High-Dimensional Gaussian Sampling

Yuejia Zhang

April 7, 2023

Data Augmentation

Problem Definition

Sampling from a d-dimensional Gaussian distribution $\mathcal{N}(\mu, \Sigma)$, where d may be large.

$$\pi(oldsymbol{ heta}) = rac{1}{(2\pi)^{d/2} ext{det}(oldsymbol{\Sigma})^{1/2}} \exp\left(-rac{1}{2}(oldsymbol{ heta} - oldsymbol{\mu})^{ op} oldsymbol{\Sigma}^{-1}(oldsymbol{ heta} - oldsymbol{\mu})
ight).$$

Covariance matrix Σ positive definite. Precision matrix $\mathbf{Q} = \Sigma^{-1}$ exists and also positive definite.

Special Cases

•
$$d = 1$$

Algorithm 1 Box-Muller sampler

1: Draw u_1 , $u_2 \stackrel{\text{i.i.d.}}{\sim} \mathcal{U}((0,1])$.

2: Set $\tilde{u}_1 = \sqrt{-2\log(u_1)}$.

3: Set $\tilde{u}_2 = 2\pi u_2$.

4: **return** $(\theta_1, \theta_2) = \left(\mu + \frac{\tilde{u}_1}{\sqrt{q}}\sin(\tilde{u}_2), \mu + \frac{\tilde{u}_1}{\sqrt{q}}\cos(\tilde{u}_2)\right)$.

Data Augmentation

Special Cases

Algorithm 2 Sampler when Q is a diagonal matrix

- 1: **for** $i \in [d]$ **do** \triangleright In some programming languages, this loop can be vectorized.
- 2: Draw $\theta_i \sim \mathcal{N}(\mu_i, 1/q_i)$.
- 3: end for
- 4: **return** $\boldsymbol{\theta} = (\theta_1, \cdots, \theta_d)^{\top}$.

General Cases

Algorithm 3 Cholesky sampler

1: Set $\mathbf{C} = \operatorname{chol}(\mathbf{Q})$.

 $\triangleright \mathbf{Q} = \mathbf{C}\mathbf{C}^{\top}$

- 2: Draw $\mathbf{z} \sim \mathcal{N}(\mathbf{0}_d, \mathbf{I}_d)$.
- 3: Solve $\mathbf{C}^{\top}\mathbf{w} = \mathbf{z} \text{ w.r.t. } \mathbf{w}.$
- 4: **return** $\theta = \mu + w$.

Problem:

- Computational cost $\mathcal{O}(d^3 + d^2T)$ (T is the number of samples), only when \mathbf{Q} is unchanged.
- Storage requirement $\Theta(d^2)$.

More Efficient Solutions

- Square Root approximation: Approximate $\mathbf{Q}^{1/2}$.
- Conjugate Gradient: Solve a linear system w.r.t. Q.
- Matrix Splitting: A generalization of Gibbs Sampler.
- Data Augmentation: Make use of structure $\mathbf{Q} = \mathbf{Q}_1 + \mathbf{Q}_2$, introduce auxiliary variable to facilitate sampling.

Improvement:

- Computational cost $\mathcal{O}(Kd^2T)$ (K is the number of iterations), or $\mathcal{O}(d^2(T+T_{bi}))$ (T_{bi} is the number of burn-in samples).
- Storage requirement $\Theta(d)$.

■ 990

How to Choose the Sampler

Introduction

Bayesian Ridge Regression

Conditional prior for θ : Gaussian i.i.d.,

$$egin{aligned} p(oldsymbol{ heta} \mid au) &\propto \exp\left(-rac{1}{2 au}||oldsymbol{ heta}||^2
ight), \ p(au) &\propto rac{1}{ au} \mathbf{1}_{\mathbb{R}_+ \setminus \{0\}}(au). \end{aligned}$$

Posterior:

$$p(oldsymbol{ heta}, au \mid \mathbf{y}) \propto rac{1}{ au} \mathbf{1}_{\mathbb{R}_+ \setminus \{0\}}(au) \; \exp\Big(-rac{1}{2 au} ||oldsymbol{ heta}||^2 - rac{1}{2\sigma^2} ||\mathbf{y} - \mathbf{X}oldsymbol{ heta}||^2\Big).$$

Bayesian Ridge Regression (Cont.d)

Conditional posterior distribution associated to θ : Gaussian with precision matrix and mean vector

$$\begin{aligned} \mathbf{Q} &= \frac{1}{\sigma^2} \mathbf{X}^{\top} \mathbf{X} + \tau^{-1} \mathbf{I}_d, \\ \boldsymbol{\mu} &= \frac{1}{\sigma^2} \mathbf{Q}^{-1} \mathbf{X}^{\top} \mathbf{y}. \end{aligned}$$

Figure: Examples of precision matrices $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ for the MNIST, leukemia abd CoEPrA datasets.

