AN OPTIMAL SEPARATION OF RANDOMIZED AND QUANTUM QUERY COMPLEXITY

Alexander Sherstov, Andrey Storozhenko, and Pei Wu

UCLA

STOC 2021

Central open problem

How much faster can quantum computers be than classical?

Most research focuses on the query model.

 $T: \{0,1\}^n \to \{0,1\}$

$$T: \{-1,1\}^n \to \{0,1\}$$

Randomized

 T_1

 T_2

Randomized

 T_1

 T_2

T computes $f: \{-1,1\}^n \to \{0,1\}$ with error ϵ if

$$\mathbf{P}_r[T_r(x) \neq f(x)] \le \epsilon, \qquad \forall x \in \{-1,1\}^n.$$

Randomized

T computes $f: \{-1,1\}^n \to \{0,1,*\}$ with error ϵ if

$$\mathbf{P}_r[T_r(x) \neq f(x)] \le \epsilon, \qquad \forall x \in f^{-1}(0) \cup f^{-1}(1).$$

Randomized

 $R_{\epsilon}(f) = \text{minimum depth of a randomized}$ decision tree for f with error ϵ .

Quantum query complexity

Quantum query

$$|\phi\rangle = \sum_{i,w} a_{i,w}(i)(w)$$
 $|\phi'\rangle = \sum_{i,w} a_{i,w}x_i|i\rangle|w\rangle$

can access all x_i in a single query!

Quantum speedups

Query model captures nearly all quantum breakthroughs:

Deutsch-Jozsa's algorithm Bernstein-Vazirani's algorithm

Simon's algorithm Shor's factoring algorithm

Grover's search

Quantum speedups

Reference	Randomized	Quantum
Simon 97	$\Omega(\sqrt{n})$	$O(\log n)$

Largest possible separation?

[Buhrman et al. 02, Aaronson-Ambainis 15]

Reference	Randomized	Quantum
Simon 97	$\Omega(\sqrt{n})$	$O(\log n)$

$$R(f) = \Omega(n), Q(f) = O(1)$$

Impossible!

Largest possible separation?

[Buhrman et al. 02, Aaronson-Ambainis 15]

Reference	Randomized	Quantum	
Simon 97	$\Omega(\sqrt{n})$	$O(\log n)$	
Aaronson-Ambainis 15	$ ilde{\Omega}(\sqrt{n})$	1	"forrelation"
Aaronson-Ambainis 15	$O_k(n^{1-\frac{1}{k}})$	<i>k</i> /2	simulation
Tal 19	$\tilde{\Omega}(n^{\frac{2k-2}{3k-1}})$	<i>k</i> /2	"rorrelation"

Largest possible separation?

[Buhrman et al. 02, Aaronson-Ambainis 15]

Reference	Randomized	Quantum	
Simon 97	$\Omega(\sqrt{n})$	$O(\log n)$	
Aaronson-Ambainis 15	$\tilde{\Omega}(\sqrt{n})$	1	"forrelation"
Aaronson-Ambainis 15	$O_k(n^{1-\frac{1}{k}})$	<i>k</i> /2	simulation
Tal 19	$\tilde{\Omega}(n^{\frac{2k-2}{3k-1}})$	<i>k</i> /2	"rorrelation"
Our work	$\Omega(n^{1-\frac{1}{k}})$	<i>k</i> /2	"rorrelation"

Optimal

Our results

Theorem.

Let k be any positive integer, $k \le \frac{1}{3} \log n$. Then there is

$$f_k: \{-1,1\}^n \to \{0,1,*\}$$
 such that

$$Q_{\frac{1}{2} - \frac{1}{2^{k+4}}}(f_k) \le \left\lceil \frac{k}{2} \right\rceil,$$

$$Q_{1/3}(f_k) = O\left(k4^k\right),$$

$$R_{\frac{1}{2^{k+1}}}(f_k) \ge \Omega\left(\frac{n^{1 - \frac{1}{k}}}{(\log n)^{2 - \frac{1}{k}}}\right).$$

$$R_{1/3}(f_k) = \Omega\left(\frac{n^{1 - \frac{1}{k}}}{k(\log n)^{2 - \frac{1}{k}}}\right).$$

Our results

Corollary I.

