Introduction to Hydrodynamic Analysis with Ansys Aqwa

Workshop 08.1: Truss Spar Including Drag Linearization

Release 2021 R2

Truss Spar with Drag Linearization

The goal of this workshop is to:

- Create a mixed model comprising diffracting and slender body components
- Investigate the effects of drag linearization
- Compare frequency domain and time domain solutions when including viscous drag

Set Up HD System

- Open Workbench and using File > Open navigate to the Spar.wbpj project file. This project contains a pre-defined Spar geometry
- Add a Mesh system linked to the geometry.

Set Up Mesh

We are going to use the Ansys meshing tool to enable different mesh sizes to be applied to the truss elements and the heave plates. We will take advantage of using the worksheet to prescribe the order of the meshing, which is not possible in the Aqwa meshing tool

Open the meshing tool by double clicking on the Mesh cell

Named Selections

Establish three Named Selections to enable worksheet mesh generation

- Select the Truss_Spar surface bodies in the Outline tree, right-click > Create
 Named Selection
- Define the Selection Name as Shells

Named Selections

Repeat for the truss beams and hull drag tube

- Select the Truss_Spar_Beams bodies in the Outline tree, right-click > Create Named Selection
- Define the Selection Name as Truss
- Select the Hull Drag Tube body in the Outline tree, right-click > Create Named Selection
- Define the Selection Name as Hull Drag

Establish Mesh Settings

Set up mesh parameters for the beam bodies

- Click on Mesh in the Outline tree and set Physics Preference to Hydrodynamics
- Right-click > Insert > Sizing
- Set Scoping Method to Named
 Selection, then choose Truss as the
 Named Selection. Set Element Size to 50
 m
- Repeat for Hull drag Named Selection and set Element Size to 100 m

Establish Mesh Settings

Set up mesh parameters for the shells

- Right-click > Insert > Method
- Set Scoping Method to Named
 Selection, then choose Shells as the
 Named Selection. Leave other details as
 defined

Set up Mesh Worksheet

The Mesh Worksheet enables the order of meshing to be controlled. We want to mesh the beams before the shells to allow a coarser mesh to be established for those bodies

- Click the Mesh object in the Tree Outline
- Click the Worksheet button on the toolbar
- Add a row to the worksheet by right-clicking on the table and selecting Add from the context menu
- In the new row, click on the Named Selection column and select a Truss from the Named Selection dropdown
- Repeat for Hull Drag, and finally Shells Named Selections

Generate Mesh

The mesh can now be generated

 Either click the Generate Mesh in the Worksheet window, or select Mesh in the Tree Outline, right-click > Generate Mesh

To view the mesh select Mesh in the Tree Outline and choose the Graphics tab in the

visualization window

Close the Meshing tool

Add Hydrodynamic Diffraction System

Add a new Hydrodynamic Diffraction system

- The link between the Mesh system and the Hydrodynamic Diffraction system has to be created manually. Click on the Mesh cell and link onto the Model cell of the HD system.
- The HD system will update to reflect the connection
- On the Model cell, right-click > Update Upstream Components
- Double click on any HD cell to open Aqwa

Adding Aqwa Specific Geometry

Note that the mesh information is read only, we cannot modify the mesh directly in Aqwa

Adding Aqwa Specific Geometry

- Spars typically have natural heave periods in the 20-30 second range and have very low damping. To reduce the effects of resonance, heave plates are normally utilized. Much of the damping effect of heave plates comes from viscous drag, so we are going to add viscous damping elements to supplement the heave plates modelled using diffraction elements
- The geometry already includes Morison Tube elements to model the truss, but we need to add drag elements that only effect the vertical motions of the Spar
- Disc elements are going to be used to provide viscous drag normal to the plane of the heave plates

We are going to add four discs per heave plate (one on each corner).

- Right-click on Truss_Spar and Add > Disc
- We will assign one quarter of the total area of the heave plate to each disc
 - Set Diameter to 23m
- A disc requires a centroid and a normal definition
 - For the Centroid Definition, click on Select a Single Vertex, then select one of the corners of the topmost heave plate. Apply
 - For the Normal Definition, click on Select a Single Vertex, then select the corner of the plate immediately above that selected for the centroid. Apply. You will see that the disc rotates to be horizontal

In addition to the disc diameter, an Added Mass and Viscous Drag coefficient needs to be defined

- The Added Mass value should be small, since we have already accounted for this effect by modelling the heave plate using diffraction elements
- We set the Viscous Drag Coefficient to a number that is twice the standard value for a thin disc since the Aqwa solver assumes that discs are used to cap the end of a body, so divides the coefficient by two
 - Set Added Mass Coef to 0.1
 - Set Viscous Drag Coef to 2.28

