PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-197264

(43) Date of publication of application: 31.07.1997

(51)Int.CI.

G02B 13/00 G02B 13/18 G11B 7/135

(21)Application number: 08-020377

(71)Applicant: MARK:KK

(22)Date of filing:

11.01.1996

(72)Inventor: FUJIOKA IWATATSU

(54) OBJECTIVE OPTICAL SYSTEM VARIABLE IN THICKNESS OF DISK SUBSTRATE (57)Abstract:

PROBLEM TO BE SOLVED: To make it possible to deal with many disk substrate thicknesses with a simple mechanism, to eliminate the loss of light quantity and to obtain good performance by ameliorating aberrations by changing the spacing on the optical axis of a first negative lens and a second positive lens for an increase in the aberrations occurring in the change in the thickness of the disk substrate and executing focusing by slightly moving an objective lens on the optical axis for movement of an image point position.

SOLUTION: The first negative lens, the second positive lens, the objective lens and the disk substrate are arranged on the optical axis successively from a collimator side. For the change in the thickness of the disk substrate, the aberrations are ameliorated by changing the axial spacing of the first negative lens and the second positive lens. The conditions of the following equations I to IV are satisfied when the focal length of the first negative lens is defined as fc1, the focal length

of the second positive lens as fc2, the focal length of the objective lens as fM and the radii of curvature of the first negative lens and the second positive lens are successively defined as r1 to r4: -fc1 < fc2...(I), r1<0...(II), 1.3r2<|r3|...(III), 2fM<-fc1...(IV).

LEGAL STATUS

[Date of request for examination]

15.08.1997

[Date of sending the examiner's decision of

07.12.1999

rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision

of rejection] [Date of requesting appeal against examiner's decision of rejection] [Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

Citation 4

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平9-197264

(43)公開日 平成9年(1997)7月31日

 (51) Int. Cl. 6
 識別記号 庁內整理番号 F I 技術表示箇所 G02B 13/00
 G02B 13/00

 13/18
 13/18

 G11B 7/135
 G11B 7/135

審査請求 未請求 請求項の数4 FD (全31頁)

(21)出願番号

特願平8-20377

(22)出願日

平成8年(1996)1月11日

(71)出願人 591183418

株式会社マーク

東京都中野区江古田1丁目38番6号

(72)発明者 藤陵 嚴達

東京都東久留米市滝山5丁目15番17号

(74)代理人 弁理士 井ノロ 審

(54) 【発明の名称】ディスク基板厚み可変の対物光学系

(57) 【要約】

【課題】 構成枚数も少なく、極めて簡単な構成にもかかわらず、高密度大容量の光情報媒体の記録,再生において多数のディスク基板の厚みの連続変化にも充分対応し、性能の良好な対物光学系を提供する。

【解決手段】 コリメータからの平行光束に対し、順次に第1負レンズ,第2正レンズ,対物レンズおよびディスク基板が配置され、ディスク基板の厚みの変化に起因する収差の増大に対しては、上記第1負レンズと第2正レンズの光軸上の間隔を変更することにより収差を良好とし、ディスク基板の厚みの変化による像点位置の移動には、対物レンズを光軸上で微少移動することにより合焦する。

【特許請求の範囲】

コリメータからの平行光束に対し順次に 【請求項1】 第1負レンズ, 第2正レンズ, 対物レンズおよびディス ク基板が配置され、ディスク基板の厚みの変化に起因す る収差の増大に対しては上記第1負レンズと第2正レン ズの光軸上の間隔を変更することにより収差を良好と し、ディスク基板の厚みの変化による像点位置の移動に は対物レンズを光軸上で微少移動することにより合焦す ることを特徴とするディスク基板厚み可変の対物光学 系。

【請求項2】 請求項1に記載の対物光学系において、

$$-f_{c_{1}} < f_{c_{1}}$$

$$r_{1} < 0$$
1. $3 r_{1} < | r_{3} |$

$$2 f_{1} < -f_{c_{1}}$$

なる条件を満足することを特徴とするディスク基板厚み 可変の対物光学系。

【請求項4】 請求項1乃至3のいずれかに記載の対物 光学系において、対物レンズは収差補正の基準となる特 定ディスク基板厚との組合せにおいて、無限遠物体から 20 の平行光束に対して収差を良好とするものの他、有限距 離物体からの発散光束に対して収差を良好とするもの、 および対物レンズの像側方向の物体に向かう収斂光束

(超無限遠光束) に対して収差を良好とするもののいず れでも良いことを特徴とするディスク基板厚み可変の対 物光学系。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、大容量の光情報媒 体の記録、再生に適した対物光学系に関する。

[0002]

