See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/49672530

Mexican medicinal plants used for cancer treatment: pharmacological, phytochemical and ethnobotanical studies. J Ethnopharmacol

ARTICLE in JOURNAL OF ETHNOPHARMACOLOGY · FEBRUARY 2011

Impact Factor: 3 · DOI: 10.1016/j.jep.2010.11.055 · Source: PubMed

CITATIONS

57

READS

1,529

6 AUTHORS, INCLUDING:

Angel Josabad Alonso-Castro

Universidad de Guanajuato

36 PUBLICATIONS **365** CITATIONS

SEE PROFILE

Maria Luisa Villarreal

Universidad Autónoma del Estado de Morelos

72 PUBLICATIONS 903 CITATIONS

SEE PROFILE

Fabiola Dominguez

Mexican Institute of Social Security

19 PUBLICATIONS 203 CITATIONS

SEE PROFILE

Alejandro M García-Carrancá

Universidad Nacional Autónoma de México

131 PUBLICATIONS 2,162 CITATIONS

SEE PROFILE

ELSEVIER

Contents lists available at ScienceDirect

Journal of Ethnopharmacology

journal homepage: www.elsevier.com/locate/jethpharm

Review

Mexican medicinal plants used for cancer treatment: Pharmacological, phytochemical and ethnobotanical studies

Angel Josabad Alonso-Castro^{a,b}, Maria Luisa Villarreal^{c,*}, Luis A. Salazar-Olivo^d, Maricela Gomez-Sanchez^e, Fabiola Dominguez^f, Alejandro Garcia-Carranca^{b,g,**}

- ^a Facultad de Química Universidad Nacional Autónoma de México, D.F., Mexico
- ^b Instituto Nacional de Cancerología México, D.F., Mexico
- c Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- d División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, SLP, Mexico
- ^e Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Juriquilla, Querétaro, Mexico
- f Centro de Investigación Biomédica de Oriente, IMSS, Metepec, Puebla, Mexico
- g Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, D.F., Mexico

ARTICLE INFO

Article history: Received 4 September 2010 Received in revised form 22 November 2010 Accepted 23 November 2010 Available online 10 December 2010

ABSTRACT

Aim of the study: This review provides a summary of Mexican medicinal flora in terms of ethnobotanical, pharmacology, and chemistry of natural products related to anticancer activity.

Materials and methods: Bibliographic investigation was carried out by analyzing recognized books and peer-reviewed papers, consulting worldwide accepted scientific databases from the last five decades. Mexican plants with attributed anti-cancer properties were classified into six groups: (a) plant extracts that have been evaluated for cytotoxic effects, (b) plant extracts that have documented anti-tumoral effects, (c) plants with active compounds tested on cancer cell lines, (d) plants with novel active compounds found only in Mexican species, (e) plants with active compounds that have been assayed on animal models and (f) plants with anti-cancer ethnopharmacological references but without scientific

Results: Three hundred plant species belonging to 90 botanical families used for cancer treatment have been recorded, of which only 181 have been experimentally analyzed. The remaining 119 plant species are in use in empirical treatment of diseases consistent with cancer symptomatology. Only 88 of the plant extracts experimentally studied in *in vitro* cellular models have demonstrated active cytotoxic effects in at least one cancer cell line, and 14 out of the 88 have also been tested *in vivo* with the results that one of them demonstrated anti-neoplasic effects. A total of 187 compounds, belonging to 19 types of plant secondary metabolites, have been isolated from 51 plant extracts with active cytotoxic effects, but only 77 of these compounds (41%) have demonstrated cytoxicity. Seventeen of these active principles have not been reported in other plant species. However, only 5 compounds have been evaluated *in vivo*, and 3 of them could be considered as active.

Conclusion: Clearly, this review indicates that it is time to increase the number of experimental studies and to begin to conduct clinical trials with those Mexican plants and its active compounds selected by *in vitro* and *in vivo* activities. Also, the mechanisms of action by which plant extracts and their active compounds exert anti-cancer effects remain to be studied.

© 2010 Elsevier Ireland Ltd. All rights reserved.

Contents

1.	Introduction	946
2.	Use of medicinal plants as a complementary and alternative medicine for cancer	946
3.	Sources of information on Mexican plants used for cancer treatment	948

^{*} Corresponding author at: Avenida Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos 62209, Mexico. Tel.: +52 777 329 7057; fax: +52 777 329 7030.

^{**} Corresponding author at: Av. San Fernando No. 22, Col. Sección XVI, Tlalpan, 14080 México, D.F., Mexico. Tel.: +52 5556280433; fax: +52 55 54854371. E-mail addresses: luisav@cib.uaem.mx, luisav@uaem.mx (M.L. Villarreal), carranca@biomedicas.unam.mx (A. Garcia-Carranca).

4.	Mexican plants with anti-cancer uses	949
5.	Plant extracts with in vitro and in vivo studies	955
6.	Compounds with in vitro and in vivo studies	955
7.	Mechanisms of action of Mexican plant extracts and their active compounds	966
8.	Mexican plants used for empirical treatment of diseases with cancer symptomatology without scientific studies	966
9.	Further considerations	969
10.	Conclusions	970
	References	970

1. Introduction

Chemotherapy and radiotherapy, the conventional cancer treatments used nowadays, are expensive and cause many side effects, including such minor ones as vomiting, alopecia, diarrhea, constipation, and major ones such as myelosuppression, neurological, cardiac, pulmonary and renal toxicity. All such side effects reduce the quality of life and discourage patients to observe medication protocols which then lead to the progression of cancer and associated complications. In addition, many of these treatments present limited anti-cancer activity (Mans et al., 2000). Resection surgery procedures, on the other hand, cause functional deficiencies or esthetic discomfort. Therefore, there is a need to discover alternative anticancer drugs, hopefully more potent, as well as more selective and less toxic than those currently in use.

Approximately 60% of drugs currently used for cancer treatment have been isolated from natural products (Gordaliza, 2007) and the plant kingdom has been the most significant source. These include *Vinca* alkaloids, *Taxus* diterpenes, *Camptotheca* alkaloids, and *Podophyllum* lignans. Currently, there are 16 new plant-derived compounds being tested in clinical trials and of these 13 are being tested in phase I or II, and 3 are in phase III. Among these compounds, flavopiridol, isolated from the Indian tree *Dysoxylum binectariferum*, and mesoindigo, isolated from the Chinese plant *Indigofera tinctoria*, have been shown to exhibit anti-cancer effects with lesser toxicity than conventional drugs (Saklani and Kutty, 2008).

The initial screenings for plants used for cancer treatment are cell-based assays using established cell lines, in which the toxic effects of plant extracts or isolated compounds can be measured. According to the National Cancer Institute (NCI), plant extracts and pure compounds with cytotoxic ED₅₀ (Effective Dose 50) values $\leq 30 \,\mu g/ml$ and $\leq 4 \,\mu g/ml$, respectively, are considered active (Suffness and Pezzuto, 1990). Cytotoxic screening models supply important preliminary data to select plant extracts or compounds with potential antineoplastic properties. In addition, cytotoxic assays do not provide false negative results since they consider plant extracts or compounds which affect cell viability. Most of the clinically used antitumor agents possess significant cytotoxic activity in cell culture systems. In most cases, the cytotoxic effects of Mexican plant extracts and their isolated compounds have been studied employing established cancer cell lines, and few reports have used primary cultures derived from human or animal tumors (Johansson et al., 2003), or drug-resistant-induced cell lines (Villarreal et al., 1992; Novelo et al., 1993; Pereda-Miranda et al., 1993; Villarreal et al., 1994; Wickramaratne et al., 1995). The use of these cell lines mentioned above might provide a more accurate screening of the toxic effects of plant extracts and their active compounds. Because cancer drug-resistance is a significant health problem, it is necessary to carry out more studies addressing this topic. In addition, studies of the toxicological effects of plant extracts and their isolated compounds on normal cells should be included. Canine kidney (MDCK), mouse fibroblasts (L929), Rhesus monkey kidney from Macaca mullata cells (LLC-MK2) and human peripheral blood mononuclear cells (Sanchez et al., 2001; FrancoMolina et al., 2003; Mena-Rejon et al., 2009) have been used as normal cells in cytotoxic studies.

Extracts or compounds that are found to be active in the *in vitro* models are then tested for their efficacy through *in vivo* studies. *In vivo* models, in which tumors are induced, using NOD-SCID, Balb C57BL/6, and athymic mice, are widely employed for these studies.

The main strategies for the selection of plant species in cancer drug discovery include random screening, chemotaxonomic information and ethnomedical knowledge. Random screening is employed when the number of candidates is low and/or the research means are ample (Lautié et al., 2008). Chemotaxonomy distinguishes related species by their production of different secondary metabolites, different ecological features and different physiological characteristics. Ethnobotanical knowledge includes plants used in the traditional medical systems such as herbalism, folklore and shamanism. The preparation procedures indicated in these systems can suggest the best extraction method.

In this review, local and international literatures were used to search for the *in vitro* and *in vivo* effects of Mexican plants and their active compounds used to treat conditions consistent with cancer symptomatology, and medicinal plants used empirically in the treatment of diseases with cancer symptomatology without scientific studies. We also present information about novel compounds, isolated from Mexican plant extracts with cytotoxic and anti-neoplastic properties.

The terminology used in this review is based on the definitions suggested by Suffness and Douros (1982). "Cytotoxicity" indicates that an extract or compound shows activity against cancer cell lines. "anti-tumor" or "anti-neoplastic" indicates that a plant or compound is effective *in vivo*. Finally, "anti-cancer" refers to compounds that are clinically active against human cancer.

Since the term "cancer" is not well defined in traditional Mexican medicine, and has been applied to describe general conditions such as inflammations, ulcers or dermatological conditions such as "hard swellings", abscesses, calluses, corns, warts, polyps; it is not an easy task to discover anticancer drugs using the ethnobotanical approach. However it is important to review the existing literature that could indicate connections between ethnobotanical data to experimental *in vivo* or *in vitro* models, indicating an approach to select plant candidates for scientific investigation.

2. Use of medicinal plants as a complementary and alternative medicine for cancer

Medicinal plants constitute a common alternative for cancer treatment in many countries around the world (Gerson-Cwilich et al., 2006; Tascilar et al., 2006). At this time, more than 3000 plants worldwide have been reported to have anti-cancer properties (Graham et al., 2000). Globally, the incidence of use of plant-derived products for cancer treatment is from 10% to 40% with this rate reaching 50% in Asiatic patients (Cassileth and Deng, 2004; Tascilar et al., 2006; Molassiotis et al., 2006). In Europe, the expenditures for anti-cancer herbal products are estimated to be 5 billion dollars per year (Tascilar et al., 2006).

Table 1AEthnomedical uses of Mexican plants employed empirically for cancer treatment with scientific reports.

Family	Scientific name	Popular use	Reference
Acanthaceae	Justicia spicigera Schltdl.	GI, WOM, CC	Vega-Avila et al. (2009)
Agavaceae	Agave salmiana Otto ex Salm-Dyck	INF DER, ST	Popoca et al. (1998)
Anacardiaceae	Amphipterygium adstringens (Schltdl.) Standl.	VEN, CC	Villarreal et al. (1992)
Annonaceae	Annona diversifolia Saff.	GI, INF, ST	Schlie-Guzmán et al. (2009)
	Annona muricata L.	GI, GC	Martínez (1989)
	Annona purpurea Moc. & Sessé ex Dunal	INF, ST	Chávez and Mata (1998)
	Rollinia mucosa (Jacq.) Baill.	INF, ST	Chávez et al. (1998)
Apocynaceae	Thevetia ahouai (L.) A. DC.	INF, GI, ST	Cabrera (1958)
Araliaceae	Dendropanax arboreus (L.) Decne. & Planch.	INF, BC	Hernández (1959)
Aristolochiaceae	Aristolochia brevipes Benth.	INF, DER, ST	Martínez (1989)
Asteraceae	Bidens pilosa L.	WOM, UR, CC	Villavicencio-Nieto et al. (2008)
	Gnaphalium purpureum L.	GI, RES, ST	López and Hinojosa (1988)
	Gymnosperma glutinosum (Spreng.) Less.	INF, ST	Gomez-Flores et al. (2009)
	Haplopappus spinulosus subsp. scabrellus (Greene) H. M. Hall	GI, DER, ST	Hernández (1959)
	Helianthella quinquenervis (Hook) A. Gray	GI, GC	Castañeda et al. (1996)
	Heterotheca inuloides Cass.	DER, ST	Villarreal et al. (1992)
	Hymenoxys odorata DC.	GI, DER, ST	Ivie et al. (1975)
	Iostephane heterophylla (Cav.) Hemsl.	GI, DER, ST	Aguilar et al. (2001)
	Montanoa leucantha (Lag.) S. F. Blake	VEN, CC	Oshima et al. (1986)
	Psacalium peltatum (Kunth) Cass.	INF, DER, UR, ST	Velasco et al. (2005)
	Roldana angulifolia (D.C.) H. Rob. & Brettell	INF, ST	Arciniegas et al. (2006)
	Roldana sessilifolia (Hook. & Am.) H. Rob. & Brettel	WOM, DER, ST	Villarreal et al. (1994)
	Schkuhria schkuhrioides Thell.	DER, ST	Delgado et al. (1998)
	Smallanthus maculatus (Cav.) H. Rob.	GI, GC	Rios and León (2006)
	Tagetes lucida Cav.	GI, GC	Hernández (1959)
	Tithonia diversifolia (Hemsl.) A. Gray	GI, DER, ST	Del Amo (1979)
	Verbesina persicifolia DC.	INF, GI, GC	Hernández (1959)
	Viguiera decurrens (A. Gray)	INF, GI, GC	Marquina et al. (2001)
	Viguiera hypargyrea Greenm.	GI, DER, GC	Villarreal et al. (1994)
	Viguiera lactibracteata (Hemsl.) Blake	GI, GC	Villarreal et al. (1994)
	Viguiera quinqueradiata (Cav.) A. Gray	GI, GC	Villarreal et al. (1994)
Betulaceae	Alnus jorullensis Kunth subsp. Jorullensis	GI, GC	López and Hinojosa (1988)
Bignoniaceae	Astianthus viminalis (Kunth) Baill.	UR, INF DER, ST	Villarreal et al. (1992)
0	Crescentia alata Kunth	GI, DER, ST	Hernández (1959)
	Jacaranda mimosifolia D. Don	AP, ST	Villarreal et al. (1992)
Bixaceae	Bixa orellana L.	DER, ST	Hernández (1959)
	Cochlospermum vitifolium (Willd.) Spreng.	GI, DER, ST	López and Hinojosa (1988)
Boraginaceae	Heliotropium curassavicum var. oculatum (A. Heller) I. M. Johnst. ex Tidestr.	DER, GI, GC	Hernández (1959)
Burseraceae	Bursera bipinnata (DC.) Engl.	DER, ST	Lautié et al. (2008)
Jaroeraceae	Bursera copallifera (DC.) Bullock	DER, ST	Lautié et al. (2008)
	Bursera fagaroides var. elongata McVaugh & Rzed.	VEN, DER, ST	Murillo-Alvarez et al. (2001)
	Bursera grandifolia (Schltdl.) Engl.	DER, ST	Wickramaratne et al. (1995)
	Bursera graveolens (Kunth) Triana & Planch.	INF, ST	Nakanishi et al. (2005)
Cactaceae	Pachycereus webery (J. M. Coult.) Backeb.	GI. DER, ST	Popoca et al. (1998)
Capparidaceae	Polanisia dodecandra (L.) DC.	DER, ST	Shi et al. (1995)
Caprifoliaceae	Viburnum jucundum C. V. Morton	GI, GC	Rios et al. (2001)
Celastraceae	Hippocratea excelsa Kunth	INF, GI, GC	Popoca et al. (1998)
Commelinaceae	Tradescantia discolor L' Hér	RES, INF, DER, ST	Mena-Rejon et al. (2009)
Johnnennaceae	Tradescantia zebrina Bosse var. Zebrina	GI, GC	Frei et al. (1998)
Convolvulaceae	Ipomoea murucoides Roem. et Schult.	DER, ST	Chérigo and Pereda-Miranda (200
Olivoivulaccac	Ipomoea orizabensis (Pelletan) Ledeb. ex Steud.	GI, DER, ST	Hernández-Carlos et al. (1999)
	Ipomoea pauciflora M. Martens & Galeotti	DER, ST, NEU	Villarreal et al. (1992)
Cucurbiataceae	Ibervillea sonorae (S. Watson) Greene	DER, UR, ST	Vega-Avila et al. (2009)
Cupressaceae	Juniperusdeppeana Steud.	INF, CC	Villavicencio-Nieto et al. (2008)
Suphorbiaceae	Croton reflexifolius Kunth	DER, ST	Ankli et al. (2002)
ימאווטו חומרבקב	Euphorbia pulcherrima Willd. ex Klotzsch	DER, ST	Villarreal et al. (1992)
	Jatropha gaumeri Greenm.	DER, ST	Ankli et al. (2002)
	Jatropha neopauciflora Pax	INF, DER, ST	García and Delgado (2006)
-h	Acaciella angustissima (Mill.) Britton & Rose	INF, DER, ST	Mena-Rejon et al. (2009)
abaceae	• , ,		• • • • • • • • • • • • • • • • • • • •
	Acacia pennatula (Schltdl. & Cham.) Benth. Albizia occidentalis Brandegee	INF, ST INF, ST	Popoca et al. (1998) Cabrera (1958)
	Havardia albicans (Kunth) Britton & Rose		
	Mimosa tenuiflora (Willd.) Poir.	VEN, CC DER, ST	Mena-Rejon et al. (2009)
	· · ·		Villarreal et al. (1992)
	Pithecellobium unguis-cati (L.) Benth.	GI, DER, ST	Martínez (1989)
	Senna occidentalis (L.) H. S. Irwin & Barneby	INF, UR, DER, ST	Martínez (1989)
Salaamaia as	Senna racemosa (Mill) H.S. Irwin & Barneby	GI, INF, DER, ST	Mena-Rejon et al. (2009)
Gelsemiaceae	Gelsemium sempervirens (L.) J. StHil.	INF, ST	Schun and Cordell (1987)
Geraniaceae	Geranium niveum S. Watson	UR, DER, ST	Martínez (1989)
Krameriaceae	Krameria pauciflora DC.	GI, GC	Frei et al. (1998)
amiaceae	Hyptis emory Torr.	RES, GI, GC	López and Hinojosa (1988)
	Hyptis pectinata (L.) Poit.	GI, INF, DER, ST	Pereda-Miranda et al. (1993)
	Hyptis spicigera Lam.	INF, DER, ST	Fragoso-Serrano et al. (1999)
	Hyptis suaveolens (L.) Poit.	GI, DER, ST	Lautié et al. (2008)
	Hyptis verticillata Jacq. Salvia pachyphylla Epling ex Munz	GI, DER, ST GI, RES, GC	Novelo et al. (1993) Martínez (1989)

Table 1A (Continued)

Family	Scientific name	Popular use	Reference
Lauraceae	Persea americana Mill.	INF, DER, ST	Andrade-Cetto (2009)
Linaceae	Linum scabrellum Planch.	GI, DER, ST	Lautié et al. (2008)
Lythraceae	Cuphea aequipetala Cav.	DER, ST	Vega-Avila et al. (2004)
Loranthaceae	Cladocolea grahamii (Benth.) Tieg.	UR, DER, ST	Waizel-Bucay et al. (1994)
Malvaceae	Gossypium hirsutum L.	DER, INF, ST	Mena-Rejon et al. (2009)
Meliaceae	Swietenia humilis Zucc.	GI, INF, DER, ST	Graham et al. (2000), Camacho et al. (2003
Moraceae	Dorstenia contrajerva L.	GI, DER, ST	Martínez (1989)
Myrtaceae	Psidium guajava L.	GI, ST	Villarreal et al. (1992)
Orchidaceae	Vanilla planifolia Andrews	UR, DER, ST	Hernández (1959)
Papavaraceae	Bocconia frutescens L.	RES, GI, GC	Hernández (1959)
Phizophoraceae	Rhizophora mangle L.	INF, DER, ST	Mena-Rejon et al. (2009)
Phytolaccaceae	Petiveria alliacea L.	INF, DER, ST	Perez-Leal et al. (2006)
Picramniaceae	Alvaradoa amorphoides Liebm.	DER, ST	Martínez (1989)
	Castela tortuosa Liebm.	AP, GC	Villarreal et al. (1992)
	Picramnia antidesma subsp. fessonia (DC.) W. W. Thomas	VEN, DER, ST	Martínez (1989)
Piperaceae	Piper aduncum L.	UR, DER, ST	Martínez (1989)
Plumbaginaceae	Plumbago pulchella Boiss.	DER, ST	Martínez (1989)
Poaceae	Zea mays L.	UR, GI, GC	Hayashi et al. (1996)
Rhamnaceae	Colubrina macrocarpa (Cav.) G. Don	GI, RES, GC	Popoca et al. (1998)
Rubiacaeae	Hamelia patens Jacq.	INF, DER, WOM, CC	Mena-Rejon et al. (2009)
	Hintonia latiflora Sessé & Moc. ex DC. Bullock	INF, GI, GC	López and Hinojosa (1988)
	Morinda royoc L.	DER, ST	Martínez (1989)
Sapotaceae	Chrysophyllum mexicanum Brandegee ex Standl.	GI, GC	Ankli et al. (2002)
	Manilkara zapota (L.) Van Royen	GI, GC	Ma et al. (2003)
Scrophulariaceae	Capraria biflora L.	UR, CC	Del Amo (1979)
Smilacaceae	Smilax aristolochiifolia Mill.	INF, GI, GC	Linares-Mazari et al. (1988)
Solanaceae	Capsicum annum L.	AP, GI, GC	Argueta et al. (1994)
	Cestrum nocturnum L.	GI, INF, DER, ST	Del Amo (1979)
	Solanum chrysotrichum Schltdl.	DER, ST	Villarreal et al. (1992)
	Solanum lanceolatum Cav.	GI, DER, ST	Frei et al. (1998)
	Solanum rostratum Dun.	GI, WOM, CC	Villavicencio-Nieto et al. (2008)
Verbenaceae	Lantana involucrata L.	INF, ST	Del Amo (1979)
	Lantana urticifolia Mill.	GI, GC	López and Hinojosa (1988)
Viscaceae	Phoradendron carneum Urb.	UR, DER, ST	Martínez (1989)
	Phoradendron galeottii Trel.	UR, DER, ST	Waizel-Bucay et al. (1994)
	Phoradendron reichenbachianum (Seem.) Oliver	UR, DER, ST	Rios et al. (2001)
	Phoradendron serotinum (Raf.) M. C. Johnst.	UR, DER, ST	Johansson et al. (2003)
Zamiaceae	Dioon spinulosum Dyer ex Eichl	GI, GC	Mena-Rejon et al. (2009)
Zygophyllaceae	Larrea tridentata (DC.) Cav.	UR, GI, GC	Gonzalez (1984)

Popular use: AP, antiparasitic; BC, breast cancer; CC, cervical cancer; DER, dermatological conditions; GC, gastric cancer; GI, gastrointestinal disorders; INF, inflammatory diseases; NEU, neurological disorders; RES, respiratory illnesses; ST, skin tumors; UR, urological problems including diabetes; VEN, venereal diseases; WOM, gynecological disorders.

In Mexico, more than 90% of the general population use medicinal plants in common practice for the empirical treatment of several diseases (Taddei-Bringas et al., 1999). However, most physicians disagree with the use of plant products because they lack toxicological and pharmacological studies. In urban areas, prescriptions for medicinal plants are done by vendors of herbal products, whereas in rural areas the populations refer to the local healers, "chamanes", to receive treatment. In Mexico, 30-70% of patients diagnosed with cancer use herbal extracts as an alternative therapy for many types of cancer in urban areas (Gerson-Cwilich et al., 2006; Gomez-Martinez et al., 2007). Nevertheless, limited data is available concerning cost and/or the effectiveness of herbal extracts. Cancer patients perceive the medicinal plants to be efficient and safe because of their "natural" origin, even when they do know of the lack of scientific evidence (Gerson-Cwilich et al., 2006). As a consequence, patients often use herbal remedies without biomedical medication, or in some cases combined with anti-cancer drugs without advising their physicians (Gomez-Martinez et al., 2007). This constitutes a health risk because these products, which contain several constituents, could interact with the prescribed drugs and affect drug metabolic pathways.

3. Sources of information on Mexican plants used for cancer treatment

A bibliographic investigation was carried out, during September 2009 to March 2010, by analyzing commonly consulted scien-

tific books in México, local encyclopedias of the Mexican Institute for Indigenous Studies (INI), and scientific published material on native Mexican medicinal flora from the last five decades for the ethnobotanical, pharmacological, and chemical characterization of natural products. Peer-reviewed articles were gathered consulting the databases SCOPUS, Web of Science, SCIELO, Medline and Google scholar. The following keywords were used to search for the literature inside the databases: plant extract, anticancer, México, and cytotoxic compounds. No restrictions regarding the language of publication were imposed, but most relevant studies were published in English and Spanish. The criteria followed for selection of reports in this review consider those plants (i) native to Mexico, and in some cases also to other countries in the Americas, (ii) used in Mexican traditional medicine, (iii) with experimental studies on anticancer effects, (iv) with ED₅₀ values reported in mass/volume, (v) with information obtained from a clear source, (vi) with animal studies for antitumor effects and (vii) with studies exploring mechanisms of anticancer effects. Mexican plants with attributed anti-cancer properties are classified into six groups: (a) plant extracts that have been evaluated for cytotoxic effects, (b) plant extracts that have documented anti-tumoral effects, (c) plants with active compounds tested on cancer cell lines, (d) plants with novel active compounds found only in Mexican species, (e) plants with active compounds that have been assayed on animal models and (f) plants with anticancer ethnopharmacological references but without scientific studies.

 Table 1B

 Ethnomedical uses of Mexican plants not employed empirically for cancer treatment but with scientific reports.

