Математический анализ, Коллоквиум 3

Балюк Игорь

@lodthe, GitHub

Дата изменения: 2020.03.16 в 01:00

Содержание

1	Выпуклые и вогнутые функции. Выпуклость в терминах производной. Неравенство Йенсена. Примеры.	3
	1.1 Выпуклые и вогнутые функции и их связь с производной	3
	1.2 Неравенство Йенсена	4
	1.3 Пример	4
2	Первообразная и неопределенный интеграл. Линейность интеграла, формула интегри-	
	рования по частям и замены переменной.	4
	2.1 Первообразная и неопределенный интеграл	4 5
3	Вычисление интеграла от рациональной функции. Примеры сведения интеграла к интегралу от рациональной функции.	5
	3.1 Представление интеграла от рациональной функции	5
	3.2 Вычисление интеграла каждого типа	6
	3.3 Пример	6
4	Интегралы Римана: определение, примеры интегрируемых и неинтегрируемых функ-	c
	ций, линейность и монотонность интеграла, ограниченность интегрируемой функции. 4.1 Определение интеграла по Риману	6
	4.1 Определение интеграла по гиману	6 7
	4.3 Ограниченность интегрируемых функций	7
	4.4 Линейность интегрируемых функции	7
	4.5 Монотонность интеграла	8
5	Нижние и верхние суммы Дарбу. Критерий Дарбу интегрируемости ограниченной функции.	8
	5.1 Нижние и верхние суммы Дарбу	8
	5.2 Критерий Дарбу	9
6	Переформулировка критерия Дарбу в терминах колебаний. Интегрируемость модуля и произведения интегрируемых функций. Интегрируемость на подотрезке, аддитивность интеграла.	9
	6.1 Переформулировка критерия Дарбу в терминах колебаний	9
	6.2 Интегрируемость модуля и произведения интегрируемых функций. Интегрируемость на	9
	подотрезке. . 6.3 Аддитивность интеграла .	10
7	Интегрируемость монотонных функций. Равномерная непрерывность. Примеры. Равномерная непрерывность непрерывной на отрезке функции. Интегрируемость непрерывных функций.	10
	7.1 Интегрируемость монотонных функций	10
	7.2 Равномерная непрерывность	10
	7.3. Примеры	11

	7.4 Равномерная непрерывность непрерывной на отрезке функции	11 11
8	Формула Ньютона-Лейбница и интегрирование по частям. Интеграл с переменным верхним пределом, его свойства. Наличие первообразной у непрерывной функции. Формула замены переменной. 8.1 Формула Ньютона-Лейбница и интегрирование по частям 8.2 Интеграл с переменным верхним пределом, его свойства 8.3 Формула замены переменной	
9	Формула Тейлора с остаточным членом в интегральной форме. Ряд Тейлора для функций e^x , $\sin x$, $\cos x$, $\ln(1+x)$, $(1+x)^p$ (обоснование сходимости для e^x и $\ln(1+x)$). Площадь криволинейной трапеции и длина кривой. 9.1 Формула Тейлора с остаточным членом в интегральной форме	13 13 13 14
10	Формула Стирлинга. 10.1 Формула Стирлинга	15 15 15
11	Несобственный интеграл Римана: определение и примеры. Регулярность и линейность несобственного интеграла, независимость сходимости интеграла от его «начала». Формула интегрирования по частям и замены переменной для несобственного интеграла. 11.1 Несобственный интеграл Римана: определение	
12	Абсолютная и условная сходимость несобственных интегралов. Пример функции, интеграл от которой сходится условно. Исследования сходимости интеграла от неотрицательной функции с помощью неравенств и эквивалентности. Признаки Дирихле-Абеля сходимости несобственного интеграла. 12.1 Абсолютная и условная сходимость несобственных интегралов	

Предварительная дата проведения коллоквиума — 29 февраля.

Оригинальный список вопросов

Огромное спасибо Егору Косову: большая часть документа состоит из его материалов.

1 Выпуклые и вогнутые функции. Выпуклость в терминах производной. Неравенство Йенсена. Примеры.

1.1 Выпуклые и вогнутые функции и их связь с производной

Определение. Функция f на интервале I называется **выпуклой**, если $\forall x, y \in I$ и для каждого $t \in [0;1]$ выполнено $f(tx + (1-t)y) \leq tf(x) + (1-t)f(y)$.

Функция f на интервале I называется вогнутой, если функция -f — выпуклая.

Лемма. Функция f на интервале I выпукла тогда и только тогда, когда для всех точек x < z < y из этого интервала выполенно

$$\frac{f(z) - f(x)}{z - x} \leqslant \frac{f(y) - f(z)}{y - z}$$

Доказательство. Зафиксируем $t \in [0;1]$. Пусть z = tx + (1-t)y. Тогда $t = \frac{y-z}{y-x}$ и выпуклость f равносильна выполнению неравенства:

$$f(z) = f(tx + (1-t)y) \le tf(x) + (1-t)f(y) = \frac{y-z}{y-x}f(x) + \frac{z-x}{y-x}f(y)$$

Так как y-x=y-z+z-x, полученное неравенство равносильно неравенству из формулировки леммы:

$$f(z) \leqslant \frac{y-z}{y-x} f(x) + \frac{z-x}{y-x} f(y)$$

$$f(z) \cdot (y-z+z-x) \leqslant (y-z) f(x) + (z-x) f(y)$$

$$yf(z) - zf(z) + zf(z) - xf(z) \leqslant yf(x) - zf(x) + zf(y) - xf(y)$$

$$yf(z) - zf(z) - yf(x) + zf(x) \leqslant zf(y) - xf(y) - zf(z) + xf(z)$$

$$(f(z) - f(x)) \cdot (y-z) \leqslant (f(y) - f(z)) \cdot (z-x)$$

$$\frac{f(z) - f(x)}{z-x} \leqslant \frac{f(y) - f(z)}{y-z}$$

Теорема. Дифференцируемая функция f на интервале I выпукла тогда и только тогда, когда f' — неубывает.

Доказательство. Если f выпукла, то по предыдущей лемме для x < y выполнено

$$f'(x) \leqslant \frac{f(y) - f(x)}{y - x} \leqslant f'(y).$$

Первая часть неравенства выполняется, если в лемме приближать z к x справа. Вторая часть неравенства выполняется, если значение z из леммы приближать к y слева. Полученное неравенство означает неубывание f'.

Наоборот, пусть теперь f' неубывает. По теореме Лагранжа для всех точек x < z < y найдутся точки $\xi_1 \in (x;z)$ и $\xi_2 \in (z;y)$ для которых

$$\frac{f(z) - f(x)}{z - x} = f'(\xi_1), \quad \frac{f(y) - f(z)}{y - z} = f'(\xi_2)$$

Так как $f'(\xi_1) \leqslant f'(\xi_2)$, то по предыдущей лемме получаем выпуклость f.

Заметим, что дважды дифференцируемая функция f на интервале I выпукла тогда и только тогда, когда $f''(x) \geqslant 0 \forall x \in I$.

1.2 Неравенство Йенсена

Теорема (Неравенство Йенсена) Пусть функция f выпукла на интервале I. Тогда для всех точек $x_1, \ldots, x_n \in I$ и для всех чисел $t_1 \geqslant 0, \ldots, t_n \geqslant 0$, для которых $t_1 + \cdots + t_n = 1$, выполнено $f(t_1x_1 + \cdots + t_nx_n) \leqslant t_1f(x_1) + \cdots + t_nf(x_n)$.

Доказательство. Докажем утверждение индукцией по n.

База: n = 2, по определению выпуклости.

Пусть утверждение выполнено для n точек. Проверим, что оно выполнено для n+1 точки. Пусть $t:=t_1+\cdots+t_n$. Так как $\frac{t_1}{t}x_1+\cdots+\frac{t_n}{t}x_n\in I$ (проверяется подстановкой во все x_i минимального/максимального из x), то

$$f(t_1x_1 + \dots + t_nx_n + t_{n+1}x_{n+1}) \leqslant tf\left(\frac{t_1}{t}x_1 + \dots + \frac{t_n}{t}x_n\right) + t_{n+1}f(x_{n+1})$$

$$\leqslant t\left(\frac{t_1}{t}f(x_1) + \dots + \frac{t_n}{t}f(x_n)\right) + t_{n+1}f(x_{n+1}) = t_1f(x_1) + \dots + t_{n+1}f(x_{n+1})$$

Первое неравенство верно из определения выпуклости, второе — воспользовались предположением индукции для n.

