Лекция №3

СХЕМОТЕХНИКА ВЫЧИСЛИТЕЛЬНЫХ УСТРОЙСТВ

Дисциплина: Архитектура вычислительных систем и компьютерные сети

Преподаватель: Миронов Константин Валерьевич

Поток: ПРО-3

Учебный год: 2024/25

Цифровая схемотехника

Существует 2 типа электронных схем:

- Комбинационные состояние выходов зависит от состояния входов в данный момент
 - Надо учитывать, что каждого элемента есть время задержки, обусловленное неидеальностью технологии изготовления, температурой.
- Последовательностые (схемы с памятью) <...> а также от предшествующего состояния

Содержание лекции

- Комбинационные схемы
 - Синтез универсальных комбинационных схем с помощью карт Карно
 - (Де)кодеры и (де)мультиплексоры
- Последовательностные схемы
 - Триггеры
 - Регистры и счетчики
- Аппаратная реализация арифметических операций
 - Сумматоры и вычитатели
 - Умножители

Методика

- Входные данные таблица истинности
- Таблица истинности преобразуется в логическое выражение
 - Дизъюнктивные и конъюнктивные нормальные формы (ДНФ и КНФ)
 - Совершенные ДНФ и КНФ
 - Для функций от небольшого числа переменных можно использовать карты Карно для построения *минимальных* ДНФ или КНФ
- На большой комбинационной схеме можно попробовать выразить одни функции или их части через другие
- Итоговая логическая функция реализуется в виде схемы на доступных логических элементах

СДНФ и СКНФ

F =

 $\bar{x}_1 \bar{x}_2 \bar{x}_3 \bar{x}_4 +$

 $\bar{x}_1 \bar{x}_2 x_3 \bar{x}_4 +$

 $\bar{x}_1x_2\bar{x}_3\bar{x}_4 +$

 $\bar{x}_1 x_2 x_3 \bar{x}_4 +$

 $x_1 \bar{x}_2 \bar{x}_3 \bar{x}_4 +$

 $x_1 \bar{x}_2 x_3 \bar{x}_4 +$

 $x_1 x_2 \bar{x}_3 x_4 +$

 $x_1 x_2 x_3 x_4$

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	F
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

$$F =$$

$$(x_1 + x_2 + x_3 + \bar{x}_4) *$$

$$(x_1 + x_2 + \bar{x}_3 + \bar{x}_4) *$$

$$(x_1 + \bar{x}_2 + x_3 + \bar{x}_4) *$$

$$(x_1 + \bar{x}_2 + \bar{x}_3 + \bar{x}_4) *$$

$$\left(\bar{x}_1 + x_2 + x_3 + \bar{x}_4\right) *$$

$$(\bar{x}_1 + x_2 + \bar{x}_3 + \bar{x}_4) *$$

$$(\bar{x}_1 + \bar{x}_2 + x_3 + x_4) *$$

$$(\bar{x}_1 + \bar{x}_2 + \bar{x}_3 + x_4) *$$

Выражения формируются тривиально, но неоптимальны с точки зрения количества логических элементов

Карты Карно

X_1	X_2	<i>X</i> ₃	X_4	F
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

Карты Карно

Карта Карно закольцована по горизонтали и вертикали: После четвертой строки идет первая После четвертого столбца идет первый

Карты Карно

Компактная ДНФ строится путем объединения true-ячеек в группы

- Группы на карте Карно это прямоугольники, у которых длина стороны степень двойки (1,2,4 клетки)
- Группы строятся с учетом закольцованности карты
- Группы могут пересекаться
- Каждая группа должна быть как можно больше
- Количество групп должно быть как можно меньше

<i>X</i> ₃ <i>X</i> ₄		00	01	11	10
	00	1	0	0	1
χ_2	01	1	0	0	1
$\boldsymbol{\chi}_1$	11	0	1	1	0
	10	1	0	0	1

Карты Карно

Минимальная ДНФ:

- Каждая группа отдельное слагаемое
- В слагаемое записывается произведение тех переменных, которые имеют одно значение внутри группы
- Инверсии переменных в произведении определяются так же как в СДНФ

$$F = \bar{x}_1 \bar{x}_4 + \bar{x}_2 \bar{x}_4 + x_1 x_2 x_4$$

<i>X</i> ₃ <i>X</i> ₄		00	01	11	10
	00	1	0	0	1
χ_2	01	1	0	0	1
\boldsymbol{X}_1	11	0	1	1	0
	10	1	0	0	1

Карты Карно

Минимальная КНФ строится аналогично

$$F = (x_1 + \bar{x}_4)(x_2 + \bar{x}_4)(\bar{x}_1 + \bar{x}_2 + x_4)$$

<i>X</i> ₃ <i>X</i> ₄		00	01	11	10
	00	1	o	0	1
$\frac{x}{x}$	01	1	o	0	1
×	11	0	1	1	0
	10	1	0	0	1

Карты Карно: особенности

Часто возникает ситуация, когда некоторые значения таблицы истинности не важны для работы схемы. Тогда им выбирают такие значения, которые обеспечивают максимальный размер групп на карте Карно

