

ZIMBABWE

MINISTRY OF PRIMARY AND SECONDARY EDUCATION

O- LEVEL PHYSICS SYLLABUS

FORMS 3 - 4

2015 - 2022

Curriculum Development and Technical Services
P.O. Box MP 133
Mount Pleasant
Harare

© All Rights Reserved 2015

ACKNOWLEDGEMENTS

The Ministry of Primary and Secondary Education wishes to acknowledge the following for their valued contribution in the production of this syllabus:

- Panellists for 'O' level Physics syllabus.
- Zimbabwe School Examinations Council (ZIMSEC).
- Government departments.
- Ministry of Higher and Tertiary Education, Science and Technology Development.
- United Nations Children's Fund (UNICEF).
- United Nations Educational Scientific and Cultural Organisation (UNESCO).

CONTENTS

ACKNOWLEDGEMENTS	. i
CONTENTS	. ii
1.0 PREAMBLE	. 1
2.0 PRESENTATION OF THE SYLLABUS	.1
3.0 AIMS	
4.0 OBJECTIVES	. 2
5.0 METHODOLOGY AND TIME ALLOCATION	
6.0 SCOPE AND SEQUENCE CHART	. 3
FORM 3	
FORM 4	.22
9.0 ASSESSMENT	35
OLOGO A DV OF TERMO	

1.0 PREAMBLE

1.1 Introduction

This syllabus is designed to put greater emphasis on the understanding and application of physical concepts and principles. It make learners identify, investigate and solve problems in a sustainable manner. This two - year learning phase will see learners being assessed through continuous assessment and national examination. The 'O' level Physics syllabus is designed to inclusively cater for all categories of learners.

1.2 Rationale

Modern day economies, Zimbabwe included, are driven by technology and Physics concepts form part of the basis. The study of Physics enables learners to be creative and innovative in industry and society can promote the application of physics in industrial processes for value addition is well known. The learning of Physics concepts promotes value creation, addition and beneficiation of natural resources and harness available opportunities for entrepreneurship.

1.3 Summary of Content

'O' level Physics syllabus will cover theory and practical activities in the following areas:

Newtonian Mechanics, Dynamics, Waves, Electricity and Electromagnetism, Thermal Physics and Modern Physics.

1.4 Assumptions

It is assumed that:

- the learner has successfully completed Form 1 and 2 Science syllabus.
- Science clubs are existing and operational in schools.
- use of ICT for research and presentation is known by learners.
- use of measuring instruments such as rulers, balances, second-hand clocks, voltmeters, ammeters and thermometers is known by learners.
- safety measures are available and observed.

1.5 Cross- Cutting Themes

This phase will develop an appreciation of:

- · Inclusivity
- · Environmental issues
- · Indigenous knowledge system
- · Financial literacy
- · Enterprise Education
- Gender
- · HIV and Life skills
- · Child Protection.
- Team work
- Food security
- Safety health issues
- · Disaster risk management

2.0 PRESENTATION OF THE SYLLABUS

The Ordinary Level Physics syllabus is a single document covering Forms 3 - 4. It contains the Preamble, Aims, Syllabus Objectives, Syllabus Topics, Methodology and Time Allocation, Scope and Sequence, Competency Matrix and Assessment. The Scope and Sequence chart shows the progression of topics from Forms 3 - 4, while the syllabus matrix gives details of the content to be covered.

3.0 AIMS

The aims are to:

- 3.1 create opportunities for learners to acquire research, experimental and practical skills and attitudes in Physics.
- 3.2 enable learners to acquire basic principles of Physics for application in life and as a basis for further studies in Physics and related disciplines.
- 3.3 recognise the usefulness and limitations of the scientific method in the study of Physics.
- 3.4 inculcate in learners the desire to apply Physics for the benefit of society as guided by the principles of Unhu/Ubuntu and recognising the detrimental effects of misapplication of Physics.
- 3.5 inculcate in learners the appreciation of the usefulness of ICT in the study and application of Physics.

- 3.6 develop, in learners the appreciation of the use of Physics in value creation, addition and beneficiation in mining and other industries.
- 3.7 inculcate in learners the regard for safety and protection of the environment in the study of Physics.
- 3.8 develop in learners an appreciation of gender, HIV and AIDS issues.

4.0 OBJECTIVES

Learners should be able to:

- 4.1 follow instructions in practical work in order to manipulate record observations and analyse data to confirm or establish relationships
- 4.2 demonstrate knowledge about physical phenomena, facts, laws, definitions and concepts of Physics.
- 4.3 measure and express physical quantities in SI units to a given level of accuracy and precision
- 4.4 solve problems using calculations
- 4.5 generate and transform information in Physics, from one form to another for presentation, interpretation and problem solving.
- 4.6 design a practical solution through a Physics project to solve a real life problem
- 4.7 use ICT to simulate Physics phenomena, present and analyse Physics data
- 4.8 apply safety measures in all practical work
- 4.9 explain and apply procedures in Physics to protect the environment

5.0 METHODOLOGY AND TIME ALLOCATION

Suggested Methods

It is envisaged that teaching and learning programmes based on this Physics syllabus could feature a wide variety of learning experiences designed to promote acquisition of scientific expertise and understanding, and to develop values and attitudes relevant to science and life. Teachers are encouraged to use a combination of appropriate strategies to effectively and equitably engage and challenge their learners through:

Planned experiments

- · Problem solving based learning
- · Individual and group work
- Educational tours
- · Project based learning
- · Design based learning
- · Learning by discovery
- · E-learning such as simulation
- Resource person(s)

N.B. Ortho-didactic principles, such as visual tactile, simulation and self-activity, will be applied when need arises to cater for diverse needs of learners.

Safety precautions must always be observed.

Time Allocation

A minimum of 8 periods of 35 minutes each in a week should be allocated as double periods for adequate coverage of the syllabus

6.0 TOPICS

- 1. Measurement and Physical Quantities
- 2. Kinematics
- 3. Forces
- 4. Machines
- 5. Mechanical Structures
- 6. Work, Energy and Power
- 7. Thermal Physics
- 8. Internal Combustion Engines
- 9. Waves
- 10. Optics
- 11. Electricity
- 12. Magnetism
- 13. Electromagnetism
- 14. Electronics
- 15. Atomic and Nuclear Physics

.0 SCOPE AND SEQUENCE CHART

	FORM 3	TOKM 4
1.0 MEASUREMENT AND PHYSICAL QUANTITIES 1.1 Measurements	 Measurement of physical quantities. Derived quantities Use of S.I. units 	 Definition of voltage, resistance and current Experiments to measure voltage, current and determine resistance for ohmic conductors
1.2 Scalars and vectors	 Definitions and examples Resultant of coplanar vectors using graphical method Applications 	
2.0 KINEMATICS 2.1 Speed, velocity, distance, displacement and acceleration	 Definitions of terms Equations of linear motion and application 	
2.2 Graphs of motion	Drawing and interpretation of graphs	
2.3 Motion under gravity	 Definition of free fall Calculations and applications 	
3.0 FORCES 3.1 Effect of force on materials	 Types of forces Interpretation of force extension-graphs 	Application of forces on beams, trusses and mechanical large structures
3.2 Effect of force on motion	 Definitions of weight, momentum and inertia State and apply Newton's laws of motion Circular motion 	
3.3. Friction and circular motion	 Effects of friction Methods of friction Centripetal acceleration and force 	
3.4 Turning effects of a force	 Moments of a force Turning effect of a force Principles of moments 	

