

Master Thesis Seminar Talk Progress Upade

Fabrice Beaumont

Department of Information Systems and Artificial Intelligence - Dr. Pascal Welke

15. June 2022

Recap last months progress

- Task formulation, registration of the thesis:
 "Learning graph similarity measures using the
 Weisfeiler-Lehman label hierarchy"
 Definition of several sub-goals a programming road-map.
- 2. Implementation of a dynamic Dataset Loader (*GarKel, OGB*, from file).
 - Easily expandable for other frameworks.

Example of the whole procedure

Tree metric:

Wasserstein Dist.:

$$W_t(A, B) = \frac{4}{3}$$

 $W_t(A, C) = 3$
 $W_t(B, C) = 3$

$$d_{WLLT}(B, C) = 2 * \frac{2}{4} + 4 * \frac{1}{4} + 4 * \frac{1}{4} = \frac{12}{4} = 3$$

Example of the whole procedure

Current clustering:

Target clustering:

Idea: Reduce distance between B and C, by updating the edge weights.

"Next steps" from last month

.

- Implement the usage of the Wasserstein Distance.
- Implement a "naive" feedback loop to update the WLLT edge weights.

(And the more and more complex variations.)

Current overview

٠

- Implement the usage of the Wasserstein Distance. DONE
- Implement a "naive" feedback loop to update the WLLT edge weights.

IN PROGRESS

(And the more and more complex variations.)

Current overview

- Rethinking the data-loader procedure. "From software to script".
 DONF
- Implement the usage of the Wasserstein Distance. DONE
- Implement a "naive" feedback loop to update the WLLT edge weights.

IN PROGRESS

(And the more and more complex variations.)

Next steps

- ► Complete one "naive" implementation.
- Investigate its performance (and measures for it).
- (Implement more complex variations.)

Goal for the next meeting: Present evaluations of at least one implementation compared to the state of the art.

Thank you all for listening.

I will be happy to answer any questions and hear your comments.

Example of the whole procedure

Local update P_{7,8}:

Implementation road-map 1/2

- ▶ WLLT Construction:
 - ▶ Write to file and read from file. Construct WL-iteration based.
 - All weights equal.
 - (Random initial weights.)
 - ► (Use *a priori* knowledge.)
- Wasserstein-Distance feedback:
 - "Biggest pile of dirt". ("Smallest", to increase the distance.)
 - Distribution proportional to the pile size.
 - Distribution proportional to the cost of moving the pile size.

Implementation road-map 2/2

- ▶ Update rule:
 - Value:
 - ightharpoonup Constant λ .
 - ► Gradient descent.
 - ► Location:
 - Local: Only update the first and last edge weights of the connecting path.
 - Weighted path: Update all edge weights on the path, with less magnitude for edges closer to the root.
 - Path: Update all edges on the path.
 - ► Global: Update all edges, related to all occurring labels.