Higher-order Arities, Signatures and Equations via Modules

Ambroise Lafont

joint work with Benedikt Ahrens, André Hirschowitz, Marco Maggesi

Keywords associated with syntax

Induction/Recursion

Substitution

Model

Operation/Construction

Arity/Signature

This talk: give a *discipline* for specifying syntaxes

Motivating example: dLC

syntax of dLC = differential λ -calculus [Ehrhard-Regnier 2003].

- explicitly involves **equations** e.g. s+t=t+s
- specifically taylored: (not an *instance* of a general framework/scheme)
 - inductive definition of a set + ad-hoc structure e.g. **unary substitution**

Our proposal = a discipline for presenting syntaxes

- signature = operations + equations
- [Fiore-Hure 2010]: alternative approach, for simply typed syntaxes
 - \Rightarrow our approach explicitly relies on monads and modules (untyped case).

Motivating example: dLC

syntax of dLC = differential λ -calculus [Ehrhard-Regnier 2003].

- explicitly involves **equations** e.g. s+t=t+s
- specifically taylored: (not an *instance* of a general framework/scheme)
 - inductive definition of a set + ad-hoc structure e.g. **unary substitution**

Our proposal = a discipline for presenting syntaxes

- signature = operations + equations
- [Fiore-Hure 2010]: alternative approach, for simply typed syntaxes
 - \Rightarrow our approach explicitly relies on monads and modules (untyped case).

Syntax of dLC: [Ehrhard-Regnier 2003]

Let be given a denumerable set of variables. We define by induction on k an increasing family of sets (Δ_k) . We set $\Delta_0 = \emptyset$ and Δ_{k+1} is defined as follows.

Monotonicity: if t belongs to Δ_k then t belongs to Δ_{k+1} .

Variable: if $n \in \mathbb{N}$, x is a variable, $i_1, \ldots, i_n \in \mathbb{N}^+ = \mathbb{N} \setminus \{0\}$ and $u_1, \ldots, u_n \in \Delta_k$, then

$$D_{i_1,\ldots,i_n}x\cdot(u_1,\ldots,u_n)$$

belongs to Δ_{k+1} . This term is identified with all the terms of the shape $D_{i_{\sigma(1)},...,i_{\sigma(n)}}x \cdot (u_{\sigma(1)},...,u_{\sigma(n)}) \in \Delta_{k+1}$ where σ is a permutation on $\{1,...,n\}$.

Abstraction: if $n \in \mathbb{N}$, x is a variable, $u_1, \ldots, u_n \in \Delta_k$ and $t \in \Delta_k$, then

$$D_1^n \lambda x t \cdot (u_1, \ldots, u_n)$$

belongs to Δ_{k+1} . This term is identified with all the terms of the shape $D_1^n \lambda x t \cdot (u_{\sigma(1)}, \dots, u_{\sigma(n)}) \in \Delta_{k+1}$ where σ is a permutation on $\{1, \dots, n\}$.

Application: if $s \in \Delta_k$ and $t \in R\langle \Delta_k \rangle$, then

belongs to Δ_{k+1} .

Setting n = 0 in the first two clauses, and restricting application by the constraint that $t \in \Delta_k \subseteq R\langle \Delta_k \rangle$, one retrieves the usual definition of lambda-terms which shows that differential terms are a superset of ordinary lambda-terms.

The permutative identification mentioned above will be called *equality up to differential permutation*. We also work up to α -conversion.

Syntax of dLC: [Ehrhard-Regnier 2003]

Let be given a denumerable set of variables. We define by induction on k an increasing family of sets (Δ_k) . We set $\Delta_0 = \emptyset$ and Δ_{k+1} is defined as follows.

Monotonicity: if t belongs to Δ_k then t belongs to Δ_{k+1} .

Variable: if $n \in \mathbb{N}$, x is a variable, $i_1, \ldots, i_n \in \mathbb{N}^+ = \mathbb{N} \setminus \{0\}$ and $u_1, \ldots, u_n \in \Delta_k$, then

$$D_{i_1,\ldots,i_n}x\cdot(u_1,\ldots,u_n)$$

belongs to Δ_{k+1} . This term is identified with all the terms of the shape $D_{i_{\sigma(1)},\dots,i_{\sigma(n)}}x \cdot (u_{\sigma(1)},\dots,u_{\sigma(n)}) \in \Delta_{k+1}$ where σ is a permutation on $\{1,\dots,n\}$.

Abstraction: if $n \in \mathbb{N}$, x is a variable, $u_1, \ldots, u_n \in \Delta_k$ and $t \in \Delta_k$, then

$$D_1^n \lambda x t \cdot (u_1, \ldots, u_n)$$

belongs to Δ_{k+1} . This term is identified with all the terms of the shape $D_1^n \lambda x t \cdot (u_{\sigma(1)}, \dots, u_{\sigma(n)}) \in \Delta_{k+1}$ where σ is a permutation on $\{1, \dots, n\}$.

Application: if $s \in \Delta_k$ and $t \in R\langle \Delta_k \rangle$, then

$$(s)t$$
 as an operation: $\Lambda \times FreeCommutativeMonoid(\Lambda) \to \Lambda$

belongs to Δ_{k+1} .

Setting n = 0 in the first two clauses, and restricting application by the constraint that $t \in \Delta_k \subseteq R\langle \Delta_k \rangle$, one retrieves the usual definition of lambda-terms which shows that differential terms are a superset of ordinary lambda-terms.

The permutative identification mentioned above will be called <u>equality up to differential permutation</u>. We also work up to α -conversion.

