

Feature Selection

Semester 1, 2021 Ling Luo

Outline

- Feature selection methods
 - Wrappers
 - Embedded
 - Filtering
- Filtering methods
 - Pointwise Mutual Information (PMI)
 - Mutual Information (MI)
 - χ^2
- Common issues

Machine Learning

Outlook	Temp	Humidity	Windy	Play?
sunny	hot	high	FALSE	no
sunny	hot	high	TRUE	no
overcast	hot	high	FALSE	yes
				•••

- How to do supervised machine learning?
 - 1) Pick a feature representation
 - 2) Compile data
 - 3) Pick a suitable model
 - 4) Train the model
 - 5) Classify validation/test data, evaluate results
 - 6) Go to Step 1

Machine Learning

- Our tasks as Machine Learning experts:
 - Choose a model suitable for classifying the data according to the attributes
 - Choose useful attributes for classifying the data according to the model
 - Inspection?
 - Intuition?

What are good features?

- Main goal:
 - Better performance according to some evaluation metric
- Side goals:
 - Seeing important features can suggest other important features
 - Fewer features → smaller models → faster answer
 - More accurate answer >> faster answer

Methods

- Wrappers
- Embedded
- Filtering

Wrappers

- Choose subset of attributes that give best performance on the validation data
- For example, for the weather data

Train model on:

{Outlook}
{Temperature}
{Outlook, Temperature}
{Outlook, Temperature, Humidity}

Evaluate

0.65
0.6
•••
0.75
•••
0.8
•••

Pick the best feature set

Wrappers

- Advantage:
 - Can find the feature set with optimal performance on validation data for this learner
- Disadvantage:
 - Not practical, takes a long time

Wrappers

- How long does the full wrapper method take?
 - Assume we have a fast method (e.g. Naïve Bayes) over a data set of medium size (~50K instances)
 - If each train-evaluate cycle takes 10 seconds to complete,
 - For m attributes
 - (2^m-1) combinations $\rightarrow \approx \frac{2^m}{6}$ minutes
 - $m = 10 \rightarrow \approx 3 \text{ hours}$
 - $m = 60 \rightarrow \approx 3.2^{15} \text{ hours}$
 - Only practical for very small data sets

- Greedy Approach: sequential forward selection
 - Train and evaluate model on each single attribute
 - Choose the best attribute
 - Until convergence:
 - Train and evaluate model on best attribute(s), plus each remaining single attribute
 - Choose best attribute out of the remaining set
 - Termination condition: performance (e.g. accuracy) stops increasing

- Greedy Approach: sequential forward selection
 - Running time: takes $\frac{m(m+1)}{2} (\rightarrow = m + (m-1) + \dots + 1)$ cycles for m attributes
 - In practice, converges much more quickly than this
 - Can convergence to a sub-optimal (or even bad) solution
 - Assumes independence of attributes

- Ablation Approach: sequential backward selection
 - Start with all attributes
 - Remove one attribute, train and evaluate model
 - Until divergence:
 - From remaining attributes, remove each attribute, train and evaluate model
 - Remove attribute that causes least performance degradation
 - Termination condition: performance (e.g. accuracy) starts to degrade by more than threshold ε

- Ablation Approach: sequential backward selection
 - Advantages:
 - Removes most of irrelevant attributes at the start
 - Performs best when the optimal subset is large
 - Disadvantages:
 - Running time: cycles can be slower with more attributes
 - Not feasible on large data sets

Embedded

- Embedded methods: in-built feature selection Models perform feature selection as *part of the algorithm*, for example:
 - Decision trees
 - Regression model with regularisation, e.g. linear regression with L1-norm regularisation (LASSO) (more about this later)
- Still benefit from other feature selection approaches

Filtering Methods

- Intuition: evaluate "goodness" of each attribute
- Most popular strategy
- Consider each attribute separately: linear time in number of attributes

- What makes a single feature good?
 - Well correlated with interesting class

Good Features?

a ₁	a ₂	С
Υ	Υ	Υ
Υ	N	Υ
N	Υ	N
N	N	N

Which attribute, a_1 or a_2 , is good?

