Math 217 Worksheet: Using Linear Algebra to Prove Trig Formulas

Theorem: Let $\mathbb{R}^n \xrightarrow{T_A} \mathbb{R}^d \xrightarrow{T_B} \mathbb{R}^m$ be a composition of two linear transformations given by left multiplication by matrices A and B, respectively. Then the composition $T_B \circ T_A$ is left multiplication by the matrix BA.

A.

- 1. Discuss the source and target of the maps T_A, T_B and $T_B \circ T_A$, as well as the dimensions of the matrices A, B and BA.
- 2. Prove the theorem.
- B. For any angle α , let $\rho_{\alpha}: \mathbb{R}^2 \to \mathbb{R}^2$ by the map given by counterclockwise rotation through α .
 - 1. Explain, using a geometric argument, why ρ_{α} is a linear transformation.
 - 2. Explain, using a geometric argument, why $\rho_{\alpha} \circ \rho_{\beta} = \rho_{\alpha+\beta}$.
 - 3. For any θ , find the matrix for ρ_{θ} .
 - 4. Find the matrix for the linear transformation $\rho_{\alpha+\beta}$ in two different ways: one way should use the Theorem above, and one should not.
 - 5. Use your answer to (4) to prove formulas¹ for $\cos(\alpha + \beta)$ and $\sin(\alpha + \beta)$.

C.

- 1. Let T be rotation counterclockwise through $\pi/2$. Explain why T^4 is the identity map.
- 2. $T = \rho_{2\pi/200}$. Explain why T^{200} is the identity map.
- 3. Fix a positive integer N. Find a 2×2 matrix A such that $A^N = I_2$ but no smaller positive power of A is the identity matrix.
- D. Prove that if B is an $n \times n$ matrix such that $B^d = I_n$, then B is invertible.

¹Now you know where these crazy formulas come from! Now you don't to memorize these formulas! You can derive them using matrix multiplication if you forget!