Conditional:
$$|P(\Delta|B)| = |P(\Delta \cap B)|$$

By any es: $|P(\Delta|B)| = |P(B|\Delta)|P(\Delta)|P(\Delta)|$
 $|P(B)| = \sum_{A=1}^{N} |P(B \cap A_A)| = \sum_{A=1}^{N} |P(B|\Delta)|P(\Delta)|$
 $|P(B)| = \sum_{A=1}^{N} |P(B \cap A_A)| = \sum_{A=1}^{N} |P(B|\Delta)|P(\Delta)|$
 $|P(A)| = \sum_{A=1}^{N} |P(B \cap A_A)| = \sum_{A=1}^{N} |P(B|\Delta)|P(\Delta)|$
 $|P(A)| = \sum_{A=1}^{N} |P(A|\Delta)|P(\Delta)|$
 $|P(A)| = \sum_{A=1}^{N} |P(A|\Delta)|P(\Delta)|$
 $|P(A)| = \sum_{A=1}^{N$

Generalización de VA: fx(x) = = Px(4) S(x-5) A, B indep $\rightarrow IP(A|B) = IP(A)$; $IP(A \cap B) = IP(A)IP(B)$ Distribución Notación $p_X(x)$ Soporte $\mathbf{E}[X]$ var(X)Parámetros Bernoulli $p^{x}(1-p)^{1-x}$ Ber(p) $\{0, 1\}$ $p \in (0, 1)$ p(1 - p)p $\binom{n}{r} p^x (1-p)^{n-x}$ $\mathcal{B}(n, p)$ Binomial [0, n] $p \in (0, 1), n \in \mathbb{N}$ np(1-p)np $(1-p)^{x-1}p$ Geométrica G(p)N $p \in (0, 1)$ 1/p $(1-p)/p^2$ $\binom{x-1}{k-1}(1-p)^{x-k}p^k$ Pascal Pas(k, p) $p \in (0, 1), k \in \mathbb{N}$ $k(1-p)/p^2$ k/p $(\mu^{x}e^{-\mu})/x!$ $Poi(\mu)$ Poisson $\mu > 0$ μ μ $\frac{\binom{d}{x}\binom{N-d}{n-x}}{\binom{N}{1}}$ $\frac{nd(N-d)(N-n)}{N^2(N-1)}$ $[m, M]^{\dagger}$ Hipergeométrica $\mathcal{H}(N, d, n)$ $d \le N, n \le N \in \mathbb{N}$ $f_X(x)$ $\mathbf{E}[X]$ Distribución Soporte var(X)Notación Parámetros $(b-a)^2/12$ $\mathcal{U}[a, b]$ 1/(b-a)[a, b](a + b)/2Uniforme a < b $1/\lambda^2$ $\lambda e^{-\lambda x}$ $\mathcal{E}(\lambda)$ Exponencial $[0, +\infty)$ $\lambda > 0$ $1/\lambda$ $\frac{\lambda^{\nu}}{\Gamma(\nu)}x^{\nu-1}e^{-\lambda x}$ ν/λ^2 $\nu > 0, \lambda > 0$ ν/λ $\Gamma(\nu, \lambda)$ $[0, +\infty)$ Gamma $\frac{1}{\sqrt{2\pi}\sigma}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$ σ^2 $\mathcal{N}(\mu, \sigma^2)$ $\mu \in \mathbb{R}, \sigma^2 > 0$ Normal \mathbb{R} μ $\frac{1}{2^{\frac{k}{2}}\Gamma(\frac{k}{2})}x^{\frac{k}{2}-1}e^{-\frac{x}{2}}$ χ_k^2 Chi cuadrado $[0, +\infty)$ k2k $k \in \mathbb{N}$ $\frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\Gamma(\frac{\nu}{2})} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}}$ t-Student \mathbb{R} $\frac{\nu}{\nu-2}$ * 0 $\nu > 0$ $\alpha^2 \left[\Gamma \left(1 + \frac{2}{c} \right) \right]$ $\frac{c}{\alpha} (\frac{x}{\alpha})^{c-1} e^{-(\frac{x}{\alpha})^c}$ $\alpha\Gamma(1+\frac{1}{c})$ $[0, +\infty)$ $c > 0, \alpha > 0$ $Wei(c, \alpha)$ Weibull $-\Gamma^2(1+\frac{1}{c})$ $\frac{x}{\sigma^2}e^{-x^2/(2\sigma^2)}$ $\sigma \sqrt{\pi/2}$ $\frac{4-\pi}{2}\sigma^2$ $Ray(\sigma)$ $[0, +\infty)$ Rayleigh $\sigma > 0$ $\frac{m^2\alpha}{(\alpha-1)^2(\alpha-2)}$ $\frac{\alpha m^{\alpha}}{x^{\alpha+1}}$ $Par(m, \alpha)$ $[m, +\infty)$ $m > 0, \alpha > 0$ Pareto $\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}x^{a-1}(1-x)^{b-1}$ $\frac{ab}{(a+b)^2(a+b+1)}$ $\beta(a,b)$ (0, 1)a > 0, b > 0a/(a+b)Beta $\frac{1}{\pi \gamma}$ $\left[\frac{\gamma^2}{(x-x_0)^2+\gamma^2}\right]$ Cauchy $Cau(x_0, \gamma)$ $x_0 \in \mathbb{R}, \gamma > 0$ no existe no existe

