

"Optimal Control"

Sulav Duwal PhD Candidate System pharmacology and disease control group Freie Universität Berlin

Bioinformatics Social Meeting, HU Berlin

Outline

Optimization and Optimal Control Optimization Optimal Control in Nutshell

Optimal Control for Markov Process
Disease and drug model - Markov Process
Optimal control of Markov Process
Brute Force Algorithm
Branch and bound Algorithm

Outline

Optimization and Optimal Control

Optimization
Optimal Control in Nutshell

Optimal Control for Markov Process

Disease and drug model - Markov Process Optimal control of Markov Process Brute Force Algorithm Branch and bound Algorithm

Optimization

► What is optimization ?

Optimization

- What is optimization?
- ► 3 Ingredients

Figure: Ingredients of optimization

- What is optimization ?
- 3 Ingredients

Figure: Ingredients of optimization

► Example : Knapsack problem

Figure: source:wikimedia commons

- What is optimization?
- 3 Ingredients

Figure: Ingredients of optimization

Example : Knapsack problem

Figure: source:wikimedia commons

- ► Description of system : (weight , value)
- ► Performance criteria : Maximize total value
- Constraints: Total weights ≤ 15 Kg

Optimization and Optimal Control

- Static optimization
 - The system is independent of time.
 - ► Knapsack problem

Linear programming, Integer programming

- Dynamic optimization
 - ► The system is dependent on time.

Optimization and Optimal Control

- Static optimization
 - The system is independent of time.
 - ► Knapsack problem

Linear programming, Integer programming

- Dynamic optimization
 - ► The system is dependent on time.
 - ► Minimum fuel problem

Optimization and Optimal Control

- Static optimization
 - The system is independent of time.
 - ► Knapsack problem

Linear programming, Integer programming

- Dynamic optimization
 - ► The system is dependent on time.
 - Minimum fuel problem
 - ► A.k.a. Optimal Control

System

$$\frac{dx(t)}{dt} = f(x(t), u(t)) \quad \text{and} \quad x(t_0) = x_0$$
 (1)

x(t) is called state variable and u(t) is called control variable.

Performance criteria

$$J(x_0, u) = \int_{t_0}^{t_f} \mathcal{L}(x(t), u(t), t) dt + \phi(x(t_f), t_f)$$
 (2)

 $\mathcal{L}(x(t), u(t), t)$ is the running cost and $\phi(x(t_f), t_f)$ is the terminal cost.

System

$$\frac{dx(t)}{dt} = f(x(t), u(t))$$
 and $x(t_0) = x_0$ (1)

x(t) is called state variable and u(t) is called control variable.

Performance criteria

$$J(x_0, u) = \int_{t_0}^{t_f} \mathcal{L}(x(t), u(t), t) dt + \phi(x(t_f), t_f)$$
 (2)

 $\mathcal{L}(x(t), u(t), t)$ is the running cost and $\phi(x(t_f), t_f)$ is the terminal cost.

Optimal control

min
$$\int_{t_0}^{t_f} \mathcal{L}(x(t), u(t), t) dt + \phi(x(t_f), t_f)$$
subject to
$$\frac{dx}{dt} = f(x(t), u(t))$$

$$x(t_0) = x_0$$
(3)

Optimal control

$$\min_{u} \quad \int_{t_0}^{t_f} \mathcal{L}(x(t), u(t), t) dt + \phi(x(t_f), t_f)$$
subject to
$$\frac{dx}{dt} = f(x(t), u(t))$$

$$x(t_0) = x0$$

Optimal control

$$\begin{aligned} & \underset{u}{\text{min}} & & \int_{t_0}^{t_f} \mathcal{L}(x(t), u(t), t) dt + \phi(x(t_f), t_f) \\ & \text{subject to} & & \frac{dx}{dt} = f(x(t), u(t)) \\ & & & x(t_0) = x0 \end{aligned}$$

▶ Hamiltonian $H(\cdot)$ and adjoint equation $\lambda(t)$

$$H(x(t), u(t), \lambda(t), t) = \mathcal{L}(x(t), u(t), t) + \lambda(t) \cdot f(x(t), u(t))$$
(4)

