File Number: 99-107

Filing Date: December 22, 2000 Express Mail Label No. EL589081426US

UNITED STATES PATENT APPLICATION

OF

Donald C. Foster, Wenfeng Xu, Karen L. Madden, James D. Kelly,

Cindy A. Sprecher, Cameron S. Brandt, Mark W. Rixon,

Scott R. Presnell, Brian A. Fox

FOR

SOLUBLE INTERLEUKIN-20 RECEPTOR

20

25

SOLUBLE INTERLEUKIN-20 RECEPTOR

This claims the benefit of provisional patent application no. 60/171,966 filed December 23, 1999 and provisional patent application no. 60/213,416 filed June 22, 2000.

BACKGROUND OF THE INVENTION

The teachings of all of the references cited herein are incorporated in their entirety herein by reference.

Cytokines are soluble proteins that influence the growth and differentiation of many cell types. Their receptors are composed of one or more integral membrane proteins that bind the cytokine with high affinity and transduce this binding event to the cell through the cytoplasmic portions of the certain receptor subunits.

Cytokine receptors have been grouped into several classes on the basis of similarities in their extracellular ligand binding domains. For example, the receptor chains responsible for binding and/or transducing the effect of interferons (IFNs) are members of the type II cytokine receptor family (CRF2), based upon a characteristic 200 residue extracellular domain. The demonstrated *in vivo* activities of these interferons illustrate the enormous clinical potential of, and need for, other cytokines, cytokine agonists, and cytokine antagonists. Some cytokines are involved in the inflammatory cascade and can promote such diseases as rheumatoid arthritis, Crohn's disease, psoriasis, heart disease etc. Thus, there is a need to discover cytokines and their receptors that are involved in inflammation. One can then use the isolated soluble receptors of the cytokine to inhibit

30 the cytokine-mediated inflammation.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGURES 1-8 are schematic representations of different embodiments of the soluble receptor of the present invention.

5

10

DESCRIPTION OF THE INVENTION

The present invention fills this need by providing a newly discovered soluble receptor to Interleukin-20 (IL-20). The soluble receptor can be used to down-regulate IL-20 and thus treat inflammatory diseases such as psoriasis and inflammatory lung diseases.

IL-20 was formally called 'Zcyto10', (International Patent Publication No. WO 99/27103) and has the amino acid sequences of SEQ ID NOs: 1-9. The receptor to IL-20 is comprised of two chains, an alpha chain and a beta chain. The alpha chain, hereinafter referred to as IL-20RA, was formally called ZcytoR7. See U.S. Patent No. 5,945,511. The beta chain, hereinafter referred to as IL-20RB, was formally called DIRS1. See International Patent Application No. PCT/US99/03735. The present invention is a soluble receptor comprised of the extracellular domain of IL-20RA and the extracellular domain of IL-20RB.

20

25

15

The present invention encompasses an isolated soluble receptor comprised of an 'IL-20RA' subunit and an 'IL-20RB' subunit, wherein the IL-20A subunit is comprised of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NOs: 12, 38, 55, 63 and 65, and the IL-20RB subunit is comprised of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NOs: 15, 59, 61, 67, 68 and 69. The IL-20RA and IL-20RB subunits are generally linked together by a polypeptide linker. The linking can be by any means but generally by a peptide bond or a disulfide bond between a polypeptide connected to the IL-20RA subunit and a polypeptide connected to the IL-20RB subunit. The present invention is also directed towards isolated polynucleotides that encode the novel IL-20RA and IL-20RB polypeptides of the present invention.

30

35

In one embodiment the IL-20RA subunit is fused to the constant region of the heavy chain of an immunoglobulin (Ig) molecule or a portion thereof and the IL-20RB subunit is fused to the constant region of the light chain of an Ig molecule such that the constant region of the light chain is disulfide bonded to the constant region of the heavy chain, generally to a cysteine residue on the hinge region of the heavy chain. Also the opposite can occur, the IL-20RA subunit can be fused to the constant region of

the light chain of an Ig molecule and the IL-20RB subunit can be fused to the constant region of the heavy chain of an Ig molecule.

In one embodiment of the soluble receptor of the present invention, the IL-20RA subunit fused to the constant region of the heavy chain is comprised of an amino acid sequence selected from the group consisting of SEQ ID NOs: 23, 53, 54 and 62, and the IL-20RB subunit fused to the constant region of the light chain of the Ig molecule is comprised of an amino acid sequence selected from the group consisting of SEQ ID NOs: 21, 57, 58, and 60.

Also claimed is a protein having a first polypeptide and a second polypeptide wherein the first polypeptide is comprised of an amino acid sequence of SEQ ID NO: 66 and the second polypeptide is comprised of an amino acid sequence selected from the group consisting of SEQ ID NOs: 70 and 71. The resultant protein can be used to generate antibodies to the IL-20RA subunit and the IL-20RB subunit.

15 Definitions

10

20

25

30

35

Prior to setting forth the invention in more detail, it may be helpful to the understanding thereof to define the following terms.

The terms "amino-terminal" and "carboxyl-terminal" are used herein to denote positions within polypeptides. Where the context allows, these terms are used with reference to a particular sequence or portion of a polypeptide to denote proximity or relative position. For example, a certain sequence positioned carboxyl-terminal to a reference sequence within a polypeptide is located proximal to the carboxyl terminus of the reference sequence, but is not necessarily at the carboxyl terminus of the complete polypeptide.

As used herein, the term "antibody fusion protein" refers to a recombinant molecule that comprises an antibody component and a therapeutic agent. Examples of therapeutic agents suitable for such fusion proteins include immunomodulators ("antibody-immunomodulator fusion protein") and toxins ("antibody-toxin fusion protein").

The term "complement/anti-complement pair" denotes non-identical moieties that form a non-covalently associated, stable pair under appropriate conditions. For instance, biotin and avidin (or streptavidin) are prototypical members of a complement/anti-complement pair. Other exemplary complement/anti-complement pairs include receptor/ligand pairs, antibody/antigen (or hapten or epitope) pairs, sense/antisense polynucleotide pairs, and the like. Where subsequent dissociation of the complement/anti-complement pair is desirable, the complement/anti-complement pair preferably has a binding affinity of $<10^9 \text{ M}^{-1}$.

10

15

20

25

30

35

The term "complements of a polynucleotide molecule" is a polynucleotide molecule having a complementary base sequence and reverse orientation as compared to a reference sequence. For example, the sequence 5' ATGCACGGG 3' is complementary to 5' CCCGTGCAT 3'.

The term "contig" denotes a polynucleotide that has a contiguous stretch of identical or complementary sequence to another polynucleotide. Contiguous sequences are said to "overlap" a given stretch of polynucleotide sequence either in their entirety or along a partial stretch of the polynucleotide. For example, representative contigs to the polynucleotide sequence 5'-ATGGCTTAGCTT-3' are 5'-TAGCTTgagtct-3' and 3'-gtcgacTACCGA-5'.

The term "degenerate nucleotide sequence" denotes a sequence of nucleotides that includes one or more degenerate codons (as compared to a reference polynucleotide molecule that encodes a polypeptide). Degenerate codons contain different triplets of nucleotides, but encode the same amino acid residue (i.e., GAU and GAC triplets each encode Asp).

The term "expression vector" is used to denote a DNA molecule, linear or circular, that comprises a segment encoding a polypeptide of interest operably linked to additional segments that provide for its transcription. Such additional segments include promoter and terminator sequences, and may also include one or more origins of replication, one or more selectable markers, an enhancer, a polyadenylation signal, etc. Expression vectors are generally derived from plasmid or viral DNA, or may contain elements of both.

The term "isolated", when applied to a polynucleotide, denotes that the polynucleotide has been removed from its natural genetic milieu and is thus free of other extraneous or unwanted coding sequences, and is in a form suitable for use within genetically engineered protein production systems. Such isolated molecules are those that are separated from their natural environment and include cDNA and genomic clones. Isolated DNA molecules of the present invention are free of other genes with which they are ordinarily associated, but may include naturally occurring 5' and 3' untranslated regions such as promoters and terminators. The identification of associated regions will be evident to one of ordinary skill in the art (see for example, Dynan and Tijan, *Nature 316*:774-78 (1985).

An "isolated" polypeptide or protein is a polypeptide or protein that is found in a condition other than its native environment, such as apart from blood and animal tissue. In a preferred form, the isolated polypeptide is substantially free of other polypeptides, particularly other polypeptides of animal origin. It is preferred to provide the polypeptides in a highly purified form, i.e. greater than 95% pure, more preferably

10

15

20

25

30

35

greater than 99% pure. When used in this context, the term "isolated" does not exclude the presence of the same polypeptide in alternative physical forms, such as dimers or alternatively glycosylated or derivatized forms.

The term "operably linked", when referring to DNA segments, indicates that the segments are arranged so that they function in concert for their intended purposes, *e.g.*, transcription initiates in the promoter and proceeds through the coding segment to the terminator.

A "polynucleotide" is a single- or double-stranded polymer of deoxyribonucleotide or ribonucleotide bases read from the 5' to the 3' end.

Polynucleotides include RNA and DNA, and may be isolated from natural sources, synthesized *in vitro*, or prepared from a combination of natural and synthetic molecules. Sizes of polynucleotides are expressed as base pairs (abbreviated "bp"), nucleotides ("nt"), or kilobases ("kb"). Where the context allows, the latter two terms may describe polynucleotides that are single-stranded or double-stranded. When the term is applied to double-stranded molecules it is used to denote overall length and will be understood to be equivalent to the term "base pairs". It will be recognized by those skilled in the art that the two strands of a double-stranded polynucleotide may differ slightly in length and that the ends thereof may be staggered as a result of enzymatic cleavage; thus all nucleotides within a double-stranded polynucleotide molecule may not be paired. Such unpaired ends will in general not exceed 20 nucleotides in length.

A "polypeptide" is a polymer of amino acid residues joined by peptide bonds, whether produced naturally or synthetically. Polypeptides of less than about 10 amino acid residues are commonly referred to as "peptides".

The term "promoter" is used herein for its art-recognized meaning to denote a portion of a gene containing DNA sequences that provide for the binding of RNA polymerase and initiation of transcription. Promoter sequences are commonly, but not always, found in the 5' non-coding regions of genes.

A "protein" is a macromolecule comprising one or more polypeptide chains. A protein may also comprise non-peptidic components, such as carbohydrate groups. Carbohydrates and other non-peptidic substituents may be added to a protein by the cell in which the protein is produced, and will vary with the type of cell. Proteins are defined herein in terms of their amino acid backbone structures; substituents such as carbohydrate groups are generally not specified, but may be present nonetheless.

The term "receptor" denotes a cell-associated protein that binds to a bioactive molecule (i.e., a ligand) and mediates the effect of the ligand on the cell. Membrane-bound receptors are characterized by a multi-domain structure comprising

10

15

20

25

30

35

an extracellular ligand-binding domain and an intracellular effector domain that is typically involved in signal transduction. Binding of ligand to receptor results in a conformational change in the receptor that causes an interaction between the effector domain and other molecule(s) in the cell. This interaction in turn leads to an alteration in the metabolism of the cell. Metabolic events that are linked to receptor-ligand interactions include gene transcription, phosphorylation, dephosphorylation, increases in cyclic AMP production, mobilization of cellular calcium, mobilization of membrane lipids, cell adhesion, hydrolysis of inositol lipids and hydrolysis of phospholipids. In general, receptors can be membrane bound, cytosolic or nuclear, monomeric (e.g., thyroid stimulating hormone receptor, beta-adrenergic receptor) or multimeric (e.g., PDGF receptor, growth hormone receptor, IL-3 receptor, GM-CSF receptor, G-CSF receptor, erythropoietin receptor and IL-6 receptor).

The term "secretory signal sequence" denotes a DNA sequence that encodes a polypeptide (a "secretory peptide") that, as a component of a larger polypeptide, directs the larger polypeptide through a secretory pathway of a cell in which it is synthesized. The larger polypeptide is commonly cleaved to remove the secretory peptide during transit through the secretory pathway.

The term "splice variant" is used herein to denote alternative forms of RNA transcribed from a gene. Splice variation arises naturally through use of alternative splicing sites within a transcribed RNA molecule, or less commonly between separately transcribed RNA molecules, and may result in several mRNAs transcribed from the same gene. Splice variants may encode polypeptides having altered amino acid sequence. The term splice variant is also used herein to denote a protein encoded by a splice variant of an mRNA transcribed from a gene.

