Análisis de datos longitudinales

Grado en Estadística

Tema 2 – Sesión 5 Análisis de Supervivencia Eventos recurrentes (I)

Juan R González

Departamento de Matemáticas, UAB Instituto de Salud Global de Barcelona, ISGlobal

Data motivation (I)

Wei, Lin, Weidsfeld'89 Bladder cancer data

Questions: Are there differences in disease-free survival between placebo and thiotepa groups? Heterogeneity? Impact of more events?

Data motivation (II)

González and Peña'04 Low grade lymphoma

Question: The sames than previous and How can affect the effect of intervention after each relapse

Background

Single event

- Applied in many areas
 - Sociology, Demography, ...
- Biomedicine (Survival analysis)
 - Engineering (Reliability analysis)
- Data characteristic
 - Time-to-event data
 - Censored data
- Statistical methods
 - Survival function (Kaplan-Meier, Nelson-Aalen)
 - Models: Parametric, Semiparametric (Cox)

Repeated events

- Applied in many areas
 - Sociology, Demography, ...

- Biomedicine (Survival analysis)
- Engineering (Reliability analysis)
- Data characteristic
 - Multiple time-to-events data
 - Censored data
- Statistical methods
 - Survival function (Peña-Strawderman-Hollander, Wang-Chang, Reliability models, ...)
 - Models: Semi-parametric (Coxextended models, Frailty models, Peña-Hollander Model)

Proceso contador

- Un proceso contador es un proceso estocástico {N(t), t ≥ 0} con valores positivos, enteros y crecientes tales que:
 - \bullet N(t) \geq 0
 - N(t) es entero
 - Si s≤t entonces N(s) ≤ N(t')
- Si s<t entonces N(t)-N(s) es el número de eventos que ocurren en el intervalo (s, t]. Ejemplos son los procesos de Poisson y los procesos de renovación
- Dada la tercera propiedad, un proceso contador es creciente, por lo tanto es una martingala. Usando el teorema de Dobb-Meyer, podemos escribir

$$N(t) = M(t) + A(t)$$

Donde M(t) es una martingala y A(t) es un proceso predecible

Procesos contadores

- El análisis de supervivencia se puede expresar como procesos contadores. Observamos T=min(T,Z) C={0,1}
 - Proceso contador: $N(t) = I(T \le t, C = 1)$
 - Proceso a riesgo: $Y(t) = I(Y \ge t)$
 - Proceso de intensidad: $\lambda(t)dt = Y(t)h(t)dt$ con $h(t) = Pr(t \le T < t + dt, C = 1 \mid T \ge t)$
- El estimador de Kaplan-Meier sería:

$$S(t) = \prod_{s < t} 1 - \frac{dN(s)}{Y(s)}$$

Recurrent Events

- \bullet T_1 , T_2 , T_3 , . . . = inter-event or gap times
- \circ S_1 , S_2 , S_3 , . . . = calendar times of event occurrences
- \bullet X(s) = covariate vector, possibly timedependent

- •Accrued History: $F^{\dagger} = \{F^{\dagger}(s) : s \ge 0\}$
- $N^{\dagger}(s) = \text{number of events in } [0, s]$
- $Y^{\dagger}(s) = \text{at-risk indicator at time } s$

Background

Repeated nature causes:

- At risk process
 - Gap time
 - Calendar time
- Within-subject correlation (no i.i.d.)
 - Heterogeneity across individuals
 - Event dependence
- Doubly-indexed processes

(Gill '81, Sellke 88, Peña 00)

Gap time formulation (PWP-GT)

Observed recurrent events

Total time formulation (WLW, PWP-CP)

Within-subject correlation

- Biomedical data (uncontrolled variables, non-measurable variables: genetic susceptibility, ...)
- F non i.i.d.
- There exists a random variable Z with known distribution.
 If we condition to Z=z the interocurrence times are i.i.d.
- Approaches:
 - Variance-corrected models (Cox-based models)
 - Frailty models

Survival function estimators

- Consider only the first, possibly right-censored, observation per unit and use the product-limit estimator (PLE).
 - Loss of information
 - Inefficient
- Ignore the right-censored last observation, and use empirical distribution function (EDF).
 - Leads to bias ("biased sampling")
 - Estimator actually inconsistent

Survival function estimators

Needed: Calendar-Gaptime Space (double indexed Processes)

