

Dostępna pamięć: 32MB

Tibia

Partycja uzależniła się od popularnej gry MMORPG – Tibii. Od wielu tygodni expi, zbiera gear i wyzywa innych graczy od noobów. Dzisiaj na Rookgaardzie (nie oszukujmy się, Partycja jeszcze z niego nie wyszła) odbywa się event, który pozwoli Partycji się wzbogacić i kupić nową zbroję. Rookgard to plansza $n \times m$, na niektórych polach znajdują się sakwy ze złotem z różną ilością monet w środku. Partycja oczywiście chce zebrać ich największą sumaryczną ilość, ale jest problem, właśnie w tym momencie zepsuła jej się na klawiaturze strzałka \downarrow i —. Partycja zaczyna w polu (1,1) i kończy w polu (n,m) – pozycja vendora ze zbroją. Za każdym ruchem może ona jedynie zwiększać jedną ze współrzędnych.

Wejście

W pierwszym wierszu znajdują się trzy liczby całkowite n,m i k – odpowiednio rozmiary planszy i ilość sakiewek ze złotem $(1 \leqslant n,m \leqslant 10^9,\ 1 \leqslant k \leqslant 10^5)$. Kolejne k wierszy opisuje rozmieszczenie sakiewek na planszy, w jednym wierszu opisana jest jedna sakwa złota. W wierszu i+1 znajdują się trzy liczby całkowite $x_i,\ y_i,\ i\ p_i$ oddzielone pojedynczymi odstępami, $1 \leqslant x_i \leqslant n,\ 1 \leqslant y_i \leqslant m,\ 1 \leqslant p_i \leqslant 10^6$. Taka trójka liczbo oznacza, że w polu o współrzędnych (x_i,y_i) znajduje się sakwa z p_i złotymi monetami. Każde pole pojawi się na wejściu co najwyżej raz, łączna liczba monet nie przkroczy 10^9 .

Wyjście

Twój program powinien na wyjściu wypisać jeden wiersz zawierający jedną liczbę całkowitą – maksymalną liczbę złotych monet, które może zebrać Partycja.

Przykład

Wejście	Wyjście
8 7 11	11
4 3 4	
6 2 4	
2 3 2	
5 6 1	
2 5 2	
1 5 5	
2 1 1	
3 1 1	
7 7 1	
7 4 2	
8 6 2	

1/1 Tibia