Theoretical Convergence Guaranteed Resource-Adaptive Federated Learning with Mixed Heterogeneity

ABSTRACT

In this paper, we propose an adaptive learning paradigm for resourceconstrained cross-device federated learning, in which heterogeneous local submodels with varying resources can be jointly trained to produce a global model. Different from existing studies, the submodel structures of different clients are formed by arbitrarily assigned neurons according to their local resources. Along this line, we first design a general resource-adaptive federated learning algorithm, namely RA-Fed, and rigorously prove its convergence with asymptotically optimal rate $O(1/\sqrt{\Gamma^*TQ})$ under loose assumptions. Furthermore, to address both submodels heterogeneity and data heterogeneity challenges under non-uniform training, we come up with a new server aggregation mechanism RAM-Fed with the same theoretically proved convergence rate. Moreover, we shed light on several key factors impacting convergence, such as minimum coverage rate, data heterogeneity level, submodel induced noises. Finally, we conduct extensive experiments on two types of tasks with three widely used datasets under different experimental settings. Compared with the state-of-the-arts, our methods improve the accuracy up to 10% on average. Particularly, when submodels jointly train with 50% parameters, RAM-Fed achieves comparable accuracy to FedAvg trained with the full model.

CCS CONCEPTS

• Computing methodologies \rightarrow Machine learning; • Computer systems organization \rightarrow Distributed architectures.

KEYWORDS

Federated learning, Limited resources, Heterogeneity, Convergence analysis

ACM Reference Format:

. 2023. Theoretical Convergence Guaranteed Resource-Adaptive Federated Learning with Mixed Heterogeneity. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '23), August 6–10, 2023, Long Beach, CA, USA*. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3580305.3599521

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

KDD '23, August 6-10, 2023, Long Beach, CA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM. ACM ISBN 979-8-4007-0103-0/23/08...\$15.00 https://doi.org/10.1145/3580305.3599521

A SUPPLEMENT

A.1 Part One

Let us start the proof of RA-Fed from *L*-Lipschitzian Condition:

$$\begin{split} \mathbb{E}[F(\theta_{q+1})] - \mathbb{E}[F(\theta_q)] &\leq \underbrace{\mathbb{E}[<\nabla F(\theta_q), \theta_{q+1} - \theta_q >]}_{U_1} \\ &+ \underbrace{\frac{L}{2} \underbrace{\mathbb{E}[\|\theta_{q+1} - \theta_q\|^2]}_{I_2}}_{I_2} \end{split}$$

bound U_1 :

$$\begin{split} & \mathbb{E} < \nabla F(\theta_q), \theta_{q+1} - \theta_q > \\ & = \sum_{i \in S_q} \mathbb{E} < \nabla F^i(\theta_q), \theta_{q+1}^i - \theta_q^i > + \sum_{i \in K - S_q} \mathbb{E}[<\nabla F^i(\theta_q), \theta_{q+1}^i - \theta_q^i > \\ & = \sum_{i \in S_q} \mathbb{E} < \nabla F^i(\theta_q), \theta_{q+1}^i - \theta_q^i > + \sum_{i \in K - S_q} \mathbb{E}[<\nabla F^i(\theta_q), \theta_{q+1}^i - \theta_q^i > \\ & = \sum_{i \in S_q} \mathbb{E} < \nabla F^i(\theta_q), \theta_{q+1}^i - \theta_q^i > + \sum_{i \in K - S_q} \mathbb{E}[<\nabla F^i(\theta_q), \mathbf{0} > \\ & = \sum_{i \in S_q} \mathbb{E} < \nabla F^i(\theta_q), \theta_{q+1}^i - \theta_q^i > \\ & = \sum_{i \in S_q} \mathbb{E} < \nabla F^i(\theta_q), -\frac{1}{\Gamma_q^i} \sum_{n \in N_q^i} (\theta_{q,n,0} - \theta_{q,n,T})^i > \\ & = \sum_{i \in S_q} \mathbb{E} < \nabla F^i(\theta_q), -\frac{1}{\Gamma_q^i} \sum_{n \in N_q^i} \sum_{t=1}^T \gamma \nabla F_n(\theta_{q,n,t-1}, \xi_{n,t-1}) \odot m_{n,q}))^i > \\ & = \sum_{i \in S_q} \mathbb{E} < \nabla F^i(\theta_q), -\frac{1}{\Gamma_q^i} \sum_{n \in N_q^i} \sum_{t=1}^T \gamma \nabla F_n^i(\theta_{q,n,t-1}, \xi_{n,t-1}) > \\ & = \sum_{i \in S_q} \mathbb{E} < \nabla F^i(\theta_q), -\frac{1}{\Gamma_q^i} \sum_{n \in N_q^i} \sum_{t=1}^T \gamma \nabla F_n^i(\theta_{q,n,t-1}) > \\ & = \sum_{i \in S_q} \mathbb{E}[<\nabla F^i(\theta_q), -\frac{1}{\Gamma_q^i} \sum_{n \in N_q^i} \sum_{t=1}^T \gamma [\nabla F_n^i(\theta_{q,n,t-1}) - \nabla F^i(\theta_q) + \nabla F^i(\theta_q)] > \\ & = -\sum_{i \in S_q} T \gamma \mathbb{E} < \nabla F^i(\theta_q), -\frac{1}{\Gamma_q^i} \sum_{n \in N_q^i} \sum_{t=1}^T \gamma [\nabla F_n^i(\theta_{q,n,t-1}) - \nabla F^i(\theta_q)] > \\ & = U_{i} = U_{i}$$

bound U_3 :

$$-\sum_{i \in S_q} T\gamma \mathbb{E} < \nabla F^i(\theta_q), \nabla F^i(\theta_q) > = -\sum_{i \in S_q} T\gamma \mathbb{E} \|\nabla F^i(\theta_q)\|^2$$

bound
$$U_4$$
:

$$\begin{split} &\sum_{i \in S_q} \mathbb{E}[<\nabla F^i(\theta_q), -\frac{1}{\Gamma_q^i} \sum_{n \in N_q^i} \sum_{t=1}^T \gamma [\nabla F^i_n(\theta_{q,n,t-1}) - \nabla F^i(\theta_q)]> \\ &= \sum_{i \in S_q} T\gamma \mathbb{E}[<\nabla F^i(\theta_q), -\frac{1}{T\Gamma_q^i} \sum_{n \in N_q^i} \sum_{t=1}^T [\nabla F^i_n(\theta_{q,n,t-1}) - \nabla F^i(\theta_q)]> \\ &\leq \frac{T\gamma}{2} \sum_{i \in S_q} \mathbb{E}\|\nabla F^i(\theta_q)\|^2 \\ &+ \frac{T\gamma}{2} \sum_{i \in S_q} \mathbb{E}\|\frac{1}{T\Gamma_q^i} \sum_{n \in N_q^i} \sum_{t=1}^T [\nabla F^i_n(\theta_{q,n,t-1}) - \nabla F^i_n(\theta_q) + \nabla F^i_n(\theta_q) - \nabla F^i_n(\theta_q)] - \nabla F^i_n(\theta_q) - \nabla F^$$

bound U_5 :

bound U_6 :

$$\begin{split} &T\gamma\sum_{i\in S_{q}}\mathbb{E}\|\frac{1}{T\Gamma_{q}^{i}}\sum_{n\in N_{q}^{i}}\sum_{t=1}^{T}\left[\nabla F_{n}^{i}(\theta_{q,n,t-1})-\nabla F_{n}^{i}(\theta_{q})\right]\|^{2}\\ &\leq T\gamma\sum_{i\in S_{q}}\frac{1}{T\Gamma_{q}^{i}}\sum_{n\in N_{q}^{i}}\sum_{t=1}^{T}\mathbb{E}\|\left[\nabla F_{n}^{i}(\theta_{q,n,t-1})-\nabla F_{n}^{i}(\theta_{q})\right]\|^{2}\\ &\leq T\gamma\frac{1}{T\Gamma^{*}}\sum_{n=1}^{N}\sum_{t=1}^{T}\sum_{i\in S_{q}}\mathbb{E}\|\left[\nabla F_{n}^{i}(\theta_{q,n,t-1})-\nabla F_{n}^{i}(\theta_{q})\right]\|^{2}\\ &\leq T\gamma\frac{1}{T\Gamma^{*}}\sum_{n=1}^{N}\sum_{t=1}^{T}\mathbb{E}\|\left[\nabla F_{n}(\theta_{q,n,t-1})-\nabla F_{n}(\theta_{q})\right]\|^{2}\\ &\leq T\gamma\frac{1}{\Gamma^{*}}\sum_{n=1}^{N}L^{2}\underbrace{\frac{1}{T}\sum_{t=1}^{T}\mathbb{E}\|\theta_{q,n,t-1}-\theta_{q}\|^{2}}_{U_{8}} \end{split}$$

bound U_8 :

$$\begin{split} &\frac{1}{T} \sum_{t=1}^{T} \mathbb{E} \|\theta_{q,n,t-1} - \theta_{q}\|^{2} \\ &\leq \frac{2}{T} \sum_{t=1}^{T} \mathbb{E} \|\theta_{q,n,t-1} - \theta_{q,n,0}\|^{2} + \frac{2}{T} \sum_{t=1}^{T} \mathbb{E} \|\theta_{q,n,0} - \theta_{q}\|^{2} \\ &= \frac{2}{T} \sum_{t=1}^{T} \mathbb{E} \|\sum_{j=0}^{t-2} -\gamma \nabla F_{n}(\theta_{q,n,j}, \xi_{n,j}) \odot m_{q,n}\|^{2} + \frac{2}{T} \sum_{t=1}^{T} \mathbb{E} \|\mathbb{C}(\theta_{q}) \odot m_{n,q} - \theta_{q}\|^{2} \end{split}$$

