Reinforcement Learning David Silver - Lecture 8 Notes: Integrating Learning and Planning

Name: Eli Andrew

• Advantages of Model-based RL

- Can efficiently learn model by supervised learning methods
- Model is like the teacher that provides the supervised learning
- Example:
 - * Domain where learning policy or value function is hard (i.e. chess)
 - * Many different states
 - * Has sharp value function (single move of a piece can change from won position to lost position)
 - * Hard to learn this type of value function directly
 - * Model is straight forward essentially just rules of the game
 - * If you can use model to "look ahead" you can estimate the value function by planning (by tree search)
 - * This is easy compared to learning the value function because you are just learning that you have 0 reward for all positions except check mates and draws
 - * As compared to learning the value function where you are evaluating how likely you are to win from all the many configurations of the pieces
- Model can be a more useful (and compact) representation of the information than a value function
- Can reason about model uncertainty
 - * Helps you see what you know and don't know about the world
 - * This way you can strengthen your true understanding of the world and not just your current understanding
- Disadvantage: learn model and then construct value function (2 sources of error)

• What is a model

- Model M is a representation of an MDP $\langle S, A, P, R \rangle$ parameterized by η
- Assume state space and action space are known
- Model $M = \langle P_{\eta}, R_{\eta} \rangle$ represents state transitions $P_{\eta} \approx P$ and rewards $R_{\eta} \approx R$

$$S_{t+1} \sim P_{\eta}(S_{t+1}|S_t, A_t)$$

 $R_{t+1} = R_{\eta}(R_{t+1}|S_t, A_t)$

Model learning

- Goal: estimate model M_{η} from experience $\{S_1, A_1, R_2, \dots, S_T\}$
- Supervised learning problem

$$S_1, A_1 \rightarrow R_2, S_2$$

 $S_2, A_2 \rightarrow R_3, S_3$
 \dots
 $S_{T-1}, A_{T-1} \rightarrow R_T, S_T$

- Learning $s, a \to r$ is a regression problem
- Learning $s, a \to s'$ is a density estimation problem (since it is likely stochastic we are learning the distribution)
- Pick loss function (MSE, KL divergence, ...)
- Find parameters η that minimize empirical loss

• Examples of Models

- Table lookup model
- Linear expectation model
- Linear Gaussian model
- Gaussian process model
- Deep belief network model
- **–** ...

• Sample-based Planning

- Use the model *only* to generate samples
- Unlike DP where you look at probabilities of transitions and integrate over the probabilities
- You sample experience from the model (rather than knowing all the transition probabilities)

$$S_{t+1} \sim P_{\eta}(S_{t+1}|S_t, A_t)$$

 $R_{t+1} = R_{\eta}(R_{t+1}|S_t, A_t)$

- Apply model-free RL to samples: Monte-Carlo control, Sarsa, Q-learning, etc.
- Sample based planning methods are often more efficient
- Planning is essentially done by solving for the simulated experience drawn from the agents imagined world (its model)
- Sampling is more efficient, even in the case when you know the entire model, because you are essentially focusing on the things that are most likely to happen