Ecosystem

Version 0.0 beta

Generated by Doxygen 1.8.3.1

Thu Sep 24 2015 13:36:56

Contents

1	Hier	archica	l Index															1
	1.1	Class	Hierarchy					 	 	 		 						1
2	Clas	s Index																3
	2.1	Class	List					 	 	 		 						3
3	File	Index																5
	3.1	File Lis	st					 	 	 		 						5
4	Clas	s Docu	mentation															7
	4.1	ARNO	LDI_DATA	Struc	ct Re	feren	ice .	 	 	 		 						7
		4.1.1	Detailed [Desci	riptior	n.		 	 	 		 						8
		4.1.2	Member [Data	Docu	men	tation	 	 	 		 						8
			4.1.2.1	k .				 	 	 		 						8
			4.1.2.2	iter				 	 	 		 						8
			4.1.2.3	beta	ι			 	 	 		 						8
			4.1.2.4	hp1				 	 	 		 						8
			4.1.2.5	Outp	out .			 	 	 		 						8
			4.1.2.6	Vk				 	 	 		 						8
			4.1.2.7	Hkp	1			 	 	 		 						8
			4.1.2.8	yk .				 	 	 		 						8
			4.1.2.9	e1				 	 	 		 						8
			4.1.2.10	w .				 	 	 		 						8
			4.1.2.11	v .				 	 	 		 						9
			4.1.2.12	sum				 	 	 		 						9
	4.2	Atom (Class Refer	ence				 	 	 		 						9
		4.2.1	Detailed [Desci	riptior	n.		 	 	 		 					 . 1	1
		4.2.2	Construct															1
			4.2.2.1	Ator	n			 	 	 		 					 . 1	1
			4.2.2.2	\sim At	om .			 	 	 		 					 . 1	1
			4.2.2.3	Ator	n			 	 	 		 					 . 1	1
			4004	A 4	_												_	-

ii CONTENTS

	4.2.3	Member Function Documentation
		4.2.3.1 Register
		4.2.3.2 Register
		4.2.3.3 editAtomicWeight
		4.2.3.4 editOxidationState
		4.2.3.5 editProtons
		4.2.3.6 editNeutrons
		4.2.3.7 editElectrons
		4.2.3.8 editValence
		4.2.3.9 removeProton
		4.2.3.10 removeNeutron
		4.2.3.11 removeElectron
		4.2.3.12 AtomicWeight
		4.2.3.13 OxidationState
		4.2.3.14 Protons
		4.2.3.15 Neutrons
		4.2.3.16 Electrons
		4.2.3.17 BondingElectrons
		4.2.3.18 AtomName
		4.2.3.19 AtomSymbol
		4.2.3.20 AtomCategory
		4.2.3.21 AtomState
		4.2.3.22 AtomicNumber
		4.2.3.23 DisplayInfo
	4.2.4	Member Data Documentation
		4.2.4.1 atomic_weight
		4.2.4.2 oxidation_state
		4.2.4.3 protons
		4.2.4.4 neutrons
		4.2.4.5 electrons
		4.2.4.6 valence_e
		4.2.4.7 Name
		4.2.4.8 Symbol
		4.2.4.9 Category
		4.2.4.10 NaturalState
		4.2.4.11 atomic_number
4.3	BACK	RACK_DATA Struct Reference
	4.3.1	Detailed Description
	4.3.2	Member Data Documentation
		4.3.2.1 alpha

		4.3.2.2	rho	15
		4.3.2.3	lambdaMin	15
		4.3.2.4	normFkp1	15
		4.3.2.5	constRho	15
		4.3.2.6	Fk	15
		4.3.2.7	xk	15
4.4	BiCGS	STAB_DAT	TA Struct Reference	15
	4.4.1	Detailed	Description	16
	4.4.2	Member	Data Documentation	17
		4.4.2.1	maxit	17
		4.4.2.2	iter	17
		4.4.2.3	breakdown	17
		4.4.2.4	alpha	17
		4.4.2.5	beta	17
		4.4.2.6	rho	17
		4.4.2.7	rho_old	17
		4.4.2.8	omega	17
		4.4.2.9	omega_old	17
		4.4.2.10	tol_rel	17
		4.4.2.11	tol_abs	17
		4.4.2.12	res	17
		4.4.2.13	relres	18
		4.4.2.14	relres_base	18
		4.4.2.15	bestres	18
		4.4.2.16	Output	18
		4.4.2.17	x	18
		4.4.2.18	bestx	18
		4.4.2.19	r	18
		4.4.2.20	r0	18
		4.4.2.21	v	18
		4.4.2.22	p	18
		4.4.2.23	y	18
		4.4.2.24	s	18
		4.4.2.25	z	19
		4.4.2.26	t	19
4.5	CGS_I	DATA Stru	uct Reference	19
	4.5.1	Detailed	Description	20
	4.5.2	Member	Data Documentation	20
		4.5.2.1	maxit	20
		4.5.2.2	iter	20

iv CONTENTS

		4.5.2.3	breakdown	20
		4.5.2.4	alpha	20
		4.5.2.5	beta	20
		4.5.2.6	rho	20
		4.5.2.7	sigma	21
		4.5.2.8	tol_rel	21
		4.5.2.9	tol_abs	21
		4.5.2.10	res	21
		4.5.2.11	relres	21
		4.5.2.12	relres_base	21
		4.5.2.13	bestres	21
		4.5.2.14	Output	21
		4.5.2.15	$x \ldots \ldots \ldots$	21
		4.5.2.16	bestx	21
		4.5.2.17	$r \ldots \ldots \ldots \ldots$	21
		4.5.2.18	r0	21
		4.5.2.19	$u \ldots \ldots \ldots \ldots$	22
		4.5.2.20	$w \ldots \ldots \ldots \ldots$	22
		4.5.2.21	$v\ \dots \dots \dots \dots \dots$	22
		4.5.2.22	p	22
		4.5.2.23	c	22
		4.5.2.24	z	22
4.6	Docum	nent Class	Reference	22
	4.6.1	Construc	tor & Destructor Documentation	23
		4.6.1.1	Document	23
		4.6.1.2	\sim Document	23
		4.6.1.3	Document	23
		4.6.1.4	Document	23
		4.6.1.5	Document	23
		4.6.1.6	Document	24
		4.6.1.7	Document	24
	4.6.2	Member	Function Documentation	24
		4.6.2.1	operator=	24
		4.6.2.2	operator[]	24
		4.6.2.3	operator[]	24
		4.6.2.4	operator()	24
		4.6.2.5	operator()	24
		4.6.2.6	getHeadMap	24
		4.6.2.7	getDataMap	24
		4.6.2.8	getHeader	24

		4.6.2.9	end	24
		4.6.2.10	end	24
		4.6.2.11	begin	24
		4.6.2.12	begin	24
		4.6.2.13	clear	24
		4.6.2.14	resetKeys	24
		4.6.2.15	changeKey	24
		4.6.2.16	revalidateAllKeys	24
		4.6.2.17	addPair	24
		4.6.2.18	addPair	24
		4.6.2.19	setName	24
		4.6.2.20	setAlias	24
		4.6.2.21	setNameAliasPair	24
		4.6.2.22	setState	24
		4.6.2.23	DisplayContents	24
		4.6.2.24	addHeadKey	24
		4.6.2.25	copyAnchor2Alias	24
		4.6.2.26	size	25
		4.6.2.27	getName	25
		4.6.2.28	getAlias	25
		4.6.2.29	getState	25
		4.6.2.30	isAlias	25
		4.6.2.31	isAnchor	25
		4.6.2.32	getAnchoredHeader	25
		4.6.2.33	getHeadFromSubAlias	25
	4.6.3	Member	Data Documentation	25
		4.6.3.1	Head_Map	25
4.7	DOGF	ISH_DATA	A Struct Reference	25
	4.7.1	Detailed	Description	26
	4.7.2	Member	Data Documentation	26
		4.7.2.1	total_steps	26
		4.7.2.2	time_old	26
		4.7.2.3	time	26
		4.7.2.4	Print2File	26
		4.7.2.5	Print2Console	27
		4.7.2.6	DirichletBC	27
		4.7.2.7	NonLinear	27
		4.7.2.8	t_counter	27
		4.7.2.9	t_print	27
		4.7.2.10	NumComp	27

vi CONTENTS

		4.7.2.11	end_time	27
		4.7.2.12	total_sorption_old	27
		4.7.2.13	total_sorption	27
		4.7.2.14	fiber_length	27
		4.7.2.15	fiber_diameter	27
		4.7.2.16	OutputFile	27
		4.7.2.17	eval_R	28
		4.7.2.18	eval_DI	28
		4.7.2.19	eval_kf	28
		4.7.2.20	eval_qs	28
		4.7.2.21	user_data	28
		4.7.2.22	finch_dat	28
		4.7.2.23	param_dat	28
4.8	DOGF	ISH_PARA	AM Struct Reference	28
	4.8.1	Detailed	Description	29
	4.8.2	Member	Data Documentation	29
		4.8.2.1	intraparticle_diffusion	29
		4.8.2.2	film_transfer_coeff	29
		4.8.2.3	surface_concentration	29
		4.8.2.4	initial_sorption	29
		4.8.2.5	sorbed_molefraction	29
		4.8.2.6	species	29
4.9	FINCH	I_DATA St	ruct Reference	29
	4.9.1	Detailed	Description	33
	4.9.2	Member	Data Documentation	34
		4.9.2.1	d	34
		4.9.2.2	dt	34
		4.9.2.3	dt_old	34
		4.9.2.4	Т 3	34
		4.9.2.5	dz	34
		4.9.2.6	L	34
		4.9.2.7	s	34
		4.9.2.8	t	34
		4.9.2.9	t_old	34
		4.9.2.10		34
		4.9.2.11	-	34
		4.9.2.12	uAvg	35
		4.9.2.13	uAvg_old	35
		4.9.2.14	ulC	35
		4.9.2.15	vIC	35

4.9.2.16	DIC	35
4.9.2.17	kIC	35
4.9.2.18	RIC	35
4.9.2.19	uo	35
4.9.2.20	vo	35
4.9.2.21	Do	35
4.9.2.22	ko	35
4.9.2.23	Ro	35
4.9.2.24	kfn	36
4.9.2.25	kfnp1	36
4.9.2.26	lambda_l	36
4.9.2.27	lambda_E	36
4.9.2.28	LN	36
4.9.2.29	CN	36
4.9.2.30	Update	36
4.9.2.31	Dirichlet	36
4.9.2.32	CheckMass	36
4.9.2.33	ExplicitFlux	36
4.9.2.34	Iterative	36
4.9.2.35	SteadyState	36
4.9.2.36	NormTrack	37
4.9.2.37	beta	37
4.9.2.38	tol_rel	37
4.9.2.39	tol_abs	37
4.9.2.40	max_iter	37
4.9.2.41	total_iter	37
4.9.2.42	nl_method	37
4.9.2.43	CL_I	37
4.9.2.44	CL_E	37
4.9.2.45	CC_I	37
4.9.2.46	CC_E	37
4.9.2.47	CR_I	37
4.9.2.48	CR_E	38
4.9.2.49	fL_I	38
4.9.2.50	fL_E	38
4.9.2.51	fC_I	38
4.9.2.52	fC_E	38
4.9.2.53	fR_I	38
4.9.2.54	fR_E	38
4.9.2.55	OI	38

viii CONTENTS

4.9.2.56	OE	38
4.9.2.57	NI	38
4.9.2.58	NE	38
4.9.2.59	MI	38
4.9.2.60	ME	39
4.9.2.61	uz_l_l	39
4.9.2.62	uz_lm1_l	39
4.9.2.63	uz_lp1_l	39
4.9.2.64	uz_l_E	39
4.9.2.65	uz_lm1_E	39
4.9.2.66	uz_lp1_E	39
4.9.2.67	unm1	39
4.9.2.68	un	39
4.9.2.69	unp1	39
4.9.2.70	u_star	39
4.9.2.71	ubest	39
4.9.2.72	vn	39
4.9.2.73	vnp1	39
4.9.2.74	Dn	39
4.9.2.75	Dnp1	40
4.9.2.76	kn	40
4.9.2.77	knp1	40
4.9.2.78	Sn	40
4.9.2.79	Snp1	40
4.9.2.80	Rn	40
4.9.2.81	Rnp1	40
4.9.2.82	Fn	40
4.9.2.83	Fnp1	40
4.9.2.84	gl	40
4.9.2.85	gE	40
4.9.2.86	res	40
4.9.2.87	pres	41
4.9.2.88	callroutine	41
4.9.2.89	setic	41
4.9.2.90	settime	41
4.9.2.91	setpreprocess	41
4.9.2.92	solve	41
4.9.2.93	setparams	41
4.9.2.94	discretize	41
4.9.2.95	setbcs	41

	4.9.2.96 evalres	41
	4.9.2.97 evalprecon	41
	4.9.2.98 setpostprocess	41
	4.9.2.99 resettime	42
	4.9.2.100 picard_dat	42
	4.9.2.101 pjfnk_dat	42
	4.9.2.102 param_data	42
4.10 GCR_I	DATA Struct Reference	42
4.10.1	Detailed Description	43
4.10.2	Member Data Documentation	43
	4.10.2.1 restart	43
	4.10.2.2 maxit	43
	4.10.2.3 iter_outer	43
	4.10.2.4 iter_inner	43
	4.10.2.5 total_iter	44
	4.10.2.6 breakdown	44
	4.10.2.7 alpha	44
	4.10.2.8 beta	44
	4.10.2.9 tol_rel	44
	4.10.2.10 tol_abs	44
	4.10.2.11 res	44
	4.10.2.12 relres	44
	4.10.2.13 relres_base	44
	4.10.2.14 bestres	44
	4.10.2.15 Output	44
	4.10.2.16 x	44
	4.10.2.17 bestx	45
	4.10.2.18 r	45
	4.10.2.19 c_temp	45
	4.10.2.20 u_temp	45
	4.10.2.21 u	45
	4.10.2.22 c	45
	4.10.2.23 transpose_dat	45
	SLP_DATA Struct Reference	45
	Detailed Description	46
4.11.2	Member Data Documentation	46
	4.11.2.1 restart	46
	4.11.2.2 maxit	46
	4.11.2.3 iter	46
	4.11.2.4 steps	46

X CONTENTS

4.11.2.5 tol_rel	46
4.11.2.6 tol_abs	47
4.11.2.7 res	47
4.11.2.8 relres	47
4.11.2.9 relres_base	47
4.11.2.10 bestres	47
4.11.2.11 Output	47
4.11.2.12 x	47
4.11.2.13 bestx	47
4.11.2.14 r	47
4.11.2.15 arnoldi_dat	47
4.12 GMRESR_DATA Struct Reference	47
4.12.1 Detailed Description	48
4.12.2 Member Data Documentation	49
4.12.2.1 gcr_restart	49
4.12.2.2 gcr_maxit	49
4.12.2.3 gmres_restart	49
4.12.2.4 gmres_maxit	49
4.12.2.5 N	49
4.12.2.6 total_iter	49
4.12.2.7 iter_outer	49
4.12.2.8 iter_inner	49
4.12.2.9 GCR_Output	49
4.12.2.10 GMRES_Output	49
4.12.2.11 gmres_tol	49
4.12.2.12 gcr_rel_tol	49
4.12.2.13 gcr_abs_tol	50
4.12.2.14 arg	50
4.12.2.15 gcr_dat	50
4.12.2.16 gmres_dat	50
4.12.2.17 matvec	50
4.12.2.18 terminal_precon	50
4.12.2.19 matvec_data	50
4.12.2.20 term_precon	50
4.13 GMRESRP_DATA Struct Reference	50
4.13.1 Detailed Description	51
4.13.2 Member Data Documentation	52
4.13.2.1 restart	52
4.13.2.2 maxit	52
4.13.2.3 iter_outer	52

CONTENTS xi

4.1	3.2.4	iter_	inne	r			 	 	 	 	 	 		52
4.1	3.2.5	iter_	_total				 	 	 	 	 	 		52
4.1	3.2.6	tol_	rel .				 	 	 	 	 	 		52
4.1	3.2.7	tol_	abs .				 	 	 	 	 	 		52
4.1	3.2.8	res					 	 	 	 	 	 		52
4.1	3.2.9	relre	es				 	 	 	 	 	 		52
4.1	3.2.10	relre	es_ba	ase			 	 	 	 	 	 		52
4.1	3.2.11	bes	tres .				 	 	 	 	 	 		52
4.1	3.2.12	Out	put .				 	 	 	 	 	 		52
4.1	3.2.13	x .					 	 	 	 	 	 		53
4.1	3.2.14	bes	tx				 	 	 	 	 	 		53
4.1	3.2.15	r .					 	 	 	 	 	 		53
4.1	3.2.16	Vk					 	 	 	 	 	 		53
4.1	3.2.17	н.					 	 	 	 	 	 		53
4.1	3.2.18	H_b	ar .				 	 	 	 	 	 		53
4.1	3.2.19	y .					 	 	 	 	 	 		53
4.1	3.2.20	e0					 	 	 	 	 	 		53
4.1	3.2.21	e0_	bar .				 	 	 	 	 	 		53
4.1	3.2.22	w .					 	 	 	 	 	 		53
4.1	3.2.23	v .					 	 	 	 	 	 		53
4.1	3.2.24	sum	١				 	 	 	 	 	 		53
4.14 GPAST_DA	ATA Sti	ruct	Refe	rence			 	 	 	 	 	 		54
4.14.1 Det	tailed D	Desc	riptio	n .			 	 	 	 	 	 		54
4.14.2 Me	mber D	Data	Docu	ımen	tatio	n	 	 	 	 	 	 		54
4.1	4.2.1	x .					 	 	 	 	 	 		54
4.1	4.2.2	y .					 	 	 	 	 	 		54
4.1	4.2.3	He					 	 	 	 	 	 		54
4.1	4.2.4	q.					 	 	 	 	 	 		55
4.1	4.2.5	gam	na_in	f			 	 	 	 	 	 		55
4.1	4.2.6	qo					 	 	 	 	 	 		55
4.1	4.2.7	Plo					 	 	 	 	 	 		55
4.1	4.2.8	po					 	 	 	 	 	 		55
4.1	4.2.9	poi					 	 	 	 	 	 		55
4.1	4.2.10	pres	ent .				 	 	 	 	 	 		55
4.15 GSTA_DAT	TA Stru	uct R	efere	nce			 	 	 	 	 	 		55
4.15.1 Det	tailed D	Desc	riptio	n .			 	 	 	 	 	 		56
4.15.2 Me	mber D	Data	Docu	ımen	tatio	n	 	 	 	 	 	 		56
4.1	5.2.1	qma	ıx				 	 	 	 	 	 		56
4.1	5.2.2	m .					 	 	 	 	 	 		56
4.1	5.2.3	dHo	١				 	 	 	 	 	 		56

xii CONTENTS

	4.15.2.4	dSo	56
4.16 GSTA_	OPT_DAT	A Struct Reference	56
4.16.1	Detailed D	Description	57
4.16.2	Member D	Data Documentation	57
	4.16.2.1	total_eval	57
	4.16.2.2	n_par	57
	4.16.2.3	qmax	57
	4.16.2.4	iso	57
		Fobj	
		q	
	4.16.2.7	P	57
	4.16.2.8	best_par	58
	4.16.2.9	Kno	58
	4.16.2.10	all_pars	58
	4.16.2.11	norms	58
	4.16.2.12	opt_qmax	58
4.17 Header	Class Refe	ference	58
4.17.1	Constructo	or & Destructor Documentation	59
	4.17.1.1	Header	59
	4.17.1.2	~Header	59
	4.17.1.3	Header	59
	4.17.1.4	Header	59
	4.17.1.5	Header	59
	4.17.1.6	Header	59
	4.17.1.7	Header	59
4.17.2	Member F	Function Documentation	59
	4.17.2.1	operator=	60
	4.17.2.2	operator[]	60
	4.17.2.3	operator[]	60
	4.17.2.4	operator()	60
	4.17.2.5	operator()	60
	4.17.2.6	getSubMap	60
	4.17.2.7	getDataMap	60
	4.17.2.8	getSubHeader	60
	4.17.2.9	end	60
	4.17.2.10	end	60
	4.17.2.11	begin	60
	4.17.2.12	begin	60
	4.17.2.13	clear	60
	4.17.2.14	resetKeys	60

CONTENTS xiii

	4.17.2.15 changeKey	60
	4.17.2.16 addPair	60
	4.17.2.17 addPair	60
	4.17.2.18 setName	60
	4.17.2.19 setAlias	60
	4.17.2.20 setNameAliasPair	60
	4.17.2.21 setState	60
	4.17.2.22 DisplayContents	60
	4.17.2.23 addSubKey	60
	4.17.2.24 copyAnchor2Alias	60
	4.17.2.25 size	60
	4.17.2.26 getName	60
	4.17.2.27 getAlias	60
	4.17.2.28 getState	60
	4.17.2.29 isAlias	61
	4.17.2.30 isAnchor	61
	4.17.2.31 getAnchoredSub	61
4.17.3	Member Data Documentation	61
	4.17.3.1 Sub_Map	61
4.18 KeyVal	ueMap Class Reference	61
4.18.1	Constructor & Destructor Documentation	62
	4.18.1.1 KeyValueMap	62
	4.18.1.2 ~KeyValueMap	62
	4.18.1.3 KeyValueMap	62
	4.18.1.4 KeyValueMap	62
	4.18.1.5 KeyValueMap	62
4.18.2	Member Function Documentation	62
	4.18.2.1 operator=	62
	4.18.2.2 operator[]	62
	4.18.2.3 operator[]	62
	4.18.2.4 getMap	62
	4.18.2.5 end	62
	4.18.2.6 end	62
	4.18.2.7 begin	62
	4.18.2.8 begin	62
	4.18.2.9 clear	62
	4.18.2.10 addKey	62
	4.18.2.11 editValue4Key	62
	4.18.2.12 editValue4Key	62
	4.18.2.13 addPair	62

XIV

	4.18.2.14 addPair	62
	4.18.2.15 addPair	63
	4.18.2.16 findType	63
	4.18.2.17 assertType	63
	4.18.2.18 findAllTypes	63
	4.18.2.19 DisplayMap	63
	4.18.2.20 size	63
	4.18.2.21 getString	63
	4.18.2.22 getBool	63
	4.18.2.23 getDouble	63
	4.18.2.24 getInt	63
	4.18.2.25 getValue	63
	4.18.2.26 getType	63
	4.18.2.27 getPair	63
4.18.3	Member Data Documentation	63
	4.18.3.1 Key_Value	63
4.19 MAGF	PIE_DATA Struct Reference	63
4.19.1	Detailed Description	63
4.19.2	Member Data Documentation	64
	4.19.2.1 gsta_dat	64
	4.19.2.2 mspd_dat	64
	4.19.2.3 gpast_dat	64
	4.19.2.4 sys_dat	64
4.20 MassE	Balance Class Reference	64
4.20.1	Constructor & Destructor Documentation	64
	4.20.1.1 MassBalance	64
	4.20.1.2 ~MassBalance	64
4.20.2	Member Function Documentation	64
	4.20.2.1 Initialize_List	65
	4.20.2.2 Display_Info	65
	4.20.2.3 Set_Delta	65
	4.20.2.4 Set_TotalConcentration	65
	4.20.2.5 Set_Name	65
	4.20.2.6 Get_Delta	65
	4.20.2.7 Sum_Delta	65
	4.20.2.8 Get_TotalConcentration	65
	4.20.2.9 Get_Name	65
	4.20.2.10 Eval_Residual	65
4.20.3	Member Data Documentation	65
	4.20.3.1 List	65

		4.20.3.2	Delta	65
		4.20.3.3	TotalConcentration	65
		4.20.3.4	Name	65
4.21	Master	SpeciesLis	st Class Reference	65
	4.21.1	Construct	tor & Destructor Documentation	66
		4.21.1.1	MasterSpeciesList	66
		4.21.1.2	~MasterSpeciesList	66
		4.21.1.3	MasterSpeciesList	66
	4.21.2	Member I	Function Documentation	66
		4.21.2.1	operator=	66
		4.21.2.2	set_list_size	66
		4.21.2.3	set_species	66
		4.21.2.4	set_species	66
		4.21.2.5	DisplayInfo	66
		4.21.2.6	DisplayAll	66
		4.21.2.7	DisplayConcentrations	66
		4.21.2.8	set_alkalinity	66
		4.21.2.9	list_size	66
		4.21.2.10	get_species	66
		4.21.2.11	get_index	66
		4.21.2.12	charge	67
		4.21.2.13	alkalinity	67
		4.21.2.14	speciesName	67
		4.21.2.15	Eval_ChargeResidual	67
	4.21.3	Member I	Data Documentation	67
		4.21.3.1	size	67
		4.21.3.2	species	67
		4.21.3.3	residual_alkalinity	67
4.22	Matrix<	<t>Clas</t>	ss Template Reference	67
	4.22.1	Detailed I	Description	70
	4.22.2	Construct	tor & Destructor Documentation	70
		4.22.2.1	Matrix	70
		4.22.2.2	Matrix	70
		4.22.2.3	Matrix	70
		4.22.2.4	~Matrix	70
	4.22.3	Member I	Function Documentation	70
		4.22.3.1	operator()	70
		4.22.3.2	operator()	70
		4.22.3.3	operator=	70
		4.22.3.4	set_size	70

xvi CONTENTS

zeros	70
edit	71
rows	71
columns	71
determinate	71
norm	71
sum	71
? inner_product	71
cofactor	71
operator+	71
operator	71
operator*	71
operator/	71
3 operator*	72
transpose	72
transpose_multiply	72
adjoint	72
? inverse	72
B Display	72
tridiagonalSolve	72
i ladshawSolve	72
tridiagonalFill	72
naturalLaplacian3D	72
sphericalBCFill	73
ConstantICFill	73
SolnTransform	73
sphericalAvg	73
? IntegralAvg	73
IntegralTotal	73
tridiagonalVectorFill	74
columnVectorFill	74
S columnProjection	74
dirichletBCFill	74
diagonalSolve	74
upperTriangularSolve	74
lowerTriangularSolve	74
upperHessenberg2Triangular	74
lowerHessenberg2Triangular	74
B upperHessenbergSolve	75
lowerHessenbergSolve	75
	edit rows columns determinate norm sum inner_product cofactor operator+ operator- operator/ oper

CONTENTS xvii

	4.22.3.45 columnExtract	75
	4.22.3.46 rowExtract	75
	4.22.3.47 columnReplace	75
	4.22.3.48 rowReplace	75
	4.22.3.49 rowShrink	75
	4.22.3.50 columnShrink	75
	4.22.3.51 rowExtend	75
	4.22.3.52 columnExtend	75
4.22.	4 Member Data Documentation	76
	4.22.4.1 num_rows	76
	4.22.4.2 num_cols	76
	4.22.4.3 Data	76
4.23 Mech	nanism Class Reference	76
4.23.	1 Member Data Documentation	76
	4.23.1.1 List	76
	4.23.1.2 reactions	76
	4.23.1.3 weight	76
	4.23.1.4 species_index	76
4.24 MIXE	D_GAS Struct Reference	76
4.24.	1 Detailed Description	77
4.24.	2 Member Data Documentation	77
	4.24.2.1 N	77
	4.24.2.2 CheckMolefractions	77
	4.24.2.3 total_pressure	78
	4.24.2.4 gas_temperature	78
	4.24.2.5 velocity	78
	4.24.2.6 char_length	78
	4.24.2.7 molefraction	78
	4.24.2.8 total_density	78
	4.24.2.9 total_dyn_vis	78
	4.24.2.10 kinematic_viscosity	78
	4.24.2.11 total_molecular_weight	78
	4.24.2.12 total_specific_heat	78
	4.24.2.13 Reynolds	78
	4.24.2.14 binary_diffusion	78
	4.24.2.15 species_dat	79
4.25 Molec	cule Class Reference	79
4 25		
1.20.	1 Detailed Description	81
	1 Detailed Description	81 81

xviii CONTENTS

	4.25.2.2	~Molecule	. 81
	4.25.2.3	Molecule	. 81
4.25.3	Member I	Function Documentation	. 82
	4.25.3.1	Register	. 82
	4.25.3.2	Register	. 82
	4.25.3.3	setFormula	. 82
	4.25.3.4	recalculateMolarWeight	. 82
	4.25.3.5	setMolarWeigth	. 82
	4.25.3.6	editCharge	. 82
	4.25.3.7	editOneOxidationState	. 83
	4.25.3.8	editAllOxidationStates	. 83
	4.25.3.9	calculateAvgOxiState	. 83
	4.25.3.10	editEnthalpy	. 83
	4.25.3.11	l editEntropy	. 83
	4.25.3.12	2 editHS	. 83
	4.25.3.13	B editEnergy	. 83
	4.25.3.14	removeOneAtom	. 83
	4.25.3.15	5 removeAllAtoms	. 83
	4.25.3.16	6 Charge	. 84
	4.25.3.17	⁷ MolarWeight	. 84
	4.25.3.18	B HaveHS	. 84
	4.25.3.19	HaveEnergy	. 84
	4.25.3.20	isRegistered	. 84
	4.25.3.21	Enthalpy	. 84
	4.25.3.22	2 Entropy	. 84
	4.25.3.23	B Energy	. 84
	4.25.3.24	MoleculeName	. 84
	4.25.3.25	MolecularFormula	. 84
	4.25.3.26	MoleculePhase	. 84
	4.25.3.27	⁷ DisplayInfo	. 84
4.25.4	Member I	Data Documentation	. 85
	4.25.4.1	charge	. 85
	4.25.4.2	molar_weight	. 85
	4.25.4.3	formation_enthalpy	. 85
	4.25.4.4	formation_entropy	. 85
	4.25.4.5	formation_energy	. 85
	4.25.4.6	Phase	. 85
	4.25.4.7	atoms	. 85
	4.25.4.8	Name	. 85
	4.25.4.9	Formula	. 85

CONTENTS xix

4.25.4.10 haveG	85
4.25.4.11 haveHS	85
4.25.4.12 registered	86
4.26 MONKFISH_DATA Struct Reference	86
4.26.1 Member Data Documentation	87
4.26.1.1 total_steps	87
4.26.1.2 time_old	87
4.26.1.3 time	87
4.26.1.4 Print2File	87
4.26.1.5 Print2Console	87
4.26.1.6 DirichletBC	87
4.26.1.7 NonLinear	87
4.26.1.8 haveMinMax	87
4.26.1.9 MultiScale	87
4.26.1.10 level	87
4.26.1.11 t_counter	87
4.26.1.12 t_print	87
4.26.1.13 NumComp	87
4.26.1.14 end_time	87
4.26.1.15 total_sorption_old	87
4.26.1.16 total_sorption	87
4.26.1.17 single_fiber_density	87
4.26.1.18 avg_fiber_density	87
4.26.1.19 max_fiber_density	87
4.26.1.20 min_fiber_density	87
4.26.1.21 max_porosity	87
4.26.1.22 min_porosity	87
4.26.1.23 domain_diameter	87
4.26.1.24 Output	87
4.26.1.25 eval_eps	87
4.26.1.26 eval_rho	87
4.26.1.27 eval_Dex	87
4.26.1.28 eval_ads	88
4.26.1.29 eval_Ret	88
4.26.1.30 eval_Cex	88
4.26.1.31 eval_kf	88
4.26.1.32 user_data	88
4.26.1.33 finch_dat	88
4.26.1.34 param_dat	88
4.26.1.35 dog_dat	88

4.27 MONE	KFISH_PARAM Struct Reference	88
4.27.1	Member Data Documentation	88
	4.27.1.1 interparticle_diffusion	88
	4.27.1.2 exterior_concentration	88
	4.27.1.3 exterior_transfer_coeff	88
	4.27.1.4 sorbed_molefraction	88
	4.27.1.5 initial_sorption	88
	4.27.1.6 sorption_bc	88
	4.27.1.7 intraparticle_diffusion	88
	4.27.1.8 film_transfer_coeff	89
	4.27.1.9 avg_sorption	89
	4.27.1.10 avg_sorption_old	89
	4.27.1.11 species	89
4.28 mSPE	D_DATA Struct Reference	89
4.28.1	Detailed Description	89
4.28.2	Member Data Documentation	89
	4.28.2.1 s	89
	4.28.2.2 v	89
	4.28.2.3 eMax	89
	4.28.2.4 eta	0
	4.28.2.5 gama	0
4.29 NUM_	_JAC_DATA Struct Reference	0
4.29.1	Detailed Description	0
4.29.2	2 Member Data Documentation	0
	4.29.2.1 eps	0
	4.29.2.2 Fx	0
	4.29.2.3 Fxp	0
	4.29.2.4 dxj	11
4.30 OPTR	RANS_DATA Struct Reference	1
4.30.1	Detailed Description	1
4.30.2	2 Member Data Documentation	1
	4.30.2.1 li	1
	4.30.2.2 Ai	1
4.31 PCG_	DATA Struct Reference	1
4.31.1	Detailed Description	2
4.31.2	2 Member Data Documentation	3
	4.31.2.1 maxit	3
	4.31.2.2 iter	3
	4.31.2.3 alpha	3
	4.31.2.4 beta	3

CONTENTS xxi

	4.31.2.5 tol_rel	93
	4.31.2.6 tol_abs	93
	4.31.2.7 res	93
	4.31.2.8 relres	93
	4.31.2.9 relres_base	93
	4.31.2.10 bestres	93
	4.31.2.11 Output	93
	4.31.2.12 x	93
	4.31.2.13 bestx	94
	4.31.2.14 r	94
	4.31.2.15 r_old	94
	4.31.2.16 z	94
	4.31.2.17 z_old	94
	4.31.2.18 p	94
	4.31.2.19 Ap	94
4.32 Period	dicTable Class Reference	94
4.32.1	Detailed Description	95
4.32.2	Constructor & Destructor Documentation	95
	4.32.2.1 PeriodicTable	95
	4.32.2.2 ~PeriodicTable	95
	4.32.2.3 PeriodicTable	95
	4.32.2.4 PeriodicTable	95
	4.32.2.5 PeriodicTable	95
4.32.3	Member Function Documentation	95
	4.32.3.1 DisplayTable	95
4.32.4	Member Data Documentation	95
	4.32.4.1 Table	95
	4.32.4.2 number_elements	96
4.33 PICA	RD_DATA Struct Reference	96
4.33.1	Detailed Description	96
4.33.2	Member Data Documentation	97
	4.33.2.1 maxit	97
	4.33.2.2 iter	97
	4.33.2.3 tol_rel	97
	4.33.2.4 tol_abs	97
	4.33.2.5 res	97
	4.33.2.6 relres	97
	4.33.2.7 relres_base	97
	4.33.2.8 bestres	97
	4.33.2.9 Output	97

xxii CONTENTS

4.33.2.10 x0	7
4.33.2.11 bestx	7
4.33.2.12 r	8
4.34 PJFNK_DATA Struct Reference	8
4.34.1 Detailed Description	9
4.34.2 Member Data Documentation	9
4.34.2.1 nl_iter	9
4.34.2.2 _iter	0
4.34.2.3 nl_maxit	0
4.34.2.4 linear_solver	0
4.34.2.5 nl_tol_abs	0
4.34.2.6 nl_tol_rel	0
4.34.2.7 lin_tol_rel	0
4.34.2.8 lin_tol_abs	
4.34.2.9 nl_res	0
4.34.2.10 nl_relres	0
4.34.2.11 nl_res_base	0
4.34.2.12 nl_bestres	0
4.34.2.13 eps	
4.34.2.14 NL_Output	1
4.34.2.15 L_Output	1
4.34.2.16 LineSearch	
4.34.2.17 Bounce	1
4.34.2.18 F	1
4.34.2.19 Fv	
4.34.2.20 v	1
4.34.2.21 x	1
4.34.2.22 bestx	1
4.34.2.23 gmreslp_dat	
4.34.2.24 pcg_dat	1
4.34.2.25 bicgstab_dat	
4.34.2.26 cgs_dat	
4.34.2.27 gmresrp_dat	
4.34.2.28 gcr_dat	2
4.34.2.29 gmresr_dat	
4.34.2.30 backtrack_dat	
4.34.2.31 res_data	
4.34.2.32 precon_data	
4.34.2.33 funeval	2
4.34.2.34 precon	2

CONTENTS xxiii

4.35 Preci	itation Class Reference
4.36 PURI	_GAS Struct Reference
4.36.	Detailed Description
4.36.	Member Data Documentation
	4.36.2.1 molecular_weight
	4.36.2.2 Sutherland_Temp
	4.36.2.3 Sutherland_Const
	4.36.2.4 Sutherland_Viscosity
	4.36.2.5 specific_heat
	4.36.2.6 molecular_diffusion
	4.36.2.7 dynamic_viscosity
	4.36.2.8 density
	4.36.2.9 Schmidt
4.37 Reac	ion Class Reference
4.37.	Constructor & Destructor Documentation
	4.37.1.1 Reaction
	4.37.1.2 ~Reaction
4.37.	Member Function Documentation
	4.37.2.1 Initialize_List
	4.37.2.2 Display_Info
	4.37.2.3 Set_Stoichiometric
	4.37.2.4 Set_Equilibrium
	4.37.2.5 Set_Enthalpy
	4.37.2.6 Set_Entropy
	4.37.2.7 Set_EnthalpyANDEntropy
	4.37.2.8 Set_Energy
	4.37.2.9 checkSpeciesEnergies
	4.37.2.10 calculateEnergies
	4.37.2.11 calculateEquilibrium
	4.37.2.12 haveEquilibrium
	4.37.2.13 Get_Stoichiometric
	4.37.2.14 Get_Equilibrium
	4.37.2.15 Get_Enthalpy
	4.37.2.16 Get_Entropy
	4.37.2.17 Get_Energy
	4.37.2.18 Eval_Residual
4.37.	Member Data Documentation
	4.37.3.1 List
	4.37.3.2 Stoichiometric
	4.37.3.3 Equilibrium

4.37.3.4	enthalpy										106
4.37.3.5	entropy										106
4.37.3.6	energy										106
4.37.3.7	CanCalcHS .										106
4.37.3.8	CanCalcG										106
4.37.3.9	HaveHS										106
4.37.3.10	HaveG										107
4.37.3.11	HaveEquil										107
SOWL_DA	TA Struct Refer	ence .									107
Member [Data Documenta	ıtion									108
4.38.1.1	total_steps										108
4.38.1.2	coord_macro .										108
4.38.1.3	coord_micro .										108
4.38.1.4	level										108
4.38.1.5	sim_time										108
4.38.1.6	t_old										108
4.38.1.7	t										108
4.38.1.8	t_counter										108
4.38.1.9	t_print										108
4.38.1.10	Print2File										108
4.38.1.11	Print2Console										108
4.38.1.12	SurfDiff										108
4.38.1.13	Heterogeneous										108
4.38.1.14	gas_velocity .										108
4.38.1.15	total_pressure										108
4.38.1.16	gas_temperatu	re									108
4.38.1.17	pellet_radius .										108
4.38.1.18	crystal_radius										108
4.38.1.19	char_macro .										108
4.38.1.20	char_micro										108
4.38.1.21	binder_fraction										108
4.38.1.22	binder_porosity	·									108
4.38.1.23	binder_poresiz	э									108
4.38.1.24	pellet_density										108
4.38.1.25	DirichletBC										108
4.38.1.26	NonLinear										108
4.38.1.27	y										108
4.38.1.28	tempy										109
4.38.1.29	OutputFile										109
4.38.1.30	eval_ads										109
	4.37.3.5 4.37.3.6 4.37.3.7 4.37.3.8 4.37.3.10 4.37.3.11 6OWL_DA Member E 4.38.1.1 4.38.1.2 4.38.1.3 4.38.1.4 4.38.1.5 4.38.1.6 4.38.1.7 4.38.1.10 4.38.1.11 4.38.1.12 4.38.1.13 4.38.1.14 4.38.1.15 4.38.1.15 4.38.1.15 4.38.1.16 4.38.1.17 4.38.1.18 4.38.1.19 4.38.1.20 4.38.1.20 4.38.1.20 4.38.1.22 4.38.1.23 4.38.1.24 4.38.1.25 4.38.1.26 4.38.1.26 4.38.1.27 4.38.1.28 4.38.1.29	4.37.3.5 entropy 4.37.3.6 energy 4.37.3.7 CanCalcHS 4.37.3.8 CanCalcG 4.37.3.9 HaveHS 4.37.3.10 HaveG 4.37.3.11 HaveEquil 60WL_DATA Struct Reference Member Data Documenta 4.38.1.1 total_steps 4.38.1.2 coord_macro 4.38.1.3 coord_micro 4.38.1.4 level 4.38.1.5 sim_time 4.38.1.6 t_old 4.38.1.7 t 4.38.1.8 t_counter 4.38.1.10 Print2File 4.38.1.11 Print2Console 4.38.1.12 SurfDiff 4.38.1.13 Heterogeneous 4.38.1.14 gas_velocity 4.38.1.15 total_pressure 4.38.1.16 gas_temperatur 4.38.1.17 pellet_radius 4.38.1.18 crystal_radius 4.38.1.19 char_micro 4.38.1.20 char_micro 4.38.1.21 binder_fraction 4.38.1.22 binder_porosity 4.38.1.23 binder_poresize 4.38.1.24 pellet_density 4.38.1.25 DirichletBC 4.38.1.26 NonLinear 4.38.1.27 y 4.38.1.28 tempy 4.38.1.29 OutputFile	4.37.3.5 entropy 4.37.3.6 energy 4.37.3.7 CanCalcHS 4.37.3.8 CanCalcG 4.37.3.9 HaveHS 4.37.3.10 HaveG 4.37.3.11 HaveEquil 6OWL_DATA Struct Reference Member Data Documentation 4.38.1.1 total_steps 4.38.1.2 coord_macro 4.38.1.3 coord_micro 4.38.1.4 level 4.38.1.5 sim_time 4.38.1.6 t_old 4.38.1.7 t 4.38.1.8 t_counter 4.38.1.10 Print2File 4.38.1.11 Print2Console 4.38.1.12 SurfDiff 4.38.1.13 Heterogeneous 4.38.1.14 gas_velocity 4.38.1.15 total_pressure 4.38.1.16 gas_temperature 4.38.1.17 pellet_radius 4.38.1.19 char_macro 4.38.1.20 char_micro 4.38.1.21 binder_fraction 4.38.1.22 binder_porosity 4.38.1.23 binder_poresize 4.38.1.24 pellet_density 4.38.1.25 DirichletBC 4.38.1.26 NonLinear 4.38.1.27 y 4.38.1.28 tempy 4.38.1.29 OutputFile	4.37.3.5 entropy	4.37.3.5 entropy 4.37.3.6 energy 4.37.3.7 CanCalcHS 4.37.3.8 CanCalcG 4.37.3.9 HaveHS 4.37.3.10 HaveG 4.37.3.11 HaveEquil 60WL_DATA Struct Reference Member Data Documentation 4.38.1.1 total_steps 4.38.1.2 coord_macro 4.38.1.3 coord_micro 4.38.1.4 level 4.38.1.5 sim_time 4.38.1.6 t_old 4.38.1.7 t 4.38.1.8 t_counter 4.38.1.10 Print2File 4.38.1.11 Print2Console 4.38.1.12 SurfDiff 4.38.1.13 Heterogeneous 4.38.1.14 gas_velocity 4.38.1.15 total_pressure 4.38.1.16 gas_temperature 4.38.1.17 pellet_radius 4.38.1.18 crystal_radius 4.38.1.20 char_micro 4.38.1.21 binder_fraction 4.38.1.22 binder_porosity 4.38.1.23 binder_poresize 4.38.1.25 DirichletBC 4.38.1.26 NonLinear 4.38.1.28 tempy 4.38.1.29 OutputFile	4.37.3.5 entropy 4.37.3.6 energy 4.37.3.7 CanCalcHS 4.37.3.8 CanCalcG 4.37.3.9 HaveHS 4.37.3.11 HaveEquil 60WL_DATA Struct Reference Member Data Documentation 4.38.1.1 total_steps 4.38.1.2 coord_macro 4.38.1.3 coord_micro 4.38.1.4 level 4.38.1.5 sim_time 4.38.1.6 t_old 4.38.1.7 t 4.38.1.8 t_counter 4.38.1.10 Print2File 4.38.1.11 Print2Console 4.38.1.12 SurfDiff 4.38.1.13 Heterogeneous 4.38.1.14 gas_velocity 4.38.1.15 total_pressure 4.38.1.17 pellet_radius 4.38.1.18 crystal_radius 4.38.1.19 char_macro 4.38.1.20 char_micro 4.38.1.21 binder_porosity 4.38.1.23 binder_poresize 4.38.1.25 DirichletBC 4.38.1.26 NonLinear 4.38.1.26 tempy 4.38.1.28 tempy 4.38.1.29 OutputFile	4.37.3.5 entropy 4.37.3.6 energy 4.37.3.7 CanCalcHS 4.37.3.8 CanCalcG 4.37.3.9 HaveHS 4.37.3.10 HaveG 4.37.3.11 HaveEquil 60WL_DATA Struct Reference Member Data Documentation 4.38.1.1 total_steps 4.38.1.2 coord_macro 4.38.1.3 coord_micro 4.38.1.4 level 4.38.1.5 sim_time 4.38.1.6 t_old 4.38.1.7 t 4.38.1.8 t_counter 4.38.1.10 Print2File 4.38.1.11 Print2Console 4.38.1.12 SurfDiff 4.38.1.13 Heterogeneous 4.38.1.14 gas_velocity 4.38.1.15 total_pressure 4.38.1.16 gas_temperature 4.38.1.17 pellet_radius 4.38.1.18 crystal_radius 4.38.1.19 char_macro 4.38.1.20 char_micro 4.38.1.21 binder_fraction 4.38.1.22 binder_poresize 4.38.1.25 DirichletBC 4.38.1.25 DirichletBC 4.38.1.26 NonLinear 4.38.1.29 OutputFile	4.37.3.5 entropy 4.37.3.6 energy 4.37.3.7 CanCalcHS 4.37.3.8 CanCalcG 4.37.3.10 HaveHS 4.37.3.11 HaveEquil 60WL_DATA Struct Reference Member Data Documentation 4.38.1.1 total_steps 4.38.1.2 coord_macro 4.38.1.3 sim_time 4.38.1.6 t_old 4.38.1.7 t 4.38.1.8 t_counter 4.38.1.1 Print2File 4.38.1.1 Print2File 4.38.1.1 Print2File 4.38.1.1 print 4.38.1.1 print2File 4.38.1.2 purint 4.38.1.2 print2File 4.38.1.2 print3File 4.38.1.2 print4File 4.38.1.2 p	4.37.3.5 entropy 4.37.3.6 energy 4.37.3.6 energy 4.37.3.7 CanCalcHS 4.37.3.8 CanCalcG 4.37.3.9 HaveHS 4.37.3.10 HaveG 4.37.3.11 HaveEquil 50WL_DATA Struct Reference Member Data Documentation 4.38.1.1 total_steps 4.38.1.2 coord_macro 4.38.1.3 coord_micro 4.38.1.4 level 4.38.1.5 sim_time 4.38.1.6 t_old 4.38.1.7 t 4.38.1.8 t_counter 4.38.1.10 Print2File 4.38.1.11 Print2Console 4.38.1.13 Heterogeneous 4.38.1.14 gas_velocity 4.38.1.15 total_pressure 4.38.1.16 gas_temperature 4.38.1.17 pellet_radius 4.38.1.19 char_macro 4.38.1.19 char_macro 4.38.1.20 char_micro 4.38.1.20 char_micro 4.38.1.21 binder_fraction 4.38.1.22 binder_poresity 4.38.1.23 binder_poresize 4.38.1.25 DirichletBC 4.38.1.26 NonLinear 4.38.1.27 y 4.38.1.29 OutputFile	4.37.3.5 entropy 4.37.3.6 energy 4.37.3.7 CanCalcHS 4.37.3.8 CanCalcG 4.37.3.9 HaveHS 4.37.3.10 HaveG 4.37.3.11 HaveEquil SOWL_DATA Struct Reference Member Data Documentation 4.38.1.1 total_steps 4.38.1.2 coord_macro 4.38.1.3 coord_micro 4.38.1.5 sim_time 4.38.1.6 told 4.38.1.7 t 4.38.1.8 t_counter 4.38.1.9 t_print 4.38.1.10 Print2File 4.38.1.11 Print2Console 4.38.1.13 Heterogeneous 4.38.1.14 gas_velocity 4.38.1.15 total_pressure 4.38.1.15 total_pressure 4.38.1.16 gas_temperature 4.38.1.17 pellet_radius 4.38.1.19 char_macro 4.38.1.19 char_macro 4.38.1.20 char_micro 4.38.1.20 char_micro 4.38.1.21 binder_fraction 4.38.1.21 binder_poresize 4.38.1.25 DirichletBC 4.38.1.26 NonLinear 4.38.1.27 y 4.38.1.28 tempy 4.38.1.29 OutputFile	4.37.3.4 enthalpy 4.37.3.5 entropy 4.37.3.5 entropy 4.37.3.7 canclacHS 4.37.3.9 HaveHS 4.37.3.1 HaveG 4.37.3.1 HaveEquil 30WL_DATA Struct Reference Member Data Documentation 4.38.1.1 total_steps 4.36.1.2 coord_macro 4.38.1.3 coord_micro 4.38.1.5 sim_time 4.38.1.6 t_old 4.38.1.7 t 4.38.1.8 t_counter 4.38.1.1 Print2Console 4.38.1.1 Print2Console 4.38.1.1 Herrogeneous 4.38.1.1 tetrogeneous 4.38.1.1 tetrogeneous 4.38.1.1 print2Console 4.38.1.1 print2Console 4.38.1.1 print2Console 4.38.1.1 tetrogeneous 4.38.1.1 gas_velocity 4.38.1.1 total_pressure 4.38.1.10 gas_temperature 4.38.1.10 char_micro 4.38.1.2 binder_poresize 4.38.1.3 binder_poresize 4.38.1.

4.38.1.31 eval_retard	
4.38.1.32 eval_diff	
4.38.1.33 eval_surfDiff	
4.38.1.34 eval_kf	
4.38.1.35 user_data	
4.38.1.36 gas_dat	
4.38.1.37 magpie_dat	
4.38.1.38 finch_dat	
4.38.1.39 param_dat	
4.38.1.40 skua_dat	
4.39 SCOPSOWL_OPT_DATA Struct Reference	
4.39.1 Member Data Documentation	
4.39.1.1 num_curves	
4.39.1.2 evaluation	
4.39.1.3 total_eval	
4.39.1.4 current_points	
4.39.1.5 num_params	
4.39.1.6 diffusion_type	
4.39.1.7 adsorb_index	
4.39.1.8 max_guess_iter	
4.39.1.9 Optimize	
4.39.1.10 Rough	
4.39.1.11 current_temp	
4.39.1.12 current_press	
4.39.1.13 current_equil	
4.39.1.14 simulation_equil	
4.39.1.15 max_bias	
4.39.1.16 min_bias	
4.39.1.17 e_norm	
4.39.1.18 f_bias	
4.39.1.19 e_norm_old	
4.39.1.20 f_bias_old	
4.39.1.21 param_guess	
4.39.1.22 param_guess_old	
4.39.1.23 rel_tol_norm	
4.39.1.24 abs_tol_bias	
4.39.1.25 y_base	
4.39.1.26 q_data	
4.39.1.27 q_sim	
4.39.1.28 t	

XXVI CONTENTS

4.39.1.29 ParamFile	 111
4.39.1.30 CompareFile	 111
4.39.1.31 owl_dat	 111
4.40 SCOPSOWL_PARAM_DATA Struct Reference	 111
4.40.1 Member Data Documentation	 112
4.40.1.1 qAvg	 112
4.40.1.2 qAvg_old	 112
4.40.1.3 Qst	 112
4.40.1.4 Qst_old	 112
4.40.1.5 dq_dc	 112
4.40.1.6 xIC	 112
4.40.1.7 qIntegralAvg	 112
4.40.1.8 qIntegralAvg_old	 112
4.40.1.9 QstAvg	 112
4.40.1.10 QstAvg_old	 112
4.40.1.11 qo	 112
4.40.1.12 Qsto	 112
4.40.1.13 dq_dco	 112
4.40.1.14 pore_diffusion	 112
4.40.1.15 film_transfer	 112
4.40.1.16 activation_energy	 112
4.40.1.17 ref_diffusion	 112
4.40.1.18 ref_temperature	 112
4.40.1.19 affinity	 112
4.40.1.20 ref_pressure	 112
4.40.1.21 Adsorbable	 112
4.40.1.22 speciesName	 112
4.41 SHARK_DATA Struct Reference	 112
4.41.1 Member Data Documentation	 114
4.41.1.1 MasterList	 114
4.41.1.2 ReactionList	 114
4.41.1.3 MassBalanceList	 114
4.41.1.4 UnsteadyList	 114
4.41.1.5 OtherList	 114
4.41.1.6 numvar	 114
4.41.1.7 num_ssr	 114
4.41.1.8 num_mbe	 114
4.41.1.9 num_usr	 114
4.41.1.10 num_other	 114
4.41.1.11 act_fun	 114

CONTENTS xxvii

4.41.1.12 totalsteps
4.41.1.13 timesteps
4.41.1.14 pH_index
4.41.1.15 pOH_index
4.41.1.16 simulationtime
4.41.1.17 dt
4.41.1.18 dt_min
4.41.1.19 t_out
4.41.1.20 t_count
4.41.1.21 time
4.41.1.22 time_old
4.41.1.23 pH
4.41.1.24 Norm
4.41.1.25 dielectric_const
4.41.1.26 temperature
4.41.1.27 steadystate
4.41.1.28 TimeAdaptivity
4.41.1.29 const_pH
4.41.1.30 SpeciationCurve
4.41.1.31 Console_Output
4.41.1.32 File_Output
4.41.1.33 Contains_pH
4.41.1.34 Contains_pOH
4.41.1.35 Converged
4.41.1.36 X_old
4.41.1.37 X_new
4.41.1.38 Conc_old
4.41.1.39 Conc_new
4.41.1.40 activity_new
4.41.1.41 activity_old
4.41.1.42 EvalActivity
4.41.1.43 Residual
4.41.1.44 lin_precon
4.41.1.45 Newton_data
4.41.1.46 activity_data
4.41.1.47 residual_data
4.41.1.48 precon_data
4.41.1.49 other_data
4.41.1.50 OutputFile
4.41.1.51 yaml_object

xxviii CONTENTS

4.42 SKUA_DATA Struct Reference	115
4.42.1 Member Data Documentation	116
4.42.1.1 total_steps	116
4.42.1.2 coord	116
4.42.1.3 sim_time	116
4.42.1.4 t_old	116
4.42.1.5 t	116
4.42.1.6 t_counter	116
4.42.1.7 t_print	
4.42.1.8 qTn	
4.42.1.9 qTnp1	116
4.42.1.10 Print2File	116
4.42.1.11 Print2Console	
4.42.1.12 gas_velocity	116
4.42.1.13 pellet_radius	117
4.42.1.14 char_measure	
4.42.1.15 DirichletBC	117
4.42.1.16 NonLinear	117
4.42.1.17 y	
4.42.1.18 OutputFile	117
4.42.1.19 eval_diff	117
4.42.1.20 eval_kf	
4.42.1.21 user_data	117
4.42.1.22 magpie_dat	117
4.42.1.23 gas_dat	
4.42.1.24 finch_dat	117
4.42.1.25 param_dat	117
4.43 SKUA_OPT_DATA Struct Reference	117
4.43.1 Member Data Documentation	118
4.43.1.1 num_curves	118
4.43.1.2 evaluation	118
4.43.1.3 total_eval	118
4.43.1.4 current_points	118
4.43.1.5 num_params	118
4.43.1.6 diffusion_type	118
4.43.1.7 adsorb_index	118
4.43.1.8 max_guess_iter	118
4.43.1.9 Optimize	118
4.43.1.10 Rough	
4.43.1.11 current_temp	118

CONTENTS xxix

4.43.1.12 current_press	118
4.43.1.13 current_equil	118
4.43.1.14 simulation_equil	118
4.43.1.15 max_bias	118
4.43.1.16 min_bias	118
4.43.1.17 e_norm	118
4.43.1.18 f_bias	118
4.43.1.19 e_norm_old	118
4.43.1.20 f_bias_old	118
4.43.1.21 param_guess	119
4.43.1.22 param_guess_old	119
4.43.1.23 rel_tol_norm	119
4.43.1.24 abs_tol_bias	119
4.43.1.25 y_base	119
4.43.1.26 q_data	119
4.43.1.27 q_sim	119
4.43.1.28 t	119
4.43.1.29 ParamFile	119
4.43.1.30 CompareFile	119
4.43.1.31 skua_dat	119
4.44 SKUA_PARAM Struct Reference	119
4.44.1 Member Data Documentation	119
4.44.1.1 activation_energy	119
4.44.1.2 ref_diffusion	119
4.44.1.3 ref_temperature	120
4.44.1.4 affinity	120
4.44.1.5 ref_pressure	120
4.44.1.6 film_transfer	120
4.44.1.7 xIC	120
4.44.1.8 y_eff	120
4.44.1.9 Qstn	120
4.44.1.10 Qstnp1	120
4.44.1.11 xn	120
4.44.1.12 xnp1	120
4.44.1.13 Adsorbable	120
4.44.1.14 speciesName	120
4.45 Speciation_Test01_Data Struct Reference	120
4.45.1 Member Data Documentation	120
4.45.1.1 N	
	120

	4.45.1.3 logKa1
	4.45.1.4 logKa2
	4.45.1.5 CT
	4.45.1.6 NaT
	4.45.1.7 x
	4.45.1.8 Jacobian
	4.45.1.9 NumJac
	4.45.1.10 logC
	4.45.1.11 C
4.46 SubHe	ader Class Reference
4.46.1	Constructor & Destructor Documentation
	4.46.1.1 SubHeader
	4.46.1.2 ~SubHeader
	4.46.1.3 SubHeader
	4.46.1.4 SubHeader
	4.46.1.5 SubHeader
	4.46.1.6 SubHeader
4.46.2	Member Function Documentation
	4.46.2.1 operator=
	4.46.2.2 operator[]
	4.46.2.3 operator[]
	4.46.2.4 getMap
	4.46.2.5 clear
	4.46.2.6 addPair
	4.46.2.7 addPair
	4.46.2.8 setName
	4.46.2.9 setAlias
	4.46.2.10 setAlias
	4.46.2.11 setNameAliasPair
	4.46.2.12 setState
	4.46.2.13 DisplayContents
	4.46.2.14 getName
	4.46.2.15 getAlias
	4.46.2.16 isAlias
	4.46.2.17 isAnchor
	4.46.2.18 getState
4.46.3	Member Data Documentation
	4.46.3.1 Data_Map
	4.46.3.2 name
	4.46.3.3 alias

CONTENTS xxxi

	4.46.3.4 state	123
4.47 SYSTE	EM_DATA Struct Reference	123
4.47.1	Detailed Description	124
4.47.2	Member Data Documentation	124
	4.47.2.1 T	124
	4.47.2.2 PT	124
	4.47.2.3 qT	124
	4.47.2.4 PI	124
	4.47.2.5 pi	124
	4.47.2.6 As	124
	4.47.2.7 N	125
	4.47.2.8	125
	4.47.2.9 J	125
	4.47.2.10 K	125
	4.47.2.11 total_eval	125
	4.47.2.12 avg_norm	125
	4.47.2.13 max_norm	125
	4.47.2.14 Sys	125
	4.47.2.15 Par	125
	4.47.2.16 Recover	125
	4.47.2.17 Carrier	125
	4.47.2.18 Ideal	125
	4.47.2.19 Output	125
4.48 TRAJE	CTORY_DATA Struct Reference	126
4.48.1	Member Data Documentation	127
	4.48.1.1 mu_0	127
	4.48.1.2 rho_f	127
	4.48.1.3 eta	127
	4.48.1.4 Hamaker	127
	4.48.1.5 Temp	127
	4.48.1.6 k	127
	4.48.1.7 Rs	127
	4.48.1.8 L	127
	4.48.1.9 porosity	127
	4.48.1.10 V_separator	127
	4.48.1.11 a	127
	4.48.1.12 V_wire	127
	4.48.1.13 L_wire	127
	4.48.1.14 A_separator	127
	4.48.1.15 A_wire	127

XXXII CONTENTS

2	4.48.1.16 B0	127
4	4.48.1.17 H0	127
2	4.48.1.18 Ms	127
2	4.48.1.19 b	127
4	4.48.1.20 chi_p	127
2	4.48.1.21 rho_p	127
4	4.48.1.22 Q_in	127
4	4.48.1.23 V0	127
4	4.48.1.24 Y_initial	127
4	4.48.1.25 dt	127
4	4.48.1.26 M	127
4	4.48.1.27 mp	127
4	4.48.1.28 beta	128
4	4.48.1.29 q_bar	128
4	4.48.1.30 sigma_v	128
4	4.48.1.31 sigma_vz	128
4	4.48.1.32 sigma_z	128
4	4.48.1.33 sigma_n	128
4	4.48.1.34 sigma_m	128
4	4.48.1.35 n_rand	128
4	4.48.1.36 m_rand	128
4	4.48.1.37 s_rand	128
4	4.48.1.38 t_rand	128
4	4.48.1.39 POL	128
	4.48.1.40 H	
2	4.48.1.41 dX	128
	4.48.1.42 dY	
2	4.48.1.43 X	128
4	4.48.1.44 Y	128
4	4.48.1.45 Cap	128
4.49 UI_DATA	A Struct Reference	128
4.49.1	Detailed Description	129
4.49.2	Member Data Documentation	129
4	4.49.2.1 value_type	129
4	4.49.2.2 user_input	
	4.49.2.3 input_files	
	4.49.2.4 path	
	4.49.2.5 count	
4	4.49.2.6 max	130
4	4.49.2.7 option	130

CONTENTS xxxiii

		4.49.2.8	Path	 130
		4.49.2.9	Files	 130
		4.49.2.10	MissingArg	 130
		4.49.2.11	BasicUI	 130
		4.49.2.12	argc	 130
		4.49.2.13	argv	 130
4	.50 Unstea	dyPrecipita	ation Class Reference	 130
4	.51 Unstea	dyReaction	n Class Reference	 131
	4.51.1	Construct	or & Destructor Documentation	 132
		4.51.1.1	UnsteadyReaction	 132
		4.51.1.2	~UnsteadyReaction	 132
	4.51.2	Member F	Function Documentation	 132
		4.51.2.1	Initialize_List	 132
		4.51.2.2	Display_Info	 132
		4.51.2.3	Set_Species_Index	 132
		4.51.2.4	Set_Species_Index	 132
		4.51.2.5	Set_Stoichiometric	 132
		4.51.2.6	Set_Equilibrium	 132
		4.51.2.7	Set_Enthalpy	 132
		4.51.2.8	Set_Entropy	 132
		4.51.2.9	Set_EnthalpyANDEntropy	 132
		4.51.2.10	Set_Energy	 133
		4.51.2.11	Set_InitialValue	 133
		4.51.2.12	Set_MaximumValue	 133
		4.51.2.13	Set_Forward	 133
		4.51.2.14	Set_Reverse	 133
		4.51.2.15	Set_ForwardRef	 133
		4.51.2.16	Set_ReverseRef	 133
		4.51.2.17	Set_ActivationEnergy	 133
		4.51.2.18	Set_Affinity	 133
		4.51.2.19	Set_TimeStep	 133
		4.51.2.20	checkSpeciesEnergies	 133
		4.51.2.21	calculateEnergies	 133
		4.51.2.22	calculateEquilibrium	 133
		4.51.2.23	calculateRate	 133
		4.51.2.24	haveEquilibrium	 133
		4.51.2.25	haveRate	 133
		4.51.2.26	Get_Species_Index	 133
		4.51.2.27	Get_Stoichiometric	 133
		4.51.2.28	Get_Equilibrium	 133

XXXIV

	4.51.2.29	Get_Enthalpy			 	 	 	 	133
	4.51.2.30	Get_Entropy			 	 	 	 	133
	4.51.2.31	Get_Energy			 	 	 	 	133
	4.51.2.32	Get_InitialValu	ie		 	 	 	 	133
	4.51.2.33	Get_Maximum	ιValue		 	 	 	 	133
	4.51.2.34	Get_Forward			 	 	 	 	133
	4.51.2.35	Get_Reverse			 	 	 	 	133
	4.51.2.36	Get_ForwardF	lef		 	 	 	 	133
	4.51.2.37	Get_ReverseF	Ref		 	 	 	 	133
	4.51.2.38	Get_Activation	Energy .		 	 	 	 	134
	4.51.2.39	Get_Affinity .			 	 	 	 	134
	4.51.2.40	Get_TimeStep			 	 	 	 	134
	4.51.2.41	Eval_Reaction	Rate		 	 	 	 	134
	4.51.2.42	Eval_Residua			 	 	 	 	134
	4.51.2.43	Eval_Residua			 	 	 	 	134
	4.51.2.44	Eval_IC_Resid	dual		 	 	 	 	134
	4.51.2.45	Explicit_Eval			 	 	 	 	134
4.51.3	Member I	Data Document	ation		 	 	 	 	134
	4.51.3.1	initial_value			 	 	 	 	134
	4.51.3.2	max_value .			 	 	 	 	134
	4.51.3.3	forward_rate			 	 	 	 	134
	4.51.3.4	reverse_rate			 	 	 	 	134
	4.51.3.5	forward_ref_ra	ıte		 	 	 	 	134
	4.51.3.6	reverse_ref_ra	ıte		 	 	 	 	134
	4.51.3.7	activation_ene	rgy		 	 	 	 	134
	4.51.3.8	temperature_a	uffinity		 	 	 	 	134
	4.51.3.9	time_step			 	 	 	 	134
	4.51.3.10	HaveForward			 	 	 	 	134
	4.51.3.11	HaveReverse			 	 	 	 	134
	4.51.3.12	HaveForRef			 	 	 	 	134
	4.51.3.13	HaveRevRef			 	 	 	 	134
	4.51.3.14	species_index			 	 	 	 	134
4.52 ValueT	ypePair Cla	ass Reference			 	 	 	 	134
4.52.1	Construc	tor & Destructo	r Documer	ntation .	 	 	 	 	135
	4.52.1.1	ValueTypePair			 	 	 	 	135
	4.52.1.2	\sim ValueTypePa	air		 	 	 	 	135
	4.52.1.3	ValueTypePair	·		 	 	 	 	135
	4.52.1.4	ValueTypePair	·		 	 	 	 	135
	4.52.1.5	ValueTypePair	·		 	 	 	 	135
4.52.2	Member I	Function Docur	nentation		 	 	 	 	135

CONTENTS

		4.52.2.1	operator=	. 135
		4.52.2.2	editValue	. 135
		4.52.2.3	editPair	. 135
		4.52.2.4	findType	. 135
		4.52.2.5	assertType	. 135
		4.52.2.6	DisplayPair	. 135
		4.52.2.7	getString	. 135
		4.52.2.8	getBool	. 136
		4.52.2.9	getDouble	. 136
		4.52.2.10	getInt	. 136
		4.52.2.11	getValue	. 136
		4.52.2.12	getType	. 136
		4.52.2.13	getPair	. 136
	4.52.3	Member [Data Documentation	. 136
		4.52.3.1	Value_Type	. 136
		4.52.3.2	type	. 136
4.53	yaml_c	pp_class C	Class Reference	. 136
	4.53.1	Construct	or & Destructor Documentation	. 136
		4.53.1.1	yaml_cpp_class	. 136
		4.53.1.2	~yaml_cpp_class	. 136
	4.53.2	Member F	Function Documentation	. 137
		4.53.2.1	setInputFile	. 137
		4.53.2.2	readInputFile	. 137
		4.53.2.3	cleanup	. 137
		4.53.2.4	executeYamlRead	. 137
		4.53.2.5	getYamlWrapper	. 137
		4.53.2.6	DisplayContents	. 137
	4.53.3	Member [Data Documentation	. 137
		4.53.3.1	yaml_wrapper	. 137
		4.53.3.2	input_file	. 137
		4.53.3.3	file_name	. 137
		4.53.3.4	token_parser	. 137
		4.53.3.5	current_token	. 137
		4.53.3.6	previous_token	. 137
4.54	YamlW	rapper Cla	ss Reference	. 137
	4.54.1	Construct	or & Destructor Documentation	. 138
		4.54.1.1	YamlWrapper	. 138
		4.54.1.2	\sim YamlWrapper	. 138
		4.54.1.3	YamlWrapper	. 138
		4.54.1.4	YamlWrapper	. 138

xxxvi CONTENTS

		4.54.2	Member I	Function Documentation	138
			4.54.2.1	operator=	138
			4.54.2.2	operator()	138
			4.54.2.3	operator()	138
			4.54.2.4	getDocMap	138
			4.54.2.5	getDocument	138
			4.54.2.6	end	138
			4.54.2.7	end	138
			4.54.2.8	begin	138
			4.54.2.9	begin	138
			4.54.2.10	clear	138
			4.54.2.11	resetKeys	138
			4.54.2.12	changeKey	138
			4.54.2.13	revalidateAllKeys	139
			4.54.2.14	DisplayContents	139
			4.54.2.15	addDocKey	139
			4.54.2.16	copyAnchor2Alias	139
			4.54.2.17	size	139
			4.54.2.18	getAnchoredDoc	139
			4.54.2.19	getDocFromHeadAlias	139
			4.54.2.20	getDocFromSubAlias	139
		4.54.3	Member I	Data Documentation	139
			4.54.3.1	Doc_Map	139
5	File	Docume	entation		141
	5.1	dogfish	.h File Ref	erence	141
		5.1.1	Detailed I	Description	142
		5.1.2	Function	Documentation	142
			5.1.2.1	print2file_species_header	142
			5.1.2.2	print2file_DOGFISH_header	142
			5.1.2.3	print2file_DOGFISH_result_old	143
			5.1.2.4	print2file_DOGFISH_result_new	143
			5.1.2.5	default_Retardation	143
			5.1.2.6	default_IntraDiffusion	143
			5.1.2.7	default_FilmMTCoeff	143
			5.1.2.8	default_SurfaceConcentration	143
			5.1.2.9	setup_DOGFISH_DATA	143
			5.1.2.10	DOGFISH_Executioner	143
			5.1.2.11	set_DOGFISH_ICs	144
			5.1.2.12	set_DOGFISH_timestep	144

CONTENTS xxxvii

		5.1.2.13 DOGFISH_preprocesses
		5.1.2.14 set_DOGFISH_params
		5.1.2.15 DOGFISH_postprocesses
		5.1.2.16 DOGFISH_reset
		5.1.2.17 DOGFISH
		5.1.2.18 DOGFISH_TESTS
5.2	eel.h F	ile Reference
	5.2.1	Detailed Description
	5.2.2	Function Documentation
		5.2.2.1 EEL_TESTS
5.3	egret.h	File Reference
	5.3.1	Detailed Description
	5.3.2	Macro Definition Documentation
		5.3.2.1 Rstd
		5.3.2.2 RE3
		5.3.2.3 Po
		5.3.2.4 Cstd
		5.3.2.5 CE3
		5.3.2.6 Pstd
		5.3.2.7 PE3
		5.3.2.8 Nu
		5.3.2.9 PSI
		5.3.2.10 Dp_ij
		5.3.2.11 D_ij
		5.3.2.12 Mu
		5.3.2.13 D_ii
		5.3.2.14 ReNum
		5.3.2.15 ScNum
		5.3.2.16 FilmMTCoeff
	5.3.3	Function Documentation
		5.3.3.1 initialize_data
		5.3.3.2 set_variables
		5.3.3.3 calculate_properties
		5.3.3.4 EGRET_TESTS
5.4	error.h	File Reference
	5.4.1	Detailed Description
	5.4.2	Macro Definition Documentation
		5.4.2.1 mError
	5.4.3	Enumeration Type Documentation
		5.4.3.1 error_type

xxxviii CONTENTS

	5.4.4	Function	Documentation	152
		5.4.4.1	error	152
5.5	finch.h	File Refer	ence	152
	5.5.1	Detailed	Description	154
	5.5.2	Enumera	tion Type Documentation	155
		5.5.2.1	finch_solve_type	155
		5.5.2.2	finch_coord_type	155
	5.5.3	Function	Documentation	155
		5.5.3.1	max	155
		5.5.3.2	min	156
		5.5.3.3	minmod	156
		5.5.3.4	uTotal	156
		5.5.3.5	uAverage	156
		5.5.3.6	check_Mass	156
		5.5.3.7	l_direct	156
		5.5.3.8	lark_picard_step	156
		5.5.3.9	nl_picard	156
		5.5.3.10	setup_FINCH_DATA	156
		5.5.3.11	print2file_dim_header	157
		5.5.3.12	print2file_time_header	157
		5.5.3.13	print2file_result_old	157
		5.5.3.14	print2file_result_new	157
		5.5.3.15	print2file_newline	157
		5.5.3.16	print2file_tab	157
		5.5.3.17	default_execution	157
		5.5.3.18	default_ic	157
		5.5.3.19	default_timestep	157
		5.5.3.20	default_preprocess	158
		5.5.3.21	default_solve	158
		5.5.3.22	default_params	158
		5.5.3.23	minmod_discretization	158
		5.5.3.24	vanAlbada_discretization	158
		5.5.3.25	ospre_discretization	158
		5.5.3.26	default_bcs	158
		5.5.3.27	default_res	158
		5.5.3.28	default_precon	159
		5.5.3.29	default_postprocess	159
		5.5.3.30	default_reset	159
		5.5.3.31	FINCH_TESTS	159
5.6	flock.h	File Refer	ence	159

