Applied Real Analysis

AMATH 331

Henry Shum

Preface

Disclaimer Much of the information on this set of notes is transcribed directly/indirectly from the lectures of AMATH 331 during Winter 2020 as well as other related resources. I do not make any warranties about the completeness, reliability and accuracy of this set of notes. Use at your own risk.

For any questions, send me an email via https://notes.sibeliusp.com/contact/.

You can find my notes for other courses on https://notes.sibeliusp.com/.

Sibelius Peng

Contents

Preface				
Ι	\mathbf{T}	ne Real Numbers	4	
1	Real Numbers			
	1.1 1.2	Decimal expansions and the real number line	5 7	
2	Bounds and Limits			
	2.1	Bounded sets of real numbers	8	
	2.2	Examples	9	
	2.3	Least Upper Bound Principle	9	
3	Limits of Sequences			
	3.1	Sequences	10	
	3.2	Examples	10	
	3.3 3.4	Limits of Sequences	11 11	
	$\frac{3.4}{3.5}$	Examples	$\frac{11}{12}$	
4		notone Sequence and Applications	14	
	$4.1 \\ 4.2$	Monotone Sequences	14 15	
	4.2	Warning about computing limits that don't exist	16 16	
	4.0	warming about computing mints that don't exist	10	
5		osequences	17	
	5.1	Definitions of subsequences	17	
	5.2 5.3	Some properties of Subsequences	18 18	
	5.5	Doizano-weierstrass	10	
6	Cauchy Sequences			
	6.1	Definition	21	
7	Cauchy and Completeness			
	7.1	Properties of Cauchy Sequences	22	
	7.2	Example of not quite Cauchy		
	7.3	Cauchy, Convergent and Complete	23	

7.4	Equivalent Statements of Completeness	24
7.5	Application: Proving convergence by Cauchy property	24

Block I The Real Numbers

Real Numbers

Refs 1 for review. 2.1-2.2, 2.9

1.1 Decimal expansions and the real number line

finite decimal expansion

A finite decimal expansion has the form

$$x = a_0 \circ a_1 a_2 a_3 \dots a_N$$

where a_0 is an integer (positive, negative or zero) for $1 \le n \le N$ $a_n \in \{0, 1, \ldots, 9\}$

Example:

$$1.45$$
 -38.298743

You can think of this as

$$x = a_0 + a_1 \left(\frac{1}{10}\right) + \ldots + a_N \left(\frac{1}{10^N}\right)$$

Warning This looks like the usual decimal representation but it is not the same for negative numbers.

Any finite decimal expansion can be replaced on the real number line.

Example:

We can similarly define infinite decimal expansions

infinite decimal expansions

$$x = a_0 \circ a_1 a_2 \dots$$

Example:

1,450000000...

 $\pi = 3.1415926535...$

Assuming the real number line has no gaps, every infinite decimal expansion x corresponds to a point on the line.

Given any positive integer k, let $y = a_{0} \circ a_{1} a_{2} \dots a_{k}$ be the finite decimal expansion of x to the k-th decimal space. Then, x lies in the interval from y to $(y + 10^{-k})$. So, y approximates x to an accuracy of $1/10^{k}$. As we increase k, we improve the accuracy; in fact, the error can be made arbitrarily small.

The converse direction: given a point on the real number line, can we find its decimal expansion?

Yes!

It is possible for two decimal expansions to represent the same point. This happens precisely when one ends in an infinite string of 0's.

Example:

1.000... and
$$0.999...$$

25.300... and $25.2999...$

We define the real numbers \mathbb{R} as the set of all infinite decimal expansions.

1.2 Ordering of real numbers

Suppose

$$x = x_{0\circ}x_1x_2x_3\ldots, \qquad y = y_{0\circ}y_1y_2y_3\ldots$$

We say that x and y are equal and write x = y if infinite decimal expansions are identical or equivalent, as discussed previously.

If x and y are not equal, then we say that x are not equal, then x is less than y and write x < y if there exists integer $k \ge 0$ such that $x_k < y_k$ and $x_i = y_i$ for i < k. x is greater than y (x > y) if ...

