

PLAN D'EXECUTION

Mettre en œuvre les scripts SQL déclaratifs

3

- 1. Parsing and translation
- 2. Optimization
- 3. Evaluation

Optimisation – exemple YALE

Optimisation – exemple YALE

Algebre: synthèse notation

- Algèbre relationnelle : langage procedural consistant en une suite d'opérations prenant 1 ou 2 relations en entrée et produisant une nouvelle relation en sortie.
- Six opérateurs de base

• select: σ

project: ∏

• union: ∪

set difference: –

Cartesian product: x

• rename: ρ

Quatre opérateur composé (à partir de la base)

• Join: ⋈

Join left : ⋈

Join right : ⋈

Join full : ⋈

join (jointure):
X (produit cartésien)
combiné à un σ
(sélection) sur les
colonnes communes.

- SELECT instructor.name, course.title FROM course, instructor, teaches
- WHERE teaches.course_id = course.course_ID
- AND teaches.ID = instructor.ID
- ANDcourse.dept_name = 'Music'

(a) Initial expression tree

(b) Transformed expression tree

- SELECT instructor.name, course.title FROM course, instructor, teaches
- WHERE teaches.course_id = course.course_ID
- AND teaches.ID = instructor.ID
- ANDcourse.dept_name = 'Music'

Normandie Université

- SELECT instructor.name, course.title FROM course, instructor, teaches
- WHERE teaches.course_id = course.course_ID
- AND teaches ID = instructor ID
- ANDcourse.dept_name = 'Music'

Table intermédiaire avec X colonnes et Y lignes. X/Y $\prod_{name, title}$ $\sigma_{dept_name} = Music$ \times instructor $\sigma_{dept_name} = Music$ 2/2000 4/100 **Projection** teaches $\prod_{course_id,}$ A/Y => B/Y $\prod_{course_id, title}$ où B est le nombre 5/2200 d'attributs projetés course course 4/2000 4/2000 (a) Initial expression to (b) Transformed expression tree

- SELECT instructor.name, course.title FROM course, instructor, teaches
- WHERE teaches.course_id = course.course_ID
- AND teaches.ID = instructor.ID

- SELECT instructor.name, course.title FROM course, instructor, teaches
- WHERE teaches.course id = course.course ID

- SELECT instructor.name, c
- WHERE teaches.course_id
- AND teaches.ID = instructo
- ANDcourse.dept_name = 'N

selection

On ne conserve que les teaches x course x instructor dont le dept_name vaut 'Music'.

(par hypothèse, vaut 7 selon une note sur le MCD)

- SELECT instructor.name, course.title FROM course, instructor, teaches
- WHERE teaches.course_id = course.course_ID
- AND teaches.ID = instructor.ID
- AND course.dept_name = 'Music'

- SELECT instructor.name, course.title FROM course, instructor, teaches
- WHERE teaches.course_id = course.course_ID
- AND teaches.ID = instructor.ID
- ANDcourse.dept_name = 'Music'

Optimisation – application à FassiLE

Pour observer le plan d'execution d'une requête sous Postgres

> EXPLAIN ANALYZE < requete>;

QUERY PLAN

Gather (cost=1000.00..7483.92 rows=1 width=4) (actual time=0.329..87.243 rows=1 loops=1)

Workers Planned: 1
Workers Launched: 1

-> Parallel Seq Scan on demo (cost=0.00..6483.82 rows=1 width=4) (actual time=37.892..79.399 rows=0 loops=2)

Filter: (id = 20)

Rows Removed by Filter: 500000

Planning Time: 0.158 ms Execution Time: 87.272 ms

