MATH 392 Problem Set 5

EJ Arce

2 March 2018

6.39

 $\{\hat{\beta}_n\}$ is consistent if and only if $\lim_{n\to\infty} P(|\hat{\beta}_n - \beta| < \varepsilon) = 1 \ \forall \ \varepsilon > 0.$

It has been shown before that \forall n ϵ N, $E[\hat{\beta}_n] = \frac{n}{n+1}\beta$. Thus,

$$\begin{split} lim_{n\to\infty}P(|\hat{\beta}_n-\beta|<\varepsilon) &= 1 \Leftrightarrow lim_{n\to\infty}P(|E[\hat{\beta}_n]-\beta|<\varepsilon) = 1 \\ &\Leftrightarrow lim_{n\to\infty}|E[\hat{\beta}_n]-\beta|<\varepsilon \\ &\Leftrightarrow lim_{n\to\infty}|\frac{n}{n+1}\beta-\beta|<\varepsilon \\ &\Leftrightarrow lim_{n\to\infty}|(\frac{n}{n+1}-1)\beta|<\varepsilon \end{split}$$

It suffices to show that $\lim_{n\to\infty} \left|\frac{n}{n+1} - 1\right| < \varepsilon$:

Let $\varepsilon > 0$. Then $\exists m \in \mathbb{N}$ st $\forall n \geq m$,

$$\frac{1}{n}<\varepsilon\Rightarrow\frac{1}{n+1}<\varepsilon\Rightarrow|\frac{-1}{n+1}|<\varepsilon\Rightarrow|\frac{n-n-1}{n+1}|<\varepsilon\Rightarrow|\frac{n}{n+1}-\frac{n+1}{n+1}|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-1|<\varepsilon\Rightarrow|\frac{n}{n+1}-$$

Thus $\lim_{n\to\infty} \left|\frac{n}{n+1}-1\right| < \varepsilon$, so $\lim_{n\to\infty} P(|\hat{\beta}_n-\beta| < \varepsilon) = 1$. Thus $\{\hat{\beta}_n\}$ is consistent.

6.40

 $\{\hat{\sigma}_n^2\} \text{ is consistent if and only if } \lim_{n\to\infty} P(|\hat{\sigma}_n^2-\sigma^2|<\varepsilon)=1 \ \forall \ \varepsilon>0.$

Again, it suffices to show that $\lim_{n\to\infty} P(|E[\hat{\sigma}_n^2] - \sigma^2| < \varepsilon) = 1$. From Problem Set 4,

$$E[\hat{\sigma}_n^2] - \sigma^2 = \frac{n-1}{n}\sigma^2 - \sigma^2 = \frac{-1}{n}\sigma^2$$

Let $\varepsilon > 0$. Then $\exists m \epsilon \mathbb{N}$ st $\forall n \geq m,$, $\frac{1}{n} < \varepsilon$. Thus, $\forall n \geq m,$

$$\left|\frac{1}{n}\right|<\varepsilon\Rightarrow\left|\frac{1}{n}\sigma^2\right|<\varepsilon\Rightarrow\left|(\frac{n-1}{n}-\frac{n}{n})\sigma^2\right|<\varepsilon\Rightarrow\left|\frac{n-1}{n}\sigma^2-\sigma^2\right|<\varepsilon\Rightarrow\left|E[\hat{\sigma}_n^2]-\sigma^2\right|<\varepsilon.$$

Thus, $\lim_{n\to\infty} P(|\hat{\sigma}_n^2 - \sigma^2| < \varepsilon) = 1 \forall \varepsilon > 0.$