OBSERVACIONES DEL LA PRACTICA

Estudiante 1 Cod XXXX Estudiante 2 Cod XXXX Estudiante 3 Cod XXXX

	Máquina 1	Máquina 2	Máquina 3
Procesadores			
Memoria RAM (GB)			
Sistema Operativo			

Tabla 1. Especificaciones de las máquinas para ejecutar las pruebas de rendimiento.

Maquina 1

Resultados

Carga de Catálogo PROBING

Factor de Carga (PROBING)	Consumo de Datos [kB]	Tiempo de Ejecución Real @LP [ms]	
0.1			
0.5			
0.7			
0.9			

Tabla 2. Comparación de consumo de datos y tiempo de ejecución para carga de catálogo con el índice por categorías utilizando PROBING en la Maquina 1.

Carga de Catálogo CHAINING

		<u>.</u>
Factor de Carga (CHAINING)	Consumo de Datos [kB]	Tiempo de Ejecución Real @SC [ms]
2.00		
4.00		
6.00		
8.00		

Tabla 3. Comparación de consumo de datos y tiempo de ejecución para carga de catálogo con el índice por categorías utilizando CHAINING en la Maquina 1.

Graficas

La gráfica generada por los resultados de las pruebas de rendimiento en la Maquina 1.

• Comparación de memoria y tiempo de ejecución para PROBING y CHAINING

Maquina 2

Resultados

Carga de Catálogo PROBING

Factor de Carga (PROBING)	Consumo de Datos [kB]	Tiempo de Ejecución Real @LP [ms]
0.1		
0.5		
0.7		
0.9		

Tabla 4. Comparación de consumo de datos y tiempo de ejecución para carga de catálogo con el índice por categorías utilizando PROBING en la Maquina 2.

Carga de Catálogo CHAINING

Factor de Carga (CHAINING)	Consumo de Datos [kB]	Tiempo de Ejecución Real @SC [ms]
2.00		
4.00		
6.00		
8.00		

Tabla 5. Comparación de consumo de datos y tiempo de ejecución para carga de catálogo con el índice por categorías utilizando CHAINING en la Maquina 2.

Graficas

La gráfica generada por los resultados de las pruebas de rendimiento en la Maquina 2.

• Comparación de memoria y tiempo de ejecución para PROBING y CHAINING

Maquina 3

Resultados

Carga de Catálogo PROBING

Factor de Carga (PROBING)	Consumo de Datos [kB]	Tiempo de Ejecución Real @LP [ms]
0.1		
0.5		
0.7		
0.9		

Tabla 6. Comparación de consumo de datos y tiempo de ejecución para carga de catálogo con el índice por categorías utilizando PROBING en la Maquina 3.

Carga de Catálogo CHAINING

Factor de Carga (CHAINING)	Consumo de Datos [kB]	Tiempo de Ejecución Real @SC [ms]
2.00		
4.00		
6.00		
8.00		

Tabla 7. Comparación de consumo de datos y tiempo de ejecución para carga de catálogo con el índice por categorías utilizando CHAINING en la Maquina 3.

Graficas

La gráfica generada por los resultados de las pruebas de rendimiento en la Maquina 3.

• Comparación de memoria y tiempo de ejecución para PROBING y CHAINING

Preguntas de análisis

- 1. ¿Por qué en la función **getTime()** se utiliza **time.perf_counter()** en vez de otras funciones como **time.process_time()**?
 - Porque perfect_counter funciona como un cronometro donde solo se toma el inicio y el fin, mientras que process_time suma el tiempo de las fracciones de todos los procesos, teniendo que tomar muchas mas mediciones.Al tomar mas mediciones es mas propenso a tener errores.
- 2. ¿Por qué son importantes las funciones start() y stop() de la librería tracemalloc?

Para encontrar el delta entre dos estados del programa, el start establece el limite inferior y el stop el limite superior, si no hay stop el programa no pararia nunca.

3. ¿Por qué no se puede medir paralelamente el **uso de memoria** y el **tiempo de ejecución** de las operaciones?

Porque al incluir ambas mediciones paralelamente el tiempo tomado no corresponde solo a la carga de datos sino tambien lo que se demora el programa en calcular cuanta memoria ocupa.

- 4. Teniendo en cuenta cada uno de los requerimientos del reto ¿Cuántos índices implementaría en el Reto? y ¿Por qué?
- 5. Según los índices propuestos ¿en qué caso usaría **Linear Probing** o **Separate Chaining** en estos índices? y ¿Por qué?
- 6. Dado el número de elementos de los archivos del reto (large), ¿Cuál sería el factor de carga para estos índices según su mecanismo de colisión?
- 7. ¿Qué cambios percibe en el **tiempo de ejecución** al modificar el factor de carga máximo para cargar el catálogo de contenido Streaming?
- 8. ¿Qué cambios percibe en el **consumo de memoria** al modificar el factor de carga máximo para cargar el catálogo de contenido Streaming?
- 9. ¿Qué cambios percibe en el **tiempo de ejecución** al modificar el esquema de colisiones?, si los percibe, describa las diferencias y argumente su respuesta.
- 10. ¿Qué cambios percibe en el **consumo de memoria** al modificar el esquema de colisiones?, si los percibe, describa las diferencias y argumente su respuesta.

11. ¿Qué configuración de i mecanismo de colisión, e		ecifique el