Topology

Introduction

- 1. Reasoning about distributed algorithms requires some consideration of the underlying network
 - If an algorithm was optimized for a fully-connected model, will it still perform well under a linear model?
- 2. Networks had become fast enough that we stopped worrying about the latency, leading to models like alpha-beta
 - However, as processors become faster and networks larger, we will need to consider the network topology once again
 - Begins to matter again at ~1 billion processors

Introduction to Network Models - Links and Diameter

- 1. Links (lambda)
 - Linear: P-1
 - Mesh: 2 * (sqrt(P)-1) * sqrt(P) ~ 2P
 - Fully-connected: $P * (P-1) / 2 \sim P^2$
 - Links are a proxy for cost; more links = more expensive
- 2. Diameter (delta) Longest shortest path
 - Linear: P 1
 - Mesh: $2 * (\operatorname{sqrt}(P) 1)$
 - Fully-connected: 1
 - Proxy for the maximum distance any message must travel

Network Examples

Improve the Diameter of a Linear Network

- 1. Add a link (edge) to reduce the diamater of this network by half
 - Add the link between nodes 0 and 7

Improve the Diameter of a 2-D Mesh

- 1. Given a 2D mesh network with 16 nodes, where will adding links cut the diameter in half?
 - From (0,0) to $(\operatorname{sqrt}(P)-1,\operatorname{sqrt}(P)-1)$ and $(0,\operatorname{sqrt}(P)-1)$ to $(\operatorname{sqrt}(P)-1,0)$
 - A ring of links connecting (0,0) to (sqrt(P)-1,sqrt(P)-1) and (0,sqrt(P)-1) to (sqrt(P)-1,0)
 - Wraparound links from left to right, top to bottom

2. All three options reduce the diamater by a factor of (roughly) 2

Bisection (Band)Width

- 1. Bisection width: Minimum links to remove to cut the network in half
 - Equality is measured in number of nodes
- 2. For a linear network with 8 nodes, bisection width is 1
 - B(P) = 1
- 3. For a mesh network with 16 nodes, bisection width is 4
 - B(P) = sqrt(P) for a mesh
- 4. For a fully-connected network, there are roughly P²/2 links
 - $B(P) = P^2/4$
- 5. Bisection width is important for an all-to-all personalized exchange
 - Send message from every node to every other node
- 6. Bisection bandwidth is link speed (Beta) times bisection width
 - If not all links have equal speed, look for a set of nodes that cuts the network in half and minimizes total bandwidth

Improve the Bisection of a 2-D Mesh

- 1. Given a 2D mesh network with 16 nodes, where will adding links double the bisection width?
 - From (0,0) to (sqrt(P)-1, sqrt(P)-1) and (0, sqrt(P)-1) to (sqrt(P)-1,0)
 - A ring of links connecting (0,0) to $(\operatorname{sqrt}(P)-1,\operatorname{sqrt}(P)-1)$ and $(0,\operatorname{sqrt}(P)-1)$ to $(\operatorname{sqrt}(P)-1,0)$
 - Wraparound links from left to right, top to bottom
- 2. Only the third option doubles the bisection width

Some Other Network Topologies

- 1. Tree: Compute nodes are leaves of the tree, carrier nodes don't do any actual computation (typically more links at higher levels of the tree to improve BW)
 - Links: P
 - Diameter: log(P)
 - Bisection: 1
- 2. d-dimensional mesh or torus: P^(1/d) nodes per dimension (extension of a mesh to higher dimensions)
 - Links: dP
 - Diameter: d * P^(1/d) / 2
 - Bisection: $2 * P^{(d-1)/d}$
 - Many of the world's top supercomputers use low-dimensional toroidal networks
- 3. Hypercube: log(P) dimensional torus
 - Links: P * log(P)
 - Diamater: log(P)
 - Bandwidth: P/2
 - Much more expensive in terms of number of wires, but lower diameter and larger bisection width
 - Build a hypercube by copying the topology of the previous dimension and connecting corresponding nodes

Diameter and Bisection

1. Consider the following network:

Network Examples

- 2. Answer the following questions:
 - How many nodes does it have?
 - P = 8
 - How many links does it have?
 - Links = 10
 - What's its diameter?
 - Diameter = 3
 - What's its bisection width?
 - Bisection width = 3

