12

الأستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية

درس رقم

 $f(x) = 2x^3$ الدالة

درس : تطبيقات الاشتقاق - دراسة و التمثيل المبياني لدالة عددية

м. .

 (C_f, \vec{i}, \vec{j}) منحناها في (a, a, a, a) منحناها في (a, a, a, a) معام متعامد ممنظم معامد منظم في جميع الفقرات من هذا الدرس (a, \vec{i}, \vec{j})

.I الاشتقاق وتطبيقاته:

11. الدالة المشتقة الثانية و تطبيقاتها:

 \mathbf{X}_0 الوضع النسبي للمنحنى $\left(\mathbf{C}_{\mathrm{f}}\right)$ و المماس ل $\left(\mathbf{C}_{\mathrm{f}}\right)$ في نقطة \mathbf{A}

1. نشاط:

 $f(x) = 2x^3$: نعتبر الدالة العددية

1) أحسب ' f ثم " f وحدد إشارة " f.

 $[0,+\infty]$ ثم على المماسات على $[0,+\infty]$ ثم على (2

3) ماذا تلاحظ؟ أعط الخاصية.

2. خاصية:

. \mathbf{x}_0 قابلة للاشتقاق مرتين على مجال مفتوح I قابلة للاشتقاق مرتين على مجال

. x_0 النقطة التي أفصولها (C_f) يوجد فوق المماس ل (C_f) في النقطة التي أفصولها الحري الذا كان (C_f)

. x_0 النقطة التي أفصولها (C_f) يوجد تحت المماس ل (C_f) في النقطة التي أفصولها (C_f) الذا كان

 $f(x) = x^3$: مثال: لنعتبر الدالة 3

1) أحسب: (x) ثم أعط إشارتها.

.] $-\infty$,0] ثشئ بعض المماسات على المجال $]0,+\infty[$ ثم على (2

<u>B</u> تقعر منحنی (C_f):

<u>.</u> نشاط:

على المجال $]0,+\infty$: نقول إن منحنى f له تقعر موجه نحو الأراتيب الموجبة .

أو منحنى f محدب (convexe). ماذا تلاحظ ؟

على المجال $]1,\infty-[$ نقول إن : منحنى f له تقعر موجه نحو الأراتيب السالبة .

أو منحنى f مقعر (concave). ماذا تلاحظ ؟

أعط التعريف.

<u>.2</u> مصطلح ورمز:

منحنی f محدب (convexe) و یرمز له ب: ____ /

fدالة قابلة للاشتقاق على مجال I.

منحنى f له تقعر موجه نحو الأراتيب الموجبة أو محدب (convexe) على I إذا كان C_f) يوجد فوق جميع مماسا ته على I. منحنى f له تقعر موجه نحو الأراتيب السالبة أو مقعر (concave) على I إذا كان C_f) يوجد تحت جميع مماسا ته على I.

الأستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية درس قم درس قم درس قم التمثيل المبياني لدالة عدية درس وقم

درس : تطبيقات الاشتقاق - دراسة و التمثيل المبياني لدالة عددية

f دالة قابلة للاشتقاق مرتين على مجال I.

- . (أو أيضا (C_f) له تقعر موجه نحو الأراتيب الموجبة) . (أو أيضا (C_f) له تقعر موجه نحو الأراتيب الموجبة) . ونرمز له ب:
 - . (أو أيضا (C_f) له تقعر موجه نحو الأراتيب السالبة) الم على (C_f) له تقعر موجه نحو الأراتيب السالبة) . ونرمز له ب:

لنعتبر الدالة f حيث إشارة دالتها المشتقة الثانية ' f هي: f بواسطة الجدول التالي: أعط تقعر (C_f) منحنى الدالة

X	-∞ -5 -	-1	2	+∞
f"(x)	- 0 +	_	0 +	-
$\left(\mathrm{C_{_f}} ight)$ تقعر				

C نقط انعطاف: POINTS D'INFLEXION

 $f(x) = (x-1)^3 + 2$: الشكل الآتي يمثل منحنى الدالة

- (1) أحسب (f(1).
- 3) ماذا تلاحظ؟

 $\mathbf{x}_0 = 1$ أنشئ المماس في 1

- لنقطة ${\bf x}_0=1$ تسمى نقطة انعطاف لمنحنى الدالة ${\bf t}$. أعط تعريف لذلك.
 - 5) حدد إشارة " f . هل يمكنك أن تستنتج الخاصية ؟
 - 2. تعریف:

