L. Vandenberghe ECE133A (Fall 2021)

6. QR factorization

- triangular matrices
- QR factorization
- Gram-Schmidt algorithm
- modified Gram–Schmidt algorithm
- QR factorization with column pivoting

Triangular matrix

a square matrix A is **lower triangular** if $A_{ij} = 0$ for j > i

$$A = \begin{bmatrix} A_{11} & 0 & \cdots & 0 & 0 \\ A_{21} & A_{22} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & 0 & 0 \\ A_{n-1,1} & A_{n-1,2} & \cdots & A_{n-1,n-1} & 0 \\ A_{n1} & A_{n2} & \cdots & A_{n,n-1} & A_{nn} \end{bmatrix}$$

A is **upper triangular** if $A_{ij} = 0$ for j < i (the transpose A^T is lower triangular)

a triangular matrix is **unit** upper/lower triangular if $A_{ii} = 1$ for all i

Forward substitution

solve Ax = b when A is lower triangular with nonzero diagonal elements

Algorithm

$$x_{1} = b_{1}/A_{11}$$

$$x_{2} = (b_{2} - A_{21}x_{1})/A_{22}$$

$$x_{3} = (b_{3} - A_{31}x_{1} - A_{32}x_{2})/A_{33}$$

$$\vdots$$

$$x_{n} = (b_{n} - A_{n1}x_{1} - A_{n2}x_{2} - \dots - A_{n,n-1}x_{n-1})/A_{nn}$$

Complexity: $1 + 3 + 5 + \cdots + (2n - 1) = n^2$ flops

Back substitution

solve Ax = b when A is upper triangular with nonzero diagonal elements

Algorithm

$$x_{n} = b_{n}/A_{nn}$$

$$x_{n-1} = (b_{n-1} - A_{n-1,n}x_{n})/A_{n-1,n-1}$$

$$x_{n-2} = (b_{n-2} - A_{n-2,n-1}x_{n-1} - A_{n-2,n}x_{n})/A_{n-2,n-2}$$

$$\vdots$$

$$x_{1} = (b_{1} - A_{12}x_{2} - A_{13}x_{3} - \dots - A_{1n}x_{n})/A_{11}$$

Complexity: n^2 flops

Inverse of triangular matrix

a triangular matrix A with nonzero diagonal elements is nonsingular:

$$Ax = 0 \implies x = 0$$

this follows from forward or back substitution applied to the equation Ax = 0

• inverse of A can be computed by solving AX = I column by column

$$A \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} = \begin{bmatrix} e_1 & e_2 & \cdots & e_n \end{bmatrix}$$
 $(x_i \text{ is column } i \text{ of } X)$

- inverse of lower triangular matrix is lower triangular
- inverse of upper triangular matrix is upper triangular
- complexity of computing inverse of $n \times n$ triangular matrix is

$$n^2 + (n-1)^2 + \dots + 1 \approx \frac{1}{3}n^3$$
 flops

Outline

- triangular matrices
- QR factorization
- Gram-Schmidt algorithm
- modified Gram-Schmidt algorithm
- QR factorization with column pivoting

QR factorization

if $A \in \mathbb{R}^{m \times n}$ has linearly independent columns then it can be factored as

$$A = \begin{bmatrix} q_1 & q_2 & \cdots & q_n \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & \cdots & R_{1n} \\ 0 & R_{22} & \cdots & R_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & R_{nn} \end{bmatrix}$$

• vectors q_1, \ldots, q_n are orthonormal m-vectors:

$$||q_i|| = 1,$$
 $q_i^T q_j = 0$ if $i \neq j$

- diagonal elements R_{ii} are nonzero
- if $R_{ii} < 0$, we can switch the signs of R_{ii}, \ldots, R_{in} , and the vector q_i
- most definitions require $R_{ii} > 0$; this makes Q and R unique

