

Podstawy Konstrukcji Maszyn

Wykład 9

Przekładnie zębate część 2 Korekcje

Dr inż. Jacek Czarnigowski

Obróbka kół zębatych

Metoda obwiedniowa

Podcięcie zębów

Podcięcie zęba – powstawanie

Podcięcie powstaje zatem wtedy, gdy linia ewolwentowa tworzona przez zewnętrzny róg narzędzia podczas zazębiania przetnie się z linią ewolwentową tworzoną przez ten sam róg podczas wyzębiania

Podcięcie zębów

Graniczna liczba zębów

Graniczne dopuszczalne położenie narzędzia jest takie przy którym prosta równoległa do linii toczne narzędzia przechodząca przez ostatni punkt prostoliniowy krawędzi narzędzia przechodzi przez punkt styczności linii przyporu z okręgiem zasadniczym

Podcięcie zębów

Graniczna liczba zębów – metoda Maaga

Podcięcie nastąpi jeżeli:

$$z < z_{gr} = y \cdot \frac{2}{\sin^2 \alpha}$$

Podcięcie zębów

Graniczna liczba zębów – metoda Fellowsa

Zmiana kształtu narzędzia powoduje, że zmieniają się proporcję w poprzednim zapisie i rolę zaczyna odgrywać liczba zębów narzędzia: z_o

$$z_{gr} = \sqrt{z_o^2 + \frac{4 \cdot y}{\sin^2 \alpha} \cdot (z_o + y)} - z_o$$

Przesunięcie zarysu

Eliminacja podcięcia zęba

Czasami istnieje potrzeba wykonania koła zębatego o ilości zębów mniejszej od granicznej.

Aby nie dopuścić do podcięcia można "skorzystać z innej części ewolwenty"

Przesunięcie zarysu

Korekcja uzębienia

Odsunięta zostanie zatem linia toczna narzędzia od koła zasadniczego wykonywanego koła.

Zabieg ten nazywany jest: Przesunięciem zarysu (Korekcją uzębienia)

linie III E₁₁₁ E₁₁ III E₁₁₁ III E₁₁₁

Ile?

Przesunięcie zarysu

Korekcja uzębienia – wartość graniczna

Jakie powinno być przesunięcie aby uniknąć podcięcia?

Przesunięcie zarysu

Korekcja uzębienia – wartość graniczna

Zatem:

$$(y-x_{gr})\cdot m = \frac{m\cdot z}{2}\cdot \sin^2\alpha$$

Ponieważ:

$$z_{gr} = \frac{2 \cdot y}{\sin^2 \alpha} \implies \sin^2 \alpha = \frac{2 \cdot y}{z_{gr}}$$

Otrzymujemy:

$$x_{gr} = y \cdot \frac{z_{gr} - z}{z_{gr}}$$

Podstawowe wymiary koła zębatego

Średnica podziałowa

$$d = m \cdot z$$

Średnica głów

$$d_a = m \cdot (z + 2 \cdot y + 2 \cdot x - 2 \cdot k)$$

Współczynnik zeszlifowania głowy zęba

Średnica stóp

$$d_f = m \cdot (z - 2 \cdot y + 2 \cdot x - 2 \cdot c *)$$

Przykład 9.1 – wymiary koła zębatego

W przekładni walcowej dane jest koło o zębach prostych obliczyć graniczną liczbę zębów, graniczny współczynnik przesunięcia zarysu, średnice koła, grubość zęba na okręgu podziałowym bez uwzględnienia przesunięcia zarysu, grubość zęba na okręgu podziałowym oraz grubość zęba u wierzchołka po uwzględnieniu przesunięcia zarysu. Założyć obróbkę kół metodą Maaga.

$$z_1 = 13$$

 $m = 5$
 $y = 1$
 $\alpha = 20^{\circ}$
 $c^* = 0,25$

Przykład 9.1 – wymiary koła zębatego

Graniczna liczba zębów:

$$z_{gr} = \frac{2 \cdot y}{\sin^2 \alpha} = \frac{2 \cdot 1}{\sin^2 20^\circ} = 17,097 \approx 17 > z_1 = 13$$

Graniczny współczynnik przesunięcia zarysu:

$$x_{gr} = y \cdot \frac{z_{gr} - z_1}{z_{gr}} = 1 \cdot \frac{17 - 13}{17} = 0,2857$$

