微型计算机原理与接口技术复习

汇编部分

1. 二进制数,十进制数,十六进制数和BCD码数之间的转换方法。

例: (129)
$$_{10}$$
= (____) $_{2}$ = (____) $_{16}$ (10010111) $_{BCD}$ = (____) $_{10}$ = (____) $_{2}$

2. 真值数和补码数之间的转换方法

3. n位字长的有符号数、无符号数的数值范围

设设机器数字长=n位,则n位补码数,其真值范围为 -2^{n-1} ~ $+2^{n-1}-1$

无符号数其数值范围为 $0 \sim 2^{n}-1$

例: 8位二进制数所能表示的无符号数范围是。

微机原理与推口技术

- 4.基本结构寄存器的名称、位长和作用。
 - (1) 通用寄存器: EAX, EBX, ECX, EDX, ESI, EDI, EBP
 - (2)段寄存器:CS, SS, DS, ES, FS, GS
 - (3) 指针寄存器: EIP, ESP
 - (4)标志寄存器:EFLAG
 - 15位标志分为两类:状态标志和控制标志
 - 6种状态标志: CF OF ZF PF AF SF

例:字长=8,用补码完成下列加法运算,要求有运算过程,并根据运算结果讨论A、C、O、P、S、Z 六种状态标志的值。

75+ (-6)

5.80486的寻址方式

486有3类7种寻址方式

立即寻址方式: 获得立即数

寄存器寻址方式: 获得寄存器操作数

存储器寻址方式: 获得存储器操作数(内存操作数)

内存寻址方式

16位寻址规定可使用的寄存器

- (1) 直接寻址

(2) 寄存器间接寻址 [BX], [BP], [SI], [DI]

段寄存器: [间址寄存器]

某单元的物理地址=段寄存器内容×16+间址寄存器

(3) 基址寻址

[BX+位移量],[BP+位移量]

段寄存器:「基址寄存器+位移量]

物理地址=段寄存器内容×16+基址寄存器+位移量

(4)变址寻址

[SI+位移量],[DI+位移量]

(5) 基址+变址寻址 「BX+SI], 「BX+DI], 「BP+SI], 「BP+DI]

微视原理与维力技术

例:指出下列指令源操作数的寻址方式:

ADD	AX, DS: [1000H]	
MOV	AX, [BX+SI+6]	
MOV	DX, [BX]	 _
MOV	DX, BX	
MOV	AL, -1	

6. 掌握常用指令

MOV PUSH POP LEA CALL RET AND OR XOR ROL RCL ROR RCR SAL SHL SAR SHR 条件转移指令 LOOP 等

微机原理。排口技术

7. 80X86系列微处理器,实模式下只能访问主存储器最低端的 1MB存储空间;对存储器采用分段技术,每个段最大不超过 64KB。

8. 目标程序的生成

汇编 源程序 — 编辑、汇编、链接 — 可执行的机器指令 程序(目标程序)

第五章 总线

CPU通过总线与存储器、I/O交换一个数据所需要的时间称为总线周期

M/IO: =1,表明该总线周期,CPU与存储器交换信息

=0,表明该总线周期,CPU与I/0接口交换信息

W/R: =1,表明该总线周期,CPU进行写操作

=0,表明该总线周期,CPU进行读操作

D/C:=1,表明该总线周期,传输的是数据

=0,表明该总线周期,传输的是指令代码

这三个信号的组合,决定当前总线周期所完成的操作

微机原理与维口技术

总线周期定义的操作

M/IO	D/C	W/R	操作
0	0	0	中断
0	0	1	中止/专用周期
0	1	0	I/O读
0	1	1	I/O写
1	0	0	微代码读
1	0	1	保留
1	1	0	存储器读
1	1	1	存储器写

