Previously on this week: Recurrent Architecture

Language model:

x - word embedding

This one generates a sentence.

 \hat{y} - probability distribution for the next word <- over a vocabulary.

generate the word with highest probability distribution.

Use it on the next timestamp.

Previously on this week: Recurrent Architecture

POS tagging:

- x word embedding
- \hat{y} probability distribution for a POS tag of the current word

Recurrent Neural Network (RNN)

$$x$$
 - input

$$\hat{y}$$
 - output (prediction)

h - hidden state

$$h_t = f_h(Vx_t + Wh_{t-1} + b_h)$$
$$\hat{y}_t = f_y(Uh_t + b_y)$$

Recurrent Neural Network (RNN)

$$x$$
 - input

$$\hat{y}$$
 - output (prediction)

h - hidden state

$$h_t = f_h(Vx_t + Wh_{t-1} + b_h)$$
$$\hat{y}_t = f_y(Uh_t + b_y)$$

How to train RNN?

Let's consider an RNN in the unfolded form.

At each time step:

- y_t true label
- \hat{y}_t prediction
- $L_t(y_t, \hat{y}_t)$ some loss function

Loss:

$$L = \sum_{i} L_i(y_i, \hat{y}_i)$$

We can use Backpropagation to train the RNN!

As usual we do forward and backward passes.

Forward pass:

$$h_t, \hat{y}_t, L_t, L$$

Backward pass:

$$rac{\partial L}{\partial U}, rac{\partial L}{\partial V}, rac{\partial L}{\partial W}, \ rac{\partial L}{\partial b_x}, rac{\partial L}{\partial b_h}$$

We backpropagate through layers and time.

All weights are shared across time steps!

$$\frac{\partial L}{\partial U} = \sum_{i=0}^{T} \frac{\partial L_i}{\partial U}$$

We sum the timestep loss gradients.

All weights are shared across time steps!

$$rac{\partial L}{\partial U} = \sum_{i=0}^T rac{\partial L_i}{\partial U}$$
 $rac{\partial L_t}{\partial U} = rac{\partial L_t}{\partial \hat{y}_t} rac{\partial \hat{y}_t}{\partial U}$ $\hat{y}_t = f_y U h_t + b_y)$

this is the only dependence

f_y is probably some activation function. Trivial to compute. deriv of y_t WRT U.

Lets calculate W, The matrix

All weights are shared across output.
time steps!

$$\frac{\partial L}{\partial W} = \sum_{i=0}^{T} \frac{\partial L_i}{\partial W}$$

$$\frac{\partial L_t}{\partial W} = \frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial h_t} \frac{\partial h_t}{\partial W}$$

All weights are shared across time steps!

time steps!
$$\frac{\partial L}{\partial W} = \sum_{i=0}^{T} \frac{\partial L_i}{\partial W}$$

$$\frac{\partial L_t}{\partial W} = \frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial h_t}{\partial W}$$

$$\frac{\partial L_t}{\partial W} = \frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial h_t}{\partial W}$$

$$h_{t-2} = \frac{W}{h_{t-1}} + h_t$$

$$h_t = f_h(Vx_t + W|h_{t-1} + h_h)$$

$$We don't just depend on M. We depend on h_{t-1} too!
$$x_{t-2} = \frac{W}{h_{t-1}} + \frac{W}{h_t}$$$$

All weights are shared across time steps!

$$\frac{\partial L}{\partial W} = \sum_{i=0}^{T} \frac{\partial L_i}{\partial W}$$

$$\frac{\partial L_t}{\partial W} = \frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial h_t} \frac{\partial h_t}{\partial W}$$

$$h_t = f_h(Vx_t + Wh_{t-1} + b_h)$$

Depends on h_{t-1} too!

$$\frac{\partial L_t}{\partial W} = \frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial h_t}$$

All weights are shared across time steps!

$$\frac{\partial L}{\partial W} = \sum_{i=0}^{T} \frac{\partial L_i}{\partial W}$$

$$\frac{\partial L_t}{\partial W} = \frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial h_t} \frac{\partial h_t}{\partial W}$$

$$h_t = f_h(Vx_t + Wh_{t-1} + b_h)$$

Depends on h_{t-1} too!

$$\frac{\partial L_t}{\partial W} = \frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial h_t} \sum_{k=0}^t \left(\prod_{i=k+1}^t \frac{\partial h_i}{\partial h_{i-1}} \right) \frac{\partial h_k}{\partial W}$$

NOTE, the k term is used in the PROD index!

And what about the last weight matrix V? Is it necessary to go backwards in time to

calculate
$$\frac{\partial L}{\partial V}$$
?

Yes! Here we have the same situation as with W:

$$h_t = f_h(Vx_t + Wh_{t-1} + b_h)$$

Depends on h_{t-1} too!

Summary

- We have learned what is a simple RNN.
- RNNs are trained using simple Backpropagation. BPTT is just a fancy name for it.

In the next video:

Is it really that simple to train an RNN?