CONTENTS xxxix

	5.6.1	Detailed [Description	159
5.7			eference	160
	5.7.1	•	Description	161
	5.7.2	Macro De	finition Documentation	162
		5.7.2.1	Po	162
		5.7.2.2	R	162
		5.7.2.3	Na	162
	5.7.3	Function I	Documentation	162
		5.7.3.1	roundIt	162
		5.7.3.2	twoFifths	162
		5.7.3.3	orderMag	162
		5.7.3.4	minValue	162
		5.7.3.5	minIndex	162
		5.7.3.6	avgPar	163
		5.7.3.7	avgValue	163
		5.7.3.8	weightedAvg	163
		5.7.3.9	rSq	163
		5.7.3.10	isSmooth	163
		5.7.3.11	orthoLinReg	163
		5.7.3.12	eduGuess	164
		5.7.3.13	gstaFunc	164
		5.7.3.14	gstaObjFunc	164
		5.7.3.15	eval_GSTA	164
		5.7.3.16	gsta_optimize	164
5.8	lark.h F	File Referer	nce	165
	5.8.1	Detailed [Description	168
	5.8.2	Enumerat	ion Type Documentation	169
		5.8.2.1	krylov_method	169
	5.8.3	Function I	Documentation	169
		5.8.3.1	update_arnoldi_solution	169
		5.8.3.2	arnoldi	169
		5.8.3.3	gmresLeftPreconditioned	170
		5.8.3.4	fom	171
		5.8.3.5	gmresRightPreconditioned	172
		5.8.3.6	pcg	172
		5.8.3.7	bicgstab	173
		5.8.3.8	cgs	174
		5.8.3.9	operatorTranspose	174
		5.8.3.10	gcr	175
		5.8.3.11	gmresPreconditioner	175

xI CONTENTS

		5.8.3.12 gmresr
		5.8.3.13 picard
		5.8.3.14 jacvec
		5.8.3.15 backtrackLineSearch
		5.8.3.16 pjfnk
		5.8.3.17 Numerical Jacobian
		5.8.3.18 LARK_TESTS
5.9	macaw	h File Reference
	5.9.1	Detailed Description
	5.9.2	Macro Definition Documentation
		5.9.2.1 M_PI
	5.9.3	Function Documentation
		5.9.3.1 MACAW_TESTS
5.10	magpie	h File Reference
	5.10.1	Detailed Description
	5.10.2	Macro Definition Documentation
		5.10.2.1 DBL_EPSILON
		5.10.2.2 Z
		5.10.2.3 A
		5.10.2.4 V
		5.10.2.5 Po
		5.10.2.6 R
		5.10.2.7 Na
		5.10.2.8 kB
		5.10.2.9 shapeFactor
		5.10.2.10 lnKo
		5.10.2.11 He
	5.10.3	Function Documentation
		5.10.3.1 qo
		5.10.3.2 dq_dp
		5.10.3.3 q_p
		5.10.3.4 PI
		5.10.3.5 Qst
		5.10.3.6 eMax
		5.10.3.7 Inact_mSPD
		5.10.3.8 grad_mSPD
		5.10.3.9 qT
		5.10.3.10 initialGuess_mSPD
		5.10.3.11 eval_po_PI
		5.10.3.12 eval_po_qo

CONTENTS xli

	5.10.3.13	3 eval_po		187
	5.10.3.14	4 eval_eta		187
	5.10.3.15	5 eval_GPAST		187
	5.10.3.16	6 MAGPIE		187
	5.10.3.17	7 MAGPIE_SCENARIOS		188
5.11 mola.h	r File Refer	rence		190
5.11.1	Detailed	Description		191
5.11.2	Function	Documentation		192
	5.11.2.1	MOLA_TESTS	٠.	192
5.12 monkf	ish.h File F	Reference	٠.	192
5.12.1	Function	Documentation	٠.	193
	5.12.1.1	default_porosity		193
	5.12.1.2	default_density		193
	5.12.1.3	default_interparticle_diffusion		193
	5.12.1.4	default_monk_adsorption		193
	5.12.1.5	default_monk_equilibrium		193
	5.12.1.6	default_monkfish_retardation		193
	5.12.1.7	default_exterior_concentration		193
	5.12.1.8	default_film_transfer		193
	5.12.1.9	setup_MONKFISH_DATA		193
	5.12.1.10	0 MONKFISH_TESTS		193
5.13 sandb	ox.h File R	Reference		193
5.13.1	Function	Documentation		194
	5.13.1.1	Speciation_Test01_Function		194
	5.13.1.2	Speciation_Test01_Jacobian		194
	5.13.1.3	Speciation_Test01_Guess		194
	5.13.1.4	Speciation_Test01_MatVec		194
	5.13.1.5	RUN_SANDBOX		194
5.14 schoo	I.h File Ref	ference		194
5.15 scops	owl.h File F	Reference		194
5.15.1	Macro De	efinition Documentation		195
	5.15.1.1	SCOPSOWL_HPP		195
	5.15.1.2	Dp		195
	5.15.1.3	Dk		195
	5.15.1.4	avgDp		195
5.15.2	Function	Documentation		195
	5.15.2.1	print2file_species_header		195
	5.15.2.2	print2file_SCOPSOWL_time_header		195
	5.15.2.3	print2file_SCOPSOWL_header		195
	5.15.2.4	print2file_SCOPSOWL_result_old		196

xlii CONTENTS

	5.15.2.5	print2file_SCOPSOWL_result_new	96
	5.15.2.6	default_adsorption	96
	5.15.2.7	default_retardation	96
	5.15.2.8	default_pore_diffusion	96
	5.15.2.9	default_surf_diffusion	96
	5.15.2.10	default_effective_diffusion	96
	5.15.2.11	const_pore_diffusion	96
	5.15.2.12	default_filmMassTransfer	96
	5.15.2.13	const_filmMassTransfer	96
	5.15.2.14	setup_SCOPSOWL_DATA 1	96
	5.15.2.15	SCOPSOWL_Executioner	96
	5.15.2.17	set_SCOPSOWL_timestep	96
	5.15.2.18	SCOPSOWL_preprocesses	96
	5.15.2.21	SCOPSOWL_reset	96
	5.15.2.22	SCOPSOWL	96
	5.15.2.24	SMALL_CYCLE_TEST02	96
		-	
		-	
		-	
•			
5.16.1			
	5.16.1.1	SCOPSOWL_OPT_set_y	97
	5.16.1.2	 -	97
	5.16.1.3	eval_SCOPSOWL_Uptake	97
	5.16.1.4	SCOPSOWL_OPTIMIZE	97
			97
5.17.1			99
			99
5.17.2			99
			99
5.17.3			99
		-	99
5.17.4			99
	5.17.4.1	print2file_shark_info	99
	5.16.1 shark.h 5.17.1 5.17.2	5.15.2.6 5.15.2.7 5.15.2.8 5.15.2.9 5.15.2.10 5.15.2.11 5.15.2.12 5.15.2.13 5.15.2.15 5.15.2.16 5.15.2.17 5.15.2.18 5.15.2.19 5.15.2.20 5.15.2.21 5.15.2.22 5.15.2.23 5.15.2.24 5.15.2.25 5.15.2.26 5.15.2.27 5.15.2.28 5.15.2.29 scopsowl_opt.h F 5.16.1 Function 5.16.1.1 5.16.1.2 5.16.1.3 5.16.1.4 shark.h File Refer 5.17.1 Macro Defendance 5.17.1.1 5.17.2 Typedef E 5.17.2.1 5.17.3 Enumerate 5.17.3.1	5.15.2.8 default_pore_diffusion 1 5.15.2.9 default_surf_diffusion 1 5.15.2.10 const_pore_diffusion 1 5.15.2.11 const_pore_diffusion 1 5.15.2.12 default_filmMassTransfer 1 5.15.2.13 const_filmMassTransfer 1 5.15.2.14 setup_SCOPSOWL_DATA 1 5.15.2.15 SCOPSOWL_Executioner 1 5.15.2.16 set_SCOPSOWL_Incestep 1 5.15.2.17 set_SCOPSOWL_preprocesses 1 5.15.2.19 set_SCOPSOWL_params 1 5.15.2.19 set_SCOPSOWL_params 1 5.15.2.21 SCOPSOWL_postprocesses 1 5.15.2.22 SCOPSOWL_postprocesses 1 5.15.2.23 LARGE_CYCLE_TEST01 1 5.15.2.24 SMALL_CYCLE_TEST02 1 5.15.2.25 CURVE_TEST03 1 5.15.2.25 CURVE_TEST03 1 5.15.2.26 CURVE_TEST04 1 5.15.2.29 SCOPSOWL_SCENARIOS 1 5.15.2.29 SCOPSOWL_SCENARIOS 1 5.15.2.29 SCOPSOWL_TESTS 1 5.16.1.1 SCOPSOWL_OPT_set_y 5 5.16.1.2 Initial_guess_SCOPSOWL 1 5.16.1.3 eval_SCOPSOWL_Uptake 1

CONTENTS xliii

	5.17.4.2	print2file_shark_header	199
	5.17.4.3	print2file_shark_results_new	199
	5.17.4.4	print2file_shark_results_old	199
	5.17.4.5	ideal_solution	199
	5.17.4.6	Davies_equation	199
	5.17.4.7	DebyeHuckel_equation	199
	5.17.4.8	DaviesLadshaw_equation	199
	5.17.4.9	act_choice	199
	5.17.4.10	linesearch_choice	199
	5.17.4.11	linearsolve_choice	199
	5.17.4.12	Convert2LogConcentration	199
	5.17.4.13	Convert2Concentration	199
	5.17.4.14	read_scenario	199
	5.17.4.15	read_options	199
	5.17.4.16	read_species	199
	5.17.4.17	read_massbalance	200
	5.17.4.18	read_equilrxn	200
	5.17.4.19	read_unsteadyrxn	200
	5.17.4.20	setup_SHARK_DATA	200
	5.17.4.21	shark_add_customResidual	200
	5.17.4.22	shark_parameter_check	200
	5.17.4.23	shark_energy_calculations	200
	5.17.4.24	shark_temperature_calculations	200
	5.17.4.25	shark_pH_finder	200
	5.17.4.26	shark_guess	200
	5.17.4.27	shark_initial_conditions	200
	5.17.4.28	shark_executioner	200
	5.17.4.29	shark_timestep_const	200
	5.17.4.30	shark_timestep_adapt	200
	5.17.4.31	shark_preprocesses	200
	5.17.4.32	shark_solver	200
	5.17.4.33	shark_postprocesses	200
	5.17.4.34	shark_reset	200
	5.17.4.35	shark_residual	200
	5.17.4.36	SHARK	200
	5.17.4.37	SHARK_SCENARIO	200
	5.17.4.38	SHARK_TESTS	200
5.18 skua.h	File Refere	ence	200
5.18.1	Macro De	finition Documentation	201
	5.18.1.1	SKUA_HPP	201

XIIV CONTENTS

		5.18.1.2	D_inf	201
		5.18.1.3	D_o	201
		5.18.1.4	D_c	201
	5.18.2	Function	Documentation	202
		5.18.2.1	print2file_species_header	202
		5.18.2.2	print2file_SKUA_time_header	202
		5.18.2.3	print2file_SKUA_header	202
		5.18.2.4	print2file_SKUA_results_old	202
		5.18.2.5	print2file_SKUA_results_new	202
		5.18.2.6	default_Dc	202
		5.18.2.7	default_kf	202
		5.18.2.8	const_Dc	202
		5.18.2.9	simple_darken_Dc	202
		5.18.2.10	theoretical_darken_Dc	202
		5.18.2.11	empirical_kf	202
		5.18.2.12	const_kf	202
		5.18.2.13	molefractionCheck	202
		5.18.2.14	setup_SKUA_DATA	202
		5.18.2.15	SKUA_Executioner	202
		5.18.2.16	set_SKUA_ICs	202
		5.18.2.17	set_SKUA_timestep	202
		5.18.2.18	SKUA_preprocesses	202
		5.18.2.19	set_SKUA_params	202
		5.18.2.20	SKUA_postprocesses	202
		5.18.2.21	SKUA_reset	202
		5.18.2.22	SKUA	202
		5.18.2.23	SKUA_CYCLE_TEST01	202
		5.18.2.24	SKUA_CYCLE_TEST02	202
		5.18.2.25	SKUA_LOW_TEST03	202
		5.18.2.26	SKUA_MID_TEST04	202
		5.18.2.27	SKUA_SCENARIOS	202
		5.18.2.28	SKUA_TESTS	203
5.19	skua_o	pt.h File R	eference	203
	5.19.1	Function	Documentation	203
		5.19.1.1	SKUA_OPT_set_y	203
		5.19.1.2	initial_guess_SKUA	203
		5.19.1.3	eval_SKUA_Uptake	203
		5.19.1.4	SKUA_OPTIMIZE	203
5.20	Trajecto	ory.h File F	Reference	203
	5.20.1	Function	Documentation	204

CONTENTS

	5.20.1.1 Magnetic_R
	5.20.1.2 Magnetic_T
	5.20.1.3 Grav_R
	5.20.1.4 Grav_T
	5.20.1.5 Van_R
	5.20.1.6 V_RAD
	5.20.1.7 V_THETA
	5.20.1.8 Brown_RAD
	5.20.1.9 Brown_THETA
	5.20.1.10 POLAR
	5.20.1.11 RADIAL_FORCE
	5.20.1.12 TANGENTIAL_FORCE
	5.20.1.13 CARTESIAN
	5.20.1.14 DISPLACEMENT
	5.20.1.15 LOCATION
	5.20.1.16 Removal_Efficiency
	5.20.1.17 Trajectory_SetupConstants
	5.20.1.18 Number_Generator
	5.20.1.19 Run_Trajectory
5.21 ui.h Fi	le Reference
5.21.1	Detailed Description
5.21.2	Macro Definition Documentation
	5.21.2.1 UI_HPP
	5.21.2.2 ECO_VERSION
	5.21.2.3 ECO_EXECUTABLE
5.21.3	Enumeration Type Documentation
	5.21.3.1 valid_options
5.21.4	Function Documentation
	5.21.4.1 aui_help
	5.21.4.2 bui_help
	5.21.4.3 allLower
	5.21.4.4 exit
	5.21.4.5 help
	5.21.4.6 version
	5.21.4.7 test
	5.21.4.8 exec
	5.21.4.9 path
	5.21.4.10 input
	5.21.4.11 valid_test_string
	5.21.4.12 valid_exec_string

xIvi CONTENTS

	5.21.4.13 number_files	210
	5.21.4.14 valid_addon_options	210
	5.21.4.15 display_help	211
	5.21.4.16 display_version	211
	5.21.4.17 invalid_input	211
	5.21.4.18 valid_input_main	211
	5.21.4.19 valid_input_tests	212
	5.21.4.20 valid_input_execute	212
	5.21.4.21 test_loop	212
	5.21.4.22 exec_loop	212
	5.21.4.23 run_test	212
	5.21.4.24 run_exec	213
	5.21.4.25 run_executable	213
5.22 yaml_v	vrapper.h File Reference	213
5.22.1	Typedef Documentation	214
	5.22.1.1 data_type	214
	5.22.1.2 header_state	214
5.22.2	Enumeration Type Documentation	214
	5.22.2.1 data_type	214
	5.22.2.2 header_state	214
5.22.3	Function Documentation	214
	5.22.3.1 YAML_WRAPPER_TESTS	214
	5.22.3.2 YAML_CPP_TEST	214

Index

214

Chapter 1

Hierarchical Index

1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

ARNOLDI_DATA	
Atom	
BACKTRACK_DATA	1
BiCGSTAB_DATA	1
CGS_DATA	1
DOGFISH_DATA	2
DOGFISH_PARAM	2
FINCH_DATA	2
GCR_DATA	4
GMRESLP_DATA	4
GMRESR_DATA	4
GMRESRP_DATA	5
GPAST_DATA	5
GSTA_DATA	5
GSTA_OPT_DATA	5
KeyValueMap	6
MAGPIE_DATA	6
MassBalance	6
$Matrix < T > \dots \dots \dots \dots \dots$	6
Matrix< double >	6
Matrix< int >	6
Mechanism	7
MIXED_GAS	7
Molecule	7
MasterSpeciesList	6
MONKFISH_DATA	8
MONKFISH PARAM	
mSPD_DATA	
NUM_JAC_DATA	
OPTRANS_DATA	
PCG_DATA	
PeriodicTable	
PICARD DATA	•
PJFNK_DATA	
PURE_GAS	
Reaction	
Propinitation	

2 Hierarchical Index

UnsteadyPrecipitation	. 130
UnsteadyReaction	. 131
COPSOWL_DATA	. 107
COPSOWL_OPT_DATA	. 109
COPSOWL_PARAM_DATA	. 111
HARK_DATA	. 112
(UA_DATA	. 115
(UA_OPT_DATA	. 117
(UA_PARAM	. 119
peciation_Test01_Data	. 120
ıbHeader	. 121
Document	22
Header	. 58
/STEM_DATA	. 123
RAJECTORY_DATA	. 126
_DATA	. 128
ılueTypePair	. 134
ml_cpp_class	. 136
mlWrapper	. 137

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

ARNOLDI_DATA	
Data structure for the construction of the Krylov subspaces for a linear system	
Atom	
Atom object to hold information about specific atoms in the periodic table (click Atom to go to	
function definitions)	9
BACKTRACK_DATA	
Data structure for the implementation of Backtracking Linesearch	14
BICGSTAB_DATA	
Data structure for the implementation of the BiCGSTAB algorithm for non-symmetric linear sys-	
tems	15
CGS_DATA	4.0
Data structure for the implementation of the CGS algorithm for non-symmetric linear systems .	19
Document	22
Primary data structure for running the DOGFISH application	2!
DOGFISH PARAM	2
Data structure for species-specific parameters	28
FINCH DATA	20
Data structure for the FINCH object	29
GCR DATA	
Data structure for the implementation of the GCR algorithm for non-symmetric linear systems .	42
GMRESLP DATA	
Data structure for implementation of the Restarted GMRES algorithm with Left Preconditioning	4
GMRESR_DATA	
Data structure for the implementation of GCR with Nested GMRES preconditioning (i.e., GMRE-	
SR)	47
GMRESRP_DATA	
Data structure for the Restarted GMRES algorithm with Right Preconditioning	50
GPAST_DATA	
GPAST Data Structure	54
GSTA_DATA	
GSTA Data Structure	5
GSTA_OPT_DATA	
Data structure used in the GSTA optimization routines	
Header	
KeyValueMap	6
MAGPIE_DATA	
MAGPIE Data Structure	60

4 Class Index

MassBalance	64
MasterSpeciesList	65
Matrix < T >	
Templated C++ Matrix Class Object (click Matrix to go to function definitions)	67
Mechanism	76
MIXED_GAS	
Data structure holding information necessary for computing mixed gas properties	76
Molecule	
C++ Molecule Object built from Atom Objects (click Molecule to go to function definitions)	79
MONKFISH DATA	86
MONKFISH_PARAM	88
mSPD_DATA	
MSPD Data Structure	89
NUM JAC DATA	
Data structure to form a numerical jacobian matrix with finite differences	90
OPTRANS_DATA	50
	91
Data structure for implementation of linear operator transposition	91
	91
Data structure for implementation of the PCG algorithms for symmetric linear systems	91
PeriodicTable Communication of the communication of	
Class object that store a digitial copy of all Atom objects	94
PICARD_DATA	
Data structure for the implementation of a Picard or Fixed-Point iteration for non-linear systems	96
PJFNK_DATA	
Data structure for the implementation of the PJFNK algorithm for non-linear systems	98
Precipitation	102
PURE_GAS	
Data structure holding all the parameters for each pure gas spieces	103
Reaction	104
SCOPSOWL_DATA	107
SCOPSOWL_OPT_DATA	109
SCOPSOWL PARAM DATA	111
SHARK DATA	112
SKUA DATA	115
SKUA OPT DATA	117
SKUA PARAM	119
Speciation Test01 Data	120
SubHeader	121
SYSTEM DATA	
System Data Structure	123
TRAJECTORY DATA	126
-	120
UI_DATA	100
Data structure holding the UI arguments	128
UnsteadyPrecipitation	130
UnsteadyReaction	131
ValueTypePair	134
yaml_cpp_class	136
YamlWrapper	137

Chapter 3

File Index

3.1 File List

Here is a list of all files with brief descriptions:

dogfish.h					
Diffusion Object Governing Fiber Interior Sorption History eel.h					 14
Easy-access Element Library					 14
egret.h Estimation of Gas-phase pRopErTies					140
error.h					
All error types are defined here					 150
Flux-limiting Implicit Non-oscillatory Conservative High-resolution scheme .					 15
flock.h					
FundamentaL Off-gas Collection of Kernels			•		 159
Generalized Statistical Thermodynamic Adsorption (GSTA) Optimization Rout	ine				 160
lark.h Linear Algebra Residual Kernels					16
macaw.h			•	• •	 10.
MAtrix CAlculation Workspace					 179
magpie.h Multicomponent Adsorption Generalized Procedure for Isothermal Equilibria					 18
mola.h					
Molecule Object Library from Atoms					
monkfish.h					
sandbox.h					
school.h					
scopsowl.h					
scopsowl_opt.h					
shark.h					
skua.h					
skua_opt.h					
Trajectory.h		٠.	•		 203
User Interface for Ecosystem					 20
yaml_wrapper.h					

6 File Index

Chapter 4

Class Documentation

4.1 ARNOLDI_DATA Struct Reference

Data structure for the construction of the Krylov subspaces for a linear system.

```
#include <lark.h>
```

Public Attributes

• int k

Desired size of the Krylov subspace.

· int iter

Actual size of the Krylov subspace.

• double beta

Normalization parameter.

• double hp1

Additional row element of H (separate storage for holding)

• bool Output = true

True = print messages to console.

 $\bullet \ \ \text{std::vector} < \\ \text{Matrix} < \\ \text{double} > > \\ \text{Vk}$

(N) x (k) orthonormal vector basis stored as a vector of column matrices

• Matrix < double > Hkp1

(k+1) x (k) upper Hessenberg matrix

• Matrix < double > yk

(k) x (1) vector search direction

• Matrix< double > e1

(k) x (1) orthonormal vector with 1 in first position

• Matrix< double > w

(N) x (1) interim result of the matrix_vector multiplication

 $\bullet \ \ \text{Matrix}{<} \ \text{double} > \mathbf{v}$

(N) x (1) holding cell for the column entries of Vk and other interims

• Matrix< double > sum

(N) x (1) running sum of subspace vectors for use in altering w

4.1.1 Detailed Description

Data structure for the construction of the Krylov subspaces for a linear system.

C-style object used in conjunction with the Arnoldi algorithm to construct an orthonormal basis and upper Hessenberg representation of a given linear operator. This is used to solve a linear system both iteratively (i.e., in conjunction with GMRESLP) and directly (i.e., in conjunction with FOM). Alternatively, you can just store the factorized components for later use in another routine.

4.1.2 Member Data Documentation

4.1.2.1 int ARNOLDI_DATA::k

Desired size of the Krylov subspace.

4.1.2.2 int ARNOLDI_DATA::iter

Actual size of the Krylov subspace.

4.1.2.3 double ARNOLDI_DATA::beta

Normalization parameter.

4.1.2.4 double ARNOLDI_DATA::hp1

Additional row element of H (separate storage for holding)

4.1.2.5 bool ARNOLDI_DATA::Output = true

True = print messages to console.

4.1.2.6 std::vector< Matrix<double> > ARNOLDI_DATA::Vk

(N) x (k) orthonormal vector basis stored as a vector of column matrices

4.1.2.7 Matrix < double > ARNOLDI_DATA::Hkp1

(k+1) x (k) upper Hessenberg matrix

4.1.2.8 Matrix < double > ARNOLDI_DATA::yk

(k) x (1) vector search direction

4.1.2.9 Matrix<double> ARNOLDI_DATA::e1

(k) x (1) orthonormal vector with 1 in first position

4.1.2.10 Matrix<double> ARNOLDI_DATA::w

(N) x (1) interim result of the matrix_vector multiplication

4.2 Atom Class Reference 9

4.1.2.11 Matrix < double > ARNOLDI_DATA::v

(N) x (1) holding cell for the column entries of Vk and other interims

4.1.2.12 Matrix < double > ARNOLDI_DATA::sum

(N) x (1) running sum of subspace vectors for use in altering w

The documentation for this struct was generated from the following file:

· lark.h

4.2 Atom Class Reference

Atom object to hold information about specific atoms in the periodic table (click Atom to go to function definitions)

```
#include <eel.h>
```

Public Member Functions

• Atom ()

Default Constructor.

• ∼Atom ()

Default Destructor.

Atom (std::string Name)

Constructor by Atom Name.

• Atom (int number)

Constructor by Atomic number.

• void Register (std::string Symbol)

Register an atom object by symbol.

• void Register (int number)

Register an atom object by number.

void editAtomicWeight (double AW)

Manually changes the atomic weight.

• void editOxidationState (int state)

Manually changes the oxidation state.

• void editProtons (int proton)

Manually changes the number of protons.

• void editNeutrons (int neutron)

Manually changes the number of neutrons.

• void editElectrons (int electron)

Manually changes the number of electrons.

void editValence (int val)

Manually changes the number of valence electrons.

void removeProton ()

Manually removes 1 proton and adjusts weight.

• void removeNeutron ()

Manually removes 1 neutron and adjusts weight.

• void removeElectron ()

Manually removes 1 electron from valence.

• double AtomicWeight ()

Returns the current atomic weight (g/mol)

• int OxidationState ()

Returns the current oxidation state.

• int Protons ()

Returns the current number of protons.

• int Neutrons ()

Returns the current number of neutrons.

• int Electrons ()

Returns the current number of electrons.

• int BondingElectrons ()

Returns the number of electrons available for bonding.

• std::string AtomName ()

Returns the name of the atom.

• std::string AtomSymbol ()

Returns the symbol of the atom.

• std::string AtomCategory ()

Returns the category of the atom.

• std::string AtomState ()

Returns the state of the atom.

• int AtomicNumber ()

Returns the atomic number of the atom.

· void DisplayInfo ()

Displays Atom information to console.

Protected Attributes

· double atomic_weight

Holds the atomic weight of the atom.

int oxidation_state

Holds the oxidation state of the atom.

• int protons

Holds the number of protons in the atom.

• int neutrons

Holds the number of neutrons in the atom.

· int electrons

Holds the number of electrons in the atom.

• int valence_e

Holds the number of valence electrons in the atom.

Private Attributes

• std::string Name

Holds the name of the atom.

std::string Symbol

Holds the atomic symbol for the atom.

· std::string Category

Holds the category of the atom (e.g., Alkali Metal)

• std::string NaturalState

Holds the natural state of the atom (e.g., Gas)

· int atomic_number

Holds the atomic number of the atom.

4.2 Atom Class Reference 11

4.2.1 Detailed Description

Atom object to hold information about specific atoms in the periodic table (click Atom to go to function definitions)

C++ class object holding data and functions associated with atoms. Objects can be registered at the time of object construction, or after declaring an Atom object. Registration can be done via the atomic symbol or atomic number. Valid atoms go from Hydrogen (1) to Ununoctium (118).

```
4.2.2 Constructor & Destructor Documentation
4.2.2.1 Atom::Atom ( )
Default Constructor.
4.2.2.2 Atom:: ∼Atom ( )
Default Destructor.
4.2.2.3 Atom::Atom ( std::string Name )
Constructor by Atom Name.
4.2.2.4 Atom::Atom (int number)
Constructor by Atomic number.
4.2.3 Member Function Documentation
4.2.3.1 void Atom::Register ( std::string Symbol )
Register an atom object by symbol.
4.2.3.2 void Atom::Register (int number)
Register an atom object by number.
4.2.3.3 void Atom::editAtomicWeight ( double AW )
Manually changes the atomic weight.
4.2.3.4 void Atom::editOxidationState (int state)
Manually changes the oxidation state.
4.2.3.5 void Atom::editProtons (int proton)
Manually changes the number of protons.
4.2.3.6 void Atom::editNeutrons (int neutron)
```

Manually changes the number of neutrons.

```
4.2.3.7 void Atom::editElectrons ( int electron )
Manually changes the number of electrons.
4.2.3.8 void Atom::editValence (int val)
Manually changes the number of valence electrons.
4.2.3.9 void Atom::removeProton ( )
Manually removes 1 proton and adjusts weight.
4.2.3.10 void Atom::removeNeutron ( )
Manually removes 1 neutron and adjusts weight.
4.2.3.11 void Atom::removeElectron ( )
Manually removes 1 electron from valence.
4.2.3.12 double Atom::AtomicWeight ( )
Returns the current atomic weight (g/mol)
4.2.3.13 int Atom::OxidationState ( )
Returns the current oxidation state.
4.2.3.14 int Atom::Protons ( )
Returns the current number of protons.
4.2.3.15 int Atom::Neutrons ( )
Returns the current number of neutrons.
4.2.3.16 int Atom::Electrons ( )
Returns the current number of electrons.
4.2.3.17 int Atom::BondingElectrons ( )
Returns the number of electrons available for bonding.
4.2.3.18 std::string Atom::AtomName ( )
Returns the name of the atom.
```

4.2 Atom Class Reference 13

```
4.2.3.19 std::string Atom::AtomSymbol ( )
Returns the symbol of the atom.
4.2.3.20 std::string Atom::AtomCategory ( )
Returns the category of the atom.
4.2.3.21 std::string Atom::AtomState ( )
Returns the state of the atom.
4.2.3.22 int Atom::AtomicNumber ( )
Returns the atomic number of the atom.
4.2.3.23 void Atom::DisplayInfo ( )
Displays Atom information to console.
4.2.4 Member Data Documentation
4.2.4.1 double Atom::atomic_weight [protected]
Holds the atomic weight of the atom.
4.2.4.2 int Atom::oxidation_state [protected]
Holds the oxidation state of the atom.
4.2.4.3 int Atom::protons [protected]
Holds the number of protons in the atom.
4.2.4.4 int Atom::neutrons [protected]
Holds the number of neutrons in the atom.
4.2.4.5 int Atom::electrons [protected]
Holds the number of electrons in the atom.
4.2.4.6 int Atom::valence_e [protected]
Holds the number of valence electrons in the atom.
4.2.4.7 std::string Atom::Name [private]
Holds the name of the atom.
```

```
4.2.4.8 std::string Atom::Symbol [private]
Holds the atomic symbol for the atom.

4.2.4.9 std::string Atom::Category [private]
Holds the category of the atom (e.g., Alkali Metal)

4.2.4.10 std::string Atom::NaturalState [private]
Holds the natural state of the atom (e.g., Gas)

4.2.4.11 int Atom::atomic_number [private]
```

Holds the atomic number of the atom.

The documentation for this class was generated from the following file:

• eel.h

4.3 BACKTRACK_DATA Struct Reference

Data structure for the implementation of Backtracking Linesearch.

```
#include <lark.h>
```

Public Attributes

• double alpha = 1e-4

Scaling parameter for determination of search step size.

• double rho = 0.1

Scaling parameter for to change step size by.

• double lambdaMin =DBL_EPSILON

Smallest allowable step length.

double normFkp1

New residual norm of the Newton step.

• bool constRho = false

True = use a constant value for rho.

• Matrix < double > Fk

Old residual vector of the Newton step.

Matrix< double > xk

Old solution vector of the Newton step.

4.3.1 Detailed Description

Data structure for the implementation of Backtracking Linesearch.

C-style object used in conjunction with the Backtracking Linesearch algorithm to smooth out convergence of Netwon based iterative methods for non-linear systems of equations. The actual algorithm has been separated from the interior of the Newton method so that it can be included in any future Newton based iterative methods being developed.

4.3.2 Member Data Documentation

4.3.2.1 double BACKTRACK_DATA::alpha = 1e-4

Scaling parameter for determination of search step size.

4.3.2.2 double BACKTRACK_DATA::rho = 0.1

Scaling parameter for to change step size by.

4.3.2.3 double BACKTRACK_DATA::lambdaMin = DBL_EPSILON

Smallest allowable step length.

4.3.2.4 double BACKTRACK_DATA::normFkp1

New residual norm of the Newton step.

4.3.2.5 bool BACKTRACK_DATA::constRho = false

True = use a constant value for rho.

4.3.2.6 Matrix < double > BACKTRACK_DATA::Fk

Old residual vector of the Newton step.

4.3.2.7 Matrix < double > BACKTRACK_DATA::xk

Old solution vector of the Newton step.

The documentation for this struct was generated from the following file:

· lark.h

4.4 BiCGSTAB_DATA Struct Reference

Data structure for the implementation of the BiCGSTAB algorithm for non-symmetric linear systems.

#include <lark.h>

Public Attributes

• int maxit = 0

Maximum allowable iterations - default = min(2*vector_size,1000)

• int iter = 0

Actual number of iterations.

bool breakdown

Boolean to determine if the method broke down.

• double alpha

Step size parameter for next solution.

• double beta

Step size parameter for search direction.

· double rho

Scaling parameter for alpha and beta.

• double rho_old

Previous scaling parameter for alpha and beta.

· double omega

Scaling parameter and additional step length.

· double omega_old

Previous scaling parameter and step length.

double tol_rel = 1e-6

Relative tolerance for convergence - default = 1e-6.

• double tol abs = 1e-6

Absolution tolerance for convergence - default = 1e-6.

• double res

Absolute residual norm.

double relres

Relative residual norm.

· double relres_base

Initial residual norm.

double bestres

Best found residual norm.

• bool Output = true

True = print messages to console.

Matrix< double > x

Current solution to the linear system.

• Matrix< double > bestx

Best found solution to the linear system.

• Matrix< double > r

Residual vector for the linear system.

• Matrix< double > r0

Initial residual vector.

Matrix< double > v

Search direction for p.

• Matrix < double > p

Search direction for updating.

 $\bullet \ \, \text{Matrix}{<} \, \text{double} > \mathbf{y}$

Preconditioned search direction.

• Matrix < double > s

Residual updating vector.

Matrix< double > z

Preconditioned residual updating vector.

Matrix< double > t

Search direction for resdidual updates.

4.4.1 Detailed Description

Data structure for the implementation of the BiCGSTAB algorithm for non-symmetric linear systems.

C-style object used in conjunction with the Bi-Conjugate Gradient STABalized (BiCGSTAB) algorithm to solve a linear system of equations. This algorithm is generally more efficient than any GMRES or GCR variant, but may not always reduce the residual at each step. However, if used with preconditioning, then this algorithm is very efficient, especially when used for solving grid-based linear systems.

4.4.2 Member Data Documentation

4.4.2.1 int BiCGSTAB_DATA::maxit = 0

Maximum allowable iterations - default = min(2*vector_size,1000)

4.4.2.2 int BiCGSTAB_DATA::iter = 0

Actual number of iterations.

4.4.2.3 bool BiCGSTAB_DATA::breakdown

Boolean to determine if the method broke down.

4.4.2.4 double BiCGSTAB_DATA::alpha

Step size parameter for next solution.

4.4.2.5 double BiCGSTAB_DATA::beta

Step size parameter for search direction.

4.4.2.6 double BiCGSTAB_DATA::rho

Scaling parameter for alpha and beta.

4.4.2.7 double BiCGSTAB_DATA::rho_old

Previous scaling parameter for alpha and beta.

4.4.2.8 double BiCGSTAB_DATA::omega

Scaling parameter and additional step length.

4.4.2.9 double BiCGSTAB_DATA::omega_old

Previous scaling parameter and step length.

4.4.2.10 double BiCGSTAB_DATA::tol_rel = 1e-6

Relative tolerance for convergence - default = 1e-6.

4.4.2.11 double BiCGSTAB_DATA::tol_abs = 1e-6

Absolution tolerance for convergence - default = 1e-6.

4.4.2.12 double BiCGSTAB_DATA::res

Absolute residual norm.

4.4.2.13 double BiCGSTAB_DATA::relres Relative residual norm. 4.4.2.14 double BiCGSTAB_DATA::relres_base Initial residual norm. 4.4.2.15 double BiCGSTAB_DATA::bestres Best found residual norm. 4.4.2.16 bool BiCGSTAB_DATA::Output = true True = print messages to console. 4.4.2.17 Matrix < double > BiCGSTAB_DATA::x Current solution to the linear system. 4.4.2.18 Matrix < double > BiCGSTAB_DATA::bestx Best found solution to the linear system. 4.4.2.19 Matrix < double > BiCGSTAB_DATA::r Residual vector for the linear system. 4.4.2.20 Matrix < double > BiCGSTAB_DATA::r0 Initial residual vector. 4.4.2.21 Matrix < double > BiCGSTAB_DATA::v Search direction for p. 4.4.2.22 Matrix < double > BiCGSTAB_DATA::p Search direction for updating. 4.4.2.23 Matrix < double > BiCGSTAB_DATA::y Preconditioned search direction. 4.4.2.24 Matrix < double > BiCGSTAB_DATA::s

Residual updating vector.

4.4.2.25 Matrix < double > BiCGSTAB_DATA::z

Preconditioned residual updating vector.

4.4.2.26 Matrix < double > BiCGSTAB_DATA::t

Search direction for resdidual updates.

The documentation for this struct was generated from the following file:

· lark.h

4.5 CGS DATA Struct Reference

Data structure for the implementation of the CGS algorithm for non-symmetric linear systems.

```
#include <lark.h>
```

Public Attributes

• int maxit = 0

Maximum allowable iterations - default = min(2*vector_size,1000)

• int iter = 0

Actual number of iterations.

bool breakdown

Boolean to determine if the method broke down.

· double alpha

Step size parameter for next solution.

• double beta

Step size parameter for search direction.

• double rho

Scaling parameter for alpha and beta.

· double sigma

Scaling parameter and additional step length.

• double tol_rel = 1e-6

Relative tolerance for convergence - default = 1e-6.

• double tol_abs = 1e-6

Absolution tolerance for convergence - default = 1e-6.

• double res

Absolute residual norm.

• double relres

Relative residual norm.

• double relres_base

Initial residual norm.

double bestres

Best found residual norm.

• bool Output = true

True = print messages to console.

Matrix< double > x

Current solution to the linear system.

• Matrix< double > bestx

Best found solution to the linear system.

Matrix< double > r

Residual vector for the linear system.

Matrix < double > r0

Initial residual vector.

Matrix< double > u

Search direction for v.

Matrix< double > w

Updates sigma and u.

Matrix< double > v

Search direction for x.

Matrix< double > p

Preconditioning result for w, z, and matvec for Ax.

• Matrix< double > c

Holds the matvec result between A and p.

Matrix< double > z

Full search direction for x.

4.5.1 Detailed Description

Data structure for the implementation of the CGS algorithm for non-symmetric linear systems.

C-style object to be used in conjunction with the Conjugate Gradient Squared (CGS) algorithm to solve linear systems of equations. This algorithm is slightly less computational work than BiCGSTAB, but is much less stable. As a result, I do not recommend using this algorithm unless you also use some form of preconditioning.

4.5.2 Member Data Documentation

4.5.2.1 int CGS_DATA::maxit = 0

Maximum allowable iterations - default = min(2*vector_size,1000)

4.5.2.2 int CGS_DATA::iter = 0

Actual number of iterations.

4.5.2.3 bool CGS_DATA::breakdown

Boolean to determine if the method broke down.

4.5.2.4 double CGS_DATA::alpha

Step size parameter for next solution.

4.5.2.5 double CGS_DATA::beta

Step size parameter for search direction.

4.5.2.6 double CGS_DATA::rho

Scaling parameter for alpha and beta.

4.5.2.7 double CGS_DATA::sigma

Scaling parameter and additional step length.

4.5.2.8 double CGS_DATA::tol_rel = 1e-6

Relative tolerance for convergence - default = 1e-6.

4.5.2.9 double CGS_DATA::tol_abs = 1e-6

Absolution tolerance for convergence - default = 1e-6.

4.5.2.10 double CGS_DATA::res

Absolute residual norm.

4.5.2.11 double CGS_DATA::relres

Relative residual norm.

4.5.2.12 double CGS_DATA::relres_base

Initial residual norm.

4.5.2.13 double CGS_DATA::bestres

Best found residual norm.

4.5.2.14 bool CGS_DATA::Output = true

True = print messages to console.

4.5.2.15 Matrix < double > CGS_DATA::x

Current solution to the linear system.

4.5.2.16 Matrix < double > CGS_DATA::bestx

Best found solution to the linear system.

4.5.2.17 Matrix < double > CGS_DATA::r

Residual vector for the linear system.

4.5.2.18 Matrix < double > CGS_DATA::r0

Initial residual vector.

4.5.2.19 Matrix < double > CGS_DATA::u

Search direction for v.

4.5.2.20 Matrix < double > CGS_DATA::w

Updates sigma and u.

4.5.2.21 Matrix < double > CGS_DATA::v

Search direction for x.

4.5.2.22 Matrix<double> CGS_DATA::p

Preconditioning result for w, z, and matvec for Ax.

4.5.2.23 Matrix < double > CGS_DATA::c

Holds the matvec result between A and p.

4.5.2.24 Matrix < double > CGS_DATA::z

Full search direction for x.

The documentation for this struct was generated from the following file:

· lark.h

4.6 Document Class Reference

#include <yaml_wrapper.h>

Inheritance diagram for Document:

Public Member Functions

- Document ()
- ∼Document ()
- Document (const Document &doc)
- Document (std::string name)
- Document (const KeyValueMap &map)
- Document (std::string name, const KeyValueMap &map)
- Document (std::string key, const Header &head)
- Document & operator= (const Document &doc)
- ValueTypePair & operator[] (const std::string key)

 ValueTypePair operator[] (const std::string key) const Header & operator() (const std::string key) · Header operator() (const std::string key) const std::map< std::string, Header > & getHeadMap () KeyValueMap & getDataMap () Header & getHeader (std::string key) • std::map< std::string, Header > ::const_iterator end () const std::map< std::string, Header > ::iterator end () std::map< std::string, Header > ::const_iterator begin () const std::map< std::string, Header > ::iterator begin () • void clear () · void resetKeys () • void changeKey (std::string oldKey, std::string newKey) • void revalidateAllKeys () void addPair (std::string key, std::string val) • void addPair (std::string key, std::string val, int t) void setName (std::string name) void setAlias (std::string alias) void setNameAliasPair (std::string n, std::string a, int s) void setState (int state) void DisplayContents () void addHeadKey (std::string key) void copyAnchor2Alias (std::string alias, Header &ref) • int size () • std::string getName () • std::string getAlias () • int getState () · bool isAlias () bool isAnchor () · Header & getAnchoredHeader (std::string alias) • Header & getHeadFromSubAlias (std::string alias) **Private Attributes** std::map< std::string, Header > Head Map **Additional Inherited Members** 4.6.1 Constructor & Destructor Documentation 4.6.1.1 Document::Document () 4.6.1.2 Document:: ∼ Document ()

Generated on Thu Sep 24 2015 13:36:52 for Ecosystem by Doxygen

4.6.1.3 Document::Document (const Document & doc)

4.6.1.5 Document::Document (const KeyValueMap & map)

4.6.1.4 Document::Document (std::string name)

```
4.6.1.6 Document::Document ( std::string name, const KeyValueMap & map )
4.6.1.7 Document::Document ( std::string key, const Header & head )
4.6.2 Member Function Documentation
4.6.2.1 Document& Document::operator= ( const Document & doc )
4.6.2.2 ValueTypePair& Document::operator[] ( const std::string key )
4.6.2.3 ValueTypePair Document::operator[] ( const std::string key ) const
4.6.2.4 Header& Document::operator() ( const std::string key )
4.6.2.5 Header Document::operator() ( const std::string key ) const
4.6.2.6 std::map<std::string, Header>& Document::getHeadMap ( )
4.6.2.7 KeyValueMap& Document::getDataMap ( )
4.6.2.8 Header& Document::getHeader ( std::string key )
4.6.2.9 std::map<std::string, Header>::const_iterator Document::end ( ) const
4.6.2.10 std::map<std::string, Header>::iterator Document::end ( )
4.6.2.11 std::map<std::string, Header>::const_iterator Document::begin ( ) const
4.6.2.12 std::map<std::string, Header>::iterator Document::begin ( )
4.6.2.13 void Document::clear ( )
4.6.2.14 void Document::resetKeys ( )
4.6.2.15 void Document::changeKey ( std::string oldKey, std::string newKey )
4.6.2.16 void Document::revalidateAllKeys ( )
4.6.2.17 void Document::addPair ( std::string key, std::string val )
4.6.2.18 void Document::addPair ( std::string key, std::string val, int t )
4.6.2.19 void Document::setName ( std::string name )
4.6.2.20 void Document::setAlias ( std::string alias )
4.6.2.21 void Document::setNameAliasPair ( std::string n, std::string a, int s )
4.6.2.22 void Document::setState ( int state )
4.6.2.23 void Document::DisplayContents ( )
4.6.2.24 void Document::addHeadKey ( std::string key )
4.6.2.25 void Document::copyAnchor2Alias ( std::string alias, Header & ref )
```

```
4.6.2.26 int Document::size ( )
4.6.2.27 std::string Document::getName ( )
4.6.2.28 std::string Document::getAlias ( )
4.6.2.29 int Document::getState ( )
4.6.2.30 bool Document::isAlias ( )
4.6.2.31 bool Document::isAnchor()
4.6.2.32 Header & Document::getAnchoredHeader ( std::string alias )
4.6.2.33 Header & Document::getHeadFromSubAlias ( std::string alias )
4.6.3 Member Data Documentation
4.6.3.1 std::map<std::string, Header> Document::Head_Map [private]
The documentation for this class was generated from the following file:
    • yaml_wrapper.h
       DOGFISH_DATA Struct Reference
4.7
Primary data structure for running the DOGFISH application.
#include <dogfish.h>
Public Attributes
    • unsigned long int total_steps = 0
          Total number of solver steps taken.
    • double time old = 0.0
          Old value of time (hrs)
    • double time = 0.0
          Current value of time (hrs)
    • bool Print2File = true
          True = results to .txt; False = no printing.
    • bool Print2Console = true
          True = results to console; False = no printing.
    • bool DirichletBC = false
          False = uses film mass transfer for BC, True = Dirichlet BC.
    • bool NonLinear = false
          False = Solve directly, True = Solve iteratively.
    • double t_counter = 0.0
          Counter for the time output.
    • double t_print
          Print output at every t_print time (hrs)
```

Number of species to track.

· int NumComp

· double end_time

Units: hours.

· double total_sorption_old

Per mass or volume of single fiber.

· double total_sorption

Per mass or volume of single fiber.

· double fiber_length

Units: um.

· double fiber_diameter

Units: um.

FILE * OutputFile

Output file pointer to the output file for postprocesses and results.

double(* eval_R)(int i, int I, const void *data)

Function pointer to evaluate retardation coefficient.

• double(* eval_DI)(int i, int I, const void *data)

Function pointer to evaluate intraparticle diffusivity.

double(* eval_kf)(int i, const void *data)

Function pointer to evaluate film mass transfer coefficient.

• double(* eval_qs)(int i, const void *data)

Function pointer to evaluate fiber surface concentration.

const void * user_data

Data structure for users info to calculate all parameters.

std::vector< FINCH_DATA > finch_dat

Data structure for FINCH_DATA objects.

• std::vector< DOGFISH_PARAM > param_dat

Data structure for DOGFISH_PARAM objects.

4.7.1 Detailed Description

Primary data structure for running the DOGFISH application.

C-style object to hold information for the adsorption simulations. Contains function pointers and other data structures. This information is passed around to other functions used to simulate the fiber diffusion physics.

4.7.2 Member Data Documentation

4.7.2.1 unsigned long int DOGFISH_DATA::total_steps = 0

Total number of solver steps taken.

4.7.2.2 double DOGFISH_DATA::time_old = 0.0

Old value of time (hrs)

4.7.2.3 double DOGFISH_DATA::time = 0.0

Current value of time (hrs)

4.7.2.4 bool DOGFISH_DATA::Print2File = true

True = results to .txt; False = no printing.

4.7.2.5 bool DOGFISH_DATA::Print2Console = true

True = results to console; False = no printing.

4.7.2.6 bool DOGFISH_DATA::DirichletBC = false

False = uses film mass transfer for BC, True = Dirichlet BC.

4.7.2.7 bool DOGFISH_DATA::NonLinear = false

False = Solve directly, True = Solve iteratively.

4.7.2.8 double DOGFISH_DATA::t_counter = 0.0

Counter for the time output.

4.7.2.9 double DOGFISH_DATA::t_print

Print output at every t_print time (hrs)

4.7.2.10 int DOGFISH_DATA::NumComp

Number of species to track.

4.7.2.11 double DOGFISH_DATA::end_time

Units: hours.

4.7.2.12 double DOGFISH_DATA::total_sorption_old

Per mass or volume of single fiber.

4.7.2.13 double DOGFISH_DATA::total_sorption

Per mass or volume of single fiber.

4.7.2.14 double DOGFISH_DATA::fiber_length

Units: um.

4.7.2.15 double DOGFISH_DATA::fiber_diameter

Units: um.

4.7.2.16 FILE* DOGFISH_DATA::OutputFile

Output file pointer to the output file for postprocesses and results.

4.7.2.17 double(* DOGFISH_DATA::eval_R)(int i, int I, const void *data)

Function pointer to evaluate retardation coefficient.

4.7.2.18 double(* DOGFISH_DATA::eval_DI)(int i, int I, const void *data)

Function pointer to evaluate intraparticle diffusivity.

4.7.2.19 double(* DOGFISH_DATA::eval_kf)(int i, const void *data)

Function pointer to evaluate film mass transfer coefficient.

4.7.2.20 double(* DOGFISH_DATA::eval_qs)(int i, const void *data)

Function pointer to evaluate fiber surface concentration.

4.7.2.21 const void* DOGFISH_DATA::user_data

Data structure for users info to calculate all parameters.

4.7.2.22 std::vector<FINCH_DATA> DOGFISH_DATA::finch_dat

Data structure for FINCH_DATA objects.

4.7.2.23 std::vector < DOGFISH_PARAM > DOGFISH_DATA::param_dat

Data structure for DOGFISH_PARAM objects.

The documentation for this struct was generated from the following file:

· dogfish.h

4.8 DOGFISH PARAM Struct Reference

Data structure for species-specific parameters.

#include <dogfish.h>

Public Attributes

• double intraparticle_diffusion

Units: um\2/hr.

· double film_transfer_coeff

Units: um/hr.

· double surface_concentration

Units: mg/g.

double initial_sorption

Units: mg/g.

· double sorbed molefraction

Molefraction of sorbed species.

· Molecule species

Adsorbed species Molecule Object.

4.8.1 Detailed Description

Data structure for species-specific parameters.

C-style object to hold information on all adsorbing species. Parameters are given descriptive names to indicate what each is for.

4.8.2 Member Data Documentation

4.8.2.1 double DOGFISH_PARAM::intraparticle_diffusion

Units: um²/hr.

4.8.2.2 double DOGFISH_PARAM::film_transfer_coeff

Units: um/hr.

4.8.2.3 double DOGFISH_PARAM::surface_concentration

Units: mg/g.

4.8.2.4 double DOGFISH_PARAM::initial_sorption

Units: mg/g.

4.8.2.5 double DOGFISH_PARAM::sorbed_molefraction

Molefraction of sorbed species.

4.8.2.6 Molecule DOGFISH_PARAM::species

Adsorbed species Molecule Object.

The documentation for this struct was generated from the following file:

· dogfish.h

4.9 FINCH DATA Struct Reference

Data structure for the FINCH object.

```
#include <finch.h>
```

Public Attributes

• int **d** = 0

Dimension of the problem: 0 = cartesian, 1 = cylindrical, 2 = spherical.

double dt = 0.0125

Time step.

• double dt_old = 0.0125

Previous time step.

```
• double T = 1.0
      Total time.

    double dz = 0.1

      Space step.
• double L = 1.0
      Total space.
• double s = 1.0
      Char quantity (spherical = 1, cylindrical = length, cartesian = area)
• double t = 0.0
      Current Time.
• double t old = 0.0
      Previous Time.
• double uT = 0.0
      Total amount of conserved quantity in domain.
• double uT_old = 0.0
      Old Total amount of conserved quantity.
• double uAvg = 0.0
      Average amount of conserved quantity in domain.
• double uAvg_old = 0.0
      Old Average amount of conserved quantity.
• double uIC = 0.0
      Initial condition of Conserved Quantity (if constant)

    double vIC = 1.0

      Initial condition of Velocity (if constant)
• double DIC = 1.0
      Initial condition of Dispersion (if constant)
• double kIC = 1.0
      Initial condition of Reaction (if constant)
• double RIC = 1.0
      Initial condition of the Time Coefficient (if constant)
• double <u>uo</u> = 1.0
      Boundary Value of Conserved Quantity.
• double vo = 1.0
      Boundary Value of Velocity.
• double Do = 1.0
      Boundary Value of Dispersion.
• double ko = 1.0
      Boundary Value of Reaction.
• double Ro = 1.0
      Boundary Value of Time Coefficient.

    double kfn = 1.0

      Film mass transfer coefficient Old.
• double kfnp1 = 1.0
      Film mass transfer coefficient New.
· double lambda I
      Boundary Coefficient for Implicit Neumann (Calculated at Runtime)

    double lambda_E

      Boundary Coefficient for Explicit Neumann (Calculated at Runtime)
• int LN = 10
      Number of nodes.
```

• bool CN = true

True if Crank-Nicholson, false if Implicit, never use explicit. bool Update = false Flag to check if the system needs updating. • bool Dirichlet = false Flag to indicate use of Dirichlet or Neumann starting boundary. • bool CheckMass = false Flag to indicate whether or not mass is to be checked. • bool ExplicitFlux = false Flag to indicate whether or not to use fully explicit flux limiters. • bool Iterative = true Flag to indicate whether to solve directly, or iteratively. • bool SteadyState = false Flag to determine whether or not to solve the steady-state problem. • bool NormTrack = true Flag to determine whether or not to track the norms during simulation. • double beta = 0.5 Scheme type indicator: 0.5=CN & 1.0=Implicit; all else NULL. • double tol_rel = 1e-6 Relative Tolerance for Convergence. • double tol abs = 1e-6 Absolute Tolerance for Convergence. • int max_iter = 20 Maximum number of iterations allowed. int total_iter = 0 Total number of iterations made. • int nl_method = FINCH_Picard Non-linear solution method - default = FINCH_Picard. std::vector< double > CL_I Left side, implicit coefficients (Calculated at Runtime) • std::vector< double > CL E Left side, explicit coefficients (Calculated at Runtime) std::vector< double > CC_I Centered, implicit coefficients (Calculated at Runtime) std::vector< double > CC_E Centered, explicit coefficients (Calculated at Runtime) std::vector< double > CR_I Right side, implicit coefficients (Calculated at Runtime) std::vector< double > CR_E Right side, explicit coefficients (Calculated at Runtime) std::vector< double > fL | Left side, implicit fluxes (Calculated at Runtime) std::vector< double > fL_E Left side, explicit fluxes (Calculated at Runtime) std::vector< double > fC | I Centered, implicit fluxes (Calculated at Runtime) std::vector< double > fC_E Centered, explicit fluxes (Calculated at Runtime)

Right side, implicit fluxes (Calculated at Runtime)

Right side, explicit fluxes (Calculated at Runtime)

std::vector< double > fR I

std::vector< double > fR_E

```
• std::vector< double > OI
     Implicit upper diagonal matrix elements (Calculated at Runtime)

    std::vector< double > OE

     Explicit upper diagonal matrix elements (Calculated at Runtime)

    std::vector< double > NI

      Implicit diagonal matrix elements (Calculated at Runtime)
• std::vector< double > NE
     Explicit diagonal matrix elements (Calculated at Runtime)

    std::vector< double > MI

     Implicit lower diagonal matrix elements (Calculated at Runtime)
• std::vector< double > ME
     Explicit lower diagonal matrix elements (Calculated at Runtime)

 std::vector< double > uz | |

• std::vector< double > uz_lm1_l
• std::vector< double > uz_lp1_l
     Implicit local slopes (Calculated at Runtime)
• std::vector< double > uz_l_E
• std::vector< double > uz lm1 E
• std::vector< double > uz_lp1_E
      Explicit local slopes (Calculated at Runtime)

    Matrix < double > unm1

     Conserved Quantity Older.
• Matrix< double > un
     Conserved Quantity Old.

    Matrix< double > unp1

     Conserved Quantity New.
• Matrix< double > u_star
      Conserved Quantity Projected New.
• Matrix< double > ubest
     Best found solution if solving iteratively.

    Matrix< double > vn

      Velocity Old.

    Matrix< double > vnp1

      Velocity New.

    Matrix< double > Dn

     Dispersion Old.
• Matrix< double > Dnp1
     Dispersion New.
• Matrix< double > kn
      Reaction Old.

    Matrix< double > knp1

     Reaction New.
• Matrix< double > Sn
     Forcing Function Old.
• Matrix< double > Snp1
     Forcing Function New.
• Matrix< double > Rn
      Time Coeff Old.
• Matrix< double > Rnp1
      Time Coeff New.
```

Matrix< double > Fn

Flux Limiter Old.

Matrix < double > Fnp1

Flux Limiter New.

• Matrix< double > gl

Implicit Side Boundary Conditions.

Matrix < double > qE

Explicit Side Boundary Conditions.

• Matrix< double > res

Current residual.

Matrix < double > pres

Current search direction.

int(* callroutine)(const void *user_data)

Function pointer to executioner (DEFAULT = default_execution)

• int(* setic)(const void *user_data)

Function pointer to initial conditions (DEFAULT = default_ic)

int(* settime)(const void *user_data)

Function pointer to set time step (DEFAULT = default_timestep)

• int(* setpreprocess)(const void *user_data)

Function pointer to preprocesses (DEFAULT = default_preprocess)

int(* solve)(const void *user_data)

Function pointer to the solver (DEFAULT = default_solve)

• int(* setparams)(const void *user_data)

Function pointer to set parameters (DEFAULT = default_params)

• int(* discretize)(const void *user_data)

Function pointer to discretization (DEFAULT = ospre discretization)

- int(* setbcs)(const void *user_data)
- int(* evalres)(const Matrix< double > &x, Matrix< double > &res, const void *user data)

Function pointer to the residual function (DEFAULT = default_res)

• int(* evalprecon)(const Matrix< double > &b, Matrix< double > &p, const void *user_data)

Function pointer to the preconditioning function (DEFAULT = default_precon)

int(* setpostprocess)(const void *user_data)

Function pointer to the postprocesses (DEFAULT = default_postprocess)

int(* resettime)(const void *user_data)

Function pointer to reset time (DEFAULT = default_reset)

• PICARD_DATA picard_dat

Data structure for PICARD method (no need to use this)

· PJFNK DATA pjfnk dat

Data structure for PJFNK method (more rigours method)

const void * param_data

User's data structure used to evaluate the parameter function (Must override if setparams is overriden)

4.9.1 Detailed Description

Data structure for the FINCH object.

C-style object that holds data, functions, and other structures necessary to discretize and solve a FINCH problem. All of this information must be overriden or initialized prior to running a FINCH simulation. Many, many default functions are provided to make it easier to incorporate FINCH into other problems. The main function to override will be the setparams function. This will be a function that the user provides to tell the FINCH simulation how the parameters of the problem vary in time and space and whether or not they are coupled the the variable u. All functions are overridable and several can be skipped entirely, or called directly at different times in the execution of a particular routine. This make FINCH extremely flexible to the user.

Note

All parameters and dimensions do not carry any units with them. The user is required to keep track of all their own units in their particular problem and ensure that units will cancel and be consistent in their own physical model.

4.9.2 Member Data Documentation

4.9.2.1 int FINCH_DATA::d = 0

Dimension of the problem: 0 = cartesian, 1 = cylindrical, 2 = spherical.

4.9.2.2 double FINCH_DATA::dt = 0.0125

Time step.

4.9.2.3 double FINCH_DATA::dt_old = 0.0125

Previous time step.

4.9.2.4 double FINCH_DATA::T = 1.0

Total time.

4.9.2.5 double FINCH_DATA::dz = 0.1

Space step.

4.9.2.6 double FINCH_DATA::L = 1.0

Total space.

4.9.2.7 double FINCH_DATA::s = 1.0

Char quantity (spherical = 1, cylindrical = length, cartesian = area)

4.9.2.8 double FINCH_DATA::t = 0.0

Current Time.

4.9.2.9 double FINCH_DATA::t_old = 0.0

Previous Time.

4.9.2.10 double FINCH_DATA::uT = 0.0

Total amount of conserved quantity in domain.

4.9.2.11 double FINCH_DATA::uT_old = 0.0

Old Total amount of conserved quantity.

4.9.2.12 double FINCH_DATA::uAvg = 0.0

Average amount of conserved quantity in domain.

4.9.2.13 double FINCH_DATA::uAvg_old = 0.0

Old Average amount of conserved quantity.

4.9.2.14 double FINCH_DATA::uIC = 0.0

Initial condition of Conserved Quantity (if constant)

4.9.2.15 double FINCH_DATA::vIC = 1.0

Initial condition of Velocity (if constant)

4.9.2.16 double FINCH_DATA::DIC = 1.0

Initial condition of Dispersion (if constant)

4.9.2.17 double FINCH_DATA::kIC = 1.0

Initial condition of Reaction (if constant)

4.9.2.18 double FINCH_DATA::RIC = 1.0

Initial condition of the Time Coefficient (if constant)

4.9.2.19 double FINCH_DATA::uo = 1.0

Boundary Value of Conserved Quantity.

4.9.2.20 double FINCH_DATA::vo = 1.0

Boundary Value of Velocity.

4.9.2.21 double FINCH_DATA::Do = 1.0

Boundary Value of Dispersion.

4.9.2.22 double FINCH_DATA::ko = 1.0

Boundary Value of Reaction.

4.9.2.23 double FINCH_DATA::Ro = 1.0

Boundary Value of Time Coefficient.

4.9.2.24 double FINCH_DATA::kfn = 1.0

Film mass transfer coefficient Old.

4.9.2.25 double FINCH_DATA::kfnp1 = 1.0

Film mass transfer coefficient New.

4.9.2.26 double FINCH_DATA::lambda_I

Boundary Coefficient for Implicit Neumann (Calculated at Runtime)

4.9.2.27 double FINCH_DATA::lambda_E

Boundary Coefficient for Explicit Neumann (Calculated at Runtime)

4.9.2.28 int FINCH_DATA::LN = 10

Number of nodes.

4.9.2.29 bool FINCH_DATA::CN = true

True if Crank-Nicholson, false if Implicit, never use explicit.

4.9.2.30 bool FINCH_DATA::Update = false

Flag to check if the system needs updating.

4.9.2.31 bool FINCH_DATA::Dirichlet = false

Flag to indicate use of Dirichlet or Neumann starting boundary.

4.9.2.32 bool FINCH_DATA::CheckMass = false

Flag to indicate whether or not mass is to be checked.

4.9.2.33 bool FINCH_DATA::ExplicitFlux = false

Flag to indicate whether or not to use fully explicit flux limiters.

4.9.2.34 bool FINCH_DATA::Iterative = true

Flag to indicate whether to solve directly, or iteratively.

4.9.2.35 bool FINCH_DATA::SteadyState = false

Flag to determine whether or not to solve the steady-state problem.

4.9.2.36 bool FINCH_DATA::NormTrack = true

Flag to determine whether or not to track the norms during simulation.

4.9.2.37 double FINCH_DATA::beta = 0.5

Scheme type indicator: 0.5=CN & 1.0=Implicit; all else NULL.

4.9.2.38 double FINCH_DATA::tol_rel = 1e-6

Relative Tolerance for Convergence.

4.9.2.39 double FINCH_DATA::tol_abs = 1e-6

Absolute Tolerance for Convergence.

4.9.2.40 int FINCH_DATA::max_iter = 20

Maximum number of iterations allowed.

4.9.2.41 int FINCH_DATA::total_iter = 0

Total number of iterations made.

4.9.2.42 int FINCH_DATA::nl_method = FINCH_Picard

Non-linear solution method - default = FINCH_Picard.

 $4.9.2.43 \quad std::vector < double > FINCH_DATA::CL_I$

Left side, implicit coefficients (Calculated at Runtime)

4.9.2.44 std::vector<double> FINCH_DATA::CL_E

Left side, explicit coefficients (Calculated at Runtime)

4.9.2.45 std::vector<double> FINCH_DATA::CC_I

Centered, implicit coefficients (Calculated at Runtime)

4.9.2.46 std::vector<double> FINCH_DATA::CC_E

Centered, explicit coefficients (Calculated at Runtime)

4.9.2.47 std::vector<double> FINCH_DATA::CR_I

Right side, implicit coefficients (Calculated at Runtime)

 $4.9.2.48 \quad std::vector < double > FINCH_DATA::CR_E$

Right side, explicit coefficients (Calculated at Runtime)

4.9.2.49 std::vector<double> FINCH_DATA::fL_I

Left side, implicit fluxes (Calculated at Runtime)

4.9.2.50 std::vector<double> FINCH_DATA::fL_E

Left side, explicit fluxes (Calculated at Runtime)

4.9.2.51 std::vector<double> FINCH_DATA::fC_I

Centered, implicit fluxes (Calculated at Runtime)

4.9.2.52 std::vector<double> FINCH_DATA::fC_E

Centered, explicit fluxes (Calculated at Runtime)

4.9.2.53 std::vector<double> FINCH_DATA::fR_I

Right side, implicit fluxes (Calculated at Runtime)

4.9.2.54 std::vector<double> FINCH_DATA::fR_E

Right side, explicit fluxes (Calculated at Runtime)

4.9.2.55 std::vector<double> FINCH_DATA::OI

Implicit upper diagonal matrix elements (Calculated at Runtime)

4.9.2.56 std::vector<double> FINCH_DATA::OE

Explicit upper diagonal matrix elements (Calculated at Runtime)

4.9.2.57 std::vector<double> FINCH_DATA::NI

Implicit diagonal matrix elements (Calculated at Runtime)

4.9.2.58 std::vector<double> FINCH_DATA::NE

Explicit diagonal matrix elements (Calculated at Runtime)

 $4.9.2.59 \quad std::vector{<}double{>} FINCH_DATA::MI$

Implicit lower diagonal matrix elements (Calculated at Runtime)

4.9.2.60 std::vector<double> FINCH_DATA::ME

Explicit lower diagonal matrix elements (Calculated at Runtime)

4.9.2.61 std::vector<double> FINCH_DATA::uz_l_l

4.9.2.62 std::vector<double> FINCH_DATA::uz_lm1_l

4.9.2.63 std::vector<double> FINCH_DATA::uz_lp1_l

Implicit local slopes (Calculated at Runtime)

4.9.2.64 std::vector<double> FINCH_DATA::uz_I_E

4.9.2.65 std::vector<double> FINCH_DATA::uz_lm1_E

4.9.2.66 std::vector<double> FINCH_DATA::uz_lp1_E

Explicit local slopes (Calculated at Runtime)

4.9.2.67 Matrix < double > FINCH_DATA::unm1

Conserved Quantity Older.

4.9.2.68 Matrix < double > FINCH_DATA::un

Conserved Quantity Old.

4.9.2.69 Matrix < double > FINCH_DATA::unp1

Conserved Quantity New.

4.9.2.70 Matrix < double > FINCH_DATA::u_star

Conserved Quantity Projected New.

4.9.2.71 Matrix < double > FINCH_DATA::ubest

Best found solution if solving iteratively.

4.9.2.72 Matrix < double > FINCH_DATA::vn

Velocity Old.

 $4.9.2.73 \quad \textbf{Matrix} {<} \textbf{double} {>} \ \textbf{FINCH_DATA} {::} \textbf{vnp1}$

Velocity New.

4.9.2.74 Matrix < double > FINCH_DATA::Dn

Dispersion Old.

4.9.2.75 Matrix < double > FINCH_DATA::Dnp1

Dispersion New.

4.9.2.76 Matrix < double > FINCH_DATA::kn

Reaction Old.

 $4.9.2.77 \quad Matrix\!<\!double\!> FINCH_DATA::knp1$

Reaction New.

4.9.2.78 Matrix < double > FINCH_DATA::Sn

Forcing Function Old.

4.9.2.79 Matrix < double > FINCH_DATA::Snp1

Forcing Function New.

4.9.2.80 Matrix < double > FINCH_DATA::Rn

Time Coeff Old.

 $4.9.2.81 \quad \textbf{Matrix} {<} \textbf{double} {>} \textbf{FINCH_DATA} {::} \textbf{Rnp1}$

Time Coeff New.

4.9.2.82 Matrix < double > FINCH_DATA::Fn

Flux Limiter Old.

4.9.2.83 Matrix < double > FINCH_DATA::Fnp1

Flux Limiter New.

4.9.2.84 Matrix < double > FINCH_DATA::gl

Implicit Side Boundary Conditions.

 $4.9.2.85 \quad Matrix\!<\!double\!> FINCH_DATA::gE$

Explicit Side Boundary Conditions.

4.9.2.86 Matrix < double > FINCH_DATA::res

Current residual.

 $\textbf{4.9.2.87} \quad \textbf{Matrix}{<} \textbf{double}{>} \textbf{FINCH}_\textbf{DATA}{::} \textbf{pres}$

Current search direction.

4.9.2.88 int(* FINCH_DATA::callroutine)(const void *user_data)

Function pointer to executioner (DEFAULT = default_execution)

4.9.2.89 int(* FINCH_DATA::setic)(const void *user_data)

Function pointer to initial conditions (DEFAULT = default_ic)

4.9.2.90 int(* FINCH_DATA::settime)(const void *user_data)

Function pointer to set time step (DEFAULT = default_timestep)

4.9.2.91 int(* FINCH_DATA::setpreprocess)(const void *user_data)

Function pointer to preprocesses (DEFAULT = default_preprocess)

4.9.2.92 int(* FINCH_DATA::solve)(const void *user_data)

Function pointer to the solver (DEFAULT = default_solve)

4.9.2.93 int(* FINCH_DATA::setparams)(const void *user_data)

Function pointer to set parameters (DEFAULT = default_params)

4.9.2.94 int(* FINCH_DATA::discretize)(const void *user_data)

Function pointer to discretization (DEFAULT = ospre_discretization)

4.9.2.95 int(* FINCH_DATA::setbcs)(const void *user_data)

Function pointer to set boundary conditions (DEFAULT = default_bcs)

4.9.2.96 int(* FINCH_DATA::evalres)(const Matrix < double > &x, Matrix < double > &res, const void *user_data)

Function pointer to the residual function (DEFAULT = default_res)

4.9.2.97 int(* FINCH_DATA::evalprecon)(const Matrix < double > &b, Matrix < double > &p, const void *user_data)

Function pointer to the preconditioning function (DEFAULT = default_precon)

4.9.2.98 int(* FINCH_DATA::setpostprocess)(const void *user_data)

Function pointer to the postprocesses (DEFAULT = default_postprocess)

4.9.2.99 int(* FINCH_DATA::resettime)(const void *user_data)

Function pointer to reset time (DEFAULT = default_reset)

4.9.2.100 PICARD_DATA FINCH_DATA::picard_dat

Data structure for PICARD method (no need to use this)

4.9.2.101 PJFNK_DATA FINCH_DATA::pjfnk_dat

Data structure for PJFNK method (more rigours method)

4.9.2.102 const void* FINCH_DATA::param_data

User's data structure used to evaluate the parameter function (Must override if setparams is overriden)

The documentation for this struct was generated from the following file:

· finch.h

4.10 GCR_DATA Struct Reference

Data structure for the implementation of the GCR algorithm for non-symmetric linear systems.

```
#include <lark.h>
```

Public Attributes

• int restart = -1

Restart parameter for outer iterations - default = 50.

• int maxit = 0

Maximum allowable outer iterations.

• int iter_outer = 0

Number of outer iterations taken.

• int iter_inner = 0

Number of inner iterations taken.

• int total_iter = 0

Total number of iterations taken.

• bool breakdown = false

Boolean to determine if a step has failed.

· double alpha

Inner iteration step size.

• double beta

Outer iteration step size.

• double tol_rel = 1e-6

Relative tolerance for convergence - default = 1e-6.

• double tol_abs = 1e-6

Absolute tolerance for convergence - default = 1e-6.

• double res

Absolute residual norm for linear system.

· double relres

Relative residual norm for linear system.

· double relres_base

Initial residual norm of the linear system.

· double bestres

Best found residual norm of the linear system.

• bool Output = true

True = print messages to the console.

Matrix< double > x

Current solution to the linear system.

• Matrix< double > bestx

Best found solution to the linear system.

• Matrix< double > r

Residual Vector.

• Matrix< double > c_temp

Temporary c vector to be updated.

Matrix< double > u_temp

Temporary u vector to be updated.

• std::vector< Matrix< double > > u

Vector span for updating x.

• std::vector< Matrix< double > > c

Vector span for updating r.

• OPTRANS_DATA transpose_dat

Data structure for Operator Transposition.

4.10.1 Detailed Description

Data structure for the implementation of the GCR algorithm for non-symmetric linear systems.

C-style object used in conjunction with the Generalized Conjugate Residual (GCR) algorithm for solving a non-symmetric linear system of equations. When the linear system in question has a positive-definite-symmetric component to it, then this algorithm is equivalent to GMRESRP. However, it is generally less efficient than GMRESRP and can suffer breakdowns.

4.10.2 Member Data Documentation

4.10.2.1 int GCR_DATA::restart = -1

Restart parameter for outer iterations - default = 50.

4.10.2.2 int GCR_DATA::maxit = 0

Maximum allowable outer iterations.

4.10.2.3 int GCR_DATA::iter_outer = 0

Number of outer iterations taken.

4.10.2.4 int GCR_DATA::iter_inner = 0

Number of inner iterations taken.

4.10.2.5 int GCR_DATA::total_iter = 0

Total number of iterations taken.

4.10.2.6 bool GCR_DATA::breakdown = false

Boolean to determine if a step has failed.

4.10.2.7 double GCR_DATA::alpha

Inner iteration step size.

4.10.2.8 double GCR_DATA::beta

Outer iteration step size.

4.10.2.9 double GCR_DATA::tol_rel = 1e-6

Relative tolerance for convergence - default = 1e-6.

4.10.2.10 double GCR_DATA::tol_abs = 1e-6

Absolute tolerance for convergence - default = 1e-6.

4.10.2.11 double GCR_DATA::res

Absolute residual norm for linear system.

4.10.2.12 double GCR_DATA::relres

Relative residual norm for linear system.

4.10.2.13 double GCR_DATA::relres_base

Initial residual norm of the linear system.

4.10.2.14 double GCR_DATA::bestres

Best found residual norm of the linear system.

4.10.2.15 bool GCR_DATA::Output = true

True = print messages to the console.

4.10.2.16 Matrix < double > GCR_DATA::x

Current solution to the linear system.

4.10.2.17 Matrix < double > GCR_DATA::bestx

Best found solution to the linear system.

4.10.2.18 Matrix < double > GCR_DATA::r

Residual Vector.

4.10.2.19 Matrix < double > GCR_DATA::c_temp

Temporary c vector to be updated.

 $4.10.2.20 \quad Matrix{<} double{>} GCR_DATA::u_temp$

Temporary u vector to be updated.

4.10.2.21 $std::vector < Matrix < double > > GCR_DATA::u$

Vector span for updating x.

4.10.2.22 std::vector<Matrix<double>> GCR_DATA::c

Vector span for updating r.

4.10.2.23 OPTRANS_DATA GCR_DATA::transpose_dat

Data structure for Operator Transposition.

The documentation for this struct was generated from the following file:

· lark.h

4.11 GMRESLP_DATA Struct Reference

Data structure for implementation of the Restarted GMRES algorithm with Left Preconditioning.

#include <lark.h>

Public Attributes

• int restart = -1

Restart parameter - default = min(vector_size,50)

• int maxit = 0

Maximum allowable iterations - default = min(vector_size,1000)

• int iter = 0

Number of iterations needed for convergence.

• int steps = 0

Total number of gmres iterations and krylov iterations.

• double tol_rel = 1e-6

Relative tolerance for convergence - default = 1e-6.

• double tol_abs = 1e-6

Absolution tolerance for convergence - default = 1e-6.

double res

Absolution redisual norm of the linear system.

· double relres

Relative residual norm of the linear system.

· double relres base

Initial residual norm of the linear system.

double bestres

Best found residual norm of the linear system.

• bool Output = true

True = print messages to console.

Matrix< double > x

Current solution to the linear system.

• Matrix< double > bestx

Best found solution to the linear system.

