ENGR-3000:

Renewable Energy, Technology, and Resource Economics

Supplemental Lecture: Betz Limit

S. David Dvorak. Ph.D, P.E.

Turbine Energy Extraction

 As the turbine transforms the kinetic energy of the wind into rotational energy of the generator shaft, the wind velocity decreases:

Constant mass flow rate: $\frac{\Delta m}{\Delta t} = \rho A_1 V_1 = \rho A_2 V_2$

Calculating Turbine Power

$$Power = \frac{1}{2} \rho C_p A V^3$$

- Where:
 - $\rho = air density (kg/m^3)$
 - $-C_p = Power coefficient (0 < C_p < 1)$
 - Swept rotor blade area = $\pi d^2/4$ (m²) for HAWT
 - V = upstream (undisturbed) wind velocity
- For a conventional horizontal axis wind turbine HAWT, A = (π/4)D², so wind power is proportional to the blade diameter squared
- Cost is roughly proportional to blade diameter
- This explains why larger wind turbines are more cost
- ³ effective

Maximum Rotor Efficiency

- Two extreme cases, and neither makes sense-
 - Downwind velocity is the same as the upwind velocity – turbine extracted no power
 - Downwind velocity is zero turbine extracted all of the power
- Albert Betz 1919 There must be some ideal slowing of the wind so that the turbine extracts the maximum power
- There is a limit on the ability of a wind turbine to convert kinetic energy in the wind into mechanical power extracted by the turbine

Maximum Rotor Efficiency

 As wind passes thru a turbine- it slows down and the pressure is reduced so it expands:

Turbine Power:

$$P_{b} = \frac{1}{2} \dot{m} \left(v^2 - v_{d}^2 \right)$$

- $-\dot{m}$ = mass flow rate of air within stream tube
- v = upwind undisturbed windspeed
- $-v_d$ = downwind windspeed
- From the difference in kinetic energy between upwind and downwind air flows

Determining Mass Flow Rate

- Easiest to determine at the plane of the rotor because we know the cross sectional area A
- Then, the mass flow rate is

$$\dot{m} = \rho A v_b$$

 Assume the velocity through the rotor v_b is the average of upwind velocity v and downwind velocity v_d:

$$v_b = \frac{v + v_d}{2}$$
 \Rightarrow $m = \rho A \left(\frac{v + v_d}{2} \right)$

Power Extracted by the Blades

Then the turbine power equation becomes

$$P_{b} = \frac{1}{2} \rho A \left(\frac{v + v_{d}}{2} \right) \left(v^{2} - v_{d}^{2} \right)$$

• Define λ (lambda) as the ratio of exit to inlet velocities:

$$\lambda = \frac{V_d}{V} \implies V_d = \lambda V$$

Thus:
$$P_b = \frac{1}{2} \rho A \left(\frac{v + \lambda v}{2} \right) \left(v^2 - \lambda^2 v^2 \right)$$

Power Extracted by the Blades

$$\begin{split} P_b = &\frac{1}{2} \rho A \bigg(\frac{v + \lambda v}{2} \bigg) \, \left(v^2 - \lambda^2 v^2 \right) \\ & \left(\frac{v + \lambda v}{2} \right) \, \left(v^2 - \lambda^2 v^2 \right) \, = \, \frac{v^3}{2} - \frac{\lambda^2 v^3}{2} + \frac{\lambda v^3}{2} - \frac{\lambda^3 v^3}{2} \\ & = \, \frac{v^3}{2} \Big[\big(1 + \lambda \big) - \lambda^2 \, \big(1 + \lambda \big) \Big] \\ & = \, \frac{v^3}{2} \Big[\big(1 + \lambda \big) \big(1 - \lambda^2 \big) \Big] \end{split}$$

$$P_{b} = \frac{1}{2} \rho A v^{3} \cdot \frac{1}{2} \left[(1+\lambda)(1-\lambda^{2}) \right]$$

 P_W = Power in the wind

 C_p = Power Coefficient

Maximum Rotor Efficiency

- Find the speed windspeed ratio λ which maximizes the power coefficient, C_P
- From the previous slide

$$C_P = \frac{1}{2} \Big[(1+\lambda) (1-\lambda^2) \Big] = \frac{1}{2} - \frac{\lambda^2}{2} + \frac{\lambda}{2} - \frac{\lambda^3}{2}$$

• Set the derivative $\partial C_p/\partial \lambda$ to zero and solve for λ :

$$\frac{\partial C_{P}}{\partial \lambda} = -\lambda + \frac{1}{2} - \frac{3\lambda^{2}}{2} = 0$$

$$3\lambda^2 + 2\lambda - 1 = (3\lambda - 1)(\lambda + 1) = 0$$

$$(3\lambda - 1) = 0 \implies \lambda = \frac{1}{3}$$
 maximizes rotor efficiency

Maximum Rotor Efficiency: Betz Limit

• Plug the optimal value of $\lambda = 1/3$ back into C_P to find the maximum rotor efficiency:

$$C_P = \frac{1}{2} \left[\left(1 + \frac{1}{3} \right) \left(1 - \frac{1}{3^2} \right) \right] = \frac{16}{27} = 59.3\%$$

- The maximum efficiency of 59.3% occurs when air is slowed to 1/3 of its upstream rate
- Called the "Betz efficiency" or "Betz' law"

Betz Limit

- The maximum fraction of available wind energy that can be extracted by a wind turbine rotor.
- The down stream velocity (v₂) cannot be zero, in fact, the smallest is can be is v₁/3.
- This corresponds to a $Cp_{max} = 0.5926$