Cálculo Diferencial e Integral I MEEC, MEAmbi 2º Exame - 8 de Julho de 2009 - 13h00m

Solução

Problema 1 (0,5 val.) Seja
$$f(x) = \frac{1}{1 - \sqrt{1 + 4x - x^2}}$$
.

- (a) Determine o domínio de f.
- (b) Determine, se existirem, o máximo, mínimo, supremo e ínfimo do domínio de f.

Problema 2 (1,5 val.) Seja
$$f(x) = \frac{x^2}{x+1}$$
.

- (a) Determine os intervalos de monotonia de f.
- (b) Estude a concavidade de f.
- (c) Determine as assímptotas do gráfico de f, se existirem.
- (d) Determine os extremos de f, se existirem, e esboce o gráfico de f.

Problema 3 (0,5 val.) Considere a função $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} \arctan(x+a) & \text{se } x \ge 0\\ e^{b \sin x} - 1 & \text{se } x < 0 \end{cases}$$

- (a) Determine as constantes $a \in b$ para as quais f é contínua em \mathbb{R} .
- (b) Determine as constantes a e b para as quais f é diferenciável em \mathbb{R} .

Problema 4 (0,5 val.) Calcule, se existirem, os seguintes limites:

(a)
$$\lim_{x \to +\infty} \frac{\sqrt{1-x+2x^2}}{x+2}$$
 (b) $\lim_{x \to 0} \frac{x^2 - \sin(x^2)}{x^6}$

Problema 5 (1,5 val.) Calcule as derivadas das seguintes funções:

(a)
$$f(x) = \frac{e^{x^2} + 1}{\operatorname{senh} x}$$
 (b) $g(x) = \int_{\tan x}^{1} \sqrt{1 + t^3} dt$ (c) $h(x) = (\log x)^{1/x}$

Problema 6 (1,5 val.) Determine uma primitiva de cada uma das seguintes funções:

(a)
$$f(x) = x \operatorname{sen} x$$
 (b) $g(x) = \frac{\sqrt{1 + \log x}}{x}$ (c) $h(x) = \frac{x}{(x-2)^2(x+1)}$

(d) Calcule o integral $\int_0^1 \frac{9x}{(x-2)^2(x+1)} dx$. O integral é superior ou inferior a 2?

Problema 7 (1 val.) Calcule a área da região do plano delimitada pelas linhas

$$y = \cos(\pi x)$$
 e $y = 1 - 2x$.

A área da região em causa é superior ou inferior a 1/6?

Problema 8 (1 val.) Suponha que $f, g : \mathbb{R} \to \mathbb{R}$ são funções diferenciáveis em \mathbb{R} . Na tabela seguinte estão indicados alguns valores de f, g, f' e g':

x	f(x)	g(x)	f'(x)	g'(x)
0	1	-1	1	5
1	3	2	-2	2
2	0	1	2	3

- (a) A função f é injectiva? A equação f(x) = g(x) tem soluções?
- (b) Calcule no ponto x = 1 as derivadas de

$$u(x) = f(x)g(x)$$
 e de $v(x) = \frac{1}{g(1+x^2)}$.

(c) Supondo que a derivada de g nunca se anula, calcule a derivada da função inversa g^{-1} também no ponto x=1.

Problema 9 (1 val.) Determine se as seguintes séries são absolutamente convergentes, simplesmente convergentes ou divergentes:

(a)
$$\sum_{k=0}^{\infty} \frac{(-1)^k (k^2 + 1)}{\sqrt{k^4 + 2k^3 + 1}}$$
 (b) $\sum_{k=1}^{\infty} \frac{1}{2^k + \sin k}$ (c) $\sum_{k=1}^{\infty} \frac{1}{(k+1)\log(k+1)}$

Problema 10 (0,5 val.) Determine a série de Taylor no ponto a=0 das seguintes funções:

(a)
$$f(x) = e^{x^2} - 1$$
 (b) $g(x) = \frac{1}{1 + x^2}$ (c) $u(x) = \int_0^x \arctan(t^3) dt$

Problema 11 (0,5 val.) Considere a série de potências

$$\sum_{n=1}^{\infty} \frac{x^{2n}}{\log(n+2)}.$$

- (a) Determine o raio de convergência (R) da série indicada.
- (b) Sendo f a função definida pela série indicada no respectivo intervalo de convergência, verifique que f tem um extremo em x=0, e classifique esse extremo.