1.3 Пример

С помощью неравенства Йенсена докажем неравенство о средних. Пусть $x_1, \ldots, x_n > 0$. Тогда $\sqrt[n]{x_1 \times \cdots \times x_n} \leqslant \frac{x_1 + \cdots + x_n}{n}$.

Доказательство. Действительно, рассмотрим функцию $f(x) = e^x$. Так как $f''(x) = e^x \geqslant 0$, то f — выпуклая функция. Теперь заметим, что

$$\sqrt[n]{x_1 \times \dots \times x_n} = f\left(\frac{1}{n}\ln x_1 + \dots + \frac{1}{n}\ln x_n\right) \leqslant \frac{1}{n}f(\ln x_1) + \dots + \frac{1}{n}f(\ln x_n) = \frac{x_1 + \dots + x_n}{n}$$

2 Первообразная и неопределенный интеграл. Линейность интеграла, формула интегрирования по частям и замены переменной.

2.1 Первообразная и неопределенный интеграл

Определение. Функция F называется **первообразной** функции f на некотором интервале I, если F дифференцируема на I и $F'(x) = f(x) \forall x \in I$.

Лемма. Любые две первообразные F_1 и F_2 функции f на интервале I отличаются на константу.

Доказательство. По теореме Лагранжа, применимой к функции $F:=F_1-F_2$, для произвольных точек $x,y\in I$ выполнено $F(x)-F(y)=F'(\xi)(x-y)=0$. Что означает, что для двух первообразных, для каждой пары точек из интервала, их разность равна.

$$F'(\xi)(x-y)=0$$
, так как $F'(\xi)=F_1'(\xi)-F_2'(\xi)=f(\xi)-f(\xi)=0$.

Определение. Множество всех первообразных функции f на некотором заданном интервале I называется **неопределенным интегралом** от f и обозначается $\int f(x) \, dx$.

Если F — некоторая первообразная функции f на некотором интервале I, то $\int f(x) \, dx = F + C$, где C — константа.

2.2 Линейность интеграла, формула интегрирования по частям и замены переменной

Теорема (Свойства неопределенного интеграла)

1. (Линейность)
$$\int (\alpha f(x) + \beta g(x)) dx = \alpha \int f(x) dx + \beta \int g(x) dx + C$$

2. (Формула интегрирования по частям)
$$\int f(x)g'(x)\,dx = f(x)g(x) - \int f'(x)g(x)\,dx$$

$$3.$$
 (Формула замены переменной) $\int f(x)\,dx = [x=\phi(t)] = \int f(\phi(t))\phi'(t)\,dt$

Доказательство.

1. Пусть F и G — первообразные f и g соответственно. Тогда $\alpha F + \beta G$ — первообразная функции $\alpha f + \beta g$, to ects $\int (\alpha f(x) + \beta g(x)) dx = \alpha F + \beta G + C$.

В то же время

$$\alpha \int f(x) dx + \beta \int g(x) dx = \alpha F + \alpha C_1 + \beta G + \beta C_2 = \alpha F + \beta G + C$$

2. Так как (fg)' = f'g + fg', то по линейности интеграла

$$\int f'(x)g(x) dx + \int f(x)g'(x) dx = f(x) \cdot g(x) + C.$$

3. Если F — первообразная для f, то $(F(\phi(t)))' = F'(\phi(t))\phi'(t)$.

3 Вычисление интеграла от рациональной функции. Примеры сведения интеграла к интегралу от рациональной функции.

Представление интеграла от рациональной функции 3.1

Теорема. Пусть P и Q два многочлена. Тогда первообразная функции $\frac{P}{O}$ выражается в элементарных

Доказательство. Пусть $Q(x) = (x-x_1)^{k_1} \cdot \dots \cdot (x-x_s)^{k_s} \cdot (x^2+p_1x+q_1)^{m_1} \cdot \dots \cdot (x^2+p_nx+q_n)^{m_n}$. Из курса алгебры известно (доказывать не требуется), что

$$\frac{P(x)}{Q(x)} = p(x) + \sum_{j=1}^{s} \sum_{k=1}^{k_j} \frac{a_{j,k}}{(x - x_j)^k} + \sum_{j=1}^{n} \sum_{k=1}^{m_j} \frac{b_{j,k}x + c_{j,k}}{(x^2 + p_j x + q_j)^k},$$

где p — многочлен, а коэффициенты $a_{i,j}, b_{i,j}, c_{i,j}$ — рациональные числа. То есть частное от деления рациональных многочленов представляется суммой неприводимых дробей (знаменатель имеет степень 1 или 2, числитель имеет степень на единицу меньше) и многочлена.

По линейности нам надо научиться интегрировать каждое слагаемое отдельно. Выделяя у интеграла $\int \frac{bx+c}{(x^2+px+q)^k} dx$ в знаменателе целую часть (выделяем полный квадрат) и делая линейную замену приводим его к виду $\int \frac{b'u+c'}{(u^2+a^2)^k} du$.

Более подробно

$$\int \frac{bx+c}{(x^2+px+q)^k} dx = \int \frac{bx+c}{\left(x^2+2\cdot\frac{p}{2}\cdot x + \left(\frac{p^2}{4} - \frac{p^2}{4}\right) + q\right)^k} dx = \int \frac{bx+c}{\left(\left(x+\frac{p}{2}\right)^2 - \frac{p^2}{4} + q\right)^k} dx$$

$$= \begin{bmatrix} u = x + \frac{p}{2} \\ a = \sqrt{q - \frac{p^2}{4}} \\ bx+c = b' \cdot \left(x + \frac{p}{2}\right) + c' = b'u + c' \end{bmatrix} = \int \frac{b'u+c'}{(u^2+a^2)^k} du$$

Заметим, что $q - \frac{p^2}{4} > 0$ (а значит, можно брать корень из этого выражения), так как если мы раскладываем такую дробь, то её знаменатель на раскладывается на произведениее двух многочленов степени 1. Значит, квадратное уравнение имеет комплексные корни и дискриминант отрицательный, т.е. $p^2 - 4q < 0$ (дискриминант), что влечет $p^2 < 4q$.

3.2 Вычисление интеграла каждого типа

Перейдем к вычислению интеграла каждого типа.

1.

$$\int \frac{dx}{(x-a)^k} = \begin{cases} \frac{1}{1-k}(x-a)^{1-k} + C, & k \neq 1, \\ \ln|x-a| + C, & k = 1. \end{cases}$$

2.

$$\int \frac{u}{(u^2 + a^2)^k} du = \frac{1}{2} \int \frac{d(u^2 + a^2)}{(u^2 + a^2)^k} = \begin{cases} \frac{1}{2(1-k)} (u^2 + a^2)^{1-k} + C, & k \neq 1, \\ \frac{1}{2} \ln(u^2 + a^2) + C, & k = 1. \end{cases}$$

3.

$$I_k = \int \frac{du}{(u^2 + a^2)^k} = \frac{u}{(u^2 + a^2)^k} + 2k \int \frac{u^2 du}{(u^2 + a^2)^{k+1}}$$

$$= \frac{u}{(u^2 + a^2)^k} + 2k \int \frac{du}{(u^2 + a^2)^k} - 2ka^2 \int \frac{du}{(u^2 + a^2)^{k+1}}$$

$$= \frac{u}{(u^2 + a^2)^k} + 2kI_k - 2ka^2I_{k+1}$$

Решая рекуррентное уравнение, находим

$$I_{k+1} = \frac{1}{2ka^2} \cdot \frac{u}{(u^2 + a^2)^k} + \frac{2k - 1}{2ka^2} I_k, \quad I_1 = \int \frac{du}{u^2 + a^2} = a^{-1} \operatorname{arctg} \frac{u}{a} + C$$

3.3 Пример

Пример. Пусть $t= \mathop{\rm tg} \frac{x}{2}, \, dx = \frac{2\,dt}{1+t^2}.$ Заметим, что

$$\cos x = \frac{1 - \operatorname{tg}^2 \frac{x}{2}}{1 + \operatorname{tg}^2 \frac{x}{2}} = \frac{1 - t^2}{1 + t^2}, \quad \sin x = \frac{2 \operatorname{tg} \frac{x}{2}}{1 + \operatorname{tg}^2 \frac{x}{2}} = \frac{2t}{1 + t^2}$$

Тем самым, интегралы от функций $R(\cos x,\sin x)$, где R — рациональная функция, сводятся заменой к интегралам от рациональных функций.

