

Identification of Target Integrin Thyroid Hormone Receptors From Sea Urchins

Dilma Karunathilake¹

<u>Advisors</u>: Dr. Andreas Heyland², Dr. Rui Huang³

Ligand-Bound αVβG

Final Ranking:

1. αVβ3 (Avg ΔG: –7.70 kcal/mol)

2. αVβG (Avg ΔG: –7.58 kcal/mol)

4. α **VβC** (Avg Δ G: –7.47 kcal/mol)

7. α**PβC** (Avg ΔG: –6.91 kcal/mol)

3. αVβ1A (Avg ΔG: –7.49 kcal/mol)

5. α**Pβ1A** (Avg ΔG: –7.44 kcal/mol)

[1] Master of Bioinformatics Program, University of Guelph, ON, Canada, [2] Department of Integrative Biology, University of Guelph, ON, Canada, [3] Department of Chemistry, University of Guelph, GN, Canada

Background

RGD Integrins, T3/T4 & Non-Canonical Signaling:

- Integrins are transmembrane heterodimeric receptors composed of one α and one β subunit. They mediate cell adhesion to the extracellular matrix (ECM) and facilitate bidirectional signal transduction across the membrane.
- Thyroid hormones (T3 and T4) regulate development, metabolism, and differentiation.
- Non-canonical thyroid hormone signaling (Panel 1A) involves membrane-associated receptors, (integrin $\alpha V\beta 3$ in humans), which mediate rapid, transcription-independent responses.

Knowledge Gap:

- Although sea urchins lack clear orthologs for some human integrins such as β3, phylogenetic analysis (Panel 1E) shows several S. purpuratus subunits cluster within conserved clades (e.g., PS1, PS2, $\alpha 4/\alpha 9$), suggesting potential functional analogs.
- However, the specific membrane receptors mediating noncanonical thyroid hormone signaling in echinoderms remain unidentified, highlighting a key knowledge gap.

- RGD peptides (Panel 1B) are short amino acid sequences containing the Arg-Gly-Asp (RGD) motif that mimic natural ligands of integrin receptors.
- They bind to the RGD-recognition site (Panel 1C) on integrins such as $\alpha V\beta 3$, which are often overexpressed in cancer cells, making RGD peptides targets and vehicles in cancer therapy.
- Vertebrates express 8 heterodimers that are RGDbinding (Panel 1D).
- The RGD integrin human αVβ3 also binds thyroid hormones and activates non-genomic signaling pathways involved in proliferation, angiogenesis, and tumor progression.
- While sea urchins lack a clear αVβ3 ortholog, thyroid hormones are known to bind sea urchin membrane proteins and accelerate larval skeletogenesis, suggesting non-canonical pathways may be conserved.

Phylogenetic Clustering of Human and S. purpuratus Integrin Subunits

Hypothesis

I hypothesized that conserved or structurally analogous sea urchin integrin subunits form thyroid hormone binding pockets with varying selectivity for different thyroid hormone metabolites.

Tools & Methods

Six sea urchin αV-integrin heterodimers (αVβG, αVβ1-A, αVβC, αPβG, αPβ1-A, αPβC) were modeled and in-silico docking with key TH metabolites (T4, T3, TRIAC, TETRAC, sT3, sT4) was performed, using the human $\alpha V\beta 3$ crystal structure as a reference.

Tools & Methods (cont'd)

- Docked RGD ligand to human αVβ3 (PDB 1L5G) as a proof-ofconcept for the workflow.
- 2. Retrieved FASTA sequences of sea urchin integrin subunits from Echinobase and NCBI.
- 3. Modeled sea urchin integrin heterodimers using AlphaFold and chose the models with the best scores.
- 4. Modified PDB residue numbering and found equivalent key residues using ClustalW & Espript.
- 5. Obtained thyroid hormone metabolites from ZINC15 & PubChem, converting file types to PDB format using OpenBabel.
- 6. Docked each ligand to each receptor using HADDOCK and chose the best model from the best scored cluster. Pre & Post processing of files done using Python.
- 7. Obtained binding affinity scores (ΔG) for each HADDOCK model using PRODIGY.
- 8. Visualized structures in PyMOL for structural inspection and figure generation.
- Note: Although Mn²⁺ ions are biologically important for integrin activation and ligand binding, they were not incorporated into docking models.

Results & Discussion

(pLDDT > 90) Confident (90 > pLDDT > 70)(70 > pLDDT > 50)Very low

3

Lower pLDDT scores were mostly outside the main extracellular domain, indicating reduced confidence in peripheral/flexible regions.

AlphaFold Modeling of Integrin Heterodimers:

Main Tools Used:

Echinobase & NCBI

ClustalW & Espript

PubChem & OpenBabe

AlphaFold 3.0

HADDOCK 2.5

Linux & Python

- AlphaFold-Multimer was used to predict the structures of one human ($\alpha V\beta 3$) and six sea urchin (αV- and αP-containing) heterodimers using full-length α and β subunit sequences.
- Five models were generated per dimer, and the best model was selected based on interface predicted TM-score (ipTM), predicted TM-score (pTM), and per-residue confidence (pLDDT).
 - ipTM estimates the accuracy of the interaction interface between subunits with scores >0.7 suggesting a confident and well-packed interface.
 - pTM reflects the overall structural accuracy of the model with values >0.7 indicating reliable domain-level folding and global topology.

