Support Vector Machine

Non-parametric Nearest Neighbor

Parametric

Non-parametric Nearest Neighbor

Parametric

Distribution of data from two classes

Which class does q belong too?

Distribution of data from two classes

What's the best **w**?

Intuitively, the line that is the farthest from all interior points

Maximum Margin solution:

most stable to perturbations of data

Want a hyperplane that is far away from 'inner points'

Find hyperplane w such that ...

Can be formulated as a maximization problem

$$\max_{m{w}} rac{2}{\|m{w}\|}$$

subject to
$$\boldsymbol{w} \cdot \boldsymbol{x}_i + b \stackrel{\geq}{\leq} +1$$
 if $y_i = +1$ for $i = 1, \dots, N$

What does this constraint mean?

label of the data point

Why is it +1 and -1?

Can be formulated as a maximization problem

Equivalently,

Where did the 2 go?

$$\min_{\boldsymbol{w}} \|\boldsymbol{w}\|$$
 subject to $y_i(\boldsymbol{w}\cdot\boldsymbol{x}_i+b)\geq 1$ for $i=1,\ldots,N$

What happened to the labels?

'Primal formulation' of a linear SVM

 $\min_{oldsymbol{w}} \|oldsymbol{w}\|$

Objective Function

subject to
$$y_i(\boldsymbol{w} \cdot \boldsymbol{x}_i + b) \ge 1$$
 for $i = 1, ..., N$

This is a convex quadratic programming (QP) problem (a unique solution exists)

(you can learn more about this in convex optimization)

Separating cats and dogs

Intuitively, we should allow for some misclassification if we can get more robust classification

Trade-off between the MARGIN and the MISTAKES (might be a better solution)

Adding slack variables $\xi_i \geq 0$

objective

subject to

$$\min_{\boldsymbol{w},\boldsymbol{\xi}} \|\boldsymbol{w}\|^2 + C \sum_i \xi_i$$

$$y_i(\boldsymbol{w}^{ op}\boldsymbol{x}_i+b)\geq 1-\xi_i$$
 for $i=1,\ldots,N$

objective

subject to

$$\min_{\boldsymbol{w},\boldsymbol{\xi}} \|\boldsymbol{w}\|^2 + C \sum_{i} \xi_i$$

$$y_i(\boldsymbol{w}^{ op}\boldsymbol{x}_i+b) \geq 1-\xi_i$$
 for $i=1,\ldots,N$

The slack variable allows for mistakes, as long as the inverse margin is minimized.

objective

subject to

$$\min_{\boldsymbol{w},\boldsymbol{\xi}} \|\boldsymbol{w}\|^2 + C \sum_{i} \xi_i$$

$$y_i(\boldsymbol{w}^{\top}\boldsymbol{x}_i+b) \geq 1-\xi_i$$
 for $i=1,\ldots,N$

- Every constraint can be satisfied if slack is large
- C is a regularization parameter
 - Small C: ignore constraints (larger margin)
 - Big C: constraints (small margin)
- Still QP problem (unique solution)

C = Infinity hard margin

C = 10 soft margin

Non-parametric Nearest Neighbor

Parametric

'Classical' Image Classification Pipeline

