

Petra KAFERLE DEVISSCHERE

Before we start...

Part 1: Introduction, RDDs

- Quick introduction to Apache Spark
- Spark internals
- What are RDDs and how to use them?
- Demo: Unstructured data analysis with RDDs

Part 2: Spark SQL and DataFrames

- Using Spark SQL API to analyze structured datasets
- Why SQL?
- Lab: Structured data analysis with DataFrames

What is Apache Spark?

Fast (in-memory), distributed (parallel), general-purpose
 cluster computing system - spark.apache.org

Open Source project (<u>Apache Software Foundation</u>)

Strongly tied to the Hadoop ecosystem

Hadoop Ecosystem

What is Apache Spark?

- Written in Scala → runs in the JVM (Java Virtual Machine)
- Pick your language: Scala, Python, R, SQL, Java (not in the notebook environment)
- Sparks transforms your code into tasks to run on the cluster
 nodes

Spark Ecosystem

Use cases

- Analyze / transform / apply ML models on:
 - Very large datasets (Extract, Transform and Load)
 - Streaming data (in near-real-time)
 - Graphs (network analysis)
- of structured (tables), semi-structured (JSON) or unstructured (text) data

Spark Internals

- Spark connects to resource managers:
 - Hadoop YARN
 - Apache Mesos
 - Kubernetes
 - Spark standalone

 that distribute resources (RAM, CPU) to applications running on a cluster

Spark Internals

- You: Write the **code** and **submit** it
- Spark:
 - 1. Asks for resources to create driver + executors
 - 2. Driver transforms the code into tasks
 - 3. Driver sends tasks to executors
 - 4. Executors sends results to driver

Spark Internals

YARN (cluster manager)

Spark Data Structures

Spark Data Structures

Spark Operations

2 types of **operations**:

- Transformations: transform a Spark DataFrame/RDD into a new DataFrame/RDD without altering the original data
- Actions: get the result

Transformations	Actions
orderBy()	show()
groupBy()	take()
filter()	count()
select()	collect()
join()	save()

Lazy evaluation: transformations triggered when action is called.

RDDs: Resilient Distributed Datasets

- A fault-tolerant collection of elements partitioned across the nodes of the cluster (parallelism)
- An element can be: string, array, dictionary, etc.
- An RDD is immutable
- Transformations: lambda expressions on key-value pairs
- An RDD can be **persisted** in memory for reuse (avoid recomputing)

RDDs: Resilient Distributed Datasets

- Mostly load data from HDFS (or Hadoop-like file system)
- RDDs are partitioned:
 - 1 task runs on 1 partition
 - Default = 1 partition per CPU core

Spark RDD API

Chain transformations and use the result with an action:

Spark RDD API

When an **action** is run:

- Spark builds a Directed Acyclic Graph (DAG) of stages
- 1 stage = X tasks (1 by RDD partition)
- Tasks are sent to executors

Spark + RDD: full recap

- 1. Spark creates driver + executors
- 2. Spark transforms your code into stages (DAG)
- 3. Each executor gets partitions of the RDD
- **4.** For each **stage**, the **driver** sends a **task** to each **executor** to run on each **partition**

RDDs: Pros and Cons

- For user:
 - complicated to express complex ideas
 - difficult to understand the code
- For Spark: lambda functions are opaque (no optimization)
- + Developers: low level control of execution

RDDs vs DataFrames: code

How to do it?

```
# Create a DataFrame
data_df = spark.createDataFrame([("Brooke", 20), ("Denny", 31), ("Jules", 30),
  ("TD", 35), ("Brooke", 25)], ["name", "age"])
# Group the same names together, aggregate their ages, and compute an average
avg df = data df.groupBy("name").agg(avg("age"))
# Show the results of the final execution
avg df.show()
+----+
   name avg(age)
+----+
 Brooke
           22.5
  Jules
           30.0
           35.0
                                    What to do?
  Denny
           31.0
```

+----+

Catalyst Optimizer

```
someRdd someDF
.reduceByKey(lambda x, y: ...) .groupBy("...")
.filter(lambda x: ...) .filter(cond)
```


Catalyst Optimizer

DataFrames

- Structured dataset:
 - In-memory, distributed tables
 - Named and typed columns: schema
 - Collection of Rows
- Sources available: structured files, Hive tables, RDBMS (MySQL, PostgreSQL, ...), RDDs
- High-level APIs

DataFrames

Querying DataFrames:

- By chaining functions
- By writing standard SQL strings

Why SQL?

- Around since the 70s
- Huge enterprise usage:
 - Lots of users
 - Lots of projects
- But: cannot be used for ML or graph analyses