ECE 527 SoC Design Machine Problem 1

Andrew Smith and Thomas Furlong

1. INTRODUCTION

This MP was designed to become familiar with the Xilinx tools. We set up the development environment on a lightweight ubuntu distribution and interfaced with the ZedBoard. We walked through the compilation process as well as practiced incorporating the Zynq hard IP core into the design by generating a Board Support Package and writing software in the Xilinx SDK.

2. Part A

2.1. Description

For the first part of the MP we had to write a small verilog module for the programmable logic fabric portion of the Xilinx Zinq 7000 chip. This module needs to read the positions of the 8 on board switches and display the switch position on the 8 user LEDs. The switch status was displayed on the LEDs after 3 clock cycles and the center button was used as a reset.

2.2. Assumptions

We did not have to make any assumptions for this part of the MP as the directions were very straight forward.

2.3. System Configuration

The part A of the machine problem was very simple so we only needed one module in the programmable logic fabric. This module took in inputs from the switches, a single input from the reset button, and a clock. The module output a vector to the LEDs containing information on the switch state. The module contained three buffering registers to ensure that the switch state appeared on the LEDs after exactly 3 clock cycles. The module is shown in figure 1.

2.4. Entities

Entity	Description
basic_i_o	Hardware top level, contains pipeline

2.5. Design

When designing we only considered one solution. Using a pipeline to transfer switch state information to

Figure 1. Block Diagram for Part A

the LEDs. This would ensure that the LEDs were updated with switch information after exactly 3 cycles for every change in the switches. Had we used a counter or other option it would have more complex logic and been harder to guarantee the LEDs were updated after 3 cycles.

2.6. Performance

This was a very small design and it took up very little resources on the Zinq 7000. The usage is shown in the table below. Figure 2 shows how the design was implemented on the device.

Table 1. Resource Usage Part A

Resource	Utilization	Available	Utilization %
LUT	1	53200	0.01
FF	24	106400	0.02
IO	18	200	9.00
BUFG	1	32	3.13

Because this design used minimal logic most of the power consumed by the device was static power. As the transistors were mostly siting idle across the programmable logic fabric.

2.7. Selecting a Template (Heading 2)

First, confirm that you have the correct template for your paper size. This template has been tailored for output on the US-letter paper size. Please do not use

Figure 2. Device Mapping for Part A

Table 2. Resource Usage Part A

Type	Power	
Static	0.122 W	
Dynamic	0.007 W	
Total	0.129 W	

it for A4 paper since the margin requirements for A4 papers may be different from Letter paper size.

2.8. Maintaining the Integrity of the Specifications

The template is used to format your paper and style the text. All margins, column widths, line spaces, and text fonts are prescribed; please do not alter them. You may note peculiarities. For example, the head margin in this template measures proportionately more than is customary. This measurement and others are deliberate, using specifications that anticipate your paper as one part of the entire proceedings, and not as an independent document. Please do not revise any of the current designations

3. MATH

Before you begin to format your paper, first write and save the content as a separate text file. Keep your text and graphic files separate until after the text has been formatted and styled. Do not use hard tabs, and limit use of hard returns to only one return at the end of a paragraph. Do not add any kind of pagination anywhere in the paper. Do not number text heads-the template will do that for you.

Finally, complete content and organizational editing before formatting. Please take note of the following items when proofreading spelling and grammar:

3.1. Abbreviations and Acronyms

Define abbreviations and acronyms the first time they are used in the text, even after they have been defined in the abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc, and rms do not have to be defined. Do not use abbreviations in the title or heads unless they are unavoidable.

3.2. Units

- Use either SI (MKS) or CGS as primary units. (SI units are encouraged.) English units may be used as secondary units (in parentheses). An exception would be the use of English units as identifiers in trade, such as 3.5-inch disk drive.
- Avoid combining SI and CGS units, such as current in amperes and magnetic field in oersteds.
 This often leads to confusion because equations do not balance dimensionally. If you must use mixed units, clearly state the units for each quantity that you use in an equation.
- Do not mix complete spellings and abbreviations of units: Wb/m2 or webers per square meter, not webers/m2. Spell out units when they appear in text: . . . a few henries, not . . . a few H.
- Use a zero before decimal points: 0.25, not .25. Use cm3, not cc. (bullet list)

