Operating Systems

1. Introduction to Operating Systems

Gaurav Somani gaurav@Inmiit.ac.in

Structure

- ☐OS Concepts
 - Process, File, I/O and Memory Management
- ☐OS Case Studies
 - Windows, UNIX, UNIX derivatives and some handheld and Embedded Operating Systems.
- ☐ Practical Implementation
 - Shell, Processes, Threads, Virtual Memory, File Systems and other experiments (Linux Platform)

Directions

Books

- [Galvin] Operating System Principals, Seventh Edition, Silberschatz, Galvin and Gagne. http://www.os-book.com/
- 2. [Tanenbaum] Modern Operating Systems. Second Edition, Andrew. S. Tanenbaum. http://www.cs.vu.nl/~ast/books/mos2/
- 3. [Stallings] Operating Systems- Internals and Design Principals, Fifth Edition, William Stallings. http://williamstallings.com/OS/OS5e.html

Group Communication

Group name: Operating Systems LNMIIT 2011

Group home page: http://groups.google.com/group/operating-systems-Inmiit-2011

Group email address operating-systems-Inmiit-2011@googlegroups.com

URL for the course (optional):

http://172.22.2.95/~gaurav/Operating%20Systems/

Outline

- What Operating Systems Do
- Computer-System Organization
- Computer-System Architecture
- Operating-System Structure
- Operating-System Operations
- Process Management
- Memory Management
- Storage Management
- Protection and Security
- Distributed Systems
- Special-Purpose Systems
- Computing Environments
- Open-Source Operating Systems

Computer System Structure

Computer system can be divided into four
components
Hardware - provides basic computing resources
☐ CPU, memory and I/O devices
Operating system
Controls and coordinates use of hardware among various applications and users
Application/System programs – define the ways in which the system resources are used to solve the computing problems of the users
☐ Word processors, compilers, web browsers, database systems and video games
☐ Users
People, machines and other computers

Computer System Structure

Definition of an OS

- ☐ No single Definition
- ■An Interface between computer hardware and user
- ☐ It is an extended machine
 - Hides the messy details which must be performed.
 - Presents user with a virtual machine, easier to use.
- ☐ It is a resource manager
 - Each program gets time with the resource.
 - Each program gets space on the resource.

Kernel

"Kernel is traditionally used to denote the part of the operating system that is mandatory and common to all other software." - <u>Jochen Liedtke</u> (Developer of L4 Microkernel)

Computer System Organization

- ☐ Computer-system operation
 - ☐ One or more CPUs, device controllers connect through common bus providing access to shared memory
 - ☐ Concurrent execution of CPUs and devices competing for memory cycles

Computer-System Operation

□I/O devices and the CPU can execute concurrently ☐ Each device controller is in charge of a particular device type ☐ Each device controller has a local buffer □CPU moves data from/to main memory to/from local buffers □I/O is from the device to local buffer of controller □ Device controller informs CPU that it has finished its operation by causing an interrupt

Interrupt Timeline

Common Functions of Interrupts

☐ Interrupt transfers control to the interrupt service routine generally, through the interrupt vector, which contains the addresses of all the service routines ☐ Interrupt architecture must save the address of the interrupted instruction ☐ Incoming interrupts are *disabled* while another interrupt is being processed to prevent a lost interrupt A trap is a software-generated interrupt caused either by an error or a user request ☐ An operating system is interrupt driven

Interrupt Handling

- The operating system preserves the state of the CPU by storing registers and the program counter
- Determines which type of interrupt has occurred:
 - polling
 - vectored interrupt system
- Separate segments of code determine what action should be taken for each type of interrupt

Storage Structure

- Main memory only large storage media that the CPU can access directly
- Secondary storage extension of main memory that provides large nonvolatile storage capacity
- Magnetic disks rigid metal or glass platters covered with magnetic recording material
 - Disk surface is logically divided into tracks, which are subdivided into sectors
 - The disk controller determines the logical interaction between the device and the computer

Storage Hierarchy

- Storage systems organized in hierarchy
 - Speed
 - Cost
 - Volatility
- Caching copying information into faster storage system; main memory can be viewed as a last *cache* for secondary storage

Storage-Device Hierarchy

Caching

- Important principle, performed at many levels in a computer (in hardware, operating system, software)
- Information in use copied from slower to faster storage temporarily
- Faster storage (cache) checked first to determine if information is there
 - If it is, information used directly from the cache (fast)
 - If not, data copied to cache and used there
- Cache smaller than storage being cached
 - Cache management important design problem
 - Cache size and replacement policy

How does a Modern Computer Work?

Computer-System Architecture

- Most systems use a single general-purpose processor (PDAs through mainframes)
 - Most systems have special-purpose processors as well
- Multiprocessors systems growing in use and importance
 - Also known as parallel systems, tightly-coupled systems
 - Advantages include
 - 1. Increased throughput
 - 2. Economy of scale
 - 3. Increased reliability graceful degradation or fault tolerance
 - Two types
 - 1. Asymmetric Multiprocessing
 - 2. Symmetric Multiprocessing

Symmetric Multiprocessing Architecture

A Dual-Core Design

Clustered Systems

- Like multiprocessor systems, but multiple systems working together
 - Usually sharing storage via a storage-area network (SAN)
 - Provides a high-availability service which survives failures
 - Asymmetric clustering has one machine in hot-standby mode
 - Symmetric clustering has multiple nodes running applications, monitoring each other
 - Some clusters are for high-performance computing (HPC)
 - Applications must be written to use parallelization

Modern Operating Systems

Usage share of web client operating systems: November 2009

Image Source - Canalys: iPhone outsold all Windows Mobile phones in Q2 2009

Modern Operating Systems

Global Smartphone Sales, Q2 2009

<u>Image Source - Canalys: iPhone outsold all Windows Mobile phones in Q2 2009</u>

Supercomputers

OS C	Count	Share	Rmax (GF)	Rpeak (GF)	Processor
Linux	426	85.20%	4897046	7956758	970790
Windows 6		1.20%	47495	86797	12112
Unix	30	6.00%	408378	519178	73532
BSD	2	0.40%	44783	50176	5696
Mixed	34	6.80%	1540037	1900361	580693
MacOS	2	0.40%	28430	44816	5272
Totals	500	100%	6966169	10558086	1648095

http://www.top500.org/stats/list/30/osfam Nov 2007

Rmax – The highest score measured using the <u>LINPACK</u> benchmark suite. This is the number which is used to rank the computers. Measured in Giga-Flops.

Rpeak – This is the theoretical peak performance of the system. Measured in Gflops.

Modern Operating Systems

See some web operating systems

- 1. Glide OS x
- 2. EyeOS eyeos.org
- 3. Ghost Operating System

http://g.ho.st/vc.html?ghostId=guest

4. gOS -http://www.thinkgos.com/gos/download.html

Thanks