

West Nile Virus Prediction

Yen-Lin Lin

Jun/12/2015

Background

Data Exploration

Data Processing and Preparation

Model Building

Result Analysis and Conclusion

Recommendation

West Nile virus (WNV)

- 1. Most people infected with WNV will have no symptoms.
- 2. About 1 in 5 people who are infected will develop a fever with other symptoms.
- 3. Less than 1% of infected people develop a serious, sometimes fatal, neurologic illness.

Background

- •In 2002, the first human cases of West Nile virus were reported in Chicago.
- •By 2004 the City of Chicago and the Chicago Department of Public Health (CDPH) had established a comprehensive surveillance and control program that is still in effect today.

Data Processing and Preparation

Model Building

Result Analysis and Conclusion

Recommendation

WNV Present Overlayed on Trap Clusters

Data Exploration

West Niles Virus Presence Status by Mosquito Type

Data Exploration

Number of Mosquitoes by Year in the Training Data Set

Data Exploration

West Niles Virus Presence Status by Year

Model Building

Result Analysis and Conclusion

Recommendation

Data Processing

Date

Address

Species

Block

Street

Trap

AddressNumberAndStreet

Latitude

Longitude

AddressAccuracy

NumMosquitos

WnvPresent

1. Weather

2. Main Data Set

Station

Date

Tmax

Tmin

Tavg

DewPoint

WetBulb

Heat

Cool

Sunrise

Sunset

CodeSum

Depth

Water1

SnowFall

PrecipTotal

StnPressure

SeaLevel

ResultSpeed

ResultDir

AvgSpeed

Weather

Field Name	Specification and Preparation
Average Temperature (Tavg)	1. Weekly Moving Average (Tavg.ma1—1 wk, Tavg.ma2—2 wks)2. Transform to ordinal variable based on quantile (Tavg.ordinal)
Precipitation Level (PrecipTotal)	 Weekly Moving Average (PrecipTotal.ma2—2 wks, PrecipTotal.ma3—3 wks) Heavy rain flag, threshold = 2.165 inch
Wind Speed (AvgSpeed)	 Low Wind Flag, Threshold = 3.72m/s LowWind.byMean, LowWind.byLow Weekly Moving Average (AvgSpeed.ma3—3 wks)

Field Name	Specification and Preparation
Dew Point (DewPoint)	 Weekly Moving Average (DewPoint.ma1—1 wk)
Relative Humidity (RH)	1.100*(exp((17.625*DewPoint[°C])/(243.04+DewPoint[°C]))/exp((17.625*temperature[°C])/(243.04+temperature[°C]))) 2. Weekly Moving Average (relHum.ma4—4 wks)
Day Time Length (daytime)	 Calculate day time length using Sunrise and Sunset Weekly Moving Average (daytime.ma4—4 wks)

Field Name	Specification and Preparation
Date	Convert to Month and Year Variable
Species	Eg. CULEX PIPIENS, CULEX PIPIENS/RESTUANS
Longitude, Latitude	 Define Location Hot Spot (Frequency of Positive test) (HotSpot, log.HotSpot)
Number of Mosquitoes (NumMosquitoes)	Numeric Variable
West Nile Virus Present Target Variable (WnvPresent)	Binary Variable

Data Processing and Preparation

Result Analysis and Conclusion

1. Feature Selection

- 2. Data Partition and Resampling Methods
- 3. Models

Feature Selection

Feature Selection

Month6
Month7
Month8
Month9
Month10
Species1
Tavg
Tavg.ma1
Tavg.ma2
Tavg.ordinal2
Tavg.ordinal3
Tavg.ordinal4
RH
RH.ma4
DewPoint
DewPoint.ma1
PrecipTotal
PrecipTotal.ma2
PrecipTotal.ma3
HeavyRain1
AvgSpeed
AvgSpeed.ma3
LowWind.byMean1
LowWind.byLow1
daytime
daytime.ma4
HotSpot
log.HotSpot
NumMosquitos

Variable Selection Using Lasso Regression:

Feature Selection

Lasso

Formula will be adopted for the prediction of WnvPresent using <u>lasso</u> and <u>glm</u> regression:
WnvPresent ~ Month + Species + Tavg.ordinal
+RH.ma4+DewPoint.ma1+LowWind.byMean
+ daytime + log.HotSpot + NumMosquitos

