

Université Internationale de Casablanca

Cours

ELECTRONIQUE

Dispositifs électroniques à base de l'amplificateur opérationnel

email: nasser_baghdad @ yahoo.fr

Contenu du programme

Chapitre I : Généralités sur l'amplificateur opérationnel

Chapitre II : Montages à régime linéaire indépendants de la fréquence

Chapitre III : Montages à régime linéaire dépendants de la fréquence

Chapitre IV : Montages à régime non linéaire

Chapitre V : Oscillateurs sinusoïdaux

Chapitre VI: Multivibrateurs

Chapitre VII: Convertisseurs A/N et NA

Chapitre II

Montages à régime linéaire indépendants de la fréquence

- 1°) Montages fondamentaux
- 2°) Montages particuliers

1°) Montages fondamentaux

$$v_s = -\frac{R_2}{R_1} \cdot v_e \quad \Rightarrow \quad G = \frac{v_s}{v_e} = -\frac{R_2}{R_1}$$

$$Z_E = \frac{v_e}{i_e} = R_1$$

$$Z_S = 0$$

$$v_s = -\frac{R_0}{R_0} \cdot v_e = -v_e \quad \Rightarrow \quad G = \frac{v_s}{v_e} = -1$$

$$Z_E = \frac{v_e}{i_e} = R_0$$

$$Z_S = 0$$

10°) Montage dérivateur

$$V_{s} = -RC \frac{dV_{e}}{dt}$$

$$\underline{Z}_{E} = \frac{\underline{v}_{e}}{\underline{i}_{e}} = \frac{1}{jC\omega}$$

$$\underline{Z}_{S} = 0$$

Rappel:

diode

→ Le courant à traversant la diode est donné par la relation :

$$I_d = I_0 \left(e^{\frac{V_d}{u_T}} - 1 \right)$$

$$u_T = \frac{k \cdot T}{q}$$

- → La tension u_T correspond à la tension thermodynamique, d'une valeur de 25 mV environ à l'ambiance.
- \rightarrow I₀ correspond au courant de saturation de la diode D (ou courant inverse), de qcq nA.

En direct:
$$si\ I_d \approx I_0 \cdot e^{\frac{V_d}{u_T}}$$
 alors $V_d \approx u_T \cdot \ln\left(\frac{I_d}{I_0}\right)$

r_d résistance dynamique de la diode

$$Z_E = \frac{v_e}{i_e} = R_1 + R_s \quad Z_S = 0$$

$$G > 1 \Leftrightarrow v_s > v_e \Rightarrow$$

Amplificat eur non inverseur

 $G=1 \Leftrightarrow v_s=v_e \Rightarrow suiveur \Rightarrow (R_S \to \infty \quad ou \quad R_3 \to 0)$

$$Z_E = \frac{v_e}{i_e} = \infty$$
 $Z_S = 0$

Pratique: $R_{c} \ge 1 M\Omega$

 $R_3 \leq 50 \Omega$

Travaux dirigés n°1

Montages à régime linéaire indépendants de la fréquence

Pr. A. BAGHDAD

Exercice n°1

L'amplificateur opérationnel est supposé parfait.

- 1°) Exprimer v_s en fonction de v_1 et v_2 .
- 2°) Exprimer l'impédance d'entrée sur chaque entrée.

Exercice n°2

L'amplificateur opérationnel est supposé parfait.

Exprimer v_s en fonction de v_e et déterminer l'impédance d'entrée dans les deux cas suivants :

Exercice n°3

mmmm

Exercice n°4

L'amplificateur opérationnel est supposé parfait.

- 1°) Calculer la tension u en fonction de v_e et v_s .
- 2°) En déduire l'expression de v_s en fonction de v_e .

Exercice n°5

L'amplificateur opérationnel est supposé parfait.

- 1°) Exprimer v_s en fonction de v_1 et v_2 pour le montage de la figure ci-dessous.
- 2°) Exprimer les impédances d'entrées du même montage.

Exercice n°6

Donner l'expression de v_s en fonction de v_1 et v_2 pour le montage de la figure cidessous.

Exercice n°7

Calculer V_s en fonction de V_e . Exprimer le gain en tension si $R_3 << R_2$ et si $R_3 << R_4$. Quel est l'intérêt de ce montage ? (Examiner la valeur de l'impédance d'entrée.). $AN: R_3 = R_4 = 2 \ k\Omega, \ R_1 = 1 \ k\Omega$ et $R_2 = 200 \ k\Omega$.

Exercice n°8

Donner l'expression de v_s en fonction de v_1 et v_2 pour le montage de la figure cidessous.

Exercice n°9

Montrer que ce montage constitue un amplificateur différentiel.

Exercice n°10

Exprimer la sortie en fonction des entrées.

Exercice n°11

Calculer V_s en fonction de V_1 et V_2 . Quel est l'intérêt du montage ?

