1

Limites e continuidade

"A Teoria dos limites é a metafísica do Cálculo."' Jean le Rond d'Alembert - 1717 - 1783.

1.1 Ideia intuitiva de limite de uma função

Nessa seção abordaremos a ideia *intuitiva* de limite de uma função num ponto e na vizinhança do infinito.

Em muitas situações estamos interessados em investigar os valores assumidos por uma função não necessariamente num valor específico, digamos x_0 , de seu domínio, mas na *vizinhança* ou "proximidade" de x_0 ou em outras situações como se "comporta" uma dada função quando aumentamos ou diminuirmos de maneira arbitrária seu argumento.

Consideremos, por exemplo, o preço de um determinado ativo e estejamos interessados na sua compra. A princípio é muito mais interessante analisarmos mudanças e tendências de indicadores na *vizinhança* ou "*proximidade*" de determinado ponto do que o valor da função no ponto.

Intuitivamente falando, diz-se que uma função f tem limite l num ponto x_0 se existe um (único) número l tal que os valores de f se "aproximam" de l quando x se "aproxima" de x_0 e indicamos por

$$\lim_{x\to x_0} f(x) = l.$$

Quando tomamos valores da variável x que se "aproximam" de x_0 por valores menores que x_0 , representamos por $x \to x_0^-$ e representamos o limite à esquerda de f no ponto x_0 por

$$\lim_{x\to x_0^-} f(x).$$

Quando tomamos valores da variável x que se "aproximam" de x_0 por valores maiores que x_0 , representamos por $x \to x_0^+$ e representamos o limite à direita de f no ponto x_0 por

$$\lim_{x\to x_0^+} f(x).$$

Apesar de não formal, a ideia intuitiva de limite de uma função no ponto é deveras importante para termos um bom entendimento de muitos dos teoremas e propriedades da Teoria de Limites.

Exemplo 1.1. Calcule
$$\lim_{x\to 2} f(x)$$
 em que $f(x) = x + 2$.

Solução. É fácil perceber que quando x se aproxima de 2, tanto por valores menores que 2 quanto por valores maiores que 2, então os valores de f se aproximam de 4. Neste caso tem-se que existe um (único) número l=4 tal que quando x se "aproxima" de $x_0=2$, tanto pela direita quanto pela esquerda, os valores de f se "aproximam" de 4.

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) = \lim_{x \to 2} f(x) = 4.$$

Para calcularmos então o limite de uma função no ponto bastaria então calcular o valor da função no ponto? O exemplo a seguir nos mostra que não!

Exemplo 1.2. Calcule
$$\lim_{x\to 2} g(x)$$
, em que $g(x) = \frac{x^2-4}{x-2}$.

Solução. Note que $D(g) = \mathbb{R} \setminus \{2\}$, assim a função g não está definida em $x_0 = 2$, e portanto, $\nexists g(2)$. Por outro lado note que se $x \neq 2$, então

$$\frac{x^2 - 4}{x - 2} = \frac{(x - 2)(x + 2)}{x - 2} \stackrel{\text{(se } x \neq 2)}{=} x + 2.$$

Assim, para valores de x próximos a 2, as funções f e g são iguais e do Exemplo 1.1 tem-se que $\lim_{\substack{x\to 2}} f(x) = 4$, segue-se da ideia intuitiva de limite de uma função no ponto que $\lim_{\substack{x\to 2}} g(x) = 4$, pois de fato, estamos interessados em investigar se existe um número l tal que os valores de g se aproximam de l quando x se aproxima de x_0 , mas como as funções f e g são idênticas na vizinhança de g, isso implica que elas têm o mesmo limite em g0 = 2.

Observação 1.1. Muito comumente no cálculo do limite de uma função num ponto substituímos a função dada por uma função que seja contínua no ponto (esse conceito será estudado na seção 1.4) fazendo-se uso do Teorema 1.5, o qual afirma que se duas funções coincidem na vizinhança de um ponto, então elas têm o mesmo limite.

