Московский государственный университет имени М. В. Ломоносова Механико-математический факультет

так чисто по приколу

База ангема для SVM

Cmyдент 504 группы Γ имаев Назар

1 Введение

В целом, цель – понять, как вычисляется расстояние от точки до прямой, и почему полуплоскости задаются неравенствами (w,x) > 0 и (w,x) < 0.

2 Откуда появляется уравнение прямой ax + by + c = 0

Понятно, что прямая на плоскости может быть записана как:

$$\overrightarrow{r} = \overrightarrow{r_0} + \overrightarrow{a}t \tag{2.1}$$

Перепишем в координатах:

$$\begin{cases} x = x_0 + \alpha t \\ y = y_0 + \beta t \end{cases} \tag{2.2}$$

домножим первое уравнение на α , а второе на β , и вычтем. Получим :

$$\beta x - \alpha y = \beta x_0 - \alpha x_0 \tag{2.3}$$

Переобзначив, получим требуемое. Получили, что любая точка прямой (1.2)(понять как сделать референс) удовлетворяет этому уравнению. Теперь надо понять, что любое решение этого уравнения удовлетворяет (1.2). Для любого значения y найдется значение x, т.ч уравнение выполняется, т.е y у нас из \mathbf{R} . То есть y можно записать как $y = y_0 + \beta t$. Подставив это в (1.3) требуемое.

3 Небольшие леммы

zkzk

3.1 Описание модели

Рассмотрим рынок, состоящий из $m \geq 2$ ценных бумаг и $n \geq 1$ факторов. Цена і-ой ценной бумаги в данной модели задается следующим стохастическим дифференциальным уравнением:

$$\begin{cases} \frac{dS_i}{S_i} = (\alpha + AX(t))_i dt + \sum_{k=0}^{m+n} \sigma_{ik} dW_k, \\ S_i(0) = s_i, \quad i = 1, \dots m \end{cases}$$
 (3.1)

а X(t) удовлетворяет следующему СДУ:

$$\begin{cases} dX(t) = (\beta + BX(t))dt + \Lambda dW, \\ X(0) = x \end{cases}$$
 (3.2)

Коэффициенты в этих уравнениях:

 α – вектор длины m

A – матрица размера $m \times n$

 Σ – матрица размера $m \times (m+n)$. σ_{ik} – её элементы

 β – вектор длины n

B – матрица размера $n \times n$

 Λ – матрица $n \times (m+n)$

Обозначим за $\overline{h(t)}$ процесс управления капиталом, где $\sum\limits_{i=1}^m h_i(t)=1.$

Капитал V(t) удовлетворяет следующему уравнению:

$$\begin{cases} dV(t) = V(t) (\sum_{i=1}^{m} h_i(t) (\alpha + AX(t))_i dt + \sum_{i=1}^{m+n} \sigma_{ik} dW_k)), \\ V(0) = v_0 \end{cases}$$
(3.3)

Оптимальное уравнение должно максимизировать следующий функционал:

$$J_{\theta}(v, x, h(.)) = \liminf_{x \to \infty} \left(-\frac{2}{\theta} t^{-1} ln(E(e^{\frac{-\theta}{2} lnV(t)})) \right)$$
 (3.4)

при условиях V(0) = v, X(0) = x. Параметр $\theta : (\theta = 1)$ означает осторожного игрока, $\theta = -1$ – авантюрного, $\theta = 0$ – безразличного к риску).

Введем следующий функционал:

$$K_{\theta}(x,h) = \frac{1}{2}(\frac{\theta}{2} + 1)(h, \Sigma \Sigma^{T} h) - (h, \alpha + AX)$$
(3.5)

При фиксированном θ обозначим за $H_{\theta}(x)$ точку в которой достигается инфимум (2.5). Утверждается, что управление $h(t) = H_{\theta}(X(t))$ является оптимальным для задачи максимизации функционала (2.4).

3.2 Конкретный случай

Рассмотрим рынок с 2-мя ценными бумагами и 1-им фактором, задающимися следущими СДУ:

$$\begin{cases}
\frac{dS_1}{S_1} = (0.15 - X(t))dt + 0.2dW_1, \\
S_1(0) = s_1, \quad i = 1, \dots m, \\
\frac{dS_2}{S_2} = X(t)dt + dW_2, \\
S_2(0) = s_2, \quad i = 1, \dots m,
\end{cases}$$
(3.6)

$$\begin{cases} dX(t) = (0.05 - X(t))dt + 0.02dW_3, \\ X(0) = x \end{cases}$$
 (3.7)

Пусть $\theta = 0$.

Положим h1 = h, h2 = 1 - h. Найдем оптимальное управление:

$$K_{\theta}(x,h) = \frac{1}{2}(0.04h^2 + (1-h)^2) - (0.15-x)h - (1-h)x = \frac{1}{2} * 1.04 * h^2 - (1.15-x)h - x;$$

Это квадратичная функция с положительным старшим коэффициентом. Значит

$$H_{\theta}(x) = \frac{1.15 - 2x}{1.04} \tag{3.8}$$

Тогда, оптимальное управление выглядит так:

$$h_1(t) = \frac{1.15 - 2X(t)}{1.04},\tag{3.9}$$

$$h_2(t) = 1 - h_1(t) (3.10)$$

3.3 План численного оценивания var-риска

Оценка var-риска будет происходить численно. Введем параметры:

t0=0 — начальный момент времени T=0.6 — конечный момент времени $N_1=600$ — количество разбиений отрезка времени $N_2=100$ — количество симуляций $dt=\frac{(T-t0)}{N_1}$ X0=1 — значение X в начальный момент времени V0=1 — значение V в начальный момент времени $\alpha=0.05$ — доверительный уровень

За V(t) обозначим капитал с оптимальным управлением, а за V2(t) – капитал с замороженным в точке t=0.3 управлением. Обозначим за $Y=V(T)-V_2(T)$ падение капитала.

С помощью метода Эйлера-Маруямы численно найдем X(t),V(t) и $V_2(t)$. Произведем N_2 симуляций. Найдя в каждой симуляции значение величин V(T) и $V_2(T)$, получим эмпирическое распределение падения капитала Y.

Найдем α -квантиль распределения(это и есть var-риск) следующим образом:

1. Значения Y из всех симуляций упорядочим по неубыванию, т.е $Y_0 \leq Y_1 \leq \ldots \leq Y_{N_2-1}$

2.Положим $K = [\alpha(N_2 - 1)]$

3. Сравниваем K и αN_2 :

Если $K+1<\alpha N$, то положим $Var=Y_{K+1}$ Если $K+1=\alpha N$, то положим $Var=\frac{Y_{K+1}+Y_K}{2}$ Если $K+1>\alpha N$, то положим $Var=Y_K$

4 Результаты

Приведем результаты:

4.1 графики

Рис. 1: Капиталы V(t) (оранжевый, с оптимальным управлением) и $V_2(t)$ (синий, с управлением, замороженным в точке t=0.3). Здесь была произведена одна симуляция

Рис. 2: Гистограмма распределения падения капитала. на картинке красным отмечен var-риск.

4.2 Числовые характеристики

В итоге получили:

Var-риск Var = -1.1

Медианное значение падения капитала равно 0.0083

Среднее значение падения капитала равно -0.19

5 Вывод

Исходя из полученных числовых характеристик, появилось сомнение, не было ли где-то допущено ошибок, так как значение капитала в конечный момент времени с оптимальным управлением не сильно лучше, чем капитал с замороженным в точке t=0.3 управлением, а по среднему показателю падения капитала даже хуже.