October 6, 2023

MATH 554 Homework 7

Problem 1 Let (E,d) be a metric space and $A \subseteq E$. Let \overline{A} be the set of all points $p \in E$ so that for all r > 0 we have $B(p,r) \cap A \neq \emptyset$. Show that \overline{A} is closed.

Consider $p \in \mathcal{C}(\overline{A})$. Since $p \notin \overline{A}$, there exists some r > 0 such that $B(p,r) \cap A = \emptyset$. We claim that $B(p,r) \subseteq \mathcal{C}(\overline{A})$. Let $q \in B(p,r)$. Since B(p,r) is open, there exists an r' > 0 such that $B(q,r') \subseteq B(p,r)$. Thus, we have $B(q,r') \cap A = \emptyset$ since $B(p,r) \cap A = \emptyset$. So $q \notin \overline{A}$, and thus $q \in \mathcal{C}(\overline{A})$. Thus, $B(p,r) \subseteq \mathcal{C}(\overline{A})$, and so $\mathcal{C}(\overline{A})$ is open. Therefore, by definition \overline{A} is closed.

Problem 2 Let (E,d) be a metric space. Let $S \subseteq E$ with the property that if $s_1, s_2 \in S$ with $s_1 \neq s_2$, then $d(s_1, s_2) \geq 1$. Show S is closed.

Consider $p \in C(S)$. We claim that there is either zero or one point from S in B(p, 1/2). If there are $s_1, s_2 \in S \cap B(p, 1/2)$ with $s_1 \neq s_2$, then

$$d(s_1, s_2) \le d(s_1, p) + d(p, s_2) < \frac{1}{2} + \frac{1}{2} = 1,$$

a contradiction. So these are the two possible cases.

Case 1: There are no points from S in B(p, 1/2). Then $B(p, 1/2) \subseteq C(S)$.

Case 2: There is some point $s \in S \cap B(p, 1/2)$. Then choose r := d(p, s), and consider B(p, r). We have $B(p, r) \subseteq B(p, 1/2)$ so the only possible point from S that could be in B(p, r) is s, and since d(p, s) < r does not hold by definition, $s \notin B(p, r)$. So $B(p, r) \subseteq C(S)$.

Since we can choose an appropriate radius in both cases, $\mathcal{C}(S)$ is open. Therefore, S is closed.

Problem 3 In the plane \mathbb{R}^2 , show the half plane $H = \{(x,y) \in \mathbb{R}^2 : y > 0\}$ is open.

We will assume the standard Euclidean metric on \mathbb{R}^2 .

Consider $p = (x, y) \in H$. Then we claim $B(p, y) \subseteq H$. For any $q \in C(H)$, we will have q = (x', y') where $y' \leq 0$. Then,

$$[d(p,q)]^2 = (x - x')^2 + (y - y')^2$$

$$\geq (y - y')^2$$

$$\geq y^2 \qquad \text{(since } y > 0 \text{ and } y' \leq 0\text{)}$$

$$\implies d(p,q) \geq y.$$

So $q \notin B(p, y)$, and thus $B(p, y) \subseteq H$. Therefore, H is open.

Problem 4 Let (E, d) be a metric space and $p, q \in E$ with $p \neq q$. Show that $U := \{x \in E : d(p, x) < d(q, x)\}$ is open.

Homework 7 MATH 554

Let $x \in U$, and consider $r := \frac{d(q,x) - d(p,x)}{2}$. Let $y \in B(x,r)$. Then, we have

$$\begin{split} d(p,y) & \leq d(p,x) + d(x,y) & \text{(triangle inequality)} \\ & < d(p,x) + \frac{d(q,x) - d(p,x)}{2} & (d(x,y) < r) \\ & = \frac{d(p,x) + d(q,x)}{2} & \text{(combining fractions)} \\ & = d(q,x) - \frac{d(q,x) - d(p,x)}{2} & \text{(rewriting fraction)} \\ & < d(q,x) - d(x,y) & (-d(x,y) > -r) \\ & \leq d(q,y). & \text{(reverse triangle inequality)} \end{split}$$

Thus, $q \in U$, so $B(x,r) \subseteq U$ and therefore U is open.

