Секция "Изток" - СМБ

КОЛЕДНО МАТЕМАТИЧЕСКО СЪСТЕЗАНИЕ – 14.12.2024 г.

10 клас

Темата е по формата на НВО

Време за работа: 90 минути

Стойността на изваза	$12 + \sqrt{21}$	$12 - \sqrt{21}$	a noniio iio
1. Стойността на израза	$12 - \sqrt{21}$	$12 + \sqrt{21}$	с равна на

A) 0

2. Допустимите стойности на израза $\frac{1}{x^2+1} + \frac{x}{27x^3-18x^2+6x-1}$ са:

- **A)** $x \neq \frac{1}{2} \text{ if } x \neq 0$
- B) $x \neq \frac{1}{3}$ B) $x \neq \frac{1}{3}$, $x \neq 1$ μ $x \neq -1$ Γ) $x \neq \pm 1$ μ $x \neq 0$

3. За корените x_1 и x_2 на уравнението $-x^2 + 7x - 5 = 0$ пресметнете $x_1^4 + x_2^4$. Стойността е:

A) -47.5

- Б) 1471
- B) 2401

 Γ) 1571

4. Даден е трапец ABCD с основи AB = a и CD = b, a > b, със среди съответно M и N. Ако $MN = \frac{1}{2}(a-b)$, сборът от мерките на ъглите, прилежащи на основата AB на трапеца е равен на:

 \mathbf{A}) 60°

- Б) 120°
- B) 90°

Γ) 150°

5. Точките Q, P, T и S са среди съответно на страните BC, CD, DE и EA на петоъгълника ABCDE, а точките L и M са средите съответно на отсечките SP и TQ. Кое е вярното векторно равенство ?

- A) $\overrightarrow{LM} = \frac{1}{4} \overrightarrow{AB}$
- B) $\overrightarrow{LM} = \frac{1}{3}\overrightarrow{AB}$ B) $\overrightarrow{LM} = \frac{1}{5}\overrightarrow{AB}$ Γ) $\overrightarrow{LM} = \frac{1}{4}\overrightarrow{BA}$

6. Върху окръжност с радиус 2 ст са взети три точки, разделящи окръжността на три дъги, дължините на които се отнасят както 3:4:5. През точките са построени три допирателни към окръжността. Лицето на триъгълника, образуван от тези допирателни е:

- A) $2(1+\sqrt{3})^2$
- B) $6+4\sqrt{3}$ B) $12+8\sqrt{3}$ Γ) $24+12\sqrt{3}$

7. Дадени са функциите (1) $f_1(x) = 4x - 1$, (2) $f_2(x) = 8x - 2$, (3) $f_3(x) = 4x + 1$ и

(4) $f_4(x) = 3x - 1$. Успоредни са графиките на:

- А) (2) и (4)
- Б) (1) и (4)
- В) (2) и (3)
- Γ) (1) и (3)

8.	Лицето	на ф	иги	рата.	ОΓ	ранич	ена	от і	град	bиката	на	bv	VНКЦ	ията
\cdot	o i i i i i i i i i i i i i i i i i i i	II C	*** , ,		-	P 641111 1	- III	~ .	Pag	pilitara	1100	1	,	

$$f(x) = \begin{cases} x+5 & npu \ x \le -3 \\ 2 & npu \ -3 < x < 2 \\ -x+4 & npu \ x \ge 2 \end{cases}$$

и абсцисната ос Ох е равно на:

A) 14

B) 9

Γ) 11

9. Разликата между най- голямата и най- малката стойност на функцията $y = -x^2 + 7x - 5$ в интервала [-1;5] е равна на:

A) -13

Б) 20,25

B) 7,25

 Γ) 5

10. Решенията на системата $\begin{vmatrix} (x-1)^2 - (y+2)^2 = 0 \\ x^2 + y^2 + 2y + 6x = 7 \end{vmatrix}$ са:

A) (-2;-5),(1;-2),(-4;-3)

Б) (-2;-5),(1;-2),(4;-3)

B) (-2;5),(1;-2),(-4;3)

 Γ) (-2,-5),(1,-2),(-4,3)

11. Даден е $\triangle ABC$, AB = 20 cm, BC = 7 cm, AC = 15 cm. Дължината на ъглополовящата на наймалкия ъгъл в $\triangle ABC$ е равна на:

- **A)** $12\sqrt{2}$ cm
- Б) 12 cm

- B) 9 cm
- Γ) 16

12. Стойността на израза $\frac{1+\sin\alpha.\cos\alpha}{1+tg\left(90^0-\alpha\right)}.\frac{\sin^2\alpha-\cos^2\alpha}{\sin^3\alpha-\cos^3\alpha}$ при $\cos\alpha=\frac{2\sqrt{2}}{3}$, $\alpha\in\left(0,90^\circ\right)$ е:

A) 3

Б) $1 - \frac{2\sqrt{2}}{3}$

- B) $\frac{1}{3}$ Γ) $\frac{3\sqrt{2}}{4}$

13. Бедрото на равнобедрен триъгълник е 30 см, а основата му е 48 см. Разстоянието (в сантиметри) между центровете на вписаната и описаната за триъгълника окръжност е:

- A) 18
- Б) 15

- B) 10
- Γ) 25

14. Дадена е аритметична прогресия $a_1, a_2, a_3, ...$, за която $a_1 = -3$ и разлика d = 2,5 . Кое от числата не е член на прогресията:

- A) 19,5
- Б) 2

- B) 12
- Γ) 22,5

15. Бижутер трябва да разпредели 8 различни чифта обици в 4 витрини. По колко начина може да направи това?