QR factorization in matrix notation

if $A \in \mathbf{R}^{m \times n}$ has linearly independent columns then it can be factored as

$$A = QR$$

Q-factor

- Q is $m \times n$ with orthonormal columns ($Q^TQ = I$)
- if A is square (m = n), then Q is orthogonal $(Q^TQ = QQ^T = I)$

R-factor

- R is $n \times n$, upper triangular, with nonzero diagonal elements
- *R* is nonsingular (diagonal elements are nonzero)

$$\begin{bmatrix} -1 & -1 & 1 \\ 1 & 3 & 3 \\ -1 & -1 & 5 \\ 1 & 3 & 7 \end{bmatrix} = \begin{bmatrix} -1/2 & 1/2 & -1/2 \\ 1/2 & 1/2 & -1/2 \\ -1/2 & 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 2 & 4 & 2 \\ 0 & 2 & 8 \\ 0 & 0 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ 0 & R_{22} & R_{23} \\ 0 & 0 & R_{33} \end{bmatrix}$$

$$= QR$$

Full QR factorization

the QR factorization is often defined as a factorization

$$A = \left[\begin{array}{cc} Q & \tilde{Q} \end{array} \right] \left[\begin{array}{c} R \\ 0 \end{array} \right]$$

- A = QR is the QR factorization as defined earlier (page 6.7)
- \tilde{Q} has size $m \times (m-n)$, the zero block has size $(m-n) \times n$
- ullet the matrix $\left[egin{array}{ccc} Q & ilde{Q} \end{array}
 ight]$ is m imes m and orthogonal
- MATLAB's function qr returns this factorization
- this is also known as the full QR factorization or QR decomposition

in this course we use the definition of page 6.7

Applications

in the following lectures, we will use the QR factorization to solve

- linear equations
- least squares problems
- constrained least squares problems

here, we show that it gives useful simple formulas for

- the pseudo-inverse of a matrix with linearly independent columns
- the inverse of a nonsingular matrix
- projection on the range of a matrix with linearly independent columns

QR factorization and (pseudo-)inverse

pseudo-inverse of a matrix A with linearly independent columns (page 4.22)

$$A^{\dagger} = (A^T A)^{-1} A^T$$

pseudo-inverse in terms of QR factors of A:

$$A^{\dagger} = ((QR)^{T}(QR))^{-1}(QR)^{T}$$

$$= (R^{T}Q^{T}QR)^{-1}R^{T}Q^{T}$$

$$= (R^{T}R)^{-1}R^{T}Q^{T} \qquad (Q^{T}Q = I)$$

$$= R^{-1}R^{-T}R^{T}Q^{T} \qquad (R \text{ is nonsingular})$$

$$= R^{-1}Q^{T}$$

• for square nonsingular *A* this is the inverse:

$$A^{-1} = (QR)^{-1} = R^{-1}Q^T$$

Range

recall definition of range of a matrix $A \in \mathbf{R}^{m \times n}$ (page 4.27):

$$\operatorname{range}(A) = \{Ax \mid x \in \mathbf{R}^n\}$$

suppose A has linearly independent columns with QR factors Q, R

• *Q* has the same range as *A*:

$$y \in \operatorname{range}(A) \iff y = Ax \text{ for some } x$$
 $\iff y = QRx \text{ for some } x$
 $\iff y = Qz \text{ for some } z$
 $\iff y \in \operatorname{range}(Q)$

• columns of Q are an orthonormal basis for range(A)

Projection on range

• combining A = QR and $A^{\dagger} = R^{-1}Q^{T}$ (from page 6.11) gives

$$AA^{\dagger} = QRR^{-1}Q^T = QQ^T$$

note the order of the product in AA^{\dagger} and the difference with $A^{\dagger}A=I$