Przyjmujemy współczynnik przesunięcia zarysu większy od granicznego

$$x_1 = 0.3$$

Przykład 9.1 – wymiary koła zębatego

Zatem wymiary koła wynoszą

$$d_1 = m \cdot z_1 = 5 \cdot 13 = 65,00 \,\mathrm{mm}$$

$$d_{a1} = m \cdot (z_1 + 2 \cdot y + 2 \cdot x_1 - 2 \cdot k) =$$

$$5 \cdot (13 + 2 \cdot 1 + 2 \cdot 0, 3 + 2 \cdot 0) = 78,00 \text{ mm}$$

$$d_{f1} = m \cdot (z_1 - 2 \cdot y + 2 \cdot x_1 - 2 \cdot c^*) =$$

$$= 5 \cdot (13 - 2 \cdot 1 + 2 \cdot 0.3 - 2 \cdot 0.25) = 55.50 \text{ mm}$$

Przykład 9.1 – wymiary koła zębatego

Grubość zęba mierzona na okręgu podziałowym:

$$s = \frac{\pi \cdot m}{2} = \frac{\pi \cdot 5}{2} = 7,854 \text{ mm}$$

Na linii tocznej natomiast:

$$s_k = \left(\frac{\pi}{2} + 2 \cdot x_1 \cdot tg\alpha\right) \cdot m = \left(\frac{\pi}{2} + 2 \cdot 0.3 \cdot tg20^\circ\right) \cdot 5 = 8.946 \text{ mm}$$

Przykład 9.1 – wymiary koła zębatego

Grubość zęba o wierzchołka to:

$$s_a = d_a \cdot \left(\frac{s_k}{d} + inv\alpha - inv\alpha_a\right)$$

gdzie:

$$inv\alpha = tg\alpha - \alpha = tg20^{\circ} - \frac{\pi \cdot 20^{\circ}}{180^{\circ}} = 0.014904$$

$$d_b = d \cdot \cos \alpha = 65,00 \cdot \cos 20^\circ = 61,08 \text{ mm}$$

$$\alpha_{a1} = \arccos\left(\frac{d_{b1}}{d_{a1}}\right) = \arccos\left(\frac{61,08}{78,00}\right) = 38,46^{\circ}$$

$$inv\alpha_{a1} = tg\alpha_{a1} - \alpha_{a1} = tg38,46^{\circ} - \frac{\pi \cdot 38,46^{\circ}}{180^{\circ}} = 0,123010$$

Przykład 9.1 – wymiary koła zębatego

Zatem grubość zęba o wierzchołka to:

$$s_a = d_a \cdot \left(\frac{s_k}{d} + inv\alpha - inv\alpha_a\right) = 78,00 \cdot \left(\frac{8,946}{65,00} + 0,014904 - 0,123010\right)$$
$$= 2,303 \text{ mm}$$

Zatem porównując do wartości dopuszczalnych:

Jednolita struktura materiału

$$s_a = 2,303 \text{ mm} > s_{a \min} = 0,25 \cdot m = 0,25 \cdot 5 = 1,25 \text{ mm}$$

Niejednolita struktura materiału (nawęglanie, hartowanie powierzchniowe)

$$s_a = 2,303 \text{ mm} > s_{a\min} = 0,4 \cdot m = 0,4 \cdot 5 = 2,00 \text{ mm}$$

Zazębienie zerowe

Oba koła nie są korygowane $x_1 = x_2 = 0$

$$a_w = a = \frac{z_1 + z_2}{2} \cdot m$$

$$\alpha_{w} = \alpha$$

$$d_w = d$$

Zazębienie P-0

Stosowana jest gdy jedno z kół ma za mało zębów w stosunku do wartości granicznej.

$$z_1 < z_{gr}$$

Oba koła są korygowane ale tak, aby odległość osi pozostała bez zmian

$$a_w = a = \frac{z_1 + z_2}{2} \cdot m$$
 $d_w = d$ $\alpha_w = \alpha$

Uzyskuje się to poprzez zastosowanie korekcji dodatniej dla jednego koła i korekcji ujemnej o tej samej wartości bezwzględnej dla koła drugiego.

$$x_1 + x_2 = 0$$

Zazębienie P-0

W takim przypadku musimy jednak pamiętać aby nie uszkodzić drugiego koła – aby korekcja nie doprowadziła do podcięcia podstawy zęba.

