```
In [4]: ;ls
```

Correlation.G5.G.C.txt

Correlation.G5.G.J.txt

Correlation.G5.G.JC.txt

Correlation.G5.G.PBLUP.txt

G0.Genotype.ID

G0.ID

G0.noGenotype.ID

G1.Genotype.ID

G1.ID

G1.noGenotype.ID

G2.Genotype.ID

G2.ID

G2.noGenotype.ID

G3.Genotype.ID

G3.ID

G3.noGenotype.ID

G4.Genotype.ID

G4.ID

G4.noGenotype.ID

G5.Genotype.ID

G5.ID

G5.noGenotype.ID

GenNF.txt

PedAll.txt

Phe.txt

PheAll.txt

Regression.G5.G.C.txt

Regression.G5.G.J.txt

Regression.G5.G.JC.txt

Regression.G5.G.PBLUP.txt

all.ID

alphaEstimates

genotype.ID

meanOfSNPGAll

meanOfSNPGG0

meanOfSNPGG1

meanOfSNPGG2

meanOfSNPGG3

meanOfSNPGG4

meanOfSNPGG5

noGenotype.ID

sim.bv
sim.phenotype

```
In [5]: ;awk '{print $1}' PedAll.txt | sort -b > all.ID
 In [6]: ;awk '{print $1}' GenNF.txt | sort -b > genotype.ID
 In [7]: |;join -v1 all.ID genotype.ID > noGenotype.ID
 In [8]: |;awk '{print $1,$2}' Phe.txt > sim.phenotype
 In [9]: ;awk '{print $1,$3}' PheAll.txt > sim.bv
In [10]: | ; awk 'NR >=1 && NR <=8000 {print $1}' PedAll.txt | sort -b > G0.ID
In [11]: ; awk 'NR >=8001 && NR <=16000 {print $1}' PedAll.txt | sort -b > G1.ID
In [12]: ; awk 'NR >=16001 && NR <=24000 {print $1}' PedAll.txt | sort -b > G2.ID
In [13]: ; awk 'NR >=24001 && NR <=32000 {print $1}' PedAll.txt | sort -b > G3.ID
In [14]: ; awk 'NR >=32001 && NR <=40000 {print $1}' PedAll.txt | sort -b > G4.ID
In [15]: ; awk 'NR >=40001 && NR <=48000 {print $1}' PedAll.txt | sort -b > G5.ID
In [16]: ;join GO.ID genotype.ID > GO.Genotype.ID
In [17]: ;join G1.ID genotype.ID > G1.Genotype.ID
In [18]: | ;join G2.ID genotype.ID > G2.Genotype.ID
In [19]: ; join G3.ID genotype.ID > G3.Genotype.ID
In [20]: | ;join G4.ID genotype.ID > G4.Genotype.ID
```

```
In [21]: |;join G5.ID genotype.ID > G5.Genotype.ID
In [22]: ;join -v1 G0.ID genotype.ID > G0.noGenotype.ID
In [23]: ;join -v1 G1.ID genotype.ID > G1.noGenotype.ID
        ; join -v1 G2.ID genotype.ID > G2.noGenotype.ID
In [24]:
In [25]:
         ; join -v1 G3.ID genotype.ID > G3.noGenotype.ID
         ;join -v1 G4.ID genotype.ID > G4.noGenotype.ID
In [26]:
         ; join -v1 G5.ID genotype.ID > G5.noGenotype.ID
In [27]:
In [28]:
         ;wc G0.Genotype.ID;wc G1.Genotype.ID;wc G2.Genotype.ID;wc G3.Genotype.ID;wc G4.Genotype.ID;wc G5.Genotype
          200 200 1200 GO.Genotype.ID
          200 200 1200 G1.Genotype.ID
          200 200 1200 G2.Genotype.ID
          200 200 1200 G3.Genotype.ID
          200 200 1200 G4.Genotype.ID
          8000 8000 48000 G5.Genotype.ID
In [29]:
         ;wc G0.noGenotype.ID;wc G1.noGenotype.ID;wc G2.noGenotype.ID;wc G3.noGenotype.ID;wc G4.noGenotype.ID;wc G
          7800 7800 46800 GO.noGenotype.ID
          7800
                7800 46800 G1.noGenotype.ID
          7800 7800 46800 G2.noGenotype.ID
          7800
                7800 46800 G3.noGenotype.ID
               7800 46800 G4.noGenotype.ID
         0 0 0 G5.noGenotype.ID
```

```
In [30]:
         ped,A Mats,numSSBayes = calc Ai("PedAll.txt", "genotype.ID", calculateInbreeding=false)
         nothing
         df
                = read genotypes("GenNF.txt", numSSBayes)
         M Mats = make MMats(df,A Mats,ped);
                                                                                  # without centering
         y Vecs = make yVecs("sim.phenotype",ped,numSSBayes);
         Z Mats = make ZMats(ped, y Vecs, numSSBayes)
         X Mats, W Mats = make XWMats(Z Mats, M Mats, numSSBayes)
                                                                                  # no J
         nothing
In [31]:
                = 0.910
         vG
         vRes
                = 0.910
         nIter = 50000
         @time aHat1,alphaHat,betaHat,epsiHat =
         ssGibbs(M_Mats,y_Vecs,Z_Mats,X_Mats,W_Mats,A_Mats, numSSBayes,vRes,vG,nIter, outFreq=5000);
         nothing
         This is iteration 5000
         This is iteration 10000
         This is iteration 15000
         This is iteration 20000
         This is iteration 25000
         This is iteration 30000
         This is iteration 35000
         This is iteration 40000
         This is iteration 45000