Molecular weights and lengths of polymers determined by imprecise analytical methods (e.g., gel electrophoresis) will be understood to be approximate values. When such a value is expressed as "about" X or "approximately" X, the stated value of X will be understood to be accurate to $\pm 10\%$.

As was stated above, IL-20 (formally called Zcyto10) is defined and methods for producing it and antibodies to IL-20 are contained in International Patent Application No. PCT/US98/25228, publication no. WO 99/27103, published November 25, 1998 and U.S. Patent Application No. 09/313,458 filed May 17, 1999. The polynucleotide and polypeptide of human IL-20 are represented by SEQ ID NOs: 1 - 4, and mouse IL-20 by SEQ ID NOs: 5-9.

The receptor to IL-20 has been discovered and is a heterodimer comprised of the polypeptide termed 'IL-20RA' (formally called Zcytor7) and a polypeptide termed 'IL-20RB'. The IL-20RA polypeptide, nucleic acid that encodes it,

antibodies to IL-20RA, and methods for producing it are disclosed in U.S. Patent No. 5,945,511 issued August 31, 1999. SEQ ID NOs: 10 - 12 are the IL-20RA polynucleotides and polypeptides. The extracellular domain of the human IL-20RA is comprised of a polypeptide selected from the group consisting of SEQ ID NOs: 12, 55, 63 and 65, the full-length receptor subunit being comprised of SEQ ID NO: 11. The extracellular domain of mouse IL-20RA is SEQ ID NO: 38, SEQ ID NO: 37 being the entire mouse IL-20RA.

The extracellular domain of IL-20RB (SEQ ID NOs: 13-14, and a variant SEQ ID NOs: 18 and 19) is comprised of a polypeptide selected from the group consisting of SEQ ID NOs: 15, 59, 61, 67, 68 and 69. Preferably, the extracellular domain of the IL-20RA polypeptide and the extracellular domain of the IL-20RB polypeptide are covalently linked together. In a preferred embodiment one extracellular subunit polypeptide has a constant region of a heavy chain of an immunoglobulin fused to its carboxy terminus and the other extracellular subunit has a constant light chain of an immunoglobulin (Ig) fused to its carboxy terminus such that the two polypeptides come together to form a soluble receptor and a disulfide bond is formed between the heavy and the light Ig chains. In another method, a peptide linker could be fused to the two carboxy-termini of the polypeptides to form a covalently bonded soluble receptor.

SEQ ID NOs: 22 and 23 are constructs of the extracellular domain of IL-20RA fused to a mutated human immunoglobulin gamma 1 constant region produced according to the procedure set forth in example 5. SEQ ID NO: 62 is the predicted mature sequence without the signal sequence. SEQ ID NOs: 20 and 21 are constructs of the extracellular domain of IL-20RB fused to wild type human immunoglobulin kappa light chain constant region produced according to the procedure of example 5. SEQ ID NO: 60 is the predicted mature sequence without the signal sequence. Figure 1 depicts the heterotetramer produced by example 5.

SEQ ID NOs: 52 and 53 are constructs of the extracellular domain of IL-20RA fused to a mutated human immunoglobulin gamma 1 constant region produced according to the procedure set forth in example 12. SEQ ID NO: 54 is the predicted mature sequence without the signal sequence. SEQ ID NOs: 56 and 57 are constructs of the extracellular domain of IL-20RB fused to wild type human immunoglobulin kappa light chain constant region produced according to the procedure of example 12. SEQ ID NO: 58 is the predicted mature sequence without the signal sequence. The resultant heterotetramer is almost identical to that produced by example 5, the primary difference being the absence of a polypeptide linker between the extracellular domains and the beginning of the Ig constant regions, 22 in Figure 1. Hereinafter, the term "extracellular domain of a receptor" means the extracellular domain of the receptor or a portion of the

20

25

30

35

extracellular domain that is necessary for binding to its ligand, in this case the ligand being IL-20.

One can link together the extracellular domains of IL-20RA and IL-20RB in a number of ways such that the resultant soluble receptor can bind to IL-20.

Figures 1-8 illustrate a representative number of embodiments of the present invention. Common elements in each of the drawings are given the same number. Figure 1 represents the embodiment of the present invention produced according to example 5 below. The soluble receptor construct, designated 10, is comprised of two IL-20 binding site polypeptide chains designated 12 and 14. Each binding site is comprised of the extracellular domain of IL-20RA, designated 16, and the extracellular domain of IL-20RB designated 18.

The extracellular domain, 16, of IL-20RA is linked to the constant heavy one (CH1) domain, 20, of the human immunoglobulin gamma 1 heavy chain constant region via linker 22, which is SEQ ID NO:72. The CH1 domain, 20, is then linked to the CH2 domain, 24, via hinge region 23. The CH2 domain, 24, is linked to the CH3 domain, 26, via hinge region 25.

Comparing the construct of Figure 1 with SEQ ID NO:22, the extracellular domain, 16, of IL-20RA extends from amino acid residues 36, a valine, to and including amino acid residue 249, a glutamine of SEQ ID NO:22. Polypeptide linker, 22, extends from amino acid residue 250, a glycine to and including amino acid residue 264, a serine, of SEQ ID NO:22. The CH1 domain, 22 of Figure 1, extends from amino acid residue 265, an alanine, to and including amino acid residue 362, a valine, of SEQ ID NO:22. Hinge region 23 of Figure 1 extends from amino acid residue 363, a glutamic acid to and including amino acid residue 377, a proline, of SEQ ID NO: 22. Chains 12 and 14 are disulfide-bonded together by means of disulfide bonds 28 and 30. The disulfide bonds are formed between the heavy chains by the cysteine residues at positions 373 and 376 of SEQ ID NO: 22 of each of the two heavy chains.

Extracellular domain, 18, of IL-20RB is linked to the constant region of the human kappa light chain (CL), 34 of Figure 1 via polypeptide linker 32, which is the polypeptide SEQ ID NO: 72. The extracellular domain, 18, of IL-20RB extends from amino acid residue 30, a valine, to and including amino acid residue 230, an alanine, of SEQ ID NO: 20. Polypeptide linker, 32, extends from amino acid residue 231, a glycine, to and including amino acid residue 245, a serine, of SEQ ID NO:20. The kappa constant light region, 34, extends from amino acid residue 246, an arginine, to and including the final amino acid residue 352, a cysteine, of SEQ ID NO:20. The cysteine at position 352 of SEQ ID NO: 20 forms a disulfide bond, 36 in Figure 1, with the cysteine at position 367 of SEQ ID NO: 22. The constant light chain 34 is thus

10

15

20

25

30

35

linked to the hinge region, 23, by disulfide bond, 36. In this way, the extracellular domain, 16, of IL-20RA is linked to the extracellular domain, 18, of IL-20RB to form a soluble receptor.

If the cysteine residues at positions 373 and 376 of SEQ ID NO:22 were changed to different amino acid residues, the two IL-20 binding polypeptides, 12 and 14, would not be disulfide bonded together and would form a construct shown in Figure 2. having hinge region, 27.

Figure 3 shows a very simple soluble receptor 38 of the present invention wherein extracellular domain, 16, of IL-20RA is connected to the extracellular domain, 18, of IL-20RB by means of a polypeptide linker, 40. The polypeptide linker extends from the amino terminus of extracellular domain, 16, of IL-20RA and is connected to the carboxyl terminus of the extracellular domain, 18, of IL-20RB. The polypeptide linker should be between 100-240 amino acids in length, preferably about 170 amino acid residues in length. A suitable linker would be comprised of glycine and serine residues. A possible linker would be multiple units of SEQ ID NO: 72, preferably about 12.

Figure 4 shows an embodiment that has the extracellular domain, 16, of IL-20RA linked to the extracellular domain, 18, of IL-20RB by means of linker 40, as in Figure 3. While the extracellular domain, 16, of IL-20RA is linked to the CH1 domain, 20, as in Figure 1 by means of polypeptide linker 42, which should be about 30 amino acid residues in length. An ideal linker would be comprised of glycine and serine as in SEQ ID NO: 72, and the hinge sequence, 23 of Figure 1.

Figure 5 shows another possible embodiment of the present invention. In this embodiment, a polypeptide linker 44 of about 15 amino acid residue, *e.g.* SEQ ID NO: 72, links the carboxyl terminus of the extracellular domain, 18, of IL-20RB with the amino terminus of the extracellular domain, 16, of IL-20RA. A polypeptide linker 46 of about 30 amino acid residues extends from the carboxyl terminus of the extracellular domain, 16, of IL-20RA to the CH2 domain. The carboxyl terminus of linker 46 would preferably be comprised of the hinge region extending from amino acid residue 363, a glutamic acid to and including amino acid residue 377, a proline, of SEQ ID NO: 22. Nonetheless, polypeptide linker 46 would ideally have at least one cysteine residue at its carboxyl terminus so a disulfide bond could be formed.

The soluble IL-20 receptor of Figure 6 is identical to that of Figure 1 except for the CH3 domain, 26 of Figure 1, is not present on the embodiment of Figure 6. The CH3 region begins at amino acid residue 488, a glycine, and extends to the last residue 594 of SEQ ID NO: 22.

10

15

20

25

30

35

Figure 7 shows a soluble IL-20 receptor construct that is identical to the construct of Figure 1 except both the CH2, and CH3 domains are absent. The CH2 and CH3 domains run from amino acid residue 378, an alanine, to the end of the polypeptide sequence of SEQ ID NO: 22.

Figure 8 shows a construct wherein both IL-20RA, 16, and IL-20RB have a polypeptide linker, 48, fused to their respective carboxyl termini. Each polypeptide linker has two cysteine residues such that when they are expressed the cysteines form two disulfide bonds, 50 and 52. In this case the polypeptide linker is comprised of the hinge region, 23 in Figure 1. The hinge region is comprised of amino acid residues 363, a glutamine, to and including amino acid residue 377 of SEQ ID NO: 22.

In another aspect of the invention, a method is provided for producing a soluble receptor comprised of extracellular domains of IL-20RA and IL-20RB comprising (a) introducing into a host cell a first DNA sequence comprised of a transcriptional promoter operatively linked to a first secretory signal sequence followed downstream by and in proper reading frame the DNA that encodes the extracellular portion of IL-20RA and the DNA that encodes an immunoglobulin light chain constant region; (b) introducing into the host cell a second DNA construct comprised of a transcriptional promoter operatively linked to a second secretory signal followed downstream by and in proper reading frame a DNA sequence that encodes the extracellular portion of IL-20RB and a DNA sequence that encodes an immunoglobulin heavy chain constant region domain selected from the group consisting of C_H1, C_H2, C_H3 and C_H4; (c) growing the host cell in an appropriate growth medium under physiological conditions to allow the secretion of a fusion protein comprised of the extracellular domain of IL-20RA and IL-20RB; and (d) isolating the polypeptide from the host cell. In one embodiment, the second DNA sequence further encodes an immunoglobulin heavy chain hinge region wherein the hinge region is joined to the heavy chain constant region domain. In another embodiment, the second DNA sequence further encodes an immunoglobulin variable region joined upstream of and in proper reading frame with the immunoglobulin heavy chain constant region.

In an alternative embodiment, a method is provided for producing a soluble receptor comprised of the extracellular domains of IL-20RA and IL-20RB comprising (a) introducing into a host cell a first DNA sequence comprised of a transcriptional promoter operatively linked to a first secretory signal sequence followed downstream by and in proper reading frame the DNA that encodes the extracellular portion of IL-20RB and the DNA that encodes an immunoglobulin light chain constant region; (b) introducing into the host cell a second DNA construct comprised of a

15

transcriptional promoter operatively linked to a second secretory signal followed downstream by and in proper reading frame a DNA sequence that encodes the extracellular portion of IL-20RA and a DNA sequence that encodes an immunoglobulin heavy chain constant region domain selected from the group consisting of C_H1, C_H2, C_H3 and C_H4; (c) growing the host cell in an appropriate growth medium under physiological conditions to allow the secretion of a dimerized heterodimeric fusion protein comprised of the extracellular domain of IL-20RA and IL-20RB; and (d) isolating the dimerized polypeptide from the host cell. In one embodiment, the second DNA sequence further encodes an immunoglobulin heavy chain hinge region wherein the hinge region is joined to the heavy chain constant region domain. In another embodiment, the second DNA sequence further encodes an immunoglobulin variable region joined upstream of and in proper reading frame with the immunoglobulin heavy chain constant region. (See U.S. Patent No. 5,843,725.)

