ESCOLA TÈCNICA SUPERIOR D'ENGINYERIA DE TELECOMUNICACIO DEPARTAMENT DE TEORIA DEL SENYAL I COMUNICACIONS MICROONES, QUADRIMESTRE DE TARDOR 00-01

EXAMEN FINAL

PROFESSORS: A. AGUASCA, A. COMERON

I. CORBELLA, F. TORRES

Barcelona, 23 de gener de 2001

Cal realitzar només tres dels quatre problemes proposats Temps: 3 hores. Comenci cada exercici en un full apart.

PROBLEMA 1

El atenuador ideal de la figura, definido por los accesos (1) y (2), tiene los siguientes parámetros s referidos a $Z_0=50 \Omega$: $S_{11}=S_{22}=0$ y $S_{12}=S_{21}=0,6$.

Determinar:

- a) La relación entre R_p y R_s
- b) La atenuación nominal del atenuador en dB.
- c) El valor numérico del fasor b_1 (módulo en \sqrt{W} y argumento en grados).

- d) La potencia disipada por la impedancia de carga Z_L en mW.
- e) La potencia disipada por el atenuador en dBm

PROBLEMA 2

Es dissenya el circuit de la figura per subministrar la mateixa potència a dues càrregues Z_L iguals, diferents de Z_0 (amb Z_0 =50 Ω la impedància de referència de tots els accessos).

a) Determineu, raonadament, quina fracció de potència lliurada pel generador arribarà a cada càrrega. Quin seria el valor màxim de potència que s'entregaria a cada Z_L , referit a la potència disponible de generador?. Quin serà el coeficient de reflexió d'entrada a l'accés 1 (Γ_{IN} en dB) en el cas de màxima potència entregada a les Z_L ?.

- b) Calculeu un possible valor de la longitud ℓ de les dues línies de sortida, i Z_0 ' perquè s'asseguri la màxima potència entregada a les dues càrregues Z_L .
- c) Determineu els paràmetres S_{11} , S_{22} i S_{23} en mòdul i fase de la xarxa resultant sota les condicions de l'apartat b.

Dades: $v_p=3.10^8$ m/s, f=3GHz

PROBLEMA 3

- a) Escriviu la matriu [s] de l'híbrid de 3 dB representat esquemàticament a la figura 1.
- b) Si el pla de referència de l'accés 3 es prolonga mitjançant una línia de transmissió d'impedància característica igual a la de referència, Z_0 , d'una longitud de $\lambda/4$ (fig. 2), escriviu la matriu [s] del circuit resultant.
- c) Si els accessos 3 i 4 es carreguen amb coeficients de reflexió Γ_L idèntics (fig. 3), determineu la matriu [s] del circuit de dos accessos, 1 i 2, que resulta.
- d) Si als accessos 1 i 2 es connecten generadors canònics amb tensions en circuit obert V_{s1} i V_{s2} respectivament (fig. 4), determined les tensions V_{L3} i V_{L4} que apareixen entre els terminals de les càrregues als accessos 3 i 4 en funció de V_{s1} , V_{s2} i Γ_L .

Fig. 1

PROBLEMA 4

A la carta de Smith adjunta es dibuixen els cercles d'estabilitat d'un transistor a 2GHz i per una impedància de referència de 50Ω . Els punts marcats corresponen a:

- C, D: Un coeficient de reflexió de càrrega (Γ_{LC}) i el corresponent d'entrada $\Gamma_i(\Gamma_{LC})$
- E, F: El coeficient de reflexió de mínim soroll $(\Gamma_{s \text{ opt}})$ i el corresponent de sortida $\Gamma_{O}(\Gamma_{s \text{ opt}})$
- G, H: Un coeficient de reflexió de generador (Γ_{sG}) i el corresponent de sortida $\Gamma_{O}(\Gamma_{sG})$
- a) És el transistor incondicionalment estable? Raoneu la resposta.
- b) Determineu els valors de Γ_s i Γ_L per tal d'obtenir màxim guany amb l'aproximació unilateral. És estable l'amplificador amb aquest disseny?. Raoneu la resposta.

- c) Determineu uns valors de Γ_z i Γ_L (amb ajuda dels punts facilitats a la carta de Smith), per tal de fer un disseny de baix soroll (el mínim si és possible), estable i amb un guany elevat. Raoneu l'elecció. Per aquests valors, calculeu la relació entre la potència d'entrada al transistor i la potència disponible del generador en dB.
- d) Dissenyeu una xarxa de sortida que sintetitzi el coeficient de reflexió Γ_L seleccionat a l'apartat anterior. La topologia ha de consistir en una reactància en sèrie seguida d'un adaptador $\lambda/4$. Especifiqueu la longitud física d'aquest si es fa amb una línia microstrip amb $\varepsilon_{ref}=2,25$.

