

# 偏度和峰度



授课教师: 洪兴建

浙江财经大学数据科学学院

### 偏度和峰度

引例

### 口彩票2元1张,100万一组。

| 彩民人数      | 方案A      | 方案B       |
|-----------|----------|-----------|
| 1000000-1 | -2元      | 2元        |
| 1         | 200万元-2元 | -200万元+2元 |

$$E(A)=E(B)=0$$

$$E(A)=E(B)=0$$
 $\sigma_A^2 = \sigma_B^2 = 3999996$ 



# 哪个方案更可行?



引例

口 1952年马科维茨把组合投资收益和风险定义为

均值和方差 (标准差)。

口 但均值和方差一定时, 偏斜程度有别。

◆ 黑天鹅





### 偏度和峰度





#### 偏度系数的计算

(一) 基于算术平均数与众数或中位数

皮尔逊偏度系数 
$$S_k^{(1)} = \frac{\overline{x} - m_0}{S}$$

▶ 变动范围 (-3, 3)



 $\geq$  当 $s_k^{(1)} >$ 或<0时,正偏或负偏



#### 偏度系数的计算



- $> s_k^{(2)}$ 的变动范围为(-1, 1)
- $> s_k^{(2)} >$ 或<0,正偏或负偏



#### 偏度系数的计算

(三) 利用动差(矩) 法求偏度系数



 $a=\bar{x}$  中心动差

$$m_t = \frac{\sum_{i=1}^n (x_i - \overline{x})^n}{n}$$

$$or \quad \frac{\sum_{i=1}^{k} (x_i - a)^t f_i}{\sum_{i=1}^{k} f_i}$$



#### 偏度系数的计算

### (三) 利用动差(矩) 法求偏度系数

对标 $\bar{x}$ 

$$m_1 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})}{n} = 0$$

$$m_3 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^3}{n}$$

离群点
$$x_0$$
  $(x_0 - x)^3$  - 个

$$\Rightarrow m_3 < 0$$

$$m_1 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})}{n} = 0$$
  $m_2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n} = s^2$ 





#### 偏度系数的计算

$$S_k = \frac{m_3}{S^3}$$

- $\bullet s_k >$ 或<0,正偏或负偏。
- $\bullet s_k$  利用所有数据,最为常见。
- $\bullet s_k$  主要度量尾部拉长程度。



### 峰度 (Kurtosis) 系数

概念

□主要反映分布的陡峭性。





### 峰度(Kurtosis)系数

#### 计算方法

$$K = \frac{m_4}{s^4} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^4 / n}{(\sum_{i=1}^{n} (x_i - \overline{x})^2 / n)^2}$$

▶ 标准状态分布K=3
 
$$m_4 = \int_{-\infty}^{\infty} (x - x)^4 f(x) dx$$

 ▶ 均匀分布K=1.8
  $s^2 = \int_{-\infty}^{\infty} (x - x)^2 f(x) dx$ 

$$s^2 = \int_{-\infty}^{\infty} (x - \overline{x})^2 f(x) dx$$



# 峰度(Kurtosis)系数

例子

### 动差法求偏度系数和峰度系数:

| 职工月收入 (元) | 职工人数(人) |  |  |  |
|-----------|---------|--|--|--|
| 900以下     | 24      |  |  |  |
| 900~1000  | 48      |  |  |  |
| 1000~1100 | 60      |  |  |  |
| 1100~1200 | 105     |  |  |  |
| 1200~1300 | 27      |  |  |  |
| 1300~1400 | 21      |  |  |  |
| 1400~1500 | 12      |  |  |  |
| 1500以上    | 3       |  |  |  |
| 合计        | 300     |  |  |  |



### 峰度 (Kurtosis) 系数

| 职工月收入<br>(元) | $X_i$ | $f_{i}$ | $x_i f_i$ | $\chi_i - \overline{\chi}$ | $(x_i - \overline{x})^2$ | $(x_i - \bar{x})^2 f_i$ | $(x_i - \bar{x})^3 f_i$ |
|--------------|-------|---------|-----------|----------------------------|--------------------------|-------------------------|-------------------------|
| 900以下        | 850   | 24      | 20400     | -263                       | 69169                    | 1660056                 | -436594728              |
| 900~1000     | 950   | 48      | 45600     | -163                       | 26569                    | 1275312                 | -207875856              |
| 1000~1100    | 1050  | 60      | 63000     | -63                        | 3969                     | 238140                  | -15002820               |
| 1100~1200    | 1150  | 105     | 120750    | +37                        | 1369                     | 143745                  | 5318565                 |
| 1200~1300    | 1250  | 27      | 33750     | +137                       | 18769                    | 506763                  | 69426531                |
| 1300~1400    | 1350  | 21      | 28350     | +237                       | 56169                    | 1179549                 | 279553113               |
| 1400~1500    | 1450  | 12      | 17400     | +337                       | 113569                   | 1362828                 | 459273036               |
| 1500以上       | 1550  | 3       | 4650      | +437                       | 190969                   | 572907                  | 250360359               |
| 合计           |       | 300     | 333900    |                            |                          | 6939300                 | 404458200               |

$$\bar{x} = \frac{\sum x_i f_i}{\sum f_i} = \frac{333900}{300} = 1113(\overline{\pi})$$

$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2 f_i}{\sum f_i}} = 152.09(\bar{\pi})$$



### 峰度(Kurtosis)系数

$$m_3 = \frac{\sum (x_i - \overline{x})^3 f_i}{\sum f_i} = \frac{404458200}{300} = 1348194 \ (\vec{\pi})$$



$$m_4 = \frac{\sum (x_i - \overline{x})^4 f_i}{\sum f_i} = 1632660517 \ (\vec{\pi})$$

$$K = \frac{m_4}{s^4} = 3.05$$



轻微尖顶