MATH 361 - Week 6 Tutorial

Jasraj Sandhu

February 2024

2.1. True or false:

(a) Every unitary operator $U: X \to X$ is normal.

Answer: True. Suppose U is unitary. Then from property (i) of unitaries, $U^*U = I = UU^*$. Thus, since $U^*U = UU^*$, U is normal.

(b) A matrix is unitary if and only if it is invertible.

Answer: False. The (\Longrightarrow) direction holds by the definition of unitary, However, the (\Longleftrightarrow) direction does not hold. Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$. Then A is invertible since det $A = 2 \cdot 1 = 2 \neq 0$. But, A is not a unitary since it is not an isometry. Indeed, from property (i) of unitaries, A is not an isometry since

$$A^* = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}^* = \begin{bmatrix} \bar{1} & \bar{0} \\ \bar{0} & \bar{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \neq \frac{1}{2} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} = A^{-1} .$$

Alternatively, using the corollary of the proposition for isometries, \boldsymbol{A} is not an isometry since

$$A^*A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}^* \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} \neq I \ ,$$

So, A is not a unitary (since it's not an isometry).

(c) If two matrices are unitarily equivalent, then they are also similar.

Answer: True. Suppose A and B are unitarily equivalent, denoted $A \sim_U B$. Then there exists a unitary U such that $U^*AU = B$. Since U is unitary, it follows from property (i) of unitaries that $U^* = U^{-1}$. So, we get that

$$U^*AU = B$$

$$\implies U^{-1}AU = B \ .$$

Thus, by the definition of similarity, A is similar to B.

(d) The sum of self-adjoint operators is self-adjoint.

Answer: True. Suppose $A, B: V \to W$ and $A^*, B^*: W \to V$ with dim V = n and dim W = m. Suppose $A = A^*$ and $B = B^*$. Note that A and B must have the same matrix dimensions since we are going to take their sum. Denote

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} , B = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{bmatrix} .$$

Then

$$(A^* + B^*)^* = (A + B)^*$$

$$= (A + B)^*$$

$$= \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \dots & a_{mn} + b_{mn} \end{bmatrix}^*$$

$$= \begin{bmatrix} \frac{a_{11} + b_{11}}{a_{12} + b_{12}} & \frac{a_{21} + b_{21}}{a_{22} + b_{22}} & \dots & \frac{a_{m1} + b_{m1}}{a_{m2} + b_{m2}} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} + b_{1n} & a_{2n} + b_{2n} & \dots & a_{mn} + b_{mn} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{a_{11}}{a_{12}} & \frac{a_{21}}{a_{22}} & \dots & \frac{a_{m1}}{a_{m2}} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{bmatrix}^* + \begin{bmatrix} \frac{b_{11}}{b_{12}} & \frac{b_{21}}{b_{22}} & \dots & \frac{b_{m1}}{b_{m2}} \\ \vdots & \vdots & \ddots & \vdots \\ b_{1n} & b_{2n} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{bmatrix}$$

$$= A^* + B^*.$$

So, $A^* + B^*$ is self-adjoint. Of course, we could have simply used property (i) of the self-adjoint: $(A+B)^* = A^* + B^*$. With this, we would have gotten

$$(A^* + B^*) = (A + B)^* = A^* + B^*$$
.

Thus, it is true that the sum of self-adjoint operators is self-adjoint.

(e) The adjoint of a unitary operator is unitary.

Answer: True. Let U be unitary. Then

$$U^*(U^*)^* = U^*U = I .$$

Since U is unitary, U is invertible. So,

$$U = U^{**} = (U^*)^{-1}$$
.

(f) The adjoint of a normal operator is normal.

Answer: True. Suppose $N: V \to V$ is normal. Then $N^*N = NN^*$. We show that N^* is normal. That is, we show that $(N^*)^*N^* = N^*(N^*)^*$. Note here that $N^*: V \to V$. So,

$$(N^*)^*N^* = NN^*$$

= N^*N
= $N^*(N^*)^*$.

