Transition to Advanced Mathematics

Fall 2021

Practically Perfect Proof

Patrick May

December 31, 2021

Question 10.

Conjecture 1. Let S, T, X, and Y be subsets of some universal set. If all of the following:

(i)
$$S \cup T \subseteq X \cup Y$$

(ii)
$$S \cap T = \emptyset$$

(iii)
$$X \subseteq S$$

(1)

then $T \subseteq Y$.

Proof. Let $a \in T$.

Then from (i), we have $a \in S \cup T$, so $a \in X \cup Y$.

It follows from (iii) that $X \subseteq S$, so $X \cup Y \subseteq S \cup Y$.

Then we have $a \in S \cup Y$.

Then from (ii), we know S shares no elements with T, so $a \in T \implies a \notin S$.

Then $a \in S \cup Y$ and $a \notin S$, thus $a \in Y$.

Hence $T \subseteq Y$.