Señal	L Poc		
$\delta(t)$	1	C	
u(t)	$\frac{1}{s}$	$\{s\in\mathbb{C}:\operatorname{Re}\left\{ s\right\} >0\}$	
-u(-t)	$\frac{1}{s}$	$\{s\in\mathbb{C}:\operatorname{Re}\left\{ s\right\} <0\}$	
$\frac{t^{n-1}}{(n-1)!}u(t)$	$\frac{1}{s^n}$	$\{s\in\mathbb{C}:\operatorname{Re}\left\{ s\right\} <0\}$	J
$e^{-\alpha t}u(t)$	$\frac{1}{s+\alpha}$	$\{s \in \mathbb{C} : \operatorname{Re}\{s\} > -\operatorname{Re}\{\alpha\}\}\$	
$-e^{-\alpha t}u(-t)$	$\frac{1}{s+\alpha}$	$\{s \in \mathbb{C} : \operatorname{Re}\{s\} < -\operatorname{Re}\{\alpha\}\}$	
$\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t)$	$\frac{1}{(s+\alpha)^n}$	$\{s \in \mathbb{C} : \operatorname{Re}\{s\} > -\operatorname{Re}\{\alpha\}\}\$	
$-\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t)$	$\frac{1}{(s+\alpha)^n}$	$\left\{ s\in\mathbb{C}:\operatorname{Re}\left\{ s\right\} <-\operatorname{Re}\left\{ \alpha\right\} \right\}$	۲
$\sin(\omega_0 t)u(t)$	$\frac{\omega_0}{s^2+\omega_0^2}$	$\{s\in\mathbb{C}:\operatorname{Re}\left\{ s\right\} >0\}$	
$\cos(\omega_0 t)u(t)$	$\frac{s}{s^2+\omega_0^2}$	$\{s\in\mathbb{C}:\operatorname{Re}\left\{ s\right\} >0\}$	

Desplazamiento Laplace

$$x(t-t_0) \stackrel{\mathcal{L}}{\leftarrow} e^{-st_0}X(s), \ \operatorname{ROC}\left\{e^{-st_0}X(s)\right\} = \operatorname{ROC}\left\{X(s)\right\}$$

$$x(t)e^{s_0t} \stackrel{\mathcal{L}}{\leftarrow} X(s-s_0), \ \operatorname{ROC}\left\{X(s-s_0)\right\} = \operatorname{ROC}\left\{X(s)\right\} + \operatorname{Re}\left\{s_0\right\}$$

$$F\left[\frac{dx(t)}{dt}\right] = j\omega X(j\omega) \qquad F\left[\int_{-\infty}^t x(\tau)d\tau\right] = \frac{X(j\omega)}{j\omega}$$

$$F\left[\frac{dx(t)}{dt}\right] = j\omega X(j\omega) \qquad F\left[\int_{-\infty}^t x(\tau)d\tau\right] = \frac{X(j\omega)}{j\omega}$$