• recall (from page 5.16) that QQ^Tx is the projection of x on the range of Q

QR factorization of complex matrices

if $A \in \mathbb{C}^{m \times n}$ has linearly independent columns then it can be factored as

$$A = QR$$

- $Q \in \mathbb{C}^{m \times n}$ has orthonormal columns $(Q^H Q = I)$
- $R \in \mathbb{C}^{n \times n}$ is upper triangular with real nonzero diagonal elements
- most definitions choose diagonal elements R_{ii} to be positive
- in the rest of the lecture we assume A is real

Algorithms for QR factorization

Gram–Schmidt algorithm (section 5.4 in textbook and page 6.16)

- complexity is $2mn^2$ flops
- not recommended in practice (sensitive to rounding errors)

Modified Gram-Schmidt algorithm

- complexity is $2mn^2$ flops
- better numerical properties

Householder algorithm

- complexity is $2mn^2 (2/3)n^3$ flops
- represents Q as a product of elementary orthogonal matrices
- the most widely used algorithm (used by the function qr in MATLAB and Julia)

in the rest of the course we will take $2mn^2$ for the complexity of QR factorization

Outline

- triangular matrices
- QR factorization
- Gram-Schmidt algorithm
- modified Gram–Schmidt algorithm
- QR factorization with column pivoting

Gram-Schmidt algorithm

Gram-Schmidt QR algorithm computes Q and R column by column

after k steps we have a partial QR factorization

$$\begin{bmatrix} a_1 & a_2 & \cdots & a_k \end{bmatrix} = \begin{bmatrix} q_1 & q_2 & \cdots & q_k \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & \cdots & R_{1k} \\ 0 & R_{22} & \cdots & R_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & R_{kk} \end{bmatrix}$$

this is the QR factorization for the first k columns of A

- columns q_1, \ldots, q_k are orthonormal
- diagonal elements $R_{11}, R_{22}, \ldots, R_{kk}$ are positive
- columns q_1, \ldots, q_k have the same span as a_1, \ldots, a_k (see page 6.12)
- in step k of the algorithm we compute $q_k, R_{1k}, \ldots, R_{kk}$

Computing the kth columns of Q and R

suppose we have the partial factorization for the first k-1 columns of Q and R

• column k of the equation A = QR reads

$$a_k = R_{1k}q_1 + R_{2k}q_2 + \dots + R_{k-1,k}q_{k-1} + R_{kk}q_k$$

• regardless of how we choose $R_{1k}, \ldots, R_{k-1,k}$, the vector

$$\tilde{q}_k = a_k - R_{1k}q_1 - R_{2k}q_2 - \cdots - R_{k-1,k}q_{k-1}$$

will be nonzero: a_1, a_2, \ldots, a_k are linearly independent and therefore

$$a_k \notin \text{span}\{a_1, \dots, a_{k-1}\} = \text{span}\{q_1, \dots, q_{k-1}\}$$

- q_k is \tilde{q}_k normalized: choose $R_{kk} = \|\tilde{q}_k\|$ and $q_k = (1/R_{kk})\tilde{q}_k$
- \tilde{q}_k and q_k are orthogonal to q_1, \ldots, q_{k-1} if we choose $R_{1k}, \ldots, R_{k-1,k}$ as

$$R_{1k} = q_1^T a_k, \qquad R_{2k} = q_2^T a_k, \qquad \dots, \qquad R_{k-1,k} = q_{k-1}^T a_k$$

Gram-Schmidt algorithm

Given: $m \times n$ matrix A with linearly independent columns a_1, \ldots, a_n

Algorithm

for k = 1 to n

$$R_{1k} = q_1^T a_k$$

$$R_{2k} = q_2^T a_k$$

$$\vdots$$

$$R_{k-1,k} = q_{k-1}^T a_k$$

$$\tilde{q}_k = a_k - (R_{1k}q_1 + R_{2k}q_2 + \dots + R_{k-1,k}q_{k-1})$$

$$R_{kk} = \|\tilde{q}_k\|$$

$$q_k = \frac{1}{R_{kk}} \tilde{q}_k$$

example on page 6.8:

$$\begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} -1 & -1 & 1 \\ 1 & 3 & 3 \\ -1 & -1 & 5 \\ 1 & 3 & 7 \end{bmatrix}$$
$$= \begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ 0 & R_{22} & R_{23} \\ 0 & 0 & R_{33} \end{bmatrix}$$

