Misura del coefficiente di restituzione analisi dati

Ali Matteo, Broggi Diana, Cantarini Giulia

Pallina da ping pong su parquet

metodo 1

Tabelle della altezza massima raggiunta dopo il primo rimbalzo in cm.

Altezza di partenza : $h_0 = 5 \text{cm}$

h_1 4.40 4.50 4.40 4.60 4.60 4.30 4.50 4.60	4.50 4.70
---	-----------

Altezza di partenza : $h_0 = 7.5 \mathrm{cm}$

\overline{h}_1	6.60	$6.\overline{70}$	$6.\overline{70}$	$6.\overline{90}$	$6.\overline{70}$	$6.\overline{90}$	$6.\overline{90}$	$6.\overline{80}$	$6.\overline{90}$	$6.\overline{80}$

Altezza di partenza : $h_0 = 8 \text{ cm}$

h_1	7.40	7.50	7.40	7.50	7.50	7.30	7.40	7.50	7.40	7.30
-------	------	------	------	------	------	------	------	------	------	------

Altezza di partenza : $h_0 = 10 \mathrm{cm}$

$h_1 \mid 8.80 9.00 8.90 8.70 8.90 8.90 8.70 8.90$	8.70 9.0	00

Altezza di partenza : $h_0 = 18$ cm

h_1 15.7 15.8 15.8 15.6 16.0 15.4 15.9 15.5 16.0 16.1	$h_1 \mid 1$	15.7	15.8	15.8	15.6	16.0	15.4	15.9	15.5	16.0	16.1
---	--------------	------	------	------	------	------	------	------	------	------	------

Altezza di partenza : $h_0 = 30 \text{ cm}$.

h_1 24.8 24.8 25.0 24.9 24.9 25.0 24.9 25.1 25.1 25.1

pallina da ping pong: media ed errore sulla media delle altezze h_1 :

$h_0 \text{ (cm)}$	media h_1 (cm)	σ_m (cm)
5	4.51	0.04
7.5	6.79	0.03
8	7.42	0.02
10	8.85	0.04
18	15.78	0.07
30	24.96	0.04

Figura 1: $h1_{(h0)}$ - pallina da ping pong su parquet

Interpolazione lineare con il metodo dei minimi quadrati pesati

$$con \quad \Delta = N(\sum \frac{x_i^2}{\sigma_{y_i}^2}) - (\sum \frac{x_i}{\sigma_{y_i}^2})^2$$

$$B = \frac{N\left(\sum \frac{x_i y_i}{\sigma_{y_i}^2}\right) - \sum \frac{x_i}{\sigma_{y_i}^2} \sum \frac{y_i}{\sigma_{y_i}^2}}{\Delta} \quad \sigma_B = \sqrt{\frac{\sum \frac{1}{\sigma_{y_i}^2}}{\Delta}} \quad \Rightarrow \quad B = 0.814 \pm 0.002$$

$$A = \frac{\sum \frac{(x_i)^2}{\sigma_{y_i}^2} \sum \frac{(y_i)^2}{\sigma_{y_i}^2} - \sum \frac{x_i}{\sigma_{y_i}^2} \sum \frac{x_i y_i}{\sigma_{y_i}^2}}{\Delta} \quad \sigma_A = \sqrt{\frac{\sum \frac{x^2}{\sigma_{y_i}^2}}{\Delta}} \quad \Rightarrow \quad A = 0.75 \pm 0.03$$

Figura 2: $h\mathbf{1}_{(h_0)}$ - pallina da ping pong - interpolazione

Stima del coefficiente di restituzione e della sua incertezza

$$ev = \sqrt{\frac{h_1}{h_0}} \to ev = \sqrt{B}$$

dove B = coefficiente angolare della retta $h_1(h_0)$

propagazione degli errori
$$\rightarrow \quad \sigma_{ev} = \frac{\sigma_B}{2\sqrt{B}}$$

$$ev = 0.902 \pm 0.001$$

Test del chi quadro

$$\chi^2 = \sum \left(\frac{y_i - A - BX_i}{\sigma_i}\right)^2 = 14$$

considerando 4 gradi di libertà $\tilde{\chi}^2=3.5 \to \text{probabilità}$ pari a 0.7% che le misure abbiano seguito la distribuzione lineare assunta.

Poichè la probabilità è inferiore al 5 %, supponiamo di aver commesso errori sistematici nella stima di ev.

