Example.

For any set X, $A = \{E \subseteq X : E \text{ is countable or } X \setminus E \text{ is countable} \}$ is a σ -algebra.

- **1.** $\emptyset \in \mathcal{A}$ because \emptyset is countable.
- **2.** Let $E \in \mathcal{A}$. Then either E is countable or $X \setminus E$ is countable. In the first case, $X \setminus E$ is the complement of a countable set, so $X \setminus E \in \mathcal{A}$. In the second case, $X \setminus E \in \mathcal{A}$ since it's countable. So \mathcal{A} is closed under complements.

Example.

For any set X, $\mathcal{A} = \{E \subseteq X : E \text{ is countable or } X \setminus E \text{ is countable} \}$ is a σ -algebra.

3. Let $\{E_j\}_1^\infty \subseteq \mathcal{A}$. We need to show that either $\bigcup_1^\infty E_j$ is countable or that $X \setminus (\bigcup_1^\infty E_j)$ is countable.

First suppose that E_j is countable for all j. Then $\bigcup_{1}^{\infty} E_j$ is countable, since the countable union of countable sets is countable.

On the other hand, suppose at least one of the E_j , WLOG let's say E_1 , is uncountable. Since $E_1 \in \mathcal{A}$ it must be that $X \setminus E_1$ is countable. Then

$$X\setminus\bigcup_{i=1}^{\infty}E_{i}=\bigcap_{i=1}^{\infty}(X\setminus E_{i})\subseteq X\setminus E_{1},$$

so $X\setminus (\bigcup_{1}^{\infty} E_j)$ is contained in a countable set which means it's countable and in A. Thus A is closed under countable unions.

Definition. Let X be a set and $\mathcal A$ a set of subsets of X. Then the intersection of all σ -algebras on X that contain $\mathcal A$ is a σ -algebra on X. We call this the σ -algebra generated by $\mathcal A$ and write $\sigma(\mathcal A)$.

Example. Suppose X is a set and S is the set of subsets of X that consist of exactly one element:

$$S = \{\{x\} : x \in X\}.$$

Then $\sigma(S) = \{E \subseteq X : E \text{ is countable or } X \setminus E \text{ is countable}\}.$

Borel sets

Definition. The Borel σ -algebra on \mathbb{R} , written $\mathcal{B}(\mathbb{R})$ (or $\mathcal{B}_{\mathbb{R}}$ or sometimes just \mathcal{B}) is the σ -algebra generated by the open sets of \mathbb{R} . Elements of $\mathcal{B}(\mathbb{R})$ are called Borel sets.

 ${\cal B}$ is generated by each of the following collections:

- **1.** $C_1 = \{(a, b) : a, b \in \mathbb{R}\}$
- **2.** $C_2 = \{[a, b] : a, b \in \mathbb{R}\}$
- **3.** $C_3 = \{(a, b] : a, b \in \mathbb{R}\}$
- **4.** $C_4 = \{(a, \infty) : a \in \mathbb{R}\}$
- **5.** $C_5 = \{(-\infty, a] : a \in \mathbb{R}\}$

(work in groups)

Measures

Definition. Let (X, \mathcal{M}) be a measurable space. A **measure** on (X, \mathcal{M}) is a function $\mu : \mathcal{M} \to [0, \infty]$ such that

- **1.** $\mu(\emptyset) = 0$
- **2.** (countable additivity) If $\{E_j\}$ is a collection of pairwise disjoint sets in \mathcal{M} , then $\mu(\bigcup_{j=1}^{\infty} E_j) = \sum_{j=1}^{\infty} \mu(E_j)$.

Definition

If μ is a measure on (X, \mathcal{M}) , then (X, \mathcal{M}, μ) is called a **measure** space.

Measures

Examples and non-examples of measures (work in groups)

For the following let $(X, \mathcal{M}) = (\mathbb{R}, \mathcal{P}(\mathbb{R}))$.

1.
$$\alpha: \mathcal{P}(\mathbb{R}) \to [0,\infty]$$
 defined by $\alpha(E) = \begin{cases} 0 & \text{if E is countable,} \\ \infty & \text{if E is uncountable.} \end{cases}$

2.
$$\beta: \mathcal{P}(\mathbb{R}) \to [0, \infty]$$
 defined by $\beta(E) = \begin{cases} 0 & \text{if } E \text{ is finite,} \\ \infty & \text{if } E \text{ is infinite.} \end{cases}$

3.
$$\gamma: \mathcal{P}(\mathbb{R}) \to [0, \infty]$$
 defined by $\gamma(E) = \text{cardinality of } E$.

4. Fix
$$x_0 \in \mathbb{R}$$
, and define $\delta_{x_0} : \mathcal{P}(\mathbb{R}) \to [0, \infty]$ by $\delta_{x_0}(E) = \begin{cases} 1 & x_0 \in E, \\ 0 & \text{otherwise.} \end{cases}$

Outer measure on $\mathbb R$

Definition. The length of an open interval $I \subseteq \mathbb{R}$ is defined by

$$\ell(I) = \begin{cases} 0 & I = \emptyset \\ b - a & I = (a, b) \text{ with } a < b \\ \infty & I = (-\infty, a) \text{ or } (a, \infty) \text{ or } (-\infty, \infty) \end{cases}$$

Definition. Define the **Lebesgue outer measure** of
$$E \subseteq \mathbb{R}$$
, written $|E|$ (Axler) or $m^*(E)$ (Bass) by
$$\inf \left\{ \sum_{i=1}^{\infty} \ell(A_i) : \text{ each } A_i \text{ is an open interval of } \mathbb{R} \text{ and } E \subseteq \bigcup_{i=1}^{\infty} A_i \right\}.$$

Outer measure is **not** a measure on $(\mathbb{R}, \mathcal{P}(\mathbb{R}))$. We will soon see that it **is** a measure on $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$, and in fact there is a somewhat larger σ -algebra \mathcal{L} such that outer measure is a measure on $(\mathbb{R}, \mathcal{L})$.

Measure Theory, EDGE 2020 Lecture 2

Special kinds of measures

Definition.

- μ is a *finite* measure if $\mu(X) < \infty$
- μ is a probability measure if $\mu(X) = 1$
- μ is called σ -finite if $X = \bigcup_{n=1}^{\infty} X_n$ where $\mu(X_n) < \infty$ for all n.

Properties of measures

Theorem. Let (X, \mathcal{M}, μ) be a measure space. Then for all $E, F \in \mathcal{M}$ and for all $\{E_i\}_{i=1}^{\infty} \subseteq \mathcal{M}$:

- **1.** (monotonicity) If $E \subseteq F$ then $\mu(E) \le \mu(F)$.
- **2.** (countable subadditivity) $\mu(\bigcup_{i=1}^{\infty} E_i) \leq \sum_{i=1}^{\infty} \mu(E_i)$.
- **3.** (continuity from below) If $E_i \subseteq E_{i+1}$ for all j, then

$$\mu\left(igcup_{j=1}^\infty {\sf E}_j
ight) = \lim_{j o\infty} \mu({\sf E}_j).$$

4. (continuity from above) If $\mu(E_1) < \infty$ and $E_j \supseteq E_{j+1}$ for all j, then $\mu\left(\bigcap^{\infty} E_j\right) = \lim_{j \to \infty} \mu(E_j)$.