$$F\left[\frac{dx(t)}{dt}\right] = j\omega X(j\omega) \qquad F\left[\int_{-\infty}^t x(\tau)d\tau\right] = \frac{X(j\omega)}{j\omega}$$

$$F\left[\frac{dx(t)}{dt}\right] = j\omega X(j\omega) \qquad F\left[\int_{-\infty}^t x(\tau)d\tau\right] = \frac{X(j\omega)}{j\omega}$$

$$F\left[\frac{dx(t)}{dt}\right] = j\omega X(j\omega) \qquad F\left[\int_{-\infty}^t x(\tau)d\tau\right] = \frac{X(j\omega)}{j\omega}$$

$$F\left[\frac{dx(t)}{dt}\right] = j\omega X(j\omega) \qquad F\left[\int_{-\infty}^t x(\tau)d\tau\right] = \frac{X(j\omega)}{j\omega}$$

$$F\left[\frac{dx(t)}{dt}\right] = j\omega X(j\omega) \qquad F\left[\int_{-\infty}^t x(\tau)d\tau\right] = \frac{X(j\omega)}{j\omega}$$

$$F\left[\frac{dx(t)}{dt}\right] = j\omega X(j\omega) \qquad F\left[\int_{-\infty}^t x(\tau)d\tau\right] = \frac{X(j\omega)}{j\omega}$$

$$F\left[\frac{dx(t)}{dt}\right] = j\omega X(j\omega) \qquad F\left[\int_{-\infty}^t x(\tau)d\tau\right] = \frac{X(j\omega)}{j\omega}$$

$$F\left[\frac{dx(t)}{dt}\right] = j\omega X(j\omega) \qquad F\left[\frac{X(j\omega)}{dt}\right] = \sum_{k=0}^{\infty} k_k \frac{J^k}{J^k} = \sum_{$$

$$\sum_{n=0}^{\infty} \alpha^n = \frac{1}{1-\alpha}, \quad \alpha \in \mathbb{C}, \quad |\alpha| < 1$$

$$\sum_{n=N_1}^{N_2-1}\alpha^n=\frac{\alpha^{N_1}-\alpha^{N_2}}{1-\alpha}, \quad \alpha\in\mathbb{C},\ N_1,N_2\in\mathbb{N}$$

$$\sum_{n=0}^{\infty} \alpha^n = \frac{1}{1-\alpha}, \quad \alpha \in \mathbb{C}, \quad |\alpha| < 1$$

$$\sum_{n=1}^{N_2-1} \alpha^n = \alpha^{N_1} - \alpha^{N_2}$$

$$x(0+) = \lim_{s \to \infty} sX(s)$$

Si $\lim_{t\to\infty} x(t)$ existe:

$$\lim_{t\to\infty}x(t)=\lim_{s\to 0}sX(s)$$

Convolution
$$x(t)*y(t)=\int_{-\infty}^{\infty}x(\tau)y(t-\tau)d\tau \qquad \qquad x[n]*y[n]=\sum_{k=-\infty}^{\infty}x[k]y[n-k]$$

Lineal:
$$\uparrow [\propto \times (t) + b \gamma(t)] = A \uparrow [\times (t)] + b \uparrow [\gamma (t)]$$
 Council $\Rightarrow h(t) = 0 + t < 0$
 $\uparrow i : \uparrow [\times (t-to)] = S(t-to)$ Monorio $\Rightarrow h(t) = KS(t)$ Satoble $\Rightarrow Po \subset o [|h(t)| < 0$

Ec
$$d_1 \ell$$
: $\sum_{k=0}^{N} a_k \frac{d^k y(k)}{dt^k} = \sum_{k=0}^{M} b_k \frac{d^k x(k)}{dt^k}$

$$\sum_{p=0}^{N} y[n-p] x_{p} = \sum_{q=0}^{M} x[n-q] p_{q}$$

$$\frac{d \times d}{dt^{k}} \qquad \frac{d \times d}{dt$$

$$H(z) = \frac{\sum_{n=0}^{\infty} \frac{1}{2^n} + \sum_{n=0}^{\infty} \frac{1}{2^$$

