打

目录

字符串	4
KMP 模版	4
浮动匹配	4
扩展 KMP	6
最长回文字串 Manacher	7
最小表示	7
Trie 树	8
AC 自动机	88
后缀数组 DA	1C
后缀数组 DC3	11
后缀自动机	12
字符串 hash	17
图论	18
最短路	18
最小生成树	21
矩阵树定理	23
次小生成树	24
Tarjan 缩点	24
Kosaraju 求强联通分量	25
无向图中一些基本概念	26
最小树形图	28
二分图	29
网络流	32
2-sat	37
曼哈顿最小生成树	40
一般图匹配带花树	42
最近公共祖先倍增 lca	43
lca+rmq	
欧拉路径	45
欧拉回路	45
数据结构	48
并查集	48
一维 rmq	49
单调栈	50
单调队列	50
一维树状数组	51
划分树查询区间第 k 大	52
点分治求边权和等于 k 的数量	53
cdq 分治求三维偏序	56
树链剖分线段树(点权)	57
线段树模版	62
块状数组	70
莫队	71

主席树	73
动态规划	81
最长公共子序列 LCS	81
最长上升子序列 LIS	81
01 背包	81
完全背包	82
多重背包二进制	82
数位 dp	83
状压 dp	84
数论	86
素数筛	86
合数分解	86
快速乘	87
快速幂	87
miller_rabin 判断素数	88
pollard rho 分解质因数	89
gcd、lcm	
lucas 定理	
· · · · · · · · · · · · · · · · · · ·	
中国剩余定理	
字点数高斯消元	
FFT 递归	
约数和定理	
BSGS	
自适应 simpson 积分	
康托展开	
sg 函数	
· · · · · · · · · · · · · · · · · · ·	
,,	
卡特兰数	
调和级数	
数学结论	
计算几何	
计算几何基本函数	
求凸包	
 	
平面最近点对	
半平面交	
十一回又	
高精度	
ス に	

字符串

KMP 模版

```
//普通
void getnext1(char *s)
    int i = 0, j = -1, len = strlen(s);
    ne[0] = -1;
    while (i < 1en)
        if(j == -1 \mid \mid s[i] == s[j]) ne[++i] = ++j;
        else j = ne[j];
//加快预处理
void getnext2(char *s)
    int i = 0, j = -1, len = strlen(s);
    ne[0] = -1;
    while (i < 1en)
        if(j == -1 || s[i] == s[j])
            if(s[++i] == s[++j])
                                  ne[i] = ne[j];
            else ne[i] = j;
        else j = ne[j];
//返回 x 在 y 中出现的次数, 可以重叠
int kmp(char *x, char *y)
    getnext1(x);
    int i = 0, j = 0, ans = 0, leny = strlen(y), lenx = strlen(x);
    while (i < 1eny)
        if(j == -1 || x[j] == y[i])
            i++, j++,
            if(j == 1enx)
                ans++;
                j = ne[j];
                j = ne[j];
        else
    return ans;
```

浮动匹配

```
//求浮动匹配
//1[i]表示 i 结点之前(包括 i 结点),小于等于 a[i]的个数
//1e[i]表示 i 结点之前(包括 i 结点),小于等于 a[i]的个数
//1[i] == 1[j] && 1e[i] == 1e[j],则匹配
int n,k,s,a[100005],b[25005],ne[25005],tree[30],1[100005],1e[100005];
inline int lowbit(int x)
{
    return x&-x;
}
void update(int pos,int x)
```

```
while (pos \langle = s \rangle
         tree[pos] += x;
         pos += lowbit(pos);
int getsum(int pos)
    int sum = 0;
    while (pos)
        sum += tree[pos];
        pos -= lowbit(pos);
    return sum;
void getnext1()
    memset (tree, 0, sizeof (tree));
    int i = 0, j = -1;
    ne[0] = -1;
    while (i < k)
        if(j == -1 \mid | getsum(b[i]-1) == 1[j] \&\& getsum(b[i]) == 1e[j])
             ne[++i] = ++j;
             if(i < k) update(b[i], 1);
         else
             for(int t = i-j; t < i-ne[j]; t++) update(b[t],-1);
             j = ne[j];
vector<int> kmp()
    getnext1();
    memset (tree, 0, sizeof (tree));
    vector(int) ans;
    int i = 0, j = 0;
    update (a[0], 1);
    while (i < n)
         if(j == -1 \mid | getsum(a[i]-1) == 1[j] \&\& getsum(a[i]) == 1e[j])
             i++, j++;
             if(i < n)
                          update (a[i], 1);
             if(j == k)
                  ans. push back (i-k+1);
                  for (int \ \overline{t} = i-j; t < i-ne[j]; t++) update (a[t], -1);
                  j = ne[j];
         else
             for (int t = i-j; t < i-ne[j]; t++) update (a[t], -1);
             j = ne[j];
```

```
return ans;
int main()
    while ("scanf ("%d%d%d", &n, &k, &s))
        memset(tree, 0, sizeof(tree));
        memset(1, 0, sizeof(1));
        memset (1e, 0, sizeof(1e));
        memset (ne, 0, sizeof (ne));
        for (int i = 0; i < n; i++)
                                      scanf ("%d", &a[i]);
        for (int i = 0; i < k; i++)
            scanf("%d", &b[i]);
            update(b[i], 1);
            1[i] = getsum(b[i]-1);
            le[i] = getsum(b[i]);
        vector < int > v = kmp();
        printf("%d\n", v. size());
        for(int i = 0; i < v. size(); i++) printf("%d\n", v[i]);
    return 0;
                                           扩展 KMP
//ne[i]:x[i...m-1]与 x[0...m-1]的最长公共前缀
//ex[i]:y[i...n-1]与 x[0...m-1]的最长公共前缀
void getnext(char *s)
    int j = 0, len = strlen(s), k = 1;
    ne[0] = 1en;
    while (j+1 < len && s[j] == s[j+1]) j++;
    ne[1] = j;
for(int i = 2;i < len;i++)
        if(ne[i-k]+i < ne[k]+k) ne[i] = ne[i-k];
        else
            j = \max(0, ne[k]+k-i);
            while (i+j < len \&\& s[i+j] == s[j]) j++;
            ne[i] = j;
            k = i;
void ekmp(char *x, char *y)
    getnext(x);
    int j = 0, lenx = strlen(x), leny = strlen(y);
    while (j < lenx & j < leny & x[j] == y[j]) j++;
    ex[0] = j:
    int k = 0:
    for (int i = 1; i < leny; i++)
        if(ne[i-k]+i < ex[k]+k) ex[i] = ne[i-k];
        else
            j = \max(0, \exp[k] + k - i);
            while (i+j < leny && j < lenx && y[i+j] == x[j]) j++;
            ex[i] = j;
            k = i;
```

```
最长回文字串 Manacher
//abaa
//i: 0 1 3 4 5 6 7 8 9 10
//a[i]: $ # a # b # a # a #
         0 1 3 4 5 6 7 8 9 10
//p[i]: 1 1 2 1 4 1 2 3 2 1
char s[100005], a[200005];
int p[200005];
void manacher (int len)
     int mx = 0, id;
    for (int i = 1; i < len; i++)
         if(mx > i) p[i] = min(p[2*id-i], mx-i);
         else p[i] = 1;
while(a[i+p[i]] == a[i-p[i]]) p[i]++;
         if(p[i]+i > mx)
              mx = p[i]+i;
              id = i;
int main()
    scanf("%s", s);
a[0] = '$';
a[1] = '#';
    int 1en = 2;
    for (int i = 0; s[i]; i++)
         a[len++] = s[i];
a[len++] = '#';
    manacher (1en);
    int ans = 0;
for(int i = 0;i < len;i++) ans = max(ans,p[i]);</pre>
    printf("%d\n", ans-1);
    return 0:
```

最小表示

Trie 树

```
//添加
void add(char *s, int x)
    int now = 0;
    for (int i = 0; i < strlen(s); i++)
        int c = s[i]-'a';
        if (!ch[now][c])
            ch[now][c] = ++sz;
            cnt[sz] = 0;
        now = ch[now][c];
        cnt[now]++;
//查找数量
int getnum(char *s)
    int now = 0;
    for (int i = 0; i < strlen(s); i++)
        int c = s[i] - a';
        if(!ch[now][c]) return 0;
        now = ch[now][c];
    return cnt[now];
```

AC 自动机

```
//用 n 个模式串建立自动机
//求目标中出现了几个模式串
struct Trie
    int next[500000][26], fail[500005], num[500005], root, cnt;
    int newnode()
        for (int i = 0; i < 26; i++)
                                    next[cnt][i] = -1;
        num[cnt++] = 0;
        return cnt-1;
    void init()
        cnt = 0;
        root = newnode();
    void insert(char *s)
        int now = root, len = strlen(s);
        for (int i = 0; i < len; i++)
            int c = s[i]-'a';
            if(next[now][c] == -1) next[now][c] = newnode();
            now = next[now][c];
        num[now]++;
    void build()
        queue<int> q;
        fail[root] = root;
        for (int i = 0; i < 26; i++)
```

```
if(next[root][i] == -1) next[root][i] = root;
             else
                 fail[next[root][i]] = root;
                 q. push (next[root][i]);
        while(!q. empty())
             int now = q. front();
             q. pop();
             for (int i = 0; i < 26; i++)
                 if(next[now][i] == -1) next[now][i] = next[fail[now]][i];
                 else
                      fail[next[now][i]] = next[fail[now]][i];
                      q. push (next[now][i]);
    int query(char *s)
        int now = root, ans = 0, len = strlen(s);
        for (int i = 0; i < len; i++)
             now = next[now][s[i]-'a'];
             int t = now;
             while(t != root)
                 ans += num[t];
                 num[t] = 0;
                 t = fail[t];
        return ans;
    void debug()
        for (int i = 0; i < cnt; i++)
             printf("id = %3d, fail = %3d, num = %3d, chi = [", i, fail[i], num[i]);
             for(int j = 0; j < 26; j++) printf("%2d", next[i][j]); printf("]\n");
int n;
char s[1000001];
Trie ac;
int main()
    int T;
scanf("%d", &T);
    while (T--)
        scanf ("%d", &n);
        ac.init();
        while (n--)
             scanf ("%s", s);
```

```
ac. insert(s);
        ac.build();
        scanf("%s", s);
printf("%d\n", ac. query(s));
    return 0;
                                        后缀数组 DA
//0 (nlogn)
/待排序数组长度 n, 放在 0^{\sim}n 中,最后补 0
//sa[i]:每个后缀串从小到大排第 i 小的位置
//rank[i]:i 位置的从小到大排序位置
//height[i]:sa[i]和 sa[i-1]对应后缀的最长公共前缀
//n = 8
//num[i]:
            1 1 2 1 1 1 1 2 0
                                      num[8]加0
              8 3 4 5 0 6 1 7 2
//sa|i|:
                                       num[0 n]有效
//rank[i]: 4 6 8 1 2 3 5 7 0
                                      num[0~n-1]有效
                                     num[2~n]有效
//height[i]:0 0 3 2 3 1 2 0 1
int t1[N], t2[N], c[N], sa[N], rank[N], height[N];
int mm[200005], best[20][200005], rmg[200005];
bool cmp(int *r, int a, int b, int 1)
    return r[a] == r[b] \&\& r[a+1] == r[b+1];
```

void da(int *r, int *sa, int *rank, int *height, int n, int m)

```
height[rank[i]] = k;
void initrmg(int n)
    mm[0] = -1;
    for (int i = 1; i < n; i++)
                                 mm[i] = (i&(i-1) == 0)?mm[i-1]+1:mm[i-1];
    for (int i = 1; i < n; i++)
                                 best[0][i] = i;
    for (int i = 1; i \le mm[n-1]; i++)
        for (int j = 1; j+(1 << i)-1 < n; j++)
            int a = best[i-1][j], b = best[i-1][j+(1 << (i-1))];
            best[i][j] = rmq[a] < rmq[b]?a:b;
int askrmq(int a, int b)
    int t = mm[b-a+1];
    b = (1 << t) -1;
    a = best[t][a];
    b = best[t][b];
    return rmq[a] < rmq[b]?a:b;</pre>
//求 a, b 位置开始的后缀的最长公共前缀
int lcp(int a, int b)
    a = rk[a];
    b = rk[b];
    if(a > b)
                swap(a, b);
    return height[askrmq(a+1, b)];
int main()
    gets(s);
    int len = strlen(s);
    for (int i = 0; i < len; i++) r[i] = s[i];
    da (r, sa, rk, height, 1en, 128);
    return 0;
                                        后缀数组 DC3
//0(n)
//所有数组开 3 倍
\#define F(x) ((x)/3+((x)\%3 == 1?0:tb))
#define G(x) ((x) < tb?(x)*3+1:((x)-tb)*3+2)
int wa[3*N], wb[3*N], wv[3*N], wss[3*N], r[3*N], sa[3*N], rk[3*N], height[3*N];
char s[3*N];
int c0(int *r, int a, int b)
    return r[a] == r[b] \&\& r[a+1] == r[b+1] \&\& r[a+2] == r[b+2];
int c12(int k, int *r, int a, int b)
    if (k == 2) return r[a] < r[b] || r[a] == r[b] && c12(1, r, a+1, b+1);
    return r[a] < r[b] \mid | r[a] == r[b] \&\& wv[a+1] < wv[b+1];
```

```
void sort(int *r, int *a, int *b, int n, int m)
                                    wv[i] = r[a[i]];
    for (int i = 0; i < n; i++)
                                    wss[i] = 0;
    for (int i = 0; i < m; i++)
    for (int i = 0; i < n; i++)
                                    wss[wv[i]]++;
    for (int i = 1; i < m; i++)
                                    wss[i] += wss[i-1];
    for (int i = n-1; i \ge 0; i--) b[--wss[wv[i]]] = a[i];
void dc3(int *r, int *sa, int n, int m)
    int *rn = r+n, *san = sa+n, ta = 0, tb = (n+1)/3, tbc = 0, i, j, p;
    r[n]=r[n+1]=0;
    for(i = 0; i < n; i++)
         if(i\%3) wa[tbc++] = i;
    sort(r+2, wa, wb, tbc, m);
    sort(r+1, wb, wa, tbc, m);
    sort (r, wa, wb, tbc, m);
    for (p = 1, rn[F(wb[0])] = 0, i = 1; i < tbc; i++)
        rn[F(wb[i])] = c0(r, wb[i-1], wb[i])?p-1:p++;
    if (p < tbc) dc3(rn, san, tbc, p);
    else
        for (i = 0; i < tbc; i++) san[rn[i]] = i;
    for (i = 0; i < tbc; i++)
         if(san[i] < tb) wb[ta++] = san[i]*3;
    if(n\%3 == 1)
                      wb[ta++] = n-1;
    sort (r, wb, wa, ta, m);
    for (i = 0; i < tbc; i++) wv [wb[i] = G(san[i])]=i;
    for (i = 0, j = 0, p = 0; i < ta && j < tbc; p++)
                                                          sa[p] =
c12 \text{ (wb[j]}\%3, r, wa[i], wb[j])?wa[i++]:wb[j++];
                         sa[p] = wa[i++];

sa[p] = wb[j++];
    for (; i < ta; p++)
    for (; j < tbc; p++)
void da(int *r, int *sa, int *rank, int *height, int n, int m)
    for (int i = n; i < n*3; i++) r[i] = 0;
    dc3(r, sa, n+1, m);
    int k = 0;
    for (int i = 0; i \le n; i++)
                                    rank[sa[i]] = i;
    for (int i = 0; i < n; i++)
         if(k)
                 k--;
         int t = sa[rank[i]-1];
         while (r[i+k] == r[t+k]) k++;
         height[rank[i]] = k;
```

后缀自动机

- 1.所有的子串都能够由 root 走到。
- 2.所有走到终止状态的路径都是后缀。
- 3.每个状态 s 代表的串的长度是区间(len_{pre},len_s]。
- 4.对于每个状态 s,它代表的所有串在原串中出现次数和每次出现的右端点相同。

- 5.在后缀自动机的 Parent 树中,每个状态的 right 集合都是其父状态 right 集合的子集。
- 6.后缀自动机的 Parent 树是原串的反向前缀树。
- 7.两个串的最长公共后缀,位于这两个串对应状态在 Parent 树上的最近公共祖先状态。

后缀自动机模版

```
struct samnode
    int len, right, pre, sum, next[26];
    void clear()
        1en = 0;
        right = 0;
        sum = 0;
        pre = -1;
        memset(next, -1, sizeof(next));
}st[2*N];
int n, sz, root, last;
void saminit()
    sz = 0;
    root = 1ast = 0;
    st[root].clear();
void samadd(int w)
    int p = last, now = ++sz;
    last = now;
    st[now].clear();
    st[now].1en = st[p].1en+1;
    st[now].right = 1;
    while (p != -1 \&\& st[p]. next[w] == -1)
        st[p].next[w] = now;
        p = st[p].pre;
    if(p == -1)
        st[now].pre = root;
        return;
    int q = st[p].next[w];
    if(st[q].1en == st[p].1en+1)
        st[now].pre = q;
        return;
    int neww = ++sz;
    st[neww].clear();
    memcpy(st[neww].next, st[q].next, sizeof(st[q].next));
    st[neww].len = st[p].len+1;
    st[neww].pre = st[q].pre;
    st[q].pre = neww;
    st[now].pre = neww;
    while (p != -1 \&\& st[p]. next[w] == q)
        st[p].next[w] = neww;
        p = st[p].pre;
```

```
void sambuild(char *s)
    saminit();
    int len = strlen(s);
for(int i = 0;i < len;i++)</pre>
         samadd(s[i]-'a');
                                          求最长公共子串
int main()
    scanf ("%s", s);
    sambuild(s);
scanf("%s", s);
    int len = strlen(s), ans = 0;
    int p = root, 1 = 0;
    for (int i = 0; i < len; i++)
         int c = s[i]-'a';
         if (st[p]. next[c] != -1)
             1++;
             p = st[p].next[c];
         else
             while (p != -1 \&\&st[p].next[c] == -1)  p = st[p].pre;
             if(p == -1)
                  1 = 0;
                  p = root;
             else
                  1 = st[p].1en+1;
                  p = st[p].next[c];
         ans = \max(ans, 1);
    printf("%d\n", ans);
    return 0;
                                            求最小表示
int main()
```

```
now = st[now].next[j];
break;
}

printf("%d\n", st[now].len-len+1);
}
```

求出现次数大于 k 的子串数量

```
void sambuild(char *s)
    saminit();
    int len = strlen(s);
    for (int i = 0; i < len; i++)
        samadd(s[i]-'a');
char s[N];
int k, num[N], top[2*N];
int main()
    int T;
    scanf ("%d", &T);
    while (T--)
        scanf ("%d%s", &k, s);
        sambuild(s);
        int len = strlen(s);
        memset (num, 0, sizeof (num));
        for (int i = 1; i \le sz; i++)
                                      num[st[i].1en]++;
        for (int i = 1; i \le len; i++) num[i] += num[i-1];
        for (int i = sz; i >= 1; i--)
                                       top[num[st[i].len]--] = i;
        for (int i = sz; i >= 1; i-
             int p = top[i];
             if(st[p].pre != -1) st[st[p].pre].right += st[p].right;
        long long ans = 0;
        for (int i = 1; i \le sz; i++)
             if(st[i].right >= k)
                                      ans += st[i].len-st[st[i].pre].len;
        printf("%11d\n", ans);
    return 0;
```

求第 k 小的子串(重复算一个)

```
printf("%c", i+'a');
             dfs(p,k);
             return:
        k = st[p].sum;
int main()
    scanf ("%s%d%d", s, &t, &k);
    sambuild(s);
    int len = strlen(s);
    for(int i = 1; i \le sz; i++) num[st[i].len]++;
    for (int i = 1; i \le len; i++) num[i] += num[i-1];
    for(int i = sz; i \ge 1; i--) top[num[st[i].len]--] = i;
    for (int i = 1; i \le sz; i++)
                                  st[i].right = 1;
    st[0].right = 0;
    for (int i = sz; i >= 0; i--)
        int p = top[i];
        st[p].sum = st[p].right;
        for (int j = 0; j < 26; j++)
             int pp = st[p].next[j];
             if(pp == -1) continue;
             st[p].sum += st[pp].sum;
    if(k > st[0].sum)
                         printf("-1 \setminus n");
    else
        dfs(0, k);
        printf("\n");
    return 0;
```

求第 k 小的字串(重复算多个)

```
sambuild(s);
    int len = strlen(s);
    for (int i = 1; i \le sz; i++) num[st[i].len]++;
    for(int i = 1; i \le len; i++) num[i] += num[i-1];
    for(int i = sz; i \ge 1; i--) top[num[st[i].len]--] = i;
    for (int i = sz; i >= 1; i--)
        int p = top[i];
        if(st[p].pre != -1) st[st[p].pre].right += st[p].right;
    for (int i = sz; i >= 0; i--)
        int p = top[i];
        st[p].sum = st[p].right;
        for (int j = 0; j < 26; j++)
            int pp = st[p].next[j];
            if(pp == -1)
                          continue;
            st[p].sum += st[pp].sum;
    if (k > st[0].sum) printf ("-1 \setminus n");
    else
        dfs(0,k);
        printf("\n");
    return 0;
                                         字符串 hash
const int HASH = 10007;
const int N = 2010;
const int SEED = 13331;
char s[N];
struct HASHMAP
    int head[N], next[N], size, f[N];
    unsigned long long state[N];
    void init()
        size = 0:
        memset(state, -1, sizeof(state));
    int insert (unsigned long long x, int id)
        int h = x\%HASH;
        for (int i = head[h]; i != -1; i = next[i])
            if(x = state[i]) return f[i];
        f[size] = id;
```

state[size] = x;
next[size] = head[h];
head[h] = size++;

unsigned long long t = 0;

for (int $i = 1; i \le len; i++$) t = t*SEED+s[i-1];

return 0;

int main()

图论

最短路 dij 邻接矩阵

```
//0 (n^2)
void dij(int beg)
    memset(dis, 0x3f, sizeof(dis));
    memset (vis, 0, sizeof (vis));
    dis[beg] = 0;
    for (int i = 1; i \le n; i++)
         int k = -1, minn = INF;
         for (int j = 1; j \le n; j++)
             if(!vis[j] && dis[j] < minn)</pre>
                  minn = dis[j];
                  k = j;
         if (k == -1) break;
         vis[k] = 1;
         for (int j = 1; j \le n; j++)
             if(!vis[j] && dis[k]+a[k][j] < dis[j])</pre>
                  dis[j] = dis[k]+a[k][j];
```

dij 优先队列

```
///0 \text{ (mlogm)}
struct xxx
    int to, w;
    xxx(int a, int b):to(a), w(b) {};
    friend bool operator <(xxx X, xxx Y)
        return X.w > Y.w;
void dij(int beg)
    priority_queue<xxx> q;
    memset(dis, 0x3f, sizeof(dis));
    memset(vis, 0, sizeof(vis));
    dis[beg] = 0;
    q. push(xxx(beg, 0));
    while(!q.empty())
        int now = q. top(). to;
        q. pop();
        if (vis[now])
                         continue;
        vis[now] = 1;
        for (int i = 0; i < v[now]. size (); i++)
             int t = v[now][i]. to, w = v[now][i]. w;
             if(!vis[t] && dis[now]+w < dis[t])</pre>
```

```
dis[t] = dis[now]+w;
                 q. push(xxx(t, dis[t]));
                                             Floyd
//0 (n^3)
void floyd()
    for (int k = 0; k < n; k++)
        for (int i = 0; i < n; i++)
                                           a[i][j] = min(a[i][j], a[i][k]+a[k][j]);
             for (int j = 0; j < n; j++)
                                          bellman_ford
//0 \, (nm)
struct xxx
    int u, v, w;
    xxx(int a, int b, int c):u(a), v(b), w(c) {};
vector <xxx> v;
//存在负环返回0,否则返回1
bool bellman ford(int beg)
    memset (dis, 0x3f, sizeof (dis));
    dis[beg] = 0;
    for (int i = 1; i < n; i++)
        for (int j = 0; j < v. size(); j++)
             int x = v[j].u, y = v[j].v, w = v[j].w;
             dis[y] = min(dis[y], dis[x]+w);
    for (int i = 0; i < v. size(); i++)
        int x = v[i].u, y = v[i].v, w = v[i].w;
        if(dis[y] > dis[x]+w) return 0;
    return 1;
                                             Spfa
//0 \, (km)
struct xxx
    int to, w;
    xxx(int a, int b):to(a), w(b) {};
vector \langle xxx \rangle v[205];
//存在负环返回0,否则返回1
bool spfa(int beg)
    queue<int> q;
    memset(c, 0, sizeof(c));
    memset(vis, 0, sizeof(vis));
    memset(dis, 0x3f, sizeof(dis));
```

```
dis[beg] = 0;
q. push (beg);
vis[beg] = 1;
c[beg] = 1;
while(!q.empty())
    int now = q. front();
    q. pop();
    vis[now] = 0;
    for (int i = 0; i < v[now]. size(); i++)
         int t = v[now][i]. to, w = v[now][i]. w;
         if (dis[now]+w < dis[t])</pre>
             dis[t] = dis[now]+w;
             vis[t] = 1;
             q.push(t);
if(++c[t] > n) return 0;
return 1;
```