	 Application 	Application of moments	
3.5 Centre of mass/centre of gravity	 Definitions 	Definitions of terms	
	Determing Otobility	Determination of centre of mas	
	Stability		
3.6 Pressure	 Definition 		
	 Calculations 	NS N	
	 Pressure 	Pressure in fluids and applications	
4.0 MACHINES	 Definition 		
	 Experime 	Experiments involving inclined planes, levers and	
	pulleys		
4.1. Simple machines	 Definitions 		
	Experime	Experiments involving:	
	- Inclin	Inclined plane	
	- levers		
	- pulleys - calculati	pulleys calculation of velocity ratio. Mechanical	
	advaı	advantage and efficiency.	
5.0. MECHANICAL STRUCTURES			
5.1 Mechanical structures	Beams, tr structures	Beams, trusses, joining materials and large structures	
6.0 WORK, ENERGY AND POWER			
6.1 Work	 Definition 		
	 Calculatic 	Calculation of work done	
6.2 Energy	 Definition 		
	 Types and 	Types and sources of energy	
	 Energy conversion 	onversion	
	• Calculatio	Law of conservation and conversion of energy Calculations involving energy	

6.3 Power	Definition	
	Calculations involving power	
7.0 THERMAL PHYSICS 7.1 Kinetic theory of matter	Definition of matterStates of matter and their physical properties	
7.2 Thermal properties	Simple experiments to demonstrate thermal properties	 Calculation of heat capacity and latent heat Measurement of temperature
7.3 Heat transfer	 Modes and mechanisms of heat transfer and their applications Experiments on modes of heat transfer 	
8.0 INTERNAL COMBUSTION ENGINES		 Describe the operations of a four stroke engine Explain the role of the carburettor State the advantage of multiple cylinders in an engine Compare the operations of a diesel and petrol engine
9.0 WAVES 9.1 Types of waves	Definition and classification of waves	
9.2 Wave properties	Experiments to demonstrate wave properties and characteristics	
9.3 Sound	 Production and sound waves Experiments to determine speed of sound 	
9.4 Electromagnetic waves	Electromagnetic spectrum Application of electromagnetic waves	
10.0 OPTICS		 Application of waves: light Laws of reflection Experiments using plane mirror Ray diagrams Laws of refraction Experiments to demonstrate refraction Snell's law and application Experiments on dispersion of light
11.0 ELECTRICITY		

11.1 Electrostatics	•	Charging
	• •	Interaction between charges Field lines
	••	Application of electrostatics Safety and hazards
11.2 Primary and secondary cells	•	Definition of terms
	• •	Power sources Measurement of electrical entities
	• •	Ohm's law and resistance Safety
11.3 Current electricity	•	Definition of terms
11.4 Electric circuits		Electric components Constructing simple circuits
11.5 Electricity in the home		Wiring of three pin plugs Use of two pin plugs Safety precautions
12.0 MAGNETISM		
12.1 Magnetic properties	•	Properties and interaction
12.2 Application		
13.0 ELECTROMAGNETISM		
13.1 Magnetic effects of an electric current	• •	Field patterns Hand rules
13.2 Force on current carrying conductor in magnetic field		Factors Hand rules applications

	-	
13.3 Electromagnetic induction		generator principle
		 Lenz's law
		Applications
13.4 Transformers		 Transformer principle
		Efficiency
		AC transmission and power loses
14.0 ELECTRONICS		
14.1Electronic components		Carbon resistors and colour coding
		• Reed switch
14.2 Logic gates		Circuit symbols
		 Construction of truth tables
15.0 ATOMIC AND NUCLEAR PHYSICS		
15.1. Atomic model		Description of an atomic model
		Isotopes
15.2 Radioactivity		Definition
		Types of radioactive emission and their
		Use storage handling and impact of radioactive
		emission

FORM 3

8.0 COMPETENCY MATRIX

TOPIC	OBJECTIVES	UNIT CONTENT (Skills,	SUGGESTED LEARNING	SUGGESTED
	Learners should be able to:	attitudes and knowledge)	ACTIVITIES AND NOTES	RESOURCES
1.0 MEASUREMENTS AND				
PHYSICAL QUANTITIES				
1.1 Measurements	 measure physical quantities; 	 Length, area, volume, 	 Experiments on measur- 	A ruler, Vernier callipers,
	read an instrument scale	mass, time, temperature.	ing length, time, mass.	thermometer, balance
	to the nearest fraction of a		 Determining area and 	stop-watch, micro meter
	division	Liquids, regular, irregular	volume.	screw gauge, measuring
	 determine density of regular 	objects.	 Determining density 	cylinder, force meter
	and irregular objects		experimentally for liquids,	
			regular and irregular ob-	
	 express quantities in terms 	• S.I. units.	jects.	
	of S.I. units;		 Relating density to flota- 	
	Derive other units from base	Newton, joule watt, volt and	tion and sinking.	
	units	others.	 Deriving units from base 	
			units.	

TOPIC	OBJECTIVES Learners should be able to:	UNIT CONTENT(Skills, attitudes and knowledge)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
2.0 KINEMATICS 2.1 Speed, Velocity and Acceleration	 define displacement, speed, velocity and acceleration 	 Displacement, speed, velocity and acceleration. 	 Using of ticker tape timer experiment or any other method. 	 Ticker tape timer and tape Electronic speed detector
2.2 Graphs of motion	 plot, draw and interpret graphs of motion 	 Distance time graph Determining velocity using distance time graph. Speed time graph. Slope of graphs. Area under graph: distance. 	 Determining distance travelled using speed time graphs of graph. Determining acceleration, speed and distance from graphs. 	
2.3 Motion under gravity	 define free-fall; determine acceleration of free fall 	 Free-fall. Terminal velocity. 	 Experimenting on free fall. Describing qualitatively the motion of bodies falling in a uniform gravitational field. Solving problems. 	

TOPIC	OE Le	OBJECTIVES Learners should be able to:	UNIT CONTENT (Skills, attitudes and knowledge)	SU	SUGGESTED LEARNING AND NOTES	SUC	SUGGESTED RESOURCES
3.0 FORCES		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				•	Foam rubber, springs,
3.1 Effects of force on snape and size of materials	•	explain the effects of a force on size	 Deformation of solids. 	•	Experiments demonstrating Hooke's		elastic bands, masses and
		and shape of material	 Tension and 		Law.		mass hangers
	•	plot, draw and interpret extension load graphs	compression.	•	Determining spring	•	Computers.
	•	explain Hooke's Law		•	Constant.		
	•	calculate spring constant	Hooke's Law and Spring constant	•	systems.		
3.2 Effect of force on	•	define weight, momentum	Weight, momentum,		Limited to linear	•	Trolleys, inertia car force
motion		and inertia	inertia;		motion. (Conservation		meters, masses,
	•	calculate momentum	ym = d		of momentum is not		computers, air tracks,
	•	explain each of Newton's	F = ma.		required).		polished surfaces
		three laws of motion		•	Experimenting on forces		
	•	use relation between force, mass and acceleration			changing state of	•	Computer simulations
					motion		
3.3 Friction and circular	•	explain the effect of friction	Friction	•	Experiments	•	Trolleys, masses,
motion		on the motion of a body	 Methods of reducing 		demonstrating friction.		computers, air tracks,
	•	describe the ways in which force may change the	friction.		and dynamic co-efficient		polisited surfaces, rough surfaces, oil/grease
		ody	 Centripetal force. 		of friction).		surfaces
	•	describe qualitatively		•	Stating advantages and	•	Inextensible strings,
		motion in a curved path due to a perpendicular force	Cerninpetal acceleration.		disadvantages of friction.		bobs/plumb-line
				•	Experimenting on		
				•	circular motion.		
T A Truming of the body of the form			A A				
3.4 Turning effect of a force	•	define moment of a force	 Moments. 	•	Illustrating using	•	Doors, levers,
	•	describe the moment of a force in terms of its turning	 principle of moments. 		everyday examples.		wneelbarrows, crowbar, strings, masses,

