

Programación Orientada a Objetos Facultad de Informática

> Juan Pavón Mestras Dep. Sistemas Informáticos y Programación Universidad Complutense Madrid

¿Qué es Java?

brewed coffee
 la bebida preferida de los programadores
 (al menos en USA)

Historia de Java

- Abril 1991: Proyecto Green (Sun) software para dispositivos electrónicos inteligentes y televisión interactiva. Se trataba de desarrollar un entorno de operación fiable, portable y eficiente.
 - El resultado: Lenguaje Oak (James Gosling)
- Principio 1994: El equipo se reduce ante el escaso crecimiento del mercado PDA y STB, y tras perder acuerdos con Time-Warner y 3DO, se reorienta hacia WWW:
 - Los requisitos del software son los mismos en WWW
- 1994: WebRunner (luego HotJava): navegador Web escrito en Java
- 23 mayo 1995 (SunWorld '95): Anuncio de la release alpha de Java
 - Java se distribuye gratuitamente
- Finales 1995: Primera integración Netscape+Java

Juan Pavón Mestras Facultad de Informática UCM, 2004

Java

3

¿Qué es Java?

- Un lenguaje de programación orientado a objetos desarrollado por Sun Microsystems
 - Encapsulación, herencia y polimorfismo
 - Fuertemente tipado
 - Gestión automática de la memoria (recogida de basura)
 - Soporte para concurrencia (multihilo)
 - Gestión de excepciones
 - Constructores independientes de la arquitectura del procesador

¿Qué es Java?

- ... acompañado por un conjunto de bibliotecas (packages, conjuntos de clases)
 - Desarrollo de interfaces gráficas de usuario (AWT, Swing)
 - Conectividad (sockets, RMI, IDL, JDBC)
 - Utilidades (Vector, Stack, Hashtable, Date, etc.)
 - Funciones matemáticas
 - Gráficos 2D y 3D
 - Interacción y multimedia (Media, JMF, Speech, Animation, Collaboration, Telephony)
 - Etcétera, etcétera, ...

Juan Pavón Mestras Facultad de Informática UCM, 2004

Java

5

¿Qué es Java?

- Apropiado para Internet
 - Ejecutable en múltiples plataformas
 - Fácil de distribuir
 - Seguridad
 - Soporte para interacción con el usuario:
 - Gráficos
 - · Tipos de datos arbitrarios
 - · Descarga el servidor

¿Qué es Java?

Según Sun:

- Sencillo, Orientado a objetos, y Familiar
- Robusto y Seguro
- Independiente de la arquitectura y portable
- Alto rendimiento
- Interpretado, Concurrente, y Dinámico

Juan Pavón Mestras Facultad de Informática UCM, 2004

Java

7

Arquitectura de Máquina Virtual Java

Java e Internet

- Un nuevo paradigma de software
 - Software bajo demanda:
 - · El software se carga de la red
 - · cuando es necesario
 - · lo que es estrictamente necesario
 - · sin necesidad de instalación
 - Se puede controlar el uso del software
 - No hacen falta actualizaciones software individuales
 - Las versiones nuevas reemplazan a las anteriores de forma invisible
 - No hay problemas de configuración específicos del HW
 - · Codifica una vez, ejecuta en varias plataformas

Juan Pavón Mestras Facultad de Informática UCM, 2004

Java

.

La máquina virtual de Java (MVJ)

- Java se ejecuta en un computador simulado
 - Portabilidad
 - Protección
 - Para portar todo el código Java, portar la MVJ
- Otras arquitecturas de MV:
 - UCSD P-system, Apple Newton, Smalltalk, Emacs, ...
- La máguina virtual Java es sofisticada:
 - Multihilo (Threads)
 - Recogida de basura

La máquina virtual de Java (MVJ)

Entorno de compilación y ejecución tradicional

Juan Pavón Mestras Facultad de Informática UCM, 2004

Java

11

La máquina virtual de Java (MVJ)

