工学応用の観点からのデータ同化とその特徴

明治大学 中村和幸

目次

- ✓データ同化と適用例
 - データ同化とは
 - 適用例
- ✓データ同化における定式化とアルゴリズム
 - データ同化と状態空間モデル
 - ベイズ更新
 - データ同化アルゴリズム
- ✓工学応用に向けたデータ同化の位置づけ
 - ・他の類似手法との比較
- **√**まとめ

データ同化の目的

情報を詳細にできる

数値シミュレーション

観測データ

O

格子を細かくできる?

X

X

現実の情報?

 O

離散化誤差、モデル化誤差

誤差

計測誤差

良いところ取りをしたい!

データ同化でできること

- ✓予測のための初期条件の構成
 - 予報精度の向上を目指す
 - 現業の天気予報ですでに行われている
- ✓観測できない物理変数や状態の推定
 - ・ 3次元, 4次元的な再構成
 - シミュレーションモデルと組み合わせることで, 適切な力学的制約が入る
- ✓感度解析
 - 効率のよい計測点・データの設計
- ✓経験的パラメータの推定
- ✓境界条件の推定

データ同化例1津波データ同化

(樋口(統数研), 広瀬(九大), B.H. Choi(Sung Kyun Kwan 大)各氏との共同研究)

データ同化例2 神戸空港・地盤沈下

- •直接見ることができない地中の土の状態がわかる
- •予測精度の向上で、中途での工法変更が可能に

(村上・藤澤(京大),珠玖・西村(岡大)各氏との共同研究)

データ同化例2 神戸空港・地盤沈下

データ同化例3 遺伝子ネットワークモデル

Simulation model

Biological data

現実の系を表すには不完全 未知パラメータ

ノイズ、欠測など

生体プロセスの予測 生体システムに関する新たな知見

(長崎(東北大), 宮野(東大), 吉田, 樋口(統数研)各氏との共同研究)

データ同化例3 遺伝子ネットワークモデル

Hybrid Functional Petri Net によって表現されたシミュレーションモデル (次元は低いが非線形性が強い)

初期状態の推定結果

パラメータの分布を推定できる

予測精度が上がるだけでなく、 興味ある 事象が起こる確率を適切に評価できる

データ同化と状態空間モデリング

数値シミュレーションモデル

- ✓基礎となる偏微分方程式の離散化等により構成
- ✓基礎ダイナミクスから現実を再現することを目的とする
- √シミュレーションコード(極端な場合, ライブラリ)の形でのみアクセス 可能な場合がある

偏微分方程式(物理を反映,連続時空間)

シミュレーションモデル(離散時間・空間)

$$\begin{split} \frac{\partial T_{o}}{\partial t} &= -u_{o1} \frac{\partial \overline{T}_{o} + T_{o}}{\partial x} - v_{o1} \frac{\partial \overline{T}_{o} + T_{o}}{\partial y} - \overline{u}_{o1} \frac{\partial T_{o}}{\partial x} - \overline{v}_{o1} \frac{\partial T_{o}}{\partial y} \\ &- \left[M \left(\overline{w}_{oS} + w_{oS} \right) - M \left(\overline{w}_{oS} \right) \right] \frac{\partial \overline{T}_{o}}{\partial z} - M \left(\overline{w}_{oS} + w_{oS} \right) \frac{T_{o} - T_{e}}{H} - \alpha_{S} T_{o} \\ &\qquad \qquad \frac{\partial u_{o}}{\partial t} - \beta_{0} y v_{o} = -g' \frac{\partial h}{\partial x} + \frac{\tau^{x}}{\rho_{o} H} - r u_{o} \\ &\qquad \qquad \beta_{0} y u_{o} = -g' \frac{\partial h}{\partial y} + \frac{\tau^{y}}{\rho_{o} H} - r v_{o} \\ &\qquad \qquad \frac{\partial h}{\partial t} + H \left(\frac{\partial u_{o}}{\partial x} + \frac{\partial v_{o}}{\partial y} \right) = -rh \end{split}$$

