Введение

При разработке и отладке встраиваемых систем очень часто возникает необходимость мониторинга, регистрации, визуализации и анализа данных, передаваемых по шинам данных устройства. У возникающих ошибок зачастую может быть разная природа, начиная от неправильной конфигурации приёмо-передающего блока и заканчивая ошибками в логике работы пользовательского программного обеспечения.

Возможностей традиционных отладчиков, предназначенных в первую очередь для поиска ошибок в ПО, в этом случае часто не хватает, так как в работе шины задействовано сразу несколько устройств, синхронизированных по времени. Более того, традиционный отладчик не даёт понимания того, что происходит на шине данных (невозможно или неоправданно сложно отследить состояние передачи и синхронизацию линий обмена данными). Поэтому для решения подобных задач используются специальные программно-аппаратные комплексы для мониторинга и анализа обменов.

Как правило, такой программно-аппаратный комплекс состоит из двух компонентов: адаптер для подключения персонального компьютера (ΠK) к анализируемой шине данных и специального программного обеспечения (ΠO) для обработки и визуализации данных.

В ЛВК ведется ряд работ, целью которых является создание инструментальной среды для мониторинга, регистрации, визуализации и анализа информационного обмена в различных бортовых авиационных каналах (ARINC 429, MIL STD 1553B, Fibre channel и др.)

Рабочей группой достигнуты значимые результаты и получен богатый опыт в данной области. Однако данные работы ведутся в интересах конкретных заказчиков и их результаты являются закрытыми разработками. С целью популяризации ЛВК в научном и техническом сообществе может иметь смысл создание на основе существующих разработок свободного инструмента для анализа информационного обмена.

С другой стороны, в области встроенных вычислительных систем, исследованием которых также занимаются в ЛВК, есть много специализированных интерфейсов, для которых инструменты анализа информационного обмена либо совсем отсутствуют, либо существуют, но проигрывают по возможностям аналогичным инструментам, разрабатываемым в ЛВК.

В качестве одного из таких интерфейсов можно рассмотреть шину I2C. Этот интерфейс широко используется для связи интегральных схем отдельных узлов встраиваемых вычислительных систем за счёт своей простоты и большого количества поддерживаемых устройств различно-

го назначения. Однако, на сегодняшний день не существует свободного программно-аппаратного комплекса для мониторинга этой шины, ориентированного на анализ обменов на уровне сообщений. Основное множество доступных программных средств для мониторинга шины I2C ориентировано на анализ передач на физическом и канальном уровне.

Цель и задачи курсовой работы

Целью курсовой работы является адаптация существующей инструментальной среды Орегтоп для работы с адаптером шины I2C [6] и для визуализации получаемых обменов с учётом специфики устройства шины.

Для достижения поставленной цели необходимо решить следующие задачи:

- Провести обзор существующих программных и аппаратных средств анализа шины I2C (а также других специализированных интерфейсов встроенных вычислительных систем) с точки зрения:
 - возможностей для мониторинга и анализа передач;
 - организации пользовательского интерфейса;
 - доступности для разработчика.
- Выполнить их сравнение с разрабатываемой в ЛВК средой OperMon.
- Предложить проект реализации инструмента анализа информационного обмена по шине I2C на основе среды OperMon:
 - выбрать аппаратный интерфейс к шине;
 - спроектировать архитектуру средства;
 - предложить набор представлений информации об обмене и спроектировать пользовательский интерфейс.
- Реализовать инструмент анализа;
- Провести анализ существующей архитектуры среды Opermon и предложить проект рефакторинга с целью:
 - более явного выделения интерфейсо-специфичной части;
 - реализации возможности вариативной сборки с заданием списка поддерживаемых в данном варианте интерфейсов;

разбиения исходного кода и собираемых объектных компонентов на независимые модули и библиотеки с возможностью выделения части этих модулей, достаточной для сборки средства мониторинга шины I2C

1 Анализ существующих решений

На сегодняшний день разработчикам встраиваемых систем доступен довольно широкий спектр различных программно-аппаратных комплексов для регистрации и анализа обменов на шине I2C. Для подготовки собственного решения есть смысл ознакомиться с ними, провести сравнительный анализ и выделить слабые и сильные стороны каждого из них.

