Quick Sensitivity Curves for Pulsar Timing Arrays Making unrealistic sensitivity curves more realistic

Jeremy Baier

Oregon State University

October 3, 2024

Outline

Introduction to Pulsar Timing Arrays

Sensitivity Curves

Derivation of Quick Sensitivity Curves

Conclusion

Sensitivity Curves

In general, sensitivity curves are a way to characterize the sensitivity of a detector to a given signal.

- ▶ Encode the noise properties of the detector.
- ► Can be used to assess to the "detectability" of something.

Sensitivity Curves

Figure: Sensitivity Curve Example

Quick Sensitivity Curve Derivation

We will start from the realistic sensitivity curves presented in eq. 92 of Hazboun et al. (2019),

$$S_{\text{eff}}(f) = \left(\sum_{I} \sum_{J>I} \frac{T_{IJ}}{T_{\text{obs}}} \frac{\chi_{IJ}^2}{S_I(f)S_J(f)}\right)^{-1/2}$$

- \triangleright S_{eff} is the effective background sensitivity
- T_{obs}: Total observational time span
- T_{IJ}: Overlapping observational time span between pulsars I and J
- $\triangleright \chi_{IJ}$: correlation coefficients
- \triangleright $S_I(f)$: Individual pulsar sensitivity I

Derivation of Quick Sensitivity Curves

Simplifying assumptions:

- Uniform distribution of pulsars across the sky
- Identical noise properties for all pulsars
- $ightharpoonup T_I = T_{
 m obs}$ (all pulsars observed for full timespan)
- Same observational cadence for all pulsars

Simplified Sensitivity Equation

Assuming uniform pulsar distribution across the sky,

$$\chi_{IJ} \approx 1/48$$

and identical noise properties:

$$S_{\text{eff}}(f) = \left(\frac{N_{\text{psr}} (N_{\text{psr}} - 1)}{2 \times 48 \times S_I(f)^2}\right)^{-1/2}$$

Final Sensitivity Equation

From Equation 2, it follows that:

$$S_{\text{eff}}(f) = \left(\frac{96}{N_{\text{psr}}(N_{\text{psr}} - 1)}\right)^{1/2} \frac{12\pi^2 f^2}{N_I^{-1}(f)}$$

Derivation of Quick Sensitivity Curves

$$S_I(f) = \frac{1}{\mathcal{N}_I^{-1}(f)\mathcal{R}(f)} = \frac{12\pi^2 f^2}{\mathcal{N}_I^{-1}(f)}$$

where $\mathcal{N}_{I}^{-1}(f)$ is the noise-weighted inverse transmission function for pulsar I.

Noise-Weighted Inverse Transmission

$$\mathcal{N}_I^{-1}(f) \approx \frac{\mathcal{T}_I(f)}{P_{\rm N}(f)}$$
 where $\mathcal{T}_I(f) \approx \left(1+\frac{1}{\mathcal{T}_{\rm obs}f}\right)^{-6}$

Noise Model

The power in the noise is given by:

$$P_N = P_{\text{WN}} + P_{\text{RN}} = 2\Delta t \sigma^2 + A_{\text{RN}} f^{-\gamma_{\text{RN}}}$$

where σ is the time of arrival uncertainty, and $A_{\rm RN}$ models red noise.

Conclusion

Accurate PTA sensitivity is expensive to compute.

But with a few oversimplifications, we can get a quick estimate to characterize our detector.

References

- Hazboun, J. S., Romano, J. D., Smith, T. L. (2019). Realistic sensitivity curves for pulsar timing arrays. *Phys. Rev. D*, 100, 104028.
- Moore, C. J., Cole, R. H., Berry, C. P. L. (2015). Gravitational-wave sensitivity curves. *Class. Quantum Grav.*, 32, 015014.
- Babak, S. et al. (2024). Forecasting PTA sensitivity. arXiv:2404.02864.
- Jennings, R. (2021). Transmission Functions for Polynomial Fits. NANOGrav Memorandum 006.