

OWL 2 Web Ontology Language Quick Reference Guide

W3C Editor's Draft 5 September 2012

This version:

http://www.w3.org/2007/OWL/draft/ED-owl2-quick-reference-20120905/

Latest editor's draft:

http://www.w3.org/2007/OWL/draft/owl2-guick-reference/

Latest Recommendation:

http://www.w3.org/TR/owl-quick-reference

Previous version:

http://www.w3.org/2007/OWL/draft/ED-owl2-guick-reference-20091027/

Editors:

<u>Jie Bao</u>, Rensselaer Polytechnic Institute

Elisa F. Kendall, Sandpiper Software, Inc.

Deborah L. McGuinness, Rensselaer Polytechnic Institute

Peter F. Patel-Schneider, Bell Labs Research, Alcatel-Lucent

Contributors:

Li Ding, Rensselaer Polytechnic Institute

Ankesh Khandelwal, Rensselaer Polytechnic Institute

A <u>color-coded version of this document showing changes made since the previous version</u> is also available.

This document is also available in these non-normative formats: <u>PDF version</u>, <u>Reference</u> Card.

<u>Copyright</u> © 2012 $\underline{\text{W3C}}^{\$}$ (MIT, <u>ERCIM</u>, <u>Keio</u>), All Rights Reserved. W3C <u>liability</u>, <u>trademark</u> and <u>document use</u> rules apply.

Abstract

The OWL 2 Web Ontology Language, informally OWL 2, is an ontology language for the Semantic Web with formally defined meaning. OWL 2 ontologies provide classes, properties, individuals, and data values and are stored as Semantic Web documents. OWL 2 ontologies can be used along with information written in RDF, and OWL 2 ontologies themselves are primarily exchanged as RDF documents. The OWL 2 <u>Document Overview</u> describes the overall state of OWL 2, and should be read before other OWL 2 documents.

This document provides a non-normative quick reference guide to the OWL 2 language. It also provides links to other documents, including the <u>OWL 2 Primer</u> for language introduction and examples, the <u>OWL 2 Structural Specification and Functional Syntax</u>

document for more details of the functional syntax, and the <u>OWL 2 New Features and</u> Rationale document for new feature descriptions.

Status of this Document

May Be Superseded

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.

Summary of Changes

There have been no <u>substantive</u> changes since the <u>previous version</u>. For details on the minor changes see the change log and color-coded diff.

W3C Members Please Review By 12 September 2012

The W3C Director seeks review and feedback from W3C Advisory Committee representatives, via their review form by 12 September 2012. This will allow the Director to assess consensus and determine whether to issue this document as a W3C Edited Recommendation.

Others are encouraged by the **OWL Working Group** to continue to send reports of implementation experience, and other feedback, to public-owl-comments@w3.org (public archive). Reports of any success or difficulty with the test cases are encouraged. Open discussion among developers is welcome at <u>public-owl-dev@w3.org</u> (<u>public archive</u>).

No Endorsement

Publication as a Editor's Draft does not imply endorsement by the W3C Membership. This is a draft document and may be updated, replaced or obsoleted by other documents at any time. It is inappropriate to cite this document as other than work in progress.

Patents

This document was produced by a group operating under the <u>5 February 2004 W3C Patent</u> Policy. This document is informative only. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains **Essential Claim(s)** must disclose the information in accordance with section 6 of the W3C Patent Policy.

Table of Contents

- 1 Names, Prefixes, and Notation
- 2 OWL 2 constructs and axioms

- 2.1 Class Expressions
- 2.2 Properties
- 2.3 Individuals & Literals
- 2.4 Data Ranges
- 2.5 Axioms
- 2.6 Declarations
- 2.7 Annotations
- 2.8 Ontologies
- 3 Built-in Datatypes and Facets
 - 3.1 Built-in Datatypes
 - 3.2 Facets
- 4 Appendix
 - 4.1 New Features in OWL 2
 - 4.2 Additional Vocabulary in OWL 2 RDF Syntax
- 5 Appendix: Change Log (Informative)
 - 5.1 Changes Since Recommendation
 - 5.2 Changes Since Proposed Recommendation
 - 5.3 Changes Since Candidate Recommendation
- <u>6 Acknowledgments</u>