Matrix < double > r

Residual vector for the linear system.

ARNOLDI_DATA arnoldi_dat

Data structure for the kyrlov subspace.

4.11.1 Detailed Description

Data structure for implementation of the Restarted GMRES algorithm with Left Preconditioning.

C-style object used in conjunction with Generalized Minimum RESidual Left-Precondtioned (GMRESLP) and Full Orthogonalization Method (FOM) algorithms to iteratively or directly solve a linear system of equations. When using with GMRESLP, you can only check/observe the linear residuals before a restart or after the Arnoldi space is constructed. This is because this object uses Left-side Preconditioning. A faster routine may be GMRESRP, which is able to construct residuals after each Arnoldi iteration.

4.11.2 Member Data Documentation

4.11.2.1 int GMRESLP_DATA::restart = -1

Restart parameter - default = min(vector_size,50)

4.11.2.2 int GMRESLP_DATA::maxit = 0

Maximum allowable iterations - default = min(vector_size,1000)

4.11.2.3 int GMRESLP_DATA::iter = 0

Number of iterations needed for convergence.

4.11.2.4 int GMRESLP_DATA::steps = 0

Total number of gmres iterations and krylov iterations.

4.11.2.5 double GMRESLP_DATA::tol_rel = 1e-6

Relative tolerance for convergence - default = 1e-6.

4.11.2.6 double GMRESLP_DATA::tol_abs = 1e-6

Absolution tolerance for convergence - default = 1e-6.

4.11.2.7 double GMRESLP_DATA::res

Absolution redisual norm of the linear system.

4.11.2.8 double GMRESLP_DATA::relres

Relative residual norm of the linear system.

4.11.2.9 double GMRESLP_DATA::relres_base

Initial residual norm of the linear system.

4.11.2.10 double GMRESLP_DATA::bestres

Best found residual norm of the linear system.

4.11.2.11 bool GMRESLP_DATA::Output = true

True = print messages to console.

 $\textbf{4.11.2.12} \quad \textbf{Matrix}{<} \textbf{double}{>} \textbf{GMRESLP_DATA}{::} \textbf{x}$

Current solution to the linear system.

4.11.2.13 Matrix < double > GMRESLP_DATA::bestx

Best found solution to the linear system.

4.11.2.14 Matrix < double > GMRESLP_DATA::r

Residual vector for the linear system.

4.11.2.15 ARNOLDI_DATA GMRESLP_DATA::arnoldi_dat

Data structure for the kyrlov subspace.

The documentation for this struct was generated from the following file:

· lark.h

4.12 GMRESR_DATA Struct Reference

Data structure for the implementation of GCR with Nested GMRES preconditioning (i.e., GMRESR)

#include <lark.h>

Public Attributes

```
• int gcr_restart = -1
```

Number of GCR restarts (default = 50, max = N)

• int gcr_maxit = 0

Number of GCR iterations.

• int gmres restart = -1

Number of GMRES restarts (max = 20)

• int gmres_maxit = 1

Number of GMRES iterations (max = 5, default = 1)

int N

Dimension of the linear system.

int total iter

Total GMRES and GCR iterations.

· int iter_outer

Total GCR iterations.

· int iter inner

Total GMRES iterations.

• bool GCR_Output = true

True = print GCR messages.

• bool GMRES_Output = false

True = print GMRES messages.

• double gmres_tol = 0.1

Tolerance relative to GCR iterations.

• double gcr_rel_tol = 1e-6

Relative outer residual tolerance.

• double gcr_abs_tol = 1e-6

Absolute outer residual tolerance.

• Matrix< double > arg

Argument matrix passed between preconditioner and iterator.

GCR_DATA gcr_dat

Data structure for the outer GCR steps.

• GMRESRP_DATA gmres_dat

Data structure for the inner GMRES steps.

• int(* matvec)(const Matrix< double > &x, Matrix< double > &Ax, const void *matvec_data)

User supplied matrix-vector product function.

• int(* terminal_precon)(const Matrix< double > &r, Matrix< double > &p, const void *precon_data)

Optional user supplied terminal preconditioner.

const void * matvec_data

Data structure for the user's matvec function.

• const void * term_precon

Data structure for the user's terminal preconditioner.

4.12.1 Detailed Description

Data structure for the implementation of GCR with Nested GMRES preconditioning (i.e., GMRESR)

C-style object to be used in conjunction with the Generalized Minimum RESidual Recurive (GMRESR) algorithm. Although the name suggests that this method used GMRES recursively, what it is actually doing is nesting GMRE-SRP iterations inside the GCR method to form a preconditioner for GCR. The name GMRESR came from literature (Vorst and Vuik, "GMRESR: A family of nested GMRES methods", 1991).

4.12.2 Member Data Documentation

4.12.2.1 int GMRESR_DATA::gcr_restart = -1

Number of GCR restarts (default = 50, max = N)

4.12.2.2 int GMRESR_DATA::gcr_maxit = 0

Number of GCR iterations.

4.12.2.3 int GMRESR_DATA::gmres_restart = -1

Number of GMRES restarts (max = 20)

4.12.2.4 int GMRESR_DATA::gmres_maxit = 1

Number of GMRES iterations (max = 5, default = 1)

4.12.2.5 int GMRESR_DATA::N

Dimension of the linear system.

4.12.2.6 int GMRESR_DATA::total_iter

Total GMRES and GCR iterations.

4.12.2.7 int GMRESR_DATA::iter_outer

Total GCR iterations.

4.12.2.8 int GMRESR_DATA::iter_inner

Total GMRES iterations.

4.12.2.9 bool GMRESR_DATA::GCR_Output = true

True = print GCR messages.

4.12.2.10 bool GMRESR_DATA::GMRES_Output = false

True = print GMRES messages.

4.12.2.11 double GMRESR_DATA::gmres_tol = 0.1

Tolerance relative to GCR iterations.

4.12.2.12 double GMRESR_DATA::gcr_rel_tol = 1e-6

Relative outer residual tolerance.

4.12.2.13 double GMRESR_DATA::gcr_abs_tol = 1e-6

Absolute outer residual tolerance.

4.12.2.14 Matrix < double > GMRESR_DATA::arg

Argument matrix passed between preconditioner and iterator.

4.12.2.15 GCR_DATA GMRESR_DATA::gcr_dat

Data structure for the outer GCR steps.

4.12.2.16 GMRESRP_DATA GMRESR_DATA::gmres_dat

Data structure for the inner GMRES steps.

4.12.2.17 int(* GMRESR_DATA::matvec)(const Matrix < double > &x, Matrix < double > &Ax, const void *matvec_data)

User supplied matrix-vector product function.

4.12.2.18 int(* GMRESR_DATA::terminal_precon)(const Matrix< double > &r, Matrix< double > &p, const void *precon_data)

Optional user supplied terminal preconditioner.

4.12.2.19 const void* GMRESR_DATA::matvec_data

Data structure for the user's matvec function.

4.12.2.20 const void* GMRESR_DATA::term_precon

Data structure for the user's terminal preconditioner.

The documentation for this struct was generated from the following file:

• lark.h

4.13 GMRESRP_DATA Struct Reference

Data structure for the Restarted GMRES algorithm with Right Preconditioning.

```
#include <lark.h>
```

Public Attributes

• int restart = -1

Restart parameter - default = min(50,vector_size)

• int maxit = 0

Maximum allowable outer iterations.

• int iter outer = 0

Total number of outer iterations.

```
• int iter inner = 0
      Total number of inner iterations.
• int iter total = 0
      Total number of overall iterations.
• double tol_rel = 1e-6
      Relative tolerance for convergence - default = 1e-6.
double tol_abs = 1e-6
      Absolute tolerance for convergence - default = 1e-6.
· double res
      Absolute residual norm for linear system.
· double relres
      Relative residual norm for linear system.
· double relres_base
      Initial residual norm of the linear system.
· double bestres
      Best found residual norm of the linear system.
• bool Output = true
      True = print messages to console.

    Matrix< double > x

      Current solution to the linear system.
• Matrix< double > bestx
      Best found solution to the linear system.

    Matrix< double > r

      Residual vector for the linear system.

    std::vector< Matrix< double > > Vk

      (N x k) orthonormal vector basis
std::vector< std::vector</li>
  < double > > H
      (k+1 x k) upper Hessenberg storage matrix
std::vector< std::vector</li>
  < double > > H bar
      (k+1 x k) Factorized matrix
std::vector< double > y
      (k x 1) Vector search direction

 std::vector< double > e0

      (k+1 x 1) Normalized vector with residual info

    std::vector< double > e0_bar

      (k+1 x 1) Factorized normal vector

    Matrix< double > w

      (N) x (1) interim result of the matrix_vector multiplication

    Matrix< double > v

      (N) x (1) holding cell for the column entries of Vk and other interims

    Matrix< double > sum

      (N) x (1) running sum of subspace vectors for use in altering w
```

4.13.1 Detailed Description

Data structure for the Restarted GMRES algorithm with Right Preconditioning.

C-style object used in conjunction with Generalized Minimum RESidual Right Preconditioned (GMRESRP) algorithm to iteratively solve a linear system of equations. Unlike GMRESLP, the GMRESRP method is capable of checking linear residuals at both the inner and outer steps. As a result, this algorithm may terminate earlier than GMRESLP if it has found a suitable solution during one of the inner steps.

4.13.2 Member Data Documentation

4.13.2.1 int GMRESRP_DATA::restart = -1

Restart parameter - default = min(50,vector_size)

4.13.2.2 int GMRESRP_DATA::maxit = 0

Maximum allowable outer iterations.

4.13.2.3 int GMRESRP_DATA::iter_outer = 0

Total number of outer iterations.

4.13.2.4 int GMRESRP_DATA::iter_inner = 0

Total number of inner iterations.

4.13.2.5 int GMRESRP_DATA::iter_total = 0

Total number of overall iterations.

4.13.2.6 double GMRESRP_DATA::tol_rel = 1e-6

Relative tolerance for convergence - default = 1e-6.

4.13.2.7 double GMRESRP_DATA::tol_abs = 1e-6

Absolute tolerance for convergence - default = 1e-6.

4.13.2.8 double GMRESRP_DATA::res

Absolute residual norm for linear system.

4.13.2.9 double GMRESRP_DATA::relres

Relative residual norm for linear system.

4.13.2.10 double GMRESRP_DATA::relres_base

Initial residual norm of the linear system.

4.13.2.11 double GMRESRP_DATA::bestres

Best found residual norm of the linear system.

4.13.2.12 bool GMRESRP_DATA::Output = true

True = print messages to console.

4.13.2.13 Matrix < double > GMRESRP_DATA::x

Current solution to the linear system.

4.13.2.14 Matrix < double > GMRESRP_DATA::bestx

Best found solution to the linear system.

4.13.2.15 Matrix < double > GMRESRP_DATA::r

Residual vector for the linear system.

4.13.2.16 std::vector< Matrix<double> > GMRESRP_DATA::Vk

(N x k) orthonormal vector basis

4.13.2.17 std::vector< std::vector< double >> GMRESRP_DATA::H

(k+1 x k) upper Hessenberg storage matrix

4.13.2.18 std::vector< std::vector< double >> GMRESRP_DATA::H_bar

(k+1 x k) Factorized matrix

4.13.2.19 std::vector < double > GMRESRP_DATA::y

(k x 1) Vector search direction

 ${\it 4.13.2.20 \quad std::} vector < double > {\it GMRESRP_DATA::e0}$

(k+1 x 1) Normalized vector with residual info

 $4.13.2.21 \quad std::vector < double > GMRESRP_DATA::e0_bar$

(k+1 x 1) Factorized normal vector

4.13.2.22 Matrix < double > GMRESRP_DATA::w

(N) x (1) interim result of the matrix_vector multiplication

4.13.2.23 Matrix < double > GMRESRP_DATA::v

 $(N) \times (1)$ holding cell for the column entries of Vk and other interims

4.13.2.24 Matrix < double > GMRESRP_DATA::sum

(N) x (1) running sum of subspace vectors for use in altering \boldsymbol{w}

The documentation for this struct was generated from the following file:

• lark.h

4.14 GPAST_DATA Struct Reference

GPAST Data Structure.

```
#include <magpie.h>
```

Public Attributes

• double x

Adsorbed mole fraction.

• double y

Gas phase mole fraction.

· double He

Henry's Coefficient (mol/kg/kPa)

• double q

Amount adsorbed for each component (mol/kg)

std::vector< double > gama_inf

Infinite dilution activities.

• double qo

Pure component capacities (mol/kg)

• double Plo

Pure component spreading pressures (mol/kg)

std::vector< double > po

Pure component reference state pressures (kPa)

double poi

Reference state pressures solved for using Recover eval GPAST.

• bool present

If true, then the component is present; if false, then the component is not present.

4.14.1 Detailed Description

GPAST Data Structure.

C-style object holding all parameter information associated with the Generalized Predictive Adsorbed Solution Theory (GPAST) system of equations. Each species in the gas phase will have one of these objects.

4.14.2 Member Data Documentation

4.14.2.1 double GPAST_DATA::x

Adsorbed mole fraction.

4.14.2.2 double GPAST_DATA::y

Gas phase mole fraction.

4.14.2.3 double GPAST_DATA::He

Henry's Coefficient (mol/kg/kPa)

4.14.2.4 double GPAST_DATA::q

Amount adsorbed for each component (mol/kg)

4.14.2.5 std::vector<double> GPAST_DATA::gama_inf

Infinite dilution activities.

4.14.2.6 double GPAST_DATA::qo

Pure component capacities (mol/kg)

4.14.2.7 double GPAST_DATA::Plo

Pure component spreading pressures (mol/kg)

4.14.2.8 std::vector<double> GPAST_DATA::po

Pure component reference state pressures (kPa)

4.14.2.9 double GPAST_DATA::poi

Reference state pressures solved for using Recover eval GPAST.

4.14.2.10 bool GPAST_DATA::present

If true, then the component is present; if false, then the component is not present.

The documentation for this struct was generated from the following file:

• magpie.h

4.15 GSTA DATA Struct Reference

GSTA Data Structure.

#include <magpie.h>

Public Attributes

• double qmax

Theoretical maximum capacity of adsorbate-adsorbent pair (mol/kg)

• int m

Number of parameters in the GSTA isotherm.

• std::vector< double > dHo

Enthalpies for each site (J/mol)

• std::vector< double > dSo

Entropies for each site (J/(K*mol))

4.15.1 Detailed Description

GSTA Data Structure.

C-style object holding all parameter information associated with the Generalized Statistical Thermodynamic Adsorption (GSTA) isotherm model. Each species in the gas phase will have one of these objects.

4.15.2 Member Data Documentation

4.15.2.1 double GSTA_DATA::qmax

Theoretical maximum capacity of adsorbate-adsorbent pair (mol/kg)

4.15.2.2 int GSTA_DATA::m

Number of parameters in the GSTA isotherm.

4.15.2.3 std::vector<double> GSTA_DATA::dHo

Enthalpies for each site (J/mol)

4.15.2.4 std::vector<double> GSTA_DATA::dSo

Entropies for each site (J/(K*mol))

The documentation for this struct was generated from the following file:

• magpie.h

4.16 GSTA_OPT_DATA Struct Reference

Data structure used in the GSTA optimization routines.

```
#include <gsta_opt.h>
```

Public Attributes

· int total_eval

Keeps track of the total number of function evaluations.

• int n_par

Number of parameters being optimized for.

double qmax

Maximum theoretical adsorption capacity (M/M) (0 if unknown)

• int iso

Keeps isotherm that is currently being optimized.

std::vector< std::vector

```
< double > > Fobj
```

Creates a dynamic array to store all Fobj values.

std::vector< std::vector

```
< double > > q
```

std::vector< std::vector

< double > > P

Creates a dynamic array for q and P data pairs.

• std::vector< std::vector

```
< double > > best_par
```

Used to store the values of the parameters of best fit.

std::vector< std::vector

```
< double > > Kno
```

Dimensionless parameters determined from best_par.

std::vector< std::vector

```
< std::vector< double >> > all_pars
```

Used to create a ragged array of all parameters.

std::vector< std::vector

```
< double > > norms
```

Used to store the values of all the calculated norms.

std::vector< double > opt_qmax

If qmax is unknown, this vector holds it's optimized values.

4.16.1 Detailed Description

Data structure used in the GSTA optimization routines.

C-style structure that keeps track of all infomation during the optimization routine. All solutions and parameters to the GSTA isotherm are held in order to find the best solution with the fewest parameters.

4.16.2 Member Data Documentation

4.16.2.1 int GSTA_OPT_DATA::total_eval

Keeps track of the total number of function evaluations.

4.16.2.2 int GSTA_OPT_DATA::n_par

Number of parameters being optimized for.

4.16.2.3 double GSTA_OPT_DATA::qmax

Maximum theoretical adsorption capacity (M/M) (0 if unknown)

4.16.2.4 int GSTA_OPT_DATA::iso

Keeps isotherm that is currently being optimized.

4.16.2.5 std::vector<std::vector<double> > GSTA_OPT_DATA::Fobj

Creates a dynamic array to store all Fobj values.

 $4.16.2.6 \quad std:: vector < std:: vector < double > > GSTA_OPT_DATA:: q$

4.16.2.7 std::vector<std::vector<double>> GSTA_OPT_DATA::P

Creates a dynamic array for q and P data pairs.

 ${\tt 4.16.2.8 \quad std::vector}{<} {\tt std::vector}{<} {\tt double}{\gt} {\gt} {\tt GSTA_OPT_DATA::best_par}$

Used to store the values of the parameters of best fit.

4.16.2.9 $std::vector < std::vector < double > > GSTA_OPT_DATA::Kno$

Dimensionless parameters determined from best_par.

 $4.16.2.10 \quad std:: vector < std:: vector < double > > GSTA_OPT_DATA:: all_pars$

Used to create a ragged array of all parameters.

4.16.2.11 std::vector<std::vector<double>> GSTA_OPT_DATA::norms

Used to store the values of all the calculated norms.

4.16.2.12 std::vector<double> GSTA_OPT_DATA::opt_qmax

If qmax is unknown, this vector holds it's optimized values.

The documentation for this struct was generated from the following file:

• gsta_opt.h

4.17 Header Class Reference

#include <yaml_wrapper.h>

Inheritance diagram for Header:

Public Member Functions

- Header ()
- ∼Header ()
- Header (const Header &head)
- Header (std::string name)
- Header (const KeyValueMap &map)
- Header (std::string name, const KeyValueMap &map)
- Header (std::string key, const SubHeader &sub)
- Header & operator= (const Header &head)
- ValueTypePair & operator[] (const std::string key)
- ValueTypePair operator[] (const std::string key) const
- SubHeader & operator() (const std::string key)
- SubHeader operator() (const std::string key) const
- std::map< std::string,
 SubHeader > & getSubMap ()

- KeyValueMap & getDataMap ()
- SubHeader & getSubHeader (std::string key)
- std::map< std::string,

SubHeader >::const_iterator end () const

std::map< std::string,

SubHeader >::iterator end ()

std::map< std::string,

SubHeader >::const_iterator begin () const

std::map< std::string,

SubHeader >::iterator begin ()

- void clear ()
- void resetKeys ()
- void changeKey (std::string oldKey, std::string newKey)
- void addPair (std::string key, std::string val)
- void addPair (std::string key, std::string val, int t)
- void setName (std::string name)
- void setAlias (std::string alias)
- void setNameAliasPair (std::string n, std::string a, int s)
- void setState (int state)
- void DisplayContents ()
- void addSubKey (std::string key)
- · void copyAnchor2Alias (std::string alias, SubHeader &ref)
- int size ()
- std::string getName ()
- std::string getAlias ()
- int getState ()
- · bool isAlias ()
- · bool isAnchor ()
- SubHeader & getAnchoredSub (std::string alias)

Private Attributes

std::map< std::string, SubHeader > Sub_Map

Additional Inherited Members

4.17.1 Constructor & Destructor Documentation

```
4.17.1.1 Header::Header ( )
```

4.17.1.2 Header:: \sim Header ()

4.17.1.3 Header::Header (const Header & head)

4.17.1.4 Header::Header (std::string name)

4.17.1.5 Header::Header (const KeyValueMap & map)

4.17.1.6 Header::Header (std::string name, const KeyValueMap & map)

4.17.1.7 Header::Header (std::string key, const SubHeader & sub)

4.17.2 Member Function Documentation

```
4.17.2.1 Header & Header::operator= ( const Header & head )
4.17.2.2 ValueTypePair& Header::operator[]( const std::string key )
4.17.2.3 ValueTypePair Header::operator[] ( const std::string key ) const
4.17.2.4 SubHeader& Header::operator() ( const std::string key )
4.17.2.5 SubHeader Header::operator() ( const std::string key ) const
4.17.2.6 std::map<std::string, SubHeader>& Header::getSubMap()
4.17.2.7 KeyValueMap& Header::getDataMap()
4.17.2.8 SubHeader& Header::getSubHeader ( std::string key )
4.17.2.9 std::map<std::string, SubHeader>::const_iterator Header::end ( ) const
4.17.2.10
          std::map<std::string, SubHeader>::iterator Header::end ( )
4.17.2.11
          std::map<std::string, SubHeader>::const_iterator Header::begin ( ) const
4.17.2.12
          std::map<std::string, SubHeader>::iterator Header::begin ( )
4.17.2.13
          void Header::clear ( )
4.17.2.14 void Header::resetKeys ( )
4.17.2.15 void Header::changeKey ( std::string oldKey, std::string newKey )
4.17.2.16 void Header::addPair ( std::string key, std::string val )
4.17.2.17 void Header::addPair ( std::string key, std::string val, int t )
4.17.2.18
          void Header::setName ( std::string name )
4.17.2.19
          void Header::setAlias ( std::string alias )
4.17.2.20
          void Header::setNameAliasPair ( std::string n, std::string a, int s )
4.17.2.21 void Header::setState (int state)
4.17.2.22 void Header::DisplayContents ( )
4.17.2.23
          void Header::addSubKey ( std::string key )
4.17.2.24
          void Header::copyAnchor2Alias ( std::string alias, SubHeader & ref )
4.17.2.25 int Header::size ( )
4.17.2.26 std::string Header::getName ( )
4.17.2.27 std::string Header::getAlias ( )
4.17.2.28 int Header::getState ( )
```

```
4.17.2.29 bool Header::isAlias ( )
4.17.2.30 bool Header::isAnchor ( )
4.17.2.31 SubHeader& Header::getAnchoredSub ( std::string alias )
4.17.3 Member Data Documentation
4.17.3.1 std::map<std::string, SubHeader> Header::Sub_Map [private]
The documentation for this class was generated from the following file:
    · yaml_wrapper.h
       KeyValueMap Class Reference
#include <yaml_wrapper.h>
Public Member Functions
    · KeyValueMap ()

    ∼KeyValueMap ()

    KeyValueMap (const std::map< std::string, std::string > &map)

    • KeyValueMap (std::string key, std::string value)
    • KeyValueMap (const KeyValueMap &map)

    KeyValueMap & operator= (const KeyValueMap &map)

    ValueTypePair & operator[] (const std::string key)

    • ValueTypePair operator[] (const std::string key) const

    std::map< std::string,</li>

      ValueTypePair > & getMap ()
    std::map< std::string,</li>
      ValueTypePair >
      ::const_iterator end () const
    std::map< std::string,</li>
      ValueTypePair >::iterator end ()

    std::map< std::string,</li>

      ValueTypePair >
      ::const_iterator begin () const

    std::map< std::string,</li>

      ValueTypePair >::iterator begin ()
    • void clear ()

    void addKey (std::string key)

    void editValue4Key (std::string val, std::string key)

    void editValue4Key (std::string val, int type, std::string key)

    void addPair (std::string key, ValueTypePair val)

    void addPair (std::string key, std::string val)

    void addPair (std::string key, std::string val, int type)

    void findType (std::string key)

    void assertType (std::string key, int type)

    • void findAllTypes ()
    · void DisplayMap ()
```

std::string getString (std::string key)

• int size ()

- bool getBool (std::string key)
- double getDouble (std::string key)
- int getInt (std::string key)
- std::string getValue (std::string key)
- int getType (std::string key)
- ValueTypePair & getPair (std::string key)

Private Attributes

std::map< std::string,
 ValueTypePair > Key_Value

```
4.18.1 Constructor & Destructor Documentation
```

```
4.18.1.1 KeyValueMap::KeyValueMap ( )
4.18.1.2 KeyValueMap::∼KeyValueMap ( )
4.18.1.3 KeyValueMap::KeyValueMap (const std::map < std::string, std::string > & map)
4.18.1.4 KeyValueMap::KeyValueMap ( std::string key, std::string value )
4.18.1.5 KeyValueMap::KeyValueMap ( const KeyValueMap & map )
4.18.2
        Member Function Documentation
4.18.2.1 KeyValueMap& KeyValueMap::operator= ( const KeyValueMap & map )
4.18.2.2 ValueTypePair& KeyValueMap::operator[] ( const std::string key )
4.18.2.3 ValueTypePair KeyValueMap::operator[] ( const std::string key ) const
4.18.2.4
         std::map<std::string, ValueTypePair > & KeyValueMap::getMap ( )
4.18.2.5 std::map<std::string, ValueTypePair>::const_iterator KeyValueMap::end ( ) const
4.18.2.6 std::map<std::string, ValueTypePair>::iterator KeyValueMap::end ( )
4.18.2.7 std::map<std::string, ValueTypePair>::const_iterator KeyValueMap::begin ( ) const
4.18.2.8 std::map<std::string, ValueTypePair>::iterator KeyValueMap::begin ( )
4.18.2.9 void KeyValueMap::clear ( )
4.18.2.10
          void KeyValueMap::addKey ( std::string key )
4.18.2.11
         void KeyValueMap::editValue4Key ( std::string val, std::string key )
4.18.2.12 void KeyValueMap::editValue4Key ( std::string val, int type, std::string key )
4.18.2.13 void KeyValueMap::addPair ( std::string key, ValueTypePair val )
4.18.2.14 void KeyValueMap::addPair ( std::string key, std::string val )
```

```
4.18.2.15 void KeyValueMap::addPair ( std::string key, std::string val, int type )
4.18.2.16
          void KeyValueMap::findType ( std::string key )
4.18.2.17 void KeyValueMap::assertType ( std::string key, int type )
4.18.2.18 void KeyValueMap::findAllTypes ( )
4.18.2.19 void KeyValueMap::DisplayMap()
4.18.2.20 int KeyValueMap::size ( )
4.18.2.21 std::string KeyValueMap::getString ( std::string key )
4.18.2.22 bool KeyValueMap::getBool ( std::string key )
4.18.2.23 double KeyValueMap::getDouble ( std::string key )
4.18.2.24 int KeyValueMap::getInt ( std::string key )
4.18.2.25 std::string KeyValueMap::getValue ( std::string key )
4.18.2.26 int KeyValueMap::getType ( std::string key )
4.18.2.27 ValueTypePair& KeyValueMap::getPair ( std::string key )
4.18.3 Member Data Documentation
4.18.3.1 std::map<std::string, ValueTypePair > KeyValueMap::Key_Value [private]
```

The documentation for this class was generated from the following file:

· yaml_wrapper.h

4.19 MAGPIE_DATA Struct Reference

```
MAGPIE Data Structure.
```

```
#include <magpie.h>
```

Public Attributes

```
    std::vector < GSTA_DATA > gsta_dat
```

- std::vector< mSPD_DATA > mspd_dat
- std::vector < GPAST_DATA > gpast_dat
- · SYSTEM DATA sys dat

4.19.1 Detailed Description

MAGPIE Data Structure.

C-style object holding all information necessary to run a MAGPIE simulation. This is the data structure that will be used in other sub-routines when a mixed gas adsorption simulation needs to be run.

4.19.2 Member Data Documentation

```
4.19.2.1 std::vector < GSTA_DATA > MAGPIE_DATA::gsta_dat
```

4.19.2.2 std::vector<mSPD_DATA> MAGPIE_DATA::mspd_dat

4.19.2.3 std::vector < GPAST_DATA > MAGPIE_DATA::gpast_dat

4.19.2.4 SYSTEM_DATA MAGPIE_DATA::sys_dat

The documentation for this struct was generated from the following file:

• magpie.h

4.20 MassBalance Class Reference

```
#include <shark.h>
```

Public Member Functions

- MassBalance ()
- ∼MassBalance ()
- void Initialize_List (MasterSpeciesList &List)
- void Display_Info ()
- void Set_Delta (int i, double v)
- void Set_TotalConcentration (double v)
- void Set_Name (std::string name)
- double Get_Delta (int i)
- double Sum_Delta ()
- double Get_TotalConcentration ()
- std::string Get_Name ()
- double Eval_Residual (const Matrix< double > &x)

Protected Attributes

- MasterSpeciesList * List
- std::vector< double > Delta
- double TotalConcentration

Private Attributes

• std::string Name

4.20.1 Constructor & Destructor Documentation

- 4.20.1.1 MassBalance::MassBalance()
- 4.20.1.2 MassBalance:: ∼MassBalance ()
- 4.20.2 Member Function Documentation

```
4.20.2.1 void MassBalance::Initialize_List ( MasterSpeciesList & List )
4.20.2.2 void MassBalance::Display_Info ( )
4.20.2.3 void MassBalance::Set_Delta ( int i, double v )
4.20.2.4 void MassBalance::Set_TotalConcentration ( double v )
4.20.2.5 void MassBalance::Set_Name ( std::string name )
4.20.2.6 double MassBalance::Get_Delta ( int i )
4.20.2.7 double MassBalance::Get_TotalConcentration ( )
4.20.2.8 double MassBalance::Get_TotalConcentration ( )
4.20.2.9 std::string MassBalance::Get_Name ( )
4.20.2.10 double MassBalance::Eval_Residual ( const Matrix < double > & x )
4.20.3 Member Data Documentation
4.20.3.1 MasterSpeciesList* MassBalance::List [protected]
4.20.3.2 std::vector < double > MassBalance::Delta [protected]
4.20.3.3 double MassBalance::TotalConcentration [protected]
4.20.3.4 std::string MassBalance::Name [private]
```

The documentation for this class was generated from the following file:

· shark.h

4.21 MasterSpeciesList Class Reference

#include <shark.h>

Inheritance diagram for MasterSpeciesList:

Public Member Functions

- MasterSpeciesList ()
- ∼MasterSpeciesList ()
- MasterSpeciesList (const MasterSpeciesList &msl)
- MasterSpeciesList & operator= (const MasterSpeciesList &msl)
- void set_list_size (int i)
- void set_species (int i, std::string formula)

• void set_species (int i, int charge, double enthalpy, double entropy, double energy, bool HS, bool G, std::string Phase, std::string Name, std::string Formula, std::string lin_formula)

- · void DisplayInfo (int i)
- void DisplayAll ()
- void DisplayConcentrations (Matrix< double > &C)
- void set alkalinity (double alk)
- int list_size ()
- Molecule & get_species (int i)
- int get_index (std::string name)
- double charge (int i)
- double alkalinity ()
- std::string speciesName (int i)
- double Eval ChargeResidual (const Matrix< double > &x)

Protected Attributes

- int size
- std::vector< Molecule > species
- · double residual_alkalinity

Additional Inherited Members

```
4.21.1 Constructor & Destructor Documentation
4.21.1.1 MasterSpeciesList::MasterSpeciesList ( )
4.21.1.2 MasterSpeciesList:: ~ MasterSpeciesList ( )
4.21.1.3 MasterSpeciesList::MasterSpeciesList ( const MasterSpeciesList & msl )
4.21.2 Member Function Documentation
4.21.2.1 MasterSpeciesList& MasterSpeciesList::operator= ( const MasterSpeciesList & msl )
4.21.2.2 void MasterSpeciesList::set_list_size ( int i )
4.21.2.3 void MasterSpeciesList::set_species (int i, std::string formula)
4.21.2.4 void MasterSpeciesList::set_species (int i, int charge, double enthalpy, double entropy, double energy, bool HS.
         bool G, std::string Phase, std::string Name, std::string Formula, std::string lin_formula )
4.21.2.5 void MasterSpeciesList::DisplayInfo (int i)
4.21.2.6 void MasterSpeciesList::DisplayAll ( )
4.21.2.7 void MasterSpeciesList::DisplayConcentrations ( Matrix< double > & C )
4.21.2.8 void MasterSpeciesList::set_alkalinity ( double alk )
4.21.2.9 int MasterSpeciesList::list_size ( )
4.21.2.10 Molecule Master Species List::get_species (int i)
4.21.2.11 int MasterSpeciesList::get_index ( std::string name )
```

4.22 Matrix < T > Class Template Reference

Templated C++ Matrix Class Object (click Matrix to go to function definitions)

Public Member Functions

#include <macaw.h>

· Matrix (int rows, int columns)

Constructor for matrix with given number of rows and columns.

• T & operator() (int i, int j)

Access operator for the matrix element at row i and column j (e.g., aij = A(i,j))

• T operator() (int i, int j) const

Constant access operator for the the matrix element at row i and column j.

• Matrix (const Matrix &M)

Copy constructor for constructing a matrix as a copy of another matrix.

• Matrix & operator= (const Matrix &M)

Equals operator for setting one matrix equal to another matrix.

• Matrix ()

Default constructor for creating an empty matrix.

• ∼Matrix ()

Default destructor for clearing out memory.

• void set_size (int i, int j)

Function to set/change the size of a matrix to i rows and j columns.

void zeros ()

Function to set/change all values in a matrix to zeros.

• void edit (int i, int j, T value)

Function to set/change the element of a matrix at row i and column j to given value.

• int rows ()

Function to return the number of rows in a given matrix.

• int columns ()

Function to return the number of columns in a matrix.

• T determinate ()

Function to compute the determinate of a matrix and return that value.

• T norm ()

Function to compute the L2-norm of a matrix and return that value.

• T sum ()

Function to compute the sum of all elements in a matrix and return that value.

T inner_product (const Matrix &x)

Function to compute the inner product between this matrix and matrix x.

Matrix & cofactor (const Matrix &M)

Function to convert this matrix to a cofactor matrix of the given matrix M.

Matrix operator+ (const Matrix &M)

Operator to add this matrix and matrix M and return the new matrix result.

Matrix operator- (const Matrix &M)

Operator to subtract this matrix and matrix M and return the new matrix result.

Matrix operator* (const T)

Operator to multiply this matrix by a scalar T return the new matrix result.

Matrix operator/ (const T)

Operator to divide this matrix by a scalar T and return the new matrix result.

• Matrix operator* (const Matrix &M)

Operator to multiply this matrix and matrix M and return the new matrix result.

Matrix & transpose (const Matrix &M)

Function to convert this matrix to the transpose of the given matrix M.

Matrix & transpose_multiply (const Matrix &MT, const Matrix &v)

Function to convert this matrix into the result of the given matrix M transposed and multiplied by the other given matrix v

· Matrix & adjoint (const Matrix &M)

Function to convert this matrix to the adjoint of the given matrix.

Matrix & inverse (const Matrix &M)

Function to convert this matrix to the inverse of the given matrix.

void Display (const std::string Name)

Function to display the contents of this matrix given a Name for the matrix.

Matrix & tridiagonalSolve (const Matrix &A, const Matrix &b)

Function to solve Ax=b for x if A is symmetric, tridiagonal (this->x)

• Matrix & ladshawSolve (const Matrix &A, const Matrix &d)

Function to solve Ax=d for x if A is non-symmetric, tridiagonal (this->x)

• Matrix & tridiagonalFill (const T A, const T B, const T C, bool Spherical)

Function to fill in this matrix with coefficients A, B, and C to form a tridiagonal matrix.

Matrix & naturalLaplacian3D (int m)

Function to fill out this matrix with coefficients from a 3D Laplacian function.

Matrix & sphericalBCFill (int node, const T coeff, T variable)

Function to fill out a column matrix with spherical specific boundary conditions.

• Matrix & ConstantICFill (const T IC)

Function to set all values in a column matrix to a given constant.

Matrix & SolnTransform (const Matrix &A, bool Forward)

Function to transform the values in a column matrix from cartesian to spherical coordinates.

T sphericalAvg (double radius, double dr, double bound, bool Dirichlet)

Function to compute a spatial average of this column matrix in spherical coordinates.

• T IntegralAvg (double radius, double dr, double bound, bool Dirichlet)

Function to compute a spatial average of this column matrix in spherical coordinates.

• T IntegralTotal (double dr, double bound, bool Dirichlet)

Function to compute a spatial total of this column matrix in spherical coordinates.

Matrix & tridiagonalVectorFill (const std::vector< T > &A, const std::vector< T > &B, const std::vector< T > &C)

Function to fill in this matrix, in tridiagonal fashion, using the vectors of coefficients.

Matrix & columnVectorFill (const std::vector< T > &A)

Function to fill in a column matrix with the values of the given vector object.

Matrix & columnProjection (const Matrix &b, const Matrix &b_old, const double dt, const double dt_old)

Function to project a column matrix solution in time based on older state vectors.

• Matrix & dirichletBCFill (int node, const T coeff, T variable)

Function to fill in a column matrix with all zeros except at the given node.

Matrix & diagonalSolve (const Matrix &D, const Matrix &v)

Function to solve the system Dx=v for x given that D is diagonal (this->x)

Matrix & upperTriangularSolve (const Matrix &U, const Matrix &v)

Function to solve the system Ux=v for x given that U is upper Triagular (this->x)

Matrix & lowerTriangularSolve (const Matrix &L, const Matrix &v)

Function to solve the system Lx=v for x given that L is lower Triagular (this->x)

Matrix & upperHessenberg2Triangular (Matrix &b)

Function to convert this square matrix to upper Triangular (assuming this is upper Hessenberg)

• Matrix & lowerHessenberg2Triangular (Matrix &b)

Function to convert this square matrix to lower Triangular (assuming this is lower Hessenberg)

Matrix & upperHessenbergSolve (const Matrix &H, const Matrix &v)

Function to solve the system Hx=v for x given that H is upper Hessenberg (this->x)

• Matrix & lowerHessenbergSolve (const Matrix &H, const Matrix &v)

Function to solve the system Hx=v for x given that H is lower Hessenberg (this->x)

Matrix & columnExtract (int j, const Matrix &M)

Function to set this column matrix to the jth column of the given matrix M.

Matrix & rowExtract (int i, const Matrix &M)

Function to set this row matrix to the ith row of the given matrix M.

Matrix & columnReplace (int j, const Matrix &v)

Function to this matrices' jth column with the given column matrix v.

• Matrix & rowReplace (int i, const Matrix &v)

Function to this matrices' ith row with the given row matrix v.

· void rowShrink ()

Function to delete the last row of this matrix.

• void columnShrink ()

Function to delete the last column of this matrix.

void rowExtend (const Matrix &v)

Function to add the row matrix v to the end of this matrix.

void columnExtend (const Matrix &v)

Function to add the column matrix v to the end of this matrix.

Protected Attributes

• int num_rows

Number of rows of the matrix.

· int num_cols

Number of columns of the matrix.

std::vector< T > Data

Storage vector for the elements of the matrix.

4.22.1 Detailed Description

```
template < class T> class Matrix < T>
```

Templated C++ Matrix Class Object (click Matrix to go to function definitions)

C++ templated class object containing many different functions, actions, and solver routines associated with Dense Matrices. Operator overloads are also provided to give the user a more natural way of operating matrices on other matrices or scalars. These operator overloads are especially useful for reducing the amount of code needed to be written when working with matrix-based problems.

4.22.2 Constructor & Destructor Documentation

```
4.22.2.1 template < class T > Matrix < T >::Matrix ( int rows, int columns )
```

Constructor for matrix with given number of rows and columns.

```
4.22.2.2 template < class T > Matrix < T >::Matrix ( const Matrix < T > & M )
```

Copy constructor for constructing a matrix as a copy of another matrix.

```
4.22.2.3 template < class T > Matrix < T >::Matrix ( )
```

Default constructor for creating an empty matrix.

```
4.22.2.4 template < class T > Matrix < T >::\sim Matrix ( )
```

Default destructor for clearing out memory.

4.22.3 Member Function Documentation

```
4.22.3.1 template < class T > T & Matrix < T >::operator() ( int i, int j )
```

Access operator for the matrix element at row i and column j (e.g., aij = A(i,j))

```
4.22.3.2 template < class T > T Matrix < T >::operator() ( int i, int j ) const
```

Constant access operator for the the matrix element at row i and column j.

```
4.22.3.3 template < class T > Matrix < T > & Matrix < T >::operator= ( const Matrix < T > & M )
```

Equals operator for setting one matrix equal to another matrix.

```
4.22.3.4 template < class T > void Matrix < T >::set_size ( int i, int j )
```

Function to set/change the size of a matrix to i rows and j columns.

```
4.22.3.5 template < class T > void Matrix < T >::zeros ( )
```

Function to set/change all values in a matrix to zeros.

```
4.22.3.6 template < class T> void Matrix < T>::edit ( int i, int j, T value )
```

Function to set/change the element of a matrix at row i and column j to given value.

```
4.22.3.7 template < class T > int Matrix < T >::rows ( )
```

Function to return the number of rows in a given matrix.

```
4.22.3.8 template < class T > int Matrix < T >::columns ( )
```

Function to return the number of columns in a matrix.

```
4.22.3.9 template < class T > T Matrix < T >::determinate ( )
```

Function to compute the determinate of a matrix and return that value.

```
4.22.3.10 template < class T > T Matrix < T >::norm ( )
```

Function to compute the L2-norm of a matrix and return that value.

```
4.22.3.11 template < class T > T Matrix < T >::sum ( )
```

Function to compute the sum of all elements in a matrix and return that value.

```
4.22.3.12 template < class T > T Matrix < T >::inner_product ( const Matrix < T > & x )
```

Function to compute the inner product between this matrix and matrix x.

```
4.22.3.13 template < class T > Matrix < T > & Matrix < T > :: cofactor ( const Matrix < T > & M )
```

Function to convert this matrix to a cofactor matrix of the given matrix M.

```
4.22.3.14 template < class T > Matrix < T > Matrix < T > :: operator + ( const Matrix < T > & M )
```

Operator to add this matrix and matrix M and return the new matrix result.

```
4.22.3.15 template < class T > Matrix < T > Matrix < T > :: operator- ( const Matrix < T > & M )
```

Operator to subtract this matrix and matrix M and return the new matrix result.

```
4.22.3.16 template < class T > Matrix < T > Matrix < T > ::operator* ( const T a )
```

Operator to multiply this matrix by a scalar T return the new matrix result.

```
4.22.3.17 template < class T> Matrix < T> Matrix < T>::operator/ ( const Ta)
```

Operator to divide this matrix by a scalar T and return the new matrix result.

```
4.22.3.18 template < class T> Matrix < T> Matrix < T>::operator* ( const Matrix < T> & M )
```

Operator to multiply this matrix and matrix M and return the new matrix result.

```
4.22.3.19 template < class T > Matrix < T > & Matrix < T >::transpose ( const Matrix < T > & M )
```

Function to convert this matrix to the transpose of the given matrix M.

```
4.22.3.20 template < class T > Matrix < T > & Matrix < T > ::transpose_multiply ( const Matrix < T > & \it{MT}, const Matrix < T > & \it{v} )
```

Function to convert this matrix into the result of the given matrix M transposed and multiplied by the other given matrix v.

```
4.22.3.21 template < class T > Matrix < T > & Matrix < T > ::adjoint (const Matrix < T > & M)
```

Function to convert this matrix to the adjoint of the given matrix.

```
4.22.3.22 template < class T > Matrix < T > & Matrix < T > ::inverse ( const Matrix < T > & M )
```

Function to convert this matrix to the inverse of the given matrix.

```
4.22.3.23 template < class T > void Matrix < T >::Display ( const std::string Name )
```

Function to display the contents of this matrix given a Name for the matrix.

```
4.22.3.24 template < class T > Matrix < T > & Matrix < T >::tridiagonal Solve ( const Matrix < T > & A, const Matrix < T > & b )
```

Function to solve Ax=b for x if A is symmetric, tridiagonal (this->x)

```
4.22.3.25 template < class T > Matrix < T > & Matrix < T > ::ladshawSolve ( const Matrix < T > & A, const Matrix < T > & d )
```

Function to solve Ax=d for x if A is non-symmetric, tridiagonal (this->x)

```
4.22.3.26 template < class T > Matrix < T > & Matrix < T > ::tridiagonal Fill ( const T A, const T B, const T C, bool Spherical )
```

Function to fill in this matrix with coefficients A, B, and C to form a tridiagonal matrix.

This function fills in the diagonal elements of a square matrix with coefficient B, upper diagonal with C, and lower diagonal with A. The boolean will apply a transformation to those coefficients, if the problem happens to stem from 1-D diffusion in spherical coordinates.

```
4.22.3.27 template < class T > Matrix < T > & Matrix < T >::naturalLaplacian3D ( int m )
```

Function to fill out this matrix with coefficients from a 3D Laplacian function.

This function will fill out the coefficients of the matrix with the coefficients that stem from discretizing a 3D Laplacian on a natural grid with 2nd order finite differences.

4.22.3.28 template < class T > Matrix < T > & Matrix < T > :::sphericalBCFill (int node, const T coeff, T variable)

Function to fill out a column matrix with spherical specific boundary conditions.

This function will fille out a column matrix with zeros at all nodes expect for the node indicated. That node's value will be the product of the node id with the coeff and variable values given.

4.22.3.29 template < class T > Matrix < T > & Matrix < T > :: ConstantICFill (const T /C)

Function to set all values in a column matrix to a given constant.

4.22.3.30 template < class T > Matrix < T > & Matrix < T >::SolnTransform (const Matrix < T > & A, bool Forward)

Function to transform the values in a column matrix from cartesian to spherical coordinates.

4.22.3.31 template < class T > T Matrix < T >::sphericalAvg (double radius, double dr, double bound, bool Dirichlet)

Function to compute a spatial average of this column matrix in spherical coordinates.

This function is used to compute an average value of a variable, represented in this column matrix, by integrating over the domain of the sphere. (Assumes you have variable value at center node)

Parameters

radius	radius of the sphere
dr	space between each node
bound	value of the variable at the boundary
Dirichlet	True if problem has a Dirichlet BC, False if Neumann

 $4.22.3.32 \quad template < class \ T > T \ Matrix < T > :: Integral \ Avg \ (\ double \ \textit{radius}, \ double \ \textit{dr}, \ double \ \textit{bound}, \ bool \ \textit{Dirichlet} \)$

Function to compute a spatial average of this column matrix in spherical coordinates.

This function is used to compute an average value of a variable, represented in this column matrix, by integrating over the domain of the sphere. (Assumes you DO NOT have variable value at center node)

Parameters

radius	radius of the sphere
dr	space between each node
bound	value of the variable at the boundary
Dirichlet	True if problem has a Dirichlet BC, False if Neumann

4.22.3.33 template < class T > T Matrix < T >::Integral Total (double dr, double bound, bool Dirichlet)

Function to compute a spatial total of this column matrix in spherical coordinates.

This function is used to compute an average value of a variable, represented in this column matrix, by integrating over the domain of the sphere. (Assumes you DO NOT have variable value at center node)

Parameters

dr	space between each node
bound	value of the variable at the boundary
Dirichlet	True if problem has a Dirichlet BC, False if Neumann

4.22.3.34 template < class T > Matrix < T > & Matrix < T >::tridiagonal Vector Fill (const std::vector < T > & A, const std::vector < T > & B, const std::vector < T > & C)

Function to fill in this matrix, in tridiagonal fashion, using the vectors of coefficients.

```
4.22.3.35 template < class T > Matrix < T > & Matrix < T >::columnVectorFill ( const std::vector < T > & A )
```

Function to fill in a column matrix with the values of the given vector object.

4.22.3.36 template < class T > Matrix < T > & Matrix < T > ::columnProjection (const Matrix < T > & b, const Matrix < T > & b-old, const double dt, const double dt-old)

Function to project a column matrix solution in time based on older state vectors.

This function is used in finch.h to form Matrix u_star. It uses the size of the current step and old step, dt and dt_old respectively, to form an approximation for the next state. The current state and olde state of the variables are passed as b and b_old respectively.

```
4.22.3.37 template < class T > Matrix < T > & Matrix < T > ::dirichletBCFill ( int node, const T coeff, T variable )
```

Function to fill in a column matrix with all zeros except at the given node.

Similar to sphericalBCFill, this function will set the values of all elements in the column matrix to zero except at the given node, where the value is set to the product of coeff and variable. This is often used to set BCs in finch.h or other related files/simulations.

```
4.22.3.38 template < class T > Matrix < T > & Matrix < T > ::diagonal Solve ( const Matrix < T > & D, const Matrix < T > & \nu)
```

Function to solve the system Dx=v for x given that D is diagonal (this->x)

```
4.22.3.39 template < class T > Matrix < T > & Matrix < T >::upperTriangularSolve ( const Matrix < T > & \it U, const Matrix < T > & \it v )
```

Function to solve the system Ux=v for x given that U is upper Triagular (this->x)

```
4.22.3.40 template < class T > Matrix < T > & Matrix < T >::lowerTriangularSolve ( const Matrix < T > & L, const Matrix < T > & \nu)
```

Function to solve the system Lx=v for x given that L is lower Triagular (this->x)

```
4.22.3.41 template < class T > Matrix < T > & Matrix < T > ::upperHessenberg2Triangular ( Matrix < T > & b )
```

Function to convert this square matrix to upper Triangular (assuming this is upper Hessenberg)

During this transformation, a column vector (b) is also being transformed to represent the BCs in a linear system. This algorithm uses Givens Rotations to efficiently convert the upper Hessenberg matrix to an upper triangular matrix.

```
4.22.3.42 template < class T > Matrix < T > & Matrix < T >::lowerHessenberg2Triangular ( Matrix < T > & b )
```

Function to convert this square matrix to lower Triangular (assuming this is lower Hessenberg)

During this transformation, a column vector (b) is also being transformed to represent the BCs in a linear system. This algorithm uses Givens Rotations to efficiently convert the lower Hessenberg matrix to an lower triangular matrix.

```
4.22.3.43 template < class T > Matrix < T > & Matrix < T > ::upperHessenbergSolve ( const Matrix < T > & H, const Matrix < T > & V)
```

Function to solve the system Hx=v for x given that H is upper Hessenberg (this->x)

4.22.3.44 template < class T > Matrix < T > & Matrix < T >::lowerHessenbergSolve (const Matrix < T > & H, const Matrix < T > & ν)

Function to solve the system Hx=v for x given that H is lower Hessenberg (this->x)

```
4.22.3.45 template < class T > Matrix < T > & Matrix < T >::columnExtract ( int j, const Matrix < T > & M)
```

Function to set this column matrix to the jth column of the given matrix M.

```
4.22.3.46 template < class T > Matrix < T > & Matrix < T >::rowExtract ( int i, const Matrix < T > & M )
```

Function to set this row matrix to the ith row of the given matrix M.

```
4.22.3.47 template < class T > Matrix < T > & Matrix < T > ::columnReplace ( int j, const Matrix < T > & v)
```

Function to this matrices' jth column with the given column matrix v.

```
4.22.3.48 template < class T > Matrix < T > & Matrix < T > ::rowReplace ( int i, const Matrix < T > & \nu )
```

Function to this matrices' ith row with the given row matrix v.

```
4.22.3.49 template < class T > void Matrix < T >::rowShrink( )
```

Function to delete the last row of this matrix.

```
4.22.3.50 template < class T > void Matrix < T >::columnShrink ( )
```

Function to delete the last column of this matrix.

```
4.22.3.51 template < class T > void Matrix < T >::rowExtend ( const Matrix < T > & \nu )
```

Function to add the row matrix v to the end of this matrix.

```
4.22.3.52 template < class T > void Matrix < T >::columnExtend ( const Matrix < T > & \nu )
```

Function to add the column matrix v to the end of this matrix.

4.22.4 Member Data Documentation

4.22.4.1 template < class T > int Matrix < T >::num_rows [protected]

Number of rows of the matrix.

4.22.4.2 template < class T > int Matrix < T >::num_cols [protected]

Number of columns of the matrix.

4.22.4.3 template < class T > std::vector < T > Matrix < T >::Data [protected]

Storage vector for the elements of the matrix.

The documentation for this class was generated from the following file:

· macaw.h

4.23 Mechanism Class Reference

#include <shark.h>

Protected Attributes

- MasterSpeciesList * List
- std::vector< UnsteadyReaction > reactions
- std::vector< double > weight
- int species_index

4.23.1 Member Data Documentation

- **4.23.1.1 MasterSpeciesList*** Mechanism::List [protected]
- **4.23.1.2 std::vector**<**UnsteadyReaction**> **Mechanism::reactions** [protected]
- **4.23.1.3** std::vector<double> Mechanism::weight [protected]
- **4.23.1.4** int Mechanism::species_index [protected]

The documentation for this class was generated from the following file:

• shark.h

4.24 MIXED_GAS Struct Reference

Data structure holding information necessary for computing mixed gas properties.

#include <egret.h>

Public Attributes

• int N

Given: Total number of gas species.

• bool CheckMolefractions = true

Given: True = Check Molefractions for errors.

· double total_pressure

Given: Total gas pressure (kPa)

double gas_temperature

Given: Gas temperature (K)

· double velocity

Given: Gas phase velocity (cm/s)

· double char_length

Given: Characteristic Length (cm)

• std::vector< double > molefraction

Given: Gas molefractions of each species (-)

· double total_density

Calculated: Total gas density (g/cm^{\(\)}3) {use RE3}.

double total_dyn_vis

Calculated: Total dynamic viscosity (g/cm/s)

· double kinematic_viscosity

Calculated: Kinematic viscosity (cm²/s)

• double total_molecular_weight

Calculated: Total molecular weight (g/mol)

• double total_specific_heat

Calculated: Total specific heat (J/g/K)

· double Reynolds

Calculated: Value of the Reynold's number (-)

• Matrix< double > binary_diffusion

Calculated: Tensor matrix of binary gas diffusivities (cm²/s)

std::vector< PURE_GAS > species_dat

Vector of the pure gas info of all species.

4.24.1 Detailed Description

Data structure holding information necessary for computing mixed gas properties.

C-style object holding the mixed gas information necessary for performing gas dynamic simulations. This object works in conjunction with the calculate_variables function and uses the kinetic theory of gases to estimate mixed gas properties.

4.24.2 Member Data Documentation

4.24.2.1 int MIXED_GAS::N

Given: Total number of gas species.

4.24.2.2 bool MIXED_GAS::CheckMolefractions = true

Given: True = Check Molefractions for errors.

4.24.2.3 double MIXED_GAS::total_pressure

Given: Total gas pressure (kPa)

4.24.2.4 double MIXED_GAS::gas_temperature

Given: Gas temperature (K)

4.24.2.5 double MIXED_GAS::velocity

Given: Gas phase velocity (cm/s)

4.24.2.6 double MIXED_GAS::char_length

Given: Characteristic Length (cm)

4.24.2.7 std::vector<double> MIXED_GAS::molefraction

Given: Gas molefractions of each species (-)

4.24.2.8 double MIXED_GAS::total_density

Calculated: Total gas density (g/cm³) {use RE3}.

4.24.2.9 double MIXED_GAS::total_dyn_vis

Calculated: Total dynamic viscosity (g/cm/s)

4.24.2.10 double MIXED_GAS::kinematic_viscosity

Calculated: Kinematic viscosity (cm²/s)

 $4.24.2.11 \quad double \ MIXED_GAS:: total_molecular_weight$

Calculated: Total molecular weight (g/mol)

4.24.2.12 double MIXED_GAS::total_specific_heat

Calculated: Total specific heat (J/g/K)

4.24.2.13 double MIXED_GAS::Reynolds

Calculated: Value of the Reynold's number (-)

4.24.2.14 Matrix < double > MIXED_GAS::binary_diffusion

Calculated: Tensor matrix of binary gas diffusivities (cm²/s)

4.24.2.15 std::vector<PURE_GAS> MIXED_GAS::species_dat

Vector of the pure gas info of all species.

The documentation for this struct was generated from the following file:

· egret.h

4.25 Molecule Class Reference

C++ Molecule Object built from Atom Objects (click Molecule to go to function definitions)

#include <mola.h>

Inheritance diagram for Molecule:

Public Member Functions

• Molecule ()

Default Constructor (builds an empty molecule object)

∼Molecule ()

Default Destructor (clears out memory)

 Molecule (int charge, double enthalpy, double entropy, double energy, bool HS, bool G, std::string Phase, std::string Name, std::string Formula, std::string lin_formula)

Construct any molecule from the available information.

 void Register (int charge, double enthalpy, double entropy, double energy, bool HS, bool G, std::string Phase, std::string Name, std::string Formula, std::string lin_formula)

Function to register this molecule from the available information.

void Register (std::string formula)

Function to register this molecule based on the given formula (if formula is in library)

void setFormula (std::string form)

Sets the formula for a molecule.

void recalculateMolarWeight ()

Forces molecule to recalculate its molar weight.

void setMolarWeigth (double mw)

Set the molar weight of species to a constant.

• void editCharge (int c)

Change the ionic charge of a molecule.

• void editOneOxidationState (int state, std::string Symbol)

Change oxidation state of one of the given atoms (always first match found)

void editAllOxidationStates (int state, std::string Symbol)

Change oxidation state of all of the given atoms.

void calculateAvgOxiState (std::string Symbol)

Function to calculate the average oxidation state of the atoms.

• void editEnthalpy (double enthalpy)

Edit the molecules formation enthalpy (J/mol)

void editEntropy (double entropy)

Edit the molecules formation entropy (J/K/mol)

void editHS (double H, double S)

Edit both formation enthalpy and entropy.

• void editEnergy (double energy)

Edit Gibb's formation energy.

· void removeOneAtom (std::string Symbol)

Removes one atom of the symbol given (always the first atom found)

void removeAllAtoms (std::string Symbol)

Removes all atoms of the symbol given.

• int Charge ()

Return the charge of the molecule.

• double MolarWeight ()

Return the molar weight of the molecule.

· bool HaveHS ()

Returns true if enthalpy and entropy are known.

• bool HaveEnergy ()

Returns true if the Gibb's energy is known.

• bool isRegistered ()

Returns true if the molecule has been registered.

· double Enthalpy ()

Return the formation enthalpy of the molecule.

• double Entropy ()

Return the formation entropy of the molecule.

• double Energy ()

Return the Gibb's formation energy of the molecule.

• std::string MoleculeName ()

Return the common name of the molecule.

• std::string MolecularFormula ()

Return the molecular formula of the molecule.

• std::string MoleculePhase ()

Return the phase of the molecule.

• void DisplayInfo ()

Function to display molecule information.

Protected Attributes

• int charge

Ionic charge of the molecule - specified.

• double molar_weight

Molar weight of the molecule (g/mol) - determined from atoms or specified.

double formation_enthalpy

Enthalpy of formation of the molecule (J/mol) - constant.

· double formation_entropy

Entropy of formation of the molecule (J/K/mol) - constant.

· double formation_energy

Gibb's energy of formation (J/mol) - given.

· std::string Phase

Phase of the molecule (i.e. Solid, Liquid, Aqueous, Gas...)

std::vector < Atom > atoms

Atoms which make up the molecule - based on Formula.

Private Attributes

· std::string Name

Name of the Molecule - Common Name (i.e. H2O = Water)

std::string Formula

Formula for the molecule - specified (i.e. H2O)

· bool haveG

True = given Gibb's energy of formation.

bool haveHS

True = give enthalpy and entropy of formation.

bool registered

True = the object was registered.

4.25.1 Detailed Description

C++ Molecule Object built from Atom Objects (click Molecule to go to function definitions)

C++ Class Object that stores information and certain operations associated with molecules. Registered molecules are built up from their respective atoms so that the molecule can keep track of information such as molecular weigth and oxidation states. Primarily, this object is used in conjunction with shark.h to formulate the system of equations necessary for solving speciation type problems in aqueous systems. However, this object is generalized enough to be of use in RedOx calculations, reaction formulation, and molecular transformations.

All information for a molecule should be initialized prior to performing operations with or on the object. There are several molecules already defined for construction by the formulas listed at the top of this section.

4.25.2 Constructor & Destructor Documentation

```
4.25.2.1 Molecule::Molecule ( )
```

Default Constructor (builds an empty molecule object)

```
4.25.2.2 Molecule:: ∼Molecule ( )
```

Default Destructor (clears out memory)

4.25.2.3 Molecule::Molecule (int *charge*, double *enthalpy*, double *entropy*, double *energy*, bool *HS*, bool *G*, std::string *Phase*, std::string *Name*, std::string *Formula*, std::string *lin_formula*)

Construct any molecule from the available information.

This constructor will build a user defined custom molecule.

Parameters

charge	the ionic charge of the molecule
enthalpy	the standard formation enthalpy of the molecule (J/mol)
entropy	the standard formation entropy of the molecule (J/K/mol)
energy	the standard Gibb's Free Energy of formation of the molecule (J/mol)
HS	boolean to be set to true if enthalpy and entropy were given
G	boolean to be set to true if the energy was given
Phase	string denoting molecule's phase (i.e., Liquid, Aqueous, Gas, Solid)
Name	string denoting the common name of the molecule (i.e., H2O -> Water)
Formula	string denoting the formula by which the molecule is referened (i.e., CI - (aq))
lin_formula	string denoting all the atoms in the molecule (i.e., UO2(OH)2 -> UO4H2)

4.25.3 Member Function Documentation

4.25.3.1 void Molecule::Register (int *charge*, double *enthalpy*, double *entropy*, double *energy*, bool *HS*, bool *G*, std::string *Phase*, std::string *Name*, std::string *Formula*, std::string *lin_formula*)

Function to register this molecule from the available information.

This function will build a user defined custom molecule.

Parameters

charge	the ionic charge of the molecule
enthalpy	the standard formation enthalpy of the molecule (J/mol)
entropy	the standard formation entropy of the molecule (J/K/mol)
energy	the standard Gibb's Free Energy of formation of the molecule (J/mol)
HS	boolean to be set to true if enthalpy and entropy were given
G	boolean to be set to true if the energy was given
Phase	string denoting molecule's phase (i.e., Liquid, Aqueous, Gas, Solid)
Name	string denoting the common name of the molecule (i.e., H2O -> Water)
Formula	string denoting the formula by which the molecule is referened (i.e., CI - (aq))
lin_formula	string denoting all the atoms in the molecule (i.e., UO2(OH)2 -> UO4H2)

4.25.3.2 void Molecule::Register (std::string formula)

Function to register this molecule based on the given formula (if formula is in library)

This function will create this molecule object from the given formula, but only if that formula is already registered in the library. See the top of this class section for a list of all currently registered formulas.

Note

The formula is checked against a known set of molecules inside of the registration function If the formula is unknown, an error will print to the screen. Unknown molecules should be registered using the full registration function from above. The library can only be added to by a going in and editing the source code of the mola.cpp file. However, this is a relatively simple task.

4.25.3.3 void Molecule::setFormula (std::string form)

Sets the formula for a molecule.

4.25.3.4 void Molecule::recalculateMolarWeight ()

Forces molecule to recalculate its molar weight.

4.25.3.5 void Molecule::setMolarWeigth (double mw)

Set the molar weight of species to a constant.

4.25.3.6 void Molecule::editCharge (int c)

Change the ionic charge of a molecule.

4.25.3.7 void Molecule::editOneOxidationState (int state, std::string Symbol)

Change oxidation state of one of the given atoms (always first match found)

This function will search the list of Atoms that make up the Molecule for the given atomic Symbol. It will change the oxidation state of the first found matching atom with the given state.

4.25.3.8 void Molecule::editAllOxidationStates (int state, std::string Symbol)

Change oxidation state of all of the given atoms.

This function will search the list of Atoms that make up the Molecule for the given atomic Symbol. It will change the oxidation state of all found matching atoms with the given state.

4.25.3.9 void Molecule::calculateAvgOxiState (std::string Symbol)

Function to calculate the average oxidation state of the atoms.

This function search the atoms in the molecule for the matching atomic Symbol. It then looks at all oxidation states of that atom in the molecule and then sets all the oxidation states of that atom to the average value calculated.

4.25.3.10 void Molecule::editEnthalpy (double enthalpy)

Edit the molecules formation enthalpy (J/mol)

4.25.3.11 void Molecule::editEntropy (double entropy)

Edit the molecules formation entropy (J/K/mol)

4.25.3.12 void Molecule::editHS (double H, double S)

Edit both formation enthalpy and entropy.

This function will change or set the values for formation enthalpy (J/mol) and formation entropy (J/K/mol) based on the given values.

Parameters

Н	formation enthalpy (J/mol)
S	formation entropy (J/K/mol)

4.25.3.13 void Molecule::editEnergy (double energy)

Edit Gibb's formation energy.

4.25.3.14 void Molecule::removeOneAtom (std::string Symbol)

Removes one atom of the symbol given (always the first atom found)

4.25.3.15 void Molecule::removeAllAtoms (std::string Symbol)

Removes all atoms of the symbol given.

```
4.25.3.16 int Molecule::Charge ( )
Return the charge of the molecule.
4.25.3.17 double Molecule::MolarWeight ( )
Return the molar weight of the molecule.
4.25.3.18 bool Molecule::HaveHS ( )
Returns true if enthalpy and entropy are known.
4.25.3.19 bool Molecule::HaveEnergy ( )
Returns true if the Gibb's energy is known.
4.25.3.20 bool Molecule::isRegistered ( )
Returns true if the molecule has been registered.
4.25.3.21 double Molecule::Enthalpy ( )
Return the formation enthalpy of the molecule.
4.25.3.22 double Molecule::Entropy ( )
Return the formation entropy of the molecule.
4.25.3.23 double Molecule::Energy ( )
Return the Gibb's formation energy of the molecule.
4.25.3.24 std::string Molecule::MoleculeName ( )
Return the common name of the molecule.
4.25.3.25 std::string Molecule::MolecularFormula ( )
Return the molecular formula of the molecule.
4.25.3.26 std::string Molecule::MoleculePhase ( )
Return the phase of the molecule.
4.25.3.27 void Molecule::DisplayInfo ( )
Function to display molecule information.
```

```
4.25.4 Member Data Documentation
4.25.4.1 int Molecule::charge [protected]
Ionic charge of the molecule - specified.
4.25.4.2 double Molecule::molar_weight [protected]
Molar weight of the molecule (g/mol) - determined from atoms or specified.
4.25.4.3 double Molecule::formation_enthalpy [protected]
Enthalpy of formation of the molecule (J/mol) - constant.
4.25.4.4 double Molecule::formation_entropy [protected]
Entropy of formation of the molecule (J/K/mol) - constant.
4.25.4.5 double Molecule::formation_energy [protected]
Gibb's energy of formation (J/mol) - given.
4.25.4.6 std::string Molecule::Phase [protected]
Phase of the molecule (i.e. Solid, Liquid, Aqueous, Gas...)
4.25.4.7 std::vector<Atom> Molecule::atoms [protected]
Atoms which make up the molecule - based on Formula.
4.25.4.8 std::string Molecule::Name [private]
Name of the Molecule - Common Name (i.e. H2O = Water)
4.25.4.9 std::string Molecule::Formula [private]
Formula for the molecule - specified (i.e. H2O)
4.25.4.10 bool Molecule::haveG [private]
True = given Gibb's energy of formation.
4.25.4.11 bool Molecule::haveHS [private]
True = give enthalpy and entropy of formation.
```

```
4.25.4.12 bool Molecule::registered [private]
```

True = the object was registered.

The documentation for this class was generated from the following file:

· mola.h

4.26 MONKFISH DATA Struct Reference

```
#include <monkfish.h>
```

Public Attributes

- unsigned long int total_steps = 0
- double time old = 0.0
- double time = 0.0
- bool Print2File = true
- bool Print2Console = true
- bool DirichletBC = true
- bool NonLinear = false
- bool haveMinMax = false
- bool MultiScale = true
- int level = 2
- double t_counter = 0.0
- double t_print
- int NumComp
- · double end_time
- · double total_sorption_old
- double total_sorption
- double single_fiber_density
- double avg_fiber_density
- · double max_fiber_density
- double min_fiber_density
- double max_porosity
- double min_porosity
- · double domain_diameter
- FILE * Output
- double(* eval_eps)(int i, int I, const void *user_data)
- double(* eval_rho)(int i, int I, const void *user_data)
- double(* eval_Dex)(int i, int I, const void *user_data)
- double(* eval_ads)(int i, int I, const void *user_data)
- double(* eval_Ret)(int i, int I, const void *user_data)
- double(* eval_Cex)(int i, const void *user_data)
- double(* eval_kf)(int i, const void *user_data)
- const void * user_data
- std::vector< FINCH_DATA > finch_dat
- std::vector< MONKFISH_PARAM > param_dat
- std::vector< DOGFISH_DATA > dog_dat

4.26.1	Member Data Documentation
4.26.1.1	unsigned long int MONKFISH_DATA::total_steps = 0
4.26.1.2	double MONKFISH_DATA::time_old = 0.0
4.26.1.3	double MONKFISH_DATA::time = 0.0
4.26.1.4	bool MONKFISH_DATA::Print2File = true
4.26.1.5	bool MONKFISH_DATA::Print2Console = true
4.26.1.6	bool MONKFISH_DATA::DirichletBC = true
4.26.1.7	bool MONKFISH_DATA::NonLinear = false
4.26.1.8	bool MONKFISH_DATA::haveMinMax = false
4.26.1.9	bool MONKFISH_DATA::MultiScale = true
4.26.1.10	int MONKFISH_DATA::level = 2
4.26.1.11	double MONKFISH_DATA::t_counter = 0.0
4.26.1.12	double MONKFISH_DATA::t_print
4.26.1.13	int MONKFISH_DATA::NumComp
4.26.1.14	double MONKFISH_DATA::end_time
4.26.1.15	double MONKFISH_DATA::total_sorption_old
4.26.1.16	double MONKFISH_DATA::total_sorption
4.26.1.17	double MONKFISH_DATA::single_fiber_density
4.26.1.18	double MONKFISH_DATA::avg_fiber_density
4.26.1.19	double MONKFISH_DATA::max_fiber_density
4.26.1.20	double MONKFISH_DATA::min_fiber_density
4.26.1.21	double MONKFISH_DATA::max_porosity
4.26.1.22	double MONKFISH_DATA::min_porosity
4.26.1.23	double MONKFISH_DATA::domain_diameter
4.26.1.24	FILE* MONKFISH_DATA::Output
4.26.1.25	double(* MONKFISH_DATA::eval_eps)(int i, int I, const void *user_data)
4.26.1.26	double(* MONKFISH_DATA::eval_rho)(int i, int I, const void *user_data)
4.26.1.27	double(* MONKFISH_DATA::eval_Dex)(int i, int I, const void *user_data)

4.26.1.28	double(* MONKFISH_DATA::eval_ads)(int i, int I, const void *user_data)
4.26.1.29	$\label{lem:double} \mbox{double(* MONKFISH_DATA::eval_Ret)(int i, int I, const void *user_data)}$
4.26.1.30	double(* MONKFISH_DATA::eval_Cex)(int i, const void *user_data)
4.26.1.31	double(* MONKFISH_DATA::eval_kf)(int i, const void *user_data)
4.26.1.32	const void* MONKFISH_DATA::user_data
4.26.1.33	$std::vector < \textbf{FINCH_DATA} > MONKFISH_DATA::finch_dat$
4.26.1.34	$std::vector < \textbf{MONKFISH_PARAM} > \texttt{MONKFISH_DATA}::param_dat$
4.26.1.35	${\tt std::vector}{<} {\tt DOGFISH_DATA}{>} \ {\tt MONKFISH_DATA::dog_dat}$

The documentation for this struct was generated from the following file:

monkfish.h

4.27 MONKFISH PARAM Struct Reference

#include <monkfish.h>

Public Attributes

- double interparticle_diffusion
- double exterior_concentration
- double exterior_transfer_coeff
- double sorbed_molefraction
- double initial_sorption
- double sorption_bc
- double intraparticle_diffusion
- · double film_transfer_coeff
- Matrix< double > avg_sorption
- Matrix < double > avg_sorption_old
- Molecule species

4.27.1 Member Data Documentation

- 4.27.1.1 double MONKFISH_PARAM::interparticle_diffusion
- 4.27.1.2 double MONKFISH_PARAM::exterior_concentration
- 4.27.1.3 double MONKFISH_PARAM::exterior_transfer_coeff
- 4.27.1.4 double MONKFISH_PARAM::sorbed_molefraction
- 4.27.1.5 double MONKFISH_PARAM::initial_sorption
- 4.27.1.6 double MONKFISH_PARAM::sorption_bc
- 4.27.1.7 double MONKFISH_PARAM::intraparticle_diffusion

```
4.27.1.8 double MONKFISH_PARAM::film_transfer_coeff
```

4.27.1.9 Matrix<double> MONKFISH_PARAM::avg_sorption

4.27.1.10 Matrix < double > MONKFISH_PARAM::avg_sorption_old

4.27.1.11 Molecule MONKFISH_PARAM::species

The documentation for this struct was generated from the following file:

· monkfish.h

4.28 mSPD DATA Struct Reference

MSPD Data Structure.

```
#include <magpie.h>
```

Public Attributes

• double s

Area shape factor.

• double v

van der Waals Volume (cm\^3/mol)

double eMax

Maximum lateral interaction energy (J/mol)

• std::vector < double > eta

Binary interaction parameter matrix (i,j)

• double gama

Activity coefficient calculated from mSPD.

4.28.1 Detailed Description

MSPD Data Structure.

C-Style object holding all parameter information associated with the Modified Spreading Pressure Dependent (SPD) activity model. Each species in the gas phase will have one of these objects.

4.28.2 Member Data Documentation

4.28.2.1 double mSPD_DATA::s

Area shape factor.

4.28.2.2 double mSPD_DATA::v

van der Waals Volume (cm³/mol)

4.28.2.3 double mSPD_DATA::eMax

Maximum lateral interaction energy (J/mol)

```
4.28.2.4 std::vector<double> mSPD_DATA::eta
```

Binary interaction parameter matrix (i,j)

4.28.2.5 double mSPD_DATA::gama

Activity coefficient calculated from mSPD.

The documentation for this struct was generated from the following file:

· magpie.h

4.29 NUM_JAC_DATA Struct Reference

Data structure to form a numerical jacobian matrix with finite differences.

```
#include <lark.h>
```

Public Attributes

• double eps = sqrt(DBL_EPSILON)

Perturbation value.

• Matrix< double > Fx

Vector of function evaluations at x.

• Matrix< double > Fxp

Vector of function evaluations at x+eps.

• Matrix < double > dxj

Vector of perturbed x values.

4.29.1 Detailed Description

Data structure to form a numerical jacobian matrix with finite differences.

C-style object to be used in conjunction with the Numerical Jacobian algorithm. This algorithm will used double-precision finite-differences to formulate an approximate Jacobian matrix at the given variable state for the given residual/non-linear function.

4.29.2 Member Data Documentation

```
4.29.2.1 double NUM_JAC_DATA::eps = sqrt(DBL_EPSILON)
```

Perturbation value.

4.29.2.2 Matrix < double > NUM_JAC_DATA::Fx

Vector of function evaluations at x.

