Notes on Category Theory: Adjointness

Indrjo Dedej

Last revision: 29th November 2023.

Contents

1	Isolating the concept	1
2	Definition, units and counits	5
3	Adjunctions and limits	8
4	Triangle Identities	ç
5	Other exercises	ç

1 Isolating the concept

Example 1.1 (Defining linear functions, part I). Consider two vector spaces *V* and *W* (over the same field) and the problem:

how can we define a linear function $f: V \to W$?

There is a well known theorem that says that prescribing the images of the elements of the base S determines uniquely a linear function $V \to W$. More precisely, the theorem sounds like this:

Let V and W two vector spaces, both over a field k, and let S be a base of V. Let us write i for the inclusion $S \hookrightarrow V$. Then for every function $\phi: S \to W$ there exists one and only one linear function $f: V \to W$ such that

$$S \xrightarrow{i} V \\ \downarrow f \\ W$$
 (1.1)

commutes.

The statement is equivalent to saying that the function

$$\operatorname{Vect}_k(V, W) \to \operatorname{Set}(S, W), \ f \to fi$$
 (1.2)

is a bijection.

Let us reason about the theorem. Fist of all, it is about a *function* $\phi: S \to W$, pointing to a vector space W: the morphisms of Set do not care whether the sets have an additional structure. Let us say that ϕ is a *function* from S to W 'downgraded' from the status of vector space to the one of set. On the other hand, from a set we construct an actual vector space, this is what being a base means. Indeed, behind the scenes two functors

Figure 1. F upgrades sets to vector spaces; U does the opposite, that is downgrades.

$$\mathbf{Set} \xrightarrow{F} \mathbf{Vect}_k$$

are moving:

- F the functor that *constructs* a vector space F(S) from set S it and extends a function of bases $\alpha : S \to T$ to a genuine linear functions $F(\alpha) : F(S) \to F(T)$, as we have already explained.
- *U* is the functor that *forgets*: that is takes a vector space and returns the set of vectors (thus no addition, no external product and no vector space axioms); it takes a linear function and returns the same function, but observe the homomorphism property cannot make sense any longer in **Set**.

Let us rewrite the quoted theorem to make it more aware of these functors. First, let us rewrite $i: S \to V$ as $i_S: S \to U(F(S))$ and $\phi: S \to W$ as $\phi: S \to U(W)$: we have just wrapped V and W with U. So far, the situation ca be depicted as

$$S \xrightarrow{i_S} U(F(S))$$

$$\downarrow \qquad \qquad U(W)$$

We are not loosing the commutative diagram (1.1)! The composition of a 'function' $S \to V$ with a 'linear function' $V \to W$ which gives as result a 'function' $S \to W$: in this composition we not care about linearity anymore, thus let us wrap the $f: V \to W$ with U, so that it can fit in a commutative diagram:

Let V and W two vector spaces over a field k, and let S be a base of V. In this context, V = F(S). Moreover, write i_S for the inclusion function $S \hookrightarrow U(F(S))$. Then for every function $\phi: S \to U(W)$ there exists one and only one linear function $f: V \to W$ for which

$$S \stackrel{i_{S}}{\longleftarrow} U(F(S))$$

$$\downarrow U(f)$$

$$U(W)$$

$$(1.3)$$

is a commutative diagram of Set.

The restyling touches also the bijections in (1.2):

$$\xi_{S,W} : \mathbf{Vect}_k(F(S), W) \to \mathbf{Set}(S, U(W)), \ \xi_{S,W}(f) := U(f)i_S$$
 (1.4)

We need to pause the example a bit now and resume it later.

