Análise Exploratória e Estimação

MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO

Médias

Média Aritmética (valor médio de uma distribuição)

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} (x_1 + \dots + x_n)$$

Média Aritmética (dados agrupados)

$$\bar{X} = \frac{(f_1 X_1 + \dots + f_k X_k)}{f_1 + \dots + f_k} = \frac{\sum_{i=1}^k f_i X_i}{\sum_{i=1}^k f_i}$$

Exemplo

Intervalos de classes	Frequência absoluta
12,51 a 13,50	3
13,51 a 14,50	8
14,51 a 15,50	15
15,51 a 16,50	13
16,51 a 17,50	9
17,51 a 18,50	2

$$\bar{X} = \frac{3 \cdot 13 + 8 \cdot 14 + 15 \cdot 15 + 13 \cdot 16 + 9 \cdot 17 + 2 \cdot 18}{30} = 15,46$$

Médias

Média Ponderada:
$$\bar{X} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i} = \frac{w_1 x_1 + w_2 x_2 + \dots + w_n x_n}{w_1 + w_2 + \dots + w_n}$$

Média Harmônica:
$$H = \frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}} = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}}$$

Média Geométrica:
$$G = (\prod_{i=1}^n x_i)^{\frac{1}{n}} = \sqrt[n]{x_1 \cdot x_2 \cdot \dots \cdot x_n}$$

Mediana

Para valores ordenados crescentemente, dois modos de calcular:

- Se n é ímpar, mediana é o valor central:
 - Na amostra 30 32 35 48 76 a mediana é 35

- Se n é par, mediana é a média simples entre os dois valores centrais:
 - Na amostra 30 32 35 48 76 81 a mediana é $\frac{34+48}{2} = 41,5$

Mediana para dados agrupados

- Calcula-se n/2;
- 2. Achar qual das classes esse valor se encontra a partir das frequências absolutas;
- 3. Usar a fórmula

$$Md = l_{Md} + \frac{\left(\frac{n}{2} - \sum f\right) \cdot h}{f_{Md}}$$

Aonde:

 l_{Md} é o limite inferior da classe;

 f_{Md} é a frequência da classe da mediana;

 $\sum f$ é a Soma das frequências anteriores a classe da mediana;

h é a amplitude da classe da mediana.

Moda

Valor que ocorre com maior frequência.

2629843245
 2223445689
 Mo = 2

• 45 46 49 52 52 60 60 76 79 Mo = 52 e 60

Moda para Dados Agrupados

Utiliza-se a fórmula de King:

$$Mo = l + \frac{\Delta_1}{\Delta_1 + \Delta_2} \cdot h$$

Aonde:

- l limite inferior da classe modal = 40
- Δ_1 diferença entre a frequência da classe e a anterior = 16
- Δ_2 diferença entre a frequência da classe e a posterior = 7
- h amplitude da classe modal = 20

Notas	Número de Alunos
0 - 20	2
20 - 40	7
40 - 60	23
60 - 80	16
80 - 100	3
Total	51

Amplitude Total

É a diferença entre o maior e menor valor de um conjunto de dados.

Amplitude = (maior valor) - (menor valor)

Exemplo:

30,4 34,7 39,8 40,45 47,9 49,5 51,9 69,7

Desvio Padrão

Variação dos valores em torno de uma média dado um conjunto de valores amostrais.

Para uma população de N indivíduos:

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2};$$

Para uma amostra de n observações, $x_1, ..., x_n$:

$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Aonde:

- x_i é o valor de cada variável;
- \bar{x} é a média amostral e μ é a média populacional.

Coeficiente de Variação

Percentual do desvio padrão com relação à média.

Para população

$$cv = \frac{\sigma}{\mu}$$

Para amostra

$$cv = \frac{s}{\overline{x}}$$

Variância

A medida da variação é o quadrado do desvio padrão.

Para a população:
$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

Para a amostra:
$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

Aonde:

- x_i é o valor de cada variável;
- \circ \overline{x} é a média amostral e μ é a populacional.

Obs.: Dado um desvio padrão de unidade "u" a variância do mesmo terá unidade "u".

Amplitude Inter-quartílica

É a amplitude do intervalo entre o primeiro e o terceiro quartil. Representada por Q.

$$Q = Q3 - Q1$$

Obs: Às vezes também é usada a semi-amplitude inter-quartílica, que é a metade da anterior.

Obs2: Q é aproximadamente igual a $\frac{4}{3}\sigma$

Medida de Posição - Quartil

 Quartil é qualquer um dos três valorres que divide o conjunto em quatro partes iguais.

2. Para dados agrupados.

$$Q_1 = l_{Q_1} + \frac{\left(\frac{n}{4} - \sum f\right) \cdot h}{F_{Q_1}}$$

Obs: Se fosse para calcularmos o Q3, o fariamos na razão de 3n/4!

Percentil

Valores que dividem o conjunto em partes iguais que representam 1/100 da amostra ou população!

