ΤΗΛ 415 - Στατιστική Επεξεργασία Σήματος για Τηλ/νίες Εαρινό Εξάμηνο 2020

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

Εργασία 2 25 Απριλίου 2020

- 1. Κατασκευάστε στο matlab τη συνάρτητη [Q,R]=QR(A) η οποία επιστρέφει τους πίνακες $\mathbf{Q}_{m\times r}$ και $\mathbf{R}_{r\times n}$ της διάσπασης QR του πίνακα $\mathbf{A}_{m\times n}$. Δηλαδή, $\mathbf{A}=\mathbf{Q}\mathbf{R}$ όπου ο \mathbf{R} είναι άνω τριγωνικός και $\mathbf{Q}^H\mathbf{Q}=\mathbf{I}_r$.
- 2. Έστω $\mathbf{A} \in \mathbb{C}^{n \times n}$, $\mathbf{X} \in \mathbb{R}^{n \times m}$, \mathbf{B} , $\mathbf{W} \in \mathbb{C}^{n \times m}$, και \mathbf{b} , $\mathbf{w} \in \mathbb{C}^n$.
- α) Δείξτε ότι

$$egin{aligned} &
abla_{\mathbf{X}} \operatorname{tr} ig(\mathbf{X}^T \mathbf{A} \mathbf{X} ig) = ig(\mathbf{A} + \mathbf{A}^T ig) \, \mathbf{X}, \\ &
abla_{\mathbf{X}} \operatorname{tr} ig(\mathbf{X}^T \mathbf{B} ig) = \mathbf{B}, \\ &
abla_{\mathbf{X}} \operatorname{tr} ig(\mathbf{B}^T \mathbf{X} ig) = \mathbf{B}. \end{aligned}$$

β) Δείξτε ότι

$$\nabla_{\mathbf{w}} \mathbf{w}^{H} \mathbf{A} \mathbf{w} = 2\mathbf{A} \mathbf{w},$$
$$\nabla_{\mathbf{w}} \mathbf{w}^{H} \mathbf{b} = 2\mathbf{b},$$
$$\nabla_{\mathbf{w}} \mathbf{b}^{H} \mathbf{w} = \mathbf{0}.$$

γ) Δείξτε ότι

$$\nabla_{\mathbf{W}} \operatorname{tr}(\mathbf{W}^{H} \mathbf{A} \mathbf{W}) = 2\mathbf{A} \mathbf{W},$$
$$\nabla_{\mathbf{W}} \operatorname{tr}(\mathbf{W}^{H} \mathbf{B}) = 2\mathbf{B},$$
$$\nabla_{\mathbf{W}} \operatorname{tr}(\mathbf{B}^{H} \mathbf{W}) = \mathbf{0}.$$

- 3. Δίνονται οι ανεξάρτητες πραγματικές τυχαίες μεταβλητές B, X, και Y, όπου $P(B=1)=P(B=-1)=\frac{1}{2}, X\sim \mathcal{N}(0,1),$ και $Y\sim \mathcal{N}(0,1).$ Ορίζουμε την τυχαία μεταβλητή W=BX. Αρχικά, δείξτε ότι $W\sim \mathcal{N}(0,1).$ Κατόπιν, για κάθε μία από τις παρακάτω μιγαδικές τυχαίες μεταβλητές Z, ελέγξτε αν τα $\mathcal{R}(Z)$ και $\mathcal{I}(Z)$ είναι ασυσχέτιστα μεταξύ τους (επιβεβαιώστε στο matlab), αν είναι από-κοινού πραγματικές γκαουσιανές τυχαίες μεταβλητές, αν το άθροισμά τους είναι πραγματική γκαουσιανή τυχαία μεταβλητή (επιβεβαιώστε στο matlab), και αν η Z είναι μιγαδική γκαουσιανή τυχαία μεταβλητή. Στην περίπτωση που είναι, ελέγξτε αν η Z είναι proper ή όχι και γράψτε την pdf της.
 - α) Z = X + jX,
 - $\beta) \ Z = X + jY,$
 - γ) Z = X + j2Y,
 - δ) Z = X + iW.
- 4. Το πραγματικό τυχαίο $n \times 1$ διάνυσμα $\mathbf Y$ δίνεται από τη σχέση

$$\mathbf{Y} = X_1 \mathbf{a}_1 + X_2 \mathbf{a}_2 + \mathbf{N}$$

όπου $X_1 \sim (0, \sigma_{X_1}^2)$ και $X_2 \sim (0, \sigma_{X_2}^2)$ είναι πραγματικές τυχαίες μεταβλητές και $\mathbf{N} \sim (\mathbf{0}, \sigma_N^2 \mathbf{I})$ είναι πραγματικό τυχαίο $n \times 1$ διάνυσμα, όπου $r_{X_1,X_2} = 0$, $r_{X_1,N} = \mathbf{0}_{1 \times n}$, και $r_{X_2,N} = \mathbf{0}_{1 \times n}$, και \mathbf{a}_1 και \mathbf{a}_2 είναι γραμμικά ανεξάρτητα ντετερμινιστικά $n \times 1$ διανύσματα. Δίνεται ότι $\sigma_{X_1}^2 \geq 0$, $\sigma_{X_2}^2 \geq 0$, και $\sigma_N^2 > 0$.