D	etails		ħ.
	Details of Disc		
	Name	Disc	
	Visibility	Visible	
	Activity	Not Suppressed	
	Disc Size and Position		
	Diameter	23 m	
	Centroid Definition	Vertex Selection	
	Vertex	Vertex Selected (Truss_Spar)	
	Х	-22.75 m	
	Υ	-22.75 m	
	Z	-68 m	
⊟	Disc Normal		
	Normal Definition	Vertex Selection	
	Normal Vertex	Vertex Selected (Truss_Spar)	
	Normal X	0.0	
	Normal Y	0.0	
	Normal Z	1	
	Physical Properties		
	Added Mass Coefficient	0.1	
	Drag Coefficient	2.28	

 Using right-click on the existing Disc element, Duplicate this three times, and reset the Centroid Vertex and Normal Vertex for the other three corners of the top heave plate

We now need to repeat this for the remaining three heave plates

- Using right-click on the existing four Disc elements, Duplicate each one, and reset the Centroid Vertex to the corresponding vertex on the heave plate below. The Normal Vertex does not need to be reset in this instance since the direction will already be correct
- Repeat this for the two lower heave plates

Hull Drag Modelling

In order to include the effects of viscous drag on the hull, there is a dummy Morison tube element that is within the hull model.

- This can be visualized by hiding part of the hull surface 'Hard Tank'
- The tube element is called Hull Drag Tube in the Truss_Spar geometry. Select the corresponding Beam Section 'Circular Tube 3' in the Line Body Data: it can be seen that this tube has a small diameter, 0.01x the real Spar hull diameter of 45.5 m. This is done so that the added mass effect is not doubled up, as this is computed by Aqwa from the diffraction model. To include the viscous effect we therefore multiply the drag coefficient by 100.

Dε		
Ξ	Details of Circular Tube 3	
	Name	Circular Tube 3
	Solver Line Type	Cylindrical (TUBE)
	Geometric Properties	
	Cross Section Name	Hull Drag Tube
	Cross Section Type	Circular Tube
	Inner Radius	0.2274 m
	Outer Radius	0.2275 m
	Cross Section Area	1.42911e-4 m²
	Second Moment of Area	3.69664e-6 m ⁴
	Mass Properties	
	Material Density	7850 kg/m³
	Inertia/Unit Length	0.02902 (kg.m²)/m
⊟	Hydrodynamic Properties	
	Displaced Area	0.1626 m²
	Transverse Drag Coefficient	75
	Axial Drag Coeffcient	0.016
	Added Mass Coefficient	1
	Inertia Coefficient	2

Provide Additional Aqwa Elements

- For the Spar provide a Point Mass element
- Note that the mass of the truss elements is automatically computed, so does not need to be included in the Point Mass definition

Point Mass Input

- Change Mass definition to Manual
- Define Inertia Values by Radius of Gyration
- Set VCG (Z coordinate), Mass and Radius of Gyration as shown

Global Parameters

• Select the Geometry object in the tree. Set the Water Depth to 600m.

Details •			
□ Details of Geometry			
	Name	Geometry	
	Attached Assembly Path	C:\backedup\ANSYS\Aqwa_Training_18\Aqwa	
⊟	Sea Geometry		
	Water Depth	600 m	
	Water Density	1025 kg/m³	
	Water Size X	810 m	
	Water Size Y	560 m	
⊟	☐ Stability/Time Response-Specific Options		
	Tube Drag Coefficients	Defined in Line Body Details	
	Seabed Inline Friction Coeffic	0.0	
	Seabed Lateral Friction Coeff	0.0	
⊟	Composite Cable Seabed Definition		
	Seabed Type	No Composite Cable Seabed	
⊟	Import Preferences		
	Import Solid Bodies	No	
	Import Surface Bodies	Yes	
	Import Line Bodies	Yes	

Analysis Settings

- To reduce computational time we are going to switch off the wave grid pressure feature.
 - Set Generate Wave Grid Pressures to No
- By default viscous effects on slender body elements is ignored in a Hydrodynamic Diffraction analysis. To include this effect set Linearized Morison Drag to Yes
- Set Ignore Modelling Rule Violations to Yes

