- 1. (2) Утверждение неверно, например, внутренняя точка. Обратное утверждение неверно, например, изолированная точка
 - **1.** (**2**) Не является.
- **2.** (6) 1) Функция непрерывна при $\alpha \le 0$, поскольку для любой точки (x,y), где $y \ne 0$, такой, что верно $0 < \sqrt{x^2 + y^2} < \delta$, выполняется $|f(x,y)| = \left|\sin(|y|^{-\alpha} \cdot x)\right| \le |y|^{-\alpha} \cdot |x| \le \left(\sqrt{x^2 + y^2}\right)^{1-\alpha} < \delta^{1-\alpha} = \varepsilon$. При $\alpha > 0$ предел $\lim_{(x,y)\to(0,0)} f(x,y)$ не существует. См., например, предел по множеству $x = |y|^{\alpha}$.
- 2) При $\alpha\leqslant 0$ верно f(x,0)=f(0,y)=f(0,0)=0. Следовательно, $f'_x(0,0)=f'_y(0,0)=0$. 3) При $\alpha<0$ для любой точки (x,y), где $y\neq 0$, такой, что верно $0<\sqrt{x^2+y^2}<\delta$, выполняется $|F(x,y)| = \left| \frac{\sin(|y|^{-\alpha} \cdot x)}{\sqrt{x^2 + y^2}} \right| \leqslant \frac{|y|^{-\alpha} \cdot |x|}{\sqrt{x^2 + y^2}} \leqslant \left(\sqrt{x^2 + y^2}\right)^{-\alpha} < \delta^{-\alpha} = \varepsilon.$
 - $\lim_{(x,y)\to(0,0)} F(x,y)$ не существует (по разным направлениям разные пределы). <u>Ответ</u>. Функция дифференцируема в точке (0, 0) при $\alpha < 0$.
 - **3. 4** $L = \frac{1}{2} \int_{0}^{\pi} \arccos \frac{\varphi}{\pi} d\varphi = \frac{\pi}{2}$. **4. 6** $J = \int_{0}^{\pi} \frac{\arctan x^{\alpha}}{x^{2} \ln(1+x)} dx = \int_{0}^{1} f(x) dx + \int_{0}^{+\infty} f(x) dx = J_{1} + J_{2}$.
 - $\boxed{J_1}$: 1) при $\alpha>0$ выполняется $f(x)\sim \frac{x^\alpha}{x^3}=\frac{1}{x^{3-\alpha}}$ при $x\to +0;$ поэтому $J_1<\infty$ при $\alpha>2;$
 - 2) при $\alpha \leqslant 0$ выполняется $f(x) \geqslant \frac{\pi/4}{x^2 \ln(1+x)}$; поэтому $J_1 = \infty$ при $\alpha \leqslant 0$.
 - при любом α выполняется $f(x) \leqslant \frac{\pi/2}{x^2 \ln(1+x)}$; поэтому $J_2 < \infty$ при любом α .

Ответ. Интеграл J сходится при $\alpha > 2$.

