

Flight Test of L₁ Adaptive Controller on the NASA AirSTAR Flight Test Vehicle

Irene M. Gregory

Dynamic Systems and Control Branch
NASA Langley Research Center

Chengyu Cao

Dept. Mechanical Science & Engineering
University of Connecticut

Enric Xargay

Dept. Aerospace Engineering
University of Illinois at Urbana-Champaign

Naira Hovakimyan

Dept. Mechanical Engineering
University of Illinois at Urbana-Champaign

Aerospace Control and Guidance Systems Committee Meeting 106 La Jolla, CA

October 13-15, 2010

Subscale Flight Testing

IRAC research is focused on loss-of-control, failure and damage scenarios, and their mitigation though the application of adaptive control.

Under adverse conditions:

Control law objectives:

- Keep aircraft in the Extended flight envelope
- Return to Normal Flight Envelope
- Control actions within 2-4 seconds of failure onset are critical
 - ⇒ Transient performance
 - ⇒ Fast adaptation

Angle of sideslip - deg

IRAC = Integrated Resilient Aircraft Control project, part of Aviation Safety Program

AirSTAR GTM aircraft

High-risk flight conditions, some unable to be tested in target application environment.

- > 5.5 % geometrically and dynamically scaled model
 - 82 in wingspan, 96 in length, 49.6 lbs (54 lbs full), 53 mph stall speed
 - Model angular response is 4.26 <u>faster</u> than full scale
 - Model velocity is 4.26 times <u>slower</u> than regular scale

Why an all-adaptive design?

- > Typically direct adaptive controllers have been used as an augmentation to a robust baseline controller.
- Great deal of interest in seeing what adaptation can do as a standalone control strategy
- ➤ Stress the L₁ methodology and architecture to better understand
 - the practical performance
 - the controller behavior at the limits
- With a well designed robust baseline controller it is more difficult to assess how much adaptation is helping in providing stability and performance robustness and how much is the baseline controller contributing.
- Baseline controller may hide potential deficiencies of the adaptive controller.

MIMO Nonlinear System with Cross-Coupling

Consider nonlinear system dynamics

$$\dot{x}(t) = f(x,t) + g(x,t)u(t)$$

Can be expressed as the following system:

- Control objective:
 - Design an adaptive state feedback control law u(t) to ensure that the system output response y(t) tracks the output response $y_m(t)$ of the desired system

$$\dot{x}_m(t) = A_m x_m(t) + B_m K_g r(t)$$

$$y_m(t) = C_m x_m(t)$$

L1 All-adaptive Controller Architecture

- \triangleright Control augmentation system α -command, p- β command
- ➤ Designed at 1 flight condition 80-KEAS (~4.5 deg AoA)

$$\dot{x}_{m} = A_{m}x_{m} + B_{m}\delta_{cmd}$$

$$\begin{pmatrix} \dot{\alpha} \\ \dot{q} \end{pmatrix} = \begin{pmatrix} \frac{Z_{\alpha}}{V} & 1 + \frac{Z_{q}}{V} \\ M_{\alpha} & M_{q} \end{pmatrix} \begin{pmatrix} \alpha \\ q \end{pmatrix} + \begin{pmatrix} \frac{Z_{\delta}}{V} \\ M_{\delta_{e}} \end{pmatrix} \delta_{e}$$

$$\begin{pmatrix} \dot{p} \\ \dot{\beta} \\ \dot{r} \end{pmatrix} = \begin{pmatrix} L_{p} & 0 & 0 \\ 0 & Y_{\beta} / V & -1 \\ 0 & N_{\beta} & N_{r} \end{pmatrix} \begin{pmatrix} p \\ \beta \\ r \end{pmatrix} + \begin{pmatrix} L_{\delta a} & L_{\delta r} \\ Y_{\delta a} & Y_{\delta r} \\ N_{\delta a} & N_{\delta r} \end{pmatrix} \begin{pmatrix} \delta_{a} \\ \delta_{r} \end{pmatrix}$$

