2. Übungsblatt zum Ferienkurs Mathematik für Physiker 1

1. Linearkombinationen und Basen

Aufgabe 1 Lineare Unabhängigkeit

Welche der folgenden Teilmengen des \mathbb{R}^3 sind linear abhängig?

$$M_{1} = \left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 5 \\ 7 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} \right\}, \quad M_{2} = \left\{ \begin{pmatrix} 3 \\ 5 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 6 \\ 2 \end{pmatrix} \right\}, \quad M_{3} = \left\{ \begin{pmatrix} 3 \\ 5 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} e \\ 0 \\ \pi \end{pmatrix}, \begin{pmatrix} 2 \\ 5 \\ 7 \end{pmatrix} \right\}.$$

Lösung:

 M_1 ist linear abhängig, da es eine nicht triviale Linearkombination der 0 gibt, z.B.:

$$1 \cdot \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 1 \\ 5 \\ 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} = 0.$$

 M_2 ist nicht linear abhängig, denn:

$$\begin{pmatrix} 3 & 5 & 2 \\ 1 & 1 & 1 \\ 3 & 6 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 5 & 2 \\ 0 & -2 & 1 \\ 0 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 5 & 2 \\ 0 & -2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Also besitzt das homogene LGS

$$\begin{pmatrix} 3 & 5 & 2 \\ 1 & 1 & 1 \\ 3 & 6 & 2 \end{pmatrix} x = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

nur die triviale Lösung, bzw. die 0 kann nur als triviale Linearkombination der drei Vektoren dargestellt werden.

 M_3 ist offensichtlich linear abhänigig. Denn nach dem Skript S.30: "...folgt aus unserem Test sofort, dass im K^m höchstens m Vektoren linear unabhängig sein können. Hat man mehr als m Vektoren, so sind diese automatisch linear abhängig".

Aufgabe 2 Basen von Unterräumen

Bestimme Basen der Unterräume $U, W + W', W \cap W' \subset \mathbb{Q}^4$ für

$$U = \left\langle \begin{pmatrix} 1\\2\\0\\-3 \end{pmatrix}, \begin{pmatrix} 0\\-1\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\-4\\3\\-1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1\\-2 \end{pmatrix} \right\rangle,$$

$$W = \left\langle \begin{pmatrix} 2\\3\\-1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 3\\6\\-2\\2 \end{pmatrix} \right\rangle = \langle w_1, w_2, w_3 \rangle, \quad W' = \left\langle \begin{pmatrix} 1\\0\\0\\4 \end{pmatrix}, \begin{pmatrix} 4\\0\\0\\1 \end{pmatrix} \right\rangle = \langle u_1, u_2 \rangle.$$

Hinweis: $W + W' = \{w + w' \mid w \in W, w' \in W'\}.$

Lösung:

Lösung für U:

Eine Möglichkeit ist folgender Algorithmus für $A = \emptyset, B = \left\{ \begin{pmatrix} 1 \\ 2 \\ 0 \\ -3 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ -4 \\ 3 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ -2 \end{pmatrix} \right\}$:

- 1. Wähle $v \in B$ und setzte $B \leftarrow B \setminus \{v\}$
- 2. Wenn $v \notin \langle A \rangle$, setze $A \leftarrow A \cup \{v\}$
- 3. Wenn $B \neq \emptyset$, beginne bei 1.

Ansonsten löse das homogene Gleichungssystem

$$\begin{pmatrix} 1 & 0 & 2 & 1 \\ 2 & -1 & -4 & 0 \\ 0 & 1 & 3 & 1 \\ -3 & 0 & -1 & -2 \end{pmatrix} x = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 2 & 1 \\ 2 & -1 & -4 & 0 \\ 0 & 1 & 3 & 1 \\ -3 & 0 & -1 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & -1 & -8 & -2 \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 5 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 3 & 1 \\ 0 & 0 & -5 & -1 \\ 0 & 0 & 5 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Daraus folgt, dass sich der vierte Vektor als Linearkombination der anderen drei darstellen lässt \Rightarrow linear abhängig. Danach könnte man folgern, dass sich die Matrix ohne die letzte Spalte durch die gleichen Operationen (plus oberes Dreieck eleminieren) auf die Form $\begin{pmatrix} I \\ 0 \end{pmatrix}$ bringen

lässt und somit
$$Ix = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 nur für $x = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ lösbar ist. \Rightarrow linear unabhängig

Lösung für $W \cap W'$ (Basis vom Schnitt zweier Unterräume):

 $x \in W \cap W'$

$$\Rightarrow x \in W : \exists \alpha_1, \alpha_2, \alpha_3 : \quad \alpha_1 w_1 + \alpha_2 w_2 + \alpha_3 w_3 = x$$
$$\Rightarrow x \in W' : \exists \beta_1, \beta_2 : \quad \beta_1 u_1 + \beta_2 u_2 = x$$

$$\Leftrightarrow \alpha_1 w_1 + \alpha_2 w_2 + \alpha_3 w_3 - \beta_1 u_1 - \beta_2 u_2 = 0 \Leftrightarrow$$

$$\begin{pmatrix} 2 & 0 & 3 & -1 & -4 \\ 3 & 1 & 6 & 0 & 0 \\ -1 & 0 & -2 & 0 & 0 \\ 1 & 0 & 2 & -4 & -1 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \beta_1 \\ \beta_2 \end{pmatrix} = 0$$

