	Fortran 2008 Bindings with the mpi_f08 Module	693
	A.4	Fortran Bindings with mpif.h or the mpi Module	694
В	Cha	$_{ m nge-Log}$	695
В		Changes from Version 3.0 to Version 3.1	695 695
В			
В		Changes from Version 3.0 to Version 3.1	695
В	B.1	Changes from Version 3.0 to Version 3.1	695 695
В	B.1	Changes from Version 3.0 to Version 3.1	695 695 697
В	B.1	Changes from Version 3.0 to Version 3.1	695 695 697 698
В	B.1	Changes from Version 3.0 to Version 3.1 B.1.1 Fixes to Errata in Previous Versions of MPI B.1.2 Changes in MPI-3.1 Changes from Version 2.2 to Version 3.0 B.2.1 Fixes to Errata in Previous Versions of MPI	695 695 697 698 698
В	B.1 B.2	Changes from Version 3.0 to Version 3.1 B.1.1 Fixes to Errata in Previous Versions of MPI B.1.2 Changes in MPI-3.1 Changes from Version 2.2 to Version 3.0 B.2.1 Fixes to Errata in Previous Versions of MPI B.2.2 Changes in MPI-3.0	695 695 697 698 698
	B.1 B.2 B.3 B.4	Changes from Version 3.0 to Version 3.1 B.1.1 Fixes to Errata in Previous Versions of MPI B.1.2 Changes in MPI-3.1 Changes from Version 2.2 to Version 3.0 B.2.1 Fixes to Errata in Previous Versions of MPI B.2.2 Changes in MPI-3.0 Changes from Version 2.1 to Version 2.2	695 695 697 698 698 699 704
Bi	B.1 B.2 B.3 B.4 bliog	Changes from Version 3.0 to Version 3.1 B.1.1 Fixes to Errata in Previous Versions of MPI B.1.2 Changes in MPI-3.1 Changes from Version 2.2 to Version 3.0 B.2.1 Fixes to Errata in Previous Versions of MPI B.2.2 Changes in MPI-3.0 Changes from Version 2.1 to Version 2.2 Changes from Version 2.0 to Version 2.1	695 695 697 698 698 699 704 706
Bi Ex	B.1 B.2 B.3 B.4 bliog	Changes from Version 3.0 to Version 3.1 B.1.1 Fixes to Errata in Previous Versions of MPI B.1.2 Changes in MPI-3.1 Changes from Version 2.2 to Version 3.0 B.2.1 Fixes to Errata in Previous Versions of MPI B.2.2 Changes in MPI-3.0 Changes from Version 2.1 to Version 2.2 Changes from Version 2.0 to Version 2.1 Taphy les Index	695 695 697 698 698 699 704 706 711
Bi Ex M	B.1 B.2 B.3 B.4 bliog camp	Changes from Version 3.0 to Version 3.1 B.1.1 Fixes to Errata in Previous Versions of MPI B.1.2 Changes in MPI-3.1 Changes from Version 2.2 to Version 3.0 B.2.1 Fixes to Errata in Previous Versions of MPI B.2.2 Changes in MPI-3.0 Changes from Version 2.1 to Version 2.2 Changes from Version 2.0 to Version 2.1 raphy les Index onstant and Predefined Handle Index	695 695 697 698 698 699 704 706
Bi Ex M	B.1 B.2 B.3 B.4 bliog camp	Changes from Version 3.0 to Version 3.1 B.1.1 Fixes to Errata in Previous Versions of MPI B.1.2 Changes in MPI-3.1 Changes from Version 2.2 to Version 3.0 B.2.1 Fixes to Errata in Previous Versions of MPI B.2.2 Changes in MPI-3.0 Changes from Version 2.1 to Version 2.2 Changes from Version 2.0 to Version 2.1 Taphy les Index	695 695 697 698 698 699 704 706 711
Bi Ex M	B.1 B.2 B.3 B.4 bliog camp PI C PI D	Changes from Version 3.0 to Version 3.1 B.1.1 Fixes to Errata in Previous Versions of MPI B.1.2 Changes in MPI-3.1 Changes from Version 2.2 to Version 3.0 B.2.1 Fixes to Errata in Previous Versions of MPI B.2.2 Changes in MPI-3.0 Changes from Version 2.1 to Version 2.2 Changes from Version 2.0 to Version 2.1 raphy les Index onstant and Predefined Handle Index	695 695 697 698 698 699 704 706 711 716

