Additive quantile regression 2

Matteo Fasiolo (University of Bristol, UK)

matteo.fasiolo@bristol.ac.uk

May 17, 2018

Structure of the talk

Structure:

- Fitting additive quantile models
- 2 Convergence checking
- Types of smooths
- More quantile regression using qgam

Structure of the talk

Structure:

- Fitting additive quantile models
- Convergence checking
- Types of smooths
- More quantile regression using qgam

Here I describe our approach to estimating quantile GAMs.

This is implemented in qgam and in mgcv.

I explain the main ideas, for details see Fasiolo et al. (2017).

Recall $\mu_{\tau}(\mathbf{x}) = \sum_{j=1}^{m} f_{j}(\mathbf{x})$ where $f_{j}(\mathbf{x})$ can be

- parametric e.g. $f_j(\mathbf{x}) = \alpha x_j + \beta x_j^2$
- random effects
- spline-based smooths such as

$$f_j(x_j) = \sum_{i=1}^r \beta_{ji} b_{ji}(x_j)$$

where β_{ji} are coefficients and $b_{ji}(x_j)$ are known spline basis functions.

In linear quantile regression $\mu_{\tau}(\mathbf{x}) = \boldsymbol{\beta}^{\mathsf{T}}\mathbf{x} = \beta_1 x_1 + \dots \beta_p x_p$.

 $\hat{oldsymbol{eta}}$ is the minimizer of total pinball loss

$$\hat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} L_{\boldsymbol{y}}(\boldsymbol{\beta}) = \sum_{i=1}^{n} \rho_{\tau}(y_i - \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}_i).$$

When random or smooth effects included, minimized penalized loss

$$\hat{oldsymbol{eta}} = \mathop{\mathsf{argmin}}_{eta} \Big\{ rac{1}{\sigma} \mathit{L}_{\mathit{y}}(oldsymbol{eta}) + \mathsf{Pen}(oldsymbol{eta} | oldsymbol{\gamma}) \Big\},$$

where

- $L_{\nu}(\beta)$ quantifies goodness of fit
- ullet Pen $(eta|\gamma)$ penalizes complexity
- γ smoothing parameters ($\uparrow \gamma \uparrow$ smoothness)
- $1/\sigma$ is learning rate

We use a hierarchical fitting framework:

lacktriangledown Calibrate $1/\sigma$ to have correct coverage of confidence intervals

② For fixed $1/\sigma$: select γ to have "right" amount of smoothness

• For fixed $1/\sigma$ and γ : estimate β to determine actual fit

We use a hierarchical fitting framework:

lacktriangledown Calibrate $1/\sigma$ to have correct coverage of confidence intervals

$$\hat{\sigma} = \underset{\sigma}{\operatorname{argmin}} \mathsf{IKL}(\sigma).$$

② For fixed $1/\sigma$: select γ to have "right" amount of smoothness

$$\hat{\gamma} = \underset{\gamma}{\operatorname{argmin}} \ \hat{G}(\gamma|\sigma).$$

• For fixed $1/\sigma$ and γ : estimate β to determine actual fit

$$\hat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} \ V(\boldsymbol{\beta}|\boldsymbol{\gamma}, \sigma).$$

Effect of σ and γ is interrelated:

- credible intervals: $\uparrow \sigma \rightarrow \uparrow$ intervals width
- complexity of fit: $\uparrow \sigma \rightarrow \uparrow \hat{\gamma} \rightarrow \uparrow$ smoothness

We choose σ so that confidence intervals for $\mu_{\tau}(\mathbf{x})$ are well calibrated.

This results also in good smoothness selection for $\gamma | \sigma$.

The hierarchical fitting framework:

- Calibrate $1/\sigma$
- 2 Select $\gamma | \sigma$
- **3** Estimate $\boldsymbol{\beta}|\boldsymbol{\gamma}, \sigma$ to determine fit

We use a modified loss based on the Extended log-F (ELF) density:

$$ilde{
ho}(y|\mu,\sigma, au,\lambda) \propto -(1- au)rac{y-\mu}{\sigma} + \lambda \log\left[1+e^{rac{y-\mu}{\lambda\sigma}}
ight],$$

This is smooth and convex and, as $\lambda o 0$, we have recover pinball loss.

NB in qgam, λ reparametrized as err \in (0,1) (\downarrow err implies $\downarrow \lambda$).

Increasing err leads to:

- faster and more stable computation
- more bias

Interpretation, if μ^* is minimizer of ELF loss:

$$|F(\mu^*) - \tau| \le \text{err}$$

err is an upper bound on the bias.

