Università di Trieste

Laurea in ingegneria elettronica e informatica

Enrico Piccin - Corso di Analisi matematica II - Prof. Franco Obersnel ${\bf Anno~Accademico~2022/2023-3~Ottobre~2022}$

Indice

3 Ottobre 2022

1 Introduzione

Considerando un foglio di carta, dividendolo in due metà esatte, si ottiene $\frac{1}{2}$ del profilo quadrato di partenza. Considerando una delle due metà, e suddividendola ancora in due, si ottiene $\frac{1}{4}$ del profilo quadrato di partenza. Ripetendo questo procedimento, si otterranno le seguenti frazioni del profilo quadrato originario: $\frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \frac{1}{64}, \dots$ Sommando tutte le frazioni di profilo quadrato, alla fine si otterrà il profilo quadrato di partenza, ossia la frazione 1. Ecco quindi che, contrariamente a quanto voleva sostenere **Parmenide**, **Zenone** scoprì che

$$\boxed{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \dots = 1 \to \sum_{n=1}^{+\infty} \left(\frac{1}{2}\right)^n = 1}$$

Ciò non risulta essere banale: una somma di **infinite quantità positive** produce una quantità finita. Quello che si è ottenuto è una **serie** (numerica) geometrica di ragione $\frac{1}{2}$.

2 Serie numerica

Di seguito si espone la definizione di **serie numerica**:

SERIE NUMERICA

Data una successione $(a_n)_n$ con valori nel campo complesso $a_n \in \mathbb{C}$. Si consideri una nuova successione $(s_n)_n$ definita **per ricorrenza** come segue

$$s_{n+1} = s_n + a_{n+1}$$
 posto $s_0 = a_0$

Ciò significa che

- $s_0 = a_0$
- $s_1 = a_0 + a_1$
- $\bullet \ \ s_2 = a_0 + a_1 + a_2$
- e via di seguito...

La serie $a_0 + a_1 + a_2 + ...$ è la **coppia ordinata** delle due successioni, come mostrato di seguito

$$((a_n)_n,(s_n)_n)$$

ove la successione $(a_n)_n$ prende il nome successioni dei termini generali, mentre la successione $(s_n)_n$ si chiama successione delle ridotte o delle somme parziali della serie.

Esempio: Posto $a_1 = \frac{1}{2}$ e il termine generale $a_n = \left(\frac{1}{2}\right)^n$, la ridotta sarà

$$s_n = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots + \frac{1}{2^n}$$

osservando bene di partire da n=1 e non da 0.

2.1 Convergenza, divergenza e indeterminatezza di una serie

Data una serie, ossia data una coppia di successioni, è possibile ora andare a studiare il comportamento della successione delle ridotte.

2.1.1 Convergenza di una serie

Di seguito si espone la definizione di convergenza di una serie:

CONVERGENZA DI UNA SERIE

Se la successione delle ridotte di una serie è convergente, si dice che la serie è convergente e il limite della successione delle ridotte prende il nome di **somma della serie**. In altre parole, se **esiste finito** il

$$\lim_{n \to +\infty} s_n = s \in \mathbb{C}$$

allora la serie si dice convergente e il limite s si dice somma della serie e si scrive

$$\sum_{n=0}^{+\infty} a_n = s$$

Attenzione: Molto spesso si utilizza la notazione sopra esposta per indicare sia la serie stessa, sia la sua somma, per cui può essere fuorviante. Lo si può capire dal contesto: una serie potrebbe non essere convergente, e quindi non avere una somma.

Esempio: Se si considera $a_n = 1, \forall n$, per cui

$$1 + 1 + 1 + \dots = \sum_{n=0}^{n} 1$$

allora la somma parziale è $s_n = n + 1$, ovvero una successione divergente a $+\infty$:

$$\lim_{n \to +\infty} s_n = +\infty$$

Ciò significa che la serie non converge, ma è divergente, per cui non ha nemmeno una somma.

Osservazione: Si osservi che la divergenza a $+\infty$ di una serie ha significato solamente quando i termini generali sono sul campo reale: se una serie ha termine generico nel campo complesso, non può essere divergente a $+\infty$, in quanto non esiste un limite infinito nel campo complesso (a meno che non si consideri il modulo).

