Programa de Asignatura

Historia del programa

Lugar y fecha de elaboración	Participantes	Observaciones (Cambios y justificaciones)
Cancún, Q. Roo, 03/01/2017	Ing. San Martín Alejandro Martín Canul	Programa nuevo para el plan de estudios de Ingeniería en Datos e Inteligencia Organizacional.

Relación con otras asignaturas

Anteriores	Posteriores
a) IT0316 Electrónica Digital a) Todos	NA

Nombre de la asignatura	Departamento o Licenciatura
-------------------------	-----------------------------

Cómputo ubicuo Ingeniería en Datos e Inteligencia Organizacional

Ciclo	Clave	Créditos	Área de formación curricular
3 - 4	ID3415	6	Licenciatura Preespecialidad

Tipo de asignatura	Horas de estudio			
	HT	HP	TH	HI
Taller	16	32	48	48

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Describir los principios teóricos que constituyen los fundamentos del cómputo ubicuo para el conocimiento del contexto disciplinar.

Objetivo procedimental

Resolver proyectos que utilicen las diferentes aproximaciones del cómputo ubicuo para la implementación de aplicaciones en Hardware.

Objetivo actitudinal

Fomentar el trabajo colaborativo para la resolución de problemas y el desarrollo de proyectos y prototipos.

Unidades y temas

Unidad I. Conceptos Básicos

Describir el estado actual del paradigma del cómputo ubicuo para la comprensión de los alcances de la tecnología

- 1) Conceptos básicos del cómputo ubicuo.
- 2) Principios de Interacción Humano-Máquina basada en Hardware
- 3) Métodos de Prototipado Rápido.
- 4) Machine Learning e Inteligencia Artificial aplicado a cómputo ubicuo

Unidad II. Sistemas Embebidos y plataformas de desarrollo

Revisar los principales tecnologías y plataformas para el desarrollo de sistemas de cómputo ubicuo

- 1) Sistemas de desarrollo basados en microcontroladores
- 2) Sistemas embebidos con tecnología System on Chip
- 3) Protocolos de comunicación serial
- 4) Protocolos de comunicación I2C y SPI

Unidad III. Dispositivos y sensores

Emplear las bibliotecas y APIs existentes de los diferentes tipos de sensores y dispositivos para su integración en aplicaciones.

- 1) Técnicas de reconocimiento por visión artificial
- 2) Tarjetas y dispositivos de comunicación
- 3) Etiquetado por RFiD, NFC y Beacons
- 4) Redes de sensores Inalámbricos

Unidad IV. Desarrollo de aplicaciones y sistemas inteligentes

Emplear los conocimientos adquiridos para la integración de diversas aplicaciones de cómputo ubicuo.

- 1) Weareable Computing
- 2) Smart Home
- 3) Context-Aware Systems

Actividades que promueven el aprendizaje

Promover el trabajo colaborativo en la definición de propuestas de solución a problemas determinados. Coordinar la discusión de casos prácticos. Realizar tareas asignadas Participar en el trabajo individual y en equipo Resolver casos prácticos (simulaciones) Realizar foros para la discusión de temas o problemas. Discutir temas en el aula

Actividades de aprendizaje en Internet

Se promoverá el uso de mecanismos asíncronos (correo electrónico, grupo de noticias, WWW y tecnologías de información) como medio de comunicación.

Criterios y/o evidencias de evaluación y acreditación

Criterios	Porcentajes
Prácticas	20
Exámenes	30
Proyectos	30
Participación en clase	20
Total	100

Fuentes de referencia básica

Bibliográficas

Krumm, J. (2016). Ubiquitous Computing Fundamentals. (1a edición) USA: CRC Press.

McEwen, A. (2014). Designing the Internet of things (1a edición) USA: Wiley.

Posland, F. (2009). Ubiquitous computing: smart devices, environments and interactions (1a edición) USA: Wiley.

Stojanovic, D. (2009). Context-Aware Mobile and Ubiquitous Computing for Enhanced Usability: Adaptive Technologies and Applications (1a edición) USA: IGI Global.

Vega, B. (2016). Ubiquitous Computing and Intelligent Systems (1a edición) USA: Willford Press.

Web gráficas

Fuentes de referencia complementaria

Bibliográficas

Bell, C. (2013). Beginning sensor networks with Arduino and Raspberry Pi (1a edición) USA: Apress.

Evans, B. (2011). Beginning Arduino Programming (1a edición) USA: Apress.

Hartman, K. (2014). Make: Wearable electronics (1a edición) USA: Maker Media.

Karvinen, T. (2014). Make: Sensors (1a edición) USA: Maker Media.

Kuniavsky, M. (2010). Smart Things: Ubiquitous Computing User Experience Design (1a edición) USA: Morgan Kaufmann.

Schmalstieg, D. (2016). Augmented Reality: Principles and Practice (1a edición) USA: Addison-Wesley.

Web gráficas

.

Perfil profesiográfico del docente

Académicos

Ingeniería, licenciatura o posgrado en Ciencias de la computación, Sistemas, o Electrónica.

Docentes

Tener experiencia docente a nivel superior mínima de 3 años en ingeniería.

Profesionales

Tener experiencia en el desarrollo de software de base, sistemas embebidos, controladores de dispositivos