(Intercept)	-9.09943
Month6	-0.56489
Month7	
Month8	1.337419
Month9	0.363079
Month10	
Species1	0.923034
Tavg	0.003948
Tavg.ma1	
Tavg.ma2	0.066717
Tavg.ordinal2	-0.27215
Tavg.ordinal3	0.107812
Tavg.ordinal4	
RH	
RH.ma4	0.051223
DewPoint	
DewPoint.ma1	0.017863
PrecipTotal	
PrecipTotal.ma2	
PrecipTotal.ma3	
HeavyRain1	
AvgSpeed	
AvgSpeed.ma3	
LowWind.byMean1	-0.8671
LowWind.byLow1	
daytime	-0.39435
daytime.ma4	
HotSpot	
log.HotSpot	1.291344
NumMosquitos	0.006268

Important Variables for prediction of WNV presence using Random Forest:

Formula will be adopted for the prediction of WnvPresent using **bagging** and **random forest**:

WnvPresent ~ NumMosquitos + daytime + Month

- + log.HotSpot + Tavg.ma2
- + PrecipTotal.ma3 + DewPoint.ma1
- + AvgSpeed.ma3 + Species + RH

Data Partition and Resampling Methods

Imbalanced Data: WnvPresent: 95% {NO} 5% {YES}

1. Bootstrapping

VS.

2. SMOTE Package

Synthetic Minority Over-sampling Technique (SMOTE)

Deal with imbalanced data set:

Approach 1: Bootstrapping

Repeat 200 times

2: **SMOTE** package

Lasso

Naïve Bayesian

Bagging

Random Forest

Boosting

SVM

	Accuracy	Sensitivity	Specificity	Карра
GLM	0.768	0.804	0.738	0.537

Lasso

Naïve Bayesian

Bagging

Random Forest

Boosting

SVM

	Accuracy	Sensitivity	Specificity	Карра
GLM	0.768	0.804	0.738	0.537
lasso	0.773	0.824	0.731	0.548

Lasso

Naïve Bayesian

Bagging

Random Forest

Boosting

SVM

Neural Network

Models

	Accuracy	Sensitivity	Specificity	Карра
GLM	0.768	0.804	0.738	0.537
lasso	0.773	0.824	0.731	0.548
Naïve Bayesian	0.380	0.815	0.026	-0.146

Lasso

Naïve Bayesian

Bagging

Random Forest

Boosting

SVM

	Accuracy	Sensitivity	Specificity	Карра
GLM	0.768	0.804	0.738	0.537
lasso	0.773	0.824	0.731	0.548
Naïve Bayesian	0.380	0.815	0.026	-0.146
bagging	0.780	0.810	0.755	0.560

Lasso

Naïve Bayesian

Bagging

Random Forest

Boosting

SVM

	Accuracy	Sensitivity	Specificity	Карра
GLM	0.768	0.804	0.738	0.537
lasso	0.773	0.824	0.731	0.548
Naïve Bayesian	0.380	0.815	0.026	-0.146
bagging	0.780	0.810	0.755	0.560
random forest	0.767	0.579	0.919	0.513

Lasso

Naïve Bayesian

Bagging

Random Forest

Boosting

SVM

	Accuracy	Sensitivity	Specificity	Карра
GLM	0.768	0.804	0.738	0.537
lasso	0.773	0.824	0.731	0.548
Naïve Bayesian	0.380	0.815	0.026	-0.146
bagging	0.780	0.810	0.755	0.560
random forest	0.767	0.579	0.919	0.513
boosting	0.897	0.945	0.859	0.796

Models

GLM

Lasso

Naïve Bayesian

Bagging

Random Forest

Boosting

SVM

	Accuracy	Sensitivity	Specificity	Карра
GLM	0.768	0.804	0.738	0.537
lasso	0.773	0.824	0.731	0.548
Naïve Bayesian	0.380	0.815	0.026	-0.146
bagging	0.780	0.810	0.755	0.560
random forest	0.767	0.579	0.919	0.513
boosting	0.897	0.945	0.859	0.796
SVM - radial	0.763	0.811	0.724	0.528
SVM - polynomial	0.716	0.815	0.635	0.438

Lasso

Naïve Bayesian

Bagging

Random Forest

Boosting

SVM

	Accuracy	Sensitivity	Specificity	Карра
GLM	0.768	0.804	0.738	0.537
lasso	0.773	0.824	0.731	0.548
Naïve Bayesian	0.380	0.815	0.026	-0.146
bagging	0.780	0.810	0.755	0.560
random forest	0.767	0.579	0.919	0.513
boosting	0.897	0.945	0.859	0.796
SVM - radial	0.763	0.811	0.724	0.528
SVM - polynomial	0.716	0.815	0.635	0.438
neural network	0.756	0.760	0.753	0.509

