Аритметични операциы

$$ab + ac = a(b+c);$$
 $a\frac{b}{c} = \frac{ab}{c};$ $\frac{ab + ac}{a} = \frac{a(b+c)}{a} = b+c$

$$\frac{\frac{a}{b}}{\frac{c}{c}} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}; \quad \frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}; \quad \frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$$

$$|a| = \begin{cases} a, & \text{ako } a > 0 \\ 0, & \text{ako } a = 0 \\ -a, & \text{ako } a < 0 \end{cases}$$

Формули за съкратено умножение

$$(x+y)^2 = x + 2xy + y^2; (x-y)^2 = x^2 - 2xy + y^2; (x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3; (x-y)^3 = x^3 - 3x^2y + 3xy^2 - y^3$$

Разлагане на многочлен на множители

$$x^{2} - y^{2} = (x - y)(x + y);$$

$$x^3 - y^3 = (x - y)(x^2 + xy + y^2)$$

$$x^{2} - y^{2} = (x - y)(x + y); x^{3} - y^{3} = (x - y)(x^{2} + xy + y^{2}); x^{3} + y^{3} = (x + y)(x^{2} - xy + y^{2})$$

a	r	r > 0	r < 0	$r_1 \geq r_2$
a	> 1	$a^r > 1$	$a^r < 1$	$a^{\gamma} > a^{\gamma}$
0 <	a < 1	$a^r < 1$	$a^r > 1$	$a^{r_1} < a^{r_2}$

Закони за степенуване и коренуване

and the same of the same	<i>n</i> -ти степени	n -ти корени; $n \in N$, $a \ge 0$
a	$a^{n}(a^{0}=1, a^{-1}=\frac{1}{a})$	$\sqrt[n]{a} = a^{\frac{1}{n}}$
a b	$(ab)^n = a^n b^n$	$\sqrt[n]{ab} = \sqrt[n]{a}\sqrt[n]{b}$
$\frac{a}{b}$, $b \neq 0$	$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$	$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$
a ^m	$(a^m)^n = a^{mn}$	$\sqrt[n]{a^m} = a^{\frac{m}{n}}$
$\sqrt[m]{a}$, $m \in N$	$\left(\sqrt[m]{a}\right)^n = \sqrt[m]{a^n} = a^{\frac{n}{m}}$	$\sqrt[n]{m/a} = \sqrt[m]{n/a} = \frac{1}{a^m} \frac{1}{n} = \sqrt[mn]{a}$

	or obe crement in Robellin C	равии основи
	Степени	Корени: $m, n \in N$, $a \ge 0$
Умножение	$a^m a^n = a^{m+n}$	$\sqrt[m]{a}\sqrt[n]{a} = a^{\frac{1}{m}}a^{\frac{1}{n}} = a^{\frac{1}{m}+\frac{1}{n}} = a^{\frac{m+n}{mn}} = a^{\frac{m+n}{mn}}$
Деление при $a \neq 0$	$\frac{a^m}{a^n} = a^{m-n}$	$\frac{\sqrt[m]{a}}{\sqrt[n]{a}} = \frac{1}{a^m} = \frac{1}{a$
Линейна комбинация от степени и корени; $p, q = \text{const}$	$p a^n \pm q a^n = (p \pm q) a^n$	$p\sqrt[n]{a} \pm q\sqrt[n]{a} = (p \pm q)\sqrt[n]{a}$

Логаритмуване на реални числа

$$\log_a b = c \iff a^c = b$$
, където $a, b, c \in R, b > 0, a > 0, a \neq 1$;

$$a^{\log_a b}=b$$
; $\log_a a=1$; $\log_a a^{\pm b}=\pm b$; $\log_a 1=0$ Свойства на логаритмуването: Ако $a,b,c,n\in R;a\geq 0,a\neq 1$ и $b\geq 0,c\geq 0$, то

$$\log_a(b\,c) = \log_a b + \log_a c; \qquad \log_a \frac{b}{c} = \log_a b - \log_a c; \qquad \log_a b^n = n\log_a b; \qquad \log_a b = \frac{1}{n}\log_a b, \quad n \neq 0;$$

$$\log_a c = \log_b c \cdot \log_a b \Leftrightarrow \log_b c = \frac{\log_a c}{\log_a b}, \ b \neq 1; \qquad \log_a a = 1 = \log_b a \cdot \log_a b \Leftrightarrow \log_b a = \frac{1}{\log_a b}, b \neq 1.$$

 $\log_a(b \pm c)$ не се логаритмува.