Il contributo dell'attrito aereo una volta superata una altezza limite è pari a

$$\frac{F_{attrito~aereo}}{F_{peso}} = \frac{\rho_{aria}\pi \cdot 0.4d^2}{4m} h_{lim}$$

considerando $h_{lim}=10cm$, la massa della pallina come 0.0027Kg ed il diametro d=0.055 metri, tale rapporto equivale a: 0.043.

 \rightarrow l'effetto dell'accelerazione di gravità sulla pallina, a causa dell'attrito, è ridotto del 4.3%.

Abbiamo corretto l'errore riducendo la regione di interpolazione al di sotto dei 10 cm:

$$B = 0.944 \pm 0.015$$

$$A = (-0.18 \pm 0.11)cm$$

dai risultati della interpolazione corretta possiamo stimare nuovamente il coefficciente di restituzione come $ev=0.971\pm0.008$

$$\chi^2 corretto = 0.697$$

nel caso con soli 3 punti possiamo considerare l'ipotesi vera, con una sicurezza del 37 %. Questa stima corretta del coefficiente di restituzione verrà confrontata con quella ricavata con il metodo 2.

metodo 2 Intervalli misurati da 8cm in secondi:

numero rimbalzo	lancio1	lancio 2	lancio3	lancio 4	lancio 5	media
1	0.255	0.253	0.251	0.250	0.249	0.2516 ± 0.0010
2	0.242	0.239	0.238	0.237	0.236	0.2384 ± 0.0010
3	0.226	0.233	0.226	0.225	0.223	0.2270 ± 0.0018
4	0.217	0.213	0.213	0.214	0.212	0.2140 ± 0.0009
5	0.207	0.202	0.203	0.203	0.201	0.2033 ± 0.0009
6	0.196	0.191	0.193	0.193	0.192	0.1928 ± 0.0008
7	0.183	0.182	0.183	0.183	0.182	0.1825 ± 0.00015
8	0.174	0.173	0.175	0.174	0.174	0.1738 ± 0.0003

Intervalli misurati da 10cm in secondi:

numero rimbalzo	lancio1	lancio 2	lancio3	lancio4	lancio 5	media
1	0.277	0.273	0.275	0.277	0.274	0.2751 ± 0.0007
2	0.262	0.258	0.263	0.259	0.261	0.2607 ± 0.0010
3	0.247	0.245	0.245	0.247	0.244	0.2456 ± 0.0007
4	0.235	0.235	0.231	0.234	0.231	0.2331 ± 0.0009
5	0.223	0.223	0.218	0.222	0.219	0.2211 ± 0.0011
6	0.205	0.211	0.205	0.211	0.207	0.2078 ± 0.0013
7	0.201	0.200	0.194	0.200	0.197	0.1985 ± 0.0012
8	0.190	0.190	0.185	0.190	0.187	0.1885 ± 0.0010

Intervalli misurati da 15cm in secondi:

numero rimbalzo	lancio1	lancio 2	lancio3	lancio4	lancio 5	
1	0.339	0.341	0.339	0.340	0.337	0.3390 ± 0.0006
2	0.318	0.319	0.319	0.319	0.317	0.3185 ± 0.0003
3	0.298	0.299	0.299	0.299	0.297	0.2984 ± 0.0004
4	0.281	0.282	0.282	0.281	0.280	0.2813 ± 0.0004
5	0.265	0.266	0.266	0.266	0.268	0.2663 ± 0.0005
6	0.250	0.253	0.251	0.251	0.251	0.2511 ± 0.0004
7	0.233	0.237	0.236	0.236	0.237	0.23583 ± 0.0008
8	0.219	0.225	0.224	0.224	0.224	0.2234 ± 0.0011

Intervalli misurati da 18cm in secondi:

numero rimbalzo	lancio1	lancio 2	lancio3	lancio4	lancio 5	media
1	0.363	0.368	0.367	0.368	0.362	0.3656 ± 0.0013
2	0.339	0.342	0.341	0.344	0.338	0.3410 ± 0.0011
3	0.318	0.320	0.320	0.323	0.318	0.3199 ± 0.0010
4	0.298	0.301	0.300	0.302	0.298	0.3000 ± 0.0009
5	0.282	0.283	0.282	0.285	0.281	0.2829 ± 0.0007
6	0.261	0.265	0.269	0.269	0.264	0.2657 ± 0.0014
7	0.247	0.251	0.251	0.255	0.251	0.2510 ± 0.0012
8	0.233	0.237	0.232	0.238	0.238	0.2357 ± 0.0012

