One-relator groups, monoids and inverse monoids

Robert D. Gray¹

GGSE meeting Warwick March 2023

¹Research supported by EPSRC Fellowship EP/V032003/1 'Algorithmic, topological and geometric aspects of infinite groups, monoids and inverse semigroups'.

One-relator monoids

Mon
$$\langle A \mid R \rangle$$
 = Mon $\langle \underbrace{a_1, \ldots, a_n}_{\text{letters / generators}} \mid \underbrace{u_1 = v_1, \ldots, u_m = v_m}_{\text{words / defining relations}} \rangle$

▶ Defines the monoid $M = A^* / \sim$ where \sim is the equivalence relation with $\alpha \sim \beta$ if α can be transformed into β the other by applying relations R.

Longstanding open problem

Is the word problem decidable for one-relator monoids Mon $\langle A \mid u = v \rangle$?

Theorem (Adian & Oganesian, 1978+1987)

The word problem for a given Mon $\langle A \mid u = v \rangle$ can be reduced to the word problem for a one-relator monoid of the form

$$Mon\langle a, b | bUa = aVa \rangle$$
 or $Mon\langle a, b | bUa = a \rangle$.

Both of these cases remain open!

Reduction to inverse monoids

▶ Magnus 1932: One-relator groups have decidable word problem.

The monoids $Mon\langle a, b \mid bUa = aVa \rangle$ and $Mon\langle a, b \mid bUa = a \rangle$ are **not** group embeddable. However Ivanov, Margolis, Meakin (2001) proved that

$$\operatorname{Mon}\langle a, b \mid bUa = aVa \rangle \hookrightarrow \operatorname{Inv}\langle a, b \mid (aVa)^{-1}bUa = 1 \rangle \& \operatorname{Mon}\langle a, b \mid bUa = a \rangle \hookrightarrow \operatorname{Inv}\langle a, b \mid a^{-1}bUa = 1 \rangle.$$

Reduction to inverse monoids

▶ Magnus 1932: One-relator groups have decidable word problem.

The monoids $Mon(a, b \mid bUa = aVa)$ and $Mon(a, b \mid bUa = a)$ are not group embeddable. However Ivanov, Margolis, Meakin (2001) proved that

$$\operatorname{Mon}\langle a, b \mid bUa = aVa \rangle \hookrightarrow \operatorname{Inv}\langle a, b \mid (aVa)^{-1}bUa = 1 \rangle \quad \& \\ \operatorname{Mon}\langle a, b \mid bUa = a \rangle \hookrightarrow \operatorname{Inv}\langle a, b \mid a^{-1}bUa = 1 \rangle.$$

Theorem (Ivanov, Margolis, Meakin (2001))

If the word problem is decidable for all inverse monoids of the form $\operatorname{Inv}\langle A \mid w=1 \rangle$ then the word problem is also decidable for every one-relator monoid $\operatorname{Mon}\langle A \mid u=v \rangle$.

Word problem for Inv $\langle A \mid w = 1 \rangle$ decidable in many cases:

- ▶ Idempotent word [Birget, Margolis, Meakin, 1993, 1994]
- ▶ w-strictly positive [Ivanov, Margolis, Meakin, 2001]
- ► Adjan or Baumslag-Solitar type [Margolis, Meakin, Šunik, 2005]
- Sparse word [Hermiller, Lindblad, Meakin, 2010]

Word problem for one-relator inverse monoids

Theorem (RDG (2020))

There is a one-relator inverse monoid $\text{Inv}\langle A \mid w = 1 \rangle$ with undecidable word problem.

Word problem for one-relator inverse monoids

Theorem (RDG (2020))

There is a one-relator inverse monoid $\text{Inv}\langle A \mid w = 1 \rangle$ with undecidable word problem.

Ingredients for the proof:

- Submonoid membership problem for one relator groups.
- ▶ Right-angled Artin groups (RAAGs).
- Right units of inverse monoids and Stephen's procedure for constructing Schützenberger graphs.
- ▶ Properties of *E*-unitary inverse monoids.

Inverse monoids

An inverse monoid is a monoid M such that for every $x \in M$ there is a unique $x^{-1} \in M$ such that $xx^{-1}x = x$ and $x^{-1}xx^{-1} = x^{-1}$.

