Connectionist Computing COMP 30230/41390

Gianluca Pollastri

office: E0.95, Science East.

email: gianluca.pollastri@ucd.ie

Credits

- Geoffrey Hinton, University of Toronto.
 - borrowed some of his slides for "Neural Networks" and "Computation in Neural Networks" courses.

- slides from his CS4018.
- Paolo Frasconi, University of Florence.
 - slides from tutorial on Machine Learning for structured domains.

Lecture notes on Brightspace

- Strictly confidential...
- Slim PDF version will be uploaded later, typically the same day as the lecture.
- If there is demand, I can upload onto Brightspace last year's narrated slides.. (should be very similar to this year's material)

Connectionist Computing COMP 30230

Books

- No book covers large fractions of this course.
- Parts of chapters 4, 6, (7), 13 of Tom Mitchell's "Machine Learning"
- Parts of chapter V of Mackay's "Information Theory, Inference, and Learning Algorithms", available online at:

http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html

 Chapter 20 of Russell and Norvig's "Artificial Intelligence: A Modern Approach", also available at:

http://aima.cs.berkeley.edu/newchap20.pdf

More materials later...

Marking

- 3 landmark papers to read, and submit a 10-line summary on Brightspace about: each worth 6-7%
- a connectionist model to build and play with on some sets, write a report: 30%
- Final Exam in the RDS (50%)

Assignment 1

- Read the first section of the following article by Marvin Minsky:
- http://web.media.mit.edu/~minsky/papers/SymbolicVs.Connectionist.html
- down to ".. we need more research on how to combine both types of ideas."
- Submit through BrightSpace a 250 word MAX summary by October 2nd at 23:59, any time zone of your choice (Baker Island?).
- One third of a grade down every 2 days late, that is: if you deserve an A and you're 1-2 days late you get an A-, 3-4 days late a B+, etc.
- Make sure it's gone through!

Connectionist Computing COMP 30230

From Hopfield nets to Boltzmann machine

Hopfield nets (attempt to) minimise an energy function:

$$E(y) = -\frac{1}{2} \sum_{i,j} w_{ij} y_i y_j = -\frac{1}{2} \mathbf{y}^{\mathbf{T}} \mathbf{W} \mathbf{y}$$

$$\mathbf{y} = (y_1, ..., y_m)^T$$

$$\mathbf{W} = \begin{pmatrix} w_{11} & \dots & w_{1i} & \dots & w_{1n} \\ w_{j1} & \dots & w_{ji} & \dots & w_{jn} \\ w_{m1} & \dots & w_{mi} & \dots & w_{mn} \end{pmatrix}$$

Stochastic units

 The probability that a given unit is switched on is a function of the amount of energy that its change of state would contribute to the network's overall energy, and the "temperature" T.

$$\frac{exp(z_i/T)}{exp(z_i/T) + exp(-z_i/T)} = \frac{1}{1 + exp(-2z_i/T)}$$

Connectionist Computing COMP 30230

Implementing a probability distribution

 It can be shown that the Boltzmann machine generates configurations according to the distribution:

$$P(\mathbf{y}|\mathbf{W}) = \frac{1}{Z(\mathbf{W})} exp(\frac{1}{2}\mathbf{y^T}\mathbf{W}\mathbf{y})$$

· Where:

$$Z(\mathbf{W}) = \sum_{\mathbf{y}} exp(\frac{1}{2}\mathbf{y}^{\mathbf{T}}\mathbf{W}\mathbf{y})$$

Learning in the Boltzmann machine

 Working on the probability distribution it is possible to devise the following learning rule:

$$\Delta w_{ij} = \eta \sum_{p=1}^{P} \left[y_i^{(p)} y_j^{(p)} - \sum_{\mathbf{y}} y_i y_j P(\mathbf{y} | \mathbf{W}) \right]$$

Interpretation of learning terms

- First term: the network is awake and measures the correlations in the real world.
- Second term: the network sleeps and dreams about the world using the model it has of it.
- Once dream and reality coincide learning reaches an end. It is interesting to notice that the network unlearns its dreams.

Hidden units for Hopfield nets/Boltzmann machines

- Instead of using the net just to store memories, use it to construct interpretations of the input.
 - The input is represented by the visible units.
 - The interpretation is represented by the states of the hidden units.
- Higher order correlations can be represented by hidden units.
- More powerful model, but even harder to train.

