1 Teorema di Weierstrass

Ipotesi Devo scrivere per forza qualcosa qua. [a,b] intervallo *chiuso* e *limitato* f continua su [a,b]

Tesi f ha massimo e minimo su [a, b]

$$\exists x_M, \exists x_n : f(x_M) \le f(x) \le f(x_n)$$

Tabella lettere Per capirci qualcosa in più.

f funzione

M reale, estremo superiore della funzione

 x_M reale, punto in cui la funzione raggiunge il valore di M

 x_n successione, ???

 y_n successione, ???

Dimostrazione Dimostrazione per il minimo omessa, in quanto opposta di questa.

Sia $M = \sup\{f(x) : x \in [a, b]\}.$

Devo dimostrare che M venga raggiunto in almeno un punto della funzione: $\exists x_M \in [a,b]$ tale che $f(x_M) = M$.

M è il minimo dei maggioranti; se considero un qualsiasi numero $y_n < M$, questo non è un maggiorante per la definizione di estremo superiore.

Allora, creo una successione x_n in modo che $y_n < f(x_n) \le M$.

Dato che y_n tende ad M, per il Teorema dei Carabinieri $f(x_n) \to M$.

Il fatto che x_n sia $\in [a, b]$ ci fa dire che la successione sia *limitata*.

Essendo limitata, per il Teorema di Bolzano-Weierstrass possiamo estrarre sicuramente una sottosuccessione x_{n_k} tale che essa tenda a un valore finito $\to x_M$.

Essendo f una funzione continua, allora $f(x_{n_k} \to f(x_n))$.

Dato che tutte le sottosuccessioni estratte tendono allo stesso valore, allora possiamo dire che $M = f(x_M)$.