$$x_1 = -x_2$$

Rozważmy przypadek graniczny:

$$x_1 = x_{gr1} = y \cdot \frac{z_{gr} - z_1}{z_{gr}}$$
 $x_2 = x_{gr2} = y \cdot \frac{z_{gr} - z_2}{z_{gr}}$

$$x_1 + x_2 = y \cdot \frac{z_{gr} - z_1}{z_{gr}} + y \cdot \frac{z_{gr} - z_2}{z_{gr}} = 0$$

Zazębienie P-0

Zatem:

$$z_1 + z_2 = 2 \cdot z_{gr}$$

Stąd do przeprowadzenia korekcji P-0 konieczne jest spełnienie dwóch warunków:

$$z_1 < z_{gr}$$

$$z_1 < z_{gr}$$

$$z_1 + z_2 \ge 2 \cdot z_{gr}$$

Konieczność korekcji

Możliwość wykonania

Przykład 9.2 korekcja P-0

Obliczyć wymiary kół zębatych oraz liczbę przyporu dla przekładni:

$$z_1 = 13$$

 $z_2 = 37$
 $m = 2,5$
 $y = 1$
 $\alpha = 20^{\circ}$
 $c^* = 0,25$

Przykład 9.2 – korekcja P-0

Sprawdźmy, czy korekcja jest potrzebna:

$$z_{gr} = \frac{2 \cdot y}{\sin^2 \alpha} = \frac{2 \cdot 1}{\sin^2 20^\circ} = 17,097 \approx 17$$

$$z_1 < z_{gr}$$

Sprawdźmy, czy można wykonać korekcję P-0:

$$z_1 + z_2 = 13 + 37 = 50 > 2 \cdot z_{gr} = 2 \cdot 17 = 34$$

Oba warunki spełnione zatem można wykonać korekcję P-0

Przykład 9.2 – korekcja P-0

Graniczny współczynnik korekcji:

$$x_{gr} = y \cdot \frac{z_{gr} - z_1}{z_{gr}} = 1 \cdot \frac{17 - 13}{17} = 0,2857$$

Przyjmujemy wartość korekcji:

$$x_1 \ge x_{gr} \qquad x_1 = 0.29$$

Zatem:

$$x_2 = -x_1 = -0.29$$

Przykład 9.2 – korekcja P-0

Zatem wymiary koła wynoszą

$$d_1 = m \cdot z_1 = 2,5 \cdot 13 = 32,50 \text{ mm}$$

 $d_2 = m \cdot z_2 = 2,5 \cdot 37 = 92,50 \text{ mm}$

$$d_{a1} = m \cdot (z_1 + 2 \cdot y + 2 \cdot x_1 - 2 \cdot k) = 2,5 \cdot (13 + 2 \cdot 1 + 2 \cdot 0,29 + 2 \cdot 0) = 38,95 \text{ mm}$$

$$d_{a2} = m \cdot (z_2 + 2 \cdot y + 2 \cdot x_2 - 2 \cdot k) = 2,5 \cdot (37 + 2 \cdot 1 - 2 \cdot 0,29 + 2 \cdot 0) = 96,05 \text{ mm}$$

$$d_{f1} = m \cdot (z_1 - 2 \cdot y + 2 \cdot x_1 - 2 \cdot c^*)$$

$$= 2.5 \cdot (13 - 2 \cdot 1 + 2 \cdot 0.29 - 2 \cdot 0.25) = 27,70 \text{ mm}$$

$$d_{f2} = m \cdot (z_2 - 2 \cdot y + 2 \cdot x_2 - 2 \cdot c^*)$$

Przykład 9.2 – korekcja P-0

Odległość osi:

$$a = m \cdot \frac{z_1 + z_2}{2} = 2.5 \cdot \frac{13 + 37}{2} = 62.50 \,\text{mm}$$

Średnice zasadnicze:

$$d_{b1} = d_1 \cdot \cos \alpha = 32,50 \cdot \cos 20^0 = 30,54 \,\text{mm}$$

$$d_{b2} = d_2 \cdot \cos \alpha = 92,50 \cdot \cos 20^0 = 86,92 \,\text{mm}$$

Przykład 9.2 - korekcja P-0

Kąty głów:
$$\alpha_{a1} = \arccos\left(\frac{d_{b1}}{d_1}\right) = \arccos\left(\frac{30,54}{38,94}\right) = 38,36^{\circ}$$

$$\alpha_{a2} = \arccos\left(\frac{d_{b2}}{d_2}\right) = \arccos\left(\frac{86,92}{96,05}\right) = 25,18^{\circ}$$

