Programowanie liniowe Asortyment produkcji

Piotr Stefanów

Przykład 1 (opis 1)

Firma VGS (Very Good Style) zajmuje się produkcją mebli. Jeden z działów tej firmy (LXIV) ma zadanie zaplanować produkcję na przyszły tydzień (7 dni, gdyż firma pracuje w soboty i niedziele) uwzględniając dostępne w magazynie części do mebli.

Dział LXIV zatrudnia tylko dwóch pracowników i zajmuje się niszowa produkcją krzeseł oraz stolików w stylu Ludwika XIV (stąd nazwa działu LXIV).

Przykład 1 (opis 2)

Na każdy produkt potrzeba poświęcić dwa dni robocze, co oznacza, że każde krzesło lub stolik może zostać wyprodukowany przez jednego pracownika przez dwa dni robocze, albo przez dwóch pracowników w ciągu jednego dnia.

Na wyprodukowanie krzesła potrzeba jeden "blat" (jednolity kawałek drewna) na oparcie, natomiast stół wymaga dwóch takich fragmentów. W magazynie znajduje się obecnie osiem "blatów"

Przykład 1 (opis 3)

Do produkcji krzesła potrzebne są cztery "nogi", których w magazynie znajduje się 16 sztuk. Pozostałe zasoby są "nielimitowane", co oznacza, że są dostępne bez ograniczeń.

Wytworzenie krzesła przynosi 2 tys. zł zysku, natomiast stolika – 3 tys. zł.

Jaka powinna być produkcja krzeseł i stołów w najbliższym tygodniu przez dział LXIV, aby uzyskać maksymalny zysk?

Przykład 1 (T. Trzaskalik str. 22)

Należy zaplanować produkcję zakładu w pewnym tygodniu w taki sposób, aby osiągnięty zysk był maksymalny.

Zakład może wytwarzać dwa produkty: P_1 i P_2 .

Ich produkcja jest limitowana dostępnymi zasobami trzech środków: S_1 , S_2 i S_3 .

Zasoby tych środków wynoszą odpowiednio, 14, 8 i 16 jednostek.

Przykład 1 (Trzaskalik str. 22)

Nakład środka S_1 na wytworzenie jednostki produktu P_1 wynosi 2 jednostki, a na wytworzenie produktu P_2 – również 2 jednostki.

Nakłady środka S_2 wynoszą, odpowiednio, 1 i 2 jednostki, natomiast środka S_3 – 4 i 0 jednostek.

Zysk osiągany z wytworzenia jednostki produktu P_1 wynosi 2 jednostki, a z wytworzenia jednostki produktu P_2 – 3 jednostki.

Przykład 1 Tabela

Środki	Proc		
produkcji	P ₁	P_2	Zasoby
S ₁	2	2	14
S ₂	1	2	8
S_3	4	0	16
Zyski	2	3	

Oznaczenia

- a_{ij} zużycie *i*-tego środka produkcji na wytworzenie *j*-ego wyrobu (i=1, 2, ..., r; j=1, 2, ..., n),
- b_i posiadany zasób i-tego środka produkcji,
- c_j zysk jednostkowy lub cena jednostkowa uzyskana ze sprzedaży j-ego wyrobu,
- d_i minimalna ilość j-ego wyrobu, jaką trzeba wyprodukować,
- g_j maksymalna ilość j-ego wyrobu, jaką można wyprodukować.

Zadanie (cel)

Zmaksymalizować zysk (przychód) ze sprzedaży poprzez określenie, które wyroby i w jakich ilościach produkować, nie przekraczając posiadanych zasobów (środków produkcji) i ewentualnie spełniając pewne dodatkowe ograniczenia dotyczące struktury produkcji

Model ogólny

Zmienne decyzyjne - wielkości produkcji wyrobów $(x_1, x_2, ..., x_n)$

x_j wielkość produkcji j-ego wyrobu

Funkcja celu

$$f(x_1, x_2, ..., x_n) = c_1 x_1 + c_2 x_2 + ... + c_n x_n \rightarrow \max$$

Ograniczenia zasobów środków produkcji

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \le b_2$$

$$a_{r1}x_1 + a_{r2}x_2 + \dots + a_{rn}x_n \le b_r$$

Ograniczenia popytu

$$d_j \le x_j \le g_j$$

Ograniczenia (warunki) brzegowe

$$x_1, x_2, ..., x_n \ge 0$$

Postać macierzowa

 $\mathbf{cx} \rightarrow \mathbf{max}$

 $Ax \le b$

 $x \ge 0$

Slajdy

Wykorzystałem materiały (rysunki) dołączone do książki Tadeusza Trzaskalika Wprowadzenie do badań operacyjnych z komputerem

Przykład 1.