2.1.2 Divergenza di una serie

Di seguito si espone la definizione di divergenza di una serie:

DIVERGENZA DI UNA SERIE

Se la successione delle ridotte di una serie (a termine generale reale) è divergente, si dice che la serie è divergente; in questo caso, la serie non presenta una somma. In altre parole, se data $a_n \in \mathbb{R}, \forall n$, e posto

$$\lim_{n \to +\infty} s_n = +\infty \text{ o } -\infty$$

la serie si dice divergente.

Esempio: Se $a_n = a \in \mathbb{R}$ costante, allora la serie con termine generale a_n

$$a_0 + a_1 + a_2 + \dots$$

è necessariamente

- divergente a $+\infty$ se a > 0
- divergente a $-\infty$ se a < 0
- convergente, con somma 0, se a=0

Attenzione: se $a \neq 0$, ma $a \in \mathbb{C} - \mathbb{R}$, si dice semplicemente che la serie **non converge** (non ha senso parlare di divergenza).

2.1.3 Indeterminatezza di una serie

Di seguito si espone la definizione di **serie indeterminata**:

SERIE INDETERMINATA

Una serie si dice **indeterminata** se non converge e non diverge.

Esempio 1: Per quello che si è visto, una serie a termine generale costante, complesso e non reale, è indeterminata.

Esempio 2: Un esempio di serie a termini reali, ma indeterminata, è la serie di Grandi, definita così:

$$\sum_{n=0}^{+\infty} (-1)^n$$

per cui $s_0 = (-1)^0 = 1$ e $s_1 = a_0 + a_1 = 1 + (-1)^1 = 0$. Pertanto si ha che

- $s_n = 1$ se n è pari
- $s_n = 0$ se n è dispari

Per cui si ha che

$$\lim_{n \to +\infty} s_0 = ? \text{ non esiste}$$

E per dimostrare che non esiste, si può semplicemente dimostrare che due sotto-successioni della successione delle somme parziali convergono a limiti diversi (ossia la sotto-successioni degli indici pari e quella dei dispari); infatti:

- $\bullet \lim_{k \to +\infty} s_{2k} = 1$
- $\bullet \lim_{k \to +\infty} s_{2k+1} = 0$

per cui sono state ottenute due sotto-successioni che presentano limite differente: per il teorema dell'unicità del limite e il teorema del limite delle sotto-successioni di una successione, si conclude che la successione delle somme parziali è indeterminata.

Osservazione: La serie di Grandi è una serie che può essere usata per dimostrare l'esistenza di Dio, in quanto commutando fra di loro i differenti termini può essere fatta convergere a qualsiasi (o quasi) numero finito.

Se, infatti, si considerano le somme

- $(1-1) + (1-1) + (1-1) + \dots = 0$
- $1 + (-1 + 1) + (-1 + 1) + \dots = 1$
- (1+1) + (-1+1) + (-1+1) = 2

si ottengono serie che convergono a qualunque valore (tranne uno). In generale, infatti, se una serie è indeterminata, si possono commutare gli addendi della stessa e ottenere la convergenza a qualunque numero.

2.2 Serie geometrica

Si è osservato che

$$\sum_{n=1}^{+\infty} \left(\frac{1}{2}\right)^n = 1$$

per cui è ovvio che partendo con n = 0, si ottiene

$$\sum_{n=0}^{+\infty} \left(\frac{1}{2}\right)^n = 2$$

Più in generale, si fornisce di seguito la definizione di serie geometrica:

SERIE GEOMETRICA

Si dice serie geometrica di ragione $z \in \mathbb{C}$ la serie del tipo

$$1 + z + z^2 + z^3 + \dots \to \sum_{n=0}^{+\infty} z^n$$

che, tuttavia, palesa un problema di fondo: se si sceglie z=0, naturalmente si incorre nell'ambiguità

$$0^0 + 0^1 + \dots$$

ma 0^0 è una scrittura che non ha significato. Tuttavia, in questo particolare caso, si considera $0^0=1$, in modo tale da essere coerenti con la scrittura $1+z+z^2+z^3+\dots$ impiegata in precedenza.

