Equilíbrio de Solubilidade

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

2J04

2J05

Nível I

PROBLEMA 1.1

2J01

A solubilidade molar do cromato de prata é 65 μ mol L $^{-1}$ a 25 °C. **Assinale** a alternativa que mais se aproxima do K_{ps} do cromato de prata.

- **A** $1,1 \times 10^{-14}$
- **B** $1,1 \times 10^{-13}$
- 1.1×10^{-12}
- **D** $1,1 \times 10^{-11}$
- **E** 1.1×10^{-10}

_

PROBLEMA 1.4

do sulfato de prata a 25 °C.

 $45\,\mathrm{mmol}\,\mathrm{L}^{-1}$

 \mathbf{A} 15 mmol \mathbf{L}^{-1}

 \mathbf{E} 75 mmol L⁻¹

PROBLEMA 1.5

reto de sódio a 25 °C.

 \mathbf{A} 0,4 μ mol \mathbf{L}^{-1}

 \mathbf{E} 2,0 µmol \mathbf{L}^{-1}

 $1,2\,\mu\mathrm{mol}\,\mathrm{L}^{-1}$

• $K_{ps}(Ag_2SO_4) = 1.4 \times 10^{-5}$

Assinale a alternativa que mais se aproxima da solubilidade

Assinale a alternativa que mais se aproxima da solubilidade

do cloreto de prata em uma solução $1 \times 10^{-4} \, \text{mol} \, \text{L}^{-1}$ em clo-

 \mathbf{B} 30 mmol L^{-1}

D 60 mmol L⁻¹

B $0.8 \, \mu \text{mol} \, \text{L}^{-1}$

D 1,6 μ mol L⁻¹

PROBLEMA 1.2

2J02

A solubilidade molar do iodato de chumbo (II) é $40\,\mu mol\,L^{-1}$ a $25\,^{\circ}\text{C}.$

Assinale a alternativa que mais se aproxima do K_{ps} do cromato de prata.

- **A** 2.6×10^{-14}
- **B** 2.6×10^{-13}
- c 2,6 × 10⁻¹²
- **D** $2,6 \times 10^{-11}$
- **E** $2,6 \times 10^{-10}$

Dados

• $K_{ps}(AgCl) = 1.6 \times 10^{-10}$

PROBLEMA 1.3

2J03

Assinale a alternativa que mais se aproxima da solubilidade do iodato de cromo (III) a $25\,^{\circ}$ C.

- m A 11 mmol L⁻¹
- \mathbf{B} 21 mmol \mathbf{L}^{-1}
- \mathbf{C} 31 mmol \mathbf{L}^{-1}
- \mathbf{D} 41 mmol L⁻¹
- \mathbf{E} 51 mmol L⁻¹

Dados

• $K_{ps}(Cr(IO_3)_3) = 5.0 \times 10^{-6}$

PROBLEMA 1.6

2J06

1

Assinale a alternativa que mais se aproxima da solubilidade do carbonato de cálcio em uma solução $0,2\,\mathrm{mol}\,\mathrm{L}^{-1}$ em cloreto de cálcio a 25 °C.

- \mathbf{A} 11 nmol \mathbf{L}^{-1}
- \mathbf{B} 22 nmol \mathbf{L}^{-1}
- \mathbf{C} 33 nmol \mathbf{L}^{-1}
- ${f D}$ 44 nmol ${f L}^{-1}$
- \mathbf{E} 55 nmol L⁻¹

Dados

 $\bullet \ \ K_{ps}(\text{CaCO}_3) = 8.7 \times 10^{-9}$

Assinale a alternativa que mais se aproxima da solubilidade do hidróxido de zinco em pH = 6 a 25 °C.

- lacksquare 0,1 nmol L⁻¹
- \mathbf{B} 0,2 nmol \mathbf{L}^{-1}
- \mathbf{C} 0,3 nmol L⁻¹
- \mathbf{D} 0,4 nmol L⁻¹
- E 0,5 nmol L^{-1}

Dados

• $K_{ps}(Zn(OH)_2) = 2.0 \times 10^{-17}$

PROBLEMA 1.8

2J08

Assinale a alternativa que mais se aproxima da solubilidade do hidróxido de alumínio em pH = 4,5 a 25 °C.

- A $10 \, \mu mol \, L^{-1}$
- \mathbf{B} 20 μ mol L^{-1}
- \mathbf{C} 30 μ mol L^{-1}
- **D** $40 \, \mu \text{mol} \, \text{L}^{-1}$
- E 50 μ mol L^{-1}

Dados

• $K_{ps}(Al(OH)_3) = 1.0 \times 10^{-33}$

PROBLEMA 1.9

2J09

Assinale a alternativa que mais se aproxima da solubilidade do carbonato de magnésio em uma solução $3\,\mathrm{mmol}\,\mathrm{L}^{-1}$ em nitrato de magnésio.