第六章 存储器系统

多个芯片连接

设计的存储器容量与实际提供的存储器多有不符。实际使用时,需进行字和位扩展(多个芯片连接),组成所需要的实际的存储器

例:存储器容量为8K×8,若选用2114芯片(1K×4),则需要:

$$\frac{8K \times 8}{1K \times 4} = 8 \times 2 = 16$$

微机原理。排口放水

第七章 输入/输出系统

- 1. 端口的概念、分类
- 2、端口的两种编址方式: 统一编址和独立编址。PC系列机采用端口独立编址
- 3、最常用的 I/O 指令
- (1).直接寻址 I/O 指令(8位端口地址)
- (2). DX间接寻址 I/O 指令(当端口地址>8位)
- 4、微机系统与 I/O 端口的信息交换 有四种方式: 无条件传送, 查询方式, 中断方式, DMA方式 其中DMA方式与CPU无关

第八章 中断系统

- 1. 中断和中断源的概念
- 2、中断指令

STI CLI INT n IRET

要求掌握 (1) CPU执行中断指令后,完成哪些操作

(2) STI, CLI只对可屏蔽中断请求有效

例: CPU执行IRET指令后,从栈顶弹出_____字节数据,分别赋给____、___、___和___。

- 3. 中断向量
- (1) 中断向量是实模式下,中断服务子程序的入口地址
- (2) 在实模式下,CPU把256种中断向量组成一张表(中断向量
- 表)设置在系统的RAM最低端的1K单元(0~3FFH)。
 - (3) n型中断向量存放在内存单元地址4*n~4*n+3这四个单元

例:实模式下,从内存地址0000H:0048H开始的连续4个单元中存放的内容为00H,38H,30H,50H,则该地址所对应的中断类型码为_____,该中断所对应的中断服务子程序的入口地址为。

4. 微机系统中断分类

 内部中断
 软件中断

 异常

 256种
 +断

 硬件中断
 ※ 可屏蔽中断

 (外部中断)
 非屏蔽中断

5、硬件中断分类:可屏蔽中断,非屏蔽中断 CPU有2个接收中断请求信号的引脚。

(1)可屏蔽中断:

输入到INTR引脚的中断请求信号,引发的中断。

(2)非屏蔽中断:

输入到NMI引脚的中断请求信号,引发的中断。

微机原理与推口技术

- (3) 响应可屏蔽中断的条件
 - ①有可屏蔽中断请求,没有DMA请求,没有非屏蔽中断请求
 - ②CPU一条指令执行完毕
 - ③CPU处于开中断状态(I标=1)
- (4) 响应非屏蔽中断的条件
 - ①有非屏蔽中断请求,没有DMA请求
 - ②一条指令执行完

6.中断程序设计

要求掌握

- (1). 中断向量的置换(读中断向量和写中断向量)
- (2). 硬件中断通路的开放和屏蔽。涉及到是否要对中断

【例8.6.1】要求利用PC系统机上的8254的0号定时计数器引发的日时钟中断,设计程序:每间隔1秒在PC终端屏幕上显示1行字符串"HELLO!",显示10行后结束。

微机原理与排口拨水

```
486
DATA SEGMENT USE16
MESG
          DB 'HELLO!',0DH,0AH,'$'
OLD1C DD ?
                   ;中断计数初值
ICOUNT DB 18
                   ;显示行数控制
COUNT DB 10
DATA ENDS
CODE SEGMENT USE16
   ASSUME CS:CODE,DS:DATA
BEG: MOV AX,DATA
   MOV DS,AX
   CLI
                ;关中断
   CALL READ1C
   CALL WRITE1C
               ;开中断
   STI
```

```
SERVICE PROC
                 ;保护现场
   PUSHA
                 ;DS=40H
   PUSH DS
   MOV AX,DATA
                  ;重新给DS赋值
   MOV DS,AX
                  ;中断计数
   DEC ICOUNT
                 ;不满18次转
   JNZ EXIT
   MOV
         ICOUNT,18
                   ;显示行数减1
   DEC
      COUNT
                       ; 显示字符串
    MOV AH,9
    LEA DX,MESG
    INT 21H
                 ;恢复现场
    POP
        DS
EXIT:
   POPA
           ;返回系统8型中断服务程序
   IRET
SERVICE ENDP
```

微机原理_与排口拨术

微机原理与推力技术

```
RESET PROC ;恢复系统1CH型中断向量
MOV DX,WORD PTR OLD1C
MOV DS,WORD PTR OLD1C+2
MOV AX,251CH
INT 21H
RET

RESET ENDP
CODE ENDS
END BEG
```

