

¿· Clasification of the wistomer church model		**
· what is me of of own model?		
$\rightarrow b(\lambda = 0 x) = 1 - b(\lambda = 1 x)$	Succession of the second	
→ P(chwin=1) income, age → P(chwin=0) income, age	2) = 0.8 = 0.2	
$\sigma(\sigma^T x) \rightarrow P(Y=1/x)$		
$(-\sigma(\Theta^Tx)\rightarrow P(Y=0 x)$		(S)
2. The training process	1 × (×)	
	$\sigma(e^Tx) \to P(y=1)x)$	
1. Enstalize 0	Ø= [-1,2]	
2. (a) culate $\hat{y} = \sigma(0^T x)$ for a customer	<u> û = 0 ([-1,2]x[2,5])</u> 2007	
3. Compare the output of 9	E2001 ₹ 1-0.7=0.3	
customes, y, and orecord		
4. Calculate the Error por all	(Cost = J(0)	(a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
customers.		
5. change the O to reduce the cost	Onew	
6. Go back to Step 2		
	1967年	

Logistic Regression Cost function so, we will suplace rost function with. >(0x+(y,y) 2 1 (o (0 1x) - y)2 $(c_{g}, y) = \begin{cases} -\log(\hat{y}) & \text{if } y = 1 \\ -\log((c_{g})) & \text{if } y = 0 \end{cases}$ → J(0) = 1 = (0) [← (1) + (1 J(0) = -1 & y' log (y') + (1-y') log (1-y') Minimizing the cost function of the model: How to minimize the best pasameters of our mod!?

-> Minimize the cost function How to minimize the cost function? -> veing Gradient Descent · what is Gradient Bescent? -> A rechnique to use the descrabive of a cost function to change the parameter values, in order to minimize the cost.

Logistic Regression and the ROC rune [DATACAMP] togistic Regression for binary claufication Ingistic Regression outputs probabilities

The probability p'is greater than o.s:

The data is labelled '1' The data is labelled 'o' Lineau Decision Boundary figure of Logistic Regression According to the second second

to logistic Regression in scikit-learn		
from ekleann. linean_model suport logistickegrent from ekleann. model_selection import train_test_plis		
Logoreg = LogisticRegression()		
X_train, X_test, y_train, y_test== train_test_split (X, y, test_size=0.4,		
siandom_ state = 42)		
logereg. fit (X train, y train) y-pred = logreg. predict (x_text)		
to Probability threesholds		
· By default logistic regression mousnold:0.5		
· Not epecific to logistic sugression		
· Not epecific to logistic regression -> KNN clarifier also have surresholds		
-> what is ROC and 2 1-		
- Reciever Openation (1) (TOWARDS DATA SCENCE)		
ROC Musice ?		
Recieven Operating Characteristics andre ROC durine is a performance measurement ent for classification problem		
morious classification problem at		
· Rac : household settings.		
ent for classification problem at various snowenhold settings. ROC is a probability rurue.		

