Решение дифф. уравнений на CUDA на примере задач аэро-гидродинамики.

₩Лектор:

Сахарных Н.А. (ВМиК МГУ, NVidia)

План

- **Ж**Постановка задачи
- **Ж**Численный метод
- **#**Обзор архитектуры GPU и модели CUDA
- **ЖОсобенности** реализации
- **Ж**Результаты и выводы
- **Ж**Полезные ссылки

Введение

- **Ж**Вычислительные задачи аэрогидродинамики
 - Моделирование турбулентных течений

- **ЖВМиК МГУ, кафедра мат. физики**
 - △Пасконов В.М., Березин С.Б.

Постановка задачи

ЖТечение вязкой несжимаемой жидкости в 3D канале

- □Произвольные начальные и граничные условия
- Меизвестные величины − скорость и температура

Основные уравнения

- **Ж**Полная система уравнений Навье-Стокса в безразмерных величинах

Уравнение неразрывности

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

$$\int \rho = const$$

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$

- **Ж** Используется при выводе остальных уравнений (движения и энергии)
- **Ж**Проверка точности текущего решения

Уравнения Навье-Стокса

ЖВторой закон Ньютона:

$$\int_{V} \rho \frac{D\mathbf{v}}{Dt} dV = \sum \mathbf{F}$$

Невязкая жидкость:

$$\sum \mathbf{F} = \int_{V} (\rho \mathbf{f} - \nabla p) dV$$

Вязкая жидкость:

$$\sum \mathbf{F} = \int_{V} (\rho \mathbf{f} - \nabla p + \nabla \cdot \mathbf{\tau}) dV$$

 \mathbf{f} – массовые силы (сила тяжести)

т – тензор вязких напряжений

р – давление

Безразмерные уравнения

ЖПараметры подобия

- Марти В порти на применения и порти на

Re =
$$\frac{V'L'}{\mu'}$$
 Pr = $\frac{\mu'c_p'}{k'}$

V', L' — характерная скорость, размер

 μ' — динамическая вязкость среды

к' – коэффициент теплопроводности

 c_p ' — удельная теплоемкость

Ж Уравнение состояния для идеального газа/жидкости:

$$p = \rho RT$$

Уравнения движения

ЖБезразмерная форма:

$$\begin{split} \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} &= -\frac{\partial T}{\partial x} + \frac{1}{\text{Re}} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right), \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} &= -\frac{\partial T}{\partial y} + \frac{1}{\text{Re}} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right), \\ \frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} &= -\frac{\partial T}{\partial z} + \frac{1}{\text{Re}} \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right), \end{split}$$

ightharpoonup Уравнение состояния p = T

Уравнение энергии

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z} = \frac{1}{\Pr \cdot \operatorname{Re}} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + \frac{\gamma - 1}{\gamma} \frac{1}{\operatorname{Re}} \Phi$$

ЖДиссипативная функция:

$$\begin{split} \Phi &= \Phi_x + \Phi_y + \Phi_z \\ \Phi_x &= 2 \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial v}{\partial x}\right)^2 + \left(\frac{\partial w}{\partial x}\right)^2 + \frac{\partial v}{\partial x} \frac{\partial u}{\partial y} + \frac{\partial w}{\partial x} \frac{\partial u}{\partial z} \\ \Phi_y &= \left(\frac{\partial u}{\partial y}\right)^2 + 2 \left(\frac{\partial v}{\partial y}\right)^2 + \left(\frac{\partial w}{\partial y}\right)^2 + \frac{\partial u}{\partial y} \frac{\partial v}{\partial x} + \frac{\partial w}{\partial y} \frac{\partial v}{\partial z} \\ \Phi_z &= \left(\frac{\partial u}{\partial z}\right)^2 + \left(\frac{\partial v}{\partial z}\right)^2 + 2 \left(\frac{\partial w}{\partial z}\right)^2 + \frac{\partial u}{\partial z} \frac{\partial w}{\partial x} + \frac{\partial v}{\partial z} \frac{\partial w}{\partial y} \end{split}$$

Финальные уравнения

- #4 нелинейных уравнения
 - МНС + энергия
- **Ж**Неизвестные величины:

Численный метод

ЖМетод по-координатного расщепления

ЖНеявная схема 2-го порядка

ЖНелинейные итерации

□Полусумма значений на двух предыдущих итерациях

Численный метод

Стадии алгоритма

ЖРешение <u>большого</u> количества трехдиагональных СЛАУ

ЖВычисление диссипации в каждой ячейке сетки

ЖОбновление нелинейных параметров

Особенности метода

ЖБольшой объем обрабатываемых данных

ЖВысокая арифметическая интенсивность

ЖЛегко параллелится

Архитектура GPU

Ж Массивный паралеллизм потоков

ЖШирокая пропускная способность памяти

ЖПоддержка двойной точности

Реализация на CUDA

- **ЖВсе данные хранятся в памяти GPU**
 - № 4 скалярных 3D массива для каждой переменной (u, v, w, T)
 - № 3 дополнительных 3D массива

ж~300МВ для сетки 128^3 в double

Решение трехдиагональных СЛАУ

ЖКаждая нить решает <u>ровно</u> одну трехдиагональную СЛАУ

□ На каждом шаге N^2 независимых систем

Метод прогонки

- ЖНеобходимо 2 дополнительных массива
 - хранение: локальная память
- **Ж**Прямой ход
 - □ вычисление a[i], b[i]
- **Ж**Обратный ход
 - $\triangle x[i] = a[i+1] * x[i+1] + b[i+1]$

Проблемы реализации

- - Коэффициенты и правая часть

- **Ж**Y, Z − прогонки coalesced
- **X** прогонка uncoalesced!

Оптимизация прогонки

ЖX – прогонка

Транспонируем входные массивы и запускаем Y-прогонку

Расчет диссипации

- **ЖРасчет частных производных по трем** направлениям
 - △Локальный доступ к памяти
- **Ж**Каждая нить обрабатывает столбец данных
 - □ Переиспользование расчитанных производных
- **Ж**Использование разделяемой памяти (?)

Оптимизация диссипации

ЖРефакторинг кода

ЖC++ шаблоны для X, Y, Z-диссипации

Нелинейные итерации

- **Ж**Необходимо посчитать полусумму двух 3D массивов
- - Все чтения/записи coalesced
- **ЖОптимальный выбор размера блока**
- **80%** от пиковой пропускной способности на Tesla C1060

Реализация на CPU

ЖИспользование OpenMP инструкций

ЖПерестановка циклов для оптимизации работы с кэшем

Результаты

Векторное поле скоростей

Результаты

Re=250

Re=500

Тест производительности

- **Ж**Тестовые данные
 - Сетка 128^3

- **Ж**Сравнение CPU, GPU, Regatta
 - Абсолютное время работы
 - Экономическая эффективность

Производительность float

Производительность double

Производительность на W

Производительность на \$

Ближайшие планы

- **Ж**Эффективная реализация на нескольких GPU
 - Расчет на больших сетках с большими числами Рейнольдса

- **ЖОптимизация отдельных ядер**
 - Метод редукции для трехдиагональных систем

Выводы

ЖВысокая эффективность Tesla в задачах аэро-гидродинамики

ЖПрименение GPU открывает новые возможности для исследования

Вопросы

