Carry Save Adder (1A)

•

•

Copyright (c) 2013 – 2015 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Multi-operand Adders

(3; 2) Counter

Ripple Carry Adder

Add <u>two</u> numbers with carry in

One number with Carry out

Carry Save Adder

Add <u>three</u> numbers without carry in

Two numbers

(3; 2) counter 3-to-2 reduction

Multi-operand Addition Examples (1)

4-bit number multiplication

$$\vec{a} = (A_{6,} A_{5,} A_{4,} A_{3,} A_{2,} A_{1,} A_{0})$$

$$\vec{b} = (B_{6,} B_{5,} B_{4,} B_{3,} B_{2,} B_{1,} B_{0})$$

$$\vec{\boldsymbol{a}} \cdot \vec{\boldsymbol{b}} = \sum_{i=0}^{6} A_i B_i$$

seven 7-bit number addition

Multi-operand Addition Examples (2)

7-bit number multiplication

Adding seven 7-bit numbers using CSA

CSA Tree

4-bit Multiplication

			$a_3 \ b_3$	$egin{aligned} a_2\ b_2 \end{aligned}$	$a_{\scriptscriptstyle 1} \\ b_{\scriptscriptstyle 1}$	$egin{array}{c} a_0 \ b_0 \end{array}$
			a_3b_0	a_2b_0	a_1b_0	a_0b_0
		a_3b_0	a_2b_0	a_1b_0	a_0b_0	
	a_3b_0	a_2b_0	a_1b_0	a_0b_0		
a_3b_0	a_2b_0	a_1b_0	a_0b_0			

Multiplier using CSA

References

- [1] en.wikipedia.org
- [2] Parhami, "Computer Arithmetic Algorithms and Hardware Designs"