For any
$$\epsilon>0$$
, there is $f:\{-1,1\}^n\to\{0,1,^*\}$ with $Q_{1/3}(f)=O(1),$ $R_{1/3}(f)=\Omega(n^{1-\epsilon}).$ Take $k=1+\lceil 1/\epsilon \rceil$

Corollary 2.

For any monotone $\alpha \colon \mathbb{N} \to \mathbb{N}$, there is $f \colon \{-1,1\}^n \to \{0,1,*\}$ with

$$Q_{1/3}(f) \le \alpha(n)$$
, Take $k = k(n)$ an arbitrarily $R_{1/3}(f) = n^{1-o(1)}$. Slow-growing function, e.g. $k = \log \log \log n$.

Our results: total functions

Reference	Randomized vs. Quantum
Grover 69, BBBV 97	$R(f) = \Omega(Q(f)^2)$
Beals et al. 0 l	$R(f) = O(Q(f)^6)$

"cheatsheet"

"cheatsheet"

"cheatsheet"

Our results: communication

Partial functions $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1,*\},$

Reference	Classical	Quantum
Buhrman et al. 98	$D(f) = \Omega(n)$	$O(\log n)$
Raz 99	$R(f) = \tilde{\Omega}(n^{1/4})$	$O(\log n)$
Klartag-Regev 10	$R(f) = \tilde{\Omega}(n^{1/3})$	$O(\log n)$
Aaronson-Ambainis 15	$R(f) = \tilde{\Omega}(n^{1/2})$	$O(\log n)$
Tal 19	$R(f) = \Omega(n^{2/3 - \epsilon})$	$O(\log n)$
Our work	$R(f) = \Omega(n^{1-\epsilon})$	$O(\log n)$

lifting from query model

near-optimal

Our results: communication

Total functions $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\},$

Reference	Classical vs. Quantum
Buhrman et al. 98, Razborov 02	$R(f) \ge \Omega(Q(f)^2)$
Aaronson et al. 15	$R(f) \ge \tilde{\Omega}(Q(f)^{5/2})$
Tal 19	$R(f) \ge \Omega(Q(f)^{8/3 - o(1)})$
Our work	$R(f) \ge \Omega(Q(f)^{3-o(1)})$

Our results: Fourier weight

Theorem

For any decision tree $g: \{-1,1\}^n \to \{0,1\}$ of depth d,

$$\sum_{\substack{S \subseteq \{1,2,\ldots,n\}:\\ |S| = \ell}} |\hat{g}(S)| \le c^{\ell} \sqrt{\binom{d}{\ell}} (1 + \log n)^{\ell-1}.$$

- Essentially optimal
- Settles conjecture by Tal (2019)
- Previous bounds trivial already at $\ell \ge \sqrt{d}$

Independent work by Bansal & Sinha

Bansal-Sinha

stochastic calculus

- advanced machinery
- no Fourier weight bound

explicit

Our work

Fourier analysis

- elementary
- optimal Fourier weight of decision trees

existential

The problem: rorrelation

Rorrelation

Parameters:

 $U \in \mathbb{R}^{n \times n}$, orthogonal matrix

Rorrelation of k vectors:

$$x_1, x_2, ..., x_k \in \{-1, 1\}^n$$

$$\phi_{n,k,U}(x_1, x_2, ..., x_k) = \frac{1}{n} \mathbf{1}^T D_{x_1} U D_{x_2} U \cdots U D_{x_k} \mathbf{1}$$

The correlation problem:

$$f_{n,k,U}(x_1, x_2, ..., x_k) = \begin{cases} 1 & \phi_{n,k,U} > 2^{-k}, \\ 0 & |\phi_{n,k,U}| \le 2^{-k-1}, \\ * & \text{otherwise}. \end{cases}$$