Problem 5 In \mathbb{R} for the following sets say if they are open, closed, or neither. Prove your answer is correct.

- (a) The set, \mathbb{Q} , of rational numbers.
- (b) The set $S := \{1/n : n \in \mathbb{Z}^+\}.$
- (c) The set $S := \{0\} \cup \{1/n : n \in \mathbb{Z}^+\}.$
- (a) This is neither nor open closed in \mathbb{R} . First, consider $0 \in \mathbb{Q}$. Then for all r > 0, B(0,r) = (-r,r) is not a subset of \mathbb{Q} . This is because (as we have proved before) there is an irrational number between any two real numbers, so in particular there is one between -r and r. So \mathbb{Q} is not open.
 - Next, consider $\sqrt{2} \in \mathcal{C}(\mathbb{Q})$. Then for all r > 0, $B(\sqrt{2}, r) = (\sqrt{2} r, \sqrt{2} + r)$ is not a subset of (\mathbb{Q}) . This is because (as we have also proved before) there is a rational number between any two real numbers, so in particular there is one between $\sqrt{2} r$ and $\sqrt{2} + r$. So $\mathcal{C}(\mathbb{Q})$ is not open, and thus \mathbb{Q} is not closed.
- (b) This is neither open nor closed in \mathbb{R} . First, consider $1 \in S$. Clearly, B(1,r) is not a subset of S for any r > 0, because there is an irrational number between 1 r and 1 + r, and this will not be in S since $S \subseteq \mathbb{Q}$. So S is not open.

Next, consider $0 \in \mathcal{C}(S)$. For any r > 0, we claim B(0, r) is not a subset of $\mathcal{C}(S)$. This is because, by the Archimedian property, there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < r$, which is in S and thus not in $\mathcal{C}(S)$. So $\mathcal{C}(S)$ is not open, and thus S is not closed.

(c) This is closed. Consider $x \in \mathcal{C}(S)$.

Case 1: x < 0. Then $B(x, x) \subseteq C(S)$, because every $s \in S$ satisfies $s \ge 0$.

Case 2: x > 1. Then $B(x, x - 1) \subseteq C(S)$, because every $s \in S$ satisfies $s \le 1$.

Case 3: 0 < x < 1. Since $x \notin S$, we have $\left\lfloor \frac{1}{x} \right\rfloor < \frac{1}{x} < \left\lceil \frac{1}{x} \right\rceil$. Let $r := \min\left\{ \frac{1}{\lfloor 1/x \rfloor}, \frac{1}{\lceil 1/x \rceil} \right\}$. Then $B(x,r) \subseteq \mathcal{C}(S)$, because $\frac{1}{\lfloor 1/x \rfloor}, \frac{1}{\lceil 1/x \rceil}$ are the points in S closest to x and they are outside the ball.

So for any $x \in \mathcal{C}(S)$, we can choose an appropriate radius. So $\mathcal{C}(S)$ is open, and thus S is closed. \square

Problem 3.18 Let $\lim_{n\to\infty} p_n = p$ in the metric space E. Let $a_n = p_{2n}$. Show that $\lim_{n\to\infty} a_n = p$ also holds.

Let $\varepsilon > 0$. Since $\langle p_n \rangle$ converges to p, there exists an N such that $d(p_n, p) < \varepsilon$ for all n > N. So we have $d(a_n, p) = d(p_{2n}, p) < \varepsilon$ because 2n > n > N for all n > N. Thus, $\langle a_n \rangle$ converges to p.

Nathan Bickel

Homework 7

MATH 554

Problem 3.19 Let $\langle x_n \rangle_{n=1}^{\infty}$ and $\langle y_n \rangle_{n=1}^{\infty}$ be sequences in \mathbb{R} with

$$\lim_{n \to \infty} x_n = x \text{ and } \lim_{n \to \infty} y_n = y.$$

Prove that for any real numbers a and b,

$$\lim_{n \to \infty} (ax_n + by_n) = ax + by.$$

Let $\varepsilon > 0$. Since $\langle x_n \rangle$ and $\langle y_n \rangle$ converge, there exist N_x, N_y such that for all $n > N := \max\{N_x, N_y\}$,

$$|x_n - x| < \frac{\varepsilon}{2a+1}$$
 and $|y_n - y| < \frac{\varepsilon}{2b+1}$.