Exemplo 1.3. Calcule
$$\lim_{x\to 2} h(x)$$
 em que a função $h: \mathbb{R} \to \mathbb{R}$ é definida em x por
$$h(x) := \begin{cases} 3-x & se \ x < 2; \\ 4 & se \ x = 2; \\ 3+x & se \ x > 2. \end{cases}$$

Solução. A função h está definida em x = 2 com h(2) = 4. Por outro lado note que se x se "aproxima" de 2 pela esquerda (por valores menores que 2), então a função h se "aproxima" de 1, pois se x < 2, então h é definida em x por h(x) = 3 - x com $\lim_{x \to \infty} h(x) = 1$. Por outro lado, se x se "aproxima" de 2 pela direita (por valores maiores que 2), então a função h se "aproxima" de 5, pois se x > 2, então h é definida em x por h(x) = x + 2 com $\lim_{x \to a} h(x) = 5$. Assim, mesmo com a função h definida definida em x = 2, tem-se que não há um número l tal que quando x se "aproxima" de $x_0=2$, os valores de f se "aproximam" de l, pois quando xse "aproxima" de $x_0 = 2$ por valores menores e maiores que 2, os valores de f se aproximam, respectivamente, para um valor $l_1 = 1$ e $l_2 = 5$, não existindo um único número l (candidato ao limite de f no ponto) para o qual os valores de f se "aproximassem" quando $x \to x_0 = 2$. Logo,

$$\lim_{x \to 2^-} h(x) = 1, \ \lim_{x \to 2^+} h(x) = 5 \ \mathrm{e} \ \nexists \lim_{x \to 2} h(x).$$

Observação 1.2. No Exemplo 1.3 a função está definida no ponto, mas não apresenta limite neste ponto. No Exemplo 1.2 a função não está definida no ponto, mas tem limite neste ponto. Esses dois exemplos evidenciam que no cálculo do **limite** de uma função num ponto x_0 o que de fato importa é o comportamento da função "próximo" ao ponto, mas não o valor que a função assume no ponto.

O Exemplo 1.3 nos mostra também que se os limites laterais são diferentes, então a função não apresenta limite no ponto o que é equivalente a afirmar que se uma função tem limite no ponto, então os limites laterais são iguais. Ou seja, a existência de limites laterais e iguais é uma condição necessária para que a função tenha limite no ponto. No Exemplo 1.2 os limites laterais existem e são iguais, logo os valores de f se "aproximam" do mesmo (único) número l quando x se aproxima do ponto. Ou seja, a existência de limites laterais e iguais é uma condição suficiente para que a função tenha limite no ponto. Assim, uma função f apresenta limite num ponto se, e somente se, os limites laterais existirem e forem iguais, Teorema 1.2 (Teorema de existência e unicidade do limite).

1.2 Limite de uma função

Na seção anterior usamos expressões como "aproxima", "próximo" que carecem de precisão e formalidades, afinal o significado de "próximo" pode ser muitíssimo diferente se estivermos falando a respeito, por exemplo, de distância entre átomos de uma mesma molécula ou cometas de uma dada galáxia. Assim, para deixar o conceito de limite com o formalismo necessário a fim de se evitar qualquer imprecisão ou dubiedade diz-se que uma função f tem limite $l \in \mathbb{R}$ num ponto x_0 (não necessariamente pertencente ao domínio de f) da seguinte forma.

Definição 1.1 (Limite de uma função num ponto). Seja $f: I \subset \mathbb{R} \to \mathbb{R}$, f definida num intervalo aberto contendo x_0 , exceto possivelmente no próprio x_0 . O limite de f quando x tende a x_0 será l, escrito como $\lim_{x\to x_0} f(x) = l$ se

$$\forall \epsilon > 0$$
, $\exists \delta > 0$, tal que, se $0 < |x - x_0| < \delta$, então $|f(x) - l| < \epsilon$.

