

# Faculty of Computing and Information Technology Department of Mathematical and Data Science

# **Bachelor of Science (Honours) in Management Mathematics with Computing**

Academic Year 2020/2021

# BAMS3043 Mathematical and Statistical Software Assignment 4

**Programme of Study**: RMM3S1G2

| No | Student Name | Student ID |
|----|--------------|------------|
| 1  | Eng Wei Hang | 20WMR09180 |
| 2  | Sim Ka Yee   | 20WMR09188 |

First, we drop the row with the null value in the column of target variables and then drop three columns with the highest percentage of null value which are hepatitis B, GDP, and population. The percentage of null values of these three columns seems very high if compared to other columns. After that, we check the correlation between all variables to avoid collinearity problems. We found that three pairs of variables are highly correlated. The first pair is infant deaths and under-five deaths. The second pair is thinness 1-19 years and thinness 5-9 years while the third pair is income composition of resources and schooling. Thus, we check the correlation of each variable in each pair with our target variable, life expectancy to decide on dropping which column.

| Life expectan | су |
|---------------|----|
|---------------|----|

| infant deaths     | -0.196557 |
|-------------------|-----------|
| under-five deaths | -0.222529 |
| Life expectancy   | 1.000000  |

#### Life expectancy

| thinness 1-19 years | -0.477183 |
|---------------------|-----------|
| thinness 5-9 years  | -0.471584 |
| Life expectancy     | 1.000000  |

#### Life expectancy

| Income composition of resources | 0.724776 |
|---------------------------------|----------|
| Schooling                       | 0.751975 |
| Life expectancy                 | 1.000000 |

Based on the result generated, the columns of infant deaths, thinness 5-9 years, and income composition of resources decided to be dropped because these variables have a lower correlation with life expectancy. After the cleaning process, the dataset has been reduced to 12 features in total. Then, we perform the correlation analysis to each variable with the target variable.

| Life expectancy |
|-----------------|
|-----------------|

| Adult Mortality        | -0.696359 |
|------------------------|-----------|
| Alcohol                | 0.404877  |
| percentage expenditure | 0.381864  |
| Measles                | -0.157586 |
| ВМІ                    | 0.567694  |
| under-five deaths      | -0.222529 |
| Polio                  | 0.465556  |
| Total expenditure      | 0.218086  |
| Diphtheria             | 0.479495  |
| HIV/AIDS               | -0.556556 |
| thinness 1-19 years    | -0.477183 |
| Schooling              | 0.751975  |

According to the result, the 'schooling' variable has the highest percentage of correlation with the target variable among all the other variables. So, we choose 'schooling' as the independent variable, x1.

Before fitting the model, we eliminate the outlier for both x1 and y variables. The elimination of the outlier is important because outliers will increase the variability in the data, which decreases the statistical power (Statistics By Jim, 2019).