1 Names, Prefixes, and Notation

Names in OWL 2 are IRIs, often written in a shorthand prefix:localname, where prefix: is a <u>prefix name</u> that expands to an IRI, and localname is the remainder of the name. The <u>standard prefix names</u> in OWL 2 are:

Prefix Name	Expansion
rdf:	http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs:	http://www.w3.org/2000/01/rdf-schema#
owl:	http://www.w3.org/2002/07/owl#
xsd:	http://www.w3.org/2001/XMLSchema#

We use notation conventions in the following tables*:

Letters	Meaning	Letters	Meaning	Letters	Meaning	Letters	Meaning
С	class expression	CN	class name	D	data range	DN	datatype name
Р	object property expression	PN	object property name	R	data property	А	annotation property
a	individual	aN	individual name	_:a	anonymous individual (a <u>blank</u> node label)	v	literal
n	non- negative integer**	f	facet	ON	ontology name	U	IRI
S	IRI or anonymous individual	t	IRI, anonymous individual, or literal	р	prefix name	_:x	blank node
(a ₁ a _n)	RDF list						

* All of the above can have subscripts. ** as a shorthand for "n"^^xsd:nonNegativeInteger

2 OWL 2 constructs and axioms

For an OWL 2 DL ontology, there are some global restrictions on axioms.

In the following tables the first column provides links to the Primer (if applicable), the second column provides links to the Functional Syntax, and the third column gives RDF triples in the <u>Turtle syntax</u>.

2.1 Class Expressions

Predefined and Named Classes

Language Feature	Functional Syntax	RDF Syntax
named class	CN	CN
universal class	owl:Thing	owl:Thing
empty class	owl:Nothing	owl:Nothing

Boolean Connectives and Enumeration of Individuals

Language Feature	Functional Syntax	RDF Syntax
intersection	$\underline{ObjectIntersectionOf}(C_1 \ \ C_n)$	_:x rdf:type owl:Class. _:x owl:intersectionOf (C ₁ C _n).
union	ObjectUnionOf(C ₁ C _n)	_:x rdf:type owl:Class. _:x owl:unionOf (C ₁ C _n).
complement	ObjectComplementOf(C)	_:x rdf:type owl:Class. _:x owl:complementOf C.
enumeration	ObjectOneOf(a ₁ a _n)	_:x rdf:type owl:Class. _:x owl:oneOf (a ₁ a _n).

Object Property Restrictions

Language Feature	Functional Syntax	RDF Syntax
universal	ObjectAllValuesFrom(P C)	_:x rdf:type owl:Restriction:x owl:onProperty P:x owl:allValuesFrom C
existential	ObjectSomeValuesFrom(PC)	_:x rdf:type owl:Restriction:x owl:onProperty P:x owl:someValuesFrom C
individual value	ObjectHasValue(P a)	_:x rdf:type owl:Restriction. _:x owl:onProperty P. _:x owl:hasValue a.
local reflexivity	ObjectHasSelf(P)	_:x rdf:type owl:Restriction:x owl:onProperty P:x owl:hasSelf "true"^^xsd:boolean.
exact cardinality	ObjectExactCardinality(n P)	_:x rdf:type owl:Restriction:x owl:onProperty P:x owl:cardinality n.
qualified exact cardinality	ObjectExactCardinality(n P C)	_:x rdf:type owl:Restriction:x owl:onProperty P:x owl:qualifiedCardinality n:x owl:onClass C.

maximum cardinality	ObjectMaxCardinality(n P)	_:x rdf:type owl:Restriction:x owl:onProperty P:x owl:maxCardinality n.
qualified maximum cardinality	ObjectMaxCardinality(n P C)	_:x rdf:type owl:Restriction:x owl:onProperty P:x owl:maxQualifiedCardinality n:x owl:onClass C.
minimum cardinality	ObjectMinCardinality(n P)	_:x rdf:type owl:Restriction:x owl:onProperty P:x owl:minCardinality n.
qualified minimum cardinality	ObjectMinCardinality(n P C)	_:x rdf:type owl:Restriction:x owl:onProperty P:x owl:minQualifiedCardinality n:x owl:onClass C.