A syntax for the differential λ-calculus by mutual induction:

[Bucciarelli-Ehrhard-Manzonetto 2010]

Simple terms:

$$\Lambda^s: \quad s,t$$

$$::=$$

$$\Lambda^s: s,t ::= x \mid \lambda x.s \mid sT \mid \mathsf{D} s \cdot t$$

Differential λ-terms:

$$\Lambda^d$$
 :

 $\Lambda^d: \qquad T \qquad ::= \quad 0 \mid s \mid s + T$

A syntax for the differential λ-calculus by mutual induction:

[Bucciarelli-Ehrhard-Manzonetto 2010]

Simple terms:

$$\Lambda^s: \quad s,t$$

variable

$$\Lambda^s: s, t ::= x \mid \lambda x.s \mid sT \mid \mathsf{D} s \cdot t$$

Differential λ-terms:

neutral element for +

modulo α -renaming of x

A syntax for the differential λ-calculus by mutual induction:

[Bucciarelli-Ehrhard-Manzonetto 2010]

Simple terms:

$$\Lambda^s: \quad s,t$$

variable

$$\Lambda^s: \quad s,t \quad ::= \quad \stackrel{\checkmark}{x} \mid \lambda x.s \mid sT \mid \mathsf{D} s \cdot t$$

modulo α -renaming of x

Differential λ-terms:

neutral element for + modulo commutativity

 Λ^d = FreeCommutativeMonoid(Λ^s)

A syntax for the differential λ-calculus by mutual induction:

[Bucciarelli-Ehrhard-Manzonetto 2010]

Simple terms:

$$\Lambda^s: \quad s,t$$

$$\Lambda^s: s, t ::= x \mid \lambda x.s \mid sT \mid \mathsf{D} s \cdot t$$

modulo α -renaming of x

Differential λ-terms:

neutral element for + modulo commutativity

 Λ^d = FreeCommutativeMonoid(Λ^s)

Syntax: specified by operations and equations.

A syntax for the differential λ-calculus by mutual induction:

[Bucciarelli-Ehrhard-Manzonetto 2010]

Simple terms:

$$\Lambda^s: \quad s,t$$

$$\Lambda^s: s, t ::= x \mid \lambda x.s \mid sT \mid \mathsf{D} s \cdot t$$

modulo α -renaming of x

Differential λ-terms:

neutral element for + modulo commutativity

 Λ^d = FreeCommutativeMonoid(Λ^s)

Syntax: specified by operations and equations.

But which ones are allowed? What is the limit?

Syntax of dLC: Our version

Which operations/equations are allowed to specify a syntax?

A stand-alone presentation of differential λ -terms:

Allow sums everywhere (not only in the right arg of application)

Differential λ -terms:

$$\Lambda^{
m d}: S,T ::= x \mid \lambda x.S \mid ST \mid \mathsf{D}S \cdot T$$

neutral element for +

modulo commutativity and associativity

$$\lambda x. \Sigma_i t_i := \Sigma_i \lambda x. t_i$$

$$(\Sigma_i t_i) u := \Sigma_i t_i u$$

$$D(\Sigma_i t_i) \cdot (\Sigma_j u_j) := \Sigma_i \Sigma_j D t_i \cdot u_j$$

Syntax of dLC: Conclusion

How can we compare these different versions?

In which sense are they syntaxes?

Which operations/equations are we allowed to specify in a syntax?

Syntax of dLC: Conclusion

How can we compare these different versions?

In which sense are they syntaxes?

Which operations/equations are we allowed to specify in a syntax?

What is a syntax?

What is a syntax?

generates a syntax = existence of the initial model

Table of contents

1. 1-Signatures and models based on monads and modules

2. Equations

3. Recursion

Table of contents

1. 1-Signatures and models based on monads and modules

- Substitution and monads
- 1-Signatures and their models

- 2. Equations
- 3. Recursion

Example: differential λ -calculus

$$\Lambda^{
m d}: S,\!T$$
 $::= x \mid \lambda x.S \mid ST \mid \mathsf{D}S \cdot T$ $\mid 0 \mid S+T$

Free variable indexing:

$$dLC: X \mapsto \{\text{terms taking free variables in } X\}$$

$$dLC(\emptyset) = \{0, \lambda z.z, \dots\}$$

$$dLC(\{x, y\}) = \{0, \lambda z.z, \dots, x, y, x + y, \dots\}$$

Example: differential λ -calculus

$$\Lambda^{
m d}: S,\!T$$
 $::= x \mid \lambda x.S \mid ST \mid \mathsf{D}S \cdot T$ $\mid 0 \mid S+T$

Free variable indexing:

$$dLC: X \mapsto \{\text{terms taking free variables in } X\}$$

$$dLC(\emptyset) = \{0, \lambda z.z, \dots\}$$

$$dLC(\{x, y\}) = \{0, \lambda z.z, \dots, x, y, x + y, \dots\}$$

Parallel substitution:

Example: differential λ -calculus

$$\Lambda^{
m d}: S,\!T$$
 $::= x \mid \lambda x.S \mid ST \mid \mathsf{D}S \cdot T$ $\mid 0 \mid S+T$

Free variable indexing:

$$dLC: X \mapsto \{\text{terms taking free variables in } X\}$$

$$dLC(\emptyset) = \{0, \lambda z.z, \dots\}$$

$$dLC(\{x, y\}) = \{0, \lambda z.z, \dots, x, y, x + y, \dots\}$$

Parallel substitution:

$$egin{array}{lll} \mathrm{bind}_{\mathrm{f}} &: \mathit{dLC}(\mathrm{X}) &
ightarrow & \mathit{dLC}(\mathrm{Y}) \ & \mathrm{t} & \mapsto & \mathrm{t}[\mathrm{x} \mapsto \mathrm{f}(\mathrm{x})] \end{array} \qquad \qquad \mathsf{where} \quad \mathrm{f}: \mathrm{X}
ightarrow \mathit{dLC}(\mathrm{Y})$$

 \Rightarrow (dLC, var_X : X \subset dLC(X) , bind) = **monad on Set**

Example: differential λ -calculus

$$\Lambda^{
m d}: S,\!T$$
 $::= x \mid \lambda x.S \mid ST \mid \mathsf{D}S \cdot T$ $\mid 0 \mid S+T$

Free variable indexing:

$$dLC: X \mapsto \{\text{terms taking free variables in } X\}$$

$$dLC(\emptyset) = \{0, \lambda z.z, \dots\}$$

$$dLC(\{x, y\}) = \{0, \lambda z.z, \dots, x, y, x + y, \dots\}$$

Parallel substitution:

$$egin{array}{lll} \mathrm{bind_f} &: \mathit{dLC}(\mathrm{X}) &
ightarrow & \mathit{dLC}(\mathrm{Y}) \ & \mathrm{t} & \mapsto & \mathrm{t}[\mathrm{x} \mapsto \mathrm{f}(\mathrm{x})] \end{array} \qquad \qquad \mathsf{where} \quad \mathrm{f}: \mathrm{X}
ightarrow \mathit{dLC}(\mathrm{Y})$$

 \Rightarrow (dLC, var_X : X \subset dLC(X) , bind) = **monad on Set**

monad morphism = mapping preserving variables and substitutions.

