Algebra/Geometrie II, Übungsblatt 7

Bitte geben Sie die Lösungen in Ihrer Übungsgruppe entweder am 1.6. oder am 3.6. ab. Jede Aufgabe ist 4 Punkte wert.

Aufgabe 1. Berechnen Sie die Jordan'sche Normalform von $f: \mathbb{R}^3 \to \mathbb{R}^3$ und $f: \mathbb{R}^4 \to \mathbb{R}^4$, wenn f durch die Matrix A gegeben ist.

(a)
$$A = \begin{pmatrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & -5 \end{pmatrix}$$
, (b) $A = \begin{pmatrix} 1 & -3 & 0 & 3 \\ -2 & -6 & 0 & 13 \\ 0 & -3 & 1 & 3 \\ -1 & -4 & 0 & 8 \end{pmatrix}$.

Aufgabe 2. Sei $A = J(r; \lambda)$. Berechnen Sie die Jordan'sche Normalform von A^2 ; sowie von A^{-1} , falls $\lambda \neq 0$.

Aufgabe 3. Benutzen Sie die Jordan'sche Normalform um die folgenden Matrizen zu berechnen.

(a)
$$A = \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix}^{50}$$
, (b) $B = \begin{pmatrix} 7 & -4 \\ 14 & -8 \end{pmatrix}^{64}$.

Aufgabe 4. Sei $A \in \operatorname{Mat}_{n \times n}(\mathbb{C})$. Beweisen Sie die Formel

$$\exp(\operatorname{tr}(A)) = \det(\exp(A)).$$