更大的逻辑比特

更大的逻辑比特

挖去更多的测量比特 逻辑初始化 逻辑测量

3022-11-29

挖去更多的测量比特

为了增加表面码的距离 d, 需要增加逻辑算符链的长度, 包括:

- 1. 增加两个开孔的间隔, spacing
- 2. 增加开孔的周界, size

增加周界:将孔中所有 Measure-Z 和 Measure-X 比特都关闭。留下的边界反映了该孔的性质:

- 1. X 边界 \longrightarrow Z-cut 比特,周界定义 \hat{Z}_L
- 2. Z 边界 \rightarrow X-cut 比特,周界定义 \hat{X}_L

逻辑初始化

将大挖孔的 Z-cut 逻辑比特初始化到 \hat{Z}_L 基底,与简单挖孔逻辑比特的类似,只是用中间 4 个被挖 Measure-Z 比特的测量值的乘积, $Z_{s1}Z_{s2}Z_{s3}Z_{s4}$,来标定 \hat{Z}_L 的本征值。

将大挖孔的 Z-cut 逻辑比特初始化到 \hat{X}_L 基底,同样是通过先将 \hat{X}_L 算符链上的数据比特孤立出来,再把其置为 \hat{X} 的基态来实现。

X-cut 逻辑比特的类似。

逻辑测量

与简单挖孔比特类似,与逻辑初始化采用相同的约定,几乎相反的操作顺序。