【従来の技術】高密度、大容量の光情報媒体の記録、再 生には対物レンズのNAを大きくすることが有効である が、このときレンズの光軸の傾きにより、収差発生量が 増大する。これを防ぐには光ディスク基板の厚みを薄く することが有利である。以上の理由で近年ディスク基板 の厚みを薄くすることが試みられている。一方、現在普 及しているコンパクトディスク(CD)は、ディスク基 板の厚みは1.2mmと厚い。この現在のコンパクトデ ィスクと高密度光ディスク (SD) の両方を記録、再生 40 できる光ディスク装置が必要となった。しかるに、ディ スクの基板厚みが変化すると球面収差が著しく変化する ため、コンパクトディスク(CD)と高密度光ディスク (SD) の両方を1つの対物光学系で満足することは不 可能であった。

【0003】最近、対物レンズにホログラムレンズを付 加することにより、多焦点を得る方法として特開平7-198909号公報,特開平7-98431号公報等が あるが、回折による光量低下の欠点を逃れることはでき ない。また特開平7-153110号公報にはコリメー 50 ど、補正不足の球面収差が増大する。すなわち、球面収

ディスク基板の厚みが増加するときは第1負レンズと第 2正レンズの光軸上の間隔を減少させ、ディスク基板の 厚みが減少するときは第1負レンズと第2正レンズの光 軸上の間隔を増加させることを特徴とするディスク基板 厚み可変の対物光学系。

【請求項3】 請求項1または2に記載の対物光学系に おいて、第1負レンズの焦点距離を fc1, 第2正レンズ の焦点距離を f .: , 対物レンズの焦点距離を f , , 第1 負レンズと第2正レンズの曲率半径を順次に r.,

10 r, r, r, とするとき

 \cdots (1)

• • • (2)

· · · (3)

 \cdots (4)

タレンズと対物レンズの間に負の非球面を持つ補正板を 挿入することにより、ディスク基板の厚みの変更に対処 する方法が開示されているが、ディスク基板厚みが異な る数だけ、それに対応した補正板が必要であり、その出 し入れの機構も複雑となる。また、ディスク基板と対物 レンズのセットを交換する方法も行われているようであ るが、ディスク基板の厚みが異なる数だけ対物レンズと のセットが必要であり、経済性の悪化と機構の複雑さは 免れない。

[0004]

【発明が解決しようとする課題】本発明は簡単な機構に より異なった多数のディスク基板厚みに対応し、光量の 損失もなく、しかも良好な性能が得られる方法を提供す るものである。

30 [0005]

> 【課題を解決するための手段】本発明はレーザ光源から の発散光束がコリメータにより平行光になった光束を受 けて結像する対物光学系において、ディスク基板の厚み の変化により増大する収差を除去し、多数のディスク基 板の厚みにも充分良好な性能が得られる光学系を極めて 簡単な構成で得られるものである。すなわち、本発明は コリメータ側より順次に光軸上第1負レンズ,第2正レ ンズ、対物レンズおよびディスク基板が配置され、ディ スク基板の厚みの変化に対しては、上記第1負レンズと 第2正レンズの軸上間隔を変化させることにより、収差 を良好とするものである。

> 【0006】本発明のディスク基板の厚みの変化に対 し、収差補正が良好にできる理由を以下に説明する。こ こでディスク基板の厚みの変化は対物レンズの球面収差 を著しく変化させることは当業界では周知であることを 前提とする。

> (説明1) 正の対物レンズの球面収差は入射する光の物 体距離によって変化する。無限遠物体に対する球面収差 に対し、物体が有限距離で正の対物レンズに近づくほ

差の近点変化であり、この逆の超無限遠光束に対しても成り立つ。

(説明2)正の対物レンズは、ディスク基板の厚みの変化により球面収差は著しく変化する。ディスク基板の厚みが厚くなると補正過剰の球面収差が増大し、逆に薄くなると補正不足の球面収差が増大する。前記説明1により物体位置を変化させるときは球面収差が変化するので、異なったディスク基板厚みに対し、それぞれ球面収差が良好となる物体位置が存在する。

(説明3) 対物レンズに前置の第1負レンズと第2正レ 10 ンズの光軸上の間隔を変化させるときは、その合成レン ズの焦点距離も変化するが、像点位置も変化する。

【0007】以上のことを総合、考察、集大成することにより、本発明が生じたものである。大容量の光情報媒体の記録、再生のためには、対物レンズは高NAとし、ディスク基板の厚みは小さい値を特定し、この組合せのもとに収差を極限まで除去する。この場合、対物レンズに入射する光束は無限遠物体からの平行光束、有限距離物体からの発散光束、および対物レンズの像側方向の物体に向かう収斂光束(超無限遠光束)のいずれでも良い。