Square Root Factorization

Extension of Cholesky sampler:

- **2** $\mathbf{Q} = \mathbf{B}^2$ with $\mathbf{B} = \mathbf{U} \mathbf{\Lambda}^{1/2} \mathbf{U}^{\top}$.
- \mathbf{o} $\mathbf{z} \sim \mathcal{N}(\mathbf{0}_d, \mathbf{I}_d)$.
- **3** Solve $\mathbf{B}\mathbf{w} = \mathbf{z}$ w.r.t. \mathbf{w} and compute $\mathbf{\theta} = \mathbf{\mu} + \mathbf{w}$.

We have $f(\mathbf{Q}) = \mathbf{U}f(\mathbf{\Lambda})\mathbf{U}^{\top}$ for real continuous f.

Approximate $f(\lambda_i) \approx 1/\sqrt{\lambda_i}$, $\forall i \in [d]$ with Chebyshev polynomials.

Introduction

Chebyshev Sampler

The change of interval:

$$g_j = \left[\cos\left(\pi rac{2j+1}{2\mathcal{K}_{\mathsf{cheby}}}
ight)rac{(\lambda_u - \lambda_I)}{2} + rac{\lambda_u + \lambda_I}{2}
ight]^{-1/2}, \quad j \in [0, \mathcal{K}_{\mathsf{cheby}}].$$

The Chebyshev coefficients:

$$c_k = rac{2}{K_{\mathsf{cheby}}} \sum_{i=0}^{K_{\mathsf{cheby}}} g_j \cos \left(\pi k rac{2j+1}{2K_{\mathsf{cheby}}}
ight), \quad k \in [0, K_{\mathsf{cheby}}].$$

Chebyshev Sampler

Algorithm 4 Approx. square root sampler using Chebyshev polynomials

- 1: Draw $\mathbf{z} \sim \mathcal{N}(\mathbf{0}_d, \mathbf{I}_d)$. 2: Set $\alpha = \frac{2}{\lambda_u \lambda_I}$ and $\beta = \frac{\lambda_u + \lambda_I}{\lambda_u \lambda_I}$.
- 3: Initialize $\mathbf{u}_1 = \alpha \mathbf{Q} \mathbf{z} \beta \mathbf{z}$ and $\mathbf{u}_0 = \mathbf{z}$.
- 4: Set $\mathbf{u} = \frac{1}{2}c_0\mathbf{u}_0 + c_1\mathbf{u}_1$ and k = 2.
- 5: **while** $k \leq K_{chebv}$ **do** \triangleright Compute the K_{chebv} -truncated Chebyshev series.
- Compute $\mathbf{u}' = 2(\alpha \mathbf{Q} \mathbf{u}_1 \beta \mathbf{u}_1) \mathbf{u}_0$. 6:
- Set $\mathbf{u} = \mathbf{u} + c_{\nu} \mathbf{u}'$. 7.
- 8: Set $\mathbf{u}_0 = \mathbf{u}_1$ and $\mathbf{u}_1 = \mathbf{u}'$.
- k = k + 1g.
- 10: end while

Perturbation before Optimization

Rewrite in *information form*:

$$\pi(oldsymbol{ heta}) \propto \exp\left(-rac{1}{2}oldsymbol{ heta}^ op \mathbf{Q}oldsymbol{ heta} + \mathbf{b}^ op oldsymbol{ heta}
ight),$$

where $\mathbf{b} = \mathbf{Q} \boldsymbol{\mu}$.

- **1** Draw a Gaussian vector $\mathbf{z}' \sim \mathcal{N}(\mathbf{0}_d, \mathbf{Q})$.
- ② Solve a linear system $\mathbf{Q}\theta = \mathbf{Q}\mu + \mathbf{z}'$ using conjugate gradient methods. (If $\mathbf{u} \sim \mathcal{N}(\mathbf{Q}\mu, \mathbf{Q})$, then $\mathbf{Q}^{-1}\mathbf{u} \sim \mathcal{N}(\mu, \mathbf{Q}^{-1})$.)

Conjugate Gradient-Based Samplers

Optimization with Perturbation

The linear system we solved

$$\mathbf{Q}\mathbf{ heta} = \mathbf{b} + \mathbf{z}'$$

can also be seen as a perturbed version of the linear system

$$\mathbf{Q}\boldsymbol{\theta} = \mathbf{b},$$

where $\mathbf{b} = \mathbf{Q} \boldsymbol{\mu}$.