Family	Scientific name	Popular use	Reference
Acanthaceae	Elytraria imbricata (Vahl.) Pers.	GI	Encarnacion and Contreras (1992
Agavaceae	Agave americana L.	UR	Yokosuka et al. (2000)
Annonaceae	Mosannona depressa (Baill.) Chatrou	INF	Jimenez-Arellanes et al. (1996)
pocynaceae	Pentalinon andrieuxii (Mûll, Arg.) B. F. Hansen & Wunderlin	AP	Chan-Bacab et al. (2003)
raceae	Xanthosoma robustum Schott	DER	Frei et al. (1998)
ristolochiaceae	Aristolochia monticola Brandegee	GI	Encarnación and Contreras (1992
sclepiadaceae	Asclepias subulata Decne.	GI	Encarnacion and Contreras (1992
steraceae	Adenophyllum aurantium (L.) Strother	GI	Frei et al. (1998)
steraceae	Ambrosia monogyra (Torr. & A. Gray) Strother & B. G. Baldwin	AP	Murillo-Alvarez et al. (2001)
	Baccharis salicifolia (Ruiz & Pav.) Pers.	WOM, INF, RES	Hernández (1959)
	Bidens squarrosa Kunth	GI	Ankli et al. (2002)
	Epaltes mexicana Less.	RES	Frei et al. (1998)
	Melampodium paniculatum Gardner	GI	Martínez (1989)
	Neurolaena lobata (L.) Cass	GI	Martínez (1989)
	Parthenium argentatum Gray	GI	• •
	· ·		Parra-Delgado et al. (2005)
	Pectis haenkeana (DC.) Sch. Bip.	GI	Hernández (1959)
	Pseudognaphalium semiamplexicaule (DC.) Anderb.	RES, DER	Sanchez et al. (2001)
	Ratibida latipalearis E.L. Richards	DER	Camacho et al. (2003)
	Ratibida mexicana (S. Watson) W.M. Sharp	GI	Camacho et al. (2003)
	Xylotamia diffusa (Benth.) G. L. Nesom	DER, RES	Murillo-Alvarez et al. (2001)
egoniaceae	Begonia heracleifolia Schltdl. & Cham.	INF	Martínez (1989)
ignoniaceae	Tecoma stans (L.) Juss. ex Kunth	UR	Marzouk et al. (2006)
oraginaceae	Cordia curassavica (Jacq.) Roem. ex Schult.	INF	Hernández (1959)
rassicaceae	Descurainia pinnata subsp. menziesii (DC.) Detling	GI	Encarnacion and Contreras (1992
romeliaceae	Aechmea bracteata var. bracteata Griseb.	DER	Ankli et al. (2002)
	Bromelia pinguin L.	UR	Raffauf et al. (1981)
actaceae	Lophophora williamsii (Lem. ex Salm-Dyck) J.M. Coult	GI, UR	Franco-Molina et al. (2003)
ampanulaceae	Lobelia laxiflora Kunth	INF, RES	Hernández (1959)
aprifoliaceae	Valeriana sorbifolia Kunth	NEU	Xu et al. (2007)
	•		, ,
aricaceae	Carica papaya L.	GI	López and Hinojosa (1988)
elastraceae	Crossopetalum gaumeri (Loes.) Lundell	GI	Ankli et al. (2002)
Combretaceae	Combretum fruticosum (Loefl.) Stuntz	DER	Martínez (1989)
Convolvulaceae	Ipomoea pes-caprae (L.) R. Br.	UR	Pereda-Miranda et al. (2005)
	Ipomoea stans Cav.	UR, NEU	Martínez (1989)
	Ipomoea wolcottiana subsp. Wolcottiana	DER	León et al. (2006)
benaceae	Diospyros anisandra S. F. Blake	DER	Ankli et al. (2002)
	Diospyros digyna Jacq.	DER	Cabrera (1958)
	Diospyros tetrasperma Sw.	DER	Ankli et al. (2002)
ricaceae	Comarostaphylis polifolia (Kunth) Zucc. ex Klotzsch	UR, RES	Hernández (1959)
abaceae	Bauhinia divaricata L.	GI, RES	Martínez (1989)
	Caesalpinia gaumeri Greenm.	DER	Hernández (1959)
	Calliandra californica Benth.	UR	Encarnación-Dimayuga et al. (20
	Dalea carthagenensis var. barbata (Oerst.) Barneby	DER	Ankli et al. (2002)
	Dialium guianense (Aubl.) Sandwith	INF	Cabrera (1958)
		UR	
	Eysenhardtia polystachya (Ortega) Sarg.		Alvarez et al. (1998)
	Leucaena leucocephala (Lam.) de Wit subsp. leucocephala	GI	Hernández (1959)
	Phaseolus acutifolius A. Gray	DER	Martínez (1989)
	Phaseolus vulgaris L.	DER, GI	Aparicio-Fernández et al. (2006)
	Piscidia piscipula (L.) Sarg.	INF, NEU	Martínez (1989)
	Vachellia campechiana (Mill.) Seigler & Ebinger	INF	Martínez (1989)
lypericaceae	Hypericum silenoides Juss. subsp. silenoides	INF	Del Amo (1979)
amiaceae	Salvia leucantha Cav.	RES, GI	Aoyagi et al. (2008)
oranthaceae	Psittacanthus calyculatus (DC.) G. Don	DER	Frei et al. (1998)
lalpighiaceae	Galphimia glauca Cav.	INF	Aguilar-Santamaría et al. (2007)
lalvaceae	Luehea alternifolia (Mill.) Mabb.	DER	Ankli et al. (2002)
leliaceae	Swietenia macrophylla King	INF	Camacho et al. (2003)
Ioraceae	Dorstenia drakena L.	DER	Frei et al. (1998)
lyrtaceae	Psidium sartorianum (O. Berg) Krug & Urb.	GI	Ankli et al. (1998)
•	, ,,		, ,
rchidaceae	Stenorhynchus lanceolatus (Aubl.) L. C. Rich.	INF	Camacho et al. (2003)
icrodendraceae	Piranhea mexicana (Standl.) RadclSm.	DER DEG	Camacho et al. (2003)
inaceae	Pinus patula Schltdl. & Cham.	DER, RES	Martínez (1989)
olypodiaceae	Microgramma nitida (J. Sm.) A. R. Sm.	GI	Ankli et al. (2002)
rimulacaceae	Bonellia macrocarpa subsp. pungens (A. Gray) B. Stahl & Kâllersjô	INF	Del Amo (1979)
tubiaceae	Nernstia mexicana (Zucc. & Mart. ex DC.) Urb.	GI	Camacho et al. (2003)
utaceae	Casimiroa tetrameria Millsp.	GI	Ankli et al. (2002)
	Casagria nitida (I.) laca	INF	Ankli et al. (2002)
alicaceae	Casearia nitida (L.) Jacq.	IINI"	MIKII Ct al. (2002)

Popular use: AP, antiparasitic; DER, dermatological conditions; GI, gastrointestinal disorders; INF, inflammatory diseases; NEU, neurological disorders; RES, respiratory illnesses; UR, urological problems including diabetes; VEN, venereal diseases; WOM, gynecological disorders.

4. Mexican plants with anti-cancer uses

Mexico has great botanical diversity and widespread use of traditional medicine based on herbolary; however, only a relatively small number of these plants have been subjected to accepted scientific evaluation for their potential anti-cancer effects. A total of 300 plants, belonging to 90 botanical families, with scientific and non-scientific evidence have been recorded, of which 181

Table 2Cytotoxicity of Mexican plant extracts.

Cytotoxicity of Mex	ican plant extracts.				
Family	Scientific name	Plant part	Extract	ED ₅₀ μg/ml (cell line)	Reference
Acanthaceae	Elytraria imbricata (Vahl) Pers. Justicia spicigera Schltdl.	Ap Ap	EtOH EtOH	NA (HCT-116) NA (HCT-116)	Murillo-Alvarez et al. (2001) Murillo-Alvarez et al. (2001),
			EtOH	0.43 (T-47D), 5.59 (HeLa)	Vega-Avila et al. (2009)
	4 4 9 9 9 9	Lv	H ₂ O	14.79 (T-47D), NA (HeLa)	D (4000)
Agavaceae	Agave salmiana Otto ex Salm-Dyck	Lv	PE EtOAc MeOH	NA (HCT-15), NA (KB), NA (UISO) NA (HCT-15), NA (KB), NA (UISO) NA (HCT-15), NA (KB), NA (UISO)	Popoca et al. (1998)
Anacardiaceae	Amphipterygium adstringens (Schltdl.) Standl.	Sb	EtOH	NA (KB), 8.5 (P-388), NA (KB-VI*)	Villarreal et al. (1992), Oviedo-Chávez et al. (2004)
		Bk	Chl PE Hex	NA (KB), 17.4 (P-388), NA (KB-VI*) NA (KB), NA (P-388), NA (KB-VI*) 13.7 (HCT-15), 7.9 (MCF-7), NA (U-251), NA (PC-3), 8.4 (K-562)	, ,
Annonaceae	Annona muricata L.	Lv	EtOH	6.2 (MCF-7), 4.0 (H-460), 8.5 (SF-268)	Calderon et al. (2006)
	Annona purpurea Moc. & Sessé ex Dunal	Sd	Chl:MeOH	0.01 (A-549), 1.53 (MCF-7), 1.47 (HT-29), 3.53 (A-498), 1.16 (PC-3), 0.02 (PACA-2)	Chávez and Mata (1998), Camacho et al. (2003)
		Bk	MeOH	0.0098 (KB)	
		Sm	H ₂ O MeOH H ₂ O	NA (A-549) 1 × 10 ⁻⁴ (A-549) NA (A-549)	
	Mosannona depressa (Baill.) Chatrou	Sb	Chl	30 (A-549), 21 (MCF-7), 21 (HT-29)	Jimenez-Arellanes et al. (1996)
Apocynaceae	Pentalinon andrieuxii (Mûll. Arg.) B. F. Hansen & Wunderlin	Rt	MeOH	NA (KB), NA (UISO), NA (COLON)	Chan-Bacab et al. (2003)
		Lv		NA (OVCAR), NA (KB), 13.8 (UISO), NA (COLON)	
	Thoughting phousi (L.) A. D.C.	Rt	Facili	5.4 (OVCAR), 2.6 (KB), 1.2 (UISO), 4.6 (COLON)	Caldaran et al. (2000)
Araceae	Thevetia ahouai (L.) A. DC. Xanthosoma robustum Schott	St Lv	EtOH EtOH	0.47 (MCF-7), 0.29 (H-460), 0.52 (SF-268) NA (KB), NA (Caco-2)	Calderon et al. (2006) Frei et al. (1998)
Araliaceae	Dendropanax arboreus (L.) Decne.& Planch.	Lv	EtOH	NA (MCF-7), NA (H-460), NA (SF-268)	Calderon et al. (2006)
Aristolochiaceae	Aristolochia brevipes Benth.	Ap	EtOH	19.7 (HCT-116)	Murillo-Alvarez et al. (2001)
	Aristolochia monticola Brandegee	Ap	EtOH	1.0 (HCT-116)	Murillo-Alvarez et al. (2001)
Asclepiadaceae	Asclepias subulata Decne.	Ap	EtOH	0.4 (HCT-116)	Murillo-Alvarez et al. (2001)
Asteraceae	Adenophyllum aurantium (L.) Strother Ambrosia monogyra (Torr. & A. Gray) Strother & B. G. Baldwin	Lv Ap	EtOH EtOH	NA (KB), NA (Caco-2) NA (HCT-116)	Frei et al. (1998) Murillo-Alvarez et al. (2001)
	Baccharis salicifolia (Ruiz & Pav.) Pers. Bidens pilosa L.	Ap Bk	EtOH EtOH	NA (HCT-116) NA (HeLa)	Murillo-Alvarez et al. (2001) Murillo-Alvarez et al. (2001), Villavicencio-Nieto et al.
					(2008)
		Ap	EtOH	NA (HCT-116)	
	Bidens squarrosa Kunth	Ap	BuOH	NA (KB)	Ankli et al. (2002), Abbott et al. (1966)
	Epaltes mexicana Less.	Wp Lv	H ₂ O EtOH	NA (KB) NA (KB), NA (Caco-2)	Frei et al. (1998)
	Gnaphalium purpureum L.	Ap	EtOH	NA (HCT-116)	Murillo-Alvarez et al. (2001)
	Gymnosperma glutinosum (Spreng.) Less.	Lv	Hex	4 (L5178Y-R)	Gomez-Flores et al. (2009)
	Haplopappus spinulosus subsp. scabrellus (Greene) H. M. Hall	Ap	EtOH	NA (HCT-116)	Murillo-Alvarez et al. (2001)
	Helianthella quinquenervis (Hook) A. Gray	Rt	MeOH	3 (MCF-7), NA (HT-29), 5 (A-549)	Castañeda et al. (1996)
	Heterotheca inuloides Cass.	Fw	EtOH Chl PE	NA (KB), 9.12 (P-388), NA (KB-VI*) 15.13 (P-388), NA (KB-VI*) 8.4 (P-388), NA (KB-VI*)	Villarreal et al. (1992)
	lostephane heterophylla (Cav.) Hemsl.	Rt	Chl EtOH	NA (HCT-15), NA (UISO), NA (KB) NA (HCT-15), NA (UISO), NA (KB)	Aguilar et al. (2001)
	Melampodium paniculatum Gardner Montanoa leucantha (Lag.) S. F. Blake Neurolaena lobata (L.) Cass Pectis haenkeana (DC.) Sch. Bip. Psacalium peltatum (Kunth) Cass.	Sm Lv Lv Ap Rt and Rh	EtOH EtOAc EtOH EtOH H ₂ O Hex Dcl MeOH	8.5 (MCF-7), 8.4 (H-460), NA (SF-268) 1.35 (KB), 5.2 (P-388) NA (MCF-7), NA (H-460), NA (SF-268) NA (HCT-116) NA (DU-145) NA (DU-145) NA (DU-145) NA (DU-145) NA (DU-145)	Calderon et al. (2006) Oshima et al. (1986) Calderon et al. (2006) Murillo-Alvarez et al. (2001) Velasco et al. (2005)
	Ratibida latipalearis E.L. Richards Ratibida mexicana (S Watson) WM Sharp	Ap Ap	MeOH MeOH	NA (KB) NA (KB)	Camacho et al. (2003) Camacho et al. (2003)
	Schkuhria schkuhrioides Thell.	Ap	Aco	NA (KB), NA (UISO), NA (COLON)	Delgado et al. (1998)
	Smallanthus maculatus (Cav.) H. Rob. Tagetes lucida Cav.	Ap Ap	Aco EtOH	17 (HCT-15), 18.4 (OVCAR-5) 1.82 (T-47D), NA (HeLa)	Rios and León (2006) Vega-Avila et al. (2009)

Table 2 (Continued)