Десетичен логаритъм: $\log_{10} b = \lg b$; $\lg 10 = 1$; $\lg 10^{-b} = \pm b$.

Антилогаритмуване (премахване на логаритъма)

$$\log_a b = c \Leftrightarrow a^c = b$$
, кълето $a,b,c \in R$; $b \ge 0$, $a \ge 0$, $a \ne 1$; $\log_a b = \log_a c \Leftrightarrow b = c$; $\log_a b \ge \log_a c \Leftrightarrow \begin{cases} b > c \text{, aкo } a \ge 1 \\ b < c \text{, ako } 0 < a \le 1 \end{cases}$

ГЕОМЕТРИЯ

ПЕРИМЕТРИ И ЛИЦА НА РАВНИННИ ФИГУРИ

$$P = a + b + c$$

$$P = \frac{P}{2} = \frac{a + b + c}{2}$$

Четириъгълник

$$P = a + b + c + d$$

$$S = \frac{d_1 d_2 \sin \varphi}{2}$$

$$S = \frac{bc \sin\alpha}{2} = \frac{ac \sin\beta}{2} = \frac{ab \sin\gamma}{2}$$

$$S = \frac{a^2 \sin\beta \sin\gamma}{2 \sin\alpha} = \frac{b^2 \sin\alpha \sin\gamma}{2 \sin\beta} = \frac{c^2 \sin\alpha \sin\beta}{2 \sin\gamma}$$

Успоредник

$$P = 2a + 2b$$

$$S = ah_a = bh_b$$

$$S = ab \sin \alpha = \frac{d_1 d_2 \sin \varphi}{2}$$

$$S = \frac{ah_a}{2} = \frac{bh_b}{2} = \frac{ch_c}{2}$$

Правоъгълник

$$S = pr = \frac{a+b+c}{2}r$$

Ромб

$$P = 4a$$

$$S = ah = a^2 \sin \alpha = \frac{d_1 d_2}{2}$$

 $S = \frac{abc}{4R}$

Квадрат

$$P = 4a$$

$$S = a^2$$

$$S = (p - a)r_a = (p - b)r_b =$$

= $(p - c)r_c$

Трапец

$$P = a + b + c + d$$

$$S = \frac{a+b}{2}h = \frac{d_1d_2\sin\phi}{2}$$

Правоъгълен триъгълник

$$S = \frac{ab}{2} = \frac{ch_c}{2}$$

Правилен многоъгълник

$$P = na; \quad p = \frac{P}{2}$$
 nar

$$S = pr = \frac{nar}{2}$$

Равнобедрен триъгълник

$$P = 2b + a$$

$$S = \frac{ah_a}{2} = \frac{b^2 \sin \gamma}{2}$$

Окръжност и кръг

$$P=C=2\pi r$$

$$S = \pi r^2$$

Равностранен триъгълник

$$P = 3a; S = \frac{a^2 \sqrt{3}}{4}$$

Аритметична прогресия

Формула за общия член

Геометрична прогресия

$$a_n = a_1 + (n-1)d, n \ge 2$$

 $a_n = a_1 q^{n-1}, \ n \ge 2, \ a_1 \ne 0, \ q \ne 0$

Свойства на членовете на прогресията (k — номер на члена, $k \in N$, $1 < k \le n$)

