Predictive Analytics for County Health Rankings

Group Project – Team 1 CIS 9660 - Section PMWA Phase #3 – 12/09/2019

A Robert Wood Johnson Foundation program

Shobhit Ratan (shobhit.ratan@baruchmail.cuny.edu)
Zafirah Baksh (zafirah.baksh@baruchmail.cuny.edu)
Christian Cuvilly (Christian.cuvilly@baruchmail.cuny.edu)
Paul Jozefec (paul.jozefec@baruchmail.cuny.edu)
Agata Szawkalo (agata.wegrzyn@baruchmail.cuny.edu)
Bhavi Thakker (bhavimahesh.thakker@baruchmail.cuny.edu)
Alison Wen (alison.wen@baruchmail.cuny.edu)

Table of Contents

Data Available Exploratory data analysis Frequency of the target variable Missing values, duplicates Relationship between variables Outliers Baseline Model Decision Tree – Split Validation – Default Parameters Logistic Regression – Split Validation – Default Parameters 17 Naïve Bayes – Split Validation – Default Parameters 18 Gradient Boosted Trees – Split Validation – Default Parameters Rule Induction – Split Validation – Default Parameters 18 Rule Induction – Split Validation – Default Parameters 19 Default Rule Model – Split Validation Default Rule Model – Split Validation Default Rule Model – Split Validation Default Rule Rodel – Split Validation Default Rule Rodel – Split Validation – Default Parameters 21 Logistic Regression – Cross Validation – Default Parameters 22 Logistic Regression – Cross Validation – Default Parameters 23 Deep Learning – Cross Validation – Default Parameters 24 Deep Learning – Cross Validation – Default Parameters 25 Gradient Boosted Trees – Cross Validation – Default Parameters 26 Gradient Boosted Trees – Cross Validation – Default Parameters 27 Default Decision Tree – Cross Validation – Default Parameters 28 Rule Induction – Cross Validation – Default Parameters 29 Default Decision Tree – Cross Validation – Default Parameters 20 Equation – Cross Validation – Default Parameters 21 Default Decision Tree – Cross Validation – Default Parameters 22 Default Decision Tree – Cross Validation – Default Parameters 25 Pefault Decision Tree – Cross Validation – Default Parameters 26 Principal Component Analysis (PCA) Clustering	Description of Case Study	4
Exploratory data analysis Frequency of the target variable Missing values, duplicates Relationship between variables Outliers Baseline Model Decision Tree — Split Validation — Default Parameters Logistic Regression — Split Validation — Default Parameters 17 Naïve Bayes — Split Validation — Default Parameters 17 Deep Learning — Split Validation — Default Parameters 18 Gradient Boosted Trees — Split Validation — Default Parameters 18 Rule Induction — Split Validation — Default Parameters 18 Default Decision Tree — Split Validation Default Parameters 18 Default Rule Model — Split Validation Default Rule Model — Split Validation Decision Tree — Cross Validation — Default Parameters 21 Logistic Regression — Cross Validation — Default Parameters 22 Logistic Regression — Cross Validation — Default Parameters 23 Deep Learning — Cross Validation — Default Parameters 24 Default Boosted Trees — Cross Validation — Default Parameters 25 Gradient Boosted Trees — Cross Validation — Default Parameters 26 Rule Induction — Cross Validation — Default Parameters 27 Default Decision Tree — Cross Validation — Default Parameters 28 Default Decision Tree — Cross Validation — Default Parameters 29 Default Decision Tree — Cross Validation 20 Most Important Features 21 Default Decision Tree — Cross Validation 24 Most Important Features 25 Feature Engineering 26 Principal Component Analysis (PCA) Clustering 27 Parameter Optimization 28 Decision Tree — Best Model Performance — Accuracy 29 Decision Tree — Best Model Performance — F-Measure 29 Logistic Regression — Best Model Performance — F-Measure 20 Logistic Regression — Best Model Performance — F-Measure 21 Decision Feres — Best Model Performance — F-Measure 23 Default Boose — Best Model Performance — F-Measure 29 Decision Feres — Best Model Performance — F-Measure 29 Decision Feres — Best Model Performance — F-Measure 20 Decision Feres — Best Model Performance — F-Measure 20 Decision Feres — Best Model Performance — F-Measure	Business Problem	4
Frequency of the target variable Missing values, duplicates Relationship between variables Outliers Baseline Model Decision Tree — Split Validation — Default Parameters Logistic Regression — Split Validation — Default Parameters 17 Naïve Bayes — Split Validation — Default Parameters 17 Deep Learning — Split Validation — Default Parameters 18 Gradient Boosted Trees — Split Validation — Default Parameters 18 Rule Induction — Split Validation — Default Parameters 18 Default Decision Tree — Split Validation Default Parameters 18 Default Rule Model — Split Validation Default Rule Model — Split Validation Decision Tree — Cross Validation — Default Parameters 21 Logistic Regression — Cross Validation — Default Parameters 22 Logistic Regression — Cross Validation — Default Parameters 23 Deep Learning — Cross Validation — Default Parameters 24 Default Boosted Trees — Cross Validation — Default Parameters 25 Gradient Boosted Trees — Cross Validation — Default Parameters 26 Rule Induction — Cross Validation — Default Parameters 27 Default Decision Tree — Cross Validation Most Important Features 28 Feature Engineering 29 Principal Component Analysis (PCA) Clustering Parameter Optimization Decision Tree — Best Model Performance — Accuracy Decision Tree — Best Model Performance — F-Measure Logistic Regression — Best Model Performance — F-Measure Logistic Regression — Best Model Performance — F-Measure Logistic Regression — Best Model Performance — F-Measure Naïve Bayes — Best Model Performance — F-Measure	Data Available	4
Missing values, duplicates Relationship between variables Outliers Baseline Model Decision Tree – Split Validation – Default Parameters Logistic Regression – Split Validation – Default Parameters 17 Logistic Regression – Split Validation – Default Parameters 17 Naïve Bayes – Split Validation – Default Parameters 18 Gradient Boosted Trees – Split Validation – Default Parameters Rule Induction – Split Validation – Default Parameters 18 Rule Induction – Split Validation – Default Parameters 18 Default Decision Tree – Split Validation Default Rule Model – Split Validation Decision Tree – Cross Validation – Default Parameters 19 Logistic Regression – Cross Validation – Default Parameters 10 Logistic Regression – Cross Validation – Default Parameters 11 Deep Learning – Cross Validation – Default Parameters 12 Deep Learning – Cross Validation – Default Parameters 12 Default Decision Tree – Cross Validation – Default Parameters 12 Rule Induction – Cross Validation – Default Parameters 12 Default Decision Tree – Cross Validation – Default Parameters 12 Rule Induction – Cross Validation – Default Parameters 12 Default Decision Tree – Cross Validation – Default Parameters 12 Default Decision Tree – Cross Validation – Default Parameters 12 Default Decision Tree – Cross Validation – Default Parameters 13 Decision Tree – Best Model Performance – Accuracy 14 Decision Tree – Best Model Performance – Accuracy 15 Decision Tree – Best Model Performance – Accuracy 16 Decision Tree – Best Model Performance – Accuracy 17 Decision Tree – Best Model Performance – Accuracy 18 Decision Tree – Best Model Performance – Accuracy 19 Decision Tree – Best Model Performance – Accuracy 19 Decision Tree – Best Model Performance – Accuracy 19 Decision Tree – Best Model Performance – Accuracy 19 Decision Tree – Best Model Performance – Accuracy 19 Decision Tree – Best Model Performance – Accuracy 19 Decision Tree – Best Model Performance – Accuracy 19 Decision Tree – Best Model Performance – Accuracy 19 Decision Tree – Best Model Performance – Ac	Exploratory data analysis	5
Relationship between variables Outliers Baseline Model Decision Tree – Split Validation – Default Parameters Logistic Regression – Split Validation – Default Parameters 17 Logistic Regression – Split Validation – Default Parameters 17 Naïve Bayes – Split Validation – Default Parameters 18 Gradient Boosted Trees – Split Validation – Default Parameters 18 Rule Induction – Split Validation – Default Parameters 18 Rule Induction – Split Validation – Default Parameters 18 Default Decision Tree – Split Validation Default Rule Model – Split Validation Default Rule Model – Split Validation Decision Tree – Cross Validation – Default Parameters 21 Logistic Regression – Cross Validation – Default Parameters 22 Naïve Bayes – Cross Validation – Default Parameters 23 Deep Learning – Cross Validation – Default Parameters 24 Gradient Boosted Trees – Cross Validation – Default Parameters 25 Gradient Boosted Trees – Cross Validation – Default Parameters 26 Gradient Boosted Tree – Cross Validation – Default Parameters 27 Default Decision Tree – Cross Validation – Default Parameters 28 Default Decision Tree – Cross Validation 29 Most Important Features Feature Engineering Principal Component Analysis (PCA) Clustering Parameter Optimization Decision Tree – Best Model Performance – Accuracy Decision Tree – Best Model Performance – F-Measure Logistic Regression – Best Model Performance – F-Measure Logistic Regression – Best Model Performance – F-Measure Naïve Bayes – Best Model Performance – F-Measure	Frequency of the target variable	5
Outliers Baseline Model Decision Tree – Split Validation – Default Parameters Logistic Regression – Split Validation – Default Parameters 17 Naïve Bayes – Split Validation – Default Parameters 17 Deep Learning – Split Validation – Default Parameters Gradient Boosted Trees – Split Validation – Default Parameters Rule Induction – Split Validation – Default Parameters Rule Induction – Split Validation – Default Parameters Befault Decision Tree – Split Validation Default Rule Model – Split Validation Decision Tree – Cross Validation – Default Parameters Logistic Regression – Cross Validation – Default Parameters 12 Logistic Regression – Cross Validation – Default Parameters 22 Deep Learning – Cross Validation – Default Parameters 23 Deep Learning – Cross Validation – Default Parameters 24 Deep Learning – Cross Validation – Default Parameters 25 Gradient Boosted Trees – Cross Validation – Default Parameters 26 Rule Induction – Cross Validation – Default Parameters 27 Default Decision Tree – Cross Validation Most Important Features Feature Engineering Principal Component Analysis (PCA) Clustering Parameter Optimization Decision Tree – Best Model Performance – Accuracy Decision Tree – Best Model Performance – F-Measure Logistic Regression – Best Model Performance – F-Measure 30 Naïve Bayes – Best Model Performance – F-Measure 31 Naïve Bayes – Best Model Performance – F-Measure	Missing values, duplicates	6
Baseline Model Decision Tree – Split Validation – Default Parameters Logistic Regression – Split Validation – Default Parameters 17 Naïve Bayes – Split Validation – Default Parameters 17 Deep Learning – Split Validation – Default Parameters Gradient Boosted Trees – Split Validation – Default Parameters Rule Induction – Split Validation – Default Parameters Rule Induction – Split Validation – Default Parameters Default Decision Tree – Split Validation Default Rule Model – Split Validation Decision Tree – Cross Validation – Default Parameters Logistic Regression – Cross Validation – Default Parameters 21 Logistic Regression – Cross Validation – Default Parameters 22 Deap Learning – Cross Validation – Default Parameters 23 Deap Learning – Cross Validation – Default Parameters 24 Decision Tree – Cross Validation – Default Parameters 25 Rule Induction – Cross Validation – Default Parameters 26 Rule Induction – Cross Validation – Default Parameters 27 Default Decision Tree – Cross Validation Most Important Features Feature Engineering Principal Component Analysis (PCA) Clustering Parameter Optimization Decision Tree – Best Model Performance – Accuracy Decision Tree – Best Model Performance – F-Measure Logistic Regression – Best Model Performance – F-Measure Logistic Regression – Best Model Performance – F-Measure 30 Naïve Bayes – Best Model Performance – F-Measure	Relationship between variables	7
Decision Tree – Split Validation – Default Parameters Logistic Regression – Split Validation – Default Parameters 17 Naïve Bayes – Split Validation – Default Parameters 18 Deep Learning – Split Validation – Default Parameters 18 Gradient Boosted Trees – Split Validation – Default Parameters Rule Induction – Split Validation – Default Parameters 18 Default Decision Tree – Split Validation Default Rule Model – Split Validation Decision Tree – Cross Validation – Default Parameters Logistic Regression – Cross Validation – Default Parameters 19 Logistic Regression – Cross Validation – Default Parameters 21 Naïve Bayes – Cross Validation – Default Parameters 22 Deep Learning – Cross Validation – Default Parameters 23 Gradient Boosted Trees – Cross Validation – Default Parameters 24 Gradient Boosted Trees – Cross Validation – Default Parameters 25 Rule Induction – Cross Validation – Default Parameters 26 Default Decision Tree – Cross Validation Most Important Features Feature Engineering Principal Component Analysis (PCA) Clustering Parameter Optimization Decision Tree – Best Model Performance – Accuracy Decision Tree – Best Model Performance – Accuracy Decision Tree – Best Model Performance – Accuracy 13 Logistic Regression – Best Model Performance – F-Measure 14 Naïve Bayes – Best Model Performance – Accuracy 15 Naïve Bayes – Best Model Performance – Accuracy 16 Naïve Bayes – Best Model Performance – Accuracy 17 Naïve Bayes – Best Model Performance – Accuracy 17 Naïve Bayes – Best Model Performance – Accuracy 18 Naïve Bayes – Best Model Performance – Accuracy 19 Naïve Bayes – Best Model Performance – Accuracy 19 Naïve Bayes – Best Model Performance – Accuracy 19 Naïve Bayes – Best Model Performance – Accuracy	Outliers	15
Logistic Regression – Split Validation – Default Parameters Naïve Bayes – Split Validation – Default Parameters Deep Learning – Split Validation – Default Parameters Gradient Boosted Trees – Split Validation – Default Parameters Rule Induction – Split Validation – Default Parameters 18 Rule Induction – Split Validation – Default Parameters Default Decision Tree – Split Validation Default Rule Model – Split Validation Decision Tree – Cross Validation – Default Parameters 21 Logistic Regression – Cross Validation – Default Parameters 22 Naïve Bayes – Cross Validation – Default Parameters 23 Deep Learning – Cross Validation – Default Parameters 24 Gradient Boosted Trees – Cross Validation – Default Parameters 25 Rule Induction – Cross Validation – Default Parameters 26 Default Decision Tree – Cross Validation 27 Most Important Features Feature Engineering Principal Component Analysis (PCA) Clustering Parameter Optimization Decision Tree – Best Model Performance – Accuracy Decision Tree – Best Model Performance – F-Measure Logistic Regression – Best Model Performance – Accuracy Logistic Regression – Best Model Performance – F-Measure 33 Naïve Bayes – Best Model Performance – Accuracy	Baseline Model	15
