

planetmath.org

Math for the people, by the people.

finite rank approximation on separable Hilbert spaces

 ${\bf Canonical\ name} \quad {\bf FiniteRank Approximation On Separable Hilbert Spaces}$

Date of creation 2013-03-22 18:23:18

Last modified on 2013-03-22 18:23:18

Owner karstenb (16623)

Last modified by karstenb (16623)

Numerical id 10

Author karstenb (16623)

Entry type Theorem Classification msc 46B99 **Theorem** Let \mathcal{H} be a separable Hilbert space and let $T \in L(\mathcal{H})$. Then T is a compact operator iff there is a sequence $\{F_n\}$ of finite rank operators with $||T - F_n|| \to 0$.

Proof. (\Rightarrow): Assume T is compact on \mathcal{H} and $\{e_n\}$ is an orthonormal basis of \mathcal{H} . Define:

$$P_n f = \sum_{k=0}^n \langle f, e_k \rangle e_k$$

It is clear that the P_n have finite rank and that we have $||P_n f|| \le ||f||$ for all $n \in \mathbb{N}$, $f \in \mathcal{H}$.

Let \mathcal{B} be the unit ball in \mathcal{H} . We have that $P_n \to I$ pointwise. Since the P_n are contractive they are equicontinuous, hence P_n converges uniformly to I on compact sets, and in particular on $\overline{T(\mathcal{B})}$, which is compact by assumption. Therefore $P_nT \to T$ uniformly on \mathcal{B} , hence $||P_nT - T|| \to 0$. Since P_nT is bounded and of finite rank the first direction follows.

(\Leftarrow): Now let $\{F_n\}$ be a sequence of bounded operators of finite rank with $||T - F_n|| \to 0$. We have to show that $T(\mathcal{B})$ is relatively compact in \mathcal{H} . This is equivalent to $T(\mathcal{B})$ being totally bounded in \mathcal{H} . So we are left to show that for all $\epsilon > 0$ there is an ϵ -net $x_1, \dots, x_n \in \mathcal{H}$ so that:

$$T(\mathcal{B}) \subseteq \bigcup_{k=1}^{n} B_{\epsilon}(x_k)$$

So choose $\epsilon > 0$ and $n \in \mathbb{N}$ fixed so that:

$$||F_n - T|| < \frac{\epsilon}{2}$$

Choose $x_1, \dots, x_m \in \mathcal{H}$ with:

$$F_n(\mathcal{B}) \subseteq \bigcup_{k=1}^m B_{\frac{\epsilon}{2}}(x_k)$$

Hence (by the triangle inequality):

$$T(\mathcal{B}) \subseteq \bigcup_{k=1}^{m} B_{\epsilon}(x_k)$$

and we are done.