1)
$$a_k = \frac{a_{k-1} + a_{k+1}}{2}$$

 a_k — средно аритметичен член на a_{k-1} и a_{k+1}

2) $a_1 + a_n = a_2 + a_{n-1} = \ldots = a_k + a_{n-k+1}$

1) $a_k^2 = a_{k-1}a_{k+1}$

 a_k — средно геометричен член на a_{k-1} и a_{k+1}

2) $a_1a_n = a_2a_{n-1} = \ldots = a_ka_{n-k+1}$

Частична сума на първите п члена

$$S_n = \frac{a_1 + a_n}{2} n = \frac{2a_1 + (n-1)d}{2} n$$

$$S_n = \frac{a_1 - a_n q}{1 - q} = a_1 \frac{1 - q^n}{1 - q}$$

прогресия: $S = \lim_{n \to \infty} S_n = S = \frac{a_1}{1 - q}, |q| < 1$

основни теореми за пресмятане на граници на функции

AKO $\lim_{x \to x_0} f(x) = A$, $\lim_{x \to x_0} (x) = B$, TO: $\lim_{x \to x_0} |f(x)| = |A|$; $\lim_{x \to x_0} C = C$, C = const; $\lim_{x \to x_0} C f(x) = C \lim_{x \to x_0} |f(x)| = C A$.

$$\lim_{x \to x_0} [f(x) \pm \varphi(x)] = A \pm B ;$$

$$\lim_{x\to\infty} [f(x)\varphi(x)] = AB;$$

$$\lim_{x \to x_0} \frac{f(x)}{\varphi(x)} = \frac{A}{B}; \quad \varphi(x) = 0, \ B = 0$$

НЯКОИ СТАНДАРТНИ ГРАНИЦИ

 $\lim_{x \to \infty} \frac{1}{x} = 0, \quad \lim_{x \to 0} \frac{1}{x} = \infty, \quad \lim_{x \to 0} \frac{\sin x}{x} = 1, \quad \lim_{x \to \infty} \frac{a_m x^m + ... + a_0}{b_n x^n + ... + b_0} = \begin{cases} \frac{a_m}{b_n}, \text{ and } m = n, \text{ където } a_m = 0, b_m = 0 \end{cases}$

ПРАВИЛА ЗА ДИФЕРЕНЦИРАНЕ

y = f(x), u = u(x), v = v(x); 1) Ako $y = u \pm v \pm ..., \text{ To } y' = u' \pm v' \pm ...;$

2) Ако y=cu , то y'=cu' (Ако y=cx , то y'=c) , където $c={\rm const}$;

3) Ako y = uv, to y' = u'v + v'u; 4) Ako $y = \frac{u}{v}$, to $y' = \frac{u'v - v'u}{v^2}$;

5) Ако y=u(v(x)) , то y'=u'(v(x))v'(x) — производна на сложна (съставна) функция

ТАБЛИЦА ЗА ПРОИЗВОДНИТЕ НА НЯКОИ ЕЛЕМЕНТАРНИ ФУНКЦИИ y = f(x)

Функция у	c = const	ex	xn	sin x	cos x	tg x	cotg x
Производна у	0	c	$n \times^{n-1}$	COS X	- sin x	$\frac{1}{\cos^2 x}$	$-\frac{1}{\sin^2 x}$

КОМПЛЕКСНИ ЧИСЛА

Алгебричен вид: z=x+iy, $i^2=-1$; спрегнати комплексни числа: z=x+iy и $\overline{z}=x-iy$.

 $\mathsf{AKO}\,\,z_1 = x_1 + i\,y_1\,,\, z_2 = x_2 + i\,y_2\,,\,\, \mathsf{TO};\,\,\, z_1 = z_2 \Leftrightarrow x_1 = x_2\,,\,\, y_1 = y_2\,\,;\,\,\, z_1 \pm z_2 = \left(x_1 + i\,y_1\right) \pm \left(x_2 + i\,y_2\right) = \left(x_1 \pm x_2\right) + i\left(y_1 \pm y_2\right) \mp \left(x_2 + i\,y_2\right) + \left(x_2$ $z_1 z_2 = (x_1 + i \ y_1) \ (x_2 + i \ y_2) = x_1 \ x_2 - y_1 \ y_2 + i \ (x_1 \ y_2 + x_2 \ y_1); \qquad \frac{z_1}{z_2} - \frac{x_1 + i \ y_1}{x_2 + i \ y_2} - \frac{x_1 + i \ y_1}{x_2 + i \ y_2} - \frac{x_2 - i \ y_2}{x_1 - i \ y_1} - \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + i \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2}$