TOPIC	OBJECTIVES	UNIT CONTENT (Skills,	SUGGESTED LEARNING	SUGGESTED RESOURCES
	Learners snould be able to:	attitudes and knowledge)	AND NOI ES	
3.4 Turning effect of a force	effect and give everyday examples • perform an experiment to verify the principle of moments • make calculations involving the principle of moments	Calculation involving moments.		supporters, stands, bars, retort stands, beams
3.5 Centre of mass	 define centre of mass define centre of gravity determine the centre of mass of a plane lamina describe qualitatively the effect of the position of the centre of mass on the stability of objects 	 Centre of mass. Centre of gravity. Regular and irregular lamina. Stable, unstable and neutral equilibria. 	Experiments determining position of centre of mass of regular and irregular lamina and other objects. Experiments demonstrating stable, unstable and neutral equilibria.	 Irregular laminas, plumb line / bob + string, support stands. Cones, cubes, chairs, ICT tools
3.6 Pressure	 define pressure calculate pressure 	 definition of pressure. P = F/A. 	Experiments demonstrating pressure due to different surface areas Calculating pressure of solid objects using appropriate units.	Cuboids, regular blocks of wood, balances, metre rule, ICT tools

TOPIC	OBJECTIVES	UNIT CONTENT (Skills.	SUGGESTED LEARNING	SUGGESTED RESOURSES
	Learners should be able to:	attitudes and knowledge)	ACTIVITIES AND NOTES	
	calculate pressure in fluidsdescribe effect of depthon pressure	 Pressure in fluids P=pgh. 	Experiments demonstrating variation of pressure with depth	 Manometer and liquid containers Magdebug hemispheres
	 describe atmospheric pressure 	 Atmospheric pressure. Pressure cooker 	Demonstrating atmospheric pressure	Drinking strawsRubber suckersPressure cooker
	 use bar patterns to predict type of weather including wind strength and direction 	Weather patterns.	 Analysing simple barometer weather charts 	
	 describe the construction and use of a barometer describe the construction 	 Applications and 	 Calculating the manometer 	
	and use of a simple manometer	hazards.	 Describing hydraulic 	
		Manometer.	systems Describing water	
			reticulation	
4.0 Machines 4.1 Simple machines	 describe the use and applications of machines 	Levers, single string pulley exerens (at	(Classification of levers is not required).	• Pullevs inclined plane
	 calculate mechanical advantage, velocity ratio 	most 6 pulleys), inclined plane: MA = Load / Effort: VR =	Calculations limited to levers, pulley systems	levers, force metre, metre rule, loads and masses
	 explain energy losses in machines. 	Distance moved by the effort force/distance moved by the load.	efficiency	
	 describe methods of improving efficiency 	100.		
		 Friction and mass of the machine. 		

ORM 3

TOPIC	OBJECTIVES Learners should be able to:	UNIT CONTENT (Skills, attitudes and knowledge)	SUGGESTED LEARNING AND NOTES	SUGGESTED RESOURCES
4.1 Simple machines		 Lubrication and mass reduction. Ball bearings. Smooth surfaces. 		
5.0 MECHANICAL STRUC- TURES 5.1 Beams	 define a beam describe a beam by its cross sectional area compare the strength of beams explain the effects of push and pull forces explain how stress is distributed in a loaded beam 	Beams. Qualitative relation between strength, cross-sectional shape and depth. Compression, tension, shear and buckle. Compression, tension and natural zones. Internal stress, areas of strength and weakness.	 Using supported bar which bears a load. Naming T, L, I, Z, O and H shaped beams, solid and hollow box and cylindrical beams. Carrying out practical work on beams using similar quantities (mass per unit length) of material but different beams Experiments demonstrating crushing, compressing, buckling and bending, stretching and snapping 	Beams, supports, loads, ICT tools Beams of different area sections; T, L, I, W etc. beams, wooden splits Different types of beams Metre rules, supports, loads Foam rubber, elastic bands, glass rods, load/stress Hollow stems, green twigs, foam rubber ICT tools Plasticine Stik stuff
5.2 Trusses	 construct trusses explain the use of triangles in a truss explain the advantages of trusses over beams 	 Trusses. Stability. Economy, strength and strength/mass ratio. 	 Defining a truss. Comparing weight of structures. Experiments illustrating strength/mass ratio of a beam and truss. 	 Beams, pins, nails, loads, retort stands, pivot, metre rule. Trusses on buildings. Laboratory models of trusses using wooden splints. ICT tools.

TOPIC	OBJECTIVES Learners should be able to:	UNIT CONTENT (Skills, attitudes and knowledge)	SUGGESTED LEARNING AND NOTES	SUGGESTED RESOURCES
5.2 Trusses	 explain how a load can be distributed throughout a truss; identify struts and ties in a truss; explain the design of a roof truss; 	 Compressive and tensile forces. Transmission of forces by connecting members. Distribution of load 	Experiments determining which members are under tension and which are under compression. Constructing models	
5.3 Joining materials	 describe methods of joining materials; compare the strength of joints 	 Joining mechanisms; Pinning: Surface contact: Size of contact area, number and position of pins. 	 Making and testing strengths of joints. Gluing with or without dowels and tongue; Soldering, brazing and welding; Plastics – welding and gluing. 	 Wooden, metallic and plastic materials Beams, screws, nails bolts and rivets; Glue Joints
5.4 Large structures	 identify materials used in large structures compare properties of construction materials explain the design and materials used in different types of bridges explain the use of arches in construction of large structures explain composition and shape of dam walls 	 Wood, metal, reinforced concrete and stones. Compressive and tensile strength, mass and durability. Pier bridge, beam bridge, arch bridge and Suspension bridge. Earth and concrete; straight and arch dams 	 Naming materials used in large structures. Comparing properties of construction of materials. Comparing durability in relation to decay, corrosion and rusting. Constructing and loading of models. (No knowledge of material cost is required but an appreciation of both durability and cost as factors in determining choice). Identifying materials which make dam walls 	 Metals beams, wooden beams, cement, concrete, reinforce concrete beams, quarry stones, gravel, sand ICT tools Wooden splints, sand, stones, gravel, clay soil

=ORM 3

TOPIC	OBJECTIVES	UNIT CONTENT Skills,	SUGGESTED LEARNING	SUGGESTED
	Learners should be able to:	attitudes and knowledge)	ACTIVITIES AND NOTES	RESOURCES
6.0 WORK, ENERGY AND POWER				
6.1 Work	 define work done 	 Work done; 	Experiments illustrating	Force metres, wooden
	calculate work done		work done Work = Force x distance	watch, pulleys, and inclined planes.
6.2 Energy	define energy	Energy Sources	Describing forms of	Wooden blocks
)	describe forms and	Law of conservation of	energy such as chemical,	Batteries, cells.
	sources of energy	energy	HEP, sun, nuclear, geo-	chemicals, metals
	 relate energy conversions 	Energy conversions	thermal, wind and tides.	Generator/turbines
	and work done	 Calculations involving 	(renewable and non-	
		energy and work Safe disposal of batteries	 Naming sources of heat, 	Solar cells/panels, solar chargers, solar water
		and accumulators	light, sound, electrical, kinetic gravitational and	heater systems
			potential energy.	• Academic trips to hot
			Giving relationship	springs e.g.
			between energy and work	Chimanimani hot springs
			Calculating problems on	
			energy.	Computer simulations
			 Safe disposing of 	
			batteries and	
			accumulators	

TOPIC	OBJECTIVES Learners should be able to:	UNIT CONTENT (Skills, attitudes and knowledge)	SUGGESTED LEARNING AND NOTES	SUGGESTED RESOURCES
6.3 Power	 define power relate power to rate of energy transferred perform calculations involving power 	Power = Energy Tîme Power = Work done Tîme = Fv	Carrying out e experiments to determine power.	Electric motor, meter rule, stop watch, load, string, block of wood, Force meter.
7.0 THERMAL PHYSICS 7.1 The kinetic theory of matter	 the effect of a change describe states of matter in terms of kinetic theory explain the physical properties of matter describe qualitatively the thermal expansion of solids, liquids and gases explain the relative order of magnitude of expansions of solids, liquids and gases identify and explain some of the everyday applications and consequences of the rescribe qualitatively of temperature on the volume of a gas at constant pressure 	 Solids, liquids and gases. Brownian motion. Charles's law. Boyle's law. Equation of state. P1V1/T1=P2V2/T2 	Carrying out practical activities to demonstrate change of state including Sublimation. Carrying out experiments to illustrate the properties. Melting boiling and evaporating. Diffusion – mixing due to molecular motion. Experiments on Charles's and Boyle's law.	 Kinetic theory model kit. Brownian motion model kit. Solids, I iquids and gases Sources of heat Chalk/dust. 2 large syringes communicated by rubber tubing, warm water, thermometer, manometer. Ice water in a beaker, source of heat, thermometer. Perfume, bromine, smoke. Charles' law apparatus. Boyle's law apparatus.