First column of Q and R

$$\tilde{q}_1 = a_1 = \begin{bmatrix} -1 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \qquad R_{11} = \|\tilde{q}_1\| = 2, \qquad q_1 = \frac{1}{R_{11}} \tilde{q}_1 = \begin{bmatrix} -1/2 \\ 1/2 \\ -1/2 \\ 1/2 \end{bmatrix}$$

Second column of Q and R

- compute $R_{12} = q_1^T a_2 = 4$
- compute

$$\tilde{q}_2 = a_2 - R_{12}q_1 = \begin{bmatrix} -1\\3\\-1\\3 \end{bmatrix} - 4 \begin{bmatrix} -1/2\\1/2\\-1/2\\1/2 \end{bmatrix} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$

normalize to get

$$R_{22} = \|\tilde{q}_2\| = 2,$$
 $q_2 = \frac{1}{R_{22}}\tilde{q}_2 = \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{bmatrix}$

Third column of Q and R

- compute $R_{13} = q_1^T a_3 = 2$ and $R_{23} = q_2^T a_3 = 8$
- compute

$$\tilde{q}_3 = a_3 - R_{13}q_1 - R_{23}q_2 = \begin{bmatrix} 1 \\ 3 \\ 5 \\ 7 \end{bmatrix} - 2 \begin{bmatrix} -1/2 \\ 1/2 \\ -1/2 \\ 1/2 \end{bmatrix} - 8 \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \\ 2 \\ 2 \end{bmatrix}$$

normalize to get

$$R_{33} = \|\tilde{q}_3\| = 4,$$
 $q_3 = \frac{1}{R_{33}}\tilde{q}_3 = \begin{bmatrix} -1/2 \\ -1/2 \\ 1/2 \\ 1/2 \end{bmatrix}$

Final result

$$\begin{bmatrix} -1 & -1 & 1 \\ 1 & 3 & 3 \\ -1 & -1 & 5 \\ 1 & 3 & 7 \end{bmatrix} = \begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ 0 & R_{22} & R_{23} \\ 0 & 0 & R_{33} \end{bmatrix}$$
$$= \begin{bmatrix} -1/2 & 1/2 & -1/2 \\ 1/2 & 1/2 & -1/2 \\ -1/2 & 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 2 & 4 & 2 \\ 0 & 2 & 8 \\ 0 & 0 & 4 \end{bmatrix}$$

Complexity

Complexity of cycle k (of algorithm on page 6.18)

- k-1 inner products with a_k : (k-1)(2m-1) flops
- computation of \tilde{q}_k : 2(k-1)m flops
- computing R_{kk} and q_k : 3m flops

total for cycle k: (4m-1)(k-1) + 3m flops

Complexity for $m \times n$ factorization:

$$\sum_{k=1}^{n} ((4m-1)(k-1) + 3m) = (4m-1)\frac{n(n-1)}{2} + 3mn$$

$$\approx 2mn^2 \text{ flops}$$

Numerical experiment

we use the following MATLAB implementation of the algorithm on page 6.18:

```
[m, n] = size(A);
Q = zeros(m,n);
R = zeros(n,n);
for k = 1:n
    R(1:k-1,k) = Q(:,1:k-1)' * A(:,k);
    v = A(:,k) - Q(:,1:k-1) * R(1:k-1,k);
    R(k,k) = norm(v);
    Q(:,k) = v / R(k,k);
end;
```

