例题 3.4 同轴插族 & TIIT 。 結定軸 (直线)七. ·同化轴干面族 例题 3.4 求平面满足 11世中4色 u = cosp. u + stub. us · 花向量 n= cost ui+sing uz 3 = {π (セ P. _ ▶ 过 *P*(-1,0,1) ที = วเนี + วนน } ▶ 经过线: 该线落在以下两个平面 $\sqrt{\lambda_1^2+\lambda^2} \, \left(\frac{\lambda_1}{\sqrt{\dots}} \, \, \overrightarrow{\mathcal{U}}_1 + \frac{\lambda_2}{\sqrt{\dots}} \, \, \overrightarrow{\mathcal{U}}_7 \right)$ x + 3y - z = 0= ((03B. U + stub. U) x - y + z + 1 = 0ガン PC-Lのり世の 对过几种的一种 等 -271 +72=0 \mathcal{I}_2 在向量 分 $\Rightarrow \lambda_2 = 2\lambda_1$ 形か ふがナンが ⇒ ポ // (3,し1) = >1(1,3,-1) と同时為足で、下15程 ⇒这块式 页 .. + N2(いつい1) 1/(x+34-5)+ /2(x-4+5+1)= 0 (x)

考虑一条直线 / 与一个平面 π 之间的关系:

- ▶ 直线 *I* : $\overrightarrow{P_0P}$ || **v**

 - ▶ 经过 $P_0(x_0, y_0, z_0)$ ▶ 方向向量 $\mathbf{v} = (v_x, v_y, v_z)$
- $\qquad \qquad \mathbf{P} \ \overrightarrow{\mathbf{n}} \ \pi : \overrightarrow{Q_0} \ \overrightarrow{Q} \cdot \mathbf{n} = 0$
 - ▶ 经过 Q₀
 - \blacktriangleright 法向量 $\mathbf{n} = (n_x, n_y, n_z)$

直线 / 与平面 π 的关系

- \triangleright v \perp n: v · n = 0

 - P₀ 在平面 π 上: $\overrightarrow{Q_0P_0} \cdot \mathbf{n} = 0$ 则 I 在 π 上 P₀ 不在平面 π 上: $\overrightarrow{Q_0P_0} \cdot \mathbf{n} \neq 0$ 则 I 与 π 平行且 不在 π 上
- ▶ v 与 n 不垂直: v · n ≠ 0 则 / 与 π 相交
 - 特别地, v || n: v×n = 0 则 / 与 π 垂直

关系: 不共面情形

- $ightharpoonup I_1: P = P_0 + \mathbf{v}t$

之间的关系

▶ **v**, **u** 与 Q₀P₀ 不共面:

$$|(\mathbf{v}, \mathbf{u}, \overrightarrow{Q_0P_0})| \neq 0$$

则 1 与 12 不共面

关系: 共面情形

▶ v, u 与 $\overrightarrow{Q_0P_0}$ 共面:

$$|(\mathbf{v}, \mathbf{u}, \overrightarrow{Q_0P_0})| = 0$$
则 I_1 与 I_2 共面

 平行 $\Leftrightarrow \mathbf{v} \parallel \mathbf{u}$

 重合 $\Leftrightarrow \overrightarrow{Q_0P_0} \parallel \mathbf{v} \parallel \mathbf{u}$

 相交 $\Leftrightarrow |\mathbf{v} \times \mathbf{u}| \neq 0$

例题 4.4

例题 4.4 考虑两条直线:

$$I_1: \frac{x-1}{-1} = \frac{y+2}{2} = \frac{z-1}{1}$$
 $I_2: \frac{x-r}{2} = \frac{y-2}{t} = \frac{z+1}{-2}$

通过对 r 和 t 的讨论, 分析 l_1 与 l_2 的相对位置. 可见

$$\begin{cases} P_1(1,-2,1) & \mathbf{v}_1 = (-1,2,1) \\ P_2(\mathbf{r},2,-1) & \mathbf{v}_2 = (2,t,-2) \end{cases}$$