         This is iteration 50000
         7089.932488 seconds (23.86 G allocations: 737.011 GB, 2.63% gc time)
        betaHat
In [32]:
Out[32]: 1-element Array{Float64,1}:
          31.2646
         using DataFrames
In [33]:
```

```
In [34]:
         df = readtable("sim.bv", eltypes =[UTF8String, Float64], separator = ' ',header=false)
         a = Array(Float64, numSSBayes.num ped)
         for (i,ID) in enumerate(df[:,1])
             j = ped.idMap[ID].seqID
             a[j] = df[i,2]
         end
In [35]: IDs = readtable("all.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor1 = cor(a[posAi],aHat1[posAi])[1,1]
         reg1 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - all.ID : correlation = %6.3f\n", cor1 ) # with epsilon
         @printf("SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = %6.3f\n", reg1)
         JCAll = cor1
         SSBRJC from Gibbs - all.ID : correlation = 0.920
         SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = 0.991
Out[35]: 0.9198182765557219
In [36]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[36]: 1.8397918421869004
In [37]: IDs = readtable("genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor2 = cor(a[posAi],aHat1[posAi])[1,1]
         reg2 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - genotype.ID : correlation = %6.3f\n", cor2 ) # with epsilon
         @printf("SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = %6.3f\n", reg2)
         JCAll = cor2
         SSBRJC from Gibbs - genotype.ID : correlation = 0.915
         SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = 1.067
Out[37]: 0.9151714975709734
In [38]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[38]: 3.2833169600727357
```

```
In [39]: IDs = readtable("noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor3 = cor(a[posAi],aHat1[posAi])[1,1]
         reg3 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - noGenotype.ID : correlation = %6.3f\n", cor3 ) # with epsilon
         @printf("SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg3)
         JCAll = cor3
         SSBRJC from Gibbs - noGenotype.ID : correlation = 0.888
         SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = 0.976
Out[39]: 0.8875986544729213
In [40]: | GEBV = aHat1[posAi]
         mean (GEBV)
Out[40]: 1.506670661136323
In [41]: IDs = readtable("G0.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.ID : correlation = %6.3f\n", cor4 ) # with epsilon
         @printf("SSBRJC from Gibbs - G0.ID : regression of TBV on GEBV = %6.3f\n", req4)
         JCAll = cor4
         SSBRJC from Gibbs - G0.ID : correlation = 0.744
         SSBRJC from Gibbs - G0.ID: regression of TBV on GEBV = 0.960
Out[41]: 0.7439457946003861
In [42]: GEBV = aHat1[posAi]
         GOGEBV=mean(GEBV)
Out[42]: 0.14387195964303134
```

```
In [43]: IDs = readtable("G1.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.ID : correlation = %6.3f\n", cor4 ) # with epsilon
         @printf("SSBRJC from Gibbs - G1.ID : regression of TBV on GEBV = %6.3f\n", req4)
         JCAll = cor4
         SSBRJC from Gibbs - G1.ID : correlation = 0.774
         SSBRJC from Gibbs - G1.ID: regression of TBV on GEBV = 0.991
Out[43]: 0.7743602750095564
In [44]: GEBV = aHat1[posAi]
         G1GEBV=mean(GEBV)
Out[44]: 0.9651322537398905
In [45]: IDs = readtable("G2.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor5 = cor(a[posAi],aHat1[posAi])[1,1]
         reg5 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.ID : correlation = %6.3f\n", cor5 ) # with epsilon
         @printf("SSBRJC from Gibbs - G2.ID : regression of TBV on GEBV = %6.3f\n", reg5)
         JCAll = cor5
         SSBRJC from Gibbs - G2.ID : correlation = 0.762
         SSBRJC from Gibbs - G2.ID : regression of TBV on GEBV = 1.002
Out[45]: 0.7618567386802203
In [46]: GEBV = aHat1[posAi]
         G2GEBV=mean(GEBV)
Out[46]: 1.6096875580175256
```

```
In [47]: IDs = readtable("G3.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor6 = cor(a[posAi],aHat1[posAi])[1,1]
         reg6 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.ID : correlation = %6.3f\n", cor6 ) # with epsilon
