Contenido

Punto 1	3
Solución Punto1	3
Punto 2 Solución Punto 2	3
Punto 3	5
Punto 4	5
Punto 5	6

Universidad Nacional De Colombia Sede Medellín

Facultad de Ciencias

Departamento de Estadística

Taller 4

Daniel Felipe Villa Rengifo

Luis David Hernández Pérez

Juan Gabriel Carvajal Negrete

Modelos de Regresión

Febrero, 2025

Se hará el análisis de la base de datos **Credit** de la librería **ISLR** de R. Se tendrá como variable de respuesta Married y como variable explicativa Rating. Debe codificar las variables de respuesta con 1 para Yes y 0 para No. Las observaciones a ser incluidas para el análisis en cada grupo aparecen en la Tabla 1. Realice las siguientes actividades:

Punto 1

Realice una descripción de la base de datos. Contextualice el problema y explique cada una de las variables involucradas en el modelo.

Solución Punto1

Descripción de los datos: Es un conjunto de datos simulados que contiene información sobre diez mil clientes. El objetivo es predecir qué clientes dejarán de pagar su tarjeta de crédito.

Descripción de las variables

- Married: Variable categórica que indica si la persona está casada (Yes/No).
- Rating: Variable numérica que representa el rating de crédito de la persona.

Punto 2

Realice un análisis descriptivo de las variables que se van a tener en cuenta en el modelo. Concluya.

Solución Punto 2

Tabla 1: Distribución de la variable Married en la muestra analizada

Married	Frecuencia	Porcentaje
Yes	42	63.63 %
No	24	36.36~%
Total	66	100

Figura 1: Distribución del Rating

Figura 2: Boxplot Rating vs Married

Punto 3

Ajuste un modelo de regresión logística, muestre la tabla de parámetros ajustados y escriba la ecuación ajustada.

Tabla 2: Coeficientes ajustados

Coeficiente	Estimación	Error estándar	valor z	$\Pr(> z)$
(Intercepto) Rating	-1.208379 0.005268	0.812019 0.002372	-1.488 2.221	0.1367 0.0264

$$\hat{Y} = \frac{e^{-1.208379 + 0.005268 \cdot \text{Rating}}}{1 + e^{-1.208379 + 0.005268 \cdot \text{Rating}}}$$

Punto 4

Pruebe la significancia individual del parámetro que acompaña a la variable explicativa e interprete el valor de la estimación. También interprete la razón de odds.

Para la significancia de β_1 tenemos la siguiente hipotesis:

$$H_0: \beta_1 = 0 \quad vs \quad H_1: \beta_1 \neq 0$$

donde le estadístico de prueba es

$$Z_0 = \frac{\hat{\beta}_1}{se(\hat{\beta}_1)}$$

De la Tabla 2 tenemos que la variable Rating, $\beta_1=0.005268~\mathrm{y}$

Punto 5

Determine si el modelo ajustado es mejor que el modelo nulo.

Para esta verificacion ultilizaremos la función Anova()

Tabla 3: Anova del modelo

	Df	Deviance	Resid. Df	Resid. Dev	Pr(>Chi)
NULL	NA	NA	65	86.52359	NA
Rating	1	5.862324	64	80.66127	0.0154684

De la Tabla 3 podemos concluir que el modelo ajustado (modelo completo) es significativo, por tanto es mejor que el modelo nulo.