

SEQUENCE LISTING

<110> ISHIWATA, TETSUYOSHI
SAKURADA, MIKIKO
KAWABATA, AYAKO
NAKAGAWA, SATOSHI
NISHI, TATSUNARI
KUGA, TETSURO
SAWADA, SHIGEMASA
TAKEI, MASAMI
SHIBATA, KENJI
FURUYA, AKIKO

<120> IgA NEPHROPATHY-ASSOCIATED GENE

<130> 766.21 CIP

<140> US 09/730,559
<141> 2000-12-07

<160> 121

<170> PatentIn Ver. 2.0

<210> 1
<211> 4276
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (53)..(742)

<400> 1

ttctaccgtt tttccctgc tttctattcc aggtcagtct tcactgttc cg atg gaa 58
Met Glu
1

gat gga ttc ttg gat gat ggc cgt ggg gat cag cct ctt cat agt ggc 106
Asp Gly Phe Leu Asp Asp Gly Arg Asp Gln Pro Leu His Ser Gly
5 10 15

ctg ggt tca cct cac tgc ttc agt cac cag aat ggg gag aga gtg gaa 154
Leu Gly Ser Pro His Cys Phe Ser His Gln Asn Gly Glu Arg Val Glu
20 25 30

DRAFT

cga tat tct cga aag gtg ttt gta ggc gga ttg cct cca gac att gat Arg Tyr Ser Arg Lys Val Phe Val Gly Gly Leu Pro Pro Asp Ile Asp	35	40	45	50	202
gaa gat gag atc aca gct agt ttt cgt cgc ttt ggc cct ctg att gtg Glu Asp Glu Ile Thr Ala Ser Phe Arg Arg Phe Gly Pro Leu Ile Val	55	60	65		250
gat tgg cct cat aaa gct gag agc aaa tcc tat ttt cct cct aaa ggc Asp Trp Pro His Lys Ala Glu Ser Lys Ser Tyr Phe Pro Pro Lys Gly	70	75	80		298
tat gca ttc ctg ctg ttt caa gat gaa agc tct gtg cag gct ctc att Tyr Ala Phe Leu Leu Phe Gln Asp Glu Ser Ser Val Gln Ala Leu Ile	85	90	95		346
gat gca tgc att gaa gaa gat gga aaa ctc tac ctt tgt gta tca agt Asp Ala Cys Ile Glu Glu Asp Gly Lys Leu Tyr Leu Cys Val Ser Ser	100	105	110		394
ccc act atc aag gat aag cca gtc cag att cg ^g cct tgg aat ctc agt Pro Thr Ile Lys Asp Lys Pro Val Gln Ile Arg Pro Trp Asn Leu Ser	115	120	125	130	442
gac agt gac ttt gtg atg gat ggt tca cag cca ctt gac cca cga aaa Asp Ser Asp Phe Val Met Asp Gly Ser Gln Pro Leu Asp Pro Arg Lys	135	140	145		490
act ata ttt gtt ggt ggt cct cga cca tta cga gct gtg gag ctt Thr Ile Phe Val Gly Gly Val Pro Arg Pro Leu Arg Ala Val Glu Leu	150	155	160		538
gcg atg gta atg gat cgg cta tac gga ggt gtg tgc tac gct ggg att Ala Met Val Met Asp Arg Leu Tyr Gly Gly Val Cys Tyr Ala Gly Ile	165	170	175		586
gat acc gac cct gag cta aaa tac cca aaa gga gct ggg aga gtt gcg Asp Thr Asp Pro Glu Leu Lys Tyr Pro Lys Gly Ala Gly Arg Val Ala	180	185	190		634
ttc tct aat caa cag agt tac ata gct gct atc agt gcc cgc ttt gtt Phe Ser Asn Gln Gln Ser Tyr Ile Ala Ala Ile Ser Ala Arg Phe Val	195	200	205	210	682
cag ctg cag cat gga gag ata gat aaa cgg gta agc ctt ata cta cat Gln Leu Gln His Gly Glu Ile Asp Lys Arg Val Ser Leu Ile Leu His					730

215

220

225

ttt gga aaa ttc tagaaatggc cctctaaatg tgtgattacc aatattagaa 782
 Phe Gly Lys Phe
 230

cgggagcatt ttatgacaat aaagtgcac ag ctgacaattt tgccataga gttaattatg 842
 gtctataata catgaaataa tgtcctatga atttctttt tcttcagtt ttttgagtag 902
 cctaätcaga acactacaat ttacttgagt taatttaatc ttctctaact tccattcaat 962
 ctc当地ccat ccgtccattc attcacttag tttgtaagtc attcaataaa tatattactga 1022
 atcctttgtt ctgtgttata tcaagtatac aaacaggaat gcccttgagg tttcctgccc 1082
 tttttttgtt ttgttttta atcctggac atagggaga cctcagcaag ccctatttct 1142
 caatgaattt tactcacaga tttttttttt ttttttttt tcttttcca cagccgccac 1202
 ctctcaccga tttattcctt agcttggtgt ttcatgtatt caacaaacgt ttttagtgctt 1262
 agggcaagaa gttcctgtcc tcatgagttt atttccttagc agatagaact gtatcactt 1322
 ccagttactac tcagagtgtg gcctgtggac tgacctccag tctgtaaact tagttgttag 1382
 tgagatagga atttagacca gaatgtgtaa tcaaccacat tactggcac aatgtttgg 1442
 ccagctggcg attttttttt catagaaagc ctttattgtat gagggaaagca atatattgtat 1502
 ttatattttt gggcacctt tttatttcat ggcacactgg cactttcatg catgctgact 1562
 ttgatatatcca tcactctgag gcatttgctt aaaatagatt gattttatcg tggatgttc 1622
 aattcaagat gtaaaaatca tcaagtcagt agcagttttt gcttttatg tttcatgtca 1682
 tgtacagtct acttcactgg cagaaaaaaa attaaagata gtgggtgtca tcctacaaac 1742
 tgtgaatcta ttaaagagaa aagtatctgt tctattctaa gcatggggga gggacaagat 1802
 tagtatgtta acatgcctac tttgtttgtt tgagatggag tctctctccg tcaccaggc 1862
 tggagtgcag tggtacagt tcagctact ccaacctctg cctccgggt tcaagtgatt 1922
 ctcctgcctt agcctccga gtaggtggaa ttacaggcat ataccaccat gcccacaaa 1982

D
9
8
7
6
5
4
3
2
1

tgttgttatt tttagtgag acagggttc accgtgtgg tcaggccagt ttcaaactcc 2042
tgacctcaag ggatccacct gcctcacccc ctcaaagtgc tgggattaca ggcattgagcc 2102
acccaccatg cctggcctac ttggttttt atgcacacta aaaaatacct acatctact 2162
gccttattcc aacataagtt tcagagctgt gggattggtc attagaaatt cagactgaat 2222
ttgtgttcct ctgcaatgaa atccttgcc cagtgttcat gtcactctgt agacattatg 2282
gagcagccta gaggccagaa gcccagtgtc ctccttatgc ctgctctcc tgggcttcgt 2342
gacactcttc ttctccttt gtactttat ttttttagtt aaaaaatttt ttttagaggg 2402
agggtctcac tctgtcaccc aggctggagc acagaatcac aatcatgact cactgcatgt 2462
tcttctcctt ttgttcatgg ctaatcttgg tcaggattcc ttgtcagagc tgggtggcac 2522
cagtgcttgt gacagcctgc tgtaagggag tttcagccat gaatctctcc agactaaaaa 2582
taaccagctc ttttctagct gatgaattaa taaccaggtg actgttaatg cttgaaaggt 2642
tcacatgaca gtttggccga tagaacgctg gaacaggccc agttttagaa attcacctct 2702
gactttaga ctcaggtgaa ccattcttac tgagaaagaa caaagcaggg ttttagactg 2762
tgaatcctat ggctgcacatct ttttttttt ttaacagag ttccaggtt gtgattataa 2822
cccaacatgt gtacactata aatagaaacc acgagccagg cttttacga cagctcagaa 2882
tcttgtgacg cagtagtcag gcacatccac accgacttga atattgaagt gcagttgtgt 2942
ggaacttgga tcatcttagt tgattttgtt taaattatga ttccacatata gacaaaaatc 3002
cagatccact aattaaaatg agggttttagt tctatgaata atctcctgtg gtttaatct 3062
cataacattc tagtctaaac agttggcttc acttcatgat gtctgctcaa atccttttc 3122
ctttaaagga tgtttattta ataagaaaaa aaatgtaaaa tgatagataa taaaagcctt 3182
actaggttct taaaagatga actatccata tttcagtaaa tgaataatta gtccttcctc 3242
tttgggcacc ttggaacaga ttcattcaga tagtgggtgg aatgtacat gtatggtaag 3302
cattgctggc ctagtcactg aaaaatgtaa actcttattt ttgattgcag gtggaagtta 3362

DNA sequence analysis

agccatatgt cttggatgat cagctgtgtg atgaatgtca gggggccccgt tgtgggggga 3422
aatttgctcc atttttctgt gctaatgtta cctgtctgca gtattactgt gaatattgct 3482
gggctgctat ccattctcgt gctggcaggg aattccacaa gcccccgtg aaggaaggcg 3542
gtgaccgccc tcggcatatt tcattccgct ggaactaaag gataactgca gtgctcattt 3602
tcaggcctca gaataagtgc actcttctgt tcattctgac cccttcctca acctcttcac 3662
gctggcatgt cctttttag cagtctgtaa cttaactata gtataatgaa aagaatgacc 3722
tataatata tag gtgtttgtt gattcttgc tcaactgcaaa caatatgaac tccttttcg 3782
tattgccatc gggttgcatg gaagtttat tctcttgc ttgtggaaac caagaggatc 3842
caaacttcct gcaacattt ctttagaggag agagagaaat attaaaagag aaatgaaaca 3902
atagagtatt ttgggtttt aattaaatta ttgttaataa tataacatata aagaataactt 3962
ttattaaaat aaccatgcaa caataacact atcggtctat ctgacagttt ttcccccagg 4022
gaagtgc ttttgcctttcc tttttttttt ttttttttc atcttttttgc ttctctctct 4082
ttttccatc ctttttaat ttttttaaca gcaatggagg aagttacaa tttttatgg 4142
aaagagcatg ttagagcaaa caaatgcata agcaagactg agcagcatta taattaattt 4202
tcagggtttt gaggctgaac ataatttcat tatccctcaa aaagttacca ccacatcaga 4262
aaaaaaaaaa aaaa 4276

<210> 2
<211> 2689
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (107)..(535)