Data Property Restrictions

Language Feature	Functional Syntax	RDF Syntax
universal	<u>DataAllValuesFrom(R D)</u>	_:x rdf:type owl:Restriction. _:x owl:onProperty R. _:x owl:allValuesFrom D.
existential	<u>DataSomeValuesFrom(R D)</u>	_:x rdf:type owl:Restriction:x owl:onProperty R:x owl:someValuesFrom D.
literal value	DataHasValue(R v)	_:x rdf:type owl:Restriction. _:x owl:onProperty R. _:x owl:hasValue v.
exact cardinality	DataExactCardinality(n R)	_:x rdf:type owl:Restriction. _:x owl:onProperty R. _:x owl:cardinality n.
qualified exact cardinality	DataExactCardinality(n R D)	_:x rdf:type owl:Restriction:x owl:onProperty R:x owl:qualifiedCardinality n:x owl:onDataRange D.
maximum cardinality	DataMaxCardinality(n R)	_:x rdf:type owl:Restriction. _:x owl:onProperty R. _:x owl:maxCardinality n.
qualified maximum cardinality	DataMaxCardinality(n R D)	_:x rdf:type owl:Restriction:x owl:onProperty R:x owl:maxQualifiedCardinality n:x owl:onDataRange D.
minimum cardinality	<u>DataMinCardinality</u> (n R)	_:x rdf:type owl:Restriction. _:x owl:onProperty R. _:x owl:minCardinality n.
qualified minimum cardinality	<u>DataMinCardinality</u> (n R D)	_:x rdf:type owl:Restriction. _:x owl:onProperty R. _:x owl:minQualifiedCardinality n. _:x owl:onDataRange D.

Restrictions Using n-ary Data Range

In the following table 'Dⁿ' is an n-ary data range.

Language Feature	Functional Syntax	RDF Syntax
n-ary universal	<u>DataAllValuesFrom</u> (R ₁ R _n D ⁿ)	_:x rdf:type owl:Restriction. _:x owl:onProperties (R ₁ R _n). _:x owl:allValuesFrom D ⁿ .

n-ary existential	<u>DataSomeValuesFrom(R1</u> R _n D ⁿ)	_:x rdf:type owl:Restriction. _:x owl:onProperties (R ₁ R _n). _:x owl:someValuesFrom D ⁿ .
-------------------	--	---

2.2 Properties

Object Property Expressions

Language Feature	Functional Syntax	RDF Syntax
named object property	PN	PN
universal object property	owl:topObjectProperty	owl:topObjectProperty
empty object property	owl:bottomObjectProperty	owl:bottomObjectProperty
inverse property	ObjectInverseOf(PN)	_:x owl:inverseOf PN

Data Property Expressions

Language Feature	Functional Syntax	RDF Syntax
named data property	<u>R</u>	R
universal data property	owl:topDataProperty	owl:topDataProperty
empty data property	owl:bottomDataProperty	owl:bottomDataProperty

2.3 Individuals & Literals

Language Feature	Functional Syntax	RDF Syntax
named individual	<u>aN</u>	aN
anonymous individual	<u>_:a</u>	_:a
literal (datatype value)	<u>"abc"^^DN</u>	"abc"^^DN

2.4 Data Ranges

Data Range Expressions

Language Feature	Functional Syntax	RDF Syntax
named datatype	DN	DN
data range complement	DataComplementOf(D)	_:x rdf:type rdfs:Datatype. _:x owl:datatypeComplementOf D.
data range intersection	$\underline{\text{DataIntersectionOf}}(D_1D_n)$	_:x rdf:type rdfs:Datatype. _:x owl:intersectionOf (D ₁ D _n).
data range union	DataUnionOf(D ₁ D _n)	_:x rdf:type rdfs:Datatype. _:x owl:unionOf (D ₁ D _n).
literal enumeration	DataOneOf(v ₁ v _n)	_:x rdf:type rdfs:Datatype. _:x owl:oneOf (v ₁ v _n).
datatype restriction	$\frac{\text{DatatypeRestriction}(\text{DN f}_1 \text{ v}_1 \dots \text{f}_n}{\text{v}_n)}$	_:x rdf:type rdfs:Datatype. _:x owl:onDatatype DN. _:x owl:withRestrictions (_:x ₁ _:x _n). _:x _j f _j v _j . j=1n