Construction 1.2. Let $\mathcal C$ and $\mathcal D$ be two locally small categories and two functors

$$C \xrightarrow{L \atop R} D$$

We have then the functor

$$\mathcal{C}(\ ,R(\)):\mathcal{C}^{\mathrm{op}}\times\mathcal{D}\to\mathbf{Set}$$

that maps objects (x, y) to C(x, R(y)) and pairs of morphisms

$$\begin{pmatrix} (x,y) \\ (f,g) \downarrow \\ (x',y') \end{pmatrix} = \begin{pmatrix} x & y \\ f \uparrow & \downarrow g \\ x' & y' \end{pmatrix}$$

to functions

$$C(x, R(y)) \to C(x', R(y'))$$

 $h \to R(g)hf$

We have also the functor

$$\mathcal{D}(L(\),\):\mathcal{C}^{\mathrm{op}}\times\mathcal{D}\to\mathbf{Set}$$

that maps (x, y) to C(L(x), y) and pairs of morphisms

$$\begin{pmatrix} (x,y) \\ (f,g) \downarrow \\ (x',y') \end{pmatrix} = \begin{pmatrix} x & y \\ f \uparrow & \downarrow g \\ x' & y' \end{pmatrix}$$

to functions

$$\mathcal{D}(L(x), y) \to \mathcal{D}(L(x'), y')$$
$$h \to ghL(f).$$

Example 1.3 (Defining linear functions, part II). We return to the last example. The functions $\xi_{S,W}$ form a natural isomorphism

$$\xi : \mathbf{Vect}_k(F(\),\) \Rightarrow \mathbf{Set}(\ ,U(\))$$

We know the components are bijections, hence it remains to check it is a natural transformation. Thus consider the diagram

$$\begin{array}{c} \operatorname{Vect}_{k}(F(S),W) \xrightarrow{\xi_{S,W}} \operatorname{Set}(S,U(W)) \\
\operatorname{Vect}_{k}(F(\alpha),f) \downarrow & \downarrow \operatorname{Set}(\alpha,U(f)) \\
\operatorname{Vect}_{k}(F(S'),W') \xrightarrow{\xi_{S',W'}} \operatorname{Set}(S',U(W'))
\end{array}$$

and we show it is commutative. A linear function $h: F(S) \to W$ goes to the function $U(h)i_S: S \to U(W)$, which is sent to the function $U(f)(U(h)i_S)\alpha: S' \to U(W')$. By functoriality, $U(f)(U(h)i_S)\alpha = U(fh)i_S\alpha$. On the other way, h goes to the linear function $fhF(\alpha): F(S') \to W'$ which goes to $U(fhF(\alpha))i_{S'}: S' \to U(W')$. Here, $U(fhF(\alpha))i_{S'} = U(fh)U(F(\alpha))i_{S'}$. Thus, to verify that the functions $S' \to U(W')$ here are equal, one could just verify that

$$S \xrightarrow{i_{S}} U(F(S))$$

$$\alpha \upharpoonright \qquad \qquad \uparrow U(F(\alpha))$$

$$S' \xrightarrow{i_{S'}} U(F(S'))$$

commutes, which is immediate

Example 1.1 and 1.3 of the introduction should have triggered your attention. If not, look at them closely now: after the initial restyling of one result of Linear Algebra, it is just a matter of categories and functors.

Construction 1.4. Let C and \mathcal{J} two categories, a one of its objects and take a functor $F: \mathcal{J} \to C$. We have the category $a \downarrow F$ made as follows:

- the objects are the morphisms $a \to F(x)$ of C, with x being an object of \mathcal{J} ;
- the morphisms from $f: a \to F(x)$ to $g: a \to F(y)$ are the morphisms $h: x \to y$ of $\mathcal J$ such that

commutes;

• the composition is that of \mathcal{J} .

