

ProPublica recidivism Use Case (Compas risk assessment tool)

Transparency & Fairness in AI and Big Data Algorithms

LYOUSFI Youssef

Dimitris KOTZINOS Vassilis CHRISTOPHIDES

M2 Data Science & Machine Learning

03/03/2023

Overview

- Compas algorithm
- Bias Detection & Mitigation
 - Reweighing preprocessing
 - Optimized preprocessing
 - Adversarial Inprocessing
 - Calibrated Odds
 PostProcessing

Compas

Correctional Offender Management Profiling for Alternative Sanctions

The higher the risk factor, the more you become a recidivist

(predicted to reoffend, but don't) False Positive

Black: 44.9%

White: 23.5%

(predicted not to reoffend, but did)
False Negative

Black: 28.1%

White: 47.7%

If you are black, you are more likely to be assessed as high risk than if you were white

The accuracy, fairness, and limits of predicting recidivism | Science Advances

Fugett was rated low risk after being arrested with cocaine and marijuana. He was arrested three times on drug charges after that

Machine Bias — ProPublica

Race attribute distribution

Race attribute distribution

Bias Detection & Mitigation

Fairness Metrics on Original Dataset

Pre-Processing AlgorithmsMitigate bias in training data

In-Processing Algorithms Mitigate bias in classifiers

Post-Processing Algorithms Mitigate bias in predictions

Reweighing

Modifies the weights of different training examples

Adversarial Debiasing

Uses adversarial techniques to maximize accuracy and reduce evidence of protected attributes in predictions

Reject Option Classification

Changes predictions from a classifier to make them more fair

Disparate Impact Remover

Edits feature values to improve group fairness

Prejudice Remover

Adds a discrimination-aware regularization term to the learning objective

Calibrated Equalized Odds

Optimizes over calibrated classifier score outputs that lead to fair output labels

Optimized Preprocessing

Modifies training data features and labels

Meta Fair Classifier

Takes the fairness metric as part of the input and returns a classifier optimized for the metric

Equalized Odds

Modifies the predicted label using an optimization scheme to make predictions more fair

Learning Fair Representations

Learns fair respresentations by obfuscating information about protected attributes

Bias Mitigation Algorithms

Pre-Processing AlgorithmsMitigate bias in training data

In-Processing Algorithms Mitigate bias in classifiers Post-Processing Algorithms Mitigate bias in predictions

Reweighing

Modifies the weights of different training examples

Adversarial Debiasing

Uses adversarial techniques to maximize accuracy and reduce evidence of protected attributes in predictions

Reject Option Classification

Changes predictions from a classifier to make them more fair

Disparate Impact Remover

Edits feature values to improve group fairness

Prejudice Remover

Adds a discrimination-aware regularization term to the learning objective

Calibrated Equalized Odds

Optimizes over calibrated classifier score outputs that lead to fair output labels

Optimized Preprocessing

Modifies training data features and labels

Meta Fair Classifier

Takes the fairness metric as part of the input and returns a classifier optimized for the metric

Equalized Odds

Modifies the predicted label using an optimization scheme to make predictions more fair

Learning Fair Representations

Learns fair respresentations by obfuscating information about protected attributes

The Algorithms used

Reweighing Preprocessing

Fairness Metrics after Reweighing technique

Optimized Preprocessing

Fairness Metrics after Optimized technique

Adversarial Inprocessing

Fairness Metrics after Adversarial technique

Calibrated Odds postprocessing

Fairness Metrics after Calibrated Odds technique

23