Class 20

October 27, 2022

Contents

rerfitting and Generalization	
Solutions to prevent overfitting	
Removing the potential bias	
k-fold cross validation	
aluating Classification	
aluating Classification	
Binary Classification	
verfitting and Generalization	
Model becomes too specific to training set	

Even Linear Models can overfit

- because less data
- or too much dimensionality in data

* poor generalization

Solutions to prevent overfitting

- Use of simple classifiers: Linear Models
- Large-Margin Classification, SVMs
- Ensemble Classifiers
- Dimensionality Reduction

Some minimally expected fundamental rules in ML:

- 1. Collect Data
 - Avoiding biases while collecting data is extremely important.

- performance on an independent test set becomes poor

- 2. Data Cleanup
 - Avoiding biases here is essential as well.
 - n samples of labelled data.
- 3. Training-Validation-Testing
 - We split the labelled data into

- t samples of Training Data,
- v samples of Validation Data, and
- n-t-v samples of Test Data.
- How you do this split is also important.
- We run a loop of training on the Training Data, testing on Validation Data, Tuning the hyperparameters then Train again.
- After some iterations, we might stop and test on the Test Data.
- If the distribution of Training and Test Data are different then the model will perform very poorly.
 - Split should not change distribution of test data (from training data) but should also be convenient and sufficiently random.
 - Labelled data split *randomly* to training and test data. Then we keep some part of the training data as validation data (random split again).

Removing the potential bias

- Cross validation
 - Repeat training and validation multiple number of times. Each time taking a different portion of training set as validation set.
- Model Accuracy
 - Can be given as an error rate
 - Find errors over the test set
 - Get mean accuracy and S.D. accuracy
 - Then accuracy is like $\mu \pm \sigma$ %.

k-fold cross validation

The training set will be split k times. Good value for k is 4 or 5. But make sure to not use 10 or 11 (if your data is small)

Evaluating Classification

Binary Classification

$\overline{N = 150}$	Predicted -ve	Predicted +ve	Total
Actual -ve	TN = 61	FP = 5	66
Actual +ve	FN = 7	TP = 77	84
Total	68	82	

- Accuracy = (61 + 77)/150
- Misclassification = (7+5)/150
- TP rate or hit = 77/84
- FP rate or false alarm = 5/66
- FN rate or miss = 7/84
- TN rate or genuine reject = 61/66
- Precision = 77/82
- Recall (TPR) = 77/84