- **5.** ② Нет, например, ряд $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ сходится, $b_n = (-1)^n$; $a_n \cdot b_n = \frac{1}{n}$, ряд $\sum_{n=1}^{\infty} \frac{1}{n}$ расходится.
- **6.** ④ $f(x) = \lim_{n \to \infty} f_n(x) = g(0), f(x) \equiv g(0),$ для всех $x \in [0, 1].$
- Функция g непрерывна в нуле справа: $\forall \varepsilon > 0 \; \exists \, \delta = \delta(\varepsilon) \; \forall \, x : \; 0 < x < \delta \; \longmapsto \; |g(x) g(0)| < \varepsilon \;$ и для любой последовательности $x_n = \frac{x}{n} \to 0, \; n \to \infty$, верно $\left| g\left(\frac{x}{n}\right) g(0) \right| = |f_n(x) f(x)| \to 0$. Для найденного $\delta = \delta(\varepsilon)$ найдется такой номер $N = N(\varepsilon)$, что для всех $n \geqslant N$ и для всех $x \in [0, 1]$
- выполняется $0 \leqslant \frac{x}{n} \leqslant \frac{1}{n} \leqslant \frac{1}{N} < \delta$. Итак, $\forall \, \varepsilon > 0 \, \exists \, N = N(\varepsilon) \, \forall n \geqslant N \, \& \, \forall \, x \in [0, \, 1] \, \longmapsto |f_n(x) f(x)| < \varepsilon$. Последовательность $\{f_n(x)\}$
- сходится равномерно на [0, 1] к предельной функции f(x)
 - 7. 6 $\sum_{n=0}^{\infty} \frac{1 \cos(x/n)}{n} = \sum_{n=0}^{\infty} \frac{2\sin^2(x/(2n))}{n}$.
- 1) для любого $x_0 \in E_1 \cup E_2$ верно $f_n(x_0) \leqslant \frac{x_0^2/2}{n^3}$, ряд $\sum_{n=n}^{\infty} \frac{x_0^2/2}{n^3}$ сходится, следовательно, по признаку сравнения и в силу произвольности точки x_0 , на $E_1 \cup E_2$ есть поточечная сходимость.
- 2) На множестве E_1 выполняется $f_n(x) \leqslant \frac{x^2/2}{n^3} \leqslant \frac{1}{2 \cdot n^3}$, ряд $\sum_{n=1}^{\infty} \frac{1}{n^3}$ сходится, следовательно, по признаку Вейерштрасса на E_1 есть равномерная сходимость функционального ряда.
- 3) Для любого n>1 точки $x_n=n$ принадлежат E_2 , для этого же n найдется такое p=n, что выполняется $\sum_{k=1}^{2n} f_k(x_n) = \frac{2\sin^2\left(n/(2n+2)\right)}{n+1} + \ldots + \frac{2\sin^2\left(n/(4n)\right)}{2n} \geqslant n \cdot \frac{2\sin^2(n/(4n))}{2n} = \sin^2\frac{1}{4} = \varepsilon_0.$
- 8. ② $\overline{\lim}_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} \sqrt{\frac{\sqrt[n]{n+1}}{n}} = 0$, следовательно, найден радиус сходимости ряда $R = +\infty$. Внутри интервала сходимости сумма степенного ряда имеет производную любого порядка, поэтому функция F дифференцируема на \mathbb{R} .

- 1. (2) Утверждение верно. Обратное неверно, например, внутренняя точка.
- **1.** (**2**) Является.
- $\overline{\mathbf{2. (6)}}$ 1) Функция непрерывна при $\alpha \geqslant 0$, поскольку для любой точки (x,y), где $x \neq 0$, такой, что верно $0 < \sqrt{x^2 + y^2} < \delta$, выполняется $|f(x,y)| = \left|\ln\left(1 + |x|^{\alpha} \cdot |y|\right)\right| \leqslant |x|^{\alpha} \cdot |y| \leqslant \left(\sqrt{x^2 + y^2}\right)^{1+\alpha} < \delta^{1+\alpha} = \varepsilon$. При $\alpha < 0$ предел $\lim_{(x,y) \to (0,0)} f(x,y)$ не существует. См., например, предел по множеству $|y| = |x|^{-\alpha}$.
 - 2) При $\alpha \geqslant 0$ верно f(x, 0) = f(0, y) = f(0, 0) = 0. Следовательно, $f'_x(0, 0) = f'_y(0, 0) = 0$.
- 3) При $\alpha > 0$ для любой точки (x,y), где $x \neq 0$, такой, что верно $0 < \sqrt{x^2 + y^2} < \delta$, выполняется $|F(x,y)| = \left| \frac{\ln(1+|x|^{\alpha}\cdot|y|)}{\sqrt{x^2+y^2}} \right| \leqslant \frac{|x|^{\alpha}\cdot|y|}{\sqrt{x^2+y^2}} \leqslant \left(\sqrt{x^2+y^2}\right)^{\alpha} < \delta^{\alpha} = \varepsilon.$

$$|F(x,y)| = \left| \frac{\ln(1+|x|^{\alpha} \cdot |y|)}{\sqrt{x^2 + y^2}} \right| \leqslant \frac{|x|^{\alpha} \cdot |y|}{\sqrt{x^2 + y^2}} \leqslant \left(\sqrt{x^2 + y^2}\right)^{\alpha} < \delta^{\alpha} = \varepsilon.$$

4) При $\alpha = 0$ предел $\lim_{(x,y)\to(0,0)} F(x,y)$ не существует (по разным направлениям — разные пределы).