3.3. Equations

The equations are an exception to the prescribed specifications of this template. You will need to determine whether or not your equation should be typed using either the Times New Roman or the Symbol font (please no other font). To create multileveled equations, it may be necessary to treat the equation as a graphic and insert it into the text after your paper is styled. Number equations consecutively. Equation numbers, within parentheses, are to position flush right, as in (1), using a right tab stop. To make your equations more compact, you may use the solidus (/), the exp function, or appropriate exponents. Italicize Roman symbols for quantities and variables, but not Greek symbols. Use a long dash rather than a hyphen for a minus sign. Punctuate equations with commas or periods when they are part of a sentence, as in

$$\alpha + \beta = \chi \tag{1}$$

Note that the equation is centered using a center tab stop. Be sure that the symbols in your equation have been defined before or immediately following the equation. Use (1), not Eq. (1) or equation (1), except at the beginning of a sentence: Equation (1) is . . .

3.4. Some Common Mistakes

- The word data is plural, not singular.
- The subscript for the permeability of vacuum ?0, and other common scientific constants, is zero with subscript formatting, not a lowercase letter o.
- In American English, commas, semi-/colons, periods, question and exclamation marks are located within quotation marks only when a complete thought or name is cited, such as a title or full quotation. When quotation marks are used, instead of a bold or italic typeface, to highlight a word or phrase, punctuation should appear outside of the quotation marks. A parenthetical phrase or statement at the end of a sentence is punctuated outside of the closing parenthesis (like this). (A parenthetical sentence is punctuated within the parentheses.)
- A graph within a graph is an inset, not an insert.
 The word alternatively is preferred to the word alternately (unless you really mean something that alternates).
- Do not use the word essentially to mean approximately or effectively.
- In your paper title, if the words that uses can accurately replace the word using, capitalize the u; if not, keep using lower-cased.
- Be aware of the different meanings of the homophones affect and effect, complement and compliment, discreet and discrete, principal and principle.
- Do not confuse imply and infer.
- The prefix non is not a word; it should be joined to the word it modifies, usually without a hyphen.
- There is no period after the et in the Latin abbreviation et al..
- The abbreviation i.e. means that is, and the abbreviation e.g. means for example.

4. USING THE TEMPLATE

Use this sample document as your LaTeX source file to create your document. Save this file as **root.tex**. You have to make sure to use the cls file that came with this distribution. If you use a different style file, you cannot expect to get required margins. Note also that when you are creating your out PDF file, the source file is only part of the equation. Your $T_EX o PDF$ filter determines the output file size. Even if you make all the specifications to output a letter file in the source - if you filter is set to produce A4, you will only get A4 output.

It is impossible to account for all possible situation, one would encounter using TeX. If you are using multiple TeX files you must make sure that the "MAIN" source file is called root.tex - this is particularly important if your conference is using PaperPlaza's built in TeX to PDF conversion tool.

4.1. Headings, etc

Text heads organize the topics on a relational, hierarchical basis. For example, the paper title is the primary text head because all subsequent material relates and elaborates on this one topic. If there are two or more sub-topics, the next level head (uppercase Roman numerals) should be used and, conversely, if there are not at least two sub-topics, then no subheads should be introduced. Styles named Heading 1, Heading 2, Heading 3, and Heading 4 are prescribed.

4.2. Figures and Tables

Positioning Figures and Tables: Place figures and tables at the top and bottom of columns. Avoid placing them in the middle of columns. Large figures and tables may span across both columns. Figure captions should be below the figures; table heads should appear above the tables. Insert figures and tables after they are cited in the text. Use the abbreviation Fig. 1, even at the beginning of a sentence.

Table 3. An Example of a Table

One	Two	
Three	Four	

П

Figure 3. Inductance of oscillation winding on amorphous magnetic core versus DC bias magnetic field

Figure Labels: Use 8 point Times New Roman for Figure labels. Use words rather than symbols or abbreviations when writing Figure axis labels to avoid confusing the reader. As an example, write the quantity Magnetization, or Magnetization, M, not just M. If including units in the label, present them within parentheses. Do not label axes only with units. In the example, write Magnetization (A/m) or Magnetization A[m(1)], not just A/m. Do not label axes with a ratio of quantities and units. For example, write Temperature (K), not Temperature/K.

