	import matplotlib.pyplot as plt import pandas as pd import numpy as np
In [12]:	Question 4 data = [(1, .98), (0, .92), (1, .85), (0, .77), (0, .71), (1, .64), (1, .5), (1, .39), (0, .34), (0, .31)] neg = pos = 5
	<pre># [[thresh, TP, FP, TN, FN],] out = [] for i in range(len(data)): tp = fp = tn = fn = 0 thresh = data[i][1] for n in range(len(data)): if data[n][1] >= thresh: if data[n][0] == 1: tp += 1</pre>
	<pre>else: fp += 1 else: if data[n][0] == 0: tn += 1 else: fn += 1 out += [[thresh, tp, fp, tn, fn]] # [[thresh, TPR, FPR, acc],] out2 = []</pre>
	<pre>for i in range(len(data)): acc = (out[i][1] + out[i][3]) / len(data) tpr = out[i][1] / pos fpr = out[i][2] / pos out2 += [[out[i][0], acc, tpr, fpr]]</pre>
	<pre>out2 = pd.DataFrame(out2, columns=['Threshold', 'Accuracy', 'True Pos Rate', 'False Pos Rate'],</pre>
	0.92 0.5 0.2 0.2 0.85 0.6 0.4 0.2 0.77 0.5 0.4 0.4 0.71 0.4 0.4 0.6 0.64 0.5 0.6 0.6 0.50 0.6 0.8 0.6
	0.39 0.7 1.0 0.6 0.34 0.6 1.0 0.8 0.31 0.5 1.0 1.0
In [13]:	Question 5 ROC Curve plt.figure(figsize=(10,10)) plt.scatter(out2['True Pos Rate'], out2['False Pos Rate'])
	<pre>plt.plot(out2['True Pos Rate'], out2['False Pos Rate']) plt.plot([0,1], [0,1]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.xticks([.1 * i for i in range(11)]) plt.yticks([.1 * i for i in range(11)]) plt.title('ROC Curve') plt.margins(x=.01, y=0.01)</pre>
	plt.show() ROC Curve
	0.8 - 0.7 -
	0.6 - 0.5 - 0.5 - 0.4 -
	0.3
	0.1
In [15]:	Question 6 Part A # Import Data
	<pre>data = pd.read_csv("spam.csv") data = data.drop(['isuid', 'id', 'domain', 'spampct', 'category', 'cappct'], axis=1) Part B i.</pre>
In [16]:	<pre>spamCount = 0 for i in data['spam']: if i == 'yes': spamCount += 1 print("%.2f%% of emails are spam." % (100*spamCount/len(data['spam']))) 32.70% of emails are spam.</pre>
	ii.The constant classifier will predict that 100% of emails are spam.iii.
In [17]:	The constant classifier will have an error rate of 67.30%. Part C # Split Data into training and test groups from sklearn.model_selection import train_test_split
	<pre>from sklearn.preprocessing import OrdinalEncoder from sklearn import tree enc = OrdinalEncoder() enc.fit(data) ord_data = pd.DataFrame(enc.transform(data)) data_train, data_test, spam_train, spam_test = train_test_split(ord_data.iloc[:, 0:14], ord_data[14])</pre>
In [18]:], test_size=0.2, train_size=0.8, random_state=124) Part D
	<pre>out = tree.DecisionTreeClassifier() out = out.fit(data_train, spam_train) tree_graph = tree.export_graphviz(out, out_file=None,</pre>
Out[18]:	tree_graph = graphv12.Source(tree_graph) tree_graph
	Part E Gini value is the default selection criteria when learning the tree. Part F
In [19]:	<pre>from sklearn import metrics #Accuracy = TP + TN / n #Sensitivity = TP / TP + FN #Specificity = TN / FP + TN #AUC predicted_train = out.predict(data_train)</pre>
	<pre>predicted_test = out.predict(data_test) matrix_train = metrics.confusion_matrix(spam_train, predicted_train) matrix_test = metrics.confusion_matrix(spam_test, predicted_test) acc_train = (matrix_train[1][1] + matrix_train[0][0]) / len(spam_train) sens_train = matrix_train[1][1] / (matrix_train[1][1] + matrix_train[1][0]) spec_train = matrix_train[0][0] / (matrix_train[0][0] + matrix_train[0][1])</pre>
	<pre>auc_train = metrics.roc_auc_score(spam_train, predicted_train) acc_test = (matrix_test[1][1] + matrix_test[0][0]) / len(spam_test) sens_test = matrix_test[1][1] / (matrix_test[1][1] + matrix_test[1][0]) spec_test = matrix_test[0][0] / (matrix_test[0][0] + matrix_test[0][1]) auc_test = metrics.roc_auc_score(spam_test, predicted_test) performance_full = pd.DataFrame([[acc_train, sens_train, spec_train, auc_train],</pre>