Then, for n > N, we can write

$$\begin{aligned} |(ax_n+by_n)-(ax+by)| &= |ax_n-ax+by_n-by| \\ &\leq |ax_n-ax|+|by_n-by| & \text{(triangle inequality)} \\ &= a|x_n-x|+b|y_n-y| \\ &< a\left(\frac{\varepsilon}{2a+1}\right)+b\left(\frac{\varepsilon}{2b+1}\right) \\ &< \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon. \end{aligned}$$

Therefore, $\lim_{n\to\infty} (ax_n + by_n) = ax + by$ by definition.

Problem 3.20 Let $\langle x_n \rangle$ be a convergent sequence in \mathbb{R} . Prove that $\langle x_n \rangle$ is bounded (there is a constant M such that $|x_n| \leq M$ for all n.

Suppose $\langle x_n \rangle$ converges to $x \in \mathbb{R}$. Fix $\varepsilon > 0$. Then, there exists some N such that for all n > N, $|x_n - x| < \varepsilon$. Consider $M' := \max\{|x_n| : n \le N\}$. Then, for all $n \le N$, $|x_n| \le M'$, and for all n > N, $|x_n| < |x| + \varepsilon$. Therefore, $\langle x_n \rangle$ is bounded by $M := \max\{M', |x| + \varepsilon\}$ for all n.

Problem 3.21 Let

$$\lim_{n\to\infty} x_n = x$$
 and $\lim_{n\to\infty} y_n = y$

in \mathbb{R} . Prove that

$$\lim_{n \to \infty} x_n y_n = xy.$$

Let $\varepsilon > 0$. Since $\langle x_n \rangle$, $\langle y_n \rangle$ converge, we have from problem 20 that there exists some M such that $|x_n|, |y_n| \leq M$ for all n. Further, by definition there exist N_x, N_y such that for all $n > N := \max N_x, N_y$, we have

$$|x_n - x| < \frac{\varepsilon}{2|y| + 1}$$
 and $|y_n - y| < \frac{\varepsilon}{2M + 1}$.

With this, we can write

$$|x_n y_n - xy| = |x_n y_n - x_n y + x_n y - xy|$$

$$\leq |x_n y_n - x_n y| + |x_n y - xy| \qquad \text{(triangle inequality)}$$

$$\leq |x_n||y_n - y| + |y||x_n - x|$$

$$\leq M|y_n - y| + |y||x_n - x| \qquad \text{(using bound)}$$

$$< M\left(\frac{\varepsilon}{2M+1}\right) + |y|\left(\frac{\varepsilon}{2|y|+1}\right)$$
 (from above)
$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Therefore, $\lim_{n\to\infty} x_n y_n = xy$ by definition.

Problem 3.23 Let $f: \mathbb{R} \to \mathbb{R}$ be the quadratic polynomial $f(x) = ax^2 + bx + c$ where a, b, c are constants. Let $\langle p_n \rangle$ be a convergent sequence, $\lim_{n \to \infty} p_n = p$. Prove that

$$\lim_{n \to \infty} f(p_n) = f(p).$$

We can use the properties we have proved to write

$$\lim_{n \to \infty} f(p_n) = \lim_{n \to \infty} ap_n^2 + bp_n + c$$

$$= a \lim_{n \to \infty} p_n^2 + b \lim_{n \to \infty} p_n + \lim_{n \to \infty} c$$

$$= a \left(\lim_{n \to \infty} p_n\right)^2 + b \lim_{n \to \infty} p_n + \lim_{n \to \infty} c$$

$$= ap^2 + bp + c = f(p).$$
(problem 3.21)

