

Exercise 9

Information Retrieval

12. Language Models for IR

Warm up

ok

Exercise 12.1

- Are the following statements true or false? Give reasons for your answer.
 - a) A statistical language model (LM) assigns probabilities to strings of symbols from some alphabet.
 - b) For every unigram LM, cats hunt mice and mice hunt cats have the same probability.
 - c) Language models are completely unrelated to Markov chains.
 - d) We use LMs in IR like this: (step 1) we derive a LM from each document, (step 2) we rank all documents by the probability that their LM generates the query.
 - e) From a vocabulary containing |V| terms we can construct approximately $|V|^n$ n-grams.
 - f) A document containing |d| tokens contains approximately $|d|^n$ n-grams.
 - g) In practice, language models in IR consider n-grams with $n \ge 3$, i.e., at least tri-grams.
 - h) The shorter the query, the more important is smoothing.

IR Using a Unigram Language Model

Exercise 12.2

- The table below provides information on a corpus of three documents
- We focus on the terms tasty, coffee, and sugar (but there are more terms in the vocabulary)

Document d	d	Term frequencies $tf_{d,t}$		
		tasty	coffee	sugar
D1	200	20	100	20
D2	100	0	10	0
D3	200	0	40	20

根据贝叶斯公式推导的

- A user submits the query tast
 - tasty coffee tasty sugar
- Calculate the documents' scores using a unigram LM and determine the ranking
 - a) without any smoothing
 - b) using Jelinek-Mercer-Smoothing (with $\lambda = \frac{1}{2}$) 画表格,需要再熟练!形成做题讲课规范 next