Number Theory and Cryptography

Mohona Ghosh

Motivation for Advanced Encryption Standard (AES)

■ Luke O' Conners (IBM):

Most Ciphers are secure after sufficiently many rounds.

■ James L. Massey (ETH, Zurich):

Most ciphers are too slow after sufficiently many rounds.

Cipher Design: Science or Engineering?

- Practical security can be achieved easily if we don't worry about performance.
- It is not sufficient to prove that a secure block cipher exists, we also have to construct it.
- Design challenges:
 - 1 Security and performance.

Motivation for Advanced Encryption Standard (AES)

- Slow speed of 3-DES on software
 - DES was designed for efficient h/w implementation not s/w
 - 3-DES has 3 times as many rounds as DES
- Smaller block size of DES and 3-DES (64-bits)
 - Prone to few cryptanalytic attacks such as birthday attack
- In 1997, NIST (National Institute of Standards and Technology) issued a call for a new proposal
 - Security strength ≥ Triple DES
 - Block length of 128-bits

AES Competition

• Aug 1998: 15 submissions were accepted

• Aug 1999: 5 finalists were chosen

Nov 2001: Rijndael selected as the winner

Designed by Belgian researchers Joan Daemen and Vincent

Rijmen

Votes after 2nd AES conference:

		Q
Rijndael:	86	10
Serpent:	59	7
Twofish:	31	21
RC6:	23	37
MARS:	13	84

Announcement of finalists: Aug 20,1999

Submission	Authors
Rijndael	Joan Daemen and Vincent Rijmen
Serpent	Ross Anderson, Eli Biham and Lars Knud-
	sen.
Twofish	Bruce Schneier, John Kelsey, Doug Whit-
	ing, David Wagner, Chris Hall and Niels
	Fergusson.
	Extended team included: Stefan Lucks, Ta-
	dayoshi Kohno and Mike Stay.
RC6	Ron Rivest, Matt Robshaw, Ray Sidney and
	Yiqun Lisa Yin.
MARS	IBM (included Don Coppersmith).

<u>AES</u>

Algorithm	KeySize	Rounds
	(in bits)	
AES-128	128	10
AES-192	192	12
AES-256	256	14

- AES is based on SPN structure
 - Substitution Permutation Network

The AES state representation

• 16 bytes (128-bits) are arranged in a 4 x 4 array as follows

Consists of 4 steps

- SubBytes (Substitution)
- ShiftRows (Permutation)
- MixColumns (Permutation)
- AddRoundKey (Adding randomness)
- First r-1 rounds have all the above steps
- Last rth round does not have the MixColumn step
 - SubBytes, ShiftRows, AddRoundKey

Substitution

 Makes a non linear substitution for every byte in the 4x4 matrix

Substitution

- Makes a non linear substitution for every byte in the 4x4 matrix
- The S-box table is a as shown in the right:
 - E.g., Sbox[0x 42] = [0x 2c]
 - Use the leftmost 4 bits to select the row
 - Use the rightmost 4 bits to select the column

										_								— 1
		Ó	1		3	4	5	6	7	/ 8	9	a	b	С	d	9	f	
	0	63	7 ₀	7.0	7b	£2	6Ъ	6 £	a5	3.0	01	67	2b	fe	d7	ab	76	4
	1	ca	82	<u> </u>	7d	fa	59	47	£0	ad	d4	a2	af	9c	a4	72	c0	ł
ı	2	b7	fd	93	26	36	3f	£7	00	34	a.5	e5	f1	71	d8	31	15	1
ı	3	04	e7	23	e3	18	96	05	9a	07	12	80	e2	eb	27	b2	75	ł
88		VI	93	10.4	100 1050	4.7			3 94		1121141			117 (A)		110(6)		
1 "	5	53	d1	0.0	ed	20	fc	b1	5b	6a	cb	be	39	4 a	4 c	58	cf	
1	6	d0	ef	3.3	fb	43	4d	33	85	4.5	£9	02	7£	50	3 c	9 E	a.8	1
1	7	51	a 3	4.0	8f	92	9 d	38	f5	be	b6	da	21	10	ff	£3	d2	1
×	8	cd	0 c	13	ec	5f	97	4.4	17	c4	a.7	7e	3d	64	5d	19	7.3	1
L	9	60	81	4.5	dc	22	2 a	90	88	4.6	ee	b8	14	de	5 e	0Ъ	db	1
1	а	e0	32	3a	0a	49	0.6	24	5a	c2	d 3	ac	62	91	9.5	e4	79	1
	b	e 7	c8	37	6d	8d	d 5	4 e	a 9	6c	56	f4	ea	65	7a	ae	0.8	1
	С	ba	78	25	2 e	1c	a 6	b4	c6	e8	dd	74	1f	4b	bd	8b	8 a	1
	d	70	3 e	200	66	48	0.3	£6	0 e	61	35	57	b9	86	cl	1d	9	
	e	e1	f8	98	11	9	d9	8 e	94	9b	1e	87	е9	ce	55	28	df	
L	f	8c	al	8.6	0d	bf	e 6	42	68	41	99	2d	0f	b0	54	рр	16	
				•														_

