Design and Analysis of Algorithms

Section VI: Graph Algorithms

Chapter 24: Difference Constraints & Shortest Paths

Difference constraints and shortest paths Graph Algorunms Difference constraints and shortest paths Single-Source Shortes Chapter 24 Single-Source Shortest Paths Relax(u,v,w)Relax(u,v,w)(a) (b) Single-Source Shortest Paths 660 Chapter 24 INTR

1

Shortest-Paths Problem

- Given:
 - Weighted, Directed Graph G=(V, E)
 - Weight Function w: E ->
 - Edges -> Real-Valued Weights $\mathbb R$
- Weight of path $P=\langle v_0, v_1, ..., v_k \rangle$
 - $w(p) = \sum w(v_{i-1}, v_i)$
- Shortest-Path Weight $\delta(u,v)$ is the minimum weight path w(p) that goes from u to v, otherwise ∞
- The shortest path from u to v is any path p with a weight of $\delta(u,v)$

Bellman-Ford

- Solves Single-Source Shortest-Paths Problem in General Case.
 - Weights may be negative.
- Given Graph G=(V,E) with source S and weight function W returns:
 - False: if negative-weight cycle exist
 - -True: Otherwise

```
BELLMAN-FORD (G, w, s)
   INITIALIZE-SINGLE-SOURCE (G, s)
2 for i = 1 to |G.V| - 1
       for each edge (u, v) \in G.E
           Relax(u, v, w)
   for each edge (u, v) \in G.E
       if v.d > u.d + w(u, v)
            return FALSE
   return TRUE
```

Relaxation Step 1: Initialize-Single-Source

```
INITIALIZE-SINGLE-SOURCE (G, s)
```

- 1 for each vertex $\nu \in G.V$
- $v.d = \infty$
- $\nu.\pi = NIL$
- $4 \quad s.d = 0$

Relax (Pseudocode)

```
RELAX(u, v, w)

1 if v.d > u.d + w(u, v)

2 v.d = u.d + w(u, v)

3 v.\pi = u
```

Bellman-Ford Complexity

```
BELLMAN-FORD (G, w, s)
  INITIALIZE-SINGLE-SOURCE (G, s)
   for i = 1 to |G.V| - 1
       for each edge (u, v) \in G.E
           Relax(u, v, w)
5 for each edge (u, v) \in G.E
       if v.d > u.d + w(u, v)
           return FALSE
   return TRUE
```

- Lines 2-4: |V|-1 passes over Edges in E
- O(VE)

Linear Programming

 Problem-solving model for optimal allocation of scarce resources, among a number of competing activities.

maximize	13A	+	23B		
subject	5A	+	15B	≤	480
to the constraints	4A	+	4B	≤	160
	35A	+	20B	≤	1190
	Α	,	В	≥	0

SEE LP PDF

Chapter 29

Chapter 29 Linear Programming

847

Simplified Problem: 24.4 Difference Constraints & Shortest Paths

- Sometimes we don't really care about the objective function, we just wish to find any FEASIBLE SOLUTION.
 - Any vector x that satisfiex Ax <- b
 - OR determine no solution exists.
- Lets look at Feasibility Problem.

Representation

- System of Difference Constraints:
 - Each row of linear-programming matrix A contains one 1 and one -1.
 - All other entries of A are 0
- Constraints Ax <= b are a set of m different constraints involving n unknowns.
- Each constraints is a simple linear inequality of the form:

$$\Box x_i - x_i \le b_k$$

 \square where 1 <= i,j <= n, i <> j, and 1 <= k <= m

Example

$$x_1 - x_2 \leq 0$$
,
 $x_1 - x_5 \leq -1$,
 $x_2 - x_5 \leq 1$,
 $x_3 - x_1 \leq 5$,
 $x_4 - x_1 \leq 4$,
 $x_4 - x_3 \leq -1$,
 $x_5 - x_3 \leq -3$,
 $x_5 - x_4 \leq -3$.

Example

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & -1 \\ -1 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} \leq \begin{pmatrix} 0 \\ -1 \\ 1 \\ 5 \\ 4 \\ -1 \\ -3 \\ -3 \end{pmatrix}.$$

Example Solution

Solution 1

$$\square$$
 X = (-5, -3, 0, -1, -4)

Solution 2

$$\square$$
 X' = (0, 2, 5, 4, 1)

Solution are related!

