<u>CSE – 489 – MODERN NETWORKING CONCEPTS</u> <u>PROGRAMMING ASSIGNMENT 2</u> ROUTING PROTOCOLS

Implementation Details

The assignment emulates a distance routing vector protocol. For this servers were used for testing namely

- 1) Timberlake
- 2) Metallica
- 3) Beatles
- 4) Nickelback
- 5) Dragonforce

Each server is provided with a topology file at the start. The topology file contains the number of servers, number of neighbors, server ip-port list and routing information. Following are the execution of the program:

Step 1 - At the start, the program reads the topology file. The server-ip list is saved in the system with the routing information.

Step 2 - Data Structure for saving routing information

2 dimensional array (Line 34). Thus the data for routing information of server with id 1 is saved as:

	via1	via2	via3	via4	via5
Server 1	0	0	0	0	0
Server 2	0	3	3	4	9999
Server 3	0	4	4	5	9999
Server 4	0	10	4	6	9999
Server 5	0	5	6	7	9999

The array was created as an array of structures. **The cost 9999 is considered as infinity.** The above table shows that server 1 is not connected to server 5 as the cost via server 5 is 9999 in all cases.

<u>Step 3</u> - Regular routing table updated are sent to neighbor servers via a specified message format. The message format was defined as:

Number of update fields(2 bytes)	Server port(2 bytes)			
Source server ip address (4 bytes)				
Routing update server ip (4 bytes)				
Port (2 bytes)	Blank (2 bytes)			
Server id (2 bytes)	Cost (2 bytes)			

A function was used to create the above mentioned message format (declared on line 564).

Name - Aditya Singla Email - a28@buffalo.edu

<u>Step 4</u> - The bellman-ford distance vector algorithm was run after receiving a routing update. Any update into the routing table was sent to the neighbors in periodic intervals defined by the user.

<u>Step 5</u> – The steps 3 and 4 are repeated after time interval defined by the user. The user can update the link cost between to servers using "UPDATE" command. This would run the bellman-ford algorithm again thereby recalculating the costs.

Following commands were implemented in the system:

- 1) DISPLAY Display the routing information for a server.
- 2) UPDATE <src> <dest> <cost> Update the link cost to a particular server.
- 3) STEP Sends the routing information immediately to the neighbors.
- 4) PACKETS Displays the packets received by the server since the last time the command was executed.
- 5) DISABLE <server-id> Disable a neighbor. No packets will be sent to the neighbor or received by the server.
- 6) CRASH Crashes the server. No command are executed on the server. No messages are send or received by the server.

To implement each of the following command, a function was defined in the proj2_a28.c file:

- 1) Display () Line 363 The function displays the minimum cost to each server.
- 2) Update () Line 408 The function updates the data structure that's stores link vectors. After updating the function runs the bellman-ford algorithm again, there by calculating new costs.
- 3) Disable () Line 384 The function disables a link from one server to other. After calling disable on a server, no messages are sent or received from the server.
- 4) runAlgorithm () Implements bellman-ford algorithm.

On updating cost to infinity or disabling the server, the "count to infinity" scenario will be observed. The scenario was observed for the following topologies:

- 1) Ring Topology
- 2) Line Topology
- 3) Star Topology