For any two real numbers x, y, exactly one of the following holds:

$$x = y$$
 $x < y$ $x > y$

Bounds and Limits

2.1 Bounded sets of real numbers

upper bound

A set $S \subseteq \mathbb{R}$ is bounded above if there exists $M \in \mathbb{R}$ such that $s \leq M$ for all $s \in S$. M is an upper bound of S.

lower bound

A set $S \subseteq \mathbb{R}$ is bounded below if there exists $m \in \mathbb{R}$ such that $s \geq m$ for all $s \in S$. m is an lower bound of S.

bounded

A set is *bounded* if it is both bounded above and bounded below.

supremum

The supremum or least upper bound of a nonempty set S that is bounded above is the upper bound L satisfies $L \leq M$ for all upper bounds M of S is written as $\sup S$.

infimum

The infimum or greatest lower bound of a nonempty set S is the lower bound ℓ satisfying $\ell \geq m$ for all lower bounds m of S. The infimum is denoted inf S.

max

If there exists $M \in S$ such that $s \leq M$ for all $s \in S$, then M is called the maximum of S, $\max S$.

min

Analogous defin for $\min S$.

2.2 Examples

- 0. $S_0 = \emptyset$. Bounded above and below. No supremum or infimum.
- 1. $S_1 = \{n \in \mathbb{Z}^+\} = \{1, 2, 3, \ldots\}$ not bounded above, bounded below.

1 is infimum and minimum

- 2. $S_2 = \{-3, -2, 0.5, 1.423\}$. Bounded above and below. Bounded. Has max, min.
- 3. $S_3 = \left\{1 \frac{1}{n} : n \in \mathbb{Z}^+\right\} = \left\{0, \frac{1}{2}, \frac{2}{3}, \ldots\right\}$

Bounded above by 1. Bounded below by 0.

Supremum is 1, but there is no max.

2.3 Least Upper Bound Principle

Theorem 2.1: Least Upper Bound Principle

Every nonempty set S of \mathbb{R} that is bounded above has a supremum. Every nonempty set that is bounded below has an infimum.

Sketch of proof for "infimum". There are only finitely many integers from m_0 to $s_0 + 2$. Choose the greatest integer lower bound \rightarrow call it a_0 .

 $a_0 + 1$ is not a lower bound. Divide $[a_0, a_0 + 1]$ into 10, find a_1 such that $a_{0\circ}a_1$ is lower bound of S, but $a_{0\circ}a_1 + 1/10$ is not. Repeat infinitely many times to construct $L = a_{0\circ}a_1a_2a_3...$

Now, show that L is infimum.¹

¹See details in textbook.

Limits of Sequences

3.1 Sequences

An *infinite sequence of real* numbers is an infinite, enumerated list of real numbers, denoted by

$$(a_n)_{n=1}^{\infty} = (a_1, a_2, \ldots)$$

Each $a_n \in \mathbb{R}$ is an *element* of the sequence.

We will just refer to them as sequences, and often write (a_n) . Formally, a sequence is a function that maps positive integers to \mathbb{R} .

We say that a sequence is [bounded above/bounded below/bounded] if the set $A = \{a_n\}$ is respectively [bounded above/bounded below/bounded].

3.2 Examples

- 1. $(a_n)_{n=1}^{\infty}$, where $a_n = (-1)^n$ for $n \ge 1$.
- 2. $a_n = \frac{1}{n}$, for $n \ge 1$.
- 3. $(a_n) = (1, 1, 2, \frac{1}{2}, 3, \frac{1}{3}, \ldots)$

3.3 Limits of Sequences

limit

Let $(a_n)_{n=1}^{\infty}$ be a sequence. We call $L \in \mathbb{R}$ the *limit* of the sequence if for all $\epsilon > 0$, there exists an integer N such that

$$|a_n - L| < \epsilon$$

for all $n \geq N$.

If such L exists, then we say that (a_n) is convergent, and converges to L and we write $\lim_{n\to\infty} a_n = L$, or $a_n \to L$.

If a sequence does not have such a limit, then we say it diverges, or is divergent.

A sequence (a_n) diverges to ∞ if for all M > 0, there exists N such that $a_n > M$ for all $n \ge N$. We write $\lim_{n \to \infty} a_n = \infty$.

A sequence (a_n) diverges to $-\infty$ if for all M < 0, there exists N such that $a_n < M$ for all $n \ge N$. We write $\lim_{n \to \infty} a_n = -\infty$.

Note

 $\lim_{n\to\infty} a_n = \pm \infty$ does not mean limit exists.

3.4 Examples

1. $a_n = 1/n$, $\lim_{n \to \infty} a_n = 0$

For any $\epsilon > 0$, we need to show that there exists N such that $|a_n - 0| < \epsilon$ for all $n \ge N$.

