Predicción de abandonos en cursos online masivos y abiertos

Manuel Alejandro Bacallado López

Trabajo Final de Grado
II Congreso de Estudiantes de Informática de la Universidad de
La Laguna
Escuela Superior de Ingeniería y Tecnología

30 de Noviembre de 2016

- Introducción
- 2 Antecedentes y estado actual del tema
- Objetivos
- 4 Fundamentos de minería de datos
- 6 Herramientas utilizadas
- 6 Aplicación software
- Caso de estudio
- 8 Conclusiones
- Líneas futuras
- Bibliografía

- Introducción
- 2 Antecedentes y estado actual del tema
- Objetivos
- 4 Fundamentos de minería de datos
- Herramientas utilizadas
- 6 Aplicación software
- Caso de estudio
- 8 Conclusiones
- ① Líneas futuras
- Bibliografía

Introducción

- El proyecto planteado está basado en un problema real:
 - Los cursos online masivos y abiertos se realizan por todo el mundo.
 - Muchos alumnos se inscribirán a estos cursos debido a su bajo coste y gran cantidad de materiales disponibles, pero no llegarán a terminarlos.
- Se analizarán los datos del problema para realizar una clasificación de los alumnos matriculados en los cursos, prestando atención a su abandono o finalización con éxito.
- La predicción se llevará a cabo mediante técnicas de minería de datos, ya que este proceso manual es lento y subjetivo.

- Introducción
- Antecedentes y estado actual del tema
- Objetivos
- 4 Fundamentos de minería de datos
- Herramientas utilizadas
- 6 Aplicación software
- Caso de estudio
- 8 Conclusiones
- ① Líneas futuras
- Bibliografía

Antecedentes y estado actual del tema

- Los datos provienen del desafío KDD Cup 2015 (Predicting dropouts in MOOC)
- KDD Cup es una competición a nivel mundial de minería de datos y descubrimiento de conocimiento.
- Organizado por la ACM (Association of Computing Machinery).
- Vigencia desde 1997-Actualidad.
- Cada año se realiza el mismo proceso:
 - Habilitan los datasets con la información a tratar.
 - Instrucciones a seguir (Plazos de entrega, objetivos a cumplir).
 - Premio en \$ para los primeros puestos.

Antecedentes y estado actual del tema

- Los datos se estructuran en las siguientes tablas:
 - date.csv
 - object.csv
 - enrollment_train.csv enrollment_test.csv
 - log_train.csv log_test.csv
 - truth_train.csv

Indice

- Introducción
- 2 Antecedentes y estado actual del tema
- Objetivos
- 4 Fundamentos de minería de datos
- Herramientas utilizadas
- 6 Aplicación software
- Caso de estudio
- 8 Conclusiones
- <u>Uneas futuras</u>
- Bibliografía

Objetivos

- Los objetivos de este proyecto se constituyen en:
 - Realizar una clasificación sobre los alumnos matriculados en los cursos online masivos y abiertos.
 - Utilizar herramientas de software libre para:
 - Crear una aplicación en Java que use los operadores internos de la aplicación RapidMiner Studio 7.0.
 - Almacenamiento de los datos iniciales en un base de datos y creación de tablas con conocimiento nuevo generado(Ingeniería de características).
 - Técnicas de ingeniería del software para un desarrollo profesional de la aplicación.

- Introducción
- 2 Antecedentes y estado actual del tema
- Objetivos
- 4 Fundamentos de minería de datos
- 6 Herramientas utilizadas
- 6 Aplicación software
- Caso de estudio
- 8 Conclusiones
- Líneas futuras
- Bibliografía

Fundamentos de minería de datos

 Se define como el proceso de extraer conocimiento útil y comprensible desde grandes cantidades de datos almacenados en distintos formatos.

