计算机与网络技术

第15讲 网络安全 (2)

课程回顾

- □计算机网络概述
- □物理层
- □数据链路层
- □网络层
- □运输层
- □应用层
- □ 网络安全

计算机网络安全概述

□ 计算机网络安全的<u>技术定义</u>:

一 计算机系统的硬件、软件、数据受到保护,不因偶然或恶意的原因 遭到破坏、更改、显露,系统能连续正常运行,提供相应的服务

口 公安部计算机管理监察司的定义:

指计算机资产安全,即计算机信息系统资源和信息资源不受自然和 人为有害因素的威胁和危害

口公安部网络安全保卫局

网络信息安全技术措施

- 在物理层——通信线路上加密技术
- 在数据链路层——点对点链路加密来保障数据传输的安全性
- 在网络层——防火墙技术,IPV6认证加密
- 在传输层——TCP/UDP的安全机制-安全套接层协议(SSL、TLS)
- 在传输层以上的各层,采用更加复杂的安全手段,例如加密用户级的身份认证、数字签名技术等

量子通讯 量子纠缠 绝对安全 超距通讯

防火墙的分类

口防火墙体系

- 包过滤防火墙
- 代理防火墙 (应用层网关防火墙)

代理型防火墙:自适应代理防火墙

- □ 自适应代理技术 (Adaptive proxy) 结合包过滤和代理的特点,性能 提高
- □ 组成这种类型防火墙的基本要素有两个: 自适应代理服务器 (Adaptive Proxy Server) 与动态包过滤器 (Dynamic Packet filter) 。
- □ 在自适应代理与动态包过滤器之间存在一个控制开关。
- □ 自适应代理可以根据用户的配置信息,决定是使用代理服务从应用层代 理请求还是从网络层转发包。

防火墙: NAT

□ NAT (Network Address Translation, 网络地址转换)

- 静态地址转换
- 动态地址转换
- 端口多路复用

Class	范围	子网掩码
Class A	10.0.0.0 ~ 10.255.255.255	255.0.0.0
Class B	172.16.0.0 ~ 172.31.255.255	255.255.0.0
Class C	192.168.0.0 ~ 192.168.255.255	255.255.255.0

SSL 和 TLS

- 安全套接层 SSL 由 Netscape 于 1994 年开发,广泛应用于基于万维网的各种网络应用(但不限于万维网应用)。
- SSL 作用在应用层和运输层之间,在 TCP 之上建立起一个安全通道, 为通过 TCP 传输的应用层数据提供安全保障。
- 1996 年发布 SSL 3.0,成为 Web 安全的事实标准。
- 1999年, IETF 在 SSL 3.0 基础上推出了传输层安全标准 TLS,为所有基于 TCP 的网络应用提供安全数据传输服务。

SSL / TLS 的位置

在发送方, SSL 接收应用层的数据, 对数据进行加密, 然后把加了密的数据送往 TCP 套接字。在接收方, SSL 从 TCP 套接字读取数据, 解密后把数据交给应用层。

传输层不使用安全协议和使用安全协议的对比

- SSL / TLS 建立在可靠的 TCP 之上,与应用层协议独立无关。
- SSL / TLS 已被所有常用的浏览器和万维网服务器所支持。
- SSL / TLS 基本目标:实现两个应用实体之间的安全可靠通信。

SSL 和 TLS

- 应用层使用 SSL 最多的就是 HTTP, 但 SSL 并非仅用于 HTTP, 而 是可用于任何应用层的协议。
- 应用程序 HTTP 调用 SSL 对整个网页进行加密时,网页上会提示用户,在网址栏原来显示 http 的地方,现在变成了 https。在 http 后面加上的 s 代表 security,表明现在使用的是提供安全服务的 HTTP 协议 (TCP 的 HTTPS 端口号是 443, 而不是平时使用的端口号 80)。

SSL 安全会话建立过程

加密技术

网络信息安全技术措施

- 在物理层——通信线路上加密技术
- 在数据链路层——点对点链路加密来保障数据传输的安全性
- _ 在网络层——防火墙技术, IPV6认证加密
- 在传输层——TCP/UDP的安全机制-安全套接层协议(SSL)
- 在传输层以上的各层,采用更加复杂的安全手段,例如加密用户级的身份认证、数字签名技术等

TCP/IP协议栈中的安全机制

保密系统模型

❖ 机密性:数据传输过程中,不能被非授权者偷看

❖ 完整性:数据传输过程中,不能被非法篡改

❖ 有效性:数据不能被否认

网络信息加密方法(传统)

