UNIVERSITAT POLITÈCNICA DE VALÈNCIA
Tema 2. Probabilidad
Profesora: Mónica Clemente Císcar
Dep. Estadística e IO Aplicadas y Calidad, Universidad Politécnica de Valencia
Tema 2. Probabilidad 1

Índice

- 1. Introducción
- 2. Experimentos aleatorios y Sucesos
- 3. Concepto de probabilidad. Propiedades de la probabilidad
- 4. Probabilidad de espacios muestrales finitos simétricos
- 5. Probabilidad condicional
- 6. Sucesos independientes
- 7. Teorema de la partición
- 8. Teorema de Bayes

Tema 2. Probabilidad

1. Introducción

- En el tema anterior hemos aprendido a describir datos procedentes de observaciones de variables aleatorias de una o varias dimensiones.
- Más adelante, lo trasladaremos a la población.
- En esta unidad vamos a aprender los fundamentos matemáticos que nos permitirán dar una estructura formal a la Inferencia Estadística.

Tema 2. Probabilidad

1. Introducción

- 1.- En una ruleta salen 10 rojos seguidos, ¿a qué apostarías en la siguiente jugada?

 - a) Rojo b) Negro c) Indiferente
- 2.- Al lanzar un dado al aire, ¿qué probabilidad hay de que salga un 6?
 - a) Menor que 1/6
 - b) Igual a 1/6
 - c) Mayor que 1/6
- 3.- Al lanzar una chincheta al aire, ¿qué probabilidad hay de que caiga con la punta hacia arriba?
- 4.- ¿Cuál es la probabilidad de obtener una suma de al menos 6, al lanzar simultáneamente dos dados perfectamente simétricos?
- 5.- Un cirujano tiene un % de fracasos en sus operaciones del 99%, ¿cuál es la probabilidad de que el paciente n° 100 salga vivo tras la operación? (NOTA: los 99 primeros pacientes han muerto)

Tema 2. Probabilidad

1. Introducción

- Concretamente, nuestros objetivos en esta unidad son:
 - Conocer el concepto de suceso y saber operar con sucesos.
 - Conocer el concepto de probabilidad y sus propiedades.
 - Saber calcular probabilidades de sucesos compuestos.
 - Entender y saber manejar el concepto de independencia de sucesos.
 - Entender el concepto y saber calcular probabilidades condicionales.
 - Calcular probabilidades a partir de una partición del espacio muestral.
 - Entender y saber aplicar el Teorema de Bayes.
 - Saber aplicar el calculo de probabilidades a problemas sencillos.

Tema 2. Probabilidad

5

2. Experimentos Aleatorios y Sucesos

- Tipos de experimentos:
 - Aleatorios: Aquel que proporciona diferentes resultados aun cuando se repita siempre de la misma manera.
 - Determinista: Se obtiene el mismo resultado, siempre que se haga bajo las mismas condiciones.
- El objeto central del cálculo de probabilidades y de la estadística lo constituyen los experimentos aleatorios.

EJEMPLOS

Experimentos aleatorios: Resultado al lanzar una moneda al aire, tiempo de vida de un componente electrónico

Experimentos deterministas: Situación de un cuerpo que se mueve a velocidad constante en línea recta después de un tiempo t \Rightarrow e = e₀ + v*t

Tema 2. Probabilidad

2. Experimentos Aleatorios y Sucesos

- ESPACIO MUESTRAL (E): conjunto de posibles resultados del experimento aleatorio.
 - E discreto: Los resultados se pueden contabilizar (finito o infinito)
 - E continuo: El conjunto de resultados es incontable

EJEMPLOS

E discreto: ¿Cuál es el resultado de lanzar un dado? ¿Cuándo saldrá el nº 6?

E continuo: ¿Cuánto tiempo pasará antes que falle una bombilla?

SUCESO: Es cualquier subconjunto de E: P(E)={A,B,...}
 Conjunto de partes de E

Tema 2. Probabilidad

7

2. Experimentos Aleatorios y Sucesos

• Definimos en P(E) las operaciones:

w: el resultado de realizar el experimento

UNIÓN AUB= $\{w \in E / w \in A \circ w \in B\}$

INTERSECCIÓN A \cap B= {w \in E/ w \in A y w \in B}

COMPLEMENTACIÓN $\bar{A} = \{ w \in E / w \notin A \}$

El conjunto [P(E), U, ∩] tiene estructura de Algebra de Boole Se puede representar mediante diagramas de Venn