Add a perturbation step (a univariate Gaussian sampling step) to turn the classical CG solver into a CG sampler.

Sequentially builds a Gaussian vector with a covariance matrix being the best k-rank approximation of \mathbf{Q}^{-1} in the Krylov subspace $\mathcal{K}_k(\mathbf{Q}, \mathbf{r}^{(0)})$.

CG Sampler

Introduction

1: Set
$$k=1$$
, $\mathbf{r}^{(0)}=\mathbf{c}-\mathbf{Q}\boldsymbol{\omega}^{(0)}$, $\mathbf{h}^{(0)}=\mathbf{r}^{(0)}$, $d^{(0)}=\mathbf{h}^{(0)\top}\mathbf{Q}\mathbf{h}^{(0)}$ and $\mathbf{y}^{(0)}=\boldsymbol{\omega}^{(0)}$.

2: while
$$\|\mathbf{r}^{(k)}\| \geq \epsilon$$
 do

3: Set
$$\gamma^{(k-1)} = \frac{\mathbf{r}^{(k-1)\top}\mathbf{r}^{(k-1)}}{d^{(k-1)}}$$
.

4: Set
$$\mathbf{r}^{(k)} = \mathbf{r}^{(k-1)} - \gamma^{(k-1)} \mathbf{Q} \mathbf{h}^{(k-1)}$$
.

5: Set
$$\eta^{(k)} = -\frac{\mathbf{r}^{(k)\top}\mathbf{r}^{(k)}}{\mathbf{r}^{(k-1)\top}\mathbf{r}^{(k-1)}}$$
.

6: Set
$$\mathbf{h}^{(k)} = \mathbf{r}^{(k)} - \eta^{(k)} \mathbf{h}^{(k-1)}$$
.

7: Set
$$d^{(k)} = \mathbf{h}^{(k)\top} \mathbf{Q} \mathbf{h}^{(k)}$$

7: Set
$$\mathbf{q}^{(k)} = \mathbf{p}^{(k)} \mathbf{Q} \mathbf{h}^{(k)}$$
.
8: Set $\mathbf{y}^{(k)} = \mathbf{y}^{(k-1)} + \frac{z}{\sqrt{d^{(k-1)}}} \mathbf{h}^{(k-1)}$ where $z \sim \mathcal{N}(0, 1)$.

▶ Perturbation

9:
$$k = k + 1$$
.

10: end while

11: Set
$$\theta = \mu + \mathbf{y}^{(K_{CG})}$$
 where K_{CG} is the number of CG iterations.

12: return θ .

Introduction

Iterative Approaches or Factorization Approaches?

- Memory needs of order $\Theta(d^2)$ prohibitive.
- If storage not an issue, $K \ll (d + T 1)/T$?
- Gaussian sampling step embedded within a Gibbs sampler, with a varying covariance or precision matrix: $K \ll d$?

Settings

$$\mathbf{\Sigma}_{ij} = 2 \exp\left(-\frac{(s_i - s_j)^2}{2a^2}\right) + \epsilon \delta_{ij}, \quad \forall i, j \in [d].$$

where $\{s_i\}_{i\in[d]}$ are evenly spaced scalars on [-3,3], $\epsilon>0$. a=1.5 and $\epsilon=10^{-6}$, small eigenvalues of Σ clustered together near 10^{-6} .

Results for Accuracy

Experiments

Figure: Scenario 1. Results of the three considered samplers for the sampling from $\mathcal{N}(\mathbf{0}_d, \mathbf{\Sigma})$ in dimension d=100.

Results When Large Eigenvalues Are Clustered

CG or Chebyshev?

Conditional Gaussian Distribution

If $oldsymbol{ heta} \sim \mathcal{N}(oldsymbol{\mu}, \mathbf{Q}^{-1})$, then

$$egin{align} \mathsf{E}(m{ heta}_i|m{ heta}_{-i}) &= m{\mu} - rac{1}{\mathbf{Q}_{ii}}\sum_{j
eq i} \mathbf{Q}_{ij}(m{ heta}_j - m{\mu}_j), \ \mathsf{Prec}(m{ heta}_i|m{ heta}_{-i}) &= \mathbf{Q}_{ii}, \ \mathsf{Corr}(m{ heta}_i,m{ heta}_j|m{ heta}_{-ij}) &= -rac{\mathbf{Q}_{ij}}{\sqrt{\mathbf{Q}_{ii}\mathbf{Q}_{jj}}}. \end{split}$$

Compare the above results with

$$\mathsf{Var}(oldsymbol{ heta}_i) = oldsymbol{\Sigma}_{ii}, \ \mathsf{Corr}(oldsymbol{ heta}_i, oldsymbol{ heta}_j) = rac{oldsymbol{\Sigma}_{ij}}{\sqrt{oldsymbol{\Sigma}_{ii}oldsymbol{\Sigma}_{ij}}}.$$

Introduction

Gibbs Sampler

Algorithm 5 Component-wise Gibbs sampler

Input: Number T of iterations and initialization $\theta^{(0)}$.

