30

5

10

WHAT IS CLAIMED AS NEW AND IS INTENDED TO BE SECURED BY LETTERS PATENT IS:

- 1. An electrolyte membrane comprising:
- a precursor membrane, plasma treated in an oxidizing atmosphere, and grafted with a side chain polymer, wherein said side chain polymer comprises at least one proton conductive functional group.
- 2. The electrolyte membrane of Claim 1, wherein the precursor membrane comprises a polymer.
 - 3. The electrolyte membrane of Claim 2, wherein the polymer is at least one polymer selected from the group consisting of polyethylene, polypropylene, polyvinylchloride, polyvinylidenedichloride, polyvinylidenedifluoride, polyvinylidenedifluoride, polytetrafluoroethylene, ethylene-tetrafluoroethylene copolymer, tetrafluoroethylene-perfluoroalkylvinylether copolymer, and tetrafluoroethylene-hexafluoropropylene copolymer.
 - 4. The electrolyte membrane of Claim 1, wherein the side chain polymer is a hydrocarbon polymer to which at least one proton conductive group has been introduced.
 - 5. The electrolyte membrane of Claim 1, wherein the side chain polymer comprises at least one monomer having a proton conductive functional group.
 - 6. The electrolyte membrane of Claim 4, wherein the hydrocarbon polymer is at least one side hydrocarbon polymer selected from the group consisting of poly(chloroalkyl styrene), poly(α -methyl styrene), poly(α -fluorostyrene), poly(p-chloromethyl styrene), polystyrene, and copolymers thereof.
 - 7. The electrolyte membrane of Claim 5, wherein the side chain polymer is selected from the group consisting of polyacrylic acid, polymethacrylic acid, poly(vinyl alkyl sulfonic

10

acid), an copolymers thereof.

- 8. The electrolyte membrane of Claim 1, wherein the proton conductive functional group is a sulfonic acid group.
- 9. The electrolyte membrane of Claim 3, wherein the proton conductive functional group is a sulfonic acid group.
- 10. The electrolyte membrane of Claim 6, wherein the proton conductive functional group is a sulfonic acid group.
- 11. The electrolyte membrane of Claim 1, wherein the precursor membrane comprises an ethylene-tetrafluoroethylene copolymer, the side chain polymer comprises polystyrene, and the proton conductive functional group is sulfonic acid.
- 12. The electrolyte membrane of Claim 1, wherein the precursor membrane comprises polyvinylidenedifluoride, the side chain polymer comprises polystyrene, and the proton conductive functional group is sulfonic acid.
- 13. A method of producing an electrolyte membrane comprising:

 preparing a precursor membrane comprising a polymer which is capable of being graft polymerized;

exposing the surface of the precursor membrane to a plasma in an oxidative atmosphere;

graft-polymerizing a side chain polymer to the plasma treated precursor membrane; and

introducing a proton conductive functional group to the side chain.

14. The method of Claim 13, wherein the precursor membrane comprises a polymer.

30

25

30

5

10

- 15. The method of Claim 14, wherein the polymer is at least one polymer selected from the group consisting of polyethylene, polypropylene, polyvinylchloride, polyvinylidenedichloride, polyvinylidenedifluoride, polyvinylidenedifluoride, polytetrafluoroethylene, ethylene-tetrafluoroethylene copolymer, tetrafluoroethylene-perfluoroalkylvinylether copolymer, and tetrafluoroethylene-hexafluoropropylene copolymer.
- 16. The method of Claim 13, wherein the side chain polymer is a hydrocarbon polymer to which at least one proton conductive group can be introduced.
- 17. The method of Claim 16, wherein the hydrocarbon polymer is at least one hydrocarbon polymer selected from the group consisting of poly(chloroalkyl styrene), poly(α -methyl styrene), poly(α -fluorostyrene), poly(p-chloromethyl styrene), polystyrene, and copolymers thereof.
- 18. The method of Claim 13, wherein the proton conductive functional group is a sulfonic acid group.
- 19. The method of Claim 15, wherein the proton conductive functional group is a sulfonic acid group.
- 20. The method of Claim 17, wherein the proton conductive functional group is a sulfonic acid group.
 - 21. A membrane made by a process comprising:

preparing a precursor membrane comprising a polymer which is capable of being graft polymerized;

exposing the surface of the precursor membrane to a plasma in an oxidative atmosphere;

graft-polymerizing a side chain polymer to the plasma treated precursor membrane; and

introducing a proton conductive functional group to the side chain.

- 22. An electrochemical cell comprising the electrolyte membrane of Claim 1.
- 23. The electrochemical cell of Claim 22 which is a fuel cell.