Text Classification II

Logistic Regression

Quick Review on Linear Regression

How do we represent h?

$$h(x) = w_0 + w_1 x$$

Linear regression with one variable. "Univariate Linear Regression"

Continuous Target

- Let us build an auto-grade algorithms
- Input feature is one scalar: your previous GPA
- Target value is: your score in K6312

Previous GPA

Discrete Target

- We only want to predict whether you can pass K6312
- Input feature is one scalar: your previous GPA
- Target value is: a binary value (1: pass, 0: fail)

Classification Problem

Classification

Binary Classification

- Email: spam or not spam
- Online Transaction: fraud or not fraud
-

$$y = \begin{cases} -1 & \text{Negtive class, e. g. not spam and not fraud} \\ 1 & \text{Positive class, e. g. spam and fraud} \end{cases}$$

Machine Learning is to learn a function from data such that

$$f: X \to Y$$

Can we use linear regression for classification?

After fitting,

```
print(lin_regression.coef_)
print(lin_regression.intercept_)
```

[0.37593985] -0.5902255639097744

Output Value is continuous

- For classification problem, we want the output value to be probabilistic, which should be in range(0, 1).
- However, the output of linear regression is unbounded

```
print(lin_regression.coef_)
print(lin_regression.intercept_)
```

[0.37593985] -0.5902255639097744

$$y=0.3759*x-0.59$$

When
$$x = 5$$
, $y=1.289$

When
$$x = 4.6$$
, $y=1.038$

When
$$x = 1.2$$
, $y=-0.13$

What we want is that the proba. Scores of the first two cases is close to 1 and the last case is close to 0

Imbalanced data

• Let us add 20 students whose GPA are in the range(6, 7) and pass the K6312

Logistic Function

t: (-infinite, +infinite)

 $\sigma(t)$: probabilistic score from 0 to 1

$$\sigma(t)=rac{1}{1+e^{-t}}=rac{e^t}{1+e^t}$$

Regression $\sigma(t) = \frac{1}{1+e^{-t}} = \frac{e^t}{1+e^t}$ Logistic Regression Linear

$$f(x) = w * x + b$$

$$f(x)=rac{1}{1+e^{-(w*x+l)}}$$

Logistic Regression

Logistic Regression

- Uses logistic function to model binary target
- Model the distribution of p(y = 1|x) given x
- The exact parametric formulation is:

$$p(y=1|x)=rac{1}{e^{(-wx+b)}+1}=rac{e^{(wx+b)}}{e^{(wx+b)}+1} \ p(y=0|x)=1-rac{1}{e^{(-wx+b)}+1}=rac{1}{e^{(wx+b)}+1}$$

 Let us check the performance of Logistic Regression on K6312 auto-grade system

After fitting

```
print(log_regression.coef_)
print(log_regression.intercept_)
```

```
[[1.93582432]]
[-5.61388646]
```


Output Value is Prob.score

```
print(log\_regression.coef\_) \\ print(log\_regression.intercept\_) \\ print(log\_regression.intercept\_) \\ p(y=1|x)=e^t/(1+e^t) \\ p(y=0|x)=1/(1+e^t) \\ p(y=0|x)=1
```

```
prob(y=0) prob(y=1)

x = 5  [[0.01686949 0.98313051]

x = 4.6  [0.03588451 0.96411549]

x = 1.2  [0.96411521 0.03588479]]
```

Imbalanced data

• Let us add 20 students whose GPA are in the range(6, 7) and pass the K6312

How to learn parameters

- Fitting the data
- In the python code, it is simple

Examples

```
>>> from sklearn.datasets import load_iris
>>> from sklearn.linear_model import LogisticRegression
>>> X, y = load_iris(return_X_y=True)
>>> clf = LogisticRegression(random_state=0) fit(X, y)
```

Actually, it is an optimization problem (in math perspective)

Optimization

- Fitting the data -> define a loss function, which reflects the fitness of the different model parameters over the parameters
- Optimization is the process to search the minimum point