Substitution

- The S-box is constructed as follows: For each $x \in GF(2^8)$, $x \to Ax^{-1} + b$. Define $0^{-1} = 0$.
- x^{-1} provides high degree of non linearity
- Provides good resistance against variety of attacks
- Affine transformation (Ax + b form) ensures that there are no fixed points, i.e., $S(x) \neq x$
 - Complicates algebraic attack
 - No opposite fixed points as well, i.e., $S(x) \neq Complement(x)$

$$S(x) = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} x^{-1} + \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

ShiftRows

- Leave the first row as it is
- Left rotate second row by 1-byte
- Left rotate third row by 2-bytes
- Left rotate fourth row by 3-bytes

x_0	x_1	x_2	x_3
x_4	x_5	x_6	x_7
x_8	x_9	x_{10}	x_{11}
x_{12}	x_{13}	x_{14}	x_{15}

Shi<u>ftR</u>ow

x_0	x_1	x_2	x_3
x_5	x_6	x_7	x_4
x_{10}	x_{11}	x_8	x_9
x_{15}	x_{12}	x_{13}	x_{14}

MixColumns

- The 4x4 state matrix is multiplied with the following matrix columnwise
- i.e., Multiplications are done in $GF(2^8)$ as follows:
 - Irreducible polynomial $(x^8 + x^4 + x^3 + x + 1)$

$$\begin{bmatrix} 2 & 3 & 1 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 3 \\ 3 & 1 & 1 & 2 \end{bmatrix} \times \begin{bmatrix} a & e & i & m \\ b & f & j & n \\ c & g & k & o \\ d & h & l & p \end{bmatrix}$$

- This step along with ShiftRows provides high diffusion
 - Flipping of bits in one byte in first round results in flipping of bits in all 16 bytes after 2 rounds, i.e., full
 diffusion is achieved

Multiplication Example

• Let
$$f(x) = x^6 + x^4 + x^2 + x + 1$$
 $g(x) = x^7 + x + 1$

• Irr. Poly. $m(x) = x^8 + x^4 + x^3 + x + 1$

$$f(x) \times g(x) = x^{13} + x^{11} + x^9 + x^8 + x^7 + x^7 + x^5 + x^3 + x^2 + x + x^6 + x^4 + x^2 + x + 1$$

$$= x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1$$

$$x^{5} + x^{3}$$

$$x^{8} + x^{4} + x^{3} + x + 1 / x^{13} + x^{11} + x^{9} + x^{8} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + + 1$$

$$x^{13} + x^{9} + x^{8} + x^{6} + x^{5}$$

$$x^{11} + x^{4} + x^{3}$$

$$x^{11} + x^{7} + x^{6} + x^{4} + x^{3}$$

$$x^{7} + x^{6} + x^{4} + x^{3} + 1$$

Therefore, $f(x) \times g(x) \mod m(x) = x^7 + x^6 + 1$.

Why choose this MixColumns matrix?

- It is an MDS matrix (Maximum Distance Separable Code matrix)
 - If the input of a column changes, then all outputs change
 - This maximizes the branch number
 - Branch number of AES is 5

• Values [2,3,1,1] are the smallest which result in a circulant MDS matrix

```
2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2
```

AddRoundKey

Xor the round key to the state obtained after MixColumns operation

а	е	i	m	k_o	k_4	k ₈	k ₁₂	
b	f	j	n	k_1	k ₅	k ₉	k ₁₃	١.
С	g	k	0	k_2	k_6	k ₁₀	k ₁₄	l
d	h	Τ	р	k_3	k ₇	k ₁₁	k ₁₅	

AES One Round Encryption

AES decryption

- Inverse Shift Rows
 - Perform circular rotations to the right
- Inverse SubBytes
 - Use the following InvSBox table

									,								
		0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
	0	52	09	6A	D5	30	36	A5	38	BF	40	A3	9E	81	F3	D7	FB
	1	7C	E3	39	82	9B	2F	FF	87	34	8E	43	44	C4	DE	E9	CB
	2	54	7B	94	32	A6	C2	23	3D	EE	4C	95	0B	42	FA	C3	4E
	3	08	2E	Al	66	28	D9	24	B2	76	5B	A2	49	6D	SB	D1	25
	4	72	F8	F6	64	86	68	98	16	D4	A4	5C	CC	5D	65	B6	92
	5	6C	70	48	50	FD	ED	B9	DA	5E	15	46	57	A7	8D	9D	84
	6	90	D8	AB	00	8C	BC	D3	0A	F7	E4	58	05	B8	В3	45	06
x	7	D0	2C	1E	8F	CA	3F	0F	02	C1	AF	BD	03	01	13	8A	6B
	8	3A	91	11	41	4F	67	DC	EA	97	F2	CF	CE	F0	B4	E6	73
	9	96	AC	74	22	E7	AD	35	85	E2	F9	37	E8	1C	75	DF	6E
	A	47	FI	1A	71	1D	29	C5	89	6F	B7	62	0E	AA	18	BE	1B
	В	FC	56	3E	4B	C6	D2	79	20	9A	DB	C0	FE	78	CD	5A	F4
	С	1F	DD	A8	33	88	07	C7	31	B1	12	10	59	27	80	EC	5F
	D	60	51	7F	A9	19	B5	4A	0D	2D	E5	7A	9F	93	C9	9C	EF
	E	A0	E0	3B	4D	AE	2A	F5	B0	C8	EB	BB	3C	83	53	99	61
	F	17	2B	04	7E	BA	77	D6	26	El	69	14	63	55	21	0C	7D