Naïve Bayes – Split Validation – Default Parameters Deep Learning – Split Validation – Default Parameters Gradient Boosted Trees – Split Validation – Default Parameters Rule Induction – Split Validation – Default Parameters Default Decision Tree – Split Validation Default Rule Model – Split Validation Decision Tree – Cross Validation – Default Parameters Logistic Regression – Cross Validation – Default Parameters Logistic Regression – Cross Validation – Default Parameters Naïve Bayes – Cross Validation – Default Parameters Deep Learning – Cross Validation – Default Parameters Gradient Boosted Trees – Cross Validation – Default Parameters Rule Induction – Cross Validation – Default Parameters 22 Poefault Decision Tree – Cross Validation Most Important Features Feature Engineering Principal Component Analysis (PCA) Clustering Parameter Optimization Decision Tree – Best Model Performance – Accuracy Decision Tree – Best Model Performance – Accuracy Decision Tree – Best Model Performance – F-Measure Logistic Regression – Best Model Performance – F-Measure 33 Naïve Bayes – Best Model Performance – Accuracy	Decision Tree – Split Validation – Default Parameters	17
Deep Learning – Split Validation – Default Parameters Gradient Boosted Trees – Split Validation – Default Parameters Rule Induction – Split Validation – Default Parameters 18 Rule Induction – Split Validation – Default Parameters Default Decision Tree – Split Validation Default Rule Model – Split Validation Decision Tree – Cross Validation – Default Parameters 21 Logistic Regression – Cross Validation – Default Parameters 21 Naïve Bayes – Cross Validation – Default Parameters 22 Deep Learning – Cross Validation – Default Parameters 23 Gradient Boosted Trees – Cross Validation – Default Parameters 24 Rule Induction – Cross Validation – Default Parameters 25 Rule Induction – Cross Validation – Default Parameters 26 Default Decision Tree – Cross Validation Most Important Features Feature Engineering Principal Component Analysis (PCA) Clustering Parameter Optimization Decision Tree – Best Model Performance – Accuracy Decision Tree – Best Model Performance – Accuracy Logistic Regression – Best Model Performance – F-Measure 32 Logistic Regression – Best Model Performance – F-Measure 33 Naïve Bayes – Best Model Performance – Accuracy	Logistic Regression – Split Validation – Default Parameters	17
Gradient Boosted Trees – Split Validation – Default Parameters Rule Induction – Split Validation – Default Parameters Default Decision Tree – Split Validation Default Rule Model – Split Validation Decision Tree – Cross Validation – Default Parameters Logistic Regression – Cross Validation – Default Parameters Logistic Regression – Cross Validation – Default Parameters Naïve Bayes – Cross Validation – Default Parameters Deep Learning – Cross Validation – Default Parameters Gradient Boosted Trees – Cross Validation – Default Parameters Rule Induction – Cross Validation – Default Parameters Pefault Decision Tree – Cross Validation Most Important Features Feature Engineering Principal Component Analysis (PCA) Clustering Parameter Optimization Decision Tree – Best Model Performance – Accuracy Decision Tree – Best Model Performance – F-Measure Logistic Regression – Best Model Performance – F-Measure 33 Naïve Bayes – Best Model Performance – Accuracy 33 Naïve Bayes – Best Model Performance – Accuracy	Naïve Bayes – Split Validation – Default Parameters	17
Rule Induction – Split Validation – Default Parameters Default Decision Tree – Split Validation Default Rule Model – Split Validation Decision Tree – Cross Validation – Default Parameters Logistic Regression – Cross Validation – Default Parameters 11 Naïve Bayes – Cross Validation – Default Parameters Naïve Bayes – Cross Validation – Default Parameters 12 Deep Learning – Cross Validation – Default Parameters 13 Gradient Boosted Trees – Cross Validation – Default Parameters 14 Cross Validation – Default Parameters 15 Cradient Boosted Trees – Cross Validation – Default Parameters 16 Cradient Boosted Trees – Cross Validation – Default Parameters 17 Default Decision Tree – Cross Validation 18 Default Parameters 19 Cradient Boosted Trees – Cross Validation – Default Parameters 19 Default Parameters 10 Default Parameters 10 Default Parameters 11 Decision Tree – Cross Validation – Default Parameters 12 Default Decision Tree – Cross Validation 13 Decision Tree – Best Model Performance – Accuracy 14 Decision Tree – Best Model Performance – Accuracy 15 Decision Tree – Best Model Performance – Accuracy 16 Decision Tree – Best Model Performance – Accuracy 17 Decision Tree – Best Model Performance – Accuracy 18 Decision Tree – Best Model Performance – Accuracy 19 Decision Tree – Best Model Performance – Accuracy 19 Decision Tree – Best Model Performance – Accuracy 10 Decision Tree – Best Model Performance – Accuracy 10 Decision Tree – Best Model Performance – Accuracy 10 Decision Tree – Best Model Performance – Accuracy 10 Decision Tree – Best Model Performance – Accuracy 10 Decision Tree – Best Model Performance – Accuracy 11 Decision Tree – Best Model Performance – Accuracy 12 Decision Tree – Best Model Performance – Accuracy 13 Decision Tree – Best Model Performance – Accuracy 14 Decision Tree – Best Model Performance – Accuracy 15 Decision Tree – Best Model Performance – Accuracy	Deep Learning – Split Validation – Default Parameters	18
Default Decision Tree – Split Validation Default Rule Model – Split Validation Decision Tree – Cross Validation – Default Parameters Logistic Regression – Cross Validation – Default Parameters Naïve Bayes – Cross Validation – Default Parameters Deep Learning – Cross Validation – Default Parameters Deep Learning – Cross Validation – Default Parameters Gradient Boosted Trees – Cross Validation – Default Parameters Rule Induction – Cross Validation – Default Parameters Default Decision Tree – Cross Validation Most Important Features Feature Engineering Principal Component Analysis (PCA) Clustering Parameter Optimization Decision Tree – Best Model Performance – Accuracy Decision Tree – Best Model Performance – F-Measure Logistic Regression – Best Model Performance – F-Measure 33 Naïve Bayes – Best Model Performance – Accuracy 33 Naïve Bayes – Best Model Performance – Accuracy	Gradient Boosted Trees – Split Validation – Default Parameters	18
Default Rule Model – Split Validation Decision Tree – Cross Validation – Default Parameters Logistic Regression – Cross Validation – Default Parameters Naïve Bayes – Cross Validation – Default Parameters Deep Learning – Cross Validation – Default Parameters Cradient Boosted Trees – Cross Validation – Default Parameters Rule Induction – Cross Validation – Default Parameters Pefault Decision Tree – Cross Validation Most Important Features Feature Engineering Principal Component Analysis (PCA) Clustering Parameter Optimization Decision Tree – Best Model Performance – Accuracy Decision Tree – Best Model Performance – Accuracy Logistic Regression – Best Model Performance – F-Measure Naïve Bayes – Best Model Performance – Accuracy 33 Naïve Bayes – Best Model Performance – Accuracy	Rule Induction – Split Validation – Default Parameters	18
Decision Tree – Cross Validation – Default Parameters Logistic Regression – Cross Validation – Default Parameters Naïve Bayes – Cross Validation – Default Parameters Deep Learning – Cross Validation – Default Parameters Gradient Boosted Trees – Cross Validation – Default Parameters Rule Induction – Cross Validation – Default Parameters Default Decision Tree – Cross Validation Most Important Features Feature Engineering Principal Component Analysis (PCA) Clustering Parameter Optimization Decision Tree – Best Model Performance – Accuracy Decision Tree – Best Model Performance – Accuracy Logistic Regression – Best Model Performance – Accuracy Naïve Bayes – Best Model Performance – Accuracy 33 Naïve Bayes – Best Model Performance – Accuracy 33 Naïve Bayes – Best Model Performance – Accuracy 33 34 35 36 37 38 39 30 30 30 30 30 30 30 30 30	Default Decision Tree – Split Validation	19
Logistic Regression – Cross Validation – Default Parameters Naïve Bayes – Cross Validation – Default Parameters Deep Learning – Cross Validation – Default Parameters Gradient Boosted Trees – Cross Validation – Default Parameters Rule Induction – Cross Validation – Default Parameters 22 Rule Induction – Cross Validation – Default Parameters Default Decision Tree – Cross Validation Most Important Features Feature Engineering Principal Component Analysis (PCA) Clustering Parameter Optimization Decision Tree – Best Model Performance – Accuracy Decision Tree – Best Model Performance – F-Measure Logistic Regression – Best Model Performance – F-Measure 33 Naïve Bayes – Best Model Performance – Accuracy 33 Naïve Bayes – Best Model Performance – Accuracy	Default Rule Model – Split Validation	20
Naïve Bayes – Cross Validation – Default Parameters Deep Learning – Cross Validation – Default Parameters Gradient Boosted Trees – Cross Validation – Default Parameters Rule Induction – Cross Validation – Default Parameters Default Decision Tree – Cross Validation Most Important Features Feature Engineering Principal Component Analysis (PCA) Clustering Parameter Optimization Decision Tree – Best Model Performance – Accuracy Decision Tree – Best Model Performance – F-Measure Logistic Regression – Best Model Performance – Accuracy Naïve Bayes – Best Model Performance – F-Measure 33 Naïve Bayes – Best Model Performance – Accuracy 33 34 35 36 37 38 39 39 30 30 30 30 30 30 31 32 33 34 35 36 36 37 38 38 39 30 30 30 30 30 30 30 30 30	Decision Tree - Cross Validation - Default Parameters	21
Deep Learning – Cross Validation – Default Parameters Gradient Boosted Trees – Cross Validation – Default Parameters Rule Induction – Cross Validation – Default Parameters 22 Default Decision Tree – Cross Validation Most Important Features Feature Engineering Principal Component Analysis (PCA) Clustering Parameter Optimization Decision Tree – Best Model Performance – Accuracy Decision Tree – Best Model Performance – F-Measure Logistic Regression – Best Model Performance – Accuracy Logistic Regression – Best Model Performance – F-Measure Naïve Bayes – Best Model Performance – Accuracy 33 Naïve Bayes – Best Model Performance – Accuracy 33 Naïve Bayes – Best Model Performance – Accuracy	Logistic Regression – Cross Validation – Default Parameters	21
Gradient Boosted Trees – Cross Validation – Default Parameters Rule Induction – Cross Validation – Default Parameters Default Decision Tree – Cross Validation Most Important Features Feature Engineering Principal Component Analysis (PCA) Clustering Parameter Optimization Decision Tree – Best Model Performance – Accuracy Decision Tree – Best Model Performance – F-Measure Logistic Regression – Best Model Performance – Accuracy Logistic Regression – Best Model Performance – F-Measure 32 Naïve Bayes – Best Model Performance – Accuracy 33 Naïve Bayes – Best Model Performance – Accuracy 33 Naïve Bayes – Best Model Performance – Accuracy 33	Naïve Bayes – Cross Validation – Default Parameters	21
Rule Induction – Cross Validation – Default Parameters Default Decision Tree – Cross Validation Most Important Features Feature Engineering Principal Component Analysis (PCA) Clustering Parameter Optimization Decision Tree – Best Model Performance – Accuracy Decision Tree – Best Model Performance – F-Measure Logistic Regression – Best Model Performance – Accuracy Logistic Regression – Best Model Performance – F-Measure Naïve Bayes – Best Model Performance – Accuracy 33 34 35 36 37 38 39 39 30 30 30 30 31 31 32 33 34 35 36 37 38 38 38 38 38 38 38 38 38	Deep Learning – Cross Validation – Default Parameters	22
Default Decision Tree – Cross Validation Most Important Features Feature Engineering Principal Component Analysis (PCA) Clustering Parameter Optimization Decision Tree – Best Model Performance – Accuracy Decision Tree – Best Model Performance – F-Measure Logistic Regression – Best Model Performance – Accuracy Logistic Regression – Best Model Performance – F-Measure Naïve Bayes – Best Model Performance – Accuracy 33 34 35 36 37 38 39 30 30 30 30 31 31 32 33 34 35 36 37 38 38 38 38 38 38 38 38 38	Gradient Boosted Trees – Cross Validation – Default Parameters	22
Most Important Features Feature Engineering Principal Component Analysis (PCA) Clustering Parameter Optimization Decision Tree – Best Model Performance – Accuracy Decision Tree – Best Model Performance – F-Measure Logistic Regression – Best Model Performance – Accuracy Logistic Regression – Best Model Performance – F-Measure Naïve Bayes – Best Model Performance – Accuracy 33 Naïve Bayes – Best Model Performance – Accuracy 33 34 35 36 37 38 38 39 30 30 30 30 30 30 30 30 30	Rule Induction – Cross Validation – Default Parameters	22
Feature Engineering Principal Component Analysis (PCA) Clustering Parameter Optimization Decision Tree – Best Model Performance – Accuracy Decision Tree – Best Model Performance – F-Measure Logistic Regression – Best Model Performance – Accuracy Logistic Regression – Best Model Performance – F-Measure Naïve Bayes – Best Model Performance – Accuracy 33 Naïve Bayes – Best Model Performance – Accuracy 33	Default Decision Tree – Cross Validation	24
Principal Component Analysis (PCA) Clustering Parameter Optimization Decision Tree – Best Model Performance – Accuracy Decision Tree – Best Model Performance – F-Measure Logistic Regression – Best Model Performance – Accuracy Logistic Regression – Best Model Performance – F-Measure Naïve Bayes – Best Model Performance – Accuracy 33 Naïve Bayes – Best Model Performance – Accuracy 33	Most Important Features	25
Clustering Parameter Optimization Decision Tree – Best Model Performance – Accuracy Decision Tree – Best Model Performance – F-Measure Logistic Regression – Best Model Performance – Accuracy Logistic Regression – Best Model Performance – F-Measure Naïve Bayes – Best Model Performance – Accuracy 33 Naïve Bayes – Best Model Performance – Accuracy 33	Feature Engineering	26
Parameter Optimization Decision Tree – Best Model Performance – Accuracy Decision Tree – Best Model Performance – F-Measure Logistic Regression – Best Model Performance – Accuracy Logistic Regression – Best Model Performance – F-Measure Naïve Bayes – Best Model Performance – Accuracy 32 Naïve Bayes – Best Model Performance – Accuracy 33	Principal Component Analysis (PCA)	28
Decision Tree – Best Model Performance – Accuracy Decision Tree – Best Model Performance – F-Measure Logistic Regression – Best Model Performance – Accuracy Logistic Regression – Best Model Performance – F-Measure Naïve Bayes – Best Model Performance – Accuracy 32 Naïve Bayes – Best Model Performance – Accuracy 33	Clustering	30
Decision Tree – Best Model Performance – F-Measure Logistic Regression – Best Model Performance – Accuracy Logistic Regression – Best Model Performance – F-Measure Naïve Bayes – Best Model Performance – Accuracy 33 Naïve Bayes – Best Model Performance – Accuracy 33	Parameter Optimization	32
Logistic Regression – Best Model Performance – Accuracy33Logistic Regression – Best Model Performance – F-Measure33Naïve Bayes – Best Model Performance – Accuracy33	Decision Tree – Best Model Performance – Accuracy	32
Logistic Regression – Best Model Performance – F-Measure Naïve Bayes – Best Model Performance – Accuracy 33	Decision Tree – Best Model Performance – F-Measure	32
Naïve Bayes – Best Model Performance – Accuracy 33	Logistic Regression – Best Model Performance – Accuracy	33
·	Logistic Regression – Best Model Performance – F-Measure	33
Naïve Bayes – Best Model Performance – F-Measure 33	Naïve Bayes – Best Model Performance – Accuracy	33
	Naïve Bayes – Best Model Performance – F-Measure	33

