

19-04-2000

25

CLAIMS

1. 1. An atropo-isomeric chiral phosphorated ligand of formula (I), having C₁
 2 symmetry, in the optically active form or in the racemic form
 3

4 wherein
 5 the atoms A, B, C, D, E and F, equal to or different from one another, are carbon
 6 atoms or hetero-atoms chosen from among oxygen, nitrogen and sulphur, which
 7 form together an Ar or Het aromatic residue, where Ar is chosen between
 8 pentatomic heterocyclic residue and phenyl, and Het is a pentatomic heterocyclic
 9 residue, and where said pentatomic heterocyclic aromatic residue contains 1 or 2
 10 hetero-atoms, equal to or different from one another, selected from the group
 11 consisting of -O-, -S- and -NR₃-, wherein R₃ = H, an alkyl group, an aromatic
 12 group, a group -P₁(R₁)₂, or a nitrogen atom comprised as hetero-atom in the other
 13 pentatomic heterocyclic residue belonging to the structure of formula (I);
 14
 15 l = 0, 1 ; when l = 1, F is a carbon atom ;
 16 R₁ and R₂, bound to the phosphorous atoms, equal to or different from one
 17 another, are selected from a linear, branched or cyclic C₃-C₁₀ alkyl group, a
 18 carbocyclic aromatic group, and a heterocyclic aromatic group having 5-6
 19 members in the cycle, containing one or more hetero-atoms chosen among
 20 oxygen, sulphur and nitrogen, where said carbocyclic or heterocyclic aromatic
 21 group is optionally substituted with one or more groups selected from a linear or
 22 branched C₁-C₁₀ alkyl group, a linear or branched C₁-C₁₀ alkoxy group, an
 23 halogen, -COOR₄, -SO₃R₄ and -NR₅R₆, where

M 10.0...00
26

- 24 R₄ is chosen among H, alkyl, aryl, alkaline or alkaline-earth metal, -NH₄⁺ and alkyl
25 ammonium cation having from 4 to 20 carbon atoms; and where R₅ and R₆, equal
26 to or different from one another, are H or alkyl ; or
27 R₁ and R₂ together with the phosphorus atom, form a heterocycle having 3-6
28 atoms in the cycle, optionally substituted with linear or branched C₁-C₁₀ alkyl
29 groups ;
30 X is an -O- group or an -N(R₇)- group, where R₇ is chosen among H, alkyl and
31 phenyl ;
32 n is 0 or 1, when Ar is a heterocyclic aromatic residue ;
33 n is 1, when Ar is phenyl ;
34 Q₁, Q₂, Z₁ and Z₂, equal to or different from one another, are selected from the
35 group consisting of H, linear, branched or cyclic C₁-C₁₀ alkyl, linear or branched
36 C₁-C₁₀ alkoxy, phenyl and halogen, or
37 Q₁ taken together with Z₁, or Q₂ taken together with Z₂, form a carbocyclic
38 aromatic ring selected from phenyl and naphthyl, said carbocyclic aromatic ring
39 being optionally substituted with one or more T groups, where T is chosen among
40 halogen, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxyl, -COOR₄, -SO₃R₄ and -NR₅R₆, where R₄ is
41 selected from H, C₁-C₁₀ alkyl, phenyl, alkaline or alkaline-earth metal, -NH₄⁺ or C₄-
42 C₁₂ alkyl ammonium cation, and where R₅ and R₆, equal to or different from one
43 another, are selected from H and C₁-C₁₀ alkyl ; and wherein
44 -P₁(R₁)₂ and -(X)_n-P₂(R₂)₂ are bound to the corresponding carbocyclic or
45 heterocyclic aromatic residue by means of a carbon atom of said aromatic residue
46 or by means of a nitrogen atom comprised as hetero-atom in a pentatomic
47 heterocyclic residue ;
48 said phosphorated ligand further having :
49 i) a difference between the residual charges of the phosphorous atoms
50 $\Delta Q(P) = Q(P_1) - Q(P_2) > 0.05,$
51 where Q(P₁) and Q(P₂) are the values of difference between the number of
52 valence electrons and the number of electrons actually present for the
53 phosphorous atoms P₁ and P₂, said difference between residual charges being
54 calculated using the program MOPAC, Version 6.0, Method MNDO ;
55 ii) a cone angle β_n ("natural bite angle" according to Casey) ranging from 80° to