Olhando com um pouco mais de detalhes os elementos contidos na Definição 1.1 tem-se que as condições $0 < |x - x_0| < \delta$ e $|f(x) - l| < \varepsilon$ são equivalentes a

$$\begin{aligned} 0 < |x - x_0| < \delta &\iff -\delta < x - x_0 < \delta, \ x \neq x_0 \iff x_0 - \delta < x < x_0 + \delta, \ x \neq x_0. \\ |f(x) - l| < \varepsilon &\iff -\varepsilon < f(x) - l < \varepsilon \iff l - \varepsilon < f(x) < l + \varepsilon. \end{aligned}$$

Assim, a condição $0 < |x - x_0| < \delta$ nada mais é que um intervalo

$$V_{\delta}^*(x_0) := \{x \in \mathbb{R} : x_0 - \delta < x < x_0 + \delta, \ x \neq x_0\}$$

centrado em x_0 e cujos pontos distam de x_0 menos que δ unidades sem que o centro pertença ao intervalo e $|f(x) - l| < \varepsilon$ corresponde a um intervalo ou conjunto de valores de f para os quais a distância entre f e l é menor que ε .

A Definição 1.1 nos diz então que dado qualquer raio ϵ em torno do limite l é sempre possível obter um δ tal que para valores de x não distantes de x_0 mais que δ unidades, isso é suficiente para garantir que os valores de f não distant de l mais que ϵ unidades.

Teorema 1.1 (Unicidade do limite). Se $f : A \subset \mathbb{R} \to \mathbb{R}$ tem limite l em x_0 , então este limite é único.

Demonstração. Suponhamos, por absurdo, que existam $l_1 \neq l_2 \in \mathbb{R}$ tais que

$$\lim_{x \to x_0} f(x) = l_1 \quad \text{e} \quad \lim_{x \to x_0} f(x) = l_2. \tag{1.1}$$

De (1.1) e da Definição 1.1 segue-se que dado $\epsilon>0,$ existem $\delta_1>0$ e $\delta_2>0$ tais que

se
$$0 < |x - x_0| < \delta_1$$
, então $|f(x) - l_1| < \epsilon$.
se $0 < |x - x_0| < \delta_2$, então $|f(x) - l_2| < \epsilon$. (1.2)

Se $\delta = \min\{\delta_1, \delta_2\}$, então as duas condições dadas em (1.2) ficam satisfeitas e usando o fato que o módulo da diferença é menor que a soma dos módulos segue-se que

$$|(f(x) - l_1) - (f(x) - l_2)| \le |f(x) - l_1| + |f(x) - l_2| < \epsilon + \epsilon = 2\epsilon \Rightarrow$$
 $|l_2 - l_1| < 2\epsilon.$ (1.3)

Desde que ϵ pode ser escolhido arbitrariamente, tomemos $\epsilon = \frac{|l_2 - l_1|}{3}$ e substituindo em (1.3) resulta que

$$|l_2-l_1|<2\frac{|l_2-l_1|}{3}. \ \mathrm{Absurdo!} \ \mathrm{Logo} \ l_1=l_2.$$

Proposição 1.1 (Limite da função constante). Se $f(x) = k \ \forall x \in D(f)$, então $\lim_{x \to x_0} f(x) = k$.

Demonstração. Devemos mostrar que para todo $\epsilon > 0$, existe $\delta > 0$ tal que

se
$$0 < |\mathbf{x} - \mathbf{x}_0| < \delta$$
, então $|\mathbf{f}(\mathbf{x}) - \mathbf{k}| < \epsilon$. (1.4)

Mas desde que f(x)=k para todo $x\in D(f),$ $|f(x)-k|=|k-k|=0<\varepsilon$ qualquer que seja $\delta>0$.

 $\mathbf{Proposição} \ \mathbf{1.2.} \ \lim_{x \to x_0} f(x) = l \iff \lim_{x \to x_0} (f(x) - l) = 0.$

 $Demonstração.\ (\Rightarrow)$ Mostremos primeiramente a implicação. Se $\lim_{x\to x_0}f(x)=l,$ então para todo $\epsilon>0$, existe $\delta>0$ tal que

se
$$0<|x-x_0|<\delta,$$
 então $|f(x)-l|<\varepsilon\iff |(f(x)-l)-0|<\varepsilon,$ ou seja,
$$\lim_{x\to x_0}(f(x)-l)=0.$$

(\Leftarrow) Admitamos agora que $\lim_{x\to x_0}(f(x)-1)=0$ e mostremos que $\lim_{x\to x_0}f(x)=1$. De $\lim_{x\to x_0}(f(x)-1)=0$ tem-se da Definição 1.1 que para todo $\varepsilon>0$, existe $\delta>0$ tal que

se
$$0 < |x - x_0| < \delta$$
, então $|(f(x) - l) - 0| < \varepsilon \iff |f(x) - l| < \varepsilon$, ou seja,
$$\lim_{x \to x_0} f(x) = l.$$

Exemplo 1.4 (ITA-1998). Usando a definição de limite (com epsilons e deltas), prove que $\lim_{x\to -1} \frac{x+2}{x-1} = -\frac{1}{2}$.

