Universidade do Minho

24 de novembro de 2020

$1^{\underline{o}}$ Teste de

Computabilidade e Complexidade

Lic. Ciências da Computação

Duração: 2 horas

Este teste é constituído por 5 questões. Todas as respostas devem ser devidamente justificadas.

1. Seja $A = \{a, b\}$. Considere a máquina de Turing

$$\mathcal{T} = (\{0, 1, 2, 3, 4, 5\}, A, A \cup \{\Delta\}, \delta, 0, 5, \Delta)$$

onde a função transição δ é definida pela tabela seguinte:

δ	a	b	Δ
0			$(1, \Delta, D)$
1	(2, a, D)	(2, a, D)	$(3, \Delta, E)$
2	(1, a, D)		$(4, \Delta, E)$
3	(3, a, E)		$(5, \Delta, C)$
4	$(4, \Delta, E)$		$(5, \Delta, C)$

A máquina \mathcal{T} calcula uma função parcial $g: A^* \to A^*$.

- a) Represente \mathcal{T} graficamente.
- **b)** Indique a sequência de configurações que podem ser computadas a partir da configuração $(0, \underline{\Delta}aababaa)$.
- c) Identifique o domínio D da função g.
- d) Para cada elemento $u \in D$, determine a palavra g(u).
- 2. Seja $A = \{a, b\}$. Mostre que a função parcial

$$g: A^* \times A^* \longrightarrow \mathbb{N}_0$$

$$(u, v) \longmapsto \begin{cases} |u| & \text{se } |u| \leq |v| \\ \text{n.d. senão} \end{cases}$$

é Turing-computável.

3. Seja A o alfabeto $\{a,b\}$. Considere a linguagem

$$L = \{a^{n+2}ba^{2n+1} : n \in \mathbb{N}_0\}.$$

- a) Construa uma máquina de Turing que reconheça L e descreva informalmente a estratégia dessa máquina.
- **b)** A linguagem L é recursiva?

4. Seja $A = \{a, b, c\}$ e seja \mathcal{T} a seguinte máquina de Turing sobre A com duas fitas (onde $x \in \{a, b\}$),

- a) Indique a sequência de configurações que podem ser computadas a partir da configuração $(0, \Delta abaacaab, \Delta)$ e diga se a palavra abaacaab é aceite por \mathcal{T} .
- b) Para que palavras $u \in A^*$, $(0, \underline{\Delta}u, \underline{\Delta})$ é uma configuração de ciclo?
- c) Para que palavras $v \in A^*$, a partir de $(0, \underline{\Delta}v, \underline{\Delta})$ pode ser computada uma configuração de rejeição?
- d) Identifique a linguagem L reconhecida por \mathcal{T} .
- 5. Diga, justificando, quais das afirmações seguintes são verdadeiras e quais são falsas.
 - (a) Se $\mathcal T$ é uma máquina de Turing sobre o alfabeto A que reconhece A^* , então $\mathcal T$ é um
 - **b)** Existe uma máquina de Turing normalizada \mathcal{T} e uma transição e de \mathcal{T} tal que c'(e) =
 - C) Se L e K são linguagens recursivas, então $L \cup \overline{K}$ é recursivamente enumerável.
 - \bigcirc Se \mathcal{T}_1 e \mathcal{T}_2 são máquinas de Turing tais que $L(\mathcal{T}_1)=a^*$ e $L(\mathcal{T}_2)=b^*$, então a linguagem reconhecida pela composição sequencial $\mathcal{T}_1 \longrightarrow \mathcal{T}_2$ é \emptyset .

(FIM)

 $\text{Cotação:} \left\{ \begin{array}{l} \textbf{1.} & 4,5 \text{ valores } (1+1+1,25+1,25) \\ \textbf{2.} & 2 \text{ valores} \\ \textbf{3.} & 3,5 \text{ valores } (2,25+1,25) \\ \textbf{4.} & 5 \text{ valores } (1,25+1,25+1,25+1,25) \\ \textbf{5.} & 5 \text{ valores } (1,25+1,25+1,25+1,25) \end{array} \right.$