COMP(2041|9044) 22T2 — More on Python

https://www.cse.unsw.edu.au/~cs2041/22T2/

Names and Types

- Python associates types with values.
 - languages like C, Perl associate types with variables
- A Python variables can refer to a value of any type.
 - optional type annotations can indicate a variable should refer only to a particular type
- The **type** function allows introspection.

```
>>> a = 42
>>> type(a)
<type 'int'>
>>> a = "String"
>>> type(a)
<type 'str'>
>>> a = [1,2,3]
>>> type(a)
<type 'list'>
>>> a = {'ps':50,'cr':65,'dn':75}
>>> tvpe(a)
<type 'dict'>
```

Python Sequences

- Python does not have arrays
 - widely used Python library **numpy** does have arrays
- Python has 3 basic sequence types: lists, tuples, and ranges
 - lists are mutable they can be changed
 - tuples similar to lists but immutable they can not be changed
 - some important operations require immutable types, e.g. hashing
 - ranges are immutable sequence of numbers
 - commonly used for loops

Python Sequences - Examples

```
>>> 1 = [1,2,3,4,5]
>>> t = (1,2,3,4,5)
>>> r = range(1, 6)
>>> 1[2]
>>> t[2]
>>> r[2]
>>> 1[2] = 42
>>> 1
[1, 2, 42, 4, 5]
>>> t[2] = 42
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
```

Some Useful Python Sequence Operations

These can be applied to lists, tuples and ranges

x in s	True if an item of s is equal to x
x not in s	False if an item of s is equal to x
s + t	the concatenation of s and t
s * n	equivalent to adding s to itself n times
s[i]	ith item of s
s[i:j]	slice of s from i to j
s[i:j:k]	slice of s from i to j with step k
len(s)	length of s
min(s)	smallest item of s
max(s)	largest item of s
s.index(x[, i[, j]])	index of the first occurrence of x in s (at or after index i and before index j)
s.count(x)	total number of occurrences of x in s

Some Useful Python Mutable Sequence Operations

These can be applied to lists, not tuples or ranges

s[i] = x	item i of s is replaced by x
s[i:j] = t	slice of s from i to j is replaced by elements of t
del s[i:j]	same as s[i:j] = []
s[i:j:k] = t	the elements of s[i:j:k] are replaced by those of t
del s[i:j:k]	removes the elements of s[i:j:k] from the list
s.append(x)	appends x to the end of the sequence
s.clear()	removes all items from s
s.copy()	creates a shallow copy of s
s += t	extends s with the contents of t
s *= n	updates s with its contents repeated n times
s.insert(i, x)	inserts x into s at the index given by i
s.pop() or s.pop(i)	retrieves the item at i and also removes it from s
s.remove(x)	remove the first item from s where $s[i]$ is equal to x
s.reverse()	reverses the items of s in place
s.sort()	sort the items of s in place

Ranges

```
>>> range(10)
range(0, 10)
>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> tuple(range(10))
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
>>> list(range(5,10))
[5, 6, 7, 8, 9]
>>> list(range(5,10,3))
[5, 8]
>>> list(range(5, -10, -3))
[5, 2, -1, -4, -7]
>>> list(range(5, 3))
```

Example - /bin/echo using while

```
# Python implementation of /bin/echo
# using indexing & while, not pythonesque
import sys
i = 1
while i < len(sys.argv):
    if i > 1:
        print(" ", end="")
    print(sys.argv[i], end="")
    i += 1
print()
source code for echo.0 ov
```

Example - /bin/echo using for/range

```
# Python implementation of /bin/echo
# using indexing & range, not pythonesque
import sys
for i in range(1, len(sys.argv)):
    if i > 1:
        print(' ', end='')
    print(sys.argv[i], end='')
print()
source code for echolory
```

Example - /bin/echo using just for

```
# Python implementation of /bin/echo
import sys
if sys.argv[1:]:
    print(sys.argv[1], end='')
for arg in sys.argv[2:]:
    print('', arg, end='')
print()
source code for echo_Day
```

Example - /bin/echo - two other versions

```
# Python implementation of /bin/echo
import sys
print(' '.join(sys.argv[1:]))
source code for echo.3.py
# Python implementation of /bin/echo
import sys
print(*argv[1:])
source code for echo.4.py
```