【0008】次に本発明の光学系におけるレンズ配置について、図1を参照しながら説明する。対物レンズが前記の特定ディスク基板厚みと組合されている場合は、コリメータからの平行光束を受ける第1負レンズと第2正レンズによって作られる像点は対物レンズの設計時に用いられた物体距離の近傍に得られるように第1負レンズと第2正レンズの光軸上の間隔を定める。この場合、第2正レンズと対物レンズの光軸上の距離はあまり問題にならない。簡単のために、対物レンズと特定ディスク基30板厚みとの組合せが無限遠物体からの平行光束に対して収差が補正されている場合について述べる。

【0009】(a)ディスク基板厚みが特定値の場合 第1負レンズの後側焦点位置と第2正レンズの前側焦点 位置が合致する近傍に両者の光軸上の間隔を定める。

(b) ディスク基板厚みが特定値より厚い場合 球面収差が補正過剰となる。第1負レンズと第2正レンズとの光軸上の間隔を狭めることにより、コリメータからの平行光束は有限物体からの発散光束となって、対物レンズに入射する。前記説明2においてディスク基板厚 40みに対し、球面収差が良好となる対物レンズの物体距離の近傍になるように第1負レンズと第2正レンズの光軸上の間隔を定める。この場合、第1負レンズを像側に移動するか、第2正レンズを光源側に近づけるか、または、上記第1負レンズと第2正レンズの双方を光軸上で移動しても良い。

(c) ディスク基板厚みが特定値より薄い場合 球面収差は補正不足となる。第1負レンズと第2正レン ズとの光軸上の間隔を拡げることによりコリメータから の平行光束は対物レンズの像側方向の点に向かう収斂光 50

束(超無限遠光束)となって対物レンズに入射する。前記説明2において、ディスク基板厚みに対し球面収差が良好となる対物レンズの物体距離の近傍になるように第1負レンズと第2正レンズとの光軸上の間隔を定める。この場合、第1負レンズを光源側に近づけるか、第2正レンズを像側へ移動するか、または上記第1負レンズと第2正レンズ双方を光軸上で移動しても良い。

【0010】以上(a),(b),(c)の方法は、対物レンズと特定ディスク基板厚みとの組合せの設計基準の物体距離が有限距離からの発散光束の場合、および対物レンズの像側方向の点に向かう収斂光束(超無限遠光束)に対した場合においても成り立つ。これまでに述べた方法により高密度,大容量,高NAにおいて、ディスク基板の厚みの変化に対しても球面収差は極めて良好に補正することができるが、コマ収差には若干の影響もあり、トラッキング等で対物レンズを光軸と直角方向に移動(シフト)した場合に性能が悪化することにも考慮する必要があるため、高NA(SD)においては、ディスク基板の厚さの変化は特定値の20%以内が望ましい。例えばNA=0.6でディスク基板の特定厚さが0.6mmのときは±0.12mm位に止めるのが良い。

【0011】次にコンパクトディスク(CD)用として用いるときは、使用波長が780nmと長く、NA=0.45が現状である。高密度光ディスク(SD)における波長は650nm,635nm等であるから、これらの波長を使用した場合、コンパクトディスク(CD)に必要なNA_{co}は使用波長650nmのとき

NA $_{co}$ =0.45・(650/780)=0.375 使用波長635 $_{nm}$ のとき

NA $_{cn}$ =0.45・(635/780)=0.366 で良いことになり、ディスク基板厚みが0.6 mmから1.2 mmと大きく変化しても充分高性能の結果が得られる。そのためには、第1負レンズの手前か第1負レンズと第2正レンズの間、または第2正レンズと対物レンズとの間に絞りを挿入すると良い。なお、ディスク基板の厚みの変化に対する全系像点位置の変化に対しては対物レンズの微少移動により行う。

【0012】次に条件式(1)について説明する。条件式(1)は第1負レンズと第2正レンズの焦点距離の関係を定めるものである。(SD)を対象に対物レンズがディスク基板厚みの小さい値を特定し、この組合せのもとに収差を極限まで除去した場合、ディスク基板厚みが増加する(CD)においては、球面収差が補正過剰となるため、対物レンズに入射する光は有限距離物体からの発散光束とならなければならないが、条件式(1)の範囲を超えて上記目的を達成させる時は第1負レンズと第2正レンズの軸上間隔が負となり、実現不可能となるからである。

