Faltam on minhan assinations he hophock
Não posso valida este tabalho

Logbook 7- Rolamento de Cilindros (TB2)

2021/2022 Laboratórios de Física 1 —

PL6 – Miguel Alexandre Teixeira Vieira nº202107506 (Grupo I, com Fernando Wang)

Loghook e fectivo 7, atrividade Rolementos, JLS, sala 119 Objetivos: 1. Vui fich a comdição de nolamento sem escate connento, von= wor 2. Vui ficen o phincipio de sobte posição no movemento, au seja 24 = 2cm + r. sim (wo t) 3. Masthay goe a porto do cil. em contreto com a salo tem V=0 4. 11 -- o ponto suporior do cil- y = 20r - tem V máz, 5. Familiatigner mos come as técnices de processamento de Video e imagems Procedimentos Expormentais. As phimeitamente, como modelo e delineação do phocediments general 1 do ; e tivos, mós holamas um cilindro sab uma calha Cabase panadela a esta Vanías voyos a velocida de s não - especi figadas - estas fáceis de adult refinalise de lados - 2 a mos dois sutidos (de movimento) di deventes; entre es matiniais usudos que pos sibilitatione a exportência forem um ciliagno uma calha (notinontal) Acres 12 graduada um "nivel, iluminação sobre o cil e acathe, uma camena apoi ada um tri pe e cintrade em helages à imeg da video captahedu cabo USB, competadon e funamentas chaviina; so más só amalisamos um excento das tentativas um são holambito, de esquinda petre adi hesta - agricuse de cada é muito extensa; ultimamente, tivemas como objetivo vuitican se occure exchegamentale, depais a phincipio de sobre pasição (20) 2, por intimo, situas implicações dessas canacteristicas (se dade esdas ou mas) (3. e le.); tivermos mo modelos previsas dos holamentos equações parto das equações de holamutocome 5 m exchegamabos, com ou 5 m DVcn=0- e termem Pinclinação da calva, Fa sobre o alindro, unhos de paralaxe todas eles factores por a diferenção do halamento. Teónico do Rolamento Exporimental

Bostudan a calha no sin atrito e indimação - usar "mívil" Co calacien câmetra a uma distància d-grande pone miniminan una de paha laxe - e centran a sun posição em helação assixthermos, direito e esquido, da calha que a camaraconsegue capturar; a câmera apois de num tripé; a lentre e à fachade de calhe deven sur peruleles. D. ilumiman a calha e o culind no devidamente E. determinan a diâmetro de celendro (chaviera); colocaro cilindro and fore do haio de visão do camera, a base do ciliadro pere lele à Dachade da calha (que é graduade, ja neferido). F. inician a GRAVAGAR, clickando em cutos bottoss de amana, dunambe esta, varias tentativas de nolamento, sem intervalos 6. imputher (com distripp o citendro sobre um plano inclinedo) cilindro com uma mas, insciendo um movimento netilineo, paralelo com e facheda decalhe, dentro do angula de visas de camena et e oficializa-lo até. o sen servido ne ventur por colista ou o cilindro san do angula de visto; repetin, para outras sentidas; B cultificen que a pasição da câmana não foi mudeda. acidental meite; foham feitas 6 holamentos, 3 de cada sectido, develocidade unicial arbitrátia, a majoria imicicolos com a mas; comcluida a GRAVAÇAC. H. exporter, com cabo USB, o video da câmena gana o con putadon do labonatorio; originalmente no formato de video MTS, converte-la em AVI como saftware "Friemaken" conventidos abhit o video no software "Tracker. I. "analizar o video no Thacker, ou seja, a cade 0.15, identifican a posiçõe do centro de moste e da Paniforia B docilindro; também definir digitalmenta uma escale de comprimento e um ponto de referência

