

Computer vision

Computer Vision Problems

Image Classification

Deep Learning on large images

Edge detection example

Computer Vision Problem

Andrew Ng

Vertical edge detection

103x1 + 1x1 +2+1 + 0x0 + 5x0 +7x0+1x7 +8x-1+2x-1=-5

3	0	1	2 -10	7-0	4-1	Convolution				
1	5	8	9	3-0	1-1		-5	-4	0	8
2		2	5	1	3	*	-10	-2	2	3
01	1	3	1	7	8-1		0	-2	-4	-7
4	2	1	6	2	8	3×3	-3	-2	-3(-16
2	4	5	2	3	9	-> filtor		4x	4	
		6×6	•			kenel				

Vertical edge detection

1					
10	10	10	0	O	0
10	10	10	0	0	0
10	10	10	0	0/	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
		6 2			

	<u>U</u>	
	0	<u>-1</u>
1	0	-1
1	0	-1
	3×3	

<u> </u>					
0	30	30	0		
0	30	30	0		
0	30	30	0		
0	30	30	0		
14x4					

*

More edge detection

Vertical edge detection examples

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

→	

0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

Andrew Ng

Vertical and Horizontal Edge Detection

1 1 1 0 0 0 -1 -1 -1

Horizontal

1	1	1
0	0	0
-1	-1	-1

Learning to detect edges

\int	3	0	1	2	7	4
	1	5	8	9	3	1
	2	7	2	5	1	3
	0	1	3	1	7	8
	4	2	1	6	2	8
	2	4	5	2	3	9

C	en ituleuna
	$\widehat{w_1}$ $\widehat{w_2}$ $\widehat{w_3}$
\times	$\overline{w_4}$ $\overline{w_5}$ $\overline{w_6}$
	$w_7 w_8 w_9$
	7.17

M	0	
0	0	0
7	C C	-3

Padding

Valid and Same convolutions

"Valid":
$$n \times n$$
 \times $f \times f$ \longrightarrow $\frac{n-f+1}{4} \times n-f+1$ $6 \times 6 \times 3 \times 3 \times 3 \longrightarrow 4 \times 4$

"Same": Pad so that output size is the <u>same</u> as the input size.

nt2p-ft1 ×n+2p-ft1

$$p=\frac{f-1}{2}$$
 $p=\frac{f-1}{2}$

Andrew Ng

Strided convolutions

Strided convolution

Andrew Ng

Summary of convolutions

$$n \times n$$
 image $f \times f$ filter padding p stride s

$$\left[\frac{n+2p-f}{s}+1\right] \times \left[\frac{n+2p-f}{s}+1\right]$$

Technical note on <u>cross-correlation</u> vs. convolution

Convolution in math textbook:

		(3		
2	3	7 ⁵	4	6	2
69	6°	94	8	7	4
3	4	83	3	8	9
7	8	3	6	6	3
4	2	1	8	3	4
3	2	4	1	9	8

$$(A \times B) \times C = A \times (B \times C)$$

Convolutions over volumes

Convolutions on RGB images

Convolutions on RGB image

Multiple filters

One layer of a convolutional network

Number of parameters in one layer

If you have 10 filters that are 3 x 3 x 3 in one layer of a neural network, how many parameters does that layer have?

Summary of notation

If layer <u>l</u> is a convolution layer:

```
f^{[l]} = filter size
                               p^{[l]} = padding
                                                                                                                                                                                                                                                                                                                                                                                      Output:
                                 s^{[l]} = \text{stride}
                           n_c^{[l]} = number of filters
→ Each filter is: fth x ha
                                 Activations: Q > NH × NG × NG
                                                                                                                                                                                                                                                                                                                                                                                                         ATEN > M × NH × NW × NC
                               Weights: f^{(1)} \times f^{(2)} \times \Lambda_c^{(1-1)} \times \Lambda_c^{(1)}
bias: \Lambda_c^{(1)} - (1,1,1,\Lambda_c^{(1)}) f^{(1)} = f^{(1)} + f^
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 nc x n H x Nw
```


A simple convolution network example

Example ConvNet

Types of layer in a convolutional network:

```
Convolution (CONV) ←
Pooling (POOL) ←
Fully connected (FC) ←
```


Pooling layers

Pooling layer: Max pooling

1	3	2	1
2	9	1	1
1	3	2	3
5	6	1	2

Pooling layer: Max pooling

Pooling layer: Average pooling

1 3 2 1
2 9 1 1
1 4 2 3
5 6 1 2

Summary of pooling

Hyperparameters:

f: filter size s: stride

Max or average pooling

$$\begin{array}{c}
N_{H} \times N_{W} \times N_{C} \\
N_{H} - f + 1 \\
\times N_{C}
\end{array}$$

Convolutional neural network example

Neural network example CONVZ POOLS POOL (DNV) Marpuol 28×28×6 10×10×16 32232436 0,1,2,....9 NH, NW (120,400)

CONU-POOL-CONV-POOL-EC-EC- EC- SOFTMAX

(170)

Andrew Ng

Neural network example

	Activation shape	Activation Size	# parameters
Input:	(32,32,3)	_ 3,072 a ^{to]}	0
CONV1 (f=5, s=1)	(28,28,8)	6,272	608 <
POOL1	(14,14,8)	1,568	0
CONV2 (f=5, s=1)	(10,10,16)	1,600	3216 <
POOL2	(5,5,16)	400	0 ←
FC3	(120,1)	120	48120 7
FC4	(84,1)	84	10164
Softmax	(10,1)	10	850

Why convolutions?

Why convolutions

Parameter sharing: A feature detector (such as a vertical edge detector) that's useful in one part of the image is probably useful in another part of the image.

→ **Sparsity of connections:** In each layer, each output value depends only on a small number of inputs.

Putting it together

Cost
$$J = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)})$$

Use gradient descent to optimize parameters to reduce J