離散

シミュレーションモデルとシステムモデル

- ✓シミュレーションモデルの「誤差」、初期・境界条件などによる状態の 誤差が反映されていない
- ✓このような誤差まで含めたモデルとして、システムモデルを定式化
- $\checkmark x_t$ を状態ベクトル, v_t をシステムノイズと呼ぶ

シミュレーションモデル(離散時間・空間)

形式的にこのように書ける:

$$x_t = f_t(x_{t-1})$$
全シミュレーション変数

「誤差」も含める:

$$x_t = f_t(x_t, v_t)$$

方程式からシステムモデルへ

(日本周辺の簡易化した気象モデルの例を用いて説明)

実システムに対応した偏微分方程式 (連続時間・空間)

$$\frac{\partial x}{\partial t} = cx^2 + \cdots$$

数値シミュレーションモデル (離散時間・空間, 有限差分方程式)

$$x_t = f_t(x_{t-1})$$

境界条件・モデル化誤差 由来の不確かさ

 V_t

非線形状態空間表現のシステムモデル (離散時間・空間,確率差分方程式)

$$x_t = f_t(x_{t-1}, v_t)$$

$$x_{t} = [\xi_{1}, \xi_{2}, ..., \xi_{k}]^{T}$$

K は格子点数

観測情報と観測モデル

- ✓ ほとんどの場合, 観測情報はシミュレーションの情報に比べて圧倒的に不足. ダイナミクスを伴う逆問題.
- ✓さらに、時点間で独立な「観測ノイズ」もある
- ✓観測情報は、「その時点の全物理変数(=全シミュレー ション変数)、および「観測ノイズ」が与えられれば、説明で きる」という定式化

全観測変数

観測ノイズ

$$y_t = h_t(x_t, w_t)$$

全シミュレーション変数

$$\dim(x_t) >> \dim(y_t)$$

 x_t 10⁴~10⁶ y_t 10~10⁵

両者をつなぐ鍵

- ✓(非線形)状態空間モデル
 - シミュレーションモデルから自然に書き下すことができる
 - ほとんど数値シミュレーションモデルは、マルコフ性を満たすか、満たすように変形できる
 - ・逐次ベイズ更新の式により、のオンライン推定(観測を得る毎の推定)が可能(=逐次データ同化)

全シミュレーション変数

モデル化誤差など

$$\overline{x_t} = f_t(x_t), \overline{v_t}$$

$$\mathcal{D}_t = h_{\mathcal{D}_t},$$

 $\dim(x_t) >> \dim(y_t)$

全観測変数

観測ノイズ

非線形非ガウス状態空間モデル

非線形非ガウス状態空間モデル:

$$(\mathfrak{D}$$
ステムモデル) $x_t = f_t(x_{t-1}, v_t)$ $y_t = h_t(x_t, w_t)$

 $\begin{cases} x_t = f_t(x_{t-1}) + v_t \\ y_t = h_t(x_t) + w_t \\ \text{もこのクラスに含まれる} \end{cases}$

- x_t 状態ベクトル
- y_t 観測ベクトル
- v_t :システムノイズ
- 。_{W,}: 観測ノイズ
- v_t, w_tは任意の分布でよい

アンサンブルカルマンフィルタ, 粒子フィルタ etc. により, フィルタ分布の計算が原理的には可能

逐次データ同化

逐次データ同化では一期先予測とフィルタリングを繰り返して、 観測 y_t を得る毎にシミュレーション変数 x_t の値(分布)をオンライン推定する

(非線形)状態空間モデルでのフィルタリングの手法で実現可

ベイズ更新

少しわき道:ベイズの定理の問題

P(A|C)=0.95, P(Ac|Cc)=0.95, P(C)=0.005 のとき, P(C|A)の確率を求めよ.

