EXPERIMENT NO. 6

Aim: To determine the alkalinity in given water sample.

Apparatus required: Burette, conical flask, pipette, beaker and measuring cylinder.

Chemical required: HCl, N/20 Na₂CO₃ solution, phenolphthalein, methyl orange.

Theory: Alkalinity is a measure of the acid buffering capacity of water. Alkalinity of a sample of water is due to the presence of hydroxide ion (OH⁻) bicarbonate ion (CO_3^{-}) and carbonate ion (CO_3^{-}) or the mixture of any of the two ions present in water. But the (OH⁻) and (HCO_3^{-}) ions together is not possible as they combine together to form (CO_3^{-2}) ion.

$$(OH^{-}) + (HCO_{3}^{-}) = (CO_{3}^{2-}) + H_{2}O$$

Reactions involved:

Procedure:

I- Standardization of HCI

- 1. 50 ml HCl is filled in the burette.
- 2. 10 ml Na₂CO₃ solution is pipette out in the conical flask.
- 3. 2-3 drops of Methyl Orange is added and titration done is till end point observed.

II- Titration with H₂O Vs. HCI

- 1. 50 ml HCl is filled in the burette.
- 2. 10 ml H₂O is pipette out in the conical flask.
- 3. 2-3 drops of Phenolphthalein is added.
- 4. Run the HCl in conical flask.
- 5. Titration is done till the solution turns pink to colourless.
- 6. 2-3 drops of Methyl Orange is added and titration is continued till the Orange-Pink colour is observed.

Observations:

Standardization of HCL

Solution in burette = HCl

Solution in conical flask = 10 ml of Na₂CO₃ Indicator = Methyl Orange End Point = Pink colour

Observation Table:

Serial no.	Burette Reading		Volume of HCI (ml)	
	Initial	Final	()	

1	0	17.9	17.9	
2	17.9	35.8	17.9	

HCI Vs H₂O

Solution in burette = HCl

In conical flask = Water (10 ml)

Indicator = Phenolphthalein and Methyl Orange

End Point 1st = Pink to colourless End Point 2nd = Colourless to pink

Observation Table:

Serial	Phenolphthalein			Methyl orange			V ₁ + V ₂
no.	Initial	Final	V ₁ (ml)	Initial	Final	V ₂ (ml)	(ml)
1	0	16.5	16.5	16.5	20.5	4.0	20.5
2	20.5	37	16.5	37	41	4.0	20.5

Calculations:

i)Standardization of HCl

 N_1 V_1 = N₂ V₂ (HCI) (Na₂CO₃)

N(HCI) $= (1/20) \times 10/17.9$

= 0.027 NN(HCI)

II)HCL Vs Water

a) For Phenolphthalein-

 $N_1 V_1$ $= N_2 V_2$ (H₂O)= (HCI)

N (H₂O) $= (0.027 \times 16.5) / 10$

= 0.033 N

Strength $= 0.033 \times 50$ Ρ = 1.65 g/L1650 ppm =

b) For Methyl Orange-

 $N_1 V_1$ $= N_2 V_2$ (H_2O) = (HCI)

N (H₂O) $= (0.027 \times 20.5) / 10$

= 0.055 N

 $= 0.055 \times 50$ Strength = 2.76 g/LΜ

2767 ppm

P> (1/2) M, so OH⁻ and CO₃⁻² ions are present in water

Concentration of $OH^- = (2 P-M) = 533 ppm$

Concentration of $CO_3^{-2} = 2 (M-P) = 2234 ppm$

Structure:

Methyl Orange

Pink (Acidic Medium)

$$\begin{array}{c|c} Na^{+-}O_{3}S - & & -NH - N = & -N \\ \hline Quinonoid form - Acidic solution (red) & CH_{3} \\ \hline Q & & \downarrow \\ \hline T & & \\ Na^{+-}O_{3}S - & -N = N - & -N \\ \hline \end{array}$$

Yellow (basic Medium)

Phenolphthalein

Colourless (Acidic Medium)

Pink(Basic Medium)

Result: Since P > (M/2), thus OH^- and CO_3^{-2} ions are present in the sample of water.

 OH^{-} Concentration = 1250 ppm CO_{3}^{-2} Concentration = 800 ppm

Precautions:

- 1. Wash the apparatus before use.
- 2. Rinse the burette with the solution to be filled in it.
- 3. For measuring coloured solution the upper meniscus is taken and for colourless solution measure the lower meniscus is taken.