Example: I_X = monoid of all partial bijections $X \rightarrow X$

Examples: In I_3

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & - \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & - & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ - & 1 & - \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & - \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ - & 1 & 2 \end{pmatrix}$$

Note:

$$\gamma \gamma^{-1} = id_{\text{dom}\gamma}$$

Inverse monoid presentations

An inverse monoid is a monoid M such that for every $x \in M$ there is a unique $x^{-1} \in M$ such that $xx^{-1}x = x$ and $x^{-1}xx^{-1} = x^{-1}$.

For all $x, y \in M$ we have

$$x = xx^{-1}x$$
, $(x^{-1})^{-1} = x$, $(xy)^{-1} = y^{-1}x^{-1}$, $xx^{-1}yy^{-1} = yy^{-1}xx^{-1}$ (†)

Inv $\langle A \mid u_i = v_i \ (i \in I) \rangle = \operatorname{Mon} \langle A \cup A^{-1} \mid u_i = v_i \ (i \in I) \cup (\dagger) \rangle$ where $u_i, v_i \in (A \cup A^{-1})^*$ and x, y range over all words from $(A \cup A^{-1})^*$. Free inverse monoid FIM $(A) = \operatorname{Inv} \langle A \mid \rangle$

Munn (1974)

Elements of FIM(A) can be represented using Munn trees. e.g. in FIM(a, b) we have u = w where

$$u = aa^{-1}bb^{-1}ba^{-1}abb^{-1}$$

 $w = bbb^{-1}a^{-1}ab^{-1}aa^{-1}b$

Proof strategy

$$M = \operatorname{Inv} \langle A | r = 1 \rangle \longrightarrow G = \operatorname{Gp} \langle A | r = 1 \rangle$$

$$U_{R} = \{ m \in M : mm^{-1} = 1 \}$$

$$N = \pi(U_{R})$$

If M has decidable word problem \Rightarrow membership problem for $U_R \leqslant M$ is decidable since for we (AUA")* Well ww = 1

(sometimes)

membership problem for N&G is decidable

Right-angled Artin groups

Definition

The right-angled Artin group $A(\Gamma)$ associated with the graph Γ is

$$Gp\langle V\Gamma | uv = vu \text{ if and only if } \{u, v\} \in E\Gamma \rangle.$$

Example

$$A(\Gamma) = G_P \langle a, b, c, d, e \mid ac = ca, de = ed,$$

 $ab = ba, bc = cb,$
 $bd = bb \rangle$

Submonoid membership problem

G - a finitely generated group with a finite group generating set A.

 $\pi: (A \cup A^{-1})^* \to G$ – the canonical monoid homomorphism.

T – a finitely generated submonoid of G.

The membership problem for *T* within *G* is decidable if there is an algorithm which solves the following decision problem:

INPUT: A word $w \in (A \cup A^{-1})^*$. QUESTION: $\pi(w) \in T$?

Theorem (Lohrey & Steinberg (2008))

 $A(\Gamma)$ has decidable submonoid membership problem $\Leftrightarrow \Gamma$ does not embed a square C_4 or a path P_4 with four vertices as an induced subgraph.

Let P_4 be the graph

$$A(P_4) = \operatorname{Gp}(a, b, c, d \mid ab = ba, bc = cb, cd = dc).$$

 Δ_1 - subgraph induced by $\{a,b,c\}$, Δ_2 subgraph induced by $\{b,c,d\}$, $\psi:\Delta_1\to\Delta_2$ - the isomorphism $a\mapsto b,b\mapsto c$, and $c\mapsto d$.

Let P_4 be the graph

$$A(P_4) = \operatorname{Gp}\langle a, b, c, d \mid ab = ba, bc = cb, cd = dc \rangle.$$

 Δ_1 - subgraph induced by $\{a,b,c\}$, Δ_2 subgraph induced by $\{b,c,d\}$,

 $\psi: \Delta_1 \to \Delta_2$ - the isomorphism $a \mapsto b, b \mapsto c$, and $c \mapsto d$.