- we apply this to a square matrix A of size m = n = 50
- A is constructed as A = USV with U, V orthogonal, S diagonal with

$$S_{ii} = 10^{-10(i-1)/(n-1)}, \quad i = 1, \dots, n$$

Numerical experiment

plot shows deviation from orthogonality between q_k and previous columns

$$e_k = \max_{1 \le i < k} |q_i^T q_k|, \quad k = 2, ..., n$$

loss of orthogonality is due to rounding error

Outline

- triangular matrices
- QR factorization
- Gram-Schmidt algorithm
- modified Gram-Schmidt algorithm
- QR factorization with column pivoting

Modified Gram-Schmidt algorithm

a variation of the Gram-Schmidt algorithm for the QR factorization

$$\begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} = \begin{bmatrix} q_1 & q_2 & \cdots & q_n \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & \cdots & R_{1n} \\ 0 & R_{22} & \cdots & R_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & R_{nn} \end{bmatrix}$$

- has better numerical properties than the Gram–Schmidt algorithm
- computes Q column by column, R row by row
- main difference lies in how the vectors

$$\tilde{q}_k = R_{kk}q_k = a_k - (R_{1k}q_1 + \dots + R_{k-1,k}q_{k-1})$$

are computed

Modified Gram-Schmidt algorithm

after *k* steps, the algorithm has computed a partial factorization

$$A = \begin{bmatrix} a_{1} \cdots a_{k} & a_{k+1} \cdots a_{n} \end{bmatrix}$$

$$= \begin{bmatrix} q_{1} \cdots q_{k} & B^{(k)} \end{bmatrix} \begin{bmatrix} R_{11} \cdots R_{1k} & R_{1,k+1} \cdots R_{1n} \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & R_{kk} & R_{k,k+1} \cdots & R_{kn} \end{bmatrix}$$

- $B^{(k)}$ has size $m \times (n-k)$ with columns orthogonal to q_1, \ldots, q_k
- we start with k = 0 and $B^{(0)} = A$
- the factorization is complete when k = n
- in step k, we compute

$$q_k$$
, R_{kk} , $R_{k,k+1}$, ..., R_{kn} , $B^{(k)}$

Modified Gram-Schmidt update

careful inspection of the update at step k shows that

$$B^{(k-1)} = \begin{bmatrix} q_k & B^{(k)} \end{bmatrix} \begin{bmatrix} R_{kk} & R_{k,(k+1):n} \\ 0 & I \end{bmatrix}$$

partition $B^{(k-1)}$ as $B^{(k-1)} = \begin{bmatrix} b & \hat{B} \end{bmatrix}$ with b the first column, \hat{B} of size $m \times (n-k)$:

$$b = q_k R_{kk}, \qquad \hat{B} = q_k R_{k,(k+1):n} + B^{(k)}$$

• from the first equation, and the required properties $||q_k|| = 1$ and $R_{kk} > 0$:

$$R_{kk} = ||b||, \qquad q_k = \frac{1}{R_{kk}}b$$

• from the second equation, and the requirement that $q_k^T B^{(k)} = 0$:

$$R_{k,(k+1):n} = q_k^T \hat{B}, \qquad B^{(k)} = \hat{B} - q_k R_{k,(k+1):n}$$

Summary: modified Gram-Schmidt algorithm

Algorithm (A is $m \times n$ with linearly independent columns)

define $B^{(0)} = A$; for k = 1 to n,

- compute $R_{kk} = ||b||$ and $q_k = (1/R_{kk})b$ where b is the first column of $B^{(k-1)}$
- compute

$$\begin{bmatrix} R_{k,k+1} \cdots R_{kn} \end{bmatrix} = q_k^T \hat{B}, \qquad B^{(k)} = \hat{B} - q_k \begin{bmatrix} R_{k,k+1} \cdots R_{kn} \end{bmatrix}$$

where \hat{B} is $B^{(k-1)}$ with first column removed

```
MATLAB code (Q(:,k+1:n) \text{ is used to store } B^{(k)})

Q = A; \quad R = zeros(n,n);

for k = 1:n

R(k,k) = norm(Q(:,k));

Q(:,k) = Q(:,k) / R(k,k);

R(k,k+1:n) = Q(:,k) ' * Q(:,k+1:n);

Q(:,k+1:n) = Q(:,k+1:n) - Q(:,k) * R(k,k+1:n);

end;
```

example on page 6.8

$$\begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} -1 & -1 & 1 \\ 1 & 3 & 3 \\ -1 & -1 & 5 \\ 1 & 3 & 7 \end{bmatrix}$$