Wir bringen dieses homogene lineare LGS auf Zeilenstufenform:

$$\begin{pmatrix} 2 & 0 & 3 & -1 & -4 \\ 3 & 1 & 6 & 0 & 0 \\ -1 & 0 & -2 & 0 & 0 \\ 1 & 0 & 2 & -4 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & -4 & -1 \\ 2 & 0 & 3 & -1 & -4 \\ 3 & 1 & 6 & 0 & 0 \\ -1 & 0 & -2 & 0 & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 2 & -4 & -1 \\ 0 & 0 & -1 & 7 & -2 \\ 0 & 1 & 0 & 12 & 3 \\ 0 & 0 & 0 & -4 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & -4 & -1 \\ 0 & 1 & 0 & 12 & 3 \\ 0 & 0 & -1 & 7 & -2 \\ 0 & 0 & 0 & -4 & -1 \end{pmatrix}$$

Wähle $\beta_1 = \lambda \in \mathbb{Q}$ beliebig.

$$-4\beta_1 = \beta_2 \Rightarrow \beta_2 = -4\lambda$$

$$\alpha_3 = 7\beta_1 - 2\beta_2 = 7\lambda + 8\lambda = 15\lambda$$

$$\alpha_2 = -12\beta\beta_1 - 3\beta_2 = 0$$

$$\alpha_1 = -2\alpha_3 + 4\beta_1 + \beta_2 = -30\lambda$$

$$\mathbb{L} = \left\{ \begin{pmatrix} -30\\0\\15\\1\\-4 \end{pmatrix} \lambda | \lambda \in \mathbb{Q} \right\}$$

Als Lösung des LGS erhalten wir die Koeffizienten von Linearkombinationen $(\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2)$ die Elemente des Schnitts $W \cap W'$ parametrisieren.

 $x \in W \cap W'$, lässt sich schreiben als

$$x = \beta_1 u_1 + \beta_2 u_2 = 1 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 4 \end{pmatrix} - 4 \begin{pmatrix} 4 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -15 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Wir erhalten als Basis
$$B_{W\cap W'}=\langle \begin{pmatrix} -15\\0\\0\\0 \end{pmatrix} \rangle=\langle \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} \rangle$$

Lösung für W + W' (Basis von Summe zweier Unterräume):

Sei $y \in W + W' = \{w + w' | w \in W, w' \in W'\}$. Dann lässt sich y als Linearkombination von Vektoren aus $W \cup W'$ bzw. aus $\{w_1, w_2, w_3\} \cup \{u_1, u_2\}$ schreiben.

Um aus dem E.S. $\{w_1, w_2, w_3, u_1, u_2\}$ eine Basis zu gewinnen, bestimmt man eine maximal linear unabhängige Teilmenge ausgehend von der Matrix

$$\begin{pmatrix}
2 & 0 & 3 & -1 & -4 \\
3 & 1 & 6 & 0 & 0 \\
-1 & 0 & -2 & 0 & 0 \\
1 & 0 & 2 & -4 & -1
\end{pmatrix}$$

Diese muss dafür wieder auf Zeilenstufenform gebracht werden:

$$\begin{pmatrix} 1 & 0 & 2 & -4 & -1 \\ 0 & 1 & 0 & 12 & 3 \\ 0 & 0 & -1 & 7 & -2 \\ 0 & 0 & 0 & -4 & -1 \end{pmatrix}$$

Mögliche Basisvektoren sind diejenigen Spalten, deren Nummer nach Transformation auf Zeilenstufenform ein Stufenindex sind.

Wir erhalten als Basis
$$B_{W+W'} = \langle \begin{pmatrix} 2\\3\\-1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 3\\6\\-2\\2 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\4 \end{pmatrix} \rangle$$

Bemerkung:

Die Richtigkeit der Anzahl der Basisvektoren kann man hier auch leicht mithilfe der Dimensionsformel überprüfen:

$$\dim(W+W') = \dim(W) + \dim(W') - \dim(W \cap W') = 3 + 2 - 1 = 4.$$

Aufgabe 3 Basen von Matrixräumen

Sei K ein Körper, $m, n \in \mathbb{N}$. Gebe für jeden der folgenden K-Vektorräume eine Basis an und zeige, dass diese tatsächlich eine Basis ist.

- a) $V_1 = \{m \times n \text{Matrizen "uber K}\}.$
- b) $V_2 = \{n \times n \text{ Diagonal matrizen "uber K}\}.$
- c) $V_2 = \{\text{symmetrischen } n \times n \text{ Matrizen "uber K}\}.$

Lösung:

a) $V_1 = \{m \times n - \text{Matrizen "uber K}\}.$

$$E_{i,j} = (e_{k,l})_{k=1:m,l=1:n} = \begin{cases} 1, \text{ falls } (k,l) = (i,j) \\ 0 \text{ sonst.} \end{cases}$$

Man sieht direkt dass die E_{ij} linear unabhängig sind. Außerdem sind sie auch ein Erzeugendensystem, da wir jedes Element aus V_1 wie folgt schreiben können:

$$\begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{m,1} & \cdots & a_{m,n} \end{pmatrix} = a_{1,1}E_{1,1} + a_{1,2}E_{1,2} + \cdots + a_{n,n}E_{n,n} = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{i,j}E_{i,j}$$

b) $V_2 = \{n \times n - \text{Diagonal matrizen "uber K}\}.$

$$E_i = (e_{k,l})_{k=1:n,l=1:n} = \begin{cases} 1, \text{ falls } (k,l) = (i,i) \\ 0 \text{ sonst.} \end{cases}$$

