Assignment # 5: Dimensionality Reduction (DR) and Features Selection (FS) Comparison

Machine Learning II

Wali Ullah (09745)

```
import pandas as pd
In [1]:
         import numpy as np
         import seaborn as sb
         import math
         import warnings
         import matplotlib.pyplot as plt
         get ipython().run line magic('matplotlib', 'inline')
         import cufflinks as cf
         import seaborn as sns
         from sklearn import preprocessing
         #from sklearn.tree import export_graphviz
         #import pydot
         from IPython.display import Image
         #import feature selection modules
         from sklearn.feature selection import mutual info classif,RFE,RFECV
         from sklearn.feature_selection import mutual_info_regression
         #import classification modules
         from sklearn.linear_model import LogisticRegression
         from sklearn.naive bayes import GaussianNB
         from sklearn import svm
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.ensemble import GradientBoostingClassifier
         from sklearn.ensemble import AdaBoostClassifier
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.neural_network import MLPClassifier
         from sklearn.ensemble import RandomForestRegressor
         #import regression modules
         from sklearn.linear model import LinearRegression
         from sklearn.ensemble import RandomForestRegressor
         from sklearn.preprocessing import PolynomialFeatures
         from sklearn.svm import SVR
         from sklearn.tree import DecisionTreeRegressor
         from sklearn.ensemble import GradientBoostingRegressor
         from sklearn.ensemble import AdaBoostRegressor
         from sklearn.ensemble import VotingRegressor
         #import split methods
         from sklearn.model selection import train test split
         from sklearn.model selection import KFold
         from sklearn.model selection import RepeatedKFold
         from sklearn.model_selection import StratifiedKFold
         from sklearn.model_selection import StratifiedShuffleSplit
         #import performance scores
```

```
from sklearn.metrics import accuracy score
from sklearn.metrics import confusion matrix
from sklearn.metrics import precision_score
from sklearn.metrics import recall score
from sklearn.metrics import roc_auc_score
from sklearn.metrics import roc curve
from sklearn.metrics import f1 score
from sklearn.metrics import auc
from sklearn.metrics import mean squared error, r2 score, mean absolute error
import pandas as pd
import numpy as np
from sklearn import model selection
from sklearn.linear model import LinearRegression
from sklearn.linear model import Ridge
from sklearn.linear model import Lasso
from sklearn.linear_model import ElasticNet
from sklearn.neighbors import KNeighborsRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.svm import SVR
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import r2 score
from sklearn.model selection import train test split
from sklearn.metrics import mean squared error
from sklearn.neural network import MLPClassifier
from sklearn.neural_network import MLPRegressor
from sklearn.datasets import make regression
from math import sqrt
import seaborn as sns
#Stats Libraries
from scipy import stats
import statsmodels.api as sm
from statsmodels.formula.api import ols
import statsmodels.api as sm
# import scaling
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
warnings.filterwarnings("ignore")
sb.set(color_codes=True, font_scale=1.2)
try:
    from xgboost import XGBClassifier
except:
    print("Failed to import xgboost, make sure you have xgboost installed")
    print("Use following command to install it: pip install xgboost")
    XGBClassifier = None
try:
    import lightgbm as lgb
except:
    print("Failed to import lightgbm, make sure that you have lightgbm installed")
    print("Use following command to install it: conda install -c conda-forge lightgbm")
    lgb = None
```

Part-1: Functions for Features Extraction/Selection for Classification Based Problems

Clssification Algorithms

```
#2) include all classification and regression algorithms
In [2]:
        # Classification Algorithms
        def XgBoost(trainX, testX, trainY, testY, verbose=True, clf=None):
           if not clf:
               clf = XGBClassifier(random_state=1,learning_rate=0.01)
           clf.fit(trainX,trainY)
           return validationmetrics(clf,testX,testY,verbose=verbose)
        def RandomForest(trainX, testX, trainY, testY, verbose=True, clf=None):
           if not clf:
               clf = RandomForestClassifier()
           clf.fit(trainX , trainY)
           return validationmetrics(clf,testX,testY,verbose=verbose)
        def SVM(trainX, testX, trainY, testY, svmtype="SVC", verbose=True, clf=None):
           # for one vs all
           if not clf:
               if svmtype == "Linear":
                  clf = svm.LinearSVC()
               else:
                  clf = svm.SVC()
           clf.fit(trainX , trainY)
           return validationmetrics(clf,testX,testY,verbose=verbose)
        def LogReg(trainX, testX, trainY, testY, verbose=True, clf=None):
           if not clf:
               clf = LogisticRegression()
           clf.fit(trainX , trainY)
           return validationmetrics(clf,testX,testY,verbose=verbose)
        # Helper function to provide list of supported algorithms for Classification
        def get supported algorithms clf():
           covered_algorithms = [XgBoost,RandomForest,SVM, LogReg]
           return covered algorithms
        #Classification Alg Calls
        #Include function for executing ML (classification) without FS.
        def run_algorithms_clf(df, label_col, algo_list=get_supported_algorithms_clf(), feature
```

```
Run Algorithms without FS, REG and CV
   # Lets make a copy of dataframe and work on that to be on safe side
   _df = df.copy()
   if feature list:
       impftrs = feature list
       impftrs.append(label col)
       df = df[impftrs]
    df, trainX, testX, trainY, testY = traintestsplit( df, 0.3, 91, label col=label co
   algo model map = {}
   for algo in algo list:
       print("======== " + algo. name + " ========")
       res = algo(trainX, testX, trainY, testY)
       algo_model_map[algo.__name__] = res.get("model_obj", None)
       print ("======= \n")
   return algo model map
# Validation metrics for classification
#####################################
# Validation metrics for classification
def validationmetrics(model, testX, testY, verbose=True):
   predictions = model.predict(testX)
   if model.__class__.__module__.startswith('lightgbm'):
       for i in range(0, predictions.shape[0]):
           predictions[i]= 1 if predictions[i] >= 0.5 else 0
   #Accuracy
   accuracy = accuracy score(testY, predictions)*100
   #Precision
   precision = precision score(testY, predictions, pos label=1, labels=[0,1])*100
   #Recall
   recall = recall score(testY, predictions,pos label=1,labels=[0,1])*100
   #get FPR (specificity) and TPR (sensitivity)
   fpr , tpr, = roc curve(testY, predictions)
   #ALIC
   auc_val = auc(fpr, tpr)
   #F-Score
   f score = f1 score(testY, predictions)
   if verbose:
       print("Prediction Vector: \n", predictions)
       print("\n Accuracy: \n", accuracy)
       print("\n Precision of event Happening: \n", precision)
       print("\n Recall of event Happening: \n", recall)
       print("\n AUC: \n",auc_val)
       print("\n F-Score:\n", f_score)
```

```
#confusion Matrix
print("\n Confusion Matrix: \n", confusion_matrix(testY, predictions,labels=[0,
#ROC plot

res_map = {
    "accuracy": accuracy,
    "precision": precision,
    "recall": recall,
    "auc_val": auc_val,
    "f_score": f_score,
    "model_obj": model
}
return res_map
```

```
In [3]:
        #Helping Function
         ##############################
         #Train Test Split: splitting manually
        def traintestsplit(df,split,random=None, label col=''):
            #make a copy of the label column and store in y
            y = df[label col].copy()
            #now delete the original
            X = df.drop(label col,axis=1)
            #manual split
            trainX, testX, trainY, testY= train_test_split(X, y, test_size=split, random_state=
            return X, trainX, testX, trainY, testY
         #helper function which only splits into X and y
         def XYsplit(df, label_col):
            y = df[label col].copy()
            X = df.drop(label col,axis=1)
            return X,y
         #Helper Function for Tranformation
         #MinMax Transformation
         def MinMax Transformation(df, label col):
            y = df[label col].copy()
            X = df.drop(label col,axis=1)
            scaler = MinMaxScaler()
            scaled features = MinMaxScaler().fit transform(X.values)
            df1= pd.DataFrame(scaled features, index=X.index, columns=X.columns)
            z1=pd.DataFrame(df1)
            z2=pd.DataFrame(y)
            df= pd.concat([z1,z2], axis=1)
            return df
         #Standard Transformation
        def Standard Transformation(df, label col):
            y = df[label_col].copy()
            X = df.drop(label col,axis=1)
            scaled_features = StandardScaler().fit_transform(X.values)
            df1= pd.DataFrame(scaled_features, index=X.index, columns=X.columns)
            z1=pd.DataFrame(df1)
            z2=pd.DataFrame(y)
            df= pd.concat([z1,z2], axis=1)
            return df
```

```
## Filling Missing Values

def fill_na_interpolate(df, cols_to_interpolate):
    for i in cols_to_interpolate:
        df[i] = df[i].interpolate(method ='linear', limit_direction ='forward')
    return df

def drop_na_rows(df, cols_to_drop_na_rows):
    for i in cols_to_drop_na_rows:
        df = df.drop(df[df[i].isnull()].index)
    return df
```

```
# Load Data
In [4]:
         def load data(file name):
             def readcsv(file_name):
                 return pd.read csv(file name)
             def readexcel(file name):
                 return pd.read excel(file name)
             func_map = {
                 "csv": readcsv,
                 "xls": readexcel,
                  "xlsx": readexcel,
             # default reader = readcsv
             reader = func map.get("csv")
             for k,v in func map.items():
                  if file_name.endswith(k):
                      reader = v
                      break
             return reader(file name)
```

Function to call LDA, PCA, TSNE, Lasso, Random Forest, XGBoost and Recursive Feature Elemination for Features Selection for Classification Problem

```
pca components, thise components, number iter, alpha, num features, learning
df1=df.drop(label col,axis=1)
##LDA##
lda = LinearDiscriminantAnalysis(n components=lda components)
# run an LDA and use it to transform the features
X lda = lda.fit(X, Y).transform(X)
LDA df = pd.DataFrame(data = X lda)#, columns = ['X LDA 1'])
LDA_df = pd.concat([LDA_df, df[label_col]], axis = 1)
print('Linear Discriminant Analysis')
print('Original number of features:', X.shape[1])
print('Reduced number of features:', X_lda.shape[1])
print('ML Classification Algorithms Results with LDA FS')
ML binary clf(LDA df, label col)
##PCA##
pca = PCA(n components=pca components)
X pca = pca.fit transform(X)
PCA df = pd.DataFrame(data = X pca)#, #columns = [b])
PCA_df = pd.concat([PCA_df, df[label_col]], axis = 1)
print('PCA Analysis')
print('Original number of features:', X.shape[1])
print('Reduced number of features:', X_pca.shape[1])
print('ML Classification Algorithms Results with PCA FS')
ML_binary_clf(PCA_df,label_col)
##tnse##
tsne = TSNE(n_components=tnse_components, verbose=0, perplexity=40, n_iter=number_i
X tsne = tsne.fit transform(X)
TSNE df = pd.DataFrame(data = X tsne)#, columns = ['PC1', 'PC2', 'PC3', 'PC4', 'PC5', 'P
TSNE df = pd.concat([TSNE df, df[label col]], axis = 1)
print('tSNE Analysis')
print('Original number of features:', X.shape[1])
print('Reduced number of features:', X tsne.shape[1])
print('ML Classification Algorithms Results with tSNE FS')
ML binary clf(TSNE df, label col)
#for Lasoo
sel = SelectFromModel(LogisticRegression(C=alpha, penalty='l1',solver='liblinear')
#clf = LogisticRegression(C=0.01, penalty='l1',solver='liblinear');
sel .fit(X, Y)
selected feat = list(X.columns[(sel .get support())])
#pd.Series(X.columns[(sel_.get_support())])
impftrs l1 = selected feat
impftrs ll1=pd.Series(impftrs l1)
impftrs l1.append(label col)
LASSO df = df[impftrs l1]
print('Lasso Analysis')
print('Selected Features')
print(impftrs ll1)
print('ML Classification Algorithms Results with Lasso FS')
ML binary clf(LASSO df, label col)
#for Random Forest calssification
clf = RandomForestClassifier(n estimators=tree, random state=random)
clf.fit(trainX, trainY)
#validationmetrics(clf, testX, testY)
res_rf = pd.Series(clf.feature_importances_, index=df1.columns.values).sort_values(
impftrs rf1=res rf.head(num features)
impftrs_rf=list(impftrs_rf1.keys())
impftrs rf.append(label col)
```

```
RF df = df[impftrs rf]
   print('Random Forest FS Analysis')
   print('Selected Features')
   print(impftrs rf1)
   print('ML Classification Algorithms Results with Random Forest FS')
   ML binary clf(RF df, label col)
   #for XGBoost calssification
   clf = XGBClassifier(random state=1,learning rate=learning rate)
   clf.fit(trainX, trainY)
   res xgb = pd.Series(clf.feature importances , index=df1.columns.values).sort values
   impftrs xgb1=res xgb.head(num features)
   impftrs xgb=list(impftrs xgb1.keys())
   impftrs xgb.append(label col)
   XGB df = df[impftrs xgb]
   print('Random Forest FS Analysis')
   print('Selected Features')
   print(impftrs xgb1)
   print('ML Classification Algorithms Results with Random Forest FS')
   ML_binary_clf(XGB_df,label_col)
   ###RFE
   cols = list(X.columns)
   rfe = RFE(estimator=LogisticRegression(), n features to select=num features)
   # fit RFE
   rfe.fit(trainX, trainY)
   temp = pd.Series(rfe.support_,index = cols)
   selected features rfe = temp[temp==True].index
   #print(selected features rfe)
   impre=pd.Series(selected features rfe)
   impftrs rfe = list(selected features rfe)
   impftrs rfe.append(label col)
   print('RFE FS Analysis')
   print('Selected Features')
   print(impre)
   print('ML Classification Algorithms Results with RFE FS')
   RFE df = df[impftrs rfe]
   ML binary clf(RFE df,label col)
   return LDA df, PCA df, TSNE df, LASSO df, RF df, XGB df, RFE df#res rf, res xqb
# for Multi-Class Classification
def FE_MLalg_multiclf(df, label_col, X, Y, trainX, testX, trainY, testY, lda_components
          pca components, thise components, number iter, alpha, num features, learning
   df1=df.drop(label col,axis=1)
   ##LDA##
   lda = LinearDiscriminantAnalysis(n components=lda components)
   # run an LDA and use it to transform the features
   X lda = lda.fit(X, Y).transform(X)
   LDA df = pd.DataFrame(data = X lda)#, columns = ['X LDA 1'])
   LDA df = pd.concat([LDA df, df[label col]], axis = 1)
   print('Linear Discriminant Analysis')
   print('Original number of features:', X.shape[1])
   print('Reduced number of features:', X_lda.shape[1])
   print('ML Classification Algorithms Results with LDA FS')
```

```
ML multiclass clf(LDA df, label col)
##PCA##
pca = PCA(n_components=pca_components)
X pca = pca.fit transform(X)
PCA_df = pd.DataFrame(data = X_pca)#, #columns = [b])
PCA df = pd.concat([PCA df, df[label col]], axis = 1)
print('PCA Analysis')
print('Original number of features:', X.shape[1])
print('Reduced number of features:', X_pca.shape[1])
print('ML Classification Algorithms Results with PCA FS')
ML multiclass clf(PCA df, label col)
##tnse##
tsne = TSNE(n components=tnse components, verbose=0, perplexity=40, n iter=number i
X tsne = tsne.fit transform(X)
TSNE df = pd.DataFrame(data = X tsne)#, columns = ['PC1', 'PC2', 'PC3', 'PC4', 'PC5', 'P
TSNE_df = pd.concat([TSNE_df, df[label_col]], axis = 1)
print('tSNE Analysis')
print('Original number of features:', X.shape[1])
print('Reduced number of features:', X tsne.shape[1])
print('ML Classification Algorithms Results with tSNE FS')
ML multiclass clf(TSNE df, label col)
#for Lasoo
sel = SelectFromModel(LogisticRegression(C=alpha, penalty='l1',solver='liblinear')
#clf = LogisticRegression(C=0.01, penalty='l1',solver='liblinear');
sel .fit(X, Y)
selected_feat = list(X.columns[(sel_.get_support())])
#pd.Series(X.columns[(sel .get support())])
impftrs l1 = selected feat
impftrs ll1=pd.Series(impftrs l1)
impftrs l1.append(label col)
LASSO df = df[impftrs l1]
print('Lasso Analysis')
print('Selected Features')
print(impftrs ll1)
print('ML Classification Algorithms Results with Lasso FS')
ML multiclass clf(LASSO df, label col)
#for Random Forest calssification
clf = RandomForestClassifier(n estimators=tree, random state=random)
clf.fit(trainX, trainY)
#validationmetrics(clf, testX, testY)
res rf = pd.Series(clf.feature importances , index=df1.columns.values).sort values(
impftrs rf1=res rf.head(num features)
impftrs rf=list(impftrs rf1.keys())
impftrs rf.append(label col)
RF df = df[impftrs rf]
print('Random Forest FS Analysis')
print('Selected Features')
print(impftrs rf1)
print('ML Classification Algorithms Results with Random Forest FS')
ML_multiclass_clf(RF_df,label_col)
#for XGBoost calssification
clf = XGBClassifier(random_state=1,learning_rate=learning_rate)
clf.fit(trainX, trainY)
res_xgb = pd.Series(clf.feature_importances_, index=df1.columns.values).sort_values
impftrs xgb1=res xgb.head(num features)
```

```
impftrs xgb=list(impftrs xgb1.keys())
impftrs_xgb.append(label_col)
XGB df = df[impftrs xgb]
print('Random Forest FS Analysis')
print('Selected Features')
print(impftrs xgb1)
print('ML Classification Algorithms Results with Random Forest FS')
ML multiclass clf(XGB df, label col)
###RFE
cols = list(X.columns)
rfe = RFE(estimator=LogisticRegression(), n features to select=num features)
# fit RFE
rfe.fit(trainX, trainY)
temp = pd.Series(rfe.support ,index = cols)
selected_features_rfe = temp[temp==True].index
#print(selected features rfe)
impre=pd.Series(selected features rfe)
impftrs rfe = list(selected features rfe)
impftrs rfe.append(label col)
print('RFE FS Analysis')
print('Selected Features')
print(impre)
print('ML Classification Algorithms Results with RFE FS')
RFE df = df[impftrs rfe]
ML multiclass clf(RFE df, label col)
return LDA_df, PCA_df, TSNE_df, LASSO_df, RF_df, XGB_df, RFE_df#res_rf, res_xgb
```

```
In [6]:
       #Classification Alg Calls
       # for Binary Class Classification
       #Include function for executing ML (classification) with and without FS for binary clas
       def ML binary clf(df,label col):
          Y= df[label_col].copy()
          X = df.drop(label col,axis=1)
          trainX, testX, trainY, testY = train test split(X, Y, test size=0.3, random state=4
          algorithms = []
          algorithms.append(XGBClassifier(random state=1,learning rate=0.01, verbosity = 0,si
          algorithms.append(RandomForestClassifier())
          algorithms.append(svm.SVC())
          algorithms.append(LogisticRegression())
          data1 = []
          for algo in algorithms:
             algo.fit(trainX,trainY)
             Y pred = algo.predict(testX)
             accuracy = accuracy score(testY, Y pred)*100
             precision = precision score(testY, Y pred, pos label=1, labels=[0,1])*100
             #Recall
             recall = recall_score(testY, Y_pred,pos_label=1,labels=[0,1])*100
```

```
#get FPR (specificity) and TPR (sensitivity)
       fpr , tpr, = roc curve(testY, Y pred)
       #AUC
       auc val = auc(fpr, tpr)
       #F-Score
       f score = f1 score(testY, Y pred)
       data1.append(({
           'accuracy':accuracy,
           'precision': precision, 'recall': recall,
           'auc val':auc val,
           'f score': f score,
           }))
   results = pd.DataFrame(data=data1, columns=['accuracy',
                                              'precision','recall','auc_val','f_score
                     index=['XGBoost', 'Random Forest','SVM', 'LogisticRegression'])
   display(results)
   #print(results)
   return results
# for Multiclass Classification
#Include function for executing ML (classification) with and without FS for Multiclass
def ML multiclass clf(df,label col):
   Y= df[label col].copy()
   X = df.drop(label col,axis=1)
   trainX, testX, trainY, testY = train test split(X, Y, test size=0.3, random state=4
   algorithms = []
   algorithms.append(XGBClassifier(random state=1,learning rate=0.01, verbosity = 0,si
   algorithms.append(RandomForestClassifier())
   algorithms.append(svm.SVC())
   algorithms.append(LogisticRegression())
   data1 = []
   for algo in algorithms:
       algo.fit(trainX,trainY)
       Y pred = algo.predict(testX)
       accuracy = accuracy score(testY, Y pred)*100
       precision = precision score(testY, Y pred, average='micro')*100
       #Recall
       recall = recall_score(testY, Y_pred, average='micro')*100
       #get FPR (specificity) and TPR (sensitivity)
       #fpr , tpr, _ = roc_curve(testY, Y_pred,sample_weight)
       #AUC
       #auc val = auc(fpr, tpr)
       f_score = f1_score(testY, Y_pred,average="macro")
       data1.append(({
           'accuracy':accuracy,
           'precision': precision, 'recall': recall,
           #'auc_val':auc_val,
           'f score': f score,
           }))
```

