# Przetwarzanie obrazów

# Zestaw zadań nr 5

#### ⋆: zadania na ocenę

# 1. Filtry nieliniowe w ImageJ

Proszę wykonać w ImageJ operacje filtrowania filtrem minimalnym i maksymalnym w kolejności min(max(obraz)) i max(min(obraz)) obrazu Gdansk.png.



Czy obie operacje filtrowania są naprzemienne? Jeżeli nie, proszę znaleźć 3 różnice w detalach na filtrowanych obrazach i wyjaśnić zjawisko.

# 2. Filtry nieliniowe

Dany jest obraz w skali szarości. Proszę podać wynik filtrowania obrazu w zaznaczonych pozycjach na obrazie wynikowym w przypadku użycia filtra

- (a) minimalnego,
- (b) maksymalnego,
- (c) mediany,
- (d) średniozakresowego (Mid-Range-Filter),
- (e) średniej uciętej (k-trimmed-mean Filter) dla k=2,
- (f) k-Nearest Neighbor z k = 6,
- (g) Symmetric Nearest Neighbor.

o rozmiarach  $3 \times 3$ .

| $\operatorname{obraz}$ |   |   |   |   |   |   |   |   |   |   |   |
|------------------------|---|---|---|---|---|---|---|---|---|---|---|
| 1                      | 4 | 5 | 6 | 5 | 8 | 4 | 6 | 1 | 1 | 3 | 1 |
| 1                      | 4 | 2 | 4 | 5 | 3 | 8 | 9 | 1 | 5 | 1 | 9 |
| 0                      | 3 | 4 | 5 | 7 | 2 | 8 | 6 | 1 | 3 | 6 | 1 |
| 1                      | 3 | 4 | 3 | 7 | 1 | 7 | 6 | 1 | 1 | 5 | 1 |
| 1                      | 4 | 5 | 6 | 5 | 8 | 4 | 6 | 3 | 1 | 3 | 3 |
| 1                      | 2 | 3 | 3 | 5 | 6 | 7 | 8 | 7 | 6 | 5 | 4 |

obraz wyjściowy

X X X

#### 3. Filtry nieliniowe RGB $\star$ (1)

Dane jest sąsiedztwo ośmiospójne pikseli  $c_i = (r_i, g_i, b_i), i \in \{1, \dots, 9\}$ :

Proszę wyznaczyć wartość  $c_k$  piksela centralnego dla

- (a) filtra minimalnego,
- (b) filtra maksymalnego,
- (c) filtra medianowego.

# 4. Przestrzeń RGB, filtry nieliniowe - egzamin SL 2024

Dane są punkty  $p_1, p_2, p_3$  w przestrzeni RGB:



$$p_1 = (200, 0, 0)$$
  
 $p_2 = (25, 25, 0)$   
 $p_3 = (0, 80, 0)$ 

Proszę zaznaczyć prawidłowe odpowiedzi:

- (a)  $p_1$  jest szarym punktem na obrazie
- (b)  $p_2$  jest szarym punktem na obrazie
- (c) filtr minimalny, zastosowany do tych trzech punktów, zwraca współrzędne RGB (0,0,0)
- (d) filtr minimalny, zastosowany do tych trzech punktów, zwraca punkt $p_2$
- (e) filtr minimalny, zastosowany do tych trzech punktów, zwraca punkt $p_3$
- (f) filtr maksymalny, zastosowany do tych trzech punktów, zwraca współrzędne RGB (200, 80, 0)
- (g) filtr medianowy, zastosowany do tych trzech punktów, zwraca współrzędne RGB (25,25,25)
- (h) filtr medianowy, zastosowany do tych trzech punktów, zwraca punkt $p_1$
- (i) filtr medianowy, zastosowany do tych trzech punktów, zwraca punkt $p_2$
- (j) filtr medianowy, zastosowany do tych trzech punktów, zwraca punkt $p_3$

#### 5. Filtry nieliniowe - egzamin SZ 2024

Które z następujących twierdzeń są prawdziwe?

- (a) Filtr minimalny zastosowany do obrazu binarnego odpowiada erozji elementem strukturalnym o rozmiarach jądra filtra.
- (b) Filrt minimalny zastosowany do obrazu binarnego odpowiada transformacji odległościowej.
- (c) Operację filtrowania obrazu filtrem minimalnym można odwrócić poprzez zastosowanie filtra maksymalnego.
- (d) Po operacji filtrowania obrazu filtrem minimalnym kolejna operacja filtrowania tym samym filtrem minimalnym nie ma żadnego efektu.
- (e) Po operacji filtrowania obrazu filtrem minimalnym operacja filtrowania filtrem maksymalnym z jądrem filtra o tych samych rozmiarach nie ma żadnego efektu.
- (f) Operacje filtrowania filtrem minimalnym i maksymalnym są przemienne (komutatywne).
- (g) Operacje filtrowania filtrem minimalnym i maksymalnym są nieprzemienne.

(h) W przestrzeni RGB filtr maksymalny zastosowany do punktów  $p_1,p_2,p_3$ 



$$p_1 = (100, 0, 0)$$
  
 $p_2 = (25, 25, 0)$   
 $p_3 = (0, 50, 0)$ 

zwraca współrzędne RGB (100, 50, 0).