4 Интегралы Римана: определение, примеры интегрируемых и неинтегрируемых функций, линейность и монотонность интеграла, ограниченность интегрируемой функции.

4.1 Определение интеграла по Риману

Определение.

Разбиением \mathbb{T} отрезка [a;b] называется набор точек $a = x_0 < x_1 < \dots < x_n = b$.

Отрезки $\Delta_k := [x_{k-1}; x_k]$ называются **отрезками разбиения**.

Число $\lambda(\mathbb{T}):=\max_{1\leqslant k\leqslant n}|\Delta_k|:=x_k-x_{k-1},$ называется масштабом разбиения.

Отмеченным разбиением (\mathbb{T}, ξ) отрезка [a; b] называется пара, состоящая из разбиения \mathbb{T} отрезка [a; b] и набора точек $\xi = (\xi_1, \dots, \xi_n), \, \xi_k \in \Delta_k$.

Интегральной суммой функции f, соответствующей отмеченному разбиению (\mathbb{T}, ξ), называется выражение $\sigma(f, \mathbb{T}, \xi) := \sum_{k=1}^n f(\xi_k) \cdot |\Delta_k|$.

Определение. Функция f называется интегрируемой по Риману на отрезке [a;b] и число I называется её интегралом, если $\forall \varepsilon > 0 \; \exists \delta > 0 : \; \forall$ отмеченного разбиения (\mathbb{T},ξ) с $\lambda(\mathbb{T}) < \delta$ выполнено $|\sigma(f,\mathbb{T},\xi) - I| < \varepsilon$.

Число
$$I$$
 обозначают $\int_{a}^{b} f(x) dx$.

4.2 Примеры

Пример.

1.
$$\int_{a}^{b} 1 \, dx = b - a$$

2. Функция Дирихле не интегрируема по Риману:

$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \cup [0; 1], \\ 0 & otherwise, \end{cases}$$

так как её верхняя и нижняя суммы Дарбу (будет в следующих параграфах) равны 1 и 0 соответственно.

4.3 Ограниченность интегрируемых функций

Предложение. Если функция f интегрируема по Риману на отрезке [a;b], то она ограничена на этом отрезке.

Доказательство. Так как f интегрируема, то для некоторого разбиения $\mathbb T$ для произвольного выбора отмеченных точек $\xi = (\xi_1, \dots, \xi_n)$ выполнено

$$\int_{a}^{b} f(x) dx - 1 < \sum_{k=1}^{n} f(\xi_k) \cdot |\Delta_k| < \int_{a}^{b} f(x) dx + 1.$$

Если бы f оказалась неограниченной на отрезке [a;b], она была бы неограниченной на каком-то из отрезков разбиения Δ_{k_0} , что в силу произвольности выбора $\xi_{k_0} \in \Delta_{k_0}$ и противоречит неравенству выше («зажали» бесконечность с двух сторон)

4.4 Линейность интеграла

Предложение. (Линейность интеграла). Пусть f и g интегрируемы по Риману на отрезке [a;b]. Тогда для произвольных чисел α , β функция $\alpha f + \beta g$ интегрируема по Риману на отрезке [a;b] и $\int\limits_a^b \left(\alpha f(x) + \beta g(x)\right) dx =$

$$\alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx.$$

Доказательство. Заметим, что $\sigma(\alpha f + \beta g, \mathbb{T}, \xi) = \alpha \sigma(f, \mathbb{T}, \xi) + \beta \sigma(g, \mathbb{T}, \xi)$. Кроме того, для произвольного $\varepsilon > 0$ найдется $\delta > 0$ для которого

$$\left| \sigma(f, \mathbb{T}, \xi) - \int_{a}^{b} f(x) \, dx \right| < \varepsilon; \quad \left| \sigma(g, \mathbb{T}, \xi) - \int_{a}^{b} g(x) \, dx \right| < \varepsilon$$

для каждого отмеченного разбиения (\mathbb{T},ξ) с масштабом $\lambda(\mathbb{T})<\delta$. Тем самым, для таких разбиений

$$\left| \sigma(\alpha f + \beta g, \mathbb{T}, \xi) - \alpha \int_{a}^{b} f(x) \, dx - \beta \int_{a}^{b} g(x) \, dx \right| < (|\alpha| + |\beta|) \cdot \varepsilon$$

7

4.5 Монотонность интеграла

Предложение. (Монотонность интеграла). Пусть f и g интегрируемы по Риману на отрезке [a;b].

Если
$$f(x) \leqslant g(x) \forall x \in [a;b]$$
, то $\int\limits_a^b f(x) \, dx \leqslant \int\limits_a^b g(x) \, dx$.

Доказательство. В силу линейности достаточно доказать данное утверждение только для $f \equiv 0$ (иначе прибавим к обеим частям одинаковую функцию, знак неравенства не изменится). В этом случае $\sigma(g, \mathbb{T}, \xi) \geqslant 0$ для произвольного отмеченного разбиения (\mathbb{T}, ξ) . Так как интеграл приближается интегральными суммами с любой точностью, то и сам интеграл неотрицателен.

5 Нижние и верхние суммы Дарбу. Критерий Дарбу интегрируемости ограниченной функции.

5.1 Нижние и верхние суммы Дарбу

Определение. Для ограниченной на отрезке [a;b] функции f и разбиения $\mathbb T$ определим **нижнюю**

$$s(f, \mathbb{T}) := \sum_{k=1}^{n} \inf_{x \in \Delta_k} f(x) \cdot |\Delta_k|$$

и верхнюю

$$S(f, \mathbb{T}) := \sum_{k=1}^{n} \sup_{x \in \Delta_k} f(x) \cdot |\Delta_k|$$

суммы Дарбу.

Нижним интегралом Дарбу называется число $\underline{I} = \sup_{\mathbb{T}} s(f, \mathbb{T})$ (обратите внимание, что черта снизу), а верхним интегралом Дарбу называется число $\overline{I} = \inf_{\mathbb{T}} S(f, \mathbb{T})$.

Лемма.

1.
$$s(f, \mathbb{T}) = \inf_{\xi} \sigma(f, \mathbb{T}, \xi) \leqslant \sigma(f, \mathbb{T}, \xi) \leqslant \sup_{\xi} \sigma(f, \mathbb{T}, \xi) = S(f, \mathbb{T})$$

2. Если
$$\mathbb{T} \subset \mathbb{T}'$$
, то $s(f,\mathbb{T}) \leqslant s(f,\mathbb{T}')$ и $S(f,\mathbb{T}') \leqslant S(f,\mathbb{T})$

3.
$$s(f, \mathbb{T}_1) \leqslant s(f, \mathbb{T}_1 \cup \mathbb{T}_2) \leqslant S(f, \mathbb{T}_1 \cup \mathbb{T}_2) \leqslant S(f, \mathbb{T}_2)$$

Доказательство.

- 1. Следует из определения.
- 2. Рассмотрим на примере первого неравенства. Пусть между какими-то двумя точками из \mathbb{T} появилось несколько точек из \mathbb{T}' . Значение, равное инфинуму функции на этом отрезке умноженному на длину отрезка, будет не больше сумме инфинумов на каждом из подотрезков умноженных на их длины.
- 3. Рассмотрим первое неравенство. На самом деле, это верно из предыдущего пункта: пускай $\mathbb{T} = \mathbb{T}_1$, а $\mathbb{T}' = \mathbb{T}_1 \cup \mathbb{T}_2$.