Osservazione: Data la serie seguente

$$\sum_{n=0}^{+\infty} z^n$$

per cui la ridotta è

$$s_n = 1 + z + z^2 + \dots + z^n$$

che può anche essere riscritto come

$$s_n = 1 + z + z^2 + \dots + z^n = 1 + z \cdot (1 + z + \dots + z^{n-1})$$

dove $1 + z + ... + z^{n-1} = s_{n-1}$. Da cui si evince che, sommando e sottraendo per la medesima quantità z^n , si ottiene

$$s_n = 1 + z \cdot \left(\underbrace{1 + z + \dots + z^{n-1} + z^n}_{s_n} - z^n\right)$$

che diviene, quindi:

$$s_n = 1 + z \cdot s_n - z^{n+1}$$
 \rightarrow $s_n - z \cdot s_n = 1 - z^{n+1}$ \rightarrow $s_n \cdot (1-z) = 1 - z^{n+1}$ \rightarrow $s_n = \frac{1 - z^{n+1}}{1 - z}$

posto $z \neq 1$ (ma il caso z = 1 è facilmente risolubile, per quanto osservato nel caso di una serie a termine generale costante).

Di seguito si espone, quindi, il comportamento della serie geometrica a seconda della sua ragione z:

5

Per quanto osservato in precedenza, si ha che:

$$\sum_{n=0}^{+\infty} z^n = \lim_{n \to +\infty} s_n = \lim_{n \to +\infty} \frac{1 - z^{n+1}}{1 - z}$$

posto $z \neq 1$, che diviene

- $\frac{1}{1-z}$ se |z| < 1.
- non converge se |z| > 1, tuttavia, si può dire che
 - $\text{ se } z \in \mathbb{R} \text{ e } z > 1$, diverge a $+\infty$
 - se $z \in \mathbb{C}$ e $|z| \ge 1$ (ovvero può essere anche un numero negativo), posto $z \notin]1,+\infty[$ (ossia diverso dal caso precedente), nel caso di n pari si sommano quantità positive, nel caso di n dispari si sommano quantità negative, per cui la serie oscilla e quindi è indeterminata.

Osservazione: Si osservi che la serie geometrica è l'unica per cui si riesce a calcolare la somma, in quanto è l'unica di cui è possibile esprimere la ridotta in modo generale. Altrimenti, gestire le ridotte diviene molto complesso.

Esempio: Si consideri la seguente serie

$$\sum_{n=2}^{+\infty} \cos^n(1)$$

che è una serie geometrica di ragione $\cos(1)$, ove $|\cos(1)| < 1$, per cui converge. La somma di tale serie, quindi, è facilmente determinabile secondo quanto visto in precedenza, tenendo conto che n parte da 2, per cui bisogna sottrarre $\cos^0(1) = 1$ e $\cos^1(1) = \cos(1)$. Da ciò si evince che la serie converge a

$$\frac{1}{1 - \cos(1)} - 1 - \cos(1) = \frac{1 - 1 + \cos(1) - \cos(1) + \cos^2(1)}{1 - \cos(1)} = \frac{\cos^2(1)}{1 - \cos(1)}$$

Osservazione: La somma della serie geometrica di ragione $z \in \mathbb{C}$ è indeterminata se |z| > 1, per quanto già visto.

Inoltre si ha che la serie

$$\sum_{n=1}^{+\infty} \left(\frac{2i+x}{4} \right)^n$$

è convergente se

$$\left| \frac{2i+x}{4} \right| < 1$$

ma ricordando come si calcola il modulo di un numero complesso si ottiene

$$|2i+x| = \sqrt{4+x^2}$$

e quindi

$$\sqrt{4+x^2} < 4 \quad \rightarrow \quad 4+x^2 < 16 \quad \rightarrow \quad x^2 < 12 \quad \rightarrow \quad |x| < \sqrt{12} \quad \rightarrow \quad |x| < 2\sqrt{3}$$

E poi, ovviamente, la serie di Grandi è il tipico esempio di serie indeterminata, per cui la sua somma non può essere definita.

6

5 Ottobre 2022

Una serie è costituita da 2 successioni: la successione dei termini generali e la successione delle ridotte o somme parziali: quando si opera con le serie, risulta fondamentale distinguere le due successioni.

Una tra le serie più note è la serie geometrica, di ragione $z \in \mathbb{C}$, la quale converge se il modulo della ragione è minore di 1. Non converge in caso contrario, ma in particolare

- se la ragione z è un numero reale, $z \in \mathbb{R}$, e $z \ge 1$, allora la serie diverge a $+\infty$;
- se la ragione z è un numero complesso, con $|z| \ge 1$ e $z \notin]1, +\infty[$, allora la serie è indeterminata.

In generale, non si può parlare di divergenza a $+\infty$ o $-\infty$ in campo complesso, in quanto in esso è assente la relazione d'ordine e quindi non esiste un limite infinito.