D	etails		ħ
	Details of Analysis Settings		
	Name	Analysis Settings	
	External Operation before Solving	None	
	External Operation after Solving	None	
	Parallel Processing	Program Controlled	
	Generate Wave Grid Pressures	No	
	Common Analysis Options		
	Ignore Modelling Rule Violations	Yes	
	Calculate Extreme Low/High Fre	Yes	
	Include Multi-Directional Wave Int	Yes	
	Near Field Solution	Program Controlled	
	Linearized Morison Drag	Yes	
	QTF Options		
	Calculate Full QTF Matrix	Yes	
	Output File Options		
	Source Strengths	No	
	Potentials	No	
	Centroid Pressures	No	
	Element Properties	No	
	ASCII Hydrodynamic Database	No	
	Example of Hydrodynamic Datab	No	
	Generate AHD Pressure Output	No	

Wave Directions and Frequencies

Leave the Wave Directions as Program Controlled

For the Wave Frequencies we want to investigate the region where the natural heave period is located. From simple hand calculations this is estimated to be around 23 seconds.

- Set Intervals Based Upon Period
- Set Frequency/Period Definition in the Details of Wave Frequencies to Manual Definition.
- Set Lowest/Highest Frequency Definitions to Manual Definition.
 - Set Longest Period to 60 seconds
 - Shortest Period to 5 seconds.
 - Set Number of Intermediate Values to 21.
- Define a manual single Additional Frequency with a period of 23 seconds

De	etails		
⊟	Details of Wave Frequencies		
	Name	Wave Frequencies	
	Intervals Based Upon	Period	
⊟	Incident Wave Frequency/Period Definition		
	Range	Manual Definition	
	Definition Type	Range	
	Lowest Frequency Definition	Manual Definition	
	Lowest Frequency	0.01667 Hz	
	Longest Period	60 s	
	Highest Frequency Definition	Manual Definition	
	Highest Frequency	0.2 Hz	
	Shortest Period	5 s	
	Number of Intermediate Values	21	
	Interval Period	2.5 s	
⊟	Additional Frequencies A		
	Additional Range	Single	
	Lowest Frequency Definition	Manual Definition	
	Lowest Frequency	0.04348 Hz	
	Longest Period	23 s	
⊟	→ Additional Frequencies B		
	Additional Range	None	

Define Wave Spectrum

- In order to undertake drag linearization for the Morison elements, we need to define a wave spectrum upon which the linearization will be undertaken. Provided the Linearized Morison Drag is set to Yes in the Analysis settings, you will be able to add a spectrum to the HD system
 - Right-click on Hydrodynamic Diffraction and Insert > Irregular Wave > Pierson-Moskowitz
 - Set Significant Wave Height to 10m and Zero Crossing Period to 8 seconds

Save Project

- Save the project from the Workbench Project Page, File > Save As
- Browse to the training working directory and save the project as TrussSpar.wbpj.

Undertake a full hydrodynamic solve. This will take a few minutes.

- Add the following results
- Hydrostatics (check displacement values)
- RAOs
 - Can plot these with and without Linearized Drag on the same graph. Choose the heave response (Global Z), for a -180° wave direction

=	Details of RAOs (Distance/Rotation vs Frequency)	
	Name	RAOs (Distance/Rotation vs F
	Presentation Method	Line
	Axes Selection	Distance/Rotation vs Frequency
	Frequency or Period Scale	Period
	Export CSV File	Select CSV File
=	Line A	
	Structure	Truss_Spar
	Туре	RAOs
	Component	Global Z
	Direction	-180°
	Reference Point	Center of Gravity (Truss_Spar)
	Motion Relative To	Origin of Fixed Reference Axe
	Abscissa Position of Minimum	5 s
	Abscissa Position of Maximum	23 s
	Minimum Value	4.576e-5 m/m
	Maximum Value	29.25 m/m
=	Line B	
	Structure	Truss_Spar
	Туре	RAOs Including Morison Drag
	Component	Global Z
	Direction	-180°
	Abscissa Position of Minimum	5 s
	Abscissa Position of Maximum	23 s
	Minimum Value	4.529e-5 m/m
	Maximum Value	10.312 m/m

Adding the HR Systems

We are going to include four separate HR systems

- An initial static Stability Analysis
- Two Frequency Statistical Analyses, one including drag linearization and one without
- A Time Response Analysis

Drag and drop a Hydrodynamic Response to the WB Project Schematic while sharing the solution from Hydrodynamic Diffraction.

