Sprawozdanie Analizy Sieci Społecznościowej

1. Wstęp

Sprawozdanie to dotyczy analizy sieci społecznościowej skupionej wokół użytkownika isocpp. Celem analizy jest zrozumienie struktury tej sieci, identyfikacja potencjalnych społeczności oraz ocena charakteru hierarchicznego sieci.

2. Ogólna Analiza Grafu:

Pobrano dane o 487 użytkownikach (węzłach) sieci społecznościowej, z których każdy jest połączony z centralnym węzłem isocpp. Graf składa się z 488 węzłów i 487 krawędzi. Średni stopień węzłów w grafie wynosi około 1.996, co sugeruje, że większość użytkowników ma tylko jedno połączenie (z węzłem isocpp).

3. Analiza Kliki:

Zidentyfikowano kilka kliki (grup węzłów, gdzie każda para węzłów jest bezpośrednio połączona). Pierwsze pięć kliki składały się z dwóch węzłów: isocpp i jednego innego użytkownika, co jest zgodne z oczekiwaniami dla struktury grafu skoncentrowanego wokół jednego centralnego węzła. W sieci zidentyfikowano 488 kliki. Każda klika składa się z użytkownika isocpp oraz jednego innego węzła. Pierwsze pięć kliki to:

- ['isocpp', 'demidko']
- ['isocpp', 'Tendacia']
- ['isocpp', 'jzegmz']
- ['isocpp', 'ash1j1']
- ['isocpp', 'jan-revay']

4. Wydzielenie modułów i społeczności w sieci:

Zastosowano następujące podejścia do identyfikacji społeczności w grafie:

• Metoda Girvan-Newman wykryła 3 moduły w sieci.

Porównanie modularności kolejnych podejść:

- Metoda Aglomeracyjna: Przy zastosowaniu aglomeracyjnej analizy skupień i
 ustawieniu progu odległości na 2, otrzymano społeczności, które jednak nie wykazały
 znaczącej modularności (modularność wynosiła blisko 0).
- Metoda Fast Greedy: Ta metoda również nie wykazała znaczącej modularności (modularność bliska 0), co może wskazywać na brak wyraźnych społeczności w analizowanej sieci, lub na ograniczenia metody w kontekście danego grafu.

5. Analiza charakteru hierarchicznego sieci

• Analiza Rozkładu Stopni Węzłów:

Histogram wskazuje na to, że większość węzłów ma stopień równy 1, co jest charakterystyczne dla struktury gwiazdy, gdzie węzły są połączone z jednym centralnym węzłem. Brak rozkładu potęgowego, który jest często obserwowany w hierarchicznych sieciach złożonych, może sugerować brak złożonej hierarchii.

Analiza Centralności Pośrednictwa:

Wykres pokazuje, że większość węzłów ma bardzo niską centralność pośrednictwa, z wyjątkiem jednego lub kilku węzłów. Może to wskazywać na obecność jednego lub kilku węzłów pełniących rolę "mostów" lub "hubów" w sieci, co jest cechą charakterystyczną dla hierarchicznych sieci.

• Analiza Dendrogramu:

Dendrogram przedstawiony wcześniej może dostarczyć wglądu w hierarchię skupień. Jeśli struktura klastrów wykazuje wielopoziomowe zagnieżdżenie, można by to uznać za oznakę hierarchii. Jednak w tym przypadku, dendrogram nie wykazuje wyraźnego wielopoziomowego podziału, co sugeruje, że sieć nie ma złożonej struktury hierarchicznej.

• Analiza Modułów:

Metoda Girvan-Newman wykryła tylko 3 moduły, z których każdy składa się z różnej liczby węzłów. Jednak bardzo niska modularność wskazuje na to, że społeczności te nie są silnie oddzielone od reszty sieci, co z kolei sugeruje brak wyraźnej hierarchii modułowej.

5. Wnioski:

Analiza wskazuje, że badana sieć społecznościowa ma prostą strukturę skupioną wokół centralnego węzła isocpp, bez wyraźnych, dobrze zdefiniowanych społeczności.

Niska modularność w obu metodach może wynikać z natury sieci, gdzie większość użytkowników jest połączona jedynie z jednym centralnym węzłem, tworząc strukturę typu gwiazda, co ogranicza możliwość wykrycia złożonych społeczności.

Wyniki te mogą być również uwarunkowane specyficznymi właściwościami algorytmów użytych do analizy społeczności i ich ograniczeń w kontekście analizowanego typu grafu.

6. Zalecenia:

Dla dalszych analiz zaleca się zastosowanie innych metod wykrywania społeczności lub dokładniejsze zbadanie charakterystyki sieci, aby lepiej zrozumieć jej strukturę i dynamikę.

Możliwe, że inne podejścia analizy sieciowej, takie jak bardziej szczegółowe badanie centralności węzłów lub analiza podgrafów, mogą dostarczyć dodatkowych informacji o strukturze sieci.