Then the HNN-extension $A(P_4, \psi)$ of $A(P_4)$ with respect to ψ is

$$A(P_4,\psi)$$

=
$$Gp\langle a, b, c, d, t \mid ab = ba, bc = cb, cd = dc, tat^{-1} = b, tbt^{-1} = c, tct^{-1} = d \rangle$$

Let P_4 be the graph

$$a \quad b \quad c \quad d$$

$$A(P_4) = \operatorname{Gp}\langle a, b, c, d \mid ab = ba, bc = cb, cd = dc \rangle.$$

 Δ_1 - subgraph induced by $\{a,b,c\}$, Δ_2 subgraph induced by $\{b,c,d\}$, $\psi:\Delta_1\to\Delta_2$ - the isomorphism $a\mapsto b,b\mapsto c$, and $c\mapsto d$. Then the HNN-extension $A(P_4,\psi)$ of $A(P_4)$ with respect to ψ is

$$A(P_4,\psi)$$

=
$$Gp\langle a, b, c, d, t \mid ab = ba, bc = cb, cd = dc, tat^{-1} = b, tbt^{-1} = c, tct^{-1} = d \rangle$$

=
$$\operatorname{Gp}(a, t \mid a(tat^{-1}) = (tat^{-1})a, (tat^{-1})(t^2at^{-2}) = (t^2at^{-2})(tat^{-1}),$$

 $(t^2at^{-2})(t^3at^{-3}) = (t^3at^{-3})(t^2at^{-2}).$

Let P_4 be the graph

$$A(P_4) = \operatorname{Gp}\langle a, b, c, d \mid ab = ba, bc = cb, cd = dc \rangle.$$

 Δ_1 - subgraph induced by $\{a,b,c\}$, Δ_2 subgraph induced by $\{b,c,d\}$, $\psi:\Delta_1\to\Delta_2$ - the isomorphism $a\mapsto b,b\mapsto c$, and $c\mapsto d$. Then the HNN-extension $A(P_4,\psi)$ of $A(P_4)$ with respect to ψ is

$$A(P_4,\psi)$$

=
$$Gp(a, b, c, d, t \mid ab = ba, bc = cb, cd = dc, tat^{-1} = b, tbt^{-1} = c, tct^{-1} = d)$$

=
$$\operatorname{Gp}(a, t \mid a(tat^{-1}) = (tat^{-1})a, (tat^{-1})(t^2at^{-2}) = (t^2at^{-2})(tat^{-1}),$$

 $(t^2at^{-2})(t^3at^{-3}) = (t^3at^{-3})(t^2at^{-2}).$

=
$$Gp\langle a, t | atat^{-1}a^{-1}ta^{-1}t^{-1} = 1 \rangle$$
.

Let P_4 be the graph

$$A(P_4) = \operatorname{Gp}\langle a, b, c, d \mid ab = ba, bc = cb, cd = dc \rangle.$$

 Δ_1 - subgraph induced by $\{a,b,c\}$, Δ_2 subgraph induced by $\{b,c,d\}$, $\psi:\Delta_1\to\Delta_2$ - the isomorphism $a\mapsto b$, $b\mapsto c$, and $c\mapsto d$.

Then the HNN-extension $A(P_4, \psi)$ of $A(P_4)$ with respect to ψ is

$$A(P_4, \psi)$$
= $Gp(a, b, c, d, t \mid ab = ba, bc = cb, cd = dc, tat^{-1} = b, tbt^{-1} = c, tct^{-1} = d)$
= $Gp(a, t \mid a(tat^{-1}) = (tat^{-1})a, (tat^{-1})(t^2at^{-2}) = (t^2at^{-2})(tat^{-1}),$
 $(t^2at^{-2})(t^3at^{-3}) = (t^3at^{-3})(t^2at^{-2})).$
= $Gp(a, t \mid atat^{-1}a^{-1}ta^{-1}t^{-1} = 1).$

Conclusion

 $A(P_4)$ embeds into the one-relator group

$$A(P_4, \psi) = \operatorname{Gp}\langle a, t \mid atat^{-1}a^{-1}ta^{-1}t^{-1} = 1 \rangle.$$

Right-angled Artin subgroups of one-relator groups

Theorem (RDG (2020))

There is a one-relator group $G = \operatorname{Gp}\langle A \mid r = 1 \rangle$ with a fixed finitely generated submonoid $N \leq G$ such that the membership problem for N within G is undecidable.