4.29.2.3 Matrix < double > NUM_JAC_DATA::Fxp

Vector of function evaluations at x+eps.

4.29.2.4 Matrix < double > NUM_JAC_DATA::dxj

Vector of perturbed x values.

The documentation for this struct was generated from the following file:

· lark.h

4.30 OPTRANS_DATA Struct Reference

Data structure for implementation of linear operator transposition.

```
#include <lark.h>
```

Public Attributes

• Matrix< double > li

The ith column vector of the identity operator.

• Matrix< double > Ai

The ith column vector of the user's linear operator.

4.30.1 Detailed Description

Data structure for implementation of linear operator transposition.

C-style object used in conjunction with the Operator Transpose algorithm to form an action of $A^{\wedge}T*r$ when A is only available as a linear operator and not a matrix. This is a sub-routine required by GCR and GMRESR to stabilize the outer iterations.

4.30.2 Member Data Documentation

4.30.2.1 Matrix < double > OPTRANS_DATA::li

The ith column vector of the identity operator.

4.30.2.2 Matrix < double > OPTRANS_DATA::Ai

The ith column vector of the user's linear operator.

The documentation for this struct was generated from the following file:

• lark.h

4.31 PCG_DATA Struct Reference

Data structure for implementation of the PCG algorithms for symmetric linear systems.

```
#include <lark.h>
```

Public Attributes

• int maxit = 0

Maximum allowable iterations - default = min(vector_size,1000)

• int iter = 0

Actual number of iterations taken.

• double alpha

Step size for new solution.

• double beta

Step size for new search direction.

• double tol_rel = 1e-6

Relative tolerance for convergence - default = 1e-6.

• double tol_abs = 1e-6

Absolution tolerance for convergence - default = 1e-6.

double res

Absolute residual norm.

· double relres

Relative residual norm.

· double relres base

Initial residual norm.

· double bestres

Best found residual norm.

• bool Output = true

True = print messages to console.

Matrix< double > x

Current solution to the linear system.

• Matrix< double > bestx

Best found solution to the linear system.

Matrix< double > r

Residual vector for the linear system.

• Matrix< double > r_old

Previous residual vector.

Matrix< double > z

Preconditioned residual vector (result of precon function)

• Matrix< double > z_old

Previous preconditioned residual vector.

Matrix< double > p

Search direction.

Matrix < double > Ap

Result of matrix-vector multiplication.

4.31.1 Detailed Description

Data structure for implementation of the PCG algorithms for symmetric linear systems.

C-style object used in conjunction with the Preconditioned Conjugate Gradient (PCG) algorithm to iteratively solve a symmetric linear system of equations. This algorithm is optimal if your linear system is symmetric, but will not work at all if your system is asymmetric. For asymmetric systems, use one of the other linear methods.

4.31.2 Member Data Documentation

4.31.2.1 int PCG_DATA::maxit = 0

Maximum allowable iterations - default = min(vector_size,1000)

4.31.2.2 int PCG_DATA::iter = 0

Actual number of iterations taken.

4.31.2.3 double PCG_DATA::alpha

Step size for new solution.

4.31.2.4 double PCG_DATA::beta

Step size for new search direction.

4.31.2.5 double PCG_DATA::tol_rel = 1e-6

Relative tolerance for convergence - default = 1e-6.

4.31.2.6 double PCG_DATA::tol_abs = 1e-6

Absolution tolerance for convergence - default = 1e-6.

4.31.2.7 double PCG_DATA::res

Absolute residual norm.

4.31.2.8 double PCG_DATA::relres

Relative residual norm.

4.31.2.9 double PCG_DATA::relres_base

Initial residual norm.

4.31.2.10 double PCG_DATA::bestres

Best found residual norm.

4.31.2.11 bool PCG_DATA::Output = true

True = print messages to console.

4.31.2.12 Matrix < double > PCG_DATA::x

Current solution to the linear system.

4.31.2.13 Matrix < double > PCG_DATA::bestx

Best found solution to the linear system.

4.31.2.14 Matrix < double > PCG_DATA::r

Residual vector for the linear system.

4.31.2.15 Matrix < double > PCG_DATA::r_old

Previous residual vector.

4.31.2.16 Matrix < double > PCG_DATA::z

Preconditioned residual vector (result of precon function)

4.31.2.17 Matrix < double > PCG_DATA::z_old

Previous preconditioned residual vector.

4.31.2.18 Matrix < double > PCG_DATA::p

Search direction.

4.31.2.19 Matrix<double> PCG_DATA::Ap

Result of matrix-vector multiplication.

The documentation for this struct was generated from the following file:

• lark.h

4.32 PeriodicTable Class Reference

Class object that store a digitial copy of all Atom objects.

```
#include <eel.h>
```

Public Member Functions

• PeriodicTable ()

Default Constructor - Build Perodic Table.

∼PeriodicTable ()

Default Destructor - Destroy the table.

• PeriodicTable (int *n, int N)

Construct a partial table from a list of atomic numbers.

PeriodicTable (std::vector < std::string > &Symbol)

Construct a partial table from a vector of atom symbols.

• PeriodicTable (std::vector< int > &n)

Construct a partial table from a vector of atomic numbers.

• void DisplayTable ()

Displays the periodic table via symbols.

Protected Attributes

std::vector < Atom > Table
 Storage vector for all atoms in the table.

Private Attributes

· int number elements

Number of atom objects being stored.

4.32.1 Detailed Description

Class object that store a digitial copy of all Atom objects.

C++ class object to hold digitally registered Atom objects. All registered atoms (Hydrogen to Ununoctium) are stored as in a vector. Currently, this object is unused, but could be modified to be explorable and used as a constant referece for all atoms in the table.

4.32.2 Constructor & Destructor Documentation

```
4.32.2.1 PeriodicTable::PeriodicTable ( )
```

Default Constructor - Build Perodic Table.

```
4.32.2.2 PeriodicTable:: ∼PeriodicTable ( )
```

Default Destructor - Destroy the table.

```
4.32.2.3 PeriodicTable::PeriodicTable ( int * n, int N )
```

Construct a partial table from a list of atomic numbers.

```
4.32.2.4 PeriodicTable::PeriodicTable ( std::vector < std::string > \& Symbol )
```

Construct a partial table from a vector of atom symbols.

```
4.32.2.5 PeriodicTable::PeriodicTable ( std::vector < int > & n )
```

Construct a partial table from a vector of atomic numbers.

4.32.3 Member Function Documentation

```
4.32.3.1 void PeriodicTable::DisplayTable ( )
```

Displays the periodic table via symbols.

4.32.4 Member Data Documentation

```
4.32.4.1 std::vector<Atom> PeriodicTable::Table [protected]
```

Storage vector for all atoms in the table.

4.32.4.2 int PeriodicTable::number_elements [private]

Number of atom objects being stored.

The documentation for this class was generated from the following file:

· eel.h

4.33 PICARD_DATA Struct Reference

Data structure for the implementation of a Picard or Fixed-Point iteration for non-linear systems.

```
#include <lark.h>
```

Public Attributes

• int maxit = 0

Maximum allowable iterations - default = min(3*vec_size,1000)

• int iter = 0

Actual number of iterations.

• double tol_rel = 1e-6

Relative tolerance for convergence - default = 1e-6.

• double tol_abs = 1e-6

Absolution tolerance for convergence - default = 1e-6.

• double res

Residual norm of the iterate.

· double relres

Relative residual norm of the iterate.

· double relres base

Initial residual norm.

· double bestres

Best found residual norm.

• bool Output = true

True = print messages to console.

Matrix< double > x0

Previous iterate solution vector.

• Matrix< double > bestx

Best found solution vector.

Matrix< double > r

Residual of the non-linear system.

4.33.1 Detailed Description

Data structure for the implementation of a Picard or Fixed-Point iteration for non-linear systems.

C-style object used in conjunction with the Picard algorithm for solving a non-linear system of equations. This is an extradorinarily simple iterative method by which a weak or loose form of the non-linear system is solved based on an initial guess. User must supplied a residual function for the non-linear system and a function representing the weak solution. Generally, this method is less efficient than Newton methods, but is significantly cheaper.

4.33.2 Member Data Documentation

4.33.2.1 int PICARD_DATA::maxit = 0

Maximum allowable iterations - default = min(3*vec_size,1000)

4.33.2.2 int PICARD_DATA::iter = 0

Actual number of iterations.

4.33.2.3 double PICARD_DATA::tol_rel = 1e-6

Relative tolerance for convergence - default = 1e-6.

4.33.2.4 double PICARD_DATA::tol_abs = 1e-6

Absolution tolerance for convergence - default = 1e-6.

4.33.2.5 double PICARD_DATA::res

Residual norm of the iterate.

4.33.2.6 double PICARD_DATA::relres

Relative residual norm of the iterate.

4.33.2.7 double PICARD_DATA::relres_base

Initial residual norm.

4.33.2.8 double PICARD_DATA::bestres

Best found residual norm.

4.33.2.9 bool PICARD_DATA::Output = true

True = print messages to console.

4.33.2.10 Matrix < double > PICARD_DATA::x0

Previous iterate solution vector.

4.33.2.11 Matrix < double > PICARD_DATA::bestx

Best found solution vector.

```
4.33.2.12 Matrix < double > PICARD_DATA::r
```

Residual of the non-linear system.

The documentation for this struct was generated from the following file:

· lark.h

4.34 PJFNK_DATA Struct Reference

Data structure for the implementation of the PJFNK algorithm for non-linear systems.

```
#include <lark.h>
```

Public Attributes

```
• int nl iter = 0
```

Number of non-linear iterations.

• int I_iter = 0

Number of linear iterations.

• int nl maxit = 0

Maximum allowable non-linear steps.

• int linear solver = -1

Flag to denote which linear solver to use - default = PJFNK Chooses.

double nl_tol_abs = 1e-6

Absolute Convergence tolerance for non-linear system - default = 1e-6.

• double nl_tol_rel = 1e-6

Relative Convergence tol for the non-linear system - default = 1e-6.

• double lin tol rel = 1e-6

Relative tolerance of the linear solver - default = 1e-6.

• double lin_tol_abs = 1e-6

Absolute tolerance of the linear solver - default = 1e-6.

• double nl_res

Absolute redidual norm for the non-linear system.

• double nl_relres

Relative residual for the non-linear system.

· double nl_res_base

Initial residual norm for the non-linear system.

double nl_bestres

Best found residual norm.

• double eps =sqrt(DBL_EPSILON)

Value of epsilon used jacvec - default = sqrt(DBL_EPSILON)

• bool NL_Output = true

True = print PJFNK messages to console.

bool L_Output = false

True = print Linear messages to console.

• bool LineSearch = false

True = use Backtracking Linesearch for global convergence.

• bool Bounce = false

True = allow Linesearch to go outside local well, False = Strict local convergence.

• Matrix< double > F

Stored fuction evaluation at x (also the residual)

Matrix< double > Fv

Stored function evaluation at x+eps*v.

Matrix< double > v

Stored vector of x+eps*v.

Matrix< double > x

Current solution vector for the non-linear system.

• Matrix< double > bestx

Best found solution vector to the non-linear system.

· GMRESLP_DATA gmreslp_dat

Data structure for the GMRESLP method.

• PCG_DATA pcg_dat

Data structure for the PCG method.

· BiCGSTAB_DATA bicgstab_dat

Data structure for the BiCGSTAB method.

· CGS DATA cgs dat

Data structure for the CGS method.

• GMRESRP_DATA gmresrp_dat

Data structure for the GMRESRP method.

GCR_DATA gcr_dat

Data structure for the GCR method.

GMRESR_DATA gmresr_dat

Data structure for the GMRESR method.

BACKTRACK_DATA backtrack_dat

Data structure for the Backtracking Linesearch algorithm.

· const void * res_data

Data structure pointer for user's residual data.

const void * precon_data

Data structure pointer for user's preconditioning data.

int(* funeval)(const Matrix< double > &x, Matrix< double > &F, const void *res_data)

Function pointer for the user's function F(x) using there data.

• int(* precon)(const Matrix< double > &r, Matrix< double > &p, const void *precon_data)

Function pointer for the user's preconditioning function for the linear system.

4.34.1 Detailed Description

Data structure for the implementation of the PJFNK algorithm for non-linear systems.

C-style object to be used in conjunction with the Preconditioned Jacobian-Free Newton-Krylov (PJFNK) method for solving a non-linear system of equations. You can use any of the Krylov methods listed in the krylov_method enum to solve the linear sub-problem. When FOM is specified as the Krylov method, this algorithm becomes equivalent to an exact Newton method. If no Krylov method is specified, then the algorithm will try to pick a method based on the problem size and availability of preconditioning.

4.34.2 Member Data Documentation

4.34.2.1 int PJFNK_DATA::nl_iter = 0

Number of non-linear iterations.

4.34.2.2 int PJFNK_DATA::I_iter = 0

Number of linear iterations.

4.34.2.3 int PJFNK_DATA::nl_maxit = 0

Maximum allowable non-linear steps.

4.34.2.4 int PJFNK_DATA::linear_solver = -1

Flag to denote which linear solver to use - default = PJFNK Chooses.

4.34.2.5 double PJFNK_DATA::nl_tol_abs = 1e-6

Absolute Convergence tolerance for non-linear system - default = 1e-6.

4.34.2.6 double PJFNK_DATA::nl_tol_rel = 1e-6

Relative Convergence tol for the non-linear system - default = 1e-6.

4.34.2.7 double PJFNK_DATA::lin_tol_rel = 1e-6

Relative tolerance of the linear solver - default = 1e-6.

4.34.2.8 double PJFNK_DATA::lin_tol_abs = 1e-6

Absolute tolerance of the linear solver - default = 1e-6.

4.34.2.9 double PJFNK_DATA::nl_res

Absolute redidual norm for the non-linear system.

4.34.2.10 double PJFNK_DATA::nl_relres

Relative residual for the non-linear system.

4.34.2.11 double PJFNK_DATA::nl_res_base

Initial residual norm for the non-linear system.

4.34.2.12 double PJFNK_DATA::nl_bestres

Best found residual norm.

4.34.2.13 double PJFNK_DATA::eps =sqrt(DBL_EPSILON)

Value of epsilon used jacvec - default = sqrt(DBL_EPSILON)

4.34.2.14 bool PJFNK_DATA::NL_Output = true

True = print PJFNK messages to console.

4.34.2.15 bool PJFNK_DATA::L_Output = false

True = print Linear messages to console.

4.34.2.16 bool PJFNK_DATA::LineSearch = false

True = use Backtracking Linesearch for global convergence.

4.34.2.17 bool PJFNK_DATA::Bounce = false

True = allow Linesearch to go outside local well, False = Strict local convergence.

4.34.2.18 Matrix < double > PJFNK_DATA::F

Stored fuction evaluation at x (also the residual)

4.34.2.19 Matrix < double > PJFNK_DATA::Fv

Stored function evaluation at x+eps*v.

4.34.2.20 Matrix < double > PJFNK_DATA::v

Stored vector of x+eps*v.

4.34.2.21 Matrix < double > PJFNK_DATA::x

Current solution vector for the non-linear system.

4.34.2.22 Matrix < double > PJFNK_DATA::bestx

Best found solution vector to the non-linear system.

4.34.2.23 GMRESLP_DATA PJFNK_DATA::gmreslp_dat

Data structure for the GMRESLP method.

4.34.2.24 PCG_DATA PJFNK_DATA::pcg_dat

Data structure for the PCG method.

4.34.2.25 BiCGSTAB_DATA PJFNK_DATA::bicgstab_dat

Data structure for the BiCGSTAB method.

4.34.2.26 CGS_DATA PJFNK_DATA::cgs_dat

Data structure for the CGS method.

4.34.2.27 GMRESRP_DATA PJFNK_DATA::gmresrp_dat

Data structure for the GMRESRP method.

4.34.2.28 GCR_DATA PJFNK_DATA::gcr_dat

Data structure for the GCR method.

4.34.2.29 GMRESR_DATA PJFNK_DATA::gmresr_dat

Data structure for the GMRESR method.

4.34.2.30 BACKTRACK DATA PJFNK_DATA::backtrack_dat

Data structure for the Backtracking Linesearch algorithm.

4.34.2.31 const void* PJFNK_DATA::res_data

Data structure pointer for user's residual data.

4.34.2.32 const void* PJFNK_DATA::precon_data

Data structure pointer for user's preconditioning data.

4.34.2.33 int(* PJFNK_DATA::funeval)(const Matrix < double > &x, Matrix < double > &F, const void *res_data)

Function pointer for the user's function F(x) using there data.

 $4.34.2.34 \quad \text{int} (* \, \text{PJFNK_DATA::precon}) (\text{const Matrix} < \text{double} > \&r, \, \text{Matrix} < \text{double} > \&p, \, \text{const void} \, *precon_data)$

Function pointer for the user's preconditioning function for the linear system.

The documentation for this struct was generated from the following file:

• lark.h

4.35 Precipitation Class Reference

#include <shark.h>

Inheritance diagram for Precipitation:

Additional Inherited Members

The documentation for this class was generated from the following file:

· shark.h

4.36 PURE GAS Struct Reference

Data structure holding all the parameters for each pure gas spieces.

#include <egret.h>

Public Attributes

· double molecular weight

Given: molecular weights (g/mol)

• double Sutherland_Temp

Given: Sutherland's Reference Temperature (K)

• double Sutherland_Const

Given: Sutherland's Constant (K)

· double Sutherland_Viscosity

Given: Sutherland's Reference Viscosity (g/cm/s)

double specific_heat

Given: Specific heat of the gas (J/g/K)

• double molecular_diffusion

Calculated: molecular diffusivities (cm²/s)

• double dynamic_viscosity

Calculated: dynamic viscosities (g/cm/s)

· double density

Calculated: gas densities (g/cm^{\(\circ\)}3) {use RE3}.

• double Schmidt

Calculated: Value of the Schmidt number (-)

4.36.1 Detailed Description

Data structure holding all the parameters for each pure gas spieces.

C-style object that holds the constants and parameters associated with each pure gas species in the overall mixture. This information is used in conjunction with the kinetic theory of gases to produce approximations to many different gas properties needed in simulating gas dynamics, mobility of a gas through porous media, as well as some kinetic adsorption parameters such as diffusivities.

4.36.2 Member Data Documentation

4.36.2.1 double PURE_GAS::molecular_weight

Given: molecular weights (g/mol)

4.36.2.2 double PURE_GAS::Sutherland_Temp

Given: Sutherland's Reference Temperature (K)

4.36.2.3 double PURE_GAS::Sutherland_Const

Given: Sutherland's Constant (K)

4.36.2.4 double PURE_GAS::Sutherland_Viscosity

Given: Sutherland's Reference Viscosity (g/cm/s)

4.36.2.5 double PURE_GAS::specific_heat

Given: Specific heat of the gas (J/g/K)

4.36.2.6 double PURE_GAS::molecular_diffusion

Calculated: molecular diffusivities (cm²/s)

4.36.2.7 double PURE_GAS::dynamic_viscosity

Calculated: dynamic viscosities (g/cm/s)

4.36.2.8 double PURE_GAS::density

Calculated: gas densities (g/cm³) {use RE3}.

4.36.2.9 double PURE_GAS::Schmidt

Calculated: Value of the Schmidt number (-)

The documentation for this struct was generated from the following file:

• egret.h

4.37 Reaction Class Reference

#include <shark.h>

Inheritance diagram for Reaction:

Public Member Functions

- Reaction ()
- ∼Reaction ()
- void Initialize_List (MasterSpeciesList &List)
- void Display_Info ()
- void Set_Stoichiometric (int i, double v)
- void Set Equilibrium (double v)
- void Set_Enthalpy (double H)
- void Set_Entropy (double S)
- void Set_EnthalpyANDEntropy (double H, double S)
- void Set_Energy (double G)
- void checkSpeciesEnergies ()
- void calculateEnergies ()
- void calculateEquilibrium (double T)
- bool haveEquilibrium ()
- double Get_Stoichiometric (int i)
- double Get_Equilibrium ()
- double Get_Enthalpy ()
- double Get_Entropy ()
- double Get_Energy ()
- double Eval_Residual (const Matrix< double > &x, const Matrix< double > &gama)

Protected Attributes

- MasterSpeciesList * List
- std::vector< double > Stoichiometric
- double Equilibrium
- · double enthalpy
- double entropy
- double energy
- bool CanCalcHS
- bool CanCalcG
- bool HaveHS
- bool HaveG
- bool HaveEquil

4.37.1 Constructor & Destructor Documentation

- 4.37.1.1 Reaction::Reaction ()
- 4.37.1.2 Reaction::~Reaction()

4.37.2 Member Function Documentation

```
4.37.2.1 void Reaction::Initialize_List ( MasterSpeciesList & List )
4.37.2.2 void Reaction::Display_Info ( )
4.37.2.3 void Reaction::Set_Stoichiometric (int i, double v)
4.37.2.4 void Reaction::Set_Equilibrium ( double v )
4.37.2.5 void Reaction::Set_Enthalpy ( double H )
4.37.2.6 void Reaction::Set_Entropy ( double S )
4.37.2.7 void Reaction::Set_EnthalpyANDEntropy ( double H, double S )
4.37.2.8 void Reaction::Set_Energy ( double G )
4.37.2.9 void Reaction::checkSpeciesEnergies ( )
4.37.2.10 void Reaction::calculateEnergies ( )
4.37.2.11 void Reaction::calculateEquilibrium ( double T )
4.37.2.12 bool Reaction::haveEquilibrium ( )
4.37.2.13 double Reaction::Get_Stoichiometric ( int i )
4.37.2.14 double Reaction::Get_Equilibrium ( )
4.37.2.15 double Reaction::Get_Enthalpy ( )
4.37.2.16 double Reaction::Get_Entropy ( )
4.37.2.17 double Reaction::Get_Energy ( )
4.37.2.18 double Reaction::Eval_Residual ( const Matrix < double > & x, const Matrix < double > & gama )
4.37.3
        Member Data Documentation
4.37.3.1 MasterSpeciesList* Reaction::List [protected]
4.37.3.2 std::vector<double> Reaction::Stoichiometric [protected]
4.37.3.3 double Reaction::Equilibrium [protected]
4.37.3.4 double Reaction::enthalpy [protected]
4.37.3.5 double Reaction::entropy [protected]
4.37.3.6 double Reaction::energy [protected]
4.37.3.7 bool Reaction::CanCalcHS [protected]
4.37.3.8 bool Reaction::CanCalcG [protected]
4.37.3.9 bool Reaction::HaveHS [protected]
```

```
4.37.3.10 bool Reaction::HaveG [protected]4.37.3.11 bool Reaction::HaveEquil [protected]
```

The documentation for this class was generated from the following file:

• shark.h

4.38 SCOPSOWL DATA Struct Reference

#include <scopsowl.h>

Public Attributes

- unsigned long int total_steps
- int coord_macro
- · int coord_micro
- int level = 2
- double sim_time
- double t_old
- double t
- double t_counter = 0.0
- double t_print
- bool Print2File = true
- bool Print2Console = true
- bool SurfDiff = true
- bool Heterogeneous = true
- double gas_velocity
- · double total pressure
- double gas_temperature
- · double pellet_radius
- · double crystal_radius
- double char_macro
- · double char_micro
- double binder_fraction
- double binder_porosity
- double binder_poresize
- double pellet_density
- bool DirichletBC = false
- bool NonLinear = true
- std::vector< double > y
- std::vector< double > tempy
- FILE * OutputFile
- double(* eval_ads)(int i, int I, const void *user_data)
- double(* eval_retard)(int i, int I, const void *user_data)
- double(* eval_diff)(int i, int I, const void *user_data)
- double(* eval_surfDiff)(int i, int I, const void *user_data)
- double(* eval_kf)(int i, const void *user_data)
- const void * user_data
- MIXED_GAS * gas_dat
- MAGPIE DATA magpie dat
- std::vector< FINCH DATA > finch dat
- std::vector< SCOPSOWL_PARAM_DATA > param_dat
- std::vector< SKUA_DATA > skua_dat

4.38.1	Member Data Documentation
4.38.1.1	unsigned long int SCOPSOWL_DATA::total_steps
4.38.1.2	int SCOPSOWL_DATA::coord_macro
4.38.1.3	int SCOPSOWL_DATA::coord_micro
4.38.1.4	int SCOPSOWL_DATA::level = 2
4.38.1.5	double SCOPSOWL_DATA::sim_time
4.38.1.6	double SCOPSOWL_DATA::t_old
4.38.1.7	double SCOPSOWL_DATA::t
4.38.1.8	double SCOPSOWL_DATA::t_counter = 0.0
4.38.1.9	double SCOPSOWL_DATA::t_print
4.38.1.10	bool SCOPSOWL_DATA::Print2File = true
4.38.1.11	bool SCOPSOWL_DATA::Print2Console = true
4.38.1.12	bool SCOPSOWL_DATA::SurfDiff = true
4.38.1.13	bool SCOPSOWL_DATA::Heterogeneous = true
4.38.1.14	double SCOPSOWL_DATA::gas_velocity
4.38.1.15	double SCOPSOWL_DATA::total_pressure
4.38.1.16	double SCOPSOWL_DATA::gas_temperature
4.38.1.17	double SCOPSOWL_DATA::pellet_radius
4.38.1.18	double SCOPSOWL_DATA::crystal_radius
4.38.1.19	double SCOPSOWL_DATA::char_macro
4.38.1.20	double SCOPSOWL_DATA::char_micro
4.38.1.21	double SCOPSOWL_DATA::binder_fraction
4.38.1.22	double SCOPSOWL_DATA::binder_porosity
4.38.1.23	double SCOPSOWL_DATA::binder_poresize
4.38.1.24	double SCOPSOWL_DATA::pellet_density
4.38.1.25	bool SCOPSOWL_DATA::DirichletBC = false
4.38.1.26	bool SCOPSOWL_DATA::NonLinear = true
4.38.1.27	std::vector <double> SCOPSOWL_DATA::y</double>

```
4.38.1.28 std::vector<double> SCOPSOWL_DATA::tempy

4.38.1.29 FILE* SCOPSOWL_DATA::OutputFile

4.38.1.30 double(* SCOPSOWL_DATA::eval_ads)(int i, int I, const void *user_data)

4.38.1.31 double(* SCOPSOWL_DATA::eval_retard)(int i, int I, const void *user_data)

4.38.1.32 double(* SCOPSOWL_DATA::eval_diff)(int i, int I, const void *user_data)

4.38.1.33 double(* SCOPSOWL_DATA::eval_surfDiff)(int i, int I, const void *user_data)

4.38.1.34 double(* SCOPSOWL_DATA::eval_kf)(int i, const void *user_data)

4.38.1.35 const void* SCOPSOWL_DATA::user_data

4.38.1.36 MIXED_GAS* SCOPSOWL_DATA::gas_dat

4.38.1.37 MAGPIE_DATA SCOPSOWL_DATA::magpie_dat

4.38.1.38 std::vector<FINCH_DATA> SCOPSOWL_DATA::finch_dat

4.38.1.39 std::vector<SCOPSOWL_PARAM_DATA> SCOPSOWL_DATA::param_dat

4.38.1.40 std::vector<SKUA_DATA> SCOPSOWL_DATA::skua_dat
```

The documentation for this struct was generated from the following file:

· scopsowl.h

4.39 SCOPSOWL_OPT_DATA Struct Reference

#include <scopsowl_opt.h>

Public Attributes

- int num_curves
- · int evaluation
- unsigned long int total_eval
- · int current_points
- int num_params = 1
- · int diffusion_type
- · int adsorb_index
- int max_guess_iter = 20
- · bool Optimize
- bool Rough
- double current_temp
- double current_press
- · double current_equil
- · double simulation_equil
- · double max_bias
- double min_bias
- double e_norm
- double f_bias

- double e_norm_old
- · double f_bias_old
- · double param_guess
- double param_guess_old
- double rel_tol_norm = 0.01
- double abs_tol_bias = 1.0
- std::vector< double > y_base
- std::vector< double > q_data
- $std::vector < double > q_sim$
- std::vector< double > t
- FILE * ParamFile
- FILE * CompareFile
- SCOPSOWL_DATA owl_dat
- 4.39.1 Member Data Documentation
- 4.39.1.1 int SCOPSOWL_OPT_DATA::num_curves
- 4.39.1.2 int SCOPSOWL_OPT_DATA::evaluation
- 4.39.1.3 unsigned long int SCOPSOWL_OPT_DATA::total_eval
- 4.39.1.4 int SCOPSOWL_OPT_DATA::current_points
- 4.39.1.5 int SCOPSOWL_OPT_DATA::num_params = 1
- 4.39.1.6 int SCOPSOWL_OPT_DATA::diffusion_type
- 4.39.1.7 int SCOPSOWL_OPT_DATA::adsorb_index
- 4.39.1.8 int SCOPSOWL_OPT_DATA::max_guess_iter = 20
- 4.39.1.9 bool SCOPSOWL_OPT_DATA::Optimize
- 4.39.1.10 bool SCOPSOWL_OPT_DATA::Rough
- 4.39.1.11 double SCOPSOWL_OPT_DATA::current_temp
- 4.39.1.12 double SCOPSOWL_OPT_DATA::current_press
- 4.39.1.13 double SCOPSOWL_OPT_DATA::current_equil
- 4.39.1.14 double SCOPSOWL_OPT_DATA::simulation_equil
- 4.39.1.15 double SCOPSOWL_OPT_DATA::max_bias
- 4.39.1.16 double SCOPSOWL_OPT_DATA::min_bias
- 4.39.1.17 double SCOPSOWL_OPT_DATA::e_norm
- 4.39.1.18 double SCOPSOWL_OPT_DATA::f_bias
- 4.39.1.19 double SCOPSOWL_OPT_DATA::e_norm_old
- 4.39.1.20 double SCOPSOWL_OPT_DATA::f_bias_old

```
4.39.1.21 double SCOPSOWL_OPT_DATA::param_guess
4.39.1.22 double SCOPSOWL_OPT_DATA::param_guess_old
4.39.1.23 double SCOPSOWL_OPT_DATA::rel_tol_norm = 0.01
4.39.1.24 double SCOPSOWL_OPT_DATA::abs_tol_bias = 1.0
4.39.1.25 std::vector<double> SCOPSOWL_OPT_DATA::y_base
4.39.1.26 std::vector<double> SCOPSOWL_OPT_DATA::q_data
4.39.1.27 std::vector<double> SCOPSOWL_OPT_DATA::q_sim
4.39.1.28 std::vector<double> SCOPSOWL_OPT_DATA::t
4.39.1.29 FILE* SCOPSOWL_OPT_DATA::CompareFile
4.39.1.31 SCOPSOWL_DATA SCOPSOWL_OPT_DATA::owl_dat
```

The documentation for this struct was generated from the following file:

· scopsowl_opt.h

4.40 SCOPSOWL_PARAM_DATA Struct Reference

#include <scopsowl.h>

Public Attributes

- Matrix< double > qAvg
- Matrix< double > qAvg_old
- Matrix< double > Qst
- Matrix< double > Qst_old
- Matrix< double > dq_dc
- double xIC
- double qIntegralAvg
- double qIntegralAvg_old
- double QstAvg
- double QstAvg_old
- double qo
- double Qsto
- double dq_dco
- double pore_diffusion
- double film_transfer
- double activation_energy
- double ref_diffusion
- double ref_temperature
- · double affinity
- double ref_pressure
- bool Adsorbable
- std::string speciesName

4.40.1	Member Data Documentation
4.40.1.1	Matrix < double > SCOPSOWL_PARAM_DATA::qAvg
4.40.1.2	Matrix < double > SCOPSOWL_PARAM_DATA::qAvg_old
4.40.1.3	Matrix < double > SCOPSOWL_PARAM_DATA::Qst
4.40.1.4	${\bf Matrix}{<}{\bf double}{>}{\bf SCOPSOWL_PARAM_DATA::Qst_old}$
4.40.1.5	${\bf Matrix}{<}{\bf double}{>}{\bf SCOPSOWL_PARAM_DATA}{::}{\bf dq_dc}$
4.40.1.6	double SCOPSOWL_PARAM_DATA::xIC
4.40.1.7	double SCOPSOWL_PARAM_DATA::qIntegralAvg
4.40.1.8	double SCOPSOWL_PARAM_DATA::qIntegralAvg_old
4.40.1.9	double SCOPSOWL_PARAM_DATA::QstAvg
4.40.1.10	double SCOPSOWL_PARAM_DATA::QstAvg_old
4.40.1.11	double SCOPSOWL_PARAM_DATA::qo
4.40.1.12	double SCOPSOWL_PARAM_DATA::Qsto
4.40.1.13	double SCOPSOWL_PARAM_DATA::dq_dco
4.40.1.14	double SCOPSOWL_PARAM_DATA::pore_diffusion
4.40.1.15	double SCOPSOWL_PARAM_DATA::film_transfer
4.40.1.16	double SCOPSOWL_PARAM_DATA::activation_energy
4.40.1.17	double SCOPSOWL_PARAM_DATA::ref_diffusion
4.40.1.18	double SCOPSOWL_PARAM_DATA::ref_temperature
4.40.1.19	double SCOPSOWL_PARAM_DATA::affinity
4.40.1.20	double SCOPSOWL_PARAM_DATA::ref_pressure
4.40.1.21	bool SCOPSOWL_PARAM_DATA::Adsorbable
4.40.1.22	std::string SCOPSOWL_PARAM_DATA::speciesName

The documentation for this struct was generated from the following file:

• scopsowl.h

4.41 SHARK_DATA Struct Reference

#include <shark.h>

Public Attributes

```
    MasterSpeciesList MasterList

• std::vector< Reaction > ReactionList

    std::vector < MassBalance > MassBalanceList

• std::vector< UnsteadyReaction > UnsteadyList
std::vector< double(*)(const</li>
  Matrix < double > &x,
  SHARK_DATA *shark_dat, const
  void *data) > OtherList
· int numvar
· int num ssr
· int num mbe
· int num_usr
• int num other = 0
• int act fun = IDEAL
• int totalsteps = 0
• int timesteps = 0
• int pH_index = -1
• int pOH_index = -1
• double simulationtime = 0.0
• double dt = 0.1

    double dt_min = sqrt(DBL_EPSILON)

• double t out = 0.0
• double t_count = 0.0
• double time = 0.0
• double time old = 0.0
• double pH = 7.0
• double Norm = 0.0
• double dielectric_const = 78.325
• double temperature = 298.15
• bool steadystate = true
• bool TimeAdaptivity = false

    bool const_pH = false

    bool SpeciationCurve = false

• bool Console_Output = true
• bool File Output = false
• bool Contains pH = false
• bool Contains_pOH = false
• bool Converged = false
• Matrix< double > X_old

    Matrix< double > X_new

• Matrix< double > Conc old
• Matrix< double > Conc_new

    Matrix< double > activity new

    Matrix < double > activity_old

• int(* EvalActivity)(const Matrix < double > &x, Matrix < double > &F, const void *data)
• int(* Residual )(const Matrix< double > &x, Matrix< double > &F, const void *data)
• int(* lin\_precon)(const Matrix < double > &r, Matrix < double > &p, const void *data)
• PJFNK_DATA Newton_data
· const void * activity_data
· const void * residual_data
const void * precon_data
```

• const void * other data FILE * OutputFile

· yaml_cpp_class yaml_object

4.41.1	Member Data Documentation
4.41.1.1	MasterSpeciesList SHARK_DATA::MasterList
4.41.1.2	std::vector <reaction> SHARK_DATA::ReactionList</reaction>
4.41.1.3	std::vector <massbalance> SHARK_DATA::MassBalanceList</massbalance>
4.41.1.4	std::vector <unsteadyreaction> SHARK_DATA::UnsteadyList</unsteadyreaction>
	std::vector< double (*) (const Matrix <double> &x, SHARK_DATA *shark_dat, const void *data) > SHARK_DATA::OtherList</double>
4.41.1.6	int SHARK_DATA::numvar
4.41.1.7	int SHARK_DATA::num_ssr
4.41.1.8	int SHARK_DATA::num_mbe
4.41.1.9	int SHARK_DATA::num_usr
4.41.1.10	int SHARK_DATA::num_other = 0
4.41.1.11	int SHARK_DATA::act_fun = IDEAL
4.41.1.12	int SHARK_DATA::totalsteps = 0
4.41.1.13	int SHARK_DATA::timesteps = 0
4.41.1.14	int SHARK_DATA::pH_index = -1
4.41.1.15	int SHARK_DATA::pOH_index = -1
4.41.1.16	double SHARK_DATA::simulationtime = 0.0
4.41.1.17	double SHARK_DATA::dt = 0.1
4.41.1.18	double SHARK_DATA::dt_min = sqrt(DBL_EPSILON)
4.41.1.19	double SHARK_DATA::t_out = 0.0
4.41.1.20	double SHARK_DATA::t_count = 0.0
4.41.1.21	double SHARK_DATA::time = 0.0
4.41.1.22	double SHARK_DATA::time_old = 0.0
4.41.1.23	double SHARK_DATA::pH = 7.0
4.41.1.24	double SHARK_DATA::Norm = 0.0
4.41.1.25	double SHARK_DATA::dielectric_const = 78.325
4.41.1.26	double SHARK_DATA::temperature = 298.15
4.41.1.27	bool SHARK_DATA::steadystate = true

4.41.1	1.28	bool SHARK_DATA::TimeAdaptivity = false
4.41.1	1.29	bool SHARK_DATA::const_pH = false
4.41.1	1.30	bool SHARK_DATA::SpeciationCurve = false
4.41.1	1.31	bool SHARK_DATA::Console_Output = true
4.41.1	1.32	bool SHARK_DATA::File_Output = false
4.41.1	1.33	bool SHARK_DATA::Contains_pH = false
4.41.1	1.34	bool SHARK_DATA::Contains_pOH = false
4.41.1	1.35	bool SHARK_DATA::Converged = false
4.41.1	1.36	Matrix < double > SHARK_DATA::X_old
4.41.1	1.37	Matrix < double > SHARK_DATA::X_new
4.41.1	1.38	Matrix < double > SHARK_DATA::Conc_old
4.41.1	1.39	Matrix < double > SHARK_DATA::Conc_new
4.41.1	1.40	Matrix < double > SHARK_DATA::activity_new
4.41.1	1.41	Matrix < double > SHARK_DATA::activity_old
4.41.1	1.42	$int(* \ SHARK_DATA::EvalActivity) (const \ Matrix < double > \&x, \ Matrix < double > \&F, \ const \ void \ *data)$
4.41.1	1.43	$int(* \ SHARK_DATA::Residual) (const \ Matrix < double > \&x, \\ Matrix < double > \&F, const \ void \ *data)$
4.41.1	1.44	$int(* \ SHARK_DATA:: lin_precon) (const \ Matrix < double > \&r, \ Matrix < double > \&p, \ const \ void \ *data)$
4.41.1	1.45	PJFNK_DATA SHARK_DATA::Newton_data
4.41.1	1.46	const void* SHARK_DATA::activity_data
4.41.1	1.47	const void* SHARK_DATA::residual_data
4.41.1	1.48	const void* SHARK_DATA::precon_data
4.41.1	1.49	const void* SHARK_DATA::other_data
4.41.1	1.50	FILE* SHARK_DATA::OutputFile
4.41.1	1.51	yaml_cpp_class SHARK_DATA::yaml_object

The documentation for this struct was generated from the following file:

• shark.h

4.42 SKUA_DATA Struct Reference

#include <skua.h>

Public Attributes

- unsigned long int total_steps
- int coord
- · double sim time
- double t_old
- double t
- double t_counter = 0.0
- double t_print
- double qTn
- double qTnp1
- bool Print2File = true
- bool Print2Console = true
- · double gas_velocity
- · double pellet_radius
- · double char_measure
- bool DirichletBC = true
- bool NonLinear = true
- std::vector< double > y
- FILE * OutputFile
- double(* eval_diff)(int i, int I, const void *user_data)
- double(* eval_kf)(int i, const void *user_data)
- const void * user_data
- MAGPIE_DATA magpie_dat
- MIXED_GAS * gas_dat
- std::vector< FINCH_DATA > finch_dat
- std::vector < SKUA_PARAM > param_dat
- 4.42.1 Member Data Documentation
- 4.42.1.1 unsigned long int SKUA_DATA::total_steps
- 4.42.1.2 int SKUA_DATA::coord
- 4.42.1.3 double SKUA_DATA::sim_time
- 4.42.1.4 double SKUA_DATA::t_old
- 4.42.1.5 double SKUA_DATA::t
- 4.42.1.6 double SKUA_DATA::t_counter = 0.0
- 4.42.1.7 double SKUA_DATA::t_print
- 4.42.1.8 double SKUA_DATA::qTn
- 4.42.1.9 double SKUA_DATA::qTnp1
- 4.42.1.10 bool SKUA_DATA::Print2File = true
- 4.42.1.11 bool SKUA_DATA::Print2Console = true
- 4.42.1.12 double SKUA_DATA::gas_velocity

```
4.42.1.13 double SKUA_DATA::pellet_radius
4.42.1.14 double SKUA_DATA::char_measure
4.42.1.15 bool SKUA_DATA::DirichletBC = true
4.42.1.16 bool SKUA_DATA::NonLinear = true
4.42.1.17 std::vector<double> SKUA_DATA::y
4.42.1.18 FILE* SKUA_DATA::OutputFile
4.42.1.19 double(* SKUA_DATA::eval_diff)(int i, int I, const void *user_data)
4.42.1.20 double(* SKUA_DATA::eval_kf)(int i, const void *user_data)
4.42.1.21 const void* SKUA_DATA::user_data
4.42.1.22 MAGPIE_DATA SKUA_DATA::magpie_dat
4.42.1.23 MIXED_GAS* SKUA_DATA::gas_dat
4.42.1.24 std::vector<FINCH_DATA> SKUA_DATA::finch_dat
4.42.1.25 std::vector<SKUA_PARAM> SKUA_DATA::param_dat
```

The documentation for this struct was generated from the following file:

• skua.h

4.43 SKUA_OPT_DATA Struct Reference

```
#include <skua_opt.h>
```

Public Attributes

- int num_curves
- · int evaluation
- unsigned long int total_eval
- · int current_points
- int num_params = 1
- int diffusion_type
- · int adsorb_index
- int max_guess_iter = 20
- · bool Optimize
- bool Rough
- double current_temp
- double current_press
- · double current_equil
- double simulation_equil
- · double max_bias
- double min_bias
- double e_norm
- double f_bias

- double e_norm_old
- · double f_bias_old
- · double param_guess
- double param_guess_old
- double rel_tol_norm = 0.1
- double abs_tol_bias = 0.1
- std::vector< double > y_base
- std::vector< double > q_data
- std::vector< double > q_sim
- std::vector< double > t
- FILE * ParamFile
- FILE * CompareFile
- SKUA_DATA skua_dat
- 4.43.1 Member Data Documentation
- 4.43.1.1 int SKUA_OPT_DATA::num_curves
- 4.43.1.2 int SKUA_OPT_DATA::evaluation
- 4.43.1.3 unsigned long int SKUA_OPT_DATA::total_eval
- 4.43.1.4 int SKUA_OPT_DATA::current_points
- 4.43.1.5 int SKUA_OPT_DATA::num_params = 1
- 4.43.1.6 int SKUA_OPT_DATA::diffusion_type
- 4.43.1.7 int SKUA_OPT_DATA::adsorb_index
- 4.43.1.8 int SKUA_OPT_DATA::max_guess_iter = 20
- 4.43.1.9 bool SKUA_OPT_DATA::Optimize
- 4.43.1.10 bool SKUA_OPT_DATA::Rough
- 4.43.1.11 double SKUA_OPT_DATA::current_temp
- 4.43.1.12 double SKUA_OPT_DATA::current_press
- 4.43.1.13 double SKUA_OPT_DATA::current_equil
- 4.43.1.14 double SKUA_OPT_DATA::simulation_equil
- 4.43.1.15 double SKUA_OPT_DATA::max_bias
- 4.43.1.16 double SKUA_OPT_DATA::min_bias
- 4.43.1.17 double SKUA_OPT_DATA::e_norm
- 4.43.1.18 double SKUA_OPT_DATA::f_bias
- 4.43.1.19 double SKUA_OPT_DATA::e_norm_old
- 4.43.1.20 double SKUA_OPT_DATA::f_bias_old

4.43.1.21	double SKUA_OPT_DATA::param_guess
4.43.1.22	double SKUA_OPT_DATA::param_guess_old
4.43.1.23	double SKUA_OPT_DATA::rel_tol_norm = 0.1
4.43.1.24	double SKUA_OPT_DATA::abs_tol_bias = 0.1
4.43.1.25	std::vector <double> SKUA_OPT_DATA::y_base</double>
4.43.1.26	std::vector <double> SKUA_OPT_DATA::q_data</double>
4.43.1.27	$std::vector < double > SKUA_OPT_DATA::q_sim$
4.43.1.28	std::vector <double> SKUA_OPT_DATA::t</double>
4.43.1.29	FILE* SKUA_OPT_DATA::ParamFile
4.43.1.30	FILE* SKUA_OPT_DATA::CompareFile
4.43.1.31	SKUA_DATA SKUA_OPT_DATA::skua_dat

The documentation for this struct was generated from the following file:

• skua_opt.h

4.44 SKUA_PARAM Struct Reference

#include <skua.h>

Public Attributes

- double activation_energy
- double ref_diffusion
- double ref_temperature
- · double affinity
- double ref_pressure
- double film_transfer
- double xIC
- double y_eff
- double **Qstn**
- double Qstnp1
- double xn
- double xnp1
- bool Adsorbable
- std::string speciesName

4.44.1 Member Data Documentation

- 4.44.1.1 double SKUA_PARAM::activation_energy
- 4.44.1.2 double SKUA_PARAM::ref_diffusion

```
4.44.1.3 double SKUA_PARAM::ref_temperature
4.44.1.4 double SKUA_PARAM::affinity
4.44.1.5 double SKUA_PARAM::ref_pressure
4.44.1.6 double SKUA_PARAM::film_transfer
4.44.1.7 double SKUA_PARAM::xIC
4.44.1.8 double SKUA_PARAM::y_eff
4.44.1.9 double SKUA_PARAM::Qstn
4.44.1.10 double SKUA_PARAM::Qstn
4.44.1.11 double SKUA_PARAM::xn
4.44.1.12 double SKUA_PARAM::xn
4.44.1.13 bool SKUA_PARAM::xnp1
4.44.1.14 std::string SKUA_PARAM::speciesName
```

The documentation for this struct was generated from the following file:

• skua.h

4.45 Speciation_Test01_Data Struct Reference

#include <sandbox.h>

Public Attributes

- int N = 4
- const double logKw = -14.0
- const double logKa1 = -6.35
- const double logKa2 = -10.33
- double CT = 0.1786
- double NaT = 0.1786
- std::vector< Molecule > x
- Matrix < double > Jacobian
- $\bullet \ \, \mathsf{Matrix} \! < \mathsf{double} > \mathsf{NumJac}$
- Matrix< double > logC
- Matrix < double > C

4.45.1 Member Data Documentation

- 4.45.1.1 int Speciation_Test01_Data::N = 4
- 4.45.1.2 const double Speciation_Test01_Data::logKw = -14.0
- 4.45.1.3 const double Speciation_Test01_Data::logKa1 = -6.35

4.45.1.4 const double Speciation_Test01_Data::logKa2 = -10.33
4.45.1.5 double Speciation_Test01_Data::CT = 0.1786
4.45.1.6 double Speciation_Test01_Data::NaT = 0.1786
4.45.1.7 std::vector<Molecule> Speciation_Test01_Data::x
4.45.1.8 Matrix<double> Speciation_Test01_Data::Jacobian
4.45.1.9 Matrix<double> Speciation_Test01_Data::NumJac
4.45.1.10 Matrix<double> Speciation_Test01_Data::logC

The documentation for this struct was generated from the following file:

• sandbox.h

4.46 SubHeader Class Reference

4.45.1.11 Matrix < double > Speciation_Test01_Data::C

#include <yaml_wrapper.h>

Inheritance diagram for SubHeader:

Public Member Functions

- SubHeader ()
- ∼SubHeader ()
- SubHeader (const SubHeader &subheader)
- SubHeader (const KeyValueMap &map)
- SubHeader (std::string name)
- SubHeader (std::string name, const KeyValueMap &map)
- SubHeader & operator= (const SubHeader &sub)
- ValueTypePair & operator[] (const std::string key)
- ValueTypePair operator[] (const std::string key) const
- KeyValueMap & getMap ()
- void clear ()
- void addPair (std::string key, std::string val)
- void addPair (std::string key, std::string val, int type)
- void setName (std::string name)
- void setAlias (std::string alias)
- void setAlias (std::string alias, int state)
- void setNameAliasPair (std::string name, std::string alias, int state)
- void setState (int state)
- void DisplayContents ()
- std::string getName ()

- std::string getAlias ()
- bool isAlias ()
- bool isAnchor ()
- int getState ()

Protected Attributes

- KeyValueMap Data_Map
- · std::string name
- std::string alias
- int state

```
4.46.1 Constructor & Destructor Documentation
```

4.46.2.13 void SubHeader::DisplayContents ()

```
4.46.1.1 SubHeader::SubHeader ( )
4.46.1.2 SubHeader::\simSubHeader ( )
4.46.1.3 SubHeader::SubHeader ( const SubHeader & subheader )
4.46.1.4 SubHeader::SubHeader ( const KeyValueMap & map )
4.46.1.5 SubHeader::SubHeader ( std::string name )
4.46.1.6 SubHeader::SubHeader ( std::string name, const KeyValueMap & map )
4.46.2 Member Function Documentation
4.46.2.1 SubHeader & SubHeader::operator= ( const SubHeader & sub )
4.46.2.2 ValueTypePair& SubHeader::operator[] ( const std::string key )
4.46.2.3
         ValueTypePair SubHeader::operator[] ( const std::string key ) const
4.46.2.4 KeyValueMap& SubHeader::getMap ( )
4.46.2.5 void SubHeader::clear ( )
4.46.2.6 void SubHeader::addPair ( std::string key, std::string val )
4.46.2.7 void SubHeader::addPair ( std::string key, std::string val, int type )
4.46.2.8 void SubHeader::setName ( std::string name )
4.46.2.9 void SubHeader::setAlias ( std::string alias )
4.46.2.10 void SubHeader::setAlias ( std::string alias, int state )
4.46.2.11 void SubHeader::setNameAliasPair ( std::string name, std::string alias, int state )
4.46.2.12 void SubHeader::setState ( int state )
```

```
4.46.2.14 std::string SubHeader::getName()
4.46.2.15 std::string SubHeader::getAlias()
4.46.2.16 bool SubHeader::isAlias()
4.46.2.17 bool SubHeader::isAnchor()
4.46.2.18 int SubHeader::getState()
4.46.3 Member Data Documentation
4.46.3.1 KeyValueMap SubHeader::Data_Map [protected]
4.46.3.2 std::string SubHeader::name [protected]
4.46.3.3 std::string SubHeader::alias [protected]
4.46.3.4 int SubHeader::state [protected]
```

The documentation for this class was generated from the following file:

• yaml_wrapper.h

4.47 SYSTEM DATA Struct Reference

```
System Data Structure.
```

```
#include <magpie.h>
```

Public Attributes

```
• double T
```

System Temperature (K)

· double PT

Total Pressure (kPa)

double qT

Total Amount adsorbed (mol/kg)

• double PI

Total Lumped Spreading Pressure (mol/kg)

double pi

Actual Spreading pressure (J/m^2)

• double As

Specific surface area of adsorbent (m\^2/kg)

• int N

Total Number of Components.

- int I
- int J
- int K

Special indices used to keep track of sub-systems.

• unsigned long int total_eval

Counter to keep track of total number of non-linear steps.

· double avg_norm

Used to store all norms from evaluations then average at end of run.

• double max_norm

Used to store the maximum e.norm calculated from non-linear iterations.

• int Sys

Number of sub-systems to solve.

• int Par

Number of binary parameters to solve for.

bool Recover

If Recover == false, standard GPAST using y's as knowns.

· bool Carrier

If there is an inert carrier gas, Carrier == true.

bool Ideal

If the behavior of the system is determined to be ideal, then Ideal == true.

· bool Output

Boolean to suppress output if desired (true = display, false = no display.

4.47.1 Detailed Description

System Data Structure.

C-style object holding all the data associated with the overall system to be modeled.

4.47.2 Member Data Documentation

4.47.2.1 double SYSTEM_DATA::T

System Temperature (K)

4.47.2.2 double SYSTEM_DATA::PT

Total Pressure (kPa)

4.47.2.3 double SYSTEM_DATA::qT

Total Amount adsorbed (mol/kg)

4.47.2.4 double SYSTEM_DATA::PI

Total Lumped Spreading Pressure (mol/kg)

4.47.2.5 double SYSTEM_DATA::pi

Actual Spreading pressure (J/m^2)

4.47.2.6 double SYSTEM_DATA::As

Specific surface area of adsorbent (m²/kg)

4.47.2.7 int SYSTEM_DATA::N

Total Number of Components.

4.47.2.8 int SYSTEM_DATA::I

4.47.2.9 int SYSTEM_DATA::J

4.47.2.10 int SYSTEM_DATA::K

Special indices used to keep track of sub-systems.

4.47.2.11 unsigned long int SYSTEM_DATA::total_eval

Counter to keep track of total number of non-linear steps.

4.47.2.12 double SYSTEM_DATA::avg_norm

Used to store all norms from evaluations then average at end of run.

4.47.2.13 double SYSTEM_DATA::max_norm

Used to store the maximum e.norm calculated from non-linear iterations.

4.47.2.14 int SYSTEM_DATA::Sys

Number of sub-systems to solve.

4.47.2.15 int SYSTEM_DATA::Par

Number of binary parameters to solve for.

4.47.2.16 bool SYSTEM_DATA::Recover

If Recover == false, standard GPAST using y's as knowns.

4.47.2.17 bool SYSTEM_DATA::Carrier

If there is an inert carrier gas, Carrier == true.

4.47.2.18 bool SYSTEM_DATA::Ideal

If the behavior of the system is determined to be ideal, then Ideal == true.

4.47.2.19 bool SYSTEM_DATA::Output

Boolean to suppress output if desired (true = display, false = no display.

The documentation for this struct was generated from the following file:

• magpie.h

4.48 TRAJECTORY_DATA Struct Reference

#include <Trajectory.h>

Public Attributes

- double $mu_0 = 12.57e-7$
- double rho_f = 1000.0
- double eta = 0.001
- double Hamaker = 1.3e-21
- double Temp = 298
- double k = 1.38e-23
- double Rs = 0.0026925
- double L = 0.0611
- double porosity = 0.8979
- double V_separator
- double a = 33.0e-6
- double V_wire
- double L_wire
- double A_separator
- double A_wire
- double B0 = 1.0
- double H0
- double Ms = 0.6
- double b = 0.25e-6
- double chi_p = 3.87e-6
- double rho_p = 8700.0
- double Q_in
- double V0
- double Y_initial = 20.0
- double dt
- double M
- double mp
- double beta
- double q_bar
- · double sigma_v
- double sigma_vz
- double sigma_z
- double sigma_n
- double sigma_m
- double n_rand
- double m_rand
- double s_rand
- double t_rand
- Matrix< double > POL
- Matrix< double > H
- Matrix< double > dX
- Matrix< double > dY
- $\bullet \ \, \mathsf{Matrix} \! < \mathsf{double} > \mathsf{X}$
- Matrix< double > Y
- Matrix< int > Cap

4.48.1	Member Data Documentation
4.48.1.1	double TRAJECTORY_DATA::mu_0 = 12.57e-7
4.48.1.2	double TRAJECTORY_DATA::rho_f = 1000.0
4.48.1.3	double TRAJECTORY_DATA::eta = 0.001
4.48.1.4	double TRAJECTORY_DATA::Hamaker = 1.3e-21
4.48.1.5	double TRAJECTORY_DATA::Temp = 298
4.48.1.6	double TRAJECTORY_DATA::k = 1.38e-23
4.48.1.7	double TRAJECTORY_DATA::Rs = 0.0026925
4.48.1.8	double TRAJECTORY_DATA::L = 0.0611
4.48.1.9	double TRAJECTORY_DATA::porosity = 0.8979
4.48.1.10	double TRAJECTORY_DATA::V_separator
4.48.1.11	double TRAJECTORY_DATA::a = 33.0e-6
4.48.1.12	double TRAJECTORY_DATA::V_wire
4.48.1.13	double TRAJECTORY_DATA::L_wire
4.48.1.14	double TRAJECTORY_DATA::A_separator
4.48.1.15	double TRAJECTORY_DATA::A_wire
4.48.1.16	double TRAJECTORY_DATA::B0 = 1.0
4.48.1.17	double TRAJECTORY_DATA::H0
4.48.1.18	double TRAJECTORY_DATA::Ms = 0.6
4.48.1.19	double TRAJECTORY_DATA::b = 0.25e-6
4.48.1.20	double TRAJECTORY_DATA::chi_p = 3.87e-6
4.48.1.21	double TRAJECTORY_DATA::rho_p = 8700.0
4.48.1.22	double TRAJECTORY_DATA::Q_in
4.48.1.23	double TRAJECTORY_DATA::V0
4.48.1.24	double TRAJECTORY_DATA::Y_initial = 20.0
4.48.1.25	double TRAJECTORY_DATA::dt
4.48.1.26	double TRAJECTORY_DATA::M
4.48.1.27	double TRAJECTORY_DATA::mp

4.48.1.28	double TRAJECTORY_DATA::beta
4.48.1.29	double TRAJECTORY_DATA::q_bar
4.48.1.30	double TRAJECTORY_DATA::sigma_v
4.48.1.31	double TRAJECTORY_DATA::sigma_vz
4.48.1.32	double TRAJECTORY_DATA::sigma_z
4.48.1.33	double TRAJECTORY_DATA::sigma_n
4.48.1.34	double TRAJECTORY_DATA::sigma_m
4.48.1.35	double TRAJECTORY_DATA::n_rand
4.48.1.36	double TRAJECTORY_DATA::m_rand
4.48.1.37	double TRAJECTORY_DATA::s_rand
4.48.1.38	double TRAJECTORY_DATA::t_rand
4.48.1.39	Matrix < double > TRAJECTORY_DATA::POL
4.48.1.40	Matrix < double > TRAJECTORY_DATA::H
4.48.1.41	Matrix < double > TRAJECTORY_DATA::dX
4.48.1.42	Matrix < double > TRAJECTORY_DATA::dY
4.48.1.43	Matrix < double > TRAJECTORY_DATA::X
4.48.1.44	Matrix < double > TRAJECTORY_DATA::Y
4.48.1.45	Matrix <int> TRAJECTORY_DATA::Cap</int>

The documentation for this struct was generated from the following file:

• Trajectory.h

4.49 UI_DATA Struct Reference

Data structure holding the UI arguments.

#include <ui.h>

Public Attributes

• ValueTypePair value_type

Data pair for input, tells what the input is and it's type.

std::vector< std::string > user_input
 What is read in from the console at any point.

• $std::vector < std::string > input_files$

A vector of input file names and directories given by user.

· std::string path

Path to where input files are located.

• int count = 0

Number of times a questing has been asked.

• int max = 3

Maximum allowable recursions of a question.

• int option

Current option choosen by the user.

• bool Path = false

True if user gives path as an option.

• bool Files = false

True if user gives input files as an option.

• bool MissingArg = true

True if an input argument is missing; False if everything is ok.

• bool BasicUI = true

True if using Basic UI; False if using Advanced UI.

· int argc

Number of console arguments given on input.

• const char * argv []

Actual console arguments given at execution.

4.49.1 Detailed Description

Data structure holding the UI arguments.

C-Style object for interfacing with users request upon execution of the program. User input is stored in objects below and a series of booleans is used to determine how and what to execute.

4.49.2 Member Data Documentation

4.49.2.1 ValueTypePair UI_DATA::value_type

Data pair for input, tells what the input is and it's type.

 $4.49.2.2 \quad std::vector {<} std::string {>} \ UI_DATA::user_input$

What is read in from the console at any point.

4.49.2.3 std::vector<std::string> UI_DATA::input_files

A vector of input file names and directories given by user.

4.49.2.4 std::string UI_DATA::path

Path to where input files are located.

4.49.2.5 int UI_DATA::count = 0

Number of times a questing has been asked.

4.49.2.6 int UI_DATA::max = 3

Maximum allowable recursions of a question.

4.49.2.7 int UI_DATA::option

Current option choosen by the user.

4.49.2.8 bool UI_DATA::Path = false

True if user gives path as an option.

4.49.2.9 bool UI_DATA::Files = false

True if user gives input files as an option.

4.49.2.10 bool UI_DATA::MissingArg = true

True if an input argument is missing; False if everything is ok.

4.49.2.11 bool UI_DATA::BasicUI = true

True if using Basic UI; False if using Advanced UI.

4.49.2.12 int UI_DATA::argc

Number of console arguments given on input.

4.49.2.13 const char* UI_DATA::argv[]

Actual console arguments given at execution.

The documentation for this struct was generated from the following file:

• ui.h

4.50 UnsteadyPrecipitation Class Reference

#include <shark.h>

Inheritance diagram for UnsteadyPrecipitation:

The documentation for this class was generated from the following file:

· shark.h

4.51 UnsteadyReaction Class Reference

#include <shark.h>

Inheritance diagram for UnsteadyReaction:

Public Member Functions

- UnsteadyReaction ()
- ∼UnsteadyReaction ()
- void Initialize_List (MasterSpeciesList &List)
- void Display_Info ()
- void Set_Species_Index (int i)
- void Set_Species_Index (std::string formula)
- void Set_Stoichiometric (int i, double v)
- void Set_Equilibrium (double v)
- void Set_Enthalpy (double H)
- void Set_Entropy (double S)
- void Set_EnthalpyANDEntropy (double H, double S)
- void Set_Energy (double G)
- void Set InitialValue (double ic)
- void Set_MaximumValue (double max)
- void Set_Forward (double forward)
- void Set_Reverse (double reverse)
- void Set_ForwardRef (double Fref)
- · void Set_ReverseRef (double Rref)
- void Set ActivationEnergy (double E)
- void Set_Affinity (double b)
- void Set_TimeStep (double dt)
- void checkSpeciesEnergies ()
- void calculateEnergies ()
- void calculateEquilibrium (double T)
- void calculateRate (double T)
- bool haveEquilibrium ()
- bool haveRate ()
- int Get_Species_Index ()
- double Get_Stoichiometric (int i)
- double Get_Equilibrium ()
- double Get_Enthalpy ()
- double Get_Entropy ()
- double Get_Energy ()
- double Get_InitialValue ()
- double Get_MaximumValue ()
- double Get_Forward ()
- double Get_Reverse ()
- double Get_ForwardRef ()
- double Get_ReverseRef ()
- double Get_ActivationEnergy ()

- double Get_Affinity ()
- double Get_TimeStep ()
- double Eval_ReactionRate (const Matrix < double > &x, const Matrix < double > &gama)
- double Eval_Residual (const Matrix< double > &x_new, const Matrix< double > &x_old, const Matrix< double > &gama_new, const Matrix< double > &gama_old)
- double Eval_Residual (const Matrix< double > &x, const Matrix< double > &gama)
- double Eval_IC_Residual (const Matrix< double > &x)
- double Explicit_Eval (const Matrix< double > &x, const Matrix< double > &gama)

Protected Attributes

- · double initial_value
- double max_value
- · double forward rate
- · double reverse rate
- · double forward ref rate
- · double reverse_ref_rate
- · double activation_energy
- · double temperature_affinity
- double time step
- bool HaveForward
- bool HaveReverse
- · bool HaveForRef
- · bool HaveRevRef
- · int species index

Additional Inherited Members

- 4.51.1 Constructor & Destructor Documentation
- 4.51.1.1 UnsteadyReaction::UnsteadyReaction()
- 4.51.1.2 UnsteadyReaction::~UnsteadyReaction()
- 4.51.2 Member Function Documentation
- 4.51.2.1 void UnsteadyReaction::Initialize_List (MasterSpeciesList & List)
- 4.51.2.2 void UnsteadyReaction::Display_Info ()
- 4.51.2.3 void UnsteadyReaction::Set_Species_Index (int i)
- 4.51.2.4 void UnsteadyReaction::Set_Species_Index (std::string formula)
- 4.51.2.5 void UnsteadyReaction::Set_Stoichiometric (int i, double v)
- 4.51.2.6 void UnsteadyReaction::Set_Equilibrium (double v)
- 4.51.2.7 void UnsteadyReaction::Set_Enthalpy (double H)
- 4.51.2.8 void UnsteadyReaction::Set_Entropy (double S)
- 4.51.2.9 void UnsteadyReaction::Set_EnthalpyANDEntropy (double H, double S)

```
4.51.2.10
          void UnsteadyReaction::Set_Energy ( double G )
          void UnsteadyReaction::Set_InitialValue ( double ic )
4.51.2.11
4.51.2.12
          void UnsteadyReaction::Set_MaximumValue ( double max )
          void UnsteadyReaction::Set_Forward ( double forward )
4.51.2.13
4.51.2.14
          void UnsteadyReaction::Set_Reverse ( double reverse )
4.51.2.15
          void UnsteadyReaction::Set_ForwardRef ( double Fref )
          void UnsteadyReaction::Set_ReverseRef ( double Rref )
4.51.2.16
          void UnsteadyReaction::Set_ActivationEnergy ( double E )
4.51.2.17
          void UnsteadyReaction::Set_Affinity ( double b )
4.51.2.18
4.51.2.19
          void UnsteadyReaction::Set_TimeStep ( double dt )
4.51.2.20
          void UnsteadyReaction::checkSpeciesEnergies ( )
4.51.2.21
          void UnsteadyReaction::calculateEnergies ( )
4.51.2.22
          void UnsteadyReaction::calculateEquilibrium ( double T )
          void UnsteadyReaction::calculateRate ( double T )
4.51.2.23
          bool UnsteadyReaction::haveEquilibrium ( )
4.51.2.24
          bool UnsteadyReaction::haveRate ( )
4.51.2.25
4.51.2.26
          int UnsteadyReaction::Get_Species_Index ( )
4.51.2.27
          double UnsteadyReaction::Get_Stoichiometric ( int i )
4.51.2.28
          double UnsteadyReaction::Get_Equilibrium ( )
4.51.2.29
          double UnsteadyReaction::Get_Enthalpy ( )
4.51.2.30
          double UnsteadyReaction::Get_Entropy ( )
4.51.2.31
          double UnsteadyReaction::Get_Energy ( )
4.51.2.32
          double UnsteadyReaction::Get_InitialValue ( )
          double UnsteadyReaction::Get_MaximumValue ( )
4.51.2.33
4.51.2.34
          double UnsteadyReaction::Get_Forward ( )
4.51.2.35
          double UnsteadyReaction::Get_Reverse ( )
          double UnsteadyReaction::Get_ForwardRef ( )
4.51.2.37 double UnsteadyReaction::Get_ReverseRef ( )
```

134 Class Documentation

```
double UnsteadyReaction::Get_ActivationEnergy ( )
4.51.2.38
         double UnsteadyReaction::Get_Affinity ( )
4.51.2.39
4.51.2.40 double UnsteadyReaction::Get_TimeStep ( )
4.51.2.41 double UnsteadyReaction::Eval_ReactionRate ( const Matrix < double > & x, const Matrix < double > & gama )
         double UnsteadyReaction::Eval_Residual ( const Matrix < double > & x_new, const Matrix < double > & x_old,
         const Matrix < double > & gama_new, const Matrix < double > & gama_old )
         double UnsteadyReaction::Eval_Residual ( const Matrix< double > & x, const Matrix< double > & gama )
4.51.2.44 double UnsteadyReaction::Eval_IC_Residual ( const Matrix < double > & x )
4.51.2.45 double UnsteadyReaction::Explicit_Eval ( const Matrix < double > & x, const Matrix < double > & gama )
4.51.3
        Member Data Documentation
4.51.3.1 double UnsteadyReaction::initial_value [protected]
4.51.3.2 double UnsteadyReaction::max_value [protected]
4.51.3.3 double UnsteadyReaction::forward_rate [protected]
4.51.3.4
        double UnsteadyReaction::reverse_rate [protected]
4.51.3.5 double UnsteadyReaction::forward_ref_rate [protected]
4.51.3.6 double UnsteadyReaction::reverse_ref_rate [protected]
4.51.3.7 double UnsteadyReaction::activation_energy [protected]
4.51.3.8 double UnsteadyReaction::temperature_affinity [protected]
        double UnsteadyReaction::time_step [protected]
4.51.3.10
        bool UnsteadyReaction::HaveForward [protected]
4.51.3.11 bool UnsteadyReaction::HaveReverse [protected]
4.51.3.12 bool UnsteadyReaction::HaveForRef [protected]
4.51.3.13 bool UnsteadyReaction::HaveRevRef [protected]
4.51.3.14 int UnsteadyReaction::species_index [protected]
```

The documentation for this class was generated from the following file:

· shark.h

4.52 ValueTypePair Class Reference

#include <yaml_wrapper.h>

Public Member Functions

- ValueTypePair ()
- ∼ValueTypePair ()
- ValueTypePair (const std::pair< std::string, int > &vt)
- ValueTypePair (std::string value, int type)
- ValueTypePair (const ValueTypePair &vt)
- ValueTypePair & operator= (const ValueTypePair &vt)
- void editValue (std::string value)
- void editPair (std::string value, int type)
- void findType ()
- void assertType (int type)
- void DisplayPair ()
- std::string getString ()
- bool getBool ()
- double getDouble ()
- int getInt ()
- std::string getValue ()
- int getType ()
- std::pair< std::string, int > & getPair ()

Private Attributes

- std::pair< std::string, int > Value_Type
- int type

4.52.1 Constructor & Destructor Documentation

- 4.52.1.1 ValueTypePair::ValueTypePair ()
- 4.52.1.2 ValueTypePair::~ValueTypePair()
- 4.52.1.3 ValueTypePair::ValueTypePair (const std::pair < std::string, int > & vt)
- 4.52.1.4 ValueTypePair::ValueTypePair (std::string value, int type)
- 4.52.1.5 ValueTypePair::ValueTypePair (const ValueTypePair & vt)
- 4.52.2 Member Function Documentation
- 4.52.2.1 ValueTypePair & ValueTypePair::operator= (const ValueTypePair & vt)
- 4.52.2.2 void ValueTypePair::editValue (std::string value)
- 4.52.2.3 void ValueTypePair::editPair (std::string value, int type)
- 4.52.2.4 void ValueTypePair::findType ()
- 4.52.2.5 void ValueTypePair::assertType (int type)
- 4.52.2.6 void ValueTypePair::DisplayPair ()
- 4.52.2.7 std::string ValueTypePair::getString ()

136 Class Documentation

```
4.52.2.8 bool ValueTypePair::getBool()
4.52.2.9 double ValueTypePair::getDouble()
4.52.2.10 int ValueTypePair::getInt()
4.52.2.11 std::string ValueTypePair::getValue()
4.52.2.12 int ValueTypePair::getType()
4.52.2.13 std::pair<std::string,int>& ValueTypePair::getPair()
4.52.3 Member Data Documentation
4.52.3.1 std::pair<std::string,int> ValueTypePair::Value_Type [private]
4.52.3.2 int ValueTypePair::type [private]
```

The documentation for this class was generated from the following file:

• yaml_wrapper.h

4.53 yaml_cpp_class Class Reference

```
#include <yaml_wrapper.h>
```

Public Member Functions

- yaml_cpp_class ()
- ~yaml_cpp_class ()
- int setInputFile (const char *file)
- int readInputFile ()
- int cleanup ()
- int executeYamlRead (const char *file)
- YamlWrapper & getYamlWrapper ()
- void DisplayContents ()

Private Attributes

- YamlWrapper yaml_wrapper
- FILE * input_file
- const char * file_name
- · yaml_parser_t token_parser
- yaml_token_t current_token
- yaml_token_t previous_token

4.53.1 Constructor & Destructor Documentation

```
4.53.1.1 yaml_cpp_class::yaml_cpp_class ( )
```

4.53.1.2 yaml_cpp_class::~yaml_cpp_class()

```
4.53.2
        Member Function Documentation
4.53.2.1 int yaml_cpp_class::setInputFile ( const char * file )
4.53.2.2 int yaml_cpp_class::readInputFile ( )
4.53.2.3 int yaml_cpp_class::cleanup()
4.53.2.4 int yaml_cpp_class::executeYamlRead ( const char * file )
4.53.2.5 YamlWrapper& yaml_cpp_class::getYamlWrapper( )
4.53.2.6 void yaml_cpp_class::DisplayContents ( )
4.53.3
        Member Data Documentation
4.53.3.1 YamlWrapper yaml_cpp_class::yaml_wrapper [private]
4.53.3.2 FILE* yaml_cpp_class::input_file [private]
4.53.3.3 const char* yaml_cpp_class::file_name [private]
4.53.3.4 yaml_parser_t yaml_cpp_class::token_parser [private]
4.53.3.5 yaml_token_t yaml_cpp_class::current_token [private]
4.53.3.6 yaml_token_t yaml_cpp_class::previous_token [private]
```

The documentation for this class was generated from the following file:

· yaml_wrapper.h

4.54 YamlWrapper Class Reference

```
#include <yaml_wrapper.h>
```

Public Member Functions

- YamlWrapper ()
- ~YamlWrapper ()
- YamlWrapper (const YamlWrapper &yaml)
- YamlWrapper (std::string key, const Document &doc)
- YamlWrapper & operator= (const YamlWrapper &yaml)
- Document & operator() (const std::string key)
- Document operator() (const std::string key) const
- std::map< std::string, Document > & getDocMap ()
- Document & getDocument (std::string key)
- std::map< std::string,

Document >::const_iterator end () const

- std::map< std::string,
- Document >::iterator end ()
- std::map< std::string,

Document >::const_iterator begin () const

138 Class Documentation

```
std::map< std::string,
        Document >::iterator begin ()
void clear ()
void resetKeys ()
void changeKey (std::string oldKey, std::string newKey)
void revalidateAllKeys ()
void DisplayContents ()
void addDocKey (std::string key)
void copyAnchor2Alias (std::string alias, Document &ref)
int size ()
Document & getAnchoredDoc (std::string alias)
Document & getDocFromHeadAlias (std::string alias)
Document & getDocFromSubAlias (std::string alias)
```

Private Attributes

• std::map< std::string, Document > Doc_Map

```
4.54.1 Constructor & Destructor Documentation
4.54.1.1 YamlWrapper::YamlWrapper()
4.54.1.2 YamlWrapper::~YamlWrapper()
4.54.1.3 YamlWrapper::YamlWrapper ( const YamlWrapper & yaml )
4.54.1.4 YamlWrapper::YamlWrapper ( std::string key, const Document & doc )
4.54.2
        Member Function Documentation
4.54.2.1 YamlWrapper& YamlWrapper::operator= ( const YamlWrapper & yaml )
4.54.2.2 Document& YamlWrapper::operator() ( const std::string key )
4.54.2.3 Document YamlWrapper::operator() ( const std::string key ) const
4.54.2.4 std::map<std::string, Document>& YamlWrapper::getDocMap ( )
4.54.2.5 Document& YamlWrapper::getDocument ( std::string key )
4.54.2.6 std::map<std::string, Document>::const_iterator YamlWrapper::end ( ) const
4.54.2.7 std::map<std::string, Document>::iterator YamlWrapper::end ( )
4.54.2.8 std::map<std::string, Document>::const_iterator YamlWrapper::begin ( ) const
4.54.2.9 std::map<std::string, Document>::iterator YamlWrapper::begin ( )
4.54.2.10 void YamlWrapper::clear ( )
4.54.2.11 void YamlWrapper::resetKeys ( )
4.54.2.12 void YamlWrapper::changeKey ( std::string oldKey, std::string newKey )
```

```
4.54.2.13 void YamlWrapper::revalidateAllKeys()
4.54.2.14 void YamlWrapper::DisplayContents()
4.54.2.15 void YamlWrapper::addDocKey(std::string key)
4.54.2.16 void YamlWrapper::copyAnchor2Alias(std::string alias, Document & ref)
4.54.2.17 int YamlWrapper::size()
4.54.2.18 Document& YamlWrapper::getAnchoredDoc(std::string alias)
4.54.2.19 Document& YamlWrapper::getDocFromHeadAlias(std::string alias)
4.54.2.20 Document& YamlWrapper::getDocFromSubAlias(std::string alias)
4.54.3 Member Data Documentation
4.54.3.1 std::map<std::string, Document> YamlWrapper::Doc_Map [private]
```

The documentation for this class was generated from the following file:

• yaml_wrapper.h

140 Class Documentation

Chapter 5

File Documentation

5.1 dogfish.h File Reference

Diffusion Object Governing Fiber Interior Sorption History.

```
#include "finch.h"
#include "mola.h"
```

Classes

• struct DOGFISH PARAM

Data structure for species-specific parameters.

struct DOGFISH_DATA

Primary data structure for running the DOGFISH application.

