Analiza matematyczna 1 FT Wykład 5, Funkcje elementarne (podstawowe własności)

1 Funkcje potęgowe

Funkcję postaci $f(x) = x^{\alpha}$, gdzie α jest stałą rzeczywistą, nazywamy funkcją potęgowa. Dziedzina i zbiór wartości funkcji potęgowej zależą od wykładnika α . W szczególności:

• Jeżeli α jest liczbą naturalną, to dziedziną jest \mathbb{R} . Zbiór wartości jest przedziałem $[0,\infty)$, gdy α jest liczbą parzystą, a \mathbb{R} jest liczbą nieparzystą.

• Jeżeli α jest liczbą całkowitą ujemną, to dziedziną jest $\mathbb{R} \setminus \{0\}$. Zbiór wartości to jest zbiór $\mathbb{R} \setminus \{0\}$, gdy α jest liczbą nieparzystą, a przedziałem $(0, \infty)$, gdy α jest liczbą parzystą.

• Jeżeli α jest dodatnią liczbą wymierną $\frac{p}{q}$ (ułamek nieskracalny), to dziedziną jest przedział $[0,\infty)$, gdy q jest liczbą parzystą, a \mathbb{R} , gdy q jest liczbą nieparzystą. Zbiorem wartości jest przedział $[0,\infty)$, gdy q jest liczbą parzystą albo, gdy q jest liczbą nieparzystą i p jest liczbą parzystą, a \mathbb{R} , gdy q i p są liczbami nieparzystymi.

Przykład 1. Wyznaczyć dziedziny funkcji:

a)
$$f(x) = \frac{1}{\sqrt{(x+2)^2}} - 1$$
; b) $f(x) = \sqrt[3]{x^3 + x^2 + x + 1}$.

Przykład 2. Korzystając z wykresu funkcji $y = \sqrt{x}$ naszkicować wykresy funkcji:

a)
$$y = \sqrt{x-2}$$
; b) $y = 2\sqrt{x}$; c) $y = \sqrt{2-x}$;

d)
$$y = 2 - \sqrt{x}$$
; e) $y = 1 + \sqrt{x}$; f) $y = 1 - \sqrt{x+1}$.

2 Funkcje wykładnicze

Funkcję postaci $f(x) = a^x$, gdzie $a \neq 1$ jest stałą dodatnią, nazywamy funkcją wykładniczą. Stałą a nazywamy podstawą, a zmienną x wykładnikiem funkcji wykładniczej. Dziedziną funkcji wykładniczej jest \mathbb{R} , a zbiorem wartości jest przedział $(0, \infty)$.

Przykładami funkcji wykładniczych są:

$$f(x) = 4^x$$
, $f(x) = 2^x$, $f(x) = \left(\frac{3}{2}\right)^x$,

$$f(x) = \left(\frac{1}{4}\right)^x, \quad f(x) = \left(\frac{1}{2}\right)^x, \quad f(x) = \left(\frac{2}{3}\right)^x.$$

Wykres funkcji wykładniczej nazywamy krzywą wykładniczą. Wykresy przykładowych funkcji wykładniczych przedstawiamy poniżej:

Jeżeli a>1, to funkcjia wykładnicza $f(x)=a^x$ jest rosnąca, a jeżeli 0< a<1-malejąca. Zauważmy, że wykresy funkcji $y=a^x, y=\left(\frac{1}{a}\right)^x$ są symetryczne względem osi Oy. Wynika to z zależności $\left(\frac{1}{a}\right)^x=a^{-x}$.

Funkcją wykładniczą, której podstawą jest liczba $e \approx 2.7182$, tzn. funkcję $f(x) = e^x$ nazywamy exponent i oznaczamy exp(x).

Przykład 3. Korzystając z wykresu funkcji $y = e^x$ naszkicować wykresy funkcji:

a)
$$y = e^{-x}$$
; b) $y = e^{x+1}$; c) $y = 2e^x$;

d)
$$y = 1 + e^x$$
; e) $y = 2 - e^x$; f) $y = |e^x - 1|$.