Esempio: Si consideri l'esempio seguente:

$$\sum_{n=0}^{+\infty} \frac{\cos(n)}{2^n}$$

Tale serie presenta come termine generale

$$a_n = \frac{\cos(n)}{2^n}$$

ma è vero che $-1 \le \cos(n) \le 1$, per cui

$$-\frac{1}{2^n} \le a_n \le \frac{1}{2^n}$$

Per dimostrare che anche la serie in esame converge, è sufficiente considerare s_n^- e s_n^+ , rispettivamente la ridotta n-esima della serie geometrica di ragione $-\frac{1}{2}$ e $\frac{1}{2}$, come segue

$$s_n^- = -1 - \frac{1}{2} - \dots - \frac{1}{2^n}$$
 e $s_n^+ = 1 + \frac{1}{2} + \dots + \frac{1}{2^n}$

per cui

$$s_n^- \le s_n \le s_n^+$$

e per il teorema del confronto esiste finito il seguente limite

$$\lim_{n \to +\infty} s_n \in \mathbb{R}$$

e quindi la serie

$$\sum_{n=0}^{+\infty} \frac{\cos(n)}{2^n}$$

converge.

2.3 Teorema del confronto per le serie

Di seguito si espone il fondamentale teorema del confronto per le serie:

Teorema 2.1 Teorema del confronto per le serie

Siano $a_n, b_n, c_n \in \mathbb{R}$ tali che $a_n \leq b_n \leq c_n, \forall n$ (anche se sarebbe sufficiente richiedere che ciò sia vero **definitivamente**, ossia $\exists n_0 \in \mathbb{N}$ tale che la disuguaglianza di cui sopra è valida $\forall n \geq n_0$). Siano convergenti le serie

$$\sum a_n \quad e \quad \sum c_n$$

allora è convergente anche la serie

$$\sum b_n$$

ed è tale la stima della somma della serie:

$$\sum a_n \le \sum b_n \le c_n$$

che è una stima valida $\forall n$, oppure $\forall n \geq n_0$ (a seconda che sia stato richiesto $\forall n$, oppure definitivamente).

Osservazione: Si osservi il caso particolare per cui $a_n = 0$, $\forall n$ (ossia serie a termini positivi, cioè una serie per cui tutti i termini della successione dei termini generale sono positivi) oppure quelle per cui $c_n = 0$, $\forall n$ (ossia serie a termini negativi, vale a dire serie per cui tutti i termini della successione dei termini generali sono negativi).

In questi casi, infatti, è sufficiente considerare un limitazione superiore (o inferiore, rispettivamente) per concludere la convergenza.

Dimostrazione - IMPORTANTE: Si dimostri che il carattere di una serie non dipende da quello che accade su un numero finito di termini.

Esempio: Si consideri la serie

$$\sum_{n=0}^{+\infty} \frac{1}{2^n} e^{100-n^2}$$

Essendo essa a termini positivi e maggiorata da

$$\sum_{n=0}^{+\infty} \frac{1}{2^n} e^{100}$$

per il teorema del confronto.

Osservazione: Si osservi che il termine generale $a_n < \frac{1}{2^n}$ quando ... continua ...

Esempio: Si consideri la serie seguente:

$$\sum_{n=1}^{+\infty} \cos\left(\frac{1}{n}\right) = +\infty$$

in quanto

$$\lim_{n \to +\infty} \cos\left(\frac{1}{n}\right) = 1$$

ossia, per n molto grande, nella serie si somma sempre 1, per cui diverge.

Teorema 2.2 Condizione necessaria per la convergenza

Sia $\sum_{n=0}^{+\infty} a_n$ una serie convergente, allora

$$\lim_{n \to \infty} a_n = 0$$

Dimostrazione: Sia $s_{n+1} = s_n + a_{n+1}$, tale per cui

$$a_{n+1} = s_{n+1} - s_n$$

Siccome la serie è convergente per ipotesi $(s_{n+1} e s_n convergente allo stesso limite):$

$$\lim_{n \to +\infty} a_{n+1} = s_{n+1} - s_n = 0$$

Osservazione: Si osservi che esistono delle serie

$$\sum a_n$$

8

non convergenti, dove il

$$\lim_{n \to +\infty} a_n = 0$$

per questo si parla di condizione necessaria, e non sufficiente. Infatti è importante definire con quale velocità il termine generale vada a 0: se è troppo lenta, nonostante sia infinitesima, la serie associata convergerà.

