5 задача: Флойд

2 модуль, 2 семестр

ФИВТ МФТИ, 2019

Описание by Илья Белов

1. Текст задачи

Полный ориентированный взвешенный граф задан матрицей смежности. Постройте матрицу кратчайших путей между его вершинами. Гарантируется, что в графе нет циклов отрицательного веса.

Формат входного файла

В первой строке вводится единственное число N (1 $\leq N \leq$ 100) — количество вершин графа. В следующих строках по N чисел задается матрица смежности графа (j-ое число в i-ой строке — вес ребра из вершины i в вершину j). Все числа по модулю не превышают 100. На главной диагонали матрицы — всегда нули.

Формат выходного файла

Выведите N строк по N чисел — матрицу расстояний между парами вершин, где j-ое число в i-ой строке равно весу кратчайшего пути из вершины i в j.

Пример:

in	out
4	0 5 7 13
0 5 9 100	12028
100 0 2 8	11 16 0 7
100 100 0 7	4 9 11 0
4 100 100 0	

2. Описание алгоритма

Алгоритм решает задачу APSP. Обозначим длину кратчайшего пути между вершинами u и v, содержащего, помимо u и v, только вершины из множества $\{1..i\}$ как $d^{(i)}_{u\ v}$, $d^{(0)}_{u\ v} = \omega_{u\ v}$

На каждом шаге алгоритма, мы будем брать очередную вершину (пусть её номер — i) и для всех пар вершин u и v вычислять $d^{(i)}_{\ u\ v} = \min(d^{(i-1)}_{\ u\ v},\ d^{(i-1)}_{\ u\ i} + d^{(i-1)}_{\ u\ i})$. То есть, если кратчайший путь из u в v, содержащий только вершины из множества $\{1..i\}$, проходит через вершину i, то кратчайшим путем из u в v является кратчайший путь из u в i, объединенный с кратчайшим путем из i в v. В противном случае, когда этот путь не содержит вершины i, кратчайший путь из u в v, содержащий только вершины из множества $\{1..i\}$ является кратчайшим путем из u в v, содержащим только вершины из множества $\{1..i-1\}$.

3. Доказательство корректности

Доказательство см. на Викиконспектах (https://neerc.ifmo.ru/wiki/index.php?title=Алгоритм Флойда)

4. Время работы и дополнительная память

$$T = O(V^3)$$
$$M = O(V^2)$$

5. Доказательство времени работы и дополнительной памяти

В алгоритме используются 3 вложенных цикла от 0 до $V-1\Rightarrow O(T^3)$, извлечение начальной матрицы смежности - за $O(V^2)$. Итого $T=O(V^3)$