<400> 2
gttggagggtt ctggggcgca gaaccgctac tgctgcttcg gtcttcctt gggaaaaat 60
aaaatttcaa cttttggag ctgtgtgcta aatcttcagt gggaca atg ggt tca 115

Met Gly Ser
1

gac aaa aga gtg agt aga aca gag cgt agt gga aga tac ggt tcc atc 163
Asp Lys Arg Val Ser Arg Thr Glu Arg Ser Gly Arg Tyr Gly Ser Ile
5 10 15

ata gac agg gat gac cgt gat gag cgt gaa tcc cga agc agg cg agg 211
Ile Asp Arg Asp Asp Arg Asp Glu Arg Glu Ser Arg Ser Arg Arg Arg
20 25 30 35

gac tca gat tac aaa aga tct agt gat gag cgg agg ggt gat aga tat 259
Asp Ser Asp Tyr Lys Arg Ser Ser Asp Asp Arg Arg Gly Asp Arg Tyr
40 45 50

gat gac tac cga gac tat gac agt cca gag aga gag cgt gaa aga agg 307
Asp Asp Tyr Arg Asp Tyr Asp Ser Pro Glu Arg Glu Arg Glu Arg Arg
55 60 65

aac agt gac cga tcc gaa gat ggc tac cat tca gat ggt gac tat ggt 355
Asn Ser Asp Arg Ser Glu Asp Gly Tyr His Ser Asp Gly Asp Tyr Gly
70 75 80

gag cac gac tat agg cat gac atc agt gac gag agg gag agc aag acc 403
Glu His Asp Tyr Arg His Asp Ile Ser Asp Glu Arg Glu Ser Lys Thr
85 90 95

atc atg ctg cgc ggc ctt ccc atc acc atc aca gag agc gat att cga 451
Ile Met Leu Arg Gly Leu Pro Ile Thr Ile Thr Glu Ser Asp Ile Arg
100 105 110 115

gaa atg atg gag tcc ttc gaa ggc cct cag cct gcg gat gtg agg ctg 499
Glu Met Met Glu Ser Phe Glu Gly Pro Gln Pro Ala Asp Val Arg Leu
120 125 130

atg aag agg aaa aca ggt gag agc ttg ctt agt tcc tgatattatt 545
Met Lys Arg Lys Thr Gly Glu Ser Leu Leu Ser Ser
135 140

gttctttcc ccattccac ctcagtcct aaagaacatc ctgattcccc cagtctcaa 605

gcacatgaat tcagaatgaa aggttgcca tggctaagga atgtgactct ttgaaaacca 665

tgttagcatc tgaggaacct ttttaaactt tgtttaggg acttttttt ccttaggtaa 725

gtaatgattt ataaaactcct tttttttttt ttgactatag tcgggtgcatt gttacttta 785

0
0
0
0
0
0
0
0
0
0

agcgtggaat caaatggagt ggcatttagt tcaggcggct tgttccttgc catggcaaag 845
tatcaagaag atccccaaatg caagtcacat ttgttaaagct gcttccaaat tggctttgtc 905
acgcagtgtt gaagcagtgg gagagagatt cacctgttat aaaggaactg actaacacaa 965
gtatccggtc tatatactgaa tgctgtctct aggtgtaaac cgtggtttcg cttcgtgga 1025
gttttatcac ttgcaagatg ctaccagctg gatggaagcc aatcaggttg cttcactcac 1085
caagtctaga tattcatgaa aatggaacaa gtctgtacaa ttttaaaaaaa aggttgaagg 1145
agtggtttgt tccaaaggag tgactttttt ttaaaaaaaa aagctttgtatataaaaa 1205
ttgatgttac tagaataagt acagtaccaa ggacttcatt atagaatttg ttctgcctt 1265
aaacatggct acctacctgg cagggctttg ttaactactg aatacctgtc tggtatcac 1325
taaaacatct taatgtttcc ctttttcta gtttgttata ttcctattat gtccatttgag 1385
agtaagctta gtatatcaaa ctctccattt gacagtgaag agaacatagt gaaagtctgt 1445
ggcggcattt ttataagtaa ttccttattt ctgcctgaag accacaaagc ctcctggagg 1505
cgtaactgct cagaccggtc ttcaaggaaat attaaggac ttagtggaat ttatgaacaa 1565
taagtctgat gagatttagcc tgggagtggt gtcctgcagc tgtctaatct agtagttagt 1625
gcattaacat tctaattctcc ttgagaatgc ctttatagt ctgttcaaag caagtcattt 1685
atggttcttc gaggttgttactgaagt gttcttcagt ttgtcaagat aatgttcagt 1745
gcttggcact taaataacat ttttgcaag aactccaagg cacattattt aatgccttta 1805
accaagtgcata ttctggaaag tttgcttgac tcattatctt gctttctgc agcattctgt 1865
gattttagtc atccatgaat ccatgaataa aagttacatt ctttgattgg taatattgcc 1925
atttataaca agactcacta atgagggtat cactttgact gactgatttg ttaaagttt 1985
taagcctctc atttcctaa cccagaaatc acagcctgat tttatataaaa gtagagcttc 2045
attcatttca taccatagat accatcctag taaatccaga acatatacaa ggttcatgtg 2105
agtctgcttt ctgacatga tagcattgtt tgatgcagt gatatgtcag aatgactaac 2165

ctaggagttt aaaactccta agaaaactaaa acctgtaaga cattaaaaag tctccacaat 2225
tttaatgtat acaaagctat gttactgtgt aacacattac agttcaaatt cactccagaa 2285
ataaaaaggcc agtaggatTA gggactcaCT ggtagTTTgg agtctcccAG cacacatccc 2345
tccttagtgGG atgatctatt cacatATctC ccagCTTTT tatTTTgCT tctgtatATC 2405
acagtgagtg gatggccCTT cagCTTTTC tctcCTggCC agacatgcAG tcttgCCttt 2465
agatATcgCA gagacaaaAT tcacAGcatG tcttaaATct tccaggATT gcaagaacCA 2525
aattgctCAA cagtatgtat gtttagaggg gttAGACTCC ttttAAAt ctggatATct 2585
aaccacCTAC ttaaATctGT ttgatAGtGT caaACCACCC ccaccCTtGA tcctcccAcc 2645
ccccaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaa 2689

<210> 3
<211> 2981
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (1297)..(1608)

<400> 3
cctctctctc tcttcacAG agtcttgCTC tgTCGCCAG gCTggAGtGC agtggcacAA 60
tctcaCTgCA agtCCGcCT cCTgggttCA CGCATTCTC CTgCCTCAGC CTCCAAATA 120
gCTggacAA caggCACCTG CCACCACGCC CGGCTAATTt tttgtatTTT tagtagAGAC 180
agggtttcac catgttagCC aggtAGGTCT caatCTCTG acCTCGTgAT CCACCCGcCT 240
cAGCCTCCCA aagtGCTgAG attACAGGTG TGAGCCACCA CGCCAGCCA catCTTCTT 300
tctttCTTTT tggttttGT ttgttGTTG agACAGGGTC ttgCTCTGTC GCCCTGGCTC 360
acgtGAACCT CCCACCTCAG CCTCCCAAGT agCTGAGACC ACAGGTGTGA GCCACCACTC 420
CTGGGTAATG tttgtatTTT tttgtAGAGA TGGGGTTCA CGTGCTGCC CAGACTGCTC 480
tcaaACTCCT GGGCTCAAGT gatCCACCTG CCTGACCTC CTAAGTGT GGAATTACAG 540

Sequence 1

gtgtgagcca ccgtgctcag ccgagtgtct ttcttatgtt ttctgagcac gtggatttcc 600
atctctctgc attctctgtt catctcagcc tgtttgttcc attgagataa atgacttttt 660
cttggtaact tagagtactt tgtgtattt caggttaatc ccttatcaat ttatatcagt 720
tgctgctatc ttttcttaga ttttctttt cattttaaaa attacattgt ttcaatgaac 780
agaattttta agttttaacg tagtccactt tgtccatttt ctttatgacc ggtgcatttt 840
agggtcttgt ttaagaaatc gttcttatac ctgaggtcat aaagatagtc tactgtattt 900
tcttttaaga gctgaaaagg tgtttataat ttaatttatt tgggattggc ttttgtgtgg 960
tggggataag gatcacaatt ttatttcatt tttttccac ttggatatgc cagtggcccc 1020
atttccattt tttgaatagt ctttctgtgc agaaaagact tcactagcag agaagtccctg 1080
agacttaccc ttcaaaaggc cccattcaca aggctagcac ttggcgtgca tctgagaacc 1140
tggattttgg ggtggttcct ataatgtggt gtatgctgaa cacccacctt tccttctggg 1200
agtctggaat ttgggtataat gttggacaga ggctgcctaa gtgaccagct tcaacaacag 1260
ccctgggtgc tgggtcactc atgacccata gacaaa atg cca cac atg ttg tca 1314
Met Pro His Met Leu Ser
1 5
cag ctt att gct gga gga gtt agc aca tcc tgt gtg act gca ctg gga 1362
Gln Leu Ile Ala Gly Gly Val Ser Thr Ser Cys Val Thr Ala Leu Gly
10 15 20
gag gaa act ggt gcc tgg ttc cct gtg tat ttg tcc cac gcc tcc agt 1410
Glu Glu Thr Gly Ala Trp Phe Pro Val Tyr Leu Ser His Ala Ser Ser
25 30 35
ccc ttt gct gat ctc gtt ttt tgt cct ttt gct gag ata aat cac agc 1458
Pro Phe Ala Asp Leu Val Phe Cys Pro Phe Ala Glu Ile Asn His Ser
40 45 50
cag gag tat gac aat atg cgg ggt cct gtg agt cct cct aac aaa cag 1506
Gln Glu Tyr Asp Asn Met Arg Gly Pro Val Ser Pro Pro Asn Lys Gln
55 60 65 70
ttc aat ctg ggg gtg atc ttt ggg atc ccc aac aac tgt cgt ttc ccc 1554
Phe Asn Leu Gly Val Ile Phe Gly Ile Pro Asn Asn Cys Arg Phe Pro

