Статистика для анализа данных Лабораторная работа 1

Расчет геометрической вероятности

1.1	Выполнение лабораторной работы	1
1.2	Описание лабораторной работы	1
	Рекомендации	

1.1 Выполнение лабораторной работы

В результаты выполнения работы участником (командой) должны быть предоставлены: код, используемый при выполнении заданий лабораторной работы, а также отчет о ходе выполнения работы. Отчет должен содержать:

- 1. Титульную информацию: для каждого участника должны быть указаны ФИО, ИСУ, практический поток.
- 2. Ход выполнения работы: краткая информация о выполненных шагах.
- 3. Основную часть: описание каждого шага, промежуточные результаты и их анализ.
- 4. Заключение: приоритетные выводы по результатам выполнения всей лабораторной работы.

1.2 Описание лабораторной работы

Пусть Ω — пространство элементарных исходов, заданное как квадрат со стороной 2a, центр которого находится в начале системы координат, а благоприятное событие $\mathcal{A}(r)$ — круг радиуса r, центр которого также находится в начале системы координат.

- 1. Выберите не менее 5 значений радиуса круга $r \in (0, a]$.
- 2. Для каждого значения:
 - (a) Рассчитайте истинную геометрическую вероятность p как отношение соответствующих площадей.
 - (b) При помощи генератора случайных чисел разместите точки в Ω и определите их принадлежность $\mathcal{A}(r)$.
 - (c) Постройте график $\hat{p}(n)$, где \hat{p} доля точек, которые попали в круг, а n количество точек.
 - (d) Постройте график $\varepsilon(n) = |\hat{p}(n) p|$ для анализа изменения ошибки оценки геометрической вероятности.
- 3. Зафиксируйте последовательность $\{\varepsilon_i\}$. Для каждого значения r вычислите необходимое количество случайных точек N, необходимых для достижения данной точности ε_i . Постройте графики $N(\varepsilon)$.

1.3 Рекомендации

• Для задания последовательностей радиусов можно пользоваться одним из способов:

$$r_k = \frac{a}{k+1},$$
 $k = 0, ..., n-1$
 $r_k = a - k\Delta r,$ $k = 0, ..., n-1$
 $r_k = 2^k a,$ $k = 0, ..., n-1$

или любым другим способом.

- Для генерации случайных чисел (координат точек) можно воспользоваться:
 - random.uniform
 - random.Generator.uniform (рекомендуется)
- Для значений точности можно рассмотреть значения $\varepsilon \in \{10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}, \ldots\}$.