Карты Карно: особенности

Группа может состоять из одного элемента x_3 1 1 0 0

Сторона группы не может состоять из 3 клеток

Неправильно

Минимальных нормальных форм может быть несколько для одной таблицы истинности

Содержание лекции

- Комбинационные схемы
 - Синтез универсальных комбинационных схем с помощью карт Карно
 - (Де)кодеры и (де)мультиплексоры
- Последовательностные схемы
 - Триггеры
 - Регистры и счетчики
- Аппаратная реализация арифметических операций
 - Сумматоры и вычитатели
 - Умножители

Декодер (дешифратор)

P	Адрес		Разрешение	Состояние выходов							
A ₂	A ₁	A ₀	E	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
0	0	0	0	X	X	X	X	X	X	X	X
0	0	0	1	0	0	0	0	0	0	0	1
0	0	1	0	X	X	X	X	X	X	X	X
0	0	1	1	0	0	0	0	0	0	1	0
0	1	0	0	X	X	X	X	X	X	X	X
0	1	0	1	0	0	0	0	0	1	0	0
0	1	1	0	X	X	X	X	X	X	X	X
0	1	1	1	0	0	0	0	1	0	0	0
1	0	0	0	X	X	X	X	X	X	X	X
1	0	0	1	0	0	0	1	0	0	0	0
1	0	1	0	X	X	X	X	X	X	X	X
1	0	1	1	0	0	1	0	0	0	0	0
1	1	0	0	X	X	X	X	X	X	X	X
1	1	0	1	0	1	0	0	0	0	0	0
1	1	1	0	X	X	X	X	X	X	X	X
1	1	1	1	1	0	0	0	0	0	0	0

Перевод из двоичного кода в унарный

Кодер, мультиплексор, демультиплексор

- **Кодер (шифратор)** преобразование из унарного кода в двоичный
 - Реализуется через комбинацию логических сложений
- **Мультиплексор** вывод сигналов от разных источников к одному получателю
 - А кодирует номер источника, с которого идет сигнал
 - Реализуется на основе декодера, выходы которого перемножаются с выходами соответствующих источников
 - Используется для вывода данных из регистров
 - Любую таблицу истинности можно реализовать через мультиплексор с 1 и 0 на источниках
- **Демультиплексор** передача сигнала от одного источника разным получателям
 - Реализуется аналогично мультиплексору
 - Используется для записи данных в регистры

Содержание лекции

- Комбинационные схемы
 - Синтез универсальных комбинационных схем с помощью карт Карно
 - (Де)кодеры и (де)мультиплексоры
- Последовательностные схемы
 - Триггеры
 - Регистры и счетчики
- Аппаратная реализация арифметических операций
 - Сумматоры и вычитатели
 - Умножители

Бистабильная ячейка

- Схема из двух стрелок Пирса или штрихов Шеффера, выходы которых перекрестно соединены с входами
- Может хранить 1 бит информации
- На основе бистабильных ячеек строятся **триггеры** [flip-flop] устройства с двумя выходами (один инверсия второго), позволяющие хранить 1 бит информации
- Сама по себе бистабильная ячейка может рассматриваться как асинхронный RS-триггер

S	R	Q _{n+1}	Режим	
0	0	Q _n	хранение	
1	0	1	запись 1	
0	1	0	запись 0	
1	1	-	не допускается	

На самом деле значение будет, но оба выхода окажутся равны

Триггеры

• Синхронный однотактный RS-триггер – переключается между состояниями по тактовому сигналу

• **Двухтактный** RS-триггер – двухтактная структура позволяет строить схемы, в которых можно не только хранить предыдущее состояние, но и инвертировать его

Триггеры

- **JK-триггер** универсальный триггер, при входных сигналах 11 (запретных для RS-триггера) инвертирует свое предыдущее значение
- **T-триггер** JK-триггер, у которого на оба входа подается один сигнал
 - В таблице истинности остаются только первая и последняя строчки (хранение и инверсия)
 - Если синхросигнал колеблется с заданной частотой, то выход будет колебаться с вдвое меньшей
 - Если соединить Т-триггеры в цепочку (Q предыдущего подается на Т следующего), каждый следующий будет колебаться с вдвое меньшей частотой получится счетчик импульсов

Триггеры

- **D-триггер** JK- или RS-триггер, у которого инверсия первого входа подается на второй
 - В таблице истинности остаются только вторая и третья строчки (0 и 1)
 - Обеспечивает задержку сигнала на 1 такт
 - Если соединить в цепочку D-триггеры (Q предыдущего подается на D следующего), то на каждом такте значение предыдущего триггера будет переходить на следующий получится сдвиговый регистр

с 0 на 1

- DV- и TV-триггеры варианты D- и T-триггеров, в которых есть дополнительный сигнал V (Verbot), запрещающий/разрешающий переключение состояний (как бы дополнительный синхросигнал)