1.1 Преобразователи $I2C \leftrightarrow TTY$

Одним из самых простых решений для прослушивания шины является подключение к ней через простой по устройству адаптер, имеющий последовательный интерфейс, Разработчику доступно множество вариантов, начиная от несложных самодельных адаптеров, использующих микроконтроллер общего назначения в качестве преобразователя интерфейса, до серийно выпускаемых универсальных адаптеров.

С представителями первой группы можно ознакомиться по ссылкам: [9], [10].

Вторая группа представлена следующими адаптерами: [7].

Зачастую эти простые преобразователи подразумевают их использование вместе со специальным программным обеспечением, предоставляя помимо консольного интерфейса бинарный вариант.

1.1.1 Плюсы

- Простота исполнения и дешевизна. Как правило, при проектировании подобных адаптеров используются недорогие распространённые компоненты, при этом зачастую допуская изготовление платы в "кустарных" условиях. Как следствие, такой адаптер может позволить себе любой заинтересованный разработчик.
- Отсутствие необходимости в специфическом ПО. Большинство адаптеров этого типа имеют текстовый консольный интерфейс, поэтому для начала работы с ними требуется только программатерминал последовательного порта.
- Возможность интеграции с пользовательским ПО. Как правило, программный интерфейс таких адаптеров открыт, достаточно прост и не использует специфических решений для обмена данными с ПК (работа с последовательным портом доступна практически на всех платформах с использованием почти всех распространённых языков программирования). Таким образом, у пользователя

есть возможность интегрировать взаимодействие с адаптером в сво- \ddot{e} м собственном ΠO .

Можно также заметить, что при использовании подобных адаптеров при определённой сноровке есть возможность записывать трассы обменов для последующего анализа, так как данные представляются в виде простого текстового (или бинарного) потока. Более того, записанные данные (в случае текстового потока) можно пытаться анализировать даже без использования специального ПО. Также есть возможность преобразовать записанные данные в требуемый пользователю формат (например, XML или CSV) с помощью несложных скриптов.

1.1.2 Минусы

Замечание: рассматриваются отрицательные стороны использования решения в консольном режиме, без специальных утилит.

- Представление данных. Чаще всего, консольный интерфейс сильно ограничен в плане представления данных (так как по своей природе может выводить только текст). При большом количестве обменов на линии такой интерфейс становится чрезвычайно неудобным.
- Фильтрация передач. Как правило, простые аппаратные анализаторы не имеют возможности предоставить выборку данных по шаблону (как и пытаться декодировать посылку стандартного формата).

1.1.3 Выводы

Решения, основанные на использовании простых преобразователей с консольным интерфейсом неплохо подходят для анализа редко возникающих событий на шине с небольшими объёмами передаваемых данных. Они дешевы и в общем случае не требуют специального (возможно, дорогостоящего) ПО для начала работы. Более того, за счёт относительной простоты и открытости интерфейса взаимодействия с адаптером, они оставляют пользователю определённую свободу в выборе инструмента анализа, начиная от ПО для графического представления и анализа данных (при преобразовании данных трасс в поддерживаемые форматы, такие как CSV или XML) и заканчивая специальными скриптами для разбора обменов.

1.2 Специализированные программно-аппаратные комплексы

Отдельного внимания заслуживают специализированные программноаппаратные решения для визуализации и анализа обменов, в том числе коммерческие закрытые решения. При проектировании собственного решения очень полезно ознакомиться с опытом уже существующих, сравнить их с точки зрения предлагаемых возможностей, удобства в использовании, а также оценить сильные и слабые стороны каждого из них.

1.2.1 Beagle I2C/SPI Protocol Analyzer + Data Center

Beagle I2C/SPI Protocol Analyzer [1] - устройство для захвата и анализа, разработанное американской компанией Total Phase, специализирующаейся на решениях для разработки и отладки встраиваемых систем. Оно подключается к ПК посредством интерфейса USB 2.0 и использует собственное API для взаимодействия с приложениями.

