EL2320 - Baysian Inference

John Folkesson

Baysian Inference (Chap 3.1-3.2 in Thrun)

Paramenter Estimation - Maximum Likelihood Estimate

Maximum Likelihood Estimate=MLE.

- We make many measurements, $\{z_i\}$, from some unknown distribution.
- We make an assumption on the form of that distribution (e.g. its Gaussian).
- We write an expression for the probability of our measurements as a function of the unknown distribution parameters λ , (e.g for Gaussians λ are μ and σ^2). $P(\{z_i\}|\lambda)$
- We find the λ that maximizes this so called likelihood. $\lambda_{MLE} = \arg\max_{\lambda} P(\{z_i\}|\lambda)$

Paramenter Estimation - Maximum Likelihood Estimate

Your thermometer measurement τ is modeled:

 $au \sim \mathit{N}(T,1)$ where T is the 'true' temperature. (That is it has a pdf that goes like $e^{-\frac{(\tau-T)^2}{2}}$)

You make a measurement of $\tau = 20$.

Use Bayes rule to deduce (in writing) the MLE for T.

You make 2 independent measurements of 20 and 19.

What is the MLE for T?

MLE and MAP

MLE = Maximum Likelihood Estimate

MAP = Maximum a Posteriori Estimate

Very similar with a minor difference.

Both estimate parameters using a distribution.

Both use the point where a distribution is highest as the estimate.

$$\lambda_{MLE} = \arg \max_{\lambda} p(\{z_i\} | \lambda).$$

 $\lambda_{MAP} = \arg \max_{\lambda} p(\lambda | \{z_i\}).$

MLE and MAP

MAP uses some prior knowledge of the distribution, $p(\lambda)$ =some distribution over *lambda*.

$$\lambda_{MAP} = \arg\max_{\lambda} p(\lambda|\{z_i\}).$$

$$\lambda_{MAP} = \arg\max_{\lambda} rac{p(\{z_i\}|\lambda)p(\lambda)}{p(\{z_i\})}.$$

$$\lambda_{MAP} = \operatorname{arg\,max}_{\lambda} p(\{z_i\}|\lambda)p(\lambda).$$

MLE and MAP are the same if there is no a priori knowledge of the distribution. It starts with an uniform distribution, p(x) = constant.

MLE and MAP Are not invariant to coordinate changes

Both estimates can change if we make non-linear transformations y = f(x):

$$p(x)dx = \tilde{p}(y)dy =>$$

$$p(x) = \tilde{p}(f(x))\frac{dy}{dx} = \tilde{p}(f(x))f'(x) =>$$

$$\frac{p(x)}{f'(x)} = \tilde{p}(y) =>$$

$$\arg\max_{y} \tilde{p}(y) \text{ does not need to be } f(m).$$

On the other hand, we often find it easier to maximize $\ln p(x)$, the so called log likelihood. The x that maximizes the log-likelihood is the same as the x that maximizes the likelihood (ie $p(\lambda)$).

Bayes Inference

Baysian Inference

Generalize to iterative filtering of independent measurements z_i of quantity x:

$$p(z_1,\ldots,z_n|x)=p(z_1|x)\ldots p(z_n|x)$$

Apply Bayes Thereom:

$$p(x|z_{1},...,z_{n}) = \frac{p(z_{n}|x,z_{1},...,z_{n-1})p(x,z_{1},...,z_{n-1})}{p(z_{n},z_{1},...,z_{n-1})}$$

$$= \frac{p(z_{n}|x,z_{1},...,z_{n-1})p(x|z_{1},...,z_{n-1})p(z_{1},...,z_{n-1})}{p(z_{n}|z_{1},...,z_{n-1})p(z_{1},...,z_{n-1})}$$

$$\propto p(z_{n}|x)p(x|z_{1},...,z_{n-1})$$

Baysian Inference

$$p(x|z_1,\ldots,z_n) \propto p(z_n|x)p(x|z_1,\ldots,z_{n-1})$$

Which is the basic idea of Bayesian inference from a series of measurements. (Step 4 of Table 2.1 Bayes filter).

We call $p(z_n|x)$ a measurement model.

We call $p(x|z_1,...,z_n)$ the a posteriori distribution.

This is also notated as: $bel(x_t) = p(x|z_1,...,z_n)$ the 'belief'.

Bayes Inference

Baysian Inference

Psychologist use a test to ID seriously ill people:

- Person sits in front of desk. Doctor sits behind desk.
- Two jars on the desk, jar X with 80% red balls and 20% blue.
 And jar Y with 80% blue and 20% red.
- The doctor then places the jars on the floor and tells the person that one of the jars will be drawn from at random.
- The person is to stop the process when he or she feels confident in which jar is being drawn from.
- The sequence is in fact fixed with RBRBRBBBBB or something similar so a resonable person would not be able to judge for at least 7-8 balls.
- The deranged will "know" after one ball.

What is (as far as the test subject knows) probability of it being jar X given a read ball was drawn, P(X|R) = P(Y|R) = ?

What about P(X|B,R) = ? (Watch out for the denominator (use normalization))