Man sieht direkt dass die E_i linear unabhängig sind. Außerdem sind sie auch ein Erzeugendensystem, da wir jedes Element aus V_2 wie folgt schreiben können:

$$\begin{pmatrix} a_{1,1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_{n,n} \end{pmatrix} = a_{1,1}E_1 + a_{2,2}E_2 + \cdots + a_{n,n}E_n = \sum_{i=1}^n a_{i,i}E_i$$

c) $V_2 = \{ \text{symmetrischen } n \times n \text{ - Matrizen "uber K} \}.$

$$E_{i,j} = (e_{k,l})_{k=1:n,l=1:n} = \begin{cases} 1, \text{falls } (k,l) = (i,j) \\ 1, \text{falls } (l,k) = (i,j) \\ 0 \text{ sonst.} \end{cases}, \text{ mit } i \ge j$$

Man sieht direkt dass die $E_{i,j}$ linear unabhängig sind. Außerdem sind sie auch ein Erzeugendensystem, da wir jedes Element aus V_3 wie folgt schreiben können:

$$\begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{pmatrix} = a_{1,1}E_{1,1} + a_{2,1}E_{2,1} + \cdots + a_{n,n}E_{n,n} = \sum_{i=1}^{n} \sum_{j=1}^{i} a_{i,j}E_{i,j}$$

Aufgabe 4 (*) Lineare Unabhängigkeit und Basen von Abbildungsräumen Sei M eine nichtleere Menge. Man betrachte nun den K-Vektorraum V := Abb(M, K) und für alle $x \in M$ die charakteristische Funktion $\chi_x : M \to K$ gegeben via

$$\chi_x(y) = \begin{cases} 0, \text{ falls } y \neq x, \\ 1, \text{ falls } y = x. \end{cases}$$

Zeige:

- a) Für n paarweise verschiedene $x_1, ..., x_n \in M$ sind $\chi_{x_1}, ..., \chi_{x_n} \in V$ linear unabhängig.
- b) Falls $M = \{x_1, ..., x_n\}$, dann bilden die $\chi_{x_1}, ..., \chi_{x_n}$ eine Basis von V.
- c) Falls M nicht endlich ist, bildet die Menge $\{\chi_x \mid x \in M\}$ kein Erzeugendensystem von V.

Lösung:

Vorbemerkung: Die Addition und Skalarmultiplikation ist punktweise definiert. D.h. für $f, g \in V$ und $\lambda \in \mathbb{K}$ gilt

$$(f+g)(t) = f(t) + g(t), \quad (\lambda f)(t) = \lambda f(t).$$

(a) Sei $n \in \mathbb{N}$ und $x_1, \ldots, x_n \in M$ paarweise verschieden. Wir betrachten

$$\lambda_1 \chi_{x_1} + \lambda_2 \chi_{x_2} + \dots + \lambda_n \chi_{x_n} = 0$$
 (die Nullfunktion).

Einsetzen von x_i in die Funktion

$$(\lambda_1 \chi_{x_1} + \lambda_2 \chi_{x_2} + \dots + \lambda_n \chi_{x_n})(x_i) = 0(x_i) = 0 \text{ (Null in } \mathbb{K})$$

ergibt

$$\lambda_i = \lambda_1 \chi_{x_1}(x_i) + \lambda_2 \chi_{x_2}(x_i) + \dots + \lambda_n \chi_{x_n}(x_i) = 0.$$

Somit sind die χ_{x_i} linear unabhängig.

(b) Wir müssen zeigen, dass die $\chi_{x_1}, \ldots, \chi_{x_n}$ ein Erzeugendensystem bilden. Sei also $f \in V = \text{Abb}(M, \mathbb{K})$, desweiteren betrachten wir

$$f(x_1)\chi_{x_1} + f(x_2)\chi_{x_2} + \dots + f(x_n)\chi_{x_n} \in V.$$

Ausgewertet an x_i erhalten wir:

$$(f(x_1)\chi_{x_1} + f(x_2)\chi_{x_2} + \dots + f(x_n)\chi_{x_n})(x_i) = f(x_i)$$

$$\Rightarrow f(x_1)\chi_{x_1} + f(x_2)\chi_{x_2} + \dots + f(x_n)\chi_{x_n} = f,$$

somit bilden die $\{\chi_{x_i}\}$ eine Basis.

(c) Betrachte die konstante Eins Funktion $1 \equiv f \in V$. Sei weiter eine beliebige Linearkombination der $\{\chi_{x_i}|x\in M\}$ gegeben:

$$\lambda_1 \chi_{x_1} + \lambda_2 \chi_{x_2} + \dots + \lambda_n \chi_{x_n}.$$

Da $|M| = \infty$ existiert ein $y \in M$ mit $y \notin \{x_1, \dots, x_n\}$. Für dieses Element gilt dann:

$$(\lambda_1 \chi_{x_1} + \lambda_2 \chi_{x_2} + \dots + \lambda_n \chi_{x_n})(y) = 0,$$

sodass $f \notin \langle \{\chi_{x_i}\} \rangle$ gilt und somit $\langle \{\chi_{x_i}\} \rangle \subsetneq V$. Also sind sie kein Erzeugendensystem.

Aufgabe 5 Dimension von Erzeugnissen

Sei $t \in \mathbb{R}$ und $U_t = \langle (0,1,1)^T, (4,1,0)^T, (1,t,t^2)^T \rangle \subseteq \mathbb{R}^3$. Berechne dim (U_t) .

