

Modification du pH lors d'une réaction d'oxydoréduction

Diagramme de Pourbaix du fer

Superposition des diagrammes du fer et de l'eau

Oxydation du fer dans l'eau?

Aucun dégagement gazeux observé

Superposition des diagrammes du fer de l'eau et de l'aluminium

$$4Mn(OH)_{2(s)} + O_{2(aq)} + 2H_2O$$
=
$$4Mn(OH)_{3(s)}$$

$$Mn(OH)_{3(s)} = Mn_{(aq)}^{3+} + 3OH_{(aq)}^{-}$$

 $Mn(OH)_{2(s)} = Mn_{(aq)}^{2+} + 2OH_{(aq)}^{-}$

$$2Mn_{(aq)}^{3+} + 2I_{(aq)}^{-} = 2Mn_{(aq)}^{2+} + I_{2(aq)}$$

Titrage

Détermination de $[O_2]$

•
$$[I_2]_{form\acute{e}} = [I_3^-]_{dos\acute{e}} = V_{eq} * \frac{[S_2 O_3^{2-}]}{2V_0}$$

•
$$[Mn(III)]_{form\acute{e}} = 2[I_2]_{form\acute{e}} = V_{eq} * \frac{[S_2 O_3^{2-}]}{V_0}$$

•
$$[O_2]_{dissout} = \frac{[Mn(III)]_{form\acute{e}}}{4} = V_{eq} * \frac{[S_2O_3^{2-}]}{4V_0}$$

Numérotation	1A	1B	2	3
Classement	Excellente qualité	Potable	Industrielle	médiocre
Usages	Tout usage	Potable / Industrie alimentaire	Irrigation	refroidisse ment
[O2] dissous mg.L ⁻¹	>7	5 à 7	3 à 5	< 3

J.-L. Vigne et al. Données sur les principaux produit chimiques, métaux et materiaux, 7ed.CRPC 1997-98 ENS chachan p. 86