2.5 Axioms

Class Expression Axioms

Language Feature	Functional Syntax	RDF Syntax
subclass	SubClassOf(C ₁ C ₂)	C ₁ rdfs:subClassOf C ₂ .

equivalent classes	EquivalentClasses(C ₁ C _n)	C_j owl:equivalentClass C_{j+1} . $j=1n-1$	
disjoint classes	DisjointClasses(C ₁ C ₂)	C ₁ owl:disjointWith C ₂ .	
pairwise disjoint classes	<u>DisjointClasses</u> (C ₁ C _n)	_:x rdf:type owl:AllDisjointClasses. _:x owl:members (C ₁ C _n).	
disjoint union	DisjointUnionOf(CN C ₁ C _n)	CN owl:disjointUnionOf (C ₁ C _n).	

Object Property Axioms

Language Feature	Functional Syntax	RDF Syntax
subproperty	SubObjectPropertyOf(P ₁ P ₂)	P ₁ rdfs:subPropertyOf P ₂ .
property chain inclusion	SubObjectPropertyOf(ObjectPropertyChain(P ₁ P _n) P)	P owl:propertyChainAxiom (P ₁ P _n).
<u>property</u> <u>domain</u>	ObjectPropertyDomain(P C)	P rdfs:domain C.
property range	ObjectPropertyRange(P C)	P rdfs:range C.
equivalent properties	EquivalentObjectProperties(P ₁ P _n)	P _j owl:equivalentProperty P _{j+1} . j=1n-1
disjoint properties	DisjointObjectProperties(P ₁ P ₂)	P ₁ owl:propertyDisjointWith P ₂ .
pairwise disjoint properties	<u>DisjointObjectProperties(P1 Pn)</u>	_:x rdf:type owl:AllDisjointProperties. _:x owl:members (P ₁ P _n).
<u>inverse</u> <u>properties</u>	InverseObjectProperties(P ₁ P ₂)	P ₁ owl:inverseOf P ₂ .
functional property	FunctionalObjectProperty(P)	P rdf:type owl:FunctionalProperty.
inverse functional property	InverseFunctionalObjectProperty(P)	P rdf:type owl:InverseFunctionalProperty.
<u>reflexive</u> <u>property</u>	ReflexiveObjectProperty(P)	P rdf:type owl:ReflexiveProperty.
<u>irreflexive</u> <u>property</u>	IrreflexiveObjectProperty(P)	P rdf:type owl:IrreflexiveProperty.
symmetric property	SymmetricObjectProperty(P)	P rdf:type owl:SymmetricProperty.
asymmetric property	AsymmetricObjectProperty(P)	P rdf:type owl:AsymmetricProperty.
transitive property	TransitiveObjectProperty(P)	P rdf:type owl:TransitiveProperty.

Data Property Axioms

Language Feature	Functional Syntax	RDF Syntax
subproperty	SubDataPropertyOf(R ₁ R ₂)	R ₁ rdfs:subPropertyOf R ₂ .
property domain	<u>DataPropertyDomain</u> (R C)	R rdfs:domain C.
property range	<u>DataPropertyRange</u> (R D)	R rdfs:range D.
equivalent properties	EquivalentDataProperties(R ₁ R _n)	R_j owl:equivalentProperty R_{j+1} . $j=1n-1$
disjoint properties	DisjointDataProperties(R ₁ R ₂)	R_1 owl:propertyDisjointWith R_2 .
pairwise disjoint properties	$\frac{DisjointDataProperties}{R_{n}}(R_{1}$	_:x rdf:type owl:AllDisjointProperties. _:x owl:members (R ₁ R _n).
functional property	FunctionalDataProperty(R)	R rdf:type owl:FunctionalProperty.

