Week 02 - Jumping Into Python

Robert Petit IBS796 - Python 9/12/2016

Bioinformatics and Data Formats

- Many different file formats in Bioinformatics
- Sequences
 - o FASTA, FASTQ, FAST5
- Gene Annotations
 - o GFF3, GenBank, ASN
- Variants
 - o VCF
- Alignments
 - o SAM, BAM, FASTA
- Many, many, many more!

A few guidelines for Parsing

Step 1: Get an example and look through it

- Step 2: Determine the pattern
 - Is it tab delimited? Are there repeated elements?

• Step 3: Code a parser

Step 4: Debug

This Week

- You will be dealing with:
 - 1. FASTA
 - 2. FASTQ
 - 3. Genbank

FASTA

gi|410687891|ref|NC_019227.1| Bacillus thuringiensis serovar rongseni plasmid pBMB2062-56, complete sequence ATGCAAGTTTATTTGGATAGGCTAATGATTAAGTATAAAGATGTAACAGAGAAACAATTTAGTGATGTTTTAACTAAAATATCGTCAAAGCAGATTTTTTTACCGAATACA CCTATTAGGTCAGAACATGGGACGTCTGTTAGAGATTATCATAGAGTTATACATATTGGATATGGTGAAGGTGCAGTTTATATAGGGTGGAAACATAATTCGGAAAAGGAA AAAGATAGCTATGATATGAAAGTTGATTTTAACCCTTCTAAATTTGAAAATAACGAGTTGCAAAAAGATAGTTATGAAAAAGTGTTTGAAACCGTTTTTCATACGTTAAAT GCAGTTTTGAAGTCTAATAAGCGAGTGGTTTATGGTATGGATATTGCTTTTGATATAGAGCGTCATATGAGTGATATTGTGTCTTATAGTAAAACGGGAAAGCAACAGGAT AGACATAAAGGAACTGTTTATTATGGAAATAGAAATAAAGATGGATATTTGAAGATATATGATAAGAAAAAGGAGTTATATAATCATTTTAAAAGAATGATAGAAGAAGAA AATTTGACTCGTATTGAGTATAGTTGGAGAGACTCTGACGGTGTAGTGGTAGACGAAATAAGGAAGAGTCCTCCGTTTAGTATTGATGAATCTTATACATTCTCGATTTTT AATTTGAATAATGTTAAAGGGGCATTAAAAGCTTGTTTGATTTGTTATTCTAATGGAACTATGGATATGAAAGAGTTCCCTCGTAGAACTAAAGAGAGTATAAAAAAAGCC CTTGAAGAAATGGATCACTTGGCGGTGGACCCCATTCTACAGGACTGTTGGTTATCTATATTAGAAAATATTAAGAACTATACTCGTTTATGATATTAGCGTGTGCTTCTC TGTGTGTCAAGAGGGTGTCAATATGATGCTCTCTTTTTGTTTTTCTTAACTTGTTTATATTAATAGCGGATAGAGTCCCACTTTTACATTGTTCTGGTGTATCTTAGTGTT GATATTGTGTTTAAACTGATGTTATATTTATGTAGTACGATATACAAGAGGTGATTAGATGAGTGAAATGGTTCGTGTTAATACACGTATCAGTAAAAAGTTAAATGATTG TTGGACGAGTATAGCAAAGAAAGTGGTGTACCGAAAAGCACTTTAGTTCATTTAGCTTTAGAGAATTATGTGAATCAAAAGGTTATGTTGGAACAAATGCCAAAGATGCAA CAAATGTTGAGTATGATGTTTGAAAATGTAACGCAGCAACAATTGAATCAAAAAGGGAATATGTTTGAGTTGAAGTAACGGTTATGTTTCGAAAATGTAGTCTTATTGATT AGGAGATGCACATCGATAAACTAAATGCGTAGTTGGTGTGGCTGAAGTTTGCCCGCCACCTACTCATTTAGAATATCCGTGCATGGGTCCCTGAACAATTAGGAAACGGCT ATGGCAAACGAAATGGAATGAGTGAGAAGAGCGTACGGTCGGCGAGGTAACGGAGGTGTAGGAGCAGATTGATAGAAAGTGAGGGTAACAATTTGAAACTGACAGAAAGAC AATTGAATGATTTGAAAAGAATTAGCGAATTACGTGTAAAGTTGTTTGGAGTTCCTGGTGAAAGTGTAGTTGATCCAGAGAATGTTGAGTTTTTATTGGATAATGCTATTA GTTCTTATTTAGGGCAATTAGAAATTTTTGAAGTCACGATAGAGATTGAACAGTATAATTCAATGTGTGGGTAAATTGTAGAAATGTGGCGAAGACATTTTCGGACATTCT AATAGCCGAAAATCGTGTACAAAATGACATGTTTAATAAAAAATAAGGAGCGGGATAGATTTT

FASTA Format

>SOME SEQUENCE INFORMATION 001
ATCATTGACTGATGCTGATGCTAGTCGTAGTCAGTACGTTACTGCATG
>SOME SEQUENCE INFORMATION 002
ACTGATCGTACGTAGCTAGCTAGCTAGCTGACTGACTGCTTCTT

One of the most used and basic data formats

- New entries always start with '>' symbol
- The line following is the sequence
 - Sequence can be split across multiple lines