	Gradient Boosted Trees – Best Model Performance – Accuracy	34
	Gradient Boosted Trees – Best Model Performance – F-Measure	34
	Deep Learning – Best Model Performance – Accuracy	34
	Deep Learning – Best Model Performance – F-Measure	35
	Rule Induction – Best Model Performance – Accuracy	35
	Rule Induction – Best Model Performance – F-Measure	36
V	Nodel Building	36
4	nalysis and Recommendations	38
4	ppendix	39
	County Health Attributes Description	39
	Decision Tree - Default Parameters	41
	Decision Tree - Disabled Apply Pre-pruning button with everything else remaining same Performance	ne - 42
	Decision Tree - Disabled Apply Pre-pruning button and increased the Maximal Depth t 15 and Confidence to 0.2 - Performance	to 42
	Decision Tree - Disabled Apply Pre-pruning button and increased the Maximal Depth t 20 - Performance	to 43
	Decision Tree - Disabled Apply Pre-pruning button and decreased the Maximal Dep to 7 - Performance	th 43
	Logistic Regression - Default Parameters	44
	Logistic Regression - With Reproducible enabled	45
	Logistic Regression - With maximum number of threads increased to 10	45
	Logistic Regression - With maximum number of threads increased to 15	46
	Naive Bayes - Default Parameters	46
	Gradient Boosted Trees - Increased the number of trees from 125 to 150	48
	Gradient Boosted Trees - Increased the number of trees from 150 to 200	49
	Gradient Boosted Trees - Increased the number of trees from 200 to 225	49
	Deep Learning - Default Parameters	50
	Deep Learning - Changed the Activation function from Rectifier to Tanh	51
	Deep Learning - Changed the Activation function from Rectifier to Maxout	51
	Deep Learning - Changed the Activation function from Maxout to ExpRectifier	51
	Deep Learning - Changed the Epochs from 10 to 15	52
	Deep Learning - Changed the Epochs from 10 to 7	52
	Rule Induction - Default Parameters	53
	Rule Induction - Changed the sample ratio from 0.9 to 0.95	53
	Rule Induction - Changed the sample ratio from 0.9 to 0.85	54
	Rule Induction - Changed the sample ratio from 0.9 to 0.8	54

Rule Induction - Changed the sample ratio from 0.9 to 0.75	54
Rule Induction - Changed the minimal prune benefit from 0.25 to 0.3	55
Rule Induction - Changed the minimal prune benefit from 0.25 to 0.2	55

Description of Case Study

We have chosen to study county health data in an effort to determine which attributes are the most predictive of poor health. As a proxy for poor health we will be using the attribute 'Years of Potential Lost Life'. We will use a 'Classification' approach and evaluate several models.

Business Problem

In 2018 Medicaid expenditures represented 29% of state budgets on average. This compares to just 20% in 2008. The burden is predicted to worsen as healthcare inflation of + 5% is well above most other categories. Unfortunately, the problem is not limited to just states and counties. Nearly 26% of the Federal budget represents spending on Medicare and Medicaid.

Although healthcare is a big concern, the government has limited resources and will typically implement just a few programs. We believe that our analysis would help steer their efforts towards the most beneficial projects.

Data Available

The dataset can be obtained from the following web link: https://www.countyhealthrankings.org/sites/default/files/2019%20County%20Health%20Rankings%20Data%20-%20v2.xls

It contains **3,142** instances, which represent every US county. The dataset contains over 200 attributes, but many are redundant. Each recorded attribute is accompanied by additional information, such as 95% confidence intervals, quartiles, and other supplemental data. We would restrict our analysis to the **41** main measurements. The county health data set attributes are enclosed in Appendix 1.

Most instances have a complete set of data. We examined the percentage of missing values for each attribute and the greatest value was 8%. The average across all attributes was just 1.4%.

Our target variable will be 'Years of Potential Lost Life' per 100,000 citizens, measured from 2015-2017. This variable represents the aggregate amount of life lost before the age of 75. For example, if an individual died at age 65, it would be recorded as 10. If an individual died at age 85, it would be recorded as 0.

We will make the target variable binary by using the median. Values above the median will be High Risk and values below will be Low Risk.

Exploratory data analysis

Frequency of the target variable

The target variable is 'years of lost life per 100,000 citizens'. We converted the quantitative data to a categorical variable by using the median as the split point. The values above the median are classified as "High Risk" and the values below the median are classified as "Low Risk." By using the median, this resulted in an equal amount of observations for each category. As a result, we are able to treat the analysis as a classification problem which continues to allow us to explore the data as a continuous variable.

Figure 1: Distribution of the Target Variable: 'Years of Potential Lost Life'

Figure 2: Years of Potential Lost Life Statistics

According to Figure 1 and 2, the data is positively skewed with a few extreme values. If the outliers are excluded, the variable becomes normally distributed.

Missing values, duplicates

SI	Attributes	Description	Missing Values
1	VCR	Violent Crime Rate Per 100,000 population	150
2	IDR	Injury Mortality Rate per 100,000 population	2
3	ADPM	Average daily amount of fine particulate matter in micrograms per cubic meter.	22
4	POV	County affected by a water violation: 1-Yes, 0-No	38
5	Dent	Dentists per 100,000 population	75
6	MHP	Mental Health Providers per 100,000 population	146
7	PHR	Discharges for Ambulatory Care Sensitive Conditions per 100,000 Medicare Enrollees	7
8	PS	Percentage of female Medicare enrollees having an annual mammogram (age 65 – 74)	
9	PV	Percentage of annual Medicare enrollees having an annual flu vaccine	4

10	GR	Graduation rate	45
11	LBW	Percentage of births with low birth weight (<2500g)	6
12	FEI	Indicator of access to healthy foods – 0 is worst, 10 is best	19
13	WA	Percentage of the population for the places with actual physical activity	2
14	AI	Percentage of driving deaths with alcohol involvement	9
15	CR	Chlamydia cases per 100,000 population	24
16	ТВ	Births per 1,000 females ages 15-19	10
17	PCP	Primary Care Physicians per 100,000 population	91

Table 1: Attributes that had missing values

When we evaluated the data for completeness, we noticed that 21 out of 38 attributes had no missing values. According to Table 1, there were four attributes that had more than 50 missing values. The full dataset has 2,908 instances which decreases the significance of the 50 missing values. The dataset was mostly complete and took note that there were no duplicate attributes.

Relationship between variables

Firstly, we evaluated the relationship between variables by creating the correlation matrix.

Figure 3: Correlation Matrix Process

We used RapidMiner Correlation Matrix operator to gauge the relationship strength between pairs of attributes and to help identify which variables could possibly serve as the best predictors in predicting our target variable. In Figure 3, one can see the operators used for this process. We decided to remove attributes that have little to no impact on the final result, which are County, State and Federal Information Processing Standard (FIPS).

According to Figure 4, the correlation heat map depicts many red-shaded and blue-shaded regions. The dark red boxes indicate a value that is closer to +1, whereas the dark blue boxes represent a value closer to -1. Lastly, the yellow boxes indicate a value closer to 0.

Figure 4: Correlation Matrix Heat Map

We examined the target variable of our dataset in relation to the other attributes. Looking at Figure 5 below, the darker shades of blue represents a higher correlation which is closer to 1 or -1. We noticed that in relation to YPLL, some attributes that had high correlation were Children In Poverty (CIP), Injury Death Rate (IDR), Smoke, and Teen Birth Rate (TB).

Figure 5: Target Variable vs. Other Attributes

Top 10 Positively and Negatively Correlated Attributes (Relative to YPLL)

SI	Attribute	Correlation	Attribute	Correlation
1	% Children in Poverty	0.73	Food Environment Index	(0.61)
2	Injury Death Rate	0.72	% Excessive Drinking	(0.58)
3	% Smokers	0.70	% Some College	(0.55)
4	Teen Birth Rate	0.69	% W/Access to physical activity	(0.41)
5	Physically Unhealthy Days	0.69	% Mammogram Screened	(0.40)
6	% Fair/Poor Health	0.68	% Vaccinated	(0.35)
7	Mentally Unhealthy Days	0.63	Primary Care Docs/100,000	(0.28)
8	% Physically Inactive	0.59	Dentists/100,000	(0.25)
9	% Single Parent HH	0.57	0.57 Graduation Rate	
10	% Low Birth Weight	0.51	% Homeowners	(80.0)

Table 2: Top 10 Positively and Negatively Correlated Attributes (Relative to YPLL)

Table 2 shows the top ten positively and negatively correlated attributes relative to our target variable, YPLL. The positively correlated attributes are mostly indicators of unhealthiness whereas negatively correlated attributes indicate healthy attributes. We noted that the socioeconomic status is also significant. Attributes like Children In Poverty (CIP), Teen Birth Rate (TB) and Percentage of Single Parent Households could indicate lower income counties. On the other hand, attributes like Percentage of Some College, Food Environment Index, and Percentage with Access to Physical Activity could be indicative of higher income counties. The Food Environment Index indicates whether people have access to healthy food and the Percentage with Access to Physical Activity indicates areas that people can be active in such as parks, track, or sports fields. Additionally, since lost life is measured as the difference between the age of death and 75, the younger an individual is at death the more heavily they would be weighted. While a death at the age of 65 is measured as 10, a death at the age of 15 would be measured as 60. Therefore, deaths of younger citizens due to gang violence, drug overdoses, or other non-health related measures would be of greater concern. This is likely captured in the socioeconomic attributes. Of note, the Percentage of Excessive Drinking is negatively correlated with our target variable, which was a surprising find during our research.

Figures 6 to 9: Scatter Plots – Most Positively Correlated

Figure 6: % Children in Poverty vs YPLL

Figure 7: Injury Death Rate vs YPLL

Figure 8: % Smokers vs YPLL

Figure 9: Teen Birth Rate vs YPLL

Figure 10: Food Environment Index vs. YPLL

Figure 11: % Excessive Drinking vs YPLL

Figure 12: % Some College vs. YPLL

Figure 13: %Physically Active vs. YPLL

First Attribute	Second Attribute	Correlation
Physically Unhealthy Days	Mentally Unhealthy Days	0.91
% Fair/Poor Health	Physically Unhealthy Days	0.88
% Fair/Poor Health	% Children in Poverty	0.85
Physically Unhealthy Days	% Smokers	0.80
Physically Unhealthy Days	% Children in Poverty	0.77
% Fair/Poor Health	Teen Birth Rate	0.75
Mentally Unhealthy Days	% Smokers	0.74
% Fair/Poor Health	Mentally Unhealthy Days	0.74
% Fair/Poor Health	% Smokers	0.72
Teen Birth Rate	% Children in Poverty	0.72
% Children in Poverty	% Single Parent HH	0.71

Table 3: Pairwise Correlation

Looking at Table 3, you can see the results tabulated from RapidMiner's pairwise table. We limited it to correlations that are above 70% to eliminate some additional attributes from the final analysis. For example, Physically Unhealthy Days and Mentally Unhealthy Days are highly correlated to each other, which means that either should have a similar effect on our analysis and is why we can eliminate one of the attributes from each pair.

Outliers

Figure 14: Outlier States

Figure 14 summarizes the outliers. There were several values that were over 20,000 that contributed to the positive skewed according to Figure 1. Of note, many of the values seemed to originate from North and South Dakota. The possible reason for this is because these states have some of the country's poorest and most rural counties. As such, healthcare may not be as accessible as it'd be in a wealthier suburban/urban county.

Baseline Model

Select Attributes → Remove (YPPL, County, FIPS, State)

Figure 15: Baseline Model Process

Figure 16: Baseline Model - Validation Operator

16 | Page

Decision Tree - Split Validation - Default Parameters

ассигасу: 83.37%

	true HighRisk	true LowRisk	class precision
pred. HighRisk	359	68	84.07%
pred. LowRisk	77	368	82.70%
class recall	82.34%	84.40%	

Figure 18: Decision Tree - Model Performance - Split Validation - Default Parameters

Accuracy	Precision	Recall	F-Measure
83.37%	82.70%	84.40%	83.54%

Logistic Regression - Split Validation - Default Parameters

accuracy: 90.25%			
true HighRisk		true LowRisk	class precision
pred. HighRisk	394	43	90.16%
pred. LowRisk	42	393	90.34%
class recall	90.37%	90.14%	

Figure 19: Logistic Regression - Split Validation - Default Parameters

Accuracy	Precision	Recall	F-Measure
90.25%	90.34%	90.14%	90.24%

Naïve Bayes – Split Validation – Default Parameters

accuracy: 83.94%

	true HighRisk	true LowRisk	class precision
pred. HighRisk	344	48	87.76%
pred. LowRisk	92	388	80.83%
class recall	78.90%	88.99%	

Figure 20: Naive Bayes - Split Validation - Default Parameters

Accuracy	Precision	Recall	F-Measure
83.94%	80.83%	88.99%	84.72%

Deep Learning – Split Validation – Default Parameters

accuracy: 89.79%

	true HighRisk	true LowRisk	class precision
pred. HighRisk	391	44	89.89%
pred. LowRisk	45	392	89.70%
class recall	89.68%	89.91%	

Figure 21: Deep Learning - Split Validation - Default Parameters

Accuracy	Precision	Recall	F-Measure
89.79%	88.91%	90.14%	89.52%

Gradient Boosted Trees – Split Validation – Default Parameters

accuracy: 88 53%

	true HighRisk	true LowRisk	class precision
pred. HighRisk	383	47	89.07%
pred. LowRisk	53	389	88.01%
class recall	87.84%	89.22%	

Figure 22: Gradient Boosted Trees - Split Validation - Default Parameters

Accuracy	Precision	Recall	F-Measure
88.53%	88.01%	89.22%	88.61%

Rule Induction – Split Validation – Default Parameters

ассигасу: 84.63%

	true HighRisk	true LowRisk	class precision
pred. HighRisk	372	70	84.16%
pred. LowRisk	64	366	85.12%
class recall	85.32%	83.94%	

Figure 23: Rule Induction - Split Performance - Default Parameters

Accuracy	Precision	Recall	F-Measure
84.63%	85.12%	83.94%	84.53%

Default Decision Tree - Split Validation

Tree CIP > 21.500 Unem > 2.650 Obese > 21.500 SPH > 14.500 IR > 3.250: HighRisk {HighRisk=770, LowRisk=173} IR ≤ 3.250: LowRisk {HighRisk=0, LowRisk=2} SPH ≤ 14.500: LowRisk {HighRisk=0, LowRisk=3} Obese ≤ 21.500: LowRisk (HighRisk=0, LowRisk=3) Unem ≤ 2.650: LowRisk {HighRisk=0, LowRisk=6} CIP ≤ 21.500 Smoke > 23.500: HighRisk {HighRisk=4, LowRisk=0} Smoke ≤ 23.500 MUD > 5: HighRisk {HighRisk=2, LowRisk=0} MUD ≤ 5 PI > 35.500: HighRisk {HighRisk=2, LowRisk=0} PI ≤ 35.500 Unem > 8.650: HighRisk {HighRisk=2, LowRisk=0} Unem ≤ 8.650: LowRisk {HighRisk=238, LowRisk=831}

Figure 24: Default Decision Tree - Split Validation

According to Figure 24, this decision tree depicts that the percentage of children in poverty is the most important indicator of years of lost life. If the percentage of children in poverty is greater than 21.5% then the tree would move on to evaluate the percentage of unemployed. If the percentage of children in poverty is less than or equal to 21.5%, the tree would further evaluate the percentage of smokers. Although it is a mix of both health related attributes and socioeconomic indicators, it appears that county wealth is slightly more important to the model than county health.

