Néstor Batista Díaz

20 de octubre del 2023

DISEÑO DE MÁQUINAS DE TURING

El objetivo de la tarea es hacer una máquina de Turing que reconozca todas las palabras de este lenguaje:

$$L = \{0^{n}1^{n+1} 0^{n+2} | n \ge 1\}$$

RESULTADO

Esta máquina lo que hace para resolver el problema es dividirlo en dos bloques, primero resolvemos 0^n1^{n+1} y luego $1^{n+1}0^{n+2}$. Para ello, lo primero es verificar que el código empieza por 0, que es la primera condición de la fórmula y luego convertir el elemento vacío a la izquierda del código en un 0, ya que la finalidad del primer bloque es convertir los 0 de la izquierda del código en elemento vacío y los 1 en 0, empezando en la intersección entre los 1 y los 0 de la izquierda y se va oscilando de derecha a izquierda. Al terminar esta secuencia de conversión debe quedar un 1 extra en mitad del código, que es el que nos indica que se cumpla la condición del n+1, esto indica que terminamos con el primer bloque. Segundo bloque, ahora tenemos una secuencia de 0 con un 1 en medio, la máquina tiene que comprobar que los 0 a la izquierda del 1 más el 1 tiene que ser menor en 1 que los 0 de la derecha, para ello empezamos por el 1 de la intercepción y como antes vamos oscilando de derecha a izquierda convirtiendo todos los 0 en 1. Al finalizar se debe encontrar un 0 al final del código y después del 0 un elemento vacío que indicara que el código es válido para la fórmula dada.

Esta máquina de Turing tiene 17 estados:

- 1. Primer estado q_0 , verifica que en la primera posición hay un 0 y se mueve a la izquierda.
- 2. Segundo estado q₁, transforma el elemento vacío en un 0 y se mueve a la derecha.
- 3. Tercer estado q₂, por cada 0 que se encuentre lo transforma en 1 y se desplaza a la derecha hasta que se encuentre con un 1, en cuyo caso dejará el 1 y se volverá a desplazar a la izquierda quedándose en el último 0 transformado en 1.
- 4. Cuarto estado q₃ transformamos el 1 en elemento vacío y nos desplazamos a la derecha
- 5. Quinto estado q₄, transformamos el 1 en un 0 y nos desplazamos a la izquierda.
- 6. Sexto estado q₅, por cada elemento vacío lo dejamos y nos seguimos desplazando a la izquierda hasta que se encuentre un 1 o un 0. Si se encuentra un 1 lo cobertura en vacío y se desplazará a la derecha (de camino al séptimo estado q₆) y si se encuentra un 0, lo deja y se desplaza a la derecha (de camino al décimo estado q₁₁).
- Séptimo estado q₆, por cada elemento vacío nos desplazamos a la derecha hasta encontrar un 0 y nos desplazamos a la derecha.
- 8. Octavo estado q₇, por cada 0 que se encuentre lo deja y se sigue desplazando a la derecha hasta que se encuentre un 1, en este caso lo convierte en 0 y se mueve a la izquierda.
- 9. Noveno estado q₈, por cada 0 que se encuentre se desplaza a la izquierda hasta que se encuentre un elemento vacío y se desplaza a la izquierda y volvemos al sexto estado q₅.
- 10. Décimo estado q₉, por cada elemento vacío nos desplazamos a la derecha hasta que nos encontremos con un 0, en cuyo caso lo dejaremos y nos movemos a la derecha.
- 11. Onceavo estado q₁₀, por cada 0 que se encuentre nos desplazamos a la derecha hasta que nos encontremos un 1, en este caso lo dejaremos y seguimos a la derecha.

- 12. Doceavo estado q_{11} , el 0 lo convertimos en 1 y lo pasamos a la izquierda.
- 13. Treceavo estado q₁₂, por cada 1 nos desplazamos a la izquierda hasta que encontremos un 0 o un elemento vacío. En el caso del 0, lo transformamos en 1 y nos desplazamos a la derecha (de camino al catorceavo estado q₁₃). En el caso del elemento vacío, lo dejaremos y nos movemos a la derecha (de camino al quinceavo estado q₁₄).
- 14. Catorceavo estado q_{13} , por cada 1 nos desplazamos a la derecha, hasta que nos encontremos un 0, lo transformamos en un 1 y nos desplazamos a la izquierda y volvemos al treceavo estado q_{12} .
- 15. Quinceavo estado q₁₄, por cada 1 nos desplazamos a la derecha hasta que encontremos un 0, en este caso nos desplazamos a la derecha.
- 16. Dieciseisavo estado q_{15} , encontramos elemento vacío, paramos y nos dirigimos al estado final q_{16} .