Proof:

- Lohrey & Steinberg (2008) proved that $A(P_4)$ contains a finitely generated submonoid T in which membership is undecidable.
- Let $G = \operatorname{Gp}\langle A \mid r = 1 \rangle$ be a one-relator group embedding $\theta : A(P_4) \to G$.
- ► Then $N = \theta(T)$ is a finitely generated submonoid of G in which membership is undecidable. \square

Right-angled Artin subgroups of one-relator groups

Theorem (RDG (2020))

There is a one-relator group $G = \operatorname{Gp}\langle A \mid r = 1 \rangle$ with a fixed finitely generated submonoid $N \leq G$ such that the membership problem for N within G is undecidable.

Proof:

- Lohrey & Steinberg (2008) proved that $A(P_4)$ contains a finitely generated submonoid T in which membership is undecidable.
- Let $G = \operatorname{Gp}\langle A \mid r = 1 \rangle$ be a one-relator group embedding $\theta : A(P_4) \to G$.
- ► Then $N = \theta(T)$ is a finitely generated submonoid of G in which membership is undecidable.

Corollary

 $A(\Gamma)$ embeds into some one-relator group $\iff \Gamma$ is a finite forest.

- (\Leftarrow) Uses Koberda (2013) showing if *F* is a finite forest *A*(*F*) \hookrightarrow *A*(*P*₄).
- (⇒) Uses a result of Louder and Wilton (2017) on Betti numbers of subgroups of torsion-free one-relator groups.

Proof strategy

$$M = \operatorname{Inv} \langle A | r = 1 \rangle \longrightarrow G = \operatorname{Gp} \langle A | r = 1 \rangle$$

$$U_{R} = \{ m \in M : mm^{-1} = 1 \} \longrightarrow N = \pi(U_{R})$$

If M has decidable word problem \Rightarrow membership problem for $U_R \leqslant M$ is decidable since for we (AUA")* Well ww = 1

(sometimes)

membership problem for N&G is decidable

Schützenberger graphs

Let $M = \text{Inv}\langle A \mid r = 1 \rangle$ and $U_R = \{ m \in M : mm^{-1} = 1 \}$ the right units of M.

Aim: Construct an $M = \text{Inv}\langle A \mid r = 1 \rangle$ such that membership in $U_R \leq M$ is undecidable i.e. it is undecidable whether $uu^{-1} = 1$ for a given $u \in (A \cup A^{-1})^*$. Then M will have undecidable word problem.

Schützenberger graphs

Let $M = \text{Inv}\langle A \mid r = 1 \rangle$ and $U_R = \{ m \in M : mm^{-1} = 1 \}$ the right units of M.

Aim: Construct an $M = \text{Inv}\langle A \mid r = 1 \rangle$ such that membership in $U_R \leq M$ is undecidable i.e. it is undecidable whether $uu^{-1} = 1$ for a given $u \in (A \cup A^{-1})^*$. Then M will have undecidable word problem.

Definition

The Schützenberger graph $S\Gamma(1)$ of $M = \text{Inv}\langle A \mid r = 1 \rangle$ is the subgraph of the Cayley graph of M induced on the set of right units of M.

Stephen's procedure

The Schützenberger graph $S\Gamma(1)$ can be obtained as the limit of a sequence of labelled digraphs obtained by an iterative construction given by successively applying operations called expansions and Stallings foldings.

Example - Stephen's Procedure

$$Inv\langle a, b \mid aba^{-1}b^{-1} = 1 \rangle$$

Stephen's procedure

Expansions: Attach a simple closed path labelled by r at a vertex (if one does not already exist).

Stallings foldings: Identify two edges with the same label and the same initial or terminal vertex.

This process may not stop. Stephen shows that the

- process is confluent &
- Iimits in an appropriate sense to $S\Gamma(1)$.

Example - Stephen's Procedure

 $Inv(a, b | aba^{-1}b^{-1} = 1)$

Stephen's procedure

Expansions: Attach a simple closed path labelled by r at a vertex (if one does not already exist).

Stallings foldings: Identify two edges with the same label and the same initial or terminal vertex.

This process may not stop. Stephen shows that the

- process is confluent &
- Imits in an appropriate sense to $S\Gamma(1)$.

Right unit membership

$$Inv(a, b | aba^{-1}b^{-1} = 1)$$

 $w \in (A \cup A^{-1})^*$ is a right unit $\Leftrightarrow w$ can be read from the origin in $S\Gamma(1)$.

Examples

 $aaba^{-1}a^{-1}$ is a right unit.