Hidden units. Used to represent an interpretation of the inputs

Visible units. Used to represent the inputs

Learning in the Boltzmann machine with hidden units

- Even in this case we have two terms in Δw_{ij}.
- The first term is the correlation between neurons i and j when the visible units are clamped to the examples.
- The second is the correlation between neurons i and j when the system is let evolve freely.

Learning in the Boltzmann machine with hidden units

- In this case both terms must be estimated by letting the network evolve many times until equilibrium, in one case with the visible units clamped, in the other freely.
- Not only: the missing units need to be estimated separately for each example.
- Can be computationally very expensive

Restricted Boltzmann Machines (RBM)

- We restrict the connectivity to make inference and learning easier.
 - Only one layer of hidden units.
 - No connections between hidden units.
- It only takes one step to reach equilibrium when the visible units are clamped..

Example 1: no hidden units

- Only two examples:
- (-1, -1, -1, -1, -1)
- (1, 1, 1, 1, 1, 1)

 Train a Boltzmann machine without hidden units on them.

Example 1: BM learning

Iterate:

- First step: increase (i,j) connection strength by an amount proportional to the correlation between bits i and j of the examples:
- Second step: let the BM machine run many times until equilibrium, measure the correlation between bits i and j of the final BM states and decrease (i,j) connection strength by an amount proportional to it.

- Correlations in:
- (-1,-1,-1,-1,-1) and (1,1,1,1,1,1)

All the w_{ij} are 2η

 NOTE: We can compute these at the beginning: they don't change.

Learning parameters:

- Learning rate η=0.1
- Temperature T=1

"let the BM machine run many times until equilibrium":

- many times = 1000
- until equilibrium = 600 neuron flips

Summary

- Iterate:
 - 1) change all weights by +2η
 - 2) let the BM run from random starts 1000 times until it settles into y, decrease all weights by η times the correlations between the bits of y.
- until no change

Reality

Reality

Reality

Reality

Reality

Reality

Reality

Reality

- What happens if we let the trained BM evolve from random starts now?
- -1 -1 -1 -1 -1 -1
- -1 1 1 1 1 1
- 1 1 1 1 1 1
- 1 1 1 1 1 1
- 1 1 1 1 1 1
- 1 1 -1 1 1 1
- -1 -1 -1 -1 -1 -1
- 1 1 1 1 1 1
- 1 1 1 1 1 1

- 1 1 1 1 1 1
- -1 -1 -1 -1 -1
- 1 1 1 1 1 1
- -1 1 -1 -1 -1 -1
- 1 1 1 1 1 1
- -1 -1 -1 -1 -1
- -1 -1 -1 -1 -1
- -1 -1 -1 -1 -1 -1
- 1 1 1 1 1 1
- 1 1 1 1 1 1
- -1 -1 -1 -1 -1

Example 2: still no HU

- Three examples now:
- (1 -1 -1 1 1 1)
- (-1 1 -1 1 1 1)
- (-1 -1 1 1 1 1)

Train a BM on them

Correlations in the examples:

- (1 -1 -1 1 1 1)
- (-1 1 -1 1 1 1)
- (-1 -1 1 1 1 1)

This is what we get:

```
 0.3 -0.1 -0.1 -0.1 -0.1
```

$$\bullet$$
 -0.1 -0.1 0.3 -0.1 -0.1 -0.1

Connectionist Computing COMP 30230

Xη

Learning parameters, same as in example 1:

- Learning rate η=0.1
- Temperature T=1

"let the BM machine run many times until equilibrium":

- many times = 1000
- until equilibrium = 600 neuron flips

Reality

Reality

Reality

Reality

Reality

Reality

Reality

Reality

Reality

Reality

- $\cdot (1 -1 -1 1 1 1)$
- · (-1 1 -1 1 1 1)

Example 2 $\frac{1}{1-1} \frac{1}{1-1} \frac{1}{1-1} \frac{1}{1-1} \frac{1}{1-1}$

- We now let the BM converge from random points:
- -1 1 1 -1 -1 -1
- -1 1 -1 1 1 1
- -1 1 1 -1 -1 -1
- 1 -1 1 -1 -1
- · -1 1 -1 1 1 1
- 1 -1 1 -1 -1 -1
- -1 -1 1 1 1 1
- -1 -1 1 1 1 1
- -1 -1 1 -1 -1 -1