Zadanie programowania produkcji

Środki	Prod	7	
produkcji	P ₁	P ₂	Zasoby
S ₁	2	2	14
S ₂	1	2	8
S ₃	4	0	16
Zyski	2	3	

Należy zaplanować produkcję zakładu w taki sposób, aby osiągnięty zysk był maksymalny.

Składowe modelu

Zmienne decyzyjne

 x_1 - planowany rozmiar produkcji produktu P_1 ,

 x_2 - planowany rozmiar produkcji produktu P_2 .

Funkcja celu

$$f(x_1, x_2) = 2x_1 + 3x_2 \rightarrow \max$$

Warunki ograniczające

$$2x_1 + 2x_2 \le 14$$

$$x_1 + 2x_2 \le 8$$

$$4x_1 \le 16$$

$$x_1 \ge 0, \quad x_2 \ge 0,$$

Cztery punkty (0, A, B, C)

Punkt 0: f(0, 0) = ?

Punkt A: f(0, 4) = ?

Punkt B: f(4, 2) = ?

Punkt C: f(4, 0) = ?

UWAGA

Obowiązująca kolejność:

- I. Cel
- 2. Zmienne decyzyjne (ZD)
- 3. Funkcja celu (FC)
- 4. Warunki ograniczające (WO)

Simplex (Symplex)

Postać standardowa

$$f(x_1, x_2, x_3, x_4, x_5) = 2x_1 + 3x_2 \rightarrow \max$$
$$2x_1 + 2x_2 + x_3 = 14$$

$$x_1 + 2x_2 + x_4 = 8$$

$$4x_1 + x_5 = 16$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0,$$

Postać macierzowa

c - wektor funkcji celu,

A - macierz współczynników,

b - wektor warunków ograniczających,

x - wektor zmiennych.

$$f(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}) = 2x_{1} + 3x_{2} \rightarrow \max$$

$$2x_{1} + 2x_{2} + x_{3} = 14$$

$$x_{1} + 2x_{2} + x_{4} = 8$$

$$4x_{1} + x_{5} = 16$$

$$x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \ge 0,$$

$$c = \begin{bmatrix} 2 & 3 & 0 & 0 & 0 \end{bmatrix} \qquad A = \begin{bmatrix} 2 & 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 \\ 4 & 0 & 0 & 0 & 1 \end{bmatrix} \qquad b = \begin{bmatrix} 14 \\ 8 \\ 16 \end{bmatrix} \qquad x = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \end{bmatrix}$$

Postać bazowa

$$A = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ 2 & 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 \\ 4 & 0 & 0 & 0 & 1 \end{bmatrix}$$
 x_3, x_4, x_5 - zmienne bazowe x_1, x_2 - zmienne niebazowe
$$2x_1 + 3x_2 \rightarrow \max$$

$$2x_1 + 2x_2 + x_3 = 14$$

$$x_1 + 2x_2 + x_4 = 8$$

$$4x_1 + x_5 = 16$$

Bazowe rozwiązanie dopuszczalne

$$x_1 = 0$$
, $x_2 = 0$, $x_3 = 14$, $x_4 = 8$, $x_5 = 16$

 $x_1, x_2, x_3, x_4, x_5 \ge 0$

Tablica simpleksowa

$$cx \rightarrow \max$$

$$Ax = b$$

$$x \ge 0$$

$cx \rightarrow$	max	2	3	0	0	0	<i>b</i>
Baza	c_B	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	D
<i>x</i> ₃	0	2	2	1	0	0	14
<i>x</i> ₄	0	1	2	0	1	0	8
<i>x</i> ₅	0	4	0	0	0	1	16

Jeden krok algorytmu metody simpleks

Należy:

- stwierdzić, czy rozpatrywane rozwiązanie bazowe jest optymalne, czy też nie,
- w przypadku, gdy nie jest optymalne, wyznaczyć nową bazę sąsiednią,
- przekształcić za pomocą przekształceń elementarnych macierz warunków ograniczających do postaci bazowej względem bazy sąsiedniej,
- jeżeli rozpatrywane rozwiązanie jest optymalne, zakończyć postępowanie.