Lösung:

Für $t \in \mathbb{R}$ und $U_t = \langle (0, 1, 1), (4, 1, 0), (1, t, t^2) \rangle \subseteq \mathbb{R}^3$.

Die Dimension von U_t ist die Gleiche wie die Anzahl der Basiselemente. Für $t \in \mathbb{R}$:

$$\begin{pmatrix} 0 & 1 & 1 \\ 4 & 1 & 0 \\ 1 & t & t^2 \end{pmatrix} \longrightarrow \begin{pmatrix} 4 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & t - \frac{1}{4} & t^2 \end{pmatrix} \longrightarrow \begin{pmatrix} 4 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & t^2 - t + \frac{1}{4} \end{pmatrix}$$

Wegen $t^2 - t + \frac{1}{4} = (t - \frac{1}{2})^2 = 0 \iff t = \frac{1}{2}$:

$$\dim U_t = \begin{cases} 2, & t = \frac{1}{2}, \\ 3, & sonst. \end{cases}$$

Aufgabe 6 (*) Bedingungen an Lineare Unabhängigkeit

Beweise folgende Aussagen:

a) Für einen Körper K sind zwei Vektoren $a=(a_1,\ldots,a_n)$ und $b=(b_1,\ldots,b_n)\in K^n$ genau

dann linear unabhängig, wenn ein Paar $i \neq j$ existiert mit $a_i b_j - a_j b_i \neq 0$.

b) Sei $v_1, \ldots, v_n \in V$ eine Basis eines K-Vektorraumes V. Für $a_{11}, a_{12}, a_{21}, a_{22} \in K$ definiere

$$w_1 := a_{11}v_1 + a_{12}v_2, \quad w_2 := a_{21}v_1 + a_{22}v_2.$$

Zeige: es ist $w_1, w_2, v_3, \ldots, v_n$ genau dann eine Basis von V, wenn $a_{11}a_{22} - a_{12}a_{21} \neq 0$. Hinweis: Kontraposition ist hilfreich.

Lösung:

a) " \Longrightarrow " Beweis per Kontrapostition.

Angenommen $a_ib_j - a_jb_i = 0 \ \forall i, j \in [n]$. Ist a = 0, so ist $\{a, b\}$ trivialerweise linear abhängig. O.B.d.A also $a \neq 0$. Wähle dann i minimal mit $a_i \neq 0$ und setzte $\mu = -a_i, \lambda = b_i$. Dann gilt:

$$\lambda a_k + \mu b_k = b_i a_k - a_i b_k = 0 \ \forall \ 1 \le k \le n \quad \Rightarrow \quad \lambda a + \mu b = 0$$

und es ist eine nicht triviale Linearkombination der 0 gefunden. Damit sind die zwei Vektoren linear abhängig.

" = " Beweis per Kontraposition.

Angenommen a und b sind linear abhängig und wieder o.B.d.A. $a, b \neq 0$ (in den Fällen ist die Aussage trivialerweise wahr). Dann existiert per Definition also $\lambda \in K \setminus \{0\}$ so dass gilt:

$$\lambda a = b$$

also $\lambda a_k = b_k \ \forall \ 1 \le k \le n$. D.h. für $i, j \in [n]$ beliebig gilt:

$$\lambda a_i = b_i, \lambda a_j = b_j \quad \Rightarrow \quad \lambda a_i b_j = b_i b_j = \lambda b_i a_j$$

Wegen $\lambda \neq 0$ folgt daraus schließlich $a_i b_j - a_j b_i = 0 \ \forall i, j \in [n]$.

b) " \Leftarrow " Angenommen $w_1, w_2, v_3, \ldots, v_n$ ist eine Basis. Dann sind also w_1 und w_2 linear unabhängig und damit $a_{11} \neq 0$ oder $a_{21} \neq 0$. Betrachte nun

$$a_{21}w_1 - a_{11}w_2 = (a_{11}a_{21} - a_{21}a_{11})v_1 + (a_{12}a_{21} - a_{11}a_{22})v_2 = (a_{12}a_{21} - a_{11}a_{22})v_2 \neq 0 \iff a_{12}a_{21} - a_{11}a_{22} \neq 0$$

" ⇒ " Beweis per Kontraposition.

Angenommen $w_1, w_2, v_3, \ldots, v_n$ ist keine Basis. Da $\{w_1\}$ bzw. $\{w_2\}$ linear unabhängig von $\{v_3, \ldots, v_n\}$ (noch zeigen?) muss damit $\{w_1, w_2\}$ linear abhängig sein. Damit existiert also ein $\lambda \in K$ mit $w_1 = \lambda w_2$. Gilt $\lambda = 0$ so ist wegen der linearen Unabhängigkeit von $\{v_1, v_2\}$ $a_{11} = a_{12} = 0$ und die Aussage damit gezeigt.

Betrachte nun den Fall $\lambda \neq 0$. Dann gilt wieder wegen der linearen Unabhänigkeit von $\{v_1, v_2\}$:

$$w_{1} = a_{11}v_{1} + a_{12}v_{2} = \lambda w_{2} = \lambda a_{21}v_{1} + \lambda a_{22}v_{2}$$

$$\iff (a_{11} - \lambda a_{21})v_{1} + (a_{12} - \lambda a_{22})v_{2} = 0$$

$$\iff a_{11} - \lambda a_{21} = 0, \quad a_{12} = \lambda a_{22}$$

$$\iff a_{11}\lambda a_{22} - \lambda a_{21}\lambda a_{22} = \lambda (a_{11}a_{22} - a_{21}a_{12}) = 0$$

Und wegen $\lambda \neq 0$ folgt die Behauptung.