#### OLS Regression Results

| ========       |         |             | ===== | ====== |               |         | ========  |
|----------------|---------|-------------|-------|--------|---------------|---------|-----------|
| Dep. Variable: |         | Life exped  | tancv | R-squ  | ared:         |         | 0.621     |
| Model:         |         |             | OLS   | •      | R-squared:    |         | 0.621     |
| Method:        |         | Least So    |       |        | tistic:       |         | 4415.     |
| Date:          |         | Sat, 18 Sep | •     |        | (F-statistic) |         | 0.00      |
| Time:          |         |             | 02:29 |        | ikelihood:    | •       | -8446.6   |
| No. Observat   | ions:   | 10.         | 2700  | AIC:   | IKCIIIIOOU.   |         | 1.690e+04 |
| Df Residuals   |         |             | 2698  | BIC:   |               |         | 1.691e+04 |
|                | •       |             |       | BIC.   |               |         | 1.0916+04 |
| Df Model:      |         |             | 1     |        |               |         |           |
| Covariance T   | •       |             | obust |        |               |         |           |
| ========       |         |             |       |        |               |         |           |
|                | coe     | r sta err   | •     | τ      | P> t          | [0.025  | 0.9/5]    |
|                | 44 705  |             |       |        |               | 40.004  | 42.500    |
| const          | 41.735  |             | _     |        | 0.000         |         | 42.588    |
| Schooling      | 2.296   | 7 0.035     | 6     | 6.448  | 0.000         | 2.229   | 2.365     |
| ==========     | ======  |             |       |        |               |         | ========  |
| Omnibus:       |         |             | 3.241 |        | n-Watson:     |         | 0.214     |
| Prob(Omnibus   | ;):     |             | 0.000 | Jarqu  | e-Bera (JB):  |         | 406.788   |
| Skew:          |         | -           | 0.801 | Prob(  | JB):          |         | 4.65e-89  |
| Kurtosis:      |         |             | 4.025 | Cond.  | No.           |         | 51.7      |
| ========       | ======= |             | ===== | ====== | =========     | ======= | ========  |

The simple linear regression model is y = 41.7359 + 2.2967x1

For the second and third multiple regression models, we decided to fit the model with either 2, 3, or 4 variables based on the adjusted r-squared values. First, we will eliminate the outliers for each combination of x and y variables. After that, we will check the condition number of the combination of x variables and ignore those with condition number greater than 1000 to avoid multicollinearity being high. The high condition number might indicate that there are strong multicollinearity or other numerical problems (Everything is Correlated, 2016). Then, we will choose two combinations of x variables with the highest adjusted r-squared values. This is because adjusted r-squared can indicate how well terms fit a curve or line, but adjusts for the number of terms in a model. If the added variables are useless to a model, adjusted r-squared will decrease. If the added variables are useful to a model, the adjusted r-squared will increase (Statistics How To, n.d.).

|    | First Feature       | Second Feature | Adj. R-Squared |
|----|---------------------|----------------|----------------|
| 55 | HIV/AIDS            | Schooling      | 0.646518       |
| 56 | thinness 1-19 years | Schooling      | 0.643987       |
| 36 | ВМІ                 | Schooling      | 0.635057       |
| 46 | Polio               | Schooling      | 0.625129       |
| 17 | Alcohol             | Schooling      | 0.621255       |

|     | First Feature | Second Feature      | Third Feature | Adj. R-Squared |
|-----|---------------|---------------------|---------------|----------------|
| 117 | Polio         | thinness 1-19 years | Schooling     | 0.653014       |
| 99  | BMI           | thinness 1-19 years | Schooling     | 0.652486       |
| 63  | Alcohol       | thinness 1-19 years | Schooling     | 0.649733       |
| 90  | BMI           | Polio               | Schooling     | 0.643893       |
| 125 | Diphtheria    | HIV/AIDS            | Schooling     | 0.643837       |

|     | First Feature   | Second Feature | Third Feature       | Forth Feature       | Adj. R-Squared |
|-----|-----------------|----------------|---------------------|---------------------|----------------|
| 17  | Adult Mortality | Alcohol        | HIV/AIDS            | thinness 1-19 years | 0.661031       |
| 123 | BMI             | Polio          | thinness 1-19 years | Schooling           | 0.659938       |
| 74  | Alcohol         | BMI            | thinness 1-19 years | Schooling           | 0.656942       |
| 90  | Alcohol         | Polio          | thinness 1-19 years | Schooling           | 0.653788       |
| 10  | Adult Mortality | Alcohol        | ВМІ                 | HIV/AIDS            | 0.653179       |

From the result generated, adult Mortality, alcohol, HIV/AIDS, and thinness 1-19 years has the highest adjusted r-squared value which is 0.661031 while BMI, polio, thinness 1-19 years, and schooling has the second-highest value which is 0.659938. These two combinations of variables will be used to fit the second and third model. Again, before fitting the models, we will eliminate the outlier for both x and y variables.