□密码算法

- 传统密码算法
 - ・对称密码算法(Symmetric Cryptographic Algorithms)

```
-E=encrypt (K, M)
-M =decrypt(K, E)
=decrypt (encrypt (K, M))
```

□密钥(key)的概念

- **密钥是一个数值,它和加密算法一起生成特别的密文**
- 密钥的尺寸用位(bit)来衡量,在公开密钥加密方法中,密钥的尺寸越大, 密文就越安全

$$E=M+1$$
 $M=E-1$

网络信息加密方法 (传统)

□ 传统的加密方法

- 密钥管理和加密方法
- 优势
 - □速度快
 - □加密强度大
- 不足
 - □安全地发布密钥非常困难

网络信息加密方法 (现代)

□ 密码算法

- 现代密码算法
 - · 非对称密码算法或公钥密码算法
 - Public-Key Cryptographic Algorithms
 - -M=decrypt (prv-ul, encrypt (pub-ul, M))
 - 只需公开其加密密钥(称公钥) 即可, 实体之间可以进行秘密通信
 - RSA、Elgamal、背包算法、Rabin、D-H、ECC(椭圆曲线加密算法)

RSA<u>公钥加密算法</u> 1977年 <u>罗纳德·李维斯特</u> (Ron Rivest) <u>阿迪·萨莫尔</u> (Adi Shamir) <u>伦纳德·阿德曼</u> (Leonard Adleman)

网络信息加密方法 (现代)

□ RSA-1977

- n, e1, e2
 - ・ n是两个大质数p、q的积, n的二进制表示时所占用的位数, 就是所谓的密钥长度
 - e1与(p-1) *(q-1) 互质
 - $(e2*e1) \mod((p-1) *(q-1)) = 1$
- (n, e1),(n, e2) 就是密钥对
 - · (n, e1) 为公钥
 - · (n, e2) 为私钥
- RSA加解密的算法完全相同,设A为明文,B为密文
 - B=A^e1 mod n
 - A=B^e2 mod n
- e1和e2可以互换使用
 - B=A^e2 mod n
 - A=B^e1 mod n

网络信息加密方法 (现代)

□ 公开密钥加密法

- 公开密钥加密法可以解决密钥发布的问题
- 可以让事先没有安全通道的人安全地交换信息
- 用加密算法生成两个密钥,分别作为公钥和私钥
- 公钥密钥算法
 - 公钥密钥:利用数学算法生成的一对数据
 - 经过任一密钥加密后,相互之间可以解密
 - 相互之间不可以互推得到对方

□ 现代加密技术主要应用

- 公钥加密,私钥解密:可以进行加密通信
- 私钥加密,公钥解密:可以进行身份验证(来源)和无可抵赖性验证
- Hash验证: 断定未被篡改 (一般还要加上密钥加密技术)

公钥加密

公钥认证

网络信息加密方法: 加密强度

□传统和现代密钥加密强度

- 公钥的尺寸和传统加密方法中密钥的尺寸是不相关的
- 传统80位密钥的强度等同于1024位的公钥
- 传统128位密钥的强度等同于3000位的公钥

保密级别	对称密钥长度 (bit)	RSA密钥长度 (bit)
80	80	1024
112	112	2048
128	128	3072
192	192	7680
256	256	15360

网络信息加密方法:数据完整性

- □ 安全散列算法(Secure Hash Algorithm)SHA
 - **一种规范,将报文生成验证值,消息摘要:**
 - · 单向函数,不可逆运算;
 - 难以对指定的验证值生成一个报文,由该报文可以得出指定的验证值;
 - 难以生成两个不同的报文具有相同的验证值。
 - · Hash函数可以接受可变长度的输入
 - 输入可以是任意长的消息,其产生固定长度的输出
 - Hash函数保证: 敏感性好, 可以很好标识出信息变化
 - MD5 (tanajiya.tar.gz) = 38b8c2c1093dd0fec383a9d9ac940515

计算机病毒及防护

□病毒

- 是指编制或者在计算机程序中插入的破坏 计算机功能或者毁坏数据,影响计算机使 用,并能自我复制的一组计算机指令或者 程序代码-《中华人民共和国计算机信息系统安全保护条例》
- 1983 佛瑞德·科恩(Fred Cohen),提出了" 计算机病毒"(Computer Virus)的概念

口计算机病毒特点-被创造的

- 非授权性
- 破坏性
- 隐蔽性
- 潜伏性
- 可触发性
- 传染性
- 不可预见性-进化

□计算机病毒的分类

- 根据系统区分
 - **□** DOS, UNIX, Windows
- 寄生方式
 - 口 引导区、文件型、网络型、混合型
- 破坏能力
 - 口 无害、无危险、危险、非常危险