Part-2: Functions for Features Extraction/Selection for Regression Based Problems

Regression Algorithms

```
In [7]:
       #Regression Problem Setup
       # Regression Algorithms
       def LinearReg(trainX, testX, trainY, testY, verbose=True, clf=None):
          if not clf:
              clf = LinearRegression()
          clf.fit(trainX , trainY)
          return validationmetrics reg(clf, testX, testY, verbose=verbose)
       def VotingReg(trainX, testX, trainY, testY, verbose=True, clf=None):
          lr = LinearRegression()
          rf = RandomForestRegressor(n estimators=100)
          sv = SVR(kernel="rbf")
          dt = DecisionTreeRegressor()
          gb = GradientBoostingRegressor()
          ab = AdaBoostRegressor(random state=0, n estimators=100)
              clf = VotingRegressor([('rf', rf), ('dt', dt), ('gb', gb), ('ab', ab)])
          clf.fit(trainX , trainY)
          return validationmetrics reg(clf, testX, testY, verbose=verbose)
       # Helper function to provide list of supported algorithms for Regression
       def get supported algorithms reg():
          covered algorithms = [LinearReg, VotingReg]
          return covered algorithms
       #ElasticNet, PolynomialReg,
       #Regression Call
       # Helper function to run all algorithms provided in algo list over given dataframe, wit
       # By default it will run all supported algorithms
       def run_algorithms_reg(df, label_col, algo_list=get_supported_algorithms_reg(), feature
```

```
Run Algorithms without FS, REG and CV
   # Lets make a copy of dataframe and work on that to be on safe side
   df = df.copy()
   if feature list:
       impftrs = feature list
       impftrs.append(label col)
       df = df[impftrs]
   df, trainX, testX, trainY, testY = traintestsplit( df, 0.2, 91, label col=label co
   algo_model_map = {}
   for algo in algo list:
       print("======== " + algo.__name__ + " ========")
       res = algo(trainX, testX, trainY, testY)
       algo_model_map[algo.__name__] = res.get("model_obj", None)
       print ("======== \n")
   return algo model map
#Validation metrics for Regression algorithms
#Validation metrics for Regression algorithms
def validationmetrics_reg(model,testX,testY, verbose=True):
   predictions = model.predict(testX)
   # R-squared
   r2 = r2_score(testY,predictions, multioutput='variance_weighted')
   # Adjusted R-squared
   r2 adjusted = 1-(1-r2)*(testX.shape[0]-1)/(testX.shape[0]-testX.shape[1]-1)
   #MAF
   mae = mean_absolute_error(testY,predictions)
   # MSE
   mse = mean_squared_error(testY,predictions)
   #RMSE
   rmse = math.sqrt(mse)
   if verbose:
       print("R-Squared Value: ", r2)
       print("Adjusted R-Squared: ", r2 adjusted)
       print("MAE: ", mae)
       print("RMSE: ", rmse)
   res map = {
              "r2": r2,
              "r2 adjusted": r2 adjusted,
              "mae": mae,
              "rmse": rmse,
              "model obj": model
   return res map
```

Function to call PCA, TSNE, Random Forest, XGBoost and Recursive Feature Elemination for Features Selection for Regression Problem

```
In [8]:
        #Function to call LDA, PCA, TSNE, Lasso, Random Forest, XGBoost and Recursive Feature E
        from sklearn.discriminant analysis import LinearDiscriminantAnalysis
        from sklearn.decomposition import PCA
        from sklearn.manifold import TSNE
        from sklearn.feature selection import SelectFromModel
        from sklearn.feature selection import RFE
        from xgboost import XGBRegressor
        #from sklearn.xqboost import XGBRegressor
        def FE_MLalg_reg(df, label_col, X, Y, trainX, testX, trainY, testY, lda_components,
                   pca_components, tnse_components, number_iter, alpha, num_features, learning_
            df1=df.drop(label col,axis=1)
            ##PCA##
            pca = PCA(n components=pca components)
            X pca = pca.fit transform(X)
            PCA df = pd.DataFrame(data = X pca)#, #columns = [b])
            PCA df = pd.concat([PCA df, df[label col]], axis = 1)
            print('PCA Analysis')
            print('Original number of features:', X.shape[1])
            print('Reduced number of features:', X_pca.shape[1])
            print('ML Regression Algorithms Results with PCA FS')
            ML reg(PCA df, label col)
            ##tnse##
            tsne = TSNE(n_components=tnse_components, verbose=0, perplexity=40, n_iter=number_i
            X tsne = tsne.fit transform(X)
            TSNE df = pd.DataFrame(data = X tsne)#, columns = ['PC1', 'PC2', 'PC3', 'PC4', 'PC5', 'P
            TSNE df = pd.concat([TSNE df, df[label col]], axis = 1)
            print('tSNE Analysis')
            print('Original number of features:', X.shape[1])
            print('Reduced number of features:', X_tsne.shape[1])
            print('ML Regression Algorithms Results with tSNE FS')
            ML reg(TSNE df, label col)
          #for Random Forest
            clf = RandomForestRegressor(n estimators=tree, random state=random)
            clf.fit(trainX, trainY)
            #validationmetrics(clf, testX, testY)
            res_rf = pd.Series(clf.feature_importances_, index=df1.columns.values).sort_values(
            impftrs rf1=res rf.head(num features)
            impftrs rf=list(impftrs_rf1.keys())
            impftrs_rf.append(label col)
            RF df = df[impftrs rf]
            print('Random Forest FS Analysis')
            print('Selected Features')
            print(impftrs rf1)
            print('ML Regression Algorithms Results with Random Forest FS')
            ML reg(RF df, label col)
            #for XGBoost
            clf = XGBRegressor(random_state=1,learning_rate=learning_rate)
            clf.fit(trainX, trainY)
            #validationmetrics(clf, testX, testY)
```

```
res_xgb = pd.Series(clf.feature_importances_, index=df1.columns.values).sort_values
impftrs xgb1=res xgb.head(num features)
impftrs xgb=list(impftrs xgb1.keys())
impftrs xgb.append(label col)
XGB_df = df[impftrs_xgb]
print('Random Forest FS Analysis')
print('Selected Features')
print(impftrs xgb1)
print('ML Regression Algorithms Results with XGB FS')
ML_reg(XGB_df,label_col)
###RFE
cols = list(X.columns)
rfe = RFE(estimator=LinearRegression(), n features to select=num features)
rfe.fit(trainX, trainY)
temp = pd.Series(rfe.support ,index = cols)
selected features rfe = temp[temp==True].index
impre=pd.Series(selected features rfe)
impftrs rfe = list(selected features rfe)
impftrs rfe.append(label col)
print('RFE FS Analysis')
print('Selected Features')
print(impre)
print('ML Regression Algorithms Results with RFE FS')
RFE df = df[impftrs rfe]
ML_reg(RFE_df,label_col)
return PCA df, TSNE df, RF df, XGB df, RFE df
```

```
In [9]:
        #Regression Alg Calls
        #Include function for executing ML (classification) with and without FS.
        def ML reg(df,label col):
           Y= df[label_col].copy()
           #now delete the original
           X = df.drop(label col,axis=1)
           trainX, testX, trainY, testY = train_test_split(X, Y, test_size=0.3, random_state=4
           r = LinearRegression()
           rf = RandomForestRegressor(n estimators=100)
           sv = SVR(kernel="rbf")
           dt = DecisionTreeRegressor()
           gb = GradientBoostingRegressor()
           ab = AdaBoostRegressor(random state=0, n estimators=100)
           algorithms = []
           algorithms.append(LinearRegression())
           algorithms.append(VotingRegressor([('rf', rf), ('dt', dt), ('gb', gb), ('ab', ab)])
           data1 = []
           for algo in algorithms:
               algo.fit(trainX,trainY)
               Y pred = algo.predict(testX)
```

```
r2 = r2 score(testY,Y pred, multioutput='variance weighted')
# Adjusted R-squared
    r2 adjusted = 1-(1-r2)*(testX.shape[0]-1)/(testX.shape[0]-testX.shape[1]-1)
    mae = mean absolute error(testY,Y pred)
# MSE
    mse = mean squared error(testY,Y pred)
#RMSE
    rmse = math.sqrt(mse)
    data1.append(({'R-Squared':r2,'Adj-R Squared': r2 adjusted,'MAE': mae,
       'MSE':mse,'RMSE': rmse}))
results = pd.DataFrame(data=data1, columns=['R-Squared',
                                             'Adj-R Squared','MAE','MSE','RMSE'],
                   index=['Linear_Regression', 'Voting_Regression'])
display(results)
#print(results)
return results
```

Data Analysis

Classification based Data Analysis

Four different types of datasets are analyzed using four different types of ML algorithms, which are

- 1. XGBoost
- 2. Random Forest
- 3. SVM
- 4. Logistic Regression

with and without feature extraction/selections. Seven different types of features extraction/selections are considered, which are

- 1. Linear Discriminant Analysis (LDA)
- 2. Principal component analysis (PCA)
- 3. t-distributed stochastic neighbor embedding (t-SNE)
- 4. Lasso based L1 feature selection -
- 5. Random Forest based Feature Selection (RF)
- 6. XGBooset based Feature Selection
- 7. Recursive Feature Elimination (RFE)

The datasets are

- Dataset 1: Parkinson's Disease Classification (pd_speech_feature)
- 2. Dataset 2: Default of Credit Card Clients
- 3. Dataset 3: MEU-Mobile KSD 2016
- 4. Dataset 4: Mice Protein Expression (Data_Cortex_Nuclear)

The first two are the binary class, while the latter two are the multi-class classification datasets.

Dataset 1: Parkinson's Disease Classification (pd_speech_feature)

```
In [11]: FILE_NAME = "pd_speech_features.csv"
    LABEL_COL = "class"
    df = load_data(FILE_NAME)
    display(df.head())
    print(df.shape)
    print(df.dtypes)
```

1PeriodPulses	stdDevPeriodPulses	locPctJitter	•••	tqwt_kurtosisValue_dec_28	tqwt_kurtosisValue_dec_29
0.008064	0.000087	0.00218		1.5620	2.6445
0.008258	0.000073	0.00195		1.5589	3.6107
0.008340	0.000060	0.00176		1.5643	2.3308
0.010858	0.000183	0.00419		3.7805	3.5664
0.008162	0.002669	0.00535		6.1727	5.8416

```
(756, 755)
                                int64
id
                                int64
gender
PPE
                              float64
                              float64
DFA
RPDE
                              float64
tqwt kurtosisValue dec 33
                              float64
tqwt_kurtosisValue_dec_34
                              float64
tqwt kurtosisValue dec 35
                              float64
tqwt_kurtosisValue_dec_36
                              float64
                                int64
Length: 755, dtype: object
```

```
In [12]: #Data X Transformation
  #df['id'] = df['id'].astype(int)
  label_col='class'
  df1=df
  df=MinMax_Transformation(df1, label_col)
```

ML Alg witout FE

```
In [13]: # ML Alg witout FE

label_col='class'
df_cpy=df
res=ML_binary_clf(df_cpy,label_col)
```

```
        accuracy
        precision
        recall
        auc_val
        f_score

        XGBoost
        85.022026
        85.483871
        95.783133
        0.757604
        0.903409
```

	accuracy	precision	recall	auc_val	f_score
Random_Forest	87.224670	86.631016	97.590361	0.783034	0.917847
SVM	82.378855	80.882353	99.397590	0.677316	0.891892
LogisticRegression	86.343612	85.714286	97.590361	0.766640	0.912676

The results of application of four different ML algorithms on binary classification-based problems show that the Logistic Regression outperform the rest of algorithms in terms of overall accuracy. However, the Random Forest and SVM outperform the others in terms of precision and recall. Overall SVM seems to the best candidate model to predict the class label using the Parkinson's Disease Classification (pd_speech_feature) data set.

