Mining Frequent Spatial Patterns in Transactional Databases

What is frequent spatial pattern mining?

Frequent pattern mining aims to discover all interesting patterns in a transactional database that have **support** no less than the user-specified **minimum support** (**minSup**) constraint and **distance** no greater than user-specified **maximum distance** (**maxDist**). The **minSup** controls the minimum number of transactions that a pattern must appear in a database. The **maxDist** controls the maximum distance between two items in pattern should be less.

What is the transactional database?

A transactional database is a collection of transactions, where each transaction contains a transaction-identifier and a set of items.

A hypothetical transactional database containing the items **a**, **b**, **c**, **d**, **e**, **f**, **and g** as shown below

tid	Transactions
1	a b c g
2	b c d e
3	a b c d
4	a c d f
5	a b c d g
6	c d e f
7	a b c d
8	a e f
9	a b c d
10	b c d e

Note: Duplicate items must not exist in a transaction.

Acceptable format of transactional databases in PAMI

about:srcdoc Page 1 of 6

Each row in a transactional database must contain only items. PAMI algorithms implicitly consider the row number as the transactional-identifier to reduce storage and processing costs.

abcg bcde abcd acdf abcdg cdef abcd aef

a b c d

bcde

What is the spatial database?

Spatial database contain the spatial (neighbourhood) information of items. It contains the items and its nearset neighbours satisfying the **maxDist** constraint.

Items	neighbours
а	b, c, d
b	a, e, g
С	a, d
d	а, с
е	b, f
f	e, g
g	b, f

Understanding the statisctics of database

about:srcdoc Page 2 of 6

To understand about the database. The below code will give the detail about the transactional database.

- Total number of transactions (Database size)
- Total number of unique items in database
- Minimum lenth of transaction that existed in database
- Average length of all transactions that exists in database
- Maximum length of transaction that existed in database
- Standard deviation of transaction length
- Variance in transaction length
- Sparsity of database

The sample code

import PAMI.extras.dbStats.transactionalDatabaseStats as stats

```
obj = stats.transactionalDatabaseStats('sampleInputFile.txt', ' ')
obj.run()
obj.printStats()
```

What is the input to frequent spatial pattern mining algorithms

about:srcdoc Page 3 of 6

Algorithms to mine the frequent spatial patterns requires transactional database, spatial database and minSup (specified by user).

Transactional database in following formats:

```
In string format
  (/Users/Likhitha/Downlaods/sampleInputFile.txt)
```

- In URL format (https://www.uaizu.ac.jp/~udayrage/datasets/transactionalDatabases/tra
- In DataFrame format (dataframe variable with heading Transactions)
- Spatial database in following formats:
 - In string format
 (/Users/Likhitha/Downlaods/sampleNeighbourFile.txt)
 - In URL format (https://www.uaizu.ac.jp/~udayrage/datasets/transactionalDatabases/tra
 - In DataFrame format (dataframe variable with headings item and Neighbours)
- minSup should be mentioned in count (beween 0 to length of database) or __percentage (multiplied with length of database)
- Seperator of the input file should be mentioned

What is the output of frequent spatial pattern mining algorithms

The output of these algorithms is in two ways:

- Saving the patterns in user specified output file.
- Returns the patterns in dataframe variable.

How to run the frequent spatial pattern algorithm in terminal

about:srcdoc Page 4 of 6

- Download the code from github.
- Navigate to PAMI folder where you downloaded the file.
- Go to periodicFrequentSpatialPattern folder

Execute the following command on terminal.

python3 algorithmName.py path of Sample input file path of neighbour file path of output file minSup maxPer seperator

Sample command to execute the code in frequentSpatialPattern/basic folder

```
python3 FSPGrowth.py /Users/Donwloads/inputFile.txt
/Users/Downloads/neighbourFile.txt
/Users/Downloads/outputFile.txt 3 ' '
```

How to implement the code by importing PAMI package

Import the PAMI package executing: pip3 install PAMI

Run the below sample code by making simple changes

- Replace sampleInputFile name or path in place of iFile, sampleNeighbourFile in place of nFile and sampleOutputFile name or path in place of oFile
- Specify the minSup (like 10 or 0.1) in place of minSup
- Specify the seperator of input file after minSup. (If no seperator is specified the default tab seperator is considered for input file)

```
import PAMI.frequentSpatialPattern.basic.FSPGrowth as alg
obj = alg.FSPGrowth(iFile, nFile, minSup, ',')
obj.startMine()
obj.savePatterns(oFile) (to store the patterns in file).
Df = obj.getPatternsAsDataFrame() (to store the patterns in dataframe)
obj.printStats()
```

about:srcdoc Page 5 of 6

What is the output of frequent spatial pattern mining algorithms

Returns the pattern and support respectively with \$minSup=5\$ for above sample data

The output in file format:

a: 7

b: 7

c: 9

d: 8

a b: 5

a c: 6

a d: 5

c d: 8

The output in DataFrame format:

	Patterns	Support
0	а	7
1	b	7
2	С	9
3	d	8
4	a b	5
5	ас	6
6	a d	5
7	c d	8

about:srcdoc Page 6 of 6