NAME III Documentation NAME Met Data

Authors

Matthew Hort, Helen Champion, Maria Athanassiadou, Dave Thomson

Introduction

This document contains information on the meteorological data stored for and used by NAME.

Table of Contents

Introduction	2
Met Types and Time Periods	4
Met Definitions Files & Naming Conventions	4
Explanation of Suffix convention:	5
Types of Met File: non-pp and pp	5
Horizontal Grid Information	
Vertical Grid Information	6
Explanation of Met Grids	7
UM5 and later grids - height based coord system	7
Pre-UM5 grids - pressure based eta coord system	8
NAME NWP Meteorological Input Variables	9
Ancillary files of surface properties	10
NAME Output Meteorological Variables	
Archive Data Volumes & Location	12
Appendix A: Pictures of Met Domains	13

Met Types and Time Periods

Met Data type	Start Date	End Date	
Global data.	Otait Date	Liid Date	
GLOV3			
GLOV	01/01/1999	09/02/2001	
GLOH2001	01/01/2001	07/08/2002	
GLOUM5	24/07/2002	06/12/2005	
GLOUM6	01/11/2005	Current met	
	bal data covering		
North Atlantic.	bar data covering	Laropo ana	
REGV3	01/01/1995	01/01/1999	
REGH	01/01/1999	06/08/2002	
REGH2001	01/01/2001	07/08/2002	
REGUM5	24/07/2002	19/12/2005	
REGUM6	01/11/2005	Current met	
Mesoscale doma	in covering UK, Ir	eland and Most	
of France.	,		
MESV3	01/01/1996	31/12/1998	
		(most of 1998	
		missing)	
MESH	01/01/1999	09/02/2001	
MESH2001	01/01/2001	07/08/2002	
MESUM5	07/08/2002	02/04/2009	
Cut out from NA	E domain covering	g Europe.	
REGNAE	07/09/2006	Current met	
UK 4km UM data			
UK4km	01/01/2007	27/11/2007	
UK4km_L50	26/11/2007	Current met	
South Asia crisis area model. Covers Egypt, Middle			
East and most of			
SAM	01/07/08	Current met	

Considerable effort has been expended to patch these archives so that they are complete. However some files are still missing. A full listing of which files are missing can be found on Helen Champions web Met pages that are linked to from here home page: http://www-nwp/%7Eaphh/.

Met Definitions Files & Naming Conventions

Met Data type	Met Definition File Name	Met Definition Name (Used in NAME input file in 'NWP Met	Met File Suffix
		Module Instances:')	
GLOV3	MetDefnUMV3G.txt	UMV3G	GLOV3
GLOH	MetDefnUMHG.txt	UMHG	GLOH
GLOH2001	MetDefnUMH2001G.txt	UMH2001G	GLOH2001
GLOUM5	MetDefnUM5G.txt	UM5G	GLOUM5
GLOUM6	MetDefnUM6G.txt	UM6G	GLOUM6
	MetDefnUM6Gpp.txt	UM6G	GLOUM6.pp
	MetDefnUM6GL40.txt	UM6GL40	GLOUM6_L40
	MetDefnUM6GL40pp.txt	UM6GL40	GLOUM6_L40.pp
REGV3	MetDefnUMV3R.txt	UMV3R	REGV3
REGH	MetDefnUMHR.txt	UMHR	REGH
REGH2001	MetDefnUMH2001R.txt	UMH2001R	REGH2001
REGUM5	MetDefnUM5R.txt	UM5R	REGUM5

	MetDefnUM5Rpp.txt	UM5R	REGUM5.pp
REGUM6	MetDefnUM6R.txt	UM6R	REGUM6
	MetDefnUM6Rpp.txt	UM6R	REGUM6.pp
MESV3	MetDefnUMV3M.txt	UMV3M	MESV3
MESH	MetDefnUMHM.txt	UMHM	MESH
MESH2001	MetDefnUMH2001M.txt	UMH2001M	MESH2001
MESUM5	MetDefnUM5MDt1.txt	UM5M	MESUM5
	MetDefnUM5MDt1pp.txt	UM5M	MESUM5.pp
REGNAE	MetDefnUM6REGNAEpp.txt	UM6REGNAE	REGNAEUM6.pp
UK4km	MetDefnUM4kmMk2pp.txt	UM4kmMk2	4KM2_UM6.pp
UK4km_L50	MetDefnUM4kmMk3_L50pp.txt	UM4kmMk3_L50	4KM50L_UM6.pp
SAM	MetDefnUM6SAM_dt3pp.txt	UM6SAM	SAMUM6.pp

NAME uses a file called a Met definition to define the characteristics of NWP met data. These files define the coordinate systems, grids and variables contained within the Met data files. The files are stored with each version of NAME within the directory: Resources/Defns.

