Contents

0.1	Abiotic Data Variables	2
	0.1.1 Ocean Data Variables	2
0.2	Abiotic Data Sources	2
	0.2.1 Copernicus	2

2 CONTENTS

0.1 Abiotic Data Variables

0.1.1 Ocean Data Variables

Ocean Wave Spectrum, see $https://geo.libretexts.org/Bookshelves/Oceanography/Introduction_to_Picture and the second sec$

0.2 Abiotic Data Sources

0.2.1 Copernicus

Satellite Data

Copernicus stores data that is obtained from the usage of its 5 different **Sentinel Satellites**. Each of these satellites collect different forms of data and all of this can be accessed through the Copernicus API

- Sentinel-1, provides radar imagaging that collects data that pertains to
 - Landscape topography
 - Multi-purpose imagery of both land and ocean
 - Ocean Surface winds
 - Ocean topography and currents
 - Ocean wave height and spectrum
 - Sea ice cover, edge and thickness
 - Snow cover, edge and depth
 - Soil moisture and vegetation

The following data is measured from S-1

- SAR (Synthetic Aperture Radar) transmits microwave signals at an angle and measures the backscatter echo. The brightness <u>amplitude</u> and <u>phase information</u> is being recorded. General variables that affect these measurements are
 - * Surface Roughness
 - * Dielectric constants of scattering material
- Polarimetry, in which the <u>polarization</u> of EM radiation is studied.
 Applications for polarimetric data are
 - * Crop identification, condition monitoring and soil moisture in agriculture
 - * Biomassn estimation, species identification and fire scar mapping in forestry
 - * Sea ice identification, coastal wind field measurements, oil spill detection in oceanography
- Interferometry, measuring the <u>phase difference</u> between two complex radar SAR observations from the same area. Applications of the interferometry are
 - * Geophysical monitoring of natural hazards

- * Time series analysis of surface deformations
- * Glacier motion analysis
- * Elevation mapping
- Sentinel-2, a pair of satellites that perform multi-spectral imagaging. These satellites are phased at 180 degrees and samples at 13 different spectral bands. The spectral bands can be divided into 3 different groups based on their spatial resolution
 - 10m resolution band that contains 4 different bands in the visible part of the EM spectrum
 - * Blue light (\sim 493 nm)
 - * Green light (\sim 560 nm)
 - * Red light (\sim 665 nm)
 - * near IR light (~833 nm)

Figure 1: Overview of the 10m spectral resolution band

- 20m resolution band that contains 6 different bands mainly in the IR region of the EM spectrum
 - * 4 narrow bands in visible-near IR (vnIR) ($\sim\!704\mathrm{nm},\!\sim\!740\mathrm{nm},$ $\sim\!783\mathrm{nm}$ and $\sim\!865\mathrm{nm}),$ aimed at vegetation detection
 - * 2 wider bands in shot-wave IR (swIR) (\sim 1610nm and \sim 2190nm) aimed at snow/ice/cloud detection or vegation moisture stress assessment
- 60m resolution band that cointains 3 different bands that is focused on cloud screening and atmospheric correction (\sim 443nm for aerosols and \sim 945nm for water vapour) and cirrus detection (\sim 1374nm)

4 CONTENTS

Figure 2: Overview of the $20\mathrm{m}$ spectral resolution band

Figure 3: Overview of the $60\mathrm{m}$ spectral resolution band