A polynucleotide, generally a cDNA sequence, encodes the described polypeptides herein. A cDNA sequence that encodes a polypeptide of the present invention is comprised of a series of codons, each amino acid residue of the polypeptide being encoded by a codon and each codon being comprised of three nucleotides. The amino acid residues are encoded by their respective codons as follows.

20	Alanine (Ala) is encoded by GCA, GCC, GCG or GCT.
	Cysteine (Cys) is encoded by TGC or TGT.
	Aspartic acid (Asp) is encoded by GAC or GAT.
	Glutamic acid (Glu) is encoded by GAA or GAG.
	Phenylalanine (Phe) is encoded by TTC or TTT.
25	Glycine (Gly) is encoded by GGA, GGC, GGG or GGT.
	Histidine (His) is encoded by CAC or CAT.
	Isoleucine (Ile) is encoded by ATA, ATC or ATT.
	Lysine (Lys) is encoded by AAA, or AAG.
	Leucine (Leu) is encoded by TTA, TTG, CTA, CTC, CTG or CTT.
30	Methionine (Met) is encoded by ATG.
	Asparagine (Asn) is encoded by AAC or AAT.
	Proline (Pro) is encoded by CCA, CCC, CCG or CCT.
	Glutamine (Gln) is encoded by CAA or CAG.
	Arginine (Arg) is encoded by AGA, AGG, CGA, CGC, CGG or CGT.
35	Serine (Ser) is encoded by AGC, AGT, TCA, TCC, TCG or TCT.
	Threonine (Thr) is encoded by ACA, ACC, ACG or ACT.
	Valine (Val) is encoded by GTA, GTC, GTG or GTT.

15

20

25

30

35

Tryptophan (Trp) is encoded by TGG. Tyrosine (Tyr) is encoded by TAC or TAT.

It is to be recognized that according to the present invention, when a polynucleotide is claimed as described herein, it is understood that what is claimed are both the sense strand, the anti-sense strand, and the DNA as double-stranded having both the sense and anti-sense strand annealed together by their respective hydrogen bonds. Also claimed is the messenger RNA (mRNA) that encodes the polypeptides of the president invention, and which mRNA is encoded by the cDNA described herein. Messenger RNA (mRNA) will encode a polypeptide using the same codons as those 10 defined herein, with the exception that each thymine nucleotide (T) is replaced by a uracil nucleotide (U).

One of ordinary skill in the art will also appreciate that different species can exhibit "preferential codon usage." In general, see, Grantham, et al., Nuc. Acids Res. 8:1893-1912 (1980); Haas, et al. Curr. Biol. 6:315-324 (1996); Wain-Hobson, et al., Gene 13:355-364 (1981); Grosjean and Fiers, Gene 18:199-209 (1982); Holm, Nuc. Acids Res. 14:3075-3087 (1986); Ikemura, J. Mol. Biol. 158:573-597 (1982). As used herein, the term "preferential codon usage" or "preferential codons" is a term of art referring to protein translation codons that are most frequently used in cells of a certain species, thus favoring one or a few representatives of the possible codons encoding each amino acid. For example, the amino acid Threonine (Thr) may be encoded by ACA, ACC, ACG, or ACT, but in mammalian cells ACC is the most commonly used codon; in other species, for example, insect cells, yeast, viruses or bacteria, different Thr codons may be preferential. Preferential codons for a particular species can be introduced into the polynucleotides of the present invention by a variety of methods known in the art. Introduction of preferential codon sequences into recombinant DNA can, for example, enhance production of the protein by making protein translation more efficient within a particular cell type or species. Sequences containing preferential codons can be tested and optimized for expression in various species, and tested for functionality as disclosed herein.

Methods for synthesizing amino acids and aminoacylating tRNA are known in the art. Transcription and translation of plasmids containing nonsense mutations is carried out in a cell-free system comprising an E. coli S30 extract and commercially available enzymes and other reagents. Proteins are purified by chromatography. See, for example, Robertson et al., J. Am. Chem. Soc. 113:2722 (1991); Ellman et al., Methods Enzymol. 202:301 (1991; Chung et al., Science 259:806-

809 (1993); and Chung et al., Proc. Natl. Acad. Sci. USA 90:10145-1019 (1993). In a second method, translation is carried out in Xenopus oocytes by microinjection of mutated mRNA and chemically aminoacylated suppressor tRNAs, Turcatti et al., J. Biol. Chem. 271:19991-19998 (1996). Within a third method, E. coli cells are cultured in the absence of a natural amino acid that is to be replaced (e.g., phenylalanine) and in the presence of the desired non-naturally occurring amino acid(s) (e.g., 2-azaphenylalanine, 3-azaphenylalanine, 4-azaphenylalanine, or 4-fluorophenylalanine). The non-naturally occurring amino acid is incorporated into the protein in place of its natural counterpart. See, Koide et al., Biochem. 33:7470-7476 (1994). Naturally occurring amino acid residues can be converted to non-naturally occurring species by in vitro chemical modification. Chemical modification can be combined with site-directed mutagenesis to further expand the range of substitutions, Wynn and Richards, Protein Sci. 2:395-403 (1993).

A limited number of non-conservative amino acids, amino acids that are not encoded by the genetic code, non-naturally occurring amino acids, and unnatural amino acids may be substituted for amino acid residues.

Essential amino acids in the polypeptides of the present invention can be identified according to procedures known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis, Cunningham and Wells, *Science 244*: 1081-1085 (1989); Bass *et al.*, *Proc. Natl. Acad. Sci. USA 88*:4498-502 (1991). In the latter technique, single alanine mutations are introduced at every residue in the molecule, and the resultant mutant molecules are tested for biological activity as disclosed below to identify amino acid residues that are critical to the activity of the molecule. See also, Hilton *et al.*, *J. Biol. Chem. 271*:4699-708, 1996. Sites of ligand-receptor interaction can also be determined by physical analysis of structure, as determined by such techniques as nuclear magnetic resonance, crystallography, electron diffraction or photoaffinity labeling, in conjunction with mutation of putative contact site amino acids. See, for example, de Vos *et al.*, *Science 255*:306-312 (1992); Smith *et al.*, *J. Mol. Biol. 224*:899-904 (1992); Wlodaver *et al.*, *FEBS Lett. 309*:59-64 (1992).

Multiple amino acid substitutions can be made and tested using known methods of mutagenesis and screening, such as those disclosed by Reidhaar-Olson and Sauer, *Science 241*:53-57 (1988) or Bowie and Sauer, *Proc. Natl. Acad. Sci. USA 86*:2152-2156 (1989). Briefly, these authors disclose methods for simultaneously randomizing two or more positions in a polypeptide, selecting for functional polypeptide, and then sequencing the mutagenized polypeptides to determine the

spectrum of allowable substitutions at each position. Other methods that can be used include phage display, *e.g.*, Lowman *et al.*, *Biochem. 30*:10832-10837 (1991); Ladner *et al.*, U.S. Patent No. 5,223,409; Huse, WIPO Publication WO 92/06204) and region-directed mutagenesis, Derbyshire *et al.*, *Gene 46*:145 (1986); Ner *et al.*, *DNA 7*:127 (1988).

Variants of the disclosed *IL-20*, IL-20RA and IL-20RB DNA and polypeptide sequences can be generated through DNA shuffling as disclosed by Stemmer, *Nature 370*:389-391, (1994), Stemmer, *Proc. Natl. Acad. Sci. USA 91*:10747-10751 (1994) and WIPO Publication WO 97/20078. Briefly, variant DNAs are generated by *in vitro* homologous recombination by random fragmentation of a parent DNA followed by reassembly using PCR, resulting in randomly introduced point mutations. This technique can be modified by using a family of parent DNAs, such as allelic variants or DNAs from different species, to introduce additional variability into the process. Selection or screening for the desired activity, followed by additional iterations of mutagenesis and assay provides for rapid "evolution" of sequences by selecting for desirable mutations while simultaneously selecting against detrimental changes.

Mutagenesis methods as disclosed herein can be combined with high-throughput, automated screening methods to detect activity of cloned, mutagenized polypeptides in host cells. Mutagenized DNA molecules that encode active polypeptides can be recovered from the host cells and rapidly sequenced using modern equipment. These methods allow the rapid determination of the importance of individual amino acid residues in a polypeptide of interest, and can be applied to polypeptides of unknown structure.

25

30

35

10

15

20

PROTEIN PRODUCTION

Polypeptides can be produced in genetically engineered host cells according to conventional techniques. Suitable host cells are those cell types that can be transformed or transfected with exogenous DNA and grown in culture, and include bacteria, fungal cells, and cultured higher eukaryotic cells. Eukaryotic cells, particularly cultured cells of multicellular organisms, are preferred. Techniques for manipulating cloned DNA molecules and introducing exogenous DNA into a variety of host cells are disclosed by Sambrook *et al.*, Molecular Cloning: *A Laboratory Manual*, 2nd ed., (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989), and Ausubel *et al.*, eds., *Current Protocols in Molecular Biology* (John Wiley and Sons, Inc., NY, 1987).

In general, a DNA sequence encoding a polypeptide is operably linked to other genetic elements required for its expression, generally including a transcription promoter and terminator, within an expression vector. The vector will also commonly contain one or more selectable markers and one or more origins of replication, although those skilled in the art will recognize that within certain systems selectable markers may be provided on separate vectors, and replication of the exogenous DNA may be provided by integration into the host cell genome. Selection of promoters, terminators, selectable markers, vectors and other elements is a matter of routine design within the level of ordinary skill in the art. Many such elements are described in the literature and are available through commercial suppliers.

To direct a polypeptide into the secretory pathway of a host cell, a secretory signal sequence (also known as a leader sequence, prepro sequence or pre sequence) is provided in the expression vector. The secretory signal sequence may be that of the native polypeptides, or may be derived from another secreted protein (*e.g.*, t-PA) or synthesized *de novo*. The secretory signal sequence is operably linked to the DNA sequence, i.e., the two sequences are joined in the correct reading frame and positioned to direct the newly synthesized polypeptide into the secretory pathway of the host cell. Secretory signal sequences are commonly positioned 5' to the DNA sequence encoding the polypeptide of interest, although certain secretory signal sequences may be positioned elsewhere in the DNA sequence of interest (see, *e.g.*, Welch *et al.*, U.S. Patent No. 5,037,743; Holland *et al.*, U.S. Patent No. 5,143,830).

Alternatively, the secretory signal sequence contained in the polypeptides of the present invention is used to direct other polypeptides into the secretory pathway. The present invention provides for such fusion polypeptides. The secretory signal sequence contained in the fusion polypeptides of the present invention is preferably fused amino-terminally to an additional peptide to direct the additional peptide into the secretory pathway. Such constructs have numerous applications known in the art. For example, these novel secretory signal sequence fusion constructs can direct the secretion of an active component of a normally non-secreted protein, such as a receptor. Such fusions may be used *in vivo* or *in vitro* to direct peptides through the secretory pathway.

Cultured mammalian cells are suitable hosts within the present invention. Methods for introducing exogenous DNA into mammalian host cells include calcium phosphate-mediated transfection, Wigler *et al.*, *Cell 14*:725 (1978), Corsaro and Pearson, *Somatic Cell Genetics* 7:603 (1981); Graham and Van der Eb, *Virology* 52:456 (1973), electroporation, Neumann *et al.*, *EMBO J. 1*:841-845 (1982), DEAE-dextran mediated transfection (Ausubel *et al.*, *ibid.*, and liposome-mediated

1.5

20

25

30

transfection, Hawley-Nelson *et al.*, *Focus 15*:73 (1993); Ciccarone *et al.*, *Focus 15*:80 (1993), and viral vectors, Miller and Rosman, *BioTechniques 7*:980(1989); Wang and Finer, *Nature Med. 2*:714 (1996). The production of recombinant polypeptides in cultured mammalian cells is disclosed, for example, by Levinson *et al.*, U.S. Patent No. 4,713,339; Hagen *et al.*, U.S. Patent No. 4,784,950; Palmiter *et al.*, U.S. Patent No. 4,579,821; and Ringold, U.S. Patent No. 4,656,134. Suitable cultured mammalian cells include the COS-1 (ATCC No. CRL 1650), COS-7 (ATCC No. CRL 1651), BHK (ATCC No. CRL 1632), BHK 570 (ATCC No. CRL 10314), 293 (ATCC No. CRL 1573; Graham *et al.*, *J. Gen. Virol. 36*:59 (1977) and Chinese hamster ovary (*e.g.* CHO-K1; ATCC No. CCL 61) cell lines. Additional suitable cell lines are known in the art and available from public depositories such as the American Type Culture Collection, Rockville, Maryland. In general, strong transcription promoters are preferred, such as

promoters from SV-40 or cytomegalovirus. See, e.g., U.S. Patent No. 4,956,288. Other

suitable promoters include those from metallothionein genes (U.S. Patent Nos.