Example - Summing Command-line Arguments

```
# sum integers supplied as command line arguments
# no check that arguments are integers
import sys
total = 0
for arg in sys.argv[1:]:
    total += int(arg)
print("Sum of the numbers is", total)
source code for sum arguments.Day
```

Example - Summing Command-line Arguments with Checking

Example - Counting Lines on stdin

```
# Count the number of lines on standard input.
import sys
line_count = 0
for line in sys.stdin:
    line_count += 1
print(line_count, "lines")
source code for line count.oy
```

Example - Counting Lines on stdin - two more versions

```
import sys
lines = sys.stdin.readlines()
line_count = len(lines)
print(line_count, "lines")
source code for line_count.py

import sys
lines = list(sys.stdin)
line_count = len(lines)
print(line_count, "lines")
source code for line_count2.py
```

Opening Files

Similar to C, file objects can be created via the **open** function:

```
file = open('data')
# read from file 'data'
file = open('data', 'r')
# read from file 'data'
file = open("results", "w")
# write to file 'results'
file = open('stuff', 'ab')
# append binary data to file 'stuff'
```

Closing Files

File objects can be explicitly closed with **file.close()**

- All file objects closed on exit.
- Original file objects are not closed if opened again, can cause issues in long running programs.
- Data on output streams may be not written (buffered) until close hence close ASAP.

Reading and Writing a File: Example

```
file = open("a.txt", "r")
data = file.read()
file.close()

file = open("a.txt", "w")
file.write(data)
file.close()
```

Exceptions

Opening a file may fail - always check for exceptions:

```
try:
    file = open('data')
except OSError as e:
    print(e)
```

OSError is a group of errors that can be cased by syscalls, similar to errno in C

Specific errors can be caught

```
try:
    file = open('data')
except PermissionError:

# handle first error type
    ...
except FileNotFoundError:
```

Context Managers

Closing files is annoying python can do it for us with a context manager The file will be closed for us when we exit the code block

```
sum = 0
with open("data", "r") as input_file:
    for line in input_file:
        try:
        sum += int(line.strip())
        except ValueError:
        pass
print(sum)
```

```
# Simple cp implementation for text files using line-based I/O
# explicit close is used below. a with statement would be better
# no error handling
import sys
if len(sys.argv) != 3:
    print("Usage:", sys.argv[0], "<infile> <outfile>", file=sys.stderr)
    svs.exit(1)
infile = open(sys.argv[1], "r", encoding="utf-8")
outfile = open(sys.argv[2], "w", encoding="utf-8")
for line in infile:
    print(line, end='', file=outfile)
infile.close()
outfile.close()
```

source code for cp.0.pv

Example - cp

```
# Simple cp implementation for text files using line-based I/O
# and with statement, but no error handling
import sys
if len(sys.argv) != 3:
    print("Usage:", sys.argv[0], "<infile> <outfile>", file=sys.stderr)
    sys.exit(1)
with open(sys.argv[1]) as infile:
    with open(sys.argv[2], "w") as outfile:
    for line in infile:
        outfile.write(line)
```

source code for cp.1.py

```
# Simple cp implementation for text files using line-based I/O
# and with statement and error handling
import sys
if len(sys.argv) != 3:
    print("Usage:", sys.argv[0], "<infile> <outfile>", file=sys.stderr)
    sys.exit(1)
try:
    with open(sys.argv[1]) as infile:
        with open(sys.argv[2], "w") as outfile:
            for line in infile:
                outfile.write(line)
except OSError as e:
    print(sys.argv[0], "error:", e, file=sys.stderr)
    sys.exit(1)
```

source code for cp.2.py

```
# Simple cp implementation for text files using line-based I/O
# reading all lines into array (not advisable for large files)
import sys
if len(sys.argv) != 3:
    print("Usage:", sys.argv[0], "<infile> <outfile>", file=sys.stderr)
    sys.exit(1)
try:
    with open(sys.argv[1]) as infile:
        with open(sys.argv[2], "w") as outfile:
            lines = infile.readlines()
            outfile.writelines(lines)
except OSError as e:
    print(sys.argv[0], "error:", e, file=sys.stderr)
    sys.exit(1)
```

Example - cp

```
# Simple cp implementation using shutil.copyfile
import sys
from shutil import copyfile
if len(sys.argv) != 3:
    print("Usage:", sys.argv[0], "<infile> <outfile>", file=sys.stderr)
    sys.exit(1)
try:
    copyfile(sys.argv[1], sys.argv[2])
except OSError as e:
    print(sys.argv[0], "error:", e, file=sys.stderr)
    sys.exit(1)
```

Example - cp

```
# Simple cp implementation by running /bin/cp
import subprocess
import sys
if len(sys.argv) != 3:
    print("Usage:", sys.argv[0], "<infile> <outfile>", file=sys.stderr)
    sys.exit(1)
p = subprocess.run(['cp', sys.argv[1], sys.argv[2]])
sys.exit(p.returncode)
```

source code for cp.5.pv

UNIX-filter Behavior

fileinput can be used to get UNIX-filter behavior.

