	1 IA																	18 VIIIA
1	1 1.0079 H 1s ¹ Hydrogen	2 IIA		(Mend	eleev's) Perio	dic Tab	ole of C	Chemica	al Elem	ents vi	a TikZ	13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	2 4.0025 He 1s ² Helium
2	$\begin{array}{c} \textbf{3} & \textbf{6.941} \\ \textbf{Li} \\ [\text{He}] 2s^1 \\ \text{Lithium} \end{array}$	$\begin{array}{cc} \textbf{4} & 9.0122 \\ \textbf{Be} \\ \text{[He]} 2s^2 \\ \text{Beryllium} \end{array}$											$\begin{array}{c} {\bf 5} & {\rm 10.811} \\ {\bf B} \\ {\rm [Ar]} 3d^{10} 4s^2 p^1 \\ {\rm Boron} \end{array}$	$\begin{array}{c} {\bf 6} & 12.011 \\ {\bf C} \\ {\rm [He]} 2s^2p^2 \\ {\rm Carbon} \end{array}$			9 18.998 F [He]2s ² p ⁵ Flourine	10 20.180 Ne [He]2s ² p ⁶ Neon
3	$egin{array}{ccc} \mathbf{Na} & & & & \\ \mathbf{Na} & & & & \\ [\text{Ne}] 3s^1 & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\$	12 24.305 Mg [Ne]3s ² Magnesium	3 IIIA	4 IVB	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	$\begin{array}{c} \textbf{13} & 26.982 \\ & \textbf{AI} \\ \text{[Ne]} 3s^2p^1 \\ \text{Aluminum} \end{array}$	$\begin{array}{cc} {\bf 14} & 28.086 \\ {\bf Si} \\ {\rm [Ne]} 3s^2 p^2 \\ {\rm Silicon} \end{array}$	$\begin{array}{c} {\bf 15} & 30.974 \\ {\bf P} \\ {\rm [Ne]} 3s^2p^3 \\ {\rm Phosphorus} \end{array}$	$\begin{array}{c} {\bf 16} & 32.065 \\ {\bf S} \\ {\rm [Ne]} 3s^2 p^4 \\ {\rm Sulphur} \end{array}$	17 35.453 CI [Ne]3s ² p ⁵ Chlorine	$\begin{array}{ccc} {\bf 18} & 39.948 \\ & {\bf Ar} \\ {\rm [Ne]} 3s^2 p^6 \\ & {\rm Argon} \end{array}$
4	19 39.098 K [Ar]4s ¹ Potassium	20 40.078 Ca [Ar]4s ² Calcium	$\begin{array}{cc} {\bf SC} \\ {\bf [Ar]} 3d^1 4s^2 \\ {\bf Scandium} \end{array}$	22 47.867 Ti [Ar]3d ² 4s ² Titanium	23 50.942 V [Ar] 3d ³ 4s ² Vanadium	24 51.996 Cr [Ar] 3d ⁵ 4s ¹ Chromium	25 54.938 Mn [Ar]3d ⁵ 4s ² Manganese	Fe [Ar]3d ⁶ 4s ² Iron	27 58.933 Co [Ar] 3d ⁷ 4s ² Cobalt	28 58.693 Ni [Ar] 3d ⁸ 4s ² Nickel	29 63.546 Cu [Ar]3d ¹⁰ 4s ¹ Copper	30 65.39 Zn [Ar]3d ¹⁰ 4s ² Zinc	$\begin{array}{c} 31 \qquad 69.723 \\ \mathbf{Ga} \\ \text{[He]} 2s^2p^1 \\ \text{Gallium} \end{array}$	$\begin{array}{cc} {\bf 32} & 72.64 \\ {\bf Ge} \\ [{\rm [Ar]} 3d^{10} 4s^2p^2 \\ {\rm Germanium} \end{array}$	$\begin{array}{ccc} {\bf 33} & {74.922} \\ {\bf As} \\ {\rm [Ar]} 3d^{10} 4s^2 p^3 \\ {\rm Arsenic} \end{array}$	$\begin{array}{c} {\bf 34} & 78.96 \\ {\bf Se} \\ {\rm [Ar]} 3d^{10} 4s^2 p^4 \\ {\rm Selenium} \end{array}$	35 79.904 Br [Ar]3d ¹⁰ 4s ² p ⁵ Bromine	36 83.8 Kr [Ar]3d ¹⁰ 4s ² p ⁶ Krypton
