Microlensing parameters in MulensModel class ModelParameters:

Parameter	Name in	Unit	Description
	${\tt MulensModel}$		
t_0	t_0		The time of the closest approach between the source and
			the lens.
u_0	u0		The impact parameter between the source and the lens
			center of mass.
$t_{ m E}$	t_E	d	The Einstein crossing time.
$t_{ m eff}$	${\sf t_eff}$	d	The effective timescale, $t_{\rm eff} \equiv u_0 t_{\rm E}$.
ho	rho		The radius of the source as a fraction of the Einstein
			ring.
t_{\star}	t_star	d	The source self-crossing time, $t_{\star} \equiv \rho t_{\rm E}$.
$\pi_{\mathrm{E},N}$	$\mathtt{pi}_\mathtt{E}_\mathtt{N}$		The North component of the microlensing parallax vec-
			tor.
$\pi_{\mathrm{E},E}$	pi_E_E		The East component of the microlensing parallax vector.
$t_{0,\mathrm{par}}$	$t_0_{ m par}$		The reference time for parameters in parallax models. ^a
s	S		The projected separation between the lens primary and
			its companion as a fraction of the Einstein ring radius.
q	q		The mass ratio between the lens companion and the lens
			primary $q \equiv m_2/m_1$.
α	alpha	\deg .	The angle between the source trajectory and the binary
			axis.
ds/dt	$ds_{-}dt$	yr^{-1}	The rate of change of the separation.
$d\alpha/dt$	$\mathtt{dalpha_dt}$	$\deg. \ yr^{-1}$	The rate of change of α .
$t_{0,\mathrm{kep}}$	t_0_{kep}		The reference time for lens orbital motion calculations. ^a

Table 1: Notes: $^a-t_{0,\mathrm{par}}$ and $t_{0,\mathrm{kep}}$ are reference parameters, hence, do not change these during fitting.

Some of the parameters can be defined separately for each of the sources. In that case, add $_{-1}$ or $_{-2}$ to parameter name. These are:

- t_0_1, t_0_2,
- u_0_1, u_0_2,
- rho_1, rho_2,
- t_star_1, t_star_2.