Search engines Поисковые машины, информационно-поисковые системы, ИПС

В прошлый раз: основные понятия в информационном поиске

•Users and Information Needs – потребность пользователя, информационная потребность

•Relevance – релевантность

•Evaluation - оценка качества

Информационный поиск и поисковые машины-2

Информационный поиск

Релевантность

-Эффективное ранжирование

Оценка качество

-Тестирование и измерение

Потребности пользователя

-Взаимодействие с пользователем Поисковые машины

Исполнение запроса

-Эффективный поиск и индексирование

Включение новых данных

-Покрытие и свежесть

Масштабируемость

-Рост с данными и пользователями

Адаптивность

-Настройка на приложения

Специфические проблемы

-например, спам

Особенности работы поисковых машин

- · Выполнение запроса (performance)
 - Измерение и улучшение эффективности поиска
 - Уменьшение времени ответа, увеличение скорости индексирования
 - Индексы это структуры данных, которые необходимы, чтобы уменьшить время ответа системы
 - Важнейший вопрос для поисковых систем

Особенности работы поисковых машин - 2

- · Динамические данные
 - · «Коллекции» данных для наиболее востребованных приложений постоянно меняются: обновляются, удаляются, пополняются
 - Например, веб-страницы
 - Типичные меры: покрытие (сколько проиндексировано) и новизна (*freshness*) (насколько недавно проиндексировано)
 - Необходимо одновременно менять индексы и обрабатывать запросы

Особенности работы поисковых машин-3

- · Масштабируемость
 - · Миллионы пользователей и терабайты документов
 - Используется распределенная обработка
- · Адаптивность
 - Изменение и настройка компонентов поисковой машины, таких как алгоритм ранжирования, методы индексирования, интерфейсы для различных приложений

Поисковый спам

- · Для веб поиска одним из важных направлений работы является поисковый спам
- Важно для качества поисковых результатов
- · Много видов спама
 - Порождение текстов похожих на естественные
 - · Ссылочный спам и др.
- · Новая область информационного поиска adversarial IR,
 - · Спамеры противники с различными целями

Архитектура поисковых машин

Основные компоненты поисковых машин

Основные подсистемы поисковой машины

• Подсистема сбора и индексирования документов

 Подсистема взаимодействия с пользователем для выполнения его запросов.

Подсистема1. Процесс индексирования

Процесс индексирования-2

- Извлечение текстов
 - Идентифицирует и сохраняет тексты для индексирования
- · Трансформация текстов
 - Трансформирует документы в индексные термы
- · Создание индексов
 - Берет индексные термы и создает индексы для быстрого поиска

Извлечение текстов. Краулер

- Идентифицирует и извлекает документы для поисковой машины
- · Много типов интернет, предприятие, компьютер
- · Интернет-краулеры используют ссылки, чтобы найти документы
 - Должны найти огромное количество вебстраниц (покрытие) и сохранять их в актуальном состоянии
 - Краулеры сайтов
 - Тематические краулеры для вертикального поиска
- · Краулеры документов для поиска по документам предприятия или компьютера
 - Используют ссылки и сканируют директории

Получение текстов-2

- · Фиды
 - Потоки документов в реальном потоке времени
 - Новости, блоги, видео, радио, tv
 - · RSS стандарт
 - RSS читалка обеспечивает новые XML документы поисковой машине
- · Конвертация
 - Конвертирует форматы в текст плюс мета-данные
 - HTML, XML, Word, PDF, и др. → XML
 - Конвертирует кодировки для различных языков
 - Например, в кодировку UTF-8

Получение текстов-3

- · Хранилище документов
 - Хранит тексты, метаданные и другое содержание документов
 - Метаданные: тип, дата создания
 - Ссылки, текст ссылки
 - · Обеспечивает быстрый доступ к содержанию документов
 - Порождение списка результатов
 - Эффективное хранение
 - не реляционная база данных

Преобразование текстов

- · Анализатор (Parser)
 - Обрабатывает последовательность токенов в документе, распознает структурные элементы
 - Заголовки, ссылки, подзаголовки и др.
 - · Токенизатор распознает «слова» в тексте
 - Обработка капитализации, кавычек, дефисов ..
 - · Обработка структуры, задаваемой HTML, XML
 - Tesu: <h2> Overview </h2>
 - Парсер использует синтаксис языка разметки идентифицировать структуру документа

Преобразование текстов-2

- Стоп-слова
 - · Удаление наиболее частотных слов
 - · Предлоги, союзы, артикли...
 - Может быть проблемой для некоторых запросов
- · Стемминг (морф. анализ)
 - "computer", "computers", "computing", "compute"
 - Обычно эффективен, но не для всех запросов
 - · Разное действие для разных языков

Преобразование текстов-3

- Анализ ссылок
 - · Ссылки и тексты ссылок (анкор ссылки якори)
 - Анализ ссылок важен для определения популярности сайта и сообщества, связанного с сайтом
 - Например, PageRank
 - · Текст ссылки может значительно уточнить содержание связанных страниц,
 - · Значительное влияние на интернет-поиск
 - Меньше значимость в других поисковых приложениях

Преобразование текстов-4

- Извлечение информации
 - · Идентифицирует семантические классы индексных термов, которые важны для конкретных приложений индекс
 - · Например, распознавание имен людей, географических мест, компаний, дат...