Seja N igual ao tamanho amostral, temos:

$$P_k = \frac{N \cdot k}{100}$$

(arredondar para o inteiro mais próximo)

Percentil para dados agrupados

$$\begin{split} P_i &= l_{P_i} + \frac{\left(\frac{in}{100} - \sum f\right) \cdot h}{F_{P_i}} \\ i &\in \{1, 2, 3, 4, \dots, 96, 97, 98, 99, 100\} \end{split}$$

Aonde:

 l_{P_i} é o limite inferior de P_i

 $\sum f$ é a soma das frequências anteriores de P_i

h é a amplitude da classe de P_i

 F_{P_i} é a frequência da classe P_i

Medida de Assimetria

O calculo da Assimetria resultará em valores sempre entre -1 e 1 e para tal utilizamos a equação de Pearson:

$$Sk = \frac{\bar{X} - Mo}{S}$$

Construção de tabelas de distribuição de frequência

Objetivo: construir tabelas de distribuição de frequência a partir de dados brutos (n observações).

- 1º Passo: determinar a amplitude total;
- 2º Passo: estimar o número de intervalos;
- Pode-se utilizar $K=\sqrt{n}$, para n>25 e K=5 para n<25
- Ou a fórmula de Sturges: $K = 1 + 3,22 \log n$
 - **3º Passo:** estimar a amplitude dos intervalos: $h = \frac{R}{K}$;
- **4º Passo:** esquematizar a tabela de acordo com as informações dos passos anteriores.

Estimação

Estimativa pontual:

 $\cdot \ \overline{x}$ é uma estimativa pontual para μ , onde $(x_1, ..., x_n)$ é uma amostra.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} (x_1 + \dots + x_n)$$

Estimativa intervalar (intervalo de confiança):

- Intervalo de valores que contém a média da população com uma determinada probabilidade de acerto
- É necessário calcular a margem de erro do intervalo ($\bar{x} E e \bar{x} + E$) de acordo com o nível de confiança pedido, e dependendo se a variância é conhecida ou não.

Intervalo de confiança

Variância conhecida

O erro é dado por: $E = Z\alpha_{/2} \cdot \frac{\sigma}{\sqrt{n}}$

Logo, o intervalo de confiança para média μ é: $\bar{x} - E \le \mu \le \bar{x} + E$

Variância desconhecida

É necessário calcular a variância da amostra por:

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Então, o erro é dado por: $E = t\alpha_{/2} \cdot \frac{s}{\sqrt{n}}$ aonde $t\alpha_{/2}$ é o valor correspondente a $\alpha_{/2}$ com n – 1 graus de liberdade.

O intervalo de confiança para média μ é: $\bar{x} - E \le \mu \le \bar{x} + E$

Exercícios

- 1. Para a distribuição abaixo responda:
 - a) Qual a amplitude total?
 - b) Ponto médio do terceiro intervalo.
 - c) Qual(is) o comprimento dos intervalos?
 - d) Qual a porcentagem de internautas que gastam acima de 42 minutos na internet?
 - e) Qual o valor: modal, mediano e médio? O que eles representam na distribuição?

Tempo (minutos)	Internautas			
7 18	6			
18 31	10			
31 42	13			
42 54	8			
54 66	5			
66 78	6			
78 90	2			

Recife - 2009

Fonte: Fictícia.

- a) Amplitude total = 90 7 = 83
- b) Ponto Médio 3º classe = 42+31/2 = 66,5
- c) Comprimento dos intervalos = Amplitude de cada intervalo. Exemplo: $1^{\circ} 18 7 = 11$; $2^{\circ} 31 18 = 13$ [...]
- d) Porcentagem de users para > 42min, a partir da 4º classe: $\frac{8+5+6+2}{50}$ = 0,42
- e) Moda, Mo = 31—42 | , pois aparece com maior frequência. Média, $\frac{\sum_{i=1}^k f_i X_i}{\sum_{i=1}^k f_i} = \frac{(12,5*6+24,5*10+36,5*13+48*8+60*5+72*6+84*2}{50} = \frac{2082,5}{50} = 4,65$

Mediana, n/2 = soma das frequencias/2 = 50/2 = 25. Se fizermos a tabela de frequências acumuladas esse valor vai referenciar a 3° classe. Então:

$$Md = 31 + \frac{(25-16)\cdot 11}{13} = 38,61$$

Exercícios

- 2. Considere a seguinte distribuição de frequências.
 - a) Calcule a média, a variância e o desvio padrão, a mediana e a moda.
 - b) Qual das medidas de tendência central descreve melhor os dados? Justifique