Problem 3.24 Let $a \in \mathbb{R}$ with $a \neq 0$. Let $|x - a| < \frac{|a|}{2}$. Prove that

$$\frac{|a|}{2} < |x| < \frac{3|a|}{2},$$
$$\frac{1}{|x|} < \frac{2}{|a|},$$

and

$$\left|\frac{1}{x} - \frac{1}{a}\right| \le \frac{2|x - a|}{|a|^2}.$$

1. We can use the triangle inequality to write

$$|x| = |a + x - a|$$

$$\leq |a| + |x - a|$$

$$< |a| + \frac{|a|}{2}$$

$$= \frac{3|a|}{2}$$

and the reverse triangle inequality to write

$$\begin{aligned} |x| &= |a+x-a| \\ &\geq \left| |a| - |x-a| \right| \\ &> \left| |a| - \frac{|a|}{2} \right| \\ &= |a| - \frac{|a|}{2} \end{aligned} \qquad \text{(above is guaranteed to be positive)} \\ &= \frac{|a|}{2}. \end{aligned}$$

Combining these, we have $\frac{|a|}{2} < |x| < \frac{3|a|}{2}$.

2. Since |a| > 0 (and thus $|x| > \frac{|a|}{2} > \frac{0}{2} = 0$), we can use the properties of inequalities to write

$$|x| > \frac{|a|}{2}$$

$$\implies 2|x| > |a|$$

$$\implies \frac{2|x|}{|a|} > 1$$

$$\implies \frac{2}{|a|} > \frac{1}{|x|}.$$
(from 1)

3. Finally, we can use 2 to write

$$\left| \frac{1}{x} - \frac{1}{a} \right| = \left| \frac{1}{a} - \frac{1}{x} \right|$$

$$= \left| \frac{x - a}{xa} \right|$$

$$= \left(\frac{1}{|x|} \right) \left(\frac{1}{|a|} \right) |x - a|$$

$$< \left(\frac{2}{|a|} \right) \left(\frac{1}{|a|} \right) |x - a|$$

$$= \frac{2|x - a|}{|a|^2}.$$

Problem 3.25 Let $\langle x_n \rangle$ be a sequence $\lim_{n \to \infty} x_n = a$ and $a \neq 0$. Prove that

$$\lim_{n \to \infty} \frac{1}{x_n} = \frac{1}{a}.$$

Let $\varepsilon > 0$. Since $\langle x_n \rangle$ converges to a, there exists N_1 such that for all $n > N_1$,

$$|x_n - a| < \frac{|a|}{2},$$

and there also exists N_2 such that for all $n > N_2$,

$$|x_n - a| < \frac{|a|^2 \varepsilon}{2}.$$

Let $N := \max\{N_1, N_2\}$. Then,

$$\left| \frac{1}{x_n} - \frac{1}{a} \right| < \frac{2|x_n - a|}{|a|^2}$$
 (from lemma since $n > N_1$)
$$< \frac{2\left(\frac{|a|^2 \varepsilon}{2}\right)}{|a|^2}$$
 (since $n > N_2$)
$$= \frac{|a|^2 \varepsilon}{|a|^2} = \varepsilon.$$
 (1)

Therefore, $\lim_{n\to\infty} \frac{1}{x_n} = \frac{1}{a}$ by definition.

Problem 3.26 Let E be a metric space and $f: E \to \mathbb{R}$ be a Lipschitz map. Let $\langle p_n \rangle$ be a sequence in E with $\lim_{n\to\infty} p_n = p$ where $p \in E$. Then

$$\lim_{n \to \infty} f(p_n) = f(p).$$

Since f is Lipschitz, there exists an M>0 such that $|f(p_n)-f(p)|\leq Md(p_n,p)$. Let $\varepsilon>0$. Then, since $\langle p_n\rangle$ converges to be p, there exists an N such that for all n>N, $d(p_n,p)<\frac{\varepsilon}{M}$. So for all n>N, we can write

$$|f(p_n) - f(p)| \le Md(p_n, p)$$
 (Lipschitz)
 $< M\left(\frac{\varepsilon}{M}\right)$ (convergence)
 $= \varepsilon$.

Therefore, $\lim_{n\to\infty} f(p_n) = f(p)$ by definition.