J. extrain a tabelacle dados resiltante do Tracker - t(s), x(cm), y(cm), vx(cm), vy(cm), ax(cm) ax(cm)

para CM 1 pare a Port foria = capia-las pare Excel K. amalison -- com base restabeles de dedas. 15ths sac explicados no Protocolo dos Rolamentos 7 Amexos. Tecria: 15th courtra régima Trados: 15the No Fxcel Analise de Pados: 1. Incustings: u(t) = 0.15; u(x) = u(y) = -> computadon - = 0.0 .- 1 cm - coincidencia -= ? > M(x)pc nato- CHY Puriferia 2. Sobre you from ... diametro medido (cil.) = 68.400 t 0,025 mm -1 rm (cil) - 34,200 tc,025 mm Hto yen(t) > 37 mm a yen (t) tim imme tindencia (binear) choscentre no tempo R: 6 vaio determinado plo Thecker synhion e crescato un helator ao rasa medido pela a chaveina; explicações dedinido de salimbedo com a super fícia da calha de segunte forme: The calle q de four se aumulon persece adequar, mem os mas de penalexe; 05 hosiduos e a sue distribuição que nevelam a livery gas a uma ban aproximação, somunte tetros Alexando

Dados Básicos								
	centro	de mass	sa, CM	perifer				
t	х	У	vx	х	У	VX		
0	10.83	37.95		20.3	6.459			
0.1	21.12	37.5	99.56	21.25	5.51	1.582		
0.2	30.74	37.28	96.2	20.61	7.408	1.582		
0.3	40.36	37.95	105.2	21.56	9.939	20.57		
0.4	51.77	38.62	107.4	24.73	16.27	41.13		
0.5	61.84	38.4	96.2	29.79	24.18	71.19		
0.6	71.02	38.4	99.56	38.97	34.62	94.92		
0.7	81.75	38.62	100.7	48.77	42.21	112.3		
0.8	91.15	38.4	96.2	61.43	51.39	134.5		
0.9	101	37.95	96.2	75.67	58.98	148.7		
1	110.4	38.4	97.32	91.17	64.04	159.4		
1.1	120.5	38.62	98.44	107.6	70.74	180.4		
1.2	130.1	38.62	97.32	127.2	72.53	188		
1.3	139.9	39.29	96.2	145.2	71.18	190.2		
1.4	149.3	38.62	93.97	165.3	68.05	179		
1.5	158.7	38.62	92.85	181	63.57	159.5		
1.6	167.9	38.4	92.85	197.2	56.97	148.3		
1.7	177.3	39.07	97.32	210.6	48.47	118.6		
1.8	187.4	38.85	95.08	220.9	39.74	96.2		
1.9	196.3	38.4	90.61	229.9	29	76.07		
2	205.5	38.4	92.85	236.1	21.84	44.75		
2.1	214.9	38.18	90.61	238.8	14.24	23.49		
2.2	223.6	38.85	91.73	240.8	9.315	13.78		
2.3	233.2	38.4	92.07	241.6	5.351	4.475		
2.4	242	38.54	88.82	241.7	5.064	-		
						0.354		
2.5	251	39.34	88.7	241.5	5.735	4.475		
2.6	259.8	38.54	89.7	242.6	9.091	16.78		
2.7	268.9	38.34	92.69	244.9	15.13	29.08		
2.8	278.3	39.14	85.71	248.4	22.07	44.75		
2.9	286.1	38.34	85.71	253.8	29.67	66		
3	295.4	38.54	89.7	261.6	37.95	89.49		
3.1	304	38.54	89.7	271.7	46.9	107.4		
3.2	313.4	38.34	87.71	283.1	54.96	124.2		
3.3	321.5	38.34	85.71	296.5	62.11	141		
3.4	330.5	38.94	88.7	311.3	67.25	154.3		
3.5	339.3	38.74	84.72	327.4	71.26	163.2		
3.6	347.5	38.34	83.72	344	73.27	168.3		
3.7	356	38.14	84.72	361	72.52	170.9		
3.8	364.4	39.14	85.71	378.2	70.37	163.1		
3.9	373.2	39.34	86.18	393.7	65.31	147.1		
4	381.6	39.45	87.42	407.6	60.25	136.1		
4.1	390.7	39.45	85.96	420.9	53.29	123.4		
4.2	398.8	38.33	83.14	432.3	45.38	102.8		

