Empowering Domain Recursion in Symmetric Weighted First-Order Model Counting

10th January 2022

1 Basic Definitions

Things I might need to explain.

- notation: Im
- atom
- inequality constraint
- Vars, $Vars(c) = Vars(P) \cup Vars(N) \cup Vars(C)$
- Doms on both formulas and clauses. $Doms(c) = Im \delta$, and $Doms(\phi) = \bigcup_{c \in \phi} Doms(c)$.
- ullet the hash codes of clauses and formulas. Introduce the # notation.
- substitution
- (strict) equality of clauses
- size of a domain, how each domain is partitioned into two, and how we iterate over all possible integer partitions of length two.
- maybe: endomorphism, notation for partial function, notation for powerset

Let $\mathscr V$ be the set of circuit nodes.

TODO: merge κ and ι into one.

Definition 1. A *domain* is a set with elements not used anywhere else. Let \mathscr{D} be the set of all domains (note that this set expands during compilation).

We now define two partial maps π and κ with the same domain $\operatorname{dom}(\pi) = \operatorname{dom}(\kappa) \subset \mathscr{D}$. First, let $\pi \colon \mathscr{D} \to \mathscr{D}$ be a partial endomorphism on \mathscr{D} that denotes the *parent* relation, i.e., if $\pi(d) = e$ for some $d, e \in \mathscr{D}$, then we call e the parent (domain) of d, and e a child of d. Intuitively, π arranges all domains into a forest. Second, let $\kappa \colon \mathscr{D} \to \mathscr{V}$ be a partial map that assigns a *cause node* to all non-root domains. Third, let $\iota \colon \mathscr{D} \to \{0,1\}$ unambiguously order the children of any internal node, i.e., $\iota(d) \neq \iota(e)$ whenever $\pi(d) = \pi(e)$ for any $d, e \in \mathscr{D}$.²

Definition 2. A clause is a triple $c = (P, N, C, \delta)$, where P and N are sets of atoms interpreted as positive and negative literals respectively, C is a set of inequality constraints, and δ : $Vars(c) \to \mathcal{D}$ is a function that maps all variables in c to their domains. Two clauses c and $d = (P', N', C', \delta')$ are equivalent (written $c \equiv d$) if there is a bijection β : $Vars(c) \to Vars(d)$ such that $c\beta = d\beta$.

A formula is a set of clauses.

In the context of functions, the domain of a function f retains its usual meaning and is denoted dom(f).

²Here, each internal node has at most two children.

2 Identifying Possibilities for Recursion

For succinctness, let $\mathscr{S} = \mathscr{D} \times \mathscr{D} \times 2^{\mathscr{V} \times \{0,1\}}$. TODO: explain the idea. Let $\nu \colon \mathscr{S} \to 2^{\mathscr{S}}$ be a map defined as

$$\nu(a,b,S) = \begin{cases} \{ (\pi(a),b,S \cup \{ \kappa(a) \}) \} & \text{if } a \in \text{dom}(\pi) \\ \varnothing & \text{if } a \not\in \text{dom}(\pi) \end{cases}$$

for all $(a,b,S) \in \mathscr{S}$. Furthermore, let $\nu' \colon 2^{\mathscr{S}} \to 2^{\mathscr{S}}$ be an endomorphism defined as $\nu'(S) = \bigcup_{s \in S} \nu(s)$ for all $S \subseteq \mathscr{S}$.

Algorithm 1: A recursive function for checking whether one can reuse the circuit for computing $\text{WMC}(\psi)$ to compute $\text{WMC}(\phi)$. Both ϕ and ψ are formulas, and $\rho \colon \text{Doms}(\phi) \to \text{Doms}(\psi)$ is a partial map.

```
Function identifyRecursion(\phi, \psi, \rho = \varnothing):

if |\phi| \neq |\psi| or \#\phi \neq \#\psi then TODO: none;

else if \phi = \varnothing then

| TODO

else

L TODO
```

Example 1. Let...