$$\begin{aligned} & \text{bound } U_4 : \\ & \sum_{i \in S_q} \mathbb{E} \{ < \nabla F^i(\theta_q), -\frac{1}{\Gamma_q^i} \sum_{n \in N_Q^i} \sum_{t=1}^T Y | \nabla F_n^i(\theta_{q,n,t-1}) - \nabla F^i(\theta_q) | > \\ & + \frac{2T}{T} \sum_{t=1}^T \mathbb{E} \| \left(\partial_q \right) \otimes m_{n,q} - \mathbb{C}(\theta_q) + \mathbb{C}(\theta_q) - \theta_q \|^2 \\ & \leq \frac{TY}{T} \sum_{t \in S_q} \mathbb{E} \| \nabla F^i(\theta_q), -\frac{1}{\Pi_q^i} \sum_{n \in N_Q^i} \sum_{t=1}^T \| \nabla F_n^i(\theta_{q,n,t-1}) - \nabla F^i(\theta_q) | > \\ & + \frac{2T}{T} \sum_{t \in S_q} \mathbb{E} \| \nabla F^i(\theta_q), -\frac{1}{\Pi_q^i} \sum_{n \in N_Q^i} \sum_{t=1}^T \| \nabla F_n^i(\theta_{q,n,t-1}) - \nabla F_n^i(\theta_q) + \nabla F_n^i(\theta_q) | > \\ & + \frac{2T}{T} \sum_{t \in S_q} \mathbb{E} \| \nabla F^i(\theta_q), -\frac{1}{\Pi_q^i} \sum_{n \in N_Q^i} \sum_{t=1}^T \| \nabla F_n^i(\theta_{q,n,t-1}) - \nabla F_n^i(\theta_q) + \nabla F_n^i(\theta_q) - \nabla F^i(\theta_q) \|^2 \\ & + \frac{2T}{T} \sum_{t \in S_q} \mathbb{E} \| \frac{1}{\Pi_q^i} \sum_{n \in N_Q^i} \sum_{t=1}^T \| \nabla F_n^i(\theta_{q,n,t-1}) - \nabla F_n^i(\theta_q) + \nabla F_n^i(\theta_q) - \nabla F^i(\theta_q) \|^2 \\ & + \frac{4T^2}{T} \sum_{t \in S_q} \mathbb{E} \| \frac{1}{\Pi_q^i} \sum_{n \in N_Q^i} \sum_{t=1}^T \| \nabla F_n^i(\theta_{q,n,t-1}) - \nabla F_n^i(\theta_q) + \nabla F_n^i(\theta_q) - \nabla F^i(\theta_q) \|^2 \\ & \leq TY \sum_{t \in S_q} \mathbb{E} \| \frac{1}{1} \sum_{t \in S_q} \sum_{t \in S_q} \mathbb{E} \| \nabla F_n^i(\theta_{q,n,t-1}) - \nabla F_n^i(\theta_q) \|^2 \\ & + \frac{4T^2}{T} \sum_{t \in S_q} \mathbb{E} \| \nabla F_n^i(\theta_{q,n,t-1}) - \nabla F_n^i(\theta_q) \|^2 \\ & \leq TY \sum_{t \in S_q} \mathbb{E} \| \nabla F_n^i(\theta_{q,n,t-1}) - \nabla F_n^i(\theta_q) \|^2 \\ & \leq TY \sum_{t \in S_q} \mathbb{E} \| \nabla F_n^i(\theta_{q,n,t-1}) - \nabla F_n^i(\theta_q) \|^2 \\ & \leq TY \sum_{t \in S_q} \mathbb{E} \| \nabla F_n^i(\theta_{q,n,t-1}) - \nabla F_n^i(\theta_q) \|^2 \\ & \leq TY \sum_{t \in S_q} \mathbb{E} \| \nabla F_n^i(\theta_{q,n,t-1}) - \nabla F_n^i(\theta_q) \|^2 \\ & \leq TY \sum_{t \in S_q} \mathbb{E} \| \nabla F_n^i(\theta_{q,n,t-1}) - \nabla F_n^i(\theta_q) \|^2 \\ & \leq TY \sum_{t \in S_q} \mathbb{E} \| \nabla F_n^i(\theta_{q,n,t-1}) - \nabla F_n^i(\theta_q) \|^2 \\ & \leq TY \sum_{t \in S_q} \mathbb{E} \| \nabla F_n^i(\theta_{q,n,t-1}) - \nabla F_n^i(\theta_q) \|^2 \\ & \leq TY \sum_{t \in S_q} \mathbb{E} \| \nabla F_n^i(\theta_{q,n,t-1}) - \nabla F_n^i(\theta_q) \|^2 \\ & \leq TY \sum_{t \in S_q} \mathbb{E} \| \nabla F_n^i(\theta_{q,n,t-1}) - \nabla F_n^i(\theta_q) \|^2 \\ & \leq TY \sum_{t \in S_q} \mathbb{E} \| \nabla F_n^i(\theta_{q,n,t-1}) - \nabla F_n^i(\theta_q) \|^2 \\ & \leq TY \sum_{t \in S_q} \mathbb{E} \| \nabla F_n^i(\theta_{q,n,t-1}) - \nabla F_n^i(\theta_q) \|^2 \\ & \leq TY \sum_{t \in S_q} \mathbb{E} \| \nabla F_n^i(\theta_{q,n,t-1}) - \nabla F_n^i(\theta_q) \|^2 \\ & \leq TY \sum_{t \in S_q} \mathbb{E} \| \nabla F_n^i(\theta_{q,n,t-1}) - \nabla F_n^i(\theta_q) \|^2 \\ & \leq TY \sum_{t \in S_q} \mathbb{E} \| \nabla F_n^i(\theta_{q,n,t-1}) - \nabla F_n^$$

Letting $2w_1^2w_2^2 + 2w_1^2 + w_2^2 = w^2$, $8\gamma^2L^2T^2 \le \frac{1}{2} \Rightarrow \gamma \le \frac{1}{4LT}$, we can get U_8 :

$$\begin{split} &\frac{1}{T} \sum_{t=1}^{T} \mathbb{E} \|\theta_{q,n,t-1} - \theta_{q}\|^{2} \leq 4\gamma^{2} T \sigma^{2} + 32\gamma^{2} T^{2} \delta^{2} \\ &+ 32\gamma^{2} T^{2} \mathbb{E} \|\nabla F(\theta_{q}) \odot m_{q,n}\|^{2} + 4w^{2} \mathbb{E} \|\theta_{q}\|^{2} \leq 4\gamma^{2} T \sigma^{2} + 32\gamma^{2} T^{2} \delta^{2} \\ &+ 32\gamma^{2} T^{2} \sum_{i \in S_{q}} \mathbb{E} \|\nabla F^{i}(\theta_{q})\|^{2} + 4w^{2} \mathbb{E} \|\theta_{q}\|^{2} \end{split}$$

bound U_7 :

$$\begin{split} &T\gamma \sum_{i \in S_q} \mathbb{E} \| \frac{1}{T\Gamma_q^i} \sum_{n \in N_q^i} \sum_{t=1}^{I} [\nabla F_n^i(\theta_q) - \nabla F^i(\theta_q)] \|^2 \\ & \leq T\gamma \frac{1}{T\Gamma_q^i} \sum_{n \in N_q^i} \sum_{t=1}^{T} \sum_{i \in S_q} \mathbb{E} \| [\nabla F_n^i(\theta_q) - \nabla F^i(\theta_q)] \|^2 \\ & \leq T\gamma \frac{1}{T\Gamma^*} \sum_{n=1}^{N} \sum_{t=1}^{T} \mathbb{E} \| [\nabla F_n(\theta_q) - \nabla F(\theta_q)] \|^2 \\ & \leq T\gamma \frac{N}{\Gamma^*} \delta^2 \end{split}$$

Plugging U_8 into U_6 , U_6 and U_7 into U_5 , U_5 into U_4 , we have:

$$\begin{split} &\sum_{i \in S_q} \mathbb{E} \big[< \nabla F^i(\theta_q), -\frac{1}{\Gamma_q^i} \sum_{n \in N_q^i} \sum_{t=1}^I \gamma \big[\nabla F^i_n(\theta_{q,n,t-1}) - \nabla F^i(\theta_q) \big] > \\ & \leq \frac{T\gamma}{2} \sum_{i \in S_q} \mathbb{E} \| \nabla F^i(\theta_q) \|^2 + 32\gamma^3 T^3 \frac{N}{\Gamma^*} L^2 \sum_{i \in S_q} \mathbb{E} \| \nabla F^i(\theta_q) \|^2 \\ & + 8w^2 T\gamma \frac{N}{\Gamma^*} L^2 \mathbb{E} \| \theta_q \|^2 + 4\gamma^3 T^2 \frac{N}{\Gamma^*} L^2 \sigma^2 + 32\gamma^3 T^3 \frac{N}{\Gamma^*} L^2 \delta^2 + T\gamma \frac{N}{\Gamma^*} \delta^2 \end{split}$$

Plugging U_3 , U_4 into U_1 , we have

$$\begin{split} & \mathbb{E} < \nabla F(\theta_q), \theta_{q+1} - \theta_q > \leq -T\gamma \sum_{i \in S_q} \mathbb{E} \| \nabla F^i(\theta_q) \|^2 \\ & + \frac{T\gamma}{2} \sum_{i \in S_q} \mathbb{E} \| \nabla F^i(\theta_q) \|^2 + 32\gamma^3 T^3 \frac{N}{\Gamma^*} L^2 \sum_{i \in S_q} \mathbb{E} \| \nabla F^i(\theta_q) \|^2 \\ & + 8w^2 T\gamma \frac{N}{\Gamma^*} L^2 \mathbb{E} \| \theta_q \|^2 + 4\gamma^3 T^2 \frac{N}{\Gamma^*} L^2 \sigma^2 + 32\gamma^3 T^3 \frac{N}{\Gamma^*} L^2 \delta^2 + T\gamma \frac{N}{\Gamma^*} \delta^2 \end{split}$$

bound U_2 :