分层图最短路

```
struct xxx
    int to, w;
    xxx(int a, int b):to(a), w(b) {};
    friend bool operator (xxx x, xxx y)
         return x.w > y.w;
vector \langle xxx \rangle v[11005];
int n, m, k, a[1005][1005], dis[11005], vis[11005];
void dij(int beg)
    memset (dis, 0x3f, sizeof (dis));
    memset(vis, 0, sizeof(vis));
    priority_queue<xxx> q;
dis[beg] = 0;
    q. push (xxx(beg, 0));
    while (!q. empty())
         int now = q. top(). to;
         q. pop();
         if (vis[now])
                          continue;
         vis[now] = 1;
         for (int i = 0; i < v[now]. size (); i++)
              int t = v[now][i]. to, w = v[now][i]. w;
              if (w+dis[now] < dis[t])</pre>
                  dis[t] = w+dis[now];
                  q. push (xxx (t, dis[t]));
int main()
```

```
while ("scanf ("%d%d%d", &n, &m, &k))
     for (int i = 1; i \le 11000; i++)
                                              v[i].clear();
     memset (a, 0x3f, sizeof(a));
     for (int i = 1; i \le m; i++)
          int u, v, w;
         scanf("%d%d%d", &u, &v, &w);
a[u][v] = min(a[u][v], w);
a[v][u] = min(a[v][u], w);
    for (int i = 1; i \leq n; i++)
          for (int j = 1; j \le n; j++)
               if(i == j \mid \mid a[i][j] == INF)
                                                        continue;
               for (int 1 = 0; 1 \le k; 1++)
                    v[1*n+i]. push_back(xxx(1*n+j, a[i][j]));
                    if(1 != k)
                         v[1*n+i]. push back(xxx((1+1)*n+j,0));
     dij(1);
     printf("%d\n", dis[(k+1)*n]);
return 0;
```

最小生成树 prim 邻接矩阵

```
//不连通返回-1,否则返回最小花费
int prim()
    int ans = 0;
    memset(vis, 0, sizeof(vis));
    vis[1] = 1;
    for (int i = 2; i \le n; i++)
                                 cost[i] = a[1][i];
    for (int i = 2; i \le n; i++)
        int minn = INF;
        int k = -1;
        for (int j = 1; j \le n; j++)
            if(!vis[j] && minn > cost[j])
                minn = cost[j];
                k = j;
        if (minn == INF) return -1;
        ans += minn;
        vis[k] = 1;
        for (int j = 1; j \le n; j++)
            if(!vis[j] \&\& cost[j] > a[k][j]) cost[j] = a[k][j];
    return ans;
```

prim 优先队列

```
struct xxx
    int to, w;
    xxx(int a, int b):to(a), w(b) {}
    friend bool operator (xxx a, xxx b)
        return a.w > b.w;
//非连通返回-1,否则返回最小花费
int prim()
    memset(vis, 0, sizeof(vis));
    for (int i = 0; i < n; i++)
                                 dis[i] = INT MAX;
    int ans = 0;
    priority_queue<xxx> q;
    q. push (xxx(1, 0));
    while(!q.empty())
         while(!q.empty() && vis[q.top().to]) \\ q.pop(); 
        if(q.empty()) break;
        ans += q. top().w;
        int now = q. top(). to;
        q. pop();
        vis[now] = 1;
        for (int i = 0; i < v[now]. size(); i++)
            int t = v[now][i]. to, w = v[now][i]. w;
            if(vis[t]) continue;
            if (dis[t] <= w) continue;
            dis[t] = w;
            q. push(xxx(t, w));
    return ans;
                                           Kruskal
```

```
struct xxx
    int from, to, w;
    xxx(int a, int b, int c):from(a), to(b), w(c) {};
    friend bool operator <(xxx a, xxx b)
        return a.w < b.w;
vector (xxx) v;
int findd(int x)
    return pre[x] == x?x:findd(pre[x]);
//不连通返回-1,否则返回最小花费
bool kruskal()
                                 pre[i] = i;
    for (int i = 1; i \le n; i++)
    int ans = 0, cnt = 0;
    sort(v.begin(), v.end());
    for (int i = 0; i < v. size(); i++)
        int x = findd(v[i].from), y = findd(v[i].to);
```

矩阵树定理

- 1.G 的度数矩阵 D[G]是一个 n*n 的矩阵,并且满足: 当 i≠j 时,dij=0; 当 i=j 时,dij 等于 vi 的度数。
- 2.G 的邻接矩阵 A[G]也是一个 n*n 的矩阵, 并且满足: 如果 vi、vj 之间有边直接相连,则 aij=1,否则为 0。
- 3.G 的 Kirchhoff 矩阵(也称为拉普拉斯算子)C[G]=D[G]-A[G]。

则 G 的生成树个数等于 C[G]任何一个 n-1 阶主子式的行列式的绝对值。

矩阵树

```
int n, m, k, a [55] [55];
long long g[55][55];
long long calc()
    long long ans = 1;
    for (int i = 1; i < n; i++)
        for (int j = i+1; j < n; j++)
             while (g[j][i] != 0)
                 long long t = g[i][i]/g[j][i];
                 for (int k = i; k < n; k++)
                                                g[i][k] = t*g[j][k];
                                                swap(g[i][k], g[j][k]);
                 for (int k = i; k < n; k++)
                 ans = -ans;
        if(g[i][i] == 0)
                              return 0;
        ans = ans*g[i][i];
    return abs(ans);
int main()
    ios::sync_with_stdio(false);
    while (cin \gg n \gg m \gg k)
        memset(a, 0, sizeof(a));
        memset(g, 0, sizeof(g));
        while(m--)
             int x, y;
             cin \gg x \gg y;
             a[x][y] = a[y][x] = 1;
        for (int i = 1; i \le n; i++)
             int t = 0;
             for (int j = 1; j \le n; j++)
                 if(i != j && !a[i][j])
```

```
t^{++};
g[i][j] = -1;
            g[i][i] = t;
        cout << calc() << endl;
    return 0;
                                         次小生成树
int n, vis[505], used[505], pre[505], cost[505], a[505][505], maxd[505][505];
//不连通返回-1,否则返回次小花费
int prim()
    int ans = 0;
    memset(vis, 0, sizeof(vis));
    memset (used, 0, sizeof (used));
    memset (maxd, 0, sizeof (maxd));
    vis[1] = 1;
                                 cost[i] = a[1][i];
    for (int i = 2; i \le n; i++)
    for (int i = 2; i \le n; i++)
        int minn = INF;
        int k = -1;
        for (int j = 1; j \le n; j++)
            if(!vis[j] && minn > cost[j])
                minn = cost[j];
                k = j;
        if (minn == INF) return -1;
        ans += minn;
        vis[k] = 1;
        for (int j = 1; j \le n; j++)
            if(vis[j]) maxd[j][k] = maxd[k][j] = max(maxd[j][pre[k]], cost[k]);
            if(!vis[j] && cost[j] > a[k][j])
                cost[j] = a[k][j];
                pre[j] = k;
    return ans;
                                         Tarjan 缩点
//0 (n+m)
//缩点, belong 保存每个点属于的强联通集合编号
int n, m, vis[10005], dfn[10005], low[10005], belong[10005], cnt, ans;
vector < int > v[10005];
```

void tarjan(int now)

stack<int> s;
s. push(now);
vis[now] = 1;

dfn[now] = 1ow[now] = ++cnt;

for (int i = 0; i < v[now]. size(); i++)

```
int t = v[now][i];
        if(dfn[t] == 0)
            tarjan(t);
            low[now] = min(low[now], low[t]);
                            low[now] = min(low[now], dfn[t]);
        else if (vis[t])
    if(dfn[now] == low[now])
        ans++;
        while(!s.empty())
            int t = s. top();
            s. pop();
            vis[t] = 0;
            belong[t] = ans;
            if(t == now) break;
int main()
    for (int i = 1; i \le n; i++)
        if(dfn[i] == 0) tarjan(i);
                                     Kosaraju 求强联通分量
int n, m, vis1[10005], vis2[10005], ans;
vector < int > v1[10005], v2[10005];
stack<int> s;
void dfs1(int now)
    vis1[now] = 1;
    for (int i = 0; i < v1[now]. size(); i++)
        int t = v1[now][i];
        if(vis1[t]) continue;
        dfs1(t);
    s. push (now);
void dfs2(int now)
    vis2[now] = 1;
    for (int i = 0; i < v2[now]. size (); i++)
        int t = v2[now][i];
        if(vis2[t]) continue;
        dfs2(t);
int main()
    ios::sync_with_stdio(false);
    while (scanf ("%d%d", &n, &m) && (n+m))
        for (int i = 1; i \le n; i++)
```

```
v1[i].clear();
         v2[i]. clear();
    memset (vis1, 0, sizeof (vis1));
    memset (vis2, 0, sizeof (vis2));
    while(!s.empty())
                           s. pop();
    ans = 0;
    while (m--)
         int x, y;
scanf("%d%d", &x, &y);
         v1[x]. push back(y);
         v2[y]. push back (x);
    for (int i = 1; i \le n; i++)
         if(!vis1[i]) dfs1(i);
    while (!s. empty())
         if(!vis2[s. top()])
             ans++:
             dfs2(s.top());
         s. pop();
    if (ans == 1) printf ("Yes\n");
             printf("No\n");
    else
return 0;
```

无向图中一些基本概念

```
割点集合: 删除这个顶点集合,以及这个集合中所有顶点关联的边以后,原图变成多个连通块。
点连通度: 最小割点集合中的顶点数。
割边集合: 删除这个边集合以后,原图变成多个连通块。
边连通度: 最小割边集合中的边数。
点双连通(双连通或重连通): 无向连通图的点连通度大于 1。
割点(关节点): 当且仅当这个图的点连通度为 1,则割点集合的唯一元素被称为割点。
边双连通(双连通或重连通): 无向连通图的边连通度大于 1。
桥(关节边): 当且仅当这个图的边连通度为 1,则割边集合的唯一元素被称为桥。
边双连通分支: 在连通分支中去掉一条边,连通分支仍连通。
点双连通分支(块): 在连通分支中去掉一个点,连通分支仍连通。
```

求割点和桥

```
struct bridge
{
    int u, int v;
    bridge(int a, int b):u(a),v(b) {}
};
vector<bridge> ansb;
vector<int> absc;

//ansb 保存桥, ansc 保存割点
void tarjan(int now, int pre)
{
    low[now] = dfn[now] = ++cnt;
    int son = 0;
    for(int i = 0;i < v[now].size();i++)
    {
        int t = v[now][i];
    }
}</pre>
```

```
if(t == pre)
                 continue;
    if(!dfn[t])
       son++:
       tarjan(t, now);
       low[now] = max(low[now], low[t]);
       //桥, (u, v)为树枝, low[v] > dfn[u]
       if(low[t] > dfn[now])
           ansb. push back(bridge(now, t));
           ansb. push back(bridge(t, now));
       //割点, (u, v)父子边, u 不为树根, low[v] >= dfn[u]
       if (now != root && low[t] >= dfn[now]) ansc. push back(t);
           low[now] = max(low[now], low[t]);
   else
//割点, u 为根, 分支数大于 1
if(now == root && son > 1) ansc.push_back(now);
```

求边双连通分支

去掉桥, 其余的连通分支就是边双连通分支了。

一个有桥的连通图要变成双连通图的话,把双连通子图缩成一个点,形成一棵树。

再加上(leaf+1)/2条边。

求点双连通分支

```
//cutcnt 表示个数
//block 储存每个点连通分支
stack<int> s;
vector<int> block[10005];
void tarjan(int now, int pre)
    low[now] = dfn[now] = ++cnt;
    s. push (now);
    for (int i = 0; i < v[now]. size(); i++)
        int t = v[now][i];
        if(t == pre)
                       continue;
        if (!dfn[t])
            tarjan(t, now);
            low[now] = max(low[now], low[t]);
            if(low[t]) = dfn[now]
                cutcnt++;
                block[cutcnt].clear();
                while(!s.empty())
                    int tt = s. top();
                    s. pop();
                    block[cutcnt].push back(tt);
                    if(tt = t) break;
                block[cutcnt].push back(now);
                low[now] = max(low[now], low[t]);
        else
```

最小树形图

```
struct xxx
    int u, v, w;
}e[10005];
int n, m, a[55], sum[55], cnt, in[800], pre[800], vis[800], id[800];
void addedge(int u, int v, int w)
    e[cnt].u = u;
    e[cnt].v = v;
    e[cnt++].w = w;
//已处理重边,不存在最小树形图返回-1,否则返回最小值
int zhuliu(int root, int n, int m)
    int ans = 0;
    while (1)
        //找最小入边
       for (int i = 0; i < n; i++)
                                 in[i] = INF;
        for (int i = 0; \langle m; i++ \rangle
            int u = e[i].u;
            int v = e[i].v;
            if(e[i].w < in[v] \&\& u != v)
                pre[v] = u;
                in[v] = e[i].w;
                 //去除自环和重边
        for (int i = 0; i < n; i++)
            if(i == root) continue;
if(in[i] == INF) retur
                                                                           //除了跟以外
                              return -1;
有点没有入边,则根无法到达它
                                                 //找环
        int cnt = 0;
        memset (id, -1, sizeof(id));
        memset(vis, -1, sizeof(vis));
        in[root] = 0;
        for (int i = 0; i < n; i++)
            ans += in[i];
            int v = i:
            while(vis[v] != i && id[v] == -1 && v != root) //每个点寻找其前序点,要么
最终寻找至根部,要么找到一个环
               vis[v] = i;
                v = pre[v];
            if(v != root && id[v] == -1)//缩点
                for(int u = pre[v]; u != v; u = pre[u]) id[u] = cnt;
                id[v] = cnt++;
        if(cnt == 0) break; //无环
                                        则 break
        for (int i = 0; i < n; i++)
            if(id[i] == -1) id[i] = cnt++;
```

```
for(int i = 0; i < m;)
{
    int u = e[i].u;
    int v = e[i].v;
    e[i].u = id[u];
    e[i].v = id[v];
    if(id[u]!=id[v]) e[i++].w -= in[v];
    else e[i]=e[--m];
}
    n = cnt;
    root = id[root];
}
return ans;
}</pre>
```

二分图

最大匹配 == 最小点覆盖 最小路径覆盖 == 最大独立集 == 顶点数-最大匹配 最大团 == 补图最大独立集

```
匈牙利
```

```
int n, m, 1;
int linker[505];
bool used[505];
vector<int> v[505];
bool dfs(int u)
    for (int i = 0; i < v[u]. size(); i++)
        int t = v[u][i];
        if(!used[t])
             used[t] = 1:
             if(linker[t] == -1 \mid | dfs(linker[t]))
                 linker[t] = u;
                 return 1;
    return 0;
int MaxMatch()
    int ans = 0;
    memset(linker, -1, sizeof(linker));
    for (int i = 1; i \le n; i++)
        memset (used, 0, sizeof (used));
        if(dfs(i))
                      ans++;
    return ans;
```

Hopcroft-Carp

```
//O(V^0.5 E)
//适用于数据较大的二分匹配
int g[MAXN], Mx[MAXN], My[MAXN], Nx, Ny;
int dx[MAXN], dy[MAXN], dis;
bool vst[MAXN];
bool searchP()
```

```
queue<int>Q;
    dis=INF;
    memset (dx, -1, sizeof(dx));
    memset (dy, -1, sizeof(dy));
    for (int i=0; i < Nx; i++)
         if(Mx[i]==-1)
              Q. push(i);
              dx[i]=0;
    while(!Q. empty())
         int u=Q. front();
         Q. pop();
         if(dx[u]>dis) break;
         for(int v=0; v<Ny; v++)
if(g[u][v]&&dy[v]==-1)
                   dy[v]=dx[u]+1;
                  if (My \lfloor v \rfloor ==-1) dis=dy\lfloor v \rfloor;
                  else
                       dx[My[v]]=dy[v]+1;
                       Q. push (My[v]);
    return dis!=INF;
bool DFS (int u)
    for (int v=0; v<Ny; v++)
        if(!vst[v]\&\&g[u][v]\&\&dy[v]==dx[u]+1)
             vst[v]=1;
             if (My[v]!=-1\&dy[v]==dis) continue;
             if(My[v] == -1 \mid DFS(My[v]))
                 My[v]=u;
                 Mx[u]=v;
                 return 1;
    return 0;
int MaxMatch()
    int res=0;
    memset (Mx, -1, sizeof(Mx));
    memset (My, -1, sizeof(My));
    while(searchP())
         memset(vst, 0, sizeof(vst));
         for (int i=0; i<Nx; i++)
           if(Mx[i]==-1\&\&DFS(i)) res++;
    return res;
                                            多重匹配匈牙利
bool dfs(int u)
```

for (int i = 0; i < v[u]. size(); i++)

```
int t = v[u][i];
         if(used[t]) continue;
        used[t] = 1;
if(linker[t][0] < capacity[t])</pre>
             linker[t][++linker[t][0]] = u;
             return 1;
        for (int j = 1; j \le capacity[t]; j++)
             if(dfs(linker[t][j]))
                 linker[t][j] = u;
                 return 1:
        return 0;
int MaxMatch()
    int ans = 0;
    memset(linker, 0, sizeof(linker));
    for (int i = 1; i \le n; i++)
        memset (used, 0, sizeof (used));
        if(dfs(i))
                       ans++;
    return ans;
                                          二分图最大权 KM
int n, m, g[305][305], linker[305], lx[305], ly[305], slack[305], visx[305], visy[305];
bool dfs(int u)
    visx[u] = 1;
    for (int i = 1; i \le m; i++)
        if(visy[i]) continue;
         int t = 1x[u]+1y[i]-g[u][i];
         if(t == 0)
             visy[i] = 1;
             if(!linker[i]|| dfs(linker[i]))
                 linker[i] = u;
                 return 1;
                 slack[i] = min(slack[i], t);
        else
    return 0;
int KM()
    memset(linker, 0, sizeof(linker));
    memset (1y, 0, sizeof(1y));
    for (int i = 1; i \le n; i++)
        1x[i] = -INF;
```

```
for (int j = 1; j \le m; j++)
         if(g[i][j] > 1x[i])  1x[i] = g[i][j];
for (int i = 1; i \le n; i++)
    memset(slack, 0x3f, sizeof(slack));
    while (1)
         memset(visx, 0, sizeof(visx));
         memset(visy, 0, sizeof(visy));
         if(dfs(i))
                      break:
         int d = INF;
         for (int j = 1; j \le m; j++)
             if(!visy[j]) d = min(d, slack[j]);
         for (int j = 1; j \le n; j++)
             if(visx[j])  1x[j] = d;
         for (int j = 1; j \le m; j++)
             if(visy[j]) ly[j] += d;
else slack[j] -= d;
int ans = 0;
for (int i = 1; i \le m; i++)
    if(linker[i]) ans += g[linker[i]][i];
return ans;
```

网络流

最大流 == 最小割

EdmondsKarp

```
//s 为源点, t 为汇点
//0 \, (nm^2)
int n, m, s, t, a[20][20], pre[20], vis[20];
bool bfs()
    memset (pre, 0, sizeof (pre));
    memset(vis, 0, sizeof(vis));
    vis[s] = 1;
    queue (int) q;
    q. push(s);
    while(!q.empty())
        int now = q. front();
        q. pop();
        if(now == t)
                        return 1;
        for (int i = 1; i \le n; i++)
             if(vis[i]) continue;
             if (a[now][i])
                 q. push(i);
```

```
pre[i] = now;
                 vis[i] = 1;
    return 0;
int EdmondsKarp()
   int ans = 0;
   while(bfs())
       int minn = 1e9;
       for(int i = t;i != s;i = pre[i]) minn = min(minn, a[pre[i]][i]);
       for(int i = t;i != s;i = pre[i])
           a[pre[i]][i] = minn;
           a[i][pre[i]] += minn;
       ans += minn;
   return ans;
                                            Dinic
struct edge
    int u, v, c, next;
e[20*N];
int n, m, sp, tp, cnt, head[N], d[N];
//源点汇点全局定义
void init()
    cnt = 0;
    memset (head, -1, sizeof (head));
void addedge(int u, int v, int c)
    e[cnt].u = u;e[cnt].v = v;e[cnt].c = c;
    e[cnt].next = head[u]; head[u] = cnt++;
    e[cnt].u = v;e[cnt].v = u;e[cnt].c = 0;
    e[cnt].next = head[v]; head[v] = cnt++;
int bfs()
    queue (int) q;
    memset (d, -1, sizeof(d));
    d[sp]=0;
    q. push (sp);
    while (!q. empty())
        int cur = q. front();
        for (int i = head[cur]; i != -1; i = e[i]. next)
             int u = e[i].v;
            if(d[u] == -1 \&\& e[i].c > 0)
                 d[u] = d[cur]+1;
                 q. push (u);
```

```
return d[tp] != -1;
int dfs(int a, int b)
    int r = 0;
    if (a == tp) return b;
    for(int i = head[a]; i != -1 \&\& r < b; i = e[i].next)
        int u = e[i].v;
        if(e[i].c > 0 \&\& d[u] == d[a]+1)
             int x = min(e[i].c,b-r);
             x = dfs(u, x);
            r_{-}+= x;
             e[i].c = x;
             e[i^1].c += x;
    if(!r) d[a] = -2;
    return r;
int dinic()
    int ans = 0, t;
    while(bfs())
        while (t = dfs(sp, INF))
        ans += t;
    return ans;
                                             Isap
struct Edge
    int to, next, cap, flow;
} edge[M];
int n, m, cnt, head[N], gap[N], d[N], cur[N], que[N], p[N];
void init()
    cnt = 0;
    memset (head, -1, sizeof (head));
void addedge(int u, int v, int c)
    edge[cnt].to = v;
    edge[cnt].cap = c;
    edge[cnt].flow = 0;
    edge[cnt].next = head[u];
    head[u] = cnt++;
    edge[cnt].to = u;
    edge[cnt].cap = 0;
    edge[cnt].flow = 0;
    edge[cnt].next = head[v];
    head[v] = cnt++;
```

```
void bfs(int source, int sink)
    memset (d, -1, sizeof(d));
    memset(gap, 0, sizeof(gap));
    gap[0] = 1;
    int front = 0, rear = 0;
    d[sink] = 0;
    que[rear++] = sink;
    while(front != rear)
        int u = que[front++];
        for (int i = head[u]; i != -1; i = edge[i]. next)
            int v = edge[i].to;
            if (d[v] != -1) continue;
            que[rear++] = v;
            d[v] = d[u]+1;
            gap[d[v]]++;
int isap(int source, int sink, int N)
                                            //源点,汇点,总点数
    bfs(source, sink);
    memcpy (cur, head, sizeof (head));
    int top = 0, x = source, flow = 0;
    while(d[source] < N)</pre>
        if(x == sink)
             int Min = INF, inser;
            for (int i = 0; i < top; i++)
                 if (Min > edge[p[i]]. cap-edge[p[i]]. flow)
                     Min = edge[p[i]]. cap-edge[p[i]]. flow;
                     inser = i;
            for (int i = 0; i < top; i++)
                 edge[p[i]]. flow += Min;
                 edge[p[i]^1]. flow = Min;
            flow += Min;
            top = inser;
            x = edge[p[top]^1].to;
            continue;
        for (int i = cur[x]; i != -1; i = edge[i]. next)
            int v = edge[i].to;
            if(edge[i]. cap > edge[i]. flow && d[v]+1 == d[x])
                 ok = 1;
                 cur[x] = i;
                 p[top++] = i;
                 x = edge[i].to;
                 break;
        if (!ok)
```

```
int Min = N;
            for (int i = head[x]; i != -1; i = edge[i]. next)
                 if(edge[i].cap > edge[i].flow && d[edge[i].to] < Min)</pre>
                     Min = d[edge[i].to];
                     cur[x] = i;
            if(-gap[d[x]] == 0) break;
            gap[d[x] = Min+1]++;
            if (x != source) x = edge[p[--top]^1]. to;
    return flow;
                                        最小费用最大流
int n, m, s, t, pre [1005], vis [1005], dis [1005], head [1005], cnt = 0;
struct ee
    int u, v, cap, cost, next;
e[2005]:
void add(int u, int v, int cap, int cost)
    e[cnt].u = u;
    e[cnt].v = v;
    e[cnt].cap = cap;
    e[cnt].cost = cost;
    e[cnt].next = head[u];
    head[u] = cnt++;
    e[cnt].u = v;
    e[cnt].v = u;
    e[cnt]. cap = 0;
    e[cnt].cost = -cost;
    e[cnt].next = head[v];
    head[v] = cnt++;
bool spfa()
    memset(vis, 0, sizeof(vis));
    memset(pre, -1, sizeof(pre));
    for (int i = s; i \le t; i++) dis[i] = 1e9;
    vis[s] = 1;
    dis[s] = 0;
    queue <int> q;
    q. push(s);
    while(!q.empty())
        int u = q. front();
        q. pop();
        vis[u] = 0;
        for (int i = head[u]; i != -1; i = e[i]. next)
            int v = e[i].v;
            if (e[i].cap && dis[v] > dis[u]+e[i].cost)
                 dis[v] = dis[u]+e[i].cost;
                 pre[v] = i;
                 if(vis[v]) continue;
                 q. push (v);
```

