Biogeography of arabidopsis

*students:*Anton Eliseev
Kristina Krivonosova

the "pahan" Tatiana Tatarinova

The goal

- 1. Determine the climate and soil influence on genome of modeling plants.
- 2. Build a model base on genome and environment data.

Tasks

- Get familiar with WorldClim and Soil databases
- Download 1001 genome SNPs data and collection coordinates of arabidopsis
- Get climate and soil data associated with this points
- Convert SNPs to vectors by Admixture tools
- Design model
- Interpretation of result

Roadmap of data preprocessing

Correlation

Correlation plot for initial data (58 vars)

Correlation plot cutof = 0.5 (13 vars)

Admixture cross validation and Mantel test

Cross validation plot

k	Observation	p-value
2	0.3520889	0.03225806
3	0.6759539	0.03225806
5	0.6897299	0.03225806
12	0.8257159	0.03225806
20	0.8384786	0.03225806

Admixture components

t-SNE

Regression tree

Random forest

res.forest

- 1. bio4, bio8 temperature
- 2. bio18, bio13, bio15precipitation
- 3. Water vapor pressure
- 4. wind speed
- 5. T_GRAVEL Gravel Content
- 6. T_OC Organic Carbon
- 7. T_ESP Sodicity (ESP)
- 8. T_SAND Sand Fraction
- 9. S_BS Base Saturation
- 10. S_CEC_CLAY CEC (clay)

Xgboost

solar_min bio18 solar_max bio4, bio7, bio2 solar_mean wind_max vapr_min, vapr_max wind_min T_CEC_CLAY

15.0

- 12.5

- 10.0

- 7.5

- 5.0

- 2.5

- 0.0

Results and discussion

- 1. Scripts for extracting climatic and soil data
- 2. Design models of predictions admixture class of arabidopsis
- 3. The parameters explaining the division of *arabidopsis* into admixture classes. It is found out what is most important for accurate prediction climatic variable which is consistent with the recent results.

Stearns F. W., Fenster C. B. Evidence for parallel adaptation to climate across the natural range of Arabidopsis thaliana //Ecology and evolution. – 2013. – T. 3. – №. 7. – C. 2241-2250.

4. Git <u>repository</u>

Thank you for attention

Genome data to matrix

1001 Genomes Project data 100 Gb .vcf file

Run tools on the server

Tools: Vcftools,
Plink, and
Admixture

1. O. O. ... O.

.9.10...0.

. . .

0.1.0...0.

Climate and soil databases

WorldClim and Soil data

Rscript

parameters for all given points

b₀₀ b₀₁ ... b_{0m} b₁₀ b₁₁ ... b_{1m}

b_{no} b_{n1} ... b_{nm}

Admixture