Preview: Operations are module morphisms

+ commutes with substitution

Categorical formulation

dLC imes dLC supports dLC-substitution

 $dLC \times dLC$ is a **module over** dLC

+ commutes with substitution

+:dLC imes dLC o dLC is a

module morphism

Building blocks for specifying operations

Essential constructions of **modules over a monad** R:

• R itself

• M imes N for any modules M and N e.g. R imes R: $(t,u)[\mathbf{x} \mapsto \mathbf{f}(\mathbf{x})] := (\mathbf{t}[\mathbf{x} \mapsto \mathbf{f}(\mathbf{x})], \, \mathbf{u}[\mathbf{x} \mapsto \mathbf{f}(\mathbf{x})])$ where $f: X \to R(Y)$

• M' = derivative of a module M: $M'(X) = M(X \coprod \{ \diamond \})$.

used to model an operation binding a variable (Cf next slide).

Syntactic operations are module morphisms

operations = **module morphisms** = maps commuting with substitution.

Syntactic operations are module morphisms

operations = **module morphisms** = maps commuting with substitution.

Combining operations into a single one using disjoint union

$$[\mathrm{app,\,abs}]:(\mathrm{dLC}\times\mathrm{dLC})\coprod\mathrm{dLC'} o\mathrm{dLC}$$
 $[0,+]:1\coprod(\mathrm{dLC}\times\mathrm{dLC}) o\mathrm{dLC}$

A **1-signature** Σ = functorial assignment:

$$R \mapsto \Sigma(R)$$

Example: (0,+)

$$\Sigma_{0,+}(R) = 1 \prod (R \times R)$$

A **model of** Σ is a pair:

$$(R, \rho: \Sigma(R) \to R)$$

dLC = model of $\Sigma_{0,+}$

$$[0,+]: 1 \coprod (dLC \times dLC) \to dLC$$

A **model morphism** $m:(R,\rho)\to(S,\sigma)=$ monad morphism commuting

with the module morphism:

$$\begin{array}{c|c}
\Sigma(R) & \xrightarrow{\rho} & R \\
\Sigma(m) & \downarrow & \downarrow \\
\Sigma(S) & \xrightarrow{\sigma} & S
\end{array}$$

A **1-signature** Σ = functorial assignment:

Example: (0,+)

$$R \mapsto \Sigma(R)$$

$$\Sigma_{0,+}(R) = 1 \prod (R \times R)$$

monad

A **model of** Σ is a pair:

$$(R, \rho: \Sigma(R) \to R)$$

dLC = model of $\Sigma_{0,+}$

$$[0,+]: 1 \coprod (dLC \times dLC) \to dLC$$

A **model morphism** $m:(R,\rho)\to(S,\sigma)=$ monad morphism commuting

with the module morphism:

$$\begin{array}{c|c}
\Sigma(R) & \xrightarrow{\rho} & R \\
\Sigma(m) & \downarrow & \downarrow \\
\Sigma(S) & \xrightarrow{\sigma} & S
\end{array}$$

A **1-signature** Σ = functorial assignment:

Example: (0,+)

$$R\mapsto \Sigma(R)$$
 module over R

$$\Sigma_{0,+}(R) = 1 \coprod (R \times R)$$

A **model of** Σ is a pair:

$$(R, \rho: \Sigma(R) \to R)$$

$$extbf{dLC} = ext{model of } \Sigma_{0,+}$$
 $[0,+]: 1 \coprod (dLC \times dLC) o dLC$

A **model morphism** $m:(R,\rho)\to (S,\sigma)=$ monad morphism commuting with the module morphism: $\Sigma(R) \xrightarrow{\rho} R$

$$\begin{array}{cccc}
\Sigma(R) & \xrightarrow{\rho} & R \\
\Sigma(m) & & \downarrow & m \\
\Sigma(S) & \xrightarrow{\sigma} & S
\end{array}$$

A **1-signature** Σ = functorial assignment:

Example: (0,+)

$$R\mapsto \Sigma(R)$$
 module over R

$$\Sigma_{0,+}(R) = 1 \prod (R \times R)$$

dLC = model of $\Sigma_{0,+}$

A **model of** Σ is a pair:

$$(R, \quad \rho: \Sigma(R) \to R)$$
 monad

$$[0,+]: 1 \coprod (dLC \times dLC) \to dLC$$

A **model morphism** $m:(R,\rho)\to(S,\sigma)=$ monad morphism commuting

with the module morphism:

$$\begin{array}{c|c}
\Sigma(R) & \xrightarrow{\rho} & R \\
\Sigma(m) & \downarrow & \downarrow \\
\Sigma(S) & \xrightarrow{\sigma} & S
\end{array}$$

A **1-signature** Σ = functorial assignment:

Example: (0,+)

$$R\mapsto \Sigma(R)$$
monad module over R

$$\Sigma_{0,+}(R) = 1 \prod (R \times R)$$

A **model of** Σ is a pair:

dLC = model of $\Sigma_{0,+}$

$$(R, \quad \rho: \Sigma(R) \to R) \\ \text{monad} \qquad [0,+]: 1 \coprod (dLC \times dLC) \to dLC$$

$$[0,+]: 1 \coprod (dLC \times dLC) \to dLC$$

A **model morphism** $m:(R,\rho)\to(S,\sigma)=$ monad morphism commuting

with the module morphism:

$$\begin{array}{cccc}
\Sigma(R) & \xrightarrow{\rho} & R \\
\Sigma(m) & & \downarrow & m \\
\Sigma(S) & \xrightarrow{\sigma} & S
\end{array}$$

Syntax

Definition

Given a 1-signature Σ , its **syntax** is an initial object in its category of models.

Question: Does the syntax exist for every 1-signature?

Answer: No.

Syntax

Definition

Given a 1-signature Σ , its **syntax** is an initial object in its category of models.

Question: Does the syntax exist for every 1-signature?

Answer: No.