Optimal control

$$\begin{aligned} & \underset{u}{\text{min}} & & \int_{t_0}^{t_f} \mathcal{L}(x(t), u(t), t) dt + \frac{\phi(x(t_f), t_f)}{\phi(x(t_f), t_f)} \\ & \text{subject to} & & \frac{dx}{dt} = f(x(t), u(t)) \\ & & & x(t_0) = x0 \end{aligned}$$

▶ Hamiltonian $H(\cdot)$ and adjoint equation $\lambda(t)$

$$H(x(t), u(t), \lambda(t), t) = \mathcal{L}(x(t), u(t), t) + \lambda(t) \cdot f(x(t), u(t))$$
(4)

Necessary condition of optimality

Optimal control

$$\begin{aligned} & \underset{u}{\text{min}} & & \int_{t_0}^{t_f} \mathcal{L}(x(t), u(t), t) dt + \frac{\phi(x(t_f), t_f)}{\phi(x(t_f), t_f)} \\ & \text{subject to} & & \frac{dx}{dt} = f(x(t), u(t)) \\ & & & x(t_0) = x0 \end{aligned}$$

▶ Hamiltonian $H(\cdot)$ and adjoint equation $\lambda(t)$

$$H(x(t), u(t), \lambda(t), t) = \mathcal{L}(x(t), u(t), t) + \lambda(t) \cdot f(x(t), u(t))$$
(4

- Necessary condition of optimality
 - 1. Optimality Condition at $u^* \Rightarrow$

$$\frac{\partial H}{\partial u} = 0$$

Optimal control

$$\min_{u} \quad \int_{t_0}^{t_f} \mathcal{L}(x(t), u(t), t) dt + \phi(x(t_f), t_f)$$
 subject to
$$\frac{dx}{dt} = f(x(t), u(t))$$

$$x(t_0) = x0$$

▶ Hamiltonian $H(\cdot)$ and adjoint equation $\lambda(t)$

$$H(x(t), u(t), \lambda(t), t) = \mathcal{L}(x(t), u(t), t) + \lambda(t) \cdot f(x(t), u(t))$$
(4

- Necessary condition of optimality
 - 1. Optimality Condition at $u^* \Rightarrow \frac{\partial H}{\partial u} = 0$
 - 2. Adjoint equation

$$\frac{\partial H}{\partial x} = -\frac{d\lambda}{dt}$$
 and at $t = t_f \Rightarrow \lambda(t_f) = \frac{\partial \phi(x(t_f), t_f)}{\partial x}$

Optimal control

$$\begin{aligned} & \underset{u}{\text{min}} & & \int_{t_0}^{t_f} \mathcal{L}(x(t), u(t), t) dt + \phi(x(t_f), t_f) \\ & \text{subject to} & & \frac{dx}{dt} = f(x(t), u(t)) \\ & & & x(t_0) = x0 \end{aligned}$$

▶ Hamiltonian $H(\cdot)$ and adjoint equation $\lambda(t)$

$$H(x(t), u(t), \lambda(t), t) = \mathcal{L}(x(t), u(t), t) + \lambda(t) \cdot f(x(t), u(t))$$
(4)

Necessary condition of optimality

1. Optimality Condition at $u^* \Rightarrow$

$$\frac{\partial H}{\partial u} = 0$$

2. Adjoint equation

$$\frac{\partial H}{\partial x} = -\frac{d\lambda}{dt}$$
 and at $t = t_f \Rightarrow \lambda(t_f) = \frac{\partial \phi(x(t_f), t_f)}{\partial x}$

3. Dynamics of systems

$$\frac{\partial H}{\partial \lambda} = \frac{dx}{dt} = f(x(t), u(t))$$
 and at $t = t_0 \Rightarrow x(t_0) = x_0$