Used 2 hidden layers: nodes = c (29,14)

The sufficient number of hidden nodes in the first layer: $\sqrt{(m+2)N} + 2\sqrt{N/(m+2)}$

For second layer: $m\sqrt{N/(m+2)}$

where N = # obs.; m = # predictors

Lasso

Naïve Bayesian

Bagging

Random Forest

Boosting

SVM

Models

GLM

Lasso

Naïve Bayesian

Bagging

Random Forest

Boosting

SVM

	Accuracy	Sensitivity	Specificity	Карра
GLM	0.768	0.804	0.738	0.537
lasso	0.773	0.824	0.731	0.548
Naïve Bayesian	0.380	0.815	0.026	-0.146
bagging	0.780	0.810	0.755	0.560
random forest	0.767	0.579	0.919	0.513
boosting	0.897	0.945	0.859	0.796
SVM - radial	0.763	0.811	0.724	0.528
SVM - polynomial	0.716	0.815	0.635	0.438
neural network	0.756	0.760	0.753	0.509

Models

GLM

Lasso

Naïve Bayesian

Bagging

Random Forest

Boosting

SVM

	Accuracy	Sensitivity	Specificity	Карра
GLM	0.768	0.804	0.738	0.537
lasso	0.773	0.824	0.731	0.548
Naïve Bayesian	0.380	0.815	0.026	-0.146
bagging	0.780	0.810	0.755	0.560
random forest	0.767	0.579	0.919	0.513
boosting	0.897	0.945	0.859	0.796
SVM - radial	0.763	0.811	0.724	0.528
SVM - polynomial	0.716	0.815	0.635	0.438
neural network	0.756	0.760	0.753	0.509

Comparison of Bootstrapping and SMOTE

Approach 1: Bootstrapping

Approach	2: SMOT	E packa	90
		_ 0 0.0110.) –

	Accuracy	Sensitivity	Specificity	Карра	
GLM	0.768	0.804	0.738	0.537	GLM
lasso	0.773	0.824	0.731	0.548	lasso
bagging	0.780	0.810	0.755	0.560	bagging
random forest	0.767	0.579	0.919	0.513	random forest
boosting	0.897	0.945	0.859	0.796	boosting
SVM - radial	0.763	0.811	0.724	0.528	SVM - radial
SVM - polynomial	0.716	0.815	0.635	0.438	SVM - polynomi
neural network	0.756	40.760	0.753	U 109	
Naïve Bayesian	0.380	0.815	0.026	-0. <mark>146</mark>	

			•	
	Accuracy	Sensitivity	Specificity	Карра
GLM	0.842	0.600	0.856	0.234
lasso	0.839	0.593	0.853	0.228
bagging	0.893	0.503	0.916	0.287
random forest	0.937	0.253	0.976	0.267
boosting	0.969	0.454	0.999	0.570
SVM - radial	0.467	0.928	0.441	0.069
SVM - polynomial	0.633	0.820	0.622	0.114

Bootstrapping has higher sensitivity

Bootstrapping has higher kappa

Approach 1: Bootstrapping

	Accuracy	Sensitivity	Specificity	Карра
GLM	0.768	0.804	0.738	0.537
lasso	0.773	0.824	0.731	0.548
bagging	0.780	0.810	0.755	0.560
random forest	0.767	0.579	<u>0.919</u>	0.513
boosting	0.897	<u>0.945</u>	0.859	<u>0.796</u>
SVM - radial	0.763	0.811	0.724	0.528
SVM -				
polynomial	0.716	0.815	0.635	0.438
neural network	0.756	0.760	0.753	0.509
Naïve Bayesian	0.380	0.815	0.026	-0.146

Approach 2: SMOTE package

	Accuracy	Sensitivity	Specificity	Карра
GLM	0.842	0.600	0.856	0.234
lasso	0.839	0.593	0.853	0.228
bagging	0.893	0.503	0.916	0.287
random forest	0.937	0.253	0.976	0.267
boosting	0.969	0.454	<u>0.999</u>	<u>0.570</u>
SVM - radial	0.467	<u>0.928</u>	0.441	0.069
SVM -				
polynomial	0.633	0.820	0.622	0.114

- 1. When compared with SMOTE, bootstrapping produces more robust results in terms of sensitivity and kappa.
- 2. Boosting performs the best among all of the above methods in terms of accuracy and kappa.
- 3. Overall, bootstrapping on boosting performs the best overall!