Лемма.
$$\forall \varepsilon > 0 \; \exists \delta > 0: \; \forall \mathbb{T}: \lambda(\mathbb{T}) < \delta \implies \underline{I} \leqslant s(f,\mathbb{T}) + \varepsilon \; \text{и} \; \overline{I} \geqslant S(f,\mathbb{T}) - \varepsilon.$$

Доказательство. Докажем только первую часть.

Для каждого ε найдется такое разбиение \mathbb{T}_{ε} , для которого $\underline{I} \leqslant s(f, \mathbb{T}_{\varepsilon}) + \frac{\varepsilon}{2} \leqslant s(f, \mathbb{T}_{\varepsilon} \cup \mathbb{T}) + \frac{\varepsilon}{2}$ для произвольного разбиения \mathbb{T} . Первое неравенство выполняется, так как можно в \mathbb{T}_{ε} подставить разбиение \mathbb{T} , которое было выбрано для супремума в \underline{I} . Второе неравенство выполняется по третьему пункту из предыдущей леммы.

Заметим, что среди отрезков, порожденных разбиением $\mathbb{T}_{\varepsilon} \cup \mathbb{T}$ не более чем $2|\mathbb{T}_{\varepsilon}|$ отрезков, не порожденных разбиением \mathbb{T} (худший случай, когда в каждый отрезок, порожденный \mathbb{T} , попадает одна точка из \mathbb{T}_{ε} , тем самым порождая 2 новых отрезка). Поэтому $s(f,\mathbb{T}_{\varepsilon} \cup \mathbb{T}) \leqslant s(f,\mathbb{T}) + 2|\mathbb{T}_{\varepsilon}| \cdot 2$ supplies f(x) = 1.

Взяв теперь
$$\delta>0$$
 так, чтобы $4|\mathbb{T}_{\varepsilon}|\sup_{x\in[a;b]}|f(x)|\cdot\delta<\frac{\varepsilon}{2},$ получаем требуемую оценку.

5.2 Критерий Дарбу

Теорема. Ограниченная функция f интегрируема по Риману на отрезке [a;b] тогда и только тогда, когда $I=\overline{I}$.

Доказательство. Если функция f интегрируема, то $\forall \varepsilon > 0 \; \exists \delta > 0$: для любого отмеченного разбиения

$$(\mathbb{T},\xi)$$
 с $\lambda(\mathbb{T})<\delta$ выполнено $I-\varepsilon\leqslant\sigma(f,\mathbb{T},\xi)\leqslant I+\varepsilon$, где $I:=\int^bf(x)\,dx$.

Тем самым, $I - \varepsilon \leqslant s(f, \mathbb{T}) \leqslant \underline{I} \leqslant \overline{I} \leqslant S(f, \mathbb{T}) \leqslant I + \varepsilon$. В силу произвольности ε выполнено равенство

$$\underline{I} = \overline{I} = I = \int_{a}^{b} f(x) dx$$

Обратно: пусть $I = \underline{I} = \overline{I}$. По предыдущей лемме, $\forall \varepsilon > 0 \; \exists \delta > 0$: для любого отмеченного разбиения (\mathbb{T}, ξ) с $\lambda(\mathbb{T}) < \delta$ выполнено

$$I - \varepsilon \leqslant s(f, \mathbb{T}) \leqslant \sigma(f, \mathbb{T}, \xi) \leqslant S(f, \mathbb{T}) \leqslant I + \varepsilon$$

Это и означает, что f интегрируема по Риману на [a;b] и I её интеграл.

6 Переформулировка критерия Дарбу в терминах колебаний. Интегрируемость модуля и произведения интегрируемых функций. Интегрируемость на подотрезке, аддитивность интеграла.

6.1 Переформулировка критерия Дарбу в терминах колебаний

Определение. Назовём **колебанием** функции f на отрезке [a;b] число

$$\omega(f, [a; b]) = \sup_{\xi', \xi'' \in [a; b]} |f(\xi') - f(\xi'')| = \sup_{[a; b]} f(x) - \inf_{[a; b]} f(x)$$

Следствие. Ограниченная функция f интегрируема по Риману на отрезке [a;b] тогда и только тогда, когда $\forall \varepsilon>0$ найдется разбиение \mathbb{T} , для которого $\sum_k \omega(f,\Delta_k)\cdot |\Delta_k|<\varepsilon.$

Доказательство. Заметим, что $\overline{I} = \underline{I} \iff \forall \varepsilon > 0$ найдется разбиение \mathbb{T} , для которого $S(f,\mathbb{T}) - s(f,\mathbb{T}) < \varepsilon$

Требует пояснения только импликация \Longrightarrow , так как обратное следует из выбора \mathbb{T} : для инфинума и супремума в \overline{I} и \underline{I} соответственно будет выбрано то самое \mathbb{T} .

Если $\overline{I} = \underline{I}$, то $\forall \varepsilon > 0$ найдутся разбиения \mathbb{T}_1 и \mathbb{T}_2 : $S(f, \mathbb{T}_1) - s(f, \mathbb{T}_2) < \left(\overline{I} + \frac{\varepsilon}{2}\right) - \left(\underline{I} - \frac{\varepsilon}{2}\right) = \varepsilon$ (так как можно взять \mathbb{T}_1 и \mathbb{T}_2 равные выбранным в \overline{I} и \underline{I} соответственно).

Кроме того, $S(f, \mathbb{T}_1 \cup \mathbb{T}_2) - s(f, \mathbb{T}_1 \cup \mathbb{T}_2) \leqslant S(f, \mathbb{T}_1) - s(f, \mathbb{T}_2)$ (по свойствам для сумм Дарбу).

Остается лишь заметить, что для $\mathbb{T}=\mathbb{T}_1\cup\mathbb{T}_2$ верно равенство $S(f,\mathbb{T})-s(f,\mathbb{T})=\sum_k\omega(f,\Delta_k)\cdot|\Delta_k|$.

6.2 Интегрируемость модуля и произведения интегрируемых функций. Интегрируемость на подотрезке.

Следствие. Если f интегрируема по Риману на отрезке [a;b], то |f| и f^2 интегрируемы по Риману на отрезке [a;b] и для любого $[c;d]\subseteq [a;b]$ функция f интегрируема по Риману на отрезке [c;d].

 \mathcal{A} оказательство. Интегрируемость |f| и f^2 следует из оценок

$$\omega(|f|, \Delta) \leqslant \omega(f, \Delta)$$
$$\omega(f^2, \Delta) \leqslant 2 \sup_{x \in \Delta} |f(x)| \cdot \omega(f, \Delta)$$

Во втором неравенстве $2\sup_{x\in\Delta}|f(x)|$ нужно, например, для случая: $\sup f(x)=100, \inf f(x)=-100.$ Тогда, $\omega=200.$ Также, тут важно брать супремум именно по |f(x)|, а не модуль супремума.

Интегрируемость на подотрезке доказывается следующим образом. Для каждого $\varepsilon > 0$ найдутся разбиение \mathbb{T} отрезка [a;b] для которого $S_{[a;b]}(f,\mathbb{T}) - s_{[a;b]} < \varepsilon$. Но

$$\begin{split} S_{[c;d]}(f,(\mathbb{T} \cup \{c,d\}) \cap [c;d]) - s_{[c;d]}(f,(\mathbb{T} \cup \{c,d\}) \cap [c;d]) \\ \leqslant S_{[a;b]}(f,\mathbb{T} \cup \{c,d\}) - s_{[a;b]}(f,\mathbb{T} \cup \{c,d\}) \leqslant S_{[a;b]}(f,\mathbb{T}) - s_{[a;b]}(f,\mathbb{T}), \end{split}$$

где $S_{[c;d]}$, $S_{[a;b]}$ и $S_{[a;b]}$ обозначают верхние и нижние суммы Дарбу на отрезках [c;d] и [a;b] соответственно.