【0013】条件式(2)はコリメータからの平行光束が入射する第1負レンズの第1面の曲率半径を負とする

もので、第1負レンズと第2正レンズで構成されるコン バータと対物レンズとの相互偏心による性能低下を防ぐ ためのものである。トラッキング等により対物レンズが 光軸と直角方向に移動(シフト)する場合、上記第1負 レンズと第2正レンズで構成されるコンバータも同時に シフトできれば問題はないが、機構の複雑化を防ぐため に、対物レンズのみをシフトするときは、偏心による性 能低下が生ずる。この量は第1負レンズの第1面の屈折 力が正となるとき性能低下が著しくなる。

第2正レンズの光源側の面とによる空気レンズの屈折力

を正とし、この両面の間に発散作用を生ぜしめるための もので、条件式(2)と同様に第1負レンズと第2正レ ンズで構成されるコンパータと対物レンズの相互偏心に よる性能低下を防ぐもので、この条件を超えるとトラッ キング等により、対物レンズが光軸と直角方向に移動 (シフト) した時に偏心による性能低下が大きくなる。 【0015】条件式(4)は第1負レンズと対物レンズ との焦点距離の関係を定めるものである。第1負レンズ と第2正レンズの屈折力が大きく、その和の絶対値が小 20 fc,:第1負レンズの焦点距離 さいときは、ディスク基板の厚みの変化に対し、上記2 レンズ間の光軸上の間隔の変化量も小さくなり、よりコ ンパクト化が可能となる。しかしコリメータからの平行 光束 (無限遠光束) が第1負レンズと第2正レンズで構 成されるコンバータ系を通過し、平行光束(無限遠光 束)が対物レンズに入射する場合は第1負レンズの焦点 距離を fci, NAをNAci, 対物レンズの焦点距離を f

 $-f_{c_1}/f_{\parallel} = NA_{\parallel}/NA_{c_1}$

』, NAをNA_Lとすると

なる関係式が成り立つ。条件式(4)は第1負レンズの 30 距離 NA。」を対物レンズのNA。の1/2未満、すなわち対 物レンズの $NA_{\mathbf{k}} = 0$. 6のときは、第1負レンズのNA., が0.3未満に定めるもので、この条件式を外れる と第1負レンズのNAが過大となり、球面収差を悪化さ せる。なお、本発明対物光学系の第1負レンズ, 第2正 レンズのディスク基板厚みの変化に際し、移動するコン

バータ系に非球面を導入して性能の向上をさらに図るこ とは本発明の条件範囲を逸脱するものではない。ただ し、トラッキング等により、対物レンズのみがシフトす る場合には、上記コンバータ系と対物レンズの相互偏心 による性能維持への配慮が必要である。

[0016]

【発明の実施の形態】次に本発明のディスク基板厚み可 変の対物光学系の実施例1から実施例8までを第1表か ら第8表に示す。表中の記号は次の通りである。

【0014】条件式(3)は第1負レンズの像側の面と 10 r: : 順次に球面の曲率半径または非球面の頂点曲率半

d: 順次にレンズの光軸上の厚みまたは空気間隔

n: : 順次にレンズの材質の波長650 nmにおける屈 折率

t:ディスク基板の光軸上の厚み

n。:ディスク基板の材質の波長650nmにおける屈

折率

WD:作動距離

f :全系の焦点距離

fc: : 第2正レンズの焦点距離

f』:対物レンズの焦点距離

NA:全系のNA

NA₁:対物レンズのNA

 L_{ii} :対物レンズの設計に用いた物体距離(t=0.

(有限距離物体からの発散光束が入射するとき(-)) 非球面の形状の式は

X: 非球面上の点のレンズ面頂点における接平面からの

h:光軸からの高さ

C:非球面頂点の曲率(C=1/r)

K:円錐定数

A1: 非球面係数

とするとき

【式1】

$$X = \frac{Ch^{2}}{1 + \sqrt{1 - (1 + K) C^{2} h^{2}}} + \sum_{i=2}^{9} A_{2i} h^{2i}$$

で表される。なお、ディスク基板厚さ t = 0.6 のとき の対物レンズの有効径をt=0. 5 およびt=0. 7 に も使用し、t=1. 2のときは絞りにより計算を行っ

た。

【表1】

実施例1

$$f_{c1} = -16.810$$
 $f_{c2} = 25.942$ $f_{M} = 4.5$ $NA_{M} = 0.6$ $L_{1M} = \infty$
 $r_{1} = -1.6.180$ $d_{1} = 1.5$ $n_{1} = 1.58642$ $d_{2} = 782$ $d_{3} = 108.978$ $d_{3} = 2.0$ $n_{2} = 1.58642$ $d_{4} = 5.0$ $d_{5} = 2.75$ $d_{5} = 3.4$ $n_{5} = 1.49936$ $m_{7} = \infty$ $m_{8} = 1.57747$ $m_{1} = 1.57747$ $m_{1} = 1.57747$ $m_{1} = 1.57747$ $m_{2} = 1.57747$ $m_{1} = 1.57747$ $m_{2} = 1.57747$ $m_{2} = 1.57747$ $m_{3} = 1.57747$ $m_{4} = 1.57747$ $m_{5} = 1.5$

