Na elitmie $\mathbb{N} = \mathbb{N}_0$

- 1. Def: Wyrażenie $\phi(x)$, które po wstawieniu za x konkretnej wartości z ustalonego zbioru X nazywamy funkcją zdaniową
 - (a) X zakres zmiennej x
 - (b) Kwantyfikator ogólny (uniwersalny)
 - i. $(\forall_{x \in X}) \phi(x)$ oznacza, że dla każdego $x \in X$ zdanie $\phi(x)$ jest prawdziwe
 - ii. ^ taki napis jest zdaniem
 - (c) Kwantyfikator szczegółowy (egzystencjalny)
 - i. $(\exists_{x \in X}) \phi(x)$ oznacza, że istnieje takie $x \in X$, dla którego zdanie $\phi(x)$ jest prawdziwe
 - (d) Przykłady (b,c):
 - i. $\forall_{x \in \mathbb{R}} x^2 \geq 1$ zdanie fałszywe
 - ii. $\exists_{x \in \mathbb{R}} x^2 = x + 1$ zdanie prawdziwe
- 2. Def: $\phi(x)$ funkcja zdaniowa, X zakres zmiennej $x, A \subseteq X$, $\alpha(x)$ funkcja zdaniowa:
 - (a):
- i. $\forall_{x \in A} \phi(x) \iff def \forall_{x \in X} (x \in A \implies \phi(x))$
- ii. $\exists_{x \in A} \phi(x) \iff def \exists_{x \in X} (x \in A \land \phi(x))$
- (b) A więc generalniej:
 - i. $\forall_{x:\alpha(x)}\phi(x) \iff def\forall_{x\in X}(\alpha(x) \implies \phi(x))$
 - ii. $\exists_{x:\alpha(x)}\phi(x) \iff def \exists_{x\in X}(\alpha(x) \land \phi(x))$
- (c) Niech $A = \emptyset$
 - i. $\forall_{x \in \emptyset} \phi(x) \iff \forall_{x \in X} (x \in \emptyset \implies \phi(x))$ zdanie prawdziwe (zawsze)
 - ii. $\exists_{x \in \emptyset} \phi(x) \iff \exists_{x \in X} (x \in \emptyset \land \phi(x))$ zdanie fałszywe (zawsze)
- (d) Jeśli nie prowadzi to do nieporozumień, to będziemy pisać $\forall_x \phi(x)$ zamiast $\forall_{x \in X} \phi(x)$ oraz $\exists_x \phi(x)$ zamiast $\exists_{x \in X} \phi(x)$
- 3. Funkcje zdaniowe wielu zmiennych
 - (a) $\phi(x,y)$ staje się zdaniem po wstawieniu za x,y konkretnych wartości z zakresu x,y
 - (b) $\phi(x_1,...,x_n)$ funkcja zdaniowa n zmiennych
 - (c) Przykład:
 - i. $x \in \mathbb{R}, y \in \mathbb{Z}$: $\phi(x,y) = (x \neq y)$ funkcja zdaniowa 2 zmiennych
 - ii. $\forall_{x \in \mathbb{R}} x \neq y$ nie zdanie, lecz funkcja zdaniowa wartość zależy od y
 - iii. $\exists_{y \in \mathbb{Z}} \forall_{x \in \mathbb{R}} x \neq y$ zdanie fałszywe
- 4. $X = \{x_1, \dots, x_n\}$ zbiór skończony
 - (a) $\forall_{x \in X} \phi(x) \iff \phi(x_1) \land \cdots \land \phi(x_n)$
 - (b) $\exists_{x \in X} \phi(x) \iff \phi(x_1) \lor \cdots \lor \phi(x_n)$
- 5. Def: Zasięg kwantyfikatora to funkcja zdaniowa, której ten kwantyfikator dotyczy
 - (a) $\exists_{y \in \mathbb{Z}} \forall_{x \in \mathbb{R}} x \neq y$ zasięg kwantyfikatora $\exists_{y \in \mathbb{Z}}$
 - (b) Przykład: $\forall_x(\forall_y(x>y\implies (\exists_z)(x>z>y)))$ odpowiednie podkreślenia to zasięgi kwantyfikatorów na lewo od nich
 - (c) Notacja: Zamiast $\forall_x(\exists_y(\forall_z(\dots)))$ piszemy $\forall_x\exists_y\forall_z\dots$
- 6. Def: Zmienną x nazywamy **związaną** jeśli leży ona w zasięgu kwantyfikatora (w którym występuje!) dla \forall_x lub \exists_x . W przeciwnym wypadku x jest zmienną **wolną**
 - (a) Przykłady:
 - i. $\exists_y \forall_x (x+y>z)$ x,y zmienna związana, z zmienna wolna
 - ii. $z^{2}\neq 1 \wedge \forall_{u}x^{2}=y^{2}\text{-}\ y$ zmienna związana, x,z zmienne wolne
 - (b) $\phi(x) = \text{``x jest liczbą pierwszą''} funkcja zdaniowa o zakresie <math>\mathbb{N} \setminus \{0\}$
 - i. $\phi(x) = x > 1 \land \forall_{n \in \mathbb{N}} (n | x \implies n = x \lor n = 1) \ (n | x \text{ oznacza "n dzieli x"})$