Первое неравенство выполняется, так как то, что записано в правой части, это то, что записано слева, но к этому еще прибавили разность вне отрезка [c;d], а $S(f,\mathbb{T})\geqslant s(f,\mathbb{T})$, поэтому это число не меньше 0.

Следствие. Если f и g интегрируемы на [a;b], то и $f \cdot g$ интегрируема на [a;b].

Доказательство. Действительно,
$$f\cdot g=rac{1}{4}\cdot \left[(f+g)^2-(f-g)^2\right]$$

6.3 Аддитивность интеграла

Следствие. Если f интегрируема по Риману на отрезке $[a;b], c \in [a;b]$, то f интегрируема на отрезках [a;c] и [c;b] и верно равенство

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

Доказательство. Интегрируемость на подотрезках уже доказана. А равенство следует из того, что при вычислении интеграла можно использовать интегральные суммы, соответствующие разбиениям, содержащим точку c (выберем \mathbb{T} , в котором будет точка c).

Более строго. Пусть a < c < b и функция интегрируема на [a;b]. Уже доказано, что она интегрируема на подотрезках. Возьмём произвольное отмеченное разбиение $(\mathbb{T},\xi): a=\xi_0 < \xi_1 < \cdots < \xi_n = b$, такое, что c является одной из точек деления. Выберем промежуточные точки ξ_i и рассмотрим интегральную

сумму
$$\sigma = \sum_{k=1}^{n} f(\xi_k) \cdot |\Delta_k|.$$

Если $x_j=c$, то эту сумму разобьем на две: $\sigma=\sum_{k=1}^j f(\xi_k)\cdot |\Delta_k|+\sum_{k=j+1}^n f(\xi_k)\cdot |\Delta_k|.$

При $\lambda(\mathbb{T})\to 0$, первая сумма стремится к $\int\limits_a^c f(x)\,dx$, вторая — к $\int\limits_c^b f(x)\,dx$, а сумма σ стремится к

$$\int\limits_{-b}^{b}f(x)\,dx.$$

7 Интегрируемость монотонных функций. Равномерная непрерывность. Примеры. Равномерная непрерывность непрерывной на отрезке функции. Интегрируемость непрерывных функций.

7.1 Интегрируемость монотонных функций

Следствие. Если f монотонна на [a;b], то f интегрируема по Риману на [a;b].

Доказательство. Заметим, что $\omega(f, \Delta_k) = |f(x_k) - f(x_{k-1})|$. В таком случае,

$$\sum_{k} \omega(f, \Delta_{k}) \cdot |\Delta_{k}| \leqslant \lambda(\mathbb{T}) \cdot \sum_{k} |f(x_{k}) - f(x_{k-1})| = \lambda(\mathbb{T}) \cdot |f(b) - f(a)|.$$

Тем самым, при
$$\lambda(\mathbb{T}) < \frac{\varepsilon}{|f(b) - f(a)|}$$
 получаем $\sum_k \omega(f, \Delta_k) \cdot |\Delta_k| < \varepsilon$.

7.2 Равномерная непрерывность

Определение. Функция f называется равномерно непрерывной на множестве X, если $\forall \varepsilon > 0 \ \exists \delta > 0$, для которого (для всех $x,y \in X$) из неравенства $|x-y| < \delta$ следует $|f(x)-f(y)| < \varepsilon$.

7.3 Примеры

Пример.

- 1. Функция $f(x) := \sin x$ равномерно непрерывна на \mathbb{R} , так как по теореме Лагранжа $|\sin x \sin y| =$ $|\cos \xi| \cdot |x - y| \leqslant |x - y|.$
- 2. Функция $f(x) = \frac{1}{x}$ не равномерно непрерывна на (0;1), так как $f\left(\frac{1}{2n}\right) f\left(\frac{1}{n}\right) = n$, а $\left|\frac{1}{n} \frac{1}{2n}\right| = n$ $\frac{1}{2n} \to 0.$

Равномерная непрерывность непрерывной на отрезке функции

Теорема. Если функция f непрерывна на отрезке [a;b], то f равномерно непрерывна на [a;b].

Доказательство. Если f не равномерно непрерывна, то найдется такое число $\varepsilon > 0$, что для $\forall n \; \exists x_n, y_n \in$ $[a;b]: |x_n-y_n|<rac{1}{n}$ и $|f(x_n)-f(y_n)|\geqslant arepsilon$ (записали отрицание условия равномерной непрерывности). В силу ограниченности последовательности x_n , у неё есть сходящаяся подпоследовательность $x_{n_k} o$

 $x \in [a; b]$. Заметим, что $y_{n_k} \to x$. Но f непрерывна в точке x по условию, что противоречит оценке

$$|f(x_{n_k}) - f(x)| + |f(x) - f(y_{n_k})| \ge |f(x_{n_k}) - f(y_{n_k})| \ge \varepsilon.$$

7.5Интегрируемость непрерывных функций

Следствие. Пусть f непрерывна на [a;b]. Тогда f интегрируема по Риману на [a;b].

Доказательство. В силу предыдущей теоремы f равномерно непрерывна на [a;b].

Поэтому, $\forall \varepsilon > 0 \ \exists \delta > 0 : \omega(f, \Delta_k) < \varepsilon \ \forall k$ для произвольного разбиения $\mathbb T$ с $\lambda(\mathbb T) < \delta$. Для такого разбиения

$$\sum_{k} \omega(f, \Delta_k) \cdot |\Delta_k| < \varepsilon \cdot |b - a|.$$

Неравенство выполняется, так как $\omega(f, \Delta_k)$ можно заменить на ε .

8 Формула Ньютона-Лейбница и интегрирование по частям. Интеграл с переменным верхним пределом, его свойства. Наличие первообразной у непрерывной функции. Формула замены переменной.

Формула Ньютона-Лейбница и интегрирование по частям 8.1

Теорема (Формула Ньютона-Лейбница) Пусть F дифференцируема на [a;b] и ее производная F'интегрируема по Риману на [a;b]. Тогда

$$\int_{a}^{b} F'(x) \, dx = F(b) - F(a) = F(x) \bigg|_{a}^{b}$$

Доказательство. Для разбиения $\mathbb T$ по тореме Лагранжа $F(x_k) - F(x_{k-1}) = F'(\xi_k) \cdot |\Delta_k|$. Поэтому

$$F(b) - F(a) = \sum_{k=1}^{n} (F(x_k) - F(x_{k-1})) = \sum_{k=1}^{n} F'(\xi_k) \cdot |\Delta_k| = \sigma(f, \mathbb{T}, \xi).$$

При достаточно малом масштабе $\lambda(\mathbb{T})$ интегральная сумма близка к интегралу от F'.

Следствие. Пусть f, g — непрерывно дифференцируемые на отрезке [a; b] функции. Тогда

$$\int_{a}^{b} f(x)g'(x) \, dx = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f'(x)g(x) \, dx$$

11

Доказательство. Применяем формулу Ньютона-Лейбница к F = fg:

$$\int_{a}^{b} (f(x)g(x))' dx = f(b)g(b) - f(a)g(a)$$

и правило Лейбница: (fg)' = f'g + fg'.

Далее будем использовать соглашение: при b>a по определению $\int\limits_{b}^{a}f(x)\,dx=-\int\limits_{a}^{b}f(x)\,dx.$

8.2 Интеграл с переменным верхним пределом, его свойства

Теорема. Пусть f интегрируема по Риману на [a;b]. Тогда функция

$$F(x) := \int_{a}^{x} f(x) \, dx$$

непрерывна на [a;b]. Кроме того, если f непрерывна в точке $x_0 \in [a;b]$, то F дифференцируема в точке x_0 и $F'(x_0) = f(x_0)$.

Доказательство. Так как функция f(x) интегрируема, она ограничена. Тогда

$$|F(x) - F(x_0)| = \left| \int_{x_0}^x f(t) \, dt \right| \le \left| \int_{x_0}^x \sup_{t \in [a;b]} |f(t)| \, dt \right| = \sup_{t \in [a;b]} |f(t)| \cdot \left| \int_{x_0}^x dt \right| \le \sup_{t \in [a;b]} |f(t)| \cdot |x - x_0|.$$

То есть, при $|x-x_0|$ стремящимся к 0, значение $|F(x)-F(x_0)|$ тоже стремится к 0, что является определением непрерывной функции.

