

CAPSULE TYPE ENDOSCOPE**Publication number:** JP2001095755 (A)**Publication date:** 2001-04-10**Inventor(s):** NINOMIYA ICHIRO; NAKAJIMA MASAHIRO; NAKAMURA TETSUYA; FUSHIMI MASAHIRO; NAKANISHI TAICHI; EGUCHI MASARU; OHARA KENICHI**Applicant(s):** ASAHI OPTICAL CO LTD**Classification:****- international:** A61B5/07; A61B1/00; G02B23/24; A61B5/07; A61B1/00; G02B23/24; (IPC1-7): A61B1/00; A61B5/07; G02B23/24**- European:****Application number:** JP19990279893 19990930**Priority number(s):** JP19990279893 19990930**Abstract of JP 2001095755 (A)**

PROBLEM TO BE SOLVED: To provide a miniaturized and practical capsule type endoscope having good assembling workability. **SOLUTION:** The capsule type endoscope of the invention is operated such that, the focusing object image of the illuminated object by an illuminator is formed focusing object image on the image sensor by object lens, and the image signal is transmitted by wireless. The endoscope has a substrate to hold the image sensor and more than one of substrates. Each the substrate is arranged that substrate for image sensor is the most object lens side, and positioned with a interval and crossing at about right angle to the extended line of optical axis of object lens.

Data supplied from the **esp@cenet** database — Worldwide

(19)日本国特許庁 (J P)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2001-95755

(P2001-95755A)

(43)公開日 平成13年4月10日 (2001.4.10)

(51)Int.Cl.⁷
A 6 1 B 1/00
5/07
G 0 2 B 23/24

識別記号
3 2 0

F I
A 6 1 B 1/00
5/07
G 0 2 B 23/24

テ-マコ-ト⁸ (参考)
3 2 0 B 2 H 0 4 0
4 C 0 3 8
B 4 C 0 6 1

審査請求 未請求 請求項の数8 O L (全 7 頁)

(21)出願番号 特願平11-279893

(71)出願人 000000527

旭光学工業株式会社

東京都板橋区前野町2丁目36番9号

(22)出願日 平成11年9月30日 (1999.9.30)

(72)発明者 二ノ宮 一郎

東京都板橋区前野町2丁目36番9号 旭光学工業株式会社内

(72)発明者 中島 雅章

東京都板橋区前野町2丁目36番9号 旭光学工業株式会社内

(74)代理人 100083286

弁理士 三浦 邦夫

最終頁に統く

(54)【発明の名称】 カプセル内視鏡

(57)【要約】

【目的】 組み立て作業性がよく、小型化された、実際的なカプセル内視鏡を得る。

【構成】 本発明は、照明体で照明し対物レンズで形成した物体像をイメージセンサに結像させ、該イメージセンサによる画像信号を無線で送信するカプセル内視鏡であって、上記イメージセンサを保持する基板とその他1以上の基板を有し、上記各基板は、イメージセンサ用基板を最も対物レンズ側として、対物レンズの光軸の延長線に略直交する状態で間隔をおいて位置していることを特徴としている。

【特許請求の範囲】

【請求項1】 照明体で照明し対物レンズで形成した物体像をイメージセンサに結像させ、該イメージセンサによる画像信号を無線で送信するカプセル内視鏡であって、上記イメージセンサを保持するイメージセンサ用基板と、その他1以上の基板を有し、上記各基板は、イメージセンサ用基板を最も対物レンズ側として、対物レンズの光軸の延長線に略直交する状態で間隔をおいて位置していることを特徴とするカプセル内視鏡。

【請求項2】 請求項1記載のカプセル内視鏡において、上記各基板は略円形状または略多角形状に形成されているカプセル内視鏡。

【請求項3】 請求項1または2記載のカプセル内視鏡において、上記その他1以上の基板は、上記イメージセンサを制御するイメージセンサ制御部品を保持したイメージセンサ制御部品用基板と；上記イメージセンサから出力される電気信号を送信する送信電気部品を保持した送信電気部品用基板と；であるカプセル内視鏡。

【請求項4】 請求項3記載のカプセル内視鏡において、さらに、上記送信電気部品で生成された送信信号を発信する送信アンテナ配線を有するアンテナ基板を有し、該アンテナ基板は、対物レンズの光軸に略直交する状態で間隔をおいて順に配置された上記基板の周囲に巻かれて円筒状をなしているカプセル内視鏡。

【請求項5】 請求項3または4記載のカプセル内視鏡において、上記イメージセンサ用基板、イメージセンサ制御部品用基板、および送信電気部品用基板は、接続ストリップ基板を介して基板製造時に接続されているカプセル内視鏡。

