### **Lecture 4: Model-Free Prediction**

#### 1. Introduction

### **Model-Free Reinforcement Learning**

- Last lecture:
  - Planning by dynamic programming
  - Solve a known MDP
- This lecture:
  - o Model-free prediction
  - Estimate the value function of an unknown MDP
- Next lecture:
  - o Model-free control
  - o Optimise the value function of an unknown MDP

### 2. Monte-Carlo Learning

### **Monte-Carlo Reinforcement Learning**

- MC methods learn directly from episodes of experience
- MC is model-free: no knowledge of MDP transitions / rewards
- MC learns from complete episodes: no bootstrapping
- MC uses the simplest possible idea: value = mean return
- Caveat: can only apply MC to episodic MDPs
  - All episodes must terminate

### **Monte-Carlo Policy Evaluation**

• Goal: learn  $v_{\pi}$  from episodes of experience under policy  $\pi$ 

$$S_1,A_1,R_2,\ldots,S_k\sim\pi$$

• Recall that the return is the total discounted reward:

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

• Recall that the value function is the expected return:

$$v_{\pi}(s) = E_{\pi}[G_t|S_t = s]$$

• Monte-Carlo policy evaluation uses empirical mean return instead of expected return

### **First-Visit Monte-Carlo Policy Evaluation**

- To evaluate state s
- The **first** time-step t that state s is visited in an episode
- Increment counter  $N(s) \leftarrow N(s) + 1$

- Increment total return  $S(s) \leftarrow S(s) + G_t$
- ullet Value is estimated by mean return  $V(s)=rac{S(s)}{N(s)}$
- ullet By law of large numbers,  $V(s) 
  ightarrow v_\pi(s)$  as  $N(s) 
  ightarrow \infty$

### **Every-Visit Monte-Carlo Policy Evaluation**

- ullet To evaluate state s
- Every time-step t that state s is visited in an episode,
- ullet Increment counter  $N(s) \leftarrow N(s) + 1$
- Increment total return  $S(s) \leftarrow S(s) + G_t$
- ullet Value is estimated by mean return  $V(s)=rac{S(s)}{N(s)}$
- ullet Again ,  $V(s) o v_\pi(s)$  as  $N(s) o \infty$

### **Blackjack Example**

- States (200 of them):
  - $\circ$  Current sum (12-21)
  - $\circ$  Dealer's showing card (ace-10)
  - Do I have a "useable" ace? (yes-no)
- Action **stick**: Stop receiving cards (and terminate)
- Action twist: Take another card (no replacement)
- Reward for **stick**:
  - $\circ$  +1 if sum of cards > sum of dealer cards
  - 0 if sum of cards = sum of dealer cards
  - $\circ$  -1 if sum of cards < sum of dealer cards
- Reward for **twist**:
  - $\circ$  -1 if sum of cards > 21 (and terminate)
  - 0 otherwise
- ullet Transitions: automatically **twist** if sum of cards <12

# Blackjack Value Function after Monte-Carlo Learning



Policy: stick if sum of cards  $\geq$  20, otherwise twist

#### **Incremental Monte-Carlo**

#### **Incremental Mean**

The mean  $\mu_1, \mu_2, \ldots$  of a sequence  $x_1, x_2, \ldots$  can be computed incrementally,

$$egin{aligned} \mu_k &= rac{1}{k} \sum_{j=1}^k x_j \ &= rac{1}{k} (x_k + \sum_{j=1}^{k-1} x_j) \ &= rac{1}{k} (x_k + (k-1) \mu_{k-1}) \ &= \mu_{k-1} + rac{1}{k} (x_k - \mu_{k-1}) \end{aligned}$$

#### **Incremental Monte-Carlo Updates**

- Update V(s) incrementally after episode  $S_1, A_1, R_2, \ldots, S_T$
- For each state  $S_t$  with return  $G_t$

$$egin{aligned} N(S_t) \leftarrow N(S_t) + 1 \ V(S_t) \leftarrow V(S_t) + rac{1}{N(S_t)} (G_t - V(S_t)) \end{aligned}$$