Докажем вторую часть теоремы. Так как f непрерывна в точке x_0 , справедливо следующее:

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in [a; b] : |x - x_0| < \delta \implies f(x_0) - \varepsilon < f(x) < f(x_0) + \varepsilon$$

Используем монотонность (будем считать, что $x > x_0$):

$$\int_{x_0}^{x} (f(x_0) - \varepsilon) dt < \int_{x_0}^{x} f(t) dt < \int_{x_0}^{x} (f(x_0) + \varepsilon) dt$$

$$\frac{1}{x - x_0} \cdot \int_{x_0}^{x} (f(x_0) - \varepsilon) dt < \frac{1}{x - x_0} \cdot \int_{x_0}^{x} f(t) dt < \frac{1}{x - x_0} \cdot \int_{x_0}^{x} (f(x_0) + \varepsilon) dt$$

$$\frac{f(x_0) - \varepsilon}{x - x_0} \cdot \int_{x_0}^{x} 1 dt < \frac{1}{x - x_0} \cdot \int_{x_0}^{x} f(t) dt < \frac{f(x_0) + \varepsilon}{x - x_0} \cdot \int_{x_0}^{x} 1 dt$$

$$\frac{f(x_0) - \varepsilon}{x - x_0} \cdot (x - x_0) < \frac{1}{x - x_0} \cdot (F(x) - F(x_0)) < \frac{f(x_0) + \varepsilon}{x - x_0} \cdot (x - x_0)$$

$$f(x_0) - \varepsilon < F'(x_0) < f(x_0) + \varepsilon$$

Следствие. Пусть f непрерывна на [a;b], тогда у f существует первообразная.

Доказательство. Так как f непрерывна на всём отрезке, то $\forall x_0 \in [a;b] \implies F'(x_0) = f(x_0)$.

8.3 Формула замены переменной

Следствие. Пусть f — непрерывна на $[a;b], \phi: [\alpha,\beta] \to [a;b]$ — непрерывно дифференцируемая функция. Тогда

$$\int_{\phi(\alpha)}^{\phi(\beta)} f(x) \, dx = \int_{\alpha}^{\beta} f(\phi(t)) \phi'(t) \, dt$$

Доказательство. Пусть F — первообразная f. Тогда $F(\phi(t))$ — первообразная функция $f(\phi(t))\phi'(t)$. По формуле Ньютона-Лейбница:

$$\int_{\phi(\alpha)}^{\phi(\beta)} f(x) dx = F(\phi(\beta)) - F(\phi(\alpha)) = \int_{\alpha}^{\beta} f(\phi(t)) \phi'(t) dt$$

- 9 Формула Тейлора с остаточным членом в интегральной форме. Ряд Тейлора для функций e^x , $\sin x$, $\cos x$, $\ln(1+x)$, $(1+x)^p$ (обоснование сходимости для e^x и $\ln(1+x)$). Площадь криволинейной трапеции и длина кривой.
- 9.1 Формула Тейлора с остаточным членом в интегральной форме

Теорема. Если f непрерывно дифференцируема m+1 раз на отрезке [a;x], то

$$f(x) = f(a) + f'(a)(x - a) + \dots + \frac{1}{m!} \cdot f^{(m)}(a)(x - a)^m + \frac{1}{m!} \int_a^x (x - t)^m f^{(m+1)}(t) dt$$

Доказательство. Заметим, что

$$\frac{1}{m!} \int_{a}^{x} (x-t)^m f^{(m+1)}(t) dt = -\frac{1}{m!} (x-a)^m \cdot f^{(m)}(a) - \frac{1}{m!} \int_{a}^{x} -m(x-t)^{m-1} f^{(m)}(t) dt.$$

Чтобы получить интегральную формулу, воспользовались интегрированием по частям. Если начать раскрывать эти интегралы до конца $(m-1\ \mathrm{pas})$, и сложить с посчитанными членами в ряде Тейлора, то получится

$$f(x) = f(a) + \int_{a}^{x} f'(t) dt = f(a) + f(x) - f(a) = f(x)$$

9.2 Ряд Тейлора для функций e^x , $\sin x$, $\cos x$, $\ln(1+x)$, $(1+x)^p$ (обоснование сходимости для e^x и $\ln(1+x)$)

Следствие. Справедливы следующие равенства:

•
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, x \in \mathbb{R}$$

•
$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}, x \in \mathbb{R}$$

•
$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}, x \in \mathbb{R}$$

•
$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^n}{n}, x \in (-1;1]$$

•
$$(1+x)^p = 1 + \sum_{n=1}^{\infty} \binom{p}{n} x^n$$
, где $\binom{p}{n} := \frac{p(p-1)\dots(p-n+1)}{n!}, x \in (-1;1)$

Доказательство. Имеем

$$\left| e^x - \sum_{n=0}^m \frac{x^n}{n!} \right| = \frac{1}{m!} \left| \int_0^x (x-t)^m e^t dt \right| \leqslant \frac{1}{m!} \left| \int_0^x x^m e^x dt \right| = \frac{|x|^{m+1} \cdot e^x}{m!} \xrightarrow[m \to \infty]{} 0$$

Функции sin и cos рассматриваются аналогично:

$$\left| \sin x - \sum_{n=1}^{m} \frac{(-1)^n x^{2n+1}}{(2n+1)!} \right| = \frac{1}{m!} \cdot \left| \int_{0}^{x} (x-t)^m \sin^{(m+1)} t \, dt \right| \leqslant \frac{1}{m!} \cdot \left| \int_{0}^{x} x^m \cdot 1 \, dt \right| = \frac{x^{m+1}}{m!} \to 0$$

Для ln(1+x) имеем

$$\left| \ln(1+x) - \sum_{n=1}^{m} \frac{(-1)^{n-1} x^n}{n} \right| = \left| \int_{0}^{x} (x-t)^m \cdot \frac{1}{(1+t)^{m+1}} dt \right|.$$

Если x>0, то последнее выражение оценивается через $\frac{1}{m+1}$, так как $|(x-t)^m|\leqslant 1$, а $\left|\int \frac{1}{(1+t)^{m+1}}\right|=\frac{1}{(1+t)^{m+1}}$

$$\frac{1}{(1+t)^m \cdot m} \leqslant \frac{1}{m+1}$$

Если x<0, то $|x-t|=|x|\cdot (1-tx^{-1})\leqslant |x|\cdot (1-|t|)=|x|\cdot (1+t)$, поэтому

$$\left| \int_{0}^{x} (x-t)^{m} \cdot (1+t)^{-m-1} dt \right| \leqslant \frac{|x|^{m}}{1+x} \xrightarrow[m \to \infty]{} 0$$

Ряд для функции $(1+x)^p$ рассматривается похожим образом.

9.3 Площадь криволинейной трапеции и длина кривой

Пусть $f\geqslant 0$ на [a;b]. И пусть $S(\alpha,\beta)$ площадь под графиком функции f на отрезке $[\alpha;\beta]\subseteq [a;b]$. Разумные требования на S — это

- 1. аддитивность: $S(\alpha, \gamma) = S(\alpha, \beta) + S(\beta, \gamma)$ при $a \leqslant \alpha < \beta < \gamma \leqslant b$
- 2. монотонность по включению: $\inf_{x \in [\alpha;\beta]} f(x) \cdot (\beta \alpha) \leqslant S(\alpha,\beta) \leqslant \sup_{x \in [\alpha;\beta]} f(x) \cdot (\beta \alpha)$

Предложение. Пусть f интегрируема по Риману на [a;b]. При выполнении выше описанных условий $S(a,b)=\int\limits_{-b}^{b}f(x)\,dx.$

Доказательство. Для произвольного разбиения $\mathbb T$ выполнено

$$\sum_{k=1}^{n} \inf_{x \in \Delta_k} f(x) \cdot |\Delta_k| \leqslant S(a,b) \leqslant \sum_{k=1}^{n} \sup_{x \in \Delta_k} f(x) \cdot |\Delta_k|.$$

Слева и справа стоят нижняя и верхняя суммы Дарбу, которые при малом масштабе разбиения близки к интегралу.