57 130°, defined as preferred chelation angle P₁-M-P₂ between the phosphorous
 58 atoms P₁ and P₂ and a transition metal M, said angle being obtained by
 59 minimization of the strain energy of the fragment M(diphosphine), where M is Rh,
 60 and calculated by means of the program SYBYL, using the force field of TRIPPOS
 61 modified by entering the parameters developed for the Rh-diphosphine complexes
 62 by M. Kranenburg et al., in *Organometallics*, 14, 3081 (1995) ;
 63 iii) an energy barrier value of interconversion between the two enantiomers of a
 64 given ligand

65 $\Delta E = E_{\text{trans}} - E_{\min} \geq 28 \text{ Kcal/mol},$

66 where E_{trans} is the energy value for the transition state, and E_{min} is the value
 67 associated to the state of minimum energy of the enantiomers, expressed in
 68 Kcal/mol, said ΔE being calculated by using the program MOPAC, Version 6.0,
 69 Method MNDO, assuming that the energy of the maximum-energy conformer E_{trans}
 70 is that of the conformer in which the two aromatic rings are coplanar.

- 1 2. The phosphorated ligand according to claim 1, wherein
- 2 i) said difference $\Delta Q(P) = Q(P_1) - Q(P_2)$ is > 0.15 ;
- 3 ii) said "natural bite angle" β_n ranging from 83° and 120°.
- 1 3. The phosphorated ligand according to claim 1, wherein said phosphorated
 2 ligand is chosen between a ligand of formula (I)a and a ligand of formula (I)b :

3

4 (I)a

5 (I)b

6 where

- 8 Het₁ and Het₂ are pentatomic heterocyclic aromatic rings, equal to or different from
 9 one another, defined as Het in claim 1 ;
 10 n is 0 or 1 ;
 11 X, A, B, C, D, E, Q₁, Q₂, Z₁ and Z₂ are as defined in claim 1.
 1 4. The phosphorated ligand according to claim 1, wherein said heterocyclic
 2 residue is selected from the group consisting of thiophene, pyrrole, furan,
 3 imidazole, isoxazole, isothiazole, pyrazole and triazole.
 1 5. The phosphorated ligand according to claim 1, wherein Q₁ taken together with
 2 Z₁, or Q₂ taken together with Z₂, form a carbocyclic ring, and Het is condensed
 3 with phenyl or naphthyl.
 1 6. The phosphorated ligand according to claim 5, wherein said heterocyclic ring
 2 Het condensed with phenyl is selected from the group consisting of
 3 benzothiophene, naphthothiophene, indole, benzofuran and benzoimidazole.
 1 7. The phosphorated ligand according to claim 1, wherein said phosphorated
 2 ligand is chosen from a ligand of formula (I)c, (I)d and (I)e :
 3

(I)c

(I)d

7

8

(I)e

11 A, B, C, D, E, Q₁, Z₁, P₁, R₁, Q₂, Z₂, P₂, R₂ and T are as defined in claim 1 for
12 formula (I);
13 m is 0, 1 or 2.

1 8. The phosphorated ligand according to claim 1, wherein said heterocyclic
2 aromatic residue is selected from the group consisting of 2,5-dimethyl-thien-3-yl,
3 4,6-dimethyl-benzofur-3-yl, 3-methyl-indol-2-yl, 1-N-methyl-indol-2-yl, and
4 benzothien-3-yl ; and said carbocyclic aromatic residue is phenyl.