<u>Ответ</u>. Функция дифференцируема в точке (0, 0) при $\alpha > 0$.

3. (4)
$$L = \int_{0}^{\pi/4} \cos^2 \varphi \, d\varphi = \frac{\pi}{8} + \frac{1}{4}$$
. 4. (6) $J = \int_{0}^{+\infty} \frac{\operatorname{th}(x^{\alpha} + x)}{x^{5/4}} \, dx = \int_{0}^{1} f(x) \, dx + \int_{1}^{+\infty} f(x) \, dx = J_1 + J_2$

 J_1 : 1) при $\alpha \geqslant 1$ выполняется $f(x) \sim \frac{Cx}{x^{5/4}} = \frac{C}{x^{1/4}}$ при $x \to +0$; поэтому $J_1 < \infty$ при $\alpha \geqslant 1$; 2) при $0 < \alpha < 1$ выполняется $f(x) \sim \frac{x^{\alpha}}{x^{5/4}} = \frac{1}{x^{5/4-\alpha}}$; поэтому $J_1 < \infty$ при $\alpha > 1/4$; 3) при $\alpha \leqslant 0$ выполняется $f(x) \geqslant \frac{\operatorname{th} 1}{x^{5/4}}$; поэтому $J_1 = \infty$.

при любом α выполняется $f(x) \leqslant \frac{1}{x^{5/4}}$; поэтому $J_2 < \infty$ при любом α .

<u>Ответ</u>. Интеграл J сходится при $\alpha > 1/4$.

- **5.** ② Да, например, $\sum_{n=2}^{\infty} a_n = \sum_{n=2}^{\infty} \frac{(-1)^n}{n \ln n}$ сходится условно, ряд $\sum_{n=2}^{\infty} n a_n = \sum_{n=2}^{\infty} \frac{(-1)^n}{\ln n}$ сходится.
- **6.** ④ Предельная функция $f(x) = \lim_{n \to \infty} f_n(x) = \begin{cases} g(0), & 0 \leqslant x < 1; \\ g(1), & x = 1; \end{cases}$ разрывна, поскольку $g(0) \neq g(1)$

(в силу строгой монотонности функции g). Функции $f_n(x)$ непрерывны на отрезке [0, 1], поскольку это суперпозиция непрерывных функций. Если бы последовательность $\{f_n(x)\}$ сходилась равномерно на отрезке [0, 1] к предельной функции f(x), то f(x) должна быть непрерывной на этом отрезке.

- 7. ⑥ 1) для любого $x_0 \in E_1 \cup E_2$ верно $f_n(x_0) \leqslant \frac{1}{x_0 n^{3/2}}$, ряд $\sum_{n=r_0}^{\infty} \frac{1}{x_0 n^{3/2}}$ сходится, следовательно, по признаку сравнения и в силу произвольности точки x_0 , на $E_1 \cup E_2$ есть поточечная сходимость.
- 2) На множестве E_2 выполняется $f_n(x)\leqslant \frac{1}{x_0\,n^{3/2}}\leqslant \frac{1}{n^{3/2}}$, ряд $\sum_{i=1}^\infty \frac{1}{n^{3/2}}$ сходится, следовательно, по признаку Вейерштрасса на E_2 есть равномерная сходимость функционального ряда.
- 3) Для любого n>1 точки $x_n=\frac{1}{n}$ принадлежат E_1 , для этого же произвольного n найдется такое p=n, что выполняется

$$\sum_{k=n+1}^{2n} f_k(x_n) = \frac{\arctan(n/(n+1))}{\sqrt{n+1}} + \ldots + \frac{\arctan(n/(2n))}{\sqrt{2n}} \geqslant n \cdot \frac{\arctan(n/(2n))}{\sqrt{2n}} \geqslant \frac{1}{\sqrt{2}} \arctan \frac{1}{2} = \varepsilon_0.$$

8. ② $\overline{\lim_{n \to \infty}} \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt{\frac{\sqrt[n]{n}}{2 \cdot \sqrt[n]{n^2 + 1}}} = 1/\sqrt{2}$, следовательно, найден радиус сходимости ряда $R = \sqrt{2}$.

Внутри интервала сходимости сумма степенного ряда имеет производную любого порядка, поэтому функция F дифференцируема на интервале $(-\sqrt{2}, \sqrt{2})$.

