HOMOTOPY THEORY

JONAS TREPIAKAS

For these notes, we will follow [2], [1] and [3].

1. The Compact-Open Topology

Recall that Y^X denotes the set of continuous functions $X \to Y$.

Definition 1.1. The *compact-open topology* on Y^X is the topology generated by the sets $M(K,U) = \{ f \in Y^X \mid f(K) \subset U \}$ where $K \subset X$ is compact and $U \subset Y$ is open.

Generated here means that these sets form a *subbasis* for the open sets.

Lemma 1.2. Let K be a collection of compact subsets of X containing a neighborhood base at each point of X. Let $\mathcal B$ be a subbasis for the open sets of Y. Then the collection

$$\{M(K,U) \mid K \in \mathcal{K}, B \in \mathcal{B}\}$$

forms a subbasis for the compact-open topology on Y^X .

Proof. Recall first that a subbasis is a collection whose union is the whole space and such that the collection of finite intersections of elements of the subbasis form a basis.

In particular, noting that $M(K,U) \cap M(K,V) = M(K,U \cap V)$, this implies that it suffices to consider the case when \mathcal{B} is a basis.

So to show that the collection in question is a subbasis, it suffices to show that given $f \in M(K,U)$, there exist $K_1, \ldots, K_n \in \mathcal{K}$ and $U_1, \ldots, U_n \in \mathcal{B}$ such that $f \in \bigcap_{i=1}^n M(K_i,U_i) \subset M(K,U)$.

For each $x \in K$, there is an open set $U_x \in \mathcal{B}$ with $f(x) \in U_x \subset U$ (since \mathcal{B} was assumed to be a basis), and there exists a neighborhood $K_x \in \mathcal{K}$ of x such that $f(K_x) \subset U_x$ (since f is continuous and \mathcal{K} was assumed to contain a neighborhood base at each point of X). Thus $f \in M(K_x, U_x)$. Now, covering K with these sets $K \subset \bigcup_{x \in K} K_x$. By compactness of K, there exists a finite subcover $K \subset K_{x_1} \cup \ldots \cup K_{x_n}$. Then $f \in \bigcap_{i=1}^n M(K_{x_i}, U_{x_i}) \subset M(K, U)$.

Proposition 1.3. For X locally compact Hausdorff, the "evaluation map" $e: Y^X \times X \to Y$, defined by e(f,x) = f(x), is continuous.

Proof. Let $(f, x) \in Y^X \times X$ and U a neighborhood of $f(x) \in Y$. Now we make use of the following lemma:

Lemma 1.4. If X is a locally compact Hausdorff space, then each neighborhood of a point $x \in X$ contains a compact neighborhood of X. In particular, X is completely regular.

Proof. Let C be a compact neighborhood of x and U an arbitrary neighborhood of x. Since X is Hausdorff, C is closed, so $(X-U)\cap C$ is a closed subspace of C, hence compact. Now, for each point $z\in (X-U)\cap C$, choose, by Hausdorffness, open neighborhoods U_z', V_z' of z and x, respectively, and consider $W':=\bigcup_{z\in (X-U)\cap C}U_z'$. Since this is open, C-W' is closed hence compact. Furthermore, it is contained in U and contains x.

Alternative proof due to Bredon: Let C be a compact neighborhood of x and U an arbitrary neighborhood of x. Let $V \subset C \cap U$ be open with $x \in V$. Then $\overline{V} \subset C$ is compact Hausdorff, hence regular, so there exists a neighborhood $N \subset V$ of x in C which is closed in \overline{V} and hence closed in X. Since N is closed in the compact space

C, it is compact. Since N is a neighborhood of x in \overline{V} and since $N = N \cap V$, N is a neighborhood of x in the open set V and hence in X.

By Lemma 1.4, there exists a compact neighborhood K of x such that $f(K) \subset U$. Hence $f \in M(K, U)$, and $e(M(K, U) \times K) \subset U$. This finishes the proof.