2-sat

染色法

```
//可得到最小字典序的解
int n, m, vis[16005];
vector \langle int \rangle v[16005];
stack(int) s;
bool dfs(int u)
    if (vis[u<sup>1</sup>])
                    return 0;
    if(vis[u]) return 1;
    vis[u] = 1;
    s. push (u);
    for (int i = 0; i < v[u]. size(); i++)
         int t = v[u][i];
        if(!dfs(t)) return 0;
    return 1;
bool twosat(int n)
    memset(vis, 0, sizeof(vis));
    for (int i = 0; i < n; i += 2)
        if(vis[i] || vis[i^1]) continue;
```

```
while(!s.empty()) s.pop();
         if(!dfs(i))
             while(!s.empty())
                 vis[s.top()] = 0;
                 s. pop();
             if(!dfs(i^1)) return 0;
    return 1;
int main()
    ios::sync_with_stdio(false);
    while (cin >> n >> m)
        for (int i = 0; i < 2*n; i++) v[i]. clear();
        memset(vis, 0, sizeof(vis));
        while(m--)
             int a, b;
             cin \gg a \gg b;
             b-
             v[a].push_back(b^1);
             v[b]. push_back(a^1);
         if (twosat (2*n))
             for (int i = 0; i < 2*n; i++)
                  if(vis[i]) cout \langle\langle i+1 \langle\langle end1;
                 cout << "NIE" << endl;</pre>
        else
    return 0;
                                       tarjan 缩点+拓扑排序
int n, m, vis[2*N], dfn[2*N], low[2*N], belong[2*N], pos[2*N], deg[2*N], ok[2*N], cnt, color;
vector < int > v[2*N], v2[2*N], ans;
stack(int) st;
//求任意解
void top(int n)
    ans. clear();
    memset (ok, 0, sizeof (ok));
    queue <int> q;
    for (int i = 1; i \le color; i++)
        if(deg[i] == 0) q. push(i);
    while (!q. empty())
         int now = q. front();
        q. pop();
        if(ok[now] == 0)
             ok[now] = 1;
```

```
ok[pos[now]] = 2;
        for (int i = 0; i < v2[now]. size (); i++)
             int t = v2[now][i];
                                   q.push(t);
             if(--deg[t] == 0)
    for (int i = 0; i < n; i++)
        if(ok[belong[i]] == 1) ans. push back(i);
void tarjan(int now)
    st. push (now);
    vis[now] = 1;
dfn[now] = low[now] = ++cnt;
    for (int i = 0; i < v[now]. size(); i++)
        int t = v[now][i];
        if(dfn[t] == 0)
             tar jan(t);
             low[now] = min(low[now], low[t]);
                          low[now] = min(low[now], dfn[t]);
        else if (vis[t])
    if(dfn[now] == low[now])
        color++;
        while(!st.empty())
             int t = st. top();
             st. pop();
             vis[t] = 0;
             belong[t] = color;
             if(t == now) break;
bool solve(int n)
    for (int i = 0; i < n; i++)
        if(dfn[i] == 0) tarjan(i);
    for (int i = 0; i < n; i += 2)
        if(belong[i] == belong[i^1])
                                            return 0;
        pos[belong[i]] = belong[i^1];
pos[belong[i^1]] = belong[i];
    for (int i = 0; i < n; i++)
        for (int j = 0; j < v[i]. size(); j++)
             int t = v[i][j];
             if (belong[i] != belong[t])
                 deg[belong[i]]++;
                 v2[belong[t]].push back(belong[i]);
```

```
top(n);
    return 1;
                                       曼哈顿最小生成树
struct point
    int x, y, id;
    friend bool operator <(point a, point b)
        if (a. x != b. x) return a. x < b. x;
        return a. y < b. y;
}p[10005];
struct Bit
    int minn, pos;
    void init()
        minn = INF;
        pos = -1;
}bit[10005];
struct edge
    int u, v, d;
    friend bool operator (edge a, edge b)
        return a.d < b.d;
e[40005]:
int n, k, cnt, pre[10005], a[10005], b[10005];
int findd(int x)
    return pre[x] == x?x:findd(pre[x]);
void addedge(int u, int v, int d)
    e[++cnt].u = u;
    e[cnt].v = v;
    e[cnt].d = d;
int lowbit(int x)
    return x&-x;
void update(int i, int x, int pos)
    while (i > 0)
        if (x < bit[i].minn)</pre>
            bit[i].minn = x;
            bit[i].pos = pos;
        i = lowbit(i);
```

```
int ask(int i, int m)
    int minn = INF, pos = -1;
    while (i \le m)
        if(bit[i].minn < minn)</pre>
             minn = bit[i].minn;
             pos = bit[i].pos;
        i += lowbit(i);
    return pos;
int dist(point a, point b)
    return abs (a. x-b. x) +abs (a. y-b. y);
void manhattan()
    cnt = 0:
    for (int dir = 0; dir < 4; dir++)
        if(dir == 1 \mid \mid dir == 3)
             for (int i = 1; i \le n; i++)
                                           swap(p[i].x,p[i].y);
        else if (dir == 2)
             for (int i = 1; i \le n; i++) p[i].x = -p[i].x;
        sort(p+1, p+1+n);
        for (int i = 1; i \le n; i++)
                                       a[i] = b[i] = p[i].y-p[i].x;
        sort(b+1, b+1+n);
        int t = unique(b+1, b+n+1)-b-1;
                                     bit[i].init();
        for (int i = 1; i \le t; i++)
        for (int i = n; i >= 1; i--)
             int pos = 1 ower bound (b+1, b+1+t, a[i]) - b+1;
             int ans = ask(pos, t);
             if (ans != -1) addedge (p[i].id, p[ans].id, dist <math>(p[i], p[ans]));
             update(pos, p[i]. x+p[i]. y, i);
//返回第 k 小的边长
int solve(int k)
    manhattan():
    for(int i = 1; i \le n; i++) pre[i] = i;
    sort(e+1, e+1+cnt);
    for (int i = 1; i \le cnt; i++)
        int u = e[i].u, v = e[i].v;
        int x = findd(u), y = findd(v);
        if(x != y)
             pre[x] = y;
             if(--k == 0) return e[i].d;
```

```
一般图匹配带花树
//g[i][j]存放关系图: i, j是否有边, match[i]存放 i 所匹配的点
//最终匹配方案为 match
//复杂度 0 (n^3)
//点是从 1 到 n 的
bool g[MAXN][MAXN], inque[MAXN], inblossom[MAXN], inpath[MAXN];
int match[MAXN], pre[MAXN], base[MAXN];
queue < int > q;
//找公共祖先
int findancestor(int u, int v)
    memset (inpath, false, sizeof (inpath));
    while (1)
        u = base[u];
        inpath[u] = 1;
        if (\text{match}[u] == -1) break;
        u = pre[match[u]];
    while (1)
        v = base[v];
        if (inpath[v])
                       return v;
        v = pre[match[v]];
//压缩花
void reset(int u, int anc)
    while (u != anc)
        int v = match[u];
        inblossom[base[u]] = 1;
        inblossom[base[v]] = 1;
        v = pre[v];
        if (base[v] != anc) pre[v] = match[u];
        u = v;
void contract(int u, int v, int n)
    int anc = findancestor(u, v);
    memset(inblossom, 0, sizeof(inblossom));
    reset (u, anc);
    reset (v, anc);
    if(base[u] != anc) pre[u] = v;
    if (base[v] != anc) pre[v] = u;
    for (int i = 1; i \le n; i++)
        if(inblossom[base[i]])
            base[i] = anc;
            if(!inque[i])
                q. push back(i);
                inque[i] = 1;
```

```
bool bfs(int S, int n)
    for (int i = 0; i \le n; i++) pre[i]=-1, inque[i]=0, base[i]=i;
    q. clear();
    q. push_back(S);
    inque[\overline{S}] = 1;
    while(!q. empty())
        int u = q. front();
        q. pop();
        for (int v = 1; v \le n; v++)
             if(g[u][v] && base[v] != base[u] && match[u] != v)
                 if(v == S \mid | match[v] !=-1 \&\& pre[match[v]] != -1) contract(u, v, n);
                 else if (pre[v] == -1)
                     pre[v] = u;
                     if(match[v] != -1)
                          q.push_back(match[v]);
                          inque[match[v]] = 1;
                     else
                          u = v;
                          while (u! = -1)
                              v = pre[u];
                              int w = match[v];
                              match[u] = v;
                              match[v] = u;
                              u = w;
                         return 1;
    return 0;
int solve(int n)
    memset (match, -1, sizeof (match));
    int ans = 0;
    for (int i=1; i<=n; i++)
        if(match[i] == -1 \&\& dfs(i,n)) ans++;
    return ans;
                                      最近公共祖先倍增 Ica
void dfs(int now, int pre)
```

```
void dfs(int now, int pre)
{
    dep[now] = dep[pre]+1;
    for(int i = 0; i < v[now]. size(); i++)
    {
}</pre>
```

```
int t = v[now][i];
        if(t == pre)
                       continue;
        fa[t][0] = now;
        dfs(t, now);
int lca(int x, int y)
    if(dep[x] < dep[y]) swap(x, y);
    int t = dep[x]-dep[y];
    for (int i = 0; i \le 20; i++)
        if((1 << i) &t) x = fa[x][i];
    if(x == y) return x;
    for (int i = 20; i >= 0; i--)
        if (fa[x][i] != fa[y][i])
             x = fa[x][i];
             y = fa[y][i];
    return fa[x][0];
int main()
    dfs(1,0);
    for (int i = 1; i \le 20; i++)
        for (int j = 1; j \le n; j++)
             fa[j][i] = fa[fa[j][i-1]][i-1];
                                            lca+rmq
int n, m, f[N*2], rmq[N*2];
vector<int> v[N];
struct ST
    int mm[2*N], dp[2*N][20];
    void init(int n)
        mm[0] = -1;
        for (int i = 1; i \le n; i++)
             mm[i] = ((i&(i-1)) == 0)?mm[i-1]+1:mm[i-1];
             dp[i][0] = i;
        for (int j = 1; j \le mm[n]; j++)
             for (int_{i} = 1; i+(1 \le j)-1 \le n; i++) dp[i][j] = rmq[dp[i][j-1]] \le rmq[dp[i][j-1]]
rmq[dp[i+(1<<(j-1))][j-1]]?dp[i][j-1]:dp[i+(1<<(j-1))][j-1];
    int query (int a, int b)
        if(a > b) swap (a, b);
```

```
int k = mm[b-a+1];
        return rmq[dp[a][k]] \leq rmq[dp[b-(1<<k)+1][k]]?dp[a][k]:dp[b-(1<<k)+1][k];
}st;
void dfs (int now, int pre, int dep)
    f[++cnt] = now;
    rmq[cnt] = dep;
    p[now] = cnt;
    for (int i = 0; i < v[now]. size(); i++)
        int t = v[now][i];
        if(t == pre)
                         continue;
        dfs(t, now, dep+1);
        f[++cnt] = now;
        rmq[cnt] = dep;
void initlca(int root, int n)
    cnt = 0:
    dfs(root, root, 0);
    st. init (2*n-1);
int querylca(int x, int y)
    return f[st.query(p[x], p[y])];
```

欧拉路径

- ①无向图:连通,每个顶点度数都为偶数或者仅有两个点的度数为奇数。
- ②有向图: 底图连通,所有顶点的出度 == 入度 或者 有且仅有一个顶点 出度 == 入度+1,有且仅有一个顶点 入度 == 出度+1。
- ③混合图:底图连通,存在欧拉回路,则一定存在欧拉路径。否则如果有且仅有两个点的(出度-入度)是奇数,那么给这两个点加边,判断是否存在欧拉回路。

欧拉回路

- ①无向图:连通,每个顶点度数都为偶数。
- ②有向图: 底图连通,每个顶点出度等于入度。
- ③混合图:底图连通,网络流判断。

无向图欧拉路径

```
vector<int> ans;
struct edge
{
    int to, next, id, dir, flag;
}e[20005];

void addedge(int u, int v, int id)
{
    e[cnt]. to = v;
    e[cnt]. id = id;
    e[cnt]. dir = 0;
    e[cnt]. flag = 0;
    e[cnt]. next = head[u];
    head[u] = cnt++;
    e[cnt]. to = u;
    e[cnt]. id = id;
```

```
#define MAXN 250
vector(int) ans;
struct edge
    int to, next, id, flag;
}e[20005];
void addedge(int u, int v, int id)
    e[cnt]. to = v;
    e[cnt].id = id;
    e[cnt].flag = 0;
    e[cnt].next = head[u];
    head[u] = cnt++;
vector < edge > ans;
void dfs(int u)
    for (int i = head[u]; i != -1; i = e[i]. next)
        if(!e[i]. flag)
             e[i]. flag = 1;
             dfs(e[i].to);
             ans. push_back(i);
```

混合图欧拉回路判断

```
struct edge
{
    int u, v, cap, next;
}e[20005];
int n, m, cnt, head[N], dep[N], gap[N], cur[N], st[N], que[N], ind[N], outd[N];
int main()
{
    int T;
    scanf("%d", &T);
    while(T--)
    {
        scanf("%d%d", &n, &m);
    }
}
```

```
cnt = 0;
    memset (head, -1, sizeof (head));
    memset (ind, 0, sizeof (ind));
    memset(outd, 0, sizeof(outd));
    while (m--)
         int x, y, z;
scanf ("%d%d%d", &x, &y, &z);
outd[x]++;
         ind[y]++;
if(z == 0) addedge(x, y, 1);
    int sum = 0, flag = 1;
    for (int i = 1; i \le n; i++)
         if (outd[i]-ind[i] > 0)
              addedge(0, i, (outd[i]-ind[i])/2);
              sum += (outd[i]-ind[i])/2;
                  if(ind[i]-outd[i] > 0) addedge(i, n+1, (ind[i]-outd[i])/2);
         if((outd[i]-ind[i])%2) flag = 0;
    if(flag \&\& isap(0, n+1, n+2) == sum)
                                                printf("possible\n");
             printf("impossible\n");
return 0;
```

数据结构

```
并查集
void init()
   for (int i = 1; i \le n; i++)
                             pre[i] = i;
int findd(int x)
                      递归
   return pre[x] == x?x:pre[x] = findd(pre[x]);
void join(int a, int b)
   int x = findd(a), y = findd(b);
   if(x != y) pre[x] = y;
                                     带权值并查集
const int N = 50005;
int pre[N], rk[N];
   解题思路: father[y] = x
    如果 rank[y]为 0 代表 x 和 y 属于同一种
    如果 rank[y]为1代表x吃y
    如果 rank[y]为 2 代表 y 吃 x
   本题的关键就是如何在路径压缩的过程中更新关系权值
    需要总结更新公式
int findd(int x)
   if(pre[x] == x) return x;
   int xx = findd(pre[x]);
   rk[x] = (rk[x]+rk[pre[x]])%3;
   pre[x] = xx;
   return xx;
bool ok(int n, int type, int x, int y)
   if (x > n \mid y > n) return 0;
   int fx = findd(x), fy = findd(y);
   if(fx == fy)
       if((rk[y]-rk[x]+3)\%3 != type-1) return 0;
       return 1;
   else
       pre[fy] = fx;
       rk[fy] = (rk[x]-rk[y]+type-1+3)%3;
       return 1;
int main()
   int n, k;
scanf("%d %d", &n, &k);
   for (int i = 1; i \le n; i++)
       pre[i] = i;
       rk[i] = 0;
```

```
int cnt = 0;
           for (int i = 0; i < k; i++)
                      int d, x, y;
scanf("%d %d %d", &d, &x, &y);
                      if(!ok(n, d, x, y))
                                                                       cnt++;
           printf("%d\n", cnt);
           return 0;
                                                                                                                      ·维 rmq
struct ST
           int mm[100005], dp[100005][20];
           void init()
                      mm \lceil 0 \rceil = -1;
                      for (int i = 1; i \le n; i++)
                                  mm[i] = ((i&(i-1)) == 0)?mm[i-1]+1:mm[i-1];
                                  dp[i][0] = a[i];
                      for (int j = 1; j \le mm[n]; j++)
                                  for (int i = 1; i+(1 << j)-1 <= n; i++) dp[i][j] = min(dp[i][j-1], dp[i+(1 << (j-1)) dp[i+(1 << ((j-1)) dp[i+(1 << ((j-1)
1))][j-1]);
           int query (int a, int b)
                      if(a > b)
                                                      swap (a, b);
                      int k = mm[b-a+1]:
                      return min(dp[a][k], dp[b-(1<<k)+1][k]);
}st;
                                                                                                                   二维 rmq
//同一维一样 用 dp[row][col][i][j]表示(row, col)到(row+2^i, col+2^j)矩形内的最大值
int a[305][305], mm[305], dp[305][305][9][9];
void init(int n, int m)
           for (int i = 1; i \le 300; i++) mm[i] = ((i&(i-1)) == 0)?mm[i-1]+1:mm[i-1];
           for (int i = 1; i \le n; i++)
                                                                                                    dp[i][j][0][0] = a[i][j];
                      for (int j = 1; j \le m; j++)
           for (int i = 0; i \le mm[n]; i++)
                      for (int j = 0; j \le mm[m]; j++)
                                  if (i==0 && j==0)
                                                                                         continue;
                                  for (int row = 1; row+(1<i)-1 <= n; row++)
                                             for (int col = 1; col+(1<<j)-1 <= m; col++)
                                                                               dp[row][col][i][j] = max(dp[row][col][i-
                                                         if(i)
1][j], dp[row+(1 << (i-1))][co1][i-1][j]);
                                                                              dp[row][col][i][j] = max(dp[row][col][i][j-
                                                         else
1], dp[row][col+(1 << (j-1))][i][j-1]);
```

```
int rmq(int x1, int y1, int x2, int y2)
{
    int k1 = mm[x2-x1+1], k2 = mm[y2-y1+1];
    x2 = x2-(1<<k1)+1, y2 = y2-(1<<k2)+1;
    return
max(max(dp[x1][y1][k1][k2], dp[x1][y2][k1][k2]), max(dp[x2][y1][k1][k2], dp[x2][y2][k1][k2]));
}
</pre>
```

单调栈

```
stack<long long> s;
long long a[100005];
int main()
    int n;
    while (scanf ("%d", &n) && n)
        while(!s.empty())
                             s. pop();
        long long ans = 0;
        for(int i = 1; i <= n; i++) scanf("%11d", &a[i]);
        a[n+1] = 0;
        for (int i = 1; i \le n+1; i++)
             while (!s. empty() && a[s. top()] > a[i])
                 int temp = s. top();
                 s. pop();
                 int len = s. empty()?i-1:i-s. top()-1;
                 ans = max(ans, len*a[temp]);
             s. push(i);
        printf("%11d\n", ans);
    return 0;
```

单调队列

```
//XD0J1156
struct st
    int num, t;
}s;
deque(st) q;
int n, x;
int main()
    while ("scanf ("%d", &n))
         while(!q.empty()) q.pop_back();
         int out = 1, cnt = 1;
         for (int i = 1; i \le n; i++)
             scanf ("%d", &x);
             switch(x)
                  case 1:
                      int tt;
scanf("%d", &tt);
                      s.t = tt-i;
                      s.num = cnt++;
                      while(!q.empty() && q.back().t <= s.t)</pre>
                                                                      q. pop back();
                      q. push back(s);
```

```
break;
                 case 2:
                     if (q. front(). num == out++) q. pop front();
                     break:
                 case 3:
                     printf("%d\n", q. front(). t+i);
    return 0;
                                           维树状数组
int tree[50005], n;
inline int lowbit(int x)
    return x & (-x);
void update(int pos, int x)
    while (pos \leq n)
        tree[pos] += x;
        pos += lowbit(pos);
int getsum(int pos)
    int sum = 0;
    while (pos > 0)
        sum += tree[pos];
        pos -= lowbit(pos);
    return sum;
                                           维树状数组
int tree[1005][1005] = \{0\}, a[1005][1005] = \{0\};
int lowbit(int x)
    return x&(-x);
void update(int x, int y, int w)
    for (int i = x; i \le 1001; i += 1 \text{ owbit } (i))
        for(int j = y; j \le 1001; j += lowbit(j)) tree[i][j] += w;
int getsum(int x, int y)
    int ans = 0;
    for(int i = x; i > 0; i = lowbit(i))
        for(int j = y; j > 0; j = lowbit(j)) ans += tree[i][j];
    return ans;
```

划分树查询区间第 k 大

```
int n, m, tree [20] [N], sorted [N], to left [20] [N];
void build(int 1, int r, int dep)
    if(1 == r)return;
    int mid = (1+r)/2, same = mid-1+1;
    for (int i = 1; i \le r; i++)
         if(tree[dep][i] < sorted[mid])</pre>
                                            same--:
    int lpos = 1, rpos = mid+1;
    for (int i = 1; i \le r; i++)
         if(tree[dep][i] < sorted[mid]) tree[dep+1][1pos++] = tree[dep][i];</pre>
         else if(tree[dep][i] == sorted[mid] && same > 0)
             tree[dep+1][lpos++] = tree[dep][i];
             same--;
                 tree[dep+1][rpos++] = tree[dep][i];
         toleft[dep][i] = toleft[dep][1-1]+1pos-1;
    build (1, mid, dep+1);
    build (mid+1, r, dep+1);
int query (int 1, int r, int q1, int qr, int dep, int k)
    if(q1 == qr)
                      return tree[dep][q1];
    int mid = (1+r)/2, cnt = toleft[dep][qr]-toleft[dep][q1-1];
    if(cnt >= k)
         int 11 = 1 + \text{toleft[dep][q1-1]} - \text{toleft[dep][1-1]}, \text{rr} = 11 + \text{cnt-1};
         return query (1, mid, 11, rr, dep+1, k);
    else
         int rr = qr+toleft[dep][r]-toleft[dep][qr], 11 = rr-(qr-ql-cnt);
         return query (mid+1, r, 11, rr, dep+1, k-cnt);
int main()
    while (scanf ("%d%d", &n, &m)!=EOF)
         for (int i = 1; i \le n; i++)
             scanf("%d", &tree[0][i]);
             sorted[i] = tree[0][i];
         sort (sorted+1, sorted+n+1);
         build(1, n, 0);
         while(m--)
             int 1, r, k;
             scanf("%d%d%d", &1, &r, &k);
             printf(\sqrt[m]{d} n, query(1, n, 1, r, 0, k));
    return 0;
```