OLS Regression Results

| ======================================= |             |       |              |                        |          |           |        |
|-----------------------------------------|-------------|-------|--------------|------------------------|----------|-----------|--------|
| Dep. Variable:                          | Life expec  | tancy | R-s          | quared:                |          | 0.662     |        |
| Model:                                  |             | OLS   | Adj          | . R-squared:           |          | 0.661     |        |
| Method:                                 | Least Sq    | uares | F - s        | tatistic:              |          | 1038.     |        |
| Date:                                   | Sat, 18 Sep | 2021  | Pro          | b (F-statisti          | .c):     | 0.00      |        |
| Time:                                   | 16:         | 02:53 | Log          | -Likelihood:           |          | -5892.7   |        |
| No. Observations:                       |             | 2129  | AIC          | :                      |          | 1.180e+04 |        |
| Df Residuals:                           |             | 2124  | BIC          | :                      |          | 1.182e+04 |        |
| Df Model:                               |             | 4     |              |                        |          |           |        |
| Covariance Type:                        | nonr        | obust |              |                        |          |           |        |
| ======================================= |             |       |              |                        |          |           |        |
|                                         |             | std 6 | err          | t                      | P> t     | [0.025    | 0.975] |
| const                                   |             | 0.2   | 247          | 314.751                | 0.000    | 77.315    | 78.285 |
| Adult Mortality                         | -0.0378     | 0.0   | 001          | -31.999                | 0.000    | -0.040    | -0.035 |
| Alcohol                                 | 0.4257      | 0.0   | ð <b>2</b> 3 | 18.699                 | 0.000    | 0.381     | 0.470  |
| HIV/AIDS                                | -5.0515     | 0.2   | 282          | -17.885                | 0.000    | -5.605    | -4.498 |
| thinness 1-19 years                     | -0.2809     | 0.0   | 030          | -9.413                 | 0.000    | -0.339    | -0.222 |
| Omnibus:                                | <br>8       | 5.761 | ====<br>Dur  | =======<br>bin-Watson: | :======= | 0.727     |        |
| Prob(Omnibus):                          |             | 0.000 | Jar          | que-Bera (JB)          | :        | 160.784   |        |
| Skew:                                   | -           | 0.299 |              | b(JB):                 |          | 1.22e-35  |        |
| Kurtosis:                               |             | 4.206 |              | d. No.                 |          | 515.      |        |

The second multiple linear regression model is y = 77.8002 - 0.0378x1 + 0.4257x2 - 5.0515x30.2809x4

4.206 Cond. No.

\_\_\_\_\_\_

OLS Regression Results

| Dep. Variable:                          | Life expectancy  |                 | R-squared:          |           |          | 0.661     |        |
|-----------------------------------------|------------------|-----------------|---------------------|-----------|----------|-----------|--------|
| Model:                                  | OLS              |                 | Adj. R-squared:     |           |          | 0.660     |        |
| Method:                                 | Least Squares    |                 | F-statistic:        |           |          | 1140.     |        |
| Date:                                   | Sat, 18 Sep 2021 |                 | Prob (F-statistic): |           |          | 0.00      |        |
| Time:                                   | 16:02:53         |                 | Log-Likelihood:     |           |          | -7064.3   |        |
| No. Observations:                       | 2349             |                 | AIC:                |           |          | 1.414e+04 |        |
| Df Residuals:                           |                  | 2344            | BIC:                |           |          | 1.417e+04 |        |
| Df Model:                               |                  | 4               |                     |           |          |           |        |
| Covariance Type:                        | nonrobust        |                 |                     |           |          |           |        |
| =============                           |                  |                 |                     |           | ======== | ========  |        |
|                                         | coef             | std e           | err                 | t         | P> t     | [0.025    | 0.975] |
|                                         | 26.7246          |                 |                     |           |          | 34.040    | 20.520 |
| const                                   |                  |                 |                     | 39.682    |          |           |        |
| BMI                                     | 0.0460           | 0.0             | 007                 | 6.982     | 0.000    | 0.033     | 0.059  |
| Polio                                   | 0.1570           | 0.0             | 011                 | 14.575    | 0.000    | 0.136     | 0.178  |
| thinness 1-19 years                     | -0.3448          | 0.0             | 937                 | -9.333    | 0.000    | -0.417    | -0.272 |
| Schooling                               | 1.5610           | 0.0             | 949                 | 31.733    | 0.000    | 1.465     | 1.657  |
| Omnibus:                                | 23               | ======<br>9.204 | <br>Durbi           | n-Watson: | =======  | 0.290     |        |
| Prob(Omnibus):                          | 0.000            |                 | Jarque-Bera (JB):   |           |          | 392.805   |        |
| Skew:                                   | -0.720           |                 | Prob(JB):           |           |          | 5.05e-86  |        |
| Kurtosis:                               | 4.394            |                 | Cond. No.           |           |          | 919.      |        |
| ======================================= |                  |                 |                     |           |          | ========  |        |

