IMAG/e

Deep learning for medical image registration

Iris Kolenbrander

Outline for today:

- First hour:
 - Quick recap of medical image registration
 - Introduction non-parametric / deformable image registration
 - Deep learning for medical image registration:
 - Deep iterative registration
 - Supervised methods
 - Unsupervised (optimization-based) methods
- Second hour:
 - "Guest lecture"
 - Image registration for adaptive radiotherapy
 - Challenges in image registration, e.g., small open-source datasets

Learning outcomes

The student can:

- differentiate between parametric and non-parametric/deformable transformation models.
- explain what a displacement (vector) field is and calculate the corresponding number of free parameters, given a medical image pair to be registered.
- name the main advantages and disadvantages of using deep learning for medical image registration.
- categorize deep learning-based medical image registration methods into one of the three groups of methods based on how they deal with the ground truth displacement.
- For each category, give an example of a method that was proposed in recent literature.

Recap: medical image registration

Why important?

- Multi-modal registration (e.g. CT on MRI)
- Inter-subject (e.g. atlas registration)
- Longitudinal (e.g. treatment evaluation)

Remaining challenges:

- Large 3D volumes
- Accuracy vs. efficiency
- Intensity inhomogeneities and discontinuities
- Outlier rejection

Finding the optimal transformation

Transformation models

Rigid & Affine

- Point or feature-based (e.g. landmarks, fiducials)
- Intensity-based
- Gradient/edge-based

Non-linear

- Linear or higher order polynomials
- Spline-based

Non-parametric / deformable

Allowing each image element to be displaced arbitrarily

Displacement (vector) field (DVF) = Dense set of vectors representing the displacement in a given spatial domain

Deformation: $\varphi = Id + u, \varphi : \Omega \to \mathbb{R}^d$

or point-wise: $\varphi(x) = x + u(x)$

Displacement:

$$u:\Omega\to\mathbb{R}^d$$

e.g.
$$u = [u_x, u_y, u_z]$$

Deformable image registration: how many free parameters (DOF) in 3D?

Typical spatial resolution of a 3D medical image (MRI: e.g. 1.5×1.5×4 mm³ voxels)

DOF = 3*Nx*Ny*Nz (!)

Deformable image registration is still a very active area of research, and many different deformable registration models exist:

- Free-form deformation model
- Optical flow
- Demons
- Fluid flow
- Diffeomorphisms
- ...

Note that the details of these models and their implementations are beyond the scope of this course.

Why focus on deep learning for medical image registration?

Real time applications!

Learning image registration: how does it work?

Problem: how can we obtain the ground truth displacement?

A. Deep iterative registration

 Learn a component of a classical registration method

B. Supervised transformation estimation

- Obtain using classical registration method
- or make synthetic ground truth

C. Unsupervised transformation estimation

Use similarity metric to judge

Publications on deep learning for medical image registration

A. Deep iterative registration

Use a classical registration method and learn one component

Example 1: Learning multimodal feature extraction (Haskins et al., 2019)

Example 2: Reinforcement learning for image registration

(a) Training Data Generation: **Synthetic deformations** (blue arrows) and intersubject GT deformations (black) are used for intra- (green) and inter-subject (red) image pairs for training. (b) Dual-stream network used for Q-value prediction including complete single-stage Markov Decision Process for testing (blue background).

B. Supervised transformation estimation

Requires many known transformations for training, use ground truth labels to calculate the loss

Example 1: "On-the-fly" simulation of displacement fields: $T_{augm} = \frac{\mathbf{x} \in \Omega}{|\mathbf{t}||}$ (Eppenhof & Pluim, 2018)

Example 2: Weakly-supervised CNN for MR-US registration

C. Unsupervised transformation estimation

No ground truth needed, requires a differentiable similarity metric and a spatial transformer layer (STL).

Example 1: the VoxelMorph framework (Balakrishnan et al., 2018)

Spatial transformer networks (Jaderberg et al., NIPS 2015)

Spatial transformer = a learnable module that explicitly allows the spatial manipulation of data within the network

- Differentiable
- Can be inserted into existing convolutional neural networks
- Actively transforms feature maps (conditional on the feature map itself)

Example $T_{\theta}(G)$ for an affine transformation:

$$\begin{pmatrix} x_i^s \\ y_i^s \end{pmatrix} = \mathcal{T}_{\theta}(G_i) = \mathtt{A}_{\theta} \begin{pmatrix} x_i^t \\ y_i^t \\ 1 \end{pmatrix} = \begin{bmatrix} \theta_{11} & \theta_{12} & \theta_{13} \\ \theta_{21} & \theta_{22} & \theta_{23} \end{bmatrix} \begin{pmatrix} x_i^t \\ y_i^t \\ 1 \end{pmatrix}$$

Summary

- Parametric vs. non-parametric/deformable image registration
 - Displacement vector fields
- Different ways to use deep learning for image registration
 - Deep iterative registration
 - Supervised learning
 - Unsupervised learning
- Disadvantages of deep learning for image registration (performance, # of training data, ground truth, ...)