α) Εκφράστε τον \mathbf{R}_Y ως συνάρτηση των $\sigma_{X_1}^2$, $\sigma_{X_2}^2$, σ_N^2 , \mathbf{a}_1 , και \mathbf{a}_2 .

- β) Δείξτε ότι $\mathbf{x}^T \mathbf{R}_Y \mathbf{x} \ge \sigma_N^2 ||\mathbf{x}||^2$, για κάθε $\mathbf{x} \in \mathbb{R}^n$.
- γ) Δείξτε ότι οι ιδιοτιμές του ${f R}_Y$ είναι πραγματικές και θετικές.
- δ) Δείξτε ότι οι n-2 μιχρότερες ιδιοτιμές του \mathbf{R}_Y είναι ίσες με σ_N^2 .
- ε) Δείξτε ότι ο \mathbf{R}_Y είναι μη ιδιάζων.
- στ) Εκφράστε τον ${f R}_Y$ ως γινόμενο τριών πινάχων συν έναν διαγώνιο πίναχα.
 - ζ) Για την εκτίμηση του \mathbf{R}_Y , χρησιμοποιούμε K ανεξάρτητα δείγματα (διανύσματα) \mathbf{Y}_1 , \mathbf{Y}_2 , ..., \mathbf{Y}_K και κατασκευάζουμε τον $\hat{\mathbf{R}}_Y = \frac{1}{K} \sum_{i=1}^K \mathbf{Y}_i \mathbf{Y}_i^T$. Εκφράστε τον $\hat{\mathbf{R}}_Y$ ως συνάρτηση του πίνακα δεδομένων $\bar{\mathbf{Y}} = [\mathbf{Y}_1 \ \mathbf{Y}_2 \ \dots \ \mathbf{Y}_K]$.
 - η) Αν $\bar{\mathbf{Y}} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$ είναι η αποσύνθεση SVD του $\bar{\mathbf{Y}}$, όπου ο διαγώνιος $\mathbf{\Sigma}$ έχει διάσταση $n \times K$ και τα διαγώνια στοιχεία του είναι $\sigma_1, \, \sigma_2, \, \ldots, \, \sigma_{\min(n,K)}, \, \mu\epsilon \, \sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > 0$ και $\sigma_{r+1} = \sigma_{r+2} = \ldots = \sigma_{\min(n,K)} = 0, \, \delta$ είξτε ότι τα ιδιοδιανύσματα του $\hat{\mathbf{R}}_Y$ είναι οι στήλες του \mathbf{U} και οι μη-μηδενικές ιδιοτιμές του $\hat{\mathbf{R}}_Y$ είναι $\lambda_i = \frac{\sigma_i^2}{K^2}, \, i = 1, 2, \ldots, r.$
- ϑ) Δείξτε ότι η ορίζουσα του $\hat{\mathbf{R}}_Y$ είναι

$$|\hat{\mathbf{R}}_Y| = \begin{cases} 0, & K < n, \\ \frac{(\sigma_1 \sigma_2 \dots \sigma_n)^2}{K^{2n}}, & K \ge n. \end{cases}$$

Επιβεβαιώστε όλα τα παραπάνω ερωτήματα στο matlab.

5.

α) Για τη μιγαδική τυχαία μεταβλητή Z=X+jY, όπου X και Y είναι πραγματικές τυχαίες μεταβλητές, δείξτε ότι

$$\begin{split} \sigma_Z^2 &= E\{|Z|^2\} - |\mu_Z|^2 = \sigma_X^2 + \sigma_Y^2, \\ \tilde{\sigma}_Z^2 &= E\{Z^2\} - \mu_Z^2. \end{split}$$

β) Για τον μιγαδικό τυχαίο πίνακα ${\bf Z}$ και τους ντετερμινιστικούς πίνακες ${\bf A}$ και ${\bf B}$, δείξτε ότι

$$E\{\mathbf{Z}^T\} = E\{\mathbf{Z}\}^T,$$

$$E\{\mathbf{Z}^*\} = E\{\mathbf{Z}\}^*,$$

$$E\{\mathbf{AZB}\} = \mathbf{A}E\{\mathbf{Z}\}\mathbf{B}.$$

γ) Για τα μιγαδικά τυχαία διανύσματα ${\bf Z}_1$ και ${\bf Z}_2$, δείξτε ότι

$$\begin{aligned} \mathbf{R}_{Z_{1}} &\geq 0, \\ \mathbf{C}_{Z_{1}} &\geq 0, \\ \mathbf{C}_{Z_{1},Z_{2}} &= E\{\mathbf{Z}_{1}\mathbf{Z}_{2}^{H}\} - \mu_{Z_{1}}\mu_{Z_{2}}^{H}, \\ \mathbf{C}_{Z_{2},Z_{1}} &= \mathbf{C}_{Z_{1},Z_{2}}^{H}, \\ \tilde{\mathbf{C}}_{Z_{1},Z_{2}} &= E\{\mathbf{Z}_{1}\mathbf{Z}_{2}^{T}\} - \mu_{Z_{1}}\mu_{Z_{2}}^{T}, \\ \tilde{\mathbf{C}}_{Z_{2},Z_{1}} &= \mathbf{C}_{Z_{1},Z_{2}}^{T}. \end{aligned}$$