

(MATNA1901) Lineáris algebra

Dr. Facskó Gábor, PhD

tudományos főmunkatárs facskog@gamma.ttk.pte.hu

Pécsi Tudományegyetem, Természettudományi Kar, Matematikai és Informatikai Intézet, 7624 Pécs, Ifjúság útja 6. Wigner Fizikai Kutatóközpont, Ürfizikai és Ürtechnikai Ösztály, 1121. Budapest, Konkoly-Thege Miklós út 29-33. https://facsko.ttl.ntp.hu.

2025. február 6.

Követelmények

- Két tesztet írunk majd a gyakorlatok feladataiból. Mindent lehet használni közben
- ▶ Mindkét tesztet legalább 41 %-ra meg kell írni, különben javító zh-t kell írni
- ► A két teszt alapján gyakorlati jegyet kapnak
- A vizsgaidőszakban írásbeli vizsgát lehet tenni, ha megszerezték az érvényes gyakorlati jegyet
- Osztályzás: elégtelen (1): 0-40 %, elégséges (2): 41-55 %, közepes (3): 56-70 %, jó (4): 71-85 %, jeles (5): 86-100 %.
- ▶ 1. zh: 2025. március 13, 2. zh: 2025. május 8, pótzh: 2025. május 15.

Bibliography

FREUD R. 2004: Lineáris algebra. ELTE Eötvös Kiadó, Budapest.

P. D. LAX. 2008: Lineáris algebra és alkalmazásai. Akadémiai Kiadó, Budapest, 2008.

GYÉMÁNT I., GÖRBE T. F. 2011, Lineáris algebra fizikusoknak, Polygon Jegyzettár, Szeged.

(Érettségiből) kimaradó anyagrészek I

- Algebrai tört fogalma és alkalmazása. Lineráris törtfüggvények ábrázolása, jellemzése.
- Abszolútt értéket tartalmazó egyenletek megoldása.
- Másodfokú egyenleteknél a gyökök és együtthatók összefüggései. Másodfokú egyenletrendszer megoldása.
- Összefüggés két pozitív szám számtani és mértani közepe között.
- Négyzetgyök alatt csak olyan elsőfokú polinomok, amelyek főegyütthatója 1, azaz $\sqrt{ax+b}=cx+d$ helyett a $\sqrt{x+c}=ax+b$ megoldása elegendő. (Eddig az ax+b alakú elsőfokú polinomok négyzetgyökét is vizsgálták.)
- A függvény transzformációk közül az f(cx) ábrázolása.
- Magasságtétel, befogótétel a derékszögű háromszögben.
- Szög ívmértéke.
- Logarimusfüggvény, logaritmus azonosságai, logaritmusos egyenletek.

(Érettségiből) kimaradó anyagrészek II

- Függvény inverze.
- ► Az egyenes egyenletének normálvektoros és irányvektoros alakja, kör és egyenes kölcsönös helyzete a koordinátageometriában.
- Két vektor skaláris szorzata.
- A valós számok halmazán értelmezett triginometrikus függvények értelmezése, ábrázolása és trigonometrikus egyenletek megoldása.

Vektorok összeadása, kivonása és skalárral való szorzása I

Definíció: Vektorok összeadása. Ha $\mathbf{a}(a_1, a_2, a_3)$ és $\mathbf{b}(b_1, b_2, b_3)$, akkor

$$\mathbf{a} + \mathbf{b} = (a_1 + b_1, a_2 + b_2, a_3 + b_3),$$

ahol a_1 , a_2 , a_3 , b_1 , b_2 , $b_3 \in \mathbb{R}$.

Az \mathbf{a} és \mathbf{b} vektort úgy adjuk össze, hogy az \mathbf{a} végpontjába toljuk a \mathbf{b} -t. Az összegvektor ($\mathbf{a} + \mathbf{b}$) az \mathbf{a} kezdőpontjától a \mathbf{b} végpontjába tartó vektor lesz.

Vektorok összeadása, kivonása és skalárral való szorzása II

▶ <u>Definíció:</u> Vektor skalárral való szorzása. Ha $\lambda \in \mathbb{R}$ és **a** (a_1, a_2, a_3) , ahol $a_1, a_2, a_3 \in \mathbb{R}$, akkor

$$\lambda \mathbf{a} = (\lambda a_1, \lambda a_2, \lambda a_3).$$

Figyelem, gondoljunk bele, mit jelent, ha λ 0, 1, -1, <1, vagy >1.