Functions

• void print2file_species_header (FILE *Output, DOGFISH_DATA *dog_dat, int i)

Function to print a species based header for the output file.

void print2file_DOGFISH_header (DOGFISH_DATA *dog_dat)

Function to print a time and space header for the output file.

• void print2file_DOGFISH_result_old (DOGFISH_DATA *dog_dat)

Function to print out the old time results for the output file.

void print2file_DOGFISH_result_new (DOGFISH_DATA *dog_dat)

Function to print out the new time results for the output file.

• double default_Retardation (int i, int I, const void *data)

Default function for the retardation coefficient.

• double default_IntraDiffusion (int i, int I, const void *data)

Default function for the intraparticle diffusion coefficient.

double default_FilmMTCoeff (int i, const void *data)

Default function for the film mass transfer coefficient.

• double default_SurfaceConcentration (int i, const void *data)

Default function for the fiber surface concentration.

int setup_DOGFISH_DATA (FILE *file, double(*eval_R)(int i, int I, const void *user_data), double(*eval_-DI)(int i, int I, const void *user_data), double(*eval_kf)(int i, const void *user_data), double(*eval_qs)(int i, const void *user_data), const void *user_data, DOGFISH_DATA *dog_dat)

Function will set up the memory and pointers for use in the DOGFISH simulations.

• int DOGFISH_Executioner (DOGFISH_DATA *dog_dat)

Function to serially call all other functions need to solve the system at one time step.

int set_DOGFISH_ICs (DOGFISH_DATA *dog_dat)

Function called to evaluate the initial conditions for the time dependent problem.

int set_DOGFISH_timestep (DOGFISH_DATA *dog_dat)

Function sets the time step size for the next step forward in the simulation.

• int DOGFISH_preprocesses (DOGFISH_DATA *dog_dat)

Function to perform preprocess actions to be used before calling any solver.

int set_DOGFISH_params (const void *user_data)

Function to calculate the values of all parameters for all species at all nodes.

• int DOGFISH_postprocesses (DOGFISH_DATA *dog_dat)

Function to perform post-solve actions such as printing out results.

int DOGFISH_reset (DOGFISH_DATA *dog_dat)

Function to reset the matrices and vectors and prepare for next time step.

int DOGFISH (DOGFISH_DATA *dog_dat)

Function performs all necessary steps to step the diffusion simulation through time.

• int DOGFISH_TESTS ()

Running DOGFISH tests.

5.1.1 Detailed Description

Diffusion Object Governing Fiber Interior Sorption History. dogfish.cpp

This set of objects and functions is used to numerically solve linear or non-linear diffusion physics of aqueous ions into cylindrical adsorbent fibers. Boundary conditions for this problem could be a film mass transfer, reaction, or dirichlet condition depending on the type of problem being solve.

Warning

Functions and methods in this file are still under construction.

Author

Austin Ladshaw

Date

04/09/2015

Copyright

This software was designed and built at the Georgia Institute of Technology by Austin Ladshaw for PhD research in the area of adsorption and surface science. Copyright (c) 2015, all rights reserved.

5.1.2 Function Documentation

5.1.2.1 void print2file_species_header (FILE * Output, DOGFISH_DATA * dog_dat, int i)

Function to print a species based header for the output file.

5.1.2.2 void print2file_DOGFISH_header (DOGFISH_DATA * dog_dat)

Function to print a time and space header for the output file.

5.1.2.3 void print2file_DOGFISH_result_old (DOGFISH_DATA * dog_dat)

Function to print out the old time results for the output file.

5.1.2.4 void print2file_DOGFISH_result_new (DOGFISH_DATA * dog_dat)

Function to print out the new time results for the output file.

5.1.2.5 double default_Retardation (int i, int I, const void * data)

Default function for the retardation coefficient.

The default retardation coefficient for this problem is 1.0 for all time and space. Therefore, this function will only ever return a 1.

5.1.2.6 double default_IntraDiffusion (int i, int I, const void * data)

Default function for the intraparticle diffusion coefficient.

The default intraparticle diffusivity is to assume that each species i has a constant diffusivity. Therefore, this function returns the value of the parameter intraparticle_diffusion from the DOGFISH_PARAM structure for each adsorbing species i. Each species may have a different diffusivity.

5.1.2.7 double default_FilmMTCoeff (int i, const void * data)

Default function for the film mass transfer coefficient.

The default film mass transfer coefficient will be to assume that this value is a constant for each species i. Therefore, this function returns the parameter value of film_transfer_coeff from the DOGFISH_PARAM structure for each adsorbing species i.

5.1.2.8 double default_SurfaceConcentration (int i, const void * data)

Default function for the fiber surface concentration.

The default fiber surface concentration will be to assume that this value is a constant for each species i. Therefore, this function returns the parameter value of surface_concentration from the DOGFISH_PARAM structure for each adsorbing species i.

5.1.2.9 int setup_DOGFISH_DATA (FILE * file, double(*)(int i, int I, const void *user_data) eval_R, double(*)(int i, int I, const void *user_data) eval_DI, double(*)(int i, const void *user_data) eval_kf, double(*)(int i, const void *user_data) eval_qs, const void * user_data, DOGFISH_DATA * dog_dat)

Function will set up the memory and pointers for use in the DOGFISH simulations.

The pointers to the output file, parameter functions, and data structures are passed into this function to setup the problem in memory. This function must always be called prior to calling any other DOGFISH routine and after the DOGFISH_DATA structure has been initialized.

5.1.2.10 int DOGFISH_Executioner (DOGFISH DATA * dog_dat)

Function to serially call all other functions need to solve the system at one time step.

This function will call the DOGFISH_preprocesses function, followed by the FINCH solver functions for each species i, then call the DOGFISH_postprocesses function. After completion, this would have solved the diffusion physics for a single time step.

5.1.2.11 int set_DOGFISH_ICs (DOGFISH_DATA * dog_dat)

Function called to evaluate the initial conditions for the time dependent problem.

This function will use information in DOGFISH_DATA to setup the initial conditions, initial parameter values, and initial sorption averages for each species. This function always assumes a constant initial condition for the sorption of each species.

```
5.1.2.12 int set_DOGFISH_timestep ( DOGFISH_DATA * dog_dat )
```

Function sets the time step size for the next step forward in the simulation.

This function will set the next time step size based on the spatial discretization of the fiber. Maximum time step size is locked at 0.5 hours.

```
5.1.2.13 int DOGFISH_preprocesses ( DOGFISH_DATA * dog_dat )
```

Function to perform preprocess actions to be used before calling any solver.

This function will call all of the parameter functions in order to establish boundary condition parameter values prior to calling the FINCH solvers.

```
5.1.2.14 int set_DOGFISH_params ( const void * user_data )
```

Function to calculate the values of all parameters for all species at all nodes.

This function is passed to the FINCH_DATA data structure and set as the setparams function pointer. FINCH calls this function during it's solver routine to setup the non-linear form of the problem and solve the non-linear system.

Parameters

user_data | this is actually the DOGFISH_DATA structure, but is passed anonymously to FINCH

5.1.2.15 int DOGFISH_postprocesses (DOGFISH DATA * dog_dat)

Function to perform post-solve actions such as printing out results.

This function increments the total_steps counter in DOGFISH_DATA to keep a running total of all solver steps taken. Additionally, it prints out the results of the current time simulation to the output file.

```
5.1.2.16 int DOGFISH_reset ( DOGFISH_DATA * dog_dat )
```

Function to reset the matrices and vectors and prepare for next time step.

This function will reset the matrix and vector information of DOGFISH_DATA and FINCH_DATA to prepare for the next simulation step in time.

```
5.1.2.17 int DOGFISH ( DOGFISH_DATA * dog_dat )
```

Function performs all necessary steps to step the diffusion simulation through time.

This function calls the initial conditions, set time step, executioner, and reset functions to step the simulation through time. It will only exit when the simulation time is reached or if an error occurs.

5.2 eel.h File Reference 145

```
5.1.2.18 int DOGFISH_TESTS ( )
```

Running DOGFISH tests.

This function is called from the UI to run a test simulation of DOGFISH. Ouput is stored in a DOGFISH_TestOutput.txt file in a sub-directory "output" from the directory in which the executable was called.

5.2 eel.h File Reference

Easy-access Element Library.

```
#include <stdio.h>
#include <math.h>
#include <iostream>
#include <fstream>
#include <stdlib.h>
#include <vector>
#include <time.h>
#include <float.h>
#include <string>
#include "error.h"
```

Classes

class Atom

Atom object to hold information about specific atoms in the periodic table (click Atom to go to function definitions)

class PeriodicTable

Class object that store a digitial copy of all Atom objects.

Functions

• int EEL_TESTS ()

Test function to exercise the class objects and check for errors.

5.2.1 Detailed Description

Easy-access Element Library. eel.cpp

This file contains two C++ objects: (i) Atom and (ii) PeriodicTable.

The Atom class defines all relavent information necessary for dealing with actual atoms. However, this is not necessarilly all the information that one may need for any simulation dealing with atoms. Instead, it is really just a place holder used to construct Molecules and hold oxidation state and molecular/atomic wieght information.

The PeriodicTable class creates a digital version of a complete periodic table. Further development of this object can make it possible to query this structure for a particular atom upon user request.

Warning

The Atom class is mostly complete, but the PeriodicTable object is just a place holder.

Author

Austin Ladshaw

Date

02/23/2015

Copyright

This software was designed and built at the Georgia Institute of Technology by Austin Ladshaw for PhD research in the area of adsorption and surface science. Copyright (c) 2015, all rights reserved.

5.2.2 Function Documentation

```
5.2.2.1 int EEL_TESTS ( )
```

Test function to exercise the class objects and check for errors.

5.3 egret.h File Reference

Estimation of Gas-phase pRopErTies.

```
#include "macaw.h"
```

Classes

struct PURE_GAS

Data structure holding all the parameters for each pure gas spieces.

• struct MIXED_GAS

Data structure holding information necessary for computing mixed gas properties.

Macros

• #define Rstd 8.3144621

Gas Constant in J/K/mol (or) L*kPa/K/mol (Standard Units)

• #define RE3 8.3144621E+3

Gas Constant in cm^{\(\)} 3*kPa/K/mol (Convenient for density calculations)

• #define Po 100.0

Standard state pressure (kPa)

• #define Cstd(p, T) ((p)/(Rstd*T))

Calculation of concentration/density from partial pressure (Cstd = mol/L)

#define CE3(p, T) ((p)/(RE3*T))

Calculation of concentration/density from partial pressure (CE3 = mol/cm^{\(\)}3)

• #define Pstd(c, T) ((c)*Rstd*T)

Calculation of partial pressure from concentration/density (c = mol/L)

#define PE3(c, T) ((c)*RE3*T)

Calculation of partial pressure from concentration/density ($c = mol/cm^3$)

• #define Nu(mu, rho) ((mu)/(rho))

Calculation of kinematic viscosity from dynamic viscosity and density (cm^{\(\circ\)}2/s)

• #define PSI(T) (0.873143 + (0.000072375*T))

Calculation of temperature correction factor for dynamic viscosity.

• #define Dp_ij(Dij, PT) ((PT*Dij)/Po)

Calculation of the corrected binary diffusivity (cm^{\(\circ\)}2/s)

#define D_ij(MWi, MWj, rhoi, rhoj, mui, muj) ((4.0 / sqrt(2.0)) * pow(((1/MWi)+(1/MWj)),0.5)) / pow((pow((rhoi/(1.385*mui)),2.0)/MWi),0.25)+ pow((pow((rhoj/(1.385*muj)),2.0)/MWj),0.25)),2.0)

Calculation of binary diffusion based on MW, density, and viscosity info (cm^{\(\chi_2/s\)})

• #define Mu(muo, To, C, T) (muo * ((To + C)/(T + C)) * pow((T/To), 1.5))

Calculation of single species viscosity from Sutherland's Equ. (g/cm/s)

• #define D ii(rhoi, mui) (1.385*mui/rhoi)

Calculation of self-diffusivity (cm\^2/s)

• #define ReNum(u, L, nu) (u*L/nu)

Calculation of the Reynold's Number (-)

#define ScNum(nu, D) (nu/D)

Calculation of the Schmidt Number (-)

• #define FilmMTCoeff(D, L, Re, Sc) ((D/L)*(2.0 + (1.1*pow(Re,0.6)*pow(Sc,0.3))))

Calculation of film mass transfer coefficient (cm/s)

Functions

int initialize_data (int N, MIXED_GAS *gas_dat)

Function to initialize the MIXED GAS structure based on number of gas species.

int set_variables (double PT, double T, double us, double L, std::vector< double > &y, MIXED_GAS *gas_dat)

Function to set the values of the parameters in the gas phase.

int calculate_properties (MIXED_GAS *gas_dat)

Function to calculate the gas properties based on information in MIXED GAS.

• int EGRET_TESTS ()

Function runs a series of tests for the EGRET file.

5.3.1 Detailed Description

Estimation of Gas-phase pRopErTies. egret.cpp

This file is responsible for estimating various temperature, pressure, and concentration dependent parameters to be used in other models for gas phase adsorption, mass transfer, and or mass transport. The goal of this file is to eliminate redundancies in code such that the higher level programs operate more efficiently and cleanly. Calculations made here are based on kinetic theory of gases, ideal gas law, and some emperical models that were developed to account for changes in density and viscosity with changes in temperature between standard temperatures and up to 1000 K.

Author

Austin Ladshaw

Date

01/29/2015

Copyright

This software was designed and built at the Georgia Institute of Technology by Austin Ladshaw for PhD research in the area of adsorption and surface science. Copyright (c) 2015, all rights reserved.

```
5.3.2 Macro Definition Documentation
```

5.3.2.1 #define Rstd 8.3144621

Gas Constant in J/K/mol (or) L*kPa/K/mol (Standard Units)

5.3.2.2 #define RE3 8.3144621E+3

Gas Constant in cm³*kPa/K/mol (Convenient for density calculations)

5.3.2.3 #define Po 100.0

Standard state pressure (kPa)

5.3.2.4 #define Cstd(p, T) ((p)/(Rstd*T))

Calculation of concentration/density from partial pressure (Cstd = mol/L)

5.3.2.5 #define CE3(p, T) ((p)/(RE3*T))

Calculation of concentration/density from partial pressure (CE3 = mol/cm³)

5.3.2.6 #define Pstd(c, T) ((c)*Rstd*T)

Calculation of partial pressure from concentration/density (c = mol/L)

5.3.2.7 #define PE3(c, T) ((c)*RE3*T)

Calculation of partial pressure from concentration/density (c = mol/cm³)

5.3.2.8 #define Nu(mu, rho) ((mu)/(rho))

Calculation of kinematic viscosity from dynamic viscosity and density (cm²/s)

5.3.2.9 #define PSI(T) (0.873143 + (0.000072375*T))

Calculation of temperature correction factor for dynamic viscosity.

5.3.2.10 #define Dp_ij(*Dij*, *PT*) ((PT*Dij)/Po)

Calculation of the corrected binary diffusivity (cm²/s)

 $5.3.2.11 \quad \# define \ D_{ij}(\quad \textit{MWi}, \quad \textit{MWj}, \quad \textit{rhoi}, \quad \textit{rhoj}, \quad \textit{mui}, \quad \textit{muj} \) \ (\ (4.0 \ / \ sqrt(2.0)) \ * \ pow(((1/MWi)+(1/MWj)),0.5) \) \ / \ pow((pow((rhoi/(1.385 \times mui)),2.0)/MWi),0.25) + \ pow((pow((rhoi/(1.385 \times mui)),2.0)/MWj),0.25)),2.0 \)$

Calculation of binary diffusion based on MW, density, and viscosity info (cm^2/s)

5.3.2.12 #define Mu(muo, To, C, T) (muo * ((To + C)/(T + C)) * pow((T/To),1.5))

Calculation of single species viscosity from Sutherland's Equ. (g/cm/s)

5.3.2.13 #define D_ii(rhoi, mui) (1.385*mui/rhoi)

Calculation of self-diffusivity (cm²/s)

5.3.2.14 #define ReNum(u, L, nu) (u*L/nu)

Calculation of the Reynold's Number (-)

5.3.2.15 #define ScNum(nu, D) (nu/D)

Calculation of the Schmidt Number (-)

5.3.2.16 #define FilmMTCoeff(D, L, Re, Sc) ((D/L)*(2.0 + (1.1*pow(Re,0.6)*pow(Sc,0.3))))

Calculation of film mass transfer coefficient (cm/s)

5.3.3 Function Documentation

5.3.3.1 int initialize_data (int N, MIXED_GAS * gas_dat)

Function to initialize the MIXED_GAS structure based on number of gas species.

This function will initialize the sizes of all vector objects in the MIXED_GAS structure based on the number of gas species indicated by N.

5.3.3.2 int set_variables (double PT, double T, double us, double L, std::vector < double > & y, MIXED_GAS * gas_dat)

Function to set the values of the parameters in the gas phase.

The gas phase properties are a function of total pressure, gas temperature, gas velocity, characteristic length, and the mole fractions of each species in the gas phase. Prior to calculating the gas phase properties, these parameters must be set and updated as they change.

Parameters

PT	total gas pressure in kPa
T	gas temperature in K
us	gas velocity in cm/s
L	characteristic length in cm (this depends on the particular system)
У	vector of gas mole fractions of each species in the mixture
gas_dat	pointer to the MIXED_GAS data structure

5.3.3.3 int calculate_properties (MIXED_GAS * gas_dat)

Function to calculate the gas properties based on information in MIXED_GAS.

This function uses the kinetic theory of gases, combined with other semi-empirical models, to predict and approximate several properties of the mixed gas phase that might be necessary when running any gas dynamical simulation. This includes mass and energy transfer equations, as well as adsorption kinetics in porous adsorbents.

5.3.3.4 int EGRET_TESTS ()

Function runs a series of tests for the EGRET file.

The test looks at a standard air with 5 primary species of interest and calculates the gas properties from 273 K to 373 K. This function can be called from the UI.

5.4 error.h File Reference

All error types are defined here.

```
#include <iostream>
```

Macros

• #define mError(i)

Enumerations

enum error_type {
 generic_error, file_dne, indexing_error, magpie_reverse_error,
 simulation_fail, invalid_components, invalid_boolean, invalid_molefraction,
 invalid_gas_sum, invalid_solid_sum, scenario_fail, out_of_bounds,
 non_square_matrix, dim_mis_match, empty_matrix, opt_no_support,
 invalid_fraction, ortho_check_fail, unstable_matrix, no_diffusion,
 negative_mass, negative_time, matvec_mis_match, arg_matrix_same,
 singular_matrix, matrix_too_small, invalid_size, nullptr_func,
 invalid_norm, vector_out_of_bounds, zero_vector, tensor_out_of_bounds,
 non_real_edge, nullptr_error, invalid_atom, invalid_proton,
 invalid_neutron, invalid_electron, invalid_valence, string_parse_error,
 unregistered_name, rxn_rate_error, invalid_species, duplicate_variable,
 missing_information, invalid_type, key_not_found, anchor_alias_dne,
 initial_error, not_a_token, read_error, invalid_console_input }

Functions

· void error (int flag)

Error function customizes output message based on flag.

5.4.1 Detailed Description

All error types are defined here. error.cpp

List of names for error type.

This file defines all the different errors that may occur in any simulation in any file. Those errors are recognized by an enum with is then passed through to the error.cpp file that customizes the error message to the console. A macro will also print out the file name and line number where the error occured.

Author

Austin Ladshaw

Date

04/28/2014

5.4 error.h File Reference 151

Copyright

This software was designed and built at the Georgia Institute of Technology by Austin Ladshaw for PhD research in the area of adsorption and surface science. Copyright (c) 2015, all rights reserved.

5.4.2 Macro Definition Documentation

```
5.4.2.1 #define mError( i )
```

Value:

```
{error(i);
std::cout << "Source: " << __FILE__ << "\nLine: " << __LINE__ << std::endl;}</pre>
```

5.4.3 Enumeration Type Documentation

5.4.3.1 enum error_type

List of names for error type.

Enumerator

```
generic_error
file_dne
indexing_error
magpie_reverse_error
simulation_fail
invalid_components
invalid_boolean
invalid_molefraction
invalid gas sum
invalid_solid_sum
scenario_fail
out_of_bounds
non_square_matrix
dim_mis_match
empty_matrix
opt_no_support
invalid_fraction
ortho_check_fail
unstable_matrix
no_diffusion
negative_mass
negative_time
matvec_mis_match
arg_matrix_same
singular_matrix
matrix_too_small
```

invalid_size

```
nullptr_func
invalid_norm
vector_out_of_bounds
zero_vector
tensor_out_of_bounds
non_real_edge
nullptr_error
invalid_atom
invalid_proton
invalid_neutron
invalid_electron
invalid_valence
string_parse_error
unregistered_name
rxn_rate_error
invalid_species
duplicate_variable
missing_information
invalid_type
key_not_found
anchor_alias_dne
initial_error
not_a_token
read_error
invalid_console_input
```

5.4.4 Function Documentation

```
5.4.4.1 void error (int flag)
```

Error function customizes output message based on flag.

This error function is reference in the error.cpp file, but is not called by any other file. Instead, all other files call the mError(i) macro that expands into this error function call plus prints out the file name and line number where the error occured.

5.5 finch.h File Reference

Flux-limiting Implicit Non-oscillatory Conservative High-resolution scheme.

```
#include "macaw.h"
#include "lark.h"
```

Classes

• struct FINCH_DATA

Data structure for the FINCH object.

5.5 finch.h File Reference 153

Enumerations

• enum finch_solve_type { FINCH_Picard, LARK_Picard, LARK_PJFNK }

List of enum options to define the solver type in FINCH.

enum finch_coord_type { Cartesian, Cylindrical, Spherical }

List of enum options to define the coordinate system in FINCH.

Functions

double max (std::vector< double > &values)

Function returns the maximum in a list of values.

double min (std::vector< double > &values)

Function returns the minimum in a list of values.

double minmod (std::vector< double > &values)

Function returns the result of the minmod function acting on a list of values.

int uTotal (FINCH_DATA *dat)

Function integrates the conserved quantity to return it's total in the domain.

int uAverage (FINCH DATA *dat)

Function integrates the conserved quantity to reture it's average in the domain.

int check Mass (FINCH DATA *dat)

Function checks the unp1 vector for negative values and will adjust if needed.

• int I_direct (FINCH_DATA *dat)

Function solves the discretized FINCH problem directly by assuming it is linear.

int lark_picard_step (const Matrix< double > &x, Matrix< double > &G, const void *data)

Function to perform the necessary LARK Picard iterative method (not typically used)

• int nl_picard (FINCH_DATA *dat)

Function to solve the discretized FINCH problem iteratively by assuming it is non-linear.

int setup_FINCH_DATA (int(*user_callroutine)(const void *user_data), int(*user_setic)(const void *user_data), int(*user_setic)(const void *user_data), int(*user_setic)(const void *user_data), int(*user_setic)(const void *user_data), int(*user_data), int(*user_data), int(*user_data), int(*user_data), int(*user_data), int(*user_data), int(*user_es)(const void *user_data), int(*user_es)(const Matrix< double > &x, Matrix< double > &p, const void *user_data), int(*user_postprocess)(const void *user_data), int(*user_reset)(const void *user_data)

Function to setup memory and set user defined functions into the FINCH object.

void print2file_dim_header (FILE *Output, FINCH_DATA *dat)

Function will print out a dimension header for FINCH output.

· void print2file_time_header (FILE *Output, FINCH_DATA *dat)

Function will print out a time header for FINCH output.

void print2file_result_old (FILE *Output, FINCH_DATA *dat)

Function will print out the old results to the variable u.

void print2file_result_new (FILE *Output, FINCH_DATA *dat)

Function will print out the new results to the variable u.

void print2file_newline (FILE *Output, FINCH_DATA *dat)

Function will force print out a blank line.

void print2file_tab (FILE *Output, FINCH_DATA *dat)

Function will force print out a tab.

• int default execution (const void *user data)

Default executioner function for FINCH.

• int default_ic (const void *user_data)

Default initial conditions function for FINCH.

• int default_timestep (const void *user_data)

Default time step function for FINCH.

• int default_preprocess (const void *user_data)

Default preprocesses function for FINCH.

int default solve (const void *user data)

Default solve function for FINCH.

• int default params (const void *user data)

Default params function for FINCH.

int minmod discretization (const void *user data)

Minmod Discretization function for FINCH.

int vanAlbada discretization (const void *user data)

Van Albada Discretization function for FINCH.

int ospre discretization (const void *user data)

Ospre Discretization function for FINCH.

• int default_bcs (const void *user_data)

Default boundary conditions function for FINCH.

int default_res (const Matrix< double > &x, Matrix< double > &res, const void *user_data)

Default residual function for FINCH.

int default_precon (const Matrix < double > &b, Matrix < double > &p, const void *user_data)

Default preconditioning function for FINCH.

- int default_postprocess (const void *user_data)
- int default_reset (const void *user_data)

Default reset function for FINCH.

• int FINCH TESTS ()

Function runs a particular FINCH test.

5.5.1 Detailed Description

Flux-limiting Implicit Non-oscillatory Conservative High-resolution scheme. finch.cpp

This is a conservative finite differences scheme based on the Kurganov and Tadmoor (2000) MUSCL scheme for non-linear conservation laws. It can solve 1-D conservation law problems in three different coordinate systems: (i) Cartesian - axial, (ii) Cylindrical - radial, and (iii) Spherical - radial. It is the backbone algorithm behind all 1-D PDE problems in the ecosystem software.

The form of the general conservation law problem that FINCH solves is...

```
z^{\wedge}d*R*du/dt = d/dz(z^{\wedge}d*D*du/dz) - d/dz(z^{\wedge}d*v*u) - z^{\wedge}d*k*u + z^{\wedge}d*S
```

where R, D, v, k, and S are the parameters of the problem and d, z, and u are the coordinates, spatial dimension, and conserved quantities, respectively. The parameter R is a retardation coefficient, D is a diffusion coefficient, v is a velocity, k is a reaction coefficient, and S is a forcing function or source/sink term.

FINCH supports the use of both Dirichlet and Neuman boundary conditions as the input/inlet condition and uses the No Flux (or Natural) boundary condition for the output/outlet of the domain. For radial problems, the outlet is always taken to the the center of the cylindrical or spherical particle. This enforces the symmetry of the problem. For axial problems, the outlet is determined by the sign of the velocity term and is therefore choosen by the routine based on the actual flow direction in the domain.

Parameters of the problem can be coupled to the variable u and also be functions of space and time. The coupling of the parameters with the variable forces the problem to become non-linear, which requires iteration to solve. The default iterative method is a built-in Picard's method. This method is equivalent to an inexact Newton method, because we use the Linear Solve of this system as a weak approximation to the non-linear solve. Generally, this method is sufficient and is the most efficient. However, if a problem is particularly difficult to solve, then we can call some of the non-linear solvers developed in LARK. If PJFNK is used, then the Linear Solve for the FINCH problem is used as the Preconditioner for the Linear Solve in PJFNK.

5.5 finch.h File Reference 155

This algorithm comes packaged with three different slope limiter functions to stabilize the velocity term for highly advectively dominate problems. The available slope limiters are: (i) minmod, (ii) van Albada, and (iii) ospre. By default, the FINCH setup function will set the slope limiter to ospre, because this method provides a reasonable compromise between accuracy and efficiency.

```
Slope Limiter Stats:
```

```
minmod -> Highest Accuracy, Lowest Efficiency
van Albada -> Lowest Accuracy, Highest Efficiency
ospre -> Average Accuracy, Average Efficiency
```

Author

Austin Ladshaw

Date

01/29/2015

Copyright

This software was designed and built at the Georgia Institute of Technology by Austin Ladshaw for PhD research in the area of adsorption and surface science. Copyright (c) 2015, all rights reserved.

5.5.2 Enumeration Type Documentation

```
5.5.2.1 enum finch_solve_type
```

List of enum options to define the solver type in FINCH.

Enumerator

FINCH_Picard LARK_Picard LARK_PJFNK

5.5.2.2 enum finch_coord_type

List of enum options to define the coordinate system in FINCH.

Enumerator

Cartesian Cylindrical Spherical

5.5.3 Function Documentation

5.5.3.1 double max (std::vector< double > & values)

Function returns the maximum in a list of values.

5.5.3.2 double min (std::vector< double > & values)

Function returns the minimum in a list of values.

5.5.3.3 double minmod (std::vector< double > & values)

Function returns the result of the minmod function acting on a list of values.

5.5.3.4 int uTotal (FINCH_DATA * dat)

Function integrates the conserved quantity to return it's total in the domain.

5.5.3.5 int uAverage (FINCH_DATA * dat)

Function integrates the conserved quantity to reture it's average in the domain.

5.5.3.6 int check_Mass (FINCH_DATA * dat)

Function checks the unp1 vector for negative values and will adjust if needed.

This function can be turned off or on in the FINCH_DATA structure. Typically, you will want to leave this on so that the routine does not return negative values for u. However, if you want to get negative values of u, then turn this option off.

5.5.3.7 int I_direct (FINCH_DATA * dat)

Function solves the discretized FINCH problem directly by assuming it is linear.

5.5.3.8 int lark_picard_step (const Matrix < double > & x, Matrix < double > & G, const void * data)

Function to perform the necessary LARK Picard iterative method (not typically used)

5.5.3.9 int nl_picard (FINCH_DATA * dat)

Function to solve the discretized FINCH problem iteratively by assuming it is non-linear.

Note

If the problem is actually linear, then this will solve it in one iteration. So it may be best to always assume the problem is non-linear.

5.5.3.10 int setup_FINCH_DATA (int(*)(const void *user_data) user_callroutine, int(*)(const void *user_data) user_setic, int(*)(const void *user_data) user_timestep, int(*)(const void *user_data) user_preprocess, int(*)(const void *user_data) user_data) user_bcs, int(*)(const Matrix< double > &x, Matrix< double > &res, const void *user_data) user_res, int(*)(const Matrix< double > &b, Matrix< double > &p, const void *user_data) user_precon, int(*)(const void *user_data) user_precoss, int(*)(const void *user_data) user_precoss, int(*)(const void *user_data) user_reset, FINCH DATA * dat, const void * param_data)

Function to setup memory and set user defined functions into the FINCH object.

5.5 finch.h File Reference 157

This function MUST be called prior to running any FINCH based simulation. However, you are only every required to provide this function with the FINCH_DATA pointer. It is recommended, however, that you do provide the user_setparams and param_data pointers, as these will likely vary significantly from problem to problem.

After the problem is setup in memory, you do not technically have to have FINCH call all of it's own functions. You can write your own executioner, initial conditions, and other functions and decided how and when everything is called. Then just call the solve function in FINCH_DATA when you want to use the FINCH solver. This is how FINCH is used in SKUA, SCOPSOWL, DOGFISH, and MONKFISH.

```
5.5.3.11 void print2file_dim_header ( FILE * Output, FINCH_DATA * dat )
```

Function will print out a dimension header for FINCH output.

```
5.5.3.12 void print2file_time_header ( FILE * Output, FINCH_DATA * dat )
```

Function will print out a time header for FINCH output.

```
5.5.3.13 void print2file_result_old ( FILE * Output, FINCH_DATA * dat )
```

Function will print out the old results to the variable u.

```
5.5.3.14 void print2file_result_new ( FILE * Output, FINCH_DATA * dat )
```

Function will print out the new results to the variable u.

```
5.5.3.15 void print2file_newline ( FILE * Output, FINCH_DATA * dat )
```

Function will force print out a blank line.

```
5.5.3.16 void print2file_tab ( FILE * Output, FINCH_DATA * dat )
```

Function will force print out a tab.

```
5.5.3.17 int default_execution ( const void * user_data )
```

Default executioner function for FINCH.

The default executioner function for FINCH assumes the user_data parameter is the FINCH_DATA structure and calls the preprocesses, solve, postprocesses, checkMass, uTotal, and uAverage functions in that order.

```
5.5.3.18 int default_ic ( const void * user_data )
```

Default initial conditions function for FINCH.

The default initial condition function for FINCH assumes the user_data parameter is the FINCH_DATA structure and sets the initial values of all system parameters according to the given constants in that structure.

```
5.5.3.19 int default_timestep ( const void * user_data )
```

Default time step function for FINCH.

The default time step function for FINCH assumes the user_data parameter is the FINCH_DATA structure and sets the time step to 1/2 the mesh size or bases the time step off of the CFL condition if the problem is not being solved iteratively and involves an advective portion.

5.5.3.20 int default_preprocess (const void * user_data)

Default preprocesses function for FINCH.

The default preprocesses function for FINCH assumes the user_data parameter is the FINCH_DATA structure and does nothing.

5.5.3.21 int default_solve (const void * user_data)

Default solve function for FINCH.

The default solve function for FINCH assumes the user_data parameter is the FINCH_DATA structure and calls the corresponding solution method depending on the users conditions.

5.5.3.22 int default_params (const void * user_data)

Default params function for FINCH.

The default params function for FINCH assumes the user_data parameter is the FINCH_DATA structure and sets the values of all parameters at all nodes equal to the values of those parameters at the boundaries.

5.5.3.23 int minmod_discretization (const void * user_data)

Minmod Discretization function for FINCH.

The minmod discretization function for FINCH assumes the user_data parameter is the FINCH_DATA structure and discretizes the time and space portion of the problem with 2nd order finite differences and uses the minmod slope limiter function to stabilize the advective physics.

5.5.3.24 int vanAlbada_discretization (const void * user_data)

Van Albada Discretization function for FINCH.

The van Albada discretization function for FINCH assumes the user_data parameter is the FINCH_DATA structure and discretizes the time and space portion of the problem with 2nd order finite differences and uses the van Albada slope limiter function to stabilize the advective physics.

5.5.3.25 int ospre_discretization (const void * user_data)

Ospre Discretization function for FINCH.

The ospre discretization function for FINCH assumes the user_data parameter is the FINCH_DATA structure and discretizes the time and space portion of the problem with 2nd order finite differences and uses the ospre slope limiter function to stabilize the advective physics. This is the default discretization function.

5.5.3.26 int default_bcs (const void * user_data)

Default boundary conditions function for FINCH.

The default boundary conditions function for FINCH assumes the user_data parameter is the FINCH_DATA structure and sets the boundary conditions according to the type of problem requested. The input BCs will always be either Neumann or Dirichlet and the output BC will always be a zero flux Neumann BC.

5.5.3.27 int default_res (const Matrix < double > & x, Matrix < double > & res, const void * user_data)

Default residual function for FINCH.

5.6 flock.h File Reference 159

The default residual function for FINCH assumes the user_data parameter is the FINCH_DATA structure and calls the setparams function (passing the param_data structure), the discretization function, and the set BCs functions, in that order. It then forms the implicit and explicit side residuals that go into the iterative solver.

```
5.5.3.28 int default_precon ( const Matrix < double > & b, Matrix < double > & p, const void * user_data )
```

Default preconditioning function for FINCH.

The default preconditioning function for FINCH assumes the user_data parameter is the FINCH_DATA structure and performs a tridiagonal linear solve using a Modified Thomas Algorithm. This preconditioner will solve the linear problem exactly if there is no advective portion of the physics. Additionally, this preconditioner is also used as the basis for forming the default FINCH non-linear iterations and is sufficient for solving most problems.

```
5.5.3.29 int default_postprocess ( const void * user_data )
```

The default postprocesses function for FINCH assumes the user_data parameter is the FINCH_DATA structure and does nothing.

```
5.5.3.30 int default_reset ( const void * user_data )
```

Default reset function for FINCH.

The default reset function for FINCH assumes the user_data parameter is the FINCH_DATA structure and sets all old state parameters and variables to the new state.

```
5.5.3.31 int FINCH_TESTS ( )
```

Function runs a particular FINCH test.

The FINCH_TESTS function is used to exercise and test out the FINCH algorithms for correctness, efficiency, and accuracy. This test should never report a failure.

5.6 flock.h File Reference

FundamentaL Off-gas Collection of Kernels.

```
#include "macaw.h"
#include "egret.h"
#include "finch.h"
#include "lark.h"
#include "skua.h"
#include "scopsowl.h"
#include "gsta_opt.h"
#include "magpie.h"
#include "skua_opt.h"
#include "scopsowl_opt.h"
#include "yaml_wrapper.h"
```

5.6.1 Detailed Description

FundamentaL Off-gas Collection of Kernels. This is just a .h file that holds all the includes necessary to develop and run simulations for adsorption and/or mass/energy transfer problems for gaseous systems. Include this file into any other project or source code that needs the methods below.

Files Included in FLOCK

macaw.h egret.h finch.h lark.h skua.h scopsowl.h gsta_opt.h magpie.h skua_opt.h scopsowl_opt.h yaml_wrapper.h

Author

Austin Ladshaw

Date

04/28/2014

Copyright

This software was designed and built at the Georgia Institute of Technology by Austin Ladshaw for PhD research in the area of adsorption and surface science. Copyright (c) 2015, all rights reserved.

5.7 gsta_opt.h File Reference

Generalized Statistical Thermodynamic Adsorption (GSTA) Optimization Routine.

```
#include "lmcurve.h"
#include <stdio.h>
#include <math.h>
#include <iostream>
#include <fstream>
#include <stdlib.h>
#include <vector>
#include <time.h>
#include <float.h>
#include <string>
#include "error.h"
```

Classes

• struct GSTA_OPT_DATA

Data structure used in the GSTA optimization routines.

Macros

```
• #define Po 100.0
```

Standard State Pressure - Units: kPa.

• #define R 8.3144621

Gas Constant - Units: J/(K*mol) = kB * Na.

• #define Na 6.0221413E+23

Avagadro's Number - Units: molecules/mol.

Functions

• int roundIt (double d)

Function rounds a double to an integer.

• int twoFifths (int m)

Function returns the rounded two-fifths result of int m.

int orderMag (double x)

Function returns the order of magnitude for the parameter x.

int minValue (std::vector< int > &array)

Function returns the minimum integer in an array of integers.

int minIndex (std::vector< double > &array)

Function returns the index of the minimum integer in an array of integers.

int avgPar (std::vector< int > &array)

Function returns the average integer value in an array of integers.

double avgValue (std::vector< double > &array)

Function returns an average in an array of doubles.

double weightedAvg (double *enorm, double *x, int n)

Function returns a weighted average in an array.

double rSq (double *x, double *y, double slope, double vint, int m_dat)

Function calculates the Coefficient of Determination (R Squared) for the temperature regression.

bool isSmooth (double *par, void *data)

Function looks at the list of parameters to check if they are smoothly changing.

void orthoLinReg (double *x, double *y, double *par, int m_dat, int n_par)

Function performs an Orthogonal Linear Regression on a set of data.

void eduGuess (double *P, double *q, double *par, int k, int m_dat, void *data)

Function will formed an educated guess for the next set of parameters in the GSTA analysis.

double gstaFunc (double p, const double *K, double qmax, int n_par)

Function evaluates the result of the GSTA isotherm model.

double gstaObjFunc (double *t, double *y, double *par, int m_dat, void *data)

Function to evaulate the GSTA objective function value.

• void eval_GSTA (const double *par, int m_dat, const void *data, double *fvec, int *info)

Function to evaluate the GSTA model and feed into the Imfit routine.

int gsta_optimize (const char *fileName)

Function to perform the GSTA optimization routine.

5.7.1 Detailed Description

Generalized Statistical Thermodynamic Adsorption (GSTA) Optimization Routine. gsta opt.cpp

Optimization routine developed for the GSTA isotherm and data analysis. This algorithm was the primary subject of a publication made in Fluid Phase Equilibria. Please refer to the below paper for technical information about the algorithms.

Reference: Ladshaw, Yiacoumi, Tsouris, and DePaoli, Fluid Phase Equilibria, 388, 169-181, 2015.

The GSTA model was first introduced by Llano-Restrepo and Mosquera (2009). Please refer to the below reference for theoretical information about the model.

Reference: Llano-Restrepo and Mosquera, Fluid Phase Equilibria, 283, 73-88, 2009.

Author

Austin Ladshaw

Date

12/17/2013

Copyright

This software was designed and built at the Georgia Institute of Technology by Austin Ladshaw for PhD research in the area of adsorption and surface science. Copyright (c) 2015, all rights reserved.

5.7.2 Macro Definition Documentation

5.7.2.1 #define Po 100.0

Standard State Pressure - Units: kPa.

5.7.2.2 #define R 8.3144621

Gas Constant - Units: J/(K*mol) = kB * Na.

5.7.2.3 #define Na 6.0221413E+23

Avagadro's Number - Units: molecules/mol.

5.7.3 Function Documentation

5.7.3.1 int roundIt (double d)

Function rounds a double to an integer.

This function returns a rounded value of d. Rounding up for any decimal larger than 0.5 and down for all else.

5.7.3.2 int twoFifths (int m)

Function returns the rounded two-fifths result of int m.

This function is used to determine what the maximum number of parameters should be based on the number of data points m. It is designed to prevent the algorithms from "over fitting" the data.

5.7.3.3 int orderMag (double x)

Function returns the order of magnitude for the parameter x.

This function is used to help create initial guesses for the new GSTA parameters that are being optimized for. In order to make sure that those parameters are considered relavent in the optimization routine, we need to make the initial guesses to be around the same order of magnitude of the other GSTA parameters.

5.7.3.4 int minValue (std::vector < int > & array)

Function returns the minimum integer in an array of integers.

This function is used to determine the minimum number of GSTA parameters that were required to adequately fit the isotherm data.

5.7.3.5 int minIndex (std::vector< double > & array)

Function returns the index of the minimum integer in an array of integers.

This function identifies the index of the minimum number of parameters needed for the GSTA model to fit the data. This index is common for all vectors in the GSTA_OPT_DATA structure and is used to identify the most suitable solution.

5.7.3.6 int avgPar (std::vector < int > & array)

Function returns the average integer value in an array of integers.

This function is used to identify the average number of parameters that all the data fitting needed for each GSTA analysis.

5.7.3.7 double avgValue (std::vector< double > & array)

Function returns an average in an array of doubles.

5.7.3.8 double weightedAvg (double * enorm, double * x, int n)

Function returns a weighted average in an array.

This averaging scheme is used to approximate the qmax parameter for the GSTA isotherm model, if that value is unknown. The weighting is based on the euclidean norms of all the fits of the data. Smaller norms are more heavily weighted since they represent a better fit of the data. Once averaging is complete and we have an estimate for qmax, the entire algorithm is re-run holding that qmax constant.

Parameters

enorm	array of euclidean norms from the fitting of the data
X	array of optimum qmax values to be averaged
n	the number of enorm and x values in the array

5.7.3.9 double rSq (double * x, double * y, double slope, double vint, int $m_{\perp}dat$)

Function calculates the Coefficient of Determination (R Squared) for the temperature regression.

This function is used to determine the "fittness" of the linear regression performed on the temperature independent parameters of the GSTA isotherm. A good linear regression should return a value between 1.0 and 0.9.

Parameters

X	observations in the x-axis
у	observations in the y-axis
slope	slope of the linear regression
vint	intercept of the linear regression
m_dat	number of data points used in the linear regression

5.7.3.10 bool isSmooth (double * par, void * data)

Function looks at the list of parameters to check if they are smoothly changing.

This function takes the parameter array par and GSTA_OPT_DATA structure and checks to see if those parameters are changing smoothly. If they are erratic or non-smooth, then it could be an indication of "over fitting" of the data.

5.7.3.11 void orthoLinReg (double * x, double * y, double * par, int $m_{-}dat$, int $n_{-}par$)

Function performs an Orthogonal Linear Regression on a set of data.

This function takes an array of x and y observations and performs an orthogonal linear regression on that information to find optimum parameters for slope and intercept.

Parameters

X	array of x-axis observations
у	array of y-axis observations
par	array of parameter results after regression
m_dat	number of data points or observations
n_par	number of parameters to seek (if n_par != 1 or 2, then par[0] = intercept and par[1] = slope)

5.7.3.12 void eduGuess (double * P, double * q, double * par, int k, int $m_{-}dat$, void * data)

Function will formed an educated guess for the next set of parameters in the GSTA analysis.

This function takes partial pressure and adsorption observations, P and q, and tries to give a decent initial guess to what the GSTA parameters, par, will be for the next iteration.

Parameters

Р	partial pressure observations in the data (kPa)
q	adsorption observations in the data (any units)
par	parameter array for the GSTA isotherm
k	index of the current number of parameters being considered
m_dat	number of pressure-adsorption observations in the isotherm
data	pointer to the GSTA_OPT_DATA data structure

5.7.3.13 double gstaFunc (double p, const double * K, double qmax, int n_par)

Function evaluates the result of the GSTA isotherm model.

This function will evaluate the GSTA model and return the adsorbed amount given the current partial pressure p and the equilibrium parameters K.

Parameters

	р	current partial pressure (kPa)
	K	array of equilibrium parameters (1/kPa $^{\wedge}$ n)
	qmax	the theorectical maximum capacity for the isotherm
	n_par	the number of equilibrium parameters

5.7.3.14 double gstaObjFunc (double * t, double * y, double * par, int m_dat, void * data)

Function to evaulate the GSTA objective function value.

The objective function seeks to penalize the relative fittness of the model based on the number of parameters it took to minimize the euclidean norms. By penalizing the fittness of the model in this fashion, we can find the best solution to the system that required the least number of equilibrium parameters.

5.7.3.15 void eval_GSTA (const double * par, int m_{-} dat, const void * data, double * fvec, int * info)

Function to evaluate the GSTA model and feed into the Imfit routine.

This function will formulate the residuals that go into the Levenberg-Marquardt's Algorithm for non-linear least squares regression. The form of this function is specific to how we interface with the Imfit routines.

5.7.3.16 int gsta_optimize (const char * fileName)

Function to perform the GSTA optimization routine.

5.8 lark.h File Reference 165

This function is callable from the UI and is used to find the optimum parameters of the GSTA isotherm model given a particular set of isotherm data for single-component adsorption equilibria.

Parameters

fileName	name of the input file that holds the isotherm data

Note

The input file for the GSTA optimization routine is a text file holding the necessary information and data needed to run the routine. That input file has a very specific format that is detailed below.

Number of Isotherm Curves

Theoretical Maximum Adsorption Capacity (if unknown, provide 0)

Temperature of the ith Isotherm (K)

Number of Data points for the ith Isotherm

Partial Pressure (kPa) (tab) Corresponding Adsorbed Amount (any units)

(2nd Line down is repeated for all isotherms you are optimizing on...)

Example:

2

21.0

298.15

4

0.000165483 2.77

0.000306379 2.75

0.00044922 5.00

0.000939259 10.40

313.15

4

0.000589636 2.75

0.001063584 3.70

0.001351836 4.2

0.001543464 4.6

The above example would be for 2 sets of isotherms at 298.15 and 313.15 K, respectively. Maximum adsorption capacity is given as 21 (which in this has units of wt%). Each isotherm has 4 data points, which are given in a list as p (kPa) and q (wt%) pairs. Units of adsorption don't matter as long as they are consistent. If you give maximum capacity in mol/kg, then the q's in the lists must also be in mol/kg.

5.8 lark.h File Reference

Linear Algebra Residual Kernels.

```
#include "macaw.h"
#include <float.h>
```

Classes

struct ARNOLDI_DATA

Data structure for the construction of the Krylov subspaces for a linear system.

struct GMRESLP DATA

Data structure for implementation of the Restarted GMRES algorithm with Left Preconditioning.

struct GMRESRP DATA

Data structure for the Restarted GMRES algorithm with Right Preconditioning.

struct PCG_DATA

Data structure for implementation of the PCG algorithms for symmetric linear systems.

struct BiCGSTAB DATA

Data structure for the implementation of the BiCGSTAB algorithm for non-symmetric linear systems.

struct CGS_DATA

Data structure for the implementation of the CGS algorithm for non-symmetric linear systems.

struct OPTRANS DATA

Data structure for implementation of linear operator transposition.

struct GCR_DATA

Data structure for the implementation of the GCR algorithm for non-symmetric linear systems.

• struct GMRESR_DATA

Data structure for the implementation of GCR with Nested GMRES preconditioning (i.e., GMRESR)

struct PICARD DATA

Data structure for the implementation of a Picard or Fixed-Point iteration for non-linear systems.

struct BACKTRACK DATA

Data structure for the implementation of Backtracking Linesearch.

struct PJFNK DATA

Data structure for the implementation of the PJFNK algorithm for non-linear systems.

struct NUM_JAC_DATA

Data structure to form a numerical jacobian matrix with finite differences.

Enumerations

enum krylov_method {
 GMRESLP, PCG, BiCGSTAB, CGS,
 FOM, GMRESRP, GCR, GMRESR }

Enum of definitions for linear solver types in PJFNK.

Functions

- int update_arnoldi_solution (Matrix< double > &x, Matrix< double > &x0, ARNOLDI_DATA *arnoldi_dat)

 Function to update the linear vector x based on the Arnoldi Krylov subspace.
- int arnoldi (int(*matvec)(const Matrix< double > &v, Matrix< double > &w, const void *data), int(*precon)(const Matrix< double > &b, Matrix< double > &p, const void *data), Matrix< double > &ro, ARNOLDI DATA *arnoldi dat, const void *matvec data, const void *precon data)

Function to factor a linear operator into an orthonormal basis and upper Hessenberg matrix.

• int gmresLeftPreconditioned (int(*matvec)(const Matrix< double > &v, Matrix< double > &w, const void *data), int(*precon)(const Matrix< double > &b, Matrix< double > &p, const void *data), Matrix< double > &b, GMRESLP_DATA *gmreslp_dat, const void *matvec_data, const void *precon_data)

Function to iteratively solve a non-symmetric, indefinite linear system with GMRESLP.

int fom (int(*matvec)(const Matrix< double > &v, Matrix< double > &w, const void *data), int(*precon)(const Matrix< double > &b, Matrix< double > &b, GMRESLP_DATA *gmreslp dat, const void *matvec data, const void *precon data)

5.8 lark.h File Reference 167

Function to directly solve a non-symmetric, indefinite linear system with FOM.

int gmresRightPreconditioned (int(*matvec)(const Matrix< double > &v, Matrix< double > &w, const void *data), int(*precon)(const Matrix< double > &b, Matrix< double > &p, const void *data), Matrix< double > &b, GMRESRP_DATA *gmresrp_dat, const void *matvec_data, const void *precon_data)

Function to iteratively solve a non-symmetric, indefinite linear system with GMRESRP.

int pcg (int(*matvec)(const Matrix< double > &p, Matrix< double > &Ap, const void *data), int(*precon)(const Matrix< double > &r, Matrix< double > &z, const void *data), Matrix< double > &b, PCG_DATA *pcg_dat, const void *matvec_data, const void *precon_data)

Function to iteratively solve a symmetric, definite linear system with PCG.

int bicgstab (int(*matvec)(const Matrix< double > &p, Matrix< double > &Ap, const void *data), int(*precon)(const Matrix< double > &r, Matrix< double > &z, const void *data), Matrix< double > &b, BiCGSTAB_DATA *bicg_dat, const void *matvec_data, const void *precon_data)

Function to iteratively solve a non-symmetric, definite linear system with BiCGSTAB.

int cgs (int(*matvec)(const Matrix< double > &p, Matrix< double > &Ap, const void *data), int(*precon)(const Matrix< double > &r, Matrix< double > &z, const void *data), Matrix< double > &b, CGS_DATA *cgs_dat, const void *matvec_data, const void *precon_data)

Function to iteratively solve a non-symmetric, definite linear system with CGS.

int operatorTranspose (int(*matvec)(const Matrix< double > &v, Matrix< double > &Av, const void *data),
 Matrix< double > &r, Matrix< double > &u, OPTRANS_DATA *transpose_dat, const void *matvec_data)

Function that is used to perform transposition of a linear operator and results in a new vector A^T*r=u.

int gcr (int(*matvec)(const Matrix < double > &x, Matrix < double > &Ax, const void *data), int(*precon)(const Matrix < double > &r, Matrix < double > &Mr, const void *data), Matrix < double > &b, GCR_DATA *gcr_dat, const void *matvec data, const void *precon data)

Function to iteratively solve a non-symmetric, definite linear system with GCR.

• int gmresPreconditioner (const Matrix< double > &r, Matrix< double > &Mr, const void *data)

Function used in conjunction with GMRESR to apply GMRESRP iterations as a preconditioner.

int gmresr (int(*matvec)(const Matrix< double > &x, Matrix< double > &Ax, const void *data), int(*terminal_precon)(const Matrix< double > &r, Matrix< double > &Mr, const void *data), Matrix< double > &b, GMRESR_DATA *gmresr_dat, const void *matvec_data, const void *term_precon_data)

Function to iteratively solve a non-symmetric, indefinite linear system with GMRESR.

int picard (int(*res)(const Matrix< double > &x, Matrix< double > &r, const void *data), int(*evalx)(const Matrix< double > &x0, Matrix< double > &x, Const void *data), Matrix< double > &x, PICARD_DATA *picard_dat, const void *res_data, const void *evalx_data)

Function to iteratively solve a non-linear system using the Picard or Fixed-Point method.

int jacvec (const Matrix< double > &v, Matrix< double > &Jv, const void *data)

Function to form a linear operator of a Jacobian matrix used along with the PJFNK method.

int backtrackLineSearch (int(*feval)(const Matrix< double > &x, Matrix< double > &F, const void *data),
 Matrix< double > &Fkp1, Matrix< double > &xkp1, Matrix< double > &pk, double normFk, BACKTRACK-DATA *backtrack_dat, const void *feval_data)

Function to perform a Backtracking Line Search operation to smooth out convergence of PJFNK.

int pjfnk (int(*res)(const Matrix< double > &x, Matrix< double > &F, const void *data), int(*precon)(const Matrix< double > &r, Matrix< double > &p, const void *data), Matrix< double > &x, PJFNK_DATA *pjfnk_dat, const void *res_data, const void *precon_data)

Function to perform the PJFNK algorithm to solve a non-linear system of equations.

int NumericalJacobian (int(*Func)(const Matrix< double > &x, Matrix< double > &F, const void *user_data), const Matrix< double > &x, Matrix< double > &J, int Nx, int Nf, NUM_JAC_DATA *jac_dat, const void *user_data)

Function to form a full numerical Jacobian matrix from a given non-linear function.

• int LARK_TESTS ()

Function that runs a variety of tests on all the functions in LARK.

5.8.1 Detailed Description

Linear Algebra Residual Kernels. lark.cpp

The functions contained within are designed to solve generic linear and non-linear square systems of equations given a function argument and data from the user. Optionally, the user can also provide a function to return a preconditioning result that will be applied to the system.

Having the user define how the preconditioning is carried out provides two major advantages: (1) we do not need to store and large, sparse preconditioning matrices and instead only store the preconditioned vector result and (2) this allows the user to use any kind of preconditioner they see fit for their problem.

The Arnoldi function is typically not called by the user, but can be if desired. It accepts the function arguments and a residual vector to form an orthonormal basis of the Krylov subspace using the Modified Gram-Schmidt process (aka Arnoldi Iteration). This function is called by GMRES to iteratively solve a linear system of equations. Note that you can use this function to directly solve the linear system as long as that system is not too large. Construction of the basis is expensive, which is why this is used as a sub-function of an iterative method.

The Restarted GMRES function will accept function arguments for a linear system and attempt to solve said system iteratively by constructing an orthonormal basis from the Krylov function. Note that this GMRES function does support restarting and will use restarting by default if the linear system is too large.

Also included is a GMRES algorithm without restarting. This will directly solve the linear system within residual tolerance using a Full Orthogonal basis set of that system. It is equivalent to calling the Krylov method with the k parameter equal to N (i.e. the number of equations). This method is nick-named the Full Othogonalization Method (FOM), although the true FOM algorithm in literature is slightly different.

The PJFNK function will accept function arguments for a square, non-linear system of equations and attempt to solve it iteratively using both the GMRES and Krylov functions with Newton's method to convert the non-linear system into a linear system.

Also built here is a PCG implementation for solving symmetric linear systems. Can also be called by PJFNK if we know that the linear system (i.e. the Jacobian) is symmetric. This algorithm is significantly more efficient than GMRES, but is only valid if the system of equations is symmetric.

Other linear solvers implemented in this work are the BiCGSTAB and CGS algorithms for non-symmetric, positive definite matrices. These algorithms are significantly more computationally efficient than GMRES or FOM. However, they can both break down if the linear system is poorly conditioned. In general, you only want to use these methods if you have preconditioning available and your linear system is very, very large. Otherwise, you will be better suited to using GMRES or FOM.

There is also an implementation of the Generalized Conjugate Residual (GCR) method with and without restarting. This is a GMRES-like method that should give the exact solution within N iterations, where N is the original size of the matrix. Built ontop of the GCR method is a GMRESR (or GMRES Recursive) algorithm that uses GCR as the base method and performs GMRESRP iterations as a preconditioner at each iteration of GCR. This is the only linear solver that has built-in preconditioning. As a result, it may be slower than other algorithms for simple problems, but generally will have much better convergence behavior and will almost always give better residual reduction, even for hard to solve problems.

NOTE: There are three GMRES implementations: (i) gmresLP, (ii) fom, and (iii) gmresRP. GMRESLP is a restarted GMRES implementation that is left preconditioned and only checks the residual on the outer loops. This may be less efficient than GMRESRP, which can check both outer and inner loop residuals. However, GMRESRP has to use right preconditioning, which also slightly changes the convergence behavior of the linear system. GMRES with left preconditioning and without restarting will just build the full subspace by default, thus solving the system exactly, but may require too much memory. You can do a GMRESRP unrestarted by specifying that the restart parameter be equal to the size of the problem.

Basic Implementation Details:

Linear Solvers -> Solve Ax=b for x

Non-Linear Solvers -> Solve F(x)=0 for x

All implementations require system size to be 2 or greater

5.8 lark.h File Reference 169

Author

Austin Ladshaw

Date

10/14/2014

Copyright

This software was designed and built at the Georgia Institute of Technology by Austin Ladshaw for PhD research in the area of adsorption and surface science. Copyright (c) 2015, all rights reserved.

5.8.2 Enumeration Type Documentation

5.8.2.1 enum krylov_method

Enum of definitions for linear solver types in PJFNK.

Enum delineates the available Krylov Subspace methods that can be used to solve the linear sub-problem at each non-linear iteration in a Newton method.

Enumerator

GMRESLP

PCG

BICGSTAB

CGS

FOM

GMRESRP

GCR

GMRESR

5.8.3 Function Documentation

 $5.8.3.1 \quad \text{int update_arnoldi_solution (Matrix} < \text{double} > \& \textit{x, Matrix} < \text{double} > \& \textit{x0, ARNOLDI_DATA} * \textit{arnoldi_dat)}$

Function to update the linear vector x based on the Arnoldi Krylov subspace.

This function will update a solution vector x based on the previous solution x0 given the orthonormal basis and upper Hessenberg matrix formed in the Arnoldi algorithm. Updating is automatically called by the GMRESLP function. It is expected that the Arnoldi algorithm has already been called prior to calling this function.

Parameters

Х	matrix that will hold the new updated solution to the linear system
х0	matrix that holds the previous solution to the linear system
arnoldi_dat	pointer to the ARNOLDI_DATA data structure

```
5.8.3.2 int arnoldi ( int(*)(const Matrix< double > &v, Matrix< double > &w, const void *data) matvec, int(*)(const Matrix< double > &b, Matrix< double > &p, const void *data) precon, Matrix< double > & r0, ARNOLDI_DATA * arnoldi_dat, const void * matvec_data, const void * precon_data)
```

Function to factor a linear operator into an orthonormal basis and upper Hessenberg matrix.

This function performs the Arnoldi algorithm to factor a linear operator into an orthonormal basis and upper Hessenberg matrix. Each orthonormal vector is formed using a Modified Gram-Schmidt procedure. When used in conjunction with GMRESLP, user may supply a preconditioning operator to improve convergence of the linear system. However, this function can be used by itself to factor the user's linear operator.

Parameters

matvec	user supplied linear operator given as an int function
precon	user supplied preconditioning operator given as an int function
r0	user supplied vector to serve as the first basis vector in the orthonormal basis
arnoldi_dat	pointer to the ARNOLDI_DATA data structure
matvec_data	user supplied void pointer to a data structure needed for the linear operator
precon_data	user supplied void pointer to a data structure needed for the precondtioning operator

Note

int (*matvec) (const Matrix<double>& v, Matrix<double> &Av, const void *data)

This is a user supplied function for a linear operator. User's function must return an int of 0 upon success and anything else denotes a failure. The function accepts a matrix v that will act on the linear operator a modified the matrix entries of Av to form the result of a matrix-vector product. Void pointer data is used to pass any user data structure that the function may need in order to perform the linear operation.

int (*precon) (const Matrix<double>& b, Matrix<double> &Mb, const void *data)

This is a user supplied function for a preconditioning operator. It has the same form as the above linear operator function and should have all the same properties. The only difference is that this function must form an approximate matrix inversion on the original linear operator and modify the entries of Mb to represent the result of that approximate matrix inversion. The matrix b is given as the vector that this operator is acting on and the void pointer data is for any user data structure that the operator may need.

5.8.3.3 int gmresLeftPreconditioned (int(*)(const Matrix< double > &v, Matrix< double > &w, const void *data) matvec, int(*)(const Matrix< double > &b, Matrix< double > &p, const void *data) precon, Matrix< double > & b, GMRESLP_DATA * gmreslp_dat, const void * matvec_data, const void * precon_data)

Function to iteratively solve a non-symmetric, indefinite linear system with GMRESLP.

This function iteratively solves a non-symmetric, indefinite linear system using the Generalized Minimum RESidual method with Left Preconditioning (GMRESLP). It calls the Arnoldi algorithm to factor a linear operator into an orthonormal basis and upper Hessenberg matrix, then uses that factorization to form an approximation to the linear system. Because this algorithm uses left-side preconditioning, it can only check the linear residuals at the outer iterations.

Parameters

matvec	user supplied linear operator given as an int function
precon	user supplied preconditioning operator given as an int function
b	matrix of boundary conditions in the linear system Ax=b
gmreslp_dat	pointer to the GMRESLP_DATA data structure
matvec_data	user supplied void pointer to a data structure needed for the linear operator
precon_data	user supplied void pointer to a data structure needed for the precondtioning operator

5.8 lark.h File Reference 171

Note

int (*matvec) (const Matrix<double>& v, Matrix<double> &Av, const void *data)

This is a user supplied function for a linear operator. User's function must return an int of 0 upon success and anything else denotes a failure. The function accepts a matrix v that will act on the linear operator a modified the matrix entries of Av to form the result of a matrix-vector product. Void pointer data is used to pass any user data structure that the function may need in order to perform the linear operation.

int (*precon) (const Matrix<double>& b, Matrix<double> &Mb, const void *data)

This is a user supplied function for a preconditioning operator. It has the same form as the above linear operator function and should have all the same properties. The only difference is that this function must form an approximate matrix inversion on the original linear operator and modify the entries of Mb to represent the result of that approximate matrix inversion. The matrix b is given as the vector that this operator is acting on and the void pointer data is for any user data structure that the operator may need.

5.8.3.4 int fom (int(*)(const Matrix< double > &v, Matrix< double > &w, const void *data) matvec, int(*)(const Matrix< double > &b, Matrix< double > &b, Matrix< double > &b, Const void *data) precon, Matrix< double > &b, GMRESLP DATA *

Function to directly solve a non-symmetric, indefinite linear system with FOM.

gmreslp_dat, const void * matvec_data, const void * precon_data)

This function directly solves a non-symmetric, indefinite linear system using the Full Orthogonalization Method (F-OM). This algorithm is exactly equivalent to GMRESLP without restarting. Therefore, it uses the GMRESLP_DATA structure and calls the GMRESLP algorithm without using restarts. As a result, it never checks linear residuals. However, this should give the exact solution upon completion, assuming the linear operator is not singular.

Parameters

matvec	user supplied linear operator given as an int function
precon	user supplied preconditioning operator given as an int function
b	matrix of boundary conditions in the linear system Ax=b
gmreslp_dat	pointer to the GMRESLP_DATA data structure
matvec_data	user supplied void pointer to a data structure needed for the linear operator
precon_data	user supplied void pointer to a data structure needed for the precondtioning operator

Note

int (*matvec) (const Matrix < double > & v, Matrix < double > & Av, const void *data)

.....

This is a user supplied function for a linear operator. User's function must return an int of 0 upon success and anything else denotes a failure. The function accepts a matrix v that will act on the linear operator a modified the matrix entries of Av to form the result of a matrix-vector product. Void pointer data is used to pass any user data structure that the function may need in order to perform the linear operation.

int (*precon) (const Matrix<double>& b, Matrix<double> &Mb, const void *data)

This is a user supplied function for a preconditioning operator. It has the same form as the above linear operator function and should have all the same properties. The only difference is that this function must form an approximate matrix inversion on the original linear operator and modify the entries of Mb to represent the result of that approximate matrix inversion. The matrix b is given as the vector that this operator is acting on and the void pointer data is for any user data structure that the operator may need.

5.8.3.5 int gmresRightPreconditioned (int(*)(const Matrix< double > &v, Matrix< double > &w, const void *data) matvec, int(*)(const Matrix< double > &b, Matrix< double > &b, Const void *data) precon, Matrix< double > &b, GMRESRP_DATA * gmresrp_dat, const void * matvec_data, const void * precon_data)

Function to iteratively solve a non-symmetric, indefinite linear system with GMRESRP.

This function iteratively solves a non-symmetric, indefinite linear system using the Generalized Minimum RESidual method with Right Preconditioning (GMRESRP). Because this algorithm uses right preconditioning, it is able to check the linear residuals at both the outer and inner iterations. This may be much for efficient compared to G-MRESLP. In order to check inner residuals, this algorithm has to perform it's own internal Modified Gram-Schmidt procedure and will not call the Arnoldi algorithm.

Parameters

matvec	user supplied linear operator given as an int function
precon	user supplied preconditioning operator given as an int function
b	matrix of boundary conditions in the linear system Ax=b
gmresrp_dat	pointer to the GMRESRP_DATA data structure
matvec_data	user supplied void pointer to a data structure needed for the linear operator
precon_data	user supplied void pointer to a data structure needed for the precondtioning operator

Note

int (*matvec) (const Matrix<double>& v, Matrix<double> &Av, const void *data)

This is a user supplied function for a linear operator. User's function must return an int of 0 upon success and anything else denotes a failure. The function accepts a matrix v that will act on the linear operator a modified the matrix entries of Av to form the result of a matrix-vector product. Void pointer data is used to pass any user data structure that the function may need in order to perform the linear operation.

int (*precon) (const Matrix<double>& b, Matrix<double> &Mb, const void *data)

This is a user supplied function for a preconditioning operator. It has the same form as the above linear operator function and should have all the same properties. The only difference is that this function must form an approximate matrix inversion on the original linear operator and modify the entries of Mb to represent the result of that approximate matrix inversion. The matrix b is given as the vector that this operator is acting on and the void pointer data is for any user data structure that the operator may need.

5.8.3.6 int pcg (int(*)(const Matrix< double > &p, Matrix< double > &Ap, const void *data) matvec, int(*)(const Matrix< double > &r, Matrix< double > &z, const void *data) precon, Matrix< double > & b, PCG_DATA * pcg_dat, const void * matvec_data, const void * precon_data)

Function to iteratively solve a symmetric, definite linear system with PCG.

This function iteratively solves a symmetric, definite linear system using the Preconditioned Conjugate Gradient (PCG) method. The PCG algorithm is optimal in terms of efficiency and residual reduction, but only if the linear system is symmetric. PCG will fail if the linear operator is non-symmetric!

Parameters

matvec	user supplied linear operator given as an int function
precon	user supplied preconditioning operator given as an int function
b	matrix of boundary conditions in the linear system Ax=b
pcg_dat	pointer to the PCG_DATA data structure
matvec_data	user supplied void pointer to a data structure needed for the linear operator
precon_data	user supplied void pointer to a data structure needed for the precondtioning operator

5.8 lark.h File Reference 173

Note

int (*matvec) (const Matrix<double>& v, Matrix<double> &Av, const void *data)

This is a user supplied function for a linear operator. User's function must return an int of 0 upon success and anything else denotes a failure. The function accepts a matrix v that will act on the linear operator a modified the matrix entries of Av to form the result of a matrix-vector product. Void pointer data is used to pass any user data structure that the function may need in order to perform the linear operation.

int (*precon) (const Matrix<double>& b, Matrix<double> &Mb, const void *data)

This is a user supplied function for a preconditioning operator. It has the same form as the above linear operator function and should have all the same properties. The only difference is that this function must form an approximate matrix inversion on the original linear operator and modify the entries of Mb to represent the result of that approximate matrix inversion. The matrix b is given as the vector that this operator is acting on and the void pointer data is for any user data structure that the operator may need.

5.8.3.7 int bicgstab (int(*)(const Matrix< double > &p, Matrix< double > &Ap, const void *data) matvec, int(*)(const Matrix< double > &r, Matrix< double > &z, const void *data) precon, Matrix< double > & b,

Function to iteratively solve a non-symmetric, definite linear system with BiCGSTAB.

BiCGSTAB_DATA * bicg_dat, const void * matvec_data, const void * precon_data)

This function iteratively solves a non-symmetric, definite linear system using the Bi-Conjugate Gradient STABilized (BiCGSTAB) method. This is a highly efficient algorithm for solving non-symmetric problems, but will occassionally breakdown and fail. Most common failures are caused by poor preconditioning. Works very well for grid-based linear systems.

Parameters

matvec	user supplied linear operator given as an int function
precon	user supplied preconditioning operator given as an int function
b	matrix of boundary conditions in the linear system Ax=b
bicg_dat	pointer to the BiCGSTAB_DATA data structure
matvec_data	user supplied void pointer to a data structure needed for the linear operator
precon_data	user supplied void pointer to a data structure needed for the precondtioning operator

Note

int (*matvec) (const Matrix < double > & v, Matrix < double > & Av, const void *data)

.....

This is a user supplied function for a linear operator. User's function must return an int of 0 upon success and anything else denotes a failure. The function accepts a matrix v that will act on the linear operator a modified the matrix entries of Av to form the result of a matrix-vector product. Void pointer data is used to pass any user data structure that the function may need in order to perform the linear operation.

 $int \ (*precon) \ (const \ Matrix < double > \& \ b, \ Matrix < double > \& Mb, \ const \ void \ *data)$

This is a user supplied function for a preconditioning operator. It has the same form as the above linear operator function and should have all the same properties. The only difference is that this function must form an approximate matrix inversion on the original linear operator and modify the entries of Mb to represent the result of that approximate matrix inversion. The matrix b is given as the vector that this operator is acting on and the void pointer data is for any user data structure that the operator may need.

5.8.3.8 int cgs (int(*)(const Matrix< double > &p, Matrix< double > &Ap, const void *data) matvec, int(*)(const Matrix< double > &r, Matrix< double > &z, const void *data) precon, Matrix< double > & b, CGS_DATA * cgs_dat, const void * matvec_data, const void * precon_data)

Function to iteratively solve a non-symmetric, definite linear system with CGS.

This function iteratively solves a non-symmetric, definite linear system using the Conjugate Gradient Squared (CGS) method. This is an extremely efficient algorithm for solving non-symmetric problems, but will often breakdown and fail. Most common failures are caused by poor or no preconditioning. Works very will for grid-based linear systems.

Parameters

matvec	user supplied linear operator given as an int function
precon	user supplied preconditioning operator given as an int function
b	matrix of boundary conditions in the linear system Ax=b
cgs_dat	pointer to the CGS_DATA data structure
matvec_data	user supplied void pointer to a data structure needed for the linear operator
precon_data	user supplied void pointer to a data structure needed for the precondtioning operator

Note

int (*matvec) (const Matrix<double>& v, Matrix<double> &Av, const void *data)

This is a user supplied function for a linear operator. User's function must return an int of 0 upon success and anything else denotes a failure. The function accepts a matrix v that will act on the linear operator a modified the matrix entries of Av to form the result of a matrix-vector product. Void pointer data is used to pass any user data structure that the function may need in order to perform the linear operation.

int (*precon) (const Matrix<double>& b, Matrix<double> &Mb, const void *data)

This is a user supplied function for a preconditioning operator. It has the same form as the above linear operator function and should have all the same properties. The only difference is that this function must form an approximate matrix inversion on the original linear operator and modify the entries of Mb to represent the result of that approximate matrix inversion. The matrix b is given as the vector that this operator is acting on and the void pointer data is for any user data structure that the operator may need.

.....

5.8.3.9 int operatorTranspose (int(*)(const Matrix< double > &v, Matrix< double > &v, const void *data) matvec,

Matrix< double > & r, Matrix< double > & u, OPTRANS_DATA * transpose_dat, const void * matvec_data)

Function that is used to perform transposition of a linear operator and results in a new vector A^T*r=u.

This function takes a user supplied linear operator and forms the result of that operator transposed and multiplied by a given vector \mathbf{r} ($\mathbf{A}^{\wedge}\mathbf{T}*\mathbf{r}=\mathbf{u}$). Transposition is accomplised by reordering the transpose operator and multiplying the non-transposed operator by a complete set of orthonormal vectors. The end result gives the ith component of the vector \mathbf{u} for each operation ($\mathbf{u}_{-}\mathbf{i}=\mathbf{r}^{\wedge}\mathbf{T}*\mathbf{A}*\mathbf{i}$). Here, \mathbf{i} is a vector made from the ith column of the identity matrix. If the linear system if sufficiently large, then this operation may take some time.