ML Alg with Features Selection (10 Features)

```
## ML Alg with Features Selection (10 Features)
In [19]:
          # with Features Selection
          label col='class'
          Y= df[label_col].copy()
              #now delete the original
          X = df.drop(label_col,axis=1)
          X, y=XYsplit(df, label col)
          trainX, testX, trainY, testY = train_test_split(X, Y, test_size=0.3, random_state=42)
          df cpy=df
          label_col='class'
          lda components=1
          pca components=10
          tnse components=3
          number_iter=300
          alpha=0.09
          num_features=10
          learning_rate=0.2
          tree=500
          LDA_df, PCA_df, TSNE_df, LASSO_df, RF_df, XGB_df, RFE_df=FE_MLalg_binaryclf(df_cpy, lab
                                                                                 testY, lda compon
                                                                                 tnse components,
                                                                                  learning_rate,tre
```

Linear Discriminant Analysis Original number of features: 754 Reduced number of features: 1

ML Classification Algorithms Results with LDA FS

	accuracy	precision	recall	auc_val	f_score
XGBoost	100.0	100.0	100.0	1.0	1.0
Random_Forest	100.0	100.0	100.0	1.0	1.0
SVM	100.0	100.0	100.0	1.0	1.0
LogisticRegression	100.0	100.0	100.0	1.0	1.0

PCA Analysis

Original number of features: 754

Reduced number of features: 10

ML Classification Algorithms Results with PCA FS

	accuracy	precision	recall	auc_val	f_score
XGBoost	83.259912	83.684211	95.783133	0.724817	0.893258
Random_Forest	85.022026	84.020619	98.192771	0.736865	0.905556
SVM	84.140969	83.505155	97.590361	0.725657	0.900000
LogisticRegression	82.819383	82.564103	96.987952	0.706251	0.891967

tSNE Analysis

Original number of features: 754 Reduced number of features: 3

ML Classification Algorithms Results with tSNE FS

	accuracy	precision	recall	auc_val	f_score
XGBoost	82.819383	84.699454	93.373494	0.737359	0.888252
Random_Forest	84.140969	86.111111	93.373494	0.761949	0.895954
SVM	81.057269	80.000000	98.795181	0.657910	0.884097
LogisticRegression	71.365639	72.645740	97.590361	0.487952	0.832905

Lasso Analysis Selected Features

0	gender
1	DFA
2	<pre>mean_MFCC_2nd_coef</pre>
3	std_6th_delta_delta
4	std_8th_delta_delta
5	std_9th_delta_delta
6	tqwt_entropy_shannon_dec_16
7	tqwt_entropy_log_dec_12
8	tqwt_entropy_log_dec_26
9	tqwt_entropy_log_dec_34
10	tqwt_entropy_log_dec_35
11	tqwt_maxValue_dec_11
12	tqwt_kurtosisValue_dec_36
4+1100	· object

dtype: object

ML Classification Algorithms Results with Lasso FS

The elassificación Algoriemis Results With Easso 15							
	accuracy	precision	recall	auc_val	f_score		
XGBoost	81.057269	85.549133	89.156627	0.740865	0.873156		
Random_Forest	85.462555	85.945946	95.783133	0.765801	0.905983		
SVM	86.343612	85.340314	98.192771	0.761456	0.913165		
LogisticRegression	82.819383	82.564103	96.987952	0.706251	0.891967		
Random Forest FS Analysis Selected Features std delta delta log energy 1 554695							

std_delta_delta_log_energy 1.554695 std_delta_log_energy 1.266033 std 6th delta delta 0.918244 std_7th_delta_delta 0.904587 std_9th_delta_delta 0.901225 tqwt_TKEO_mean_dec_12 0.881834 tqwt TKEO std dec 12 0.821213 mean_MFCC_2nd_coef 0.779943 std_Log_energy 0.719549

std_6th_delta 0.657631

dtype: float64

ML Classification Algorithms Results with Random Forest FS

	accuracy	precision	recall	auc_val	f_score
XGBoost	82.378855	83.510638	94.578313	0.718793	0.887006
Random_Forest	81.497797	84.065934	92.168675	0.723138	0.879310
SVM	79.295154	79.310345	96.987952	0.640677	0.872629
LogisticRegression	77.092511	78.217822	95.180723	0.615248	0.858696
Random Forest FS Selected Feature tqwt_TKEO_std_de std_delta_delta_tqwt_entropy_log tqwt_entropy_shapp_LT_TKEO_mean tqwt_entropy_shatqwt_TKEO_std_de tqwt_minValue_deminIntensity dtype: float32	es ec_13 log_energ g_dec_18 g_dec_12 annon_dec_ n_3_coef annon_dec_ ec_11	6.99 y 2.83 2.74 2.72 13 2.07 2.02 33 1.96 1.99 1.86	56244 36820 47715 29622 71369 23748 51154 51341 57691 91795		

ML Classification Algorithms Results with Random Forest FS

The classification Algorithms Results with Random Forest 15							
	accuracy	precision	recall	auc_val	f_score		
XGBoost	79.295154	84.795322	87.349398	0.723632	0.860534		
Random_Forest	85.903084	86.413043	95.783133	0.773998	0.908571		
SVM	78.854626	77.830189	99.397590	0.611742	0.873016		
LogisticRegression	78.414097	78.260870	97.590361	0.619099	0.868633		
RFE FS Analysis Selected Features mean 2nd delta							

mean_2nd_delta 1 std_delta_delta_log_energy std_6th_delta_delta 2 std_7th_delta_delta std_9th_delta_delta tqwt_entropy_log_dec_26 5 tqwt entropy log dec 33 6 7 tqwt maxValue dec 11 tqwt_maxValue_dec_25 tqwt_kurtosisValue_dec_36 dtype: object

ML Classification Algorithms Results with RFE FS

	accuracy	precision	recall	auc_val	f_score
XGBoost	83.700441	87.283237	90.963855	0.774491	0.890855
Random_Forest	83.700441	86.033520	92.771084	0.758937	0.892754
SVM	84.140969	84.946237	95.180723	0.746395	0.897727
LogisticRegression	83.259912	84.042553	95.180723	0.730002	0.892655

Here seven different techniques are used to perform dimensionality reduction on high-dimensional data. Many different feature selection and feature extraction methods have been used. All these

methods aim to remove redundant and irrelevant features so that classification of new instances will be more accurate. The methods are

- 1. Linear Discriminant Analysis (LDA)
- 2. Principal component analysis (PCA)
- 3. t-distributed stochastic neighbor embedding (t-SNE)
- 4. Lasso based L1 feature selection -
- 5. Random Forest based Feature Selection (RF)
- 6. XGBooset based Feature Selection
- 7. Recursive Feature Elimination (RFE)

The selected features are used as features to predict the class label using four different Machine Learning algorithms, which are

- 1. XGBoost,
- 2. Random forest
- 3. SVM
- 4. Logistic Regression (LR)

The results show that with the application of reducing the features the performance falls a bit in comparison to the using original whole features set. However, there does not seem a significant reduction in the performance in terms of accuracy, precision, and recall. The fall in performance is less than 1% if we extract about 10 of the features and use them in the analysis.

The comparison across various features extraction and selection methods indicates that LDA outperform the rest of six features extractions/selection methods as it has the highest accuracy, precision, and recall. PCA is on the second number in terms of performance. It shows that the features variation is almost captured by the single LDA factor and about 10 PCA based factors. More than 95% of the variation is captured by these factors. Lasso, Random Forest, RFE and XGBoost based methods have almost performance as the result of four ML based algorithms is almost similar across these three features selection-based methods.

The t-SNE based feature selection methods seems the worst among the seven methods. However, the accuracy is about 78% along with the reasonable precision and accuracy. Comparison across Machine Learning algorithms show that the Random Forest and SVM are the best and come up with almost same amount of accuracy and precision.

ML Alg with Features Selection (15 Features)

```
In [20]: ## ML Alg with Features Selection (15 Features)
# with Features Selection
label_col='class'
Y= df[label_col].copy()

#now delete the original
X = df.drop(label_col,axis=1)
X, y=XYsplit(df, label_col)
trainX, testX, trainY, testY = train_test_split(X, Y, test_size=0.3, random_state=42)
df_cpy=df
label_col='class'
```

lda_components=1
pca_components=15
tnse_components=3
number_iter=300
alpha=0.12
num_features=15
learning_rate=0.2
tree=500

LDA_df, PCA_df, TSNE_df, LASSO_df, RF_df, XGB_df, RFE_df=FE_MLalg_binaryclf(df_cpy, lab testY, lda_compon tnse_components, learning_rate, tre

Linear Discriminant Analysis Original number of features: 754 Reduced number of features: 1

ML Classification Algorithms Results with LDA FS

	accuracy	precision	recall	auc_val	f_score
XGBoost	100.0	100.0	100.0	1.0	1.0
Random_Forest	100.0	100.0	100.0	1.0	1.0
SVM	100.0	100.0	100.0	1.0	1.0
LogisticRegression	100.0	100.0	100.0	1.0	1.0

PCA Analysis

Original number of features: 754 Reduced number of features: 15

ML Classification Algorithms Results with PCA FS

	accuracy	precision	recall	auc_val	f_score
XGBoost	83.259912	83.684211	95.783133	0.724817	0.893258
Random_Forest	84.581498	83.937824	97.590361	0.733853	0.902507
SVM	85.022026	84.020619	98.192771	0.736865	0.905556
Logistic Regression	82.819383	82.564103	96.987952	0.706251	0.891967

tSNE Analysis

Original number of features: 754 Reduced number of features: 3

 ML Classification Algorithms Results with tSNE FS

	accuracy	precision	recall	auc_val	f_score
XGBoost	83.259912	84.408602	94.578313	0.735187	0.892045
Random_Forest	85.462555	85.185185	96.987952	0.755432	0.907042
SVM	77.092511	76.388889	99.397590	0.578955	0.863874
LogisticRegression	72.246696	72.888889	98.795181	0.493976	0.838875

Lasso Analysis Selected Features

```
std 6th delta delta
4
              std 8th delta delta
5
              std 9th delta delta
6
      tqwt_entropy_shannon_dec_16
7
      tqwt_entropy_shannon_dec_17
8
          tqwt_entropy_log_dec_12
9
          tqwt entropy log dec 26
10
          tqwt_entropy_log_dec_34
          tqwt_entropy_log_dec_35
11
             tqwt_maxValue_dec_11
12
13
        tqwt kurtosisValue dec 28
14
        tqwt_kurtosisValue_dec_36
dtype: object
ML Classification Algorithms Results with Lasso FS
```

	accuracy	precision	recall	auc_val	f_score
XGBoost	81.497797	84.44444	91.566265	0.728323	0.878613
Random_Forest	84.581498	85.026738	95.783133	0.749407	0.900850
SVM	82.819383	82.233503	97.590361	0.701067	0.892562
LogisticRegression	84.140969	83.163265	98.192771	0.720472	0.900552

Random Forest FS Analysis Selected Features std_delta_delta_log_energy 1.627607 std_delta_log_energy 1.599640 std_6th_delta_delta 0.934900 std_7th_delta 0.861546 std 9th delta delta 0.794993 tqwt_entropy_shannon_dec_12 0.775695 mean_MFCC_2nd_coef 0.727541 tqwt TKEO mean dec 12 0.721502 tqwt TKEO std dec 12 0.691918 std_7th_delta_delta 0.657989 std_Log_energy 0.633259 std 10th delta delta 0.630228 tqwt_entropy_log_dec_12 0.620777 std_8th_delta_delta 0.576910 tqwt_TKEO_std_dec_11 0.559679 dtype: float64

MI Classification Algorithms Results with Random Forest FS

ML Classification Algorithms Results with Random Forest FS						
	accuracy	precision	recall	auc_val	f_score	
XGBoost	83.700441	85.635359	93.373494	0.753753	0.893372	
Random_Forest	83.259912	84.042553	95.180723	0.730002	0.892655	
SVM	81.057269	80.597015	97.590361	0.668280	0.882834	
LogisticRegression	79.295154	79.899497	95.783133	0.651047	0.871233	
Random Forest FS Selected Feature tqwt_TKEO_std_de std_delta_delta_ tqwt_entropy_log tqwt_entropy_log tqwt_entropy_sha app_LT_TKEO_mear	es ec_13 _log_energ g_dec_18 g_dec_12 annon_dec_	6.99 y 2.83 2.74 2.77 13 2.0	56244 36820 47715 29622 71369 23748			

1.961154

1.951341

1.867691

tqwt_entropy_shannon_dec_33

tqwt_TKEO_std_dec_11

tqwt_minValue_dec_9

```
minIntensity 1.691795
tqwt_meanValue_dec_31 1.661849
app_det_TKEO_mean_4_coef 1.609059
mean_4th_delta_delta 1.539960
tqwt_maxValue_dec_21 1.503230
tqwt_entropy_shannon_dec_18 1.322190
dtype: float32
```

ML Classification Algorithms Results with Random Forest FS

	accuracy	precision	recall	auc_val	f_score
XGBoost	79.295154	84.795322	87.349398	0.723632	0.860534
Random_Forest	84.140969	84.210526	96.385542	0.736026	0.898876
SVM	80.616740	79.901961	98.192771	0.654898	0.881081
LogisticRegression	79.735683	79.702970	96.987952	0.648874	0.875000
1 2 3 std_delta_ 4 stc 5 stc 6 stc 7 tqwt_er 8 tqwt_er 9 tqw 10 tqwt 11 tqwt 12 tqwt_kurt	ean_MFCC_1 mean_2n std_10t	d_delta d_delta h_delta _energy a_delta a_delta a_dec_26 _dec_33 e_dec_6 _dec_11 _dec_25 _dec_28			
14 tqwt_kurt dtype: object ML Classification	cosisValue on Algorit	_	s with RF	E FS	

	accuracy	precision	recall	auc_val	f_score
XGBoost	84.581498	86.187845	93.975904	0.764961	0.899135
Random_Forest	85.022026	84.020619	98.192771	0.736865	0.905556
SVM	85.462555	85.185185	96.987952	0.755432	0.907042
LogisticRegression	83.700441	83.419689	96.987952	0.722645	0.896936

Here we increase the number of extracted features from 10 to 15. The results show that there is no significant improvement in the performance. The results seem almost indicial to the one obtained in case of using the 10 features. The performance of LDA is best, followed by PCA. The RF, XGBoost, Lasso and RFE have almost same performance. t-SNE seems to be worst. Across the ML algorithms the SVM and RF outperform the others in terms of accuracy and precision.

ML Alg with Features Selection (5 Features)

```
In [24]: ## ML Alg with Features Selection (5 Features)
# with Features Selection
label_col='class'
Y= df[label_col].copy()
```

```
#now delete the original
X = df.drop(label_col,axis=1)
X, y=XYsplit(df, label_col)
trainX, testX, trainY, testY = train_test_split(X, Y, test_size=0.3, random_state=42)
df_cpy=df
label_col='class'
lda_components=1
pca_components=5
tnse_components=2
number_iter=300
alpha=0.04
num_features=5
learning_rate=0.2
tree=500
```

LDA_df, PCA_df, TSNE_df, LASSO_df, RF_df, XGB_df, RFE_df=FE_MLalg_binaryclf(df_cpy, lab testY, lda_compon tnse_components, learning_rate, tre

Linear Discriminant Analysis Original number of features: 754 Reduced number of features: 1

ML Classification Algorithms Results with LDA FS

	accuracy	precision	recall	auc_val	f_score
XGBoost	100.0	100.0	100.0	1.0	1.0
Random_Forest	100.0	100.0	100.0	1.0	1.0
SVM	100.0	100.0	100.0	1.0	1.0
Logistic Regression	100.0	100.0	100.0	1.0	1.0

PCA Analysis

Original number of features: 754 Reduced number of features: 5

ML Classification Algorithms Results with PCA FS

	accuracy	precision	recall	auc_val	f_score
XGBoost	77.533040	80.104712	92.168675	0.649368	0.857143
Random_Forest	82.378855	83.510638	94.578313	0.718793	0.887006
SVM	81.938326	82.383420	95.783133	0.700227	0.885794
LogisticRegression	81.938326	82.051282	96.385542	0.695042	0.886427

tSNE Analysis

Original number of features: 754 Reduced number of features: 2

ML Classification Algorithms Results with tSNE FS

	accuracy	precision	recall	auc_val	f_score
XGBoost	83.259912	83.333333	96.385542	0.719633	0.893855
Random_Forest	88.986784	88.950276	96.987952	0.821005	0.927954
SVM	80.616740	81.443299	95.180723	0.680822	0.877778
LogisticRegression	80.616740	81.443299	95.180723	0.680822	0.877778

Lasso Analysis
Selected Features
0 gender
1 mean_MFCC_2nd_coef
2 std_8th_delta_delta
3 tqwt_entropy_log_dec_26
4 tqwt_minValue_dec_11
dtype: object
ML Classification Algorithms Results with Lasso FS

	accuracy	precision	recall	auc_val	f_score
XGBoost	78.414097	80.000000	93.975904	0.650207	0.864266
Random_Forest	82.819383	83.597884	95.180723	0.721805	0.890141
SVM	81.497797	80.693069	98.192771	0.671292	0.885870
LogisticRegression	82.819383	81.592040	98.795181	0.690697	0.893733
Random Forest FS Selected Feature std_delta_delta_ std_delta_log_er std_7th_delta_de mean_MFCC_2nd_co std_9th_delta_de	es log_energ ergy elta oef		7408 7634 5525		

 ML Classification Algorithms Results with Random Forest FS

	accuracy	precision	recall	auc_val	f_score
XGBoost	79.295154	81.481481	92.771084	0.676970	0.867606
Random_Forest	79.735683	82.258065	92.168675	0.690352	0.869318
SVM	77.973568	79.000000	95.180723	0.631641	0.863388
LogisticRegression	77.973568	78.155340	96.987952	0.616087	0.865591

Random Forest FS Analysis
Selected Features
tqwt_TKEO_std_dec_13 6.956244
std_delta_delta_log_energy 2.836820
tqwt_entropy_log_dec_18 2.747715
tqwt_entropy_log_dec_12 2.729622
tqwt_entropy_shannon_dec_13 2.071369

dtype: float32

ML Classification Algorithms Results with Random Forest FS

	accuracy	precision	recall	auc_val	f_score
XGBoost	81.938326	84.530387	92.168675	0.731335	0.881844
Random_Forest	84.140969	84.946237	95.180723	0.746395	0.897727
SVM	80.176211	79.802956	97.590361	0.651886	0.878049
LogisticRegression	75.770925	75.342466	99.397590	0.554365	0.857143
RFE FS Analysis					

```
Selected Features

0 std_6th_delta_delta

1 std_9th_delta_delta

2 tqwt_entropy_log_dec_26

3 tqwt_maxValue_dec_11

4 tqwt_kurtosisValue_dec_36
```

dtype: object

ML Classification Algorithms Results with RFE FS

	accuracy	precision	recall	auc_val	f_score
XGBoost	78.854626	82.065217	90.963855	0.684327	0.862857
Random_Forest	81.057269	83.606557	92.168675	0.714942	0.876791
SVM	82.819383	82.564103	96.987952	0.706251	0.891967
LogisticRegression	81.057269	80.904523	96.987952	0.673464	0.882192

Here we decrease the number of extracted features from 10 to 5. The results show that there is no significant loss in the performance. The results seem almost indicial to the one obtained in case of using the 10 features. There seems to be about 2% loss in terms of accuracy and precision by reducing the number of extracted features.