- Necessary condition of optimality
 - 1. Optimality condition at $u^* \Rightarrow$

$$\frac{\partial H}{\partial u} = 0$$

2. Adjoint equation and Transversality equation

$$\frac{\partial H}{\partial x} = -\frac{d\lambda}{dt}$$
 and at $t = t_f \Rightarrow \lambda(t_f) = \frac{\partial \phi(x(t_f), t_f)}{\partial x}$

3. Dynamics of systems

$$\frac{\partial H}{\partial \lambda} = \frac{dx}{dt} = f(x(t), u(t))$$
 and at $t = t_0 \Rightarrow x(t_0) = x_0$

- Necessary condition of optimality
 - 1. Optimality condition at $u^* \Rightarrow$

$$\frac{\partial H}{\partial u} = 0$$

2. Adjoint equation and Transversality equation

$$\frac{\partial H}{\partial x} = -\frac{d\lambda}{dt}$$
 and at $t = t_f \Rightarrow \lambda(t_f) = \frac{\partial \phi(x(t_f), t_f)}{\partial x}$

3. Dynamics of systems

$$\frac{\partial H}{\partial \lambda} = \frac{dx}{dt} = f(x(t), u(t))$$
 and at $t = t_0 \Rightarrow x(t_0) = x_0$

► Optimal control problem is a two-point boundary value problem.

- Necessary condition of optimality
 - 1. Optimality condition at $u^* \Rightarrow$

$$\frac{\partial H}{\partial u} = 0$$

2. Adjoint equation and Transversality equation

$$\frac{\partial H}{\partial x} = -\frac{d\lambda}{dt}$$
 and at $t = t_f \Rightarrow \lambda(t_f) = \frac{\partial \phi(x(t_f), t_f)}{\partial x}$

3. Dynamics of systems

$$\frac{\partial H}{\partial \lambda} = \frac{dx}{dt} = f(x(t), u(t))$$
 and at $t = t_0 \Rightarrow x(t_0) = x_0$

- ► Optimal control problem is a two-point boundary value problem.
- Sufficient condition of optimality
 - 1. For maximization problem

$$\frac{\partial^2 H}{\partial u^2} < 0 \quad \text{at} \quad u^*$$

2. For minimization problem

$$\frac{\partial^2 H}{\partial u^2} > 0$$
 at u^*

A short recap

- ► Optimization system, performance Criteria, constraints
- Dynamic optimization a.k.a optimal control
- Hamiltonian, Adjoint equation

A short recap

- Optimization system, performance Criteria, constraints
- Dynamic optimization a.k.a optimal control
- ► Hamiltonian, Adjoint equation
- ► A broad field with history of 300 years. The theory was developed in parallel in USA and former USSR during cold war.

A short recap

- Optimization system, performance Criteria, constraints
- Dynamic optimization a.k.a optimal control
- ► Hamiltonian, Adjoint equation
- A broad field with history of 300 years. The theory was developed in parallel in USA and former USSR during cold war.
- Application in biology: control of epidemics, treatment design etc. largely underexplored!!

Outline

Optimization and Optimal Control Optimization Optimal Control in Nutshell

Optimal Control for Markov Process

Disease and drug model - Markov Process Optimal control of Markov Process Brute Force Algorithm Branch and bound Algorithm

RESEARCH ARTICLE

Optimal Treatment Strategies in the Context of 'Treatment for Prevention' against HIV-1 in Resource-Poor Settings

Sulav Duwal^{1,2}, Stefanie Winkelmann¹, Christof Schütte^{1,3}, Max von Kleist^{1,2}*

1 Department of Mathematics and Computer Science, Freie Universität Berlin, Germany, 2 Junior Research Group "Systems Pharmacology & Disease Control", 3 Zuse Institute Berlin, Germany

- Stochastic process with memorylessness
- ightharpoonup State space $\mathcal S$: The set of all possible states

• Action space A: The set of all possible actions (treatment option).

Figure: Markov Jump Process

- Stochastic process with memorylessness
- ightharpoonup State space $\mathcal S$: The set of all possible states
 - ▶ $S = \{Healthy, Mod.Sick, Severe.Sick\}$ and $X_t \in S$

• Action space A: The set of all possible actions (treatment option).

