October Circuits '18

Oct 26, 2018, 09:00 PM IST - Nov 04, 2018, 10:00 PM IST

INSTRUCTIONS PROBLEMS SUBMISSIONS LEADERBOARD ANALYTICS

20:06:42

← Problems / Divide the tree Divide the tree Max. Marks: 100 This is an approximate problem.

Let's define tree T_{K} in the following way:

1. T_1 is a tree with just one vertrex.

2. If K>1 then let D be the biggest integer such that D|K and $1 \leq D < K$. The tree T_K will be the union of T_{K-1} with vertex $\{K\}$ and edge (D,K).

The image below represents the tree T_8 .

Two graphs $G_1=(\{A_1,A_2,\ldots,A_M\},E_1)$ & $G_2=(\{B_1,B_2,\ldots,B_M\},E_2)$ are isomorphic if there exists a permutation P of length M such that $\forall (i,j), (A_i,A_j) \in E_1 \iff (B_{P_i},B_{P_j}) \in E_2$.

Given a tree F with N vertices. Let E be the set of edges. You need to delete some edges from the tree, such for every disjoint tree U in the remaining forest there exists an integer i such that U is isomorphic to T_i .

Input

The first line contains two integers - $N,\,W.$

The following N-1 lines contain two integers - U,V, meaning there is edge (U,V) in tree F.

Scoring

Suppose the sizes of the trees in the remaining forest are S_1, S_2, \ldots, S_L . Let $R = \frac{\sum_{i=1}^L S_i^4}{W}$, then your score will be equal to $10000^{\min(1.25,R)} + max(0,R-1.25) \cdot 10$. You want to maximize this score.

Output

The first line contains one integer - L.

The $(i+1)^{th}$ line has the following format - $S_i,P_1,P_2,\ldots,P_{S_i}$. P is a set of vertices, representing a tree in the remaining forest. The condition $\forall (x,y), (x,y) \in T_{S_i} \iff (P_x,P_y) \in E$ must be satisfied.

We must have that $\sum_{i=1}^L S_i = N$. Every vertex must appear exactly once.

Test Generation

For the first 10 tests. At first, an array \emph{V} of length \emph{K} is generated uniformly under the conditions attached below. Then, we generate a forest containing trees $T_{V_1},T_{V_2},\ldots,T_{V_K}$ with indices from 1 to N. After this, random edges are added in order to transform the forest into tree F. W will be assigned value $\sum_{i=1}^K V_i^3$.

The rest of the tests have random trees. W will be assigned value 21N.

Test	N	$V_i \le$	$V_i \ge$	Special Conditions
1	100	4	1	No
2	100000	4	1	No
3	100000	10	1	No
4	100000	20	10	No
5	100000	10000	10	There exists only one i with $V_i=10000$, for the rest of $j\neq i$ $V_j\leq 20$ is satisfied
6	100000	10000	1	There evicte only

Ŭ	100000	10000	•	one i with $V_i = 10000$, for the rest of $j \neq i$ $V_j \leq 5$ is satisfied
7	1000	100	10	There exists only one i with $V_i = 100$, for the rest of $j \neq i$ $V_j \leq 20$ is satisfied
8	1000	100	1	There exists only one i with $V_i = 100$, for the rest of $j \neq i$ $V_j \leq 5$ is satisfied
9	100000	1000	1	No
10	100000	1000	100	No
11	10	-	-	No
12	100	-	-	No
13	1000	-	-	No
14	10000	-	-	No
15	100000	-	-	No

Note that the tests are ordered in the same way as presented in the table above.

Test data will be regenerated with different seeds after the contest.

Explanation

Suppose that $K=2,V_1=7,V_2=4$, then $W=7^3+4^3=407$. We created trees T_7 with indices $\{1,5,6,7,10,11\}$ and T_4 with indices $\{2,3,4,8\}$. Next, to connect both trees, we add edge (9,2).

Note that we can also delete edges $\{(3,2),(2,4),(4,8)\}$, but then we would obtain a smaller cost equal to $7^3+4\cdot 1^3=347$ compared to $7^3+4^3=407$.

5.0 sec(s) for each input file.			
256 MB			
1024 KB			
Marks are awarded if any testcase passes.			
Bash, C, C++, C++14, Clojure, C#, D, Erlang, F#, Go, Groovy, Haskell, Java, Java 8, JavaScript(Rhino), JavaScript(Node.js), Julia, Kotlin, Lisp, Lisp (SBCL), Lua, Objective-C, OCaml, Octave, Pascal, Perl, PHP, Python, Python 3, Racket, Ruby, Rust, Scala, Swift, Swift-4.1, Visual Basic			

CODE EDITOR