Solução. Deve-se provar que para todo $\epsilon > 0$, existe $\delta > 0$ tal que

$$0 < |x - (-1)| < \delta \Rightarrow \left| f(x) - \left(-\frac{1}{2} \right) \right| < \epsilon.$$

Tem-se que

$$\left|\frac{x+2}{x-1} - \left(-\frac{1}{2}\right)\right| < \epsilon \Rightarrow \left|\frac{3x+3}{2(x-1)}\right| < \epsilon \Rightarrow \frac{3}{2}|x - (-1)| \cdot \frac{1}{|x-1|} < \epsilon. \tag{1.5}$$

Desde que estamos calculando o limite de f quando $x \to -1$, estamos considerando valores de x numa vizinhança de -1. Seja então uma vizinhança de raio 1 em torno de -1, i.e.,

$$|x - (-1)| < 1 \Rightarrow -2 < x < 0 \Rightarrow -3 < x - 1 < -1 \Rightarrow \frac{1}{3} < \frac{1}{|x - 1|} < 1.$$
 (1.6)

De (1.6) em (1.5) segue-se que

$$\frac{3}{2}|x - (-1)| \cdot 1 < \epsilon \Rightarrow |x - (-1)| < \frac{2\epsilon}{3}. \tag{1.7}$$

Assim, é suficiente tomarmos $\delta = \min\{1, \frac{2\varepsilon}{3}\}$. De fato, dado $\varepsilon > 0$, seja $\delta = \min\{1, \frac{2\varepsilon}{3}\}$. Se $0 < |x - (-1)| < \delta$, então segue de (1.6) e (1.7) que

$$\left| \frac{x+2}{x-1} - \left(-\frac{1}{2} \right) \right| = \frac{3}{2} |x - (-1)| \cdot \frac{1}{|x-1|} < \epsilon.$$

Exemplo 1.5 (ITA-1998). Usando a definição de limite (com epsilons e deltas), prove que $\lim_{x\to 0} ((2(x-1)^2-3)=-1)$.

Solução. Deve-se provar que para todo $\epsilon > 0$, existe $\delta > 0$ tal que

$$0 < |x - 0| < \delta \Rightarrow |f(x) - (-1)| < \epsilon$$
.

Tem-se que

$$|2(x-1)^2 - 3 - (-1)| < \varepsilon \Rightarrow 2|x||x - 4| < \varepsilon.$$
 (1.8)

Desde que estamos calculando o limite de f quando $x \to 0$, seja então uma vizinhança de 0 de raio 1, i.e.,

$$|x - 0| < 1 \Rightarrow -1 < x < 1 \Rightarrow -5 < x - 4 < -3 \Rightarrow |x - 4| < 5.$$
 (1.9)

De (1.9) em (1.8) segue-se que

$$|2(x-1)^2 - 3 - (-1)| < \varepsilon \Rightarrow 2|x||x - 4| < \varepsilon \Rightarrow |x| < \frac{\varepsilon}{10}. \tag{1.10}$$

Assim, é suficiente tomarmos $\delta = \min\{1,\frac{\epsilon}{10}\}$. De fato, dado $\epsilon > 0$, seja $\delta = \min\{1,\frac{\epsilon}{10}\}$. Se $0 < |x-0| < \delta$, então segue-se de (1.9) e (1.10) que

$$|2(x-1)^2-3-(-1)|=2|x||x-4|<\epsilon$$
.

Exemplo 1.6 (ITA-2002). Usando apenas a definição, mostre que $\lim_{x\to 2} \frac{2x-7}{3x-5} = -3$.

