UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA Y ALGEBRA LINEAL 520142 PRACTICA 14.

Problema 1.

1.1 Calcule la inversa de las matrices dadas usando operaciones elementales de filas y usando la matriz adjunta.

$$A = \begin{pmatrix} 3 & 1 \\ 4 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 2 & 0 \\ 4 & 1 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 3 & 4 \\ -1 & 0 & -2 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 4 \end{pmatrix}$$

1.2 En cada caso calcule, el determinante de cada matriz y el de su inversa.

Problema 2. [En práctica]

Calcule, si existe, valores de $k \in \mathbb{R}$ para los cuales las matrices siguientes tengan inversa.

$$A = \begin{pmatrix} k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 3 & 1+k \\ 2 & 6 & -2k \\ 3 & 4 & -k \end{pmatrix}, \qquad C = \begin{pmatrix} 2 & -3 & 6 \\ 0 & k & 4-k \\ 0 & k & -k \end{pmatrix}$$

Problema 3. Sea
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 3 & 4 \\ -1 & 0 & -2 \end{pmatrix}$$
, muestre que $A^{-1} = \frac{-1}{3}(A^2 - 2A - 4I)$

Problema 4. Sea
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
.

- 4.1. Calcule números reales a y b tales que: $A^2 + aA + bI = \theta$.
- 4.2 De la ecuación anterior encuentre una expresión para la inversa de A y úsela para calcular A^{-1} .

1

Problema 5. Sea $A \in M_n(\mathbb{R})$. Pruebe las siguientes propiedades:

- 5.1 Si se intercambian dos filas contiguas entonces la matriz resultante B es tal que det(B) = det(A).
- 5.2 Si A tiene dos filas iguales entonces det(A) = 0
- 5.3 Si se multiplica una fila de A por $k \in \mathbb{R}$, $k \neq 0$, entonces la matriz resultante B es tal que $det(B) = k \cdot det(A)$.
- 5.4 Si se suma la fila r a la fila s entonces la matriz resultante B es tal que det(B) = det(A)

Observación. En 5.3, si k=0 entonces det(B)=0; esto es equivalente a suponer que A tiene una fila nula. Además, si se multiplica A por $k \neq 0$, entonces $det(kA) = k^n det(A)$.

5.5 Compruebe las propiedades anteriores usando la matriz C del problema 1.1.

Problema 6.

- 6.1 Sea $A \in M_2(\mathbb{R})$ y det(A) = 2, calcule: a) $det(A^2)$, $det(A^3)$ b) det(2A), det(3A).
- 6.2 Sean $A, B \in M_n(\mathbb{R})$.
- a) Si $A^{-1} = \frac{1}{25}A^t$, calcule det(A).
- b) Si det(A) = a y $det(B) = \sqrt{2}$, calcule $det(2A \cdot 3B)$.

Problema 7. Sea $A \in M_n(\mathbb{R})$. Pruebe las siguientes propiedades:

- 7.1 Si A es inversible, entonces $det(A^{-1}) = 1/det(A)$.
- 7.2 Si A es ortogonal, entonces $det(A) = \pm 1$.
- 7.3 Si A es antisimétrica, entonces $det(A) = (-1)^n det(A)$.

Note que si n es impar, entonces det(A) = 0.

Problema 8. [En práctica]

Encuentre $\lambda \in \mathbb{R}$ tal que $det(A_i - \lambda I) = 0$, para i = 1, 2, 3.

$$A_1 = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix},$$

Problema 9. calcule el rango de las siguientes matrices:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 2 & -3 \\ 0 & 4 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 0 & 3 \\ 4 & 2 & 3 \end{pmatrix}, \quad C = \begin{pmatrix} 2 & 1 & 3 & 1 & 2 \\ 1 & 2 & 1 & 3 & 2 \\ 3 & 3 & 2 & 2 & 3 \\ 4 & 5 & 3 & 5 & 5 \end{pmatrix}$$

Problema 10. [En práctica]

Encuentre $k, k \in \mathbb{R}$ tal que las matrices dadas tengan rango 1, 2 o 3.

$$A = \begin{pmatrix} k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & k & 1 & k \\ 1 & 1 & k - 1 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 2 & -2 & 6 & k \\ 0 & k & -k & 1 \\ 0 & k & k & k \end{pmatrix}$$

30.06.2003

JLS/cln