4,579,821 and 4,601,978) and the adenovirus major late promoter.

Drug selection is generally used to select for cultured mammalian cells into which foreign DNA has been inserted. Such cells are commonly referred to as "transfectants". Cells that have been cultured in the presence of the selective agent and are able to pass the gene of interest to their progeny are referred to as "stable transfectants." A preferred selectable marker is a gene encoding resistance to the antibiotic neomycin. Selection is carried out in the presence of a neomycin-type drug, such as G-418 or the like. Selection systems can also be used to increase the expression level of the gene of interest, a process referred to as "amplification." Amplification is carried out by culturing transfectants in the presence of a low level of the selective agent and then increasing the amount of selective agent to select for cells that produce high levels of the products of the introduced genes. A preferred amplifiable selectable marker is dihydrofolate reductase, which confers resistance to methotrexate. Other drug resistance genes (e.g. hygromycin resistance, multi-drug resistance, puromycin acetyltransferase) can also be used. Alternative markers that introduce an altered phenotype, such as green fluorescent protein, or cell surface proteins such as CD4, CD8, Class I MHC, placental alkaline phosphatase may be used to sort transfected cells from untransfected cells by such means as FACS sorting or magnetic bead separation technology.

Other higher eukaryotic cells can also be used as hosts, including plant cells, insect cells and avian cells. The use of *Agrobacterium rhizogenes* as a vector for expressing genes in plant cells has been reviewed by Sinkar *et al.*, *J. Biosci.* (*Bangalore*) 11:47 (1987). Transformation of insect cells and production of foreign

15

20

25

30

35

polypeptides therein is disclosed by Guarino et al., U.S. Patent No. 5,162,222 and WIPO publication WO 94/06463. Insect cells can be infected with recombinant baculovirus, commonly derived from Autographa californica nuclear polyhedrosis virus (AcNPV). DNA encoding a polypeptide is inserted into the baculoviral genome in place of the AcNPV polyhedrin gene coding sequence by one of two methods. The first is the traditional method of homologous DNA recombination between wild-type AcNPV and a transfer vector containing the gene flanked by AcNPV sequences. Suitable insect cells, e.g. SF9 cells, are infected with wild-type AcNPV and transfected with a transfer vector comprising a polynucleotide operably linked to an AcNPV polyhedrin gene promoter, terminator, and flanking sequences. See, King, L.A. and Possee, R.D., The Baculovirus Expression System: A Laboratory Guide, (Chapman & Hall, London); O'Reilly, D.R. et al., Baculovirus Expression Vectors: A Laboratory Manual (Oxford University Press, New York, New York, 1994); and, Richardson, C. D., Ed., Baculovirus Expression Protocols. Methods in Molecular Biology, (Humana Press, Totowa, NJ 1995). Natural recombination within an insect cell will result in a recombinant baculovirus that contains coding sequences driven by the polyhedrin promoter. Recombinant viral stocks are made by methods commonly used in the art. The second method of making recombinant baculovirus utilizes a

transposon-based system described by Luckow, V.A, et al., J Virol 67:4566 (1993). This system is sold in the Bac-to-Bac kit (Life Technologies, Rockville, MD). This system utilizes a transfer vector, pFastBac1™ (Life Technologies) containing a Tn7 transposon to move the DNA encoding the polypeptide into a baculovirus genome maintained in E. coli as a large plasmid called a "bacmid." The pFastBac1™ transfer vector utilizes the AcNPV polyhedrin promoter to drive the expression of the gene of interest. However, pFastBac1™ can be modified to a considerable degree. The polyhedrin promoter can be removed and substituted with the baculovirus basic protein promoter (also known as Pcor, p6.9 or MP promoter), which is expressed earlier in the baculovirus infection, and has been shown to be advantageous for expressing secreted proteins. See, Hill-Perkins, M.S. and Possee, R.D., J Gen Virol 71:971 (1990); Bonning, B.C. et al., J Gen Virol 75:1551 (1994); and, Chazenbalk, G.D., and Rapoport, B., J Biol Chem 270:1543 (1995). In such transfer vector constructs, a short or long version of the basic protein promoter can be used. Moreover, transfer vectors can be constructed that replace the native secretory signal sequences with secretory signal sequences derived from insect proteins. For example, a secretory signal sequence from Ecdysteroid Glucosyltransferase (EGT), honey bee Melittin (Invitrogen, Carlsbad, CA), or baculovirus gp67 (PharMingen, San Diego, CA) can be used in

constructs to replace the native secretory signal sequence. In addition, transfer vectors

15

20

25

30

35

can include an in-frame fusion with DNA encoding an epitope tag at the C- or N-terminus of the expressed polypeptide, for example, a Glu-Glu epitope tag, Grussenmeyer, T. et al., Proc Natl Acad Sci. 82:7952 (1985). Using a technique known in the art, a transfer vector containing a recombinant gene is transformed into E. coli, and screened for bacmids that contain an interrupted lacZ gene indicative of recombinant baculovirus. The bacmid DNA containing the recombinant baculovirus genome is isolated, using common techniques, and used to transfect Spodoptera frugiperda cells, e.g. Sf9 cells. Recombinant virus that expresses the polypeptide is subsequently produced. Recombinant viral stocks are made by methods commonly used the art.

The recombinant virus is used to infect host cells, typically a cell line derived from the fall armyworm, Spodoptera frugiperda. See, in general, Glick and Pasternak, Molecular Biotechnology: Principles and Applications of Recombinant DNA (ASM Press, Washington, D.C., 1994). Another suitable cell line is the High FiveO[™] cell line (Invitrogen) derived from *Trichoplusia ni* (U.S. Patent #5,300,435). Commercially available serum-free media are used to grow and maintain the cells. Suitable media are Sf900 II[™] (Life Technologies) or ESF 921[™] (Expression Systems) for the Sf9 cells; and Ex-cellO405™ (JRH Biosciences, Lenexa, KS) or Express Five O^{TM} (Life Technologies) for the T. ni cells. The cells are grown up from an inoculation density of approximately 2-5 x 10⁵ cells to a density of 1-2 x 10⁶ cells at which time a recombinant viral stock is added at a multiplicity of infection (MOI) of 0.1 to 10, more typically near 3. The recombinant virus-infected cells typically produce the recombinant polypeptide at 12-72 hours post-infection and secrete it with varying efficiency into the medium. The culture is usually harvested 48 hours post-infection. Centrifugation is used to separate the cells from the medium (supernatant). The supernatant containing the polypeptide is filtered through micropore filters, usually 0.45 um pore size. Procedures used are generally described in available laboratory manuals (King, L. A. and Possee, R.D., ibid., O'Reilly, D.R. et al., ibid.; Richardson, C. D., ibid.). Subsequent purification of the polypeptide from the supernatant can be achieved using methods described herein.

Fungal cells, including yeast cells, can also be used within the present invention. Yeast species of particular interest in this regard include *Saccharomyces cerevisiae*, *Pichia pastoris*, and *Pichia methanolica*. Methods for transforming *S. cerevisiae* cells with exogenous DNA and producing recombinant polypeptides therefrom are disclosed by, for example, Kawasaki, U.S. Patent No. 4,599,311; Kawasaki *et al.*, U.S. Patent No. 4,931,373; Brake, U.S. Patent No. 4,870,008; Welch *et al.*, U.S. Patent No. 5,037,743; and Murray *et al.*, U.S. Patent No. 4,845,075.

15

20

25

30

35

Transformed cells are selected by phenotype determined by the selectable marker, commonly drug resistance or the ability to grow in the absence of a particular nutrient (e.g., leucine). A preferred vector system for use in Saccharomyces cerevisiae is the POT1 vector system disclosed by Kawasaki et al. (U.S. Patent No. 4,931,373), which allows transformed cells to be selected by growth in glucose-containing media. Suitable promoters and terminators for use in yeast include those from glycolytic enzyme genes (see, e.g., Kawasaki, U.S. Patent No. 4,599,311; Kingsman et al., U.S. Patent No. 4,615,974; and Bitter, U.S. Patent No. 4,977,092) and alcohol dehydrogenase genes. See also U.S. Patents Nos. 4,990,446; 5,063,154; 5,139,936 and 4,661,454. Transformation systems for other yeasts, including Hansenula polymorpha, Schizosaccharomyces pombe, Kluyveromyces lactis, Kluyveromyces fragilis, Ustilago maydis, Pichia pastoris, Pichia methanolica, Pichia guillermondii and Candida maltosa are known in the art. See, for example, Gleeson et al., J. Gen. Microbiol. 132:3459 (1986) and Cregg, U.S. Patent No. 4,882,279. Aspergillus cells may be utilized according to the methods of McKnight et al., U.S. Patent No. 4,935,349. Methods for transforming Acremonium chrysogenum are disclosed by Sumino et al., U.S. Patent No. 5,162,228. Methods for transforming *Neurospora* are disclosed by Lambowitz, U.S. Patent No. 4,486,533.

The use of *Pichia methanolica* as host for the production of recombinant proteins is disclosed in WIPO Publications WO 97/17450, WO 97/17451, WO 98/02536, and WO 98/02565. DNA molecules for use in transforming P. methanolica will commonly be prepared as double-stranded, circular plasmids, which are preferably linearized prior to transformation. For polypeptide production in P. methanolica, it is preferred that the promoter and terminator in the plasmid be that of a P. methanolica gene, such as a P. methanolica alcohol utilization gene (AUG1 or AUG2). Other useful promoters include those of the dihydroxyacetone synthase (DHAS), formate dehydrogenase (FMD), and catalase (CAT) genes. To facilitate integration of the DNA into the host chromosome, it is preferred to have the entire expression segment of the plasmid flanked at both ends by host DNA sequences. A preferred selectable marker for use in Pichia methanolica is a P. methanolica ADE2 gene, which encodes phosphoribosyl-5-aminoimidazole carboxylase (AIRC; EC 4.1.1.21), which allows ade2 host cells to grow in the absence of adenine. For large-scale, industrial processes where it is desirable to minimize the use of methanol, it is preferred to use host cells in which both methanol utilization genes (AUG1 and AUG2) are deleted. For production of secreted proteins, host cells deficient in vacuolar protease genes (PEP4 and PRB1) are preferred. Electroporation is used to facilitate the introduction of a plasmid containing DNA encoding a polypeptide of interest into P. methanolica cells. It is

10

15

20

25

30

35

preferred to transform *P. methanolica* cells by electroporation using an exponentially decaying, pulsed electric field having a field strength of from 2.5 to 4.5 kV/cm, preferably about 3.75 kV/cm, and a time constant (t) of from 1 to 40 milliseconds, most preferably about 20 milliseconds.

Prokaryotic host cells, including strains of the bacteria *Escherichia coli*, *Bacillus* and other genera are also useful host cells within the present invention. Techniques for transforming these hosts and expressing foreign DNA sequences cloned therein are well known in the art; see, *e.g.*, Sambrook *et al.*, *ibid.*). When expressing a polypeptide in bacteria such as *E. coli*, the polypeptide may be retained in the cytoplasm, typically as insoluble granules, or may be directed to the periplasmic space by a bacterial secretion sequence. In the former case, the cells are lysed, and the granules are recovered and denatured using, for example, guanidine isothiocyanate or urea. The denatured polypeptide can then be refolded and dimerized by diluting the denaturant, such as by dialysis against a solution of urea and a combination of reduced and oxidized glutathione, followed by dialysis against a buffered saline solution. In the latter case, the polypeptide can be recovered from the periplasmic space in a soluble and functional form by disrupting the cells (by, for example, sonication or osmotic shock) to release the contents of the periplasmic space and recovering the protein, thereby obviating the need for denaturation and refolding.

