MP

 $\operatorname{MP}$ 

## Übungsblatt 8

Übungsgruppe 1

Daniel Schubert Anton Lydike

Donnerstag 12.12.2019

| Aufgal     | pe 1)                                                                                                                                     |                 | /8p.                |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|
| 1.         |                                                                                                                                           |                 |                     |
| (1)        | $A, \neg \neg B \vdash_{\mathbf{G}} A$                                                                                                    | A               |                     |
| (2)        | $A, \neg B \vdash_{\mathbf{G}} \neg B$                                                                                                    | A               |                     |
| (3)        | $A, \neg A \vdash_{\mathbf{G}} \neg B$                                                                                                    | $\neg L(1)$     |                     |
| (4)        | $A, (\neg A \vee \neg B) \vdash_{\mathbf{G}} \neg B$                                                                                      | $\vee$ L(2)(3)  |                     |
| (5)        | $A, B \vdash_{\mathbf{G}} \neg (\neg A \lor \neg B)$                                                                                      | $\neg R$        |                     |
| (6)        | $(A \wedge B) \vdash_{G} \neg (\neg A \vee \neg B)$                                                                                       | $\wedge L$      |                     |
| (7)        | $\vdash_{\mathbf{G}} (A \land B) \to \neg(\neg A \lor \neg B)$                                                                            | $\rightarrow$ R |                     |
| 2.         |                                                                                                                                           |                 |                     |
| (1)        | $A, B, C, \neg C \vdash_{\mathbf{G}} A$                                                                                                   | A               |                     |
| (2)        | $A, \neg C \vdash_{\mathbf{G}} A$                                                                                                         | A               |                     |
| (3)        | $A, B \wedge C, \neg C \vdash_{\mathbf{G}} A$                                                                                             | A               |                     |
| (4)        | $B, C, A \vdash_{\mathbf{G}} \neg (\neg C)$                                                                                               | A               |                     |
| (5)        | $B, \neg C, C \vdash_{\mathbf{G}} A$                                                                                                      | $\neg R$        |                     |
| (6)        | $B \wedge C, B, \neg C \vdash_{\mathbf{G}} A$                                                                                             | $\wedge L$      |                     |
| (7)        | $A, B, \neg C \vdash_{\mathbf{G}} A$                                                                                                      |                 |                     |
| (8)        | $A \vee (B \wedge C), A, \neg C \vdash_{\mathbf{G}} A$                                                                                    | $\vee L$        |                     |
| (9)        | $A \lor (B \land C), B, \neg C \vdash_{\mathbf{G}} A$                                                                                     | $\vee L$        |                     |
| (10)       | $A \lor (B \land C), A \lor B, \neg C \vdash_{\mathbf{G}} A$                                                                              | $\vee L$        |                     |
| (11)       | $A \lor (B \land C), A \lor B \vdash_{\mathbf{G}} A \lor C$                                                                               | $\vee R$        |                     |
| (12)       | $A \lor (B \land C), A \lor B \vdash_{\mathbf{G}} A \lor B$                                                                               | $\vee R$        |                     |
| (13)       | $A \lor (B \land C), A \lor B \vdash_{\mathbf{G}} (A \lor B) \land (A \lor C)$                                                            | $\wedge R$      |                     |
| (14)       | $\vdash_{\mathbf{G}} (A \vee (B \wedge C)) \to ((A \vee B) \wedge (A \vee C))$                                                            | $\rightarrow$ R |                     |
| (15)       |                                                                                                                                           |                 |                     |
| Aufgabe 2) |                                                                                                                                           |                 | /8p.                |
| 1.         |                                                                                                                                           |                 |                     |
| (1)        | $\vdash y = x \to (x = y \to y = x)$                                                                                                      |                 | Ax2                 |
| (2)        | $\vdash \forall x . \forall y . (y = x \rightarrow (x = y \rightarrow y = x))$                                                            |                 | ge                  |
| (3)        | $\vdash (\forall x . \forall y . (y = x \to (x = y \to y = x))) \to ((\forall x . \forall y . y = x) \to (\forall x . \forall y . x = x)$ | $y \to y = x))$ | $\mathrm{D}\forall$ |

 $(4) \qquad \vdash (\forall x \, . \, \forall y \, . \, y = x) \to (\forall x \, . \, \forall y \, . \, x = y \to y = x)$ 

 $\vdash \forall x \, . \, \forall y \, . \, x = y \to y = x$ 

2.

(1) 
$$\{P(y) \to \forall x . Q(x)\} \vdash P(y) \to \forall x . Q(x)$$
 Trivial

(2) 
$$\{P(y) \to \forall x . Q(x)\} \vdash \forall x . P(y) \to \forall x . Q(x)$$
 ge(1)

(3) 
$$\{P(y) \to \forall x . Q(x)\} \vdash \forall x . P(y) \to Q(x)$$
 D\forall - Umgekehrt

Aufgabe 3)  $\_/9p.$ 

- 1. (a)  $\forall e . K(e) \rightarrow \forall z . K(z) \land \exists x . . P(x, e, z)$ 
  - (b) anzahl  $\in P^2$ , anzahl  $I := \#(e \xrightarrow{x} z)$  (zu deutsch: Anzahl der Kanten x von e zu z.)  $\forall e \cdot K(e) \rightarrow \forall x \cdot P(x, e, z) \rightarrow \text{anzahl}(P) = 1$
  - (c)  $\forall k . K(k) \rightarrow \forall i . K(i) \rightarrow \forall x . P(x, i, i) \land (\neg \exists z . P(z, i, k) \land i \neq K)$
- 2. (a)  $ZP,ZR \in P^1$   $ZP^I := x$  ist Zustand aus  $G_P$   $ZR^I := x$  ist Zustand aus  $G_R$ 
  - (b)  $\forall x_1 . \forall x_2 . \forall y_1 . \forall y_2 . \rightarrow ZP(x_1) \land ZP(x_2) \land ZR(y_1) \land ZR(y_2) \rightarrow x_1 = y_1 \rightarrow ZP(x_1) = x_2 \land ZR(y_1) = y_2 \rightarrow x_2 = y_2$

## Gesamtpunkte:

\_\_ /25p.