Tablice simpleksowe								
cx -	$cx \rightarrow max$		3	0	0	0	ь	
Baza	c_{B}	x_1	x_2	x_3	<i>x</i> ₄	x_5	b	
x_3	0	2	2	1	0	0	14	
<i>x</i> ₄	0	1	2	0	1	0	8	
<i>x</i> ₅	0	4	0	0	0	1	16	
c_j -	$-z_j$	2	3	0	0	0		
cx -	→ max	2	3	0	0	0	b	
Baza	c_{B}	x_1	x_2	x_3	<i>x</i> ₄	x_5	b	
<i>x</i> ₃	0	2	0	1	-1	0	6	
x_2	3	0,5	1	0	0,5	0	4	
<i>x</i> ₅	0	4	0	0	0	1	16	
c_j -	$-z_j$							

Tablice simpleksowe

Pierwsza tablica simpleksowa

cx	$\rightarrow max$	2	3	0	0	0	0	-300	7.
Baza	c_B	x_1	x2	χ_3	x_4	X5	<i>x</i> ₆	X7	D
<i>x</i> ₃	0	2	2	1	0	0	0	0	14
χ_4	0	1	2	0	1	0	0	0	8
Xs	0	4	0	0	0	1	0	0	16
X7	-300	1	1	0	0	0	-1	1	3
Ci-	-2,	302	303	0	0	0	-300	0	-900

Ostatnia tablica simpleksowa

cx -	→ max	2	3	0	0	0	0	-300	L
Baza	c_{R}	x_1	X2	X3	χ_4	X5	X6	x ₇	U
X3	0	0	0	1	-1	-0,25	0	0	2
X6	0	0	0	0	0,5	0,125	1	-1	3
χ_1	2	1	0	0	0	0,25	0	0	4
<i>x</i> ₂	3	0	1	0	0,5	-0,125	0	1	2
c _i -	· Z ₁	0	0	0	-1,5	-0,125	0	-303	14

Algorytm

- Uzyskanie pierwszego rozwiązania bazowego
- Ocena optymalności rozwiązania
- Badanie niesprzeczności zadania
- Identyfikacja rozwiązań alternatywnych
- Wybór zmiennej wprowadzanej do bazy
- Badanie nieograniczoności funkcji celu i istnienia krawędzi sprawnej
- Wybór zmiennej usuwanej z bazy
- Sprowadzenie warunków ograniczających do postaci bazowej względem nowej bazy.

Sprzeczność

Przykład Zadanie sprzeczne

W rozpatrywanym w przykładzie 1. zadaniu programowania produkcji łączny rozmiar produkcji ma być nie mniejszy niż 8 jednostek.

Model matematyczny:

Funkcja celu

$$f(x_1, x_2) = 2x_1 + 3x_2 \to \max$$

Warunki ograniczające

$$2x_1 + 2x_2 \le 14$$

$$x_1 + 2x_2 \le 8$$

$$4x_1 \le 16$$

$$x_1 + x_2 \ge 8$$

$$x_1 \ge 0, \quad x_2 \ge 0,$$

Sprzeczność

Wiele rozwiązań

Przykład Alternatywne rozwiązania optymalne

W rozpatrywanym przykładzie 1. zadaniu programowania produkcji zysk jednostkowy dla produktu P₂ zwiększa się z 3 do 4 jednostek.

Model matematyczny:

Funkcja celu

$$f(x_1, x_2) = 2x_1 + 4x_2 \rightarrow \max$$

Warunki ograniczające

$$2x_1 + 2x_2 \le 14$$

$$x_1 + 2x_2 \le 8$$

$$4x_1 \le 16$$

$$x_1 \ge 0, \quad x_2 \ge 0,$$

Wiele rozwiązań

Analiza wrażliwości

W rozpatrywanym w przykładzie 1. zadaniu programowania produkcji zysk z wytworzenia jednostki P_1 wynosi c_1 .