Good Features?

a ₁	a ₂	С
Υ	Υ	Υ
Υ	N	Υ
N	Υ	N
N	N	N

a₁ is probably good

Good Features?

a ₁	a ₂	С
Υ	Υ	Υ
Υ	N	Υ
N	Υ	N
N	N	N

a₂ is probably not good

Filtering Methods

- Pointwise Mutual Information (PMI)
- Mutual Information (MI)
- χ^2

Pointwise Mutual Information

• Independence: the following formula holds if attribute A is independent from class C

$$P(A,C) = P(A)P(C)$$
 $P(C|A) = P(C)$

- If $\frac{P(A,C)}{P(A)P(C)}\gg 1$, attribute and class occur together much more often than randomly.
- If $\frac{P(A,C)}{P(A)P(C)} \approx 1$, attribute and class are independent, and they occur together as often as we would expect from random chance.
- If $\frac{P(A,C)}{P(A)P(C)} \ll 1$, attribute and class are negatively correlated.

Pointwise Mutual Information

Pointwise Mutual Information

$$PMI(A = a, C = c) = \log_2 \frac{P(a, c)}{P(a)P(c)}$$

 Best attributes: most correlated with class, the attributes with greatest PMI

PMI Example

a ₁	a_2	С
Υ	Υ	Υ
Υ	N	Υ
N	Υ	N
N	N	N

 $P(a_1)$ means $P(a_1 = Y)$, Y is the "interesting" value of a binary attribute

$$P(a_1) = \frac{2}{4}, P(c) = \frac{2}{4}, P(a_1, c) = \frac{2}{4}$$

$$PMI(a_1, c) = \log_2 \frac{\frac{1}{2}}{\frac{1}{2} \cdot \frac{1}{2}} = \log_2 2 = 1$$

PMI Example

a ₁	a ₂	С
Υ	Υ	Υ
Υ	N	Υ
N	Υ	N
N	N	N

$$P(a_2) = \frac{2}{4}, P(c) = \frac{2}{4}, P(a_2, c) = \frac{1}{4}$$

$$PMI(a_2, c) = \log_2 \frac{\frac{1}{4}}{\frac{1}{2} \cdot \frac{1}{2}} = \log_2 1 = 0$$

Find Good Features

Summary: What makes a single feature good?

- Well correlated with interesting class
 - Knowing *a* lets us predict *c* with more confidence
- Reverse correlated with interesting class
 - Knowing \bar{a} (not a) lets us predict c with more confidence
- Well correlated or reverse correlated with uninteresting class
 - Knowing a lets us predict \bar{c} with more confidence
 - Usually not quite as good, but still useful

Mutual Information

• Mutual Information: consider the PMIs of all the combinations of a, \bar{a} and c, \bar{c}

$$MI(A,C) = P(a,c) \log_2 \frac{P(a,c)}{P(a)P(c)} + P(\bar{a},c) \log_2 \frac{P(\bar{a},c)}{P(\bar{a})P(c)} + P(\bar{a},\bar{c}) \log_2 \frac{P(\bar{a},\bar{c})}{P(a)P(\bar{c})} + P(\bar{a},\bar{c}) \log_2 \frac{P(\bar{a},\bar{c})}{P(\bar{a})P(\bar{c})}$$

Often written more compactly as:

$$MI(A,C) = \sum_{i \in \{a,\bar{a}\}} \sum_{j \in \{c,\bar{c}\}} P(i,j) \log_2 \frac{P(i,j)}{P(i)P(j)}$$

0 log₂ 0 is defined as 0

Contingency Tables

Compact representation of these frequency counts

	a = Y	$a=N,(\bar{a})$	Total
c = Y	$\sigma(a,c)$	$\sigma(\bar{a},c)$	$\sigma(c)$
$c = N, (\bar{c})$	$\sigma(a,\bar{c})$	$\sigma(\bar{a},\bar{c})$	$\sigma(\bar{c})$
Total	$\sigma(a)$	$\sigma(\bar{a})$	М

• Compute P(a, c), P(a), P(c) etc. based on the table

$$P(a,c) = \frac{\sigma(a,c)}{M}$$

Contingency Tables

• Contingency Tables for toy example with attributes a_1 and a_2

a_1	a = Y	a = N	Total
c = Y	2	0	2
c = N	0	2	2
Total	2	2	4

a_2	a = Y	a = N	Total
c = Y	1	1	2
c = N	1	1	2
Total	2	2	4

• Contingency Tables for toy example: attribute a_1

a_1	a = Y	a = N	Total
c = Y	2	0	2
c = N	0	2	2
Total	2	2	4

$$P(a_1) = \frac{2}{4}, P(c) = \frac{2}{4}, P(\overline{a_1}) = \frac{2}{4}, P(\overline{c}) = \frac{2}{4}$$

$$P(a_1,c) = \frac{2}{4}, P(\overline{a_1},c) = 0, P(a_1,\overline{c}) = 0, P(\overline{a_1},\overline{c}) = \frac{2}{4}$$

