1984. Minimum Difference Between Highest and Lowest of K Scores

Easy ⚠ 852 ♀ 193 ☆ ⊘

Companies

You are given a **0-indexed** integer array nums, where nums [i] represents the score of the ith student. You are also given an integer k.

Pick the scores of any k students from the array so that the **difference** between the **highest** and the **lowest** of the k scores is **minimized**.

Return the *minimum* possible difference.

Example 1:

Input: nums = [90], k = 1

Output: 0

Explanation: There is one way to pick score(s) of one student:

- [90]. The difference between the highest and lowest score is 90 - 90 = 0.

The minimum possible difference is 0.

Example 2:

Input: nums = [9,4,1,7], k = 2

Output: 2

Explanation: There are six ways to pick score(s) of two students:

- [9,4,1,7]. The difference between the highest and lowest score is 9 - 4 = 5.

- [9,4,1,7]. The difference between the highest and lowest score is 9-1=8.

- [9,4,1,7]. The difference between the highest and lowest score is 9-7=2.

- [9, 4, 1, 7]. The difference between the highest and lowest score is 4 - 1 = 3.

- [9, 4, 1, 7]. The difference between the highest and lowest score is 7 - 4 = 3.

- $[9,4,\underline{1},\underline{7}]$. The difference between the highest and lowest score is 7-1=6.

The minimum possible difference is 2.

Constraints:

• 1 <= k <= nums.length <= 1000

• 0 <= nums[i] <= 10⁵

Accepted 54K | Submissions 97.6K | Acceptance Rate 55.3%

to on down technique.

window ischnigge

-> Sort the array.

-> Then check all the K sized windows and get the minimum.

Out of all windows difference $(\omega_2 = \omega_3 = \omega_4 = \omega_5) < \omega_1$ and min is 2.

while
$$(r \leq n-1)$$

If $(nums[r]-nums[e] < min)$
 $min = nums[r]-nums[e]$

L++

 $r++$

7 (n) = O(n logn)

TAKEAWAY:

If we are given a k , and asked to find something in the k no of elements then see if we would use "Sliding window technique".