Figure: Markov Jump Process

- Stochastic process with memorylessness
- State space S: The set of all possible states
 - ▶ $S = \{Healthy, Mod.Sick, Severe.Sick\}$ and $X_t \in S$
 - ▶ p ∈ Ω denote probability distribution vector on the state space S

$$p[x](t) := \mathbb{P}(X_t = x)$$

 Action space A: The set of all possible actions (treatment option).

Figure: Markov Jump Process

- Stochastic process with memorylessness
- ightharpoonup State space $\mathcal S$: The set of all possible states
 - ▶ $S = \{Healthy, Mod.Sick, Severe.Sick\}$ and $X_t \in S$
 - ► p ∈ Ω denote probability distribution vector on the state space S

$$p[x](t) := \mathbb{P}(X_t = x)$$

- ► Action space A: The set of all possible actions (treatment option).
 - ► Each action $a \in A$ induces unique dynamics.

Figure: Markov Jump Process

- Stochastic process with memorylessness
- State space S: The set of all possible states
 - $S = \{Healthy, Mod.Sick, Severe.Sick\}$ and $X_t \in S$
 - ▶ p ∈ Ω denote probability distribution vector on the state space S

$$p[x](t) := \mathbb{P}(X_t = x)$$

- Action space A: The set of all possible actions (treatment option).
 - ► Each action a ∈ A induces unique dynamics.
 - For a given time interval au

$$p(t+\tau)=T_a\cdot p(t)$$

where T_a is the transition matrix specific to action a.

Figure: Markov Jump Process

- Stochastic process with memorylessness
- State space S: The set of all possible states
 - ▶ $S = \{Healthy, Mod.Sick, Severe.Sick\}$ and $X_t \in S$
 - ▶ $p \in \Omega$ denote probability distribution vector on the state space S

$$p[x](t) := \mathbb{P}(X_t = x)$$

- Action space A: The set of all possible actions (treatment option).
 - ► Each action $a \in A$ induces unique dynamics.
 - For a given time interval au

$$p(t+\tau)=T_a\cdot p(t)$$

where T_a is the transition matrix specific to action a.

Figure: Markov Jump Process

- Stochastic process with memorylessness
- ightharpoonup State space $\mathcal S$: The set of all possible states
 - ▶ $S = \{Healthy, Mod.Sick, Severe.Sick\}$ and $X_t \in S$
 - ▶ $p \in \Omega$ denote probability distribution vector on the state space S

$$p[x](t) := \mathbb{P}(X_t = x)$$

- Action space A: The set of all possible actions (treatment option).
 - ► Each action $a \in A$ induces unique dynamics.
 - For a given time interval au

$$p(t+\tau)=T_a\cdot p(t)$$

where T_a is the transition matrix specific to action a.

Figure: Markov Jump Process

Optimal control of Markov Process

System : Discrete Dynamics

$$p_{j+1} = T_{u_j} \cdot p_j$$
 and $p(0) = p_0$

where $u_i \in A$

▶ Performance Criteria $N_{\mathcal{I}} := \text{is a number of intervals and } q_{u_j,j}, q_{N_{\mathcal{I}}} \in \mathbb{R}^{|\mathcal{S}|} \text{ are cost vectors.}$

$$J(p_0, u) = \sum_{j=0}^{N_{\tau}-1} q'_{u_j, j} \cdot p_j + q'_{N_{\tau}} \cdot p_{N_{\tau}}$$

Optimal control of Markov Process

Optimal Control Problem

$$\begin{aligned} & \underset{u \in \mathcal{U}}{\operatorname{argmin}} & & \sum_{j=0}^{N_{\mathcal{I}}-1} q'_{u_{j},j} \cdot p_{j} + q'_{N_{\mathcal{I}}} \cdot p_{N_{\mathcal{I}}} \\ & \text{w.r.t} & & p_{j+1} = T_{u_{j}} \cdot p_{j} \\ & & p(0) = p_{0} \end{aligned}$$

