INP-ENSEEIHT $1^{\rm \`ere}$ année SN

TP4 - Classification par SVM (partie I)

Le but de ce TP est de tester une autre méthode de classification que celle du TP3, sur les mêmes données. Lancez le script exercice_0, qui affiche les caractéristiques de compacité et de contraste des images de l'ensemble d'apprentissage du TP3, correspondant aux classes « mélanomes » et « fibromes ». Ces données (X_app et Y_app dans données_carac.mat) ne sont pas linéairement séparables, mais il suffit d'en retirer quelques-unes pour qu'elles le deviennent (X_app_filtre et Y_app_filtre dans données_carac_filtrees).

Contexte : données linéairement séparables - formulation « primale »

Soit $\mathbf{X}_{\mathrm{app}} = (\mathbf{x}_i)_{i \in \{1,\dots,n\}}$ un ensemble de n points du plan, constitué de deux classes ω_1 et ω_2 linéairement séparables, dont les *étiquettes*, notées y_i , valent 1 (pour les fibromes) ou -1 (pour les mélanomes). L'équation cartésienne d'une droite \mathcal{D} du plan s'écrit :

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} - c = 0 \tag{1}$$

où le vecteur non nul \mathbf{w} est orthogonal à \mathcal{D} , où \mathbf{x} désigne un point du plan et où c est un paramètre réel. Comme les deux demi-plans limités par \mathcal{D} sont définis par $\mathcal{D}_1 = \{\mathbf{x} \in \mathbb{R}^2, \mathbf{w}^\top \mathbf{x} - c \leq 0\}$ et $\mathcal{D}_2 = \{\mathbf{x} \in \mathbb{R}^2, \mathbf{w}^\top \mathbf{x} - c \geq 0\}$, on peut imposer la contrainte suivante à toute droite \mathcal{D} constituant un séparateur linéaire de ω_1 et ω_2 :

$$y_i\left(\mathbf{w}^{\top}\mathbf{x}_i - c\right) > 0, \quad \forall i \in [1, n]$$
 (2)

Parmi l'infinité de séparateurs linéaires vérifiant la contrainte (2), le SVM est celui qui maximise le carré de la distance minimale des points $\mathbf{x}_i \in \mathbf{X}_{app}$ à \mathcal{D} , ce qui s'écrit :

$$\max_{\mathbf{w} \in \mathbb{R}^2, c \in \mathbb{R}} \left\{ \min_{\mathbf{x}_i \in \mathbf{X}_{app}} \left\{ \frac{(\mathbf{w}^\top \mathbf{x}_i - c)^2}{\|\mathbf{w}\|^2} \right\} \right\} \equiv \max_{\mathbf{w} \in \mathbb{R}^2, c \in \mathbb{R}} \left\{ \frac{1}{\|\mathbf{w}\|^2} \min_{\mathbf{x}_i \in \mathbf{X}_{app}} \left\{ (\mathbf{w}^\top \mathbf{x}_i - c)^2 \right\} \right\}$$
(3)

D'autre part, l'équation cartésienne (1) de \mathcal{D} est inchangée si \mathbf{w} et c sont multipliés par un même coefficient strictement positif. On peut donc choisir ce coefficient de telle sorte que, pour les points \mathbf{x}_i les plus proches de \mathcal{D} , qui sont appelés vecteurs de support, on ait exactement $y_i\left(\mathbf{w}^{\top}\mathbf{x}_i-c\right)=1$. Dès lors, la contrainte (2) peut être réécrite :

$$y_i \left(\mathbf{w}^\top \mathbf{x}_i - c \right) - 1 \ge 0, \qquad \forall i \in [1, n]$$
 (4)

La valeur minimale de $(\mathbf{w}^{\top}\mathbf{x}_i - c)^2$ vaut alors 1 et le problème (3) se simplifie en :

$$\max_{\mathbf{w} \in \mathbb{R}^2, c \in \mathbb{R}} \left\{ \frac{1}{\|\mathbf{w}\|^2} \right\} \equiv \min_{\mathbf{w} \in \mathbb{R}^2, c \in \mathbb{R}} \left\{ \frac{1}{2} \|\mathbf{w}\|^2 \right\}$$
 (5)

qui constitue un problème de minimisation quadratique, sous les contraintes linéaires (4) de type inégalités. Ces problèmes de minimisation quadratique sous contraintes (de types égalités et/ou inégalités) peuvent être résolus de manière efficace par la fonction quadprog de Matlab (help quadprog). Les inconnues du problème doivent être concaténées en un vecteur $\widetilde{\mathbf{w}} = [\mathbf{w}^{\top}, c]^{\top} \in \mathbb{R}^3$, et le problème reformulé sous forme « canonique » :

$$\begin{cases}
\min_{\widetilde{\mathbf{w}} \in \mathbb{R}^3} \left\{ \frac{1}{2} \widetilde{\mathbf{w}}^\top \mathbf{H} \widetilde{\mathbf{w}} \right\} \\
\text{s.c.} \quad \mathbf{A} \widetilde{\mathbf{w}} \le \mathbf{b}
\end{cases} (6)$$

Cette formulation pour résoudre le problème (3) est appelée formulation « primale ».