Out[19]:	<pre>performance_full = pd.DataFrame([[acc_train, sens_train, spec_train, auc_train],</pre>
In [20]:	Testing Data 0.898851 0.778626 0.950658 0.864642 Part G out = tree.DecisionTreeClassifier(max_depth=4)
	<pre>out = out.fit(data_train, spam_train) tree_graph = tree.export_graphviz(out, out_file=None,</pre>
Out[20]:	box ≤ 0.5 gini = 0.445 samples = 1736 value = [1157, 579] True False local ≤ 0.5 gini = 0.455 samples = 863 value = [302, 561] large text ≤ 0.5 gini = 0.32 value = [855, 18] local ≤ 0.5 gini = 0.32 local ≤ 0.5 gini = 0.025 gini = 0.027 gini = 0.032 local ≤ 0.5 gini = 0.025 gini = 0.027
	gini = 0.332 samples = 696 value = [146, 550] sucker ≤ 0.5 gini = 0.452 samples = 405 value = [41, 9] sucker ≤ 0.5 gini = 0.04 samples = 60 value = [140, 265] samples = 50 value = [138, 217] sucker ≤ 0.5 gini = 0.027 samples = 861 value = [156, 11] sucker ≤ 0.5 gini = 0.027 samples = 161 value = [156, 5] samples = 6 value = [0, 6] size.kb ≤ 11.5 gini = 0.027 samples = 811 value = [0, 6] size.kb ≤ 11.5 gini = 0.007 samples = 811 value = [0, 6] size.kb ≤ 11.5 gini = 0.295 samples = 801 value = [0, 6] samples = 10 value = [0, 4] samples = 50 value = [0, 4] samples = 50 value = [0, 4] samples = 10 value = [0, 4] samples = 50 value = [0, 1] samples = 45 value = [0, 1] value = [1, 0] value = [1, 0]
In [28]:	<pre>predicted_train = out.predict(data_train) predicted_test = out.predict(data_test) matrix_train = metrics.confusion_matrix(spam_train, predicted_train) matrix_test = metrics.confusion_matrix(spam_test, predicted_test) acc_train = (matrix_train[1][1] + matrix_train[0][0]) / len(spam_train)</pre>
	<pre>acc_train = (matrix_train[1][1] + matrix_train[0][0]) / len(spam_train) sens_train = matrix_train[1][1] / (matrix_train[1][1] + matrix_train[1][0]) spec_train = matrix_train[0][0] / (matrix_train[0][0] + matrix_train[0][1]) auc_train = metrics.roc_auc_score(spam_train, predicted_train) acc_test = (matrix_test[1][1] + matrix_test[0][0]) / len(spam_test) sens_test = matrix_test[1][1] / (matrix_test[1][1] + matrix_test[1][0]) spec_test = matrix_test[0][0] / (matrix_test[0][0] + matrix_test[0][1]) auc_test = metrics.roc_auc_score(spam_test, predicted_test)</pre>
Out[28]:	<pre>auc_test = metrics.roc_auc_score(spam_test, predicted_test) performance_trim = pd.DataFrame([[acc_train, sens_train, spec_train, auc_train],</pre>
	Accuracy Sensitivity Specificity AUC Training Data 0.906682 0.977547 0.871219 0.924383 Testing Data 0.894253 0.946565 0.871711 0.909138
	Question 7:
In [34]:	from sklearn.model_selection import StratifiedKFold from sklearn.preprocessing import OrdinalEncoder from sklearn.preprocessing import MinMaxScaler from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier
	from sklearn.model_selection import StratifiedKFold from sklearn.preprocessing import OrdinalEncoder from sklearn.preprocessing import MinMaxScaler from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.naive_bayes import GaussianNB from sklearn import metrics import pandas as pd import numpy as np def spec_test(y, y_pred): if(len(y) != len(y_pred)):
	from sklearn.model_selection import StratifiedKFold from sklearn.preprocessing import OrdinalEncoder from sklearn.preprocessing import MinMaxScaler from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.naive_bayes import GaussianNB from sklearn import metrics import pandas as pd import numpy as np def spec_test(y, y_pred): if(len(y) != len(y_pred)): print("Error in spec_score") exit(-1) fp = 0. tn = 0. for i in range(len(y_pred)): if y_pred[i] == 0 and y[i] == 0: tn += 1 elif y_pred[i] == 1 and y[i] == 0:
