2023年度(令和5年度)大学院入試

数学問題A

実施日時

2022年(令和4年)8月24日(水)

9:00~12:00

- 監督者の合図があるまで問題冊子を開いてはならない.
- 問題冊子は表紙も入れて5枚、 問題は全部で4問である.
- 解答は、問題ごとに別々の答案用紙1枚に記入すること。答案用紙の裏面に記入してもよい。
- それぞれの答案用紙に受験番号、氏名、問題番号を記入すること.
- 答案用紙,下書き用紙は終了後すべて提出し,持ち帰ってはならない.

[1] ℝ上の関数

$$f_n(x) = \frac{(-1)^n}{2n + \sin x}$$
 $(n = 1, 2, 3, ...)$

および、第n項が関数 $f_n(x)$ であるような級数

$$\sum_{n=1}^{\infty} f_n(x) = f_1(x) + f_2(x) + \dots + f_n(x) + \dots$$

について考える. 以下の問いに答えよ.

- (1) $\sum_{n=1}^{\infty} f_n(0)$ は収束することを示せ.
- (2) 任意の実数 x に対して, $\sum_{n=1}^{\infty} |f_n(x)|$ は発散することを示せ.
- (3) $\sum_{n=1}^{\infty} f_n(x)$ は \mathbb{R} 上一様収束することを示せ.

- [2] n を正の整数とする. V を n 次元複素ベクトル空間とし, $f:V\longrightarrow V$ を線形写像とする. 正の整数 m に対し,f の m 回合成写像を f^m とする. 零ベクトルとは異なるベクトル $w\in V$ に対し, $w,f(w),\ldots,f^{n-1}(w)$ で生成される V の部分空間をW とする. 以下の問いに答えよ.
 - (1) $f^n(w) \in W$ を示せ.
 - (2) W の次元が k ならば、 $w, f(w), \ldots, f^{k-1}(w)$ は W の基底になることを示せ.
 - (3) W の次元が n で、かつ w が f^n の固有値 α に属する固有ベクトルであるとき、f の固有多項式を求めよ.

- [3] ユークリッド平面 \mathbb{R}^2 内の点 (x_1,y_1) , (x_2,y_2) に対して,ある正の実数 r が存在して $(rx_1,r^{-1}y_1)=(x_2,y_2)$ が成り立つとき, $(x_1,y_1)\sim(x_2,y_2)$ であると定義する.以下 の問いに答えよ.
 - (1) 関係 ~ が同値関係であることを示せ.
 - (2) 点 $(a,b) \in \mathbb{R}^2$ の同値類 $\{(x,y) \in \mathbb{R}^2 \mid (x,y) \sim (a,b)\}$ を $A_{a,b}$ で表す.また線分 $\{(x,y) \in \mathbb{R}^2 \mid x = -1, -1 \leq y \leq 1\}$ を I で表し,

$$B = \bigcup_{(a,b)\in I} A_{a,b}$$

とおく. $B \cap \mathbb{R}^2$ 内での閉包を \overline{B} で表す. このとき $\overline{B} \setminus B$ を求めよ.

(3) \mathbb{R}^2 から原点 (0,0) を除いた集合の同値関係 \sim による商空間

$$\left(\mathbb{R}^2\setminus\{(0,0)\}\right)/\sim$$

をXとする. Xはハウスドルフ空間ではないことを示せ.

[4]以下の問いに答えよ.

- (1) $\frac{1}{(z-1)(z-2)}$ の円環領域 $\{z\in\mathbb{C}\,|\,1<|z|<2\}$ におけるローラン展開を求めよ.
- (2) 整関数 f(z) がすべての $z \in \mathbb{C}$ で $|f(z)| \le |\sin z|$ を満たすとする.このとき,ある $a \in \mathbb{C}$ が存在して, $f(z) = a \sin z$ であることを示せ.
- (3) g(z) が整関数のとき, $\overline{g(\overline{z})}$ も整関数であることを示せ.ここで \overline{w} は複素数 w の複素共役を表す.