

Università degli studi di Trento

Laboratorio di fisica II

Esperienza 1

MISURE VOLT -AMPEROMETRICHE

Autori: Canteri Marco Biasi Lorenzo Damiani Emily

Supervisore: Bill Weber

5 ottobre 2015

Abstract

In questa esperienza misureremo il valore di una resistenza analizzando con un tester ICE le differenze di potenziale ai suoi capi e la corrente che gli passa attraverso. Verificheremo quindi il comportamento ohmico di tale resistenza. Lo facciamo in due modi, utilizzando un circuito con amperometro a monte e un circuito con amperometro a valle. Inoltre utilizzeremo due fondo scala diversi per ciascun circuito.

Indice

1	Obiettivi	2
2	Strumenti	2
3	Procedura di misura	2
4	Circuito amperometro a monte	3
5	Cirucito amperometro a valle	3
6	Analisi circuito tester ICE	3
7	Conclusioni	3
Appendices		
\mathbf{A}	Tabelle dati	4

1 Obiettivi

- Determinare il valore di resistenze tramite misure volt-amperometriche con il tester ICE, in configurazione amperometro "a monte" e "a valle".
- Verificare il comportamento ohmico della resistenza e confrontare i valori ottenuti e le loro incertezze tra di loro e con il valore ottenuto da un multimetro digitale.

2 Strumenti

- Due tester ICE (tolleranza 5% fondoscala)
- resistenza da misurare
- generatore di tensione variabile
- breadboard
- cavi di collegamento

3 Procedura di misura

Abbiamo eseguito 4 misure di resistenza in totale. Le prime due misure sono state eseguite con un circuito con amperomentro a monte rappresentato in figura (1a), le altre due sono state eseguite con amperometro a valle in figura (1b). Entrambe le coppie con 2 fondo scale diverse. Abbiamo effettuato la misura di differenza di potenziale e corrente con due tester ICE. L'incertezza di tali misure sono dovute esclusivamente alla risoluzione ΔX della scala del tester: 5% del fondo scala. Quindi l'incertezza standard è:

$$\sigma X = \frac{\Delta X}{\sqrt{12}}$$

In realtà l'incertezza sulla misura è data anche dalle caratteristiche non ideali dei tester utilizzati. Nella seconda parte abbiamo analizzato i circuiti del tester utilizzato e introdotto alcuni elementi di correzione sulle misure effettuate per avere il valore più corretto della resistenza da misurare.

Figura 1: Circuiti usati per la misura

- 4 Circuito amperometro a monte
- 5 Cirucito amperometro a valle
- 6 Analisi circuito tester ICE

Figura 2: Schema semplificato tester ICE amperometro

Il circuito in figura (2) una volta collegato all'interno del circuito tramite la bocchetta A_i può essere schemattizato come segue

7 Conclusioni

Appendices

A Tabelle dati

$\mathbf{i}[\mathbf{m}\mathbf{A}]$	$oldsymbol{\Delta} ext{V}[ext{V}]$
0	0
8.5	2.3
15.9	4.1
24	6.1
31.7	8.1
40.4	10
49.8	12.1
56.8	14.3
63.3	16
71.8	18.4

i[mA]	$\Delta V[V]$
77.6	20
73.4	18.8
66.2	17
59.4	15
52.4	13.1
44.2	11
36.2	8.9
26.5	6.9
18.9	5.1
-0.5	0

(b) Fondo scala qualcosa

Tabella 1: Misurazioni con circuito amperometro a monte

i[mA]	$\mathbf{\Delta V}[\mathbf{V}]$
0	0
8.5	2.3
15.9	4.1
24	6.1
31.7	8.1
40.4	10
49.8	12.1
56.8	14.3
63.3	16
71.8	18.4

$\mathbf{i}[\mathbf{m}\mathbf{A}]$	$\Delta V[V]$
77.6	20
73.4	18.8
66.2	17
59.4	15
52.4	13.1
44.2	11
36.2	8.9
26.5	6.9
18.9	5.1
-0.5	0

(b) Fondo scala qualcosa

Tabella 2: Misurazioni con circuito amperometro a valle

⁽a) Fondo scala qualcosa

⁽a) Fondo scala qualcosa