Lista zadań. Nr 1. 24 lutego 2013

ALGORYTMY I STRUKTURY DANYCH

IIUWr. II rok informatyki

- 1. (0 pkt) Przeczytaj notatkę numer 1 umieszczoną na stronie wykładu.
- 2. (0 pkt) Przypomnij sobie algorytm sortowania bąbelkowego. Zapisz go w notacji zbliżonej do tej, której używaliśmy na wykładzie. Porównaj go z algorytmami *InsertSort* i *SelectSort* stosując podane na wykładzie kryteria.
- 3. (1pkt do 28.02.2013; potem 0pkt) Rozwiąż zadanie z Listy Powitalnej na Themis
- 4. (1pkt) Udowodnij, że algorytm mnożenia liczb *"po rosyjsku"* jest poprawny. Jaka jest jego złożoność czasowa i pamięciowa przy:
 - jednorodnym kryterium kosztów,
 - logarytmicznym kryterium kosztów?
- 5. (2pkt) Pokaż, w jaki sposób algorytm "macierzowy" obliczania n-tej liczby Fibonacciego można uogólnić na inne ciągi, w których kolejne elementy definiowane są liniową kombinacją skończonej liczby elementów wcześniejszych. Następnie uogólnij swoje rozwiązanie na przypadek, w którym n-ty element ciągu definiowany jest jako suma kombinacji liniowej skończonej liczby elementów wcześniejszych oraz wielomianu zmiennej n.
- 6. (1pkt) Niech u i v będą dwoma wierzchołkami w grafie nieskierowanym G = (V, E; c), gdzie $c: E \to R_+$ jest funkcją wagową. Mówimy, że droga z $u = u_1, u_2, \ldots, u_{k-1}, u_k = v$ z u do v jest sensowna, jeśli dla każdego $i = 2, \ldots, k$ istnieje droga z u_i do v krótsza od każdej drogi z u_{i-1} do v (przez długość drogi rozumiemy sumę wag jej krawędzi).
 - Ułóż algorytm, który dla danego G oraz wierzchołków u i v wyznaczy liczbę sensownych dróg z u do v.
- 7. (2pkt) Ułóż algorytm, który dla zadanego acyklicznego grafu skierowanego G znajduje długość najdłuższej drogi w G. Następnie zmodyfikuj swój algorytm tak, by wypisywał drogę o największej długości (jeśli jest kilka takich dróg, to Twój algorytm powinien wypisać dowolną z nich).
- 8. (1pkt) Porządkiem topologicznym wierzchołków acyklicznego digrafu G=(V,E) nazywamy taki liniowy porządek jego wierzchołków, w którym początek każdej krawędzi występuje przed jej końcem. Jeśli wierzchołki z V utożsamimy z początkowymi liczbami naturalnymi to każdy ich porządek liniowy można opisać permutacją liczb 1,2,...,|V|; w szczególności pozwala to na porównywanie leksykograficzne porządków.
 - Ułóż algorytm, który dla danego digrafu znajduje pierwszy leksykograficznie porządek topologiczny.

Zadania dodatkowe - do samodzielnego rozwiązywania

- 1. Co stałoby się z mocą obliczeniową maszyny RAM gdyby instrukcje ADD i MULT zostały usunięte z repertuaru instrukcji? Jak zmieniłby się koszt obliczeńn?
- Pokaż, że dla każdego programu maszyny RAM istnieje równoważny program maszyny RAM (tj. taki, który dla tych samych danych produkuje te same wyniki) używający nie więcej niż 2¹⁴ komórek pamięci.

- 3. Przypomnij sobie notację asymptotyczną dla rzędów funkcji: O, Ω, Θ .
- 4. Jaka jest najmniejsza wartość n, dla której algorytm o złożoności $100n^2$ działa (na tej samej maszynie) szybciej od algorytmu o złożoności 2^n ?
- 5. Dla każdej funkcji f(n) i czasu t w poniższej tabelce, określ największy rozmiar n danych, dla których algorytm wykona obliczenia w czasie t. Zakładamy, że algorytm rozwiązujący problem potrzebuje f(n) mikrosekund dla danych rozmiaru n.

	1	1	1	1	1	1	1
	$\operatorname{sekunda}$	minuta	$\operatorname{godzina}$	dzieńn	$_{ m miesiac}$	rok	wiek
$\log n$							
\sqrt{n}							
n							
$n \log n$							
n^2							
n^3							
2^n							
n!							

O ile większe zadania można by rozwiązywać na komputerze 1000 razy szybszym (tj. takim, na którym algorytm potrzebowałby f(n) nanosekund dla danych rozmiaru n)?

- 6. Skonstruuj program dla maszyny RAM, który dla danej liczby naturalnej n obliczy n!. Oszacuj złożoność czasową tego programu przy jednorodnym i logarytmicznym kryterium kosztów. Ustal własną miarę "rozmiaru" danych.
- 7. Napisz w C++, C lub Pascalu funkcję implementującą podany na wykładzie algorytm, który oblicza n-tą liczbę Fibonacciego (modulo stała) w czasie $O(\log n)$.
- 8. Napisz rekurencyjne funkcje, które dla danego drzewa binarnego T obliczają:
 - (0,5pkt) liczbę wierzchołków w T;
 - \bullet (1pkt) maksymalną odległość między wierzchołkami w T.
- 9. Napisz procedury, które dla danego drzewa binarnych przeszukiwańn T:
 - (0.5 pkt) wstawiają zadany klucz do T;
 - (1pkt) usuwają zadany wierzchołek z T;
 - \bullet (0,5pkt) dla danego klucza k znajdują następny co do wielkości klucz w drzewie.
- 10. Napisz funkcję, która dla danej, uporządkowanej rosnąco, tablicy liczbowej T oraz liczby k, obliczy liczbę elementów w T mniejszych od k.
- 11. Określ z dokładnością do Θ złożoność (przy kryterium jednorodnym) poniższych fragmentów programów:

$$\begin{array}{ll} \text{for } i \leftarrow 1 \text{ to } n \text{ do} \\ j \leftarrow i \\ \text{while } j < n \text{ do} \\ sum \leftarrow P(i,j) \\ j \leftarrow j+1 \end{array} \qquad \begin{array}{ll} \text{for } i \leftarrow 1 \text{ to } n \text{ do} \\ j \leftarrow i \\ \text{while } j < n \text{ do} \\ sum \leftarrow P(i,j) \\ j \leftarrow j+j \end{array}$$

Rozważ dwa przypadki:

- koszt wykonania procedury P(i, j) wynosi $\Theta(1)$
- koszt wykonania procedury P(i,j) wynosi $\Theta(j)$

12. Ułóż algorytm dla następującego problemu:

Problem.¹

 $n,m\in\mathcal{N}$ dane:

dane: $n, m \in \mathcal{N}$ wynik: wartość współczynnika przy x^2 (wzięta modulo m) wielomianu $\underbrace{(...((x-2)^2-2)^2...-2)^2}_{n \text{ razy}}$

Czy widzisz zastosowanie metody użytej w szybkim algorytmie obliczania n-tej liczby Fibonacciego do rozwiązania tego problemu?

Krzysztof Loryś

 $^{^1\}mathbf{Z}\mathbf{a}$ danie zaczerpnięte ze Sparingu w Programowaniu Zespołowym - Poznańn 22.01.2005