5	Rb [Kr]5s ¹ Rubidium	$\begin{array}{cc} \textbf{38} & 87.62 \\ \textbf{Sr} \\ [\text{Kr}] 5s^2 \\ \text{Strontium} \end{array}$	39 88.906 Y [Kr]4d ¹ 5s ² Yttrium	40 91.224 ${\bf Zr}$ [Kr] $4d^25s^2$ Zirconium	Nb [Kr] $4d^45s^1$ Niobium	Mo [Kr]4 <i>d</i> ⁵ 5 <i>s</i> ¹ Molybdenum	\mathbf{Tc} [Kr] $4d^55s^2$ Technetium	$\begin{array}{c} \textbf{44} & 101.07 \\ \textbf{Ru} \\ [\text{Kr}] 4d^7 5s^1 \\ \text{Ruthenium} \end{array}$	45 102.91 Rh [Kr]4d ⁸ 5s ¹ Rhodium	Pd [Kr]4d ¹⁰ Palladium	Ag [Kr]4d ¹⁰ 5s ¹ Silver	48 112.41 Cd [Kr]4d ¹⁰ 5s ² Cadmium	$\begin{array}{c} {\bf 49} & {\bf 114.82} \\ {\bf In} \\ {\rm [Kr]} 4d^{10} 5s^2 p^1 \\ {\rm Indium} \end{array}$	$\begin{array}{c} {\bf 50} & {\bf 118.71} \\ {\bf Sn} \\ {\rm [Kr]} 4d^{10} 5s^2p^2 \\ {\rm Tin} \end{array}$	$\begin{array}{c} {\bf 51} & 121.76 \\ {\bf Sb} \\ {\rm [Kr]} 4d^{10}5s^2p^3 \\ {\rm Antimony} \end{array}$	$\begin{array}{ccc} {\bf 52} & 127.6 \\ & {\bf Te} \\ [{\rm Kr}] 4d^{10} 5s^2 p^4 \\ & {\rm Tellurium} \end{array}$	$\begin{array}{c c} {\bf 53} & 126.9 \\ & {\bf I} \\ [{\rm Kr}] 4d^{10}5s^2p^5 \\ {\rm lodine} \end{array}$	$ \begin{array}{ccc} {\bf 54} & {\bf 131.29} \\ & {\bf Xe} \\ {\rm [Kr]} 4d^{10}5s^2p^6 \\ {\rm Xenon} \end{array} $
6	Cs [Xe]6s ¹ Caesium	56 137.33 Ba [Xe]6s ² Barium	57-71 La-Lu $[Xe]5d^16s^2$ Lanthanide	72 178.49 Hf [Xe] $4f^{14}5d^26s^2$ Halfnium		$\begin{array}{ccc} {\bf 74} & 183.84 \\ & {\bf W} & & \\ [{\bf Xe}]4f^{14}5d^46s^2 \\ & {\bf Tungsten} \end{array}$	75 186.21 ${\bf Re}_{\rm [Xe]4f^{14}5d^56s^2}$ Rhenium	76 190.23 Os [Xe] 4f. 45d. 66s. Osmium	77 192.22 r [Xe]4f ¹⁴ 5d ⁷ 6s ² ridium	78 195.08 Pt [Xe]4f ¹⁴ 5d ⁹ 6s ¹ Platinum	Au [Xe] $^{4}f^{14}5d^{10}6s^{1}$ Gold	80 200.59 \mathbf{Hg} [Xe] $4f^{14}5d^{10}6s^2$ Mercury	81 204.38 $\begin{tabular}{c c} $\bf T$ & & \\ $\bf Xe$ & & \\ $\bf Xe$ & & \\ $\bf Xe$ & & \\ $\bf Thallium$ & & \\ $\bf Thallium$ & & \\ $\bf Xe$ & & \\ $	Pb [Xe]4f ¹⁴ 5d ¹⁰ 6s ² Lead	83 208.98 Bi [Xe]4 $f^{14}5d^{10}6s^2$ Bismuth	Po [Xe] 4f ¹⁴ 5d ¹⁰ 6s ² Polonium	85 210 At [Xe]4f ¹⁴ 5d ¹⁰ 6s ² Astatine	86 222 ${\bf Rn}$ [Xe] $4f^{14}5d^{10}6s^2$ Radon