- \mathbf{A} 1,5 mmol L⁻¹
- \mathbf{B} 2,0 mmol \mathbf{L}^{-1}
- \mathbf{C} 2,5 mmol L^{-1}
- \mathbf{D} 3,0 mmol L⁻¹
- \mathbf{E} 3,5 mmol L^{-1}

Dados

• $K_{ps}(MgCO_3) = 1.0 \times 10^{-5}$

PROBLEMA 1.10

2J10

Assinale a alternativa que mais se aproxima da solubilidade do cloreto de cobre (I) em uma solução $1,5\,\mathrm{mmol}\,\mathrm{L}^{-1}$ em cloreto de potássio.

- \mathbf{A} 0,25 mmol L⁻¹
- \mathbf{B} 0.33 mmol \mathbf{L}^{-1}
- **c** $0.50 \, \text{mmol} \, \text{L}^{-1}$
- \mathbf{D} 0,67 mmol L⁻¹
- \mathbf{E} 0,80 mmol \mathbf{L}^{-1}

Dados

• $K_{ps}(CuCl) = 1.0 \times 10^{-6}$

Quando um amônia é adicionada à uma solução que contém íons prata, ocorre a formação do omplexo de coordenação:

$$Ag^{+}(aq) + 2NH_{3}(aq) \Longrightarrow Ag(NH_{3})_{2}^{+}(aq) \quad K_{f} = 1.6 \times 10^{7}$$

Assinale a alternativa que mais se aproxima da solubilidade do cloreto de prata em uma solução $0,1 \, \text{mol} \, \text{L}^{-1}$ em amônia.

- \mathbf{A} 2,6 mmol L⁻¹
- \mathbf{B} 4,6 mmol L⁻¹
- \mathbf{C} 6,6 mmol L^{-1}
- \mathbf{D} 8,6 mmol L⁻¹
- \mathbf{E} 9,6 mmol \mathbf{L}^{-1}

Dados

• $K_{ps}(AgCl) = 1,6 \times 10^{-10}$

PROBLEMA 1.12

2J12

Quando um amônia é adicionada à uma solução que contém íons cobre, ocorre a formação do complexo de coordenação:

$$Cu^{2+}(aq) + 4\,NH_3(aq) \Longleftrightarrow Cu(NH_3)_4{}^{2+}(aq) \quad K_f = 1,2\times 10^{13}$$

Assinale a alternativa que mais se aproxima da solubilidade do sulfeto de cobre (II) em uma solução $1,2\,\mathrm{mol}\,\mathrm{L}^{-1}$ em amônia.

- **A** $1.8 \times 10^{-12} \, mol \, L^{-1}$
- **B** $3.8 \times 10^{-12} \, \text{mol} \, \text{L}^{-1}$
- **C** $5.8 \times 10^{-12} \, \text{mol} \, \text{L}^{-1}$
- $7.8 \times 10^{-12} \, \text{mol} \, \text{L}^{-1}$
- $= 9.8 \times 10^{-12} \, \text{mol} \, \text{L}^{-1}$

Dados

• $K_{ps}(CuS) = 1.3 \times 10^{-36}$

PROBLEMA 1.13

2J13

Assinale a alternativa que mais se aproxima da massa de nitrato de prata que precisa ser adicionada a $100\,\mathrm{mL}$ de uma solução $1\times10^{-5}\,\mathrm{mol}\,\mathrm{L}^{-1}$ de cloreto de sódio para o início da precipitação.

- **A** 180 μg
- **B** 270 μg
- **c** 360 µg
- **D** 540 µg
- **E** 630 μg

Dados

• $K_{ps}(AgCl) = 1.6 \times 10^{-10}$

Assinale a alternativa que mais se aproxima da massa de iodeto de potássio que precisa ser adicionada a 25 mL de uma solução $1\times 10^{-5}\, \text{mol}\, \text{L}^{-1}$ de cloreto de sódio para o início da precipitação.

- A 221 g
- **B** 332 g
- **c** 443 g

- **D** 554 g
- **E** 665 g

Dados

• $K_{ps}(PbI_2) = 1.4 \times 10^{-8}$

PROBLEMA 1.15

2J15

2J14

Assinale a alternativa correta a respeito da precipitação de hidróxido de níquel em uma solução $0,06\,\mathrm{mol}\,\mathrm{L}^{-1}$ em cátions níquel (II).

- A Independe do pH.
- **B** Ocorre somente na faixa de pH alcalino.
- C Ocorre somente na faixa de pH ácido.
- **D** Não ocorre para pH < 6.
- **E** Ocorre somente para pH > 12.

Dados

• $K_{ps}(Ni(OH)_2) = 6.5 \times 10^{-18}$

PROBLEMA 1.16

2J16

Assinale a alternativa correta a respeito da precipitação de hidróxido de níquel em uma solução $1~\rm mmol~L^{-1}$ em cátions ferro (III).

- A Independe do pH.
- **B** Ocorre somente na faixa de pH alcalino.
- C Ocorre somente na faixa de pH ácido.
- **D** Não ocorre para pH < 3.
- **E** Ocorre somente para pH > 12.

