

Датчик уровня топлива Omnicomm LLS 30160

Руководство пользователя 17.06.2016

Содержание

- 3 Общая информация
- з Внимание
- 3 Технические характеристики
- 5 Подготовка к установке
- 5 Подготовка бака
- 6 Подготовка датчика
- 7 Настройка
- 8 Калибровка
- 8 Настройка датчиков Omnicomm LLS 30160
- 9 Установка и подключение
- 10 Тарирование
- 12 Пломбирование
- 13 Приложение. Перечень оборудования для установки датчиков уровня топлива Omnicomm LLS

Общая информация

Руководство пользователя приведено для датчиков уровня топлива Omnicomm LLS 30160.

Omnicomm LLS 30160 – датчик уровня топлива с интерфейсами RS-232 и RS-485.

Внимание

При проведении монтажа необходимо соблюдать технику безопасности и требования нормативной документации для данного вида работ.

Минимальная длина обрезки измерительной части 150 мм.

Диэлектрическая проницаемость измеряемой среды должна быть постоянной. Несоблюдение данного требования приводит к увеличению погрешности измерения.

Технические характеристики

Характеристика	Значение
Степень защиты корпуса	IP57
Режим работы	продолжительный
Средний срок службы, лет	8
Размер внутреннего фильтра	от 0 до 30
Период измерения, с	1
Габаритные размеры	78×74×(24+длина измерительной части)

Технические характеристики

Характеристика	Значение	
Масса, кг, не более	2	
Температура окружающей среды, °С;	от минус 45 до +80	
Предельные температуры, °C	минус 60 и +85	
Относительная влажность при температуре 25°C (без конденсации влаги), %;	от 5 до 95	
Атмосферное давление, кПа	от 84 до 107	
Предельная относительная влажность при температуре 25°C (без конденсации влаги), %;	100	
Основная приведённая погрешность измерений уровня, %	±1	
Диапазон измерения	0700, 1000, 1500, 2000, 2500, 3000	
Напряжение питания, В	7 – 75	
Потребляемая мощность, Вт	0,4	
Интерфейс выдачи измеренных значений	RS-232, RS-485	
Программируемая скорость передачи интерфейса, бит/с	2400, 4800, 9600, 19200, 38400, 57600, 115200	
Диапазон изменения цифрового кода, соответствующего максимальному значению измеряемого уровня	14095	
Диапазон изменения цифрового кода, соответствующего минимальному значению измеряемого уровня	01023	
Диапазон измерения температуры, °С	от минус 40 до +80	
Абсолютная погрешность измерения температуры во всем диапазоне рабочих температур, °С	±5	

Подготовка к установке

Подготовка бака

- 1. Выберите место установки датчика Omnicomm LLS с учетом следующих требований:
- Место установки должно быть максимально приближено к геометрическому центру бака и являться самым глубоким местом в баке (Рисунок 1).

Рисунок 1. Выбор места установки датчика Omnicomm LLS

• Установленный датчик не должен касаться ребер жесткости и дополнительного оборудования внутри бака.

Установка двух датчиков в один топливный бак позволяет значительно уменьшить зависимость уровня топлива от угла наклона TC (Рисунок 2).

Рисунок 2. Место установки двух датчиков Omnicomm LLS

- 2. Для соблюдения техники безопасности произведите выпаривание бака.
- 3. Просверлите центральное отверстие биметаллической коронкой ø35 мм (Рисунок 3).
- 4. Просверлите четыре крепежных отверстия согласно схеме (Рисунок 3). Диаметр крепежных отверстий выбирается в зависимости от материала бака:
- Ø 4 мм для металлического бака с толщиной стенок более 3 мм (нарезать резьбу М5);
- Ø 7 мм для пластикового и металлического бака со стенками до 3 мм (под заклепки);
- Ø 4 мм для пластикового бака более 3 мм.

Рисунок 3. Подготовка места установки датчика Omnicomm LLS

Подготовка датчика

- 1. Измерьте глубину бака. Отрежьте измерительную часть датчика, таким образом, чтобы ее длина была на 20 мм меньше глубины бака. Линия среза должна быть перпендикулярна продольной оси датчика.
- 2. Заполните маслобензостойким токонепроводящим герметиком изолирующий колпачок, входящий в комплект поставки, на 1/4 1/5 от объема. Рекомендуемые герметики: PERMATEX™ MotoSeal® Black, ABRO™ Black, ABRO™ Red.
- 3. Наденьте изолирующий колпачок на центральный стержень датчика Omnicomm LLS.

