under Graduate Homework In Mathematics

SetTheory 5

白永乐

202011150087

202011150087@mail.bnu.edu.cn

2023年12月7日

ROBEM I Prove: $F \subset \mathcal{N}$ is closed set $\iff F = [T]$ for some $T \subset {}^{<\omega}\omega$.

- SPERON. \Longrightarrow : Let $T:=T_F$, now we need to prove F=[T]. Form the defination of T_F and [T] easily we get $F\subset [T]$. Now we prove $[T]\subset F$. For $f\in [T]$, we get $f\upharpoonright n\in T$. i.e., $\forall n\in\mathbb{N}, f\upharpoonright n=g\upharpoonright n$ for some $g\in F$. So $d(f,F)\leq d(f,g)=\frac{1}{2^n}$. Since F is closed, we get $f\in F$.
 - \Leftarrow : For any $[T] \in {}^{<\omega}\omega$, we need to prove [T] is closed. Assume $f \in \overline{[T]}$, then $\forall n \in \mathbb{N}, \exists g \in [T], f \upharpoonright n = g \upharpoonright n$. Since $g \in [T]$ we get $f \upharpoonright n = g \upharpoonright n \in T$. So $f \in [T]$. So [T] is closed.

ROBEM II Assume f is isolated point in closed set $F \subset \mathcal{N}$, then $\exists n \in \mathbb{N}, \forall g \in F, g \neq f \rightarrow g \upharpoonright n \neq f \upharpoonright n$.

SOLTON. Since f is isolated, we get $\exists n \in \mathbb{N}, \forall g \in F \setminus \{f\}, d(f,g) > \frac{1}{2^n}$. Then $f \upharpoonright n \neq g \upharpoonright n$.

ROBEM III A closed set $F \subset \mathcal{N}$ is perfect $\iff T_F$ is perfect tree.

- SOUTION. \Longrightarrow : For $t \in T_F$, by defination we know $\exists f \in F, n \in \mathbb{N}, t = f \upharpoonright n$. Since f is perfect we know $\exists g \in F \land g \neq f, d(f,g) < \frac{1}{2^{n+1}}$. Then $t = f \upharpoonright n \sqsubset g$. Since $f \neq g$, we get $\exists m \in \mathbb{N} \land m > n, f \upharpoonright m \neq g \upharpoonright m$. So $t \sqsubset f \upharpoonright m, t \sqsubset g \upharpoonright m$, and $f \upharpoonright m, g \upharpoonright m$ are incomparable.
- \Leftarrow : For $f \in F$, we need to prove f is limit point. $\forall n \in \mathbb{N}, t := f \upharpoonright n \in T_F$. So $\exists s_1, s_2 \in T_F$ such that $t \sqsubset s_1, s_2$ and s_1, s_2 are incomparable. Then $s_1, s_2 \sqsubset f$ is impossible. Without loss of generality assume $s_1 \not\sqsubset f$. Then $s_1 = g \upharpoonright m$ for some $g \in F, m \in \mathbb{N}$. So $d(f, g) \leq \frac{1}{2^n}$. So f is not isolated.

 \mathbb{R}^{O} BEM IV For $\alpha < \omega_1$, we let $\Sigma_0 =$ the set of all open set in \mathbb{R} , and $\Pi_0 =$ the set of all closed set in \mathbb{R} . And $\Sigma_{\alpha+1} = \{\bigcup_{n \in \mathbb{N}} A(n) : A \in {}^{\mathbb{N}}\Pi_{\alpha}$. $\Pi_{\alpha+1} = \{\mathbb{R} \setminus A : A \in \Sigma_{\alpha}\}$. $\Sigma_{\alpha} = \bigcup_{\beta < \alpha} \Sigma_{\beta}$, $\Pi_{\alpha} = \bigcup_{\beta < \alpha} \Pi_{\beta}$ for limit ordinal α . Prove that $\mathcal{B}(\mathbb{R}) = \bigcup_{\alpha < \omega_1} \Sigma_{\alpha}$.