7. Definicja rachunku predykatów

- (a) A alfabet: zbiór stałych, (np liczby rzeczywiste), symbole funkcyjne i symbole relacyjne (**predykaty**)
- (b) x, y, z symbole zmiennych
- (c) **Zbiór termów** T to najmniejszy zbiór taki, że
 - i. wszystkie stałe i zmienne należą do T
 - ii. jeśli $t_1, t_2, \ldots, t_n \in T$ oraz $\alpha \in A$ jest symbolem funkcji m-argumentowej, to $\alpha(t_1, \ldots, t_n) \in T$
 - iii. Elementy zbioru T nazywamy termami
- (d) **Predykat** to *m*-argumentowa funkcja, której wartościami jest prawda lub fałsz
 - i. Przykłady $x, y \in \mathbb{R}$:
 - A. $\beta(x,y) = (x < y)$ predykat 2-argumentowy
 - B. $p(x) = (x \text{ jest liczbą pierwszą}) \ x \in \mathbb{N} \setminus \{0\}$
- (e) t_1, \ldots, t_m termy, β symbol m-argumentowego predykatu wtedy wyrażenie $\beta(t_1, \ldots, t_m)$ nazywamy formułą atomową rachunku predykatów
- (f) **Zbiór formuł rachunku predykatów** jest to najmniejszy zbiór Z taki, że
 - i. Wszystkie formuły atomowe należą do Z
 - ii. Jeśli $A, B \in \mathbb{Z}$, to $(\neg A, A \lor B, A \land B, A \implies B, A \iff B) \in \mathbb{Z}$
 - iii. Jeśli $A \in Z$ i x jest zmienną wolną (nie związaną kwantyfikatorem) w A, to $\forall_x A \exists_x A \in Z$

8. Tautologie rachunku predykatów:

- (a) Def: Formułę rachunku predykatów nazywamy **tautologią** jeśli jest prawdziwa dla wszystkich interpretacji symboli funkcyjnych, predykatów, i dla wszystkich wartościowań zmiennych wolnych występujących w tej formule.
- (b) Przykłady:
 - i. Formuły powstałe z tautologii rachunku zdań przez zastąpienie zmiennych formami rachunku predykatów (X zakres $\mathbf{x})$

A.
$$\alpha \vee \neg \alpha \longrightarrow \forall_x \phi(x) \vee \neg \forall_x \phi(x)$$

- ii. $\forall_x \forall_y \phi(x,y) \iff \forall_y \forall_x \phi(x,y)$
- iii. $\exists_x \exists_y \phi(x,y) \iff \exists_y \exists_x \phi(x,y)$ ^ przemienność kwantyfikatorów tego samego rodzaju
- iv. $\exists_x \forall_y \phi(x,y) \implies \forall_y \exists_x \phi(x,y)$ ale nie w drugą stronę

Dowód: X, Y - zakres zmiennych x, y

 $x_0 \in X$ będzie takie, że $\forall_y \phi(x_0, y)$ jest prawdą

Weźmy dowolne $y \in Y$. Prawdą jest, że dla tego y, $\phi(x_0, y)$ jest prawdą

Zatem rzeczywiście $\forall_y \exists_x \phi(x,y)$

Przykład: Przykład, że implikacja odwrotna nie zachodzi

$$X = Y = \mathbb{R}$$

$$\phi(x,y) = (x > y)$$

$$\exists_{x \in \mathbb{R}} \forall_{y \in \mathbb{R}} x > y$$
 - zdanie fałszywe

