

EM600 - Engineering Economics and Cost Analysis

Lecture 10: Cost Concepts and Capital Budgeting

Lecture 10 1 of 66

References:

- Park, Chan S. <u>Contemporary Engineering</u>
 <u>Economics</u>. New Jersey: Pearson Prentice
 Hall, 2006 (Chapter 8: 8.1 8.4; Chapter
 15)
- Ganguly, A. <u>Engineering Economics Using</u>
 Excel. New Jersey: SSE, 2008

After completing this module you should understand the following:

- General cost concepts including the classification of costs / types of costs
- Introduction to capital budgeting
- Cost of capital
- Choice of MARR
- Capital budgeting decisions.

PART 1

General Cost Concepts

Lecture 10 4 of 66

General Cost Terms:

- Manufacturing Costs:
 - Direct Raw Materials
 - Any material used in the manufacture of a product that can be traced to it.
 - e.g. the active ingredient in a headache tablet is a direct raw material.
 - Direct Labor
 - Cost associated with any direct labor that goes into the manufacture of a final product.
 - e.g. the operators in the manufacture of headache tablets.
 - Manufacturing Overhead
 - All other costs, e.g. indirect materials, maintenance, energy, . . . etc
 - Excludes any direct raw material and labor costs.

Lecture 10 5 of 66

General Cost Terms:

– Manufacturing Costs:

Various types of manufacturing costs incurred by a manufacturer (Chan S. Park, Figure 8.1)

General Cost Terms:

- Non-manufacturing Costs:
 - Overhead
 - Associated with administrative functions.
 - Marketing
 - All executive, organizational and clerical costs associated with sales activities.
 - e.g. travel, advertising, . . . etc
 - Administrative functions
 - Costs associated with the general management of a company.
 - e.g. public relations, secretarial support, . . .etc

- Classifying Costs for Financial Statements:
 - Matching Concept: The costs incurred to generate particular revenue should be recognized as expenses in the same period that the revenue is recognized.
 - Period Costs: Those costs that are matched against revenues on a time period basis.
 - Product Costs: Those costs that are matched against revenues on a product basis i.e. the costs involved in the purchase or manufacture of goods.

Classifying Costs for Financial Statements:

- Examples:
 - Period Costs:
 - General and administrative expenses
 - Marketing expenses
 - Insurance premiums
 - Income taxes
 - Nonmanufacturing costs
 - Product Costs:
 - Direct material costs
 - Direct labor costs
 - Manufacturing overhead

 Classifying Costs for Financial Statements:

Cost flows and classifications in a manufacturing company (Chan S. Park, Figure 8.3)

Cost Classification for Predicting Cost Behavior:

- Volume index
 - e.g. direct labor hours used, number of kW hours generated, . . . Etc
 - How do costs change in response to changes in the volume index?

Cost Classification for Predicting Cost Behavior:

- Cost behaviors
 - Fixed costs
 - A cost that remains constant regardless of any change in a company's activity.
 - Variable costs
 - A cost that changes proportionally to changes in a company's activity, e.g. changing levels of production or sales.
 - Mixed costs
 - Combination of fixed and variable e.g. depreciation
 - Costs are fixed to a set level and vary once this level is exceeded.
 - Average unit cost
 - Activity cost per unit basis
 - Fixed, variable or mixed costs

Cost Classification for Predicting Cost Behavior:

- Average unit cost:
 - You have 5000 units to produce.
 - Total labor cost = \$40,000
 - Total material cost = \$45,000
 - Total overhead cost = \$25,000
 - Total fixed cost = \$40,000
 - What is the average cost per unit?

Total Cost =
$$$40,000 + $45,000 + $25,000 + $40,000$$

Total Cost = $$150,000$

Average Unit Cost =
$$\frac{\text{Total Cost}}{\text{# Units}} = \frac{\$150,000}{5,000} = \$30$$

- Differential (Incremental) Cost and Revenue
 - Method Changes
 - Operations Planning
 - Make-or-Buy Decision
- Opportunity Cost
- Sunk Costs
- Marginal Cost

- Differential (Incremental) Cost and Revenue
 - Definition: (Chan S. Park)
 - Incremental Cost: Costs that represent the differences in total costs, which results from selecting one alternative instead of another.
 - Cost behavior: (Chan S. Park)
 - Incremental Cost: Increase or decrease with the overall change that a company experiences by producing one additional unit of good.