2. Lineare Abbildungen

Aufgabe 7 Linear?!

Entscheide mit Begründung, ob die folgenden Abbildungen linear sind.

a)
$$F: \mathbb{R} \to \mathbb{R}, x \mapsto |x|$$

- b) $F: \mathbb{R}^2 \to \mathbb{R}^2, (x,y) \mapsto xy$
- c) $F: \mathbb{R}^2 \to \mathbb{R}^2, (x, y) \mapsto (2x, y x)$
- d) $F: \mathbb{R}^4 \to \mathbb{R}^4, v \mapsto -v$
- e) $F: \mathbb{R}^3 \to \mathbb{R}^3, v \mapsto v + (0, 1, 0)$
- f) $F: \mathbb{R}^3 \to \mathbb{R}^2, (x, y, z) \mapsto (x, y)$

Anmerkung:

$$\mathbb{K}^{n} \to \mathbb{K}^{m} \text{ } \mathbb{K}\text{-linear}$$

$$\Leftrightarrow \forall \alpha \in \mathbb{K}, \ \forall x, y \in \mathbb{K}^{n} : f(x+y) = f(x) + f(y), f(\alpha x) = \alpha f(x)$$

$$\Leftrightarrow \forall \alpha \in \mathbb{K}, \ x, y \in \mathbb{K}^{n} : f(\alpha x + y) = \alpha f(x) + f(y)$$

 $(\star \to \text{klar}, \leftarrow \text{setze } \alpha = 1., \text{ bzw. } y = 0_+)$

- (a) $F: \mathbb{R} \to \mathbb{R}, x \mapsto |x|$ Nope. $f(-1+1) = f(0) = |0| = 0 \neq 2 = |-1| + |1| = f(-1) + f(1)$
- (b) $F: \mathbb{R}^2 \to \mathbb{R}^2, (x, y) \mapsto xy$ Nope. Sei $\alpha := 2, (x, y) := (1, 1) : f(2 \cdot (1, 1)) = f((2, 2)) = 2 \cdot 2 = 4 \neq 2 = 2 \cdot f((1, 1))$
- (c) $F: \mathbb{R}^2 \to \mathbb{R}^2, (x, y) \mapsto (2x, y x)$ True. Sei $\alpha \in \mathbb{R}, v_i := (x_i, y_i) \in \mathbb{R}^2 : f(\alpha v_1 + v_2) = f((\alpha x_1 + x_2, \alpha y_1 + y_2)) = (2(\alpha x_1 + x_2), \alpha y_1 + y_2 - \alpha x_1 + x_2) = (\alpha 2x_1, \alpha (y_1 - x_1)) + (2x_2, y_2 - x_2) = \alpha f(v_1) + f(v_2)$
- (d) $F: \mathbb{R}^4 \to \mathbb{R}^4, v \mapsto -v$ Ja, sieht man durch einfaches nachrechnen.
- (e) $F: \mathbb{R}^3 \to \mathbb{R}^3, v \mapsto v + (0, 1, 0)$ Nope. Sei $v = (0, 0, 0), \alpha = 0.5: f(\alpha v) = f((0, 0, 0)) = (0, 1, 0) \neq (0, 0.5, 0) = \alpha f((0, 0, 0))$
- (f) $F: \mathbb{R}^3 \to \mathbb{R}^2, (x, y, z) \mapsto (x, y)$ Ja, sieht man auch durch einfaches nachrechnen.

Aufgabe 8 Bedingungen an Linearität

Seien V und W Vektorräume über \mathbb{R} . Sei $f:V\to W$ eine Abbildung. Zeige:

- (a) Die Abbildung f ist genau dann linear, wenn die folgenden Bedingungen erfüllt sind:
 - (i) $f(av_1 + (1-a)v_2) = af(v_1) + (1-a)f(v_2)$ für alle $a \in \mathbb{R}$ und $v_1, v_2 \in V$,
 - (ii) f(0) = 0.
- (b) Erfüllt f die Bedingung (i) aus Teil (a) und ist $w \in W$, dann erfüllt auch die Abbildung $g: V \to W$ gegeben durch $v \mapsto f(v) + w$ die Bedingung (i).
- (c) Erfüllt f die Bedingung (i) aus Teil (a), dann gibt es eine eindeutig bestimmte lineare Abbildung $g: V \to W$ und ein eindeutig bestimmtes Element \widetilde{w} mit $f(v) = g(v) + \widetilde{w}$ für alle $v \in V$.

(a) Die Abbildung f ist genau dann linear, wenn die folgenden Bedingungen erfüllt sind:

(i)
$$f(av_1 + (1-a)v_2) = af(v_1) + (1-a)f(v_2)$$
 für alle $a \in \mathbb{K}$ und $v_1, v_2 \in V$,

(ii)
$$f(0) = 0$$
.

Hinrichtung folgt aus der Definiton linearer Abbildungen.

