יובל גבע: 315509174

Assignment 1

1.a.

 $|A|_{1}=\max \{(1+2+5+5),(2+4+4+0),(3+4+1+3),(4+8+5+7)\}=24$

$$X =_{def} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \Rightarrow ||X||_{1} = 1$$

$$Ax = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & -4 & 8 \\ -5 & 4 & 1 & 5 \\ 5 & 0 & -3 & -7 \end{bmatrix} * \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 8 \\ 5 \\ 7 \end{bmatrix} \Rightarrow ||Ax||_{1} = 4 + 8 + 5 + 7 = 24$$

$$\Rightarrow \frac{||Ax||}{||x||} = 24 = ||A||_{1}$$

הסבר אינטואיטיבי: AX מבודד את וקטור העמודה הגדול ביותר בA והנורמה שלו היא 1.

$$||A||_{\infty} = \max\{(1+2+3+4), (2+4+4+8), (5+4+1+5), (5+0+3+7)\} = 18$$

$$X =_{\text{def}} \begin{bmatrix} 1\\1\\-1\\1 \end{bmatrix} \Rightarrow ||X||_{\infty} = 1$$

$$Ax = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & -4 & 8 \\ -5 & 4 & 1 & 5 \\ 5 & 0 & -3 & -7 \end{bmatrix} * \begin{bmatrix} 1 \\ 1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 18 \\ 15 \\ 15 \end{bmatrix} \Rightarrow | |Ax| |_{\infty} = 18$$

$$\Rightarrow \frac{||Ax||}{||x||} = 18 = ||A||_{\infty}$$

הסבר אינטואיטיבי: סכום השורה הכי גדולה בA היא השורה ה-2. לכן AX מותאם לחישוב סכום שורה זו בערך מוחלט, והנורמה שלו היא 1.

1. b.

```
A = np.array([[1, 2, 3, 4], [2, 4, -4, 8], [-5, 4, 1, 5], [5, 0, -3, -7]])
At = A.transpose()
At_A = np.matmul(At, A)
w, v = LA.eig(At_A)
vector_index = np.argmax(w)
x = v[:, vector_index]
Ax = np.matmul(A, x)
norm = LA.norm(Ax, ord=2) / LA.norm(x, ord=2)
```

```
norm: 13.858100376465325
vector x: [-0.29618621 0.35616716 0.06730298 0.88367923]
```

2.a1

$$\begin{split} & \mathsf{E}(\mathsf{c}) = \mathsf{Min}_\mathsf{c} \left\{ ((\mathsf{c} - \mathsf{x}1)^2 + (\mathsf{c} - \mathsf{x}2)^2 + (\mathsf{c} - \mathsf{x}3)^2 \right\} \\ & = > \frac{\partial \mathsf{E}(\mathsf{c})}{\partial \mathsf{c}} = 2(\mathsf{c} - \mathsf{x}1) + 2(\mathsf{c} - \mathsf{x}2) + 2(\mathsf{c} - \mathsf{x}3) = 0 \Rightarrow 2(3\mathsf{c}) = 2(\mathsf{x}1 + \mathsf{x}2 + \mathsf{x}3) \\ & = > \mathsf{c} = \frac{\mathsf{x}1 + \mathsf{x}2 + \mathsf{x}3}{3} \end{split}$$

2.a2

Min_c {max {|c - x1|, |c - x2|, |c - x3|}} = Min_c {max {|c - x1|, |c - x3|}} = > |c - x1| = |c - x3| = > c =
$$\frac{x_1 + x_3}{2}$$

הסבר:

.c-ט אז המרחק המקסימלי הוא בין x1 ל-x3 קרוב יותר ל-x4 אם x3 אם

.c-b x3 קרוב יותר ל-c אז המרחק המקסימלי הוא בין x1 אם x1

לכן נקטין את המרחק המקסימלי כאשר נבחר את C להיות הממוצע של שניהם. זהו המרחק המינימלי שיכול להיות .