Proposition 1.5. Suppose given two locally small categories $\mathcal C$ and $\mathcal D$, two functors

$$\mathcal{C} \stackrel{L}{\underset{R}{\longleftrightarrow}} \mathcal{D}$$

and a natural transformation $\eta: 1_{\mathcal{C}} \Rightarrow RL$ such that $\eta_x: x \to RL(x)$ is initial in $x \downarrow R$ for every $x \in |\mathcal{C}|$. Then, for $x \in |\mathcal{C}|$ and $y \in |\mathcal{D}|$, the functions

$$\alpha_{x,y}: \mathcal{D}(L(x),y) \to \mathcal{C}(x,R(y)), \ \alpha_{x,y}(f) := R(f)\eta_x$$

form an adjunction $\alpha : L \dashv R$.

Exercise 1.6. Look at Example 1.1 and 1.3: isolate what in the proposition is the natural transformation η . Can you prove the theorem by yourself?

Proof of Proposition 1.5. The fact that η_x is initial object implies that these function are all bijective. Now, we just need to verify the transformation is natural. Take $x, x' \in |\mathcal{C}|, y, y' \in |\mathcal{D}|, f \in \mathcal{C}(x', x)$ and $g \in \mathcal{D}(y, y')$ and examine the square

$$\mathcal{D}(L(x), y) \xrightarrow{\alpha_{x,y}} \mathcal{C}(x, R(y))$$

$$\mathcal{D}(L(f), g) \downarrow \qquad \qquad \downarrow \mathcal{C}(f, R(g))$$

$$\mathcal{D}(L(x'), y') \xrightarrow{\alpha_{x',y'}} \mathcal{C}(x', R(y'))$$

For $h \in \mathcal{D}(L(x), y)$, we have

$$C(f, R(g))(\alpha_{x,y}(h)) = R(g)R(h)\eta_x f = R(gh)\eta_x f$$

$$\alpha_{x',y'}(\mathcal{D}(L(f), g)(h)) = R(guL(f))\eta_{x'} = R(gu)RL(f)\eta_{x'}$$

By the naturality of η , we have $\eta_x f = RL(f)\eta_{x'}$, and the proof ends here. \square

Here is another example in the spirit of the initial example about vector spaces and of the proposition just proved here.

Example 1.7 (Isomorphism Theorem for Set Theory). We have defined Eqv earlier, recall it here. Let us introduce the functor

$$E: \mathbf{Set} \to \mathbf{Eqv}$$

that maps a set X to a setoid $(X, =_X)$, where $=_X$ is the equality relation over X, and a function $f: X \to Y$ to itself regarded as morphisms of setoids. Besides, Corollary 2.3 gives a functor

$$P : \mathbf{Eqv} \to \mathbf{Set}$$
.

Consequently, Proposition 2.1 can be easily rephrased more concisely as:

the canonical projection $(X, \sim) \to E(P(X, \sim))$ is initial in $(X, \sim) \downarrow E$.

There is the dual of Proposition 1.5 as well.

Proposition 1.8. Suppose given two locally small categories $\mathcal C$ and $\mathcal D$, two functors

$$C \stackrel{L}{\underset{R}{\longleftrightarrow}} \mathcal{D}$$

and a natural transformation $\theta : LR \Rightarrow 1_{\mathcal{D}}$ such that $\theta_y : LR(y) \to y$ is terminal in $L \downarrow y$ for every $y \in |\mathcal{C}|$. Then, for $x \in |\mathcal{C}|$ and $y \in |\mathcal{D}|$, the functions

$$C(x,R(y)) \to D(L(x),y)$$
$$f \to \theta_{\nu}L(f)$$

form an adjunction $L \dashv R$.

Exercise 1.9. The proof is left to you.

Example 1.10 (Evaluation of polynomials). [Yet to be TFXed...]