List of Figures

5.1	Collective communications, an overview	143
5.2	Intercommunicator allgather	146
5.3	Intercommunicator reduce-scatter	147
5.4	Gather example	153
5.5	Gatherv example with strides	154
5.6	Gatherv example, 2-dimensional	155
5.7	Gatherv example, 2-dimensional, subarrays with different sizes	156
5.8	Gatherv example, 2-dimensional, subarrays with different sizes and strides .	158
5.9	Scatter example	163
5.10	Scattery example with strides	163
5.11	Scattery example with different strides and counts	164
5.12	Race conditions with point-to-point and collective communications	217
5.13	Overlapping Communicators Example	221
0.1	The Application of the Applicati	0.40
6.1	Intercommunicator creation using MPI_COMM_CREATE	242
6.2	Intercommunicator construction with MPI_COMM_SPLIT	246
6.3	Three-group pipeline	263
6.4	Three-group ring	264
7.1	Neighborhood gather communication example	316
7.2	Set-up of process structure for two-dimensional parallel Poisson solver	330
7.3	Communication routine with local data copying and sparse neighborhood	
	all-to-all.	331
7.4	Communication routine with sparse neighborhood all-to-all-w and without	-
• • •	local data copying	332
11.1	Schematic description of the public/private window operations in the	
	MPI_WIN_SEPARATE memory model for two overlapping windows	436
	Active target communication	438
	Active target communication, with weak synchronization	439
	Passive target communication	440
	Active target communication with several processes	444
	Symmetric communication	462
11.7	Deadlock situation	463
11.8	No deadlock	463
19 1	Etymog and Clatumes	400
10.1	Etypes and filetypes	492
	Partitioning a file among parallel processes	492
13.3	Displacements	505

13.4	Example array file layout	558
13.5	Example local array filetype for process 1	559
17.1	Status conversion routines	357

List of Tables

2.1	Deprecated and Removed constructs	18
3.1 3.2 3.3 3.4	Predefined MPI datatypes corresponding to Fortran datatypes Predefined MPI datatypes corresponding to C datatypes Predefined MPI datatypes corresponding to both C and Fortran datatypes	25 26 27 27
4.1	combiner values returned from MPI_TYPE_GET_ENVELOPE	117
6.1	MPI_COMM_* Function Behavior (in Inter-Communication Mode)	259
8.1 8.2	Error classes (Part 1)	348 349
	C types of attribute value argument to MPI_WIN_GET_ATTR and MPI_WIN_SET_ATTR	414 452
13.2	Data access routines	507 540 556
14.2 14.3 14.4	MPI tool information interface verbosity levels	568 569 571 575 597
16.2 16.3	Removed MPI-1 functions and their replacements	603 604 604
	Specific Fortran procedure names and related calling conventions. MPI_ISEND is used as an example. For routines without choice buffers, only 1A and 2A apply	613 639

Acknowledgments

This document is the product of a number of distinct efforts in three distinct phases: one for each of MPI-1, MPI-2, and MPI-3. This section describes these in historical order, starting with MPI-1. Some efforts, particularly parts of MPI-2, had distinct groups of individuals associated with them, and these efforts are detailed separately.

This document represents the work of many people who have served on the MPI Forum. The meetings have been attended by dozens of people from many parts of the world. It is the hard and dedicated work of this group that has led to the MPI standard.

The technical development was carried out by subgroups, whose work was reviewed by the full committee. During the period of development of the Message-Passing Interface (MPI), many people helped with this effort.

Those who served as primary coordinators in MPI-1.0 and MPI-1.1 are:

- Jack Dongarra, David Walker, Conveners and Meeting Chairs
- Ewing Lusk, Bob Knighten, Minutes
- Marc Snir, William Gropp, Ewing Lusk, Point-to-Point Communication
- Al Geist, Marc Snir, Steve Otto, Collective Communication
- Steve Otto, Editor
- Rolf Hempel, Process Topologies
- Ewing Lusk, Language Binding
- William Gropp, Environmental Management
- James Cownie, Profiling
- Tony Skjellum, Lyndon Clarke, Marc Snir, Richard Littlefield, Mark Sears, Groups, Contexts, and Communicators
- Steven Huss-Lederman, Initial Implementation Subset

The following list includes some of the active participants in the MPI-1.0 and MPI-1.1 process not mentioned above.