Model matematyczny:

Funkcja celu:

$$c_1x_1 + 3x_2 \rightarrow \max$$

Warunki ograniczające:

$$2x_1 + 2x_2 \le 14$$

$$x_1 + 2x_2 \le 8$$

$$4x_1 \le 16$$

$$x_1 \ge 0, \quad x_2 \ge 0,$$

Analiza wrażliwości

Ostatnia tablica simpleksowa

$cx \rightarrow$	max	c_1	3	0	0	0	<i>b</i>
Baza	c_B	x_1	x_2	<i>x</i> ₃	x_4	X5	D
<i>x</i> ₃	0	0	0	1	-1	-0,25	2
x2	3	0	1	0	0,5	-0,125	2
x_1	c_1	1	0	0	0	0,25	4
c -	Z	0	0	0	-1,5	$-0.25c_1 + 0.375$	4c ₁ +6

$$-0.25c_1 + 0.375 \le 0$$
 czyli $c_1 \ge 1.5$

Środki	Prod	lukty	7	
produkcji	P ₁	P ₂	Zasoby	
S ₁	2	2	14	
S ₂	1	2	8	
S ₃	4	0	16	
Zyski	2	3		

Zminimalizować wartość posiadanych zasobów środków, przy czym wartość środków potrzebnych na wytworzenie jednostki każdego z produktów jest nie mniejsza od zysku jednostkowego dla tego produktu.

Model matematyczny

Zmienne decyzyjne

 y_1 - cena środka S_1 y_2 - cena środka S_2 y_3 - cena środka S_3

Funkcja celu

$$14y_1 + 8y_2 + 16y_3 \rightarrow \min$$

Warunki ograniczające

$$2y_1 + y_2 + 4y_3 \ge 2$$

$$2y_1 + 2y_2 \ge 3$$

$$y_1, y_2, y_3 \ge 0$$

Związki między zadaniem prymalnym i dualnym

$$2x_1 + 3x_2 \rightarrow \max$$

$$2x_1 + 2x_2 \le 14$$

$$x_1 + 2x_2 \le 8$$

$$4x_1 \le 16$$

$$x_1, x_2 \ge 0$$

$$14y_1 + 8y_2 + 16y_3 \rightarrow \min$$

$$2y_1 + y_2 + 4y_3 \ge 2$$

$$2y_1 + 2y_2 \ge 3$$

$$y_1, y_2, y_3 \ge 0$$

$$\boldsymbol{c} = \begin{bmatrix} 2 & 3 \end{bmatrix} \boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \boldsymbol{b} = \begin{bmatrix} 14 \\ 8 \\ 16 \end{bmatrix} \boldsymbol{A} = \begin{bmatrix} 2 & 2 \\ 1 & 2 \\ 4 & 0 \end{bmatrix} \boldsymbol{y} = \begin{bmatrix} y_1, y_2, y_3 \end{bmatrix}$$

$$cx \to \max$$

$$Ax \le b$$

$$x \ge 0$$

$$yb \to \min$$

$$yA \ge c$$

$$y \ge 0$$

Związki między zadaniem prymalnym i dualnym (c.d.)

- Każdemu warunkowi ograniczającemu jednego z problemów odpowiada zmienna decyzyjna drugiego. Zmienną tę nazwiemy zmienną komplementarną do danego warunku ograniczającego.
- Każdej nieujemnej zmiennej decyzyjnej jednego z problemów odpowiada warunek ograniczający drugiego. Warunek ten nazwiemy warunkiem komplementarnym do danej zmiennej decyzyjnej.
- 3. Wektor współczynników funkcji celu w jednym zadaniu staje się wektorem wyrazów wolnych w drugim i odwrotnie, wektor wyrazów wolnych w jednym zadaniu jest wektorem współczynników funkcji celu w drugim z nich.
- Kierunki optymalizacji dla zadań: prymalnego i dualnego są przeciwne. O
 ile zadanie prymalne jest zadaniem maksymalizacji, to w zadaniu dualnym
 funkcję celu minimalizujemy.
- Zwroty nierówności w warunkach ograniczających zadania prymalnego są przeciwne do zwrotów nierówności warunków ograniczających zadania dualnego.