STAT537: Statistics for Research I: HW#7

Due on Sep. 20, 2016

 $Dr.\ Schmidhammer\ TR\ 11:10am\ -\ 12:25pm$

Wenqiang Feng

H	W	#	7

					- 1	
\mathbf{C}	U.	n.	t ı	\sim 1	าt	·C
$\mathbf{\mathcal{L}}$	v.	ш	U		ıц	,,,

Problem 1	3
Problem 2	4
Appendix R code for HW#7	7

Problem 1

Homework on Correlation Coefficients

Solution. 1. Generate a scatterplot for these data, with grain size on the horizontal axis, and yield on the vertical axis.

Figure 1: Scatterplot for these data, with grain size on the horizontal axis, and yield on the vertical axis.

2. Compute the Pearson Product Moment correlation coefficient r and Spearmans rho

(a) Pearson Product Moment correlation coefficient r = 0.667871

```
> cor(GrainSize, Yield, method="pearson")
[1] 0.667871
```

(b) Spearman's rho $\rho = 0.7634203$

```
> cor(GrainSize, Yield, method="spearman")
[1] 0.7634203
```

3. Test the hypothesis:

(a) Pearson Product Moment correlation coefficient r: Since the p-value = 7.543e - 09 < 0.05, so reject H_0 . Hence we can say that we have enough evidence to believe H_1 , i.e. we have enough evidence to believe that the Grain Size values are correlated with the Yield value at 95% level.

```
> out
```

```
Pearson's product-moment correlation

data: GrainSize and Yield

t = 6.7748, df = 57, p-value = 7.543e-09

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.4967473 0.7890091

sample estimates:

cor

0.667871
```

(b) Spearmans rho: Since the p-value = 2.059e - 12 < 0.05, so reject H_0 . Hence we can say that we have enough evidence to believe H_1 , i.e. we have enough evidence to believe that the Grain Size values are correlated with the Yield value at 95% level.

```
Spearman's rank correlation rho

data: GrainSize and Yield

S = 8095.8, p-value = 2.059e-12

alternative hypothesis: true rho is not equal to 0

sample estimates:
    rho

0.7634203
```

- 4. Construct a 95% Confidence Interval for ρ .
 - (a) 95 percent confidence interval: [0.630624, 0.8527845]

Problem 2

Homework on Simple Linear Regression

Solution. 1. Generate a scatterplot for these data, with grain size on the horizontal axis, and yield on the vertical axis.

Figure 2: Scatterplot for these data, with grain size on the horizontal axis, and yield on the vertical axis.

2. Find the least squares estimates of β_0 and β_1 in the model: $\beta_0 = -9.294$ and $\beta_1 = 744.979$.

3. **Test the hypothesis:** From the following summary, we can see that the p-value for β_1 is 7.543e-09 < 0.05, Hence reject H_0 . Therefore we can say that we have enough evidence to believe H_1 , i.e. $\beta_1 \neq 0$.

```
(Intercept) -9.294 42.255 -0.220 0.827

GrainSize 744.979 109.964 6.775 7.54e-09 ***
---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 '' 1

Residual standard error: 159.4 on 57 degrees of freedom

Multiple R-squared: 0.4461, Adjusted R-squared: 0.4363

F-statistic: 45.9 on 1 and 57 DF, p-value: 7.543e-09
```

4. Compute the residuals for these data. Do any residuals exceed $\pm 3s_{\epsilon}$?

(a) Residual:

> res= fit\$residuals

> res

					. = 00
6	5	4	3	2	1
3.8963573	-61.1036427	-35.6538518	-43.6538518	-27.3647300	-24.8948554
12	11	10	9	8	7
-53.8023882	-17.3525972	10.0971937	-34.9028063	-21.4530154	9.9967755
18	17	16	15	14	13
-87.1517609	-110.1517609	-89.7019700	127.7478209	27.7478209	-101.2521791
24	23	22	21	20	19
-54.4007154	3.0490755	0.4988664	-82.5011336	-131.0513427	-99.6015518
30	29	28	27	26	25
-8.7500881	-39.3002972	-123.3002972	8.1494937	-154.8505063	-39.4007154
36	35	34	33	32	31
-116.3484154	40.9005391	-109.0994609	115.8001210	213.2499119	-125.1998790
42	41	40	39	38	37
101.4026301	81.3022119	-28.6977881	-41.2479972	-68.7982063	113.6515846
48	47	46	45	44	43
329.1536755	69.1536755	4.0532573	251.5030482	248.9528391	276.4026301
54	53	52	51	50	49
-425.6936063	279.5553483	496.8043028	336.8043028	224.2540937	-148.2961154
	59	58	57	56	55
	-198.4362881	-140.9864972	-141.9906790	-200.0429790	-187.6936063

(b) Since

$$s_{\epsilon}^{2} = \frac{\sum_{1}^{n} (y_{i} - \hat{y}_{i})^{2}}{n - 2}$$

hence

$$s_{\epsilon} = \sqrt{\frac{\sum_{1}^{n} (y_i - \hat{y}_i)^2}{n-2}} = \sqrt{\frac{\sum_{1}^{n} \text{residual}^2}{n-2}} = 159.3766.$$

Therefore $\pm 3s_{\epsilon} = [-478.1297, 478.1297]$.

- (c) Check: From the following check table, we can see that the 52-th residual (496.8043028) is not in the range.
 - > check = checkRange(res,-3*s_eps,3*s_eps)
 - [1] TRUE TRUE TRUE TRUE TRUE TRUE
 - [8] TRUE TRUE TRUE TRUE TRUE TRUE
 - [15] TRUE TRUE TRUE TRUE TRUE TRUE

```
[22]
     TRUE
           TRUE
                  TRUE
                        TRUE
                               TRUE
                                     TRUE
                                           TRUE
[29]
     TRUE
            TRUE
                  TRUE
                        TRUE
                               TRUE
                                     TRUE
                                           TRUE
[36]
     TRUE TRUE
                  TRUE
                        TRUE
                               TRUE
                                     TRUE
                                           TRUE
[43]
     TRUE
           TRUE
                  TRUE
                        TRUE
                               TRUE
                                     TRUE
                                           TRUE
[50]
     TRUE TRUE FALSE
                        TRUE
                              TRUE
                                     TRUE TRUE
[57]
     TRUE
           TRUE
                  TRUE
```

Appendix

R code for HW#7

Listing 1: Source code for problem 1

```
rm(list = ls())
   # set the path or enverionment
   setwd("/home/feng/Dropbox/UTK_Course/Stat537/HW#7/HW#7/code")
   #install.packages("readxl") # CRAN version
   library (readxl)
   #install.packages("moments")
   library (moments)
   rawdata = read_excel("Data.xlsx", sheet = 1)
   attach (rawdata)
   plot (GrainSize, Yield, main="Scatterplot",
        xlab="Grain Size ", ylab="Yield ", pch=19)
15
   #corrlation
   cor(GrainSize, Yield, method="pearson")
   cor(GrainSize, Yield, method="spearman")
   #install.packages("Hmisc")
   library (Hmisc)
   out1<-cor.test(GrainSize, Yield, method = "pearson", conf.level=0.95)
   out2<-cor.test(GrainSize, Yield, method = "spearman", conf.level=0.95)
   out2
   #install.packages("mada")
   library (mada)
   N = \dim(\text{rawdata})[1]
   CIrho (out2$estimate, N)
30
   # regression
   fit <- lm(Yield ~ GrainSize)
   fit
   summary(fit)
   res= fit$residuals
   s_{eps} = sqrt(sum(res^2)/(length(res)-2))
```

```
s_eps
range = c(-3*s_eps, 3*s_eps)
range
i=length(res)

theckRange <- function(data, lower, upper) {
    n = length(data)
    result = logical(length = n)
    for (i in 1:n) {
    result[i] = data[i] >= lower && data[i] <= upper
}

print(result)
}

check = checkRange(res, -3*s_eps, 3*s_eps)

a = -3*s_eps <= res
b = res <= 3*s_eps
a&&b</pre>
```