Анализатор способен считывать данные с линии I2C, работающей на скорости до 4 Мбод (спецификация I2C High-speed mode), при этом работает исключительно как сниффер (пассивный анализатор обменов).

Для работы с линейкой анализаторов от Total Phase разработано программное обеспечение Data Center [2]. По типу представления данных ПО идеологически близко к WireShark.

Пользовательский интерфейс инструмента Data Center включает в себя следующие базовые элементы:

- 1. Таблица обменов. Отображает полученные обмены в расшифрованном виде (с учётом типа интерфейса и протокола обмена).
- 2. Сырые данные обмена. Представляет данные в битовом виде (16-ричные значения полученных данных).
- 3. **Командная строка**. Позволяет управлять функционалом ПО с помощью текстовых команд.
- 4. **Информация об устройстве**. Отображает список подключенных к ПК устройств, доступных для анализа, а также подробную информацию о текущем выбранном устройстве.

Снимок экрана с рабочим окном Data Center представлен в приложении A на рисунке 2.

1.2.2 Aardwark Host Adapter + Control Center

Помимо линейки анализаторов шин данных, компания Total Phase предлагает устройства и ПО для активного вмешательства в работу шины. Это необходимо, например, для получения данных в шине без master-устройства (либо где роль master-устройства играет ПК с подключенным адаптером), либо для эмуляции оконечных устройств шины средствами ПК с адаптером.

Для работы с шиной I2C предлагается адаптер Aardwark I2C/SPI Host Adapter [3] и ПО Control Center [4]. Адаптер подключается к ПК посредством интерфейса USB 2.0 и использует собственное API для вза-имодействия с пользовательскими приложениями.

 ΠO Control Center позволяет ΠK выступать в роли master- или slaveустройства на шине I2C или SPI.

Возможности ПО Control Center:

- 1. **Настройка напряжения логических уровней и питания целевого устройства**. Адаптер Aardwark I2C/SPI Host Adapter имеет встроенный конвертер логических уровней и программируемый источник питания, от которого можно передавать питание отлаживаемому устройству. Настройка этих блоков производится из пользовательского интерфейса Control Center.
- 2. **Ручное взаимодействие с шиной**. Пользовательский интерфейс Control Center включает в себя виджеты для ручного управления шиной в разных режимах: генерирование запросов в режиме master, приём или передача данных в режимах master или slave.
- 3. **Ведение лога**. В лог вносятся события о получении или передаче данных по шине, а также об изменениях настроек конвертеров уровней и источников питания.

Снимок экрана с рабочим окном Control Center представлен в приложении A на рисунке 3.

1.2.3 Логические анализаторы BitScope Logic

Отдельной категорией устройств для отладки и мониторинга шин данных являются универсальные логические анализаторы. Эти устройства имеют несколько (как правило, порядка 16) входных каналов, способных отслеживать логические уровни на линиях данных. Логические анализаторы обычно подключаются к ПК посредством USB или через более скоростную шину PCI.

Программное обеспечение для работы с логическими анализаторами обычно ориентировано на отображение текущего состояния входных каналов подобно осциллографу, в виде графика зависимости уровня от времени. Такие анализаторы чрезвычайно полезны для поиска ошибок на физическом уровне.

Интересным представителем ПО для работы с логическими анализаторами является BitScope Logic [5]. Оно используется для работы с оборудованием BitScope.

Возможности BitScope Logic:

- 1. Отображение состояния входов логического анализатора. На экран выводится график зависимости уровня на входе от времени.
- 2. **Расшифровка обменов**. BitScope Logic поддерживает работу с интерфейсами UART, I2C, SPI, CAN и многими другими и имеет возможность расшифровывать (представлять в текстовом виде) обмены этих интерфейсов.
- 3. Представление данных в табличном виде. В ПО есть возможность представления обменов в традиционном табличном виде.

Снимок экрана с рабочим окном BitScope Logic представлен в приложении A на рисунке 4.

1.3 Выводы

Рассмотренные комплексы предлагают несколько базовых подходов к представлению данных об обменах:

- представление на уровне логических уровней во времени;
- представление в виде потока байтов и управляющих символов;
- табличное представление "сырых" данных обменов;
- табличное представление с расшифровкой данных обменов.

