MATH 302

Chapter 8

SECTION 8.4: CONVOLUTION

Contents

What Does The Word "Convolution" Mean? The Story of The Matches	2
Convolution And Laplace Transform Definition	
Applications to ODE	7
Laplace Transforms of Integrals	9
Integro-Differential Equations	10

CREATED BY: PIERRE-OLIVIER PARISÉ

Fall 2022

The Story of The Matches

- Suppose we have a number of matches we need to light.
- At each second, so at t = 0, t = 1, t = 2, t = 3, ..., t = n, we light a certain number of matches. Denote by f(t) the number of matches lit at time t.
- Each matches give off smoke. Denote by g(t) the smoke produced by a match after t seconds.

Figure 1: The Matches Problem

Question: What is the total quantity of smoke in the air after a certain time t?

Times (t)	Q(t)
0	f 10) 510)
1	f10) 5(1) + f11) 5(0)
2	f(0) S(2) + f(1) S(1) + f(2) S(0)
~	نُن

The total contribution of the matches after n seconds:

$$Q(t) = \sum_{k=0}^{n} f(k) S(n-k)$$

What if we have a continuous phenomena?

Definition

The convolution of a function f(t) with another function g(t) is the new function (f * g)(t)defined by

$$(f * g)(t) = \int_0^t f(x)g(t - x) dx.$$

Example 1. Let

$$f(t) = u(t) - u(t-1)$$
 and $g(t) = u(t) - u(t-1)$.

Compute f * g.

Compute
$$f * g$$
.

Explicitly: $f(\xi) = g(\xi) = \begin{cases} 0, & \xi < 0 \\ 1, & 0 \le \xi < 1 \end{cases}$

1)
$$\frac{\cot(x)}{\cot(x)}$$
 $f \neq g(t) = \int_0^t f(x) g(t-x) dx$
 $0 \leq x \leq t \Rightarrow f(x) = 1$
 $\Rightarrow f \neq g(t) = \int_0^t g(t-x) dx$

Charge variable $u = t-x \Rightarrow du = -dx$
 $f \neq g(t) = \int_0^t g(u) (-du)$
 $= \int_0^t g(u) du$

Now, $0 \leq u \leq t \leq 1 \Rightarrow g(u) = 1$
 $\Rightarrow f \neq g(t) = \int_0^t 1 du = t$

2)
$$t > 1$$

$$f \neq g(t) = \int_{0}^{t} f(x) g(t-x) dx$$

$$0 \le x \le t \quad but \quad f(x) = 0 \quad when \quad x > 1$$

$$\Rightarrow f \neq g(t) = \int_{0}^{t} g(t-x) dx$$

$$Set \quad u = t - x \Rightarrow f \neq g(t) = \int_{t-1}^{t} g(u) du$$

$$(a) \quad t - 1 < 1 \Rightarrow t < 2$$

$$\Rightarrow f \neq g(t) = \int_{t-1}^{1} 1 du = 2 - t$$

$$(b) \quad t - (>1) \Rightarrow t > 2$$

$$\Rightarrow f \neq g(t) = \int_{t-1}^{t} 0 du = 0$$

So, we get
$$f \neq g(t) = \begin{cases} t, & 0 \leq t \leq 1 \\ 2-t, & 1 \leq t \leq 2 \\ 0, & \text{elsewhere}. \end{cases}$$

<u>Desmos:</u> https://www.desmos.com/calculator/h50sct4xeq

Laplace Transform

The nice properties of the convolution is a direct connection with the Laplace transform.

EXAMPLE 2. Let $f(t) = e^t$ and $g(t) = e^{-t}$.

- (a) Compute f * g.
- **(b)** Find L(f*g).
- (c) Compare with L(f)L(g).

(c) Compare with
$$L(f)L(g)$$
.

(a) $f \neq g(t) = \int_0^t e^{-\frac{t}{2}} e^{-\frac{t}{2}} dx = \frac{2\pi - t}{2} \Big|_0^t$

$$= \int_0^t e^{-\frac{t}{2}} dx = \frac{2\pi - t}{2} \Big|_0^t$$

$$\Rightarrow f \neq g(t) = \frac{e^{\frac{t}{2}} - e^{-\frac{t}{2}}}{2} = \sinh(t)$$

(b) $L(f + g) = L(\sinh(t)) = \frac{1}{s^2 - 1}$

(c) $L(f) = L(e^t) = \frac{1}{s-1}$

$$L(g) = L(e^{-t}) = \frac{1}{s+1}$$

Tranform of Convolution: If

- f(t) is a function with Laplace transform F(s);
- g(t) is a function with Laplace transform G(s);

then

$$L(f * g) = L(f)L(g) = F(s)G(s).$$

EXAMPLE 3. Find the inverse Laplace transform of the following functions.

(a)
$$\frac{1}{s^2(s^2+4)} = \mathcal{H}(s)$$

(b)
$$\frac{s(s+3)}{(s^2+4)(s^2+6s+10)}$$
.