- Differential (Incremental) Cost and Revenue
 - Method Changes
 - The new alternative may be a new method for completing an activity.
 - A cost comparison is required between the existing and the proposed methods.
 - Method changes typically involve an improvement in efficiency e.g. a quicker method, a method that improves the product yield, a reduction in energy, . . . etc

- Differential (Incremental) Cost and Revenue
 - Operations Planning
 - Demands can vary from high to low over the course of a year.
 - Variation in demand means the shift operating schedule may require adjustments
 - » High demand may require overtime or the introduction of an additional shift for example.
 - » Low demand may require continued operation at low demand levels (inefficient use of resources available) or temporary shutdown for example.

- Differential (Incremental) Cost and Revenue
 - Make-or-Buy Decision
 - Make: Firm uses internal resources to perform some activities needed to provide products and services.
 - Buy: Firm uses external resources to perform other activities needed to provide products and services.
 - Question: Should a function be outsourced or should the company perform the function in-house?
 - Outsourcing examples include customer service activities, waste and energy management activities, . . . etc
 - Opportunity costs are typically considered with make-orbuy decisions
 - » Decision involves more than one alternative.
 - » An opportunity cost is the potential benefit that is given up as you seek an alternative course of action.

- Opportunity Cost
 - Definition: (Chan S. Park)
 - The potential benefit that is given up as you seek an alternative course of action.
 - Important consideration in the decision making process.
 - Is not reported on a company's financial statements.
 - Example:
 - A person who invests \$10,000 in a stock denies themselves the interest they could have earned by leaving the \$10,000 dollars in a bank account instead. The opportunity cost of the decision to invest in stock is the value of the interest.¹
- 1. "opportunity cost examples" Wikipedia.org. Wikipedia. July 31, 2008 http://en.wikipedia.org/wiki/Opportunity_cost#Examples.

- Sunk Costs
 - Definition: (Chan S. Park)
 - Cost that has already been incurred by past actions.
 - Cost that has been incurred and cannot be reversed.
 - Economic Implications:
 - Not relevant to decisions now or in the future.
 - Only variable costs should be considered.
 - Used by accountants, but not by economists.

- Marginal Cost
 - Definition (Chan S. Park)
 - The cost associated with one additional unit of production.
- Marginal Revenue
 - Definition: (Chan S. Park)
 - The revenue that can be obtained from selling one more unit of product.
- Marginal Contribution
 - Definition: (Chan S. Park)
 - The difference between the unit sales price and the unit variable cost.
 - Also know as: marginal income, unit contribution.

Refer to Chan S. Park examples 8.4 and 8.7.

$$P = \text{Profit} \qquad F = \text{Fixed costs}$$

$$R = \text{Revenue} \qquad V = \text{Variable cost per unit}$$

$$Q = \text{Price per unit} \qquad N = \text{Number of units of volume}$$

$$\text{Cost} = \text{Revenue}$$

$$F + NV = NQ$$

$$N_q = \frac{F}{Q - V} \quad \text{at break - even point}$$

$$NQ = \frac{FQ}{Q - V}$$

$$R = \frac{F}{1 - \frac{V}{Q}}$$

$$Q - V = \text{Marginal contribution per unit (\$)}$$

$$1 - \frac{V}{Q} = \text{Marginal contribution rate (MCR, \%)}$$

(Chan S. Park, Lecture No30.ppt)

	Product A	Product B
Selling Price	\$10	\$12
Variable Costs	\$5	\$10
Fixed Costs	\$2,000	\$600

- 1. If these products are sold in the ratio of 3A: 4B, what is the break-even point?
- 2. If the product mix is changed to 5A: 5B, what would happen to the break-even point?
- 3. In order to maximize the profit, which product mix should be pushed?