Counter-example: The 1-signature $R \mapsto \mathscr{P} \circ R$ has a syntax S.

powerset endofunctor on Set

Examples of 1-signatures generating syntax

• **(0,+) language**:

```
Signature: R \mapsto \mathbf{1} \coprod (R \times R)
```

Model:
$$(R , 0: 1 \rightarrow R, +: R \times R \rightarrow R)$$

Syntax:
$$(B , 0 : 1 \rightarrow B, + : B \times B \rightarrow B)$$

lambda calculus:

Signature: $R \mapsto R' \mid \mid \mid (R \times R)$

Model: $(R \text{ , } abs: R^{\textbf{\tiny{I}}}
ightarrow R \text{ , } app: R imes R
ightarrow R)$

Syntax: (Λ , $abs: \Lambda' o \Lambda$, $app: \Lambda imes \Lambda o \Lambda$)

Can we generalize this pattern?

Initial semantics for algebraic 1-signatures

Syntax exists for any **algebraic 1-signature**, i.e. 1-signature built out of derivatives, products, disjoint unions, and the 1-signature $R \mapsto R$.

Algebraic 1-signatures correspond to the binding signatures described in [Fiore-Plotkin-Turi 1999]

(binding signatures = lists of natural numbers specify n-ary operations, possibly binding variables)

Question: Can we enforce some equations in the syntax?

e.g. associativity and commutativity of + for the differential λ -calculus.

Quotients of algebraic 1-signatures

More sophisticated 1-signatures: *quotients* of algebraic 1-signatures.

```
Theorem [AHLM CSL 2018]
Syntax exists for any "quotient" of algebraic 1-signature.
```

Examples:

- a commutative binary operation
- application of the simple terms of differential λ -calculus (2nd variant)

```
app : dLC \times FreeCommutativeMonoid(dLC) \rightarrow dLC
```

Quotients of algebraic 1-signatures

More sophisticated 1-signatures: *quotients* of algebraic 1-signatures.

```
Theorem [AHLM CSL 2018]
Syntax exists for any "quotient" of algebraic 1-signature.
```

Examples:

- a commutative binary operation
- application of the simple terms of differential λ -calculus (2nd variant)

```
app : dLC \times FreeCommutativeMonoid(dLC) \rightarrow dLC
```

... but not enough for the differential λ -calculus:

- associativity of +
- linearity of the operations

Table of contents

1. 1-Signatures and models based on monads and modules

2. Equations

3. Recursion

Example: a commutative binary operation

Specification of a binary operation

1-Signature: $R \mapsto R \times R$

Model: $(R , + : R \times R \rightarrow R)$

What is an appropriate notion of model for a commutative binary operation ?

Example: a commutative binary operation

Specification of a commutative binary operation

1-Signature: $R \mapsto R \times R$

Model: $(R, +: R \times R \rightarrow R)$ s.t. t+u=u+t (1)

What is an appropriate notion of model for a commutative binary operation ?

Answer: a monad equipped with a commutative binary operation

Example: a commutative binary operation

Specification of a commutative binary operation

1-Signature: $R \mapsto R \times R$

Model: $(R, +: R \times R \rightarrow R)$ s.t. t+u=u+t (1)

What is an appropriate notion of model for a commutative binary operation ?

Answer: a monad equipped with a commutative binary operation

Equation (1) states an equality between R-module morphisms:

Equations

Given a 1-signature Σ , (e.g. binary operation: $\Sigma(R) = R \times R$)

a Σ -equation $A \Rightarrow B$ is a functorial assignment: e.g. commutativity:

$$R \mapsto \left(\begin{array}{c} A(R) \Longrightarrow B(R) \end{array} \right)$$
 model of Σ parallel pair of module morphisms over R

A **2-signature** is a pair

model of a 2-signature (Σ, E) :

- a model R of Σ
- s.t. \forall (A \Rightarrow B) \in E, the two morphisms $A(R) \Rightarrow B(R)$ are equal

Initial semantics for algebraic 2-signatures

Algebraic 2-signature: (\sum, E) set of elementary algebraic 1-signature $\Sigma\text{-equations}$

Theorem

Syntax exists for any algebraic 2-signature.

Main instances of **elementary** Σ -equations $A \Rightarrow B$:

- A =algebraic 1-signature e.g. $A(R) = R \times R$
- B(R) = R

Initial semantics for algebraic 2-signatures

Algebraic 2-signature: (\sum, E) set of elementary algebraic 1-signature $\Sigma\text{-equations}$

Theorem

Syntax exists for any algebraic 2-signature.

Main instances of **elementary** Σ -equations $A \Rightarrow B$:

- A =algebraic 1-signature e.g. $A(R) = R \times R$
- B(R) = R

Sketch of the construction of the syntax:

Quotient the initial model R of Σ by the following relation:

$$x \sim y \text{ in } R(X)$$
 iff for any model S of (Σ, E) , $i(x) = i(y)$

initial $\Sigma\text{-model}$ morphism $i:R\to S$

Example: λ-calculus modulo βη

The algebraic 2-signature $(\Sigma_{LC\beta\eta}, E_{LC\beta\eta})$ of λ -calculus modulo $\beta\eta$:

$$\mathbf{\Sigma}_{\mathrm{LCBn}}\left(\mathrm{R}
ight) := \Sigma_{\mathrm{LC}}(\mathrm{R}) = \left(\mathrm{R} \times \mathrm{R}\right) \coprod \mathrm{R'}$$

model of Σ_{1C} = monad R with module morphisms:

$$app: R \times R \to R$$
 $abs: R' \to R$

β-equation:
$$(\lambda x.t) u = \underline{t[x \mapsto u]}$$
 η-equation: $t = \lambda x.(t x)$ $\sigma_R(t,u)$

$$\mathbf{E}_{\mathbf{LC}\boldsymbol{\beta}\boldsymbol{\eta}} = \{ \beta \text{-equation}, \eta \text{-equation} \}$$

Example: λ-calculus modulo βη

The algebraic 2-signature $(\Sigma_{LC\beta\eta}, E_{LC\beta\eta})$ of λ -calculus modulo $\beta\eta$:

$$\mathbf{\Sigma}_{\mathbf{LC\beta\eta}}\left(\mathbf{R}\right) := \Sigma_{\mathbf{LC}}(\mathbf{R}) = \left(\mathbf{R} \times \mathbf{R}\right) \coprod \mathbf{R'}$$

model of Σ_{1C} = monad R with module morphisms:

$$app: R \times R \to R$$
 $abs: R' \to R$

β-equation:
$$(\lambda x.t) u = t[x \mapsto u]$$

 $\sigma_{
m R}({
m t,u})$ $id_{
m R}$ R

η-equation: $t = \lambda x.(t x)$

 Rl_1

 $\mathbf{E}_{LC\beta\eta} = \{ \beta\text{-equation}, \eta\text{-equation} \}$

abs

Example: fixpoint operator

Definition [AHLM CSL 2018]

