TECHNICAL AD-A086 095 LIBRARY

MEMORANDUM REPORT ARBRL-MR-03020

ALGORITHM FOR ESTIMATING AERODYNAMIC STATIC MOMENTS OF LONG ROD PENETRATORS AT 2<M<5

William F. Donovan

May 1980

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND BALLISTIC RESEARCH LABORATORY ABERDEEN PROVING GROUND, MARYLAND

Approved for public release; distribution unlimited.

DTIC QUALITY INSPECTED'S

Destroy this report when it is no longer needed. Do not return it to the originator.

Secondary distribution of this report by originating or sponsoring activity is prohibited.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22151.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.	
MEMORANDUM REPORT ARBRL-MR-03020	
4. TITLE (and Subtitie)	S. TYPE OF REPORT & PERIOD COVERED
ALGORITHM FOR ESTIMATING AERODYNAMIC STATIC	
MOMENTS OF LONG ROD PENETRATORS AT 2 <m<5< td=""><td>Memorandum Report 5. PERFORMING ORG. REPORT NUMBER</td></m<5<>	Memorandum Report 5. PERFORMING ORG. REPORT NUMBER
THE STATE OF LONG ROD LENDINGTONG AT 2 MILES	The state of the s
7. AUTHOR(e)	8. CONTRACT OR GRANT NUMBER(e)
WILLIAM F. DONOVAN	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
U.S. Army Ballistic Research Laboratory ATTN: DRDAR-BLP	AREA & WORK UNIT NUMBERS
Aberdeen Proving Ground, MD 21005	11 1626194190
	1L162618AH80
11. CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Armament Research & Development Command	May 1980
U.S. Army Ballistic Research Laboratory	13. NUMBER OF PAGES
ATTN: DRDAR-BL Aberdeen Proving Ground, MD 21005	60
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	1S. SECURITY CLASS. (of thie report)
	Wilde Laggerer
	UNCLASSIFIED 1Se. DECLASSIFICATION/DOWNGRADING SCHEDULE
	SCHEDULE
Approved for Public Release, Distribution Unlimited	
17. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, if different fro	m Report)
	·
	4
18. SUPPLEMENTARY NOTES	
Y g	ii
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)	1
Aerodynamic Coefficients	
Static Moment Coefficient	
Normal Force Coefficient	
Long Rod Projectiles	
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)	jmk
Estimation of the aerodynamic normal force and	static moment of a given
class of flight vehicles is demonstrated with refer	ence to AMCP 706-280, which
in turn derives from the classic British work "Wing algebraic reduction, a transmutation permits the de	s". By means of linearized
the effects of variation on the flight system.	signer to quickly evaluate

TABLE OF CONTENTS

		Page
	LIST OF ILLUSTRATIONS	5
I.	INTRODUCTION	7
II.	PROCEDURE	7
III.	RESULTS AND CONCLUSIONS	8
	REFERENCES	15
	APPENDIX A	17
	APPENDIX B	29
	APPENDIX C	39
	APPENDIX D	43
	APPENDIX E	47
	LIST OF SYMBOL	55
	DISTRIBUTION LIST	59

LIST OF ILLUSTRATIONS

Figure		Page
1-a	Long Rod Penetrator Outline	9
1-b	Input Data for Sample Problem	10
2-a	Static Moment Coefficient for Hypothetical Projectile	11
2-b	Normal Force Coefficient for Hypothetical Projectile	12
2-c	Aerodynamic Jump Factor for Hypothetical Projectile	13
2-d	Initial Yaw Period for Hypothetical Projectile	14

I. INTRODUCTION

An insight into the influence of aerodynamics on the overall performance of the long rod projectile is obviously necessary to the mechanical analyst and to the terminal ballistician in the concept phase of design consideration. For the unfinned projectile, in the absence of righting moments in the form of gyroscopic reaction or direct aerodynamic contributions of tailfins, the static moment will normally increase the yaw in the plane of the angle of attack and destabilize the flight projectile. Since the gyroscopic correction is bounded by the possibility of dynamic instability¹, a tailfin system is invariably selected to control the flight of long rod projectiles. The designer must then estimate the static moment in compromise with the drag, weight, length/ diameter and penetration parameters. For this purpose the projectile is considered as a forebody (total projectile without fins) plus a complete aerodynamic wing plan form. An "interference factor" correction allows the free flight wing characteristic to be coupled to the forebody performance. Reference 2 offers a combined graphical-tabular calculation technique by which C_D , the drag coefficient, $C_{N\alpha}$, the normal force lift coefficient, and $C_{M\alpha}$, the static moment coefficient can be determined over the Mach range from subsonic to M = 5. In the lower velocity regime, the forebody values are determined from slender body theory wherein second order effects are neglected; while in the true supersonic flow, the data are from open literature reported experimentation. Similarly, the lower Mach number fin performance is based on thin airfoil theory and the higher range data is experimental. Using the graph-tables, however, requires about eight manhours to estimate the aerodynamic performance of one projectile. By restricting the Mach envelope through linearization of critical graphs and by neglecting the effects of wing profile it is possible to simplify the presentation to desk top calculator (HP-97, Appendix B) utility. Linearization consists of the substitution of a straight line for a curved or undulating characteristic.

II. PROCEDURE

Figure 1-a is an outline diagram of a typical fin stablized long rod projectile. In conjunction with Table A-1, the $C_{N\alpha}$, $C_{M\alpha}$, $C_{L\alpha}$, the aerodynamic jump factor and the initial yaw period may be calculated. To use the table it is necessary to separately determine the physical properties of the projectile and C_D . A step-by-step sample calculation, as indicated in Table A-1 will illustrate the procedure for the projectile dimensions of Figure 1-b. The geometric limitations, algebraic specifications, etc., for the column entries are given in Appendix A.