Transformed or transfected host cells are cultured according to conventional procedures in a culture medium containing nutrients and other components required for the growth of the chosen host cells. A variety of suitable media, including defined media and complex media, are known in the art and generally include a carbon source, a nitrogen source, essential amino acids, vitamins and minerals. Media may also contain such components as growth factors or serum, as required. The growth medium will generally select for cells containing the exogenously added DNA by, for example, drug selection or deficiency in an essential nutrient, which is complemented by the selectable marker carried on the expression vector or cotransfected into the host cell. P. methanolica cells are cultured in a medium comprising adequate sources of carbon, nitrogen and trace nutrients at a temperature of about 25°C to 35°C. Liquid cultures are provided with sufficient aeration by conventional means, such as shaking of small flasks or sparging of fermentors. A preferred culture medium for P. methanolica is YEPD (2% D-glucose, 2% Bacto™ Peptone (Difco Laboratories, Detroit, MI), 1% BactoTM yeast extract (Difco Laboratories), 0.004% adenine and 0.006% L-leucine).

15

20

25

30

35

Protein Isolation

It is preferred to purify the polypeptides of the present invention to \geq 80% purity, more preferably to \geq 90% purity, even more preferably \geq 95% purity, and particularly preferred is a pharmaceutically pure state, that is greater than 99.9% pure with respect to contaminating macromolecules, particularly other proteins and nucleic acids, and free of infectious and pyrogenic agents. Preferably, a purified polypeptide is substantially free of other polypeptides, particularly other polypeptides of animal origin.

Expressed recombinant polypeptides (or chimeric polypeptides) can be purified using fractionation and/or conventional purification methods and media. Ammonium sulfate precipitation and acid or chaotrope extraction may be used for fractionation of samples. Exemplary purification steps may include hydroxyapatite, size exclusion, FPLC and reverse-phase high performance liquid chromatography. Suitable chromatographic media include derivatized dextrans, agarose, cellulose, polyacrylamide, specialty silicas, and the like. PEI, DEAE, QAE and Q derivatives are preferred. Exemplary chromatographic media include those media derivatized with phenyl, butyl, or octyl groups, such as Phenyl-Sepharose FF (Pharmacia), Toyopearl butyl 650 (Toso Haas, Montgomeryville, PA), Octyl-Sepharose (Pharmacia) and the like; or polyacrylic resins, such as Amberchrom CG 71 (Toso Haas) and the like. Suitable solid supports include glass beads, silica-based resins, cellulosic resins, agarose beads, cross-linked agarose beads, polystyrene beads, cross-linked polyacrylamide resins and the like that are insoluble under the conditions in which they are to be used. These supports may be modified with reactive groups that allow attachment of proteins by amino groups, carboxyl groups, sulfhydryl groups, hydroxyl groups and/or carbohydrate moieties. Examples of coupling chemistries include cyanogen bromide activation, N-hydroxysuccinimide activation, epoxide activation, sulfhydryl activation, hydrazide activation, and carboxyl and amino derivatives for carbodiimide coupling chemistries. These and other solid media are well known and widely used in the art, and are available from commercial suppliers. Methods for binding receptor polypeptides to support media are well known in the art. Selection of a particular method is a matter of routine design and is determined in part by the properties of the chosen support. See, for example, Affinity Chromatography: Principles & Methods (Pharmacia LKB Biotechnology, Uppsala, Sweden, 1988).

Polypeptides can be isolated by exploitation of their properties. For example, immobilized metal ion adsorption (IMAC) chromatography can be used to purify histidine-rich proteins, including those comprising polyhistidine tags. Briefly, a gel is first charged with divalent metal ions to form a chelate, Sulkowski, *Trends in Biochem. 3*:1 (1985). Histidine-rich proteins will be adsorbed to this matrix with

15

20

25

30

35

differing affinities, depending upon the metal ion used, and will be eluted by competitive elution, lowering the pH, or use of strong chelating agents. Other methods of purification include purification of glycosylated proteins by lectin affinity chromatography and ion exchange chromatography. A protein fused to the Fc portion of an immunoglobulin can be purified using a 'Protein A column'. *Methods in Enzymol.*, Vol. 182, "Guide to Protein Purification", M. Deutscher, (ed.),page 529-539 (Acad. Press, San Diego, 1990). Within additional embodiments of the invention, a fusion of the polypeptide of interest and an affinity tag (e.g., maltose-binding protein, an immunoglobulin domain) may be constructed to facilitate purification.

As used herein, the term "antibodies" includes polyclonal antibodies, affinity-purified polyclonal antibodies, monoclonal antibodies, and antigen-binding fragments, such as F(ab')₂ and Fab proteolytic fragments. Genetically engineered intact antibodies or fragments, such as chimeric antibodies, Fv fragments, single chain antibodies and the like, as well as synthetic antigen-binding peptides and polypeptides, are also included. Non-human antibodies may be humanized by grafting non-human CDRs onto human framework and constant regions, or by incorporating the entire non-human variable domains (optionally "cloaking" them with a human-like surface by replacement of exposed residues, wherein the result is a "veneered" antibody). In some instances, humanized antibodies may retain non-human residues within the human variable region framework domains to enhance proper binding characteristics. Through humanizing antibodies, biological half-life may be increased, and the potential for adverse immune reactions upon administration to humans is reduced.

A variety of assays known to those skilled in the art can be utilized to detect antibodies that bind to protein or peptide. Exemplary assays are described in detail in *Antibodies: A Laboratory Manual*, Harlow and Lane (Eds.) (Cold Spring Harbor Laboratory Press, 1988). Representative examples of such assays include: concurrent immunoelectrophoresis, radioimmunoassay, radioimmuno-precipitation, enzyme-linked immunosorbent assay (ELISA), dot blot or Western blot assay, inhibition or competition assay, and sandwich assay.

The soluble receptors of the present invention can be used to down-regulate IL-20, which has been shown to be involved in a number of inflammatory processes. Specifically, IL-20 has been shown to up-regulate IL-8. Inflammatory diseases in which IL-8 plays a significant role, and for which a decrease in IL-8 would be beneficial are, adult respiratory disease (ARD), septic shock, multiple organ failure, inflammatory lung injury such as asthma or bronchitis, bacterial pneumonia, psoriasis, eczema, atopic and contact dermatitis, and inflammatory bowel disease such as

10

15

20

25

30

35

ulcerative colitis and Crohn's disease. Thus, the soluble receptor to IL-20 of the present invention can be administered to a patient to treat these diseases.

Biology of IL-20, Its receptor and Its Role in Psoriasis

Two orphan class II cytokine receptors, both of which are expressed in skin, were identified as IL-20 receptor subunits. Both IL-20 receptor subunits are required for ligand binding, distinguishing their role from that of subunits in the four other known class II cytokine receptors. IL-20RA and IL-20RB are also coexpressed in a number of human tissues besides skin, including ovary, adrenal gland, testis, salivary gland, muscle, lung, kidney, heart and to a lesser degree the small intestine suggesting additional target tissues for IL-20 action. We conclude that the IL-20 heterodimeric receptor is structurally similar to other class II cytokine receptors and is expressed in skin where we have demonstrated activity of the IL-20 ligand.

Two lines of evidence indicate that a role IL-20 and its receptor are involved in psoriasis. This multigenic skin disease is characterized by increased keratinocyte proliferation, altered keratinocyte differentiation, and infiltration of immune cells into the skin. The first line of evidence for a role of IL-20 in psoriasis is that the observed hyperkeratosis and thickened epidermis in the transgenic mice that resemble human psoriatic abnormalities. Decreased numbers of tonofilaments, thought to be related to defective keratinization, are a striking feature of human psoriasis. Intramitochondrial inclusions have been found in both chemically induced and naturally occurring hyperplastic skin conditions in mice. The cause of the inclusions and their effects on mitochondrial function, if any, are unknown. We conclude that IL-20 transgenic mice exhibit many of the characteristics observed in human psoriasis.

A second line of evidence that implicates the IL-20 receptor in psoriasis is that both IL-20RA and IL-20RB mRNA are markedly upregulated in human psoriatic skin compared to normal skin. Both IL-20 receptor subunits are expressed in keratinocytes throughout the epidermis and are also expressed in a subset of immune and endothelial cells. We propose that increased expression of an activated IL-20 receptor may alter the interactions between endothelial cells, immune cells and keratinocytes, leading to dysregulation of keratinocyte proliferation and differentiation.

A crucial step in understanding the function of a novel cytokine is the identification and characterization of its cognate receptor. We have successfully used a structure-based approach to isolate a novel interleukin that ultimately led to the isolation of its receptor. IL-20 stimulates signal transduction in the human keratinocyte HaCaT cell line, supporting a direct action of this novel ligand in skin. In addition, IL-

15

20

25

30

1β, EGF and TNF-α, proteins known to be active in keratinocytes and to be involved with proliferative and pro-inflammatory signals in skin, enhance the response to IL-20. In both HaCaT and BHK cells expressing the IL-20 receptor, IL-20 signals through STAT3. Thus, IL-20 binds its receptor on keratinocytes and stimulates a STAT3-containing signal transduction pathway.

Use of Antagonist to IL-20 to Treat Psoriasis

As indicated in the discussion above and the examples below, IL-20 is involved in the pathology of psoriasis. Thus, the soluble receptors of the present invention can be administered to an individual to down-regulate IL-20 and thus treat psoriasis.

Psoriasis is one of the most common dermatologic diseases, affecting up to 1 to 2 percent of the world's population. It is a chronic inflammatory skin disorder characterized by erythematous, sharply demarcated papules and rounded plaques, covered by silvery micaceous scale. The skin lesions of psoriasis are variably pruritic. Traumatized areas often develop lesions of psoriasis. Additionally, other external factors may exacerbate psoriasis including infections, stress, and medications, *e.g.* lithium, beta blockers, and anti-malarials.

The most common variety of psoriasis is called plaque type. Patients with plaque-type psoriasis will have stable, slowly growing plaques, which remain basically unchanged for long periods of time. The most common areas for plaque psoriasis to occur are the elbows knees, gluteal cleft, and the scalp. Involvement tends to be symmetrical. Inverse psoriasis affects the intertriginous regions including the axilla, groin, submammary region, and navel, and it also tends to affect the scalp, palms, and soles. The individual lesions are sharply demarcated plaques but may be moist due to their location. Plaque-type psoriasis generally develops slowly and runs an indolent course. It rarely spontaneously remits.

Eruptive psoriasis (guttate psoriasis) is most common in children and young adults. It develops acutely in individuals without psoriasis or in those with chronic plaque psoriasis. Patients present with many small erythematous, scaling papules, frequently after upper respiratory tract infection with beta-hemolytic streptococci. Patients with psoriasis may also develop pustular lesions. These may be localized to the palms and soles or may be generalized and associated with fever, malaise, diarrhea, and arthralgias..

About half of all patients with psoriasis have fingernail involvement, appearing as punctate pitting, nail thickening or subungual hyperkeratosis. About 5 to

35

15

20

25

30

35

10 percent of patients with psoriasis have associated joint complaints, and these are most often found in patients with fingernail involvement. Although some have the coincident occurrence of classic Although some have the coincident occurrence of classic rheumatoid arthritis, many have joint disease that falls into one of five type associated with psoriasis: (1) disease limited to a single or a few small joints (70 percent of cases); (2) a seronegative rheumatoid arthritis-like disease; (3) involvement of the distal interphalangeal joints; (4) severe destructive arthritis with the development of "arthritis mutilans"; and (5) disease limited to the spine.

Psoriasis can be treated by administering antagonists to IL-20. The preferred antagonists are either a soluble receptor to IL-20 or antibodies, antibody fragments or single chain antibodies that bind to either the IL-20 receptor or to IL-20. The antagonists to IL-20 can be administered alone or in combination with other established therapies such as lubricants, keratolytics, topical corticosteroids, topical vitamin D derivatives, anthralin, systemic antimetabolites such as methotrexate, psoralen-ultraviolet-light therapy (PUVA), etretinate, isotretinoin, cyclosporine, and the topical vitamin D3 derivative calcipotriol. The antagonists, in particularly the soluble receptor or the antibodies that bind to IL-20 or the IL-20 receptor can be administered to individual subcutaneously, intravenously, or transdermally using a cream or transdermal patch that contains the antagonist of IL-20. If administered subcutaneously, the antagonist can be injected into one or more psoriatic plaques. If administered transdermally, the antagonists can be administered directly on the plaques using a cream containing the antagonist to IL-20.

