

CLAIMS

1. An aromatic silane compound having formula (I):

5

wherein

R_1 is selected from the group consisting of linear or branched C_{1-26} alkyl, C_{2-26} alkenyl, C_{1-26} alkoxy, C_{2-26} alkoxyalkyl, C_{7-26} arylalkyl, C_{3-26} cycloalkyl and C_{4-26} cycloalkoxy groups, optionally containing one or more halogen atoms;

10 R_2 is an aromatic ring having at least one substituent in the ortho position selected from C_{1-10} hydrocarbon groups; and

R_3 and R_4 , the same or different from each other, are selected from the group consisting of linear or branched C_{1-10} alkyl and C_{3-10} cycloalkyl groups.

2. The aromatic silane compound of claim 1, wherein R_1 is selected from the group 15 consisting of linear or branched C_{1-18} alkyl and C_{3-18} cycloalkyl groups.

3. The aromatic silane compound of claim 2, wherein R_1 is selected from the group consisting of linear C_{1-5} alkyl and branched C_{3-8} alkyl groups.

4. The aromatic silane compound of claim 1, wherein R_2 is selected from the group consisting of mono-substituted phenyl, di-substituted phenyl and mono-substituted naphthyl.

20 5. The aromatic silane compound of claim 1, wherein R_3 and R_4 are selected from the group consisting of linear or branched C_{1-8} alkyl and C_{3-8} cycloalkyl groups.

6. The aromatic silane compound of claim 5, wherein R_3 and R_4 are methyl or ethyl.

7. A catalyst system for the polymerization of olefins comprising:

(A) an aromatic silane compound having formula (I):

25

wherein

R_1 is selected from the group consisting of linear or branched C_{1-26} alkyl, C_{2-26} alkenyl, C_{1-26} alkoxy, C_{2-26} alkoxyalkyl, C_{7-26} arylalkyl, C_{3-26} cycloalkyl and C_{4-26} cycloalkoxy groups, optionally containing one or more halogen atoms;

R_2 is an aromatic ring having at least one substituent in the ortho position; and

5 R_3 and R_4 , the same or different from each other, are selected from the group consisting of linear or branched C_{1-10} alkyl and C_{3-10} cycloalkyl groups;

(B) an aluminum alkyl compound; and

(C) a solid catalyst component comprising Mg, Ti, halogen and an electron donor compound.

10 8. The catalyst system of claim 7 wherein, in said aromatic silane compound (A), R_1 is selected from the group consisting of linear or branched C_{1-18} alkyl, C_{1-18} alkoxy and C_{3-18} cycloalkyl groups.

9. The catalyst system of claim 8, wherein R_1 is selected from the group consisting of linear C_{1-5} alkyl and branched C_{3-8} alkyl groups.

15 10. The catalyst system of claim 7 wherein, in said aromatic silane compound (A), R_2 is selected from the group consisting of mono-substituted phenyl, di-substituted phenyl and mono-substituted naphthyl, and said substituent in the ortho position is selected from the group consisting of linear or branched C_{1-10} alkyl and C_{1-10} alkoxy groups.

11. The catalyst system of claim 7 wherein, in said aromatic silane compound (A), R_3 and R_4 are selected from the group consisting of linear or branched C_{1-8} alkyl and C_{3-8} cycloalkyl groups.

20 12. The catalyst system of claim 11, wherein R_3 and R_4 are methyl or ethyl.

13. The catalyst system of claim 7, wherein said solid component (C) comprises a titanium compound having at least one titanium-halogen bond and an internal electron donor, both supported on an active magnesium halide.

25 14. The catalyst system of claim 13, wherein said solid component (C) comprises the reaction product of titanium tetrachloride, active magnesium chloride and an internal electron donor.

*Su
B3*

15. A process for the polymerization of alpha-olefins comprising polymerizing propylene in the presence of the catalyst system as described in claim 7, to produce a polyolefin having a stereoblock content of from about 7 to about 25%.