- 1. ② Да. Примером может служить сходящаяся последовательность.
- **1.** (**2**) Не является.
- **2. ⑥** Функция непрерывна при $lpha \leqslant 0$, поскольку для любой точки $(x,\,y)$, где y
 eq 0, такой, что верно $0 < \sqrt{x^2 + y^2} < \delta$, верно $|f(x, y) - 1| = \left|\cos(|y|^{-\alpha} \cdot x) - 1\right| \leqslant \frac{1}{2} |y|^{-2\alpha} \cdot |x|^2 \leqslant \frac{1}{2} \left(\sqrt{x^2 + y^2}\right)^{2(1-\alpha)} < \delta^{2(1-\alpha)} = \varepsilon$. При $\alpha > 0$ предел $\lim_{(x,y) \to (0,0)} f(x,y)$ не существует. См., например, предел по множеству $x = |y|^{\alpha}$.
 - 2) При $\alpha \leqslant 0$ верно f(x,0) = f(0,y) = f(0,0) = 1. Следовательно, $f_x'(0,0) = f_y'(0,0) = 0$.
- 3) При $\alpha\leqslant 0$ для любой точки (x,y), где $y\neq 0$, такой, что верно $0<\sqrt{x^2+y^2}<\delta$, выполняется $|F(x,y)| = \left| \frac{\cos(|y|^{-\alpha} \cdot x) - 1}{\sqrt{x^2 + y^2}} \right| = \frac{2\sin^2(|y|^{-\alpha} \cdot x/2)}{\sqrt{x^2 + y^2}} \leqslant \frac{1}{2} \frac{|y|^{-2\alpha} \cdot |x|^2}{\sqrt{x^2 + y^2}} \leqslant \frac{1}{2} \left(\sqrt{x^2 + y^2} \right)^{1 - 2\alpha} < \frac{1}{2} \delta^{1 - 2\alpha} = \varepsilon.$

Ответ. Функция дифференцируема в точке (0, 0) при $\alpha \leq 0$

3. 4
$$L = \frac{1}{2} \int_{0}^{\pi} \arcsin \frac{\varphi}{\pi} d\varphi = \frac{\pi^{2}}{4} - \frac{\pi}{2}.$$

- $\boxed{J_1}$: 1) при $\alpha > 0$ выполняется $f(x) \sim \frac{x^{\alpha}}{x^{5/2}} = \frac{1}{x^{5/2-\alpha}}$ при $x \to +0$; поэтому $J_1 < \infty$ при $\alpha > 3/2$; 2) при $\alpha \leqslant 0$ выполняется $f(x) \geqslant \frac{\operatorname{th} 1}{x^{3/2} \ln(1+x)}$; поэтому $J_1 = \infty$ при $\alpha \leqslant 0$.
- при любом α выполняется $f(x) \leqslant \frac{1}{x^{3/2} \ln(1+x)}$; поэтому $J_2 < \infty$ при любом α .

<u>Ответ</u>. Интеграл J сходится при $\alpha > 3/2$.

- **5.** ② Да. Ряд $\sum_{n=1}^{\infty} a_n$ сходится, тогда по признаку Абеля ряд $\sum_{n=1}^{\infty} \frac{a_n}{n}$ будет сходится.
- **6.** ④ $f(x) = \lim_{n \to \infty} f_n(x) = g(x), f(x) = g(x),$ для всех $x \in [0, 1].$
- Функция g непрерывна на отрезке [0, 1], поэтому, она равномерно непрерывна на [0, 1]: $\forall \varepsilon > 0$ $\exists \, \delta = \delta(\varepsilon) \,\, \forall \, x, y \in [0, \, 1] : \, |y - x| < \delta \,\, \longmapsto \,\, |g(y) - g(x)| < \varepsilon.$

Для найденного $\delta = \delta(\varepsilon)$ найдется такой номер $N = N(\varepsilon)$, что для всех $n \geqslant N$ и для всех $x \in [0, 1]$ выполняется $\left| \frac{xn}{n+1} - x \right| = \frac{x}{n+1} < \frac{1}{N+1} < \delta$.