	Scientific name	Plant part	Extract	ED ₅₀ μg/ml (cell line)	Reference
			H ₂ O	18.94 (T-47D), 13.2 (HeLa)	
	Tithonia diversifolia (Hemsl.) A. Gray	Lv	EtOH	NA (MCF-7), NA (H-460), NA (SF-268)	Calderon et al. (2006)
	Verbesina persicifolia DC.	Ap	H ₂ O	5.5 (KB)	Abbott et al. (1966)
	Viguiera decurrens (A. Gray)	Rt	Hex-EtOAc-MeOH	NA (KB), 2.3 (P-388), 8.9 (OVCAR), NA (COLON), 3.02 (UISO)	Marquina et al. (2001)
	Xylotamia diffusa (Benth.) G. L. Nesom	Ap	EtOH	NA (HCT-116)	Murillo-Alvarez et al. (2001)
Begoniaceae	Begonia heracleifolia Schltdl. & Cham.	Rh	EtOH	3.8 (KB), 7.5 (Caco-2)	Frei et al. (1998)
Betulaceae	Alnus jorullensis Kunth subsp. jorullensis	Bk	H ₂ O	5.6 (KB)	Abbott et al. (1966)
Bignoniaceae	Astianthus viminalis (Kunth) Baill.	Lv	EtOH	NA (KB), NA (P-388), NA (KB-VI*)	Villarreal et al. (1992)
8	Crescentia alata Kunth	Ар	EtOH	NA (HCT-116)	Murillo-Alvarez et al. (2001)
	Jacaranda mimosifolia D. Don	Lv	EtOH	15.8 (KB), 1.6 (P-388), NA (KB-VI*)	Villarreal et al. (1992)
			Chl PE	3.9 (P-388), 6.7 (KB-VI*) 10.9 (KB), 1.2 (P-388), NA (KB-VI*)	
	Tecoma stans (L.) Juss. ex Kunth	Ap	EtOH:Chl	NA (KB)	Abbott et al. (1966), Marzouk et al. (2006)
		Fw and Ft	EtOH	NA (Hep-G2), NA (MCF-7), NA (1301)	et al. (2000)
Bixaceae	Bixa orellana L.	wp	EtOH	NA (Neuro-2A)	Mazzio and Soliman (2009)
ылиссис	Cochlospermum vitifolium (Willd.)	Ft	H ₂ O	3.8 (KB)	Abbott et al. (1966)
	Spreng.				ribbott et un (1866)
		Fvar	EtOH:Chl EtOH:Chl	3.2 (KB) 5.0 (KB)	
Roraginaceae	Cordia curassavica (Jacq.) Roem. ex	Fw Lv	EtOH;Cni EtOH	* *	Calderon et al. (2006)
Boraginaceae	Schult.			5.9 (MCF-7), 5.7 (H-460), 8.2 (SF-268)	, ,
	Heliotropium curassavicum var. oculatum (A. Heller) I. M. Johnst. ex Tidestr.	Ap	EtOH	NA (HCT-116)	Murillo-Alvarez et al. (2001)
Brassicaceae	Descurainia pinnata subsp. menziesii (DC.) Detling	Ap	EtOH	NA (HCT-116)	Murillo-Alvarez et al. (2001)
Bromeliaceae	Aechmea bracteata var. bracteata Griseb.	Lv	BuOH	NA (KB)	Ankli et al. (2002)
	Griseb. Bromelia pinguin L.	Rt and sm	МеОН	2.1 (KB)	Raffauf et al. (1981)
D	Power to the form of a CDC \ T	D	NaHCO ₃	NA (KB)	Level (2000)
Burseraceae	Bursera bipinnata (DC.) Engl. Bursera copallifera (DC.) Bullock	Resin Sm	- Chl	NA (KB), NA (HF-6), 5.2 (MCF-7) 14 (KB), NA (HF-6), 7.1 (MCF-7)	Lautié et al. (2008) Lautié et al. (2008)
	Bursera copanijera (DC.) Bullock	Fr	CIII		Lautie et al. (2008)
	Bursera graveolens (Kunth) Triana &	Sm	MeOH	NA (KB), NA (HF-6), 5.9 (MCF-7) NA (HT-1080)	Nakanishi et al. (2005)
	Planch.				, ,
	Bursera fagaroides var. elongata McVaugh & Rzed.	Sb	Chl	20 (L5178Y)	Puebla-Pérez et al. (1998), Murillo-Alvarez et al. (2001)
.		Ap	EtOH	<0.076 (HCT-116)	
Cactaceae	Lophophora williamsii, (Lem. ex	Tb	MeOH	8.0 (L5178Y-R), 8.1 (U937), NA (L929),	Franco-Molina et al. (2003)
	Salm-Dyck) J.M. Coult Pachycereus webery (J. M. Coult.)	Ap	PE	0.18 (MCF-7) NA (HCT-15), NA (KB), NA (UISO)	Popoca et al. (1998)
	Backeb.		m. o		
			EtOAc	NA (HCT-15), NA (KB), NA (UISO)	
Comme and	Backeb.	Δ.,	MeOH	NA (HCT-15), NA (KB), NA (UISO)	Abbattat (1000)
	Backeb. Lobelia laxiflora Kunth	Ар	MeOH H ₂ O	NA (HCT-15), NA (KB), NA (UISO) 3.2 (KB)	Abbott et al. (1966)
	Backeb.	Ap Ap	MeOH H ₂ O Hex	NA (HCT-15), NA (KB), NA (UISO) 3.2 (KB) 25 (PC-3M)	Abbott et al. (1966) Xu et al. (2007)
	Backeb. Lobelia laxiflora Kunth Valeriana sorbifolia Kunth	Ap	MeOH H ₂ O Hex MeEtAco	NA (HCT-15), NA (KB), NA (UISO) 3.2 (KB) 25 (PC-3M) 25 (PC-3M)	Xu et al. (2007)
	Backeb. Lobelia laxiflora Kunth		MeOH H ₂ O Hex	NA (HCT-15), NA (KB), NA (UISO) 3.2 (KB) 25 (PC-3M) 25 (PC-3M) 18.2 (UISO), 14.2 (HCT-15), 12.6	
Caprifoliaceae	Backeb. Lobelia laxiflora Kunth Valeriana sorbifolia Kunth Viburnum jucundum C. V. Morton	Ap Ap	MeOH H ₂ O Hex MeEtAco Aco	NA (HCT-15), NA (KB), NA (UISO) 3.2 (KB) 25 (PC-3M) 25 (PC-3M) 18.2 (UISO), 14.2 (HCT-15), 12.6 (OVCAR-5)	Xu et al. (2007) Rios et al. (2001)
Caprifoliaceae Caricaceae	Backeb. Lobelia laxiflora Kunth Valeriana sorbifolia Kunth Viburnum jucundum C. V. Morton Carica papaya L.	Ap Ap Wp	MeOH H ₂ O Hex MeEtAco Aco	NA (HCT-15), NA (KB), NA (UISO) 3.2 (KB) 25 (PC-3M) 25 (PC-3M) 18.2 (UISO), 14.2 (HCT-15), 12.6 (OVCAR-5) NA (Neuro-2A)	Xu et al. (2007) Rios et al. (2001) Mazzio and Soliman (2009)
Caprifoliaceae Caricaceae	Backeb. Lobelia laxiflora Kunth Valeriana sorbifolia Kunth Viburnum jucundum C. V. Morton	Ap Ap	MeOH H ₂ O Hex MeEtAco Aco	NA (HCT-15), NA (KB), NA (UISO) 3.2 (KB) 25 (PC-3M) 25 (PC-3M) 18.2 (UISO), 14.2 (HCT-15), 12.6 (OVCAR-5)	Xu et al. (2007) Rios et al. (2001)
Caprifoliaceae Caricaceae	Backeb. Lobelia laxiflora Kunth Valeriana sorbifolia Kunth Viburnum jucundum C. V. Morton Carica papaya L.	Ap Ap Wp	MeOH H ₂ O Hex MeEtAco Aco EtOH DCM	NA (HCT-15), NA (KB), NA (UISO) 3.2 (KB) 25 (PC-3M) 25 (PC-3M) 18.2 (UISO), 14.2 (HCT-15), 12.6 (OVCAR-5) NA (Neuro-2A) 0.7 (KB)	Xu et al. (2007) Rios et al. (2001) Mazzio and Soliman (2009)
Caprifoliaceae Caricaceae	Backeb. Lobelia laxiflora Kunth Valeriana sorbifolia Kunth Viburnum jucundum C. V. Morton Carica papaya L. Crossopetalumgaumeri (Loes.) Lundell	Ap Ap Wp Lv	MeOH H ₂ O Hex MeEtAco Aco EtOH DCM BuOH	NA (HCT-15), NA (KB), NA (UISO) 3.2 (KB) 25 (PC-3M) 25 (PC-3M) 18.2 (UISO), 14.2 (HCT-15), 12.6 (OVCAR-5) NA (Neuro-2A) 0.7 (KB) 10.2 (KB)	Xu et al. (2007) Rios et al. (2001) Mazzio and Soliman (2009) Ankli et al. (2002)
Caprifoliaceae Caricaceae	Backeb. Lobelia laxiflora Kunth Valeriana sorbifolia Kunth Viburnum jucundum C. V. Morton Carica papaya L. Crossopetalumgaumeri (Loes.) Lundell	Ap Ap Wp Lv	MeOH H ₂ O Hex MeEtAco Aco EtOH DCM BuOH PE	NA (HCT-15), NA (KB), NA (UISO) 3.2 (KB) 25 (PC-3M) 25 (PC-3M) 18.2 (UISO), 14.2 (HCT-15), 12.6 (OVCAR-5) NA (Neuro-2A) 0.7 (KB) 10.2 (KB) 0.76 (HCT-15), 0.004 (KB), 0.006 (UISO)	Xu et al. (2007) Rios et al. (2001) Mazzio and Soliman (2009) Ankli et al. (2002)
Caprifoliaceae Caricaceae Celastraceae	Backeb. Lobelia laxiflora Kunth Valeriana sorbifolia Kunth Viburnum jucundum C. V. Morton Carica papaya L. Crossopetalumgaumeri (Loes.) Lundell	Ap Ap Wp Lv	MeOH H ₂ O Hex MeEtAco Aco EtOH DCM BuOH PE EtOAc	NA (HCT-15), NA (KB), NA (UISO) 3.2 (KB) 25 (PC-3M) 25 (PC-3M) 18.2 (UISO), 14.2 (HCT-15), 12.6 (OVCAR-5) NA (Neuro-2A) 0.7 (KB) 10.2 (KB) 0.76 (HCT-15), 0.004 (KB), 0.006 (UISO) 2.4 (HCT-15), 4.0 (KB), 3.1 (UISO)	Xu et al. (2007) Rios et al. (2001) Mazzio and Soliman (2009) Ankli et al. (2002)
Caprifoliaceae Caricaceae Celastraceae Combretaceae	Backeb. Lobelia laxiflora Kunth Valeriana sorbifolia Kunth Viburnum jucundum C. V. Morton Carica papaya L. Crossopetalumgaumeri (Loes.) Lundell Hippocratea excelsa Kunth Combretum fruticosum (Loefl.) Stuntz	Ap Ap Wp Lv Rt	MeOH H ₂ O Hex MeEtAco Aco EtOH DCM BuOH PE EtOAc MeOH H ₂ O EtOH:ChI	NA (HCT-15), NA (KB), NA (UISO) 3.2 (KB) 25 (PC-3M) 25 (PC-3M) 18.2 (UISO), 14.2 (HCT-15), 12.6 (OVCAR-5) NA (Neuro-2A) 0.7 (KB) 10.2 (KB) 0.76 (HCT-15), 0.004 (KB), 0.006 (UISO) 2.4 (HCT-15), 4.0 (KB), 3.1 (UISO) 1.9 (HCT-15), 10.9 (KB), NA (UISO) 2.6 (KB) NA (KB)	Xu et al. (2007) Rios et al. (2001) Mazzio and Soliman (2009) Ankli et al. (2002) Popoca et al. (1998) Abbott et al. (1966)
Caprifoliaceae Caricaceae Celastraceae Combretaceae	Backeb. Lobelia laxiflora Kunth Valeriana sorbifolia Kunth Viburnum jucundum C. V. Morton Carica papaya L. Crossopetalumgaumeri (Loes.) Lundell Hippocratea excelsa Kunth Combretum fruticosum (Loefl.) Stuntz	Ap Ap Wp Lv Rt	MeOH H ₂ O Hex MeEtAco Aco EtOH DCM BuOH PE EtOAc MeOH H ₂ O	NA (HCT-15), NA (KB), NA (UISO) 3.2 (KB) 25 (PC-3M) 25 (PC-3M) 18.2 (UISO), 14.2 (HCT-15), 12.6 (OVCAR-5) NA (Neuro-2A) 0.7 (KB) 10.2 (KB) 0.76 (HCT-15), 0.004 (KB), 0.006 (UISO) 2.4 (HCT-15), 4.0 (KB), 3.1 (UISO) 1.9 (HCT-15), 10.9 (KB), NA (UISO) 2.6 (KB)	Xu et al. (2007) Rios et al. (2001) Mazzio and Soliman (2009) Ankli et al. (2002) Popoca et al. (1998)
Caprifoliaceae Caricaceae Celastraceae Combretaceae	Backeb. Lobelia laxiflora Kunth Valeriana sorbifolia Kunth Viburnum jucundum C. V. Morton Carica papaya L. Crossopetalumgaumeri (Loes.) Lundell Hippocratea excelsa Kunth Combretum fruticosum (Loefl.) Stuntz	Ap Ap Wp Lv Rt	MeOH H ₂ O Hex MeEtAco Aco EtOH DCM BuOH PE EtOAc MeOH H ₂ O EtOH:ChI	NA (HCT-15), NA (KB), NA (UISO) 3.2 (KB) 25 (PC-3M) 25 (PC-3M) 18.2 (UISO), 14.2 (HCT-15), 12.6 (OVCAR-5) NA (Neuro-2A) 0.7 (KB) 10.2 (KB) 0.76 (HCT-15), 0.004 (KB), 0.006 (UISO) 2.4 (HCT-15), 4.0 (KB), 3.1 (UISO) 1.9 (HCT-15), 10.9 (KB), NA (UISO) 2.6 (KB) NA (KB) NA (MDCK), NA (KB), NA (Hep-2), NA (HeLa), NA (SiHa) NA (MDCK), NA (KB), NA (Hep-2), NA	Xu et al. (2007) Rios et al. (2001) Mazzio and Soliman (2009) Ankli et al. (2002) Popoca et al. (1998) Abbott et al. (1966)
Caprifoliaceae Caricaceae Celastraceae Combretaceae	Backeb. Lobelia laxiflora Kunth Valeriana sorbifolia Kunth Viburnum jucundum C. V. Morton Carica papaya L. Crossopetalumgaumeri (Loes.) Lundell Hippocratea excelsa Kunth Combretum fruticosum (Loefl.) Stuntz Tradescantia discolor L' Hér	Ap Wp Lv Rt Ap Lv Rb	MeOH H ₂ O Hex MeEtAco Aco EtOH DCM BuOH PE EtOAc MeOH H ₂ O EtOH:Chl	NA (HCT-15), NA (KB), NA (UISO) 3.2 (KB) 25 (PC-3M) 25 (PC-3M) 18.2 (UISO), 14.2 (HCT-15), 12.6 (OVCAR-5) NA (Neuro-2A) 0.7 (KB) 10.2 (KB) 0.76 (HCT-15), 0.004 (KB), 0.006 (UISO) 2.4 (HCT-15), 4.0 (KB), 3.1 (UISO) 1.9 (HCT-15), 10.9 (KB), NA (UISO) 2.6 (KB) NA (KB) NA (MDCK), NA (KB), NA (Hep-2), NA (HeLa), NA (SiHa) NA (MDCK), NA (KB), NA (Hep-2), NA (HeLa), NA (SiHa)	Xu et al. (2007) Rios et al. (2001) Mazzio and Soliman (2009) Ankli et al. (2002) Popoca et al. (1998) Abbott et al. (1966) Mena-Rejon et al. (2009)
Caprifoliaceae Caricaceae Celastraceae Combretaceae Commelinaceae	Backeb. Lobelia laxiflora Kunth Valeriana sorbifolia Kunth Viburnum jucundum C. V. Morton Carica papaya L. Crossopetalumgaumeri (Loes.) Lundell Hippocratea excelsa Kunth Combretum fruticosum (Loefl.) Stuntz Tradescantia discolor L' Hér	Ap Wp Lv Rt Ap Lv Ap Ap	MeOH H ₂ O Hex MeEtAco Aco EtOH DCM BuOH PE EtOAc MeOH H ₂ O EtOH:Chl MeOH	NA (HCT-15), NA (KB), NA (UISO) 3.2 (KB) 25 (PC-3M) 25 (PC-3M) 18.2 (UISO), 14.2 (HCT-15), 12.6 (OVCAR-5) NA (Neuro-2A) 0.7 (KB) 10.2 (KB) 0.76 (HCT-15), 0.004 (KB), 0.006 (UISO) 2.4 (HCT-15), 4.0 (KB), 3.1 (UISO) 1.9 (HCT-15), 10.9 (KB), NA (UISO) 2.6 (KB) NA (KB) NA (MDCK), NA (KB), NA (Hep-2), NA (HeLa), NA (SiHa) NA (MDCK), NA (KB), NA (Hep-2), NA (HeLa), NA (SiHa) NA (MDCK), NA (KB), NA (Hep-2), NA (HeLa), NA (SiHa) NA (KB), NA (Caco-2)	Xu et al. (2007) Rios et al. (2001) Mazzio and Soliman (2009) Ankli et al. (2002) Popoca et al. (1998) Abbott et al. (1966) Mena-Rejon et al. (2009) Frei et al. (1998)
Caprifoliaceae Caricaceae Celastraceae Combretaceae Commelinaceae	Backeb. Lobelia laxiflora Kunth Valeriana sorbifolia Kunth Viburnum jucundum C. V. Morton Carica papaya L. Crossopetalumgaumeri (Loes.) Lundell Hippocratea excelsa Kunth Combretum fruticosum (Loefl.) Stuntz Tradescantia discolor L' Hér	Ap Wp Lv Rt Ap Lv Rb	MeOH H ₂ O Hex MeEtAco Aco EtOH DCM BuOH PE EtOAc MeOH H ₂ O EtOH:Chl	NA (HCT-15), NA (KB), NA (UISO) 3.2 (KB) 25 (PC-3M) 25 (PC-3M) 18.2 (UISO), 14.2 (HCT-15), 12.6 (OVCAR-5) NA (Neuro-2A) 0.7 (KB) 10.2 (KB) 0.76 (HCT-15), 0.004 (KB), 0.006 (UISO) 2.4 (HCT-15), 4.0 (KB), 3.1 (UISO) 1.9 (HCT-15), 10.9 (KB), NA (UISO) 2.6 (KB) NA (KB) NA (MDCK), NA (KB), NA (Hep-2), NA (HeLa), NA (SiHa) NA (MDCK), NA (KB), NA (Hep-2), NA (HeLa), NA (SiHa)	Xu et al. (2007) Rios et al. (2001) Mazzio and Soliman (2009) Ankli et al. (2002) Popoca et al. (1998) Abbott et al. (1966) Mena-Rejon et al. (2009)
Caprifoliaceae Caricaceae Celastraceae Combretaceae Commelinaceae	Backeb. Lobelia laxiflora Kunth Valeriana sorbifolia Kunth Viburnum jucundum C. V. Morton Carica papaya L. Crossopetalumgaumeri (Loes.) Lundell Hippocratea excelsa Kunth Combretum fruticosum (Loefl.) Stuntz Tradescantia discolor L' Hér Tradescantia zebrina Bosse var. zebrina Ipomoea orizabensis (Pelletan) Ledeb. Ex Steud.	Ap Ap Wp Lv Rt Ap Lv Rb Ap Rt	MeOH H ₂ O Hex MeEtAco Aco EtOH DCM BuOH PE EtOAc MeOH H ₂ O EtOH:Chl MeOH	NA (HCT-15), NA (KB), NA (UISO) 3.2 (KB) 25 (PC-3M) 25 (PC-3M) 18.2 (UISO), 14.2 (HCT-15), 12.6 (OVCAR-5) NA (Neuro-2A) 0.7 (KB) 10.2 (KB) 0.76 (HCT-15), 0.004 (KB), 0.006 (UISO) 2.4 (HCT-15), 4.0 (KB), 3.1 (UISO) 1.9 (HCT-15), 10.9 (KB), NA (UISO) 2.6 (KB) NA (KB) NA (MDCK), NA (KB), NA (Hep-2), NA (HeLa), NA (SiHa) NA (MDCK), NA (KB), NA (Hep-2), NA (HeLa), NA (SiHa) NA (MDCK), NA (KB), NA (Hep-2), NA (HeLa), NA (SiHa) NA (KB), NA (Caco-2) 2.5 (KB) NA (KB), NA (P-388), NA (KB-VI*)	Xu et al. (2007) Rios et al. (2001) Mazzio and Soliman (2009) Ankli et al. (2002) Popoca et al. (1998) Abbott et al. (1966) Mena-Rejon et al. (2009) Frei et al. (1998) Hernández-Carlos et al. (1998)
Caprifoliaceae Caricaceae Celastraceae Combretaceae Commelinaceae	Backeb. Lobelia laxiflora Kunth Valeriana sorbifolia Kunth Viburnum jucundum C. V. Morton Carica papaya L. Crossopetalumgaumeri (Loes.) Lundell Hippocratea excelsa Kunth Combretum fruticosum (Loefl.) Stuntz Tradescantia discolor L' Hér Tradescantia zebrina Bosse var. zebrina Ipomoea orizabensis (Pelletan) Ledeb. Ex Steud. Ipomoea pauciflora M. Martens &	Ap Ap Wp Lv Rt Ap Lv Rb Ap Rt	MeOH H ₂ O Hex MeEtAco Aco EtOH DCM BuOH PE EtOAc MeOH H ₂ O EtOH:Chl MeOH EtOH Chl	NA (HCT-15), NA (KB), NA (UISO) 3.2 (KB) 25 (PC-3M) 25 (PC-3M) 18.2 (UISO), 14.2 (HCT-15), 12.6 (OVCAR-5) NA (Neuro-2A) 0.7 (KB) 10.2 (KB) 0.76 (HCT-15), 0.004 (KB), 0.006 (UISO) 2.4 (HCT-15), 4.0 (KB), 3.1 (UISO) 1.9 (HCT-15), 10.9 (KB), NA (UISO) 2.6 (KB) NA (KB) NA (MDCK), NA (KB), NA (Hep-2), NA (HeLa), NA (SiHa) NA (MDCK), NA (KB), NA (Hep-2), NA (HeLa), NA (SiHa) NA (MDCK), NA (Caco-2) 2.5 (KB) NA (KB), NA (P-388), NA (KB-VI*)	Xu et al. (2007) Rios et al. (2001) Mazzio and Soliman (2009) Ankli et al. (2002) Popoca et al. (1998) Abbott et al. (1966) Mena-Rejon et al. (2009) Frei et al. (1998) Hernández-Carlos et al. (1998)
Caprifoliaceae Caricaceae Celastraceae Combretaceae Commelinaceae	Backeb. Lobelia laxiflora Kunth Valeriana sorbifolia Kunth Viburnum jucundum C. V. Morton Carica papaya L. Crossopetalumgaumeri (Loes.) Lundell Hippocratea excelsa Kunth Combretum fruticosum (Loefl.) Stuntz Tradescantia discolor L' Hér Tradescantia zebrina Bosse var. zebrina Ipomoea orizabensis (Pelletan) Ledeb. Ex Steud. Ipomoea pauciflora M. Martens & Galeotti	Ap Wp Lv Rt Ap Lv Rb Ap Rt Sd	MeOH H ₂ O Hex MeEtAco Aco EtOH DCM BuOH PE EtOAc MeOH H ₂ O EtOH:Chl MeOH Chl EtOH Chl	NA (HCT-15), NA (KB), NA (UISO) 3.2 (KB) 25 (PC-3M) 25 (PC-3M) 18.2 (UISO), 14.2 (HCT-15), 12.6 (OVCAR-5) NA (Neuro-2A) 0.7 (KB) 10.2 (KB) 0.76 (HCT-15), 0.004 (KB), 0.006 (UISO) 2.4 (HCT-15), 4.0 (KB), 3.1 (UISO) 1.9 (HCT-15), 10.9 (KB), NA (UISO) 2.6 (KB) NA (KB) NA (MDCK), NA (KB), NA (Hep-2), NA (HeLa), NA (SiHa) NA (MDCK), NA (KB), NA (Hep-2), NA (HeLa), NA (SiHa) NA (KB), NA (Caco-2) 2.5 (KB) NA (KB), NA (P-388), NA (KB-VI*) NA (KB), NA (P-388) NA (KB), NA (P-388)	Xu et al. (2007) Rios et al. (2001) Mazzio and Soliman (2009) Ankli et al. (2002) Popoca et al. (1998) Abbott et al. (1966) Mena-Rejon et al. (2009) Frei et al. (1998) Hernández-Carlos et al. (199 Villarreal et al. (1992)
Caprifoliaceae Caricaceae Celastraceae Combretaceae Commelinaceae	Backeb. Lobelia laxiflora Kunth Valeriana sorbifolia Kunth Viburnum jucundum C. V. Morton Carica papaya L. Crossopetalumgaumeri (Loes.) Lundell Hippocratea excelsa Kunth Combretum fruticosum (Loefl.) Stuntz Tradescantia discolor L' Hér Tradescantia zebrina Bosse var. zebrina Ipomoea orizabensis (Pelletan) Ledeb. Ex Steud. Ipomoea pauciflora M. Martens & Galeotti Ipomoea wolcottiana subsp. wolcottiana	Ap Ap WP Lv Rt Ap Lv Rb Ap Rt Sd	MeOH H ₂ O Hex MeEtAco Aco EtOH DCM BuOH PE EtOAc MeOH H ₂ O EtOH:Chl MeOH Chl EtOH Chl	NA (HCT-15), NA (KB), NA (UISO) 3.2 (KB) 25 (PC-3M) 25 (PC-3M) 18.2 (UISO), 14.2 (HCT-15), 12.6 (OVCAR-5) NA (Neuro-2A) 0.7 (KB) 10.2 (KB) 0.76 (HCT-15), 0.004 (KB), 0.006 (UISO) 2.4 (HCT-15), 4.0 (KB), 3.1 (UISO) 1.9 (HCT-15), 10.9 (KB), NA (UISO) 2.6 (KB) NA (KB) NA (MDCK), NA (KB), NA (Hep-2), NA (HeLa), NA (SiHa) NA (MDCK), NA (KB), NA (Hep-2), NA (HeLa), NA (SiHa) NA (KB), NA (Caco-2) 2.5 (KB) NA (KB), NA (P-388), NA (KB-VI*) NA (KB), NA (P-388) NA (KB), NA (P-388) NA (KB), NA (P-388) NA (KB), NA (P-388)	Xu et al. (2007) Rios et al. (2001) Mazzio and Soliman (2009) Ankli et al. (2002) Popoca et al. (1998) Abbott et al. (1966) Mena-Rejon et al. (2009) Frei et al. (1998) Hernández-Carlos et al. (1999) Villarreal et al. (1992)
Caprifoliaceae Caricaceae Celastraceae Combretaceae Commelinaceae Convolvulaceae	Backeb. Lobelia laxiflora Kunth Valeriana sorbifolia Kunth Viburnum jucundum C. V. Morton Carica papaya L. Crossopetalumgaumeri (Loes.) Lundell Hippocratea excelsa Kunth Combretum fruticosum (Loefl.) Stuntz Tradescantia discolor L' Hér Tradescantia zebrina Bosse var. zebrina Ipomoea orizabensis (Pelletan) Ledeb. Ex Steud. Ipomoea pauciflora M. Martens & Galeotti	Ap Wp Lv Rt Ap Lv Rb Ap Rt Sd	MeOH H ₂ O Hex MeEtAco Aco EtOH DCM BuOH PE EtOAc MeOH H ₂ O EtOH:Chl MeOH Chl EtOH Chl	NA (HCT-15), NA (KB), NA (UISO) 3.2 (KB) 25 (PC-3M) 25 (PC-3M) 18.2 (UISO), 14.2 (HCT-15), 12.6 (OVCAR-5) NA (Neuro-2A) 0.7 (KB) 10.2 (KB) 0.76 (HCT-15), 0.004 (KB), 0.006 (UISO) 2.4 (HCT-15), 4.0 (KB), 3.1 (UISO) 1.9 (HCT-15), 10.9 (KB), NA (UISO) 2.6 (KB) NA (KB) NA (MDCK), NA (KB), NA (Hep-2), NA (HeLa), NA (SiHa) NA (MDCK), NA (KB), NA (Hep-2), NA (HeLa), NA (SiHa) NA (KB), NA (Caco-2) 2.5 (KB) NA (KB), NA (P-388), NA (KB-VI*) NA (KB), NA (P-388) NA (KB), NA (P-388)	Xu et al. (2007) Rios et al. (2001) Mazzio and Soliman (2009) Ankli et al. (2002) Popoca et al. (1998) Abbott et al. (1966) Mena-Rejon et al. (2009) Frei et al. (1998) Hernández-Carlos et al. (1992) Villarreal et al. (1992) León et al. (2006) Vega-Avila et al. (2009) Villavicencio-Nieto et al.
Campanulaceae Caprifoliaceae Caricaceae Celastraceae Combretaceae Commelinaceae Convolvulaceae Cucurbiataceae Cucurbiataceae	Backeb. Lobelia laxiflora Kunth Valeriana sorbifolia Kunth Viburnum jucundum C. V. Morton Carica papaya L. Crossopetalumgaumeri (Loes.) Lundell Hippocratea excelsa Kunth Combretum fruticosum (Loefl.) Stuntz Tradescantia discolor L' Hér Tradescantia zebrina Bosse var. zebrina Ipomoea orizabensis (Pelletan) Ledeb. Ex Steud. Ipomoea pauciflora M. Martens & Galeotti Ipomoea wolcottiana subsp. wolcottiana Ibervillea sonorae (S. Watson) Greene	Ap Ap Wp Lv Rt Ap Lv Rb Ap Rt Sd	MeOH H ₂ O Hex MeEtAco Aco EtOH DCM BuOH PE EtOAc MeOH H ₂ O EtOH:Chl MeOH Chl EtOH Chl PE Chl H ₂ O	NA (HCT-15), NA (KB), NA (UISO) 3.2 (KB) 25 (PC-3M) 25 (PC-3M) 18.2 (UISO), 14.2 (HCT-15), 12.6 (OVCAR-5) NA (Neuro-2A) 0.7 (KB) 10.2 (KB) 0.76 (HCT-15), 0.004 (KB), 0.006 (UISO) 2.4 (HCT-15), 4.0 (KB), 3.1 (UISO) 1.9 (HCT-15), 10.9 (KB), NA (UISO) 2.6 (KB) NA (KB) NA (MDCK), NA (KB), NA (Hep-2), NA (HeLa), NA (SiHa) NA (MDCK), NA (KB), NA (Hep-2), NA (HeLa), NA (SiHa) NA (KB), NA (Caco-2) 2.5 (KB) NA (KB), NA (P-388), NA (KB-VI*) NA (KB), NA (P-388)	Xu et al. (2007) Rios et al. (2001) Mazzio and Soliman (2009) Ankli et al. (2002) Popoca et al. (1998) Abbott et al. (1966) Mena-Rejon et al. (2009) Frei et al. (1998) Hernández-Carlos et al. (1999) Villarreal et al. (1992) León et al. (2006) Vega-Avila et al. (2009)

Table 2 (Continued)

Family	Scientific name	Plant part	Extract	ED ₅₀ μg/ml (cell line)	Reference
	Diospyros tetrasperma Sw.	Lv	DCM	NA (KB)	Ankli et al. (2002)
Euphorbiaceae	Croton reflexifolius Kunth	Lv	DCM	NA (KB)	Ankli et al. (2002)
	Euphorbia pulcherrima (Willd.) Klotzsch	Ap	H ₂ O	NA (KB)	Abbott et al. (1966), Villarreal et al. (1992)
		Fw	EtOH Chl	NA (KB), NA (P-388), NA (KB-VI*) NA (KB), NA (P-388)	,
	Jatropha gaumeri Greenm.	Rt	PE DCM	NA (KB), NA (P-388) 7.8 (KB)	Ankli et al. (2002)
			BuOH	NA (KB)	
	Jatropha neopauciflora Pax	Bk	Chl:MeOH	NA (U-251), NA (K-562)	García and Delgado (2006)
Ericaceae	Comarostaphylis polifolia (Kunth) Zucc. Ex Klotzsch	Ap	H ₂ O	3.3 (KB)	Abbott et al. (1966)
Fabaceae	Acaciella angustissima (Mill.) Britton & Rose	Lv	EtOH:Chl MeOH	NA (KB) NA (MDCK), NA (KB), NA (Hep-2), NA (HeLa), NA (SiHa)	Mena-Rejon et al. (2009)
		Sb		NA (MDCK), NA (KB), NA (Hep-2), NA (HeLa), NA (SiHa)	
		Rb		NA (MDCK), NA (KB), NA (Hep-2), NA (HeLa), NA (SiHa)	
	Acacia pennatula (Schltdl. & Cham.) Benth.	Bk	PE	NA (HCT-15), 20.9 (KB), 16.6 (UISO)	Popoca et al. (1998)
	benen.		EtOAc	NA (HCT-15), 17.4 (KB), 25.1 (UISO)	
	Albinia a saidantalia Duan da saa	۸	MeOH	NA (HCT-15), NA (KB), 10 (UISO)	Alphant at al. (1000)
	Albizia occidentalis Brandegee	Ap	H ₂ O EtOH:Chl	5.1 (KB) NA (KB)	Abbott et al. (1966)
	Bauhinia divaricata L.	Lv	DCM	NA (KB)	Ankli et al. (2002), Abbott et a
		Ар	H ₂ O	NA (KB)	(1966)
	Caesalpinia gaumeri Greenm	Ар	H ₂ O	8.1 (KB)	Abbott et al. (1966)
	Dalea carthagenensis var. barbata (Oerst.) Barneby	Lv	DCM	NA (KB)	Ankli et al. (2002)
	Dialium guianense (Aubl.) Sandwith	Bk	EtOH	6.6 (KB)	Abbott et al. (1966)
	Havardia albicans (Kunth) Britton &	Lv	H ₂ O MeOH	NA (KB) 28 (MDCK), NA (KB), NA (Hep-2), NA	Mena-Rejon et al. (2009)
	Rose	Sb		(HeLa), 27 (SiHa) NA (MDCK), NA (KB), NA (Hep-2), NA	
		Rb		(HeLa), 23.5 (SiHa) NA (MDCK), NA (KB), NA (Hep-2), NA(HeLa), 25 (SiHa)	
	Leucaena leucocephala (Lam.) de Wit subsp. leucocephala	Ap	EtOH	2.8 (KB)	Abbott et al. (1966)
	Mimosa tenuiflora (Willd.) Poir.	Sb	EtOH Chl PE	NA (KB), 18.5 (P-388), NA (KB-VI*) NA (KB), 9.0 (P-388), NA (KB-VI* NA (KB), NA (P-388), NA (KB-VI*	Villarreal et al. (1992)
	Phaseolus acutifolius A. Gray Phaseolus vulgaris L.	Sd Sd	Chl:MeOH MeOH	NA (HeLa) 14.7 (HeLa)	García-Gasca et al. (2002) Aparicio-Fernández et al.
	Thabeerab Valgario 21	Su		· ··· (rieza)	(2006)
	Piscidia piscipula (L.) Sarg.	Lv	BuOH and DCM	NA (KB)	Ankli et al. (2002)
	Pithecellobium unguis-cati (L.) Benth.	Ap	H ₂ O	5.0 (KB)	Abbott et al. (1966)
	Senna occidentalis (L.) H. S. Irwin &	Lv	EtOH:Chl EtOH	2.2 (KB) 4.2 (MCF-7), 5.4 (H-460), 3.9 (SF-268)	Calderon et al. (2006)
	Barneby Senna racemosa (Mill) H.S. Irwin &	Lv	МеОН	NA (MDCK), NA (KB), NA (Hep-2), NA	Mena-Rejon et al. (2009)
	Barneby	Sb		(HeLa), 28 (SiHa) NA (MDCK), NA (KB), NA (Hep-2), NA	
		Rb		(HeLa), NA (SiHa) NA (MDCK), NA (KB), NA (Hep-2), NA	
	Vachellia campechiana (Mill.) Seigler &	Ар	EtOH	(HeLa), NA (SiHa) 3.7 (KB)	Abbott et al. (1966)
Hypericaceae	Ebinger Hypericum silenoides Juss. subsp.	Lv	EtOH	9.8 (MCF-7), NA (H-460), 6.4 (SF-268)	Calderon et al. (2006)
J.F. T. Touceuc	silenoides	=-	Chl	3.2 (MCF-7), 5.5 (H-460), 7.2 (SF-268)	
Krameriaceae	Krameria pauciflora DC.	Ap	EtOH	NA (KB), NA (Caco-2)	Frei et al. (1998)
Lamiaceae	Hyptis pectinata (L) Poit	Ар	Chl	2.2 (P-388)	Pereda-Miranda et al. (1993)
	Hyptis suaveolens (L.) Poit	Rt Sm	Chl	12.3(KB), 12.7 (HF-6), 0.8 (MCF-7) NA (KB), 9.9 (HF-6), 5.2 (MCF-7)	Lautié et al. (2008)
		Lv		NA (KB), 14.9 (HF-6), 4 (MCF-7)	
Lauraceae	Hyptis verticillata Jacq. Persea americana Mill	Ap Ft	Hex:Chl EtOH:CHl	0.3 (P-388) NA (A-549), NA (MCF-7), NA (HT-29),	Novelo et al. (1993) Oberlies et al. (1998)
Linaceae	Linum scabrellum Planch.	Rt	Chl	6.9 (A-498), 3.1 (PC-3), NA (PaCa-2) 0.2 (KB), 0.2 (HF-6), 4.8 (MCF-7)	Lautié et al. (2008)
		Ap	P. OH	0.2 (KB), 0.2 (HF-6), 4.8 (MCF-7)	
Lythraceae	Cuphea aequipetala Cav.	Rt Wp	BuOH Aco-H ₂ O	0.2 (KB), 0.2 (HF-6), 4.8 (MCF-7) NA (Hep-2), 18.7 (HCT-15), 8.1 (DU-145)	Vega-Avila et al. (2004), Waizel-Bucay et al. (2003),