Optimal control of Markov Process

Optimal Control Problem

$$\begin{array}{ll} \underset{u \in \mathcal{U}}{\operatorname{argmin}} & \sum_{j=0}^{N_{\mathcal{I}}-1} q'_{u_{j},j} \cdot p_{j} + q'_{N_{\mathcal{I}}} \cdot p_{N_{\mathcal{I}}} \\ \text{w.r.t} & p_{j+1} = T_{u_{j}} \cdot p_{j} \\ & p(0) = p_{0} \end{array}$$

▶ Hamiltonian

$$H_j = \xi'_{j+1} \cdot T_{u_j} \cdot p_j + q'_{u_j,j} \cdot p_j$$

Optimal Control Problem

$$\begin{array}{ll} \underset{u \in \mathcal{U}}{\operatorname{argmin}} & \sum_{j=0}^{N_{\mathcal{I}}-1} q'_{u_{j},j} \cdot p_{j} + q'_{N_{\mathcal{I}}} \cdot p_{N_{\mathcal{I}}} \\ \text{w.r.t} & p_{j+1} = T_{u_{j}} \cdot p_{j} \\ & p(0) = p_{0} \end{array}$$

▶ Hamiltonian

$$H_j = \xi'_{j+1} \cdot T_{u_j} \cdot p_j + q'_{u_i,j} \cdot p_j$$

Adjoint equation

$$\begin{array}{ll} \xi_j' & = \xi_{j+1}' \cdot T_{u_j} + q_{u_j,j}' \\ \xi_{N_{\mathcal{I}}}' & = q_{N_{\mathcal{I}}}' \end{array}$$

Optimal Control Problem

▶ Hamiltonian

$$H_j = \xi'_{j+1} \cdot T_{u_j} \cdot p_j + q'_{u_i,j} \cdot p_j$$

Adjoint equation

$$\begin{array}{ll} \xi_j' & = \xi_{j+1}' \cdot T_{u_j} + q_{u_j,j}' \\ \xi_{N_{\mathcal{I}}}' & = q_{N_{\mathcal{I}}}' \end{array}$$

Optimal control

$$u_j^* = \underset{a \in \mathcal{A}}{\operatorname{argmin}} \{ \xi_{j+1}^{*'} \cdot T_a \cdot p_j^* + q'_{a,j} \cdot p_j^* \}$$

Brute Force Algorithm

Brute Force Algorithm

Brute Force Algorithm

- Problem : ► Curse of dimensionality
 - ▶ Given |A| number of action options and $N_{\mathcal{I}}$ number of intervals $|\mathcal{A}|^{N_{\mathcal{I}}}$ number of controls available

Idea: ??

Branch and bound algorithm (Redundancy)

Branch and bound algorithm (Redundancy)

- ▶ 7 days before Christmas, Santa lost his beard except 1 strand.
- ▶ In 7 days, he has to grow exactly 999 strands. Otherwise

- ▶ 7 days before Christmas, Santa lost his beard except 1 strand.
- ▶ In 7 days, he has to grow exactly 999 strands. Otherwise
- He has 2 options

- ▶ 7 days before Christmas, Santa lost his beard except 1 strand.
- ▶ In 7 days, he has to grow exactly 999 strands. Otherwise
- ► He has 2 options
 - ▶ $a_1: +3$ Naturally, he has +3 strands more in a day.

- 7 days before Christmas, Santa lost his beard except 1 strand.
- ▶ In 7 days, he has to grow exactly 999 strands. Otherwise
- ► He has 2 options
 - ▶ $a_1: +3$ Naturally, he has +3 strands more in a day.
 - ightharpoonup a₂: x3 If he takes a magic drug, he multiplies his beard 3 times in a day.

- 7 days before Christmas, Santa lost his beard except 1 strand.
- ▶ In 7 days, he has to grow exactly 999 strands. Otherwise
- He has 2 options
 - ▶ a_1 : +3 Naturally, he has +3 strands more in a day.
 - $ightharpoonup a_2: \times 3$ If he takes a magic drug, he multiplies his beard 3 times in a day.
- ► How can he get 999 beard in 7 days starting from a single beard ?