- -1 1 1 -1 -1 -1
- 1 1 -1 -1 -1 -1
- 1 -1 1 -1 -1
- 1 1 -1 -1 -1
- -1 1 1 -1 -1 -1
- 1 1 -1 1 1 1
- 1 -1 1 -1 -1 -1
- · -1 -1 1 1 1 1
- 1 -1 1 -1 -1
- -1 1 1 -1 -1 -1
- 1 1 -1 -1 -1 -1

- $\cdot (1 -1 -1 1 1 1)$
- (-1 1 -1 1 1 1)

Example 2 $\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$

- We now let the BM converge from random points:
- -1 1 1 -1 -1 -1
- -1 1 -1 1 1 1
- -1 1 1 -1 -1 -1
- 1 -1 1 -1 -1
- · -1 1 -1 1 1 1
- 1 -1 1 -1 -1
- -1 -1 1 1 1 1
- · -1 -1 1 1 1 1
- -1 -1 1 -1 -1 -1

- -1 1 1 -1 -1 -1
- 1 1 -1 -1 -1 -1
- 1 -1 1 -1 -1
- 1 1 -1 -1 -1
- -1 1 1 -1 -1 -1
- 1 1 -1 1 1 1
- 1 -1 1 -1 -1 -1
- -1 -1 1 1 1 1
- 1 -1 1 -1 -1
- -1 1 1 -1 -1 -1
- 1 1 -1 -1 -1 -1

Just a few right ones

- · (1 -1 -1 1 1 1)
- · (-1 1 -1 1 1 1)
- (-1 -1 1 1 1 1)

Example 2

- We now let the BM converge from random points:
- -1 1 1 -1 -1 -1
- -1 1 -1 1 1 1
- -1 1 1 -1 -1 -1
- 1 -1 1 -1 -1 -1
- -1 1 -1 1 1 1
- 1 -1 1 -1 -1 -1
- -1 -1 1 1 1 1
- · -1 -1 1 1 1 1
- -1 -1 1 -1 -1 -1

- -1 1 1 -1 -1 -1
- 1 1 -1 -1 -1 -1
- 1 -1 1 -1 -1 -1
- 1 1 -1 -1 -1
- -1 1 1 -1 -1 -1
- 1 1 -1 1 1 1
- 1 -1 1 -1 -1
- -1 -1 1 1 1 1
- 1 -1 1 -1 -1 -1
- -1 1 1 -1 -1 -1
- 1 1 -1 -1 -1

A good few opposites

- $\cdot (1 -1 -1 1 1 1)$
- · (-1 1 -1 1 1 1)
- (-1 -1 1 1 1 1)

Example 2

- We now let the BM converge from random points:
- -1 1 1 -1 -1 -1
- -1 1 -1 1 1 1
- -1 1 1 -1 -1 -1
- 1 -1 1 -1 -1 -1
- -1 1 -1 1 1 1
- 1 -1 1 -1 -1 -1
- -1 -1 1 1 1 1
- · -1 -1 1 1 1 1
- -1 -1 1 -1 -1 -1

- -1 1 1 -1 -1 -1
- 1 1 -1 -1 -1 -1
- 1 -1 1 -1 -1 -1
- 1 1 -1 -1 -1
- -1 1 1 -1 -1 -1
- 1 1 -1 1 1 1
- 1 -1 1 -1 -1
- -1 -1 1 1 1 1
- 1 -1 1 -1 -1 -1
- -1 1 1 -1 -1 -1
- 1 1 -1 -1 -1

Rebels

Example 2

- Problem here: second order relations are just not enough to model even this simple problem.
- Need hidden units?

Hidden Units

- Hidden Units take time to be trained, and it is problematic to run a machine with them in any realistic case using the standard algorithm on a CPU.
- Later in the course I'll talk about ways to overcome the issue.

Learning

- We will need concepts of learning theory.
- What is learning exactly, after all?

Types of learning task

Supervised learning:

 learning to predict output when examples of input and corresponding output are available.

Reinforcement learning:

 no real supervision, only occasional payoff: e.g. I don't know if a chess move is correct but I know if I win.

Unsupervised learning:

I want to create an internal representation of the data,
 e.g. in form of clusters, extract relevant features for further tasks, etc.

Supervised learning

- A set of examples: <x,f(x)>
 - x is some object (instance) $\in \mathcal{X}$ (instance space)
 - $f(\cdot)$ is an *unknown* function
- Learning algorithm will guess $h(\cdot) \approx f(\cdot)$
- Inductive learning hypothesis
 - Any $h(\cdot)$ that approximates $f(\cdot)$ well on training examples will also approximate $f(\cdot)$ well on new (unseen) instances x. This isn't necessarily true, of course..