1. If these products are sold in the ratio of 3A: 4B, what is the breakeven point?

<u>Answer:</u> The product mix given in the problem is 3A:4B. Therefore, B=0.75A Now, at Break-Even level, TOTAL REVENUE = TOTAL COST Therefore, 10A + 12*(0.75A) = 5A + 10*(0.75A) + 2000 + 600 Now, solving for A, we get A = 400 units. Then B = 0.75A = 300 Units

2. If the product mix is changed to 5A: 5B, what would happen to the breakeven point?

<u>Answer:</u> The new product mix given in the problem is 5A: 5B. Therefore, A = B Now, at Break-Even level, TOTAL REVENUE = TOTAL COST Therefore, 10A + 12A = 5A + 10A + 2000 + 600. Now, solving for A, we get A = B = 371.43 units

3. In order to maximize the profit, which product mix should be pushed?

<u>Answer:</u> In order to arrive at a decision regarding which product to push, we need to compare the Marginal Contribution per unit of both products.

 $MCA = Unit \ Selling \ Price - \ Variable \ Cost = \$ \ 1 \ 0 - \$ \ 5 = \$ 5.00$ $MCB = Unit \ Selling \ Price - \ Variable \ Cost \$ \ 1 \ 2 - \$ \ 10 = \$ 2.00$

Since the MCR of Product A > MCR of Product B, Product A will have to be specified.

PART 2

Capital Budgeting

"the planning process used to determine a firm's long term investments" (Chan S. Park)

Lecture 10 25 of 66

- Equity financing
 - Capital from either retained earnings or funds raised from an issuance of stock.
- Debt Financing
 - Money raised through loans or by an issuance of bonds.
- Capital Structure
 - Well managed firms establish a target capital structure and strive to maintain the debt ratio.

- Equity financing
 - Use of retained earnings otherwise paid to stockholders in the form of dividends.
 - Issuance of stock:
 - Two types of securities:
 - » Common Stock
 - » Preferred Stock
 - Floatation costs:
 - » Costs associated with the issuance of new securities.
 - » e.g. bankers' fees, lawyers' fees, . . . etc

- Debt financing
 - Money raised through loans or by an issuance of bonds.
 - Types:
 - Term Loans:
 - » Short term borrowing from financial institutions.
 - » Equal repayments over the term of a loan.
 - Interest repayments decrease.
 - Principal repayments increase.
 - Bond Financing:
 - » Sale of long term bonds.
 - » Principal is paid in a lump sum once the bond matures.
 - » Interest is paid annually.
 - » Flotation costs for bond issuance.

Lecture 10 28 of 66

- Capital Structure
 - The means by which a firm is financed.
 - Ratio of total debt to total capital.
 - Mixed financing:
 - » Retained earnings
 - » Borrow from a financial institution or issue stock
 - Also known as: debt ratio, or, debt-equity ratio.
 - Firms usually establish a target capital structure or a target debt ratio.
 - Trade-off between risk and return
 - The interest from debt is tax deductible
 - Financial flexibility

Cost of Capital

- Three main areas of focus:
 - Cost of equity.
 - Cost of debt.
 - Calculating the cost of capital.

- Definition: (Chan S. Park)
 - i_e : the minimum rate of return a firm must offer stockholders to compensate for waiting for their returns, and for bearing some risk.
- Involves an opportunity cost
 - If retained earnings are reinvested by the firm, dividends are not paid out to the stockholders.
 - Stockholders could have received the earnings as dividends and invested in other financial assets of their own choice.

- Based on Financing Sources:
 - Cost of retained earnings:

$$k_r = \frac{D_1}{P_0} + g$$
 where,
 $k_r = \text{rate of return required by shareholders};$ $D_1 = \text{first year dividend};$
 $P_0 = \text{market price};$ $g = \text{annual growth rate}$

Flotation costs for common stock:

$$k_e = \frac{D_1}{P_0(1 - f_c)} + g$$
 where,
 $k_e = \text{cost of common equity};$ $D_1 = \text{first year dividend};$
 $P_0 = \text{market price};$ $f_c = \text{flotation cost as a percentage of the stock price};$
 $g = \text{annual growth rate}$