A **fixpoint operator** in a monad R is a module morphism fix: $R' \rightarrow R$

s.t. for any term
$$t \in R(X \coprod \{ \diamond \})$$
, $fix(t) = t[\diamond \mapsto f(t)]$

Intuition:

$$fix(t) := let rec \diamond = t in \diamond$$

Algebraic 2-signature (Σ_{fix}, E_{fix}) of a fixpoint operator:

$$\Sigma_{ ext{fix}}\left(ext{R}
ight):= ext{R'}$$

$$E_{\text{fix}} = \left\{ \begin{array}{c} \text{fix}(t) \\ R' \\ t \\ \hline t \\ \hline \end{array} \right\}$$

Proposition [AHLM CSL 2018]

Fixpoint operators in $LC_{\beta\eta}$ are in one to one correspondance with

fixpoint combinators (i.e. λ -terms Y s.t. t (Yt) = Yt for any t).

Combining algebraic 2-signatures

Algebraic 2-signatures can be combined:

 λ -calculus modulo $\beta \eta$ with an explicit fixpoint operator

Example: free commutative monoid

An algebraic 2-signature (Σ_{mon}, E_{mon}) for the free commutative monoid monad: $\Sigma_{mon}(R):=1$ [] $(R\times R)$

model of Σ_{mon} = monad R with module morphisms:

$$0:1 \to R \qquad +: R \times R \to R$$

Example: free commutative monoid

An algebraic 2-signature (Σ_{mon}, E_{mon}) for the free commutative monoid monad: $\Sigma_{mon}(R) := 1 \coprod (R \times R)$

model of Σ_{mon} = monad R with module morphisms:

$$0:1 \to R$$
 $+: R \times R \to R$

4 elementary Σ -equations:

Our target: dLC

Syntax of the differential λ-calculus:

Differential λ-terms

$$\left.\begin{array}{c} s,t & ::= & x \\ & \mid & \lambda x.t \\ & \mid & st \end{array}\right\} \quad \lambda\text{-calculus}$$

$$\left.\begin{array}{c} \mid & b \cdot t \\ \mid & b \cdot t \\ & \mid & b \cdot t \end{array}\right\} \quad \text{free commutative monoid}$$

and (bi)linearity of constructors with respect to +:

$$\lambda x.(s+t) = \lambda x.s + \lambda x.t$$
 ...

Algebraic 1-signature for dLC

Syntax of the *differential λ-calculus*:

Differential λ-terms

Corresponding 1-signature

Algebraic 1-signature for dLC

Syntax of the *differential λ-calculus*:

Differential λ-terms

Corresponding 1-signature

$$egin{aligned} s,t & ::= & \mathbf{x} \\ & \mid & \lambda \mathbf{x}.\mathbf{t} \\ & \mid & \mathbf{s}.\mathbf{t} \\ & \mid & \mathbf{D}\mathbf{s}\cdot\mathbf{t} \\ & \mid & \mathbf{s}+\mathbf{t} \\ & \mid & \mathbf{0} \end{aligned} \qquad egin{aligned} & \Sigma_{\mathrm{LC}}(\mathbf{R}) = \mathbf{R'} \coprod (\mathbf{R} \times \mathbf{R}) \\ & \mathbf{R} \mapsto \mathbf{R} \times \mathbf{R} \\ & \mid & \mathbf{s}+\mathbf{t} \\ & \mid & \mathbf{0} \end{aligned}$$

Resulting algebraic 1-signature:

$$\Sigma_{
m dLC}({
m R}) = \Sigma_{
m LC}({
m R}) \
floor \ ({
m R} imes {
m R}) \
floor \ \Sigma_{
m mon}({
m R})$$

Elementary equations for dLC

Commutative monoidal structure:

$$E_{mon} \begin{tabular}{ll} $s+t=t+s$ & $R\times R \rightrightarrows R$ \\ $s+(t+u)=(s+t)+u$ & $R\times R\times R \rightrightarrows R$ \\ $0+t=t$ & $R\rightrightarrows R$ \\ $t+0=t$ & $R\rightrightarrows R$ \\ \end{tabular}$$

Linearity:

$$\begin{split} \lambda x.(s+t) &= \lambda x.s + \lambda x.t & R \times R \rightrightarrows R \\ D(s+t) \cdot u &= Ds \cdot u + Dt \cdot u & R \times R \times R \rightrightarrows R \\ Ds \cdot (t+u) &= Ds \cdot t + Ds \cdot u & R \times R \times R \rightrightarrows R \end{split}$$

• • •

n-ary fixpoint operator

Reminder: unary fixpoint operator in a monad R

$$\begin{array}{ccc} \mathbf{R}(\mathbf{X} \coprod \{\diamond\}) & \rightarrow & \mathbf{R}(\mathbf{X}) \\ t & \mapsto & \overline{t} \end{array}$$

s.t.
$$t[\diamond \mapsto \overline{t}] = \overline{t}$$

Intuition: \bar{t} := let rec \diamond = t in \diamond

n-ary fixpoint operator:

s.t.
$$\forall i, t_i \left[egin{array}{c} \diamond_1 \mapsto t_1 \\ \cdots \\ \diamond_n \mapsto \overline{t_n} \end{array} \right] = \overline{t_i}$$