Math Warning

Entropy Loss

ullet For each single data point: $ilde y=p(y=1|x)=rac{1}{e^{(-wx+b)}+1}=rac{e^{(wx+b)}}{e^{(wx+b)}+1}$

$$Loss(y, ilde{y}) = -[ylog ilde{y} + (1-y)log(1- ilde{y})]$$

- To understand this loss function, compute the loss values for these following cases:
 - o If y=1, predict prob of y=1 is 0.9,
 - If y=0, predict prob of y=1 is 0.2,
 - If y=1, predict prob of y=1 is 0.2,
 - If y=0, predict prob of y=1 is 0.9,

Whether the model prediction is good nor not?

Entropy Loss

ullet For each single data point: $ilde y=p(y=1|x)=rac{1}{e^{(-wx+b)}+1}=rac{e^{(wx+b)}}{e^{(wx+b)}+1}$ Loss(y, ilde y)=-[ylog ilde y+(1-y)log(1- ilde y)]

 To understand this loss function, compute the loss values for these following cases:

```
If y=1, predict prob of y=1 is 0.9, -\log 0.9=0.1 Good Fitness, Low Loss

If y=0, predict prob of y=1 is 0.2, -\log 0.8=0.22

If y=1, predict prob of y=1 is 0.2, -\log 0.2=1.6

If y=0, predict prob of y=1 is 0.9, -\log 0.1=2.3

Bad Fitness, High Loss
```

Optimization is to reduce Loss

 For training data of m data points (x, y), the loss is the function of model parameters

$$J(w,b)=rac{\sum_{i=1}^m Loss(ilde{y}^i,y^i)}{m}$$
 $ilde{y}=p(y=1|x)=rac{1}{e^{(-wx+b)}+1}=rac{e^{(wx+b)}}{e^{(wx+b)}+1}$

Gradient Descent Algorithm

Like hiking down a mountain

Decision boundary of Logistic Regression

Decision is made by comparing the probabilities

$$p(y=1|\mathbf{x}) > p(y=-1|\mathbf{x}) \Leftrightarrow \frac{p(y=1|\mathbf{x})}{p(y=-1|\mathbf{x})} > 1$$

• Take the logarithm

$$\ln \frac{p(y=1|\mathbf{x})}{p(y=-1|\mathbf{x})} = \mathbf{w}^{\top}\mathbf{x} + b \to \mathbf{w}^{\top}\mathbf{x}$$

Decision boundary is linear

$$\mathbf{w}^{\top}\mathbf{x} + b = 0$$

$$y = \begin{cases} +1 & \text{if } \mathbf{w}^{\top}\mathbf{x} + b > 0 \\ -1 & \text{otherwise} \end{cases}$$

* The threshold is tunable

We can have multiple w

- For simplicity, we only have one feature x therefore only one w and bias b in the example.
- In practice, each data sample is represented by a n-dimensional vector and the logistic regression model has n weights and one bias b.
- For text mining, the input vectors will be BoW vectors.

output:
$$\sigma(-1.2*(10) + 1.4*(5) + 2.2*(3) + 0.6*(5) + 0.2)$$

Evaluation

i.e., how to quantify the matching degree

between the ground truth y and the predicted labels y[^].

How to do we evaluate the model performance?

Evaluation of Classification Problems

Confusion Matrix

	Predicted Positive	Predicted Negative
Positive Label	TP True Positive	FN False Negative
Negative Label	FP False Positive	TN True Negative

Accuracy: How accurate is the prediction?

$$\frac{\text{Correct Prediction}}{\text{Total \#-of-Samples}} = \frac{\text{TP + TN}}{\text{TP + FP + TN + FN}}$$

Precision and Recall

	Predicted Positive	Predicted Negative
Positive Label	TP	FN
Negative Label	FP	TN

• Precision =
$$\frac{TP}{TP + FP}$$

- how accurate the positive prediction is?

