PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-185487

(43)Date of publication of application: 06.07.2001

(51)Int.CI.

H01L 21/203 C30B 29/38 // H01L 33/00

(21)Application number: 11-366723

(71)Applicant: ULVAC JAPAN LTD

NATL INST OF ADVANCED **INDUSTRIAL SCIENCE & TECHNOLOGY METI**

(22)Date of filing:

24.12.1999

(72)Inventor: SHIMIZU SABURO

SONODA SAKI OKUMURA HAJIME CHIN KYOKUKYO SHIMIZU MITSUTOSHI

(54) METHOD FOR FORMING THIN FILM OF GROUP III NITRIDE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a thin film that has better optical and electrical characteristics by controlling the polarity of a GaN-based group III nitride growing on C surface of a sapphire substrate to the (0001) plane.

SOLUTION: When a GaN-based thin film is grown epitaxially on a substrate by molecular beam epitaxy using a nitrogen plasma and a metal having Ga as the main constituent, metal In is projected at initial stage of growth or during growth so as to grow a GaN-based thin film desired, or a thin film desired is grown after metal Ga or metal Al is deposited for one or several atomic layers on the substrate, or a thin film desired is grown on the substrate after AIN layer is grown using nitrogen plasma, or a thin film desired is grown on the substrate using a metal having Ga as the main constituted, ammonia or nitrogen plasma after espousing ammonia to form AIN layer on the substrate.

THIS PAGE BLANK (USPTO)

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-185487 (P2001-185487A)

(43)公開日 平成13年7月6日(2001.7.6)

(51) Int.Cl.'	鐵別記号	FΙ	テーマコード(参考)
H01L 21/203		H01L 21/203	M 4G077
C30B 29/38	,	C30B 29/38	D 5F041
// HO 1 L 33/00		H01L 33/00	C 5F103

審査請求 未請求 請求項の数4 OL (全 7 頁)

(21)出願番号	特顧平11-366723	(71) 出願人 000231464 日本真空技術株式会社		
(22) 出願日	平成11年12月24日(1999, 12, 24)	神奈川県茅ヶ崎市萩園2500番地		
		(74)上記1名の代理人 100060025		
		弁理士 北村 欣一 (外2名)		
		(71) 出願人 301000011		
	·	経済産業省産業技術総合研究所長		
		東京都千代田区観が関1丁目3番1号		
		(74)上記1名の復代理人 100060025		
		弁理士 北村 欣一 (外2名)		
		(72)発明者 清水 三郎		
		神奈川県茅ヶ崎市萩園2500番地 日本真空		
		技術株式会社内		
		最終頁に続く		

III族室化物薄膜の形成方法 (54) 【発明の名称】

(57)【要約】

サファイアC面基板上に成長するGaN 【課題】 系III族窒化物薄膜の極性を(0001)に制御すると とにより、従来よりも光学的、電気的特性に優れた薄膜 を提供すること。

【解決手段】 基板上に、窒素プラズマおよびGaを主 成分とする金属を用いて分子線エピタキシーによりGa N系薄膜をエピタキシャル成長させるに際し、該薄膜の 成長初期もしくは成長中に金属Inを照射して所望のG aN系薄膜を成長させること、または金属Gaもしくは 金属AIを該基板上に1~数原子層堆積させた後、所望 の薄膜を成長させること、または眩基板上に窒素プラズ マを用いてAIN層を成長させた後に所望の薄膜を成長 させること、または該基板上にアンモニアを照射して基 板上にA1N層を形成させた後、Gaを主成分とする金 属およびアンモニアもしくは窒素プラズマを用いて所望 の薄膜を成長させること。

(A) 意象プラズマ服射 窒素プラズマ開射 In照射

(B)

1

【特許請求の範囲】

【請求項1】 サファイアC面基板上に、窒素源として 窒素プラズマを、またIII族源としてGaを主成分とす る金属を用いて分子線エピタキシーによりGaN系III 族窒化物薄膜をエピタキシャル成長させるに際し、該G a N系III族窒化物薄膜の成長初期あるいは成長中に金 属 I nを照射するととにより、成長する膜の極性を(0 001) に制御することを特徴とするIII族窒化物薄膜 の形成方法。