Intervalli misurati da 30cm in secondi: .

numero rimbalzo	lancio1	lancio2	lancio3	lancio4	lancio5	media
1	0.462	0.459	0.460	0.463	0.460	0.4608 ± 0.0007
2	0.425	0.424	0.425	0.422	0.424	0.4231 ± 0.0005
3	0.394	0.390	0.395	0.391	0.392	0.3926 ± 0.0008
4	0.365	0.364	0.368	0.364	0.365	0.3652 ± 0.0008
5	0.344	0.340	0.339	0.340	0.340	0.3407 ± 0.0008
6	0.323	0.320	0.323	0.318	0.320	0.3206 ± 0.0009
7	0.299	0.299	0.304	0.298	0.298	0.3000 ± 0.0010
8	0.286	0.282	0.281	0.280	0.281	0.2822 ± 0.0009

Abbiamo sfruttato la relazione $log(t_n) = log(\frac{2v_0}{g}) + nlog(e_v)$, che evidenzia la dipendenza lineare del $log(t_n)$ rispetto al numero di rimbalzi n.

Figura 3: $log\Delta t_{(n)}$ - pallina da ping pong su parquet

Abbiamo ricavato il coefficiente angolare di ciascuna delle 5 rette tramite il metodo dei minimi quadrati.

Figura 4: $log\Delta t_{(n)}$ - pallina da ping pong - interpolazione

Così facendo si ottengono 5 stime del coefficiente di restituzione che possono essere combinate in una media pesata come

$$\bar{e_v} = \frac{\sum \frac{e_{vi}}{\sigma_i^2}}{\sum \frac{1}{\sigma_i^2}} \pm \sqrt{\frac{1}{\sum \frac{1}{\sigma_i^2}}}$$

dove $e_v = 10^B$, $\sigma_{ev} = \sigma_B 10^B ln(10)$. Notiamo che questa stima è molto più precisa di quella ottenuta con il metodo 1.

$$t = \frac{|ev_{metodo1} - ev_{metodo2}|}{\sqrt{\sigma_1^2 + \sigma_2^2}} = 3, 6$$

 \to la probabilità che la differenza sia dovuta solo ad errori casuali è inferiore al 0.3% consideriamo non accettabile l'ipotesi di compatibilità delle due misure.

pallina da tennis su gres porcellanato

metodo 1

Altezza di partenza : $h_0 = 65$ cm

h_1	33.0	33.5	32.0	32.8	32.1	33.1	32.7	33.6	33.1	32.1

Altezza di partenza : $h_0 = 55$ cm

h_1	28.5	29.9	28.2	28.6	29.0	30.0	29.5	28.6	28.5	30.0

Altezza di partenza : $h_0 = 45$ cm

	h_1	25.0	25.2	24.6	25.1	24.8	25.0	25.4	24.8	24.7	25.5
--	-------	------	------	------	------	------	------	------	------	------	------

Altezza di partenza : $h_0 = 35$ cm

h_1 19.5 20.5 19.4 19.8 19.0 20.4 19.4 19.8 20.3 19.5

Altezza di partenza : $h_0 = 25 \text{cm}$

h_1	12.2	12.8	13.0	12.7	12.5	13.1	13.2	13.2	13.0	13.0

pallina da tennis: media ed errore sulla media delle altezze h_1 :

$h_0 \text{ (cm)}$	media h_1 (cm)	σ_m (cm)
25	12.87	0.102
35	19.76	0.157
45	25.01	0.094
55	29.05	0.222
65	32.8	0.182

Figura
5: $h\mathbf{1}_{(h_0)}$ - pallina da tennis su gres porcellanato

Interpolazione con il metodo dei minimi quadrati pesati:

$$con \quad \Delta = N(\sum \frac{x_i^2}{\sigma_{y_i}^2}) - (\sum \frac{x_i}{\sigma_{y_i}^2})^2$$

$$B = \frac{N(\sum \frac{x_i y_i}{\sigma_{y_i}^2}) - \sum \frac{x_i}{\sigma_{y_i}^2} \sum \frac{y_i}{\sigma_{y_i}^2}}{\Lambda} \quad \sigma_B = \sqrt{\frac{\sum \frac{1}{\sigma_{y_i}^2}}{\Lambda}} \quad \Rightarrow \quad B = 0.524 \pm 0.005$$

$$A = \frac{\sum \frac{(x_i)^2}{\sigma_{y_i}^2} \sum \frac{(y_i)^2}{\sigma_{y_i}^2} - \sum \frac{x_i}{\sigma_{y_i}^2} \sum \frac{x_i y_i}{\sigma_{y_i}^2}}{\Delta} \quad \sigma_A = \sqrt{\frac{\sum \frac{x^2}{\sigma_{y_i}^2}}{\Delta}} \quad \Rightarrow \quad A = 0.559 \pm 0.2$$