0
1
2
3
4
5
6
7
8
9

75

80

85

act gat aat aaa ata act gag aag cag cta ttg ggc aat gtt ctg aac 1602
Thr Asp Asn Lys Ile Thr Glu Lys Gln Leu Leu Gly Asn Val Leu Asn
90 95 100

tac cct tgaacattca tgtcttcattc tgaacatcca tctactaccc ctgatttttt 1658
Tyr Pro

cagtgcaggg tgcataatcct gtatcacccca ataaatggtc attgatcacc ataggaaagg 1718

aacagtgaaa gctccacgggt ggtttggagg aagggtggcag gcattcagcg gtaacttttt 1778

tgagcagata gattttatgt ttttgcattt agtgcattttt atttcccat atctattttaa 1838

ggttggcaat cattatcttt ttatcatctt ggaacatttgc gttttttttt aatatgttta 1898

gttaggaatt ttcttacccccc ctcattttgtt ccgatagttt aaaatccccac agttttttca 1958

cggggctcctc atacctgcct gtgtgatttc taacatgtca cgctatgcaa ccagttgctt 2018

ttactttagt agtgcattttt taggtttttt cttttttttt gttttttttt tacagtgtgt 2078

taaagacagg tctgtttttt tgtaaatgc cgtttctctg agtacatgg tcattttccac 2138

atattttctt attcatgttat ttgtttttttt atatctattt ttgtttttttt ttattttttt 2198

atttttttttt attttctgaa acggagcctt gttttttttt cttttttttt cttttttttt 2258

gtgatctcga ctcactgtga cttttttttt ccaggttcaa gcgtttttttt cttttttttt 2318

tcccaagtca ttgggattttt agtcacgtgc catgaagccc tgctttttttt ttgtttttttt 2378

agtagagaca ggattttttttt cttttttttt ttgtttttttt ttgtttttttt ttgtttttttt 2438

ctgacccatca gtgatccacc tgcctcggcc tcccaagaa ctgggattttt gggcgtaac 2498

caccacgcca ggtcagttttt gcagttttttt aaatactgtt gtctttttttt gggcgtaac 2558

acgcacatag actatggta ttaccatcat atactggaaa gtgcaaaatgtt tagcgatgtt 2618

aactgtgagc catctcatca aaccctaaca gatgtctcat ttgtccataaa aggggcttct 2678

gtcccataga aattcatgtt cccaacctac tcttcaacca tgatttttttt ctgatggcct 2738

gtgtgaacag attaatggtg tccatctaat tccttccccca ctggggaaa gcaaatcatc 2798

aggcccattg caaaaactgc tcttggttga gcttcctgcc ttaaatcata cccacagtga 2858
atggcgccc ttatcacccg ctaatgactc tgacatctct ctccactcac atgtgagcct 2918
cctcagctct cgataaaacaa gtctgtctcg gttcatttat tctacaaaaa aaaaaaaaaa 2978
aaa 2981

<210> 4
<211> 1461
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (282)..(680)

<400> 4
aattcggcac gagcagctt ctagttggat taggcaacag aatccttga aaatgtgtgt 60
gcacagacca ggtggctctc tggccagtg tactctgaaa gatgtgtgtc ctggccttagc 120
tggttgagga aaagcagggc aagcctagcc aaatcacaca tcttgaacag ccctcattcg 180
ttatactaac tttcccacct tctggtgtgt ataggagata aagatggcag acgtgctatt 240
aggctgccaa tgggagtggtt ctctgatatg gtctttcaaa t atg aat cac ccc tgg 296
Met Asn His Pro Trp
1 5

cat gtg tgt ttc ctg ttt aag gtt ctc agg tat tac cca act gca cca 344
His Val Cys Phe Leu Phe Lys Val Leu Arg Tyr Tyr Pro Thr Ala Pro
10 15 20

ata tta aaa tgg aca cat acc gtg tca tgc agt tgg tgc cga agt gtt 392
Ile Leu Lys Trp Thr His Thr Val Ser Cys Ser Trp Cys Arg Ser Val
25 30 35

tta agg gaa gtt gta ggc aat gtg agt tta tca gaa aac ttc acc ata 440
Leu Arg Glu Val Val Gly Asn Val Ser Leu Ser Glu Asn Phe Thr Ile
40 45 50

tca gca ttt tgc cct gag ctt aca cca ttc cca gat caa ggt aca agc 488
Ser Ala Phe Cys Pro Glu Leu Thr Pro Phe Pro Asp Gln Gly Thr Ser
55 60 65

aca atg att tcc ttt ctt gaa aag ttc aac aaa agc aag aga gag aga 536
 Thr Met Ile Ser Phe Leu Glu Lys Phe Asn Lys Ser Lys Arg Glu Arg
 70 75 80 85

 ttg gag ttg atg ctg cat ttt tat tct gtg tta agt ctt gaa cct gct 584
 Leu Glu Leu Met Leu His Phe Tyr Ser Val Leu Ser Leu Glu Pro Ala
 90 95 100

 gtt gct gaa cat tgg tca ggg gaa ttt gag aag tgg aaa gtg ggc ttt 632
 Val Ala Glu His Trp Ser Gly Glu Phe Glu Lys Trp Lys Val Gly Phe
 105 110 115

 ttt cac cct ttg aaa aga gag gat gga ttc ttc acc aga act gac att 680
 Phe His Pro Leu Lys Arg Glu Asp Gly Phe Phe Thr Arg Thr Asp Ile
 120 125 130

 taaaaaaaaagt cagcgtggca cgtttagta tgtgtggcag atctaaasag acaatatttt 740
 gatctcagga gtgtttattc ttgaaccatt ttcagaactc taagatttga gaaataataa 800
 aatattgacc atccttcaaa gagaaaaaca cagggcgatc tttggcatag cctgtcattt 860
 tgctcacatt tcacttctct ctctccaact tcagagcccc tgctgtggaa caggtgctgt 920
 gctgggtggc aggggaggc tctggctttt ttttttttg atctccgtct taacatctag 980
 cctactggag gaagtgtatt taatcatcca cttatctgtt aacaattatc tctgagggcc 1040
 cgtcacattc agagaagatt ctaggttctc tacaagtatc ctctcactgt gtacatacta 1100
 aatcaacatc ctgctggatt tccccagac atctcccttc atcaccattg gagagtatcc 1160
 tctaattgcc agccctattc accatactca tctcatttga tctggagttt tctgagagtg 1220
 accgggggtg ggatggacag gataatttag caagagtgtta taagtaaat ctatataata 1280
 aaagttatct ccctgtgccc cccatgatct attctttatg tagcagtctg aatgagattt 1340
 tcagaaacaa gaaccacttt accttagtct cttcttcttc ttcttcttct tttctttct 1400
 ttttttttag tattatggc aacagagcaa gaccagttt cagaaaaaaa aaaaaaaaaa 1460
 a 1461

DRAFT GENOME

<211> 3329

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (637)..(1035)

<400> 5

ccaaagtgct gggattata gcatgagcca ctgcgcccgg ccagaatacc ctatccttaa 60
acatgaattt aggggagggg aggacacaat tcaatctata acaactatca ctggctgatt 120
ttggcagagg cctgtggcct ccagtattt gagggagctg agggccactg atctctccat 180
atgctctcaa catcatggga ctagtaggat gaaagcaagc ctcagaccag attctacctc 240
aagcaggcac acaaacattc atgcagcttc tacttggagc ctgatgaagt tcaaattgtt 300
tgtcctctga ggctctctt gcatggaaat ttctccatg acagatgaga aagttctggg 360
gcagcattca gcattcttagt tggattaggc aacagaatcc tttgaaaatg tctgtgcaca 420
gaccaggtgg ctctctggc cagtgtactc tgaaagatgt gtgtcctggc ctagctggtt 480
gaggaaaagc agggcaagcc tagccaaatc acacatctt aacagccctc attcgttata 540
ctaactttcc caccctctgg tgtgtatagg agataaagat ggcagacgtg ctattaggct 600
gccaatggga gtgggctctg atatggtctt tcaaattt atg aat cac ccc tgg cat 654
Met Asn His Pro Trp His
1 5

gtg tgt ttc ctg ttt aag gtt ctc agg tat tac cca act gca cca ata 702
Val Cys Phe Leu Phe Lys Val Leu Arg Tyr Tyr Pro Thr Ala Pro Ile
10 15 20

tta aaa tgg aca cat acc gtg tca tgc agt tgg tgc cga agt gtt tta 750
Leu Lys Trp Thr His Thr Val Ser Cys Ser Trp Cys Arg Ser Val Leu
25 30 35

agg gaa gtt gta ggc aat gtg agt tta tca gaa aac ttc acc ata tca 798
Arg Glu Val Val Gly Asn Val Ser Leu Ser Glu Asn Phe Thr Ile Ser
40 45 50

gca ttt tgc cct gag ctt aca cca ttc cca gat caa ggt aca agc aca 846

Ala Phe Cys Pro Glu Leu Thr Pro Phe Pro Asp Gln Gly Thr Ser Thr
55 60 65 70

atg att tcc ttt ctt gaa aag ttc aac aaa agc aag aga gag aga ttg 894
Met Ile Ser Phe Leu Glu Lys Phe Asn Lys Ser Lys Arg Glu Arg Leu
75 80 85

gag ttg atg ctg cat ttt tat tct gtg tta agt ctt gaa cct gct ttt 942
Glu Leu Met Leu His Phe Tyr Ser Val Leu Ser Leu Glu Pro Ala Phe
90 95 100

gct gaa cat tgg tca ggg gaa ttt gag aag tgg aaa gtg ggc ttt ttt 990
Ala Glu His Trp Ser Gly Glu Phe Glu Lys Trp Lys Val Gly Phe Phe
105 110 115

cac cct ttg aaa aga gag gat gga ttc ttc acc aga act gac att 1035
His Pro Leu Lys Arg Glu Asp Gly Phe Phe Thr Arg Thr Asp Ile
120 125 130

aaaaaaaaagt cagcgtggca cgtttagta tgtgtggcag atctaaagag acaatatttt 1095
gatctcagga gtgtttattc ttgaaccatt ttcagaactc taagatttga gaaataataa 1155
aatattgacc atccttcaaa gagaaaaaca cagggcgatc tttggcatag cctgtcattt 1215
tgctcacatt tcacttctct ctctccaact tcagagcccc tgctgtggaa caggtgctgt 1275
gctgggtggc aggggaggc tctggcttt tttttttagt ctccgtctta acatctagcc 1335
tactggagga agtgtattta atcatccact tatctgttaa caattatctc tgagggcccg 1395
tcacattcag agaagattct aggttctcta caagtatcct ctcactgtgt acataactaaa 1455
tcaacatcct gctggatttc ccccagacat ctcccttcat caccattgga gagtatcctc 1515
taattgccag cccttattcac catactcatc tcatttgcac tggagtttc tgagagtgac 1575
cgggggtggg atggacagga taathtagca agagtgtata agtaaaatct atataataaa 1635
agttatctcc ctgtgcccc catgatctat tctttatgta gcagtctgaa tgagattttc 1695
agaaaacaaga accactttac cttagtctct tcttcttctt cttcttctt tctttctt 1755
tttttttagta ttatggggat ctgtttctgt tgcccagggt ggagtgcagt ggtatgatct 1815
tggctcacag cagccttcaa ctccccggct caagtggtcc tcctgcctct gcttccctag 1875