Liczba przyporu:

$$\varepsilon = \frac{1}{2 \cdot \pi} \left[z_1 \cdot (tg \alpha_{a1} - tg \alpha) + z_2 \cdot (tg \alpha_{a2} - tg \alpha) \right]$$

$$= \frac{1}{2 \cdot \pi} \left[13 \cdot (tg 38,36^\circ - tg 20^\circ) + 37 \cdot (tg 25,18^\circ - tg 20^\circ) \right] = 1,51$$

Zazebienie P

W tym przypadku następuje przesunięcie osi:

$$a_w \neq a$$

Spowodowane jest tym, że oba koła mają różne korekcję:

$$x_1 + x_2 \neq 0$$

Zatem po nacięciu kół powinny być one umieszczone w odległości:

$$a_p = a + (x_1 + x_2) \cdot m$$

Jest to tzw. pozorna odległość osi

Takie umieszczenie spowoduje duży luz boczny zębów (w wyniku innej krzywizny ewolwenty)

Zazębienie P

Dlatego też koniecznej jest zbliżenie kół o pewną wielkość:

$$k \cdot m$$

Zatem odległość rzeczywista wyniesie:

$$a_{w} = a_{p} - k \cdot m$$

Zbliżenie to powoduje spadek luzu wierzchołkowego:

$$c' = c * -k$$

Aby pozostawić luz na niezmienionym poziomie należy zatem skrócić wierzchołek zęba o wartość współczynnika zeszlifowania głowy zęba pomnożony przez moduł

$$k \cdot m$$

Zazębienie P

Współczynnik ten nie musi być brany pod uwagę zawsze.

Nie wprowadzenie go do obliczeń będzie prowadziło do zmniejszenia luzy wierzchołkowego do wartości:

$$c' = c * -k$$

Zatem jeżeli tak zmniejszony luz pozostanie w granicach dopuszczalnych:

$$c' = 0.15 \div 0.25$$

Można pominąć współczynnik zeszlifowania zęba w dalszych obliczeniach.

Zazębienie P

Przy odpowiednim przesunięciu środków kół otrzymujemy zerowy luz międzyzębny

Zatem grubości zębów na okręgu tocznym są równe podziałce:

$$s_{w1} + s_{s2} = p_w$$

Po przekształceniach otrzymujemy podstawowy wzór w korekcji P

$$inv\alpha_w - inv\alpha = 2 \cdot \frac{x_1 + x_2}{z_1 + z_2} \cdot tg\alpha$$

Zazębienie P – przypadki zastosowania

Korekcję P stosuje się gdy:

Konieczna jest korekcja dla uniknięcia podcięcia zębów a nie można zastosować korekcji P-0 Chcemy wymusić przesunięcie odległości osi kół

P-technologiczna

P-konstrukcyjna

Korekcja P – technologiczna

Korekcję P-technologiczną stosuje się gdy:

$$z_1 < z_{gr}$$

$$z_1 + z_2 < 2 \cdot z_{gr}$$

Pierwszym krokiem jest określenie współczynników korekcji dla obu kół (wartości granicznych)

$$x_{gr1} = y \cdot \frac{z_{gr} - z_1}{z_{gr}}$$

$$x_{gr2} = y \cdot \frac{z_{gr} - z_2}{z_{gr}}$$

A następnie przyjęcie ich wartości:

$$x_1 \ge x_{gr}$$

$$x_1 \ge x_{gr1} \qquad \qquad x_2 \ge x_{gr2}$$

Korekcja P – technologiczna

Na podstawie tych wartości określa się rzeczywisty toczny kąt przyporu:

$$inv\alpha_w - inv\alpha = 2 \cdot \frac{x_1 + x_2}{z_1 + z_2} \cdot tg\alpha$$

Na jego podstawie określa się rzeczywistą odległość osi jako:

$$a_w \cdot \cos \alpha_w = a \cdot \cos \alpha$$

Następnie oblicza się współczynnik zeszlifowania głowy zęba:

$$k = \frac{a_p - a_w}{m} \qquad a_p = a + (x_1 + x_2) \cdot m$$

Obliczenie wymiarów kół.