- Классификатор
 - Отнесение текста к категориям
 - · Тематика, тональность, жанры и др.
 - · Зависит от приложения

Создание индекса

- · Статистика по документам
 - Собирает частоты и позиции слов и других признаков
 - · Используется в ранжирующем алгоритме

- Определение весов
 - · Вычисляет веса для индексных термов
 - Используется в алгоритме ранжирования
 - · например, вес *tf.idf*
 - Комбинирование частоты слова в документе и инверсной подокументной частоты слова в коллекции

Создание индекса-2

- Инвертирование
 - Преобразует матрицу документ-терм в данные терм-документ, необходимые для индексирования
 - Сложно для большого числа документов
 - Формат инвертированного файла для быстрой обработки запросов
 - Должен обрабатывать изменения индекса
 - Сжатие данных

Создание индекса-3

- Распределенное хранение индекса
 - Распределяет индексы по многим компьютерам и/или многим дата-центрам
 - Необходимо для быстрой обработки запросов
 - · Много вариантов
 - Подокументное распределенное хранение, распределенное хранение термов, повтор данных

Особое направление исследований: Distributed IR – распределенный информационный поиск

Подсистема 2. Обработка запроса

Обработка запроса

- Взаимодействие с пользователем
 - · Поддерживает создание и уточнение запроса, показ результатов

- Ранжирование
 - Использует запрос и индексы породить ранжированный лист документов

- · Оценка качества
 - Мониторит и измеряет качество поиска

Взаимодействие с пользователем

- Ввод запроса
 - · Интерфейс и парсер для языка запросов
 - Большинство интернет запросов простые
 - Язык запросов нужен для описания сложных запросов и результатов трансформации запросов (работа т.н. колдунщиков запросов)
 - Булевские запросы
 - Специализированные языки запросов для информационно-поисковых систем (Indri, Galago)
 - Сходны с SQL языками, используемыми в базах данных

Взаимодействие с пользователем-2

- · Трансформация запросов
 - Улучшает исходный запрос
 - Спеллчекинг
 - Подсказка запроса
 - Автоматическое расширение запроса пополнение его дополнительными словами
 - · Relevance feedback автоматизированная технология с участием пользователя
 - Пользователь размечает релевантные документы

Взаимодействие с пользователем-3

- Выдача результатов
 - · Строит поисковую выдачу (SERP)
 - · Порождает сниппеты, чтобы отразить соответствие документа запросу
 - Подсвечивает важные слова
 - Показывает релевантную рекламу основной источник прибыли Интернетпоисковых систем
 - Может обеспечивать кластеризацию результатов и другие виды визуализации

Ранжирование

- Присваивание веса соответствия документа запросам
 - Веса использует алгоритм ранжирования
 - · Базовый компонент поисковой машины
 - Базовое вычисление веса на основе векторных представлений
 - Классические представления документов вектора слов
 - · Позже: машинное обучение и большое количество признако
 - Много вариантов алгоритмов вычисления весов и ранжирования

Ранжирование-2

- · Оптимизация выполнения запроса
 - · Ранжирующие алгоритмы должны позволять эффективное исполнение
- · Распределенное выполнение
 - Обработка запросов в распределенной среде
 - Брокер запросов рассылает запросы и собирает результаты
 - Кэширование

Поисковые системы разного уровня

Russir, 2009 Курс "Enterprise and Desktop Search" (Дмитриев и др.)

Search Environment of a Company Employee

Public Web (Internet)

Интернет-поиск vs. Корпоративный поиск

• Интернет-поиск

- Собирает результаты по общедоступному Интернету
- Проблема ранжирования результатов
- Большие объемы
- Громадная индустрия Интернет-реклама
- Активные исследования: хорошее качество

• Корпоративный поиск

- Собирает информацию разных форматов из совокупности хранилищ
- Ранжирование документов разного типа
- Относительно малый объем исследований
- Хуже качество поиска сложнее проводить сравнительные исследования
- Активная сфера исследований

Различия между интернет-поиском и корпоративным поиском

- Краулинг, т.е. сбор информации
 - Много различных форматов, многие могут быть не для удобного просмотра в поиске
 - Сложные и длинные документы
 - Проблемы безопасности: многочисленные ограничения на просмотр и скачивание
 - Исследования: как создать исследовательскую коллекцию

