DATA ANALYSIS AND VALIDATION ON ONCOKB, GATEWAYSEQ, AND MYELOSEQ-HD Justin Caringal & Ajay Khanna, Dr. Eric Duncavage Lab Washington University of Saint Louis Department of Pathology & Immunology

ANALYSIS OF ONCOKB API CALLS IN GATEWAYSEQ

STARTING POINT AND GOALS

- GatewaySeq: A tumor-only, high coverage targeted next generation sequencing assay for the identification of gene mutations, copy number alterations, microsatellite instability, tumor mutational burden, and gene fusions
- Evaluate three different methods for looking up variants in OncoKB from MSKCC via web API for interpretation provided to physicians
 - byGenomicChange, byProteinChange, byHGVSg
 7,140453136,140453136,A,T
 p.V600E
 7:g.140453136A>T

BRAF →

iti.edu/items/gatewayseq-ngs-panei-with-interpretation/

TABLE ANNOTATIONS (142 SAMPLES)

Comparisons	Differences
Genomic vs. Protein	+60
Genomic vs. HGVSg	-2
Protein vs. HGVSg	-60

	Successful Hits	Failed Hits
Genomic	538	1214
Protein	484	1268
HGVSg	540	1212
Total Searches	1752	

DISCREPANCIES BETWEEN GATEWAYSEQ AND ONCOKB

- AKT1NTRK3
- ATM
 PAX8
- B2M PTPRD
- CD79B RAD51B
- CHEK1 RSP03
- DICER1 SGK1
- FGFR1 ◆ SMARCA4
- HRASSMARCB1
- ITPKB■ TCF3
- MYD88 ◆ TFEB
- NF1TNFAIP3
- NFKBIE

Gene/Transcript	1752
Correct ID	1489
Incorrect ID	263
Discrepancy	
Frequency	0.15

- OncoKB and
 GatewaySeq differed in
 choice of gene transcript
- GatewaySeq uses the Ensembl Canonical transcript
- AA coordinates may differ, could affect lookups

GATEWAYSEQ CONCLUSION

- Overall, small differences between API calls
- byProteinChange lagged behind both byGenomicChange and byHGVSg
- In cases of successful hit discrepancies
 - byProteinChange failure: No p.syntax available (e.g. splice variant)
 - byGenomicChange failure: Complex variants may not be found
- HGVSg is marginally better than Genomic
 - Example: ARID1A, ENST00000324856 (PASS) TAG→AA, complex variant
- Future Directions: Might be better to use byHGVSg in the pipeline

COVERAGE COMPARISONS IN MYELOSEQ-HD

MYELOSEQ-HD

- Targeted sequencing assay for 49 genes and gene hotspots that are recurrently mutated in myeloid neoplasms, such as MDS and AML
- Uses a high coverage UMIs-based error corrected sequencing approach to achieve >95% sensitivity for previously identified mutations with VAFs ≥0.25%

https://pathologyservices.wustl.edu/items/myeloseq/

READ COVERAGE

- New MyeloSeq-HD feature:
 - For previously identified variants, limit of detection (LOD) depends on sampling error
 - Sampling error depends on coverage
- Paired-End Sequencing reads can overlap with small enough fragment sizes
 - What is the coverage of loci in overlaps, 1 (collapsed)

read 1 fragment

x: locus

read2

GENERAL PIPELINE

- MyeloSeq-HD coverage:
 - Dragen aligns FASTQ files, paired-end sequencing (150 base pairs), reports region coverage → BED
 - \circ Call specific variants (Dragen, Pindel, combination) \rightarrow VCF/JSON
 - Pindel & Dragen-Pindel uses custom Python script
- Goal: Compare output VCF and BED coverage to measure discrepancies

COMPARISONS (TIER 1-3 VARIANTS)

COMPARISONS (TIER 1-3 VARIANTS)

	dragen	pindel	dragen-pindel
Total extractions	67	2	29
Average Relative Difference	-0.03362	0.47623	0.599
Average Difference in Coverage	-85.46269	249.5	292.06897
Absolute differences greater than 50	5 (7.46%)	1 (50%)*	16 (55.17%)

^{*}sample too small to make any meaningful conclusions

MYELOSEQ-HD CONCLUSION

- Dragen is the preferred method
 - <8% over 50 (| JSON BED |)</p>
- Data on Pindel is too small to draw meaningful conclusions
 - Only two Pindel TIER 1-3
 variants in Batch 247
- Dragen-Pindel more prone to wild swings
- Future Directions: Integrating more
 Dragen, more data on Pindel

DRAGEN (67 VARIANTS)

• Coverage: order of thousands

2496 2496

486

-10

-11 -20

-78 -1664

[-1778]

-3865

0 (57)

- Most (57/67) were near-identical (-9 to 0)
- Examined NRAS variant alignments

```
CHROM POS REF ALT GENE JSON BED JSON-BEI chr1 114716127 C T NRAS 5664 7442 -1778
```

- With Samtools mpileup (-Q10 -q20), able to reproduce JSON (variant caller) coverage of 5664
- May want to generate own coverage, or look at options for Dragen BED (region) coverage

4629 2683 1734 1683 1624 650 615 578 473 445 432 286 174 98 11 -33 -3056

-4187

DRAGEN-PINDEL (29 VARIANTS)

- Many more large discrepancies
 - Tends to be higher in JSON (variant caller)
 - Possibly due to filtering script
- Did not have time to investigate further
 - We are thinking about removing filtering script

5 (11) Pindel-only contains 2 cases

THANK YOU!

Special thanks to the Spencer Lab!

Questions?

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**

slidesgo

GOALS

- Implement similar structures using OncoKB API calls to byProteinChange and byHGVSg
- Explore JSON-to-table generation and annotation
- Compare API calls
 - Elapsed time
 - Successful hits

EXAMPLE:

TWJV-G	TEMAY-SEQ = S16	5/47/4-ILIB2 REPO	BYHGVSON
Total PASS	7	7	7
Skipped PASS	0	0	0
Annotated PASS	2	2	2
Total Filtered	26	26	26
Skipped Filtered	0	0	0
Annotated Filtered	3	3	3
Total Annotated	5	5	5
Elapsed (secs)	37.475	38.758	34.927

Implemented Elapsed time feature to be cross-compatible between machines

JSON-TO-TABLE METHOD

- JSON \rightarrow annotated JSON comparison inefficient
 - Unique variant duplicates increases query time
 - Queries for each specific tumor type
- JSON → table → annotated table more efficient
 - Removes duplicates
 - General query for information
 - Easier to analyze

ELAPSED TIME

	byGenomicChange	byProteinChange	byHGVSg
Total (secs)	390.918	299.029	318.2
Mean (secs)	0.223	0.171	0.182
Variance (secs²)	0.04379	0.03104	0.02863
Standard Deviation (secs)	0.209	0.176	0.169
Approx. Total Elapsed Time (secs)			1008.147
Total Elapsed, Standard Formatting		16 min, 48.147 secs	

Remove: slide 9 PASS VS. FILTERED VARIANTS

		PASS	Filtered	PASS (%)	Filtered (%)
Geno	mic	356	182	33.62	26.26
Protei	in	325	159	30.69	22.94
HGVS	Sg	358	182	33.81	26.26
Total Searc	hes	1059	693		

