

Multiple Linear Regression ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะ วิศวกรรมศาสตร์

Predicting software reselling profit

Tayko Software is a software catalog firm that sells games and educational software. It has recently put together a revised collection of items in a new catalog, which it mailed out to its customers. This mailing yielded 1000 purchases. Based on these data, Tayko wants to devise a model for predicting the spending amount that a purchasing customer will yield.

The file Tayko.xls contains the following attributes:

1.	US	Is it a US address?	binary	1: yes 0: no
2 - 16	Source_*	Source catalog for the record	binary	1: yes 0: no
		(15 possible sources)		
17.	Freq.	Number of transactions in last year at source catalog	numeric	
18.	last_update_days_ago	How many days ago was last update to cust. record	numeric	
19.	1st_update_days_ago	How many days ago was 1st update to cust. record	numeric	
20.	Web_order	Customer placed at least 1 order via web	binary	1: yes 0: no
21.	Gender=mal	Customer is male	binary	1: yes 0: no
22.	Address_is_res	Address is a residence	binary	1: yes 0: no
23.	Purchase	Person made purchase in test mailing	binary	1: yes 0: no
24.	Spending	Amount spent by customer in test mailing (\$)	numeric	
25.	Partition	Variable indicating which partition the record will be assigned to	alpha	t: training v: validation

In this study, we are interested only on the <u>purchases</u> (**Purchase=1**). All dummy variables are already created!

Exploration

a) Explore the relationship between Spending and each of the two continuous variables by creating two scatters plots (SPENDING vs. FREQ and SPENDING vs. LAST_UPDATE). Does there seem to be a linear relationship there? => Capture Screen!

Fitting first model

- b) Fit a predictive model for SPENDING using only the following predictors: <u>Freq</u>, <u>Last_update</u>, <u>Web_order</u>, <u>Gender</u>, <u>US</u>, <u>Adress_is_res</u> [Use all these features]
 - 1) Partition the 1000 records into training (Partition=t) & test sets (Partition=v)
 - 2) Run a multiple regression model for SPENDING with the 6 predictors. => <u>Give the regression equation 1</u>
 - 3) Based on the above regression equation and P-value of each predictor, <u>identify the characteristics of high spending buyers</u>.? <u>Please justify your answer</u>
 - 4) If we need to reduce the number of predictors, which predictor(s) would be dropped from the model?

Fitting second model

- c) Fit a second predictive model for SPENDING using your best predictors:
 - 1) Apply multiple linear regression to create a spending prediction model. Then, give the regression equation 2.
 - 2) <u>Displays the prediction results</u> of the purchase amount in the first record of the test data set, along with indicating the <u>error</u> obtained.
 - 3) Give the performance of the model (error) on the test data set.