CENG 280

Regular expressions

Regular languages

The goal is to represent the languages with finite specifications. Consider an alphabet Σ , the number of finite representations of languages (it should be a string), and the number of languages over Σ .

The goal is to represent the languages with finite specifications. Consider an alphabet Σ , the number of finite representations of languages (it should be a string), and the number of languages over Σ .

No matter how powerful our methods for representing the languages, only countably many languages can be represented.

The goal is to represent the languages with finite specifications. Consider an alphabet Σ , the number of finite representations of languages (it should be a string), and the number of languages over Σ .

No matter how powerful our methods for representing the languages, only countably many languages can be represented.

Example

$$L = \{ w \in \{0,1\}^* \mid$$

w has exactly three occurrences of 0 and they are not consecutive $\}$

Definition (Regular expressions)

Definition (Regular expressions)

The regular expressions over an alphabet Σ are all strings over the alphabet $\Sigma \cup \{(,),\emptyset,U,\star\}$ that can be obtained as follows:

1- \emptyset and each member of Σ is a regular expression

Definition (Regular expressions)

- 1- \emptyset and each member of Σ is a regular expression
- 2- If α and β are regular expressions than so is $(\alpha\beta)$

Definition (Regular expressions)

- 1- \emptyset and each member of Σ is a regular expression
- 2- If α and β are regular expressions than so is $(\alpha\beta)$
- 3- If α and β are regular expressions than so is $(\alpha U\beta)$

Definition (Regular expressions)

- 1- \emptyset and each member of Σ is a regular expression
- 2- If α and β are regular expressions than so is $(\alpha\beta)$
- 3- If α and β are regular expressions than so is $(\alpha U\beta)$
- 4- If α is a regular expression than so is α^*

Definition (Regular expressions)

- 1- \emptyset and each member of Σ is a regular expression
- 2- If α and β are regular expressions than so is $(\alpha\beta)$
- 3- If α and β are regular expressions than so is $(\alpha U\beta)$
- 4- If α is a regular expression than so is α^{\star}
- 5- Nothing is a regular expression unless it follows from 1-4

Definition (Regular expressions)

The regular expressions over an alphabet Σ are all strings over the alphabet $\Sigma \cup \{(,),\emptyset,U,\star\}$ that can be obtained as follows:

- 1- \emptyset and each member of Σ is a regular expression
- 2- If α and β are regular expressions than so is $(\alpha\beta)$
- 3- If α and β are regular expressions than so is $(\alpha U\beta)$
- 4- If α is a regular expression than so is α^*
- 5- Nothing is a regular expression unless it follows from 1-4

Note that, even though $\alpha U\beta U\gamma$ and $\alpha\beta\gamma$ are not officially a regular expression (why?), we use it due to the associativity of concatenation and union operations.

Every regular expression defines a language. Symbols U and \star are interpreted as union and Kleene star, respectively, and juxtaposition is string concatenation.

Every regular expression defines a language. Symbols U and \star are interpreted as union and Kleene star, respectively, and juxtaposition is string concatenation.

Definition (Languages defined by regular expressions)

Every regular expression defines a language. Symbols U and \star are interpreted as union and Kleene star, respectively, and juxtaposition is string concatenation.

Definition (Languages defined by regular expressions)

1-
$$\mathcal{L}(\emptyset) = \emptyset$$
 and $\mathcal{L}(a) = \{a\}$ for each $a \in \Sigma$

Every regular expression defines a language. Symbols U and \star are interpreted as union and Kleene star, respectively, and juxtaposition is string concatenation.

Definition (Languages defined by regular expressions)

- 1- $\mathcal{L}(\emptyset) = \emptyset$ and $\mathcal{L}(a) = \{a\}$ for each $a \in \Sigma$
- 2- If α and β are regular expressions than $\mathcal{L}(\alpha\beta) = \mathcal{L}(\alpha)\mathcal{L}(\beta)$

Every regular expression defines a language. Symbols U and \star are interpreted as union and Kleene star, respectively, and juxtaposition is string concatenation.

Definition (Languages defined by regular expressions)

- 1- $\mathcal{L}(\emptyset) = \emptyset$ and $\mathcal{L}(a) = \{a\}$ for each $a \in \Sigma$
- 2- If α and β are regular expressions than $\mathcal{L}(\alpha\beta) = \mathcal{L}(\alpha)\mathcal{L}(\beta)$
- 3- If α and β are regular expressions than $\mathcal{L}(\alpha U\beta) = \mathcal{L}(\alpha) \cup \mathcal{L}(\beta)$

Every regular expression defines a language. Symbols U and \star are interpreted as union and Kleene star, respectively, and juxtaposition is string concatenation.

Definition (Languages defined by regular expressions)

- 1- $\mathcal{L}(\emptyset) = \emptyset$ and $\mathcal{L}(a) = \{a\}$ for each $a \in \Sigma$
- 2- If α and β are regular expressions than $\mathcal{L}(\alpha\beta) = \mathcal{L}(\alpha)\mathcal{L}(\beta)$
- 3- If α and β are regular expressions than $\mathcal{L}(\alpha U\beta) = \mathcal{L}(\alpha) \cup \mathcal{L}(\beta)$
- 4- If α is a regular expression than so is $\mathcal{L}(\alpha^*) = \mathcal{L}(\alpha)^*$

Definition (Languages defined by regular expressions)

For a regular expression α , $\mathcal{L}(\alpha)$ is the language represented by α and it is defined as

