

PENDING CLAIMS AS AMENDED

Please amend the claims as follows:

1. (Currently Amended) In a wireless communication system, a method for transmitting pilot references from a plurality of transmission sources, the method comprising:

receiving at each transmission source one or more signals indicative of a time reference for the communication system;

generating at each transmission source a plurality of pilot bursts for a pilot reference, wherein the pilot bursts are in synchronization with the time reference; and

transmitting the plurality of pilot bursts <u>in synchronization with the time reference</u> from each transmission source.

- 2. (Original) The method of claim 1, wherein pilot bursts from the plurality of transmission sources are aligned in time at the time of transmission.
- 3. (Original) The method of claim 1, wherein the plurality of pilot bursts from each transmission source are transmitted at predetermined time intervals.
- 4. (Original) The method of claim 1, wherein each of the plurality of pilot bursts has a predefined width.
- 5. (Original) The method of claim 1, wherein each pilot burst is transmitted at or near a maximum transmit power level of the transmission source.
- 6. (Original) The method of claim 1, further comprising: withholding data transmission at each access point during transmission of the pilot bursts.
- 7. (Original) The method of claim 1, further comprising:

Attorney Docket No.: 000043

Customer No.: 23696

processing at each transmission source pilot data in accordance with a particular

processing scheme such that the pilot reference from each transmission source is differentiated

from pilot references from other transmission sources.

8. (Previously Presented) The method of claim 7, wherein the processing at each

transmission source comprises:

spreading the pilot data with a pseudo-noise (PN) sequence at a particular offset that is

different from offsets for other transmission sources.

9. (Original) The method of claim 1, further comprising:

continuing transmission of the plurality of pilot bursts from a particular transmission

source even if no data is to be transmitted from the transmission source.

10. (Original) The method of claim 1, wherein transmission from each transmission source

occurs over slots, and wherein each slot covers a particular time period and includes a particular

number of pilot bursts.

11. (Original) The method of claim 10, wherein each slot includes two pilot bursts.

12. (Original) The method of claim 10, wherein each pilot burst is associated with a

respective portion of the slot and positioned in the center of the associated portion.

13. (Original) The method of claim 10, further comprising:

padding both sides of each pilot burst in an idle slot with additional transmissions of at

least a particular minimum period.

14. (Original) The method of claim 1, further comprising:

transmitting immediately on both sides of each pilot burst to ensure that the pilot burst is

received at or near its steady state value.

Attorney Docket No.: 000043

Customer No.: 23696

15. (Currently Amended) The method of claim 1, wherein the one or more signals used to derive derived the time reference for the communication system are received from a Global Positioning System (GPS) satellite constellation.

16. (Currently Amended) In a wireless communication system, a method for transmitting pilot references from a plurality of transmission sources, the method comprising:

at each transmission source

receiving one or more signals from a Global Positioning System (GPS) satellite constellation,

processing [[the]] one or more received signals to derive a time reference for the communication system,

generating a plurality of pilot bursts for a pilot reference, wherein the pilot bursts are in synchronization with the time reference, and

transmitting the plurality of pilot bursts at predetermined time intervals and <u>in</u> synchronization with the time reference at or near a maximum transmit power level of the transmission source, [[and]]

wherein pilot bursts from the plurality of transmission sources are aligned in time at the time of transmission.

17. (Currently Amended) A wireless communication system comprising: a plurality of access points, each access point configured to

receive one or more signals indicative of a time reference for the communication system,

generate a plurality of pilot bursts for a pilot reference, wherein the pilot bursts are in synchronization with the time reference; and

transmit the plurality of pilot bursts in synchronization with the time reference.

18. (Original) The communication system of claim 17, wherein pilot bursts from the plurality of access points are aligned in time at the time of transmission.

Attorney Docket No.: 000043

Customer No.: 23696

19. (Previously Presented) The communication system of claim 17, wherein each access

point comprises:

a Global Positioning System (GPS) receiver configured to receive and process one or

more signals from a Global Positioning System (GPS) satellite constellation to provide a signal

indicative of the time reference for the communication system.

20. (Previously Presented) The communication system of claim 17, wherein each access

point comprises:

a controller configured to receive the time reference for the communication system and

generate the plurality of pilot bursts.

21. (Original) The communication system of claim 17, wherein each access point is

configured to transmit the plurality of pilot bursts at or near a maximum transmit power level for

the access point.