2 Definition, units and counits

Definition 2.1 (Adjunctions). Consider two locally small categories and two functors as in

$$C \stackrel{L}{\underset{R}{\longleftrightarrow}} \mathcal{D}$$

An adjunction from L to R any natural isomorphism

$$C^{\text{op}} \times \mathcal{D} \qquad \qquad \mathbf{Set}$$
 (2.5)

We say *L* is the *left adjoint* and *R* is the *right adjoint*: the reason behind the naming comes from when we write the bijection

$$\mathcal{D}(L(x),y)\cong\mathcal{C}(x,R(y))$$

L occurs in $\mathcal{D}(L(x),y)$ applied to the argument on the left, while R appears in $\mathcal{C}(x,R(y))$ applied on the right. Adjunctions are usually written as $\alpha:L\dashv R$. Sometimes $L\dashv R$ is written to mean that there is an adjunction in between

without specifying which one. If on the the paper we are writing there is space, we can write something like

$$C \xrightarrow{L} \mathcal{D}$$
 (2.6)

which has in addition shows the categories involved.

We will soon return to the introductory example later; as for now, let us indulge a bit more on the definition of adjunction.

Exercise 2.2 (Partial functions). For *A* and *B* sets, a *partial function* from *A* to *B* is relation $f \subseteq A \times B$ with the property

for every
$$x \in A$$
 and $y_1, y_2 \in B$, if $(x, y_1) \in f$ and $(x, y_2) \in f$ then $y_1 = y_2$.

We want to compose partial functions as well: provided $f \in \mathbf{Par}(A, B)$ and $g \in \mathbf{Par}(B, C)$,

$$gf := \{(x, y) \in A \times C \mid (x, z) \in f \text{ and } (z, y) \in g \text{ for some } z \in B\}.$$

It is immediate to verify **Par** complies the rules that make it a category. Indeed, this is the *category of partial functions*, written as **Par**: here, the objects are sets and the morphisms are partial functions.

Suppose given a partial function $f: A \to B$. For every $x \in A$ the possibilities are two: there is one element of B bound to is, and we write it f(x), or none. What if we considered *no value* as an output value? Provided two sets A and B and a partial function $f: A \to B$, we assign an actual function

$$\overline{f}: A \to B+1$$
, $\overline{f}(x) := \begin{cases} f(x) & \text{if } x \text{ has an element of } B \text{ bound} \\ * & \text{otherwise} \end{cases}$

where $1 := \{*\}$ with * designating the absence of output. It is quite simple to show that

$$\operatorname{Par}(A,B) \to \operatorname{Set}(A,B+1), \ f \to \overline{f}$$

is a bijection for every couple of sets A and B. Now it's up to you to categorify this: find two functors that make an adjunction

$$\mathbf{Set} \underbrace{\perp}_{I} \mathbf{Par}$$

Proposition 2.3. Provided you have locally small categories and functors

$$C \stackrel{L}{\underset{R}{\longleftrightarrow}} \mathcal{D}$$

and an adjunction

$$\alpha: \mathcal{D}(L(\),\) \to \mathcal{C}(\ ,R(\)).$$

Then:

1. For $x \in |\mathcal{C}|$ the morphisms

$$\eta_x: x \to RL(x), \ \eta_x := \alpha_{x,L(x)} \left(1_{L(x)} \right)$$

form a natural transformation $\eta: 1_{\mathcal{C}} \Rightarrow RL$ such that η_x is initial in $x \downarrow R$.

Figure 2. Units and co-units of an adjunction.

2. For $y \in |\mathcal{C}|$ the morphisms

$$\theta_y : LR(y) \to y, \ \theta_y := \alpha_{R(y),y}^{-1} \left(\mathbf{1}_{R(y)} \right)$$

form a natural transformation $\theta: LR \Rightarrow 1_{\mathcal{D}}$ such that θ_{v} is terminal in $L \downarrow y$.