(例えば、A/Acはある病気の検査結果の陽性/陰性、C/Ccは実際に病気/病気でないを表す)

確率はどのくらいでしょうか?

ベイズの定理

$$p(X \mid Y) = \frac{p(Y \mid X)p(X)}{p(Y)}$$

$$(p(Y) = \sum_{S \in \Omega} p(Y | S) p(S))$$

$$p(C | A) = \frac{p(A | C)P(C)}{\sum_{S \in \Omega} P(A | S)P(S)}$$
$$= \frac{p(A | C)P(C)}{P(A | C)P(C) + P(A | C^c)P(C^c)}$$

どうして確率が低い?

P(A|C)=0.95, P(A°|C°)=0.95, P(C)=0.005 のとき, P(C|A)の確率を求めよ.

もともとの確率が低いから. 仮にP(C|A)を90パーセント以上にしようとすると, 検査の精度は99.95パーセント以上にしないといけない

(例えば、A/Acはある病気の検査結果の陽性/陰性、C/Ccは実際に病気/病気でないを表す)

一方で...

P(A|C)=0.95, P(A°|C°)=0.95, P(C)=0.005 のとき, P(C|A)の確率を求めよ.

もともとの確率は0.5パーセント これが、8.7パーセントになったのだから、 Aという情報によりCの確率が更新された!

(例えば、A/Acはある病気の検査結果の陽性/陰性、C/Ccは実際に病気/病気でないを表す)

ベイズ更新

現象Xが発生した条件下で データYが得られる確率

(X)p(X)

 $p(X \mid Y) =$

データYが得られた時に 現象がXである確率 p(Y)

データYの生成確率

 $\left(\begin{array}{c} p(Y) = \sum p(Y|S)p(S) \\$ 必要ながは p(Y|X) とp(X).

現象Xが発生する

「もともとの」確率

データ生成モデルと現象の発生確率を 与えれば、データから現象の説明が 可能!(因果の反転ができる!)

:事前知識や数理モデル

:観測を表す式

逐次データ同化(再掲)

逐次データ同化では一期先予測とフィルタリングを繰り返して、 観測 y_t を得る毎にシミュレーション変数 x_t の値(分布)をオンライン推定する

(非線形)状態空間モデルでのフィルタリングの手法で実現可

データ同化アルゴリズム

データ同化アルゴリズム一覧

- √ Kalman filter
- ✓ Extended Kalman filter
- ✓ Ensemble Kalman filter (EnKF)
 - EAKF,ETKF,...
- ✓ Particle filter (or SIR filter, Monte Carlo filter)
 - SIR でなく SIS filter もある
 - Merging particle filter, Kernel particle filter,...
- √4DVAR

変分(非逐次)型

- √3DVAR
- √ Nudging, OI, ...

1時点の補間と隠れ変数の推定のみ

原始的

逐次型

カルマンフィルタ

- •1960年に Kalman によって提案される
- •もともとは衛星の位置の同定のために開発された
- ・線形の状態空間モデルの状態推定に用いられる

$$\begin{cases} x_t = F_t x_{t-1} + G_t v_t \\ y_t = H_t x_t + w_t \end{cases}$$

KF • 2次元の場合のイメージ図

カルマンフィルタでは、「観測ノイズなし値」に近い「推定値」を得ること その分散(=誤差の範囲)の値も得ることが目的

アンサンブルカルマンフィルタ

- •それまでの拡張カルマンフィルタの欠点である線形化モデル構築(=微分計算)の必要性や,分散共分散行列の推定が不安定である点を克服するために導入
- •気象·海洋の分野(特に研究分野)では、変種も含めて広く 使われている
- •分布を「実現値の集合(=シナリオの集合)」で表現、計算 はカルマンフィルタ

$$\begin{cases} x_{t} = F_{t}x_{t-1} + G_{t}v_{t} \\ y_{t} = H_{t}x_{t} + w_{t} \end{cases} \Rightarrow \begin{cases} x_{t} = f_{t}(x_{t-1}, v_{t}) \\ y_{t} = h_{t}(x_{t}) + w_{t} \end{cases}$$