Parameters

matvec	user supplied linear operator given as an int function
r	vector to be multiplied by the transpose of the operator
и	vector to store the result of the operator transposition ($u=A^{\wedge}T*r$)
transpose_dat	pointer to the OPTRANS_DATA data structure
matvec_data	user supplied void pointer to a data structure needed for the linear operator

5.8 lark.h File Reference 175

Note

int (*matvec) (const Matrix<double>& v, Matrix<double> &Av, const void *data)

This is a user supplied function for a linear operator. User's function must return an int of 0 upon success and anything else denotes a failure. The function accepts a matrix v that will act on the linear operator a modified the matrix entries of Av to form the result of a matrix-vector product. Void pointer data is used to pass any user data structure that the function may need in order to perform the linear operation.

5.8.3.10 int gcr (int(*)(const Matrix < double > &x, Matrix < double > &Ax, const void *data) matvec, int(*)(const Matrix < double > &r, Matrix < double > &Mr, const void *data) precon, Matrix < double > & b, GCR DATA * gcr_dat, const void * matvec_data, const void * precon_data)

Function to iteratively solve a non-symmetric, definite linear system with GCR.

This function iteratively solves a non-symmetric, definite linear system using the Generalized Conjugate Residual (GCR) method. Similar to GMRESRP, this algorithm will construct a growing orthonormal basis set that will eventually form the exact solution to the linear system. However, this algorithm is less efficient than GMRESRP and can suffer breakdowns if the linear system is indefinite.

Parameters

matvec	user supplied linear operator given as an int function
precon	user supplied preconditioning operator given as an int function
b	matrix of boundary conditions in the linear system Ax=b
gcr_dat	pointer to the GCR_DATA data structure
matvec_data	user supplied void pointer to a data structure needed for the linear operator
precon_data	user supplied void pointer to a data structure needed for the precondtioning operator

Note

int (*matvec) (const Matrix<double>& v, Matrix<double> &Av, const void *data)

This is a user supplied function for a linear operator. User's function must return an int of 0 upon success and anything else denotes a failure. The function accepts a matrix v that will act on the linear operator a modified the matrix entries of Av to form the result of a matrix-vector product. Void pointer data is used to pass any user data structure that the function may need in order to perform the linear operation.

_____ int (*precon) (const Matrix < double > & b, Matrix < double > & Mb, const void *data)

This is a user supplied function for a preconditioning operator. It has the same form as the above linear operator function and should have all the same properties. The only difference is that this function must form an approximate matrix inversion on the original linear operator and modify the entries of Mb to represent the result of that approximate matrix inversion. The matrix b is given as the vector that this operator is acting on and the void pointer data is for any user data structure that the operator may need.

5.8.3.11 int gmresPreconditioner (const Matrix < double > & r, Matrix < double > & Mr, const void * data)

Function used in conjunction with GMRESR to apply GMRESRP iterations as a preconditioner.

This function is required to take the form of the user supplied preconditioning functions for other iterative methods. However, it cannot be used in conjunction with any other Krylov method. It is only called by the GMRESR function when the preconditioner needs to be applied.

Parameters

r	vector supplied to the preconditioner to operate on
Mr	vector to hold the result of the preconditioning operation
data	void pointer to the GMRESR_DATA data structure

5.8.3.12 int gmresr (int(*)(const Matrix< double > &x, Matrix< double > &Ax, const void *data) matvec, int(*)(const Matrix< double > &r, Matrix< double > &Mr, const void *data) terminal_precon, Matrix< double > & b, GMRESR DATA * gmresr_dat, const void * matvec_data, const void * term_precon_data)

Function to iteratively solve a non-symmetric, indefinite linear system with GMRESR.

This function iteratively solves a non-symmetric, indefinite linear system using the Generalized Minimum RESidual Recursive (GMRESR) method. This algorithm actually uses GCR at the outer iterations, but stabilizes GCR with GMRESRP inner iterations to implicitly form a variable preconditioner to the linear system. As such, this is the only linear method that inherently includes preconditioning, without any user supplied preconditioning operator. However, this algorithms is significantly more computationally expensive than GCR or GMRESRP separately. It should only be used for solving very large or very hard to solve linear systems.

Parameters

matvec	user supplied linear operator given as an int function
terminal_precon	user supplied preconditioning operator given as an int function
b	matrix of boundary conditions in the linear system Ax=b
gmresr_dat	pointer to the GMRESR_DATA data structure
matvec_data	user supplied void pointer to a data structure needed for the linear operator
term_precon	user supplied void pointer to a data structure needed for the precondtioning operator
data	

Note

int (*matvec) (const Matrix<double>& v, Matrix<double> &Av, const void *data)

This is a user supplied function for a linear operator. User's function must return an int of 0 upon success and anything else denotes a failure. The function accepts a matrix v that will act on the linear operator a modified the matrix entries of Av to form the result of a matrix-vector product. Void pointer data is used to pass any user data structure that the function may need in order to perform the linear operation.

int (*terminal_precon) (const Matrix<double> & b, Matrix<double> &Mb, const void *data)

This is a user supplied function for a preconditioning operator. It has the same form as the above linear operator function and should have all the same properties. The only difference is that this function must form an approximate matrix inversion on the original linear operator and modify the entries of Mb to represent the result of that approximate matrix inversion. The matrix b is given as the vector that this operator is acting on and the void pointer data is for any user data structure that the operator may need.

5.8.3.13 int picard (int(*)(const Matrix< double > &x, Matrix< double > &r, const void *data) res, int(*)(const Matrix< double > &x0, Matrix< double > &x, const void *data) evalx, Matrix< double > &x, PICARD_DATA * picard_dat, const void * res_data, const void * evalx_data)

Function to iteratively solve a non-linear system using the Picard or Fixed-Point method.

This function iteratively solves a non-linear system using the Picard method. User supplies a residual function and a weak solution form function. The weak form function is used to approximate the next solution vector for the non-linear system and the residual function is used to determine convergence. User also supplies an initial guess to the non-linear system as a matix x, which will also be used to store the solution. This algorithm is very simple and may not be sufficient to solve complex non-linear systems.

5.8 lark.h File Reference 177

Parameters

res	user supplied function for the non-linear residuals of the system
evalx	user supplied function for the weak form to estimate the next solution
X	user supplied matrix holding the initial guess to the non-linear system
picard_dat	pointer to the PICARD_DATA data structure
res_data	user supplied void pointer to a data structure used for residual evaluations
evalx_data	user supplied void pointer to a data structure used for evaluation of weak form

Note

int (*res) (const Matrix < double > & x, Matrix < double > &F, const void *data)

This is a user supplied function for the non-linear residuals. User's function must return an int of 0 upon success and anything else denotes a failure. The function accepts a matrix x representing the current non-linear variables. Those variables are used to evaluate the users functions and return the residuals in the matrix F. The void pointer data is a data structure provided by the user to hold information the function may need in order to form the residuals.

int (*evalx) (const Matrix<double>& x0, Matrix<double> &x, const void *data)

This is a user supplied function to approximate the next solution vector x based on the previous solution vector x0. The x0 matrix is passed to this function and must be used to edit the entries of x based on the weak form of the problem. The user is free to define any weak form approximation. Void pointer data is the users data structure that may be used to pass additional information into this function in order to evaluate the weak form.

Example Residual: $F(x) = x^2 + x - 1$ Goal is to make this function equal zero

Example Weak Form: $x = 1 - x0^2$ Rearrage residual to form a weak solution

5.8.3.14 int jacvec (const Matrix < double > & v, Matrix < double > & Jv, const void * data)

Function to form a linear operator of a Jacobian matrix used along with the PJFNK method.

This function is used in conjunction with the PJFNK routine to form a linear operator that a Krylov method can operate on. This linear operator is formed from the current residual vector of the non-linear iteration in PJFNK using a finite difference approximation.

Jacobian Linear Operator: $J*v = (F(x_k + eps*v) - F(x_k)) / eps$

Parameters

V	vector to be multiplied by the Jacobian matrix
Jv	storage vector for the result of the Jacobi-vector product
data	void pointer to the PJFNK_DATA data structure holding solver information

5.8.3.15 int backtrackLineSearch (int(*)(const Matrix< double > &x, Matrix< double > &F, const void *data)

feval, Matrix< double > & Fkp1, Matrix< double > & xkp1, Matrix< double > & pk, double normFk,

BACKTRACK_DATA * backtrack_dat, const void * feval_data)

Function to perform a Backtracking Line Search operation to smooth out convergence of PJFNK.

This function performs a simple backtracking line search operation on the residuals from the PJFNK method. The step size of the non-linear iteration is checked against a level of tolerance for residual reduction, then adjusted down if necessary. This method always starts out with the maximum allowable step size. If the largest step size is fine, then the algorithm does nothing. Otherwise, it iteratively adjusts the step size down, until a suitable step is found. In the case that no suitable step is found, this algorithm will report failure to the PJFNK method and PJFNK will decide

whether to continue trying to find a global minimum or report that it is stuck in a local minimum.

Parameters

feval	user supplied residual function for the non-linear system
Fkp1	vector holding the residuals for the next non-linear step
xkp1	vector holding the solution for the next non-linear step
pk	vector holding the current non-linear search direction
normFk	value of the current non-linear residual
backtrack_dat	pointer to the BACKTRACK_DATA data structure
feval_data	user supplied void pointer to the data structure needed for residual evaluation

Note

int (*feval) (const Matrix<double>& x, Matrix<double> &F, const void *data)

This is a user supplied function for the non-linear residuals. User's function must return an int of 0 upon success and anything else denotes a failure. The function accepts a matrix x representing the current nonlinear variables. Those variables are used to evaluate the users functions and return the residuals in the matrix F. The void pointer data is a data structure provided by the user to hold information the function may need in order to form the residuals.

5.8.3.16 int pifnk (int(*)(const Matrix < double > &x, Matrix < double > &F, const void *data) res, int(*)(const Matrix < double > &r, Matrix < double > &p, const void *data) precon, Matrix < double > & x, PJFNK_DATA * pjfnk_dat, const void * res_data, const void * precon_data)

Function to perform the PJFNK algorithm to solve a non-linear system of equations.

This function solves a non-linear system of equations using the Preconditioned Jacobian- Free Newton-Krylov (P-JFNK) algorithm. Each non-linear step of this method results in a linear sub-problem that is solved iteratively with one of the Krylov methods in the krylov_method enum. User must supplied a residual function that computes the non-linear residuals of the system given the current state of the variables x. Additionally, the user must also supplied an initial guess to the non-linear system. Optionally, the user may supply a preconditioning function for the linear sub-problem.

Basic Steps: (i) Calc $F(x_k)$, (ii) Solve $J(x_k)*s_k=-F(x_k)$ for s_k , (iii) Form $x_kp1=x_k+s_k$

Parameters

precon_data	user supplied void pointer to data structure used in preconditioning function
res_data	user supplied void pointer to data structure used in residual function
pjfnk_dat	pointer to the PJFNK_DATA data structure
X	user supplied initial guess and storage location of the solution
precon	user supplied preconditioning function for the linear sub-problems
res	user supplied residual function for the non-linear system

Note

int (*res) (const Matrix<double>& x, Matrix<double> &F, const void *data)

This is a user supplied function for the non-linear residuals. User's function must return an int of 0 upon success and anything else denotes a failure. The function accepts a matrix x representing the current nonlinear variables. Those variables are used to evaluate the users functions and return the residuals in the matrix F. The void pointer data is a data structure provided by the user to hold information the function may need in order to form the residuals.

int (*precon) (const Matrix < double > & b, Matrix < double > & Mb, const void *data)

This is a user supplied function for a preconditioning operator. It has the same form as the linear operators from the Krylov methods and should have all the same properties. The only difference is that this function must form an approximate matrix inversion on the jacvec linear operator and modify the entries of Mb to represent the result of that approximate matrix inversion. The matrix b is given as the vector that this operator is acting on and the void pointer data is for any user data structure that the operator may need.

```
5.8.3.17 int Numerical Jacobian ( int(*)(const Matrix < double > &x, Matrix < double > &F, const void *user_data) Func, const Matrix < double > & x, Matrix < double > & J, int Nx, int Nf, NUM_JAC_DATA * jac_dat, const void * user_data )
```

Function to form a full numerical Jacobian matrix from a given non-linear function.

This function uses finite differences to form a full rank Jacobian matrix for a user supplied non-linear function. The Jacobian matrix will be formed at the current state of the non-linear variables x and stored in a full matrix J. Integers Nx and Nf are used to determine the size of the Jacobian matrix.

Parameters

Func	user supplied function for evaluation of the non-linear system
X	matrix holding the current value of the non-linear variables
J	matrix that will store the numerical Jacobian result
Nx	number of non-linear variables in the system
Nf	number of non-linear functions in the system
jac_dat	pointer to the NUM_JAC_DATA data structure
user_data	user supplied void pointer to a data structure used in the non-linear function

```
5.8.3.18 int LARK_TESTS ( )
```

Function that runs a variety of tests on all the functions in LARK.

This function runs a variety of tests on the linear and non-linear methods developed in LARK. It can be called from the UI.

5.9 macaw.h File Reference

MAtrix CAlculation Workspace.

```
#include <stdio.h>
#include <math.h>
#include <iostream>
#include <fstream>
#include <stdlib.h>
#include <vector>
#include <time.h>
#include <float.h>
#include <string>
#include <exception>
#include "error.h"
```

Classes

class Matrix< T >

Templated C++ Matrix Class Object (click Matrix to go to function definitions)

Macros

#define M_PI 3.14159265358979323846264338327950288

Value of PI with double precision.

Functions

• int MACAW_TESTS ()

Function to run the MACAW tests.

5.9.1 Detailed Description

MAtrix CAlculation Workspace. macaw.cpp

This is a small C++ library that faciltates the use and construction of real matrices using vector objects. The Matrix class is templated so that users are able to work with matrices of any type including, but not limited to: (i) doubles, (ii) ints, (iii) floats, and (iv) even other matrices! Routines and functions are defined for Dense matrix operations. As a result, we typically only use Column Matrices (or Vectors) when doing any actual simulations. However, the development of this class was integral to the development and testing of the Sparse matrix operators in lark.h.

While the primary goal of this object was to define how to operate on real matrices, we could extend this idea to complex matrices as well. For this, we could develop objects that represent imaginary and complex numbers and then create a Matrix of those objects. For this reason, the matrix operations here are all templated to abstract away the specificity of the type of matrix being operated on.

Author

Austin Ladshaw

Date

01/07/2014

Copyright

This software was designed and built at the Georgia Institute of Technology by Austin Ladshaw for PhD research in the area of adsorption and surface science. Copyright (c) 2015, all rights reserved.

5.9.2 Macro Definition Documentation

5.9.2.1 #define M_PI 3.14159265358979323846264338327950288

Value of PI with double precision.

5.9.3 Function Documentation

5.9.3.1 int MACAW_TESTS ()

Function to run the MACAW tests.

This function is callable from the UI and is used to run several algorithm tests for the Matrix objects. This test should never report any errors.

5.10 magpie.h File Reference

Multicomponent Adsorption Generalized Procedure for Isothermal Equilibria.

```
#include "lmcurve.h"
#include <stdio.h>
#include <iostream>
#include <fstream>
#include <stdlib.h>
#include <vector>
#include <time.h>
#include <float.h>
#include <string>
#include "error.h"
```

Classes

```
• struct GSTA_DATA
```

GSTA Data Structure.

struct mSPD DATA

MSPD Data Structure.

struct GPAST_DATA

GPAST Data Structure.

struct SYSTEM_DATA

System Data Structure.

struct MAGPIE_DATA

MAGPIE Data Structure.

Macros

• #define DBL_EPSILON 2.2204460492503131e-016

Machine precision value used for approximating gradients.

#define Z 10.0

 ${\it Surface \ coordination \ number \ used \ in \ the \ MSPD \ activity \ model}.$

#define A 3.13E+09

Corresponding van der Waals standard area for our coordination number (cm^{\(\circ\)}2/mol)

• #define V 18.92

Corresponding van der Waals standard volume for our coordination number (cm\^3/mol)

• #define Po 100.0

Standard State Pressure - Units: kPa.

• #define R 8.3144621

Gas Constant - Units: J/(K*mol) = kB*Na.

• #define Na 6.0221413E+23

Avagadro's Number - Units: molecules/mol.

• #define kB 1.3806488E-23

Boltzmann's Constant - Units: J/K.

#define shapeFactor(v_i) (((Z - 2) * v_i) / (Z * V)) + (2 / Z)

This macro replaces all instances of shapeFactor(#) with the following single line calculation.

• #define InKo(H, S, T) -(H / ($\mathbb{R} * \mathbb{T}$)) + (\mathbb{S} / \mathbb{R})

This macro calculates the natural log of the dimensionless isotherm parameter.

• #define He(qm, K1, m) (qm * K1) / (m * Po)

This macro calculates the Henry's Coefficient for the ith component.

Functions

• double go (double po, const void *data, int i)

Function computes the result of the GSTA isotherm for the ith species.

double dq dp (double p, const void *data, int i)

Function computes the derivative of the GSTA model with respect to partial pressure.

• double q_p (double p, const void *data, int i)

Function computes the ratio between the adsorbed amount and partial pressure for the GSTA isotherm.

• double PI (double po, const void *data, int i)

Function computes the spreading pressure integral of the ith species.

double Qst (double po, const void *data, int i)

Function computes the heat of adsorption based on the ith species GSTA parameters.

double eMax (const void *data, int i)

Function to approximate the maximum lateral energy term for the ith species.

double lnact_mSPD (const double *par, const void *data, int i, volatile double PI)

Function to evaluate the MSPD activity coefficient for the ith species.

• double grad_mSPD (const double *par, const void *data, int i)

Function to approximate the derivative of the MSPD activity model with spreading pressure.

double qT (const double *par, const void *data)

Function to calculate the total adsorbed amount (mol/kg) for the mixed surface phase.

void initialGuess mSPD (double *par, const void *data)

Function to provide an initial guess to the unknown parameters being solved for in GPAST.

void eval_po_PI (const double *par, int m_dat, const void *data, double *fvec, int *info)

Function used with Imfit to evaluate the reference state pressure of a species based on spreading pressure.

void eval_po_qo (const double *par, int m_dat, const void *data, double *fvec, int *info)

Function used with Imfit to evaluate the reference state pressure of a species based on that species isotherm.

void eval po (const double *par, int m dat, const void *data, double *fvec, int *info)

Function used with Imfit to evaluate the reference state pressure of a species based on a sub-system.

void eval eta (const double *par, int m dat, const void *data, double *fvec, int *info)

Function used with Imfit to evaluate the binary interaction parameters for each unique species pair.

void eval_GPAST (const double *par, int m_dat, const void *data, double *fvec, int *info)

Function used with Imfit to solve the GPAST system of equations.

• int MAGPIE (const void *data)

Function to call all sub-routines to solve a MAGPIE/GPAST problem at a given temperature and pressure.

• int MAGPIE SCENARIOS (const char *inputFileName, const char *sceneFileName)

Function to perform a series of MAGPIE simulations based on given input files.

5.10.1 Detailed Description

Multicomponent Adsorption Generalized Procedure for Isothermal Equilibria. magpie.cpp

This file contains all functions and routines associated with predicting isothermal adsorption equilibria from only single component isotherm information. The basis of the model is the Adsorbed Solution Theory developed by Myers and Prausnitz (1965). Added to that base model is a procedure by which we can predict the non-idealities present at the surface phase by solving a closed system of equations involving the activity model.

For more details on this procedure, check out our publication in AIChE where we give a fully feature explaination of our Generalized Predictive Adsorbed Solution Theory (GPAST).

Reference: Ladshaw, A., Yiacoumi, S., and Tsouris, C., "A generalized procedure for the prediction of multicomponent adsorption equilibria", AlChE J., vol. 61, No. 8, p. 2600-2610, 2015.

MAGPIE represents a special case of the more general GPAST procedure, wherin the isotherm for each species is respresent by the GSTA isotherm (see gsta_opt.h) and the activity model for non-ideality at the adsorbent surface is a Modified Spreading Pressure Dependent (MSPD) model. See the above paper reference for more details.

Author

Austin Ladshaw

Date

12/17/2013

Copyright

This software was designed and built at the Georgia Institute of Technology by Austin Ladshaw for PhD research in the area of adsorption and surface science. Copyright (c) 2015, all rights reserved.

5.10.2 Macro Definition Documentation

5.10.2.1 #define DBL_EPSILON 2.2204460492503131e-016

Machine precision value used for approximating gradients.

5.10.2.2 #define Z 10.0

Surface coordination number used in the MSPD activity model.

5.10.2.3 #define A 3.13E+09

Corresponding van der Waals standard area for our coordination number (cm^{^2}/2/mol)

5.10.2.4 #define V 18.92

Corresponding van der Waals standard volume for our coordination number (cm³/mol)

5.10.2.5 #define Po 100.0

Standard State Pressure - Units: kPa.

5.10.2.6 #define R 8.3144621

Gas Constant - Units: J/(K*mol) = kB * Na.

5.10.2.7 #define Na 6.0221413E+23

Avagadro's Number - Units: molecules/mol.

5.10.2.8 #define kB 1.3806488E-23

Boltzmann's Constant - Units: J/K.

5.10.2.9 #define shapeFactor(v_i)(((Z-2) * v_i)/(Z * V))+(2/Z)

This macro replaces all instances of shapeFactor(#) with the following single line calculation.

```
5.10.2.10 #define lnKo( H, S, T)-(H/(R * T))+(S/R)
```

This macro calculates the natural log of the dimensionless isotherm parameter.

```
5.10.2.11 #define He( qm, K1, m)(qm * K1)/(m * Po)
```

This macro calculates the Henry's Coefficient for the ith component.

5.10.3 Function Documentation

5.10.3.1 double qo (double po, const void * data, int i)

Function computes the result of the GSTA isotherm for the ith species.

This function just computes the result of the GSTA isotherm model for the ith species given the partial pressure po.

Parameters

ро	partial pressure in kPa at which to evaluate the GSTA model
data	void pointer to the MAGPIE_DATA data structure
i	index of the gas species for which the GSTA model is being evaluated

5.10.3.2 double dq_dp (double p, const void * data, int i)

Function computes the derivative of the GSTA model with respect to partial pressure.

This function just computes the result of the derivative of GSTA isotherm model for the ith species at the given the partial pressure p.

Parameters

р	partial pressure in kPa at which to evaluate the GSTA model
data	void pointer to the MAGPIE_DATA data structure
i	index of the gas species for which the GSTA model is being evaluated

5.10.3.3 double q_p (double p, const void * data, int i)

Function computes the ratio between the adsorbed amount and partial pressure for the GSTA isotherm.

This function just computes the ratio between the adsorbed amount q (mol/kg) and the partial pressure p (kPa) at the given partial pressure. If p == 0, then this function returns the Henry's Law constant for the isotherm of the ith species.

Parameters

р	partial pressure in kPa at which to evaluate the GSTA model
	void pointer to the MAGPIE_DATA data structure
i	index of the gas species for which the GSTA model is being evaluated

5.10.3.4 double PI (double po, const void * data, int i)

Function computes the spreading pressure integral of the ith species.

This function uses an analytical solution to the spreading pressure integral with the GSTA isotherm to evaluate and return the value computed by that integral equation.

Parameters

ро	partial pressure in kPa at which to evaluate the lumped spreading pressure
data	void pointer to the MAGPIE_DATA data structure
i	index of the gas species for which the GSTA model is being evaluated

5.10.3.5 double Qst (double po, const void * data, int i)

Function computes the heat of adsorption based on the ith species GSTA parameters.

This function computes the isosteric heat of adsorption (J/mol) for the GSTA parameters of the ith species.

Parameters

ро	partial pressure in kPa at which to evaluate the heat of adsorption
data	void pointer to the MAGPIE_DATA data structure
i	index of the gas species for which the GSTA model is being evaluated

5.10.3.6 double eMax (const void * data, int i)

Function to approximate the maximum lateral energy term for the ith species.

The function attempts to approximate the maximum lateral energy term for the ith species. This is not a true maximum, but a cheaper estimate. Value being computed is used to shift the geometric mean and formulate the average cross-lateral energy term between species i and j.

5.10.3.7 double lnact_mSPD (const double * par, const void * data, int i, volatile double PI)

Function to evaluate the MSPD activity coefficient for the ith species.

This function will return the natural log of the ith species activity coefficient using the Modified Spreading Pressure Dependent (MSPD) activity model. The par argument holds the variable values being solved for by GPAST and their contents will change depending on whether we are doing a forward or reverse evaluation. This function should not be called by the user and will only be called when needed in the GPAST routine.

Parameters

par	list of parameters representing variables to be solved for in GPAST
data	void pointer for the MAGPIE_DATA data structure
i	ith species that we want to calculate the activity coefficient for
PI	lumped spreading pressure term used in gradient estimations

5.10.3.8 double grad_mSPD (const double * par, const void * data, int i)

Function to approximate the derivative of the MSPD activity model with spreading pressure.

This function returns a 2nd order, finite different approximation of the derivative of the MSPD activity model with the spreading pressure. The par argument will either hold the current iterates estimate of spreading pressure or should be passed as null. User does not need to call this function. GPAST will call automatically when needed.

Parameters

par	list of parameters representing variables to be solved for in GPAST
data	void pointer for the MAGPIE_DATA data structure
i	ith species for which we will approximate the activty model gradient

5.10.3.9 double qT (const double * par, const void * data)

Function to calculate the total adsorbed amount (mol/kg) for the mixed surface phase.

This function will uses the obtained system parameters from par and estimate the total amount of gases adsorbed to the surface in mol/kg. The user does not need to call this function, since this result will be stored in the SYSTE-M_DATA structure.

Parameters

par	list of parameters representing variables to be solved for in GPAST
data	void pointer for the MAGPIE_DATA data structure

5.10.3.10 void initialGuess_mSPD (double * par, const void * data)

Function to provide an initial guess to the unknown parameters being solved for in GPAST.

This function intends to provide an initial guess for the unknown values being solved for in the GPAST system. Depending on what type of solve is requested, this algorithm will provide a guess for the adsorbed or gas phase composition.

Parameters

pa	list of parameters representing variables to be solved for in GPAST
dat	void pointer for the MAGPIE_DATA data structure

5.10.3.11 void eval_po_PI (const double * par, int m_dat, const void * data, double * fvec, int * info)

Function used with Imfit to evaluate the reference state pressure of a species based on spreading pressure.

This function is used inside of the MSPD activity model to calculate the reference state pressure of a particular species at a given spreading pressure for the system. User does not need to call this function. GPAST will call automatically when needed.

Parameters

par	list of parameters representing variables to be solved for in GPAST
m_dat	number of functions/variables in the GPAST system of equations
data	void pointer for the MAGPIE_DATA data structure
fvec	list of residuals formed by the functions in GPAST
info	integer flag variable used in the Imfit routine

5.10.3.12 void eval_po_qo (const double * par, int m_dat, const void * data, double * fvec, int * info)

Function used with Imfit to evaluate the reference state pressure of a species based on that species isotherm.

This function is used to evaluate the partial pressure or reference state pressure for a particular species given single-component adsorbed amount. User does not need to call this function. GPAST will call automatically when needed.

Parameters

par	list of parameters representing variables to be solved for in GPAST
m_dat	number of functions/variables in the GPAST system of equations
data	void pointer for the MAGPIE_DATA data structure
fvec	list of residuals formed by the functions in GPAST
info	integer flag variable used in the Imfit routine

5.10.3.13 void eval_po (const double * par, int m_-dat , const void * data, double * fvec, int * info)

Function used with Imfit to evaluate the reference state pressure of a species based on a sub-system.

This function is used to approximate reference state pressures based on the spreading pressure of a sub-system in GPAST. The sub-system will be one of the unique binary systems that exist in the overall mixed gas system. User does not need to call this function. GPAST will call automatically when needed.

Parameters

par	list of parameters representing variables to be solved for in GPAST
m_dat	number of functions/variables in the GPAST system of equations
data	void pointer for the MAGPIE_DATA data structure
fvec	list of residuals formed by the functions in GPAST
info	integer flag variable used in the Imfit routine

5.10.3.14 void eval_eta (const double * par, int m_{-} dat, const void * data, double * fvec, int * info)

Function used with Imfit to evaluate the binary interaction parameters for each unique species pair.

This function is used to estimate the binary interaction parameters for all species pairs in a given sub-system. Those parameters are then stored for later used when evaluating the activity coefficients for the overall mixture. User does not need to call this function. GPAST will call automatically when needed.

Parameters

par	list of parameters representing variables to be solved for in GPAST
m_dat	number of functions/variables in the GPAST system of equations
data	void pointer for the MAGPIE_DATA data structure
fvec	list of residuals formed by the functions in GPAST
info	integer flag variable used in the Imfit routine

5.10.3.15 void eval_GPAST (const double * par, int m_dat , const void * data, double * fvec, int * info)

Function used with Imfit to solve the GPAST system of equations.

This function is used after having calculated and stored all necessary information to solve a closed form GPAST system of equations. User does not need to call this function. GPAST will call automatically when needed.

Parameters

par	list of parameters representing variables to be solved for in GPAST
m_dat	number of functions/variables in the GPAST system of equations
data	void pointer for the MAGPIE_DATA data structure
fvec	list of residuals formed by the functions in GPAST
info	integer flag variable used in the Imfit routine

5.10.3.16 int MAGPIE (const void * data)

Function to call all sub-routines to solve a MAGPIE/GPAST problem at a given temperature and pressure.

This is the function that a typical user will want to incorporate into their own codes when evaluating adsorption of a gas mixture. Prior to calling this function, all required structures and information in the MAGPIE_DATA structure must have been properly initialized. After this function has completed it's operations, it will return an integer used to denote a success or failure of the routine. Integers 0, 1, 2, and 3 all denote success. Anything else is considered a failure.

To setup the MAGPIE_DATA structure correctly, you must reserve space for all vector objects based on the number of gas species in the mixture. In general, you only need to reserve space for the adsorbing species. However, you can also reserve space for non-adsorbing species, but you MUST give a gas/adsorbed mole fraction of the non-adsorbing species 0.0 so that the routine knows to ignore them (very important)!

After setting up the memory for the vector objects, you can intialize information specific to the simulation you want to request. The number of species (N), total pressure (PT) and gas temperature (T) must always be given. You can neglect the non-idealities of the surface phase by setting the Ideal bool to true. This will result in faster calculations, because MAGPIE will just revert down to the Ideal Adsorbed Solution Theory (IAST).

The Recover bool will denote whether we are doing a forward or reverse GPAST evaluation. Forward evaluation is for solving for the composition of the adsorbed phase given the composition of the gas phase (Recover = false). Reverse evaluation is for solve for the composition of the gas phase given the composition of the adsorbed phase (Recover = true).

For a reverse evaluation (Recover = true) you will also need to stipulate whether or not there is a carrier gas (Carrier = true or false). A carrier gas is considered any non-adsorbing species that may be present in the gas phase and contributing to the total pressure in the system.

The parameters that must be initialized for all species include all GSTA_DATA parameters and the van der Waals volume parameter (v) in the mSPD_DATA structure. For non-adsorbing species, you can ignore these parameters, but need to set the sites (m) from GSTA_DATA to 1. GPAST cannot run any evaluations without these parameters being set properly AND set in the same order for all species (i.e., make sure that gpast_dat[i].qmax corresponds to mspd_dat[i].v and so on).

Lastly, you need to give either the gas phase or adsorbed phase mole fractions, depending on whether you are going to run a forward or reverse evaluation, respectively. For a forward evaluation, provide the gas mole fractions (y) in GPAST_DATA for each species (non-adsorbing species should have this value set to 0.0). For a reverse evaluation, provide the adsorbed mole fractions (x) in GPAST_DATA for each species, as well as the total adsorbed amount (qT) in SYSTEM_DATA. Again, non-adsorbing species should have their respective phase mole fractions set to 0.0 to exclude them from the simulation. Additionally, if there are non-adsorbing species present, then the Carrier bool in SYSTEM_DATA must be set to true.

Parameters

data void pointer for the MAGPIE_DATA data structure holding all necessary information

5.10.3.17 int MAGPIE_SCENARIOS (const char * inputFileName, const char * sceneFileName)

Function to perform a series of MAGPIE simulations based on given input files.

This function is callable from the UI and is used to perform a series of isothermal equilibria evaluations using the MA-GPIE routines. There are two input files that must be provided: (i) inputFileName - containing parameter information for the species and (ii) sceneFileName - containing information for each MAGPIE simulation. Each of these files have a specific structure (see below). NOTE: this may change in future versions.

inputFileName Text File Structure:

Integer for Number of Adsorbing Species
van der Waals Volume (cm^3/mol) of ith species
GSTA adsorption capacity (mol/kg) of ith species
Number of GSTA parameters of ith species
Enthalpy (J/mol) of nth site (tab) Entropy of nth site (J/K/mol) of ith species
(repeat above for all n sites in species i)
(repeat above for all species i)

```
Example Input File:
17.1
5.8797
1
-20351.9 -81.8369
16.2
5.14934
1
-16662.7 -74.4766
19.7
9.27339
-46597.5 -53.6994
-125024 -221.073
-193619 -356.728
-272228 -567.459
13.25
4.59144
-13418.5 -84.888
18.0
10.0348
-20640.4 -72.6119
(The above input file gives the parameter information for 5 adsorbing species)
sceneFileName Text File Structure:
Integer Flag to mark Forward (0) or { Reverse (1) evaluations }
Number of Simulations to Run
Total Pressure (kPa) (tab) Temperature (K) { (tab) Total Adsorption (mol/kg) (tab) Carrier Gas Flag (0=false, 1=true)
Gas/Adsorbed Mole Fractions for each species in the order given in prior file (tab separated)
(repeat above for all simulations desired)
NOTE: only provide the Total Adsorption and Carrier Flag if doing Reverse evaluations!
Example Scenario File 1:
0
```

```
0.65 303.15
0.364 0.318 0.318
3.25 303.15
0.371 0.32 0.309
6.85 303.15
0.388 0.299 0.313
13.42 303.15
0.349 0.326 0.325
(The above scenario file is for 4 forward evaluations/simulations for a 3-adsorbing species system)
```

Example Scenario File 2:

1 4 0.65 303.15 5.4 0 0.364 0.318 0.318 3.25 303.15 7.7 0 0.371 0.32 0.309 6.85 303.15 9.8 0 0.388 0.299 0.313 13.42 303.15 10.4 0

0.349 0.326 0.325

(The above scenario file is for 4 reverse evaluations/simulations for a 3-adsorbing species system and no carrier gas)

5.11 mola.h File Reference

Molecule Object Library from Atoms.

```
#include <ctype.h>
#include "eel.h"
```

Classes

• class Molecule

C++ Molecule Object built from Atom Objects (click Molecule to go to function definitions)

Functions

• int MOLA_TESTS ()

Function to run the MOLA tests.

5.11 mola.h File Reference 191

5.11.1 Detailed Description

Molecule Object Library from Atoms. mola.cpp

This file contains a C++ Class for creating Molecule objects from the Atom objects that were defined in eel.h. Molecules can be created and registered from basic information or can be registered from a growing list of preregistered molecules that are accessible by name/formula.

Registered Molecules are are known and defined prior to runtime. They have a charge, energy characteristics, phase, name, and formula that they are recongized by. The formula is used to create the atoms that they are made from. If some information is incomplete, it must be specified as to what information is missing (i.e. denote whether the formation energies are known).

Formation energies are used to determine stability/dissociation/acidity equilibrium constants during runtime. If the formation energies are unknown, then the equilibrium constants must be given to a reaction object on when it is initialized.

The molecule formula's are given as strings which are parsed in the constructor to determine what atoms from the EEL files will be registered and used. Note, you will be able to build molecules from an input file, but the library molecules here are ready to be used in applications and require no more input other that the molecule's formula.

List of Currently Registered Molecules

CO3 2- (aq) CI - (aq) H2O (I) H + (aq)H2CO3 (aq) HCO3 - (aq) HNO3 (aq) HCI (aq) NaHCO3 (aq) NaCO3 - (aq) Na + (aq)NaCl (aq) NaOH (aq) NO3 - (aq) OH - (aq) UO2 2+ (aq) UO2NO3 + (aq) UO2(NO3)2 (aq) UO2OH + (aq) UO2(OH)2 (aq)

UO2(OH)3 - (aq) UO2(OH)4 2- (aq) (UO2)2OH 3+ (aq) (UO2)2(OH)2 2+ (aq) (UO2)3(OH)4 2+ (aq)

```
(UO2)3(OH)5 + (aq)
```

(UO2)3(OH)7 - (aq)

(UO2)4(OH)7 + (aq)

UO2CO3 (aq)

UO2(CO3)2 2- (aq)

UO2(CO3)3 4- (aq)

Those registered molecules follow a strict naming convention by which they can be recognized (see below)...

Naming Convention

Plus (+) and minus (-) charges are denoted by the numeric value of the charge followed by a + or - sign, respectively (e.g. UO2(CO3)3 4- (aq))

The phase is always denoted last and will be marked as (I) for liquid, (s) for solid, (aq) for aqueous, and (g) for gas (see above).

When registering a molecule that is not in the library, you must also provide a linear formula during construction or registration. This is needed so that the string parsing is easier to handle when the molecule subsequently registers the necessary atoms. (e.g. UO2(CO3)3 = UO2C3O9 or UO11C3).

Author

Austin Ladshaw

Date

02/24/2014

Copyright

This software was designed and built at the Georgia Institute of Technology by Austin Ladshaw for PhD research in the area of adsorption and surface science. Copyright (c) 2015, all rights reserved.

5.11.2 Function Documentation

```
5.11.2.1 int MOLA_TESTS ( )
```

Function to run the MOLA tests.

This function is callable from the UI and is used to run several algorithm tests for the Molecule objects. This test should never report any errors.

5.12 monkfish.h File Reference

```
#include "dogfish.h"
```

Classes

- struct MONKFISH PARAM
- struct MONKFISH DATA

Functions

- double default_porosity (int i, int I, const void *user_data)
- double default_density (int i, int I, const void *user_data)
- double default interparticle diffusion (int i, int I, const void *user data)
- double default_monk_adsorption (int i, int I, const void *user_data)
- double default_monk_equilibrium (int i, int l, const void *user_data)
- double default monkfish retardation (int i, int I, const void *user data)
- double default_exterior_concentration (int i, const void *user_data)
- double default_film_transfer (int i, const void *user_data)
- int setup_MONKFISH_DATA (FILE *file, double(*eval_porosity)(int i, int I, const void *user_data), double(*eval_density)(int i, int I, const void *user_data), double(*eval_ext_diff)(int i, int I, const void *user_data), double(*eval_adsorb)(int i, int I, const void *user_data), double(*eval_ext_film)(int i, const void *user_data), double(*eval_ext_film)(int i, const void *user_data), double(*eval_ext_film)(int i, const void *user_data), double(*dog_ext_film)(int i, const void *user_data), double(*dog_surf_conc)(int i, const void *user_data), const void *user_data, MONKFISH_DATA *monk dat)
- int MONKFISH_TESTS ()

5.12.1 Function Documentation

- 5.12.1.1 double default_porosity (int i, int l, const void * user_data)
- 5.12.1.2 double default_density (int i, int I, const void * user_data)
- 5.12.1.3 double default_interparticle_diffusion (int i, int I, const void * user_data)
- 5.12.1.4 double default_monk_adsorption (int i, int l, const void * user_data)
- 5.12.1.5 double default_monk_equilibrium (int i, int I, const void * user_data)
- 5.12.1.6 double default_monkfish_retardation (int i, int I, const void * user_data)
- 5.12.1.7 double default_exterior_concentration (int i, const void * user_data)
- 5.12.1.8 double default_film_transfer (int i, const void * user_data)
- 5.12.1.9 int setup_MONKFISH_DATA (FILE * file, double(*)(int i, int I, const void *user_data) eval_porosity, double(*)(int i, int I, const void *user_data) eval_ext_diff, double(*)(int i, int I, const void *user_data) eval_ext_diff, double(*)(int i, int I, const void *user_data) eval_ext_diff, double(*)(int i, int I, const void *user_data) eval_retard, double(*)(int i, const void *user_data) eval_ext_film, double(*)(int i, int I, const void *user_data) eval_ext_film, double(*)(int i, int I, const void *user_data) dog_ext_film, double(*)(int i, const void *user_data) dog_ext_film,
- 5.12.1.10 int MONKFISH_TESTS ()

5.13 sandbox.h File Reference

```
#include "flock.h"
#include "school.h"
```

Classes

• struct Speciation Test01 Data

Functions

- int Speciation_Test01_Function (const Matrix< double > &x, Matrix< double > &F, const void *res_data)
- int Speciation_Test01_Jacobian (const Matrix< double > &x, Matrix< double > &J, const void *precon_data)
- int Speciation_Test01_Guess (const void *user_data)
- int Speciation_Test01_MatVec (const Matrix< double > &x, Matrix< double > &Ax, const void *matvec_data)
- int RUN SANDBOX ()

5.13.1 Function Documentation

```
5.13.1.1 int Speciation_Test01_Function ( const Matrix < double > & x, Matrix < double > & F, const void * res_data )
5.13.1.2 int Speciation_Test01_Jacobian ( const Matrix < double > & x, Matrix < double > & J, const void * precon_data )
5.13.1.3 int Speciation_Test01_Guess ( const void * user_data )
5.13.1.4 int Speciation_Test01_MatVec ( const Matrix < double > & x, Matrix < double > & Ax, const void * matvec_data )
```

5.14 school.h File Reference

5.13.1.5 int RUN_SANDBOX ()

```
#include "eel.h"
#include "mola.h"
#include "shark.h"
#include "dogfish.h"
#include "monkfish.h"
#include "yaml_wrapper.h"
```

5.15 scopsowl.h File Reference

```
#include "egret.h"
#include "skua.h"
```

Classes

- struct SCOPSOWL_PARAM_DATA
- struct SCOPSOWL_DATA

Macros

- #define SCOPSOWL_HPP_
- #define Dp(Dm, ep) (ep*ep*Dm)
- #define Dk(rp, T, MW) (9700.0*rp*pow((T/MW),0.5))
- #define avgDp(Dp, Dk) (pow(((1/Dp)+(1/Dk)),-1.0))

Functions

- void print2file_species_header (FILE *Output, SCOPSOWL_DATA *owl_dat, int i)
- void print2file_SCOPSOWL_time_header (FILE *Output, SCOPSOWL_DATA *owl_dat, int i)
- void print2file_SCOPSOWL_header (SCOPSOWL_DATA *owl_dat)
- void print2file_SCOPSOWL_result_old (SCOPSOWL_DATA *owl_dat)
- void print2file SCOPSOWL result new (SCOPSOWL DATA *owl dat)
- double default_adsorption (int i, int I, const void *user_data)
- double default_retardation (int i, int I, const void *user_data)
- double default_pore_diffusion (int i, int I, const void *user_data)
- double default_surf_diffusion (int i, int I, const void *user_data)
- double default effective diffusion (int i, int I, const void *user data)
- double const_pore_diffusion (int i, int I, const void *user_data)
- double default_filmMassTransfer (int i, const void *user_data)
- double const_filmMassTransfer (int i, const void *user_data)
- int setup_SCOPSOWL_DATA (FILE *file, double(*eval_sorption)(int i, int I, const void *user_data), double(*eval_retardation)(int i, int I, const void *user_data), double(*eval_pore_diff)(int i, int I, const void *user_data), double(*eval_silmMT)(int i, const void *user_data), double(*eval_surface_diff)(int i, int I, const void *user_data), const void *user_data), const void *user_data, MIXED_GAS *gas_data, SCOPSOWL_DATA *owl_data)
- int SCOPSOWL_Executioner (SCOPSOWL_DATA *owl_dat)
- int set SCOPSOWL ICs (SCOPSOWL DATA *owl dat)
- int set SCOPSOWL timestep (SCOPSOWL DATA *owl dat)
- int SCOPSOWL_preprocesses (SCOPSOWL_DATA *owl_dat)
- int set_SCOPSOWL_params (const void *user_data)
- int SCOPSOWL_postprocesses (SCOPSOWL_DATA *owl_dat)
- int SCOPSOWL_reset (SCOPSOWL_DATA *owl_dat)
- int SCOPSOWL (SCOPSOWL_DATA *owl_dat)
- int LARGE_CYCLE_TEST01 (SCOPSOWL_DATA *owl_dat)
- int SMALL_CYCLE_TEST02 (SCOPSOWL_DATA *owl_dat)
- int CURVE_TEST03 (SCOPSOWL_DATA *owl_dat)
- int CURVE_TEST04 (SCOPSOWL_DATA *owl_dat)
- int CURVE_TEST05 (SCOPSOWL_DATA *owl_dat)
- int SCOPSOWL_SCENARIOS (const char *scene, const char *sorbent, const char *comp, const char *sorbate)
- int SCOPSOWL TESTS ()

5.15.1 Macro Definition Documentation

- 5.15.1.1 #define SCOPSOWL_HPP_
- 5.15.1.2 #define Dp(Dm, ep) (ep*ep*Dm)
- 5.15.1.3 #define Dk(rp, T, MW) (9700.0*rp*pow((T/MW),0.5))
- 5.15.1.4 #define avgDp(Dp, Dk) (pow(((1/Dp)+(1/Dk)),-1.0))
- 5.15.2 Function Documentation
- 5.15.2.1 void print2file_species_header (FILE * Output, SCOPSOWL_DATA * owl_dat, int i)
- 5.15.2.2 void print2file_SCOPSOWL_time_header (FILE * Output, SCOPSOWL_DATA * owl_dat, int i)
- 5.15.2.3 void print2file_SCOPSOWL_header (SCOPSOWL_DATA * owl_dat)

```
5.15.2.4 void print2file_SCOPSOWL_result_old ( SCOPSOWL_DATA * owl_dat )
        void print2file_SCOPSOWL_result_new ( SCOPSOWL DATA * owl_dat )
5.15.2.5
5.15.2.6 double default_adsorption ( int i, int I, const void * user_data )
5.15.2.7 double default_retardation ( int i, int l, const void * user_data )
5.15.2.8 double default_pore_diffusion ( int i, int l, const void * user_data )
5.15.2.9 double default_surf_diffusion ( int i, int l, const void * user_data )
5.15.2.10 double default_effective_diffusion ( int i, int I, const void * user_data )
5.15.2.11 double const_pore_diffusion ( int i, int l, const void * user_data )
5.15.2.12 double default_filmMassTransfer ( int i, const void * user_data )
5.15.2.13 double const_filmMassTransfer ( int i, const void * user_data )
5.15.2.14 int setup_SCOPSOWL_DATA (FILE * file, double(*)(int i, int I, const void *user_data) eval_sorption, double(*)(int i,
          int I, const void *user_data) eval_retardation, double(*)(int i, int I, const void *user_data) eval_pore_diff, double(*)(int
          i, const void *user_data) eval_filmMT, double(*)(int i, int l, const void *user_data) eval_surface_diff, const void *
          user_data, MIXED_GAS * gas_data, SCOPSOWL_DATA * owl_data )
5.15.2.15 int SCOPSOWL_Executioner ( SCOPSOWL_DATA * owl_dat )
5.15.2.16 int set_SCOPSOWL_ICs ( SCOPSOWL DATA * owl_dat )
5.15.2.17 int set_SCOPSOWL_timestep ( SCOPSOWL_DATA * owl_dat )
5.15.2.18 int SCOPSOWL_preprocesses ( SCOPSOWL_DATA * owl_dat )
5.15.2.19 int set_SCOPSOWL_params ( const void * user_data )
5.15.2.20 int SCOPSOWL_postprocesses ( SCOPSOWL_DATA * owl_dat )
5.15.2.21 int SCOPSOWL_reset ( SCOPSOWL DATA * owl_dat )
5.15.2.22 int SCOPSOWL ( SCOPSOWL_DATA * owl_dat )
5.15.2.23 int LARGE_CYCLE_TEST01 ( SCOPSOWL_DATA * owl_dat )
5.15.2.24 int SMALL_CYCLE_TEST02 ( SCOPSOWL DATA * owl_dat )
5.15.2.25 int CURVE_TEST03 ( SCOPSOWL_DATA * owl_dat )
5.15.2.26
        int CURVE_TEST04 ( SCOPSOWL_DATA * owl_dat )
5.15.2.27 int CURVE_TEST05 ( SCOPSOWL DATA * owl_dat )
5.15.2.28 int SCOPSOWL_SCENARIOS ( const char * scene, const char * sorbent, const char * comp, const char * sorbate )
5.15.2.29 int SCOPSOWL_TESTS ( )
```

5.16 scopsowl_opt.h File Reference

```
#include "scopsowl.h"
```

Classes

• struct SCOPSOWL_OPT_DATA

Functions

- int SCOPSOWL_OPT_set_y (SCOPSOWL_OPT_DATA *owl_opt)
- int initial_guess_SCOPSOWL (SCOPSOWL_OPT_DATA *owl_opt)
- void eval_SCOPSOWL_Uptake (const double *par, int m_dat, const void *data, double *fvec, int *info)
- int SCOPSOWL_OPTIMIZE (const char *scene, const char *sorbent, const char *comp, const char *sorbate, const char *data)

5.16.1 Function Documentation

```
5.16.1.1 int SCOPSOWL_OPT_set_y ( SCOPSOWL_OPT_DATA * owl_opt )
5.16.1.2 int initial_guess_SCOPSOWL ( SCOPSOWL_OPT_DATA * owl_opt )
5.16.1.3 void eval_SCOPSOWL_Uptake ( const double * par, int m_dat, const void * data, double * fvec, int * info )
5.16.1.4 int SCOPSOWL_OPTIMIZE ( const char * scene, const char * sorbent, const char * comp, const char * sorbate, const char * data )
```

5.17 shark.h File Reference

```
#include "mola.h"
#include "macaw.h"
#include "lark.h"
#include "yaml_wrapper.h"
```

Classes

- · class MasterSpeciesList
- class Reaction
- · class MassBalance
- · class UnsteadyReaction
- class Mechanism
- class Precipitation
- class UnsteadyPrecipitation
- struct SHARK_DATA

Macros

• #define Rstd 8.3144621

Typedefs

• typedef struct SHARK_DATA SHARK_DATA

Enumerations

enum valid_act {
 IDEAL, DAVIES, DEBYE_HUCKEL, DAVIES_LADSHAW,
 SIT, PITZER }

Functions

- void print2file_shark_info (SHARK_DATA *shark_dat)
- void print2file shark header (SHARK DATA *shark dat)
- void print2file_shark_results_new (SHARK_DATA *shark_dat)
- void print2file shark results old (SHARK DATA *shark dat)
- int ideal_solution (const Matrix< double > &x, Matrix< double > &F, const void *data)
- int Davies_equation (const Matrix< double > &x, Matrix< double > &F, const void *data)
- int DebyeHuckel_equation (const Matrix < double > &x, Matrix < double > &F, const void *data)
- int DaviesLadshaw_equation (const Matrix < double > &x, Matrix < double > &F, const void *data)
- int act_choice (const std::string &input)
- bool linesearch choice (const std::string &input)
- int linearsolve_choice (const std::string &input)
- int Convert2LogConcentration (const Matrix< double > &x, Matrix< double > &logx)
- int Convert2Concentration (const Matrix< double > &logx, Matrix< double > &x)
- int read_scenario (SHARK_DATA *shark_dat)
- int read_options (SHARK_DATA *shark_dat)
- int read_species (SHARK_DATA *shark_dat)
- int read_massbalance (SHARK_DATA *shark_dat)
- int read_equilrxn (SHARK_DATA *shark_dat)
- int read_unsteadyrxn (SHARK_DATA *shark_dat)
- int setup_SHARK_DATA (FILE *file, int(*residual)(const Matrix< double > &x, Matrix< double > &res, const void *data), int(*activity)(const Matrix< double > &x, Matrix< double > &gama, const void *data), int(*precond)(const Matrix< double > &r, Matrix< double > &p, const void *data), SHARK_DATA *dat, const void *activity_data, const void *residual_data, const void *precon_data, const void *other_data)
- int shark_add_customResidual (int i, double(*other_res)(const Matrix< double > &x, SHARK_DATA *shark_dat, const void *other_data), SHARK_DATA *shark_dat)
- int shark_parameter_check (SHARK_DATA *shark_dat)
- int shark_energy_calculations (SHARK_DATA *shark_dat)
- int shark_temperature_calculations (SHARK_DATA *shark_dat)
- int shark_pH_finder (SHARK_DATA *shark_dat)
- int shark_guess (SHARK_DATA *shark_dat)
- int shark initial conditions (SHARK DATA *shark dat)
- int shark_executioner (SHARK_DATA *shark_dat)
- int shark_timestep_const (SHARK_DATA *shark_dat)
- int shark timestep adapt (SHARK DATA *shark dat)
- int shark_preprocesses (SHARK_DATA *shark_dat)
- int shark solver (SHARK DATA *shark dat)
- int shark_postprocesses (SHARK_DATA *shark_dat)
- int shark_reset (SHARK_DATA *shark_dat)
- int shark_residual (const Matrix< double > &x, Matrix< double > &F, const void *data)
- int SHARK (SHARK DATA *shark dat)
- int SHARK_SCENARIO (const char *yaml_input)
- int SHARK TESTS ()

5.17 shark.h File Reference 199

```
5.17.1 Macro Definition Documentation
5.17.1.1 #define Rstd 8.3144621
5.17.2 Typedef Documentation
5.17.2.1 typedef struct SHARK_DATA SHARK_DATA
5.17.3 Enumeration Type Documentation
5.17.3.1 enum valid act
Enumerator
    IDEAL
    DAVIES
    DEBYE_HUCKEL
    DAVIES_LADSHAW
    SIT
    PITZER
5.17.4 Function Documentation
5.17.4.1 void print2file_shark_info ( SHARK DATA * shark_dat )
5.17.4.2 void print2file_shark_header ( SHARK_DATA * shark_dat )
5.17.4.3 void print2file_shark_results_new ( SHARK_DATA * shark_dat )
5.17.4.4 void print2file_shark_results_old ( SHARK_DATA * shark_dat )
5.17.4.5 int ideal_solution ( const Matrix < double > & x, Matrix < double > & F, const void * data )
5.17.4.6 int Davies_equation ( const Matrix< double > & x, Matrix< double > & F, const void * data )
5.17.4.7 int DebyeHuckel_equation ( const Matrix < double > & x, Matrix < double > & F, const void * data )
5.17.4.8 int DaviesLadshaw_equation ( const Matrix < double > & x, Matrix < double > & F, const void * data )
5.17.4.9 int act_choice ( const std::string & input )
5.17.4.10 bool linesearch_choice ( const std::string & input )
5.17.4.11 int linearsolve_choice ( const std::string & input )
5.17.4.12 int Convert2LogConcentration (const Matrix < double > & x, Matrix < double > & logx)
5.17.4.13 int Convert2Concentration ( const Matrix < double > & logx, Matrix < double > & x )
5.17.4.14 int read_scenario ( SHARK_DATA * shark_dat )
5.17.4.15 int read_options ( SHARK_DATA * shark_dat )
5.17.4.16 int read_species ( SHARK_DATA * shark_dat )
```

```
5.17.4.17 int read_massbalance ( SHARK_DATA * shark_dat )
5.17.4.18 int read_equilrxn ( SHARK DATA * shark_dat )
5.17.4.19 int read_unsteadyrxn ( SHARK_DATA * shark_dat )
5.17.4.20 int setup_SHARK_DATA ( FILE * file, int(*)(const Matrix< double > &x, Matrix< double > &res, const void
          *data) residual, int(*)(const Matrix < double > &x, Matrix < double > &gama, const void *data) activity,
         int(*)(const Matrix< double > &r, Matrix< double > &p, const void *data) precond, SHARK_DATA * dat,
         const void * activity_data, const void * residual_data, const void * precon_data, const void * other_data )
5.17.4.21 int shark_add_customResidual ( int i, double(*)(const Matrix < double > &x, SHARK_DATA *shark_dat, const
         void *other_data) other_res, SHARK_DATA * shark_dat )
5.17.4.22 int shark_parameter_check ( SHARK_DATA * shark_dat )
5.17.4.23 int shark_energy_calculations ( SHARK_DATA * shark_dat )
5.17.4.24 int shark_temperature_calculations ( SHARK_DATA * shark_dat )
5.17.4.25 int shark_pH_finder ( SHARK_DATA * shark_dat )
5.17.4.26 int shark_guess ( SHARK_DATA * shark_dat )
5.17.4.27 int shark_initial_conditions ( SHARK_DATA * shark_dat )
5.17.4.28 int shark_executioner ( SHARK_DATA * shark_dat )
5.17.4.29 int shark_timestep_const ( SHARK_DATA * shark_dat )
5.17.4.30 int shark_timestep_adapt ( SHARK_DATA * shark_dat )
5.17.4.31 int shark_preprocesses ( SHARK_DATA * shark_dat )
5.17.4.32 int shark_solver ( SHARK_DATA * shark_dat )
5.17.4.33 int shark_postprocesses ( SHARK_DATA * shark_dat )
5.17.4.34 int shark_reset ( SHARK_DATA * shark_dat )
5.17.4.35 int shark_residual ( const Matrix < double > & x, Matrix < double > & F, const void * data )
5.17.4.36 int SHARK ( SHARK DATA * shark_dat )
5.17.4.37 int SHARK_SCENARIO ( const char * yaml_input )
5.17.4.38 int SHARK_TESTS ( )
        skua.h File Reference
5.18
#include "finch.h"
#include "magpie.h"
```

#include "egret.h"

5.18 skua.h File Reference 201

Classes

- struct SKUA PARAM
- struct SKUA_DATA

Macros

- #define SKUA HPP
- #define D_inf(Dref, Tref, B, p, T) (Dref * pow(p+sqrt(DBL_EPSILON),(Tref/T)-B))
- #define D_o(Diff, E, T) (Diff * exp(-E/(Rstd*T)))
- #define D_c(Diff, phi) (Diff * (1.0/((1.0+1.1E-6)-phi)))

Functions

- void print2file_species_header (FILE *Output, SKUA_DATA *skua_dat, int i)
- void print2file_SKUA_time_header (FILE *Output, SKUA_DATA *skua_dat, int i)
- void print2file_SKUA_header (SKUA_DATA *skua_dat)
- void print2file_SKUA_results_old (SKUA_DATA *skua_dat)
- void print2file_SKUA_results_new (SKUA_DATA *skua_dat)
- double default_Dc (int i, int I, const void *data)
- double default_kf (int i, const void *data)
- double const Dc (int i, int I, const void *data)
- double simple_darken_Dc (int i, int I, const void *data)
- double theoretical_darken_Dc (int i, int I, const void *data)
- double empirical kf (int i, const void *data)
- double const_kf (int i, const void *data)
- int molefractionCheck (SKUA_DATA *skua_dat)
- int setup_SKUA_DATA (FILE *file, double(*eval_Dc)(int i, int I, const void *user_data), double(*eval_Kf)(int i, const void *user_data), const void *user_data, MIXED_GAS *gas_data, SKUA_DATA *skua_dat)
- int SKUA Executioner (SKUA DATA *skua dat)
- int set_SKUA_ICs (SKUA_DATA *skua_dat)
- int set SKUA timestep (SKUA DATA *skua dat)
- int SKUA_preprocesses (SKUA_DATA *skua_dat)
- int set_SKUA_params (const void *user_data)
- int SKUA_postprocesses (SKUA_DATA *skua_dat)
- int SKUA_reset (SKUA_DATA *skua_dat)
- int SKUA (SKUA_DATA *skua_dat)
- int SKUA_CYCLE_TEST01 (SKUA_DATA *skua_dat)
- int SKUA CYCLE TEST02 (SKUA DATA *skua dat)
- int SKUA_LOW_TEST03 (SKUA_DATA *skua_dat)
- int SKUA_MID_TEST04 (SKUA_DATA *skua_dat)
- int SKUA_SCENARIOS (const char *scene, const char *sorbent, const char *comp, const char *sorbate)
- int SKUA_TESTS ()

5.18.1 Macro Definition Documentation

- 5.18.1.1 #define SKUA_HPP_
- 5.18.1.2 #define D_inf(Dref, Tref, B, p, T) (Dref * pow(p+sqrt(DBL_EPSILON),(Tref/T)-B))
- 5.18.1.3 #define D_o($\textit{Diff}, \ \textit{E}, \ \textit{T}$) (Diff * exp(-E/(Rstd*T)))
- 5.18.1.4 #define D_c(Diff, phi) (Diff * (1.0/((1.0+1.1E-6)-phi)))

```
5.18.2
        Function Documentation
5.18.2.1 void print2file_species_header ( FILE * Output, SKUA_DATA * skua_dat, int i )
5.18.2.2 void print2file_SKUA_time_header ( FILE * Output, SKUA_DATA * skua_dat, int i )
5.18.2.3 void print2file_SKUA_header ( SKUA DATA * skua_dat )
5.18.2.4 void print2file_SKUA_results_old ( SKUA_DATA * skua_dat )
5.18.2.5 void print2file_SKUA_results_new ( SKUA DATA * skua_dat )
5.18.2.6 double default_Dc ( int i, int I, const void * data )
5.18.2.7 double default_kf ( int i, const void * data )
5.18.2.8 double const_Dc ( int i, int I, const void * data )
5.18.2.9 double simple_darken_Dc ( int i, int I, const void * data )
5.18.2.10 double theoretical_darken_Dc ( int i, int I, const void * data )
5.18.2.11 double empirical_kf ( int i, const void * data )
5.18.2.12 double const_kf ( int i, const void * data )
5.18.2.13 int molefractionCheck ( SKUA DATA * skua_dat )
5.18.2.14 int setup_SKUA_DATA ( FILE * file, double(*)(int i, int I, const void *user_data) eval_Dc, double(*)(int i, const void
          *user_data) eval_Kf, const void * user_data, MIXED_GAS * gas_data, SKUA_DATA * skua_dat )
5.18.2.15 int SKUA_Executioner ( SKUA_DATA * skua_dat )
        int set_SKUA_ICs ( SKUA_DATA * skua_dat )
5.18.2.16
5.18.2.17 int set_SKUA_timestep ( SKUA_DATA * skua_dat )
5.18.2.18 int SKUA_preprocesses ( SKUA_DATA * skua_dat )
5.18.2.19 int set_SKUA_params ( const void * user_data )
5.18.2.20 int SKUA_postprocesses ( SKUA DATA * skua_dat )
5.18.2.21 int SKUA_reset ( SKUA_DATA * skua_dat )
5.18.2.22 int SKUA ( SKUA DATA * skua_dat )
5.18.2.23 int SKUA_CYCLE_TEST01 ( SKUA_DATA * skua_dat )
5.18.2.24 int SKUA_CYCLE_TEST02 ( SKUA_DATA * skua_dat )
5.18.2.25 int SKUA_LOW_TEST03 ( SKUA_DATA * skua_dat )
5.18.2.26 int SKUA_MID_TEST04 ( SKUA_DATA * skua_dat )
5.18.2.27 int SKUA_SCENARIOS ( const char * scene, const char * sorbent, const char * comp, const char * sorbate )
```

```
5.18.2.28 int SKUA_TESTS ( )
```

5.19 skua_opt.h File Reference

```
#include "skua.h"
```

Classes

• struct SKUA_OPT_DATA

Functions

- int SKUA_OPT_set_y (SKUA_OPT_DATA *skua_opt)
- int initial_guess_SKUA (SKUA_OPT_DATA *skua_opt)
- void eval_SKUA_Uptake (const double *par, int m_dat, const void *data, double *fvec, int *info)
- int SKUA_OPTIMIZE (const char *scene, const char *sorbent, const char *comp, const char *sorbate, const char *data)

5.19.1 Function Documentation

```
5.19.1.1 int SKUA_OPT_set_y ( SKUA_OPT_DATA * skua_opt )
5.19.1.2 int initial_guess_SKUA ( SKUA_OPT_DATA * skua_opt )
5.19.1.3 void eval_SKUA_Uptake ( const double * par, int m_dat, const void * data, double * fvec, int * info )
5.19.1.4 int SKUA_OPTIMIZE ( const char * scene, const char * sorbent, const char * comp, const char * sorbate, const char * data )
```

5.20 Trajectory.h File Reference

```
#include "macaw.h"
#include <random>
#include <chrono>
```

Classes

• struct TRAJECTORY_DATA

Functions

- double Magnetic_R (const Matrix< double > &dX, const Matrix< double > &dY, int i, double b, double mu_0, double chi_p, double M, double H0, double a)
- double Magnetic_T (const Matrix < double > &dX, const Matrix < double > &dY, int i, double b, double mu_0, double chi_p, double M, double H0, double a)
- double Grav_R (const Matrix< double > &dX, int i, double b, double rho_p, double rho_f)
- double Grav_T (const Matrix< double > &dX, int i, double b, double rho_p, double rho_f)
- double Van_R (const Matrix< double > &dX, const Matrix< double > &dY, int i, double Hamaker, double b, double a)

double V_RAD (const Matrix< double > &dX, const Matrix< double > &dY, int i, double V0, double rho_f, double a, double eta)

- double V_THETA (const Matrix< double > &dX, const Matrix< double > &dY, int i, double V0, double rho_f, double a, double eta)
- double Brown RAD (double n_rand, double m_rand, double sigma_n, double sigma_m)
- double Brown_THETA (double s_rand, double t_rand, double sigma_n, double sigma_m)
- int POLAR (Matrix < double > &POL, const Matrix < double > &dX, const Matrix < double > &dY, const void *data, int i)
- double RADIAL_FORCE (const Matrix< double > &POL, double eta, double b, double mp, double t, double
 a)
- double TANGENTIAL_FORCE (const Matrix< double > &POL, const Matrix< double > &dY, double eta, double b, double mp, double t, double a, int i)
- int CARTESIAN (const Matrix < double > &POL, Matrix < double > &H, const Matrix < double > &dY, double i, const void *data)
- int DISPLACEMENT (Matrix< double > &dX, Matrix< double > &dY, const Matrix< double > &H, int i)
- int LOCATION (const Matrix< double > &dY, const Matrix< double > &dX, Matrix< double > &X, Matrix< double > &Y, int i)
- double Removal_Efficiency (double Sum_Cap, const void *data)
- int Trajectory_SetupConstants (TRAJECTORY_DATA *dat)
- int Number_Generator (TRAJECTORY_DATA *dat)
- int Run Trajectory ()

5.20.1 Function Documentation

- 5.20.1.1 double Magnetic_R (const Matrix < double > & dX, const Matrix < double > & dY, int i, double b, double $m_{U_-}0$, double chi_-p , double M, double H0, double d
- 5.20.1.2 double Magnetic_T (const Matrix < double > & dX, const Matrix < double > & dY, int i, double b, double mu_0 , double chi_p , double M, double H0, double a)
- 5.20.1.3 double Grav_R (const Matrix < double > & dX, int i, double b, double rho_p , double rho_f)
- 5.20.1.4 double Grav_T (const Matrix < double > & dX, int i, double b, double rho_p, double rho_f)
- 5.20.1.5 double Van_R (const Matrix < double > & dX, const Matrix < double > & dY, int i, double Hamaker, double b, double a)
- 5.20.1.6 double V_RAD (const Matrix< double > & dX, const Matrix< double > & dY, int i, double V0, double rho_f, double a, double eta)
- 5.20.1.7 double V_THETA (const Matrix< double > & dX, const Matrix< double > & dY, int i, double V0, double rho_f, double a, double eta)
- 5.20.1.8 double Brown_RAD (double n_rand, double m_rand, double sigma_n, double sigma_m)
- 5.20.1.9 double Brown_THETA (double s_rand, double t_rand, double sigma_n, double sigma_m)
- 5.20.1.10 int POLAR (Matrix < double > & POL, const Matrix < double > & dX, const Matrix < double > & dY, const void * data, int i)
- 5.20.1.11 double RADIAL_FORCE (const Matrix < double > & POL, double eta, double b, double mp, double t, double a)
- 5.20.1.12 double TANGENTIAL_FORCE (const Matrix< double > & POL, const Matrix< double > & dY, double eta, double b, double mp, double t, double a, int i)

5.21 ui.h File Reference 205

```
5.20.1.13 int CARTESIAN ( const Matrix < double > & POL, Matrix < double > & H, const Matrix < double > & dY, double i, const void * data )
5.20.1.14 int DISPLACEMENT ( Matrix < double > & dX, Matrix < double > & dY, const Matrix < double > & H, int i )
5.20.1.15 int LOCATION ( const Matrix < double > & dY, const Matrix < double > & dX, Matrix < double > & X, Matrix < double > & X, int i )
5.20.1.16 double Removal_Efficiency ( double Sum_Cap, const void * data )
5.20.1.17 int Trajectory_SetupConstants ( TRAJECTORY_DATA * dat )
5.20.1.18 int Number_Generator ( TRAJECTORY_DATA * dat )
5.20.1.19 int Run_Trajectory ( )
```

5.21 ui.h File Reference

User Interface for Ecosystem.

```
#include <fstream>
#include <string>
#include <iostream>
#include "error.h"
#include "yaml_wrapper.h"
#include "flock.h"
#include "school.h"
#include "sandbox.h"
#include "Trajectory.h"
```

Classes

struct UI DATA

Data structure holding the UI arguments.

Macros

- #define UI_HPP_
- #define ECO_VERSION "0.0 alpha"

Macro expansion for executable current version number.

#define ECO_EXECUTABLE "eco0"

Macro expansion for executable current name.

Enumerations

```
    enum valid_options {
        TEST, EXECUTE, EXIT, CONTINUE,
        HELP, dogfish, eel, egret,
        finch, lark, macaw, mola,
        monkfish, sandbox, scopsowl, shark,
        skua, gsta_opt, magpie, scops_opt,
        skua_opt, trajectory }

    Valid options available upon execution of the code.
```

206 File Documentation

Functions

• void aui help ()

Function to display help for Advanced User Interface.

void bui help ()

Function to display help for Basic User Interface.

std::string allLower (const std::string &input)

Function to return an all lower case string based on the passed argument.

bool exit (const std::string &input)

Function returns true if user requests exit.

bool help (const std::string &input)

Function returns trun if the user requests help.

bool version (const std::string &input)

Function returns true if user requests to know the executable version.

bool test (const std::string &input)

Function returns true if user requests to run a test.

bool exec (const std::string &input)

Function returns true if the user requests to run a simulation/executable.

bool path (const std::string &input)

Function returns true if the user indicates that input files share a common path.

• bool input (const std::string &input)

Function returns true if the user indicates that the next arguments are input files.

• bool valid_test_string (const std::string &input, UI_DATA *ui_dat)

Function returns true if the user gave a valid test option.

bool valid_exec_string (const std::string &input, UI_DATA *ui_dat)

Function returns true if the user gave a valid execution option.

int number_files (UI_DATA *ui_dat)

Function returns the number of expected input files for the user's run option.

• bool valid_addon_options (UI_DATA *ui_dat)

Function returns true if the user has choosen a valid additional runtime option.

void display_help (UI_DATA *ui_dat)

Function to call the appropriate help menu based on type of interface.

void display_version (UI_DATA *ui_dat)

Function to display ecosystem version information to the console.

int invalid_input (int count, int max)

Function returns a CONTINUE or EXIT when invalid input is given.

bool valid_input_main (UI_DATA *ui_dat)

Function returns true if user gave valid input in Basic UI.

bool valid_input_tests (UI_DATA *ui_dat)

Function returns true if user gave a valid test function to run.

bool valid_input_execute (UI_DATA *ui_dat)

Function returns true if user gave a valid executable function to run.

• int test_loop (UI_DATA *ui_dat)

Function that loops the Basic UI until a valid test option was selected.

int exec_loop (UI_DATA *ui_dat)

Function that loops the Basic UI until a valid executable option was selected.

int run_test (UI_DATA *ui_dat)

Function will call the user requested test function.

int run_exec (UI_DATA *ui_dat)

Function will call the user requested executable function.

• int run_executable (int argc, const char *argv[])

Function called by the main and runs both user interfaces for the program.

5.21 ui.h File Reference 207

5.21.1 Detailed Description

User Interface for Ecosystem. ui.cpp

These routines define how the user will interface with the software

Author

Austin Ladshaw

Date

08/25/2015

Copyright

This software was designed and built at the Georgia Institute of Technology by Austin Ladshaw for PhD research in the area of adsorption and surface science. Copyright (c) 2015, all rights reserved.

5.21.2 Macro Definition Documentation

5.21.2.1 #define UI_HPP_

5.21.2.2 #define ECO_VERSION "0.0 alpha"

Macro expansion for executable current version number.

5.21.2.3 #define ECO_EXECUTABLE "eco0"

Macro expansion for executable current name.

5.21.3 Enumeration Type Documentation

5.21.3.1 enum valid_options

Valid options available upon execution of the code.

Enumeration of valid options for executing the ecosystem code. More options become available as the code updates. Some options that appear here may not be viewable in the "help" screen of the executable. Those options are hidden, but are still valid entries.

Enumerator

TEST

EXECUTE

EXIT

CONTINUE

HELP

dogfish

eel

egret

finch

lark

macaw

208 File Documentation

```
mola
monkfish
sandbox
scopsowl
shark
skua
gsta_opt
magpie
scops_opt
skua_opt
trajectory
```

5.21.4 Function Documentation

```
5.21.4.1 void aui_help ( )
```

Function to display help for Advanced User Interface.

The Advanved User Interface help screen is accessed by including run option -h or -help when executing the program from command line.

```
5.21.4.2 void bui_help ( )
```

Function to display help for Basic User Interface.

The Basic User Interface help screen is accessed by running the executable, then typing "help" at any point during the console prompts. Exception to this occurs when the console prompts you to provide input files for your choosen routine. In this circumstance, the executable always assumes that what the user types in will be an input file.

```
5.21.4.3 std::string allLower ( const std::string & input )
```

Function to return an all lower case string based on the passed argument.

This function will copy the input paramter and convert that copy to all lower case. The copy is then returned and can be checked against valid or allowed strings.

Parameters

input string to copy and convert to lower case

5.21.4.4 bool exit (const std::string & input)

Function returns true if user requests exit.

This function will check the input string for "exit" or "quit" and terminate the executable. Only checked if using the Basic User Interface.

Parameters

input	input string user gives to the console

5.21 ui.h File Reference 209

5.21.4.5 bool help (const std::string & input)

Function returns trun if the user requests help.

This function will check the input string for "help", "-h", or "–help" and will tell the executable to display the help menu. The help menu that gets displayed depends on how the executable was run to begin with.

Parameters

input	input string user gives to the console	

5.21.4.6 bool version (const std::string & input)

Function returns true if user requests to know the executable version.

This function will check the input string for "version", "-v", or "–version" and will tell the executable to display version information about the executable.

Parameters

input	input string user gives to the console
-------	--

5.21.4.7 bool test (const std::string & input)

Function returns true if user requests to run a test.