【請求項2】 サファイアC面基板上に、窒素源として 10 窒素プラズマを、またIII族源としてGaを主成分とす る金属を用いて分子線エピタキシーによりGaN系III 族窒化物薄膜をエピタキシャル成長させるに際し、該サ ファイアC面基板上に金属Gaあるいは金属Alをl~ 数原子層堆積させた後、窒素プラズマおよびGaを主成 分とする金属を照射してGaN系III族窒化物薄膜を成 長させ、成長する膜の極性を(0001)に制御すると とを特徴とするIII族窒化物薄膜の形成方法。

【請求項3】 サファイアC面基板上に、窒素源として 窒素プラズマを、またIII族源としてGaを主成分とす る金属を用いて分子線エピタキシーによりGaN系III 族窒化物薄膜をエピタキシャル成長させるに際し、該サ ファイアC面基板上に窒素プラズマを窒素源とし、金属 AlをAl源として用いてAlN層を成長させた後、窒 素プラズマおよびGaを主成分とする金属を照射してG a N系III族窒化物薄膜を成長させ、成長する膜の極性 を(0001)に制御することを特徴とするIII族窒化 物薄膜の形成方法。

【請求項4】 サファイアC面基板上に、窒素源および III族源としてのGaを主成分とする金属を用いて分子 線エピタキシーによりGaN系III族窒化物薄膜をエピ タキシャル成長させるに際し、該サファイアC面基板上 に窒素源としてアンモニアを照射してAIN層を形成さ せた後、窒素源としてアンモニアあるいは窒素プラズマ を、またIII族源としてGaを主成分とする金属を照射 してGaN系III族窒化物薄膜を成長させ、成長する膜 の極性を(0001)に制御することを特徴とするIII 族窒化物薄膜の形成方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、III族窒化物薄膜 の形成方法、特に分子線エピタキシー(MBE)による III族窒化物薄膜(極性:(0001))の形成方法に関 するものである。

[0002]

【従来の技術】六方晶であるサファイアC面基板上にG aNを成長させる場合、通常、六方晶のウルツ鉱型Ga Nがサファイア基板と c軸を揃えて成長する。しかし、 ウルツ鉱型GaNはc軸方向に極性をもつため、通常 は、図1(A)および(B)に示すように、2種類の極性、

すなわち2種類の原子の配列状態をもつ結晶の混在した 膜となってしまう。 このようにサファイアC面基板1上 に成長するGaN膜において、図1(A)に示すようにG a原子の直上にN原子が配列された場合をGaN(00 01) (Ga-face)、図1(B)に示すようにN原 子の直上にGa原子が配列された場合をGaN(000 -1)(N-face)と呼んでいる。これらの2種類 の極性と成長した膜の特性とは密接に関係しており、G aN (0001) 膜の方が、GaN (000-1) 膜、 あるいはGaN (0001) とGaN (000-1) と の混在した膜よりも、光学的、電気的特性、さらには表 面平坦性に優れているということが報告されている(Kel ler et al., Appl. Phys. Lett. 68(1996)1525, Fuke e tal., J. Appl. Phys. 83(1998)764)。したがって、い かに成長する膜の極性をGa-faceに制御するかと いうことが高品質III族窒化物半導体素子を作製するう えでの重要なキーポイントとなっている。

【0003】有機金属気相成長法(MOCVD法)にお いては、有機金属ガスの供給時期、核密度増大のために 20 サファイア基板上に成長させる低温バッファ層のアニー ル条件等を制御することにより、成長する膜の極性をG a-faceに制御することが既に可能となっている。 とれに対し、分子線エピタキシー (MBE) 法において は、これまでGaN(000-1)が支配的な膜しか得 られておらず、GaN(0001)膜を得ることは不可 能であった。