点分治求边权和等于 k 的数量

```
int n, k, root, son[10005], vis[10005], minn, ans, sum, dis[10005], dep[10005];
struct xx
    int to, w;
    xx(int a, int b):to(a), w(b) {};
vector \langle xx \rangle v[10005];
void dfsroot(int now, int pre)
    son[now] = 1;
    int maxx = 0;
    for (int i = 0; i < v[now]. size(); i++)
         int t = v[now][i]. to, w = v[now][i]. w;
         if(t == pre || vis[t]) continue;
         dfsroot(t, now);
         son[now] += son[t];
         \max x = \max(\max x, son[t]);
    \max = \max(\max, \text{sum-son}[\text{now}]);
    if (maxx < minn)</pre>
        minn = maxx;
        root = now;
void dfsdep(int now, int pre)
    dep[++dep[0]] = dis[now];
    for (int i = 0; i < v[now]. size(); i++)
         int t = v[now][i]. to, w = v[now][i]. w;
         if(t == pre || vis[t]) continue;
         dis[t] = dis[now]+w;
         dfsdep(t, now);
int calc(int now, int w)
    dis[now] = w;
    dep[0] = 0;
    dfsdep(now, 0);
    sort(dep+1, dep+dep[0]+1);
    int 1 = 1, r = dep[0], cnt = 0;
    while (1 < r)
        if(dep[1]+dep[r] \le k)
             cnt += r-1;
             1++;
         else r--;
    return cnt;
void solve(int now)
    ans += calc(now, 0);
```

```
vis[now] = 1;
    for (int i = 0; i < v[now]. size (); i++)
         int t = v[now][i]. to, w = v[now][i]. w;
         if(vis[t]) continue;
         ans -= calc(t, w);
         minn = 1e9;
         sum = son[t];
         dfsroot(t, 0);
         solve (root);
int main()
    while (scanf ("%d%d", &n, &k))
         if(n == 0 | k == 0)
                                    break:
         ans = 0, sum = n;
         memset(vis, 0, sizeof(vis));
         for (int i = 1; i \le n; i++)
                                         v[i].clear();
         for (int i = 1; i < n; i++)
             int x, y, z;
scanf("%d%d%d", &x, &y, &z);
             v[x]. push_back(xx(y, z));
             v[y]. push_back(xx(x, z));
         minn = 1e9;
         df sroot (1, 0);
         solve(root);
printf("%d\n", ans);
    return 0;
                                        点分治求点权积等于 k
int n, k, root, son[100005], vis[100005], dep[100005], id[1000005], minn, ans1, ans2, sum;
long long a[100005], inv[1000005], mp[1000005];
vector<int> v[100005];
void dfsroot(int now, int pre)
    son[now] = 1;
    int maxx = 0;
    for (int i = 0; i < v[now]. size(); i++)
         int t = v[now][i];
         if(t == pre || vis[t]) continue;
         dfsroot(t, now);
         son[now] += son[t];
         \max x = \max(\max x, \operatorname{son}[t]);
    \max = \max(\max, \text{sum-son}[\text{now}]);
    if (maxx < minn)</pre>
         minn = maxx;
         root = now;
```

void dfsdep (int now, int pre, long long x)

dep[++dep[0]] = x*a[now]%MOD;

```
id[dep[0]] = now;
    for (int i = 0; i < v[now]. size (); i++)
        int t = v[now][i];
        if(t == pre || vis[t]) continue;
        dfsdep(t, now, x*a[now]%MOD);
void update(int now, int x, int y)
    int t = mp[inv[x*a[now]%MOD]*k%MOD];
    if(!t) return;
    if(t > y) swap(t, y);
    if (t < ans1 \mid | t == ans1 \&\& y < ans2)
        ans1 = t;
        ans2 = y;
void solve(int now)
    vis[now] = 1;
    mp[1] = now;
    for (int i = 0; i < v[now]. size(); i++)
        int t = v[now][i];
        if(vis[t])
                   continue;
        dep[0] = 0;
        dfsdep(t, now, 1);
       for (int j = 1; j \le dep[0]; j++) update (now, dep[j], id[j]);
        for (int j = 1; j \le dep[0]; j++)
            if(!mp[dep[j]] || mp[dep[j]] > id[j])     mp[dep[j]] = id[j];
    mp[1] = 0;
    for (int i = 0; i < v[now]. size (); i++)
        int t = v[now][i];
        if(vis[t]) continue;
        dep[0] = 0;
        dfsdep(t, now, 1);
        for (int j = 1; j \le dep[0]; j++) mp[dep[j]] = 0;
    for (int i = 0; i < v[now]. size(); i++)
        int t = v[now][i];
        if(vis[t]) continue;
        minn = 1e9;
        sum = son[t];
        dfsroot(t, 0);
        solve (root):
int main()
    inv[1] = 1;
    ans1 = 1e9, ans2 = 0;
```

```
memset(vis, 0, sizeof(vis));
                                          v[i].clear();
scanf("%11d",&a[i]);
         for (int i = 1; i \le n; i++)
         for (int i = 1; i \le n; i++)
         for (int i = 1; i < n; i++)
              int x, y;
              scanf ("%d%d", &x, &y);
              v[x]. push_back(y);
              v[y]. push_back(x);
         minn = 1e9;
         sum = n;
         dfsroot(1,0);
         solve (root);
         if(ans1 == 1e9) printf("No solution\n");
                  printf("%d %d\n", ans1, ans2);
    return 0;
                                          cdq 分治求三维偏序
int n, maxx, tree[100005], ans[100005];
struct xx
    int x, y, z, id;
    xx(int a, int b, int c, int d):x(a), y(b), z(c), id(d) {};
    xx() \{\};
}a[100005],b[100005];
inline lowbit(int x)
    return x&-x;
void add(int pos, int x)
    while (pos \leq maxx)
         tree[pos] += x;
         pos += lowbit(pos);
int getsum(int pos)
    int ans = 0;
    while (pos > 0)
         ans += tree[pos];
         pos -= lowbit(pos);
    return ans;
bool cmp1 (xx a, xx b)
    if(a. x != b. x)     return a. x < b. x;
if(a. y != b. y)     return a. y < b. y;</pre>
    return a. z < b. z;
bool cmp2 (xx a, xx b)
    if (a. y != b. y) return a. y < b. y;
```

```
void cdq(int 1, int r)
    if(1 == r) return;
    int mid = (1+r)/2;
    int cnt = 0;
    for (int i = 1; i \le mid; i++) b[++cnt] = xx(0, a[i], y, a[i], z, 0);
    for (int i = mid+1; i \le r; i++) b[++cnt] = xx(0, a[i], y, a[i], z, a[i], id);
    sort(b+1, b+1+cnt, cmp2);
    for (int i = 1; i \le cnt; i++)
        if (b[i]. id == 0) add (b[i]. z, 1);
        else ans[b[i].id] += getsum(b[i].z);
    for (int i = 1; i \le cnt; i++)
        if(b[i].id == 0) add(b[i].z, -1);
    cdq(1, mid);
    cdq(mid+1,r);
int main()
    int T;
    scanf ("%d", &T);
    while (T--)
        scanf ("%d", &n);
        \max x = 0;
        for (int i = 1; i \le n; i++)
            scanf("%d%d%d", &a[i].x, &a[i].y, &a[i].z);
            a[i].id = i;
            \max x = \max(\max x, a[i].z);
        sort(a+1, a+1+n, cmp1);
        memset (ans, 0, sizeof (ans));
        int cnt = 0;
        for (int i = n-1; i >= 1; i--)
            if(a[i].x == a[i+1].x && a[i].y == a[i+1].y && a[i].z == a[i+1].z) cnt++;
            else cnt = 0;
            ans[a[i].id] += cnt;
        cdq(1, n);
        for (int i = 1; i \le n; i++) printf ("%d\n", ans [i]);
    return 0;
                                     树链剖分线段树(点权)
//点权,修改路径点权,查询单点权
int n, m, q, cnt, a[N], top[N], fa[N], dep[N], num[N], p[N], fp[N], son[N];
vector<int> v[N];
char s[10];
struct segtree
    int 1, r;
    long long x, lazy;
tree[4*N];
```

return a. id < b. id;

```
inline void pushup (int pos)
    tree[pos].x = tree[pos << 1].x + tree[pos << 1|1].x;
inline void pushdown (int pos)
    if (tree[pos]. lazy)
         tree[pos <<1].x += (tree[pos <<1].r-tree[pos <<1].1+1)*tree[pos].1azy;
         tree[pos <<1|1].x += (tree[pos <<1|1].r-tree[pos <<1|1].1+1)*tree[pos].1azy;
         tree[pos<<1].lazy += tree[pos].lazy;
         tree[pos<<1|1].lazy += tree[pos].lazy;
         tree[pos].1azy = 0;
void build(int pos, int 1, int r)
    tree[pos].1 = 1;
    tree[pos].r = r;
    tree[pos].1azy = 0;
    if(1 == r)
         tree[pos].x = a[fp[1]];
         return;
    int mid = (1+r)/2;
    build(pos<<1, 1, mid);
    build (pos <<1 | 1, mid+1, r);
    pushup (pos);
void update(int pos, int 1, int r, long long x)
    if(r < tree[pos].1 || tree[pos].r < 1) return;</pre>
    if(1 \le tree[pos].1 \&\& tree[pos].r \le r)
         tree[pos].x += (tree[pos].r-tree[pos].1+1)*x;
         tree[pos].lazy += x;
         return;
    pushdown (pos);
    update (pos <<1, 1, r, x);
    update (pos<<1 | 1, 1, r, x);
    pushup (pos);
long long getsum(int pos, int 1, int r)
    if (r < tree[pos].1 \mid | tree[pos].r < 1) return 0;
    if (1 \le \text{tree}[pos].1 \&\& \text{tree}[pos].r \le r)
                                                    return tree[pos].x;
    pushdown (pos):
    return getsum(pos\langle\langle 1, 1, r \rangle+getsum(pos\langle\langle 1|1, 1, r \rangle);
void dfs (int now, int pre, int d)
    dep[now] = d;
    fa[now] = pre;
    num[now] = 1;
    for (int i = 0; i < v[now]. size(); i++)
```

```
int t = v[now][i];
        if(t == pre)
                        continue;
        dfs(t, now, d+1);
        void getpos(int now, int sp)
    top[now] = sp;
    p[now] = ++cnt;
    fp[p[now]] = now;
    if (son now == -1) return;
    getpos(son[now], sp);
    for (int i = 0; i < v[now]. size(); i++)
        int t = v[now][i];
                                             getpos(t,t);
        if(t != son[now] && t != fa[now])
void change(int u, int v, int x)
    int f1 = top[u], f2 = top[v];
    while (f1 != f2)
        if(dep[f1] < dep[f2])
            swap(f1, f2);
            swap(u, v);
        update(1, p[f1], p[u], x);
        u = fa[f1];
        f1 = top[u];
    if(dep[u] > dep[v]) swap(u, v);
    update (1, p[u], p[v], x);
int main()
    while ("scanf ("%d%d%d", &n, &m, &g))
        memset (son, -1, sizeof(son));
        memset(tree, 0, sizeof(tree));
        for (int i = 1; i \le n; i++) v[i]. clear();
        cnt = 0;
                                     scanf ("%d", &a[i]);
        for (int i = 1; i \le n; i++)
        while (m--)
            int x, y;
            scanf ("%d%d", &x, &y);
            v[x]. push_back(y);
            v[y]. push_back(x);
        dfs(1,0,0);
        getpos (1, 1);
        build(1, 1, cnt);
        while (q--)
            scanf("%s", s);
if(s[0] == 'Q')
```

```
int x;
                   scanf("%d", &x);
printf("%11d\n", getsum(1, p[x], p[x]));
              else
                   int x, y, z;
scanf("%d%d%d", &x, &y, &z);
                   if(s[0] == 'D') z = -z;
                   change (x, y, z);
    return 0;
                                          树链剖分线段树(边权)
int n, m, q, cnt, a[N], val[N], top[N], fa[N], dep[N], num[N], p[N], fp[N], son[N], e[N][3];
struct segtree
    int 1, r, x;
tree[4*N];
vector<int> v[N];
char s[10];
void pushup(int pos)
    tree[pos]. x = max(tree[pos << 1]. x, tree[pos << 1|1]. x);
void build(int pos, int 1, int r)
    tree[pos].1 = 1;
    tree[pos].r = r;
    if(1 == r)
         tree[pos].x = val[1];
         return;
    int mid = (1+r)/2;
    build(pos<<1, 1, mid);
    build(pos<<1|1, mid+1, r);
    pushup (pos);
void update(int pos, int 1, int r, int x)
    if(r < tree[pos].1 || tree[pos].r < 1) return;</pre>
    if(1 \le tree[pos].1 \&\& tree[pos].r \le r)
         tree[pos].x = x;
         return;
    update (pos <<1, 1, r, x);
    update (pos<<1 | 1, 1, r, x);
    pushup(pos);
int query (int pos, int 1, int r)
    if(r < tree[pos].1 || tree[pos].r < 1) return 0;</pre>
    if(1 \le tree[pos].1 \&\& tree[pos].r \le r)
                                                        return tree[pos].x;
    return \max(\text{query}(\text{pos}\langle\langle 1, 1, r), \text{query}(\text{pos}\langle\langle 1|1, 1, r));
```

```
void dfs(int now, int pre, int d)
    dep[now] = d;
    fa[now] = pre;
    num[now] = 1;
    for (int i = 0; i < v[now]. size(); i++)
         int t = v[now][i];
         if(t == pre)
                            continue;
         dfs(t, now, d+1);
         \begin{array}{lll} num[now] & += & num[t]; \\ if(son[now] & == & -1 & || & num[t] > & num[son[now]]) & son[now] & = & t; \end{array}
void getpos(int now, int sp)
    top[now] = sp;
    p[now] = ++cnt;
    fp[p[now]] = now;
    if(son[now] == -1) return;
    getpos(son[now], sp);
    for (int i = 0; i < v[now]. size(); i++)
         int t = v[now][i];
         if(t != son[now] \&\& t != fa[now]) getpos(t,t);
int solve(int u, int v)
    int f1 = top[u], f2 = top[v], t = 0;
    while (f1 != f2)
         if(dep[f1] < dep[f2])
              swap(f1, f2);
              swap(u, v);
         t = max(t, query(1, p[f1], p[u]));
         u = fa[f1];
         f1 = top[u];
    if(u == v) return t;
    if(dep[u] > dep[v]) swap(u, v);
return max(t, query(1, p[son[u]], p[v]));
int main()
    int T;
    scanf ("%d", &T);
    while(T--)
         scanf ("%d", &n);
         memset (son, -1, sizeof (son));
         for (int i = 1; i \le n; i++) v[i]. clear();
         cnt = 0;
         for (int i = 1; i < n; i++)
              scanf ("%d%d%d", &e[i][0], &e[i][1], &e[i][2]);
              v[e[i][0]]. push_back(e[i][1]);
              v[e[i][1]]. push back(e[i][0]);
```

线段树模版

```
struct segtree
    int 1, r;
    long long x, lazy;
} tree [400005];
inline void pushup(int pos)
    tree[pos]. x = tree[pos <<1]. x+tree[pos <<1|1]. x;
inline void pushdown (int pos)
    if (tree[pos]. lazy)
        tree[pos <<1].x += (tree[pos <<1].r-tree[pos <<1].1+1)*tree[pos].1azy;
        tree[pos <<1|1].x += (tree[pos <<1|1].r-tree[pos <<1|1].1+1)*tree[pos].lazy;
        tree[pos<<1].lazy += tree[pos].lazy;
        tree[pos<<1|1].lazy += tree[pos].lazy;
        tree[pos]. lazy = 0;
void build(int pos, int 1, int r)
    tree[pos].1 = 1;
    tree[pos].r = r;
    tree[pos]. lazy = 0;
    if(1 == r)
        tree[pos]. x = a[1];
        return:
    int mid = (1+r)/2;
    build(pos<<1,1,mid);
build(pos<<1|1,mid+1,r);
    pushup(pos);
void update(int pos, int 1, int r, long long x)
    if (r < tree[pos]. 1 | tree[pos]. r < 1) return;
```

```
if(1 \le tree[pos].1 \&\& tree[pos].r \le r)
         tree[pos]. x = (tree[pos]. r-tree[pos]. 1+1)*x;
         tree[pos].1azy = x;
         return;
    pushdown (pos);
    update (pos <<1, 1, r, x);
    update (pos <<1 | 1, 1, r, x);
    pushup(pos);
long long getsum(int pos, int 1, int r)
    if(r < tree[pos].1 || tree[pos].r < 1) return 0;</pre>
    if(1 <= tree[pos].1 && tree[pos].r <= r)</pre>
                                                    return tree[pos].x;
    pushdown (pos);
    return getsum(pos <<1, 1, r)+getsum(pos <<1 | 1, 1, r);
                                          动态开点线段树
int n, k, q, cnt = 0, a[100005];
struct segtree
    int 1, r, x, lazy;
    segtree *1son, *rson;
}*root;
segtree *newnode(int 1, int r)
    segtree *t = new segtree;
    t->1 = 1;
    t->r = r;
    t\rightarrow 1son = NULL;
    t\rightarrow rson = NULL;
    t\rightarrow 1azy = 0;
    t-\rangle_X = a[1];
    return t;
segtree *newlson(segtree *pos)
    int mid = (pos->1+pos->r)/2;
    return newnode (pos->1, mid);
segtree *newrson(segtree *pos)
    int mid = (pos->1+pos->r)/2;
    return newnode (mid+1, pos->r);
void pushup(segtree *pos)
    if(!pos->1son) pos->1son = new1son(pos);
    if (!pos-\rangle rson) pos-\rangle rson = newrson(pos);
    pos->x = min(pos->1son->x, pos->rson->x);
void pushdown(segtree *pos)
    if(!pos->1son)
                      pos \rightarrow 1son = new1son(pos);
    if (!pos->rson)
                      pos->rson = newrson(pos);
    if(pos \rightarrow lazy)
```

```
pos \rightarrow 1son \rightarrow x = pos \rightarrow 1azy;
          pos->rson->x = pos->lazy;
          pos \rightarrow 1son \rightarrow 1azy = pos \rightarrow 1azy;
          pos \rightarrow rson \rightarrow 1azy = pos \rightarrow 1azy;
          pos \rightarrow lazy = 0;
void update(segtree *pos, int 1, int r, int x)
     if (r < pos \rightarrow 1 \mid pos \rightarrow r < 1)
                                              return;
     if (1 \leq pos \rightarrow 1 \&\& pos \rightarrow r \leq r)
          pos->_X = x;
          pos \rightarrow lazy = x;
          return;
     pushdown(pos);
     update (pos\rightarrow1son, 1, r, x);
     update (pos\rightarrowrson, 1, r, x);
     pushup(pos);
int getmin(segtree *pos, int 1, int r)
     if (r < pos \rightarrow 1 \mid pos \rightarrow r < 1)
                                             return 1e9;
     if (1 \leq pos-)1 \&\& pos-)r \leq r return pos-)x;
     pushdown (pos);
     return min(getmin(pos\rightarrow1son, 1, r), getmin(pos\rightarrowrson, 1, r));
                                       区间取模,单点修改,询问区间和
int n, m;
long long a[100005];
struct segtree
     int 1, r;
     long long x, sum;
} tree[400005];
inline void pushup (int pos)
     tree[pos]. x = max(tree[pos << 1]. x, tree[pos << 1|1]. x);
     tree[pos].sum = tree[pos<<1].sum+tree[pos<<1|1].sum;
void build(int pos, int 1, int r)
     tree[pos].1 = 1;
     tree[pos].r = r;
     if(1 >= r)
          tree[pos].x = a[1];
          tree[pos].sum = a[1];
          return;
     int mid = (1+r)/2;
     build(pos<<1, 1, mid);
     build (pos <<1 | 1, mid+1, r);
     pushup (pos);
void edit(int pos, int 1, int r, long long x, int t)
```

```
if(t < 1 \mid | t > r) return;
    if(1 == r)
         tree[pos].x = x;
         tree[pos].sum = x;
         return;
    int mid = (1+r)/2;
    edit(pos<<1,1,mid,x,t);
edit(pos<<1|1,mid+1,r,x,t);
    pushup(pos);
void mod (int pos, int 1, int r, long long x)
    if (r < tree[pos].1 \mid | tree[pos].r < 1 \mid | tree[pos].x < x)
    if(tree[pos].1 == tree[pos].r)
         tree[pos].x \%= x;
         tree[pos].sum = tree[pos].x;
         return;
    mod(pos << 1, 1, r, x);
    mod(pos <<1 | 1, 1, r, x);
    pushup (pos);
long long getsum(int pos, int 1, int r)
    if(r < tree[pos].1 || tree[pos].r < 1) return 0;</pre>
    if(1 \le tree[pos].1 \&\& tree[pos].r \le r)
                                                       return tree pos sum;
    return getsum(pos\langle\langle 1, 1, r \rangle+getsum(pos\langle\langle 1 | 1, 1, r \rangle;
                                   区间加减,区间开根,询问区间和
int n, m;
long long a[100005];
struct segtree
    int 1, r;
    long long ma, mi, sum, lazy;
} tree [400005]:
inline void pushup (int pos)
    tree[pos]. ma = max(tree[pos << 1]. ma, tree[pos << 1|1]. ma);
    tree[pos].mi = min(tree[pos<<1].mi, tree[pos<<1|1].mi);
    tree[pos].sum = tree[pos<<1].sum+tree[pos<<1|1].sum;
inline void pushdown (int pos)
    if (tree[pos]. lazy)
         long long t = tree[pos].lazy;
         tree[pos<<1].lazy += t;
tree[pos<<1]1].lazy += t;</pre>
         tree[pos << 1].mi += t;
         tree[pos << 1|1].mi += t;
         tree[pos << 1]. ma += t;
         tree[pos<<1|1].ma += t;
         tree[pos << 1].sum += (tree[pos << 1].r-tree[pos << 1].1+1)*t;
         tree[pos <<1 | 1]. sum += (tree[pos <<1 | 1]. r-tree[pos <<1 | 1]. 1+1)*t;
```

```
tree[pos].1azy = 0;
void build(int pos, int 1, int r)
    tree|pos|.1 = 1;
    tree[pos].r = r;
    tree[pos].1azy = 0;
    if(1 == r)
         tree[pos].mi = a[1];
         tree[pos].ma = a[1];
         tree [pos]. sum = a[1];
         return;
    int mid = (1+r)/2;
    build(pos << 1, 1, mid);
    build (pos <<1 | 1, mid+1, r);
    pushup(pos);
long long getsum(int pos, int 1, int r)
    if(r < tree[pos].1 || tree[pos].r < 1) return 0;</pre>
    if(1 <= tree[pos].1 && tree[pos].r <= r) return tree[pos].sum;
    pushdown (pos);
    return getsum(pos\langle\langle 1, 1, r \rangle+getsum(pos\langle\langle 1|1, 1, r \rangle);
void update(int pos, int 1, int r, long long x)
    if (r < tree[pos].1 \mid | tree[pos].r < 1)
                                                    return;
    if(1 \le tree[pos].1 \&\& tree[pos].r \le r)
         tree pos . mi += x;
         tree[pos].ma += x;
         tree[pos].sum += (tree[pos].r-tree[pos].1+1)*x;
         tree[pos].lazy += x;
         return;
    pushdown(pos);
    update (pos<<1, 1, r, x);
    update (pos<<1 | 1, 1, r, x);
    pushup (pos);
void sq(int pos, int 1, int r)
    if(r < tree[pos].1 \mid | tree[pos].r < 1)
                                                   return;
    if(1 \le tree[pos].1 \&\& tree[pos].r \le r \&\& (long long) sqrt(tree[pos].ma) - (long long) sqrt(tree[pos].ma)
long)sqrt(tree[pos].mi) == tree[pos].ma-tree[pos].mi)
         long long t = tree[pos].ma-(long long)sqrt(tree[pos].ma);
         tree[pos].mi -= t;
         tree[pos].ma -= t;
         tree[pos].sum -= (tree[pos].r-tree[pos].1+1)*t;
         tree[pos]. lazy -= t;
         return;
    pushdown (pos);
    sq(pos <<1, 1, r);
    sq(pos << 1 | 1, 1, r);
    pushup(pos);
```