Step 1: first column of Q, first row of R

$$\begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} -1/2 & 1 & 2 \\ 1/2 & 1 & 2 \\ -1/2 & 1 & 6 \\ 1/2 & 1 & 6 \end{bmatrix} \begin{bmatrix} 2 & 4 & 2 \\ \hline 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} q_1 & B^{(1)} \end{bmatrix} \begin{bmatrix} R_{11} & R_{1,2:3} \\ \hline 0 & I \end{bmatrix}$$

Step 2: second column of Q, second row of R

$$\begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} -1/2 & 1/2 & -2 \\ 1/2 & 1/2 & -2 \\ -1/2 & 1/2 & 2 \end{bmatrix} \begin{bmatrix} 2 & 4 & 2 \\ 0 & 2 & 8 \\ \hline 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} q_1 & q_2 & B^{(2)} \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ 0 & R_{22} & R_{23} \\ \hline 0 & 0 & 1 \end{bmatrix}$$

Step 3: third column of Q, third row of R

$$\begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} = \begin{bmatrix} -1/2 & 1/2 & -1/2 \\ 1/2 & 1/2 & -1/2 \\ -1/2 & 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 2 & 4 & 2 \\ 0 & 2 & 8 \\ 0 & 0 & 4 \end{bmatrix}$$
$$= \begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ 0 & R_{22} & R_{23} \\ 0 & 0 & R_{33} \end{bmatrix}$$

Complexity

Complexity of cycle k (of algorithm on page 6.29)

- computing R_{kk} and q_k : 3m flops
- computing $R_{k,k+1}, \ldots, R_{kn}$: (n-k)(2m-1) flops
- computing $B^{(k)}$: 2(n-k)m flops

total for cycle k: (4m-1)(n-k) + 3m flops

Complexity for $m \times n$ factorization:

$$\sum_{k=1}^{n} ((4m-1)(n-k) + 3m) = (4m-1)\frac{n(n-1)}{2} + 3mn$$

$$\approx 2mn^2 \text{ flops}$$

we use the notation of page 6.29

1. show that

$$B^{(k)} = \begin{bmatrix} b & \hat{B} \end{bmatrix} \begin{bmatrix} y^T \\ I \end{bmatrix} \quad \text{where } y = -\frac{1}{R_{kk}} \begin{bmatrix} R_{k,k+1} \\ \vdots \\ R_{kn} \end{bmatrix}$$

2. use this to show that $B^{(k)}$ has linearly independent columns if

$$B^{(k-1)} = \begin{bmatrix} b & \hat{B} \end{bmatrix}$$

has linearly independent columns

since $B^{(0)} = A$, this proves that $B^{(k)}$ has linearly independent columns for all k

in the notation of page 6.29,

$$[R_{k,k+1}\cdots R_{kn}] = q_k^T \hat{B}, \qquad B^{(k)} = (I - q_k q_k^T) \hat{B}$$