Pivotes - * es parámetro desconocido

Dist.	Parám. θ	Pivote $Q(\underline{X}^{(n)}, \theta)$	Distribución de Q
	1 (11(1111)		
$\mathcal{N}(\mu, \sigma^2)$	μ	$\frac{\overline{X} - \mu}{\sqrt{\sigma^2/n}}$	$\mathcal{N}(0,1)$
$\mathcal{N}(\mu,\sigma^{2*})$	μ	$\frac{\overline{X} - \mu}{\sqrt{S^2/n}}$	t_{n-1}
$\mathcal{N}(\mu,\sigma^2)$	σ^2	$\frac{n\widehat{\sigma_{mv}^2}}{\sigma^2}$	χ_n^2
$\mathcal{N}(\mu^*,\sigma^2)$	σ^2	$\frac{(n-1)S^2}{\sigma^2}$	χ_{n-1}^2
$\mathcal{E}(\lambda)$	λ	$2n\bar{X}\lambda$	χ^2_{2n}
$\mathcal{E}(\lambda)$	λ	$2nX_{min}\lambda$	χ_2^2
$\mathrm{Poi}(\mu)$	μ	$\frac{\overline{X} - \mu}{\sqrt{\mu/n}}$	$\mathcal{N}(0,1)^\dagger$
$\mathrm{Poi}(\mu)$	μ	$\frac{\overline{X} - \mu}{\sqrt{\overline{X}/n}}$	$\mathcal{N}(0,1)^{\ddagger}$
$\mathrm{Ber}(p)$	p	$\frac{\overline{X} - p}{\sqrt{p(1-p)/n}}$	$\mathcal{N}(0,1)^\dagger$
$\mathrm{Ber}(p)$	p	$\frac{\overline{X} - p}{\sqrt{\overline{X}(1 - \overline{X})/n}}$	$\mathcal{N}(0,1)^{\ddagger}$
$\mathcal{U}(0,\theta)$	θ	$\frac{X_{max}}{\theta}$	$q_{\alpha} = \alpha^n$
$\mathcal{N}(\mu_i, \sigma_i^2)$	Δ	$\frac{\bar{X} - \bar{Y} - \Delta}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}}$	$\mathcal{N}(0,1)$
$\mathcal{N}(\mu_i, \sigma_=^{2*})$	Δ	$\frac{\bar{X} - \bar{Y} - \Delta}{\sqrt{S_P^2 \left(\frac{1}{m} + \frac{1}{n}\right)}}$	t_{m+n-2}
$\mathcal{N}(\mu_i^*, \sigma_i^2)$	R	$\frac{1}{R} \frac{S_X^2}{S_Y^2}$	$F_{m-1,n-1}$
$\mathrm{Ber}(p_i)$	Δ	$\frac{\bar{X} - \bar{Y} - \Delta}{\sqrt{\frac{\bar{X}(1 - \bar{X})}{m} + \frac{\bar{Y}(1 - \bar{Y})}{n}}}$	$\mathcal{N}(0,1)^{\ddagger}$
		,	

Señal	Transformada de Fourier	Serie de Fourier
$\delta(t)$	1	
$e^{j\omega_0t}$	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0 \forall k \neq 1$
$\cos(\omega_0 t)$	$\pi \left[\delta(\omega - \omega_0) + \delta(\omega + \omega_0) \right]$	$a_k = 0 \forall k \neq 1$ $a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0 \forall k \neq 1$
$\sin(\omega_0 t)$	$\frac{\pi}{j} \left[\delta(\omega - \omega_0) - \delta(\omega + \omega_0) \right]$	$a_k = 0 \forall k \neq 1$ $a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0 \forall k \neq 1$
1	$2\pi\delta(\omega)$	$a_0 = 1$ $a_k = 0 \forall k \neq 0$
$\sum_{n=-\infty}^{\infty} \delta(t - nT)$	$\frac{2\pi}{T} \sum_{n=-\infty}^{\infty} \delta\left(\omega - \frac{2\pi n}{T}\right)$	$a_k = \frac{1}{T}, \ \forall k$
$\sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$	$2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega - k\omega_0)$	a_k
$u\left(t+T_{1}\right)-u\left(t-T_{1}\right)$	$\frac{2\sin(\omega T_1)}{\omega}$	
$x(t) = u(t + T_1) - u(t - T_1)$ $x(t + T) = x(t)$	$\sum_{k=-\infty}^{\infty} \frac{2\sin(k\omega_0 T_1)}{k} \delta(\omega - k\omega_0)$	$\frac{\sin(k\omega_0 T_1)}{k\pi}$
$\frac{\sin(Wt)}{\pi t}$	$u\left(\omega+W\right)-u\left(\omega-W\right)$	
u(t)	$\frac{1}{j\omega} + \pi\delta(\omega)$	
$e^{-\alpha t}u(t), \operatorname{Re}(\alpha) > 0$	$\frac{1}{\alpha + j\omega}$	
$\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t), \operatorname{Re}(\alpha) > 0$	$\frac{1}{(\alpha+j\omega)^n}$	
$\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{t^2}{2\sigma^2}}$	$e^{-\frac{\omega^2\sigma^2}{2}}$	