一期先予測(EnKF,PF(SIR,SIS)共通)

複数(Nパターン)繰り返す

EnKFにおけるフィルタリング

EnKF • 2次元の場合のイメージ図

粒子フィルタ

- •カメラによる物体追跡に広く使われているアルゴリズム
 - •画像処理の分野ではCondensation としても知られる
- •他に経済時系列、ロボットの状態推定などに使われる
- ・データ同化では、系によるが限定的(特に気象・海洋系では)
- •任意のモデルで適用可能

$$\begin{cases} x_t = f_t(x_{t-1}, v_t) \\ y_t = h_t(x_t) + w_t \end{cases} \qquad \begin{cases} x_t \sim Q_t(\cdot \mid x_{t-1}) \\ y_t \sim R_t(\cdot \mid x_t) \end{cases}$$

一期先予測(EnKF,PF(SIR,SIS)共通)

条件の違うシミュレーションを 複数(Nパターン)繰り返す

フィルタリング(PF(SIR))

フィルタリング(PF(SIS))

PF • 2次元の場合のイメージ図

4次元変分法(Adjoint 法)

- •1980 年代に開発
- •一定区間について、ダイナミクスを保持したまま、データとモデルから決まるコスト関数を最小化する初期値を探す方法

$$\begin{cases} x_t = f_t(x_{t-1}) \\ y_t = h_t(x_t) + w_t \end{cases}$$

手法間の特徴比較

		連続性	非線形性への対応	アンサンブルの効率性
Е	xtended KF	保たれない	弱非線形のみ	N/A
_	EnKF	モデル次第/保たれなし	、モデル次第	✓
-	PF(SIR)	モデル次第	✓	状況次第
	PF(SIS)	✓	✓	低い
	4DVAR	✓	モデル次第	N/A

工学応用に向けたデータ同化の位置づけ

類似手法との比較(1): 最適設計

✓ 同じところ:

・ 境界条件推定とすると、対象となる「不確かさを持つ部分」あるいは「自由 度を持つ部分」は同じ

✓ 違うところ:

- ・ 隠れている物理状態(特に時変の状態や4次元大浪玖薄)の推定
- 「最適値」か「確率分布」か

類似手法との比較(2):システム同定

✓ 同じところ:

- パラメータ推定の場合には、決める対象は同一
- 確率的なシステム同定・モデル同定の場合には、分布で考える点も同一

✓ 違うところ:

- モデルや計測の想定規模(対象にもよるが)
- 中心的に想定している不確かさの対象
 - ▶ 特にモデル同定の場合にはモデルそのものの不確かさ
 - ▶ 通常のデータ同化の場合には、モデルの不確かさは小さく、状態の不確かさが大きい。

データ同化を工学の道具とした時の「良さ」

- ✓推定対象の確率分布を陽に使用する
 - ロバストネスやリスクの評価に使用できる

- ✓計測誤差とシステム・シミュレータの誤差を陽に考える
 - 両者を定量的にバランスすることができる

まとめ

まとめ

- ✓データ同化について説明
 - 目的
 - ▶ 状態・パラメータ推定
 - > 予測精度向上
 - ・アルゴリズム
- ✓類似手法との比較
 - 「計測」と「システム」の両方にノイズを定量的に想定してバランス

さらなる発展

- ✓ 違うもの(観測ノイズとシステムノイズ)をバランスできているので、他のものも含めることができそう
 - 例えば「コスト」やそのバラツキもバランスできる
- ✓ CFD/EFD 融合・計測融合シミュレーションの各方法との融合
 - 数理的な整理
 - CAE ツールへの融合につながるのでは?

Email: knaka@meiji.ac.jp