非 球 面 係 数

非球面	r 5	r e
K A ₄ A ₆ A ₁₀ A ₁₂ A ₁₄ A ₁₆ A ₁₈	$\begin{array}{c} -7. & 59018\times10^{-1} \\ 1. & 31123\times10^{-9} \\ 2. & 39974\times10^{-5} \\ -6. & 00326\times10^{-7} \\ 1. & 49845\times10^{-9} \\ 1. & 19194\times10^{-9} \\ -8. & 33804\times10^{-10} \\ -3. & 63570\times10^{-10} \\ -9. & 18546\times10^{-11} \end{array}$	-2. 89545×10 5. 04544×10 ⁻⁴ 1. 34683×10 ⁻⁵ -1. 10963×10 ⁻⁵ -2. 16471×10 ⁻⁶ -2. 39574×10 ⁻⁷ 4. 79899×10 ⁻⁹ 9. 88653×10 ⁻⁹ -5. 23731×10 ⁻¹⁰

校り位置 対物レンズの手前 2.0 $| r_3 | / r_2 = 4.177 - f_{ci} / f_M = 3.736$

9

実施例2

$$f_{c1} = -16.841$$
 $f_{c2} = 26.053$ $f_{M} = 4.5$ $NA_{N} = 0.6$ $L_{1M} = \infty$
 $r_{1} = -1.3$. 92.7
 $r_{2} = 35.30.6$
 $r_{3} = 52.148$
 $r_{4} = -21.30.2$
 $r_{5} = 2.75$
 $r_{6} = -7.228$
 $r_{7} = \infty$
 $r_{8} = \infty$
 $r_{1} = 1.586.42$
 $r_{2} = 35.30.6$
 $r_{3} = 1.586.42$
 $r_{4} = -21.30.2$
 $r_{5} = 2.75$
 $r_{5} = 2.75$
 $r_{6} = -7.228$
 $r_{7} = \infty$
 $r_{1} = 0.5$
 $r_{2} = 0.0$
 $r_{3} = 1.49.93.6$
 $r_{4} = 0.00.6$
 $r_{5} = 0.00.7$
 $r_{7} = 0.00.6$
 $r_{8} = 0.00.7$
 $r_{8} = 0.00.7$
 $r_{1} = 0.00.7$
 $r_{2} = 0.00.7$
 $r_{3} = 0.00.7$
 $r_{4} = 0.00.7$
 $r_{5} = 0.00.7$
 $r_{6} = 0.00.7$
 $r_{7} = 0.00.7$
 $r_{8} = 0$

非球面係数

非球面	r _s	re
K A4 A6 A10 A12 A14 A16 A18	-7. 59018×10 ⁻¹ 1. 31123×10 ⁻⁹ 2. 39974×10 ⁻⁵ -6. 00326×10 ⁻⁷ 1. 49845×10 ⁻⁹ 1. 19194×10 ⁻⁹ -8. 33804×10 ⁻¹⁰ -3. 63570×10 ⁻¹⁰ -9. 18546×10 ⁻¹¹	-2. 89545×10 5. 04544×10 ⁻⁴ 1. 34683×10 ⁻⁵ -1. 10963×10 ⁻⁵ -2. 16471×10 ⁻⁶ -2. 39574×10 ⁻⁷ 4. 79899×10 ⁻⁹ 9. 88653×10 ⁻⁸ -5. 23731×10 ⁻¹⁰

校り位置 対物レンズの手前 2.0 | r_s | / r₂ = 1.477 - f_{c1}/f_M = 3.742

【表3】

実施例3

非 球 面 係 数

非球 面	Is	Γs
K A4 A6 A8 A10 A12 A14 A16 A18	-7. 59018×10 ⁻¹ 1. 31123×10 ⁻³ 2. 39974×10 ⁻⁵ -6. 00326×10 ⁻⁷ 1. 49845×10 ⁻⁸ 1. 19194×10 ⁻³ -8. 33804×10 ⁻¹⁰ -3. 63570×10 ⁻¹⁰ -9. 18546×10 ⁻¹¹	-2. 89545×10 5. 04544×10 ⁻⁴ 1. 34683×10 ⁻⁶ -1. 10963×10 ⁻⁵ -2. 16471×10 ⁻⁶ -2. 39574×10 ⁻⁷ 4. 79899×10 ⁻⁹ 9. 88653×10 ⁻⁸ -5. 23731×10 ⁻¹⁰