Default Rule Model - Split Validation

RuleModel

```
if TB > 32.500 and MUD > 4.050 then HighRisk (571 / 46)
if IDR \leq 76.500 and CIP \leq 18.500 then LowRisk (15 / 483)
if CIP \leq 21.500 and IDR \leq 85.500 and PHR \leq 4310 then LowRisk (10 / 105)
if TB > 28.500 and IDR > 75.500 and CIP > 21.500 then HighRisk (166 / 17)
if PI \leq 23.500 and IDR \leq 98.500 and Unem \leq 4.450 then LowRisk (8 / 72)
if PDA \leq 79.500 and FEI > 7.450 and IDR \leq 99.500 and CR \leq 246.300 then LowRisk (2 / 39)
if IDR \leq 66.500 and CR \leq 571.050 and AR \leq 15.550 then LowRisk (2 / 44)
if Smoke > 18.500 and IDR > 78.500 and PLC \leq 39.500 then HighRisk (50 / 5)
if PDA < 83.500 and MHP < 354 and PFP < 16.500 and IDR < 85.500 then LowRisk (3 / 37)
if PDA > 82.500 and PV ≤ 44.500 and ED ≤ 20.500 and GR > 88.500 then HighRisk (32 / 2)
if PDA \leq 78.500 and FEI > 7.550 and SHP > 13.500 then LowRisk (3 / 26)
if PI > 24.500 and FEI \leq 7.250 and VCR > 423.500 then HighRisk (17 / 0)
if AR \leq 9.750 and IDR \leq 93.500 and PUD \leq 4.150 then LowRisk (2 / 27)
if ADPM > 8.850 and PS \leq 39.500 and VCR > 234 then HighRisk (18 / 1)
if LBW > 6.500 and Obese > 32.500 and MHP > 114.500 and LBW > 7.500 then HighRisk (18 / 1)
if Dent > 37.500 and IDR \leq 99.500 and PUE \leq 22.900 and PV \leq 43.500 then LowRisk (1 / 15)
if Unem > 4.650 and PLC > 43.500 then HighRisk (16 / 0)
if IDR \leq 95.500 and FEI > 7.750 and GR \leq 89.500 then LowRisk (2 / 20)
if POS ≤ 20.700 and PCP ≤ 62 and PUE > 21.250 and GR > 81.500 and CIP > 11.500 then HighRisk (23 / 4)
if VCR > 176.500 and WA \leq 80.500 and PHR \leq 4855.500 then LowRisk (4 / 24)
if GR \le 88.500 and ED > 17.500 then HighRisk (13 / 1)
if SC > 66.500 and IR > 4 then LowRisk (1 / 16)
if IDR > 97.500 and PI > 23.500 and VCR \leq 162 then HighRisk (17 / 1)
if IDR \leq 76.500 and CIP \leq 18.500 then LowRisk (15 / 483)
if CIP \leq 21.500 and IDR \leq 85.500 and PHR \leq 4310 then LowRisk (10 / 105)
if TB > 28.500 and IDR > 75.500 and CIP > 21.500 then HighRisk (166 / 17)
if PI \leq 23.500 and IDR \leq 98.500 and Unem \leq 4.450 then LowRisk (8 / 72)
if PDA \leq 79.500 and FEI > 7.450 and IDR \leq 99.500 and CR \leq 246.300 then LowRisk (2 / 39)
if IDR \leq 66.500 and CR \leq 571.050 and AR \leq 15.550 then LowRisk (2 / 44)
if Smoke > 18.500 and IDR > 78.500 and PLC \leq 39.500 then HighRisk (50 / 5)
if PDA \leq 83.500 and MHP \leq 354 and PFP \leq 16.500 and IDR \leq 85.500 then LowRisk (3 / 37)
if PDA > 82.500 and PV \leq 44.500 and ED \leq 20.500 and GR > 88.500 then HighRisk (32 / 2)
if PDA \leq 78.500 and FEI > 7.550 and SHP > 13.500 then LowRisk (3 / 26)
if PI > 24.500 and FEI ≤ 7.250 and VCR > 423.500 then HighRisk (17 / 0)
if AR ≤ 9.750 and IDR ≤ 93.500 and PUD ≤ 4.150 then LowRisk (2 / 27)
if ADPM > 8.850 and PS ≤ 39.500 and VCR > 234 then HighRisk (18 / 1)
if LBW > 6.500 and Obese > 32.500 and MHP > 114.500 and LBW > 7.500 then HighRisk (18 / 1)
if Dent > 37.500 and IDR ≤ 99.500 and PUE ≤ 22.900 and PV ≤ 43.500 then LowRisk (1 / 15)
```

if POS \leq 20.700 and PCP \leq 62 and PUE > 21.250 and GR > 81.500 and CIP > 11.500 then HighRisk (23 / 4)

correct: 1877 out of 2029 training examples.

else LowRisk (21 / 28)

Figure 25: Default Rule Model – Split Validation

if Unem > 4.650 and PLC > 43.500 then HighRisk (16 / 0)

if GR \leq 88.500 and ED > 17.500 then HighRisk (13 / 1) if SC > 66.500 and IR > 4 then LowRisk (1 / 16)

if IDR \leq 95.500 and FEI > 7.750 and GR \leq 89.500 then LowRisk (2 / 20)

if IDR > 97.500 and PI > 23.500 and VCR ≤ 162 then HighRisk (17 / 1)

if VCR > 176.500 and WA ≤ 80.500 and PHR ≤ 4855.500 then LowRisk (4 / 24)

Decision Tree - Cross Validation - Default Parameters

accuracy: 75.60%

	true HighRisk	true LowRisk	class precision
pred. HighRisk	108	34	76.06%
pred. LowRisk	37	112	75.17%
class recall	74.48%	76.71%	

Figure 26: Decision Tree - Cross Validation - Default Parameters

Accuracy	Precision	Recall	F-Measure
75.60%	75.17%	76.71%	75.93%

Logistic Regression - Cross Validation - Default Parameters

accuracy: 88.66%

	true HighRisk	true LowRisk	class precision
pred. HighRisk	127	15	89.44%
pred. LowRisk	18	131	87.92%
class recall	87.59%	89.73%	

Figure 27: Logistic Regression - Cross Validation - Default Parameters

Accuracy	Precision	Recall	F-Measure
88.66%	87.92%	89.73%	88.81%

Naïve Bayes – Cross Validation – Default Parameters

accuracy: 80.41%

	true HighRisk	true LowRisk	class precision
pred. HighRisk	110	22	83.33%
pred. LowRisk	35	124	77.99%
class recall	75.86%	84.93%	

Figure 28: Naive Bayes - Cross Validation - Default Parameters

Accuracy	Precision	Recall	F-Measure
81.79%	77.99%	84.93%	81.31%

Deep Learning - Cross Validation - Default Parameters

accuracy: 87.63%

	true HighRisk	true LowRisk	class precision
pred. HighRisk	124	15	89.21%
pred. LowRisk	21	131	86.18%
class recall	85.52%	89.73%	

Figure 29: Deep Learning - Cross Validation - Default Parameters

Accuracy	Precision	Recall	F-Measure
87.63%	86.18%	89.73%	87.92%

Gradient Boosted Trees - Cross Validation - Default Parameters

Figure 30: Gradient Boosted Trees - Cross Validation - Default Parameters

Accuracy	Precision	Recall	F-Measure
88.66%	87.84%	89.66%	88.74%

Rule Induction - Cross Validation - Default Parameters

Figure 31: Rule Induction - Cross Validation - Default Parameters

Accuracy	Precision	Recall	F-Measure
88.66%	87.84%	89.66%	88.74%

Overall, the accuracy was higher for Split Validation than Cross Validation for each model type.

Model	Split Validation	Cross Validation
Logistic Regression	90.25%	88.66%
Decision Tree	79.24%	75.60%
Naïve Bayes	83.94%	81.79%
Deep Learning	89.79%	87.63%
Gradient Boosted Trees	88.53%	88.66%
Rule Induction	84.63%	88.66%

Table 4: Summary of Split Validation and Cross Validation Models

After evaluating all the models, the accuracies were better for split validation in 4 out of 6 models. Thus, our base model would be built using split validation rather than cross validation.

Default Decision Tree – Cross Validation

Tree

```
PFP > 16.500
    CIP > 12.500
        SC > 76.500: LowRisk {HighRisk=0, LowRisk=7}
        SC ≤ 76.500
            Smoke > 12.500
               PHO > 37
                   IR > 3.250
                       MUD > 3.150
                           SPH > 14
                               Smoke > 14.500: HighRisk {HighRisk=1082, LowRisk=264}
                               Smoke ≤ 14.500: LowRisk {HighRisk=6, LowRisk=30}
                           SPH ≤ 14: LowRisk {HighRisk=0, LowRisk=2}
                       MUD ≤ 3.150: LowRisk {HighRisk=0, LowRisk=2}
                   IR ≤ 3.250: LowRisk {HighRisk=0, LowRisk=3}
                PHO ≤ 37: LowRisk {HighRisk=0, LowRisk=5}
           Smoke ≤ 12.500: LowRisk {HighRisk=0, LowRisk=6}
    CIP ≤ 12.500: LowRisk (HighRisk=0, LowRisk=11)
PFP ≤ 16.500
    POS > 37.750: HighRisk {HighRisk=2, LowRisk=0}
    POS ≤ 37.750: LowRisk {HighRisk=219, LowRisk=978}
```

Figure 32: Default Decision Tree - Cross Validation

According to Figure 32, the decision tree that was produced using cross validation is very different from the decision tree that was produced by split validation, Figure 24. Although, the Percentage of Children in Poverty is high in the split validation decision tree, it is no longer at the top for the cross-validation decision tree and was replaced by Percentage of Adults in Fair or Poor Health, which is also not included in the Figure 24.

Most Important Features

Figure 33: Important Features

SI	Most Important Variables	Description
1	CIP	%Children in Poverty
2	IDR	Injury Death Rate
3	ТВ	Teen Birth Rate
4	Smoke	%Smokers
5	FEI	Food Environment Index
6	PDA	%Drive Alone
7	PUD	Physically Unhealthy Days
8	PI	%Physically Inactive
9	PFP	%Fair / Poor
10	Obese	%Obese

Table 5: Description List of Important Features

Feature Engineering

Prior to doing any complex feature engineering, we needed to address missing values and normalize the dataset, as we were unable to perform PCA without handling the missing values. The dataset contains around 600 missing values which needed to be handled. We compared resolving it using two ways – replace missing value with average versus impute missing values using k-NN – results were similar so neither method was superior. We opted to replace missing values with average for simplicity and quicker processing time.

The majority of attributes were a percentage of relevant population, some attributes are a rate (# for every 100,000 people) and some are other types of numerical values. These are identified for each feature in the table below as "Feature Type".

We normalized values of the features with numerical values as the ranges and magnitudes varied. For example, MUD and PUD had possible ranges of 0 to 30, percentage features had a possible full range of 100, rate features of 100,000 where the section of the ranges with values in the feature varies.

SI	Feature	Feature Type	Min Value	Max Value	Min after Norm	Max after Norm
1	Obese	Percentage	14	50	-3.9	3.8
2	Smoke	Percentage	7	43	-3.0	6.7
3	LBW	Percentage	3	19	-2.5	5.4
4	ED	Percentage	9	29	-2.5	3.5
5	WA	Percentage	0	100	-2.9	1.6
6	PI	Percentage	8	45	-3.4	3.6
7	PFP	Percentage	8	41	-2.0	4.9
8	Unis	Percentage	2	31	-1.8	4.1
9	POS	Percentage	4.8	56.9	-3.1	8.8
10	PUE	Percentage	7.2	41.2	-4.4	5.5
11	РНО	Percentage	20	90	-6.3	2.3
12	Unem	Percentage	1.6	20.1	-1.8	9.4
13	Al	Percentage	0	100	-2.1	5.3
14	PLC	Percentage	0	85	-2.5	4.3
15	PDA	Percentage	5	96	-11.1	2.3
16	SHP	Percentage	4	71	-2.2	12.3

		_		T		
17	PV	Percentage	4	65	-4.0	2.5
18	PS	Percentage	7	62	-4.5	3.0
19	SPH	Percentage	7	80	-2.5	4.6
20	CIP	Percentage	3	75	-2.0	5.7
21	SC	Percentage	17	90	-3.5	2.8
22	CR	Rate (per 100k)	40	2897	-1.3	10.0
23	IDR	Rate (per 100k)	26	285	-2.3	8.2
24	VCR	Rate (per 100k)	0	1820	-1.3	8.3
25	AR	Rate (per 100k)	0	48.9	-2.2	6.1
26	PHR	Rate (per 100k)	471	17731	-2.5	7.3
27	MHP	Rate (per 100k)	4	2003	-0.9	11.7
28	Dent	Rate (per 100k)	0	725	-1.5	23.0
29	PCP	Rate (per 100k)	2	447	-1.6	12.0
30	YPLL	Rate (per 100k)	2900	29783	-2.1	8.0
31	FEI	Numerical (Scale)	0	10	-6.8	2.2
32	MUD	Numerical (other)	2.5	6	-2.5	3.4
33	PUD	Numerical (other)	2.3	7.2	-2.3	4.5
34	ТВ	Rate (per 1000)	2	110	-1.9	5.1
35	POV	Binary	n/a	n/a	n/a	n/a
36	ADPM	Numerical (other)	3	19.7	-3.3	5.6
37	IR	Ratio	2.7	9.1	-2.5	6.2
38	GR	Rate (other)	36	100	-7.3	1.6

Table 6: List of Features before and after Normalization

[Section Change from Phase II to Phase III revision: Table 6 updated, Figure 34 removed, Table 7 & Table 8 removed and combined into Table 6, Text Updated]

Principal Component Analysis (PCA)

Then we performed PCA on this dataset as follows:

Figure 34: Creation of PCA process flow

This process flow includes the data pre-processing mentioned above, plus it sets the role of feature "YPLL" as the target variable.