INP-ENSEEIHT 1^{ère} année SN

Exercice 1 : données linéairement séparables - formulation « duale »

Une autre façon de résoudre le problème (4) + (5) consiste à introduire le lagrangien associé, qui dépend non seulement de \mathbf{w} et de c, mais également de n multiplicateurs de Lagrange, notés $\alpha_i \in \mathbb{R}$, correspondant aux n contraintes linéaires (4) :

$$\mathcal{L}(\mathbf{w}, c, \alpha_1, \dots, \alpha_n) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left[y_i \left(\mathbf{w}^\top \mathbf{x}_i - c \right) - 1 \right]$$
$$= \frac{1}{2} \mathbf{w}^\top \mathbf{w} - \mathbf{w}^\top \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i + c \sum_{i=1}^n \alpha_i y_i + \sum_{i=1}^n \alpha_i$$
(7)

Comme les contraintes (4) sont de type ≥ 0 , les multiplicateurs α_i doivent vérifier la contrainte suivante :

$$\alpha_i \ge 0, \qquad \forall i \in [1, n] \tag{8}$$

De plus, les seuls indices i pour lesquels $\alpha_i > 0$ sont ceux des vecteurs de support, là où $y_i (\mathbf{w}^\top \mathbf{x}_i - c) - 1 = 0$. Les conditions d'optimalité du premier ordre de \mathcal{L} , relativement à \mathbf{w} et à c, s'écrivent, respectivement :

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i \, y_i \, \mathbf{x}_i \tag{9}$$

$$\sum_{i=1}^{n} \alpha_i y_i = 0 \tag{10}$$

La fonction duale du lagrangien \mathcal{L} , qui ne dépend que des α_i , s'obtient en réinjectant (9) et (10) dans (7) :

$$\overline{\mathcal{L}}(\alpha_1, \dots, \alpha_n) = -\frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i y_i \mathbf{x}_i^{\top} \mathbf{x}_j y_j \alpha_j + \sum_{i=1}^n \alpha_i$$
(11)

Cette fonction étant quadratique mais concave, il faut rechercher son maximum en résolvant un nouveau problème d'optimisation quadratique sous contraintes : contraintes (10) de type égalités + contraintes (8) de type inégalités. En introduisant le vecteur $\boldsymbol{\alpha} = [\alpha_1, \dots, \alpha_n]^\top$, la forme canonique de ce problème s'écrit :

$$\begin{cases}
\max_{\boldsymbol{\alpha} \in \mathbb{R}^n} \left\{ -\frac{1}{2} \, \boldsymbol{\alpha}^\top \mathbf{H} \, \boldsymbol{\alpha} + \mathbf{f}^\top \boldsymbol{\alpha} \right\} \\
\text{s.c.} \left\{ \begin{array}{l} \mathbf{A}_{eq} \, \boldsymbol{\alpha} = 0 \\ \boldsymbol{\alpha} \ge \mathbf{0}_{\mathbb{R}^n} \end{array} \right.
\end{cases} (12)$$

Écrivez la fonction estim_param_SVM_dual, appelée par le script exercice_1_dual, permettant de résoudre le problème (12) par un appel à la fonction quadprog.

Conseils de programmation :

- Attention au fait que (12) est un problème de maximisation, et non de minimisation.
- Une fois trouvés les multiplicateurs de Lagrange, les vecteurs de support X_VS sont faciles à identifier, puisque ce sont les points \mathbf{x}_i dont l'indice i est tel que $\alpha_i > 0$ (utilisez ici un seuil à 10^{-6} pour ce test).
- Le vecteur w se déduit de (9), où la somme peut être restreinte aux indices des vecteurs de support.
- Enfin, pour calculer c, il suffit par exemple de prendre un vecteur de support \mathbf{x}_i d'étiquette y_i , qui vérifie l'égalité y_i ($\mathbf{w}^{\top}\mathbf{x}_i c$) -1 = 0, soit $c = \mathbf{w}^{\top}\mathbf{x}_i y_i$.
- Le dernier paramètre de sortie de la fonction est le code de retour de quadprog (« exitflag »), qui vaut 1 lorsque la résolution converge. Vérifiez que cela n'est pas le cas avec les données X_app et Y_app.

Complétez ensuite la fonction classification_SVM qui doit classer les individus $\mathbf{x}_i \in \mathbf{X}_{app}$ à partir de l'équation (2). Afin de se retrouver avec des valeurs 1 et -1 dans le vecteur de prédiction Y_pred, il suffit alors de résoudre :

$$y_i = \text{signe}\left(\mathbf{w}^\top \mathbf{x}_i - c\right), \qquad \forall i \in [1, n]$$
 (13)

Lancez enfin le script exercice_1_dual et vérifiez que vous retrouvez bien le même séparateur linéaire pour les formulations primale et duale sur les deux figures.