Tema 2. Probabilidad

2. Experimentos Aleatorios y Sucesos

Tipos de sucesos

- Sucesos elementales: Cada uno de los elementos que forman parte del espacio muestral.
- Sucesos compuestos: Cualquier subconjunto del espacio muestral constituido por más de un elemento.
- Suceso imposible (A=Ø): El que no tiene ningún elemento.
- Suceso seguro (A=E): El que está formado por todos los posibles resultados.
- Suceso contrario (Ā): El suceso contrario de A es el que sucede, cuando no sucede A.
- Sucesos mutuamente excluyentes: No se pueden dar a la vez

Tema 2. Probabilidad

11

3. Concepto de la probabilidad. Propiedades.

De manera intuitiva:

• Asignar a cada suceso un número: Grado de creencia de que ocurra el resultado

"La posibilidad de que llueva hoy es del 70%"

• Interpretación de Frecuencia Relativa: La proporción de veces que sale el resultado en n repeticiones del experimento aleatorio (a medida que n crece sin cota alguna)

"Existe una probabilidad del 0,3 de que salga una pieza mala en una muestra de producto terminado"

Tema 2. Probabilidad

3. Concepto de la probabilidad. Propiedades.

Axiomas de probabilidad:

• La probabilidad es un número que se asigna a cada miembro de una colección de sucesos de un experimento aleatorio y que verifica las siguientes propiedades (donde E es el espacio muestral y A es cualquier suceso del experimento aleatorio):

A1.-
$$P(A) \ge 0$$

A2.- $P(E) = 1$
A3.- Si A_1 y A_2 son sucesos mutuamente excluyentes:
 $p(A_1 \cup A_2) = p(A_1) + p(A_2)$

Tema 2. Probabilidad

13

3. Concepto de la probabilidad. Propiedades.

Propiedades de la probabilidad:

•De los anteriores axiomas se deduce que:

P1.-
$$P(\bar{A}) = 1 - P(A)$$

P2.- $0 \le P(A) \le 1$
P3.- $P(\emptyset) = 0$
P4.- $A_1 \subset A_2$, $P(A_1) \le P(A_2)$
P5.- $P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2)$
generalización al caso de 3 sucesos:
 $P(A_1 \cup A_2 \cup A_3) = P(A_1) + P(A_2) + P(A_3) - P(A_1 \cap A_2) - P(A_1 \cap A_3) - P(A_2 \cap A_3) + P(A_1 \cap A_2 \cap A_3)$

Tema 2. Probabilidad

4. Probabilidad de espacios muestrales finitos simétricos.

De manera intuitiva:

• Podemos asimilar, desde un punto de vista mecánico, la probabilidad como una masa unitaria que se distribuye en el espacio muestral

Espacios muestrales finitos simétricos:

Si tenemos un experimento con n resultados posibles:

 $E=\{ w_1, w_2, ..., w_n \}$

Y todos igualmente probables:

 $P(w_i) = 1/n i = 1,2,...n$

Todos los sucesos elementales tienen la misma probabilidad. Se cumple:

P(A) = casos favorables/ casos posibles

Tema 2. Probabilidad

15

5. Probabilidad condicional.

Definición: Dados dos sucesos A y B, la probabilidad de A condicionado B es la probabilidad de que se haya presentado el suceso A, sabiendo que se ha presentado el suceso B.

Es la proporción de individuos que verifican el suceso A en la subpoblación constituida por los individuos que verifican el suceso B.

 $P(A/B)=P(A\cap B)/P(B)$

Ejemplo: ¿Cuál es la probabilidad de llegar tarde a clase? ¿Cuál es esa probabilidad, si sabes que ha habido un accidente de tráfico en el camino?

Tema 2. Probabilidad

5. Probabilidad condicional.

Ley multiplicativa:

•De la anterior expresión se deduce que la probabilidad del producto de dos sucesos es:

 $P(A \cap B)=P(B)P(A/B)=P(A)P(B/A)$

Generalizando a n sucesos:

P(A1∩A2∩....An)=P(A1)P(A2/A1)P(A3/A1∩A2)...P(An/A1∩A2∩...An-1)

Tema 2. Probabilidad

17

5. Probabilidad condicional.

Ejemplo1. En una empresa se fabrican 1000 perchas al día en dos líneas de producción, utilizando como materiales aluminio o una aleación. En la línea 1 se fabrican al día 700 productos. De los 1000 productos fabricados entre las dos líneas, 600 han sido producidos en la línea 1 y con aluminio. Sabiendo que un producto se ha fabricado en la línea 1, ¿cuál es la probabilidad de que se haya utilizado aluminio?