Xi	-4	-3	-2	-1	0	1	2	3	4
f_i	60	120	180	200	240	190	160	90	30

a)
$$Media: \overline{X} =$$

$$(60.(-4) + 120.(-3) + 180.(-2)) + 190.1$$

$$+ 160.2 + 90.3 + 30.4) / 1270$$

$$= -0, 204$$

$$(-2 - (-0, 204))^{2} + 180.$$

$$(-2 - (-0, 204))^{2} + 200.$$

WARIANCIA:

$$\frac{4}{h} \sum_{j} \int_{i}^{i} (x_{N} - x_{j})^{2} = \frac{1}{1270} \left(\frac{1}{1270} (x_{N} - x_{j})^{2} + 120. \right) \left(\frac{1}{1270} (x_{N} - x_{j})^{2} + 180. \right) \left(\frac{1}{1270} (x_{N} - x_{j})^{2} + 180. \right) \left(\frac{1}{1270} (x_{N} - x_{j})^{2} + 180. \right) \left(\frac{1}{1270} (x_{N} - x_{j})^{2} + 190. \right) \left(\frac{1}{1270} (x_{N} - x_{j})^{2} + 190$$

Continuação...

$$\frac{1270}{2} = 635 - 5 ESTA NESSA 705 IGAD -$$

$$Mediana = 0 + \frac{\left(\frac{1270}{2} - 560\right)x1}{800}$$

Obs: O limite inferior da classe é o próprio valor.

Obs2: A amplitude da classe é 1, pois só existe

um elemento.

$$Mediana = 0,09375$$

FREQUÊNCIA	ACUMULAGA
Xì	f i
-4	60
-3	180
5	360
-1	560) A MEDIANA
6	800) K ESTA MESSA
1	990 FAIXA
2	1150
3	1240
4	1270

Continução...

```
O = ACOM
 (VALUE COM A MAJOR FREQUÊN-
  CIA)
b) Como A DISTRIBUIÇÃO DOS
  DADOS ESTÁ BEM LOCALIZADA
 EM torno DA MÉDIA, QUAL-
 QUER VIMA DAS MEDICAS CEN-
 trais (Média, Moda du Média-
 NA) É ADEGUADA. PORÉM, COMO
A VARIÁVEL NÃO ASSUME VALORES
DECIMAIS, ENTAD É MELHOR CONSI-
DERAR A MODA OU A MEDIANA.
```

Exercícios

3. Seguidamente apresentam-se algumas estimativas para a velocidade da luz, determinadas por Michelson em 1882 (Statistics and Data Analysis, Siegel):

299.88, 299.90, 299.94, 299.88, 299.96, 299.85, 299.94, 299.80, 299.84

- a) Determine a média
- b) Determine o desvio padrão, utilizando a expressão da definição.
- c) Subtraia 299 de cada um dos dados e determine o desvio padrão, dos resultados obtidos, utilizando a fórmula utilizada na alínea anterior. Comente os resultados obtidos.
- d) Calcule a média dos valores com que trabalhou na alínea anterior. Adicione à média obtida 299.

a)
$$\bar{x} = \frac{1}{9}(299.88 + 299.90 + 299.94 + 299.88 + 299.96 + 299.85 + 299.94 + 299.80 + 299.84) = 299.8878$$

b)
$$S^{2} = \frac{1}{8}(299.88 - 299.877)^{2} + \frac{1}{8}(299.90 - 299.877)^{2} + \frac{1}{8}(299.94 - 299.877)^{2} + \frac{1}{8}(299.88 - 299.877)^{2} + \frac{1}{8}(299.96 - 299.877)^{2} + \frac{1}{8}(299.85 - 299.877)^{2} + \frac{1}{8}(299.94 - 299.877)^{2} + \frac{1}{8}(299.80 - 299.877)^{2} + \frac{1}{8}(299.84 - 299.877)^{2} = 0,0028$$

(observe que para uma amostra utiliza-se n-1)

b) Com a variância, calculamos o desvio padrão:

$$S = \sqrt{0,0028} = 0,0528$$

c) Precisamos da nova média para calcular o desvio padrão (isso já responde a letra d):

$$\bar{x} = \frac{1}{9}(0.88 + 0.90 + 0.94 + 0.88 + 0.96 + 0.85 + 0.94 + 0.80 + 0.84)$$
$$= 0.8878$$

Calculando a variância...

c)
$$S^2 = \frac{1}{8}(0.88 - 0.877)^2 + \frac{1}{8}(0.90 - 0.877)^2 + \frac{1}{8}(0.94 - 0.877)^2 + \frac{1}{8}(0.88 - 0.877)^2 + \frac{1}{8}(0.96 - 0.877)^2 + \frac{1}{8}(0.85 - 0.877)^2 + \frac{1}{8}(0.94 - 0.877)^2 + \frac{1}{8}(0.80 - 0.877)^2 + \frac{1}{8}(0.84 - 0.877)^2 = 0,0028$$

Desvio padrão...

$$S = \sqrt{0,0028} = 0,0528$$

c) Comentário:

O desvio padrão foi o mesmo da amostra anterior. Isso significa que a amostra está variando da mesma maneira, apesar de cada valor ter sido diminuído em 299. Observe que, consequentemente, a média também diminuiu 299 quando cada valor da amostra foi diminuído em 299.