interPhaseChangeFoam

This assignment is solved in OpenFOAM 2.0.x.

How to apply a heat source to interPhaseChangeFoam to evaporate water. In this presentation will go through the following steps:

- Short description of interPhaseChangeFoam.
- Add temperature dependence The idea. August-Roche-Magnus formula.
- Copy the solver.
- Add temperature dependence The implementation.

Add temperature field to interPhaseChangeFoam.

Include temperature dependent phase change in interPhaseChangeFoam.

Create an extra volume scalar field for speed optimization.

• Simple test case.

inter Phase Change Foam

In *interPhaseChangeFoam*. *C* the solver is described as follows:

Solver for 2 incompressible, isothermal immiscible fluids with phase-change (e.g. cavitation). Uses a VOF (volume of fluid) phase-fraction based interface capturing approach.

The momentum and other fluid properties are of the "mixture" and a single momentum equation is solved.

The set of phase-change models provided are designed to simulate cavitation but other mechanisms of phase-change are supported within this solver framework.

Turbulence modelling is generic, i.e. laminar, RAS or LES may be selected.

Merkle Mass Transfer Model

Merkle is the simplest of the cavitation algorithms implemented.

$\textbf{Liquid} \rightarrow \textbf{vapor:}$

$$\dot{m}^{-} = \frac{C_{\mathbf{v}}\rho_{\mathbf{v}}}{\frac{1}{2}\rho_{\mathbf{l}}U_{\infty}^{2}t_{\infty}}\alpha\min(0, p - p_{\mathbf{Sat}})$$
(1)

Vapor \rightarrow **liquid**:

$$\dot{m}^+ = \frac{C_{\mathbf{c}}}{\frac{1}{2}U_{\infty}^2 t_{\infty}} (1 - \alpha) \max(0, p - p_{\mathbf{Sat}}) \tag{2}$$

where:

 $C_{\rm c},\,C_{\rm v},\,U_{\infty}$ and t_{∞} are empirical constants based on the mean flow, $\rho_{\rm l}$ and $\rho_{\rm v}$ are the density of the liquid and vapor, p is the pressure, p_{Sat} is the vaporisation pressure.

Total mass transfer rate (positive for vapor \rightarrow liquid):

$$\dot{m} = \dot{m}^+ + \dot{m}^- \tag{3}$$

Add Temperature Dependence - The Idea

Total mass transfer rate (positive for vapor \rightarrow liquid):

$$\dot{m} = \begin{cases} K_1 \alpha (p - p_{\mathbf{Sat}}), & (p - p_{\mathbf{Sat}}) < 0 \\ K_2 (1 - \alpha) (p - p_{\mathbf{Sat}}), & (p - p_{\mathbf{Sat}}) \ge 0 \end{cases}$$

August-Roche-Magnus formula

Implement temperature dependent saturation pressure using August-Roche-Magnus formula.

$$p_{\text{Sat}} \approx 610.94 \cdot \exp\left(\frac{17.625 \cdot T}{T + 243.04}\right), (T \text{ in } {}^{\circ}C)$$
 (4)

Need a temperature field.

Copy the solver 1/2

Before we start modifying the *interPhaseChangeFoam* we copy it to a new location and rename it to *myInterPhaseChangeFoam*.

```
mkdir -p $WM_PROJECT_USER_DIR/applications/solvers/multiphase
cd $WM_PROJECT_USER_DIR/applications/solvers/multiphase
cp -r $FOAM_SOLVERS/multiphase/interPhaseChangeFoam .
mv interPhaseChangeFoam myInterPhaseChangeFoam
cd myInterPhaseChangeFoam
mv interPhaseChangeFoam.C myInterPhaseChangeFoam.C
cp $FOAM_SOLVERS/multiphase/interFoam/correctPhi.H .
wclean
```

Find the line #include "../interFoam/correctPhi.H" in myInterPhaseChangeFoam.C and change it to #include "correctPhi.H"

Copy the solver 2/2

Edit the build files to fit the *myInterPhaseChangeFoam* solver. The file *Make/files* shall look like this:

```
myInterPhaseChangeFoam.C
```

phaseChangeTwoPhaseMixtures/phaseChangeTwoPhaseMixture/phaseChangeTwoPhaseMixture.C phaseChangeTwoPhaseMixtures/phaseChangeTwoPhaseMixtures/ChangeTwoPhaseMixtures/Kunz/Kunz.C phaseChangeTwoPhaseMixtures/Merkle/Merkle.C phaseChangeTwoPhaseMixtures/SchnerrSauer/SchnerrSauer.C