INP-ENSEEIHT 1^{ère} année SN

Exercice 2 : données non linéairement séparables - noyau gaussien

Il est rare que des données non filtrées soient linéairement séparables. Pour pallier ce problème, on peut appliquer aux points \mathbf{x}_i une transformation non linéaire, notée ϕ , de \mathbb{R}^2 dans un espace \mathcal{E} de plus grande dimension. Dans cet espace, on cherche un *hyperplan* séparateur, ayant pour équation cartésienne :

$$\mathbf{w}^{\top} \phi(\mathbf{x}) - c = 0 \tag{14}$$

où $\mathbf{w} \in \mathcal{E}$ et $c \in \mathbb{R}$, devant vérifier les contraintes suivantes :

$$y_i\left(\mathbf{w}^{\top}\phi(\mathbf{x}_i) - c\right) > 0, \quad \forall i \in [1, n]$$
 (15)

La formulation duale présente alors un avantage important sur la formulation primale car l'extension du problème (6) nécessite de changer d'espace de recherche, puisque l'inconnue $\mathbf{w} \in \mathcal{E}$, alors que l'inconnue $\alpha \in \mathbb{R}^n$ du problème (12) est indépendante de l'espace \mathcal{E} . L'extension de la fonction duale (11) s'écrit dorénavant :

$$\overline{\mathcal{L}}(\alpha_1, \dots, \alpha_n) = -\frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i y_i \, \phi(\mathbf{x}_i)^\top \phi(\mathbf{x}_j) \, y_j \, \alpha_j + \sum_{i=1}^n \alpha_i$$
(16)

qui fait bien intervenir deux vecteurs de \mathcal{E} , mais seulement par le biais de leur produit scalaire $\phi(\mathbf{x}_i)^{\top}\phi(\mathbf{x}_j)$. Le « coup du noyau » (kernel trick), qui n'est pas une spécificité des SVM, consiste à remplacer ce produit scalaire par une fonction K, appelée fonction noyau, ce qui permet de réécrire (16) sous la forme suivante :

$$\overline{\mathcal{L}}(\alpha_1, \dots, \alpha_n) = -\frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \, y_i \, K(\mathbf{x}_i, \mathbf{x}_j) \, y_j \, \alpha_j + \sum_{i=1}^n \alpha_i$$
(17)

Le noyau qui sera utilisé par la suite est le noyau gaussien, où le paramètre σ représente un écart-type :

$$K(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2}\right)$$
(18)

Écrivez la fonction estim_param_SVM_noyau, permettant de rechercher le maximum de la fonction $\overline{\mathcal{L}}$, définie par (17) et (18), sous les mêmes contraintes que celles du problème (12). Seule la matrice \mathbf{H} sera modifiée.

Conseils de programmation :

- Commencez par calculer la matrice de Gram, dont l'élément courant G(i,j) est égal à $K(\mathbf{x}_i,\mathbf{x}_i)$.
- Comme la fonction ϕ n'est pas explicitement connue, \mathbf{w} ne peut pas être calculé explicitement. D'ailleurs, il ne fait pas partie des paramètres de sortie de la fonction $\mathtt{estim_param_SVM_noyau}$.
- En revanche, c peut être calculé en reportant l'expression (9) de \mathbf{w} dans l'égalité $y_i \left(\mathbf{w}^{\top} \mathbf{x}_i c\right) 1 = 0$ et en utilisant à nouveau le noyau K pour remplacer les produits scalaires, et où la somme peut être restreinte aux indices j des vecteurs de support :

$$c = \sum_{j=1}^{n} \alpha_j y_j K(\mathbf{x}_j, \mathbf{x}_i) - y_i$$
(19)

Complétez ensuite la fonction classification_SVM_noyau qui doit classer les individus $\mathbf{x}_i \in \mathbf{X}_{app}$ à partir de l'équation (15). Afin de se retrouver avec des valeurs 1 et -1 dans le vecteur de prédiction Y_pred, il suffit alors de résoudre :

$$y_i = \text{signe}\left(\sum_{j=1}^n \alpha_j \, y_j \, K(\mathbf{x}_j, \mathbf{x}_i) - c\right), \qquad \forall \, i \in [1, n]$$
 (20)

Remplissez enfin la fonction maximisation_classification_SVM_noyau qui doit, entre autres, retourner le paramètre σ^* qui maximise la classification de l'ensemble de test, suite à une estimation des paramètres du SVM sur l'ensemble d'apprentissage. Lancez successivement le script exercice_2 pour obtenir les courbes d'optimisation, puis le script exercice_2bis pour visualiser la classification optimale.