Intuition:

$$\overline{t_i} :=$$
 let rec $\diamond_1 = t_1$ and .. and $\diamond_n = t_n$ in \diamond_i

n-ary fixpoint operator

n-ary fixpoint operator:

$$egin{array}{lll} orall & i \in \{1,...,n\}, \ & \mathrm{R}(\mathrm{X}\coprod \{\diamond_1,\ldots,\diamond_n\})^{\mathbf{n}} &
ightarrow & \mathrm{R}(\mathrm{X}) \ & t_1,\ldots,t_n & \mapsto & \overline{t_i} \end{array} \hspace{0.5cm} \mathbf{s.t.} \hspace{0.5cm} orall i, \hspace{0.5cm} t_i \left[egin{array}{lll} \diamond_1 \mapsto \overline{t_1} \ & \cdots \ & \diamond_n \mapsto \overline{t_n} \end{array}
ight] = \overline{t_i} \end{array}$$

$$\Sigma_n(R) = \coprod_{i=1}^n (R'^{\dots'})^n$$

n elementary equations $(R'''')^n \rightrightarrows R$

$$\forall i, \qquad t_i \left[\begin{array}{c} \diamond_1 \mapsto \overline{t_1} \\ \cdots \\ \diamond_n \mapsto \overline{t_n} \end{array} \right] = \overline{t_i}$$

Syntax with fixpoint operators:

• for each n, a n-ary operator:

```
let rec \diamond_1 = t_1 and .. and \diamond_n = t_n in \diamond_i
```

compatibility between these operators [AHLM CSL 2018]

Syntax with fixpoint operators:

for each n, a n-ary operator:

```
let rec \diamond_1 = t_1 and .. and \diamond_n = t_n in \diamond_i
```

- compatibility between these operators [AHLM CSL 2018]
 - invariance under **permutation**:

Syntax with fixpoint operators:

• for each n, a n-ary operator:

```
let rec \diamond_1 = t_1 and .. and \diamond_n = t_n in \diamond_i
```

- compatibility between these operators [AHLM CSL 2018]
 - invariance under **permutation**:

invariance under repetition:

Syntax with fixpoint operators:

• for each n, a n-ary operator:

```
let rec \diamond_1 = t_1 and .. and \diamond_n = t_n in \diamond_i
```

- compatibility between these operators [AHLM CSL 2018]
 - invariance under **permutation**:

invariance under repetition:

Syntax with fixpoint operators:

for each n, a n-ary operator:

```
let rec \diamond_1 = t_1 and .. and \diamond_n = t_n in \diamond_i
```

compatibility between these operators [AHLM CSL 2018]
 In general:

let rec
$$\diamondsuit_1 = t_{u(1)}$$

$$\cdots$$
and $\diamondsuit_p = t_{u(p)}$
in \diamondsuit_j

where
$$u:\{1,\ldots,p\} \to \{1,\ldots,q\}$$

$$t_1,\ldots,t_q \in R(X\coprod \{\diamond_1,\ldots,\diamond_p\})$$

Syntax with fixpoint operators:

for each n, a n-ary operator:

```
let rec \diamond_1 = t_1 and .. and \diamond_n = t_n in \diamond_i
```

compatibility between these operators [AHLM CSL 2018]
 In general:

let rec
$$\diamondsuit_1 = t_{u(1)}$$

$$\cdots$$
and $\diamondsuit_p = t_{u(p)}$
in \diamondsuit_j

where
$$u:\{1,\ldots,p\} \to \{1,\ldots,q\}$$

$$t_1,\ldots,t_q \in R(X\coprod \{\diamond_1,\ldots,\diamond_p\})$$

 \Rightarrow Expressible as elementary equations $(R'\cdots')^q \Rightarrow R$.

Syntax with fixpoint operators:

for each n, a n-ary operator:

```
let rec \diamond_1 = t_1 and .. and \diamond_n = t_n in \diamond_i
```

compatibility between these operators [AHLM CSL 2018]
 In general:

let rec
$$\diamondsuit_1 = t_{u(1)}$$

$$\cdots$$
and $\diamondsuit_p = t_{u(p)}$
in \diamondsuit_j

where
$$u:\{1,\ldots,p\} \to \{1,\ldots,q\}$$

$$t_1,\ldots,t_q \in R(X\coprod \{\diamond_1,\ldots,\diamond_p\})$$

 \Rightarrow Expressible as elementary equations $(R'\cdots')^q \Rightarrow R$.

Syntax with fixpoint operators:

for each n, a n-ary operator:

```
let rec \diamond_1 = t_1 and .. and \diamond_n = t_n in \diamond_i
```

compatibility between these operators [AHLM CSL 2018]
 In general:

let rec
$$\diamondsuit_1 = t_{u(1)}$$

$$\cdots$$
and $\diamondsuit_p = t_{u(p)}$
in \diamondsuit_j

where
$$u:\{1,\ldots,p\} \to \{1,\ldots,q\}$$

$$t_1,\ldots,t_q \in R(X\coprod \{\diamond_1,\ldots,\diamond_p\})$$

 \Rightarrow Expressible as elementary equations $(R'\cdots')^q \Rightarrow R$.

Table of contents

- 1. 1-Signatures and models based on monads and modules
- 2. Equations
- 3. Recursion

Recursion on the syntax \approx Initiality in the category of models

$$f:R\to S$$
 initial model of a 2-signature (Σ,E)

Recursion on the syntax \approx Initiality in the category of models

Recipe for constructing "by recursion" a monad morphism:

$$f:R\to S$$
 initial model of a 2-signature (Σ,E)

1. Give a module morphism $s : \Sigma(S) \to S$

Recursion on the syntax \approx Initiality in the category of models

$$f:R\to S$$
 initial model of a 2-signature (Σ,E)

- 1. Give a module morphism $s: \Sigma(S) \to S$
 - \Rightarrow induces a Σ -model (S, s)

Recursion on the syntax \approx Initiality in the category of models

$$f:R\to S$$
 initial model of a 2-signature (Σ,E)

- 1. Give a module morphism $s:\Sigma(S)\to S$
 - \Rightarrow induces a Σ -model (S, s)
- 2. Show that all the equations in E are satisfied for this model

Recursion on the syntax \approx Initiality in the category of models

- 1. Give a module morphism $s: \Sigma(S) \to S$
 - \Rightarrow induces a Σ -model (S, s)
- 2. Show that all the equations in E are satisfied for this model \Rightarrow induces a model of (Σ, E)

Recursion on the syntax \approx Initiality in the category of models

Recipe for constructing "by recursion" a monad morphism:

$$f:R\to S$$
 initial model of a 2-signature (Σ,E)

- 1. Give a module morphism $s: \Sigma(S) \to S$
 - \Rightarrow induces a Σ -model (S, s)
- 2. Show that all the equations in E are satisfied for this model \Rightarrow induces a model of (Σ, E)

Initiality of R \Rightarrow model morphism $R \to S \Rightarrow$ monad morphism $R \to S$