1	Ed Anderson	Robert Babb	Joe Baron	Eric Barszcz
2	Scott Berryman	Rob Bjornson	Nathan Doss	Anne Elster
3	Jim Feeney	Vince Fernando	Sam Fineberg	Jon Flower
4	Daniel Frye	Ian Glendinning	Adam Greenberg	Robert Harrison
5	Leslie Hart	Tom Haupt	Don Heller	Tom Henderson
6	Alex Ho	C.T. Howard Ho	Gary Howell	John Kapenga
7	James Kohl	Susan Krauss	Bob Leary	Arthur Maccabe
8	Peter Madams	Alan Mainwaring	Oliver McBryan	Phil McKinley
9	Charles Mosher	Dan Nessett	Peter Pacheco	Howard Palmer
10	Paul Pierce	Sanjay Ranka	Peter Rigsbee	Arch Robison
11	Erich Schikuta	Ambuj Singh	Alan Sussman	Robert Tomlinson

The University of Tennessee and Oak Ridge National Laboratory made the draft available by anonymous FTP mail servers and were instrumental in distributing the document.

The work on the MPI-1 standard was supported in part by ARPA and NSF under grant ASC-9310330, the National Science Foundation Science and Technology Center Cooperative Agreement No. CCR-8809615, and by the Commission of the European Community through Esprit project P6643 (PPPE).

MPI-1.2 and MPI-2.0:

Those who served as primary coordinators in MPI-1.2 and MPI-2.0 are:

- Ewing Lusk, Convener and Meeting Chair
- Steve Huss-Lederman, Editor
- Ewing Lusk, Miscellany
- Bill Saphir, Process Creation and Management
- Marc Snir, One-Sided Communications
- Bill Gropp and Anthony Skjellum, Extended Collective Operations
- Steve Huss-Lederman, External Interfaces
- Bill Nitzberg, I/O
- Andrew Lumsdaine, Bill Saphir, and Jeff Squyres, Language Bindings
- Anthony Skjellum and Arkady Kanevsky, Real-Time

The following list includes some of the active participants who attended MPI-2 Forum meetings and are not mentioned above.