<u>2. a3</u>

$$\begin{aligned} & \text{Min}_c \ \{|c-x1|+|c-x2|+|c-x3|\} = \text{Min} \ \{|c-x1|+|c-x2|+x3-c\} = \\ & \text{Min} \ c \ \{x3-x1+|c-x2|\} \end{aligned}$$

$$= & \text{Min} \ c \ \{|c-x2|\}$$

$$=> c = x2$$

:הסבר

.cc נרצה להקטין את סך המרחקים

.x1- x3 נמצאת בטווח שבין הוא בין c נמצאת בין המרחק המינימלי

2. b.

$$b = \begin{bmatrix} 6 \\ 1 \\ 5 \\ 2 \end{bmatrix}, \quad A = \begin{bmatrix} 2 & 1 & 2 \\ 1 & -2 & 1 \\ 1 & 2 & 3 \\ 1 & 1 & 1 \end{bmatrix}$$

 $A^tA = LL^t$

נבחין כי (A^tA) הפיכה לכן ניתן להשתמש במשוואה הנורמלית:

$$\hat{\mathbf{x}} \approx (\mathbf{A}^{t}\mathbf{A})^{-1}\mathbf{A}^{t}\mathbf{b} = (\mathbf{L}\mathbf{L}^{t})^{-1}\mathbf{A}^{t}\mathbf{b} = (\mathbf{L}^{T})^{-1}\mathbf{L}^{-1}\mathbf{A}^{t}\mathbf{b}$$

$$\hat{\mathbf{x}} = (\mathbf{L}^{T})^{-1}\mathbf{L}^{-1}\mathbf{A}^{t}\mathbf{b}$$

```
from numpy import matmul as mul
from numpy.linalg import inv
import numpy as np
from functools import reduce
A = np.array([[2_{k}1_{k}2], [1_{k}-2_{k}1], [1_{k}2_{k}3], [1_{k}1_{k}1]])
b = np.array([[6], [1], [5], [2]])
At = A.transpose()
At_A = mul(At, A)
L = np.linalg.cholesky(At_A)
Lt = L.transpose()
x =reduce(mul, [inv(Lt), inv(L), At, b])
print("x:", x)
print("Ax:", mul(Axx))
X least squares via Cholesky factorization:
  [[1.7]
  [[-6.00000000e-01]
  [ 2.00000000e-01]
  [-3.55271368e-15]
  [ 1.00000000e+00]]
```

```
2. c.
```

```
Ax = b,
QR factorization: A = QR
\hat{x} = R^{-1}Q^Tb (עמוד 81 בספר)
Q, R = np.linalg.qr(A)
x qr = reduce(mul, [inv(R), Q.transpose(), b])
r = mul(A_x x_qr) - b
print("least squares via QR factorization: \n"_xx_qr)
print("r:\n", r)
least squares via QR factorization:
 [[1.7]
 [[-6.0000000e-01]
 [-8.8817842e-16]
SVD: A = U\Sigma V^T
\Sigma V^T \hat{x} = U^T b (87 עמוד)
\hat{x} = (\Sigma V^T)^{-1} U^T b = (V^T)^{-1} \Sigma^{-1} U^T b = V \Sigma^{-1} U^T b
s = np.diag(s)
x_svd = reduce(mul, [vt.transpose(), inv(s), u.transpose(), b])
least squares via SVD
 [ 1.00000000e+00]]
```

2. d.

$$Ax = b, W = \begin{bmatrix} 1000 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\hat{x} = (A^T W A)^{-1} A^T W b$$
 (73 עמוד)

```
# weighted least squares
At = A.transpose()
w = np.array([1000,1, 1, 1])
w = np.diag(w)
At_w_A = reduce(mul, [At, w, A])
x_weighted = reduce(mul, [inv(At_w_A), At, w, b])
r = mul(A, x_weighted) - b

print("X weighted least squares\n", x_weighted)
print(r)
print(r[0][0])
print(abs(r[0][0]) < 1/1000 )</pre>
```

```
X weighted least squares
[[2.17244031]
[0.69218347]
[0.48106425]]
[[-8.07412820e-04]
[ 2.69137606e-01]
[ 2.34479103e-13]
[ 1.34568803e+00]]
-0.0008074128195900698
True
```