- treats all command-line arguments as file names
- opens and reads from each of them in turn
- no command line arguments, then **fileinput** == **stdin**
- accepts as **stdin**
- so this is cat in Python:

```
#! /usr/bin/env python3
import fileinput

for line in fileinput.input():
    print(line)
```

Python Dicts

- many languages have arrays accessed with small integer indexes.
 - can be though of as a mapping integer -> value
 - Python has lists (see widely used package numpy for arrays)
 - easy to implement indexing
- some languages have associative arrays index doesn't have to be integer
 - very useful, e.g. being able to use string as index
 - harder to implement indexing
- Python has dicts index can be almost any value
 - index value can not be mutable (can be list or dict)
 - can be though of as a mapping integer -> value

Example - Remembering Snap - Dict

```
# Check if we've seen a line read from stdin,
# usina a dict.
# Print snap! if a line has been seen previously
# Exit if an empty line is entered
line_count = {}
while True:
    line = input("Enter line: ")
    if not line:
        break
    if line in line count:
        print("Snap!")
    else:
        line_count[line] = 1
```

source code for snap_memory.0.py

Example - Remembering Snap - Set

```
# Check if we've seen lines read from stdin.
# using a set.
# Print snap! if a line has been seen previously.
# Exit if an empty line is entered
lines seen = set()
while True:
    line = input("Enter line: ")
    if not line:
        break
    if line in lines seen:
        print("Snap!")
    else:
        lines_seen.add(line)
```

source code for snap_memory.1.py

Some Useful Python Dict Operations

These can be applied to lists, tuples and ranges

d[key]	Return the item of d with key <i>key</i>
del d[key]	Remove d[key] from d. Raises a KeyError if key is not in the map.
key in d	Return True if d has a key key, else False.
key not in d	Equivalent to not key in d.
keys()	Return a new view of the dictionary's keys
items()	Return a new view of the dictionary's items
get(key[, default])	Return the value for key if key is in the dictionary, else default
values()	Return a new view of the dictionary's values.
update([other])	Update the dictionary with the key/value pairs from other
setdefault(key[, default])	If key is in the dictionary, return its value. If not, insert and return default.
clear()	Remove all items from the dictionary.
copy()	Return a shallow copy of the dictionary.

Running External Programs with subprocess

Python requires you to import the subprocess module to run external programs.

- subprocess.run() is usually the function used to run external programs.
- subprocess.Popen() can be used if lower level control is necessary.

```
>>> subprocess.run(['date', '--utc'])
Tue 05 Aug 1997 01:11:01 UTC
CompletedProcess(args=['date', '--utc'], returncode=0)
>>>
```

By default stdout/stderr from the program gores directly to Python's stdout/stderr.

By default stdin from the program comes directly From Python's stdin.

Capturing the output from an External Programs with subprocess

To capture the output from commands:

```
>>> p = subprocess.run(["date"], capture_output=True, text=True)
>>> p.stdout
'Mon 18 Jul 2022 10:27:28 AEST\n'
>>> p.returncode
0
>>> q.stderr
"ls: cannot access 'no-existent-file': No such file or directory\n"
>>> q.returncode
2
```

- captured output is a byte sequence (binary) by default.
- the option text=True converts it to a string
 - we want this 90+% of time
 - assumes the binary is utf-8 (if that is the local encoding)

Passing input to an External Programs with subprocess

To send input to a program:

```
>>> message = "I love COMP(2041|9044)\n"
>>> p = subprocess.run(["tr", "a-z", "A-Z"], input=message, capture_output=True,
>>> p.stdout
'I LOVE COMP(2041|9044)\n'
>>> # note, you don't need an external program for this
>>> message.upper()
'I LOVE COMP(2041|9044)\n'
```

Example - Using Subprocess to Capture

```
import subprocess
p = subprocess.run(["date"], capture_output=True, text=True)
if p.returncode != 0:
    print(p.stderr)
    exit(1)
weekday, day, month, year, time, timezone = p.stdout.split()
print(f"{year} {month} {day}")
source code for pages data.py
```

Python and External Commands

Optionally subprocess can pass the command to a ahell to evaluate, e.g.:

```
>>> subprocess.run("sort *.csv | cut -d, -f1,7 >output.txt", shell=True)
```

This conveniently allows use of shell features including pipes, I/O re-direction, globbing ...