Greg Astfalk	Robert Babb	Ed Benson	Rajesh Bordawekar	1	
Pete Bradley	Peter Brennan	Ron Brightwell	Maciej Brodowicz	2	
Eric Brunner	Greg Burns	Margaret Cahir	Pang Chen	3	
Ying Chen	Albert Cheng	Yong Cho	Joel Clark	4	
Lyndon Clarke	Laurie Costello	Dennis Cottel	Jim Cownie	5	
Zhenqian Cui	Suresh Damodaran-Kar	nal	Raja Daoud	6	
Judith Devaney	David DiNucci	Doug Doefler	Jack Dongarra	7	
Terry Dontje	Nathan Doss	Anne Elster	Mark Fallon	8	
Karl Feind	Sam Fineberg	Craig Fischberg	Stephen Fleischman	9	
Ian Foster	Hubertus Franke	Richard Frost	Al Geist	10	
Robert George	David Greenberg	John Hagedorn	Kei Harada	11	
Leslie Hart	Shane Hebert	Rolf Hempel	Tom Henderson	12	
Alex Ho	Hans-Christian Hoppe	Joefon Jann	Terry Jones	13	
Karl Kesselman	Koichi Konishi	Susan Kraus	Steve Kubica	14	
Steve Landherr	Mario Lauria	Mark Law	Juan Leon	15	
Lloyd Lewins	Ziyang Lu	Bob Madahar	Peter Madams	16	
John May	Oliver McBryan	Brian McCandless	Tyce McLarty	17	
Thom McMahon	Harish Nag	Nick Nevin	Jarek Nieplocha	18	
Ron Oldfield	Peter Ossadnik	Steve Otto	Peter Pacheco	19	
Yoonho Park	Perry Partow	Pratap Pattnaik	Elsie Pierce	20	
Paul Pierce	Heidi Poxon	Jean-Pierre Prost	Boris Protopopov	21	
James Pruyve	Rolf Rabenseifner	Joe Rieken	Peter Rigsbee	22	
Tom Robey	Anna Rounbehler	Nobutoshi Sagawa	Arindam Saha	23	
Eric Salo	Darren Sanders	Eric Sharakan	Andrew Sherman	24	
Fred Shirley	Lance Shuler	A. Gordon Smith	Ian Stockdale	25	
David Taylor	Stephen Taylor	Greg Tensa	Rajeev Thakur	26	
Marydell Tholburn	Dick Treumann	Simon Tsang	Manuel Ujaldon	27	
David Walker	Jerrell Watts	Klaus Wolf	Parkson Wong	28	
Dave Wright				29	
The MPI Forum	also acknowledges and ap	preciates the valuable	e input from people via	30	
e-mail and in person.				31	
The following ins	stitutions supported the N	MPI-2 effort through	time and travel support	32	
for the people listed a	above.			33	
Argonne Nationa	l Laboratory			34	
Bolt, Beranek, an				35	
California Institu	ite of Technology			36	
Center for Comp	uting Sciences			37	
Convex Compute	er Corporation			38	
Cray Research					
Digital Equipment Corporation					
Dolphin Interconnect Solutions, Inc.					
Edinburgh Parallel Computing Centre					
General Electric Company					
German National Research Center for Information Technology					
Hewlett-Packard					
Hitachi				46	
Hughes Aircraft				47	
Intel Corporation	1			48	

```
2
          Khoral Research
3
          Lawrence Livermore National Laboratory
          Los Alamos National Laboratory
5
          MPI Software Techology, Inc.
6
          Mississippi State University
          NEC Corporation
          National Aeronautics and Space Administration
9
          National Energy Research Scientific Computing Center
10
          National Institute of Standards and Technology
11
          National Oceanic and Atmospheric Administration
12
          Oak Ridge National Laboratory
13
          Ohio State University
14
          PALLAS GmbH
15
          Pacific Northwest National Laboratory
16
          Pratt & Whitney
17
          San Diego Supercomputer Center
18
          Sanders, A Lockheed-Martin Company
19
          Sandia National Laboratories
20
          Schlumberger
21
          Scientific Computing Associates, Inc.
22
          Silicon Graphics Incorporated
23
          Sky Computers
24
          Sun Microsystems Computer Corporation
25
          Syracuse University
26
          The MITRE Corporation
27
          Thinking Machines Corporation
28
          United States Navy
29
          University of Colorado
30
          University of Denver
31
          University of Houston
32
          University of Illinois
33
          University of Maryland
34
          University of Notre Dame
35
          University of San Fransisco
36
          University of Stuttgart Computing Center
37
          University of Wisconsin
38
          MPI-2 operated on a very tight budget (in reality, it had no budget when the first
39
     meeting was announced). Many institutions helped the MPI-2 effort by supporting the
40
     efforts and travel of the members of the MPI Forum. Direct support was given by NSF and
41
     DARPA under NSF contract CDA-9115428 for travel by U.S. academic participants and
42
     Esprit under project HPC Standards (21111) for European participants.
43
```

MPI-1.3 and MPI-2.1:

44

45

46 47

48

1

International Business Machines

The editors and organizers of the combined documents have been:

• Richard Graham, Convener and Meeting Chair

- Jack Dongarra, Steering Committee
- Al Geist, Steering Committee
- Bill Gropp, Steering Committee
- Rainer Keller, Merge of MPI-1.3
- Andrew Lumsdaine, Steering Committee
- Ewing Lusk, Steering Committee, MPI-1.1-Errata (Oct. 12, 1998) MPI-2.1-Errata Ballots 1, 2 (May 15, 2002)
- Rolf Rabenseifner, Steering Committee, Merge of MPI-2.1 and MPI-2.1-Errata Ballots 3, 4 (2008)

12

13 14

15

16 17

18

19 20

21 22

23

26

27 28

29

30 31

34

35 36

37 38

All chapters have been revisited to achieve a consistent MPI-2.1 text. Those who served as authors for the necessary modifications are:

- Bill Gropp, Front matter, Introduction, and Bibliography
- Richard Graham, Point-to-Point Communication
- Adam Moody, Collective Communication
- Richard Treumann, Groups, Contexts, and Communicators
- Jesper Larsson Träff, Process Topologies, Info-Object, and One-Sided Communications
- George Bosilca, Environmental Management
- David Solt, Process Creation and Management
- Bronis R. de Supinski, External Interfaces, and Profiling
- Rajeev Thakur, I/O
- Jeffrey M. Squyres, Language Bindings and MPI-2.1 Secretary
- Rolf Rabenseifner, Deprecated Functions and Annex Change-Log
- Alexander Supalov and Denis Nagorny, Annex Language Bindings

The following list includes some of the active participants who attended MPI-2 Forum meetings and in the e-mail discussions of the errata items and are not mentioned above.