Тригонометричен вид: $z = r(\cos\varphi + i\sin\varphi); \quad z'' = r''(\cos n\varphi + i\sin n\varphi), \quad \sqrt[q]{z} = \sqrt[q]{r} \left[\cos \frac{\varphi + 2k\pi}{n} + i\sin \frac{\varphi + 2k\pi}{n}\right].$

Експоненциален вид: $z=r\,e^{i\phi}$; $e^{i\phi}=\cos\varphi+i\sin\varphi$, където e =2,7182 - Неперово (натурално) число.

ГЕОМЕТРИЯ

ЛИЦА НА ПОВЪРХНИНИ И ОБЕМИ НА РЪБЕСТИ И ВАЛЧЕСТИ ТЕЛА

P	ъбести тела		ВАЛЧЕСТИ ТЕЛА
	Призма $S_{os} = P^{s}l$ $S_{n} = S_{os} + 2S$ $V = S^{s}l$ P^{s},S^{s} — периметър и лице на перпендикулярното сечение		Кръгов цилиндър $S_{OK}=Pl=Cl=2\pi rl$ $S_n=S_{OK}+2S=2\pi r(l+r)$ $V=Sh=\pi r^2h$
l=h	Правилна призма $S_{OK} = Ph = nah$ $S_n = S_{OK} + 2S$ $V = Sh$	h=l	Прав кръгов цилиндър $S_{o\kappa} = Ph = Ch = 2\pi rh$ $S_n = S_{o\kappa} + 2S = 2\pi r(h+r)$ $V = Sh = \pi r^2 h$
C C C C C C C C C C C C C C C C C C C	Правоъгълен паралелепипед $S_{okh} = Ph = 2(a + b)c$ $S_n = S_{ok} + 2S = 2(ab + bc + ca)$ $V = Sh = abc$		Table of Bullians
a a	Ky6 $S_{o\kappa} = Ph = 4a^{2}$ $S_{n} = S_{o\kappa} + 2S = 6a^{2}$ $V = Sh = a^{3}$	h-l-2r	Равностранен цилиндър $S_{ok}=Ph=Ch=4\pi r^2$ $S_n=S_{ok}+2S$ $V=Sh=2\pi r^3$
J.	Пирамида $S_n = S_{ok} + S$ $V = \frac{Sh}{3}$	h	Кръгов конус $S_n = S_{o\kappa} + S$ $V = \frac{Sh}{3} = \frac{\pi r^2 h}{3}$
	Правилна пирамида $S_{OK} = \frac{Ph'}{2} = \frac{nah'}{2}$ $S_n = S_{OK} + S$ $V = \frac{Sh}{3}$	h l	Прав кръгов конус $S_{o\kappa} = \frac{Pl}{2} = \frac{Cl}{2} = \pi rl$ $S_n = S_{o\kappa} + S = \pi r(l+r)$ $V = \frac{Sh}{3} = \frac{\pi r^2 h}{3}$
h	Пресечена пирамида $S_n = S_{oK} + S + S_1$ $V = \frac{h}{3} \left(S + S_1 + \sqrt{SS_1} \right)$	h 15:3	Пресечен кръгов конуе $S_n = S_{ox} + S + S_1$ $V = \frac{h}{3} \left(S + S_1 + \sqrt{SS_1} \right) = \frac{\pi h}{3} \left(r^2 + r_1^2 + r_2 r_1 \right)$
	Правилна пресечена пирамида $S_{OK} = \frac{P + P_1}{2}h' = \frac{n(a + a_1)}{2}h'$ $S_n = S_{OK} + S + S_1$ $V = \frac{h}{3}(S + S_1 + \sqrt{SS_1})$	h h	Прав кръгов пресечен конус $S_{ok} = \frac{(P+P_1)t}{2} = \frac{(C+C_1)t}{2} = \pi(r+r_1)t$ $S_n = S_{ok} + S_1 + S_1 = \pi[(r+r_1)t + r^2 + r_1^2]$ $V = \frac{h}{3}(S+S_1 + \sqrt{S_1}) = \frac{\pi h}{3}(r^2 + r_1^2 + r_1)$
		(Сфера (кълбо) $S = 4\pi r^2$ $V = \frac{4}{3}\pi r^3$