Figura
6: $h1_{(h_0)}$ - pallina da tennis - interpolazione

Stima del coefficiente di restituzione e della sua incertezza

$$ev = \sqrt{\frac{h_1}{h_0}} \to ev = \sqrt{B}$$
 propagazione degli errori $\to -\sigma_{ev} = \frac{\sigma_B}{2\sqrt{B}}$
$$ev = 0.724 \pm 0.003$$

Test del chi quadro

$$\chi^2 = \sum \left(\frac{y_i - A - BX_i}{\sigma_i}\right)^2 = 27.8$$

considerando 3 gradi di libertà $\tilde{\chi}^2=13.9 \to \text{probabilità inferiore al } 0.05\%$ che le misure abbiano seguito la distribuzione lineare assunta.

Considerando $h_{lim}=50cm$, la massa della pallina come 0.056Kg ed il diametro d=0.202 metri, il contributo dell'attrito aereo su altezze di 50cm o superiori è almeno di:

$$\frac{F_{attrito~aereo}}{F_{peso}} = \frac{\rho_{aria}\pi \cdot 0.4d^2}{4m} h_{lim} = 0.14$$

poichè al di sopra dei $50 \, \mathrm{cm}$ la pallina da tennis viene trattenuta da una forza pari al $14 \, \%$ del suo peso, abbiamo ridotto la regione di interpolazione al di sotto dei $50 \, \mathrm{cm}$: i parametri della retta interpolata corretta sono

$$B = 0.606 \pm 0.007$$

$$A = (-2.13 \pm 0.26)cm$$

e ci portano a stimare il coefficiente di restituzione corretto come: $ev = 0.778 \pm 0.004$.

$$\chi^2 corretto = 2.28$$

nel caso con soli3punti possiamo considerare l'ipotesi vera, con una sicurezza del 14 %.

metodo 2 Intervalli misurati da 65cm in secondi:

numero rimbalzo	lancio1	lancio 2	lancio3	lancio 4	lancio 5	media
1	0.547	0.510	0.535	0.535	0.533	0.5319 ± 0.006
2	0.412	0.383	0.402	0.398	0.404	0.3996 ± 0.005
3	0.314	0.306	0.315	0.303	0.306	0.3087 ± 0.0024
4	0.245	0.225	0.231	0.242	0.234	0.235 ± 0.004

Intervalli misurati da 55cm in secondi:

numero rimbalzo	lancio1	lancio 2	lancio3	lancio 4	lancio 5	media
1	0.496	0.505	0.504	0.500	0.499	0.5007 ± 0.0016
2	0.384	0.386	0.375	0.375	0.382	0.3805 ± 0.0023
3	0.290	0.293	0.284	0.293	0.286	0.2894 ± 0.0018
4	0.230	0.233	0.226	0.235	0.228	0.2303 ± 0.0017

Intervalli misurati da 45cm in secondi:

numero rimbalzo	lancio1	lancio 2	lancio3	lancio4	lancio 5	media
1	0.453	0.459	0.456	0.458	0.458	0.4567 ± 0.0010
2	0.354	0.343	0.351	0.345	0.348	0.3483 ± 0.0021
3	0.263	0.256	0.264	0.276	0.270	0.266 ± 0.003
4	0.199	0.206	0.212	0.190	0.210	0.203 ± 0.004

Intervalli misurati da 35cm in secondi:

numero rimbalzo	lancio1	lancio 2	lancio3	lancio4	lancio 5	media
1	0.411	0.407	0.408	0.410	0.407	0.4087 ± 0.0009
2	0.305	0.309	0.308	0.311	0.311	0.3090 ± 0.0011
3	0.242	0.240	0.235	0.236	0.240	0.2386 ± 0.0012
4	0.178	0.183	0.177	0.177	0.186	0.1802 ± 0.0017

Intervalli misurati da 25cm in secondi:

numero rimbalzo	lancio1	lancio2	lancio3	lancio4	lancio5	media
1	0.350	0.349	0.352	0.347	0.355	0.3505 ± 0.0013
2	0.267	0.268	0.271	0.268	0.272	0.2692 ± 0.0010
3	0.203	0.215	0.209	0.203	0.206	0.2073 ± 0.0023
4	0.153	0.144	0.146	0.150	0.160	0.1508 ± 0.0027

Figura
7: $log\Delta t_{(n)}$ - pallina da tennis su gres porcellanato

Abbiamo ricavato il coefficiente angolare di ciascuna delle 5 rette tramite il metodo dei minimi quadrati.