The performance of LDA is best, followed by PCA. The RF, XGBoost, Lasso and RFE have almost same performance. t-SNE seems to be worst. Across the ML algorithms the SVM and RF outperform the others in terms of accuracy and precision.

```
In [ ]:
```

Dataset 2: Default of Credit Card Clients

EDUCATION MADDIAGE

```
In [25]: FILE_NAME = "default of credit card clients.csv"
    LABEL_COL = "default payment next month"
    df = load_data(FILE_NAME)
    #df=pd.read_csv('C:\\Users\\waliullah\\Desktop\\MLii\\Assignment4\\pd_speech_features1.
    display(df.head())
    print(df.shape)
    print(df.dtypes)
```

	טו	TIMITI_RAL	SEX	EDUCATION	MARKIAGE	AGE	PAY_U	PAY_2	PAY_3	PAY_4	•••	BILL_AWI14	E
_													_
(1	20000	2	2	1	24	2	2	-1	-1		0	
	1 2	120000	2	2	2	26	-1	2	0	0		3272	
2	2 3	90000	2	2	2	34	0	0	0	0		14331	
3	3 4	50000	2	2	1	37	0	0	0	0		28314	
4	. 5	50000	1	2	1	57	-1	0	-1	0		20940	

5 rows × 25 columns

```
(30000, 25)

ID int64

LIMIT_BAL int64

SEX int64

EDUCATION int64

MARRIAGE int64

AGE int64
```

```
PAY 0
                                      int64
         PAY 2
                                      int64
         PAY 3
                                      int64
         PAY 4
                                      int64
         PAY 5
                                      int64
         PAY 6
                                      int64
         BILL AMT1
                                      int64
         BILL AMT2
                                      int64
         BILL AMT3
                                      int64
         BILL AMT4
                                      int64
         BILL AMT5
                                      int64
         BILL AMT6
                                      int64
         PAY_AMT1
                                      int64
         PAY_AMT2
                                      int64
         PAY AMT3
                                      int64
         PAY AMT4
                                      int64
         PAY_AMT5
                                      int64
         PAY_AMT6
                                      int64
         default payment next month
                                      int64
         dtype: object
          df.isnull().sum()
In [26]:
Out[26]: ID
                                      0
                                      0
         LIMIT_BAL
                                      0
         SEX
         EDUCATION
                                      0
         MARRIAGE
                                      0
         AGE
                                      0
         PAY 0
         PAY 2
                                      0
         PAY_3
                                      0
         PAY 4
                                      0
         PAY 5
         PAY 6
                                      0
         BILL AMT1
                                      0
         BILL AMT2
                                      0
         BILL AMT3
                                      0
         BILL_AMT4
                                      0
         BILL_AMT5
                                      0
         BILL AMT6
                                      0
         PAY AMT1
                                      0
         PAY AMT2
                                      0
         PAY_AMT3
                                      0
         PAY AMT4
                                      0
         PAY_AMT5
                                      0
         PAY_AMT6
                                      0
         default payment next month
         dtype: int64
          df.columns
In [27]:
'default payment next month'],
               dtype='object')
          #dropping unncessary columns
In [28]:
          df.drop('ID', inplace=True, axis=1)
In [29]:
          #Data X Transformation
```

```
label_col='default payment next month'
df1=df
df=MinMax_Transformation(df1, label_col)
```

```
import seaborn as sns
import matplotlib.pyplot as plt
sns.countplot(x='default payment next month', data=df, palette='hls')
plt.show()

count_no_sub = len(df[df['default payment next month']==0])
count_sub = len(df[df['default payment next month']==1])
pct_of_no_sub = count_no_sub/(count_no_sub+count_sub)
print("percentage of non default is", pct_of_no_sub*100)
pct_of_sub = count_sub/(count_no_sub+count_sub)
print("percentage of defauld is", pct_of_sub*100)
```


ML Alg witout FE

```
In [31]: # ML Alg witout FE

label_col='default payment next month'
df_cpy=df
res=ML_binary_clf(df_cpy,label_col)
```

	accuracy	precision	recall	auc_val	f_score
XGBoost	81.955556	66.279070	34.897959	0.649774	0.457219
Random_Forest	81.277778	62.008734	36.224490	0.650228	0.457327
SVM	81.733333	67.211329	31.479592	0.636020	0.428770
LogisticRegression	80.822222	68.111455	22.448980	0.597614	0.337682

Using the default of credit card clients dataset, the results of application of four different ML algorithms on binary classification based problems show that all four ML based algorithms have almost similar performance in terms of accuracy. However, the RF seems the best in terms of recall and Logistic Regression in terms of precision.

ML Alg with Features Selection (10 Features)

```
## ML Alg with Features Selection (10 Features)
In [32]:
          # with Features Selection
          label_col='default payment next month'
          Y= df[label_col].copy()
              #now delete the original
          X = df.drop(label col,axis=1)
          X, y=XYsplit(df, label_col)
          trainX, testX, trainY, testY = train_test_split(X, Y, test_size=0.3, random_state=42)
          df_cpy=df
          label col='default payment next month'
          lda components=1
          pca components=10
          tnse_components=3
          number_iter=300
          alpha=0.09
          num features=10
          learning_rate=0.11
          tree=500
          LDA_df, PCA_df, TSNE_df, LASSO_df, RF_df, XGB_df, RFE_df=FE_MLalg_binaryclf(df_cpy, lab
                                                                                  testY, lda compon
                                                                                  tnse_components,
                                                                                  learning rate, tre
```

Linear Discriminant Analysis
Original number of features: 23
Reduced number of features: 1

 ML Classification Algorithms Results with LDA FS

	accuracy	precision	recall	auc_val	f_score			
XGBoost	81.511111	63.285458	35.969388	0.650799	0.458686			
Random_Forest	71.677778	35.012723	35.102041	0.584814	0.350573			
SVM	81.544444	63.778802	35.306122	0.648619	0.454516			
LogisticRegression	80.900000	67.438495	23.775510	0.602897	0.351565			
PCA Analysis Original number of features: 23 Reduced number of features: 10 ML Classification Algorithms Results with PCA FS accuracy precision recall auc_val f_score								

```
        XGBoost
        81.544444
        64.197531
        34.489796
        0.645673
        0.448722

        Random_Forest
        80.688889
        59.487179
        35.510204
        0.643886
        0.444728

        SVM
        81.866667
        66.237624
        34.132653
        0.646445
        0.450505

        LogisticRegression
        80.788889
        67.962675
        22.295918
        0.596849
        0.335766

        tSNE Analysis
        Original number of features: 23
        Reduced number of features: 3
        ML Classification Algorithms Results with tSNE FS
```

	accuracy	precision	recall	auc_val	f_score
XGBoost	79.822222	57.982262	26.683673	0.606501	0.365479
Random_Forest	77.966667	49.031171	29.693878	0.605501	0.369876
SVM	79.866667	61.280488	20.510204	0.584511	0.307339
LogisticRegression	78.222222	0.000000	0.000000	0.500000	0.000000
Lasso Analysis Selected Feature 0 LIMIT_BAL 1 SEX 2 EDUCATION 3 MARRIAGE 4 AGE 5 PAY_0 6 PAY_2 7 PAY_3 8 PAY_4 9 PAY_5 10 BILL_AMT1 dtype: object ML Classification		hms Resul	ts with La	usso FS	

	accuracy	precision	recall	auc_val	f_score
XGBoost	81.977778	66.344294	35.000000	0.650284	0.458250
Random_Forest	80.711111	59.256198	36.581633	0.647894	0.452366
SVM	81.755556	66.425620	32.806122	0.640948	0.439208
LogisticRegression	80.944444	68.817204	22.857143	0.599868	0.343164

Random Forest FS Analysis Selected Features

PAY_0 9.780214 AGE 6.612790 BILL_AMT1 5.992291 LIMIT_BAL 5.940480 BILL_AMT2 5.420082 BILL_AMT3 5.167654 PAY_AMT1 5.068900 BILL_AMT6 4.961940 BILL AMT4 4.952818 4.923184 BILL AMT5

dtype: float64

ML Classification Algorithms Results with Random Forest FS

	accuracy	precision	recall	auc_val	f_score
XGBoost	82.100000	67.751780	33.979592	0.647384	0.452599
Random_Forest	80.955556	61.141304	34.438776	0.641725	0.440601
SVM	81.966667	68.996618	31.224490	0.636591	0.429926
LogisticRegression	80.977778	68.289086	23.622449	0.602842	0.351024

Random Forest FS Analysis

Selected Features

PAY 0 40.389748 PAY_2 19.445076 PAY_3 3.913856

```
PAY_4 3.842141
PAY_6 2.536490
PAY_AMT3 2.087170
PAY_5 2.028392
LIMIT_BAL 2.019863
BILL_AMT1 1.938453
PAY_AMT2 1.926965
```

dtype: float32

ML Classification Algorithms Results with Random Forest FS

	accuracy	precision	recall	auc_val	f_score
XGBoost	82.155556	66.889313	35.765306	0.654182	0.466090
Random_Forest	80.344444	57.757920	36.275510	0.644446	0.445628
SVM	82.166667	67.050913	35.612245	0.653700	0.465178
LogisticRegression	80.600000	68.013468	20.612245	0.589567	0.316366
RFE FS Analysis Selected Feature 0 PAY_0 1 PAY_2 2 PAY_3 3 BILL_AMT1	25				

3 BILL_AMT1
4 PAY_AMT1
5 PAY_AMT2
6 PAY_AMT3
7 PAY_AMT4
8 PAY_AMT5
9 PAY_AMT6
dtype: object

ML Classification Algorithms Results with RFE FS

	accuracy	precision	recall	auc_val	f_score
XGBoost	82.188889	68.497409	33.724490	0.647032	0.451966
Random_Forest	81.066667	61.678832	34.489796	0.642619	0.442408
SVM	82.055556	69.230769	31.683673	0.638816	0.434722
LogisticRegression	80.488889	68.545455	19.234694	0.583887	0.300398

Here we have used seven different feature selection and feature extraction methods to evaluate their performance in predicting the label of binary class based classification. All these methods aim to remove redundant and irrelevant features so that classification of new instances will be more accurate.

The methods are Linear Discriminant Analysis (LDA), Principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), Lasso based L1 feature selection, Random Forest based Feature Selection (RF), XGBooset based Feature Selection and Recursive Feature Elimination (RFE). The selected features are used as features to predict the class label using four different Machine Learning algorithms, which are XGBoost, Random forest, SVM and Logistic Regression (LR).

The results show that with the application of reducing the features the performance falls a bit in comparison to the using original whole features set. However, there does not seem a significant

reduction in the performance in terms of accuracy, precision, and recall. The fall in performance is less than 2% if we extract about 10 of the features and use them in the analysis.

The comparison across various features extraction and selection methods indicates that LDA and PCA outperform the rest of five features extractions/selection methods as it has the highest accuracy, precision, and recall. Lasso, Random Forest, RFE and XGBoost based methods have almost performance as the result of four ML based algorithms is almost similar across these three feature selection based methods. The t-SNE based feature selection methods seems the worst among the seven methods.

Comparison across Machine Learning algorithms show that the Random Forest and SVM are the best and come up with almost same amount of accuracy and precision.

ML Alg with Features Selection (15 Features)

```
## ML Alg with Features Selection (15 Features)
In [35]:
          # with Features Selection
          label col='default payment next month'
          Y= df[label col].copy()
              #now delete the original
          X = df.drop(label col,axis=1)
          X, y=XYsplit(df, label col)
          trainX, testX, trainY, testY = train test split(X, Y, test size=0.3, random state=42)
          label col='default payment next month'
          lda components=1
          pca components=15
          tnse components=3
          number iter=300
          alpha=0.13
          num features=15
          learning rate=0.2
          tree=500
          LDA df, PCA df, TSNE df, LASSO df, RF df, XGB df, RFE df=FE MLalg binaryclf(df cpy, lab
                                                                                  testY, lda_compon
                                                                                  tnse components,
                                                                                  learning rate, tre
```

```
Linear Discriminant Analysis
Original number of features: 23
Reduced number of features: 1
ML Classification Algorithms Results with LDA FS
```

	accuracy	precision	recall	auc_val	f_score	
XGBoost	81.511111	63.285458	35.969388	0.650799	0.458686	
Random_Forest	71.666667	35.010163	35.153061	0.584927	0.350815	
SVM	81.544444	63.778802	35.306122	0.648619	0.454516	

	accuracy	precision	recall	auc_val	f_score
LogisticRegression	80.900000	67.438495	23.775510	0.602897	0.351565

PCA Analysis

Original number of features: 23 Reduced number of features: 15

ML Classification Algorithms Results with PCA FS

	accuracy	precision	recall	auc_val	f_score
XGBoost	81.411111	63.324048	34.795918	0.645926	0.449127
Random_Forest	81.088889	61.538462	35.102041	0.644970	0.447044
SVM	81.800000	66.841004	32.602041	0.640496	0.438272
LogisticRegression	80.811111	68.118196	22.346939	0.597175	0.336535

tSNE Analysis

Original number of features: 23 Reduced number of features: 3

ML Classification Algorithms Results with tSNE FS

	accuracy	precision	recall	auc_val	f_score
XGBoost	79.855556	58.556461	25.663265	0.603032	0.356864
Random_Forest	78.200000	49.917763	30.969388	0.611594	0.382242
SVM	79.733333	62.639405	17.193878	0.571694	0.269816
LogisticRegression	78.222222	0.000000	0.000000	0.500000	0.000000

Lasso Analysis Selected Features LIMIT_BAL 1 SEX **EDUCATION** 2 MARRIAGE AGE 5 PAY 0 PAY_2 6 7 PAY_3 8 PAY_4 9 PAY 5 10 PAY 6 11 BILL AMT1 PAY_AMT5 12 dtype: object

ML Classification Algorithms Results with Lasso FS

	accuracy	precision	recall	auc_val	f_score
XGBoost	82.088889	66.827853	35.255102	0.651915	0.461590
Random_Forest	81.088889	61.101549	36.224490	0.649020	0.454837
SVM	81.700000	66.702241	31.887755	0.637280	0.431481
LogisticRegression	80.933333	68.885449	22.704082	0.599245	0.341520

 ${\tt Random\ Forest\ FS\ Analysis}$

Selected Features

PAY_0 9.490055 AGE 6.608469 BILL AMT1 6.003876

```
LIMIT BAL
            5.968637
BILL AMT2
            5.448427
PAY AMT1
           5.136433
BILL_AMT3
            5.087672
BILL_AMT6 5.006599
BILL_AMT5
            4.963241
BILL AMT4
            4.946628
PAY AMT2
            4.792054
PAY 2
            4.774453
PAY AMT3
            4.604046
PAY AMT6
            4.553079
PAY_AMT4
            4.327158
dtype: float64
```

ML Classification Algorithms Results with Random Forest FS

	accuracy	precision	recall	auc_val	f_score
XGBoost	81.944444	67.179487	33.418367	0.644365	0.446337
Random_Forest	81.244444	62.078153	35.663265	0.647990	0.453014
SVM	81.966667	69.390104	30.765306	0.634934	0.426299
LogisticRegression	80.700000	67.897271	21.581633	0.593704	0.327526

Random Forest FS Analysis Selected Features PAY 0 36.845131 PAY 2 19.932110 3.998759 3.669531 PAY_3 PAY 4 PAY 6 2.756535 PAY_AMT3 2.313308 BILL_AMT1 2.235609 PAY 5 2.134971 LIMIT BAL 2.051992 BILL_AMT2 1.975180 PAY AMT2 1.971158 EDUCATION 1.963886 PAY AMT1 1.945929 PAY_AMT6 1.779573 BILL_AMT3 1.777691

dtype: float32

ML Classification Algorithms Results with Random Forest FS

	accuracy	precision	recall	auc_val	f_score
XGBoost	81.933333	66.276803	34.693878	0.648896	0.455459
Random_Forest	81.300000	61.929371	36.683673	0.652026	0.460750
SVM	82.066667	67.510121	34.030612	0.647355	0.452510
LogisticRegression	80.644444	67.986799	21.020408	0.591324	0.321122

```
RFE FS Analysis
Selected Features
      LIMIT BAL
      EDUCATION
1
            AGE
3
          PAY 0
          PAY_2
4
5
          PAY_3
6
          PAY 4
7
      BILL AMT1
8
      BILL_AMT3
```

```
9 PAY_AMT1
10 PAY_AMT2
11 PAY_AMT3
12 PAY_AMT4
13 PAY_AMT5
14 PAY_AMT6
dtype: object
ML Classification Algorithms Results with RFE FS
```

	accuracy	precision	recall	auc_val	f_score
XGBoost	82.155556	67.878788	34.285714	0.648843	0.455593
Random_Forest	81.388889	62.489045	36.377551	0.651490	0.459852
SVM	81.933333	68.152174	31.989796	0.639139	0.435417
LogisticRegression	80.733333	67.993631	21.785714	0.594653	0.329985

Here we increase the number of extracted features from 10 to 15. The results show that there is no significant improvement in the performance. The results seem almost indicial to the one obtained in case of using the 10 features. The performance of LDA is best, followed by PCA. The RF, XGBoost, Lasso and RFE have almost same performance. t-SNE seems to be worst. Across the ML algorithms the SVM and RF outperform the others in terms of accuracy and precision.