TOPIC	OBJECTIVES Learners should be able to:	UNIT CONTENT (Skills, attitudes and knowledge)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
7.2 Thermal Properties	compare qualitatively order of magnitude of expansion of solids liquids and gases explain applications and consequences of thermal expansion and contraction describe how a physical property which varies with temperature may be used for measurement of temperature state such properties	Thermal expansion and contraction. Thermostats, thermometers, bridges, railway lines and electrical cables, etc. Measurement of temperature, fixed points liquid in glass thermometer (laboratory and clinical), thermocouple thermocouple thermometer, advantages and disadvantages and disadvantages of each type of thermometer.	Carrying experiments to compare expansion and contraction in solids, liquids and gases. Carrying out experiments with different thermometers.	 Ball and ring experiment, gouge and bar, empty flask fitted with a rubber stopper with a glass tubing, warm water, cold cloth. Flask filled with water fitted with a rubber stopper with a glass tubing and warm water and ice water in a bowl. Thermostats, thermometers, bimetallic strips.
	 state the need for and identify fixed points describe sensitivity range and linearity describe different types of thermometers define and describe melting and boiling in terms of energy transfer without change of temperature describe the effect of impurities and pressure on melting points and 	Melting and boiling. Latent heat. Impurities and pressure.	 Carrying out experiments on expansion and contraction of matter. Determining melting point and boiling point experimentally and graphically. Consider both heating and cooling curves. Carry out experiments on the influence of atmospheric pressure and impurities on melting points and boiling points to be discussed in terms 	 Calorimeter, elements, solids, water, thermometers, balance Flat bottomed flasks, tongs

TOPIC	OBJECTIVES	UNIT CONTENT (Skills,	SUGGESTED LEARNING	SUGGESTED RESOURCES
	Learners snould be able to:	attitudes and knowledge)	ACTIVITIES AND NOTES	
	boiling points of substances		of kinetic theory demonstrate.	
	 determine the specific heat capacity 	Definition of heat capacity and specific	 Determining specific heat capacity by experiments. 	 Calorimeter, heating elements, solids, water,
	of a liquid and a solid	heat capacity(c).		thermometers, balance,
	 calculate the heat transfer from 	$\triangle Q = mc(\vartheta_f - \vartheta_i) = IVt.$	 Carrying out calculations on specific heat capacity. 	clock, voltmeter, ammeter, connecting
	experimental data	 Heat supplied = heat gained 	 Explaining differences in heat capacities. 	leads, power, tunnel, ice
	 explain why different materials have different heat capacities 	Gloss = Qgained = Qsupplied.	Determining specific latent heat experimentally.	
	 define specific latent heat 	 Explanation based on particles. Fusion, vaporization 	Calculating specific latent heat.	
	 calculate specific latent heat 	Heat supplied = heat gained.	(Assumption: No neat is lost or gained to surrounding).	
		∆Q= ml.		
7.3 Heat Transfer	 identify good and bad conductors of heat 	 Metals, non-metals and liquids. 	Carrying out experiments to distinguish. between	Lesley cube/wax Conductor meter
	 give a molecular account of heat transfer in solids 	Conduction.	good and bad conductors of heat.	 Beaker with water + a colorant i.e. potassium
	 relate convection to density changes in 		Carrying out experiments to demonstrate	permanganate.
	liquids and gases	Convection.	conduction and convection.	Convection chamber
			Experiments to demonstrate convection.	

TOPIC	OBJECTIVES Learners sho to:	OBJECTIVES Learners should be able to:	UNIT CONTENT (Skills, attitudes and knowledge)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
	describe distingui good an emitters, infra-red deduce absorbe emitters explain a conducti and radi, describe and desi water he	describe experiments to distinguish between good and bad emitters/absorbers of infra-red radiation deduce that good absorbers are also good emitters explain applications of conduction, convection and radiation describe the function and design of a solar water heater	 Radiation. Good and bad emitters/absorber. Solar cooker and vacuum flask, etc. Solar water heater. Sea breezes. Air vents. 	 Carrying out experiments with dull and bright surfaces. Carrying out experiments with parabolic reflectors. Carrying out Experiments to demonstrate solar water heating. 	 Reflectors, vacuum flask and different surfaces. Parabolic dish, solar water heater. Wax Thermometer Heater Air conditioner
8.0 INTERNAL COMBUSTION ENGINES 8.1 Four stroke engine	describ of a fou explain carbure state the multiple engine of a die engine of a die engine	describe the operations of a four stroke engine; explain the role of the carburettor state the advantage of multiple cylinders in an engine compare the operations of a diesel and petrol engine	 Compression, power, exhaust and inlet strokes. Fuel and air supply. Even firing and power distribution. Ignition methods, relevant efficiency and carbon monoxide (soot) production. Size of parts. 	 Explaining importance of a clean fuel supply, effects of limitation of air supply (choke control, blocked filters) and fuel supply (worn out jets). Using a model to demonstrate strokes. Explaining e fficiency as measured by fuel economy (kilometres per litre). 	 Engine models, Computer models, carburettor

TOPIC	OBJECTIVES Learners should be able to:	UNIT CONTENT (Skills, attitudes and knowledge)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
8. 1 Social and economic considerations of using fuels	 identify renewable and non-renewable resources; fuels describe the social and economic implication of using fuels; 	 Renewable and non-renewable fuels. Deforestation, effects of the by-products, pollution. Safe handling of fuels. 	 Identifying renewable and non-renewable resources. fuels 	Wood, charcoal, coal, petroleum, bio gas, ethanol Candles
9.0 WAVES 9.1 Mechanical wave properties	 describe wave motion describe characteristics of a wave calculate velocity, frequency and wavelength describe propagation of waves in terms of wave fronts and rays. 	 Transverse and longitudinal waves. Amplitude, wavelength, frequency and period T= 1/f, V =fλ Media for mechanical waves. Reflection and refraction wave fronts and rays 	 Demonstrating reflection and refraction of wave fronts practically. Calculating the period, velocity, frequency and wavelength of waves Carrying experiments to demonstrate waves. 	 Springs/slinky, ropes ropes, ripple tanks
9.2 Sound	 describe how sound is produced describe the longitudinal nature of sound waves state the approximate range of audible frequency 	 Vibrations Compressions and rarefactions. Transmission of sound in different media 	Carrying experiments on sound production Carrying out experiments involving transmission in different media. Determining speed of sound practically.	 Fixed ruler/hacksaw blade Tuning forks and simple musical instruments ICT tools vacuum pump and electric bell watch