SOUTION. Use MI easily we get $\bigcup_{\alpha<\omega_1}\Sigma_{\alpha}\subset\mathcal{B}(\mathbb{R})$. Now we prove $\mathcal{B}(\mathbb{R})\subset\bigcup_{\alpha<\omega_1}\Sigma_{\alpha}$. Since open sets is subset of $\bigcup_{\alpha<\omega_1}\Sigma_{\alpha}$, we only need to prove $\bigcup_{\alpha<\omega_1}\Sigma_{\alpha}=:\mathcal{A}$ is σ -field. Easily we get $\Sigma_{\alpha}\subset\Sigma_{\alpha+2}$. Obviously $\mathbb{R}\in\mathcal{A}$. For $A\in\mathcal{A}$, assume $A\in\Sigma_{\alpha}$. Then $\mathbb{R}\setminus A\in\Pi_{\alpha+1}\subset\Sigma_{\alpha+1}\subset\mathcal{A}$. Assume $A\in\mathbb{N}\mathcal{A}$, let $f\in\mathbb{N}\omega_1$, $f(n)=\min\{\alpha\in\omega_1:A(n)\in\Sigma_{\alpha}\}$. Consider sup ran $f=:\gamma$. Since $\forall \alpha\in\mathrm{ran}\, f,\alpha$ is countable. And ran f is countable. So sup ran f is countable, thus sup ran $f<\omega_1$. Then ran $A\subset\Pi_{\gamma+1}$. So we get $\bigcup_{n\in\mathbb{N}}A(n)\subset\Sigma_{\gamma+2}\subset\mathcal{A}$. So we get \mathcal{A} is σ -field. So $\mathcal{B}(\mathbb{R})\subset\mathcal{A}$, thus $\mathcal{A}=\mathcal{B}(\mathbb{R})$.

 \mathbb{R}^{OBEM} V Show that $\mathcal{M} := \{A \subset \mathbb{R} : A \text{ is measurable}\}$ is a σ -field.

Lemma 1. For $A \in {}^{\mathbb{N}}\mathcal{P}(\mathbb{R})$, we have $\mu^*(\bigcup_{n \in \mathbb{N}} A(n)) \leq \sum_{n \in \mathbb{N}} \mu^*(A(n))$.

证明. For any $\varepsilon > 0, n \in \mathbb{N}, \exists O(n) \in \mathcal{O}, A(n) \subset O(n) \wedge \mu^*(A(n)) \leq |O(n)| + \frac{\varepsilon}{2^{n+1}}$. Let $U := \bigcup_{n \in \mathbb{N}} O(n)$, then $\bigcup_{n \in \mathbb{N}} A(n) \subset U$. So $\mu^*(\bigcup_{n \in \mathbb{N}} A(n)) \leq |U| \leq \sum_{n \in \mathbb{N}} |O(n)| \leq \sum_{n \in \mathbb{N}} \mu^*(A(n)) + \varepsilon$. Since ε is arbitry, we get the lemma.

Lemma 2. If $G \in G_{\delta}$, then $\forall \varepsilon > 0, \exists O \in \mathcal{O}, G \subset O \land \mu^*(O \setminus G) \leq \varepsilon$.

证明. We first consider G is bonded. Assume $G \subset [-M, M], M > 0$. Assume $G = \bigcap_{n \in \mathbb{N}} O_n$, where $O_n \in \mathcal{O}$. Then $G = \bigcap_{n \in \mathbb{N}} (O_n \cap (-M-1, M+1))$. By convinence we assume $O_n \subset (-M-1, M+1)$. And $G = \bigcap_{n \in \mathbb{N}} \bigcap_{m=1}^n O_m$, by convinence we assume $O_n \supset O_{n+1}$. Use LCDT we easily get $\lim \mu(O_n) = \mu^*(G)$. So we easily get the lemma.