Theorem 1.5. Let X be locally compact Hausdorff and Y and T arbitrary Hausdorff spaces. Given a function $f \colon X \times T \to Y$, define, for each $t \in T$, the function $f_t \colon X \to Y$ by $f_t(x) = f(x,t)$. Then f is continuous if and only if both of the following conditions hold:

- (1) Each f_t is continuous
- (2) The function $T \to Y^X$ taking $t \mapsto f_t$ is continuous.

Proof. The "if" implication follows from the fact that f is the composition

$$X \times T \stackrel{(x,t) \mapsto (f_t,x)}{\longrightarrow} Y^X \times X \stackrel{e}{\rightarrow} Y.$$

Now the evaluation map is continuous by Proposition 1.3 since X is assumed to be locally compact Hausdorff and since f_t is assumed to be continuous for all t by condition (1); and $(x,t) \mapsto (f_t,x)$ is continuous since $t \mapsto f_t$ is assumed to be continuous by condition (2).

Conversely, for the "only if" implication, (1) follows from the fact that f_t is the composition

$$X \stackrel{x \mapsto (x,t)}{\to} X \times T \stackrel{f}{\to} Y.$$

To prove (2), let $t \in T$ be given and $f_t \in M(K,U)$. It suffices to find a neighborhood W of t in T such that $t' \in W$ implies that $f_{t'} \in M(K,U)$ (i.e., it suffices to prove conditions for continuity for a subbasis only). For $x \in K$, there are open neighborhoods $V_x \subset X$ of x and $W_x \subset T$ of t such that $f(V_x \times W_x) \subset U$. By compactness, $K \subset V_{x_1} \cup \ldots \cup V_{x_n} =: V$ for some V_{x_i} . Let $W = \bigcap_{i=1}^n W_{x_i}$. Then $f(K \times W) \subset f(V \times W) \subset U$. So $t' \in W$ implies that $f_{t'} \in M(K,U)$ as claimed.

Note. This theorem implies that a homotopy $X \times I \to Y$ with X locally compact is the same thing as a path $I \to Y^X$ when we give Y^X the compact-open topology.

Note. This is precisely the reason why, when we define $\mathrm{MCG}(X)$, we define it as $\pi_0 \operatorname{Homeo}^+(X, \partial X)$ where we equip $\operatorname{Homeo}^+(X, \partial X)$ with the subspace topology inherited from X^X in the compact-open topology. By the above theorem, a path $I \to \operatorname{Homeo}^+(X, \partial X)$ given as $t \mapsto \gamma_t$ is continuous if and only if the associated function $\gamma \colon X \times I \to X$ given by $\gamma(x,t) = \gamma_t(x)$ is continuous. But since each γ_t is a self-homeomorphism of X, this just tells us that γ is an isotopy of X. So path components of $\operatorname{Homeo}^+(X, \partial X)$ correspond to isotopy classes of orientation-preserving self-homeomorphisms of X fixing the boundary point-wise.

Theorem 1.6 (The Exponential Law). Let X and T be locally compact Hausdorff spaces and let Y be an arbitrary Hausdorff space. Then there is the homeomorphism

$$Y^{X \times T} \stackrel{\cong}{\to} \left(Y^X\right)^T$$

taking $f \mapsto f^*$ where $f^*(t)(x) = f(x,t) = f_t(x)$.

