Example of a Direct Proof

1. Prove the following:

Claim:

If n is odd, then 5n + 2 is odd.

Proof.

Let n be an odd number. By the definition of odd, n = 2k + 1, for $k \in \mathbb{Z}$. Then

$$5n + 2 = 5(2k + 1) + 2$$
 substitute $2k + 1$ for n
= $10k + 5 + 2$
= $10k + 6 + 1$
= $(10k + 6) + 1$
= $2(5k + 3) + 1$

Since $5, k, 3 \in \mathbb{Z}$ and \mathbb{Z} is closed under multiplication and addition, $5k + 3 \in \mathbb{Z}$. \therefore by the definition of odd, 5n + 2 is odd.