	Señal	Transformada de Fourier	Coeficientes de la serie de Fourier
	$\delta[n]$	1	
	$e^{j\omega_0 n}$	$2\pi \sum_{l=-\infty}^{\infty} \delta(\omega - \omega_0 - 2\pi l)$	$a_k = \begin{cases} 1 & k = m, m \pm N, m \pm 2N, \dots \\ 0 & en \ otro \ caso \end{cases}$
	$\cos(\omega_0 n)$	$\pi \sum_{l=-\infty}^{\infty} \left[\delta(\omega - \omega_0 - 2\pi l) + \delta(\omega + \omega_0 - 2\pi l) \right]$	Si $w_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} \frac{1}{2} & k = \pm m, \pm m \pm N, \pm m \pm 2N, \dots \\ 0 & en \ otro \ caso \end{cases}$
	$\sin(\omega_0 n)$		Si $w_0 = \frac{2\pi m}{N}$ $a_k = \begin{cases} \frac{1}{2j} & k = m, m \pm N, m \pm 2N, \dots \\ -\frac{1}{2j} & k = -m, -m \pm N, -m \pm 2N, \dots \\ 0 & en otro \ caso \end{cases}$
	1	$2\pi \sum_{l=-\infty}^{\infty} \delta(\omega - 2\pi l)$	$a_k = \begin{cases} 1 & k = 0, \pm N, \pm 2N, \dots \\ 0 & en \ otro \ caso \end{cases}$
-	$\sum_{k=-\infty}^{\infty} \delta[n - kN]$	$\frac{2\pi}{N} \sum_{k=-\infty}^{\infty} \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_k = \frac{1}{N} \forall k$
	$\sum_{k=\langle N\rangle} a_k e^{j\frac{2\pi k}{N}n}$	$2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega - \frac{2\pi k}{N})$	a_k
	$u\left[n\right] -u\left[n-N\right]$	$e^{-j\omega \frac{(N-1)}{2}} \frac{\sin(\omega N/2)}{\sin(\omega/2)}$ periódica con periodo 2π	
	$x[n] = u[n + N_1] - u[n - N_1 - 1]$ x[n] = x[n + N]	$2\pi \sum_{k=-\infty}^{\infty} \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_k = \frac{\sin\left(\frac{2\pi k}{N}\left(N_1 + \frac{1}{2}\right)\right)}{N\sin(\frac{2\pi k}{2N})} k \neq 0, \pm N, \pm 2N, \dots$ $a_k = \frac{2N_1 + 1}{N} k = 0, \pm N, \pm 2N, \dots$
	$\frac{\sin(Wn)}{\pi n}, \ 0 < W < \pi$	$u(\omega + W) - u(\omega - W)$ periódica con periodo 2π	
	u[n]	$\frac{1}{1-e^{-j\omega}} + \pi\delta(\omega)$ periódica con periodo 2π	
	$\alpha^n u[n], \alpha < 1$	$rac{1}{1-lpha e^{-j\omega}}$ periódica con periodo 2π	
	$\frac{(n+r-1)!}{n!(r-1)!}\alpha^n u[n], \alpha < 1$	$rac{1}{(1-lpha e^{-j\omega})^r}$ periódica con periodo 2π	