Pavan Balaii Purushotham V. Bangalore Brian Barrett 1 2 Richard Barrett Christian Bell Robert Blackmore 3 Gil Bloch Ron Brightwell Jeffrey Brown Darius Buntinas Jonathan Carter Nathan DeBardeleben Terry Dontje Gabor Dozsa Edric Ellis 5 Karl Feind Edgar Gabriel Patrick Geoffray 6 David Gingold Dave Goodell Erez Haba Robert Harrison Thomas Herault Steve Hodson Yann Kalemkarian Torsten Hoefler Joshua Hursey 9 Sameer Kumar 10 Matthew Koop Quincey Koziol 11 Miron Livny Kannan Narasimhan Mark Pagel Avneesh Pant Steve Poole Howard Pritchard 12 13 Craig Rasmussen **Hubert Ritzdorf** Rob Ross Tony Skjellum Brian Smith Vinod Tipparaju 14 Jesper Larsson Träff Keith Underwood 15 The MPI Forum also acknowledges and appreciates the valuable input from people via 16 17 e-mail and in person. 18 The following institutions supported the MPI-2 effort through time and travel support for the people listed above. 19 Argonne National Laboratory 20 Bull 21 Cisco Systems, Inc. 22 Cray Inc. 23 The HDF Group 24 Hewlett-Packard 25 IBM T.J. Watson Research 26 Indiana University 27 Institut National de Recherche en Informatique et Automatique (INRIA) 28 Intel Corporation 29 Lawrence Berkeley National Laboratory 30 Lawrence Livermore National Laboratory 31 Los Alamos National Laboratory 32 Mathworks Mellanox Technologies 34 Microsoft 35 Myricom 36 NEC Laboratories Europe, NEC Europe Ltd. 37 Oak Ridge National Laboratory 38 Ohio State University 39 Pacific Northwest National Laboratory QLogic Corporation 41 Sandia National Laboratories 42 SiCortex 43 Silicon Graphics Incorporated

44

45

46

47

48

Sun Microsystems, Inc.

University of Houston

University of Alabama at Birmingham

University of Illinois at Urbana-Champaign

University of Stuttgart, High Performance Computing Center Stuttgart (HLRS) University of Tennessee, Knoxville

University of Wisconsin

Funding for the MPI Forum meetings was partially supported by award #CCF-0816909 from the National Science Foundation. In addition, the HDF Group provided travel support for one U.S. academic.

MPI-2.2:

All chapters have been revisited to achieve a consistent MPI-2.2 text. Those who served as authors for the necessary modifications are:

- William Gropp, Front matter, Introduction, and Bibliography; MPI-2.2 chair.
- Richard Graham, Point-to-Point Communication and Datatypes
- Adam Moody, Collective Communication
- Torsten Hoefler, Collective Communication and Process Topologies
- Richard Treumann, Groups, Contexts, and Communicators
- Jesper Larsson Träff, Process Topologies, Info-Object and One-Sided Communications
- George Bosilca, Datatypes and Environmental Management
- David Solt, Process Creation and Management
- Bronis R. de Supinski, External Interfaces, and Profiling
- Rajeev Thakur, I/O
- Jeffrey M. Squyres, Language Bindings and MPI-2.2 Secretary
- Rolf Rabenseifner, Deprecated Functions, Annex Change-Log, and Annex Language Bindings
- Alexander Supalov, Annex Language Bindings

The following list includes some of the active participants who attended MPI-2 Forum meetings and in the e-mail discussions of the errata items and are not mentioned above.