4

Survival function estimators

$$Z_{i}(s,t) = I\{s - S_{iN_{i}^{\dagger}(s-)} \leq t\} \qquad N_{i}(s,t) = \int_{0}^{s} Z_{i}(v,t) N_{i}^{\dagger}(dv)$$

$$A_{i}(s,t) = \int_{0}^{s} Z_{i}(v,t) A_{i}^{\dagger}(dv)$$

$$M_{i}(s,t) = \int_{0}^{s} Z_{i}(v,t) M_{i}^{\dagger}(dv) = N_{i}(s,t) - A_{i}(s,t)$$

$$Y_{i}(s,t) = \sum_{j=1}^{N_{i}^{\dagger}(s-)} I\{T_{ij} \geq t\} + I\{(s \wedge \tau_{i}) - S_{iN_{i}^{\dagger}(s-)} \geq t\}$$

- $N_i(s,t) = \#$ of events in calendar time [0,s] for the ith unit with gaptimes at most t
- $Y_i(s,t)$ = number of events in [0,s] for the ith unit with gaptimes at least t.

Survival function estimators

Ver artículo Gonzalez and Peña, 2004

Peña-Strawderman-Hollander'01 (GPLE) (i.i.d. model)

$$\left|\hat{\bar{F}}(s,t) = \prod_{w \leq t} \left[1 - \hat{\Lambda}(s,\mathrm{d}w)\right] = \prod_{w \leq t} \left[1 - \frac{N(s,\Delta w)}{Y(s,w)}\right]\right|$$

- Peña-Strawderman-Hollander'01 (FRMLE) (frailty model)
 - Frailties Z_1 , Z_2 , ..., Z_n i.i.d. H_z . Si Z_i son i.i.d Gamma(α , α)

$$\overline{F}(t) = \left[\frac{\alpha}{\alpha + \Lambda_0(t)}\right]^{\alpha}$$

Survival function estimators

Wang-Chang'99 (WC): Includes both i.i.d and gamma frailty models

$$\hat{S}(t) = \prod_{i=1}^{n} \prod_{\{j: T_{ij} \le t\}} \left[1 - \frac{d^*(T_{ij})}{R^*(T_{ij})} \right]$$

$$K_i^* = \begin{cases} 1 & \text{if} \quad K_i = 0 \\ K_i & \text{if} \quad K_i > 0 \end{cases} \qquad d^*(t) = \sum_{i=1}^n \left\{ \frac{I\{K_i > 0\}}{K_i^*} \sum_{j=1}^{K_i} I\{T_{ij} = t\} \right\}$$

$$R^*(t) = \sum_{i=1}^n \frac{1}{K_i^*} \left[\sum_{j=1}^{K_i} I\{T_{ij} \ge t\} + I\{\tau_i - S_{iK_i} \ge t\} I\{K_i = 0\} \right]$$

Comparing survival curves

- Comparing survival curves
 - There exist asymptotic forms for GPLE and WC variances and NOT for FRMLE
 - Variability of median survival may be computed using resampling techniques (Efron'82, Bickel'81, Beran'82, Singh'81)

Comparing survival curves

Ver artículo Gonzalez, Delicado, Peña 2010

- Study several bootstrapping schemes for estimating the sampling distribution of estimators of the median survival with recurrent events.
- Construct bootstrap confidence intervals
- Mechanism for comparing median survival for different groups

Bootstrapping the observed data

Obtain B i.i.d samples from

$$\{(K_i^*, \tau_i^*, T_{i1}^*, T_{i2}^*, \dots, T_{iK_i}^*, \tau_i^* - S_{iK_i}^*), i = 1, 2, \dots, n\}$$

with replacement, from the observed sample

an
$$\{(K_i, \tau_i, T_{i1}, T_{i2}, \dots, T_{iK_i}, \tau_i - S_{iK_i}), i = 1, \dots, n\}$$

Bootstrapping T_{ii}^* 's from F (or S)

Step 1. Take $\tau_i^* = \tau_i$

Step 2. From the distribution (or), \overline{F} ontinue generating an i.i.d sequence of T_{ij}^* 's until K_i^* where

Step 3. The bootstrap sa
$$\sum_{j=1}^{K_i^*} T_{ij}^* \leq au_i^* < \sum_{j=1}^{K_i^*+1} T_{ij}^*$$
.

Step 4. For this testimate $(K_i^*, \tau_i^*, T_{i1}^*, T_{i2}^*, \ldots, T_{iK_i^*}^*, \tau_i^* - S_{iK_i^*}^*)$ ated median

Plan VI. Semiparametric bootstrap

Step 1. Given the data, estimate $\hat{\alpha}$ and $\hat{\Lambda}_0$. Then estimate the distribution using

$$\hat{\bar{F}}_0(t) = \prod_{\{j: \ t_j \le t\}} \left[1 - \Delta \hat{\Lambda}_0(t_j) \right]$$

Step 2. Generate $Z_1^*, Z_2^*, \ldots, Z_n^*$ according to a $\operatorname{Gamma}(\hat{\alpha}, \hat{\alpha})$

Step 3. Take $\tau_i^* = \tau_i$

Step 4. From $\hat{\bar{F}}_0(t)$ continue generating an i.i.d sequence of T_{ij}^{*} 's until K_i^* where

$$\sum_{j=1}^{K_i^*} T_{ij}^* \le \tau_i^* < \sum_{j=1}^{K_i^*+1} T_{ij}^*.$$

Plan VI. Semiparametric bootstrap (cont.)

