композитные

ПРОФИЛИ НАСТИЛЫ КОНСТРУКЦИИ

О КОМПАНИИ

Компания Флотенк специализируется на выпуске изделий из стеклопластика с 2002 года. Продукция торговой марки FloTenk хорошо известна во всех регионах России. Основные направления производства: оборудование для очистных сооружений, канализационные насосные станции, резервуары специального назначения, профили и конструкции.

Завод композитных изделий Флотенк расположен под Санкт-Петербургом на собственной территории в 4 Га. Производство оснащено современным оборудованием и использует сырье ведущих мировых производителей, гарантируя высокое качество изделий.

Сотрудники компании проходят регулярное обучение, посещают международные выставки и семинары. Качество изделий подтверждено сертификатами и заключениями государственных органов, а также проверено испытаниями специализированных лабораторий и институтов.

Сотрудничая с компанией Флотенк вы получите:

- ответ на запрос в день обращения
- быстрый расчет цены
- точные и сжатые сроки поставки
- продукцию известной марки
- гарантию качества производителя
- подробную сопроводительную документацию
- удобную логистику отгрузки

СТЕКЛОПЛАСТИКОВЫЙ КОМПОЗИТ

Для производства профилей из композитных материалов используется процесс пултрузии - протягивание через нагретую фильеру стекломатериалов пропитанных смолой. В фильере происходит термореактивный процесс полимеризации смолы. На выходе получается полностью сформированный профиль заданной конфигурации. Длина изделия неограничена и определяется потребностями заказчика или возможностями транспортировки.

Пултрузионная технология позволяет выпускать профили из композитных материалов сложных конфигураций с большой точностью размеров по доступным ценам.

ПРЕИМУЩЕСТВА КОМПОЗИТНЫХ МАТЕРИАЛОВ

- Высокие физико-механические свойства
- Малый удельный вес
- Диэлектрические свойства
- Атмосферостойкость
- Широкий диапазон рабочих температур
- Химическая стойкость
- Может выпускаться пожаростойким

ОБЛАСТИ ПРИМЕНЕНИЯ КОМПОЗИТНЫХ КОНСТРУКЦИЙ

Очистка воды и стоков

Конструкции из композитных профилей идеально подходят для всех видов очистных сооружений. Однажды установленные, они будут служить многие годы без необходимости окраски или замены

Портовые и прибрежные сооружения

Постоянное воздействие влаги и соли - источник проблем для металла, древесины и железобетона. Портовые и береговые сооружения из таких материалов требуют частого ремонта или обновления. Использование конструкционных композитных профилей в таких зонах решает многие вопросы.

Строительство автодорог

Погодные воздействия, ультрафиолетовые солнечные лучи, загазованность и соль - все это накладывает особые требования к конструкциям, устанавливаемым вблизи автомобильных дорог. Композитные материалы в таких условиях работают надежно и их использование экономически выгодно. Мосты, пешеходные переходы, пандусы, шумозащитные экраны - далеко не полный список применения профилей из стеклопластика.

Железные дороги

Применение стеклокомпозитных материалов входит в широкую практику на железных дорогах. Коммуникационные и пешеходные мосты, платформы на станциях и в зонах обслуживания, перила и ограждения, лестницы и каркасы сооружений, опоры и подвесные элементы воздушных силовых электросетей.

Энергетика и связь

Диэлектрические свойства, электромагнитная прозрачность и коррозионная стойкость - эти параметры композитных материалов, как нельзя лучше, соответствуют требованиям, предъявляемым ко многим конструкциям в электроэнергетике и телекоммуникации, например: лестницам, столбам, мачтам, защитным ограждениям.

ОБЛАСТИ ПРИМЕНЕНИЯ КОМПОЗИТНЫХ КОНСТРУКЦИЙ

Нефть и газ

Всепогодное использование в самых разнообразных климатических зонах предъявляет к изделиям особые требования. Конструкции изготовленные из стеклокомпозитных профилей наиболее полно им отвечают. К тому же, их легкий вес позволяет получить большую экономию при доставке в удаленные регионы.

Химическая промышленность

Химические предприятия активно переходят на использование композитных конструкций. Там где металл за короткий срок приходит в негодность, применение композитов, стойких к агрессивным средам, будет идеальным решением.

Производственные предприятия

Независимо от вида выпускаемой продукции, предприятию всегда приходится бороться за снижение затрат и повышение безопасности труда. Для этого ограждающие конструкции из композита будут хорошим приобретением. Рекомендуем использовать для защитных ограждений профили яркого желтого цвета. Они не выцветут и не потребуют ремонта или подкраски.

Архитектурные решения

При строительстве отелей, торговых заведений, городского и загородного жилья, композитные профили позволяют создавать интересные архитектурные и дизайнерские решения как внутри, так и снаружи зданий. Из них изготавливают и такие элементы как ограждения на крышах и балконах.