【例】假设微机系统外扩了如下的一个'单脉冲发生器',该'单脉冲发生器'电路受一个自复开关K的控制,每按一次K,该电路输出一个正脉冲,输入到系统机从8259的IR1作为外部中断请求。

要求:每按一次K,屏幕上显示一行字符串"Welcome!"。主机键盘按任意键,程序结束,返回DOS。

编写开放8259和中断向量置换程序

微机原理与推力技术

WRITE0A PROC

PUSH DS

MOV AX, CODE

MOV DS,AX

MOV DX,OFFSET SERVICE

MOV AX,250AH

INT 21H

POP DS

RET

WRITE0A ENDP

18259A PROC

IN AL,21H

AND AL,11111011B

OUT 21H,AL

IN AL,0A1H

AND AL,11111101B

OUT 0A1H,AL

RET

I8259A ENDP

CODE ENDS

END BEG

微机原理与供口技术

第九章 串行通信

- 1. 异步串行通信的数据传输方式: 单工通信、半双工通信、全双工通信。
 - 三种传输方式的特点。

例: 单工、半双工、全双工通信方式的特点是什么?

2. 异步串行通信一帧数据的格式及通信速率的计算。

- 3. 为实现通信, 收发双方一帧数据的格式和通信速率要保持一致。
- 4. RS232信号采用负逻辑。

"1"=
$$-3V \sim -15V$$
, "0"= $+3V \sim +15V$

5、8250芯片内部中断

8250内部有4级中断,以"接收数据错中断"优先级最高,其次是"接收中断","发送中断",最低优先级是"Modem中断"。

6.8250的编程

8250的初始化编程及查询方式/中断方式 输入输出程序。

8250初始化步骤

- ① 80H→线路控制寄存器, 使除数寄存器访问位=1
- ② 根据波特率计算出除数高/低8位→除数寄存器高/低8位,确定通信速率
- ③ D7=0的命令字→线路控制寄存器: 有2个目的

定义一帧数据格式 使除数寄存器访问位=0,从而使后继的对合用端口 的访问只读写非除数寄存器

微机原理与维口技术

④ 设置中断允许命令字 查询方式,则中断允许命令字=0,禁止中断 中断方式,使中断允许命令字相应位置1

⑤设置MODEM控制寄存器

中断方式: D3=1, 允许8250送出中断请求

查询方式: D3=0

内环方式: D4=1

正常通信: D4=0

使用联络线: D1、D0位置1

8250查询方式下接收和发送程序

在发送数据前,读通信线状态寄存器(状态口)获取发送保持或移位寄存器(数据口)是否空闲;在接收数据前,读通信线状态寄存器(状态口)获取接收缓冲寄存器(数据口)是否已经收到1帧数据。

EG: 利用主串口查询方式发送一个"A"

SCANT: MOV DX, 3FDH

IN AL, DX

TEST AL, 20H; 00100000

JZ SCANT ; D5=1

MOV DX, 3F8H

MOV AL, 'A'

OUT DX, AL

微机原理与推口技术

EG: 利用主串口查询方式接收一个字符

SCANR: MOV DX, 3FDH

IN AL, DX

TEST AL, 01H; 00000001

JZ SCANR ; D0=1

MOV DX, 3F8H

IN AL, DX

【例】A、B两台PC机利用主串口进行点-点单工通信(不用联络线),发送采用查询方式,接收采用中断方式。一帧字符包含7个数据位,1个停止位,1个校验位,通信速率为4800波特(分频系数为0018H)。

(1)下图是A、B两机的RS—232C接口示意图,根据题意完成连 线(不可有多余连线)。

2	
3	
4	
5	
6	
20	
7	

2
3
4
5
6
20
7

____传送方向

(3) 用对端口直接编程的方法为接收方编写8250初始化程序段。 10050 PD00

I8250	PROC	
MOV	DX, 3FBH	
MOV	AL, 80H	
OUT	DX, AL	;寻址位置1
MOV	DX, 3F9H	
MOV	AL, 00H	
OUT	DX, AL	;写除数高8位
MOV	DX, 3F8H	
MOV	AL, 18H	
OUT	DX, AL	;写除数低8位

;无校验传送,8位数据

MOV DX, 3FBH

MOV AL, OAH

OUT DX, AL

MOV DX, 3F9H

MOV AL, 01H

OUT DX, AL

MOV DX, 3FCH

MOV AL, 08H

OUT DX, AL

RET

18250 ENDP

第十章 并行I/0接口

- 1、8255A内部结构、端口地址以及与系统总线的连接
- 2. 8255A三种工作方式(方式0~方式2)的工作特点和I/O过程

工作方式

适用于端口.....