Итак, $\forall \varepsilon > 0 \ \exists N = N(\varepsilon) \ \forall n \geqslant N \ \& \ \forall x \in [0, 1] \ \longmapsto \ |f_n(x) - f(x)| < \varepsilon$. Последовательность $\{f_n(x)\}$ сходится равномерно на [0, 1] к предельной функции f(x) = g(x).

- **7. ⑥** 1) для любого $x_0 \in E_1 \cup E_2$ найдется номер $n_0 = n_0(x_0)$, что для всех $n \geqslant n_0$ выполняется $\sin(x_0/n) \geqslant 0$, поэтому для всех $n \geqslant n_0$ верно $f_n(x_0) \leqslant \frac{x_0}{n^2}$, ряд $\sum_{n=n_0}^{\infty} \frac{x_0}{n^2}$ сходится, следовательно, по признаку сравнения и в силу произвольности точки x_0 , на $E_1 \cup E_2$ есть поточечная сходимость.
- 2) На множестве E_1 выполняется $f_n(x) \leqslant \frac{x}{n^2} \leqslant \frac{1}{n^2}$, ряд $\sum_{n=1}^{\infty} \frac{1}{n^2}$ сходится, следовательно, по признаку Вейерштрасса на E_1 есть равномерная сходимость функционального ряда.
- 3) Для любого n > 1 точки $x_n = n$ принадлежат E_2 , для этого же произвольного n найдется такое p=n, что выполняется $\sum_{k=n+1}^{2n} f_k(x_n) = \frac{\sin(n/(n+1))}{n+1} + \ldots + \frac{\sin(n/(2n))}{2n} \geqslant n \cdot \frac{\sin(n/(2n))}{2n} = \frac{1}{2}\sin\frac{1}{2} = \varepsilon_0.$
- 8. ② $\overline{\lim}_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} \sqrt{\frac{\sqrt[n]{n+1}}{\ln n}} = 0$, следовательно, найден радиус сходимости ряда $R = +\infty$. Внутри интервала сходимости сумма степенного ряда имеет производную любого порядка, поэтому функция F дифференцируема на \mathbb{R} .

- 1. ② Да. Примером может служить множество рациональных точек на отрезке $[0,\,1].$
- **2.** (6) 1) Функция непрерывна при $\alpha \geqslant 0$, поскольку для любой точки (x,y), где $x \neq 0$, такой, что $0 < \sqrt{x^2 + y^2} < \delta$, верно $|f(x,y) 1| = \left|\sqrt{1 + |x|^{\alpha} \cdot |y|} 1\right| \leqslant \frac{1}{2} |x|^{\alpha} \cdot |y| \leqslant \frac{1}{2} \left(\sqrt{x^2 + y^2}\right)^{1+\alpha} < \frac{1}{2} \delta^{1+\alpha} = \varepsilon$. При $\alpha < 0$ предел $\lim_{(x,y)\to(0,0)} f(x,y)$ не существует. См., например, предел по множеству $|y| = |x|^{-\alpha}$.
- 2) При $\alpha\geqslant 0$ верно $f(x,\,0)=f(0,\,y)=f(0,\,0)=1.$ Следовательно, $f_x'(0,\,0)=f_y'(0,\,0)=0.$ 3) При $\alpha>0$ для любой точки $(x,\,y)$, где $x\neq 0$, такой, что верно $0<\sqrt{x^2+y^2}<\delta$, верно $|F(x,y)| = \left| \frac{\sqrt{1 + |x|^{\alpha} \cdot |y|} - 1}{\sqrt{x^2 + y^2}} \right| = \frac{|x|^{\alpha} \cdot |y|}{\sqrt{x^2 + y^2} \cdot \left(1 + \sqrt{1 + |x|^{\alpha} \cdot |y|}\right)} \leqslant \frac{1}{2} \frac{|x|^{\alpha} \cdot |y|}{\sqrt{x^2 + y^2}} \leqslant \frac{1}{2} \left(\sqrt{x^2 + y^2}\right)^{\alpha} < \frac{1}{2} \delta^{\alpha} = \varepsilon.$
 - 4) При $\alpha = 0$ предел $\lim_{(x,y)\to(0,0)} F(x,y)$ не существует (по разным направлениям разные пределы).

<u>Ответ</u>. Функция дифференцируема в точке (0, 0) при $\alpha > 0$.