Figure 35: Creation of PCA Plot

This plot shows diminishing returns as the number of Principal Components (PC) calculated increases. From the plot we see that about 60% variance in the target variable (YPLL) is described by 5 Principal Components. From these results we decided not to add any of the PCs to the model, since the addition of the PCs adds to the complexity of interpretation and there isn't significant gain by adding it into the model. Instead, we used it to further explore the features to inform our understanding of their importance in the model.

We highlight the 5 PC (principle components) below that explain the 60% variance:

PR	VARS	PC1	PC2	PC3	PC4	PC5	PC1.a	PC2.a	PC3.a	PC4.a	PC5.a	sum
SC -0.227 0.131 -0.118 -0.066 -0.089 -0.067 0.017 -0.008 -0.004 -0.004 0.100 CIP 0.276 0.043 0.084 -0.103 -0.014 0.881 0.006 -0.006 -0.006 -0.001 0.099 TR-P 0.141 0.282 -0.122 0.071 -0.166 0.042 0.037 -0.008 0.004 -0.008 0.098 TB-P 0.245 -0.004 0.155 0.615 -0.151 0.001 -0.007 0.010 -0.007 0.010 -0.007 0.010 -0.007 0.010 -0.007 0.010 -0.007 0.011 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.002 -0.006 -0.010 0.007 -0.013 -0.003 -0.016 0.037 0.019 -0.084 -0.002 -0.006 -0.001 0.005 -0.011 -0.006	PI	0.214	-0.193	-0.106	-0.037	-0.161	0.063	-0.025	-0.007	-0.002	-0.008	0.105
CIP 0.276 0.043 0.084 -0.103 -0.014 0.081 0.006 -0.006 -0.001 0.099 CRP 0.141 0.282 -0.122 0.071 -0.166 0.042 0.037 -0.008 0.004 -0.008 0.098 DRP 0.245 -0.004 0.105 0.155 -0.151 0.072 -0.001 0.001 -0.007 0.001 -0.007 0.001 -0.001 -0.003 0.096 0.011 -0.055 -0.011 -0.001 -0.011 -0.001 -0.011 -0.005 0.001 -0.001 -0.011 -0.005 -0.017 -0.006 0.001 -0.005 0.094 0.005 0.095 0.094 -0.005 0.095 0.005 0.001 0.007 0.095 0.095 0.007 0.002 -0.006 0.001 0.007 0.001 0.002 0.001 0.007 0.001 0.002 0.001 0.007 0.001 0.002 0.005 0.005 0.002 0.003 0.008	SPH	0.212	0.157	-0.081	-0.161	-0.094	0.063	0.020	-0.005	-0.009	-0.004	0.102
CR-P 0.141 0.282 -0.122 0.071 -0.166 0.042 0.037 -0.008 0.004 -0.008 0.098 TB-P 0.245 -0.004 0.105 0.165 -0.151 0.072 -0.001 0.007 0.010 -0.007 0.001 Dese 0.173 -0.159 -0.157 -0.011 -0.085 0.051 -0.021 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.005 0.096 MUD 0.24 -0.013 -0.093 -0.166 0.148 0.071 -0.002 -0.006 -0.010 0.007 0.095 PFP 0.284 0.036 -0.016 0.037 -0.019 0.084 0.000 -0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002	SC	-0.227	0.131	-0.118	-0.066	-0.089	-0.067	0.017	-0.008	-0.004	-0.004	0.100
TB-P 0.245 -0.004 0.105 0.165 -0.151 0.072 -0.001 0.007 0.010 -0.007 0.097 Obese 0.173 -0.159 -0.157 -0.011 -0.285 0.051 -0.021 -0.011 -0.001 -0.013 0.096 FEI -0.22 -0.133 -0.083 0.06 0.1 -0.065 -0.017 -0.006 0.004 0.005 0.096 MUD 0.24 -0.013 -0.093 -0.166 0.148 0.071 -0.002 -0.006 -0.010 0.007 0.095 PFP 0.284 0.036 -0.016 0.037 0.019 0.084 0.005 -0.001 0.002 0.001 0.093 PUD 0.27 0 -0.026 -0.083 0.112 0.080 0.000 -0.002 -0.005 0.005 0.092 Smoke 0.243 -0.028 -0.083 -0.065 -0.051 0.072 -0.004 -0.006 -0.004 -0.002 0.087 IR 0.172 0.179 -0.046 -0.13 0.039 0.051 0.022 -0.003 -0.008 0.000 0.085 PS -0.16 -0.095 -0.166 -0.113 -0.006 0.060 0.007 -0.011 -0.007 0.000 0.085 PS -0.16 -0.009 -0.199 -0.267 -0.156 -0.047 -0.001 -0.013 -0.016 -0.007 0.085 PCP-P -0.116 0.242 -0.023 -0.194 -0.126 -0.034 0.031 -0.002 -0.011 -0.006 0.085 WA -0.154 0.218 -0.084 -0.035 0.035 0.282 0.045 0.028 -0.006 -0.004 0.001 0.084 IDR-P 0.081 0.325 0.036 0.035 0.282 0.045 0.008 0.000 0.000 -0.002 0.013 0.084 IDR-P 0.147 -0.06 0.297 -0.166 -0.04 0.043 -0.008 0.000 -0.000 0.001 0.084 IDR-P 0.147 0.060 0.297 -0.166 -0.04 0.043 -0.008 0.000 -0.000 0.001 0.084 IDR-P 0.014 0.053 -0.369 0.098 0.064 0.126 -0.016 0.048 0.001 0.004 0.000 0.004 0.000 0.085 IDR 0.053 -0.369 0.098 0.064 0.126 -0.016 0.048 0.001 0.004 0.000 0.004 0.000 0.008 IDR-P 0.163 -0.084 0.125 0.158 0.173 0.504 0.019 0.016 0.011 0.010 0.000 0.004 0.000 0.008 IDR-P 0.163 -0.084 0.125 0.158 0.173 0.504 0.019 0.016 0.011 0.010 0.002 0.003 0 IDR-P 0.163 0.084 0.125 0.158 0.173 0.504 0.019 0.016 0.011 0.010 0.000 0.004 0.000 0.008 IDR-P 0.163 0.084 0.014 0.025 0.089 0.002 0.005 0.007 0.000 0.008 0 IDR-P 0.163 0.084 0.015 0.023 0.089 0.002 0.000 0.0	CIP	0.276	0.043	0.084	-0.103	-0.014	0.081	0.006	0.006	-0.006	-0.001	0.099
Obese 0.173 -0.159 -0.157 -0.011 -0.285 0.051 -0.021 -0.011 -0.013 0.096 FEI -0.22 -0.133 -0.083 0.06 0.1 -0.065 -0.017 -0.006 0.004 0.005 0.095 MUD 0.24 -0.013 -0.093 -0.166 0.148 0.001 -0.006 -0.010 0.007 0.095 PID 0.284 -0.036 -0.016 0.037 0.019 0.084 0.005 -0.001 0.002 0.001 0.092 Smoke 0.243 -0.028 -0.083 -0.152 -0.004 -0.006 -0.004 -0.006 0.007 0.006 0.007 -0.006 -0.007 0.000 0.087 RR 0.172 0.179 -0.046 -0.13 -0.006 0.060 0.007 -0.011 -0.007 0.002 0.087 PS -0.16 -0.199 -0.267 -0.156 -0.047 -0.001 -0.013 <td< td=""><td>CR-P</td><td>0.141</td><td>0.282</td><td>-0.122</td><td>0.071</td><td>-0.166</td><td>0.042</td><td>0.037</td><td>-0.008</td><td>0.004</td><td>-0.008</td><td>0.098</td></td<>	CR-P	0.141	0.282	-0.122	0.071	-0.166	0.042	0.037	-0.008	0.004	-0.008	0.098
FEI	ТВ-Р	0.245	-0.004	0.105	0.165	-0.151	0.072	-0.001	0.007	0.010	-0.007	0.097
MUD 0.24 -0.013 -0.093 -0.166 0.148 0.071 -0.002 -0.006 -0.010 0.007 0.095 PFP 0.284 0.036 -0.016 0.037 0.019 0.084 0.005 -0.001 0.002 0.001 0.093 PUD 0.27 0 -0.026 -0.083 0.112 0.080 0.000 -0.002 -0.004 -0.002 0.005 0.002 0.083 Smoke 0.243 -0.028 -0.083 -0.065 -0.051 0.072 -0.004 -0.006 -0.004 -0.006 -0.004 -0.002 0.003 0.002 0.087 IR 0.172 0.179 -0.066 -0.013 -0.001 -0.001 -0.003 -0.002 0.087 LBW 0.203 0.059 -0.166 -0.113 -0.006 0.007 -0.011 -0.007 0.001 0.085 PCP-P -0.116 0.242 -0.023 -0.194 -0.126 -0.034 0	Obese	0.173	-0.159	-0.157	-0.011	-0.285	0.051	-0.021	-0.011	-0.001	-0.013	0.096
PFP 0.284 0.036 -0.016 0.037 0.019 0.084 0.005 -0.001 0.002 0.001 0.093 PUD 0.27 0 -0.026 -0.083 0.112 0.080 0.000 -0.002 -0.005 0.005 0.092 Smoke 0.243 -0.028 -0.083 -0.065 -0.051 0.072 -0.004 -0.006 -0.004 -0.002 0.087 IR 0.172 0.179 -0.046 -0.13 0.039 0.051 0.023 -0.003 -0.008 0.002 0.087 LBW 0.203 0.055 -0.166 -0.113 -0.006 0.007 -0.011 -0.007 0.001 -0.087 PS -0.16 -0.009 -0.199 -0.267 -0.156 -0.047 -0.001 -0.013 -0.016 -0.007 0.008 PCP-P -0.116 -0.242 -0.023 -0.194 -0.126 -0.034 0.031 -0.002 -0.011 -0.006 <td< td=""><td>FEI</td><td>-0.22</td><td>-0.133</td><td>-0.083</td><td>0.06</td><td>0.1</td><td>-0.065</td><td>-0.017</td><td>-0.006</td><td>0.004</td><td>0.005</td><td>0.096</td></td<>	FEI	-0.22	-0.133	-0.083	0.06	0.1	-0.065	-0.017	-0.006	0.004	0.005	0.096
PUD 0.27 0 -0.026 -0.083 0.112 0.080 0.000 -0.002 -0.005 0.005 0.092 Smoke 0.243 -0.028 -0.083 -0.065 -0.051 0.072 -0.004 -0.006 -0.004 -0.002 0.087 IR 0.172 0.179 -0.166 -0.13 0.039 0.051 0.023 -0.003 -0.008 0.002 0.087 LBW 0.203 0.055 -0.166 -0.113 -0.006 0.060 0.007 -0.011 -0.007 0.000 0.085 PCP-P -0.116 0.029 -0.267 -0.156 -0.047 -0.001 -0.013 -0.016 -0.007 0.085 PCP-P -0.116 0.242 -0.023 -0.194 -0.126 -0.034 -0.031 -0.001 -0.001 -0.007 0.085 WA -0.154 0.218 -0.084 -0.07 0.014 -0.045 0.028 -0.006 -0.04 0.001 <	MUD	0.24	-0.013	-0.093	-0.166	0.148	0.071	-0.002	-0.006	-0.010	0.007	0.095
Smoke 0.243 -0.028 -0.083 -0.065 -0.051 0.072 -0.004 -0.006 -0.004 -0.002 0.087 IR 0.172 0.179 -0.046 -0.13 0.039 0.051 0.023 -0.003 -0.008 0.002 0.087 LBW 0.203 0.055 -0.166 -0.113 -0.006 0.060 0.007 -0.011 -0.007 0.000 0.085 PS -0.16 -0.009 -0.199 -0.267 -0.156 -0.047 -0.001 -0.002 -0.007 0.085 PCP-P -0.116 0.242 -0.023 -0.194 -0.126 -0.034 0.031 -0.002 -0.011 -0.006 0.085 WA -0.154 0.218 -0.084 -0.07 0.014 -0.045 0.028 -0.006 -0.001 -0.083 SHP 0.081 0.325 0.036 0.035 0.282 0.024 0.042 0.002 0.001 0.083 Un	PFP	0.284	0.036	-0.016	0.037	0.019	0.084	0.005	-0.001	0.002	0.001	0.093
IR	PUD	0.27	0	-0.026	-0.083	0.112	0.080	0.000	-0.002	-0.005	0.005	0.092
LBW 0.203 0.055 -0.166 -0.113 -0.006 0.060 0.007 -0.011 -0.007 0.000 0.085 PS -0.16 -0.009 -0.199 -0.267 -0.156 -0.047 -0.001 -0.013 -0.016 -0.007 0.085 PCP-P -0.116 0.242 -0.023 -0.194 -0.126 -0.034 0.031 -0.002 -0.011 -0.006 0.085 WA -0.154 0.218 -0.084 -0.07 0.014 -0.045 0.028 -0.006 -0.004 0.001 0.084 SHP 0.081 0.325 0.036 0.035 0.282 0.024 0.042 0.002 0.002 0.013 0.084 IDR-P 0.147 -0.06 0.297 -0.166 -0.04 0.043 -0.008 0.020 -0.007 0.009 0.083 Unem 0.183 0.06 0.071 -0.125 0.184 0.054 0.006 0.007 0.002 0.08	Smoke	0.243	-0.028	-0.083	-0.065	-0.051	0.072	-0.004	-0.006	-0.004	-0.002	0.087
PS	IR	0.172	0.179	-0.046	-0.13	0.039	0.051	0.023	-0.003	-0.008	0.002	0.087
PCP-P -0.116 0.242 -0.023 -0.194 -0.126 -0.034 0.031 -0.002 -0.011 -0.006 0.085 WA -0.154 0.218 -0.084 -0.07 0.014 -0.045 0.028 -0.006 -0.004 0.001 0.084 SHP 0.081 0.325 0.036 0.035 0.282 0.024 0.042 0.002 0.002 0.013 0.084 IDR-P 0.147 -0.06 0.297 -0.166 -0.04 0.043 -0.008 0.020 -0.010 -0.002 0.083 Unem 0.183 0.06 0.071 -0.125 0.184 0.054 0.008 0.005 -0.007 0.009 0.083 ED -0.219 0.083 0.001 0.06 -0.034 -0.065 0.011 0.000 0.004 -0.002 0.081 PHO -0.053 -0.369 0.098 -0.064 0.126 -0.016 -0.048 0.007 -0.004 0.006 </td <td>LBW</td> <td>0.203</td> <td>0.055</td> <td>-0.166</td> <td>-0.113</td> <td>-0.006</td> <td>0.060</td> <td>0.007</td> <td>-0.011</td> <td>-0.007</td> <td>0.000</td> <td>0.085</td>	LBW	0.203	0.055	-0.166	-0.113	-0.006	0.060	0.007	-0.011	-0.007	0.000	0.085
WA -0.154 0.218 -0.084 -0.07 0.014 -0.045 0.028 -0.006 -0.004 0.001 0.084 SHP 0.081 0.325 0.036 0.035 0.282 0.024 0.042 0.002 0.002 0.013 0.084 IDR-P 0.147 -0.06 0.297 -0.166 -0.04 0.043 -0.008 0.020 -0.010 -0.002 0.083 Unem 0.183 0.06 0.071 -0.125 0.184 0.054 0.008 0.005 -0.007 0.009 0.083 ED -0.219 0.083 0.001 0.06 -0.034 -0.065 0.011 0.000 0.004 -0.002 0.081 PHO -0.053 -0.369 0.098 -0.064 0.126 -0.016 -0.048 0.007 -0.004 0.006 0.080 AR-P -0.064 -0.125 0.158 -0.173 -0.504 -0.019 -0.016 0.011 -0.010 -0.004 <td>PS</td> <td>-0.16</td> <td>-0.009</td> <td>-0.199</td> <td>-0.267</td> <td>-0.156</td> <td>-0.047</td> <td>-0.001</td> <td>-0.013</td> <td>-0.016</td> <td>-0.007</td> <td>0.085</td>	PS	-0.16	-0.009	-0.199	-0.267	-0.156	-0.047	-0.001	-0.013	-0.016	-0.007	0.085