Fundamentos de minería de datos

- Tareas
 - Predictivas: Predecir uno o más valores para uno o más casos.
 Los casos van acompañados de una etiqueta(clase, categoría o valor numérico).
 - Clasificación: Cada registro en la base de datos pertenece a una clase, la cual se establece mediante el valor de un atributo denominado clase de la instancia
 - Descriptivas: Los casos constituyen un conjunto sin etiquetas.
 El objetivo es describir los datos existentes.
- Técnicas
 - Árboles de decisión
 - Casos y vecindad(K-nn)
 - Técnicas probabilistas(Naive Bayes)

- Introducción
- 2 Antecedentes y estado actual del tema
- Objetivos
- 4 Fundamentos de minería de datos
- 6 Herramientas utilizadas
- 6 Aplicación software
- Caso de estudio
- 8 Conclusiones
- <u>Uneas futuras</u>
- Bibliografía

Herramientas utilizadas

- SGBD Maria DB
- Apache Maven
- Biblioteca de clases de RapidMiner Studio 7.0
- Java
- Eclipse
- Git
- Github
- Doxygen
- JUnit

- Introducción
- 2 Antecedentes y estado actual del tema
- Objetivos
- 4 Fundamentos de minería de datos
- Herramientas utilizadas
- 6 Aplicación software
- Caso de estudio
- 8 Conclusiones
- <u>Uneas futuras</u>
- Bibliografía

Aplicación software

- La aplicación software ha sido realizada utilizando:
 - Java y Swing.
 - Los operadores internos de RapidMiner Studio 7.0.
 - Patrones de diseño:
 - Patrón Observador(Observer Pattern).
 - Patrón Estrategia(Strategy Pattern).
 - Patrón Modelo-Vista-Controlador (MVC Pattern).

Aplicación software

• La aplicación software presenta la siguiente estructura:

Indice

- Introducción
- 2 Antecedentes y estado actual del tema
- Objetivos
- 4 Fundamentos de minería de datos
- Herramientas utilizadas
- 6 Aplicación software
- Caso de estudio
- 8 Conclusiones
- <u>Uneas futuras</u>
- Bibliografía

Caso de estudio

- Previamente a la generación de nuevas características se han realizado varias tareas:
 - Se han renombrado las tablas iniciales al castellano para una mejor comprensión.
 - Se eliminó la duplicidad de los registros en las tablas.
 - Se eliminaron atributos en las tablas que no aportaban información relevante.
 - Se analizó la tabla resultados_train.csv(truth_train.csv) para comprobar el número de abandonos sin realizar minería de datos, teniendo el valor 1 si abandona y valor 0 si continúa:
 - El número total de registros es de: 120.542.
 - El número de alumnos que abandonan es de: 95.581.
 - El número de alumnos que no abandonan es de: 24.691.

Caso de estudio

- La generación de nuevo conocimiento se ha producido mediante una batería de cuestiones. A continuación se expondrán las más relevantes:
 - ¿Cuántos alumnos hay por curso?
 - ¿Cuántos cursos tiene un alumno?
 - ¿Cuántos alumnos de un curso aprobaron?
 - ¿Cuántos cursos aprobó un alumno?
 - ¿Número de días en los que un alumno accede a un curso?
 - ¿Número de cursos simultáneos que tiene un alumno en un determinado mes?
 - ¿Número de días entre el primero y último acceso por inscripción?

Caso de estudio

 Los atributos seleccionados para la creación de la vista minable son:

Usuario	Curso_Id	NEDV	Rango	RangoCurso	NMV	NM	NTA	CS	Resultado
1qXC7Fjbwp66GPQc6pHLfEuO8WKozxG4	7GRhBDsirIGkRZBtSMEzNTyDr2JQm4xx	9	28	29	99	699	6	1	0
1ELMItXjpijnCZU4WKxvrVri8AjkR2gf	AXUJZGmZ0xaYSWazu8RQ1G5c76ECT1Kd	5	15	29	49	264	6	1	0
0K6JPgiivQzicxY4EV4nqMLCL3a08A97	DPnLzkJJqOOPRJfBxIHbQEERiYHu5ila	11	25	29	77	398	7	1	0
088SASUPOVYUGhoEly8vlrkGvRBJoNwp	7GRhBDsirIGkRZBtSMEzNTyDr2JQm4xx	18	29	29	101	699	7	2	0
0XSMtliXiWzvML1r2AHrvvzWxbczqfFP	DPnLzkJJqOOPRJfBxIHbQEERiYHu5ila	13	22	29	59	398	7	1	1
1h4cVFonLTW8vs6Jg6kDELHITwYJukUb	TAYxxh39I2LZnftBpL0LfF2NxzrCKpkx	1	0	29	2	333	1	1	1
0U6Ls9kSlXfs9NGu5KLvjyV4KJIOnn33	AXUJZGmZ0xaYSWazu8RQ1G5c76ECT1Kd	8	17	29	66	264	7	1	0
1T8ttUcZNn49U0rZpO9wSozsY7mAk229	DPnLzkJJqOOPRJfBxIHbQEERiYHu5ila	8	24	29	39	398	7	1	0
0fEolC14nqwTVtr21LrdveqXhccEiQPz	TAYxxh39I2LZnftBpL0LfF2NxzrCKpkx	10	19	29	45	333	7	2	1
0SiWaSfGyO3je3Wq0u3MOT4Rr4grcqL3	DPnLzk3JqOOPRJfBxIHbQEERiYHu5ila	10	16	29	55	398	7	1	0