Az **a** vektort egy λ skalárral úgy szorozzuk meg, hogy az eredeti vektor végpontjából egy vele azonos irányú, de λ -szoros hosszúságú vektort rajzolunk.

Vektorok összeadása, kivonása és skalárral való szorzása III

Definíció: Vektorok kivonása. Ha $\mathbf{a}(a_1, a_2, a_3)$ és $\mathbf{b}(b_1, b_2, b_3)$, akkor

$$\mathbf{a} - \mathbf{b} = (a_1 - b_1, a_2 - b_2, a_3 - b_3),$$

ahol a_1 , a_2 , a_3 , b_1 , b_2 , $b_3 \in \mathbb{R}$.

Az \mathbf{a} és \mathbf{b} vektort úgy vonjuk ki, hogy a vektorokat közös kezdőpontba toljuk. A különbségvektor ($\mathbf{a} - \mathbf{b}$) a \mathbf{b} végpontjától az \mathbf{a} végpontjába tartó vektor lesz.

Vektorok összeadása, kivonása és skalárral való szorzása IV

- Vektorok összegzésének tulajdonságai
 - lack Allítás: Vektorok összeadása kommutatív, azaz $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$, ahol $\mathbf{a}, \mathbf{b} \in \mathbb{R}^3$.
 - ightharpoonup Allítás: Vektorok összeadása asszociatív, azaz $(\mathbf{a} + \mathbf{b}) + \mathbf{c} = \mathbf{a} + (\mathbf{b} + \mathbf{c})$, ahol a. b. c $\in \mathbb{R}^3$.

 - Létezik null vektor: ∃0 ∈ R³, ahol a + 0 = a, ahol a ∈ R³.
 Minden vektornak van egy inverz vektora: ∀a ∈ R³ ∃ (-a) ∈ R³, ahol a + (-a) = 0.
- ► A vektorok skalárral való szorzásának tulajdonságai
 - ightharpoonup Állítás: Vektorok skalárral való szorzása asszociatív, azaz $\lambda(\mu \mathbf{a}) = (\lambda \mu) \mathbf{a}$, ahol $\mathbf{a} \in \mathbb{R}^3$, λ , $\mu \in \mathbb{R}$.
 - Állítás: Vektorok összeadása disztributív a skaláris szorzásra, azaz $\lambda (\mathbf{a} + \mathbf{b}) = \lambda \mathbf{a} + \lambda \mathbf{b}$, ahol $\mathbf{a}, \mathbf{b} \in \mathbb{R}^3, \lambda \in \mathbb{R}$.
 - Állítás: Skalárok összeadása disztributív a vektorral való szorzásra. azaz $(\lambda + \mu) \mathbf{a} = \lambda \mathbf{a} + \mu \mathbf{a}$, ahol $\mathbf{a} \in \mathbb{R}^3, \lambda, \mu \in \mathbb{R}$.
 - $\forall \in \mathbf{a} \cdot 1 = \mathbf{a}$, ahol $\mathbf{a} \in \mathbb{R}^3$.

Vektorok összeadása, kivonása és skalárral való szorzása I

- ▶ Ha $\mathbf{v} \neq \mathbf{0}$, akkor a hosszára fennáll, hogy $|\mathbf{v}| \neq 0$, ezért értelmezhető a normalizáltja:
 - <u>Definíció:</u> A $|\mathbf{v}| \neq \mathbf{0}$ vektor normalizáltja, normáltja, vagy irányvektora: $\frac{\mathbf{v}}{|\mathbf{v}|}$.
- ► A normalizált vektor már egységvektor:

$$\left| rac{{f v}}{|{f v}|}
ight| = rac{1}{|{f v}|} |{f v}| = 1.$$

Felezőpont, pontok távolsága, gömb egyenlete I

A $P_1(x_1, y_1, z_1)$ és a $P_2(x_2, y_2, z_2)$ pontokat összekötő szakasz M felezőpontja a következő pont:

$$M\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right).$$

A P₁-be és a P₂-be mutató **p**₁ és **p**₂ vektorokkal felrajzoljuk a vektorösszeadást. A két-két vektor egymással párhuzamos, így egy paralelogrammát alkot. A paralelogramma átlói azonban felezik egymást, így az M pont a két vektor összegének a felénél található. Így a képlet igaz.

