IoT devices

Maryam Gadiali – 30/07/2024

A device with software and sensors that can receive and transmit data over the internet.

Home use

"Smart" or online

Not an IoT device

Not an IoT device

Not an IoT device

Is an IoT device

Is an IoT device

Is an IoT device

Also IoT devices...

Stats

- 77 percent of UK adults own at least one smart home device
- By 2050 there will be 24 billion interconnected devices worldwide

https://publications.parliament.uk/pa/cm5803/cmselect/cmcumeds/157/report.html

Problems with available IoT devices

- 57 percent of connected devices are vulnerable to medium- to high-severity attacks
- Convenience and price over security
- Lack of encryption (HTTP instead of HTTPS)
- Port forwarding issues
- Default login
- Not updating to the latest version

IoT cameras

1. Finding out home wifi details

ipconfig

```
Wireless LAN adapter Wi-Fi:

Connection-specific DNS Suffix . : cable.virginm.net
Link-local IPv6 Address . . . . :
IPv4 Address . . . . . . . : 192.168.0. 123
Subnet Mask . . . . . . . . . : 255.255.255.0
Default Gateway . . . . . . . :
```

2. Running nmap

- Port scanning tool
- -A scan
- nmap –A <Target>


```
Wireless LAN adapter Wi-Fi:

Connection-specific DNS Suffix . : cable.virginm.net
Link-local IPv6 Address . . . . :
IPv4 Address . . . . . . . : 192.168.0. 123
Subnet Mask . . . . . . . . . : 255.255.255.0
Default Gateway . . . . . . . . :
```

IPv4 Addr = 192.168.0.123

Subnet mask = 255.255.255.0

CIDR notation = 192.168.0.123/24

24 bits (Network) + 8 bits (Host) = 32 bits (IPv4)

nmap -A 192.168.0.123/24

3. Analysing the nmap output

- Port 554 (RTSP) along with port 80 (HTTP) (or 443 – HTTPS)
- RTSP methods OPTIONS, PLAY, RECORD, PAUSE...
- Note down attached ip address

```
Nmap scan report for 192.168.0. 567
Host is up (0.0077s latency).
Not shown: 997 closed ports
PORT STATE SERVICE VERSION
80/tcp open http
```

```
| fingerprint-strings:
| HTTPOptions, RTSPRequest:
| RTSP/1.0 200 OK
| CSeq: 0
| Server: Rtsp Server/3.0
| Public: OPTIONS, DESCRIBE, ANNOUNCE, SETUP, PLAY, RECORD, PAUSE, TEARDOWN, SET_PARAMETE
| SIPOptions:
| RTSP/1.0 200 OK
| CSeq: 42
| Server: Rtsp Server/3.0
| Public: OPTIONS, DESCRIBE, ANNOUNCE, SETUP, PLAY, RECORD, PAUSE, TEARDOWN, SET_PARAMETE
```

4. Gaining access to the camera

Next steps

- Default username and passwords
- Wireshark Packet capturing (HTTP) for authentication details
- CVE lists for known vulnerabilities

Mitigations

- Change the default username and password
- Use strong details
- Disable Http use if possible
- Regularly update
- Disable port forwarding
- Disable UPnP (Universal Plug and Play)
- Network segmentation