• MI for a_1

$$MI(A,C) = P(a_1,c) \log_2 \frac{P(a_1,c)}{P(a_1)P(c)} + P(\overline{a_1},c) \log_2 \frac{P(\overline{a_1},c)}{P(\overline{a_1})P(c)} + P(\overline{a_1},c) \log_2 \frac{P(a_1,c)}{P(a_1)P(c)} + P(\overline{a_1},c) \log_2 \frac{P(\overline{a_1},c)}{P(\overline{a_1})P(c)}$$

$$= \frac{1}{2} \log_2 \frac{\frac{1}{2}}{\frac{1}{2} \cdot \frac{1}{2}} + 0 \log_2 \frac{0}{\frac{1}{2} \cdot \frac{1}{2}} + 0 \log_2 \frac{1}{\frac{1}{2} \cdot \frac{1}{2}} + \frac{1}{2} \log_2 \frac{\frac{1}{2}}{\frac{1}{2} \cdot \frac{1}{2}}$$

$$= \frac{1}{2} \cdot 1 + 0 + 0 + \frac{1}{2} \cdot 1 = 1$$

• Contingency Tables for toy example: attribute a_2

a_2	a = Y	a = N	Total
c = Y	1	1	2
c = N	1	1	2
Total	2	2	4

$$P(a_2) = \frac{2}{4}, P(c) = \frac{2}{4}, P(\overline{a_2}) = \frac{2}{4}, P(\overline{c}) = \frac{2}{4}$$

$$P(a_2, c) = \frac{1}{4}, P(\overline{a_2}, c) = \frac{1}{4}, P(a_2, \overline{c}) = \frac{1}{4}, P(\overline{a_2}, \overline{c}) = \frac{1}{4}$$

• MI for a_2

$$MI(A,C) = P(a_{2},c) \log_{2} \frac{P(a_{2},c)}{P(a_{2})P(c)} + P(\overline{a_{2}},c) \log_{2} \frac{P(\overline{a_{2}},c)}{P(\overline{a_{2}})P(c)} + P(\overline{a_{2}},c) \log_{2} \frac{P(a_{2},c)}{P(a_{2})P(c)} + P(\overline{a_{2}},c) \log_{2} \frac{P(\overline{a_{2}},c)}{P(\overline{a_{2}})P(c)}$$

$$= \frac{1}{4} \log_{2} \frac{\frac{1}{4}}{\frac{1}{2} \cdot \frac{1}{2}} + \frac{1}{4} \log_{2} \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{4} \log_{2} \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{4} \log_{$$

 a_1 is better than a_2

- Similar idea with MI, but different solution
- Conduct statistical test to check the independence of a feature and the class
- Contingency table

	a = Y	$a=N,(\bar{a})$	Total
c = Y	W	X	W + X
$c=N,(\bar{c})$	Y	Z	Y + Z
Total	W + Y	X + Z	М

- If a and c were independent, what value would we expect to be in W?
- Independence $\rightarrow P(a,c) = P(a)P(c)$

$$\frac{\sigma(a,c)}{M} = \frac{\sigma(a)}{M} \cdot \frac{\sigma(c)}{M}$$

$$\sigma(a,c) = \frac{\sigma(a)\sigma(c)}{M}$$

$$E(W) = \frac{(W+Y)(W+X)}{W+X+Y+Z}$$

- Compare the value actually observed O(W) with the expected value E(W) ($W = \sigma(a,c)$)
 - $O(W) \gg E(W)$: a occurs more often with c than we would expect at random **predictive**
 - $O(W) \ll E(W)$: a occurs less often with c than we would expect at random **predictive**
 - $O(W) \approx E(W)$: a occurs as often with c as we would expect at random **not predictive**
- Similarly with X, Y, Z

Calculation

$$\chi^{2} = \frac{(O(W) - E(W))^{2}}{E(W)} + \frac{(O(X) - E(X))^{2}}{E(X)} + \frac{(O(Y) - E(Y))^{2}}{E(Y)} + \frac{(O(Z) - E(Z))^{2}}{E(Z)}$$

$$\chi^{2} = \sum_{i \in \{a, \bar{a}\}} \sum_{j \in \{c, \bar{c}\}} \frac{(O_{i,j} - E_{i,j})^{2}}{E_{i,j}}$$

- Fit χ^2 to a chi-square distribution
- χ^2 becomes much greater when |O E| is large but E is small
- High value of χ^2 indicates the dependency between a feature and the class.

