Brain Stroke Prediction using Random Forest

Objectives of the Random Forest Stroke Prediction Model - Early Detection of Strokes: Objective: To enable early identification of patients at risk of strokes based on various health indicators, allowing for timely medical intervention. Impact: Early detection can lead to better patient outcomes and reduced mortality rates.

```
In [1]: import pandas as pd

# Load the data
file_path = r"C:\Users\roari\Downloads\Brain.csv"
data = pd.read_csv(file_path)
```

In [13]: data

Out[13]:		gender	age	hypertension	heart_disease	ever_married	work_type	Residence_ty
	0	Male	67.0	0	1	Yes	Private	Urk
	1	Male	80.0	0	1	Yes	Private	Rı
	2	Female	49.0	0	0	Yes	Private	Urk
	3	Female	79.0	1	0	Yes	Self- employed	Ru
	4	Male	81.0	0	0	Yes	Private	Urk
	•••							
	4976	Male	41.0	0	0	No	Private	Rı
	4977	Male	40.0	0	0	Yes	Private	Urk
	4978	Female	45.0	1	0	Yes	Govt_job	Rι
	4979	Male	40.0	0	0	Yes	Private	Rı
	4980	Female	80.0	1	0	Yes	Private	Urk

4981 rows × 11 columns

gender: The gender of the individual (Male or Female). age: The age of the individual in years. hypertension: Indicates whether the individual has hypertension (1 for Yes, 0 for No). heart_disease: Indicates whether the individual has heart disease (1 for Yes, 0 for No). ever_married: Indicates if the individual has ever been married (Yes or No). work_type: The type of work the individual is engaged in (e.g., Private, Self-employed, Govt_job). Residence_type: Indicates the type of residence (Urban or Rural). avg_glucose_level: The average glucose level in the individual's blood. bmi: The Body Mass Index (BMI) of the individual, a measure of body fat based on height and weight. smoking_status: The smoking status of the individual (e.g., smokes, never smoked, formerly smoked). stroke: Indicates whether the individual has had a stroke (1 for Yes, 0 for No).

Shape of the data

```
In [3]: data.shape
Out[3]: (4981, 11)
```

Size of data

```
In [5]: data.size
Out[5]: 54791
```

Column name

Data information

```
In [9]: data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4981 entries, 0 to 4980
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	gender	4981 non-null	object
1	age	4981 non-null	float64
2	hypertension	4981 non-null	int64
3	heart_disease	4981 non-null	int64
4	ever_married	4981 non-null	object
5	work_type	4981 non-null	object
6	Residence_type	4981 non-null	object
7	<pre>avg_glucose_level</pre>	4981 non-null	float64
8	bmi	4981 non-null	float64
9	smoking_status	4981 non-null	object
10	stroke	4981 non-null	int64

dtypes: float64(3), int64(3), object(5)

memory usage: 428.2+ KB

Data type

In [11]: data.dtypes

Out[11]: gender object age float64 hypertension int64

heart_disease int64
ever_married object
work_type object
Residence_type object
avg_glucose_level float64
bmi float64
smoking_status object
stroke int64

dtype: object

Description of data

In [15]: data.describe()

Out[15]: age hypertension heart_disease avg_glucose_level

	age	hypertension	heart_disease	avg_glucose_level	bmi	S
count	4981.000000	4981.000000	4981.000000	4981.000000	4981.000000	4981.00
mean	43.419859	0.096165	0.055210	105.943562	28.498173	0.04
std	22.662755	0.294848	0.228412	45.075373	6.790464	0.2
min	0.080000	0.000000	0.000000	55.120000	14.000000	0.00
25%	25.000000	0.000000	0.000000	77.230000	23.700000	0.00
50%	45.000000	0.000000	0.000000	91.850000	28.100000	0.00
75 %	61.000000	0.000000	0.000000	113.860000	32.600000	0.00
max	82.000000	1.000000	1.000000	271.740000	48.900000	1.00

Null values count