<u>3. a.</u>

```
def gramSchmidtOR(a):
    m, n = a.shape
    # initiation
    r = np.zeros(shape=(n, n))
    q = np.zeros(shape=(m, n))
    a1 = a[:, 0]
    r[0][0] = LA.norm(a1, ord=2)
    q[:, 0] = a1 / r[0][0]

for i in range(1, n):
    ai = a[:, i]
    q[:, i] = ai
    for j in range(0, i):
        qj = q[:, j]
        r[j][i] = np.matmul(qj.transpose(), ai)
        q[:, i] = q[:, i] - r[j][i]*qj
    r[i][i] = LA.norm(q[:, i], ord=2)
    q[:, i] = q[:, i]/r[i][i]
    return q, r
```

```
def modifiedGramSchmidtOR(a):
    m, n = a.shape
    # initiation
    r = np.zeros(shape=(n, n))
    q = np.zeros(shape=(m, n))
    a1 = a[:, 0]
    r[0][0] = LA.norm(a1, ord=2)
    q[:, 0] = a1 / r[0][0]

for i in range(1, n):
    ai = a[:, i]
    q[:, i] = ai
    for j in range(0, i):
        qj = q[:, j]
        qi = q[:, i]
        r[j][i] = np.matmul(qj.transpose(), qi)
        q[:, i] = q[:, i] - r[j][i]*qj
    r[i][i] = LA.norm(q[:, i], ord=2)
    q[:, i] = q[:, i]/r[i][i]
    return q, r
```

<u>3. b.</u>

Gram Schmidt, epsilon = 1

Modified Gram Schmidt, epsilon = 1

Gram Schmidt, epsilon = 1e-10

Modified Gram Schmidt, epsilon = 1e-10

```
Modified Gram Schmidt:,epsilon = 1e-10
Q:
[[ 1.00000000e+00     0.00000000e+00     0.00000000e+00]
    [ 1.00000000e+00     -7.07106781e-01     -4.08248290e-01]
    [ 0.00000000e+00     7.07106781e-01     -4.08248290e-01]
    [ 0.00000000e+00     0.00000000e+00     8.16496581e-01]]
R:
[[1.000000000e+00     1.00000000e+00     1.00000000e+00]
    [ 0.00000000e+00     1.41421356e-10     7.07106781e-11]
    [ 0.000000000e+00     0.00000000e+00     1.22474487e-10]]
```

<u>3. c.</u>

	Gram Schmidt	Modified Gram Schmidt
$\varepsilon = 1$	1.7320508075688774	1.7320508075688772
$\varepsilon = 1e - 10$	1.870828693386971	1.7320508075688776

,($Q^TQ=I$) orthogonal matrix פירוק QR פירוק A איוצר את QR פירוק פירוק הוצר את הוצר את איז הוצר את על $Q^TQ=I$ ממטריצת היחידה. המשמעות של $Q^TQ=I$ זהו המרחק בין התוצר של

 $\|Q^TQ-I\|_F$ עבור frobenius ערכי נורמת ערכי Modified Gram Schmidt ניתן לראות כי באלגוריתם ניתן לאלגוריתם Gram Schmidt נמוכים יותר יחסית לאלגוריתם

. Gram Schmidt הוא אלגוריתם מדיוק יותר יחסית Modified Gram Schmidt ולכן ניתן לראות כי אכן

4.