ML Alg with Features Selection (5 Features)

```
## ML Alg with Features Selection (5 Features)
In [36]:
          # with Features Selection
          label col='default payment next month'
          Y= df[label_col].copy()
              #now delete the original
          X = df.drop(label col,axis=1)
          X, y=XYsplit(df, label col)
          trainX, testX, trainY, testY = train_test_split(X, Y, test_size=0.3, random_state=42)
          df cpy=df
          label_col='default payment next month'
          lda components=1
          pca components=5
          tnse components=3
          number iter=300
          alpha=0.02
          num_features=5
          learning rate=0.11
          tree=500
          LDA df, PCA df, TSNE df, LASSO df, RF df, XGB df, RFE df=FE MLalg binaryclf(df cpy, lab
                                                                                  testY, lda compon
                                                                                  tnse components,
                                                                                  learning_rate,tre
         Linear Discriminant Analysis
         Original number of features: 23
         Reduced number of features: 1
         ML Classification Algorithms Results with LDA FS
                           accuracy precision
                                                 recall
                                                        auc_val
                                                                 f_score
```

	accuracy	precision	recall	auc_val	f_score
XGBoost	81.511111	63.285458	35.969388	0.650799	0.458686
Random_Forest	71.688889	35.045778	35.153061	0.585069	0.350993
SVM	81.544444	63.778802	35.306122	0.648619	0.454516
Logistic Regression	80.900000	67.438495	23.775510	0.602897	0.351565

PCA Analysis

Original number of features: 23 Reduced number of features: 5

ML Classification Algorithms Results with PCA FS

	accuracy	precision	recall	auc_val	f_score
XGBoost	80.155556	59.334764	28.214286	0.614154	0.382434
Random_Forest	78.433333	50.852018	28.928571	0.605722	0.368780
SVM	79.911111	61.875000	20.204082	0.583691	0.304615
LogisticRegression	79.433333	63.260341	13.265306	0.555602	0.219317

tSNE Analysis

Original number of features: 23 Reduced number of features: 3

ML Classification Algorithms Results with tSNE FS

	accuracy	precision	recall	auc_val	f_score
XGBoost	79.655556	60.254372	19.336735	0.578928	0.292777
Random_Forest	78.255556	50.126582	30.306122	0.609556	0.377742
SVM	79.355556	61.333333	14.081633	0.558050	0.229046
LogisticRegression	78.222222	0.000000	0.000000	0.500000	0.000000

Lasso Analysis Selected Features 0 LIMIT_BAL

1 SEX 2 MARRIAGE

3 PAY_0 4 PAY_2

5 PAY_3 dtype: object

ML Classification Algorithms Results with Lasso FS

	accuracy	precision	recall	auc_val	f_score
XGBoost	81.766667	64.177778	36.836735	0.655562	0.468071
Random_Forest	79.700000	55.500414	34.234694	0.632963	0.423477
SVM	81.866667	66.532258	33.673469	0.644788	0.447154
LogisticRegression	80.833333	68.740032	21.989796	0.596029	0.333204

Random Forest FS Analysis

Selected Features

PAY_0 9.660216 AGE 6.625396 BILL_AMT1 6.004315 LIMIT_BAL 5.957170 BILL AMT2 5.385281

dtype: float64

ML Classification Algorithms Results with Random Forest FS

	accuracy	precision	recall	auc_val	f_score
XGBoost	82.100000	67.934224	33.724490	0.646463	0.450733
Random_Forest	80.100000	57.000829	35.102041	0.638649	0.434481
SVM	81.977778	68.988764	31.326531	0.637030	0.430877
LogisticRegression	80.933333	67.941176	23.571429	0.602374	0.350000

Random Forest FS Analysis

Selected Features PAY 0 40.389748

PAY_2 19.445076 PAY_3 3.913856

PAY_4 3.842141 PAY_6 2.536490

dtype: float32

 ML Classification Algorithms Results with Random Forest FS

	accuracy	precision	recall	auc_val	f_score
XGBoost	82.100000	66.991237	35.102041	0.651433	0.460663
Random_Forest	81.644444	64.285714	35.357143	0.649442	0.456221
SVM	82.044444	66.829746	34.846939	0.650158	0.458082
LogisticRegression	80.811111	69.846678	20.918367	0.592021	0.321947

RFE FS Analysis
Selected Features
0 PAY_0
1 PAY_3
2 BILL_AMT1
3 PAY_AMT1
4 PAY_AMT2
dtype: object

ML Classification Algorithms Results with RFE FS

	accuracy	precision	recall	auc_val	f_score
XGBoost	81.933333	66.971545	33.622449	0.645030	0.447690
Random_Forest	79.855556	56.160939	34.183673	0.633773	0.424992
SVM	81.966667	68.784838	31.479592	0.637512	0.431922
LogisticRegression	80.544444	69.034608	19.336735	0.584610	0.302112

Here we decrease the number of extracted features from 10 to 5. The results show that there is significant loss in the performance. There seems to be about 10% loss in terms of accuracy and precision by reducing the number of extracted features.

The performance of RF, XGBoost, Lasso and RFE is best and have almost same precision and recall. The t-SNE seems to be worst. The LDA and PCA are on the second number. The Across the ML algorithms the SVM and XGBoost outperform the others in terms of accuracy and precision.

Dataset 3: MEU-Mobile KSD 2016

```
In [37]: FILE_NAME = "MEU-Mobile KSD 2016.csv"
    LABEL_COL = "Subject"
    df = load_data(FILE_NAME)
    #df=pd.read_csv('C:\\Users\\waliullah\\Desktop\\MLii\\Assignment4\\pd_speech_features1.
    display(df.head())
    print(df.shape)
    print(df.dtypes)
```

	Subject	Hold	Hold t	Hold i	Hold e	Hold Shift	Hold 5	Hold Shift.1	Hold Caps	Hold r	•••	Size Caps	Size r	Size (
0	1	89	92	64	85	123	82	70	101	84		0.225806	0.225806	0.32258
1	1	90	88	99	83	123	101	81	94	88		0.225806	0.225806	0.32258
2	1	87	90	83	65	79	73	96	62	64		0.225806	0.193548	0.29032
3	1	71	81	62	72	83	94	89	104	73		0.225806	0.225806	0.25806!
4	1	89	72	82	82	62	89	68	88	69		0.290323	0.225806	0.32258

5 rows × 72 columns

```
(2856, 72)
          Subject
                          int64
          Hold .
                          int64
          Hold t
                          int64
          Hold i
                          int64
          Hold e
                          int64
          Size 1
                        float64
                        float64
          Size Enter
                        float64
          AvH
          AvP
                        float64
                        float64
          AvA
          Length: 72, dtype: object
          df.isnull().sum()
In [38]:
Out[38]: Subject
          Hold .
                        0
          Hold t
                        0
          Hold i
          Hold e
          Size 1
                        0
          Size Enter
                        0
          AvH
          AvP
                        0
          AvA
          Length: 72, dtype: int64
In [39]:
          #Data X Transformation
          label col='Subject'
          df=MinMax_Transformation(df1, label_col)
```

ML Alg witout FE

```
In [40]: # ML Alg witout FE

label_col='Subject'
df_cpy=df
res=ML_multiclass_clf(df_cpy,label_col)
```

	accuracy	precision	recall	f_score
XGBoost	80.046674	80.046674	80.046674	0.799470
Random_Forest	92.532089	92.532089	92.532089	0.923526
SVM	65.810968	65.810968	65.810968	0.661108
LogisticRegression	63.360560	63.360560	63.360560	0.621503

The results of application of four different ML algorithms on binary classification based problems show that the Logistic Regression outperform the rest of algorithms in terms of overall accuracy. However, the Random Forest and SVM outperform the others in terms of precision and recall. Overall SVM seems to the best candidate model to predict the class label.

ML Alg with Features Selection (10 Features)

```
In [43]:
          ## ML Alg with Features Selection (10 Features)
          # with Features Selection
          label col='Subject'
          Y= df[label_col].copy()
              #now delete the original
          X = df.drop(label_col,axis=1)
          X, y=XYsplit(df, label col)
          trainX, testX, trainY, testY = train_test_split(X, Y, test_size=0.3, random_state=42)
          df cpy=df
          label col='Subject'
          lda components=10
          pca components=10
          tnse components=2
          number_iter=300
          alpha=0.08
          num features=10
          learning rate=0.11
          tree=500
          LDA df, PCA df, TSNE df, LASSO df, RF df, XGB df, RFE df=FE MLalg multiclf(df cpy, labe
                                                                                  testY, lda_compon
                                                                                  tnse components,
                                                                                  learning_rate,tre
         Linear Discriminant Analysis
         Original number of features: 71
         Reduced number of features: 10
         ML Classification Algorithms Results with LDA FS
```

recall

f score

Random Forest 69.194866 69.194866 69.194866 0.690707

XGBoost 64.527421 64.527421 64.527421 0.648757

accuracy precision

	accuracy	precision	recall	f_score
SVM	72.695449	72.695449	72.695449	0.727117
LogisticRegression	71.878646	71.878646	71.878646	0.714027

PCA Analysis

Original number of features: 71 Reduced number of features: 10

ML Classification Algorithms Results with PCA FS

	accuracy	precision	recall	f_score
XGBoost	38.739790	38.739790	38.739790	0.383714
Random_Forest	40.956826	40.956826	40.956826	0.411112
SVM	44.807468	44.807468	44.807468	0.450687
LogisticRegression	34.189032	34.189032	34.189032	0.315241

tSNE Analysis

Original number of features: 71 Reduced number of features: 2

ML Classification Algorithms Results with tSNE FS

	accuracy	precision	recall	f_score
XGBoost	42.007001	42.007001	42.007001	0.407491
Random_Forest	39.789965	39.789965	39.789965	0.400129
SVM	37.922987	37.922987	37.922987	0.339422
LogisticRegression	34.072345	34.072345	34.072345	0.311169

Lasso Analysis Selected Features

SCIC.	cted reactives
0	Hold n
1	DD 1.Enter
2	UD 1.Enter
3	Pressure i
4	Pressure Shift
5	Pressure Caps
6	Pressure a
7	Pressure Enter
8	Size Enter
9	AvH
10	AvP
11	ΑvA

dtype: object

ML Classification Algorithms Results with Lasso FS

	accuracy	precision	recall	f_score
XGBoost	55.075846	55.075846	55.075846	0.550616
Random_Forest	60.443407	60.443407	60.443407	0.602819
SVM	40.140023	40.140023	40.140023	0.395887
LogisticRegression	24.037340	24.037340	24.037340	0.214336

Random Forest FS Analysis

4.177554

Selected Features AvH 4.916028

AvA

```
AvP
            3.211048
DD Caps.r
           2.292841
          2.261405
UD Caps.r
DD n.l
           2.124383
          2.119492
DD i.e
UD o.a
           2.082335
DD r.o
           2.077077
DD a.n
           2.066744
```

dtype: float64

ML Classification Algorithms Results with Random Forest FS

	accuracy	precision	recall	f_score
XGBoost	70.945158	70.945158	70.945158	0.706772
Random_Forest	79.929988	79.929988	79.929988	0.794846
SVM	40.840140	40.840140	40.840140	0.395113
LogisticRegression	15.285881	15.285881	15.285881	0.107135

Random Forest FS Analysis

Selected Features

AvA 4.575877 AvP 3.722332 AvH 3.702333 Hold a 3.174852 UD o.a 2.982936 UD Caps.r 2.793411 UD 1.Enter 2.596567 DD i.e 2.554679 DD a.n 2.436496 2.382475 DD 1.Enter

dtype: float32

ML Classification Algorithms Results with Random Forest FS

	accuracy	precision	recall	f_score
XGBoost	70.711785	70.711785	70.711785	0.707320
Random_Forest	77.129522	77.129522	77.129522	0.768139
SVM	44.574096	44.574096	44.574096	0.440592
LogisticRegression	20.303384	20.303384	20.303384	0.164201

Selected Features

Mold Shift

Hold r

Hold o

Hold o

Hold a

Hold n

Size t

RFE FS Analysis

6 Size Caps 7 AvH 8 AvP

8 AVP 9 AvA dtype: object

ML Classification Algorithms Results with RFE FS

	accuracy	precision	recall	f_score
XGBoost	48.424737	48.424737	48.424737	0.482316
Random_Forest	52.742124	52.742124	52.742124	0.518647

	accuracy	precision	recall	f_score
SVM	52.508751	52.508751	52.508751	0.523213
LogisticRegression	36.172695	36.172695	36.172695	0.323474

The results show that with the application of reducing the features the performance falls a bit in comparison to the using original whole features set. However, there does not seem a significant reduction in the performance in terms of accuracy, precision, and recall. The comparison across various features extraction and selection methods indicates that XGBoost is the best among other in terms of accuracy, precision, and recall. The Random Forest, Lasso and RFE have almost same performance. Comparison across Machine Learning algorithms show that the Random Forest and SVM are the best and come up with almost same amount of accuracy and precision.

ML Alg with Features Selection (15 Features)

```
## ML Alg with Features Selection (15 Features)
In [46]:
          # with Features Selection
          label col='Subject'
          Y= df[label col].copy()
              #now delete the original
          X = df.drop(label_col,axis=1)
          X, y=XYsplit(df, label col)
          trainX, testX, trainY, testY = train_test_split(X, Y, test_size=0.3, random_state=42)
          df cpv=df
          label_col='Subject'
          lda components=15
          pca components=15
          tnse components=3
          number_iter=300
          alpha=0.09
          num_features=15
          learning rate=0.2
          tree=500
          LDA df, PCA df, TSNE df, LASSO df, RF df, XGB df, RFE df=FE MLalg multiclf(df cpy, labe
                                                                                  testY, lda compon
                                                                                  tnse components,
                                                                                  learning_rate,tre
```

Linear Discriminant Analysis Original number of features: 71 Reduced number of features: 15 ML Classification Algorithms Results with LDA FS

	accuracy	precision	recall	f_score
XGBoost	66.394399	66.394399	66.394399	0.667496
Random_Forest	74.445741	74.445741	74.445741	0.740460
SVM	78.179697	78.179697	78.179697	0.783387
LogisticRegression	74.795799	74.795799	74.795799	0.746934

PCA Analysis

Original number of features: 71 Reduced number of features: 15

ML Classification Algorithms Results with PCA FS

	accuracy	precision	recall	f_score
XGBoost	41.306884	41.306884	41.306884	0.411303
Random_Forest	45.507585	45.507585	45.507585	0.452068
SVM	49.824971	49.824971	49.824971	0.501480
LogisticRegression	41.306884	41.306884	41.306884	0.396551

tSNE Analysis

Original number of features: 71 Reduced number of features: 3

ML Classification Algorithms Results with tSNE FS

	accuracy	precision	recall	f_score
XGBoost	40.723454	40.723454	40.723454	0.401170
Random_Forest	45.390898	45.390898	45.390898	0.448111
SVM	41.773629	41.773629	41.773629	0.396889
LogisticRegression	37.339557	37.339557	37.339557	0.348440

Lasso Analysis
Selected Features
0 Hold a
1 Hold n
2 DD 1.Enter
3 UD 1.Enter
4 Pressure t
5 Pressure i
6 Pressure e

7 Pressure Shift 8 Pressure 5 9 Pressure Caps 10 Pressure a

11 Pressure n 12 Pressure Enter 13 Size Enter

14 AVH 15 AVP 16 AVA

dtype: object

ML Classification Algorithms Results with Lasso FS

	accuracy	precision	recall	f_score
XGBoost	57.759627	57.759627	57.759627	0.577401
Random_Forest	68.611435	68.611435	68.611435	0.683938
SVM	42.940490	42.940490	42.940490	0.430936
LogisticRegression	29.171529	29.171529	29.171529	0.268206

Random Forest FS Analysis Selected Features

AvH 4.957346 AvA 4.248136 AvP 3.157856

```
UD Caps.r 2.378671
DD Caps.r 2.212318
UD o.a
              2.129665
UD i.e
              2.111589
DD r.o 2.092234
UD r.o 2.081059
UD 1.Enter 2.068374
UD n.l
            2.057585
DD i.e
             2.048154
DD o.a
              2.030265
DD 1.Enter
              1.998818
DD n.l
              1.984026
dtype: float64
```

ML Classification Algorithms Results with Random Forest FS

	accuracy	precision	recall	f_score
XGBoost	71.295216	71.295216	71.295216	0.713631
Random_Forest	80.746791	80.746791	80.746791	0.805154
SVM	43.640607	43.640607	43.640607	0.428145
LogisticRegression	17.736289	17.736289	17.736289	0.130179

Random Forest FS Analysis Selected Features AvA 5.136408 AvP 3.866963 AvH 3.818790 Hold a 3.076774
DD i.e 3.059487
UD o.a 2.944897
Hold i 2.796641
UD l.Enter 2.637264 DD a.n 2.500731 DD 1.Enter 2.393451 2.367267 UD Caps.r UD 5.Shift 2.284286 2.272466 UD ..t UD i.e 2.192970

2.115121

Pressure Enter

Size t

dtype: float32

DD r.o

7

8

ML Classification Algorithms Results with Random Forest FS

	•			
	accuracy	precision	recall	f_score
XGBoost	74.562427	74.562427	74.562427	0.748526
Random_Forest	83.897316	83.897316	83.897316	0.838085
SVM	49.474912	49.474912	49.474912	0.496377
LogisticRegression	23.337223	23.337223	23.337223	0.193001
2 Hold 3 Ho 4 Ho 5 Ho	Shift old 5			

```
Size 5
        Size Shift.1
10
           Size Caps
11
12
                  AvH
13
                  AvP
14
                  AvA
dtype: object
ML Classification Algorithms Results with RFE FS
                            precision
                   accuracy
                                          recall
                                                 f_score
        XGBoost 50.641774 50.641774 50.641774 0.507750
  Random_Forest 56.359393 56.359393 56.359393 0.559250
```

LogisticRegression 42.123687 42.123687 42.123687 0.391796

SVM 54.842474 54.842474 54.842474 0.551712

Here we increase the number of extracted features from 10 to 15. The results show that there is significant improvement in the performance. The comparison across various features extraction and selection methods indicates that XGBoost is the best among other in terms of accuracy, precision, and recall. The Random Forest, Lasso and RFE have almost same performance. Comparison across Machine Learning algorithms show that the Random Forest and SVM are the best and come up with almost same amount of accuracy and precision.