Intérpretes

La máquina virtual de Java (MVJ)

■ El intérprete de bytecodes de Java

La máquina virtual de Java (MVJ)

Compilador Just-In-Time (JIT)

Juan Pavón Mestras Facultad de Informática UCM, 2004

La máquina virtual de Java (MVJ)

Arquitectura Java sobre un SO

Juan Pavón Mestras Facultad de Informática UCM, 2004

Java

15

Sistema de ejecución de Java

- Facilidades básicas
 - Class Object
 - Class Thread, Interface Runable
 - Class Throwable, Class Exception
- Abstract Window Toolkit
 - Class Component
 - Class Graphics
 - Class Applet

Sistema de ejecución de Java

- E/S y comunicaciones
 - Class InputStream y OutputStream
 - Encadenamiento y herencia de flujos (Stream)
 - Class URL
 - Class Socket
- Otras utilidades
 - Class String
 - Colecciones: Vector, Stack, HashTable
- Recogida de basura
- Comprobación de rangos

Juan Pavón Mestras Facultad de Informática UCM, 2004

Java

17

Java Development Kit (JDK)

- Bibliotecas de clases Java
- Herramientas básicas
 - javac -- compilador Java -> bytecodes
 - java -- intérprete Java
 - jdb -- depurador
 - javah -- crea ficheros de cabecera y stubs para conectividad con C
 - javap -- desensamblador bytecodes -> Java
 - javadoc -- genera documentación de API en formato HTML a partir de código fuente Java
 - appletviewer -- permite ejecutar applets sin un navegador

- Herramientas RMI
 - rmic -- genera clases stub y skeleton para objetos Java que implementan la interfaz java.rmi.Remote
 - rmiregistry -- arranca un objeto registrador en un puerto dado
 - serialver -- devuelve el serialVersionUID para una o más clases
- Herramientas de internacionalización
 - native2ascii -- convierte ficheros no-Unicode Latin-1 a éste
- Herramienta JAR
 - jar -- combina varios ficheros en un fichero Java Archive (JAR)
- Herramienta de firma digital
 - javakey -- genera firmas digitales

Juan Pavón Mestras Facultad de Informática UCM, 2004

Java

19

Versiones de Sun JDK/J2SE

- 23 de mayo de 1995: James Gosling presenta Java
- Java Development Kit (JDK) 1.0.2 [Mayo 1996]
 - Core API: java.applet, java.awt, java.io, java.lang, java.net, java.util
 - Herramientas: javac, java, appletviewer, jdb
 - Applets ejecutables en Netscape 3.0
- JDK 1.1.x [1997/98]
 - Añade: internacionalización, seguridad, JavaBeans, JAR, RMI, serialización de objetos, JDBC, JNI, y mejoras a las bibliotecas anteriores
 - Herramientas: javac, java, appletviewer, jdb
 - Applets ejecutables en HotJava 1.x y Netscape 4.0
- Java 2 SDK, Standard Edition (J2SE) 1.2 [Dic. 1998], 1.3 [Mayo 2000], 1.4 [Marzo 2002]
 - Swing, 3D, ...
 - Incorpora todas las facilidades para la programación con componentes

Versiones de Sun JDK

■ J2SE 5.0 ("Tiger") [30 sep. 2004]

http://java.sun.com/developer/technicalArticles/releases/j2se15/

- Añadidos al lenguaje: metadatos, tipos enumerados, tipos genéricos, argumentos variables, utilidades de concurrencia
- Más control y gestión de la MVJ (también gestión remota)
- Mayor eficiencia y estabilidad
 - · Menor tiempo de arranque
- Un nuevo look & feel del GUI de Java

Juan Pavón Mestras Facultad de Informática UCM, 2004

Java

21

Entornos de desarrollo integrados (IDE)