The third multiple linear regression model is y = 36.7246 + 0.0460x1 + 0.1570x2 - 0.3448x3 + 1.5610x4

After doing some research, we decided to use **adjusted R-squared** and **Root Mean Square Error(RMSE)** to compare the three models. Same as what has been said above, Adjusted R2 can indicate how well terms fit a curve or line, but adjusts for the number of terms in a model. On the other hand, RMSE can indicate the absolute fit of the model to the data—how close the observed data points are to the model's predicted values. Lower values of RMSE indicate better fit. RMSE is a good measure of how accurately the model predicts the response, and it is the most important criterion for fit if the main purpose of the model is prediction (The Analysis Factor, 2008).



Based on the result generated, model 2 has the highest value of adjusted r-squared and the lowest value of RMSE which are 0.6610 and 3.8532. Therefore, we conclude that **model 2** is the best model.

Based on the answer in task 3, we know that the best model is model 2 and this model will be used to find the prediction interval of life expectancy. At first, we choose the X values using a measure of central tendency which is mean. We get the values of x as below:

x1 - Adult Mortality = 129.4814 x2 - Alcohol = 5.0305 x3 - HIV/AIDS = 0.2409 x4 - thinness 1-19 years = 3.6882

Based on the prediction interval calculated, we are 95% confident that the life expectancy is between 65.2323 years old and 80.3664 years old when the values of x variables are as above.

### **Reference**

- 1. Statistics By Jim. 2019. *Guidelines for Removing and Handling Outliers in Data*. Available at: <a href="https://statisticsbyjim.com/basics/remove-outliers">https://statisticsbyjim.com/basics/remove-outliers</a>> [Accessed 16 Sep. 2021].
- 2. Everything is Correlated. 2016. *Multiple Linear Regression Python*. Available at: <a href="https://lilithelina.tumblr.com/post/147984528439/multiple-linear-regression-python">https://lilithelina.tumblr.com/post/147984528439/multiple-linear-regression-python</a>> [Accessed 16 Sep. 2021].
- 3. Statistics How To. (n.d.). *Adjusted R2 / Adjusted R-Squared: What is it used for?*Available

  <a href="https://www.statisticshowto.com/probability-and-statistics/statistics-definitions/adjusted-r2/">https://www.statisticshowto.com/probability-and-statistics/statistics-definitions/adjusted-r2/</a> [Accessed 16 Sep. 2021].
- 4. The Analysis Factor. 2008. Assessing the Fit of Regression Models The Analysis Factor.

  Available at: <a href="https://www.theanalysisfactor.com/assessing-the-fit-of-regression-models/">https://www.theanalysisfactor.com/assessing-the-fit-of-regression-models/</a> > [Accessed 16 Sep. 2021].