Explanation of Suffix convention:

Suffix GLO... indicates global data

Suffix GLO..._L40 indicates global data (40 levels). Not archived - only kept for

emergency response.

Suffix REG... indicates regional data

Suffix NAE... indicates North-Atlantic & European data

Suffix MES... indicates mesoscale data (including crisis area mesoscale

models)

Suffix 4KM1_...
Suffix 4KM2_... indicates UK 4km model (original domain)

indicates UK 4km model (2nd domain, i.e. extended to

include the Shetlands)

Suffix SAM... indicates South Asian model

Types of Met File: non-pp and pp

PP files are a Met Office format for holding 2-d NWP fields.

Old Name met files (those not suffixed with pp) are a modification of this format. The modifications are:

- 1. field headers all reals,
- 2. fields split into ny nx-long records instead of one nx*ny-long record,
- 3. field header array elements 34-37 used to indicate area of cut down met and <= 0 for non-cut down met,
- 4. field header array element 1 set to <= 0 to indicate a missing field for missing fields the following field records are not present.

Modifications (1) and (2) make transferring to/from GPCS easier.

Horizontal Grid Information

Met Data type	Horizontal Grid spacing long-lat in decimal	Horizontal Grid spacing long-lat
	degrees	in km

^a For Global (GLO) and Regional (REG) data sets (expect REGV3) the longitude grid sixe approximation is calculated at 50 deg North.

		(approximately ^{ab})
GLOV3	1.25, 0.8333333	90 x 90
GLOH	0.8333333, 0.5555556	60 x 60
GLOH2001	0.8333333, 0.5555556	60 x 60
GLOUM5	0.8333333, 0.5555556	60 x 60
GLOUM6	0.5625, 0.375	40 x 40
REGV3	0.4425, 0.4425	50 x 50
REGH	0.8333333, 0.5555556	60 x 60
REGH2001	0.8333333, 0.5555556	60 x 60
REGUM5	0.8333333, 0.5555556	60 x 60
REGUM6	0.5625, 0.375	40 x 40
MESV3	0.15, 0.15	17 x 17
MESH	0.11, 0.11	12 x 12
MESH2001	0.11, 0.11	12 x 12
MESUM5	0.11, 0.11	12 x 12
REGNAE	0.11, 0.11	12 x 12
UK4km	0.036, 0.036	4 x 4
UK4km_L50	As for UK4km	
SAM	0.15 x 0.15	17 x 17

Vertical Grid Information

Full information on the vertical grids can be found in the relevant Met Definition file.

Met Data type	U Grid	W Grid	Top of Data
	Lowest 5 levels	Lowest 5 (or 7) levels	
GLOV3	0.9988 (10 m agl),	0.994, 0.956, 0.903,	0.075 eta
	0.9970, 0.9750,	0.835, 0.750 eta	
	0.9304, 0.8698 eta		
GLOH	0.9988 (10 m agl),	0.994, 0.956, 0.905,	0.09 eta
	0.9970, 0.9750,	0.855, 0.800 eta	
	0.9304, 0.8800 eta		
GLOH2001	0.9988 (10 m agl),	0.994, 0.956, 0.905,	0.09 eta
	0.9970, 0.9750,	0.855, 0.800 eta	
	0.9304, 0.8800 eta		
GLOUM5	9.99821, 49.9989,	20.0003, 80.0014,	19500 m agl
	130.000, 249.998,	179.999, 320.001,	
	410.001 m agl	500.001 m agl	
GLOUM6	9.99777, 50.0014,	20.0018, 80.0011,	19500 m agl
	130.003, 250.001,	179.998, 319.998,	
	410.003 m agl	500.002 m agl	
REGV3	0.9988, 0.9970,	0.994, 0.956, 0.905,	0.04 eta
	0.9750, 0.9304,	0.835, 0.750 eta	
	0.8698 eta		
REGH	As for GLOH		
REGH2001	As for GLOH2001		
REGUM5	As for GLOUM5		
REGUM6	As for GLOUM6		
MESV3	0.99880, 0.99525,	0.9929, 0.9835, 0.9719,	0.075 eta
	0.98820, 0.97769,	0.9580, 0.9400 eta	
	0.96494 eta		
MESH	As for MESV3	-	0.065 eta
MESH2001	As for MESH		

^b The MES, NAE, UK4km, SAM and REGV3 are all limited area models. These are defined in a rotated coordinate system that means the equator of the rotated system runs through the domain of interest. Therefore approximate grid spacing is calculated as if on the equator.