Note: This word cannot be read in the previous unfolded graph.

 $bab^{-1}b^{-1}a$ is **not** a right unit.

For any $r, w_1, \ldots, w_k \in (A \cup A^{-1})^*$, with $A = \{a_1, \ldots, a_n\}$, set e equal to $a_1 a_1^{-1} \ldots a_n a_n^{-1} (tw_1 t^{-1}) (tw_1^{-1} t^{-1}) (tw_2 t^{-1}) (tw_2^{-1} t^{-1}) \ldots (tw_k t^{-1}) (tw_k^{-1} t^{-1}) a_n^{-1} a_n \ldots a_1^{-1} a_1$ where t is a new symbol.

Key claim

Let *T* be the submonoid of $G = \operatorname{Gp}(A \mid r = 1)$ generated by $\{w_1, w_2, \dots, w_k\}$, and let $M = \operatorname{Inv}(A, t \mid er = 1)$. Then for all $u \in (A \cup A^{-1})^*$ we have

$$tut^{-1} \in U_R \text{ in } M \Longleftrightarrow u \in T \text{ in } G.$$

For any $r, w_1, \ldots, w_k \in (A \cup A^{-1})^*$, with $A = \{a_1, \ldots, a_n\}$, set e equal to $a_1 a_1^{-1} \ldots a_n a_n^{-1} (tw_1 t^{-1}) (tw_1^{-1} t^{-1}) (tw_2 t^{-1}) (tw_2^{-1} t^{-1}) \ldots (tw_k t^{-1}) (tw_k^{-1} t^{-1}) a_n^{-1} a_n \ldots a_1^{-1} a_1$ where t is a new symbol.

Key claim

Let *T* be the submonoid of $G = \operatorname{Gp}\langle A \mid r = 1 \rangle$ generated by $\{w_1, w_2, \dots, w_k\}$, and let $M = \operatorname{Inv}\langle A, t \mid er = 1 \rangle$. Then for all $u \in (A \cup A^{-1})^*$ we have

$$tut^{-1} \in U_R \text{ in } M \Longleftrightarrow u \in T \text{ in } G.$$

For any $r, w_1, \ldots, w_k \in (A \cup A^{-1})^*$, with $A = \{a_1, \ldots, a_n\}$, set e equal to $a_1 a_1^{-1} \ldots a_n a_n^{-1} (tw_1 t^{-1}) (tw_1^{-1} t^{-1}) (tw_2 t^{-1}) (tw_2^{-1} t^{-1}) \ldots (tw_k t^{-1}) (tw_k^{-1} t^{-1}) a_n^{-1} a_n \ldots a_1^{-1} a_1$ where t is a new symbol.

Key claim

Let *T* be the submonoid of $G = \operatorname{Gp}(A \mid r = 1)$ generated by $\{w_1, w_2, \dots, w_k\}$, and let $M = \operatorname{Inv}(A, t \mid er = 1)$. Then for all $u \in (A \cup A^{-1})^*$ we have

$$tut^{-1} \in U_R \text{ in } M \iff u \in T \text{ in } G.$$

Theorem (RDG 2020)

If $M = \text{Inv}\langle A, t \mid er = 1 \rangle$ has decidable word problem then the membership problem for T within $G = \text{Gp}\langle A \mid r = 1 \rangle$ is decidable.

For any $r, w_1, \ldots, w_k \in (A \cup A^{-1})^*$, with $A = \{a_1, \ldots, a_n\}$, set e equal to $a_1 a_1^{-1} \ldots a_n a_n^{-1} (tw_1 t^{-1}) (tw_1^{-1} t^{-1}) (tw_2 t^{-1}) (tw_2^{-1} t^{-1}) \ldots (tw_k t^{-1}) (tw_k^{-1} t^{-1}) a_n^{-1} a_n \ldots a_1^{-1} a_1$ where t is a new symbol.

Key claim

Let *T* be the submonoid of $G = \operatorname{Gp}(A \mid r = 1)$ generated by $\{w_1, w_2, \dots, w_k\}$, and let $M = \operatorname{Inv}(A, t \mid er = 1)$. Then for all $u \in (A \cup A^{-1})^*$ we have

$$tut^{-1} \in U_R \text{ in } M \iff u \in T \text{ in } G.$$

Theorem (RDG 2020)

If $M = \text{Inv}\langle A, t \mid er = 1 \rangle$ has decidable word problem then the membership problem for T within $G = \text{Gp}\langle A \mid r = 1 \rangle$ is decidable.