- 1: Set t = 1.
- 2: while $t \leq T$ do
- 3: for $i \in [d]$ do
- 4: Draw $z \sim \mathcal{N}(0,1)$.

5: Set
$$\theta_i^{(t)} = \frac{[\mathbf{Q}\mu]_i}{Q_{ii}} + \frac{z}{\sqrt{Q_{ii}}} - \frac{1}{Q_{ii}} \left(\sum_{j>i} Q_{ij} \theta_j^{(t-1)} + \sum_{j$$

- 6: end for
- 7: Set t = t + 1.
- 8: end while
- 9: **return** $\theta^{(T)}$.

Rewrite into Gauss-Seidel Linear Systems

Each iteration solves the linear system

$$(\mathsf{L} + \mathsf{D}) heta^{(t)} = \mathsf{Q} \mu + \mathsf{D}^{1/2} \mathsf{z} - \mathsf{L}^ op heta^{(t-1)},$$

where $\mathbf{z} \sim \mathcal{N}(\mathbf{0}_d, \mathbf{I}_d)$.

By setting $\mathbf{M} = \mathbf{L} + \mathbf{D}$ and $\mathbf{N} = -\mathbf{L}^{\top}$ so that $\mathbf{Q} = \mathbf{M} - \mathbf{N}$.

$$\mathsf{M} heta^{(t)} = \mathsf{Q}\mu + ilde{\mathsf{z}} + \mathsf{N} heta^{(t-1)},$$

where $N = -L^{\top}$ is strictly upper triangular and $\tilde{\mathbf{z}} \sim \mathcal{N}(\mathbf{0}_d, \mathbf{D})$ is easy to sample.

Data Augmentation

Matrix Splitting Sampler

Algorithm 6 MCMC sampler based on exact matrix splitting

Input: Number T of iterations, initialization $\theta^{(0)}$ and splitting $\mathbf{Q} = \mathbf{M} - \mathbf{N}$.

- 1: Set t = 1.
- 2: while t < T do
- Draw $\tilde{\mathbf{z}} \sim \mathcal{N}(\mathbf{0}_d, \mathbf{M}^\top + \mathbf{N})$.
- Solve $\mathbf{M}\boldsymbol{\theta}^{(t)} = \mathbf{Q}\boldsymbol{\mu} + \tilde{\mathbf{z}} + \mathbf{N}\boldsymbol{\theta}^{(t-1)}$ w.r.t. $\boldsymbol{\theta}^{(t)}$.
- Set t = t + 1.
- 6: end while
- 7. return $\theta^{(T)}$

Other Matrix Splitting Schemes

Table: The matrices **D** and **L** denote the diagonal and strictly lower triangular parts of **Q**, respectively, and ω is a positive scalar.

Sampler	М	N	$cov(\mathbf{ ilde{z}}) = \mathbf{M}^{ op} + \mathbf{N}$	convergence	
Richardson	I_d/ω	$\mathbf{I}_d/\omega - \mathbf{Q}$	$2{f I}_d/\omega-{f Q}$	$0<\omega<2/\left\ \mathbf{Q} ight\ $	
Jacobi	D	D-Q	$2\mathbf{D} - \mathbf{Q}$	$ Q_{ii} > \sum_{j eq i} Q_{ij} \; orall i \in [d]$	
Gauss–Seidel	D+L	$-\mathbf{L}^{ op}$	D	always	
SOR	${f D}/\omega + {f L}$	$rac{1-\omega}{\omega} \mathbf{D} - \mathbf{L}^{ op}$	$rac{2-\omega}{\omega} {f D}$	$0<\omega<2$	

Error of *t*-th Order Polynomial

Given a linear system $\mathbf{Q}\theta = \mathbf{v}$ and linear solvers based on the matrix splitting $\mathbf{Q} = \mathbf{M} - \mathbf{N}$, consider the recursion,

$$oldsymbol{ heta}^{(t+1)} = oldsymbol{ heta}^{(t)} + \mathbf{\mathsf{M}}^{-1}(\mathbf{\mathsf{v}} - \mathbf{\mathsf{Q}}oldsymbol{ heta}^{(t)}).$$

