03.03.2024, 14:20 Task1

Домашнее задание

- 1. Прочитайте данные из файлов train.npz и test.npz Каждый файл содержит 2 массива samples(данные) и answers(класс). $samples_i \in R, answers_i \in \{0,1,2\}$
- 2. Выделите данные, соответствующие каждому классу 0,1,2 на обучающей выборке

```
In [ ]:
```

3. Визуализируйте выборку для каждого класса и сделайте предположение о виде функции распредления

```
In [ ]:
```

4. Сделайте состоятельные точечные оценки параметров распределений. (Видов распределений вам может встретиться всего 3 - равномерное, нормальное и экспоненциальное. Для равномерного U(a,b) распределения сделать оценки а и b, для нормального $N(\mu,\sigma^2)$ оценки μ и σ^2 , для экспоненциального $Exp(\lambda)$ оценку λ)

```
In [ ]: def params_class0(sample):
    return
def params_class1(sample):
    return
def params_class2(sample):
    return

In [ ]: p0 = params_class0(samples1)
    p1 = params_class1(samples2)
    p2 = params_class2(samples3)
```

5. Постройте графики распределений для исходной выборки и для выборки сгенерированной с параметрами, найденными с помощью точечных оценок

```
In [ ]:
```

6. Посчитайте статистику критерия Колмогорова для проверки гипотезы о том, что исходные данные являются реализацией случайной величины с функцией распределения, полученной по точечным оценкам

Пусть
$$D_n = \sup_{-\infty < x < \infty} |\hat{F}_n(x) - F(x)|$$
,

03.03.2024, 14:20 Task1

где
$$\hat{F}_n(x)=rac{1}{n}\sum_{i=1}^n I_{\{X_i\leq x\}}$$
 - это эмпирическая функция распределения, $F(x)$ -

функция распределения полученная с помощью оценок.

Посчитайте $\sqrt{N}*D_N$, где N - число элементов выборки для каждой из выборок 1,2,3

При каком уровне значимости мы можем принять гипотезу о принадлежности выборки соответствующему распределению?

In []:

7. На основе посчитанных параметров распределения постройте байесовский классификатор

In []: def classification_bayes(sample):
 return

8. Для каждого класса на тестовой выборке посчитайте количество True Positive, False Positive и False Negative.

Перед нами стоит задача бинарной классификации:

$$X \to Y, Y = \{+1, -1\}$$

Предположим, что мы используем алгоритм классификации $a(x_i)=y_i$

Класс с меткой "+1" называется positive

Класс с меткой "-1" называется negative

Матрица ошибок

Для классификации ответов нашего бинарного классификатора используется матрица ошибок (confusion matrix):

		Правильный ответ	
		y = +1	y = -1
Выход алгоритма	a(x) = +1	True Positive	False Positive (Ошибка 1 рода)
		False Negative	
	a(x) = -1	(Ошибка 2 рода)	True Negative

Рассмотрим теперь классификацию на более, чем 2 класса.

Для каждого класса C_j мы можем рассмотреть задачу бинарной классификации B_j :

$$X
ightarrow Y, Y = \{+1, -1\}$$
, где $Y = +1$ если $a(x_i) = C_i$, иначе $Y = -1$

03.03.2024, 14:20 Task1

Значения True Positive, False Positive, False Negative для класса C_j есть соответствующие значения для задачи бинарной классификации B_j

```
def errors(sample, correct_answer,cl):
    return
for i in range(3):
    print(i,'-',errors(samplesTest,answersTest,i))
```