MESUM5	9.99821, 49.9989,	20.0003, 80.0014,	19500 m agl
	130.000, 249.998,	179.999, 320.001,	
	410.001 m agl	500.001 m agl	
REGNAE	As for MESUM5		8800 m agl
UK4km	9.99821, 49.9989,	20.0003, 80.0014,	19500 m agl
	130.000, 249.998,	179.999, 320.001,	
	410.001 m agl	500.001 m agl	
UK4km_L50	2.5, 13.3, 33.3, 60.0,	5.0, 21.7, 45.0, 75.0,	8700 m agl
	93.3, 133.3, 180.0 m	111.7, 155.0, 205.0 m	
	agl	agl	
SAM	As for MESUM5		_

Explanation of Met Grids

UM5 and later grids - height based coord system.

Horizontal (Arakawa C):

- U = U, U10, UStress
- V = V, V10, VStress
- X = Everything else
- 1,2 ... are indices used in NAME II/III

Vertical (Charney-Philips):

.
2 X
2 UV
1 Xuv surface

- UV = U, V (and, in the UM but not NAME II/III, P and Rho)
- X = Everything else (including P in NAME II/III)
- lower case = NAME II/III but not UM
- 1,2 ... are indices used in NAME II/III

- UM uses 0, 1/2, 1, 3/2 ... or 0, 1, 1, 2 ...
- Not all UM levels have been retained in the UM met files for NAME, but the interleaving of levels is retained.
- The UM output has P on both X and UV levels the UM met files for NAME use the P values from the X levels.
- The UM met files for NAME do not contain Rho this is calculated internally in NAME II/III.

The NAME structure and numbering of fields discussed above refers to the structure and numbering of fields as read in to (or calculated at the surface by) either (i) NAME II versions which number levels starting with 1 at the ground, or (ii) NAME III. (Fields may be interpolated to different grids within NAME II).

Pre-UM5 grids - pressure based eta coord system.

Horizontal (Arakawa B):

- UV = U, V, U10, V10, UStress, VStress
- X = Everything else
- 1,2 ... are indices used in NAME II/III

Vertical (Lorentz):

- W = W
- X = Everything else
- lower case = NAME II/III but not UM
- 1,2 ... are indices used in NAME II/III
- UM uses 1/2, 1, 3/2, 2 ... or 1, 1, 2, 2 ...

Note however that the UM met files for NAME have a diagnostic 10m level for some quantities. If there is no 10m level in the UM, or if there is but the met file has data separately for both the model level and the diagnostic level, this can lead to two X levels in the met file without an interleaving W level:

If there are two levels nominally at 10m, both levels are used in NAME II but not in NAME III. Otherwise the extra level is used in both NAME II and NAME III. The level numbers shown above (e.g. 3/2) reflect differences in numbering depending on whether the extra 10m level is used.

Not all UM levels have been retained in the UM met files for NAME, so there is no guarantee of interleaving of levels at higher levels either (or of there not being another X level before the first retained elevated W level).

NAME NWP Meteorological Input Variables

This section lists the meteorological variables, and their STASH code, contained within A NAME UM met data file.

Field Name	Lowest	Highest	Field Code	3-d?
	Level	Level		
wind (u-cpt)	2	Top	2	Yes
wind (v-cpt)	2	Top	3	Yes
wind (w-cpt)	2	Top	150	Yes
temperature (K)	2	Top	16004	Yes
specific humidity	2	Top	10	Yes
dynamic cloud liquid water (kg/kg)	2	Top	4205	Yes
dynamic cloud ice (kg/kg)	2	Top	4206	Yes
pressure (Pa)	2	Тор	408	No
surface stress (u-cpt) (N/m^2)	1	1	3219	No
surface stress (v-cpt) (N/m^2)	1	1	3220	No
surface sensible heat flux	1	1	3217	No
sea level pressure (Pa)	1	1	16222	No
pressure (Pa)	1	1	409	No
temperature (K)	1	1	3236	No
convective cloud amount (0-1)	1	1	5262	No
convective cloud base	1	1	5207	No
convective cloud top	1	1	5208	No
dynamic rain rate (kg/(m^2 s))	1	1	4203	No
convective rain rate (kg/(m^2 s))	1	1	5205	No
dynamic snow rate (kg/(m^2 s))	1	1	4204	No
convective snow rate (kg/(m^2 s))	1	1	5206	No
dynamic high cloud amount (0-1)	1	1	9205	No
dynamic medium cloud amount (0-1)	1	1	9204	No

dynamic low cloud amount (0-1)	1	1	9203	No
roughness length	1	1	26	No
boundary layer depth	1	1	25	No
roughness length	1	1	3026	No
soil moisture in layer (kg/m^2)	1	1	8223	No
dummy	1	1	8223	No
dummy	1	1	8223	No
dummy	1	1	8223	No

UM variables 3026 and 8223 were only added to the NAME output files during 2008. STASH 3026 is the preferred measure of roughness length over 26.

Ancillary files of surface properties

Fields considered:

- land use fractions (9 land use types)
- clay mass fraction
- silt mass fraction
- · sand mass fraction
- soil particle mass fractions (6 size bins)
- soil moisture

These are all < 0 over the sea. Note: don't know what happens in partially sea grid boxes - e.g. sum to 1 or < 1?