DNA sequence analysis

tagctaggac tgcagggttg tgccaccaca cctggcta at gaaaaaga aat tttttt 1935
caatagagac agtgtcttgc tatgtccccaa ggctggtctc aaactcctgg cctcaagtga 1995
tcctcctgtc tcattcctccc aaagtgttgg aattacaggt gtgagctact atactcggcc 2055
agtacccttc tcaaaaacact tcagcacttc ccattgcact tgggttggaaa ttcccaccac 2115
tcactggggc ccacaagact cttcaagact gaatccttgc tcaacattgt gacctgcccc 2175
ctaccacctg cagcctcact tgctgtgctc cagccatgtg gatcttcctc ctgtctctaa 2235
aactgcctca ggtcatttgc acctgctgtt cttcccaaag gctgtgtgat ttccatcagt 2295
cagtcttagc tcgtataacct ccttggagac acctcttctg accaaccagt ccaaagaatc 2355
tcctcttatac atgtcactct gtttattta tttatTTAGA gatggagtct cgctctgtca 2415
cccaggctgg agtgcagtgg cgcgatctct gctcaactgca agctccaccc cctgggtca 2475
tgccgttctc ctgcctcagc ctcctgagta actgggacta tgggcaccca ccactacacc 2535
cggctaattt tttgtatttt tagtggggat ggggtttcac tgtgttagcc aggatggtct 2595
tgatctcctg accttgcgtat ctgcctgcct ccaccccttca aagtgtttta tttatTTAA 2655
aggcatgtat cactctctga aaattagctt ctttcttctt tttccttgcgtt atcatccatt 2715
tccccgaacc agaatagaag ttccctgaggc cagaacttct gtctctctgc ccctcaactat 2775
gtgtctctgg cacataccccc agtgcctgcc tgctctaaag taaaatctta gtaaatattta 2835
ctgttgacta aataaatgaa taaatccctt ttaatgcccc tttggaagtt gccaaataaa 2895
gaataggatc ctttttaag attacacttt tggctattga tctgtgtgtc tggaaacaaga 2955
tacagtttga agatactacc atgggacatg acatcagttg agctgattaa ggttttagta 3015
ataagaatcc agatgtgtc cgggtgcggt gctcacgcct gtaatccttag cattttggaa 3075
gaccgaggcg ggcagatcac gaggtcagca gttttagacc agcctgacca acatggtaa 3135
accccggtctc tactaaaaaa tacagaaatt agccgggtgt ggtgggtgtcc acctgttagtc 3195
ctagctactc aggaggctgg ggcaggagaa tttcttgaac ccgggaggcg gaggttgcag 3255

tgagccgaga tcacaccagt gcactccagc ctgggcaaca gagcaagacc cagtctcagg 3315

aaaaaaaaaa aaaa 3329

<210> 6

<211> 2276

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (103)..(486)

<400> 6

ctgaactggg agtcaggtgg ttgacttgtg cctggctgca gtagcagcgg catctccctt 60

gcacagttct ctcctcgcc ctgcccaaga gtccaccagg cc atg gac gca gtg 114
Met Asp Ala Val
1

gct gtg tat cat ggc aaa atc agc agg gaa acc ggc gag aag ctc ctg 162
Ala Val Tyr His Gly Lys Ile Ser Arg Glu Thr Gly Glu Lys Leu Leu
5 10 15 20

ctt gcc act ggg ctg gat ggc agc tat ttg ctg agg gac agc gag agc 210
Leu Ala Thr Gly Leu Asp Gly Ser Tyr Leu Leu Arg Asp Ser Glu Ser
25 30 35

gtg cca ggc gtg tac tgc cta tgt gtg ctg tat cac ggt tac att tat 258
Val Pro Gly Val Tyr Cys Leu Cys Val Leu Tyr His Gly Tyr Ile Tyr
40 45 50

aca tac cga gtg tcc cag aca gaa aca ggt tct tgg agt gct gag aca 306
Thr Tyr Arg Val Ser Gln Thr Glu Thr Gly Ser Trp Ser Ala Glu Thr
55 60 65

gca cct ggg gta cat aaa aga tat ttc cgg aaa ata aaa aat ctc att 354
Ala Pro Gly Val His Lys Arg Tyr Phe Arg Lys Ile Lys Asn Leu Ile
70 75 80

tca gca ttt cag aag cca gat caa ggc att gta ata cct ctg cag tat 402
Ser Ala Phe Gln Lys Pro Asp Gln Gly Ile Val Ile Pro Leu Gln Tyr
85 90 95 100

cca gtt gag aag aag tcc tca gct aga agt aca caa ggt act aca ggg 450

Pro Val Glu Lys Lys Ser Ser Ala Arg Ser Thr Gln Gly Thr Thr Gly
105 110 115

ata aga gaa gat cct gat gtc tgc ctg aaa gcc cca tgaagaaaaaa 496
Ile Arg Glu Asp Pro Asp Val Cys Leu Lys Ala Pro
120 125

taaaaacacct tgtactttat tttctataat ttaaatatat gctaagtctt atatattgt 556
gataatacag ttcggtgagc tacaaatgca tttctaaagc cattgttagtc ctgtaatgga 616
agcatctagc atgtcgtaa agctgaaatg gactttgt a catagtgagg agctttgaaa 676
cgaggattgg gaaaagtaat tccgtaggatt attttcagtt attatattta caaatggaa 736
acaaaaaggat aatgaatact ttataaagga ttaatgtcaa ttcttgccaa atataaataa 796
aaataatcct cagttttgt gaaaagctcc atttttagtg aaatattttt ttatagctac 856
taattttaaa atgtcttgct tgattgtatg gtggaaagtt ggctggtgtc ctttgtcttt 916
gccaaagtct ccactagcta tgggtgtcata ggctcttttggattttga agctgtatac 976
tgtgtgctaa aacaagcact aaacaaagag tgaaggattt atgttaattt ctgaaagcaa 1036
ccttcttgcc tagtgttctg atattggaca gtaaaatcca cagaccaacc tggagttgaa 1096
aatcttataa tttaaaatat gctctaaaca tgtttatcgt atttgatgct acaggattt 1156
aaattgtattt acaaatccaa tgaaatgagt ttttcttttca atttacctct gccccagttg 1216
tttctactac atggaagacc tcattttgaa gggaaatttc agcagctgca gctcatgagt 1276
aactgatttgc taacaaggcct cttttaaag taaccctaca aaaccactgg aaagtttatg 1336
gttgtattat tttaaaaaaa aattccaagt gattgaaact tacacgagat acagaatttt 1396
atgcggcatt ttcttctcac atttatattt ttgtgatttt gtgattgatt atatgtcact 1456
ttgctacagg gctcacagaa ttcatttact caacaaacat aatagggcgc tgagggcata 1516
gaagtaaaaa cacctggtcc ctgctctcag ttcactgtct tgttggacga gaaaacaata 1576
acgataaaaag acagtgaaag aaaataacga taaaagacag tgaaagaaaa taacaataaa 1636
agacaaggaa aaaataacaa tgaaagttga taagtacatg ataagcgagg ttccccgtgt 1696

© 2008 CambridgeSoft Information Technologies Inc.

gtaggttagat ctggtcttta gaggcagata gataggtcag tgcaaatact ctggtccatg 1756
ggccatatga aaaggctaag cttcaactgta aaataataac tggaaattct gggttgtgta 1816
tgggtgttgg tgaacttgtt tttaattagt gaactgctga gagacagagc tattctccat 1876
gtactggcaa gacctgattt ctgagcattt aatatggatg ccgtgggagt aaaaaagtgg 1936
agtgtggcct gagtaatgca ttatgggtgg tttaccattt cttgaggtaa aagcatcaca 1996
tgaacttgta aaggaattta aaaatcctac tttcataata agttgcata gtttaataat 2056
tttaattat atggcttgag tttaattgt aataggcgta actaatttta actctataat 2116
gtgttcattc tggaaaatc ctaaacatata gaattatgtt tgcatgttca cttccaagag 2176
ccttttttg aaaaaaagct tttttgaat catcaagtct ttcacattt aataaagtgt 2236
ttgaaagctt tattttaaaa aaaaaaaaaa aaaaaaaaaa 2276

<210> 7
<211> 4343
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (1)..(1029)

<400> 7
atg gac gcc cca aaa gca gga tac gcc ttt gag tac ctt att gaa aca 48
Met Asp Ala Pro Lys Ala Gly Tyr Ala Phe Glu Tyr Leu Ile Glu Thr
1 5 10 15

tta aat gac agt tca cat aag aag ttc ttc gat gta tct aaa ctt ggc 96
Leu Asn Asp Ser Ser His Lys Lys Phe Phe Asp Val Ser Lys Leu Gly
20 25 30

acc aag tat gat gtt ctg cct tac tca ata cgg gtc ttg ttg gaa gct 144
Thr Lys Tyr Asp Val Leu Pro Tyr Ser Ile Arg Val Leu Leu Glu Ala
35 40 45

gct gta cga aat tgt gat ggc ttt tta atg aag aag gaa gat gtt atg 192
Ala Val Arg Asn Cys Asp Gly Phe Leu Met Lys Lys Glu Asp Val Met
50 55 60

aac att tta gac tgg aaa acc aaa caa agc aat gtt gaa gtg ccc ttt				240
Asn Ile Leu Asp Trp Lys Thr Lys Gln Ser Asn Val Glu Val Pro Phe				
65	70	75	80	
ttc cct gcc cgt gtt ctt ctt caa gat ttt act gga ata cca gca atg				288
Phe Pro Ala Arg Val Leu Leu Gln Asp Phe Thr Gly Ile Pro Ala Met				
85	90	95		
gtg gat ttt gct gct atg agg gag gca gtg aaa act ctt gga ggt gat				336
Val Asp Phe Ala Ala Met Arg Glu Ala Val Lys Thr Leu Gly Gly Asp				
100	105	110		
cct gag aaa gtc cat cct gct tgt ccg aca gat ctt aca gtt gac cat				384
Pro Glu Lys Val His Pro Ala Cys Pro Thr Asp Leu Thr Val Asp His				
115	120	125		
tct tta caa att gac ttc agt aaa tgt gca ata cag aat gca cca aat				432
Ser Leu Gln Ile Asp Phe Ser Lys Cys Ala Ile Gln Asn Ala Pro Asn				
130	135	140		
cct gga ggt ggt gac ctg cag aaa gca gga aag ctc tct cca ctt aaa				480
Pro Gly Gly Asp Leu Gln Lys Ala Gly Lys Leu Ser Pro Leu Lys				
145	150	155	160	
gtg cag cct aag aag ctt ccc tgc aga ggc cag act acc tgc cga gga				528
Val Gln Pro Lys Lys Leu Pro Cys Arg Gly Gln Thr Thr Cys Arg Gly				
165	170	175		
tct tgt gat tct gga gaa cta ggc cga aac tca gga aca ttt tct tcg				576
Ser Cys Asp Ser Gly Glu Leu Gly Arg Asn Ser Gly Thr Phe Ser Ser				
180	185	190		
cag att gag aat aca ccc atc ctg tgt cct ttt cat ttg caa cca gtg				624
Gln Ile Glu Asn Thr Pro Ile Leu Cys Pro Phe His Leu Gln Pro Val				
195	200	205		
cct gaa cct gaa aca gtg tta aaa aat caa gaa gta gaa ttc ggc aga				672
Pro Glu Pro Glu Thr Val Leu Lys Asn Gln Glu Val Glu Phe Gly Arg				
210	215	220		
aat cga gag agg ctt cag ttt ttt aag tgg agt tca aga gtt tta aag				720
Asn Arg Glu Arg Leu Gln Phe Phe Lys Trp Ser Ser Arg Val Leu Lys				
225	230	235	240	
aat gtg gca gtg atc cct gga act gga atg gct cat caa ata aac				768
Asn Val Ala Val Ile Pro Pro Gly Thr Gly Met Ala His Gln Ile Asn				