Figura
8: $log\Delta t_{(n)}$ - pallina da tennis - interpolazione

Così facendo si ottengono 5 stime del coefficiente di restituzione che possono essere combinate in una media pesata, come per la pallina precedente.

dove $e_v = 10^B$, $\sigma_{ev} = 10^B ln(10)\sigma_B$. Notiamo che questa stima è molto più precisa di quella ottenuta con il metodo 1.

$$t = \frac{|ev_{metodo1} - ev_{metodo2}|}{\sqrt{\sigma_1^2 + \sigma_2^2}} = 3, 5$$

 \rightarrow la probabilità che la differenza sia dovuta solo ad errori casuali è inferiore al 0.3%.

pallina da golf su marmo

metodo 1

Altezza di partenza: $h_0 = 80cm$

h_1	63.7	64.6	63.2	64.1	63.8	63.5	63.7	64.2	64.3	63.2

Altezza di partenza: $h_0 = 90cm$

h_1	72.2	72.0	71.3	72.2	72.5	72.4	72.1	71.5	71.4	72.2

Altezza di partenza: $h_0 = 100cm$

h_1	78.5	79.2	79.4	80.2	79.0	79.2	78.7	79.1	79.5	77.4

Altezza di partenza: $h_0 = 110cm$

h_1	87.7	86.7	86.1	86.5	87.0	87.9	85.8	86.5	86.6	86.9

pallina da golf: media ed errore sulla media delle altezze h_1 :

h_0	media h_1	σ_m
80	63.83	0.148
90	71.98	0.135
100	79.02	0.232
110	86.77	0.205

Figura
9: $h\mathbf{1}_{(h_0)}$ - pallina da golf su marmo

Utilizzando il metodo dei minimi quadrati pesati abbiamo calcolato il coefficiente angolare e l'intercetta della retta:

$$con \quad \Delta = N(\sum \frac{x_i^2}{\sigma_{y_i}^2}) - (\sum \frac{x_i}{\sigma_{y_i}^2})^2$$

$$B = \frac{N\left(\sum \frac{x_i y_i}{\sigma_{y_i}^2}\right) - \sum \frac{x_i}{\sigma_{y_i}^2} \sum \frac{y_i}{\sigma_{y_i}^2}}{\Delta} \quad \sigma_B = \sqrt{\frac{\sum \frac{1}{\sigma_{y_i}^2}}{\Delta}} \quad \Rightarrow \quad B = 0.761 \pm 0.008$$

$$A = \frac{\sum \frac{\left(x_i\right)^2}{\sigma_{y_i}^2} \sum \frac{\left(y_i\right)^2}{\sigma_{y_i}^2} - \sum \frac{x_i}{\sigma_{y_i}^2} \sum \frac{x_i y_i}{\sigma_{y_i}^2}}{\Delta} \quad \sigma_A = \sqrt{\frac{\sum \frac{x^2}{\sigma_{y_i}^2}}{\Delta}} \quad \Rightarrow \quad A = 3.161 \pm 0.735$$

Ricaviamo il coefficiente di restituzione

$$ev = \sqrt{\frac{h_1}{h_0}} \to ev = \sqrt{B}$$
propagazione degli errori \to $\sigma_{ev} = \frac{\sigma_B}{2\sqrt{B}}$
$$ev = 0.872 \pm 0.005$$

Figura 10: $h\mathbf{1}_{(h_0)}$ - pallina da golf - interpolazione

Test del chi quadro

$$\chi^2 = \sum \left(\frac{y_i - A - BX_i}{\sigma_i}\right)^2 = 0.931$$

considerando 1 grado di libertà \rightarrow possiamo considerare l'ipotesi vera, con una sicurezza del 32 %.

L'attrito dell'aria non ha influenzato notevolmente il fenomeno; considerando infatti $h_{lim}=110cm\,$

$$\frac{F_{attrito \quad aereo}}{F_{peso}} = 0.018$$

con una massa di $0.0415 \rm Kg$ ed un diametro di 0.042metri, abbiamo perso solo l'1,8% dell'accelerazione data dalla gravità.