Flight Control Law Evaluation Matrix I

	Task	1 st straight leg	2 nd straight leg	Turns
1	Latency Injection (5ms / 5 sec)	Fault Engaged Roll Doublet	Fault Engaged Pitch Doublet	Fault Engaged
2	∆(Cmα & Clp) ≈ 00%	Fault Engaged Roll Doublet	Fault Engaged Pitch Doublet	Disengage Fault
3	∆(Cmα & Clp) ≈ - 50%	Fault Engaged Roll Doublet	Fault Engaged Pitch Doublet	Disengage Fault
4	Δ(Cmα & Clp) ≈ - 75%	Fault Engaged Roll Doublet	Fault Engaged Pitch Doublet	Disenga <mark>ge</mark> Fault
5	∆(Cmα & Clp) ≈ -100% (neutrally stable)	Fault Engaged Roll Doublet	Fault Engaged Pitch Doublet	Disengage Fault
6	∆(Cmα & Clp) ≈ -125% (unstable)	Fault Engaged Roll Doublet	Fault Engaged Pitch Doublet	Disengage Fault
7	High AoA Capture	No Fault No Doublet	No Fault No Doublet	N/A

- ightharpoonup Cm α degraded by 2 inboard elevator segments ightharpoonup 50% reduction in pitch control effectiveness
- Clp degraded by spoilers

GTM T2 – Flight Test Evaluation (June 2010)

- L1 all-adaptive flight control law → provides performance/stability for nominal and impaired aircraft
 - Not an augmentation to a baseline controller, that provides nominal aircraft performance
- Flight Control Law related tasks during June 2010 deployment :
 - Injected longitudinal and lateral stick doublets for each fault, continuous stick doublets on straight legs during latency fault
 - Latency fault: starting at 20 msec, continuous increase in latency (5 msec every 5 sec)
 carried through the turns until aircraft is neutrally stable or unstable want graceful
 performance degradation
 - ✓ Robust to 0.125 sec additional time delay [0.147 total time delay]
 - Simultaneous longitudinal and lateral stability degradation (Cma/Clp):
 - √ 50%: nominal performance
 - √ 75%: small degradation of performance in roll
 - √ 100%: small degradation of performance in pitch, larger degradation in roll
 - ✓ 125%: large amplitude roll with pitch doublet

Modeling Tasks:

L₁ used for β-sweep in flat turn maneuver

GTM T2 - Flight Test Evaluation (June 2010) 🔏

> FLT23: L1 all-adaptive FCL under light turbulence

Nominal Aircraft Wave Train Response

- \triangleright α -cmd and p_cmd wave trains (WT) enter as pilot stick commands
- Pilot asked for hands off during WT WT characterized by straight lines

- ightharpoonup lpha-cmd response designed for pilot, not to the maximum potential of the control law [tracking doublet faster too sensitive for the pilot]
- Roll rate is a very fast and challenging response [with no turbulence smooth, fast response tracking the p_cmd doublet]

Latency Response

Latency fault

- Carried through the turns
- Engaged around 286 seconds
- The maneuver was abandoned at 394 seconds due to persistent roll rate oscillations of ± 20 deg/sec

Latency Fault Doublet Response

Cmα/Clp Degradation WT Response

125%Cmα/Clp Degradation WT Response

20 15 10 -5 -10 -15 740 750 Time, sec

Roll axis response

- Pilot called "knock it off" but did not abandon the control law
- Test engineer simply flipped the switch to turn off the stability degradation fault and the controller recovered its nominal performance immediately.
- ➤ The pilot proceeded to fly into a typical aggressive turn less than 10 seconds after the fault was terminated (~ 770 seconds)

L1 Adaptive FCL – Post-stall, High AOA Flight

- Open-loop aircraft tends to aggressively roll off between 13deg and 15deg AOA and exhibits significant degradation in pitch stability
- ➤ L1 controller significantly improved pilot's ability to fly the aircraft at high angles of attack and decreased his workload

L1 Adaptive FCL – High AOA Flight

September 2010 Deployment

L1 adaptive controller enabled unsteady aerodynamic modeling at poststall AoA*

Changes made to L1 adaptive controller to improve AoA tracking performance in post-stall regime