Adding the HR Systems

 Add a further three HR systems, but this time link each one with the solution from the first HR system (which is going to be the Stability Analysis)

Completed Project Workflow

Identify Response Systems

- In the project tree, click on the first Hydrodynamic Response (D3), rename this Analysis system to Static Analysis.
- Repeat for the other three HR systems as shown

Set up Response Systems

- •By default, the first system linked to a HD system will become a static Stability Analysis, so this can be left as defined.
- •For any HR system linked to a Stability Analysis, the default is to have a Computation Type of Time Response Analysis.
- For the Frequency Domain Dynamic set Computation Type to Frequency Statistical Analysis. Leave other settings as they are.
- For the Frequency Domain Dynamic with Drag, again set Computation Type to Frequency Statistical Analysis, but this time set the Linearized Morison Drag Analysis Option to Yes.

Set up Response Systems

For the Time Response Analysis

- Set the Analysis Type to Irregular Wave Response with Slow Drift
- Set the simulation Duration to 600 seconds

etails	4
Details of Analysis Settings	
Name	Analysis Settings
Computation Type	Time Response Analysis
Parallel Processing	Program Controlled
Use Cable Dynamics	Yes
Time Response Specific Opt	ions
Analysis Type	Irregular Wave Response with Slow Drift
Start Time	0.0 s
☐ Time Step	0.1 s
Duration	600 s
Number of Steps	6001
Finish Time	600 s
Starting Position	Determined by Upstream System
X-Position for Wave Surface Ele	0.0 m
Y-Position for Wave Surface Ele	0.0 m
Common Analysis Options	
Convolution	Yes
Call Routine "user_force"	No
Calculate Motions Using RAOs	No
Account for Current Phase Shift	Yes
Apply Drift Force with Multi-Dire	No
Calculate Wave Drift Damping	Yes
Include Yaw Wave Drift Damping	Yes
Use Slow Velocity for Hull Drag	No
QTF Options	
Use Full QTF Matrix	No
Use Sum Frequency QTFs	No
Output File Options	
Axis System for Joint Reactions	Fixed Reference Axes
Data List	Yes
Element Properties	No

Define Environment

Since the drag linearization is based upon a given spectrum, we are going to use the same spectrum for all of the analyses.

- Right-click on Irregular Wave under the HD system, select Copy.
- Right-click on Static Analysis, select Paste
- Right-click on the new Irregular Wave under the Static Analysis, select Propagate

Set up Mooring Configuration

 The mooring configuration will consist of four conventional semi-taut lines, and four "rigid risers"

Create Connection Points on Spar

- Add four locations for the mooring system on the spar
- Select Geometry > Truss_Spar > Add > Connection Point
- Set Definition of Position to Vertex Selection and select the vertex on the corner at the top of the Spar hull base, in the positive X/Y quadrant. Set the X/Y/Z Offsets as shown.

Create Connection Points on Spar

Repeat for the three other corners on the Spar hull base. Define the offsets such that the connection points lie adjacent to the Spar hull

 Assuming that the connection points are defined in a clock-wise manner when looking from above, the offset data is as follows

Create Connection Points on Spar

- Add four locations for the riser system on the spar
- Select Geometry > Truss_Spar > Add > Connection Point
- Set Definition of Position to Vertex Selection and select the vertex on the bottom of the Hull Drag Tube. Set the X/Y/Z Offsets as shown.

Create Connection Points on Spar

Repeat three times for the remaining risers. Use the same vertex as a reference point, but just change the offset. Use Duplicate to re-use the existing vertex selection

 Assuming that the connection points are defined in a clock-wise manner when looking from above, the offset data is as follows

Define Anchor Locations

•Add four anchors for the mooring lines, and four connections for the rigid risers

Mooring Anchors			
	X	Υ	Z
Anchor 1	1000	1000	-600
Anchor 2	1000	-1000	-600
Anchor 3	-1000	-1000	-600
Anchor 4	-1000	1000	-600

Riser Connectors			
	X	Υ	Z
Riser 1	2	0	-600
Riser 2	0	-2	-600
Riser 3	-2	0	-600
Riser 4	0	2	-600

Set Up Mooring Line Properties

- We are going to use composite catenary lines for the mooring system. These are lines made up of one or more segments (or sections) with varying properties e.g. chain/wire/chain
- Select Connections > Connection Data > Insert Connection Data > Catenary Section.

