Københavns Universitet. Økonomisk Institut

2. årsprøve 2014 S-2DM rx ret

Skriftlig eksamen i Dynamiske Modeller

Fredag den 21. februar 2014

Rettevejledning

Opgave 1. Vi betragter fjerdegradspolynomiet $P: \mathbf{C} \to \mathbf{C}$, som er givet ved forskriften

$$\forall z \in \mathbf{C} : P(z) = z^4 + 5z^3 + 10z^2 + 10z + 4.$$

Desuden betragter vi differentialligningerne

$$\frac{d^4x}{dt^4} + 5\frac{d^3x}{dt^3} + 10\frac{d^2x}{dt^2} + 10\frac{dx}{dt} + 4x = 0$$

og

$$(**) \frac{d^4x}{dt^4} + 5\frac{d^3x}{dt^3} + 10\frac{d^2x}{dt^2} + 10\frac{dx}{dt} + 4x = 90e^t.$$

(1) Vis, at tallene $\rho_1 = -1$ og $\rho_2 = -2$ er rødder i polynomiet P.

Løsning. Dette indses ved at indsætte tallene $\rho_1 = -1$ og $\rho_2 = -2$ i polynomiet P.

(2) Bestem samtlige rødder i polynomiet P.

Løsning. Ved at benytte polynomiers division finder vi, at

$$\forall z \in \mathbf{C} : P(z) = (z+1)(z+2)(z^2+2z+2),$$

og dernæst ser vi, at

$$z^{2} + 2z + 2 = 0 \Leftrightarrow z = -1 + i \lor z = -1 - i.$$

Hermed er alle rødderne i polynomiet P fundet.

(3) Bestem den fuldstændige løsning til differentialligningen (*).

Løsning. Den fuldstændige løsning til differentialligningen (*) er:

$$x = c_1 e^{-t} + c_2 e^{-2t} + c_3 e^{-t} \cos t + c_4 e^{-t} \sin t,$$

hvor $c_1, c_2, c_3, c_4 \in \mathbf{R}$.

(4) Godtgør, at differentialligningen (*) er globalt asymptotisk stabil.

Løsning. Da alle de karakteristiske rødder har negativ realdel, er differentialligningen (*) globalt asymptotisk stabil.

(5) Bestem den fuldstændige løsning til differentialligningen (**).

Løsning. Den fuldstændige løsning til differentialligningen (**) er:

$$x = c_1 e^{-t} + c_2 e^{-2t} + c_3 e^{-t} \cos t + c_4 e^{-t} \sin t + 3e^t,$$

hvor $c_1, c_2, c_3, c_4 \in \mathbf{R}$.

Vi betragter nu tredjegradspolynomiet $Q: \mathbf{C} \to \mathbf{C}$, som er givet ved forskriften

$$\forall z \in \mathbf{C} : Q(z) = z^3 - z^2 + 25z - 25,$$

og differentialligningen

$$(***) \frac{d^3y}{dt^3} - \frac{d^2y}{dt^2} + 25\frac{dx}{dt} - 25y = 0.$$

(6) Vis, at tallet $\sigma_1 = 1$ er rod i polynomiet Q, og bestem dernæst de øvrige rødder i Q.

Løsning. Ved indsættelse af tallet 1 i polynomiet Q ser man, at 1 er rod i dette polynomium, og ved polynomiers division finder man så, at

$$\forall z \in \mathbf{C} : Q(z) = (z - 1)(z^2 + 25),$$

hvoraf det fremgår, at de to øvrige rødder er $\sigma_2 = 5i$ og $\sigma_3 = -5i$.

(7) Bestem den fuldstændige løsning til differentialligningen (* * *).

Løsning. Den fuldstændige løsning til differentialligningen (***) er:

$$y = k_1 e^t + k_2 \cos(5t) + k_3 \sin(5t)$$
, hvor $k_1, k_2, k_3 \in \mathbf{R}$.

(8) Bestem den maksimale løsning til differentialligningen (***), som også er løsning til differentialligningen (**).

Løsning. Den søgte maksimale løsning er funktionen $y = 3e^t$.

Opgave 2. Vi betragter 3×3 matricen

$$A = \left(\begin{array}{ccc} 2 & 1 & 1\\ 2 & 3 & 4\\ -1 & -1 & -2 \end{array}\right)$$

og vektordifferentialligningen

$$\frac{d\mathbf{z}}{dt} = A\mathbf{z}.$$

(1) Bestem egenværdierne og egenrummene for matricen A.

Løsning. Matricen A har det karakteristiske polynomium $P_A(t) = -t^3 + 3t^2 + t - 3$, og vi ser, at tallet 1 er en rod i P_A . Desuden får vi dernæst, at

$$P_A(t) = (t-1)(-t^2 + 2t + 3),$$

hvoraf det følger, at de øvrige karakteristiske rødder er -1 og 3.

Dette viser, at matricen A har egenværdierne -1, 1 og 3.

De tilhørende egenrum er

$$V(-1) = \operatorname{span}\left\{ \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \right\}, V(1) = \operatorname{span}\left\{ \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \right\} \operatorname{og} V(3) = \operatorname{span}\left\{ \begin{pmatrix} -2 \\ -3 \\ 1 \end{pmatrix} \right\}.$$

(2) Bestem den fuldstændige løsning for vektordifferentialligningen (§).