Beware, this can also prodsuce unexpected behaviour, e.g. if a Shell matacharcter appears in a filename.

Beware, this a common source of securioty vulnerabilties. It should be avoided when security is important.

Example - Using Subprocess to Capture Curl Output

```
# Repeatedly download a specified web page
# until a specified regexp matches its source
# then notify the specified email address.
# implemented using subprocess
import re
import subprocess
import sys
import time
REPEAT_SECONDS = 300 # check every 5 minutes
if len(sys.argv) == 4:
    url = sys.argv[1]
    regexp = sys.argv[2]
    email_address = sys.argv[3]
else:
    print(f"Usage: {sys.argv[0]} <url> <regex> <email-address>", file=sys.stderr"
    svs.exit(1)
while True:
source code for watch website.0.pv
```

Example - Using Subprocess to Capture Curl Output

```
while True:
    p = subprocess.run(
        ["curl", "--silent", url], text=True, stdout=subprocess.PIPE
    webpage = p.stdout
    if not re.search(regexp, webpage):
        time.sleep(REPEAT_SECONDS)
        continue
    mail body = f"Generated by {sys.argv[0]}"
    subject = f"website '{url}' now matches regex '{regexp}'"
    # the echo is for testing, remove to really send email
    subprocess.run(["echo", "mail", "-s", subject], text=True, input=mail_body)
    svs.exit(0)
```

source code for watch_website.0.py

Example - Using Urllib

```
while True:
    response = urllib.request.urlopen(url)
    webpage = response.read().decode()
    if not re.search(regexp, webpage):
        time.sleep(REPEAT_SECONDS)
        continue
    mail body = f"Generated by {sys.argv[0]}"
    subject = f"website '{url}' now matches regex '{regexp}'"
    # the echo is for testing, remove to really send email
    subprocess.run(["echo", "mail", "-s", subject], text=True. input=mail_body)
    svs.exit(0)
```

source code for watch_website.1.py

Example - Using Beautiful Soup

```
import bs4 as BeautifulSoup
IGNORE_WEBPAGE_ELEMENTS = set("[document] head meta style script title".split())
for url in sys.argv[1:]:
    response = urllib.request.urlopen(url)
    webpage = response.read().decode()
    soup = BeautifulSoup.BeautifulSoup(webpage, "lxml")
    for element in soup.findAll(text=True):
        parent = element.parent.name.lower()
        if parent in IGNORE_WEBPAGE_ELEMENTS:
            continue
        text = element.getText()
        # remove empty lines and leading whitespace
        text = re.sub(r"\n\s+", "\n", element)
        text = text.strip()
        if text:
            print(text)
```

source code for fetch_website_text.py

Example - File Operations

```
# Change the names of the specified files to lower case.
# (simple version of the perl utility rename)
import os
import sys
for old_pathname in sys.argv[1:]:
    new_pathname = old_pathname.lower()
    if new pathname == old pathname:
        continue
    if os.path.exists(new pathname):
        print(f"{sys.argv[0]}: '{new_pathname}' exists", file=sys.stderr)
        continue
    trv:
        os.rename(old_pathname, new_pathname)
    except OSError as e:
        print(f"{sys.argv[0]}: '{new_pathname}' {e}", file=sys.stderr)
```

source code for tolower.pv

Type hints

- Python doesn't enforce types even when they are given, thus they are hints
- Static type checkers are common that do enforce types as much as possible
- For best results type enforcement should be including in your code
- Type hints help you and others read your code and are highly recommended

from typing import Optional, Union

```
a = 5
b = "Hello World"
c: int = 6
```

a type hint

d: int = "this isn't an int"

Types type("Hello") str type('Hello') str type("""Hello""") str type('''Hello''')

Types type(()) tuple type((1))int ?? type((1,)) tuple type((1, 2, 3))