• Recall =
$$\frac{TP}{TP + FN}$$

– how many positive cases are detected?

Example: K6312 Auto-grade

	Predicted Positive	Predicted Negative
Positive Label	27	4
Negative Label	1	18

- Accuracy = (27 + 18) / (27 + 1 + 18 + 4) = 0.9
- Precision = 27 / (27 + 1) = 0.964
- Recall = 27/(27 + 4) = 0.871

Can we do better?

Precision vs Recall

- Case 1: Accuracy is high, but recall is low.
 - o Examples?

- Case 2: Accuracy is high, but precision is low.
 - o Examples?

Precision vs Recall

Precision v.s. Recall

- Under non-trivial situation, precision and recall cannot be optimized at the same time
 - Which one to optimize depends on use cases

precision-and-recall-3da06bea9f6c

F1 Score Vs Accuracy

- Accuracy does not perform well for imbalanced data sets
 - Assume we have 100 transaction, 90 are non-fraud cases and 10 fraud ones
 - High accuracy can be achieved by classifying every transaction as non-fraud
- Precision and Recall can give more insights
- F1 Score conveys the balance between the precision and recall.

$$F1 = \frac{2 \times precision \times recall}{precision + recall}$$

precision-and-recall-3da06bea9f6c

Receiver Operation Characteristic

- Illustrates the diagnostic ability of a binary classifier as its discrimination threshold varies
- True positive rate (TPR)
 against the false positive
 rate (FPR) at various
 threshold

en.wikipedia.org/wiki/Receiver_operating_characteristic

Receiver Operation Characteristic

FPR: Probability of False Alarm

$$FPR = \frac{FP}{FP + TN}$$

TPR: Probability of Detection

$$TPR = \frac{TP}{TP + FN}$$

- The best possible prediction method would yield a point in the upper left corner (0,1)
- The (0,1) point is also called a perfect classification
- A random guess would give a point along a diagonal

en.wikipedia.org/wiki/Receiver_operating_characteristic

Area Under the Curve

Area Under Curve (AUC) is the area under the ROC curve

AUC(A) > AUC(B)

Classifier A is better than Classifier B

- ROC curve plots parametrically TPR(T) versus FPR(T) with threshold T as the varying parameter
- AUC equals to the probability that the classifier will rank a randomly chosen positive example higher than a randomly chosen negative example
- AUC is one of the most widely used metrics for evaluation of binary classification problem

Multiclass Classification

Multiclass Classification

Weather: Cloudy, Rain, Snow, ...

• Fruit: Apple, Orange, Peach, ...

• Email tagging: Work, Ad, Friends, ...

Multiclass Classification

One-v.s.-All (One-v.s-Rest)

Train a LR classifier p_i each class i to predict t of y = i

$$t^* = \arg\max_i p$$

Softmax Classifier

https://stats.stackexchange.com/questions/265905/derivative-of-softmax-with-respect-to-weights

Generative vs Discriminative

For Classification

- Generative Approaches :
 - Given feature X and label Y, a generative model try to find the joint probability: P(X, Y)
 - O How the data was generated?
 - \circ From P(X,Y) -> P(Y|X), then categorize
 - Less Direct, More Probabilistic
- Discriminative Approaches :
 - Given feature X and label Y, a discriminative model try to find the joint probability: P(Y|X)
 - Distribution-free Approaches
 - Simply categorizes the data
 - More Direct, Less Probabilistic

Questions

- Generative and Discriminative?
 - Naive Bayes
 - Logistic Regression

Naive Bayes Model for Text Generation

- For the index of words in range(1, 2, 3,T)
 - Random sample the category hi from p(h) or hi is fixed
 - Sample the word from the distribution: $p(d|h_i)$
- However, it does not consider the words' intrinsic dependency
 - E.g., Probability (read the paper) > Probability(read the movie)
 - The words at index T should depend on previous words (T-1, T-2, T-3,...)
- Hidden Markov Model partially solve the above issue