МГУ им. М. В. Ломоносова, факультет ВМК

Задание 2 Решение СЛАУ методом отражений при помощи MPI

Постановка задачи

Требуется написать параллельную программу с использованием технологии MPI для решения системы линейных уравнений Ax = b методом отражений.

Алгоритм

- 1. Приводим матрицу \pmb{A} к верхне-треугольному виду с помощью матрицы отражения $\pmb{U}(\pmb{x}) = \pmb{I} 2\pmb{x}\pmb{x}^T$; при $||\pmb{x}|| = 1$.
 - а. За вектор x берется вектор, построенный с использованием элементов матрицы A:

$$x^{(i)} = \pm \frac{a_i - ||a_i|| e_i}{||a_i - ||a_i|| e_i||}$$

- b. При умножении матриц $U(x^{(i)})A$ получается матрица A^* , в которой i-й столбец имеет все нули после i-ого элемента.
- 2. С помощью метода Гаусса находим значения элементов вектора x.
- 3. Система решена.

Компиляция и запуск

Все вычисления производились на машине Polus.

Сама программа написана на языке С++ и состоит из файлов:

- main.cpp
- reflection_method.cpp
- reflection_method.h
- matrix.cpp
- matrix.h

Компилировалась с использованием Makefile:

```
all: main
main: *.cpp *.h
    mpicxx *.cpp -o prog -std=c++11

clean:
    rm -rf ./prog
```

Запуск производился постановкой в очередь с помощью специальной команды вида:

```
mpisubmit.pl -p i --stdout ./out_files/j/i.out --stderr ./err_files/j/i.err
    ./prog -- j
```

Где i – количество процессов, на которых будет запускаться программа, j – размер матрицы, на которой будут производиться вычисления.

Результаты

Тесты проводились для матриц размером 1000x1000, 4000x4000 и 6000x6000, на 1, 2, 4, 8, 16 и 32 процессорах

Рисунок 1. Сравнение результатов MPI (красным) и OpenMP (синим), как можно видеть, OpenMP дало лучше результаты. Результаты для N = 1000, 4000, 6000 соответственно

Рисунок 2. Ускорение в сравнении для программ на MPI и OpenMP. Результаты для N = 1000, 4000, 6000 соответственно

Рисунок 3. Эффективность, как и ускорение выше у MPI, но это происходит благодаря высокому времени работы на 1 процессоре. Результаты для N =1000, 4000, 6000 соответственно

Полная таблица результатов:

MatrixSize	Nthreads	ToRTime_o mp	ToRTime_ mpi	GaussTime _omp	GaussTime _mpi	FullTime_o mp	FullTime_ mpi	Acceleratio n_omp	Acceleratio n_mpi	Efficiency_ omp	Efficiency_ mpi
1000	1	0.775072	5.496408	0.000980	0.003822	0.776052	5.500230	1.000000	1.000000	1.000000	1.000000
1000	2	0.407683	2.783733	0.001063	0.005674	0.408747	2.789405	1.898613	1.971829	0.949307	0.985915
1000	4	0.278309	1.485105	0.001484	0.006235	0.279793	1.491340	2.773662	3.688113	0.693416	0.922028
1000	8	0.151520	0.835178	0.001587	0.006445	0.153107	0.841623	5.068691	6.535266	0.633586	0.816908
1000	16	0.087390	0.482659	0.001426	0.007149	0.088816	0.489808	8.737738	11.229348	0.546109	0.701834
1000	32	0.058461	0.385797	0.001523	0.008455	0.059984	0.394252	12.937693	13.951043	0.404303	0.435970
4000	1	49.188275	345.741667	0.030593	0.060293	49.218850	345.802000	1.000000	1.000000	1.000000	1.000000
4000	2	24.817750	176.327333	0.029514	0.113111	24.847275	176.440667	1.980855	1.959877	0.990428	0.979938
4000	4	18.087800	86.714633	0.047311	0.096022	18.135125	86.810633	2.714007	3.983406	0.678502	0.995852
4000	8	8.941575	43.076900	0.045023	0.094064	8.986595	43.170967	5.476919	8.010059	0.684615	1.001257
4000	16	4.624968	24.031133	0.042827	0.098327	4.667797	24.129433	10.544341	14.331128	0.659021	0.895696
4000	32	2.350735	15.794700	0.048322	0.104074	2.399060	15.898733	20.515890	21.750286	0.641122	0.679696
6000	1	164.260750	1170.33500 0	0.171349	0.133994	164.432500	1170.47000 0	1.000000	1.000000	1.000000	1.000000
6000	2	82.848175	591.078000	0.174649	0.242107	83.022850	591.319500	1.980569	1.979421	0.990285	0.989710
6000	4	60.516775	289.989333	0.290203	0.210664	60.806975	290.200333	2.704172	4.033317	0.676043	1.008329
6000	8	29.993900	147.463333	0.286077	0.202485	30.279975	147.666000	5.430404	7.926469	0.678801	0.990809
6000	16	16.310000	84.441933	0.284661	0.210831	16.594675	84.652767	9.908751	13.826719	0.619297	0.864170
6000	32	9.120088	55.461300	0.298034	0.227260	9.418123	55.688567	17.459159	21.018138	0.545599	0.656817