PROOF PULES
FOR EXISTENTIAL

EXSTENTIAL

LILIAN

ENSTENTIAL AUANTICER NIROPVALON $\frac{\phi[t/x]}{\exists x \, \text{i.}}$

EXISTENTIA ECIMINATION $|x_0|\phi|x_0/x$ depend

$$- \forall x \phi \vdash \exists x \phi.'$$

1
$$\forall x \phi$$
 premise

$$\phi[x/x] \quad \forall x \in 1$$

$$\exists x \phi \quad \exists x i 2$$

$$\forall x (P(x) \rightarrow Q(x)), \exists x P(x) \vdash \exists x Q(x)$$

1
$$\forall x (P(x) \rightarrow Q(x))$$
 premise

2
$$\exists x P(x)$$
 premise

$$3 x_0 P(x_0)$$
 assumption

4
$$P(x_0) \to Q(x_0) \quad \forall x \in 1$$

$$Q(x_0) \longrightarrow e 4,3$$

6
$$\exists x \, Q(x)$$
 $\exists x \, \mathbf{i} \, \mathbf{5}$

7
$$\exists x \, Q(x)$$
 $\exists x \, \mathbf{e} \, 2, 3-6$

WRONG!

1		$\forall x (P(x) \to Q(x))$	premise		
2		$\exists x P(x)$	premise		
3	x_0	$P(x_0)$	assumption		
4		$P(x_0) \to Q(x_0)$	$\forall x \in 1$		ก
5		$Q(x_0)$	ightarrowe 4, 3	\supset	V
6		$Q(x_0)$	$\exists x \in 2, 3-5$		
7		$\exists x Q(x)$	$\exists x \ \mathbf{i} \ 6$		
					\langle

not Japand

$$\forall x (Q(x) \to R(x)), \exists x (P(x) \land Q(x)) \vdash \exists x (P(x) \land R(x))$$

$$\begin{array}{ccccccc}
1 & \forall x \, (Q(x) \rightarrow R(x)) & \text{premise} \\
2 & \exists x \, (P(x) \land Q(x)) & \text{premise} \\
3 & x_0 & P(x_0) \land Q(x_0) & \text{assumption} \\
4 & Q(x_0) \rightarrow R(x_0) & \forall x \in 1 \\
5 & Q(x_0) & \land e_2 & 3 \\
6 & R(x_0) & \rightarrow e & 4, 5 \\
7 & P(x_0) & \land e_1 & 3 \\
8 & P(x_0) \land R(x_0) & \land i & 7, 6 \\
9 & \exists x \, (P(x) \land R(x)) & \exists x i & 8 \\
10 & \exists x \, (P(x) \land R(x)) & \exists x e & 2, 3-9
\end{array}$$

$$\Rightarrow \sim Q(x)$$