- En casi todos los sistemas operativos: Unix (Solaris, Linux), Windows, Mac
 - Comerciales
 - Sun Java Workshop, Visual Café (Symantec), JBuilder (Borland), Metrowerks CodeWarrior, etc.
 - Libre distribución
 - · GNU Java, Kawa
 - Y mi recomendación: www.eclipse.org

Tecnologías Java

- El 15 de junio 1999 Sun anuncia 3 ediciones de la plataforma Java:
 - J2SE: Edición estándar
 - Para desarrollar aplicaciones y applets
 - **J2ME**: Java Micro Edition
 - Aplicaciones para dispositivos móviles
 - Midlets
 - J2EE: Java Enterprise Edition
 - · Aplicaciones para la web
 - Componentes para servidores de aplicaciones
 - · Servlets, JSPs, EJBs, ...

Juan Pavón Mestras Facultad de Informática UCM, 2004

Java

23

Ingeniería de componentes

- J2EE: Java Enterprise Edition
 - Servidores web con tecnología de componentes soportada por el lenguaje Java

Dispositivos móviles

- J2ME: Java 2 Micro Edition
 - Orientada a pequeños dispositivos y sistemas embebidos (teléfonos móviles, PDAs, Set-Top Boxes, ...)

Juan Pavón Mestras Facultad de Informática UCM, 2004

Java 2 Platform, Micro Edition (J2ME)

25

Cómo realizar un programa Java

- 1) Editar el fuente
- 2) Compilar
- 3) Ejecutarlo

Juan Pavón Mestras Facultad de Informática UCM, 2004

Java

27

Cómo realizar una aplicación Java

Cómo realizar un aplicación Java

```
public class HolaMundo {
          public static void main(String[] args) {
                System.out.println("Hola Mundo");
          }
}
```

- > edita HolaMundo.java
- > javac HolaMundo.java
- > java HolaMundo Hola Mundo.

Invoca el método main() de la clase HolaMundo

Juan Pavón Mestras Facultad de Informática UCM, 2004

Java

29

Más fácil con Eclipse

Juan Pavón Mestras Facultad de Informática UCM, 2004

Cómo realizar un applet Java

Juan Pavón Mestras Facultad de Informática UCM, 2004

Java

31

Cómo realizar un applet Java

Hola.html

HolaMundoApplet.java

```
import java.applet.Applet;
<HTML>
<HEAD>
                                          import java.awt.Graphics;
<TITLE> Hola Mundo</TITLE>
</HEAD>
                                          public class HolaMundoApplet extends Applet
<BODY>
Saluda amigablemente:
                                             public void init() {
<APPLET
                                                  resize (150,25);
CODE="HolaMundoApplet.class"
WIDTH=150 HEIGHT=125>
</BODY>
</HTML>
                                              }
```

Cómo se ejecuta un applet Java

Navegador (cliente)

Juan Pavón Mestras Facultad de Informática UCM, 2004

Java

33

Java y C++

- Java se parece a C++
 - Sin algunas cosas
 - Punteros, direcciones, estructuras (struct y union), preprocesado, herencia múltiple, sobrecarga de operadores, tipos enumerados (enum), tipos sin signo (unsigned), goto, variables y funciones globales
 - Más seguro
 - Recogida de basura, interfaces, paquetes, arrays con límites, soporte para concurrencia y sincronización
 - Aspectos recientes de C++
 - · Excepciones uniformes
 - · Información de tipos en tiempo de ejecución
 - · Tipo boolean
 - · Casting seguro

Java y C++

- El código Java es más sencillo
 - recogida de basura
 - Las facilidades en tiempo de ejecución más avanzadas
 - Las interfaces simplifican la jerarquía de herencia
- El código Java es más robusto
 - Verificación al cargar y comprobación en tiempo de ejecución
 - Arrays seguros
 - Compilador estricto e inteligente
- Menos oportunidades para los más audaces
 - Imposible realizar aritmética de punteros
 - No es posible hacer mejoras específicas para una plataforma
- No es cierto eso de que las aplicaciones Java tengan que ser más lentas que las C++