Rückrichtung. Es seien (i) und (ii) erfüllt. Dann folgt:

$$f(av_1) = f(av_1 + (1-a)0) = af(v_1) + (1-a)f(0) = af(v_1)$$
 (*),

und

$$f(v_1 + v_2) = f\left(2\frac{v_1}{2} + (1 - 2)(-a_2)\right) = 2f\left(\frac{v_1}{2}\right) + (1 - 2)f(-v_2) = f(v_1) + f(v_2).$$

(b) Erfüllt f die Bedingung (i) aus Teil (a) und ist $w \in W$, dann erfüllt auch die Abbildung $g: V \to W$ gegeben durch $v \mapsto f(v) + w$ die Bedingung (i). Es gilt:

$$g(av_1 + (1 - a)v_2) = f(av_1 + (1 - a)v_2) + w$$

$$= f(av_1 + (1 - a)v_2) + aw + (1 - a)w$$

$$= af(v_1) + (1 - a)f(v_2) + aw + (1 - a)w$$

$$= a(f(v_1) + w) + (1 - a)(f(v_2) + w)$$

$$= ag(v_1) + (1 - a)g(v_2).$$

(c) Erfüllt f die Bedingung (i) aus Teil (a), dann gibt es eine eindeutig bestimmte lineare Abbildung $g: V \to W$ und ein eindeutig bestimmtes Element \widetilde{w} mit $f(v) = g(v) + \widetilde{w}$ für alle $v \in V$.

Angenommen g ist eine lineare Abbildung mit $f(v) = g(v) + \tilde{w}$ für alle $v \in V$. Dann folgt $\tilde{w} = g(0) + \tilde{w} = f(0)$. Also ist \tilde{w} eindeutig bestimmt und die einzige Abbildung, die die Gleichung erfüllen kann ist $\tilde{g}(v) := f(v) - f(0)$. Nach (b) erfüllt \tilde{g} (i) und da $\tilde{g}(0) = f(0) - f(0) = 0$, erfüllt \tilde{g} auch (ii). Nach (a) ist \tilde{g} eine lineare Abbildung.

Aufgabe 9 Linearität über Matrizen

Sei $M = M_n(\mathbb{R})$ der \mathbb{R} -Vektorraum der $n \times n$ -Matrizen. Betrachte:

$$Q: M_n(\mathbb{R}) \longrightarrow M_n(\mathbb{R}), A \mapsto A - A^T$$

- a) Zeige, dass Q linear ist.
- b) Beschreibe $\ker Q$ und bestimme dim $\ker Q$.
- c) Beschreibe imQ.

Lösung:

(a) Zeige, dass Q linear ist: Sei $\alpha \in \mathbb{R}$, $A, B \in M_n(\mathbb{R})$:

$$Q(\alpha A + B) = (\alpha A + B) - (\alpha A + B)^{T} = \alpha (A - A^{T}) + B - B^{T} = \alpha Q(A) + Q(B)$$

(b) Beschreibe Ker Q und bestimme dim Ker Q: Sei $A \in M_n(\mathbb{R})$:

$$Q(A) = 0 \iff A - A^T = 0 \iff A = A^T$$

Damit liegt A im Kern von Q genau dann, wenn A symmetrisch ist. Von Blatt 5, Aufgabe 5 kennen wir die Basis der symmetrischen Matrizen.

$$\implies \dim \operatorname{Ker} Q = \sum_{i=1}^{n} j = \frac{n(n+1)}{2}$$

(c) Wir behaupten: Das Bild sind alle schiefsymmetrischen Matrizen. Sei also $B \in \text{im } Q$, dann gilt $B = A - A^T$ für ein geeignetes A. Daraus folgt $B^T = (A - A^T)^T = A^T - A = -B$. Sei nun B schiefsymmetrisch, dann lässt sich offensichtlich B schreiben als $B = E - E^T$ mit E einer echten oberen Dreiecksmatrix (auf der Diagonalen müssen Nullen stehen!). Somit ist B im Bild und wir sind fertig.

Aufgabe 10 Kern und Bild von linearen Abbildungen

Sei $f: V \longrightarrow W$ eine lineare Abbildung. Man beweise:

- (a) Für jeden Unterraum $U \subset V$ gilt $f^{-1}(f(U)) = U + \ker f$.
- (b) Für jeden Unterraum $U' \subset W$ gilt $f(f^{-1}(U')) = U' \cap \text{im } f$.
- (c) Die Abbildung

 $\{U \subseteq V | U \text{ ist UVR mit } \ker f \subseteq U\} \to \{U' \subseteq W | U' \text{ ist UVR mit } U' \subseteq \operatorname{im} f\}, \ U \mapsto f(U)$ ist eine wohldefinierte Bijektion mit inverser Abbildung $U' \mapsto f^{-1}(U')$.

Lösung:

(a) Für jeden Unterraum $U \subset V$ gilt $f^{-1}(f(U)) = U + \text{Ker } f$. 'C': Sei $u \in f^{-1}(f(U)) \Longrightarrow \exists a \in U$:

$$f(u) = f(a) \iff f(u - a) = 0 \implies u = a + (u - a) \in U + \operatorname{Ker} f.$$

'\[
\]': Sei $v + k \in U + \operatorname{Ker} f$:

$$f(v+k) = f(v) \in f(U) \Longrightarrow v+k \in f^{-1}(f(U)).$$

(b) Für jeden Unterraum $U' \subset W$ gilt $f(f^{-1}(U')) = U' \cap \text{Bild } f$. ' \subseteq ': Sei $u \in f(f^{-1}(U')) \subseteq \text{Bild } f \Longrightarrow \exists a \in f^{-1}(U')$:

$$u = f(a) \in U' \Longrightarrow u \in U' \cap \text{Bild } f.$$

'⊇': Sei $v \in U' \cap \text{Bild } f \Longrightarrow \exists a \in V$:

$$f(a) = v \in U' \Longrightarrow a \in f^{-1}(U') \Longrightarrow v = f(a) \in f(f^{-1}(U')).$$

(c) Die Abbildung

 $\{U \subseteq V | U \text{ ist UVR mit } \operatorname{Ker} f \subseteq U\} \to \{U' \subseteq W | U' \text{ ist Unterraum mit } U' \subseteq \operatorname{Bild} f\}, U \mapsto f(U)$ ist eine wohldefinierte Bijektion mit inverser Abbildung $U' \mapsto f^{-1}(U')$.