Rorrelation: quantum algorithms

$$\phi_{n,k,U}(x_1, x_2, ..., x_k) = \frac{1}{n} \mathbf{1}^T D_{x_1} U D_{x_2} U \cdots U D_{x_k} \mathbf{1}$$

$$f_{n,k,U}(x_1, x_2, ..., x_k) = \begin{cases} 1 & \phi_{n,k,U} > 2^{-k}, \\ 0 & |\phi_{n,k,U}| \le 2^{-k-1}, \\ * & \text{otherwise}. \end{cases}$$

Theorem (Aaronson-Ambainis, Tal).

There is a quantum algorithm using $\lceil k/2 \rceil$ queries that accepts x with probability

$$\frac{\phi_{n,k,U}(x)+1}{2}$$

Rorrelation: classical lower bound

—the "indistinguishability" argument

$$\mathcal{U}_{n,k}$$
 = uniform distribution

$$\mathbf{P}_{\mathcal{U}_{nk}}[\phi > 2^{-k-1}] < 2^{-k-1}$$

$$\mathbf{P}_{\mathcal{D}_{n,k,U}}[\phi \geq 2^{-k}] \geq 2^{-k}$$

Rorrelation: classical lower bound

—the "indistinguishability" argument

$$\mathcal{U}_{n,k}$$
 = uniform distribution

$$\mathcal{D}_{n,k,U}$$
 = correlated distribution

Thus, for any randomized query algorithm g of error ϵ ,

$$\mathbf{E}_{\mathcal{D}_{n,k,U}}g(x) - \mathbf{E}_{\mathcal{U}_{n,k}}g(x) \geq 2^{-k-1} - 2\epsilon.$$

Rorrelation: classical lower bound

—the "indistinguishability" argument

$$\mathbf{E}_{\mathcal{D}_{n,k,U}}g(x) - \mathbf{E}_{\mathcal{U}_{n,k}}g(x)$$

We prove:
$$\leq c^{\ell} \sqrt{\binom{d}{\ell} (\ln en)^{\ell-1}}$$

Therefore,

$$R_{2^{-O(k)}}(f_k) = \tilde{\Omega}(n^{1-\frac{1}{k}}). \quad \blacksquare$$

Main Theorem.

For any decision tree $T: \{-1,1\}^n \to \{0,1\}$ of depth d,

$$\|L_{\ell}T\| \leq c^{\ell} \sqrt{\binom{d}{\ell} (1 + \log n)^{\ell-1}}.$$

Main Theorem.

Fix any decision tree $T: \{-1,1\}^n \to \{-1,0,1\}$ of depth d, and $\mathbf{P}[T(x) \neq 0] = p$. Then

$$|||L_{\ell}T||| \leq c^{\ell} \sqrt{\binom{d}{\ell}} \Lambda_{n^2,\ell}(p),$$

Main Theorem.

Fix any decision tree $T: \{-1,1\}^n \to \{-1,0,1\}$ of depth d, and $\operatorname{dns}(T) = p$. Then

$$|||L_{\ell}T||| \le c^{\ell} \sqrt{\binom{d}{\ell}} \Lambda_{n^2,\ell}(p), \le \sqrt{(\ln(en^2))^{\ell-1}}$$

$$\Lambda_{m,\ell} = \begin{cases} 0, & \text{if } p = 0, \\ p\sqrt{\left(\frac{1}{\ell}\ln\frac{e^{\ell}m^{\ell-1}}{p}\right)^{\ell}}, & \text{if } 0$$

Function computed by T

$$L_{\ell} T = \sum_{S \in \mathcal{P}_{d,\ell}} \sum_{v \in \{-1,1\}^d} T(v) 2^{-d} \prod_{i \in S} v_i x_{T(v_{< i})}.$$

Level- $\operatorname{\mathscr{C}}$ Fourier spectrum of T

$$L_{\ell} T = \sum_{S \in \mathcal{P}_{d,\ell}} \sum_{v \in \{-1,1\}^d} T(v) 2^{-d} \prod_{i \in S} v_i x_{T(v_{< i})}.$$