Datatype Definitions

Language Feature	Functional Syntax	RDF Syntax
datatype definition	<u>DatatypeDefinition(DN D)</u>	DN owl:equivalentClass D.

Assertions

Language Feature	Functional Syntax	RDF Syntax
individual equality	SameIndividual(a ₁ a _n)	aj owl:sameAs aj+1. j=1n-1
individual inequality	<u>DifferentIndividuals</u> (a ₁ a ₂)	a ₁ owl:differentFrom a ₂ .
pairwise individual inequality	<u>DifferentIndividuals</u> (a ₁ a _n)	_:x rdf:type owl:AllDifferent. _:x owl:members (a ₁ a _n).
class assertion	ClassAssertion(C a)	a rdf:type C.
positive object property assertion	ObjectPropertyAssertion(PN a ₁ a ₂)	a ₁ PN a ₂ .
positive data property assertion	DataPropertyAssertion(Rav)	a R v.
negative object property assertion	NegativeObjectPropertyAssertion(P a1 a2)	_:x rdf:type owl:NegativePropertyAssertion. _:x owl:sourceIndividual a ₁ . _:x owl:assertionProperty P. _:x owl:targetIndividual a ₂ .
negative data property assertion	NegativeDataPropertyAssertion(R a v)	_:x rdf:type owl:NegativePropertyAssertion. _:x owl:sourceIndividual a. _:x owl:assertionProperty R. _:x owl:targetValue v.

Keys

Language Feature	Functional Syntax	RDF Syntax
<u>Key</u>	$\underline{HasKey}(C\;(P_1\;\;P_m)\;(R_1\;\;R_n)\;)$	C owl:hasKey ($P_1 \dots P_m R_1 \dots R_n$). $m+n>0$

2.6 Declarations

Language Feature	Functional Syntax	RDF Syntax
<u>class</u>	Declaration(Class(CN))	CN rdf:type owl:Class.
datatype	Declaration(Datatype(DN))	DN rdf:type rdfs:Datatype.
object property	<pre>Declaration(ObjectProperty(PN))</pre>	PN rdf:type owl:ObjectProperty.
data property	<u>Declaration</u> (DataProperty(R))	R rdf:type owl:DatatypeProperty.
<u>annotation</u>	<u>Declaration</u> (AnnotationProperty(A)	A rdf:type
property)	owl:AnnotationProperty.
named individual	<u>Declaration</u> (NamedIndividual(aN))	aN rdf:type owl:NamedIndividual.

2.7 Annotations

Annotations

Language Feature	Functional Syntax	RDF Syntax
annotation assertion	AnnotationAssertion(A s t)	s A t.
annotation of an axiom where the axiom in RDF is one or more triples of the form s_i U t_i , i.e., with the same predicate U.	AXIOM(<u>Annotation</u> (A t))	_:x _i A t. s _i U t _i . _:x _i rdf:type

		owl:Axiom:Xi owl:annotatedSource Si:Xi owl:annotatedProperty U:Xi owl:annotatedTarget ti.
annotation of an axiom where the axiom in RDF is _:x U t ₁	AXIOM(Annotation(A t))	_:x A t. _:x U t ₁ .
annotation of another annotation (the other annotation in RDF starts with s ₁)	Annotation(Annotation(At) A ₁ t ₁)	_:x A t. s ₁ A ₁ t ₁ :x rdf:type owl:Annotation:x owl:annotatedSource s ₁ :x owl:annotatedProperty A ₁ :x owl:annotatedTarget t ₁ .

