Teorema Fundamental do Cálculo

Se f(x) é contínua sobre um intervalo fechado [a, b] e se F(x) é qualquer antiderivada de f(x), isto é $\frac{d}{dx}F(x) = f(x)$, ou de maneira equivalente,

$$\int f(x)dx = F(x)$$

então

$$\int_{a}^{b} f(x)dx = F(x)\Big|_{a}^{b} = F(b) - F(a)$$

Notação para a Integral Definida

INTEGRAL DEFINIDA

Seja f uma função e F uma primitiva de f.

A integral definida de f de a até b é o número real representado por $\int_a^b f(x)dx$ e calculado por F(b) - F(a).

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

E1) Calcule:

$$1) \int_0^3 x^2 dx$$

2)
$$\int_{-1}^{1} (1-x)^4 dx$$

E1) 1) 9

2) $\frac{32}{5}$

Propriedades da Integral Definida

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

$$\int_{a}^{a} f(x)dx = 0$$

$$\int_{a}^{b} k.f(x)dx = k.\int_{a}^{b} f(x)dx$$

$$\int_{a}^{b} \left(g(x) \pm f(x) dx \right) = \int_{a}^{b} g(x) dx \pm \int_{a}^{b} f(x) dx$$

$$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx$$

Se
$$f(x) \le g(x)$$
 sobre $[a, b]$, então $\int_a^b f(x) dx \le \int_a^b g(x) dx$

E2)Calcule:

1)
$$\int_0^1 (x^4 - 3x^3 + 1) dx$$
 2) $\int_{-1}^0 (3x^5 - 3x^2 + 2x) dx$

4)
$$\int_{1}^{9} \left(\sqrt{t} - \frac{1}{\sqrt{t}} \right) dt$$
 5) $\int_{0}^{2} x^{2} (x - 1) dx$

7)
$$\int_{1}^{2} (2x-4)^{5} dx$$
 8) $\int_{4}^{2} (2x-6)^{4} dx$

10)
$$\int_0^4 \frac{1}{\sqrt{6u+1}} du$$
 11) $\int_1^2 \frac{x^2}{(x^3+1)^2} dx$

3)
$$\int_{2}^{5} (2 + 2u + 3u^2) du$$

6)
$$\int_{2}^{1} \frac{t+1}{t^{2}} dt$$

9)
$$\int_0^1 8x(x^2+1)^3 dx$$

E2) 1)
$$\frac{9}{20}$$
 2) -5/2 3) 144 4) $\frac{40}{3}$ 5) $\frac{4}{3}$ 6) $-\frac{1}{2} - \ln 2$ 7) $-\frac{16}{3}$ 8) $-\frac{32}{5}$ 9) 15
10) $\frac{4}{3}$ 11) $\frac{7}{54}$ 12) $\frac{7}{6}$ 13) $\frac{13}{2}$ 14) $\frac{2}{3}$ 15) $2\sqrt{2} - 2$ 16) $-\frac{1}{2}$ 17) 25 18) $\frac{34}{3}$

Fórmulas de Integração Básica

$$\int dx = \int 1 dx = x + c$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + c \quad n \neq -1, n \text{ racional}$$

$$\int \operatorname{sen} x \, dx = -\cos x + c$$

$$\int \cos x \, dx = \sin x + c$$

$$\int \operatorname{sec}^2 x \, dx = tg \, x + c$$

$$\int \operatorname{cos} ec^2 x \, dx = -\cot g \, x + c$$

$$\int \operatorname{sec} x \, tg \, x \, dx = \sec x + c$$

$$\int \operatorname{cos} ec x \, cotg \, x \, dx = -\cos ec \, x + c$$

$$\int e^{kx} dx = \frac{1}{k} e^{kx} + c$$

$$\int \frac{1}{x} dx = \ln x + c, \quad x > 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + c$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan \frac{x}{a} + c$$

$$\int \frac{1}{x\sqrt{x^2 - a^2}} dx = \frac{1}{a} \arctan \sec \frac{x}{a} + c$$

$$\int \frac{1}{x\sqrt{x^2 - a^2}} dx = \frac{1}{a} \arctan \sec \frac{x}{a} + c$$

$$\int a^x dx = \left(\frac{1}{\ln a}\right) a^x + c \quad a > 0, a \neq -1$$