. (M_0 في معلم . (C_f) نقطة من $M_0(x_0,x_0)$. في معلم . (C_f) المماس ل C_f M_0 في نقطة العطاف ل M_0 يعني أن المماس M_0 يعني أن المماس M_0 النقطة M_0 النقطة M_0 النقطة العطاف ل M_0 النقطة M_0 ا

3. مثال: لنعتبر الدالة:

$$f(x) = \frac{x}{\sqrt{1+x^2}}$$

4 خاصية:

. \mathbf{x}_0 دالة قابلة للاشتقاق مرتين على مجال مفتوح \mathbf{I} يحتوي على \mathbf{f}

إذا كانت الدالة المشتقة الثانية " f تنعدم في x_0 وتتغير إشارتها بجوار x_0 النقطة التي أفصولها x_0 هي نقطة انعطاف ل (C_f) منحنى الدالة f (أو نقطة انعطاف للدالة f).

الأستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية المستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية الأستقاق ـ درس رقم

درس : تطبيقات الاشتقاق - دراسة و التمثيل المبياني لدالة عددية

5. مثال 1:

نأخذ المثال (السابق الذي يمثل جدول إشارة ' ' f). هل الدالة f تقبل نقط انعطاف حددها ؟

<u>6.</u> مثال2:

. أنشئ نقط انعطاف للمنحنى $\left(C_{\mathrm{f}}\right)$. إذا كان ممكن

Ⅲ. الفروع اللانهائية لمنحنى دالة f:

A. فرع اللانهائي:

1. نشاط: فرع اللانهائي:

لدينا فرع اللانهائي:

- بجوار: ∞ + و ∞ ثم 1 بالنسبة للرسم (1) ؛ ماذا تلاحظ بالنسبة للأفصول أو الأرتوب ؟
 - بجوار: ∞+ و ∞- بالنسبة لرسم (2) ماذا تلاحظ بالنسبة للأفصول أو الأرتوب؟
 - بجوار: ∞+ و ∞- بالنسبة لرسم (3) ماذا تلاحظ بالنسبة للأفصول أو الأرتوب ؟
 - أعط تعاريف لذلك.

$$f(x) = \frac{2x}{x-1} \quad (1)$$

$$(3) \begin{cases} f(x) = x^2 - 5, 2 & ; x \in] - \infty, -2] \\ f(x) = x + 1 + \frac{1}{2(x - 1)} ; x \in] - 2, 1 [\cup] 1, + \infty[]$$

2. تعریف:

- منحنى دالة عددية f في معلم.
- إذا آلت على الأقل إحدى إحداثيتي نقطة $\, \mathbf{M} \,$ من $\left(\mathbf{C}_{\! \mathrm{f}} \, \right)$ إلى مالا نهاية نقول إن المنحنى $\left(\mathbf{C}_{\mathrm{f}}\right)$ يقبل فرعا لانهائيا.

 (C_f) حدد الفروع اللانهائية ل

الأستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية

درس رقم

درس : تطبيقات الاشتقاق - دراسة و التمثيل المبياني لدالة عددية

أنواع الفروع اللانهائية:

ASYMPTOTE HORIZONTALE - مقارب أفقي . A

1. نشاط:

 $f(x) = rac{2x}{x-1}$ بالنسبة للرسم رقم (D): y=2 بالنسبة للرسم رقم (C_f) يقبل مقارب أفقي هو المستقيم الذي معادلته

أعط تعريف لذلك.

<u>2.</u> تعریف:

دالة عددية معرفة على $[a,+\infty[$). f

 $(-\infty)$ بجوار (C_f) بجوار (x)=b مقارب أفقي ل (x)=b فإن المستقيم الذي معادلته (x)=b مقارب أفقي ل (x)=b بجوار (x)=b

<u>3.</u> مثال:

. $\lim_{x \to +\infty} f(x) = 1$. $f(x) = \frac{x-1}{x+1}$

 $+\infty$ إذن المستقيم الذي معادلته y=1 مقارب أفقي ل $\left(\mathrm{C_{f}}
ight)$ بجوار

B_ مقارب عمودي – ASYMPTOTE VERTICALE:

1. نشاط: نأخذ الشكل السابق

نقول إن المنحنى $\binom{C_f}{x-1}$ يقبل مقارب عمودي هو المستقيم الذي معادلته x=1:(D). مع $f(x)=\frac{2x}{x-1}$. أعط تعريف لذلك.

<u>2.</u> تعریف:

 \mathbf{A}_0 دالة عددية معرفة \mathbf{A}_0 ا أي \mathbf{A}_0 غير معرفة في \mathbf{A}_0 .

