Assignment 5

Applied Machine Learning

Fatemeh Saberi Khomami	temeh Saberi Khomami 40042						fatima.saberi@gmail.com						
Question 6.2 6.2.1													
6.2.2													
Question 6.4 • •	•	•	•	•	•	•	•	•	•	•	•	•	2
Question 6.9													3

 Question 6.10
 3

 6.10.1
 3

 6.10.2
 4

Question 6.2

Given some finite domain set, X, and a number $k \le |X|$, figure out the VC-dimension of each of the following classes (and prove your claims):

6.2.1

 $H_{=k}^X = \{h \in \{0,1\}^X : |x:h(x)=1|=k\}$: that is, the set of all functions that assign the value 1 to exactly k elements of X.

Answer: Let C be the subset of X which will assist us to determine the VCdim of H. For the $C \subseteq X$ with at least k members, H will shatter C, because for all the 2^k subsets of C, there will exist a $h \in H$ which assigns 1 to the t members of the corresponding subset and k-t members of X-C. Therefore, $VCdim(H) \ge k$. Regarding that H is the class of all functions that assign the value 1 to exactly k elements of K, for K0 which has K1 members, K1 will not shatter K2, because for the subset K3, K4, K6 is K7 with K7 members.

We can conclude that $VCdim(H_{=k}) = k$

6.2.2

$$H_{at-most-k} = \{h \in \{0,1\}^X : |x : h(x) = 1| \le k \text{ or } |\{x : h(x) = 0\}| \le k\}.$$

Answer: Regarding that H is the class of all functions that assign 1 to at most k elements of X, for $C \in X$ which has k+1 members, H will not shatter C, because for the subset $\{c_1, c_2, ..., c_{k+1}\}$ it fails to assign 1 to all of them; hence, it fails to shatter C with k+1 members. $(VCdim(H) \neq k+1)$

For $C \subseteq X$ with k members, H will shatter C, because for all the 2^k subsets of C, there will exist a $h \in H$ which assigns 1 to at most k elements of X. So, all the subsets of C like: $\{\emptyset\}, \{c_1\}, \dots, \{c_1, c_2\}, \dots, \{c_1, c_2, c_3\}, \dots, \{c_1, c_2, \dots, c_k\}$ will have the chance to be addressed by the learning rule h. Therefore, $VCdim(H) \ge k$, and since $VCdim(H) \ne k+1$, we can conclude that it's:

 $VCdim(H_{at-most-k}) = k$

Question 6.4

We proved Sauer's lemma by proving that for every class H of finite VC-dimension d, and every subset A of the domain,

$$|H_A| \le |\{B \subseteq A : H \text{ shatters } B\}| \le \sum_{i=0}^d {|A| \choose i}.$$

Show that there are cases in which the previous two inequalities are strict (namely, the \leq can be replaced by <) and cases in which they can be replaced by equalities. Demonstrate all four combinations of = and <.

Answer:

• for the (= & <) case we can give an example with $H_{interval}$ in which the $VCdim(H_{interval})$ = 2, and if we assume $A = \{c_1, c_2, c_3\}$, $|H_A|$ would be 4 because it can not produce a function for the following subsets: $\{c_2\}, \{c_3\}, \{c_2, c_3\}, \{c_1, c_3\}$, but $H_{interval}$ will shatter $B \subseteq A$ which is $\{c_1, c_2\}$ and $|H_B| = 2^{|B|} = 4$. Moreover, $\sum_{i=0}^2 {3 \choose i} = 7$, so 4 = 4 < 7.

Question 6.9

Let H be the class of signed intervals, that is, $H = \{h_{a,b,s} : a \le b, s \in \{-1,1\}\}$ where

$$h_{a,b,c}(x) = \begin{cases} s & if x \in [a,b] \\ -s & if x \notin [a,b] \end{cases}$$

Calculate VCdim(H).

Answer: First, we will show that $VCdim(H) \ge 2$. Assume $C = \{c_1, c_2, s.t \ c_1 < c_2\}$. For the 4 possible subsets of C, we'll have:

- (-,-): $c_1 < c_2 < a$
- (+,+): $a < c_1 < c_2 < b$
- (+,-): $a < c_1 < b < c_2$
- (-,+): $c_1 < a < c_2 < b$

Second, we'll investigate whether $VCdim(H) \ge 3$. Assume $C = \{c_1, c_2, c_3 \text{ s.t } c_1 < c_2 < c_3\}$. For (+,-,+), no valid intervals exist in H. So, $VCdim(H) \ne 3$. Therefore, VCdim(H) = 2.

Question 6.10

Let H be a class of functions from X to $\{0,1\}$.

6.10.1

Prove that if $VCdim(H) \ge d$, for any d, then for some probability distribution D over $X \times \{0,1\}$, for every sample size, m,

$$\mathbb{E}_{S \sim D^m}[L_D(A(S))] \ge \min_{h \in H} L_D(h) + \frac{d - m}{2d}$$

Hint: Use Exercise 5.3 in Chapter 5.

Answer: Based on what has been stated in exercise 5.3 in chapter 5, for a class of functions from X to $\{0,1\}$,

- There exists a function $f: X \to \{0,1\}$ with $L_D(f) = 0$
- for $|X| \ge km$, $\mathbb{E}_{S \sim D^m}[L_D(A(S))] \ge \frac{1}{2} \frac{1}{2k}$

Here, |X| = d, so, $d \ge km \Rightarrow k \le \frac{d}{m}$. We know that H will shatter classes with d members in |X|, and since all of these classes are PAC learnable, we can assume $k = \frac{d}{m}$

$$\mathbb{E}_{S \sim D^{m}}[L_{D}(A(S))] \ge \frac{1}{2} - \frac{1}{2k}$$

$$\mathbb{E}_{S \sim D^{m}}[L_{D}(A(S))] \ge \frac{1}{2} - \frac{m}{2d}$$

$$\mathbb{E}_{S \sim D^{m}}[L_{D}(A(S))] \ge \frac{d - m}{2d}$$

Due to the No-Free-Lunch theorem, there exist $h \in H$ in which $L_D(h) = 0$, So the ERM learning strategy would return 0 for $\min_{h \in H} L_D(h)$. Therefore, we can conclude that:

$$\mathbb{E}_{S \sim D^m}[L_D(A(S))] \ge \min_{h \in H} L_D(h) + \frac{d-m}{2d}$$

6.10.2

Prove that for every H that is PAC learnable, $VCdim(H) < \infty$. (Note that this is the implication $3 \rightarrow 6$ in Theorem 6.7.)

Answer: We only need to prove that for $VCdim(H) = \infty$, H is not PAC learnable. According to no free lunch theorem, we know that If someone can explain every phenomenon, his explanations are worthless. Hence, when H can shatter any class, it is not possible to learn each and every class with that H with low error. It would be some classes that $h \in H$ fails to address without low error-rate. Therefore, if VCdim(H) is infinite, H is not PAC learnable.

We can conclude that if VCdim(H) is finite, H is PAC learnable.