The error at iteration t,

$$\mathbf{e}^{(t+1)} = \mathbf{\theta}^{(t+1)} - \mathbf{Q}^{-1}\mathbf{v},$$

is equal to

$$\mathbf{e}^{(t+1)} = (\mathbf{I}_d - \mathbf{M}^{-1}\mathbf{Q})^t \mathbf{e}^{(0)}.$$

Can we find another t-th order polynomial P_t that achieves a lower error?

$$\rho(\mathsf{P}_t(\mathsf{M}^{-1}\mathsf{Q})) < \rho((\mathsf{I}_d - \mathsf{M}^{-1}\mathsf{Q})^t).$$

Polynomial Accelerated Solver

Consider the second-order iterative scheme, for any $t \in \mathbb{N}$,

$$\boldsymbol{\theta}^{(t+1)} = \alpha_t \boldsymbol{\theta}^{(t)} + (1 - \alpha_t) \boldsymbol{\theta}^{(t-1)} + \beta_t \mathbf{M}^{-1} (\mathbf{v} - \mathbf{Q} \boldsymbol{\theta}^{(t)}),$$

where $(\alpha_t, \beta_t)_{t \in \mathbb{N}}$ are a set of acceleration parameters.

This iterative method yields an error at step t given by

$$\mathbf{e}^{(t+1)} = \mathsf{P}_t(\mathbf{M}^{-1}\mathbf{Q})\mathbf{e}^{(0)},$$

where P_t stands for a scaled Chebyshev polynomial.

Optimal values for $(\alpha_t, \beta_t)_{t \in \mathbb{N}}$ are given by

$$\alpha_t = \tau_1 \beta_t$$
 and $\beta_t = (\tau_1 - \tau_2^2 \beta_{t-1})^{-1}$,

$$\tau_1 = [\lambda_{\min}(\mathbf{M}^{-1}\mathbf{Q}) + \lambda_{\max}(\mathbf{M}^{-1}\mathbf{Q})]/2 \text{ and } \tau_2 = [\lambda_{\max}(\mathbf{M}^{-1}\mathbf{Q}) - \lambda_{\min}(\mathbf{M}^{-1}\mathbf{Q})]/4.$$

Symmetric Splitting Scheme

Denote by M_{SOR} and N_{SOR} the matrices involved in the SOR splitting such that

 $\mathbf{Q} = \mathbf{M}_{SOR} - \mathbf{N}_{SOR}$.

Then for any $0 < \omega < 2$, the SSOR (symmetric SOR) splitting is defined by

 $\mathbf{Q} = \mathbf{M}_{\mathsf{SSOR}} - \mathbf{N}_{\mathsf{SSOR}}$ with

$$\mathbf{M}_{\mathrm{SSOR}} = \frac{\omega}{2-\omega} \mathbf{M}_{\mathrm{SOR}} \mathbf{D}^{-1} \mathbf{M}_{\mathrm{SOR}}^{\top}$$
 and $\mathbf{N}_{\mathrm{SSOR}} = \frac{\omega}{2-\omega} \mathbf{N}_{\mathrm{SOR}} \mathbf{D}^{-1} \mathbf{N}_{\mathrm{SOR}}^{\top}$.

Approximate Matrix Splitting

Algorithm 7 MCMC sampler based on approximate matrix splitting

Input: Number T of iterations, initialization $\theta^{(0)}$ and splitting $\mathbf{Q} = \mathbf{M} - \mathbf{N}$.

- 1: Set t = 1.
- 2: while $t \leq T$ do
- 3: Draw $\tilde{\mathbf{z}}' \sim \mathcal{N}(\mathbf{0}_d, \tilde{\mathbf{M}})$.
- 4: Solve $\mathbf{M} \boldsymbol{\theta}^{(t)} = \mathbf{Q} \boldsymbol{\mu} + \tilde{\mathbf{z}}' + \mathbf{N} \boldsymbol{\theta}^{(t-1)}$.
- 5: Set t = t + 1.
- 6: end while
- 7: **return** $\theta^{(T)}$.