Step 5. The bootstrap sample for the *i*th unit is

$$(K_i^*, \tau_i^*, T_{i1}^*, T_{i2}^*, \dots, T_{iK_i^*}^*, \tau_i^* - S_{iK_i^*}^*)$$

Step 6. For this bootstrap sample, compute FRMLE, and the associated median estimate

To take into account the length of period (censored time) we bootstrapping τ_i^* 's from G_n instead of take the same τ_i 's

- Plan I. Bootstrapping the observed data
- Plan II. Bootstrapping T_{ii}^{*} 's from PSH estimator
- Plan III. Bootstrapping $T_{ij}^{*'}$ s from PSH estimator and $\tau_{ij}^{*'}$ s from G_n
- Plan IV. Bootstrapping T_{ij}^{*} 's from WC estimator
- Plan V. Bootstrapping $T_{ij}^{*'}$'s from WC estimator and $\tau_{ij}^{*'}$'s from G_n
- Plan VI. Semiparametric bootstrap
- Plan VII. Semiparametric bootstrap and bootstrapping τ_{ij}^* 's from G_n

Simulation study

Simulation data:

- i.i.d model $\tau_i \sim Exp(\upsilon)$ $T_{ii} \sim Exp(\theta)$
- correlated model $T_{ii} \sim F_0(t \mid \theta) \sim Exp(\theta)$
- 2,000 samples and 500 bootstrap replicates (B=500)

For each sample:

- MSE (mean square error)
- 95% bootstrap percentile confidence interval (BPCI)
 - Empirical coverage
 - Mean, median and variance length of BPCI
- Generate using:

$$n \in \{15,50,80\}, \theta \in \{1/3,1/6\}, \nu=1, \alpha \in \{\infty,6,2\}$$

Results. Case i.i.d, $\theta=1/3$ and $\tau=1$

		0,60%	bootsta	on noncon	tile	
		95% bootstrap percentile				
		confidence interval				
				Length		
MSE	% due	% Emp.			Var.	
$(\times 10^{6})$	to Bias	Cov.	Mean	Median	$(\times 10^{6})$	
n=15						
Plan I 2,836	8.1	88.4	0.19	0.17	10,625	
Plan II 2,914	11.3	94.3	0.21	0.19	10,760	
Plan III 2,916	11.9	95.2	0.22	0.20	11,748	
Plan IV 7,037	10.3	93.6	0.32	0.28	33,831	
Plan V 6,879	10.4	94.2	0.32	0.28	35,398	
n=50						
Plan I 667	3.1	93.3	0.10	0.10	772	
Plan II 662	3.7	94.6	0.10	0.10	653	
Plan III 662	3.7	94.8	0.10	0.10	668	
Plan IV 1418	3.2	94.9	0.15	0.15	2050	
Plan V 1425	3.2	94.5	0.15	0.15	2026	
n=80						
Plan I 391	2.1	94.1	0.08	0.08	357	
Plan II 385	2.5	95.4	0.08	0.08	293	
Plan III 387	2.6	95.2	0.08	0.08	290	
Plan IV 847	1.9	95.3	0.12	0.12	903	
Plan V 847	1.9	95.4	0.12	0.12	941	

