Домашнее задание, Исаенков Александр, Б.09

Задача 1 (Фурье)

Предложение

По заданной последовательности $\{a_i\}_{i=0}^{n-1}$ создадим новую последовательность $\{b_i\}_{i=0}^{n-1}$ по следующему правилу:

$$b_i = \begin{bmatrix} 1, & \text{if } a_i < x \\ 0, & \text{if } a_i \ge x \end{bmatrix}$$

Посчитаем префиксные суммы $\left\{p_i\right\}_{i=0}^n: \left\{egin{array}{l} p_0=0 \\ p_i=b_i+p_{i-1}, \ \forall i \in [1,n] \end{array}\right.$

Рассмотрим такой многочлен: $f(y) \coloneqq \left(\sum_{i=0}^n y^{p_i}\right) \cdot \left(\left(\sum_{i=0}^n y^{-p_i}\right) \cdot y^n\right)$. (Перемножение выполним с помощью FFT за $O(n \log n)$)

 $\forall k \in [1, n]$ коэффициент при y^{k+n} будет ответом.

Для k=0 пройдём по массиву за O(n), поддерживая счётчик cnt подряд идущих нулей. Если встретим 1 или конец последовательности, то добавим к ответу $\frac{1+\text{ cnt}}{2}\cdot\text{cnt}$ и обнулим cnt.

Доказательство: Заметим, что $\{p_i\}_{i=0}^n\uparrow$, и у $\sum_{i=0}^ny^{p_i}$ коэффициент при y^{p_i} будет отражать то, насколько долго мы шли по последоватльности с одинаковыми p_i .

Теперь рассмотрим $\left(\sum\limits_{i=0}^n y^{p_i}\right)\cdot\left(\sum\limits_{i=0}^n y^{-p_i}\right)$. Множитель y^k равен сумме произведений коэффициентов при y^{p_i} и y^{-p_j} $\forall i,j:p_i-p_j=k$. Несложно заметить, что это и есть наш ответ.

Наконец, для того, чтобы дать FFT перемножить наши многочлены $\sum_{i=0}^{n} y^{p_i}$ и $\sum_{i=0}^{n} y^{-p_i}$, мы хотим сделать так, чтобы у второго из них не было мономов с отрицательной степенью, поэтому сначала домножаем его на y^n .