Теортест-1 (Вариант 43)

Тема – определенный интеграл

Задача 1

Выберите все верные утверждения:

- 1. Длина замкнутой кривой равна нулю;
- 2. Длина любой кривой не меньше длины отрезка, соединяющего ее начало и конец;
- 3. Спрямляемы только кусочно-гладкие кривые;
- 4. Любая кривая имеет неотрицательную длину;
- 5. Гладкая кривая это кривая, все параметризации которой гладкие;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Пусть функция u=u(x) – первообразная для функции v=v(x) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. udt = dv;
- 2. u = v' + C;
- 3. v = u' + C:
- 4. u = v';

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Выберите все верные утверждения (тела A и B имеют объем):

- 1. объем треугольника равен нулю;
- 2. при движении объем не меняется;
- 3. объем $A \cup B$ равен сумме объемов A и B;
- 4. объем A всегда положителен;

Задача 4

Выберите все верные утверждения:

- 1. если первообразная дробно-рациональной функции f(x) является дробно-рациональной, то все корни знаменателя f(x) кратные;
- 2. если первообразная дробно-рациональной функции f(x) выражается через логарифм, то знаменатель f(x) имеет только простые вещественные корни;
- 3. если все корни знаменателя дробно-рациональной функции кратные, то ее первообразная является дробно-рациональной функцией;
- 4. первообразная дробно-рациональной функции выражается через элементарные функции;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Функция $f \in R[0,10]$ и $-1 \le f(x) \le 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_0^3 x^2 f(x) dx$:

- 1. [-3; 90];
- 2. [-9; 90];
- 3. [-9; 100];
- 4. [0; 100];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Пусть f интегрируема и $f \geq 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f((a+b)/2) = 1;
- 2. f непрерывна на [a, b] и f(a + b) = 1;
- 3. f > 0 на [a, b];
- 4. f(a) = f(b) = 1;

Задача 7

Пусть $f \in R[a,b], F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. F ограничена на [a, b];
- 2. F непрерывна на [a, b];
- 3. F имеет разрывы в точках разрыва функции f;
- 4. F не убывает на [a, b];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Пусть $f \in R[a,b], a < b$. Выберите все верные утверждения:

- 1. Если $\int_a^b |f(x)| dx < A$, то $\left| \int_a^b f(x) dx \right| < A$;
- 2. Если $\left| \int_a^b f(x) dx \right| < A$, то $\int_a^b |f(x)| dx < A$;
- 3. Если $f \ge 0$ на [a,b] и $\exists c \in [a,b]$: f(c) > 0, то $\int_a^b f(x) dx > 0$;
- 4. Если $\left| \int_a^b f(x) dx \right| = 0$, то $f(x) \equiv 0$ на [a, b];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Пусть f(x) – дифференцируемая функция. Выберите все верные утверждения:

- 1. $\int f(x) \ln x dx = \ln x \cdot f'(x) \int \frac{f'(x)}{x} dx;$
- 2. $\int f'(x) \sin x dx = \cos x \cdot f(x) \int f(x) \cos x dx$;
- 3. $\int \frac{f'(x)}{x} dx = \frac{f(x)}{x} + \int \frac{f(x)}{x^2} dx;$
- 4. $\int f'(x)e^x dx = e^x f(x) \int f(x)e^x dx;$

Задача 10

Выберите все верные утверждения для данной функции, заданной на отрезке [a,b]:

- 1. Нижняя сумма Дарбу является наименьшей из всех интегральных сумм для данного разбиения;
- 2. При измельчении разбиения нижняя сумма Дарбу уменьшается;
- 3. При измельчении разбиения нижняя сумма Дарбу уменьшается или не изменяется;
- 4. Нижняя сумма Дарбу не больше любой интегральной суммы для данного разбиения;