Data Flow Analysis

Lecture 21

Data Flow Analysis

- A framework for proving facts about programs
- Reasons about lots of little facts
- Little or no interaction between facts
 - Works best on properties about how program computes
- Based on all paths through program
 - Including infeasible paths

Available Expressions

- An expression e is available at program point p if
 - e is computed on every path to p, and
 - the value of e has not changed since the last time e is computed on p

Optimization

- If an expression is available, need not be recomputed
 - -(At least, if it's still in a register somewhere)

Data Flow Facts

- Is expression e available?
- Facts:
 - a + b is available
 - a * b is available
 - a + | is available

Gen and Kill

• What is the effect of each statement on the set of facts?

Stmt	Gen	Kill
x := a + b	a + b	
y := a * b	a * b	
a := a + I		a + I, a + b, a * b

Computing Available Expressions

Terminology

 A joint point is a program point where two branches meet

- Available expressions is a forward must problem
 - Forward = Data flow from in to out
 - Must = At join point, property must hold on all paths that are joined

Data Flow Equations

- Let s be a statement
 - succ(s) = { immediate successor statements of s }
 - pred(s) = { immediate predecessor statements of s}
 - In(s) = facts at program point just before executing s
 - Out(s) = facts at program point just after executing s

- •In(s) = $\bigcap_{s' \in \text{pred(s)}} \text{Out(s')}$
- \bullet Out(s) = Gen(s) U (ln(s) Kill(s))
 - Note: These are also called transfer functions

Liveness Analysis

- A variable v is live at program point p if
 - will be used on some execution path originating from p...
 - before v is overwritten

Optimization

- If a variable is not live, no need to keep it in a register
- If variable is dead at assignment, can eliminate assignment

Data Flow Equations

- Available expressions is a forward must analysis
 - Data flow propagate in same dir as CFG edges
 - Expr is available only if available on all paths
- Liveness is a backward may problem
 - To know if variable live, need to look at future uses
 - Variable is live if used on some path

•Out(s) =
$$\bigcup_{s' \in \text{succ}(s)} \ln(s')$$

$$\bullet$$
In(s) = Gen(s) U (Out(s) - Kill(s))

Gen and Kill

• What is the effect of each statement on the set of facts?

Stmt	Gen	Kill
x := a + b	a, b	X
y := a * b	a, b	у
y > a	a, y	
a := a + I	a	a

Computing Live Variables

Very Busy Expressions

- An expression e is very busy at point p if
 - On every path from p, expression e is evaluated before the value of e is changed

- Optimization
 - Can hoist very busy expression computation

- •What kind of problem?
 - Forward or backward?
 backward
 - May or must?
 must

Reaching Definitions

- A definition of a variable v is an assignment to v
- A definition of variable v reaches point p if
 - There is no intervening assignment to v

Also called def-use information

- •What kind of problem?
 - Forward or backward? forward
 - May or must?

Space of Data Flow Analyses

	May	Must
Forward	Reaching definitions	Available expressions
Backward	Live variables	Very busy expressions

- Most data flow analyses can be classified this way
- Lots of literature on data flow analysis

Data Flow Facts and Lattices

- Typically, data flow facts form a lattice
 - Example: Available expressions

Partial Orders

- A partial order is a pair (P, \leq) such that
 - $\leq \subseteq P \times P$
 - \leq is reflexive: $x \leq x$
 - \leq is anti-symmetric: $x \leq y$ and $y \leq x \Rightarrow x = y$
 - \leq is transitive: $x \leq y$ and $y \leq z \Rightarrow x \leq z$

Lattices

- A partial order is a lattice if □ and □ are defined on any pair of elements:
 - ☐ is the meet or greatest lower bound operation:

```
-x \sqcap y \leq x \text{ and } x \sqcap y \leq y
```

if
$$z \leq x$$
 and $z \leq y$, then $z \leq x \sqcap y$

■ is the join or least upper bound operation:

```
x \le x \sqcup y \text{ and } y \le x \sqcup y
```

if $x \le z$ and $y \le z$, then $x \sqcup y \le z$

Lattices (cont'd)