絞り位置 対物レンズの手前 1.0 | r₃ | / r₂ = 4.060 - f_{c1}/f_M = 2.659

実施例4

$$f_{c1} = -11.966$$
 $f_{c2} = 18.643$ $f_{M} = 4.5$ $NA_{M} = 0.6$ $L_{1M} = \infty$
 $r_{1} = -1.5.05$
 $r_{2} = 30.30$
 $d_{1} = 1.5$ $n_{1} = 1.82793$
 $d_{2} = \overline{n}$
 $d_{3} = 2.0$ $n_{2} = 1.82793$
 $d_{4} = 2.0$ $d_{5} = 3.4$ $n_{5} = 1.49936$
 $r_{7} = \infty$
 $r_{8} = \infty$
 $r_{8} = \infty$
 $r_{9} = \infty$
 $r_{1} = 0.5 = 0.00$
 $r_{2} = 1.82793$
 $r_{3} = 1.82793$
 $r_{4} = -1.82793$
 $r_{5} = 0.75$
 $r_{7} = 0.5$
 $r_{8} = 0.5$
 $r_{9} = 0.60$
 $r_{1} = 0.75$
 $r_{2} = 0.731$
 $r_{3} = 0.606$
 $r_{4} = 0.731$
 $r_{5} = 0.731$
 $r_{5} = 0.606$
 $r_{5} =$

非球面係數

非球面	I s	T 6
K A 4 A 5 A 10 A 12 A 14 A 16 A 18	-7. 59018×10 ⁻¹ 1. 31123×10 ⁻⁸ 2. 39974×10 ⁻⁵ -6. 00326×10 ⁻⁷ 1. 49845×10 ⁻⁹ 1. 19194×10 ⁻⁹ -8. 33804×10 ⁻¹⁰ -3. 63570×10 ⁻¹⁰ -9. 18546×10 ⁻¹¹	-2. 89545×10 5. 04544×10-4 1. 34683×10-6 -1. 10963×10-5 -2. 16471×10-6 -2. 39574×10-7 4. 79899×10-9 9. 88653×10-9 -5. 23731×10-10

実施例 5

$$f_{c1} = -11.955$$
 $f_{c2} = 18.062$ $f_{M} = 4.5$ $NA_{M} = 0.6$ $L_{1M} = \infty$
 $r_{1} = -20.13$
 $r_{2} = 20.13$
 $r_{3} = 43.67$
 $r_{4} = -22.27$
 $r_{5} = 2.75$
 $r_{6} = -7.228$
 $r_{7} = \infty$
 $r_{8} = \infty$
 $t = \overline{12}$
 $t = \overline{12}$

非球面係数

非球面	rs	r e
K A4 A6 A8 A10 A12 A14 A15 A18	$\begin{array}{c} -7. & 59018 \times 10^{-1} \\ 1. & 31123 \times 10^{-8} \\ 2. & 39974 \times 10^{-8} \\ -6. & 00326 \times 10^{-7} \\ 1. & 49845 \times 10^{-9} \\ 1. & 19194 \times 10^{-9} \\ -8. & 33804 \times 10^{-10} \\ -3. & 63570 \times 10^{-10} \\ -9. & 18546 \times 10^{-11} \end{array}$	-2. 89545×10 5. 04544×10 ⁻⁴ 1. 34683×10 ⁻⁶ -1. 10963×10 ⁻⁵ -2. 16471×10 ⁻⁶ -2. 39574×10 ⁻⁷ 4. 79899×10 ⁻⁹ 9. 88653×10 ⁻⁸ -5. 23731×10 ⁻¹⁰

絞り位置 対物レンズの手前 1.0 | r_s | / r₂ = 2.169 - f_{Cl} / f_M = 2.657

実施例6

$$f_{c1} = -11.994$$
 $f_{c2} = 17.912$ $f_{M} = 4.5$ $NA_{M} = 0.6$ $L_{1M} = \infty$
 $r_{1} = -35.682$
 $r_{2} = 14.021$
 $r_{3} = 29.20$
 $r_{4} = -29.20$
 $r_{5} = 2.75$
 $r_{6} = -7.228$
 $r_{7} = \infty$
 $r_{8} = \infty$
 $r_{1} = -35.682$
 $r_{2} = 14.021$
 $r_{3} = 1.82793$
 $r_{4} = -29.20$
 $r_{5} = 2.75$
 $r_{5} = 2.75$
 $r_{6} = -7.228$
 $r_{7} = \infty$
 $r_{8} = \infty$
 $r_{1} = \infty$
 $r_{2} = 1.82793$
 $r_{3} = 1.82793$
 $r_{4} = 2.0$
 $r_{5} = 1.57747$
 $r_{7} = \infty$
 $r_{8} = \infty$
 $r_{1} = \infty$
 $r_{2} = 1.82793$
 $r_{3} = 1.82793$
 $r_{4} = 1.82793$
 $r_{5} = 1.82793$