D
D
D
D
D
D
D
D
D
D
D
D
D
D

	245	250	255	
tta gaa tat ttg tca aga gtg gtt ttt gaa gaa aaa gac ctc ctc ttc				816
Leu Glu Tyr Leu Ser Arg Val Val Phe Glu Glu Lys Asp Leu Leu Phe				
260	265	270		
cca gac agt gta gtc ggc aca gat tca cac ata acg atg gtg aat ggt				864
Pro Asp Ser Val Val Gly Thr Asp Ser His Ile Thr Met Val Asn Gly				
275	280	285		
tta ggg att ctg ggg tgg ggg gtt gga ggc att gaa aca gaa gca gtt				912
Leu Gly Ile Leu Gly Trp Gly Val Gly Gly Ile Glu Thr Glu Ala Val				
290	295	300		
atg ctt ggt ctg cca gtt tct ctt act tta cca gag gtg gtt gga tgt				960
Met Leu Gly Leu Pro Val Ser Leu Thr Leu Pro Glu Val Val Gly Cys				
305	310	315	320	
gag tta act ggg tca tca aac cct ttt gtt aca tcc ata gat gtt gtt				1008
Glu Leu Thr Gly Ser Ser Asn Pro Phe Val Thr Ser Ile Asp Val Val				
325	330	335		
ctt ggt att aca aag gta agt taaagttgtg gtagctctat gacttactga				1059
Leu Gly Ile Thr Lys Val Ser				
340				
acattatttt tataaaaattt gaagagctct atgagagcag ggatttgggt tcattactgc				1119
atcctcaggt ctcttgacgt tagccacatc atcatagttt tcatacgtaat aacaacaaac				1179
agagcattta gtttgtacta ataaatacaa agaaatttgt tgtgttcact tatgttagct				1239
catttagtcc ttataacaag cctgtgagat ggatactatt actattctca ttgttaactct				1299
gagaaaaacta aggtacagta gggtttagtg acttaccaa gggtcgaagg cctgagtata				1359
aggggttagag caaagattcc aggcaagtca attcttgagt catgtctaacc cattatgcct				1419
tatttagtgcc ttgttgcctt aataaacact tgctggacta catatttttt ttctcttttt				1479
taacttgaat taaaaaaaaa tgtttagcaa aagttgawtg tgtcgtcttt aattaaatta				1539
tttgcggcgtt agaaactgtt gctctactaa gtaatgcttt caaaaacatg gactgttagaa				1599
atgtgatata tcattttctt gttgcggcgtt taacatttctt ctggattttt atgtaaaaat				1659

ପ୍ରକାଶକ ମାଲା

cttctctctg aatttttaaa atactggctt cagaacttca atacatacac tgagcttgg 1719
aagcatatta atacacaggc tcacggattt cctagtgaac aataattgt aactcttctt 1779
cctaaatgtc tggccttgc taactttatt ttaatgatta aatccttattt tgtaaatga 1839
atgtacctgg aaaatgttcc acatataatt ccaatttgag tcccaatctc agcattttg 1899
gttagattat tggtacgaag gctttctgga tactccagtg taaggaaatg ataatgcctc 1959
cctctcagca tttggatttg atccttcttc cctaatttga aaagaatttg gcatctttaga 2019
gaaatttattt attcaacgta tgataccaaa agatcaagta gtaaatttggg aattgcagga 2079
ttattcctag aggaaaagga gtatcccatt atgttttac agaaatcaat tctttacttt 2139
agacatcctg aaaactaacg ctgctttta gccttctcta gctgttttt cctgacaata 2199
ttactgtgtg tttttgaca ttttagtttta atgttaaaaa attaatctat tatatatgtt 2259
tacatttattt gaatatattt attacttctt ttttgagatc ctgttccatt tgtgatcctt 2319
ataggaataa tcctgtattt ttttttgat gagagcagca tttggtttgg aatatctaat 2379
ctgtgtttct ttcatcctaa aaaataaaac cataggccgg gcgcgggtggc tcacgcctgt 2439
aatcccagca ctttgggagg ccgaggcggg tggatcatga ggtcaggaga tcgagaccat 2499
cctggctaac aaggtgaaac cccgtctcta ctaaaaatac aaaaaattttt ccggggcgccg 2559
tggcgggcgc ctgttagtccc agttctcg gaggctgagg caggagaatg gcgtgaaccc 2619
gggaggcgga gcttgcagtg agccaagatt gcgccactgc agtccgcagt ccggcctggg 2679
cgacagagcg agactctgy taaaaaaaaaaaaaaa aaaaaaaccat taaatgagga 2739
aacgcattt tacacttagg gttttagttt ctgttatctat aaaaaagggt ttggattaag 2799
tgatccctgg cacttataaa atgttagggc ttaatattat tcataagatcg aggatagttt 2859
cattcttagt cgccctcctta gtcactcttc ctataccat ctgagaccat tttacaattt 2919
aaaaaaagaca aataactggt tgggttactt gatagtataa taaccaagaa aaataatttt 2979
agaaggaatt aagtttgaaa ccacatgtta acaaattcta ccaaagtggg atttgcctgt 3039

D N A S E Q U E N C E

gattaaagat gctgtaaaca tttgggccag tagttataat ttgaaaaatg tttatagcca 3099
atataataatt ttttatttaa atatacagtt tcatacgatct attagtattt cattaagtct 3159
aagatgccat cagtggtag caaacaccac tgtttatgc actgctaaga aagaataaag 3219
ggctgtgtgc agtggctcac acctgtggca cgccaaggca ggagcatcac ttgaggccag 3279
aagttcaaga ccaacctggt caacattgta agaccctgtc tctacaaaaa aaaaaaaagtt 3339
aaaaattagc tgggtgcgtt ggcacatgcc tgttagttcca gctactctgg aggctaaggt 3399
gggaggattt ctagagccac ggtgttgaa gctgcaatga gctgtgacca caccactgcg 3459
ctccagcgtg ggcaacagag tgagaccctg tttctaaaag aaagaaagaa aaaaggcgt 3519
ccacctaaac agacacacta ttgagtttag gtaccctgat ttcaaagaca tgaaaatgtt 3579
aattatagcc accttgaagc tttcaggscctt ctttctaccc tgaattaaca gtgacattgg 3639
accagtcttc tctttacttc ttatcttaaa ataccccaa aaccagaatg agttgattca 3699
taaggacaat gaaggatctc attccttcac catcactagt attggtaaa aattttattt 3759
tatagttttc agacaatcgt tgctaatctt atcttgcaa ttttgtatgt gtttctgtgt 3819
attccttata tagcacctca ggcaagtagg agtggctgga aagttgttg agttttttgg 3879
aagtggagtt tcacaattat ctatagttga tcgaactaca atagcaaaca tgtgtccgga 3939
atatggtgct atcctcagct tttccctgt tgacaatgtg acattaaaac atttagaaca 3999
tacaggtaag aagataaaaag atcactagaa taaacatgtt acattccaa tgtgtttgat 4059
aatattttat aaattactac cttatccatg ttatttacta ctcacaaaat tacattatgt 4119
tgaaacaaca actttcaagc aaacatcaga tgtcttaaa gagtgttgtg tcctcaaacc 4179
ctagttccct gtgacacatt gaaagcaatt taaaggaatt attcaaacca ttgatcctga 4239
cttgactgtt tcccataatg atggataacct cccctctac ttaggggtca taggtgcaat 4299
ttaatggagt cagcccttaa acatattcac agcagtcccc ttct 4343

印譜卷之三

<211> 155
<212> DNA
<213> Homo sapiens

<400> 8 cacttataaaa atgttagggc ttaatattat tcatalogatcg aggatagttt cattcttagt 60
cgccctcctta gtcactcttc ctataccaat ctgagaccat tttacaattt agaaaagaca 120
aataactggt tgggttactt gatagtataa taacc 155

<210> 9
<211> 278
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> (29), (32), (35)
<223> A or G or C or T

<400> 9 gaaggagaat atgaagaggt tagaaaagnt cnggnttctg ttggtgaaat gaaggatgaa 60
gggaaagaga cattaaatta tcctgatact accattgact tgtctcacct tcaaccccaa 120
aggtccatcc agaaattggc ttcaaaagag gaatcttcta attctagtga cagtaaatca 180
cagagccgga gacatttgc agccaaggaa agaagggaaa tgaaaaagaa aaaacttcca 240
agtgactcag gagatttgc agcgtagag ggaaagga 278

