Semaine 9 : Algèbre linéaire

Exercice 1

Soient $n \in \mathbb{N}^*$, $E = \mathbb{R}_n[X]$, et Δ l'endomorphisme de E défini par :

$$\Delta(P) = P(X+1) - P(X).$$

- (a) Justifier que l'endomorphisme Δ est nilpotent.
- (b) Déterminer des réels $a_0, \ldots, a_n, a_{n+1}$ non triviaux vérifiant :

$$\forall P \in \mathbb{R}_n[X], \quad \sum_{k=0}^{n+1} a_k P(X+k) = 0.$$

Exercice 2

Soit E un K-espace vectoriel et f un endomorphisme de E nilpotent, i.e. tel qu'il existe $n \in \mathbb{N}^*$ pour lequel $f^n = 0$. Montrer que $\mathrm{Id} - f$ est inversible et exprimer son inverse en fonction de f.

Exercice 3

Soient u et v deux endomorphismes d'un espace vectoriel de dimension finie E.

(a) Montrer que:

$$|\operatorname{rg}(u) - \operatorname{rg}(v)| \le \operatorname{rg}(u+v) \le \operatorname{rg}(u) + \operatorname{rg}(v).$$

- (b) Trouver u et v dans $\mathcal{L}(\mathbb{R}^2)$ tels que $\operatorname{rg}(u+v) < \operatorname{rg}(u) + \operatorname{rg}(v)$.
- (c) Trouver u et v dans $\mathcal{L}(\mathbb{R}^2)$ tels que $\operatorname{rg}(u+v) = \operatorname{rg}(u) + \operatorname{rg}(v)$.

Exercice 4

Soit E un K-espace vectoriel de dimension n>1 (avec $K=\mathbb{R}$ ou \mathbb{C}). Soit f un endomorphisme de E nilpotent d'ordre n. On note :

$$C(f) = \{ g \in \mathcal{L}(E) \mid g \circ f = f \circ g \}.$$

- (a) Montrer que C(f) est un sous-espace vectoriel de $\mathcal{L}(E)$.
- (b) Soit $a \in E$ tel que $f^{n-1}(a) \neq 0$. Montrer que la famille $(a, f(a), \dots, f^{n-1}(a))$ constitue une base de E.
- (c) Soit $\varphi_a: C(f) \to E$ définie par $\varphi_a(g) = g(a)$. Montrer que φ_a est un isomorphisme.
- (d) En déduire que :

$$C(f) = \operatorname{Vect}(\operatorname{Id}, f, \dots, f^{n-1}).$$

Exercice 5

Soit E un K-espace vectoriel de dimension finie et $f, g \in \mathcal{L}(E)$. Montrer que :

$$\operatorname{Im}(g) \subset \operatorname{Im}(f) \iff \exists h \in \mathcal{L}(E), g = f \circ h.$$

Exercice 6

Soient f et g appartenant au dual de E tels que $\ker(f) = \ker(g)$. Montrer qu'il existe un scalaire $\alpha \in \mathbb{K}$ tel que :

$$f = \alpha \cdot g$$
.

Exercice 7

Soit f un endomorphisme d'un espace vectoriel E. On considère les suites des noyaux et des images itérées de f:

- (a) Montrer que la suite $\ker(f^p)$ est croissante et que la suite $\operatorname{Im}(f^p)$ est décroissante.
- (b) Justifier qu'il existe un entier $n \in \mathbb{N}^*$ tel que :

$$\ker(f^n) = \ker(f^{n+1})$$
 et $\operatorname{Im}(f^n) = \operatorname{Im}(f^{n+1})$.

(c) Interpréter n en fonction de la dimension de E.