Felezőpont, pontok távolsága, gömb egyenlete II

▶ A $P_1(x_1, y_1, z_1)$ és a $P_2(x_2, y_2, z_2)$ pontok távolsága a P_1 és P_2 végpontú **a**, **b** vektorok különbségeinek a hossza: $|\mathbf{a} - \mathbf{b}|$.

Felezőpont, pontok távolsága, gömb egyenlete III

• Állítás: A $P_1(x_1, y_1, z_1)$ és a $P_2(x_2, y_2, z_2)$ pontok távolsága:

$$|P_1P_2| = \sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2}.$$

Felezőpont, pontok távolsága, gömb egyenlete IV

 $\mathbf{a} = |\mathbf{r} - \mathbf{r}_0|$ $\frac{\text{Állítás:}}{\text{egyenlete:}}$ Az a sugarú és (x_0, y_0, z_0) középpontú gömb

$$(x-x_0)^2+(y-y_0)^2+(z-z_0)^2=a^2.$$

Vektorok skaláris szorzása és tulajdonságai I

Definíció. Két vektor skaláris szorzata (más néven belső szorzata):

$$\mathbf{a}\mathbf{b} = |\mathbf{a}| \cdot |\mathbf{b}| \cos \theta$$

ahol
$$\theta = (\mathbf{a}, \mathbf{b}) \angle$$
 és $(\mathbf{a}, \mathbf{b} \in V^3)$.

- Vegyük észre, hogy $\mathbf{a}\mathbf{a} = |\mathbf{a}|^2$.
- A skaláris szorzás tulajdonságai
 - ightharpoonup Állítás: Vektorok skaláris szorzása kommutatív: ab = ba és $(a, b \in V^3)$.
 - ightharpoonup <u>Állítás:</u> Vektorok skaláris szorzása disztributív: $(\mathbf{a} + \mathbf{b})\mathbf{c} = \mathbf{ac} + \mathbf{bc}$ és $(\mathbf{a}, \mathbf{b}, \mathbf{c} \in V^3)$.
 - Állítás: Vektorok skaláris szorzása homogén, azaz $(\lambda \mathbf{a}) \mathbf{b} = \lambda (\mathbf{ab})$, ahol $\lambda \in \mathbb{R}$ és $(\mathbf{a}, \mathbf{b} \in V^3)$.
 - lacktriangle Vektorok skaláris szorzása pozitív definit: $aa \geq 0$, ahol $(a \in V^3)$ és $aa = 0 \Leftrightarrow a = 0$.

A fenti állításokat a következő tétel segítségével is be lehet látni.

Vektorok skaláris szorzása és tulajdonságai II

• Állítás: Az $\mathbf{a} = (a_1, a_2, a_3)$ és $\mathbf{b} = (b_1, b_2, b_3)$ skaláris szorzata:

$$ab = a_1b_1 + a_2b_2 + a_3b_3.$$

• Állítás: Két nemnulla $\mathbf{a} = (a_1, a_2, a_3)$ és $\mathbf{b} = (b_1, b_2, b_3)$ vektor által közrezárt szög megkapható a következőképpen:

$$\cos\theta = \frac{\mathbf{a}\mathbf{b}}{|\mathbf{a}|\,|\mathbf{b}|}$$

- ▶ <u>Definíció:</u> Azt mondjuk, hogy az **a** és **b** vektorok egymásra ortogonálisak (merőlegesek), ha $\mathbf{ab} = 0$.
- <u>Definíció:</u> Az a vektornak a b vektorra való merőleges projekciója (vetülete) alatt azon b irányú vektort értjük, amelynek végpontját az a vektor végpontjából a b vektorra bocsátott merőleges határozza meg. Jelölése: projba.

Vektorok skaláris szorzása és tulajdonságai III

ightharpoonup Állítás: Ha $(\mathbf{a}, \mathbf{b} \in V^3)$, akkor

$$proj_{\mathbf{b}}\mathbf{a} = \frac{\mathbf{ab}}{|\mathbf{b}|^2}\mathbf{b}.$$

► Ha a **b** irányvektor egységnyi hosszúságú, akkor a formula leegyszerűsödik:

$$proj_{\mathbf{b}}\mathbf{a} = (\mathbf{a}\mathbf{b})\,\mathbf{b}.$$

Vektoriális szorzat l

▶ <u>Definíció:</u> Az {a, b, c} nemnulla vektorokból álló vektorrendszert jobbrendszernek nevezzük, ha a harmadik végpontja felől nézve az első vektor 180°-nál kisebb szögben forgatható a második vektor irányába az óramutató járásával ellentétes irányba. (Az ilyen rendszert nevezzük még jobbsodrású vagy jobbkézszabályt teljesítő rendszernek.)