A) 4^{8}

Б) 8⁴

- B) C_{\circ}^4
- Γ) 4!

<u>Пълните решения с необходимите обосновки на задачи 16 и 17 запишете в листа за отговори на указаните за това места</u>

- **16**. Решете уравнението $\sqrt{5x-3} + \sqrt{x} = 4\sqrt{3}$
- **17**. Три момчета и n момичета седнали на пейка в парка. Намерете n, ако вероятността трите момчета да са едно до друго е $\frac{1}{15}$.

Ключ с верните отговори 10 клас

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	№ на задача
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12
15 A 4 16 Общо 20 точки 16 Определяне на допустими стойности на $x \in \left[\frac{3}{5}; 12\frac{3}{4}\right]$ 6 точки Свеждане до квадратно уравнение 4 точки $16x^2 - 600x + 2601 = 0$ 4 точки Пресмятане корените на уравнението 4 точка $x_1 = \frac{75 + 12\sqrt{21}}{4}$ и $x_2 = \frac{75 - 12\sqrt{21}}{4}$ 4 точка Проверка на неравенството $x_1 > 12\frac{3}{4}$ 1 точка Следователно x_1 не е решение на уравнение. 2 точки Проверка на неравенството $x_2 < 12\frac{3}{4}$ 2 точки Проверка на неравенството $x_2 < 3\frac{3}{5}$ 2 точка	13
16 Общо 20 точки 16 Определяне на допустими стойности на $x \in \left[\frac{3}{5}; 12\frac{3}{4}\right]$ 6 точки Свеждане до квадратно уравнение $16x^2 - 600x + 2601 = 0$ 4 точки Пресмятане корените на уравнението $x_1 = \frac{75 + 12\sqrt{21}}{4}$ и $x_2 = \frac{75 - 12\sqrt{21}}{4}$ 4 точка Проверка на неравенството $x_1 > 12\frac{3}{4}$. 1 точка Следователно x_1 не е решение на уравнение. 2 точки Проверка на неравенството $x_2 < 12\frac{3}{4}$ 2 точки Проверка на неравенството $x_2 > \frac{3}{5}$ 2 точка	
Определяне на допустими стойности на $x \in \left[\frac{3}{5}; 12\frac{3}{4}\right]$ 6 точки Свеждане до квадратно уравнение $16x^2 - 600x + 2601 = 0$ 4 точки Пресмятане корените на уравнението $x_1 = \frac{75 + 12\sqrt{21}}{4}$ и $x_2 = \frac{75 - 12\sqrt{21}}{4}$ 4 точка Проверка на неравенството $x_1 > 12\frac{3}{4}$ 1 точка Следователно x_1 не е решение на уравнение. 2 точки Проверка на неравенството $x_2 < 12\frac{3}{4}$ 2 точки Проверка на неравенството $x_2 > \frac{3}{5}$ 2 точка	15
$x \in \left[\frac{3}{5}; 12\frac{3}{4}\right]$ Свеждане до квадратно уравнение $16x^2 - 600x + 2601 = 0$ Пресмятане корените на уравнението $x_1 = \frac{75 + 12\sqrt{21}}{4}$ и $x_2 = \frac{75 - 12\sqrt{21}}{4}$ 4 точка Проверка на неравенството $x_1 > 12\frac{3}{4}$. 1 точка Следователно x_1 не е решение на уравнение. Проверка на неравенството $x_2 < 12\frac{3}{4}$ 2 точки Проверка на неравенството $x_2 > \frac{3}{5}$ 2 точка	
Свеждане до квадратно уравнение $16x^2 - 600x + 2601 = 0$ Пресмятане корените на уравнението $x_1 = \frac{75 + 12\sqrt{21}}{4} \text{и} x_2 = \frac{75 - 12\sqrt{21}}{4}$ 4 точка $\text{Проверка на неравенството } x_1 > 12\frac{3}{4} \text{1 точка}$ Следователно x_1 не е решение на уравнение. $\text{Проверка на неравенството } x_2 < 12\frac{3}{4} \text{2 точки}$ Проверка на неравенството $x_2 > \frac{3}{5}$	16
Свеждане до квадратно уравнение $16x^2 - 600x + 2601 = 0$ Пресмятане корените на уравнението $x_1 = \frac{75 + 12\sqrt{21}}{4} \text{и} x_2 = \frac{75 - 12\sqrt{21}}{4}$ 4 точка $\text{Проверка на неравенството } x_1 > 12\frac{3}{4} \text{1 точка}$ Следователно x_1 не е решение на уравнение. $\text{Проверка на неравенството } x_2 < 12\frac{3}{4} \text{2 точки}$ Проверка на неравенството $x_2 > \frac{3}{5}$	
