

685.621 Algorithms for Data Science

Intelligent & Applied Algorithms

Module Learning Objectives

- 12.1 Explain the core principles and architectures of generative models, including Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Sequence-to-Sequence (Seq2Seq) models.
- 12.2 Analyze the computational complexity and trade-offs associated with different intelligent algorithms, assessing factors such as training stability, scalability, and interpretability.
- 12.3 Apply pre-trained models from HuggingFace and TensorFlow Hub to real-world tasks, including data generation and sequence modeling, by configuring inputs, interpreting outputs, and evaluating loss functions.
- 12.4 Compare and contrast the learning objectives, optimization strategies, and performance characteristics of GANs, VAEs, and Seq2Seq models in various application contexts.

SoluLab, 2025

Module Learning Objectives

- ➤ 12.5 Evaluate the suitability of intelligent algorithms for specific AI applications, such as recommendation systems, creative AI, and language processing, considering both technical and ethical factors.
- 12.6 Interpret the behavior of complex models by examining outputs and diagnostic metrics to inform model tuning and selection decisions.
- 12.7 Design an intelligent algorithm pipeline by selecting appropriate pre-trained models, configuring evaluation strategies, and reflecting on model limitations and deployment considerations.

SoluLab, 2025

Intelligent Algorithms: An Overview

Intelligent algorithms are a class of computational techniques designed to learn patterns, make predictions, generate data, and optimize decisions based on complex input data.

The Major Break Through Timeline

Key Topics

Generative
Adversarial
Networks (GANs) AI models that
generate realistic
synthetic data.

Variational
Autoencoders
(VAEs) Probabilistic
generative models
that encode and
reconstruct complex
data distributions.

 NLP Sequence-to-Sequence Models -Architectures like attention-based mechanisms for tasks such as machine translation and text summarization.

