Семинар 13

Явления переноса. Броуновское движение.

Теория

Диффузия

Уравнение Эйнштейна – Смолуховского:

1-мерное движение: $\langle x^2 \rangle = 2Dt$, $D = B \cdot kT$

 ${\rm B}=\upsilon/F-$ подвижность, где $\upsilon-$ стационарная скорость перемещения частицы в вязкой среде под действием силы F.

При Re < 0,5: $F = 6\pi\eta r \upsilon$ (сила Стокса) $D = \frac{kT}{6\pi\eta r}$

2-мерное движение: $\langle l^2 \rangle = 4Dt$, 3-мерное движение: $\langle r^2 \rangle = 6Dt$.

Явления переноса

	Стационарное	Нестационарное	Коэффициент
	уравнение	уравнение	
Диффузия	$j = -D\frac{dn}{dx}$	$\frac{\partial n}{\partial t} = D\Delta n$	$D = \frac{1}{3}\lambda \langle \upsilon \rangle$
Вязкость	$\tau_x = \frac{F_x}{S} = -\eta \frac{dv_x}{dy}$		$\eta = \frac{1}{3}\lambda\langle\upsilon\rangle\rho = D\rho$
Теплопроводность	$q = -\chi \frac{dT}{dx}$	$\frac{\partial T}{\partial t} = B\Delta T, B = \frac{\chi \mu}{\rho C_V}$	$\chi = \frac{1}{3}\lambda \langle \upsilon \rangle \rho \frac{C_V}{\mu} = D\rho \frac{C_V}{\mu}$