```
In [17]: data.isnull().sum()
Out[17]: gender
                            0
         age
                           0
         hypertension
         heart_disease
         ever_married
         work_type
         Residence_type
                           0
         avg_glucose_level 0
         smoking_status
                           0
         stroke
         dtype: int64
```

Distribution of data

```
In [19]: import seaborn as sns
         import matplotlib.pyplot as plt
         # Set the aesthetic style of the plots
         sns.set(style="whitegrid")
         # Create a figure and axis
         plt.figure(figsize=(15, 10))
         # List of numerical columns to plot
         numerical_columns = ['age', 'hypertension', 'heart_disease', 'avg_glucose_level'
         # Create histograms for each numerical column
         for i, column in enumerate(numerical_columns):
             plt.subplot(3, 2, i + 1) # Create a 3x2 grid of subplots
             sns.histplot(data[column], kde=True, bins=30)
             plt.title(f'Distribution of {column}')
             plt.xlabel(column)
             plt.ylabel('Frequency')
         # Adjust Layout
         plt.tight_layout()
         plt.show()
```


Distribution of data in each column

```
In [21]: import seaborn as sns
         import matplotlib.pyplot as plt
         # Set the aesthetic style of the plots
         sns.set(style="whitegrid")
         # Create a figure
         plt.figure(figsize=(15, 10))
         # List of categorical columns to plot
         categorical_columns = ['gender', 'hypertension', 'heart_disease', 'ever_married'
                                 'work_type', 'Residence_type', 'smoking_status', 'stroke'
         # Create pie charts for each categorical column
         for i, column in enumerate(categorical columns):
             plt.subplot(3, 3, i + 1) # Create a 3x3 grid of subplots
             data_counts = data[column].value_counts()
             plt.pie(data_counts, labels=data_counts.index, autopct='%1.1f%%', startangle
             plt.title(f'Proportion of {column}')
             plt.axis('equal') # Equal aspect ratio ensures that pie chart is circular.
         # Adjust Layout
         plt.tight_layout()
         plt.show()
```


Finding the outlier

```
import pandas as pd
In [25]:
         # Assuming 'data' is your DataFrame
         # List of numerical columns to check for outliers
         numerical_columns = ['age', 'avg_glucose_level', 'bmi', 'hypertension', 'heart_d
         # Function to identify outliers using the IQR method
         def detect_outliers_iqr(df, columns):
             outlier_indices = []
             for column in columns:
                 Q1 = df[column].quantile(0.25)
                 Q3 = df[column].quantile(0.75)
                 IQR = Q3 - Q1
                 outlier_step = 1.5 * IQR
                 outliers = df[(df[column] < (Q1 - outlier_step)) | (df[column] > (Q3 + o
                 outlier_indices.extend(outliers.index.tolist())
             return list(set(outlier indices)) # Return unique indices of outliers
         # Detect outliers
         outlier_indices_iqr = detect_outliers_iqr(data, numerical_columns)
         # Display the outliers
         outliers_iqr = data.loc[outlier_indices_iqr]
         print("Outliers detected using IQR method:")
         outliers_iqr
```

Outliers detected using IQR method:

[25]:				La contract	Lance Pro-			Destal and the
٥].		gender	age	nypertension	heart_disease	ever_married	work_type	kesidence_ty
	0	Male	67.0	0	1	Yes	Private	Urk
	1	Male	80.0	0	1	Yes	Private	Rı
	2	Female	49.0	0	0	Yes	Private	Urk
	3	Female	79.0	1	0	Yes	Self- employed	Ru
	4	Male	81.0	0	0	Yes	Private	Urk
	•••							
	2035	Female	80.0	0	1	Yes	Self- employed	Rı
	4077	Female	81.0	0	1	Yes	Govt_job	Urk
	162	Female	74.0	0	0	Yes	Self- employed	Urk
	2040	Male	78.0	1	0	Yes	Self- employed	Rı
	4092	Female	71.0	1	1	Yes	Private	Rι
	1211 rc	ows × 11	colum	ins				
	4	_		_	_			•

Dropping outliers