Table 2 (Continued)

Family	Scientific name	Plant pa	rExtract	ED ₅₀ μg/ml (cell line)	Reference
<u> </u>		Ap	МеОН	NA (KB), 17.4 (UISO), NA (COLADCAR), NA	
			T: O A	(HCT-15)	
			EtOAc	NA (KB), NA (UISO), NA (COLADCAR), NA	
			HEX	(HCT-15) NA (KB), NA (UISO), NA (COLADCAR), NA	
			TILX	(HCT-15)	
		Lv	EtOH	NA (KB), 18.5 (P-388), NA (KB-VI*)	
			Chl	NA (KB), 9.0 (P-388), NA (KB-VI*)	
			PE	NA (KB), NA (P-388), NA (KB-VI*)	
oranthaceae	Cladocolea grahamii (Benth.) Tieg.	Sm	MeOH	NA (OVCAR), NA (KB), NA (P-388), NA	Waizel-Bucay et al. (1994)
				(UISO), NA (HCT-15)	
		lv		NA (OVCAR), NA (KB), 3.0 (P-388), NA	
		If		(UISO), NA (HCT-15) NA (OVCAR), NA (KB), NA (P-388), NA	
		11		(UISO), NA (HCT-15)	
		Sm	Hex	10.0 (OVCAR), 5.0 (KB), 3.0 (P-388), NA	
				(UISO), NA (HCT-15)	
		lv		NA (OVCAR), NA (KB), NA (P-388), NA	
				(UISO), NA (HCT-15)	
		If		1.0 (OVCAR), NA (KB), 1.8 (P-388), NA	
		_		(UISO), NA (HCT-15)	
	Psittacanthus calyculatus (DC.) G. Don	•	EtOH	27.8 (KB), NA (Caco-2)	Frei et al. (1998)
Malpighiaceae	Galphimia glauca Cav.	Lv	EtOH	NA (KB), NA (UISO), NA (OVCAR-5), 0.63	Aguilar-Santamaría et al. (2007), Camacho et al. (2003)
			MeOH	(COLON) NA (KB), NA (UISO), NA (OVCAR-5), 0.5	(2007), Calliacilo et al. (2003
			1416011	(COLON)	
			H ₂ O	NA (KB), NA (UISO), NA (OVCAR-5), 1.99	
			2 -	(COLON)	
		ap	MeOH	NA (KB)	
			H ₂ O	NA (KB)	
Malvaceae	Gossypium hirsutum L.	Lv	MeOH	NA (MDCK), NA (KB), NA (Hep-2), NA	Mena-Rejon et al. (2009)
		C1.		(HeLa), NA (SiHa)	
		Sb		NA (MDCK), NA (KB), NA (Hep-2), 20 (HeLa), NA (SiHa)	
		Rb		NA (MDCK), NA (KB), NA (Hep-2), NA	
		RD		(HeLa), NA (SiHa)	
	Luehea alternifolia (Mill.) Mabb.	Lv	BuOH	NA (KB)	Ankli et al. (2002)
Meliaceae	Swietenia humilis Zucc.	Bk	MeOH	11.48 (KB)	Camacho et al. (2003)
	Swietenia macrophylla King	Bk	MeOH	NA (KB)	Camacho et al. (2003)
		Lv		24 (KB)	
Moraceae	Dorstenia contrajerva L.	Rh	BuOH and DCM	NA (KB)	Ankli et al. (2002)
Acomba and a	Dorstenia drakena L.	Rt	EtOH	NA (KB), NA (Caco-2)	Frei et al. (1998)
Myrtaceae	Psidium guajava L.	Ap	H ₂ O	3.8 (KB)	Abbott et al. (1966), Villarrea et al. (1992)
			EtOH	NA (KB), 7.6 (P-388), NA (KB-VI*)	Ct al. (1932)
			Chl	7.9 (KB), 12.0 (P-388), NA (KB-VI*)	
			PE	10.0 (KB), 12.5 (P-388), NA (KB-VI*)	
	Psidium sartorianum (O. Berg) Krug &	Lv	BuOH and DCM	NA (KB)	Ankli et al. (2002)
	Urb.				
Orchidaceae	Stenorrhynchos lanceolatus (Aubl.) L.	Ap	MeOH	NA (KB)	Camacho et al. (2003)
	C. Rich.			NIA (IZD)	
	Vanilla planifolia Andrews	D+	H ₂ O	NA (KB)	Maggio and Coliman (2000)
Papavaraceae	Vanilla planifolia Andrews Bocconia frutescens L.	Rt Lv	EtOH EtOH	NA (Neuro-2A) NA (MCF-7), NA (H-460), NA (SF-268)	Mazzio and Soliman (2009) Calderon et al. (2006)
Phytolaccaceae	Petiveria alliacea L.	Lv Lv	H ₂ O	NA (U-251), NA (PC-3), NA (K-562), NA	Perez-Leal et al. (2006),
	- Derrotta amacea E.		2	(HCT-15), NA (MCF-7)	Calderon et al. (2006)
			EtOH	22 (MCF-7), 22 (H-460), NA (SF-268)	
Picramniaceae	Alvaradoaamorphoides Liebm.	Lv	DCM	10 (KB)	Ankli et al. (2002)
			BuOH	14 (KB)	
	Castela tortuosa Liebm.	Wp	EtOH	8.7 (KB), 0.002 (P-388), NA (KB-VI*)	Villarreal et al. (1992)
			Chl	NA (KB), NT (P-388), NA (KB-VI*)	
	Digrammia antidanna anti-	Dh	PE Et O	NA (KB), NA (KB-VI*)	Hornándos Madal 4
	Picramnia antidesma subsp. fessonia (DC.) W. W. Thomas	Rb	Et ₂ O	$9.7 \times 10^{-4} \text{ (KB)}$	Hernández-Medel and Pereda-Miranda (2002)
	(DC.) VV. VV. HIUHIIdS		MeOH	>0.02 (KB)	i cicua-iviii aiiua (2002)
ricrodendraceae	Piranhea mexicana	Lv	MeOH	NA (KB)	Camacho et al. (2003)
.croacharactat	(Standl.) RadclSm.		H ₂ O	NA (KB)	camacino et an (2003)
inaceae	Pinus patula Schltdl. &	Bk	H ₂ O	4.1 (KB)	Abbott et al. (1966)
	Cham.	Ap		NA (KB)	/
Piperaceae	Piper aduncum L.	Lv	EtOH	27 (MCF-7), 25 (H-460), 23 (SF-268)	Calderon et al. (2006)
lumbaginaceae	Plumbago pulchella Boiss.	Ap	EtOH	NA (KB), NA (P-388)	Villarreal et al. (1992)
			Chl	NA (KB), NA (P-388)	
			PE	NA (P-388)	
			EtOH	NA (KB-VI*)	
			Chi	NIA (IZD NIX)	
			Chl	NA (KB-VI*)	
		Rt	Chl PE EtOH	NA (KB-VI*) NA (KB), 12.5 (P-388) 19 (KB), 2.5 (P-388)	

Table 2 (Continued)

Family	Scientific name	Plant part	Extract	ED ₅₀ μg/ml (cell line)	Reference
			Chl	NA (KB), NA (P-388)	
Poaceae	Zea mays L	Wp	EtOH	NA (Neuro-2A)	Mazzio and Soliman (2009)
Polypodiaceae	Microgramma nitida (J. Sm.) A. R. Sm.	Wp	BuOH	NA (KB)	Ankli et al. (2002)
Primulaceae	Bonellia macrocarpa subsp. pungens (A. Gray) B. Stahl & Kâllersjô	Ap	H ₂ O	NA (KB)	Abbott et al. (1966), Del Amo (1979)
			EtOH:Chl	5 (KB)	
Rhamnaceae	Colubrina macrocarpa (Cav.) G. Don	Rt	PE	10 (HCT-15), 6.6 (KB), NA (UISO)	Popoca et al. (1998)
			EtOAc	2.1 (HCT-15), 5.8 × 10 ⁻⁶ (KB), 0.6 (UISO)	
			MeOH	9.1 (HCT-15), 6.3 × 10 ⁻⁴ (KB), 0.08 (UISO)	
Rizhophoraceae	Rhizophora mangle L.	Lv	MeOH	NA (MDCK), NA (KB), NA (Hep-2), 16	Mena-Rejon et al. (2009)
		sb		(HeLa), 18 (SiHa) NA (MDCK), NA (KB), NA (Hep-2), 17	
		rb		(HeLa), 22 (SiHa) NA (MDCK), NA (KB), NA (Hep-2), 16	
Rubiacaeae	Hamelia patens Jacq.	Lv	MeOH	(HeLa), 21 (SiHa) NA (MDCK), NA (KB), NA (Hep-2), NA	Mena-Rejon et al. (2009)
		Sb	MeOH	(HeLa), NA (SiHa) NA (MDCK), NA (KB), NA (Hep-2), NA	• • • •
				(HeLa), NA (SiHa)	
	W	Rb	MeOH	NA (MDCK), NA (KB), NA (Hep-2), 13 (HeLa), 22 (SiHa)	A B 1 (2005)
	Hintonia latiflora (Sessé & Moc. Ex DC.) Bullock	Sb	EtOAc	NA (KB), NA (P388), NA (UISO)	Argotte-Ramos et al. (2006), Camacho et al. (2003)
			MeOH	NA (KB)	
		Bk	H ₂ O	NA (KB)	
	Morinda royoc L.	Ft	DCM	NA (KB)	Ankli et al. (2002)
	Nernstia mexicana (Zucc. & Mart. ex DC.) Urb.	Ap	MeOH	13.04 (KB)	Camacho et al. (2003)
Rutaceae	Casimiroa tetrameria Millsp.	Lv	DCM	NA (KB)	Ankli et al. (2002)
Salicaceae	Casearia nitida (L.) Jacq	Lv	DCM	NA (KB)	Ankli et al. (2002)
Sapotaceae	Chrysophyllum mexicanum Brandegee ex Standl.	Rt	BuOH	NA (KB)	Ankli et al. (2002)
	Manilkara zapota (L.) Van Royen	Ft	MeOH	NA (HCT-116), NA (SW-480)	Ma et al. (2003)
Smilacaceae	Smilax aristolochiifolia Mill.	Rt	EtOH	NA (Neuro-2A)	Mazzio and Soliman (2009)
Solanaceae	Capsicum annum L.	Lv	EtOH	NA (Neuro-2A)	Mazzio and Soliman (2009)
	Cestrum nocturnum L.	Lv	EtOH	21 (MCF-7), 15 (H-460), 20 (SF-268)	Calderon et al. (2006)
	Solanum chrysotrichum Schltdl.	Lv	EtOH Chl	NA (KB), NA (P-388), NA (KB-VI*) NA (KB), NA (P-388), NA (KB-VI*)	Villarreal et al. (1992)
		_	PE	NA (KB), NA (P-388), NA (KB-VI*)	
	Solanum lanceolatum Cav.	Lv	EtOH	NA (KB), NA (Caco-2)	Frei et al. (1998)
	Solanumrostratum Dun.	Br	EtOH	NA (HeLa)	Villavicencio-Nieto et al. (2008)
Verbenaceae	Citharexylum ellipticum D. Don	Ap	H ₂ O	6.2 (KB)	Abbott et al. (1966)
	Lantana involucrata L.	Ap	H ₂ O	4.1 (KB)	Abbott et al. (1966)
	Lantana urticifolia Mill	Δp	EtOH:Chl	5 (KB)	Abbott at al. (1066)
Viscacaaa	Lantana urticifolia Mill.	Ap Ap	H ₂ O	5.0 (KB) NA (KB) NA (Caco-2)	Abbott et al. (1966)
Viscaceae	Phoradendron galeottii Trel	Ap Sm	EtOH MeOH	NA (KB), NA (Caco-2) NA (OVCAR) NA (KB) NA (P-388) NA	Frei et al. (1998) Waizel-Rucay et al. (1994)
	Phoradendron galeottii Trel.	Sm	MeOH	NA (OVCAR), NA (KB), NA (P-388), NA (UISO), NA (HCT-15)	Waizel-Bucay et al. (1994)
		lv		NA (OVCAR), NA (KB), 3.0 (P-388), NA (UISO), NA (HCT-15)	
		If		NA (OVCAR), NA (KB), NA (P-388), NA (UISO), NA (HCT-15)	
		Sm	Hex	9.0 (OVCAR), NA (KB), NA (P-388), 8.0 (UISO), NA (HCT-15)	
		lv		NA (OVCAR), NA (KB), 5.0 (P-388), NA (UISO), NA (HCT-15)	
		If		NA (OVCAR), NA (KB), 10.0 (P-388), NA (UISO), NA (HCT-15)	
	Phoradendron reichenbachianum	Sm	MeOH	NA (OVCAR), NA (KB), 3.0 (P-388), NA	Waizel-Bucay et al. (1994)
	(Seem.) Oliver	lv		(UISO), NA (HCT-15) NA (OVCAR), NA (KB), NA (P-388), NA	
		If		(UISO), NA (HCT-15) NA (OVCAR), NA (KB), NA (P-388), NA	
		Sm	Hex	(UISO), NA (HCT-15) NA (OVCAR), NA (KB), 3.0 (P-388), NA	
		1		(UISO), NA (HCT-15) NA (OVCAR), NA (KB), 5.0 (P-388), NA	
		lv		141 (OVC/11K), 141 (RD), 5.0 (1-500), 141	
		If		(UISO), NA (HCT-15)	

Table 2 (Continued)

Family	Scientific name	Plant part	Extract	ED ₅₀ μg/ml (cell line)	Reference
Zamiaceae	Dioon spinulosum Dyer ex Eichl	Lv	MeOH	NA (MDCK), NA (KB), NA (Hep-2), NA (HeLa), NA (SiHa)	Mena-Rejon et al. (2009)
		Pt		NA (MDCK), NA (KB), 20 (Hep-2), NA (HeLa), NA (SiHa)	
Zygophyllaceae	Larrea tridentata (DC.) Cav.	Wp	EtOH	NA (Neuro-2A)	Mazzio and Soliman (2009)

Nature of the extracts: BuOH, butanol; Chl, chloroform; DCM, dichloromethane; EtoAc, ethyl acetate; EtoH, ethanol; Hex, hexane; H₂O, aqueous; MeOH, methanol; MeEtAco, methy ethyl acetone; PE, petroleum ether; Aco, acetone; Et₂O dy ethyl ether.

Plant part used: Ap, aerial parts; Bl, bulbs; Br, branches; Bk, bark; Ft, fruits; If, influoresnce; Lv, leaves; Pt, petiole; Rb, root bark; Rh, rhizomes; Rt, roots; Sb, stem bark; Sd, seeds; Sm, stem; Tb, tubercle; Wp, whole plant.

Cell lines: 1301, lymphoblastic leukemia; A-498, human kidney carcinoma; A-549, human lung carcinoma; Caco-2, human epithelial colorectal adenocarcinoma; COLON, colon carcinoma; DU-145, prostate carcinoma; H-460, human large cell lung carcinoma; HCT-15 COLADCAR, adherent colon carcinoma; HCT-116, human colorectal carcinoma; HeLa, cervix adenocarcinoma; Hep-2, laryngeal carcinoma, HepG2, hepatocarcinoma; HF-6, human colon carcinoma; HT-29, human colon adenocarcinoma; HT1080, human fibrosarcoma; K-562, chronic myeloblastic leukemia, KB, human nasopharynx carcinoma; L5178Y-R, murine lymphoma; L929, mouse fibroblasts; MDCK, canine kidney cells, MCF-7, human breast carcinoma; Neuro-2a, mouse neuroblastoma, P-388, mouse leukemia; PACA-2, human pancreatic carcinoma; PC-3, human prostate adenocarcinoma; SY-480, colon adenocarcinoma; T47D, breast cancer; U251, human glioma; U937, human leukemic monocyte lymphoma, UISO-SQC-1, squamous cervix carcinoma; OVCAR, ovary carcinoma; SiHa, cervix squamous carcinoma.

VI*, denotes drug resistance.

have been studied *in vitro* and *in vivo* (Tables 1–6). Another 119 plants were recorded which are used for empirical treatment of diseases with cancer symptomatology without scientific studies (Table 7). The botanical correct names were corroborated at Missouri Botanical Garden-Tropicos (2010) and International Plant Names Index (2008). In some cases the plant names were updated on their taxonomy and nomenclature.

From plants with scientific reports (181), only 114 of these are employed for the empirical treatment of cancer (Table 1), whereas ethnobotanical knowledge for cancer treatment is lacking for 67 of these (Table 1). Plants in the last group are used popularly to treat some other diseases, and all of them have also been subjected to laboratory evaluations including cytotoxic analysis.

From those plants with empirical knowledge for cancer treatment (Table 1A), 75 present active effects, whereas the remaining 39 lack activity. On the other hand, from plants with no traditional knowledge for cancer treatment (Table 1B), 33 present activity and 34 lack effects. The criteria to indicate activity refers to plants from which their extracts and/or isolated compounds have shown *in vitro* or *in vivo* effects according to Suffness and Pezzuto (1990).

Considering only data of Table 1A in which 73% of the listed plants were active, ethnobotanical information appears to contribute for the selection of candidates; but when reviewing those data presented in Table 1B in which up to 49% of the plants (not used to treat conditions consistent with cancer symptomatology) were active, it appears that folklore tradition might not be precisely a good basis for the selection of candidates. In addition, it is important to underline that less than 10% of the plants included in Tables 1A and 1B were subjected to *in vivo* studies and, as pointed in Section 5, many of the plants showing cytotoxicity could be eliminated as potential candidates when assayed in animal models. It is also interesting to point out that many of the plants in Table 1B are empirically employed for dermatological and inflammatory conditions.

The ethnomedical categories proposed by Heinrich et al. (1998) were used in this review (see Tables 1 and 7). Gatrointestinal disorders include vomiting, diarrhea, stomach ache, dysentery, gastritis, peptic, and gastric ulcers. Respiratory illnesses refer to cough, tuberculosis, pneumonia, cold, flu and asthma. Inflammatory diseases consist of wounds and rheumatism. Dermatological diseases include prevention of hair loss, itch, skin ulcers, abscesses, cicatrization, burns, wart, bruises and injuries caused by venomous creatures. Venereal diseases refer to gonorrhea, syphilis and other diseases. Gynecological disorders include vaginal infections, ovarian and uterine cancer. Urological problems refer to kidney stones, diabetes, kidney and bladder infections. Finally, neurological disorders include anxiety and epilepsy.

5. Plant extracts with in vitro and in vivo studies

Of those plant extracts with cytotoxic studies (Tables 1A and 1B), only 88 (56%) have demonstrated active effects in at least one cancer cell line (Table 2). However, this number might be overestimated since, in general, negative results are published only if a screening of cytotoxic effects of many plants extract is carried out, and thus plant extracts without active cytotoxic effects are not reported. Fourteen plant extracts with active cytotoxic effects have been tested in vivo. Although there is not a criterion to indicate that a plant extract presents active anti-tumor effects, tumor inhibitory growth and survival time are the most common strategies to evaluate anti-tumor action. From extracts presented in Table 3, only the aqueous extract of Albizia occidentalis aerial parts induced 49% tumor inhibitory growth in Swiss mice bearing sarcoma 180 cells at doses less than 100 mg/kg. The rest of the extracts induce, in some cases, tumor inhibitory growth higher than 50% but tested at doses above 100 mg/kg (Table 3). Toxicity in vitro does not necessarily translate to in vivo activity. This situation has been explained by the fact that the active principles of an extract could be metabolized and/or detoxified in the animal, and in consequence looses the possible antineoplasic effects.

Chemotaxonomic studies might provide an alternative way to find active compounds. As an example, McKee et al. (1998) analyzed 315 organic extracts from 31 taxa of *Calophyllum* genus to obtain related pyranocoumarins, a class of nonnucleoside specific inhibitors of HIV-1 reverse transcriptase. Of the analyzed extracts, 25% were identified as positive for pyranocoumarins.

In our study, the botanical families with the highest number of plant species that have shown antineoplasic effects *in vitro* and *in vivo* are: Asteraceae (34), Fabaceae (19), Lamiaceae (7) and Convolvulaceae (6). Although the Asteraceae family possesses the highest number of plant extracts studied experimentally, only *Gymnosperma glutinosum*, *Helianthella quinquenervis*, *Heterotheca inuloides*, *Melampodium paniculatum*, *Montanoa leucantha*, *Smallanthus maculatus*, *Verbesina persicifolia* and *Viguiera decurren*, have been shown to exert active cytotoxic effects (Table 2).

6. Compounds with in vitro and in vivo studies

The isolation of active compounds is a crucial step for finding new anti-cancer drugs. Many Mexican plant extracts with active cytotoxic effects have been studied and a great variety of compounds (terpenes, glycosides, lignans, acetogenins) have been isolated (Tables 4–6). A total of 187 compounds, belonging to 19 types of plant secondary metabolites, have been isolated from 51 plant extracts with active cytotoxic effects, and of

Table 3 Anti-tumor effects of Mexican plant extracts.

Family	Scientific name	Plant part	Extract	Animal system	Dose (mg/kg)	Route of administration	Time (days)	Tumor system (tumor inhibition, %)	Reference
Asteraceae	Gymnosperma	Lv	Hex	BALB/c mice	5	It	19	DBA/2 lymphoma (20)	Gomez-Flores et al. (2009
	glutinosum (Spreng.) Less.			BALB/c mice	0.5	Iv		DBA/2 lymphoma (31)	
Betulaceae	Alnus jorullensis	Ap	H_2O	Swiss mice	175	Ip	6	Sarcoma 180 (18)	Abbott et al. (1966)
	Kunth subsp.	•	_	BDF1 mice	250	Īр		Lymphoid leukemia 1210 (NA)	, ,
	jorulensis			Syrian hamsters	175	Гр		Adenocarcinoma of the duodenum (58)	
Bixaceae	Cochlospermum	Ft	H_2O	Swiss mice	140	Ip	8	Sarcoma 180 (12)	Abbott et al. (1966)
	vitifolium			BDF1 mice	112	Īр		Lymphoid leukemia 1210 (NA)	
	(Willd.) Spreng.			BDF1 mice	112	Ip		Solid friend virus leukemia (46)	
Combretaceae	Combretum	Ft	H_2O	Swiss mice	70	Ip	8	Sarcoma 180 (45)	Abbott et al. (1966)
	fruticosum			BDF1 mice	112	Ip		Lymphoid leukemia 1210 (NA)	
	(Loefl.) Stuntz			BDF1 mice	112	Ip		Solid friend virus leukemia (57)	
Fabaceae	Acacia	Ap	EtOH	Swiss mice	125	Ip	8	Sarcoma 180 (NA)	Abbott et al. (1966)
	millenaria			BDF1 mice	57	Ip		Adenocarcinoma 755 (43)	
	Standl.			BDF1 mice	113	Ip		Lymphoid leukemia 1210 (NA)	
	Albizia	Ap	H_2O	Swiss mice	25	Ip	8	Sarcoma 180 (49)	Abbott et al. (1966)
	occidentalis			BDF1 mice	8.0	Ip		Lymphoid leukemia 1210 (NA)	
	Brandegee			Syrian hamsters	18	Ip		Adenocarcinoma of the duodenum (6)	
	Caesalphinia	Ap	H_2O	Swiss mice	125	Ip	8	Sarcoma 180 (50)	Abbott et al. (1966)
	gaumeri	•	_	BDF1 mice	100	Ip		Adenocarcinoma 755 (27)	` ,
	Greenm.			BDF1 mice	25	Īр		Lymphoid leukemia 1210 (NA)	
Lamiaceae	Hyptis emory	Ар	Chl	Sprague rats	400	Ĭm	15	Walker carcinoma 5WA16 (53)	Sheth et al. (1972)
	Torr.	•			600	Im		Walker carcinoma 5WA16 (64)	, ,
Pinaceae	Pinus patula	Bk	H_2O	Swiss mice	32	Ip	8	Sarcoma 180 (13)	Abbott et al., 1966
	Schltdl. &		-	BDF1 mice	26	Ip		Lymphoid leukemia 1210 (NA)	
	Cham.			BDF1 mice	26	Ip		Solid friend virus leukemia (46)	
Verbenaceae	Citharexylum	Ap	H_2O	Swiss mice	250	Īр	8	Sarcoma 180 (53)	Abbott et al., 1966
	ellipticum D.	•	_	BDF1 mice	200	Īр		Solid friend virus leukemia (33)	•
	Don			Syrian hamster	200	ĺр		Adenocarcinoma of the duodenum (59)	
	Lantana	Ap	EtOH:Chl	Swiss mice	125	Ip	8	Sarcoma 180 (43)	Abbott et al. (1966)
	involucrata L.	•		BDF1 mice	100	Ip		Lymphoid leukemia 1210 (NA)	• •
				BDF1 mice	100	Ip		Solid friend virus leukemia (44)	
	Lantana	Ap	H_2O	Swiss mice	125	Ip	8	Sarcoma 180 (23)	Abbott et al. (1966)
	urticifolia Mill.	•	2	BDF1 mice	100	Ip		Solid friend virus leukemia (4)	• • • • • • • • • • • • • • • • • • • •
	•			Syrian hamsters	100	ĺр		Adenocarcinoma of the duodenum (60)	

Nature of the extracts: BuOH, buthanol; Chl, chloroform; DCM, dichloromethane; EtOAc, ethyl acetate; EtOH, ethanol; Hex, hexane; H_2O , aqueous; MeOH, methanol; MeEtAco, methy ethyl acetone; PE, petroleum ether; Aco, acetone; Et_2O , dy ethyl ether.