- Based on Financing Sources:
 - Flotation costs for preferred stock:

$$k_p = \frac{D^*}{P^*(1-f_c)}$$
 where,
 $k_p = \text{cost of preferred equity};$ $D^* = \text{fixed annual dividend};$
 $P^* = \text{issuing price};$ $f_c = \text{flotation cost as a percentage of the stock price}$

- Based on Financing Sources:
 - Cost of Equity:

$$i_e = \left(\frac{c_r}{c_e}\right) k_r + \left(\frac{c_c}{c_e}\right) k_e + \left(\frac{c_p}{c_e}\right) k_p$$
 where,

 i_e = weighted - average cost of equity for a project;

 c_r = amount of equity financed from retained earnings;

 c_c = amount of equity financed from issuing new stock;

 c_p = amount of equity financed from issuing preferred stock;

 k_r = rate of return required by shareholders (%);

 $k_e = \text{cost of common equity (\%)};$

 $k_p = \text{cost of preferred equity (\%)};$

Note:

$$c_r + c_c + c_p = c_e$$

- Based on Financing Sources
- Example 1: (Adapted from Chan S. Park, example 15.4)
 - Alpha Pharmaceutical, Inc. Corporation needs to raise \$10 million for plant modernization.
 - Alpha's target capital structure calls for a debt ratio of 0.4.
 - \$6 million needs to be financed from equity from the following sources:

Sources	Amount	Fraction
Retained earnings	\$1,000,000	0.1667
New Common Stock	\$4,000,000	0.6667
Preferred Stock	\$1,000,000	0.1667

- Based on Financing Sources
- Example 1: (Adapted from Chan S. Park, example 15.4)
 - Financial Data:

	Common Stock	Preferred Stock
Market Price	\$40	\$100
Annual Cash Dividend	\$5 (EOY 1)	\$9
Annual Cash Dividend Growth Rate	8%	-
Issue Price	\$40	\$95
Flotation Costs	12.4%	6% (market price)

- Cost of Equity
 - Based on Financing Sources
 - Example 1: (Chan S. Park, example 15.4)
 - Deliverables:
 - Calculate the cost of equity required to finance the plant modernization.
 - » Cost of retained earnings
 - » Cost of new common stock
 - » Cost of preferred stock
 - » Cost of equity

- Based on Financing Sources
- Example 1: (Chan S. Park, example 15.4)
 - Cost of retained earnings (common stock)

$$k_r = \frac{D_1}{P_0} + g \qquad \text{where,}$$

 k_r = rate of return required by shareholders; D_1 = first year dividend;

 P_0 = market price; g = annual growth rate

$$k_r = \frac{D_1}{P_0} + g = \frac{\$5}{\$40} + 8\% = 20.5\%$$

 $k_r = 20.5\%$ rate of return required by shareholders where dividends are not paid out.

- Based on Financing Sources
- Example 1: (Chan S. Park, example 15.4)
 - Cost of new common stock

$$k_e = \frac{D_1}{P_0(1 - f_c)} + g$$
 where,

 $k_e = \text{cost of common equity (\%)};$ $D_1 = \text{first year dividend;}$

 P_0 = market price; f_c = flotation cost as a percentage of the stock price;

g =annual growth rate

$$k_e = \frac{D_1}{P_0(1 - f_c)} + g = \frac{\$5}{\$40(1 - 12.4\%)} + 8\%$$

 $k_e = 22.27\%$ required rate of return associated with the cost of issuing new stock

- Based on Financing Sources
- Example 1: (Chan S. Park, example 15.4)
 - Cost of preferred stock

$$k_p = \frac{D^*}{P^*(1 - f_c)}$$
 where,

 $k_{\rm p} = {\rm cost~of~preferred~equity}$ (%); $D^* = {\rm fixed~annual~dividend}$;

 P^* = issuing price; f_c = flotation cost as a percentage of the stock price

$$k_p = \frac{D^*}{P^*(1-f_c)} = \frac{\$9}{\$95(1-6\%)}$$

 $k_p = 10.08\%$ required rate of return associated with the cost of issuing preferred stock

