C. Lucky Permutation Triple

time limit per test: 2 seconds memory limit per test: 256 megabytes input: standard input

output: standard output

Bike is interested in permutations. A permutation of length n is an integer sequence such that each integer from 0 to (n-1) appears exactly once in it. For example, [0,2,1] is a permutation of length 3 while both [0,2,2] and [1,2,3] is not.

A permutation triple of permutations of length n(a, b, c) is called a Lucky Permutation Triple if and only if . The sign a_i denotes the i-th element of permutation a. The modular equality described above denotes that the remainders after dividing $a_i + b_i$ by n and dividing c_i by n are equal.

Now, he has an integer n and wants to find a Lucky Permutation Triple. Could you please help him?

Input

The first line contains a single integer n ($1 \le n \le 10^5$).

Output

If no Lucky Permutation Triple of length n exists print -1.

Otherwise, you need to print three lines. Each line contains n space-seperated integers. The first line must contain permutation a, the second line — permutation b, the third — permutation c.

If there are multiple solutions, print any of them.

Examples

input	
5	
output	
1 4 3 2 0 1 0 2 4 3 2 4 0 1 3	

input	
2	
output	
-1	

Note

In Sample 1, the permutation triple ([1, 4, 3, 2, 0], [1, 0, 2, 4, 3], [2, 4, 0, 1, 3]) is Lucky Permutation Triple, as following holds:

- . .
- •
- :
- ;
- .

In Sample 2, you can easily notice that no lucky permutation triple exists.