Université Mohammed kheider Biskra Département de Mathématiques

 $1^{i\grave{e}me}$ année Master: 2021 - 2022

Module : Théorie des opérateurs Série 2

Exercice 1 Soit $E = l^2$, $(\lambda_n)_{n \ge 1}$ une suite bornée dans \mathbb{C} et $M = \sup_n |\lambda_n|$. Soit $T: l^2 \to l^2$ définie par :

$$Tx = y$$
, avec $y = (\lambda_n x_n)_{n>1}$ si $x = (x_n)_{n>1} \in E$.

- 1. Montrer que T est linéaire, continue, et calculer sa norme
- 2. Montrer que si l'ensemble $\{|\lambda_n|, n \geq 1\}$ est minoré par un nombre strictement positif, alors T est bijective.

Préciser dans ce cas T^{-1} .

Exercice 2 Soit A un opérateur linéaire borné dans un espace de Hilbert (Banach) H.

- 1. Montrer que si A est inversible alors les opérateurs A et A^{-1} ont les mêmes vecteurs propres.
- 2. Montrer que si l'opérateur A^2 possède un vecteur propre alors, il en est de même pour l'opérateur A.

Exercice 3 1. Dans $l^2(\mathbb{N};\mathbb{C})$, soit $(\lambda_n)_{n\in\mathbb{N}}$ une suite dans $\mathbb{C}\setminus\{0\}$ telle que $\lim_{n\to\infty}\lambda_n=0$. On définit l'opérateur T sur l^2 par

$$T\left((x_n)_{n\in\mathbb{N}}\right) = (\lambda_n x_n)_{n\in\mathbb{N}}$$

 $. D\'{e}terminer\ le\ spectre\ de\ T$

2. Dans L² [0; 1], considérnons l'opérateur de mutiplication

$$T:L^{2}\left[0;1\right]\rightarrow L^{2}\left[0;1\right]$$
 définie par $\left(Tf\left(x\right)\right)=xf\left(x\right)$

- ullet Déterminer le spectre de T
- Montrer que T n'a de valeurs propres.

Exercice 4 1. Soit $(\alpha_n)_{n\in\mathbb{N}}$ une suite bornée de nombres complexes et T l'application linéaire de $l^2 = l^2(\mathbb{N}; \mathbb{C})$ dans lui même définie par $T(x) = (\alpha_n x_n)$, pour $x = (x_n) \in l^2$,

Vérifier que T est continue et calculer son adjoint

2. Soit S l'application de $l^2 = l^2(\mathbb{N}; \mathbb{C})$ dans lui même définie par $S(x) = (0, x_0, x_1, ...,)$

Vérifier que S est continue et calculer son adjoint

Exercice 5 Soit $E = C([0,1] \text{ muni de la norme } |||_{\infty} \text{ et pour } f \in E, \text{ on définit}$

$$Tf(x) = \int_{0}^{x} K(x, t) f(t) dt$$

 $où, K(,) \in C([0,1] \times [0,1])$. Soit $M = \sup_{0 \le x,t \le 1} |K(x,t)|$.

- 1. Montrer que $T \in \mathcal{L}(E)$.
- 2. Montrer que pour tout $n \ge 1$, on a $|T^n f(x)| \le \frac{M^n}{n!} x^n ||f||_{\infty}$ En déduire que, pour tout $n \ge 1$, $||T|| \le \frac{M^n}{n!}$
- 3. Déterminer le spectre de T.
- 4. Calculer l'opérateur adjoint T*, dans le cas où

$$Tf(x) = \int_{0}^{1} K(x, t) f(t) dt$$

Exercice 6 Soit $H = L^2([a,b]), (a < b), l'espace des classes des fonctions <math>x : [a,b] \to \mathbb{C}$ de carré sommable et soit $f : [a,b] \to \mathbb{C}$, une fonction continue fixée.

Soit $T: H \to H$ l'aplication qui à la fonction $x \in H$ fait correspondre la fonction Tx définie sur [a,b] par

$$(Tx)(t) = f(t)x(t)$$

- 1. Montrer que cet application est un opérateur linéaire continu
- 2. Calculer l'opérateur T* (l'opérateur adjoint de T)

1. donc T est autoadjoint si $f(t) = \overline{f(t)}$

Exercice 7 Soit $H=L^{2}\left(\left[0,1\right] \right) .$ Pour $f\in H,$ on pose

$$Tf(x) = \int_{0}^{x} f(t) dt.$$

- 1. Montrer que T est un opérateur continu sur H.
- 2. Calculer l'adjoint de T.