• Contingency Tables for toy example attribute a_1

Observed values

a_1	a = Y	a = N	Total
c = Y	2	0	2
c = N	0	2	2
Total	2	2	4

Expected values (independent)

a_1	a = Y	a = N	Total
c = Y	1	1	2
c = N	1	1	2
Total	2	2	4

• χ^2 for a_1

$$\chi^{2} = \frac{(O_{a,c} - E_{a,c})^{2}}{E_{a,c}} + \frac{(O_{\bar{a},c} - E_{\bar{a},c})^{2}}{E_{\bar{a},c}} + \frac{(O_{a,\bar{c}} - E_{\bar{a},\bar{c}})^{2}}{E_{a,\bar{c}}} + \frac{(O_{a,\bar{c}} - E_{\bar{a},\bar{c}})^{2}}{E_{\bar{a},\bar{c}}}$$

$$= \frac{(2-1)^{2}}{1} + \frac{(0-1)^{2}}{1} + \frac{(0-1)^{2}}{1} + \frac{(2-1)^{2}}{1}$$

$$= 4$$

• Contingency Tables for toy example attribute a_2

Observed values

a_2	a = Y	a = N	Total
c = Y	1	1	2
c = N	1	1	2
Total	2	2	4

Expected values (independent)

a_2	a = Y	a = N	Total
c = Y	1	1	2
c = N	1	1	2
Total	2	2	4

• χ^2 for a_2

$$\chi^{2} = \frac{(O_{a,c} - E_{a,c})^{2}}{E_{a,c}} + \frac{(O_{\bar{a},c} - E_{\bar{a},c})^{2}}{E_{\bar{a},c}} + \frac{(O_{a,\bar{c}} - E_{\bar{a},c})^{2}}{E_{\bar{a},\bar{c}}} + \frac{(O_{\bar{a},\bar{c}} - E_{\bar{a},\bar{c}})^{2}}{E_{\bar{a},\bar{c}}}$$

$$= 0$$

- All observed values are equal to expected values
- Higher χ^2 indicates dependency, so a_1 is more predictive than a_2

Common Issues

Types of Attributes

Nominal attributes of multiple values

Outlook = {sunny, overcast, rainy}

- Strategy 1: Treat as multiple binary attributes
 - Convert to three features
 Outlook = sunny → sunny = Y, overcast = N, rainy = N
 - Use measures as given
 - But results can be difficult to interpret regarding the original feature

For example, Outlook=sunny is useful, but Outlook=overcast and Outlook=rainy are not useful... Should we use Outlook?

Types of Attributes

• Strategy 2: Expand formulae and contingency tables

Outlook	Sunny	Overcast	Rainy	Total
c = Y	U	V	W	U + V + W
c = N	X	Y	Z	X + Y + Z
Total	U + X	V + Y	W + Z	М

$$MI(Outlook, C) = \sum_{i \in \{s, o, r\}} \sum_{j \in \{c, \bar{c}\}} P(i, j) \log_2 \frac{P(i, j)}{P(i)P(j)}$$

Types of Attributes

Continuous Attributes

- Estimate probabilities P(a,c), P(a), P(c) etc. by fitting a distribution such as Gaussian
- Discretise values

Multi-class Problems

- Multiclass classification tasks are usually much more difficult than binary classification task
- For example, predict geotag for Melbourne, Sydney,
 Brisbane, Perth and Adelaide based on words in a post
 - How about these features: swanston, fed, mcg, docklands, afl?
 - Need to make a point of selecting features for each class to give our classifier the best chance of predicting every class correctly.

Summary

- Feature selection methods
 - Wrappers, embedded and filtering
- Popular filters: PMI, MI and χ^2
 - How to use them? What are the results going to look like?
- Importance of feature selection
 - necessary for distance-based models, e.g. kNN
 - Naive Bayes/Decision Trees, to a lesser extent
 - SVMs can work well without feature selection

References

- Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, and Vipin Kumar. Introduction to Data Mining. Pearson, 2018.
- Ian Witten, Eibe Frank, and Mark A. Hall. Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, 3rd edition, 2011.
- Isabelle Guyon, and Andre Elisseeff. 2003. An introduction to variable and feature selection. The Journal of Machine Learning Research. Vol3, 1157–1182
- Yiming Yang, Jan Pedersen. 1997. A Comparative Study on Feature Selection in Text Categorization. In Proceedings of the Fourteenth International Conference on Machine Learning, 412–420