- 1- $\mathcal{L}(\emptyset) = \emptyset$ and $\mathcal{L}(a) = \{a\}$ for each $a \in \Sigma$
- 2- If α and β are regular expressions than $\mathcal{L}(\alpha\beta) = \mathcal{L}(\alpha)\mathcal{L}(\beta)$
- 3- If α and β are regular expressions than $\mathcal{L}(\alpha U\beta) = \mathcal{L}(\alpha) \cup \mathcal{L}(\beta)$
- 4- If α is a regular expression than so is $\mathcal{L}(\alpha^*) = \mathcal{L}(\alpha)^*$

Example

1- What is $\mathcal{L}(b(aUb)^*)$

Definition (Languages defined by regular expressions)

For a regular expression α , $\mathcal{L}(\alpha)$ is the language represented by α and it is defined as

- 1- $\mathcal{L}(\emptyset) = \emptyset$ and $\mathcal{L}(a) = \{a\}$ for each $a \in \Sigma$
- 2- If α and β are regular expressions than $\mathcal{L}(\alpha\beta) = \mathcal{L}(\alpha)\mathcal{L}(\beta)$
- 3- If α and β are regular expressions than $\mathcal{L}(\alpha U\beta) = \mathcal{L}(\alpha) \cup \mathcal{L}(\beta)$
- 4- If α is a regular expression than so is $\mathcal{L}(\alpha^*) = \mathcal{L}(\alpha)^*$

Example

- 1- What is $\mathcal{L}(b(aUb)^*)$
- 2- Write a regular expression representing the set of words over $\{0,1\}$ that has exactly three occurrences of 0 and they are not consecutive.

The class of **regular languages** consists of all languages L such that $L = \mathcal{L}(\alpha)$ for some regular expression α . The class of regular languages over Σ is precisely the closure of the set of languages $\{\{\sigma\} \mid \sigma \in \Sigma\} \cup \{\emptyset\}$ with respect to union, concatenation, and Kleene star.

The class of **regular languages** consists of all languages L such that $L = \mathcal{L}(\alpha)$ for some regular expression α . The class of regular languages over Σ is precisely the closure of the set of languages $\{\{\sigma\} \mid \sigma \in \Sigma\} \cup \{\emptyset\}$ with respect to union, concatenation, and Kleene star.

Definition

Let D be a set, let $n \ge 0$, and let $R \subseteq D^{n+1}$ be a (n+1)-ary relation on D. Then a subset B of D is said to be **closed under** R if $b_{n+1} \in B$ whenever

$$b_1,\ldots,b_n\in B$$
 and $(b_1,\ldots,b_n,b_{n+1})\in R$

Any property of the form "the set B is closed under relations R_1, \ldots, R_m " is called a closure property of B.

The class of **regular languages** consists of all languages L such that $L = \mathcal{L}(\alpha)$ for some regular expression α . The class of regular languages over Σ is precisely the closure of the set of languages $\{\{\sigma\} \mid \sigma \in \Sigma\} \cup \{\emptyset\}$ with respect to union, concatenation, and Kleene star.

Definition

Let D be a set, let $n \ge 0$, and let $R \subseteq D^{n+1}$ be a (n+1)-ary relation on D. Then a subset B of D is said to be **closed under** R if $b_{n+1} \in B$ whenever

$$b_1, \ldots, b_n \in B \text{ and } (b_1, \ldots, b_n, b_{n+1}) \in R$$

Any property of the form "the set B is closed under relations R_1, \ldots, R_m " is called a closure property of B.

Definition

The closure of a relation R with respect to property P is the relation obtained by adding the minimum number of ordered pairs to R to obtain property P.

The class of **regular languages** consists of all languages L such that $L = \mathcal{L}(\alpha)$ for some regular expression α . The class of regular languages over Σ is precisely the closure of the set of languages $\{\{\sigma\} \mid \sigma \in \Sigma\} \cup \{\emptyset\}$ with respect to union, concatenation, and Kleene star.

The class of **regular languages** consists of all languages L such that $L = \mathcal{L}(\alpha)$ for some regular expression α . The class of regular languages over Σ is precisely the closure of the set of languages $\{\{\sigma\} \mid \sigma \in \Sigma\} \cup \{\emptyset\}$ with respect to union, concatenation, and Kleene star.

How to prove that L is regular?

The class of **regular languages** consists of all languages L such that $L = \mathcal{L}(\alpha)$ for some regular expression α . The class of regular languages over Σ is precisely the closure of the set of languages $\{\{\sigma\} \mid \sigma \in \Sigma\} \cup \{\emptyset\}$ with respect to union, concatenation, and Kleene star.

How to prove that L is regular?

How to prove that L is not regular?

The class of **regular languages** consists of all languages L such that $L = \mathcal{L}(\alpha)$ for some regular expression α . The class of regular languages over Σ is precisely the closure of the set of languages $\{\{\sigma\} \mid \sigma \in \Sigma\} \cup \{\emptyset\}$ with respect to union, concatenation, and Kleene star.

How to prove that L is regular?

How to prove that L is not regular ?

For some language L, an algorithm that answers the question is $w \in L$ is called a **language recognition device.** On the other hand, descriptions of how a string from a language can be produced are called **language generators**.

The class of **regular languages** consists of all languages L such that $L = \mathcal{L}(\alpha)$ for some regular expression α . The class of regular languages over Σ is precisely the closure of the set of languages $\{\{\sigma\} \mid \sigma \in \Sigma\} \cup \{\emptyset\}$ with respect to union, concatenation, and Kleene star.

How to prove that L is regular?

How to prove that L is not regular ?

For some language L, an algorithm that answers the question is $w \in L$ is called a **language recognition device**. On the other hand, descriptions of how a string from a language can be produced are called **language generators**.

Consider a device (an algorithm) to recognize strings that include 11 as a substring