$$\mathsf{V} = \begin{bmatrix} v11 & \cdots & v1n \\ \vdots & \ddots & \vdots \\ vn1 & \cdots & vnn \end{bmatrix} \in \mathsf{R}^{n*n} = \begin{bmatrix} -v1 - \\ \vdots \\ -vn - \end{bmatrix} \quad \Sigma^{-1} = \begin{bmatrix} \frac{1}{\Theta 1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \frac{1}{\Theta n} \end{bmatrix} 0 \quad \dots \quad 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \frac{1}{\Theta n} \end{bmatrix} \in \mathsf{R}^{m*n} \text{ , } m \geq 0$$

n

$$U = \begin{bmatrix} v11 & \cdots & v1n \\ \vdots & \ddots & \vdots \\ vm1 & \cdots & vmn \end{bmatrix} \in R^{m*n} => U^t = \begin{bmatrix} v11 & \cdots & vm1 \\ \vdots & \ddots & \vdots \\ v1n & \cdots & vmn \end{bmatrix} = \begin{bmatrix} u1^t & \dots & um^t \end{bmatrix}$$

<u>4. b.</u>

$$\hat{x} = (A^t A)^{-1} A^t b = V \Sigma^{-1} U^t b =$$

$$= \begin{bmatrix} -v1 - \\ \vdots \\ -vn - \end{bmatrix} \begin{bmatrix} \frac{1}{\Theta 1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \frac{1}{\Theta n} \end{bmatrix} \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} [u1^t & \cdots & um^t] \begin{bmatrix} b1 \\ \vdots \\ bn \end{bmatrix} =$$

$$=\sum_{i=1}^{\min{(m,n)}}\frac{vi}{\Theta i}*\left[u1^t \quad .. \quad um^t\right]\begin{bmatrix}b1\\ \vdots\\ bn\end{bmatrix} \ = \sum_{i=1}^{\min{(m,n)}}\frac{vi}{\Theta i}*ui^t*\begin{bmatrix}b1\\ \vdots\\ bn\end{bmatrix} =$$

$$=\sum_{i=1}^{\min(m,n)}\frac{vi}{\Theta i}*ui^t*\ b=\sum_{i=1}^{\min(m,n)}\frac{1}{\Theta i}*(ui^t*b)vi$$

$$=> \hat{x} = \sum_{i=1}^{mi} \frac{n(m,n)}{\Theta i} \frac{1}{\Theta i} * (ui^{t} * b)vi$$

4. c.

$$b = \begin{bmatrix} b1 \\ \vdots \\ bn \end{bmatrix} = \sum_{i=1}^{m} ai * ui ,$$

$$\begin{split} \text{full SVD} &=> \{u1,..,um\} = \text{span } R^m \quad , \Theta 1 \geq \cdots \geq \Theta n \geq 0 \ , V^t V = I, \\ U^t U &= I => \ u i^t * u i = 1, \forall i: 1 \leq i \leq m \end{split}$$

$$\hat{\mathbf{x}} = (\mathbf{A}^{\mathsf{t}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{t}}\mathbf{b} = \mathbf{V}\mathbf{\Sigma}^{-1}\mathbf{U}^{\mathsf{t}}\mathbf{b} =$$

$$= \begin{bmatrix} -v1 - \\ \vdots \\ -vn - \end{bmatrix} \begin{bmatrix} \frac{1}{\Theta 1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \frac{1}{\Theta n} \end{bmatrix} \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} [u1^t & \cdots & um^t] \begin{bmatrix} b1 \\ \vdots \\ bn \end{bmatrix} =$$

$$=\sum_{i=1}^{min\;(m,n)}\frac{vi}{\Theta i}*\left[u1^t\quad..\quad um^t\right]\begin{bmatrix}b1\\ \vdots\\ bn\end{bmatrix}\;=\sum_{i=1}^{min\;(m,n)}\frac{vi}{\Theta i}*ui^t*\begin{bmatrix}b1\\ \vdots\\ bn\end{bmatrix}=$$

$$=\sum_{i=1}^{\min(m,n)}\frac{vi}{\Theta i}*ui^t*b=\sum_{i=1}^{\min(m,n)}\frac{vi}{\Theta i}*ui^t*\sum\nolimits_{i=1}^{m}ai*ui=$$

$$\sum_{i=1}^{min\;(m,n)}\frac{vi}{\Theta i}*ui^t*ui*ai = \sum_{i=1}^{min\;(m,n)}\frac{vi*ai}{\Theta i}$$

$$=>\,\widehat{X}=\sum_{i=1}^{min\,(m,n)}\!\frac{vi*ai}{\Theta i}$$

4. d.

