채권의 이해와 분석 3

- Duration-based Strategies, Zero Rate Curve

<u>- 목 차 -</u>

1. Duration 활용

2. Zero Rate Curve

1. Duration 활용

(1) 이자율 변동 위험 Hedging

1. Review: 다양한 Duration Measure

- (Macaulay) **Duration**: 현금흐름 현재가치 기준의 가중평균 만기 \Rightarrow $D = \sum_{t=1}^{m_1} (\frac{t}{m}) \cdot \frac{CF_t \cdot DF_t}{P}$
- Modified Duration: YTM 변화에 대한 채권가격 변화율 \rightarrow MD $\triangleq \frac{P}{P} = \frac{-D}{(1+v/m)}$
- Cash Duration: YTM 변화에 대한 채권가격 변화 \rightarrow CD \triangleq P $^{'}$ = P·MD = $\frac{-P \cdot D}{(1+y/m)}$
- PVBP(or BPV): YTM 1bp 변화 시 채권가격 변화 → PVBP ≜ $\frac{\text{CD}}{10,000} = \frac{\text{P} \cdot \text{MD}}{10,000} = \frac{-\text{P} \cdot \text{D}}{10,000 \cdot (1 + \text{y} / \text{m})}$
- 수익률 Δy 변화(상승 or 하락) 시, Duration을 통한 채권가격의 변화(하락 or 상승) 예측:
 - $\rightarrow \Delta P = P \times MD \times \Delta y = CD \times \Delta y = PVBP \times (\Delta y \times 10,000)$
- (예) 300개 채권으로 구성된 포트폴리오의 현재가치(P)=5조원, MD=-3(↔CD=-15조원 ↔ PVBP=-15억원).
 - → If ∆y=0.5%, ∆P ≒ 5조원×(-3)×0.005 or -15조원×0.005 or -15억원×(0.005×10,000) = -750억원

1. Duration 활용

(1) 이자율 변동 위험 Hedging

2. MD based Hedge Ratio

- 목적: 현재가치= P_A & 수정듀레이션= MD_A 인 채권 포트폴리오 A 보유 중. 이 때, 이자율 변화에 따른 채권가 격 변동 위험을 제거(Hedge)하고 싶음.
- 상황: 원하는 수량/방향의 거래(Buy or Sell)가 가능한 상품 B 존재 (1개당 가격=P_B & 수정듀레이션=MD_B)
- **질문**: 상품 B를 몇 개 Buy or Sell 해야 할까?
- **답**: 수익률 변화 Δy에 대하여, "<u>보유 포트폴리오의 가격변화</u> = 새롭게 거래하는 상품들의 <u>가격변화</u>"가 되는 수량 만큼의 상품 B를 민감도가 상쇄되는 방향으로 Buy or Sell

$$ightharpoonup \Delta P_A + \Delta P_O \leftrightarrow P_A \times MD_A \times \Delta y + N_B \times (P_B \times MD_B \times \Delta y) = 0$$
 or $CD_A \times \Delta y + N_B \times (CD_B \times \Delta y) = 0$

$$\therefore N_B = -\frac{P_A \times MD_A}{P_B \times MD_B} = -\frac{CD_A}{CD_B} = -\frac{PVBP_A}{PVBP_B} \quad \text{: "MD based Hedge Ratio"}} \\ (**N_B의 부호가 (+)이면 Buy를, (-)이면 Sell을 의미)$$

• (예) P_A =5천억원, MD_A =-3인 채권 포트폴리오 A를 보유 중인 투자자가 수정듀레이션 기준으로 이자율 변동 위험을 제거하는 것을 고려 중이다. 시장에 1계약당 가격(P_B)=200억 & 수정듀레이션(MD_B)=-5인 이자율 상품 B가 있다고 할 때, 목적을 달성하기 위해 거래해야 하는 수량과 방향을 구하시오.