【請求項6】 請求項4または5記載のカプセル内視鏡において、上記アンテナ基板は、送信電気部品用基板に基板製造時に一体化されているカプセル内視鏡。

【請求項7】 請求項4または5記載のカプセル内視鏡において、上記アンテナ基板は、基板製造時には送信電気部品用基板とは別体で、後に接続されるカプセル内視鏡。

【請求項8】 請求項3ないし7いずれか1項記載のカプセル内視鏡において、上記送信電気部品用基板には、電源スイッチが合わせて搭載されているカプセル内視鏡。

【発明の詳細な説明】

【0001】

【技術分野】 本発明はカプセル内視鏡の機構構造に関する。

【0002】

【従来技術およびその問題点】 従来のファイバースコープや電子内視鏡装置は、人体外に配置した操作部や画像モニタ装置と、人体内に導入される撮像ヘッド部とが可

撓性管でつながれている構成となっている。被験者の苦痛を軽減するために撮像ヘッド部の小型化や細径化が計られても、「管」が被験者の喉を通る苦痛を根本的になくすことができない。そこで近年、管のないカプセルの撮像ヘッド部と離隔された画像モニタ部を有する電子内視鏡装置が提案されてはいるが、従来の提案内容は単なるアイデアに過ぎず、実際に製造、使用する段階には至っていない。

【0003】

【発明の目的】 本発明は以上の問題点を鑑み、組み立て作業性がよく、小型化された、実際的なカプセル内視鏡を得ることを目的とする。

【0004】

【発明の概要】 本発明は、照明体で照明し対物レンズで形成した物体像をイメージセンサに結像させ、該イメージセンサによる画像信号を無線で送信するカプセル内視鏡であって、上記イメージセンサを保持する基板とその他1以上の基板を有し、上記各基板は、イメージセンサ用基板を最も対物レンズ側として、対物レンズの光軸の延長線に略直交する状態で間隔をおいて位置していることを特徴としている。

【0005】 このカプセル内視鏡において、上記各基板は略円形状または略多角形状に形成されていると、カプセル内に効率良く収納することができ好ましい。なお略多角形状に形成される場合、三角形や四角形でも構成可能であるが、頂点が5ヶ所以上ある多角形であれば面積が広くなるため、基板上に部品を容易に配置することができる。

【0006】 上記その他1以上の基板は、上記イメージセンサを制御するイメージセンサ制御部品を保持したイメージセンサ制御部品用基板と；上記イメージセンサから出力される電気信号を送信する送信電気部品を保持した送信電気部品用基板と；であると好ましい。

【0007】 さらに、上記送信電気部品で生成された送信信号を発信する送信アンテナ配線を有するアンテナ基板を有し、該アンテナ基板は、対物レンズの光軸に略直交する状態で間隔をおいて順に配置された上記基板の周囲に巻かれて円筒状をなしていると、スペース効率良くアンテナを設けることができ好ましい。

【0008】 また、上記イメージセンサ用基板、イメージセンサ制御部品用基板、および送信電気部品用基板は、接続ストリップ基板を介して基板製造時に接続されているとよい。

【0009】 上記アンテナ基板は、送信電気部品用基板に基板製造時に一体化されると組み立て時に接続する手間が省けてよい。あるいは、基板製造時には送信電気部品用基板とは別体で、後に接続される構成とすれば、組み立て作業が容易である。

【0010】 また、上記送信電気部品用基板には、電源スイッチが合わせて搭載されていることが望ましい。

【0011】

【発明の実施の形態】本カプセル内視鏡は、それぞれサブアッセンブリされる主プロック10と回路基板100、および外装ケース50を有する。以下にこれらのサブアッセンブリについて各々説明する。

【0012】図2に主プロック10を示す。主プロック10は、全体として筒状をなし、その前方(図2の左方)から順に、照明体支持板部11、小径の対物レンズ保持筒12、大径の電気要素保持筒13を有する。照明体支持板部11には、対物レンズ保持筒12の径方向の両側に位置させて、照明手段(発光ダイオード)30が保持される。発光ダイオード30のリード31は、電気要素保持筒13の前方の壁面を貫通していて、電気要素保持筒13内に収納される回路基板100に接続する。対物レンズ保持筒12には、対物レンズ鏡筒20が保持される。対物レンズ鏡筒20は、光軸方向に位置調節可能で、調整後、固定ネジ16で固定される。照明体支持板部11の前方には、半球状の透明カバー17が固定される。この透明カバー17は、対物レンズ22から被写体までの距離を確保する役目も有している。