Use of Antagonists to IL-20 to Treat Inflammatory Conditions of the Lung.

The soluble receptor of IL-20 of the present invention can be administered to a person who has asthma, bronchitis or cystic fibrosis or other inflammatory lung disease to treat the disease. The antagonists can be administered by any suitable method including intravenous, subcutaneous, bronchial lavage, and the use of inhalant containing an antagonist to IL-20.

Administration of the IL-20 Soluble Receptor

The quantities of the IL-20 soluble necessary for effective therapy will depend upon many different factors, including means of administration, target site, physiological state of the patient, and other medications administered. Thus, treatment dosages should be titrated to optimize safety and efficacy. Typically, dosages used *in vitro* may provide useful guidance in the amounts useful for *in vivo* administration of

15

35

these reagents. Animal testing of effective doses for treatment of particular disorders will provide further predictive indication of human dosage. Methods for administration include oral, intravenous, peritoneal, intramuscular, transdermal or administration into the lung or trachea in spray form by means or a nebulizer or atomizer. Pharmaceutically acceptable carriers will include water, saline, buffers to name just a few. Dosage ranges would ordinarily be expected from 1µg to 1000µg per kilogram of body weight per day. A dosage for an average adult of the IL-20 soluble receptor would be about 25 mg given twice weekly as a subcutaneous injection. Injections could be given at the site of psoriatic lesions for the treatment of psoriasis. For subcutaneous or intravenous administration of the antagonist to IL-20, the antibody or soluble receptor can be in phosphate buffered saline. Also in skin diseases such as psoriasis, the antagonist to IL-20 can be administered via an ointment or transdermal patch. The doses by may be higher or lower as can be determined by a medical doctor with ordinary skill in the art. For a complete discussion of drug formulations and dosage ranges see Remington's Pharmaceutical Sciences, 18th Ed., (Mack Publishing Co., Easton, Penn., 1996), and Goodman and Gilman's: The Pharmacological Bases of Therapeutics, 9th Ed. (Pergamon Press 1996).

The invention is further illustrated by the following non-limiting 20 examples.

Example 1.

Up-regulation of IL-8 by IL-20

Methods:

Normal Human Epidermal neonatal keratinocytes (NHEK) (from Clonetics) at passage 2 were plated and grown to confluency in 12 well tissue culture plates. KGM (Keratinocyte growth media) was purchased from Clonetics. When cells reached confluency, they were washed with KGM media minus growth factors = KBM (keratinocyte basal media). Cells were serum starved in KBM for 72 hours prior to the addition of test compounds. Thrombin at 1 I.U./mL and trypsin at 25nM were used as positive controls. One mL of media/well was added. KBM only was used as the negative control.

IL-20 was made up in KBM media and added at varying concentrations, from 2.5μg/ml down to 618ng/mL in a first experiment and from 2.5μg/mL down to 3ng/mL in a second experiment.

Cells were incubated at 37° C, 5% CO₂ for 48 hours. Supernatants were removed and frozen at -80° C for several days prior to assaying for IL-8 and GM-CSF levels. Human IL-8 Immunoassay kit # D8050 (RandD Systems, Inc.) and human GM-CSF Immunoassay kit # HSGMO (RandD Systems, Inc.) were used to determine cytokine production following manufacturer's instructions.

Results

The results indicated that the expression of IL-8 and GM-CSF were induced by IL-20.

10

Example 2

Cloning of IL-20RB

Cloning of IL-20RB coding region

15

20

25

30

Two PCR primers were designed based on the sequence from International Patent Application No. PCT/US99/03735 (publication no. WO 99/46379) filed on March 8, 1999. SEQ ID NO: 16 contains the ATG (Met1) codon with an EcoRI restriction site, SEQ ID NO: 17 contains the stop codon (TAG) with an XhoI restriction site. The PCR amplification was carried out using a human keratinocyte (HaCaT) cDNA library DNA as a template and SEQ ID NO: 16 and SEQ ID NO: 17 as primers. The PCR reaction was performed as follows: incubation at 94°C for 1 min followed by 30 cycles of 94°C for 30 sec and 68°C for 2 min, after additional 68°C for 4 min, the reaction was stored at 4°C. The PCR products were run on 1% Agarose gel, and a 1 kb DNA band was observed. The PCR products were cut from the gel and the DNA was purified using a QIAquick Gel Extraction Kit (Qiagen). The purified DNA was digested with EcoRI and XhoI, and cloned into a pZP vector that was called pZP7N. A pZP plasmid is a mammalian expression vector containing an expression cassette having the mouse metallothionein-1 promoter, human tPA leader peptide, multiple restriction sites for insertion of coding sequences, a Glu-Glu tag, and a human growth hormone terminator. The plasmid also has an E. coli origin of replication, a mammalian selectable marker expression unit having an SV40 promoter, an enhancer and an origin of replication, as well as a DHFR gene, and the SV40 terminator. Several IL-20RBpZP7N clones were sequenced. They all contain three non-conservative mutations compared with the sequence of IL-20RB in PCT/US99/03735: (sequence IL-20RB-

pZP7N), 146 Pro (CCC) -- Thr (ACC), 148 His (CAT) -- Asp (GAT), and 171 Thr (ACG) -- Arg (AGG).

To verify the three substitutions in IL-20RB-pZP7N clone, PCR amplification was carried out using three difference cDNA sources -- fetal skin marathon cDNA, HaCaT cDNA library DNA, and prostate smooth muscle cDNA library DNA -- as templates. The PCR products were gel purified and sequenced. The sequence of each of the three PCR products was consistent with that of the IL-20RB-pZP7N clone. IL-20RB is SEQ ID NO: 13 and 14, and the mature extracellular domain is SEQ ID NO: 15.

10

15

20

25

30

35

Example 3

Binding of IL-20 to IL-20RB/ IL-20RA Heterodimer

A cell-based binding assay was used to verify IL-20 binds to IL-20RA-IL-20RB heterodimer.

Expression vectors containing known and orphan Class II cytokine receptors (including IL-20RA and IL-20RB) were transiently transfected into COS cells in various combinations, which were then assayed for their ability to bind biotin-labeled IL-20 protein. The results show IL-20RB- IL-20RA heterodimer is a receptor for IL-20. The procedure used is described below.

The COS cell transfection was performed in a 12-well tissue culture plate as follows: 0.5 μg DNA was mixed with medium containing 5 μl lipofectamine in 92 μl serum free Dulbecco's modified Eagle's medium (DMEM) (55 mg sodium pyruvate, 146 mg L-glutamine, 5 mg transferrin, 2.5 mg insulin, 1 μg selenium and 5 mg fetuin in 500 ml DMEM), incubated at room temperature for 30 minutes and then added to 400 μl serum free DMEM media. This 500 μl mixture was then added to 1.5 x 10⁵ COS cells/well and incubated for 5 hours at 37° C. 500 μl 20% fetal bovine serum (FBS) DMEM media was added and incubated overnight.

The assay, a modification of the "secretion trap" (Davis, S., *et al.*, *Cell* 87: 1161-1169 (1996), was performed as follows: cells were rinsed with PBS/1% bovine serum albumin (BSA) and blocked for 1 hour with TNB (0.1 M Tris-HCl, 0.15 M NaCl and 0.5% Blocking Reagent (NEN Renaissance TSA-Direct Kit Cat# NEL701) in water). This was followed by a one-hour incubation with 3 μ g/ml biotinylated IL-20 protein in TNB. Cells were washed with PBS/1% BSA and incubated for another hour

with 1:300 diluted streptavidin-HRP (NEN kit) in TNB. Following another wash, cells were fixed for 15 minutes with 1.8% Formaldehyde in phosphate-buffered saline (PBS). Cells were then washed with TNT (0.1 M Tris-HCL, 0.15 M NaCl, and 0.05% Tween-20 in water). Positive binding signals were detected following a five-minute incubation with fluorescein tyramide reagent diluted 1:50 in dilution buffer (NEN kit). Cells were washed with TNT, preserved with Vectashield Mounting Media (Vector Labs) diluted 1:5 in TNT, and visualized using an FITC filter on an inverted fluorescent microscope.

Example 4

Up-regulation of Inflammatory Cytokines by IL-20

Cell Treatment

10

15

25

30

The human keratinocyte cell line, HaCaT was grown at 37°C to several days post-confluence in T-75 tissue culture flasks. At this point, normal growth media (DMEM + 10% FBS) was removed and replaced with serum-free media. Cells were then incubated for two days at 37°C. DMEM was then removed and four flasks of cells per treatment were treated with one of each of the following conditions for four hours at 37°C: recombinant human (rh) IL-1 alpha at 5 ng/mL, rh IL-1 alpha at 20 ng/mL, rh IL-1 alpha at 5 ng/mL + IL-20 at 1µg/mL, IL-20 at 1µg/mL, or rh IL-10 at 10 ng/mL.

20 RNA Isolation

Following cytokine treatment, media was removed and cells were lysed using a guanidium thiocyanate solution. Total RNA was isolated from the cell lysate by an overnight spin on a cesium chloride gradient. The following day, the RNA pellet was resuspended in a TE/SDS solution and ethanol precipitated. RNA was then quantitated using a spectrophotometer, followed by a DNase treatment as per Section V.B. of Clontech's AtlasTM cDNA Expression Arrays User Manual (version PT3140-1/PR9X390, published 11/5/99). Quality of RNA samples was verified by purity calculations based on spec readings, and by visualization on agarose gel. Genomic contamination of the RNA samples was ruled out by PCR analysis of the beta-actin gene.

Probe Synthesis

Clontech's protocols for polyA+ enrichment, probe synthesis and hybridization to AtlasTM arrays were followed (see above, plus AtlasTM Pure Total RNA Labeling System User Manual, PT3231-1/PR96157, published 6/22/99). Briefly, polyA+ RNA was isolated from 50 mg of total RNA using streptavidin coated magnetic beads (by Clontech, Paolo Alto, CA) and a magnetic particle separator. PolyA+ RNA was then labeled with ^{alpha32}P-dATP via RT-PCR. Clontech CDS primers specific to the 268 genes on the AtlasTM human cytokine/receptor array (Cat. #7744-1) were used in the reaction. Labeled probe was isolated using column chromatography and counted in scintillation fluid.

Array membrane Hybridization

AtlasTM arrays were pre-hybridized with Clontech ExpressHyb plus 100 mg/mL heat denatured salmon sperm DNA for at least thirty minutes at 68°C with continuous agitation. Membranes were then hybridized with 1.9 x 10⁶ CPM/mL (a total of 1.14 x 10⁷ CPM) overnight at 68°C with continuous agitation. The following day, membranes were washed for thirty minutes x 4 in 2X SSC, 1% SDS at 68°C, plus for thirty minutes x 1 in 0.1X SSC, 0.5% SDS at 68°C, followed by one final room temperature wash for five minutes in 2X SSC. Array membranes were then placed in Kodak plastic pouches sealed and exposed to a phosphor imager screen overnight at room temperature. The next day, phosphor screens were scanned on a phosphor imager and analyzed using Clontech's AtlasImageTM 1.0 software.

25 Results

Genes Up-regulated by IL-20

- 1. Tumor necrosis factor (TNF) was up-regulated 1.9-2.4 fold by IL-20.
- 2. Placental growth factors 1 & 2 (PLGF) were up-regulated 1.9-2.0 fold by IL-20.
- 3. Coagulating factor II receptor was up-regulated 2.0-2.5 fold by IL-20.
- 30 4. Calcitonin receptor was up-regulated 2.2-2.3 fold by IL-20.
 - 5. TNF-inducible hyaluronate-binding protein TSG-6 was up-regulated 2.1-2.2 fold by IL-20.
 - 6. Vascular endothelial growth factor (VEGF) receptor-1 precursor, tyrosine-protein kinase receptor (FLT-1) (SFLT) was up-regulated 2.1-2.7 fold by IL-20.

- 7. MRP-8 (calcium binding protein in macrophages MIF- related) was up-regulated 2.9-4.1 fold by IL-20.
- 8. MRP-14 (calcium binding protein in macrophages MIF-related) was up-regulated 3.0-3.8 fold by IL-20.
- 5 9. Relaxin H2 was up-regulated 3.14 fold by IL-20.
 - 10. Transforming growth factor beta (TGF β) receptor III 300 kDa was up-regulated 2.4-3.6 fold by IL-20.