• denote column i of \hat{B} by \hat{b}_i :

$$B^{(k-1)} = \begin{bmatrix} b & \hat{B} \end{bmatrix} = \begin{bmatrix} b & \hat{b}_1 & \cdots & \hat{b}_{n-k} \end{bmatrix}$$

ullet denote column i of $B^{(k)}$ by $b_i^{(k)}$

$$B^{(k)} = \left[\begin{array}{ccc} b_1^{(k)} & \cdots & b_{n-k}^{(k)} \end{array} \right]$$

show that

$$||b_i^{(k)}||^2 = ||\hat{b}_i||^2 - R_{k,k+i}^2$$

in the Gram–Schmidt algorithm (page 6.18) the vector $\tilde{q}_k = R_{kk}q_k$ is computed as

$$\tilde{q}_k = a_k - q_1(q_1^T a_k) - q_2(q_2^T a_k) - \dots - q_{k-1}(q_{k-1}^T a_k)
= \left(I - q_1 q_1^T - q_2 q_2^T - \dots - q_{k-1} q_{k-1}^T\right) a_k$$

show that

$$I - q_1 q_1^T - q_2 q_2^T - \dots - q_{k-1} q_{k-1}^T$$

$$= (I - q_{k-1} q_{k-1}^T)(I - q_{k-2} q_{k-2}^T) \cdots (I - q_2 q_2^T)(I - q_1 q_1^T)$$

• in the modified Gram–Schmidt algorithm (page 6.29) \tilde{q}_k is column 1 of $B^{(k-1)}$ verify that the modified GS algorithm obtains \tilde{q}_k by evaluating

$$\tilde{q}_k = (I - q_{k-1}q_{k-1}^T)(I - q_{k-2}q_{k-2}^T) \cdots (I - q_2q_2^T)(I - q_1q_1^T)a_k$$

from right to left

Outline

- triangular matrices
- QR factorization
- Gram-Schmidt algorithm
- modified Gram-Schmidt algorithm
- QR factorization with column pivoting

QR factorization with column pivoting

A is an $m \times n$ matrix with rank r (may be wide or have linearly dependent columns)

QR factorization with column pivoting (column reordering)

$$A = QRP$$

- Q is $m \times r$ with orthonormal columns
- R is $r \times n$, leading $r \times r$ submatrix is upper triangular with positive diagonal:

$$R = \begin{bmatrix} R_{11} & R_{12} & \cdots & R_{1r} & R_{1,r+1} & \cdots & R_{1n} \\ 0 & R_{22} & \cdots & R_{2r} & R_{2,r+1} & \cdots & R_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & R_{rr} & R_{r,r+1} & \cdots & R_{rn} \end{bmatrix}$$

- can be chosen to satisfy $R_{11} \ge R_{22} \ge \cdots \ge R_{rr} > 0$
- P is an $n \times n$ permutation matrix
- this is a full-rank factorization (page 4.34) with B = Q, C = RP

Interpretation

- columns of $AP^T = QR$ are the columns of A in a different order
- the columns are divided in two groups:

$$AP^{T} = \begin{bmatrix} \hat{A}_{1} & \hat{A}_{2} \end{bmatrix} = Q \begin{bmatrix} R_{1} & R_{2} \end{bmatrix}$$
 \hat{A}_{1} is $m \times r$, R_{1} is $r \times r$

- \hat{A}_1 is $m \times r$ with linearly independent columns and QR factorization $\hat{A}_1 = QR_1$
- \hat{A}_2 is $m \times (n-r)$ with columns that are linear combinations of columns of \hat{A}_1 :

$$\hat{A}_2 = QR_2 = \hat{A}_1 R_1^{-1} R_2$$

the QR factorization with column pivoting provides two useful bases for range(A)

- columns of Q are an orthonormal basis
- ullet columns of \hat{A}_1 are a basis selected from the columns of A