```
In [27]: import pandas as pd
         # Assuming 'data' is your DataFrame
         # Sample data creation (Replace this with your actual DataFrame loading)
         # data = pd.read_csv('C:\\Users\\roari\\Downloads\\Brain.csv')
         # Define the numerical columns
         numerical_columns = ['age', 'avg_glucose_level', 'bmi']
         # Function to remove outliers using the IQR method
         def remove_outliers_iqr(df, columns):
             df_cleaned = df.copy() # Create a copy of the DataFrame
             for column in columns:
                 Q1 = df_cleaned[column].quantile(0.25)
                 Q3 = df_cleaned[column].quantile(0.75)
                 IQR = Q3 - Q1
                 lower\_bound = Q1 - 1.5 * IQR
                 upper_bound = Q3 + 1.5 * IQR
                 # Remove outliers
                 df_cleaned = df_cleaned[(df_cleaned[column] >= lower_bound) & (df_cleane
             return df_cleaned
         # Remove outliers
```

```
cleaned_data = remove_outliers_iqr(data, numerical_columns)

# Display the shape of the cleaned DataFrame
print("Original data shape:", data.shape)
print("Cleaned data shape:", cleaned_data.shape)

# Display the cleaned DataFrame
print("Cleaned DataFrame:")
cleaned_data
```

Original data shape: (4981, 11) Cleaned data shape: (4337, 11)

Cleaned DataFrame:

-			4
$()_{1}$	14	1) 7	
Vι	<i>a</i> L	1 4 /	

:		gender	age	hypertension	heart_disease	ever_married	work_type	Residence_ty
	1	Male	80.0	0	1	Yes	Private	Rı
	5	Male	74.0	1	1	Yes	Private	Ru
	6	Female	69.0	0	0	No	Private	Urk
	7	Female	78.0	0	0	Yes	Private	Private Urk
	8	Female	81.0	1	0	Yes	Private	Rı
	•••							
	4974	Male	58.0	0	0	Yes	Govt_job	Urk
	4976	Male	41.0	0	0	No	Private	Ru
	4978	Female	45.0	1	0	Yes	Govt_job	Rı
	4979	Male	40.0	0	0	Yes	Private	Rı
	4980	Female	80.0	1	0	Yes	Private	Urk

4337 rows × 11 columns

Performing one hot encoding

```
import pandas as pd

# Assuming 'data' is your DataFrame
# Sample data creation (Replace this with your actual DataFrame Loading)
# data = pd.read_csv('C:\\Users\\roari\\DownLoads\\Brain.csv')

# Performing one-hot encoding
data_encoded = pd.get_dummies(data, columns=['gender', 'ever_married', 'work_typ

# Display the shape and the first few rows of the encoded DataFrame
print("Shape of the encoded DataFrame:", data_encoded.shape)
print("First few rows of the encoded DataFrame:")
data_encoded.head()
```

Shape of the encoded DataFrame: (4981, 15) First few rows of the encoded DataFrame:

Out[31]:		age	hypertension	heart_disease	avg_glucose_level	bmi	stroke	gender_Male	evei
	0	67.0	0	1	228.69	36.6	1	True	
	1	80.0	0	1	105.92	32.5	1	True	
	2	49.0	0	0	171.23	34.4	1	False	
	3	79.0	1	0	174.12	24.0	1	False	
	4	81.0	0	0	186.21	29.0	1	True	

Converting to binary (0 and 1)

```
In [39]: # Transform True/False to 1/0
    data_encoded = data_encoded.astype(int)