 $[\]overline{^{1}}$ C.H. Murphy, "Free Flight Motion of Symmetric Missiles", BRL Report No. 1216, July 1963, (AD 442757).

²AMCP 706-280, "Design of Aerodynamically Stabilized Free Rockets", 1968.

A similar, and much more elaborate, procedure based on the same formulation has been published but is not reduced to CDC presentation locally. This current interim report presents the algorithm for determining $C_{N\alpha}$ and $C_{M\alpha}$. From Reference 4, C_D can be estimated and $C_{L\alpha}$ is therefore available. With the known physical properties of the projectile, the aerodynamic jump factor and the inital yaw period are established and, in caliber dimensions, comparison with all other flight vehicles postulated.

III. RESULTS AND CONCLUSIONS

Figures 2-a through 2-d show the comparison performance of the hypothetical projectile with the curve trends in reasonable agreement over the region of interest. An additional example is presented in Appendix E, Figures E-1 through E-4. These plots compare algebraicly determined performance and experimental range data⁶ for the XM 110 projectile which has been exhaustively tested at BRL. The data indicate agreement in magnitude as well as direction.

Future work in this area will include:

- o Analysis of range data as available.
- o A comprehensive Fortran/CDC programming effort to present the results in mapped context.
- o Extension of the synthesis to higher Mach numbers.

³W.D. Washington, "Computer Program, for Estimating Stability Derivatives of Missile Configurations", U.S. Army Missile Command Report RD7625, May 1976, (AD #1473).

⁴W.F. Donovan and B.B. Grollman "Procedure for Estimating Zero Yaw Drag Coefficients for Long Rod Projectiles at Mach Numbers from 2 to 5", ARBRL MR 02819, March 1978, (AD #A054326).

⁵W.F. Donovan "One Factor Affecting the Dispersion of Long Rod Penetrator", ARBRL MR 02846, June 1978, (AD #A058596).

⁶M.J. Piddington, "The Aerodynamic Characteristics of a SPIW Projectile (U)", BRL Memorandum Report 1594, September 1964, (AD #355679).

Figure 1-a Long Rod Penetrator Outline

Figure 1-b Input Data for Sample Problem

Figure 2-a Static Moment Coefficient for Hypothetical Projectile

Figure 2-b Normal Force Coefficient for Hypothetical Projectile

Figure 2-c Aerodynamic Jump Factor for Hypothetical Projectile

Figure 2-d Initial Yaw Period for Hypothetical Projectile

REFERENCES

- C.H. Murphy, "Free Flight Motion of Symmetric Missiles", BRL Report No. 1216, July 1963, (AD #442757).
- 2. AMCP 706-280, "Design of Aerodynamically Stabilized Free Rockets", 1968.
- 3. W.D. Washington, "Computer Program for Estimating Stability Derivatives of Missile Configurations", U. S. Army Missile Command Report RD-76-25, May 1976, (AD #1473).
- 4. W.F. Donovan and B.B. Grollman, "Procedure for Estimating Zero Yaw Drag Coefficients for Long Rod Projectiles at Mach Numbers from 2 to 5", ARBRL MR 02819, March 1978, (AD #A054326).
- 5. W.F. Donovan, "One Factor Affecting the Dispersion of Long Rod Penetrators", ARBRL MR 02846, June 1978, (AD #A058596).
- 6. M.J. Piddington, "The Aerodynamic Characteristics of a SPIW Projectile (U)", BRL Memorandum Report 1594, September 1964, (AD #355679).

APPENDIX A
TABULATED VALUES

TABLE A-1 FOREBODY

	$\beta = (\kappa^2 - 1)^{1/2}$			0/0	96	Fig. 8-4, Ref. 2 or Eq. (1), Appendix A	Fig. 8-5. Ref. 2 or. Eq. (2), Appendix A	(O)(O)
1	2	3	4	5	6	7	8 .	9
М	ß	L _n	L _a	<i>B/</i> 2 n	le/B	C _N	x _{c.p.}	C _M &
		cal	cal.	1/cal	cal	1/rad	cal	1 /rad
2.	1.732	2.52	9.86	.687	5.690	3.0	2.52	7.56
				1		3.2	1.94	6.24
3.	2.828	2.52	9.86	1.122	3,487	3.75	3,06	11.48
						3.65	2.19	8.04
4.	3.873	2.52	9.86	1.537	2.546	3.80	3.14	11.93
						3,99	2.43	9.71
5.	4.899	2.52	9.86	1.944	2.013	3.70	3.28	12.14
						4.26	2.65	11.31

^{*} Graphical values from Ref. 2

^{**} Algebraic values from Appendix $\, B \,$

TABLE A-2 FINS

	$\lambda = c_{\rm t}/c_{\rm r}$	24	(a) (a)	<u>©</u>	b ² / S _F	(1) × (1)
	10	11	12	13	14	15
М	λ	TAN 🕰	B/TAN.S.	TAN SI/B	AR	ar tan 🕰 .
E						
2.	.074	2.52	.687		1.37	3.45
			ji.	31	1.37	
3.	.074	2.52		.891	1.37	3.45
					1.37	
4.	.074	2.52		.651	1.37	3.45
					1.37	
5.	.074	2.52		.514	1.37	3.45
					1.37	

TABLE A-3 FINS (COMPLETED)