【0013】図4に回路基板100の展開図を示す。この回路基板100は、3枚の円形回路基板110、120、130と1枚の長方形のアンテナ基板140を連結した形状になっている。円形回路基板(1)110にはイメージセンサ窓112が形成され、表面にイメージセンサ111が固定されている。円形回路基板(2)120の表面にはイメージセンサ制御電気部品121が固定されている。円形回路基板(3)130の表面には送信アンプ等の送信電気部品131および電源スイッチ132が固定され、裏面にはバッテリー101を押さえ込むためのバッテリー用圧縮バネ133が固定されている。これらの円形回路基板110、120、130は帯状の接続ストリップ基板150で接続され、この裏面に有する導電部材で結線されている。円形回路基板(3)130にはさらに表面に送信アンテナ141を配置したアンテナ基板140が接続している。アンテナ基板140の長さは主プロック10の電気要素保持筒13の円周長とほぼ等しく、裏面には送信によるノイズを防止するためにシールドが施されている。これら複数部分を連結した形状の回路基板100を、円形回路基板(1)110、円形回路基板(2)120、円形回路基板(3)130が平行になるように折り曲げると略円柱状となり、主プロック10の電気要素保持筒13内に各電気系部品を効率良く収納することができる。図3は、スペーサ102とバッテリー101を組み込んだ、主プロック10に収納状態の回路基板100である。このような形状とした回路基板100は電気要素保持筒13に内蔵され、図5に示すようにかしめ突起14で固定される。

【0014】図6に外装ケース50を示す。外装ケース50は前方を覆う透明カバー17と後方を覆う後端部が

半球状をなす筒状カバー55とからなる。筒状カバー55の半球状部51には水密保持可能なOリング53を有する貫通孔52が設けてあり、この貫通孔52から外部に電源スイッチ132が突出する(図7)。貫通孔52から突出した電源スイッチ132を押しこむと、カプセル内視鏡の電源が入る構造になっている。

【0015】カプセル内視鏡は体腔内に嚥下されるものであるので、この半球状部51のような丸みが不可欠であるが、従来このような丸みのある部分には部品を収納しにくく、スペースが無駄になることが多かった。本実施形態では、筒状カバー55に回路基板100を保持した主プロック10を収納すると、半球状部51の内部に円形回路基板(3)130上に設けた送信電気部品131、電源スイッチ132がスペースの無駄なく配置することができる。

【0016】以上に述べた主プロック10と回路基板100、および外装ケース50は、主プロック10に回路基板100を固定し、これを外装ケース50に収納し透明カバー17と筒状カバー55を水密に接着するとカプセル内視鏡とすることができます。以下にその組み立てについて説明する。

【0017】各電気系部品を実装した回路基板100は、サブアッセンブリされた主プロック10(電気要素保持筒13)に対して次のように結合される。回路基板100は単に折り曲げただけでは戻ってしまい形状が安定しないので、円形回路基板(1)110と円形回路基板(2)120の間に円筒状のスペーサ102を挟みこんで接着する。スペーサ102の外径は電気要素保持筒13の内径に対応している。この円形回路基板(1)110と円形回路基板(2)120およびスペーサ102を電気要素保持筒13に収納し、さらにバッテリー101を円形回路基板(2)120と円形回路基板(3)130の間に挟むように収納する。バッテリー101の外径は電気要素保持筒13の内径に対応し、円形回路基板(2)120と円形回路基板(3)130との間のスペーサの役割も果たしている。バッテリー用圧縮バネ133を押さえ込みながらかしめ突起14を倒して固定すると、このバッテリー用圧縮バネ133によって円筒状になった回路基板100と電気要素保持筒13が押しつけられ、各電気接点部分が安定して接続する。すなわち、発光ダイオード30と円形回路基板(1)110が接して発光ダイオード30に電力供給が可能になる。またイメージセンサ111は、圧縮バネ133で電気要素保持筒13の壁面に押しつけられて光軸に対し垂直に固定される。図5に、回路基板100を保持した主プロック10を示す。さらに、電気要素保持筒13の外周にアンテナ基板140を巻きつけて、この主プロック10および回路基板100を外装ケース50(筒状カバー55)に挿入すると、アンテナ基板140は、電気要素保持筒13と筒状カバー55とのわずかなスペースを効率良く利

用して収納される。

【0018】対物レンズ鏡筒20のピント調整作業は、外装ケース50に主ブロック10全体を収納し固定する前に行う。図6に示すように、主ブロック10の前方に透明カバー17を固定し、主ブロック10（レンズ保持筒12）の調節穴（治具挿入穴）15から調整用治具を挿入し、対物レンズ鏡筒20の溝21を利用して対物レンズ鏡筒20を光軸方向に進退移動させ、ピント調整終了後に固定ネジ16を本締めして対物レンズ鏡筒20を固定する。