1 9. The phosphorated ligand according to claim 1, wherein said groups $-P_1(R_1)_2$ and
2 $-P_2(R_2)_2$ are selected from diphenyl phosphine, dicyclohexyl phosphine, J_1 , J_2 and
3 J_3 , where J_1 , J_2 and J_3 have the following formulas :

- 1 10. The phosphorated ligand according to claim 1, containing one of the following
2 sub-structures : (4-diphenylphosphine)- or (4-dicyclohexylphosphine)-2,5-dimethyl-
3 thien-3-yl ; (1-N-diphenylphosphine)- or (1-N-dicyclohexylphosphine)-3-
4 methylindol-2-yl; (3-diphenylphosphine)- or (3-dicyclohexylphosphine)-1-N-
5 methylindol-2-yl; 2-(diphenylphosphine)- or 2-(dicyclohexylphosphine)-benzothien-
6 3-yl; 2-(diphenylphosphine-oxy)- or 2-(dicyclohexylphosphine-oxy)-phenyl-1-yl ; 4-
7 (diphenylphosphine-oxy)- or 4-(dicyclohexylphosphine-oxy)-2,5-dimethyl-thien-3-
8 yl ; 4-(2',5'-dimethyl-phospholyl)- or 4-(dibenzophospholyl)-2,5-dimethyl-thien-3-yl ;
9 1-N-(2',5'-dimethyl-phospholyl)- or 1-N-(dibenzophospholyl)-3-methyl-indol-2-yl.
- 10 11. The phosphorated ligand according to claim 1, wherein said phosphorated
11 ligand is chosen from the compounds from (1) to (15).

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

14

- 1 12. Procedure for the preparation of an atropo-isomeric phosphorated ligand of
- 2 formula (I) having C_1 symmetry, as defined in claim 1, comprising the following
- 3 steps :

- 4 a) construction of the molecular model of a series of structures of ligands of
5 formula (I), (I)₁, (I)₂, (I)₃, ---, (I)_z, where z is the number of structures created, by
6 means of the computation program SYBYL, Version 6.2 ;
7 b) conformational analysis, comprising the determination of the minimum-energy
8 conformer for each structure from (I)₁ to (I)_z, followed by optimisation using the
9 program MOPAC, Version 6.0, Method MNDO ;
10 c) calculation of the difference

$$\Delta Q(P) = Q(P_1) - Q(P_2)$$

- 11 as defined in claim 1, for each minimum-energy conformer structure, by using the
12 computation program MOPAC, Version 6.0, Method MNDO ;
13 d) calculation, for each structure from (I)₁ to (I)_z, of the value of the energy barrier
14 of interconversion between the two enantiomers (atropo-isomers) of formula (I)

$$\Delta E = E_{\text{trans}} - E_{\text{min}}$$

- 15 as defined in claim 1, made using the computation program MOPAC, Version 6.0,
16 Method MNDO, assuming that the value E_{trans} is that of the maximum-energy
17 conformer having the two rings Ar and Het of the structure (I) coplanar with
18 respect to one another ;

- 19 e) calculation, for each structure from (I)₁ to (I)_z, of the "natural bite angle" β_n , as
20 defined in claim 1, obtained by minimisation of the strain energy of the fragment
21 M(diphosphine), imposing that M should be Rh and that the bending constant of
22 the bond P₁-M-P₂ should be 0 Kcal mol⁻¹, and calculated by using the program
23 SYBYL, Version 6.2, adopting the parameters of the force field of the program
24 TRIPPOS, modified by entering the parameters developed for the Rh-diphosphine
25 complexes by M. Kranenburg et al., in *Organometallics*, 14, 3081, 1995 ;
26 f) selection of the structures from (I)₁ to (I)_z having :

- 27 i) $\Delta Q(P) = Q(P_1) - Q(P_2) > 0.05$
28 ii) a "natural bite angle" β_n ranging between 80° and 130° ;
29 iii) an energy barrier of interconversion between the two enantiomers of the
30 same structure $\Delta E \geq 28$ Kcal/mol;

- 31 g) chemical synthesis of the phosphorated ligands of formula (I) thus selected.

