Differentialgleichungen

Eine (gewöhnliche) Differentialgleichung (DGL) erster Ordnung ist ein Ausdruck der Form

$$y' = f(x, y), \quad y(x0) = y0$$

Gesucht ist eine Funktion y = y(x) in einer Veränderlichen, welche in einem Intervall [x0, x1] definiert ist und die **Anfangsbedingung** y(x0) = y0 erfüllt.

Gewöhnlich: y ist eine Funktion einer Veränderlichen, es treten keine partiellen Ableitungen auf. Erster Ordnung: Es treten nur Ableitungen erster Ordnung auf: y'.

Ein System von zwei Differentialgleichungen besteht aus gekoppelten Gleichungen der Form

$$y'_1 = f_1(x, y_1, y_2)$$

 $y'_2 = f_2(x, y_1, y_2)$

mit Anfangsbedingungen $y_1(x_0) = \dots, y_2(x_0) = \dots$

Anwendungen

$y' = \pm ky$	Bankkonto / Zerfallsprozesse
	Beispiel: Newtons Abkühlungsgesetz mit $y' = -0.02 \cdot y$
$P' = kP(P_0 - P)$	Logistische Funktion, z. B. Ausbreitung einer Krankheit
	Beispiel: $P_0 = 25000, k = 0.00003, P = 250$ in $[0, 60]$
$\frac{dC}{dt} = \frac{-k_1C}{1+k_2C}$	Konzentration in einem chemischen Reaktor
111020	Beispiel: $k_1 = 1.0, k_2 = 0.3, C(0) = 0.8$
	bzw. $k_1 = 2.0, k_2 = 0.1, C(0) = 1.0$
$y' = -k\sqrt{y}A(y)$	Auslaufender Wassertank (Torricellis Gesetz)
·	A(y) Querschnittsfläche des Tanks in Höhe y , a die Fläche
	des Auslaufs, dann ist $k = a\sqrt{2g}$, $g = 9.81$ m/s ² die Erdbe-
	schleunigung.
$v' = -g + k/m v ^p$	Freier Fall mit Luftwiderstand
	Luftwiderstand $F = kv^p, 1 \le p \le 2$, k eine Konstante, nach
	unten gerichtet.
	Beispiel: Fallschirmspringer mit $p = 1.1, c_w = k/m = 1.6$
	(sog. cw-Wert) bei einem Gewicht von 80 kg.
$y_1' = -k_1 y_1 + k_3 y_3$	(Chem.) Reaktionskinetik
$y_2' = k_1 y_1 - k_2 y_2$	Beispiel: $k_1 = 0.3, k_2 = 0.2, k_3 = 0.5$ mit Anfangsbedingun-
$y_3' = k_2 y_2 - k_3 y_3$	gen $[0.6, 0.2, 0.2]$ im Zeitraum $010sec.$.
$dr/dt = 2r - \alpha rf$	Lotka-Volterra Modell
$\int df/dt = -f + \alpha rf$	Hasen $(r, \text{ rabbits})$ und Füchse (f) in einem geschlossenen
	, Habitat'. Beispiel: $\alpha=0.01$ und
	r(0) = 300, f(0) = 150 bzw. $r(0) = 102, f(0) = 198$
$dr/dt = 2(1 - \frac{r}{R})r - \alpha rf$	Modifiziertes Lotka-Volterra Modell
	Beispiel: Maximal $R=300$ Hasen können ernährt werden.
$\frac{d^2z}{dt^2} + \frac{k}{m}z = 0$	Schwingungen, z. B. Federpendel $(\omega_0 = \sqrt{k/m})$
	Beispiel: $k = 5$ N/m, $m = 0.1$ kg, $z(0) = 0.1$ m, $z'(0) = 0$ m/s.
$\frac{d^2z}{dt^2} + 2\delta \frac{dz}{dt} + \frac{k}{m}z = 0$	Gedämpfte Schwingung
	Beispiel: $\delta = 1$.
$\ddot{z}(t) = -\frac{g}{L}\sin(z(t))$	Mathematisches Pendel
	Beispiel: $L = 1$ m, Anfangsbedingungen $[\pi/4, 0]$. Vergleiche
	mit der Näherungslösung $\sin(z) \approx z$.

Eulersches Verfahren

```
function [x, y] = euler(f, a, b, y0, n)
h = (b-a)/n; x = a:h:b;
y(1) = y0;
for i = 1:n
    y(i+1) = y(i) + h * f(x(i), y(i));
end
```

Beispiel einer Differentialgleichungs-Funktion:

```
function dv = freier_fall(t, v) 

g = 9.81; cw = 1.6 % or use 'global' 

dv = -g + cw * abs(v)^1.1 % Ableitung dv/dt
```

Lösung mit Matlab

In Matlab werden Differentialgleichungen mit Hilfe von Solvern wie ode23, ode45, ode15s, ... gelöst.

• Numerische Lösung

```
[x, y] = ode45(@f, [x0, x1], y0);
plot(x, y, 'o', x, y, '-')
...
sol = ode45(@f, [x0, x1], y0, options);
plot(sol.x, sol.y, 'o', sol.x, sol.y, '-')
y = deval(sol, x);
[y, yp] = deval(sol, x);
```

• Ereignissteuerung

```
function [fun, act, dir] = my_event(t, y)
fun = y(1); act = 1; dir = 0;

options = odeset('Events', 'my_events', 'RelTol', 1e-4, 'MaxStep', 0.1);
```

• Symbolische Lösung

```
dsolve('Dy = f(x, y)', 'y(x0) = y0', 'x')
```

Aufgabe: GUI für Diff.gleichungen

Ein Vektorfeld wird mit der Funtion quiver(x, y, u, v, scale) erzeugt.