Level- $\operatorname{\mathscr{C}}$ Fourier spectrum of T

$$L_{\ell} T = \sum_{S \in \mathcal{P}_{d,\ell}} \sum_{v \in \{-1,1\}^d} T(v) 2^{-d} \prod_{i \in S} v_i x_{T(v_{< i})}.$$

$$v \in \{-1,1\}^d$$

Level- ℓ Fourier spectrum of T

$$L_{\ell}T = \sum_{S \in \mathcal{P}_{d,\ell}} \sum_{v \in \{-1,1\}^d} T(v) 2^{-d} \prod_{i \in S} v_i x_{T(v_{< i})}.$$

*Key definition:

Elementary family (simplified)

$$I_1 * I_2 * \cdots * I_{\ell} =$$

$$\{\{i_1, i_2, \dots, i_{\ell}\} : i_j \in I_j\}.$$

Level- ℓ Fourier spectrum of T

$$L_{\ell} T = \sum_{S \in \mathcal{P}_{d,\ell}} \sum_{v \in \{-1,1\}^d} T(v) 2^{-d} \prod_{i \in S} v_i x_{T(v_{< i})}.$$

Level- ℓ Fourier spectrum restrict to $I_1 * I_2 * \cdots * I_\ell$

$$T|_{I_1*I_2*...*I_{\ell}} = \sum_{S \subseteq \{1,...,d\}: \ v \in \{-1,1\}^d} T(v) 2^{-d} \prod_{i \in S} v_i x_{T(v_{< i})}.$$

$$|S \cap I_i| = 1$$

Level- ℓ Fourier spectrum of T

$$L_{\ell} T = \sum_{S \in \mathcal{P}_{d,\ell}} \sum_{v \in \{-1,1\}^d} T(v) 2^{-d} \prod_{i \in S} v_i x_{T(v_{< i})}.$$

Level- ℓ Fourier spectrum restrict to $I_1 * I_2 * \cdots * I_\ell$

$$T \mid_{I_1 * I_2 * \dots * I_{\ell}} = \sum_{S \subseteq \{1, \dots, d\}: \ v \in \{-1, 1\}^d} T(v) 2^{-d} \prod_{i \in S} v_i x_{T(v_{< i})}.$$

$$|S \cap I_i| = 1$$

Our key idea

$$L_{\ell}T =$$

$$|\!|\!| L_\ell T |\!|\!| \leq \sum |\!|\!| T|_{\mathcal{E}_i} |\!|\!| .$$
 (Triangle-inequality)

Our proof

$$|||L_{\ell}T||| \leq \sum_{i} |||T|_{\mathscr{E}_{i}}|||.$$

Theorem I.

For some absolute constant c, and any elementary family $\mathscr{E} = I_1 * I_2 * \cdots * I_{\ell}$,

$$||T|_{\mathcal{E}}|| \le c^{\ell} \sqrt{|\mathcal{E}|} \Lambda_{n^2,\ell}(\operatorname{dns}(T)).$$

 $\mathscr{P}_{d,\ell}$ can be partitioned into elementary families $\mathscr{E}_1,\mathscr{E}_2,...,\mathscr{E}_m$ s.t. for some const C,

$$\sum_{i=1}^{m} \sqrt{|\mathcal{E}_i|} \le C^{\ell} \sqrt{\binom{d}{\ell}}$$

$$|||L_{\ell}T||| \le (cC)^{\ell} \sqrt{\binom{d}{\ell}}$$

$$\times \Lambda_{n^{2},\ell}(\operatorname{dns}(T))$$

Open problems

Problem I

In query model, for any total function f, is $R(f) \le O(Q(f)^3)$?

Problem 2

In communication model, is there absolute constant C, such that, for any total function f, $R^{cc}(f) \leq O(Q^{cc}(f)^C)$?

Thank you!