Phase Engineered Atomically thin high-K Dielectrics for 2D Electronics

Sagar Paudel

Wayne State University Physics & Astronomy

Introduction:

First Transistor 1947

First
Transistor
used
computer
1953

Michigan Micro Mote (M^3) 2015

- Size of transistor decreased from 10 μm in 1970's to submicron le
- Development of Silicon based devices took the central focus
- Two dimensional materials like Graphene attracted lot of interest

Graphene

- Strong in-plane bond and weak inter-layer force
- > Uniform surface
- Free from Dangling bonds
- > Stable at room temp
- High Mobility
 10⁶ cm² v⁻¹s⁻¹ at 2K
 10⁵ cm² v⁻¹s⁻¹ room temp
 Elac D.C.(2011)
- Zero band gap

Graphene Like 2D material: Transitional Metal Dichalcogenides (TMD)

- ➤ Graphene like material with finite band gap
- > Thermally stable
- ➤ Compatible
- ➤ Excellent on-off ratio > 106

MoS2 FET

➤ Field effect mobility of MoS2 (8-40 nm) is found in tens of cm² /Vs and on-off ratio higher than 10⁵.

Anthony Ayari et al., (2007)

> The mobility for the single layer MoS_2 FET on SiO_2 is found in the range 0.1 - 10 cm²/Vs.

B. Radisavljevic et. al.,(2011)

➤ The mobility of bi-layer MoS₂ FET were extracted 10-15 cm²/Vs.

Han Wang et. al., (2012)

➤ Room temperature mobility 50-200 cm²/Vs for bulk MoS₂.

R. Fivaz et.al., (1967)

Challenges of MoS2 FET

- **≻**Contact
- > Interface
- > High K dielectric integration

In our study, we will be focusing on High K dielectric integration of

Why High K dielectric?

Electrostatic control of channel is achieved through the capacitive coupling between the gate and the channel region

Scaling requires reduction in the source and drain depth by the same scaling factor as gate length, to ensure the effective control of channel.

Decreasing the thickness of gate oxide provides same

But,

Decreasing the gate oxide thickness gives rise to short channel effects:

- Increase in leakage current
- Reduction In On-off ratio
- Break down of gate oxide

Another Way,

Replacing SiO₂ by dielectric having high dielectric constant increases the capacitive coupling

Finding new dielectrics having high dielectric constant!!

Criteria Required

- Good thermal stability
- > Low density of intrinsic defects
- > Sufficient gate dielectric lifetime
- Sufficient energy band-gap

Possible Candidates

Table 1 Some physical parameters of high- κ dielectrics and heterostructures with Si and Ge

Material	Dielectric constant (k)	Band gap E_{G} (eV)	Band offset $\Delta E_{\rm C}$ (eV) to Si	Band offset $\Delta E_{\rm C}$ (eV) to Ge	Crystal structure
SiO ₂	3.9	8.9	3.2		Amorphous
Al_2O_3	9	8.7	2.8	2.6 [24]	Amorphous
Si_3N_4					Amorphous
TiO_2	80-100	3.5	1.2		Tetragonal
Ta_2O_5	26	4.5	1-1.5		Orthorhombic
HfO_2	25	5.7	1.4	2.0 ± 0.1 [25]	Monoclinic, tetragonal, cubic
ZrO_2	25	7.8	1.5		Monoclinic, tetragonal, cubic
La_2O_3	30	4.3	2.3	2.56 [24]	Hexagonal, cubic
Y_2O_3	15	5.6	2.3	2.56 [24]	Cubic
Gd_2O_3	$24 \pm 2 \ [6]$			2.44 [24]	
MgO	9.8 [7]	7.3 [7]			Cubic
Er_2O_3	14.4 [8]	7.5 [8]	3.5 [8]		
Nd_2O_3		5.8 [9]	2.2 [9]		
PrO_2	25 [10]	3–4 [10]	>1 [10]		Cubic
CeO_2	52 [11], 26 [12]	4.5 [12]			
LaAlO ₃	26 [13]	6.0 [10]		2.2 [24]	
ZrSiO ₄					Amorphous
$HfSiO_4$				2.2 [24]	Amorphous
(Dy_2O_3)	14	4.8			

Source : Wu, M. et.

AL 2008

Problem in High K dielectric integration of TMD

AFM image of HfO2 on MoS2 surface by ALD

Source: Stephen M. et. al., (2013)

XPS image showing island type of growth

AFM image of Al2O3 deposited by 30 ALD cycles on MoS2.

Source: Azcati A

et.al., 2014

➤They require complex growth process ➤ Needs Surface treatment

➤ Non-uniform deposition

➤ Surface contamination

Solution

Two dimensional atomically flat high K dielectric obtained through mechanical exfoliation

Exfoliation of TaS₂

Thermal Oxidation

XPS Study of Oxidized TaS2:

Kuo Y.,

in

TEM Study

AFM Study:

Before heating

After heating

Cursor Statistics: Red

 $\Delta Y(nm)$

0.776

Angle(deg)

C-V Measurement:

C-V Measurement (cont.):

Using
$$C = \frac{A\varepsilon_r \varepsilon_0}{t_{or}}$$

We found: K = 12.6

Experimental Details

- 1. Graphene Transfer
- 2. TaS₂ Transfer
- 3. Oxidation
- 4. MoS2 Transfer
- 5. E-beam Lithography
- 6. Gold Deposition

Platinum back-gate device:

AFM Characterization:

Gr: 8 nm $Ta_2O_5: 18$ nm

MoS2: 7 nm

Pt = 22 nm Ta2O5 = 12 nm MoS2 = 6 nm

Electrical Characterization Graphene Back gate Device Output Characteristics

Transfer Characteristic

Sub-threshold Swing

Sub-threshold swing = $\Delta x / (Order of \Delta y)$

70 mV/decade ~ SS

 $\mu \sim 55 \text{ cm}^2\text{V}^{-1}\text{s}^{-1}$

Hysteresis Behavior

Platinum Back gate device

Future Works

- ➤ Ta₂O₅ as Top Gate dielectric
- ➤ Optimizing the Contacts with Graphene electronic properties and the Contacts with Graphene electronic properties are contacted with Graphene electronic properties.
- ➤ Optimizing the thermal oxidation Process
- >Scaling of Dielectric thickness
- ➤ Scaling of Channel length

Acknowledgements

Advisor: Dr. Zhixian Zhou

Committee Members:

Dr. Boris Nadgorny

Dr. Ashis Mukhopadhyay

Dr. Mark Ming-Cheng Cheng

Bhim Chamlagain, Quingsong Cui, Hsun Jen Chuang 'Ben',

Meeghage Perera. Upendra, Kraig, Arthur, Prakash.

High K Dielectrics

$$\frac{t_{eq}}{\varepsilon_{r,SiO2}} = \frac{t_{high \ k}}{\varepsilon_{r,high \ k}}$$

$$t_{high K} = 10 \text{ nm}$$

 E_{r} , $E_{SiO2} = 3.9$
 E_{r} , $E_{Ta2O5} = 20$

$$t_{eq} = 1.95 \text{ nm}$$

AFM Characterization:

Graphene Back gate device

Platinum Back gate device

AFM Study:

Before heating

After heating