Przykład 9.3 – korekcja P-technologiczna

Obliczyć wymiary kół zębatych przekładni:

$$z_1 = 15$$

 $z_2 = 18$
 $m = 2,5$
 $y = 1$
 $\alpha = 20^{\circ}$
 $c^* = 0,25$

Przykład 9.3 – korekcja P-technologiczna

Sprawdzamy konieczność i rodzaj korekcji:

$$z_{gr} = \frac{2 \cdot y}{\sin^2 \alpha} = \frac{2 \cdot 1}{\sin^2 20^\circ} = 17,097 \approx 17$$

$$z_1 < z_{gr}$$

$$z_1 + z_2 = 15 + 18 = 33 < 2 \cdot z_{gr} = 2 \cdot 17 = 34$$

Zatem korekcja P-technologiczna

Przykład 9.3 – korekcja P-technologiczna

Określamy wartości graniczne współczynników korekcji dla obu kół

$$x_{gr1} = y \cdot \frac{z_{gr} - z_1}{z_{gr}} = 1 \cdot \frac{17 - 15}{17} = 0,1176$$

$$x_{gr2} = y \cdot \frac{z_{gr} - z_2}{z_{gr}} = 1 \cdot \frac{17 - 18}{17} = -0,059$$

Przyjmujemy wartości współczynników większe od granicznych

$$x_1 = 0.12$$
 $x_2 = -0.05$

Przykład 9.3 – korekcja P-technologiczna

Obliczamy lub odczytujemy z tablicy wartość inwoluty kąta zarysu narzędzia (zerowego kąta przyporu)

$$inv\alpha = tg\alpha - \alpha = tg20^{\circ} - \frac{\pi \cdot 20^{\circ}}{180^{\circ}} = 0.014904$$

Obliczamy wartość inwoluty rzeczywistego tocznego kąta przyporu:

$$inv\alpha_w = 2 \cdot \frac{x_1 + x_2}{z_1 + z_2} \cdot tg\alpha + inv\alpha$$

 $inv\alpha_w = 2 \cdot \frac{0.12 - 0.05}{15 + 18} \cdot tg20^\circ + 0.014904 = 0.016449$

Przykład 9.3 – korekcja P-technologiczna

Z tabeli odczytujemy kąt:

$$\alpha_w = 20^\circ 39' = 20,65^\circ$$

Obliczamy zerową odległość osi:

$$a = m \cdot \frac{z_1 + z_2}{2} = 2.5 \cdot \frac{15 + 18}{2} = 41.25$$

Obliczamy rzeczywistą odległość osi:

$$a_w = a \cdot \frac{\cos \alpha}{\cos \alpha_w} = 41,25 \cdot \frac{\cos 20^\circ}{\cos 20,65^\circ} = 41,42 \text{ mm}$$

Przykład 9.3 – korekcja P-technologiczna

Następnie obliczamy pozorną odległość osi:

$$a_p = a + (x_1 + x_2) \cdot m = 41,25 + (0,12 - 0,05) \cdot 2,5 = 41,43 \text{ mm}$$

Oraz obliczamy współczynnik zeszlifowania głowy zęba:

$$k = \frac{a_p - a_w}{m} = \frac{41,43 - 41,42}{2.5} = 0,004$$

Przy założonym luzie wierzchołkowym c^* = 0,25 obniżenie go o 0,004 nie spowoduje wyjścia poza zakres dopuszczalny to przyjmujemy:

$$k = 0$$

Przykład 9.3 – korekcja P-technologiczna

Zatem wymiary koła wynoszą

$$d_1 = m \cdot z_1 = 2,5 \cdot 15 = 37,50 \text{ mm}$$

 $d_2 = m \cdot z_2 = 2,5 \cdot 18 = 45,00 \text{ mm}$

$$d_{a1} = m \cdot (z_1 + 2 \cdot y + 2 \cdot x_1 - 2 \cdot k) = 2,5 \cdot (15 + 2 \cdot 1 + 2 \cdot 0,12 + 2 \cdot 0) = 43,10 \text{ mm}$$

$$d_{a2} = m \cdot (z_2 + 2 \cdot y + 2 \cdot x_2 - 2 \cdot k) = 2,5 \cdot (18 + 2 \cdot 1 - 2 \cdot 0,05 + 2 \cdot 0) = 49,75 \text{ mm}$$

$$d_{f1} = m \cdot (z_1 - 2 \cdot y + 2 \cdot x_1 - 2 \cdot c^*)$$

$$= 2,5 \cdot (15 - 2 \cdot 1 + 2 \cdot 0,12 - 2 \cdot 0,25) = 31,85 \text{ mm}$$

$$d_{f2} = m \cdot (z_2 - 2 \cdot y + 2 \cdot x_2 - 2 \cdot c^*)$$

$$= 2.5 \cdot (18 - 2 \cdot 1 - 2 \cdot 0.05 - 2 \cdot 0.25) = 38.50 \text{ mm}$$

