Assignment 3 - Solutions Automata & Model Checking

1. First, we convert the formula $\phi = \forall \Diamond (a \lor \forall \bigcirc c)$ to ENF: $\phi' = \neg \exists \Box \neg (a \lor \neg \exists \bigcirc \neg c)$.

We compute $Sat(\phi')$ recursively.

First, we have:

•
$$Sat(c) = \{s_2, s_4\}$$

•
$$Sat(\neg c) = S \setminus \{s_2, s_4\} = \{s_0, s_1, s_3, s_5, s_6, s_7, s_8\}$$

and looking at the predecessors of these, we have:

•
$$Sat(\exists \bigcirc \neg c) = \{s_0, s_2, s_3, s_4, s_5, s_6, s_7, s_8\}$$

•
$$Sat(\neg \exists \bigcirc \neg c) = S \setminus \{s_0, s_2, s_3, s_4, s_5, s_6, s_7, s_8\} = \{s_1\}$$

Then

•
$$Sat(a) = \{s_6\}$$

•
$$Sat(a \lor \neg \exists \bigcirc \neg c) = \{s_1, s_6\}$$

•
$$Sat(\neg(a \lor \neg \exists \bigcirc \neg c)) = S \setminus \{s_1, s_6\} = \{s_0, s_2, s_3, s_4, s_5, s_7, s_8\}$$

For $Sat(\exists \Box \neg (a \lor \neg \exists \bigcirc \neg c))$, the algorithm for $\exists \Box$ gives the sequence of sets:

•
$$\{s_0, s_2, s_3, s_4, s_5, s_7, s_8\}$$

•
$$\{s_0, s_4, s_5, s_7, s_8\}$$

•
$$\{s_4, s_5, s_7, s_8\}$$

•
$$\{s_4, s_5, s_7, s_8\}$$

which yields $Sat(\exists \Box \neg (a \lor \neg \exists \bigcirc \neg c)) = \{s_4, s_5, s_7, s_8\}.$

Finally,
$$Sat(\neg \exists \Box \neg (a \lor \neg \exists \bigcirc \neg c)) = S \setminus \{s_4, s_5, s_7, s_8\} = \{\mathbf{s_0}, \mathbf{s_1}, \mathbf{s_2}, \mathbf{s_3}, \mathbf{s_6}\}.$$

So the LTS does satisfy the CTL formula ϕ .

2. (i) An appropriate NFA for $\Box \bigcirc a$ (which is equivalent to $\bigcirc \Box a$) is:

(The a-self-loop on q_1 could equally be labelled with true.)

(ii) An appropriate NFA for $\Box(a \to \bigcirc \Box c)$ is:

Note: In this case, the left self-loop could have been labelled with $\neg a$. This is because $\Box(a \to \bigcirc \Box c)$ is equivalent to saying that the *first* instance of a must trigger $\Box c$. This is not true for the formula $\Box(a \to \bigcirc c)$, as mentioned in lectures.

3. (i) The NBA is not non-blocking, so first we make it so:

The LTS-NBA $\mathcal{M} \otimes \mathcal{A}_{\neg \psi}$ product is:

There is a path to an accepting cycle $(s_0, q_0), (s_1, q_1), (s_2, q_1)^{\omega}$ so the formula ψ is not satisfied in the original LTS \mathcal{M} .

(ii) A suitable LTL formula ψ is $\Box(a \to \bigcirc \Diamond b)$.

We can see that this is not satisfied because there is a path (that can be extracted from the product above) $s_0s_1s_2^{\omega}$ which does not satisfy ψ . For the first occurrence of a (in s_0), there is a subsequent occurrence of b; however, for the second occurrence of a (in s_1), there is none. The fact that b is already true in s_1 does not help because of the "next" in ψ .