By default:

Structure of the talk

Structure:

- Fitting additive quantile models
- Convergence checking
- Types of smooths
- More quantile regression using qgam

Convergence checking

There might be problems at each step:

• Calibrate $1/\sigma$

2 Select $\gamma | \sigma$

Warning: outer Newton did not converge fully

3 Estimate $\beta | \gamma, \sigma$ to determine fit

Error: In gam.fit5(...): iteration limit reached

Convergence checking

Errors might be due to structural problems:

```
fit <- qgam(y ~ x1 + s(x1), qu = 0.5)
Error in chol.default(iS) :
   the leading minor of order 11 is not positive definite</pre>
```

In general increasing err alleviates problem but increases bias.

mgcViz and qgam provide some diagnostics.

Structure of the talk

Structure:

- Fitting additive quantile models
- 2 Convergence checking
- Types of smooths
- More quantile regression using qgam

mgcv offers a wide variety of smooths (see ?smooth.terms).

Univariate types:

- s(x) = s(x, bs = "tp") thin-plate-splines
- s(x, bs = "cr") cubic regression spline
- s(x, bs = "ad") adaptive smooth

Multivariate type:

- s(x1, x2) = s(x1, x2, bs = "tp") thin-plate-splines (isotropic)
- te(x1, x2) tensor-product-smooth (anisotropic)
- s(x, y, bs = "sos") smooth on sphere

They can depends on factors:

- s(x, by = Subject)
- s(x, Subject, bs = "fs")

$$s(x, bs = "cr", k = 20)$$

Cubic regression spline are related to the optimal solution to

$$\sum_{i=1}^{n} \{y_i - f(x_i)\}^2 + \gamma \int f''(x)^2 dx.$$

$$s(x, bs = "cc")$$

Cyclic cubic regression spline make so that

- $f(x_{min}) = f(x_{max})$
- $f'(x_{min}) = f'(x_{max})$

$$s(x, bs = "ad")$$

The wiggliness or smoothness of f(x) depends on x.

Based on thin plate regression splines basis.

Related to optimal solution to:

$$\sum_{i} \{y_{i} - f(x_{i}, z_{i})\}^{2} + \gamma \int f_{xx}^{2} + 2f_{xz}^{2} + f_{zz}^{2} dx dz$$

A single smoothing parameter γ .

Isotropic: same smoothness along $x_1, x_2, ...$

Figure: Rank 17 2D TPRS basis. Courtesy of Simon Wood.

Isotropic effect of x_1 , x_2 are in same unit (e.g. Km).

If different units better use tensor product smooths te(x1, x2).

Construction: make a spline $f_z(z)$ a function of x by letting its coefficients vary smoothly with x

- x-penalty: average wiggliness of red curves
- z-penalty: average wiggliness of green curves

Can use (almost) any kind of marginal:

- te(x1, x2, x2) product of 3 thin-plate-spline bases
- te(x1, x2, bs = c("cc", "cr"), k = c(10, 6))
- te(LO, LA, t, d=c(2,1), k=c(20,10), bs=c("tp","cc"))

Basis of te contains functions of the form $f(x_1) + f(x_2)$.

To fit $f(x_1) + f(x_2) + f(x_1, x_2)$ separately use:

$$y \sim ti(x1) + ti(x2) + ti(x1, x2)$$

By-factor smooths

Approach (1) is s(x, by = subject), which means

- $\mu_{\tau}(x) = f_1(x) + ...$ if subject = 1
- $\mu_{\tau}(x) = f_2(x) + ...$ if subject = 2
- ...

Approach (2) is s(x, subject, bs = "fs"), which means

- $\mu_{\tau}(x) = b_1 + f_1(x) + ...$ if subject = 1
- $\mu_{\tau}(x) = b_2 + f_2(x) + ...$ if subject = 2
- ...

where $b_1, b_2, \dots \sim N(0, \gamma_b \mathbf{I})$ are random effects.

In (1) each f_j has its own smoothing parameter.

In (2) all f_i 's have the same smoothing parameter.

Further reading

Structure of the talk

Structure:

- Fitting additive quantile models
- 2 Convergence checking
- Types of smooths
- More quantile regression using ggam

References I

Fasiolo, M., Y. Goude, R. Nedellec, and S. N. Wood (2017). Fast calibrated additive quantile regression. *arXiv preprint arXiv:1707.03307*.