EXE = \$(FOAM_USER_APPBIN)/myInterPhaseChangeFoam

Compile the solver:

wmake

If everything worked correctly, the new solver binary should appear here:

ls \$FOAM_USER_APPBIN

Add Temperature Field 1/2

Edit createFields.H by adding the following to the top of the file

```
Info<< "Reading transportProperties\n" << endl;</pre>
IOdictionary transportPropertiesDict
    IOobject
        "transportProperties",
        runTime.constant(),
        mesh,
        IOobject::MUST_READ,
        IOobject::NO WRITE
);
dimensionedScalar DT
    transportPropertiesDict.lookup("DT")
);
Info<< "Reading field T\n" << endl;</pre>
volScalarField T
    I0object
        runTime.timeName(),
        mesh,
        IOobject::MUST READ,
        IOobject::AUTO WRITE
    ),
    mesh
);
```

Add Temperature Field 2/2

Add temperature transport equation. Create a file named *TEqn.H* with the following lines: fvScalarMatrix TEqn fvm::ddt(T) + fvm::div(phi, T) - fvm::laplacian(DT, T)); TEqn.solve(); And inset the line #include "TEqn.H" after the Pressure-velocity PIMPLE corrector loop, but before runTime.write(); in myInter-PhaseChangeFoam.C. Compile

wmake

Temperature Dependent Phase Change

Merkle Mass Transfer:

$$\dot{m} = \begin{cases} K_1 \alpha(p - p_{\mathbf{Sat}}), & (p - p_{\mathbf{Sat}}) < 0 \\ K_2(1 - \alpha)(p - p_{\mathbf{Sat}}), & (p - p_{\mathbf{Sat}}) \ge 0 \end{cases}$$

August-Roche-Magnus formula:

$$p_{\text{Sat}} \approx 610.94 \cdot \exp\left(\frac{17.625 \cdot (T - 273.15)}{T - 30.11}\right), (T \text{ in Kelvin})$$

Merkle Mass Transfer is used in a pressure loop and an α -loop in the main function. The temperature is adjusted outside these loops.

 p_{Sat} only depends on T. To optimize the computation a p_{Sat} -Field will be created.

Create $p_{\mathbf{Sat}}$ Field

Open the file *createFields.H* and remove the line

```
const dimensionedScalar& pSat = twoPhaseProperties->pSat();
```

And include this the following lines in file after $volScalarField\ T$ and $volScalarField\ p_rgh$ but before $Creating\ phaseChangeTwoPhaseMixture$

```
volScalarField pSat
(
    IOobject
    (
        "pSat",
        runTime.timeName(),
        mesh,
        IOobject::NO_READ,
        IOobject::AUTO_WRITE
    ),
    p_rgh // initial value will be overwritten by calcPSatField.H
);
#include "calcPSatField.H"
```

Update the p_{Sat} Field

Implement August-Roche-Magnus formula:

```
p_{\text{Sat}} \approx 610.94 \cdot \exp\left(17.625 \cdot \frac{T - 273.15}{T - 30.11}\right), (T \text{ in Kelvin})
```

Create the file *calcPSatField*.*H* with the following content:

```
const dimensionedScalar t30_11("30.11", dimensionSet(0,0,0,1,0,0,0), 30.11);
const dimensionedScalar t273_15("273.15", dimensionSet(0,0,0,1,0,0,0), 273.15);
const dimensionedScalar t1("1", dimensionSet(0,0,0,1,0,0,0), 1);
const dimensionedScalar p610_94("610.94", dimensionSet(1,-1,-2,0,0,0,0), 610.94);
    // dimensionSet( [kg], [m], [s], [K], [kg*mol], [A], [cd]), [kg/(m*S^2)]=[Pa]

// August-Roche-Magnus formula
pSat = p610_94 * exp( 17.625*(T-t273_15) / max(t1, T-t30_11) );
    //max(1,...) is included to avoid problems with devision by 0
}
```

Also update the new field each time the temperature field is re-calculated. Include the line

```
#include "calcPSatField.H"
```

In myInterPhaseChangeFoam.C after #include "TEqn.H".

Remove stationary p_{Sat}

```
Remove the stationary p_{Sat}. Search for psat in the files
phase Change Two Phase Mixtures / phase Change Two Phase Mixture / phase Change Two Phase Mixture. C
and
phase Change Two Phase Mixtures / phase Change Two Phase Mixture / phase Change Two Phase Mixture. H
In the later file, replace
const dimensionedScalar& pSat() const
   return pSat_;
with
const volScalarField& pSat() const
const volScalarField& pSat=alpha1 .db().lookupObject<volScalarField>("pSat");
return pSat;
Compile
wclean
wmake
```

Test Case

Simple closed box with 90°C water. Heated on the right with 110°C hot wall.

Figure 1: Left: Temperature. Right: Alpha