Chapter 1

Background

The smartphone that will be used is a PinePhone which is equiped with ARM TrustZone, it also comes with a component which can be used as Root of Trust to make secure boot possible.

1.1 Remote Attestation

- \bullet Goal
 - Verify integrity
- How it works
 - Verifier
 - Prover
 - Proof
- Assumptions
 - Trusted third party
 - Secure keys

Remote attestation allows a device to prove to an external verifier that the software running on it is not tampered with. This attestation can go a lot further than this by for instance also checking the data structures on the device to make sure these are logical.

1.2 Trusted Execution Environment

- Execution
 - Isolation

- Authentic code
- Runtime integrity
- Strict interfaces
- Trust
 - Static
 - Dynamic
- Security
 - Data separation
 - Sanitization
 - Control of information flow
 - Fault isolation

A Trusted Execution Environment is a secure, integrity-protected processing environment, consisting of memory and storage capabilities.

1.3 ARM TrustZone

- Normal World
 - Rich OS
- Secure World
 - Trusted Kernel
 - NS-bit
 - Secure Configuration Register
- Peripherals
 - TZ Address Space Controller
 - TZ Protection Controller (interrupts)

ARM TrustZone is ARM's implementation of a TEE. This is achieved by having a secure and normal world in the System on Chip.

1.4 PinePhone

• Open source

_

• Linux

_

• ARM TrustZone

_

The PinePhone is an open source smartphone which supports Linux as operating system which adds to it's openness.

1.5 Secure boot, trusted boot and remote attestation for ARM TrustZone-based IoT Nodes

- Solution
 - Overview
- Trusted Boot
 - Trusted load phase
 - Attestation during boot
- Remote attestation
 - Trusted execution time
 - Pagebased approach