Proof. By Theorem 1.5, the assignment $f \mapsto f^*$ is a bijection. We must show it and its inverse to be continuous. Let $U \subset Y$ be open and $K \subset X, K' \subset T$ be compact. Then

$$f \in M (K \times K', U) \iff (t \in K', x \in K \implies f_t(x) = f(x, t) \in U)$$

$$\iff (t \in K' \implies f_t \in M (K, U))$$

$$\iff f^* \in M (K', M (K, U)).$$

Now, the $K \times K'$ are compact subsets of $X \times T$, and the collection of all these over $X \times T$ contain a neighborhood basis at each point since X and T are both assumed to be locally compact. By Lemma 1.2, the collection

$$\{M(K \times K', U) \mid U \subset Y \text{ open}, K \subset X, K' \subset T \text{ both compact}\}\$$

forms a subbasis for the compact-open topology on $Y^{X\times T}$. Also, the $M\left(K,U\right)$ give a subbasis for Y^X and therefore the $M\left(K',M\left(K,U\right)\right)$ form a subbasis for the topology on $\left(Y^X\right)^T$. Since we showed that these subbases correspond to one another under the exponential correspondence, the theorem is proved.

Proposition 1.7. If X is locally compact Hausdorff and Y and W are Hausdorff, then there is the homeomorphism

$$Y^X \times W^X \stackrel{\cong}{\Rightarrow} (Y \times W)^X$$

given by $(f,g) \mapsto f \times g$.

Proof. It is clearly a bijection. If $K, K' \subset X$ are compact and $U \subset Y$ and $V \subset W$ are open, then

$$(f,g) \in M(K,U) \times M(K',V) \iff (x \in K \implies f(x) \in U) \text{ and } (x \in K' \implies g(x) \in V)$$

 $\iff ((x,y) \in K \times K' \implies f \times g(x,y) \in U \times V)$
 $\iff f \times g \in M(K,U \times W) \cap M(K',U \times W).$

so $(f,g) \mapsto f \times g$ is an open map.

Also $(f,g) \in M(K,U) \times M(K,V) \iff f \times g \in M(K,U \times V)$ which implies that the function is continuous.

Proposition 1.8. If X and T are locally compact Hausdorff spaces and Y is an arbitrary Hausdorff space, then there is the homeomorphism

$$Y^{X \sqcup T} \stackrel{\cong}{\to} Y^X \times Y^T$$

taking $f \mapsto (f \circ \iota_X, f \circ \iota_T)$.

Proof. The map is clearly well-defined and injective. Also, given $(f,g) \in Y^X \times Y^T$, we can define a function $f \cup g \colon X \sqcup T \to Y$ by f on X and g on T, and clearly, $f \cup g \mapsto (f,g)$ under the correspondence, giving surjectivity. We must show that it is continuous and has continuous inverse.

Let $f: X \sqcup T \to Y$ and suppose $(f \circ \iota_X, f \circ \iota_T) \in M(K, U) \times M(K', V)$. Then $f \in M(K, U) \cap M(K', V)$ which is an open set that is mapped precisely to $M(K, U) \times M(K', V)$. Hence $f \mapsto (f \circ \iota_X, f \circ \iota_T)$ is continuous.

Conversely, note that under the correspondence, $M\left(C\sqcup C',U\right)$ is mapped to $M(C,U)\times M(C',U)$, so the map is also open.

Theorem 1.9. For X locally compact and both X and Y Hausdorff, Y^X is a covariant functor of Y and a contravariant functor of X from Top to Top.

2. Methods of Calculation

2.1. Excision for Homotopy Groups.

Theorem 2.1. Let X be a CW complex decomposed as the union of subcomplexes A and B with nonempty connected intersection $C = A \cap B$. If (A, C) is m-connected and (B, C) is n-connected, $m, n \geq 0$, then the map $\pi_i(A, C) \to \pi_i(X, B)$ induced by inclusion is an isomorphism for i < m + n and a surjection for i = m + n.

Corollary 2.2 (Freudenthal Suspension Theorem). The unreduced suspension map $\pi_i(S^n) \to \pi_{i+1}(S^{n+1})$, induced by the suspension map $S^n \to \Sigma S^n \cong S^{n+1}$, is an isomorphism for i < 2n-1 and a surjection for i = 2n-1. More generally, this holds for the suspension $\pi_i(X) \to \pi_{i+1}(\Sigma X)$ whenever X is an (n-1)-connected CW complex.