(a)
$$\frac{1}{s^{2}(s^{2}+4)} = \frac{1}{s^{2}} \cdot \frac{1}{s^{2}+4}$$

$$= L(t) \cdot L(t)$$

$$= L(t) \cdot G(s)$$

$$\Rightarrow h(t) = \frac{1}{2} \int_0^t \times \sin(2(t-x)) dx$$

$$= \frac{1}{2} (t - \sin t \cosh) U$$

(b)
$$H(s) = \frac{s}{s^2 + 4} \cdot \frac{s + 3}{s^2 + 6s + 9 + 1}$$

$$= \frac{s}{s^2 + 4} \cdot \frac{s + 3}{(s + 3)^2 + 1}$$

$$= \frac{s}{(s + 3)^2 + 1} \cdot \frac{s + 3}{(s + 3)^2 + 1}$$

$$= \frac{s}{(s + 3)^2 + 1} \cdot \frac{s + 3}{(s + 3)^2 + 1}$$

$$f(t) = \cos(2t)$$

$$g(t) = e^{-3t} \cos t$$

APPLICATIONS TO ODE

EXAMPLE 4. Find the solution y(t) to the following IVP:

$$y'' + 3y' + y = f(t), \quad y(0) = 0, y'(0) = 0.$$

$$\gamma(s) = L(y)$$

 $\Rightarrow L(y') = SY - y(0) = SY$
 $L(y'') = S^{2}Y - y(0)S - y'(0) = S^{2}Y$

$$\Rightarrow$$
 $5^2 \text{ y} + 35 \text{ y} + \text{ y} = \text{ F}$

$$=$$
 $(6^2 + 35 + 1) y = F$

$$\Rightarrow \qquad Y = \frac{F}{\varsigma^2 + 3\varsigma + 1}$$

Now,
$$S^2 + 3S + 1 = \left(S + \frac{3}{2}\right)^2 + \frac{9}{4} + 1$$

= $\left(S + \frac{3}{2}\right)^2 + \frac{13}{4}$
= $\left(S + \frac{3}{2}\right)^2 + \left(\frac{\sqrt{13}}{2}\right)^2$

$$L(e^{-3t/2}\sin \frac{\sqrt{13}t}{2}) = \frac{\sqrt{13}/2}{(5+3/2)^2+(\sqrt{13}/2)^2}$$

So,
$$y(t) = \frac{2}{\sqrt{13}} \int_0^t e^{-3x/2} pin\left(\frac{\sqrt{13}}{2}x\right) f(t-x) dx$$

General Convolution Formula: The solution y(t) to the following IVP

$$ay'' + by' + cy = f(t), \quad y(0) = k_0, \ y'(0) = k_1$$

is

$$y(t) = k_0 y_1(t) + k_1 y_2(t) + (w * f)(t)$$

where

• y_1 is a solution to the following IVP

$$ay_1'' + by_1'' + cy_1 = 0, \quad y_1(0) = 1, y_1'(0) = 0;$$

• y_2 is a solution to the following IVP

$$ay_2'' + by_2'' + cy_2 = 0, \quad y_2(0) = 0, y_2'(0) = 1;$$

• w(t) satisfies

$$w(t) = \frac{1}{a}y_2(t).$$

Laplace Transforms of Integrals

As a special case of the Laplace transform of a convolution, we can take the Laplace transform of an integral.

EXAMPLE 5. Suppose f has a Laplace transform given by F(s). Find the Laplace transform of

$$h(t) = \int_0^t f(x) \, dx.$$

Set
$$g(t) = I$$
 for any $t \ge 0$.

then,

$$h(t) = \int_0^t f(x) g(t-x) dx$$

$$= \int_0^t f(x) dx$$

Convolution theorem:

$$H(s) = F(s) \cdot G(s) = \frac{F(s)}{s}$$

In other way:

$$L\left(\int_{0}^{t}f(x)dx\right)=\frac{F(s)}{s}$$

Other related results:
$$L\left(\int g(x) dx\right) = \frac{G(s)}{s} = \frac{F(s)}{s^2}$$

- For $g(t) = \int_0^t \int_0^x f(u) du dx$, we have $G(s) = F(s)/s^2$.
- For a function g(t) given as three integrals, then $G(s) = F(s)/s^3$.
- For a function g(t) given as n integrals, then $G(s) = F(s)/s^n$.

INTEGRO-DIFFERENTIAL EQUATIONS

We can solve more than just an ODE!

EXAMPLE 6. Find the solution to the following integro-differential equation

where
$$y(0) = 0$$
.

Let $y = L(y)$.

Laplace Transform

$$L\left(\int_{0}^{t} y(u)du\right) + L\left(y'|t\right) = L(t)$$

$$\Rightarrow \frac{y}{s} + \frac{1}{s} + \frac{1}{s^{2}}$$

$$\Rightarrow y\left(\frac{1+s^{2}}{s}\right) = \frac{1}{s^{2}}$$

$$\Rightarrow y = \frac{1}{s}$$

2) Inverse
$$y = \frac{1}{S} \cdot \frac{1}{S^{2}+1}$$

$$L(1) \quad L(Sint)$$

$$\Rightarrow y(t) = \int_{0}^{t} 1 \cdot pin(t-x) dx = cos(t) - 1$$

EXAMPLE 7. Find the general solution to the following integral equation

$$y(t) = \sin(t) - 2 \int_0^t y(u) \cos(t - u) du.$$

Write Y=Lly).

$$(1) \quad y = L(sint) - 2 L\left(\int_0^t y |u| \cos(t-u) du\right)$$

$$y \neq \cos(t) \sqrt[7]{3}$$

$$\Rightarrow$$
 $\gamma = \frac{1}{S^2+1} - 2 \quad \gamma \cdot L(\cos t)$

$$\Rightarrow$$
 $\sqrt{=} \frac{1}{5^2+1} - 2 \frac{3}{5^2+1}$

$$\Rightarrow \sqrt{\left(1+\frac{2s}{s^2+1}\right)} = \frac{1}{s^2+1}$$

$$\Rightarrow \qquad \gamma = \qquad \frac{1}{(S+1)^2}$$

(2) Inverse

$$L^{-1}\left(\frac{1}{S^2}\right) = -t \quad \left(\text{shifted}\right) \Rightarrow L^{-1}\left(\frac{1}{(S+1)^2}\right) = -te^{-t}$$

So,
$$y(t) = -te^{-t}$$