- Based on Financing Sources
- Example 1: (Chan S. Park, example 15.4)
 - Cost of equity

$$i_e = \left(\frac{c_r}{c_e}\right) k_r + \left(\frac{c_c}{c_e}\right) k_e + \left(\frac{c_p}{c_e}\right) k_p$$
 where,

 i_e = weighted - average cost of equity for a project;

 c_r = amount of equity financed from retained earnings;

 c_c = amount of equity financed from issuing new stock;

 c_p = amount of equity financed from issuing preferred stock;

 k_r = rate of return required by shareholders;

 $k_e = \cos t$ of common equity

 $k_p = \cos t$ of preferred equity;

- Based on Financing Sources
- Example 1: (Chan S. Park, example 15.4)
 - Cost of equity

$$i_{e} = \left(\frac{c_{r}}{c_{e}}\right)k_{r} + \left(\frac{c_{c}}{c_{e}}\right)k_{e} + \left(\frac{c_{p}}{c_{e}}\right)k_{p}$$

$$i_{e} = \left(\frac{\$1,000,000}{\$6,000,000}\right)20.5\% + \left(\frac{\$4,000,000}{\$6,000,000}\right)22.27\% + \left(\frac{\$1,000,000}{\$6,000,000}\right)10.08\%$$

$$i_{e} = \left(16.67\%\right)20.5\% + \left(66.67\%\right)22.27\% + \left(16.67\%\right)10.08\%$$

$$i_e$$
 = weighted - average cost of equity for a project;
 i_e = 19.94%

If Alpha finances the project entirely from its equity funds, the project must earn at least a 19.94% return on investment.

- Based on Financial Markets
 - Key Definitions: (Chan S. Park)
 - Inflation Risk or Inflation Premium:
 - » The possibility that the value of assets or income will decrease as inflation shrinks the purchasing power of a currency.
 - Risk Premium:
 - » The return in excess of the risk-free rate of return that an investment is expected to yield.
 - Beta: (β)
 - » A measure of the volatility or systemic risk, of a security or portfolio in comparison to the market as a whole.

- Based on Financial Markets
 - Expected return on a risky asset has 3 sources:
 - Risk-free interest rate = compensation from the opportunity cost incurred in holding the asset
 - Inflation premium = compensation for the declining purchasing power of the investment over time
 - Risk premium = compensation for bearing risk

$$\begin{aligned}
& (\text{Expected Return}) = (\text{Risk - free}) + (\text{Inflation}) + (\text{Risk}) \\
& (\text{on Risky Asset}) = (\text{Interest rate}) + (\text{Inflation}) + (\text{Risk}) \\
& (\text{premium}) + (\text{Risk}) + (\text{Pisk}) + (\text{Pi$$

- Based on Financial Markets
 - The cost of equity is the risk-free cost of debt (20-year U.S. Treasury Bills around 7%) plus a premium for taking a risk as to whether a return will be received.
 - The premium is the average return on the market (say 12.5%) less the risk-free cost of debt. This premium is multiplied by Beta, β, a measure of stock price volatility.
 - Beta quantifies risk and is an approximate measure of stock price volatility. It measures one firm's stock price compared (relative) with the market stock prices as a whole.
 - A number greater than one means that the stock is more volatile than the market on average; a number less than one means that the stock is less volatile than the market on average.

(Chan S. Park, Lecture No61.ppt)

- Based on Financial Markets:

$$i_e = r_f + \beta [r_M - r_f]$$
 where,
 $i_e = \text{cost of equity for a project;}$
 $r_f = \text{risk free interest rate;}$
 $r_M = \text{market rate of return}$

Note:

 r_f is commonly referenced to the U.S. Treasury Bond yield, adjusted for inflation.

 r_M is commonly referenced to the average return on S & P 500 stock index funds, adjusted for inflation.

- Based on Financial Markets
- Example 2: (Chan S. Park, example 15.5)
 - Alpha Corporation needs to raise \$10 million for plant modernization.
 - Alpha's target capital structure calls for a debt ratio of 0.4.
 - \$6 million needs to be financed from equity from the financial market.
 - Financial Data:

	Value	Comment
Beta, β	1.99	>1; firm is more risky than market average
Risk Free Interest Rate	6%	Adjusted to reflect inflation
Average Market Return	13%	in the economy

- Cost of Equity
 - Based on Financial Markets
 - Example 2: (Chan S. Park, example 15.5)
 - Deliverables:
 - Calculate the cost of equity required to finance the plant modernization.