7/3РЕЛОСТЕН И КАНДИДАТ-СТУДЕНТСКИ КУРС ПО МАТЕМАТИКА

с теорията и всички видове решени основни и конкурсни задачи от 8 до 12 клас

ВСИЧКИ РЕШЕНИ МАТУРИ!

ВАЖНИ ЗА ОТЛИЧНИЯ УСПЕХ НА ВСИЧКИ!

ученици, зрелостници, кандидат-студенти

ИК "ВЕГА 74"

ВАЖНО ЗА УСПЕХА НА ВСИЧКИ!

учЕНИЦИ, КАНДИДАТСВАЩИ В ЕЗИКОВИ, МАТЕМАТИЧЕСКИ ГИМНАЗИИ И ТЕХНИКУМИ, ЗРЕЛОСТНИЦИ, КАНДИДАТ-СТУДЕНТИ И СТУДЕНТИ

КУПЕТЕ СИ ПЕЧАТНИТЕ ИЗДАНИЯ НА ИК "ВЕГА 74"! Гел. 02-983-29-87, 0878-83-9797, 0898-34-07-17; ikvega74@yahoo.com

1. "МАТЕМАТИКА ЗА ПРЕДУЧИЛИЩНА ГРУПА И 1 КЛАС"-

с всички видове решени задачи и съответни задачи за самостоятелна работа - учебно помагало за първокласнишите и годямо удеснение за родителите!

Автори: Боряна Дачева Милкоева, Христина Стоянова Беева, Дачо Стоянов Беев

- 2, "КУРС ПО МАТЕМАТИКА ЗА 2, 3 и 4 КЛАС"-с теорията и всички видовеосновни и колкурсни решени задачи и с конкурсните теми и тестове, давани на приемии изпити, одимпиади и математически състезания (турнири).
- Автори: Борина Дачева Милкоева, Христина Стоянова Беева, Дачо Стоянов Беев 3. "КУРС ПО МАТЕМАТИКА ЗА 5 и 6 КЛАС"- с теорията и всички видове основни и конкурсии решени задачи и с конкурсните теми и тестове, давани на приемни изпити, олимпиади и математически състезания (турнири).

Автори: Борина Дачева Милкоева, Христина Стоянова Беева, Дачо Стоянов Беев 4. "КУРС ПО МАТЕМАТИКА ЗА 7 КЛАС"- с теорията и всички видове

- основни и конкурсти решени задачи и с конкурсните теми и тестове, давани на присмии изпити, одимпнади и математически състезания (турнири) - учебно по
- 6. "МАТЕМАТИКА ЗА 11-12 КЛАС"- одобрена от МОН с всички видове решени залачи от 8, 9, 10, 11 и 12 клас и с венчки вилове решени конкурски залачи
- 7. "ЗРЕЛОСТНИ И КАНДИДАТ-СТУДЕНТСКИ ТЕСТОВЕ И ТЕМИ ПО МАТЕМАТИКА" - И част

Автори: Боряна Дачева Милкоева, Христина Стоянова Беева, Дачо Стоянов Беев

8. "СПРАВОЧНИК ПО ФИЗИКА И АСТРОНОМИЯ"

4 до 8 клас и по раздели - от 9 до 12 клас.

Автори: Борина Дачева Милкоева, Дачо Стоянов Беев

9. "СИМПЛЕКС - МЕТОД И ТРАНСПОРТНА ЗАДАЧА"-

с алгоритми и всички видове решени основни задачи, давани на изпити.