         @printf("SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = %6.3f\n", reg6)
         JCAll = cor6
         SSBRJC from Gibbs - G3.ID : correlation = 0.769
         SSBRJC from Gibbs - G3.ID: regression of TBV on GEBV = 0.998
Out[47]: 0.7688386862104453
In [48]: GEBV = aHat1[posAi]
         G3GEBV=mean(GEBV)
Out[48]: 2.1862887904177404
In [49]: IDs = readtable("G4.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor7 = cor(a[posAi],aHat1[posAi])[1,1]
         reg7 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.ID : correlation = %6.3f\n", cor7 ) # with epsilon
         @printf("SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = %6.3f\n", req7)
         JCAll = cor7
         SSBRJC from Gibbs - G4.ID : correlation = 0.770
         SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = 1.010
Out[49]: 0.7702947122288006
In [50]: GEBV = aHat1[posAi]
         G4GEBV=mean(GEBV)
Out[50]: 2.794467693949836
```

```
In [51]: IDs = readtable("G5.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor8 = cor(a[posAi],aHat1[posAi])[1,1]
         reg8 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.ID : correlation = %6.3f\n", cor8 ) # with epsilon
         @printf("SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = %6.3f\n", reg8)
         JCAll = cor8
         SSBRJC from Gibbs - G5.ID : correlation = 0.899
         SSBRJC from Gibbs - G5.ID: regression of TBV on GEBV = 1.056
Out[51]: 0.898568742463888
In [52]: GEBV = aHat1[posAi]
         G5GEBV=mean(GEBV)
Out[52]: 3.339302797353377
In [53]: IDs = readtable("G0.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         \#TBV = a[posAi]
         #GEBV = aHat1[posAi]
         \#reg = linreg(X,Y)
         \#reg = linreg(GEBV, TBV)[2,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : correlation = %6.3f\n", cor9 ) # with epsilon
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = %6.3f\n", reg9)
         JCAll = cor9
         SSBRJC from Gibbs - G0.Genotype.ID : correlation = 0.943
         SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = 1.105
Out[53]: 0.9426107991471925
In [54]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[54]: 1.8457131669871922
```

```
In [55]: IDs = readtable("G1.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         \#TBV = a[posAi]
         #GEBV = aHat1[posAi]
         \#reg = linreg(X,Y)
         #reg = linreg(GEBV, TBV)[2,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : correlation = %6.3f\n", cor9 ) # with epsilon
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = %6.3f\n", reg9)
         JCAll = cor9
         SSBRJC from Gibbs - G1.Genotype.ID : correlation = 0.943
         SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = 1.026
Out[55]: 0.9426791488320159
         GEBV = aHat1[posAi]
In [56]:
         mean(GEBV)
Out[56]: 2.3210255168023504
In [57]: IDs = readtable("G2.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor10 = cor(a[posAi],aHat1[posAi])[1,1]
         reg10 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : correlation = %6.3f\n", cor10 ) # with epsilon
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = %6.3f\n", req10)
         JCAll = cor10
         SSBRJC from Gibbs - G2.Genotype.ID : correlation = 0.939
         SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = 1.044
Out[57]: 0.9394569370336202
In [58]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[58]: 2.8008803296389253
```

```
In [59]: IDs = readtable("G3.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor11 = cor(a[posAi],aHat1[posAi])[1,1]
         reg11 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : correlation = %6.3f\n", cor11 ) # with epsilon
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = %6.3f\n", req11)
         JCAll = cor11
         SSBRJC from Gibbs - G3.Genotype.ID : correlation = 0.928
         SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = 1.026
Out[59]: 0.9275557171909448
In [60]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[60]: 3.3825679420917156