• In non-stationary problems, it can be useful to track a running mean, i.e. forget old episodes

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t))$$

### 3. Temporal-Difference Learning

### **Temporal-Difference Learning**

- TD methods learn directly from episodes of experience
- TD is model-free: no knowledge of MDP transitions / rewards
- TD learns from incomplete episodes, by bootstrapping
- TD updates a guess towards a guess

#### MC and TD

- ullet Goal: learn  $v_\pi$  online from experience under policy  $\pi$
- Incremental every-visit Monte-Carlo
  - $\circ$  Update value  $V(S_t)$  toward actual return  $G_t$

$$\circ$$
  $V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t))$ 

- Simplest temporal-difference learning algorithm:  $\mathsf{TD}(0)$ 
  - Update value  $V(S_t)$  toward estimated return  $R_{t+1} + \gamma V(S_{t+1})$

$$V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$

- $\circ \ \ R_{t+1} + \gamma V(S_{t+1})$  is called the TD target
- $\circ \ \ \delta_t = R_{t+1} + \gamma V(S_{t+1}) V(S_t)$  is called the TD error

# Driving Home Example

| State              | Elapsed Time (minutes) | Predicted<br>Time to Go | Predicted<br>Total Time |
|--------------------|------------------------|-------------------------|-------------------------|
| leaving office     | 0                      | 30                      | 30                      |
| reach car, raining | 5                      | 35                      | 40                      |
| exit highway       | 20                     | 15                      | 35                      |
| behind truck       | 30                     | 10                      | 40                      |
| home street        | 40                     | 3                       | 43                      |
| arrive home        | 43                     | 0                       | 43                      |

# Driving Home Example: MC vs. TD



# Changes recommended by TD methods ( $\alpha$ =1)



### Advantages and Disadvantages of MC vs. TD

- TD can learn before knowing the final outcome
  - TD can learn online after every step
  - MC must wait until end of episode before return is known
- TD can learn without the final outcome
  - TD can learn from incomplete sequences
  - MC can only learn from complete sequences
  - TD works in continuing (non-terminating) environments
  - MC only works for episodic (terminating) environments

#### **Bias/Variance Trade-Off**

- Return  $G_t = R_{t+1} + \gamma R_{t+2} + \cdots + \gamma^{T-1} R_T$  is unbiased estimate of  $v_\pi(S_t)$
- True TD target  $R_{t+1} + \gamma v_{\pi}(S_{t+1})$  is unbiased estimate of  $v_{\pi}(S_t)$

- TD target  $R_{t+1} + \gamma V(S_{t+1})$  is biased estimate of  $v_{\pi}(S_t)$
- TD target is much lower variance than the return:
  - Return depends on many random actions, transitions, rewards
  - o TD target depends on one random action, transition, reward

#### Advantages and Disadvantages of MC vs. TD (2)

- MC has high variance, zero bias
  - Good convergence properties
  - (even with function approximation)
  - Not very sensitive to initial value
  - Very simple to understand and use
- TD has low variance, some bias
  - Usually more efficient than MC
  - $\circ$  TD(0) converges to  $v_{\pi}(s)$
  - (but not always with function approximation)
  - o More sensitive to initial value

### **Random Walk Example**

# Random Walk Example



# Random Walk: MC vs. TD



#### **Batch MC and TD**

- ullet MC and TD converge:  $V(s) 
  ightarrow v_\pi(s)$  as experience  $ightarrow \infty$
- But what about batch solution for finite experience?

 $egin{array}{c} s_1^1, a_1^1, r_2^1, \dots, s_{T_1}^1 \ & dots \ s_1^k, a_1^k, r_2^k, \dots, s_{T_1}^k \end{array}$ 

0

- $\circ \;\;$  e.g. Repeatedly sample episode  $k \in [1,k]$
- $\circ$  Apply MC or TD(0) to episode k

# AB Example

Two states A, B; no discounting; 8 episodes of experience

A, 0, B, 0

B, 1

B, 1

B, 1

B, 1

B, 1

B, 1

B, 0

What is V(A), V(B)?