Korekcja P – konstrukcyjna

Korekcję P-konstrukcyjną stosuje się gdy mamy narzuconą odległość osi

$$a_w \neq a$$

Zatem korekcja P-konstrukcyjna jest odwrotna do korekcji P-technologicznej

Pierwszym krokiem jest obliczenie rzeczywistego tocznego kąta przyporu:

$$a_w \cdot \cos \alpha_w = a \cdot \cos \alpha$$

Korekcja P – konstrukcyjna

Następnie ze wzoru:

$$inv\alpha_{w} - inv\alpha = 2 \cdot \frac{x_1 + x_2}{z_1 + z_2} \cdot tg\alpha$$

Wyznacza się sumę współczynników korekcji x_1+x_2

Następnym krokiem jest rozdział tej sumy na poszczególne koła.

Nazwa kryterium	Sposób przeprowadzania	Zastosowanie
Odwrotnie proporcjonalnie	$x_1 = \frac{z_2}{z_1 + z_2} \cdot (x_1 + x_2)$	Korekcja dodatnia
	$x_2 = (x_1 + x_2) - x_1$	$\left(x_1 + x_2\right) > 0$
Wprost proporcjonalnie	$x_1 = \frac{z_1}{z_1 + z_2} \cdot (x_1 + x_2)$	Korekcja ujemna
	$x_2 = (x_1 + x_2) - x_1$	$\left(x_1 + x_2\right) < 0$
Po równo	$x_1 = \frac{1}{2} \cdot \left(x_1 + x_2 \right)$	$Z_1 \approx Z_2$
	r = r	

Korekcja P – konstrukcyjna Kryteria podziału sumy współczynników x

Nazwa kryterium	Sposób przeprowadzania	Zastosowanie
Wszystko na jedno koło	$x_1 = (x_1 + x_2)$ $x_2 = 0$	$\left \left(x_1 + x_2\right)\right < 0.3$
Niestandardowy	$x_1 \ge x_{gr1}$ $x_2 \ge x_{gr2}$	Zagrożenie podcięciem jednego lub obu kół

Przy obliczeniach często sprawdza się kilka metod do danego zadania.

Korekcja P – konstrukcyjna

Mając wartości współczynników korekcji dla obu kół oblicza się jeszcze współczynnik zeszlifowania głowy zęba:

$$k = \frac{a_p - a_w}{m} \qquad a_p = a + (x_1 + x_2) \cdot m$$

Obliczenie wymiarów kół.

Przykład 9.4 – korekcja P-konstrukcyjna

Obliczyć wymiary kół zębatych przekładni tak aby rzeczywista odległosć osi wynosiła $a_{\rm w}=60{,}00~{\rm mm}$

$$z_1 = 18$$

 $z_2 = 29$
 $m = 2,5$
 $y = 1$
 $\alpha = 20^{\circ}$
 $c^* = 0,25$

Przykład 9.4 – korekcja P-konstrukcyjna

Sprawdzamy konieczność i rodzaj korekcji:

$$a = m \cdot \frac{z_1 + z_2}{2} = 2.5 \cdot \frac{18 + 29}{2} = 58.75 \text{ mm}$$

$$a = 58,78 \text{ mm} \neq a_w = 60,00 \text{ mm}$$

Zatem korekcja P-konstrukcyjna

Obliczamy rzeczywisty toczny kąt przyporu:

$$\cos \alpha_w = \frac{a}{a_w} \cdot \cos \alpha = \frac{58,75}{60,00} \cdot \cos 20^\circ = 0,9201$$

$$\alpha_{w} = 23^{\circ}3'$$

Przykład 9.4 – korekcja P-konstrukcyjna

Inwoluty kątów:

$$inv\alpha = tg\alpha - \alpha = tg20^{\circ} - \frac{\pi \cdot 20^{\circ}}{180^{\circ}} = 0,014904$$

$$inv\alpha_{w} = tg\alpha_{w} - \alpha_{w} = tg23^{\circ}3' - \frac{\pi \cdot 23^{\circ}3'}{180^{\circ}} = 0,023228$$