Now consider general G. We can write $G = \bigcup_{n \in \mathbb{N}} G_n$, where G_n is bounded G_δ set. So $\exists O_n, G_n \subset O_n, \mu^*(O_n \setminus G_n) < \frac{\varepsilon}{2^n}$. Let $O = \bigcup_{n \in \mathbb{N}} O_n$ is OK.

SOUTON. First, for $A = \mathbb{R}$, easily we can let $F = G = \mathbb{R}$. Then F is F_{σ} and G is G_{δ} . Second, assume $A \in \mathcal{M}$, consider $B = \mathbb{R} \setminus A$. Assume $F \subset A \subset G$ and $\mu^*(G \setminus F) = 0$. Then $G^c \subset B \subset F^c$. And G^c is F_{σ} , F^c is G_{δ} . And $\mu^*(F^c \setminus G^c) = \mu^*(G \setminus F) = 0$. So $B \in \mathcal{M}$. Finally, assume $A \in \mathbb{N} \mathcal{M}$, we need to prove $\bigcup_{n \in \mathbb{N}} A(n) =: A \in \mathcal{M}$. Use AC we can find $F \in \mathbb{N} F_{\sigma}$, $G \in \mathbb{N} G_{\delta}$ such that $F(n) \subset A(n) \subset G(n)$, $\mu^*(G(n) - F(n)) = 0$. Let $T = \bigcup_{n \in \mathbb{N}} F(n)$. Since F(n) is F_{σ} , we get $T \in F_{\sigma}$. And easily $T = \bigcup_{n \in \mathbb{N}} F(n) \subset \bigcup_{n \in \mathbb{N}} A(n) = A$. Now we let $O(n, m) \in \mathcal{O}$, $O(n, m) \in \mathcal{O}$, $O(n, m) \setminus G(n) \subset O(n, m)$, $\mu^*(O(n, m) \setminus G(n)) < \frac{1}{m2^n}$ by Lemma 2. Let $G := \bigcap_{m \in \mathbb{N}} \bigcup_{n \in \mathbb{N}} O(n, m)$ is G_{δ} . Easily $\mu^*(G \setminus A) \leq \mu^*(G \setminus \bigcup_{n \in \mathbb{N}} G(n)) = 0$. And $A \subset G$. So we get $\mu^*(G \setminus F) \leq \mu^*(G \setminus A) + \mu^*(A \setminus F) = 0 + 0 = 0$. So $A \in \mathcal{M}$.

 \mathbb{R}^{OBEM} VI Show that $\mathcal{A} := \{A \subset \mathbb{R} : A \text{ has property of Baire}\}$ is σ -field.

SOUTHON. Easily $\mathbb{R}\Delta\mathbb{R}$ is meager, so $\mathbb{R}\in\mathcal{A}$.

If $A \in \mathcal{A}$, we need to prove $\mathbb{R} \setminus A \in \mathcal{A}$. Assume $G \in \mathcal{O}$ and $A\Delta G$ is meager, write $B = \mathbb{R} \setminus A$, only need to prove $\exists U \in \mathcal{O}$, such that $B \setminus U, U \setminus B$ are meager. Let $U = \mathbb{R} \setminus \overline{G}$. Then $B \setminus U = A \setminus \overline{G}$ is meager. Now only need to prove $U \setminus B = \overline{G} \setminus A$ is meager. Since $G \setminus A$ is meager, we only need to prove $\overline{G} \setminus G$ is meager. In fact, we can prove $\overline{G} \setminus G$ is nowhere dense. Consider $I \in \mathcal{O}$, we need to prove $\exists J \subset I, J \in \mathcal{O}, J \cap \partial G = \emptyset$. If $I \cap \partial G = \emptyset$, we can let J = I. Else, assume $a \in I \cap \partial G$. Form the defination of ∂G , we get $\exists b \in I \cap G$. Let $J = I \cap G \neq \emptyset$ is OK. So $B\Delta U$ is meager.

