MAT201A Homework 7 Fall 2019

Professor Qinglan Xia Due Date: Wednesday, November 13th at 9:00am

1. For any $f \in C([0,1])$, define

$$||f||_1 := \left(\int_0^1 |f(x)|^2\right)^{1/2}$$

and

$$||f||_2 := \left(\int_0^1 (1+x)|f(x)|^2\right)^{1/2}.$$

Show that $||\cdot||_1$ and $||\cdot||_2$ are equivalent norms in C([0,1]).

2. Let X be the space of all sequences of real numbers with only finitely many nonzero terms. Consider the following two norms on X:

$$||(x_n)||_1 := \sum_{n=1}^{\infty} |x_n|$$
 and $||(x_n)||_2 := \sqrt{\sum_{n=1}^{\infty} |x_n|^2}$.

Are the norms $||\cdot||_1||$ and $||\cdot||_2$ equivalent? Justify your answer.

3. Let $X = C_b([0,\infty))$ be the space of all bounded and continuous functions on $[0,\infty)$. For any a > 0, define

$$||f||_a := \left(\int_0^\infty e^{-ax}|f(x)|^2\right), \quad \forall f \in X.$$

- (a) Show that $||\cdot||_a$ is a norm on X.
- (b) For any a > b > 0, show that $||\cdot||_a$ and $||\cdot||_b$ are not equivalent norms on X.
- 4. Let e_1, e_2, \dots, e_n be any given vectors in a real linear space X, and let $||\cdot||$ be a norm on X. Show that for any $x \in X$, there exists $(\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{R}^n$ such that

$$||x - \sum_{i=1}^{n} \lambda_i e_i|| = \min_{(a_1, a_2, \dots, a_n) \in \mathbb{R}^n} ||x - \sum_{i=1}^{n} a_i e_i||.$$

5. Let $X = (C([0,1]), ||\cdot||_{\infty})$. Define $T: X \to X$ by

$$(Tf)(x) = x \int_0^x f(t)dt, \quad \forall f \in X.$$

Show that $T \in \mathcal{B}(X)$ and compute ||T||. Also prove that the inverse $T^{-1}: ran(T) \to X$ exists but is not bounded.