Caso de estudio

 El proceso resultante en RapidMiner Studio 7.0 para resolver el caso de estudio es el siguiente:

Caso de estudio

• El resultado utilizando RapidMiner Studio 7.0 es el siguiente:

Caso de estudio

- Los resultados utilizando los algoritmos en la aplicación software son los siguientes:
 - Árbol de decisión:

Criterion	Value	Standard Deviation	Variance
accuracy	0.8549684	148789959	

K-nn:

Criterion	Value	Standard Deviation	Variance
accuracy	0.8950488	8870397337	

• Naive Bayes:

Criterion	Value	Standard Deviation	Variance
accuracy	0.8474100	0270438943	

Indice

- Introducción
- 2 Antecedentes y estado actual del tema
- Objetivos
- 4 Fundamentos de minería de datos
- Herramientas utilizadas
- 6 Aplicación software
- Caso de estudio
- 8 Conclusiones
- Líneas futuras
- Bibliografía

Conclusiones

 Con este trabajo se ha profundizado en el fantástico mundo de la minería de datos, realizando un caso práctico para los cursos online masivos y abiertos y desarrollando una aplicación en Java utilizando los operadores internos de RapidMiner Studio 7.0.

Ambos son temas de actualidad, los cursos online por la facilidad de inscripción y su bajo coste y la minería de datos por su continuo crecimiento y resolución de problemas enfocados a cualquier ámbito.

Indice

- Introducción
- 2 Antecedentes y estado actual del tema
- Objetivos
- 4 Fundamentos de minería de datos
- Herramientas utilizadas
- 6 Aplicación software
- Caso de estudio
- 8 Conclusiones
- Líneas futuras
- Bibliografía

Líneas futuras

- La inclusión en la aplicación de más operadores de RapidMiner Studio 7.0 o versiones más actualizadas.
- La visualización de resultados gráficamente, ya sea utilizando las facilidades proporcionadas por las librerías de clases de RapidMiner Studio 7.0 o creándola desde cero o con ayuda de otras herramientas de visualización.
- Plantear la creación de una aplicación web que utilice los operadores de RapidMiner Studio 7.0 o versiones más actualizadas.
- Modificar la interfaz gráfica de usuario para que sea del estilo "Drag and Drop".

- Introducción
- 2 Antecedentes y estado actual del tema
- Objetivos
- 4 Fundamentos de minería de datos
- 5 Herramientas utilizadas
- 6 Aplicación software
- Caso de estudio
- 8 Conclusiones
- ① Líneas futuras
- Bibliografía

Bibiliografía

- SGBD Maria DB. https://mariadb.org/
- Apache Maven. https://maven.apache.org/
- Biblioteca de clases de RapidMiner Studio 7.0.
 https://github.com/rapidminer/rapidminer-studio
- Java. https://www.java.com/es/
- Eclipse. https://eclipse.org/
- Git. https://git-scm.com/
- Github. https://github.com/

Bibiliografía

- Javadoc. http://www.oracle.com/technetwork/articles/java/index-jsp-135444.html
- Doxygen. http://www.stack.nl/ dimitri/doxygen/
- JUnit. http://junit.org/junit4/
- Observer Pattern. E. Freeman, E. Freeman. Head First Design Pattern, O'Reilly, 2004.
- Strategy Pattern. E. Freeman, E. Freeman. Head First Design Pattern, O'Reilly, 2004.
- MVC Pattern. E. Freeman, E. Freeman. Head First Design Pattern, O'Reilly, 2004.

Fin

Gracias por su atención.

E-mail: manuelbacallado89@gmail.com