<210> 10
<211> 135
<212> DNA
<213> Homo sapiens

ପ୍ରକାଶନ କମିଶନ

<400> 10
ttctgacaat gagtaagaag aaagagggtc ttgcccttg gttattaaga tttatcatag 60

agcaataata astaaatcg^t tg^ttatacc^a gcacagagat tagacaaata aaccaaggga 120

ctggactaaa taagc 135

<210> 11
<211> 197
<212> DNA
<213> Homo sapiens

<400> 11
atggtaccca gtttcaaatt aacatggta tttacttgt gttcccaaatt ttaacattag 60

ggaatttttg gttgtgggtc tg^ttatcact agaaaaat^a atatattgg^t gctgaagata 120

attttgagat aattagacaa gacagtttag catttacaag aacaagtttg gcagttgaag 180

aatctattta tatgact 197

<210> 12
<211> 137
<212> DNA
<213> Homo sapiens

<400> 12
ccaccgcacc tggctgatgc ttttctatct gacttcttc agaggaccct gaaagacact 60

aagtggaatc ttcccttgaa gtcttcaag ctaaaacaat tctctggaaa gatcacctct 120

gttcagtcct ggtctct 137

<210> 13
<211> 274
<212> DNA
<213> Homo sapiens

<400> 13
cgtttacaga ttctcttgcg gctggcggtg gaactacaaa gggatcggtg cctatatcac 60

aataccaaac ttgataataa tctagattct gtgttgtcgc ttatagacca tgttttagt 120

aggtaagagg aaaacttcct atattctgaa acagcctaac attttacaaa atttttagtt 180

tcttttttag agtcttatcc tgttagctata taacagttca tgtctgattt agcatttgg 240

cacgagtaaa gctggaaacta tgaaaattga aaat 274

<210> 14
<211> 171
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> (72), (127), (150)
<223> A or G or C or T

<400> 14
gattaggtga ctttccttga aragccacgg gtttcccata tcgaaatgct attcattacc 60

cgagtcacct angttcttac aaaggaagcg agaaaattgc ttttggggccatgccct 120

tttgcacagg ttccctaaatgtc tagtcgccc aattttttta atggcctaaa g 171

<210> 15
<211> 161
<212> DNA

2000-2001-2002-2003-2004-2005-2006-2007-2008-2009-2010-2011-2012-2013-2014-2015-2016-2017-2018-2019-2020

<213> Homo sapiens

<400> 15

aggggcgcctt gttctgctct cagcagattt gttacacgcg tcaggtggtg gcgatgactt 60

aattccttagc ccaagaagaa tataatgtta aaactggtta tgtaattttt gtgcctctcc 120

tttttaatgc agtatttagt tcagatgttg gcgatttttc a 161

<210> 16

<211> 323

<212> DNA

<213> Homo sapiens

<400> 16

tataaggwgg gaaccttaact atctctaattt accttactga tgctgacttt aataactctgt 60

gaagggttaga gttcagtgaa tgttacctag aaacagcccc ggctgtggaa tactttattc 120

ttagccctat atttggggtt tggatgtcca ctgtgctggt tcccagagat agtaagggga 180

tgagagtatt gtttacatct cctgaccac atacttaaga tccagatgaa caagacagtt 240

ttcactcctg cttggtagaa cctatttgyk shaggaaaca gytccctaaag aatggttcta 300

gccagaccct gtcgtyacca gaa 323

<210> 17

<211> 138

<212> DNA

<213> Homo sapiens

<400> 17

agtatgacaa atagttctg cctgattgggt gagatttggg atgggcccccc actttgtttc 60

DRAFT GENOME SEQUENCING

tctttctgca taaaaatttc aacattttt caaaattttc aaaaacttct cctcagtctg	120
tacatcttg ttaatcag	138
<210> 18	
<211> 135	
<212> DNA	
<213> Homo sapiens	
<400> 18	
tgatccccac aatttcttgt gattggtag gaactataaa tgactccat ccaagcttat	60
accagaaaaa aggagcacat tttctacaaa ttatatcatt ttatccat taccacatta	120
ttttagggga actac	135
<210> 19	
<211> 219	
<212> DNA	
<213> Homo sapiens	
<400> 19	
ctgagaggag ccatgtatac aaaccacttt ttctaacatg gtcttattt aactttgaat	60
ataagtacac ctgctcgaag ttttcatcta tattatcaa gaacaagcaa ctgtaaaaca	120
gtaaaaatcac aaaaggtaag ttgttggaa agaacaaaaaa agaattacta tatctgatcc	180
tgcgtgttta ttttagaatc tgttaatagg cctacagct	219
<210> 20	
<211> 191	
<212> DNA	
<213> Homo sapiens	

◎ 五 王道

<400> 20
acagttagtg tggctgaaac ctaagctgaa ggaaggagg agcaggact gccatgaggg 60

gtccctggac agaaaactctt cagcaggct tgaagtttag ttcagggct acatggaata 120

ccactattta gcacacaggt gtgatctgag gtgaggact acctttcga tcttggttt 180

ctcatttatt t 191

<210> 21
<211> 148
<212> DNA
<213> Homo sapiens

<400> 21
ctggaggtga aggaaaggaa agaaaggaaa aactatctac ctggcaggaa aagagataag 60

ctccccaaagaa caccaaaagca gatgatgagt ctagctctac ccagcttcc tccccacgaa 120

tccagatcat agtaagaaac tctgggct 148

<210> 22
<211> 306
<212> DNA
<213> Homo sapiens

<400> 22
ccaccaccag aaatgaacaa aaagcatttt acctaaaaat acaccagcaa aatgtactca 60

gcttcaatca caaatacgac tgctaaaaac cgagaaatt tcctcaacac tcagccttta 120

tcactcagct ggatttttc cttcaacaat cactactcca agcattgggg aacacaactt 180

ttaatcatac tccagtcgtt tcacaatgca ttctaatacg agcgggatca gaacagtact 240

<210> 23
<211> 357
<212> DNA
<213> Homo sapiens

<400> 23 gtagcatttt ggcagaacca ttgttaatta aagggactty tggaccgcaa cyttaatgta 60

ccagattatt gagcrgccca atgaatgctt cattctcatt gtttaagggtg ctgctttgat 120

ttttttttca attcttgta ctatttttta ttttttgag aggcacatcc ccaaatttgg 180

atgaggtatt tggtgataaaa taattcatca atttccacaa tgcagacaaa aatgtctgcc 240

cagagtggaa aaataaaaaca agggggagaa gagtttgagt aacggagaag ttctgtggaa 300

tccttagtgac aaaagttgag aaactacctt taaataagac agtgaggtaa caaatgt 357

<210> 24
<211> 219
<212> DNA
<213> Homo sapiens

<400> 24 tggaatagcc aggagaattc tgaaaaagta gaataatgag gtagggcttc cttcgctat 60

tttgaagtgc agattacact atgtaaaacc attaggaact ggcacgtgaa tagacagatc 120

aatagttaat agctgtattt gccagaaaaat ggtgtaagga caacaggcta actaaccctg 180
tcacttgtta tgctaaaatt aagtcttagat agagtcctc 219

<210> 25
<211> 251
<212> DNA
<213> Homo sapiens

<400> 25
tgaaagggga atagaagcac aagagtcagt aatcaataac aaacaactca aggtgctcct 60

tccttacact ggtgttcccc aaagtgaggt gaattgccag ccactggag tcagggccag 120
ttacataaga cattctcggt aagccccctt tgggtatccc aaataaggac tggggtggt 180
ttatgtgtag tccattatta acaactaaac gaacaaacct agtgaattgc aataaattca 240
caccaacaga a 251

<210> 26
<211> 233
<212> DNA
<213> Homo sapiens

<400> 26
gttgaagag tccttggaaag gcttttagac caaaccctc tgcatgctca arccttgggt 60

acaggatttc taagaagtgg aacagtctcc aggggtgtgg arctcatcgc tcaaggcagg 120
ttatcttatac tgaataattt tgtctgttga ctattggat agtttcctt cagatgagct 180
gaaattttct ccatagcttc ctctattaaa cccattcca cttctcaggg tca 233

TRANSPOSED SEQUENCES

<210> 27
<211> 176
<212> DNA
<213> Homo sapiens

<400> 27
caaaaagcgct gaagttaagc attaatacgc cagattcatg atttatgatc agtatccaaa 60

actccaacta caaacaatgc aaagttagtgc tcctcagtagt tattttgca attgttagta 120

atgttaagca tcaaggaaaa taaaacacat cattgcacat tacagccgca aaaaac 176

<210> 28
<211> 241
<212> DNA
<213> Homo sapiens

<400> 28
agagagtaaa gcaagctatt ttgacagcaa cctaataaca gctgtcttct tccacttctt 60

ggctaactca tccccagat agccttctt tctcttatca attccctgtt gcaacaataa 120

taaatgccac acctgatgga gtcatttaggc actttccttag tgacaagtgc ctaggacaga 180

ggagaaaaaca aagaaacact gacaaccact gaaaactgac atatcaggcc aggcatgtca 240

c 241

<210> 29
<211> 217
<212> DNA
<213> Homo sapiens

<400> 29
gctggagagg tggtgatgtt gctgaataat tgcttttaa agctggaggg gacttccaag 60

DRAFT - DRAFT

agtctctcat ttaagaaraa aaattaaaga cataatttgt aacggtttg actgctgcag	120
aggcaacact ttgctcacaa tcctacagat ctacttcacc tgtaactaca atttcctga	180
agacatagaa gaaaaatcaa ttgttctaattccatatg	217
<210> 30	
<211> 233	
<212> DNA	
<213> Homo sapiens	
<400> 30	
aatcttagca taatgcttcc tggaaattc taaaatttgt tccatttctg ccgttacaaa	60
cacacacgaa gttcctagtt cactggact tcctgatttg ttcttttagc ttgctccttc	120
tcacctagaa gctctgttta tttctgagca accctggggc ttgtctcata ggacaggatt	180
tatTTtatctc atcaaggctg agtgtgcctt aggaagtcat aaacataaaaa aga	233
<210> 31	
<211> 228	
<212> DNA	
<213> Homo sapiens	
<400> 31	
tatagacagg gtagggacga tttagccctc gacaactttt cacaatata cacacgttta	60
actacctctc aggtcatgtt aaagaccggc cggcgagaaa cactgtatc ccagctactc	120
gggagcctga ggcatgagaa tcacttgaac ctgggaggtg gaggttgcca tgagccgaga	180
tcacgccatt gcactacagc cttggcgaca agagtgaaac tccatctg	228

0
1
2
3
4
5
6
7
8
9

<210> 32
<211> 298
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> (44)
<223> A or G or C or T

<400> 32 gcttatgatt acaaacatcc ctcatatgaa aatctcagca tttnctggct gctgccttca 60
atcgctttt ctgaaatagg tatcccttga tgtcgactat ttgatttcag ccagtcgtt 120
ctctctggca gtgctccctg caaatgtgtc ctttcaagaa aacaaaacct gcaagtggct 180
tgtaatgtac catgaccta tcatgtgaag gacaaatggc tcttgcgtt attagatagc 240
agatgaactg atgaactgaa ttcttggtct gaagcttga taaggtcaga tgtctttg 298