$$\begin{split} & \frac{L}{2} \mathbb{E} \| \theta_{q+1} - \theta_{q} \|^{2} \\ & = \frac{L}{2} \sum_{i \in S_{q}} \mathbb{E} \| \theta_{q+1}^{i} - \theta_{q}^{i} \|^{2} + \frac{L}{2} \sum_{i \in K - S_{q}} \mathbb{E} \| \theta_{q+1}^{i} - \theta_{q}^{i} \|^{2} \\ & = \frac{L}{2} \sum_{i \in S_{q}} \mathbb{E} \| \theta_{q+1}^{i} - \theta_{q}^{i} \|^{2} \\ & = \frac{L}{2} \sum_{i \in S_{q}} \mathbb{E} \| - \frac{1}{\Gamma_{q}^{i}} \sum_{n \in N_{q}^{i}} (\theta_{q,n,0} - \theta_{q,n,T})^{i} \|^{2} \\ & = \frac{L}{2} \sum_{i \in S_{q}} \mathbb{E} \| - \frac{1}{\Gamma_{q}^{i}} \sum_{n \in N_{q}^{i}} (\theta_{q,n,0} - \theta_{q,n,T})^{i} \|^{2} \\ & = \frac{L}{2} \sum_{i \in S_{q}} \mathbb{E} \| - \frac{1}{\Gamma_{q}^{i}} \sum_{n \in N_{q}^{i}} (\theta_{q,n,t-1}, \xi_{n,t-1}) \odot m_{n,q})^{i} \|^{2} \\ & = \frac{L}{2} \sum_{i \in S_{q}} \mathbb{E} \| - \frac{1}{\Gamma_{q}^{i}} \sum_{n \in N_{q}^{i}} \sum_{t=1}^{T} \gamma \nabla F_{n}^{i} (\theta_{q,n,t-1}, \xi_{n,t-1}) \|^{2} \\ & \leq \frac{3}{2} L \sum_{i \in S_{q}} \mathbb{E} \| - \frac{1}{\Gamma_{q}^{i}} \sum_{n \in N_{q}^{i}} \sum_{t=1}^{T} \gamma [\nabla F_{n}^{i} (\theta_{q,n,t-1}, \xi_{n,t-1}) - \nabla F_{n}^{i} (\theta_{q,n,t-1})] \|^{2} \\ & + \frac{3}{2} L \sum_{i \in S_{q}} \mathbb{E} \| - \frac{1}{\Gamma_{q}^{i}} \sum_{n \in N_{q}^{i}} \sum_{t=1}^{T} \gamma [\nabla F_{n}^{i} (\theta_{q,n,t-1}) - \nabla F_{n}^{i} (\theta_{q})] \|^{2} \end{split}$$

$$\begin{split} & + \frac{3}{2}L\sum_{i \in S_{q}}\mathbb{E}\| - \frac{1}{\Gamma_{q}^{i}}\sum_{n \in N_{q}^{i}}\sum_{t=1}^{T}\gamma\nabla F^{i}(\theta_{q})\|^{2} \\ & \leq \frac{3}{2}LT\gamma^{2}\frac{N}{\Gamma^{*}}\sigma^{2} + 3L\gamma^{2}\frac{N}{\Gamma^{*}}L^{2}T^{2}(4\gamma^{2}T\sigma^{2} + 32\gamma^{2}T^{2}\delta^{2} \\ & + 32\gamma^{2}T^{2}\sum_{i \in S_{q}}\mathbb{E}\|\nabla F^{i}(\theta_{q})\|^{2} + 4w^{2}\mathbb{E}\|\theta_{q}\|^{2}) \\ & + 3L\frac{N}{\Gamma^{*}}\gamma^{2}T\sum_{t=1}^{T}\delta^{2} + \frac{3}{2}L\gamma^{2}T^{2}\sum_{i \in S_{q}}\mathbb{E}\|\nabla F^{i}(\theta_{q})\|^{2} \\ & = \frac{3}{2}LT\gamma^{2}\frac{N}{\Gamma^{*}}\sigma^{2} + 12L^{3}\gamma^{4}\frac{N}{\Gamma^{*}}T^{3}\sigma^{2} + 96L^{3}\gamma^{4}T^{4}\frac{N}{\Gamma^{*}}\delta^{2} \\ & + 96L^{3}\gamma^{4}T^{4}\frac{N}{\Gamma^{*}}\sum_{i \in S_{q}}\mathbb{E}\|\nabla F^{i}(\theta_{q})\|^{2} + 12L^{3}\gamma^{2}T^{2}\frac{N}{\Gamma^{*}}w^{2}\mathbb{E}\|\theta_{q}\|^{2} \\ & + \frac{3}{2}L\gamma^{2}T^{2}\sum_{i \in S_{q}}\mathbb{E}\|\nabla F^{i}(\theta_{q})\|^{2} + 3L\frac{N}{\Gamma^{*}}\gamma^{2}T^{2}\delta^{2} \end{split}$$

Last, we have:

$$\begin{split} & \mathbb{E}[F(\theta_{Q+1})] - \mathbb{E}[F(\theta_1)] = \sum_{q=1}^{Q} \mathbb{E}[F(\theta_{q+1})] - \sum_{q=1}^{Q} \mathbb{E}[F(\theta_q)] \\ & \leq \sum_{q=1}^{Q} \mathbb{E}[<\nabla F(\theta_q), \theta_{q+1} - \theta_q >] + \sum_{q=1}^{Q} \frac{L}{2} \mathbb{E}\|\theta_{q+1} - \theta_q\|^2 \end{split}$$

Plugging U_1, U_2 into above equation, we have:

$$\begin{split} &\mathbb{E}[F(\theta_{Q+1})] - \mathbb{E}[F(\theta_{1})] \leq -T\gamma \sum_{q=1}^{Q} \sum_{i \in S_{q}} \mathbb{E} \|\nabla F^{i}(\theta_{q})\|^{2} \\ &+ \frac{T\gamma}{2} \sum_{q=1}^{Q} \sum_{i \in S_{q}} \mathbb{E} \|\nabla F^{i}(\theta_{q})\|^{2} + 32\gamma^{3} T^{3} \frac{N}{\Gamma^{*}} L^{2} \sum_{q=1}^{Q} \sum_{i \in S_{q}} \mathbb{E} \|\nabla F^{i}(\theta_{q})\|^{2} \\ &+ 8w^{2} T\gamma \frac{N}{\Gamma^{*}} L^{2} \sum_{q=1}^{Q} \mathbb{E} \|\theta_{q}\|^{2} + 4\gamma^{3} T^{2} \frac{N}{\Gamma^{*}} L^{2} Q \sigma^{2} + 32\gamma^{3} T^{3} \frac{N}{\Gamma^{*}} L^{2} Q \delta^{2} \\ &+ T\gamma \frac{N}{\Gamma^{*}} Q \delta^{2} + \frac{3}{2} L T\gamma^{2} \frac{N}{\Gamma^{*}} Q \sigma^{2} + 12L^{3} \gamma^{4} \frac{N}{\Gamma^{*}} T^{3} Q \sigma^{2} + 96L^{3} \gamma^{4} T^{4} \frac{N}{\Gamma^{*}} Q \delta^{2} \\ &+ 96L^{3} \gamma^{4} T^{4} \frac{N}{\Gamma^{*}} \sum_{q=1}^{Q} \sum_{i \in S_{q}} \mathbb{E} \|\nabla F^{i}(\theta_{q})\|^{2} + 12L^{3} \gamma^{2} T^{2} \frac{N}{\Gamma^{*}} w^{2} \sum_{q=1}^{Q} \mathbb{E} \|\theta_{q}\|^{2} \\ &+ \frac{3}{2} L \gamma^{2} T^{2} \sum_{q=1}^{Q} \sum_{i \in S_{q}} \mathbb{E} \|\nabla F^{i}(\theta_{q})\|^{2} + 3L \frac{N}{\Gamma^{*}} \gamma^{2} T^{2} Q \delta^{2} \\ &= -T\gamma (\frac{1}{2} - 32\gamma^{2} T^{2} \frac{N}{\Gamma^{*}} L^{2} - 96L^{3} \gamma^{3} T^{3} \frac{N}{\Gamma^{*}} - \frac{3}{2} L \gamma T) \sum_{q=1}^{Q} \sum_{i \in S_{q}} \mathbb{E} \|\nabla F^{i}(\theta_{q})\|^{2} \\ &+ (8w^{2} T\gamma \frac{N}{\Gamma^{*}} L^{2} + 12L^{3} \gamma^{2} T^{2} \frac{N}{\Gamma^{*}} w^{2}) \sum_{q=1}^{Q} \mathbb{E} \|\theta_{q}\|^{2} \\ &+ T\gamma Q \frac{N}{\Gamma^{*}} (32\gamma^{2} T^{2} L^{2} + 1 + 96L^{3} \gamma^{3} T^{3} + 3L \gamma T) \delta^{2} \\ &+ \gamma^{2} T L Q \frac{N}{\Gamma^{*}} (4\gamma T L + \frac{3}{2} + 12L^{2} \gamma^{2} T^{2}) \sigma^{2} \\ &\stackrel{d}{\leq} - \frac{T\gamma}{8} \sum_{q=1}^{Q} \sum_{i \in S_{q}} \mathbb{E} \|\nabla F^{i}(\theta_{q})\|^{2} \\ &+ (8w^{2} T\gamma \frac{N}{\Gamma^{*}} L^{2} + 12L^{3} \gamma^{2} T^{2} \frac{N}{\Gamma^{*}} w^{2}) \sum_{i \in S_{q}}^{Q} \mathbb{E} \|\theta_{q}\|^{2} \end{split}$$

$$\begin{split} &+T\gamma Q\frac{N}{\Gamma^*}(32\gamma^2T^2L^2+1+96L^3\gamma^3T^3+3L\gamma T)\delta^2\\ &+\gamma^2TLQ\frac{N}{\Gamma^*}(4\gamma TL+\frac{3}{2}+12L^2\gamma^2T^2)\sigma^2 \end{split}$$

where a follows because:

$$32\gamma^2 T^2 \frac{N}{\Gamma^*} L^2 \le \frac{1}{8} \Rightarrow \gamma \le \frac{\sqrt{\Gamma^*}}{16TL\sqrt{N}}$$
$$96L^3 \gamma^3 T^3 \frac{N}{\Gamma^*} \le \frac{1}{8} \Rightarrow \gamma \le \frac{(\Gamma^*)^{\frac{1}{3}}}{768^{\frac{1}{3}}LTN^{\frac{1}{3}}}$$
$$\frac{3}{2}L\gamma T \le \frac{1}{8} \Rightarrow \gamma \le \frac{1}{12TL}$$

