Module 2 Day 8

Hashing and Encryption

Hashing Data

- One-way, repeatable algorithm to change data into a "hash value"
- One-way means there is no way to get to the original data, given only the hash
- Repeatable means if I run the same original data through the algorithm again, I'll get the same result
- Used to verify data transmissions (aka, checksum)
- Used for storing passwords securely

Hashing Data

Hashing Passwords

- Password is hashed when created
 - Hash is stored in DB
- To login, password is hashed using the same algorithm
 - Hashes are compared.
- Adding a salt prevents dictionary attacks
 - Salt also stored in the DB
- Increasing work factor greatly increases security
 - Hash the hash

Encryption – Symmetric Key

- Uses a single key to encrypt (lock) and decrypt (unlock) the data
- "Shared secret"
- Examples:
 - Password-protected files
 - Windows BitLocker
 - "Data at Rest"

Encryption – Asymmetric Key

- Public key cryptography / Public Key Infrastructure (PKI)
- Two keys used: a "public" key and a "private" key
 - Messages encrypted using Public must be decrypted using Private
 - Message encrypted using Private must be decrypted using Public
- Can be used to
 - Securely send data to another user, or (encrypt public, decrypt private)
 - Guarantee the identity of the sender (encrypt private, decrypt public)

Bob securely sends message to Alice

Alice proves this message is from her