Различия между интернет-поиском и корпоративным поиском

- Индексирование
 - Больше информации о документах,
 возможно полуструктурированные данные –
 эту информацию можно использовать для
 эффективного поиска
 - Релевантных документов может быть очень мало ->
 - <u>Vocabulary mismatch</u> несовпадение между словами запроса и документов
 - Нужны специальные интерфейсы, подсказки для поиска нужного документа

Различия между интернет-поиском и корпоративным поиском

• Ранжирование

- Может быть единственный правильный ответ, который нужно найти
- Нет или мало ссылок, гипертекста
- Часто нужно найти все релевантные документы
- Возможно нужно собирать в единую выдачу документы из разных хранилищ (federation and blending)

Корпоративный поиск: Проблема измерения качества поиска

- Меры качества поиска, которые применяются к интернет-поиску, могут быть неприменимы к корпоративному поиску
- Поскольку нужно измерять:
 - Качество взаимодействия с пользователем,
 например удобные дополнительные инструменты поиска
 - Удачное завершение поиска
 - Удовлетворенность пользователя

Предметноориентированный поиск

(Domain-Specific Search)

Предметные области поиска

- Медицинский поиск
- Патентный поиск
- Поиск научных публикаций
- Поиск по законодательству
- Поиск по химическим документам

•

Поиск научной литературы

- Рост публикаций
- Цитаты, которые можно использовать как ссылки в Интернет-поиске
 - Большое количество ссылок на работу фактор значимости работы
 - Поиск близких работ
 - наукометрия

Анализ ссылок в литературе

- Количество ссылок на работу
 - Импакт-фактор работы
- Сходство работ на основе ссылок
 - Если работа А цитирует работы В и С, то, возможно, имеется сходство между работами В и С
 - Если работы В и С цитируют одну и ту же работу А, то возможно есть сходство между этими работами
 - Если таких совпадений много, то связь между работами

Системы поиска научной литературы

- CiteCeer
- ScienceDirect
- Google Scholar
- IEEE Xplore
- Scopus
- Microsoft Academic Search

Сервисы поиска научной информации

- Собирают научные публикации из различных источников: важно покрытие источников
- Обеспечивают индексирование и ранжированную выдачу
- Извлекают ссылки статей на другие статьи
 - Ссылки используются как дополнительный фактор ранжирования: авторитетные статьи обычно в начале списка
- Возможно искать по авторам, датам и т.п.
- Извлекается суммированная информация об авторах
 - Сколько статей, наукометрические индексы, кто ссылается на статьи
- Может работать сервис рекомендаций

Поиск научных публикаций в Google.Scholar

Наукометрические показатели

Наталья Лукашевич, Natalia Loukachevitch, Natalia Loukashevich, Natalia Lukashevich, Natalia 🥒

nosov Moscow State University нной почты в домене mail.cir.ru

NLP

название 🕒 :	ПРОЦИТИРОВАНО	год
Semeval-2016 task 5: Aspect based sentiment analysis M Pontiki, D Galanis, H Papageorgiou, I Androutsopoulos, S Manandh International workshop on semantic evaluation, 19-30	* 1915 aar,	2016
Онтологии и тезаурусы. Учебное пособие ВД Соловьев, БВ Добров, ВВ Иванов, НВ Лукашевич Казань, Москва	486 *	2006
Автоматическая обработка текстов на естественном я анализ данных Е Большакова, К Воронцов, Н Ефремова, Э Клышинский,	языке и 431	2017
Автоматическая обработка текстов на естественном я компьютерная лингвистика ЕИ Большакова, ОВ Пескова, ЭС Клышинский, АА Носков, ДВ Лан		2015
Тезаурусы в задачах информационного поиска НВ Лукашевич М.: Издательство МГУ, 2011	411 *	2010
Sentiment Analysis Track at ROMIP 2011//Компьютерна	я 123 *	2012

	Bce	Начиная с 2017 г.		
Статистика цитирования	6549	4075		
h-индекс	30	23		
і10-индекс	104	54		
	٠.	840		
1	ш	630		
πН	Н	420		
		210		
	0.0040.000	0		
2015 2016 2017 201	8 2019 202	0 2021 2022		
Общий доступ	ПРО	ОСМОТРЕТЬ ВСЕ		
0 статей		4 статьи		
недоступно		доступно		
На основе финанс	ирования			
•		HOMELIJATI		

ПРОСМОТРЕТЬ ВСЕ

ИЗМЕНИТЬ

Процитировано

Соавторы

Рекомендуемые исследователю работы, на основе его последних публикаций

Рекомендуемые исследователю работы, на основе его последних публикаций

Заключение

- Архитектура поисковой машины
 - Подсистема индексирования документов
 - Подсистема взаимодействия с пользователем и поиска документов на запрос

- Поисковые системы разного уровня и предметной направленности
 - Интернет-поиск
 - Корпоративный поиск
 - Поиск в специальной предметной области