Therefore, we have:

$$\begin{split} & \frac{T\gamma}{8} \sum_{q=1}^{Q} \sum_{i \in S_q} \mathbb{E} \| \nabla F^i(\theta_q) \|^2 \leq \mathbb{E} \big[F(\theta_1) \big] - \mathbb{E} \big[F(\theta_{Q+1}) \big] \\ & + \big(8 w^2 T \gamma \frac{N}{\Gamma^*} L^2 + 12 L^3 \gamma^2 T^2 \frac{N}{\Gamma^*} w^2 \big) \sum_{q=1}^{Q} \mathbb{E} \| \theta_q \|^2 \\ & + T\gamma Q \frac{N}{\Gamma^*} \big(32 \gamma^2 T^2 L^2 + 1 + 96 L^3 \gamma^3 T^3 + 3 L \gamma T \big) \delta^2 \\ & + \gamma^2 T L Q \frac{N}{\Gamma^*} \big(4 \gamma T L + \frac{3}{2} + 12 L^2 \gamma^2 T^2 \big) \sigma^2 \end{split}$$

dividing both sides by Q and $\frac{T\gamma}{8}$:

$$\begin{split} &\frac{1}{Q} \sum_{q=1}^{Q} \sum_{i \in S_q} \mathbb{E} \| \nabla F^i(\theta_q) \|^2 \leq \frac{8 \mathbb{E} [F(\theta_1)]}{T \gamma Q} \\ &+ (64 w^2 \frac{N}{\Gamma^*} L^2 + 96 L^3 \gamma T \frac{N}{\Gamma^*} w^2) \frac{1}{Q} \sum_{q=1}^{Q} \mathbb{E} \| \theta_q \|^2 \\ &+ \frac{8 N}{\Gamma^*} (32 \gamma^2 T^2 L^2 + 1 + 96 L^3 \gamma^3 T^3 + 3 L \gamma T) \delta^2 \\ &+ \gamma L \frac{8 N}{\Gamma^*} (4 \gamma T L + \frac{3}{2} + 12 L^2 \gamma^2 T^2) \sigma^2 \end{split}$$

Supposing that the step size $\gamma = O(\sqrt{\frac{\Gamma^*}{TQ}})$ and that $\delta = O(\frac{1}{\sqrt{TQ}})$, when the constant C > 0 exists, the convergence rate can be expressed as follows:

$$\frac{1}{Q} \sum_{q=1}^{Q} \sum_{i \in S_{q}} \mathbb{E} \| \nabla F^{i}(\theta_{q}) \|^{2} \leq C (\frac{1}{\sqrt{\Gamma^{*}TQ}} + \frac{1}{Q} + \frac{1}{\Gamma^{*}TQ} + \frac{1}{Q^{1.5}} + \frac{1}{Q^{2}} + \frac{1}{Q^{2.5}})$$

A.2 Part Two

Let us start the proof of RAM-Fed from L-Lipschitzian Condition:

$$\begin{split} &\sum_{i \in S_q} \mathbb{E} < \nabla F^i(\theta_q), \theta^i_{q+1} - \theta^i_q > = \sum_{i \in S_q} \mathbb{E} < \nabla F^i(\theta_q), -\gamma \mathbf{v}^i_{\mathbf{q}} > \\ &= \sum_{i \in S_q} \mathbb{E} < \nabla F^i(\theta_q), -\gamma (\frac{1}{N} \sum_{n=1}^N u^i_{q,n} + \frac{1}{\Gamma^i_q} \sum_{n \in N^i_q} (\Delta^i_{q,n} - u^i_{q,n})) > \\ &= \sum_{i \in S_q} \mathbb{E} < \nabla F^i(\theta_q), -\gamma (\frac{1}{N} \sum_{n=1}^N \Delta^i_{q-\tau_q,n} + \frac{1}{\Gamma^i_q} \sum_{n \in N^i_q} (\Delta^i_{q,n} - \Delta^i_{q-\tau_q,n})) > \end{split}$$

$$\begin{split} &= \sum_{i \in S_q} \mathbb{E} < \nabla F^i(\theta_q), -\gamma (\frac{1}{N} \sum_{n=1}^N \frac{(\theta_{q-\tau_q,n,0} - \theta_{q-\tau_q,n,T})^i}{\gamma} \\ &+ \frac{1}{\Gamma_q^i} \sum_{n \in N_q^i} (\frac{(\theta_{q,n,0} - \theta_{q,n,T})^i}{\gamma} - \frac{(\theta_{q-\tau_q,n,0} - \theta_{q-\tau_q,n,T})^i}{\gamma})) > \\ &= \sum_{i \in S_q} \mathbb{E} < \nabla F^i(\theta_q), -\gamma (\frac{1}{N} \sum_{n=1}^N \sum_{t=1}^T \nabla F_n^i(\theta_{q-\tau_q,n,t-1}, \xi_{n,t-1}) \\ &+ \frac{1}{\Gamma_q^i} \sum_{n \in N_q^i} \sum_{t=1}^T \nabla F_n^i(\theta_{q,n,t-1}, \xi_{n,t-1}) - \frac{1}{\Gamma_q^i} \sum_{n \in N_q^i} \sum_{t=1}^T \nabla F_n^i(\theta_{q-\tau_q,n,t-1}, \xi_{n,t-1})) > \\ &= -T\gamma \sum_{i \in S_q} \mathbb{E} < \nabla F^i(\theta_q), (\frac{1}{N} \sum_{n=1}^N \frac{1}{T} \sum_{t=1}^T \nabla F_n^i(\theta_{q-\tau_q,n,t-1}, \xi_{n,t-1})) > \\ &= -T\gamma \sum_{i \in S_q} \frac{1}{T} \sum_{t=1}^T \nabla F_n^i(\theta_{q,n,t-1}, \xi_{n,t-1}) \\ &- \frac{1}{\Gamma_q^i} \sum_{n \in N_q^i} \frac{1}{T} \sum_{t=1}^T \nabla F_n^i(\theta_{q-\tau_q,n,t-1}, \xi_{n,t-1})) > \\ &= -T\gamma \sum_{i \in S_q} [\frac{1}{2} \mathbb{E} \| \nabla F^i(\theta_q) \|^2 + \frac{1}{2} \mathbb{E} \| \frac{1}{N} \sum_{n=1}^N \frac{1}{T} \sum_{t=1}^T \nabla F_n^i(\theta_{q-\tau_q,n,t-1}, \xi_{n,t-1}) \\ &+ \frac{1}{\Gamma_q^i} \sum_{n \in N_q^i} \frac{1}{T} \sum_{t=1}^T \nabla F_n^i(\theta_{q-\tau_q,n,t-1}, \xi_{n,t-1}) \|^2 \\ &- \frac{1}{2} \mathbb{E} \| \nabla F^i(\theta_q) - \frac{1}{N} \sum_{n=1}^N \frac{1}{T} \sum_{t=1}^T \nabla F_n^i(\theta_{q-\tau_q,n,t-1}, \xi_{n,t-1}) \\ &+ \frac{1}{\Gamma_q^i} \sum_{n \in N_q^i} \frac{1}{T} \sum_{t=1}^T \nabla F_n^i(\theta_{q-\tau_q,n,t-1}, \xi_{n,t-1}) \|^2 \\ &- \frac{T\gamma}{2} \sum_{i \in S_q} \mathbb{E} \| \frac{1}{N} \sum_{n=1}^N \frac{1}{T} \sum_{t=1}^T \nabla F_n^i(\theta_{q-\tau_q,n,t-1}, \xi_{n,t-1}) \\ &+ \frac{1}{\Gamma_q^i} \sum_{n \in N_q^i} \frac{1}{T} \sum_{t=1}^T \nabla F_n^i(\theta_{q-\tau_q,n,t-1}, \xi_{n,t-1}) \|^2 \\ &- \frac{T\gamma}{2} \sum_{i \in S_q} \mathbb{E} \| \nabla F^i(\theta_q) \|^2 \\ &- \frac{T\gamma}{2} \sum_{i \in S_q} \mathbb{E} \| \frac{1}{N} \sum_{n=1}^N \frac{1}{T} \sum_{t=1}^T \nabla F_n^i(\theta_{q-\tau_q,n,t-1}, \xi_{n,t-1}) \|^2 \\ &+ \frac{T\gamma}{2} \sum_{i \in S_q} \mathbb{E} \| \nabla F^i(\theta_q) - \frac{1}{N} \sum_{n=1}^N \frac{1}{T} \sum_{t=1}^T \nabla F_n^i(\theta_{q-\tau_q,n,t-1}, \xi_{n,t-1}) \|^2 \\ &+ \frac{T\gamma}{2} \sum_{i \in S_q} \mathbb{E} \| \nabla F^i(\theta_q) - \frac{1}{N} \sum_{n=1}^N \frac{1}{T} \sum_{t=1}^T \nabla F_n^i(\theta_{q-\tau_q,n,t-1}, \xi_{n,t-1}) \|^2 \\ &+ \frac{T\gamma}{2} \sum_{i \in S_q} \mathbb{E} \| \nabla F^i(\theta_q) - \frac{1}{N} \sum_{n=1}^N \frac{1}{T} \sum_{t=1}^T \nabla F_n^i(\theta_{q-\tau_q,n,t-1}, \xi_{n,t-1}) \|^2 \\ &+ \frac{T\gamma}{2} \sum_{i \in S_q} \mathbb{E} \| \nabla F^i(\theta_q) - \frac{1}{N} \sum_{n=1}^N \frac{1}{T} \sum_{t=1}^T \nabla F_n^i(\theta_{q-\tau_q,n,t-1}, \xi_{n,t-1}) \|^2 \\ &+ \frac{T\gamma}{2} \sum_{i \in S_q} \mathbb{E} \| \nabla F^i(\theta_q)$$

