- 1. W poniższych zadaniach zakładamy, że kobiety i mężczyźni stanowią po 50 % społeczeństwa.
 - a) Rodzina ma jedno dziecko. Jakie jest prawdopodobieństwo, że to córka?
 - b) Rodzina ma dwoje dzieci. Wiadomo, że mają syna. Jakie jest prawdopodobieństwo, że mają córkę?
 - c) Rodzina ma dwoje dzieci. Pytamy jednego z rodziców czy ma córkę o imieniu Eliza. Odpowiada, że tak. Jakie jest prawdopodobieństwo, że oboje dzieci to dziewczyny?
 - d) Rodzina ma dwoje dzieci. Widzimy jedno z dzieci w przedpokoju to dziewczyna. Jakie jest prawdopodobieństwo, że oboje dzieci to dziewczyny?
- 2. Rozważamy przedział <4,9>. Jakie jest prawdopodobieństwo, że losowo wybrana liczba z tego przedziału jest z zakresu (5,7>?
- 3. Adam i Kasia codziennie spacerują w parku między godziną 12 a 13 (o losowych porach). Kiedy Adam przychodzi do parku, spędza tam 5 minut. Z kolei Kasia spędza 20 minut w parku. Jakie jest prawdopodobieństwo, że Adam spotka Kasię w parku?
- 4. Własności prawdopodobieństwa
 - a) Niech A i B oznaczają zdarzenia losowe, przy czym $A \subset B$. Pokaż, że $P(B \setminus A) = P(B) P(A)$.
 - b) Niech A i B oznaczają zdarzenia losowe, przy czym $P(A')=\frac{1}{3},\ P(B')=\frac{1}{4}$ oraz $P(A\cap B)=\frac{1}{2}.$ Oblicz $P(A'\cap B').$
- 5. Niezależność zdarzeń i prawdopodobieństwo warunkowe
 - a) Niech A i B oznaczają zdarzenia losowe, przy czym P(B')=0.6, P(A|B)=0.5. Oblicz $P(A\cap B).$
 - b) Niech A i B oznaczają zdarzenia losowe niezależne. Ile wynosi P(A|B)?
- 6. Schemat Bernoulliego
 - a) Rzucamy 7 razy monetą. Jakie jest prawdopodobieństwo uzyskania dokładnie trzech orłów?
 - b) Rzucamy 8 razy symetryczną, standardową kostką do gry. Jakie jest prawdopodobieństwo uzyskania co najwyżej sześciu trójek?
- 7. Twierdzenie o prawdopodobieństwie całkowitym i twierdzenie Bayesa
 - a) Dane są 3 worki zawierające kule. Pierwszy worek zawiera 75 czerwonych i 25 niebieskich, drugi worek zawiera 60 czerwonych i 40 niebieskich, trzeci worek zawiera 45 czerwonych i 55 niebieskich. Wybieramy worek sposób losowy, a następnie wybieramy z niego kulę. Jakie jest prawdopodobieństwo, że będzie to kula czerwona?
 - b) Rozważamy pewien test na obecność wirusa. Przy testowaniu osoby zakażonej test wskazuje na wynik pozytywny u 95 % przypadków, w przypadku osoby zdrowej test wypada negatywnie u 94 % przypadków. Powiedzmy, że w całej populacji 1 % osób jest zakażonych. Wykonujemy test u losowo wybranej osoby z populacji. Test okazał się pozytywny. Jakie jest prawdopodobieństwo, że taka osoba jest zakażona?

- c) Gen ma dwa allele A i a. Zakładamy, że allele dziedziczą się niezależnie i są tak samo prawdopodobne. Wiadomo, że dana osoba ma fenotyp dominujący (genotyp AA lub Aa). Jakie jest prawdopodobieństwo, że każdy z rodziców ma genotyp AA?
- 8. Wektor losowy (X, Y) ma następujący rozkład łączny

$X \setminus Y$	2	4	5
1	$\frac{1}{12}$	$\frac{1}{24}$	$\frac{1}{24}$
2	$\frac{1}{6}$	$\frac{1}{12}$	$\frac{1}{8}$
3	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{12}$

- a) Ile wynosi $P(Y \le 2, Y \le 4)$?
- b) Wyznacz rozkład zmiennej losowej X oraz Y.
- c) Wyznacz P(Y=2|X=1).
- d) Czy zmienne X oraz Y są niezależne?
- 9. Rzucamy dwa razy kostką do gry. Niech zmienna losowa X opisuje iloczyn oczek z obu rzutów (pojedyncze rzuty opisują zmienne X_1 oraz X_2 , tzn. $X = X_1 \cdot X_2$). Wyznacz rozkład zmiennej losowej X. Następnie wyznacz $P(X = 12|X_1 = 3)$ oraz $P(X = 12|X_1 > 2)$.
- 10. Pokaż, że poniższe funkcje są funkcjami gęstości prawdopodobieństwa pewnej zmiennej losowej X przyjmującej wartości rzeczywiste. Dwie pierwsze funkcje dotyczą zmiennej losowej dyskretnej, dwie kolejne zmiennej losowej ciągłej.