Plant part used: Ap, aerial parts; Bl, bulbs; Br, branches; Bk, bark; Ft, fruits; If, influoresnce; Lv, leaves; Pt, petiole; Rb, root bark; Rh, rhizomes; Rt, roots; Sb, stem bark; Sd, seeds; Sm, stem; Wp, whole plant. Route of administration: Im, intramuscular; Ip, intraperitoneal; It, intratumoral; Iv, intravenous.

Table 4Cytotoxicity of pure compounds isolated from Mexican plant species.

Anderb.

Family	Scientific name	Plant part	Extract	Compound	Group	ED ₅₀ μg/ml (cell line)	Reference
Agavaceae	Agave americana L.	Lv	BuOH	Hecogenin tetraglycoside	Saponin	NA (HL-60)	Yokosuka et al. (2000)
Anacardiaceae	Amphipterygium adstringens (Schltdl.) Standl.	Bk	Нех	Masticadienonic acid	Terpene	NA (HCT-15), NA (MCF-7), NA (U-251), NA (PC-3), NA (K-562)	Oviedo-Chávez et al. (2004)
				3-α- hydroxymasticadienolic acid	Terpene	NA (HCT-15), NA (MCF-7), NA (U-251), NA (PC-3), NA (K-562)	
Annonaceae	Annona diversifolia Saff.	Sd	Hex	Laherradurin Cherimolin-2	Acetogenin Acetogenin	0.015 (HeLa), 0.015 (SW-480) 0.05 (HeLa), 0.5 (SW-480)	Schlie-Guzmán et al. (2009)
	Mosannona depressa (Baill.) Chatrou	Sb	Chl	1,2,3,4-Tetramethoxy- 5-(2-propenyl)benzene	Glycoside	NA (A-549), NA (MCF-7), NA (HT-29)	Jimenez-Arellanes et al. (1996)
	Rollinia mucosa (Jacq.) Baill.	Lv sd	EtOH:CHI	Rollinecin A	Acetogenin	1.14×10^{-4} (A-549), 1.44 (MCF-7), 1.6 (HT-29), 7.25 × 10^{-4} (A-498), 2.62×10^{-4} (PC-3), 3.47×10^{-5} (PACA-2)	Shi et al. (1997), Chávez et al. (1998), Chávez et al. (1999)
				Rollinecin B	Acetogenin	4.2×10^{-4} (A-549), 2.72 (MCF-7), 1.44 (HT-29), 2.29 × 10^{-4} (A-498), 3.62 × 10^{-4} (PC-3), 2.53 × 10^{-4} (PACA-2)	
				Rollitacin	Acetogenin	NA (A-549), 0.25 (MCF-7), NA(HT-29), NA (A-498), NA (PC-3), NA (PACA-2)	
				Rollinacin	Acetogenin	NA (A-549), NA (MCF-7), NA (HT-29), NA (A-498), 2500 (PC-3), NA (PACA-2)	
				Jimenezin	Acetogenin	0.016 (A-549), NA (MCF-7), 4.25×10^{-3} (HT-29), 4.94×10^{-2} (A-498), 2.77×10^{-4} (PC-3), 1.69×10^{-4} (PACA-2)	
				Membranacin	Acetogenin	0.4 (A-549), 2.18 (MCF-7), 3.04 (HT-29), <10 ⁻³ (A-498), <10 ⁻³ (PC-3), 2.10 (PACA-2)	
				Desacetyluvaricin	Acetogenin	0.47 (A-549), 1.35 (MCF-7), 1.69 (HT-29), <10 ⁻³ (A-498), <10 ⁻³ (PC-3), 1.92 (PACA-2)	
	Helianthella quinquenenervis (Hook) A. Gray	Rt	МеОН	6-Methoxytremetone	Benzofuran	NA (MCF-7), NA (HT-29), 1 (A-549)	Castañeda et al. (1996)
				6-Hydroxy-3- methoxytremetone	Benzofuran	NA (MCF-7), NA (HT-29), NA (A-549)	
				4-β-D- (Glucopyranosyloxy)- 3-(3-methoxy- <i>trans</i> - isopenten-1- yl]acetophenone	Glycoside	NA (MCF-7), NA (HT-29), NA (A-549)	
				Demethylencecalin Euparin	Chromene Benzofuran	2 (MCF-7), 2 (HT-29), NA (A-549) NA (MCF-7), NA (HT-29), NA (A-549)	
				Encecalin	Chromene	NA (MCF-7), NA (HT-29), NA (A-549)	
	Iostephane heterophylla (Cav.) Benth. ex Hemsl.	Roots	Chl	Xanthorrihizol	Terpene	NA (KB), NA (UISO), NA (HCT-15)	Aguilar et al. (2001)
	Parthenium argentatum	Resin		Trachylobanoic acid Argentatin A	Terpene terpene	1.0 (UISO) NA (U-251), NA (PC-3), NA (HCT-15),	Parra-Delgado et al. (2005)
	Gray			Argentatin B	Terpene	NA (MCF-7), NA (K-562) NA (U-251), NA (PC-3), NA (HCT-15), NA (MCF-7), NA (K-562)	
	Pseudognaphalium semiamplexicaule (DC.)	Lv	Нех	Gnaphaliin	Flavonoid	NA (MCF-7), NA (K-562) NA (LLC-MK2), NA (C6)	Sanchez et al. (2001)

Table 4 (Continued)

amily	Scientific name	Plant part	Extract	Compound	Group	ED ₅₀ μg/ml (cell line)	Reference
	Roldana angulifolia (D.C.)H. Rob. &Brettell	Rt	Hex:Aco	Angulifolide	Terpene	NA (U-251), NA (PC-3), NA (K-562), NA (HCT-15), NA (MCF-7), NA (SKLU-1)	Arciniegas et al. (2006)
				13-Acetoxy-14- oxocacalohastin	Terpene	NA (U-251), NA (PC-3), NA (K-562), NA (HCT-15), NA (MCF-7), NA (SKLU-1)	
				13-hydroxy-14- oxocacalohastin	Terpene	NA (U-251), NA (PC-3), NA (K-562), NA (HCT-15), NA (MCF-7), NA (SKLU-1)	
	Roldana sessilifolia (Hook. & Am.) H. Rob. & Brettel	Rt	Hex	1α-angeloyloxy-10βH, 8β hydroxy-eremophyl-	Terpene	NA (KB), NA (P-388), NA (KB-VI*)	Villarreal et al. (199)4
				7(11)-en-8α, 12-olide 1α-Angeloyloxy-10β	Terpene	NA (KB), NA (P-388), NA (KB-VI*)	
				hydroxy-eremophyl- 7(11)-en-8α, 12-olide	тегрене	M(ND), M(1-300), M(ND-V1)	
				1α-Angeloyloxy-10βH, 8β hydroxy-eremophyl-	Terpene	NA (KB), NA (P-388), NA (KB-VI*)	
				7(11)-en-8α, 12-olide			
	Schkuhria schkuhrioides Thell.	Ap	Hex	Frutescin	Terpene	NA (KB), NA (UISO), NA (COLON)	Delgado et al. (1998)
				Schkuhriolide	Terpene	NA (KB), NA (UISO), NA (COLON)	
				Frutescinic acid allo-schkuhriolide	Terpene Terpene	NA (KB), NA (UISO), NA (COLON) 5.7×10^{-4} (KB), 1.82 (UISO), 0.9 (COLON)	
				Epoxyschkuhriolide	Terpene	NA (KB), NA (UISO), NA (COLON)	
	Smallanthus maculatus (Cav.) H. Rob.	Ap	Aco	Ursolic acid	Terpene	3.7 (HCT-15), 3.4 (UISO), 3.6 (OVCAR-5)	Rios and León (2006)
	Viguiera decurrens (A. Gray)	Rt	Hex: EtOAc:MeOH	β-D-glucopyranosyl- oleanolate	Saponin	NA (KB), NA (P-388), NA (OVCAR), NA (COLON), NA (UISO)	Marquina et al. (2001)
				Oleanolic acid-3-0-methyl-β-D- glucuronopyranosidurono	Saponin ate	NA (KB), NA (P-388), NA (OVCAR), NA (COLON), NA (UISO)	
	Viguiera lactibracteata (Hemsl.) Blake	Ap	Chl:Aco	Niveusin-C	Terpene	2.7 (KB), 0.01 (P-388), NA (KB-VI*)	Villarreal et al. (1994)
	Viguiera quinqueradiata (Cav.) A. Gray	Lv	Chl	Budlein A	Terpene	1.0 (KB), 1.0 (P-388), NA (KB-VI*)	Villarreal et al. (1994)
ignoniaceae	Astianthus viminalis (Kunth) Baill.	Lv	MeOH	Campenoside	Glycoside	NA (P-388), NA (KB)	Alvarez et al. (1994)
				5- Hydroxycampenoside	Glycoside	NA (P-388), NA (KB)	
	Tecoma stans (L.) Juss. ex Kunth	Fw and fr	EtOH	4- <i>O</i> -E-caffeoyl- α -l- rhamnopyranosyl- (1 \rightarrow 3)- α /β-D- glucopyranose	Glycoside	NA (Hep-G2), NA (MCF-7), NA (1301)	Marzouk et al. (2006)
				E/Z-acetoside Isoacetoside 5-Hydroxy-	Glycoside Glycoside Alkaloid	NA (Hep-G2), NA (MCF-7), NA (1301) NA (Hep-G2), NA (MCF-7), NA (1301) NA (Hep-G2), NA (MCF-7), NA (1301)	
				skytanthine hydrochloride			
urseraceae	Bursera graveolens (Kunth) Triana & Planch.	sm	МеОН	Burseranin	Lignan	NA (HT-1080)	Nakanishi et al. (2005)
				Picropolygamain	Lignan	1.9 (HT-1080)	

				Epi-lupeol Lupeol	Terpene Terpene	NA (HT-1080) NA (HT-1080)	
	Bursera grandifolia (Schltdl.) Engl.	sb	МеОН	Deoxypodophyllotoxin	Lignan	2×10^{-4} (A-431), 0.03 (BC-1), 3×10^{-2} (Col-2), 0.01 (HT), <0.16 (KB), <0.16 (KB-V1*), 3×10^{-2} (LNCaP), 3×10^{-2} (Lu1), NA (Mel2), 0.06 (U373), 3×10^{-2} (ZR-75-1), 0.16 (ASK)	Wickramaratne et al. (1995)
				β-Peltatin methyl ether	Lignan	(Col-2), 0.01 (HT), <0.16 (KB), <0.16 (KB-V1*), 5 × 10 ⁻³ (Col-2), 0.01 (HT), <0.16 (KB), <0.16 (KB-V1*), 5 × 10 ⁻³ (LNCaP), 4 × 10 ⁻³ (Lu1), NA (Mel2), 3.10 (U373), 0.01 (ZR-75-1), 0.16 (ASK)	
				Picro-β-peltatin methyl ether	Lignan	(LNCaP), O.2 (Lu1), NA (BC-1), NA (Col-2), 3.9 (HT), 0.5 (KB), NT (KB-V1*), 0.6 (LNCaP), 0.2 (Lu1), NA (Mel2), 0.7 (U373), NA (ZR-75-1), NA (ASK)	
				Dehydro-β-peltatin methyl ether	Lignan	NA (A-431), 2.9 (BC-1), 3.2 (Col-2), 3.4 (HT), 2.2 (KB), NA (KB-V1*), 3.2 (LNCaP), NA (Lu1), NT (Mel2), NA (U373), NA (ZR-75-1), NA (ASK)	
Capparidaceae	Polanisia dodecandra (L.) DC.	Wp	МеОН	5,3'-dihydroxy- 3,6,7,8,4'- pentamethoxyflavone	Flavonoid	0.04 (KB), 0.6 (A-459), NA (HCT-8), 0.05 (P-388), 0.55 (PRMI-7591), 0.07 (TE-671)	Shi et al. (1995)
				5,4'-Dihydroxy- 3,6,7,8,3'- pentamethoxyflavone	Flavonoid	NA (KB), NA (A-459), NA (HCT-8), NA (P-388), NA (PRMI-7591), 0.98 (TE-671)	
Celastraceae	Hippocratea excelsa Kunth	Rt and Sb	Hex: MeOH	Hippocrateine I	Alkaloid	NA (A-549), NA (HT-29), NA (MCF-7)	Mata et al. (1990)
Convolvulaceae	Ipomoea wolcottiana subsp. wolcottiana	Rt	Hex:DCM	Arboresin 1	Glycoside	NA (HCT-15), NA (UISO), NA (OVCAR-5)	León et al. (2006)
	•			Arboresin 2	Glycoside	NA (HCT-15), NA (UISO), NA (OVCAR-5)	
				Arboresin 3	Glycoside	NA (HCT-15), NA (UISO),NA (OVCAR-5)	
				Arboresin 4	Glycoside	NA (HCT-15), NA (UISO),NA (OVCAR-5)	
				Arboresin 5	Glycoside	NA (HCT-15), NA (UISO),NA (OVCAR-5)	
				Arboresin 6	Glycoside	NA (HCT-15), NA (UISO),NA (OVCAR-5)	
				Murucin 6	Glycoside	NA (HCT-15), NA (UISO),NA (OVCAR-5)	
				Murucin 7	Glycoside	NA (HCT-15), NA (UISO),NA (OVCAR-5)	
				Murucin 8	Glycoside	NA (HCT-15), NA (UISO),NA (OVCAR-5)	
				Murucin 9	Glycoside	NA (HCT-15), NA (UISO),NA (OVCAR-5)	
	Ipomoea murucoides Roem. et Schult.	Fw	Chl	Murucoidin I	Glycoside	NA (KB), NA (Hep-2)	Chérigo and Pereda-Miranda (2006)
				Murucoidin II	Glycoside	NA (KB), NA (Hep-2)	
				Murucoidin III	Glycoside	NA (KB), NA (Hep-2)	
				Murucoidin IV	Glycoside	4 (KB), 4 (Hep-2)	
				Murucoidin V	Glycoside	NA (KB), NA (Hep-2)	
				Stoloniferin I	Glycoside	NA (KB), NA (Hep-2)	
	Ipomoea orizabensis (Pelletan) Ledeb. Ex Steud.	Rt	Hex:Chl	Scammonin I	Glycoside	NA (KB), NA (UISO), NA (HCT-15), NA (OVCAR)	Hernández-Carlos et al. (1999), León-Rivera et al. (2008)
				Scammonin II	Glycoside	NA (KB), NA (UISO), NA (HCT-15), NA (OVCAR)	
				Orizabin V	Glycoside	NA (KB), NA (UISO), NA (HCT-15), NA (OVCAR)	

Table 4 (Continued)

Family	Scientific name	Plant part	Extract	Compound	Group	ED ₅₀ μg/ml (cell line)	Reference
				Orizabin VI	Glycoside	NA (KB), NA (UISO), NA (HCT-15), NA (OVCAR)	
				Orizabin VII	Glycoside	NA (KB), NA (UISO), NA (HCT-15), NA (OVCAR)	
				Orizabin VIII	Glycoside	NA (KB), NA (UISO), NA (HCT-15), NA (OVCAR)	
				Tyrianthinic acid I	Glycoside	2.6 (KB), NA (UISO), NA (HCT-15), NA (OVCAR)	
				Tyrianthinic acid II	Glycoside	2.8 (KB), NA (UISO), NA (HCT-15), NA (OVCAR)	
				Tyrianthin 8	Glycoside	2.2 (KB), NA (UISO), NA (HCT-15), NA (OVCAR)	
				Tyrianthin 9	Glycoside	2.5 (KB), NA (UISO), NA (HCT-15), NA (OVCAR)	
	Ipomoea pes-caprae (L.) R. Br.	Wp	Hex	Pescaproside A	Glycoside	NA (KB), NA (UISO), NA (HCT-15), NA (OVCAR)	Pereda-Miranda et al. (2005)
	14 211			Pescaprein I	Glycoside	NA (KB), NA (UISO), NA (HCT-15), NA (OVCAR)	
				Pescaprein II	Glycoside	NA (KB), NA (UISO), NA (HCT-15), NA (OVCAR)	
				Pescaprein III	Glycoside	NA (KB), NA (UISO), NA (HCT-15), NA (OVCAR)	
				Pescaprein IV	Glycoside	NA (KB), NA (UISO), NA (HCT-15), NA (OVCAR)	
				Stoloniferin III	Glycoside	NA (KB), NA (UISO), NA (HCT-15), NA (OVCAR)	
	Ipomoea stans Cav.	Rt	Hex	Stansin 1	Glycoside	NA (UISO), NA (HCT-15), NA (OVCAR)	León et al. (2004)
				Stansin 2	Glycoside	NA (UISO), NA (HCT-15), NA (OVCAR)	
				Stansin 3	Glycoside	NA (UISO), NA (HCT-15), NA (OVCAR)	
				Stansin 4	Glycoside	NA (UISO), NA (HCT-15), NA (OVCAR)	
				Stansin 5	Glycoside	4 (UISO), NA (HCT-15), 1.5 (OVCAR)	
Euphorbiaceae	Jatropha neopauciflora Pax	Bk	Chl:MeOH	Calenduladiol	Terpene	NA (U-251), NA (K562)	García and Delgado (2006)
				$(3\beta,16\beta)$ -16- hydroxylup-20(29)-en-	Terpene	NA (U-251), NA (K562)	
				3-yl			
				(E)-3-(4-			
				hydroxyphenyl)prop-			
				2-enoate			
Fabaceae	Calliandra californica Benth.	Rt	Hex, EtOAc, EtOH	Escobarine A	Terpene	1.64 (U-251), 1.7 (PC-3), 0.83 (K-562), 1.33 (HCT-15), 0.2 (MCF-7)	Encarnación-Dimayuga et al. (2006)
				Escobarine B	Terpene	3.48 (U-251), 1.80 (PC-3), 1.98 (K-562), 2.02 (HCT-15), 2.34 (MCF-7)	
	Eysenhardtia polystachya (Ortega)	Bk and trunks	Chl:MeOH	(3 <i>S</i>)-7-Hydroxy-2′,3′,4′, 5′,8-	Flavonoid	3.8 (KB), NA (P-388), NA (UISO)	Alvarez et al. (1998)
	Sarg.			pentamethoxyisoflavan			
				(3 <i>S</i>)-3′,7-Dihydroxy- 2′,4′,5′,8-	Flavonoid	3.0 (KB), NA (P-388), NA (UISO)	
				tetramethoxyisoflavan			
				(3 <i>S</i>)-2′,3′,4′,5′,8- Pentamethoxy-7- <i>O</i> -	Flavonoid	NA (KB), NA (P-388), NA (UISO)	
				acetylisoflavan			
				(3S)-2',4',5',8- Tetramethoxy-3',7-0-	Flavonoid	NA (KB), NA (P-388), NA (UISO)	
				diacetylisoflavan	Plane	2.C2 (VD) NA (D.200) NA (UICO)	
				Isoduartin	Flavonoid	2.63 (KB), NA (P-388), NA (UISO)	

Gelsemiaceae	Gelsemium sempervirens (L.) J. StHil.	Sm	МеОН	12β-hydroxy-pregna- 4,16-diene-3,20-dione	Pregnane	2.0 (KB), 0.7 (P-388)	Schun and Cordell (1987)
Geraniaceae	Geranium niveum S. Watson	Rt	MeOH:Chl	Geranin A	Flavonoid	NA (MCF-7), NA (HT-29), NA (A-549)	Calzada et al. (1999)
Lamiaceae	Hyptis pectinata (L.) Poit	Ap	Chl	Geranin B Pectinolide A	Flavonoid pyrone	NA (MCF-7), NA (HT-29), NA (A-549) 1.0 (BC-1), 1.7 (HT), 0.9 (Lu-1), 0.7 (Mel-2), 1.0 (Col-2), 1.8 (KB), 1.8 (KB-V1), 0.9 (P388), 1.4 (A431), 0.7 (LNCaP), 3.6 (ZR75-1)	Pereda-Miranda et al. (1993), Fragoso-Serrano et al. (2005)
				Pectinolide B	Pyrone	(Shear), 2.3 (HT), 3.8 (Lu-1), 2.2 (Mel-2), 1.1 (Col-2), 1.4 (KB), 2.0 (KB-V1*), 0.1 (P388), 0.6 (A431), 0.9 (LNCaP), 1.6 (ZR75-1)	
				Pectinolide C	Pyrone	2.0 (BC-1), 1.8 (HT), 2.3 (Lu-1), 3.3 (Mel-2),1.6 (Col-2), 1.7 (KB), 3.2 (KB-V1*), 2.2 (P388), 0.8 (A431), 0.8 (LNCaP), 1.9 (ZR75-1)	
				Hyptolide	Lactone	2.4 (BC-1), NA (HT), NA (Lu-1), NA (Mel-2), NA (Col-2), 3.6 (KB), NA (KB-V1*), 1.6 (P388), 3.7 (A431), NA (LNCaP), NA (ZR75-1)	
				Boronolide	Lactone	2.8 (BC-1), NA (HT), 3.9 (Lu-1), 3.3 (Mel-2), 4.0 (Col-2), 4.0 (KB), NA (KB-V1*), 1.0 (P388), NA (A431), 3.2 (LNCaP), NA (ZR75-1)	
				Deacetylepiolguine	Lactone	NA (BC-1), NA (HT), 3.3 (Lu-1), NA (Mel-2), 3.0 (Col-2), 2.9 (KB), 3.4 (KB-V1*), 0.4 (P388), 1.9 (A431), 1.8 (LNCaP), NA (ZR75-1)	
	Hyptis spicigera Lam.	Ap	Chl:MeOH	Pectionolide H 19-Acetoxy-2R,7R,15- trihydroxylabda- 8(17),(13Z)-diene	Pyrone Terpene	NA (KB) NA (HCT-15), NA (KB)	Fragoso-Serrano et al. (1999)
				15,19-diacetoxy- 2R,7Rdihydroxylabda- 8(17),(13 <i>Z</i>)-diene	Terpene	NA (HCT-15), NA (KB)	
				7R,15,19-triacetoxy- 2R-hydroxylabda- 8(17),(13 <i>Z</i>)-diene	Terpene	NA (HCT-15), NA (KB)	
				19-Acetoxy-2R,7R- dihydroxylabda- 8(17),(13 <i>Z</i>)-dien-15-al	Terpene	NA (HCT-15), NA (KB)	
				19-Acetoxy-7R,15- dihydroxylabda- 8(17),(13Z)-dien-2-one	Terpene	NA (HCT-15), NA (KB)	
				19-acetoxy-2R,7R- dihydroxylabda-14,15- dinorlabd-8(17)-en-	Terpene	NA (HCT-15), NA (KB)	
				13-one 2R,7R,15,19- tetrahydroxy- <i>ent</i> - labda-8(17),(13 <i>Z</i>)- diene	Terpene	NA (HCT-15), NA (KB)	
	Hyptis verticillata Jacq.	Ap	Hex:Chl	5- Methoxydehydropodophyll	Lignan otoxin	NA (P-388), NA (A431), NA (BC-1), NA (Col-2), NA (HT), NA (KB), NA (KB-V1*), NA (LNCaP), NA (Lu-1), NA (U-373), NA (ZR-75-1)	Novelo et al. (1993)

Table 4 (Continued)