Автори: Боряна Дачева Милкоева, Христина Стоянова Беева

10. "ВИСША МАТЕМАТИКА" - с всички видове решени задачи от полиноми. комплексни числа и аналитична геометрия в равнината.

Автори: Боряна Дачева Милкоева, Костадин Стоянов Беев

11. "MATHEMATICAL HANDBOOK" - математически справочник на английски език за кандидатите за SAT I, SAT II и за студенти - с формули по елементарна и висша математика, статистика, дискретна и финансова математика. Автори: Боряна Дачева Милкоева, Стоян Костадинов Беев

Цена: 20 лв.

N P. I. 04-1047/31, 12, 2003 c. MATEMATHKA 28 11 -12 KING Умейнето почитало е с решени задачи към одобрената от МОН със заповед

на прелостви и кандидат-студентски изпити по математика за отличиа полготовка и постигане с гаранция на най-висок успех

1. "МАТЕМАТИКА ЗА 11-12 КЛАС"- одобрена от МОН, с теорията и с всички ведем решени основни задачи от 8, 9, 10, 11 и 12 клас и от разделите по и с всички решени матура. решени конкурсни задачи, дакани на эрслостни и кандидат-студентски излити. Комбинаториял, Теория на вереитностите и Статистика и с вемчки видове

чтор: Боряна Д. Милкоева

МАТЕМАТИКА" - II част, с даваните тестове и теми във всички висши 1. -ЗРЕПОСТНИ И КАНДИДАТ-СТУДЕНТСКИ ТЕСТОВЕ И ТЕМИ ПО учебни заведения и колежи, и на эсички държавни зрелостни изпити

Антори: Боряна Д. Милкоева, Христина Ст. Беева, Дачо Ст. Беев

- формули, графики, таблици и чертски по слементарна математика, подреден по класове от 1 до 8 клас и по раздели от 9 до 12 клас. 3. "МАТЕМАТИЧЕСКИ СПРАВОЧНИК" - одобрен от МОН, с всички
- всячки изучавани формули по елементарна и висша математика. и за студенти - с цялата терминалогия по математика на английски език и с 4. "MATHEMATICAL HANDBOOK" - математически справочник на чатори: Боряна Д. Милкоева, Дачо Ст. Беев, Христина Ст. Беева по статистика и по лискретна, и финансова математика англияски език за ученици, кандидат-студенти, кандидати за SAT I, SAT II

Ten. 02-983-29-87, 02-983-9797, 0898-34-07-17, 0878-83-97-97

Редактори: д-р Костадин Беев и Кристина Беева

Рецензенти ст.н.с. I ст. д.п.н. Йорлан Табов, Здравка Поплазарова

 ИК "Вега 74", 2009. Всички права запазени! Боряна Лачева Милкоева, Христина Стоянова Беева, Дачо Стоянов Беев

ISBN 978-954-8101-06-6

ХРИСТИНА СТОЯНОВА БЕЕВА, ДАЧО СТОЯНОВ БЕЕВ БОРЯНА ЛАЧЕВА МИЛКОЕВА

КАНДИДАТ - СТУДЕНТСКИ КУРС ПО МАТЕМАТИКА 3PEJIOCTEH I

с теорията и всички видове решени основни и конкурсни задачи от 8 до 12 клас

I част

ВСИЧКИ РЕШЕНИ МАТУРИ!

ВАЖНО ЗА УСПЕХА НА ВСИЧКИ!