TOPIC	OBJECTIVES	UNIT CONTENT (Skills,	SUGGESTED LEARNING	SUGGESTED RESOURCES
	Learners should be able to:	attitudes and knowledge)	ACTIVITIES AND NOTES	
9.2 Sound	explain the need of a medium in the transmission of sound waves describe experiments to determine the speed of sound in air; relate pitch, loudness and quality of sound waves to amplitude and frequency describe echoes and application	Speed of sound. Pitch, loudness and quality. Reflection of sound. Applications of echoes. Fishing industries Depth determination	Carrying out experiments on pitch, loudness and quality (No treatment of overtones.) Carrying out simple experiments to demonstrate echoes	starter gun/wooden block wall shallow well C.R.O, microphone, signal generator
9.3 Electromagnetic waves	 identify the regions of the electromagnetic spectrum(order of wavelength or frequency) state the differences and similarities between electromagnetic waves; state the uses of the different components of the electromagnetic spectrum 	Electromagnetic spectrum Wavelength, frequency, speed and transmission Uses of the different components	No recall of actual wavelengths or frequencies is required Discussing differences and similarities between electromagnetic waves. Discussing applications of electromagnetic waves in communication cooking, medical field remote sensing	 Mirror, ICT tools, Oily surfaces with light, Laptop or TV screens with DVD with light UV and infrared sources, filters, computer

8.0 COMPETENCY MATRIX

Refraction of light describe refray diages describe refray diages. describe refray diages. describe refray define refray define critics.	state laws of refraction;			
		Optically dense and optically less dense media	 Carrying out experiments to investigate refraction. 	Optic kit ICT tools
through transfer t	describe refraction using ray diagrams;	$\frac{sini}{sinr} = constant$	 Drawing ray diagrams to illustrate various situations of refraction 	 Binoculars , microscope and periscope
• define crit	describe refraction of light through transparent blocks and liquids;	Refraction at plane surfaces	 Experiments to demonstrate apparent depth 	
	define critical angle;	Apparent depth	Experiments to	
describe treflection:	describe total internal	Ray diagrams	determine refractive index.	
describe a describe total inter-	describe applications of total internal reflection.	Total internal reflection and critical angle.	Experiments to demonstrate total	
	•	Glass prisms instruments	Internal reflection. • Demonstrating	
	•	Mirage	- 10	
	•	Straight object in water	internal reflection in fibre optics;	
10.3 Lenses • describe the converging diverging lens light;	describe the action of a converging lens and diverging lens on a beam of light;	Converging and diverging lenses, focal point	 Carrying out experiments to show convergence and divergence 	Optic kit, camera
draw ray illustrate i real and v	draw ray diagrams to illustrate the formation of real and virtual images	Nature and position of images	 Carrying out experiments on formation of real and virtual images by 	
			converging lens.(No treatment of images formed by diverging lenses is required)	

TOPIC	OBJECTIVES	UNIT CONTENT (Skills,	SUGGESTED LEARNING	SUGGESTED RESOURCES
	Learners should be able to:	attitudes and knowledge)	ACTIVITIES AND NOTES	
	 Explain how to measure the focal length of a converging lens 	Focal length	 Carrying out demonstrations. 	Optical kit Metre rule
	 describe magnification of a converging lens 	 Magnification 	 (No calculations required) 	
	 describe the use of a single lens as a magnifying glass 	$m = \frac{v}{u} = hi/ho$	 Experiments to measure the focal length of a converging lens. 	Camera and projector ICT tools
	 describe the use of a single lens to form a real image 	 Image characteristics. 		
	 explain the use of lenses in the correction of short and long sight 	 Short and long sights. 	 Demonstrating the action of a magnifying glass. 	
10.4 Dispersion of light	 define dispersion of light describe the dispersion of light 	Visible spectrum.	Carrying out experiments on dispersion of light using a glass prism. Order of colours to be specified.	Optic kit and glass prism ICT tools
11.0 ELECTRICITY 11.1 Electrostatics	describe experiments to show electrostatic charging	 The electron, and positive charges. Unit of charges. The Coulomb. 	Carrying out experiments to show electrostatic charging.	 Van de Graaf generator, gold leaf electroscope, Perspex, ebonite, cellulose Rods/plates, coffon, fur.
	 describe forces between charges of static electricity describe an electric field 	Like and unlike Charges. Force and electric charges.	Carrying experiments to demonstrate attraction repulsion of charges.	glass rods Polythene

TOPIC	OBJECTIVES	UNIT CONTENT (Skills,	SUGGESTED LEARNING	SUGGESTED RESOURCES
	Learners should be able to:	attitudes and knowledge)	ACTIVITIES AND NOTES	
	 state and describe the direction of field lines and simple field patterns; 	 Field lines and field patterns 	 Qualitative treatment only Drawing diagram to show field -patterns. 	
	 distinguish between electric conductors and insulators; 	Conductors and insulators		
	 explain separation of charge by induction; 	Induced charge in conductors	Demonstrating inductive charging using electroscopes.	
	 describe natural phenomena of static electricity 	Lightning conductors	Discussing lightning, safety precautions Applications and hazards	Gold leaf electroscope
			 Formation, dangers, earthing, shielding. Constructing a lightning conductor 	 Lightning conductors/ shields ICT tools
11.2 Primary and secondary cells Electromotive force	use the concept that the e.m.f is measured by energy dissipated by a source in driving a charge round a complete circuit	e.m.f of a cell/battery. units of e.m.f.	 Sources of e.m.f. List sources of e.m.f. Explaining the terms e.m.f. and calculating current. I = Q/t. 	Power supplies, cells, batteries, accumulators, voltmeter,(photo voltaic cells)
	the volt is given by J/C			

-ORM 4

TOPIC	OBJECTIVES	UNIT CONTENT (Skills.	SUGGESTED LEARNING	SUGGESTED
	Learners should be able to:	attitudes and knowledge)	ACTIVITIES AND NOTES	RESOURCES
11.3 Current electricity	explain the flow of current in	Electric charge flow.	Ampere, the volt, milliam-	Ammeter, voltmeter,
	a circuit	 Ammeter, ampere. 	pere range.	multimeters
	use the equation I=Q/t	 Conventional direction of 	 Using a voltmeter to mea- 	 Carbon Resistors
	measure current and volt-	current.	sure p.d.	Ammeter, voltmeters,
	age	 Different ranges of voltage 	 Using an ammeter to mea- 	multimeters,
	define potential differences	and current.	sure current.	power sources, leads,
	 use the concept that the 	Voltage in a series circuit.	 Carrying out experiments 	switches.
	sum of the potential differ-	VT=V1+V2+	using voltmeter in a series	
	ences in a series circuit is		circuit.	
	the same as the potential	Law of conservation of	 Carrying out experiments to 	
	difference across the whole	energy	verify Ohm's Law and cal-	 Colour code chart
	circuit		culations involving Ohm's	
	 state and apply Ohm's law 		law.	
		Resistance	 Carrying put experiments to 	
	 describe an experiment to 	R=V/I	determine resistance.	
	determine resistance using	Experimental determination	 Carrying out simple exper- 	
	a voltmeter and an ammeter	of resistance.	iments to investigate the	
			limitations.	 Different swg wires of
	 state the limitations of 		 Sketching and interpret- 	e.g. Constantine, ni-
	Ohm's law		ing the V/I characteristics	chrome, copper, mi-
		Thickness and length of a	graphs.	crometre screw gauge,
	 sketch and interpret the 	conductors.	 Variations of resistance of 	metre rule
	V/I characteristics graphs		conductor with temperature	
	for metallic (ohmic) and	Temperature	(e.g. in a bulb), tension or if	
	non-ohmic conductors		placed in a strong magnetic	
			field.	
	 Use the relationship be- 		 Carrying out experiments 	
	tween the resistance, length	R=pl/A	to investigate the relation-	
	and cross-sectional area of		ships.	
	a wire			