2.4 Serie armonica

Si consideri la serie seguente

$$\sum_{n=1}^{+\infty} \frac{1}{n}$$

che prende il nome di **serie armonica**. Per studiarne il comportamento, è sufficiente capire che **ogni serie può essere considerata come un integrale generalizzato**. Infatti, per definizione di integrale generalizzato:

$$\int_{a}^{+\infty} f(x)dx = \lim_{b \to +\infty} \int_{a}^{b} f(x)dx$$

allora se si considera la serie $a_1 + a_2 + a_3$, si definisce una funzione

$$f:[1,+\infty[\longmapsto\mathbb{R}$$

nel modo seguente: essendo una successione una funzione (definita sui numeri naturali), si possono interpolare i valori di una successione tramite delle costanti, come nel seguito:

$$f(x) = a_n$$
 se $x \in [n, n+1[, \forall n \ge 1]$

Osservazione: Naturalmente si ha che

$$\int_{n}^{n+1} f(x) \cdot dx = a_n \cdot (n+1-n) = a_n$$

per cui è ovvio che

$$s_n = a_1 + a_2 + \dots + a_n = \int_1^{n+1} f(x) \cdot dx$$

Se f è integrabile, allora

$$\int_{1}^{+\infty} f(x) \cdot dx = \lim_{b \to +\infty} \int_{1}^{b} f(x) \cdot dx$$

per cui, per il teorema del limite delle successioni, ogni successione che tende a $+\infty$ avrà lo stesso limite della funzione f, ossia

$$\lim_{n \to +\infty} s_n = \lim_{n \to +\infty} f(x)...continua...$$

Osservazione: Si osservi che se la serie converge, per cui

$$\lim_{n \to +\infty} \int_{1}^{n+1} f(x) \cdot dx = \lim_{n \to +\infty} = s$$

è anche vero che f è integrabile, in quanto, posto [b] = n, essendo b < n + 1,

$$\int_{1}^{b} f(x) \cdot dx = \int_{1}^{n} f(x)cdotdx + \int_{n}^{b} f(x)dx$$

Allora, giacché

$$\int_{n}^{b} f(x) \cdot dx = a_{n} \cdot (b - n) \le a_{n}$$

in quanto b < n+1 e [b] = n. Ma siccome la serie converge, allora il limite del termine generale è 0, quindi

$$\int_{1}^{b} f(x) \cdot dx = \int_{1}^{n} f(x) c dot dx$$

come esposto da teorema seguente:

Teorema 2.3 Sia $a_1 + a_2 + ...$ una serie e sia f la funzione precedentemente descritta, allora f è integrabile in senso generalizzato su $[1, +\infty[$ se e solo se la serie converge... continua...

Osservazione: Se si considera la funzione

$$g(x) = \frac{1}{x}$$

allora, sapendo che

$$g(x) \le f(x), \forall x \in [1, +\infty[$$

in quanto f è la funzione a tratti precedentemente definita. Per cui, siccome g(x) non è integrabile, non lo è nemmeno la f (per il teorema del confronto degli integrali generalizzati), pertanto la serie

$$\sum_{n=1}^{+\infty} \frac{1}{n}$$

per il teorema precedentemente esposto, non converge.

2.4.1 Serie armonica generalizzata

È noto che la serie armonica non converge. Non sorprende, però, sapere che tale serie è divergente a $+\infty$, ovvero

$$\sum n = 1^{+\infty} \frac{1}{n} = +\infty$$

Pertanto, se si considera

$$\sum n = 1^{+\infty} \frac{1}{\sqrt{n}}$$

essa è necessariamente

$$\frac{1}{\sqrt{n}} \ge \frac{1}{n}, \quad \forall n \ge 1$$

per cui, per il teorema del confronto, diverge a $+\infty$. Ciò risulta vero per ogni

$$\frac{1}{n^{\alpha}} \ge \frac{1}{n}, \forall n \ge 1$$
 se $0 < \alpha \le 1$

In generale, tuttavia, sappiamo

$$\int_{1}^{+\infty} \frac{1}{x^{\alpha}} \cdot dx = \left[\frac{1}{-\alpha + 1} \cdot x^{-\alpha + 1} \right]_{1}^{+\infty} = \frac{1}{\alpha - 1}$$

Tuttavia, impiegando la funzione definita in precedenza (da n a n+1), siccome sarà maggiore di $g(x) = \frac{1}{x^2}$, non è possibile stabilire se essa sia integrabile o meno.