Annotation Properties

Language Feature	Functional Syntax	RDF Syntax
named annotation property	<u>A</u>	Α
human-readable name	<u>rdfs:label</u>	<u>rdfs:label</u>
human-readable comment	rdfs:comment	rdfs:comment
additional information	rdfs:seeAlso	rdfs:seeAlso
defining agent	rdfs:isDefinedBy	rdfs:isDefinedBy
version information	owl:versionInfo	owl:versionInfo
deprecation	owl:deprecated	owl:deprecated
backwards compatibility	owl:backwardCompatibleWith	owl:backwardCompatibleWith
incompatibility	owl:incompatibleWith	owl:incompatibleWith
prior version	owl:priorVersion	owl:priorVersion

Annotation Axioms

Language Feature	Functional Syntax	RDF Syntax
annotation subproperties	SubAnnotationPropertyOf(A ₁ A ₂)	A ₁ rdfs:subPropertyOf A ₂ .
annotation property domain	AnnotationPropertyDomain(A U)	A rdfs:domain U.
annotation property range	AnnotationPropertyRange(A U)	A rdfs:range U.

2.8 Ontologies

Ontologies

Language Feature	Functional Syntax	RDF Syntax
OWL ontology (importing) ^{1 2}		ON rdf:type owl:Ontology. [ON owl:versionIRI U.] ON owl:imports ON ₁

	Annotation(A t))	ON A t.
prefix declaration ³	Prefix(p=U)	@prefix p U.

- [] represents optional constructs
 In the RDF syntax _:x is used in place of ON if there is no ontology name.
 RDF syntax is in Turtle, other RDF serializations may vary.

3 Built-in Datatypes and Facets

3.1 Built-in Datatypes

Universal Datatype	rdfs:Literal			
	owl:rational		owl:real	
	xsd:double	xsd:float	xsd:decimal	xsd:integer
	xsd:long	xsd:int	xsd:short	xsd:byte
<u>Numbers</u>	xsd:nonNegativeInteger		xsd:nonPositiveInteger	
	xsd:positiveInteger		xsd:negativeInteger	
	xsd:unsignedLong		xsd:unsignedInt	
	xsd:unsignedShort		xsd:unsignedByte	
	rdf:PlainLiteral (RDF plain literals)			
<u>Strings</u>	xsd:string	xsd:NCName	xsd:Name	xsd:NMTOKEN
	xsd:token	xsd:language	xsd:normalizedString	
<u>Boolean Values</u>	xsd:boolean (value space: true and false)			
Binary Data	xsd:base64Binary		xsd:hexBinary	
<u>IRIs</u>	xsd:anyURI			
Time Instants	<u>xsd:dateTime</u> (optional time zone offset)			
THE HISTAILS	xsd:dateTimeStamp (required time zone offset)			
XML Literals	<u>rdf:XMLLiteral</u>			

3.2 Facets

Facet	Value	Applicable Datatypes	Explanation
xsd:minInclusive xsd:maxInclusive xsd:minExclusive xsd:maxExclusive	literal in the corresponding datatype	Numbers, Time Instants	Restricts the value-space to greater than (equal to) or lesser than (equal to) a value
xsd:minLength xsd:maxLength xsd:length	Non-negative integer	Strings, Binary Data, IRIs	Restricts the value-space based on the lengths of the literals
xsd:pattern	xsd:string literal as a regular expression	Strings, IRIs	Restricts the value space to literals that> match the regular expression
rdf:langRange	xsd:string literal as a regular expression	rdf:PlainLiteral	Restricts the value space to literals with language tags that match the regular expression

4 Appendix

4.1 New Features in OWL 2

Class Expressions	 local reflexivity (self restriction) object and data qualified exact/maximum/minimal cardinality restriction universal and existential restriction on n-ary data range 		
Class Axioms	pairwise disjoint classesclass disjoint union		
Property Expressions	 universal and empty object property universal and empty data property inverse object property expression 		
Property Axioms	 property chain inclusion disjoint object properties disjoint data properties reflexive, irreflexive, and asymmetric object property. 		
Data Ranges	 datatype definition data range complement, intersection and union datatype restriction and facets hook for n-ary datatype 		
Assertions	 negative object property assertion negative data property assertion 		
Annotation	 annotation assertion annotation of an axiom or an annotation annotation subproperties annotation property domain and range owl:deprecated annotation property 		
Extra Built-in Datatypes	owl:rational, owl:real, xsd:dateTimeStamp, rdf:PlainLiteral		
Others	 key declaration metamodeling capabilities (Punning) anonymous individual 		

4.2 Additional Vocabulary in OWL 2 RDF Syntax

Feature	Vocabulary	Note
data range	owl:DataRange	deprecated in OWL 2, replaced by rdfs:Datatype
membership of a set of pairwise different individuals	owl:distinctMembers	can alternatively use owl:members
ontology property	owl:OntologyProperty	
deprecation	owl:DeprecatedClass, owl:DeprecatedProperty	alternative RDF syntax: s rdf:type owl:DeprecatedClass . or s rdf:type owl:DeprecatedProperty . can be replaced by s owl:deprecated "true"^^xsd:boolean .