Tema 2. Probabilidad

6. Sucesos Independientes.

Dos sucesos A y B se dice que son independientes si:

$$P(A \cap B) = P(A)P(B)$$

La ocurrencia o no ocurrencia de B no afecta a la probabilidad de A. Lo que es equivalente a afirmar que:

$$P(A/B) = P(A)$$

Generalizando a n sucesos. Si un conjunto de n sucesos $A_1,\,A_2,...\,A_N$ son independientes:

$$P(A_1 \cap A_2 \cap ...A_N) = P(A_1) P(A_2)... P(A_N)$$

Tema 2. Probabilidad

19

6. Sucesos Independientes.

Ejemplo2. Tenemos un sistema en serie con 4 componentes que trabajan de forma independiente. Un sistema en serie es aquel que falla, si falla alguno de sus componentes.

La probabilidad de que el componente A funcione correctamente es 0,9. ¿Cuál es la probabilidad de que el sistema funcione correctamente?

Tema 2. Probabilidad

7. Teorema de la partición.

Dado un espacio muestral E, se denomina partición a una serie de conjuntos que verifican:

1) Los sucesos son mutuamente excluyentes:

 $A_i \cap A_i = \emptyset$ Para todo $i \neq j$

2) La unión de esos sucesos forma el espacio muestral:

 $A_1UA_2U \dots UA_n = E$

La probabilidad de B, se calcula como:

 $P(B) = \sum P(A_i \cap B) = \sum P(A_i) P(B/A_i)$

Y se denomina Teorema de la Partición o Teorema de la Probabilidad Total

Tema 2. Probabilidad

21

7. Teorema de la partición.

Ejemplo 3. Una empresa de material informático, ha hecho un estudio con 400 usuarios de 3 marcas distintas de ordenador para comprobar la satisfacción con la compra del equipo. 180 usuarios han comprado la MARCA A, 120 la MARCA B y el resto la MARCA C. De los que utilizan la MARCA A, el 40 % está satisfecho con su equipo y de los que utilizan la MARCA B, el 30% no está satisfecho con el ordenador. Por otro lado, hay un 13% de usuarios que están contentos con su equipo y que han comprado la MARCA C.

¿Cuál es la probabilidad de que un usuario no esté contento con su equipo?

Tema 2. Probabilidad

8. Teorema de Bayes

Efectuada una partición sobre el espacio muestral E, deseamos calcular la probabilidad condicional de un suceso A_i, sabiendo que ha ocurrido el suceso B.

B: Efecto

A_i (i=1,2,...n): Distintas causas que producen el efecto

Ejemplo: Sabemos que proporción de piezas defectuosas producen diferentes máquinas. Pero, si nos encontramos ante una pieza defectuosa, ¿cuál es la probabilidad de que sea de la máquina 2?

T.Bayes (1702-1761)

Tema 2. Probabilidad

23

8. Teorema de Bayes

Teorema de Bayes: Dada una partición $A_1,...,A_n$ del espacio muestral y un suceso cualquiera B, la probabilidad $P(A_i/B)$ viene dada por la siguiente igualdad:

$$P(A_i/B) = \frac{P(A_i \cap B)}{P(B)} = \frac{P(A_i) \cdot P(B/A_i)}{P(B)}$$

Y si aplicamos el Teorema de la Partición:

$$P(A_{i}/B) = \frac{P(A_{i} \cap B)}{P(B)} = \frac{P(A_{i}) \cdot P(B/A_{i})}{\sum_{j=1}^{N} P(A_{j}) \cdot P(B/A_{j})}$$

Tema 2. Probabilidad

8. Teorema de Bayes

Ejemplo 4. Una empresa de circuitos impresos fabrica 3 modelos distintos. Concretamente, del modelo XZ1 ha fabricado 900 uds., del modelo XZ2 1575 uds. y del modelo XZ3 2025 uds. Se sabe que siendo del modelo XZ1 hay un 2 % de unidades defectuosas, del XZ2 un 3 % y del XZ3 un 4%. En una revisión de producto final, se extrae un circuito al azar y resulta ser defectuoso. ¿Cuál es la probabilidad de que el circuito sea del tipo XZ3?

Tema 2. Probabilidad

25

Enlaces

Web: http://www.youtube.com/watch?v=pqJBTWolkbA o problema de Monty Hall

Tema 2. Probabilidad

UNIVERSITAT POLITÈCNICA DE VALÈNCIA
Tema 2. Probabilidad
Profesora: Mónica Clemente Císcar
Dep. Estadística e IO Aplicadas y Calidad, Universidad Politécnica de Valencia
Tema 2. Probabilidad 27