XXV

1	Pavan Balaji	Purushotham V. Bangalore	Brian Barrett		
2	Richard Barrett	Christian Bell	Robert Blackmore		
3	Gil Bloch	Ron Brightwell	Greg Bronevetsky		
4	Jeff Brown	Darius Buntinas	Jonathan Carter		
5	Nathan DeBardeleben	Terry Dontje	Gabor Dozsa		
6	Edric Ellis	Karl Feind	Edgar Gabriel		
7	Patrick Geoffray	Johann George	David Gingold		
8	David Goodell	Erez Haba	Robert Harrison		
9	Thomas Herault	Marc-André Hermanns	Steve Hodson		
10	Joshua Hursey	Yutaka Ishikawa	Bin Jia		
11	Hideyuki Jitsumoto	Terry Jones	Yann Kalemkarian		
12	Ranier Keller	Matthew Koop	Quincey Koziol		
13	Manojkumar Krishnan	Sameer Kumar	Miron Livny		
14	Andrew Lumsdaine	Miao Luo	Ewing Lusk		
15	Timothy I. Mattox	Kannan Narasimhan	Mark Pagel		
16	Avneesh Pant	Steve Poole	Howard Pritchard		
17	Craig Rasmussen	Hubert Ritzdorf	Rob Ross		
18	Martin Schulz	Pavel Shamis	Galen Shipman		
19	Christian Siebert	Anthony Skjellum	Brian Smith		
20	Naoki Sueyasu	Vinod Tipparaju	Keith Underwood		
21	Rolf Vandevaart	Abhinav Vishnu	Weikuan Yu		
22	The MPI Forum also	acknowledges and appreciates	s the valuable input from people via		
23	e-mail and in person.				
24	The following institut	tions supported the MPI-2.2 ef	fort through time and travel support		
25	for the people listed above	re.			
26	Argonne National La	aboratory			
27	Auburn University				
28	Bull				
29	Cisco Systems, Inc.				
30	Cray Inc.				
31	Forschungszentrum J	Jülich			
32					
33	The HDF Group				
34	Hewlett-Packard				
35	International Business Machines				
36	Indiana University				
37	Institut National de Recherche en Informatique et Automatique (INRIA)				
38		ed Science & Engineering Cor	poration		
39	Intel Corporation				
40	Lawrence Berkeley N				
41	Lawrence Livermore National Laboratory				

NEC Corporation
Oak Ridge National Laboratory

Mellanox Technologies

Mathworks

Microsoft

Myricom

42

43

44

45

46

47

Los Alamos National Laboratory

Ohio State University	1
Pacific Northwest National Laboratory	2
QLogic Corporation	3
RunTime Computing Solutions, LLC	4
Sandia National Laboratories	5
SiCortex, Inc.	6
Silicon Graphics Inc.	7 8
Sun Microsystems, Inc. Tokyo Institute of Technology	9
University of Alabama at Birmingham	10
University of Houston	11
University of Illinois at Urbana-Champaign	12
University of Stuttgart, High Performance Computing Center Stuttgart (HLRS)	13
University of Tennessee, Knoxville	14
University of Tokyo	15
University of Wisconsin	16
Funding for the MPI Forum meetings was partially supported by awards #CCF-0816909	17
and #CCF-1144042 from the National Science Foundation. In addition, the HDF Group	18 19
provided travel support for one U.S. academic.	20
MPI-3:	21
	22
MPI-3 is a significant effort to extend and modernize the MPI Standard.	23
The editors and organizers of the MPI-3 have been:	24
• William Gropp, Steering committee, Front matter, Introduction, Groups, Contexts,	25
and Communicators, One-Sided Communications, and Bibliography	26
	27
• Richard Graham, Steering committee, Point-to-Point Communication, Meeting Con-	28 29
vener, and MPI-3 chair	30
• Torsten Hoefler, Collective Communication, One-Sided Communications, and Process	31
Topologies	32
• George Bosilca, Datatypes and Environmental Management	33
• George Bosnea, Datatypes and Environmental Management	34
• David Solt, Process Creation and Management	35
• Bronis R. de Supinski, External Interfaces and Tool Support	36 37
• Rajeev Thakur, I/O and One-Sided Communications	38 39
• Darius Buntinas, Info Object	40
	41
• Jeffrey M. Squyres, Language Bindings and MPI-3 Secretary	42
• Rolf Rabenseifner, Steering committee, Terms and Definitions, and Fortran Bindings,	43
Deprecated Functions, Annex Change-Log, and Annex Language Bindings	44
. Chair Dagnauggan Fantnan Dindings	45 46
• Craig Rasmussen, Fortran Bindings	46

The following list includes some of the active participants who attended MPI-3 Forum meetings or participated in the e-mail discussions and who are not mentioned above.