4.3	407.3	38.61	84.55	441.4	37.15	77.52
4.4	415.7	38.89	78.91	447.8	28.61	56.95
4.5	423.1	39.17	77.5	452.8	21.01	37.97
4.6	431.2	38.89	83.14	455.4	15.32	26.89
4.7	439.7	37.76	81.73	458.2	11.52	18.98
4.8	447.6	39.17	84.55	459.2	8.041	0
4.9	456.6	39.73	88.78	458.2	5.193	-7.91
5	465.3	38.89	83.14	457.6	5.51	3.164
5.1	473.2	38.89	74.69	458.8	7.724	12.66
5.2	480.3	38.04	76.1	460.1	12.47	22.15
5.3	488.5	38.89	81.73	463.3	17.53	31.64
5.4	496.6	38.89	80.32	466.4	23.86	45.88
5.5	504.5	38.61	84.55	472.4	31.45	62.13
5.6	513.5	38.89	81.73	478.9	38.67	74.69
5.7	520.9	38.89	73.28	487.4	46.84	95.01
5.8	528.2	38.33	73.28	497.9	54.12	111.9
5.9	535.5	39.17	78.91	509.8	60.87	127
6	544	38.89	80.32	523.3	65.67	138.5
6.1	551.6	39.73	78.91	537.5	69.22	146.5
6.2	559.8	39.17	77.5	552.6	72.06	153.6
6.3	567.1	39.45	73.28	568.2	72.41	153.7
6.4	574.4	39.17	77.5	583.3	71.52	149.7
6.5	582.6	38.61	78.91	598.1	68.5	140.6
6.6	590.2	39.45	76.1	611.4	64.23	133.1
6.7	597.8	39.73	76.1	624.7	58.71	120.5
6.8	605.4	38.61	77.5	635.5	52.43	108
6.9	613.3	39.45	76.1	646.3	45.65	91.67
7	620.6	39.17	84.55	653.9	37.86	72.83
7.1	630.2	38.61	80.32	660.9	30.58	57.76
7.2	636.7	38.04	66.59	665.4	23.8	38.22
7.3	643.5	38.85	71.09	668.5	16.91	31.11
7.4	650.9	38.62	73.83	671.6	12.68	23.96
7.5	658.3	38.85	73.83	673.3	9.015	9.864
7.6	665.7	38.18	73.83	673.6	6.478	-
						1.409
7.7	673.1	38.4	70.47	673.1	5.633	-
<u> </u>						2.818
7.8	679.8	38.85	74.95	673.1	5.633	1.409
7.9	688.1	38.85	77.19	673.3	8.733	8.455
8	695.2	39.29	67.12	674.7	12.68	18.32
8.1	701.5	38.62	68.24	677	17.47	26.77
8.2	708.9	38.62	76.07	680.1	23.67	38.05
8.3	716.7	38.62	74.95	684.6	29.59	50.73
8.4	723.9	38.4	70.47	690.2	36.63	64.82
8.5	730.8	39.07	67.12	697.6	43.68	80.95
8.6						
8.7	737.3 744.4	39.07 39.07	68.24 73.83	706.4 716.7	51.1 57.14	95.81 110.1

8.8	752	39.74	69.36	728.5	62.47	119
8.9	758.3	39.52	71.59	740.5	66.38	126.1
9	766.4	39.07	72.71	753.7	69.57	131.4
9.1	772.9	39.74	66	766.8	71.71	127.9
9.2	779.6	39.07	70.47	779.3	72.06	136.7
9.3	786.9	39.07	71.59	794.2	70.64	137.4
9.4	793.9	39.07	64.88	806.7	69.39	130.3
9.5	799.9	39.52	69.36	820.2	67	132.7
9.6	807.8	39.74	70.47	833.3	59.97	110.5
9.7	814	39.29	62.64	842.3	56.95	87.32
9.8	820.3	39.29	67.12	850.7	50.44	76.91
9.9	827.4	39.52	67.12	857.7	44.74	82.28
10	833.7	38.85	69.36	867.2	36.52	69.62
10.1	841.3	39.07	69.97	871.6	27.02	50.63
10.2	847.7	39.21	64.37	877.3	23.23	37.97
10.3	854.2	39.21	64.07	879.2	19.43	28.48
10.4	860.5	39.68	66.45	883	14.36	22.15
10.5	867.5	39.05	70.4	883.7	9.934	9.493
10.6	874.6	38.89	65.65	884.9	9.301	9.493
10.7	880.6	39.05	64.86	885.6	6.77	1.78
10.8	887.6	38.73	68.03	885.3	6.196	-
						7.021
10.9	894.2	38.73	63.28	884.2	7.324	2.818
11	900.2	39.21	64.86	885.8	9.015	11.27
11.1	907.2	38.89	62.49	886.4	13.52	16.91
11.2	912.7	39.21	59.33	889.2	16.91	25.37
11.3	919	38.73	63.28	891.5	22.54	31
11.4	925.4	39.05	63.28	895.4	26.49	39.46
11.5	931.7	38.89	64.86	899.4	33.25	50.73
11.6	938.3	39.05	65.97	905.6	39.45	67.64
11.7	944.9	39.52	64.07	912.9	46.22	76.1
11.8	951.2	38.62	45.89	920.8	50.73	73.28
11.9	954.1	39.74	-	927.6	54.67	11.27
			0.529			
12	951.1	39.56		923	55.8	