- Changed from body to stability axis for roll and yaw rate
- \triangleright Added SAS feedback in roll rate for 11< α <17
- Increased bandwidth of AoA low pass filter in the L1 Control Law
- Penalty: decreased tolerance to time delay (from 125 msec to 95 msec)

*Stall AoA characterized by abrupt roll-off, $\alpha_{stall} = 13.5 \deg$

Flight Control Law Evaluation Matrix II

	Task	Downwind straight leg	Upwind straight leg	Turns
1	Offset Landing	Achieve good trim	No fault 1 st – Practice landing 2 nd - Evaluation landing	N/A
2	Offset Landing Neutrally stable: Δ(Cmα & Clp) ≈ -100%	Achieve good trim	Fault Engaged Evaluation landing	Dis <mark>eng</mark> age Fault
3	Offset Landing Unstable: Δ(Cmα & Clp) ≈ -125%	Achieve good trim	Fault Engaged Evaluation landing	Disengage Fault

- ightharpoonup Cm α degraded by 2 inboard elevator segments ightharpoonup 50% reduction in pitch control effectiveness
- Clp degraded by spoilers

L1 Support Tasks on Modeling – Sept. 2100

	Task	1 st straight leg	2 nd straight leg
1	β - Vane Calibration	Flat turn: 2 deg/s ramp up to desired β value hold for the remainder of straight leg $\beta = [\pm 2, \pm 4, \pm 6, \pm 8]$ 1 deg/s ramp up to desired β value; $\beta = \pm 8$	Repeat
2	α - Vane Calibration	$\begin{tabular}{ll} \hline Variable α strategy: set engine RPM, let α increase for remainder of straight leg \\ \hline Constant α strategy: set engine RPM, pilot acquires and holds target α for remainder of straight leg \\ \hline \end{tabular}$	Repeat
3	Unsteady Aerodynamics Modeling	 Post-Stall High α Tracking: Attain stable flight at α=18, inject wave train: (1) Step [18→15, 15→20, 20→15] (2) Schroeder sweep (3) Variable frequency Sinusoid 	

High AoA Tracking - Unsteady Aero

- Modeling unsteady aerodynamics by emulating the dynamic motion in the wind tunnel – determining efficacy of GTM to be a "flying wind tunnel"
- ➤ Target AoA = 18 deg post-stall
- ➤ Injected inputs for L1 FCL to track Step, Schroeder, Sinusoids

Dr. Irene M. Gregory

Angle of Attack Vane Calibration

> Stall occurs between 12 and 13 deg AoA

Sideslip Angle Vane Calibration

- Flat turn hold target sideslip
 - Minimize lateral axis excursions

Offset Landing

- Initial offset
 - 90 ft. lateral, 1800 ft. downrange, 100 ft. above the runway
- Performance boundaries:
 - Desired $|\phi| = \pm 10 \text{ deg}$; $|\gamma| = \pm 1 \text{ deg}$; landing box = 24'x328'
 - Adequate $-|\phi| = \pm 20 \text{ deg}$; $|\gamma| = \pm 3 \text{ deg}$; landing box = 9'x30'
- Flying qualities ratings taken for nominal, neutrally stable, unstable airplane

Nominal

CHR 3

Neutrally stable

CHR 4

Unstable

CHR 7

L1 Adaptive Controller Flight Test Summary

- ➤ An all adaptive controller that provides both nominal aircraft performance and takes care of large changes in aircraft dynamics
 - · No gain scheduling, no baseline to assist
- ➤ One controller designed at nominal flight condition (80KEAS, 4 deg AOA) to provide satisfactory FQ and robustness
- ➤ Controller able to handle large additional latency in the system (robustness measure) and provide nominal to slightly degraded performance for stability degraded cases (doublet tracking with neutrally stable aircraft).
- Controller provided predictable response to the pilot under stability degradation and graceful performance degradation once nominal response was unachievable
- ➤ Improved response in post-stall flight → providing controllable aircraft to the pilot and facilitating safe return to normal flight
- ➤ The classical tradeoff between robustness to system latency vs. performance was found to be consistent with the theory.

QUESTION?

Dr. Irene M. Gregory