$$\breve{A} =_{def} \begin{bmatrix} A \\ - \\ \sqrt{\lambda} & 0 \\ 0 & \sqrt{\lambda} \end{bmatrix}, \breve{y} =_{def} \begin{bmatrix} b \\ - \\ 0 \\ 0 \end{bmatrix}$$

$$E(x) = ||Ax-b||_2 + \lambda ||x||_2 = ||\check{A}x - \check{y}||_2 =$$

$$= \min\{(\widecheck{A}x - \widecheck{y})^t \big(\widecheck{A}x - \widecheck{y})\} = \min\{\widecheck{(A}x)^t \big(\widecheck{A}x\big) - \widecheck{y}^t \widecheck{A}x - \widecheck{A}x\widecheck{y} + \widecheck{y}^t\widecheck{y}\} =$$

$$\frac{\partial E(x)}{\partial x} = 2(\widecheck{A}^t\widecheck{A}x - \widecheck{A}^t\widecheck{y}) = 0 \Rightarrow \widecheck{A}^t\widecheck{A}x = \widecheck{A}^t\widecheck{y} \Rightarrow$$

$$\begin{bmatrix} A^t | & \sqrt{\lambda} & 0 \\ & 0 & \sqrt{\lambda} \end{bmatrix} \begin{bmatrix} A \\ - \\ \sqrt{\lambda} & 0 \\ 0 & \sqrt{\lambda} \end{bmatrix} x = \begin{bmatrix} A^t | & \sqrt{\lambda} & 0 \\ 0 & \sqrt{\lambda} \end{bmatrix} \begin{bmatrix} b \\ - \\ 0 \\ 0 \end{bmatrix}$$

$$=> (A^tA + \lambda I)x = A^tb$$

proof $(A^tA + \lambda I)$ PD:

$$A = \begin{pmatrix} a11 & \cdots & a1n \\ \vdots & \ddots & \vdots \\ an1 & \cdots & ann \end{pmatrix}, x = \begin{bmatrix} x1 \\ \vdots \\ xn \end{bmatrix} => x^t = \begin{bmatrix} x1 & \cdots & xn \end{bmatrix}$$

$$=> \mathsf{Ax} = \begin{pmatrix} \mathsf{a}11 & \cdots & \mathsf{a}1n \\ \vdots & \ddots & \vdots \\ \mathsf{a}n1 & \cdots & \mathsf{a}nn \end{pmatrix} \begin{bmatrix} \mathsf{x}1 \\ \vdots \\ \mathsf{x}n \end{bmatrix} = \begin{pmatrix} \sum_1^n \mathsf{a}1i * \mathsf{x}i \\ \vdots \\ \sum_1^n \mathsf{a}ni * \mathsf{x}i \end{pmatrix}$$

$$\mathbf{x}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} \mathbf{A} \mathbf{x} = (\mathbf{A} \mathbf{x})^{\mathsf{T}} (\mathbf{A} \mathbf{x}) = (\sum_{1}^{n} \mathbf{a} \mathbf{1} \mathbf{i} * \mathbf{x} \mathbf{i} \quad \cdots \quad \sum_{1}^{n} \mathbf{a} \mathbf{n} \mathbf{i} * \mathbf{x} \mathbf{i}) \begin{pmatrix} \sum_{1}^{n} \mathbf{a} \mathbf{1} \mathbf{i} * \mathbf{x} \mathbf{i} \\ \vdots \\ \sum_{1}^{n} \mathbf{a} \mathbf{n} \mathbf{i} * \mathbf{x} \mathbf{i} \end{pmatrix} = \sum_{j=1}^{n} (\sum_{1}^{n} \mathbf{a} \mathbf{j} \mathbf{i} * \mathbf{x} \mathbf{i})^{2} \geq 0$$