【0019】回路基板100を保持して外周にアンテナ基板140を巻きつけ、透明カバー17を固定した主ブロック10を筒状カバー55に収納し、筒状カバー55と透明カバー17を水密に接着すると、半球状部51には、送信電気部品131と電源スイッチ132がスペース効率良く内蔵される（図7）。上述のようにこのカプセル内視鏡は、回路基板100、主ブロック10、外装ケース50の3ブロックからなる構成となっているため組み立て作業が容易であり、筒状カバー55と透明カバー17の接合を水密にするだけで、カプセル全体の水密性を保つことができる。

【0020】本カプセル内視鏡の使用について図1を参考に説明する。まず電源スイッチ132を押しこんでカプセル内視鏡の電源をオンにしたのち、被験者にこのカプセル内視鏡を嚥下させる。体腔内では押しのけられた管腔が透明カバー17に密着し、この透明カバー17の表面に密着した部位が観察範囲となる。観察範囲は図1に示すように、対物レンズ22を挟んで対称に設けられた発光ダイオード30によって照明されている。照明された被写体の像は対物レンズ22によってイメージセンサ111上に結像し、イメージセンサ制御電気部品121から画像信号として出力される。この画像信号は送信電気部品131で加工され、送信アンテナ141から送信されて体外の受信手段により受信されて観察できる。

【0021】本実施形態では回路基板100は1枚の基板であるが、回路基板100を図11のように複数枚に分割し、アンテナ基板140以外を主ブロック10に収納した後に送信アンテナ141を接続すれば、回路基板100の組み立て作業が行いやすくなる。また、電源スイッチ132は一度オンにしたら戻らない（オフにできない）構造であり、外装ケース50の各部品を接着してある、バッテリー交換が不可能な使い捨てタイプであるが、もちろん、再利用可能な構造とすることも可能である。本実施形態のように透明カバー17を主ブロック10側の部材として、まずこれら透明カバー17と主ブロック10を接着してもよいが、透明カバー17を外装ケース50側の部材と考え、組み立ての最終段階で筒状カバー55と透明カバー17を接着すれば、接着作業は一度ですむという利点がある。

【0022】

【発明の効果】複数の回路基板上に効率良く部品を配置したことにより、カプセル内のスペースを有効に使い、小型で組み立て作業性のよいカプセル内視鏡が実現可能となった。

【図面の簡単な説明】

【図1】本発明の実施形態を示すカプセル内視鏡の断面図である。

【図2】主ブロックの断面図である。

【図3】電気要素保持筒に収納された状態の回路基板を示す側断面図である。

【図4】回路基板の展開図である。

【図5】回路基板を収納した主ブロックを示す側断面図である。

【図6】外装ケースを固定する前のカプセル内視鏡である。

【図7】図1と別の断面を示す断面図である。

【図8】図7におけるVII-VIII断面矢視図である。

【図9】図7におけるIX-IX断面矢視図である。

【図10】図7におけるX-X断面矢視図である。

【図11】別の実施形態における回路基板の展開図である。

【符号の説明】

10	主ブロック
11	照明体支持板部
12	レンズ保持筒
13	電気要素保持筒
14	かしめ突起
15	調節穴（治具挿入穴）
16	固定ネジ
17	透明カバー
20	対物レンズ鏡筒
21	対物レンズの溝
22	対物レンズ
30	照明手段（発光ダイオード）
31	リード
50	外装ケース
51	半球状部
52	貫通孔
53	○リング
55	筒状カバー
100	回路基板
101	バッテリー
102	スペーサ
110	円形回路基板（1）
111	イメージセンサ
112	イメージセンサ窓
120	円形回路基板（2）
121	イメージセンサ制御電気部品
130	円形回路基板（3）
131	送信電気部品

132 電源スイッチ
133 バッテリー用圧縮バネ
140 アンテナ基板

141 送信アンテナ
150 接続ストリップ基板
L アンテナ基板の長さ

【図1】

【図9】

【図2】

【図3】

【図8】

【図4】

【図10】

【図5】

【図7】

【図6】

【図11】

フロントページの続き

(72)発明者 中村 哲也

東京都板橋区前野町2丁目36番9号 旭光
学工業株式会社内

(72)発明者 伏見 正寛

東京都板橋区前野町2丁目36番9号 旭光
学工業株式会社内

(72)発明者 中西 太一

東京都板橋区前野町2丁目36番9号 旭光
学工業株式会社内

(72)発明者 江口 勝

東京都板橋区前野町2丁目36番9号 旭光
学工業株式会社内

(72)発明者 大原 健一

東京都板橋区前野町2丁目36番9号 旭光
学工業株式会社内

Fターム(参考) 2H040 BA24 DA00 DA11 GA02

4C038 CC03 CC05 CC09

4C061 AA00 BB02 CC06 DD00 FF40

JJ06 JJ19 LL02 NN01 NN03

PP06 PP11 SS01 UU06