Family	Scientific name	Plant part	Extract	Compound	Group	ED ₅₀ μg/ml (cell line)	Reference
				Dehydro-β-peltatinmethyl ether	Lignan	1.8 (P-388), NA (A431), 2.9 (BC-1), 3.2 (Col-2), 3.4 (HT), 2.2 (KB), NA (KB-V1*), 3.2 (LNCaP), NA (Lu-1), NA (U-373), NA (ZR-75-1)	
				Dehydropodophyllotoxin	Lignan	NA (P-388), NA (A431), NA (BC-1), NA (Col-2), NA (HT), NA (KB), NA (KB-V1*), NA (LNCaP), NA (Lu-1), NA (U-373), NA (ZR-75-1)	
				Deoxydehydropodophyllotoxin	Lignan	NA (P-388), NA (A431), NA (BC-1), NA (Col-2), NA (HT), NA (KB), NA (KB-V1*), NA (LNCaP), NA (Lu-1), NA (U-373), NA (ZR-75-1)	
				(—)-Yarein	Lignan	0.4 (P-388), NA (A431), 0.05 (BC-1), 0.08 (Col-2), 0.07 (HT), 0.08 (KB), 0.06 (KB-V1*), 0.16 (LNCaP), 0.1 (Lu-1), 0.3 (U-373), 0.5 (ZR-75-1)	
				4' - Demethyldeoxypodophyllotoxin	Lignan	0.005 (P-388), 0.08 (A431), 0.01 (BC-1), 0.03 (Col-2), 0.01 (HT), 0.01 (KB), 0.02 (KB-V1*), 0.02 (LNCaP), 0.03 (Lu-1), 0.1 (U-373), 2.1 (ZR-75-1)	
				Isodeoxypodophyllotoxin	Lignan	NA (P-388), NA (A431), NA (BC-1), NA (Col-2), NA (HT), NA (KB), NA (KB-V1*), NA (LNCaP), NA (Lu-1), 2.9 (U-373), NA (ZR-75-1)	
				Deoxypicropodophyllin	Lignan	0.1 (P-388), NA (A431), 2.1 (BC-1), 0.3 (Col-2), 0.2 (HT), 0.1 (KB), 0.7 (KB-V1*), 0.2 (LNCaP), 0.09 (Lu-1), 0.1 (U-373), 0.6 (ZR-75-1)	
				β-Apopicropodophyllin	Lignan	>0.002 (P-388), NA (A431), 0.001 (BC-1), 0.01 (Col-2), 0.003 (HT), 0.05 (KB), 0.06 (KB-V1*), 0.01 (LNCaP), 0.002 (Lu-1), 0.001 (U-373), 2.0 (ZR-75-1)	
	Salvia pachyphylla Epling ex Munz	Ap	Aco	Pachyphyllone	Terpene	NA (A-2780), NA (SW-1573), NA (WiDr), NA (T-47D), NA (HBL-100)	Guerrero et al. (2006)
				Carnosol	Terpene	1.18 (A-2780), 3.3 (SW-1573), NA (WiDr), NA (T-47D), 1.28 (HBL-100)	
				20-Deoxocarnosol	Terpene	1.7 (A-2780), NA (SW-1573), NA (WiDr), NA (T-47D), 1.45 (HBL-100)	
				Isorosmanol	Terpene	NA (A-2780), NA (SW-1573), NA (WiDr), NA (T-47D), NA (HBL-100)	
				5,6-Didehydro- <i>O</i> -methylsugiol	Terpene	NA (A-2780), NA (SW-1573), NA (WiDr), NA (T-47D), NA (HBL-100)	
				Rosmadial 16-Hydroxycarnosol	Terpene Terpene	NA (A-2780), NA (SW-1573), NA (WiDr), NA (T-47D), NA (HBL-100) 1.25 (A-2780), 3.09 (SW-1573), NA	
N 4 11	Contraction Investigation	C.1	11		•	(WiDr), NA (T-47D), 1.23 (HBL-100)	E
Meliaceae	Swietenia humilis Zucc.	Sd	Hex	Humilinolide A Humilinolide B Humilinolide C Humilinolide D	Limonoid Limonoid Limonoid Limonoid	NA (A-549), NA (MCF-7), NA (HT-29) NA (A-549), NA (MCF-7), NA (HT-29) NA (A-549), NA (MCF-7), NA (HT-29) NA (A-549), NA (MCF-7), NA (HT-29)	Jimenez et al. (1997)
Picramniaceae	Picramnia antidesma subsp. fessonia (DC.) W. W. Thomas	Rb	Et ₂ O MeOH	10-Epi-uveoside	Glycoside	0.3 (KB), 1.13 (HCT), NA (OVCAR), 2.22 (SQC-1)	Hernández-Medel and Pereda-Miranda (2002)
				Uveoside	Glycoside	2.21 (KB), 2.31 (HCT), 2.26 (OVCAR), NA (SQC-1)	

				Picramnioside E	Glycoside	1.79 (KB), 3.27 (HCT), NA (OVCAR),	
				D: : : 1 D		1.47 (SQC-1)	
				Picramnioside D	Glycoside	1.69 (KB), 3.32 (HCT), 2.9 (OVCAR), 2.16 (SQC-1)	
				Saroside	Glycoside	NA (KB), NA (HCT), NA (OVCAR), NA	
				Mayoside	Glycoside	(SQC-1) NA (KB), NA (HCT), NA (OVCAR), NA	
Piperaceae	Piper aduncum L.	Lv	Chl	2', 6'-Dihydroxy-4'-	Chalcone	(SQC-1) NA (KB)	Orjala et al. (1994)
Tiperaceae	riper adancam E.	LV	CIII	methoxydihydrochalcone	Charcone	TVT (RB)	organa ee an. (1551)
				2', 6', 4-Trihydroxy	Chalcone	NA (KB)	
				4'methoxydihydrorhalcone			
				Piperaduncin A	Chalcone	2.3 (KB)	
				Piperaduncin B	Chalcone	NA (KB)	
				Piperaduncin C	Chalcone	NA (KB)	
Poaceae	Zea mays L	Ftgerm	MeOH H ₂ O	13-Hydroxy-10-oxo-9-	Fatty acid	NA (MCF-7), NA (MDA-MB157), NA	Kuga et al. (1993), Hayashi et al. (1996)
				methoxy-trans-11-		(MDA-MB415), NA (MDA-MB468), NA	
				octadecenoic-acid		(SK-BR-3), NA (HCT-116), NA	
						(SK-CO-1), NA (SW-480), NA (SW-620),	
						NA (T-84), NA (WiDR), NA (AGS), NA	
				12 Hadaaaa 10 aaa	Patter and d	(HS746T), NA (P-388)	
				13-Hydroxy-10-oxo- trans-11-octadecenoic-	Fatty acid	NA (MCF-7), NA (MDA-MB157), NA	
				acid		(MDA-MB415), 3.3 (MDA-MB468), 3.1 (SK-BR-3), 1.6 (HCT-116), NA	
				aciu		(SK-CO-1), 3.9 (SW-480), 4.0 (SW-620),	
						NA (T-84), NA (WiDR), 3.9 (AGS), NA	
						(HS746T), 2.6 (P-388)	
				11(E)-10-oxo-11-	Fatty acid	0.9 (P388), 2.8 (Ehrlich), 1.7 (B16), 2.2	
				octadecen-13-olide-		(KB), 1.9 (S180)	
				acid			
Rubiaceae	Hintonia latiflora Sessé & Moc. ex DC. Bullock	Sb	МеОН	7-Methylluteolin	Flavonoid	NA (KB)	Del Rayo Camacho et al. (2004)
				5-0-β-d-	Coumarin	NA (KB)	
				galactopyranosyl)-			
				3',4'-dihydroxy-7-			
				methoxy-4-			
				phenylcoumarin			
				5-0-β-D-	Coumarin	NA (KB)	
				(glucopyranosyl)-3',4'-			
				dlhydroxy-7-methoxy-			
				4-phenylcoumarin	Carranania	NA (IZD)	
				4',5'-dihydroxy-7-	Coumarin	NA (KB)	
				methoxy-4-phenyl 5, 2'oxidocoumarin			
Sapotaceae	Manilkara zapota (L.)	Ft	MeOH	Methyl 4-0-	Polyphenol	NA (HCT-116), NA (SW-480)	Ma et al. (2003)
Supotuccuc	Van Royen			galloylchlorogenate	. orypiiciioi	1(1.0.), 1(577 100)	22 4 (2003)
				4-0-Galloylchlorogenic	Polyphenol	NA (HCT-116), NA (SW-480)	
				acid	J1		
Valerianaceae	Valeriana sorbifolia	Ap	Hex: MeEtAco:MeOH	Sorbifolivaltrate A	Valepotriate	1.19 (PC-3M)	Xu et al. (2007)
	Kunth						
				Sorbifolivaltrate B	Valepotriate	NA (PC-3M)	

Table 4 (Continued)

Family	Scientific name	Plant part	Extract	Compound	Group	ED ₅₀ μg/ml (cell line)	Reference
				Sorbifolivaltrate C Sorbifolivaltrate D Isovaltrate	Valepotriate Valepotriate Valepotriate	NA (PC-3M) NA (PC-3M) 1.3 (PC-3M)	
/iscaceae	Phoradendron reichenbachianum (Seem.) Oliver	Ap	Aco	Moronic acid	Terpene	3.6 (HCT-15), 3.9 (UISO), 5.3 (KB)	Rios et al. (2001a)
				3,4 Seco-olean-18-ene-3, 20 dioic acid	Terpene	NA (HCT-15), NA (UISO), NA (KB)	
	Phoradendron serotinum (Raf.) M. C. Johnst.	Lv	Aco	Phoratoxin B	Thionin	1.71 (RPMI 8226-S), 1.47 (RPMI 8226-LR5), 1.81 (RPMI 8226-dox40), 1.02 (U-937 GTB), 0.88 (U-937 Vcr), 0.18 (NCI-H69), 1.12 (NCI-H69 AR), 1.61 (CCRF-CEM), 1.56 (CEM-VM-1), 2.88 (ACHN)	Johansson et al. (2003)
				Phoratoxin C	Thionin	0.87 (RPMI 8226-S), 0.87 (RPMI 8226-LR5), 0.63 (RPMI 8226-dox40), 0.43 (U-937 GTB), 0.48 (U-937 Vcr), 0.19 (NCI-H69), 1.12 (NCI-H69 AR), 0.97 (CCRF-CEM), 0.73 (CEM-VM-1), 1.65 (ACHN)	
				Phoratoxin D	Thionin	1.16 (RPMI 8226-S), 1.16 (RPMI 8226-LR5), 0.99 (RPMI 8226-dox40), 0.64 (U-937 GTB), 0.6 (U-937 Vcr), 0.19 (NCI-H69), 1.03 (NCI-H69 AR), 1.63 (CCRF-CEM), 0.95 (CEM-VM-1), 2.75 (ACHN)	
				Phoratoxin E	Thionin	2.09 (RPMI 8226-S), 1.85 (RPMI 8226-LR5), 2.09 (RPMI 8226-dox40), 1.7 (U-937 GTB), 1.41 (U-937 Vcr), 0.18 (NCI-H69), 1.26 (NCI-H69 AR), 2.19 (CCRF-CEM), 1.66 (CEM-VM-1), 2.82 (ACHN)	
				Phoratoxin F	Thionin	2.19 (RPMI 8226-S), 1.75 (RPMI 8226-LR5), 2.48 (RPMI 8226-dox40), 1.51 (U-937 GTB), 1.12 (U-937 Vcr), 0.18 (NCI-H69), 1.46 (NCI-H69 AR), 2.43 (CCRF-CEM), 2.04 (CEM-VM-1), NA (ACHN)	

Nature of the extracts: BuOH, buthanol; Chl, chloroform; DCM, dichloromethane; EtOAc, ethyl acetate; EtOH, ethanol; Hex, hexane; H₂O, aqueous; MeOH, methanol; MeEtAco, methy ethyl acetone; PE, petroleum ether; Aco, acetone, Et₂O, dy ethyl ether.

Plant part used: Ap, aerial parts; Bl, bulbs; Br, branches; Bk, bark; Ft, fruits; If, influoresnce; Lv, leaves; Pt, petiole; Rb, root bark; Rh, rhizomes; Rt, roots; Sb, stem bark; Sd, seeds; Sm, stem; Wp, whole plant.

Cell lines: 1301, lymphoblastic leukemia; A-2780, ovarian carcinoma; A-431, epidermoid carcinoma; A-498, human kidney carcinoma; A-549, human lung carcinoma; ACHN, renal carcinoma drug resistant; AGS, stomach adenocarcinoma; ASK, Atlantic salmon kidney, B16, mouse melanoma; Caco-2, human epithelial colorectal adenocarcinoma; CCRF-CEM, leukemia drug resistant; CEM-VM-1, leukemia durg resistant; COLON, colon carcinoma, DU-145, prostate carcinoma, Ehrlich, ascites tumor; H-460, human large cell lung carcinoma; HBL-100, breast carcinoma; HCT-15 COLADCAR, adherent colon carcinoma; HCT-116, human colorectal carcinoma; Hep-2, laryngeal carcinoma, HepG2, hepatocarcinoma; HF-6, human colon carcinoma; HS746T, stomach carcinoma; HT-29, human colon adenocarcinoma; HT1080, human fibrosarcoma; K-562, chronic myeloblastic leukemia, KB, human nasopharynx carcinoma; L5178Y-R, murine lymphoma; LLC-MK2, Rhesus monkey kidney cells; MDA-MB157, breast carcinoma; MDA-MB415, breast carcinoma; MDA-MB468, breast carcinoma; MDCK, canine kidney cells, MCF-7, human breast carcinoma; NCI-H69, small cell lung cancer drug resistant; P-388, mouse leukemia; PACA-2, human pancreatic carcinoma; PC-3, human prostate adenocarcinoma; RPMI 8226-LR5, myeloma drug resistant; RPMI 8226-dox40, myeloma drug resistant; S180, murine sarcoma; SK-BR-3 breast carcinoma; SF268, glioma; SiHa, cervix squamous carcinoma; SW480, colon carcinoma; SW620, colon carcinoma; SW-1573, lung carcinoma; T-47D, breast carcinoma; T84, colon adenocarcinoma; WiDR, colon carcinoma. VI* denotes drug resistant; U-937 Vcr, mistiocytic lymphoma drug resistant; U-251, human glioma; UACC-62, human melanoma; UISO-SQC-1, squamous cervix carcinoma; OVCAR, ovary carcinoma; WiDR, colon carcinoma. VI* denotes drug resistance.

Table 5Cytotoxicity of novel compounds isolated from Mexican plants.

VI* denotes drug resistance.

Family	Scientific name	Plant part	Extract	Compound	Group	ED ₅₀ μg/ml (cell line)	Reference
Annonaceae	Annona muricata L.	Lv	EtOH	Annopentocin A	Acetogenin	0.17 (A-549), NA (MCF-7), 1.63 (HT-29), 0.6 (A-498), 1.14 (PC-3), 0.03 (PACA-2)	Zeng et al. (1996)
				Annopentocin B	Acetogenin	0.02 (A-549), 3.56 (MCF-7), 1.64 (HT-29), 0.38 (A-498), 0.21 (PC-3), 0.16 (PACA-2)	
				Annopentocin C, cis- and trans	Acetogenin	0.02 (A-549), 2.97 (MCF-7), 1.24 (HT-29), 0.26 (A-498), 0.22 (PC-3), 0.43 (PACA-2)	
				Annomuricin-D	Acetogenin	<0.01 (A-549), 0.6 (MCF-7), <0.01 (HT-29), 0.1 (A-498),	
	Annona purpurea Moc. & Sessé ex Dunal	Sd	Chl:MeOH	Purpurediolin	Acetogenin	1.32 (PC-3), <0.01 (PACA-2) 0.443 (A-549), 0.916 (MCF-7), <10 ⁻⁷ (HT-29), 1.36 (A-498), 0.353 (PC-3), 1.44 (PACA-2)	Chávez and Mata (1998)
				Purpurenin	Acetogenin	1.29 (A-549), 1.67 (MCF-7), 0.316 (HT-29), 1.25 (A-498), 1.07 (PC-3), 1.98 (PACA-2)	
Asteraceae	Montanoa leucantha (Lag.) S. F. Blake	Lv	EtOAc	Leucanthanolide	Terpene	0.57 (KB), 0.93 (P-388)	Oshima et al. (1986)
	Viguiera hypargyrea Greenm.	Ap	DCM:MeOH	8β-(epoxyangeloyloxy)- 14-hydroxy-tithifolin	Terpene	1.2 (KB), 1.4 (P-388), 3.6 (KB-VI*)	Villarreal et al. (1994)
				8β-(epoxyangeloyll)- 14acetoxy-eupatolide	Terpene	1.5 (KB), 2.8 (P-388), NA (KB-VI*)	
	Viguiera quinqueradiata (Cav.) A. Gray	Lv	Chl	15-Hydroxyacetyl- leptocarpin	Terpene	1.0 (KB), 1.0 (P-388), NA (KB-VI*)	Villarreal et al. (1994)
Gelsemiaceae	Gelsemium sempervirens (L.) J. StHil	Sm	МеОН	12β-hydroxy-5α-pregn- 16-ene-3,20 dione	Pregnane	2.8 (KB), 0.9 (P-388)	Schun and Cordell (1987)
Lamiaceae Lauraceae	Salvia leucantha Cav. Persea americana Mill.	Ap Ft	Aco EtOH	Salvileucalin B 1,2,4Trihydroxynonadecane	Terpene Fatty acid	NA (A-549), 1.88 (HT-29) 3.0 (A-549), 3.2 (MCF-7), 3.0 (HT-29), 2.7 (A-498), 1.2 (PC-3), NA (PaCa-2)	Aoyagi et al. (2008) Oberlies et al. (1998)
				1,2,4-Trihydroxyheptadec- 16-ene	Fatty acid	3.4(A-549), NA (MCF-7), 2.6(HT-29), 3.6 (A-498), 0.46 (PC-3), NA (PaCa-2)	
				1,2,4-Trihydroxyheptadec- 16-yne	Fatty acid	NA (A-549), NA (MCF-7), NA (HT-29), NA (A-498), 0.06 (PC-3), NA (PaCa-2)	
Poaceae	Zea mays L.	Ft	МеОН	13-hydroxy-10-oxo- trans-11-octadecenoic-acid	Fatty acid	NA (MCF-7), NA (MDA-MB157), NA (MDA-MB415), 3.3 (MDA-MB468), 3.1 (SK-BR-3), 1.6 (HCT-116), NA (SK-CO-1), 3.9 (SW-480), 4.0 (SW-620), NA (T-84), NA (WiDR), 3.9 (AGS), NA (HS746T), 2.6 (P-388)	Kuga et al. (1993), Hayashi et al. (1996)
		Germ	H ₂ O	11(<i>E</i>)-10-oxo-11- octadecen-13-olide-acid	Fatty Acid	0.9 (P388), 2.8 (Ehrlich), 1.7 (B16), 2.2 (KB), 1.9 (S180)	

Nature of the extracts: BuOH, buthanol; Chl, chloroform; DCM, dichloromethane; EtOAc, ethyl acetate; EtOH, ethanol; Hex, hexane; H_2O , aqueous; MeOH, methanol; MeEtAco, methy ethyl acetone; PE, petroleum ether; Aco, acetone; Et_2O , dy ethyl ether.

Plant part used: Ap, aerial parts; Bl, bulbs; Br, branches; Bk, bark; Ft, fruits; If, influoresnce; Lv, leaves; Pt, petiole; Rb, root bark; Rh, rhizomes; Rt, roots; Sb, stem bark; Sd, seeds; Sm, stem; Wp, whole plant.
Cell lines: A-498, human kidney carcinoma; A-549, human lung carcinoma; AGS, stomach adenocarcinoma; Blf, mouse melanoma; Ehrlich, ascites tumor; HCT-116, human colorectal carcinoma; HS746T, stomach carcinoma; HT-29, human colon adenocarcinoma; MDA-MB415, breast carcinoma; MDA-MB468, breast carcinoma; P-38, mouse leukemia; PACA-2, human pancreatic carcinoma; PC-3, human prostate adenocarcinoma; SK-BR-3, breast carcinoma; SK-CO-1, colon adenocarcinoma; SW480, colon carcinoma; SW620, colon carcinoma; T84, colon adenocarcinoma; WiDR, colon carcinoma.

 Table 6

 Anti-tumor effects of compounds isolated from Mexican plants

Family	Scientific name Plant part	Plant part	Extract	Compound	Animal system Dose (mg/kg)	Dose (mg/kg)	Route of administration	Time (days)	Tumor system (tumor inhibition %)	Reference	
Annonaceae	Annona diversifolia Saff.	Sd	Нех	Laherradurin	Athymic mice	1.5	Sc	20	HeLa (54), SW-480 (44) Schlie-Guzmán et al. HeLa (64), SW-480 (60) (2009)	Schlie-Guzmán et al. (2009)	
	, ps			Cherimolin-2	Athymic mice	1.5	Sc		HeLa (30) HeLa (43)		
Asteraceae	Hymenoxys odorata DC.	Ap	Aco	Hymenovin	C3H mice	10	Sc	21	C3H mouse mammary carcionoma (60)	Ivie et al. (1975)	
Lamiaceae	Hyptis emory Torr.	Ap	Chl	Betulinic acid	Sprague rats	300	里里	15	Walker carcinoma 5WA16 (48)	Sheth et al. (1972)	
									Walker carcinoma 5WA16 (85)		
Scrophulariaceae	Scrophulariaceae Capraria biflora L.	Rt	PE	Biflorin	Swiss mice	25 50	q q	8	Sarcoma 180 (15) Sarcamo 180 (50)	Vasconcellos et al. (2005)	3
						25 50	, գ գ		Ehrlich (12) Ehrlich (45)	,	

Nature of the extracts: BuOH, buthanol; Chl, chloroform; DCM, dichloromethane; EtOAc, ethyl acetate; EtOH, ethanol; Hex, hexane; H₂O, aqueous; MeOH, methanol; MeEtAco, methy ethyl acetone; PE, petroleum ether; Aco, Plant part used: Ap, aerial parts; Bl, bulbs; Br, branches; Bk, bark; Ft, fruits; If, influoresnce: Lv, leaves; Pt, petiole; Rb, root bark; Rh, rhizomes; Rt, roots; Sb, stem bark; Sd, seeds; Sm, stem; Wp, whole plant. Route of administration: Im, intramuscular; Ip, intraperitoneal; It, intratumoral; Iv, intravenous; Sc, subcutaneous. acetone; Et₂O, dy ethyl ether.

them 77 compounds (41%) have demonstrated active cytotoxicity (Tables 4 and 5). The main types of plant secondary metabolites with the highest number of compounds are: glycosides (50), terpenes (49), lignans (15), acetogenins (13) and flavonoids (11). However, only 15 terpenes (31% of total terpenes) and 9 glycosides (18% of total glycosides) show active cytotoxic properties. In contrast, 13 acetogenins (87% of total acetogenins) and 12 lignans (80% of total lignans) exert active cytotoxic effects. Up to now, 17 compounds, all of them active, have been reported to be present only in Mexican plant species (Table 5). Of these compounds, the main types of secondary metabolites are acetogenins (6), terpenes (5) fatty acids (5) and pregnanes (1). The isolation and characterization of the active compounds warrant more attention. Annonaceous acetogenins constitute a group of secondary metabolites that might be found to be exclusively isolatable from species of the Annonaceae family. Acetogenins are the most active cytotoxic compounds found in Mexican plant species and the *Annona* species are an important source of these compounds. In fact, 66% of total acetogenins are found exclusively in Mexican plants. However, only laherradurin and cherimolin-2, isolated from Annona diversifolia have been tested in vivo (Schlie-Guzmán et al., 2009), and the results indicated that laherradurin 7.5 mg/kg inhibited tumor growth in nu/nu mice, induced by HeLa (64%) and SW480 (60%) cells, whereas cherimolin-2 tested at 7.5 mg/kg inhibited tumor growth induced by HeLa (43%) cells.

Although the isolation and purification of compounds from active plant extracts have been extensive, many compounds with promising cytotoxic activities (even active in cancer cell lines resistant to anticancer drugs), remain to be tested on in vivo systems. Only 5 compounds have been evaluated in animal models for their anti-neoplastic effects (Table 6). Although there is no index value to consider that a compound is active on in vivo systems; currently anti-cancer drugs inhibit 50% of growth tumor at concentrations less than 15 mg/kg body weight. Taking this value into account, laherradurin and cherimolin-2 from Annona diversifolia, and hymenovin from Hymenoxys odorata, might be considered as active in vivo (Table 6). However, many anti-cancer drugs at these concentrations induce high toxic effects such as body weight loss in experimental animals. Therefore, it might be highly desirable to continue looking for new anti-tumor compounds that induce low toxic effects.

7. Mechanisms of action of Mexican plant extracts and their active compounds

A handful of Mexican plant extracts and their active compounds have been studied for their mechanisms of action. An aqueous extract of *Justicia spicigera* leaves induced apoptosis in the human leukemia TF-1, human cervical cancer CaLo and InBl cell lines as determined by TUNEL reaction (Cáceres-Cortés et al., 2001). A methanol extract of *Phaseolus vulgaris* seeds decreased the number of human cervical cancer HeLa cells in the G_0/G_1 phase by 17% and increased apoptosis by 18%, when compared to untreated cells (Aparicio-Fernández et al., 2006). A hexanic extract of *Gymnosperma glutinosum* leaves produced apoptosis in murine lymphoblastic L5178Y cells as determined by DNA fragmentation (Gomez-Flores et al., 2009). It is important to study the mechanism of action of active plant extracts and their compounds in order to propose combinatorial employment of extracts or compounds with different mechanisms of action, to improve anti-cancer therapies.

8. Mexican plants used for empirical treatment of diseases with cancer symptomatology without scientific studies

On the other hand, the families that contain the highest number of plants used empirically to treat cancer-like diseases that

Table 7Mexican plants used for empirical treatment of diseases with cancer symptomatology without scientific studies.