Tatsuya Abe Tomoya Adachi Sadaf Alam
Reinhold Bader Pavan Balaji Purushotham V. Bangalore

Brian Barrett Richard Barrett Robert Blackmore
Aurelien Bouteiller Ron Brightwell Greg Bronevetsky
Jed Brown Darius Buntinas Devendar Bureddy
Arno Candel George Carr Mohamad Chaarawi

9 Raghunath Raja Chandrasekar James Dinan Terry Dontje
10 Edgar Gabriel Balazs Gerofi Brice Goglin
11 David Goodell Manjunath Gorentla Erez Haba

Jeff Hammond Thomas Herault Marc-André Hermanns Jennifer Herrett-Skjellum Nathan Hjelm Atsushi Hori

14 Joshua Hursey Marty Itzkowitz Yutaka Ishikawa 15 Nysal Jan Bin Jia Hidevuki Jitsumoto 16 Yann Kalemkarian Krishna Kandalla Takahiro Kawashima 17 Chulho Kim Dries Kimpe Christof Klausecker Dieter Kranzlmueller 18 Alice Koniges Quincey Koziol

Manojkumar Krishnan Sameer Kumar Eric Lantz

20 Jav Lofstead Bill Long Andrew Lumsdaine 21 Miao Luo Ewing Lusk Adam Moody Nick M. Maclaren 22 Amith Mamidala Guillaume Mercier 23 Scott McMillan Douglas Miller Kathryn Mohror 24 Tim Murray Tomotake Nakamura Takeshi Nanri 25 Swann Perarnau Steve Oyanagi Mark Pagel

26 Sreeram Potluri Howard Pritchard Rolf Riesen 27 **Hubert Ritzdorf** Kuninobu Sasaki Timo Schneider 28 Martin Schulz Gilad Shainer Christian Siebert 29 Anthony Skiellum Brian Smith Marc Snir

Raffaele Giuseppe Solca Shinji Sumimoto Alexander Supalov Sayantan Sur Masamichi Takagi Fabian Tillier Vinod Tipparaju Jesper Larsson Träff Richard Treumann

Keith Underwood Rolf Vandevaart Anh Vo

Abhinav Vishnu Min Xie Enqiang Zhou

The MDI Ferrum also collected and appreciated the value ble investigation.

The MPI Forum also acknowledges and appreciates the valuable input from people via e-mail and in person.

The MPI Forum also thanks those that provided feedback during the public comment period. In particular, the Forum would like to thank Jeremiah Wilcock for providing detailed comments on the entire draft standard.

The following institutions supported the MPI-3 effort through time and travel support for the people listed above.

Argonne National Laboratory

43 Bul

34

35

36

37

38 39

40

41

42

44 Cisco Systems, Inc.

45 Cray Inc.
 46 CSCS

ETH Zurich

Fujitsu Ltd.

German Research School for Simulation Sciences
The HDF Group
Hewlett-Packard
International Business Machines
IBM India Private Ltd
Indiana University
Institut National de Recherche en Informatique et Automatique (INRIA)
Institute for Advanced Science & Engineering Corporation
Intel Corporation
Lawrence Berkeley National Laboratory
Lawrence Livermore National Laboratory
Los Alamos National Laboratory
Mellanox Technologies, Inc.
Microsoft Corporation
NEC Corporation
•
National Oceanic and Atmospheric Administration, Global Systems Division NVIDIA Corporation
•
Oak fudge National Daboratory
The Ohio State University Oracle America
1 lationin Computing
THIREIV AIOS
RunTime Computing Solutions, LLC
Sandia National Laboratories
Technical University of Chemnitz
Tokyo Institute of Technology
University of Alabama at Birmingham
University of Chicago
University of Houston
University of Illinois at Urbana-Champaign
University of Stuttgart, High Performance Computing Center Stuttgart (HLRS)
University of Tennessee, Knoxville
University of Tokyo
Funding for the MPI Forum meetings was partially supported by awards #CCF-0816909
and #CCF-1144042 from the National Science Foundation. In addition, the HDF Group
and Sandia National Laboratories provided travel support for one U.S. academic each.
MPI-3.1:
This is the initial stub for the MPI-3.1 credits. We use this to collect information on the
participants and their institutions.
Marc-Andre Hermanns Forschungszentrum Jülich
German Research School for Simulation Sciences
and
Jülich Aachen Research Alliance, High-Performance Computing (JARA-HPC)
4