Exercise 17.3

Q.1

(i) Construction a quadrilateral ABCD, having

 $\overline{mAB} = \overline{AC} = 5.3cm$ $m\overline{BC} = m\overline{CD} = 3.8cm$ and $m\overline{AD} = 2.8cm$.

Construction:

- i. Draw a line segment $\overline{AB} = 5.3cm$.
- ii. Taking B as centre draw an arc of radius $\overline{BC} = 3.8cm$.
- Taking A as centre draw an arc of radius $\overline{AC} = 5.3cm$ to cut at C.
- iv. Taking C as centre draw an arc of radius $\overline{CD} = 3.8cm$.
- v. Taking A as centre draw an arc of radius $\overline{AB} = 2.8cm$ to cut at D.
- vi. Join B to C, C to D, A to C and A to D.

 ABCD is the required quadrilateral.

(ii) On the side \overline{BC} construct a Δ equal in area to the quadrilateral ABCD.

- i. Join A to C.
- ii. Through D draw $\overline{DP} \| \overline{CA}$ meeting \overline{BA} produced at P.

- iii. Join \overline{PC} .
- iv. Then PBC is required triangle. Δs APC, ADC stand on the same base AC and same parallels AC and PD. Hence $\Delta APC = \Delta ADC$ $\Delta APC + \Delta ABC = \Delta ADC + \Delta ABC$ or ΔPBC =quadrilateral ABCD

Q.2 Construct a Δ equal to the quadrilateral PQRS, having

 $m\overline{QR} = 7cm$ $m\overline{RS} = 6cm$ $m\overline{SP} = 2.75cm$ $m\angle QRS = 60^{\circ}$ and $m\angle RSP = 90^{\circ}$.

Construction:

- i. Draw a line segment $\overline{QR} = 7cm$.
- ii. At point R draw an angle of 60°.
- **iii.** Taking R as center draw an arc of radius of 6cm to cut at S.
- iv. At point S draw an angle 90°.
- v. Taking S as centre draw an arc of radius of 5.5cm, cutting the terminal side of 90° at point B.
- vi. Find the mid point of $m\overline{SB}$ at point P.
- vii. Join P to Q.
- viii. Draw \overline{PA} parallel to \overline{SQ}
- ix. Join A to S.

 \mathbf{x} . ΔARS is required triangle equal in area to quadrilateral PQRS.

Q.3 Construct a Δequal in area to quadrilateral ABCD having

$$m\overline{AB} = 6cm$$
 $m\overline{BC} = 4cm$,
 $\overline{AC} = 7.2cm$ $m\angle BAD = 105^{\circ}$
and $m\overline{BD} = 8cm$.

Construction:

- i. Draw a line segment $\overline{AB} = 6cm$.
- ii. Taking A as centre draw an arc of radius 7.2cm.
- Taking B as centre draw an arc of radius 4cm to cut at C. Join C to A and C to B.
- iv. Taking A as centre make an angle $\angle OAB = 105^{\circ}$.
- v. Taking B as centre make an arc of radius 8cm to cut at D point.
- vi. Join D to C to complete the ABCD quadrilateral.
- vii. Draw $\overline{DP} \parallel \overline{CA}$ o meet \overrightarrow{BA} produced at P.
- viii. Join C to P.

Thus ΔPBC is the required triangle.

Q.4 Construct a right angled triangle equal in area to given square.

Construction:

Let measurement of each side of square is 3.8cm.

- i. Construct a square ABCD with each side 3.8cm long.
- ii. Bisect \overline{CD} at E.
- Join B to E and produced it to meet \overline{AD} produced in F.

ΔABF is required triangle equal in area to square ABCD.

Last Updated: September 2020

Report any mistake at freeilm786@gmail.com