IN THE ABSTRACT:

Please delete the Abstract in its entirety and substitute therefor the Abstract enclosed on the attached separate sheet.

Respectfully Submitted

Lawrence E. Ashery, Reg. No. 34,515

Attorney for Applicants

LEA/dlm/lm

Dated: October 30, 2000

Suite 301, One Westlakes, Berwyn P.O. Box 980 Valley Forge, PA 19482-0980 (610) 407-0700

The Assistant Commissioner for Patents is hereby authorized to charge payment to Deposit Account No. 18-0350 of any fees associated with this communication.

EXPRESS MAIL Mailing Label Number: EL629503836US Date of Deposit: October 30, 2000

I hereby certify that this paper and fee are being deposited, under 37 C.F.R. § 1.10 and with sufficient postage, using the "Express Mail Post Office to Addressee" service of the United States Postal Service on the date indicated above and that the deposit is addressed to the Assistant Commissioner for Patents, Washington, D.C. 20231.

BOBBIE DURHAM

ABSTRACT

A negative electrode of a non-aqueous electrolyte secondary battery contains, as main a component, composite particles constructed in such a manner that at least part of the surface of nuclear particles comprising at least one of tin, silicon and zinc as a constituent element, is coated with a solid solution or an intermetallic compound composed of elements included in the nuclear particle and at least one element, exclusive of the element included in said nuclear particle, selected from a group of elements in a Periodic Table, comprising group 2 elements, transition elements, group 12 elements, group 13 elements and group 14 elements exclusive of carbon. The batteries of the present invention include non-aqueous electrolytic solution and solid electrolytes comprising polymer gel electrolytes. The construction of the present invention provides a non-aqueous electrolytic secondary battery with which a possibility of the generation of gas is extremely low when stored at high temperatures. It also provides a battery having higher capacity, and superior cycle properties, high-rate charge/discharge properties.

B4

ij.