- 32 13. The procedure according to claim 12, wherein said step f) consists in a
33 selection of the structures from (I)₁ to (I)_z having :

- 3 i) the difference $\Delta Q(P) = Q(P_1) - Q(P_2) > 0.15$;
4 ii) the "natural bite angle" β_n ranging between 83° and 120° .
- 1 14. The procedure according to claim 12, wherein said step g) is carried out
2 according to one of the following procedure :
3 A) coupling reaction between aromatic or hetero-aromatic halides with
4 organometallic aryl or hetero-aryl reactants selected from organolithium,
5 organomagnesium, organozinc, and organoboron, in the presence of catalytic
6 quantities of salts or complexes of copper, nickel, or palladium; or
7 B) cyclisation and aromatisation, with formation of one of the two heterocyclic
8 rings comprised in the structure of formula (I), of a precursor already containing
9 the other heterocyclic or carbocyclic system ;
10 in said procedure the introduction of the groups containing the phosphorous atom
11 preceding or following the reaction of formation of the inter-annular bond.
- 1 15. The procedure according to claim 14, wherein said introduction of the groups
2 containing the phosphorous atom is carried out according one of the following
3 reactions :
4 in the case of phosphine derivatives :
5 $Ar-[M] + XP(R_1)_2 \rightarrow Ar-P(R_1)_2$
6 $Ar-[M] + XP(=O)(R_1)_2 \rightarrow Ar-P(=O)(R_1)_2 \rightarrow Ar-P(R_1)_2$
7 $Ar-[M] + (R_2O)_2P(=O)(R_1) \rightarrow Ar_2-P(=O)(R_1) \rightarrow Ar_2-PR_1$,
8 $Ar-X + ZP(R_1)_2 \rightarrow Ar-P(R_1)_2$
9 wherein
10 Ar is an aromatic residue comprised in the structure of formula (I) ;
11 [M] is an organometallic group ;
12 X is a halogen ;
13 Z is an alkaline metal ;
14 R₁ and R₂ are alkyl or aryl residues ;
15 - in the case of phosphite or aminophosphine derivatives :
16 $Ar-OH + XP(R_1)_2 \rightarrow Ar-OP(R_1)_2$
17 $Ind-NZ + XP(R_1)_2 \rightarrow Ind-NP(R_1)_2$
18 $Ind-NZ + XP(=O)(R_1)_2 \rightarrow Ind-NP(=O)(R_1)_2 \rightarrow Ind-NP(R_1)_2$

19 Ar-NHR₂ + XP(R₁)₂ → Ar-NR₂P(R₁)₂

20 Ar-X + ZOP(R₁)₂ → Ar-OP(R₁)₂

21 Ar is a carbocyclic aromatic or hetero-aromatic residue comprised in the structure
22 of formula (I) ;

23 Ind is an indole residue ;

24 X is a halogen ;

25 Z is an alkaline metal ;

26 R₁ is an alkyl or aryl group ;

27 R₂ is H or an alkyl or aryl group.

1 16. The procedure according to claim 14, further comprising the resolution of a
2 ligand of formula (I) into its optical antipodes, via separation on chromatographic
3 column or through a membrane, using a chiral stationary substrate or a chiral
4 eluent, or via fractioned crystallisation of a corresponding diastereo-isomeric
5 adduct.

1 17. The procedure according to claim 16, wherein, if the ligand of formula (I)
2 comprises basic or acidic groups, the diastereo-isomeric adduct is the
3 corresponding salt with an enantiomerically pure chiral acid or base; alternatively,
4 the said adduct is the diastereo-isomeric salt between an enantiomerically pure
5 chiral acid and the phosphinoxide corresponding to the present phosphorated
6 ligand. In this case, the optical resolution is followed by reduction of optically
7 active phosphinoxides into phosphines, via treatment with a reducing agent.

Sub A1 18. An organometallic complex, comprising a chiral phosphorated ligand of
2 formula (I) as defined in each of the claims from 1 to 11, in the enantiomerically
3 pure or enriched form, and a transition metal.

1 19. The organometallic complex according to claim 18, wherein the transition
2 metal is selected from the group consisting of Rh, Ru, Ir, Pt, Pd and Ni.

1 20. Use of an organometallic complex according to claim 18 for the preparation of
2 an optically active chiral catalyst.

1 21. Procedure for the preparation of an organic compound in the form of stereo-
2 isomer, comprising at least one stereoselective reaction conducted in the
3 presence of at least one organometallic complex as defined in claim 18.

1 22. The procedure according to claim 21, wherein said stereoselective reaction is

2 selected from the group consisting of enantio- and/or diastereoselective reactions
3 of reduction, hydroformylation, hydroboration, hydrosilylation, hydrocyanation,
4 allylation, vinylation and other reactions of formation of the C-C bond.