Išspręskite lygtis (1-8)

1.
$$25^{2x-3} = \frac{1}{5}$$

2.
$$\sqrt{2} \cdot 4^{5-7x} = \frac{1}{8}$$

$$3. \quad \frac{81^{x-3}}{3^{2x}} = \left(\frac{1}{9}\right)^{-4}$$

1.
$$25^{2x-3} = \frac{1}{5}$$
 2. $\sqrt{2} \cdot 4^{5-7x} = \frac{1}{8}$ 3. $\frac{81^{x-3}}{3^{2x}} = \left(\frac{1}{9}\right)^{-4}$ 4. $(16^{2x-5})^3 \cdot 4^{7-2x} = \left(\frac{1}{8}\right)^x$

5.
$$(2^{5x+14})^x \cdot \frac{1}{8} = 1$$

6.
$$\left(81^x \cdot \frac{1}{9^8}\right) = 3^{x+15}$$

5.
$$(2^{5x+14})^x \cdot \frac{1}{8} = 1$$
 6. $\left(81^x \cdot \frac{1}{9^8}\right) = 3^{x+15}$ 7. $25^{x^2} \cdot 25^{3x} \cdot 2^x = 10^x \cdot 125$ 8. $\left(\frac{1}{2}\right)^{-5x^2} \cdot \frac{1}{4^x} = 8$

8.
$$\left(\frac{1}{2}\right)^{-5x^2} \cdot \frac{1}{4^x} = 8$$

Kuriuose taškuose funkcija f(x) kerta tiesę y = 1? (9-10)

9.
$$f(x) = \left(\frac{2}{5}\right)^{4x-1} \cdot \frac{25}{4}$$
 10. $f(x) = 7^{25-6x^2}$

10.
$$f(x) = 7^{25-6x^2}$$

Suprastinkite reiškinį (11-13)

11.
$$2^{3x} + 2^{3x} + 2^{3x} =$$

12.
$$5^x \cdot 2^{2x} + 2^{2x} \cdot 5^x + 5^x \cdot 2^{2x}$$

11.
$$2^{3x} + 2^{3x} + 2^{3x} =$$
 12. $5^x \cdot 2^{2x} + 2^{2x} \cdot 5^x + 5^x \cdot 2^{2x}$ 13. $3^{2x} \cdot 5 + 2^2 \cdot 3^{2x} - 4^2 \cdot 3^{2x} =$

Su kuriomis x-o reikšmėmis teisinga lygybė? (14-22)

14.
$$6 \cdot 7^x + 7^x = 1$$

15.
$$4 \cdot 5^{x-1} + 5^{x-1} = 125$$

16.
$$10^x = 5^x \cdot 8$$

14.
$$6 \cdot 7^x + 7^x = 1$$
 15. $4 \cdot 5^{x-1} + 5^{x-1} = 125$ 16. $10^x = 5^x \cdot 8$ 17. $2^{x+2} - 4 \cdot 3^x = 3^x - 2^x$

18.
$$2^{2x} + 3 \cdot 2^x = 10$$

18.
$$2^{2x} + 3 \cdot 2^x = 10$$
 19. $5^{2x} - 6 \cdot 5^{x+1} + 125 = 0$ 20. $6^{x+1} - 217 + 6^{2-x} = 0$

20.
$$6^{x+1} - 217 + 6^{2-x} = 0$$

21.
$$5.25^{x} + 8.10^{x} - 4.4^{x} = 0$$
 22. $-4.9^{x} + 7.12^{x} = 3.16^{x}$

22.
$$-4.9^x + 7.12^x = 3.16^x$$

23. Duota funkcija $f(x)=5^{2x}-6.5^x+5$. Raskite taškus, kuriuose funkcija kerta x-o ir y-o ašis.

Raskite f-jų susikirtimo taškus (24-25)

24.
$$f(x)=2^{7x-1}$$
 ir $g(x)=\left(\frac{1}{2}\right)^{x-2}$ 25. $f(x)=7^x\cdot 7$ ir $g(x)=3^{x+1}$

25.
$$f(x)=7^x \cdot 7$$
 ir $g(x)=3^{x+1}$

Išspręskite nelygybes (26-37)

26.
$$3^{4x-2} < \sqrt{3}$$

$$27. \quad \left(\frac{1}{4}\right)^{7x-2} \ge \frac{1}{8}$$

28.
$$\left(\frac{\sqrt{7}}{4}\right)^{x^2-5x} < 1$$

26.
$$3^{4x-2} < \sqrt{3}$$
 27. $\left(\frac{1}{4}\right)^{7x-2} \ge \frac{1}{8}$ 28. $\left(\frac{\sqrt{7}}{4}\right)^{x^2-5x} < 1$ 29. $\frac{1}{4^{2x-5}} \cdot 32^{x+2} \ge \sqrt{2}$ 30. $\frac{7}{7^{x^2}} \le \frac{1}{7}$

$$30. \quad \frac{7}{7^{x^2}} \le \frac{1}{7}$$

31.
$$\left(\frac{4}{9}\right)^{7x^2} \cdot \left(\frac{9}{4}\right)^{15x} \le \frac{81}{16}$$
 32. $5^x \cdot 2^x \le 10^{x^2 - 12}$ 33. $5 \cdot 2^x + 2 \cdot 3^x < 5 \cdot 3^x + 3 \cdot 2^x$ 34. $3^x + 3^{1-x} - 4 > 0$

$$32. \quad 5^x \cdot 2^x \le 10^{x^2 - 12}$$

33.
$$5 \cdot 2^x + 2 \cdot 3^x < 5 \cdot 3^x + 3 \cdot 2^x$$

34.
$$3^x + 3^{1-x} - 4 > 0$$

35.
$$4^x + 2^{x+3} > 20$$

36.
$$9^x - 9 \le 8 \cdot 3^x$$

$$36. \quad 9^x - 9 \le 8 \cdot 3^x \qquad 37. \quad 4^x + 32 - 9 \cdot 2^{x+1} \ge 0$$