### AB Example

Two states A, B; no discounting; 8 episodes of experience



What is V(A), V(B)?

#### **Certainty Equivalence**

- MC converges to solution with minimum mean-squared error
  - Best fit to the observed returns

$$\sum_{k=1}^K \sum_{t=1}^{T_k} (G_t^k - V(s_t^k))^2$$

- $\circ$  In the AB example, V(A) = 0
- TD(0) converges to solution of max likelihood Markov model
  - Solution to the MDP  $< S, A, \hat{P}, \hat{R}, \gamma >$  that best fits the data

o 
$$\hat{P}^a_{s,s'} = \frac{1}{N(s,a)} \sum_{k=1}^K \sum_{t=1}^{T_k} \mathbf{1}(s^k_t, a^k_t, s^k_{t+1} = s, a, s') \\ \hat{R}^a_s = \frac{1}{N(s,a)} \sum_{k=1}^K \sum_{t=1}^{T_k} \mathbf{1}(s^k_t, a^k_t = s, a) r^k_t$$

 $\circ$  In the AB example, V(A)=0.75

#### Advantages and Disadvantages of MC vs. TD (3)

- TD exploits Markov property
  - Usually more efficient in Markov environments
- MC does not exploit Markov property
  - Usually more effective in non-Markov environments

#### **Unified View**

# Monte-Carlo Backup

$$V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t))$$



# Temporal-Difference Backup

$$V(S_t) \leftarrow V(S_t) + \alpha \left( R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$



# Dynamic Programming Backup

$$V(S_t) \leftarrow \mathbb{E}_{\pi} \left[ R_{t+1} + \gamma V(S_{t+1}) \right]$$



#### **Bootstrapping and Sampling**

- Bootstrapping: update involves an estimate
  - MC does not bootstrap
  - o DP bootstraps
  - TD bootstraps
- Sampling: update samples an expectation
  - o MC samples
  - o DP does not sample
  - TD samples

# Unified View of Reinforcement Learning



#### n-Step TD

# *n*-Step Prediction

■ Let TD target look *n* steps into the future



# n-Step Return

■ Consider the following *n*-step returns for  $n = 1, 2, \infty$ :

$$\begin{array}{ll} n = 1 & (TD) & G_t^{(1)} = R_{t+1} + \gamma V(S_{t+1}) \\ n = 2 & G_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 V(S_{t+2}) \\ \vdots & \vdots & \vdots \\ n = \infty & (MC) & G_t^{(\infty)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T \end{array}$$

Define the *n*-step return

$$G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})$$

n-step temporal-difference learning

$$V(S_t) \leftarrow V(S_t) + \alpha \left( G_t^{(n)} - V(S_t) \right)$$

# Large Random Walk Example



# Averaging *n*-Step Returns

- We can average n-step returns over different n
- e.g. average the 2-step and 4-step returns

$$\frac{1}{2}G^{(2)} + \frac{1}{2}G^{(4)}$$

- Combines information from two different time-steps
- Can we efficiently combine information from all time-steps?



### $\lambda$ -return



- The  $\lambda$ -return  $G_t^{\lambda}$  combines all n-step returns  $G_t^{(n)}$
- Using weight  $(1 \lambda)\lambda^{n-1}$

$$G_t^{\lambda} = (1-\lambda)\sum_{n=1}^{\infty}\lambda^{n-1}G_t^{(n)}$$

Forward-view  $TD(\lambda)$ 

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{\lambda} - V(S_t)\right)$$

# $\mathsf{TD}(\lambda)$ Weighting Function



$$G_t^{\lambda} = (1-\lambda)\sum_{n=1}^{\infty} \lambda^{n-1}G_t^{(n)}$$

# Forward-view $TD(\lambda)$



- Update value function towards the  $\lambda$ -return
- Forward-view looks into the future to compute  $G_t^{\lambda}$
- Like MC, can only be computed from complete episodes