إذا كان $\infty = \sum_{x \to x_0^+} f(x) = \infty$) فإن المستقيم الذي معادلته $\mathbf{x} = \mathbf{x}_0$ مقارب عمودي ل $\mathbf{x} = \mathbf{x}_0$ عند اليمين (على اليمين (على اليمين (اليسار).

$$f(x) = \frac{x-1}{x+1}$$
 .3

لدينا: $\infty + = (C_f)$. انظر الرسم (انظر الرسم الذي معادلته 1 = -1 مقارب عمودي ل

: ASYMPTOTE OBLIQUE – مقارب مائل <u>.</u>

نشاط:

[-2,1] المعرف على [-2,1] المعرف على [-2,1] المعرف على [-2,1] المعرف على [-2,1]

1) ماذا تلاحظ؟

 $\lim_{x\to+\infty} f(x) - (x+1) : \frac{1}{2}$

<u>2.</u> مفردات:

. $+\infty$ بجوار $(C_{_{\mathrm{f}}})$ بخوار مائل لy=x+1 بجوار به نقول إن المستقيم الذي

الأستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية المستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية الأستاذ: بنموسى محمد ثانوية: عدر السنة والتمثيل المبياني لدالة عدية درس رقم

درس : تطبيقات الاشتقاق - دراسة و التمثيل المبياني لدالة عددية

3. تعریف:

$$f$$
 دالة عددية معرفة على $[a,+\infty[$ $[a,+\infty[$ $a,+\infty[$ $a,+\infty[$

$$\begin{cases}
\lim_{x \to \infty} f(x) = \infty \\
\lim_{x \to \infty} f(x) - (a'x + b') = 0
\end{cases} \cdot
\begin{cases}
\lim_{x \to +\infty} f(x) = \infty \\
\lim_{x \to +\infty} f(x) - (ax + b) = 0
\end{cases}$$

$$f(x) = x - 2 + \frac{1}{x - 1}$$
: مثال: لنعتبر الدالة f المعرفة ب

 (C_f) بجوار (x-2) بجوار (x-2) بجوار (x-2) بجوار (x-2)

$$\lim_{|x|\to +\infty} f(x) - (x-2) = \lim_{|x|\to +\infty} \frac{1}{x+1} = 0$$
 لاينا:

 $(C_{
m f})$ يسمى مقارب مائل بجوار ∞ ل $(C_{
m f})$ ليسمى مقارب مائل بجوار ∞

<u>5.</u> ملاحظة:

- $+\infty$ بجوار y=ax+b فإن $(C_{_{\mathrm{f}}})$ يوجد قطعا فوق المقارب المائل الذي معدلته f(x)-(ax+b)>0 بجوار
- y = a'x + b' بجوار ه پخوار المائل الذي معدلته
 - . y = ax + b فإن f(x) (ax + b) = 0 يقطع المقارب المائل الذي معدلته f(x) (ax + b) = 0

6. تحدید : a و d

خاصية:

.
$$b = \lim_{x \to \infty} f(x) - ax$$
 و $a = \lim_{x \to \infty} \frac{f(x)}{x}$ بجوار ∞ فإن: $y = ax + b$ و $y = ax + b$

ب_ حالات خاصة:

- (-1- الشكل الشكل محور الأفاصيل (${
 m C}_{
 m f}$) يقبل فرع شلجمي في اتجاه محور الأفاصيل (الشكل a=0
- (-2- الشكل -2-) في هذه الحالة نقول إن ${
 m (C_f)}$ يقبل فرع شلجمي في اتجاه محور الأراتيب ${
 m a}=\infty$
- أي $a \neq 0$ أو $\infty \neq a$) و $\infty = b$ في هذه الحالة نقول إن (C_f) يقبل فرع شلجمي في اتجاه المستقيم الذي المعادلة $a \neq 0$ y = ax بجوار x = ax

$$\mathbf{f}(\mathbf{x}) = \mathbf{x}^3$$

الأستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية كالأستاذ: بنموسى محمد ثانوية حدرس : تطبيقات الاشتقاق ـ دراسة و التمثيل المبياني لدالة عددية درس رقم

f(x) -

(C_f)

x = 1

درس : تطبيقات الاشتقاق ـ دراسة و التمثيل المبيائي لدالة عددية

y=ax+b+c اِذَا كَانَ ∞ معادلته ∞ اِفَان (C_f) يقبل مقارب مائل بجوار (x_f) فإن والم

 (\mathcal{C}_f) محور تماثل منحنی (\mathcal{C}_f) محور تماثل منحنی . \mathbf{W}

Centre de symétrie : مركز تماثل منحنى.