Dado	s de Ánalise								
t	x(B)-x(CM) EXP	Sine Teo	SineTEOTEO	t	Período, T	Angular F., ω	ω TEO	x(B) TEO	ω*R
0	9.47	9.635	9.635	2.4	2.3	2.732	2.886	20.465	98.701
0.1	0.13	0.431	-0.076	3.5	2.4	2.618	2.878	21.044	98.432
0.2	-10.13	-8.805	-9.729	4.9	2.5	2.513	2.870	21.011	98.162
0.3	-18.8	-17.389	-18.545	6.2	2.7	2.327	2.862	21.815	97.893
0.4	-27.04	-24.686	-25.833	7.7	2.8	2.244	2.854	25.937	97.623
0.5	-32.05	-30.153	-31.042	9.1	2.9	2.167	2.847	30.798	97.354
0.6	-32.05	-33.388	-33.800	10.7	3	2.094	2.839	37.220	97.085
0.7	-32.98	-34.149	-33.932				2.831	47.818	96.815
0.8	-29.72	-32.381	-31.474				2.823	59.676	96.546
0.9	-25.33	-28.215	-26.653				2.815	74.347	96.276
1	-19.23	-21.959	-19.871				2.807	90.529	96.007
1.1	-12.9	-14.076	-11.660				2.799	108.840	95.737
1.2	-2.9	-5.151	-2.646				2.791	127.454	95.468
1.3	5.3	4.156	6.508				2.784	146.408	95.199
1.4	16	13.154	15.146				2.776	164.446	94.929
1.5	22.3	21.179	22.668				2.768	181.368	94.660
1.6	29.3	27.635	28.568				2.760	196.468	94.390
1.7	33.3	32.044	32.470				2.752	209.770	94.121
1.8	33.5	34.079	34.142				2.744	221.542	93.852
1.9	33.6	33.591	33.511				2.736	229.811	93.582
2	30.6	30.614	30.662				2.728	236.162	93.313
2.1	23.9	25.370	25.820				2.721	240.720	93.043
2.2	17.2	18.247	19.336				2.713	242.936	92.774
2.3	8.4	9.773	11.654				2.705	244.854	92.504
2.4	-0.3	0.574	3.284				2.697	245.284	92.235
2.5	-9.5	-8.667	-5.241				2.689	245.759	91.966
2.6	-17.2	-17.266	-13.389				2.681	246.411	91.696
2.7	-24	-24.586	-20.673				2.673	248.227	91.427
2.8	-29.9	-30.085	-26.670				2.665	251.630	91.157
2.9	-32.3	-33.356	-31.048				2.658	255.052	90.888
3	-33.8	-34.157	-33.581				2.650	261.819	90.618
3.1	-32.3	-32.427	-34.157				2.642	269.843	90.349
3.2	-30.3	-28.295	-32.783				2.634	280.617	90.080
3.3	-25	-22.068	-29.572				2.626	291.928	89.810
3.4	-19.2	-14.207	-24.739				2.618	305.761	89.541
3.5	-11.9	-5.293	-18.583				2.610	320.717	89.271
3.6	-3.5	4.013	-11.462				2.602	336.038	89.002
3.7	5	13.022	-3.777				2.595	352.223	88.732
3.8	13.8	21.066	4.055				2.587	368.455	88.463
3.9	20.5	27.550	11.624				2.579	384.824	88.194
4	26	31.994	18.546				2.571	400.146	87.924
4.1	30.2	34.067	24.484				2.563	415.184	87.655