Dear Santa, your drug schedule

- Day 1 no drug
- Day 2 magic drug
- Day 3 magic drug
- ► Day 4 magic drug
 - ► Day 5 no drug
- ► Day 6 magic drug
- Day 7 magic drug

and you will have exactly 999 strands of beard.

Merry Christmas

Discrete Dynamics

$$\begin{array}{ll}
p_{j+1} &= T_{u_j} \cdot p_j \\
p(0) &= p_0
\end{array}$$

Adjoint equation

$$\begin{array}{ll} \xi_j' & = \xi_{j+1}' \cdot T_{u_j} + q_{u_j,j}' \\ \xi_{N_{\mathcal{I}}}' & = q_{N_{\mathcal{I}}}' \end{array}$$

:

:

:

(1

▶ Discrete Dynamics

$$\begin{array}{ll}
p_{j+1} &= T_{u_j} \cdot p_j \\
p(0) &= p_0
\end{array}$$

Adjoint equation

$$\begin{array}{ll} \xi_j' & = \xi_{j+1}' \cdot T_{u_j} + q_{u_j,j}' \\ \xi_{N_{\mathcal{I}}}' & = q_{N_{\mathcal{I}}}' \end{array}$$

:

:

:

Redundancy Test - Linear programing

$$\mu = \min_{\rho, \pi, \zeta} \left[\begin{array}{ccc} \xi'_{j,1} & 1 & -1 \end{array} \right] \cdot \left[\begin{array}{c} \rho \\ \pi \\ \zeta \end{array} \right]$$

$$\text{w.r.t} \quad \left[\begin{array}{ccc} \xi'_{j,2} & 1 & -1 \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \xi'_{j,n} & 1 & -1 \end{array} \right] \cdot \left[\begin{array}{c} \rho \\ \pi \\ \zeta \end{array} \right] \ge \left[\begin{array}{c} 0 \\ \vdots \\ \vdots \\ 0 \end{array} \right]$$

$$\sum_{i} \rho \left[i \right] = 1$$

$$p_{min} \le \rho \le p_{max}$$

$$0 \le \pi \le J_{max}$$

where p_{min} , p_{max} and J_{min} , J_{max} are lower and upper bounds for p_m^* and $J^*(p_0, u^*(p_0))$ respectively.

 $I_{min} \leq \zeta \leq I_{max}$

• if $\mu > 0$, the adjoint vector $\xi_{i,1}$ is redundant.

Discrete Dynamics

$$\begin{array}{ll}
p_{j+1} &= T_{u_j} \cdot p_j \\
p(0) &= p_0
\end{array}$$

Adjoint equation

$$\begin{array}{ll} \boldsymbol{\xi}_j' & = \boldsymbol{\xi}_{j+1}' \cdot \boldsymbol{T}_{u_j} + \boldsymbol{q}_{u_j,j}' \\ \boldsymbol{\xi}_{N_{\mathcal{I}}}' & = \boldsymbol{q}_{N_{\mathcal{I}}}' \end{array}$$

:

:

:

(

BESEARCH ARTICLE

Optimal Treatment Strategies in the Context of 'Treatment for Prevention' against HIV-1 in Resource-Poor Settings

Sulav Duwal^{1,2}, Stefanie Winkelmann¹, Christof Schütte^{1,3}, Max von Kleist^{1,2}*

1 Department of Mathematics and Computer Science, Freie Universität Berlin, Germany, 2 Junior Research Group "Systems Pharmacology & Disease Control", 3 Zuse Institute Berlin, Germany

Codes can be downloaded from https://github.com/SulavDuwal/OptimalTreatmentStrategies

@SulavDuwal

References

Suzanne Lenhart, John T. Workman
Optimal control applied to biological models
Book: Chapman & Hall/CRC Mathematical and Computational Biology

Robert F. Stengel Optimal Control and Estimation Dover Books on Mathematics