1 Reflexive and symmetric closures of a binary relation, their existence

Предложение (Рефлексивное замыкание)

Дано отношение r на множестве A, оно является рефлексивным замыканием (т.е. замыканием относительно свойства рефлексивности), т.е. $r^* = r \cup id_A$.

Доказательство

Проверим, что r^* удовлетворяет условиям рефлексивного замыкания. Во-первых, оно рефлексивно, так как $id_A \subseteq r \cup id_A$; затем оно, очевидно, содержит множество r. Теперь проверим третье свойство (минимальность): если любое другое отношение r' рефлексивно (т.е. содержит диагональ id_A) и содержит r, то оно должно содержать их объединение, т.е. $r^* \subseteq r'$.

Предложение (Симметричное замыкание)

Дано отношение r на множестве A, оно является симметричным замыканием, т.е. $r^* = r \cup r^{-1}$.

Доказательство

Проверим, что r^* удовлетворяет условиям симметричного замыкания. Во-первых, оно симметрично, поскольку $(r \cup r^{-1})^{-1} = r \cup r^{-1}$; затем оно, очевидно, содержит множество r. Теперь проверим третье свойство: если любое другое отношение r' симметрично и содержит r, то оно должно содержать r^{-1} , т.е. $r^* \subseteq r'$.

2 Church numbers: definition, successor function

Числа Чёрча

Закодируем натуральные числа комбинаторами (функциями) следующим образом:

•
$$0 = \lambda f x.x$$

- $\underline{1} = \lambda f x. f(x)$
- $\underline{2} = \lambda f x. f(f(x))$
- . . .
- $\underline{n} = \lambda f x. \underbrace{f(f(\dots f(x) \dots))}_{n}$

Инкремент

Если определить комбинатор **инкремента** как: $SUCC = \lambda nfx.f(nfx)$, то

$$SUCC\underline{n} = \underline{n+1}$$

3 Predicate logic: terms and formulas of a given signature. Relation |= between structures, formulas and interpretations of variables (semantics of predicate calculus)

Определение

Пусть $\mathcal{M}=(M,\sigma)$ - некоторая структура, V_0 - некоторое множество предметных переменных. Отображение $\gamma:V_0\to M$ называется означиванием переменных V_0 в структуре M.

Замечание

В отличие от означивания *пропозициональных переменных*, значение означивания предметных переменных не является *истинным* значением (истиналожь), а является, скорее, *объектным* значением - некоторый элемент (объект) в структуре.

Обозначение

Пусть $\gamma:V_0\to M$ - означивание переменных V_0 в структуре $\mathcal{M},\,v$ - некоторые предметные переменные и $a\in M$. Тогда

$$\gamma_a^v = \left\{ \begin{array}{ll} (\gamma \setminus \{(v,\gamma(v))\}) \cup \{(v,a)\}, & \text{если } v \in V_0, \\ \gamma \cup \{(v,a)\} & \text{если } v \notin V_0 \end{array} \right.$$

Определение

Пусть $\mathcal{M} = (M, \sigma)$ - структура сигнатуры σ , $\phi(\bar{x})$ - некоторая формула сигнатуры σ , γ - означивание переменных \bar{x} в структуре \mathcal{M} . Определим отношение **истинности** \models формулы ϕ в структуре \mathcal{M} при означивании γ :

- $\mathcal{M} \models (t_1 = t_2)[\gamma] \stackrel{def}{\Leftrightarrow} t_1^{\mathcal{M}}[\gamma] = t_2^{\mathcal{M}}[\gamma]$
- $\mathcal{M} \models p(t_1, \dots, t_n)[\gamma] \stackrel{def}{\Leftrightarrow} (t_1^{\mathcal{M}}[\gamma], \dots, t_n^{\mathcal{M}}[\gamma]) \in p^{\mathcal{M}}$
- $\mathcal{M} \models (\phi \land \psi)[\gamma] \stackrel{def}{\Leftrightarrow} (\mathcal{M} \models \phi[\gamma]) \land (\mathcal{M} \models \psi[\gamma])$
- $\mathcal{M} \models (\phi \lor \psi)[\gamma] \stackrel{def}{\Leftrightarrow} (\mathcal{M} \models \phi[\gamma]) \lor (\mathcal{M} \models \psi[\gamma])$
- $\mathcal{M} \models \neg \phi[\gamma] \stackrel{def}{\Leftrightarrow} \mathcal{M} \not\models \phi[\gamma] \Leftrightarrow \neg(\mathcal{M} \models \phi[\gamma])$
- $\mathcal{M} \models (\phi \to \psi)[\gamma] \stackrel{def}{\Leftrightarrow} (\mathcal{M} \models \phi[\gamma]) \to (\mathcal{M} \models \psi[\gamma])$
- $\mathcal{M} \models \forall x \phi[\gamma] \stackrel{def}{\Leftrightarrow} \forall a \in M \ (\mathcal{M} \models \phi[\gamma_a^x])$
- $\mathcal{M} \models \exists x \phi[\gamma] \stackrel{def}{\Leftrightarrow} \exists a \in M \ (\mathcal{M} \models \phi[\gamma_a^x])$