 $\bf metodo~2$ gli intervalli misurati da 80cm in secondi: .

numero rimbalzo	lancio1	lancio2	lancio3	lancio4	lancio5	media
1	0.649	0.723	0.724	0.722	0.723	0.708 ± 0.015
2	0.584	0.642	0.649	0.647	0.649	0.634 ± 0.013
3	0.523	0.577	0.588	0.584	0.576	0.5610 ± 0.012
4	0.523	0.518	0.532	0.525	0.513	0.522 ± 0.003
5	0.464	0.469	0.479	0.471	0.459	0.468 ± 0.003
6	0.407	0.422	0.436	0.421	0.411	0.411 ± 0.005
7	0.364	0.384	0.391	0.376	0.366	0.376 ± 0.005
8	0.328	0.349	0.350	0.337	0.326	0.338 ± 0.005

gli intervalli misurati da 90cm in secondi:

numero rimbalzo	lancio1	lancio2	lancio3	lancio4	lancio5	media
1	0.675	0.762	0.759	0.764	0.763	0.745 ± 0.017
2	0.604	0.682	0.680	0.683	0.683	0.666 ± 0.016
3	0.533	0.612	0.606	0.609	0.614	0.595 ± 0.016
4	0.478	0.551	0.544	0.545	0.558	0.535 ± 0.014
5	0.432	0.494	0.489	0.479	0.505	0.480 ± 0.013
6	0.386	0.439	0.437	0.426	0.458	0.429 ± 0.012
7	0.349	0.391	0.388	0.378	0.416	0.3847 ± 0011
8	0.316	0.345	0.349	0.338	0.378	0.345 ± 0.010

gli intervalli misurati da 100cm in secondi:

numero rimbalzo	lancio1	lancio 2	lancio3	lancio 4	lancio 5	media
1	0.794	0.811	0.804	0.791	0.804	0.801 ± 0.004
2	0.716	0.725	0.718	0.710	0.716	0.7172 ± 0.0024
3	0.637	0.643	0.644	0.638	0.645	0.6414 ± 0.0017
4	0.562	0.580	0.580	0.574	0.581	0.575 ± 0.004
5	0.504	0.518	0.501	0.518	0.525	0.513 ± 0.005
6	0.452	0.460	0.450	0.468	0.473	0.461 ± 0.005
7	0.403	0.421	0.401	0.425	0.429	0.416 ± 0.006
8	0.367	0.359	0.356	0.386	0.391	0.372 ± 0.007

gli intervalli misurati da 110cm in secondi: .

numero rimbalzo	lancio1	lancio 2	lancio3	lancio 4	lancio 5	media
1	0.845	0.838	0.838	0.832	0.845	0.8396 ± 0.0025
2	0.760	0.751	0.746	0.742	0.753	0.750 ± 0.003
3	0.682	0.673	0.666	0.665	0.675	0.672 ± 0.003
4	0.608	0.607	0.594	0.591	0.609	0.602 ± 0.004
5	0.543	0.547	0.528	0.527	0.549	0.539 ± 0.005
6	0.488	0.492	0.465	0.472	0.493	0.482 ± 0.006
7	0.421	0.438	0.417	0.423	0.441	0.428 ± 0.005
8	0.377	0.388	0.372	0.365	0.396	0.380 ± 0.006

Figure 14: Figura
11: $log\Delta t_{(n)}$ - pallina da golf su marmo

Abbiamo ricavato il coefficiente angolare di ciascuna delle 5 rette tramite il metodo dei minimi quadrati.

Figura 12: $log\Delta t_{(n)}$ - pallina da golf - interpolazione

Così facendo si ottengono 5 stime del coefficiente di restituzione che possono essere combinate in una media pesata come $\bar{e_v} = \frac{\sum \frac{e_{vi}}{\sigma_i}}{\sum \frac{1}{\sigma_i}}$.

dove $e_v=10^B,\,\sigma_{ev}=10^Bln(10)\sigma_B$ e l'incertezza sulla media pesata è $\sigma_{media}=\sqrt{\frac{1}{\sum \frac{1}{\sigma_i}}}$. Notiamo che questa stima è molto più precisa di quella ottenuta con il metodo 1.

$$t = \frac{|ev_{metodo1} - ev_{metodo2}|}{\sqrt{\sigma_1^2 + \sigma_2^2}} = 4, 6$$

 \rightarrow la probabilità che la differenza sia dovuta solo ad errori casuali è inferiore al 0.3%.