In [61]: IDs = readtable("G4.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor12 = cor(a[posAi],aHat1[posAi])[1,1]
         reg12 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : correlation = %6.3f\n", cor12 ) # with epsilon
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = %6.3f\n", reg12)
         JCAll = cor12
         SSBRJC from Gibbs - G4.Genotype.ID : correlation = 0.874
         SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = 1.008
Out[61]: 0.8740043078877597
In [62]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[62]: 3.8269643536178286
```

```
In [63]: IDs = readtable("G5.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor13 = cor(a[posAi],aHat1[posAi])[1,1]
         reg13 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : correlation = %6.3f\n", cor13 ) # with epsilon
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = %6.3f\n", req13)
         JCAll = cor13
         SSBRJC from Gibbs - G5.Genotype.ID : correlation = 0.899
         SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = 1.056
Out[63]: 0.898568742463888
In [64]: writedlm("Correlation.G5.G.N.txt",cor13)
In [65]: writedlm("Regression.G5.G.N.txt",reg13)
In [66]: | TBVG5Gall = a[posAi]
         TBVG5G=mean(TBVG5Gall)
Out[66]: 34.622761249999996
In [67]: GEBVG5Gall = aHat1[posAi]
         GEBVG5G=mean(GEBVG5Gall)
Out[67]: 3.339302797353377
In [68]: IDs = readtable("G0.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : correlation = %6.3f\n", cor14 ) # with epsilon
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg14)
         JCAll = cor14
         SSBRJC from Gibbs - G0.noGenotype.ID : correlation = 0.722
         SSBRJC from Gibbs - G0.noGenotype.ID: regression of TBV on GEBV = 0.976
Out[68]: 0.7222235062921423
```

```
In [69]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[69]: 0.10023500560856569
In [70]: IDs = readtable("G1.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : correlation = %6.3f\n", cor14 ) # with epsilon
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg14)
         JCAll = cor14
         SSBRJC from Gibbs - G1.noGenotype.ID : correlation = 0.756
         SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = 0.995
Out[70]: 0.7557699628958967
In [71]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[71]: 0.930365759815212
In [72]: IDs = readtable("G2.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor15 = cor(a[posAi],aHat1[posAi])[1,1]
         reg15 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : correlation = %6.3f\n", cor15 ) # with epsilon
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg15)
         JCAll = cor15
         SSBRJC from Gibbs - G2.noGenotype.ID : correlation = 0.744
         SSBRJC from Gibbs - G2.noGenotype.ID: regression of TBV on GEBV = 1.003
Out[72]: 0.744481349791874
In [73]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[73]: 1.5791441536169766
```

```
In [74]: IDs = readtable("G3.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor16 = cor(a[posAi],aHat1[posAi])[1,1]
         reg16 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : correlation = %6.3f\n", cor16 ) # with epsilon
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg16)
         JCAll = cor16
         SSBRJC from Gibbs - G3.noGenotype.ID : correlation = 0.750
         SSBRJC from Gibbs - G3.noGenotype.ID: regression of TBV on GEBV = 0.993
Out[74]: 0.749828778104585
In [75]: | GEBV = aHat1[posAi]
         mean (GEBV)
Out[75]: 2.155614966015844
In [76]: IDs = readtable("G4.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor17 = cor(a[posAi],aHat1[posAi])[1,1]
         reg17 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : correlation = %6.3f\n", cor17 ) # with epsilon
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg17)
         JCAll = cor17
         SSBRJC from Gibbs - G4.noGenotype.ID : correlation = 0.755
         SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = 1.003
Out[76]: 0.7554875785871069
In [77]: | GEBV = aHat1[posAi]
         mean (GEBV)
Out[77]: 2.767993420625016
In [78]: numSSBayes
Out[78]: SSBR.NumSSBayes(54913,45913,9000,40000,39000,1000,2000)
```