$$\underbrace{-\frac{1}{\Gamma_{q}^{i}}\sum_{n\in N_{q}^{i}}\frac{1}{T}\sum_{t=1}^{T}\nabla F_{n}^{i}(\theta_{q,n,t-1},\xi_{n,t-1}) + \frac{1}{\Gamma_{q}^{i}}\sum_{n\in N_{q}^{i}}\frac{1}{T}\sum_{t=1}^{T}\nabla F_{n}^{i}(\theta_{q-\tau_{q},n,t-1},\xi_{n,t-1}) + \frac{1}{N}\sum_{n=1}^{N}\frac{1}{T}\sum_{t=1}^{T}\underbrace{\mathbb{E}\|\theta_{q}-\theta_{q-\tau_{q}}\|^{2}}_{T_{4}} + 4\frac{1}{N}\sum_{n=1}^{N}\frac{1}{T}\underbrace{\sum_{t=1}^{T}\mathbb{E}\|\theta_{q-\tau_{q}}-\theta_{q-\tau_{q},n,t-1}\|^{2}}_{T_{5}} + 2\sigma^{2}\underbrace{\sum_{t=1}^{T}\mathbb{E}\|\theta_{q}-\theta_{q-\tau_{q}}\|^{2}}_{T_{5}} + 4\frac{1}{N}\underbrace{\sum_{t=1}^{N}\mathbb{E}\|\theta_{q-\tau_{q}}-\theta_{q-\tau_{q},n,t-1}\|^{2}}_{T_{5}} + 2\sigma^{2}\underbrace{\sum_{t=1}^{T}\mathbb{E}\|\theta_{q}-\theta_{q-\tau_{q}}\|^{2}}_{T_{5}} + 4\frac{1}{N}\underbrace{\sum_{t=1}^{N}\mathbb{E}\|\theta_{q}-\theta_{q-\tau_{q}}\|^{2}}_{T_{5}} + 4\frac{1}{N}\underbrace{\sum_{t=1}^{N}\mathbb{E}\|\theta_{q}-\theta_{q-\tau_{q}}\|^{2}}_{T_{5}} + 4\frac{1}{N}\underbrace{\sum_{t=1}^{N}\mathbb{E}\|\theta_{q}-\theta_{q-\tau_{q},n,t-1}\|^{2}}_{T_{5}} + 2\sigma^{2}\underbrace{\sum_{t=1}^{N}\mathbb{E}\|\theta_{q}-\theta_{q-\tau_{q},n,t-1}\|^{2}}_{T_{5}} + 2\sigma^{2}\underbrace{\sum_{t=1}^{N}\mathbb{E}\|\theta_{q}-\theta_{q-\tau_{q},n$$

bound T_1 :

$$\begin{split} &\sum_{i \in S_{q}} \mathbb{E} \| \nabla F^{i}(\theta_{q}) - \frac{1}{N} \sum_{n=1}^{N} \frac{1}{T} \sum_{t=1}^{T} \nabla F^{i}_{n}(\theta_{q-\tau_{q},n,t-1},\xi_{n,t-1}) \\ &- \frac{1}{\Gamma_{q}^{i}} \sum_{n \in N_{q}^{i}} \frac{1}{T} \sum_{t=1}^{T} \nabla F^{i}_{n}(\theta_{q,n,t-1},\xi_{n,t-1}) \\ &+ \frac{1}{\Gamma_{q}^{i}} \sum_{n \in N_{q}^{i}} \frac{1}{T} \sum_{t=1}^{T} \nabla F^{i}_{n}(\theta_{q-\tau_{q},n,t-1},\xi_{n,t-1}) \|^{2} \\ &\leq 2 \sum_{i \in S_{q}} \mathbb{E} \| \nabla F^{i}(\theta_{q}) - \frac{1}{N} \sum_{n=1}^{N} \frac{1}{T} \sum_{t=1}^{T} \nabla F^{i}_{n}(\theta_{q-\tau_{q},n,t-1},\xi_{n,t-1}) \|^{2} \\ &+ 2 \sum_{i \in S_{q}} \mathbb{E} \| \frac{1}{\Gamma_{q}^{i}} \sum_{n \in N_{q}^{i}} \frac{1}{T} \sum_{t=1}^{T} \nabla F^{i}_{n}(\theta_{q,n,t-1},\xi_{n,t-1}) \\ &\xrightarrow{T_{3}} \\ &- \frac{1}{\Gamma_{q}^{i}} \sum_{n \in N_{q}^{i}} \frac{1}{T} \sum_{t=1}^{T} \nabla F^{i}_{n}(\theta_{q-\tau_{q},n,t-1},\xi_{n,t-1}) \|^{2} \end{split}$$

bound T_2 :

$$\begin{split} &\sum_{i \in S_{q}} \mathbb{E} \| \nabla F^{i}(\theta_{q}) - \frac{1}{N} \sum_{n=1}^{N} \frac{1}{T} \sum_{t=1}^{T} \nabla F^{i}_{n}(\theta_{q-\tau_{q},n,t-1},\xi_{n,t-1}) \|^{2} \\ &= \sum_{i \in S_{q}} \mathbb{E} \| \frac{1}{N} \sum_{n=1}^{N} \frac{1}{T} \sum_{t=1}^{T} (\nabla F^{i}_{n}(\theta_{q}) - \nabla F^{i}_{n}(\theta_{q-\tau_{q},n,t-1},\xi_{n,t-1})) \|^{2} \\ &= \sum_{i \in S_{q}} \mathbb{E} \| \frac{1}{N} \sum_{n=1}^{N} \frac{1}{T} \sum_{t=1}^{T} (\nabla F^{i}_{n}(\theta_{q}) - \nabla F^{i}_{n}(\theta_{q-\tau_{q},n,t-1}) \\ &+ \nabla F^{i}_{n}(\theta_{q-\tau_{q},n,t-1}) - \nabla F^{i}_{n}(\theta_{q-\tau_{q},n,t-1},\xi_{n,t-1})) \|^{2} \\ &\leq 2 \sum_{i \in S_{q}} \mathbb{E} \| \frac{1}{N} \sum_{n=1}^{N} \frac{1}{T} \sum_{t=1}^{T} (\nabla F^{i}_{n}(\theta_{q}) - \nabla F^{i}_{n}(\theta_{q-\tau_{q},n,t-1})) \|^{2} \\ &+ 2 \sum_{i \in S_{q}} \mathbb{E} \| \frac{1}{N} \sum_{n=1}^{N} \frac{1}{T} \sum_{t=1}^{T} (\nabla F^{i}_{n}(\theta_{q-\tau_{q},n,t-1}) - \nabla F^{i}_{n}(\theta_{q-\tau_{q},n,t-1},\xi_{n,t-1})) \|^{2} \\ &\leq 2 \frac{1}{N} \sum_{n=1}^{N} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E} \| \nabla F_{n}(\theta_{q}) - \nabla F_{n}(\theta_{q-\tau_{q},n,t-1}) \|^{2} \\ &+ 2 \frac{1}{N} \sum_{n=1}^{N} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E} \| \nabla F_{n}(\theta_{q-\tau_{q},n,t-1}) - \nabla F_{n}(\theta_{q-\tau_{q},n,t-1},\xi_{n,t-1}) \|^{2} \\ &\leq 2 \frac{1}{N} \sum_{n=1}^{N} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E} \| \nabla F_{n}(\theta_{q-\tau_{q},n,t-1}) - \nabla F_{n}(\theta_{q-\tau_{q},n,t-1},\xi_{n,t-1}) \|^{2} \\ &\leq 2 \frac{1}{N} \sum_{n=1}^{N} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E} \| \nabla F_{n}(\theta_{q-\tau_{q},n,t-1}) - \nabla F_{n}(\theta_{q-\tau_{q},n,t-1},\xi_{n,t-1}) \|^{2} \end{split}$$

bound T_5 : Letting $2w_1^2w_2^2 + 2w_1^2 + w_2^2 = w^2 = w^2$, $8\gamma^2L^2T^2 \le \frac{1}{2} \Rightarrow \gamma \le \frac{1}{4LT}$, we have:

$$\begin{split} & \sum_{t=1}^{T} \mathbb{E} \|\theta_{q-\tau_{q}} - \theta_{q-\tau_{q},n,t-1}\|^{2} \\ & \leq 4 \gamma^{2} T \sigma^{2} + 32 \gamma^{2} T^{2} \delta^{2} + 32 \gamma^{2} T^{2} G + 4 w^{2} \mathbb{E} \|\theta_{q-\tau_{q}}\|^{2} \end{split}$$

bound T_4 :