Mappings and Congestion

- 1. Scatter/gather implementations were designed to avoid contention for links
 - If we design an algorithm for a linear network then try to run it on a different topology, how well would it work?
 - Need to map between the networks
 - If we map a ring to a 2D torus, we observe that the edges of the torus are a superset of the edges of the ring
 - This means if there's no contention on the ring, there will be no contention on the torus either
 - The opposite isn't necessarily true; there might be contention on the ring even if there wasn't on the torus
- 2. Congestion: Maximum number of logical edges that map to a given physical edge
 - Congestion (ring to torus) = 1
 - Congestion (torus to ring) >= 6

Mapping a Ring to a Torus

2-D to 1-D Congestion

- 1. Consider the mapping from a 2D torus (logical) to a 1D ring (physical)
- 2. What is the congestion of this mapping?
 - sqrt(P) + 2 (two comes from the wraparound edges)

A Lower Bound on Congestion

- 1. Consider two hypothetical networks: one logical, one physical
 - Suppose we find a bisection in the physical network
 - Bx is the number of physical edges cut
 - Bisecting the physical network implies a cut in the logical network as well
 - L is the number of logical edges cut
 - Congestion (C) >= L / Bl
 - L >= Bl
 - C >= L / Bx >= Bl / Bx
- 2. Congestion for ring to 2D torus
 - Bx = 2
 - Bl = 2 * sqrt(P)
 - C >= Bl / Bx = sqrt(P)- Truth: C = sqrt(P) + 2

Congestion Lower Bounds

- 1. For which pair of networks might a congestion-free mapping be possible? (logical -> physical)
 - \bullet fully-connected -> hypercube
 - hypercube -> butterfly (true)
 - butterfly -> 3D torus
 - complete binary tree -> ring (true)
 - none of these

Exploiting Higher Dimensions

- 1. Consider an allgather primitive
 - Tree-based: T(n,P) = alpha * log(P) + Bn

- Bucketing: T(n,P) = alpha * P + Bn
- 2. Can we do better if the underlying topology is a 2D mesh instead of ring?
 - First, do allgathers along each row
 - $-\operatorname{Trow}(m * \operatorname{sqrt}(P); \operatorname{sqrt}(P)) = a * \operatorname{sqrt}(P) + B * m * \operatorname{sqrt}(P)$
 - Then, perform allgathers of entire rows along each column
 - $-\operatorname{Tcol}(n;\operatorname{sqrt}(P)) = a * \operatorname{sqrt}(P) + \operatorname{Bn}$
 - Trow + Tcol = $2 * a * \operatorname{sqrt}(P) + B * m * (P + \operatorname{sqrt}(P))$
 - Alpha now scales with sqrt(P), B is basically optimal

2D Broadcast

- 1. Consider a broadcast on a mesh
 - Scheme 1:
 - Tree-based broadcast in each row
 - Tree-based broadcast in each col
 - Scheme 2:
 - Scatter in all rows
 - Scatter in all cols
 - Bucket allgather in cols
 - Bucket allgather in rows
- 2. Which scheme sends fewer messages?
 - Scheme 1: Alpha is proportional to log(P) for a tree-based approach while bucket-allgather is proportional to P

All to All Personalized Exchange

- 1. Consider a distributed matrix transpose where each node has a column of data
 - Every node wants to send data of size m
 - -n = m * P
 - Distance the ith message needs to travel is min(i, P-i) if we assume a ring buffer
 - Average distance = sum(min(i,P-i))/(P-1) = P/4
 - Traffic volume = P * m * (P-1) * (P/4)
 - Total bandwidth = P / B
 - Time = Volume / Speed >= B * n * (P-1) / 4
- 2. Algorithm for all-to-all exchange: Each node sends all the data that should be distributed each timestep (circshift)
 - Round i: send m(P i) words
 - Total time = (a + B * m * (P/2)) * (P 1) = a * (P-1) + B * n * (P-1)/2

All to All in Higher Dimensions

- 1. Which network has the best chance to reduce the asymptotic running time to O(a * log(P) + B * n * log(P))
 - Complete binary tree
 - d-dimensional torus
 - Hypercube
 - Fully-connected
- 2. All-to-all is intrinsically bisection limited; only hypercube and fully- connected networks have linear bisection widths or better

Conclusion

1. Idea of congestion: Concept lets you design for one topology and then estimate whether it will map well or poorly to another

network instead of 2D		

2. Exploit high-dimensional networks: There are algorithmic scalability gains from using a 3D mesh $\,$