4.2	33.5	33.618	29.163	2.555	427.963	87.385
4.3	34.1	30.678	32.377	2.547	439.677	87.116
4.4	32.1	25.466	34.001	2.539	449.701	86.846
4.5	29.7	18.368	33.991	2.533	457.091	86.577
4.6	24.2	9.910	32.383	2.524	463.583	86.308
4.7	18.5	0.717	29.285	2.516	468.985	86.038
-			24.871	2.518		
4.8	11.6	-8.528			472.471	85.769
4.9		-17.142	19.369	2.500	475.969	85.499
5	-7.7	-24.487	13.049	2.492	478.349	85.230
5.1	-14.4	-30.017	6.205	2.484	479.405	84.960
5.2	-20.2	-33.324	-0.856	2.476	479.444	84.691
5.3	-25.2	-34.163	-7.827	2.468	480.673	84.422
5.4	-30.2	-32.472	-14.419	2.461	482.181	84.152
5.5	-32.1	-28.376	-20.367	2.453	484.133	83.883
5.6	-34.6	-22.177	-25.446	2.445	488.054	83.613
5.7	-33.5	-14.337	-29.471	2.437	491.429	83.344
5.8	-30.3	-5.434	-32.309	2.429	495.891	83.074
5.9	-25.7	3.871	-33.876	2.421	501.624	82.805
6	-20.7	12.890	-34.144	2.413	509.856	82.536
6.1	-14.1	20.953	-33.133	2.405	518.467	82.266
6.2	-7.2	27.465	-30.911	2.398	528.889	81.997
6.3	1.1	31.943	-27.589	2.390	539.511	81.727
6.4	8.9	34.054	-23.312	2.382	551.088	81.458
6.5	15.5	33.644	-18.254	2.374	564.346	81.188
6.6	21.2	30.741	-12.610	2.366	577.590	80.919
6.7	26.9	25.561	-6.586	2.358	591.214	80.650
6.8	30.1	18.489	-0.395	2.350	605.005	80.380
6.9	33	10.047	5.756	2.342	619.056	80.111
7	33.3	0.860	11.670	2.335	632.270	79.841
7.1	30.7	-8.390	17.163	2.327	647.363	79.572
7.2	28.7	-17.018	22.076	2.319	658.776	79.302
7.3	25	-24.386	26.273	2.311	669.773	79.033
7.4	20.7	-29.948	29.646	2.303	680.546	78.764
7.5	15	-33.292	32.118	2.295	690.418	78.494
7.6	7.9	-34.170	33.641	2.287	699.341	78.225
7.7	0	-32.517	34.197	2.279	707.297	77.955
7.8	-6.7	-28.455	33.798	2.272	713.598	77.686
7.9	-14.8	-22.286	32.481	2.264	720.581	77.416
8	-20.5	-14.466	30.308	2.256	725.508	77.147
8.1	-24.5	-5.575	27.360	2.248	728.860	76.878
8.2	-28.8	3.729	23.737	2.240	732.637	76.608
8.3	-32.1	12.757	19.550	2.232	736.250	76.339
8.4	-33.7	20.840	14.921	2.224	738.821	76.069
8.5	-33.2	27.380	9.976	2.216	740.776	75.800
8.6	-30.9	31.891	4.844	2.208	742.144	75.530
8.7	-27.7	34.041	-0.348	2.201	744.052	75.261
J.,	۷,,,	J 1.071	0.0 10	2.201	, 17.032	, 5.201