Thus, N^* is normal.

(g) If all eigenvalues of a linear operator are 1, then the operator must be unitary or orthogonal (aka isometry).

<u>Answer:</u> False. We prove there exists a linear operator $A: V \to W$ with all eigenvalues equal to 1 such that A is neither unitary nor an isometry. Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. Then $\dim V = 2 = \dim W$, and so

$$A^*A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}^* \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq I \ ,$$

which means that A is not an isometry. Since A is not an isometry it can't be unitary. This comes from the definition of unitary: A is unitary if it is an invertible **isometry**. We can even see that A is not invertible since $\det A = 0$.

(h) If all eigenvalues of a normal operator are 1, then the operator is the identity.

Answer: True. Normals are diagonalizable. Suppose V is an inner product space and $N: V \to V$ is normal with all eigenvalues equal to 1. Let $\dim V = n$. Then N is $n \times n$ with eigenvalues $\{\lambda_1, \ldots, \lambda_n\}$, where $\lambda_j = 1$ for $1 \le j \le n$. Since V is an inner product space and N is normal, we can apply the **Spectral Theorem for Normal Operators**. By the spectral theorem, N is unitarily equivalent to a diagonal, denoted $N \sim_U D$. That is, there exists a unitary U such that

$$U^*NU = D$$
.

Here,

$$D = \begin{bmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{bmatrix} = \begin{bmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{bmatrix} = I.$$

In other words, $U^*NU = D = I$. Then since U is unitary, it holds that $U^*U = UU^* = I$, and so

$$U^*NU = I$$

$$UU^*NU = UI$$

$$INU = U$$

$$NU = U$$

$$NUU^* = UU^*$$

$$NI = I$$

$$N = I$$

Thus, N itself is the identity.

(i) A linear operator may preserve norm, but not the inner product.

Answer: False. The original statement can be rewritten as follows: In general, for any linear operator $A:V\to W$, if $\vec{v}\in V$ and $\vec{w}\in W$, then $||A\vec{v}||=||\vec{v}||$ but $\langle A\vec{v},A\vec{w}\rangle\neq\langle\vec{v},\vec{w}\rangle$. This does not hold. Recall that A is an isometry if it preserves the norm (aka "distance"); that is, $||A\vec{v}||=||\vec{v}||$ for $\vec{v}\in V$. We also covered the proposition that A is an isometry if and only if A preserves the inner product; that is, $\langle A\vec{v},A\vec{w}\rangle=\langle\vec{v},\vec{w}\rangle$ for $\vec{v}\in V$ and $\vec{w}\in W$. Thus, A must preserve both the norm and inner product, as the preservation of one of them implies that A is an isometry.

2.2. True or false: The sum of normal operators is normal. Justify your conclusion.

<u>Answer:</u> We can first try to prove it is true. Let M and N be normal operators. Then $MM^* = M^*M$ and $NN^* = N^*N$. We want to show that M + N is normal. That is, we want to show that

$$(M+N)(M+N)^* = (M+N)^*(M+N)$$
.

So,

$$(M+N)(M+N)^* = (M+N)(M^* + N^*)$$

$$= MM^* + MN^* + NM^* + NN^*$$

$$= MM^* + N^*M + M^*N + NN^*$$

$$= M^*M + M^*N + N^*M + N^*N$$

$$= (M^* + N^*)(M+N)$$

$$= (M+N)^*(M+N).$$

Note that M ... So, it's probably false. Let's take a counter example. Let

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

be normal operators. Note that A and B are self-adjoint. Indeed,

. . .

Also note that normal \implies diagonalizable. Equivalently, not diagonalizable $\not \models$ not normal. Now,

$$(A+B)(A+B)^* = \dots$$

 $\neq \dots$
 $= (A+B)^*(A+B)$.

