Introduction to GIS in R

Wildlife Tourism College Pardamat Conservation Area 17 September 2024

Learning Objectives

- Create and import spatial data into R
- Basic vector and raster analysis
- Introduction to remote sensing
- Raster data extraction
- Simple spatial analysis
- Making maps in R

Geographic Information Systems

A computer-based system to create, manage, analyze, and display geographical data

TYPES of SPATIAL DATA:

VECTOR

VS

RASTER

RASTER

VECTOR

Points (Vector)

Single point (no area)

 Examples: GPS points, animal locations

Lines (Vector)

- Series of points connected together in order
- Has length, but not area
 - Examples: roads, boundaries, streams, route traveled

Polygons (Vector)

Series of points connected

Has length, width, and area

 Examples: buildings, administrative boundaries,

X2,Y2

protected areas

Vector data

Attributes are attached to each object:

• Examples: species, date, depth, age, habitat

	OBJECTID	AREA	PERIMETER	COUNTY3_	COUNTY3_ID	COUNTY	
1	36	0.20600000000	2.53700000000	37.00000000000	36.00000000000	Murang'a	
2	35	0.10600000000	1.67700000000	36.00000000000	35.00000000000	Kisii	
3	34	1.45400000000	6.86200000000	35.00000000000	34.00000000000	Narok	
4	33	0.07200000000	1.50500000000	34.00000000000	33.00000000000	Nyamira	
5	40	1.77400000000	7.28000000000	41.00000000000	40.00000000000	Kajiado	

Vector data Queries based on attributes

- Exact matching: ==
 - Name == "Naboisho Conservancy"
- Logical operator : >, <, >=, <=
 - Area > 3000
- Combination of multiple conditions
 - Area > 3000 AND COUNTY == "Narok"

Raster data

- Numbers or values in each pixel (cell)
- Good for mapping things that change continuously (like elevation)

Spatial Resolution: the level of detail of

your data (e.g., pixel size)

Decrease Pixel Size

Increase Resolution

Aqua (MODIS) 250m Resolution

Landsat-8 30m Resolution

Sentinel-2 10m Resolution

PlanetScope (Dove) 3m Resolution

Pleiades 0.5m Resolution

Worldview-4 0.3m Resolution

RASTER

Spectral Bands of Digital Imagery

Landsat-8 Spectral bands

Band Math and Vegetation Indices

0	0	0	0	0		0	0	0	0	0		0	0	0	0	0
0	0	7	7	0		0	0	0	0	0		0	0	7	7	0
0	0	7	7	0	+	3	3	3	0	0	=	3	3	10	0	0
0	0	7	0	0		3	3	3	0	0		3	3	10	0	0
0	0	0	0	0		0	0	0	0	0		0	0	0	0	0

+, -, *, /, max, min, mean etc.

Examples:

 Surface elevation, maximum precipitation, average temperature, vegetation indices

Vegetation Indices & NDVI

NDVI

$$NDVI = \frac{B_{NIR} - B_{RED}}{B_{NIR} + B_{RED}}$$

DVI

RVI

SAVI

DVI=BNIR-BRED

RVI=BNIR/BRED

$$SAVI = \frac{(B_{NIR} - B_{RED})(1 + L)}{B_{NIR} + B_{RED} + L}$$

MSAVI

$$MSAVI = B_{NIR} + \frac{1 - \sqrt{(2B_{NIR} + 1)^2 - 8(B_{NIR} - B_{RED})}}{2}$$

EVI

$$EVI = [(B_{NIR} - B_{RED})/(B_{NIR} + 6B_{RED} - 7.5B_{BLUE} + 1)] \times 2.5$$

ARVI

$$ARVI = \frac{B_{NIR} - (2B_{RED} - B_{BLUE})}{B_{NIR} + (2B_{RED} - B_{BLUE})}$$

Summary