- A finite partial order is a lattice if meet and join exist for every pair of elements
- A lattice has unique elements ⊥ and ⊤such that
 - $x \sqcap \bot = \bot \qquad x \sqcup \bot = x$
 - $lacksquare x \sqcap op = x \qquad \qquad x \sqcup op = op$

•In a lattice,

$$x \le y \text{ iff } x \sqcap y = x$$

 $x \le y \text{ iff } x \sqcup y = y$

Forward Must Data Flow Algorithm

```
Out(s) = Top for all statements s
  // Slight acceleration: Could set Out(s) = Gen(s) U(Top - Kill(s))
•W := { all statements } (worklist)
repeat
  Take s from W
  ln(s) := \bigcap_{s' \in pred(s)} Out(s')
  temp := Gen(s) \cup (In(s) - Kill(s))
  if (temp != Out(s)) {
         Out(s) := temp
        W := W \cup succ(s)
until W = \emptyset
```

Monotonicity

A function f on a partial order is monotonic if

$$x \le y \Rightarrow f(x) \le f(y)$$

- Easy to check that operations to compute In and Out are monotonic
 - $ln(s) := \bigcap_{s' \in pred(s)} Out(s')$
 - temp := $Gen(s) \cup (In(s) Kill(s))$

- Putting these two together,
 - temp := $f_s(\sqcap_{s' \in \operatorname{pred}(s)} Out(s'))$

Termination

- We know the algorithm terminates because
 - The lattice has finite height
 - The operations to compute In and Out are monotonic
 - On every iteration, we remove a statement from the worklist and/or move down the lattice

Forward Data Flow, Again

```
Out(s) = Top for all statements s
•W := { all statements } (worklist)
repeat
  Take s from W
  temp := f(\sqcap_s, \in pred(s)) Out(s')) (f monotonic transfer fn)
  if (temp != Out(s)) {
     Out(s) := temp
     W := W \cup succ(s)
until W = \emptyset
```

Lattices (P, ≤)

- Available expressions
 - P = sets of expressions
 - \blacksquare SI \sqcap S2 = SI \cap S2
 - Top = set of all expressions
- Reaching Definitions
 - P = set of definitions (assignment statements)
 - \blacksquare SI \sqcap S2 = SI \cup S2
 - Top = empty set

Fixpoints

- We always start with Top
 - Every expression is available, no defns reach this point
 - Most optimistic assumption
 - Strongest possible hypothesis
 - -= true of fewest number of states
- Revise as we encounter contradictions
 - Always move down in the lattice (with meet)
- Result: A greatest fixpoint

Lattices (P, ≤), cont'd

- Live variables
 - P = sets of variables
 - \blacksquare SI \sqcap S2 = SI \cup S2
 - Top = empty set
- Very busy expressions
 - P = set of expressions
 - \blacksquare SI \sqcap S2 = SI \cap S2
 - Top = set of all expressions

Forward vs. Backward

```
ln(s) = Top for all s
Out(s) = Top for all s
                                          W := { all statements }
W := { all statements }
repeat
                                          repeat
    Take s from W
                                              Take s from W
                                              temp := f_s(\sqcap_{s' \in succ(s)} \ln(s'))
    temp := f(\square_{s' \in pred(s)} \bigcirc ut(s'))
                                               if (temp != ln(s)) {
    if (temp != Out(s)) {
       Out(s) := temp
                                                 ln(s) := temp
      W := W \cup succ(s)
                                                W := W \cup pred(s)
until W = \emptyset
                                          until W = \emptyset
```

Data Flow Analysis Summary

- Need to determine the information that should be computed at a node
- Need to determine how that information should flow from node to node
 - Backward or Forward
 - Union or Intersection
- Often there is more than one way to solve a problem
 - Can often be solved forward or backward, but usually one way is easier than the other