$$x^t \lambda Ix = \begin{bmatrix} x1 & \cdots & xn \end{bmatrix} \begin{pmatrix} \lambda & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda \end{pmatrix} \begin{bmatrix} x1 \\ \vdots \\ xn \end{bmatrix} = \begin{bmatrix} \lambda x1 & \cdots & \lambda xn \end{bmatrix} \begin{bmatrix} x1 \\ \vdots \\ xn \end{bmatrix} = \sum\nolimits_{i=1}^n \lambda xi^2 > 0$$

$$x^{t}(A^{t}A + \lambda I)x = x^{t}A^{t}Ax + x^{t}\lambda Ix = (Ax)^{t}Ax + x^{t}\lambda Ix =$$

$$= \sum\nolimits_{j=1}^{n} (\sum\nolimits_{1}^{n} aji * xi)^{2} + \sum\nolimits_{i=1}^{n} \lambda xi^{2} > 0$$

=>
$$x \neq 0, \lambda > 0$$
: $\sum_{i=1}^{n} (\sum_{1}^{n} aji * xi)^{2} + \sum_{i=1}^{n} \lambda xi^{2} > 0$

$$=> (A^tA + \lambda I) PD$$

4. e.

$$(A^{t}A + \lambda I) = (u\Sigma v^{T})^{2}u\Sigma v^{T} + \lambda I = v\Sigma^{T}u^{T}u\Sigma v^{T} + \lambda I = v\Sigma^{T}\Sigma v^{T} + \lambda I$$

$$(\Sigma^{T}\Sigma + \lambda I) = \begin{bmatrix} \Theta 1^{2} + \lambda & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \Theta n^{2} + \lambda \end{bmatrix} = > (\Sigma^{T}\Sigma + \lambda I)^{-1} = \begin{bmatrix} \frac{1}{\Theta 1^{2} + \lambda} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \frac{1}{\Theta n^{2} + \lambda} \\ \vdots & \vdots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}$$

$$V^{t}V = U^{t}U = I \Longrightarrow ui^{t} * ui = 1, \forall i : 1 \le i \le m$$

$$(A^tA + \lambda I)\hat{x} = A^tb =>$$

$$(v\Sigma^{T}\Sigma v^{T} + \lambda I)\hat{x} = v\Sigma^{T}u^{T}b = >$$

$$(\Sigma^T \Sigma v^T + v^t \lambda I) \hat{x} = \Sigma^T u^T b = (\Sigma^T \Sigma + \lambda I) v^t x = \Sigma^T u^T b$$

$$(\Sigma^{T}\Sigma + \lambda I)v^{t}\hat{x} = (\Sigma^{T}\Sigma + \lambda I)^{-1}\Sigma^{T}u^{T}b = >$$

$$\hat{\mathbf{x}} = \mathbf{v}(\mathbf{\Sigma}^{\mathrm{T}}\mathbf{\Sigma} + \lambda \mathbf{I})^{-1}\mathbf{\Sigma}^{\mathrm{T}}\mathbf{u}^{\mathrm{T}}\mathbf{b} =$$

$$=\begin{bmatrix} -v\mathbf{1} - \\ \vdots \\ -v\mathbf{n} - \end{bmatrix} \begin{bmatrix} \frac{1}{\Theta\mathbf{1}^2 + \lambda} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \frac{1}{\Theta\mathbf{n}^2 + \lambda} \\ \vdots & \vdots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} \Theta\mathbf{1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \Theta\mathbf{p} \\ \vdots & \vdots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} [u\mathbf{1}^t & \cdots & u\mathbf{m}^t] \begin{bmatrix} -b\mathbf{1} - \\ \vdots \\ -b\mathbf{n} - \end{bmatrix} =$$

