

Доцент каф. АСУ: Суханов А.Я.

Нелинейная оптимизация с ограничениями

Необходимые условия оптимальности:

Будем рассматривать задачу: $f(x) \to \min, g_i(x) \le 0, i \in I = \{1, ..., m\}, x \in \mathbb{R}^n,$ где функции f и g_i ($i \in I$) непрерывно дифференцируемы.

X множество решений задачи $X = \{x \in \mathbb{R}^n : g_i(x) \le 0, i \in I\}.$

Точка х⁰ ∈ X есть локальный оптимум (минимум) задачи

$$f(x) \to min, g_i(x) \le 0, i \in I = \{1, ..., m\}, x \in \mathbb{R}^n,$$

если для некоторого числа $\epsilon > 0$ выполняется условие

$$f(x^0) \le f(x) \ \forall \ x \in X, \ ||x - x^0|| \le \varepsilon.$$

Необходимые условия Куна – Таккера

Теорема 2.1 (Куна — Таккера)

Предположим, что все функции f и g_i (i=1,...,m) непрерывно дифференцируемы и в точке $x^o \in X$ выполняется условие выделения ограничений. Если x^o есть точка локального минимума, то существуют такие числа

$$\lambda_i \geq 0 \ (i=1,...,m),$$
 что $\nabla f(x^o) + \Sigma_{i=1}{}^m \lambda_i \nabla g_i(x^o) = 0,$ $\lambda_i g_i(x^o) = 0, \ i=1,...,m.$ (Числа λ_i называются множителями Куна-Таккера.)

Условия Куна — Таккера допускают также следующую физическую интерпретацию. Материальная точка движется внутри множества Х под действием переменной силы, вектор которой в точке х равен -∇f(x). Грани (границы) множества X являются абсолютно упругими и, когда материальная точка достигает грани $g_i(x) = 0$ в точке x^0 , на материальную точку действует сила реакции $\lambda_i \nabla g_i(x^0)$, множитель λ_i ≥ 0 выбирается из условия, что сила $\lambda_i \nabla g_i(x^o)$ должна уравновешивать силу, с которой материальная точка давит на данную грань. Нужно найти точку покоя х⁰, в которой движение материальной точки прекратиться. В такой интерпретации условия Куна — Таккера выражают тот факт, что в точке покоя силы реакции $\lambda_i \nabla g_i(x^o)$ граней уравновешивают силу $-\nabla f(x)$, действующую на материальную точку

Числовой пример:

Записывая и решая системы уравнений и неравенств, выражающих условия Куна — Таккера, мы можем решать небольшие примеры оптимизационных задач. При этом следует заметить, что в компьютерных программах, способных решать задачи реалистичных для практики размеров, реализованы совершенно иные (численные) методы решения гладких оптимизационных задач с ограничениями, а теорема Куна — Таккера — это важный теоретический результат, который применяется при доказательстве многих теорем.

Решим задачу:

$$f(x) = x_1^2 + x_2^2 + x_3^2 \rightarrow \min,$$

$$g_1(x) = 2x_1 - x_2 + x_3 - 5 \le 0,$$

$$g_2(x) = x_1 + x_2 + x_3 - 3 = 0.$$

$$\Delta f(x) = \begin{bmatrix} 2r_1 \\ 2r_2 \\ 2r_3 \end{bmatrix} \qquad \Delta g1(x) = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} \qquad \Delta g1(x) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\Delta g 1(x) = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$$

Запишем условия Куна-Таккера:

$$\begin{bmatrix} 2r_1 \\ 2r_2 \\ 2r_3 \end{bmatrix} + \lambda_1 \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} + \lambda_2 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 0$$

$$2x_1 - x_2 + x_3 - 5 \le 0$$
,
 $x_1 + x_2 + x_3 - 3 = 0$,
 $\lambda_1(2x_1 - x_2 + x_3 - 5) = 0$,
 $\lambda_2(x_1 + x_2 + x_3 - 3) = 0$,
 $\lambda_1 \ge 0$

$$2x_{1} + 2\lambda_{1} + \lambda_{2} = 0,$$

$$2x_{2} - \lambda_{1} + \lambda_{2} = 0,$$

$$2x_{3} + \lambda_{1} + \lambda_{2} = 0,$$

$$2x_{1} - x_{2} + x_{3} - 5 \leq 0,$$

$$\lambda_{1}(2x_{1} - x_{2} + x_{3} - 5) = 0,$$

$$\lambda_{1}(2x_{1} - x_{2} + x_{3} = 3, \lambda_{1} \geq 0)$$

Рассмотрим два случая.

$$1.\lambda_1 = 0.$$

Тогда из первых трех уравнений получаем, что $x_1 = -\lambda_2/2$, $x_2 = -\lambda_2/2$ и $x_3 = -\lambda_2/2$. Подставляя эти значения в последнее уравнение, найдем λ_2 :

$$x_1 + x_2 + x_3 = -3/2 \ \lambda_2 = 3 \Rightarrow \lambda_2 = -2.$$

Откуда $x^1 = (1, 1, 1)^T$ - стационарная точка.

Причем, поскольку f(x) - выпуклая функция, то x¹ точка глобального минимума⁵.

 $\lambda_1 > 0$. Теперь в силу условия дополняющей нежесткости $2x_1 - x_2 + x_3 = 5$.