Løsning. Den fuldstændige løsning for vektordifferentialligningen (§) er:

$$\mathbf{z} = c_1 e^{-t} \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} + c_2 e^t \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + c_3 e^{3t} \begin{pmatrix} -2 \\ -3 \\ 1 \end{pmatrix}, \text{ hvor } c_1, c_2, c_3 \in \mathbf{R}.$$

(3) Bestem den specielle løsning $\tilde{\mathbf{z}} = \tilde{\mathbf{z}}(t)$ til vektordifferentialligningen (§), så betingelsen $\tilde{\mathbf{z}}(0) = (2, 1, 5)$ er opfyldt.

Løsning. Vi finder, at

$$\tilde{\mathbf{z}} = 7e^{-t} \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} + 2e^t \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} - 2e^{3t} \begin{pmatrix} -2 \\ -3 \\ 1 \end{pmatrix}.$$

Opgave 3.

(1) Idet

$$\cos(4v) + i\sin(4v) = (\cos v + i\sin v)^4$$

(De Moivres formel for n=4), skal man bestemme $\cos(4v)$ og $\sin(4v)$ udtrykt ved $\cos v$ og $\sin v$.

Løsning. Vi finder, at

$$\left(\cos v + i \sin v\right)^4 = \left((\cos v + i \sin v)^2\right)^2 = \left(\cos^2 v - \sin^2 v + 2i \cos v \sin v\right)^2 =$$

$$\left(\cos^2 v - \sin^2 v\right)^2 - 4\cos^2 v \sin^2 v + 4i \left(\cos^2 v - \sin^2 v\right)\cos v \sin v =$$

$$\cos^4 v + \sin^4 v - 2\cos^2 v \sin^2 v - 4\cos^2 v \sin^2 v + i \left(4\cos^3 v \sin v - 4\cos v \sin^3 v\right),$$
hvoraf vi aflæser, at

$$\cos(4v) = \cos^4 v + \sin^4 v - 6\cos^2 v \sin^2 v,$$

og

$$\sin(4v) = 4\cos^3 v \sin v - 4\cos v \sin^3 v.$$

Lad tallet $z \in \mathbf{T} = \{t \in \mathbf{C} \mid |t| = 1\}$ være vilkårligt valgt, og betragt følgen (z_k) , hvor $z_k = z^k$ for ethvert $k \in \mathbf{N}$.

(2) Vis, at følgen (z_k) har en konvergent delfølge med grænsepunkt $z_0 \in \mathbf{T}$.

Løsning. Torus'en **T** er en kompakt mængde, og da enhver følge på en kompakt mængde har en konvergent delfølge med grænsepunkt i den kompakte mængde, ser vi straks, at påstanden er sand.

Opgave 4. I spilteori betragter man et spil, som kaldes "Battle of the Sexes", og i dette spil indgår de to korrespondancer $F, G : [0, 1] \to [0, 1]$, som er givet ved forskrifterne

$$F(x) = \begin{cases} \{0\}, & \text{for } 0 \le x < \frac{2}{3} \\ [0,1], & \text{for } x = \frac{2}{3} \\ \{1\}, & \text{for } \frac{2}{3} < x \le 1 \end{cases}$$

og

$$G(y) = \begin{cases} \{0\}, & \text{for } 0 \le y < \frac{1}{3} \\ [0,1], & \text{for } y = \frac{1}{3} \\ \{1\}, & \text{for } \frac{1}{3} < y \le 1 \end{cases}.$$

(1) Vis, at korrespondancerne F og G begge har afsluttet graf egenskaben.

Løsning. Grafen for korrespondancerne F og G er afsluttede mængder i \mathbb{R}^2 , hvilket godtgør påstanden.

(2) Vis, at ingen af korrespondancerne F og G er nedad hemikontinuerte.

Løsning. Lad os på intervallet [0,1] vælge en følge (x_k) , hvor $x_k \neq \frac{2}{3}$ for ethvert $k \in \mathbb{N}$, men som er konvergent med $\frac{2}{3}$ som grænsepunkt. Vi bemærker nu, at der ikke findes nogen konvergent følge (y_k) med $\frac{1}{2}$ som grænsepunkt, hvor $y_k \in F(x_k)$. Dette viser, at korrespondancen F ikke er nedad hemikontinuert.

På tilsvarende måde indser man, at korrespondancen G heller ikke er nedad hemikontinuert.

(3) Bestem en forskrift for den sammensatte korrespondance $H = G \circ F$: $[0,1] \to [0,1].$

Løsning. Vi finder, at

$$H(x) = G \circ F(x) = \bigcup_{y \in F(x)} G(y) = \begin{cases} \{0\}, & \text{for } 0 \le x < \frac{2}{3} \\ [0, 1], & \text{for } x = \frac{2}{3} \\ \{1\}, & \text{for } \frac{2}{3} < x \le 1 \end{cases}.$$

Et punkt $(x^*, y^*) \in [0, 1] \times [0, 1]$ kaldes et ligevægtspunkt for parret (F, G), hvis og kun hvis $x^* \in G(y^*)$ og $y^* \in F(x^*)$.

(4) Bestem ligevægtspunkterne for parret (F, G).

Løsning. Vi ser, at ligevægtspunkterne for parret (F, G) er: $(0,0), (\frac{2}{3}, \frac{1}{3})$ og (1,1).