Data Structure - LLDs - (1 Week) <u>List of data structures</u>

	Lists	
		<u>Design Linked List</u>
		<u>Design Skiplist</u>
	Stacks	
		Implement Stack using Queues
		<u>Design a Stack With Increment Operation</u>
		<u>LRU Cache</u>
		<u>Min Stack</u>
		<u>Max Stack</u>
		<u>Dinner Plate Stacks</u>
		Implement Queue using Stacks
	Queue	
		<u>Design Circular Queue</u>
	Hashta	ıble
		<u>Design HashMap</u>
		<u>Design HashSet</u>
	BST	
		Binary Search Tree Iterator
		Serialize and Deserialize BST
		ack Tree
		<u>Find Median from Data Stream</u>
		<u>Count of Range Sum</u>
	Heaps	
		<u>Design Twitter</u>
		Kth Largest Element in a Stream
		cci Heaps
		<u>Fibonacci Heaps</u>
	Disjoir	
		Review of two popular approaches, Disjoint Sets and DFS
	,	PrefixTree, suffixTree)
		Implement Trie (Prefix Tree)
_		Add and Search Word - Data structure design
		al Trees/Segment Tree
		Lazy Dynamic Segment Tree - A general template
		A Recursive approach to Segment Trees, Range Sum Queries & Lazy Propagation
Ч		Tree Data Structures(Graphs)
		Serialize and Deserialize N-ary Tree
	ч	Encode N-ary Tree to Binary Tree
		Algorithms - Analysis Time and Space - (3 Weeks)
	Sorting	·
		Selection Sort - <u>Merge Sorted Array</u>
		Bubble Sort - <u>Sort Colors</u>
		Insertion Sort - <u>Insertion Sort List</u>
		Merge Sort - <u>Sort an Array</u>

		Quick Sort	
		Kth Largest Element in an ArrayK Closest Points to Origin	
		Counting Sort - Relative Sort Array	
		Tree sort - Convert Sorted List to Binary Search Tree	
		Bucket Sort - Top K Frequent Elements	
		Radix Sort - Maximum Gap	
	_	Topological sort Covered in Graphs	
	Divide	e-and-Conquer - 2	2 Days
		The maximum-subarray problem - <u>Maximum Subarray</u>	
		Strassen's algorithm for matrix multiplication - Divide and Conquer	Set 5
		(Strassen's Matrix Multiplication)	
		The substitution method for solving recurrences	
		The recursion-tree method for solving recurrences	
		The master method for solving recurrences	
_	D	uia Das aus annia a) Davis
_	-		2 Days
		Rod cutting - Integer Break	
		Dynamic Programming for the confused: Rod cutting problem	
		Matrix-chain multiplication - <u>Burst Balloons</u> Elements of dynamic programming	
		Longest common subsequence - Longest Common Subsequence	
		Optimal binary search trees	
	_	☐ Unique Binary Search Trees	
		☐ <u>Unique Binary Search Trees II</u>	
		Onique binary search frees in	
	Greedy	dy Algorithms - 2	2 Days
		An activity-selection problem - Minimum Number of Arrows to Burst	<u>Balloons</u>
		Elements of the greedy strategy	
		Huffman codes - Construct Huffman Tree, Google Onsite Softwa	<u>re Enginee</u>
		<u>I Huffman Coding Algorithm</u> , <u>Minimum Cost Tree From Leaf Values</u>	
		Matroids and greedy methods - <u>Matroid intersection in simple words</u>	
		A task-scheduling problem as a matroid - <u>Task Scheduler</u>	
	Graph	n Algorithms - C	6 Days
_		ode Pattern 1 DFS + BFS == 25% of the problems	Days
		N-ary Tree Preorder Traversal	
		N-ary Tree Postorder Traversal	
		N-ary Tree Level Order Traversal	
		BFS	
		☐ Binary Tree Level Order Traversal	
		Binary Tree Level Order Traversal II	
		□ Web Crawler Multithreaded	
		□ Web Crawler	
		Cut Off Trees for Golf Event	
		□ Course Schedule	
		DFS	

	_	Binary	Tree Postorder Traversal
		Binary	Tree Preorder Traversal
		Binary	Tree Inorder Traversal
		<u>Is Grap</u>	<u>oh Bipartite?</u>
		Remov	<u>e Invalid Parentheses</u>
		Constr	uct Binary Tree from Preorder and Inorder Traversal
	Topolo	ogical Sc	ort - <u>Topological Sort</u>
	Strong	ly Conn	ected Components - SCC - <u>Course Schedule</u> , <u>Facebook Minimum</u>
	numbe	er of peo	ople to spread a message, Airbnb Cover all vertices with the
	<u>least n</u>	<u>number</u>	of vertices, Critical Connections in a Network
	Minimu	um spar	ning Tree - Prim's Algorithm
		Cheape	<u>est Flights Within K Stops</u>
		<u>Minimu</u>	um Height Trees
		<u>Numbe</u>	er of Operations to Make Network Connected
		Connec	cting Cities With Minimum Cost
	Shorte	st Path	Algos -
		Bellma	n-Ford - <u>Network Delay Time</u> ,
		https:/	//leetcode.com/problems/get-watched-videos-by-your-friends/
		Dijkstr	a's algorithm
			Reachable Nodes In Subdivided Graph
			Shortest Path Visiting All Nodes
		-	Warshall
			<u>Find the City With the Smallest Number of Neighbors at a</u>
			<u>Threshold Distance</u>
			<u>Evaluate Division</u>
		Johnso	n's algorithm
			<u>All-pairs shortest paths - Johnson's algorithm for sparse graphs -</u>
			GeeksforGeeks
			<u>Johnson's algorithm</u>
			rd-Fulkerson method
			Google Onsite Network flow for the matrix with given row
			and column sums
			Ford-Fulkerson Algorithm for Maximum Flow Problem
_	 		
u			gorithms - 2 Days
			emainder theorem - <u>Check If It Is a Good Array</u>
			mon divisor
			est Common Divisor of Strings
			Kind in a Deck of Cards
		_	e OA Summer Intern 2020 Greatest Common Divisor
			element
		Pow(x,	·
			tegers by The Power Value
		•	c-key cryptosystem
		_	nd Rooms
			st Path to Get All Keys
	•	r factor	
			t Component Size by Common Factor
	L	<u>Mınimı</u>	<u>ım Factorization</u>