8.8	-23.5	33.669	-5.480		2.193	746.520	74.992
8.9	-23.3		-10.436		2.193	740.320	74.722
		30.803					
9	-12.7	25.656	-15.111		2.177	751.289	74.453
9.1	-6.1	18.609	-19.414		2.169	753.486	74.183
9.2	-0.3	10.183	-23.265		2.161	756.335	73.914
9.3	7.3	1.003	-26.597		2.153	760.303	73.644
9.4	12.8	-8.251	-29.359		2.145	764.541	73.375
9.5	20.3	-16.894	-31.516		2.138	768.384	73.106
9.6	25.5	-24.286	-33.044		2.130	774.756	72.836
9.7	28.3	-29.879	-33.937		2.122	780.063	72.567
9.8	30.4	-33.259	-34.198		2.114	786.102	72.297
9.9	30.3	-34.175	-33.845		2.106	793.555	72.028
10	33.5	-32.561	-32.905		2.098	800.795	71.758
10.1	30.3	-28.534	-31.416		2.090	809.884	71.489
10.2	29.6	-22.395	-29.422		2.082	818.278	71.220
10.3	25	-14.596	-26.974		2.075	827.226	70.950
10.4	22.5	-5.716	-24.130		2.067	836.370	70.681
10.5	16.2	3.587	-20.948		2.059	846.552	70.411
10.6	10.3	12.624	-17.492		2.051	857.108	70.142
10.7	5	20.726	-13.823		2.043	866.777	69.872
10.8	-2.3	27.294	-10.004		2.035	877.596	69.603
10.9	-10	31.839	-6.096		2.027	888.104	69.334
11	-14.4	34.027	-2.158		2.019	898.042	69.064
11.1	-20.8	33.694	1.756		2.012	908.956	68.795
11.2	-23.5	30.865	5.593		2.004	918.293	68.525
11.3	-27.5	25.751	9.308		1.996	928.308	68.256
11.4	-30	18.729	12.857		1.988	938.257	67.986
11.5	-32.3	10.320	16.204		1.980	947.904	67.717
11.6	-32.7	1.146	19.317	1	1.972	957.617	67.448
11.7	-32	-8.112	22.169	1	1.964	967.069	67.178
11.8	-30.4	-16.769	24.741		1.956	975.941	66.909
11.9	-26.5	-24.185	27.014		1.949	981.114	66.639
12	-28.1	-29.809	28.979		1.941	980.079	66.370
12	20.1	23.003	20.373		1.341	300.073	00.570

adis, resmute Harmuno bum alladas, xx = xcm + vosin wo us estheren oh NEO, YA= 1. COO(WE) as son polifica - Vas = Ven + WV - cos (Ut) VyA = - War sin (00) rovimento sum o se sen= Oor -> Ven= do r= wor scome gamento, deslocaments deslocaments superfécie lateral de célendre as periferia -> 24 = 7cm + Vom sir (wt -) V4 = Vcm + Vcm ° cas(wt) Von constants : Von ot = zon - ZA = Vom (++ sim(wt)) * a visualitació do p. da sobre posició des velocidades por mero das ghaficos: xa = f(t) sorá provavelmente escilatório: siná periódico? siná igual a xan + cm sim(wt) isso podené sen jedgado subtinal ndo xa - xan(= v. sim (wt) e analisando a amplitude (r) a o período (20) do tresultado. SIM (w(7+ P)) = SIM(WX + WP) = SIM(WX + A) = SIM (WX A=21 = ap - p= 2to p periodo * pe servindo artinos abjutivos, nos posições - tampo de tengen Va * nonigontal, timos as velocidades miles pare, pla techia e na condição de holaminto sim escathegamento, señão mes mamer tas em contacto como solo. dy dvan +w. r. sim(we) - a - acm - w v sin(we)) apro - acm = w'r sin wit .. fordesse 25 caregornes => dv = d (Ven (1+cos(wo)) = acm (1+cos(wo)) + Ven (- costo(wo)) Von= 0 -> ax= Von(-w. sim (wt)) anson Vensol wood sin (ub) = 0 Sim (w) = 0 () wt = 0+38K ()+= 1 K (P= 20): 0, = 20 K A 02 = 21.

Gráficos das Análises para referência:

hisothe Run mm _ e sabtre to Vacnoo. · tim uma grafico xin= 1(t) com umo mato nego petralo lica de concavide de pana baixo, vista a putin: - 65 hesiduos, com forme de petrabole, de xon = f6) - grefico timen tideor ofim edecrescente da estimativa da Thacken da Vx cn = f(t) (como denivade de Zon, tenmas Von = oft) afim e de coresceta e x cn = go para que duration de como. para haixo não é coincidência o mis la gear matin atica) A: explicação para o dechiscimo da velocidade omé provovetamente a acelenaçõe pesultante das forços de atrito ou inclinação de calha ritardada 6) sobre 18/mm ... · visual marte, 18 = f(t) decles à materiage simusoidal dum compo em holamento · o Período de oscilação aporente aumentar, loja a I requerces angular , w, demine -> methor amelisado em 30 b) · a mesoma anomalia de diâmetho sobre valorizado observa-se com o yminimo Ato Tendo Zuno. d) sobbe RB/mm ... * pade à lineating est de 20 = 10) son total indunin est andese un dries mas pla graf, de hes dus - tomber rela grifico 16= f(t) em si mota-se um de criscio do fluxo; mais dovo - existo uma not concevidade Acop (para mixa) ofto proprie natorega simusoidal das AMOS; pela siomethia presumo tin Causa os Ethosola · tempen poiem, a grafical Strong of plat Tracker de Vx g = ft mastra uma tradènce à decrescente de velocidade ; pall teh como caston simples mesto as & foreges de Anito (Mercidas pila celha), semos Esmos de Pandare (acime) tenem um papel mation (e pouca com provada, pala lineati gara feita o mo organificado Pisica).

