Funkcje ciągłe i różniczkowalne

Jakub Bełcik

14 grudnia 2010

Spis treści

1 Funkcje ciągłe

Definicja 1.1. (funkcja ciągła). Niech $f:(a,b)\to\mathbb{R}$, oraz niech $x_0\in(a,b)$. Mówimy, że instrukcja f jest ciągła w punkcie x_0 wtedy i tylko wtedy, gdy:

$$\forall_{\epsilon>0}\exists_{\delta>0}\forall x\in(a,b)|x-x_0|<\delta\Rightarrow|f(x)-f(x_0)|<\epsilon.$$

Przykład 1.2. Wielomiany, funkcje trygonometryczne, wykładnicze, logarytmiczne są ciągłe w każdym punkcie swojej dziedziny.

Przykład 1.3. Funkcja f dana wzorem:

$$f(x) = \begin{cases} x+1 & \text{dla } x \neq 0 \\ 0 & \text{dla } x = 0 \end{cases}$$

Jest ciągła w każdym punkcie poza $x_0 = 0$. Niech \mathbb{Q} oznacza zbiór wszystkich liczb wymiernych.

Przykład 1.4. Funkcja f dana wzorem:

$$f(x) = \begin{cases} 0 & \text{dla } x \in \mathbb{Q} \\ 1 & \text{dla } x \notin \mathbb{Q} \end{cases}$$

Nie jest ciągła w żadnym punkcie.

Przykład 1.5. Funkcja f dana wzorem:

$$f(x) = \begin{cases} 0 & \text{dla } x \in \mathbb{Q} \\ x & \text{dla } x \notin \mathbb{Q} \end{cases}$$

Jest ciągła w punkcie $x_0 = 0$, ale nie jest ciągła w pozostałych punktach dziedziny.

Zadanie 1. Udowodnij prawdziwość podanych przykładów.

Definicja 1.6. Jeśli funkcja $f:A\to\mathbb{R}$ jest ciągła w każdym punkcie swojej dziedziny A to mówimy krótko, że jest ciągła.

Poniższe twierdzenie zbiera podstawowe własności zbioru funkcji ciągłych.

Twierdzenie 1.7. Niech funkcje $f, g : R \to \mathbb{R}$ będą ciągłe, oraz niech $\alpha, \beta \in \mathbb{R}$. Wtedy funkcje:

- a) $h_1(x) = \alpha \cdot f(x) + \beta \cdot g(x)$,
- $b) h_2(x) = f(x) \cdot g(x),$
- c) $h_3(x) = \frac{f(x)}{g(x)}$ (o ile $g(x) \neq 0$ dla dowolnego $x \in \mathbb{R}$),
- d) $h_4(x) = f(g(x)),$

Są ciągłe.

Nie chciało mi się tego przepisywać to wkleiłem jakiś tekst o bobrach z go-ogle.pl... We wczesnym średniowieczu bóbr europejski (Castor fiber L.) zamieszkiwał licznie całą Europę i Azję od strefy stepów po tundrę. Jednak w początkach wieku XX przetrwało jedynie osiem małych populacji gromadzących w sumie ok. 1200 osobników. Gatunek stanął w obliczu groźby wyginięcia. W większości krajów zniknęły wraz z wiekiem XIX.

Twierdzenie 1.8. Niech $f:[a,b] \to \mathbb{R}$ ciągła, oraz niech $f(a) \neq f(b)$. Wtedy dla dowolnego $y_0 \in conv\{f(a), f(b)\}$ istnieje $x_0 \in [a,b]$ takie, że $f(x_0) = y_0$.

2 Różniczkowalność

Definicja 2.1. Niech $F:(a,b)\to\mathbb{R}, x_0\in(a,b)$ oraz f ciągła w otoczeniu punktu x_0 . Jeśli istnieje granica:

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

I jest skończona, to oznaczamy ją przez $f'(x_0)$ i nazywamy pochodną funkcji f w punkcie x_0 .

Definicja 2.2. Jeśli funkcja f posiada pochodną w każdym punkcie swojej dziedziny, to mówimy, że f jest różniczkowalna. Istnieje wtedy funkcja f', która każdemu punktowi z dziedziny funkcji f przyporządkowuje wartość pochodnej pochodnej funkcji f w tym punkcie.

Przykład 2.3. Wielomiany, funkcje trygonometryczne, wykładnicze, logarytmiczne są różniczkowalne w każdym punkcie dziedziny.

Przykład 2.4. Funkcja f(x) = |x| jest ciągła, ale nie posiada pochodnej w punkcie $x_0 = 0$.

Twierdzenie 2.5. Niech $f:[a,b] \to \mathbb{R}$ ciągła i różniczkowalna na (a,b). Dodatkowo niech $f'(x) \neq 0$ dla $x \in (a,b)$, oraz niech $m = \min_{x \in [a,b]} f(x)$, $M = \max_{x \in [a,b]} f(x)$. Wtedy na pewno f(a) = m, f(b) = M lub f(a) = M i f(b) = m.