2.6. Orthogonally diagonalize the matrix

$$A = \begin{bmatrix} 7 & 2 \\ 2 & 4 \end{bmatrix} .$$

That is, represent it as $A = UDU^*$, where D is diagonal and U is unitary. Note: among all square roots of A, i.e. among all matrices B such that $B^2 = A$, find one that has positive eigenvalues. You can leave B as a product.

Answer: Notice that

$$A^* = \dots$$

From the Porism of Schur's theorem, we know that $A-UTU^*$. Since $A=A^*$, it follows that $A=UDU^*$. Here,

$$U = \begin{bmatrix} \vec{u}_1 & \vec{u}_2 & \ldots \end{bmatrix}$$

is the matrix of eigenvectors as columns and D is the matrix of eigenvalues.

2.8. Let A be an $m \times n$ matrix. Prove that

(a) A^*A is self-adjoint.

<u>Answer:</u> Let V and W be finite dimensional inner product spaces with dim V=n and dim W=m. Then $A:V\to W$ satisfisfies the condition that A is an $m\times n$ matrix. Then $A^*:W\to V$ is $n\times m$. We show that A^*A is self-adjoint by showing $(A^*A)^*=A^*A$. So,

$$(A^*A)^* = A^*A^{**} = A^*A$$
.

Thus, A^*A is self-adjoint.

(b) All eigenvalues of A^*A are non-negative.

Answer: Let V and W be finite dimensional inner product spaces and $A: V \to W$. Since eigenvalues exist only for square matrices, we can assume that dim $V = \dim W = n$. So, A is an $n \times n$ matrix. Let $\{\lambda_1, \ldots, \lambda_n\}$ be the eigenvalues of A. We assume that A is unitarily equivalent to D; that is, there exists a unitary U such that $U^*AU = D$, where

$$D = \begin{bmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{bmatrix} .$$

Rearranging for A gives $A = UDU^*$. Then

$$A^*A = (UDU^*)^*UDU^*$$

$$= U^{**}D^*U^*UDU^*$$

$$= UD^*U^*UDU^*$$

$$= UD^*IDU^*$$

$$= UD^*DU^*$$

$$= U(D^*D)U^*.$$

Now, this tells us that A^*A is unitarily equivalent to D^*D , where

$$D^*D = \begin{bmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{bmatrix}^* \begin{bmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{bmatrix}$$
$$= \begin{bmatrix} \overline{\lambda_1} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \overline{\lambda_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{bmatrix}$$

$$= \begin{bmatrix} \overline{\lambda_1} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \overline{\lambda_n} \lambda_n \end{bmatrix}$$
$$= \begin{bmatrix} |\lambda_1|^2 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & |\lambda_n|^2 \end{bmatrix}.$$

So, we have that the eigenvalue of A^*A are $\{|\lambda_1|^2, \dots, |\lambda_n|^2\}$. Thus, the eigenvalues of A^*A are non-negative.

(c) $A^*A + I$ is invertible.

Answer: Let V be a finite dimensional inner product space and $A:V\to V$. Then A is $n\times n$. Since $A:V\to V$, we have that $A^*:V\to V$, and so A^* is also $n\times m$. Now, let λ be an eigenvalue of A^*A+I . Note that $A^*A:V\to V$ and so I must be $n\times n$. So,

$$(A^*A + I)\vec{v} = \lambda \vec{v} ,$$

where $\vec{v} \in V$ is non-zero. From this we get that

$$(A^*A + I)\vec{v} = \lambda \vec{v}$$

$$(A^*A)\vec{v} + I\vec{v} = \lambda \vec{v}$$

$$A^*A\vec{v} + \vec{v} = \lambda \vec{v}$$

$$A^*A\vec{v} = \lambda \vec{v} - \vec{v}$$

$$A^*A\vec{v} = (\lambda - 1)\vec{v} .$$

This tells us that A^*A has eigenvalue $\lambda-1$ associated with eigenvector \vec{v} . From part (b), we know that the eigenvalues of A^*A are **non-negative**, which means that $(\lambda-1)\geq 0$.