Land use fraction refers to the following 9 land use categories:

- 1. Broadleaf trees (BL)
- 2. Needle leaf trees (NL)
- 3. C3 (temperate) grass (C3G)
- 4. C4 (tropical) grass (C4G)
- 5. Shrubs (sh)
- 6. Urban (ur)
- 7. Inland water (wa)
- 8. Soil (bs)
- 9. Ice (ic)

These are generated from the IGBP land use dataset (see http://www-nwp/~frsurf/ancillary_files/ancil_code/UM6.6/v1.1/doc/IGBP_to_MOSES).

The IGBP dataset gives a single land use for each point (i.e. not land use fractions) at high resolution. The IGBP categories are

- 1. Evergreen Needleleaf Forest
- 2. Evergreen Broadleaf Forest
- 3. Deciduous Needleleaf Forest
- 4. Deciduous Broadleaf Forest
- 5. Mixed Forest
- 6. Closed Shrublands
- 7. Open Shrublands
- 8. Woody Savannas
- 9. Savannas
- 10. Grasslands
- 11. Permanent Wetlands
- 12. Croplands

- 13. Urban and Built-Up
- 14. Cropland/Natural Vegetation Mosaic
- 15. Snow and Ice
- 16. Barren or Sparsely Vegetated
- 17. Water Bodies

In NAME II Nikki Morrison produced a land use data set by reducing the resolution of the IGBP dataset by 4x4 and combining classes (see Morrison, 2003, Using a land use map within NAME). This gave a single land use from 10 categories for each 16 raw land use grid squares.

The 6 soil particle mass fractions cover the following particle size ranges

0.0632 to 0.200 0.200 to 0.632 0.632 to 2.00 2.00 to 6.32 6.32 to 20.0 20.0 to 63.2

Soil moisture is taken from the 1st UM soil level.

NAME Output Meteorological Variables

It is possible to ask NAME to output certain meteorological variables. This can be used to extract single points, profiles or even full 3d arrays. This list is not the same as the input variable list as NAME calculates certain derived quantities and does not pass all the raw data through to the output routine.

Variable	Description
Mean Flow U	-
Mean Flow V	
Mean Flow W	
Wind Speed	
Wind Direction (degrees)	
Temperature (K)	
Potential Temperature (K)	
Specific Humidity	
Pressure (Pa)	
Density	
Topography	
u-star	
Sensible Heat Flux	
Boundary Layer Depth	
Precipitation Rate (mm/hr)	
Temperature (C)	
Cloud Amount (oktas)	
Relative Humidity (%)	
Pasquill Stability	
Sigma VV	
Meander Sigma VV	
Sigma WW	
Tau WW	
Dyn Cloud Water (kg/kg)	
Dyn Cloud Ice (kg/kg)	
3d Cloud (Fraction)	

Roughness Length	
Sea Level Pressure (Pa)	

Archive Data Volumes & Location

M. D. C. C. COL. D. C.		
Met Data type	Data Size (Gb)	Data location on project network drives
	Files are zipped!	
GLOV3		
GLOH	66	/project/NAME_GloMet/apnm/met/GLOH
GLOH2001	144	/project/NAME_GloMet/apnm/met/GLOH2001
GLOUM5	444	/project/NAME_GloMet/apnm/met/GLOUM5
GLOUM6	800 (29/06/09)	/project/NAME_GloMet/apnm/met/GLOUM6
		/project/NAME_GloMet/apnm/met/GLOUM6pp
REGV3	44	/project/NAME_LAM/apnm/REG/REGV3
REGH	27	/project/NAME_LAM/apnm/ REG/REGH
REGH2001	12	/project/NAME_LAM/apnm/ REG/REGH2001
REGUM5	67	/project/NAME_LAM/apnm/ REG/REGUM5
REGUM6	130 (??/??/??)	/project/NAME_LAM/apnm/ REG/REGUM6
	63 pp (29/06/09)	/project/NAME_LAM/apnm/ REG/REGUM6pp
MESV3	34	/project/NAME_LAM/apnm/MES/MESV3
MESH	50	/project/NAME_LAM/apnm/MES/MESH
MESH2001	105	/project/NAME_LAM/apnm/MES/MESH2001
MESUM5	402	/project/NAME_LAM/apnm/MES/MESUM5
REGNAE	628 (29/06/09)	/project/NAME_LAM/apnm/REGNAE
UK4km	198	/project/NAME_LAM/apnm/ 4KM2_UM6
UK4km_L50	662 (29/05/09)	/project/NAME_LAM/apnm/ 4KM50L_UM6
SAM	113 (29/06/09)	/project/NAME_LAM/apnm/ SAMUM6

Appendix A: Pictures of Met Domains