 $\triangleright \tilde{\mathbf{M}} = \mathbf{D} \text{ or } 2(\mathbf{D} + 2\omega \mathbf{I}_d).$

Matrix Splitting

Approximate Matrix Splitting Samplers

Sampler	М	N	$\operatorname{cov}(\mathbf{\tilde{z}}') = \mathbf{\tilde{M}}$	
Hogwild with blocks of size 1	D	$-\mathbf{L} - \mathbf{L}^{ op}$	D	
Clone MCMC	$\mathbf{D} + 2\omega \mathbf{I}_d$	$2\omega \mathbf{I}_d - \mathbf{L} - \mathbf{L}^{\top}$	$2\left(\mathbf{D}+2\omega\mathbf{I}_{d}\right)$	

$$\widetilde{\mathbf{Q}}_{\mathrm{MS}} = \begin{cases} \mathbf{Q} \left(\mathbf{I}_d - \mathbf{D}^{-1} (\mathbf{L} + \mathbf{L}^\top) \right) & \text{for the Hogwild sampler} \\ \mathbf{Q} \left(\mathbf{I}_d - \frac{1}{2} (\mathbf{D} + 2\omega^{-1} \mathbf{I}_d)^{-1} \mathbf{Q} \right) & \text{for clone MCMC.} \end{cases}$$

Data Augmentation

Introduction

Iterative Sampler or MCMC Sampler?

- Iterative Sampler: K iterations to generate one sample.
- MCMC Sampler: burn-in period of length $T_{\rm bi}$.
- $T + T_{bi} \ll KT$?
- MCMC methods when a large number $T \gtrsim T_{\rm bi}$ of samples is desired. Iterative methods when a small number $T \lesssim T_{\rm bi}/K$ of samples is desired.

Experiments

Exact Data Augmentation

Idea

- $\mathbf{Q} = \mathbf{Q}_1 + \mathbf{Q}_2$ directly from the statistical model under construction.
- Introduce one (or several) auxiliary variable $\mathbf{u} \in \mathbb{R}^k$. (θ, \mathbf{u}) simple conditional distributions, then use Gibbs sampler.
- Marginalization of \mathbf{u} , retrieves the target distribution $\mathcal{N}(\mu, \mathbf{Q}^{-1})$:

$$\int_{\mathbb{R}^k} \pi(oldsymbol{ heta}, \mathbf{u}) = \pi(oldsymbol{ heta}).$$

EDA Model

Assume that \mathbf{Q}_2 presents a particular and simpler structure (e.g., diagonal or circulant) than \mathbf{Q}_1 .

Introduces the joint distribution with p.d.f.

$$\pi(oldsymbol{ heta}, \mathbf{u}_1) \propto \exp\left(-rac{1}{2}\left[(oldsymbol{ heta} - oldsymbol{\mu})^ op \mathbf{Q}(oldsymbol{ heta} - oldsymbol{\mu}) + (\mathbf{u}_1 - oldsymbol{ heta})^ op \mathbf{R}(\mathbf{u}_1 - oldsymbol{ heta})
ight]
ight),$$

with $\mathbf{R} = \omega^{-1} \mathbf{I}_d - \mathbf{Q}_1$ and $0 < \omega < \|\mathbf{Q}_1\|^{-1}$, where $\|\cdot\|$ is the spectral norm. \mathbf{Q}_1 and \mathbf{Q}_2 decoupled.

GEDA Model

When **Q** from a hierarchical Bayesian model, $\mathbf{Q}_1 = \mathbf{G}_1^{\top} \mathbf{\Lambda}_1 \mathbf{G}_1$, where $\mathbf{\Lambda}_1$ is a positive definite (and very often diagonal) matrix.

GEDA introduces an additional auxiliary variable \mathbf{u}_2 such that the augmented p.d.f. writes

$$egin{aligned} \pi(oldsymbol{ heta}, \mathbf{u}_1, \mathbf{u}_2) &\propto \mathsf{exp}\left(-rac{1}{2}\left[(oldsymbol{ heta} - oldsymbol{\mu})^{ op} \mathbf{Q}(oldsymbol{ heta} - oldsymbol{\mu}) + (\mathbf{u}_1 - oldsymbol{ heta})^{ op} \mathbf{R}(\mathbf{u}_1 - oldsymbol{ heta})
ight]
ight), \ & imes \mathsf{exp}\left(-rac{1}{2}(\mathbf{u}_2 - \mathbf{G}_1\mathbf{u}_1)^{ op} \mathbf{\Lambda}_1(\mathbf{u}_2 - \mathbf{G}_1\mathbf{u}_1)
ight). \end{aligned}$$

Algorithm of (G)EDA

Algorithm 8 Gibbs sampler based on exact data augmentation (G)EDA

Input: Number T of iterations and initialization $\theta^{(0)}$, $\mathbf{u}_1^{(0)}$.

