USAMO 2018/4

March 21, 2025

Problem. Let p be a prime and a_1, \ldots, a_p be integers. Show that there exists an integer k such that the numbers

$$a_1+k, a_2+k, \dots a_p+pk$$

produce at least $\frac{p}{2}$ distinct remainders upon division by p

Solution. Note that if p=2 the claim is trivially true, so let's assume $p \geq 3$ Let N(G) denote the number of edges in a simple graph G.

Consider p different simple graphs $G_0, G_2, \dots G_{p-1}$. Each of these graphs have p nodes labelled from 1 to p. Graph G_k has an edge between i and j iff $a_i + ik \equiv a_j + jk \mod p$.

note that edge between node i and node j is only present in graph G_k where $k \equiv (a_i - a_j)(j-i)^{-1} \mod p$. Hence all of the edges of each graph are disjoint and every possible edge is present in at least one graph. this implies

$$\sum_{i=0}^{i=p-1} N(G_i) = p(p-1)/2$$

hence by pigeonhole there exists a graph G_k such that $N(G_k) \leq (p-1)/2$. As number of connected components is at least (nodes - edges) therefore we get number of connected components at least (p+1)/2 which proves our original claim

Exploration. Lots of thinking on choosing the right k, but then graph idea struck me

Tags. NT, Combinatorics, Graph