

Mathematik 1 Übung 6 (Anwendungen der Differentialrechnung)

- 1. Zeigen Sie, dass die Funktion $f(x) = -5 \cdot |x^2 4|$ an den Stellen $x_1 = -2$ und $x_2 = 2$ nicht differenzierbar ist.
- 2. Untersuchen Sie mit Hilfe der ersten Ableitung, in welchen Bereichen die folgenden Funktionen monoton steigend oder monoton fallend sind:

a)
$$f(x) = x^2 - 5x + 2$$

b)
$$f(x) = (x^2 - 2) \cdot e^{-2x}$$

3. Geben Sie alle Nullpunkte, Extrempunkte und Wendepunkte der folgenden Funktionen an:

a)
$$f(x) = -x^3 + 2x^2 - 3x + 2$$

b)
$$f(x) = \frac{x^2 - 3}{x + 2}$$

c)
$$f(x) = (x+2) \cdot e^{-2x}$$

- 4. Für die Konstruktion einer zylindrischen Dose mit einem Fassungsvermögen von 330 ml werden die Abmaße (Höhe und Durchmesser) gesucht, bei denen der Material-aufwand (= Oberfläche des Zylinders) minimal wird.
- 5. Eine Funktion der Form

$$f(x) = \frac{ax^2 + bx + c}{x + d}$$

besitze im Punkt $P_1(1;1)$ einen Hochpunkt, an der Stelle $x_P = -2$ eine Polstelle und bei $x_N = 2$ eine Nullstelle. Bestimmen Sie die Parameter a, b, c und d der Funktion!

6. Die Funktion $f(x) = 5 \cdot \ln(1 + 2x^4)$ soll im Bereich um $x_0 = 2$ durch eine lineare Funktion angenähert werden. Berechnen Sie für die Nährungsfunktion die Funktionswerte an den Stellen $x_1 = 1, 8$ und $x_2 = 2, 2$ sowie den jeweiligen Fehler zu den tatsächlichen Funktionswerten.

Viel Spaß beim Üben!