Family	Scientific name	Common name	Plant part	Popular use	Reference
Acanthaceae	Ruellia malacosperma Greenm.	Hierba del chivo	Lv	DER	Mendieta and Del Amo (1981)
gavaceae	Agave atrovirens Karw. Ex Salm-Dyck.	Maguey	Lv	VEN, INF	Martínez (1989)
	Agave ixtli Karw.	Caña de jabali	Rt	UR, VEN	Mendieta and Del Amo (1981)
nacardiaceae	Metopium brownei (Jacq.) Urb.	chechén negro	Bk	DER	Flores and Ricalde (1996)
piaceae	Eryngium carlinae F. Delaroche	Hierba del sapo	Wp	DER	Escobar-Linares (1999)
pocynaceae	Echites yucatanensis Millsp. ex Standl.	Liana	Lv	DER	Flores and Ricalde (1996)
	Plumeria alba L.	Flor de mayo	Latex	INF	Mendieta and Del Amo (1981)
	Stemmadenia mollis Benth.	Chiguilillo	Lv	RES	Argueta et al. (1994)
	Stemmadenia pubescens Benth.	Cojon de gato	Lv	INF	Argueta et al. (1994)
	Thevetia gaumeri Hem.	Akits de playa	Ap	INF, DER	Mendieta and Del Amo (1981)
ristolochiaceae	Aristolochia pilosa Kunth	Guaco	Rt	INF	Martínez (1989)
sclepiadaceae	Asclepias glaucescens Kunth	Oerja de liebre	Lv	INF	Hernández (1959)
sciepiadaceae	Asclepias similis Hemsl.	Panyattez		DER	Fernandez-Brewer et al. (2008
	•	•	Latex	INF	•
steraceae	Archibaccharis serratifolia (Kunth) S.F. Blake	Guacor	Lv		Martínez (1989)
	Artemisia ludoviciana subsp. mexicana (Willd. ex Spreng.) D.D. Keck	Estafiate	Ap	INF	Baytelman-Goldenberg (1980)
	Aster gymnocephalus (DC.) A. Gray	Árnica morada	Wp	INF	González (1984)
	Barkleyanthus salicifolius (Kunth) H. Rob. & Brettell	Jarilla	Ap	INF	Escobar-Linares (1999)
	Calea ternifolia Kunth	Prodigiosa	Br	GI	Escobar-Linares (1999)
	Cirsium mexicanum DC.	Naranja	Ap	UR	Andrade-Cetto (2009)
	Pseudognaphalium oxyphyllum DC.	Gordolobo	Wp	INF	López and Hinojosa (1988)
	Pseudognaphalium viscosum (Kunth) Anderb.	Gordolobo	Br	GI	López and Hinojosa (1988)
	Montanoa tomentosa Cerv.	Zaopatle	Lv	WOM	Martínez (1989)
	Packera candidissima (Greene) W.A. Weber & Á Löve	Té milagro	Wp	GI	González-Elizondo et al. (2004
	Verbesina crocata (Cav.) Less.	Capitaneja anaranjada	Fw	DER	Martínez (1989)
asellaceae	Anredera vesicaria (Lam.) C.F. Gaertn.	Kaaĭxicheĭel	Rt	INF	Ankli et al. (1999)
ignoniaceae	Crescentia cujete L.	Jicara	Fr	INF	Argueta et al. (1994)
-8	Tabebuia rosea (Bertol.) DC.	Roble	Bk	INF	Graham et al. (2000)
oraginaceae	Cordia alliodora (Ruiz & Pav.) Oken	Aguardientillo	Fw	RES	Niembro (1986)
oraginaceae	Ehretia tinifolia L.	Tlalhuacate	Lv	INF	Hernández (1959)
	Tournefortia densiflora M. Martens & Galeotti	Tlachichinol	Ap	GI	Escobar-Linares (1999)
rassicaceae	Lepidium virginicum L.	Lentejilla	Wp	GI	González (1984)
romeliaceae	Ananas comosus (L.) Merr.	Piña	Ft	INF	Escobar-Linares (1999)
uddlejaceae	Buddleia cordata Kunth	Tepozan	Lv	UR	Martínez (1989)
•		•	Ft Ft	INF	, ,
actaceae	Ferocactus latispinus (Haworth) Britton et Rose	Biznaga			Escobar-Linares (1999)
	Isolatocerues dumortieri (Scheidw.) Backeb.	Organo	Sm	DER	Escobar-Linares (1999)
	Lophocereus schottii (Egelm.) D.R. Hunt	Garambullo	St	UR	Encarnacion and Contreras (19
aryophyllaceae	Drymaria gracilis Schltdl. & Cham.	Candelilla	Ap	DER	Graham et al. (2000)
elastraceae	Elaeodendron trichotomum (Turcz.) Lundell	Mangle	Wp	INF	Graham et al. (2000)
henopodiaceae	Dysphania ambrosioides (L.) Mosyakin & Clemants	Epazote	Ap	RES	Baytelman-Goldenberg (1980)
hrysobalanaceae	Licania arborea Seem.	Cacahuananche	Bk	DER	Cabrera (1958)
Commelinaceae	Commelina tuberosa L.	Hierba de pollo	Ар	INF	Escobar-Linares (1999)
Convolvulaceae	Ipomoea bracteata Cav.	Empanaditas	Ap	INF	Escobar-Linares (1999)
	Turbina corymbosa (L.) Raf.	Manea de toro	Ap	INF	Hernández (1959)
ostaceae	Costus mexicanus Liebm.	Diente de jabalí	Ap	DER	González (1984)
	Costus spicatus (Jacq.) Sw.	Caña de jabali	Sm	UR	Martínez (1989)
rassulaceae	Sedum dendroideum Moc. & Sessé ex DC.	Siempreviva	Lv	DER	Hernández (1959)
ucurbitaceae	Cucurbita foetidissima Kunth	Calabacilla	Rt	DER	González (1984)
	Sechium edule (Jacq.) Sw.	Chayote	Ap	INF	Escobar-Linares (1999)
uphorbiaceae	Acalypha adenostachya Mull. Arg.	Hierba del cancer	Lv	WOM	López and Hinojosa (1988)
1	Acalypha alopecuroides Jacq.	Hierba del cancer	Lv	RES, INF	Hernández (1959)
	Acalypha californica Benth.	Hierba del cáncer	Br	GI	Moreno-Salazar et al. (2008)
	Acalypha canjornica Benth. Acalypha phleoides Cav.	Hierba del cáncer	Ap	INF	Gispert and Rodriguez (1998)
	Chamaesyce hirta (L.) Millsp.	Golondrina	Ap Lv	VEN, RES, GI	Mendieta and Del Amo (1981)
					, ,
	Cnidoscolus aconitifolius (Mill.) I.M. Johnst.	Chaya	Thorns	UR	González (1984)
	Croton alamosanus Rose	Croton	Br	GI	Moreno-Salazar et al. (2008)
	Croton flavens L.	Ikaban	Lv	DER	Flores and Ricalde (1996)

Table 7 (Continued)

Family	Scientific name	Common name	Plant part	Popular use	Reference
	Croton glabellus L.	Cascarillo	Lv	GI	González (1984)
	Euphorbia heterophylla L.	Picachali	Sm	DER	Flores and Ricalde (1996)
	Euphorbia lomelii V.W. Steinm.	Esqueleto de la muerte	Sm	DER	Escobar-Linares (1999)
	Euphorbia tanquahuete Sessé & Moc.	Pega hueso	Wp	INF	González (1984)
	Hura polyandra Baill.	Haba de san Ignacio	Lv	DER	Flores and Ricalde (1996)
	Jatropha curcas L.	Coahuixtle	Lv	DER	Escobar-Linares (1999)
	Sapium macrocarpum Müll, Arg.	Chilamate	Sm	DER	Flores and Ricalde (1996)
abaceae	Aeschynomene fascicularis Schltdl. & Cham.	Pegapega	Lv	INF	Mendieta and Del Amo (1981)
	Acacia farnesiana (L.) Willd.	Hizache	Lv	DER	Cabrera (1958)
	Acacia macracantha Humb. & Bonpl. exWilld.	Algarrobo	Sm	GI	Mendieta and Del Amo (1981)
	Centrosema pubescens Benth.	Centro	Fw	DER	Graham et al. (2000)
	Leucaena esculenta (Moc. & Sessé ex DC.) Benth.	Guaje	Ft	DER	Escobar-Linares (1999)
	Lysiloma acapulcense (Kunth) Benth.	Tepehuaje	Bk	DER, GI	Escobar-Linares (1999)
	Mimosa brandegei B. L. Rob.	Uña de gato	Ap	DER, GI DER	Escobar-Linares (1999)
	Pithecellobium dulce (Roxb.) Benth.	Guamúchil	Bk	GI	Encarnación-Dimayuga et al. (1987
			Br	DER. GI	
	Prosopis juliflora (Sw.) DC.	Mezquite		, -	Gispert and Rodriguez (1998)
agaceae	Quercus grisea Liebm.	Encino blanco	Bk	INF	González-Elizondo et al. (2004)
	Quercus rugosa Née	Encino	Bk	GI	Castillo-Juárez et al. (2009)
	Quercus resinosa Liebm.	Roble	Lv	UR	González-Elizondo et al. (2004)
Hypericaceae	Hypericum pratense Schltdl. & Cham.	Tenchalita	Lv	INF	Martínez (1989)
Crameriaceae	Krameria cytisoides Cav.	Crameria	Rt	GI	Graham et al. (2000)
	Krameria erecta Willd. ex Schult.	Cosahui	Ap	GI	Moreno-Salazar et al. (2008)
amiaceae	Lepechinia caulescens (Ortega) Epling.	Bretanica	Wp	GI	Graham et al. (2000)
	Salvia coccínea L.	Mirto	Rt	INF	Mendieta and Del Amo (1981)
auraceae	Litsea glaucescens Kunth	Laurel	Lv	DER	López and Hinojosa (1988)
oasaceae	Gronovia scandens L.	Chichicastle	Lv	INF	Escobar-Linares (1999)
ythraceae	Cuphea wrightii A. Gray	Hierba del cancer	Wp	RES	Cabrera (1958)
<i>y</i>	Heimia salicifolia Link	Hierba de San Francisco	Br	DER	Baytelman-Goldenberg (1980)
Malpighiaceae	Byrsonima crassifolia (L.) Kunth	Nanche	Br	GI	Martínez (1989)
Malvaceae	Ceiba aesculifolia subsp. parvifolia (Rose) P.E. Gibbs & Semir	Pochote	Bk	UR	Canales-Martinez et al. (2006)
viaivaccac	Sida rhombifolia L.	Escobilla	Lv	INF	Escobar-Linares (1999)
	Sphaeralcea angustifolia (Cav.) G. Don	Hierba del cancer	Br	GI	Sanchez-Gonzalez et al. (2008)
Martyniaceae	Proboscidea fragrans (Lindl.) Decne	Uña de gato	Ap	GI, INF	Gispert and Rodriguez (1998)
		•		*	
Oleaceae	Fraxinus uhdei (Wenz.) Linglesh.	Fresno	Lv	INF	Escobar-Linares (1999)
)nagraceae	Lopezia racemosa Cav.	Perilla	Ap	GI	Linares-Mazari et al. (1988)
	Oenothera rosea L'Herit. ex Aitón	Hierba del golpe	Lv	DER	González (1984)
Orchidaceae	Catasetum integerrimum Hook.	Chinela	Wp	DER	Téllez-Valdés et al. (1989)
apaveraceae	Argemone ochroleuca Sweet	Chicalote	Ap	INF	González (1984)
Pinaceae	Pinus teocote Schltdl. & Cham.	Ocote	Resin	INF	Escobar-Linares (1999)
lanunculaceae	Clematis dioica L.	Barbas de viejo	Ap	DER	Martínez (1989)
Rubiaceae	Psychotria papantlensis (Oerst.) Hemsl.	Hierba verde	Lv	INF	Argueta et al. (1994)
	Randia echinocarpa Moc. & Sessé ex DC.	Granjel	Lv	GI	Martínez (1989)
alicaceae	Salix bonplandiana Kunth	Sauce	Ар	INF, GI	Escobar-Linares (1999))
	Salix taxifolia Kunth	Taray	Ap	INF	Escobar-Linares (1999)
apotaceae	Pouteria sapota (Jacq.) H. E. Moore & Stearn	Mamey	Lv	DER, INF	Martínez (1989)
Saururaceae	Anemopsis californica Hook. & Arn.	Hierba del mango	Wp	WOM, INF, RES	Olivas-Sanchez (1999)
crophulariaceae	Castilleja arvensis Schltdl. & Cham.	Hierba del cancer	Lv	RES	Mendieta and Del Amo (1981)
cropilalariaceae	Castilleja tenuiflora Benth.	Cola de borrego	Fw	RES	Graham et al. (2000)
Selaginellaceae	Selaginella lepidophylla (Hook. & Grev.)	Doradilla	Wp	INF	Escobar-Linares (1999)
-	Datura inoxia Mill.	Toloache	•	INF	· · · · · · · · · · · · · · · · · · ·
Solanaceae			Lv		Argueta et al. (1994)
	Datura stramonium L.	Chamico	Lv	INF	Mendieta and Del Amo (1981)
	Lycopersicum esculentum Mill. var. esculentum	Jitomate	Ft	RES, INF	Hernández (1959)
	Physalis philadelphica Lam.	Tomate	Ap	INF	Hernández (1959)
	Solanum hazenii Britton	Berenjena	Wp	INF	Hernández (1959)
	Solanum tuberosum L.	Pustsekua	Ft	INF	Escobar-Linares (1999)

Saytelman-Goldenberg (1980) 3aytelman-Goldenberg (1980) ópez and Hinojosa (1988) Escobar-Linares (1999) Escobar-Linares (1999) Argueta et al. (1994) Martínez (1989) Cabrera (1958) Popular use DER UR INF INF GI VEN DER Lv Lv Ap Ap, Rt Lv Sm Hierba del cancer Common name Cinco negritos Tripa de judas Guacalazuchil Chichicastle /erbena Phoradendron quadrangulare (Kunth) Griseb Cissus verticillata (L.) Nicolson & C. E. Jarvis Phoradendron californicum Nutt. Saxodium mucronatum Ten ippia graveolens Kunth Priva mexicana (L.) Pers. Pilea pubescens Liebm. /erbena carolina L. Lantana camara L. Scientific name Fable 7 (Continued) Verbenaceae **Faxodiaceae** Urticaceae Viscaceae Vitaceae Family

Bk, bark; Ft, fruits; If, influoresnce; Lv, leaves; Pt, petiole; Rb, root bark; Rh, rhizomes; Rt, roots; Sb, stem bark; Sd, seeds; Sm, stem; Wp, whole plant. Popular use: AP, antiparasitic; DER, dermatological conditions; GI, gastrointestinal disorders; INF, inflammatory diseases; NEU, neurological disorders; RES, respiratory illnesses; UR, urological problems including diabetes; VEN, veneral diseases Plant part used: Ap, aerial parts; Bl, bulbs; Br, branches; WOM, gynecological disorders. lack scientific studies are: Euphrobiaceae (15), Asteraceae (11), Fabaceae (9), and Solanaceae (6) (Table 7). From these species, Proboscidea fragrans (uña de gato) is widely employed in Mexican traditional medicine as an anti-cancer agent. However, no pharmacological validations have been performed. Mexican plants used for diseases with cancer symptomatology are used by traditional medicine in categories such as dermatological and inflammatory diseases (Table 7). In some rural locations, medicinal plants are used as teas, decoctions or infusions for the empirical treatment of parasites, and respiratory, urological, gastrointestinal and neurological disorders. On the other hand, medicinal plants used to treat dermatological conditions, as well as inflammatory and venereal diseases, are commonly employed in the form of topical applications or medicinal baths. In urban areas, medicinal plants used for the empirical treatment of cancer, are sold as "food" or "supplement" products, and prepared as teas, decots, syrups and powders; and less often as capsules and pills (Table 7). The insufficient regulation of the medicinal plant products might be harmful for cancer patients for the following reasons: (i) these formulations might contain pathogenic microorganisms, pesticides, heavy metals, (ii) a misidentified plant might be used, (iii) a different plant than the one originally used for the treatment may be substituted for the same treatment.

Compounds isolated from Croton cajucara, Croton regelianus and Croton caracasanus, distributed in South America, showed cytotoxic effects on human cancer cell lines (Grynberg et al., 1999; Suárez et al., 2009; Bezerra et al., 2009). Active isolated compounds from Croton regelianus and Croton cajacura showed antitumor effects (Grynberg et al., 1999; Bezerra et al., 2009). Related species from Euphorbia genus, collected in Europe and Asia and their isolated compounds, have shown cytotoxic effects on human cancer lines (Amirghofran et al., in press; Duarte et al., 2009). Euphorbia tirucalli, distributed from tropical Africa to South America, showed anti-tumor activity in BALB/c mice (Valadares et al., 2006). Ingenol-3-angelate (Ing3A), isolated from the European species Euphorbia peplus, is currently in clinical trials for the treatment of squamous cell carcinoma (Li et al., 2010). This might suggest that Mexican Euphrobia and Croton, to mention a few of the Mexican species employed for the empirical treatment of cancer (Table 7) might be good candidates for the discovery of new anti-cancer drugs.

9. Further considerations

Mexico possesses a wide variety of plant species that might be important sources of anti-cancer compounds. In order to avoid the extinction of these plants and their active compounds, it is important to protect and promote the rational exploitation of this source of promising chemical compounds. For instance, Taxol is isolated from Taxus brevifolia and Taxus baccata, to produce 2.5 kg of this compound, 27,000 tons of Taxus brevifolia barks are required and approximately 12,000 trees were cut down (Rates, 2001). It is clearly necessary to partially synthesize anti-cancer compounds and other semi-synthetic analogues in order to obtain large quantities of new anti-cancer drugs. Continuing research should include studies on the mechanisms of action of each plant extract and active compounds to better understand their construction of anti-cancer effects. It is possible that the combinations of active compounds might be tested to obtain better results in cancer therapy. Optimal doses for plant extracts must also be calculated.

No clinical trials have been performed with Mexican plant extracts or their active compounds which might be due to the lack of studies on the toxicological effects of these plants on laboratory animals. It is necessary and important to increase the number of experimental studies and to begin to conduct clinical trials with

those Mexican plants and their active principles with *in vitro* and *in vivo* studies.

10 Conclusions

Despite the widespread use of Mexican plants for the treatment of diseases with cancer symptomatology, there are a very limited number of scientific studies and no clinical trials published on this topic. Clearly, it is time to increase the number of scientific studies and to begin to conduct clinical trials with plants from Mexico. In addition, the mechanisms of action by which plant extracts and their active compounds exert their anti-cancer effects need to be studied.

References

- Abbott, B.J., Leiter, J., Hartwell, J.L., Caldwell, M.E., Beal, J.L., Perdue Jr., R.E., Schepartz, S.A., 1966. Screening data from the Cancer Chemotherapy National Service Center Screening Laboratories XXXIV. Plant extracts. Cancer Research 26, 761–928.
- Aguilar, M.I., Delgado, G., Hernández, M.L., Villarreal, M.L., 2001. Bioactive compounds from lostephane heterophylla (Asteraceae). Natural Products Letters 15, 93–101.
- Aguilar-Santamaría, L., Ramírez, G., Herrera-Arellano, A., Zamilpa, A., Jiménez, J.E., Alonso-Cortés, D., Cortés-Gutiérrez, E.I., Ledesma, N., Tortoriello, J., 2007. Toxicological and cytotoxic evaluation of standardized extracts of *Galphimia glauca*. Journal of Ethnopharmacology 109, 35–40.
- Alvarez, L., Núñez, M., Del Carmen-Pérez, M., Villarreal, M.L., Delgado, G., 1994. Chemical and biological study of Astianthus viminalis. Planta Medica 60, 98–101.
- Alvarez, L., Rios, M.Y., Esquivel, C., Chávez, M.I., Delgado, G., Aguilar, M.I., Villar-real, M.L., Navarro, V., 1998. Cytotoxic isoflavans from Eysenhardtia polystachya. Journal of Natural Products 61, 767–770.
- Amirghofran, Z., Malek-Hosseini, S., Gholmoghaddam, H., Kalalinia, F., in press. Inhibition of tumor cells growth and stimulation of lymphocytes by *Euphorbia* species. Immunopharmacology and Immunotoxicology.
- Andrade-Cetto, A., 2009. Ethnobotanical study of the medicinal plants from Tlanchinol, Hidalgo, México. Journal of Ethnopharmacology 122, 163–171.
- Ankli, A., Sticher, O., Heinrich, M., 1999. Medical ethnobotany of the Yucatec Maya: Healersiconsensus as quantitative criterion. Economic botany 53, 144–160.
- Ankli, A., Heinrich, M., Bork, P., Wolfram, L., Bauerfeind, P., Brun, R., Schmid, C., Weiss, C., Bruggisser, R., Gertsch, J., Wasescha, M., Sticher, O., 2002. Yucatec Mayan medicinal plants: evaluation based on indigenous uses. Journal of Ethnopharmacology 79, 43–52.
- Aoyagi, Y., Yamazaki, A., Nakatsugawa, C., Fukaya, H., Takeya, K., Kawauchi, S., Izumi, H., 2008. Salvileucalin B, a novel diterpenoid with an unprecedented rearranged neoclerodane skeleton from Salvia leucantha Cav. Organic Letters 10, 4429-4422
- Aparicio-Fernández, X., García-Gasca, T., Yousef, G.G., Lila, M.A., González de Mejia, E., Loarca-Pina, G., 2006. Chemopreventive activity of polyphenolics from black Jamapa bean (*Phaseolus vulgaris* L.) on HeLa and HaCaT cells. Journal of Agricultural and Food Chemistry 54, 2116–2122.
- Arciniegas, A., Pérez-Castorena, A.L., Villaseñor, J.L., Romo de Vivar, A., 2006. Cacalol derivatives from *Roldana angulifolia*. Journal of Natural Products 69, 1826–1829.
- Argotte-Ramos, R., Ramirez-Avila, G., Rodriguez-Gutierrez, M., del, C., Ovilla-Muñoz, M., Lanz-Mendoza, H., Rodriguez, M.H., Gonzalez-Cortazar, M., Alvarez, L., 2006. Antimalarial 4-phenylcoumarins from the stem bark of *Hintonia latiflora*. Journal of Natural Products 69. 1442-1444.
- Argueta, V.A., Cano, A.L.M., Rodarte, M.E., 1994. Flora Medicinal Indigena de Mexico. Instituto Nacional Indigenista, Mexico, p. 1591.
- Baytelman-Goldenberg, B., 1980. Etnobotánica en el Estado de Morelos. Instituto Nacional de Antropologia e Historia, INAH, México, p. 280.
- Bezerra, D.P., Marinho-Filho, J.D., Alves, A.P., Pessoa, C., de Moraes, M.O., Pessoa, O.D., Torres, M.C., Silveira, E.R., Viana, F.A., Costa-Lotufo, L.V., 2009. Antitumor activity of the essential oil from the leaves of *Croton regelianus* and its component ascaridole. Chemistry and Biodiversity 6, 1224–1231.
- Cabrera, L., 1958. Plantas curativas de México: propiedades medicinales de las más conocidas plantas de México, su aplicación correcta y eficaz. Ediciones Ciceron, México, p. 384.
- Cáceres-Cortés, J.R., Cantú-Garza, F.A., Mendoza-Mata, M.T., Chavez-González, M.A., Ramos-Mandujano, G., Zambrano-Ramírez, I.R., 2001. Cytotoxic activity of *Justicia spicigera* is inhibited by bcl-2 proto-oncogene and induces apoptosis in a cell cycle dependent fashion. Phytotherapy Research 15, 691–697.
- Calderon, A.I., Vazquez, Y., Solis, P.N., Caballero-George, C., Zacchino, S., Gimenez, A., Pinzon, R., Caceres, A., Tamayo, G., Correa, M., Gupta, M.P., 2006. Screening of Latin American plants for cytotoxic activity. Pharmaceutical Biology 44, 130–140.
- Calzada, F., Cerda-García-Rojas, C.M., Meckes, M., Cedillo-Rivera, R., Bye, R., Mata, R., 1999. Geranins A and B, new antiprotozoal A-type proanthocyanidins from *Geranium niveum*. Journal of Natural Products 62, 705–709.
- Camacho, M.R, Phillipson, J.D., Croft, S.L., Solis, P.N., Marshall, S.J., Ghazanfar, S.A., 2003. Screening of plant extracts for antiprotozoal and cytotoxic activities. Journal of Ethnopharmacology 89, 185–191.