Proof. [Rewrite proof.] Let us write the adjunction of the statement above as

$$\overline{}: \mathcal{D}(L(),) \Rightarrow \mathcal{C}(, R()).$$

We verify that

$$\begin{array}{ccc}
x & \xrightarrow{\eta_x} RL(x) \\
f & & \downarrow_{RL(f)} \\
y & \xrightarrow{\eta_y} RL(y)
\end{array}$$

commutes for every f in \mathcal{C} . In fact,

$$RL(f)\eta_x = RL(f)\overline{1_{L(x)}}1_x = \overline{L(f)1_{L(x)}}1_{L(x)} = \overline{L(f)}$$
$$\eta_y f = R(1_{L(y)})\overline{1_{L(y)}}f = \overline{1_{L(y)}1_{L(y)}}L(f) = \overline{L(f)}.$$

It remains to show that the morphisms $\eta_x : x \to RL(x)$ are initial in $x \downarrow R$. In $\mathcal C$ we draw

$$x \xrightarrow{\eta_x} RL(x)$$

$$R(y)$$

We know that there is one and only one $h: L(x) \to y$ such that $g = \overline{h}$. Then

$$g = \overline{h1_{L(x)}L\left(1_{x}\right)} = R(h)\overline{1_{L(x)}}1_{x} = R(h)\eta_{x}.$$

Example 2.4 (Prescribing functions via currying). [Yet to be TeXed...]

[More examples of units and counits here...]

3 Adjunctions and limits

Let \mathcal{I} and \mathcal{C} be two categories. For every $v \in |\mathcal{C}|$ we have the *constant functor*

$$k_n:\mathcal{I}\to\mathcal{C}$$

where $k_v(i) := v$ for every $i \in |\mathcal{I}|$ and $k_v(f) := 1_v$ for every morphism f of \mathcal{I} . Recall that $\lambda : k_v \Rightarrow F$ being a limit of a functor $F : \mathcal{I} \to \mathcal{C}$ means:

for every $\mu: k_v \Rightarrow F$ there exists one and only one $f: a \to v$ of C such that $\mu_i = \lambda_i f$ commutes for every object i of \mathcal{I} .

That is, if you put it in other words, it sounds like:

there is a bijection

$$C(a,v) \rightarrow [\mathcal{I},C](k_a,F)$$

taking $f: a \rightarrow v$ to the natural transformation

$$\lambda_{\bullet} f : k_a \Rightarrow F, \ \lambda_{\bullet} f(i) := \lambda_i f.$$

There is a smell of adjunction situation here. Let us start with finding an appropriate pair of functors

$$\mathcal{C} \rightleftharpoons [\mathcal{I}, \mathcal{C}]$$
.

One functor is already suggested:

$$\Delta: \mathcal{C} \to [\mathcal{I}, \mathcal{C}]$$

takes $x \in |\mathcal{C}|$ to the functor $\mathcal{I} \to \mathcal{C}$ that maps every object to x and every morphism to 1_x ; then for $i \in |\mathcal{I}|$ define

$$\Delta\left(x \xrightarrow{f} y\right)$$

to be the natural transformation $\Delta(x) \Rightarrow \Delta(y)$ amounting uniquely of f.

From now on, assume \mathcal{I} is small and every functor $\mathcal{I} \to \mathcal{C}$ has a limit. Now, in spite of not being strictly unique ['strictly unique'... huh?], all the limits of a given functor are isomorphic, so are the vertices: let us indicate by $\lim F$ the vertex of any of the limits of F. Now, take a natural transformation

lim *F* is the vertex of some limit

$$\left\{ \lim F \xrightarrow{\lambda_i} F(i) \middle| i \in |\mathcal{I}| \right\}$$

and $\lim G$ is the vertex of a certain limit

$$\left\{ \lim G \xrightarrow{\mu_i} G(i) \middle| i \in |\mathcal{I}| \right\}.$$