This function will check the input string for "-t" or "–test" and determine whether or not the user requests to run an ecosystem test function.

Parameters

input	input string user gives to the console

5.21.4.8 bool exec (const std::string & input)

Function returns true if the user requests to run a simulation/executable.

This function will check the input string for "-e" or "–execute" and determine whether or not the user requests to run an ecosystem executable function.

Parameters

input	input string the user gives to the console

5.21.4.9 bool path (const std::string & input)

Function returns true if the user indicates that input files share a common path.

This function will check the input string for "-p" or "–path" and determine whether or not the user will give a common path to all input files needed for the specified simulation. Only used in Advanced User Interface.

Parameters

input input string the user gives to the console
--

210 File Documentation

5.21.4.10 bool input (const std::string & input)

Function returns true if the user indicates that the next arguments are input files.

This function will check the input string for "-i" or "–input" and determine whether or not the user's next arguments are input files for a specific simulation. Only used in Advanced User Interface.

Parameters

input	input string the user gives to the console

5.21.4.11 bool valid_test_string (const std::string & input, UI_DATA * ui_dat)

Function returns true if the user gave a valid test option.

This function will check the input string given by the user and determine whether that string denotes a valid test. Then, it will mark the option variable in ui_dat with the appropriate option from the valid_options enum.

Parameters

input	input string the user gives to the console
ui_dat	pointer to the data structure for the ui object

5.21.4.12 bool valid_exec_string (const std::string & input, UI_DATA * ui_dat)

Function returns true if the user gave a valid execution option.

This function will check the input string given by the user and determine whether that string denotes a valid execution option. Then, it will mark the option variable in ui_dat with the appropriate option from the valid_options enum.

Parameters

input	input string the user gives to the console
ui_dat	pointer to the data structure for the ui object

5.21.4.13 int number_files (UI_DATA * ui_dat)

Function returns the number of expected input files for the user's run option.

This function will check the option variable in the ui_dat structure to determine the number of input files that is expected to be given. Running different executable functions in ecosystem may require various number of input files.

Parameters

ui_dat	pointer to the data structure for the ui object

5.21.4.14 bool valid_addon_options (UI_DATA * ui_dat)

Function returns true if the user has choosen a valid additional runtime option.

This function will check all additional input options in the user_input variable of ui_dat to determine if the user requests any additional options during runtime. Valid additional options are -p or -path and -i or -input.

5.21 ui.h File Reference 211

Parameters

ui_dat | pointer to the data structure for the ui object

5.21.4.15 void display_help (UI_DATA * ui_dat)

Function to call the appropriate help menu based on type of interface.

This function looks at the ui_dat structure and the user's OS files to determine what help menu to display and how to display it. There are two different types of help menus that can be displayed: (i) Advanced Help and (ii) Basic Help. Additionally, this function checks the OS file system for the existence of installed help files. If it finds those files, then it instructs the command terminal to read the contents of those files with the "less" command. Otherwise, it will just print the appropriate help menu to the console window.

Parameters

ui_dat | pointer to the data structure for the ui object

5.21.4.16 void display_version (UI_DATA * ui_dat)

Function to display ecosystem version information to the console.

This function will check the ui_dat structure to see which type of interface the user is using, then print out the version information for the executable being run.

Parameters

ui_dat pointer to the data structure for the ui object

5.21.4.17 int invalid_input (int count, int max)

Function returns a CONTINUE or EXIT when invalid input is given.

This function looks at the current count and the max iterations and determines whether or not to force the executable to terminate. If the user provides too many incorrect options during the Basic User Interface, then the executable will force quit.

Parameters

count	number of times the user has provided a bad option
max	maximum allowable bad options before force quit

5.21.4.18 bool valid_input_main (UI_DATA * ui_dat)

Function returns true if user gave valid input in Basic UI.

This function is only called if the user is running the Basic UI. It checks the given console argument stored in user_input of ui_dat for a valid option. If no valid option is given, then this function returns false.

Parameters

ui_dat pointer to the data structure for the ui object
--

212 File Documentation

5.21.4.19 bool valid_input_tests (UI_DATA * ui_dat)

Function returns true if user gave a valid test function to run.

This function checks the user_input argument of ui_dat for a valid test option. If no valid test was given, then this function returns false.

Parameters

ui_dat | pointer to the data structure for the ui object

5.21.4.20 bool valid_input_execute (UI_DATA * ui_dat)

Function returns true if user gave a valid executable function to run.

This function checks the user_input argument of ui_dat for a valid executable option. If no valid executable was given, then this function returns false.

Parameters

ui_dat | pointer to the data structure for the ui object

5.21.4.21 int test_loop (UI_DATA * ui_dat)

Function that loops the Basic UI until a valid test option was selected.

This function loops the Basic UI menu for running a test until a valid test is selected by the user. If a valid test is not selected, and the maximum number of loops has been reached, then this function will cause the program to force quit.

Parameters

ui_dat pointer to the data structure for the ui object

5.21.4.22 int exec_loop (UI_DATA * ui_dat)

Function that loops the Basic UI until a valid executable option was selected.

This function loops the Basic UI menu for running an executable until a valid executable is selected by the user. If a valid executable is not selected, and the maximum number of loops has been reached, then this function will cause the program to force quit.

Parameters

ui_dat pointer to the data structure for the ui object

5.21.4.23 int run_test (UI_DATA * ui_dat)

Function will call the user requested test function.

This function checks the option variable of the ui_dat structure and runs the corresponding test function.

Parameters

ui_dat | pointer to the data structure for the ui object

```
5.21.4.24 int run_exec ( UI_DATA * ui_dat )
```

Function will call the user requested executable function.

This function checks the option variable of the ui_dat structure and runs the corresponding executable function.

Parameters

```
ui_dat | pointer to the data structure for the ui object
```

```
5.21.4.25 int run_executable (int argc, const char * argv[])
```

Function called by the main and runs both user interfaces for the program.

This function is called in the main.cpp file and passes the console arguments given at run time.

Parameters

argc	number of arguments provided by the user at the time of execution
argv	list of C-strings that was provided by the user at the time of execution

5.22 yaml_wrapper.h File Reference

```
#include "yaml.h"
#include "error.h"
#include <map>
#include <string>
#include <iostream>
#include <utility>
#include <stdexcept>
```

Classes

- · class ValueTypePair
- class KeyValueMap
- · class SubHeader
- · class Header
- class Document
- · class YamlWrapper
- · class yaml_cpp_class

Typedefs

- typedef enum data_type data_type
- typedef enum header_state header_state

Enumerations

- enum data_type {
 STRING, BOOLEAN, DOUBLE, INT,
 UNKNOWN }
- enum header_state { ANCHOR, ALIAS, NONE }

214 File Documentation

Functions

```
• int YAML_WRAPPER_TESTS ()
   • int YAML_CPP_TEST (const char *file)
5.22.1 Typedef Documentation
5.22.1.1 typedef enum data_type data_type
5.22.1.2 typedef enum header_state header_state
5.22.2 Enumeration Type Documentation
5.22.2.1 enum data_type
Enumerator
   STRING
    BOOLEAN
   DOUBLE
   INT
    UNKNOWN
5.22.2.2 enum header_state
Enumerator
   ANCHOR
   ALIAS
   NONE
5.22.3 Function Documentation
5.22.3.1 int YAML_WRAPPER_TESTS ( )
5.22.3.2 int YAML_CPP_TEST ( const char * file )
```

Index

A4	Outrook 0
~Atom	Output, 8
Atom, 11	sum, 9
~Document	v, 8
Document, 23	Vk, 8
~Header	w, 8
Header, 59	yk, 8
\sim KeyValueMap	abs_tol_bias
KeyValueMap, 62	SCOPSOWL_OPT_DATA, 111
\sim MassBalance	SKUA_OPT_DATA, 119
MassBalance, 64	act_choice
\sim MasterSpeciesList	shark.h, 199
MasterSpeciesList, 66	act_fun
\sim Matrix	SHARK DATA, 114
Matrix, 70	activation_energy
\sim Molecule	SCOPSOWL_PARAM_DATA, 112
Molecule, 81	SKUA PARAM, 119
\sim PeriodicTable	UnsteadyReaction, 134
PeriodicTable, 95	activity_data
\sim Reaction	SHARK DATA, 115
Reaction, 105	
~SubHeader	activity_new SHARK DATA, 115
SubHeader, 122	<u> </u>
~UnsteadyReaction	activity_old
UnsteadyReaction, 132	SHARK_DATA, 115
~ValueTypePair	addDocKey
ValueTypePair, 135	YamlWrapper, 139
~YamlWrapper	addHeadKey
YamlWrapper, 138	Document, 24
~yaml_cpp_class	addKey
yaml_cpp_class, 136	KeyValueMap, 62
yaopp_oiaso, 100	addPair
A	Document, 24
magpie.h, 183	Header, 60
a	KeyValueMap, 62
TRAJECTORY_DATA, 127	SubHeader, 122
ALIAS	addSubKey
yaml_wrapper.h, 214	Header, 60
ANCHOR	adjoint
yaml_wrapper.h, 214	Matrix, 72
A_separator	adsorb_index
TRAJECTORY_DATA, 127	SCOPSOWL_OPT_DATA, 110
A_wire	SKUA_OPT_DATA, 118
TRAJECTORY DATA, 127	Adsorbable
ARNOLDI_DATA, 7	SCOPSOWL_PARAM_DATA, 112
beta, 8	SKUA PARAM, 120
•	affinity
e1, 8	SCOPSOWL_PARAM_DATA, 112
Hkp1, 8	
hp1, 8	SKUA_PARAM, 120
iter, 8	Ai ORTBANS DATA 01
k, 8	OPTRANS_DATA, 91

alias	NaturalState, 14
SubHeader, 123	Neutrons, 12
alkalinity	neutrons, 13
MasterSpeciesList, 67	oxidation_state, 13
all_pars	OxidationState, 12
GSTA_OPT_DATA, 58	Protons, 12
allLower	protons, 13
ui.h, 208	Register, 11
alpha	removeElectron, 12
BACKTRACK_DATA, 15	removeNeutron, 12
BiCGSTAB_DATA, 17	removeProton, 12
CGS_DATA, 20	Symbol, 13
GCR_DATA, 44	valence_e, 13
PCG DATA, 93	AtomCategory
anchor_alias_dne	Atom, 13
error.h, 152	AtomName
Ap	Atom, 12
PCG DATA, 94	AtomState
arg	Atom, 13
GMRESR DATA, 50	AtomSymbol
arg matrix same	Atom, 12
error.h, 151	atomic number
,	Atom, 14
argc	atomic_weight
UI_DATA, 130	Atom, 13
argv	AtomicNumber
UI_DATA, 130	Atom, 13
arnoldi	AtomicWeight
lark.h, 169	Atom, 12
arnoldi_dat	atoms
GMRESLP_DATA, 47	Molecule, 85
As	aui_help
SYSTEM_DATA, 124	ui.h, 208
assertType	avg_fiber_density
KeyValueMap, 63	MONKFISH DATA, 87
ValueTypePair, 135	- '
Atom, 9	avg_norm
\sim Atom, 11	SYSTEM_DATA, 125
Atom, 11	avg_sorption
AtomCategory, 13	MONKFISH_PARAM, 89
AtomName, 12	avg_sorption_old
AtomState, 13	MONKFISH_PARAM, 89
AtomSymbol, 12	avgDp
atomic_number, 14	scopsowl.h, 195
atomic_weight, 13	avgPar
AtomicNumber, 13	gsta_opt.h, 162
AtomicWeight, 12	avgValue
BondingElectrons, 12	gsta_opt.h, 163
Category, 14	b
DisplayInfo, 13	TRAJECTORY_DATA, 127
editAtomicWeight, 11	B0
editElectrons, 11	
editNeutrons, 11	TRAJECTORY_DATA, 127
editOxidationState, 11	BOOLEAN
•	yaml_wrapper.h, 214
editProtons, 11	BACKTRACK_DATA, 14
editValence, 12	alpha, 15
Electrons, 12	constRho, 15
electrons, 13	Fk, 15
Name, 13	lambdaMin, 15

normFkp1, 15	relres_base, 18
rho, 15	res, 17
xk, 15	rho, 17
backtrack_dat	rho_old, 17
PJFNK_DATA, 102	s, 18
backtrackLineSearch	t, 19
lark.h, 177	tol_abs, 17
BasicUI	tol_rel, 17
UI DATA, 130	v, 18
begin	x, 18
Document, 24	y, 18
Header, 60	z, 18
KeyValueMap, 62	bicgstab
YamlWrapper, 138	lark.h, 173
best_par	bicgstab dat
GSTA OPT DATA, 57	PJFNK DATA, 101
bestres	binary_diffusion
BICGSTAB_DATA, 18	MIXED GAS, 78
	binder_fraction
CGS_DATA, 21 GCR_DATA, 44	SCOPSOWL DATA, 108
<i>= '</i>	binder poresize
GMRESLP_DATA, 47	SCOPSOWL DATA, 108
GMRESRP_DATA, 52	binder_porosity
PCG_DATA, 93	SCOPSOWL DATA, 108
PICARD_DATA, 97	BondingElectrons
bestx	Atom, 12
BICGSTAB_DATA, 18	Bounce
CGS_DATA, 21	PJFNK DATA, 101
GCR_DATA, 44	breakdown
GMRESLP_DATA, 47	
GMRESRP_DATA, 53	BiCGSTAB_DATA, 17
PCG_DATA, 93	CGS_DATA_44
PICARD_DATA, 97	GCR_DATA, 44 Brown_RAD
PJFNK_DATA, 101	
beta	Trajectory.h, 204
ARNOLDI_DATA, 8	Brown_THETA
BiCGSTAB_DATA, 17	Trajectory.h, 204
CGS_DATA, 20	bui_help
FINCH_DATA, 37	ui.h, 208
GCR DATA, 44	С
PCG_DATA, 93	Speciation_Test01_Data, 121
TRAJECTORY DATA, 127	C
BICGSTAB	CGS DATA, 22
lark.h, 169	GCR DATA, 45
BICGSTAB DATA, 15	CGS
alpha, 17	lark.h, 169
bestres, 18	CONTINUE
bestx, 18	ui.h, 207
beta, 17	·
breakdown, 17	c_temp GCR_DATA, 45
iter, 17	CARTESIAN
maxit, 17	
	Trajectory.h, 204
omega, 17	CC_E
omega_old, 17	FINCH_DATA, 37
Output, 18	CC_I
p, 18	FINCH_DATA, 37
r, 18	CE3
r0, 18	egret.h, 148
relres, 17	CGS_DATA, 19

alpha, 20	CanCalcHS
bestres, 21	Reaction, 106
bestx, 21	Cap
beta, 20	TRAJECTORY_DATA, 128
breakdown, 20	Carrier
c, 22	SYSTEM DATA, 125
•	
iter, 20	Cartesian
maxit, 20	finch.h, 155
Output, 21	Category
p, <mark>22</mark>	Atom, 14
r, 21	cgs
r0, 21	lark.h, 173
relres, 21	cgs_dat
relres_base, 21	PJFNK DATA, 101
res, 21	changeKey
•	9
rho, 20	Document, 24
sigma, 20	Header, 60
tol_abs, 21	YamlWrapper, 138
tol_rel, 21	char_length
u, 21	MIXED_GAS, 78
v, <mark>22</mark>	char_macro
w, 22	SCOPSOWL_DATA, 108
x, 21	char_measure
z, 22	SKUA_DATA, 117
,	_
CL_E	char_micro
FINCH_DATA, 37	SCOPSOWL_DATA, 108
CL_I	Charge
FINCH_DATA, 37	Molecule, 83
CN	charge
FINCH DATA, 36	MasterSpeciesList, 66
CR E	Molecule, 85
FINCH DATA, 37	check_Mass
_ :	-
CR_I	finch.h, 156
FINCH_DATA, 37	CheckMass
СТ	FINCH_DATA, 36
Speciation_Test01_Data, 121	CheckMolefractions
CURVE_TEST03	MIXED_GAS, 77
scopsowl.h, 196	checkSpeciesEnergies
CURVE TEST04	Reaction, 106
scopsowl.h, 196	UnsteadyReaction, 133
CURVE_TEST05	chi_p
-	TRAJECTORY DATA, 127
scopsowl.h, 196	= '
calculate_properties	cleanup
egret.h, 149	yaml_cpp_class, 137
calculateAvgOxiState	clear
Molecule, 83	Document, 24
calculateEnergies	Header, 60
Reaction, 106	KeyValueMap, 62
UnsteadyReaction, 133	SubHeader, 122
calculateEquilibrium	YamlWrapper, 138
	11 /
Reaction, 106	cofactor
UnsteadyReaction, 133	Matrix, 71
calculateRate	columnExtend
UnsteadyReaction, 133	Matrix, 75
callroutine	columnExtract
FINCH_DATA, 41	Matrix, 75
CanCalcG	columnProjection
Reaction, 106	Matrix, 74
Houding, 100	width, 1-f

columnReplace	SCOPSOWL_OPT_DATA, 110
Matrix, 75	SKUA_OPT_DATA, 118
columnShrink	current_points
Matrix, 75	SCOPSOWL_OPT_DATA, 110
columnVectorFill	SKUA_OPT_DATA, 118
Matrix, 74	current_press
columns	SCOPSOWL_OPT_DATA, 110
Matrix, 71	SKUA_OPT_DATA, 118
CompareFile	current_temp
SCOPSOWL_OPT_DATA, 111	SCOPSOWL_OPT_DATA, 110
SKUA OPT DATA, 119	SKUA_OPT_DATA, 118
	current_token
Conc_new SHARK DATA, 115	yaml_cpp_class, 137
_	Cylindrical
Conc_old	finch.h, 155
SHARK_DATA, 115	illicit.ii, 155
Console_Output	d
SHARK_DATA, 115	FINCH DATA, 34
const_Dc	DAVIES
skua.h, 202	
const_filmMassTransfer	shark.h, 199
scopsowl.h, 196	DAVIES_LADSHAW
const kf	shark.h, 199
skua.h, 202	DEBYE_HUCKEL
const_pH	shark.h, 199
SHARK DATA, 115	DOUBLE
const_pore_diffusion	yaml_wrapper.h, 214
-, -	D_c
scopsowl.h, 196	skua.h, 201
constRho	D_ii
BACKTRACK_DATA, 15	egret.h, 148
ConstantICFill	D_ij
Matrix, 73	egret.h, 148
Contains_pH	D inf
SHARK_DATA, 115	skua.h, 201
Contains_pOH	
SHARK DATA, 115	D_0
Converged	skua.h, 201
SHARK DATA, 115	DBL_EPSILON
Convert2Concentration	magpie.h, 183
shark.h, 199	dHo
•	GSTA_DATA, <mark>56</mark>
Convert2LogConcentration	DIC
shark.h, 199	FINCH_DATA, 35
coord	DISPLACEMENT
SKUA_DATA, 116	Trajectory.h, 205
coord_macro	DOGFISH
SCOPSOWL_DATA, 108	dogfish.h, 144
coord_micro	DOGFISH DATA, 25
SCOPSOWL_DATA, 108	DirichletBC, 27
copyAnchor2Alias	end time, 27
Document, 24	eval DI, 28
Header, 60	eval_DI, 20 eval_R, 27
YamlWrapper, 139	= *
count	eval_kf, 28
	eval_qs, 28
UI_DATA, 129	fiber_diameter, 27
crystal_radius	fiber_length, 27
SCOPSOWL_DATA, 108	finch_dat, 28
Cstd	NonLinear, 27
egret.h, 148	NumComp, 27
current_equil	OutputFile, 27

param_dat, 28	default_bcs
Print2Console, 26	finch.h, 158
Print2File, 26	default_density
t_counter, 27	monkfish.h, 193
t_print, 27	default_effective_diffusion
time, 26	scopsowl.h, 196
time_old, 26	default_execution
total_sorption, 27	finch.h, 157
total_sorption_old, 27	default_exterior_concentration
total_steps, 26	monkfish.h, 193
user_data, 28	default_film_transfer
DOGFISH_Executioner	monkfish.h, 193
dogfish.h, 143	default_filmMassTransfer
DOGFISH PARAM, 28	scopsowl.h, 196
film_transfer_coeff, 29	default ic
initial_sorption, 29	finch.h, 157
intraparticle diffusion, 29	default_interparticle_diffusion
sorbed molefraction, 29	monkfish.h, 193
species, 29	default kf
surface_concentration, 29	skua.h, 202
DOGFISH TESTS	•
dogfish.h, 144	default_monk_adsorption monkfish.h, 193
	•
DOGFISH_postprocesses	default_monk_equilibrium
dogfish.h, 144	monkfish.h, 193
DOGFISH_preprocesses	default_monkfish_retardation
dogfish.h, 144	monkfish.h, 193
DOGFISH_reset	default_params
dogfish.h, 144	finch.h, 158
dSo	default_pore_diffusion
GSTA_DATA, <mark>56</mark>	scopsowl.h, 196
dX	default_porosity
TRAJECTORY_DATA, 128	monkfish.h, 193
dY	default_postprocess
TRAJECTORY_DATA, 128	finch.h, 159
Data	default_precon
Matrix, 76	finch.h, 159
Data_Map	default_preprocess
SubHeader, 123	finch.h, 157
data_type	default_res
yaml_wrapper.h, 214	finch.h, 158
Davies_equation	default_reset
shark.h, 199	finch.h, 159
DaviesLadshaw_equation	default_retardation
shark.h, 199	scopsowl.h, 196
DebyeHuckel equation	default solve
shark.h, 199	finch.h, 158
default Dc	default_surf_diffusion
skua.h, 202	scopsowl.h, 196
default FilmMTCoeff	default timestep
dogfish.h, 143	finch.h, 157
default IntraDiffusion	Delta
dogfish.h, 143	
9 ,	MassBalance, 65
default_Retardation	density
dogfish.h, 143	PURE_GAS, 104
default_SurfaceConcentration	determinate
dogfish.h, 143	Matrix, 71
default_adsorption	diagonalSolve
scopsowl.h, 196	Matrix, 74

dielectric_const	Document, 22
SHARK_DATA, 114	\sim Document, 23
diffusion_type	addHeadKey, 24
SCOPSOWL_OPT_DATA, 110	addPair, 24
SKUA_OPT_DATA, 118	begin, 24
dim_mis_match	changeKey, 24
error.h, 151	clear, 24
Dirichlet	copyAnchor2Alias, 24
FINCH_DATA, 36	DisplayContents, 24
DirichletBC	Document, 23, 24
DOGFISH_DATA, 27	end, <mark>24</mark>
MONKFISH_DATA, 87	getAlias, 25
SCOPSOWL_DATA, 108	getAnchoredHeader, 25
SKUA_DATA, 117	getDataMap, 24
dirichletBCFill	getHeadFromSubAlias, 25
Matrix, 74	getHeadMap, 24
discretize	getHeader, 24
FINCH_DATA, 41	getName, 25
Display	getState, 25
Matrix, 72	Head_Map, 25
Display_Info	isAlias, 25
MassBalance, 65	isAnchor, 25
Reaction, 106	operator(), 24
UnsteadyReaction, 132	operator=, 24
display_help	resetKeys, 24
ui.h, 211	revalidateAllKeys, 24
display_version	setAlias, 24
ui.h, 211	setName, 24
DisplayAll	setNameAliasPair, 24
MasterSpeciesList, 66	setState, 24
DisplayConcentrations	size, 24
MasterSpeciesList, 66	dog_dat
DisplayContents	MONKFISH_DATA, 88
Document, 24	dogfish
Header, 60	ui.h, 207
SubHeader, 122	dogfish.h, 141
yaml_cpp_class, 137	DOGFISH, 144
YamlWrapper, 139	DOGFISH_Executioner, 143
DisplayInfo	DOGFISH_TESTS, 144
Atom, 13	DOGFISH_postprocesses, 144
MasterSpeciesList, 66	DOGFISH_preprocesses, 144
Molecule, 84	DOGFISH_reset, 144
DisplayMap	default_FilmMTCoeff, 143
KeyValueMap, 63	default_IntraDiffusion, 143
DisplayPair	default_Retardation, 143
ValueTypePair, 135	default_SurfaceConcentration, 143
DisplayTable	print2file_DOGFISH_header, 142
PeriodicTable, 95	print2file_DOGFISH_result_new, 143
Dk	print2file_DOGFISH_result_old, 142
scopsowl.h, 195	print2file_species_header, 142
Dn	set_DOGFISH_ICs, 143
FINCH_DATA, 39	set_DOGFISH_params, 144
Dnp1	set_DOGFISH_timestep, 144
FINCH_DATA, 39	setup_DOGFISH_DATA, 143
Do	domain_diameter
FINCH_DATA, 35	MONKFISH_DATA, 87
Doc_Map	Dp
YamlWrapper, 139	scopsowl.h, 195

Dp_ij	Molecule, 82
egret.h, 148	editElectrons
dq_dc	Atom, 11
SCOPSOWL_PARAM_DATA, 112	editEnergy
dq_dco	Molecule, 83
SCOPSOWL_PARAM_DATA, 112	editEnthalpy
dq_dp	Molecule, 83
magpie.h, 184	editEntropy
dt FINCH DATA, 34	Molecule, 83
SHARK DATA, 114	editHS
TRAJECTORY DATA, 127	Molecule, 83
dt min	editNeutrons
SHARK DATA, 114	Atom, 11
dt old	editOneOxidationState
FINCH DATA, 34	Molecule, 82
duplicate_variable	editOxidationState
error.h, 152	Atom, 11
dxj	editPair
NUM JAC DATA, 90	ValueTypePair, 135
dynamic_viscosity	editProtons
PURE GAS, 104	Atom, 11
dz	editValence
FINCH DATA, 34	Atom, 12
1 11011_57(7), 01	editValue
e0	ValueTypePair, 135
GMRESRP_DATA, 53	editValue4Key
e0_bar	KeyValueMap, 62
GMRESRP_DATA, 53	eduGuess
e1	gsta_opt.h, 164
e1 ARNOLDI_DATA, 8	eel
	eel ui.h, 207
ARNOLDI_DATA, 8	eel ui.h, 207 eel.h, 145
ARNOLDI_DATA, 8 EXECUTE	eel ui.h, 207 eel.h, 145 EEL_TESTS, 146
ARNOLDI_DATA, 8 EXECUTE ui.h, 207	eel ui.h, 207 eel.h, 145 EEL_TESTS, 146 egret
ARNOLDI_DATA, 8 EXECUTE ui.h, 207 EXIT	eel ui.h, 207 eel.h, 145 EEL_TESTS, 146 egret ui.h, 207
ARNOLDI_DATA, 8 EXECUTE ui.h, 207 EXIT ui.h, 207	eel ui.h, 207 eel.h, 145 EEL_TESTS, 146 egret ui.h, 207 egret.h, 146
ARNOLDI_DATA, 8 EXECUTE ui.h, 207 EXIT ui.h, 207 e_norm	eel ui.h, 207 eel.h, 145
ARNOLDI_DATA, 8 EXECUTE ui.h, 207 EXIT ui.h, 207 e_norm SCOPSOWL_OPT_DATA, 110	eel ui.h, 207 eel.h, 145
ARNOLDI_DATA, 8 EXECUTE ui.h, 207 EXIT ui.h, 207 e_norm SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 e_norm_old SCOPSOWL_OPT_DATA, 110	eel ui.h, 207 eel.h, 145
ARNOLDI_DATA, 8 EXECUTE ui.h, 207 EXIT ui.h, 207 e_norm SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 e_norm_old	eel ui.h, 207 eel.h, 145
ARNOLDI_DATA, 8 EXECUTE ui.h, 207 EXIT ui.h, 207 e_norm SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 e_norm_old SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 ECO_EXECUTABLE	eel ui.h, 207 eel.h, 145
ARNOLDI_DATA, 8 EXECUTE ui.h, 207 EXIT ui.h, 207 e_norm SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 e_norm_old SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 ECO_EXECUTABLE ui.h, 207	eel ui.h, 207 eel.h, 145 EEL_TESTS, 146 egret ui.h, 207 egret.h, 146 CE3, 148 calculate_properties, 149 Cstd, 148 D_ii, 148 D_ij, 148 Dp_ij, 148
ARNOLDI_DATA, 8 EXECUTE ui.h, 207 EXIT ui.h, 207 e_norm SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 e_norm_old SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 ECO_EXECUTABLE ui.h, 207 ECO_VERSION	eel ui.h, 207 eel.h, 145
ARNOLDI_DATA, 8 EXECUTE ui.h, 207 EXIT ui.h, 207 e_norm SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 e_norm_old SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 ECO_EXECUTABLE ui.h, 207 ECO_VERSION ui.h, 207	eel ui.h, 207 eel.h, 145
ARNOLDI_DATA, 8 EXECUTE ui.h, 207 EXIT ui.h, 207 e_norm SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 e_norm_old SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 ECO_EXECUTABLE ui.h, 207 ECO_VERSION ui.h, 207 EEL_TESTS	eel ui.h, 207 eel.h, 145 EEL_TESTS, 146 egret ui.h, 207 egret.h, 146 CE3, 148 calculate_properties, 149 Cstd, 148 D_ii, 148 D_ij, 148 Dp_ij, 148 EGRET_TESTS, 149 FilmMTCoeff, 149 initialize_data, 149
ARNOLDI_DATA, 8 EXECUTE ui.h, 207 EXIT ui.h, 207 e_norm SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 e_norm_old SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 ECO_EXECUTABLE ui.h, 207 ECO_VERSION ui.h, 207 EEL_TESTS eel.h, 146	eel ui.h, 207 eel.h, 145 EEL_TESTS, 146 egret ui.h, 207 egret.h, 146 CE3, 148 calculate_properties, 149 Cstd, 148 D_ii, 148 D_ij, 148 Dp_ij, 148 EGRET_TESTS, 149 FilmMTCoeff, 149 initialize_data, 149 Mu, 148
ARNOLDI_DATA, 8 EXECUTE ui.h, 207 EXIT ui.h, 207 e_norm SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 e_norm_old SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 ECO_EXECUTABLE ui.h, 207 ECO_VERSION ui.h, 207 EEL_TESTS eel.h, 146 EGRET_TESTS	eel ui.h, 207 eel.h, 145 EEL_TESTS, 146 egret ui.h, 207 egret.h, 146 CE3, 148 calculate_properties, 149 Cstd, 148 D_ii, 148 D_iij, 148 Dp_ij, 148 EGRET_TESTS, 149 FilmMTCoeff, 149 initialize_data, 149 Mu, 148 Nu, 148
ARNOLDI_DATA, 8 EXECUTE ui.h, 207 EXIT ui.h, 207 e_norm SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 e_norm_old SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 ECO_EXECUTABLE ui.h, 207 ECO_VERSION ui.h, 207 EEL_TESTS eel.h, 146 EGRET_TESTS egret.h, 149	eel ui.h, 207 eel.h, 145
ARNOLDI_DATA, 8 EXECUTE ui.h, 207 EXIT ui.h, 207 e_norm SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 e_norm_old SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 ECO_EXECUTABLE ui.h, 207 ECO_VERSION ui.h, 207 EEL_TESTS eel.h, 146 EGRET_TESTS egret.h, 149 eMax	eel ui.h, 207 eel.h, 145
ARNOLDI_DATA, 8 EXECUTE ui.h, 207 EXIT ui.h, 207 e_norm SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 e_norm_old SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 ECO_EXECUTABLE ui.h, 207 ECO_VERSION ui.h, 207 EEL_TESTS eel.h, 146 EGRET_TESTS egret.h, 149 eMax magpie.h, 185	eel ui.h, 207 eel.h, 145
ARNOLDI_DATA, 8 EXECUTE ui.h, 207 EXIT ui.h, 207 e_norm SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 e_norm_old SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 ECO_EXECUTABLE ui.h, 207 ECO_VERSION ui.h, 207 EEL_TESTS eel.h, 146 EGRET_TESTS egret.h, 149 eMax magpie.h, 185 mSPD_DATA, 89	eel ui.h, 207 eel.h, 145
ARNOLDI_DATA, 8 EXECUTE ui.h, 207 EXIT ui.h, 207 e_norm SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 e_norm_old SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 ECO_EXECUTABLE ui.h, 207 ECO_VERSION ui.h, 207 EEL_TESTS eel.h, 146 EGRET_TESTS egret.h, 149 eMax magpie.h, 185 mSPD_DATA, 89 edit	eel ui.h, 207 eel.h, 145
ARNOLDI_DATA, 8 EXECUTE ui.h, 207 EXIT ui.h, 207 e_norm SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 e_norm_old SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 ECO_EXECUTABLE ui.h, 207 ECO_VERSION ui.h, 207 EEL_TESTS eel.h, 146 EGRET_TESTS egret.h, 149 eMax magpie.h, 185 mSPD_DATA, 89 edit Matrix, 70	eel ui.h, 207 eel.h, 145
ARNOLDI_DATA, 8 EXECUTE ui.h, 207 EXIT ui.h, 207 e_norm SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 e_norm_old SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 ECO_EXECUTABLE ui.h, 207 ECO_VERSION ui.h, 207 EEL_TESTS eel.h, 146 EGRET_TESTS egret.h, 149 eMax magpie.h, 185 mSPD_DATA, 89 edit Matrix, 70 editAllOxidationStates	eel ui.h, 207 eel.h, 145
ARNOLDI_DATA, 8 EXECUTE ui.h, 207 EXIT ui.h, 207 e_norm SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 e_norm_old SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 ECO_EXECUTABLE ui.h, 207 ECO_VERSION ui.h, 207 EEL_TESTS eel.h, 146 EGRET_TESTS egret.h, 149 eMax magpie.h, 185 mSPD_DATA, 89 edit Matrix, 70 editAllOxidationStates Molecule, 83	eel ui.h, 207 eel.h, 145
ARNOLDI_DATA, 8 EXECUTE ui.h, 207 EXIT ui.h, 207 e_norm SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 e_norm_old SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 ECO_EXECUTABLE ui.h, 207 ECO_VERSION ui.h, 207 EEL_TESTS eel.h, 146 EGRET_TESTS egret.h, 149 eMax magpie.h, 185 mSPD_DATA, 89 edit Matrix, 70 editAllOxidationStates Molecule, 83 editAtomicWeight	eel ui.h, 207 eel.h, 145 EEL_TESTS, 146 egret ui.h, 207 egret.h, 146 CE3, 148 calculate_properties, 149 Cstd, 148 D_ii, 148 D_ii, 148 D_ij, 148 Dp_ij, 148 EGRET_TESTS, 149 FilmMTCoeff, 149 initialize_data, 149 Mu, 148 Nu, 148 PE3, 148 PSI, 148 Po, 148 Pstd, 148 ReNum, 149 Rstd, 148 RcNum, 149 Rstd, 148 ScNum, 149 set_variables, 149
ARNOLDI_DATA, 8 EXECUTE ui.h, 207 EXIT ui.h, 207 e_norm SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 e_norm_old SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 ECO_EXECUTABLE ui.h, 207 ECO_VERSION ui.h, 207 EEL_TESTS eel.h, 146 EGRET_TESTS egret.h, 149 eMax magpie.h, 185 mSPD_DATA, 89 edit Matrix, 70 editAllOxidationStates Molecule, 83	eel ui.h, 207 eel.h, 145

electrons		invalid_valence, 152
Atom, 13		key_not_found, 152
empirical_kf		magpie_reverse_error, 151
skua.h, 202		matrix_too_small, 151
empty_matrix		matvec_mis_match, 151
error.h, 151		missing_information, 152
end		negative_mass, 151
Document, 24		negative_time, 151
Header, 60		no_diffusion, 151
KeyValueMap, 62		non_real_edge, 152
YamlWrapper, 138		non_square_matrix, 151
end_time		not_a_token, 152
DOGFISH_DATA, 27		nullptr_error, 152
MONKFISH_DATA, 87		nullptr_func, 151
Energy		opt_no_support, 151
Molecule, 84		ortho_check_fail, 151
energy		out_of_bounds, 151
Reaction, 106		read_error, 152
Enthalpy		rxn_rate_error, 152
Molecule, 84		scenario_fail, 151
enthalpy		simulation_fail, 151
Reaction, 106		singular_matrix, 151
Entropy		string_parse_error, 152
Molecule, 84		tensor_out_of_bounds, 152
entropy		unregistered_name, 152
Reaction, 106		unstable_matrix, 151
eps		vector_out_of_bounds, 152
NUM_JAC_DATA, 90		zero_vector, 152
PJFNK_DATA, 100	erro	r.h, 150
Equilibrium		error, 152
Reaction, 106		error_type, 151
error		mError, 151
error.h, 152	erro	r_type
error.h		error.h, 151
anchor alias dne, 152	eta	•
arg_matrix_same, 151		mSPD DATA, 89
dim_mis_match, 151		TRAJECTORY DATA, 127
duplicate variable, 152	eval	_Cex
empty_matrix, 151		MONKFISH DATA, 88
file_dne, 151	Eval	_ChargeResidual
generic error, 151		MasterSpeciesList, 67
indexing error, 151	eval	
initial_error, 152		DOGFISH DATA, 28
invalid atom, 152	eval	Dex
invalid boolean, 151	0.4.	MONKFISH DATA, 87
invalid components, 151	eval	GPAST
invalid console input, 152	ova.	magpie.h, 187
invalid_electron, 152	eval	GSTA
invalid fraction, 151	ovai	gsta_opt.h, 164
invalid_naction, 151 invalid_gas_sum, 151	Fval	IC Residual
invalid molefraction, 151	_ vai	UnsteadyReaction, 134
invalid neutron, 152	eval	
invalid_neutron, 152 invalid_norm, 152	eval _.	_n DOGFISH DATA, 27
invalid_norm, 152	Eval	ReactionRate
invalid_proton, 152 invalid_size, 151	∟val	UnsteadyReaction, 134
= '	Eve	
invalid_solid_sum, 151	⊏val	_Residual
invalid_species, 152		MassBalance, 65
invalid_type, 152		Reaction, 106

UnsteadyReaction, 134	MONKFISH_PARAM, 88
eval_Ret	exterior_transfer_coeff
MONKFISH_DATA, 88	MONKFISH_PARAM, 88
eval_SCOPSOWL_Uptake	_
scopsowl_opt.h, 197	F
eval_SKUA_Uptake	PJFNK_DATA, 101
skua_opt.h, 203	FINCH_Picard
eval ads	finch.h, 155
MONKFISH_DATA, 87	FOM
SCOPSOWL_DATA, 109	lark.h, 169
eval_diff	f_bias
SCOPSOWL_DATA, 109	SCOPSOWL_OPT_DATA, 110
SKUA DATA, 117	SKUA_OPT_DATA, 118
	f_bias_old
eval_eps	SCOPSOWL_OPT_DATA, 110
MONKFISH_DATA, 87	SKUA_OPT_DATA, 118
eval_eta	fC E
magpie.h, 187	FINCH DATA, 38
eval_kf	fC I
DOGFISH_DATA, 28	FINCH_DATA, 38
MONKFISH_DATA, 88	FINCH_DATA, 29
SCOPSOWL_DATA, 109	beta, 37
SKUA_DATA, 117	CC_E, 37
eval_po	CC_I, 37
magpie.h, 187	CL_E, 37
eval_po_PI	CL_I, 37
magpie.h, 186	CN, 36
eval_po_qo	CR_E, 37
magpie.h, 186	CR_I, 37
eval_qs	callroutine, 41
DOGFISH_DATA, 28	
eval_retard	CheckMass, 36
SCOPSOWL DATA, 109	d, 34
eval_rho	DIC, 35
MONKFISH_DATA, 87	Dirichlet, 36
eval_surfDiff	discretize, 41
SCOPSOWL_DATA, 109	Dn, 39
EvalActivity	Dnp1, 39
SHARK_DATA, 115	Do, 35
_ :	dt, 34
evalprecon	dt_old, 34
FINCH_DATA, 41	dz, 34
evalres	evalprecon, 41
FINCH_DATA, 41	evalres, 41
evaluation	ExplicitFlux, 36
SCOPSOWL_OPT_DATA, 110	fC_E, 38
SKUA_OPT_DATA, 118	fC_I, 38
exec	fL_E, <mark>38</mark>
ui.h, 209	fL_I, 38
exec_loop	fR_E, 38
ui.h, <mark>212</mark>	fR_I, 38
executeYamlRead	Fn, 40
yaml_cpp_class, 137	Fnp1, 40
exit	gE, 40
ui.h, 208	gl, 40
Explicit_Eval	Iterative, 36
UnsteadyReaction, 134	kIC, 35
ExplicitFlux	kfn, 35
FINCH_DATA, 36	kfnp1, 36
exterior_concentration	kn, 40
5.1.5.1.50011001111411011	, 10

knp1, 40	uz_lp1_E, <mark>39</mark>
ko, 35	uz_lp1_l, <mark>39</mark>
L, 34	vIC, 35
LN, 36	vn, 39
lambda_E, 36	vnp1, 39
lambda_I, 36	vo, 35
ME, 38	FINCH_TESTS
MI, 38	finch.h, 159
max_iter, 37	fL_E
NE, 38	FINCH_DATA, 38
NI, 38	fL_I
nl_method, 37	FINCH DATA, 38
NormTrack, 36	fR E
OE, 38	FINCH_DATA, 38
OI, 38	fR I
param_data, 42	FINCH_DATA, 38
picard_dat, 42	fiber_diameter
pifnk dat, 42	DOGFISH DATA, 27
pres, 40	fiber_length
RIC, 35	DOGFISH_DATA, 27
res, 40	file_dne
resettime, 41	error.h, 151
Rn, 40	File_Output
Rnp1, 40	SHARK_DATA, 115
Ro, 35	file name
s, 34	yaml_cpp_class, 137
setbcs, 41	Files
setic, 41	UI_DATA, 130
setparams, 41	film_transfer
setpostprocess, 41	SCOPSOWL_PARAM_DATA, 112
setpreprocess, 41	SKUA_PARAM, 120
settime, 41	film_transfer_coeff
Sn, 40	DOGFISH_PARAM, 29
Snp1, 40	MONKFISH_PARAM, 88
solve, 41	FilmMTCoeff
SteadyState, 36	egret.h, 149
T, 34	finch
t, 34	ui.h, 207
t_old, 34	finch.h
tol_abs, 37	Cartesian, 155
tol_rel, 37	Cylindrical, 155
total_iter, 37	FINCH_Picard, 155
u_star, 39	LARK_PJFNK, 155
uAvg, 34	LARK_Picard, 155
uAvg_old, 35	Spherical, 155
ulC, 35	finch.h, 152
uT, 34	check_Mass, 156
uT_old, 34	default_bcs, 158
ubest, 39	default_execution, 157
un, 39	default_ic, 157
unm1, 39	default_params, 158
unp1, 39	default_postprocess, 159
uo, 35	default_precon, 159
Update, 36	default_preprocess, 157
uz_l_E, 39	default_res, 158
uz_l_l, 39	default_reset, 159 default_solve, 158
uz_lm1_E, 39 uz_lm1_I, 39	default_timestep, 157
uz_iiii1_i, 33	delauit_lillestep, 137

FINCH_TESTS, 159	funeval
finch_coord_type, 155	PJFNK_DATA, 102
finch_solve_type, 155	Fv
I_direct, 156	PJFNK DATA, 101
lark_picard_step, 156	Fx
max, 155	NUM JAC DATA, 90
min, 155	Fxp
•	NUM JAC DATA, 90
minmod, 156	NOW_UAO_DATA, 30
minmod_discretization, 158	GCR
nl_picard, 156	lark.h, 169
ospre_discretization, 158	GMRESLP
print2file_dim_header, 157	lark.h, 169
print2file_newline, 157	GMRESR
print2file_result_new, 157	
print2file_result_old, 157	lark.h, 169
print2file_tab, 157	GMRESRP
print2file_time_header, 157	lark.h, 169
setup_FINCH_DATA, 156	GCR_DATA, 42
uAverage, 156	alpha, 44
uTotal, 156	bestres, 44
vanAlbada_discretization, 158	bestx, 44
finch_coord_type	beta, 44
	breakdown, 44
finch.h, 155	c, 45
finch_dat	c_temp, 45
DOGFISH_DATA, 28	iter_inner, 43
MONKFISH_DATA, 88	iter_outer, 43
SCOPSOWL_DATA, 109	maxit, 43
SKUA_DATA, 117	Output, 44
finch_solve_type	r, 45
finch.h, 155	relres, 44
findAllTypes	relres base, 44
KeyValueMap, 63	res, 44
findType	restart, 43
KeyValueMap, 63	tol_abs, 44
ValueTypePair, 135	tol_abs, 44
Fk	
BACKTRACK DATA, 15	total_iter, 43
flock.h, 159	transpose_dat, 45
Fn	u, 45
FINCH_DATA, 40	u_temp, 45
	x, 44
Fnp1 FINCH DATA, 40	GCR_Output
— · · · · · · · · · · · · · · · · · · ·	GMRESR_DATA, 49
Fobj	gE
GSTA_OPT_DATA, 57	FINCH_DATA, 40
fom	gl
lark.h, 171	FINCH_DATA, 40
formation_energy	GMRES_Output
Molecule, 85	GMRESR_DATA, 49
formation_enthalpy	GMRESLP_DATA, 45
Molecule, 85	arnoldi_dat, 47
formation_entropy	bestres, 47
Molecule, 85	bestx, 47
Formula	iter, 46
Molecule, 85	maxit, 46
forward rate	Output, 47
UnsteadyReaction, 134	r, 47
forward_ref_rate	relres, 47
UnsteadyReaction, 134	relres_base, 47
Shotoday rodotton, 107	101103_Da30, 4 7

res, 47	present, 55
restart, 46	q, 54
steps, 46	qo, <mark>55</mark>
tol_abs, 46	x, 54
tol_rel, 46	y, 54
x, 47	GSTA_DATA, 55
GMRESR_DATA, 47	dHo, <mark>56</mark>
arg, 50	dSo, <mark>56</mark>
GCR_Output, 49	m, 56
GMRES_Output, 49	qmax, <mark>56</mark>
gcr_abs_tol, 49	GSTA_OPT_DATA, 56
gcr_dat, 50	all_pars, 58
gcr_maxit, 49	best_par, 57
gcr_rel_tol, 49	Fobj, 57
gcr_restart, 49	iso, 57
gmres_dat, 50	Kno, 58
gmres_maxit, 49	n_par, 57
gmres_restart, 49	norms, 58
gmres_tol, 49	opt_qmax, 58
iter_inner, 49	P, 57
iter_outer, 49	q, 57
matvec, 50	qmax, 57
matvec_data, 50	total_eval, 57
N, 49	gama
term_precon, 50	mSPD_DATA, 90
terminal_precon, 50	gama_inf
total_iter, 49	GPAST_DATA, 55
GMRESRP_DATA, 50	gas_dat
bestres, 52	SCOPSOWL_DATA, 109
bestx, 53	SKUA_DATA, 117
e0, 53	gas_temperature
e0_bar, 53	MIXED_GAS, 78
H, 53	SCOPSOWL_DATA, 108
H_bar, 53	gas_velocity
iter_inner, 52	SCOPSOWL_DATA, 108
iter_outer, 52	SKUA_DATA, 116
iter_total, 52	gcr
maxit, 52	lark.h, 175
Output, 52	gcr_abs_tol
r, 53	GMRESR_DATA, 49
relres, 52	gcr_dat
relres_base, 52	GMRESR_DATA, 50
res, 52	PJFNK_DATA, 102
restart, 52	gcr_maxit
sum, 53	GMRESR_DATA, 49
tol_abs, 52	gcr_rel_tol
tol_rel, 52	GMRESR_DATA, 49
v, 53	gcr_restart
Vk, 53	GMRESR_DATA, 49
w, 53	generic_error
x, 52	error.h, 151
y, 53	Get_ActivationEnergy
GPAST_DATA, 54	UnsteadyReaction, 133
gama_inf, 55	Get_Affinity
He, 54	UnsteadyReaction, 134
Plo, 55	Get_Delta
po, 55	MassBalance, 65
poi, 55	Get_Energy

Reaction, 106	getDocMap
UnsteadyReaction, 133	YamlWrapper, 138
Get_Enthalpy	getDocument
Reaction, 106	YamlWrapper, 138
UnsteadyReaction, 133	getDouble
	•
Get_Entropy	KeyValueMap, 63
Reaction, 106	ValueTypePair, 136
UnsteadyReaction, 133	getHeadFromSubAlias
Get_Equilibrium	Document, 25
Reaction, 106	getHeadMap
UnsteadyReaction, 133	Document, 24
Get_Forward	getHeader
UnsteadyReaction, 133	Document, 24
Get ForwardRef	getInt
UnsteadyReaction, 133	KeyValueMap, 63
Get_InitialValue	ValueTypePair, 136
UnsteadyReaction, 133	getMap
Get_MaximumValue	KeyValueMap, 62
	•
UnsteadyReaction, 133	SubHeader, 122
Get_Name	getName
MassBalance, 65	Document, 25
Get_Reverse	Header, 60
UnsteadyReaction, 133	SubHeader, 122
Get_ReverseRef	getPair
UnsteadyReaction, 133	KeyValueMap, 63
Get_Species_Index	ValueTypePair, 136
UnsteadyReaction, 133	getState
Get Stoichiometric	Document, 25
Reaction, 106	Header, 60
UnsteadyReaction, 133	SubHeader, 123
Get_TimeStep	getString
UnsteadyReaction, 134	KeyValueMap, 63
Get TotalConcentration	ValueTypePair, 135
_	•••
MassBalance, 65	getSubHeader
get_index	Header, 60
MasterSpeciesList, 66	getSubMap
get_species	Header, 60
MasterSpeciesList, 66	getType
getAlias	KeyValueMap, 63
Document, 25	ValueTypePair, 136
Header, 60	getValue
SubHeader, 123	KeyValueMap, 63
getAnchoredDoc	ValueTypePair, 136
YamlWrapper, 139	getYamlWrapper
getAnchoredHeader	yaml_cpp_class, 137
Document, 25	gmres_dat
getAnchoredSub	GMRESR_DATA, 50
Header, 61	gmres maxit
	• =
getBool	GMRESR_DATA, 49
KeyValueMap, 63	gmres_restart
ValueTypePair, 135	GMRESR_DATA, 49
getDataMap	gmres_tol
Document, 24	GMRESR_DATA, 49
Header, 60	gmresLeftPreconditioned
getDocFromHeadAlias	lark.h, 170
YamlWrapper, 139	gmresPreconditioner
getDocFromSubAlias	lark.h, 175
YamlWrapper, 139	gmresRightPreconditioned
••	

lark.h, 171	HaveEnergy
gmreslp_dat	Molecule, 84
PJFNK_DATA, 101	HaveEquil
gmresr	Reaction, 107
lark.h, 176	haveEquilibrium
gmresr_dat	Reaction, 106
PJFNK_DATA, 102	UnsteadyReaction, 133
gmresrp_dat	HaveForRef
PJFNK_DATA, 102	UnsteadyReaction, 134
gpast_dat	HaveForward
MAGPIE_DATA, 64	UnsteadyReaction, 134
grad_mSPD	HaveG
magpie.h, 185	Reaction, 106
Grav_R	haveG
Trajectory.h, 204	Molecule, 85
Grav_T	HaveHS
Trajectory.h, 204	Molecule, 84
gsta_opt	Reaction, 106
ui.h, 208	haveHS
gsta_dat	Molecule, 85
MAGPIE_DATA, 64	haveMinMax
gsta_opt.h, 160	MONKFISH_DATA, 87
avgPar, 162	haveRate
avgValue, 163	UnsteadyReaction, 133
eduGuess, 164	HaveRevRef
eval_GSTA, 164	UnsteadyReaction, 134
gsta_optimize, 164	HaveReverse
gstaFunc, 164	UnsteadyReaction, 134
gstaObjFunc, 164	He
isSmooth, 163	GPAST DATA, 54
minIndex, 162	magpie.h, 184
minValue, 162	Head_Map
Na, 162	Document, 25
orderMag, 162	Header, 58
orthoLinReg, 163	
Po, 162	~Header, 59
R, 162	addPair, 60
rSq, 163	addSubKey, 60
roundlt, 162	begin, 60
twoFifths, 162	changeKey, 60
weightedAvg, 163	clear, 60
gsta_optimize	copyAnchor2Alias, 60
gsta_opt.h, 164	DisplayContents, 60
gstaFunc	end, 60
gsta_opt.h, 164	getAlias, 60
gstaObjFunc	getAnchoredSub, 61
gsta_opt.h, 164	getDataMap, 60
0 = 1 ·	getName, 60
Н	getState, 60
GMRESRP_DATA, 53	getSubHeader, 60
TRAJECTORY_DATA, 128	getSubMap, 60
H0	Header, 59
TRAJECTORY_DATA, 127	isAlias, 60
HELP	isAnchor, 61
ui.h, 207	operator(), 60
H_bar	operator=, 59
GMRESRP_DATA, 53	resetKeys, 60
Hamaker	setAlias, 60
TRAJECTORY_DATA, 127	setName, 60

setNameAliasPair, 60	Matrix, 73
setState, 60	interparticle_diffusion
size, 60	MONKFISH_PARAM, 88
Sub_Map, 61	intraparticle_diffusion
header_state	DOGFISH_PARAM, 29
yaml_wrapper.h, 214	MONKFISH_PARAM, 88
help	invalid_atom
ui.h, 208	error.h, 152
Heterogeneous	invalid_boolean
SCOPSOWL_DATA, 108	error.h, 151
Hkp1	invalid_components
ARNOLDI_DATA, 8	error.h, 151
hp1	invalid_console_input
ARNOLDI DATA, 8	error.h, 152
<u> </u>	invalid_electron
I	error.h, 152
SYSTEM_DATA, 125	invalid fraction
IDEAL	error.h, 151
shark.h, 199	invalid gas sum
INT	
yaml_wrapper.h, 214	error.h, 151
Ideal	invalid_molefraction
SYSTEM_DATA, 125	error.h, 151
ideal_solution	invalid_neutron
shark.h, 199	error.h, 152
li	invalid_norm
OPTRANS DATA, 91	error.h, 152
indexing_error	invalid_proton
error.h, 151	error.h, 152
initial error	invalid_size
error.h, 152	error.h, 151
initial_guess_SCOPSOWL	invalid_solid_sum
scopsowl_opt.h, 197	error.h, 151
initial_guess_SKUA	invalid_species
skua_opt.h, 203	error.h, 152
initial_sorption	invalid_type
DOGFISH PARAM, 29	error.h, 152
MONKFISH PARAM, 88	invalid valence
initial value	error.h, 152
UnsteadyReaction, 134	invalid_input
initialGuess_mSPD	ui.h, <mark>211</mark>
magpie.h, 186	inverse
Initialize_List	Matrix, 72
MassBalance, 64	isAlias
,	Document, 25
Reaction, 105	Header, 60
UnsteadyReaction, 132	SubHeader, 123
initialize_data	•
egret.h, 149	isAnchor
inner_product	Document, 25
Matrix, 71	Header, 61
input	SubHeader, 123
ui.h, 209	isRegistered
input_file	Molecule, 84
yaml_cpp_class, 137	isSmooth
input_files	gsta_opt.h, 163
UI_DATA, 129	iso
IntegralAvg	GSTA_OPT_DATA, 57
Matrix, 73	iter
IntegralTotal	ARNOLDI_DATA, 8

	BiCGSTAB_DATA, 17	KeyValueMap, 62
	CGS DATA, 20	KeyValueMap, 62
	GMRESLP_DATA, 46	operator=, 62
	PCG DATA, 93	size, 63
	PICARD DATA, 97	kfn
itor	inner	FINCH_DATA, 35
ilei_		
	GCR_DATA, 43	kfnp1
	GMRESR_DATA, 49	FINCH_DATA, 36
	GMRESRP_DATA, 52	kinematic_viscosity
iter_	outer	MIXED_GAS, 78
	GCR_DATA, 43	kn
	GMRESR_DATA, 49	FINCH_DATA, 40
	GMRESRP_DATA, 52	Kno
iter_	total	GSTA_OPT_DATA, 58
	GMRESRP_DATA, 52	knp1
Itera		FINCH DATA, 40
	FINCH_DATA, 36	ko
		FINCH_DATA, 35
J		krylov_method
·	SYSTEM_DATA, 125	lark.h, 169
Jaco		iark.ii, 169
Jaco		L
ioou	Speciation_Test01_Data, 121	FINCH DATA, 34
jacve		- '
	lark.h, 177	TRAJECTORY_DATA, 127
12		LARK_PJFNK
K	0.407514 0.474 405	finch.h, 155
	SYSTEM_DATA, 125	LARK_Picard
k		finch.h, 155
	ARNOLDI_DATA, 8	L_Output
	TRAJECTORY_DATA, 127	PJFNK_DATA, 101
kΒ		I_direct
	magpie.h, 183	finch.h, 156
kIC		I iter
	FINCH DATA, 35	PJFNK DATA, 99
kev		
,_	not found	_ ·
	not_found	L_wire
Kov	error.h, 152	TRAJECTORY_DATA, 127
Key_	error.h, 152 Value	TRAJECTORY_DATA, 127 LARGE_CYCLE_TEST01
•	error.h, 152 Value KeyValueMap, 63	TRAJECTORY_DATA, 127 LARGE_CYCLE_TEST01 scopsowl.h, 196
•	error.h, 152 _Value KeyValueMap, 63 /alueMap, 61	TRAJECTORY_DATA, 127 LARGE_CYCLE_TEST01 scopsowl.h, 196 LARK_TESTS
•	error.h, 152 _Value KeyValueMap, 63 /alueMap, 61 ~KeyValueMap, 62	TRAJECTORY_DATA, 127 LARGE_CYCLE_TEST01 scopsowl.h, 196 LARK_TESTS lark.h, 179
•	error.h, 152 _Value KeyValueMap, 63 /alueMap, 61 ~KeyValueMap, 62 addKey, 62	TRAJECTORY_DATA, 127 LARGE_CYCLE_TEST01 scopsowl.h, 196 LARK_TESTS lark.h, 179 LN
•	error.h, 152Value KeyValueMap, 63 /alueMap, 61 ~KeyValueMap, 62 addKey, 62 addPair, 62	TRAJECTORY_DATA, 127 LARGE_CYCLE_TEST01 scopsowl.h, 196 LARK_TESTS lark.h, 179 LN FINCH_DATA, 36
•	error.h, 152 Value KeyValueMap, 63 /alueMap, 61 ~KeyValueMap, 62 addKey, 62 addPair, 62 assertType, 63	TRAJECTORY_DATA, 127 LARGE_CYCLE_TEST01 scopsowl.h, 196 LARK_TESTS lark.h, 179 LN FINCH_DATA, 36 LOCATION
•	error.h, 152Value KeyValueMap, 63 /alueMap, 61 ~KeyValueMap, 62 addKey, 62 addPair, 62	TRAJECTORY_DATA, 127 LARGE_CYCLE_TEST01 scopsowl.h, 196 LARK_TESTS lark.h, 179 LN FINCH_DATA, 36
•	error.h, 152 Value KeyValueMap, 63 /alueMap, 61 ~KeyValueMap, 62 addKey, 62 addPair, 62 assertType, 63	TRAJECTORY_DATA, 127 LARGE_CYCLE_TEST01 scopsowl.h, 196 LARK_TESTS lark.h, 179 LN FINCH_DATA, 36 LOCATION
•	error.h, 152 Value KeyValueMap, 63 /alueMap, 61 ~KeyValueMap, 62 addKey, 62 addPair, 62 assertType, 63 begin, 62	TRAJECTORY_DATA, 127 LARGE_CYCLE_TEST01 scopsowl.h, 196 LARK_TESTS lark.h, 179 LN FINCH_DATA, 36 LOCATION Trajectory.h, 205
•	error.h, 152 Value KeyValueMap, 63 /alueMap, 61 ~KeyValueMap, 62 addKey, 62 addPair, 62 assertType, 63 begin, 62 clear, 62 DisplayMap, 63	TRAJECTORY_DATA, 127 LARGE_CYCLE_TEST01 scopsowl.h, 196 LARK_TESTS lark.h, 179 LN FINCH_DATA, 36 LOCATION Trajectory.h, 205 ladshawSolve Matrix, 72
•	error.h, 152 Value KeyValueMap, 63 /alueMap, 61 ~KeyValueMap, 62 addKey, 62 addPair, 62 assertType, 63 begin, 62 clear, 62 DisplayMap, 63 editValue4Key, 62	TRAJECTORY_DATA, 127 LARGE_CYCLE_TEST01 scopsowl.h, 196 LARK_TESTS lark.h, 179 LN FINCH_DATA, 36 LOCATION Trajectory.h, 205 ladshawSolve Matrix, 72 lambda_E
•	error.h, 152 Value KeyValueMap, 63 /alueMap, 61 ~KeyValueMap, 62 addKey, 62 addPair, 62 assertType, 63 begin, 62 clear, 62 DisplayMap, 63 editValue4Key, 62 end, 62	TRAJECTORY_DATA, 127 LARGE_CYCLE_TEST01 scopsowl.h, 196 LARK_TESTS lark.h, 179 LN FINCH_DATA, 36 LOCATION Trajectory.h, 205 ladshawSolve Matrix, 72 lambda_E FINCH_DATA, 36
•	error.h, 152 Value KeyValueMap, 63 /alueMap, 61 ~KeyValueMap, 62 addKey, 62 addPair, 62 assertType, 63 begin, 62 clear, 62 DisplayMap, 63 editValue4Key, 62 end, 62 findAllTypes, 63	TRAJECTORY_DATA, 127 LARGE_CYCLE_TEST01 scopsowl.h, 196 LARK_TESTS lark.h, 179 LN FINCH_DATA, 36 LOCATION Trajectory.h, 205 ladshawSolve Matrix, 72 lambda_E FINCH_DATA, 36 lambda_I
•	error.h, 152 Value KeyValueMap, 63 /alueMap, 61 ~KeyValueMap, 62 addKey, 62 addPair, 62 assertType, 63 begin, 62 clear, 62 DisplayMap, 63 editValue4Key, 62 end, 62 findAllTypes, 63 findType, 63	TRAJECTORY_DATA, 127 LARGE_CYCLE_TEST01 scopsowl.h, 196 LARK_TESTS lark.h, 179 LN FINCH_DATA, 36 LOCATION Trajectory.h, 205 ladshawSolve Matrix, 72 lambda_E FINCH_DATA, 36 lambda_I FINCH_DATA, 36
•	error.h, 152 Value KeyValueMap, 63 /alueMap, 61 ~KeyValueMap, 62 addKey, 62 addPair, 62 assertType, 63 begin, 62 clear, 62 DisplayMap, 63 editValue4Key, 62 end, 62 findAllTypes, 63 findType, 63 getBool, 63	TRAJECTORY_DATA, 127 LARGE_CYCLE_TEST01 scopsowl.h, 196 LARK_TESTS lark.h, 179 LN FINCH_DATA, 36 LOCATION Trajectory.h, 205 ladshawSolve Matrix, 72 lambda_E FINCH_DATA, 36 lambda_I FINCH_DATA, 36 lambdaMin
•	error.h, 152 Value KeyValueMap, 63 /alueMap, 61 ~KeyValueMap, 62 addKey, 62 addPair, 62 assertType, 63 begin, 62 clear, 62 DisplayMap, 63 editValue4Key, 62 end, 62 findAllTypes, 63 findType, 63 getBool, 63 getDouble, 63	TRAJECTORY_DATA, 127 LARGE_CYCLE_TEST01 scopsowl.h, 196 LARK_TESTS lark.h, 179 LN FINCH_DATA, 36 LOCATION Trajectory.h, 205 ladshawSolve Matrix, 72 lambda_E FINCH_DATA, 36 lambda_I FINCH_DATA, 36 lambdaMin BACKTRACK_DATA, 15
•	error.h, 152 Value KeyValueMap, 63 /alueMap, 61 ~KeyValueMap, 62 addKey, 62 addPair, 62 assertType, 63 begin, 62 clear, 62 DisplayMap, 63 editValue4Key, 62 end, 62 findAllTypes, 63 findType, 63 getBool, 63 getDouble, 63 getInt, 63	TRAJECTORY_DATA, 127 LARGE_CYCLE_TEST01 scopsowl.h, 196 LARK_TESTS lark.h, 179 LN FINCH_DATA, 36 LOCATION Trajectory.h, 205 ladshawSolve Matrix, 72 lambda_E FINCH_DATA, 36 lambda_I FINCH_DATA, 36 lambdaMin BACKTRACK_DATA, 15 lark
•	error.h, 152 Value KeyValueMap, 63 /alueMap, 61 ~KeyValueMap, 62 addKey, 62 addPair, 62 assertType, 63 begin, 62 clear, 62 DisplayMap, 63 editValue4Key, 62 end, 62 findAllTypes, 63 findType, 63 getBool, 63 getDouble, 63 getMap, 62	TRAJECTORY_DATA, 127 LARGE_CYCLE_TEST01 scopsowl.h, 196 LARK_TESTS lark.h, 179 LN FINCH_DATA, 36 LOCATION Trajectory.h, 205 ladshawSolve Matrix, 72 lambda_E FINCH_DATA, 36 lambda_I FINCH_DATA, 36 lambdaMin BACKTRACK_DATA, 15 lark ui.h, 207
•	error.h, 152 Value KeyValueMap, 63 /alueMap, 61 ~KeyValueMap, 62 addKey, 62 addPair, 62 assertType, 63 begin, 62 clear, 62 DisplayMap, 63 editValue4Key, 62 end, 62 findAllTypes, 63 findType, 63 getBool, 63 getDouble, 63 getMap, 62 getPair, 63	TRAJECTORY_DATA, 127 LARGE_CYCLE_TEST01 scopsowl.h, 196 LARK_TESTS lark.h, 179 LN FINCH_DATA, 36 LOCATION Trajectory.h, 205 ladshawSolve Matrix, 72 lambda_E FINCH_DATA, 36 lambda_I FINCH_DATA, 36 lambdaMin BACKTRACK_DATA, 15 lark ui.h, 207 lark.h
•	error.h, 152 Value KeyValueMap, 63 /alueMap, 61 ~KeyValueMap, 62 addKey, 62 addPair, 62 assertType, 63 begin, 62 clear, 62 DisplayMap, 63 editValue4Key, 62 end, 62 findAllTypes, 63 findType, 63 getBool, 63 getDouble, 63 getInt, 63 getMap, 62 getPair, 63 getString, 63	TRAJECTORY_DATA, 127 LARGE_CYCLE_TEST01 scopsowl.h, 196 LARK_TESTS lark.h, 179 LN FINCH_DATA, 36 LOCATION Trajectory.h, 205 ladshawSolve Matrix, 72 lambda_E FINCH_DATA, 36 lambda_I FINCH_DATA, 36 lambdaMin BACKTRACK_DATA, 15 lark ui.h, 207 lark.h BiCGSTAB, 169
•	error.h, 152 Value KeyValueMap, 63 /alueMap, 61 ~KeyValueMap, 62 addKey, 62 addPair, 62 assertType, 63 begin, 62 clear, 62 DisplayMap, 63 editValue4Key, 62 end, 62 findAllTypes, 63 findType, 63 getBool, 63 getDouble, 63 getDouble, 63 getMap, 62 getPair, 63 getString, 63 getType, 63	TRAJECTORY_DATA, 127 LARGE_CYCLE_TEST01 scopsowl.h, 196 LARK_TESTS lark.h, 179 LN FINCH_DATA, 36 LOCATION Trajectory.h, 205 ladshawSolve Matrix, 72 lambda_E FINCH_DATA, 36 lambda_I FINCH_DATA, 36 lambdaMin BACKTRACK_DATA, 15 lark ui.h, 207 lark.h BiCGSTAB, 169 CGS, 169
•	error.h, 152 Value KeyValueMap, 63 /alueMap, 61 ~KeyValueMap, 62 addKey, 62 addPair, 62 assertType, 63 begin, 62 clear, 62 DisplayMap, 63 editValue4Key, 62 end, 62 findAllTypes, 63 findType, 63 getBool, 63 getDouble, 63 getInt, 63 getMap, 62 getPair, 63 getString, 63 getType, 63 getValue, 63	TRAJECTORY_DATA, 127 LARGE_CYCLE_TEST01 scopsowl.h, 196 LARK_TESTS lark.h, 179 LN FINCH_DATA, 36 LOCATION Trajectory.h, 205 ladshawSolve Matrix, 72 lambda_E FINCH_DATA, 36 lambda_I FINCH_DATA, 36 lambdaMin BACKTRACK_DATA, 15 lark ui.h, 207 lark.h BiCGSTAB, 169
•	error.h, 152 Value KeyValueMap, 63 /alueMap, 61 ~KeyValueMap, 62 addKey, 62 addPair, 62 assertType, 63 begin, 62 clear, 62 DisplayMap, 63 editValue4Key, 62 end, 62 findAllTypes, 63 findType, 63 getBool, 63 getDouble, 63 getDouble, 63 getMap, 62 getPair, 63 getString, 63 getType, 63	TRAJECTORY_DATA, 127 LARGE_CYCLE_TEST01 scopsowl.h, 196 LARK_TESTS lark.h, 179 LN FINCH_DATA, 36 LOCATION Trajectory.h, 205 ladshawSolve Matrix, 72 lambda_E FINCH_DATA, 36 lambda_I FINCH_DATA, 36 lambdaMin BACKTRACK_DATA, 15 lark ui.h, 207 lark.h BiCGSTAB, 169 CGS, 169

GMRESLP, 169	Speciation_Test01_Data, 120
GMRESR, 169	logKw
GMRESRP, 169	Speciation_Test01_Data, 120
PCG, 169	lowerHessenberg2Triangular
lark.h, 165	Matrix, 74
arnoldi, 169	lowerHessenbergSolve
backtrackLineSearch, 177	Matrix, 75
bicgstab, 173	lowerTriangularSolve
cgs, 173	Matrix, 74
fom, 171	man, , ,
gcr, 175	M
<u> </u>	TRAJECTORY_DATA, 127
gmresLeftPreconditioned, 170	m
gmresPreconditioner, 175	GSTA DATA, 56
gmresRightPreconditioned, 171	M PI
gmresr, 176	macaw.h, 180
jacvec, 177	m rand
krylov_method, 169	TRAJECTORY_DATA, 128
LARK_TESTS, 179	MACAW TESTS
NumericalJacobian, 179	macaw.h, 180
operatorTranspose, 174	MAGPIE
pcg, 172	magpie.h, 187
picard, 176	MAGPIE DATA, 63
pjfnk, 178	gpast dat, 64
update_arnoldi_solution, 169	gsta_dat, 64
lark_picard_step	mspd_dat, 64
finch.h, 156	*
level	sys_dat, 64
MONKFISH DATA, 87	MAGPIE_SCENARIOS
SCOPSOWL DATA, 108	magpie.h, 188
lin_precon	ME
SHARK DATA, 115	FINCH_DATA, 38
lin_tol_abs	mError
PJFNK DATA, 100	error.h, 151
lin_tol_rel	MI
PJFNK DATA, 100	FINCH_DATA, 38
LineSearch	MIXED_GAS, 76
PJFNK_DATA, 101	binary_diffusion, 78
linear_solver	char_length, 78
PJFNK DATA, 100	CheckMolefractions, 77
= '	gas_temperature, 78
linearsolve_choice	kinematic_viscosity, 78
shark.h, 199	molefraction, 78
linesearch_choice	N, 77
shark.h, 199	Reynolds, 78
List	species_dat, 78
MassBalance, 65	total_density, 78
Mechanism, 76	total_dyn_vis, 78
Reaction, 106	total_molecular_weight, 78
list_size	total_pressure, 77
MasterSpeciesList, 66	total_specific_heat, 78
InKo	velocity, 78
magpie.h, 183	MOLA_TESTS
Inact_mSPD	mola.h, 192
magpie.h, 185	MONKFISH_DATA, 86
logC	avg_fiber_density, 87
Speciation_Test01_Data, 121	DirichletBC, 87
logKa1	dog_dat, 88
Speciation_Test01_Data, 120	domain_diameter, 87
logKa2	end_time, 87
	_ ,

eval_Cex, 88	Trajectory.h, 204
eval_Dex, 87	magpie
eval_Ret, 88	ui.h, 208
eval_ads, 87	magpie.h, 181
eval_eps, 87	A, 183
eval_kf, 88	DBL_EPSILON, 183
eval_rho, 87	dq_dp, 184
finch_dat, 88	eMax, 185
haveMinMax, 87	eval_GPAST, 187
level, 87	eval_eta, 187
max_fiber_density, 87	eval_po, 187
max_porosity, 87	eval_po_PI, 186
min_fiber_density, 87	eval_po_qo, 186
min_porosity, 87	grad_mSPD, 185
MultiScale, 87	He, 184
NonLinear, 87	initialGuess_mSPD, 186
NumComp, 87	kB, 183
Output, 87	InKo, 183
param_dat, 88	Inact_mSPD, 185
Print2Console, 87	MAGPIE, 187
Print2File, 87	MAGPIE_SCENARIOS, 188
single_fiber_density, 87	Na, 183
t_counter, 87	PI, 184
t_print, 87	Po, 183
time, 87	q_p, 184
time_old, 87	qT, 185
total_sorption, 87	qo, 184
total_sorption_old, 87	Qst, 185
total_steps, 87	R, 183
user_data, 88	shapeFactor, 183
MONKFISH_PARAM, 88	V, 183
avg_sorption, 89 avg_sorption_old, 89	Z, 183 magpie_reverse_error
exterior concentration, 88	error.h, 151
exterior_transfer_coeff, 88	magpie_dat
film transfer coeff, 88	SCOPSOWL DATA, 109
initial_sorption, 88	SKUA_DATA, 117
interparticle_diffusion, 88	MassBalance, 64
intraparticle_diffusion, 88	~MassBalance, 64
sorbed_molefraction, 88	Delta, 65
sorption bc, 88	Display_Info, 65
species, 89	Eval_Residual, 65
MONKFISH_TESTS	Get Delta, 65
monkfish.h, 193	Get_Name, 65
mSPD DATA, 89	Get_TotalConcentration, 65
eMax, 89	Initialize_List, 64
eta, 89	List, 65
gama, 90	MassBalance, 64
s, 89	MassBalance, 64
v, 89	Name, 65
macaw	Set_Delta, 65
ui.h, 207	Set_Name, 65
macaw.h, 179	Set_TotalConcentration, 65
M_PI, 180	Sum_Delta, 65
MACAW_TESTS, 180	TotalConcentration, 65
Magnetic_R	MassBalanceList
Trajectory.h, 204	SHARK_DATA, 114
Magnetic_T	MasterList