- Based on Financial Markets
- Example 2: (Chan S. Park, example 15.5)
 - Cost of Equity:

$$i_e = r_f + \beta [r_M - r_f]$$
 where,
 $i_e = \text{cost of equity for a project;}$
 $r_f = \text{risk free interest rate;}$
 $r_M = \text{market rate of return}$

$$i_e = r_f + \beta [r_M - r_f] = 6\% + 1.99[13\% - 6\%] = 19.93\%$$

If Alpha finances the project entirely from its equity funds, the project must earn at least a 19.93% return on investment.

- Definition: (Chan S. Park)
 - The effective rate a company pays on its current debt.

$$i_d = \left(\frac{c_s}{c_d}\right) k_s (1 - t_m) + \left(\frac{c_b}{c_d}\right) k_b (1 - t_m)$$
 where,

 i_d = after - tax cost of debt for a project;

 c_s = amount of short - term loan;

 c_h = amount of bond financing;

 k_s = before tax interest on the term loan;

 k_b = before tax interest on the bond;

 $t_m =$ firm's marginal tax rate

Note:

$$c_s + c_b = c_d$$

- Example 3: (Chan S. Park, example 15.6)
 - Alpha Corporation needs to raise \$10 million for plant modernization.
 - Alpha's target capital structure calls for a debt ratio of 0.4.
 - \$4 million needs to be financed from a term loan and issuing 20-year par bonds.
 - Financial Data:

Source	Amount	Fraction	Interest Rate	Flotation Cost
Term Loan	\$1,000,000	0.25	12.00%	
Bonds	\$3,000,000	0.75	10.00%	6.00%

- Bond Issue Price = \$940 (flotation costs deducted)
- Marginal Tax Rate = 38%

- Cost of Debt
 - Example 3: (Chan S. Park, example 15.6)
 - Deliverables:
 - Calculate the cost of debt required to finance the plant modernization.

- Example 3: (Chan S. Park, example 15.6)
 - Cost of Debt:

$$i_d = \left(\frac{c_s}{c_d}\right) k_s (1 - t_m) + \left(\frac{c_b}{c_d}\right) k_b (1 - t_m)$$
 where,

 i_d = after - tax cost of debt for a project;

 c_s = amount of short - term loan;

 c_b = amount of bond financing;

 k_s = before tax interest on the term loan;

 k_h = before tax interest on the bond;

 $t_m =$ firm's marginal tax rate

NOTE: The before tax interest rate on the bond (k_b) needs to be recalculated taking the 6% flotation cost into account.

- Example 3: (Chan S. Park, example 15.6)
 - Cost of Debt:
 - Calculate before tax interest rate on the bond (k_b) :

$$P = 940$$

$$A = 1,000 \times 10\% = 100$$

$$F = 1,000$$

$$N = 20$$

$$i = k_b = ?$$

»
$$$940 = $100(P/A, k_b, 20) + $1,000(P/F, k_b, 20)$$

» Using linear interpolation, $k_b = 10.74\%$

- Example 3: (Chan S. Park, example 15.6)
 - Cost of Debt:

$$i_{d} = \left(\frac{c_{s}}{c_{d}}\right) k_{s} (1 - t_{m}) + \left(\frac{c_{b}}{c_{d}}\right) k_{b} (1 - t_{m})$$

$$i_{d} = \left(\frac{\$1,000,000}{\$4,000,000}\right) (12.00\%) (1 - 38\%) + \left(\frac{\$3,000,000}{\$4,000,000}\right) (10.74\%) (1 - 38\%)$$

$$i_{d} = 6.85\%$$

Cost of Capital

- Definition: (Chan S. Park)
 - Cost of Capital for a firm is a weighted sum of the cost of equity and the cost of debt.
- Weighted-average cost of capital:
 - Represents a composite index reflecting the cost of raising funds from different sources.
- Marginal cost of capital: (Chan S. Park)
 - The marginal cost of capital is defined as the cost of obtaining another dollar of new capital.
 The marginal cost rises as more and more capital is raised during a given period.