If we display all the stuff we have gathered so far, we have for $i \in |\mathcal{I}|$

$$F(i) \xrightarrow{\xi_i} G(i)$$

$$\downarrow^{\lambda_i} \qquad \qquad \downarrow^{\mu_i}$$

$$\lim F \qquad \lim G$$

$$(3.7)$$

4. Triangle Identities

The universal property of limits ensures that there is one and only one morphism $\lim F \to \lim G$ making the above diagram a commuting square. Let us call this morphism $\lim \xi$. We have a functor

$$\lim : [\mathcal{I}, \mathcal{C}] \to \mathcal{C}$$

indeed. If you take F = G and η the identity of the functor F in (3.7), then

$$\lim \mathbf{1}_F = \mathbf{1}_{\lim F},$$

obtained by uniquely employing the universal property of limit. Now take three functors $F, G, H: \mathcal{I} \to \mathcal{C}$ and two natural transformations $F \stackrel{\alpha}{\Longrightarrow} G \stackrel{\beta}{\Longrightarrow} H$. To these functors are associated the respective limits

$$\left\{ \lim F \xrightarrow{\lambda_i} F(i) \middle| i \in |\mathcal{I}| \right\}$$

$$\left\{ \lim G \xrightarrow{\mu_i} G(i) \middle| i \in |\mathcal{I}| \right\}$$

$$\left\{ \lim H \xrightarrow{\eta_i} H(i) \middle| i \in |\mathcal{I}| \right\}$$

so that we have commuting squares glued together:

$$F(i) \xrightarrow{\alpha_{i}} G(i) \xrightarrow{\beta_{i}} H(i)$$

$$\downarrow^{\lambda_{i}} \qquad \downarrow^{\mu_{i}} \qquad \uparrow^{\eta_{i}}$$

$$\lim F \xrightarrow{\lim \alpha} \lim G \xrightarrow{\lim \beta} \lim H$$

We have for every $i \in |\mathcal{I}|$

$$\eta_i \lim \beta \lim \alpha = \beta_i \mu_i \lim \alpha = \beta_i \alpha_i \lambda_i;$$

then, by how it is defined the limit of a natural transformation, it must be

$$\lim(\beta\alpha) = \lim\beta\lim\alpha$$
.

The following proposition pushes all this discourse to a conclusion.

Proposition 3.1. There is an adjunction

$$\mathcal{C} \xrightarrow{\stackrel{\Delta}{\underset{\mathrm{lim}}{\longleftarrow}}} [\mathcal{I}, \mathcal{D}]$$

Proof. [Yet to be TEX-ed...]

4 Triangle Identities

[Yet to be TEXed...]

5 Other exercises

Remark 5.1 (About the next exercise). Let \mathcal{C} be a category with binary products and consider one object c of \mathcal{C} . For a object in \mathcal{C} choose a product of a and c

in C. In that context, there is a sensible way to define the functor

$$(\times c): \mathcal{C} \to \mathcal{C}.$$

(If you have not done the exercise of the chapter of limits that about this construction, do it now.)

Exercise 5.2 (Exponential objects). In a category $\mathcal C$ that has binary products, the *exponential object* of two objects a and b of $\mathcal C$ is any

- object of C, that we choose label as b^a
- a morphism ev : $b^a \times a \rightarrow b$, that we call *evaluation map*

such that ev is a terminal object of $(\times a) \downarrow b$. A category $\mathcal C$ is said to 'have exponentials' whenever for every $a,b \in |\mathcal C|$ there is in $\mathcal C$ the corresponding exponential object.

1. Find an adjunction

$$C \stackrel{(\times c)}{ } C$$

This boils down to introducing an appropriate functor \Box^c using uniquely the definition of exponential object.

- 2. Assume $\mathcal C$ has also an initial object 0 and terminal object 1. Prove the following statements.
 - (i) $a \times 0 \cong 0 \times a \cong a$ for every object a of C.
 - (ii) For every $a \in |\mathcal{C}|$, if there is some morphism $a \to 0$, then $a \cong 0$.
 - (iii) Any morphism $0 \to a$ is monic for $a \in |\mathcal{C}|$.
 - (iv) If $0 \cong 1$, then all the objects of C are isomorphic.
 - (v) $a^1 \cong a$, $a^0 \cong 0$ and $1^a \cong 1$ for every $a \in |\mathcal{C}|$.