Proof of Corollary. Decompose the unreduced suspension $\Sigma X = (X \times I)/(X \times \{0\}, X \times \{1\})$ as the union of two cones C_+X and C_-X intersecting in a copy of X. Recall that a map $f \colon X \to Y$ induces a suspended map $\Sigma f \colon \Sigma X \to \Sigma Y$. Now, if we consider f to be any map $f \colon (S^n, s_0) \to (X, x_0)$, then we have a suspended map

$$S^{n} \times I \xrightarrow{f \times \mathrm{id}} X \times I$$

$$\downarrow \qquad \qquad \downarrow$$

$$S^{n+1} \cong \Sigma S^{n} \xrightarrow{\Sigma f} \Sigma X$$

So, in particular, Σf is some class in $\pi_{n+1}(\Sigma X)$. Define the suspension homomorphism $\pi_i(X) \to \pi_{i+1}(\Sigma X)$ to be the map that sends f to Σf . This is a homomorphism (why?).

The unreduced suspension map is the same as the map

$$\pi_i(X) \cong \pi_{i+1}(C_+X, X) \to \pi_{i+1}(\Sigma X, C_-X) \cong \pi_{i+1}(\Sigma X)$$
.

(why?) where the two isomorphisms come from the LES of pairs and the middle map is induced by inclusion. The first map $\pi_i(X) \to \pi_{i+1}(C_+X,X)$ takes a map $(I^i,\partial I^n) \to (X,x_0)$ to the map $(I^{n+1},\partial I^{n+1},J^n) \to (C_+X,X,x_0)$ constructed by extending the given map radially to correspond with the height of C_+X . So one face of I^{n+1} will be mapped to the vertex of C_+X .

Including this into $(\Sigma X, C_{-}X)$ gives the middle homomorphism, and then the map $\pi_{i+1}(\Sigma X, C_{-}X) \to \pi_{i+1}(\Sigma X)$ is simply the identity on our map. From the LES of $(C_{\pm}X, X)$, we see that this pair is n-connected if X is (n-1)-connected. Then Theorem 2.1 gives that the middle map is an isomorphism for i+1 < 2n and surjective for i+1 = 2n.

Example 2.3 $(\pi_n (\bigvee_{\alpha} S_{\alpha}^n))$. We want to show that $\pi_n (\bigvee_{\alpha} S_{\alpha}^n)$ for $n \geq 2$ is free abelian with basis the homotopy classes of the inclusions $S_{\alpha}^n \hookrightarrow \bigvee_{\alpha} S_{\alpha}^n$. Suppose first that there are only *finitely many* summands S_{α}^n . Then we can regard $\bigvee_{\alpha} S_{\alpha}^n$ as the *n*-skeleton of the product $\prod_{\alpha} S_{\alpha}^n$, where S_{α}^n is given the usual CW structure and $\prod_{\alpha} S_{\alpha}^n$ has the product CW structure. (See Hatcher appendix A). By construction then $\prod_{\alpha} S_{\alpha}^n$ has cells only in dimensions a multiple of n, so the pair $(\prod_{\alpha} S_{\alpha}^n, \bigvee_{\alpha} S_{\alpha}^n)$ is (2n-1)-connected by Corollary ??. So from the LES for the pair, we see that the inclusion $\bigvee_{\alpha} S_{\alpha}^n \hookrightarrow \prod_{\alpha} S_{\alpha}^n$ induces an isomorphism on homotopy

groups in dimensions $\leq 2n-1$. Next we have $\pi_n\left(\prod_{\alpha}S_{\alpha}^n\right)\cong\bigoplus_{\alpha}\pi_n\left(S_{\alpha}^n\right)\cong\bigoplus_{\alpha}\mathbb{Z}$, a free abelian group with basis the inclusions $S_{\alpha}^n\hookrightarrow\prod_{\alpha}S_{\alpha}^n$, so pulling this back along the isomorphism $\pi_n\left(\bigvee_{\alpha}S_{\alpha}^n\right)\cong\pi_n\left(\prod_{\alpha}S_{\alpha}^n\right)$, the same is true for $\bigvee_{\alpha}S_{\alpha}^n$. This proves the claim when there are finitely many S_{α}^n 's.