bound Te

$$\begin{split} &\sum_{i \in S_q} \mathbb{E} \| \theta_{q-l}^i - \theta_{q-(l+1)}^i \|^2 = \sum_{i \in S_q} \mathbb{E} \| - \gamma \mathbf{v}_{q-(l+1)}^i \|^2 \\ &= \gamma^2 \sum_{i \in S_q} \mathbb{E} \| \frac{1}{N} \sum_{n=1}^N u_{q-(l+1),n}^i + \frac{1}{\Gamma_q^i} \sum_{n \in N_q^i} (\Delta_{q-(l+1),n}^i - u_{q-(l+1),n}^i) \|^2 \\ &= \gamma^2 \sum_{i \in S_q} \mathbb{E} \| \frac{1}{N} \sum_{n=1}^N \Delta_{q-(l+1)-\tau_{q-(l+1)},n}^i \\ &+ \frac{1}{\Gamma_q^i} \sum_{n \in N_q^i} (\Delta_{q-(l+1),n}^i - \Delta_{q-(l+1)-\tau_{q-(l+1)},n}^i) \|^2 \\ &\leq 3\gamma^2 \sum_{i \in S_q} \mathbb{E} \| \frac{1}{N} \sum_{n=1}^N \Delta_{q-(l+1)-\tau_{q-(l+1)},n}^i \|^2 + 3\gamma^2 \sum_{i \in S_q} \mathbb{E} \| \frac{1}{\Gamma_q^i} \sum_{n \in N_q^i} \Delta_{q-(l+1),n}^i \|^2 \\ &+ 3\gamma^2 \sum_{i \in S_q} \mathbb{E} \| \frac{1}{\Gamma_q^i} \sum_{n \in N_q^i} \Delta_{q-(l+1)-\tau_{q-(l+1)},n}^i \|^2 \\ &= 3\gamma^2 \sum_{i \in S_q} \mathbb{E} \| \frac{1}{N} \sum_{n=1}^N \sum_{t=1}^T \nabla F_n^i (\theta_{q-(l+1)-\tau_{q-(l+1)},n,t-1},\xi_{n,t-1}) \|^2 \\ &+ 3\gamma^2 \sum_{i \in S_q} \mathbb{E} \| \frac{1}{\Gamma_q^i} \sum_{n \in N_q^i} \sum_{t=1}^T \nabla F_n^i (\theta_{q-(l+1),n,t-1},\xi_{n,t-1}) \|^2 \\ &+ 3\gamma^2 \sum_{i \in S_q} \mathbb{E} \| \frac{1}{\Gamma_q^i} \sum_{n \in N_q^i} \sum_{t=1}^T \nabla F_n^i (\theta_{q-(l+1)-\tau_{q-(l+1)},n,t-1},\xi_{n,t-1}) \|^2 \\ &\leq 3\gamma^2 \frac{1}{N} \sum_{n=1}^N T \sum_{t=1}^T \sum_{i \in S_q} \mathbb{E} \| \nabla F_n^i (\theta_{q-(l+1)-\tau_{q-(l+1)},n,t-1},\xi_{n,t-1}) \|^2 \\ &+ 3\gamma^2 \frac{1}{\Gamma_q^i} \sum_{n \in N_q^i} T \sum_{t=1}^T \sum_{i \in S_q} \mathbb{E} \| \nabla F_n^i (\theta_{q-(l+1)-\tau_{q-(l+1)},n,t-1},\xi_{n,t-1}) \|^2 \\ &+ 3\gamma^2 \frac{1}{\Gamma_q^i} \sum_{n \in N_q^i} T \sum_{t=1}^T \sum_{i \in S_q} \mathbb{E} \| \nabla F_n^i (\theta_{q-(l+1)-\tau_{q-(l+1)},n,t-1},\xi_{n,t-1}) \|^2 \\ &+ 3\gamma^2 \frac{1}{\Gamma_q^i} \sum_{n \in N_q^i} T \sum_{t=1}^T \sum_{i \in S_q} \mathbb{E} \| \nabla F_n^i (\theta_{q-(l+1)-\tau_{q-(l+1)},n,t-1},\xi_{n,t-1}) \|^2 \\ &+ 3\gamma^2 \frac{1}{\Gamma_q^i} \sum_{n \in N_q^i} T \sum_{t=1}^T \sum_{i \in S_q} \mathbb{E} \| \nabla F_n^i (\theta_{q-(l+1)-\tau_{q-(l+1)},n,t-1},\xi_{n,t-1}) \|^2 \\ &+ 3\gamma^2 \frac{1}{\Gamma_q^i} \sum_{n \in N_q^i} T \sum_{t=1}^T \sum_{i \in S_q} \mathbb{E} \| \nabla F_n^i (\theta_{q-(l+1)-\tau_{q-(l+1)},n,t-1},\xi_{n,t-1}) \|^2 \\ &+ 3\gamma^2 \frac{1}{\Gamma_q^i} \sum_{n \in N_q^i} T \sum_{t=1}^T \sum_{i \in S_q} \mathbb{E} \| \nabla F_n^i (\theta_{q-(l+1)-\tau_{q-(l+1)},n,t-1},\xi_{n,t-1}) \|^2 \\ &+ 3\gamma^2 \frac{1}{\Gamma_q^i} \sum_{n \in N_q^i} T \sum_{t=1}^T \sum_{i \in S_q} \mathbb{E} \| \nabla F_n^i (\theta_{q-(l+1)-\tau_{q-(l+1)},n,t-1},\xi_{n,t-1}) \|^2 \\ &+ 3\gamma^2 \frac{1}{\Gamma_q^i} \sum_{n \in N_q^i} T \sum_{t=1}^T \sum_{i \in S_q} \mathbb{E} \| \nabla F_n^i (\theta_{q-(l+1)-\tau_{q-(l+1)},n,t-1},\xi_{n,t-1}) \|^2 \\ &$$

$$\begin{split} &+3\gamma^2\frac{1}{\Gamma_{q}^{i}}\sum_{n\in N_{q}^{i}}T\sum_{t=1}^{T}\sum_{i\in S_{q}}\mathbb{E}\|\nabla F_{n}^{i}(\theta_{q-(l+1)-\tau_{q-(l+1)},n,t-1},\xi_{n,t-1})\|^2\\ &\leq 3\gamma^2T^2G+3\gamma^2T^2\frac{N}{\Gamma^*}G+3\gamma^2T^2\frac{N}{\Gamma^*}G=3\gamma^2T^2(1+\frac{2N}{\Gamma^*})G \end{split}$$

bound T7:

$$\begin{split} & \sum_{i \in K - S_q} \mathbb{E} \| \theta_{q - l}^i - \theta_{q - (l + 1)}^i \|^2 = \sum_{i \in K - S_q} \mathbb{E} \| - \gamma \mathbf{v}_{q - (l + 1)}^i \|^2 \\ &= \gamma^2 \sum_{i \in K - S_q} \mathbb{E} \| \frac{1}{N} \sum_{n = 1}^N u_{q - (l + 1), n}^i \|^2 \\ &= \gamma^2 \sum_{i \in K - S_q} \mathbb{E} \| \frac{1}{N} \sum_{n = 1}^N \Delta_{q - (l + 1) - \tau_{q - (l + 1), n}}^i \|^2 \\ &= \gamma^2 \sum_{i \in K - S_q} \mathbb{E} \| \frac{1}{N} \sum_{n = 1}^N \sum_{t = 1}^T \nabla F_n^i (\theta_{q - (l + 1) - \tau_{q - (l + 1), n, t - 1}, \xi_{n, t - 1})} \|^2 \\ &\leq \gamma^2 \frac{1}{N} \sum_{n = 1}^N T \sum_{t = 1}^T \sum_{i \in S_q} \mathbb{E} \| \nabla F_n^i (\theta_{q - (l + 1) - \tau_{q - (l + 1), n, t - 1}, \xi_{n, t - 1})} \|^2 \\ &\leq \gamma^2 T^2 G \end{split}$$

Plugging T_6 , T_7 into T_4 , we have:

$$\mathbb{E}\|\theta_q-\theta_{q-\tau_q}\|^2\leq 3(\tau_q)^2\gamma^2T^2G(1+\frac{2N}{\Gamma^*})+(\tau_q)^2\gamma^2T^2G$$

Plugging T_4 , T_5 into T_2 , we have:

$$\begin{split} & \sum_{i \in S_q} \mathbb{E} \| \nabla F^i(\theta_q) - \frac{1}{N} \sum_{n=1}^N \frac{1}{T} \sum_{t=1}^T \nabla F^i_n(\theta_{q-\tau_q,n,t-1},\xi_{n,t-1}) \|^2 \\ & \leq 12 (\tau_q)^2 \gamma^2 T^2 G (1 + \frac{2N}{\Gamma^*}) + 4 (\tau_q)^2 \gamma^2 T^2 G \\ & + 16 \gamma^2 T \sigma^2 + 128 \gamma^2 T^2 \delta^2 + 128 \gamma^2 T^2 G + 16 w^2 \mathbb{E} \|\theta_{q-\tau_q}\|^2 \end{split}$$

bound T_3 :

$$\begin{split} &\sum_{i \in S_q} \mathbb{E} \| \frac{1}{\Gamma_q^i} \sum_{n \in N_q^i} \frac{1}{T} \sum_{t=1}^T \nabla F_n^i(\theta_{q,n,t-1}, \xi_{n,t-1}) \\ &- \frac{1}{\Gamma_q^i} \sum_{n \in N_q^i} \frac{1}{T} \sum_{t=1}^T \nabla F_n^i(\theta_{q-\tau_q,n,t-1}, \xi_{n,t-1}) \|^2 \\ &\leq \sum_{i \in S_q} \frac{1}{\Gamma_q^i} \sum_{n \in N_q^i} \frac{1}{T} \sum_{t=1}^T \mathbb{E} \| \nabla F_n^i(\theta_{q,n,t-1}, \xi_{n,t-1}) - \nabla F_n^i(\theta_{q-\tau_q,n,t-1}, \xi_{n,t-1}) \|^2 \\ &\leq \frac{N}{\Gamma^*} \frac{1}{T} \sum_{t=1}^T \sum_{i \in S_q} \mathbb{E} \| \nabla F_n^i(\theta_{q,n,t-1}, \xi_{n,t-1}) - \nabla F_n^i(\theta_{q,n,t-1}, \xi_{n,t-1}) \\ &+ \nabla F_n^i(\theta_{q,n,t-1}) + \nabla F_n^i(\theta_{q-\tau_q,n,t-1}) \\ &- \nabla F_n^i(\theta_{q-\tau_q,n,t-1}, \xi_{n,t-1}) - \nabla F_n^i(\theta_{q-\tau_q,n,t-1}) \|^2 \\ &\leq 3 \frac{N}{\Gamma^*} \frac{1}{T} \sum_{t=1}^T \sum_{i \in S_q} \mathbb{E} \| \nabla F_n^i(\theta_{q,n,t-1}, \xi_{n,t-1}) - \nabla F_n^i(\theta_{q,n,t-1}) \\ &+ 3 \frac{N}{\Gamma^*} \frac{1}{T} \sum_{t=1}^T \sum_{i \in S_q} \mathbb{E} \| \nabla F_n^i(\theta_{q-\tau_q,n,t-1}) - \nabla F_n^i(\theta_{q-\tau_q,n,t-1}, \xi_{n,t-1}) \end{split}$$