# Forward-View $\mathsf{TD}(\lambda)$ on Large Random Walk



### $\textbf{Backward View TD}(\lambda)$

- Forward view provides theory
- Backward view provides mechanism
- Update online, every step, from incomplete sequences

# Eligibility Traces











- Credit assignment problem: did bell or light cause shock?
- Frequency heuristic: assign credit to most frequent states
- Recency heuristic: assign credit to most recent states
- Eligibility traces combine both heuristics

$$E_0(s) = 0$$
  
 $E_t(s) = \gamma \lambda E_{t-1}(s) + \mathbf{1}(S_t = s)$ 



accumulating eligibility trace

times of visits to a state

# Backward View $TD(\lambda)$

- Keep an eligibility trace for every state s
- Update value V(s) for every state s
- In proportion to TD-error  $\delta_t$  and eligibility trace  $E_t(s)$

$$\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$$

$$V(s) \leftarrow V(s) + \alpha \delta_t E_t(s)$$



### Relationship Between Forward and Backward TD

 $\mathsf{TD}(\lambda)$  and  $\mathsf{TD}(0)$ 

• When  $\lambda = 0$ , only current state is updated

$$E_t(s) = \mathbf{1}(S_t = s) \ V(s) \leftarrow V(s) + lpha \delta_t E_t(s)$$

• This is exactly equivalent to TD(0) update

$$V(S_t) \leftarrow V(S_t) + \alpha \delta_t$$

#### $\mathsf{TD}(\lambda)$ and $\mathsf{MC}$

- When  $\lambda = 1$ , credit is deferred until end of episode
- Consider episodic environments with offline updates
- Over the course of an episode, total update for TD(1) is the same as total update for MC

The sum of offline updates is identical for forward-view and backward-view  $TD(\lambda)$ 

$$\sum_{t=1}^T lpha \delta_t E_t(s) = \sum_{t=1}^T lpha (G_t^\lambda - V(S_t)) \mathbf{1}(S_t = s)$$

### **Forward and Backward Equivalence**

#### MC and TD(1)

- Consider an episode where s is visited once at time-step k,
- TD(1) eligibility trace discounts time since visit,

$$E_t(s) = \gamma E_{t-1}(s) + \mathbf{1}(S_t = s) \ = egin{cases} 0, & ext{if} & t < k \ \gamma^{t-k} & ext{if} & t \geq k \end{cases}$$

• TD(1) updates accumulate error online

$$\sum_{t=1}^{T-1} lpha \delta_t E_t(s) = lpha \sum_{t=k}^{T-1} \gamma^{t-k} \delta_t = lpha(G_k - V(S_k))$$

• By end of episode it accumulates total error

$$\delta_k + \gamma \delta_{k+1} + \gamma^2 \delta_{k+2} + \dots + \gamma^{T-1-k} \delta_{T-1}$$

### Telescoping in ${\sf TD}(1)$

When  $\lambda = 1$ , sum of TD errors telescopes into MC error,

$$\delta_{t} + \gamma \delta_{t+1} + \gamma^{2} \delta_{t+2} + \dots + \gamma^{T-1-t} \delta_{T-1}$$

$$= R_{t+1} + \gamma V(S_{t+1}) - V(S_{t})$$

$$+ \gamma R_{t+2} + \gamma^{2} V(S_{t+2}) - \gamma V(S_{t+1})$$

$$+ \gamma^{2} R_{t+3} + \gamma^{3} V(S_{t+3}) - \gamma^{2} V(S_{t+2})$$

$$\vdots$$

$$+ \gamma^{T-1-t} R_{T} + \gamma^{T-t} V(S_{T}) - \gamma^{T-1-t} V(S_{T-1})$$

$$= R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} \dots + \gamma^{T-1-t} R_{T} - V(S_{t})$$

$$= G_{t} - V(S_{t})$$

### $\mathsf{TD}(\lambda)$ and $\mathsf{TD}(1)$

- TD(1) is roughly equivalent to every-visit Monte-Carlo
- Error is accumulated online, step-by-step
- If value function is only updated offline at end of episode
- Then total update is exactly the same as MC