3 Logarytmy

3.1 Własności logarytmów

Niech $0 < a \ne 1$ oraz niech x, y będą dowolnymi liczbami dodatnimi. Wtedy

- $\log_a xy = \log_a x + \log_a y$ $\log_a xy = \log_a xy = \log_a xy$
- logarytm iloczynu równa się sumie logarytmów;
- $\bullet \ \log_a \frac{x}{y} = \log_a x \log_a y$
- logarytm ilorazu równa się różnicy logarytmów;
- $\log_a x^{\alpha} = \alpha \log_a x$, gdzie $\alpha \in \mathbb{R}$.

W szczególności mamy

$$\log_a \sqrt[n]{x} = \frac{1}{n} \log_a x$$
, gdzie $n \in \mathbb{N}$.

Niech teraz $0 < a, b \neq 1$ oraz niech c będzie dowolną liczba dodatnią. Gdy chcemy zmienić podstawę logarytmu z a na b, to stosujemy wzór

•
$$\log_a c = \frac{\log_b c}{\log_b a}$$
.

Przykład 4. Korzystając z własności logarytmów obliczyć:

- a) $\log 20 + \log 50$; b) $\log_2 4^7$; c) $\log_4 \sqrt[4]{128}$;
- d) $\frac{\log_5 256 \log_5 16}{\log_5 8 \log_5 2}$; e) $2\log_a 9 + \log_a \frac{1}{9} 2\log_a 3$; f) $5\log_3 6 2\log_3 4 \log_3 18$.

3.2 Funkcje logarytmiczne

Funkcję postaci $f(x) = \log_a x$, gdzie $a \neq 1$ jest stałą dodatnią, nazywamy funkcją logarytmiczną. Dziedziną funkcji logarytmicznej jest przedział $(0, \infty)$, a zbiorem wartości \mathbb{R} . Funkcjami logarytmicznymi są np.

$$f(x) = \log_4 x$$
, $f(x) = \log_2 x$, $f(x) = \log x$, $f(x) = \log_{\frac{3}{2}} x$,

$$f(x) = \log_{\frac{1}{4}} x$$
, $f(x) = \log_{\frac{1}{2}} x$, $f(x) = \ln x$, $f(x) = \log_{\frac{2}{3}} x$.

Wykres funkcji logarytmicznej nazywamy krzywą logarytmiczną. Wykresy przykladowych funkcji logarytmicznych przedstawiamy poniżej.

Funkcja logarytmiczna ma tylko jedno miejsce zerowe x=1. Jeżeli podstawa logarytmu a jest większa od 1, to funkcja $f(x)=\log_a x$ jest rosnąca, a jeżeli mniejsza od 1, to malejąca. Zauważmy, że wykresy funkcji $y=\log_a x$, $y=\log_{\frac{1}{a}}x$ są symetryczne względem osi Ox. Wynika to z zależności $\log_{\frac{1}{a}}x=-\log_a x$.

Ponadto z określenia logarytmu wynika, że funkcja $y = \log_a x$ jest funkcją odwrotną do funkcji wykładniczej $y = a^x$.

Przykład 5. Korzystając z wykresu funkcji $y = \log_2 x$ naszkicować wykresy funkcji:

- a) $y = \log_2 -x$; b) $y = \log_2 x + 2$; c) $y = \log_2 2x$;
- d) $y = \log_2 \frac{2}{x}$; e) $y = \log_2 x^2$; f) $y = \log_2 \sqrt{x}$.

Funkcje trygonometryczne

• Sinus

Dziedziną funkcji $\sin x$ jest \mathbb{R} , a zbiorem wartości przedział [-1,1]. Sinus jest funkcją okresową o okresie podstawowym 2π oraz nieparzystą. Wykres funkcji $y = \sin x$ nazywamy sinosoidą.

