I. Mathematical Formula

A. Heat Equation

- i. Fouier's heat equation
 - a. mathematical interpretation: deterministic model for the heat flow; how temperature chages over the space and time;
 - b. physical interpretation: conservation of heat per unit volume over an infinitesimally samll volumne lying in the interior of the flow domain;
- ii. Connection with the Diffusion Equation
 - a. The diffusion equation describes the density fluctuations in a material undergoing diffusion.
 - b. When the diffusion coefficient is independent of the density (i.e. constant diffusion coefficient), the diffusion equation is also named the heat equation.
- iii. Define an Initial-Boundary Value Problem (IBVP)
 - a. Domain: Ω ; homogeneous and isotropic;
 - b. Heat equation: $\frac{\partial u(s,t)}{\partial t} = \Delta u(s,t)$
 - c. Initial condition: u(s,t) = f(s) for t = 0
 - d. Dirichlet boundary condition: u(s,t)=0 for t>0 and $s\in\partial\Omega$

B. General Solution to the IBVP

- i. the forms
 - a. a series of error functions or related integrals (Laplace's transformation)
 - b. the trigonometric series or a series of Bessel functions (separation of variables)
- ii. $u(\boldsymbol{s},t) = \sum_{k=1}^{k=\infty} a_k u_k(\boldsymbol{s}) e^{-\lambda_k t}$
 - a. obtained by separation of variables
 - b. the u_k form an orthonormal basis of $L^2(\Omega)$ of real valued eigenfunctions; the corresponding Dirichlet eigenvalues $\lambda_k \in \mathbb{R}^+$: $-\Delta u_k = \lambda_k u_k$
 - \mathbb{R}^+ ; $-\Delta u_k = \lambda_k u_k$ c. $h(t) = \sum_{k=1}^{k=\infty} e^{-\lambda_k t}$ is the heat trace, which is a smooth function and converges for every t>0
 - d. $a_k = \int_{\Omega} f(s) u_k(s) ds$
- iii. $u(s,t) = \int_{\Omega} G(s,t,s_0) \delta(s-s_0) ds_0$
 - a. δ is the Dirac delta function.
 - b. the initial condition: $u(s,t) = \delta(s-s_0)$ for t=0
 - c. $G(\boldsymbol{s}, t, \boldsymbol{s_0}) = \sum_{k=1}^{\infty} u_k(\boldsymbol{s}) u_k(\boldsymbol{s_0}) e^{-\lambda_k t}$

- d. u(s,t) is the convolution of the initial condition with Green's function $G(s,t,s_0)$
- e. $G(s, t, s_0)$ is the foundamental solution (heat kernel of Ω) describing the distribution of the heat after time t when there has a single heat source at $s_0 \in \Omega$;
- C. Heat Content $Q_{\Omega}(t)$
 - i. $Q_{\Omega}(t) = \int_{\Omega} d\boldsymbol{s} u(\boldsymbol{s},t)$
 - ii. As $t \to 0$, $Q_{\Omega}(t) = 1 + \sum_{k=1}^{\infty} \beta_k t^{\frac{k}{2}}$
 - iii. Obtain geometrical information of Ω from β_k
 - a. area
 - b. length
 - c. scalar Curvature
 - d. mass
 - e. etc.

II. Difficulties in Application

- A. The pure analytical method for finding u(s,t):
 - i. It can apply strictly only to the linear form of the boundary conditions and to constant diffusion properties.
 - ii. Except in very few cases (i.e. rectangular, disk, certain triangles), λ_k can not be calculated.
 - iii. Either irregular geometries or discontinuities lead to the complexities, so the explicit algebraic solutions u(s,t) are close to non-existed.
- B. Difficulties in calculating the asymptoic expansion of $Q_{\Omega}(t)$ as $t \to 0$ because of the complicated forms of the coefficients β_k .
- C. The numerical evaluation of the analytical solutions u(s,t) and $Q_{\Omega}(t)$ is usually by no means trivial because they are in the form of infinite series.