<210> 33
<211> 291
<212> DNA
<213> Homo sapiens

<400> 33 acttcgaagg gaaaaagagg aaggaaaagg actgttaata aaataacaaa ggcagcaatc 60
agaatgaacc agagccagga cagcgtaaag gctaggttca cagtgagatg aaagaacctg 120
aaaacaagtt taaaactcaa aagaggatta ttctcaagtt atactacagt gaaaaaacat 180
ggaaaaaacac aaaaaggaca ggcaataagg cacaggcata catacaaggc aaattgtAAC 240

acaatattta cttgcaaaag agcccacaga gacatgtcaa tgaagtcata g

291

<210> 34

<211> 230

<212> PRT

<213> Homo sapiens

<400> 34

Met Glu Asp Gly Phe Leu Asp Asp Gly Arg Gly Asp Gln Pro Leu His
1 5 10 15

Ser Gly Leu Gly Ser Pro His Cys Phe Ser His Gln Asn Gly Glu Arg
20 25 30

Val Glu Arg Tyr Ser Arg Lys Val Phe Val Gly Gly Leu Pro Pro Asp
35 40 45

Ile Asp Glu Asp Glu Ile Thr Ala Ser Phe Arg Arg Phe Gly Pro Leu
50 55 60

Ile Val Asp Trp Pro His Lys Ala Glu Ser Lys Ser Tyr Phe Pro Pro
65 70 75 80

Lys Gly Tyr Ala Phe Leu Leu Phe Gln Asp Glu Ser Ser Val Gln Ala
85 90 95

Leu Ile Asp Ala Cys Ile Glu Glu Asp Gly Lys Leu Tyr Leu Cys Val
100 105 110

Ser Ser Pro Thr Ile Lys Asp Lys Pro Val Gln Ile Arg Pro Trp Asn
115 120 125

Leu Ser Asp Ser Asp Phe Val Met Asp Gly Ser Gln Pro Leu Asp Pro
130 135 140

Arg Lys Thr Ile Phe Val Gly Gly Val Pro Arg Pro Leu Arg Ala Val
145 150 155 160

Glu Leu Ala Met Val Met Asp Arg Leu Tyr Gly Gly Val Cys Tyr Ala
165 170 175

Gly Ile Asp Thr Asp Pro Glu Leu Lys Tyr Pro Lys Gly Ala Gly Arg
180 185 190

Val Ala Phe Ser Asn Gln Gln Ser Tyr Ile Ala Ala Ile Ser Ala Arg

□ □ □ □ □ □ □ □ □

195

200

205

Phe Val Gln Leu Gln His Gly Glu Ile Asp Lys Arg Val Ser Leu Ile
210 215 220

Leu His Phe Gly Lys Phe
225 230

<210> 35
<211> 143
<212> PRT
<213> Homo sapiens

<400> 35
Met Gly Ser Asp Lys Arg Val Ser Arg Thr Glu Arg Ser Gly Arg Tyr
1 5 10 15

Gly Ser Ile Ile Asp Arg Asp Arg Asp Glu Arg Glu Ser Arg Ser
20 25 30

Arg Arg Arg Asp Ser Asp Tyr Lys Arg Ser Ser Asp Asp Arg Arg Gly
35 40 45

Asp Arg Tyr Asp Asp Tyr Arg Asp Tyr Asp Ser Pro Glu Arg Glu Arg
50 55 60

Glu Arg Arg Asn Ser Asp Arg Ser Glu Asp Gly Tyr His Ser Asp Gly
65 70 75 80

Asp Tyr Gly Glu His Asp Tyr Arg His Asp Ile Ser Asp Glu Arg Glu
85 90 95

Ser Lys Thr Ile Met Leu Arg Gly Leu Pro Ile Thr Ile Thr Glu Ser
100 105 110

Asp Ile Arg Glu Met Met Glu Ser Phe Glu Gly Pro Gln Pro Ala Asp
115 120 125

Val Arg Leu Met Lys Arg Lys Thr Gly Glu Ser Leu Leu Ser Ser
130 135 140

<210> 36
<211> 104
<212> PRT

<213> Homo sapiens

<400> 36

Met Pro His Met Leu Ser Gln Leu Ile Ala Gly Gly Val Ser Thr Ser
1 5 10 15

Cys Val Thr Ala Leu Gly Glu Glu Thr Gly Ala Trp Phe Pro Val Tyr
20 25 30

Leu Ser His Ala Ser Ser Pro Phe Ala Asp Leu Val Phe Cys Pro Phe
35 40 45

Ala Glu Ile Asn His Ser Gln Glu Tyr Asp Asn Met Arg Gly Pro Val
50 55 60

Ser Pro Pro Asn Lys Gln Phe Asn Leu Gly Val Ile Phe Gly Ile Pro
65 70 75 80

Asn Asn Cys Arg Phe Pro Thr Asp Asn Lys Ile Thr Glu Lys Gln Leu
85 90 95

Leu Gly Asn Val Leu Asn Tyr Pro
100

<210> 37

<211> 133

<212> PRT

<213> Homo sapiens

<400> 37

Met Asn His Pro Trp His Val Cys Phe Leu Phe Lys Val Leu Arg Tyr
1 5 10 15

Tyr Pro Thr Ala Pro Ile Leu Lys Trp Thr His Thr Val Ser Cys Ser
20 25 30

Trp Cys Arg Ser Val Leu Arg Glu Val Val Gly Asn Val Ser Leu Ser
35 40 45

Glu Asn Phe Thr Ile Ser Ala Phe Cys Pro Glu Leu Thr Pro Phe Pro
50 55 60

Asp Gln Gly Thr Ser Thr Met Ile Ser Phe Leu Glu Lys Phe Asn Lys
65 70 75 80

Ser Lys Arg Glu Arg Leu Glu Leu Met Leu His Phe Tyr Ser Val Leu
85 90 95

Ser Leu Glu Pro Ala Val Ala Glu His Trp Ser Gly Glu Phe Glu Lys
100 105 110

Trp Lys Val Gly Phe Phe His Pro Leu Lys Arg Glu Asp Gly Phe Phe
115 120 125

Thr Arg Thr Asp Ile
130

<210> 38

<211> 133

<212> PRT

<213> Homo sapiens

<400> 38

Met Asn His Pro Trp His Val Cys Phe Leu Phe Lys Val Leu Arg Tyr
1 5 10 15

Tyr Pro Thr Ala Pro Ile Leu Lys Trp Thr His Thr Val Ser Cys Ser
20 25 30

Trp Cys Arg Ser Val Leu Arg Glu Val Val Gly Asn Val Ser Leu Ser
35 40 45

Glu Asn Phe Thr Ile Ser Ala Phe Cys Pro Glu Leu Thr Pro Phe Pro
50 55 60

Asp Gln Gly Thr Ser Thr Met Ile Ser Phe Leu Glu Lys Phe Asn Lys
65 70 75 80

Ser Lys Arg Glu Arg Leu Glu Leu Met Leu His Phe Tyr Ser Val Leu
85 90 95

Ser Leu Glu Pro Ala Phe Ala Glu His Trp Ser Gly Glu Phe Glu Lys
100 105 110

Trp Lys Val Gly Phe Phe His Pro Leu Lys Arg Glu Asp Gly Phe Phe
115 120 125

Thr Arg Thr Asp Ile
130

09230556-090604

<210> 39
<211> 128
<212> PRT
<213> Homo sapiens

<400> 39
Met Asp Ala Val Ala Val Tyr His Gly Lys Ile Ser Arg Glu Thr Gly
1 5 10 15
Glu Lys Leu Leu Leu Ala Thr Gly Leu Asp Gly Ser Tyr Leu Leu Arg
20 25 30
Asp Ser Glu Ser Val Pro Gly Val Tyr Cys Leu Cys Val Leu Tyr His
35 40 45
Gly Tyr Ile Tyr Thr Tyr Arg Val Ser Gln Thr Glu Thr Gly Ser Trp
50 55 60
Ser Ala Glu Thr Ala Pro Gly Val His Lys Arg Tyr Phe Arg Lys Ile
65 70 75 80
Lys Asn Leu Ile Ser Ala Phe Gln Lys Pro Asp Gln Gly Ile Val Ile
85 90 95
Pro Leu Gln Tyr Pro Val Glu Lys Lys Ser Ser Ala Arg Ser Thr Gln
100 105 110
Gly Thr Thr Gly Ile Arg Glu Asp Pro Asp Val Cys Leu Lys Ala Pro
115 120 125

<210> 40
<211> 343
<212> PRT
<213> Homo sapiens

<400> 40
Met Asp Ala Pro Lys Ala Gly Tyr Ala Phe Glu Tyr Leu Ile Glu Thr
1 5 10 15
Leu Asn Asp Ser Ser His Lys Lys Phe Phe Asp Val Ser Lys Leu Gly
20 25 30
Thr Lys Tyr Asp Val Leu Pro Tyr Ser Ile Arg Val Leu Leu Glu Ala
35 40 45

Ala Val Arg Asn Cys Asp Gly Phe Leu Met Lys Lys Glu Asp Val Met
50 55 60

Asn Ile Leu Asp Trp Lys Thr Lys Gln Ser Asn Val Glu Val Pro Phe
65 70 75 80

Phe Pro Ala Arg Val Leu Leu Gln Asp Phe Thr Gly Ile Pro Ala Met
85 90 95

Val Asp Phe Ala Ala Met Arg Glu Ala Val Lys Thr Leu Gly Gly Asp
100 105 110

Pro Glu Lys Val His Pro Ala Cys Pro Thr Asp Leu Thr Val Asp His
115 120 125

Ser Leu Gln Ile Asp Phe Ser Lys Cys Ala Ile Gln Asn Ala Pro Asn
130 135 140

Pro Gly Gly Asp Leu Gln Lys Ala Gly Lys Leu Ser Pro Leu Lys
145 150 155 160

Val Gln Pro Lys Lys Leu Pro Cys Arg Gly Gln Thr Thr Cys Arg Gly
165 170 175

Ser Cys Asp Ser Gly Glu Leu Gly Arg Asn Ser Gly Thr Phe Ser Ser
180 185 190

Gln Ile Glu Asn Thr Pro Ile Leu Cys Pro Phe His Leu Gln Pro Val
195 200 205

Pro Glu Pro Glu Thr Val Leu Lys Asn Gln Glu Val Glu Phe Gly Arg
210 215 220

Asn Arg Glu Arg Leu Gln Phe Phe Lys Trp Ser Ser Arg Val Leu Lys
225 230 235 240

Asn Val Ala Val Ile Pro Pro Gly Thr Gly Met Ala His Gln Ile Asn
245 250 255

Leu Glu Tyr Leu Ser Arg Val Val Phe Glu Glu Lys Asp Leu Leu Phe
260 265 270

Pro Asp Ser Val Val Gly Thr Asp Ser His Ile Thr Met Val Asn Gly
275 280 285

Leu Gly Ile Leu Gly Trp Gly Val Gly Gly Ile Glu Thr Glu Ala Val

290

295

300

Met Leu Gly Leu Pro Val Ser Leu Thr Leu Pro Glu Val Val Gly Cys
305 310 315 320

Glu Leu Thr Gly Ser Ser Asn Pro Phe Val Thr Ser Ile Asp Val Val
325 330 335

Leu Gly Ile Thr Lys Val Ser
340

<210> 41

<211> 305

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> (53), (54), (55), (56), (57), (58)