Пусть $\gamma:[a;b]\to\mathbb{R}^3$ — гладкая кривая, те. $\gamma(t)=(x(t),y(t),z(t))$ и функции $x,y,z\in C^1([a;b])$ (принадлежность функции C^1 означает, что первая производная непрерывна). Пусть l(a,b)— длина пути, соответствующая отрезку [a;b]. Тогда естественными требованиями будут

- 1. $l(\alpha, \gamma) = l(\alpha, \beta) + l(\beta, \gamma)$ при $a \leq \alpha < \beta < \gamma \leq b$
- $2. \inf_{t \in [\alpha;\beta]} |v(t)| \cdot (\beta \alpha) \leqslant l(\alpha,\beta) \leqslant \sup_{t \in [\alpha;\beta]} |v(t)| \cdot (\beta \alpha), \ \text{где} \ v(t) = (x'(t),y'(t),z'(t))$

Аналогично получаем,
$$l(a,b)=\int\limits_a^b|v(t)|\,dt$$
, где $|v(t)|=\sqrt{(x'(t))^2+(y'(t))^2+(z'(t))^2}.$

10 Формула Стирлинга.

10.1 Формула Стирлинга

Теорема. Для некоторой числовой постоянной c выполнено $N! \sim c\sqrt{N}(N/e)^N$ Доказательство. Пусть $f(x) := \ln x$. В силу вогнутости $\forall a, b \geqslant 1$

$$\frac{f(a) + f(b)}{2} \leqslant \frac{1}{b - a} \int_{a}^{b} f(x) \, dx \leqslant f\left(\frac{a + b}{2}\right).$$

Также отметим, что по Теореме Лагранжа найдутся точки $\xi_1 \in \left(a; \frac{a+b}{2}\right)$ и $\xi_2 \in \left(\frac{a+b}{2}; b\right)$, для которых

$$f\left(\frac{a+b}{2}\right) - f(a) = f'(\xi_1) \cdot \left(\frac{a+b}{2} - a\right)$$
$$f\left(\frac{a+b}{2}\right) - f(b) = f'(\xi_2) \cdot \left(\frac{a+b}{2} - b\right)$$

Складываем оба равенства, делим на 2

$$f\left(\frac{a+b}{2}\right) - \frac{f(a) + f(b)}{2} = \frac{b-a}{4}(f'(\xi_1) - f'(\xi_2)) = \frac{b-a}{4}f''(\xi) \cdot (\xi_1 - \xi_2) \leqslant \frac{(b-a)^2}{4} \sup_{x \in [a,b]} |f''(x)|.$$

В нашем случае, рассмотрим a=n-1, b=n. Тогда, $\sup_{x\in[a;b]}|f''(x)|=\sup_{x\in[n;n+1]}|\ln''(x)|=\frac{1}{(n-1)^2}$. Применим данную оценку для самого первого неравенства:

$$\frac{\ln(n-1) + \ln n}{2} \leqslant \int_{n-1}^{n} \ln x \, dx \leqslant \frac{\ln(n-1) + \ln n}{2} + \frac{1}{4(n-1)^2}$$
$$\int_{n-1}^{n} \ln x \, dx - \frac{\ln(n-1) + \ln n}{2} \leqslant \frac{1}{4(n-1)^2}$$

Суммируем последнее неравенство по всем парам $a, b = (1, 2), (2, 3), \dots, (n - 1, n)$. Получаем:

$$S_N := \int_{1}^{N} \ln x \, dx - \sum_{n=2}^{N} \ln n + \frac{1}{2} \ln N \leqslant \sum_{n=2}^{N} \frac{1}{4(n-1)^2}$$

 S_N монотонно и ограничена, а значит, сходится к какому-то числу. Замечаем, что

$$e^{-S_N} = \frac{N!}{(N/e)^N \sqrt{N}} \to c.$$

А значит, константа c существует.

10.2 Вычисление константы в формуле Стирлинга

Теорема. Число c в формуле Стирлинга равно $\sqrt{2\pi}$.

Доказательство. Пусть

$$I_k = \int_0^{\pi/2} \sin^k x \, dx$$

$$\int \sin^k x \, dx = J_k = -\frac{1}{k} \sin^{k-1} x \cdot \cos x + \frac{k-1}{k} J_{k-2}$$

$$\int_0^{\pi/2} \sin^k x \, dx = -\frac{1}{k} \sin^{k-1} \frac{\pi}{2} \cdot \cos \frac{\pi}{2} + \frac{k-1}{k} I_{k-2} = 0 + \frac{k-1}{k} I_{k-2} \, dx$$

$$I_0 = \frac{\pi}{2}$$

$$I_1 = 1$$

Легко проверить, что

$$I_{2n} = \frac{2n-1}{2n}I_{2n-2} = \frac{\pi}{2} \cdot \frac{(2n-1)!!}{(2n)!!}; \quad I_{2n+1} = \frac{2n}{2n+1}I_{2n-1} = \frac{(2n)!!}{(2n+1)!!}$$

Кроме того, так как при $x \in [0; \pi/2] \sin x \geqslant 0$, то $\sin^{n+1} \leqslant \sin^n$. По монотонности интеграла получаем, что

$$1 \geqslant \frac{I_{2n+1}}{I_{2n}} \geqslant \frac{2n}{2n+1}.$$

Тем самым,

$$\lim_{n \to \infty} \frac{I_{n+1}}{I_n} = 1.$$

Тогда

$$\lim_{n \to \infty} \frac{I_{n+1}}{I_n} \cdot \frac{\pi}{2} = \frac{\pi}{2} = \lim_{n \to \infty} \frac{((2n)!!)^2}{(2n+1)!!(2n-1)!!}$$

Но

$$\frac{((2n)!!)^2}{(2n+1)!!(2n-1)!!} = \frac{((2n)!!)^4}{(2n+1)((2n)!)^2} = \frac{(2^n n!)^4}{(2n+1)((2n)!)^2} \sim \frac{2^{4n} c^4 n^2 (n/e)^{4n}}{c^2 (2n+1) 2n ((2n)/e)^{4n}}.$$

Таким образом,

$$\lim_{n \to \infty} \frac{c^2 n}{2(2n+1)} = \frac{\pi}{2} \implies \frac{c^2}{4} = \frac{\pi}{2},$$

откуда следует нужное равенство.

11 Несобственный интеграл Римана: определение и примеры. Регулярность и линейность несобственного интеграла, независимость сходимости интеграла от его «начала». Формула интегрирования по частям и замены переменной для несобственного интеграла.

11.1 Несобственный интеграл Римана: определение

Определение. Пусть f интегрируема на каждом отрезке [a;x] при x < b $(b \in (-\infty; +\infty])$. Говорят, что несобственный интеграл

$$\int_{a}^{b} f(t) dt$$

сходится, если существует предел

$$\lim_{x \to b-0} \int_{a}^{x} f(t) dt.$$

В этом случае значение несобственного интеграла полагают равным значению данного предела. В противном случае (если предела не существует) говорят, что несобственный интеграл расходится.

Аналогично определяется несобственный интеграл с особенностью в нижнем пределе интегрирования.

11.2 Примеры

Рассмотрим функцию $f_p(x) := \frac{1}{x^p}$. Тогда,

$$\int_{1}^{x} f_{p}(t) dt = \begin{cases} \frac{1}{1-p} \cdot (x^{1-p} - 1), & p \neq 1, \\ \ln x, & p = 1. \end{cases}$$

Предел при $x \to \infty$ существует тогда и только тогда, когда p > 1. С другой стороны,

$$\int_{x}^{1} f_p(t) dt = \begin{cases} \frac{1}{1-p} \cdot (1-x^{1-p}), & p \neq 1, \\ -\ln x, & p = 1. \end{cases}$$

Предел при $x \to 0$ существует тогда и только тогда, когда p < 1 (т.к. иначе из-за x^{1-p} появляется произведение бесконечно большой последовательности на ограниченную).

