Київський національний університет імені Тараса Шевченка факультет радіофізики, електроніки та комп'ютерних систем

Лабораторна робота №9

Тема: Принципи захисту інформації від втрат. Коди Хемінга

Роботу виконав студент 3 курсу мережевий адміністратор Цибульський Роман Мета: Ознайомлення з основами захисту інформації від втрат. Провести кодування, декодування та корекцію помилок за допомогою кодів Хемніга.

Номер варіанту 5814 = 1 0110 1011 0110, 10 1011 0110 за умовою

H5	H4	Логічні елементи
1	0	АБО-НЕ, Виключне АБО

H7	Н8	Н9	H10	Кількість інформаційних бітів
0	1	0	1	16

Для 18 інформаційних бітів треба використати 5 контрольних бітів, тоді загальна кількість бітів в пакеті буде 16 + 5 = 23 біти.

Побудуємо таблицю на 5 груп

1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0
1	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0
0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0
1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	0	0	0	1	0
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	0	0	0	1	0
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	0	0	0	1	0
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	0	0	0	1	0
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	0	0	0	1	0

- 1. Згідно Вашого варіанту, розробіть функціональні схеми "Кодера" та "Декодера".
- 2. Введіть у Proteus функціональні схеми.
- 3. Проведіть моделювання отриманих Вами схем. Занесіть помилку у вхідний пакет "Декодера". Переконайтесь в коректності роботи Вашої схеми.

Кодер

Декодер і дешифратор

- 4. Занесіть додатковий біт парності для пакету інформації, що передається (для виявлення подвійної помилки).
- 5. Модернізуйте Ваші схеми для створення та обробки даних пакетів.

Модернізація для кодера

Для декодера

6. Проведіть моделювання отриманих Вами схем. Занесіть поодинокі та подвійні помилки в вхідний пакет "Декодера". Проаналізуйте отримані Вами результати роботи схем.

Контрольні питання:

- 1. Які Ви знаєте коди, що дозволяють виявити та виправити помилки? Існуть виявлення та виправлення помилок, блокові коди, згорткові коди.
- 2. В чому полягають принципи алгоритмів виправлення помилок. В додаванні додаткових бітів, які контролюють щоб виконувалась перевірка парності в окремих групах вхідних бітів.
- 3. Яку мінімальну кількість контролюючих бітів треба внести в вхідне слово, щоб виявити та виправити поодиноку помилку.

Кількість контрольних бітів залежить від довжини вхідного слова. Загалом для алгоритму Хемінга потрібно щоб виконувалась $n+k < 2^k-1$, де n- це кількість вхідних бітів, k- контрольних бітів.

Висновок: В даній лабораторній роботі було вивчено роботу алгоритму Хемінга кодера та декодера для поодинокої та подвійної помилки.