ML Alg with Features Selection (5 Features)

```
## ML Alg with Features Selection (5 Features)
In [50]:
          # with Features Selection
          label col='Subject'
          Y= df[label col].copy()
              #now delete the original
          X = df.drop(label col,axis=1)
          X, y=XYsplit(df, label col)
          trainX, testX, trainY, testY = train_test_split(X, Y, test_size=0.3, random_state=42)
          df cpy=df
          label_col='Subject'
          lda components=5
          pca components=5
          tnse_components=3
          number iter=300
          alpha=0.075
          num features=5
          learning rate=0.2
          tree=500
          LDA df, PCA df, TSNE df, LASSO df, RF df, XGB df, RFE df=FE MLalg multiclf(df cpy, labe
                                                                                  testY, lda compon
                                                                                  tnse components,
                                                                                  learning rate, tre
```

Linear Discriminant Analysis Original number of features: 71 Reduced number of features: 5 ML Classification Algorithms Results with LDA FS

	accuracy	precision	recall	f_score
XGBoost	53.792299	53.792299	53.792299	0.538903
Random_Forest	57.292882	57.292882	57.292882	0.573543
SVM	58.576429	58.576429	58.576429	0.590635
LogisticRegression	58.693116	58.693116	58.693116	0.584300

PCA Analysis

Original number of features: 71 Reduced number of features: 5

ML Classification Algorithms Results with PCA FS

	accuracy	precision	recall	f_score
XGBoost	36.522754	36.522754	36.522754	0.367239
Random_Forest	38.039673	38.039673	38.039673	0.385261
SVM	38.506418	38.506418	38.506418	0.383862
LogisticRegression	28.471412	28.471412	28.471412	0.254364

tSNE Analysis

Original number of features: 71 Reduced number of features: 3

ML Classification Algorithms Results with tSNE FS

	accuracy	precision	recall	f_score
XGBoost	41.190198	41.190198	41.190198	0.402263
Random_Forest	44.690782	44.690782	44.690782	0.432833
SVM	40.490082	40.490082	40.490082	0.373976
LogisticRegression	36.056009	36.056009	36.056009	0.333316

Lasso Analysis
Selected Features
0 Pressure i
1 Pressure Enter
2 AvH
3 AvP
4 AvA

dtype: object

ML Classification Algorithms Results with Lasso FS

	accuracy	precision	recall	f_score
XGBoost	44.457410	44.457410	44.457410	0.441165
Random_Forest	42.590432	42.590432	42.590432	0.419519
SVM	38.739790	38.739790	38.739790	0.380073
LogisticRegression	14.002334	14.002334	14.002334	0.100749

Random Forest FS Analysis

Selected Features

AvH 4.906460 AvA 4.207526 AvP 3.066363 DD Caps.r 2.391286 UD Caps.r 2.244847 dtype: float64

ML Classification Algorithms Results with Random Forest FS

	accuracy	precision	recall	f_score
XGBoost	51.808635	51.808635	51.808635	0.515525
Random_Forest	51.808635	51.808635	51.808635	0.512267
SVM	36.756126	36.756126	36.756126	0.357797
LogisticRegression	12.252042	12.252042	12.252042	0.076307

Random Forest FS Analysis

Selected Features AvA 5.136408 AvP 3.866963 AvH 3.818790 Hold a 3.076774 DD i.e 3.059487

dtype: float32

ML Classification Algorithms Results with Random Forest FS

	accuracy	precision	recall	f_score
XGBoost	55.192532	55.192532	55.192532	0.544369
Random_Forest	57.642940	57.642940	57.642940	0.569610
SVM	43.757293	43.757293	43.757293	0.427112
LogisticRegression	16.569428	16.569428	16.569428	0.120883

RFE FS Analysis Selected Features 0 Hold a 1 Hold n 2 AvH 3 AvP 4 AvA

dtype: object

ML Classification Algorithms Results with RFE FS

	accuracy	precision	recall	f_score
XGBoost	43.290548	43.290548	43.290548	0.427565
Random_Forest	42.590432	42.590432	42.590432	0.427569
SVM	45.040840	45.040840	45.040840	0.443440
LogisticRegression	20.536756	20.536756	20.536756	0.156517

Here we decrease the number of extracted features from 10 to 5. The results show that there is significant loss in the performance. There seems to be about 10% loss in terms of accuracy and precision by reducing the number of extracted features. The performance of RF, XGBoost, is best and have almost same precision and recall. The t-SNE seems to be worst. The Lasso and RFE seems to the second best and the LDA and PCA are on the third number. The Across the ML algorithms the SVM and XGBoost outperform the others in terms of accuracy and precision.

In []:

Dataset 4: Mice Protein Expression (Data_Cortex_Nuclear)

```
In [51]: FILE_NAME = "Data_Cortex_Nuclear.csv"
    LABEL_COL = "class"
    df = load_data(FILE_NAME)
    #df=pd.read_csv('C:\\Users\\waliullah\\Desktop\\MLii\\Assignment4\\pd_speech_features1.
    display(df.head())
    print(df.shape)
    print(df.dtypes)
```

	MouseID	DYRK1A_N	ITSN1_N	BDNF_N	NR1_N	NR2A_N	pAKT_N	pBRAF_N	pCAMKII_N	pCRE
0	309_1	0.503644	0.747193	0.430175	2.816329	5.990152	0.218830	0.177565	2.373744	0.232
1	309_2	0.514617	0.689064	0.411770	2.789514	5.685038	0.211636	0.172817	2.292150	0.226
2	309_3	0.509183	0.730247	0.418309	2.687201	5.622059	0.209011	0.175722	2.283337	0.23(
3	309_4	0.442107	0.617076	0.358626	2.466947	4.979503	0.222886	0.176463	2.152301	0.207
4	309_5	0.434940	0.617430	0.358802	2.365785	4.718679	0.213106	0.173627	2.134014	0.192

5 rows × 82 columns

```
(1080, 82)
          MouseID
                        object
          DYRK1A N
                        float64
          ITSN1 N
                        float64
          BDNF N
                        float64
          NR1 N
                        float64
                         . . .
                        float64
          CaNA N
          Genotype
                         object
          Treatment
                         object
          Behavior
                         object
          class
                         object
          Length: 82, dtype: object
          df.columns
In [52]:
```

```
'GluR3_N', 'GluR4_N', 'IL1B_N', 'P3525_N', 'pCASP9_N', 'PSD95_N', 'SNCA_N', 'Ubiquitin_N', 'pGSK3B_Tyr216_N', 'SHH_N', 'BAD_N', 'BCL2_N', 'pS6_N', 'pCFOS_N', 'SYP_N', 'H3AcK18_N', 'EGR1_N', 'H3MeK4_N', 'CaNA_N', 'Genotype', 'Treatment', 'Behavior', 'class'],
                   dtype='object')
In [53]:
             df.drop('MouseID', inplace=True, axis=1)
             df.isnull().sum()
Out[53]: DYRK1A_N
                            3
                            3
            ITSN1 N
            BDNF N
                            3
            NR1 N
                            3
            NR2A_N
                            3
            CaNA N
            Genotype
                            0
            Treatment
                            0
                            0
            Behavior
            class
                            0
            Length: 81, dtype: int64
In [54]:
            cols_to_interpolate=['DYRK1A_N', 'ITSN1_N', 'BDNF_N', 'NR1_N', 'NR2A_N', 'pAKT_N', 'pBR
                                        'pCAMKII_N', 'pCREB_N', 'pELK_N', 'pERK_N', 'pJNK_N', 'PKCA_N',
                                       'pMEK_N', 'pNR1_N', 'pNR2A_N', 'pNR2B_N', 'pPKCAB_N', 'pRSK_N', 'A
'BRAF_N', 'CAMKII_N', 'CREB_N', 'ELK_N', 'ERK_N', 'GSK3B_N', 'JNK_
'MEK_N', 'TRKA_N', 'RSK_N', 'APP_N', 'Bcatenin_N', 'SOD1_N', 'MTOR
                                        'P38_N', 'pMTOR_N', 'DSCR1_N', 'AMPKA_N', 'NR2B_N', 'pNUMB_N',
                                        'RAPTOR_N', 'TIAM1_N', 'pP70S6_N', 'NUMB_N', 'P70S6_N', 'pGSK3B_N'
                                        'pPKCG_N', 'CDK5_N', 'S6_N', 'ADARB1_N', 'AcetylH3K9_N', 'RRP1_N',
                                        'BAX N', 'ARC N', 'ERBB4 N', 'nNOS N', 'Tau N', 'GFAP N', 'GluR3 N
                                        'GluR4_N', 'IL1B_N', 'P3525_N', 'pCASP9_N', 'PSD95_N', 'SNCA_N',
                                        'Ubiquitin_N', 'pGSK3B_Tyr216_N', 'SHH_N', 'BAD_N', 'BCL2_N', 'pS6
                                        'pCFOS_N', 'SYP_N', 'H3AcK18_N', 'EGR1_N', 'H3MeK4_N']
             df=fill_na_interpolate(df, cols_to_interpolate)
             df = df.dropna()
In [55]:
             df.reset index(drop=True, inplace=True)
             df.isnull().sum()
           DYRK1A N
Out[55]:
            ITSN1 N
                            0
            BDNF N
                            0
            NR1 N
                            0
            NR2A N
                            0
            CaNA N
                            0
                            0
            Genotype
            Treatment
                            0
            Behavior
                            0
            class
                            0
            Length: 81, dtype: int64
             #Label encoding
In [56]:
             from sklearn.preprocessing import LabelEncoder
             le = LabelEncoder()
```

```
df['Genotype']=le.fit_transform(df['Genotype'])
df['Treatment']=le.fit_transform(df['Treatment'])
df['Behavior']=le.fit_transform(df['Behavior'])
df['class']=le.fit_transform(df['class'])
```

Out[56]:		DYRK1A_N	ITSN1_N	BDNF_N	NR1_N	NR2A_N	pAKT_N	pBRAF_N	pCAMKII_N	pCREB_N	I
	0	0.743118	0.862653	0.377742	2.735757	6.067570	0.219049	0.185338	2.277492	0.194465	2
	1	0.711480	0.807054	0.351591	2.546888	5.595574	0.199170	0.165975	2.118811	0.174689	2
	2	0.704633	0.802537	0.350110	2.467733	5.548400	0.205323	0.165058	2.107281	0.171401	1
	3	0.677359	0.770235	0.356397	2.563223	4.975196	0.228087	0.186498	2.259045	0.190974	2
	4	0.591572	0.678768	0.312480	2.164182	4.313938	0.195786	0.161102	1.975689	0.161912	1
	•••										
	1060	0.254860	0.463591	0.254860	2.092082	2.600035	0.211736	0.171262	2.483740	0.207317	1
	1061	0.272198	0.474163	0.251638	2.161390	2.801492	0.251274	0.182496	2.512737	0.216339	1
	1062	0.228700	0.395179	0.234118	1.733184	2.220852	0.220665	0.161435	1.989723	0.185164	0
	1063	0.221242	0.412894	0.243974	1.876347	2.384088	0.208897	0.173623	2.086028	0.192044	0
	1064	0.302626	0.461059	0.256564	2.092790	2.594348	0.251001	0.191811	2.361816	0.223632	1

1065 rows × 81 columns

```
In [57]: #Data X Transformation

label_col='class'
    df1=df
    df=MinMax_Transformation(df1, label_col)
    df['Genotype'] = df['Genotype'].astype(int)
    df['Treatment'] = df['Treatment'].astype(int)
    df['Behavior'] = df['Behavior'].astype(int)
    df
```

Out[57]:	DYRK1A_N	ITSN1_N	BDNF_N	NR1_N	NR2A_N	pAKT_N	pBRAF_N	pCAMKII_N	pCREB_N	
0	0.252122	0.261865	0.687370	0.578919	0.641960	0.327466	0.479384	0.152530	0.422121	0
1	0.238778	0.238279	0.618907	0.501093	0.571983	0.285687	0.402859	0.126602	0.319885	0
2	0.235891	0.236363	0.615032	0.468476	0.564989	0.298618	0.399234	0.124718	0.302888	0
3	0.224388	0.222660	0.631490	0.507824	0.480007	0.346460	0.483968	0.149516	0.404071	0
4	0.188207	0.183858	0.516517	0.343393	0.381971	0.278575	0.383600	0.103216	0.253835	0
•••										
1060	0.046197	0.092577	0.365672	0.313684	0.127872	0.312096	0.423753	0.186230	0.488562	0
1061	0.053509	0.097062	0.357235	0.342243	0.157739	0.395191	0.468154	0.190968	0.535204	0
1062	0.035163	0.063556	0.311370	0.165795	0.071655	0.330863	0.384915	0.105509	0.374040	0

	DYRK1A_N	ITSN1_N	BDNF_N	NR1_N	NR2A_N	pAKT_N	pBRAF_N	pCAMKII_N	pCREB_N	I
1063	0.032018	0.071071	0.337173	0.224787	0.095856	0.306129	0.433086	0.121245	0.409605	0
1064	0.066342	0.091503	0.370133	0.313976	0.127028	0.394619	0.504969	0.166308	0.572903	0
1065 ı	rows × 81 co	lumns								
4										•

ML Alg witout FE

```
In [58]: # ML Alg witout FE

label_col='class'
df_cpy=df
res=ML_multiclass_clf(df_cpy,label_col)
```

	accuracy	precision	recall	f_score
XGBoost	96.25	96.25	96.25	0.957755
Random_Forest	100.00	100.00	100.00	1.000000
SVM	100.00	100.00	100.00	1.000000
LogisticRegression	100.00	100.00	100.00	1.000000

The results of application of four different ML algorithms on binary classification based problems show that the Logistic Regression, Random Forest and SVM are 100% accurate in terms of all three accuracy criteria. The XGBoost seems a bit worse than the other three.