Definíció: Az **a** és **b** nemnulla térbeli vektorok vektoriális szorzata az az $\mathbf{a} \times \mathbf{b}$ -vel jelölt vektor, amelynek hossza $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta$, ahol $\theta = (\mathbf{a}, \mathbf{b}) \angle$. Az $\mathbf{a} \times \mathbf{b}$ vektor merőleges **a** és a **b** vektorokra, továbbá a $\{\mathbf{a}, \mathbf{b}, \mathbf{a} \times \mathbf{b}\}$ jobbrendszert alkot.

Legyen továbbá $\mathbf{0} \times \mathbf{a} = \mathbf{0}$, ahol $(\mathbf{a} \in V^3)$.

Vektoriális szorzat II

- A vektoriális szorzat tulajdonságai
 - 1. <u>Állítás:</u> A vektoriális szorzás antiszimmetrikus, azaz $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$, ahol $(\mathbf{a}, \mathbf{b} \in V^3)$.
 - 2. $\underline{\text{Allítás:}}$ A vektoriális szorzás homogén, azaz $(\lambda \mathbf{a}) \times \mathbf{b} = \lambda (\mathbf{a} \times \mathbf{b})$, ahol $\mathbf{a}, \mathbf{b} \in V^3$ és $\lambda \in \mathbb{R}$.
 - 3. <u>Állítás:</u> A vektoriális szorzás disszociatív, azaz $(\mathbf{a} + \mathbf{b}) \times \mathbf{c} = \mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{c}$, ahol $(\mathbf{a}, \mathbf{b}, \mathbf{c} \in V^3)$.
- ▶ <u>Definíció:</u> Az **a** és **b** nemnulla vektorokat párhuzamosaknak nevezzük, ha $\exists \lambda \in \mathbb{R}$ úgy, hogy **a** = λ **b**. Jele: **a** \parallel **b**.

Vektoriális szorzat III

- ▶ Bármely vektor önmagával vett vektoriális szorzata a zérusvektorral egyenlő, azaz $\mathbf{a} \times \mathbf{a} = \mathbf{0} \ \forall \mathbf{a} \in V^3$ -re. esetén.
- ▶ Ezen felül $\mathbf{a} \times \mathbf{b} = \mathbf{0} \Leftrightarrow \mathbf{a} \parallel \mathbf{b}$, vagy \mathbf{a} és \mathbf{b} közül legalább az egyik nullvektor.
- Könnyen belátható, hogy

$$\begin{array}{rcl} \mathbf{e}_1 \times \mathbf{e}_2 & = & \mathbf{e}_3 \\ \\ \mathbf{e}_2 \times \mathbf{e}_3 & = & \mathbf{e}_1 \\ \\ \mathbf{e}_3 \times \mathbf{e}_1 & = & \mathbf{e}_2. \end{array}$$

- ► Komponensekkel $\mathbf{a} \times \mathbf{b} = (a_2b_3 a_3b_2)\mathbf{e}_1 + (a_3b_1 a_1b_3)\mathbf{e}_2 + (a_1b_2 a_2b_1)\mathbf{e}_3$.
- ▶ $|\mathbf{a} \times \mathbf{b}|$ egyenlő az \mathbf{a} és \mathbf{b} által meghatározott paralelogramma területével, mivel $|\mathbf{a}|$ a paralelogramma alapja és $|\mathbf{b}|$ $|\sin \theta|$ a magassága, ahol $\theta = (\mathbf{a}, \mathbf{b}) \angle$.

Vegyes szorzat

▶ Definíció: Az $\mathbf{a}, \mathbf{b}, \mathbf{c} \in V^3$ vektorok vegyes szorzata:

$$(\mathbf{a},\mathbf{b},\mathbf{c})=(\mathbf{a}\times\mathbf{b})\,\mathbf{c}.$$

- ► Ha a, b, c jobbrendszert alkot, akkor (a, b, c) megegyezik az a, b, c vektorok által kifeszített paralelepipedon térfogatával. Ellenkező esetben a térfogat (-1)-szeresét kapjuk.
- Könnyen igazolható, hogy

$$(a, b, c) = (b, c, a) = (c, a, b) = -(a, c, b) = -(c, b, a) = -(b, a, c).$$

Vége

Köszönöm a figyelmüket!