考虑是否共面, i.e. \mathbf{v}_1 , \mathbf{v}_2 , $\overrightarrow{P_1P_2}$ 是否共面. 计算

$$(v_1, v_2, \overline{P_1P_2}) = \begin{vmatrix} -1 & 2 & 1 \\ 2 & t & -2 \\ r - 1 & 4 & -2 \end{vmatrix}$$

例题 4.4 解

 l_1 与 l_2 共面 \Leftrightarrow r=3 或 t=-4. 进一步分析共面的情形

- ► t = -4: 平行但不重合 PATEL ⇒ 4.14.
- ▶ $t \neq -4$: 相交 (共面可得 r = 3)
 - ▶ t = 2: 垂直 📆 vi 👍 o

两直线夹角

10 P1 P2 P2

定义(直线与直线的夹角)

设直线 I_1 和 I_2 的方向向量分别为 \mathbf{v}_1 和 \mathbf{v}_2 . 记 θ 为 \mathbf{v}_1 和 \mathbf{v}_2 的夹角. 称

可见

$$\cos \varphi = |\frac{\mathbf{v}_1 \cdot \mathbf{v}_2}{|\mathbf{v}_1| \cdot |\mathbf{v}_2|}| \cdot \frac{|v_1| \cdot |v_2|}{|v_1| \cdot |v_2|}$$

Q: 为什么直线间的夹角要取锐角, 但向量间的夹角不用?

两平面夹角

定义 (平面与平面的夹角)

设平面 π_1 和 π_2 的法向向量分别为 \mathbf{n}_1 和 \mathbf{n}_2 . 记 θ 为 \mathbf{n}_1 和 \mathbf{n}_2 的夹角. 称

arphi កើត្រឹង្សឹ \mathbf{n} កំនុំ $arphi = \min\{ heta, \pi - heta\}$

为平面 π_1 和平面 π_2 的夹角.

可见

$$\cos \varphi = |rac{\mathbf{n}_1 \cdot \mathbf{n}_2}{|\mathbf{n}_1| \cdot |\mathbf{n}_2|}|.$$

直线与平面夹角

定义 (直线与平面的夹角)

设直线 I_1 的切向量为 \mathbf{v}_1 , 平面 π_1 的法向量为 \mathbf{n}_1 . 记 θ 为 \mathbf{v}_1 与 \mathbf{n}_1 的夹角. 称

$$arphi = rac{\pi}{2} - \overline{\min\{ heta,\pi- heta\}}$$

为直线 I_1 和平面 π_1 的夹角. 可得

$$\sin \varphi = \cos(\min\{\theta, \pi - \theta\}) = \sin(\frac{\forall}{2} - 1)$$

$$= |\frac{\mathbf{v}_1 \cdot \mathbf{n}_1}{|\mathbf{v}_1| |\mathbf{n}_1|}|.$$

- ▶ 直线 $I: \frac{\mathsf{x}-1}{-1} = \frac{\mathsf{y}+2}{2} = \frac{\mathsf{z}-1}{1}$
- ▶ 平面 π : x + y + 2z = 3求直线 I 与平面 π 的夹角.

- ▶ /的方向向量 $\mathbf{v} = (-1, 2, 1)$
- ▶ π 的法向量 **n** = (1,1,2)

例题 4.5 解

解 (续)

由
$$\mathbf{v} = (-1, 2, 1)$$
 和 $\mathbf{n} = (1, 1, 2)$, 得

- ► v · n
- |n|

利用

$$\sin \varphi = |\frac{\mathbf{v} \cdot \mathbf{n}}{|\mathbf{v}||\mathbf{n}|}|$$