Сельское хозяйство

Свинарники, коровники, хранилища кормов и другие животноводческие здания ,построенные с применением композитных профилей, дадут ускорение строительства, удобство при эксплуатации и снимут необходимость в покраске и ремонте конструкций. Кроме того, в сельском хозяйстве пултрузионные профили используются для заборов, столбов, тепличных каркасов.

ПРИМЕНЕНИЕ КОМПОЗИТНОГО ПРОФИЛЯ

Пешеходный мосты и переходы

Железнодорожные перроны

Площадки и лестницы

Автомобильные мойки и сервисные центры

Технологические площадки и переходы

Склады

Ангары

Фасады домов и ограждния

типоразмеры композитного профиля

Труба круглая		разм	вес	
		D, мм	d, мм	кг / 1 м
	*	110	98	3,67
		38	32	0,52
6	99	32	26	0,43
	00	21	15	0,32

Труба рифленая		размеры			вес
		D, мм	d, мм	d1, мм	кг / 1 м
	D d	34	25	32	0,68

Трубо кропротиод		разм	размеры		
труба ква	Труба квадратная		t, мм	кг / 1 м	
		100	6	4,21	
		60	5	1,94	
			50	5	1,59
		50	3	1,05	
		44	3	0,91	
		40	3	0,82	
		25	3	0,49	

Труба прямоугольная		разм	вес	
		b, мм	h, мм	кг / 1 м
			100	2,46
	1	25	50	0,77

Стер	жень	размер d, мм	вес кг / 1 м
	⊕d .	14	0,29

типоразмеры композитного профиля

Уголок		разм	вес	
		b, мм	t, мм	кг / 1 м
	- 1	75	6	1,62
		50	5	0,84
		40	3	0,43
		25	3	0,26

Швеллер		размеры			вес
		h, мм	b, мм	t, mm	кг / 1 м
		200	60	8	4,57
		150	50	6	2,69
17		100	40	5	1,60
	b	45	20	3	0,44

Двутавр		размеры			вес
		h, мм	b, мм	t, мм	кг / 1 м
47	T	200	100	10	7,20
		150	100	6	3,82

Профиль ш	іумозащиты	размеры			вес
	\triangle	b, мм	h, мм	t, мм	вес кг / 1 м
	۰ و و	54	162	3	2,30

Поручень			вес		
		b, мм	h, мм	t, мм	вес кг / 1 м
		70	65	3	1,11

Отбойник		размеры			вес
		b, мм	h, мм	t, мм	вес кг / 1 м
	3 2	30	141	3	1,03

типоразмеры композитного настила

Настил профилированный	высота настила, мм	вес, кг
	40	12,94

Настил сплошной	ширина видимой части, мм	высота настила, мм	вес, кг/м²
	300		13,95
	500	41	14,70

Настил сплошной с противоскользящим покрытием	ширина видимой части, мм	высота настила, ММ	вес, кг/м²
	500	42	20,00

Настил решетчатый	размер плодаки, мм х мм	размер ячейки, мм х мм	высота настила, мм	вес, кг/м²
	4046 x 1525	38 x 38	30	19,00
	4038 x 1000	38 x 38	30	15,00
	3660 x 1220	38 x 38	30	15,00
	3660 x 1220	38 x 38	38	19,00
	4038 x 1000	38 x 38	38	19,00
	4046 x 1525	38 x 38	38	19,00

Пластина	разм	кг / 1 м²	
Пластина	ширина, мм	толщина, мм	KI / I IVI
	400	6	4,49

ВИДЫ МЕХАНИЧЕСКОЙ ОБРАБОТКИ

• Шлифование

• Сверление

• Резание

Точение

• Фрезерование

СТАНДАРТНЫЕ ВАРИАНТЫ КРЕПЛЕНИЙ И ВИДЫ СОЕДИНЕНИЙ ПРОФИЛЯ

КРЕПЕЖНЫЕ ЭЛЕМЕНТЫ ДЛЯ КОНСТРУКЦИЙ

Крепление на двутавровую балку посредством квадратных трубок

Крепление на двутавровую балку с помощью приваренной стальной пластины

Крепление с помощью двух пластиковых уголков

Крепление на двутавровую балку посредством стального уголка

11

КРЕПЕЖНЫЕ ЭЛЕМЕНТЫ ДЛЯ КОНСТРУКЦИЙ

Крепление на бетонное основание с помощью анкеров

Крепление на бетонное основание с помощью квадратной трубки и заглушки

Крепление анкерами с помощью стальной пятки

Крепление с помощью стеклопластиковой пластины

СТОЙКОСТЬ СТЕКЛОПЛАСТИКОВЫХ МАТЕРИАЛОВ К АГРЕССИВНЫМ СРЕДАМ

Наименование	Концентрация, %	Температура эксплуатации, °C
Соляная кислота	Без ограничения концентрации	40110 в зависимости от концентрации
Серная кислота	до 75	40105 в зависимости от концентрации
Азотная кислота	до 35	2565 в зависимости от концентрации
Уксусная кислота	до 60	до 80
Фосфорная кислота	Без ограничения концентрации	до 100
Гипохлорит натрия	до 18% активного хлора	до 80
Едкий натр	Без ограничения концентрации	до 80
Едкое кали(Едкий калий)	до 45	до 65
Хлорное железо	Без ограничения концентрации	до 100
Полиоксихлорид алюминия	Без ограничения концентрации	до 100