Содержание лекции

- Комбинационные схемы
 - Синтез универсальных комбинационных схем с помощью карт Карно
 - (Де)кодеры и (де)мультиплексоры
- Последовательностные схемы
 - Триггеры
 - Регистры и счетчики
- Аппаратная реализация арифметических операций
 - Сумматоры и вычитатели
 - Умножители

Счетчики импульсов

• Варианты:

- Цепочка Т-триггеров (Q предыдущего подается на Т следующего)
- Цепочка ЈК-триггеров (Q предыдущего подается на Ј и К следующего)
- Вход К ЈК-триггеров позволяет обнулить значение счетчика
 - * на картинке используется вход R RSтриггера, на котором построен Т-триггер
- Если читать разряды Q справа налево, получится число тактов, прошедших с прошлого обнуления
- Аналогично на триггерах можно строить другие счетчики (вычитающие, в специальных кодах, с заданным модулем)

Регистры

- Массив триггеров для хранения многоразрядных данных
- Типы:
 - Параллельный ввод и вывод
 - Сдвиговые регистры:
 - Последовательный ввод и/или вывод

Сдвиговые регистры

- Преобразуют последовательный код в параллельный и/или наоборот
- Варианты:
 - Цепочка D-триггеров (Q предыдущего подается на D следующего)
 - Цепочка JK/RS-триггеров (Q предыдущего подается на J/S следующего, а not(Q) на K/R)

Преобразование последовательного кода в параллельный

Содержание лекции

- Комбинационные схемы
 - Синтез универсальных комбинационных схем с помощью карт Карно
 - (Де)кодеры и (де)мультиплексоры
- Последовательностные схемы
 - Триггеры
 - Регистры и счетчики
- Аппаратная реализация арифметических операций
 - Сумматоры и вычитатели
 - Умножители

Полусумматор

- это устройство, предназначенное для осуществления операции арифметического сложения двух одноразрядных чисел.

A	В	Σ	C_{0}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$\sum = A \oplus B$$
$$C_0 = A * B$$

Полный сумматор

- это устройство, предназначенное для арифметического сложения двух одноразрядных чисел с учетом переноса из младшего разряда.

A	В	C_{in}	\sum	C_{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1
1	1	1	0	1

Многоразрядные сумматоры (параллельные)

C = (A + B) mod 2^n n – число разрядов

Полувычитатель

A	В	D	B_0		
0	0	0	0		
0	1	1	1		
1	0	1	0		
1	1	0	0		
$D = A \oplus B$					

$$B_0 = \overline{A} * B$$

Полный вычитатель

A	В	B_{in}	D	B_0
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Многоразрядный вычитатель с переводом в обратный код

Универсальный сумматор-вычитатель в дополнительном коде

Последовательный сумматор

- При каждом такте на вход поступает очередной двоичный разряд (от младших разрядов к старшим)
- На выходе на каждом такте значение соответствующего разряда суммы
- Триггер используется для переноса 1 в старший разряд («1 в уме»)
- По сравнению с параллельным сумматором (комбинационной схемой):
 - Требуется меньше логических элементов
 - Может использоваться для суммирования чисел с произвольным числом разрядов
 - Операция занимает много времени (на каждый разряд требуется один такт)

Содержание лекции

- Комбинационные схемы
 - Синтез универсальных комбинационных схем с помощью карт Карно
 - (Де)кодеры и (де)мультиплексоры
- Последовательностные схемы
 - Триггеры
 - Регистры и счетчики
- Аппаратная реализация арифметических операций
 - Сумматоры и вычитатели
 - Умножители

Умножители

- Табличные
- Многократное сложение
- Сложения и сдвиги
- Модульные

Умножители

- Табличные
- Многократное сложение
- Сложения и сдвиги
- Модульные

$A_{2}A_{3} A_{0}A_{1}$	00	01	10	11
00	0	0	0	0
01	0	1	2	3
10	0	2	4	6
11	0	3	6	9

Преимущества: высокая скорость

Недостаток: применим только для чисел небольшой разрядности.

^{*}ROM условно называется памятью, по факту может быть комбинационная схема

Умножители

- Табличные
- Многократное сложение
- Сложения и сдвиги
- Модульные

РМ-регистр множимого

Сч-счетчик

РМн-регистр множителя

Преимущества: простота схемной реализации

Недостаток: медленная скорость выполнения операций

Умножители

- Табличные
- Многократное сложение
- Сложения и сдвиги
 - Умножение «столбиком»
- Модульные

Умножители

Метод основан на использовании представления числа в виде степенного

• Табличные

- ряда.
- Многократное сложени
- Сложения и сдвиги
- Модульные

$$A = \sum_{i=0}^{n-1} a_i * 2^i, \quad B = \sum_{j=0}^{n-1} b_j 2^j$$

$$A * B = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} a_i * b_j * 2^{i+j}$$

Операция суммирования и умножения на степень числа 2 осуществляется специальным параллельным сумматором, который также может быть реализован в виде комбинационной схемы.

Модульное умножение может быть осуществлено над числами в параллельном коде и над числами в последовательном коде.

Преимущество: высокая скорость.

Недостаток: существенная сложность.