TOPIC	OBJECTIVES	UNIT CONTENT (Skills,	SUGGESTED LEARNING	SUGGESTED RESOURCES
		attitudes and knowledge)	ACTIVILES AND NOTES	
	Learners should be able to			
11.4 Electric circuits	 set up simple electric circuits 	 simple circuits. 	 Mounting circuits and measuring current through resistors in 	 Cells, switches, resistors variable resistors, bulbs, ammeters, voltmeters
	 draw and interpret circuit diagrams 	 draw and interpret circuit diagrams. 	parallel.Carrying out practical activities on electric	and fuses, connecting leads.Circuit boards, fuses,
	use the fact that the current from the source	• = 1+ 2+ 3.	circuits. • Drawing and intermeting	switches, computer
	is the sum of currents in the separate branches of a parallel circuit	• R=R ₁ +R ₂ +R _{3.}	circuit diagrams.	
	 calculate resistance in simple circuits 	 Series and parallel 		
		resistors.	 Calculating resistance for series and parallel 	
		$\frac{1}{R} = \frac{1}{R1} + \frac{1}{R2} +$	resistors.	
11.5 Electricity in the home	 describe uses of electricity in the home 	 Heating, lighting and mo- tors lamps in parallel 	Discussing and listing uses of electricity in the home	Three-pin plug, two-pin plug fuses breakers
			Reading of electricity me-	heating elements, iron, fan,
	 calculate electrical power, 	 The kilowatt-hour 	ters and costing.	electric meters, motors,
	energy and the cost of electricity	P=VI E=VIt.	Discussing damaged insulation, overheating cables	ICT tools
	,	• Hazards.	and damp conditions.	
	 describe electrical haz- 	 Safety precautions. 		
	ards and safety precau-			
	 describe the wiring of a 			
	three-pin plug			

TOPIC	OBJECTIVES Learners should be able to	UNIT CONTENT (Skills, attitudes and knowledge)	SUGGESTED LEARNING ACTIVITES AND NOTES	SUGGESTED RESOURCES
11.5 Electricity in the home	explain the use of fuses, fuse ratings and switches	Live, neutral and earth. Double insulation of appliance.	 Experiments demonstrating electrical hazards must NOT be done. Wiring of a plug. Examining appliances with double insulation Demonstrating the operation of a fuse and a switch. Explaining why fuses and switches are always on live wire. 	 Fuses, switches on live wire Insulated cables, electricity meters
12.0 MAGNETISM 12.1 Magnetic properties	 state the properties of magnets describe magnetic field lines around magnets explain induced magnetism; describe methods of magnetisation; describe methods of demagnetisation; 	Attraction and repulsion. Magnetic field lines. Pattern and direction. Induction. Single and double stroking, using a solenoid Demagnetisation by hammering, heating and electrical methods. Relative ease of magnetisation temporary and permanent magnets.	Carrying out experiments to investigate properties of magnets. Carrying out experiments to demonstrate induced magnetism. Carrying out experiments to demonstrate magneti-sation.	Magnets, pocket compass, cell, solenoid/coils, different materials both magnetic and non-magnetic, iron filings, paper, heat, hammer.

TOPIC	OBJECTIVES Learners should be able to:	UNIT CONTENT (Skills, attitudes and knowledge)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
	 distinguish between magnetic and non-magnetic materials distinguish between the magnetic properties of iron and steel 	temporary and permanent magnets	Magnetising and demagnetising pieces of iron and steel.	Iron and steel rods/cores
12.2 Application of magnetism	 describe uses of temporary magnets describe uses and application of permanent magnets 	Temporary magnets and their uses. Permanent magnets and their uses.	Discussing uses of temporary magnets. Discussing uses of permanent magnets	 Video and audio tapes, computer discs, electric bell, Electric motors, loudspeakers, generators, telephone receivers
13.0 ELECTROMAGNETISM 13.1 Magnetic effect of an electric current	describe an experiment to demonstrate that a current-carrying conductor has a magnetic field around it describe an experiment to plot magnetic field patterns due to a current-carrying solenoid predict the direction of magnetic field of straight conductor and of a solenoid	 Magnetic field patterns. Magnetic field patterns of solenoid. Direction of magnetic field. Right hand grip rule. 	 Demonstrating field around current Carrying conductor using iron fillings and plotting compass. Plotting magnetic field lines due to a solenoid. Predicting direction of field lines. 	Long straight conductor, solenoids, switch, leads, pocket /plotting campus, (cell), DC source, ICT tools

-ORM 4

TOPIC	OBJECTIVES	UNIT CONTENT (Skills, atti-	SUGGESTED LEARNING	SUGGESTED RESOURCES
	Learners should be able to:	tudes and knowledge)	ACTIVITIES AND NOTES	
13.2 Force on current carrying conductor magnetic in a magnetic field	 describe an experiment to show that a current-carrying conductor in a magnetic field experiences a force describe the field patterns between parallel currents and relate these to the forces which exist between the currents predict the direction of motion of a current-carrying conductor in a magnetic describe the application of the magnetic effect of a current describe the operation of a d.c. motor 	 Fleming's left hand rule. Force between parallel currents, field patterns. Factors affecting magnitude of force. Action of an electric bell and a simple relay Electrical to mechanical energy. 	 Experiments on field patterns between parallel currents. Demonstrating the effect of a magnetic field on a current carrying conductor. Experiments to show relationship between direction of current, field and motion Constructing a simple d.c. motor Field, current and motion, turning effect commutator 	Two Long straight conductors, switch, leads, pocket / plotting campus, cell. Electric bell, relay, reed switch, microphone, speaker er etc. DC motor model, insulated wire, block of wood, leads
13.3 Electromagnetic induction	 describe an experiment which shows that a changing magnetic field can induce an e.m.f. in a circuit or conductor state the factors affecting the magnitude of induced e.m.f. use the fact that direction of an induced e.m.f opposes the change producing it 	The generator principle. Strength of magnet, relative motion, number of turns, area of coil. Lenz's law.	 Carrying out experiments to show generator principle. Carrying out experiments to investigate factors which affect e.m.f. Carrying out experiment to show Lenz's law. 	Coils with different number of turns and cross sectional area of coils, solenoids, bar magnets, galvanometer, CRO. ICT tools

TOPIC	OBJECTIVES Learners should be able to:	UNIT CONTENT (Skills, attitudes and knowledge)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
	predict the direction of induced current in a conductor	Fleming's right hand rule.	 Using Flemming's right hand rule to make predic- tions. 	
	 describe the operation of an a.c. and d.c. generators 	 mechanical to electrical energy. differences between a.c.and d.c. 	 Identifying slip rings, commutator, brush, coil and magnets. 	
			Sketching velocity time graphs.	
			Discussing the factors affecting output voltage.	
			Comparing a.c. and d.c. generators.	
13.4 Transformers	describe the structure and principle of operation of a basic iron-cored transformer	Primary and secondary coils, laminated core, voltage. Transformer efficiency, cooling	Demonstrating the operation of a simple transformer.	Coils with multiple tapings, iron cores, voltmeters, multi-metres C B O ac
	use transformer equations	and eddy currents. • Magnetic flax heating.	transformer equation Discussing efficiency (ener-	sources, Hall probe
	 describe the use of transformer in high-voltage transmission discuss the energy loss in cables 	Joule heating. Vp /Ns=Np/Ns and Vplp=Vsls	gy loss).	
	 give advantages of high voltage transmission 	 Current and potential differ- ence in step-up and step-down transformers 	Discussing the advantages of high-voltage transmission.	• ICT tools