FASTQ

aHWI-700819F:355:HLW5VADXX:1:1101:2098:2105 1:N:0:AGGCAGAACTCTCTAT

<u>ATAATAAGCATTCAATATATCATGCGTATCA</u>AAGTGACTTACTGTTACAACACAATCAGATATACCACGAATAGCTAATATTGCATTTTCAATTTCAATTTCAAGTTCAATACCGGTACCCGTTAACTT

FASTQ Format

Pattern of 4 elements

- 1. Sequence Header
 - a. Always starts with the '@' symbol
- 2. Sequence
 - a. Same length as the quality
- 3. "Plus" line, separates sequence and quality scores
 - a. Always starts with the '+' symbol
- 4. Quality Scores
 - a. Same length as the sequence

FASTQ Gotchas

There are multiple versions, some have/are:

- Different offsets for quality scores
 - o Phred+33, Phred+64, Solexa+64
- Broken up into 4 line entries
- Sequences/quality scores split into multiple lines
- '@' and '+' symbols are used in quality scores

GenBank

- A data format to store sequences and annotations.
 - o Genes, CDS, RNAs, IS elements, etc...

- NCBI Sample Record Link
 - You might need this for homework!

```
LOCUS
            SCU49845
                         5028 bp
                                    DNA
                                                     PLN
                                                               21-JUN-1999
DEFINITION Saccharomyces cerevisiae TCP1-beta gene, partial cds, and Ax12p
            (AXL2) and Rev7p (REV7) genes, complete cds.
           U49845
ACCESSION
VERSION
            U49845.1 GI:1293613
KEYWORDS
            Saccharomyces cerevisiae (baker's yeast)
SOURCE
 ORGANISM Saccharomyces cerevisiae
            Eukaryota; Fungi; Ascomycota; Saccharomycotina; Saccharomycetes;
            Saccharomycetales; Saccharomycetaceae; Saccharomyces.
           1 (bases 1 to 5028)
REFERENCE
            Torpey, L.E., Gibbs, P.E., Nelson, J. and Lawrence, C.W.
  AUTHORS
            Cloning and sequence of REV7, a gene whose function is required for
  TITLE
            DNA damage-induced mutagenesis in Saccharomyces cerevisiae
            Yeast 10 (11), 1503-1509 (1994)
  JOURNAL
 PUBMED
            7871890
REFERENCE
            2 (bases 1 to 5028)
 AUTHORS
            Roemer, T., Madden, K., Chang, J. and Snyder, M.
            Selection of axial growth sites in yeast requires Ax12p, a novel
 TITLE
            plasma membrane glycoprotein
            Genes Dev. 10 (7), 777-793 (1996)
  JOURNAL
 PUBMED
            8846915
REFERENCE
            3 (bases 1 to 5028)
 AUTHORS
            Roemer, T.
 TITLE
            Direct Submission
 JOURNAL
            Submitted (22-FEB-1996) Terry Roemer, Biology, Yale University, New
            Haven, CT, USA
                     Location/Qualifiers
FEATURES
                     1..5028
     source
                     /organism="Saccharomyces cerevisiae"
                     /db xref="taxon:4932"
                     /chromosome="IX"
                     /map="9"
     CDS
                     <1..206
                     /codon start=3
                     /product="TCP1-beta"
                     /protein id="AAA98665.1"
                     /db xref="GI:1293614"
                     /translation="SSIYNGISTSGLDLNNGTIADMRQLGIVESYKLKRAVVSSASEA
                     AEVLLRVDNIIRARPRTANROHM"
```

Python for this Week

You may (or may not!) use:

- Strings, Lists, Dictionaries
- Built-in Functions
- String Methods
- <u>List Functions (Slicing)</u>
- <u>open()</u>
- <u>print()</u>
- format()

- random()
- len()
- min()
- max()
- startswith()
- <u>rstrip()</u>
- <u>split()</u>
- ord()

Python Methods (Functions)

```
def some_name(a, b, c, ..., z):
   Do something...
   ...
   return something
```

Python Method Examples

```
>>> def add(a, b):
        return a + b
>>> def lower case(string):
        return string.lower()
>>> def power(base, exponent):
        return base ** exponent
>>> add(2, 4)
>>> power(2,4)
16
>>> lower case('ATGC')
 atqc
```

Opening and Writing Files in Python

```
# File Operations
with open("your_file", 'r') as fh:
for line in fh:
# DO SOMETHING WITH LINES
# Write File (replace existing)
with open("your_file.txt", 'w') as fh:
fh.write("super cool data\n")
# Append To File
with open('your_file.txt", 'a') as fh:
fh.write("more super cool data\n")
```

For Loops in Python

```
# Loops
for i in my_list:
print(i)
for i in my_string:
print(i)
for key, value in my_dict.items():
print(key, value)
```

Joining Strings in Python

```
# String append in Python
# This is a no no in Python
my_string = "A"
for i in "ATGCATCGC":
my_string = my_string + i
# Instead
my_list = []
for i in "ATGCATCGC":
my_list.append(i)
my_string = ''.join(my_list)
```

Home Work

Random Sequence Generator

Generate multi-FASTA of random sequences

FASTQ Parser With Stats

- Parse FASTQ
- Output read length distribution, per read mean quality, per base mean quality

Extract CDS From GenBank File

- Parse GenBank
- Output FASTA of translated CDS features