

دانشکده مهندسی کامپیوتر دانشگاه صنعتی شریف

استاد درس: دکتر حمیدرضا ربیعی بهار ۱۴۰۰

تمرین در خانه ششم درس یادگیری ماشین آماری

نام و نام خانوادگی: امیر پورمند شماره دانشجویی: ۹۹۲۱۰۲۵۹

آدرس ايميل : pourmand1376@gmail.com

۱ سوال ۱

- در واقع مدل ما باید سه ویژگی داشته باشد: global .decision tree .model-specific ، global زیرا که باید کل مدل را یکجا به تیم پزشکی توضیح داد تا دلایل را متوجه شوند و یکی از بهترین روش های توضیح مدل که برای پزشکی نیز قابل قبول باید درخت تصمیم است که خود آنها نیز استفاده میکنند و مشخصا این روش یک روش مبتنی بر مدل است.
- ۲. برای این مدل نیز سه ویژگی متصور است: local .LIME .model-agnostic ،docal باشد زیرا که نیاز نیست کل مدل یکجا درک شود و همین که یک مثال خاص برایش توضیح باشد کافیست و البته میتواند model-agnostic باشد زیرا بتوانیم مدل های مختلف را اپلای کنیم و مشکلی نباشد. با این تعاریف مدل لایم یک مدل خوب است زیرا هم -model agnostic است و هم local عمل میکند که برای مدل های black-box هم مناسب است.

۲ سوال ۲

۱.۲ رگرسیون خطی یا رگرسیون لاجیستیک

simulatibilty \.\.Y

عوامل تصميم گيرنده را انسان نيز ميتواند مشخص كند و مشكلي نيست و البته تعامل يا اينتراكشن بين انها نيز كمترين مقدار است.

decomposability Y.1.Y

متغيرها مشخص هستند اما تعامل بين آنها بيشتر شده تا مدل بيشتر decomposable باشد.

algorithmic transparency **T.1.7**

بدون روش های آماری پیشرفته نمیتواند متغیرها و تاثیرات آنها را به سادگی بررسی کرد.

post-hoc f.1.Y

نياز نيست.

۲.۲ درخت تصمیم

simulatibilty \.Y.Y

یک انسان بدون هیچ دانش ریاضی ای هم میتواند درخت را شبیه سازی و آزمایش کند و مشکلی ندارد.

decomposability Y.Y.Y

مدل تفکیک پذیر هست زیرا از یک سری قانون تشکیل شده که خیلی مشخص است و هر کسی میتواند آنها را به خودی خود درک کند.

شفاف است زيرا قواعد آن توسط انسان قابل درک و فهم است و به سادگی میتوان فرآيند را درک کرد.

post-hoc F.Y.Y

نیازی نیست.

KNN T.Y

simulatibilty 1.4.7

قابل انجام است زیرا پیچیدگی خاصی ندارد و انسان نیز میتواند انجام دهد.

decomposability Y.T.Y

اگرچه تعداد متغیرها خیلی زیاد است و به سادگی مدل درخت تصمیم نیست ولی میتوان آنرا به صورت تک به تک آنالیز کرد.

algorithmic transparency Y.Y.Y

قوانین به قدری پیچیده هستند که برای فهم مدل به ابزار ریاضی مورد نیاز است.

post-hoc f.T.Y

نیازی نیست.

Bayesian Models F.Y

simulatibilty 1.4.7

مشکلی ندارد و میتوان روابط آماری را توسط افراد مورد بررسی قرار داد و از این نظر واضح است.

decomposability Y.Y.Y

روابط آماری خیلی پیچیده شده اند اما میتوان با تجزیه آنها به حالت مارجینال مدل را decomposable کرد.

حتى اگر مدل را بتوانيم decompose كنيم. بررسى شفافيت مدل به اين سادگى ها نيست و فقط با ابزار رياضى ميتوان آنرا انجام داد.

post-hoc f.f.Y

نیازی نیست.

Tree ensemble 4.7

simulatibilty \.O.Y

ندارد

decomposability Y. O. Y

ندارد

algorithmic transparency Y.O.Y

ندارد

post-hoc 4.0.7

نیاز دارد و معمولا از روش ساده سازی مدل یا استخراج اهمیت فیچرها استفاده میشود.

- Support Vector Machine 9.7
 - simulatibilty 1.8.7

ندارد

decomposability Y.F.Y

ندارد

algorithmic transparency Y.S.Y

ندارد

post-hoc 4.8.4

معمولا از ساده سازي مدل يا توضيحات محلى استفاده ميشود.

- Multi-Layer Network V.Y
 - simulatibilty \.V.Y

ندارد

decomposability Y.V.Y

ندارد

algorithmic transparency Y.V.Y

ندارد

post-hoc f.v.Y

نیاز دارد و معمولا از روش ساده سازی مدل، اهمیت ویژگیها و یا مصور سازی استفاده میشود

- Convolutional Neural Network A.Y
 - simulatibilty \.A.Y

ندارد

decomposability Y.A.Y

ندارد

algorithmic transparency \(\mathbb{T} \darkappa \tau \darkappa \

ندارد

post-hoc F.A.Y

معمولاً از روش های مبتنی بر اهمیت ویژگی یا مثلاً مصور سازی داده استفاده میشود

Recurrent Neural Network 9.7

simulatibilty \.4.Y

ندارد

decomposability Y.A.Y

ندارد

ندارد

post-hoc F.A.Y

معمولا از روش های اهمیت ویژگی استفاده میشود.