SHP 0.081 0.325 0.036 0.035 0.282 0.024 0.042 0.002 0.002 0.013 0.084 IDR-P 0.147 -0.06 0.297 -0.166 -0.04 0.043 -0.008 0.020 -0.010 -0.002 0.083 Unem 0.183 0.06 0.071 -0.125 0.184 0.054 0.008 0.005 -0.007 0.009 0.083 ED -0.219 0.083 0.001 0.06 -0.034 -0.065 0.011 0.000 0.004 -0.002 0.081 PHO -0.053 -0.369 0.098 -0.064 0.126 -0.016 -0.048 0.007 -0.004 0.006 0.080 AR-P -0.064 -0.125 0.158 -0.173 -0.504 -0.019 -0.016 0.011 -0.010 -0.024 0.080 Dent-P -0.107 0.273 -0.023 -0.106 -0.089 -0.032 0.035 -0.002 -0.006 -0	PCP-P	-0.116	0.242	-0.023	-0.194	-0.126	-0.034	0.031	-0.002	-0.011	-0.006	0.085
IDR-P	WA	-0.154	0.218	-0.084	-0.07	0.014	-0.045	0.028	-0.006	-0.004	0.001	0.084
Unem 0.183 0.06 0.071 -0.125 0.184 0.054 0.008 0.005 -0.007 0.009 0.083 ED -0.219 0.083 0.001 0.06 -0.034 -0.065 0.011 0.000 0.004 -0.002 0.081 PHO -0.053 -0.369 0.098 -0.064 0.126 -0.016 -0.048 0.007 -0.004 0.006 0.080 AR-P -0.064 -0.125 0.158 -0.173 -0.504 -0.019 -0.016 0.011 -0.010 -0.024 0.080 Dent-P -0.107 0.273 -0.023 -0.106 -0.089 -0.032 0.035 -0.002 -0.006 -0.004 0.079 Unis 0.147 0.024 0.223 0.283 -0.002 0.043 0.003 0.015 0.017 0.000 0.078 PHR-P 0.163 -0.084 -0.143 0.029 -0.125 0.048 -0.011 -0.010 0.002 <t< td=""><td>SHP</td><td>0.081</td><td>0.325</td><td>0.036</td><td>0.035</td><td>0.282</td><td>0.024</td><td>0.042</td><td>0.002</td><td>0.002</td><td>0.013</td><td>0.084</td></t<>	SHP	0.081	0.325	0.036	0.035	0.282	0.024	0.042	0.002	0.002	0.013	0.084
ED	IDR-P	0.147	-0.06	0.297	-0.166	-0.04	0.043	-0.008	0.020	-0.010	-0.002	0.083
PHO -0.053 -0.369 0.098 -0.064 0.126 -0.016 -0.048 0.007 -0.004 0.006 0.080 AR-P -0.064 -0.125 0.158 -0.173 -0.504 -0.019 -0.016 0.011 -0.010 -0.024 0.080 Dent-P -0.107 0.273 -0.023 -0.106 -0.089 -0.032 0.035 -0.002 -0.006 -0.004 0.079 Unis 0.147 0.024 0.223 0.283 -0.002 0.043 0.003 0.015 0.017 0.000 0.078 PHR-P 0.163 -0.084 -0.143 0.029 -0.125 0.048 -0.011 -0.010 0.002 -0.006 0.076 PV -0.133 0.03 -0.377 -0.101 0.012 -0.039 0.004 -0.025 -0.006 0.001 0.075 POS -0.007 -0.2 0.256 -0.468 0.032 -0.002 -0.026 0.017 -0.028	Unem	0.183	0.06	0.071	-0.125	0.184	0.054	0.008	0.005	-0.007	0.009	0.083
AR-P	ED	-0.219	0.083	0.001	0.06	-0.034	-0.065	0.011	0.000	0.004	-0.002	0.081
Dent-P -0.107 0.273 -0.023 -0.106 -0.089 -0.032 0.035 -0.002 -0.006 -0.004 0.079 Unis 0.147 0.024 0.223 0.283 -0.002 0.043 0.003 0.015 0.017 0.000 0.078 PHR-P 0.163 -0.084 -0.143 0.029 -0.125 0.048 -0.011 -0.010 0.002 -0.006 0.076 PV -0.133 0.03 -0.377 -0.101 0.012 -0.039 0.004 -0.025 -0.006 0.001 0.075 POS -0.007 -0.2 0.256 -0.468 0.032 -0.002 -0.026 0.017 -0.028 0.002 0.074 VCR-P 0.103 0.21 -0.143 -0.026 -0.093 0.030 0.027 -0.010 -0.002 -0.004 0.073 PLC 0.031 -0.165 -0.211 0.026 0.487 0.009 -0.021 -0.014 0.002 <	PHO	-0.053	-0.369	0.098	-0.064	0.126	-0.016	-0.048	0.007	-0.004	0.006	0.080
Unis 0.147 0.024 0.223 0.283 -0.002 0.043 0.003 0.015 0.017 0.000 0.078 PHR-P 0.163 -0.084 -0.143 0.029 -0.125 0.048 -0.011 -0.010 0.002 -0.006 0.076 PV -0.133 0.03 -0.377 -0.101 0.012 -0.039 0.004 -0.025 -0.006 0.001 0.075 POS -0.007 -0.2 0.256 -0.468 0.032 -0.002 -0.026 0.017 -0.028 0.002 0.074 VCR-P 0.103 0.21 -0.143 -0.026 -0.093 0.030 0.027 -0.010 -0.002 -0.004 0.073 PDA 0.042 -0.222 -0.314 -0.046 -0.169 0.012 -0.029 -0.021 -0.003 -0.008 0.073 PLC 0.031 -0.165 -0.211 0.026 0.487 0.009 -0.021 -0.014 0.002	AR-P	-0.064	-0.125	0.158	-0.173	-0.504	-0.019	-0.016	0.011	-0.010	-0.024	0.080
PHR-P 0.163 -0.084 -0.143 0.029 -0.125 0.048 -0.011 -0.010 0.002 -0.006 0.076 PV -0.133 0.03 -0.377 -0.101 0.012 -0.039 0.004 -0.025 -0.006 0.001 0.075 POS -0.007 -0.2 0.256 -0.468 0.032 -0.002 -0.026 0.017 -0.028 0.002 0.074 VCR-P 0.103 0.21 -0.143 -0.026 -0.093 0.030 0.027 -0.010 -0.002 -0.004 0.073 PDA 0.042 -0.222 -0.314 -0.046 -0.169 0.012 -0.029 -0.021 -0.003 -0.008 0.073 PLC 0.031 -0.165 -0.211 0.026 0.487 0.009 -0.021 -0.014 0.002 0.023 0.069 ADPM 0.073 -0.06 -0.458 0.014 0.08 0.022 -0.008 -0.031 0.001 <td< td=""><td>Dent-P</td><td>-0.107</td><td>0.273</td><td>-0.023</td><td>-0.106</td><td>-0.089</td><td>-0.032</td><td>0.035</td><td>-0.002</td><td>-0.006</td><td>-0.004</td><td>0.079</td></td<>	Dent-P	-0.107	0.273	-0.023	-0.106	-0.089	-0.032	0.035	-0.002	-0.006	-0.004	0.079
PV -0.133 0.03 -0.377 -0.101 0.012 -0.039 0.004 -0.025 -0.006 0.001 0.075 POS -0.007 -0.2 0.256 -0.468 0.032 -0.002 -0.026 0.017 -0.028 0.002 0.074 VCR-P 0.103 0.21 -0.143 -0.026 -0.093 0.030 0.027 -0.010 -0.002 -0.004 0.073 PDA 0.042 -0.222 -0.314 -0.046 -0.169 0.012 -0.029 -0.021 -0.003 -0.008 0.073 PLC 0.031 -0.165 -0.211 0.026 0.487 0.009 -0.021 -0.014 0.002 0.023 0.069 ADPM 0.073 -0.06 -0.458 0.014 0.08 0.022 -0.008 -0.031 0.001 0.004 0.065 PUE 0.044 0.056 -0.002 0.544 -0.2 0.013 0.007 0.000 0.032 -0.009<	Unis	0.147	0.024	0.223	0.283	-0.002	0.043	0.003	0.015	0.017	0.000	0.078
POS -0.007 -0.2 0.256 -0.468 0.032 -0.002 -0.026 0.017 -0.028 0.002 0.074 VCR-P 0.103 0.21 -0.143 -0.026 -0.093 0.030 0.027 -0.010 -0.002 -0.004 0.073 PDA 0.042 -0.222 -0.314 -0.046 -0.169 0.012 -0.029 -0.021 -0.003 -0.008 0.073 PLC 0.031 -0.165 -0.211 0.026 0.487 0.009 -0.021 -0.014 0.002 0.023 0.069 ADPM 0.073 -0.06 -0.458 0.014 0.08 0.022 -0.008 -0.031 0.001 0.004 0.065 PUE 0.044 0.056 -0.002 0.544 -0.2 0.013 0.007 0.000 0.032 -0.009 -0.012 MHP-P -0.04 0.277 0.057 -0.156 -0.011 -0.012 0.036 0.004 -0.009 -0.	PHR-P	0.163	-0.084	-0.143	0.029	-0.125	0.048	-0.011	-0.010	0.002	-0.006	0.076
VCR-P 0.103 0.21 -0.143 -0.026 -0.093 0.030 0.027 -0.010 -0.002 -0.004 0.073 PDA 0.042 -0.222 -0.314 -0.046 -0.169 0.012 -0.029 -0.021 -0.003 -0.008 0.073 PLC 0.031 -0.165 -0.211 0.026 0.487 0.009 -0.021 -0.014 0.002 0.023 0.069 ADPM 0.073 -0.06 -0.458 0.014 0.08 0.022 -0.008 -0.031 0.001 0.004 0.065 PUE 0.044 0.056 -0.002 0.544 -0.2 0.013 0.007 0.000 0.032 -0.009 0.062 MHP-P -0.04 0.277 0.057 -0.156 -0.011 -0.012 0.036 0.004 -0.009 -0.001 0.061 GR -0.058 -0.232 -0.114 0.049 -0.042 -0.017 -0.030 -0.008 0.003 -	PV	-0.133	0.03	-0.377	-0.101	0.012	-0.039	0.004	-0.025	-0.006	0.001	0.075
PDA 0.042 -0.222 -0.314 -0.046 -0.169 0.012 -0.029 -0.021 -0.003 -0.008 0.073 PLC 0.031 -0.165 -0.211 0.026 0.487 0.009 -0.021 -0.014 0.002 0.023 0.069 ADPM 0.073 -0.06 -0.458 0.014 0.08 0.022 -0.008 -0.031 0.001 0.004 0.065 PUE 0.044 0.056 -0.002 0.544 -0.2 0.013 0.007 0.000 0.032 -0.009 0.062 MHP-P -0.04 0.277 0.057 -0.156 -0.011 -0.012 0.036 0.004 -0.009 -0.001 0.061 GR -0.058 -0.232 -0.114 0.049 -0.042 -0.017 -0.030 -0.008 0.003 -0.002 0.060	POS	-0.007	-0.2	0.256	-0.468	0.032	-0.002	-0.026	0.017	-0.028	0.002	0.074
PLC 0.031 -0.165 -0.211 0.026 0.487 0.009 -0.021 -0.014 0.002 0.023 0.069 ADPM 0.073 -0.06 -0.458 0.014 0.08 0.022 -0.008 -0.031 0.001 0.004 0.065 PUE 0.044 0.056 -0.002 0.544 -0.2 0.013 0.007 0.000 0.032 -0.009 0.062 MHP-P -0.04 0.277 0.057 -0.156 -0.011 -0.012 0.036 0.004 -0.009 -0.001 0.061 GR -0.058 -0.232 -0.114 0.049 -0.042 -0.017 -0.030 -0.008 0.003 -0.002 0.060	VCR-P	0.103	0.21	-0.143	-0.026	-0.093	0.030	0.027	-0.010	-0.002	-0.004	0.073
ADPM 0.073 -0.06 -0.458 0.014 0.08 0.022 -0.008 -0.031 0.001 0.004 0.065 PUE 0.044 0.056 -0.002 0.544 -0.2 0.013 0.007 0.000 0.032 -0.009 0.062 MHP-P -0.04 0.277 0.057 -0.156 -0.011 -0.012 0.036 0.004 -0.009 -0.001 0.061 GR -0.058 -0.232 -0.114 0.049 -0.042 -0.017 -0.030 -0.008 0.003 -0.002 0.060	PDA	0.042	-0.222	-0.314	-0.046	-0.169	0.012	-0.029	-0.021	-0.003	-0.008	0.073
PUE 0.044 0.056 -0.002 0.544 -0.2 0.013 0.007 0.000 0.032 -0.009 0.062 MHP-P -0.04 0.277 0.057 -0.156 -0.011 -0.012 0.036 0.004 -0.009 -0.001 0.061 GR -0.058 -0.232 -0.114 0.049 -0.042 -0.017 -0.030 -0.008 0.003 -0.002 0.060	PLC	0.031	-0.165	-0.211	0.026	0.487	0.009	-0.021	-0.014	0.002	0.023	0.069
MHP-P -0.04 0.277 0.057 -0.156 -0.011 -0.012 0.036 0.004 -0.009 -0.001 0.061 GR -0.058 -0.232 -0.114 0.049 -0.042 -0.017 -0.030 -0.008 0.003 -0.002 0.060	ADPM	0.073	-0.06	-0.458	0.014	0.08	0.022	-0.008	-0.031	0.001	0.004	0.065
GR -0.058 -0.232 -0.114 0.049 -0.042 -0.017 -0.030 -0.008 0.003 -0.002 0.060	PUE	0.044	0.056	-0.002	0.544	-0.2	0.013	0.007	0.000	0.032	-0.009	0.062
	MHP-P	-0.04	0.277	0.057	-0.156	-0.011	-0.012	0.036	0.004	-0.009	-0.001	0.061
Al -0.014 0.029 0.12 -0.099 0.058 -0.004 0.004 0.008 -0.006 0.003 0.025	GR	-0.058	-0.232	-0.114	0.049	-0.042	-0.017	-0.030	-0.008	0.003	-0.002	0.060
	Al	-0.014	0.029	0.12	-0.099	0.058	-0.004	0.004	0.008	-0.006	0.003	0.025

Figure 36: PCA Results

From the PCA (principal component analysis) results, we extracted PC1 through PC5, which represent 60% of the variance in the target variable, YPLL. Then we multiplied this by the weights of each PC to generate the values for columns PC1.a to PC5. a. The PCs are weighted as follows, by proportion of variance it explains. Then we calculated the sum of proportion each feature explains, by summing the absolute value of columns PC1.a to PC5.a. The table above is sorted by the sum column so the features at the top add the most value. They are % Physically Inactive (PI), % Single-Parent

PC#	Proportion of Variance
PC 1	0.295
PC 2	0.13
PC3	0.067
PC 4	0.059
PC 5	0.047

Households (SPH), % Some College (SC), % Children in Poverty (CIP), Chlamydia Rate (CR), Teen Birth Rate (TB), Obese, Food Environment Index (FEI), Mentally Unhealthy Days (MUD), Percentage of adults that report fair or poor health (PFP) and Physically Unhealthy Days (PUD).