$$\begin{split} &= \sum_{i=1}^{min(n,m)} vi \frac{_1}{_{\Theta1^2+\lambda}} \Thetai * \sum_{i=1}^m ui^t \ bi \\ &= \sum_{i=1}^{min(n,m)} vi \frac{_1}{_{\Theta1^2+\lambda}} \Thetai * \sum_{i=1}^m ai * ui^t \ ui = \\ &= \sum_{_{i=1}}^{min(n,m)} vi \frac{_1}{_{\Theta1^2+\lambda}} \Thetai * ai \end{split}$$

$$=> \hat{\mathbf{x}} = \sum_{i=1}^{\min(n,m)} \frac{\mathbf{\Theta}i}{\mathbf{\Theta}i^2 + \lambda} \mathbf{a}i * \mathbf{v}i$$

ניתן לראות כי בתמונה שבה השתמשו במינימום ריבועים הלא מנורמל-יצא פלט ללא שינוי/לא ברור,

בעוד שבתמונה שבה השתמשו במינימום ריבועים מנורמל התמונה התמקדה/לא השתנתה.

הסיבה לכך היא שאם קיימים ב-A ערכים סינגולריים קטנים-בשיטה הראשונה הם יהיו בעלי השפעה רבה על הרעש, ובשיטה השנייה כמעט ולא ישפיעו.

 $\sum_{i=1}^{\min{(m,n)}} rac{vi*ai}{\Theta i}$ במינימום ריבועים לא מנורמל נקבל את הפלט: במינימום מאד על טישטוש התמונה באופן הבא נבחין כי הערכים הסינגולריים הקטנים של A משפיעים מאד על טישטוש התמונה

$$\lim_{\Theta i \to 0} \sum_{i=1}^{\min{(m,n)}} \frac{vi * ai}{\Theta i} = \infty * vi * ai \to \infty * noice$$

ככל שיש יותר ערכים סינגולריים קטנים כך נקבל תמונה רועשת ומטושטת יותר.

 $\sum_{i=1}^{\min{(n,m)}} rac{\Theta i}{\Theta 1^2 + \lambda} \ ai * vi$ במינימום ריבועים המנורמל נקבל את הפלט: $\Theta i \ll \lambda$ ובהנחה כי

$$\lim_{\Theta i \to 0} \sum\nolimits_{i=1}^{min(n,m)} \frac{\Theta i}{\Theta i^2 + \lambda} \text{ ai } * \text{ vi} = \lim_{\Theta i \to 0} \sum\nolimits_{i=1}^{min(n,m)} \frac{1}{\Theta i + \frac{\lambda}{\Theta i}} \text{ ai } * \text{ vi} \to 0 * \text{ noice}$$

זאת אומרת שהערכים הסינגולריים הקטנים כמעט ולא משפיעים על הרעש בתמונה.

הערכים הסינגולריים הגדולים נשארו פחות או יותר בעלי אותה השפעה.

בשיטה זו נקבל את התמונה בצורה הרבה יותר ברורה.

5. a.

על מנת למצוא את מטריצה A עלינו למצוא פתרונות ל-4 נעלמים - fx,fy,y0,x0.

לשם כך המספר המינימלי של משוואות שעלינו למצוא הוא - 4.

משום שמכל סט i של וקטורים ניתן להרכיב 2 משוואות, המס המינימלי של סטים שאנו צריכים כדי למצוא פתרון לבעיה הוא 2. כן ניתן יהיה להגדיר:

$$\begin{bmatrix} u1\\v1\\u2\\v2 \end{bmatrix} = \begin{bmatrix} x1 & z1 & 0 & 0\\0 & 0 & y1 & z1\\x2 & z1 & 0 & 0\\0 & 0 & y2 & z2 \end{bmatrix} \begin{bmatrix} fx\\x0\\fy\\yo \end{bmatrix}$$

ישנן 4 משוואות לינאריות ב"ת ו-4 נעלמים, זאת אומרת שקיים פתרון יחיד למערכת המשוואות.