Types of supervised learning task

- f(x) is a real value/an array of real values: regression
- f(x) is a discrete value; f(x)∈{y₁ ..yκ}:
 classification
 - if K=2, binary classification

Example

- Medical diagnosis (classification)
 - x: set of properties for a patient (symptoms, lab tests, previous diseases)
 - f(x): disease
 - <x,f(x)>: Database of past medical records
 - Type of x: a fixed-length array (attribute/value representation), maybe with missing attributes
 - Type of f(x): a discrete value or a fixed-width array

Example

- Making a computer read (classification?)
 - x: letters of sentences in some language
 - f(x): corresponding sound features (in context)
 - <x,f(x)>: Database of texts/corresponding sound features extracted from humans reading.
 - Type of x: a fixed-length array
 - Type of f(x): a fixed-length array

Supervised learning

- Training examples: <x,f(x)>
- Hypothesis space: set H of functions that (hopefully) contains the target function f(·)
- Result of learning: a function h(·)∈H approximating f(·)
- Examples are used to guide the algorithm to choose a good h(·)∈H

Supervised learning

- h(·) is called a consistent hypothesis if it agrees with f(·) on all training examples
 - After observing the data, only some hypotheses in H are consistent. They form the so called version space : {h(·)∈H : h(x)=f(x) ∀ example x}
- A consistent learner always outputs a consistent hypothesis (i.e., it is 100% accurate on the training set)
- The empirical error is the fraction of training examples such that h(x)≠f(x) (0% in a consistent learner)

Example (boolean functions)

Four boolean variables as input features:

$$x=(x_1,x_2,x_3,x_4)\in\{0,1\}^4$$

Training examples

\mathbf{X}_{1}	$\mathbf{X_2}$	X_3	X_4	у
0	0	1	1	1
1	0	0	1	1 1 0
1	0	1	1	1
1	1	0	0	0
1	1	1	0	0

Hypothesis space 1

 X_4

0

 X_3

 X_2

0

0

0

0

0

 No knowledge: H is the set of all boolean functions on 4 variables. |H|=2¹⁶≈64×10³

abies.	0	1	0	1	?
:2 ¹⁶ ≈64×10 ³	0	1	1	0	?
	0	1	1	1	?
	1	0	0	0	?
	1	0	0	1	?
	1	0	1	0	?
	1	0	1	1	?
	4	4	^	^	

Hypothesis space 1

- After observing 5
 examples we are left
 with
 2¹⁶⁻⁵=2¹¹=2048
 consistent
 hypotheses
- A randomly-picked consistent h(·) is unlikely to approximate f(·) well...
- What is wrong?

X ₁	$\mathbf{X_2}$	X_3	X_4	<u> </u>
	x ₂ 0		X ₄	?
0	0	0 0	1	?
0	0	1	0	?
0	0	1	1	1
0	1	0	0	?
0	1	0 0	1 0 1 0 1 0	?
0	1	1	0	?
0	1	1	1	?
1	0	0	0	?
1	0	0 0	1	1
1	0	1	0	?
1	0	1	1	1
1	1	0 0	0	0
0 0 0 0 0 0 0 1 1 1 1 1 1	1	0	0 1 0 1	? ? ? ? ? ? 1 ? 1 0 ? 0 ?
1	1	1	0	0
1	1	1	1	?

Hypothesis space 2

- A literal is a variable x_i or its negation ¬x_i
- A term is the conjunction of literals
- H= $\{\text{terms over } x_1, x_2, x_3, x_4\}$
- |H|=3⁴=81 (each variable is affirmed, is negated, isn't present)
- Learning algorithm:
 - Initial $h(\cdot)$ = conjunction of all possible literals
 - Remove literals associated with inconsistent positive examples

Learning conjunctions

- 1. $h = -x_1x_1 x_2x_2 x_3x_3 x_4x_4$
- 2. Observe 1st training example, remove literals $x_1, x_2, \neg x_3$, and $\neg x_4$ $h = \neg x_1 \neg x_2 x_3 x_4$
- 3. Observe 2^{nd} training example, remove literals $\neg x_1$ and x_3 $h = \neg x_2 x_4$
- 4. Observe 3^{rd} training example: nothing to do (h = $\neg x_2 x_4$)
- 5. No more positive training examples Output $h = \neg x_2 x_4$