Theorem (RDG (2020))

There is a one-relator inverse monoid $\text{Inv}\langle A \mid w = 1 \rangle$ with undecidable word problem.

The word problem and groups of units

Key question

For which words $w \in (A \cup A^{-1})^*$ does $\text{Inv}\langle A \mid w = 1 \rangle$ have decidable word problem? In particular is the word problem always decidable when w is (a) reduced or (b) cyclically reduced?

Note: A positive answer to (a) would imply the word problem is also decidable for every one-relator monoid $\text{Mon}\langle A \mid u = v \rangle$.

The word problem and groups of units

Key question

For which words $w \in (A \cup A^{-1})^*$ does $\text{Inv}\langle A \mid w = 1 \rangle$ have decidable word problem? In particular is the word problem always decidable when w is (a) reduced or (b) cyclically reduced?

Note: A positive answer to (a) would imply the word problem is also decidable for every one-relator monoid Mon $\langle A \mid u = v \rangle$.

Theorem (Adjan (1966))

The group of units G of a one-relator monoid $M = \text{Mon}\langle A \mid r = 1 \rangle$ is a one-relator group. Furthermore, M has decidable word problem.

Problem: What are the groups of units of inverse monoids $Inv\langle A \mid r = 1 \rangle$?

Example - group of units

Theorem (Stephen (1990)) The group of units of $M = \text{Inv}\langle A \mid r = 1 \rangle$ is isomorphic to the group $\text{Aut}(S\Gamma(1))$ of label-preserving automorphisms of the Schützenberger graph $S\Gamma(1)$.

 $Inv\langle a, b, x | xabx = 1 \rangle$

Example - group of units

Theorem (Stephen (1990)) The group of units of $M = \text{Inv}\langle A \mid r = 1 \rangle$ is isomorphic to the group $\text{Aut}(S\Gamma(1))$ of label-preserving automorphisms of the Schützenberger graph $S\Gamma(1)$.

 $Inv\langle a, b, x | xabx = 1 \rangle$

The group of units is

$$\operatorname{Aut}(S\Gamma(1))\cong\mathbb{Z}$$

the infinite cyclic group.

Units of one-relator inverse monoids and coherence

Theorem (RDG & Ruškuc (2021))

There exists a one-relator inverse monoid $M = \text{Inv}\langle A \mid r = 1 \rangle$ whose group of units G is not a one-relator group.

Question: Is the group of units of $Inv(A \mid r = 1)$ always finitely presented?²

²It is known to be finitely generated.

Units of one-relator inverse monoids and coherence

Theorem (RDG & Ruškuc (2021))

There exists a one-relator inverse monoid $M = \text{Inv}\langle A \mid r = 1 \rangle$ whose group of units G is not a one-relator group.

Question: Is the group of units of $Inv\langle A \mid r = 1 \rangle$ always finitely presented?²

Definition. A finitely presented group *G* is said to be coherent if every finitely generated subgroup of *G* is finitely presented.

Open problem (Baumslag (1973))

Is every one-relator group coherent?

▶ Louder and Wilton (2020) & independently Wise (2020) proved that one-relator groups with torsion are coherent.

Theorem (RDG & Ruškuc (2021))

If all one-relator inverse monoids $\text{Inv}\langle A \mid r=1 \rangle$ have finitely presented groups of units then all one-relator groups are coherent.

²It is known to be finitely generated.

Definition. The suffix monoid S_G of $G = \text{Gp}(A \mid r = 1)$ is the submonoid generated by the siffixes of r. We say the suffix membership problem is decidable if membership in the submonoid S_G of G is decidable.

Example
$$G = \operatorname{Gp}(x, y \mid x^{-1}yx^{2}yx^{3}yx = 1)$$

► Suffix monoid = Mon $\langle x, yx, xyx, \dots, yx^2yx^3yx \rangle$ = Mon $\langle x, yx \rangle$.

Definition. The suffix monoid S_G of $G = \text{Gp}(A \mid r = 1)$ is the submonoid generated by the siffixes of r. We say the suffix membership problem is decidable if membership in the submonoid S_G of G is decidable.