Example: Computing the set of free variables

LC = initial model of
$$(\Sigma_{LC}, \emptyset)$$

$$\Sigma_{\mathrm{LC}}(\mathrm{R}) = (\mathrm{R} \times \mathrm{R}) \ \mathrm{II} \ \mathrm{R}'$$

 \mathcal{P} = power set monad

Definition of a (monad) morphism $\mathbf{fv}: \mathrm{LC} \to \mathcal{P}$ s.t.

$$\mathrm{fv}(\mathrm{app}(\mathrm{t},\mathrm{u}))=\mathrm{fv}(\mathrm{t})\cup\mathrm{fv}(\mathrm{u})$$

$$\mathrm{fv}(\mathrm{abs}(\mathrm{t}))=\mathrm{fv}(\mathrm{t})\setminus\{\diamond\}$$

Example: Computing the set of free variables

$$LC = initial model of (\Sigma_{LC}, \emptyset)$$

$$\Sigma_{\mathrm{LC}}(\mathrm{R}) = (\mathrm{R} \times \mathrm{R}) \coprod \mathrm{R}'$$

 \mathcal{P} = power set monad

Definition of a (monad) morphism $\mathrm{fv}:\mathrm{LC}\to\mathcal{P}$ s.t.

$$\mathrm{fv}(\mathrm{app}(\mathrm{t},\!\mathrm{u})) = \mathrm{fv}(\mathrm{t}) \cup \mathrm{fv}(\mathrm{u})$$

$$fv(abs(t)) = fv(t) \setminus \{\diamond\}$$

 \Rightarrow make \mathcal{P} a model of Σ_{LC} :

$$\cup:~\mathcal{P} imes\mathcal{P} o\mathcal{P}$$

$$_\setminus \{\, \diamond \, \}: \, \mathcal{P}^{\scriptscriptstyle \mathsf{I}} \, o \mathcal{P}$$

Example: Computing the set of free variables

$$LC = initial model of (\Sigma_{LC}, \emptyset)$$

$$\Sigma_{\mathrm{LC}}(\mathrm{R}) = (\mathrm{R} \times \mathrm{R}) \coprod \mathrm{R}'$$

 \mathcal{P} = power set monad

Definition of a (monad) morphism $\mathrm{fv}:\mathrm{LC}\to\mathcal{P}$ s.t.

$$\mathrm{fv}(\mathrm{app}(\mathrm{t},\!\mathrm{u}))=\mathrm{fv}(\mathrm{t})\cup\mathrm{fv}(\mathrm{u})$$

$$\mathrm{fv}(\mathrm{abs}(\mathrm{t}))=\mathrm{fv}(\mathrm{t})\setminus\{\diamond\}$$

 \Rightarrow make \mathcal{P} a model of Σ_{LC} :

$$\cup:~\mathcal{P} imes\mathcal{P} o\mathcal{P}$$

$$_\setminus \{\, \diamond \, \}: \, \mathcal{P}^{\scriptscriptstyle \mathsf{I}} \, o \mathcal{P}$$

Initiality of $LC \Rightarrow fv : LC \rightarrow P$ satisfying the above equations (as a model morphism).

Example: Translating λ-calculus with fixpoint

Definition of a translation $\mathbf{f}:\mathrm{LC}_{\beta\eta\mathrm{fix}}\to\mathrm{LC}_{\beta\eta}\,$ s.t.

$$f(u) = "u[fix(t) \mapsto app(Y, abs(t))]"$$

a chosen fixpoint combinator

Example: Translating λ-calculus with fixpoint

$$\begin{split} \mathsf{LC}_{\beta\eta \mathrm{fix}} &= \text{initial model of } (\Sigma_{\mathrm{LC}\beta\eta}\,, E_{\mathrm{LC}\beta\eta}) + (\Sigma_{\mathrm{fix}}\,, \ E_{\mathrm{fix}}) \\ &\quad \lambda\text{-calculus modulo } \beta\eta \text{ with a fixpoint operator } \mathrm{fix} : \mathrm{LC}_{\beta\eta \mathrm{fix}} ^{\mathsf{I}} \to \mathrm{LC}_{\beta\eta \mathrm{fix}} \\ \mathsf{LC}_{\beta\eta} &= \text{initial model of } (\Sigma_{\mathrm{LC}\beta\eta}\,\,, E_{\mathrm{LC}\beta\eta}) \\ &\quad \lambda\text{-calculus modulo } \beta\eta \\ &\quad \mathsf{monad morphism} \\ \\ \mathbf{Definition of a translation } f : \mathrm{LC}_{\beta\eta \mathrm{fix}} \to \mathrm{LC}_{\beta\eta} \ \text{s.t.} \\ &\quad f(\mathrm{u}) = \text{``u[} \ \mathrm{fix}(\mathrm{t}) \mapsto \mathrm{app}(\mathrm{Y}, \mathrm{abs}(\mathrm{t})) \]\text{'`} \\ &\quad \mathsf{a chosen fixpoint combinator} \\ \Rightarrow \mathsf{make } \ \mathsf{LC}_{\beta\eta} \ \mathsf{a model of } (\Sigma_{\mathrm{LC}\beta\eta}\,, E_{\mathrm{LC}\beta\eta}) + (\Sigma_{\mathrm{fix}}\,, E_{\mathrm{fix}}) \\ &\quad \mathsf{app, abs} \\ &\quad \hat{\mathsf{Y}} : \mathrm{LC}_{\beta\eta} \ \to \ \mathsf{LC}_{\beta\eta} \\ &\quad \mathsf{t} \mapsto \mathrm{app}(\mathrm{Y}, \mathrm{abs}(\mathrm{t})) \end{split}$$