### Telescoping in $\mathsf{TD}(\lambda)$

For general  $\lambda$ , TD errors also telescope to  $\lambda$ -error,  $G_t^{\lambda} - V(S_t)$ 

$$G_{t}^{\lambda} - V(S_{t}) = -V(S_{t}) + (1 - \lambda)\lambda^{0} (R_{t+1} + \gamma V(S_{t+1})) + (1 - \lambda)\lambda^{1} (R_{t+1} + \gamma R_{t+2} + \gamma^{2} V(S_{t+2})) + (1 - \lambda)\lambda^{2} (R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} V(S_{t+3})) + ... = -V(S_{t}) + (\gamma \lambda)^{0} (R_{t+1} + \gamma V(S_{t+1}) - \gamma \lambda V(S_{t+1})) + (\gamma \lambda)^{1} (R_{t+2} + \gamma V(S_{t+2}) - \gamma \lambda V(S_{t+2})) + (\gamma \lambda)^{2} (R_{t+3} + \gamma V(S_{t+3}) - \gamma \lambda V(S_{t+3})) + ... = (\gamma \lambda)^{0} (R_{t+1} + \gamma V(S_{t+1}) - V(S_{t})) + (\gamma \lambda)^{1} (R_{t+2} + \gamma V(S_{t+2}) - V(S_{t+1})) + (\gamma \lambda)^{2} (R_{t+3} + \gamma V(S_{t+3}) - V(S_{t+2})) + ... =  $\delta_{t} + \gamma \lambda \delta_{t+1} + (\gamma \lambda)^{2} \delta_{t+2} + ...$$$

#### Forwards and Backwards $TD(\lambda)$

- Consider an episode where s is visited once at time-step  $k_t$
- $TD(\lambda)$  eligibility trace discounts time since visit,

$$E_t(s) = \gamma \lambda E_{t-1}(s) + \mathbf{1}(S_t = s) \ = \left\{ egin{array}{ll} 0, & ext{if} & t < k \ (\gamma \lambda)^{t-k} & ext{if} & t \geq k \end{array} 
ight.$$

• Backward  $TD(\lambda)$  updates accumulate error online

$$\sum_{t=1}^{T} lpha \delta_t E_t(s) = lpha \sum_{t=k}^{T} (\gamma \lambda)^{t-k} \delta_t = lpha (G_k^{\lambda} - V(S_k))$$

- By end of episode it accumulates total error for  $\lambda$ -return
- For multiple visits to s,  $E_t(s)$  accumulates many errors

#### Offline Equivalence of Forward and Backward TD

#### Offline updates

- Updates are accumulated within episode
- but applied in batch at the end of episode

#### Onine Equivalence of Forward and Backward TD

#### Online updates

- $TD(\lambda)$  updates are applied online at each step within episode
- Forward and backward-view  $TD(\lambda)$  are slightly different
- **NEW**: Exact online  $TD(\lambda)$  achieves perfect equivalence
- By using a slightly different form of eligibility trace
- Sutton and von Seijen, ICML 2014

# Summary of Forward and Backward $\mathsf{TD}(\lambda)$

| Offline updates | $\lambda = 0$ | $\lambda \in (0,1)$        | $\lambda = 1$      |
|-----------------|---------------|----------------------------|--------------------|
| Backward view   | TD(0)         | $TD(\lambda)$              | TD(1)              |
|                 | П             |                            | II                 |
| Forward view    | TD(0)         | Forward $TD(\lambda)$      | MC                 |
| Online updates  | $\lambda = 0$ | $\lambda \in (0,1)$        | $\lambda = 1$      |
| Backward view   | TD(0)         | $TD(\lambda)$              | TD(1)              |
|                 | ll l          | #                          | *                  |
| Forward view    | TD(0)         | Forward $TD(\lambda)$      | MC                 |
|                 | П             |                            | II                 |
| Exact Online    | TD(0)         | Exact Online $TD(\lambda)$ | Exact Online TD(1) |

<sup>=</sup> here indicates equivalence in total update at end of episode.