$$\begin{split} &+3\frac{N}{\Gamma^*}\frac{1}{T}\sum_{t=1}^T\sum_{i\in S_q}\mathbb{E}\|\nabla F_n^i(\theta_{q,n,t-1})-\nabla F_n^i(\theta_{q-\tau_q,n,t-1})\|^2\\ &\leq 6\frac{N}{\Gamma^*}\sigma^2+3\frac{N}{\Gamma^*}\frac{1}{T}\sum_{t=1}^T\mathbb{E}\|\nabla F_n(\theta_{q,n,t-1})-\nabla F_n(\theta_{q-\tau_q,n,t-1})\|^2\\ &\leq 6\frac{N}{\Gamma^*}\sigma^2+3\frac{N}{\Gamma^*}\frac{1}{T}\sum_{t=1}^TL^2\mathbb{E}\|\theta_{q,n,t-1}-\theta_{q-\tau_q,n,t-1}\|^2\\ &= 6\frac{N}{\Gamma^*}\sigma^2+3\frac{N}{\Gamma^*}\frac{1}{T}\sum_{t=1}^TL^2\mathbb{E}\|\theta_{q,n,t-1}-\theta_q+\theta_q-\theta_{q-\tau_q}+\theta_{q-\tau_q}-\theta_{q-\tau_q,n,t-1}\|^2\\ &\leq 6\frac{N}{\Gamma^*}\sigma^2+9\frac{N}{\Gamma^*}L^2\frac{1}{T}\sum_{t=1}^T\mathbb{E}\|\theta_{q,n,t-1}-\theta_q\|^2+9\frac{N}{\Gamma^*}L^2\frac{1}{T}\sum_{t=1}^T\mathbb{E}\|\theta_q-\theta_{q-\tau_q}\|^2\\ &+9\frac{N}{\Gamma^*}L^2\frac{1}{T}\sum_{t=1}^T\mathbb{E}\|\theta_{q-\tau_q}-\theta_{q-\tau_q,n,t-1}\|^2\\ &\frac{T4T^5}{\leq}6\frac{N}{\Gamma^*}\sigma^2+9\frac{N}{\Gamma^*}L^2(4\gamma^2T\sigma^2+32\gamma^2T^2\delta^2+32\gamma^2T^2G+4w^2\mathbb{E}\|\theta_q\|^2)\\ &+9\frac{N}{\Gamma^*}L^2(3(\tau_q)^2\gamma^2T^2G(1+\frac{2N}{\Gamma^*})+(\tau_q)^2\gamma^2T^2G)\\ &+9\frac{N}{\Gamma^*}L^2(4\gamma^2T\sigma^2+32\gamma^2T^2\delta^2+32\gamma^2T^2G+4w^2\mathbb{E}\|\theta_{q-\tau_q}\|^2)\\ &=6\frac{N}{\Gamma^*}\sigma^2+18\frac{N}{\Gamma^*}L^2(4\gamma^2T\sigma^2+32\gamma^2T^2\delta^2+32\gamma^2T^2G)\\ &+36\frac{N}{\Gamma^*}L^2w^2(\mathbb{E}\|\theta_q\|^2+\mathbb{E}\|\theta_{q-\tau_q}\|^2)\\ &+9\frac{N}{\Gamma^*}L^2(3(\tau_q)^2\gamma^2T^2G(1+\frac{2N}{\Gamma^*})+(\tau_q)^2\gamma^2T^2G) \end{split}$$

Plugging T_2 , T_3 into T_1 , we have:

$$\begin{split} &\sum_{i \in S_{q}} \mathbb{E} \| \nabla F^{i}(\theta_{q}) - \frac{1}{N} \sum_{n=1}^{N} \frac{1}{T} \sum_{t=1}^{T} \nabla F^{i}_{n}(\theta_{q-\tau_{q},n,t-1},\xi_{n,t-1}) \\ &- \frac{1}{\Gamma_{q}^{i}} \sum_{n \in N_{q}^{i}} \frac{1}{T} \sum_{t=1}^{T} \nabla F^{i}_{n}(\theta_{q,n,t-1},\xi_{n,t-1}) \\ &+ \frac{1}{\Gamma_{q}^{i}} \sum_{n \in N_{q}^{i}} \frac{1}{T} \sum_{t=1}^{T} \nabla F^{i}_{n}(\theta_{q-\tau_{q},n,t-1},\xi_{n,t-1}) \|^{2} \\ &\leq 24(\tau_{q})^{2} \gamma^{2} T^{2} G(1 + \frac{2N}{\Gamma^{*}}) + 8(\tau_{q})^{2} \gamma^{2} T^{2} G \\ &+ 32 \gamma^{2} T \sigma^{2} + 256 \gamma^{2} T^{2} \delta^{2} + 256 \gamma^{2} T^{2} G + 32 w^{2} \mathbb{E} \| \theta_{q-\tau_{q}} \|^{2} \\ &+ 4\sigma^{2} + 12 \frac{N}{\Gamma^{*}} \sigma^{2} + 36 \frac{N}{\Gamma^{*}} L^{2} (4 \gamma^{2} T \sigma^{2} + 32 \gamma^{2} T^{2} \delta^{2} + 32 \gamma^{2} T^{2} G) \\ &+ 72 \frac{N}{\Gamma^{*}} L^{2} w^{2} (\mathbb{E} \| \theta_{q} \|^{2} + \mathbb{E} \| \theta_{q-\tau_{q}} \|^{2}) \\ &+ 18 \frac{N}{\Gamma^{*}} L^{2} (3(\tau_{q})^{2} \gamma^{2} T^{2} G(1 + \frac{2N}{\Gamma^{*}}) + (\tau_{q})^{2} \gamma^{2} T^{2} G) \\ &= (32(\tau_{q})^{2} + 256 + 1152 \frac{N}{\Gamma^{*}} L^{2} + 48 \frac{N}{\Gamma^{*}} (\tau_{q})^{2} + 72 \frac{N}{\Gamma^{*}} L^{2} (\tau_{q})^{2} \\ &+ 108 \frac{N^{2}}{(\Gamma^{*})^{2}} L^{2} (\tau_{q})^{2}) \gamma^{2} T^{2} G \\ &+ (32 \gamma^{2} T + 12 \frac{N}{\Gamma^{*}} + 4 + 144 \frac{N}{\Gamma^{*}} L^{2} \gamma^{2} T) \sigma^{2} \\ &+ 128 \gamma^{2} T^{2} \delta^{2} (2 + 9 \frac{N}{\Gamma^{*}} L^{2}) \\ &+ 8 w^{2} (4 + 9 \frac{N}{\Gamma^{*}} L^{2}) \mathbb{E} \| \theta_{q-\tau_{q}} \|^{2} + 72 \frac{N}{\Gamma^{*}} L^{2} w^{2} \mathbb{E} \| \theta_{q} \|^{2} \end{split}$$

For another term in L-Lipschitzian condition, we have:

$$\begin{split} & \frac{L}{2} \sum_{i \in S_q} \mathbb{E} \|\theta_{q+1}^i - \theta_q^i\|^2 \\ & = \frac{L}{2} \gamma^2 T^2 \sum_{i \in S_q} \mathbb{E} \|\frac{1}{N} \sum_{n=1}^N \frac{1}{T} \sum_{t=1}^T \nabla F_n^i(\theta_{q-\tau_q,n,t-1},\xi_{n,t-1}) \\ & + \frac{1}{\Gamma_q^i} \sum_{n \in N_q^i} \frac{1}{T} \sum_{t=1}^T \nabla F_n^i(\theta_{q,n,t-1},\xi_{n,t-1}) \\ & - \frac{1}{\Gamma_q^i} \sum_{n \in N_q^i} \frac{1}{T} \sum_{t=1}^T \nabla F_n^i(\theta_{q-\tau_q,n,t-1},\xi_{n,t-1}) \|^2 \end{split}$$

For $i \in S_q$, we get:

$$\begin{split} &\sum_{i \in S_{q}} \mathbb{E} < \nabla F^{i}(\theta_{q}), \theta^{i}_{q+1} - \theta^{i}_{q} > + \frac{L}{2} \sum_{i \in S_{q}} \mathbb{E} \|\theta^{i}_{q+1} - \theta^{i}_{q}\|^{2} \\ &= -\frac{T\gamma}{2} \sum_{i \in S_{q}} \mathbb{E} \|\nabla F^{i}(\theta_{q})\|^{2} \\ &+ (\frac{L}{2} \gamma^{2} T^{2} - \frac{T\gamma}{2}) \sum_{i \in S_{q}} \mathbb{E} \|\frac{1}{N} \sum_{n=1}^{N} \frac{1}{T} \sum_{t=1}^{T} \nabla F^{i}_{n}(\theta_{q-\tau_{q},n,t-1},\xi_{n,t-1}) \\ &+ \frac{1}{\Gamma^{i}_{q}} \sum_{n \in N^{i}_{q}} \frac{1}{T} \sum_{t=1}^{T} \nabla F^{i}_{n}(\theta_{q,n,t-1},\xi_{n,t-1}) \\ &- \frac{1}{\Gamma^{i}_{q}} \sum_{n \in N^{i}_{q}} \frac{1}{T} \sum_{t=1}^{T} \nabla F^{i}_{n}(\theta_{q-\tau_{q},n,t-1},\xi_{n,t-1}) \|^{2} \\ &+ \frac{T\gamma}{2} \sum_{i \in S_{q}} \mathbb{E} \|\nabla F^{i}(\theta_{q}) - \frac{1}{N} \sum_{n=1}^{N} \frac{1}{T} \sum_{t=1}^{T} \nabla F^{i}_{n}(\theta_{q-\tau_{q},n,t-1},\xi_{n,t-1}) \\ &- \frac{1}{\Gamma^{i}_{q}} \sum_{n \in N^{i}_{q}} \frac{1}{T} \sum_{t=1}^{T} \nabla F^{i}_{n}(\theta_{q,n,t-1},\xi_{n,t-1}) \\ &+ \frac{1}{\Gamma^{i}_{q}} \sum_{n \in N^{i}_{q}} \frac{1}{T} \sum_{t=1}^{T} \nabla F^{i}_{n}(\theta_{q-\tau_{q},n,t-1},\xi_{n,t-1}) \|^{2} \\ &\leq - \frac{T\gamma}{2} \sum_{i \in S_{q}} \mathbb{E} \|\nabla F^{i}(\theta_{q})\|^{2} + \frac{T\gamma}{2}(T_{1}) \end{split}$$

where b follows because: $\frac{L}{2}\gamma^2T^2-\frac{T\gamma}{2}<0\Rightarrow\gamma<\frac{1}{LT}$ Then:

$$\begin{split} & \sum_{i \in K - S_q} \mathbb{E} < \nabla F^i(\theta_q), \theta_{q+1}^i - \theta_q^i > = \sum_{i \in K - S_q} \mathbb{E} < \nabla F^i(\theta_q), -\gamma \mathbf{v}_{\mathbf{q}}^i > \\ & = \sum_{i \in K - S_q} \mathbb{E} < \nabla F^i(\theta_q), -\gamma \frac{1}{N} \sum_{n=1}^N u_{q,n}^i > \\ & = \sum_{i \in K - S_q} \mathbb{E} < \nabla F^i(\theta_q), -\gamma \frac{1}{N} \sum_{n=1}^N \Delta_{q-\tau_q,n}^i > \\ & = \sum_{i \in K - S_q} \mathbb{E} < \nabla F^i(\theta_q), -\gamma \frac{1}{N} \sum_{n=1}^N \frac{(\theta_{q-\tau_q,n,0} - \theta_{q-\tau_q,n,T})^i}{\gamma} \\ & = \sum_{i \in K - S_q} \mathbb{E} < \nabla F^i(\theta_q), -\gamma \frac{1}{N} \sum_{n=1}^N \sum_{t=1}^T \nabla F_n^i(\theta_{q-\tau_q,n,t-1}, \xi_{n,t-1}) > \end{split}$$

$$\begin{split} &= -T\gamma \sum_{i \in K - S_q} \mathbb{E} < \nabla F^i(\theta_q), \frac{1}{N} \sum_{n=1}^N \frac{1}{T} \sum_{t=1}^T \nabla F^i_n(\theta_{q-\tau_q,n,t-1},\xi_{n,t-1}) > \\ &= -T\gamma \sum_{i \in K - S_q} \left[\frac{1}{2} \mathbb{E} \| \nabla F^i(\theta_q) \|^2 \\ &+ \frac{1}{2} \mathbb{E} \| \frac{1}{N} \sum_{n=1}^N \frac{1}{T} \sum_{t=1}^T \nabla F^i_n(\theta_{q-\tau_q,n,t-1},\xi_{n,t-1}) \|^2 \\ &- \frac{1}{2} \mathbb{E} \| \nabla F^i(\theta_q) - \frac{1}{N} \sum_{n=1}^N \frac{1}{T} \sum_{t=1}^T \nabla F^i_n(\theta_{q-\tau_q,n,t-1},\xi_{n,t-1}) \|^2 \right] \\ &= -\frac{T\gamma}{2} \sum_{i \in K - S_q} \mathbb{E} \| \nabla F^i(\theta_q) \|^2 \\ &- \frac{T\gamma}{2} \sum_{i \in K - S_q} \mathbb{E} \| \frac{1}{N} \sum_{n=1}^N \frac{1}{T} \sum_{t=1}^T \nabla F^i_n(\theta_{q-\tau_q,n,t-1},\xi_{n,t-1}) \|^2 \\ &+ \frac{T\gamma}{2} \sum_{i \in K - S_q} \mathbb{E} \| \nabla F^i(\theta_q) - \frac{1}{N} \sum_{n=1}^N \frac{1}{T} \sum_{t=1}^T \nabla F^i_n(\theta_{q-\tau_q,n,t-1},\xi_{n,t-1}) \|^2 \\ &= -\frac{T\gamma}{2} \sum_{i \in K - S_q} \mathbb{E} \| \nabla F^i(\theta_q) \|^2 \\ &- \frac{T\gamma}{2} \sum_{i \in K - S_q} \mathbb{E} \| \frac{1}{N} \sum_{n=1}^N \frac{1}{T} \sum_{t=1}^T \nabla F^i_n(\theta_{q-\tau_q,n,t-1},\xi_{n,t-1}) \|^2 \\ &+ \frac{T\gamma}{2} \sum_{i \in K - S_q} (T_2) \end{split}$$

For another term in L-Lipschitzian condition, we have:

$$\begin{split} & \frac{L}{2} \sum_{i \in K - S_q} \mathbb{E} \|\theta_{q+1}^i - \theta_q^i\|^2 \\ & = \frac{L}{2} \gamma^2 T^2 \sum_{i \in K - S_q} \mathbb{E} \|\frac{1}{N} \sum_{n=1}^N \frac{1}{T} \sum_{t=1}^T \nabla F_n^i (\theta_{q-\tau_q, n, t-1}, \xi_{n, t-1})\|^2 \end{split}$$

For $i \in K - S_q$, we get:

$$\begin{split} & \sum_{i \in K - S_{q}} \mathbb{E} < \nabla F^{i}(\theta_{q}), \theta^{i}_{q+1} - \theta^{i}_{q} > + \frac{L}{2} \sum_{i \in K - S_{q}} \mathbb{E} \|\theta^{i}_{q+1} - \theta^{i}_{q}\|^{2} \\ & \leq -\frac{T\gamma}{2} \sum_{i \in K - S_{q}} \mathbb{E} \|\nabla F^{i}(\theta_{q})\|^{2} \\ & + (\frac{L}{2}\gamma^{2}T^{2} - \frac{T\gamma}{2}) \sum_{i \in K - S_{q}} \mathbb{E} \|\frac{1}{N} \sum_{n=1}^{N} \frac{1}{T} \sum_{t=1}^{T} \nabla F^{i}_{n}(\theta_{q-\tau_{q},n,t-1},\xi_{n,t-1})\|^{2} + \frac{T\gamma}{2}(T_{2}) \\ & \leq -\frac{T\gamma}{2} \sum_{i \in K - S_{q}} \mathbb{E} \|\nabla F^{i}(\theta_{q})\|^{2} + \frac{T\gamma}{2}(T_{2}) \end{split}$$

$$\begin{split} & \text{Combining } i \in S_q \text{ and } i \in K - S_q \text{:} \\ & \mathbb{E} < \nabla F(\theta_q), \theta_{q+1} - \theta_q > + \frac{L}{2} \mathbb{E} \|\theta_{q+1} - \theta_q\|^2 \\ & = \sum_{i \in S_q} \mathbb{E} < \nabla F^i(\theta_q), \theta^i_{q+1} - \theta^i_q > + \frac{L}{2} \sum_{i \in S_q} \mathbb{E} \|\theta^i_{q+1} - \theta^i_q\|^2 \\ & + \sum_{i \in K - S_q} \mathbb{E} < \nabla F^i(\theta_q), \theta^i_{q+1} - \theta^i_q > + \frac{L}{2} \sum_{i \in K - S_q} \mathbb{E} \|\theta^i_{q+1} - \theta^i_q\|^2 \\ & \leq - \frac{T\gamma}{2} \mathbb{E} \|\nabla F(\theta_q)\|^2 + \frac{T\gamma}{2} (T_1 + T_2) \end{split}$$

$$\begin{split} & \mathbb{E}[F(\theta_{q+1})] - \mathbb{E}[F(\theta_q)] \\ & \leq \mathbb{E} < \nabla F(\theta_q), \theta_{q+1} - \theta_q > + \frac{L}{2} \mathbb{E} \|\theta_{q+1} - \theta_q\|^2 \\ & \leq -\frac{T\gamma}{2} \mathbb{E} \|\nabla F(\theta_q)\|^2 + \frac{T\gamma}{2} (T_1 + T_2) \end{split}$$

Then, we can obtain:

$$\begin{split} \mathbb{E}[F(\theta_{Q+1})] - \mathbb{E}[F(\theta_1)] &= \sum_{q=1}^{Q} \mathbb{E}[F(\theta_{q+1})] - \sum_{q=1}^{Q} \mathbb{E}[F(\theta_q)] \\ &\leq -\frac{T\gamma}{2} \sum_{q=1}^{Q} \mathbb{E}\|\nabla F(\theta_q)\|^2 + \frac{T\gamma}{2} \sum_{q=1}^{Q} (T_1 + T_2) \end{split}$$

Re-arranging the terms:

$$\frac{T\gamma}{2}\sum_{q=1}^{Q}\mathbb{E}\|\nabla F(\theta_q)\|^2 \leq \mathbb{E}[F(\theta_1)] - \mathbb{E}[F(\theta_{Q+1})] + \frac{T\gamma}{2}\sum_{q=1}^{Q}(T_1 + T_2)$$

Letting $\frac{1}{O}\sum_{q=1}^{Q}(\tau_q)^2=\tau$ and dividing both sides by $\frac{T\gamma Q}{2}$

$$\begin{split} &\frac{1}{Q} \sum_{q=1}^{Q} \mathbb{E} \| \nabla F(\theta_q) \|^2 \leq \frac{2 \mathbb{E} \big[F(\theta_1) \big]}{T \gamma Q} \\ &+ (48 \tau + 384 + 1152 \frac{N}{\Gamma^*} L^2 + 72 \frac{N}{\Gamma^*} \tau + 72 \frac{N}{\Gamma^*} L^2 \tau + 108 (\frac{N}{\Gamma^*})^2 L^2 \tau) \gamma^2 T^2 G \\ &+ (48 \gamma^2 T + 12 \frac{N}{\Gamma^*} + 6 + 144 \frac{N}{\Gamma^*} L^2 \gamma^2 T) \sigma^2 + 128 (3 + 9 \frac{N}{\Gamma^*} L^2) \gamma^2 T^2 \delta^2 \\ &+ 8 w^2 (6 + 9 \frac{N}{\Gamma^*} L^2) \frac{1}{Q} \sum_{q=1}^{Q} \mathbb{E} \| \theta_{q-(\tau_q)} \|^2 + 72 \frac{N}{\Gamma^*} L^2 w^2 \frac{1}{Q} \sum_{q=1}^{Q} \mathbb{E} \| \theta_q \|^2 \end{split}$$

Supposing that the step size $\gamma = O(\sqrt{\frac{\Gamma^*}{TQ}})$ and σ is sufficiently small, when the constant C>0 exists, the convergence rate can be expressed as follows:

$$\frac{1}{Q}\sum_{q=1}^{Q}\mathbb{E}\|\nabla F(\theta_q)\|^2 \leq C(\frac{1}{\sqrt{\Gamma^*TQ}} + \frac{1}{Q} + \frac{1}{\Gamma^*Q} + \frac{1}{Q^2})$$