Assume $A \in {}^{\mathbb{N}}\mathcal{P}(\mathcal{A})$, we need to prove $\bigcup_{n \in \mathbb{N}} A(n) =: A \in \mathcal{A}$. Assume $G(n) \in \mathcal{O}$ and $A(n)\Delta G(n)$ is meager. Consider $G := \bigcup_{n \in \mathbb{N}} G(n)$. We only need to prove $G\Delta A$ is meager. Only need $G \setminus A$, $A \setminus G$ is meager. Since $G \setminus A \subset \bigcup_{n \in \mathbb{N}} G(n) \setminus A(n)$ and $G(n) \setminus A(n)$ is meager, we get $G \setminus A$ is meager. For the same reason, we get $A \setminus G \subset \bigcup_{n \in \mathbb{N}} A(n) \setminus G(n)$ is meager.

So finally we get \mathcal{A} is σ -field.

ROBEM VII Assume $A \subset {}^{\omega}\omega$ has the property of Baire, prove A is nonmerger $\iff \exists O \in \mathcal{O}({}^{\omega}\omega), O \neq \emptyset \land O \setminus A$ is meager.

SPETION. \Longrightarrow : Since A has the property of Baire, we know $\exists O \in \mathcal{O}, O\Delta A$ is meager. Then $O \setminus A, A \setminus O$ are meager. Since A is nonmeager, $A \setminus O$ is meager, we get $O \neq \emptyset$.

 $\Leftarrow=$: Assume $O \in \mathcal{O}, O \neq \emptyset, O \setminus A$ is meager. Noting $O \subset O \setminus A \cup A$ and O is nonmeager, we get A is nonmeager.

 \mathbb{R}^{OBEM} VIII Let $C_A := \bigcup \{O_s : s \in {}^{<\omega}\omega, O_s \setminus A \text{ is meager}\}$. Prove that $C_A \setminus A$ is meager.

SOLITON. We know \mathbb{R} satisfy the second countable axiom, i.e., $\exists \mathcal{B} \subset \mathcal{O}({}^{\omega}\omega)$ such that $\forall O \in \mathcal{O}, \forall x \in O, \exists B \in \mathcal{B}, x \in B \subset O$. Now we consider $\mathcal{X} := \{X \in \mathcal{B} : \exists O_s, X \subset O_s \land O_s \setminus A \text{ is meager } \}$. Consider $Y = \bigcup \mathcal{X}$, we will prove $C_A = Y$.

On one hand, for $x \in Y$, we get $\exists X \in \mathcal{X}$ such that $x \in X$. So $\exists O_s$ such that $x \in X \subset O_s \land O_s \setminus A$ is meager. So $x \in C_A$.

On the other hand, for $x \in C_A$, we get $\exists O_s, x \in O_s, O_s \setminus A$ is meager. Since O_s is open, we get $\exists B \in \mathcal{B}, x \in B \subset O_s$. So $B \in \mathcal{X}$. Thus $x \in Y$.

So we get $Y = C_A$. So $C_A \setminus A = Y \setminus A = \bigcup_{X \in \mathcal{X}} X \setminus A$. From the defination of \mathcal{X} we know $X \setminus A$ is meager, and Since $\mathcal{X} \subset \mathcal{B}$ we get \mathcal{X} is countable. So finally we get $C_A \setminus A = \bigcup_{X \in \mathcal{X}} X \setminus A$ is meager.

ROBEM IX Let $\pi: {}^{\omega}\omega \to {}^{\omega}2, \pi(x) = s_{x(0)} {}^{\smallfrown}s_{x(1)} {}^{\smallfrown}\cdots$. Where $s_{x(k)} = 11 \cdots 10$ for even k, there is k "1" in total, and $s_{x(k)} = 00 \cdots 01$ for odd k, there is k "0" in total. Prove that ${}^{\omega}2 \setminus \operatorname{ran} \pi$ is countable.