Zatem suma współczynników korekcji wyniesie:

$$(x_1 + x_2) = \frac{z_1 + z_2}{2 \cdot tg \,\alpha} \cdot (inv \,\alpha_w - inv \,\alpha) = \frac{18 + 29}{2 \cdot tg \,20^{\circ}} \cdot (0,023228 - 0,014904)$$

$$(x_1 + x_2) = 0,537$$

Przykład 9.4 – korekcja P-konstrukcyjna			
Nazwa kryterium	Sposób przeprowadzania	Zastosowanie	
Odwrotnie 1 proporcjonalnie	$x_{1} = \frac{z_{2}}{z_{1} + z_{2}} \cdot (x_{1} + x_{2})$ $x_{2} = (x_{1} + x_{2}) - x_{1}$	Korekcja dodatnia $(x_1 + x_2) > 0$	
Wprost proporcjonalnie	$x_{1} = \frac{z_{1}}{z_{1} + z_{2}} \cdot (x_{1} + x_{2})$ $x_{2} = (x_{1} + x_{2}) - x_{1}$	Korekcja ujemna $ (x_1 + x_2) < 0 $	
Po równo	$x_{1} = \frac{1}{2} (x_{1} + x_{2})$ $x_{2} = x_{1}$	$z_1 \approx z_2$	

Przykład 9.4 – korekcja P-konstrukcyjna

Zatem podział odwrotnie proporcjonalny:

$$x_1 = \frac{z_2}{z_1 + z_2} \cdot (x_1 + x_2) = \frac{29}{18 + 29} \cdot 0,537 = 0,331$$

Przyjmujemy:

$$x_1 = 0.33$$

 $x_2 = (x_1 + x_2) - x_1 = 0.537 - 0.33 = 0.207$

Przyjmujemy:

$$x_2 = 0.21$$

Przykład 9.4 – korekcja P-konstrukcyjna

Następnie obliczamy pozorną odległość osi:

$$a_p = a + (x_1 + x_2) \cdot m = 58,74 + (0,33 + 0,21) \cdot 2,5 = 60,09 \text{ mm}$$

Oraz obliczamy współczynnik zeszlifowania głowy zęba:

$$k = \frac{a_p - a_w}{m} = \frac{60,09 - 60,00}{2,5} = 0,036$$

Przy założonym luzie wierzchołkowym c^* = 0,25 obniżenie go o 0,036 nie spowoduje wyjścia poza zakres dopuszczalny to przyjmujemy:

$$k = 0$$

Przykład 9.4 – korekcja P-konstrukcyjna

Zatem wymiary koła wynoszą

$$d_1 = m \cdot z_1 = 2,5 \cdot 18 = 45,00 \text{ mm}$$

 $d_2 = m \cdot z_2 = 2,5 \cdot 29 = 72,50 \text{ mm}$

$$d_{a1} = m \cdot (z_1 + 2 \cdot y + 2 \cdot x_1 - 2 \cdot k) = 2,5 \cdot (18 + 2 \cdot 1 + 2 \cdot 0,33 + 2 \cdot 0) = 51,65 \text{ mm}$$

$$d_{a2} = m \cdot (z_2 + 2 \cdot y + 2 \cdot x_2 - 2 \cdot k) = 2,5 \cdot (29 + 2 \cdot 1 + 2 \cdot 0,21 + 2 \cdot 0) = 78,55 \text{ mm}$$

$$d_{f1} = m \cdot (z_1 - 2 \cdot y + 2 \cdot x_1 - 2 \cdot c^*)$$

$$= 2.5 \cdot (18 - 2 \cdot 1 + 2 \cdot 0.33 - 2 \cdot 0.25) = 40.40 \text{ mm}$$

$$d_{f2} = m \cdot (z_2 - 2 \cdot y + 2 \cdot x_2 - 2 \cdot c^*)$$

$$= 2.5 \cdot (29 - 2 \cdot 1 - 2 \cdot 0.21 - 2 \cdot 0.25) = 67.30 \text{ mm}$$