Modified Gram-Schmidt algorithm with pivoting

with minor changes the modified GS algorithm computes the pivoted factorization

$$AP^{T} = \begin{bmatrix} q_{1} & q_{2} & \cdots & q_{r} \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & \cdots & R_{1r} & R_{1,r+1} & \cdots & R_{1n} \\ 0 & R_{22} & \cdots & R_{1r} & R_{1,r+1} & \cdots & R_{1n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & R_{rr} & R_{r,r+1} & \cdots & R_{rn} \end{bmatrix}$$

partial factorization after k steps

$$AP_{k}^{T} = \begin{bmatrix} q_{1} \cdots q_{k} & B^{(k)} \end{bmatrix} \begin{bmatrix} R_{11} \cdots R_{1k} & R_{1,k+1} \cdots R_{1n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & R_{kk} & R_{k,k+1} \cdots & R_{kn} \end{bmatrix}$$

- algorithm starts with $P_0 = I$ and $B^{(0)} = A$
- if $B^{(k)} = 0$, the factorization is complete $(r = k, P = P_k)$
- before step k, we reorder columns of $B^{(k-1)}$ to place its largest column first
- this requires reordering columns k, \ldots, n of R, and modifying P_{k-1}

$$A = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & -1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & -1 & -1 \end{bmatrix}$$

Step 1

- a₂ and a₄ have the largest norms; we move a₂ to the first position
- find first column of Q, first row of R

$$\begin{bmatrix} a_2 & a_1 & a_3 & a_4 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 & 0 & 1 \\ 1/2 & -1/2 & 1 & -1 \\ 1/2 & 1/2 & 0 & 1 \\ 1/2 & -1/2 & -1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} q_1 & B^{(1)} \end{bmatrix} \begin{bmatrix} R_{11} & R_{1,2:4} \\ \hline 0 & I \end{bmatrix}$$

Step 2

• move column 3 of $B^{(1)}$ to first position in $B^{(1)}$

$$\begin{bmatrix} a_2 & a_4 & a_1 & a_3 \end{bmatrix} = \begin{bmatrix} 1/2 & 1 & 1/2 & 0 \\ 1/2 & -1 & -1/2 & 1 \\ 1/2 & 1 & 1/2 & 0 \\ 1/2 & -1 & -1/2 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

find second column of Q, second row or R

$$\begin{bmatrix} a_2 & a_4 & a_1 & a_3 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 & 0 & 0 \\ 1/2 & -1/2 & 0 & 1 \\ 1/2 & 1/2 & 0 & 0 \\ 1/2 & -1/2 & 0 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 1 & 0 \\ 0 & 2 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} q_1 & q_2 & B^{(2)} \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & R_{1,3:4} \\ 0 & R_{22} & R_{2,3:4} \\ \hline 0 & 0 & I \end{bmatrix}$$

Step 3

• move column 2 of $B^{(2)}$ to first position in $B^{(2)}$

$$\begin{bmatrix} a_2 & a_4 & a_3 & a_1 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 & 0 & 0 \\ 1/2 & -1/2 & 1 & 0 \\ 1/2 & 1/2 & 0 & 0 \\ 1/2 & -1/2 & -1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ \hline 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• find third column of Q, third row of R

$$\begin{bmatrix} a_2 & a_4 & a_3 & a_1 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 & 0 & 0 & 0 \\ 1/2 & -1/2 & 1/\sqrt{2} & 0 & 0 \\ 1/2 & 1/2 & 0 & 0 & 0 \\ 1/2 & -1/2 & -1/\sqrt{2} & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & \sqrt{2} & 0 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} q_1 & q_2 & q_3 \mid B^{(3)} \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & R_{13} \mid R_{14} \\ 0 & R_{22} & R_{23} \mid R_{24} \\ 0 & 0 & R_{33} \mid R_{34} \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$

Result: since $B^{(3)}$ is zero, the algorithm terminates with the factorization

$$\begin{bmatrix} a_2 & a_4 & a_3 & a_1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & -1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & -1 & -1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & -1/2 & 1/\sqrt{2} \\ 1/2 & 1/2 & 0 \\ 1/2 & -1/2 & -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & \sqrt{2} & 0 \end{bmatrix}$$

use the result on page 6.34 to show that

$$R_{11} \geq R_{22} \geq \cdots \geq R_{rr}$$