Clustering

First, we did an unsupervised clustering exercise to see if there were natural clusters in the data. We used clustering (k-means) with "measure types" set to "Numerical Measures" and "numerical measure" set to "Euclidean Distance". We selected these options because we are using the dataset with the normalized values and generated features as described above. Since our goal is to classify each county as Low Risk or High Risk for high YPLL, we set the number of clusters equal to 2 to see how the dataset forms only 2 clusters.

Figure 37: Creation of Clustering process flow

The results are as follows:

Figure 38: Clustering Graph

Figure 39: Clustering Results

From these results we see that PFP (% Fair/Poor Health), CIP (% Children in Poverty), and TB (Teen Birth Rate) were used to differentiate the clusters, and that on average these 3 values are at least 30% larger in Cluster 0, and around 30% smaller in Cluster 1.

Now, we do the clustering exercise again, adding the YPLL as a feature and get similar results:

Figure 40: Clustering Results

We received consistent results in both Figure 38 and 39. Thus, confirming our results achieved from our Classification Analysis.

Decision Tree – Best Model Performance – Accuracy

SI	Parameters	Accuracy(%)	Ref.
1	Default Parameters (Figure 41)	83.37	Fig. 42
2	Disabled Apply Pre-pruning button with everything else remaining same	83.14	Fig. 43
3	Disabled Apply Pre-pruning button and increased the Maximal Depth to 15 and Confidence to 0.2	82.68	Fig. 44
4	Disabled Apply Pre-pruning button and increased the Maximal Depth to 20	82.91	Fig. 45
5	Disabled Apply Pre-pruning button and decreased the Maximal Depth to 7	84.86	Fig. 46
6	Disabled Apply Pre-pruning button and decreased the Maximal Depth to 5	84.17	Fig. 47

Table 7: Decision Tree - Best Model Performance - Accuracy

Decision Tree – Best Model Performance – F-Measure

SI	Parameters	F-Measure(%)	Ref.
1	Default Parameters (Figure 41)	83.54	Fig. 42
2	Disabled Apply Pre-pruning button with everything else remaining same	83.24	Fig. 43
3	Disabled Apply Pre-pruning button and increased the Maximal Depth to 15 and Confidence to 0.2	82.82	Fig. 44
4	Disabled Apply Pre-pruning button and increased the Maximal Depth to 20	83.05	Fig. 45
5	Disabled Apply Pre-pruning button and decreased the Maximal Depth to 7	84.90	Fig. 46
6	Disabled Apply Pre-pruning button and decreased the Maximal Depth to 5	83.65	Fig. 47

Table 8: Decision Tree - Best Model Performance - F-Measure

Logistic Regression – Best Model Performance – Accuracy

SI	Parameters	Accuracy(%)	Ref.
1	Default Parameters (Figure 48)	90.25	Fig. 49
2	With Reproducible enabled	90.25	Fig. 50
3	With maximum number of threads increased to 10	90.25	Fig. 51
4	With maximum number of threads increased to 15	90.25	Fig. 52

Table 9: Logistic Regression - Best Model Performance - Accuracy

Logistic Regression – Best Model Performance – F-Measure

SI	Parameters	F-Measure(%)	Ref.
1	Default Parameters (Figure 48)	90.24	Fig. 49
2	With Reproducible enabled	90.24	Fig. 50
3	With maximum number of threads increased to 10	90.24	Fig. 51
4	With maximum number of threads increased to 15	90.24	Fig. 52

Table 10: Logistic Regression - Best Model Performance - F-Measure

Naïve Bayes – Best Model Performance – Accuracy

SI	Parameters	Accuracy(%)	Ref.
1	Default Parameters (Figure 53)	83.94	Fig. 54
2	Displaced Laplace correction	83.94	Fig. 55

Table 11: Naive Bayes - Best Model Performance - Accuracy

Naïve Bayes - Best Model Performance - F-Measure

SI	Parameters	F-Measure(%)	Ref.
1	Default Parameters (Figure 53)	84.72	Fig. 54
2	Displaced Laplace correction	84.72	Fig. 55

Table 12: Naive Bayes - Best Model Performance - F-Measure

Gradient Boosted Trees – Best Model Performance – Accuracy

SI	Parameters	Accuracy(%)	Ref.
1	Default Parameters (Figure 56)	88.53	Fig. 57
2	Increased the number of trees from 100 to 125	88.99	Fig. 58
3	Increased the number of trees from 125 to 150	89.22	Fig. 59
4	Increased the number of trees from 150 to 200	89.33	Fig. 60
5	Increased the number of trees from 200 to 225	89.22	Fig. 61

Table 13: Gradient Boosted Trees - Best Model Performance - Accuracy

Gradient Boosted Trees – Best Model Performance – F-Measure

SI	Parameters	F-Measure(%)	Ref.
1	Default Parameters (Figure 56)	88.61	Fig. 57
2	Increased the number of trees from 100 to 125	88.97	Fig. 58
3	Increased the number of trees from 125 to 150	89.17	Fig. 59
4	Increased the number of trees from 150 to 200	89.47	Fig. 60
5	Increased the number of trees from 200 to 225	89.39	Fig. 61

Table 14: Gradient Boosted Trees - Best Model Performance - F-Measure

Deep Learning – Best Model Performance – Accuracy

SI	Parameters	Accuracy(%)	Ref.
1	Default Parameters (Figure 62)	89.91	Fig. 63
2	Changed the Activation function from Rectifier to Tanh	89.68	Fig. 64
3	Changed the Activation function from Rectifier to Maxout	89.33	Fig. 65
4	Changed the Activation function from Maxout to ExpRectifier	90.14	Fig. 66
5	Changed the Epochs from 10 to 15	90.02	Fig. 67
6	Changed the Epochs from 10 to 7	89.11	Fig. 68

Table 15: Deep Learning - Best Model Performance - Accuracy

Deep Learning – Best Model Performance – F-Measure

SI	Parameters	F-Measure(%)	Ref.
1	Default Parameters (Figure 62)	89.86	Fig. 63
2	Changed the Activation function from Rectifier to Tanh	89.91	Fig. 64
3	Changed the Activation function from Rectifier to Maxout	89.30	Fig. 65
4	Changed the Activation function from Maxout to ExpRectifier	90.09	Fig. 66
5	Changed the Epochs from 10 to 15	90.01	Fig. 67
6	Changed the Epochs from 10 to 7	89.46	Fig. 68

Table 16: Gradient Boosted Trees - Best Model Performance - F-Measure

Rule Induction – Best Model Performance – Accuracy

SI	Parameters	Accuracy(%)	Ref.
1	Default Parameters (Figure 69)	84.63	Fig. 70
2	Changed the sample ratio from 0.9 to 0.95	83.94	Fig. 71
3	Changed the sample ratio from 0.9 to 0.85	85.89	Fig. 72
4	Changed the sample ratio from 0.9 to 0.8	86.01	Fig. 73
5	Changed the sample ratio from 0.9 to 0.75	84.40	Fig. 74
6	Changed the minimal prune benefit from 0.25 to 0.3	85.67	Fig. 75
7	Changed the minimal prune benefit from 0.25 to 0.2	84.40	Fig. 76

Table 17: Rule Induction - Best Model Performance - Accuracy

Rule Induction – Best Model Performance – F-Measure

SI	Parameters	F-Measure(%)	Ref.
1	Default Parameters (Figure 69)	84.53	Fig. 70
2	Changed the sample ratio from 0.9 to 0.95	83.72	Fig. 71
3	Changed the sample ratio from 0.9 to 0.85	85.91	Fig. 72
4	Changed the sample ratio from 0.9 to 0.8	85.98	Fig. 73
5	Changed the sample ratio from 0.9 to 0.75	83.69	Fig. 74
6	Changed the minimal prune benefit from 0.25 to 0.3	85.35	Fig. 75
7	Changed the minimal prune benefit from 0.25 to 0.2	83.69	Fig. 76

Table 18: Rule Induction - Best Model Performance - F-Measure

Model Building

Based on Tables 7-18, the best models are as follows:

SI	Models	Accuracy(%)	Ref.
1	Decision Tree	84.86	Fig. 46
2	Logistic Regression	90.25	Fig. 52
3	Naïve Bayes	83.94	Fig. 54
4	Gradient Boosted Trees	89.33	Fig. 60
5	Deep Learning	90.14	Fig. 66
6	Rule Induction	85.98	Fig. 73

Table 19: Comparison of Models - Accuracy

SI	Models	F-Measure(%)	Ref.
1	Decision Tree	84.90	Fig. 46
2	Logistic Regression	90.24	Fig. 52
3	Naïve Bayes	84.72	Fig. 54
4	Gradient Boosted Trees	89.47	Fig. 60
5	Deep Learning	90.09	Fig. 66
6	Rule Induction	86.01	Fig. 73

Based on Table 19-20, the best models are Logistic Regression, Gradient Boosted Trees and Deep Learning.

Analysis and Recommendations

Death rates from dozens of causes have been rising over the past decade for young and middle-aged adults, driving down overall life expectancy in the United States. Our initial expectations led us to believe that YPLL would be significantly determined by mostly health and healthcare related attributes. We were surprised to learn that socioeconomic factors are just as determinant.

During our study of this dataset, there were certain parameters that recurred more often in that they appear to be of importance regardless of our modeling approach. Some of these are Food Environment Index (FEI), PFP (% Fair/Poor Health), CIP (% Children in Poverty), and TB (Teen Birth Rate). Most of these attributes are socio-economic issues that would presumably give way to actual health problems, all of which amalgamates to an alarming reversal of historical patterns in human longevity. Despite spending more on health care than any other country, the United States has seen increasing mortality and falling life expectancy for people age 25 to 64, which is in contrast to other "wealthy" nations.

People are less likely to live longer if they are poor, get little exercise and lack access to health care. The quality and availability of that health care has a significant effect on health outcomes. Smoking, physical inactivity, obesity, high blood pressure are all preventable risk factors that are not directly addressed in the way that the United States currently delivers it's healthcare, which will have reverberations in future generations. The government and associated governing bodies need to rethink how we deliver medical care in this country, with a much greater investment in prevention and a more holistic approach to creating healthy communities that are free of preventable health related drivers like food deserts.

Our analysis unfortunately cannot take all things into account, such as whether there exists a causality between this trend and the ongoing opioid epidemic as well as other possible environmental drivers. Regardless, our analysis of this data points to a larger overall erosion of the health of Americans.

Appendix

County Health Attributes Description

SI	Data Elements	Code	Description	
1	FIPS	FIPS	Federal Information Processing Standard	
2	State	State		
3	County	County		
4	Years of Potential Life Lost Rate	YPPL	Age-adjusted YPLL rate per 100,000	
5	% Fair/Poor	PFP	Percentage of adults that report fair or poor health	
6	Physically Unhealthy Days	PUD	Average number of reported physically unhealthy days per month	
7	Mentally Unhealthy Days	MUD	Average number of reported mentally unhealthy days per month	
8	% LBW	LBW	Percentage of births with low birth weight (<2500g)	
9	% Smokers	Smoke	Percentage of adults that reported currently smoking	
10	% Obese	Obese	Percentage of adults that report BMI >= 30	
11	Food Environment Index	FEI	Indicator of access to healthy foods - 0 is worst, 10 is best	
12	% Physically Inactive	PI	Percentage of adults that report no leisure-time physical activity	
13	% With Access	WA	Percentage of the population with access to places for physical activity	
14	% Excessive Drinking	ED	Percentage of adults that report excessive drinking	
15	% Alcohol-Impaired	AI	Percentage of driving deaths with alcohol involvement	
16	Chlamydia Rate	CR	Chlamydia cases per 100,000 population	
17	Teen Birth Rate	ТВ	Births per 1,000 females ages 15-19	
18	% Uninsured	Unis	Percentage of people under age 65 without insurance	
19	PCP Rate	PCP	Primary Care Physicians per 100,000 population	
20	Dentist Rate	Dent	Dentists per 100,000 population	
21	MHP Rate	МНР	Mental Health Providers per 100,000 population	
22	Preventable Hosp. Rate	PHR	Discharges for Ambulatory Care Sensitive Conditions per 100,000 Medicare Enrollees	
23	% Screened	PS	Percentage of female Medicare enrollees having an annual mammogram (age 65-74)	