When there are infinitely many summands S_{α}^{n} , consider the homomorphism $\Phi \colon \bigoplus_{\alpha} \pi_{n}(S_{\alpha}^{n}) \to \pi_{n}(\bigvee_{\alpha} S_{\alpha}^{n})$ induced by the inclusions $S_{\alpha}^{n} \hookrightarrow \bigvee_{\alpha} S_{\alpha}^{n}$. Then Φ is surjective since any map $f \colon S^{n} \to \bigvee_{\alpha} S_{\alpha}^{n}$ has compact image contained in the wedge sum of finitely many S_{α}^{n} 's, so by the finite case already proved, [f] is in the image of Φ .

Similarly, a nullhomotopy of f has compact image contained in a finite wedge sum of S_{α}^{n} 's, so the finite case also implies that Φ is injective.

Proposition 2.4. If a CW pair (X, A) is r-connected and A is s-connected, with $r, s \geq 0$, then the map $\pi_i(X, A) \rightarrow \pi_i(X/A)$ induced by the quotient map $X \rightarrow X/A$ is an isomorphism for $i \leq r + s$ and a surjection for i = r + s + 1.

Proof. Consider $X \cup CA$. Since A is closed and the inclusion $A \hookrightarrow X$ is a cofibration (since these are CW complexes), the map $h \colon C_{\iota} = X \cup CA \to X/A$ is a homotopy equivalence by Theorem ??. So we have a commutative diagram

where the vertical isomorphism comes from the LES of the pair $(X \cup CA, CA)$. Now, applying Theorem 2.1 to (A,B) = (X,CA), since (X,A) is r-connected and (CA,A) is (s+1)-connected, we find that the homomorphism $\pi_i(X,A) \to \pi_i(X \cup CA,CA)$ induced by the inclusion is an isomorphism for i < r + s + 1 and a surjection for i = r + s + 1, which proves the result.

Example 2.5 (Construction of spaces with a particular group as π_n). Suppose X is obtained from a wedge of spheres $\bigvee_{\alpha} S_{\alpha}^n$ by attaching cells e_{β}^{n+1} via basepoint-preserving maps $\varphi_{\beta} \colon S^n \to \bigvee_{\alpha} S_{\alpha}^n, n \geq 2$. By cellular approximation, we know that $\pi_i(X) = 0$ for i < n, and we shall show that $\pi_n(X)$ is the quotient of the free abelian group $\pi_n(\bigvee_{\alpha} S_{\alpha}^n) \cong \bigoplus_{\alpha} \mathbb{Z}$ by the subgroup generated by the classes $[\varphi_{\alpha}]$. Any subgroup can be realized in this way, by choosing maps φ_{β} to represent a set of generators for the subgroup. Let $X = (\bigvee_{\alpha} S_{\alpha}^n) \bigcup_{\beta} e_{\beta}^{n+1}$.

Then the LES of the pair $(X, \bigvee_{\alpha} S_{\alpha}^{n})$ gives

$$\pi_{n+1}\left(X,\bigvee_{\alpha}S_{\alpha}^{n}\right) \xrightarrow{\partial} \pi_{n}\left(\bigvee_{\alpha}S_{\alpha}^{n}\right) \to \pi_{n}(X) \to 0.$$

so

$$\pi_n(X) \cong \pi_n\left(\bigvee_{\alpha} S_{\alpha}^n\right) / \operatorname{im} \partial$$

The quotient $X/\bigvee_{\alpha} S_{\alpha}^{n}$ is a wedge of spheres S_{β}^{n+1} , so by Proposition 2.4 and Example 2.3, the map $\pi_{n+1}\left(X,\bigvee_{\alpha} S_{\alpha}^{n}\right) \to \pi_{n+1}\left(X/\bigvee_{\alpha} S_{\alpha}^{n}\right) \cong \pi_{n+1}\left(\bigvee_{\beta} S_{\beta}^{n+1}\right)$ is an isomorphism, so $\pi_{n+1}\left(X,\bigvee_{\alpha} S_{\alpha}^{n}\right)$ is free with basis the caracteristic maps φ_{β} of the cells e_{β}^{n+1} . The boundary map ∂ takes these to the classes $[\varphi_{\beta}]$, so the result follows.