Настройка

Подключите датчик к ПК согласно схеме (Рисунок 4).

Рисунок 4. Подключение датчика Omnicomm LLS 30160 к ПК

Запустите программу Omnicomm Configurator (Рисунок 5).

Рисунок 5. Настройка датчика Omnicomm LLS в программе Omnicomm Configurator

В меню «Сервис»/ «Настройки»/ «Соединение» укажите порт и скорость подключения.

В разделе «Мониторинг» значение уровня топлива отображается без учета фильтрации.

Калибровка «Пустой/Полный»

Настройку производите в том топливе, в котором данный датчик уровня топлива Omnicomm LLS будет работать.

- 1. Залейте топливо в мерную ёмкость.
- 2. Погрузите датчик Omnicomm LLS в топливо на всю длину измерительной части.
- 3. Дождитесь появления зеленого индикатора «Уровень стабилизирован». Во вкладке «Настройки» в разделе «Калибровка Пустой/Полный» нажмите кнопку «Полный», будет зафиксировано значение, соответствующее полному баку.
- 4. Выньте датчик Omnicomm LLS из емкости и дайте топливу стечь из измерительной части в течение 1 минуты. В разделе «Калибровка Пустой/Полный» нажмите кнопку «Пустой», будет зафиксировано значение, соответствующее пустому баку.
- 5. Нажмите кнопку «Записать в датчик».

Настройка датчиков Omnicomm LLS 30160

Во вкладке «Настройки» в разделе «Настраиваемые параметры»:

«**Сетевой адрес**» (от 1 до 254) – установите сетевой адрес датчика уровня топлива Omnicomm LLS. При подключении нескольких датчиков к одному внешнему устройству сетевые адреса должны быть уникальны.

«Максимальное показание» (от 1 до 4095) – выберите максимальное показание датчика уровня топлива LLS. Значение по умолчанию – 4095.

«**Минимальное показание**» (от 0 до 1023) – выберите минимальное показание датчика уровня топлива LLS. Значение по умолчанию – 0.

«Фильтрация» – установите параметры фильтрации выходного сигнала:

- «Нет» фильтрация не производится. Используется в случаях, когда фильтрация осуществляется внешним устройством.
- «Минимальная» фильтрация используется в случаях установки изделия в стационарных топливохранилищах и малоподвижной технике.
- «Средняя» фильтрация используется в случаях работы ТС в нормальных дорожных условиях.
- «Максимальная» фильтрация используется в случаях работы ТС в тяжелых дорожных условиях.

«Автоматическая выдача данных» – выберите:

- «Нет выдачи» самостоятельная выдача данных (без запроса) не производится.
- «Бинарная» самостоятельная выдача данных в бинарном формате;
- «Символьная» самостоятельная выдача данных в символьном формате;
- «Интервал выдачи данных» (от 1 до 255 секунд) установите интервал самостоятельной выдачи данных.

«**Режим тяжелых условий эксплуатации**» – включите при необходимости дополнительной фильтрации значений измерения, учитывающей сложные условия работы.

«Скорость обмена» – выберите скорость, на которой будет осуществляться обмен данными с внешним устройством. Значение по умолчанию – 19200 бит/сек.

Установка и подключение

- 1. Наденьте на измерительную часть датчика Omnicomm LLS прокладку для места крепления.
- 2. Установите датчик Omnicomm LLS в бак и закрепите:
- при креплении заклепками используйте клепальщик.
- при креплении болтами, предварительно наденьте пломбу (на один болт), шайбу и гровер (Рисунок 9).
- при креплении на пластиковые баки с толщиной стенок более 3 мм используйте саморезы и пломбу (на один саморез), входящие в комплект поставки (Рисунок 9).

Назначение проводов монтажного кабеля

Название сигнала Цвет провода	
RS-485 A	Оранжево-белый
RS-485 B	Бело-голубой
RS-232 Tx	Розовый
RS-232 Rx	Серый
+Uпит	Коричневый
Общий	Белый

Рисунок 6. Подключение датчика Omnicomm LLS 30160

Omnicomm LLS

Тарирование

- 3. Подключите датчики Omnicomm LLS к внешнему устройству согласно схеме (Рисунок 6).
- 4. Подключите держатель предохранителя к проводу питания датчика LLS (коричневый провод) в непосредственной близости к цепи питания TC.
- 5. Установите предохранитель в держатель предохранителя.
- 6. При необходимости произведите пломбирование болта (самореза) и разъема.