TOPIC	OBJECTIVES	UNIT CONTENT (Skills,	SUGGESTED LEARNING	SUGGESTED RESOURCES
	Learners should be able to:	attitudes and knowledge)	ACTIVITIES AND NOTES	
14.0 ELECTRONICS	explain that a hot filament	Emission of electrons	Demonstrating thermionic	 CRT, tubes and kits, comput-
14.1Thermionic	emits electrons	from hot metals.	emission.	er, magnetic field source
emission	 describe how these elec- 		 Discussing acceleration 	ICT tools
	trons can be directed into	Acceleration and collima-	and collimation of elec-	
	an electron beam describe	tion of electrons.	trons.	
	the effect of a magnetic or	Reflecting of electron	NOTE: Direction of deflection	
	electric field on an electron	beam.	of electron beam.	
	beam		 Relating to TV tubes and 	
			CRO.	
14.2 Diodes	describe the function of	Function of diodes	 Carrying out experiments 	LED cells, diodes, circuit
	diodes	Switch and rectification	to demonstrate the func-	boards, electronic kits
		Circuit symbol/ LEDs	tion of a diode.	
14.3 Rectification	define rectification	Conversion of a.c. to d.c.	 Carrying out experiments 	Electronic kit, diodes, AC
	 explain half and full wave 	Use of diodes, voltage –	on rectification and	source, capacitor, CRO
	rectification	time graphs.	smoothening.	 Power supplies
			 Voltag time graphs 	
14.4 Electronic	describe the behaviour of	Colour and coding.	 Reading colour codes and 	 Coded carbon resistors of
Components	resistor		tolerance.	various ratings and ranges
	 use a given colour code 		 Measuring resistance 	 Potential dividers/rheostat,
	for resistance values			thermostats/thermistor
	 choose components with 			
	suitable power ratings			
	 describe the action of a 			
	variable potential divider			
	 describe the action of ther- 	Potentiometer use as input	 Carrying out experiments 	 capacitors, bulbs, reed
	mostats and light depen-	transducers	with resistors capacitors,	switches, strain-gauge, po-
	dent resistors	Energy store	thermistors, LED, potenti-	tentiometers, buzzers
	 describe the action of a 	Time delay circuits	ometer	
	capacitor			
	 explain the use of reed 			
	switches in circuits			

TOPIC	OBJECTIVES	UNIT CONTENT (Skills,	SUGGESTED LEARNING	SUGGESTED RESOURCES
	Learners should be able to:	attitudes and knowledge)	ACTIVITIES AND NOTES	
14.5 Logic Gates	describe logic gates	Logic gates: OR, AND,	 Constructing Truth Tables. 	Electronic kits, logic gate
		NOT, NAND and NOR		tutor, computer
		Truth Tables		• (2 input gate)
		Combination of logic		
		of not more than three		
		inputs.		
15.0 ATOMIC AND				
NUCLEAR PHYSICS				
15.1 Rutherford's Atomic	 describe the structure of 	 Nucleus and electrons. 	 Drawing diagrams of the 	 Computer, atomic models
Model	an atom in terms of nucle-	Composition of nucleus.	atomic structure.	ICT tools
	us and electrons			Periodic table
		 Proton number Z and 	 Calculating proton and 	
	 explain proton and nucle- 	nucleon number A.	nucleon numbers.	
	on numbers	• A=Zn	 Giving examples of iso- 	
	 explain isotopes 	 Nuclide notation AZX. 	topes	
		Isotopes.		
15.2 Radioactivity	describe radioactivity	Radioactivity.	Describing detection of	Computer, radiation detec-
			radiation.	tors
			Carrying out experiments	
	 state types of radioactive 	 Stability of nuclei, and 	of chances of radio-active	 ICT tools, simulation soft-
	emission	particles and rays, detec-	decay.	ware
		tion .	Discussing nature and	
	 describe the nature and 		properties of radiation.	Dice. Coins
	properties of radiation	 Nature of radiation 		
			 Discussing ionising ef- 	
			fects, penetrating power	
			and deflection by magnet-	
			ic and	

TOPIC	OBJECTIVES	UNIT CONTENT (Skills,	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
	' 📗	_		
	describe the mechanism of	•	electric fields.	
	radio-active decay	radiation.	 Plotting decay cares. 	
		 Decay curve. 	 Carrying out calculations 	
			on half life.	
	 explain the meaning of 			
	half-life	 Half-life. 	Calculating nucleon and	
			proton numbers of bal-	
	 distinguish between fusion 	Fusion and fission, nuclear	anced equations.	
	and fission	reactions.		
			 Drawing and interpreting 	• C.T scans.
	 describe the uses of radio- 	i) carbon – 14 dating	decay curves.	ICT tools
	active isotopes	ii) Biochemical tracers		
		iii) Radiotherapy.	 Writing nuclear equations. 	
			Discussing uses of radio-	
			active materials.	
			 Conducting educational 	
			tours.	
15.2 Radioactivity	Describe how radioactive	 Detection of leaks in pipes 	 Use of photographic film 	Photographic films, comput-
	materials are handled,	 Determination of 	badges for exposure de-	ers
	used and stored in a safe	thickness of materials	tection.	
	way.	 Power generation 		
		Sterilisation		
		Use, storage, handling		
		Soil, water, air, plant and		
	 describe the effects of ra- 	animal life	The impact of radioactive	
	dioactive emission on the	Safe disposal of radio-ac-	emission on the environ-	
	environment	tive waste	ment	

9.0 ASSESSMENT

9.1 ASSESSMENT OBJECTIVES

The scheme of assessment is grounded in the principle of inclusivity and equalisation of opportunities hence does not condone direct or indirect discrimination of learners.

Modifications of arrangements to accommodate candidates with special needs must be put in place in both continuous and summative assessments. These modifications must neither give these candidates an undue advantage over others nor compromise the standards being assessed.

NB: For further details for arrangements, accommodations and modifications refer to the assessment procedure booklet.

The three assessment objectives in 'O' Level Physics are:

- 1: Knowledge with understanding
- 2: Handling information and problem solving
- 3: Experimental skills and investigations

1: Knowledge with understanding

Candidates should be able to demonstrate knowledge and understanding of:

- scientific phenomena, facts, laws, definitions, concepts, theories
- scientific vocabulary, terminology, conventions (including symbols, quantities and units)
- scientific instruments and apparatus, including techniques of operation and aspects of safety
- scientific quantities and their determination
- scientific and technological applications with their social, economic and environmental implications.

2: Handling information, problem solving, synthesis, analysis and evaluation

In words or using other written forms of presentation (e.g. symbolic, graphical and numerical), candidates should be able to:

- · locate, select, organise and present information from a variety of sources
- translate information from one form to another
- · manipulate numerical and other data
- use information to identify patterns, report trends and draw inferences
- present reasoned explanations of phenomena, patterns and relationships
- make predictions and hypotheses
- solve problems, including some of a quantitative nature.

3: Experimental skills and investigations

Candidates should be able to:

- know how to use techniques, apparatus, and materials (including following a sequence of instructions, where appropriate)
- make and record observations and measurements
- interpret and evaluate experimental observations and data
- plan investigations, evaluate methods and suggest possible improvements (including the selection of techniques, apparatus and materials).

9.2 SCHEME OF ASSESSMENT

The assessment scheme for Physics comprises of

- a) Continuous assessment, and
- b) Summative assessment.

The final grade in Physics is 20% continuous assessment and 80% summative assessment.

The assessment shall be administered as follows:

Paper 1: Multiple choice questions

Paper 2: Structured theory questions

Paper 3: Practical Test

Paper 4: Continuous Assessment

Learners are required to enter for all the 4 papers

Paper	Tye of Paper	Duartion	Marks	Paper Weighting
1	Multiple choice	1 hr	40	19
2	Theory	2 hrs 15 min	100	48
3	Practical Test	2 hrs	30	14
4	Continuous Assessment		40	19

Paper 1: Theory : the paper consists of 40 compulsory multiple choice items of the direct choice type.

Each question shall have 4 response items.

Paper 2: Theory. The paper has 2 sections.

Section A will carry 40 marks and will consists of a number of compulsory structured questions of variable mark value. Section B carries 60 marks and will consist of 4 structured questions .Each question will carry 20 marks. Candidates will be required to answer any 3 questions.

Paper 3: Practical Test

This paper will consist of 2 compulsory questions each carrying 20 marks

Paper 4: Continuous Assessment

This paper will consist of standardised tests in Practical, Theory and a Project during the 5 terms.

9.3 SPECIFICATION GRID

SKILL	Paper 1	Paper 2	Paper 3	Paper 4
1.0 KNOWLEDGE AND	15%	15%		15%
UNDERSTANDING				
2.1 COMPREHENSION,	40%	50%		40%
PROBLEM SOLVING				
2.2 ANALYSIS, SYNTHESIS	45%	45%		45%
AND EVALUATION				
3.0 PRACTICAL			100%	
TOTAL	100%	100%	100%	100%

APPENDIX

SUMMARY OF KEY QUANTITIES, SYMBOLS AND UNITS

Learners should be able to state the symbols for the following physical quantities and, where indicated, state the units in which they are measured. Learners should be able to define those items indicated by an asterisk (*).