	Fig. 8-13. Ref. 2	Fir. 8-13, Ref. 2	or Eq. (3), Appendix A	H Sr x (18) TT x (bused on reference arca	Fig. 8-14, Ref. 2	(19) x 20) (nose fulcrum)
	16	17	18	19	20	21
М	B TAN S	/3 c _{Nex}	C _N ≪ fin	C _N	×č.p. fin	C _{M≪}
		l/rad	l/rad	. 1/rad	cal	1 /rad
2.	4.56		1.81	14.53	14.4	209
			1.18	9.47	·	221
3.	280 110	3.85	1.36	10.92	14.4	157
			1.10	. 8.84		133
4.		3.87	1.00	8.03	14.4	115
	M.96		1.11	8.88		101
5.		3.90	.80	6.42	14.4	92
			1.14	9.17		84

TABLE A-4 INTERFERENCE FACTOR

		a = β TAN ω	$z = \frac{TAN \omega}{TAN \varepsilon}$	Fig. 8-21, Ref. 2 or Eq. (4), Appendix A
	22	23	24	25
М	d /(1+b)	a	a/z	K
2.	.29	.63	. 95	1.69
				1.65
3.	. 29	1.03	.95	1.62
				1.58
4.	. 29	1.41	.95	1,59
				1.47
5.	. 29	1.78	.95	1.55
				1.39

TABLE A-5 SUMMARY

	©	(interference free)	(2) × (3)	® + ®	6	(interference free)	(i) × (ii)	(nose fulcrum)	(nose datum)	(3) - c.e.) x (9) (c.g. fulcrum)
	26	27	∴8	29	30	31	32	33	34	35
М	C _N ≪	C _N ≪ fin	C _N ≪	C _{N≪T}	C _M ≪ f.b.	C _M ≠	C _M ≪	C _{Mert}	c.p.	C _{Meet} 'T
	1/rad	1/rad	1/rad	1/rad	1/rad	1/rad	1/rad	1./rad	cal	1./rad
2.	3.00	14.53	24.56	27.56	7.56	209	353	358	12.98	- 177
	3.2	9.47	22.75	25.95	6.24	193	318	324	12.49	-153
3.	3.75	10.92	17.69	21.44	11.48	157	254	266	12.40	- 125
	3.65	9.84	15.2	18.85	8.04	134	212	220	11.67	- 96
4.	3.80	8.03	12.76	16.57	11.93	115	183	195	11.76	- 86
	3.99	8.88	11.04	15.03	9.71	104	154	164	10.89	- 65
5.	3.70	6.42	9.95	13.65	12.14	92	143	155	t1.33	65
	4.26	9.17	10.0	14.26	11.31	101	140	151	10.61	- -58

TABLE A-6 AERODYNAMIC JUMP FACTOR

	Sepurate schedule	®-	@/@	eparate schedule	€ × €	14.6 $\left[\frac{1}{y} \right]^{1/2}$ Eq. C-1, Appendix C
	36	37	38	39	40	41
М	C _D	C _{La}	CLa CM &	I _y /m	J	8
		1/rad				cal
2.	.72	26.84	.152	13.66	2.08	484
		25.23	.165	d-	2.25	520
3.	. 56	20.88	.167	13.66	2.28	576
		18.29	.191		2.60	657
4.	.41	16.16	.188	13.66	2.57	694
		14.62	. 224		3.07	798
5.	. 25	13.4	.206	13.66	2.82	798
		14.01	.242		3.29	845

NOTES ON COLUMN ENTRIES

- Column 1 The Mach number range is restricted to 2<M<5 due to linearization of the characteristics.
- Column 2 --
- Column 3 The given example refers to a cone-cylinder forebody. An ogive nose would increase the normal force about 10%; Figures 8-2 and 8-4 of Reference 2. $2 < \ell_n < 6$.
- Column 4 $5 < l_a < 20$
- Column 5 --
- Column 6 --
- Column 7 $(C_{N\alpha})_{f.b.} = \left(1.9+1.3 \frac{\beta}{\ell_n} + .0149 \frac{\ell_a}{\beta}\right) \left(\beta^{-.7}\right)$ $\left(-.0675 \ell_T + 2.3\right)$ (1)

This equation is a fitted approximation to the curves of Figure 8-4 of Reference 2. It applies to cone-cylinders only.

Column 8 $(\chi_{c.p.})_{f.b.} = \left(.69 + .65\frac{\beta}{\lambda_n} + .5\frac{\lambda_a}{\beta}\right) \left(\beta^{-.46}\right)$ (2)

This equation is obtained by fitting Figure 8-5 of Reference 2. It also applies to cone-cylinders only.

- Column 9 Moment is referred to nose.
- Column 10 -
- Column 11 --
- Column 12 --
- Column 13 --
- Column 14 --
- Column 15 --
- Column 16 Figures 8-13, Reference 2.
- Column 17 Figures 8-13 of Reference 2.

Column 18

$$C_{N\alpha} = \frac{1}{\beta} \left[4 + \left(.9\lambda + 1.25 \ell_n \frac{ARTAN\Omega}{4} \right) \left(\frac{TAN\Omega}{\beta} \right) \right] + \frac{1}{TAN\Omega} \left[\left(.6AR - 1 \right) \left(1 - \frac{\beta}{TAN\Omega} \right) \right] \left(\frac{.541}{M} \right) \left(\beta^{-.58} \right)$$
(3)

where the first term is used for $\frac{TAN\Omega}{\beta}$ <1 and both terms are used for $\frac{TAN\Omega}{\beta}$ >1. $C_{N\alpha}$ is based on the plan form area.