Calculate: Cost of Capital

– Weighted-average cost of capital:

$$k = \frac{i_d c_d}{V} + \frac{i_e c_e}{V}$$
 where,

k = Tax - adjusted weighted average cost of capital;

 c_d = Total debt capital (e.g. bonds) in dollars;

 c_e = Total equity capital in dollars;

$$V = c_d + c_e$$

 i_e = Average equity interest rate per period, taking into account all equity sources;

 i_d = After - tax average borrowing interest rate per period, taking into account all debt sources.

- Definition of MARR: (Chan S. Park)
 - Minimum Attractive Rate of Return
 - The required return necessary to make a capital budgeting project - such as building a new factory – worthwhile.
 - Project Risk Level:
 - High = High MARR
 - -Low = Low MARR
 - Typical MARR values:
 - Public / Government project = 5% to 8%
 - Private project = 15% and up

- Project financing is known:
 - MARR represents the cost of equity.
 - MARR = i_e
 - Refer to Chan S. Park, example 15.8.
- Project financing is unknown:
 - MARR represents the weighted cost of capital.
 - MARR = k
 - Refer to Chan S. Park, example 15.9.
- Capital rationing:
 - Driven by the borrowing and lending opportunities.
 - Borrowing rate = k
 - Lending rate = l
 - MARR = i, where l < i < k

– Capital rationing:

Conditions	MARR
A firm borrows some capital from lending institutions at the borrowing rate k and some from its investment pool at the lending rate l .	l < MARR < k
A firm borrows all capital from lending institutions at the borrowing rate k .	MARR = k
A firm borrows all capital from its investment pool at the lending rate l .	MARR = l

Capital rationing: (Example 15.10, Chan S. Park)

A range of MARRs as a function of a budget under capital rationing (Chan S. Park, Figure 15.4)

Capital Budgeting Decisions:

- Evaluation of multiple investment alternatives.
- Formulation of mutually exclusive alternatives.
- Capital budgeting decisions with limited budgets.

Evaluation of multiple investment alternatives:

- Independent projects:
 - A project that may be accepted or rejected without influencing the decision to accept or reject another independent project.
 - Separate evaluation required.
- Dependent projects:
 - A project that may be accepted or rejected and influences the decision to accept or reject another dependent project.
 - e.g. mutually exclusive projects, contingent projects

- Formulation of mutually exclusive alternatives.
 - Independent projects: (A & B)

Alternative	Description	X _a	X _b
1	Reject A, Reject B	0	0
2	Accept A, Reject B	1	0
3	Reject A, Accept B	0	1
4	Accept A, Accept B	1	1

Formulation of mutually exclusive alternatives.

Mutually exclusive projects: (A1, A2; B1, B2)

Alternative	(X _{A1} , X _{A2})	(X _{B1} ,X _{B2})
1	(0,0)	(0,0)
2	(1,0)	(0,0)
3	(0,1)	(0,0)
4	(0,0)	(1,0)
5	(0,0)	(0,1)
6	(1,0)	(1,0)
7	(0,1)	(1,0)
8	(1,0)	(0,1)
9	(0,1)	(0,1)

Selection of A1 or A2 is independent of the selection of either B1 or B2.

A1 and A2 cannot be selected together.

B1 and B2 cannot be selected together.

Formulation of mutually exclusive alternatives.

Contingent projects: (A, B and C)

Alternative	X _A	X _B	X _C
1	0	0	0
2	1	0	0
3	1	1	0
4	1	1	1

Selection of A is independent.

Selection of B is contingent on the selection of A.

Selection of C is contingent on the selection of A and B.

- Capital budgeting decisions with limited budgets.
 - Enumerate all investment alternatives as before.
 - Eliminate any alternatives that exceed the budget.
 - Select the group of projects that maximizes the total PW of future cash flows over the required investment outlays.
 - Refer to Chan S. Park, example 15.11.

Lecture 10 68 of 66