Predictor insight graphs

INTRODUCTION TO PREDICTIVE ANALYTICS IN PYTHON

Nele Verbiest, Ph.D

Data Scientist @PythonPredictions

Motivation for predictor insight graphs

- 1. Build model
- 2. Evaluate model using AUC
- 3. Evaluate model using cumulative gains and lift curves
- 4. Verify whether the variables in the model are interpretable

Interpretation of predictor insight graphs

Predictor insight graphs for continuous variables

The predictor insight graph table

Income	Size	Incidence
low	20850	0.0431
average	62950	0.0492
high	16200	0.0615

```
print(pig_table["Size"][income=="low"])
```

20850

Constructing a predictor insight graph

- (Discretisation of variable if continuous)
- Calculate predictor insight graph table
- Plot the predictor insight graph

Let's practice!

INTRODUCTION TO PREDICTIVE ANALYTICS IN PYTHON

Discretization of continuous variables

INTRODUCTION TO PREDICTIVE ANALYTICS IN PYTHON

Nele Verbiest, Ph.D

Data Scientist @PythonPredictions

Discretization in python

```
variable = "max_gift"
number_bins = 3
basetable["disc_max_gift"] = pd.qcut(basetable[variable], number_bins)
basetable.groupby("disc_max_gift").size()
```

Which variables should be discretized

```
variables_model = ["income_average","mean_gift","gender_M","min_gift","age"]

def check_discretize(basetable, variable, threshold):
    return(len(basetable.groupby(variable))>threshold)
check_discretize(basetable, "mean_gift",5)
```

True

```
check_discretize(basetable, "income_average",5)
```

False

Discretization of all variables

```
variables_model = ["income_average","mean_gift","gender_M","min_gift","age"]
def check_discretize(basetable, variable, threshold):
    return(len(basetable.groupby(variable))>threshold)
threshold = 5
number_bins = 5
for variable in variables_model:
    if check_discretize(basetable, variable, threshold):
        new_variable = "disc" + variable
        basetable[new_variable] = pd.qcut(basetable[variable], number_bins)
```

Clean cuts

```
basetable["disc_age"] = pd.qcut(basetable["age"], 5)
basetable["disc_age"].unique()
```

```
[(38, 49], (68, 110], [19, 38], (49, 59], (59, 68]]
```

```
basetable["disc_age"] = pd.cut(basetable["age"],[18,30,40,50,60,110])
basetable.groupby("disc_age").size()
```

```
disc_age
(18, 30] 10017
(30, 40] 14448
(40, 50] 19002
(50, 60] 24684
(60, 110] 31849
```

Let's practice!

INTRODUCTION TO PREDICTIVE ANALYTICS IN PYTHON

Preparing the predictor insight graph table

INTRODUCTION TO PREDICTIVE ANALYTICS IN PYTHON

Nele Verbiest, Ph.D

Data Scientist @PythonPredictions

The predictor insight graph table

disc_mean_gift	Incidence	Size
[2, 78]	0.013042	20013
(78, 87]	0.029554	19997
(87, 94]	0.040831	20034
(94, 103]	0.063563	20405
(103, 197]	0.103524	19551

Calculating the predictor insight graph table

```
country Incidence Size
India 0.050934 49849
UK 0.050512 10057
USA 0.048486 40094
```

Calculating multiple predictor insight graph tables

```
variables = ["country", "gender", "disc_mean_gift", "age"]
# Empty dictionary.
pig_tables = {}
# Loop over all variables
for variable in variables:
    # Create the predictor insight graph table
    pig_table = create_pig_table(basetable, "target", variable)
    # Store the table in the dictionary
    pig_tables[variable] = pig_table
print(create_pig_table(basetable, "target", "country")
```

```
country Incidence Size
India 0.050934 49849
UK 0.050512 10057
USA 0.048486 40094
```

Let's practice!

INTRODUCTION TO PREDICTIVE ANALYTICS IN PYTHON

Plotting the predictor insight graph

INTRODUCTION TO PREDICTIVE ANALYTICS IN PYTHON

Nele Verbiest, Ph.D

Data Scientist @PythonPredictions

The predictor insight graph

Plotting the target incidence

```
import matplotlib.pyplot as plt
import numpy as np
# Plot the graph
pig_table["Incidence"].plot()
# Show the group names
plt.xticks(np.arange(len(pig_table)),
    pig_table["income"])
# Center the groups names
width = 0.5
plt.xlim([-width, len(pig_table)-width])
plt.ylabel("Incidence", rotation = 0,
    rotation_mode="anchor",
    ha = "right")
plt.xlabel("Income")
plt.show()
```


Plotting the sizes

```
import matplotlib.pyplot as plt
import numpy as np
# Plot the graph
plt.ylabel("Size", rotation = 0, rotation_mode="anchor", ha = "right" )
pig_table["Incidence"].plot(secondary_y = True)
pig_table["Size"].plot(kind='bar', width = 0.5,
                color = "lightgray", edgecolor = "none") ## Add bars
# Show the group names
plt.xticks(np.arange(len(pig_table)), pig_table["income"])
# Center the groups names
plt.xlim([-0.5, len(pt)-0.5])
plt.ylabel("Incidence", rotation = 0, rotation_mode="anchor", ha = "right"
plt.xlabel("Income")
plt.show()
```

Plotting the sizes

Let's practice!

INTRODUCTION TO PREDICTIVE ANALYTICS IN PYTHON

Summary

INTRODUCTION TO PREDICTIVE ANALYTICS IN PYTHON

Nele Verbiest

Data Scientist @PythonPredictions

What you learned ... and what's up next?

- 1. Construct the basetable
- 2. Construct predictive models using logistic regression
- 3. Forward variable selection
- 4. Evaluation curves
- 5. Predictor insight graphs

See you in the next course!

INTRODUCTION TO PREDICTIVE ANALYTICS IN PYTHON

