Lab 2: Mathematical Modeling I

Introduction:

In this lab, our focus was on mathematical modeling. The central dogma was to describe/model our physical system mathematically to be able to analyze its behavior. We used free body diagrams to model our robot, then derived torque and force equations, which helped model our robot.

MASS-SPRING-DAMPER SYSTEM

1. Free Body Diagram:

2. Differential equations of the system

3. MATLAB Code:

```
>> k =1;
>> m =5;
>> b = .5;
>> f =2;
>> a = [0 1; -k/m -b/m];
>> b = [0 ; 1/m];
>> c = [1 0];
>> d = 0;
>> sys = ss(a,b,c,d)
sys =
 A =
      x1 x2
 x1 0 1
 x2 -0.2 -0.1
 B =
     u1
 x1 0
 x2 0.2
 C =
  x1 x2
 y1 1 0
 D =
  u1
 y1 0
```

Continuous-time state-space model.

MOTOR POSITION

a	Lab 2
1/4	Part 1 - Motor Position
	X, = ⊖ X ₂ = •
	$\chi_3 = i$ $\dot{\chi}_1 = \dot{\varphi} = \chi_2$
	$\frac{\dot{\chi}_2 - \dot{\theta} = .025}{3 \times 10^{-6}} = \frac{3.5 \times 10^{-6}}{3 \times 10^{-6}} \dot{\theta}$
	$\frac{X_2 = .025}{3 \times 10^{-6}} \frac{X_3 - 3.5 \times 10^{-6}}{3 \times 10^{-6}} \frac{X_2}{3 \times 10^{-6}}$
	$\frac{\dot{x}_3}{3xw^{-6}} = \frac{v}{3xv^{-6}} = \frac{5}{3xv^{-6}} =$
	$X_3 = V025$ 3×10^{-6} 3×10^{-6} 3×10^{-6} 3×10^{-6}
a	$ \begin{vmatrix} \dot{x}_1 & 0 & 1 & 0 & X_1 & 0 & \\ \dot{x}_2 & = & 0 & -3.5 \times 10^{-6} & .025 & X_2 & + 0 & \\ \dot{x}_3 & 3 \times 10^{-6} & 3 \times 10^{-6} & X_2 & + 0 & \\ \end{vmatrix} $
Comi Vie	
	$\begin{bmatrix} 0 &025 & -5 \\ \hline 3x10^{-6} & 3x10^{-6} \end{bmatrix}$
99	$\theta = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} $
1 61	LX3. January Day of the State o
	Stand publicate waters to sugar

MATLAB Code:

```
>> var1 = 3*10^-6
1.
     var1 =
       3.0000e-06
     >> var2 = -3.5*10^-6
     var2 =
      -3.5000e-06
     >> a = [0 1 0; 0 var2/var1 .025/var1; 0 -.025/var1 -5/var1];
      >> b = [0;0;1/var1];
      >> c = [1 0 0];
      >> d = 0;
      >> sys = ss(a,b,c,d)
      sys =
      A =
                          x2
                  x1
                                      x3
        x1
                   0
                             1
                                         0
                  0
                         -1.167
        x2
                          -8333 -1.667e+06
        x3
                  0
       B =
                 u1
                  0
        x1
        x2
        x3 3.333e+05
       C =
           x1 x2 x3
        y1 1 0 0
       D =
           u1
        y1 0
      Continuous-time state-space model.
```


FBD of Robot:

4.	1 Vy = dr. (wrtw.)	
	2 2 QCubanna	J+47) (b
	V=ru9 =>	
	W = V SPANNY + (WAS V) -X + VAW	4- qV) - 3 ph
	4	g July
	W= Vy	
y.	BIT = VIRBON & I COMMON WING STEELERS	Kt VR - Ku (o
	w= dr (w+w)	<u> </u>
	2 # dw = radius = r (w)	neel track)
	dw	the edit
	Wz = (wx-w) dr	and alab a
	2 dw	do R
4.2	Vy = Wr + WL · dr	glight
1.00	2	Vb.

5.3 $I_2 \dot{w}_2 = T_r - T_L$ $\frac{d_r}{d_r} \frac{d_r}{d_r} \frac{d_r}{d_r} \frac{d_r}{(I_2 \dot{w}_2)} = T_r - T_L$ $\frac{d_r}{(I_2 \dot{w}_2)} = K_T \left(v_R - K_r w_R \right) - K_T \left(v_L - K_r w_L \right)$ $\frac{d_r}{R} \frac{d_r}{(I_2 \dot{w}_2)} = K_T \left(v_R - k_r w_R \right) + K_T \left(-v_L + k_r w_L \right)$ $\frac{d_r}{R} \frac{d_r}{(I_2 \dot{w}_2)} = K_T \left(v_R - v_L - k_r \left(w_R - w_L \right) \right)$ $\frac{d_r}{R} \frac{d_r}{d_r} \frac{d_r}{d_r} \frac{d_r}{d_r}$

Conclusion:

The goals of this lab include understanding, describing, and modeling the physical dynamic system mathematically using differential equations. We converted the differential equations to state-space model form by hand and using MATLAB functionality. From this lab we were able to solidify the basics of MATLAB modeling in regards to the state-space model. We also gained an in-depth understanding of the torques, velocities, accelerations, and forces acting on our machine.