Per tale ragione si definisce

$$h(x) = a_n$$
 se $x \in]n-1, n]$

allora

$$\int_{n-1}^{n} h(x) \cdot dx = a_n$$

Da ciò segue che

$$\int_{1}^{+\infty} = a_2 + a_3 + \ldots + = \sum_{n=2}^{+\infty} a_n$$

Pertanto, siccome

$$\sum_{n=2}^{+\infty} \frac{1}{n^2} = \int_1^{+\infty} h(x) \cdot dx \le \int_1^{+\infty} \frac{1}{x^2} \cdot dx = 1$$

ciò permette di concludere che la serie armonica generalizzata

$$\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}} \frac{1}{n^{\alpha}}$$

con $\alpha>0$ è divergente a $+\infty$ se $\alpha\in]0,1], è convergente se <math display="inline">\alpha>1$ con somma

$$s \le 1 + \frac{1}{\alpha - 1} = \frac{\alpha}{\alpha - 1}$$

dal momento che l'integrale

$$\int_{1}^{+\infty} h(x) \cdot dx = \sum_{n=2}^{+\infty} \frac{1}{n^{\alpha}} \quad \text{ovvero} \quad \sum_{n=1}^{+\infty} \cdot dx = 1 + \frac{1}{n^{\alpha}}$$

Esercizio 1: Si consideri la serie

$$\sum_{n=2}^{+\infty} \frac{1}{\log(n)}$$

che, ovviamente, diverge in quanto

$$\frac{1}{\log(n)} \ge \frac{1}{n}$$

e siccome $\frac{1}{n}$ diverge, per il teorema del confronto, diverge anche $\frac{1}{\log(n)}$.

Esercizio 2: Si consideri la serie

$$\sum_{n=1}^{+\infty} \frac{1}{n \cdot (\log(n))^{\alpha}}$$

Per capire se essa diverga o meno, si considera l'integrale

... continua ...

2.5 Serie a termini (reali) positivi

Si consideri $a_n \ge 0, \forall n$ (anche se sarebbe sufficiente **definitivamente**, ossia da un certo n in poi), per il **teorema dell'Aut-Aut**, o converge, o diverge.

Ciò spiega perché la serie armonica diverga a $+\infty$, in quanto si è dimostrato che non converge. Il teorema dell'Aut-Aut si aggiunge al teorema del confronto

7 Ottobre 2022

Dopo aver analizzato la condizione necessaria per la convergenza, è stato anche considerato il fatto che una serie può essere sempre considerata come un integrale generalizzato. Un esempio fondamentale di serie di confronto è anche la serie armonica.

Di seguito si espongono alcuni teoremi fondamentali per la convergenza/divergenza di una serie.

2.6 Teorema dell'Aut-Aut per le serie a termini (reali) positivi

Si supponga che la serie

$$a_1 + a_2 + \dots + a_n + \dots = \sum_{n=1}^{+\infty} a_n$$

abbia termini positivi $(a_n > 0)$ o al più non negativi $(a_n \ge 0)$. Allora essa converge o diverge. In altre parole, una serie a termini non negativi non può essere indeterminata.

DIMOSTRAZIONE: Supposto $a_n \ge 0, \forall n$ (anche se sarebbe sufficiente richiedere definitivamente), la successione delle ridotte è **crescente** (anche in senso debole), tale per cui

$$s_{n+1} = s_n + a_{n+1} \ge s_n$$

Per il **teorema di esistenza del limite delle successioni monotone**, la successione delle ridotte ammette limite, ed esso è

$$\lim_{n \to +\infty} s_n = \sup \{ s_n : n \in \mathbb{N}^+ \}$$

Pertanto

- se la successione delle ridotte è superiormente limitata, ovvero sup $\{s_n\} \in \mathbb{R}$, la serie è ovviamente convergente.
- se la successione delle ridotte è superiormente illimitata, per cui sup $\{s_n\} = +\infty$, la serie diverge a $+\infty$.

In ogni caso, però, la serie non può essere indeterminata.

Osservazione: Naturalmente la stessa cosa vale anche per successioni a termini negativi. L'importante è che sia verificata la condizione $a_n \ge 0$ oppure $a_n \le 0$ infinitesimo.

