

DISTA

Corso: Analisi Numerica

Docente: Roberto Piersanti

Radici di equazioni non lineari Lezione 1.6b

Ordine di convergenza di un metodo iterativo

Ordine di convergenza di un metodo iterativo (definizione)

- Ordine di convergenza = velocità di convergenza
- ightharpoonup Data un successione $\{x_n\}$ che converge ad $\, lpha \,$
- \blacktriangleright Successione converge ad α con **ordine 1** se

$$\exists c < 1 \text{ t.c. } |\alpha - x_{n+1}| \leq c|\alpha - x_n| \qquad \forall n \geq \bar{n}$$
Errore di approx al passo $n+1$

- ➤ L'errore diminuisce ad ogni iterazione
- \blacktriangleright Successione converge ad α con **ordine p>1** se

$$\exists c > 0 \text{ t.c. } |\alpha - x_{n+1}| \le c|\alpha - x_n|^p \forall n \ge \bar{n}$$

- \blacktriangleright Più p è grande, maggiore sarà la velocità di convergenza
- \succ Convergenza più rapida (i.e. meno iterazioni η) con un ordine maggiore

Ordine di convergenza dei metodi per la ricerca degli zeri

> Metodi locali: considerazione che valgono se

 x_0 è «vicino» ad α

Metodo di bisezione Metodo delle corde

Convergenza lineare

Metodo delle secanti $\qquad \qquad p \simeq 1.63$

$$p \simeq 1.63$$

Convergenza super-lineare

Metodo di Newton

$$p=2$$

Convergenza quadratica

Ordine di convergenza delle iterazioni di punto fisso

- Caratterizzare la convergenza delle iterazioni di punto fisso
- Sotto le ipotesi del Teorema di esistenza dei punti fissi

Se
$$g(x)$$
 è continua e $g(I) \subset I$, $\exists g'(x)$ con $|g'(x)| \leq K < 1$ allora $\exists ! \alpha \in I$ t.c. $g(\alpha) = \alpha$

> Si ha che

$$\lim_{n \to \infty} \frac{\alpha - x_{n+1}}{\alpha - x_n} = g'(\alpha)$$

 \succ Passando da limite a una relazione asintotica $n \geq ar{n}$

$$\alpha - x_{n+1} \simeq g'(\alpha)(\alpha - x_n)$$

 \blacktriangleright Le iterazioni di **punto fisso convergono linearmente (ordine 1)** $c=g'(\alpha)$

Ordine di convergenza delle iterazioni di punto fisso

- Sotto le ipotesi del Teorema di esistenza dei punti fissi
- Le iterazioni di punto fisso convergono linearmente (ordine 1)

$$\alpha - x_{n+1} \simeq g'(\alpha)(\alpha - x_n)$$

- ightharpoonup Più |g'(lpha)|è piccolo, più rapidamente avremo convergenza
- ightharpoonup Se g'(lpha)=0 si può verificare che il metodo di **punto fisso è di ordine 2**

$$|\alpha - x_{n+1}| \le cost(\alpha - x_n)^2$$