AES decryption

- AddRoundKey
 - Xor with round key
- Inverse MixColumns
 - Multiplication in GF(2⁸) with the following matrix

$$\begin{bmatrix} 0E & 0B & 0D & 09 \\ 09 & 0E & 0B & 0D \\ 0D & 09 & 0E & 0B \\ 0B & 0D & 09 & 0E \end{bmatrix}$$

- The round keys used in encryption and decryption process are the same
 - But in the reverse order

AES decryption

- AES decryption cipher is not identical to the encryption cipher
 - Sequence of transformations differ
- Therefore, two separate s/w or h/w is needed to support both enc. and dec.

2 Round Encryption

2 Round Decryption

AddRoundKey[0] AddRoundKey[2]

SubBytes InvShiftRows

ShiftRows InvSubBytes

MixColumns AddRoundKey[1]

AddRoundKey[1] InvMixColumns

SubBytes InvShiftRows

ShiftRows InvSubBytes

AddRoundKey[2] AddRoundKey[0]

2 Round Encryption

2 Round Decryption

Commutative

AddRoundKey[0]

AddRoundKey[2]

SubBytes

ShiftRows

MixColumns

AddRoundKey[1]

SubBytes

ShiftRows

AddRoundKey[2]

InvSubBytes

InvShiftRows

AddRoundKey[1]

InvMixColumns

InvSubBytes

InvShiftRows

AddRoundKey[0]

- Notice,
 - InvMixCol(State \bigoplus Key) = InvMixCol(State) \bigoplus InvMixCol(Key)
- This is possible because both XOR operation and InvMixCol operation are linear
- Also, w.r.t XOR operation

$$a \oplus b = b \oplus a$$

Therefore, if we denote InvMixCol(Key) by AddRoundKey', then ...

2 Round Encryption

2 Round Decryption

AddRoundKey[0] AddRoundKey[2]

SubBytes

ShiftRows

MixColumns

AddRoundKey[1]

InvSubBytes

InvShiftRows

AddRoundKey[1]

InvMixColumns

Operations can be interchanged

SubBytes

ShiftRows

AddRoundKey[2]

InvSubBytes

InvShiftRows

AddRoundKey[0]

2 Round Encryption

2 Round Decryption

AddRoundKey[0] AddRoundKey[2]

SubBytes InvSubBytes

ShiftRows InvShiftRows

MixColumns InvMixColumns

AddRoundKey[1] AddRoundKey'[1]

SubBytes InvSubBytes

ShiftRows InvShiftRows

AddRoundKey[2] AddRoundKey[0]

- Now the sequence of operations in encryption as well as decryption are same
 - Same circuitry can be used to do enc. as well as dec.
- To achieve the above, MixColumns operations was omitted in the last round
 - HOMEWORK: Try to think why !!!

AES Key Schedule Algorithm

- Some Notations:
- 1. Word : One word = 32-bits (4 bytes)

Each round key and intermediate state has 4 words (128-bits)

As AES-128 has 11 round keys, it requires 44 words

AES-128 Key Schedule Algorithm

AES Key Schedule Algorithm (KSA)

- RotWord(a,b,c,d) = (b,c,d,a)
- SubWord(p,q,r,s) = (S(p),S(q),S(r),S(s))
- Rcon[i] = (RC[i],0,0,0) where, RC[1] = 1, RC[i] = $2 \times RC[i-1]$ (multiplication in GF(2^8))

j	1	2	3	4	5	6	7	8	9	10
RC[j]	01	02	04	08	10	20	40	80	1B	36

- AES-192/256 KSA also work in a similar fashion
 - For more details, please refer to the official AES document: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

Success of AES

- None of the attacks break AES much better than brute force
 - Except side channel attack (SCA)
 - However, it is applicable to specific scenario only
- Intel chips have special instruction sets for AES. Allows extremely efficient implementation. Can resist many SCA as well.
- Every famous Cryptographic library used on the web has an implementation of AES in it.
- "No one ever lost his job for using AES" ☺

AES NI

- Advanced Encryption Standard New Instructions
- Accelerating AES on modern Intel and AMD processors with dedicated instructions
- Using the AES NI instruction set, the program can do a whole round in a single instruction

Instruction	Description ^[2]
AESENC	Perform one round of an AES encryption flow
AESENCLAST	Perform the last round of an AES encryption flow
AESDEC	Perform one round of an AES decryption flow
AESDECLAST	Perform the last round of an AES decryption flow
AESKEYGENASSIST	Assist in AES round key generation
AESIMC	Assist in AES Inverse Mix Columns
PCLMULQDQ	Carryless multiply (CLMUL).[3]