z. g _{x+y} (z)=g _x (z) g _y (z)	$\lim_{n \to \infty} P(a < \frac{S_n - nm}{\sqrt{n} \cdot 6} \le b) = \frac{1}{\sqrt{2\pi}i} \int_a^b e^{-x^2/2} dx$
$g(z) = \sum_{k=0}^{\infty} {n \choose k} p^k (-p)^{n-k} z^k = \sum_{k=0}^{\infty} {n \choose k} (zp)^k (1-p)^{n-k}$ $= (1-p+2p)^n.$	##: P(Sn=k)= 1/k) pkgn-k. E(Xj)=m. 62(Xj)=6.
9x+y(2) = (1-p+2p) (1-p+2p) m	$\varphi(x) = \frac{1}{6} \varphi(\frac{x+1}{\sqrt{2}}) = \frac{1}{2\sqrt{\pi}} e^{x} p(-\frac{(x+1)^{2}}{4}) - \omega e^{x} e^{x} p$
= (1-p+2p)n+m. 18i2.	$M(0) = E(e^{\theta(-1+\sqrt{2}x^*)}) = e^{-\theta+\theta^2}$
	$m = -1. 6^2 = 2.$
I Not not	
f(kin,p) = (")p" (1-p)n-k. k=0,1,,n.	
E (SL) = np. 6 (X) = npa	
9 (2) = 2" (k) pk (1-p)n-k Zk = (1-p+2p)"	
k:0	
ak ,	
$f(k, \lambda) = \frac{\lambda^{k}}{k!} e^{-\lambda} \cdot k = 0, 1, 2,$	
E(X)= 0+22 6'(X)=2	
$g(z) = \sum_{k=0}^{\infty} \frac{e \cdot d}{k!} a^k z^k = e^{a(z-1)}$	
k=0 F:	
$\lim_{N\to\infty}\frac{n!e^n}{n^{n+1/2}}=\sqrt{2\pi}.$	
N->6 N4.15	