Results. Correlated case, $\theta=1/3$ and $\tau=1$

-[95% bootstrap				
					confidence interval				
			2.600	07 1	67. 15	Length		**	
			MSE	% due	% Emp.			Var.	
			$(\times 10^{6})$	to Bias	Cov.	Mean	Median	$(\times 10^{6})$	
- 1	$\alpha=2$.	0K -00	1	00.4			100.080	
9	n=15	Plan IV	25,760	15.2	93.4	0.57	0.45	169,858	
		Plan V	23,622	15.6	93.8	0.58	0.46	169,358	
		Plan VI	18,764	7.2	92.1	0.45	0.34	131,154	
	70	Plan VII	18,858	7.3	92.3	0.45	0.34	135,060	
9	n=50	Plan IV	4,569	5.4	94.2	0.26	0.24	15,422	
		Plan V	4,569	5.5	94.2	0.26	0.23	16,193	
		Plan VI	2,582	0.1	93.8	0.20	0.19	5,187	
		Plan VII	2,563	0.1	94.1	0.20	0.19	5,262	
9	n=80	Plan IV	2,653	5.6	94.8	0.20	0.19	4,262	
		Plan V	2,679	5.8	95.1	0.20	0.19	4,346	
		Plan VI	1,676	0.2	94.4	0.16	0.15	2,069	
		Plan VII	1,684	0.2	94.8	0.16	0.15	2,009	
7	$\alpha=6$	>							
	n=15	Plan IV	12,034	12.7	92.9	0.40	0.33	71,607	
		Plan V	11.549	12.9	93.1	0.41	0.33	70.850	
		Plan VI	9,276	16.7	92.2	0.31	0.26	38,316	
		Plan VII	9,217	16.9	92.7	0.31	0.26	46,671	
4	n=50	Plan IV	2,093	4,0	93.7	0.18	0.17	3,192	
		Plan V	2.085	4.1	93.9	0.18	0.17	3,523	
		Plan VI	1,274	2.0	93.7	0.14	0.13	1,537	
		Plan VII	1,271	2.0	93.5	0.14	0.13	1,514	
4	n=80	Plan IV	1,208	3.7	95.3	0.14	0.14	1,579	
		Plan V	1.217	3.9	95.4	0.14	0.14	1,584	
		Plan VI	727	1.0	95.3	0.11	0.10	788	
		Plan VII	725	1.0	95.2	0.11	0.10	777	

Application to a Hospital readmission data

- 403 cases with colorectal cancer (de *nuovo*) that have been operated
- Main variable: Time until the readmission related with colorectal cancer.
- Covariants: Tumoral stage (Dukes), age, sex.

Patients' characteristics

-	Number of readmissions (%)						
	0	1	2	3	4	≥5	mean
Sex		+	ı				
Males	112 (46.9)	57 (23.8)	34 (14.2)	13 (5.4)	10 (4.2)	13 (5.4)	2.3
Females	87 (53.0)	48 (29.3)	11 (6.7)	8 (4.9)	5 (3.0)	5 (3.0)	1.9
Age							
<60	47 (42.3)	32 (28.8)	11 (9.9)	7 (6.3)	8 (7.2)	6 (5.4)	2.4
60-74	98 (50.5)	44 (22.7)	27 (13.9)	12 (6.2)	7 (3.6)	6 (3.1)	2.1
≥75	54 (55.1)	29 (29.6)	7 (7.1)	2 (2.0)	0 (0.0)	6 (6.1)	1.8
Dukes							
A-B	103 (57.2)	43 (23.9)	16 (8.9)	8 (4.4)	7 (3.9)	3 (1.7)	1.8
C	67 (45.3)	40 (27.0)	20 (13.5)	7 (4.7)	6 (4.1)	8 (5.4)	2.2
D	29 (38.7)	22 (29.3)	9 (12.0)	6 (8.0)	2 (2.7)	7 (9.3)	2.7

Validation correlated model

Results

Results

	Semiparametric (plan VII)			T_{ij}^* from WC (plan V)		
	Median			Median		
	α	(days)	CI95%	(days)	CI95%	
Sex						
Male	0.99	799	(539,1171)	909	(524,1230)	
Female	1.50	1427	(755, 2175)	1222	(721,2175)	
Age						
< 60	1.22	799	(415,983)	718	(474,1134)	
60-74	1.05	1230	(597,1427)	1104	(646,1547)	
\geq 75	0.94	1188	(551,2175)	1188	(510,2175)	
Dukes						
A-B	1.11	2175	$(1188, \infty)$	1736	(1188,2175)	
C	1.45	1073	(450, 1288)	1028	(489,1325)	
D	2.19	199	(109,297)	199	(161,350)	

Concluding Remarks

- Plans anchored in PSH estimator are the best plans under i.i.d. model (plans I,II, and III)
- Semiparametric plans are the best plans under corelated model (plans VI and VII)
- Plans anchored in WC estimator (IV and V) offer a robust procedure when model that generated the data is not known.
- Bootstrapping from empirical distribution of the monitoring times do not provide improvements

The survrec Package

October 24, 2002

Date 2002-October-24

Title Survival analysis for recurrent event data

Author F77 original by Edsel A Peña <pena@stat.sc.edu> and Robert L Strawderman <rls@cornell.edu>. Added Fortran routines, R code and packaged by Juan R González <jrgonzalez@ico.scs.es>.

Maintainer Juan R González < jrgonzalez@ico.scs.es>

Depends none

Description Estimation of survival function for recurrent event data using Peña-Strawderman-Hollander, Whang-Chang estimators and MLE estimation under a Gamma Frailty model.