- 38. Su kuriomis x reikšmėmis funkcijos $f(x)=4^x$ reikšmės yra mažesnės už funkcijos $g(x)=2^{x+2}$ reikšmes? Apskaičiuokite ir pavaizduokite grafiškai.
- 39. Su kuriomis x reikšmėmis funkcija $f(x)=5^{\frac{1}{x-3}}-\frac{1}{25}$ įgyja teigiamas reikšmes?
- 40. Raskite mažiausią sveikąjį skaičių, tenkinantį nelygybę $5^{2x+1}+25<126\cdot 5^x$
- 41. Su kuriomis x reikšmėmis funkcijos $f(x) = \left(\frac{1}{4}\right)^{\frac{x}{x-5}} 6$ grafikas yra aukščiau tiesės y=3?

Išspręskite lygčių sistemas

42.
$$\begin{cases} 2^x = 2^y + 4 \\ x - y = 1 \end{cases}$$

$$43. \begin{cases} 7^{y} = 7^{1+2x} \\ 125^{2x} = 5^{7+y} \end{cases}$$

42.
$$\begin{cases} 2^{x} = 2^{y} + 4 \\ x - y = 1 \end{cases}$$
 43.
$$\begin{cases} 7^{y} = 7^{1+2x} \\ 125^{2x} = 5^{7+y} \end{cases}$$
 44.
$$\begin{cases} 3^{4x} \cdot 27^{x} = 3^{1-3y} \\ \frac{5^{x}}{25^{y}} = 5^{5} \end{cases}$$
 45.
$$\begin{cases} 8 \cdot 7^{x} + 3 \cdot 5^{y+1} = 23 \\ 4 \cdot 7^{x} - 3 \cdot 5^{y} = 1 \end{cases}$$

45.
$$\begin{cases} 8 \cdot 7^x + 3 \cdot 5^{y+1} = 23 \\ 4 \cdot 7^x - 3 \cdot 5^y = 1 \end{cases}$$

46.
$$\begin{cases} 5^{x} - 5^{y} = 100 \\ 5^{x-1} + 5^{y-1} = 30 \end{cases}$$
 47.
$$\begin{cases} 3^{x} - 4^{y} = 23 \\ 3^{x} - 25 = 2^{y} \end{cases}$$
 48.
$$\begin{cases} 3^{x} = 16 - 7^{y} \\ 3^{x} \cdot 7^{y} = 63 \end{cases}$$

$$47. \begin{cases} 3^x - 4^y = 23 \\ 3^x - 25 = 2^y \end{cases}$$

$$48. \begin{cases} 3^x = 16 - 7^y \\ 3^x \cdot 7^y = 63 \end{cases}$$

Atsakymai:

2.
$$\frac{27}{28}$$

5.
$$\frac{1}{5}$$
;

1. 1,25 2.
$$\frac{27}{28}$$
 3. 10 4. 2 5. $\frac{1}{5}$; -3 6. $10\frac{1}{3}$ 7. -3 ; $\frac{1}{2}$ 8. $-\frac{3}{5}$; 1

8.
$$-\frac{3}{5}$$
; 1

9.
$$(\frac{3}{4};1)$$

9.
$$\left(\frac{3}{4};1\right)$$
 10. $\left(\frac{5\sqrt{6}}{6};1\right)$; $\left(\frac{-5\sqrt{6}}{6};1\right)$ 11. $3\cdot2^{3x}$ 12. $3\cdot20^x$ 13. $-7\cdot9^x$

11.
$$3 \cdot 2^{3x}$$

13.
$$-7.9^{\circ}$$

24.
$$(\frac{3}{8}; \sqrt[8]{2^{13}})$$

23. (0; 0); (1; 0) 24.
$$\left(\frac{3}{8}; \sqrt[8]{2^{13}}\right)$$
 25. (1; 9) 26. $\left(-\infty; \frac{5}{8}\right)$ 27. $-\infty < x \le \frac{1}{2}$

$$27. \quad -\infty < x \le \frac{1}{2}$$

$$28. \quad -2\frac{1}{6} \le x < +\infty$$

28.
$$-2\frac{1}{6} \le x < +\infty$$
 29. $19,5 \le x < +\infty$ 30. $-\infty < x \le -\sqrt{2}$; $\sqrt{2} \le x < +\infty$

31.
$$-\infty < x \le \frac{1}{7}$$
; $2 \le x < +\infty$ 32. $-\infty < x \le -3$; $4 \le x < +\infty$ 33. $(-1; +\infty)$

32.
$$-\infty < x \le -3$$
; $4 \le x < +\infty$

33.
$$(-1;+\infty)$$

34.
$$(-\infty;0)\cup(1;+\infty)$$

35.
$$(1;+\infty)$$

34.
$$(-\infty; 0) \cup (1; +\infty)$$
 35. $(1; +\infty)$ 36. $-\infty < x \le \frac{1}{2}; 1 < x < 4; 5 \le x < +\infty$

37.
$$-\infty < x \le 1$$
; $4 \le x < +\infty$ 38. $(-\infty; 2)$ 39. $(-\infty; 2,5) \cup (3; +\infty)$ 40. 0

38.
$$(-\infty; 2)$$

39.
$$(-\infty; 2,5) \cup (3; +\infty)$$

41.
$$(-\infty;3)\cup(5;+\infty)$$
 42. $(3;2)$ 43. $(2;5)$ 44. $(1;-2)$ 45. $(0;0)$ 46. $(3;2)$