1. Duration 활용

(2) Yield Curve 형태 변화에 대용

1. Yield Curve 기울기 변화에 대한 대용

2. Yield Curve 볼록도 변화에 대한 대응

(1) Zero (Rate) Curve

1. YTM의 한계점

- 모든 만기의 금리가 동일하다고 가정 (Flat Yield Curve)
- 금리 변동 시 모든 만기의 금리가 동일하게 움직인다고 가정 (Parallel Shift of Yield Curve)
- 채권의 중간 이자에 대한 재투자 수익률로 채권 매입가격에 해당하는 YTM을 가정

2. Zero Rate (or Zero-coupon Rate)

- 정의: 중간 현금흐름이 없는 채권(무이표채) or 단일 현금흐름을 할인하는데 적용되는 할인율
- 할인계수(Discount Factor): 미래 현금흐름을 현재가치로 환산할 때 곱해지는 계수

$$- DF_{T} = \frac{1}{(1 + R_{T} \cdot T)}$$

$$= \frac{1}{(1 + y_{T} / m)^{m \cdot T}}$$

$$= e^{-r_{T} \cdot T}$$

- ← 단리(Simple Add-on) 이자율: V(T) = V(0)×(1 + R_TT)
- ← 연 m회 이자지급 복리 이자율: V(T) = V(0)×(1 + y_T/m)^{mT}
 - ← 연속복리(Continuous Compounding) 이자율: V(T) = V(0)×e^{r,T}

(1) Zero (Rate) Curve

3. Zero Curve 붓스트랩 (Bootstrap)

- 개념: 채권 시장가격(or Yield Curve)으로부터, 만기별 Zero Rate(or DF)을 역산하는 과정 ※비단 채권 뿐 아니라. 주식(배당). 스왑. 옵션 등 다른 금융상품에도 적용 가능한 일반적인 절차임.
- (예) 채권 Yield Curve로 부터 Zero Curve를 Bootstrap

<**만기별 채권가격**(※액면=100, 연2회 이자 지급 가정)>

시장 정보			Bootstrap 결과		
만기 (년)	채권 가격	연간 쿠폰	DF	Zero Rate	
0.5	94.9	0	0.9490	10.4693%	
1.0	90.0	0	0.9000	10.5361%	
1.5	96.0	8	0.8520	10.6809%	
2.0	101.6	12	0.8056	10.8080%	

<만기별 DF 및 Zero Rate(※r. 연속복리 Yield Convention)>

① T = 0.5Y:
$$DF_{0.5Y} = \frac{94.9}{100} = 0.9490 = e^{-r_{0.5Y} \times 0.5}$$
. $\rightarrow r_{0.5Y} = 10.4693\%$.

② T = 1Y:
$$DF_{1Y} = \frac{90.0}{100} = 0.9000 = e^{-r_{1Y} \times 1.0}$$
. $\rightarrow r_{1Y} = 10.5361\%$.

(※ Zero Rate의 Yield Convention 선택은 자유롭게 할 수 있으나, 계산의 편의성 때문에 연속복리 방식이 가장 널리 사용됨.)

③ T = 1.5Y:

평가일(= O/N)	3M	6M	9M	1Y	1Y3M	1Y6M
	'	4	'	4	'	4+100
(96.0	=	4×DF _{0.5}	+	4×DF _{1Y}	+	104× <u>DF_{1.5Y}</u>)

⇒
$$DF_{1.5Y} = \frac{96.0 - (4 \times DF_{0.5Y} + 4 \times DF_{1Y})}{(4 + 100)} = 0.8520 = e^{-r_{1.5Y} \times 1.5}.$$

⇒ $r_{1.5Y} = 10.6890\%.$

4 T = 2Y:

평가일(= O/N)	3M	6M	9M	1Y	1Y3M	1Y6M	1Y9M	2Y
,	•	6	'	6	'	6		6+100
(101.6	=	6×DF _{0.5} Y	+	6×DF ₁ Y	+	6×DF _{1,5} Y	+	106× <u>DF_{2Y}</u>)

→
$$DF_{2Y} = \frac{101.6 - (6 \times DF_{0.5Y} + 6 \times DF_{1Y} + 106 \times DF_{1.5Y})}{(6 + 100)} = 0.8056$$

= $e^{-r_{2Y} \times 2.0}$. → $r_{2Y} = 10.8080\%$.

