

MATEMÁTICA BÁSICA – CE82 SEMANA 5 SP2 RESPUESTAS

INTERPRETACIÓN/ REPRESENTACIÓN

1. Si
$$f(x) = x^3$$
 y $g(x) = 2x - 1$, halle $(f \circ g)(x)$

Rpta:
$$(f \circ g)(x) = (2x - 1)^3$$

2. Si
$$f(x) = 3x + 4y$$
 $g(x) = 4x + 6$, halle $(g \circ f)(x)$

Rpta:
$$(g \circ f)(x) = 2x + 22$$

3. Si
$$f(x) = 3x + 4$$
, halle $f^{-1}(x)$

Rpta:
$$f^{-1}(x) = \frac{x-4}{3}$$

4. Si
$$g(x) = -2x - 5$$
, halle $g^{-1}(x)$

Rpta:
$$g^{-1}(x) = \frac{-x-5}{2}$$

5. Si
$$g(x) = x^2 - 4$$
, con $Dom(g) = [-3; 0]$, $Ran(g) = [-4; 5]$. Halle $g^{-1}(x)$

Rpta:
$$g^{-1}(x) = -\sqrt{x+4}$$
, $con\ Dom(g^{-1}) = [-4; 5]$, $Ran(g^{-1}) = [-3; 0]$

Dada la función f, en las siguientes reglas de correspondencia 6, 7 y 8:

- a) esboce la gráfica, determine el dominio y rango,
- b) halle los puntos de intersección con los ejes,
- c) determine los intervalos de monotonía,
- d) analice la continuidad,
- e) determine los intervalos donde la función es positiva o negativa.

6.
$$f(x) = \begin{cases} 2x+5, & -5 \le x < -1 \\ 4, & -1 \le x < 2 \\ 9-x, & 2 \le x < 5 \end{cases}$$

Rnta

- a) Dom f = [-5; 5[, Ran f = [-5; 3[U [4; 7]
- b) intersecciones: (2,5; 0), (0; 4)
- c) crece]-5; -1[, decrece:]2; 5[
- d) discontinua en -1, de salto; en 2, de salto

7.
$$f(x) = \begin{cases} -x^2 - 2x + 4, & -4 < x \le -1 \\ 2, & -1 < x \le 3 \\ 7 - x, & 3 < x \le 8 \end{cases}$$

Rpta:

a) Dom f = [-4; 8] Ran f = [-4; 5]

b) intersecciones: (-3,24; 0), (7; 0)

c) crece]-4; -1[, decrece:]3; 8[

d) discontinua en -1, de salto; en 3, de salto

e) f. positiva]-3,24; -1[,]-1; 3[,]3; 7[

f. negativa]-4; -3,24[,]7; 8[

8.
$$f(x) = \begin{cases} -x^2 + 3, & -3 \le x < 0 \\ \frac{5}{3}x - 3, & 0 \le x < 3 \\ -\sqrt{x - 3} + 4, & 3 \le x < 7 \end{cases}$$

Rpta:

a)Dom f = [-3; 7] Ran f = [-6; 4]

b) intersecciones: (0; -3), (-1,73; 0), (1,8; 0)

c) crece]-3; 0[,]0; 3[

decrece:]3; 7[

d) discontinua en 0, de salto; en 3, de salto

e) f. positiva]-1,73; 0[,]1,8; 3[,]3; 7[

f. negativa]-3; -1,73[,]0; 1,8[

10. Grafique g^{-1}

Rpta:

Rpta:

CÁLCULO

- 1. Si $f(x) = \sqrt{x+1}$ y $g(x) = x^2 1$, f(g(3)) = g(f(3))?

 Rpta.: Las funciones son diferentes: f(g(3)) = 3; g(f(3)) = 15
- 2. Si $f(x) = \sqrt{x+1}$ y $g(x) = x^2 1$, halle el dominio de $(g \circ f)(x)$ Rpta: Dom $(g \circ f)(x) = [-1; +\infty[$
- 3. Si $f(x) = \sqrt{x-4}$, halle el dominio y rango de $f^{-1}(x)$ Rpta: $f^{-1}(x) = 4 + x^2$, $Dom(f^{-1}(x)) = [0; +\infty[$, $Ran(f^{-1}(x)) = [4; +\infty[$

3/4 EPE INGENIERÍA

4. Si
$$f(x) = x^3 - 2, x \in [-1; 2]$$
, halle $f^{-1}(x)$
Rpta: $f^{-1}(x) = \sqrt[3]{x+2}$, $Dom(f^{-1}(x)) = [-3; 6]$, $Ran(f^{-1}(x)) = [-1; 2]$

5. Si
$$f(x) = (x-2)^2, x \in [2; 6]$$
, halle $f^{-1}(x)$
Rpta: $f^{-1}(x) = \sqrt{x} + 2$, $Dom(f^{-1}(x)) = [0; 16]$, $Ran(f^{-1}(x)) = [2; 6]$

6. Si
$$f(x) = 2x - 3, x \in [-1; 5]$$
 y $g(x) = 3x - 2; x \in [-2; 2]$, halle el dominio de $(f \circ g)(x)$

Rpta: $Dom(f \circ g)(x) = \begin{bmatrix} \frac{1}{3}; & 2 \end{bmatrix}$

ANÁLISIS

1. Determine dos funciones
$$f$$
 y g tales que $(f \circ g)(x) = \sqrt{x^2 + 4}$

Rpta:
$$f(x) = \sqrt{x}$$
; $g(x) = x^2 + 4$

2. Determine dos funciones
$$f$$
 y g tales que $(f \circ g)(x) = x^3 - 8$

Rpta:
$$f(x) = x - 8$$
; $g(x) = x^3$

3. ¿Las funciones
$$f(x) = 2x - 5$$
 y $g(x) = \frac{x+5}{2}$ son mutuamente inversas?

Rpta: SI, porque sus inversas son iguales:
$$f^{-1}(x) = \frac{x+5}{2}$$
; $g^{-1}(x) = 2x - 5$

4. ¿La función
$$f(x) = (x - 3)^2$$
 tiene inversa?

Rpta: No tiene inversa,
$$f$$
 no es inyectiva, usando el método de la recta horizontal.

5. Halle dos funciones f y g tales que
$$(f \circ g)(x) = (g \circ f)(x)$$
.

Rpta:
$$f(x) = 2x + 1$$
; $g(x) = 3x + 2$