Lemma 24.8

- Let x = (x₁, x₂, ..., x_n) be a solution to a system
 Ax <= b of difference constraints
- Let d be any constant
- $X + d = (x_1+d, x_2+d, ..., x_n+d)$ is a solution

Lemma 24.8 w/ Proof

- Let x = (x₁, x₂, ..., x_n) be a solution to a system
 Ax <= b of difference constraints
- Let d be any constant
- $X + d = (x_1+d, x_2+d, ..., x_n+d)$ is a solution

- For each xi and xj, we have:
- Thus is x satisfies, the x+d satisfies.

Constraint Graph

- We can interpret our Difference Constraints as a Graph, G = (V,E)
- Each vertex v_i corresponds to one of the n unknowns
- Each edge corresponds to one of the minequalities.

Constraint Graph

- We can interpret our Difference Constraints as a Graph, G = (V,E)
- Each vertex v_i corresponds to one of the n unknowns
- Each edge corresponds to one of the m inequalities.
 - $-V=\{v_0, v_1, v_2, ..., v_n\}$
 - $E=\{(v_i,v_i): xj-xi <= bk \text{ is a constraint}\} UNION$
 - $-\{(v_0,v_1), (v_0,v_2), ... (v_0, v_n)\}$

V_0

- V₀ is included with an edge to each vertex to insure all vertices are reachable.
- $\{(v_0, v_1), (v_0, v_2), ... (v_0, v_n)\}$

Example Constraint Graph

24.4 Difference constraints and shortest paths

667

Example Constraint Graph

24.4 Difference constraints and shortest paths

667

$$x_1 - x_2 \leq 0$$
,
 $x_1 - x_5 \leq -1$,
 $x_2 - x_5 \leq 1$,
 $x_3 - x_1 \leq 5$,
 $x_4 - x_1 \leq 4$,
 $x_4 - x_3 \leq -1$,
 $x_5 - x_3 \leq -3$,
 $x_5 - x_4 \leq -3$.

Theorem 24.9

 Given a system Ax ≤ b of difference constraints, let G=(V,E) be the corresponding constraint graph. If G contains no negativeweight cycles, a feasible solutions is:

$$\Box$$
 x = ($\delta(v_0, v_1)$, $\delta(v_0, v_2)$, $\delta(v_0, v_3)$, ..., $\delta(v_0, v_n)$)

Example Constraint Graph

24.4 Difference constraints and shortest paths

667

$$x_1 - x_2 \leq 0$$
,
 $x_1 - x_5 \leq -1$,
 $x_2 - x_5 \leq 1$,
 $x_3 - x_1 \leq 5$,
 $x_4 - x_1 \leq 4$,
 $x_4 - x_3 \leq -1$,
 $x_5 - x_3 \leq -3$,
 $x_5 - x_4 \leq -3$.

Theorem 24.9 w/Proof

- \triangleright Consider any edge (v_i, v_j) in E
- ➤ By Triangle Inequality:

$$\geq \delta(v_0, v_i) \leq \delta(v_0, v_i) + w(v_i, v_i)$$

- \triangleright OR: $\delta(v_0, v_j) \delta(v_0, v_i) \le w(v_i, v_j)$
- \triangleright Let $x_i = \delta(v_0, v_i)$ and $x_j = \delta(v_0, v_j)$
- \triangleright THEN: x_i and x_j satisfies $x_j x_i \le w(v_i, v_j)$

Theorem 24.9 w/Proof (b)

• If constraint graph contains a negative weight cycle, then it has no feasible solution.

Theorem 24.9 w/Proof (b)

- If constraint graph contains a negative weight cycle, then it has no feasible solution.
- > Let negative weight cycle be:

$$> c = (v_1, v_2, ..., v_k)$$

 \triangleright It cannot contain v_0 since it has no entering edge.

Theorem 24.9 w/Proof (b)

> Let negative weight cycle be:

$$\triangleright$$
 c = $(v_1, v_2, ..., v_k)$

Cycle corresponds to difference equations:

$$x_2 - x_1 \le w(\nu_1, \nu_2),$$

 $x_3 - x_2 \le w(\nu_2, \nu_3),$
 \vdots
 $x_{k-1} - x_{k-2} \le w(\nu_{k-2}, \nu_{k-1}),$
 $x_k - x_{k-1} \le w(\nu_{k-1}, \nu_k).$

- > Summing the left and right hand side must also be true.
- \triangleright Given $x_1 = x_k$ Left side sums to 0 yielding:
 - $> 0 \le w(c)$
 - > w(c) <0 : CONTRADICTION

Bellman-Ford

- Bellman-Ford to find $\delta(v_0, v_i)$
- Shortest Paths from v_0 with negative weights and no negative-weight cycles.