Da das Bild von einem Unterraum unter einer linearen Abbildung wieder einen Unterraum bildet (nach Vorlesung) ist diese Abbildung wohldefiniert.

$$f^{-1}(f(U)) \stackrel{a)}{=} U + \text{Ker } f = U$$
, aufgrund der Definition Ker $f \subseteq U$, $f(f^{-1}(U')) \stackrel{b)}{=} U' \cap \text{Bild } f = U'$ aufgrund der Definition $U' \subseteq \text{Bild } f$.

Somit handelt es sich um eine Bijektion.

Damit dies gilt verwenden wir folgendes praktische (und oft anwendbare) Resultat:

Seien $f: V \longrightarrow W$, $g: W \longrightarrow V$ Abbildungen mit $f \circ g = id_W$ und $g \circ f = id_V$. Dann gilt: f, g bijektiv mit $f^{-1} = g$.

Beweis: Aus $g \circ f = id_V$ folgt (i) f injektiv, (ii) g surjektiv:

(i) Seien $a, b \in V$ mit f(a) = f(b).

$$\implies q \circ f(a) = q \circ f(b) \iff id_V(a) = id_v(b) \iff a = b$$

Somit ist f nach Definition injektiv.

(ii) Sei $c \in V$.

$$v = id_V(v) = g \circ \underbrace{f(v)}_{:=w} = g(w), \text{ mit } w \in W$$

Somit ist q surjektiv, da wir für jedes Element in V ein Urbild gefunden haben.

Analog können wir aus $f \circ g = id_W$ folgern dass g injektiv und f surjektiv ist. Insgesamt haben wir also gezeigt dass sowohl f als auch g eine Bijektion ist und insbesondere sie zueinander die Inversen sind.

Das heißt sobald wir die beidseitige Inverse nachgerechnet haben wissen wir dass die Abbildung

Aufgabe 11 Rang und Inverse Berechnen

Bestimmen Sie den Rang von A und B und, wenn möglich, die Inversen A^{-1} , B^{-1} .

$$A = \begin{pmatrix} 1 & 0 & -1 & 3 \\ 0 & 1 & 2 & 1 \\ 1 & 1 & 0 & 3 \\ 2 & 1 & 1 & 7 \end{pmatrix}, \quad \text{und} \quad B = \begin{pmatrix} 1 & -1 & -1 & -2 \\ 2 & 0 & 4 & 3 \\ 1 & -2 & -2 & 1 \\ 4 & -3 & 1 & 2 \end{pmatrix}$$

11

Teil 1:

$$A = \begin{pmatrix} 1 & 0 & -1 & 3 \\ 0 & 1 & 2 & 1 \\ 1 & 1 & 0 & 3 \\ 2 & 1 & 1 & 7 \end{pmatrix}$$

Wir bringen A auf Zeilenstufenform und erhalten:

$$\begin{pmatrix}
1 & 0 & -1 & 3 \\
0 & 1 & 2 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix}$$

Da die Zeilen offensichtlich linear unabhängig sind, gilt: rang(A) = 4.

Wir bestimmen nun die Inverse über folgenden Ansatz:

$$\begin{pmatrix}
1 & 0 & -1 & 3 & 1 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\
2 & 1 & 1 & 7 & 0 & 0 & 0 & 1
\end{pmatrix}$$

Anwendung des Gauß-Alogorithmus (Umformen der linken Seite auf die Identitätsmatrix) liefert die Inverse Matrix A^{-1} auf der rechten Seite.

$$A^{-1} = \begin{pmatrix} -10 & -7 & 3 & 4\\ 1 & 1 & 1 & -1\\ -2 & -1 & 0 & 1\\ 3 & 2 & -1 & -1 \end{pmatrix}$$

Teil 2:

$$B = \begin{pmatrix} 1 & -1 & -1 & -2 \\ 2 & 0 & 4 & 3 \\ 1 & -2 & -2 & 1 \\ 4 & -3 & 1 & 2 \end{pmatrix}$$

Wir bringen B auf Zeilenstufenform und erhalten:

$$\begin{pmatrix}
1 & -1 & -1 & -2 \\
0 & 1 & 5 & 10 \\
0 & 0 & 4 & 13 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

Also besitzt B rang 3 und ist somit nicht invertierbar.