11.3 Регулярность и линейность несобственного интеграла, независимость сходимости интеграла от его «начала»

Теорема. Пусть f, g интегрируемы на каждом отрезке [a;x] при x < b и пусть для них определены несобственные интегралы на промежутке [a;b). Тогда

- 1. если $b \in \mathbb{R}$ и f интегрируема на [a;b], то значение несобственного интеграла на промежутке [a;b) совпадает со значение обычного интеграла Римана по отрезку [a;b].
- 2. функция $\alpha f + \beta g$ интегрируема в несобственном смысле на промежутке [a;b) и

$$\int_{a}^{b} (\alpha f + \beta g) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx$$

3. если $c \in [a; b)$, то

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{a}^{b} f(x) dx$$

Доказательство. Первое следует из того, что функция непрерывна на [a;b] (по 8.2). А значит, $\lim_{x \to b-0} \int\limits_{-\infty}^{x} f(x) \, dx = 0$

$$\int_{a}^{b} f(x) \, dx.$$

Замечание. Последнее в частности означает, что интегралы

$$\int_{a}^{b} f(x) dx$$
и $\int_{c}^{b} f(x) dx$

сходятся или расходятся одновременно.

11.4 Формула интегрирования по частям и замены переменной для несобственного интеграла

Теорема. Пусть f непрерывна на [a;b), $\phi:[\alpha;\beta)\to[a;b)$ — непрерывно дифференцируемое отображение, $\phi(\alpha)=a,\phi(t)\to b$ при $t\to\beta$. Тогда функция $t\mapsto f(\phi(t))\phi'(t)$ интегрируема в несобственном смысле на промежутке $[\alpha;\beta)$ и

$$\int_{a}^{b} f(x) dx = \int_{a}^{\beta} f(\phi(t))\phi'(t) dt$$

Доказательство. По формуле замены переменной для произвольного $T < \beta$ выполнено

$$\int_{0}^{T} f(\phi(t))\phi'(t) dt = \int_{0}^{\phi(T)} f(x) dx$$

Теорема. Пусть f, g непрерывно дифференцируемы на [a; b) и существует предел

$$\lim_{x \to b-0} f(x)g(x).$$

Тогда функции f'g и fg' одновременно интегрируемы или не интегрируемы в несобственном смысле на [a;b), и в случае интегрируемости

$$\int_{a}^{b} f(t)g'(t) dt = \lim_{x \to b-0} f(x)g(x) - f(a)g(a) - \int_{a}^{b} f(t)g'(t) dt.$$

Доказательство. Утверждение следует из формулы интегрирования по частями для обычного интеграла Римана. Аналогично предыдущей теореме. ■

12 Абсолютная и условная сходимость несобственных интегралов. Пример функции, интеграл от которой сходится условно. Исследования сходимости интеграла от неотрицательной функции с помощью неравенств и эквивалентности. Признаки Дирихле-Абеля сходимости несобственного интеграла.

12.1 Абсолютная и условная сходимость несобственных интегралов

Заметим, что сходимость интеграла от функции f на промежутке [a;b) равносильна существованию предела для функции

$$F(X) := \int_{-\infty}^{x} f(t) \, dt$$

при $x \to b - 0$.

Тем самым, для сходимости интеграла верен критерий Коши: пусть f интегрируема на каждом отрезке [a;x] при x < b. Тогда интеграл

$$\int_{a}^{b} f(t) dt$$

сходится тогда и только тогда, когда $\forall \varepsilon > 0 \; \exists x_0 : \forall x_1, x_2 \in (x_0, b)$ выполнено

$$\left| \int_{x_1}^{x_2} f(t) \, dt \right| < \varepsilon.$$

Определение. Говорят, что несобственный интеграл $\int\limits_a^b f(t)\,dt$ сходится **абсолютно**, если сходится ин-

теграл
$$\int_{a}^{b} |f(t)| dt$$
.

Замечание. В силу критерия Коши ясно, что абсолютно сходящийся интеграл сходится.

$$\forall \varepsilon > 0 \ \exists x_0 : \forall x_1, x_2 \in (x_0, b) \implies \left| \int_a^b |f(x)| \, dx \right| < \varepsilon \implies \left| \int_a^b f(x) \, dx \right| < \varepsilon,$$

так как по свойству монотонности, $\int\limits_a^b f(x)\,dx\leqslant \int\limits_a^b |f(x)|\,dx.$

Замечание. Исследования абсолютной сходимости сводится к исследования сходимости интеграла от неотрицательной функции f функциия F оказывается монотонной, поэтому сходимость интеграла от неотрицательной функции равносильна ограниченности F на [a;b).

Предложение. Пусть f, g интегрируемы на каждом отрезке [a;x] при x < b и $0 \leqslant f(x) \leqslant g(x)$ при $x \in [a;b)$. Тогда из сходимости интеграла для g следует сходимость интеграла для f, а из расходимости интеграла для g.

Доказательство. Следует из оценки

$$\int_{a}^{x} f(t) dt \leqslant \int_{a}^{x} g(t) dt$$

при $x \in [a; b)$ и неотрицательности обеих функций.

Следствие. Если $f\geqslant 0,\ g\geqslant 0$ и $f(x)\sim g(x)$ при $x\to b-0,$ то интегралы от функций f и g сходятся или расходятся одновременно.

Доказательство. Найдется такое число
$$x_0 \in [a;b)$$
, что $\frac{1}{2}g(x) \leqslant f(x) \leqslant \frac{3}{2}g(x)$ при $x \in (x_0;b)$.

Определение. Говорят, что несобственный интеграл $\int_{a}^{b} f(t) dt$ сходится условно, если сам интеграл сходится, но не сходится абсолютно.

12.2 Примеры

$$\int_{1}^{\infty} \frac{\sin x}{x} \, dx = -\frac{\cos x}{x} \bigg|_{1}^{\infty} - \int_{1}^{\infty} \frac{\cos x}{x^2} \, dx,$$

последний интеграл сходится абсолютно. В то же время,

$$\int_{1}^{\infty} \left| \frac{\sin x}{x} \right| dx \geqslant \int_{1}^{\infty} \frac{\sin^{2} x}{x} dx = \int_{1}^{\infty} \left(\frac{1}{2x} - \frac{\cos 2x}{2x} \right) dx,$$

где первый интеграл не сходится, а второй сходится, а значит и интеграл от суммы сходиться не может.

12.3 Признак Дирихле-Абеля

Теорема. Пусть f и g интегрируемы на каждом отрезке [a;x] при x < b, f — непрерывная функция, g — монотонная, непрерывно дифференцируемая функция. Пусть

1. функция
$$F(x) := \int\limits_a^x f(t)\,dt$$
 ограничена, а $g(x) \to 0$ при $x \to b-0$

или

2. интеграл $\int\limits_a^b f(t)\,dt$ сходится, а g — ограниченная функция

Тогда интеграл $\int\limits_{a}^{b}f(x)g(x)\,dx$ сходится.

Доказательство. Заметим, что

$$\int_{x_1}^{x_2} f(t)g(t) dt = (F(x_2) - F(x_1))g(x_2) - \int_{x_1}^{x_2} (F(t) - F(x_1))g'(t) dt.$$

Тогда

$$\left| \int_{x_1}^{x_2} f(t)g(t) dt \right| \le |g(x_2)| \cdot |F(x_2) - F(x_1)| + \sup_{t \in [x_1; x_2]} |F(t) - F(x_1)| \cdot \int_{x_1}^{x_2} |g'(t)| dt.$$

Так как $\int\limits_{x_1}^{x_2} |g'(t)| \, dt = |g(x_2) - g(x_1)|,$ то

$$\left| \int_{x_1}^{x_2} f(t)g(t) dt \right| \le (2 \cdot |g(x_2)| + |g(x_1)|) \cdot \sup_{t \in [x_1; x_2]} |F(t) - F(x_1)|.$$

При каждом из наших предположений, последнее выражение мало при больших x_1, x_2 .