Choose N to be any integer greater than $1/\epsilon$. $(N > \frac{1}{\epsilon})$

For any $n \geq N$, $a_n = 1/n \leq \frac{1}{N} < \epsilon$. We also have $a_n \geq 0$

$$\implies |a_n| < \epsilon$$

for all $n \geq N$ as required.

3.5 Some basic properties of limits

Theorem 3.1: Squeeze Theorem

Let $(a_n), (b_n), (c_n)$ be sequences.

If $a_n \leq b_n \leq c_n$ for all $n \geq 1$ and

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$$

then

$$\lim_{n \to \infty} b_n = 1$$

Proof:

We want to show that for all $\epsilon > 0$, there exists N such that $|b_n - L| < \epsilon$ for all $n \ge N$.

Let $\epsilon > 0$. Since $a_n \to L$, we can find N_1 such that $|a_n - L| < \epsilon$ for all $n \ge N_1$.

Similarly, there exists N_2 s.t. $|c_n - L| < \epsilon$ for all $n \ge N_2$.

Define $N := \max\{N_1, N_2\}$. Then, for $n \ge N$, $|a_n - L| < \epsilon$ and $|c_n - L| < \epsilon$.

Equivalently,

$$L - \epsilon < a_n < L + \epsilon$$
 $L - \epsilon < c_n < L + \epsilon$

Since $a_n \le b_n \le c_n$. $L - \epsilon < b_n < L + \epsilon$, or

$$|b_n - L| < \epsilon$$

as required.

Proposition 3.2

If a sequence converges to a limit L, then this limit is unique.

Proof:

See PDF.

Proposition 3.3

If a sequence (a_n) converges, then the set $A := \{a_n : n \geq 1\}$ is bounded.

Proof:

Exercises.

Theorem 3.4

Let (a_n) and (b_n) be two convergent sequences. If $\lim_{n\to\infty}a_n=L$ and $\lim_{n\to\infty}b_n=M$, then

- 1. $\lim_{n\to\infty} (a_n + b_n) = L + M$
- 2. for any $\alpha \in \mathbb{R}$, $\lim_{n\to\infty} (\alpha a_n) = \alpha L$
- 3. $\lim_{n\to\infty} (a_n b_n) = LM$, and
- 4. $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{L}{M}$ if $M \neq 0$ and $b_n \neq 0$ for all n.

Monotone Sequence and Applications

4.1 Monotone Sequences

Let $(a_n)_{n=1}^{\infty}$ be a sequence of real numbers. it is

- 1. monotone increasing if $a_{n+1} \ge a_n$ for all $n \ge 1$.
- 2. strictly monotone increasing if $a_{n+1} > a_n$ for all $n \ge 1$.
- 3. monotone decreasing if $a_{n+1} \leq a_n$
- 4. strictly monotone decreasing if $a_{n+1} < a_n$

monotone

A sequence is monotone is *monotone* if it is either (monotone) increasing or (monotone) decreasing.

Theorem 4.1: Monotone Convergence Theorem

Monotone Convergence Theorem:

- (i) Every monotone increasing sequence that is bounded above converges
- (ii) Every monotone decreasing sequence that is bounded below converges

Proof:

We will first show that (i) \implies (ii).

Let (a_n) be a monotone decreasing sequence that is bounded below by m.

The sequence $(-a_n)_{n=1}^{\infty}$ is monotone increasing and is bounded above by -m. By part (i), $(-a_n)$ must converge. Call the limit $L = \lim_{n \to \infty} (-a_n)$.

By Theorem 3.4 Part 2,

$$\lim_{n \to \infty} = \lim_{n \to \infty} [(-1)(-a_n)] = (-1) \lim_{n \to \infty} (-a_n) = -L$$

To prove Part(i) of this theorem, suppose (a_n) is monotone increasing and bounded

The set $A = \{a_n | n \in \mathbb{Z}^+\}$ is bounded above, and nonempty.

By LUBP(Theorem 2.1), A has a supremum, which we call $L = \sup A$. We show that L is the limit of (a_n) .

Given $\epsilon > 0$, we know that $L - \epsilon$ cannot be an upper bound of A.

So there exists N such that $a_n > L - \epsilon$.

Since (a_n) is increasing, $a_n > L - \epsilon$ for all $n \ge N$. Since L is an upper bound of $A, a_n \leq L \text{ for all } n \geq N.$

$$\implies L - \epsilon < a_n \le L < L + \epsilon$$

That is $|a_n - L| \le \epsilon$ for all $n \ge N$.

