Exame Qualificação ao Mestrado - 29/07/02 - MM 719

1.(2pts) Seja $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ o operador linear cuja matriz, A, na base canônica é dada por:

$$A = \left(\begin{array}{ccc} 0 & 0 & 1\\ 0 & 1 & 0\\ -1 & 0 & 2 \end{array}\right)$$

- a) Encontre a forma de Jordan J de T.
- b) Encontre $P \in GL_3(\mathbb{R})$ tal que $P^{-1}AP = J$.
- c) Seja $\beta = \{v_1, v_2, v_3\}$ base de \mathbb{R}^3 , onde v_1, v_2 e v_3 são respectivamente a $1^{\underline{a}}$, a $2^{\underline{a}}$ e a $3^{\underline{a}}$ coluna de P. Pergunta-se: Qual é a matriz de T na base β ?
- 2. (2pts) Seja $T: \mathbb{R}^6 \longrightarrow \mathbb{R}^6$ o operador linear tal que o seu polinômio característico é $f_T(X) = (X-2)^4(X-1)^2$, o seu polinômio minimal é $P_T(X) = (X-2)^2(X-1)^2$ e dim(Ker(T-2I)) = 2 (Lembre que Ker(T-2I)=núcleo de T-2I).
 - a) Encontre a forma de Jordan de T.
- b) Pergunta-se: Com estes polinômios mínimo e característico seria possível supor dim(Ker(T-2I))=1?. Justifique sua resposta.
- **3.**(2pts) Considere o espaço vetorial $V=\mathbb{C}^n$, n>2, com o produto interno usual (<,>), $u,v\in V$ satisfazendo < u,v>=0, < u,u>=< v,v>=1 e W o subespaço de V gerado por $\{u,v\}$. Defina $T:V\longrightarrow V$ por T(x)=< x,u>.v+< x,v>.u, para todo $x\in V$.
 - a) Mostre que: T é \mathbb{C} -linear, $Ker(T) = W^{\perp}$, T(u) = v e T(v) = u
 - b) Encontre uma base ortonormal β de V tal que a matriz de T na base β seja:

$$A = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & -1 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}$$

(Sugestão: Olhe para $u + v \in u - v$)

- c) Mostre que T é Hermitiano e T³ = T.
- 4. (4pts) Responda falso ou verdadeiro a cada uma das afirmações abaixo. Justifique brevemente suas respostas (respostas sem justificativas não serão consideradas).
 - a) Seja $T:\mathbb{C}^n \longrightarrow \mathbb{C}^n$ um operador linear
 \mathbb{C} -linear então $Ker(T) \oplus Im(T) = \mathbb{C}^n$.
- b) Dada uma matriz $A \in M_n(K)$, onde K é corpo, então A é semelhante a uma matriz triangular superior de $M_n(K)$ se e só se o seu polinômio caraterístico, $f_A(X)$, é da forma $f_A(X) = (X a_1)^{d_1} \cdots (X a_r)^{d_r}$ com $a_i \in K$ para todo i.
- c) Existe um operador linear $T: \mathbb{R}^6 \longrightarrow \mathbb{R}^6$ tal que seu polinômio característico é $f_T(X) = (X^2 + 1)(X 2)^2(X 3)^2$ e seu polinômio minimal é $P_T(X) = (X 2)(X 3)^2$.
 - d) Uma matriz, $n \times n$, N que é nilpotente e **não nula** nunca é semelhante a uma matriz diagonal.
- e) Seja V um \mathbb{C} -espaço vetorial de dimensão finita e com produto interno (Hermitiano). Se $T \in \mathcal{L}(V, V)$ é operador normal, então T é unitário se e só se todo autovalor de T tem módulo 1.
- f) Dados V,W \mathbb{R} -espaços vetoriais de dimenão finita. Existe $\varphi:V^*\otimes_{\mathbb{R}}W\longrightarrow \mathcal{L}(V,W)$ \mathbb{R} -linear tal que para todos $f\in V^*,\ w\in W$ e $v\in V$ tem-se: $\varphi(f\otimes w)(v)=f(v).w$.

Topologia 02/08/02

- *Escolha:i) Entre as questões 1,3 e 4 escolha duas; ii) Entre as questões 2 e 5 escolha uma. As questões 6,7 e 8 são obrigatórias
 - ** Tempo para resolução: três horas.
 - Mostre que SO(n) é compacto e conexo.
- 2. Seja A um subconjunto compacto de um espaço métrico X .a) Mostre que d(A,B)>0 se $B\subset X$ também for compacto e $A\cap B\not\equiv \phi$.
- 3. Mostre que toda aplicação $f:X\to S^n$ que não é sobrejetora é homotópica a uma constante.
 - 4. Mostre que espaços de Hausdorff compactos são normais.
- 5. Um espaço topológico X é denominado homogêneo se para quais quer x,y em X existir um homeomorfimo de X em X que leva x em y. Mostre que grupos topológicos são espaços homogêneos.
- 6.a)Particione os espaços topológicos abaixo nos subconjuntos dados pelas classes de equivalência da relação de homeomorfismo. b) Escolha dois espaços de um subconjunto para provar que são homeomorfos e dois de subconjuntos diferentes para provar que não são.

i)Subconjuntos do plano euclidiano:

Superfícies do espaço euclidiano:

iii)O conjunto $R^2 - \{(0,0)\}$ no plano euclidiano.

iv) O espaço quociente de $[0,1]\times (0,1)\subset R^2$ dado pela relação de equivalência:

 $(x,y) \sim (\widetilde{x},\widetilde{y}) \iff [x=\widetilde{x} \text{ e } y=\widetilde{y}] \text{ ou } [x=0 \text{ e } \widetilde{x}=1 \text{ e } \widetilde{y}=1-y] \text{ ou } [x=0 \text{ e } \widetilde{x}=1 \text{ e } \widetilde{y}=1-y]$

- Identifique quatro espaços topológicos dentre os dados no exercício anterior que tenham o mesmo grupo fundamental não trivial. Justifique.
 - 8) Verdadeiro ou Falso? Prove ou dê contra-exemplo:
- a) Para A e B subconjuntos de um espaço topológico X :- $Interior(A) \cup Interior(B) = Interior(A \cup B)$
- b) Para \overline{A} e \overline{B} subconjuntos de um espaço topológico X :- A e B homeomorfos $\Longrightarrow \overline{A}$ e \overline{B} homeomorfos
- c) O subconjunto do plano formado pelos pontos do quadrado $[0,1]\times[0,1]$ que tem pelo menos uma coordenada racional é conexo.