	Bulb Switcher	
	String Matching	- 2 Day
	The Rabin-Karp algorithm	
	☐ <u>Implement strStr()</u>	
	Binary String With Substrings Representing 1 To N	
	☐ Shortest Palindrome	
	☐ Find All Anagrams in a String	
	String matching with finite automata	
	☐ The Knuth-Morris-Pratt algorithm	
	☐ Shortest Palindrome	
	□ Rotate String	
	KMP Algorithm for Pattern Searching	
_		2.0
	Approximation Algorithms	- 3 Days
	☐ The vertex-cover problem	
	Binary Tree Cameras	
	Vertex Cover Problem-2	
	Vertex Cover Problem	
	☐ The traveling-salesman problem Find the Shortest Superstring	
	☐ The set-covering problem	
	□ <u>Video Stitching</u>	
	☐ Set Intersection Size At Least Two	
	□ Non-overlapping Intervals	
	☐ Randomization and linear programming	
	☐ The subset-sum problem	
	·	
	Partition Equal Subset Sum	
	Partition to K Equal Sum Subsets	
_	B 1 2 141 201	4.5
	Randomized Algorithms	- 1 Day
	□ Quick Sort	
	Min Cut <u>Palindrome Partitioning II</u>	
	Concepts Problems and Maths - (1 Week)	
	Matrix Operations	
	Linear Programming	
_	Polynomials - DFT, FFT	
	Computational Geometry	
	☐ Line-segment properties	
	□ Determining whether any pair of segments intersects	
	☐ Finding the convex hull - <u>Erect the Fence</u> , <u>The Skyline Problem</u>	
_	☐ Finding the closest pair of points - K Closest Points to Origin	
	GCD and LCM	
	X of a Kind in a Deck of Cards	
	Greatest Common Divisor of Strings	
	□ <u>Nth Magical Number</u>	
	□ <u>Ugly Number III</u>	

☐ 2 Keys Keyboard

Prime	Factorization and Divisors
	Largest Component Size by Common Factor
	2 Keys Keyboard
Fibona	cci Numbers
	<u>Length of Longest Fibonacci Subsequence</u>
	Split Array into Fibonacci Sequence
	Find the Minimum Number of Fibonacci Numbers Whose Sum Is K
Catala	n Numbers - <u>Unique Binary Search Trees</u>
Modula	ar Arithmetic
Euler 7	Totient Function
nCr Co	mputations
Set Th	eory
Factor	ial
	Last Substring in Lexicographical Order
	Snakes and Ladders
	Factor Combinations
	Path With Maximum Minimum Value
	Number of Closed Islands
Prime	numbers and Primality Tests
	Prime Arrangements
	K-th Smallest Prime Fraction
Sieve A	Algorithms
	Count Primes
Divisib	ility and Large Numbers
Series	,
Numbe	er Digit
Triang	-
_	Triangle
	Valid Triangle Number
	Networks - (1 Week)
	<u>Leetcode</u>
Netwo	rk Topology, OSI Architecture
TCP/IF	^o models
TCP ar	nd UDP
Firewa	ll, DNS, Domains, workgroups
Protoc	ols i.e ICMP
	OS - (1 week)
	Operating System Tutorial
	<u>Shared Memory Systems</u>
Cache	
Multith	nreading
	Producers-consumers problem
	Dining philosophers problem
	Cigarette smokers problem
	Readers-writers problem

 ☐ Web Crawler Multithreaded ☐ Scheduling algorithms ☐ Deadlock ☐ Virtual Memory ☐ Mutex and semaphore ☐ Kernels ☐ Paging Software Design Principles - (2 weeks)
System Design Primer System Design Primer
Start learning about Theory of Distributed Systems? Challenges with distributed systems Microservices Design Guide
Cloud design patterns - Azure Architecture Center Design patterns for microservices Azure Blog and Updates
TO READ: Domain Driven Design (DDD) Bounded Context (BC) Polyglot Persistence (PP) Command and Query Responsibility Segregation (CQRS) Command Query Separation CQS) Event-Sourcing (ES) CAP Theorem Eventual Consistency Twelve-Factor App SOLID Principles Just some things to focus on.
□ Load balancer□ API gateway□ Microservices - Scale Cube Concept, MVC - READ
 Database Sharding SQL vs NoSQL - Cassandra, Postgres, Hadoop, Data lake, other algorithms related to data lake, CAP Theorem
Leadership Principles - LPs - (1 Week) TO BE UPDATED
Resume and Miscellaneous #ADD WHATEVER YOU HAVE PUT IN RESUME
 Algos you have mentioned Project work and related references to read Achievements and information about it
REFERENCES ntroduction to Algorithms - Cormen

Leetcode