This expression is determined by empirical data as fitted from Figures 8-13 (A) through (C) of Reference 2. It includes a term to represent the complete expanse of tip/root ratios, as well as the fin aspect ratio and leading edge sweep angle as affected by Mach number.

Column 19 $C_{N\alpha}$ is converted to a reference area value (bourrelet).

The effect of the fin solidity is established by Reference 2, p. 8-41.

Column 20 For the algebraic formulation, the c.p. is taken at the mid point of the total fin length. The error introduced, in comparison with Figures 8-14 of Reference 2, is quite small.

Column 21 Moment is referred to nose.

Column 22 --

Column 23 --

Column 24 --

Column 25 $K = (-.167 \text{ a} + 1.334)e^{d/d+b}$ (4)

The rather minor contribution of "z" has not been included in this equation. This is a sweep angle compensation and would be significant for rectangular fin designs. The equation represents the curves given as Figures 8-21 (C) through (E) of Reference 2.

Column 26 Transcription of column 7

Column 27 Interference free $C_{N\alpha}$

Column 28 Complete empennage

Column 29 Column 30 Column 31 Interference free fins Column 32 Complete empennage Note that with columns 28 and 32, the capacity of the HP-97 has been exceeded. The table is then completed by individual operations. Column 33 Complete projectile, nose datum. Column 34 Column 35 c.g. must be separately determined C_D must be separately determined Column 36 Column 37 Column 38 Column 39 Column 40 $\boldsymbol{I}_{\boldsymbol{y}}$ must be separately determined Column 41

APPENDIX B

DESKTOP CALCULATOR PROGRAMS FOR $C_{\mbox{N}\alpha}^{}$, $C_{\mbox{M}\alpha}^{}$ and $C_{\mbox{D}}^{}$

APPENDIX B

DESKTOP CALCULATOR PROGRAMS FOR $\textbf{C}_{N\alpha}\text{, }\textbf{C}_{M\alpha}$ and \textbf{C}_{D}

1. HP-97 Listing for $C_{\mbox{\scriptsize M}\alpha}$ and $C_{\mbox{\scriptsize N}\alpha}$.

Listing for Nose/Body ${\rm C}_{N\alpha}^{}$ and ${\rm C}_{M\alpha}^{}$

Input Storage Registers

O & cylindrical body length

 $9 l_n$ nose length

A M initial Mach number

Printed Output

Mach number M Normal Force coefficient $C_{N\alpha}$ Static Moment coefficient $C_{M\alpha}$ Center of pressure (nose datum)

					251		10
					951 952	3	-62 03
001	*LBLA	21 11			853	1	-55
882	RCLA	76 11			654	STS2	35 62
603	FRTM	-14			855	RCLD	35 02 36 14
664	ИЗ	53			85¢	KULD X	-75
005	1	01			05 7	PRIX	-14
688	-	-45			658	STOD	35 14
667	1 77	54			059	CLX	-51
888	STCi	35 01			868	RCLE	<i>36</i> 15
639	CLX	-51			061	NULL	U2 13
018	RCL1	3€ 01			062	÷ _	-24
ō11	RCL9	36 09			863	STOS	Z5 13
0:2	÷	-24			864	RCLE	36 12
813	1	01			665		-62
614		-62			066	4	94
815		0 3			0E7		-35
615	5.1	-35			858	FCLC	<i>3€</i> 13
617	STOE	35 15			069	4	-55
615	CLII	-51			ete		-63
015	RCLC	36 00			071	6	UE
020 021	8	08			072	9	09
E31	- ÷	-24			073	÷	-55
822	RCL1	36 01			074	2	02
623	X	- 35			875	÷	-24
024	STOB	35 12			076	RCLP	3E 09
325	•	-62			077	X_{\pm}	-35
026	Í	01			978	ROLD	36 14
027	1	01			0 79		- 35
023 029	و	09			. 888	RCL1	38 81
629 030	+ DC/ E	-55 36 15			681	LM	32
831 831	RCLE	<i>3€</i> 15 -55			882	•	-62
632	RCL1	-55 36 01			883	<u> </u>	04
8 33	LI!	32			884	E	0 €
334		-62			085 086	// - X	-35
035	· 7	07			<i>8</i> 87	é ^X	33
03E	X	-35			988	FRT:;	-24
237	ē ¥	33			889	RCLD	-14 3€ 14
033	÷	-24			896	÷	-24
635	STOD	35 14	į		691	PRT::	-14
048	CLX	-51			092	CLH	-51
041	· RCL0	36 00			893	SFC	1€-11
042	RCL9	36 09			894		-62
043	.	-55			895	5	05
644		-62			096	RCLA	36 11
045	$\mathcal C$	80 .			897	+	-55
045	ϵ	0 £			698	STJA	35 11
647	5	0 5			899	ESEA	23 11
048	CHS	-22			100	RTN	24
849	47	-35			181	PRT!!	-14
05e	2	02			102	R. J	51

Listing for Fin/Empennage $\boldsymbol{C}_{N\alpha}$ and $\boldsymbol{C}_{M\alpha}$

Input Primary Storage Registers

- 0 b/2 fin blade height
- 1 c_r fin blade length at root
- 2 $\tan \Omega$ tangent of fin sweepback angle
- 3 g fin dimension
- 4 k fin dimension
- c_{t} fin blade length at tip
- 6 Δ M Mach number increment
- 7 N number of fin blades

Secondary Storage

- 1 ℓ Complete body length
- 2 & body length
- 3 & nose length
- 6 c.g. center of mass (nose datum)
- I M initial Mach number