5. CONCLUSIONS

A conclusion section is not required. Although a conclusion may review the main points of the paper, do not replicate the abstract as the conclusion. A conclusion might elaborate on the importance of the work or suggest applications and extensions.

APPENDIX

Appendixes should appear before the acknowledgment.

ACKNOWLEDGMENT

The preferred spelling of the word acknowledgment in America is without an e after the g. Avoid the stilted expression, One of us (R. B. G.) thanks . . . Instead, try R. B. G. thanks. Put sponsor acknowledgments in the unnumbered footnote on the first page.

References are important to the reader; therefore, each citation must be complete and correct. If at all possible, references should be commonly available publications.

References

- [1] G. O. Young, Synthetic structure of industrial plastics (Book style with paper title and editor), in Plastics, 2nd ed. vol. 3, J. Peters, Ed. New York: McGraw-Hill, 1964, pp. 1564.
- [2] W.-K. Chen, Linear Networks and Systems (Book style).Belmont, CA: Wadsworth, 1993, pp. 123135.
- [3] H. Poor, An Introduction to Signal Detection and Estimation. New York: Springer-Verlag, 1985, ch. 4.
- [4] B. Smith, An approach to graphs of linear forms (Unpublished work style), unpublished.
- [5] E. H. Miller, A note on reflector arrays (Periodical styleAccepted for publication), IEEE Trans. Antennas Propagat., to be publised.
- [6] J. Wang, Fundamentals of erbium-doped fiber amplifiers arrays (Periodical styleSubmitted for publication), IEEE J. Quantum Electron., submitted for publication.
- [7] C. J. Kaufman, Rocky Mountain Research Lab., Boulder, CO, private communication, May 1995.
- [8] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, Electron spectroscopy studies on magneto-optical media and plastic substrate interfaces(Translation Journals style), IEEE Transl. J. Magn.Jpn., vol. 2, Aug. 1987, pp. 740741 [Dig. 9th Annu. Conf. Magnetics Japan, 1982, p. 301].
- [9] M. Young, The Techincal Writers Handbook. Mill Valley, CA: University Science, 1989.
- [10] J. U. Duncombe, Infrared navigationPart I: An assessment of feasibility (Periodical style), IEEE Trans. Electron Devices, vol. ED-11, pp. 3439, Jan. 1959.
- [11] S. Chen, B. Mulgrew, and P. M. Grant, A clustering technique for digital communications channel equalization using radial basis function networks, IEEE Trans. Neural Networks, vol. 4, pp. 570578, July 1993.

- [12] R. W. Lucky, Automatic equalization for digital communication, Bell Syst. Tech. J., vol. 44, no. 4, pp. 547588, Apr. 1965.
- [13] S. P. Bingulac, On the compatibility of adaptive controllers (Published Conference Proceedings style), in Proc. 4th Annu. Allerton Conf. Circuits and Systems Theory, New York, 1994, pp. 816.
- [14] G. R. Faulhaber, Design of service systems with priority reservation, in Conf. Rec. 1995 IEEE Int. Conf. Communications, pp. 38.
- [15] W. D. Doyle, Magnetization reversal in films with biaxial anisotropy, in 1987 Proc. INTERMAG Conf., pp. 2.2-12.2-6.
- [16] G. W. Juette and L. E. Zeffanella, Radio noise currents n short sections on bundle conductors (Presented Conference Paper style), presented at the IEEE Summer power Meeting, Dallas, TX, June 2227, 1990, Paper 90 SM 690-0 PWRS.
- [17] J. G. Kreifeldt, An analysis of surface-detected EMG as an amplitude-modulated noise, presented at the 1989 Int. Conf. Medicine and Biological Engineering, Chicago, IL.
- [18] J. Williams, Narrow-band analyzer (Thesis or Dissertation style), Ph.D. dissertation, Dept. Elect. Eng., Harvard Univ., Cambridge, MA, 1993.
- [19] N. Kawasaki, Parametric study of thermal and chemical nonequilibrium nozzle flow, M.S. thesis, Dept. Electron. Eng., Osaka Univ., Osaka, Japan, 1993.
- [20] J. P. Wilkinson, Nonlinear resonant circuit devices (Patent style), U.S. Patent 3 624 12, July 16, 1990.