# Display the transformed DataFrame
    print("Transformed DataFrame:")
    data_encoded
```

Transformed DataFrame:

Out[39]:

	age	hypertension	heart_disease	avg_glucose_level	bmi	stroke	gender_Male	•
0	67	0	1	228	36	1	1	
1	80	0	1	105	32	1	1	
2	49	0	0	171	34	1	0	
3	79	1	0	174	24	1	0	
4	81	0	0	186	29	1	1	
•••								
4976	41	0	0	70	29	0	1	
4977	40	0	0	191	31	0	1	
4978	45	1	0	95	31	0	0	
4979	40	0	0	83	30	0	1	
4980	80	1	0	83	29	0	0	

4981 rows × 15 columns

Model building

```
import pandas as pd

# Assuming 'data_encoded' is your DataFrame after one-hot encoding
# Sample data creation (Replace this with your actual DataFrame Loading)
# data_encoded = pd.get_dummies(data, columns=['gender', 'ever_married', 'work_t
```

```
# Calculating the count of stroke occurrences
 stroke_counts = data_encoded['stroke'].value_counts()
 # Calculating the proportion of each stroke value
 stroke_proportion = stroke_counts / stroke_counts.sum()
 # Display the results
 print("Count of Stroke occurrences:")
 print(stroke_counts)
 print("\nProportion of Stroke occurrences (0 and 1):")
 print(stroke_proportion)
Count of Stroke occurrences:
stroke
    4733
1
     248
Name: count, dtype: int64
Proportion of Stroke occurrences (0 and 1):
stroke
0 0.950211
1 0.049789
Name: count, dtype: float64
```

Model building

```
In [47]: import pandas as pd
         from imblearn.over_sampling import SMOTE
         # Assuming 'data_encoded' is your DataFrame
         # Separate the features and the target variable
         X = data_encoded.drop('stroke', axis=1) # Features
         y = data_encoded['stroke']
                                                   # Target variable
         # Create an instance of SMOTE
         smote = SMOTE(random_state=42)
         # Fit and resample the data
         X_resampled, y_resampled = smote.fit_resample(X, y)
         # Combine resampled features and target into a new DataFrame
         data_balanced = pd.DataFrame(X_resampled, columns=X.columns)
         data_balanced['stroke'] = y_resampled
         # Display the new balance of the dataset
         stroke_counts_balanced = data_balanced['stroke'].value_counts()
         print("Count of Stroke occurrences after balancing:")
         print(stroke_counts_balanced)
         # Proportions after balancing
         stroke_proportion_balanced = stroke_counts_balanced / stroke_counts_balanced.sum
         print("\nProportion of Stroke occurrences after balancing:")
         print(stroke_proportion_balanced)
```

```
Count of Stroke occurrences after balancing:
        stroke
             4733
             4733
        Name: count, dtype: int64
        Proportion of Stroke occurrences after balancing:
        stroke
        1
             0.5
             0.5
        Name: count, dtype: float64
In [49]: import pandas as pd
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.model_selection import train_test_split, GridSearchCV, KFold
         from sklearn.metrics import accuracy_score, precision_recall_fscore_support, con
         import matplotlib.pyplot as plt
         import seaborn as sns
         # Assuming 'data_balanced' is your balanced DataFrame after SMOTE
         # Split the data into features and target variable
         X = data_balanced.drop('stroke', axis=1) # Features
         y = data_balanced['stroke']
                                                    # Target variable
         # Split the data into training and testing sets
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_
         # Define the Random Forest model
         rf_model = RandomForestClassifier(random_state=42)
         # Define hyperparameter grid for tuning
         param_grid = {
             'n_estimators': [100, 200],
             'max_depth': [None, 10, 20],
             'min_samples_split': [2, 5],
             'min_samples_leaf': [1, 2],
             'bootstrap': [True, False]
         }
         # Create a GridSearchCV object
         grid_search = GridSearchCV(estimator=rf_model, param_grid=param_grid,
                                    cv=5, n_jobs=-1, verbose=2, scoring='f1')
         # Fit GridSearchCV
         grid_search.fit(X_train, y_train)
         # Best parameters from GridSearchCV
         print("Best parameters found: ", grid_search.best_params_)
         # Train the model with the best parameters
         best_rf_model = grid_search.best_estimator_
         # Predictions
         y pred = best rf model.predict(X test)
         # Calculate accuracy
         accuracy = accuracy_score(y_test, y_pred)
         print("Train Accuracy: {:.2f}%".format(grid_search.best_score_ * 100))
         print("Test Accuracy: {:.2f}%".format(accuracy * 100))
```

