LC7 : Cinétique et catalyse

Expérience de catalyse homogène

$$H_2O_2 / H_2O$$
 $H_2O_2 + 2e^- + 2H^+ = 2H_2O$

$$O_2/H_2O_2$$

$$O_2 / H_2 O_2$$
 $H_2 O_2 = O_2 + 2H^+ + 2e^-$

$$2H_2O_2 = 2H_2O + O_2$$

$$H_2O_2/H_2O$$

 Fe^{3+}/Fe^{2+} **RAPIDE**

$$O_2/H_2O_2$$

$$H_2O_2 + 2Fe^{2+} + 2H^+ = 2H_2O + 2Fe^{3+}$$

$$E^{2+} \text{ régénéré}$$

$$H_2O_2 + 2Fe^{3+} = O_2 + 2H^+ + 2Fe^{2+}$$

$$H_2O_2 + 2Fe^{3+} = O_2 + 2H^+ + 2Fe^{2+}$$

$$2H_2O_2 = 2H_2O + O_2$$

Comparaison entre les différents types de catalyses

	Homogène	Hétérogène	Enzymatique
Avantages	Toutes les molécules de catalyseur sont disponibles	Facilement recyclable	 Moins de déchets Température ambiante Biosourcé Biodégradable
Inconvénients	Difficilement recyclable	Seule la surface du catalyseur est disponible	Catalyseur spécifique à une réaction