 $\forall_{y \in \mathbb{R}} \exists_{x \in \mathbb{R}} x > y$ - zdanie prawdziwe, więc

 $\forall_{y \in \mathbb{R}} \exists_{x \in \mathbb{R}} x > y \implies \exists_{x \in \mathbb{R}} \forall_{y \in \mathbb{R}} x > y \text{ jest falszywe}$

- v. $\forall_x (\phi(x) \land \psi(x)) \iff \forall_x \phi(x) \land \forall_x \psi(x)$
- vi. $\exists_x (\phi(x) \lor \psi(x)) \iff \exists_x \phi(x) \lor \exists_x \psi(x)$ -forall-koniunkcja/ exists-alternatywa
- vii. $\exists_x (\phi(x) \land \psi(x)) \implies \exists_x \phi(x) \land \exists_x \psi(x)$
- viii. $\forall_x (\phi(x) \lor \psi(x)) \iff \forall_x \phi(x) \lor \forall_x \psi(x)$ forall-alternatywa/ exists-koniunkcja
- ix. $\forall_x \phi(x) \implies \phi(x_0)$ gdzie $x_0 \in X$
- $\mathbf{x}. \ \neg(\forall_x \phi(x)) \iff \exists_x \neg \phi(x)$
- xi. $\neg(\exists_x \phi(x)) \iff \forall_x \neg \phi(x)$
- xii. $(\forall_x (\phi(x) \implies \psi(x))) \implies ((\forall_x \phi(x)) \implies (\forall_x \psi(x)))$
- xiii. $\forall_x \phi(x) \lor \psi \iff (\forall_x \phi(x)) \lor \psi$ x nie jest zmienną wolną w ψ
- xiv. $\forall_x (\phi(x) \land \psi) \iff (\exists_x \phi(x)) \land \psi$
- xv. $(\phi \implies \forall_x \psi(x)) \iff \forall_x (\phi \implies \psi(x))$
- xvi. $(\phi \implies \exists_x \psi(x)) \iff \exists_x (\phi \implies \psi(x))$
- xvii. $((\forall_x \phi(x)) \implies \psi) \iff \exists_x (\phi(x) \implies \psi)$

D:
$$((\forall_x \psi(x)) \implies \phi) \iff \neg(\forall_x \psi(x)) \lor \phi \iff (\exists_x \neg \psi(x)) \lor \phi \iff \exists_x (\neg \psi(x) \lor \phi) \iff \exists_x (\psi(x) \implies \phi)$$
 xviii. $((\exists_x \phi(x)) \implies \psi) \iff \forall_x (\phi(x) \implies \psi)$

(c) Przykłady:

(vii)
$$\phi(x) = (x > 0), \psi(x) = (x < 0)$$

$$\exists_x \phi(x) \land \exists_x \psi(x) \iff \exists_x x > 0 \land \exists_x x < 0$$

: ^ fałsz - w (vii) implikacja odwrotna nie zachodzi

(viii)
$$\phi(x) = (x \ge 0), \ \psi(x) = (x < 0)$$

:
$$\forall_x (\phi(x) \lor \psi(x)) \iff \forall_x (x \ge 0 \lor x < 0)$$
 - prawda

(xii)
$$\phi(x) = (x > 0), \ \psi(x) = (x > 1)$$

:
$$\forall_x(\phi(x) \implies \psi(x)) \iff \forall_x(x>0 \implies x>1)$$
- działa, bo weźmy $x=\frac{1}{2}$

... W (viii) oraz (xii) implikacje odwrotne nie są tautologiami

9. Tautologia dla formuł z kwantyfikatorami:

- (a) Logika pierwszego rzędu ma inną definicję tautologii dla wszystkich wartościowań zdanie jest prawdziwe
- (b) Dla rachunku predykatów tautologia jest formułą lub zdaniem (formuła bez zmiennych wolnych),
 - i. Zdanie jest tautologią jeśli jest prawdziwe w każdym modelu
- (c) W logice pierwszego rzędu też były modele, tylko nazywaliśmy je każdym możliwym wartościowaniem

10.
$$\forall_{x_{\alpha(x)}} \phi(x) \stackrel{def.}{=} \forall_x \alpha(x) \implies \phi(x)$$

11.
$$\exists_{x_{a(x)}} \phi(x) \stackrel{def.}{=} \exists_x \phi(x) \wedge \alpha(x)$$