Printed Output

Mach number M Static Moment coefficient C_{Mo} Normal Force coefficient C_{No}

881	ALELE	40.00		e 51	STOI	35 46
		21 15				
802	RCLO	3ε 00		052	32	53
603	2	02		05 3	1	61
					•	-45
004	3	-35		854	-	
805	112	53		055	- V	54
886	STOA			05€	STOP	35 11
		35 11				
807	CLN	-51		0 57	CLX	-51
808	RCLO	36 00		056	RJL2	3€ 02
	FOLD					
003	RCL1	36 01		95 9	RCLE	35 12
010	X	-35		868	20	-35
811	STOR	35 12		061	4	04
	C-1 UE					
012	CLN	-51		962	÷	-24
013	RCL2	36 32		963	111	32
				964	5	85
014	RCLO	35 00				
015	112	53		965	20	- 35
016	X.	-35		066	4 :	84
017	2	02		067	÷	-24
018	÷	-24		968	877	-41
				869	RCL5	36 05
019	ROLE	3E 12				
020	-	-45		078	RCL:	3E 01
821	CHS :	-22		871	÷	-24
022	STOE	35 12		072	•	-62
823	CLX	-51		073	9	09
024	ROLE	36 00		974		-35
025	RCLI	36 03		975	Ť	-55
826	X	-35		076	$X \neq Y$	-41
027	2			977	RCLE	35 02
		02				
928	÷	-24		078	1:	-35
829	RCLE	35 12		079	RCLA	3€ 11
	NOLL					
0 3E	-	- 45		689	ŧ	-24
631	CH3	-22		081	STOS	35 08
832	STOE	35 12		052	-	84
633	CLK	-51		883	÷	-55
034	RCL+	3€ 84		084	RCLA	36 11
035				085	•	-24
	•	-62				
036	5	95		986	STOC	35 13
037		-35	,	087	CLX	-51
038	DOLD.			888	RCLA	36 11
	RCLE	36 12				
039	+	-55		089	RCLC	36 02
840	2	02		. 090	:	-24
	-					
041		-35		891	1	01
842	RULA	3ε 11		892	-	-45
843		-41		093	СΗΞ	-22
	<i>X</i> ≠!!					
844	÷	-24		894	STOD	35 14
845	STOB	35 12		695	CLX	-51
846	CL.:	-51		896	RCLE	<i>3€</i> 12
647	RCLI	3€ 46		897		-62
848	RCLE	3€ 06		698	6	. 86
049	÷	- <i>5</i> 5		899	<i>1</i> .	-35
850	PRTH	-14		100	1	01
		• •			_	

		37				-54		
151		-62	101	-	-45	201	0.5.744	
152	5	05	162	RCLD	36 14	202	PRIM	
153			103	2.	-35	203	CLI	
	9	- 68	104	RCLZ	JE 02	204	RCLD	
154	Α	-35	105	÷	-24	205	RCL3	
155	er	33	166	STOD	35 14	206	A	
15E	÷	-24				207	PRTX	
157	STOD	35 14	107	CLX	-51	208	CL::	
158	STOE	35 15	108	1	01		ووسادية ووسادة	
159	RCL1	3E 01	109	fre t	-41	209	De i	
160		-62	116	RULA	3€ 11	210	CLM	
161	5	05	111	÷	-24	211	SFC	
162	×	-35	112	5705	<i>35 09</i>	212	GTCE	
			113	X ± Y?	16-35	213	RTH	
163		1€-51	114	*LBLD	21 14	214	R/S	
164	RCL1	3E 01	115	RCLJ	3 <i>6</i> 08			
165	Ť	-55	116	RCL9	36 0 9			
166	RCLE	35 15	117	X	-35			
167	₽‡3	16-51	118	4	04			
168	X	- 35						
169	STOE	35 15	115	† 	-55			
170	51.11	-51	126	ROLA	36 11			
171	RCLE	<i>3€</i> 15	121	:	-24			
172	STOE	35 15	122	STOC	35 13			
173	RCL8.	36 00	123	CLH	-51			
174	RCL1	35 01	124	ROLO	36 13			
175	**************************************	-24	125	ROLD	<i>3€</i> 14			
			126	+	-55			
176	RCLA	36 11	. 127	RCLI	36 46			
177	X	-35	128	3	0 3			
178	•	-62	129		-62			
179	1	01	130	-	07			
180	<u> 5</u> 7	06	131		-24			
181		87		÷ - ::		•		
182	CHS	-22	132		-35			
183	::	-35	133	STOE	35 15			
184	1	01	134	CLH	-51			
185		-62	135	RCL0	36 00			
186	3	03	136	2	02			
187	3 2	03	137		-35			
188	1	64	138	%2	53			
			139	RCLB	36 12			
		-55 75.00	140	÷	-24			
190	ROLE	Z6 00	141	Pi	16-24			
151	2	02	142	<u>.</u>	-24			
192	<i>Y</i> .	- 35	143	ROLT	36 07			
193	1	C1	144	2	-35			
194	+	-55						
195	1.48	52	145	RCLE	36 15 75			
196	e Y	23	146	×	-35			
197	11-4-11 11-1	-41	147	2	02			
198	1.5	-35	148		-35			
199	STOS	35 09	145	RCLA	36 11			
200	RCLE	36 15	156	LK	32			
	11000	00 10	1					

-35 -14 -51 36 14 36 09 -35 -14 -51

-41

Program for C_D

Input Storage Registers

- 1 & nose length
- 2 l a cylindrical body length
- 3 b/2 fin blade height at trailing edge
- 4 t fin thickness
- c_{r} fin blade length at root
- 6 j fin leading edge length
- 7 N number of fin blades
- I M Mach number