- 1: Set t = 1.
- 2: while $t \leq T$ do
- 3: Draw $\mathbf{u}_{2}^{(t)} \sim \mathcal{N}(\mu_{\mathbf{u}_{2}}, \mathbf{Q}_{\mathbf{u}_{2}}^{-1})$.
- 4: Draw $\mathbf{u}_{1}^{(t)} \sim \mathcal{N}(\boldsymbol{\mu}_{\mathbf{u}_{1}}, \mathbf{Q}_{\mathbf{u}_{1}}^{-1})$.
- 5: Draw $oldsymbol{ heta}^{(t)} \sim \mathcal{N}(oldsymbol{\mu}_{oldsymbol{ heta}}, oldsymbol{\mathsf{Q}}_{oldsymbol{ heta}}^{-1})$.
- 6: Set t = t + 1.
- 7: end while
- 8: **return** $\theta^{(T)}$.

▶ Only if GEDA is considered.

Exact Data Augmentation

Comparison of EDA and GEDA

Sampler	$oldsymbol{ heta} \sim \mathcal{N}(oldsymbol{\mu_{oldsymbol{ heta}}}, \mathbf{Q}_{oldsymbol{ heta}}^{-1})$	$\mathbf{u}_1 \sim \mathcal{N}(oldsymbol{\mu}_{\mathbf{u}_1}, \mathbf{Q}_{\mathbf{u}_1}^{-1})$	$\mathbf{u}_2 \sim \mathcal{N}(oldsymbol{\mu}_{\mathbf{u}_2}, \mathbf{Q}_{\mathbf{u}_2}^{-1})$
	$\mathbf{Q}_{oldsymbol{ heta}} = \omega^{-1} \mathbf{I}_d + \mathbf{Q}_2$	$Q_{u_1} = R$	-
EDA	$oldsymbol{\mu_{oldsymbol{ heta}}} = oldsymbol{Q}_{oldsymbol{ heta}}^{-1} \left(R oldsymbol{u}_1 + oldsymbol{Q} oldsymbol{\mu} ight)$	$oldsymbol{\mu}_{u_1} = oldsymbol{ heta}$	-
	$\mathbf{Q}_{\boldsymbol{\theta}} = \omega^{-1} \mathbf{I}_d + \mathbf{Q}_2$	$\mathbf{Q}_{\mathbf{u}_1} = \omega^{-1} \mathbf{I}_d$	$\mathbf{Q}_{\mathbf{u}_2} = \mathbf{\Lambda}_1$
GEDA	$oldsymbol{\mu_{ heta}} = oldsymbol{Q}_{ heta}^{-1}(Ru_1 + oldsymbol{Q}oldsymbol{\mu})$	$oldsymbol{\mu}_{\mathbf{u}_1} = oldsymbol{ heta} - \omega (\mathbf{Q}_1 oldsymbol{ heta} - \mathbf{G}_1^ op oldsymbol{\Lambda}_1^{-1} \mathbf{u}_2)$	$oldsymbol{\mu}_{u_2} = G_1 u_1$

Data Augmentation

Introduction

Surrogate Probability Distribution

Common form of surrogate p.d.f.:

$$\kappa(oldsymbol{ heta}, \mathbf{u}) \propto \pi(oldsymbol{ heta}) \exp\left(-rac{1}{2}(oldsymbol{ heta} - \mathbf{u})^ op \mathbf{R}(oldsymbol{ heta} - \mathbf{u})
ight)$$

where $\mathbf{u} \in \mathbb{R}^d$ auxiliary variable, $\mathbf{R} \in \mathbb{R}^{d \times d}$ is a symmetric preconditioner. Restrict **R** to be positive definite.

$$\int_{\mathbb{R}^d} \pi(\boldsymbol{\theta}, \mathbf{u}) d\mathbf{u} = Z^{-1} \pi(\boldsymbol{\theta}) \int_{\mathbb{R}^d} \exp\left(-\frac{1}{2} (\boldsymbol{\theta} - \mathbf{u})^\top \mathbf{R} (\boldsymbol{\theta} - \mathbf{u})\right) d\mathbf{u} = \pi(\boldsymbol{\theta})$$

holds almost surely with $Z = \det(\mathbf{R})^{-1/2} (2\pi)^{d/2}$.

Introduction

From Exact Data Augmentation to Exact Matrix Splitting

Change of variable $\mathbf{v} = \mathbf{R}\mathbf{u}$,

$$egin{aligned} \mathbf{v} \mid oldsymbol{ heta} \sim \mathcal{N}\left(\mathsf{R}oldsymbol{ heta}, \mathsf{R}
ight), \ oldsymbol{ heta} \mid \mathbf{v} \sim \mathcal{N}\left((\mathsf{Q} + \mathsf{R})^{-1}(\mathsf{v} + \mathsf{Q}oldsymbol{\mu}), (\mathsf{Q} + \mathsf{R})^{-1}
ight). \end{aligned}$$