- Canales-Martinez, M., Hernandez-Delgado, T., Caballero-Nieto, J., Romo de Vivar-Romo, A., Duran-Diaz, A., Lira-Saade, R., 2006. Análisis cuantitativo del conocimiento tradicional de las plantas medicinales en San Rafael, Coxcatlán, valle de Tehuacán-Cuicatlán Puebla, México. Acta Botanica Mexicana 75, 21–43.
- Cassileth, B.R., Deng, G., 2004. Complementary and alternative therapies for cancer. Oncologist 9, 80–89.
- Castañeda, P., Gómez, L., Mata, R., Lotina-Hennsen, B., Anaya, A.L., Bye, R., 1996. Phytogrowth inhibitory and antifungal constituents of *Helianthella quinquenervis*. Journal of Natural Products 59, 323–326.
- Castillo-Juárez, I., Gonzalez, V., Jaime-Aguilar, H., Martinez, G., Linares, E., Bye, R., Romero, I., 2009. Anti-Helycobacter pylory activity of plants used in Mexican traditiona medicine for gastrointestinal disorders. Journal of Ethnopharmacology 122, 402–405.
- Chan-Bacab, M.J., Balanza, E., Deharo, E., Muñoz, V., García, R.D., Peña-Rodríguez, L.M., 2003. Variation of leishmanicidal activity in four populations of *Urechites andrieuxii*. Journal of Ethnopharmacology 86, 243–247.
- Chávez, D., Mata, R., 1998. Purpurediolin and purpurenin, two new cytotoxic adjacent bis-tetrahydrofuran annonaceous acetogenins from the seeds of *Annona purpurea*. Journal of Natural Products 61, 580–584.
- Chávez, D. Acevedo, L.A., Mata, R., 1998. Jimenezin, a novel annonaceous acetogenin from the seeds of *Rollinia mucosa* containing adjacent tetrahydrofuran-tetrahydropyran ring systems. Journal of Natural Products 61, 419–421.
- Chávez, D., Acevedo, L.A., Mata, R., 1999. Tryptamine derived amides and acetogenins from the seeds of *Rollinia mucosa*. Journal of Natural Products 62, 1119– 1122.
- Chérigo, L., Pereda-Miranda, R., 2006. Resin glycosides from the flowers of *Ipomoea murucoides*. Journal of Natural Products 69, 595–599.
- Del Amo, S.R., 1979. Plantas Medicinales del Estado de Veracruz. Instituto Nacional de Investigación en Recursos Bioticos, INIREB, Xalapa, México, p. 279.
- Del Rayo Camacho, M., Phillipson, J.D., Croft, S.L., Yardley, V., Solis, P.N., 2004. In vitro antiprotozoal and cytotoxic activities of some alkaloids, quinones, flavonoids, and coumarins. Planta Medica 70, 70–72.
- Delgado, G., Tejeda, V., Salas, A., Chávez, M.I., Guzmán, S., Bolaños, A., Aguilar, M.I., Navarro, V., Villarreal, M.L., 1998. New melampolides from Schkuhria schkuhrioides. Journal of Natural Products 61, 1082–1085.
- Duarte, N., Ramalhete, C., Varga, A., Molnár, J., Ferreira, M.J., 2009. Multidrug resistance modulation and apoptosis induction of cancer cells by terpenic compounds isolated from *Euphorbia* species. Anticancer Research 29, 4467– 4472
- Encarnacion, D.R., Contreras, G., 1992. Traditional Medicine of Baja California Sur (México) IV. Revista Medica IMSS 30, 297–308.
- Encarnación-Dimayuga, R., Fort-Murillo, R., Luis-Pantoja, M., 1987. Traditional medicine of Baja California Sur (Mexico). Journal of Ethnopharmacology 20, 209–222
- Encarnación-Dimayuga, R., Agúndez-Espinoza, J., García, A., Delgado, G., Molina-Salinas, G.M., Said-Fernández, S., 2006. Two new cassane-type diterpenes from Calliandra californica with antituberculosis and cytotoxic activities. Planta Medica 72. 757–761.
- Escobar-Linares, E., 1999. Estudio etnobotánico de plantas medicinales en el estado de Morelos. Bachelorís thesis. Universidad Autunoma del Estado de Morelos, México.
- Fernandez-Brewer, A.M., Juarez-Jaimes, V., Cortes-Zarraga, L., 2008. Uso de las especies del género *Asclepias* L (Apocynaceae, Asclepiadoideae), información del herbario nacional de México, MEXU. Polibotanica 25, 155–171.
- Flores, J.S., Ricalde, R.V., 1996. The secretions and exudates of plants used in Mayan traditional medicine. Journal of Herbs, Spices and Medicinal Plants 4, 53–59.
- Fragoso-Serrano, M., Gonzalez-Chimeo, E., Pereda-Miranda, R., 1999. Novel labdane diterpenes from the insecticidal plant *Hyptis spicigera*. Journal of Natural Products 62, 45–50.
- Fragoso-Serrano, M., Gibbons, S., Pereda-Miranda, R., 2005. Anti-staphylococcal and cytotoxic compounds from *Hyptis pectinata*. Planta Medica 71, 278–280.
- Franco-Molina, M., Gomez-Flores, R., Tamez-Guerra, P., Tamez-Guerra, R., Castillo-Leon, L., Rodríguez-Padilla, C., 2003. In vitro immunopotentiating properties and tumour cell toxicity induced by *Lophophora williamsii* (peyote) cactus methanolic extract. Phytotherapy Research 17, 1076–1081.
- Frei, B., Heinrich, M., Bork, P., Herrmann, M., Jaki, D., Kato, B., Kuhnt, T., Schmitt, M., Schühly, J., Volken, W., Sticher, C.O., 1998. Multiple screening of medicinal plants from Oaxaca Mexico: ethnobotany and bioassays as a basis for phytochemical investigation. Phytomedicine 5, 177–186.
- García, A., Delgado, G., 2006. Cytotoxic cis-fused bicyclic sesquiterpenoids from Jatropha neopauciflora. Journal of Natural Products 69, 1618–1621.
- García-Gasca, T., Salazar-Olivo, L.A., Mendiola-Olaya, E., Blanco-Labra, A., 2002. The effects of a protease inhibitor fraction from tepary bean (*Phaseolus acutifolius*) on *in vitro* cell proliferation and cell adhesion of transformed cells. Toxicology In Vitro 16, 229–233.
- Gerson-Cwilich, R., Serrano-Olvera, A., Villalobos-Prieto, A., 2006. Complementary and alternative medicine (CAM) in Mexican patients with cancer. Clinical and Translational Oncology 8, 200–207.
- Gispert, M., Rodriguez, H., 1998. Los Coras: Plantas Alimenticias y Medicinales de su Ambiente Natural. Mexico CONACULTA, p. 128.
- Gomez-Flores, R., Verástegui-Rodríguez, L., Quintanilla-Licea, R., Tamez-Guerra, P., Monreal-Cuevas, E., Tamez-Guerra, R., Rodríguez-Padilla, C., 2009. Antitumor properties of *Gymnosperma glutinosum* leaf extracts. Cancer Investigation 27, 149–155.

- Gomez-Martinez, R., Tlacuilo-Parra, A., Garibaldi-Covarrubias, R., 2007. Use of complementary and alternative medicine in children with cancer in Occidental Mexico. Pediatric Blood and Cancer 49, 820–823.
- González, M., 1984. Especies Vegetales de Importancia Económica en la Ciudad México. Editorial Porrúa, México, p. 305.
- González-Elizondo, M., López-Enriquez, I.L., González-Elizondo, M.S., Tena-Flores, J.A., 2004. Plantas Medicinales del Estado de Durango y Zonas Aledañas. Centro Interdisciplinario de Investigación para el Dessarrollo Integral Regional Unidad Durango. Instituto Politecnico Nacional, México, p. 210.
- Gordaliza, M., 2007. Natural products as leads to anticancer drugs. Clinical and Translational Oncology 9, 767–776.
- Graham, J.G., Quinn, M.L., Fabricant, D.S., Farnsworth, N.R., 2000. Plants used against cancer – an extension of the work of Jonathan Hartwell. Journal of Ethnopharmacology 73, 347–377.
- Grynberg, N.F., Echevarria, A., Lima, J.E., Pamplona, S.S., Pinto, A.C., Maciel, M.A., 1999. Anti-tumour activity of two 19-nor-clerodane diterpenes, transdehydrocrotonin and trans-crotonin, from Croton cajucara. Planta Medica 65, 687–689.
- Guerrero, I.C., Andrés, L.S., León, L.G., Machín, R.P., Padrón, J.M., Luis, J.G., Delgadillo, J., 2006. Abietane diterpenoids from Salvia pachyphylla and S. clevelandii with cytotoxic activity against human cancer cell lines. Journal of Natural Products 69, 1803–1805.
- Hayashi, Y., Ishihara, N., Takahashi, M., Fujii, E., Uenakai, K., Masada, S., Ichimoto, I., 1996. A new cytotoxic compound from a water extract of corn. Bioscience Biotechnology and Biochemistry 60, 1115–1117.
- Heinrich, M., Ankli, A., Frei, B., Wiemann, C., Sticher, O., 1998. Medicinal plants in Mexico: healer's consensus and cultural importance. Social Science and Medicine 47, 1859–1871.
- Hernández, F., 1959. Historia Natural de Nueva España. Universidad Nacional Autónoma de México, México, p. 476.
- Hernández-Carlos, B., Bye, R., Pereda-Miranda, R., 1999. Orizabins V-VIII, tetrasaccharide glycolipids from the Mexican scammony root (*Ipomoea orizabensis*). Journal of Natural Products 62, 1096–1100.
- Hernández-Medel, R. Pereda-Miranda, R., 2002. Cytotoxic anthraquinone derivatives from *Picramnia antidesma*. Planta Medica 68, 556–558.
- International Plant Names Index. 2008. Web page at: http://www.ipni.org (accessed July 2010).
- Ivie, G.W., Witzel, D.A., Herz, W., Kannan, R., Norman, J.O., Rushing, D.D., Johnson, J.H., Rowe, L.D., Veech, J.A., 1975. Hymenovin major toxic constituent of western bitterweed (Hymenoxys odorata DC.). Journal of Agricultural and Food Chemistry 23, 841–845.
- Jimenez, A., Mata, R., Pereda-Miranda, R., Calderon, J., Isman, M.B., Nicol, R., Arnason, J.T., 1997. Insecticidal limonoids from Swietenia humilis and Cedrela salvadorensis. Journal of Chemical Ecology 23, 1225–1234.
- Jimenez-Arellanes, A., Mata, R., Lotina-Henssen, B., Anaya-Lang, A.L., Velasco-Ibarra, L., 1996. Phytogrowth-inhibitory compounds from Malmea depressa. Journal of Natural Products 59, 202–204.
- Johansson, S., Gullbo, J., Lindholm, P., Ek, B., Thunberg, E., Samuelsson, G., Larsson, R., Bohlin, L., Claeson, P., 2003. Small, novel proteins from the mistletoe *Phoraden-dron tomentosum* exhibit highly selective cytotoxicity to human breast cancer cells. Cellular and Molecular Life Sciences 60, 165–175.
- Kuga, H., Ejima, A., Mitui, I., Sato, K., Ishihara, N., Fukuda, K., Saito, F., Uenakai, K., 1993. Isolation and characterization of cytotoxic compounds from corn. Bioscience Biotechnology and Biochemistry 57, 1020–1021.
 Lautié, E., Quintero, R., Fliniaux, M.A., Villarreal, M.L., 2008. Selection methodology
- Lautié, E., Quintero, R., Fliniaux, M.A., Villarreal, M.L., 2008. Selection methodology with scoring system: application to Mexican plants producing podophyllotoxin related lignans. Journal of Ethnopharmacology 120, 402–412.
- León, I., Enríquez, R.G., Gnecco, D., Villarreal, M.L., Cortés, D.A., Reynolds, W.F., Yu, M., 2004. Isolation and characterization of five new tetrasaccharide glycosides from the roots of *Ipomoea stans* and their cytotoxic activity. Journal of Natural Products 67, 1552–1556.
- León, I., Mirón, G., Alonso, D., 2006. Characterization of pentasaccharide glycosides from the roots of *Ipomoea arborescens*. Journal of Natural Products 69, 896–902.
- León-Rivera, I., Mirón-López, G., Molina-Salinas, G.M., Herrera-Ruiz, M., Estrada-Soto, S., del Carmen Gutiérrez, M., Alonso-Cortes, D., Navarrete-Vázquez, G., Rios, M.Y., Said-Fernández, S., 2008. Tyrianthinic acids from *Ipomoea tyrianthina* and their antimycobacterial activity, cytotoxicity, and effects on the central nervous system. Journal of Natural Products 71, 1686–1691.
- Li, L, Shukla, S., Lee, A., Garfield, S.H., Maloney, D.J., Ambudkar, S.V., Yuspa, S.H., 2010. The skin cancer chemotherapeutic agent ingenol-3-angelate (PEP005) is a substrate for the epidermal multidrug transporter (ABCB1) and targets tumor vasculature. Cancer Research 70, 4509–4519.
- Linares-Mazari, E., Flores-Peñafiel, B., Bye, R., 1988. Selección de plantas medicinales de México. Editorial Limusa, México, p. 125.
- López, R., Hinojosa, A., 1988. Catálogo de plantas medicinales sonorenses. Universidad de Sonora, Hermosillo Sonora, México, p. 143.
- Ma, J., Luo, X.D., Protiva, P., Yang, H., Ma, C., Basile, M.J., Weinstein, I.B., Kennelly, E.J., 2003. Bioactive novel polyphenols from the fruit of Manilkara zapota (Sapodilla). Journal of Natural Products 66, 983–986.
- Mans, D.R., da Rocha, A.B., Schwartsmann, G., 2000. Anti-cancer drug discovery and development in Brazil: targeted plant collection as a rational strategy to acquire candidate anti-cancer compounds. Oncologist 5, 185–198.
- Marquina, S., Maldonado, N., Garduño-Ramírez, M.L., Aranda, E., Villarreal, M.L., Navarro, V., Bye, R., Delgado, G., Alvarez, L., 2001. Bioactive oleanolic acid saponins and other constituents from the roots of *Viguiera decurrens*. Phytochemistry 56, 93–97.

- Martínez, M., 1989. Las Plantas Medicinales de México. Editorial Botas, México, p. 656
- Marzouk, M., Gamal-Eldeen, A., Mohamed, M., El-Sayed, M., 2006. Anti-proliferative and antioxidant constituents from *Tecoma stans*. Zeitschrift für Naturforschung C 61, 783–791.
- Mata, R., Calzada, F., Díaz, E., Toscano, R.A., 1990. Chemical studies on Mexican plants used in traditional medicine. XV. Sesquiterpene evoninoate alkaloids from *Hippocratea excelsa*. Journal of Natural Products 53, 1212–1219.
- Mazzio, E.A., Soliman, K.F., 2009. In vitro screening for the tumoricidal properties of international medicinal herbs. Phytoterapy Research 23, 385–398.
- McKee, T.C., Covington, C.D., Fuller, R.W., Bokesch, H.R., Young, S., Cardellina, I.I.J.H., Kadushin, M.R., Soejarto, D.D., Stevens, P.F., Cragg, G.M., Boyd, M.R., 1998. Pyranocoumarins from tropical species of the genus Calophyllum: a chemotaxonomic study of extracts in the National Cancer Institute collection. Journal of Natural Products 61, 1252–1256.
- Mena-Rejon, G., Caamal-Fuentes, E., Cantillo-Ciau, Z., Cedillo-Rivera, R., Flores-Guido, J., Moo-Puc, R., 2009. *In vitro* cytotoxic activity of nine plants used in Mayan traditional medicine. Journal of Ethnopharmacology 121, 462–465.
- Mendieta, R., Del Amo, R., 1981. Catálogo de las plantas medicinales de Yucatán. Compañía Editorial Continental, México, p. 428.
- Missouri Botanical Garden, Tropicos. 2010. Web page at: http://www.tropicos.org (accessed July 2010).
- Molassiotis, A., Panteli, V., Patiraki, E., Ozden, G., Platin, N., Madsen, E., Browall, M., Fernandez-Ortega, P., Pud, D., Margulies, A., 2006. Complementary and alternative medicine use in lung cancer patients in eight European countries. Complementary Therapies in Clinical Practice 12, 34–39.
- Moreno-Salazar, S.F., Robles-Zepeda, R.E., Johnson, D.E., 2008. Plant folk medicines for gastrointestinal disorders among the main tribes of Sonora, Mexico. Fitoterapia 79, 132–141.
- Murillo-Alvarez, J.I., Encarnación, D.R., Franzblau, S.G., 2001. Antimicrobial and cytotoxic activity of some medicinal plants from Baja California Sur (Mexico). Pharmaceutical Biology 39, 445–449.
- Nakanishi, T., Inatomi, Y., Murata, H., Shigeta, K., Iida, N., Inada, A., Murata, J., Farrera, M.A., Linuma, M., Tanaka, T., Tajima, S., Oku, N., 2005. A new and known cytotoxic aryltetralin-type lignans from stems of *Bursera graveolens*. Chemical and Pharmaceutical Bulletin (Tokyo) 53, 229–231.
- Niembro, R.A., 1986. Árboles y arbustos útiles de México. Limusa, México D. F, p.
- Novelo, M., Cruz, J.G., Hernández, L., Pereda-Miranda, R., Chai, H., Mar, W., Pezzuto, J.M., 1993. Cytotoxic constituents from *Hyptis verticillata*. Journal of Natural Products 56, 1728–1736.
- Oberlies, N.H., Rogers, L.L., Martin, J.M., McLaughlin, J.L., 1998. Cytotoxic and insecticidal constituents of the unripe fruit of *Persea americana*. Journal of Natural Products 61, 781–785.
- Olivas-Sanchez, M.P., 1999. Plantas Medicinales del Estado de Chihuahua. Universidad Autonoma de Ciudad Juarez, p. 129.
- Orjala, J., Wright, A.D., Behrends, H., Folkers, G., Sticher, O., Rüegger, H., Rali, T., 1994.

 Cytotoxic and antibacterial dihydrochalcones from *Piper aduncum*. Journal of Natural Products 57. 18–26.
- Oshima, Y., Wong, S.M., Konno, C., Cordell, G.A., Waller, D.P., Soejarto, D.D., Fong, H.H., 1986. Studies on zoapatle, II. Leucanthanolide, a novel sesquiterpene lactone from *Montanoa leucantha ssp. leucantha*. Journal of Natural Products 49, 313–317.
- Oviedo-Chávez, I, Ramírez-Apan, T., Soto-Hernández, M., Martínez-Vázquez, M., 2004. Principles of the bark of *Amphipterygium adstringens* (Julianaceae) with anti-inflammatory activity. Phytomedicine 11, 436–445.
- Parra-Delgado, H., García-Pillado, F., Sordo, M., Ramírez-Apan, T., Martínez-Vázquez, M., Ostrosky-Wegman, P., 2005. Evaluation of the cytotoxicity, cytostaticity and genotoxicity of argentatins A and B from *Parthenium argentatum* (Gray). Life Sciences 77. 2855–2865.
- Pereda-Miranda, R., Hernández, L., Villavicencio, M.J., Novelo, M., Ibarra, P., Chai, H., Pezzuto, J.M., 1993. Structure and stereochemistry of pectinolides A–C, novel antimicrobial and cytotoxic 5,6-dihydro-alpha-pyrones from *Hyptis pectinata*. Journal of Natural Products 56, 583–593.
- Pereda-Miranda, R. Escalante-Sánchez, E., Escobedo-Martínez, C., 2005. Characterization of lipophilic pentasaccharides from beach morning glory (*Ipomoea pes-caprae*). Journal of Natural Products 68, 226–230.
- Perez-Leal, R., Garcia-Mateos, M.R., Martinez-Vasquez, M., Soto-Hernandez, M., 2006. Actividad citótoxica y antioxidante de Petiveria alliacea L Revista Chanpingo. Serie Horticultura 12, 51–56.
- Popoca, J., Aguilar, A., Alonso, D., Villarreal, M.L., 1998. Cytotoxic activity of selected plants used as antitumorals in Mexican traditional medicine. Journal of Ethnopharmacology 59, 173–177.
- Puebla-Pérez, A.M., Huacuja-Ruiz, L., Rodríguez-Orozco, G., Villaseñor-García, M.M., De La Miranda-Beltrán, M.L., Celis, A., Sandoval-Ramírez, L., 1998. Cytotoxic and antitumour activity from *Bursera fagaroides* ethanol extract in mice with L5178Y lymphoma. Phytotherapy Research 12, 545–548.
- Raffauf, R.F., Menachery, M.D., Le Quesne, P.W., Arnold, E.W., Clardy, J., 1981. Antitumor plants. 11. Diterpenoid and flavonoid constituents of *Bromelia pinguin L.* Journal of Organic Chemistry 46, 1094–1098.
- Rates, S.M., 2001. Plants source of drugs. Toxicon 39, 603–613.
- Rios, M.Y., González-Morales, A., Villarreal, M.L., 2001. Sterols, triterpenes and biflavonoids of *Viburnum jucundum* and cytotoxic activity of ursolic acid. Planta Medica 67, 683–684.
- Rios, M.Y., Salina, D., Villarreal, M.L., 2001a. Cytotoxic activity of moronic acid and identification of the new triterpene 3,4-seco-olean-18-ene-3,28-dioic acid from *Phoradendron reichenbachianum*. Planta Medica 67, 443-446.

- Rios, M.Y., León, I., 2006. Chemical constituents and cytotoxic activity of Smallanthus maculatus (Cav.) H Rob. (Asteraceae). Chemistry of Natural Compounds 42, 497–498.
- Saklani, A., Kutty, S.K., 2008. Plant-derived compounds in clinical trials. Drug Discovery Today 13, 161–171.
- Sanchez, I., Calderon, J., Ruiz, B., Tellez, J., Calzada, L., Taboada, J., 2001. In vitro cyto-toxicity of flavonoids against MK2 and C6 tumour cells. Phytotherapy Research 15, 290–293.
- Sanchez-Gonzalez, A., Granados-Sanchez, D., Simon-Nabor, R., 2008. Uso medicinal de las plantas por los otomíes del municipio de Nicolás Flores, Hidalgo, México. Revista Chapingo Serie Horticultura 14, 271–279.
- Schlie-Guzmán, M.A., García-Carrancá, A., González-Esquinca, A.R., 2009. In vitro and in vivo antiproliferative activity of laherradurin and cherimolin-2 of *Annona diversifolia* Saff. Phytotherapy Research 23, 1128–1133.
- Schun, Y., Cordell, G.A., 1987. Cytotoxic steroids of Gelsemium sempervirens. Journal of Natural Products 50, 195–198.
- Sheth, K., Jolad, S., Wiedhopf, R., Cole, J.R., 1972. Tumor-inhibitory agent from *Hyptis emoryi* (Labiatae). Journal of Pharmaceutical Sciences 61, 1819.
- Shi, Q., Chen, K., Li, L., Chang, J.J., Autry, C., Kozuka, M., Konoshima, T., Estes, J.R., Lin, C.M., Hamel, E., 1995. Antitumor agents 154. Cytotoxic and antimitotic flavonols from *Polanisia dodecandra*. Journal of Natural Products 58, 475–482.
- Shi, G., MacDougal, J.M., McLaughlin, J.L., 1997. Bioactive annonaceous acetogenins from *Rollinia mucosa*. Phytochemistry 45, 719–723.
- Suárez, A.I., Chavez, K., Mateu, E., Compagnone, R.S., Muñoz, A., Sojo, F., Arvelo, F., Mijares, M., De Sanctis, J.B., 2009. Cytotoxic activity of seco-entkaurenes from Croton caracasana on human cancer cell lines. Natural Product Communications 4 1547–1550
- Suffness, M., Douros, J., 1982. Current status of the NCI plant and animal product program. Journal of Natural Products 45, 1–14.
- Suffness, M., Pezzuto, J.M., 1990. Assays related to cancer drug discovery. In: Hostettmann, K. (Ed.), Methods in Plant Biochemistry: Assays for Bioactivity, vol. 6. Academic Press, London, pp. 71–133.
- Taddei-Bringas, G.A., Santillana-Macedo, M.A., Romero-Cancio, J.A., Romero-Téllez, M.B., 1999. Acceptance and use of therapeutic medical plants in family medical care. Salud Publica Mex 41, 216–220.
- Tascilar, M., De Jong, F.A., Verweij, J., Mathijssen, R.H., 2006. Complementary and alternative medicine during cancer treatment: beyond innocence. Oncologist 11, 732-741
- Téllez-Valdés, O., Cabrera, E.F., Linares, E., Bye, R., 1989. Las plantas de Cozumel. Guía botánico-turística de la isla de Cozumel, Quintana Roo. Instituto de Biología, Universidad Nacional Autónoma de México, p. 75.
- Valadares, M.C., Carrucha, S.G., Accorsi, W., Queiroz, M.L., 2006. Euphorbia tirucalli L. modulates myelopoiesis and enhances the resistance of tumour-bearing mice. International Immunopharmacology 6, 294–299.

- Vasconcellos, M.C., Bezerra, D.P., Fonseca, A.M., Pereira, M.R., Lemos, T.L., Pessoa, O.D., Pessoa, C., Moraes, M.O., Alves, A.P., Costa-Lotufo, L.V., 2005. Bioactivity of biflorin, a typical o-naphthoquinone isolated from *Capraria biflora* L. Zeitschrift für Naturforschung C 60, 394–398.
- Vega-Avila, E., Tapia-Águilar, R., Jiménez-Estrada, M., Villarreal-Ortega, M.L., Roman-Ramos, R., 2004. Cytotoxic activity of *Cuphea aequipetala*. Proceedings of the Western Pharmacology Society 47, 129–133.
- Vega-Avila, E., Espejo-Serna, A., Alarcon-Aguilar, F., Velazco-Lesama, R., 2009. Cyto-toxic activity of four Mexican medicinal plants. Proceedings of the Western Pharmacology Society 52, 78–82.
- Velasco, L.R., Pérez, J.C., Aguilar, R.T., Román-Ramos, R., Carrillo, L.V., Alarcón-Aguilar, F., 2005. Detection of cytotoxic activity of *Psacalium palladium* on normal mouse spleen cells and transformed human cells. Proceedings of the Western Pharmacology Society 48, 150–153.
- Villarreal, M.L., Alonso, D., Melesio, G., 1992. Cytotoxic activity of Mexican plants used in traditional medicine. Fitoterapia 43, 518–521.
- Villarreal, M.L., Alvarez, L., Alonso, D., Navarro, V., García, P., Delgado, G., 1994. Cytotoxic and antimicrobial screening of selected terpenoids from Asteraceae species. Journal of Ethnopharmacology 42, 25–29.
- Villavicencio-Nieto, M.A., Pérez-Escandón, B.E., Mendoza-Pérez, E., Maldonado Lagunas, V., 2008. Citotoxicidad en células HeLa de extractos de tres especies de plantas medicinales de Hidalgo, México. Polibotanica 26, 137– 147.
- Waizel-Bucay, J., Herrera-Santoyo, J., Alonso-Cortes, D., Villarreal-Ortega, M.L., 1994.
 Estudios preliminaries de la actividad citotóxica de muérdagos mexicanos Cladocolea grahami, Phoradendron reichenbachianum and Phoradendron galeotii (Loranthaceace). Revista del Instituto Nacional de Cancerologia 40, 133-137
- Waizel-Bucay, J., Martinez-Porcayo, G., Villarreal-Ortega, M.L., Alonso-Cortes, D., Pliego-Castañeda, A., 2003. Estudio preliminar etnobotanico, fitoquimico de la actividad citotóxica y antimicrobiana de Cuphea aequipetala Cav. (Lythraceae). Polibotanica 14, 99–108.
- Wickramaratne, D.B., Mar, W., Chai, H., Castillo, J.J., Farnsworth, N.R., Soejarto, D.D., Cordell, G.A., Pezzuto, J.M., Kinghorn, A.D., 1995. Cytotoxic constituents of *Bursera permollis*. Planta Medica 61, 80–81.
- Xu, Y.M., McLaughlin, S.P., Gunatilaka, A.A., 2007. Sorbifolivaltrates A-D, diene valepotriates from *Valeriana sorbifolia*. Journal of Natural Products 70, 2045– 2048.
- Yokosuka, A, Mimaki, Y., Kuroda, M., Sashida, Y., 2000. A new steroidal saponin from the leaves of *Agave americana*. Planta Medica 66, 393–396.
- Zeng, L., Wu, F.E., Öberlies, N.H., McLaughlin, J.L., Sastrodihadjo, S., 1996. Five new monotetrahydrofuran ring acetogenins from the leaves of *Annona muricata*. Journal of Natural Products 59, 1035–1042.