5 Appendix: Change Log (Informative)

5.1 Changes Since Recommendation

This section summarizes the changes to this document since the <u>Recommendation of 27 October</u>, 2009.

- With the publication of the XML Schema Definition Language (XSD) 1.1 Part 2:
 Datatypes Recommendation of 5 April 2012, the elements of OWL 2 which are based on XSD 1.1 are now considered required, and the note detailing the optional dependency on the XSD 1.1 Candidate Recommendation of 30 April, 2009 has been removed from the "Status of this Document" section.
- Minor typographical errors were corrected as detailed on the OWL 2 Errata page.

5.2 Changes Since Proposed Recommendation

This section summarizes the changes to this document since the <u>Proposed</u> Recommendation of 22 September, 2009.

- Minor editorial changes to "Annotations" table.
- Minor editorial change to the explanation of table headers and others.
- Link to a pdf version of the guide, i.e., the OWL 2 Reference Card.

5.3 Changes Since Candidate Recommendation

This section summarizes the changes to this document since the <u>Candidate</u> <u>Recommendation of 11 June, 2009</u>.

- The "Features At Risk" note w.r.t. the owl:rational and rdf:XMLLiteral datatypes was removed: implementation support has been adequately demonstrated, and the features are no longer considered at risk (see <u>Resolution 5</u> and <u>Resolution 6</u>, 05 August 2009).
- Some minor editorial changes were made.

6 Acknowledgments

The starting point for the development of OWL 2 was the <u>OWL1.1 member submission</u>, itself a result of user and developer feedback, and in particular of information gathered during the <u>OWL Experiences and Directions (OWLED) Workshop series</u>. The working group also considered <u>postponed issues</u> from the <u>WebOnt Working Group</u>.

This document has been produced by the OWL Working Group (see below), and its contents reflect extensive discussions within the Working Group as a whole. The editors extend special thanks to Bernardo Cuenca Grau (Oxford University), Christine Golbreich (Université de Versailles St-Quentin and LIRMM), Ivan Herman (W3C/ERCIM), and Bijan Parsia (University of Manchester) for their thorough reviews.

The regular attendees at meetings of the OWL Working Group at the time of publication of this document were: Jie Bao (RPI), Diego Calvanese (Free University of Bozen-Bolzano), Bernardo Cuenca Grau (Oxford University Computing Laboratory), Martin Dzbor (Open

University), Achille Fokoue (IBM Corporation), Christine Golbreich (Université de Versailles St-Quentin and LIRMM), Sandro Hawke (W3C/MIT), Ivan Herman (W3C/ERCIM), Rinke Hoekstra (University of Amsterdam), Ian Horrocks (Oxford University Computing Laboratory), Elisa Kendall (Sandpiper Software), Markus Krötzsch (FZI), Carsten Lutz (Universität Bremen), Deborah L. McGuinness (RPI), Boris Motik (Oxford University Computing Laboratory), Jeff Pan (University of Aberdeen), Bijan Parsia (University of Manchester), Peter F. Patel-Schneider (Bell Labs Research, Alcatel-Lucent), Sebastian Rudolph (FZI), Alan Ruttenberg (Science Commons), Uli Sattler (University of Manchester), Michael Schneider (FZI), Mike Smith (Clark & Parsia), Evan Wallace (NIST), Zhe Wu (Oracle Corporation), and Antoine Zimmermann (DERI Galway). We would also like to thank past members of the working group: Jeremy Carroll, Jim Hendler, Vipul Kashyap.