Applications: Calculate Square Roots 4.2

The square root of a real number a > 0 can be obtained as the limit of the sequence defined recursively by

$$x_n = \frac{1}{2} \left(x_{n-1} + \frac{a}{x_{n-1}} \right), \quad \text{for } n \ge 1$$

where the starting point x_0 is any positive number.

Moreover, for any $n \geq 1$, the error in approximating \sqrt{a} by x_n satisfies the bound

$$0 \le x_n - \sqrt{a} < x_n - \frac{a}{x_n}$$

Proof:

- Prove that (x_n) is bounded below.
 Prove that (x_n) is monotone decreasing.
- 3. Prove that (x_n) is monotone decreasing.
- 4. Use MCT to prove that (x_n) converges.

- 5. Use properties of limits to determine that \sqrt{a} is the limit.
- 6. Look for upper and lower bounds for error.

See PDF for full proof.

4.3 Warning about computing limits that don't exist

$$a_1 = 2$$
, $a_{n+1} = \frac{1}{2}(a_n^2 + 1)$ for $n \ge 1$.

 $a_1=2,\ a_{n+1}=\frac{1}{2}(a_n^2+1)$ for $n\geq 1.$ If we assume (a_n) has a limit L, then we can get nonsense.

$$a_{n+1} = \frac{1}{2}(a_n^2 + 1)$$

$$\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \frac{1}{2}(a_n^2 + 1)$$

$$\implies L = \frac{1}{2} \left(\lim_{n \to \infty} a_n\right)^2 + \frac{1}{2} = \frac{1}{2}L^2 + \frac{1}{2}$$

$$L^2 - 2L + 1 = 0 \implies L = 1 \text{ is a solution}$$

However, it can be shown that (a_n) is monotone increasing. Since $a_1 = 2$, (a_n) cannot possibly converge to 1.

(In fact, it does not converge.)

Subsequences

5.1 Definitions of subsequences

Let $(a_n)_{n=1}^{\infty}$ be a sequence. The sequence $(b_k)_{k=1}^{\infty}$ is a subsequence of (a_n) of there exist integers n_k with $1 \le n_1 < n_2 < n_3 < \dots$ such that $b_k = a_{n_k}$ for each $k \ge 1$.

$$(a_1, a_2, a_3, a_4, a_5, \dots)$$

$$(b_1, b_2, b_3, b_4, b_5, \dots)$$

$$(a_1, a_2, a_3, a_4, a_5, \dots)$$

$$(a_1, a_2, a_3, a_4, a_5, \dots)$$
 $(b_1, b_2, b_3, b_4, b_5, \dots)$
cannot do the following:
 $(a_1, a_2, a_3, a_4, a_5, \dots)$
 $(b_1, b_2, b_3, b_4, b_5, \dots)$

not allowed to change order

Example:

$$(a_n)_{n=1}^{\infty} = \left(\frac{(-1)^n}{n}\right)_{n=1}^{\infty} = \left(-1, \frac{1}{2}, -\frac{1}{3}, \dots\right)$$

The sequence (b_k) with $b_k = a_k$ for all $k \ge 1$ is a subsequence of (a_n) . The sequence $\left(-1, -\frac{1}{3}, -\frac{1}{5}, \ldots\right)$ is a subsequence.

The sequence $(\frac{1}{2}, \frac{1}{4}, \ldots)$ is another subsequence.

5.2 Some properties of Subsequences

Lemma 5.1

Let n_k be integers satisfying $n_1 \ge 1$ and $n_k < n_{k+1}$ for all $k \ge 1$. Then $n_k \ge k$ for all $k \ge 1$.

Theorem 5.2

Suppose the sequence $(a_n)_{n=1}^{\infty}$ converges to the limit L. Then every subsequence of (a_n) also converges to L.

Proof.

By definition of limit, for every $\epsilon > 0$, there exists N such that $|a_n - L| < \epsilon$ for all $n \geq N$.

Let $(b_k)_{k=1}^{\infty}$ be any subsequence of (a_n) , where $b_k = a_{n_k}$ for each $k \geq 1$.

From Lemma 5.1, we know that $n_k \geq k$ for each k. Given $\epsilon > 0$, chose N as in definition of $\lim_{n \to \infty} a_n = L$. For every $k \geq N$,

$$n_k \ge k \ge N \implies |b_k - L| = |a_{n_k} - L| < \epsilon$$

Example:

- 1. From 5.1, the theorem holds just as it is.
- 2. Converse is not true. If a subsequence converges, we cannot conclude that the original sequence converges.