22. (Original) An access terminal for use in a wireless communication system, comprising:

an RF module configured to receive a modulated signal over a wireless communication

link and to condition the received signal to generate a conditioned signal; and

a modem block coupled to the RF module and configured to process the conditioned

signal to recover a plurality of pilot references transmitted from a plurality of access points,

wherein the pilot reference from each access point is transmitted in pilot bursts that are

synchronized with a system time reference, and wherein the pilot bursts from the plurality of

access points are aligned in time at the time of transmission.

23. (Original) The access terminal of claim 22, wherein the modem block is configured to

generate samples from the conditioned signal and to despread the samples with a pseudo-noise

(PN) sequence at a particular offset for each of the plurality of access points.

24. (Currently Amended) An access terminal, comprising:

Attorney Docket No.: 000043

Customer No.: 23696

means for receiving a pilot burst reference transmitted in pilot bursts that are

synchronized with a time reference; and

means for determining a link condition based on the pilot burst reference.

25. (Currently Amended) An access terminal as in claim 24, further comprising:

means for determining an access point having a best signal quality based at least on the

received pilot burst reference.

26. (Previously Presented) An access terminal as in claim 25, further comprising:

means for determining a highest data rate supported by the access point.

27. (Currently Amended) An access terminal as in claim 24, wherein [[the]] each pilot burst

has a predetermined burst width and a predetermined interval, and wherein the predetermined

burst width and the predetermined interval are known a priori by the access terminal.

28. (Currently Amended) An access terminal as in claim 27, wherein the pilot burst reference

is transmitted at a maximum transmit power.

29. (Currently Amended) An access terminal as in claim 27, wherein no user-specific data is

received with the pilot bursts burst-at the predetermined interval.

30. (Previously Presented) An access terminal as in claim 27, wherein multiple pilot bursts

from different access points are synchronized.

31. (Currently Amended) An access terminal as in claim 30, wherein the means for receiving

further comprises:

means for receiving a plurality of pilot bursts from different access points.

32. (Currently Amended) An access terminal as in claim 24, further comprising:

Attorney Docket No.: 000043

Customer No.: 23696

means for estimating worst-case carrier to interference ratio from the pilot burst

reference.

33. (Currently Amended) An access terminal, comprising:

a modem for receiving a plurality of pilot bursts from different access points, wherein the

pilot bursts are synchronized and sent at [[a]] predetermined interval intervals; and

a processor for determining a link condition from each pilot burst.

34. (Previously Presented) An access terminal as in claim 33, wherein the access terminal

recognizes the pilot bursts as pilot references.

35. (Currently Amended) An access terminal as in claim 33, wherein the access terminal

uses the pilot burst bursts to estimate worst-case carrier to interference ratio.

36. (Currently Amended) An access terminal, comprising:

a processor; and

a memory storage unit, storing:

a first set of computer-readable instruction instructions for receiving a pilot burst

reference transmitted in pilot bursts that are synchronized with a time reference; and

a second set of computer-readable instructions instructions for determining a link

condition based on the pilot burst reference.

37. (Currently Amended) An access terminal as in claim 36, the memory storage unit further

storing:

a third set of computer-readable instructions for determining an access point having a best

signal quality based at least on the received pilot burst reference.

38. (Previously Presented) An access terminal as in claim 37, the memory storage unit

further storing:

Attorney Docket No.: 000043

Customer No.: 23696

a fourth set of computer-readable instructions for determining a highest data rate

supported by the access point.

39. (Currently Amended) An access terminal as in claim 36, wherein [[the]] each pilot burst

has a predetermined burst width and a predetermined interval, and wherein the predetermined

burst width and the predetermined interval are known a priori by the access terminal.

40. (Currently Amended) An access terminal as in claim 39, wherein the pilot burst reference

is transmitted at a maximum transmit power.

41. (Currently Amended) An access terminal as in claim 39, wherein no user-specific data is

received with the pilot bursts burst at the predetermined interval.

42. (Previously Presented) An access terminal as in claim 39, wherein multiple pilot bursts

from different access points are synchronized.

43. (Currently Amended) An access terminal as in claim 42, wherein the memory storage

unit further stores:

a second set of computer-readable instructions for receiving a plurality of pilot bursts

from different access points.

44. (Currently Amended) An access terminal as in claim 36, the memory storage unit further

storing:

a second set of computer-readable instructions for estimating worst-case carrier to

interference ratio from the pilot burst reference.

Attorney Docket No.: 000043

Customer No.: 23696