Receptor	Overall pLDDT	ipTM	рТМ
αVβ3	83.28	0.83	0.84
αVβG	73.47	0.64	0.62
αVβ1-Α	72.95	0.67	0.64
αVβC	71.30	0.63	0.60
αPβG	75.15	0.59	0.60
αΡβ1-Α	74.28	0.62	0.62
αΡβC	72.55	0.58	0.60

Conclusions:

- The structure of human αVβ3 (Panel 3A) was confidently predicted, validating it as a highquality reference for docking and comparison.
 - Among the sea urchin integrins, αVβG (Panel 3B) and $\alpha V\beta 1$ -A (Panel 3D) had the highest interface confidence (ipTM = 0.64 & 0.67), suggesting potentially stable heterodimer formation.
- Other heterodimers (Panels 3C, E, F, G) showed lower ipTM/pTM values, indicating more uncertainty in dimer interface formation.

Results & Discussion (cont'd)

HADDOCK Docking of Ligands to Receptors:

- Docking was performed for each thyroid hormone metabolite with the human and sea urchin integrin receptors, with active residues defined for the predicted ligand contact regions.
 - Docking results were clustered by structural similarity, and the best model from the top-scoring cluster was selected based on HADDOCK score, Zscore, and favorable interaction energies

PRODIGY Binding Affinity Scores:

- The ΔG (Binding Free Energy) of each HADDOCK model, which quantifies the energetic favourability of binding, was obtained.
 - More negative ΔG values indicate stronger, more favorable binding and less negative values reflect weaker or unstable interactions.
- The K_D (Dissociation Constant), which reflects the concentration of ligand at which half of the receptor is bound, was then calculated from the ΔG value (R = 1.987 cal/mol·K & T = 298.15 K).
 - Lower K_D values (nM–low μM) indicate strong binding and high affinity and higher values (>10 μM) suggest weaker or transient interactions.

Conclusions:

- Integrin dimers were ranked based on their average predicted binding free energy (ΔG) across six thyroid hormone ligands.
- Human αVβ3 showed the strongest overall binding (Avg ΔG: –7.70 **6. αPβG** (Avg ΔG: –7.06 kcal/mol) kcal/mol), consistent with its known role in non-canonical thyroid hormone signaling in vertebrates.
- Sea urchin αVβG (Panels 3A-D) exhibited the next strongest overall binding with its ligands (Avg ΔG : –7.58 kcal/mol), suggesting it may be the closest analog of human αVβ3.
- In contrast, integrins containing the αP subunit ($\alpha P\beta 1A$, $\alpha P\beta G$, $\alpha P\beta C$) showed weaker binding overall, implying they are less likely to mediate thyroid hormone signaling.

Binding Affinities (ΔG) & Dissociation Constant (kD) of Thyroid Hormone Metabolites to Receptors

Receptor	T4	Т3	TRIAC	TETRAC	sT3	sT4
αVβ3	ΔG = –7.05 kcal/mol	ΔG = –7.35 kcal/mol	ΔG = –7.39 kcal/mol	ΔG = –7.38 kcal/mol	ΔG = –8.39 kcal/mol	ΔG = –8.61 kcal/mol
	kD = 6.79 μM	kD = $4.09 \mu M$	kD = $3.82 \mu M$	kD = 3.89 μM	kD = 707 nM	kD = 488 nM
αVβG	ΔG = –7.30 kcal/mol	ΔG = –6.90 kcal/mol	ΔG = –7.75 kcal/mol	ΔG = –7.53 kcal/mol	ΔG = –8.31 kcal/mol	ΔG = –7.66 kcal/mol
	kD = 4.45 μM	kD = 8.75 μM	kD = 2.08 μM	kD = 3.02 μM	kD = 809 nM	kD = 2.42 μM
αVβ1-Α	ΔG = –7.40 kcal/mol	ΔG = –6.92 kcal/mol	ΔG = –7.52 kcal/mol	ΔG = –7.43 kcal/mol	ΔG = –8.23 kcal/mol	ΔG = –7.44 kcal/mol
	kD = 3.76 μM	kD = 8.45 μM	kD = 3.07 μM	kD = 3.57 μM	kD = 926 nM	kD = 3.52 μM
αVβC	ΔG = –7.49 kcal/mol	ΔG = -6.73 kcal/mol	ΔG = –6.85 kcal/mol	ΔG = –7.68 kcal/mol	ΔG = –8.20 kcal/mol	ΔG = –7.87 kcal/mol
	kD = 3.23 μM	kD = 11.7 μM	kD = 9.52 μM	kD = $2.34 \mu M$	kD = 974 nM	kD = 1.70 μM
αΡβG	ΔG = –6.37 kcal/mol	ΔG = –6.92 kcal/mol	ΔG = −7.21 kcal/mol	ΔG = –7.24 kcal/mol	ΔG = -7.65 kcal/mol	ΔG = –6.98 kcal/mol
	kD = 21.4 μM	kD = 8.45 μM	kD = 5.18 μM	kD = 4.93 μM	kD = 2.47 μM	kD = 7.64 μM
αΡβ1-Α	ΔG = –6.69 kcal/mol	ΔG = –6.91 kcal/mol	ΔG = −7.47 kcal/mol	ΔG = −7.43 kcal/mol	ΔG = –7.91 kcal/mol	ΔG = −7.22 kcal/mol
	kD = 12.5 μM	kD = 8.60 μM	kD = 3.34 μM	kD = 3.57 μM	kD = 1.59 μM	kD = 5.10 μM
αΡβС	ΔG = -6.92	ΔG = -6.73	ΔG = -6.85	ΔG = -7.09	ΔG = -6.65	ΔG = -7.21
	kcal/mol kD = 8.45 μΜ	kcal/mol kD = 11.7 μM	kcal/mol kD = 9.52 μΜ	kcal/mol kD = 6.35 μΜ	kcal/mol kD = 13.3 μM	kcal/mol kD = 5.18 μΜ

Acknowledgments

Apart from the support of my supervisors, I would like to thank Katherine Tieman for sharing her workflow, which guided my own analysis, as well as Dr. Dror Tobi for his guidance in configuring a primary computational tool.