方式0: 基本型入/出

 $A\square$, $B\square$, $C\square$

方式1:选通型入/出

 $A\square$, $B\square$

方式2: 双向传输

 $\mathbf{A}\square$

(1). 如果数据口(A,B或C)工作在方式0,直接采用IN/OUT指令对其进行读写。

(2) 如果数据口(A或B)工作在方式1,

如果采用查询方式,且 A或B口定义为输入口,先用IN指令读入C口的内容,查询其中的IBF=1时,表示CPU可以继续用IN指令从A或B口读入外设送来的数据。

如果采用查询方式,且 A或B口定义为输出口,先用IN指令读入C口的内容,查询OBF=1 时,表示CPU可以用OUT指令向A或B口写数据以送给外设。

(3) 在方式1中C口哪几个引脚作为信号联络线,各信号联络线的含义。

例:8255的数据口中, 口可工作在双向方式。

例: 8255A的B口初始化定义为选通型(方式1)输入,对8255A 采用查询方式,

微机原理。推口拨木

3、8255初始化编程

工作在方式0时:方式选择命令字→控制口工作在方式1、2时:

- a) 方式选择命令字→控制口
- b) 允许中断(或禁止中断)的命令字→控制口

【例】系统机外扩一片8255A及相应电路如下图所示,外扩8255A的端口地址为200H~203H,现利用系统机的日时钟外扩1CH型中断,实现每隔1s使八个发光二极管同时闪烁一次,主机键盘有按键按下时结束,返回DOS操作系统。根据要求完成相关内容。

- (1) 从图可以分析出,A口工作在方式 0 的输 出 (入/出)。
- (2) 假设8255A的A口工作在方式1的查询输出方式,编写8255A的初始化子程序I8255。

18255A PROC MOV DX, 203H

MOV AL, 10100000B

OUT DX, AL ;写入工作方式字

MOV AL, 00001100B

OUT DX, AL

RET

I8255 ENDP

第十一章 可编程定时计数器

- 1.8254内部集成了3个16位的计数器,每个计数器有6种工作方式, 计数初值可设定为二进制或BCD码。最高工作频率10兆。
- 2. 掌握8254定时器/计数器的基本结构(三个16位计数器、控制寄存器)和计数器的外部引脚功能(GATE, CLK, OUT)。
- 3.8254工作方式

重点:方式2、方式3(包括计数过程、波形、周期和启动方式)

微机原理与推口技术

4. 8254初始化编程

向控制寄存器写入方式选择命令字。

目的:选择一个计数器,并确定其工作方式和计数值(或计数初值)的读/写顺序。

向选择的计数器写入计数初值 (计数初值=Tout /Tclk)

- (1). 当计数初值 ≤ 9999时, "初值"选为二进制或 BCD码都可以; 当计数初值 > 9999时, "初值"只能选二进制。
- (2) 程序中如何表示BCD码数?

设初值=(1234)10

则 MOV AX, 1234H 是正确的

写成 MOV AX, 1234 是错误的

微机原理与类口线术

【例】设PC 系统机外扩了一片8254 及相应的实验电路。8254口地址为200H~203H,设CLK0 已接至8MHz 时钟,为了能从0UT0 输出4KHz 的方波,编写了8254初始化程序,其中假设0 号定时计数器工作在二进制方式。

I8254 PROC
MOV DX,203H
MOV AL,00110110B
OUT DX,AL
MOV DX,200H
MOV AX,2000
OUT DX,AL
MOV AL,AH
OUT DX,AL
RET
I8254 ENDP