Каждое из представлений полезно в своих определённых задачах. Тем не менее, есть ограничения по использованию некоторых из них в задаче, поставленной в этой курсовой работе. Для того, чтобы определить требования к реализации поддержки шины I2C в среде Opermon, следует провести обзор уже существующего функционала Opermon.

2 Анализ инструментальной среды Opermon

Opermon - инструмент для отображения, анализа и сбора трасс, созданный изначально для работы с бортовыми авиационными шинами данных, такими как MSTD-1553, ARINC, FibreChannel и CAN. На сегодняшний день Opermon имеет следующие возможности:

- отображение обменов в табличном виде;
- сохранение трасс для последующего анализа (с возможностью удаления старых обменов из трассы для длительной непрерывной работы);
- разбор сообщений с выделением параметров;
- отображение значений параметров в табличном виде или в виде графиков.

Решение Opermon имеет клиент-серверную архитектуру, где разделены инструмент взаимодействия с адаптером и средство визуализации.

Рис. 1: Структурная схема связи компонентов среды Орегтоп

2.1 Серверная часть

Задача удалённого агента - устанавливать соединение с адаптером и обеспечивать обмен данными между адаптером и средством визуализации Opermon. Взаимодействие с Opermon происходит через пару TCP-соединений.

Первое соединение служит для передачи команд управления через RPC (Remote Procedure Call, вызов удалённых процедур) с помощью библиотеки qxmlrpc [11]. Агент ожидает подключения средства визуализации.

Второе TCP-соединение открывается по команде bind от средства визуализации. Через это соединение передаются данные о прочитанных обменах, а также сообщения в очередь на передачу через адаптер (если реализация интерфейса в Орегтоп поддерживает передачу данных на шину).

2.2 Клиентская часть

Средство визуализации оформлено в виде окна с набором отделяемых виджетов для отображения данных и настройки различных параметров.

В задачи средства визуализации также входит предоставление пользовательского интерфейса для подключения к агенту (или нескольким агентам) и для настройки параметров адаптеров.

Основное окно программы содержит следующие виджеты [12]:

- Область отображения результатов. В этом виджете отображается таблица обменов (несколько таблиц при использовании нескольких адаптеров), а также статистика обменов и параметры передаваемой циклограммы (если поддерживается адаптером).
- Панели инструментов. Позволяют выбирать текущие отображаемые виджеты, а также управлять текущим режимом работы анализатора.
- Виджеты боковой панели:
 - Настройка адаптеров. Предоставляет интерфейс для выбора адаптеров для работы, а также позволяет настроить каждый выбранный адаптер в отдельности (с возможностью получать данные от разных агентов).
 - **Расширенная информация о выбранном обмене**. Позволяет просматривать информацию о выбранном обмене в виде пар ключ-значение.

- Фильтр обменов. Инструмент, дающий возможность отображать и обрабатывать только те обмены, которые соответствуют выбранным параметрам.
- Поиск. Предоставляет возможность искать конкретные обмены по запросу пользователя.
- Область информационных сообщений. Отображает список произошедших за время работы анализатора событий (таких как загрузка сессии, подключение к адаптеру, начало и конец регистрации обменов) в хронологическом порядке.
- **Строка состояния**. Описывает текущий режим работы анализатора.

2.3 Инструмент хранения трасс обменов

Средство хранения трасс позволяет пользователю производить запись трассы получаемых обменов для последующего отображения, обработки и анализа.

Данный функционал в актуальной версии решения Opermon реализуется логическим модулем libotrace и частично в клиентской части. Доступ к функционалу предоставляется в рамках клиентской части среды.

В задачи инструмента хранения трасс обменов входят:

- Сбор и экспорт данных трасс обменов. Трассы обменов сохраняются на диск в отчуждаемом формате. Таким образом, есть возможность анализировать обмены вне рабочего места оператора (часто собранные данные полезны разработчикам и инженерам, работающим с анализируемой системой).
- Удаление устаревших данных в процессе записи трассы. Данная функция необходима в случае длительной непрерывной работы решения, когда свободного дискового пространства может не хватить для записи всех полученных обменов. В этом случае в зависимости от настройки Opermon может удалять старые обмены в процессе записи для экономии пространства.