[0004]

【発明が解決しようとする課題】この発明は、上記のよ うな従来のMBE法におけるGaN系III族窒化物薄膜 形成の際の問題点を解決するものであり、成長する膜の 30 極性を(0001)に制御して、従来よりも光学的、電 気的特性に優れたG a N系III族窒化物薄膜を形成する 方法を提供することを課題としている。

[0005]

40

【課題を解決するための手段】本発明者らは、上記従来 技術の問題点を解決すべく鋭意研究を重ねた結果、次の ような手段を用いることにより、成長する膜の極性を (0001) に制御することに成功し、本発明を完成す るに至った。

【0006】(1)サファイアC面基板上に、窒素プラ ズマを窒素源とし、金属GaをGa源として、MBE法 によりGaN単結晶薄膜をエピタキシャル成長させるに は、まず基板を約800℃で加熱して清浄化する。次い で、約200オングストローム程度のGaN層を約50 0℃の低温で堆積させた後にアニールすることによっ て、GaNの核形成を促進させる低温バッファ層を形成 する。このようにして形成された低温バッファ層上に、 成長温度600℃~800℃でGaN層を成長させると いう方法が通常用いられている。また、さらに核密度を 50 増大させることを目的として低温バッファ層形成前に、

【0009】(4)上記(1)で述べたように、従来、低温バッファ層形成前にサファイア基板を窒化し、GaNと格子定数の近いA1N層を基板表面に形成させ、さらに核密度を増大させる方法が採用されることもある。本発明者らは、このサファイア基板の窒化プロセスにおいて、窒素源をアンモニアとし、このアンモニアをサファイア基板に800℃~950℃で照射した場合には

ァイア基板に800℃~950℃で照射した場合には、 基板表面に形成されるA1N層の極性は(0001)で あることを見い出した。この発明は、以上のことを利用 し、基板の清浄化処理後、800℃~950℃の高温で アンモニアを照射してA1N層を形成し、次いで、窒素 源としてアンモニアあるいは窒素プラズマを、またIII 族源としてGaを主成分とする金属を照射して成長温度 600℃~800℃で腹を成長させ、得られるGaN系 III族窒化物薄膜の極性を(0001)に制御し、目的

[0010]

る。

【発明の実施の形態】以下、との発明の実施の形態を説明する。

とするGaN系III族窒化物を得ようとするものであ

【0011】との発明の第1の実施の形態によれば、通 常の分子線エピタキシャル装置を用い、通常の真空下で 原料物質を蒸発させ、このガス状物質を600~800 *Cに加熱したサファイアC面基板上に供給し、薄膜結晶 を成長させて、目的とするG a N系III族窒化物薄膜を 形成する。成長温度600℃~800℃において、窒素 源として窒素プラズマを、またIII族源としてG a を主 成分とする金属を基板に照射してGaN系III族窒化物 薄膜を成長させる際に、窒素源およびIII族源の照射と 同時に成長初期の間だけ金属Inを照射する。これによ り、極性が(0001)に制御された、光学的、電気的 特性に優れた薄膜を得ることができる。このようにして 形成された薄膜を有する基板の一つの例を図2(A)およ び(B)に示す。図2(A)および(B)に示したように、サ ファイア基板21上に、GaN系(0001)膜、ある いはGaN系 (000-1) 膜、あるいは (0001) と(000-1)との混在した膜22、22、が下地と して設けられ、その上にIn照射中に形成されるGaN 系III族窒化物薄膜(In照射層)23が形成され、ざ らにその上にGaN系III族窒化物薄膜24が形成され る。ととで、GaN系III族窒化物薄膜24は、Gaの 他、III族金属元素としてIn、Al等を含んでも良い し、また、ドーパントとしてBe、Mg、Siなどを含 んでも良い。との実施の形態においては:

1. 成長させるIII族窒化物薄膜の下地としては、GaN系(0001) 膜、あるいはGaN系(000-1) 膜、あるいは(000-1) と(000-1) との混在した膜であればいずれの膜でも使用できる。例えば、サファイアC面基板21を加熱して(例えば、約800℃) 清浄化した後、所定の厚さのGaN層を低温(例えば、

窒素ブラズマをサファイア基板に照射してサファイア基 板を窒化し、GaNと格子定数の近いAIN層を基板表 面に形成させる方法が採用されることもある。以上のよ うな方法でGaNを成長させた場合には、得られたGa N膜はGaN (0001) とGaN (000-1)との 混在した膜となってしまう。また、サファイア基板の窒 化プロセスを導入した場合には、GaN(000-1) の混在率が増大するのみで、GaN(0001)のみの 膜を得るととはできなかった。しかし、本発明者らは、 低温バッファ層形成後、成長温度600℃~800℃で 10 GaN膜を成長させる際に、窒素プラズマ、金属Gaを 主成分とする金属とともに金属Inを同時に成長表面に 照射すると、Inが成長膜中に取り込まれることもな く、成長膜の極性が(0001)になることを見い出し た。この発明は、このことを利用して、成長するGaN 系III族窒化物薄膜の極性を(0001)に制御し、目 的とするGaN系III族窒化物を得ようとするものであ

[0007](2)上記(1)で述べたように、低温バ ッファ層形成前に、窒素プラズマをサファイア基板に照 20 射してサファイア基板を窒化し、GaNと格子定数の近 いAIN層を形成させた場合には、GaN(000-1) の混在率が増大してしまうことがわかった。これ は、サファイア基板が窒素プラズマに曝された場合に は、基板表面にAIN(000-1)の層が形成される ため、とのAIN層上に成長したGaN膜は(000-1) の混在率が高い膜となってしまうからである。この 発明は、基板清浄化処理後、低温バッファ層形成時に基 板が窒素プラズマに曝されるのを抑制する目的で、プラ ズマ照射前に、基板上に金属Gaあるいは金属Alをl ~数原子層を形成せしめ、その後窒素ブラズマおよび金 属Gaを主成分とする金属を照射して膜を成長させ、成 長するGaN系III族窒化物薄膜の極性を(0001) に制御し、目的とするGaN系III族窒化物を得ようと するものである。

【0008】(3)上記(1)で述べたように、従来、基板清浄化後に約200オングストローム程度のGaN層を約500℃の低温で堆積させ、アニールすることによって、GaNの核形成を促進させる低温バッファ層を形成する場合もある。本発明者らは、この低温バッファ層の替わりに、650℃~800℃の高温で窒素ブラズマと金属A1を用いてA1Nバッファ層を成長させた場合には、成長させたA1N層の極性は(0001)であることを見い出した。この発明は、以上のことを利用し、基板の清浄化処理後、650℃~800℃の高温で基板上に窒素プラズマと金属A1とを用いてA1Nバッファ層を成長させ、その後、成長温度600℃~800℃で膜を成長させて、得られるGaN系III族窒化物薄膜の極性を(0001)に制御し、目的とするGaN系III族窒化物を得ようとするものである。

t

約500℃)で堆積せしめ、次いでアニール処理するこ とにより形成された低温バッファ層22でも(図2 (A))、あるいは他の成長法(例えば、スパッタ、レー ザーデポジションなど)で成長させた膜22'でも(図 2(B))、上記結晶方位を有するものであれば使用でき る。この低温バッファ層はGaNの核形成を促進させ る。

【0012】2. 窒素プラズマは、RFで生成されるも のでもECRで生成されるものでも良い。

【0013】3. III族金属(Ga) としては、その強 度 (フラックス) が1×10¹³コ/cm゚s~1×10 ¹゚コ/c m゚ s であるものを用いる。強度が1×10゚゚ コ $/cm^2s$ 未満であると実用的な成長速度(0.1μ m/hr) が得られず、また、1×10¹¹ コ/cm² s を超えると結晶性が劣化するからである。

