

Classification for Basic Voice Commands

HOW CAN DEEP LEARNING IMPACT SPEECH RECOGNITION?

Maria Blinchevskaya Raphael Delouya Gadi G. Ezer Claudia Palierne

1. INTRODUCTION

ORIGINAL MESSAGE:

Have you tried scaling your data using a MinMaxScaler?

2. PROBLEM STATEMENT: Context

Rising demand for smart devices and voice-controlled applications

Need for **efficient** and **accurate** speech recognition technology

3. OUR PROJECT

Kaggle Competition (ended Jan - 2018)

3. OUR PROJECT: Goals

4. DATA COLLECTION AND PREPROCESSING

4. DATA COLLECTION AND PREPROCESSING

13 commands

(yes, no, one, two, three, four, five, six, seven, eight, nine, up, down)

500 audio files for each command

Added Background Noise

4. DATA COLLECTION AND PREPROCESSING: RAW AUDIO

4. DATA COLLECTION AND PREPROCESSING: Waveform and Spectogram

STFT (Short-Time Fourier Transform)

Audio: c634a189_nohash_3.wav, Class: eight, Length: 1.0 secs

4. DATA COLLECTION AND PREPROCESSING: MFCC

MFCC (Mel Frequency Cepstral Coefficients)

4. DATA COLLECTION AND PREPROCESSING: Challenges

PROBLEM

Initial Pre-processing

SOLUTION

LIBROSA library

5. MODEL DEVELOPMENT: TRAINING PROCESS

GENERAL INFO:

- Training Set, Validation Set, Test Set
- 50 epochs
- Accuracy Metric
- Adam Optimizer
- Learning Rate: 0.001

OUR MODEL:

- Sequential model architecture
- Reshape, Conv2D, MaxPooling2D, Flatten, Dense, and Dropout layers
- Smaller number of layers compared to AlexNet
- Fewer trainable parameters compared to AlexNet

Model: "sequential 4"

Layer (type) ====================================	Output Shape	Param #
reshape_4 (Reshape)		0
conv2d_12 (Conv2D)	(None, 18, 30, 32)	320
max_pooling2d_9 (MaxPooling 2D)	(None, 9, 15, 32)	0
conv2d_13 (Conv2D)	(None, 7, 13, 64)	18496
max_pooling2d_10 (MaxPoolin g2D)	(None, 3, 6, 64)	0
conv2d_14 (Conv2D)	(None, 1, 4, 128)	73856
flatten_4 (Flatten)	(None, 512)	0
dense_12 (Dense)	(None, 128)	65664
dropout_8 (Dropout)	(None, 128)	0
dense_13 (Dense)	(None, 64)	8256
dropout_9 (Dropout)	(None, 64)	0
dense_14 (Dense)	(None, 13)	845

Total params: 167,437 Trainable params: 167,437 Non-trainable params: 0

6. RESULTS AND EVALUATION: MFCC with noise

Validation Accuracy achieved: 0.86

6. RESULTS AND EVALUATION: MFCC without noise

Validation Accuracy achieved: 0.88

6. RESULTS AND EVALUATION: Spectograms

Validation Accuracy achieved: 0.70

7. DEMO

http://172.16.0.57:8501/

8. REAL-WORLD APPLICATIONS

VOICE ASSISTANT

SMART HOME

CARS

GAMING

9. CONCLUSION

RESULTS

- Achieved very good accuracy with noise BUT overfits ...
- Very inspiring project!

NEXT STEPS

- Increase the different commands
- Try with sentences
- Increase background noise

Last Word!

Wav2Vec (META)

ANNEXES

MODEL DEVELOPMENT: WAV2VEC

- Deep learning model for speech recognition and speech-related tasks
- State-of-the-art results in speech recognition benchmarks
- Handles raw audio data directly, no manual feature extraction needed
- Uses transformers to process CNN output for feature extraction
- Transformer models capture long-range dependencies and contextual information in audio sequences
- Pre-trained: 72% results

KEY METRIC: Levenshtein

MODEL DEVELOPMENT: AlexNet CNN

- Deep convolutional neural network architecture
- Multiple layers: convolutional, max-pooling, and fully connected
- Eight layers in total, with the first five being convolutional
- Convolutional layers extract low-level features
- Max-pooling layers downsample feature maps
- Fully connected layers serve as classifier
- ReLU activation functions used
- Dropout regularization implemented

KEY METRIC: Accuracy