```
# Calculate Precision, Recall, F1 Score, and Support
 precision, recall, f1, support = precision_recall_fscore_support(y_test, y_pred)
 print("\nPrecision: ", precision)
 print("Recall: ", recall)
 print("F1 Score: ", f1)
 print("Support: ", support)
 # Confusion Matrix
 conf_matrix = confusion_matrix(y_test, y_pred)
 plt.figure(figsize=(8, 6))
 sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues',
             xticklabels=['No Stroke', 'Stroke'],
             yticklabels=['No Stroke', 'Stroke'])
 plt.ylabel('Actual')
 plt.xlabel('Predicted')
 plt.title('Confusion Matrix')
 plt.show()
 # ROC Curve
 y_probs = best_rf_model.predict_proba(X_test)[:, 1] # Probabilities for the pos
 fpr, tpr, thresholds = roc_curve(y_test, y_probs)
 roc_auc = roc_auc_score(y_test, y_probs)
 plt.figure(figsize=(8, 6))
 plt.plot(fpr, tpr, color='blue', label='ROC Curve (area = {:.2f})'.format(roc_au
 plt.plot([0, 1], [0, 1], color='red', linestyle='--')
 plt.xlabel('False Positive Rate')
 plt.ylabel('True Positive Rate')
 plt.title('Receiver Operating Characteristic (ROC) Curve')
 plt.legend()
 plt.show()
Fitting 5 folds for each of 48 candidates, totalling 240 fits
Best parameters found: {'bootstrap': False, 'max_depth': None, 'min_samples_lea
f': 1, 'min_samples_split': 2, 'n_estimators': 100}
Train Accuracy: 95.12%
Test Accuracy: 95.41%
Precision: [0.95449735 0.95363541]
Recall: [0.95348837 0.95464135]
F1 Score: [0.9539926 0.95413811]
Support: [946 948]
```


Plotting Confusion Matrix

```
In [51]: # Confusion Matrix
    conf_matrix = confusion_matrix(y_test, y_pred)
    print("Confusion Matrix:")
    print(conf_matrix)

Confusion Matrix:
    [[902     44]
       [ 43     905]]
```

Interpretation

Model Performance Summary Train Accuracy: 95.12% This indicates that the model correctly predicts 95.12% of the training data, suggesting it has learned the patterns in the training dataset well. Test Accuracy: 95.41% This indicates that the model performs well on unseen data, with 95.41% accuracy on the test set. This is a good sign of generalization, as it suggests the model is not overfitting the training data. Precision: Precision for Class 0 (No Stroke): 95.45% Precision for Class 1 (Stroke): 95.36% Precision indicates the percentage of true positive predictions out of all positive predictions. High precision for both classes shows that when the model predicts a stroke or no stroke, it is likely to be correct. Recall: Recall for Class 0: 95.35% Recall for Class 1: 95.46% Recall measures the percentage of actual positives that were correctly identified. High recall for both classes indicates that the model is effective at capturing most of the true cases (both strokes and non-strokes). F1 Score: F1 Score for Class 0: 95.40% F1 Score for Class 1: 95.41% The F1 score is the harmonic mean of precision and recall. High F1 scores for both classes indicate a balanced performance, suggesting that the model maintains a good trade-off between precision and recall. Support: Support for Class 0: 946 Support for Class 1: 948 Support refers to the number of actual occurrences of each class in the specified dataset. This indicates a relatively balanced dataset with approximately equal numbers of strokes and non-strokes. Overall Model Effectiveness: The model shows high accuracy, precision, recall, and F1 scores, indicating it is highly effective at predicting stroke occurrences while maintaining a low rate of false predictions.