【0014】4. 金属Inとしては、照射するIII族金 属(Ga)の強度の2桁低い強度から1桁高い強度まで の範囲内のものを用いることが好ましい。これは、この 強度の範囲外では効果がないからである。

【0015】5.金属Inは、III族窒化物薄膜の成長 初期にのみ照射しても、または成長中照射し続けても良 £1,

【0016】この発明の第2の実施の形態によれば、第 1の実施の形態において述べたようなサファイア C 面基 板清浄化処理後、基板上に金属Gaあるいは金属Alを 1~数原子層形成せしめ、その後窒素源として窒素プラ ズマ、およびIII族源としてGaを主成分とする金属を 照射してGaN系低温バッファ層を形成し、次いでこの バッファ層上に所望のGaN系(0001)薄膜を成長 させる。とのようにして形成された薄膜を有する基板の 一つの例を図3に示す。図3に示したように、サファイ ア基板31上に金属Gaあるいは金属Alの原子層32 が形成され、との原子層上にG a N系低温バッファ層 3 3が形成され、その上に所望のGaN系III族窒化物薄 膜34が形成される。ととで、GaN系III族窒化物薄 膜34は、Gaの他、III族金属元素としてIn、Al 等を含んでも良いし、また、ドーパントとしてBe、M g、Siなどを含んでも良い。この実施の形態において

1. 金属Gaあるいは金属Alの照射温度は、室温~6 00℃であれば良い。

【0017】この発明の第3の実施の形態によれば、第 1の実施の形態において述べたようなサファイア C 面基 板清浄化処理後、基板上に、成長温度650℃~800 ℃で窒素ブラズマおよび金属A1を照射してA1N(0 001) 膜を成長させ、次いでA1N(0001) 膜上 に所望のGaN系(0001)薄膜を成長させる。との ようにして形成された薄膜を有する基板の一つの例を図 4に示す。図4に示したように、サファイア基板41上 にA1N(0001) 膜42が形成され、その上に所望 50 ニール処理して、低温バッファ層(極性:(0001)と

のGaN系III族窒化物薄膜43が形成される。とと で、GaN系III族窒化物薄膜43は、Gaの他、III族 金属元素としてIn、Al等を含んでも良いし、また、 ドーパントとしてBe、Mg、Siなどを含んでも良 い。この実施の形態においては:

1. 窒素プラズマは、RFで生成されるものでもECR で生成されるものでも良い。

【0018】2. 金属A1としては、その強度が1×1 0¹ コ/cm' s~1×10¹ コ/cm' s であるものを 10 用いる。

【0019】3. AIN膜の膜厚はどの程度であっても 良い。

【0020】4.A1N膜上に成長させるGaN系III 族窒化物薄膜は、スパッタ、C V D、レーザーデポジシ ョンなどの、どの成長法を用いて成長させても良い。

【0021】との発明の第4の実施の形態によれば、第 1の実施の形態において述べたようなサファイアC面基 板清浄化処理後、基板上に800℃~900℃でアンモ ニアを照射してAIN(0001)の層を形成させ、次 20 いで所望のGaN系(0001)層を成長させる。との ようにして形成された薄膜を有する基板の一つの例を図 5に示す。図5に示したように、サファイア基板51上 にA1N(0001)層52が形成され、その上に所望 のGaN系III族窒化物薄膜53が形成される。とと で、GaN系III族窒化物薄膜53は、Gaの他、III族 金属元素としてIn、A1等を含んでも良いし、また、 ドーパントとしてBe、Mg、Siなどを含んでも良 い。この実施の形態においては:

1. アンモニアは熱分解してあっても、してなくても良 30 fr

【0022】2. アンモニアの流量としては、その下限 はA1N(0001)層が形成される程度の量であれば 良く、また、上限には特に制限はなく、経済的観点から 適宜選択すれば良い。また、アンモニアの照射時間は、 5分~2時間であればどの程度でも良い。

【0023】3. A1N(0001)層上に成長させる GaN系(0001)薄膜は、スパッタ、CVD、レー ザーデポジションなどの、どの成長法を用いて成長させ ても良い。