Solução. Deve-se provar que para todo $\epsilon > 0$, existe $\delta > 0$ tal que

$$0<|x-2|<\delta\Rightarrow\left|\frac{2x-7}{3x-5}-(-3)\right|<\epsilon.$$

Tem-se que

$$\left|\frac{2x-7}{3x-5}-(-3)\right|<\epsilon\iff 11\cdot|x-2|\cdot\frac{1}{|3x-5|}<\epsilon\iff |x-2|<\frac{|3x-5|}{11}\epsilon. \quad (1.11)$$

Desde que estamos calculando o limite quando $x \to 2$, seja então uma vizinhança de 2 de raio 1, i.e.,

$$|x-2| < 1 \Rightarrow 1 < x < 3 \Rightarrow -2 < 3x - 5 < 4 \Rightarrow |3x - 5| < 4.$$
 (1.12)

De (1.12) em (1.11) segue-se que

$$\left|\frac{2x-7}{3x-5}-(-3)\right|<\epsilon \Rightarrow |x-2|<\frac{\epsilon|3x-5|}{11}<\frac{4\epsilon}{11}.$$

Assim, é suficiente tomarmos $\delta=\min\{1,\frac{4\varepsilon}{11}\}$. De fato, dado $\varepsilon>0$, seja $\delta=\min\{1,\frac{4\varepsilon}{11}\}$. Se $0<|x-2|<\delta$, então segue-se de (1.11) e (1.12) que

$$\left|\frac{2x-7}{3x-5}-(-3)\right|<\epsilon.$$

Exemplo 1.7 (ITA-2002). Usando apenas a definição, mostre que $\lim_{x\to -1} \frac{x+3}{x^2+4x+5} = 1$.

Solução. Deve-se provar que para todo $\epsilon > 0$, existe $\delta > 0$ tal que

$$0<|x-(-1)|<\delta\Rightarrow\left|\frac{x+3}{x^2+4x+5}-1\right|<\epsilon.$$

Tem-se que

$$\left|\frac{x+3}{x^2+4x+5}-1\right|<\epsilon\iff |x+1|\cdot|x+2|<\epsilon\cdot(x^2+4x+5).$$

Desde que estamos calculando o limite quando $x \to -1$, seja então uma vizinhança de -1 de raio 1, i.e.,

$$|x - (-1)| < 1 \Rightarrow x + 2 < 2 \Rightarrow |x + 2| < 2.$$
 (1.13)

Por outro lado, note que o valor máximo que $x^2 + 4x + 5$ assume é quando x = -2 e vale $(-2)^2 + 4(-2) + 5 = 1$. Seja então δ_1 tal que

$$|x+1| < \delta_1 := \frac{1}{2}\epsilon \cdot 1. \tag{1.14}$$

Assim, é suficiente tomarmos $\delta:=\min\{1,\frac{\epsilon}{2}\}$. De fato, dado $\epsilon>0$, seja $\delta=\min\{1,\frac{\epsilon}{2}\}$. Se $0<|x-(-1)|<\delta$, então segue-se de (1.13) e (1.14) que

$$\left|\frac{x+3}{x^2+4x+5}-1\right|<\epsilon.$$

Definição 1.2 (Limites laterais). *Uma função* $f: A \subset \mathbb{R} \to \mathbb{R}$ *tem* **limite** l *quando* x *tende a* x_0 **pela esquerda**, *indicamos* $\lim_{x \to x_0^-} f(x) = l$, $se \ \forall \varepsilon > 0$, $\exists \delta > 0$ *tal que*

se
$$x_0 - \delta < x < x_0$$
, então $|f(x) - l| < \epsilon$.

Uma função $f: A \subset \mathbb{R} \to \mathbb{R}$ tem limite l quando x tende a x_0 pela direita, indicamos $\lim_{x \to x_0^+} f(x) = l$, se $\forall \varepsilon > 0$, $\exists > 0$ tal que

se
$$x_0 < x < x_0 + \delta$$
, então $|f(x) - l| < \varepsilon$.