Genes Showing Synergy with IL-20 + IL-1 Treatment

- Bone morphogenic protein 2a was up-regulated 1.8 fold with IL-20 treatment alone,
 fold with IL-1 treatment alone, and 8.2 fold with both IL-20 and IL-1 treatment together.
 - 2. MRP-8 was up-regulated 2.9 fold with IL-20 treatment alone, 10.7 fold with IL-1 treatment alone and 18.0 fold with both IL-20 and IL-1 treatment together.
- 3. Erythroid differentiation protein (EDF) was up-regulated 1.9 fold with IL-20 treatment alone, 9.7 fold with IL-1 treatment alone and 19.0 fold with both IL-20 and IL-1 treatment together.
 - 4. MRP-14 (calcium binding protein in macrophages, MIF related) was up-regulated 3.0 fold with IL-20 treatment alone, 12.2 fold with IL-1 treatment alone and 20.3 fold with both IL-20 and IL-1 treatment together.
 - 5. Heparin-binding EGF-like growth factor was up-regulated 2.0 fold with IL-20 treatment alone, 14 fold with IL-1 treatment alone and 25.0 fold with both IL-20 and IL-1 treatment together.
- 6. Beta-thromboglobulin-like protein was up-regulated 1.5 fold with IL-20 treatment alone, 15 fold with IL-1 treatment alone and 27 fold with both IL-20 and IL-1 treatment together.
 - 7. Brain-derived neurotrophic factor (BDNF) was up-regulated 1.7 fold with IL-20 treatment alone, 25 fold with IL-1 treatment alone and 48 fold with both IL-20 and IL-1 treatment together.

15

20

25

30

8. Monocyte chemotactic and activating factor MCAF was up-regulated 1.3 fold with IL-20 treatment alone, 32 fold with IL-1 treatment alone and 56 fold with both IL-20 and IL-1 treatment together.

5 <u>Example 5</u>

IL-20RA/RB Receptor-Ig fusion Heterotetramer

The expression vector pEZE3 was used to express the recombinant IL-20 receptor-Ig fusion protein. The plasmid pEZE3 is derived from pDC312. pDC312 was obtained through license from Immunex Corporation. The plasmids pDC312 and pEZE3 contain an EASE segment as described in WO 97/25420. The presence of the EASE segment in an expression vector can improve expression of recombinant proteins two to eight fold in stable cell pools.

The plasmid pEZE3 is a tricistronic expression vector that may be used to express up to three different proteins in mammalian cells, preferably Chinese Hamster Ovary (CHO) cells. The pEZE3 expression unit contains the cytomegalovirus (CMV) enhancer/promoter, the adenovirus tripartite leader sequence, a multiple cloning site for insertion of the coding region for the first recombinant protein, the poliovirus type 2 internal ribosome entry site, a second multiple cloning site for insertion of the coding region for the second recombinant protein, an encephalomyocarditis virus internal ribosome entry site, a coding segment for mouse dihydrofolate reductase, and the SV40 transcription terminator. In addition, pEZE3 contains an E. coli origin of replication and the bacterial beta lactamase gene.

The IL-20 receptor-Ig fusion protein is a disulfide linked heterotetramer consisting of two chains of the extracellular domain of the human IL-20RB fused to the wild type human immunoglobulin kappa light chain constant region and two chains of the human IL-20RA protein extracellular domain fused to a mutated human immunoglobulin gamma 1 constant region. The human immunoglobulin gamma 1 constant region contains amino acid substitutions to reduce FcγRI binding and C1q complement fixation.

The human IL-20RB extracellular domain human immunoglobulin kappa light chain constant region fusion construct was generated by overlap PCR. The IL-20RB coding segment consists of amino acids 1 to 230. The template used for the PCR amplification of the IL-20R segment was generated IL-20RB human kappa light chain constant region expression construct as described below in Example 12.

Oligonucleotide primers SEQ ID NO: 24 and SEQ ID NO: 25 were used to amplify the IL-20RB segment. The entire wild type human immunoglobulin kappa light chain

constant region was used. The template used for the PCR amplification of the wild type human immunoglobulin kappa light chain constant region segment was generated IL-20RB human kappa light chain constant region expression construct as described in Example 12. Oligonucleotide primers SEQ ID NO: 26 and SEQ ID NO: 27 were used to amplify the wild type human immunoglobulin kappa light chain constant region. The two protein coding domains were linked by overlap PCR using oligonucleotides SEQ ID NO: 24 and SEQ ID NO: 27. A (Gly₄Ser)₃ (SEQ ID NO: 72) peptide linker was inserted between the two protein domains. The (Gly₄Ser)₃ peptide linker was encoded on the PCR primers SEQ ID NO: 26 and SEQ ID NO:25. The resultant IL-20RB extracellular domain/kappa light chain constant region fusion construct is shown by SEQ ID NOs: 20 and 21. The predicted mature polypeptide, minus the signal sequence, is SEQ ID NO: 60. The portion of the extracellular domain of IL-20RB that was actually used was comprised of the amino acid sequence of SEQ ID NO: 61. N-terminal sequencing resulted in the predicted amino acid sequence.

The human IL-20RA extracellular domain human immunoglobulin gamma 1 heavy chain constant region fusion construct was generated by overlap PCR of four separate DNA fragments, each generated by separate PCR amplification reactions. The first fragment contained an optimized tPA (tissue plasminogen activator) signal sequence. The tPA signal sequence was amplified using oligonucleotide primers SEQ ID NO: 28 and SEQ ID NO: 29 using an in-house previously generated expression vector as the template. The second fragment contained the IL-20RA extracellular domain-coding region consisting of amino acids 30 to 243 of SEQ ID NO: 11. Oligonucleotide primers SEQ ID NO: 30 and SEQ ID NO: 31 were used to amplify this IL-20RA segment using a previously generated clone of IL-20RA as the template.

The human gamma 1 heavy chain constant region was generated from 2 segments. The first segment containing the C_H1 domain was amplified using oligonucleotide primers SEQ ID NO: 32 and SEQ ID NO: 33 using a clone of the wild type human gamma 1 heavy chain constant region as the template. The second segment containing the remaining hinge, C_H2 , and C_H3 domains of the human immunoglobulin gamma 1 heavy chain constant region was generated by PCR amplification using oligonucleotide primers SEQ ID NO: 34 and SEQ ID NO: 35. The template used for this PCR amplification was from a previously generated human gamma 1 Fc construct that contained codons for amino acid substitutions to reduce $Fc\gamma RI$ binding and C1q complement fixation as described in Example 12.

15

20

25

30

35

The four protein coding domains were linked by overlap PCR using oligonucleotides SEQ ID NO: 28 and SEQ ID NO: 35. A (Gly₄Ser)₃ peptide linker was inserted between the IL-20RA and CH1 protein domains. The (Gly₄Ser)₃ peptide linker was encoded on the PCR primers SEQ ID NO: 32 and SEQ ID NO: 31. The IL-20RA extracellular domain/ domain human immunoglobulin gamma 1 heavy constant region fusion protein and DNA sequence are shown in SEQ ID NOs: 22 and 23. The predicted mature polypeptide sequence, minus the signal sequence, is SEQ ID NO: 62. The portion of extracellular domain of IL-20RA that was actually used was comprised of SEQ ID NO: 63.

The IL-20RB extracellular domain human immunoglobulin kappa light chain constant region fusion coding segment was cloned into the second MCS while the human IL-20RA extracellular domain human immunoglobulin gamma 1 heavy chain constant region fusion coding segment was cloned into the first MCS of pEZE3. The plasmid was used to transfect CHO cells. The cells were selected in medium without hypoxanthine or thymidine and the transgene was amplified using methotrexate. The presence of protein was assayed by Western blotting using anti human gamma 1 heavy chain constant region and anti human kappa light chain antibodies. N-terminal sequencing revealed that the optimized tPA leader was not completely cleaved. The observed mass indicated that the first residue of the polypeptide sequence to be pyroglutamic acid, and the N-terminal sequence appears to be pyroEEIHAELRRFRRVPCVSGG (SEQ ID NO: 64), the underlined portion being remnants of the tPA leader.

Example 6

IL-20 Transgenic Phenotype

Both human and mouse IL-20 were overexpressed in transgenic mice using a variety of promoters. The liver-specific mouse albumin promoter, directing expression of human IL-20, was used initially in an attempt to achieve circulating levels of protein. Subsequent studies were conducted using the keratin 14 (K14) promoter, which primarily targets expression to the epidermis and other stratified squamous epithelia; the mouse metallothionein-1 promoter, which gives a broad expression pattern; and the EµLCK promoter, which drives expression in cells of the lymphoid lineage. Similar results were obtained in all four cases, possibly because these promoters all give rise to circulating levels of IL-20.

In all cases, transgenic pups expressing the IL-20 transgene were smaller than non-transgenic littermates, had a shiny appearance with tight, wrinkled skin and

15

20

25

30

35

died within the first few days after birth. Pups had milk in their stomachs indicating that they were able to suckle. These mice had swollen extremities, tail, nostril and mouth regions and had difficulty moving. In addition, the mice were frail, lacked visible adipose tissue and had delayed ear and toe development. Low expression levels in liver (less than 100 mRNA molecules/cell) were sufficient for both the neonatal lethality and skin abnormalities. Transgenic mice without a visible phenotype either did not express the transgene, did not express it at detectable levels, or were mosaic.

Histologic analysis of the skin of the IL-20 transgenic mice showed a thickened epidermis, hyperkeratosis and a compact stratum corneum compared to non-transgenic littermates. Serocellular crusts (scabs) were observed occasionally. Electron microscopic (EM) analysis of skin from transgenic mice showed intramitochondrial lipoid inclusions, mottled keratohyaline granules, and relatively few tonofilaments similar to that observed in human psoriatic skin and in mouse skin disease models. In addition, many of the transgenic mice had apoptotic thymic lymphocytes. No other abnormalities were detected by histopathological analysis. These histological and EM results support and extend the observed gross skin alterations.

Example 7

Specificity and Affinity of IL-20 for Its Receptor

The specificity and affinity of IL-20 for its receptor was determined using BHK cells stably transfected with IL-20RA, IL-20RB or both receptor subunits. Binding assays using radiolabeled ligand demonstrated that IL-20 bound to BHK transfectants expressing both IL-20RA and IL-20RB but not to untransfected cells nor to transfectants expressing either receptor subunit alone. Binding of 125 I-labeled IL-20 was eliminated in the presence of 100-fold excess of unlabeled IL-20 but not with 100-fold excess of the unrelated cytokine, IL-21. The binding affinity ($k_{\rm D}$) of IL-20 to the IL-20RA/IL-20RB heterodimeric receptor was determined to be approximately 1.5 nM.

Example 8

IL-20 receptor activation

To determine if IL-20 binding leads to receptor activation, the factor-dependent pre-B cell line BaF3 was co-transfected with IL-20RA and IL-20RB and treated with IL-20 at various concentrations. IL-20 stimulated proliferation in a dose-dependent manner and gave a detectable signal at 1.1 pM, with a half maximal response at 3.4 pM. We note that the IL-20 concentration for the half maximal proliferative

15

25

30

response in BaF3 cells is 1000X lower than that for half maximal binding affinity in BHK cells. Possible explanations for this large difference include the use of different cell lines, different receptor expression levels and different assay outputs. IL-20 also stimulated signal transduction in the biologically relevant human keratinocyte cell line HaCaT, which naturally expresses IL-20RA and IL-20RB. Therefore, IL-20 binds and activates the heterodimeric IL-20RA/IL-20RB receptor at concentrations expected for a cytokine. While the negative controls containing untransfected BaF3

Example 9

Expression Analysis of IL-20RA and IL-20RB

RT-PCR analysis was performed on a variety of human tissues to determine the expression pattern of IL-20RA and IL-20RB. Both receptor subunits are most highly expressed in skin and testis. The significant result is that IL-20RA and IL-20RB are both expressed in skin, where they have been shown to mediate the IL-20-induced response. Both IL-20RA and IL-20RB are also both expressed in monocytes, lung, ovary, muscle, testis, adrenal gland, heart, salivary gland and placenta. IL-20RA is also in brain, kidney, liver, colon, small intestine, stomach, thyroid, pancreas, uterus and prostate while IL-20RB is not.

