

Artificial Intelligence

Lecture 11. Logistic Regression

Spring 2022

Prof. Jonghoon Chun, Ph.D.

E-mail: jchun@mju.ac.kr Lecture Note: http://lms.mju.ac.kr

Agenda

- Classification concept review
- Linear Regression
- Logistic Regression

LOGISTIC REGRESSION

Classification Revisit

- Classification
 - Email: Spam / Not Spam?
 - Online Transactions: Fraudulent (Yes / No)?
 - Tumor: Malignant / Benign?

$$y \in \{0, 1\}$$

0: "Negative Class" (e.g., benign tumor)
1: "Positive Class" (e.g., malignant tumor)

 $y \in \{0, 1, 2, ..., n\} \rightarrow \text{multiclass problem}$

Problems with Linear Regression

Threshold classifier output $h_{\theta}(x)$ at 0.5:

If
$$h_{\theta}(x) \geq 0.5$$
, predict "y = 1"

If
$$h_{\theta}(x) < 0.5$$
, predict "y = 0"

Logistic Regression

Classification: y = 0 or 1 $h_{\theta}(x)$ can be > 1 or < 0

Logistic Regression: $0 \le h_{\theta}(x) \le 1$

Logistic Regression is a "Classification" algorithm!

Hypothesis Representation

- Hypothesis Representation
 - What is the function we're going to use to represent our hypothesis when we have a classification problem?
- Logistic Regression Model $0 \le h_{\theta}(x) \le 1$

$$h_{\theta}(x) = g(\theta^{T}x)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

Sigmoid function Logistic function

Interpretation of Hypothesis Output

- $h_{\theta}(x)$ = estimated probability that y = 1 on input x
- Example:

If
$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ TumorSize \end{bmatrix}$$

 $h_{\theta}(x) = 0.7$

Tell patient that 70% chance of tumor being malignant

$$h_{\theta}(x) = P(y = 1 \mid x ; \theta)$$
 "Probability that $y = 1$, given x , parameterized by θ "
$$y = 0 \text{ or } 1$$

$$P(y = 0 \mid x ; \theta) + P(y = 1 \mid x ; \theta) = 1$$

$$P(y = 0 \mid x ; \theta) = 1 - P(y = 1 \mid x ; \theta)$$

DECISION BOUNDARY

Logistic Regression Recap

$$h_{\theta}(x) = g(\theta^T x) = P(y = 1 \mid x; \theta)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

Suppose predict "
$$y=1$$
" if $h_{\theta}(x) \geq 0.5$ $\theta^T x \geq 0$

predict "
$$y = 0$$
" if $h_{\theta}(x) < 0.5$

$$\theta^T x < 0$$

$$h_{\theta}(x) = g(\theta^T x) \ge 0.5$$

whenever $\theta^T x \ge 0$

Decision Boundary

Predict "
$$y = 1$$
" if $-3 + x_1 + x_2 \ge 0$

$$\theta^{T} x & x_{1} + x_{2} &= 3 \\
x_{1} + x_{2} &\ge 3 & h_{\theta}(x) &= 0.5 \\
x_{1} + x_{2} &< 3 \\
y &= 0$$

Non-linear Decision Boundaries

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2) \qquad \theta = \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

$$\theta_0 = -1, \ \theta_1 = 0, \ \theta_2 = 0, \ \theta_3 = 1, \ \theta_4 = 1$$

Predict "
$$y=1$$
" if $-1+x_1^2+x_2^2\geq 0$
$$x_1^2+x_2^2=1 \qquad x_1^2+x_2^2\geq 1$$

The training set may be used to fit the parameters θ . But, once you have the parameters θ , that is what defines the decisions boundary!

More complex ones...

COST FUNCTION

How to fit the parameters

- Optimization Objectives
- Cost function
 - Use to fit the parameters

Problem Recap

Training set: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots, (x^{(m)}, y^{(m)})\}$

m examples
$$x \in \left[\begin{array}{c} x_0 \\ x_1 \\ \dots \\ x_n \end{array}\right] \qquad x_0 = 1, y \in \{0,1\}$$

$$x_0 = 1, y \in \{0, 1\}$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

How to choose parameters θ ?

Cost Function

Linear regression:
$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$Cost(h_{\theta}(x^{(i)}), y^{(i)})$$

$$Cost(h_{\theta}(x^{(i)}), y^{(i)}) = \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Logistic Regression Cost Function

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Cost = 0 if
$$y = 1, h_{\theta}(x) = 1$$

But as $h_{\theta}(x) \to 0$
 $Cost \to \infty$

Captures intuition that if $h_{\theta}(x) = 0$, (predict $P(y = 1|x; \theta) = 0$), but y = 1, we'll penalize learning algorithm by a very large cost.

Logistic Regression Cost Function

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Note that above cost function guarantees that $J(\theta)$ is "convex" for logistic regression!

ACKNOWLEDGMENTS

 Many of the slides and examples are borrowed from the open course by Coursera "Machine Learning" by A. Ng which were modified into their current form.

END