(§) T = 1.3Y:
$$r_{1.3Y} = \frac{(1.5-1.3)}{(1.5-1)} \times r_{1Y} + \frac{(1.3-1)}{(1.5-1)} \times r_{1.5Y} = 10.6230\%$$
. $\Rightarrow DF_{1.3Y} = e^{-r_{1.3Y} \times 1.3} = 0.8710$. $(**\frac{Q/\text{Mod} \text{pt} \text{Pt/O}}{2ero Rates} \frac{\text{LP}}{2P}/2)$

2. Zero Rate Curve

(2) Zero Curve 활용

1. 이표채 가격 계산 일반화

• 이표채 현금흐름의 일반적인 Time Line:

- $P = \sum_{i=0}^{N} CF_i \cdot DF_i$ → ① 경과물 여부에 관계없이 한 개의 식으로 표현
 - ② 거래가 없어서 시장가격이 주어지지 않은 채권의 가격 계산(추정) 가능 (→ YTM 계산 가능 → D, MD, CD, C 계산 가능 → ···.)
- (예) Page 6에서 도출한 Zero Curve로부터, F=10,000, T=2.3(년), c=8%, m=2 인 이표채권의 Dirty Price 를 계산하시오. (※단, Zero Curve에 주어지지 않은 만기에 대해서는 연속복리 Zero Rate에 선현형보간을 적용하여 필요한 값을 계산하고, Flat Extrapolate 적용)

2. Zero Rate Curve

(2) Zero Curve 활용

2. 선도금리 계산

- F(T₀,T₁,T₂) : T₀ 시점에 고정할 수 있는, 미래 기간 [T₁, T₂] 적용 이자율
- 단리 내재선도금리(T₀=0): F(0,T₁,T₂)= $\frac{R_2 \cdot T_2 R_1 \cdot T_1}{(T_2 T_1) \cdot [1 + R_1 \cdot T_1]}$

- 도출 과정을 할인계수(DF)로 다시 표현:
 - $-1/DF_2 = 1/DF_1 \times [1 + F(0, T_1, T_2) \times (T_2 T_1)]$ \rightarrow $F(0, T_1, T_2) = \frac{DF_1 DF_2}{DF_2 \cdot (T_2 T_1)}$: Zero Curve에서 directly 계산 가늉!
- (예) Page 6에서 도출한 Zero Curve로부터, F(0, 0.5, 1), F(0, 0.8, 1.3), F(0, 1, 1.8)를 각각 계산하시오

2. Zero Rate Curve

(2) Zero Curve 활용

3. 그 밖의 활용

- 변동금리(FRN) 채권의 가격 계산
 - 미래 변동이자의 예측치(기대값)으로서, Zero Curve로부터 선도금리를 계산하여 적용
 - (예) 액면=100억, 잔존만기=T_N, 이자 = 국고채 3개월 금리 + 1%, 매 3개월마다 단리 이자 지급

→
$$P = CF_0 \cdot DF_0 + \sum_{i=1}^{T_N} 액면 \cdot [F(0, T_{i-1}, T_i) + 1\%] \cdot (T_i - T_{i-1}) \cdot DF_i + 액면 \cdot DF_N$$

- Strip
 - Stripping: 이표채의 각 이자들과 원금을 따로 분리하여 무이표채로 만들어 되파는 기법
 - Strip 채권: Stripping을 통해 만들어낸 무이표채
- 이자율 모델을 통한 미래 금리 시나리오 생성
 - 대부분의 이자율 모델은 Zero Rate을 기반으로 수학적인 형태가 가정되어 있음.
- 옵션 조건이 내재된 채권의 가격 및 민감도 계산
 - 옵션 조항이 포함된 채권은 만기 or 이자가 고정되어 있지 않은 경우가 대부분임. → YTM 계산이 불가늉. → YTM을 기반으로 하는 분석기법 적용 불가늉.