- **3. 4** $L = \frac{1}{2} \int_{-\infty}^{\infty} \sin^2 \varphi \, d\varphi = \frac{\pi}{4}$. **4. 6** $J = \int_{-\infty}^{\infty} \frac{\arctan(x^{\alpha} + x)}{x^{3/2}} \, dx = \int_{-\infty}^{\infty} f(x) \, dx + \int_{-\infty}^{\infty} f(x) \, dx = J_1 + J_2$
- J_1 : 1) при $\alpha \geqslant 1$ выполняется $f(x) \sim \frac{Cx}{x^{3/2}} = \frac{C}{x^{1/2}}$ при $x \to +0$; поэтому $J_1 < \infty$ при $\alpha \geqslant 1$; 2) при $0 < \alpha < 1$ выполняется $f(x) \sim \frac{x^{\alpha}}{x^{3/2}} = \frac{1}{x^{3/2-\alpha}}$; поэтому $J_1 < \infty$ при $\alpha > 1/2$;

 - 3) при $\alpha \leqslant 0$ выполняется $f(x) \geqslant \frac{\pi/4}{r^{3/2}}$; поэтому $J_1 = \infty$.
- $\boxed{J_2}$: при любом α выполняется $f(x)\leqslant \frac{\pi/2}{x^{3/2}}$; поэтому $J_2<\infty$ при любом α .

 $\overline{\text{Ответ}}$. Интеграл J сходится при $\alpha > 1/2$.

5. ② $\sum_{n=1}^{\infty}|a_n|<\infty$, следовательно, $\lim_{n\to\infty}|a_n|=0$. Найдется такой номер N_0 , что для всех номеров

 $n\geqslant N_0$ выполняется $|a_n|<1$. Поэтому $\forall\, n\geqslant N_0$ верно $a_n^2\leqslant |a_n|$. Ряд $\sum^\infty a_n^2$ сходится.

6. ④ Предельная функция $f(x) = \lim_{n \to \infty} f_n(x) = \begin{cases} g(1), & 0 < x \leq 1; \\ g(0), & x = 0; \end{cases}$ разрывна, поскольку $g(0) \neq g(1)$

(в силу строгой монотонности функции g). Функции $f_n(x)$ непрерывны на отрезке [0, 1], поскольку это суперпозиция непрерывных функций. Если бы последовательность $\{f_n(x)\}$ сходилась равномерно на отрезке [0, 1] к предельной функции f(x), то f(x) должна быть непрерывной на этом отрезке.

- 7. ⑥ 1) для любого $x_0 \in E_1 \cup E_2$ верно $f_n(x_0) \leqslant \frac{1}{x_0 \, n^{3/2}}$, ряд $\sum_{n=0}^{\infty} \frac{1}{x_0 \, n^{3/2}}$ сходится, следовательно, по признаку сравнения и в силу произвольности точки x_0 , на $E_1 \cup E_2$ есть поточечная сходимость.
- 2) На множестве E_2 выполняется $f_n(x)\leqslant \frac{1}{x_0\,n^{3/2}}\leqslant \frac{1}{n^{3/2}}$, ряд $\sum_{i=1}^\infty \frac{1}{n^{3/2}}$ сходится, следовательно, по признаку Вейерштрасса на E_2 есть равномерная сходимость функционального ряда.
- 3) Для любого n>1 точки $x_n=\frac{1}{n}$ принадлежат E_1 , для этого же произвольного n найдется такое p=n, что выполняется $\sum_{k=1}^{2n} f_k(x_n) = \frac{\operatorname{th}(n/(n+1))}{\sqrt{n+1}} + \ldots + \frac{\operatorname{th}(n/(2n))}{\sqrt{2n}} \geqslant n \cdot \frac{\operatorname{th}(n/(2n))}{\sqrt{2n}} \geqslant \frac{1}{\sqrt{2}} \operatorname{th} \frac{1}{2} = \varepsilon_0.$
 - 8. ② $\overline{\lim}_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} \sqrt{\frac{4 \cdot \sqrt[n]{n}}{\sqrt[n]{1+\ln n}}} = 2$, следовательно, найден радиус сходимости ряда R = 1/2.

Внутри интервала сходимости сумма степенного ряда имеет производную любого порядка, поэтому функция F дифференцируема на интервале (-1/2, 1/2).