In [48]:	from sklearn.model_selection import StratifiedKFold from sklearn.preprocessing import OrdinalEncoder from sklearn.preprocessing import MinMaxScaler from sklearn.neiphobrs import KNeighborsclassifier from sklearn.naive_bayes import GaussianNB from sklearn.naive_bayes import GaussianNB from sklearn import metrics import pandas as pd import numpy as np def spec_test(y, y_pred): if(len(y) != len(y_pred)): print("Error in spec_score") exit(-1) fp = 0. tn = 0. for i in range(len(y_pred)): if y_pred[i] == 0 and y[i] == 0:
In [48]:	from sklearn.model_selection import StratifiedKFold from sklearn.preprocessing import OrdinalEncoder from sklearn.preprocessing import MinMaxScaler from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.naive_bayes import GaussianNB import pandas as pd import numpy as np def spec_test(y, y_pred): if(len(y) != len(y_pred)): print("Error in spec_score") exit(-1) fp = 0. tn = 0. for i in range(len(y_pred)): if y_pred[i] == 0 and y[i] == 0:
[n [48]:	from sklearn.model selection import StratifiedKFold from sklearn.preprocessing import OrdinalEncoder from sklearn.preprocessing import OrdinalEncoder from sklearn.neiphors import KWeighborsClassifier from sklearn.tree import DecisionTreeclassifier from sklearn.naive_bayes import GaussianNB from sklearn import metrics import pandas as pd import numpy as np def spec_test(y, y_pred): if(len(y) != len(y_pred)): print("Error in spec_score") exit(-1) fp = 0. tn = 0. for in range(len(y_pred)): if y_pred[i] == 0 and y[i] == 0:
In [48]:	a) from sklearn.model_selection import StratifiedKFold from sklearn.preprocessing import OrdinalEncoder from sklearn.preprocessing import MinMaxScaler from sklearn.metighbors import KNeighborsclassifier from sklearn.mative hayes import GaussianNB from sklearn.mative hayes import pandas as pd import numpy as np def spec_test(y, y_pred): if(len(y) != len(y_pred)): if(len(y) != len(y_pred)): if(len(y) != len(y_pred)): if p = 0. tn = 0. for i in range(len(y_pred)): if y_pred[i] == 0 and y[i] == 0:
In [48]:	<pre>from sklearn.model_selection import StratifiedKFold from sklearn.preprocessing import OrdinalEncoder from sklearn.preprocessing import MinMaxScaler from sklearn.arteplayes import Resigniborscalessifier from sklearn.arte playes import GaussianNB from sklearn.marve playes import GaussianNB from sklearn import metrics import pandas as pd import numpy as np def spec_test(y, y_pred): if(len(y) != len(y pred)): print("Error in spec_score") exit(-1) fp = 0. tn = 0. tn = 0. tn = 0. tr += 1 elif y_pred(i) == 0 and y[i] == 0:</pre>
In [48]:	from sklearn.model.selection import StratifiedKrold from sklearn.preprocessing import ordinalInconder from sklearn.preprocessing import designation from sklearn.meighbors import KNeighborsClassifier from sklearn.meighbors import KNeighborsClassifier from sklearn.meize bayes import Gaussianne from sklearn.meize bayes import G
In [48]:	from sklearn.model_selection import StratifledKPold from sklearn.preprocessing import OrdinalEncoder from sklearn.metphors import Minkerschafer from sklearn.metphors import KneighborsClassifier from sklearn.metphors import KneighborsClassifier from sklearn.metphors import KneighborsClassifier from sklearn.import minkerschaft fro
In [48]:	from sklearn.model_selection import StratifieoKFold from sklearn.preprocessing import ordinalEncoder from sklearn.preprocessing import indinalEncoder from sklearn.meighbors import ModelphorsClassifier from sklearn.meighbors import ModelphorsClassifier from sklearn.make Dayes import from sklearn.make Dayes import GaussianUn from sklearn import mertras import many as mp def soct.est(', y.pred): print('Error in spec_sore') c.vi((')') print('Error in spec_sore') c.vi((')') if y.pred(j) = 0 and y(j) = 0; in y.pred(j) = 0;
