The group G is isomorphic to the group labelled by [42, 5] in the Small Groups library. Ordinary character table of $G \cong D42$:

	1a	2a	3a	7a	21a	7b	21b	21c	7c	21d	21e	21f
χ_1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	1	1	1	1	1	1	1	1	1	1
χ_3	2	0	-1	2	-1	2	-1	-1	2	-1	-1	-1
χ_4	2	0	2	$E(7)^2 + E(7)^5$	$E(7)^2 + E(7)^5$	$E(7)^3 + E(7)^4$	$E(7)^2 + E(7)^5$	$E(7)^3 + E(7)^4$	$E(7) + E(7)^6$	$E(7)^3 + E(7)^4$	$E(7) + E(7)^6$	$E(7) + E(7)^6$
χ_5	2	0	2	$E(7) + E(7)^6$	$E(7) + E(7)^6$	$E(7)^2 + E(7)^5$	$E(7) + E(7)^6$	$E(7)^2 + E(7)^5$	$E(7)^3 + E(7)^4$	$E(7)^2 + E(7)^5$	$E(7)^3 + E(7)^4$	$E(7)^3 + E(7)^4$
χ_6	2	0	2	$E(7)^3 + E(7)^4$	$E(7)^3 + E(7)^4$	$E(7) + E(7)^6$	$E(7)^3 + E(7)^4$	$E(7) + E(7)^6$	$E(7)^2 + E(7)^5$	$E(7) + E(7)^6$	$E(7)^2 + E(7)^5$	$E(7)^2 + E(7)^5$
χ_7	2	0	-1	$E(7)^3 + E(7)^4$	$E(21)^5 + E(21)^{16}$	$E(7) + E(7)^6$	$E(21)^2 + E(21)^{19}$	$E(21)^4 + E(21)^{17}$	$E(7)^2 + E(7)^5$	$E(21)^{10} + E(21)^{11}$	$E(21)^8 + E(21)^{13}$	$E(21) + E(21)^{20}$
χ_8	2	0	-1	$E(7)^3 + E(7)^4$	$E(21)^2 + E(21)^{19}$	$E(7) + E(7)^6$	$E(21)^5 + E(21)^{16}$	$E(21)^{10} + E(21)^{11}$	$E(7)^2 + E(7)^5$	$E(21)^4 + E(21)^{17}$	$E(21) + E(21)^{20}$	$E(21)^8 + E(21)^{13}$
χ_9	2	0	-1	$E(7)^2 + E(7)^5$	$E(21)^8 + E(21)^{13}$	$E(7)^3 + E(7)^4$	$E(21) + E(21)^{20}$	$E(21)^2 + E(21)^{19}$	$E(7) + E(7)^6$	$E(21)^5 + E(21)^{16}$	$E(21)^4 + E(21)^{17}$	$E(21)^{10} + E(21)^{11}$
χ_{10}	2	0	-1	$E(7)^2 + E(7)^5$	$E(21) + E(21)^{20}$	$E(7)^3 + E(7)^4$	$E(21)^8 + E(21)^{13}$	$E(21)^5 + E(21)^{16}$	$E(7) + E(7)^6$	$E(21)^2 + E(21)^{19}$	$E(21)^{10} + E(21)^{11}$	$E(21)^4 + E(21)^{17}$
χ_{11}	2	0	-1	$E(7) + E(7)^6$	$E(21)^{10} + E(21)^{11}$	$E(7)^2 + E(7)^5$	$E(21)^4 + E(21)^{17}$	$E(21)^8 + E(21)^{13}$	$E(7)^3 + E(7)^4$	$E(21) + E(21)^{20}$	$E(21)^5 + E(21)^{16}$	$E(21)^2 + E(21)^{19}$
χ_{12}	2	0	-1	$E(7) + E(7)^6$	$E(21)^4 + E(21)^{17}$	$E(7)^2 + E(7)^5$	$E(21)^{10} + E(21)^{11}$	$E(21) + E(21)^{20}$	$E(7)^3 + E(7)^4$	$E(21)^8 + E(21)^{13}$	$E(21)^2 + E(21)^{19}$	$E(21)^5 + E(21)^{16}$

Trivial source character table of $G \cong D42$ at p = 7:

Normalisers N_i	N_1			N_2		
p-subgroups of G up to conjugacy in G	P_1			P_2		
Representatives $n_j \in N_i$	1a	2a	3a	1a	2a	3a
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}}$	7	1	7	0	0	0
$ 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} $	7	-1	7	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} $	14	0	-7	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	1	1	1	1	1
$ 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} $	1	-1	1	1	-1	1
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} $	2	0	-1	2	0	-1

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1, 4, 9, 15, 21, 27, 33)(2, 6, 12, 18, 24, 30, 36)(3, 8, 14, 20, 26, 32, 38)(5, 11, 17, 23, 29, 35, 40)(7, 13, 19, 25, 31, 37, 41)(10, 16, 22, 28, 34, 39, 42)]) \cong C7$