Из первых трех уравнение найдем:

$$X_1 = -\frac{1}{2} (2\lambda_1 + \lambda_2),$$

 $X_2 = -\frac{1}{2} (-\lambda_1 + \lambda_2),$
 $X_3 = -\frac{1}{2} (\lambda_1 + \lambda_2).$

Подставляя эти значение в уравнения:

$$2x_1 - x_2 + x_3 = 5$$
,
 $x_1 + x_2 + x_3 = 3$

$$\begin{array}{l} -2\lambda_1 - \lambda_2 - 1/2 \; \lambda_1 + 1/2 \; \lambda_2 \; - 1/2 \; \lambda_1 - 1/2 \; \lambda_2 \\ = 5 & \text{ИЛИ} \; 5 \\ -\lambda_1 - 1/2 \; \lambda_2 \; + 1/2 \; \lambda_1 - 1/2 \; \lambda_2 - 1/2 \; \lambda_1 - 1/2 \\ \lambda_2 = 3 & 3 \end{array}$$

Умножив первое уравнение на $-\frac{3}{2}$ и сложив со вторым, получим:

$$(\frac{9}{2} - 1)\lambda_1 + (\frac{3}{2} - \frac{3}{2})\lambda_2 = -\frac{5}{2} + 3$$
, или $\frac{7}{2}\lambda_1 = -\frac{9}{2}$

Отсюда $\lambda_1 = -\frac{9}{7}$, что противоречит требованию неотрицательности λ_1 . Следовательно, $x^1 = (1, 1, 1)$ - единственная точка глобального минимума

Экономическая интерпретация множителя Куна – Таккера

Фирма использует n производственных процесса для производства n продуктов. Процесс j (j = 1,...,n) описывается производственной функцией f_j : $x_j = f_j(x_1^j,...,x_j^j)$,

- где переменная хj обозначает количество единиц продукта j, производимого j-м процессом
- Переменная х_і обозначает количество единиц ресурса і (i = 1,...,m), используемого в ј-м процессе. В наличии имеется а_і единиц ресурса і, і = 1,...,m. Задан вектор цен р = (p₁,...,p□)^Т выпускаемых продуктов.

Нужно найти производственный план $x^* = (x_1,...,x_{\square})^T$, стоимость которого p^Tx^* максимальна.-

Дававвиная задача формулируется следующим образом:

$$p^Tx \to max$$
,
 $\lambda_j: x_j - f_j(x_1^j,...,x_j^j) = 0, j = 1,...,n$,

$$\mu_i: \sum_{i=1}^n x_i^j - a_i \le 0, i = 1, ..., m,
v_j: x_j \ge 0, j = 1, ..., n,
\rho_i^j: x_i^j \ge 0, i = 1, ..., m, j = 1, ..., n.$$

Здесь в самом левом столбце записаны множители Куна – Таккера для соответствующих ограничений.

Условия Куна – Таккера для задачи:

$$-p_j + \lambda_j + v_j = 0, j = 1,$$

$$\mu_i - \lambda_j \frac{\partial f_j}{\partial x_i j}(x_1 j, ..., x_m j) + \rho_i j = 0, i = 1, ..., m, j = 1, ..., n,$$

$$x_j - f_j(x_1^j, ..., x_{\square}^j) = 0, j = 1, ..., n,$$

$$\sum (j=1 \text{ до n}) x_i^j \le a_i, i = 1,...,m,$$

$$\mu_i \left(\sum_{j=1}^n x_i^j - a_i \right) = 0, i = 1,...,m$$

$$v_j x_j = 0, j = 1, ..., n,$$

$$\rho_i^j x_i^j = 0, i = 1, ..., m, j = 1, ..., n,$$

$$v_i \le 0, j = 1, ..., n,$$

$$\rho_i^{j} \le 0, i = 1, ..., m, j = 1, ..., n.$$

$$v_j x_j = 0, j = 1,...,n,$$
 $-p_j + \lambda_j + v_j = 0, j = 1,...,n,$

a

Если продукт ј производится $(x_j > 0)$, то из условия дополняющей нежесткости (f) имеем, что $v_j = 0$, и тогда из (a) следует, что $\lambda_j = p_j$, т. е. множители, соответствующие технологическим процессам производимых продуктов, равны ценам этих продуктов.

$$\mu_i - \lambda_j * \partial f_j / \partial x_i j (x_1 j, ..., x_{-} j) + \rho_i j = 0, i = 1,...,m, j = 1,...,n,$$

$$\rho_i j x_i j = 0, i = 1,...,m, j = 1,...,n,$$

g

Если ресурс *i* используется в *j*-м процессе $(x_i) > 0$, то из (2.9g) вытекает, что $\rho_i^j = 0$, и тогда для производимого продукта j ($x_i > 0$) из (2.9b) имеем:

$$\mu_i = p_j * \partial f_j / \partial x_i^j (x_1^j, ..., x_{\square}^j).$$

Если ресурс *i* не используется полностью (\sum (j=1 до n) x_i^j < a_i), то из (2.9e) имеем, что μ_i = 0. Но, если ресурс *i* используются в производственном процессе для какого-либо производимого продукта *j*, и поскольку *p_j* > 0 и $\partial f_j/\partial x_i^j(x_1^j, ..., x_j^j)$ > 0, то и μ_i > 0, т. е. такой ресурс *i* должен использоваться полностью.

$$\mu_i(\sum_{j=1}^n x_i^j - a_i) = 0, i = 1,...,m,$$

Суммируя сказанное выше, мы формулируем свойства множителей ресурсных ограничений следующим образом:

множитель ресурса, который не используется ни в одном технологическом процессе, производящем продукт, равен нулю; если ресурс i используется в технологическом процессе, производящем некоторый продукт j, то соответствующий этому ресурсу множитель μ_i равен стоимости предельного продукта j относительно ресурса

СПАСИБО ЗА ВНИМАНИЕ!

г. Томск, ул. Вершинина, 47, офис 434

e-mail: aleksandr.i.sukhanov@tusur.ru

тел.: (3822) 70-15-36

tusur.ru