THE INTEGRATION OF THERMAL AND VISUAL IMAGES FOR HUMAN DETECTION USING DEEP LEARNING

GFM M.Sc. Final Defence

Qiao REN

First Supervisor: Dr. Siavash Hosseinyalamdary

Second Supervisor: Dr. Francesco Nex

Mar 6, 2019

WHY HUMAN DETECTION IS IMPORTANT

- disasters management
- autonomous driving systems
- automated surveillance
- human-robotics interaction

PROBLEM STATEMENT - CHALLENGES

Under-exposure

Persons are too far

Over-exposure

Occlusion

WHY TO INTEGRATE RGB AND THERMAL IMAGES

- RGB: sensitive to illumination
- T: temperature difference is small in summer, low resolution

(d)

4

RESEARCH OBJECTIVE

- Test: different sensor fusion architectures
- Approach: convolutional neural network (CNN)
- Applied in: human detection
- Input: thermal and visual images
- Provide: the most accurate architecture

METHODOLOGY

a) Early Fusion (Pixel-Level Fusion)

b) Late Fusion (Decision-Level Fusion)

- c) kaistT
- d) kaistRGB
- e) cocokittikaistT
- d) cocokittikaistRGB

EARLY FUSION: WHY REPLACE SATURATION BY THERMAL

- definition
 - Hue: which color
 - Lightness or luminance: amount of reflection
 - Saturation: purity
- Replace S by T: because S is the least informative
- Reasons why early is the worst:
- 1)Information loss: from RGB to HLS, replace S by T
- 2) under fitting
- Improvement:
 - 1) Change the code of RetinaNet to make it accept 4 bands
 - 2) Choose a model which accept 4 bands
 - 3) Remove a band from RGB, not from HSL

LATE FUSION

Case 1

LATE FUSION

Case 2

RESULT

cocokittikaist RGB

F1 score of kaistRGB and cocokittikaistRGB

Fl score of kaistT and cocokittikaistT

cocokittikaistT

CONCLUSION

- Late fusion has the best performance:
 - 8.2% better than cocokittikaistRGB
 - 3.9% better than cocokittikaistT
 - 11.2% better than kaistRGB
 - 7.2% better than kaistT
- Early fusion has the worst performance
- Fine-tuned models has better performance than non-fine-tuned models
 - cocokittikaistRGB is 3.0% better than kaistRGB
 - cocokittikaistT is 3.3% better than kaistT
- In kaist dataset, models trained on thermal images has better performance than trained on RGB images
 - kaistT is 4.0% better than kaistRGB
 - cocokittikaistT is 4.3% better than cocokittikaistRGB

cocokittikaistRGB: Blue bounding boxes

cocokittikaistT: Yellow bounding boxes

Late fusion: White bounding boxes. Shown on RGB images

Late fusion: White bounding boxes. Shown on T images