SOLTON. As we all know, $\{f \in {}^{\omega}2 : \limsup f = \liminf f\}$ is countable. So we only need to prove $\forall f \in {}^{\omega}2 \setminus \min \pi$, $\limsup f = \liminf f$. Consider $g \in {}^{\omega}2$ and $\liminf g = 0$, $\limsup g = 1$. We only need to prove $g \in \min \pi$. Only need to prove $\exists h \in {}^{\omega}\omega, \pi(h) = g$. We construct h rescusively. Let $h(0) := \min\{n \in \omega : g(n) = 0\}$. Assume $h \upharpoonright n$ is already defined. Let $M(n) = \sum_{k=0}^{n-1} (h(k) + 1)$. Let $h(n) = \min\{k : g(M(n) + k) = a_n\}$, where $a_n = 0$ for even n and $a_n = 1$ for odd n. Since $\lim \inf g = 0 \land \lim \sup g = 1$, we know h is well-defined. Now we prove $\pi(h) = g$. For k < h(0), form the defination of h(0) we know $g(k) = 1 = \pi(h)(k)$. For k = h(0) we get $g(k) = 0 = \pi(h)(k)$. Now assume $\sum_{i=0}^{n} (h(i) + 1) < k \le \sum_{i=0}^{n+1} (h(i) + 1)$. Easily we know $\ln(s_{h(k)} = h(k) + 1)$, so we get $\pi(h)(k) = s_{h(n)}(k - M(n))$. So from the defination of h(n) we easily get $\pi(h)(k) = g(k)$. \square

ROBEM X Assume AD, then $AC_{\omega}(^{\omega}\omega)$. Consequently, ω_1 is regular.

SOLITON. Assume $X: \omega \to \mathcal{P}({}^{\omega}\omega)$ and $\forall n \in \omega, X(n) \neq \varnothing$. Let $\theta: {}^{\omega}\omega \to {}^{\omega}\omega, \theta(f)(n) := f(2n+1)$. Consider $A:=\{x\in {}^{\omega}\omega: \theta(x)\in X(x(0))\}$. Since I have no w.s because $\forall n\in \omega, X(n)\neq \varnothing$. By AD we get II has a w.s., write τ . Now consider $\gamma: \omega \to {}^{\omega}\omega, \gamma(n) := \theta((n,0,0,\cdots)*\tau)$. Since $\theta((n,0,\cdots)*\tau) \in X(n)$. So γ is the choose function.

Nov we prove ω_1 is regular. Only need to prove union countable many countable ordinal is countable. Assume $f:\omega\to\omega_1$, now we only need to prove $\bigcup \operatorname{ran} f\in\omega_1$. Consider $F:\operatorname{ran} f\to \mathcal{P}(\omega\times\omega)$, $F(\alpha):=\{R\subset\omega\times\omega:(\omega,R)\cong\alpha\}$. Since ${}^\omega\omega\approx\mathcal{P}(\omega\times\omega)$, we get $\operatorname{AC}_\omega(\mathcal{P}(\omega\times\omega))$. So $\exists \theta:\operatorname{ran} f\to\omega\times\omega$, $\theta(\alpha)\in F(\alpha)$, $\forall \alpha\in\operatorname{ran} f$. Consider $G:\omega\to{}^\omega\omega_1$, G(n) is the isomorphic from $(\omega,\theta(\omega))$ to f(n). Let $h:\omega\times\omega\to\bigcup\operatorname{ran} f$, h(n,m):=G(n)(m). Easily h is surjective. And since we have $\operatorname{AC}_\omega(\mathcal{P}(\omega\times\omega))$, we get $\bigcup\operatorname{ran} f\approx A$ for some $A\subset\omega\times\omega$. So we get $\bigcup\operatorname{ran} f$ is countable. So ω_1 is regular.