区间最小值,询问区间最大值,询问区间和

```
int n, m;
long long a[1000005];
struct segtree
    int 1, r, max1, max2, num;
    long long sum;
} tree [4000005];
inline void pushup (int pos)
    tree[pos]. max1 = max(tree[pos << 1]. max1, tree[pos << 1]1]. max1);
    tree[pos].sum = tree[pos<<1].sum+tree[pos<<1|1].sum;
    tree[pos].num = 0;
    tree[pos]. max2 = max(tree[pos << 1]. max2, tree[pos << 1|1]. max2);
    if(tree[pos].max1 == tree[pos << 1].max1) tree[pos].num += tree[pos << 1].num;
             tree[pos]. max2 = max(tree[pos]. max2, tree[pos<<1]. max1);
    if(tree[pos]. max1 == tree[pos << 1 | 1]. max1) tree[pos]. num += tree[pos << 1 | 1]. num;
             tree[pos]. max2 = max(tree[pos]. max2, tree[pos<<1|1]. max1);
inline void pushdown (int pos)
    if(tree[pos].max1 < tree[pos << 1].max1)
         tree[pos<<1].sum -= (long long) tree[pos<<1].num*(tree[pos<<1].max1-
tree[pos].max1);
         tree[pos << 1]. max1 = tree[pos]. max1;
    if (\text{tree}[\text{pos}]. \text{max}1 < \text{tree}[\text{pos} << 1 | 1]. \text{max}1)
         tree[pos <<1|1]. sum == (long long) tree[pos <<1|1]. num*(tree[pos <<1|1]. max1=
tree[pos].max1);
         tree[pos << 1 | 1]. max1 = tree[pos]. max1;
void build(int pos, int 1, int r)
    tree[pos].1 = 1;
    tree[pos].r = r;
    if(1 == r)
         scanf ("%d", &tree[pos]. max1);
         tree[pos].sum = tree[pos].max1;
         tree[pos]. \max 2 = -1;
         tree[pos].num = 1;
         return;
    int mid = (1+r)/2;
    build(pos<<1, 1, mid);
    build (pos<<1|1, mid+1, r);
    pushup (pos);
void update(int pos, int 1, int r, int x)
    if(r < tree[pos].1 \mid | tree[pos].r < 1 \mid | x >= tree[pos].max1)
    if (1 \le \text{tree[pos]}.1 \&\& \text{tree[pos]}.r \le r \&\& \text{tree[pos]}.max2 < x)
         tree[pos].sum -= (long long) tree[pos].num*(tree[pos].max1-x);
         tree[pos].max1 = x;
```

```
return;
    pushdown (pos);
    update (pos <<1, 1, r, x);
    update (pos<<1 | 1, 1, r, x);
    pushup (pos);
long long getsum(int pos, int 1, int r)
    if (r < tree[pos].1 \mid | tree[pos].r < 1) return 0;
    if(1 \le tree[pos].1 \&\& tree[pos].r \le r)
                                                    return tree[pos].sum;
    pushdown (pos);
    return getsum(pos\langle\langle 1, 1, r \rangle)+getsum(pos\langle\langle 1|1, 1, r \rangle);
int getmax (int pos, int 1, int r)
    if(r < tree[pos].1 || tree[pos].r < 1) return 0;</pre>
    if(1 \le tree[pos].1 \&\& tree[pos].r \le r)
                                                   return tree[pos].max1;
    pushdown (pos);
    return \max(\text{getmax}(\text{pos}\langle\langle 1, 1, r), \text{getmax}(\text{pos}\langle\langle 1|1, 1, r))):
                      区间加减,区间覆盖,询问区间最大值,询问历史区间最大值
int n, m;
char s[10];
long long a[1000005];
struct segtree
    int 1, r, nmax, pmax, nlazy, plazy, ncov, pcov;
} tree [4000005];
inline void pushup (int pos)
    tree[pos]. nmax = max(tree[1s]. nmax, tree[rs]. nmax);
    tree[pos].pmax = max(tree[1s].pmax, tree[rs].pmax);
inline void pushdown (int pos)
    tree[1s].pmax =
max(tree[1s].pmax, max(tree[pos].pcov, tree[pos].plazy+tree[1s].nmax));
    tree[rs].pmax =
max(tree[rs].pmax, max(tree[pos].pcov, tree[pos].plazy+tree[rs].nmax));
    if (tree pos ncov == -INF)
         tree[1s].nmax += tree[pos].nlazy;
         tree[rs].nmax += tree[pos].nlazy;
         if(tree[1s].ncov == -INF)
             tree[ls].plazy = max(tree[ls].plazy, tree[ls].nlazy+tree[pos].plazy);
             tree[1s]. nlazy += tree[pos]. nlazy;
         else
             tree[1s].pcov = max(tree[1s].pcov, tree[1s].ncov+tree[pos].plazy);
             tree[1s].ncov = tree[1s].nmax;
         if(tree[rs].ncov == -INF)
             tree[rs].plazy = max(tree[rs].plazy, tree[rs].nlazy+tree[pos].plazy);
             tree[rs].nlazy += tree[pos].nlazy;
```

```
else
            tree[rs].pcov = max(tree[rs].pcov, tree[rs].ncov+tree[pos].plazy);
            tree[rs].ncov = tree[rs].nmax;
    else
        max(tree[1s].plazy, tree[1s].nlazy+tree[pos].plazy);
               tree[1s].pcov = max(tree[1s].pcov, tree[1s].nmax+tree[pos].plazy);
        if(tree[rs].ncov == -INF)
                                   tree[rs].plazy =
max(tree[rs].plazy, tree[rs].nlazy+tree[pos].plazy);
                tree[rs].pcov = max(tree[rs].pcov, tree[rs].nmax+tree[pos].plazy);
        tree[1s].nmax = tree[pos].ncov;
        tree[rs].nmax = tree[pos].ncov;
        tree[1s].ncov = tree[pos].ncov;
        tree[rs].ncov = tree[pos].ncov;
        tree[1s].pcov = max(tree[1s].pcov, tree[pos].pcov);
        tree[rs].pcov = max(tree[rs].pcov, tree[pos].pcov);
    tree[pos].nlazy = 0;
    tree[pos].plazy = 0;
    tree[pos].ncov = -INF;
    tree [pos]. pcov = -INF;
void build(int pos, int 1, int r)
    tree[pos].1 = 1;
    tree[pos].r = r;
    tree[pos].ncov = -INF;
    tree[pos].pcov = -INF;
    tree[pos].nlazy = 0;
    tree[pos].plazy = 0;
    if(1 == r)
        scanf ("%d", &tree[pos]. nmax);
        tree[pos].pmax = tree[pos].nmax;
        return;
    int mid = (1+r)/2;
    build(1s, 1, mid);
    build(rs, mid+1, r);
    pushup (pos);
long long getans (int pos, int 1, int r, int t)
    if (r < tree[pos].1 | tree[pos].r < 1) return -INF;
    if(1 \le tree[pos].1 \&\& tree[pos].r \le r)
                                                return t?tree[pos].pmax:tree[pos].nmax;
    pushdown(pos);
    return \max(\text{getans}(1s, 1, r, t), \text{getans}(rs, 1, r, t));
void update1(int pos, int 1, int r, int x)
    if (r < tree[pos]. 1 | tree[pos]. r < 1) return;
    if(1 \le tree[pos].1 \&\& tree[pos].r \le r)
        tree[pos].nmax += x;
        tree[pos].pmax = max(tree[pos].pmax, tree[pos].nmax);
        if (tree[pos].ncov == -INF)
```

```
tree[pos].nlazy += x;
             tree[pos].plazy = max(tree[pos].plazy, tree[pos].nlazy);
        else
             tree[pos].ncov = tree[pos].nmax;
             tree[pos].pcov = max(tree[pos].pcov, tree[pos].ncov);
        return;
    pushdown (pos);
    updatel(ls, l, r, x);
    update1(rs, 1, r, x);
    pushup (pos);
void update2(int pos, int 1, int r, int x)
    if(r < tree[pos].1 || tree[pos].r < 1) return;</pre>
    if (1 \le \text{tree}[pos].1 \&\& \text{tree}[pos].r \le r)
        tree[pos].nmax = x;
        tree[pos].pmax = max(tree[pos].pmax, tree[pos].nmax);
        tree[pos].ncov = x;
        tree[pos].pcov = max(tree[pos].pcov, tree[pos].ncov);
        return;
    pushdown (pos);
    update2(1s, 1, r, x);
    update2(rs, 1, r, x);
    pushup(pos);
                                           块状数组
int n, m, a[200005], cnt[200005], next[200005], belong[200005], 1[1005], r[1005];
void build()
    int len = sqrt(n);
    int num = (n+1en-1)/1en;
    if (n%len) num++;
    for (int i = 1; i \le num; i++)
        1[i] = (i-1)*len+1;
        r[i] = i*len;
    r[num] = n;
    for (int i = 1; i \le n; i++)
                                  belong[i] = (i-1)/len+1;
    for (int i = n; i >= 1; i--)
        int t = i+a[i];
        if(t > n)
             cnt[i] = 1;
             next[i] = -1;
        else if(belong[i] == belong[t])
             cnt[i] = cnt[t]+1;
             next[i] = next[t];
        else
             cnt[i] = 1;
```

```
next[i] = t;
void update(int pos, int x)
    a[pos] = x;
    for (int i = pos; i >= 1[belong[pos]]; i--)
        int t = i+a[i];
        if(t > n)
             cnt[i] = 1;
             next[i] = -1;
        else if(belong[i] == belong[t])
             cnt[i] = cnt[t]+1;
             next[i] = next[t];
        else
             cnt[i] = 1;
next[i] = t;
int getsum(int x)
    int ans = cnt[x];
    while (next[x] > 0)
        x = next[x];
        ans += cnt[x];
    return ans;
                                              莫队
int a[30005], num[30005], n, m;
long long ans[30005];
struct node
    int 1, r, num, belong;
    friend bool operator (node a, node b)
        if (a. belong == b. belong)
                                     return a.r < b.r;
        return a. 1 < b. 1;
} query [30005];
int main()
    while ("scanf ("%d%d", &n, &m))
        int size = sqrt(n);
        for (int i = 1; i \le n; i++)
                                         scanf ("%d", &a[i]);
        for (int i = 1; i \le m; i++)
             scanf("%d%d", &query[i].1, &query[i].r);
query[i].num = i;
             query[i].belong = (query[i].1-1)/size+1;
```

```
sort (query+1, query+1+m);
    memset (num, 0, sizeof (num));
    int 11 = 1, rr = 1;
    LL now = 1;
    num[a[1]]++;
    for (int i = 1; i \le m; i++)
         while(rr < query[i].r)</pre>
             rr++;
             num[a[rr]]++;
             //\text{now} = ;
         while (11 > query[i].1)
             11--;
             num[a[11]]++;
             //now = ;
         while (11 < query[i].1)
             //\text{now} = ;
             num[a[11]]--;
             11++;
         while(rr > query[i].r)
             //\text{now} = ;
             num[a[rr]]--;
             rr--;
         ans[query[i].num] = now;
    for (int i = 1; i \le m; i++) printf ("%11d\n", ans [i]);
return 0;
```

主席树 静态区间第 k 大

```
int n, q, m, tot, a[N], b[N];
int tree[N], 1son[N*30], rson[N*30], c[N*30];
void init hash()
    for (int i = 1; i \le n; i++) b[i]=a[i];
    sort(b+1, b+n+1);
    m = unique(b+1, b+n+1)-b-1;
int gethash(int x)
    return lower bound (b+1, b+1+m, x)-b;
void build(int &now, int 1, int r)
    now = tot++;
    c[now] = 0;
    if(1 == r) return;
    int mid = (1+r)/2;
    build(lson[now], 1, mid);
    build(rson[now], mid+1, r);
void update (int &now, int last, int l, int r, int pos, int x)
    now = tot++;
    lson[now] = lson[last];
    rson[now] = rson[last];
    c[now] = c[1ast] + x;
    if(1 == r) return;
    int mid = (1+r)/2;
    if (pos \leq mid) update (1son[now], 1son[1ast], 1, mid, pos, x);
             update(rson[now], rson[last], mid+1, r, pos, x);
int query (int 1t, int rt, int 1, int r, int k)
    if(1 == r) return 1;
    int mid = (1+r)/2;
    if(c[1son[rt]]-c[1son[1t]] >= k)
                                           return query (lson[lt], lson[rt], l, mid, k);
    return query(rson[lt], rson[rt], mid+1, r, k-c[lson[rt]]+c[lson[lt]]);
int main()
    ios::sync with stdio(0);
    while ("scanf ("%d%d", &n, &q))
                                       scanf ("%d", &a[i]);
        for (int i = 1; i \le n; i++)
        init_hash();
        tot = 0;
        build(tree[0], 1, m);
                                        update(tree[i], tree[i-1], 1, m, gethash(a[i]), 1);
        for (int i = 1; i \le n; i++)
        while (q--)
             int 1, r, k;
             scanf ("%d%d%d", &1, &r, &k);
             printf("%d\n", b[query(tree[1-1], tree[r], 1, m, k)]);
```

```
return 0;
                                   静态区间查询不同的数个数
int n, q, m, tot, a[N], b[N];
int tree[N], lson[N*100], rson[N*100], c[N*100];
map<int, int> mp;
int build(int 1, int r)
    int now = tot++;
    c[now] = 0;
    if(1 == r) return now;
    int mid = (1+r)/2;
    lson[now] = build(1, mid);
    rson[now] = build(mid+1, r);
    return now;
int update(int last, int pos, int x)
    int now = tot++, t = now;
    c[now] = c[1ast] + x;
    int 1 = 1, r = n;
    while (1 < r)
        int mid = (1+r)/2;
        if(pos \le mid)
            lson[now] = tot++;
            rson[now] = rson[last];
            now = 1son[now];
            last = lson[last];
            r = mid;
        else
            rson[now] = tot++;
            lson[now] = lson[last];
            now = rson[now];
            last = rson[last];
            1 = mid+1:
        c[now] = c[1ast] + x;
    return t;
int query (int pos, int now, int 1, int r)
    if(1 == r) return c[now];
    int mid = (1+r)/2;
    if (pos <= mid) return query (pos, 1son[now], 1, mid) +c[rson[now]];
    return query(pos, rson[now], mid+1, r);
int main()
    while ("scanf ("%d", &n))
        for (int i = 1; i \le n; i++) scanf ("%d", &a[i]);
        tot = 0;
```

```
tree[0] = build(1, n);
        for (int i = 1; i \le n; i++)
            if(mp. find(a[i]) == mp. end())
                                             tree[i] = update(tree[i-1], i, 1);
            else
                int t = update(tree[i-1], mp[a[i]], -1);
                tree[i] = update(t, i, 1);
            mp[a[i]] = i;
        scanf ("%d", &q);
        while (q--)
            int 1, r;
            scanf("%d%d", &1, &r);
printf("%d\n", query(1, tree[r], 1, n));
    return 0;
                                    树上路径点权第 k 大
int n, q, m, tot, cnt, a[N], b[N], p[N], f[N*2], rmq[N*2];
int tree[N], 1 son[N*40], rson[N*40], c[N*40];
vector<int> v[N];
struct ST
    int mm[2*N], dp[2*N][20];
    void init(int n)
        mm[0] = -1;
        for (int i = 1; i \le n; i++)
            mm[i] = ((i&(i-1)) == 0)?mm[i-1]+1:mm[i-1];
            dp[i][0] = i;
        for (int j = 1; j \le mm[n]; j++)
            for (int i = 1; i+(1 << j)-1 <= n; i++) dp[i][j] = rmq[dp[i][j-1]] <
rmq[dp[i+(1<<(j-1))][j-1]]?dp[i][j-1]:dp[i+(1<<(j-1))][j-1];
    int query (int a, int b)
        if(a > b)
                    swap (a, b);
        int k = mm[b-a+1];
        }st;
void inithash()
    for (int i = 1; i \le n; i++) b[i] = a[i]:
    sort(b+1, b+1+n);
    m = unique(b+1, b+1+n)-b-1;
int gethash(int x)
    return lower bound (b+1, b+1+m, x)-b;
void dfs (int now, int pre, int dep)
```

```
f[++cnt] = now;
    rmq[cnt] = dep;
    p[now] = cnt;
    for (int i = 0; i < v[now]. size (); i++)
        int t = v[now][i];
        if (t == pre) continue;
        dfs(t, now, dep+1);
        f[++cnt] = now;
        rmq[cnt] = dep;
void initlca(int root, int n)
    cnt = 0;
    dfs(root, root, 0);
    st. init (2*n-1);
int querylca(int x, int y)
    return f[st.query(p[x], p[y])];
int build(int 1, int r)
    int now = tot++;
    c[now] = 0;
    if(1 == r) return now;
    int mid = (1+r)/2;
    lson[now] = build(1, mid);
rson[now] = build(mid+1, r);
    return now;
int update(int last, int pos, int x)
    int now = tot++, t = now;
    c[now] = c[1ast] + x;
    int 1 = 1, r = m;
    while (1 < r)
        int mid = (1+r)/2;
        if(pos \le mid)
             lson[now] = tot++;
             rson[now] = rson[last];
             now = 1son[now];
             last = lson[last];
             r = mid;
        else
             rson[now] = tot++;
             lson[now] = lson[last];
             now = rson[now];
             last = rson[last];
             1 = mid+1;
        c[now] = c[last] + x;
    return t;
```

```
void dfsbuild(int now, int pre)
    tree[now] = update(tree[pre], gethash(a[now]), 1);
    for (int i = 0; i < v[now]. size(); i++)
         int t = v[now][i];
        if (t == pre) continue;
        dfsbuild(t, now);
int query (int 1t, int rt, int 1cat, int pos, int k, int 1, int r)
    if(1 == r) return 1;
    int mid = (1+r)/2;
    int t = c[lson[lt]]+c[lson[rt]]-2*c[lson[lcat]];
    if(pos >= 1 && pos <= mid)</pre>
                                   t++;
    if(t >= k) return query(1son[1t], 1son[rt], 1son[1cat], pos, k, 1, mid);
    return query (rson[1t], rson[rt], rson[lcat], pos, k-t, mid+1, r);
int main()
    scanf ("%d%d", &n, &q);
    for (int i = 1; i \le n; i++) scanf ("%d", &a[i]);
    inithash();
    tot = 0;
    for (int i = 1; i < n; i++)
        int x, y;
scanf("%d%d", &x, &y);
        v[x]. push_back(y);
        v[y]. push back(x);
    initlca(1, n);
    tree[0] = build(1, m);
    dfsbuild(1,0);
    while (q--)
         int x, y, k;
        scanf ("%d%d%d", &x, &y, &k);
        int t = querylca(x, y);
        printf(\frac{n}{d}, b[query(tree[x], tree[y], tree[t], gethash(a[t]), k, 1, m)]);
    return 0;
                                           动态第 k 大
int n, q, m, tot, a[N], b[N], use[N];;
int tree[N], tree2[N], 1son[N*50], rson[N*50], c[N*50];
struct Query
    int kind;
    int 1, r, k;
} query[10010];
void Init_hash(int k)
    sort(b, b+k):
    m = unique(b, b+k) - b;
```

```
int hash(int x)
    return lower bound (b, b+m, x)-b;
int build(int 1, int r)
    int root = tot++;
    c[root] = 0;
    if(1 != r)
        int mid = (1+r)/2;
lson[root] = build(1, mid);
rson[root] = build(mid+1, r);
    return root;
int Insert (int root, int pos, int val)
    int newroot = tot++, tmp = newroot;
    int 1 = 0, r = m-1;
    c[newroot] = c[root] + val;
    while (1 < r)
         int mid = (1+r) >> 1;
         if(pos \le mid)
             lson[newroot] = tot++; rson[newroot] = rson[root];
             newroot = 1son[newroot]; root = 1son[root];
             r = mid;
         else
             rson[newroot] = tot++; lson[newroot] = lson[root];
             newroot = rson[newroot]; root = rson[root];
             1 = mid+1;
         c[newroot] = c[root] + val;
    return tmp;
int lowbit(int x)
    return x&(-x);
void add(int x, int pos, int val)
    while (x \le n)
         tree2[x] = Insert(tree2[x], pos, val);
         x += 1 \text{ owbit } (x);
int sum(int x)
    int ret = 0;
    while (x > 0)
        ret += c[1son[use[x]]];
         x = lowbit(x);
    return ret;
```

```
int Query(int left, int right, int k)
    int left root = tree[left-1];
    int right_root = tree[right];
    int 1 = 0, r = m-1;
    for (int i = left-1; i : i -= lowbit(i)) use [i] = tree2[i];
    for(int i = right; i ; i -= lowbit(i)) use[i] = tree2[i];
    while (1 < r)
        int mid = (1+r)/2;
         int tmp = sum(right) - sum(left-1) + c[lson[right root]] - c[lson[left root]];
        if(tmp >= k)
             r = mid;
             for (int i = left-1; i ; i = lowbit(i))
                  use[i] = 1son[use[i]];
             for(int i = right; i; i -= lowbit(i))
    use[i] = lson[use[i]];
             left_root = lson[left_root];
             right_root = lson[right_root];
        else
             1 = mid+1:
             k = tmp;
             for (int i = left-1; i; i = lowbit(i))
                 use[i] = rson[use[i]];
             for(int i = right; i ; i -= lowbit(i))
                 use[i] = rson[use[i]];
             left_root = rson[left_root];
             right_root = rson[right_root];
    return 1;
void Modify(int x, int p, int d)
    while (x \le n)
        tree2[x] = Insert(tree2[x], p, d);
        x += 1 \text{ owbit } (x);
int main()
    int T;
scanf("%d", &T);
    while (T--)
        scanf ("%d%d", &n, &q);
        tot = 0;
        \mathbf{m} = 0:
        for (int i = 1; i \le n; i++)
             scanf("%d", &a[i]);
             b[m++] = a[i];
        char op[10];
        for (int i = 0; i < q; i++)
             scanf("%s", op);
             if(op[0] == 'Q')
```

```
query[i].kind = 0;
               scanf("%d%d%d", &query[i]. 1, &query[i]. r, &query[i]. k);
          else
               query[i].kind = 1;
               scanf("%d%d", &query[i].1, &query[i].r);
b[m++] = query[i].r;
     Init_hash(m);
     tree[0] = build(0, m-1);
     for (int i = 1; i \le n; i++)
          tree[i] = Insert(tree[i-1], hash(a[i]), 1);
     for (int i = 1; i \le n; i++)
          tree2[i] = tree[0];
     for (int i = 0; i < q; i++)
          if(query[i].kind == 0)
               printf("%d\n", b[Query(query[i].1, query[i].r, query[i].k)]);
          else
               Modify(query[i].1, hash(a[query[i].1]),-1);
Modify(query[i].1, hash(query[i].r),1);
a[query[i].1] = query[i].r;
return 0;
```

动态规划

```
最长公共子序列 LCS
int dp[1005][1005] = \{0\}, 1en1, 1en2;
char a[1005], b[1005];
void 1cs()
    for (int i = 1; i \le len1; i ++)
        for (int j = 1; j \le 1en2; j++)
             if(a[i-1] == b[j-1]) 	 dp[i][j] = dp[i-1][j-1]+1;
                     dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
void printflcs(int x, int y)
    if(x == 0 | y == 0)
                              return;
    if(a[x-1] == b[y-1])
        printflcs (x-1, y-1);
        printf("%c", a[x-1]);
    else if (dp[x][y-1] > dp[x-1][y])
                                           printflcs (x, y-1);
    else
             printflcs (x-1, y);
                                       最长上升子序列 LIS
int n, a [50005], b [50005] = \{0\};
int main()
    scanf("%d", &n);
for(int i = 1;i <= n;i++)</pre>
                                   scanf ("%d", &a[i]);
    b[1] = a[1];
    int len = 1;
    for (int i = 2; i \le n; i++)
        int t = lower bound(b+1, b+len+1, a[i])-b;
        b[t] = a[i];
        if(t == 1en+1)  1en++;
    printf("%d\n", len);
    return 0;
                                            01 背包
int n, m, w[3500], v[3500], dp[13000] = \{0\};
//数量 n, 背包 m, 重量 w, 价值 v
int main()
    scanf ("%d%d", &n, &m);
    for (int i = 1; i \le n; i++)
                                    scanf ("%d%d", &w[i], &v[i]);
    for (int i = 1; i \le n; i++)
        for (int j = m; j \ge w[i]; j--)
                                           dp[j] = max(dp[j], dp[j-w[i]]+v[i]);
    printf("%d\n", dp[m]);
    return 0;
```