<223> A or G or C or T

<400> 41

tcatgaagtg aagccaaactg ttttagactag aatgttatga gattaaaccc acnnnnnntt 60

attcatagac ataaaccctc attttaatta gtggatctgg attttgtca tatgtggaat 120

cataatttaa acaaaaatcaa ctaagatgtat ccaagttcca cacaactgca cttcaatatt 180

caagtcggtg tgaagatgcc tgactactgc gtcacaagat tctgagctgt cgtaaaaagc 240

ctggctcggtg gtttctatTT atagtgtaca catgttgggt tataatcaca aacctggaac 300

tctgt 305

<210> 42

<211> 256

<212> DNA

<213> Homo sapiens

DNA
= DNA
T
= T
C
= C
G
= G
A
= A

<400> 42
gaaaccacgg cttaaacaccta gagacagcat tcagatatacg acggatact tgtgttagtc 60

agttccttta taacaggtga atctctctcc cactgcttca acactgcgtg acaaagccaa 120

ttgggaagca gcttacaaa tgtgacttga cttggggatc ttcttgatac tttgccatgg 180

caaggaacaa gccgcctgaa ctaaatgccca ctccatttga ttccacgctt aaagtaacca 240

tgcaaccgac tatagt 256

<210> 43
<211> 244
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> (227), (237)
<223> A or G or C or T

<400> 43
tactcttcaa ccatgatttt tctctgatgg cctgtgtgaa cagattaatg gtgtccatct 60

aattccttcc ccactggggg aaagcaaatc atcaggccca ttgaaaaac tgctttgg 120

tgagcttcct gccttaaatc atacccacag tgaatggcgt cccttatca ccgctaata 180

ctctgacatc tctctccact cacatgtgag cctcctcagc tctcgaaaaa caagtcngtc 240

tcgg 244

<210> 44
<211> 258

DRAFT
DNA

<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> (39), (40), (41)
<223> A or G or C or T

<400> 44 tctcagaaaa ctccagatca aatgagatga gtatggtnn naggctggc aattagagga 60

tactctccaa tggtgatgaa gggagatgtc tggggaaat ccagcaggat gttgatttag 120

tatgtacaca gtgagaggat actttagatag aacctagaat cttctctgaa tgtgacggc 180

cctcagagat aattgttaac agataagtgg atgattaaat acacttcctc cagtaggcta 240

gatgttaaga cgagatc 258

<210> 45
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 45 gggcttaata ttattcatag atcgag 26

<210> 46
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

Fasta sequence

<400> 46
gttattatac tatcaagtaa cccaac

26

<210> 47
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 47
gtggatctgg attttgtca tatgt

25

<210> 48
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 48
gtttgtgatt ataacccaac atgtg

25

<210> 49
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 49
gaaggggaag agacattaaa ttatc

25

<210> 50
<211> 24
<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Synthetic DNA

<400> 50

gcttctaaat ctcctgagtc actt

24

<210> 51

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Synthetic DNA

<400> 51

gacaatgagt aagaagaaaag aggg

24

<210> 52

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Synthetic DNA

<400> 52

gtccagtccc ttggtttatt tgtc

24

<210> 53

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Synthetic DNA

<400> 53

ggtacccagt ttcaaattaa catgg

25

SEQUENCE DATA

<210> 54
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 54
gattcttcaa ctgccaaact tgttc

25

<210> 55
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 55
gctgatgctt ttcttatctga cttc

24

<210> 56
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 56
gaccaggact gaacagaggt ga

22

<210> 57
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 57
gcttata~~gac~~ catgttt~~gta~~ gtagg

25

<210> 58
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 58
gtgaacaaat gctaaatcag acatg

25

<210> 59
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 59
gccacgggtt tcccatatcg aa

22

<210> 60
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 60
gactata~~actt~~ aggaac~~c~~tct gcaa

24

F09030 "S5504250"

<210> 61
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 61
gttctgctc cagcagattg gtta

24

<210> 62
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 62
gccaacatct gaactaaata ctgc

24

<210> 63
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 63
gttcagtcaa tgttacctag aaaca

25

<210> 64
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 64
ggagtgaaaa ctgtcttggt catc

24

<210> 65
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 65
gtatgacaaa tagttctgc ctgat

25

□
<210> 66
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 66
gattaacaaa gatgtacaga ctgag

25

<210> 67
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 67
gagacacgcat tcagatatacg acgg

24

<210> 68
<211> 22

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 68
gcgtggaatc aaatggagtg gc

22

<210> 69
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 69
gatggcctgt gtgaacagat taat

24

<210> 70
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 70
gagagagatg tcagagtcat tagc

24

<210> 71
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 71

gatccccaca atttcttgat attg

24

<210> 72
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 72
gttcccccata aataatgtgg taatg

25

<210> 73
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 73
gaggataactc tccaatggtg atg

23

<210> 74
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 74
gtcttaacat ctagcctact ggag

24

<210> 75
<211> 24
<212> DNA

DNA Sequence

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Synthetic DNA

<400> 75

gagaggagcc atgtatacaa acca

24

<210> 76

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Synthetic DNA

<400> 76

gcacgcagga tcagatatacg taattc

26

<210> 77

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Synthetic DNA

<400> 77

gctgaaacct aagctgaagg aagg

24

<210> 78

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Synthetic DNA

<400> 78

gtccctcacc tcagatcaca cc

22

F090590E250

<210> 79
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 79
gctatctacc tggcagaaaa agag

24

<210> 80
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 80
gagtttctta ctatgatctg gattc

25

<210> 81
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 81
gcaaaatgta ctcagcttca atcac

25

<210> 82
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 82
gtaaaatgcag tactgttctg atcc

24

<210> 83
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 83
gaatgcttca ttctcattgt ttaagg

26

<210> 84
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 84
gtcacttagga ttccacagaa cttc

24

<210> 85
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 85
gaggttagggc ttcccttcgc ta

22

<210> 86
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 86
gcataacaag tgacagggtt agtta

25

<210> 87
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 87
ggtgctcctt ctttacactg gt

22

<210> 88
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 88
gactacacat aaacccaccc cag

23

<210> 89
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 89
gggtacagga tttctaagaa gtgg

24

<210> 90
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 90
ggagaaaatt tcagctcatc tgaag

25

<210> 91
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 91
gctgaagtta agcattaata cgcc

24

<210> 92
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 92
gcggctgtaa tgtgcaatga tgt

23

<210> 93
<211> 24

DNA Sequence Database

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 93
gacagcaacc taataaacagc tgtc

24

<210> 94
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 94
gtccttaggca cttgtcacta gg

22

<210> 95
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 95
gaggggactt ccaagagtct ct

22

<210> 96
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 96

gtcttcagga aaattgtagt tacag

25

<210> 97
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 97
gttacaaaca cacacgaagt tcct

24

<210> 98
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 98
gacttcctaa ggcacactca gc

22

<210> 99
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 99
gtttaactac ctctcaggc atga

24

<210> 100
<211> 22
<212> DNA

FOURTY-EIGHT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Synthetic DNA

<400> 100

gtcgccaagg ctgtagtgca at

22

<210> 101

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Synthetic DNA

<400> 101

gaaaatagta tcccttgcgt tcga

24

<210> 102

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Synthetic DNA

<400> 102

gaccaagaat tcagttcatc agtt

24

<210> 103

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Synthetic DNA

<400> 103

gaatgaacca gagccaggac ag

22

FBI - LABORATORY

<210> 104
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 104
gccttgtatg tatgcctgtg cc

22

<210> 105
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 105
aagagtccac caggccatgg a

21

<210> 106
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 106
taccttgtgt acttcttagct gag

23

<210> 107
<211> 17
<212> DNA
<213> Artificial Sequence

0 2 3 4 5 6 7 8 9

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 107
gtttttttt tttttta

17

<210> 108
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 108
gtttttttt ttttttg

17

<210> 109
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 109
gtttttttt ttttttc

17

<210> 110
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 110
cagagtatg gatatcaa

18

<210> 111
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 111
atgaaaagtgc cagtgtgccca tg

22

<210> 112
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 112
cccatcacca tcttccagga gc

22

<210> 113
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic DNA

<400> 113
ttcaccaccc tcttgatgtc atcata

26

<210> 114
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic Peptide

<400> 114
Cys Pro Leu Lys Arg Glu Asp Gly Phe Phe Thr Arg Thr Asp Ile
1 5 10 15

<210> 115
<211> 16
<212> PRT
<213> Artificial Sequence

<220>
<221> MOD_RES
<222> (16)
<223> AMIDATION, GluAmide

<400> 115
Cys Ser Phe Leu Glu Lys Phe Asn Lys Ser Lys Arg Glu Arg Leu Xaa
1 5 10 15

<210> 116
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<221> MOD_RES
<222> (15)
<223> AMIDATION, GlyAmide

<400> 116
Cys Ala Glu His Trp Ser Gly Glu Phe Glu Lys Trp Lys Val Xaa
1 5 10 15

<210> 117
<211> 16
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic Peptide

<400> 117
Cys Glu Ile Asp Lys Arg Val Ser Leu Ile Leu His Phe Gly Lys Phe
1 5 10 15

<210> 118
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic Peptide

<400> 118
Cys Arg Leu Met Lys Arg Lys Thr Gly Glu Ser Leu Leu Ser Ser
1 5 10 15

<210> 119
<211> 14
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic Peptide

<400> 119
Cys Thr Ser Ile Asp Val Val Leu Gly Ile Thr Lys Val Ser
1 5 10

<210> 120
<211> 16
<212> PRT
<213> Artificial Sequence

<220>
<221> MOD_RES
<222> (16)
<223> AMIDATION, LysAmide

<400> 120
Cys Ser Ala Glu Thr Ala Pro Gly Val His Lys Arg Tyr Phe Arg Xaa
1 5 10 15

<210> 121
<211> 16
<212> PRT
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 121

Cys Lys Ile Thr Glu Lys Gln Leu Leu Gly Asn Val Leu Asn Tyr Pro
1 5 10 15
1 / 101