5. b.

בהנחה שישנם 2<n סטים של זוגות וקטורים- ישנם אינסוף פתרונות. נחפש את הפתרון הטוב ביותר על ידי פתרון באמצעות מינימום ריבועים.

נגדיר:

$$b =_{\text{def}} \begin{bmatrix} u1 \\ v1 \\ \vdots \\ un \\ vn \end{bmatrix}, \ A =_{\text{def}} \begin{bmatrix} x1 & z1 & 0 & 0 \\ 0 & 0 & y1 & z1 \\ \vdots & \vdots & \vdots & \vdots \\ xn & zn & 0 & 0 \\ 0 & 0 & yn & zn \end{bmatrix}, \ x_{\text{def}} = \begin{bmatrix} fx \\ x0 \\ fy \\ yo \end{bmatrix}$$

$$E(fx,x0,fy,y0)=Min | |Ax-b||_2^2 =$$

$$min \sum_{i=1}^{n} ((fx * xi + x0 * zi - ui)^{2} + (fy * yi + y0 * zi - vi)^{2})$$

$$1.\frac{\partial E(fx,x0,fy,y0)}{\partial fx} = \sum_{i=1}^{n} 2(fx * xi + x0 * zi - ui) * xi = 0$$

=>
$$fx * \sum_{i=1}^{n} (xi^2) + x0* \sum_{i=1}^{n} (zi * xi) = \sum_{i=1}^{n} (xi * ui)$$

2.
$$\frac{\partial E(fx,x_0,fy,y_0)}{\partial x_0} = \sum_{i=1}^{n} 2(fx * xi + x0 * zi - ui) * zi = 0$$

=>
$$fx * \sum_{i=1}^{n} (xi * zi) + x0* \sum_{i=1}^{n} (zi^{2}) = \sum_{i=1}^{n} (zi * ui)$$

3.
$$\frac{\partial E(fx,x0,fy,y0)}{\partial fy} = \sum_{i=1}^{n} 2(fy*yi + y0*zi - vi)*yi = 0$$

=>
$$fy * \sum_{i=1}^{n} (yi^2) + y0* \sum_{i=1}^{n} (zi * yi) = \sum_{i=1}^{n} (yi * vi)$$

4.
$$\frac{\partial E(fx,x_0,fy,y_0)}{\partial y_0} = \sum_{i=1}^{n} 2(fy * y_i + y_0 * z_i - v_i) * z_i = 0$$

$$=> fy * \sum_{i=1}^{n} (yi * zi) + y0* \sum_{i=1}^{n} (zi^{2}) = \sum_{i=1}^{n} (zi * vi)$$

נקבל 4 משואות לינאריות עם 4 נעלמים:

$$\begin{bmatrix} \sum_{i=1}^{n}(xi^2) & \sum_{i=1}^{n}(zi*xi) & 0 & 0 \\ \sum_{i=1}^{n}(xi*zi) & \sum_{i=1}^{n}(zi^2) & 0 & 0 \\ 0 & 0 & \sum_{i=1}^{n}(yi^2) & \sum_{i=1}^{n}(zi*yi) \\ 0 & 0 & \sum_{i=1}^{n}(yi*zi) & \sum_{i=1}^{n}(zi^2) \end{bmatrix} * \begin{bmatrix} fx \\ x0 \\ fy \\ y0 \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n}(xi*ui) \\ \sum_{i=1}^{n}(zi*ui) \\ \sum_{i=1}^{n}(yi*vi) \\ \sum_{i=1}^{n}(zi*vi) \end{bmatrix}$$

נפתור את מערכת המשוואות ונקבל את וקטור הפתרון.