非球面係数

非城面	r ₅	T G
K A ₄ A ₆ A ₁₀ A ₁₂ A ₁₄ A ₁₆ A ₁₈	-7. 59018×10 ⁻¹ 1. 31123×10 ⁻⁸ 2. 39974×10 ⁻⁵ -6. 00326×10 ⁻⁷ 1. 49845×10 ⁻⁹ 1. 19194×10 ⁻⁹ -8. 33804×10 ⁻¹⁰ -3. 63570×10 ⁻¹⁰ -9. 18546×10 ⁻¹¹	-2. 89545×10 5. 04544×10 ⁻⁴ 1. 34683×10 ⁻⁶ -1. 10963×10 ⁻⁵ -2. 16471×10 ⁻⁶ -2. 39574×10 ⁻⁷ 4. 79899×10 ⁻⁹ 9. 88653×10 ⁻⁹ -5. 23731×10 ⁻¹⁰

絞り位置 対物レンズの手前 1.0 | r_s | / r₂ = 2.083 | - f_{ci} / f_N = 2.665

実施例7

$$f_{c1} = -11.945$$
 $f_{c2} = 19.430$ $f_{M} = 4.3$ $NA_{M} = 0.6$ $L_{1M} = -300$ $r_{1} = -1.3.0$ $r_{2} = 4.3.5$ $d_{1} = 1.5$ $n_{1} = 1.82793$ $d_{2} = 可签$ $r_{3} = -400.0$ $d_{3} = 2.0$ $n_{2} = 1.82793$ $d_{4} = 2.0$ $r_{5} = 2.7$ $r_{6} = -5.702$ $WD = 可签$ $r_{6} = -5.702$ $WD = 可签$ $r_{7} = \infty$ $t = 可签$ $n_{8} = 1.57747$ $t = 0.5 = 0.6$ $t = 0.7 = 0.5$ $t = 0.6 = 0.7$ $t = 0.5$ $t = 0.6$ $t = 0.7$ $t = 0.5$ $t = 0.6$ $t = 0.7$ $t = 0.8$ $t = 0$

非球面係数

非球面	r _s	Тв
K A4 A6 A10 A12 A14 A16 A18	$\begin{array}{c} -7. & 98962 \times 10^{-1} \\ 1. & 49179 \times 10^{-3} \\ 1. & 91505 \times 10^{-5} \\ -1. & 69235 \times 10^{-8} \\ -5. & 72618 \times 10^{-8} \\ -3. & 85959 \times 10^{-9} \\ -1. & 41481 \times 10^{-9} \\ -4. & 57411 \times 10^{-10} \\ -1. & 12038 \times 10^{-10} \end{array}$	-2. 19588×10 3. 20305×10 ⁻⁴ -1. 75942×10 ⁻⁵ -1. 73427×10 ⁻⁵ -3. 39889×10 ⁻⁶ -3. 79829×10 ⁻⁷ 2. 69263×10 ⁻⁸ 1. 33962×10 ⁻⁸ 7. 53364×10 ⁻¹¹

絞り位置 対物レンズの手前 1.0 | r₃ | / r₂ = 9.195 | -f_{c1} / f_M = 2.778

実施例8

$$f_{c1} = -11.952$$
 $f_{c2} = 17.835$ $f_{N} = 4.5$ $NA_{N} = 0.6$ $L_{1M} = 300$ $r_{1} = -2.2.2$ $d_{1} = 1.5$ $n_{1} = 1.82793$ $d_{2} = 792$ $d_{3} = 5.8.0$ $d_{3} = 2.0$ $n_{2} = 1.82793$ $d_{4} = 2.0$ $n_{5} = 2.8$ $n_{5} = 3.3$ $n_{8} = 1.49936$ $m_{7} = -6.913$ m_{7}

非球面係数

非球面	Γς	Тg
K A 4 A 8 A 10 A 12 A 14 A 18 A 18	-1. 08974 2. 88628×10 ⁻³ 3. 16847×10 ⁻⁶ -6. 03541×10 ⁻⁶ -5. 03967×10 ⁻⁷ -6. 87062×10 ⁻⁸ -6. 17509×10 ⁻⁹ -8. 18994×10 ⁻¹⁰ -2. 01841×10 ⁻¹⁰	-2. 35194×10 -6. 16199×10 ⁻⁴ -1. 32179×10 ⁻⁴ -2. 76214×10 ⁻⁵ -2. 33274×10 ⁻⁶ -1. 20936×10 ⁻⁷ 4. 53476×10 ⁻⁸ 1. 49463×10 ⁻⁸ -1. 93636×10 ⁻⁹