2.7 Criterio dell'ordine di infinitesimo per le serie a termini positivi

Il teorema dell'Aut-Aut permette di dimostrare anche un altro importante criterio:

Teorema 2.4 Criterio dell'ordine di infinitesimo per le serie a termini positivi Sia

$$\sum_{n=0}^{+\infty} a_n$$

una serie a termini positivi con termine generale infinitesimo

$$\lim_{n \to +\infty} a_n = 0$$

allora

- se esiste $\alpha > 1$ ord $a_n \geq \alpha$, la serie converge
- se esiste $\alpha > 1$ ord $a_n \leq 1$, la serie diverge

DIMOSTRAZIONE: Supposto che la successione a_n abbia come ordine di infinitesimo α , con $\alpha > 1$, ossia

$$\lim \left| \frac{a_n}{\frac{1}{n^{\alpha}}} \right| = l \quad \text{posto} \quad l \neq 0$$

allora, per definizione stessa di limite,

$$\forall \epsilon > 0, \exists n_{\epsilon} \in \mathbb{N} | \forall n > n_{\epsilon} \text{ si ha} n^{\alpha} < l + \epsilon$$

Per comodità, si sceglie $\epsilon=1$, da cui

$$n^{\alpha}a_n < l + 1$$

Ciò consente di affermare che $\forall n > n_{\epsilon}$ si ha che

$$0 \le a_n \le (l+1) \cdot \frac{1}{n^{\alpha}}$$

In questo modo si sta confrontando il termine generale a_n con il termine generale della serie armonica generalizzata. Per il teorema del confronto, siccome definitivamente

$$a_n \leq (l+1) \cdot \frac{1}{n^{\alpha}}$$

e la serie armonica converge, in quanto $\alpha > 1$... continua ...

Supposto, ora, ord $a_n \leq 1$, si dimostri che la serie

$$\sum_{n=1}^{+\infty} a_n$$

diverge.

Il fatto che ord $a_n \leq 1$, significa che

$$\lim_{n \to +\infty} \frac{a_n}{\frac{1}{n}} = l$$

per cui se $l \in \mathbb{R} - \{0\}$ significa che ord $a_n = 1$, se $l = +\infty$, ord $a_n < 1$. Nell'ipotesi che $l \in \mathbb{R} - \{0\}$, ovvero

$$\lim_{n \to +\infty} n \cdot a_n = l \in \mathbb{R} - \{0\}$$

allora, per la definizione stessa di limite

$$\forall \epsilon > 0, \exists n_{\epsilon} \in \mathbb{N} | \forall n > n_{\epsilon} : |a_n - l| < \epsilon$$

Scelto, per comodità, $\epsilon = \frac{l}{2}$, e quindi ... continua ...

Osservazione: In particolare, se $\exists \alpha \in \mathbb{R}, \alpha > 1$, e si ha

- ord $a_n > \alpha$, la serie converge
- ord $a_n \leq 1$, la serie diverge

Tuttavia, sapere che ord $a_n > 1$ non fornisce informazioni

Esercizio 1: La serie

$$\sum \frac{5n + \cos(n)}{3 + 2n^3}$$

è ovviamente convergente, in quanto ord $a_n = 2 > 1$.

Esercizio 2: La serie

$$\sum \frac{2\sqrt{n}}{n^2+n+1}$$

è ovviamente convergente, in quanto ord $a_n = \frac{3}{2} > 1$.

Esercizio 3: La serie

$$\sum \log \left(1 - \frac{1}{n}\right)$$

non converge. La serie è a termini negativi, tuttavia si può fare

$$-\lim_{n \to +\infty} -\frac{\log\left(1 - \frac{1}{n}\right)}{\frac{1}{n}} = 1$$

per cui ord $a_n = 1$.

Esercizio 4: La serie

$$\sum 1 - \cos\left(\frac{1}{n}\right)$$

è ovviamente convergente, in quanto ord $a_n = 2 > 1$.

Esercizio 5: La serie

$$\sum \frac{2^n}{(\log(n))^n} = \sum \left(\frac{2}{\log(n)}\right)^n$$

è ovviamente convergente, in quanto

$$\frac{2}{\log(n)} < \frac{2}{3} \to \log(n) > 3$$

per $n>e^3$, ma l'importante è che accada definitivamente, per cui la serie converge per confronto con la serie geometrica.

Esercizio 6: La serie

$$\sum \frac{2^n}{(\log(n))^n} = \sum \left(\frac{2}{\log(n)}\right)^n$$