5.3 Bolzano-Weierstrass

If for every integer $n \geq 1$, we have a nonempty, closed interval $I_n = [a_n, b_n]$ such that $I_{n+1} \subseteq I_n$, then we say that (I_n) is a nested sequence of closed, bounded intervals.

Lemma 5.3: Nested Intervals Lemma

If (I_n) is a nested sequence of closed bounded intervals, then

$$\bigcap_{n=1}^{\infty} I_n \neq \emptyset.$$

Proof:

Exercise.

Theorem 5.4: Bolzano-Weierstrass Theorem

Every bounded sequence of real numbers has a convergent subsequence.

Proof:

Outline.

- 1. Given a bounded sequence (a_n) , construct a nested sequence of closed, bounded intervals I_n with lengths decreasing to zero, and such that each I_n contains infinitely many elements of the sequence (a_n) .
- 2. Construct a subsequence (b_k) such that $b_k \in I_k$ for each $k \geq 1$.
- 3. Show that (b_k) converges.

Proof:

Step 1: Suppose $(a_n)_{n=1}^{\infty}$ is a bounded sequence of real numbers. Let m_1 be a lower bound and M_1 be an upper-bound for $A = \{a_n : n \geq 1\}$.

Define an interval $I_1 = [m_1, M_1]$. Define the point $c_1 = \frac{1}{2}(m_1 + M_1)$. Choose one smaller interval either $[m_1, c_1]$ or $[c_1, M_1]$ that contains an infinite member of elements of $(a_n) \to \text{call}$ this interval $I_2 = [m_2, M_2]$.

We repeat this process for all $k \geq 2$. This gives a sequence of intervals $(I_k)_{k=1}^{\infty}$ such that $I_{n+1} \subseteq I_n$ for all $n \geq 1$, and lengths of I_n converges to zero. Also each I_k contains an infinite number of elements of (a_n) .

Step 2: Let $n_1 = 2$ so $b_1 = a_1$. Suppose we have our subsequence (b_j) up to element k. Then we have $n_i \geq 1$ for all i = 1, 2, ..., k and $n_i < n_{i+1}$ for all i = 1, 2, ..., k - 1.

Since there are an infinite number of elements of (a_n) contained in I_{k+1} , we can choose n_{k+1} such that $n_{k+1} > n_k$ and $a_{n_{k+1}} \in I_{k+1}$, i.e. $b_{k+1} \in I_{k+1}$. In this way, we inductively define (b_j) as a subsequence of (a_n) .

Step 3: By Nested Intervals Lemma (Lemma 5.3), $\bigcap_{k=1}^{\infty} I_k \neq \emptyset$, so there must exist a point $L \in \bigcap_{k=1}^{\infty} I_k$. The length of interval I_j is $\frac{(M_1 - m_1)}{2^{j-1}}$. For any $k \geq 1$, we have $L \in I_k$ and $b_k \in I_k$. Hence $|b_k - L| \leq \frac{(M_1 - m_1)}{2^{k-1}}$.

Consider sequence $(|b_k - L|)_{k=1}^{\infty}$. We can use Squeeze Theorem to show that $\lim_{n\to\infty} |b_k - L| = 0$ since

$$0 \le |b_k - L| \le \frac{(M_1 - m_1)}{2^{k-1}}.$$

Hence $\lim_{k\to\infty} b_k = L$.

Cauchy Sequences

6.1 Definition

A sequence (a_n) is Cauchy if for any $\epsilon > 0$, there exists an integer N such that

$$|a_n - a_m| < \epsilon$$

for all $n, m \geq N$.

Example:

$$(a_n)_{n=1}^{\infty} = (3, 3.1, 3.14, 3.141, \ldots)$$

More generally, if x is any real number with infinite decimal expression $x_0 \circ x_1 x_2 x_3 \dots$, then the sequence of finite truncations, i.e., a_k is the truncation of x to k decimal places, is Cauchy.

$$a_k = x_0 \circ x_1 \dots x_k 000 \dots$$

Given $\epsilon > 0$, we can find N such that $10^{-N} < \epsilon$.

For any $n \geq 1$, we have

$$a_n \le x \le a_n + 10^{-n}$$

In particular,

$$a_N \le x \le a_N + 10^{-N}$$

Note that (a_n) is monotone increasing, so $a_N \leq a_n, a_m \leq x \leq a_N + 10^{-N}$ for any $n, m \geq N$.

So

$$|a_n - a_m| \le \text{length of interval} = 10^{-N} < \epsilon$$

 $\implies (a_n)_{n=1}^{\infty}$ is Cauchy.