24	% Vaccinated	PV	Percentage of annual Medicare enrollees having an annual flu vaccination
25	Graduation Rate	GR	Graduation rate
26	% Some College	sc	Percentage of adults age 25-44 with some post- secondary education
27	% Unemployed	Unem	Percentage of population ages 16+ unemployed and looking for work
28	% Children in Poverty	CIP	Percentage of children (under age 18) living in poverty
29	Income Ratio	IR	Ratio of household income at the 80th percentile to income at the 20th percentile
30	% Single-Parent Households	SPH	Percentage of children that live in single-parent households
31	Association Rate	AR	Associations per 10,000 population
32	Violent Crime Rate	VCR	Violent crimes per 100,000 population
33	Injury Death Rate	IDR	Injury mortality rate per 100,000
34	Average Daily PM2.5	ADPM	Average daily amount of fine particulate matter in micrograms per cubic meter
35	Presence of violation	POV	County affected by a water violation: 1-Yes, 0-No
36	% Severe Housing Problems	SHP	Percentage of households with at least 1 of 4 housing problems: overcrowding, high housing costs, or lack of kitchen or plumbing facilities
37	% Drive Alone	PDA	Percentage of workers who drive alone to work
38	% Long Commute - Drives Alone	PLC	Among workers who commute in their car alone, the percentage that commute more than 30 minutes
39	% Homeowners	PHO	Percentage of population Home Owners
40	% < 18	PUE	Percentage of population Under 18
41	% 65 and over	POS	Percentage of population over 65

Note: Our target variable at SI 4 above highlighted in yellow

Decision Tree - Default Parameters

Figure 41: Decision Tree - Default Parameters

accuracy: 83.37%

	true HighRisk	true LowRisk	class precision
pred. HighRisk	359	68	84.07%
pred. LowRisk	77	368	82.70%
class recall	82.34%	84.40%	

Figure 42: Decision Tree - Model Performance - Default Parameters

Accuracy	Precision	Recall	F-Measure
83.37%	82.70%	84.40%	83.54%

Decision Tree - Disabled Apply Pre-pruning button with everything else remaining same - Performanc**e**

accuracy: 83.14%

	true HighRisk	true LowRisk	class precision
pred. HighRisk	360	71	83.53%
pred. LowRisk	76	365	82.77%
class recall	82.57%	83.72%	

<u>Figure 43: Decision Tree - Disabled Apply Pre-pruning button with everything else remaining same - Performance</u>

Accuracy	Precision	Recall	F-Measure
83.14%	82.77%	83.72%	83.24%

Decision Tree - Disabled Apply Pre-pruning button and increased the Maximal Depth to 15 and Confidence to 0.2 - Performance

	true HighRisk	true LowRisk	class precision
pred. HighRisk	357	72	83.22%
pred. LowRisk	79	364	82.17%
class recall	81.88%	83.49%	

<u>Figure 44: Decision Tree - Disabled Apply Pre-pruning button and increased the Maximal Depth to 15 and Confidence to 0.2 – Performance</u>

Accuracy	Precision	Recall	F-Measure
82.68%	82.17%	83.49%	82.82%

Decision Tree - Disabled Apply Pre-pruning button and increased the Maximal Depth to 20 - Performance

accuracy: 82.91%

	true HighRisk	true LowRisk	class precision
pred. HighRisk	358	71	83.45%
pred. LowRisk	78	365	82.39%
class recall	82.11%	83.72%	

<u>Figure 45: Decision Tree - Disabled Apply Pre-pruning button and increased the Maximal Depth to 20 - Performance</u>

Accuracy	Precision	Recall	F-Measure
82.91%	82.39%	83.72%	83.05%

Decision Tree - Disabled Apply Pre-pruning button and decreased the Maximal Depth to 7 - Performance

accuracy: 84.86%

	true HighRisk	true LowRisk	class precision
pred. HighRisk	369	65	85.02%
pred. LowRisk	67	371	84.70%
class recall	84.63%	85.09%	

<u>Figure 46: Decision Tree - Disabled Apply Pre-pruning button and decreased the Maximal Depth to 7 - Performance</u>

Accuracy	Precision	Recall	F-Measure
84.86%	84.70%	85.09%	84.90%

Decision Tree - Disabled Apply Pre-pruning button and decreased the Maximal Depth to 5 - Performance

accuracy: 84.17%				
	true HighRisk	true LowRisk	class precision	
pred. HighRisk	381	83	82.11%	
pred. LowRisk	55	353	86.52%	
class recall	87.39%	80.96%		

<u>Figure 47: Decision Tree - Disabled Apply Pre-pruning button and decreased the Maximal Depth to 5 – Performance</u>

Accuracy	Precision	Recall	F-Measure
84.17%	86.52%	80.96%	83.65%

Logistic Regression - Default Parameters

Figure 48: Logistic Regression - Default Parameters

accuracy: 90.25%

	true HighRisk	true LowRisk	class precision
pred. HighRisk	394	43	90.16%
pred. LowRisk	42	393	90.34%
class recall	90.37%	90.14%	

Figure 49: Logistic Regression - Model Performance - Default Parameters

Accuracy	Precision	Recall	F-Measure
90.25%	90.34%	90.14%	90.24%

Logistic Regression - With Reproducible enabled

ассигасу: 90.25%

	true HighRisk	true LowRisk	class precision
pred. HighRisk	394	43	90.16%
pred. LowRisk	42	393	90.34%
class recall	90.37%	90.14%	

Figure 50: Logistic Regression - With Reproducible enabled

Accuracy	Precision	Recall	F-Measure
90.25%	90.34%	90.14%	90.24%

Logistic Regression - With maximum number of threads increased to 10

accuracy: 90.25%

	true HighRisk	true LowRisk	class precision
pred. HighRisk	394	43	90.16%
pred. LowRisk	42	393	90.34%
class recall	90.37%	90.14%	

Figure 51: Logistic Regression - With maximum number of threads increased to 10

Accuracy	Precision	Recall	F-Measure
90.25%	90.34%	90.14%	90.24%

Logistic Regression - With maximum number of threads increased to 15

accuracy: 90.25%				
	true HighRisk	true LowRisk	class precision	
pred. HighRisk	394	43	90.16%	
pred. LowRisk	42	393	90.34%	
class recall	90.37%	90.14%		

Figure 52: Logistic Regression - With maximum number of threads increased to 15

Accuracy	Precision	Recall	F-Measure
90.25%	90.34%	90.14%	90.24%

According to Figure 54, the optimum model should have a maximum number of threads of 15.

Naive Bayes - Default Parameters

Figure 53: Naive Bayes - Default Parameters

accuracy: 83.94%				
	true HighRisk	true LowRisk	class precision	
pred. HighRisk	344	48	87.76%	
pred. LowRisk	92	388	80.83%	
class recall	78.90%	88.99%		

Figure 54: Naive Bayes - Model Performance - Default Parameters

Accuracy	Precision	Recall	F-Measure
83.94%	80.83%	88.99%	84.72%

Naive Bayes - Disabled Laplace correction

accuracy: 83.94%

	true HighRisk	true LowRisk	class precision
pred. HighRisk	344	48	87.76%
pred. LowRisk	92	388	80.83%
class recall	78.90%	88.99%	

Figure 55: Naive Bayes - Disabled Laplace correction

Accuracy	Precision	Recall	F-Measure
83.94%	80.83%	88.99%	84.72%

Gradient Boosted Trees - Default Parameters

Figure 56: Gradient Boosted Trees - Default Parameters

accuracy: 88.53%

	true HighRisk	true LowRisk	class precision
pred. HighRisk	383	47	89.07%
pred. LowRisk	53	389	88.01%
class recall	87.84%	89.22%	

Figure 57: Gradient Boosted Trees - Model Performance - Default Parameters

Accuracy	Precision	Recall	F-Measure
88.53%	88.01%	89.22%	88.61%

Gradient Boosted Trees - Increased the number of trees from 100 to 125

accuracy: 88.99%

	true HighRisk	true LowRisk	class precision
pred. HighRisk	389	49	88.81%
pred. LowRisk	47	387	89.17%
class recall	89.22%	88.76%	

Figure 58: Gradient Boosted Trees - Increased the number of trees from 100 to 125

Accuracy	Precision	Recall	F-Measure
88.99%	89.17%	88.76%	88.97%

Gradient Boosted Trees - Increased the number of trees from 125 to 150

ассигасу: 89.22%

	true HighRisk	true LowRisk	class precision
pred. HighRisk	391	49	88.86%
pred. LowRisk	45	387	89.58%
class recall	89.68%	88.76%	

Figure 59: Gradient Boosted Trees - Increased the number of trees from 125 to 150

Accuracy	Precision	Recall	F-Measure
89.22%	89.58%	88.76%	89.17%

Gradient Boosted Trees - Increased the number of trees from 150 to 200

accuracy: 89.33%

	true HighRisk	true LowRisk	class precision
pred. HighRisk	384	41	90.35%
pred. LowRisk	52	395	88.37%
class recall	88.07%	90.60%	

Figure 60: Gradient Boosted Trees - Increased the number of trees from 150 to 200

Accuracy	Precision	Recall	F-Measure
89.33%	88.37%	90.60%	89.47%

Gradient Boosted Trees - Increased the number of trees from 200 to 225

ассигасу: 89.22%

	true HighRisk	true LowRisk	class precision
pred. HighRisk	382	40	90.52%
pred. LowRisk	54	396	88.00%
class recall	87.61%	90.83%	

Figure 61: Gradient Boosted Trees - Increased the number of trees from 200 to 225

Accuracy	Precision	Recall	F-Measure
89.22%	88.00%	90.83%	89.39%

Figure 62: Deep Learning - Default Parameters

Change compatibility (9.3.001)

Figure 63: Deep Learning - Model Performance - Default Parameters

Accuracy	Precision	Recall	F-Measure
89.91%	90.28%	89.45%	89.86%

Deep Learning - Changed the Activation function from Rectifier to Tanh

accuracy: 89.68%

	true HighRisk	true LowRisk	class precision
pred. HighRisk	381	35	91.59%
pred. LowRisk	55	401	87.94%
class recall	87.39%	91.97%	

Figure 64: Deep Learning - Changed the Activation function from Rectifier to Tanh

Accuracy	Precision	Recall	F-Measure
89.68%	87.94%	91.97%	89.91%

Deep Learning - Changed the Activation function from Rectifier to Maxout

accuracy: 89.33%

	true HighRisk	true LowRisk	class precision
pred. HighRisk	391	48	89.07%
pred. LowRisk	45	388	89.61%
class recall	89.68%	88.99%	

Figure 65: Deep Learning - Changed the Activation function from Rectifier to Maxout

Accuracy	Precision	Recall	F-Measure
89.33%	89.61%	88.99%	89.30%

Deep Learning - Changed the Activation function from Maxout to ExpRectifier

accuracy: 90.14%

	true HighRisk	true LowRisk	class precision
pred. HighRisk	395	45	89.77%
pred. LowRisk	41	391	90.51%
class recall	90.60%	89.68%	

Figure 66: Deep Learning - Changed the Activation function from Maxout to ExpRectifier

Accuracy	Precision	Recall	F-Measure
90.14%	90.51%	89.68%	90.09%

Deep Learning - Changed the Epochs from 10 to 15

accuracy: 90.02%

	true HighRisk	true LowRisk	class precision
pred. HighRisk	393	44	89.93%
pred. LowRisk	43	392	90.11%
class recall	90.14%	89.91%	

Figure 67: Deep Learning - Changed the Epochs from 10 to 15

Accuracy	Precision	Recall	F-Measure
90.02%	90.11%	89.91%	90.01%

Deep Learning - Changed the Epochs from 10 to 7

accuracy: 89.11%

	true HighRisk	true LowRisk	class precision
pred. HighRisk	374	33	91.89%
pred. LowRisk	62	403	86.67%
class recall	85.78%	92.43%	

Figure 68: Deep Learning - Changed the Epochs from 10 to 7

Accuracy	Precision	Recall	F-Measure
89.11%	86.67%	92.43%	89.46%

After reviewing Figures 68-70, we decided to use the Deep Learning Model with ExpRectifier and 10 Epochs because it has the highest accuracy and f-measure.

Rule Induction - Default Parameters

Figure 69: Rule Induction - Default Parameters

ассигасу: 84.63%

	true HighRisk	true LowRisk	class precision
pred. HighRisk	372	70	84.16%
pred. LowRisk	64	366	85.12%
class recall	85.32%	83.94%	

Figure 70: Rule Induction - Model Performance - Default Parameters

Accuracy	Precision	Recall	F-Measure
84.63%	85.12%	83.94%	84.53%

Rule Induction - Changed the sample ratio from 0.9 to 0.95

accuracy: 83.94%

	true HighRisk	true LowRisk	class precision	
pred. HighRisk	372	76	83.04%	
pred. LowRisk	64	360	84.91%	
class recall	85.32%	82.57%		

Figure 71: Rule Induction - Changed the sample ratio from 0.9 to 0.95

Accuracy	Precision	Recall	F-Measure
83.94%	84.91%	82.57%	83.72%

Rule Induction - Changed the sample ratio from 0.9 to 0.85

ассигасу: 85.89%

	true HighRisk	true LowRisk	class precision
pred. HighRisk	374	61	85.98%
pred. LowRisk	62	375	85.81%
class recall	85.78%	86.01%	

Figure 72: Rule Induction - Changed the sample ratio from 0.9 to 0.85

Accuracy	Precision	Recall	F-Measure
85.89%	85.81%	86.01%	85.91%

Rule Induction - Changed the sample ratio from 0.9 to 0.8

accuracy: 86.01%

	true HighRisk	true LowRisk	class precision
pred. HighRisk	376	62	85.84%
pred. LowRisk	60	374	86.18%
class recall	86.24%	85.78%	

Figure 73: Rule Induction - Changed the sample ratio from 0.9 to 0.8

Accuracy	Precision	Recall	F-Measure
86.01%	86.18%	85.78%	85.98%

Rule Induction - Changed the sample ratio from 0.9 to 0.75

accuracy: 84.40%

	true HighRisk	true LowRisk	class precision
pred. HighRisk	387	87	81.65%
pred. LowRisk	49	349	87.69%
class recall	88.76%	80.05%	

Figure 74: Rule Induction - Changed the sample ratio from 0.9 to 0.75

Accuracy	Precision	Recall	F-Measure
84.40%	87.69%	80.05%	83.69%

After reviewing Figures 70-74, we decided to use the sample ratio of 0.8 for further model optimization.

Rule Induction - Changed the minimal prune benefit from 0.25 to 0.3

accuracy: 85.67%

	true HighRisk	true LowRisk	class precision
pred. HighRisk	383	72	84.18%
pred. LowRisk	53	364	87.29%
class recall	87.84%	83.49%	

Figure 75: Rule Induction - Changed the minimal prune benefit from 0.25 to 0.3

Accuracy	Precision	Recall	F-Measure
85.67%	87.29%	83.49%	85.35%

Rule Induction - Changed the minimal prune benefit from 0.25 to 0.2

accuracy: 84.40%

	true HighRisk	true LowRisk	class precision
pred. HighRisk	387	87	81.65%
pred. LowRisk	49	349	87.69%
class recall	88.76%	80.05%	

Figure 76: Rule Induction - Changed the minimal prune benefit from 0.25 to 0.2

Accuracy	Precision	Recall	F-Measure
84.40%	87.69%	80.05%	83.69%

After reviewing figures 72-78, we decided to use the Rule Induction model with a sample ratio of 0.8 and minimal prune benefit of 0.25 because it has the highest accuracy and f-measure.