AWS RDS HIGH AVAILABILITY AND DISASTER RECOVERY

March 22, 2025

1. Project background and description

This project demonstrates the configuration of AWS RDS for High Availability (HA) and Disaster Recovery (DR) using Multi-AZ deployment, Read Replicas, and Route 53. The goal is to ensure minimal downtime, improved scalability, and disaster recovery readiness for a database infrastructure. The implementation was performed using the AWS Management Console (GUI).

2. Objectives & Purpose

- Ensure High Availability: Configure Multi-AZ Deployment to enable automatic failover.
 - Improve Performance: Use Read Replicas to distribute read-heavy traffic.
 - Enable Disaster Recovery: Test and promote a Read Replica in case of a failure.
 - Maintain Uptime: Update Route 53 DNS records to redirect traffic to the new database endpoint after failover.
 - Real-World Application: Suitable for mission-critical applications, high-traffic websites, and enterprise databases.

3. Flow Diagram

This diagram illustrates the AWS RDS Multi-AZ Deployment and Read Replica setup.

4. Key Components in the Diagram:

- **Primary RDS Instance** (Availability Zone 1 AZ1)
- **Standby RDS Instance** (Availability Zone 2 AZ2 for failover, Multi-AZ Deployment)
- Read Replica (Additional zone for performance optimization)
- AWS Route 53 (Directs traffic to the correct database endpoint)
- Failover Arrows (Indicating automatic transition from Primary to Standby)
- End Users/Web Application (Accessing the database)

5. Technologies & Tools Used:

- AWS RDS (Relational Database Service)
- AWS Route 53 (DNS Management)
- Multi-AZ Deployment for High Availability

- Read Replicas for Scalability
- AWS Management Console (GUI)

6. Step-by-Step Implementation:

Enabling Multi-AZ Deployment

- Navigate to AWS RDS Console.
- Select the database instance and modify it to enable **Multi-AZ Deployment**.
- AWS will create a standby instance in a different availability zone (AZ).
- Outcome: Automatic failover capability is enabled.

Creating a Read Replica

- In AWS RDS Console, select the database instance.
- Click Create Read Replica, choose an instance class, storage, and region.
- The Read Replica starts asynchronously replicating data from the primary database.
- Outcome: Read queries are offloaded to improve database performance.

Promoting a Read Replica to Primary

- Navigate to AWS RDS Console.
- Select the Read Replica and click Promote to Primary.
- AWS will stop replication and convert the Read Replica into an independent database.
- Outcome: Ensures disaster recovery with minimal downtime.

Updating Route 53 DNS Records

- Navigate to AWS Route 53.
- Edit the CNAME record to point to the new RDS endpoint.
- Propagate the DNS changes to ensure a smooth transition.
- Outcome: No service disruption after failover.

7. Project Results

- High Availability: Successfully enabled automatic failover via Multi-AZ Deployment.
- **Scalability:** Read Replicas improved database performance by distributing read queries.

- Disaster Recovery: Manual failover using Read Replica promotion ensured business continuity.
- Minimal Downtime: Updating Route 53 DNS ensured uninterrupted service.

8. Lessons Learned

- Practical experience with AWS RDS HA & DR configurations.
- Understanding of Multi-AZ vs. Read Replicas and their differences.
- 🗹 Hands-on knowledge of Route 53 for database failover management.
- Importance of database redundancy and automated failover for mission-critical applications.

9. Project Files & Folder Structure

aws-rds-high-availability/

- project-report.pdf # This Detailed Documentation
- README.md # Short Summary & How-To Guide
- architecture-diagram.png # AWS RDS HA Architecture Diagram
- screenshots/ # Folder containing step-by-step screenshots
- file containing screenshots

10. Future Enhancements

- Automate the setup using Terraform or AWS CLI.
- ♦ Implement AWS Lambda for automated failover detection.
- ♦ Set up Amazon CloudWatch for RDS monitoring and alerts.

12. References & Acknowledgments

This project was inspired by a hands-on lab from ACloudGuru13.

Author & Contact Information

▲ Name :C Apoorva A Kamath

Email : capoorvakamath@gmail.com