Example: Translating λ-calculus with fixpoint

```
\mathsf{LC}_{\mathsf{Bnfix}} = \mathsf{initial} \; \mathsf{model} \; \mathsf{of} \; (\Sigma_{\mathsf{LCBn}} \, , \, \mathord{\mathrm{E}}_{\mathsf{LCBn}}) + (\Sigma_{\mathsf{fix}} \, , \; \mathord{\mathrm{E}}_{\mathsf{fix}})
          \lambda-calculus modulo \beta\eta with a fixpoint operator \mathrm{fix}:\mathrm{LC}_{\beta\eta\mathrm{fix}}'\to\mathrm{LC}_{\beta\eta\mathrm{fix}}
LC_{\beta\eta} = initial model of (\Sigma_{LC\beta\eta}, E_{LC\beta\eta})
          λ-calculus modulo βη
                                                                              monad morphism
Definition of a translation \mathbf{f}: \mathrm{LC}_{\beta\eta\mathrm{fix}} \to \mathrm{LC}_{\beta\eta} s.t.
                                         f(u) = u[fix(t) \mapsto app(Y, abs(t))]
                                                                                                 a chosen fixpoint combinator
\Rightarrow \text{ make LC}_{\beta\eta} \text{ a model of } (\Sigma_{\mathrm{LC}\beta\eta}\,,E_{\mathrm{LC}\beta\eta}) + (\Sigma_{\mathrm{fix}}\,,\,\,E_{\mathrm{fix}})\text{:}
                                                                                                   \hat{\mathsf{Y}}: \mathrm{LC}_{\mathsf{Bn}}{}^{\mathsf{I}} 
ightarrow \; \mathrm{LC}_{\mathsf{Bn}}
                                                    app, abs
```

Initiality of $LC_{\beta\eta fix} \Rightarrow f: LC_{\beta\eta fix} \rightarrow LC_{\beta\eta}$

 $t \mapsto app(Y,abs(t))$

LC = initial model of
$$(\Sigma_{LC}, \emptyset)$$

$$\Sigma_{\mathrm{LC}}(\mathrm{R}) = (\mathrm{R} \times \mathrm{R}) \coprod \mathrm{R}'$$

Definition of a (monad) morphism $s : LC \rightarrow \mathbb{N}$ **s.t.**

$$s(app(t,u)) = 1 + s(t) + s(u) \qquad \qquad s(abs(t)) = 1 + s(t)$$

$$s(abs(t)) = 1 + s(t)$$

$$LC = initial model of (\Sigma_{LC}, \emptyset)$$

$$\Sigma_{\mathrm{LC}}(\mathrm{R}) = (\mathrm{R} \times \mathrm{R}) \ \mathrm{II} \ \mathrm{R'}$$

Definition of a (monad) morphism $s: LC \to \mathbb{N}$ **s.t.**

$$s(app(t,u)) = 1 + s(t) + s(u) \qquad \qquad s(abs(t)) = 1 + s(t)$$

$$s(abs(t)) = 1 + s(t)$$

 \mathbb{N} is not a monad!

$$LC = initial model of (\Sigma_{LC}, \emptyset)$$

$$\Sigma_{\mathrm{LC}}(\mathrm{R}) = (\mathrm{R} \times \mathrm{R}) \coprod \mathrm{R}'$$

Definition of a (monad) morphism $s : LC \to \mathbb{N}$ **s.t.**

$$s(app(t,u)) = 1 + s(t) + s(u)$$
 $s(abs(t)) = 1 + s(t)$

$$s(abs(t)) = 1 + s(t)$$

 \mathbb{N} is not a monad!

Solution [CSL AHLM 2018]: continuation monad $C(X) = \mathbb{N}^{(\mathbb{N}^{\wedge})}$

- 1. define $f: LC \rightarrow C$ by recursion
- 2. deduce $s: LC \to \mathbb{N}$

$$LC = initial model of (\Sigma_{LC}, \emptyset)$$

$$\Sigma_{\mathrm{LC}}(\mathrm{R}) = (\mathrm{R} \times \mathrm{R}) \coprod \mathrm{R}'$$

Definition of a (monad) morphism $s : LC \to \mathbb{N}$ **s.t.**

$$s(app(t,u)) = 1 + s(t) + s(u)$$
 $s(abs(t)) = 1 + s(t)$

$$s(abs(t)) = 1 + s(t)$$

 $\mathbb N$ is not a monad!

Solution [CSL AHLM 2018]: continuation monad $C(X) = \mathbb{N}^{(\mathbb{N}^X)}$

- 1. define $f: LC \to C$ by recursion
- 2. deduce $s: LC \to \mathbb{N}$

assigns an arbitrary size to each variable

 $\textbf{Intuition} \colon \text{uncurrying } f_X \colon LC(X) \to \mathbb{N}^{(\mathbb{N}^X)} \ \ \, \text{yields } g \colon LC(X) \times \overset{\backprime}{\mathbb{N}^X} \to \mathbb{N}$

$$LC = initial model of (\Sigma_{LC}, \emptyset)$$

$$\Sigma_{\mathrm{LC}}(\mathrm{R}) = (\mathrm{R} \times \mathrm{R}) \coprod \mathrm{R}'$$

Definition of a (monad) morphism $s : LC \to \mathbb{N}$ **s.t.**

$$s(app(t,u)) = 1 + s(t) + s(u) \qquad \qquad s(abs(t)) = 1 + s(t)$$

$$s(abs(t)) = 1 + s(t)$$

$\mathbb N$ is not a monad!

Solution [CSL AHLM 2018]: continuation monad $C(X) = \mathbb{N}^{(\mathbb{N}^X)}$

- 1. define $f: LC \rightarrow C$ by recursion
- 2. deduce $s: LC \to \mathbb{N}$

assigns an arbitrary size to each variable

 $\textbf{Intuition} \colon \text{uncurrying } f_X : LC(X) \to \mathbb{N}^{(\mathbb{N}^X)} \ \ \, \text{yields } g : LC(X) \times \overset{\overset{\frown}{\mathbb{N}^X}}{\to} \mathbb{N}$

$$\mathbf{s}(\mathbf{t}) = \mathbf{g}(\mathbf{t}, (\mathbf{x} \mapsto \mathbf{0}))$$

Conclusion

Summary of the talk:

- presented a notion of 1-signature and models
- defined a 2-signature as a 1-signature and a set of equations
- identified a class of 2-signatures that generate a syntax

The main theorem has been formalized in Coq using the UniMath library.

Future work:

- add the notion of reductions;
- extend our work to simply typed syntaxes.

Conclusion

Summary of the talk:

- presented a notion of 1-signature and models
- defined a 2-signature as a 1-signature and a set of equations
- identified a class of 2-signatures that generate a syntax

The main theorem has been formalized in Coq using the UniMath library.

Future work:

- add the notion of reductions;
- extend our work to simply typed syntaxes.

Thank you!