2.1.1. Eilenberg-MacLane Spaces.

Definition 2.6 (Eilenberg-MacLane space, K(G, n)). A space X having just one nontrivial homotopy group $\pi_n(X) \cong G$ is called an *Eilenberg-MacLane space* K(G, n).

Construction of Eilenberg-MacLane Spaces:

Given arbitrary G and n, and assuming G is abelian if n > 1, we can construct a CW complex K(G, n). To begin, construct the CW complex X from Example 2.5. Then X is an (n-1)- connected CW complex of dimension n+1 such that $\pi_n(X) \cong G$ by construction. Alternatively, given the existence of Moore spaces M(G, n) for any G and n, we can take a Moore space M(G, n) and use the Hurewicz isomorphism to conclude that $\pi_n(X) \cong H_n(X)$. Hence we just need to fix all homotopy groups of dimension greater than n. By Example ??, we can construct a CW complex X_n containing X as a subcomplex such that $\pi_n(X_n) \cong \pi_n(X) \cong G$ while $\pi_k(X_n) \cong 0$ for all $k \neq n$.

Example 2.7 (Constructing spaces with arbitrary (abelian) homotopy groups). Recall that

$$\pi_n\left(\prod_{\alpha}X_{\alpha}\right)\cong\prod_{\alpha}\pi_n\left(X_{\alpha}\right),$$

so if we have a sequence of abelian groups $\{G_{n_i}\}_{i\in I}$, and let X_{n_i} denote that $K(G_{n_i},n_i)$ space, then we find that

$$\pi_k(\prod_{i\in I} X_{n_i}) \cong \prod_{i\in I} \pi_k(X_{n_i}) \cong \begin{cases} G_{n_i}, & k=n_i \text{ for some } i\in I\\ 0, & \text{else} \end{cases}$$

Having covered the existence of Eilenberg-MacLane spaces, we now find the following for uniqueness of these spaces:

Proposition 2.8 (Uniqueness of Eilenberg-MacLane spaces). The homotopy type of a CW complex K(G, n) is uniquely determined by G and n.

The proof is based on the following lemma giving a condition for when homomorphisms between homotopy groups are induced by some map:

Lemma 2.9. Let X be a CW complex of the form $(\bigvee_{\alpha} S_{\alpha}^{n}) \bigcup_{\beta} e_{\beta}^{n+1}$ for some $n \geq 1$. Then for every homomorphism $\psi \colon \pi_{n}(X) \to \pi_{n}(Y)$ with Y path-connected there exists a map $f \colon X \to Y$ with $f_{*} = \psi$.

Proof. The construction of f is as one would expect: first let f send the natural basepoint of $\bigvee_{\alpha} S_{\alpha}^{n}$ to a chosen basepoint $y_{0} \in Y$. Now for every sphere S_{α}^{n} in X, we extend f over the sphere via a map representing $\psi([i_{\alpha}])$ where i_{α} is the inclusion $S_{\alpha}^{n} \hookrightarrow X$. This defines f on the n-skeleton of $X: f: X^{n} \to Y$. Since now $f_{*}[i_{\alpha}] = \psi[i_{\alpha}]$ for all α and the $[i_{\alpha}]$ generate $\pi_{n}(X^{n})$, this defines f_{*} on all of $\pi_{n}(X^{n})$.