20 <u>Example 10</u>

IL-20RA and IL-20RB mRNA are Up-regulated in Psoriasis

In situ hybridization was used to determine whether IL-20 receptor expression is altered in psoriasis. Skin samples from four psoriasis patients and three unaffected patients were assayed with probes specific for the two-receptor subunit mRNAs. All four psoriatic skin samples had high levels of IL-20RA and IL-20RB mRNA in keratinocytes whereas normal skin samples did not have detectable levels of either receptor subunit mRNA. Positive signals in psoriatic skin were also observed in mononuclear immune cells and in endothelial cells in a subset of vessels. Therefore, both IL-20RA and IL-20RB are expressed in keratinocytes, immune cells and endothelial cells, the major cell types thought to interact in psoriasis.

20

25

comprised of SEQ ID NO: 38.

Example 11

Cloning of mouse IL-20RA

A cross-species hybridization probe was generated which contained the full-length cDNA fragment encoding human IL-20RA. A Southern blot of mouse genomic DNA and Northern blots of mouse RNA were performed to demonstrate that the human IL-20RA cDNA could specifically hybridize to mouse sequences. The Northern blot results indicated that mouse IL-20RA RNA was present in mouse embryo day 15 and 17 as well as heart, brain, lung, liver, kidney, testes, spleen, thymus, liver, stomach, and small intestine.

The human IL-20RA full length DNA hybridization probe was used to screen a mouse genomic library. The library, which was obtained from Clontech (Palo Alto, CA), was generated from an MboI partial digest of mouse genomic DNA and cloned into the BamHI site of Lambda bacteriophage EMBL3 SP6/T7. Positive bacteriophage was plaque purified and bacteriophage DNA was prepared using Promega's Wizard Lambda Preps DNA Purification System. Two genomic restriction enzyme fragments, a 5.7 kb EcoRI fragment and an 8.0 kb SacI fragment, were generated from the positive bacteriophage and subcloned into pBluescript. DNA sequence analysis revealed the presence of 3 exons from the mouse ortholog to human IL-20RA.

PCR primers from the 5' UTR, SEQ ID NO: 40, and 3' UTR, SEQ ID NO: 41, were designed to generate a full-length mouse IL-20RA sequence by PCR amplification. Mouse embryo 15day plus 17 day cDNA was used as the template for the PCR amplification. PCR products were subcloned and sequenced for confirmation. The mouse sequences are SEQ ID NOs: 36 and 37. The mature extracellular domain is

Example 12

Construction of an IL-20 Receptor Heterotetramer

A vector expressing a secreted hIL-20RA/hIL-20B heterodimer was constructed. In this construct, the extracellular domain of hIL-20RA was fused to the heavy chain of IgG gamma 1 (IgG γ 1), while the extracellular portion of IL-20RB was fused to human kappa light chain (human κ light chain).

10

15

20

25

30

35

Construction of IgG gamma 1 and human κ light fusion vectors

The heavy chain of IgGy1 was cloned into the Zem229R mammalian expression vector (ATCC deposit No. 69447) such that any extracellular portion of a receptor having a 5' EcoRI and 3' NheI site can be cloned in, resulting in an N-terminal extracellular domain-C-terminal IgGyl fusion. The IgGyl fragment used in this construct was made by using PCR to isolate the IgGy1 sequence from a Clontech human fetal liver cDNA library as template. A PCR reaction using oligos SEO ID NO: 42 and SEQ ID NO: 43 was run as follows: 40 cycles of 94° for 60 sec., 53°C for 60 sec., and 72° for 120 sec.; and 72°C for 7 minutes. PCR products were separated by agarose gel electrophoresis and purified using a QiaQuick™ (Qiagen Inc., Valencia, CA) gel extraction kit. The isolated, 990 bp, DNA fragment was digested with MluI and EcoRI (Boerhinger-Mannheim), extracted with QiaQuick™ gel extraction kit and ligated with oligos SEQ ID NO: 44 and SEQ ID NO: 45, which comprise an MluI/EcoRI linker, into Zem229R previously digested with MluI and EcoRI using standard molecular biology techniques disclosed herein. This generic cloning vector was called Vector#76 hIgGgamma1 w/ Ch1 #786 Zem229R (Vector #76). The polynucleotide sequence of the extracellular domain of hIL-20RA fused to the heavy chain of IgG gamma 1 is show in SEQ ID NO: 52 and the corresponding polypeptide sequence shown in SEQ ID NO: 53, the mature polypeptide, minus the signal sequence being comprised of SEQ ID NO: 54. The portion of the extracellular domain of IL-20RA used was comprised of SEQ ID NO: 55.

The human κ light chain was cloned in the Zem228R mammalian expression vector (ATCC deposit No. 69446) such that any extracellular portion of a receptor having a 5' EcoRI site and a 3' KpnI site can be cloned in, resulting in an N-terminal extracellular domain-C-terminal human κ light chain fusion. The human κ light chain fragment used in this construct was made by using PCR to isolate the human κ light chain sequence from the same Clontech hFetal Liver cDNA library used above. A PCR reaction was run using oligos SEQ ID NO: 46 and SEQ ID NO: 47. PCR products were separated by agarose gel electrophoresis and purified using a QiaQuick™ (Qiagen) gel extraction kit. The isolated, 315 bp, DNA fragment was digested with MluI and EcoRI (Boerhinger-Mannheim), extracted with QiaQuick™ gel extraction kit and ligated with the MluI/EcoRI linker described above, into Zem228R previously digested with MluI and EcoRI using standard molecular biology techniques disclosed herein. This generic cloning vector was called Vector #77 hklight #774 Zem228R (Vector #77). The polynucleotide sequence of the extracellular portion of IL-20RB fused to human kappa light chain is shown in SEQ ID NO: 56 and the corresponding

15

20

25

polypeptide sequence shown in SEQ ID NO: 57, the mature polypeptide, minus the signal sequence, is comprised of SEQ ID NO: 58. The portion of the extracellular domain of IL-20RB actually used was comprised of SEQ ID NO: 59.

5 <u>Insertion of hIL-20RA and IL-20RB extracellular domains into fusion vector constructs</u>

Using the construction vectors above, a construct having human IL-20RA fused to IgGγ1 was made. This construction was done by using PCR to obtain human IL-20RA receptor from hIL-20RA /IgG Vector #102 with oligos SEQ ID NO: 48 and SEQ ID NO: 49 under conditions described as follows: 30 cycles of 94°C for 60 sec., 57°C for 60 sec., and 72°C for 120 sec.; and 72°C for 7 min. The resulting PCR product was digested with EcoRI and NheI, gel purified, as described herein, and ligated into a previously EcoRI and NheI digested and band-purified Vector #76 (above). The resulting vector was sequenced to confirm that the human IL-20Rα /IgG gamma 1 fusion (hIL-20RA /Ch1 IgG) was correct. The hIL-20RA /Ch1 IgG gamma 1 #1825 Zem229R vector was called vector #195. The IL-20RA/Ch1 IgGγ1 sequence thus obtained is depicted by SEQ ID NOs: 52 and 53. N-terminal sequencing indicated the presence of the predicted mature polypeptide sequence of SEQ ID NO: 54.

A separate construct having IL-20RB fused to κ light was also constructed. The IL-20RB/human κ light chain construction was performed as above by PCRing from DR1/7N-4 with oligos SEQ ID NO: 50 and SEQ ID NO: 51, digesting the resulting band with EcoRI and KpnI and then ligating this product into a previously EcoRI and KpnI digested and band-purified Vec#77 (above). The resulting vector was sequenced to confirm that the IL-20RB/ human κ light chain fusion (IL-20RB/ κ light) was correct. This IL-20RB/ κ light construct is shown by SEQ ID NOs: 56 and 57. N-terminal sequencing of the resultant polypeptide indicated the presence of the predicted mature amino acid sequence comprised of SEQ ID NO: 58. SEQ ID NO:59 is the mature portion of the extracellular domain of IL-20RB used.

Co-expression of the human IL-20RA and human IL-20RB receptors

Approximately 16μg of each of vectors #194 and #195, above, were cotransfected into BHK-570 cells (ATCC No. CRL-10314) using Lipofectamine™ reagent (Gibco/BRL), as per manufacturer's instructions. The transfected cells were selected for 10 days in DMEM + 5%FBS (Gibco/BRL) containing 1μM of methotrexate (MTX) (Sigma, St. Louis, MO) and 0.5mg/ml G418 (Gibco/BRL) for 10 days. The resulting pool of transfectants was selected again in 10μM MTX and 0.5mg/ml G418 for 10 days.

15

20

25

30

35

The resulting pool of doubly selected cells was used to generate protein. Three factories (Nunc, Denmark) of this pool were used to generate 8 L of serum free conditioned medium. This conditioned media was passed over a 1 ml protein-A column and eluted in (10) 750 microliter fractions. 4 of these fractions found to have the highest concentration were pooled and dialyzed (10 kD MW cutoff) against PBS. Finally, the dialyzed material was analyzed by BCA (Pierce) and found to have a concentration of 317 μ g/ml. A total of 951 μ g was obtained from this 8 L purification.

Example 13

IL-20 binding activates STAT3 in the HaCaT keratinocyte cell line

IL-20 binds cell lines transfected with both subunits of its receptor. However, these cell lines overexpress the IL-20 receptor relative to its normal level and their relevance to the physiological role of IL-20 is unclear. The human HaCaT keratinocyte cell line, which expresses endogenous IL-20RA and IL-20RB was used to examine IL-20 signal transduction in a biologically relevant cell type. HaCaT cells were infected with recombinant adenovirus containing a reporter construct to allow detection of intracellular signaling. The construct consists of the firefly luciferase gene driven by promoter/enhancer sequences comprised of the serum response element (SRE) and signal transducers and activators of transduction elements (STATs). This assay system detects productive ligand-receptor interactions and indicates possible downstream signal transduction components involved in receptor activation. Treatment with IL-20 alone resulted in a dose-dependent increase in luciferase activity with a half maximal response occurring at approximately 2.3 nM. Subsequent luciferase reporter assays using adenovirus vectors containing only the SRE element or only the STAT elements produced detectable reporter activation only through STATs.

To determine if other cytokines act in concert with IL-20, HaCaT cells were treated with IL-20 alone or in combination with a single submaximal dose of EGF, IL-1 β , or TNF α . In the presence of each of these three proteins, IL-20 treatment resulted in a dose-dependent increase in luciferase activity. IL-20 in combination with IL-1 β results in a half-maximal response at approximately 0.5 nM, about five-fold lower than with IL-20 alone. In addition, activation of the reporter gene is detectable at 0.1 nM IL-20, a dose that is at least tenfold lower than the IL-20 dose required alone.

BHK cells transfected with IL-20RA, IL-20RB or both receptor subunits were used to determine whether receptor pairing was required for IL-20 stimulation of STAT-luciferase. As was the case with binding assays, only cells transfected with both

receptor subunits responded to IL-20 and did so with a half-maximal response of 5.7 pM. We note that the IL-20 concentration for the half-maximal response in BHK cells is 400-fold lower than that for half-maximal response in HaCaT cells. It is likely that a lower concentration of IL-20 is needed for half-maximal response in BHK cells, as compared to HaCaT cells, due to higher receptor levels in the BHK IL-20 receptor transfectants.

A nuclear translocation assay was used to identify STAT proteins involved in IL-20 action. Both HaCaT cells, with endogenous IL-20 receptors, and BHK cells transfected with IL-20RA and IL-20RB, were treated with IL-20 protein and translocation of STAT3 and STAT1 transcription factors from the cytoplasm to the nucleus was assayed by immunofluorescence.

In unstimulated HaCaT cells, STAT3 staining was predominantly in the cytosol. Treatment of HaCaT cells with IL-20 resulted in a distinct accumulation of STAT3 in the nucleus. Nuclear translocation of STAT3 in response to increasing concentrations of IL-20 occurred with a half-maximal IL-20 concentration of 7 nM. In contrast to STAT3 translocation, HaCaT cells treated with IL-20 did not show any detectable nuclear accumulation of STAT1.

BHK cells transfected with IL-20RA and IL-20RB were used to confirm that the IL-20 receptor was required for IL-20 stimulation of STAT3 nuclear translocation. In BHK cells lacking the IL-20 receptor, STAT3 remained cytosolic following treatment with IL-20. In contrast, in BHK cells transfected with the IL-20 receptor, STAT3 translocated to the nucleus in response to IL-20. Again, STAT1 remained cytosolic regardless of IL-20 treatment or IL-20 receptor expression. We conclude that the IL-20 receptor is required for IL-20-mediated STAT3 activation.

20

5

10

15