Rewrite the Gibbs sampling steps as an auto-regressive process of order 1 w.r.t. θ , the sampling strategy is equivalently

$$egin{aligned} & ilde{\mathbf{z}} \sim \mathcal{N}\left(\mathbf{Q}oldsymbol{\mu}, 2\mathbf{R} + \mathbf{Q}
ight), \ & oldsymbol{ heta}^{(t)} = \left(\mathbf{Q} + \mathbf{R}
ight)^{-1} \left(ilde{\mathbf{z}} + \mathbf{R}oldsymbol{ heta}^{(t-1)}
ight). \end{aligned}$$

Unifying Proposal Distribution

Introduction

From Exact Data Augmentation to Exact Matrix Splitting (Cont.d)

Define $\mathbf{M} = \mathbf{Q} + \mathbf{R}$ and $\mathbf{N} = \mathbf{R}$,

$$ilde{\mathbf{z}} \sim \mathcal{N}\left(\mathbf{Q}oldsymbol{\mu}, \mathbf{M}^ op + \mathbf{N}
ight), oldsymbol{ heta}^{(t)} = \mathbf{M}^{-1}\left(ilde{\mathbf{z}} + \mathbf{N}oldsymbol{ heta}^{(t-1)}
ight),$$

which boils down to the Gibbs sampler based on exact MS.

Table: Equivalence relations between exact DA and exact MS approaches.

$R = \mathrm{cov}(v \theta)$	$(\mathbf{Q} + \mathbf{R})^{-1} = \operatorname{cov}(\boldsymbol{\theta} \mathbf{v})$	$\mathbf{M}^{\top} + \mathbf{N} = \operatorname{cov}(\tilde{\mathbf{z}})$	DA sampler	MS sampler
$rac{{f l}_d}{\omega}-{f Q}_1$	$\left(rac{{f l}_d}{\omega}+{f Q}_2 ight)^{-1}$	$rac{2 extbf{I}_d}{\omega}+ extbf{Q}_2- extbf{Q}_1$	EDA	Richardson
$rac{{f D}_1}{\omega}-{f Q}_1$	$\left(\frac{\mathbf{D}_1}{\omega} + \mathbf{Q}_2\right)^{-1}$	$\frac{2\mathbf{D}_1}{\omega} + \mathbf{Q}_2 - \mathbf{Q}_1$	EDAJ	Jacobi

Data Augmentation

Introduction

Proximal point algorithm (PPA)

Algorithm 9 PPA

- 1: Choose an initial value $\theta^{(0)}$, a positive semi-definite matrix **R** and a maximal number of iterations T
- 2. Set t = 1
- 3: while t < T do

- 5 end while
- 6: return $\theta^{(T)}$.

Here $\|\theta\|_{\mathbf{R}}^2 \triangleq \theta^{\top} \mathbf{R} \theta$ defines the *weighted* norm w.r.t. **R** for all $\theta \in \mathbb{R}^d$.

Revisit Unifying Proposal Distribution

Recap:

$$\kappa(oldsymbol{ heta}, \mathbf{u}) \propto \pi(oldsymbol{ heta}) \exp\left(-rac{1}{2}(oldsymbol{ heta} - \mathbf{u})^ op \mathbf{R}(oldsymbol{ heta} - \mathbf{u})
ight).$$

Define $\mathbf{u} = \boldsymbol{\theta}^{(t-1)}$, then

$$\kappa(oldsymbol{ heta}, \mathbf{u}) riangleq
ho\left(oldsymbol{ heta} | \mathbf{u} = oldsymbol{ heta}^{(t-1)}
ight) \propto \pi(oldsymbol{ heta}) \exp\left(-rac{1}{2}\left(oldsymbol{ heta} - oldsymbol{ heta}^{(t-1)}
ight)^{ op} \mathbf{R}\left(oldsymbol{ heta} - oldsymbol{ heta}^{(t-1)}
ight)
ight).$$

PPA is its deterministic version!

Gibbs Samplers as Stochastic Versions of PPA

Connection between Optimization and Simulation

In fact, searching for the maximum a posteriori estimator under the proposal distribution $P(\cdot \mid \theta^{(t-1)})$ with density $p(\cdot \mid \theta^{(t-1)})$ boils down to solving

$$\underset{\boldsymbol{\theta} \in \mathbb{R}^d}{\operatorname{arg\,min}} \ \ \underbrace{-\log \pi(\boldsymbol{\theta})}_{f(\boldsymbol{\theta})} + \frac{1}{2} \left\| \boldsymbol{\theta} - \boldsymbol{\theta}^{(t-1)} \right\|_{\mathsf{R}}^2.$$