Syllabus Download R and RStudio Readings Courseware **Course Info** Discussion **R Tutorials Contact Us** Community **Progress** Office Hours

Analyze the Data

Primary Research Question

What percentage of the time are college students happy? How does our estimate of the true mean change as sample size increases?

Analysis

Let's break this question down into the different descriptive statistics that you will need to construct your answer. Be sure that your R output includes all of the following components.

Determine the population parameters:

- 1. Visualize the shape of the population data by making a histogram.
- 2. Calculate the "true" mean and standard deviation of the population.

1 of 7 02/08/2015 10:26 AM

Compare the sample statistics:

- 3. Draw 1,000 samples of size n=5 from the population data. Calculate the mean of each sample.
- 4. Graph these 1,000 sample means in a histogram and examine the shape.
- 5. Calculate the mean and standard deviation of the sampling distribution.
- 6. Repeat this process for samples of size n=15 and n=25.
- 7. Compare the results you get to the predictions of the Central Limit Theorem.

(4/4 points)

Population Parameters

1a) What is the **shape** of the population happiness scores?

1b) What percentage of the time are college students happy, on average? (report with no decimals and no %)

78

78

2 of 7 02/08/2015 10:26 AM

Answer: 78

1c) What is the **standard deviation** of the happiness percent scores? (report to 1 decimal place)

16.3

Help

16.3

Answer: 16.3

1d) Is it more **common** for students to have high or low happiness percent scores relative to the range of percent scores in the population?

Hide Answer

You have used 1 of 1 submissions

(3/3 points)

Simulation

For the sampling distributions:

2a) The mean was _____ for all three sampling distributions.

approximately the same approximately the same

2b) The sample error (SE) _____ as sample size increased.

decreased decreased

2c) The distributions became _____ as sample size increased.

more Normal more Normal

Hide Answer

You have used 1 of 1 submissions

(4/4 points)

Central Limit Theorem

3a) According to the Central Limit Theorem, what do we expect the **mean** to be for each sampling distribution (n=5, n=15 and n=25)? (report to 2 decimal places)

78.03

78.03

Answer: 78.03

4 of 3b) According to the Central Limit Theorem, what should be the **standard error** for the sampling distribution of n ரூத்து முழு நடிப்படுகள்

2 decimal places).

7.29

7.29

Help

Answer: 7.29

Allswei. 7.23

3c) According to the Central Limit Theorem, what should be the **standard error** for the sampling distribution of n=15? (report to 2 decimal places).

4.21

4.21

Answer: 4.21

3d) According to the Central Limit Theorem, what should be the **standard error** for the sampling distribution of n=25? (report to 2 decimal places).

3.26

3.26

Answer: 3.26

5 of 7

Final Check

Save

Hide Answer

You have used 1 of 2 submissions

(1/1 point)

4) Based on these simulations, what can you say about the relationship between the shape of the population and the shape of the sampling distribution of means?

- The sampling distribution will be Normal only if the original population was also Normal.
- If the population is skewed, the sampling distribution will be skewed as well, no matter how large the sample size.
- If the sample size is large enough, the sampling distribution will be Normal no matter what the shape of the population.

Hide Answer

You have used 1 of 1 submissions

EdX offers interactive online classes and MOOCs from the world's $6e^{\frac{1}{5}}$ universities. Online courses from MITx, HarvardX, BerkeleyX, UTx and many other universities. Topics include biology, business,

About edX

About

News

Follow Us

Y

Twitter

02/08/2015 10:26 AM

Facebook

chemistry, computer science, economics, finance, electronics, Analyze the Data | Lab | UT.7.01x.Courseware | edX engineering, food and nutrition, history, humanities, law, literature, math, medicine, music, philosophy, physics, science, statistics and more. EdX is a non-profit online initiative created by founding partners Harvard and MIT.

© 2015 edX Inc.

EdX, Open edX, and the edX and Open edX logos are registered trademarks or trademarks of edX Inc.

Terms of Service and Honor Code

Privacy Policy (Revised 4/16/2014)

Contact

act
https://courses.edx.org/courses/UTAustinX/UT. Meetup 7.01x/3T2014/courseware/05d21...

FAQ

edX Blog

Donate to edX

Jobs at edX

in LinkedIn

S+ Google+

7 of 7 02/08/2015 10:26 AM