ML Alg with Features Selection (10 Features)

```
## ML Alg with Features Selection (10 Features)
In [65]:
          # with Features Selection
          label col='class'
          Y= df[label_col].copy()
              #now delete the original
          X = df.drop(label col,axis=1)
          X, y=XYsplit(df, label_col)
          trainX, testX, trainY, testY = train_test_split(X, Y, test_size=0.3, random_state=42)
          df_cpy=df
          label_col='class'
          lda components=4
          pca components=10
          tnse components=2
          number_iter=300
          alpha=0.34
          num features=10
          learning rate=0.11
          tree=500
          LDA df, PCA df, TSNE df, LASSO df, RF df, XGB df, RFE df=FE MLalg multiclf(df cpy, labe
                                                                                 testY, lda_compon
```

Linear Discriminant Analysis Original number of features: 80 Reduced number of features: 4

ML Classification Algorithms Results with LDA FS

	accuracy	precision	recall	f_score
XGBoost	94.3750	94.3750	94.3750	0.947147
Random_Forest	95.9375	95.9375	95.9375	0.963728
SVM	96.5625	96.5625	96.5625	0.968279
LogisticRegression	96.2500	96.2500	96.2500	0.965575

PCA Analysis

Original number of features: 80 Reduced number of features: 10

ML Classification Algorithms Results with PCA FS

	accuracy	precision	recall	f_score
XGBoost	99.6875	99.6875	99.6875	0.996323
Random_Forest	100.0000	100.0000	100.0000	1.000000
SVM	100.0000	100.0000	100.0000	1.000000
LogisticRegression	100.0000	100.0000	100.0000	1.000000

tSNE Analysis

Original number of features: 80 Reduced number of features: 2

ML Classification Algorithms Results with tSNE FS

	accuracy	precision	recall	f_score
XGBoost	99.0625	99.0625	99.0625	0.989954
Random_Forest	100.0000	100.0000	100.0000	1.000000
SVM	100.0000	100.0000	100.0000	1.000000
LogisticRegression	100.0000	100.0000	100.0000	1.000000

Lasso Analysis

Selected Features

0	TRKA_	N
1	MILIMD	NI

¹ pNUMB_N

5 pS6_N

6 CaNA_N7 Genotype

8 Treatment

9 Behavior
dtype: object

ML Classification Algorithms Results with Lasso FS

	accuracy	precision	recall	f_score
XGBoost	99.375	99.375	99.375	0.993168
Random_Forest	100.000	100.000	100.000	1.000000

² pPKCG_N3 ARC_N

⁴ GluR3_N

	accuracy	precision	recall	f_score
SVM	100.000	100.000	100.000	1.000000
LogisticRegression	100.000	100.000	100.000	1.000000
Random Forest F Selected Featur Treatment Genotype SOD1_N Behavior pPKCG_N pERK_N	nes 10.848080 10.138145 4.985803 4.379229 3.336739 3.137252	S		
CaNA_N DYRK1A N	2.485933 2.324298			
Ubiquitin_N	2.204098			
ITSN1_N	2.175839			
dtype: float64		the Dogu	ملدئن مندآ	Dandan I

ML Classification Algorithms Results with Random Forest FS

	accuracy	precision	recall	f_score
XGBoost	99.6875	99.6875	99.6875	0.996657
Random_Forest	100.0000	100.0000	100.0000	1.000000
SVM	100.0000	100.0000	100.0000	1.000000
LogisticRegression	100.0000	100.0000	100.0000	1.000000

Random Forest FS Analysis

Selected Features
BCL2_N 6.802333
SYP_N 6.678327
CaNA_N 5.958408
pMTOR_N 5.213238
BRAF_N 5.147465
SHH_N 4.613681
pPKCG_N 4.305129
pPKCAB_N 4.104352
Genotype 4.089956
P38_N 3.583378

dtype: float32

 ML Classification Algorithms Results with Random Forest FS

	accuracy	precision	recall	f_score
XGBoost	92.8125	92.8125	92.8125	0.927607
Random_Forest	97.5000	97.5000	97.5000	0.974229
SVM	89.6875	89.6875	89.6875	0.898465
LogisticRegression	70.0000	70.0000	70.0000	0.687640

RFE FS Analysis
Selected Features
0 SOD1_N
1 pPKCG_N
2 S6_N
3 ARC_N
4 Ubiquitin_N
5 pS6_N
6 CaNA_N

Genotype

7

8 Treatment 9 Behavior dtype: object

ML Classification Algorithms Results with RFE FS

	accuracy	precision	recall	f_score
XGBoost	99.375	99.375	99.375	0.991859
Random_Forest	100.000	100.000	100.000	1.000000
SVM	100.000	100.000	100.000	1.000000
Logistic Regression	100.000	100.000	100.000	1.000000

Here I have used seven different feature selection and feature extraction methods to evaluate their performance in predicting the label of binary class based classification. All these methods aim to remove redundant and irrelevant features so that classification of new instances will be more accurate. The methods are Linear Discriminant Analysis (LDA), Principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), Lasso based L1 feature selection, Random Forest based Feature Selection (RF), XGBooset based Feature Selection and Recursive Feature Elimination (RFE). The selected features are used as features to predict the class label using four different Machine Learning algorithms, which are XGBoost, Random forest, SVM and Logistic Regression (LR).

The results show that with the application of reducing the features the performance falls a bit in comparison to the using original whole features set. However, there does not seem a significant reduction in the performance in terms of accuracy, precision, and recall. The comparison across various features extraction and selection methods indicates that PCA, Lasso, Random Forest, XGBoost and RFE have 100% accuracy, precision, and recall. The LDA and t-NSE seems a bit worse than the other five features' extractions methods.

The Logistic Regression, Random Forest and SVM are 100% accurate in terms of all three accuracy criterias. The XGBoost seems a bit worse than the other three.

ML Alg with Features Selection (15 Features)

```
In [75]:
          ## ML Alg with Features Selection (15 Features)
          # with Features Selection
          label col='class'
          Y= df[label col].copy()
          #now delete the original
          X = df.drop(label col,axis=1)
          X, y=XYsplit(df, label_col)
          trainX, testX, trainY, testY = train_test_split(X, Y, test_size=0.3, random_state=42)
          df cpy=df
          label_col='class'
          lda components=6
          pca_components=15
          tnse components=3
          number iter=300
          alpha=2.9
          num features=15
          learning_rate=0.2
```

tree=500

LDA_df, PCA_df, TSNE_df, LASSO_df, RF_df, XGB_df, RFE_df=FE_MLalg_multiclf(df_cpy, labe testY, lda_compon tnse_components, learning_rate, tre

Linear Discriminant Analysis Original number of features: 80 Reduced number of features: 6

ML Classification Algorithms Results with LDA FS

	accuracy	precision	recall	f_score
XGBoost	95.6250	95.6250	95.6250	0.955941
Random_Forest	99.6875	99.6875	99.6875	0.997275
SVM	98.4375	98.4375	98.4375	0.985125
LogisticRegression	99.6875	99.6875	99.6875	0.997275

PCA Analysis

Original number of features: 80 Reduced number of features: 15

ML Classification Algorithms Results with PCA FS

	accuracy	precision	recall	f_score
XGBoost	99.375	99.375	99.375	0.993053
Random_Forest	100.000	100.000	100.000	1.000000
SVM	100.000	100.000	100.000	1.000000
LogisticRegression	100.000	100.000	100.000	1.000000

tSNE Analysis

Original number of features: 80 Reduced number of features: 3

ML Classification Algorithms Results with tSNE FS

	accuracy	precision	recall	f_score
XGBoost	98.75	98.75	98.75	0.987383
Random_Forest	100.00	100.00	100.00	1.000000
SVM	100.00	100.00	100.00	1.000000
LogisticRegression	100.00	100.00	100.00	1.000000

Lasso Analysis

Selected Features

- 0 pJNK_N
- 1 pRSK_N
- 2 TRKA_N
- 3 MTOR_N4 pMTOR_N
- 5 pNUMB_N
- 6 pPKCG N
- 7 ARC_N
- 8 GluR3_N
- 9 pS6_N

```
10
      CaNA_N
     Genotype
11
12
     Treatment
   Behavior
13
dtype: object
```

ML Classification Algorithms Results with Lasso FS

ML CIASSITICACIO	II AIguri	ciilis kesu	TC2 MICH	Lasso rs
	accuracy	precision	recall	f_score
XGBoost	99.6875	99.6875	99.6875	0.996803
Random_Forest	100.0000	100.0000	100.0000	1.000000
SVM	100.0000	100.0000	100.0000	1.000000
Logistic Regression	100.0000	100.0000	100.0000	1.000000
Genotype 1 SOD1_N Behavior pPKCG_N pERK_N CaNA_N Ubiquitin_N DYRK1A_N pS6_N ARC_N APP_N pCAMKII_N	s 0.297912 0.150235 4.884909 4.166230 3.298503 3.256558 2.681118 2.394434 2.181614 2.071384 2.071313 1.992916 1.960053			
pP70S6_N Tau N	1.909159 1.847798			

dtype: float64

Tau_N

ML Classification Algorithms Results with Random Forest FS

	accuracy	precision	recall	f_score
XGBoost	99.0625	99.0625	99.0625	0.988911
Random_Forest	100.0000	100.0000	100.0000	1.000000
SVM	100.0000	100.0000	100.0000	1.000000
LogisticRegression	100.0000	100.0000	100.0000	1.000000

1.847798

Random Forest FS Analysis

Selected Features

BCL2_N	7.402934
SYP_N	5.787881
pMTOR_N	4.930232
CaNA_N	4.924162
AMPKA_N	4.638332
BRAF_N	4.386397
Genotype	4.286679
pAKT_N	4.221324
SHH_N	4.167904
pPKCG_N	3.801099
pPKCAB_N	3.720124
pP70S6_N	3.638589
P38_N	3.526210
Treatment	2.999167
Behavior	2.669520

dtype: float32

ML Classification Algorithms Results with Random Forest FS

ā	accuracy	precision	recall	f_score
XGBoost	98.125	98.125	98.125	0.979176
Random_Forest	100.000	100.000	100.000	1.000000
SVM	100.000	100.000	100.000	1.000000
LogisticRegression	100.000	100.000	100.000	1.000000
RFE FS Analysis Selected Features 0 pCAMKII_N 1 pPKCAB_N 2 SOD1_N 3 pNUMB_N 4 pP70S6_N 5 pPKCG_N 6 S6_N 7 ADARB1_N 8 ARC_N 9 Ubiquitin_N 10 pS6_N 11 CaNA_N 12 Genotype 13 Treatment 14 Behavior				
<pre>dtype: object ML Classification</pre>	Algori	thms Resu	lts with	RFE FS

 XGBoost
 97.8125
 97.8125
 97.8125
 97.8125
 0.973755

 Random_Forest
 100.0000
 100.0000
 100.0000
 1.000000

 SVM
 100.0000
 100.0000
 100.0000
 1.000000

LogisticRegression 100.0000

methods.

Here we increase the number of extracted features from 10 to 15. The results show that with the application of reducing the features the performance falls a bit in comparison to the using original whole features set. However, there does not seem a significant reduction in the performance in terms of accuracy, precision, and recall. The comparison across various features extraction and selection methods indicates that PCA, Lasso, Random Forest, XGBoost and RFE have 100% accuracy, precision, and recall. The LDA and t-NSE seems a bit worse than the other five features' extractions

100.0000 100.0000 1.000000

The Logistic Regression, Random Forest and SVM are 100% accurate in terms of all three accuracy criterias. The XGBoost seems a bit worse than the other three.

ML Alg with Features Selection (5 Features)

```
In [80]: ## ML Alg with Features Selection (5 Features)
    # with Features Selection
    label_col='class'
    Y= df[label_col].copy()

    #now delete the original
    X = df.drop(label_col,axis=1)
```

```
X, y=XYsplit(df, label_col)
trainX, testX, trainY, testY = train_test_split(X, Y, test_size=0.3, random_state=42)
df_cpy=df
label_col='class'
lda_components=3
pca_components=5
tnse_components=2
number_iter=300
alpha=0.06
num_features=5
learning_rate=0.2
tree=500
```

LDA_df, PCA_df, TSNE_df, LASSO_df, RF_df, XGB_df, RFE_df=FE_MLalg_multiclf(df_cpy, labe testY, lda_compon tnse_components, learning_rate, tre

Linear Discriminant Analysis Original number of features: 80 Reduced number of features: 3

ML Classification Algorithms Results with LDA FS

	accuracy	precision	recall	f_score
XGBoost	90.3125	90.3125	90.3125	0.909834
Random_Forest	91.8750	91.8750	91.8750	0.924770
SVM	90.3125	90.3125	90.3125	0.909771
LogisticRegression	90.9375	90.9375	90.9375	0.915788

PCA Analysis

Original number of features: 80 Reduced number of features: 5

 ML Classification Algorithms Results with PCA FS

	accuracy	precision	recall	f_score
XGBoost	100.0	100.0	100.0	1.0
Random_Forest	100.0	100.0	100.0	1.0
SVM	100.0	100.0	100.0	1.0
LogisticRegression	100.0	100.0	100.0	1.0

tSNE Analysis

Original number of features: 80 Reduced number of features: 2

ML Classification Algorithms Results with tSNE FS

	accuracy	precision	recall	f_score
XGBoost	99.0625	99.0625	99.0625	0.990391
Random_Forest	100.0000	100.0000	100.0000	1.000000
SVM	100.0000	100.0000	100.0000	1.000000
LogisticRegression	100.0000	100.0000	100.0000	1.000000

Lasso Analysis

Selected Features

0 ARC_N

1 CaNA_N

2 Genotype

3 Treatment

4 Behavior

dtype: object

ML Classification Algorithms Results with Lasso FS

	accuracy	precision	recall	f_score
XGBoost	99.6875	99.6875	99.6875	0.997113
Random_Forest	100.0000	100.0000	100.0000	1.000000
SVM	100.0000	100.0000	100.0000	1.000000
LogisticRegression	100.0000	100.0000	100.0000	1.000000

Random Forest FS Analysis

Selected Features

Treatment 10.573620 Genotype 9.953548 SOD1_N 4.869929 Behavior 4.029964 pERK_N 3.466682

dtype: float64

ML Classification Algorithms Results with Random Forest FS

	accuracy	precision	recall	f_score
XGBoost	99.0625	99.0625	99.0625	0.991188
Random_Forest	100.0000	100.0000	100.0000	1.000000
SVM	100.0000	100.0000	100.0000	1.000000
LogisticRegression	100.0000	100.0000	100.0000	1.000000

Random Forest FS Analysis

Selected Features

BCL2_N 7.402934 SYP_N 5.787881 pMTOR_N 4.930232 CaNA_N 4.924162 AMPKA_N 4.638332

dtype: float32

ML Classification Algorithms Results with Random Forest FS

	accuracy	precision	recall	f_score
XGBoost	63.750	63.750	63.750	0.628457
Random_Forest	68.750	68.750	68.750	0.679964
SVM	55.625	55.625	55.625	0.534460
LogisticRegression	41.875	41.875	41.875	0.391129

RFE FS Analysis

Selected Features

0 pS6_N1 CaNA N

1 CaNA_N2 Genotype

3 Treatment

4 Behavior

dtype: object

ML Classification Algorithms Results with RFE FS

	accuracy	precision	recall	f_score
XGBoost	99.6875	99.6875	99.6875	0.997113
Random_Forest	100.0000	100.0000	100.0000	1.000000
SVM	100.0000	100.0000	100.0000	1.000000
LogisticRegression	100.0000	100.0000	100.0000	1.000000

Here we decrease the number of extracted features from 10 to 15. The results show that with the application of reducing the features the performance falls a bit in comparison to the using original whole features set. However, there does not seem a significant reduction in the performance in terms of accuracy, precision, and recall. The comparison across various features extraction and selection methods indicates that PCA, Lasso, Random Forest, XGBoost and RFE have 100% accuracy, precision, and recall. The LDA and t-NSE seems a bit worse than the other five features' extractions methods.

The Logistic Regression, Random Forest and SVM are 100% accurate in terms of all three accuracy criteria. The XGBoost seems a bit worse than the other three.

Summary of Classification based Problem

Seven different techniques to perform dimensionality reduction on high-dimensional data. All these methods aim to remove redundant and irrelevant features so that classification of new instances will be more accurate. The methods are Linear Discriminant Analysis (LDA), Principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), Lasso based L1 feature selection, Random Forest based Feature Selection (RF), XGBooset based Feature Selection and Recursive Feature Elimination (RFE). The selected features are used as features to predict the class label using four different Machine Learning algorithms, which are XGBoost, Random forest, SVM and Logistic Regression (LR).

The results show that with the application of reducing the features the performance falls a bit in comparison to the using original whole features set. However, there does not seem a significant reduction in the performance in terms of accuracy, precision, and recall. The fall in performance is less than 1% if we extract about 10 of the features and use them in the analysis.

The comparison across various features extraction and selection methods indicates that XGBoost and Random Forest features selections methods outperform the other five methods. The Lasso and recursive features elimination (RFE) methods seems the second best. However, the LDA and PCA based methods outperform the former seven methods if the features are highly correlated, whereas the former four methods outperform the LDA and PCA based methods if the degree of correlation is low among the features. The t-SNE seems the worst performing features extraction methods.

By increasing the feature number, the accuracy and precision improve, while the performance of ML algorithms fall by decreasing the number of features. Overall, it seems that if the features are highly correlated then there is no significant fall in the performance by decreasing the number of factors or

features. It is about 2 to 3%. However, if the degree of correlation is low then there is significant reduction in accuracy and precision scores in case of reduction in the number of features or factors. Comparison across Machine Learning algorithms show that the Random Forest and SVM are the best and come up with almost same amount of accuracy and precision.

Regression based Data Analysis

The train.csv dataset which contains 81 features extracted from 21263 superconductors along with the critical temperature is analyzed using two different types of ML algorithms, which are

- 1. Linear Regression Model
- 2. Voting Regression

with and without feature extraction/selections. Six different types of features extraction/selections are considered, which are

- 1. Principal component analysis (PCA)
- 2. t-distributed stochastic neighbor embedding (t-SNE)
- 3. Lasso based L1 feature selection -
- 4. Random Forest based Feature Selection (RF)
- 5. XGBooset based Feature Selection
- 6. Recursive Feature Elimination (RFE)

The dataset is

Dataset 5: Superconductivty Data Set (train)

The dependent variable (label) is "critical_temp".

Dataset 5: Superconductivty Data Set (train)

```
In [81]: FILE_NAME = "train.csv"
    LABEL_COL = "critical_temp"
    df = load_data(FILE_NAME)
    #df=pd.read_csv('C:\\Users\\waliullah\\Desktop\\MLii\\Assignment4\\pd_speech_features1.
    display(df.head())
    print(df.shape)
    print(df.dtypes)
```

	number_of_elements	mean_atomic_mass	wtd_mean_atomic_mass	gmean_atomic_mass	wtd_gmean_ato
0	4	88.944468	57.862692	66.361592	
1	5	92.729214	58.518416	73.132787	
2	4	88.944468	57.885242	66.361592	
3	4	88.944468	57.873967	66.361592	
4	4	88.944468	57.840143	66.361592	

5 rows × 82 columns

```
(21263, 82)
                                     int64
         number_of_elements
                                   float64
         mean atomic mass
                                   float64
         wtd_mean_atomic_mass
                                   float64
         gmean_atomic_mass
         wtd_gmean_atomic_mass
                                   float64
                                    . . .
         range Valence
                                     int64
                                   float64
         wtd range Valence
         std Valence
                                   float64
         wtd std Valence
                                   float64
         critical temp
                                   float64
         Length: 82, dtype: object
          #Data X Transformation
In [82]:
          label_col='critical_temp'
          df1=df
          df=MinMax Transformation(df1, label col)
```

ML Alg witout FE for Regression

```
In [83]: label_col='critical_temp'
    df_cpy=df
    res_clf=ML_reg(df_cpy,label_col)
```

	R-Squared	Adj-R Squared	MAE	MSE	RMSE	
Linear_Regression	0.728144	0.724647	13.424387	315.542302	17.763510	
Voting_Regression	0.885481	0.884008	8.432079	132.921198	11.529146	

The results of application of two different ML algorithms on regression based problems dataset show that the Voting Regression outperform the simple Linear Regression (MLR) model in terms of all accuracy features. The R-Squared as well as RMSE of Voting Regression is significantly lower than the Linear Regression based model.