a)
$$p_i = \begin{cases} \frac{1}{6}, & \text{jeśli } i \in \{1,2,3,4,5,6\} \\ 0, & \text{w przeciwnym przypadku} \end{cases}$$

b) $p_i = \begin{cases} \frac{1}{5}, & \text{jeśli } i \in \{1,2,3\} \\ \frac{2}{5}, & \text{jeśli } i \in \{6\} \\ 0, & \text{w przeciwnym przypadku} \end{cases}$

c)
$$f(x) = \begin{cases} \frac{1}{5}, & \text{jeśli } x \in <2,7>\\ 0, & \text{w przeciwnym przypadku} \end{cases}$$

d)
$$f(x) = \begin{cases} \frac{1}{9}x^2, & \text{jeśli } x \in <0,3>\\ 0, & \text{w przeciwnym przypadku} \end{cases}$$

Wyznacz P(X=2) oraz $P(X \in \{2,4\})$ dla powyższych przykładów. Dodatkowo, wyznacz tzw. wartość oczekiwaną - dla rozkładów dyskretnych $EX = \sum_i p_i x_i$, dla rozkładów ciągłych $EX = \int_R x f(x) dx$.

11. Wyznacz parametr a dla którego poniższe funkcje są funkcjami gęstości prawdopodobieństwa.

a)
$$f(x) = \begin{cases} ax^4, & \text{jeśli } x \in <0,1>\\ 0, & \text{w przeciwnym przypadku} \end{cases}$$

b)
$$f(x,y) = \begin{cases} ae^{-5x}, & \text{jeśli } x>0\\ 0, & \text{w przeciwnym przypadku} \end{cases}$$

- 12. Sprawdź czy poniższe funkcje są dystrybuantami. Jeżeli tak, to wyznacz na jej podstawie funkcję gęstości prawdopodobieństwa.
 - a) $F(x) = \frac{1}{1 + e^{-x}}, x \in \mathbb{R}$
 - b) $F(x) = \frac{x}{x+1}, x \in \mathbb{R}$

c)

$$F(x) = \begin{cases} 1 - e^{-7x}, & \text{jeśli } x \in <0, \infty) \\ 0, & \text{w przeciwnym przypadku} \end{cases}$$

- 13. Książka zawierająca 300 stron zawiera 450 błędów ortograficznych. Jaka jest średnia liczba błędów na stronę? Zakładając rozkład Poissona, opisując występowanie błędów na kolejnych stronach, znajdź prawdopodobieństwo, że losowo wybrana strona:
 - a) nie zawiera błędów,
 - b) zawiera dokładnie 3 błędy,
 - c) zawiera więcej niż 2 błędy.
- 14. Zmienna losowa X opisuje czas pomiędzy kolejnymi telefonami w Call Center. Jej rozkład prawdopodobieństwa opisany jest za pomocą

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{jeśli } x \in \{0, \infty) \\ 0, & \text{w przeciwnym przypadku} \end{cases}$$

przy czym $\lambda = \frac{1}{60}$. Wyznacz wartość oczekiwaną tej zmiennej losowej a także prawdopodobieństwo, że czas oczekiwania wyniesie ponad 70.

15. Rozkład dóbr w społeczeństwie może być opisany za pomocą następującego rozkładu

$$f(x) = \begin{cases} \frac{\alpha x_m^{\alpha}}{x^{\alpha+1}}, & \text{jeśli } x \in \langle x_m, \infty \rangle \\ 0, & \text{w przeciwnym przypadku} \end{cases}$$

przy czym x_m oznacza minimalne wynagrodzenie, a $\alpha = \log_4 5 \approx 1.16$, Uzasadnij, że 20% społeczeństwa posiada 80% wszystkich dóbr.

Zadania uzupełniające

- 16. Wyznacz pochodne następujących funkcji
 - a) $f(x) = 6x^2 + 7x + \sin(x^3) + e^{7x} + 12$,
 - b) $f(x) = (7x+1)^6$,
 - c) $f(x) = x^5 \cos(5x + 6)$,
 - d) $f(x) = \frac{x^7 \ln x}{x^3 + 1}$.
- 17. Wyznacz następujące całki nieoznaczone:
 - a) $\int x^3 dx$,

- b) $\int (6x^2 + 8)dx$,
- c) $\int \frac{dx}{x+3}$,
- d) $\int x \sin x dx$,
- e) $\int x^2 \sin x dx$,
- f) $\int x^2 e^{-x} dx$,
- g) $\int \frac{xdx}{(x+1)(2x+1)},$
- h) $\int \frac{x^2+5x}{x^2-x-2} dx$.

18. Oblicz następujące całki oznaczone:

- a) $\int_{1}^{3} x^{2} dx$,
- b) $\int_0^2 12x^3 dx$,
- c) $\int_0^\infty e^{-3x} dx$,