To extend f over the (n+1)-cells, it will suffice to show that $f \circ \varphi_{\beta}$ is nullhomotopic, where $\varphi_{\beta} \colon S^n \to X^n$ is the attaching map for the (n+1)-cell e_{β}^{n+1} . But $f \circ \varphi_{\beta}$ is a representative of $f_* [\varphi_{\beta}] = \psi [\varphi_{\beta}]$. Thus we have transformed $f_* [\varphi_{\beta}]$ into an element in the image of $\psi \colon \pi_n(X) \to \pi_n(Y)$, and for this, we can use the extra structure of X, not just X^n . In X, $[\varphi_{\beta}]$ is trivial via the characteristic map of the cell e_{β}^{n+1} , so $\psi [\varphi_{\beta}] = \psi(0) = 0$, thus indeed $f \circ \varphi_{\beta}$ is nullhomotopic. Thus we obtain the desired extension $f \colon X \to Y$. To see that $f_* = \psi$, simply note that by

cellular approximation, any element of $\pi_n(X)$ can be represented as an element in $\pi_n(X^n)$, and on $\pi_n(X^n)$, f_* agrees with ψ by construction.

Proof of Proposition 2.8. Let K' be any K(G,n) CW complex, and let K be the specific K(G,n) CW complex constructed in Example 2.5. In particular, K is of the form of Lemma 2.9. Since $\pi_n(K) = \pi_n(Y)$, we can apply Lemma 2.9 to obtain a map $f: K \to K'$ inducing the identity on π_n . Since all other homotopy groups of K and K' are trivial, Whitehead's theorem now gives that f is a homotopy equivalence. Since homotopy equivalence is an equivalence relation, this finishes the proof.

2.2. The Hurewicz Theorem.

Theorem 2.10. If a space X is (n-1)-connected, $n \geq 2$, then $\tilde{H}_i(X) = 0$ for i < n and $\pi_n(X) \cong H_n(X)$. If a pair (X,A) is (n-1)-connected, $n \geq 2$, with A simply connected and nonempty, then $H_i(X,A) = 0$ for i < n and $\pi_n(X,A) \cong H_n(X,A)$.

Remark. This result is, in a sense, the best that we can expect. For example, S^n has trivial homology groups above dimension n but many nontrivial homotopy groups in this range when $n \geq 2$; and conversely, Eilenberg-MacLane spaces such as \mathbb{CP}^{∞} have trivial higher homotopy groups but many nontrivial homology groups.

Corollary 2.11. A map $f: X \to Y$ between simply-connected CW complexes is a homotopy equivalence if $f_*: H_n(X) \to H_n(Y)$ is an isomorphism for each n.

Proof. By replacing Y with the mapping cylinder M_f , we may assume f is the inclusion $X \hookrightarrow Y$. Since X and Y are simply-connected, $\pi_1(Y,X) = 0$. The relative Hurewicz theorem says that the first nonzero $\pi_n(Y,X)$ is isomorphic to the first nonzero $H_n(Y,X)$, but by the LES of the pair (Y,X) in homology, $H_n(Y,X) \cong 0$ for all $n \geq 0$, so also $\pi_n(Y,X) \cong 0$ for all $n \geq 0$, so f induces isomorphisms $\pi_n(X) \to \pi_n(Y)$ for all f. By Whitehead's theorem, f is a homotopy equivalence.

References

- [1] Glen E. Bredon. *Topology and geometry*. **volume** 139. Graduate Texts in Mathematics. Corrected third printing of the 1993 original. Springer-Verlag, New York, 1997, **pages** xiv+557. ISBN: 0-387-97926-3.
- [2] Allen Hatcher. *Algebraic topology*. Cambridge University Press, Cambridge, 2002, pages xii+544. ISBN: 0-521-79160-X; 0-521-79540-0.
- [3] Oscar Randal-Williams. *Homotopy Theory*. 2021. URL: https://www.dpmms.cam.ac.uk/~or257/teaching/notes/HomotopyTheory.pdf.