ML Alg with Features Selection (10 Features)

```
label col='critical temp'
In [84]:
          Y= df[label col].copy()
              #now delete the original
          X = df.drop(label_col,axis=1)
          X, y=XYsplit(df, label col)
          trainX, testX, trainY, testY = train_test_split(X, Y, test_size=0.3, random_state=42)
          df cpy=df
          label col='critical temp'
          lda components=1
          pca_components=10
          tnse_components=3
          number iter=300
          alpha=0.1
          num features=10
          learning_rate=0.11
          tree=100
```

PCA_df, TSNE_df, RF_df, XGB_df, RFE_df=FE_MLalg_reg(df_cpy, label_col, X, Y, trainX, te testY, lda_compon tnse_components, learning_rate, tre

PCA Analysis

Original number of features: 81 Reduced number of features: 10

ML Regression Algorithms Results with PCA FS

	R-Squared	Adj-R Squared	MAE	MSE	RMSE
Linear_Regression	0.562418	0.561731	17.864704	507.899573	22.536627
Voting_Regression	0.861160	0.860942	9.129162	161.150507	12.694507

tSNE Analysis

Original number of features: 81 Reduced number of features: 3

ML Regression Algorithms Results with tSNE FS

	R-Squared	Adj-R Squared	MAE	MSE	RMSE
Linear_Regression	0.183261	0.182876	25.428252	947.985724	30.789377
Voting_Regression	0.820394	0.820310	11.311081	208.467788	14.438414
Random Forest FS Selected Feature range_ThermalCon wtd_gmean_Thermas std_atomic_mass wtd_gmean_Valence gmean_ElectronAnder wtd_entropy_Then wtd_std_Electron mean_Density wtd_mean_Thermal wtd_std_Valence dtype: float64	es inductivity alConductiv ce ffinity rmalConduct nAffinity	vity 12.3 2.9 2.1 1.0 2.ivity 1.0 1.0 1.0 1.0 1.0 1.0	17313 .75299 .78458 .10215 .95040 .85876 .72624 .35698 .04299 .69976		

ML Regression Algorithms Results with Random Forest FS

	R-Squared	Adj-R Squared	MAE	MSE	RMSE
Linear_Regression	0.632902	0.632326	16.143617	426.089041	20.641924
Voting_Regression	0.883109	0.882925	7.901371	135.674834	11.647954
Random Forest FS Selected Feature range_ThermalCor wtd_gmean_Therma range_atomic_rac std_atomic_mass gmean_Electronal wtd_gmean_Valence wtd_std_Electronal std_Density entropy_Thermal wtd_mean_Thermal dtype: float32 ML Regression Al	es inductivity alConductiv dius ffinity ce nAffinity Conductivit	2.499 1.860 1.329 1.308 1.205 1.095 2y 0.850 0.718	132 496 497 480 479 467 559 869 418		
	D. Carraga	Ad: D.Comerad	8445	MCE	DIACE

	R-Squared	Adj-R Squared	MAE	MSE	RMSE
Linear Regression	0.609084	0.608470	16.448230	453.734879	21.301053

	R-Squared	Adj-R Squared	MAE	MSE	RMSE
Voting_Regression	0.883078	0.882894	7.994346	135.711307	11.649520
<pre>1 wtd_mear 2 gmear 3 wtd_gmear 4 5 6 wtd_mean_a 7 wtd_gmean_a 8 range_Elec</pre>	n_atomic_man_atomic_man_atomic_man_atomic_mange_fatomic_radiatomic_radiatronAffini	ass ass fie fie lus lus lty	FE FS		
	R-Squared	Adj-R Squared	MAE	MSE	RMSE
Linear_Regression	0.575665	0.574999	17.043138	492.523626	22.192873
Voting_Regression	0.859899	0.859679	9.142508	162.614691	12.752047

Here six different techniques to perform dimensionality reduction on high-dimensional data are used. All these methods aim to remove redundant and irrelevant features so that prediction of new instances will be more accurate. The methods are as discussed above. The selected features are then used as features to predict the dependent variable using two different Machine Learning algorithms, which are Simple Linear Regression and Voting Regression.

The results show that with the application of reducing the features the performance falls a bit in comparison to the using original whole features set. However, there does not seem a significant reduction in the performance in terms of R-Squared, MAE and RMSE. The fall in performance is less than 1% if we extract about 10 of the features and use them in the analysis. The comparison across various features extraction and selection methods indicates that Random Forest and XGBoost based features selection methods outperform the rest of four features extractions/selection methods. PCA is on the second number in terms of performance. It shows that the features variation is almost captured by the 10 PCA based factors. More than 95% of the variation is captured by these factors. The Recursive Features Elimination (RFE) method is better than t-SNE and worse than the rest.

The t-SNE based feature selection methods seems the worst among the seven methods. Comparison across Machine Learning algorithms show that the Voting Regression performance is significantly higher than the Simple Linear Regression in terms of all accuracy-based measures.

ML Alg with Features Selection (15 Features)

```
In [85]: label_col='critical_temp'
Y= df[label_col].copy()

#now delete the original
X = df.drop(label_col,axis=1)
X, y=XYsplit(df, label_col)
trainX, testX, trainY, testY = train_test_split(X, Y, test_size=0.3, random_state=42)
df_cpy=df
```

```
label_col='critical_temp'
lda_components=1
pca_components=15
tnse_components=3
number_iter=300
alpha=0.1
num_features=15
learning_rate=0.11
tree=100
```

PCA_df, TSNE_df, RF_df, XGB_df, RFE_df=FE_MLalg_reg(df_cpy, label_col, X, Y, trainX, te testY, lda_compon tnse_components, learning_rate, tre

PCA Analysis

Original number of features: 81 Reduced number of features: 15

ML Regression Algorithms Results with PCA FS

	R-Squared	Adj-R Squared	MAE	MSE	RMSE
Linear_Regression	0.592454	0.591493	17.071546	473.037201	21.749418
Voting_Regression	0.865492	0.865174	8.948377	156.123414	12.494936

tSNE Analysis

Original number of features: 81 Reduced number of features: 3

ML Regression Algorithms Results with tSNE FS

	R-Squared	Adj-R S	quared	М	AE	MS	SE	RMSE
Linear_Regression	0.139690	0.	139285	26.805	37 9	998.55844	47	31.599975
Voting_Regression	0.821379	0.	821295	11.373	78 2	207.32456	52	14.398769
Random Forest FS Selected Feature range_ThermalCor wtd_gmean_Therma std_atomic_mass wtd_gmean_Valence wtd_entropy_Ther gmean_ElectronAd wtd_mean_Valence wtd_mean_Thermal wtd_std_Electror mean_Density wtd_range_Valence wtd_std_Valence wtd_std_Thermal(wtd_range_atomic wtd_range_atomic	es inductivity alConductiv ee mmalConduct ffinity cl Conductivi nAffinity ee	vity tivity ity	12. 2. 2. 1. 1. 1. 1. 0.	086594 335965 798113 112463 247609 162652 161541 144356 036688 024929 925496 831315 789226 728244				
<pre>wtd_std_atomic_n dtype: float64 ML Regression Al</pre>		Results		725744 Random	Fore	25+ FS		

	R-Squared	Adj-R Squared	MAE	MSE	RMSE
Linear_Regression	0.642355	0.641512	15.912456	415.116588	20.374410

Voting_Regression 0.879530 0.879246 8.437743 139.828539 11.824912

Random Forest FS Analysis

```
Selected Features
range ThermalConductivity
                                   65.199738
wtd gmean ThermalConductivity
                                    9.434132
range atomic radius
                                     2.499496
std_atomic_mass
                                    1.860079
gmean ElectronAffinity
                                    1.329480
wtd gmean Valence
                                    1.308799
wtd std ElectronAffinity
                                    1.205467
std_Density
                                    1.095559
entropy_ThermalConductivity
                                    0.850869
wtd_mean_ThermalConductivity
                                    0.718418
gmean Density
                                    0.658043
mean_Density
                                    0.605342
wtd_entropy_ThermalConductivity
                                    0.593412
wtd range Valence
                                    0.484002
wtd std Valence
                                    0.483726
dtype: float32
```

ML Regression Algorithms Results with XGB FS

	R-Squared	Adj-R Squared	MAE	MSE	RMSE
Linear_Regression	0.641539	0.640694	15.846617	416.063579	20.397637
Voting_Regression	0.883834	0.883560	8.135824	134.833584	11.611786
2	mean_atomi _mean_atomi gmean_atomi gmean_atomi gmean_atomic ean_atomic ean_atomic ElectronAf ElectronAf ElectronAf	ic_mass ic_mas	FF FS		
0					

	R-Squared	Adj-R Squared	MAE	MSE	RMSE
Linear_Regression	0.619751	0.618855	16.181259	441.353160	21.008407
Voting_Regression	0.859787	0.859456	9.645784	162.744755	12.757145

Here we increase the number of extracted features from 10 to 15. The results show that there is no significant improvement in the performance. The results seem almost indicial to the one obtained in case of using the 10 features. The performance of Random Forest and XGBoost based methods is best, followed by PCA. The RFE have almost same performance. The t-SNE seems to be worst. Across the ML algorithms the Voting Regression outperform the others in terms of R-Squared and RMSE.

ML Alg with Features Selection (5 Features)

```
label_col='critical_temp'
In [86]:
          Y= df[label_col].copy()
```

```
#now delete the original
X = df.drop(label_col,axis=1)
X, y=XYsplit(df, label_col)
trainX, testX, trainY, testY = train_test_split(X, Y, test_size=0.3, random_state=42)
df cpy=df
label col='critical temp'
lda components=1
pca_components=5
tnse_components=2
number iter=300
alpha=0.081
num features=5
learning_rate=0.11
tree=100
PCA_df, TSNE_df, RF_df, XGB_df, RFE_df=FE_MLalg_reg(df_cpy, label_col, X, Y, trainX, te
                                                                       testY, lda_compon
                                                                       tnse_components,
                                                                       learning rate, tre
```

PCA Analysis

Original number of features: 81 Reduced number of features: 5

ML Regression Algorithms Results with PCA FS

	R-Squared	Adj-R Squared	MAE	MSE	RMSE
Linear_Regression	0.539144	0.538782	18.051610	534.913502	23.128197
Voting_Regression	0.853307	0.853192	9.175283	170.266058	13.048604

tSNE Analysis

Original number of features: 81 Reduced number of features: 2

ML Regression Algorithms Results with tSNE FS

	R-Squared	Adj-R Squared	MAE	MSE	RMSE
Linear_Regression	0.213889	0.213642	24.342085	912.435650	30.206550
Voting_Regression	0.825559	0.825504	10.329002	202.473082	14.229304
Random Forest FS Selected Feature range_ThermalCom wtd_gmean_Therma std_atomic_mass wtd_gmean_Valend wtd_entropy_Them dtype: float64	vity 12.4 2.7 2.2	23765 27331 03324 23437 64621			
MI D					

ML Regression Algorithms Results with Random Forest FS

	R-Squared	Adj-R Squared	MAE	MSE	RMSE
Linear_Regression	0.506603	0.506216	19.040107	572.684102	23.930819
Voting_Regression	0.869080	0.868977	8.746272	151.958721	12.327154
Random Forest FS Selected Feature range_ThermalCor wtd_gmean_Therma	es nductivity	65.199 rity 9.434			

range_atomic_radius 2.499496
std_atomic_mass 1.860079
gmean_ElectronAffinity 1.329480

dtype: float32

ML Regression Algorithms Results with XGB FS

	R-Squared	Adj-R Squared	MAE	MSE	RMSE
Linear_Regression	0.548013	0.547658	18.293333	524.619482	22.904573
Voting_Regression	0.858007	0.857896	8.782716	164.810201	12.837843
1 gmear 2 wtd_gmear	n_atomic_man_atomic_man_atomic_manatomic_radiatomic_radiatomic_radi	ass ass lus	FF FS		

	R-Squared	Adj-R Squared	MAE	MSE	RMSE
Linear_Regression	0.436126	0.435684	19.451419	654.486144	25.582927
Voting_Regression	0.793599	0.793437	10.964460	239.568869	15.478012

Here we decrease the number of extracted features from 10 to 5. The results show that there is no significant loss in the performance. The results seem almost indicial to the one obtained in case of using the 10 features. There seems to be about 4% loss in terms of Adjusted R-Squared by reducing the number of extracted features. The performance of Random Forest and XGBoost is best, followed by PCA.

Summary of Regression based Problem Analysis

Six different techniques to perform dimensionality reduction on high-dimensional data are used. The methods are as discussed above. The selected features are then used as features to predict the dependent variable using two different Machine Learning algorithms, which are Simple Linear Regression and Voting Regression.

The results show that with the application of reducing the features the performance falls a bit in comparison to the using original whole features set. However, there does not seem a significant reduction in the performance in terms of R-Squared, MAE and RMSE. The fall in performance is less than 1% if we extract about 10 of the features and use them in the analysis. The comparison across various features extraction and selection methods indicates that Random Forest and XGBoost based features selection methods outperform the rest of four features extractions/selection methods. PCA is on the second number in terms of performance. It shows that the features variation is almost captured by the 10 PCA based factors. More than 95% of the variation is captured by these factors. The Recursive Features Elimination (RFE) method is better than t-SNE and worse than the rest.

The t-SNE based feature selection methods seems the worst among the seven methods.

Comparison across Machine Learning algorithms show that the Voting Regression performance is significantly higher than the Simple Linear Regression in terms of all accuracy-based measures.

Overall Summary

Seven different techniques to perform dimensionality reduction on high-dimensional data. Many different feature selection and feature extraction methods have been used. All these methods aim to remove redundant and irrelevant features so that classification of new instances will be more accurate. The methods are

- 1. Linear Discriminant Analysis (LDA)
- 2. Principal component analysis (PCA)
- 3. t-distributed stochastic neighbor embedding (t-SNE)
- 4. Lasso based L1 feature selection -
- 5. Random Forest based Feature Selection (RF)
- 6. XGBooset based Feature Selection
- 7. Recursive Feature Elimination (RFE)

The selected features are used as features to predict the class label using four different Machine Learning algorithms, which are

- 1. XGBoost,
- 2. Random forest
- 3. SVM
- 4. Logistic Regression (LR)

while used in regression based scenario with

- 1. Simple Linear Regression
- 2. Voting Regression

The results show that with the application of reducing the features the performance falls a bit in comparison to the using original whole features set. However, there does not seem a significant reduction in the performance in terms of accuracy, precision, and recall. The fall in performance is less than 1% if we extract about 10 of the features and use them in the analysis.

How does the classification performance compare across the 7 DR/FS methods?

The comparison across various features extraction and selection methods indicates that XGBoost and Random Forest features selections methods outperform the other five methods. The Lasso and recursive features elimination (RFE) methods seems the second best. However, the LDA and PCA based methods outperform the former seven methods if the features are highly correlated, whereas the former four methods outperform the LDA and PCA based methods if the degree of correlation is low among the features. The t-SNE seems the worst performing features extraction methods.

Comparison across Machine Learning algorithms show that the Random Forest and SVM are the best and come up with almost same amount of accuracy and precision.

How does the regression performance compare across the 7 DR/FS methods?

The results show that with the application of reducing the features the performance falls a bit in comparison to the using original whole features set. However, there does not seem a significant

reduction in the performance in terms of R-Squared, MAE and RMSE. The fall in performance is less than 1% if we extract about 10 of the features and use them in the analysis. The comparison across various features extraction and selection methods indicates that Random Forest and XGBoost based features selection methods outperform the rest of four features extractions/selection methods. PCA is on the second number in terms of performance. It shows that the features variation is almost captured by the 10 PCA based factors. More than 95% of the variation is captured by these factors. The Recursive Features Elimination (RFE) method is better than t-SNE and worse than the rest.

Comparison across Machine Learning algorithms show that the Voting Regression performance is significantly higher than the Simple Linear Regression in terms of all accuracy-based measures.

What is the effect of increasing or decreasing the total number of your desired features on the classification and regression performance?

By increasing the feature number, the accuracy and precision improve, while the performance of ML algorithms fall by decreasing the number of features. Overall, it seems that if the features are highly correlated then there is no significant fall in the performance by decreasing the number of factors or features. It is about 2 to 3%. However, if the degree of correlation is low then there is significant reduction in accuracy and precision scores in case of reduction in the number of features or factors.

Т		,	
⊥n		1:	
	-	٦.	