 $求 \varphi$

一般含义

对于度量空间 (X, d) 诱导其上集合之间的距离

ステミ a,b
$$3$$
 $d: 2^X \times 2^X \to \mathbb{R}_+$ $(A,B) \mapsto d(A,B)$ 其中 $d(A,B) := \inf_{x \in A, x \in B} d(x,y).$

点到点的距离

对于两点 $P_0(x_0, y_0, z_0)$ 和 $P_1(x_1, y_1, z_1)$,那么 P_0 与 P_1 两点之间的距离可以通过 P_0P_1 的大小确定,i.e. $d(P_0, P_1) = |\overrightarrow{P_0P_1}|.$

我们将利用两点之间的距离表示线面之间的距离.

点到直线距离

考虑

- ▶ 线 *I*(*P*₁, **v**): 过点 *P*₁ & 方向向量为 **v** 记 *P*₀ 到 *I* 的距离为 *d*(*P*₀, *I*). 验证

$$d(P_0, I) = \frac{|\mathbf{v} \times P_1 P_0|}{|\mathbf{v}|}.$$

$$= \frac{d(P_0, Q_1)}{|\mathbf{v}|}.$$

$$= \frac{|\mathbf{v} \times P_1 P_0|}{|\mathbf{v}|}.$$

例题 4.6

例题 4.6

设
$$\vec{v}_1 = (1,2,2)$$
 , $\vec{v}_2 = (2,4.4)$

$$I_1: \frac{x}{1} = \frac{y-2}{2} = \frac{z-1}{2}$$

求 1 与 12 之间的距离.

$$\Rightarrow$$
 $d(\ell_1,\ell_2) = d(\ell_1,P_2)$

点到平面距离

考虑

- $P_0(x_0, y_0, z_0)$
- P 平面 $\pi(P_1, \mathbf{n})$: 过点 P_1 & 法向量为 \mathbf{n} 记 P_0 到 π 的距离为 $d(P_0, \pi)$. 验证

$$d(P_0,\pi) = \frac{|\mathbf{n} \cdot \overline{P_1 P_0}|}{|\mathbf{n}|},$$
其中 P_1 为 π 上的一点. = $\frac{|\vec{n}| \cdot |\vec{P_1 P_0}|}{|\vec{n}|}$

例题 4.7

例题 4.7

设
$$n_{1}=(1,2,-2)$$
, $n_{2}=(2,4,-4)$

$$\pi_{1}: x + 2y - 2z + 3 = 0$$

$$\pi_{2}: 2x + 4y - 4z - 3 = 0$$

$$x d(\pi_{1},\pi_{2})$$

$$\pi_{1} // \pi_{2}$$

$$d(\pi_{0},\pi_{0}) = d((-3,0,0),\pi_{0})$$

线到线的距离

我们定义直线 1, 与 12 之间的距离为

$$d(I_1,I_2) := \inf_{m{
ho}_1 \in I_1,m{
ho}_2 \in I_2} d(m{
ho}_1,m{
ho}_2).$$

e.g.

- ▶ $l_1 \parallel l_2$: $d(l_1, l_2) = d(p_1, l_2)$ for all $p_1 \in l_1$.
- ▶ I_1 与 I_2 相交或重合: $d(I_1, I_2) = 0$ ✓
- ▶ 其他情形: $d(I_1,I_2)$ 为公垂线段长度

公童方向 可= 可x证

PR到可数能度

- = 1P.P. | COS (7, P.P.)
- = 1 M PR (65 < 70 PR)
- = 17. PiB

面到面的距离

定义平面 π_1 与 π_2 之间的距离为

$$d(\pi_1,\pi_2) := \inf_{m{
ho}_1 \in \pi_1, m{
ho}_2 \in \pi_2} d(m{
ho}_1,m{
ho}_2).$$

e.g.

- ▶ $\pi_1 \parallel \pi_2$: $d(\pi_1, \pi_2)$ 为公垂线段长度
- ▶ 相交或重合: 距离为零