第八课时教学设计

课型	社团课	学时	1	授课	九年级	
				年级		
教学目标	学会正确连接温湿度传感器(DHT11)与 Arduino 开发板,并编写基础监测代码;					
	通过模拟极端环境(盐雾、高温),验证保护箱的防锈性能;					
	掌握数据读取与报警逻辑设置(如湿度>60%触发蜂鸣器)。					
学习环境	• 学习环境					
与	多媒体教室(配备投影/电子白板)					
教学资源	分组式圆桌(4-5 人/组)					
	• 教学资源					
	硬件: DHT11 传感器、Arduino Uno、蜂鸣器、LED 灯。					
	软件: 预装 Arduino IDE 及温湿度库。					
	测试工具: 盐水喷雾瓶、电吹风(模拟高温高湿)。					

教学过程				
教学环节	教师活动	学生活动	教学意	
			图	
情境导入	1. 播放"博物馆监控警报"音效: "警告!B	小组讨论保护箱当	通过剧	
(5分	区展柜湿度异常,请立即启动传感器防御系	前潜在风险,以及需	情延续	
钟)	统!"	要的传感器 (如接口	激发紧	
	2. 展示上节课优秀保护箱作品,提出新任务:	缝隙可能渗水、温湿	迫感,关	
	"为箱子加装'智能监测装甲',实时打击锈	度传感器、蜂鸣传感	联前期	
	蚀凶手!"	器等),明确本节课	知识。	
		目标。		

传感器连 接实战 20 分钟)

1. DHT11 温湿度传感器

(1) 连接方式

DHT11	Arduino	线色	作用
引脚	引脚		
VCC	5V	红色	供电
GND	GND	黑色	接地
DATA	Digital	黄色	数据
	2		传输

(2) 连接要点

- 确保断电状态下接线,避免短路。
- DATA 引脚需接 10k Ω 上拉电阻(若模块已内置可省略)。
- 线材长度≤20cm,避免信号衰减。
- (3) 示例代码:

```
#include <DHT.h>
#define DHTPIN 2
                           // DATA引脚接D2
#define DHTTYPE DHT11 // 指定传感器类型
DHT dht(DHTPIN, DHTTYPE);
void setup() {
Serial.begin(9600);
dht.begin();
pinMode(8, OUTPUT); // 蜂鸣器接D8
} ()qool biov
 float humidity = dht.readHumidity();
 float temp = dht.readTemperature();
 if (isnan(humidity) {
Serial.println("传感器读取失败!");
   return;
 Serial.print("湿度: ");
Serial.print(humidity);
Serial.print("% | 温度: ");
Serial.print(temp);
 Serial.println("°C");
 // 湿度>60%触发蜂鸣器
if (humidity > 60) {
digitalWrite(8, HIGH);
delay(1000);
   digitalWrite(8, LOW);
 ,
delay(2000); // 每2秒更新数据
```

1. 分组操作: 接线员:按图连 接传感器,用万 用表验证通断; 程序员:上传代 码并调试,记录 初始温湿度数 据;

记录员:拍摄接 线细节,标注常 见错误(如线序 反接)。

2. 故障排查: 通过 LED 状态判 断问题(如常亮 →电源短路,不 亮→线序错 误)。 培养硬件操作规范与调试思维.

- 2. 蜂鸣器与 LED 报警模块
 - (1) 连接步骤

蜂鸣器:

- 正极 → Arduino D8
- 负极 → GND

LED 灯:

- 阳极 → Arduino D9 (串联 220Ω 电阻)
- 阴极 → GND
- (2) 报警逻辑代码

```
// 在loop()函数中添加以下逻辑:
if (humidity > 60) {
digitalWrite(8, HIGH); // 蜂鸣器响
digitalWrite(9, HIGH); // LED亮红灯
} else {
digitalWrite(8, LOW);
digitalWrite(9, LOW);
}
```

- 3. 盐度传感器(模拟盐雾测试)
- (1) 连接步骤

硬件:

- 盐度传感器(如 SEN0244)
- Arduino AO 引脚 (模拟输入)

接线:

传感器引脚	Arduino 引脚
VCC	5V
GND	GND
OUT	AO

(2)代码示例

17 JU 17 14	void loop() { int saltValue = analogRead(A0); float salinity = map(saltValue, 0, 1023, 0, 100); // 转换为百分比 Serial.print("盐度: "); Serial.print(salinity); Serial.println("%"); if (salinity > 10) { // 盐度 > 10%触发警报 digitalWrite(8, HIGH); } }			运业本点
极限环境	1. 颁布任务,测试保护箱以及传感器:		完成三种环境测量,并且积极有效	通过真实
挑战赛 (25 分	模拟环境	达标标准 组度同类时间/2.7	试。并根据现存的 问题进行优化	问题驱动
钟)	盐水喷雾 10 秒 	湿度回升时间≤3分	问题处17亿化	用,强化实
* † /	+ # E 50°0 + E	钟		证分析能
	电吹风 50℃热风	温度波动≤2℃		
	震动+盐雾双抗	钱币无位移且湿度≤		力。
		55%		
	2. 数据核查:			
	抽查小组串口数据,提问: "湿度曲线骤升的			
	原因?如何改进?"			
小组汇报	扮演"博物馆技术总监",提问:		小组用1页PPT总	培养工程
(10分	• "你的系统能否应对梅雨季?请用数据证		结:	决策能力
钟)	明。"		• 传感器性能	与成本意
	• "如果预算有限,会优先改进密封还是报 警灵敏度?"		(如响应延迟	识。
			时间);	
			• 优化方案成本	
			清单(如硅胶	
			条¥0.5/cm)。	