Подключение нескольких датчиков Omnicomm LLS 30160 производится параллельно по интерфейсу RS-485.

Тарирование

Тарирование топливного бака необходимо для установки соответствия цифрового кода, выдаваемого датчиком Omnicomm LLS, и объема топлива в конкретном топливном баке.

Тарировка топливного бака представляет собой заправку топлива в бак – от пустого до полного, с определенным шагом заправки, и фиксацию показаний датчика Omnicomm LLS в тарировочной таблице. Имеется возможность тарировки емкости методом слива.

Тарировка емкости с одним датчиком Omnicomm LLS:

- 1. Опустошите топливный бак.
- 2. Подключите датчик Omnicomm LLS к ПК с помощью устройства настройки УНУ согласно схеме (Рисунок 4).

Столбец показаний датчика

Рисунок 7. Тарирование емкости

Тарирование

- 3. Запустите программу Omnicomm Configurator. Выберите режим работы «Тарирование ёмкости».
- 4. В случае если столбец показаний датчика не отображается, нажмите кнопку «Добавить датчик» (Рисунок 7). Выберите тип датчика Omnicomm LLS. Укажите сетевой адрес, установленный в датчике при настройке.
- 5. Установите шаг пролива в литрах.

Заправку производите мерной емкостью или под контролем расходомера жидкости с заданным шагом. Емкость должна иметь метрологическую поверку.

- 6. Нажмите кнопку «Начать/продолжить тарировку».
- 7. Залейте объем топлива, равный шагу пролива.
- 8. Нажмите «Добавить строку».
 - В столбце «Литры» отобразится объем заправки согласно установленному шагу пролива.
 - В столбце «Датчик» отобразится значение, соответствующее объему заправки.
- 9. Нажмите «Добавить строку».
- 10. Повторите выполнение пунктов 7, 8 и 9 согласно количеству контрольных точек. Рекомендуемое минимальное количество контрольных точек 20.
- 11. Нажмите кнопку «Закончить тарировку».
- 12. Сохраните тарировочную таблицу в файл тарировки (.ctb)/ файл Omnicomm Online (.xml)/ в Терминал/ или в Индикатор, нажав кнопку «Экспорт».

Тарирование емкости с несколькими датчиками Omnicomm LLS 30160 производится аналогично тарировке с одним датчиком. Перед началом тарировки добавьте необходимое количество датчиков Omnicomm LLS и укажите сетевые адреса. Тарировка производится для всех датчиков одновременно. Подключение нескольких датчиков Omnicomm LLS к ПК производится с помощью разветвителя КТЗ.

Пломбирование

Для датчиков Omnicomm LLS предусмотрено пломбирование болта или самореза (Рисунок 8) и разъема (Рисунок 10).

Рисунок 8. Пломбирование болта

Рисунок 9. Установка пломбы

- 1. Установите болт или саморез через отверстие в пломбе.
- 2. Защелкните крышку пломбы.
- 3. Внесите в акт номера пломбы и крышки.

Установите роторную пломбу на разъем:

- 1. Проденьте проволоку пломбировочную через отверстия в разъемах и в роторной пломбе.
- 2. Поверните язычок пломбы до натяжения проволоки.
- 3. Оторвите язычок пломбы.

Рисунок 10. Пломбирование разъема

Приложение. Перечень оборудования для установки датчиков уровня топлива Omnicomm LLS

No	Наименование	Количество
1.	Коронка биметаллическая ø35мм	1 шт.
2.	Хвостовик к коронке	1 шт.
3.	Сверло по металлу ø7мм или ø4мм	1 шт.
4.	Ножовка по металлу	1 шт.
5.	Ключ гаечный на 8мм	1 шт.
6.	Метчик М5 с держателем	1 шт.
7.	Роторная пломба	2 шт.
8.	Проволока пломбировочная ø0.7мм	до 0,8 м.
9.	Персональный компьютер	1 шт.
10.	Программа Omnicomm Configurator	1 шт.
11.	Устройство настройки УНУ (с комплектом проводов)	1 шт.
12.	Блок питания постоянного напряжения (10 – 15) В, 0.5А	1 шт.
13.	Мерная ёмкость	1 шт.
14.	Топливо	
15.	Емкость для тарировки	1шт.

ООО «Омникомм Технологии» Россия, 127055 г. Москва ул. Бутырский вал, д. 68/70 Тел.: 8-800-100-2442

info@omnicomm.ru www.omnicomm.ru