Local Search

Note: this material was originated from the slides provided by Prof. Padhraic Smyth

Local search and optimization

- Previously: systematic exploration of search space.
 - Path to goal is solution to problem
- But, for some problems path is irrelevant.
 - E.g 8-queens
- Different algorithms can be used
 - Local search ex) Hill-climbing

Local search and optimization

- · Local search
 - Keep track of single current state
 - Move only to neighboring states
 - Ignore paths
- · Advantages:
 - Use very little memory
 - Can often find reasonable solutions in large or infinite (continuous) state spaces.
- "Pure optimization" problems
 - Property 1: All states have an objective or heuristic function
 - Property 2: Goal is to find state with max (or min) objective value
 - Property 3: Does not quite fit into path-cost/goal-state formulation
 - Property 4: Local search can do quite well on these problems.

Hill-climbing search

- Very simple algorithm:
 - continuously moves in the direction of increasing value
 - terminates when a peak is reached
 - A kind of "greedy local best search"
- Value can be
 - Objective or heuristic function value
- Hill climbing does not look ahead of the immediate neighbors of the current state.
- Can randomly choose among the set of best successors, if multiple have the best value
- Characterized as "trying to find the top of Mount Everest while in a thick fog"

Hill climbing and local maxima

- · When local maxima exist, hill climbing is suboptimal
- Simple (often effective) solution
 - Multiple random restarts

Hill-climbing example

- 8-queens problem, complete-state formulation
 - All 8 queens on the board in some configuration
- Successor function:
 - move a single queen to another square in the same column.
- Example of a heuristic function h(n):
 - the number of pairs of queens that are attacking each other (directly or indirectly)
 - (so we want to minimize this)

Hill-climbing example

Current state: h=17

Shown is the h-value for each possible successor in each column

A local minimum for 8-queens

A local minimum in the 8-queens state space (h=1)

Performance of hill-climbing on 8-queens

- Randomly generated 8-queens starting states...
- 14% the time it solves the problem
- 86% of the time it get stuck at a local minimum
- However...
 - Takes only 4 steps on average when it succeeds
 - And 3 on average when it gets stuck
 - (for a state space with ~17 million states)

Hill-climbing with random restarts

- · Different variations
 - Run a fixed number N of restarts
 - For each restart: run until termination
- Analysis
 - Say each search has probability p of success
 - E.g., for 8-queens, p = 0.14 of success
 - Expected number n of restarts for over 99% success?

```
Very Simple Interpretation (It may not be real!)
```

```
(0.86)^n < 0.01 \rightarrow n > \log_{0.86} 0.01 = 30.53...
```

- Expected maximum number of steps taken?

 $4 \times 31 = 124$ (for a state space with ~17 million states)