Cosinus

Dziedziną funkcji $\cos x$ jest \mathbb{R} , a zbiorem wartości przedział [-1,1]. Cosinus jest funkcją okresową o okresie podstawowym 2π oraz parzystą. Wykres funkcji y= $\cos x$ nazywamy cosinosoidą. Cosinusoida jest przesuniętą sinusoidą.

• Tangens

Dziedziną funkcji t
gxjest jest $\mathbb{R},$ z wyłączeniem liczb
 $\frac{\pi}{2}+k\pi,$ gdzie $k\in\mathbb{Z}.$ Zbiorem wartości funkcji t
gxjest $\mathbb{R}.$ Tangens jest funkcją okresową o okresie podstawowym
 π oraz nieparzystą. Wykres funkcji $y=\operatorname{tg} x$ nazywamy tangenso
idą.

• Cotangens

Dziedziną funkcji ct
gxjest jest $\mathbb{R},$ z wyłączeniem licz
b $k\pi,$ gdzie $k\in\mathbb{Z}.$ Zbiorem wartości funkcji ct
gxjest $\mathbb{R}.$ Cotangens jest funkcją okresową o okresie podstawowy
m π oraz nieparzystą. Wykres funkcji $y=\operatorname{ctg} x$ nazywa
my cotangensoidą.

Przykład 6. Korzystając z wykresu funkcji $y = \sin x$ naszkicować wykresy funkcji:

- a) $y = \sin 2x$; b) $y = \sin \frac{x}{2}$; c) $y = \sin (x + \frac{\pi}{4})$;
- d) $y = 1 + \sin x$; e) $y = \sin |2x|$; f) $y = |\sin x|$.

5 Funkcje cyklometryczne

- Funkcją arcsin (arkus sinus) nazywamy funkcję odwrotną do funkcji sinus obciętej do przedziału $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$. Dziedziną funkcji arcsin jest przedział $\left[-1,1\right]$.
- Funkcją arccos (arkus cosinus) nazywamy funkcję odwrotną do funkcji cosinus obciętej do przedziału $[0,\pi]$. Dziedziną funkcji arcsin jest przedział [-1,1]. Wykresy funkcji $y=\arcsin x$ oraz $y=\arccos x$ przedstawiamy poniżej.

- Funkcją arctg (arkus tangens) nazywamy funkcję odwrotną do funkcji tangens obciętej do przedziału $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Dziedziną funkcji arctg jest \mathbb{R} .
- Funkcją arcctg (arkus cotangens) nazywamy funkcję odwrotną do funkcji cotangens obciętej do przedziału $(0,\pi)$. Dziedziną funkcji arctg jest \mathbb{R} . Wykresy funkcji $y=\operatorname{arctg} x$ oraz $y=\operatorname{arcctg} x$ przedstawiamy poniżej.

Podstawowe tożsamości funkcji cyklometrycznych

$$\arcsin x + \arccos x = \frac{\pi}{2} \quad \text{dla każdego} \quad x \in [-1,1];$$

$$\arctan x + \arctan x = \frac{\pi}{2} \quad \text{dla każdego} \quad x \in \mathbb{R}.$$

Przykład 7. Obliczyć wartości podanych funkcji cyklometrycznych: $\arcsin \frac{\sqrt{3}}{2}$, $\arccos \left(-\frac{1}{2}\right)$, $\arctan \left(-1\right)$, $\arctan \sqrt{3}$.

Przykład 8. Znaleźć funkcje odwrotne do podanych funkcji na zadanych przedziałach:

7

a)
$$f(x) = \sin x, x \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right];$$
 b) $f(x) = \cos x, x \in [2\pi, 3\pi];$

c)
$$f(x) = \operatorname{tg} x, \ x \in \left(-\frac{3\pi}{2}, -\frac{\pi}{2}\right);$$
 b) $f(x) = \operatorname{ctg} x, \ x \in (\pi, 2\pi).$