□传播途径

- 软盘
- 光盘
- U盘
- 网络

口计算机病毒的命名方式

- <病毒前缀>.<病毒名>.<病毒后缀>
- 病毒前缀——类型
 - 危害系统——Win32、PE、Win95、W32、W95
 - · 蠕虫病毒——Worm
 - · 木马病毒、黑客病毒——Trojan、Hack
 - 宏病毒——宏病毒的前缀是: Macro, 第二前缀是: Word、Word97、Excel、Excel97
 - 脚本病毒——Script、VBS、JS
 - 密码病毒——PSW
 - 后门病毒——Backdoor
 - 病毒种植程序病毒——Dropper
 - · 破坏性程序病毒——Harm
 - 玩笑病毒——Joke
- 后缀——变种

Win95.CIH.V1.2

Trojan.LMir.PSW.60

新冠病毒奥密克戎BQ.1.1

□最有影响力的病毒

- Creeper
 - 第一个计算机病毒
 - 在1971年由Bob Thomas使 用Tenex操作系统制作

Win95.CIH.V1.2

+ CIH

- × 1998年6月爆发于中国台湾,是一位名叫陈盈豪的台湾大学生所编写,是公认的有史以来危险程度最高、破坏强度最大的病毒之一
- ×4月26日爆发,切尔诺贝利 病毒
- ×破坏硬盘数据、覆盖BIOS
- × 1003字节

口 最有影响力的病毒

- 熊猫烧香
 - 2006年底
 - 感染型的蠕虫病毒
 - 感染系统中exe, com, pif, src, html, asp等文件
 - 中止大量的反病毒软件进程并且会删除 扩展名为gho的文件
 - 作者-李俊-成为中国第一批因制造电脑病 毒获刑的人
- 勒索病毒WannaCry
 - 2017年5月12日爆发
 - 150个国家、30万名用户中招,造成损失 达80亿美元
 - 445端口
 - 加密技术、区块链
 - · 大中华圈、NSA

□ 最有影响力的病毒

- 我爱你(ILOVEYOU)
 - 损失估计: 全球约100亿~150亿美元
 - 2000年5月3日,"我爱你"蠕虫病毒首次在香港被发现
 - · Visual Basic脚本,邮件传播
- 梅利莎(Melissa)
 - 1999年3月26日爆发
 - · Word宏脚本病毒
- 尼姆达(Nimda)
 - 历史上传播速度最快的病毒之一,在上线之后的22分钟之后就成为传播最广的病毒
 - 攻击服务器
- 红色代码(Code Red)
 - □ 计算机蠕虫病毒,能够通过网络服务器和互联网进 行传播
 - □ 2001年7月13日,红色代码从网络服务器上传播开来, 窃取数据
- SQL Slammer
 - □ 2003年1月25日首次出现
 - 蠕虫病毒,给互联网的流量造成了显而易见的负面 影响,Dos,针对SQL Server
- MyDoom
 - □ 2004年1月26日爆发
 - □ 高峰期全球互联网的速度性能下降了10%,网页的下载时间增加了50%。

计算机反病毒软件

口软件结构

- 病毒库-抗药性、变种
- 扫描器
- 虚拟机

口病毒检测方法

- 特征代码法
 - 检测已知病毒的最简单、开销最小的方法
 - 在病毒样本中,抽取特征代码
 - WHboy、5E CC 56 8B F0,CIH
- 校验和法
 - 定期地或每次使用文件前,检查文件现在内容算出的校验和与原来保存的校验和是否一致,因而可以发现文件是否感染,这种方法叫校验和法,它既可发现已知病毒又可发现未知病毒

计算机反病毒软件

□ 病毒检测方法

- 行为监测法
 - 利用病毒的特有行为特征性来监测病毒的方法
- 软件模拟法
 - 先使用特征代码法发现病毒,启动软件模拟模块,待病毒密码 破译后,用特征码法识别并杀毒

□常用杀毒软件

- ■江民
 - **KV系列**
- Norton, Symantec
 - 嵌入系统很深
- **■** Kaspersky
 - 卡巴和瑞星在监控时的资源占用问题比较突出
- **Kingsoft金山**

计算机与网络技术

课程期末安排

期末考试初步安排

- 口考试时间: 2025-06-10(周二) 9:00~11:00
- 口考试地点: 五教-5104、5105
- 口考试方式: 开卷考试
 - □ 可携带《计算机组成原理》、《计算机网络》两本教材
 - □ 可携带 1 张A4纸的复习笔记