[0024] 40

【実施例】以下、との発明の実施例を図面を参照して説 明する。

(実施例1) 通常の分子線エピタキシャル装置を用い、 図2 (A)および(B)に示したようなG a N系薄膜を以下 のようにして形成した。

【0025】まず、サファイアC面基板21を800℃ に加熱して清浄化処理し、との基板上に、窒素プラズマ とGaを主成分とする金属を照射して所定の厚さのGa N層を約500℃で堆積せしめ、次いで約600℃でア

(000-1)との混在)22を形成せしめた。その後、 約10-'~10-'Paの真空中で、III族源としてのG aを主成分とする金属原料物質(強度:2×10"コ/ cm's)を蒸発させ、このガス状物質を、RFで生成 された窒素ブラズマと共に、800℃に加熱したサファ イアC面基板上に供給し、照射した。結晶成長温度73 0 ℃でGaN系薄膜を成長させる際に、上記ガス状物質 と窒素プラズマの照射と同時にガス状の金属In(強 度:7×10"コ/cm's)を結晶成長初期にだけ照 射した。このようにして低温バッファ層22上に薄膜結 10 晶を成長させて、目的とするG a N系薄膜を形成した (図2(A))。 この場合、結晶成長初期の金属 I n 照射 中に形成されたGaN系薄膜23には、金属Inは取り 込まれておらず、また、その極性は(0001)であっ た。金属 1 n 照射をやめた後に成長したGaN系薄膜2 4の極性も(0001)であった。

7

【0026】下地としての低温バッファ層22に代えてスパッタ法により成長せしめた膜(極性: (0001)と(000-1)との混在)22 を使用して上記方法を繰り返したところ、得られたGaN系薄膜の極性も上記の 20場合と同様に (0001) であった(図2(B))。また、下地として、GaN系(0001)膜、あるいはGaN系(000-1)膜、あるいは(0001)と(000-1)との混在した膜を形成せしめ、これを用いて上記方法を繰り返したところ、下地の極性にとらわれることなく、得られたGaN系薄膜の極性は全て(0001)であった。これは、金属1nを照射することにより、下地の極性に関わりなく所望の極性のGaN系薄膜が得られることを意味する。

【0027】なお、窒素プラズマとして、RFで生成したものに代えてECRで生成したものを用いても同様な結果が得られる。また、金属Inを結晶成長中照射し続けた場合も、上記と同様に金属InがGaN系薄膜中に取り込まれることもなく、得られた薄膜の極性は所望のものである。

【0028】上記のようにして得られたGaN系(0001)薄膜は、光学的、電気的特性に優れている。

(実施例2)本実施例では、清浄化されたサファイアC 面基板上への低温バッファ層形成時に、基板が窒素ブラズマに曝されるの抑制することによって、図3に示すよ 40 うにサファイア基板31上にGaN系薄膜34を形成した。

【0029】実施例1と同様にサファイアC面基板滑浄化処理後、基板31上に500℃で金属Gaあるいは金属A1を照射し、GaあるいはA1の数原子層32を形成した。この層を下地として、この上に、実施例1の場合と同じ条件で、窒素プラズマおよびIII族源としてのGaを主成分とする金属を照射してGaN系低温パッファ層(極性:((0001)と(000-1)との混在))33を形成せしめ、その上にGaN系薄膜34を600℃50

で成長させた(図3)。 得られた薄膜の極性は(000 1)であった。

(実施例3) 実施例1と同様にサファイアC面基板清浄化処理後、図4に示すように、基板41上に、結晶成長温度750℃で窒素ブラズマおよび金属A1を照射してA1N膜42を成長せしめた。このA1N膜の極性は(0001)であった。次いで、得られたA1N(0001)膜上に、実施例1の場合と同じ条件で、窒素ブラズマおよびⅢ底源としてのGaを主成分とする金属を照射してGaN系薄膜43を成長させた。得られた薄膜の極性は(0001)であった。