In [48]:	from sklearm.model_selection import StratifiedGroud from sklearm.preprocessing import OrdinalEncoder from sklearm.model_selection import StratifiedGroud from sklearm.model_selection import ordinalEncoder from sklearm.model_selection import may be byes import from sklearm.model_selection import may as no def spec_test(v, v_pred): if(len(y) in len(y_inred)): if(len(y) in len(y_inred)): if(len(y) in len(y_inred)): if(len(y) in len(y_inred)): if(len(y) in len(y_inred)): if(len(y) in len(y_inred)): if(len(y) in len(y_inred)): if(len(y) in len(y_inred)): if(len(y) in len(y_inred)): if(len(y) in len(y_inred)): if(len(y) in len(y_inred)): if(len(y) in len(y_inred)): if(y_inred): i
In [48]:	from Sklaarn.model_selection import StratiticsGold from Sklaarn.model_selection import model_selection import StratiticsGold import selection import StratiticsGol
In [48]:	From skiearn.model_selection import StraitFledWoold From skiearn.preprocessing import StraitFledWoold From skiearn.prec import medical Import m
In [48]:	From selearn.model selection seport. Stratification of From selearn.model selection seport. Stratification of From selearn.model selection seport. Minimadealor From selearn.model selection seport. Minimadealor From selearn.model selection selection selection of From selearn.model selection selection selection of From selection selection selection selection of Selection sele
In [48]:	The middless model coloration space Strateminostroid From Albarm, proprocessing space Strateminostroid Fro
In [48]:	The statem model.science appert bioratrodPyle from statem.prepresenting from statem.prepresenti
In [48]:	The abbaranced solected import formulation of the considering representation proposessing import formulation of the considering representation proposessing import formulation of the considering representation proposessing import formulation of the considering representation
In [48]:	from stateman, mored, selection import Diright income from stateman preprocessing import Diright income from stateman, preprocessing import Diright income from stateman import Diright income import income import Diright income import income import Diright income group preprint (First or or more constitution)
In [48]:	### Transplacemental selection appert Structured-Vall From Alleann processing above Controllenced From Alleann processing above Controllenced From Alleann processing above Controllenced From Alleann separations supert Controllenced From Alleann separations are controllenced and controllenced an
In [48]:	The malacom selection apport original income of the malacom representation apport original income of the malacom representation apport or the malacom representation repres
In [48]:	The statement scientise apport formaticological in the statement of the st
In [48]:	The control of the co
In [48]:	The second semily processing about 1 state-coulds The second semily processing about 1 state-coulds The second semily processing about 1 state-coulds The semily processing about 1 state-coulds The semily process of t
In [48]:	### Communication Assessment States** (2014) Communication Communicati
In [48]:	### Ministration of State St
In [48]:	### Commence of the commence o
In [48]:	Comparison
In [48]:	Comparison
In [48]:	The selection of the content of th
In [48]:	Note
In [48]: In [51]:	The content of the
In [48]:	The Company of the