Cauchy and Completeness

Properties of Cauchy Sequences 7.1

Proposition 7.1

If a Cauchy sequence (a_n) has a convergent subsequence, then (a_n) converges. The limit is the same as the limit of the subsequence.

Proof:

Let $\epsilon > 0$. By definition of limit of $(b_k) = (a_{n_k})$ being L, i.e., $\lim_{k \to \infty} b_{n_k} = L$, there exists K such that

$$|b_k - L| = |a_{n_k} - L| < \frac{\epsilon}{2}$$

for all $k \geq K$.

By Cauchy property of (a_n) , there exists N such that

$$|a_n - a_m| < \frac{\epsilon}{2}$$

By Lemma 5.1, $n_k \ge k$ for all $k \ge 1$, so

$$|a_n - a_{n_k}| < \frac{\epsilon}{2}$$

for all
$$n, k \ge N$$
. Choose any $k \ge \max\{K, N\}$. Then, for all $n \ge N$,
$$|a_n - L| = |a_n - a_{n_k} + a_{n_k} - L| \le |a_n - a_{n_k}| + |a_{n_k} - L| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Proposition 7.2

If a sequence (a_n) is Cauchy, then the set $\{a_n : n \ge 1\}$ is bounded.

Proof:

Exercise, or see PDF.

7.2 Example of not quite Cauchy

Consider the sequence $(a_n)_{n=1}^{\infty}$, with $a_n = \log n$.

The difference between successive terms is

$$|a_{n+1} - a_n| = |\log(n+1) - \log(n)| = \left|\log\left(\frac{n+1}{n}\right)\right|$$

 $\lim_{n\to\infty} \frac{n+1}{n} = 1$, so $\lim |a_{n+1} - a_n| = 0$.

 (a_n) is not bounded, since $\log(n) \to \infty$, hence by Proposition 7.2, (a_n) is not Cauchy.

7.3 Cauchy, Convergent and Complete

Proposition 7.3

Every convergent sequence is Cauchy.

Proof:

(Sketch)

N, K and use $\epsilon/2$.

complete

We say that a subset X of \mathbb{R} is *complete* if every Cauchy sequence in X has a limit in X.

Theorem 7.4: Completeness Theorem for Real Numbers

 \mathbb{R} is complete.

In other words, every Cauchy sequence of real numbers converges.

Proof.

Suppose (a_n) is any Cauchy sequence of real numbers. By Proposition 7.2, $\{a_n : n \ge 1\}$ is bounded. By Theorem 5.4, there must exist a convergent subsequence.

By Proposition 7.1, (a_n) must also converge.

Remark:

The sequence of truncated decimal expansions of x (from Lecture 6) was shown to be Cauchy. Now we know, it must converge. It can be shown that the limit is x.

Note

 \mathbb{Q} is not a complete subset of \mathbb{R} . Using sequence of finite decimal expansions, we see that sequences of rational numbers can converge to an irrational limit.

7.4 Equivalent Statements of Completeness

We showed that construction of \mathbb{R} as set of infinite decimal expansions leads to Least Upper Bound Principle.

- \implies Monotone Convergence Theorem
- ⇒ Nested Intervals Lemma
- ⇒ Bolzano-Weierstrass Theorem
- \implies Completeness Theorem

It is possible to show that Completeness \implies LUBP. So all of these properties describe the same "behaviour" of \mathbb{R} .

7.5 Application: Proving convergence by Cauchy property

Sometimes it's easier to show that a sequence is Cauchy than convergent.

Example:

Consider a sequence $a_n = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \ldots + \frac{(-1)^{n+1}}{n}$. We can show that $(a_n)_{n=1}^{\infty}$ is Cauchy. For m > n,

$$|a_m - a_n| = \left| \frac{(-1)^{n+2}}{n+1} + \frac{-1^{n+3}}{n+2} + \dots + \frac{(-1)^m}{m-1} + \frac{(-1)^{m+1}}{m} \right|$$

= ...

Suppose m-n is even

$$|a_m - a_n| = \left| \frac{1}{n+1} - \frac{1}{n+2} + \frac{1}{n+3} - \dots + \frac{1}{m-1} - \frac{1}{m} \right|^{a}$$

^aSth wrong here... corrected in the lecture notes.

Index

В	L
bounded 8	limit
C	M
complete	max 9 min 9 monotone 14
finite decimal expansion 5	S
	supremum
infimum	U
infinite decimal expansions 6	upper bound