УЧЕНИЦИ, ЗРЕЛОСТНИЦИ, КАНДИДАТ-СТУДЕНТИ

СЪДЪРЖАНИЕ

АЛГЕБРА

	Линейни, дробно-линейни и квадратна функция на една независима променлива. Линейни, дробно-линейни и квадратни уравнения и неравенства. Биквадратии уравнения. Дробно-рационални неравенства с едно неизвестно.	6
	Функции, съдържащи модули и ирационални функции на една независима променлива. Модулни и ирационални уравнения и неравенства	25
	неравенства	40
	неравенства	47
5.	Тригонометрични функции, тъждества, уравнения и неравенства	66
-	Системи от две уравнения с две неизвестни	89
7.	Комбинаторика	92
8.	Безкрайни числови редици - видове и основни принципи. Аритметична прогресия	101
9.	Граница на безкрайна числова редица. Свойства на сходящите редици и действия с тях.	110
	Сума на безкрайна малка геометрична прогресия	119
	Преговор върху безкрайни числови редици	124
12.	Преговор върху числови функции на една независима променлива - свойства и граници. Производна на функция. Правила за диференциране	131
13.	Производна на функция. Правила за диференциране	
14.	Втора производна на функция	138
15.	Монотонност на функция	146
	Локални екстремуми на функция	151
	Най-голяма и най-малка стойност на функция	
	Изследване на функции	174
19.	Преговор върху производни и изследване на функции на една независима променлива.	205
	ГЕОМЕТРИЯ	
	Планиметрия	220
	Някои геометрични места на точки в равнината. Геометрични построения с помоща на	
	линия и пергел в равнината	238
		259
4.		263
	Векторни бази	274
	AKCHOMIN Ha CICDCOMCIDIATA	
A (80)		
	Успоредност	276 281
8.	Успоредност	276 281 288
8. 9.	Успоредност	276 281 288 291
8. 9. 10.	Успоредност	276 281 288 291 300
8. 9. 10. 11.	Успоредност	276 281 288 291 300 312
8. 9. 10. 11. 12.	Успоредност	276 281 288 291 300 312 330
8. 9. 10. 11. 12. 13.	Успоредност	276 281 288 291 300 312 330 338
8. 9. 10. 11. 12. 13. 14.	Успоредност	276 281 288 291 300 312 330 338 346
8. 9. 10. 11. 12. 13. 14. 15.	Успоредност	276 281 288 291 300 312 330 338 346 384
8. 9. 10. 11. 12. 13. 14. 15. 16.	Успоредност	276 281 288 291 300 312 330 338 346 354 363
8. 9. 10. 11. 12. 13. 14. 15. 16. 17.	Успоредност	276 281 288 291 300 312 330 338 346 384
8. 9. 10. 11. 12. 13. 14. 15. 16. 17.	Успоредно проектиране	276 281 288 291 300 312 330 338 346 354 363
8. 9. 10. 11. 12. 13. 14. 15. 16. 17.	Успоредност	276 281 288 291 300 312 330 338 346 354 363 373
8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.	Успоредност	276 281 288 291 300 312 330 338 346 354 363 373
8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19.	Успоредност	276 281 288 291 300 312 330 338 346 354 363 373 384 391
8. 9. 110. 111. 112. 113. 114. 115. 116. 117. 118. 119. 221. 222. 223.	Успоредност Перпендикулярност Успоредно проектиране Ортогонално проектиране Бгли в пространството Ръбести тела (многостени) — сечения, лица на повърхнини и обеми Дължина на окръжност Лице на кръг Лице на повърхнина и обем на правоъгълен паралелепипед Лице на повърхнина и обем на призма. Лице на повърхнина и обем на пирамида. Лице на повърхнина и обем на пирамида. Преговор върху дължина на окръжност, лице на кръг, лица на повърхнини и обеми на ръбести тела (многостени) Кръгов цилиндър Кръгов конус Кръгов пресечен конус Сфера и кълбо	276 281 288 291 300 312 330 338 346 354 363 373 384 391 406 414
8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24.	Успоредност	276 281 288 291 300 312 330 338 346 354 363 373 384 391 406 414 425
8. 9. 110. 111. 112. 113. 114. 115. 116. 117. 118. 119. 221. 222. 223. 224. 225.	Успоредност	276 281 288 291 300 312 330 338 363 363 373 384 391 399 406 414 425 439
8. 9. 110. 111. 112. 113. 114. 115. 116. 117. 118. 119. 221. 222. 223. 224. 225.	Успоредност	276 281 288 291 300 312 330 338 346 354 363 373 384 391 406 414 425