Dados

• $K_{ps}(Fe(OH)_3) = 2.0 \times 10^{-39}$

Hidróxido de sódio é adicionado progressivamente a uma amostra contendo 0,05 mol $\rm L^{-1}$ em cátions magnésio e 0,01 mol $\rm L^{-1}$ em cátions cálcio.

Assinale a alternativa que mais se aproxima da concentração do primeiro íon a precipitar que permanece em solução quando o segundo precipita.

- \mathbf{A} 14 nmol \mathbf{L}^{-1}
- ${\bf B}$ 21 nmol L⁻¹
- \mathbf{C} 28 nmol L⁻¹
- D 35 nmol L⁻¹
- \mathbf{E} 42 nmol L⁻¹

Dados

- $K_{ps}(Ca(OH)_2) = 5.5 \times 10^{-6}$
- $K_{ps}(Mg(OH)_2) = 1.1 \times 10^{-11}$

PROBLEMA 1.18

2J18

2J17

Sulfato de sódio é adicionado progressivamente a uma amostra contendo $0,01 \, \text{mol} \, L^{-1}$ em cátions bário e $0,01 \, \text{mol} \, L^{-1}$ em cátions chumbo (II).

Assinale a alternativa que mais se aproxima da concentração do primeiro íon a precipitar que permanece em solução quando o segundo precipita.

- \mathbf{A} 13 μ mol \mathbf{L}^{-1}
- \mathbf{B} 23 μ mol \mathbf{L}^{-1}
- \mathbf{C} 39 μ mol \mathbf{L}^{-1}
- D 52 μ mol L⁻¹
- \mathbf{E} 69 μ mol L⁻¹

Dados

- $K_{ps}(BaSO_4) = 1,1 \times 10^{-10}$
- $K_{ps}(PbSO_4) = 1.6 \times 10^{-8}$

2319

PROBLEMA 2.1

Assinale a alternativa que mais se aproxima da solubilidade do hidróxido de ferro (III) a 25 °C.

A
$$1,2 \times 10^{-18}$$

B
$$2,0 \times 10^{-18}$$

$$3.5 \times 10^{-14}$$

D
$$1.2 \times 10^{-10}$$

E
$$2.0 \times 10^{-10}$$

Dados

•
$$K_{ps}(Fe(OH)_3) = 2.0 \times 10^{-39}$$

PROBLEMA 2.2

2J20

Assinale a alternativa que mais se aproxima da solubilidade do hidróxido de alumínio a $25\,^{\circ}$ C.

A
$$1.0 \times 10^{-12}$$

B
$$3.3 \times 10^{-12}$$

c
$$6.8 \times 10^{-10}$$

D
$$1.0 \times 10^{-9}$$

E
$$3.3 \times 10^{-9}$$

Dados

•
$$K_{ps}(Al(OH)_3) = 1.0 \times 10^{-33}$$

PROBLEMA 2.3

2J21

Assinale a alternativa que mais se aproxima da solubilidade do fluoreto de cálcio em pH = 3.

$$\hbox{\bf B} \quad 4\times 10^{-5}\,mol\,L^{-1}$$

$$4 \times 10^{-4} \, \text{mol} \, L^{-1}$$

Dados

•
$$K_a(HF) = 3.5 \times 10^{-4}$$

•
$$K_{ps}(CaF_2) = 4.0 \times 10^{-11}$$

PROBLEMA 2.4

2J22

Uma amostra de $500\,\mathrm{mL}$ de uma solução $0,01\,\mathrm{mol}\,\mathrm{L}^{-1}$ em nitrato de prata é misturada com $500\,\mathrm{mL}$ de outra solução contendo $0,005\,\mathrm{mol}$ de cloreto de sódio e $0,005\,\mathrm{mol}$ de brometo de sódio.

Determine a concentração de todas as espécies em solução no equilíbrio.

Dados

•
$$K_{ps}(AgBr) = 7.7 \times 10^{-13}$$

•
$$K_{ps}(AgCl) = 1.6 \times 10^{-10}$$

Uma amostra contendo 0,1 mol de nitrato de cálcio, 0,1 mol de nitrato de bário e 0,15 mol de sulfato de sódio foram adicionados em 600 mL de água destilada.

Determine a concentração de todas as espécies em solução no equilíbrio.

Dados

PROBLEMA 2.5

- $\bullet \ \ \mathsf{K}_{\mathsf{ps}}(\mathsf{BaSO}_4) = \mathsf{1,1} \times 10^{-10}$
- $K_{ps}(CaSO_4) = 2.4 \times 10^{-5}$

Gabarito

Nível I

1. C 3. B 4. A 2. B 5. D 6. D 7. B 8. B 9. B 10. B 13. B 11. B 12. B 14. B 15. D 16. D 17. B 18. E

Nível II

- 1. B
- 2. B
- 3. C
- 4. -
- 5. -