$16x^2-600x+2601=0$ Пресмятане корените на уравнението $x_1=\frac{75+12\sqrt{21}}{4}$ и $x_2=\frac{75-12\sqrt{21}}{4}$ 4 точка Проверка на неравенството $x_1>12\frac{3}{4}$. 1 точка Следователно x_1 не е решение на уравнение. Проверка на неравенството $x_2<12\frac{3}{4}$ 2 точки Проверка на неравенството $x_2>\frac{3}{5}$ 2 точка	
$16x^2-600x+2601=0$ Пресмятане корените на уравнението $x_1=\frac{75+12\sqrt{21}}{4}$ и $x_2=\frac{75-12\sqrt{21}}{4}$ 4 точка Проверка на неравенството $x_1>12\frac{3}{4}$. 1 точка Следователно x_1 не е решение на уравнение. Проверка на неравенството $x_2<12\frac{3}{4}$ 2 точки Проверка на неравенството $x_2>\frac{3}{5}$ 2 точка	
Пресмятане корените на уравнението $x_1 = \frac{75 + 12\sqrt{21}}{4} \text{и} x_2 = \frac{75 - 12\sqrt{21}}{4} \qquad \qquad 4 \text{ точка}$ Проверка на неравенството $x_1 > 12\frac{3}{4}$. 1 точка Следователно x_1 не е решение на уравнение. Проверка на неравенството $x_2 < 12\frac{3}{4}$ 2 точки Проверка на неравенството $x_2 > \frac{3}{5}$ 2 точка	
$x_1 = \frac{75 + 12\sqrt{21}}{4}$ и $x_2 = \frac{75 - 12\sqrt{21}}{4}$ 4 точка Проверка на неравенството $x_1 > 12\frac{3}{4}$. 1 точка Следователно x_1 не е решение на уравнение. Проверка на неравенството $x_2 < 12\frac{3}{4}$ 2 точки Проверка на неравенството $x_2 > \frac{3}{5}$ 2 точка	
Проверка на неравенството $x_1 > 12\frac{3}{4}$. 1 точка Следователно x_1 не е решение на уравнение. Проверка на неравенството $x_2 < 12\frac{3}{4}$ 2 точки Проверка на неравенството $x_2 > \frac{3}{5}$ 2 точка	
Проверка на неравенството $x_1 > 12\frac{3}{4}$. 1 точка Следователно x_1 не е решение на уравнение. Проверка на неравенството $x_2 < 12\frac{3}{4}$ 2 точки Проверка на неравенството $x_2 > \frac{3}{5}$ 2 точка	
Следователно x_1 не е решение на уравнение. Проверка на неравенството $x_2 < 12\frac{3}{4}$ Проверка на неравенството $x_2 > \frac{3}{5}$ 2 точка	
Следователно x_1 не е решение на уравнение. Проверка на неравенството $x_2 < 12\frac{3}{4}$ Проверка на неравенството $x_2 > \frac{3}{5}$ 2 точка	
Проверка на неравенството $x_2 > \frac{3}{5}$ 2 точка	
Проверка на неравенството $x_2 > \frac{3}{5}$ 2 точка	
Проверка на неравенството $x_2 > -$ 5	
Проверка на неравенството $x_2 > -$ 5	
Следователно решение на уравнението е само	
_ ''	
числото $x_2 = \frac{75 - 12\sqrt{21}}{4}$	
17 Общо 20 точки	17
17	
	1 /
BPONT HA BOT INT CHEMOTTON C (N + 3).	
Броят на благоприятните елементарни събития е 5 точки	
(n+1).3!.n! = 6.(n+1)!	
Прилагане на определението за класическа	
6.(n+1)! 1 2 точки	
вероятност и получаване на $P = \frac{6.(n+1)!}{(n+3)!} = \frac{1}{15}$	
(n+3)! 15	

Опростяване на уравнението и достигане до	4 точки
(n+2)(n+3) = 90 Определяне на $n = 7$	4 точки

Примерно решение на задача 17: Всички деца са n+3. Броят на всички възможни подреждания в редици са (n+3)!. Благоприятните елементарни събития, в които трите момчета са едно до друго са (n+1).3!.n!=6.(n+1)!. От определението за класическата вероятност получаваме

$$P = \frac{6.(n+1)!}{(n+3)!} = \frac{1}{15}$$

$$(n+2)(n+3) = 90$$

$$(n+2)(n+3) = 9.10$$

Следователно n=7 .

Относно задача 11. $\triangle ABC$ е тъпоъгълен. Построяването му по дадени три страни (например в мащаб 1:2) показва, че $\angle C$ е тъп. Задачата има решение с прилагане теоремата за вътрешната ъглополовяща и 3 пъти прилагане на Питагорова теорема. Височината от върха A е 12 cm.