GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIO

NOMBRE DE LA ASIGNATURA

Teoría de Comunicaciones

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Sexto Semestre	4054	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar al alumno los fundamentos matemáticos necesarios para entender el comportamiento de sistemas de comunicaciones, esto involucra el conocimiento del análisis de Fourier y operaciones con variables complejas.

TEMAS Y SUBTEMAS

- La respuesta de sistemas lineales.
- 1.1. Clasificación de señales
- 1.2. Operaciones básicas sobre señales
- 1.3. Señales elementales
- 1.4. Sistemas como interconexión de operaciones
- 1.5. Propiedades de sistemas
- 1.6. Respuesta al impulso de un sistema LIT continuo
- 1.7. Convolución de señales continuas
- 1.8. Representación de un sistema LIT mediante ecuaciones diferenciales
- 1.9. Representaciones mediante diagramas de bloques
- 2. Series y Transformada de Fourier.
- 2.1. Representación de señales periódicas continuas mediante la Serie de Fourier
- 2.2. Propiedades de la Serie de Fourier
- 2.3. Representación de señales continuas no periodicas mediante la Transformada de Fourier
- 2.4. Propiedades de la transformada de Fourier
- 2.5. Aplicaciones de las representaciones de Fourier
- 3. Respuesta en frecuencia de sistemas lineales.
- 3.1. Respuesta en frecuencia de sistemas LIT
- 3.2. Diagramas de Bode
- 3.3. Diseño de filtros mediante la colocación de polos y ceros en H(s)
- 3.4. Filtros Butterwoth
- 3.5. Filtros Chevishev
- 3.6. Filtros Elípticos
- 3.7. Transformaciones en frecuencia
- 4. Funciones Complejas.
- 4.1. Gráficas, curvas y regiones en el plano complejo
- 4.2. Transformaciones en el plano complejo
- 5. Derivación e Integración de Funciones Complejas.
- 5.1. Derivada de una función de variable compleja
- 5.2. Singularidades de una función compleja
- 5.3. Series de Taylor y Laurent
- 5.4. Teorema del residuo

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor, en donde presente conceptos y resuelva ejercicios. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como la computadora y los proyectores. Revisión bibliográfica del tema en libros.

Uso de software para simulación de sistemas lineales.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

La evaluación del curso comprenderá tres calificaciones parciales y una calificación final.

Para cada calificación parcial se deberá considerar un examen oral o escrito, tareas y prácticas de laboratorio. La calificación final deberá incluir un examen oral o escrito y un proyecto final de aplicación o de investigación, con temas estrictamente afines a la materia.

Los porcentajes correspondientes, en los aspectos considerados para las calificaciones parciales y la final, se definirán el primer día de clases, con la participación de los alumnos.

BIBLIOGRAFÍA

Libros básicos:

- Señales y Sistemas. S. Haykin, B. Van Veen. Limusa Wiley. 2001.
- Señales y Sistemas. Análisis mediante métodos de transformada y Matlab. M. J. Roberts. McGraw-Hill. 2005
- Mathematical Methods for Physicists. G. B. Arfken, H. J. Weber. Academic Press. 2001.
- Variable compleja y aplicaciones. R. V. Churchill, J. W. Brown. McGraw-Hill. 1992. Quinta edición.

Libros de consulta:

- Tratamiento Digital de Señales. J. G. Proakis, D. G. Manolakis. Prentice Hall. 1998. Tercera Edición.
- Señales y Sistemas. A. V. Oppenheim, A. S. Willsky. Prentice Hall. 1998. Segunda Edición.
- Signal Processing & Linear Systems. B. P. Lathi. Berkeley Cambridge Press. 1998.

PERFIL PROFESIONAL DEL DOCENTE

Ingeniero en Electrónica con Maestría o Doctorado en Electrónica, con especialidad Telecomunicaciones.

