$$\alpha, \beta ::= \tau \mid \alpha \to \beta$$

1.1 Typing judgement

$$\begin{array}{c|c} x \in \Gamma \\ \hline \Gamma \vdash x : \Gamma x \end{array} \qquad \begin{array}{c|c} \Gamma \vdash M : \alpha \to \beta & \Gamma \vdash N : \alpha \\ \hline \Gamma \vdash MN : \beta \end{array} \qquad \begin{array}{c|c} \Gamma, x : \alpha \vdash M : \beta \\ \hline \Gamma \vdash \lambda x.M : \alpha \to \beta \end{array}$$

We define the inclusion between contexts $\Gamma \subseteq \Delta$ as $\forall x \in \Gamma, x \in \Delta \wedge \Gamma x = \Delta x$. Next, we present a weakening lemma of the typing judgement. Both lemmas are proved by structural induction on the typing relation, the second lemma uses for the first one for the abstraction case.

Proposition 1 (Weakening Lemma). 1. $\Gamma \subseteq \Delta, \Gamma \vdash M : \alpha \Rightarrow \Delta \vdash M : \alpha$

2.
$$x \# M, \Gamma \vdash M : \alpha \Rightarrow \Gamma, x : \beta \vdash M : \alpha$$

We define a substitution σ goes from Γ to Δ contexts, denoted as $\sigma : \Gamma \rightharpoonup \Delta$, iff $\forall z \in \Gamma, \Delta \vdash \sigma z : \Gamma z$. We also define the restriction of this concept to some term, denoted as $\sigma : \Gamma \rightharpoonup \Delta \downharpoonright M$ iff $\forall z * M, z \in \Gamma, \Delta \vdash \sigma z : \Gamma z$. Some useful properties are:

Proposition 2. 1. $\iota:\Gamma \rightharpoonup \Gamma$

- 2. $\Gamma \vdash M : \alpha \Rightarrow (\iota, x := M) : \Gamma, x : \alpha \rightharpoonup \Gamma$
- $\textit{3. } \sigma:\Gamma \rightharpoonup \Delta \Rightarrow \sigma:\Gamma \rightharpoonup \Delta \downharpoonright M$
- 4. $(\iota, y := x) : \Gamma, y : \alpha \rightharpoonup \Gamma, x : \alpha \mid M(\iota, x := y)$
- 5. $x \# \sigma \mid \lambda y M, \sigma : \Gamma \rightharpoonup \Delta \mid \lambda y M \Rightarrow (\sigma, y := x) : \Gamma, y : \alpha \rightharpoonup \Delta, x : \alpha \mid M$

Proof. All results are direct except from last one that we discuss next. For all z free in M and decared in context $\Gamma, y : \alpha$, we have to prove that $\Delta, x : \alpha \vdash (\sigma, y := x)z : (\Gamma, y : \alpha)z$. When y = z the proof is inmediate, when not the goal becomes $\Delta, x : \alpha \vdash \sigma z : \Gamma z$. As $y \neq x$ and z * M then $z * \lambda y M$, and we can use the $\sigma : \Gamma \rightharpoonup \Delta \mid \lambda y M$ hypotheses with z variable to get $\Delta \vdash \sigma z : \Gamma z$. Using that $z * \lambda y M$ and the $x \# \sigma \mid \lambda y M$ premise, we know that $x \# \sigma z$, then we can apply the second weakening lemma to $\Delta \vdash \sigma z : \Gamma z$ and obtain our goal. \Box

We can now prove the following substitution lemma for the typing judge.

Proposition 3 (Substitution Lemma for Type System). $\Gamma \vdash M : \alpha, \sigma : \Gamma \rightharpoonup \Delta \mid M \Rightarrow \Delta \vdash M\sigma : \alpha$

Proof. The proof is by induction in the typing judge. The variable and application cases are direct. For the abstraction case we have to prove $\Delta \vdash (\lambda y.M)\sigma : \alpha \to \beta$, where $(\lambda y.M)\sigma$ is equal to $\lambda x.(M(\sigma,y:=x))$, and $x = \chi(\sigma,\lambda y.M)$. By the syntax directed definition of the typing judge, using abstraction case, we derive that $\Gamma, y : \alpha \vdash M : \beta$. We can use the last part of previous proposition to derive that $(\sigma,y:=x) : \Gamma, y : \alpha \to \Delta, x : \alpha \mid M$. Then, applying the inductive hypothesis to previous result we have that $\Delta, x : \alpha \vdash M(\sigma,y:=x) : \beta$. Next by abstraction rule of type system we have that $\Delta \vdash \lambda x.(M(\sigma,y:=x)) : \alpha \to \beta$, which by substitution definition is desired result. \square

Corollary 1 (Typing judge is preserved by β -contraction). $\Gamma \vdash M : \alpha, M \triangleright N \Rightarrow \Gamma \vdash N : \alpha$

Proof. We have to prove that $\Gamma \vdash M(\iota, x := N) : \alpha$. By hypotheses $\Gamma \vdash (\lambda x M) : \alpha$, then by typing judge $\Gamma, x : \alpha \vdash M : \beta$ and $\Gamma \vdash N : \alpha$. Using second part and third parts of proposition 2 to last typing judge we have that $(\iota, x := M) : \Gamma, x : \alpha \rightharpoonup \Gamma \downharpoonright M$, then applying previous substitution lemma to $(\iota, x := M)$ substitution and $\Gamma, x : \alpha \vdash M : \beta$ we finish the proof.

Corollary 2. $\Gamma \vdash M : \alpha, M \rightarrow_{\beta} N \Rightarrow \Gamma \vdash N : \alpha$

Proof. Direct induction on the contextual clousure relation. For the β -contraction we directly use last result.

Proposition 4. $\Gamma \vdash M\iota : \alpha, \Rightarrow \Gamma \vdash M : \alpha$

Proof. By induction on the typing relation. Variable and application cases are direct. Next we detail the abstraction case we have that $\Gamma, y : \alpha \vdash M(\iota, x := y) : \beta$, with $y = \chi(\iota, \lambda x M)$. Using the subtitution lemma to previous judge, and with $(\iota, y := x)$ substitution, by part fourth of prop. 2 we get that $\Gamma, x : \alpha \vdash (M(\iota, x := y))(\iota, y := x) : \beta$, but $(M(\iota, x := y))(\iota, y := x) \equiv M\iota$ because $y \# \iota \mid \lambda x M$. Then by inductive hypothesis and abstraction rule of typing system we end the proof.

Proposition 5. $\Gamma \vdash M : \alpha, M \sim_{\alpha} N \Rightarrow \Gamma \vdash N : \alpha$

Proof. As $M \sim_{\alpha} N$ then $M\iota \equiv N\iota$. Using previous prposition we just need to proof that $\Gamma \vdash M\iota : \alpha$, which is direct by the substitution lemma and first part of proposition 3.

Subject redution is proved by induction on the reflexive-transitive closure of $\rightarrow_{\alpha}(\rightarrow_{\beta}\cup\sim_{\alpha})$ relation, using directly the two last results for the \rightarrow_{α} and \sim_{α} cases respectively.

Theorem 1 (Subject Reduction). $\Gamma \vdash M : \alpha, M \to_{\beta}^* N \Rightarrow \Gamma \vdash N : \alpha$