Printed Output

Mach number M
Body wave CD
Body base CD
Body viscous CD
Body total CD
Fin wave CD
Fin base CD
Fin viscous CD
Fin viscous CD
Fin total CD
Combined CD

				647	₩	<i>-€2</i>
				048	5	25
201		24 42		649	<u> </u>	53
001	*LBLC	21 13				
002	ROLI	76 46		050	+	-55 F4
883	PRTH	-14		051	177	54
004	LK	.72		052	<u>:</u>	- 52
005		-62	•	053	5	65
00 6	2	63		054		- 75
067	-	03		055	RCL2	35 02
998	CHS	-22		056	T	-55
009	25	-35		0 57	Fi	1 <i>E</i> -24
010	ě*	33		9 58	×	-3 5
611	STOA	35 11		85 9	STO9	35 02
012	CLX	-51		868	Fi	16-24
013	RCLI	3E 01		061	÷	-24
014	Lil	32		862	4	84
015	1	01		063	X	-35
016		-62		064		-63
017	7	37		065	Ū	00
018	3	03		066	Ũ	ee
019	CHS	-22		067	Ø	00
926	X	-35		068	1	91
021	Ė	. 23		069		97
022	RCLi	36 11		979	3	03 .
023	KOEN K	-35		071	Ä.	-35
824	••	-£2		872	5750	J5 13
<i>025</i>	÷	67		073	CLI	-51
026		-35		074	RCLI	35 4€
927	PRTX	-14		075		04
828	STŪÄ	35 11		076		-€2
029	CLH	-51		877	1	81
030	PCLI	38 46		078	2	06
031		-62	,	079	€ 8	05
<i>632</i>		66		880	CHS	-22
033		04		031	X	- 75
034	ŧ	98		082		62
035	CHE		1	083	2 8	68
033	una	-22 -35		884		-62
936			2	085	<u>.</u>	97
037	•	- 52			7 5	<i>8</i> 5
638	4	92		986		
339	2 5 5	9 <i>6</i>		087	f DOLC	-55 74 17
040		05 55		988	RCLC	36 13 -75
041	† 5574	-55		089	χ nntu	-25
642	PRTM	-14		090	PRTX	-14
043	STCE	<i>35</i> 12		051	STOC	35 13
044	CLII	-51		092	RCLA	3E 11
845	RCL1	3E 01.		. 093	Ť.	55
846	Xε	53	-	894	RCLB	75 12

095	+	-55	143	72	54	191	6760	22 13
096	FRIX	-14	144	RCLE	76 15	192	RTE	24
097	STJE	35 08	145	÷	-24	193	6SBC	23 13
098	CL.!	-5i	146	1/8	52	194	RCLE	3E 15
								06
099	RCL3	3E 03	147	PRTX	-14	195	E	
100	RCLE	36 85	148	STOD	35 14	196		- 52
181	÷	-24	149	RCLE	<i>∃€</i> 12	197	5	05
102	2111-	15 41	150	RCL7	36 97	198	STOI	35 45
103	THH	43	151	•	-35	199	+	-55
104	STOE	35 15	152	RCL3	36 03	200	RULI	3E 14
105	RCL3	36 67	153	X	-35	201	+	-55
10€	X2	57	154	RCL4	36 04	282	FRTS	-14
107	RCLE	<i>36</i> 15	155	X	<i>-3</i> 5	203	RCL8	36 08
108	÷	-24	156	Fi	15-24	284	+	-55
109	2	. 02	157	÷	-24	205	FRTN	-14
110	÷	-24	158	4	0-1	206	/	-75
111	STOE	ZE 15	155	A.	-35	207	e ^X	23
112	RCL3	36 03	160	PRTX	-14	208	ST08	35 08
113		-24	161	STOE	35 15	209	CLX	-51
	÷ 2		162	CLX	-51		RCLA	35 11
114		02				210		
115	X	- 35	163	RCLA	35 11	211	Z	02
116	CHS	-22	164	2	02	212		-25
117	RCL5	:36 C5 .	165	, , , , , , , , , , , , , , , , , , ,	-35	213	RCLE	3E 09
118	+	-55	166	RCL9	35 6 9	214	÷	-24
119	RCL3	<i>35</i>	167	÷	-24	215	ROLD	35 13
120	X	-35	168	RCLC	3€ 13	215	Ä	-35
121	RCLE	<i>3€</i> 15	169	A	-35	217	RCL7	3 <i>E</i> 07
122	+	-55	170	RCL7	3E 07	218	X	-35
123	STOR	35 11	171	×	-35	219	4	21
124	Fi	1E-24	172	1	01	220		-52
125	÷	-24	173		-62	221	1	01
126	4	04	174	1	01	222	5	05
127	.:	-35	175	5	65	223	÷	-24
128	STOE	35 15	176	÷	-24	224	FRTH	-14
129	RCL4	3E 04	177	PRT.:	-14			
130	PCL6	3E 06	178	RCLE	38 15			
131	÷	-24	179	+	- 55			
132	%2	57	180	RCLD				
133	RCLE	36 15	181	+	-55			
134	X	-35	182	PRIX	-14			
135	RCL 7		183	ROLE	38 08			
		. 36 07 75	184					
136	X	-35 35 (5		+ pr=::	-55			
137	STOE	ZE 15	185	PRTA	-14			
138	CLX	-51	186	SFC	16-1:			
139	RCLI	36 46	187	DSZI	16 25 46			
140	82	53	188	STOC	22 17			
141	1	01	189	RTH	24 .			
142		-45	190	SPC	16-11			

APPENDIX C DETERMINATION OF INITIAL YAWING PERIOD

APPENDIX C

DETERMINATION OF INITIAL YAWING PERIOD

The initial yawing period for a fin stabilized missile where the epicyclic arm rates are self compensating may be approximated as

$$s = \pi \left(\frac{2 I_y}{\rho S d} C_{M\alpha}\right)^{1/2}$$
 (C-1)

where

s = yaw distance between successive maxima or between successive
minima, cal

 ρ = Air density, .075/62.4 = .00120

S = Reference area, $\pi/4$ cal²

d = 1.0 cal

 $I_{v} = 1982 \text{ cal}^{5}$, Figure 1-a.