7	Fr [Rn]7s ¹ Francium	88 226 : Ra [Rn]7s² Radium	89-103 Ac-Lr [Rn]6d ¹ 7& ² Actinide	104 261' ' [Rf] [Rn]5f ¹⁴ 6d ² 7s ² Rutherfordium	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	106 266 $[Rn]5f^{14}6d^47s^2$ Seaborgium	107 264 Bh [Rn]5f ¹⁴ 6d ⁵ 7s ² Bohrium	108 277	109 268 Mt [Rn]5f ¹⁴ 6d ⁷ 7s ² Meitnerium	110 281 DS Darmstadtium	Rg Roentgenium	112 285 Uwb Ununbium	113 284 Ununtrium	114 289 Uwq Ununquadium	115 288 Uup Ununpentium	116 293 Umb Ununhexium	117 292 UWS Ununseptium	118 294 Uu© Ununoctium
	Alkali Metal Alkaline Earth Metal Metalloid Non-metal Halogen Noble Gas Lanthanide/A			57 138.91 La [Xe]5d ¹ 6s ² Lanthanum	58 140.12 Ce [Xe]4f ¹ 5d ¹ 6s ² Cerium	59 140.91 Pr [Xe]4f ³ 6s ² Praseodymium	60 . 144.24 Nd [Xe]4 <i>f</i> ⁴ 6 <i>s</i> ² Neodymium	61 145 Pm [Xe]4f ⁵ 6s ² Promethium	62 150.36 Sm [Xe]4f ⁶ 6s ² Samarium	63 151.96 Eu [Xe]4f ⁷ 6s ² Europium	64 157.25 Gd [Xe]4 $f^75d^16s^2$ Gadolinium	65 158.93 Tb [Xe]4f ⁹ 6s ² Terbium	66 162.50 Dy [Xe]4f ¹⁰ 6s ² Dysprosium	67 164.93 Ho [Xe]4f ¹¹ 6s ² Holmium	68 167.26 Er [Xe] 4f ¹² 6s ² Erbium	69 168.93 Tm [Xe]4/136s ² . Thulium	70 173.04 Yb [Xe]4f ¹⁴ 6s ² Ytterbium	71 174.97 Lu [Xe]4f ¹⁴ 5d ¹ 6s ² Lutetium
	Z mass Symbol orbitals Name	man- made		Ac [Rn]6d ¹ 7s ² Actinium	90 232.04 Th [Rn] $6d^27s^2$ Thorium	$\begin{array}{c} 91 & 231.04 \\ \mathbf{Pa} \\ [\mathrm{Rn}] 5 f^2 6 d^1 7 s^2 \\ \mathrm{Protactinium} \end{array}$	$\begin{array}{c} {\bf 92} & 238.03 \\ {\bf U} \\ {\rm [Rn]} 5f^36d^17s^2 \\ {\rm Uranium} \end{array}$	93 237 Np [Rn]5f ⁴ 6d ¹ 7s ² Neptunium	94 244 Pu [Rn]5 f^67s^2 Plutonium		$\begin{array}{c} {\bf 96} & {\bf 247} \\ {\bf Cm} \\ {\bf [Rn]} 5f^7 6d^1 7s^2 \\ {\bf Curium} \end{array}$	97 247 Bk [Rn]5 f 97 s 2 Berkelium	$\begin{array}{c} \textbf{98} & 251 \\ \hline \textbf{Cf} \\ [\text{Rn}] 5 f^{10} 7 s^2 \\ \text{Californium} \end{array}$	99 252 [Rn]5 $f^{11}7s^2$ Einsteinium	100 257 Fm [Rn]5 f ¹² 7s ² Fermium	101 258	102 259 No [Rn]5 f 147 s 2 Nobelium	$\begin{tabular}{ll} \bf 103 & 262 \\ \begin{tabular}{ll} tab$