Teorema 1.2 (Existência e unicidade do limite). Uma função f tem limite l num ponto x_0 , se e somente se, os limites laterais existirem e forem iguais.

$$\lim_{x\to x_0}f(x)=l\iff \lim_{x\to x_0^-}f(x)=\lim_{x\to x_0^+}f(x)=l.$$

Demonstração. (⇒) Mostremos que se f tem limite l em x_0 , então os limites laterais são iguais. De fato, da condição $\lim_{x\to x_0} f(x) = l$ tem-se da Definição 1.1 que dado $\epsilon > 0$, $\exists \delta > 0$ tal que

se
$$0 < |x - x_0| < \delta$$
, então $|f(x) - l| < \epsilon$. (1.15)

De (1.15) segue-se que

$$\begin{split} & \text{se } x_0 - \delta < x < x_0, \text{ então } |f(x) - l| < \varepsilon \iff \lim_{x \to x_0^-} f(x) = l. \\ & \text{se } x_0 < x < x_0 + \delta, \text{ então } |f(x) - l| < \varepsilon \iff \lim_{x \to x_0^+} f(x) = l. \end{split}$$

(⇐) Mostremos agora a volta, i.e., se os limites laterais existem e são iguais a l em um ponto x_0 , então o limite de f em x_0 vale l. Das condições $\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = l$ e da Definição 1.2 segue-se que dado $\epsilon > 0$, existem, respectivamente, $\delta_1 > 0$ e $\delta_2 > 0$, tais que

se
$$x_0 - \delta_1 < x < x_0$$
, então $|f(x) - l| < \epsilon$.
se $x_0 < x < x_0 + \delta_2$, então $|f(x) - l| < \epsilon$. (1.16)

Seja $\delta = \min\{\delta_1, \delta_2\}$, então ambas as condições de (1.16) estão satisfeitas, e portanto,

se
$$0 < |x - x_0| < \delta$$
, então $|f(x) - l| < \varepsilon \Rightarrow \lim_{x \to x_0} f(x) = l$.

Teorema 1.3 (Teorema do confronto). Sejam g, f e h funções tais que $\forall x \in V_{\delta}^*(x_0) := \{x \in \mathbb{R} : x_0 - \delta < x < x_0 + \delta, \ x \neq x_0\} \text{ tem-se que } g(x) \leq f(x) \leq h(x) \text{ e} \lim_{x \to x_0} g(x) = \lim_{x \to x_0} h(x) = l, \text{ então } \lim_{x \to x_0} f(x) = l.$

Demonstração. Dado $\epsilon>0$, das hipóteses $\lim_{x\to x_0}g(x)=1$ e $\lim_{x\to x_0}h(x)=1$, tem-se, respectivamente, que existem $\delta_1>0$ e $\delta_2>0$ tais que

se
$$0 < |x - x_0| < \delta_1$$
, então $|g(x) - l| < \epsilon \iff l - \epsilon < g(x) < l + \epsilon$.
se $0 < |x - x_0| < \delta_2$, então $|h(x) - l| < \epsilon \iff l - \epsilon < h(x) < l + \epsilon$. (1.17)

Seja $\delta = \min{\{\delta_1, \delta_2\}}$ e de (1.17) segue-se que

se
$$0 < |x - x_0| < \delta$$
, então $l - \varepsilon < g(x) \le f(x) \le h(x) < l + \varepsilon$.

13

Corolário 1.1. Sejam f e g definidas em uma vizinhança de x_0 tais que g é limitada e $\lim_{x\to x_0} f(x) = 0$, então $\lim_{x\to x_0} f(x)g(x) = 0$.

Demonstração. Se g é limitada, então existe M>0 tal que $-M\leq g(x)\leq M,$ e portanto,

$$-M|f(x)| \le f(x)g(x) \le M|f(x)|. \tag{1.18}$$

Se $f(x) \ge 0$, então de (1.18)

$$-Mf(x) \leq f(x)g(x) \leq Mf(x) \stackrel{(Teo}{\Rightarrow} ^{1.3)}{\underset{x \to x_0}{\lim}} f(x)g(x) = 0.$$

Se f(x) < 0, então de (1.18)

$$Mf(x) \leq f(x)g(x) \leq -Mf(x) \overset{(Teo\ 1.3)}{\Rightarrow} \lim_{x \to x_0} f(x)g(x) = 0.$$

Corolário 1.2. Sejam f e g funções definidas em uma vizinhança de x_0 tais que $\lim_{x\to x_0} f(x) = l$ e $\lim_{x\to x_0} g(x) = 0$, então $\lim_{x\to x_0} f(x)g(x) = 0$.