01 背包(容量很大)

int dp[50005], v[1005], w[1005], n, W;

int n, m, dp[105];

int main()

```
//数量 n, 背包 W, 重量 w, 价值 v
//w 很大,考虑每个价值的最小重量
int main()
    ios::sync_with_stdio(0);
    while (cin >> n >> W)
        memset(dp, 0x3f, sizeof(dp));
        dp[0] = 0;
        int sum = 0;
        for (int i = 1; i \le n; i++)
            cin >> w[i] >> v[i];
            sum += v[i];
        for (int i = 1; i \le n; i++)
            for (int j = sum; j \ge v[i]; j--) dp[j] = min(dp[j-v[i]]+w[i], dp[j]);
        for (int i = sum; i >= 0; i--)
            if(dp[i] \leftarrow W)
                cout << i << end1;
                break;
    return 0;
                                         完全背包
//1、如果背包要求正好装满则初始化 dp[0] = 0, dp[1~m] = INF。
//2、如果不需要正好装满 dp[0m] = 0。
int n, m, e, f, w[505], v[505], dp[10005];
//数量 n, 背包 m, 重量 w, 价值 v
int main()
    int T;
    scanf("%d", &T);
    while (T--)
        scanf ("%d%d%d", &e, &f, &n);
        m = f - e;
        memset (dp, 0x3f, sizeof(dp));
        dp[0] = 0;
                                      scanf ("%d%d", &v[i], &w[i]);
        for (int i = 1; i \le n; i++)
        for (int i = 1; i \le n; i++)
            for (int j = w[i]; j \le m; j++)
                                             dp[j] = min(dp[j], dp[j-w[i]]+v[i]);
        if(dp[m] == INF)
                            printf("This is impossible.\n");
               printf ("The minimum amount of money in the piggy-bank is %d.\n", dp[m]);
    return 0;
```

多重背包二进制

```
int T;
    cin >> T;
    while (T--)
         memset (dp, 0, sizeof (dp));
         cin >> n >> m;
         for (int i = 1; i \le m; i++)
              int p, h, c; //花费, 价值, 数量
              cin \gg p \gg h \gg c;
              int now = 1;
              while (1)
                  int t = min(now, c);
                  c = t:
                  int pp = p*t, hh = h*t;
                  for (int j = n; j \ge pp; j--) dp[j] = max(dp[j], dp[j-pp]+hh); if (c == 0) break;
                  now *= 2;
         cout \ll dp[n] \ll end1;
    return 0;
                                          多重背包优先队列
int n, m, dp[105], a[105], b[105];
int main()
    int T;
    cin \gg T:
    while (T--)
         memset(dp, 0, sizeof(dp));
         cin >> n >> m;
         for (int i = 1; i \le m; i++)
              int p, h, c;
              cin \gg p \gg h \gg c;
              if(n/p < c) c = n/p;
              for (int d = 0; d < p; d++)
                  int 1 = 1, r = 0;
                  for (int j = 0; j \le (n-d)/p; j++)
                       while (1 \le r \& b[r] \le dp[j*p+d]-j*h) r--;
                       a[++r] = j;
                       b[r] = dp[j*p+d]-j*h;
                       if(a[1] < j-c) 1++;
dp[j*p+d] = b[1]+j*h;
         cout \ll dp[n] \ll end1;
    return 0;
                                               数位 dp
//求 1-n 中不包含 m 字段的数量
int a[25], b[25], x[25], cnt1, cnt2;
```

long long n, m, dp[25][25];

```
long long dfs (int now1, int now2, int limit)
    if(now2 == 0)
                       return 0;
    if(now1 == 0)
                       return 1;
    if(!limit && dp[now1][now2] != -1) return dp[now1][now2];
    int endd = limit?a[now1]:9;
    long long ans = 0;
    for (int i = endd; i >= 0; i--)
         int t = now2;
         while (b[t] != i \&\& t != cnt2) t = x[t];
         if(b[t] == i) t--;
         ans += dfs(now1-1, t, limit && i == endd);
    if(!limit) dp[now1][now2] = ans;
    return ans;
int main()
    ios::sync_with_stdio(0);
    int T;
    cin >> T;
    while (T--)
         cin \gg n \gg m;
         cnt1 = 0;
         cnt2 = 0;
         while (n)
              a[++cnt1] = n\%10;
              n /= 10;
         while (m)
              b[++cnt2] = m\%10;
              m /= 10;
         int i = cnt2, j = cnt2+1;
x[cnt2] = cnt2+1;
         while (i >= 1)
              if(j = cnt2+1 \mid b[i] = b[j])  x[--i] = --j;
              else j = x[j];
         x[cnt2] = cnt2;
         memset (dp, -1, sizeof(dp));
         \operatorname{cout} << \operatorname{dfs}(\operatorname{cnt1}, \operatorname{cnt2}, 1) - 1 << \operatorname{end1};
    return 0;
                                               状压 dp
//裁玻璃 2*2
```

```
int a[15][15], sta[100], dp[15][100], sum[15][100], n, m;
int main()
{
    ios::sync_with_stdio(false);
    int T;
    cin >> T;
    while(T--)
    {
        memset(dp, 0, sizeof(dp));
        memset(sum, 0, sizeof(sum));
    }
}
```

```
cin >> n >> m;
         for (int i = 1; i \le n; i++)
             for (int j = 1; j \le m; j++)
                                             cin \gg a[i][j];
         int cnt = 0, endd = 1 << (m-1);
         for (int i = 0; i < endd; i++)
             if (i & (i << 1)) continue;
             sta[++cnt] = i;
         for (int i = 1; i < n; i++)
             for (int j = 1; j \le cnt; j++)
                  for (int k = 1; k \le m-1; k++)
                       if (1<<(k-1) & sta[j])
                           if(a[i][k] && a[i][k+1] && a[i+1][k] && a[i+1][k+1])
sum[i][j]++;
         for (int i = 1; i \le cnt; i++) dp[1][i] = sum[1][i];
         for (int i = 1; i < n; i++)
             for (int j = 1; j \leftarrow cnt; j++)
                  for (int k = 1; k \le cnt; k++)
                       dp[i+2][k] = max(dp[i+2][k], dp[i][j]+sum[i+2][k]);
                      if(sta[j] & sta[k])
                                                       continue;
                      if(sta[j] & (sta[k]<<1))
if(sta[j] & (sta[k]>>1))
                                                       continue:
                                                      continue:
                      dp[i+1][k] = max(dp[i+1][k], dp[i][j]+sum[i+1][k]);
         int ans = 0;
         for (int i = 1; i \le cnt; i++) ans = max(ans, dp[n-1][i]);
         cout << ans << end1;</pre>
    return 0;
```

数论

```
int cnt, prime [MAXN+1], mi [MAXN+1], vis [MAXN+1] = \{0\};
//cnt 表示素数个数
//prime 存放每个素数
//mi 存放每个数的最小素数因子
void getprime()
    cnt = 0;
    memset(prime, 0, sizeof(prime));
    for (int i = 2; i \le MAXN; i++)
        if(!vis[i])
            prime[++cnt] = i;
            mi[i] = i;
        for(int j = 1; j \le cnt \&\& (long long) i*prime[j] \le MAXN; j++)
            vis[prime[j]*i] = 1;
            mi[prime[j]*i] = prime[j];
            if(!(i%prime[j])) break;
int cnt2, notprime2[1000005], prime2[1000005];
//区间 1, r 之间的素数
void getprime2(int 1, int r)
    cnt2 = 0;
    memset (notprime2, 0, sizeof (notprime2));
    if(1 < 2)   1 = 2;
    for(int i = 1; i \le cnt \&\& (long long)prime[i]*prime[i] <= r; i++)
        int t = 1/prime[i];
        if(1\%prime[i]) t++;
        if(t == 1) t = 2;
        for(int j = t; (long long) j*prime[i] <= r; j++)</pre>
            if((long\ long)\ j*prime[i] >= 1) notprime2[j*prime[i]-1] = 1;
    for (int i = 0; i \le r-1; i++)
        if(!notprime2[i]) prime2[++cnt2] = i+1;
                                        合数分解
long long factor[105][2];
//返回素因子个数
//factor[i][0]表示第 i 个素因子, factor[i][1]表示第 i 个素因子的个数
int getfac (long long x)
```

for(int i = 1; (long long)prime[i]*prime[i] <= x;i++)</pre>

factor[++cnt][0] = prime[i];

while (x%prime[i] == 0)

if(x%prime[i] == 0)

```
factor[cnt][1]++;
                 x \neq prime[i];
    if(x != 1)
        factor[++cnt][0] = x;
        factor[cnt][1] = 1;
    return cnt;
                                            快速乘
long long qmul (long long a, long long b, long long c)
    long long ans = 0;
    a = a\%c;
    b = b\%c;
    while (b)
        if (b%2)
             ans += a;
             if (ans > c) ans -= c;
        a = a+a;
        if(a > c)
                     a = c;
        b /= 2;
    return ans;
                                            快速幂
long long qpower (long long a, long long b, long long c)
    long long ans = 1;
    a = a\%c;
    while (b)
        if (b%2)
                    ans = ans*a\%c;
        a = a*a%c;
        b /= 2;
    return ans;
                                         string 快速幂
string mul(string a, string b)
    int arr[200], len = a. length() + b. length();
    memset (arr, 0, sizeof (arr));
    reverse (a. begin (), a. end ());
    reverse (b. begin (), b. end ());
    for (int i = 0; i < a. length(); i++)
        for(int j = 0; j < b.length(); j++) arr[i+j] += (a[i]-'0')*(b[j]-'0');
    for (int i = 0; i < len; i++)
        arr[i+1] += arr[i]/10;
        arr[i] %= 10;
    string ans = string(len, '0');
    for (int i = 0; i < len; i++) ans [i] += arr[i];
```

```
reverse (ans. begin (), ans. end ());
    cout << ans << end1;
    return ans;
string strpow(string x, int b)
    string ans = "1";
    while(b)
        if(b\%2) ans = mul(ans, x);
        x = mu1(x, x);
        b /= 2;
    return ans;
                                         矩阵快速幂
struct matrix
    long long m[2][2];
matrix one = \{ 1, 0, \}
                 0, 1 };
matrix mul (matrix a, matrix b)
    matrix tmp;
    for (int i = 0; i < 2; i++)
        for (int j = 0; j < 2; j++)
            tmp. m[i][j] = 0;
            for (int_k = 0; k \le 2; k++)
                                          tmp.m[i][j] =
(tmp. m[i][j]+a. m[i][k]*b. m[k][j])%MOD;
    return tmp;
matrix magower (matrix a, int b)
    matrix ans = one;
    while (b)
        if(b\%2) ans = mul(ans, a);
        a = mul(a, a);
        b /= 2;
    return ans;
                                     miller_rabin 判断素数
//用 a 来检验 n 是否为素数
//是素数返回1,不是返回0
bool check(long long a, long long n, long long x, long long t)
    long long ans = qpower (a, x, n);
    if (ans == 1 \mid | ans == n-1) return 1;
    while (t--)
        ans = qmul(ans, ans, n);
        if (ans == n-1) return 1;
```

```
return 0;
//判断 n 是否为素数
//是素数返回1,不是返回0
bool miller rabin (long long n)
    if (n < 2) return 0;
    if (n == 2) return 1;
    if(n\%2 == 0) return 0;
    long long x = n-1;
    long long t = 0;
    while (x\%2 == 0)
        x /= 2;
        t++;
    srand(time(0));
    for (int i = 1; i \le 10; i++)
        long long a = rand()\%(n-1)+1;
        if(!check(a, n, x, t)) return 0;
    return 1;
                                     pollard_rho 分解质因数
long long factor[105];
int cnt;
long long pollard rho(long long n, long long c)
    long long i = 1, k = 2;
    srand(time(0));
    long long x = rand()\%(n-2)+1, y = x;
    while(1)
        i++;
        x = (qmu1(x, x, n) + c) %n;
        long long d = __gcd(y-x, n);
if(1 < d && d < n) return d;</pre>
        if(x == y) return n;
        if(i == k)
            y = x;
            k = 2;
// 求 n 的质因数, k 设为 107
void findfac(long long n, int k)
    if(n == 1) return;
    if (miller_rabin(n))
        factor[++cnt] = n;
        return;
    long long p = n;
    int c = k;
    while (p \ge n)  p = pollard_rho(p, c--);
    findfac(p,k);
    findfac (n/p, k);
```

```
gcd、lcm
LL gcd(LL x, LL y) //最大公约数
    return y?gcd(y, x%y):x;
                         //最小公倍数
LL 1cm(LL x, LL y)
    return x*y/gcd(x, y);
                                       lcm(1,2,3,...n)
//1cm(C(n, 0), C(n, 1), ..., C(n, n)) = 1cm(1, 2, 3, ...n+1)/(n+1)
//计算 1cm(1, 2, 3, ···n)
const int N=100000007;
int visit [N/32+50];
unsigned int data[5800000];
int prime [5800000], np=0;
             //筛素数,数组从 0 开始
void Prime()
    prime[0] = data[0] = 2;
    np = 1;
    for (int i = 3; i < N; i += 2)
        if(!(visit[i/32]&(1<<((i/2)%16))))</pre>
            prime[np] = i;
            data[np] = data[np-1]*i;
            for (int j = 3*i; j < N; j += 2*i) visit[j/32] = (1 << ((j/2)\%16));
long long Deal(int n)
    int p = upper bound(prime, prime+np, n)-prime-1;
    long long ans = data[p];
    for (int i = 0; i < np && prime[i]*prime[i] <= n; i++)
        int mul = prime[i], tmp = prime[i] * prime[i]; ;
        while (tmp/mul == prime[i] && tmp <= n)</pre>
            tmp *= prime[i];
            mul *= prime[i];
        ans = ans*(mul/prime[i])%MOD;
    return ans;
                                         欧拉函数
小于 N 且与 N 互质的数的个数(包括 1)。
对于一个正整数 N 的素数幂分解 N = P1^q1*P2^q2*...*Pn^qn。
\phi(N)=N*(1-1/P1)*(1-1/P2)*...*(1-1/Pn)
//先分解质因数
int euler(int n)
```

for (int i = 1; $i \le cnt$; i++) ans = ans/factor[i][0]*(factor[i][0]-1);

```
long long euler (long long n)
    long long ans = 1;
    for (int i = 2; (long long) i*i \le n; i++)
        if(n\%i == 0)
             n /= i;
             ans *= i-1;
             while (n\%i == 0)
                 n /= i;
                 ans *= i;
    if(n > 1)
                   ans *= n-1;
    return ans;
```

线性筛

```
int cnt, phi[N+10], prime[N+10], vis[N+10];
//同时得到欧拉函数和素数表
void geteuler()
    memset (vis, 0, sizeof (vis));
    phi[1] = 1;
    cnt = 0;
    for (int i = 2; i \le N; i++)
        if(!vis[i])
            prime[++cnt] = i;
            phi[i] = i-1;
        for (int j = 1; j \leftarrow cnt; j++)
            if((long long)i*prime[j] > N)
                                              break;
            vis[i*prime[j]] = 1;
            if(i\%prime[j] == 0)
                 phi[i*prime[j]] = phi[i]*prime[j];
                 break:
                     phi[i*prime[j]] = phi[i]*(prime[j]-1);
            e1se
```

lucas 定理

```
A、B 是非负整数, p 是质数。AB 写成 p 进制: A=a[n]a[n-1]...a[0], B=b[n]b[n-1]...b[0]。
则组合数 C(A,B)与 C(a[n],b[n])*C(a[n-1],b[n-1])*...*C(a[0],b[0]) modp 同余。
即: Lucas(n,m,p)=c(n%p,m%p)*Lucas(n/p,m/p,p)。
//用与 n, m 很大, MOD 不是很大的情况
long long qmod(long long a, long long b, long long c)
    long long ans = 1;
    a = a\%c;
    while (b)
       if(b\%2) ans = (ans*a)\%c;
```

```
a = (a*a)%c;
        b /= 2;
    return ans;
long long c (long long m, long long n)
    if(m < n)
                 return 0;
    if(m == n) return 1;
    if(n > m-n) n = m-n;
    long long mm = 1, nn = 1;
    for (long long i = 0; i < n; i++)
        mm = mm*(m-i)%MOD;
        nn = nn*(n-i)%MOD;
    return mm*qmod(nn, MOD-2, MOD) %MOD;
long long lucas (long long m, long long n)
    long long ans = 1;
    while (m && n && ans)
        ans = ansMOD*c (mMOD, nMOD) MOD;
        n /= MOD;
        m /= MOD;
    return ans;
                                       扩展 lucas(模合数)
long long inv (long long a, long long MOD)
    if(!a) return 0;
    long long b = MOD, x = 0, y = 0;
    e_{gcd}(a, b, x, y);
    x = ((x\%b)+b)\%b;
    if(!x) x += b;
    return x;
long long mul (long long n, long long pi, long long pk)
    if(!n) return 1;
    long long ans=1;
    for (long long i = 2; i \leq pk; i++)
        if(i%pi)
                     ans = ans*i\%pk;
    ans = qpower(ans, n/pk, pk);
    for (long long i = 2; i \le n\%pk; i++)
        if(i%pi)
                     ans = ans*i\%pk;
    return ans*mul(n/pi, pi, pk)%pk;
long long C(long long n, long long m, long long MOD, long long pi, long long pk)
    if (m > n) return 0:
    long long a = mul(n, pi, pk), b = mul(m, pi, pk), c = mul(n-m, pi, pk), k = 0, ans = 0;
    for (long long i = n; i; i /= pi) k += i/pi;
```

```
for (long long i = m; i; i /= pi) k -= i/pi;
    for (long long i = n-m; i; i \neq pi) k = i/pi;
    ans = a*inv(b, pk)%pk*inv(c, pk)%pk*qpower(pi, k, pk)%pk;
    return ans*(MOD/pk)%MOD*inv(MOD/pk, pk)%MOD;
long long lucas (long long n, long long m, long long MOD)
    long long ans = 0, x = MOD;
    for (long long i = 2; i*i \le x; i++)
        if(x\%i == 0)
            long long t = 1;
            while (x\%i == 0)
                t *= i;
                x /= i:
            ans = (ans+C(n, m, MOD, i, t)) %MOD;
                ans = (ans+C(n, m, MOD, x, x)) %MOD;
    if(x > 1)
    return ans;
                                           逆元
费马小定理: 假如 p 是素数,且 a 与 p 互质,那么 a^{(p-1)} = 1 (mod p)。
费马大定理: 当整数 n>2 时,关于 x,y,z 的方程 x^n+y^n=z^n 没有正整数解。
欧拉定理: 若 n,a 为正整数,且 n,a 互质,则:a^(phi(n)) = 1(mod n),可得 a^b%p = a^(b%phi(p))%p
另外,a,b 不互质且 b < phi(n)时,有 a^b = a^(b \cdot phi(p) + phi(p))%p
逆元: ax = 1 \pmod{m}的 x 值(0 < a < m)。
当 p 是质数的时候 a/x \mod p == a*x^(p-2) \mod p。
当 p 不是质数的时候 a/x \mod p == a*x^(phi(p)-1) \mod p。
                                          逆元 1
long long inv (long long a, long long m)
    return qmod(a, m-2, m);
                                          逆元 2
long long inv (long long a, long long m)
    if(a == 1) return 1;
    return inv (m\%a, m)*(m-m/a)\%m;
                                          逆元 3
//扩展欧几里德
long long e gcd(long long a, long long b, long long &x, long long &y)
    if(!b)
        X = 1;
        y = 0;
        return a;
    long long d = e_{gcd}(b, a\%b, y, x);
```

```
y = a/b*x;
    return d;
long long inv (long long a, long long m)
    long long x, y;
    long long gcd = e_gcd(a, m, x, y);
    if(gcd == 1)  return (x\%m+m)\%m;
    return -1;
                                       中国剩余定理
//求解方程组 x%m = a, x 的最小值
//无解返回-1
long long e_gcd(long long a, long long b, long long &x, long long &y)
    if(!b)
        x = 1;
        y = 0;
        return a;
    long long d = e \gcd(b, a\%b, y, x);
    y = a/b*x;
    return d;
long long solve (long long *m, long long *a, long long n)
    long long M = m[1], A = a[1], x, y;
    for (int i = 2; i \le n; i++)
        long long d = e_{gcd}(M, m[i], x, y);
        if ((a[i]-A)\%d) return -1;
        x = (a[i]-A)/d*x\%(m[i]/d);
        A += x*M;
        M = M/d*m[i];
        A \% = M;
    if(A < 0)
                A += M;
    return A;
                                      浮点数高斯消元
//浮点型只有唯一解时可计算
//返回 0 表示无解
#define eps 1e-9
double a[N][N], x[N];
                            //左边矩阵和右边值,结果存在 x 数组内
int Gauss (int equ, int var) //方程个数和未知数个数
    for (int row = 0, col = 0; col \langle var&&row \langle equ; col++, row++ \rangle
        int max r=row;
        for (int i = row+1; i < equ; i++)
            if(fabs(a[i][col])-fabs(a[max r][col]) > eps)
                                                              max r=i;
        if(fabs(a[max r][col]) < eps)
                                        return 0;
        if(max r != row)
            for (int j = 0; j \le var; j++) swap (a[row][j], a[max r][j]);
        for (int i = row+1; i < equ; i++)
```

