Analog Lab

Experiment 7: Buck Converter

Name- Pushkal Mishra Roll- EE20BTECH11042

1. To design a Buck converter with the following specifications

Input Supply: $V_{sup} = 5V$

Output Voltage: $V_{01, avg} = 2.5V$

Switching Frequency: $f_s = 1 MHz$

Load: $R_L = 100\Omega$ resistor with $I_o = 100 mA$ current source

Output Ripple Voltage ≤ 10mV

Quality factor: Q = 3

Circuit Used

Now the average voltage of V_{01} is DV_{sup} where D is duty cycle and V_{sup} is 5V. Given the average of V_{01} as 2.5V, we get the duty cycle D as 0.5

Relation between peak-to-peak voltage of V_{01} is-

$$V_{O1,PP} = \frac{(1-D)DV_{sup}}{8LCf_s^2}$$

Using the given condition that $V_{01, PP} \leq 10 mV$ and substituting values of D(0.5), $f_s(1 MHz)$ and $V_{sup}(5V)$ we get-

$$LC \ge \frac{5 \times 10^{-10}}{32} \rightarrow \text{Eq } 1$$

Quality factor for LC circuit is given as-

$$Q = R_L \sqrt{\frac{C}{L}}$$

Substituting values of Q(3) and $R_L(100\Omega)$ we get-

$$\frac{c}{L} = 9 \times 10^{-4} \rightarrow \text{Eq } 2$$

Taking equality in equation 1 and dividing with equation 2 we get L as 0.1317 mH and C as 118.59 nF.

In this experiment I have taken L as 0.13 mH and C as 118.6 nF.

All these formulas and circuits are from Analog Electronics lecture 18 and 19.

Implementation in LTSpice

Here we used the voltage controlled switch to implement the switching mechanism. The specifications of the switch are as follows: $R_{on} = 0.01\Omega$, $R_{off} = 1M\Omega$, $V_T = 0.05V$ and $V_H = 0V$. A low value of R_{on} and high value of R_{off} helps in keeping the switching mechanism to near ideal condition.

In S1, V_c is compared to ground, i.e. $V_c-0=V_c$ and in S2, V_c is compared to 5V, i.e. $5-V_c=\overline{V_c}$.

Transient Simulation

Steady State Simulation

Finding Ripple Voltage using Cursor in LTSpice

From the above measurements, ripple voltage is $8.57 \text{ mV} \leq 10 \text{ mV}$.

2. Some observations

- 2.1 The ripple voltage is as expected.
- 2.2 The transient response is similar to an under-damped system.
- 2.3 We can control the ripple voltage by varying L and C.
- 2.4 The above circuit acts as a DC to DC step down voltage transformer.