Thus:

$$s = \pi \left(\frac{2 \times 1982}{.00120 \times .7854 \times 1.0} \right)^{1/2} \left(C_{M\alpha} \right)^{-1/2}$$

APPENDIX D CALIBER NOMENCLATURE

APPENDIX D

CALIBER NOMENCLATURE

Caliber nomenclature is widely used in aerodynamic expression as a dimensional convenience to compare performance parameters of geometrically similar models. It is usually referred to a linear scale representing the arithmetic ratio of a linear dimension to an arbitrary standard - most often the body diameter at the forward bourrelet - but has been employed to identify volumes*. Only a simple extension of the reasoning is required then to simultaneously de-dimensionalize the "mass" factor in a given expression and deduce a normalized system of mechanical units which permits a rational comparison of the dynamic properties of even geometrically dissimilar elements of machinery. Usually the context of discussion identifies the quantities as "mass cal", "inertia cal" "length cal", etc., although a complete lexicon of explicit and descriptive terms is available for this purpose.

For this report, the following correlation is employed:

Length (cal) =
$$\frac{\text{linear dimension}}{\text{diametral dimension}}$$

Weight
$$(cal^3) = \frac{\text{weight}}{\text{weight of unit volume of water}}$$

= S.G.N.

Mass
$$(cal^2 sec^2) = \frac{S.G.N.}{gravity acceleration}$$

Thus, with force equal to mass times acceleration:

$$(ca1^3) = (ca1^2 sec^2) \left(\frac{ca1}{sec^2}\right)$$

^{*} MacAllister, et al., "A Compendium of Ballistic Properties of Projectiles of Possible Interest in Small Arms", BRL Report No. 1532, February 1971, (AD #882117).

APPENDIX E ANALYSIS OF THE XM-110 PROJECTILE

APPENDIX E

ANALYSIS OF THE XM-110 PROJECTILE

The static moment and normal force coefficients for the XM-110 projectile, a flechette (Figures E-1 and E-2), were determined by the techniques described in this report and compared with range test data as shown on Figures E-3 and E-4. Agreement is satisfactory, the algebraic values being roughly 15% low for the normal force coefficient and within 10% for the static moment coefficient over the velocity range 2<M<5.

WT.	115 CAL3		
Ix	CAL ⁵		
Ιγ	2452 CAL5		
DIA	1.0 CAL		
P	7.86		

.. APPENDIX D

Figure E-1. Outline of XM-110 Projectile

Figure E-2. Outline of Idealized Model of XM-110 Projectile

Figure E-3 Static Moment Coefficient of the XM-110 Projectile

Figure E-4 Normal Force Coefficient of the XM-110 Projectile

LIST OF SYMBOLS

```
= \beta TAN \omega , operational parameter
b/2
               Fin blade height
               Fin blade length at root
               Fin blade length at tip
c_{+}
               Center of gravity of projectile, nose datum
c.g.
              Center of pressure of normal force
c.p.
            = 1.0 cal , reference diameter
d
g
               Fin dimension
k
              Fin dimension
              Cylindrical body length
<sup>l</sup>a
ln
              Nose length
lo.a.
              Overall length of projectile
            = \ell_a + \ell_n
<sup>l</sup>т
              Mass of projectile
              Length of initial yaw period
S
              Velocity of projectile
              Distance along projectile, nose datum
X
              Operational parameter
              Angle of attack, sideslip
α,γ
           = (\alpha^2 + \gamma^2)^{\frac{1}{2}} = arc sin \delta, total angle of attack
\alpha_{\mathbf{T}}
           = (M^2-1)^{\frac{1}{2}}, operational parameter
β
δ
           = \sin \alpha_T, operational parameter
              Initial yawing rate
           = arc tan (b/2)/(C_r+g) , fin shade angle
           = C_t/C_r, fin tip ratio
```

 Ω Fin sweep back angle

ρ Density of air

 ω = $\frac{\Pi}{2}$ - Ω , fin leading edge angle taken from axis of rotation.

AR = b^2/S_F , Aspect ratio of fin planform

 $C_D = \frac{Drag \ Force}{\frac{1}{2} \rho \ v^2 \ S}$, zero-yaw drag coefficient

 $C_{L\alpha}$ = $\frac{\text{Lift Force}}{\frac{1}{2} \rho \ v^2 \ S \ \delta}$, aerodynamic lift slope coefficient, $\delta = \sin \alpha_T$

 $C_{M\alpha}$ = $\frac{\text{Static Moment}}{\frac{1}{2} \rho \ v^2 \ \text{Sd} \ \delta}$, aerodynamic moment slope coefficient

 $C_{N\alpha}$ = $\frac{\text{Normal Force}}{\frac{1}{2} \rho \ v^2 \ S \ \delta}$, aerodynamic normal force slope coefficient

 I_{x} Axial moment of inertia

 I_{v} Transverse moment of inertia

J = $J_r \delta'$, aerodynamic jump term

 $J_{\zeta} = \frac{I_{y}}{md^{2}} \frac{C_{L\alpha}}{C_{M\alpha}} \text{, aerodynamic jump factor}$