01 异或高斯消元

```
//有 equ 个方程, var 个变元。增广矩阵行数为 equ, 分别为 0 到 equ-1, 列数为 var+1, 分别为 0 到
var.
int equ, var;
int a[250][250];
                    //增广矩阵
int x[250]:
                    //解集
int free_x[250];
                    //标记是否不确定的变元
int free num;
                    //不确定变元个数
int n;
char s[30];
//-1 表示无解, 0 表示唯一解, 大于 0 表示无穷解, 并返回自由变元的个数)
void init()
    memset(a, 0, sizeof(a));
    memset(x, 0, sizeof(x));
    equ = n*n;
    var = n*n;
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++)
            int t = i*n+j;
            a[t][t] = 1;
            if (i > 0)  a[(i-1)*n+j][t] = 1;
            if (i < n-1) a[(i+1)*n+j][t] = 1;
            if(j > 0) a[i*n+j-1][t] = 1;
            if(j < n-1) \ a[i*n+j+1][t] = 1;
void Debug()
    for (int i = 0; i < equ; i++)
        for(int j = 0; j < var+1; j++) cout \langle \langle a[i][j] \langle \langle "";
        cout << end1;
    cout << end1;
int Gauss()
    int max_r, col, k;
    free_num = 0;
    for (k = 0, col = 0; k < equ && col < var; k++, col++)
        \max r = k;
        for(int i = k+1; i < equ; i++)
```

```
if(abs(a[i][col]) > abs(a[max r][col])) max r = i;
        if(max r != k)
             for (int i = col; i < var+1; i++) swap (a[k][i], a[max r][i]);
        if(a[k][col] == 0)
             free_x[free_num++] = co1;
             continue;
        for (int i = k+1; i < equ; i++)
             if(a[i][col] == 0) continue;
             for(int j = col; j < var+1; j++) a[i][j] = a[k][j];
    for (int i = k; i < equ; i++)
        if(a[i][col] != 0) return -1;
    return var-k;
void solve()
    int t = Gauss();
    if (t == -1) printf ("inf \setminus n");
    else
        int ans = INT_MAX, tot = (1 << t);
        for (int i = 0; i < tot; i++)
             int cnt = 0;
             for (int j = 0; j < t; j++)
                 if (i& (1<< j))
                     x[free_x[j]] = 1;
                     cnt++;
                 else x[free x[j]] = 0;
             for (int j = var-t-1; j >= 0; j--)
                 int t = a[j][var];
                 for (int k = j+1; k < var; k++)
                     if(a[j][k]) t = x[k];
                 x[j] = t;
cnt += x[j];
            ans = min(ans, cnt);
        printf("%d\n", ans);
                                      同余方程组高斯消元
```

int a[MAXN][MAXN]; //增广矩阵 int x[MAXN]; //解集

```
bool free x[MAXN]; //标记是否是不确定的变元
int gcd(int a, int b)
    return b?gcd(b, a%b):a;
int lcm(int a, int b)
    return a/gcd(a, b)*b;
//-1 表示无解,0 表示唯一解,大于 0 表示无穷解,并返回自由变元的个数)
//有 equ 个方程, var 个变元。增广矩阵行数为 equ, 分别为 0 到 equ-1, 列数为 var+1, 分别为 0 到
int Gauss(int equ, int var)
    int i, j, k;
    int max_r;// 当前这列绝对值最大的行.
int col;//当前处理的列
    int ta, tb;
    int LCM;
    int temp;
    int free x num;
    int free_index;
for(int i = 0;i <= var;i++)</pre>
        x[i]=0;
        free_x[i]=true;
    col=0;
    for (k = 0; k < equ \&\& col < var; k++, col++)
        max_r=k;
        for(i = k+1; i < equ; i++)
             if(abs(a[i][col]) > abs(a[max_r][col])) max r=i;
        if(max_r != k)
             for (j = k; j < var+1; j++) swap (a[k][j], a[max_r][j]);
        if(a[k][co1] == 0)
             k--:
             continue;
        for (i = k+1; i < equ; i++)
             if (a[i][col] != 0)
                 LCM = 1cm(abs(a[i][col]), abs(a[k][col]));
                 ta = LCM/abs(a[i][col]);
tb = LCM/abs(a[k][col]);
if(a[i][col]*a[k][col] < 0) tb = -tb;</pre>
                 for (j = col; j < var+1; j++)
                     a[i][j] = ((a[i][j]*ta-a[k][j]*tb)%7+7)%7;
    for (i = k; i < equ; i++)
        if (a[i][col] != 0) return -1;
```

```
if(k < var)
    for (i = k-1; i >= 0; i--)
        free x num = 0;
        for (j = 0; j < var; j++)
             if (a[i][j] != 0 \&\& free_x[j]) free_x_num++, free_index = j;
        if(free_x_num > 1) continue;
        temp = a[i][var];
        for (j = 0; j < var; j++)
             if(a[i][j] != 0 \&\& j != free index) temp -= a[i][j]*x[j]%7;
             temp = (temp\%7+7)\%7;
        x[free\_index] = (temp/a[i][free\_index])%7;
        free_x[free_index] = 0;
    return var-k;
for (i = var-1; i \ge 0; i--)
    temp = a[i][var];
    for (j = i + 1; j < var; j++)
        if(a[i][j] != 0) temp -= a[i][j]*x[j];
        temp = (temp\%7+7)\%7;
    while (\text{temp}\%a[i][i] != 0)
                                  temp += 7;
    x[i] = (temp/a[i][i])\%7;
return 0;
```

FFT 递归

typedef complex<double> C;

```
int n, m;
C a[N], b[N];
int gi()
    int res = 0, fh = 1;
    char ch = getchar();
    while((ch > '9' | | ch < '0') && ch != '-') ch = getchar();
if(ch == '-')</pre>
         fh=-1;
         ch=getchar();
    while (ch >= '0' && ch <= '9')
         res = res*10+ch-'0';
         ch=getchar();
    return fh*res;
void fft(C *a, int n, int f)
    if(n == 1) return;
    C \text{ wn}(\cos(2.0*PI/n), \sin(f*2.0*PI/n)), w(1,0), t, a0[n>>1], a1[n>>1];
    for (int i = 0; i < n >> 1; i++)
```

```
a0[i] = a[i << 1];
         a1[i] = a[i << 1]1;
    fft(a0, n >> 1, f);
    fft(a1, n >> 1, f);
    for (int i = 0; i < n >> 1; i++, w *= wn)
         t = w*a1[i];
        a[i] = a0[i]+t;
        a[i+(n)>1)] = a0[i]-t;
int main()
    n = gi();
    m = gi();
    for(int i = 0; i \le n; i++)
                                    a[i]=gi();
    for (int i = 0; i \le m; i++)
                                    b[i]=gi();
    m += n;
    for (n = 1; n \le m; n *= 2);
    fft(a, n, 1);
    fft(b, n, 1);
                                    a[i] *= b[i];
    for (int i = 0; i \le n; i++)
    fft(a, n, -1);
                                    printf("%d", int(a[i]. real()/n+0.5));
    for (int i = 0; i \le m; i++)
    return 0;
```

FFT 非递归

```
typedef complex<double> C;
int n, m, L, R[N];
C a[N], b[N];
int gi()
    int res = 0, fh = 1;
    char ch = getchar();
    while ((ch > '9' \mid | ch < '0') \&\& ch != '-') ch = getchar();
    if (ch == '-')
        fh=-1;
        ch=getchar();
    while (ch >= '0' && ch <= '9')
        res = res*10+ch-'0';
        ch=getchar();
    return fh*res;
void fft(C *a, int f)
    for (int i = 0; i < n; i++)
        if(i < R[i])
                       swap(a[i], a[R[i]]);
    for (int i = 1; i < n; i *= 2)
        C \text{ wn}(\cos(PI/i), \sin(f*PI/i)), x, y;
        for (int j = 0; j < n; j += i << 1)
```

```
C w(1, 0);
             for (int k = 0; k < i; k++, w *= wn)
                 x = a[j+k];
                 y = w*a[j+i+k];
                  a[j+k] = x+y;
                  a[j+i+k] = x-y;
        }
int main()
    n = gi();
    m = gi();
                                   a[i] = gi();
b[i] = gi();
    for (int i = 0; i \le n; i++)
    for (int i = 0; i \le m; i++)
    m += n;
    for (n = 1; n \le m; n *= 2)
                                   L++:
                                    R[i] = (R[i>>1]>>1) | ((i&1)<<(L-1));
    for (int i = 0; i < n; i++)
    fft(a, 1);
    fft(b, 1);
    for (int i = 0; i \le n; i++)
                                    a[i] *= b[i];
    fft(a,-1);
                                    printf("%d", int(a[i]. real()/n+0.5));
    for (int i = 0; i \le m; i++)
    return 0;
                                            约数和定理
//需要 getprime, qpower, getfac, 先调用 getprime
//计算 1+p+p^2+^
                  ^{\text{h}}+p^{\text{h}}n
long long sum(long long p, long long n)
    if(p == 0) return 0;
    if(n == 0) return 1;
    if (n\%2) return (1+qpower(p, n/2+1, MOD))\%MOD*sum(p, n/2)\%MOD;
           return ((1+qpower(p, n/2+1, MOD)) MOD*sum(p, n/2-1)
1) +qpower (p, n/2, MOD) \% MOD) \% MOD;
//求 a b 的约数和对 MOD 取模
long long solve (long long a, long long b)
```

莫比乌斯反演

$$F(n) = \sum_{d|n} f(d) => f(n) = \sum_{d|n} \mu(d) F(\frac{n}{d})$$

int cnt = getfac(a);
long long ans = 1;

ans %= MOD;

return ans;

for (int i = 1; $i \le cnt$; i++)

$$F(n) = \sum_{n|d} f(d) => f(n) = \sum_{n|d} \mu(\frac{d}{n}) F(d)$$

```
const int MAXN = 100000;
bool check[MAXN+5];
```

ans *= sum(factor[i][0], b*factor[i][1])%MOD;

```
int prime[MAXN+5], mu[MAXN+5], sum[MAXN+5];
//求莫比乌斯函数
void Moblus()
    memset (check, 0, sizeof (check));
    mu[1] = 1;
    int cnt = 0;
    for (int i = 2; i \le MAXN; i++)
         if(!check[i])
             prime[cnt++] = i;
             mu[i] = -1;
         for (int j = 0; j < cnt && i*prime[j] <= MAXN; <math>j++)
             check[i*prime[j]] = 1;
             if(i\%prime[j] == 0)
                  mu[i*prime[j]] = 0;
                  break;
                      mu[i*prime[j]] = -mu[i];
             else
    sum[0] = 0;
                                        sum[i] = sum[i-1]+mu[i];
    for (int i = 1; i \le MAXN; i++)
//求[1, n], [1, m]内互质的数的对数
int solve(int n, int m)
    int ans = 0;
    if(n > m) swap (n, m);
    for (int i = 1, last; i \le n; i = last+1)
         last = \min(n/(n/i), m/(m/i));
         ans += (sum[1ast]-sum[i-1])*(n/i)*(m/i);
    return ans;
int main()
    Moblus();
    int a, b, c, d, k, T;
scanf("%d", &T);
    while (T--)
         scanf ("%d%d%d%d%d", &a, &b, &c, &d, &k);
         c-
         a \neq k;
         b /= k;
         c /= k;
         d /= k;
         printf ("%d \setminus n", solve (b, d) -solve (a, d) -solve (b, c) +solve (a, c));
```

```
int Inval(int a, int b, int n)
    long long x, y, e;
    e \gcd(a, n, x, y);
    e = (long long) x*b%n;
    return e < 0?e+n:e;
//求 A^x = B(mod C)(C 可以为非素数)
int BSGS (int A, int B, int C)
    map <int, int > H;
    long long buf = 1\%C, D = buf, K;
    int d = 0, tmp;
    for (int i = 0; i \le 100; buf = buf*A%C, i++)
    if (buf == B) return i;
    while ((tmp = gcd(A, C)) != 1)
        if (B % gcd(A, C) != 0) return -1;
        d++;
        C /= tmp;
        B /= tmp;
        D = D*A/tmp%C;
    H. clear();
    int M = (int)ceil(sqrt(C));
    buf = 1\%C;
    for (int i = 0; i \le M; buf = buf*A%C, i++)
        if(H. find((int)buf) == H. end()) H[(int)buf] = i;
    K = \text{qpower}(A, M, C);
    for (int i = 0; i \le M; D = D*K%C, i++)
        tmp = Inval((int)D, B, C);
        if(tmp \ge 0 \&\& H.find(tmp) != H.end()) return i*M+H[tmp]+d;
    return -1;
                                     自适应 simpson 积分
const double eps = 1e-6;
// 三点 simpson 法。这里要求 F 是一个全局函数
double simpson (double a, double b)
    double c = a+(b-a)/2;
    return (F(a) + 4*F(c) + F(b))*(b-a)/6;
// 自适应 Simpson 公式(递归过程)。已知整个区间[a,b]上的三点 simpson 值 A
double asr (double a, double b, double eps, double A)
    double c = a+(b-a)/2;
    double L = simpson(a, c), R = simpson(c, b);
    if (fabs(A-L-R) \le 15*eps) return L+R+(A-L-R)/15;
    return asr (a, c, eps/2, L) + asr(c, b, eps/2, R);
// 自适应 Simpson 公式 (主过程)
double asr (double a, double b, double eps)
    return asr(a, b, eps, simpson(a, b));
```

康托展开

```
X = an*(n-1)!+an-1*(n-2)!+...+ai*(i-1)!+...+a2*1!+a1*0!

其中, ai 为当前未出现的元素中是排在第几个(从 0 开始)。

int f(vector<int> v)
{
    int sum = 0;
    for(int i = 0; i < 8; i++)
    {
        int t = 0;
        for(int j = i+1; j < 8; j++)
        {
            if(v[i] > v[j]) t++;
        }
        sum += t*h[7-i];
    }
    return sum;
}
```

sg 函数

```
//f[]: 可以取走的石子个数
//sg[]:0 n 的 SG 函数值
//hash[]:mex{}
int n, m, p, f[N], sg[N], hashh[N];

void getSG(int n)
{
    memset(sg, 0, sizeof(sg));
    for(int i = 1; i <= n; i++)
    {
        memset(hashh, 0, sizeof(hashh));
        for(int j = 1; f[j] <= i; j++)
        for(int j = 0; j <= n; j++)
        {
            if (hashh[j] == 0)
            {
                  sg[i] = j;
                 break;
            }
        }
     }
}
```

整数划分分类

1. 若划分的多个整数可以相同

设 dp[i][j]为将 i 划分为不大于 j 的划分数。

- (1) 当 i < j 时, i 不能划分为大于 i 的数, dp[i][j] = dp[i][i]。
- (2) 当 i>j 时,可以根据划分中是否含有 j 分为两种情况。

若划分中含有j,划分方案数为dp[i-j][j]。

若划分数中不含 j,相当于将 i 划分为不大于 j-1 的划分数,为 dp[i][j-1]。

所以当 i>j 时, dp[i][j]=dp[i-j][j]+dp[i][j-1]。

- (3) 当 i=j 时,若划分中含有 j 只有一种情况,若划分中不含 j 相当于将 i 划分为不大于 j-1 的划分数。此时 dp[i][j]=1+dp[i][j-1]。
- 2.将 n 划分为 k 个整数的划分数

dp[i][j]表示将 i 划分成 j 个正整数的划分数。

- (1) 当 i < j 时, i 不能划分成 j 个正整数, dp[i][j]=0。
- (2) 当 i=j 时, 只有一种情况, dp[i][j]=1。
- (3) 当 i>j 时, 此时根据含 1 和不含 1, 故 dp[i][j]=dp[i-1][j-1]+dp[i-j][j]。
- 3. 若划分的正整数必须不同

设 dp[i][j]为将 i 划分为不超过 j 的不同整数的划分数。

- (1) 当 i < j 时, i 不能划分为大于 i 的数, 所以 dp[i][j]=dp[i][i]。
- (2) 当 i>j 时,可以根据划分中是否含有 j 分为两种情况。

若划分中含有 j,则其余的划分中最大只能是 j-1,方案数为 dp[i-j][j-1]。

若划分中不含 j,相当于将 i 划分为不大于 j-1 的划分数,为 dp[i][j-1]。

所以当 i>j 时 dp[i][j]=dp[i-j][j-1]+dp[i][j-1]。

- (3) 当 i=j 时,若划分中含有 j 只有一种情况,若划分中不含 j 相当于将 i 划分为不大于 j-1 的划分数。此时 dp[i][j]=1+dp[i][j-1]。
- 4.将 n 划分为若干正奇数之和的划分数

设 f[i][j]为将 i 划分为 j 个奇数之和的划分数,g[i][j]为将 i 划分为 j 个偶数之和的划分数。

使用截边法,将g[i][j]的j个划分都去掉1,可得g[i][j] = f[i-j][j]。

f[i][j]中有包含 1 的划分方案和不包含 1 的划分方案。

对于包含 1 的划分方案,可以将 1 的划分除去,转化为"将 i-1 划分为 j-1 个奇数之和的划分数",即 f[i-1][j-1]。 对于不包含 1 的划分方案,可以使用截边法对 j 个划分每一个都去掉一个 1,转化为"将 i-j 划分为 j 个偶数之和的划分数",即 g[i-j][j]。

所以 f[i][j]=f[i-1][j-1]+g[i-j][j]。

f[n][0]+f[n][1]+.....+f[n][n]为将 n 划分为若干奇数的划分数。

Polya 定理

设 $G = \{a1, a2, ..., ag\}$ 是 N 个对象的置换群,用 M 种颜色给这 N 个对象着色,

则不同的着色 方案数为: $|G|^{(-1)} * \{M^c(a1) + M^c(a2) + ... + M^c(ag)\}$ 。其中 c(ai)为置换 ai 的循环节数,(i=1,2,...,g)。

原根

设 m 是正整数, a 是整数, 若 a 模 m 的阶等于 φ(m), 则称 a 为模 m 的一个原根。

如果 $g \in P$ 的原根,那么 g 的(1...P-1)次幂 mod P 的结果一定互不相同。

如果 $g \in P$ 的原根,就是 $g^{(P-1)} = 1 \pmod{P}$ 当且仅当指数为 P-1 的时候成立.(这里 $P \in P$ 是素数).

```
int n, a[35000], cnt = 0;
int main()
{
    scanf("%d", &n);
    int endd = sqrt(n-1);
    for(int i = 2; i <= endd; i++)
    {
        if((n-1)%i == 0)      a[++cnt] = i;
    }
    for(int i = 2; i <= n-1; i++)
    {
        int j;
    }
}</pre>
```

卡特兰数

1, 2, 5, 14, 42

```
h(0) = 1, h(1) = 1
```

h(n) = h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0) (n>=2)

h(n) = h(n-1)*(4*n-2)/(n+1)

h(n) = C(2n,n)/(n+1)

h(n) = C(2n,n)-C(2n,n-1)

- 1.n 对括号正确匹配组成的字符串数。
- 2.一个栈(无穷大)的进栈序列为 1, 2, 3, ..., n, 有多少个不同的出栈序列。
- 3.在一个凸多边形中,通过若干条互不相交的对角线,把这个多边形划分成了若干个三角形,求不同划分的方案数 f (n)。
- 4.一位大城市的律师在她住所以北 n 个街区和以东 n 个街区处工作。
- 5.长度为 2n 的 Dyck words 的数量。 Dyck words 是由 n 个 X 和 n 个 Y 组成的字符串,并且从左往右数, Y 的数量不超过 X。
- 6.拥有 n+1 个叶子节点的二叉树的数量。例如 4个叶子节点的所有二叉树形态。
- 7.圆桌握手问题: 圆桌周围有 2n 个人,他们两两握手,但没有交叉的方案数。

调和级数

f(n)≈ln(n)+C+1/2*n (n 很大时)

C≈0.57721566490153286060651209

数学结论

排列组合

$$A_n^m = n(n-1)\cdots(n-m+1) = \frac{n!}{(n-m)!}$$

$$C_n^m = \frac{A_n^m}{m!} = \frac{n!}{m!(n-m)!} = C_n^{n-m}$$

$$\frac{P_n^m}{\text{圆排列}} = \frac{n!}{(n-m)! \times m}, (1 \le m \le n)$$

有限多重集的排列 n! /(n1!*n2!*...*nk!)

n 元无限集可重-r 组合 C(n+r-1,r)种。

n 元无限集取 r 个,n 中每个至少出现一次 C(r-1,n-1)(r≥n)

直线分平面

$$f(1) = 2$$

$$f(n) = f(n-1)+n = n(n+1)/2+1$$

折线分平面

$$f(1) = 2$$

$$f(n) = f(n-1)+4(n-1)+1 = 2n^2-n+1$$

圆分平面

$$f(1) = 2$$

$$f(n) = f(n-1)+2(n-1) = n^2-n+2$$

三角形分平面

$$f(1) = 2$$

$$f(n) = f(n-1)+6*(n-1)$$

平面分空间

$$f(1) = 2$$

$$g(n) = n(n+1)/2+1$$

$$f(n) = f(n-1)+g(n-1) = (n^3+5n)/6+1$$

求 Ax+By+C

已知 p1(x1,x1),p2(x2,y2),求 Ax+By+C=0

$$A = y2 - y1$$

$$B = x1 - x2$$

$$C = x2*y1-x1*y2$$

海伦公式

$$S = \sqrt{p(p-a)(p-b)(p-c)}$$
, p 为半周长

四边形最大面积

 $S = \sqrt{(p-a)(p-b)(p-c)(p-d)}$, p 为半周长

斯特林公式

$$n! pprox \sqrt{2\pi n} \left(rac{n}{e}
ight)^n$$
 .

笛卡尔定理

4 个圆相切,外切 k = 1/r,内切 k = -1/r,圆退化成直线 k = 0。

$$(k_1+k_2+k_3+k_4)^2=2\,(k_1^2+k_2^2+k_3^2+k_4^2).
onumber \ k_4=k_1+k_2+k_3\pm2\sqrt{k_1k_2+k_2k_3+k_3k_1}.$$

Purfer 序列

一个长度为 n-2 的 Purfer 序列唯一对应一个 n 个点的树,且 Purfer 序列中 i 出现的次数就是节点 i 的度数减一。

圆锥最大面积

全面积为 па2 的圆锥最大面积为 sqrt(2)/12*па^3。

正弦、余弦、正切

sinA / a = sinB / b = sinC/c

 $a^2 = b^2 + c^2 - 2bc \cdot cosA$

(a+b)/(a-b) = tan[(A+B)/2]/tan[(A-B)/2]

多边形面积

如果逆时针给出点坐标, 值为正,

$$\frac{1}{2} \left| \sum_{i=0}^{n-1} (x_i y_{i+1} - x_{i+1} y_i) \right|$$

如果顺时针给出点坐标, 值为负。

Bash 游戏

有一堆石子共有 N 个。A B 两个人轮流拿, A 先拿。每次最少拿 1 颗, 最多拿 K 颗, 拿到最后 1 颗石子的人获胜。 若 n 不足 k+1,则 A 第一次取完,A 胜。

若 n E k+1 的倍数,每次 A 取 x, B 都能取 k+1-x, B 胜。否则, A 胜。

威佐夫游戏

有 2 堆石子。A B 两个人轮流拿, A 先拿。每次可以从一堆中取任意个或从 2 堆中取相同数量的石子, 但不可不取。 两堆石头 x < y,若(y-x)*(sqrt(5)+1) / 2+1) == x,则 B 胜。否则 A 胜。

1/a 循环节长度

a 先约去 2 和 5 的因子->b,然后球欧拉函数值 φ,求一个最小的 x,使得 x|φ 且 10^x % b=1.

