第7周编译原理课堂笔记

laisg

2019年4月9日

1 自顶向下的语法分析

1.1 first 函数

 $first(\alpha)$ 被定义为可从 α 推导的到的串的首符号的集合

1.2 follow 函数

对于非终结符号 A, follow (A) 被定义为可能在某些句型中紧跟在 A 右边的终结符号的集合

- 1. follow (F)= $\{*,+,\$,\varepsilon\}$
- 2. follow (T')= $\{+,\$,\varepsilon\}$
- 3. follow (T)= $\{+,\$,\varepsilon\}$

Computing FIRST(X)

To compute FIRST(X) for all grammar symbols X, apply the following rules until no more terminals or ϵ can be added to any FIRST set.

- 1. If X is a terminal, then $FIRST(X) = \{X\}.$
- 2. If X is a nonterminal and $X \to Y_1Y_2 \cdots Y_k$ is a production for some $k \ge 1$, then place a in FIRST(X) if for some i, a is in FIRST (Y_i) , and ϵ is in all of FIRST $(Y_1), \ldots, \text{FIRST}(Y_{i-1})$; that is, $Y_1 \cdots Y_{i-1} \Rightarrow \epsilon$. If ϵ is in FIRST (Y_j) for all $j = 1, 2, \ldots, k$, then add ϵ to FIRST(X). For example, everything in FIRST (Y_i) is surely in FIRST(X). If Y_1 does not derive ϵ , then we add nothing more to FIRST(X), but if $Y_1 \Rightarrow \epsilon$, then we add FIRST (Y_2) , and so on.
- 3. If $X \to \epsilon$ is a production, then add ϵ to FIRST(X).

Example

Compute the FIRST(X) for each nonterminal X.

FOLLOW(A)

S→aA| ε , if the next input symbol is not 'a', then will will choose S→ ε ; otherwise both productions can be chosen.

Define FolLow(A), for nonterminal A, to be the set of terminals a that can appear immediately to the right of A in some sentential form; that is, the set of terminals a such that there exists a derivation of the form $S \stackrel{*}{\Rightarrow} \alpha A a \beta$, for some α and β

if A can be the rightmost symbol in some sentential form, then $\$ is in FOLLOW(A).

P山大學 Computing FOLLOW(A)

To compute ${\tt FOLLOW}(A)$ for all nonterminals A, apply the following rules until nothing can be added to any ${\tt FOLLOW}$ set.

- 1. Place $\$ in FOLLOW(S), where S is the start symbol, and $\$ is the input right endmarker.
- 2. If there is a production $A \to \alpha B \beta$, then everything in FIRST(β) except ϵ is in FOLLOW(B).
- 3. If there is a production $A \to \alpha B$, or a production $A \to \alpha B \beta$, where $\text{FIRST}(\beta)$ contains ϵ , then everything in FOLLOW(A) is in FOLLOW(B).

Practice

$$\begin{array}{cccc} E & \rightarrow & T \; E' \\ E' & \rightarrow & + T \; E' \mid \; \epsilon \\ T & \rightarrow & F \; T' \\ T' & \rightarrow & * F \; T' \mid \; \epsilon \\ F & \rightarrow & (E \;) \mid \; \mathbf{id} \end{array}$$

Compute the FOLLOW(X) for each nonterminal X.

- 4. follow (E')= $\{\$,\varepsilon\}$
- 5. follow (E)= $\{\$,\varepsilon\}$

1.3 LL (1) 文法

解决做产生式选择的问题

1. 预测分析器的转换图 要构造一个文法的转换图,首先要消除左递归,然后对文法提前左公因 子。

2. 构造预测分析表 严重不理解第二步

- 3. 递归预测分析
- 4. 非递归的预测分析(利用到预测分析表和栈)

2 自底向上的语法分析

最左规约

2.1 移进-规约

重点在于: 什么时候移进, 怎么选择规约