Example
$$G = \operatorname{Gp}(x, y \mid x^{-1}yx^{2}yx^{3}yx = 1)$$

► Suffix monoid = Mon $\langle x, yx, xyx, \dots, yx^2yx^3yx \rangle$ = Mon $\langle x, yx \rangle$.

Theorem (Guba, 1997)

If every $\operatorname{Gp}\langle X \mid x^{-1}yQx = 1 \rangle$ with $Q \in X^*$ has decidable suffix membership problem then all monoids $\operatorname{Mon}\langle a, b \mid bUa = a \rangle$ have decidable word problem.

Definition. The suffix monoid S_G of $G = \text{Gp}(A \mid r = 1)$ is the submonoid generated by the siffixes of r. We say the suffix membership problem is decidable if membership in the submonoid S_G of G is decidable.

$$G = \operatorname{Gp}\langle x, y \mid x^{-1}yx^2yx^3yx = 1 \rangle$$

► Suffix monoid = Mon $\langle x, yx, xyx, \dots, yx^2yx^3yx \rangle$ = Mon $\langle x, yx \rangle$.

Theorem (Guba, 1997)

If every $\operatorname{Gp}\langle X \mid x^{-1}yQx = 1 \rangle$ with $Q \in X^*$ has decidable suffix membership problem then all monoids $\operatorname{Mon}\langle a, b \mid bUa = a \rangle$ have decidable word problem.

Theorem (Foniqi, RDG, Nyberg-Brodda (2023))

There is a positive one-relator group $\operatorname{Gp}\langle A \mid w = 1 \rangle$, $w \in A^+$, with undecidable submonoid membership problem.

Definition. The suffix monoid S_G of $G = \text{Gp}(A \mid r = 1)$ is the submonoid generated by the siffixes of r. We say the suffix membership problem is decidable if membership in the submonoid S_G of G is decidable.

Example

$$G = \operatorname{Gp}\langle x, y \mid x^{-1}yx^2yx^3yx = 1 \rangle$$

► Suffix monoid = Mon $\langle x, yx, xyx, \dots, yx^2yx^3yx \rangle$ = Mon $\langle x, yx \rangle$.

Theorem (Guba, 1997)

If every $\operatorname{Gp}\langle X \mid x^{-1}yQx = 1 \rangle$ with $Q \in X^*$ has decidable suffix membership problem then all monoids $\operatorname{Mon}\langle a, b \mid bUa = a \rangle$ have decidable word problem.

Theorem (Foniqi, RDG, Nyberg-Brodda (2023))

There is a positive one-relator group $\operatorname{Gp}\langle A \mid w = 1 \rangle$, $w \in A^+$, with undecidable submonoid membership problem.

Theorem (Foniqi, RDG, Nyberg-Brodda (2023))

There is a one-relator group $\operatorname{Gp}\langle A \mid v^{-1}u = 1 \rangle$, where $u, v \in A^+$ and $v^{-1}u$ is reduced, with undecidable suffix membership problem.

Open problems

Problem. Let $G = \text{Gp}\langle A \mid r = 1 \rangle$. Is membership in Mon $\langle A \rangle$ decidable? i.e. is there an algorithm that decides if a given word can be written positively?

Problem. Does every group $\operatorname{Gp}\langle X \mid x^{-1}yQx = 1 \rangle$ with $Q \in X^*$ have decidable suffix membership problem?

Problem. Classify one-relator groups with decidable submonoid membership problem. It remains open for

- ▶ Baumslag–Solitar groups $B(m,n) = \text{Gp}\langle a,b \mid b^{-1}a^mba^{-n} = 1\rangle$
 - ▶ Solved for BS(1,n) by Cadilhac, Chistikov & Zetzsche (2020).
- Surface groups $Gp\langle a_1,\ldots,a_g,b_1,\ldots,b_g \mid [a_1,b_1]\ldots[a_g,b_g]=1\rangle$.
- One-relator groups with torsion $Gp\langle A \mid r^n = 1 \rangle$, $n \ge 2$.

Is there a one-relator group that embeds trace monoid of P_4 but not $A(P_4)$?

Problem. Does Inv $\langle A \mid w = 1 \rangle$ have decidable word problem when w is a reduced word?

Problem. Is the group of units of $Inv(A \mid w = 1)$ finitely presented?