计算几何

计算几何基本函数

```
#define eps 1e-8
#define PI acos(-1)
int sgn(double x)
    if(fabs(x) < eps) return 0;
    if(x < 0)
               return -1;
    return 1;
struct point
    double x, y;
    point() {};
    point (double a, double b):x(a), y(b) {};
                                                   //向量加法
    friend point operator+(point a, point b)
        return point (a. x+b. x, a. y+b. y);
    friend point operator—(point a, point b)
                                                   //向量减法
        return point (a. x-b. x, a. y-b. y);
    friend double operator*(point a, point b)
                                                   //点积
        return a. x*b. x+a. y*b. y;
    friend double operator (point a, point b)
                                                   //叉积
        return a. x*b. y-a. y*b. x;
                           //绕原点旋转弧度 B
    void trans (double B)
        double tx = x, ty = y;
        x = tx*cos(B)-ty*sin(B);
        y = tx*sin(B)+ty*cos(B);
struct line
    point s, e;
    line() {};
    line (point a, point b): s(a), e(b) {};
    friend pair (int, point) operator (line a, line b) //重合 0, 平行 1, 相交 2
        point ans = a.s;
        if(sgn((a. s-a. e)^(b. s-b. e)) == 0)
            if(sgn((a. s-b. e)^{\hat{}}(b. s-b. e)) == 0)
                                                   return make pair(0, ans);
                                                                                 //重合
            return make pair (1, ans);
        double t = ((a. s-b. s) (b. s-b. e))/((a. s-a. e) (b. s-b. e));
        ans. x += (a. e. x-a. s. x)*t;
        ans. y += (a. e. y-a. s. y)*t;
        return make_pair(2, ans);
```

两点距离

```
double dis(point a, point b) //两点距离
         return sqrt((a-b)*(a-b));
                                                                                        点到直线距离
point dis2(point p, line 1)
                                                                          //点到直线距离,返回垂点
         point ans;
         double t = ((p-1.s)*(1.e-1.s))/((1.e-1.s)*(1.e-1.s));
         ans. x = 1. s. x+(1. e. x-1. s. x)*t;
         ans. y = 1. s. y+(1. e. y-1. s. y)*t;
         return ans;
                                                                                         点到线段距离
point dis3(point p, line 1)
                                                                         //点到线段距离,返回线段上最近的点
         point ans;
         double t = ((p-1.s)*(1.e-1.s))/((1.e-1.s)*(1.e-1.s));
         if(t) = 0 \&\& t <= 1
                  ans. x = 1. s. x+(1. e. x-1. s. x)*t;
                  ans. y = 1. s. y+(1. e. y-1. s. y)*t;
         else if (dis(p, 1.s) < dis(p, 1.e)) ans = 1.s;
         else
                           ans = 1.e;
         return ans;
                                                                                        判断线段相交
bool inter(line a, line b) //判断线段相交
         double x1 = a. s. x, y1 = a. s. y, x2 = a. e. x, y2 = a. e. y, x3 = b. s. x, y3 = b. s. y, x4 =
b. e. x, y4 = b. e. y;
         double t1 = (x2-x1)*(y3-y2)-(x3-x2)*(y2-y1);
         double t2 = (x2-x1)*(y4-y2)-(x4-x2)*(y2-y1);
         double t3 = (x4-x3)*(y1-y4)-(x1-x4)*(y4-y3);
         double t4 = (x4-x3)*(y2-y4)-(x2-x4)*(y4-y3);
         return t1*t2 <= 0 && t3*t4 <= 0;
                                                                                       直线和线段相交
bool inter2(line a, line b) //判断直线 a 和线段 b 相交
         return sgn((b. s-a. e)^{(a. s-a. e)})*sgn((b. e-a. e)^{(a. s-a. e)}) <= 0;
                                                                                       |判断点在直线上|
bool online (point p, line 1) //判断点在直线上
         return sgn((1. s-p)^{(1. e-p)}) == 0;
                                                                                       判断点在线段上
bool onseg(point p, line 1) //判断点在残段上
         return sgn((1. s-p)^{(1. e-p)}) == 0 \&\& sgn((p. x-1. s. x)*(p. x-1. e. x)) <= 0 \&\& sgn((p. y-1. s. x)) <= 0 && s
1. s. y)*(p. y-1. e. y)) \langle = 0;
                                                                                     判断点在凸多边形
bool onconvex(point a, point *p, int n) //判断点在凸多边形(凸包,点逆时针,若顺时针改
为>0)内,-1 在外,0 在边上,1 在内
         for (int i = 1; i \le n; i++)
```

```
int j = i+1;
          \begin{array}{ll} \textbf{if}(j > n) & \textbf{j} = 1; \\ \textbf{if}(\textbf{sgn}((\textbf{p[i]}-\textbf{a}) \hat{\ }(\textbf{p[j]}-\textbf{a})) < 0) & \textbf{return} = 1; \end{array}
          if (onseg(a, line(p[i], p[j])))     return 0;
     return 1;
                                                判断点在多边形内
                                                  //判断点在多边形内,-1 在外,0 在边上,1 在内
bool onpoly (point a, point *p, int n)
     int cnt = 0;
     line ray = line (a, point (-1e9, a, y));
     for (int i = 1; i \le n; i++)
          int j = i+1;
          if(j > n) j = 1;
          line side = line(p[i], p[j]);
          if (onseg(a, side)) return 0;
          if (sgn(side. s. y-side. e. y) == 0) continue;
          if (onseg (side. s, ray))
               if (sgn(side. s. y-side. e. y) > 0) cnt++;
          else if (onseg (side. e, ray))
               if (sgn(side. e. y-side. s. y) > 0) cnt++;
          else if (inter (ray, side))
                                            cnt++;
     if (cnt%2)
                    return 1:
     return -1;
                                                 计算多边形面积
                                          //计算多边形面积,可顺时针或逆时针
double calcarea (point *p, int n)
     double ans = 0;
     for (int i = 1; i \le n; i++)
          int j = i+1;
          if(j > n) j = 1;
ans += (p[i] p[j])/2;
     return fabs (ans);
                                                判断是否凸多边形
                                               //判断是否凸多边形,允许共线边,可顺时针或逆时针
bool isconvex(point *p, int n)
     boo1 s[3] = \{0\};
     for (int i = 1; i \le n; i++)
          int j = i+1, k = j+2;
          \begin{array}{cccc} \mathbf{if} (\mathbf{j} > \mathbf{n}) & \mathbf{j} = \mathbf{n}; \\ \mathbf{if} (\mathbf{k} > \mathbf{n}) & \mathbf{k} = \mathbf{n}; \end{array}
          s[sgn((p[j]-p[i]) ^(p[k]-p[i]))+1] = 1;
if(s[0] && s[2]) return 0;
     return 1;
                                                  判断四点共面
bool isface (int x1, int y1, int z1, int x2, int y2, int z2, int x3, int y3, int z3, int x4, int
y4, int z4)
```

int all = x1-x2, al2 = x2-x3, al3 = x3-x4;

```
int a21 = y1-y2, a22 = y2-y3, a23 = y3-y4;
                      int a31 = z1-z2, a32 = z2-z3, a33 = z3-z4;
                      return a11*a22*a33+a12*a23*a31+a13*a21*a32-a13*a22*a31-a11*a23*a32-a12*a21*a33 ==
 0:
                                                                                                                                                                                           判断三角形和圆相交
bool trianglecircle(int XX, int YY, int R, int X1, int Y1, int X2, int Y2, int X3, int Y3)
                      double a1 = (X1-XX)*(X1-XX)+(Y1-YY)*(Y1-YY);
                      double a2 = (X2-XX)*(X2-XX)+(Y2-YY)*(Y2-YY):
                      double a3 = (X3-XX)*(X3-XX)+(Y3-YY)*(Y3-YY);
                      double rr = R*R;
                      if (a1 < rr-1e-6 && a2 < rr-1e-6 && a3 < rr-1e-6)
                                                                                                                                                                                                                                                                                                   return 1;
                      if (a1 > rr+1e-6 && a2 > rr+1e-6 && a3 > rr+1e-6)
                                          double t = ((XX-X1)*(X2-X1)+(YY-Y1)*(Y2-Y1))*((XX-X2)*(X1-X2)+(YY-Y2)*(Y1-Y2));
                                          if(t > 1e-6)
                                                               t = abs((X1-XX)*(Y2-YY)-(X2-XX)*(Y1-YY))/sqrt((X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2)*(Y1-Y2
 Y2));
                                                               if(t*t < rr+1e-6)
                                                                                                                                                             return 0;
                                           t = ((XX-X3)*(X2-X3)+(YY-Y3)*(Y2-Y3))*((XX-X2)*(X3-X2)+(YY-Y2)*(Y3-Y2));
                                          if(t > 1e-6)
                                                               t = abs((X3-XX)*(Y2-YY)-(X2-XX)*(Y3-YY))/sqrt((X3-X2)*(X3-X2)+(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2)*(Y3-Y2
 Y2));
                                                               if(t*t < rr+1e-6)
                                                                                                                                                            return 0;
                                          t = ((XX-X3)*(X1-X3)+(YY-Y3)*(Y1-Y3))*((XX-X1)*(X3-X1)+(YY-Y1)*(Y3-Y1));
                                          if(t > 1e-6)
                                                               t = abs((X3-XX)*(Y1-YY)-(X1-XX)*(Y3-YY))/sqrt((X3-X1)*(X3-X1)+(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1)*(Y3-Y1
 Y1));
                                                               if(t*t < rr+1e-6)
                                                                                                                                                                    return 0;
                                          return 1;
                      return 0;
                                                                                                                                                                                                                     求凸包
 struct node
                      int x, y;
                      friend bool operator < (node a, node b)
                                          if (a. x == b. x) return a. y < b. y;
                                          return a. x < b. x;
 }a[1005], ans[1005];
 int n, m;
 int cross (node a, node b, node c) //向量积
                      return (a. x-c. x)*(b. y-c. y)-(b. x-c. x)*(a. y-c. y);
 int convex(int n)//求凸包上的点
                      sort(a+1, a+n+1);
                      int m = 0;
                      for (int i = 1; i \le n; i++)
```

```
while (m > 1 \&\& cross(ans[m], a[i], ans[m-1]) \le 0) m--;
        ans[++m] = a[i];
    int k = m;
    //求得上凸包
    for (int i = n-1; i >= 1; i--)
        while (m > k \&\& cross (ans[m], a[i], ans[m-1]) \le 0)
        ans[++m] = a[i];
              m--;//起始点重复。
    if(n > 2)
    return m;
                                        求三角形外心
point waixin (point a, point b, point c)
                                         //求三角形外心
    double a1 = b. x-a. x, b1 = b. y-a. y, c1 = (a1*a1+b1*b1)/2;
    double a2 = c. x-a. x, b2 = c. y-a. y, c2 = (a2*a2+b2*b2)/2;
    double d = a1*b2-a2*b1;
    return point (a. x+(c1*b2-c2*b1)/d, a. y+(a1*c2-a2*c1)/d);
                                      计算两圆相交面积
double circlrarea (point al, int rl, point a2, int r2)
                                                          //计算两圆相交面积
    double d = dis(a1, a2);
    if (r1+r2 < d+eps) return 0;
    if(d < fabs(r1-r2)+eps)
        double r = min(r1, r2);
        return PI*r*r;
    double x = (d*d+r1*r1-r2*r2)/(2*d);
    double t1 = a\cos(x/r1), t2 = a\cos((d-x)/r2);
    return r1*r1*t1+r2*r2*t2-d*r1*sin(t1);
                                        平面最近点对
int n, b[100005];
struct xx
    double x, y;
    friend bool operator (xx a, xx b)
        return a. x < b. x;
a[100005];
bool cmp(int x, int y)
    return a[x].y < a[y].y;
double dis(xx a, xx b)
    return sqrt ((a. x-b. x)*(a. x-b. x)+(a. y-b. y)*(a. y-b. y));
double f(int 1, int r)
    if(1 == r) return 0;
    if(r-1 == 1)
                    return dis(a[1], a[r]);
    if(r-1 == 2)
        double minn = 1e18;
```

```
minn = min(minn, dis(a[1], a[1+1]));
        minn = min(minn, dis(a[1], a[r]));
        minn = min(minn, dis(a[1+1], a[r]));
        return minn;
    int mid = (1+r)/2;
    double minn = min(f(1, mid), f(mid+1, r));
    int cnt = 0;
    for (int i = 1; i \le r; i++)
        if(a[i]. x \ge a[mid]. x-minn && a[i]. x \le a[mid]. x+minn) b[++cnt] = i;
    sort(b+1, b+1+cnt, cmp);
    for (int i = 1; i \le cnt; i++)
        for (int j = i+1; j \leftarrow cnt; j++)
             if(a[b[j]]. y-a[b[i]]. y > minn) break;
             minn = min(minn, dis(a[b[i]], a[b[j]]));
    return minn;
int main()
    while (scanf ("%d", &n) && n)
                                       scanf ("%1f%1f", &a[i].x, &a[i].y);
        for (int i = 1; i \le n; i++)
        sort(a+1, a+1+n);
printf("%. 2f\n", f(1, n)/2);
    return 0;
                                            半平面交
int sgn(double x)
    if(fabs(x) < eps)
                        return 0;
    if(x < 0)
               return -1;
    return 1;
struct point
    double x, y;
    point() {};
    point (double a, double b):x(a), y(b) {};
                                                     //向量加法
    friend point operator+(point a, point b)
        return point (a. x+b. x, a. y+b. y);
    friend point operator—(point a, point b)
                                                     //向量减法
        return point (a. x-b. x, a. y-b. y);
    friend double operator*(point a, point b)
                                                     //点积
        return a. x*b. x+a. y*b. y;
                                                     //叉积
    friend double operator (point a, point b)
        return a. x*b. y-a. y*b. x;
```

```
}ans[20005];
struct line
    point s, e;
    double k:
    line() {};
    line (point a, point b):s(a), e(b)
         k = atan2(e. y-s. y, e. x-s. x);
    friend point operator&(line a, line b)
         point ans = a.s;
         double t = ((a. s-b. s) \hat{b. s-b. e})/((a. s-a. e) \hat{b. s-b. e});
         ans. x += (a. e. x-a. s. x)*t;
         ans. y += (a. e. y-a. s. y)*t;
         return ans;
}a[20005], q[20005];
bool HPIcmp(line a, line b)
                                 //直线左边
    \begin{array}{ll} \textbf{if} (fabs (a. k - b. k) > eps) & \textbf{return} \ a. k < b. k; \\ \textbf{return} \ ((a. s - b. s) \hat{\ } (b. e - b. s)) < 0; \end{array}
//返回核的凸包点
void HPI(line *a, int n, point *ans, int &cnt)
    sort(a+1, a+n+1, HPIcmp);
    int tot = 0;
    for (int i = 1; i \le n; i++)
                                                a[++tot] = a[i]:
         if(fabs(a[i].k-a[i-1].k) > eps)
    int head = 0, tail = 1;
    q[0] = a[1];
    q[1] = a[2];
    cnt = 0;
    for (int i = 3; i \le tot; i++)
         if(fabs((q[tail].e-q[tail].s)^(q[tail-1].e-q[tail-1].s)) < eps | |
fabs((q[head]. e-q[head]. s)^(q[head+1]. e-q[head+1]. s)) < eps) return;
         while (head < tail && (((q[tail]&q[tail-1])-a[i].s)^(a[i].e-a[i].s)) > eps)
tail--;
         while (head \langle tail \&\& (((q[head]\&q[head+1])-a[i].s)^(a[i].e-a[i].s)) \rangle eps)
head++;
         q[++tai1] = a[i];
    while (head < tail && (((q[tail]&q[tail-1])-q[head].s)^(q[head].e-q[head].s)) > eps)
    while (head < tail && (((g[head]&g[head-1])-g[tail].s)^(g[tail].e-g[tail].e)) > eps)
head++;
    if(tail <= head+1) return;</pre>
    for (int i = head; i < tail; i++) ans [++cnt] = q[i] & q[i+1];
                            ans[++cnt] = q[head]&q[tai1];
    if (head < tail-1)
```

旋转卡壳求最远点对

```
point a[50005], ans[50005];
int n, m;
int cross(point a, point b, point c)//向量积
    return (a. x-c. x)*(b. y-c. y)-(b. x-c. x)*(a. y-c. y);
int dis2(point a, point b)
    return (a-b)*(a-b);
int convex(int n)//求凸包上的点
    sort(a+1, a+n+1);
    int m = 0;
    for (int i = 1; i \le n; i++)
        while (m > 1 \&\& cross(ans[m], a[i], ans[m-1]) \le 0) m--;
        ans[++m] = a[i];
    int k = m;
    //求得上凸包
    for (int i = n-1; i >= 1; i--)
        while (m > k \&\& cross(ans[m], a[i], ans[m-1]) \le 0)
        ans[++m] = a[i];
    if(n > 2)
                 m--;//起始点重复。
    return m;
int rotatingcalipers(point *a, int n)
    int ans = 0, now = 2, ne = 3;
    if (ne > n) ne = 1;
    for (int i = 1; i \le n; i++)
        int j = i+1;
        if (j > n) j = 1;
point t = a[i]-a[j];
        while ((\hat{t}(a[ne]-a[now])) < 0)
             now = ne;
             ne = now+1;
             if (ne > n) ne = 1;
        ans = \max(ans, \max(dis2(a[i], a[now]), dis2(a[j], a[ne])));
    return ans;
int main()
    while ("scanf ("%d", &n))
        for (int i = 1; i \le n; i++)
                                       scanf ("%d%d", &a[i].x, &a[i].y);
        m = convex(n);
        printf("%d\n", rotatingcalipers(ans, m));
```

旋转卡壳球平面点最大三角形面积

```
//已求得凸包
int rotatingcalipers(point *a, int n)
    int ans = 0;
    for (int i = 1; i \le n; i++)
         int j = i+1;
         if(j > n) \quad j = 1;
         int k = j+1;
         if(k > n) k = 1;
         int kk = k+1;
         if(kk > n) \quad kk = 1;
         while (j != i && k != i)
              ans = \max(ans, abs((a[j]-a[i]^(a[k]-a[i]))));
              while (((a \lfloor i \rfloor - a \lfloor j \rfloor)) (a \lfloor kk \rfloor - a \lfloor k \rfloor)) < 0)
                   k = kk;
                   kk++;
                   if(kk > n) kk = 1;
    return ans;
                                        旋转卡壳求两凸包最小距离
```

```
double dis4(point a, point b, point c)
    return dis(a, dis3(a, line(b, c)));
double dis5 (point a, point b, point c, point d)
    double ans1 = min(dis4(a, c, d), dis4(b, c, d));
    double ans2 = min(dis4(c, a, b), dis4(d, a, b));
    return min(ans1, ans2);
double getangel (point a, point b, point c, point d)
    return (b-a)^(d-c);
int rotatingcalipers(point *a, int n, point *b, int m)
    int sa = 1, sb = 1;
    for (int i = 1; i \le n; i++)
         if(sgn(a[i]. y-a[sa]. y) < 0) sa = i;
    for (int i = 1; i \le m; i++)
         if(sgn(b[i].y-b[sb].y) < 0) sb = i;
    double t, ans = dis(a[sa], b[sb]);
    int na = sa+1, nb = sb+1;
    if(na > n)  na = 1;

if(nb > m)  nb = 1;
    for (int i = 1; i \le n; i++)
         while (sgn(t = getangel(a[sa], a[na], b[sb], b[nb])) < 0)
```

```
sb = nb;
            nb++;
            if(nb > m) \quad nb = 1;
        if(sgn(t) == 0) ans = min(ans, dis5(a[sa], a[na], b[sb], b[nb]));
               ans = min(ans, dis4(b[sb], a[sa], a[na]));
        sa = na;
        na++:
        if (na > n) na = 1;
    return ans;
//已求得凸包
double solve (point *a, int n, point *b, int m)
    return min(rotatingcalipers(a, n, b, m), rotatingcalipers(b, m, a, n));
                                           高精度
//输入的两个数要求为正。
int compare (string strl, string str2)
    if (str1. length() > str2. length())
                                          return 1;
    else if (str1. length() < str2. length())
            return strl. compare (str2);
    else
string add(string strl, string str2)//加法
    string str;
    int len1 = strl.length(), len2 = str2.length();
    if(1en1 < 1en2)
        for (int i = 1; i \le 1en2-1en1; i++)
                                               str1 = "0" + str1;
    else
        for (int i = 1; i \le 1en1-1en2; i++) str2 = "0" + str2;
    int cf = 0, temp;
    for (int i = str1. length()-1; i \ge 0; i--)
        temp = str1[i]-'0'+str2[i]-'0'+cf;
        cf = temp/10;
        temp %= 10;
        str = char(temp+'0')+str;
                   str = char(cf+'0')+str;
    if(cf != 0)
    return str;
string sub(string strl, string str2)//减法
    string str;
    int flag = 0;
    if (compare (str1, str2) < 0)
        flag = 1;
        swap(str1, str2);
    int tmp = str1.length()-str2.length(), cf = 0;
    for (int i = str2. length()-1; i \ge 0; i--)
```

```
if(str1[tmp+i] < str2[i]+cf)
            str = char(str1[tmp+i]-str2[i]-cf+'0'+10)+str;
        else
            str = char(str1[tmp+i]-str2[i]-cf+'0')+str;
            cf = 0;
    for (int i = tmp-1; i >= 0; i--)
        if(str1[i]-cf >= '0')
            str = char(str1[i]-cf)+str;
            cf = 0;
        else
            str = char(str1[i]-cf+10)+str;
            cf = 1;
    str.erase(0, str.find_first_not_of('0'));
    if (str. empty()) str = "0";
if (flag) str = "-"+str;
    return str;
string mul(string strl, string str2)//乘法
    string str;
    int len1 = str1.length();
    int 1en2 = str2. 1ength();
    string tempstr;
    for (int i = 1en2-1; i >= 0; i--)
        tempstr = "";
        int temp = str2[i]-'0', t = 0, cf = 0;
        if(temp != 0)
                                                   tempstr += "0";
            for (int j = 1; j \le 1en2-1-i; j++)
            for (int j = 1en1-1; j >= 0; j--)
                 cf = (temp*(str1[j]-'0')+cf);
                 t = cf%10;
                 cf /= 10;
                 tempstr = char(t+'0')+tempstr;
            if(cf != 0) tempstr = char(cf+'0')+tempstr;
            str=add(str, tempstr);
    str.erase(0, str.find_first_not_of('0'));
    if (str. empty()) str = "0";
    return str;
void div(string strl, string str2, string &quotient, string &residue)//除法取余
    quotient = "";
    residue = "":
```

```
if(str2 == "0")
    quotient = "ERROR";
    residue = "ERROR";
    return:
if(str1 == "0")
    quotient = "0";
    residue = "0";
    return:
int res = compare(str1, str2);
if (res < 0)
    quotient = "0";
    residue = str1;
    return;
else
    int len1 = str1.length();
    int 1en2 = str2. 1ength();
    string tempstr;
    tempstr.append(str1, 0, 1en2-1);
    for (int i = 1en2-1; i < 1en1; i++)
        tempstr = tempstr+str1[i];
        tempstr.erase(0, tempstr.find_first_not_of('0'));
        if (tempstr. empty())   tempstr = "0";
        for (char ch = '9'; ch >= '0'; ch--)
            string str, tmp;
            str = str+ch;
            tmp = mul(str2, str);
             if (compare(tmp, tempstr) <= 0)</pre>
                 quotient = quotient+ch;
                 tempstr = sub(tempstr, tmp);
                 break;
    residue = tempstr;
quotient.erase(0, quotient.find_first_not_of('0'));
if (quotient.empty()) quotient="0";
```

其他

归并排序

```
void merge(int a[], int first, int mid, int last, int temp[])//合并
    int i = first, j = mid+1, k = 0;
    while (i \le mid \&\& j \le last)
        if(a[i] < a[j])  temp[k++] = a[i++];
                temp[k++] = a[j++];
        else
                         temp[k++] = a[i++];
    while (i \le mid)
    while (j \le last)
                          temp[k++] = a[j++];
    for (i = 0; i < k; i++)
                             a[first+i] = temp[i];
void _merge_sort(int arr[], int temp[], int first, int last)//归并
    if(first < last)</pre>
        int mid = (first+last)/2;
        merge sort (arr, temp, first, mid);
        _merge_sort(arr,temp,mid+1,last);
        merge (arr, first, mid, last, temp);
void merge_sort(int arr[], int n)//归并排序接口
    int* temp = (int*)malloc(n*sizeof(int));
    _merge_sort(arr, temp, 0, n-1);
    free (temp);
                                           堆排序
void percdown(int arr[], int p, int n)//调整最大堆
    int Parent, Child, x = arr[p];
    for(Parent = p;Parent*2+1 < n;Parent = Child)</pre>
        Child = Parent*2+1;
        if (Child != n-1 && arr[Child] < arr[Child+1])</pre>
                                                            Child++;
        if(x \ge arr[Child]) break;
                arr[Parent] = arr[Child];
    arr[Parent] = x;
void heap_sort(int arr[], int n)//堆排序接口
    for (int i = n/2-1; i >= 0; i--)
                                      percdown(arr, i, n);
    for (int i = n-1; i > 0; i--)
        swap(arr[0], arr[i]);
        percdown (arr, 0, i);
                                          快速排序
void quick sort(int arr[], int 1, int r)
    if(1 < r)
        int i = 1, j = r, x = arr[1];
        while (i < j)
            while (i < j \&\& arr[j] >= x)
                                             j--;
```

```
if(i < j) arr[i++] = arr[j];
             while (i < j \&\& arr[i] < x)
                          arr[i--] = arr[i];
             if(i < j)
         arr[i] = x;
         \_quick\_sort(arr, 1, i-1);
         _quick_sort(arr, i+1, r);
                                              头文件
#pragma comment (linker, "/STACK:102400000, 102400000")
#include<cstdio>
#include iostream
#include < iomanip >
#include <algorithm>
#include<cmath>
#include<cstring>
#include<string>
#include<vector>
#include<stack>
#include<queue>
#include(set)
#include < map >
#include<list>
#include < deque >
#include <bitset>
#include<cstdlib>
#define LL long long
#define PI acos(-1)
#define eps 1e-8
#define lowbit(x) (x&-x)
#define MOD 1000000007
#define INF 0x3f3f3f3f
#define MEM(a, x) memset(a, x, sizeof(a))
using namespace std;
                                             输入外挂
void read(int &ans)
    ans = 0;
    int flag = 0, ch;
    if((ch = getchar()) == '-') flag = 1;
else if(ch >= '0' && ch <= '9') ans = ch-'0';
while((ch = getchar()) >= '0' && ch <= '9')
                                                           ans = ans*10+ch-'0';
    if (flag)
                ans *= -1;
                                              随机数
#include<random>
std::random device rd;
rd();
std::mt19937 mt(rd());
mt();
```