Aufgabe 12 Schlangenlemma

Sei K Körper, V_1, V_2, V_3, V_4 endl. dimensionale Vektorräume mit linearen Abbildungen $f_1: V_1 \to V_2, f_2: V_2 \to V_3, f_3: V_3 \to V_4, f_4: V_4 \to V_1$. Es gelte im $f_1 = \ker f_2, \operatorname{im} f_2 = \ker f_3, \operatorname{im} f_3 = \ker f_4, \operatorname{im} f_4 = \ker f_1$. Zeige, dass

$$\dim(V_1) - \dim(V_2) + \dim(V_3) - \dim(V_4) = 0.$$

Lösung:

Nach Dimensionssatz gilt:

$$\dim(V_i) = \dim(im(f_i)) + \dim(kern(f_i))
0 = \dim(V_4) - \dim(V_4)
= \dim(im(f_4)) + \dim(kern(f_4)) - \dim(V_4)
= \dim(kern(f_1)) + \dim(im(f_3)) - \dim(V_4)
= \dim(V_1) - \dim(kern(f_2)) + \dim(im(f_3)) - \dim(V_4)
= \dim(V_1) - \dim(V_2) + \dim(im(f_2)) + \dim(V_3) - \dim(kern(f_3)) - \dim(V_4)
= \dim(V_1) - \dim(V_2) + \dim(kern(f_3)) + \dim(V_3) - \dim(kern(f_3)) - \dim(V_4)
= \dim(V_1) - \dim(V_2) + \dim(V_3) - \dim(V_4)$$

Aufgabe 13 Nilpotente lineare Abbildung

Sei K ein Körper und V ein K-Vektorraum. Sei $f:V\longrightarrow V$ eine lineare Abbildung mit $f^r=0$ für ein $r\in\mathbb{N}$. Zeige id $_V-f$ ist ein Isomorphismus.

Lösung:

 $\mathrm{id}_V - f$ ist linear: Seien $\lambda \in K$, $v, w \in V$:

$$(id_V - f)(\lambda v + w) = \lambda v + w - f(\lambda v + w) = \lambda(v - f(v)) + w - f(w) = \lambda(id_V - f)(v) + (id_V - f)(w)$$

Wir geben die Inverse an und rechnen dies nach:

$$(\mathrm{id}_V - f)^{-1} = \sum_{j=0}^{r-1} f^j$$

$$(\mathrm{id}_V - f)^{-1} \circ (\mathrm{id}_V - f) = \sum_{j=0}^{r-1} f^j \circ (\mathrm{id}_V - f) = \sum_{j=0}^{r-1} (f^j - f^{j+1}) = \mathrm{id}_V - f^r = \mathrm{id}_V$$

$$(\mathrm{id}_V - f) \circ (\mathrm{id}_V - f)^{-1} = (\mathrm{id}_V - f) \circ (\sum_{j=0}^{r-1} f^j) = \sum_{j=0}^{r-1} (f^j - f^{j+1}) = \mathrm{id}_V - f^r = \mathrm{id}_V$$

 \implies id_V - f ist ein Isomorphismus.

Aufgabe 14 Spur einer Matrix

Sei K ein Körper und $tr: M_n(K) \to K$ definiert als $tr((a_{ij})) = \sum_{i=1}^n a_{ii}$. Für eine Matrix A heißt tr(A) die Spur von A. Beweise:

- a) Die Abbildung $tr: M_n(K) \to K$ ist linear.
- b) Seien $A, B, C \in M_n(K)$, dann gilt tr(AB) = tr(BA) und tr(ABC) = tr(CAB) = tr(BCA).
- c) Finde Matrizen A, B, C mit $tr(ABC) \neq tr(ACB)$.

a) Die Abbildung $tr: M_n(K) \to K$ ist linear. Seien $\lambda \in K, A, B \in M_n(K)$ mit

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & & \dots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}, \quad B = \begin{pmatrix} b_{11} & \dots & b_{1n} \\ \dots & & \dots \\ b_{n1} & \dots & b_{nn} \end{pmatrix}$$

$$tr(\lambda A + B) = tr(\begin{pmatrix} \lambda a_{11} + b_{11} & \dots & \lambda a_{1n} + b_{1n} \\ \dots & & \dots \\ \lambda a_{n1} + b_{n1} & \dots & \lambda a_{nn} + b_{nn} \end{pmatrix}) = \sum_{i=1}^{n} (\lambda a_{ii} + b_{ii}) = \lambda \sum_{i=1}^{n} a_{ii} + \sum_{i=1}^{n} b_{ii} = \lambda tr(A) + tr(B)$$

Also ist tr eine lineare Abbildung.

b) Seien $A, B, C \in M_n(K)$.

1.Teil: z.z. tr(AB) = tr(BA)

 $(AB)_{ii} = \sum_{k=1}^{n} a_{ik} b_{ki}$

$$tr(AB) = \sum_{i=1}^{n} (AB)_{ii} = \sum_{i=1}^{n} (\sum_{k=1}^{n} a_{ik} b_{ki}) = \sum_{k=1}^{n} (\sum_{i=1}^{n} b_{ki} a_{ik}) = \sum_{k=1}^{n} (BA)_{kk} = tr(BA)$$

 $\underline{2. \text{ Teil:}} \text{ z.z. } \operatorname{tr}(ABC) = \operatorname{tr}(CAB) = \operatorname{tr}(BCA)$

$$tr(ABC) = tr(DC) = tr(CD) = tr(CAB) = tr(EB) = tr(BE) = tr(BCA),$$

wobei D := AB und E := CA.

In der 2. und 5. Ungleichung wurde das Ergebnis aus Teil 1 verwendet.

c) Finde Matrizen A, B, C mit $tr(ABC) \neq tr(ACB)$. Betrachte $A, B, C \in M_2(K)$ mit

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, C = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Dann gilt:

$$ABC = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \quad ACB = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$$

Somit gilt: $tr(ABC) = 0 \neq tr(ACB)$