· satemai-la por Muo da Traellos esto suas funcionalidades quas configure sorie tos sel desconhecidos são os metodos de cálculo das ulocidades a portir dum o temitodo de pontos Ven turn ume tendencies a from a deche sente: a hnestringação dos portos de velocidade a aceltavel general que - porque? Obro motho é a tos postos. de pasições Passa das 100 mm/s p/ as 60 mm/s, en 125; vin grafico Ven TRACKER = 4(6) * determinan Von a partin de declive da uneakinagas de ron = \$(b), param é té sabido que « Von não le constante; * aqui Von ~ 78.79 mm/s (mthe 60-100) b) wax = ?; é a partit do gráfico yo f(t) $\omega = \frac{d\theta}{db} \sim \frac{2\pi}{T}$ Dicos: 1.15; 3.55; 6.15; 3.1 Vales: 0.15,32.45, 4.93,77.75, 910,75 D+ (Picas: 2.45; 2,75; 2,95 At (valis): (2.35; 32.55; 2.85 we 2 a () = 2 ii , vor 94 file, & de core scentra T(t) w = +(t)

· no 2ºgha fico, tumos 23 EXP VS 78780 = 7EM BXP+R-SIM (WIED & + NO) estignation rès de gmons de que à l'anético, a mos 3. Pontos de Vinageme e Vinimina VB= f(t): 18 max um ses, 1.15, 3.55, 6.25, 9.15 YBanla Lm 0.15, 2.45, 4,95, 7.75, 10.75 Velcaidades TEO: · pangatis a 20= + (): Vmax m 1.35, 3.85, 6.45, 9.35, de julgan que a declive seja o dobto do que ren = fb), on seja, Vanix = 2-Van Vmin am 05, 2.20, 4.75, 7.55, 10.65 , 1592 velocide de mula, visualmente (c/o othornetho). · VBTRACKER = + (B) . V mix: 185 mm/5 = + (1.25) 170,9 mm/s = \$ (3.75) 246.5 mm/5= + (6.25) 236.7mm/s = f (9.25) 2 decrescente Vmin: Q=+6.15) 0 = 1 (2.45) 0 = f (65) 0 = + (10.9) mac cainciden contyons, mas perto. , ev sija, existe uma concidência de nesultados pelas duas atondegers, conclui-sie que as Vimáxis no perificio acombreem no topo do cil. e as minimares um contretto com a scalle - var ghéfico (B = P(t) nos instantes como also La Vminima mula - combes e ao allo mutano e sum base nos incortogas de cade ghandlega

· « contenuação de Jab) · timos waxption, tento dume lineatingação com parias pontos de w = 21 gende, in futuras amblises - de pois de 100)mosbrun-se-à diferenças de período na expensancia e partires modelas baseadas mesta frequereia" techica WEXP/TEO: ghandere, turnos dados egnápicos sobrepostos; com o gnáfico Vantacuor VS Westrão P e com o othème bro, temos outre phove de que noc na escale germen to de u (a partin de w= 21) - intere a exportência a previsões surá posturionmento do scubida. ... continuação de 2. · para Rossim (w · + (10/10) simu lamos dous gréfices medoda pros in As 10 instantes, em 13 = f(t). , outro com wisher sim w= -0.07878 * + +2.886 (cd Vur grafice sine TECTEO · i obsorvaral, mos gnoficos, que remhum (w) se adeque sutisfataniamente - o woo i grande demais IT pregieno demais por as longo do o umpa e CUTECTED à pequeno demais/ + ghande demanis, un helação a RBEXP - PLMEXP = f(t). · w é man porque? O mo motoro: Qual a cause ? Não SPI a mais para acaban, e não set parque.