2.4 Особенности архитектуры решения

В этом разделе описаны особенности архитектуры Opermon, определяющие порядок реализации нового типа адаптера в среде.

2.4.1 Представление данных в среде

Для корректного представления данных в среде и для возможности адекватно их обрабатывать требуется достаточно жёсткая структуризация получаемых от адаптера данных. В среде Opermon каждый обмен имеет как минимум два основных способа представления, это связано с тем, что в текущей версии обмены обрабатываются по отдельности средством визуализации и инструментом для хранения трасс:

- Представление для инструмента отображения. Здесь от представления требуется максимальная информативность, возможность разделения на логические поля для упрощения отображения.
- Представление для инструмента хранения трасс обменов. От представления требуется возможность сериализации данных (возможность сохранения их во внешнем файле для последующего импорта в инструмент анализа и обработки).

2.4.2 Обмен данными между агентом и средством визуализации

Как было описано в разделе 2.1, между клиентской и серверной частями устанавливается два TCP-соединения: для управления адаптерами через RPC и для обмена данными (для каждого адаптера).

В RPC серверной части решения требуется реализовать набор базовых функций управления:

- list для получения списка доступных адаптеров данного типа;
- bind для подключения к определённому адаптеру системы;
- **ping** для периодической проверки доступности адаптера в системе во время работы;
- **connect** для установки дополнительного TCP-соединения для обмена данными;
- start для начала обмена данными с адаптером;
- stop для остановки обмена данными с адаптером;
- **unbind** для отсоединения от адаптера, что сделает его доступным для других приложений системы;
- setOptions для чтения и установки параметров адаптера;

• putData - для передачи циклограмм обменов от клиента адаптеру (вывод данных в шину).

Формат данных для передачи обменов не стандартизирован и может быть выбран разработчиком реализации конкретного интерфейса в зависимости от особенностей анализируемой шины.

2.4.3 Виджеты для отображения и конфигурации

Решение Орегтоп разработано на базе фреймворка Qt [13] и использует его возможности для реализации графического пользовательского интерфейса.

Для стандартных виджетов Opermon подготовлены интерфейсы взаимодействия с ядром системы. Каждый из стандартных виджетов требует отдельной реализации для всех типов адаптеров.

Литература

- 1. Beagle Protocol Analyzer User Manual [HTML] (http://www.totalphase.com/support/articles/200472426)
- 2. Data Center Software [HTML] (http://www.totalphase.com/products/data-center/)
- 3. Aardwark I2C/SPI Host Adapter User Manual [HTML] (http://www.totalphase.com/support/articles/200468316)
- 4. Control Center Software [HTML] (http://www.totalphase.com/products/control-center-serial/)
- 5. BitScope Logic [HTML] (http://www.bitscope.com/software/logic/)
- 6. I2C-bus specification and user manual [PDF] (http://www.nxp.com/documents/user_manual/UM10204.pdf)
- 7. Bus Pirate documentation [HTML] (http://dangerousprototypes.com/docs/Bus_Pirate)
- 8. Bus Pirate I2C guide [HTML] (http://dangerousprototypes.com/bus-pirate-manual/i2c-guide/)
- 9. Arduino I2C sniffer project on Hackaday [HTML] (http://hackaday.com/2011/05/21/arduino-i2c-sniffer/)
- 10. Отладчик I2C, SPI, 1-Wire [HTML] (http://avrdevices.ru/otladchik-i2c-spi-1-wire/)
- 11. Qxmlrpc library [Github] (https://github.com/commontk/qxmlrpc)
- 12. Средство мониторинга и анализа мультиплексного канала информационного взаимодействия. Руководство оператора. [DOC] Redlab, 2013
- 13. Qt Home | Russian [HTML] (https://www.qt.io/ru/)

А Изображения и схемы

Рис. 2: Скриншот рабочего окна Total Phase Data Center

Рис. 3: Скриншот рабочего окна Total Phase Control Center

Рис. 4: Скриншот рабочего окна BitScope Logic