Результат эксплуатации при повышенной влажности до 100%

Лестница из стали

Лестница из стеклопластика

Мостик из стеклопластика для обслуживания электролизного оборудования

СРАВНЕНИЕ КОНСТРУКЦИЙ ИЗ МЕТАЛЛА С КОМПОЗИТНЫМИ

Фактор	Конструкции из металла	Конструкции из стеклопластика
Безопасность	Падения в результате подскальзывания являются основной причиной травматизма на производстве.	Противоскользящие поверхности пластикового настила значительно снижают возможность возникновения несчастного случая.
Монтаж конструкции	Для установки металлических конструкций необходимо мощное грузоподъемное оборудование, дополнительные затраты рабочей силы на резку, сварку, окраску и обработку кромок конструкций.	Конструкции из армированного стекловолокном пластика не требуют мощного грузоподъемного оборудования. Для их установки необходимо минимальное количество рабочей силы и применение ручного инструмента. Конструкции из стеклопластика не требуют окраски и обработки кромок.
Обслуживание конструкции	В агрессивных средах металлические конструкции требуют интенсивного обслуживания и часто разрушаются после нескольких лет эксплуатации.	Конструкции из стеклопластика имеют значительный срок эксплуатации (20лет) и требуют минимального обслуживания.

СРАВНИТЕЛЬНЫЕ ХАРАКТЕРИСТИКИ РАЗЛИЧНЫХ МАТЕРИАЛОВ

Характеристика	Стеклопластик	ПВХ	Дерево	Алюминий	Сталь
Плотность, кг/м³	1,8 1,9	1,3 1,43	0,350,5	2,7	7,7 7,9
Модуль упругости, ГПа	20 55	2,0 2,7	10 50	70	210
Предел прочности при растяжении, МПа	221 1700 [*]	4 7**	130 [*]	360**	240 450**
Коэффициент линейного термического расширения, 10-6/К	0,5 8	50	2,7 5	19,6 26,9	11,9 15
Теплопроводность, Вт/К*м	0,58	0,13 1,63	0,1 0,23	201,3 221	17,5 58

Примечания

^{* -} свойство материала вдоль волокон;

^{** -} для металлов и ПВХ предел текучески

ТАБЛИЦА ХАРАКТЕРИСТИК КОМПОЗИТНОГО ПРОФИЛЯ

Механические свойства (стандарт EN ISO 527)		
Предел прочности при растяжении (вдоль волокон)	MPa	226,9
Предел прочности при растяжении (поперёк волокон)	MPa	51,6
Модуль упругости при растяжении (вдоль волокон)	GPa	17,2
Модуль упругости при растяжении (поперёк волокон)	GPa	5,5
Предел прочности при сжатии (вдоль волокон)	MPa	226,9
Предел прочности при сжатии (поперёк волокон)	MPa	113,4
Модуль упругости при сжатии (вдоль волокон)	GPa	20,6
Модуль упругости при сжатии (поперёк волокон)	GPa	6,9
Предел прочности при изгибе (вдоль волокон)	MPa	226,9
Предел прочности при изгибе (поперёк волокон)	MPa	75,6
Модуль упругости при изгибе (вдоль волокон)	G Pa	11
Модуль упругости при изгибе (поперёк волокон)	GPa	5,5
Модуль упругости	GPa	19,2-22,0
Модуль сдвига	GPa	2,9
Коэффициент Пуассона (вдоль волокон)	mm/mm	0,35

СРАВНЕНИЕ: КОМПОЗИТ-СТАЛЬ КАЛЬКУЛЯЦИЯ РАСХОДОВ НА ПЕРИОД СТРОИТЕЛЬСТВА И ЭКСПЛУАТАЦИИ

Работы по обработке (коррозия поверхности)

Обслуживание поверхности (окраска)

Монтажные работы (заземление, крановые работы)

Подготовка к эксплуатации (сварка, сборка конструкций на объекте)

Материал

Проектирование

Санкт-Петербург

наб. Обводного канала, 199-201 лит. Н тел.: +7 (812) 329 98 78

Москва

ул. Малахитовая, д. 27, стр. Б тел.: +7 (495) 660 19 10

Екатеринбург

г. Березовский, пос. Ленинский, 30В тел.: +7 (909) 000 76 53

Псков

ул. Яна Фабрициуса, д. 10 тел.: +7 (911) 029 22 12