[. نشاط:

I(a,b) عيث f منسوب إلى معلم $\left(C_{f}\right)$ و $\left(O,\overrightarrow{i},\overrightarrow{j}\right)$ منسوب إلى معلم المستوى M(x,y). (C_f) مركز تماثل M(x,y).

 $\mathbf{S}_{_{\mathrm{I}}}(\mathbf{M})\!=\!\mathbf{M}'(\mathbf{x}',\!\mathbf{y}')$ حيث مماثلها هي $\mathbf{M}'(\mathbf{x}',\!\mathbf{y}')$ بالنسبة للتماثل المركزي

$$S_{I}(M) = M' \Leftrightarrow \dots I \Leftrightarrow \begin{cases} a = \dots \\ b = \dots \end{cases}$$
 (1)

2) أعط الخاصية.

2. خاصية:

. دالة عددية معرفة على $\left(C_{_{f}}\right)$ منحنها على $D_{_{f}}$ في معلم f

 $\forall x \in D_{f} ; 2a - x \in D_{f}$ $\forall x \in D_f ; f(2a-x)+f(x) = 2b$

 (\mathcal{C}_f) محور تماثل ل (\mathcal{B}_f) :

1. نشاط:

 ${f D}_{
m f}$ المستوى ${f P}$ منسوب إلى معلم متعامد ${f C}_{
m f}$. ${f (C_{
m f})}$ ، منحنى دالة ${f f}$ عددية معرفة على $\left(\mathbf{C}_{\mathrm{f}}\right)$ مو محور تماثل ل $\mathbf{x}=\mathbf{a}$ عيث المستقيم الذي معادلته

. $S_{(D)}$ عيث مماثلها هي M'(x',y') بالنسبة للتماثل المحوري M(x,y)

لدينا: ' M = M ' الدينا

$$S_{(D)}(M) = M' \Leftrightarrow \dots (D) \Leftrightarrow \dots (D)$$
 آئمم:

2) أعط الخاصية.

<u>2.</u> خاصية:

دالة عددية معرفة على $\left(C_{_{f}}\right)$ منحنها على $D_{_{f}}$ في معلم متعامد ممنظم.

 $\forall x \in D_f ; 2a - x \in D_f$ المستقيم الذي معادلته $\mathbf{D}: \mathbf{x} = \mathbf{a}$ هو محور تماثل ل $\cdot \Big| \forall x \in D_f ; f(2a-x) = f(x)$

 $f(x) = (x-1)^2 + 1$ ننعتبر الدالة العدية:

بین أن: (C_f) منحنی f یقبل محور تماثل علی (C_f) یتم تحدیده.

الأستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية

درس : تطبيقات الاشتقاق ـ دراسة و التمثيل المبياني لدالة عددية

مجموعة دراسة دالة

<u>.</u> تعاریف:

دالة عددية معرفة على ' $D_f = I \cup I$ حيث I و ' I متماثلين بالنسبة ل 0 مع I يحتوي على الأعداد الموجبة و ' I يحتوي على الأعداد I

- - أ_ تغيرات f على I' هي نفس تغيرات f على I إذا كانت f فردية.
 - ب تغیرات f علی I' هي عكس تغیرات f علی I إذا كانت f زوجية.
- T دورية و دورها P=T يكفي دراسة على $D_{\rm E}=D_{\rm f}\cap J$ مع D=T مجال طوله T

 $.... \ \mathbf{D}_{_{\mathrm{E}}} = \mathbb{R} \cap [-\pi,\pi[\ = [-\pi,\pi[\]^{_{\dot{}}} \cdot \mathbf{D}_{_{\mathrm{E}}} = \mathbb{R} \cap [0,2\pi] = [0,2\pi]) \cdot \mathbf{D}_{_{\mathrm{E}}} = \mathbb{R} \cap [0,2\pi[\ = [0,2\pi[\]^{_{\dot{}}} \cdot \mathbf{D}_{_{\dot{}}} = \mathbb{R} \cap [0,2\pi[\]^{_{\dot{}}} - \mathbb{R} \cap [0,2\pi[\]^{_{\dot{$

<u>3.</u> ملحوظة:

اف الخانت f دورية و دورها P=T و زوجية (أو فردية) على $D_{\rm E}=D_{\rm f}\cap \left|0,\frac{T}{2}\right|$ أو P=T أو P=T أو P=T أو الخانت P=T دورية و دورها P=T و زوجية (أو فردية) على على الخانت ال

$$.D_{E} = D_{f} \cap \left[-\frac{T}{4}, \frac{T}{4} \right]$$

4. مثال:

- مثال $f(x) = \sin(x)$ هي معرفة و دورية و فردية على $\mathbb R$ ودورها $T = 2\pi$ ندرس الدالة f على مجال طوله π $\mathbf{D}_{\mathrm{E}} = [0,\pi]$ أي $\mathbf{D}_{\mathrm{E}} = \mathbb{R} \cap [0,\pi] = [0,\pi]$ أي $\mathbf{D}_{\mathrm{E}} = [0,\pi]$
- $\mathbf{D}_{\mathrm{E}} = \mathbb{R} \cap [0,\pi] = [0,\pi]$ هي معرفة على \mathbb{R} . ودورية ودورها 2π و زوجية ; و بالتالي ندرسها على $\mathbf{f}(\mathbf{x}) = \cos(\mathbf{x})$ عثال $\mathbf{cos}(\mathbf{x})$

VI. تصميم دراسة دالة عددية:

\mathbf{D}_{E} او او \mathbf{D}_{f} براسة إشارة '	8	$\mathbf{D}_{\mathrm{f}}:\mathbf{f}$ مجموعة تعريف الدالة	1	
\mathbf{D}_{E} عطاء جدول تغیرات \mathbf{f} علی مطاء جدول تغیرات	9	دراسة زوجية f أو دورية f (إذا كان ذلك ممكن)	2	
${f f}$ ذا كان ذلك ممكن دراسة تقعر أو نقط انعطاف	10	$\mathbf{D}_{\mathrm{E}}:\ \mathbf{f}$ استنتاج مجموعة دراسة	3	
نشاء $f 1$) المعلم $f 2$) المقاربات $f 3$) بعض المماسات (حیث $f 6$ $f (x)=0$ أو نقط انعطاف $f f$ إذا كان ممكن) $f 4$) إنشاء $f (C_f)$	111	$\mathbf{D}_{_{\mathrm{E}}}$ او $\mathbf{D}_{_{\mathrm{f}}}$ نهایات \mathbf{f} عند محدات	4	
هناك بعض الأسئلة الإضافية مثل حل مبيانيا المعادلة $\mathbf{x}\in \mathbf{D}_{\mathrm{f}}/\mathbf{f}(\mathbf{x})=\mathbf{g}(\mathbf{x})$ و $\mathbf{x}\in \mathbf{D}_{\mathrm{f}}/\mathbf{f}(\mathbf{x})=\mathbf{m}$ و المتراجحة $\mathbf{x}\in \mathbf{D}_{\mathrm{f}}/\mathbf{f}(\mathbf{x})\leq 0$	12	استنتاج الفروع اللانهائية ل f	5	
$\mathbf{g}(\mathbf{x}) = \mathbf{f}(\left \mathbf{x} ight)$ أو $\mathbf{g}(\mathbf{x}) = \sqrt{\mathbf{f}(\mathbf{x})}$ أع دراسة الدالة	13	دراسة الوضع النسبي للمنحى f و المقارب المائل (إذا كان ذلك ممكن)	6	
و أسئلة أخرى ربط هذه الدالة بالفيزياء أو	14	\mathbf{D}_{E} او \mathbf{D}_{f} او \mathbf{D}_{f}	7	

الأستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية درس يقم درس وقم درس وقم

درس : تطبيقات الاشتقاق - دراسة و التمثيل المبياني لدالة عدية

. $\left(O,\vec{i},\vec{j}\right)$ منحنى f في معلم متعامد ممنظم f المعرفة ب: $f(x)=\frac{x^2-x+1}{x-1}$. المعرفة بنات الدالة العددية f المتغير الدالة العددية أ

- 1) حدد D مجموعة تعريف الدالة f.
- 2) أحسب النهايات عند محد ات .D
- $\forall x \in D_f; f(x) = ax + b + \frac{c}{x-1} : \mathbb{R}$ من c ; b ; a
 - (C_f) أدرس الفروع اللانهائية للمنحنى ((C_f)).
- . أدرس الوضعية النسبي للمنحنى ${f (C_f)}$ بالنسبة لمقاربه المائل .
 - D_f من X کا f'(x) احسب (6
 - . f على D_f ثم أعط جدول تغيرات T
 - . D_f على على المنحنى (C_f) على 8
 - . $\left(C_{_{\mathrm{f}}}\right)$ بين أن النقطة $I\left(1,1\right)$ مركز تماثل المنحنى $\mathbf{9}$
 - . $\left(O,\vec{i},\vec{j}\right)$ منحنی f في معلم متعامد ممنظم (C_{f}) انشی ($\mathbf{10}$