Quantity Symbol Unit

QUANTITY	SYMBOL	UNIT
Length	L,h	Km.m,cm,mm
Area	A	M²,cm²
Volume	v	M³,cm³
Weight	w	N
Mass	М	Tones, Kg, g, mg
Time	Т	h, mini,
Period	Т	s
Density	р	Kg/m³, g/m³
Speed	U,v	Km/h, m/s,cm/s
Acceleration	A	m/s²
Force	F	N
Acceleration of free fall	g	m/s², N/kg
Moment of a force	М	N/m
Work done	W, E	J
Power	Р	w
Pressure	P	Pa, n/m², mmHg
Temperature	Θ, Τ	⁸ С, К
Heat capacity	С	J/⁰C, J/k
Specific heat capacity	С	J/(g°), J/(gk)
Latent heat	L	J
Specific latent heat	I	J/kg, j/g
Frequency	F	Hz
Wave length	λ	m,cm

Angle of incidents	1	Degree(°)
Angle of reflection, refraction	r	Degree(°)
Critical angle	С	Degree(°)
Potential difference/voltage	v	V,mV
Current	1	
	_	A,mA
Charge	Q	Q/C,As
e.m.f.	E	V
Resistance	R	Ω

MATHEMATICAL REQUIREMENTS

Arithmetic

Learners should be able to:

- (a) recognise and use expressions in decimal and standard form (scientific) notation
- (b) use appropriate calculating aids (electronic calculator or tables) for addition, subtraction, multiplication and division. Find arithmetic means, powers (including reciprocals and square roots), sines, cosines and tangents (and the inverse functions)
- (c) take account of accuracy in numerical work and handle calculations so that significant figures are neither lost unnecessarily nor carried beyond what is justified, rounding answers correctly when necessary
- (d) make approximations and estimates to obtain reasonable answers

Algebra

Learners should be able to:

- (a) change the subject of an equation
- (b) solve simple algebraic equations, including linear simultaneous equations
- (c) use direct and inverse proportion
- (d) substitute physical quantities into physical equations using consistent units
- (e) formulate simple algebraic equations as mathematical models of physical situations and to represent information given in words

Geometry and trigonometry

Learners should be able to:

- (a) understand the meaning of angle, curve, circle, radius, diameter, square, parallelogram, rectangle and diagonal
- (b) calculate areas of right-angled triangles and circles, areas and volumes of rectangular blocks, volumes of cylinders
- (c) use the angle sum of a right angle and adjacent angles on a straight line
- (d) use sines, cosines and tangents
- (e) use usual mathematical instruments (rules, compasses, protractor, set square)
- (f) recognise and use points of the compass (N, S, E, W)

Graphs

Learners should be able to:

(a) translate information between graphical, numerical, algebraic and verbal forms

- (b) select appropriate variables and scales for graph plotting
- (c) for linear graphs, determine the slope and state the intercept and intersection
- (d) choose, by inspection, a straight line which will serve as the best straight line through a set of data points presented graphically
- (e) recall standard linear form y = mx + c and rearrange relationships into linear form where appropriate
- (f) understand, draw and use the slope of a tangent to a curve as a means to obtain the gradient

GLOSSARY OF TERMS

It is hoped that the glossary will prove helpful to learners as a guide, although it is not exhaustive. The glossary has been deliberately kept brief not only with respect to the number of terms included but also to the descriptions of their meanings. Learners should appreciate that the meaning of a term must depend in part on its context. They should also note that the number of marks allocated for any part of a question is a guide to the depth of treatment required for the answer.

- 1. Define (the term(s) ...) is intended literally. Only a formal statement or equivalent paraphrase, such as the defining equation with symbols identified, being required.
- 2. Explain/What is meant by ... normally implies that a definition should be given, together with some relevant comment on the significance or context of the term(s) concerned, especially where two or more terms are included in the question. The amount of supplementary comment intended should be interpreted in the light of the indicated mark value.
- 3. State implies a concise answer with little or no supporting argument, e.g. a numerical answer that can be obtained 'by inspection'.
- 4. List requires a number of points with no elaboration. Where a given number of points is specified, this should not be exceeded.
- 5. Describe requires learners to state in words (using diagrams where appropriate) the main points of the topic. It is often used with reference either to particular phenomena or to particular experiments. In the former instance, the term usually implies that the answer should include reference to (visual) observations associated with the phenomena. The amount of description intended should be interpreted in the light of the indicated mark value.
- 6. Discuss requires learners to give a critical account of the points involved in the topic.
- 7. Predict or deduce implies that candidates are not expected to produce the required answer by recall but by making a logical connection between other pieces of information. Such information may be wholly given in the question or may depend on answers extracted in an earlier part of the question.
- 8. Suggest is used in two main contexts. It may either imply that there is no unique answer or that learners are expected to apply their general knowledge to a 'novel' situation, one that formally may not be 'in the syllabus'.
- 9. Calculate is used when a numerical answer is required. In general, working should be shown.
- 10. Measure implies that the quantity concerned can be directly obtained from a suitable measuring instrument, e.g. length, using a rule, or angle, using a protractor.
- 11. Determine often implies that the quantity concerned cannot be measured directly but is obtained by calculation, substituting measured or known values of other quantities into a standard formula.
- 12. Show is used when an algebraic deduction has to be made to prove a given equation. It is important that the terms

being used by learners are stated explicitly.

- 13. Estimate implies a reasoned order of magnitude statement or calculation of the quantity concerned. Learners should make such simplifying assumptions as may be necessary about points of principle and about the values of quantities not otherwise included in the question.
- 14. Sketch, when applied to graph work, implies that the shape and/or position of the curve need only be qualitatively correct. However, learners should be aware that, depending on the context, some quantitative aspects may be looked for, e.g. passing through the origin, having an intercept, asymptote or discontinuity at a particular value. On a sketch graph it is essential that candidates clearly indicate what is being plotted on each axis.

 Sketch, when applied to diagrams, implies that a simple, freehand drawing is acceptable: nevertheless, care should be taken over proportions and the clear exposition of important details

SPECIAL NOTE

Nomenclature

The proposals in 'Signs, Symbols and Systematics (The Association for Science Education Companion to 16–19 Science, 2000)' will generally be adopted. Units, significant figures

Learners should be aware that misuse of units and/or significant figures, i.e. failure to quote units where necessary, the inclusion of units in quantities defined as ratios or quoting answers to an inappropriate number of significant figures, is liable to be penalised.

Calculators

An approved calculator may be used in all papers. Geometrical Instruments

Learners should have geometrical instruments with them for Paper 1 and Paper 2.

Apparatus list

This list below details the apparatus expected to be generally available for examination purposes. The list is not exhaustive: in particular, items that are commonly regarded as standard equipment in a physics laboratory are not included. The apparatus listed should be available for each candidate:

- ammeter FSD 1 A or 1.5 A
- voltmeter FSD 1 V, 5 V
- · cells and holders to enable several cells to be joined
- · connecting leads and crocodile clips

- d.c. power supply variable to 12 V
- metre rule
- converging lens with a focal length f = 15 cm
- · low voltage filament bulbs in holders
- · a supply of masses and holders
- newton meter/force meter
- plastic or polystyrene cup
- modelling clay (Plasticine)
- various resistors, including a variable resistor (rheostat)
- switch
- thermometer, –10 °C to +110 °C at 1 °C graduations
- wooden board
- glass or perspex block, rectangular and semi-cir-
- measuring cylinder, 25 cm3, 100 cm3
- beaker, 250 cm3
- springs
- stopwatch
- ray box.