Mooring Line Properties

- Provide data for Mass/Unit Length, Equivalent Cross-Sectional Area, Stiffness,
 Maximum Tension and Equivalent Diameter as below. Note that stiffness value is 6e8,
 and maximum tension is 7.5e6.
- Repeat for two additional sections

Mooring Line Connections

- To add a line select Connections > Insert Connection > Cable
- Rename mooring line as Mooring 1
- Choose Non-Linear Catenary for Type and Fixed Point to Structure for Connectivity

De	Details Details		
	Details of Cable 1		
	Name	Cable 1	
	Visibility	Visible	
	Activity	Not Suppressed	
⊟	General Attributes		
	Туре	Non-Linear Catenary	
	Connectivity	Fixed Point to Structure	
	Start Fixed Point	Undefined	
	End Connection Point	Undefined	
	Initial Attachment Point Separation	Not Available	
⊟	Cable Dynamics Properties		
	Use Dynamics	Defer to Analysis Settings "Use Cable Dynamics" option	
	Number of Elements	100	
⊟	Catenary Section Selection		
	Section 1: Type	None	
⊟	Cable Properties		
	Negative dZ Range of Expec	0.0 m	
	Positive dZ Range of Expected	0.0 m	
	Number of Vertical Partitions	15	
	Number of X Coordinates	40	
	Initial Cable Data		
	Initial Cable Tension at Start	0.0 N	
	Initial Cable Tension at End	0.0 N	

Mooring Line Connections

- We need to define end connection points and the segments along the line, plus some
 data defining the possible dZ range of the fairlead (will be explained in a later lecture).
- Click on cell adjacent to Start Fixed Point and select Anchor 1 (Fixed) from drop down menu.
- Click on cell adjacent to End Connection Point and select Connection Point 1
 (Truss_Spar) from drop down menu.

D	Details P			
▣	Details of Cable 1			
	Name	Cable 1		
	Visibility	Visible		
Activity Not Suppressed		Not Suppressed		
E	General Attributes			
	Туре	Non-Linear Catenary		
	Connectivity	Fixed Point to Structure		
	Start Fixed Point	Anchor 1 (Fixed)		
	End Connection Point	Connection Point 1 (Truss_Spar)		
	Initial Attachment Point Separation	1503.57744230219 m (Point to Point)		

Mooring Line Configuration

- The composition of the line is now defined
 - Section allocation
 - Line length
- Sections are defined from the anchor location up to the fairlead
- Section 1 type should be set to Catenary
 Section 1, length 600 m
- Repeat for sections 2 and 3 as shown
- Finally set the dZ Ranges under Cable
 Properties to 10m

Mooring Line Configuration

- Set up the remaining 3 mooring lines with identical properties but different connection points
- Use the Duplicate option to reduce data repetition

D	Details #		
E	Details of Mooring 2		
ı	Name	Mooring 2	
ı	Visibility	Visible	
	Activity	Not Suppressed	
E	General Attributes		
ı	Туре	Non-Linear Catenary	
ı	Connectivity	Fixed Point to Structure	
ı	Start Fixed Point	Anchor 2 (Fixed)	
	End Connection Point	Connection Point 2 (Truss_Spar)	
	Initial Attachment Point Separation	1503.57744230219 m (Point to Point)	

Riser Connections

- These are added in the same way as the mooring lines, except now we are going to use
 a simplified model for the riser (we could have used the Tether/Riser connection, but
 this is not available in the solver for dynamic frequency domain analyses)
- Choose Fixed Point & Structure for Connectivity and Linear for Type
- Set Stiffness to 1.5E7 N/m and Unstretched Length to 559 m
- Rename as Riser 1

Riser Connections

Repeat for the other three risers

-	Details of Riser 3		
	Name	Riser 3	
	Visibility	Visible	
	Activity	Not Suppressed	
☐ General Attributes			
	Туре	Linear	
	Connectivity	Fixed Point to Structure	
	Start Fixed Point	Riser 3 (Fixed)	
	End Connection Point	Connection Point 7 (Truss_Spar)	
	Initial Attachment Point Separation	560 m (Point to Point)	
☐ Cable Properties			
	Stiffness	15000000 N/m	
	Unstretched Length	559 m	

De	Details •		
Θ	Details of Riser 4		
	Name	Riser 4	
ı	Visibility	Visible	
	Activity	Not Suppressed	
General Attributes			
	Туре	Linear	
	Connectivity	Fixed Point to Structure	
	Start Fixed Point	Riser 4 (Fixed)	
	End Connection Point	Connection Point 8 (Truss_Spar)	
	Initial Attachment Point Separation	560 m (Point to Point)	
☐ Cable Properties			
	Stiffness	15000000 N/m	
	Unstretched Length	559 m	

Solve

- We can now solve each of the dynamic systems that have been added. Note that if an upstream solution is not already available Workbench will automatically solve for that as well.
- Add some results to compare inclusion of drag linearization in the frequency domain solutions.

Time Domain Results

Compare results between Frequency Domain and Time Domain solutions

Time Domain Statistic Results

Project Completed