6. Filtry nieliniowe  $\star (1 + 0.5 + 0.5 + 1 + 1 + 1)$ 



Na (zaszumionym) obrazie Jellyfish.png proszę wykonać

- (a) eliminację punktów izolowanych w sąsiedztwie ośmiospójnym z warunkiem  $\Theta=10$
- (b) filtrowanie filtrem medianowym z maską filtra  $3 \times 3$ ,
- (c) filtrowanie filtrem średniozak<br/>resowym ( $\mathit{Mid\textsc{-}Range\textsc{-}Filter})$ z maską filtra <br/>  $3\times3,$
- (d) filtrowanie filtrem średniej uciętej (k-trimmed-mean Filter) z maską filtra  $3\times 3$  i k=2,
- (e) filtrowanie filtrem k-Nearest Neighbor z maską filtra  $3\times 3$ i k=6,
- (f) filtrowanie filtrem Symmetric Nearest Neighbor.

i ocenić wyniki filtrowania.

# 7. Korelacja sygnałów 1D

Dane są sygnały g i  $h_1$  i  $h_2$ :



Proszę wykonać korelację

- sygnałów g i  $h_1$ ,
- sygnałów g i  $h_2$ .

#### 8. Korelacja obrazów

Dany jest obraz w skali szarości i wzorzec w. Proszę podać wynik korelacji w zaznaczonych pozycjach na obrazie wynikowym. Centralny piksel wzorca jest zaznaczony na czerwono.

| obraz |   |   |   |   |   |   |   |   |   |   |   |
|-------|---|---|---|---|---|---|---|---|---|---|---|
| 1     | 4 | 0 | 0 | 5 | 1 | 4 | 2 | 1 | 0 | 3 | 1 |
| 1     | 4 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 5 | 1 | 1 |
| 0     | 0 | 0 | 4 | 1 | 2 | 0 | 6 | 1 | 3 | 6 | 1 |
| 1     | 0 | 0 | 1 | 6 | 1 | 1 | 1 | 1 | 1 | 5 | 1 |
| 1     | 1 | 1 | 2 | 1 | 4 | 0 | 1 | 3 | 1 | 3 | 3 |
| 1     | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 4 |

| w |   |   |  |  |  |  |  |  |  |
|---|---|---|--|--|--|--|--|--|--|
| 2 | 0 | 1 |  |  |  |  |  |  |  |
| 0 | 4 | 0 |  |  |  |  |  |  |  |
| 1 | 0 | 2 |  |  |  |  |  |  |  |
|   |   |   |  |  |  |  |  |  |  |

| obraz wyjściowy |  |  |   |   |   |  |  |  |  |  |  |
|-----------------|--|--|---|---|---|--|--|--|--|--|--|
|                 |  |  |   |   |   |  |  |  |  |  |  |
|                 |  |  |   |   |   |  |  |  |  |  |  |
|                 |  |  | X | X | X |  |  |  |  |  |  |
|                 |  |  | X | X | X |  |  |  |  |  |  |
|                 |  |  | X | X | X |  |  |  |  |  |  |

#### 9. Korelacja w ImageJ $\star$ (1 + 0.5 + 1.5)

Poniższe zdjęcie gromady galaktyk SMACS 0723 i jej otoczenia było pierwszym zdjęciem wykonanym przez James Webb Space Telescope w lipcu 2023 roku. Każde z pięciu powiększeń ma średnicę około 19 000 lat świetlnych i przedstawia galaktyki widziane około 13 miliardów lat wstecz





Na oryginalnym zdjęciu SMACS 0723-73 (Webb's\_First\_Deep\_Field.jpg, źródło: NASA, ESA, CSA, and STScI) należy zlokalizować obiekt (wzorzecSMACS1.jpg) przedstawiony w powiększeniu:



#### W tym celu należy

- (a) wykonać operację korelacji obrazu z wzorcem dla każdego z kanałów RGB (należy utworzyć pliki tekstowe z wartościami pikseli wzorca dla kanałów RGB i skorelować je z poszczególnymi kanałami obrazu),
- (b) wyznaczyć poprzez operację mnożenia poszczególnych współczynników korelacji dla poszczególnych kanałów miarę dla korelacji wzorca z obrazem RGB (operację należy wykonać na 32 bitach),

(c) znaleźć w obrazie wynikowym 5 najbardziej prawdopodobnych pozycji występowania wzorca w obrazie. Czy poszukiwany obiekt można w ten sposób prawdiłowo zlokalizować?

Na poszczególnych etapach przetwarzania obrazu pomocne mogą być operacje punktowe (np. progowanie) i operacje filtrowania (np. filtr maksymalny).

**Uwaga:** W ImageJ możliwe jest podanie współczynników korelacji w formie macierzy:  $Process \longrightarrow Filters \longrightarrow Convolve$ .

# 10. Korelacja - egzamin SZ 2024

Który z obrazów A,B,C czy D jest obrazem wyjściowym po zastosowaniu korelacji obrazu wejściowego z poniższym wzorcem?