 ${\it Demonstração}.$ Da condição $\lim_{x\to x_0} f(x)=l$ segue-se que dado $\varepsilon>0,$ existe $\delta>0$ tal que

se
$$0 < |x - x_0| < \delta$$
, então $|f(x) - l| < \epsilon \iff l - \epsilon < f(x) < l + \epsilon$. (1.19)

O resultado segue então do Corolário (1.1) uma vez que f é limitada numa vizinhança de x_0 de raio δ e g tem limite zero no ponto x_0 .

Exemplo 1.8 (EN 2020). Sejam f e g duas funções reais de modo que, para todo x, $(f(x))^8 + (g(x))^8 = 4$. Calcule o valor de $\lim_{x \to 0} f(x) \sqrt{x}$.

Solução. Tem-se que $f((x))^8 = 4 - (g(x))^8$ e desde que $(g(x))^8 \ge 0$, isso garante que $|f(x)| \le 4$. Assim, pelo Corolário 1.1 tem-se que o limite pedido vale zero.

Exemplo 1.9 (ITA-1994). Suponha que

$$\forall x \in (-1,1)$$
 $1-|x| \le f(x) \le 1+x^2$.

Pergunta-se se f é contínua em x = 0.

Solução. Tem-se que g(x)=1-|x| e $h(x)=1+x^2$ são funções contínuas, logo $\lim_{x\to 0}g(x)=g(0)=1-|0|=1$ e $\lim_{x\to 0}h(x)=h(0)=1+0^2=1$. Desde que f está limitada pelas funções g e h, pelo Teorema do Confronto (Teorema 1.3) tem-se que

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} g(x) = \lim_{x \to 0} h(x) = 1.$$

Assim, desde que f(0) = 1 tem-se que f é contínua em x = 0, pois $\lim_{x \to 0} f(x) = 1 = f(0)$.

Exemplo 1.10 (EN 2022).
$$Se \lim_{x\to 0} \frac{f(x)}{x} = L$$
, $ent\tilde{a}o \lim_{x\to 1} \frac{f(x^2-1)}{x-1} = ?$

Solução. Tem-se que

$$\lim_{x \to 1} \frac{f(x^2 - 1)(x + 1)}{(x - 1)(x + 1)} = 2 \cdot \lim_{x \to 1} \frac{f(x^2 - 1)}{x^2 - 1} \stackrel{(w = x^2 - 1)}{=} \lim_{w \to 0} \frac{f(w)}{w} = 2L.$$

1.3 Propriedades aritméticas dos limites finitos

Nesta seção trataremos das propriedades aritméticas dos limites finitos. Sejam f e g funções tais que $\lim_{x\to x_0} f(x) = l_1 \in \mathbb{R}, \lim_{x\to x_0} g(x) = l_2 \in \mathbb{R}$ e $k \in \mathbb{R}$.

(P1)
$$\lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x) = l_1 + l_2.$$
 (1.20)

Demonstração. Deve-se mostrar que para todo $\epsilon > 0$, existe $\delta > 0$ tal que

se
$$0 < |x - x_0| < \delta$$
, então $|f(x) + g(x) - (l_1 + l_2)| < \epsilon$. (1.21)

Seja $\epsilon_1 = \frac{\epsilon}{4}$. Desde que, por hipótese, $\lim_{x \to x_0} f(x) = l_1$, então em correspondência a $\epsilon_1 = \frac{\epsilon}{4} > 0$, existe $\delta_1 > 0$ tal que

se
$$0 < |x - x_0| < \delta_1$$
, então $|f(x) - l_1| < \varepsilon_1 = \frac{\varepsilon}{4}$. (1.22)

Da mesma forma, consideremos agora a função g e desde que ela tem limite l_2 em x_0 , seja $\epsilon_2 = \frac{\epsilon}{2}$, então em correspondência a $\epsilon_2 = \frac{\epsilon}{2} > 0$, existe $\delta_2 > 0$ tal que