期末考试初步安排

- 口考试范围:课堂讲义,两本教材中讲授过的 内容,实验环节内容
- 口考试题型: 简答、综合分析等
- 口答疑时间: 2025-06-08 (周日)下午14:00~17:00, 地点待网络学堂/雨课堂通知

课次	主题	主要知识点	教材章节
1	计算机系统概述	摩尔定律 计算机发展简史 计算机分类特点 计算机基本定义、组成 计算机相关名词概念	《~原理》 1.1、1.2、1.3、 1.5、1.6
2	计算机工作流程、 指令系统	程序创建执行过程 CPU微观工作流程 计算机宏观工作流程 指令系统定义、指令格式 MIPS指令设计与实现	《~原理》 6.1~6.7、 7.1、7.2、7.4、 7.5、7.7
3	指令系统(续)、 逻辑电路模块	寻址方式 运算器 (ALU) 多路开关、译码器 寄存器、指令指针与取指单元	《~原理》 7.3、4.5、4.6、 4.7、4.8、5.2、 5.4.1

课次	主题	主要知识点	教材章节
4	简易CPU设计	系统指令数据通路设计 系统指令控制逻辑设计 系统指令数据通路与控制逻辑集成	《~原理》 8.1~8.4、8.6
5	简易CPU设计 (续) 、CPU性 能	CPU时序分析、CPU指令周期、 流水线、并行计算 计算机性能评价与提升(CPU参 数、缓存、运算器)、指令系统分 类(CISC、RISC)	《~原理》 1.4、8.7~8.8、 10.1~10.5、7.6
6	存储系统	存储系统层次设计、常用内存单元 类型、内存单元总线连接、外部辅 助存储单元、计算机的虚拟内存	《~原理》 11.1~11.7

课次	主题	主要知识点	教材章节
7	总线、I/O、中断	总线定义及作用 总线分类与演进 总线的工作原理 I/O接口概述 I/O接口实现 数据传送方式 中断概述、关键问题 中断程序结构	《~原理》 12.1~12.3、 12.4.1~12.4.4、 13.1~13.6
8	计算机网络概述	计算机网络基本概念 互联网基本概念 互联网组成及工作模式 计算机网络体系结构(分层传输) 计算机网络协议概念 计算机网络性能指标	《~网络》 1.1~1.7

课次	主题	主要知识点	教材章节
9	物理层、数据链 路层	物理层基本概念、传输媒体 数据链路层基本概念 网络适配器及其MAC地址 数据链路层信道 集线器、交换机	《~网络》 2.1、2.2、2.3、 2.4、2.5、3.1、 3.3、3.4、3.5
10	网络层	IP协议及地址、ARP协议 路由器、IP数据报 子网掩码、IPv6 网络地址转换NAT ICMP报文及应用	《~网络》 4.1、4.2、4.3.1、 4.4、4.5.1-3、 4.8.2
11	运输层	运输层协议概述 运输层端口 用户数据报协议UDP 传输控制协议TCP	《~网络》 5.1~5.9

课次	主题	主要知识点	教材章节
12	应用层及 网络服务	域名系统DNS 文件传输协议FTP 万维网WWW 电子邮件	《~网络》 6.1-6.6
13~ 14	网络安全 移动网络	云平台概要 网络安全问题概述 网络安全防护方法 互联网安全协议 移动网络	《~网络》 7.1~7.6、9.3

□ 第1章:全部

□ 第4章: 4.5、4.6、4.7、4.8

□ 第5章: 5.2、5.4.1

□ 第6章:全部

□ 第7章:全部

□ 第8章:全部

□ 第10章:全部

□ 第11章:全部

□ 第12章:12.1~12.3、12.4.1~12.4.4、

12.4.7、12.4.9

□ 第13章:全部

□ 第1章:全部

□ 第4章: 4.5、4.6、4.7、4.8

□ 第5章: 5.2、5.4.1

□ 第6章:全部

□ 第7章:全部

□ 第8章:全部

□ 第10章:全部

□ 第11章:全部

□ 第12章:12.1~12.3、12.4.1~12.4.4、

12.4.7、12.4.9

□ 第13章:全部

- □ 第1章:全部
- □ 第2章: 2.1、2.3、2.4、2.5
- □ 第3章: 3.1、3.3、3.4、3.5
- □ 第4章: 4.1、4.2、4.3.1、4.4、4.5.1~4.5.3、
 - 4.8.2
- □ 第5章: 5.1~5.9
- □ 第6章: 6.1~6.6、6.9
- □ 第7章: 7.1~7.6
- □ 第9章: 9.3

谢谢