【0030】なお、窒素プラズマとして、RFで生成したものに代えてECRで生成したものを用いても同様な結果が得られる。また、バッファ層としてのA1N膜の膜厚は、特に制限されるものではない。A1N膜上に成長させるGaN系III族窒化物薄膜の成長法としては、特に制限されるものではなく、例えばスパッタ法、CVD、レーザーデポジションなどにより成長させれば、上記と同じ結果が得られる。

(実施例4) 実施例1と同様にサファイアC面基板清浄化処理後、図5に示すように、基板51上に900℃でアンモニアを照射して基板表面にA1Nの層52を形成させた。得られたA1N層の極性は(0001)であった。次いで、実施例1の場合と同じ条件で、窒素プラズマおよびIII族源としてのGaを主成分とする金属を照射してGaN系薄膜53を成長させた。得られた薄膜の極性は(0001)であった。

【0031】窒素源として用いるアンモニアは熱分解しても、してなくても、同じ結果が得られた。また、アンモニアの流量には特に制限はなく、その下限は基板表面にA1N層が形成され得るような量であれば充分であり、過剰であっても同じような結果が得られる。また、照射時間は、5分~2時間であればどの程度でも同じような結果が得られる。

【0032】また、A1N(0001)層上に成長させるGaN系薄膜の成長法としては、特に制限されるものではなく、例えばスパッタ法、CVD、レーザーデポジションなどにより成長させれば、上記と同じ結果が得られる。

0 【0033】以上のようにして、との発明で形成された GaN系薄膜は、所望のタイプの電子デバイスあるいは 光電子デバイスなどに組み込まれて利用できる。

[0034]

【発明の効果】との発明によれば、従来のMBE法においては不可能であったGaN系III族窒化物薄膜の極性を光学的、電気的特性に優れた(0001)に制御することが可能となるため、高品質なIII族窒化物半導体素子を製造することができるという効果を奏する。

【図面の簡単な説明】

【図1】(A)基板上に形成されたGaN系膜の極性

. ٥

10

(0001)を説明するための原子配列状態を示す模型 図。

- (B) 基板上に形成されたGaN系膜の極性(000-1)を説明するための原子配列状態を示す模型図。
- 【図2】(A) この発明の実施例1により得られたGaN系薄膜を有する基板の断面図。
- (B) この発明の実施例1により得られたGaN系薄膜を有する基板の断面図。
- 【図3】この発明の実施例2により得られたGaN系薄膜を有する基板の断面図。
- 【図4】この発明の実施例3により得られたGaN系薄 障を有する基板の断面図。
- 【図5】この発明の実施例4により得られたGaN系薄膜を有する基板の断面図。

*【符号の説明】

- 1 サファイア C 面基板
- 21、31、41、51 サファイアC面基板
- 22、22' 下地
- 23 In 照射層
- 24 GaN系薄膜
- 32 金属Gaあるいは金属Alの原子層
- 33 GaN系低温バッファ層
- 34 GaN系薄膜
- 10 42 AlN膜
 - 43 GaN系薄膜
 - 52 A1N層
 - 53 GaN系薄膜

【図1】

【図2】

フロントベージの続き

(72)発明者 園田 早紀

神奈川県茅ヶ崎市萩園2500番地 日本真空

技術株式会社内

(72) 発明者 奥村 元

茨城県つくば市梅園1丁目1番4 工業技

術院電子技術総合研究所内

(72) 発明者 沈 旭強

茨城県つくば市梅園1丁目1番4 工業技

術院電子技術総合研究所内

(72)発明者 清水 三聡

茨城県つくば市梅園1丁目1番4 工業技

術院電子技術総合研究所内

F ターム (参考) 4C077 AA03 BE15 DA05 ED05 ED06 EF03 5F041 AA03 AA40 CA23 CA34 CA40 CA66 5F103 AA04 AA08 AA10 DD01 CG01 HH04 HH08 KK01 KK10 NN10 PP20