SHARK_DATA, 114	operator=, 70
MasterSpeciesList, 65	rowExtend, 75
\sim MasterSpeciesList, 66	rowExtract, 75
alkalinity, 67	rowReplace, 75
charge, 66	rowShrink, 75
DisplayAll, 66	rows, 71
DisplayConcentrations, 66	set_size, 70
DisplayInfo, 66	SolnTransform, 73
Eval_ChargeResidual, 67	sphericalAvg, 73
get_index, 66	sphericalBCFill, 72
get_species, 66	sum, 71
list_size, 66	transpose, 72
MasterSpeciesList, 66	transpose_multiply, 72
MasterSpeciesList, 66	tridiagonalFill, 72
operator=, 66	tridiagonalSolve, 72
residual_alkalinity, 67	tridiagonalVectorFill, 73
set_alkalinity, 66	upperHessenberg2Triangular, 74
set_list_size, 66	upperHessenbergSolve, 75
set_species, 66	upperTriangularSolve, 74
size, 67	zeros, 70
species, 67	Matrix $<$ T $>$, 67
speciesName, 67	matrix_too_small
Matrix	error.h, 151
\sim Matrix, 70	matvec
adjoint, 72	GMRESR_DATA, 50
cofactor, 71	matvec_mis_match
columnExtend, 75	error.h, 151
columnExtract, 75	matvec_data
columnProjection, 74	GMRESR_DATA, 50
columnReplace, 75	max
columnShrink, 75	finch.h, 155
columnVectorFill, 74	UI_DATA, 129
columns, 71	max_bias
ConstantICFill, 73	SCOPSOWL_OPT_DATA, 110
Data, 76	SKUA_OPT_DATA, 118
determinate, 71	max_fiber_density
diagonalSolve, 74	MONKFISH_DATA, 87
dirichletBCFill, 74	max_guess_iter
Display, 72	SCOPSOWL_OPT_DATA, 110
edit, 70	SKUA_OPT_DATA, 118
inner_product, 71	max_iter
IntegralAvg, 73	FINCH_DATA, 37
IntegralTotal, 73	max_norm
inverse, 72	SYSTEM_DATA, 125
ladshawSolve, 72	max_porosity
lowerHessenberg2Triangular, 74	MONKFISH_DATA, 87
lowerHessenbergSolve, 75	max_value
lowerTriangularSolve, 74	UnsteadyReaction, 134
Matrix, 70	maxit
naturalLaplacian3D, 72	BiCGSTAB_DATA, 17
norm, 71	CGS_DATA, 20
num_cols, 76	GCR_DATA, 43
num_rows, 76	GMRESLP_DATA, 46
operator*, 71	GMRESRP_DATA, 52
operator(), 70	PCG_DATA, 93
operator+, 71	PICARD_DATA, 97
operator-, 71	Mechanism, 76
operator/, 71	List, 76
·	

reactions, 76	Formula, 85
species_index, 76	HaveEnergy, 84
weight, 76	haveG, 85
min	HaveHS, 84
finch.h, 155	haveHS, 85
min_bias	isRegistered, 84
SCOPSOWL_OPT_DATA, 110	molar_weight, 85
SKUA_OPT_DATA, 118	MolarWeight, 84
min_fiber_density	MolecularFormula, 84
MONKFISH_DATA, 87	Molecule, 81
min_porosity	MoleculeName, 84
MONKFISH_DATA, 87	MoleculePhase, 84
minIndex	Name, 85
gsta_opt.h, 162	Phase, 85
minValue	recalculateMolarWeight, 82
gsta_opt.h, 162	Register, 82
minmod	registered, 85
finch.h, 156	removeAllAtoms, 83
minmod_discretization	removeOneAtom, 83
finch.h, 158	setFormula, 82
missing_information	setMolarWeigth, 82 MoleculeName
error.h, 152	
MissingArg	Molecule, 84
UI_DATA, 130	MoleculePhase Molecule, 84
mola	molefraction
ui.h, 207	MIXED_GAS, 78
mola.h, 190	
MOLA_TESTS, 192	molefractionCheck
molar_weight	skua.h, 202 monkfish
Molecule, 85	
MolarWeight	ui.h, 208 monkfish.h, 192
Molecule, 84	default_density, 193
molecular_diffusion	default_exterior_concentration, 193
PURE_GAS, 104	default_film_transfer, 193
molecular_weight	
PURE_GAS, 104	default_interparticle_diffusion, 193 default_monk_adsorption, 193
MolecularFormula	default_monk_equilibrium, 193
Molecule, 84	default_monkfish_retardation, 193
Molecule, 79	default_porosity, 193
\sim Molecule, 81	MONKFISH_TESTS, 193
atoms, 85	setup_MONKFISH_DATA, 193
calculateAvgOxiState, 83	•= = -
Charge, 83	mp TRAJECTORY DATA, 127
charge, 85	Ms
DisplayInfo, 84	TRAJECTORY DATA, 127
editAllOxidationStates, 83	mspd_dat
editCharge, 82	MAGPIE DATA, 64
editEnergy, 83	Mu
editEnthalpy, 83	egret.h, 148
editEntropy, 83	mu 0
editHS, 83	TRAJECTORY DATA, 127
editOneOxidationState, 82	MultiScale
Energy, 84	MONKFISH DATA, 87
Enthalpy, 84	WONT OILDAIA, 07
Entropy, 84	N
formation_energy, 85	GMRESR_DATA, 49
formation_enthalpy, 85	MIXED GAS, 77
formation_entropy, 85	Speciation_Test01_Data, 120
	- L

SYSTEM_DATA, 124	PJFNK_DATA, 100
NONE	nl_tol_abs
yaml_wrapper.h, 214	PJFNK_DATA, 100
n_par	nl_tol_rel
GSTA_OPT_DATA, 57	PJFNK_DATA, 100
n_rand	no_diffusion
TRAJECTORY_DATA, 128	error.h, 151
NE	non_real_edge
FINCH_DATA, 38	error.h, 152
NI	non_square_matrix
FINCH_DATA, 38	error.h, 151
NL_Output	NonLinear
PJFNK_DATA, 100	DOGFISH_DATA, 27
NUM_JAC_DATA, 90	MONKFISH_DATA, 87
dxj, 90	SCOPSOWL_DATA, 108
eps, 90	SKUA_DATA, 117
Fx, 90	Norm
Fxp, 90	SHARK_DATA, 114
Na	norm
gsta_opt.h, 162	Matrix, 71
magpie.h, 183	normFkp1
NaT	BACKTRACK_DATA, 15
Speciation_Test01_Data, 121	NormTrack
Name	FINCH_DATA, 36
Atom, 13	norms
MassBalance, 65	GSTA_OPT_DATA, 58
Molecule, 85	not_a_token
name	error.h, 152
SubHeader, 123	Nu
naturalLaplacian3D	egret.h, 148
Matrix, 72	nullptr_error
NaturalState	error.h, 152
Atom, 14	nullptr_func
negative_mass	error.h, 151
error.h, 151	num_cols
negative_time	Matrix, 76
error.h, 151	num_curves
Neutrons	SCOPSOWL_OPT_DATA, 110
Atom, 12	
	SKUA_OPT_DATA, 118
neutrons	SKUA_OPT_DATA, 118 num_mbe
neutrons Atom, 13	SKUA_OPT_DATA, 118 num_mbe SHARK_DATA, 114
neutrons Atom, 13 Newton_data	SKUA_OPT_DATA, 118 num_mbe SHARK_DATA, 114 num_other
neutrons Atom, 13 Newton_data SHARK_DATA, 115	SKUA_OPT_DATA, 118 num_mbe SHARK_DATA, 114 num_other SHARK_DATA, 114
neutrons Atom, 13 Newton_data SHARK_DATA, 115 nl_bestres	SKUA_OPT_DATA, 118 num_mbe SHARK_DATA, 114 num_other SHARK_DATA, 114 num_params
neutrons Atom, 13 Newton_data SHARK_DATA, 115 nl_bestres PJFNK_DATA, 100	SKUA_OPT_DATA, 118 num_mbe SHARK_DATA, 114 num_other SHARK_DATA, 114 num_params SCOPSOWL_OPT_DATA, 110
neutrons Atom, 13 Newton_data SHARK_DATA, 115 nl_bestres PJFNK_DATA, 100 nl_iter	SKUA_OPT_DATA, 118 num_mbe SHARK_DATA, 114 num_other SHARK_DATA, 114 num_params SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118
neutrons Atom, 13 Newton_data SHARK_DATA, 115 nl_bestres PJFNK_DATA, 100 nl_iter PJFNK_DATA, 99	SKUA_OPT_DATA, 118 num_mbe SHARK_DATA, 114 num_other SHARK_DATA, 114 num_params SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 num_rows
neutrons Atom, 13 Newton_data SHARK_DATA, 115 nl_bestres PJFNK_DATA, 100 nl_iter PJFNK_DATA, 99 nl_maxit	SKUA_OPT_DATA, 118 num_mbe SHARK_DATA, 114 num_other SHARK_DATA, 114 num_params SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 num_rows Matrix, 76
neutrons Atom, 13 Newton_data SHARK_DATA, 115 nl_bestres PJFNK_DATA, 100 nl_iter PJFNK_DATA, 99 nl_maxit PJFNK_DATA, 100	SKUA_OPT_DATA, 118 num_mbe SHARK_DATA, 114 num_other SHARK_DATA, 114 num_params SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 num_rows Matrix, 76 num_ssr
neutrons Atom, 13 Newton_data SHARK_DATA, 115 nl_bestres PJFNK_DATA, 100 nl_iter PJFNK_DATA, 99 nl_maxit PJFNK_DATA, 100 nl_method	SKUA_OPT_DATA, 118 num_mbe SHARK_DATA, 114 num_other SHARK_DATA, 114 num_params SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 num_rows Matrix, 76 num_ssr SHARK_DATA, 114
neutrons Atom, 13 Newton_data SHARK_DATA, 115 nl_bestres PJFNK_DATA, 100 nl_iter PJFNK_DATA, 99 nl_maxit PJFNK_DATA, 100 nl_method FINCH_DATA, 37	SKUA_OPT_DATA, 118 num_mbe SHARK_DATA, 114 num_other SHARK_DATA, 114 num_params SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 num_rows Matrix, 76 num_ssr SHARK_DATA, 114 num_usr
neutrons Atom, 13 Newton_data SHARK_DATA, 115 nl_bestres PJFNK_DATA, 100 nl_iter PJFNK_DATA, 99 nl_maxit PJFNK_DATA, 100 nl_method FINCH_DATA, 37 nl_picard	SKUA_OPT_DATA, 118 num_mbe SHARK_DATA, 114 num_other SHARK_DATA, 114 num_params SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 num_rows Matrix, 76 num_ssr SHARK_DATA, 114 num_usr SHARK_DATA, 114
neutrons Atom, 13 Newton_data SHARK_DATA, 115 nl_bestres PJFNK_DATA, 100 nl_iter PJFNK_DATA, 99 nl_maxit PJFNK_DATA, 100 nl_method FINCH_DATA, 37 nl_picard finch.h, 156	SKUA_OPT_DATA, 118 num_mbe SHARK_DATA, 114 num_other SHARK_DATA, 114 num_params SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 num_rows Matrix, 76 num_ssr SHARK_DATA, 114 num_usr SHARK_DATA, 114 NumComp
neutrons Atom, 13 Newton_data SHARK_DATA, 115 nl_bestres PJFNK_DATA, 100 nl_iter PJFNK_DATA, 99 nl_maxit PJFNK_DATA, 100 nl_method FINCH_DATA, 37 nl_picard finch.h, 156 nl_relres	SKUA_OPT_DATA, 118 num_mbe SHARK_DATA, 114 num_other SHARK_DATA, 114 num_params SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 num_rows Matrix, 76 num_ssr SHARK_DATA, 114 num_usr SHARK_DATA, 114 NumComp DOGFISH_DATA, 27
neutrons Atom, 13 Newton_data SHARK_DATA, 115 nl_bestres PJFNK_DATA, 100 nl_iter PJFNK_DATA, 99 nl_maxit PJFNK_DATA, 100 nl_method FINCH_DATA, 37 nl_picard finch.h, 156 nl_relres PJFNK_DATA, 100	SKUA_OPT_DATA, 118 num_mbe SHARK_DATA, 114 num_other SHARK_DATA, 114 num_params SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 num_rows Matrix, 76 num_ssr SHARK_DATA, 114 num_usr SHARK_DATA, 114 NumComp DOGFISH_DATA, 27 MONKFISH_DATA, 87
neutrons Atom, 13 Newton_data SHARK_DATA, 115 nl_bestres PJFNK_DATA, 100 nl_iter PJFNK_DATA, 99 nl_maxit PJFNK_DATA, 100 nl_method FINCH_DATA, 37 nl_picard finch.h, 156 nl_relres PJFNK_DATA, 100 nl_res	SKUA_OPT_DATA, 118 num_mbe SHARK_DATA, 114 num_other SHARK_DATA, 114 num_params SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 num_rows Matrix, 76 num_ssr SHARK_DATA, 114 num_usr SHARK_DATA, 114 NumComp DOGFISH_DATA, 27 MONKFISH_DATA, 87 NumJac
neutrons Atom, 13 Newton_data SHARK_DATA, 115 nl_bestres PJFNK_DATA, 100 nl_iter PJFNK_DATA, 99 nl_maxit PJFNK_DATA, 100 nl_method FINCH_DATA, 37 nl_picard finch.h, 156 nl_relres PJFNK_DATA, 100	SKUA_OPT_DATA, 118 num_mbe SHARK_DATA, 114 num_other SHARK_DATA, 114 num_params SCOPSOWL_OPT_DATA, 110 SKUA_OPT_DATA, 118 num_rows Matrix, 76 num_ssr SHARK_DATA, 114 num_usr SHARK_DATA, 114 NumComp DOGFISH_DATA, 27 MONKFISH_DATA, 87

Trajectory.h, 205	gsta_opt.h, 163
number_elements	ospre_discretization
PeriodicTable, 95	finch.h, 158
number_files	other_data
ui.h, 210	SHARK_DATA, 115
NumericalJacobian	OtherList
lark.h, 179	SHARK_DATA, 114
numvar	out_of_bounds
SHARK_DATA, 114	error.h, 151
OE	Output
FINCH DATA, 38	ARNOLDI_DATA, 8
OI	BICGSTAB_DATA, 18
FINCH_DATA, 38	CGS_DATA_44
OPTRANS_DATA, 91	GCR_DATA, 44
Ai, 91	GMRESLP_DATA, 47 GMRESRP_DATA, 52
li, 91	MONKFISH DATA, 87
omega	PCG_DATA, 93
BICGSTAB_DATA, 17	PICARD_DATA, 97
omega old	SYSTEM DATA, 125
BICGSTAB_DATA, 17	OutputFile
operator*	DOGFISH_DATA, 27
Matrix, 71	SCOPSOWL_DATA, 109
operator()	SHARK DATA, 115
Document, 24	SKUA DATA, 117
Header, 60	owl_dat
Matrix, 70	SCOPSOWL_OPT_DATA, 111
YamlWrapper, 138	oxidation_state
operator+	Atom, 13
Matrix, 71	OxidationState
operator-	Atom, 12
Matrix, 71	Atom, 12
operator/	P
Matrix, 71	GSTA_OPT_DATA, 57
operator=	p
Document, 24	BiCGSTAB_DATA, 18
Header, 59	CGS_DATA, 22
KeyValueMap, 62	PCG_DATA, 94
MasterSpeciesList, 66	PCG
Matrix, 70	lark.h, 169
SubHeader, 122	PITZER
ValueTypePair, 135	shark.h, 199
YamlWrapper, 138	PCG_DATA, 91
operatorTranspose	alpha, <mark>93</mark>
lark.h, 174	Ap, 94
opt_no_support	bestres, 93
error.h, 151	bestx, 93
opt_qmax	beta, 93
GSTA_OPT_DATA, 58	iter, 93
Optimize	maxit, 93
SCOPSOWL_OPT_DATA, 110	Output, 93
SKUA_OPT_DATA, 118	p, 94
option	r, 94
UI_DATA, 130	r_old, 94
orderMag	relres, 93
gsta_opt.h, 162	relres_base, 93
ortho_check_fail	res, 93
error.h, 151	tol_abs, 93
orthoLinReg	tol_rel, 93

x, 93	precon_data, 102
z, 94	res_data, 102
z_old, 94	v, 101
PE3	x, 101
egret.h, 148	pOH_index
pH	SHARK_DATA, 114
SHARK_DATA, 114	POL
pH_index	TRAJECTORY_DATA, 128
SHARK_DATA, 114	POLAR
PI	Trajectory.h, 204
magpie.h, 184	PSI
SYSTEM DATA, 124	egret.h, 148
PICARD_DATA, 96	PT
bestres, 97	SYSTEM_DATA, 124
bestx, 97	PURE GAS, 103
iter, 97	density, 104
maxit, 97	dynamic_viscosity, 104
Output, 97	molecular_diffusion, 104
r, 97	molecular_weight, 104
·	
relres, 97	Schmidt, 104
relres_base, 97	specific_heat, 104
res, 97	Sutherland_Const, 104
tol_abs, 97	Sutherland_Temp, 104
tol_rel, 97	Sutherland_Viscosity, 104
x0, 97	Par OVOTEM BATA 405
Plo ORAGE RATA TE	SYSTEM_DATA, 125
GPAST_DATA, 55	param_dat
PJFNK_DATA, 98	DOGFISH_DATA, 28
backtrack_dat, 102	MONKFISH_DATA, 88
bestx, 101	SCOPSOWL_DATA, 109
bicgstab_dat, 101	SKUA_DATA, 117
Bounce, 101	param_data
cgs_dat, 101	FINCH_DATA, 42
eps, 100	param_guess
F, 101	SCOPSOWL_OPT_DATA, 110
funeval, 102	SKUA_OPT_DATA, 118
Fv, 101	param_guess_old
gcr_dat, 102	SCOPSOWL_OPT_DATA, 111
gmreslp_dat, 101	SKUA_OPT_DATA, 119
gmresr_dat, 102	ParamFile
gmresrp_dat, 102	SCOPSOWL_OPT_DATA, 111
L_Output, 101	SKUA_OPT_DATA, 119
I_iter, 99	Path
lin_tol_abs, 100	UI_DATA, 130
lin_tol_rel, 100	path
LineSearch, 101	ui.h, 209
linear_solver, 100	UI_DATA, 129
NL_Output, 100	pcg
nl bestres, 100	lark.h, 172
nl_iter, 99	pcg_dat
nl_maxit, 100	PJFNK DATA, 101
nl_relres, 100	pellet_density
nl_res, 100	SCOPSOWL DATA, 108
nl_res_base, 100	pellet_radius
nl_tol_abs, 100	SCOPSOWL DATA, 108
nl_tol_rel, 100	SKUA DATA, 116
pcg_dat, 101	PeriodicTable, 94
precon, 102	~PeriodicTable, 95
ρισσοιί, 102	- T GHOUIC TADIE, 30

DisplayTable, 95	scopsowl.h, 195
number_elements, 95	print2file_SCOPSOWL_result_new
PeriodicTable, 95	scopsowl.h, 196
PeriodicTable, 95	print2file_SCOPSOWL_result_old
Table, 95	scopsowl.h, 195
Phase	print2file_SCOPSOWL_time_header
Molecule, 85	scopsowl.h, 195
•	print2file_SKUA_header
pi	skua.h, 202
SYSTEM_DATA, 124	print2file SKUA_results_new
picard	skua.h, 202
lark.h, 176	
picard_dat	print2file_SKUA_results_old
FINCH_DATA, 42	skua.h, 202
pjfnk	print2file_SKUA_time_header
lark.h, 178	skua.h, 202
pjfnk_dat	print2file_dim_header
FINCH_DATA, 42	finch.h, 157
Po	print2file_newline
egret.h, 148	finch.h, 157
gsta_opt.h, 162	print2file_result_new
magpie.h, 183	finch.h, 157
po	print2file_result_old
GPAST_DATA, 55	finch.h, 157
poi	print2file_shark_header
GPAST DATA, 55	shark.h, 199
pore_diffusion	print2file_shark_info
SCOPSOWL_PARAM_DATA, 112	shark.h, 199
porosity	print2file_shark_results_new
· ·	shark.h, 199
TRAJECTORY_DATA, 127	print2file_shark_results_old
Precipitation, 102	shark.h, 199
precon	print2file_species_header
PJFNK_DATA, 102	dogfish.h, 142
precon_data	scopsowl.h, 195
PJFNK_DATA, 102	skua.h, 202
SHARK_DATA, 115	print2file_tab
pres	finch.h, 157
FINCH_DATA, 40	print2file_time_header
present	finch.h, 157
GPAST_DATA, 55	Protons
previous_token	Atom, 12
yaml_cpp_class, 137	
Print2Console	protons
DOGFISH_DATA, 26	Atom, 13
MONKFISH_DATA, 87	Pstd
SCOPSOWL DATA, 108	egret.h, 148
SKUA DATA, 116	q
Print2File	GPAST DATA, 54
DOGFISH DATA, 26	GSTA OPT DATA, 57
MONKFISH DATA, 87	
SCOPSOWL DATA, 108	q_bar
SKUA DATA, 116	TRAJECTORY_DATA, 128
print2file DOGFISH header	q_data
• = =	SCOPSOWL_OPT_DATA, 111
dogfish.h, 142	SKUA_OPT_DATA, 119
print2file_DOGFISH_result_new	Q_in
dogfish.h, 143	TRAJECTORY_DATA, 127
print2file_DOGFISH_result_old	q_p
dogfish.h, 142	magpie.h, 184
print2file_SCOPSOWL_header	q_sim

SCOPSOWL_OPT_DATA, 111	egret.h, 148
SKUA_OPT_DATA, 119	RIC
qAvg	FINCH_DATA, 35
SCOPSOWL_PARAM_DATA, 112	rSq
qAvg_old	gsta_opt.h, 163
SCOPSOWL_PARAM_DATA, 112	RUN_SANDBOX
qIntegralAvg	sandbox.h, 194
SCOPSOWL_PARAM_DATA, 112	ReNum
qIntegralAvg_old	egret.h, 149
SCOPSOWL_PARAM_DATA, 112	Reaction, 104
qT	~Reaction, 105
magpie.h, 185 SYSTEM DATA, 124	calculateEnergies, 106
qTn	calculateEquilibrium, 106
SKUA DATA, 116	CanCalcUS 400
qTnp1	CanCalcHS, 106
SKUA DATA, 116	checkSpeciesEnergies, 106
gmax	Display_Info, 106
GSTA_DATA, 56	energy, 106
GSTA OPT DATA, 57	enthalpy, 106
qo	entropy, 106
GPAST DATA, 55	Equilibrium, 106 Eval_Residual, 106
magpie.h, 184	
SCOPSOWL PARAM DATA, 112	Get_Energy, 106 Get_Enthalpy, 106
Qst	Get_Entropy, 106
magpie.h, 185	Get_Equilibrium, 106
SCOPSOWL_PARAM_DATA, 112	Get_Stoichiometric, 106
Qst_old	HaveEquil, 107
SCOPSOWL_PARAM_DATA, 112	haveEquilibrium, 106
QstAvg	HaveG, 106
SCOPSOWL_PARAM_DATA, 112	HaveHS, 106
QstAvg_old	Initialize_List, 105
SCOPSOWL_PARAM_DATA, 112	List, 106
Qstn	Reaction, 105
SKUA_PARAM, 120	Set_Energy, 106
Qstnp1	Set_Enthalpy, 106
SKUA_PARAM, 120	Set_EnthalpyANDEntropy, 106
Qsto	Set_Entropy, 106
SCOPSOWL_PARAM_DATA, 112	Set_Equilibrium, 106
R	Set Stoichiometric. 106
gsta opt.h, 162	Stoichiometric, 106
magpie.h, 183	ReactionList
r	SHARK DATA, 114
BICGSTAB DATA, 18	reactions
CGS DATA, 21	Mechanism, 76
GCR_DATA, 45	read_error
GMRESLP DATA, 47	error.h, 1 <u>52</u>
GMRESRP_DATA, 53	read_equilrxn
PCG DATA, 94	shark.h, 200
PICARD DATA, 97	read_massbalance
r0	_ shark.h, 199
BiCGSTAB_DATA, 18	read_options
CGS DATA, 21	 shark.h, 199
r_old	read_scenario
PCG_DATA, 94	_ shark.h, 199
RADIAL_FORCE	read_species
Trajectory.h, 204	shark.h, 199
RE3	read_unsteadyrxn
	- •

shark.h, 200	GMRESRP_DATA, 52
readInputFile	PCG_DATA, 93
yaml_cpp_class, 137	PICARD_DATA, 97
recalculateMolarWeight	res_data
Molecule, 82	PJFNK DATA, 102
Recover	resetKeys
SYSTEM_DATA, 125	Document, 24
ref diffusion	Header, 60
SCOPSOWL_PARAM_DATA, 112	YamlWrapper, 138
SKUA PARAM, 119	resettime
ref_pressure	FINCH DATA, 41
SCOPSOWL_PARAM_DATA, 112	Residual
SKUA_PARAM, 120	SHARK DATA, 115
ref_temperature	residual_alkalinity
SCOPSOWL_PARAM_DATA, 112	MasterSpeciesList, 67
SKUA_PARAM, 119	residual_data
Register Register	SHARK_DATA, 115
Atom, 11	restart
*	
Molecule, 82	GCR_DATA, 43
registered	GMRESLP_DATA, 46
Molecule, 85	GMRESRP_DATA, 52
rel_tol_norm	revalidateAllKeys
SCOPSOWL_OPT_DATA, 111	Document, 24
SKUA_OPT_DATA, 119	YamlWrapper, 138
relres	reverse_rate
BiCGSTAB_DATA, 17	UnsteadyReaction, 134
CGS_DATA, 21	reverse_ref_rate
GCR_DATA, 44	UnsteadyReaction, 134
GMRESLP_DATA, 47	Reynolds
GMRESRP DATA, 52	MIXED GAS, 78
PCG_DATA, 93	rho
PICARD DATA, 97	BACKTRACK DATA, 15
relres_base	BiCGSTAB DATA, 17
BiCGSTAB_DATA, 18	CGS DATA, 20
CGS_DATA, 21	rho_f
GCR DATA, 44	TRAJECTORY DATA, 127
	_ ·
GMRESLP_DATA, 47	rho_old
GMRESRP_DATA, 52	BiCGSTAB_DATA, 17
PCG_DATA, 93	rho_p
PICARD_DATA, 97	TRAJECTORY_DATA, 127
Removal_Efficiency	Rn
Trajectory.h, 205	FINCH_DATA, 40
removeAllAtoms	Rnp1
Molecule, 83	FINCH_DATA, 40
removeElectron	Ro
Atom, 12	FINCH_DATA, 35
removeNeutron	Rough
Atom, 12	SCOPSOWL OPT DATA, 110
removeOneAtom	SKUA OPT DATA, 118
Molecule, 83	roundIt
removeProton	gsta_opt.h, 162
Atom, 12	rowExtend
·	Matrix, 75
RICCSTAR DATA 17	•
BICGSTAB_DATA, 17	rowExtract
CGS_DATA, 21	Matrix, 75
FINCH_DATA, 40	rowReplace
GCR_DATA, 44	Matrix, 75
GMRESLP_DATA, 47	rowShrink

Matrix, 75	Print2File, 108
rows	sim_time, 108
Matrix, 71	skua_dat, 109
Rs	SurfDiff, 108
TRAJECTORY_DATA, 127	t, 108
Rstd	t counter, 108
egret.h, 148	t_old, 108
shark.h, 199	t_print, 108
Run Trajectory	tempy, 108
Trajectory.h, 205	total pressure, 108
run_exec	total_steps, 108
ui.h, 212	user data, 109
run executable	y, 108
ui.h, 213	SCOPSOWL Executioner
run test	<u>—</u>
ui.h, 212	scopsowl.h, 196
	SCOPSOWL_HPP_
rxn_rate_error	scopsowl.h, 195
error.h, 152	SCOPSOWL_OPT_DATA, 109
S	adsorb_index, 110
BICGSTAB DATA, 18	CompareFile, 111
FINCH DATA, 34	current_equil, 110
mSPD_DATA, 89	current_points, 110
_ ·	current_press, 110
SIT	current temp, 110
shark.h, 199	diffusion_type, 110
STRING	e norm, 110
yaml_wrapper.h, 214	evaluation, 110
s_rand	f bias, 110
TRAJECTORY_DATA, 128	max bias, 110
SCOPSOWL	min bias, 110
scopsowl.h, 196	- ·
SCOPSOWL_DATA, 107	num_curves, 110
binder_fraction, 108	num_params, 110
binder_poresize, 108	Optimize, 110
binder porosity, 108	owl_dat, 111
char_macro, 108	param_guess, 110
char micro, 108	ParamFile, 111
coord_macro, 108	q_data, 111
coord micro, 108	q_sim, 111
crystal_radius, 108	Rough, 110
DirichletBC, 108	simulation_equil, 110
eval_ads, 109	t, 111
eval diff, 109	total eval, 110
eval_kf, 109	y_base, 111
	SCOPSOWL_OPT_set_y
eval_retard, 109	scopsowl opt.h, 197
eval_surfDiff, 109	SCOPSOWL_OPTIMIZE
finch_dat, 109	scopsowl_opt.h, 197
gas_dat, 109	
gas_temperature, 108	SCOPSOWL_PARAM_DATA, 111
gas_velocity, 108	Adsorbable, 112
Heterogeneous, 108	affinity, 112
level, 108	qAvg, 112
magpie_dat, 109	qo, 112
NonLinear, 108	Qst, 112
OutputFile, 109	QstAvg, 112
param_dat, 109	Qsto, 112
pellet_density, 108	speciesName, 112
pellet_radius, 108	SCOPSOWL_SCENARIOS
Print2Console, 108	scopsowl.h, 196

SCOPSOWL_TESTS	totalsteps, 114
scopsowl.h, 196	UnsteadyList, 114
SCOPSOWL_postprocesses	X_new, 115
scopsowl.h, 196	X_old, 115
SCOPSOWL_preprocesses	yaml_object, 115
scopsowl.h, 196	SHARK_SCENARIO
SCOPSOWL_reset	shark.h, 200
scopsowl.h, 196	SHARK_TESTS
SHARK	shark.h, 200
shark.h, 200	SKUA
SHARK_DATA, 112	skua.h, 202
act_fun, 114	SKUA_CYCLE_TEST01
activity_data, 115	skua.h, <mark>202</mark>
activity_new, 115	SKUA_CYCLE_TEST02
activity_old, 115	skua.h, 202
Conc_new, 115	SKUA_DATA, 115
Conc old, 115	char measure, 117
Console_Output, 115	coord, 116
const_pH, 115	DirichletBC, 117
Contains_pH, 115	eval diff, 117
Contains pOH, 115	eval_kf, 117
Converged, 115	finch_dat, 117
dielectric_const, 114	gas dat, 117
dt, 114	gas_velocity, 116
dt min, 114	magpie_dat, 117
EvalActivity, 115	NonLinear, 117
File_Output, 115	OutputFile, 117
lin_precon, 115	param_dat, 117
MassBalanceList, 114	pellet radius, 116
MasterList, 114	Print2Console, 116
Newton_data, 115	Print2File, 116
Norm, 114	gTn, 116
num_mbe, 114	qTnp1, 116
num_other, 114	sim time, 116
num ssr, 114	t, 116
num usr, 114	t counter, 116
numvar, 114	t old, 116
other_data, 115	t_print, 116
OtherList, 114	total_steps, 116
OutputFile, 115	user_data, 117
pH, 114	y, 117
pH_index, 114	SKUA_Executioner
pOH_index, 114	skua.h, 202
precon_data, 115	SKUA_HPP_
ReactionList, 114	skua.h, <mark>201</mark>
Residual, 115	SKUA_LOW_TEST03
residual_data, 115	skua.h, 202
shark.h, 199	SKUA_MID_TEST04
simulationtime, 114	skua.h, 202
SpeciationCurve, 115	SKUA_OPT_DATA, 117
steadystate, 114	abs_tol_bias, 119
t_count, 114	adsorb_index, 118
t_out, 114	CompareFile, 119
temperature, 114	current_equil, 118
time, 114	current_points, 118
time_old, 114	current_press, 118
TimeAdaptivity, 114	current_temp, 118
timesteps, 114	diffusion_type, 118

e_norm, 118	I, 125
e_norm_old, 118	Ideal, 125
evaluation, 118 f_bias, 118	J, 125 K, 125
f_bias_old, 118	max norm, 125
max_bias, 118	N, 124
max_guess_iter, 118	Output, 125
min_bias, 118	PI, 124
num curves, 118	PT, 124
num_params, 118	Par, 125
Optimize, 118	pi, 124
param_guess, 118	gT, 124
param guess old, 119	Recover, 125
ParamFile, 119	Sys, 125
q_data, 119	T, 124
q_sim, 119	total_eval, 125
rel_tol_norm, 119	sandbox
Rough, 118	ui.h, 208
simulation_equil, 118	sandbox.h, 193
skua_dat, 119	RUN SANDBOX, 194
t, 119	Speciation_Test01_Function, 194
total_eval, 118	Speciation_Test01_Guess, 194
y_base, 119	Speciation_Test01_Jacobian, 194
SKUA_OPT_set_y	Speciation Test01 MatVec, 194
skua_opt.h, 203	ScNum
SKUA OPTIMIZE	egret.h, 149
skua_opt.h, 203	scenario_fail
SKUA_PARAM, 119	error.h, 151
activation_energy, 119	Schmidt
Adsorbable, 120	PURE_GAS, 104
affinity, 120	school.h, 194
film_transfer, 120	scops_opt
Qstn, 120	ui.h, 208
Qstnp1, 120	scopsowl
ref_diffusion, 119	ui.h, 208
ref_pressure, 120	scopsowl.h, 194
ref_temperature, 119	avgDp, 195
speciesName, 120	CURVE_TEST03, 196
xIC, 120	CURVE_TEST04, 196
xn, 120	CURVE_TEST05, 196
xnp1, 120	const_filmMassTransfer, 196
y_eff, 120	const_pore_diffusion, 196
SKUA_SCENARIOS	default_adsorption, 196
skua.h, 202	default_effective_diffusion, 196
SKUA_TESTS	default_filmMassTransfer, 196
skua.h, 202	default_pore_diffusion, 196
SKUA_postprocesses	default_retardation, 196
skua.h, 202	default_surf_diffusion, 196
SKUA_preprocesses	Dk, 195
skua.h, 202	Dp, 195
SKUA_reset	LARGE_CYCLE_TEST01, 196
skua.h, 202	print2file_SCOPSOWL_header, 195
SMALL_CYCLE_TEST02	print2file_SCOPSOWL_result_new, 196
scopsowl.h, 196	print2file_SCOPSOWL_result_old, 195
SYSTEM_DATA, 123	print2file_SCOPSOWL_time_header, 195
As, 124	print2file_species_header, 195
avg_norm, 125	SCOPSOWL, 196
Carrier, 125	SCOPSOWL_Executioner, 196

SCOPSOWL_HPP_, 195	scopsowl.h, 196
SCOPSOWL_SCENARIOS, 196	set_SCOPSOWL_params
SCOPSOWL_TESTS, 196	scopsowl.h, 196
SCOPSOWL_postprocesses, 196	set_SCOPSOWL_timestep
SCOPSOWL_preprocesses, 196	scopsowl.h, 196
SCOPSOWL_reset, 196	set_SKUA_ICs
SMALL_CYCLE_TEST02, 196	skua.h, 202
set_SCOPSOWL_ICs, 196	set_SKUA_params
set_SCOPSOWL_params, 196	skua.h, 202
set_SCOPSOWL_timestep, 196	set_SKUA_timestep
setup_SCOPSOWL_DATA, 196	skua.h, 202
scopsowl_opt.h, 197	Set_Species_Index
eval_SCOPSOWL_Uptake, 197	UnsteadyReaction, 132
initial_guess_SCOPSOWL, 197	Set_Stoichiometric
SCOPSOWL_OPT_set_y, 197	Reaction, 106
SCOPSOWL_OPTIMIZE, 197	UnsteadyReaction, 132
Set_ActivationEnergy	Set_TimeStep
UnsteadyReaction, 133	UnsteadyReaction, 133
Set_Affinity	Set_TotalConcentration
UnsteadyReaction, 133	MassBalance, 65
set_DOGFISH_ICs	set_alkalinity
dogfish.h, 143	MasterSpeciesList, 66
set_DOGFISH_params	set_list_size
dogfish.h, 144	MasterSpeciesList, 66
set_DOGFISH_timestep	set_size
dogfish.h, 144	Matrix, 70
Set_Delta	set_species
MassBalance, 65	MasterSpeciesList, 66
Set_Energy	set_variables
Reaction, 106	egret.h, 149
UnsteadyReaction, 132	setAlias
Set_Enthalpy	Document, 24
Reaction, 106	Header, 60
UnsteadyReaction, 132	SubHeader, 122
Set_EnthalpyANDEntropy	setFormula
Reaction, 106	Molecule, 82
UnsteadyReaction, 132	setInputFile
Set_Entropy	yaml_cpp_class, 137
Reaction, 106	setMolarWeigth
UnsteadyReaction, 132	Molecule, 82
Set_Equilibrium	setName
Reaction, 106	Document, 24
UnsteadyReaction, 132	Header, 60
Set_Forward	SubHeader, 122
UnsteadyReaction, 133	setNameAliasPair
Set_ForwardRef	Document, 24
UnsteadyReaction, 133	Header, 60
Set_InitialValue	SubHeader, 122
UnsteadyReaction, 133	setState
Set_MaximumValue	Document, 24
UnsteadyReaction, 133	Header, 60
Set_Name	SubHeader, 122
MassBalance, 65	setbcs
Set_Reverse	FINCH_DATA, 41
UnsteadyReaction, 133	setic
Set ReverseRef	
_	FINCH_DATA, 41
UnsteadyReaction, 133	FINCH_DATA, 41 setparams
UnsteadyReaction, 133 set SCOPSOWL ICs	

setpostprocess	shark_guess, 200
FINCH_DATA, 41	shark_initial_conditions, 200
setpreprocess	shark_pH_finder, 200
FINCH_DATA, 41	shark_parameter_check, 200
settime	shark_postprocesses, 200
FINCH_DATA, 41	shark_preprocesses, 200
setup_DOGFISH_DATA	shark_reset, 200
dogfish.h, 143	shark_residual, 200
setup_FINCH_DATA	shark_solver, 200
finch.h, 156	shark_temperature_calculations, 200
setup_MONKFISH_DATA	shark_timestep_adapt, 200
monkfish.h, 193	shark_timestep_const, 200
setup_SCOPSOWL_DATA	valid_act, 199
scopsowl.h, 196	shark_add_customResidual
setup_SHARK_DATA	shark.h, 200
shark.h, 200	shark_energy_calculations
setup_SKUA_DATA	shark.h, 200
skua.h, 202	shark_executioner
shapeFactor	shark.h, 200
magpie.h, 183	shark_guess
shark	shark.h, 200
ui.h, 208	shark_initial_conditions
shark.h	shark.h, 200
DAVIES, 199	shark_pH_finder
DAVIES_LADSHAW, 199	shark.h, 200
DEBYE_HUCKEL, 199	shark_parameter_check
IDEAL, 199	shark.h, 200
PITZER, 199	shark_postprocesses
SIT, 199	shark.h, 200
shark.h, 197	shark_preprocesses
act_choice, 199	shark.h, 200
Convert2Concentration, 199	shark_reset
Convert2LogConcentration, 199	shark.h, 200
Davies_equation, 199	shark_residual
DaviesLadshaw_equation, 199	shark.h, 200
DebyeHuckel_equation, 199	shark_solver
ideal_solution, 199	shark.h, 200
linearsolve_choice, 199	shark_temperature_calculations
linesearch_choice, 199	shark.h, 200
print2file_shark_header, 199	shark_timestep_adapt
print2file_shark_info, 199	shark.h, 200
print2file_shark_results_new, 199	shark_timestep_const
print2file_shark_results_old, 199	shark.h, 200
read_equilrxn, 200	sigma
read_massbalance, 199	CGS_DATA, 20
read_options, 199	sigma_m
read_scenario, 199	TRAJECTORY_DATA, 128
read_species, 199	sigma_n
read_unsteadyrxn, 200	TRAJECTORY_DATA, 128
Rstd, 199	sigma_v
SHARK, 200	TRAJECTORY_DATA, 128
SHARK_DATA, 199	sigma_vz
SHARK_SCENARIO, 200	TRAJECTORY_DATA, 128
SHARK_TESTS, 200	sigma_z
setup_SHARK_DATA, 200	TRAJECTORY_DATA, 128
shark_add_customResidual, 200	sim_time
shark_energy_calculations, 200	SCOPSOWL_DATA, 108
shark_executioner, 200	SKUA_DATA, 116
— · · · · · · · · · · · · · · · · · · ·	- · · ·

simple_darken_Dc	SKUA_OPT_DATA, 119
skua.h, 202	skua_opt.h, 203
simulation_fail	eval_SKUA_Uptake, 203
error.h, 151	initial_guess_SKUA, 203
simulation_equil	SKUA_OPT_set_y, 203
SCOPSOWL_OPT_DATA, 110	SKUA_OPTIMIZE, 203
SKUA_OPT_DATA, 118	Sn
simulationtime	FINCH_DATA, 40
SHARK_DATA, 114	Snp1
single_fiber_density	FINCH_DATA, 40
MONKFISH_DATA, 87	SolnTransform
singular_matrix	Matrix, 73
error.h, 151	solve
size	FINCH_DATA, 41
Document, 24	sorbed_molefraction
Header, 60	DOGFISH_PARAM, 29
KeyValueMap, 63	MONKFISH PARAM, 88
MasterSpeciesList, 67	sorption_bc
YamlWrapper, 139	MONKFISH_PARAM, 88
skua	Speciation_Test01_Data, 120
ui.h, 208	C, 121
skua.h, 200	CT, 121
·	Jacobian, 121
const_Dc, 202	•
const_kf, 202	logC, 121
D_c, 201	logKa1, 120
D_inf, 201	logKa2, 120
D_o, 201	logKw, 120
default_Dc, 202	N, 120
default_kf, 202	NaT, 121
empirical_kf, 202	NumJac, 121
molefractionCheck, 202	x, 121
print2file_SKUA_header, 202	Speciation_Test01_Function
print2file_SKUA_results_new, 202	sandbox.h, 194
print2file_SKUA_results_old, 202	Speciation_Test01_Guess
print2file_SKUA_time_header, 202	sandbox.h, 194
print2file_species_header, 202	Speciation_Test01_Jacobian
SKUA, 202	sandbox.h, 194
SKUA_CYCLE_TEST01, 202	Speciation_Test01_MatVec
SKUA_CYCLE_TEST02, 202	sandbox.h, 194
SKUA_Executioner, 202	SpeciationCurve
SKUA_HPP_, 201	SHARK_DATA, 115
SKUA_LOW_TEST03, 202	species
SKUA_MID_TEST04, 202	DOGFISH_PARAM, 29
SKUA_SCENARIOS, 202	MasterSpeciesList, 67
SKUA_TESTS, 202	MONKFISH_PARAM, 89
SKUA_postprocesses, 202	species_dat
SKUA_preprocesses, 202	MIXED_GAS, 78
SKUA_reset, 202	species_index
set_SKUA_ICs, 202	Mechanism, 76
set_SKUA_params, 202	UnsteadyReaction, 134
set_SKUA_timestep, 202	speciesName
setup_SKUA_DATA, 202	MasterSpeciesList, 67
simple_darken_Dc, 202	SCOPSOWL_PARAM_DATA, 112
theoretical_darken_Dc, 202	SKUA_PARAM, 120
skua_opt	specific_heat
ui.h, 208	PURE GAS, 104
skua_dat	Spherical
SCOPSOWL_DATA, 109	finch.h, 155
- · · · · · · · · · · · · · · · · · · ·	- ,

sphericalAvg	Sys
Matrix, 73	SYSTEM_DATA, 125
sphericalBCFill	sys_dat
Matrix, 72	MAGPIE_DATA, 64
state	_
SubHeader, 123	Т
SteadyState	FINCH_DATA, 34
FINCH DATA, 36	SYSTEM_DATA, 124
steadystate	t
SHARK DATA, 114	BiCGSTAB_DATA, 19
steps	FINCH_DATA, 34
·	SCOPSOWL_DATA, 108
GMRESLP_DATA, 46	SCOPSOWL_OPT_DATA, 111
Stoichiometric	SKUA_DATA, 116
Reaction, 106	SKUA OPT DATA, 119
string_parse_error	TEST
error.h, 152	ui.h, 207
Sub_Map	t count
Header, 61	SHARK DATA, 114
SubHeader, 121	
\sim SubHeader, 122	t_counter
addPair, 122	DOGFISH_DATA, 27
alias, 123	MONKFISH_DATA, 87
clear, 122	SCOPSOWL_DATA, 108
Data_Map, 123	SKUA_DATA, 116
DisplayContents, 122	t_old
getAlias, 123	FINCH_DATA, 34
•	SCOPSOWL_DATA, 108
getMap, 122	SKUA_DATA, 116
getName, 122	t_out
getState, 123	SHARK_DATA, 114
isAlias, 123	t_print
isAnchor, 123	DOGFISH_DATA, 27
name, 123	MONKFISH_DATA, 87
operator=, 122	SCOPSOWL DATA, 108
setAlias, 122	SKUA_DATA, 116
setName, 122	t rand
setNameAliasPair, 122	
setState, 122	TRAJECTORY_DATA, 128
state, 123	TANGENTIAL_FORCE
SubHeader, 122	Trajectory.h, 204
SubHeader, 122	TRAJECTORY_DATA, 126
	a, 127
ADNOLDI DATA O	A_separator, 127
ARNOLDI_DATA, 9	A_wire, 127
GMRESRP_DATA, 53	b, 127
Matrix, 71	B0, 127
Sum_Delta	beta, 127
MassBalance, 65	Cap, 128
SurfDiff	chi_p, 127
SCOPSOWL_DATA, 108	dX, 128
surface_concentration	dY, 128
DOGFISH_PARAM, 29	dt, 127
Sutherland_Const	eta, 127
PURE GAS, 104	H, 128
Sutherland_Temp	H0, 127
PURE_GAS, 104	Hamaker, 127
Sutherland_Viscosity	k, 127
	·
PURE_GAS, 104	L, 127
Symbol	L_wire, 127
Atom, 13	M, 127

m_rand, 128	TimeAdaptivity
mp, 127	SHARK_DATA, 114
Ms, 127	timesteps
mu_0, 127	SHARK_DATA, 114
n_rand, 128	token_parser
POL, 128	yaml_cpp_class, 137
porosity, 127	tol_abs
q_bar, 128	BiCGSTAB_DATA, 17
Q_in, 127	CGS DATA, 21
rho_f, 127	FINCH DATA, 37
rho_p, 127	GCR_DATA, 44
Rs, 127	GMRESLP_DATA, 46
s_rand, 128	GMRESRP_DATA, 52
sigma_m, 128	PCG DATA, 93
sigma_n, 128	PICARD DATA, 97
sigma_v, 128	tol_rel
sigma_vz, 128	BiCGSTAB_DATA, 17
sigma_z, 128	CGS_DATA, 21
t_rand, 128	FINCH DATA, 37
Temp, 127	GCR DATA, 44
V0, 127	GMRESLP_DATA, 46
V_separator, 127	GMRESRP_DATA, 52
V wire, 127	PCG DATA, 93
X, 128	PICARD_DATA, 97
Y, 128	total_density
Y_initial, 127	MIXED GAS, 78
Table	total_dyn_vis
PeriodicTable, 95	MIXED GAS, 78
Temp	total eval
TRAJECTORY DATA, 127	GSTA OPT DATA, 57
temperature	SCOPSOWL_OPT_DATA, 110
SHARK DATA, 114	SKUA OPT DATA, 118
temperature_affinity	SYSTEM DATA, 125
UnsteadyReaction, 134	total_iter
	FINCH_DATA, 37
scopsowl data, 108	GCR DATA, 43
tensor out of bounds	GMRESR DATA, 49
error.h, 152	total molecular weight
term precon	MIXED_GAS, 78
GMRESR_DATA, 50	total_pressure
	MIXED_GAS, 77
terminal_precon GMRESR_DATA, 50	SCOPSOWL DATA, 108
test	total sorption
ui.h, 209	DOGFISH DATA, 27
	MONKFISH DATA, 87
test_loop ui.h, 212	total_sorption_old
•	
theoretical_darken_Dc	DOGFISH_DATA, 27
skua.h, 202	MONKFISH_DATA, 87 total specific heat
time	MIXED GAS, 78
DOGFISH_DATA, 26	<u> </u>
MONKFISH_DATA, 87	total_steps
SHARK_DATA, 114	DOGFISH_DATA, 26
time_old	MONKFISH_DATA, 87
DOGFISH_DATA, 26	SCOPSOWL_DATA, 108
MONKFISH_DATA, 87	SKUA_DATA, 116
SHARK_DATA, 114	TotalConcentration
time_step UnsteadyReaction, 134	MassBalance, 65
Onsteady readitor, 104	totalsteps

SHARK_DATA, 114	argv, 130
trajectory	BasicUI, 130
ui.h, 208	count, 129
Trajectory.h, 203	Files, 130
Brown_RAD, 204	input_files, 129
Brown_THETA, 204	max, 129
CARTESIAN, 204	MissingArg, 130
DISPLACEMENT, 205	option, 130
Grav_R, 204	Path, 130
Grav_T, 204	path, 129
LOCATION, 205	user_input, 129
Magnetic_R, 204	value_type, 129
Magnetic_T, 204	UI_HPP_
Number_Generator, 205	ui.h, 207
POLAR, 204	ulC
RADIAL_FORCE, 204	FINCH_DATA, 35
Removal_Efficiency, 205	uT
Run_Trajectory, 205	FINCH_DATA, 34
TANGENTIAL_FORCE, 204	uT_old
Trajectory_SetupConstants, 205	FINCH_DATA, 34
V_RAD, 204	uTotal
V_THETA, 204	finch.h, 156
Van_R, 204	ubest
Trajectory_SetupConstants	FINCH_DATA, 39
Trajectory.h, 205	ui.h
transpose	CONTINUE, 207
Matrix, 72	dogfish, 207
transpose_dat	EXECUTE, 207
GCR_DATA, 45	EXIT, 207
transpose_multiply	eel, 207
Matrix, 72	egret, 207
tridiagonalFill	finch, 207
Matrix, 72	gsta_opt, 208
tridiagonalSolve	
Matrix, 72	HELP, 207
tridiagonalVectorFill	lark, 207
Matrix, 73	macaw, 207
twoFifths	magpie, 208
gsta opt.h, 162	mola, 207
type	monkfish, 208
ValueTypePair, 136	sandbox, 208
71	scops_opt, 208
u	scopsowl, 208
CGS_DATA, 21	shark, 208
GCR_DATA, 45	skua, <mark>208</mark>
UNKNOWN	skua_opt, 208
yaml_wrapper.h, 214	TEST, 207
u_star	trajectory, 208
FINCH_DATA, 39	ui.h, 205
u_temp	allLower, 208
GCR DATA, 45	aui_help, 208
uAverage	bui_help, 208
finch.h, 156	display_help, 211
uAvg	display_version, 211
FINCH_DATA, 34	ECO EXECUTABLE, 207
uAvg_old	ECO_VERSION, 207
FINCH_DATA, 35	exec, 209
UI_DATA, 128	exec_loop, 212
argc, 130	exit, 208
~. g - , 100	O/III, 200

help, 208	Get_Species_Index, 133
input, 209	Get_Stoichiometric, 133
invalid_input, 211	Get_TimeStep, 134
number_files, 210	haveEquilibrium, 133
path, 209	HaveForRef, 134
run_exec, 212	HaveForward, 134
run_executable, 213	haveRate, 133
run_test, 212	HaveRevRef, 134
test, 209	HaveReverse, 134
test_loop, 212	initial_value, 134
UI_HPP_, 207	Initialize_List, 132
valid_addon_options, 210	max_value, 134
valid_exec_string, 210	reverse rate, 134
valid_input_execute, 212	reverse_ref_rate, 134
valid_input_main, 211	Set_ActivationEnergy, 133
valid_input_tests, 211	Set_Affinity, 133
valid_options, 207	Set_Energy, 132
valid test string, 210	Set_Enthalpy, 132
version, 209	Set_EnthalpyANDEntropy, 132
un	Set_Entropy, 132
FINCH DATA, 39	Set_Equilibrium, 132
unm1	Set_Equilibrium, 132
FINCH_DATA, 39	Set ForwardRef, 133
-	Set InitialValue, 133
unp1	
FINCH_DATA, 39	Set_MaximumValue, 133
unregistered_name	Set_Reverse, 133
error.h, 152	Set_ReverseRef, 133
unstable_matrix	Set_Species_Index, 132
error.h, 151	Set_Stoichiometric, 132
UnsteadyList	Set_TimeStep, 133
SHARK_DATA, 114	species_index, 134
UnsteadyPrecipitation, 130	temperature_affinity, 134
UnsteadyReaction, 131	time_step, 134
\sim UnsteadyReaction, 132	UnsteadyReaction, 132
activation_energy, 134	UnsteadyReaction, 132
calculateEnergies, 133	uo
calculateEquilibrium, 133	FINCH_DATA, 35
calculateRate, 133	Update
checkSpeciesEnergies, 133	FINCH_DATA, 36
Display_Info, 132	update_arnoldi_solution
Eval_IC_Residual, 134	lark.h, 169
Eval_ReactionRate, 134	upperHessenberg2Triangular
Eval_Residual, 134	Matrix, 74
Explicit_Eval, 134	upperHessenbergSolve
forward_rate, 134	Matrix, 75
forward_ref_rate, 134	upperTriangularSolve
Get_ActivationEnergy, 133	Matrix, 74
Get_Affinity, 134	user_data
Get_Energy, 133	DOGFISH DATA, 28
Get_Enthalpy, 133	MONKFISH_DATA, 88
Get_Entropy, 133	SCOPSOWL_DATA, 109
Get Equilibrium, 133	SKUA DATA, 117
Get Forward, 133	user_input
Get ForwardRef, 133	UI_DATA, 129
Get_InitialValue, 133	uz I E
Get_MaximumValue, 133	FINCH DATA, 39
Get Reverse, 133	uz I I
Get_ReverseRef, 133	FINCH DATA, 39

uz_lm	11_E		getBool, 135
F	FINCH_DATA, 39		getDouble, 136
uz_lm	n1_l		getInt, 136
F	FINCH_DATA, 39		getPair, 136
uz_lp	1 E		getString, 135
	FINCH DATA, 39		getType, 136
uz_lp	= '		getValue, 136
	FINCH DATA, 39		operator=, 135
'	TINOTI_DATA, 33		•
V			type, 136
	magpie.h, 183		Value_Type, 136
	magpie.n, 165		ValueTypePair, 135
V	ADMOUDI DATA O		ValueTypePair, 135
	ARNOLDI_DATA, 8	Van_	_R
	BiCGSTAB_DATA, 18		Trajectory.h, 204
(CGS_DATA, <mark>22</mark>	vanA	lbada_discretization
(GMRESRP_DATA, <mark>53</mark>		finch.h, 158
r	mSPD_DATA, 89		or_out_of_bounds
F	PJFNK DATA, 101		error.h, 152
V0	_ ,		-
	TRAJECTORY DATA, 127	veloc	
V RA	= ·		MIXED_GAS, 78
_		versi	on
	Trajectory.h, 204		ui.h, 209
V_TH		Vk	
	Trajectory.h, 204		ARNOLDI_DATA, 8
V_se	parator		GMRESRP_DATA, 53
-	TRAJECTORY_DATA, 127	vn	_ ,
V_wir	e		FINCH DATA, 39
-	TRAJECTORY_DATA, 127	vnp1	
vIC			FINCH DATA 20
F	FINCH DATA 35		FINCH_DATA, 39
	FINCH_DATA, 35	vo	
valen	ce_e	vo	FINCH_DATA, 35
valen	ce_e Atom, 13	VO	
valend / valid_	ce_e Atom, 13 _act	vo	
valend / valid_	ce_e Atom, 13 _act shark.h, 199	vo w	
valend valid_ s valid_	ce_e Atom, 13 _act shark.h, 199 addon_options	vo w	FINCH_DATA, 35
valend valid_ s valid_	ce_e Atom, 13 _act shark.h, 199	vo w	FINCH_DATA, 35 ARNOLDI_DATA, 8
valend valid_ s valid_ u	ce_e Atom, 13 _act shark.h, 199 addon_options	vo w	FINCH_DATA, 35 ARNOLDI_DATA, 8 CGS_DATA, 22 GMRESRP_DATA, 53
valend valid_ s valid_ u valid_	ce_e Atom, 13 act shark.h, 199 addon_options ui.h, 210	vo w	FINCH_DATA, 35 ARNOLDI_DATA, 8 CGS_DATA, 22 GMRESRP_DATA, 53 ht
valend valid_ s valid_ u valid_	ce_e Atom, 13 act shark.h, 199 addon_options ui.h, 210 exec_string ui.h, 210	vo w weigh	FINCH_DATA, 35 ARNOLDI_DATA, 8 CGS_DATA, 22 GMRESRP_DATA, 53 ht Mechanism, 76
valend valid_ valid_ valid_ valid_ valid_ valid_	ce_e Atom, 13 act shark.h, 199 addon_options ui.h, 210 exec_string ui.h, 210 input_execute	vo w weigh	FINCH_DATA, 35 ARNOLDI_DATA, 8 CGS_DATA, 22 GMRESRP_DATA, 53 ht Mechanism, 76 htedAvg
valend valid_ valid_ uvalid_ uvalid_ valid_	ce_e Atom, 13 act shark.h, 199 addon_options ui.h, 210 exec_string ui.h, 210 input_execute ui.h, 212	vo w weigh	FINCH_DATA, 35 ARNOLDI_DATA, 8 CGS_DATA, 22 GMRESRP_DATA, 53 ht Mechanism, 76
valend valid_ valid_ valid_ valid_ valid_ valid_	ce_e Atom, 13 act shark.h, 199 addon_options ui.h, 210 exec_string ui.h, 210 input_execute ui.h, 212 input_main	weigl	FINCH_DATA, 35 ARNOLDI_DATA, 8 CGS_DATA, 22 GMRESRP_DATA, 53 ht Mechanism, 76 htedAvg
valend valid_ valid_ valid_ valid_ valid_ valid_	ce_e Atom, 13 act shark.h, 199 addon_options ui.h, 210 exec_string ui.h, 210 input_execute ui.h, 212 input_main ui.h, 211	weight weight	FINCH_DATA, 35 ARNOLDI_DATA, 8 CGS_DATA, 22 GMRESRP_DATA, 53 ht Mechanism, 76 htedAvg gsta_opt.h, 163
valend valid_ valid_ valid_ valid_ valid_ valid_ valid_	ce_e Atom, 13 act shark.h, 199 addon_options ui.h, 210 exec_string ui.h, 210 input_execute ui.h, 212 input_main ui.h, 211 input_tests	weight weight	FINCH_DATA, 35 ARNOLDI_DATA, 8 CGS_DATA, 22 GMRESRP_DATA, 53 ht Mechanism, 76 htedAvg
valendone valid_	ce_e Atom, 13 act shark.h, 199 addon_options ui.h, 210 exec_string ui.h, 210 input_execute ui.h, 212 input_main ui.h, 211 input_tests ui.h, 211	weight X	FINCH_DATA, 35 ARNOLDI_DATA, 8 CGS_DATA, 22 GMRESRP_DATA, 53 ht Mechanism, 76 htedAvg gsta_opt.h, 163 TRAJECTORY_DATA, 128
valendon valid_	ce_e Atom, 13 act shark.h, 199 addon_options ui.h, 210 exec_string ui.h, 210 input_execute ui.h, 212 input_main ui.h, 211 input_tests ui.h, 211 options	weight X	FINCH_DATA, 35 ARNOLDI_DATA, 8 CGS_DATA, 22 GMRESRP_DATA, 53 ht Mechanism, 76 htedAvg gsta_opt.h, 163 TRAJECTORY_DATA, 128 BiCGSTAB_DATA, 18
valendone valid_	ce_e Atom, 13 act shark.h, 199 addon_options ui.h, 210 exec_string ui.h, 210 input_execute ui.h, 212 input_main ui.h, 211 input_tests ui.h, 211 options ui.h, 207	weight X	FINCH_DATA, 35 ARNOLDI_DATA, 8 CGS_DATA, 22 GMRESRP_DATA, 53 ht Mechanism, 76 htedAvg gsta_opt.h, 163 TRAJECTORY_DATA, 128 BiCGSTAB_DATA, 18 CGS_DATA, 21
valendone valid_	ce_e Atom, 13 act shark.h, 199 addon_options ui.h, 210 exec_string ui.h, 210 input_execute ui.h, 212 input_main ui.h, 211 input_tests ui.h, 211 options	weight X	FINCH_DATA, 35 ARNOLDI_DATA, 8 CGS_DATA, 22 GMRESRP_DATA, 53 ht Mechanism, 76 htedAvg gsta_opt.h, 163 TRAJECTORY_DATA, 128 BiCGSTAB_DATA, 18
valendon valid_	ce_e Atom, 13 act shark.h, 199 addon_options ui.h, 210 exec_string ui.h, 210 input_execute ui.h, 212 input_main ui.h, 211 input_tests ui.h, 211 options ui.h, 207	weight X	FINCH_DATA, 35 ARNOLDI_DATA, 8 CGS_DATA, 22 GMRESRP_DATA, 53 ht Mechanism, 76 htedAvg gsta_opt.h, 163 TRAJECTORY_DATA, 128 BiCGSTAB_DATA, 18 CGS_DATA, 21
valendon valid_	ce_e Atom, 13 act shark.h, 199 addon_options ui.h, 210 exec_string ui.h, 210 input_execute ui.h, 212 input_main ui.h, 211 input_tests ui.h, 211 options ui.h, 207 test_string	weight X	FINCH_DATA, 35 ARNOLDI_DATA, 8 CGS_DATA, 22 GMRESRP_DATA, 53 ht Mechanism, 76 htedAvg gsta_opt.h, 163 TRAJECTORY_DATA, 128 BiCGSTAB_DATA, 18 CGS_DATA, 21 GCR_DATA, 44
valender valid_val	ce_e Atom, 13 act shark.h, 199 addon_options ui.h, 210 exec_string ui.h, 210 input_execute ui.h, 212 input_main ui.h, 211 input_tests ui.h, 211 options ui.h, 207 test_string ui.h, 210	weight X	FINCH_DATA, 35 ARNOLDI_DATA, 8 CGS_DATA, 22 GMRESRP_DATA, 53 ht Mechanism, 76 htedAvg gsta_opt.h, 163 TRAJECTORY_DATA, 128 BiCGSTAB_DATA, 18 CGS_DATA, 21 GCR_DATA, 44 GMRESLP_DATA, 47
valendon valid_	cc_e Atom, 13 act shark.h, 199 addon_options ui.h, 210 exec_string ui.h, 210 input_execute ui.h, 212 input_main ui.h, 211 input_tests ui.h, 211 options ui.h, 207 test_string ui.h, 210 e_Type ValueTypePair, 136	weight X	FINCH_DATA, 35 ARNOLDI_DATA, 8 CGS_DATA, 22 GMRESRP_DATA, 53 ht Mechanism, 76 htedAvg gsta_opt.h, 163 TRAJECTORY_DATA, 128 BiCGSTAB_DATA, 18 CGS_DATA, 21 GCR_DATA, 21 GCR_DATA, 44 GMRESLP_DATA, 47 GMRESRP_DATA, 52 GPAST_DATA, 54
valendone valid_	cc_e Atom, 13 act shark.h, 199 addon_options ui.h, 210 exec_string ui.h, 210 input_execute ui.h, 212 input_main ui.h, 211 input_tests ui.h, 211 options ui.h, 207 test_string ui.h, 210 e_Type ValueTypePair, 136 _type	weight X	FINCH_DATA, 35 ARNOLDI_DATA, 8 CGS_DATA, 22 GMRESRP_DATA, 53 ht Mechanism, 76 htedAvg gsta_opt.h, 163 TRAJECTORY_DATA, 128 BiCGSTAB_DATA, 18 CGS_DATA, 21 GCR_DATA, 21 GCR_DATA, 44 GMRESLP_DATA, 47 GMRESRP_DATA, 52 GPAST_DATA, 54 PCG_DATA, 93
valender valid_	ce_e Atom, 13 act shark.h, 199 addon_options ui.h, 210 exec_string ui.h, 210 input_execute ui.h, 212 input_main ui.h, 211 input_tests ui.h, 211 options ui.h, 207 test_string ui.h, 210 e_Type ValueTypePair, 136 _type UI_DATA, 129	weight X	FINCH_DATA, 35 ARNOLDI_DATA, 8 CGS_DATA, 22 GMRESRP_DATA, 53 ht Mechanism, 76 htedAvg gsta_opt.h, 163 TRAJECTORY_DATA, 128 BiCGSTAB_DATA, 18 CGS_DATA, 21 GCR_DATA, 21 GCR_DATA, 44 GMRESLP_DATA, 47 GMRESRP_DATA, 52 GPAST_DATA, 54 PCG_DATA, 93 PJFNK_DATA, 101
valendone valid_ valid_ valid_ valid_ valid_ valid_ valid_ valid_ valid_ Value Value Value Value Value	cc_e Atom, 13 act shark.h, 199 addon_options ui.h, 210 exec_string ui.h, 210 input_execute ui.h, 212 input_main ui.h, 211 input_tests ui.h, 211 coptions ui.h, 207 test_string ui.h, 210 e_Type ValueTypePair, 136 _type UI_DATA, 129 iTypePair, 134	weight X	FINCH_DATA, 35 ARNOLDI_DATA, 8 CGS_DATA, 22 GMRESRP_DATA, 53 ht Mechanism, 76 htedAvg gsta_opt.h, 163 TRAJECTORY_DATA, 128 BiCGSTAB_DATA, 18 CGS_DATA, 21 GCR_DATA, 21 GCR_DATA, 44 GMRESLP_DATA, 47 GMRESRP_DATA, 52 GPAST_DATA, 54 PCG_DATA, 93
valendone valid_ valid_ valid_ valid_ valid_ valid_ valid_ valid_ valid_ Value Value Value Value	ce_e Atom, 13 act shark.h, 199 addon_options ui.h, 210 exec_string ui.h, 210 input_execute ui.h, 212 input_main ui.h, 211 input_tests ui.h, 211 coptions ui.h, 207 test_string ui.h, 210 e_Type ValueTypePair, 136 _type UI_DATA, 129 iTypePair, 134 ~ValueTypePair, 135	weight weight x	FINCH_DATA, 35 ARNOLDI_DATA, 8 CGS_DATA, 22 GMRESRP_DATA, 53 ht Mechanism, 76 htedAvg gsta_opt.h, 163 TRAJECTORY_DATA, 128 BiCGSTAB_DATA, 18 CGS_DATA, 21 GCR_DATA, 21 GCR_DATA, 44 GMRESLP_DATA, 47 GMRESRP_DATA, 52 GPAST_DATA, 54 PCG_DATA, 93 PJFNK_DATA, 101 Speciation_Test01_Data, 121
valendone valid_va	ce_e Atom, 13 act shark.h, 199 addon_options ui.h, 210 exec_string ui.h, 210 input_execute ui.h, 212 input_main ui.h, 211 input_tests ui.h, 211 coptions ui.h, 207 test_string ui.h, 210 e_Type ValueTypePair, 136 _type UI_DATA, 129 eTypePair, 134 ~ValueTypePair, 135 assertType, 135	weight weight x	FINCH_DATA, 35 ARNOLDI_DATA, 8 CGS_DATA, 22 GMRESRP_DATA, 53 ht Mechanism, 76 htedAvg gsta_opt.h, 163 TRAJECTORY_DATA, 128 BiCGSTAB_DATA, 18 CGS_DATA, 21 GCR_DATA, 21 GCR_DATA, 44 GMRESLP_DATA, 47 GMRESRP_DATA, 52 GPAST_DATA, 54 PCG_DATA, 93 PJFNK_DATA, 101 Speciation_Test01_Data, 121 PICARD_DATA, 97
valendone valid_valid_valid_valid_valid_valid_valid_valid_valuevaluevaluevaluevaluevaluevaluevalue	ce_e Atom, 13 act shark.h, 199 addon_options ui.h, 210 exec_string ui.h, 210 input_execute ui.h, 212 input_main ui.h, 211 input_tests ui.h, 211 coptions ui.h, 207 test_string ui.h, 210 e_Type ValueTypePair, 136 _type UI_DATA, 129 e_TypePair, 134 ~ValueTypePair, 135 DisplayPair, 135 DisplayPair, 135	weight weight X x	FINCH_DATA, 35 ARNOLDI_DATA, 8 CGS_DATA, 22 GMRESRP_DATA, 53 ht Mechanism, 76 htedAvg gsta_opt.h, 163 TRAJECTORY_DATA, 128 BiCGSTAB_DATA, 18 CGS_DATA, 21 GCR_DATA, 21 GCR_DATA, 44 GMRESLP_DATA, 47 GMRESRP_DATA, 52 GPAST_DATA, 54 PCG_DATA, 93 PJFNK_DATA, 101 Speciation_Test01_Data, 121 PICARD_DATA, 97 ew
valendone valid_valid_valid_valid_valid_valid_valid_valid_valuevaluevaluevaluevaluevaluevaluevalue	ce_e Atom, 13 act shark.h, 199 addon_options ui.h, 210 exec_string ui.h, 210 input_execute ui.h, 212 input_main ui.h, 211 input_tests ui.h, 211 coptions ui.h, 207 test_string ui.h, 210 e_Type ValueTypePair, 136 _type UI_DATA, 129 eTypePair, 134 ~ValueTypePair, 135 assertType, 135	weight weight X x	FINCH_DATA, 35 ARNOLDI_DATA, 8 CGS_DATA, 22 GMRESRP_DATA, 53 ht Mechanism, 76 htedAvg gsta_opt.h, 163 TRAJECTORY_DATA, 128 BiCGSTAB_DATA, 18 CGS_DATA, 21 GCR_DATA, 21 GCR_DATA, 44 GMRESLP_DATA, 47 GMRESRP_DATA, 52 GPAST_DATA, 54 PCG_DATA, 93 PJFNK_DATA, 101 Speciation_Test01_Data, 121 PICARD_DATA, 97
valendone valid_valid_valid_valid_valid_valid_valid_valid_valid_valuevaluevaluevaluevaluevaluevaluevalue	ce_e Atom, 13 act shark.h, 199 addon_options ui.h, 210 exec_string ui.h, 210 input_execute ui.h, 212 input_main ui.h, 211 input_tests ui.h, 211 coptions ui.h, 207 test_string ui.h, 210 e_Type ValueTypePair, 136 _type UI_DATA, 129 e_TypePair, 134 ~ValueTypePair, 135 DisplayPair, 135 DisplayPair, 135	weight weight X x	FINCH_DATA, 35 ARNOLDI_DATA, 8 CGS_DATA, 22 GMRESRP_DATA, 53 ht Mechanism, 76 htedAvg gsta_opt.h, 163 TRAJECTORY_DATA, 128 BiCGSTAB_DATA, 18 CGS_DATA, 21 GCR_DATA, 21 GCR_DATA, 44 GMRESLP_DATA, 47 GMRESRP_DATA, 52 GPAST_DATA, 54 PCG_DATA, 93 PJFNK_DATA, 101 Speciation_Test01_Data, 121 PICARD_DATA, 97 ew SHARK_DATA, 115
valendon valid_ valid_ valid_ valid_ valid_ valid_ valid_ valid_ Value Value Value	ce_e Atom, 13 act shark.h, 199 addon_options ui.h, 210 exec_string ui.h, 210 input_execute ui.h, 212 input_main ui.h, 211 input_tests ui.h, 211 options ui.h, 207 test_string ui.h, 210 e_Type UI_DATA, 129 e_TypePair, 134 ~ValueTypePair, 135 assertType, 135 DisplayPair, 135 editPair, 135	weight weight X x x	FINCH_DATA, 35 ARNOLDI_DATA, 8 CGS_DATA, 22 GMRESRP_DATA, 53 ht Mechanism, 76 htedAvg gsta_opt.h, 163 TRAJECTORY_DATA, 128 BiCGSTAB_DATA, 18 CGS_DATA, 21 GCR_DATA, 21 GCR_DATA, 44 GMRESLP_DATA, 47 GMRESRP_DATA, 52 GPAST_DATA, 54 PCG_DATA, 93 PJFNK_DATA, 101 Speciation_Test01_Data, 121 PICARD_DATA, 97 ew SHARK_DATA, 115

			data tura 014
xIC	COODCOMU DADAM DATA 440		data_type, 214
	SCOPSOWL_PARAM_DATA, 112		header_state, 214
	SKUA_PARAM, 120	\/	YAML_CPP_TEST, 214
xk	DAOL/TDAOL/ DATA /	Yam	IWrapper, 137
	BACKTRACK_DATA, 15		~YamlWrapper, 138
xn			addDocKey, 139
	SKUA_PARAM, 120		begin, 138
xnp1			changeKey, 138
	SKUA_PARAM, 120		clear, 138
			copyAnchor2Alias, 139
Υ			DisplayContents, 139
	TRAJECTORY_DATA, 128		Doc_Map, 139
y			end, 138
	BICGSTAB DATA, 18		getAnchoredDoc, 139
	GMRESRP_DATA, 53		_
	GPAST DATA, 54		getDocFromHeadAlias, 139
	SCOPSOWL DATA, 108		getDocFromSubAlias, 139
	= '		getDocMap, 138
	SKUA_DATA, 117		getDocument, 138
y_ba			operator(), 138
	SCOPSOWL_OPT_DATA, 111		operator=, 138
	SKUA_OPT_DATA, 119		resetKeys, 138
y_ef	f		revalidateAllKeys, 138
	SKUA_PARAM, 120		size, 139
Y_in	itial		YamlWrapper, 138
	TRAJECTORY_DATA, 127		YamlWrapper, 138
YAN	IL_CPP_TEST	ulz	Tamilivitapper, 100
	yaml_wrapper.h, 214	yk	ADMOUDI DATA O
YAM	IL_WRAPPER_TESTS		ARNOLDI_DATA, 8
.,	yaml_wrapper.h, 214	Z	
vami	wrapper.h	_	
yanı			magpie.h, 183
	ALIAS, 214	Z	
	ANCHOR, 214		BiCGSTAB_DATA, 18
	BOOLEAN, 214		CGS_DATA, 22
	DOUBLE, 214		PCG_DATA, 94
	INT, 214	z_ol	d
	NONE, 214		PCG_DATA, 94
	STRING, 214	zero	vector
	UNKNOWN, 214		error.h, 152
yaml	cpp_class, 136	zero	
•	~yaml_cpp_class, 136		Matrix, 70
	cleanup, 137		Water, 70
	current_token, 137		
	DisplayContents, 137		
	executeYamlRead, 137		
	•		
	file_name, 137		
	getYamlWrapper, 137		
	input_file, 137		
	previous_token, 137		
	readInputFile, 137		
	setInputFile, 137		
	token_parser, 137		
	yaml_cpp_class, 136		
	yaml_wrapper, 137		
	yaml_cpp_class, 136		
vaml	_object		
y airii	SHARK_DATA, 115		
vami			
yaiil	_wrapper		
	yaml_cpp_class, 137		
yaml	_wrapper.h, 213		