K Interference factor

M Mach number

N Number of fin blades

S = $\frac{\pi}{4} d^2$, reference area

S.G.N. ave. Specific gravity of projectile as normalized

S_F Fin planform area

Supernumerary Subscripts

f.b. Forebody

T Total quantity

Abbreviations

BRL Ballistics Research Laboratories

CDC Computer Development Corporation

HP-97 Hewlett-Packard - 97

DISTRIBUTION LIST

No. Cop		No. Copi	
12	Commander Defense Technical Info Center ATTN: DDC-DDA Cameron Station Alexandria, VA 22314	3	Commander US Army Armament Research & Development Command ATTN: DRDAR-LCS-T, MAJ J. Houle Dover, NJ 07801
1	Director Defense Advanced Research Projects Agency ATTN: C.R. Lehner Mr.G. Ligman, Jr. 1400 Wilson Boulevard Arlington, VA 22209	6	Commander US Army Armament Research & Development Command ATTN: DRDAR-SC, Dr. D. Gyorog Mr. S. Jacobson DRDAR-SCT, Dr.T. Hung DRDAR-LCA, Mr.R. Wrenn Mr.A. Loeb
1	Director Institute for Defense Analyses ATTN: Dr.H. Wolfhard 400 Army-Navy Drive Arlington, VA 22202	1	Mr.S. Wasserman Dover, NJ 07801 Commander US Army Armament Materiel Readiness
1	Commander US Army Materiel Development & Readiness Command ATTN: DRCDMD-ST 5001 Eisenhower Avenue Alexandria, VA 22333	1	Command ATTN: DRSAR-LEP-L, Tech Lib Rock Island, IL 61299 Commander US Army Watervliet Arsenal ATTN: SARWV-RDD, P. Vottis
3	Commander US Army Armament Research & Development Command ATTN: DRDAR-LC, Dr.J. Frasier DRDAR-LCA,Mr. W.Benson Dr. H. Fair DRDAR-LCU, Mr.D. Davitt Mr.D. Costa		DRDAR-LCB, Mr.T. Allen Watervliet, NY 12189 Director US Army ARRADCOM Benet Weapons Laboratory ATTN: DRDAR-LCB-TL Watervliet, NY 12189
2	Mr.A. Moss Dover, NJ 07801 Commander US Army Armament Research & Development Command ATTN: DRDAR-TSS (2 cys) Dover, NJ 07801		Commander US Army Aviation Research & Development Command ATTN: DRSAV-E 12th and Spruce Streets St. Louis, MO 63166

DISTRIBUTION LIST

o. o opie		No. o Copie	
1	Director US Army Air Mobility Research & Development Laboratory Ames Research Center Moffett Field, CA 94035	1	Commander US Army Research Office ATTN: Tech Lib P.O. Box 12211 Research Triangle Park, NC 27706
1	Commander US Army Communications Research & Development Command ATTN: DRDCO-PPA-SA Fort Monmouth, NJ 07703	1	Director US Army TRADOC Systems Analysis Activity ATTN: ATAA-SL, Tech Lib White Sands Missile Range NM 88002
1	Commander US Army Electronics Research & Development Command Technical Support Activity ATTN: DELSD-L Fort Monmouth, NJ 07703	2	Commandant US Army Artillery & Missile School ATTN: AKPSIAS-G-CN AKPSIAS-G-RK Fort Sill, OK 73504
2	Commander US Army Missile Command ATTN: DRDMI-R DRDMI-YDL Redstone Arsenal, AL 35809	1	Chief cf Naval Research ATTN: Code 473 800 N. Quincy Street Arlington, VA 22217
1	Commander US Army Tank Automotive Research & Development Command ATTN: DRDTA-UL Warren, MI 48090	1	Commander Naval Surface Weapons Center ATTN: Tech Lib, Dr.L.L. Pater Dahlgren, VA 22338 Commander
1	Commander US Army White Sands Missile Range ATTN: STEWS-VT White Sands Missile Range NM 88002	1	Naval Research Laboratory ATTN: Code 6180 Washington, DC 20375 Commander Naval Ordnance Station ATTN: Dr. A. Roberts Indian Head MD 20640
1	Project Manager, XM1 US Army Tank Automotive Rsch & Development Command 28150 Dequindre Road Warren, MI 48090		Indian Head, MD 20640 deen Proving Ground Dir, USAMSAA ATTN: DRXSY-MP, H. Cohen Cdr, USATECOM ATTN: DRSTE-TO-F Dir, Wpns Systems Concepts Team Bldg E3516, EA ATTN: DRDAR-ACW

USER EVALUATION OF REPORT

Please take a few minutes to answer the questions below; tear out this sheet and return it to Director, US Army Ballistic Research Laboratory, ARRADCOM, ATTN: DRDAR-TSB, Aberdeen Proving Ground, Maryland 21005. Your comments will provide us with information for improving future reports.

1. BRL Report Number					
2. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which report will be used.)					
3. How, specifically, is the report being used? (Information source, design data or procedure, management procedure, source of ideas, etc.)					
4. Has the information in this report led to any quantitative savings as far as man-hours/contract dollars saved, operating costs avoided, efficiencies achieved, etc.? If so, please elaborate.					
5. General Comments (Indicate what you think should be changed to make this report and future reports of this type more responsive to your needs, more usable, improve readability, etc.)					
6. If you would like to be contacted by the personnel who prepared this report to raise specific questions or discuss the topic, please fill in the following information.					
Name:					
Telephone Number:					
Organization Address:					