絞り位置 対物レンズの手前 1.0 |r_s|/r₂=3.152 |-f_{c1}/f_M=2.656

【0017】実施例1乃至6における対物レンズは共通 40で特定ディスク基板厚み0.6mmにおいて無限遠物体 (L₁ =∞)に対して収差を良好としたもので、この収 差曲線を図2に示す。実施例1の収差曲線を図3および 図4に、実施例2の収差曲線を図5および図6に、実施例3の収差曲線を図7および図8に、実施例4の収差曲線を図9および図10に、実施例5の収差曲線を図11 および図12に、実施例6の収差曲線を図13および図14に示す。実施例7における対物レンズは特定ディスク基板厚み0.6mmにおいて対物レンズの第1面の手前300mmの有限物体からの発散光束(L₁ = -30 50

- 0)に対して収差を良好としたもので、この収差曲線を図15に示し、全系の収差曲線を図16および図17に示す。実施例8における対物レンズは特定ディスク基板厚み0.6mmにおいて、対物レンズの第1面より像側300mmにある物体に向かう収斂光束(超物限遠光束)($L_{11}=300$)に対して収差を良好としたもので、この収差曲線を図18に示し、全系の収差曲線を図19および図20に示す。いずれの実施例においてもディスク基板厚みが変化しても良好な性能であることがわかる。
- 50 [0018]

【発明の効果】以上説明したように本発明によるディスク基板厚み可変の対物光学系は構成枚数も少なく、極めて簡単な機構にもかかわらず、高密度、大容量の光情報媒体の記録、再生において多数のディスク基板の厚みの連続変化にも充分対応し、性能も良好となし得るものである。本発明は第1負レンズ、第2正レンズがズームコンバータの働きをし、ディスク基板厚みの変化に対応したズーム対物光学系と称することができる。また第1負レンズや第2正レンズが偏心をしても性能低下が少ない特徴もある。光源側に配するコリメータのNAの選択も10自由のため、光量も充分確保できるので、機構設計上の自由度も多く、回折等による光量低下の欠点もない。

23

【図面の簡単な説明】

【図1】本発明のディスク基板厚み可変対物光学系の実施例1における構成断面図である。

【図2】実施例1乃至6において、対物レンズのディスク基板厚み0.6における収差曲線図である。

【図3】実施例1のディスク基板厚みが(a)は0.

6, (b) は1.2 における収差曲線図である。

【図4】実施例1のディスク基板厚みが(a)は0.

5. (b) は0.7における収差曲線図である。

【図5】実施例2のディスク基板厚みが(a)は0.

6, (b) は1.2 における収差曲線図である。

【図6】実施例2のディスク基板厚みが(a)は0.

5, (b) は 0.7 における 収差曲線図である。

【図7】実施例3のディスク基板厚みが(a)は0.

6, (b) は1.2 における収差曲線図である。

【図8】実施例3のディスク基板厚みが(a)は0.

5, (b)は0.7における収差曲線図である。

【図9】実施例4のディスク基板厚みが(a)は0.

6, (b)は1.2における収差曲線図である。

【図10】実施例4のディスク基板厚みが(a)は0.

5, (b)は0.7における収差曲線図である。

【図11】実施例5のディスク基板厚みが(a)は0.

6, (b) は1.2 における収差曲線図である。

【図12】実施例5のディスク基板厚みが(a)は0.

5, (b)は0.7における収差曲線図である。

【図13】実施例6のディスク基板厚みが(a)は0.

6, (b) は1.2 における収差曲線図である。

【図14】実施例6のディスク基板厚みが(a)は0.

5, (b) は0.7における収差曲線図である。

【図15】実施例7において対物レンズのディスク基板厚み0.6における収差曲線図である。

【図16】実施例7のディスク基板厚みが(a)は0.

6, (b) は1.2 における収差曲線図である。

【図17】実施例7のディスク基板厚みが(a)は0.

20 5, (b) は 0.7 における収差曲線図である。

【図18】実施例8において対物レンズのディスク基板 厚み0.6における収差曲線図である。

【図19】実施例8のディスク基板厚みが(a)は0.

6, (b) は1.2における収差曲線図である。

【図20】実施例8のディスク基板厚みが(a)は0.

5, (b)は0.7における収差曲線図である。

【図1】

【図2】 対物レンズ Lim = ∞

[図15] 対物レンス LIM = -300

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図16】

【図17】

(図18) 対物レンス Lim = 300

【図19】

【図20】

