

# Introdução

A diabete está entre as doenças crônicas mais prevalentes nos Estados Unidos da América (EUA), impactando milhões de Americanos a cada ano exercendo um encargo financeiro significativo na economia. É uma doença crônica grave em que os indivíduos perdem a capacidade de regular níveis de glicose (acuçar) no sangue, podendo levar à redução de qualidade de vida e da expectativa de vida (Teboul, A., 2021).

A diabete geralmente é caracterizada pelo facto do corpo não produzir insulina suficiente ou ser incapaz de usar insulina de forma tão eficaz quanto necessário, o que pode provocar complicações como: doenças cardíacas, perda de visão, amputação de membros inferiores e doença renal.

O diagnóstico precoce pode levar a mudanças no estilo de vida e tratamento mais eficaz, tornando os modelos preditivos de risco de diabetes ferramentas importantes para autoridade públicas e de sáude pública.

# Objetivos do projeto

Neste projeto cobrimos todas as etapas de um projeto real de Ciência de Dados e respondemos a algumas questões importantes sobre a área de saúde (diabetes), utilizando dados disponibilizados no kaggle sobre uma pesquisa feita nos EUA, com intuito de permitir que tenhamos conhecimento e/ou descubramos insigths que não estão evidenciados de forma explicita sobre diabetes que é uma doença que temos casos no nosso dia a dia:

- Qual é a corelação entre as avriáveis preditoras e a variável alvo?
- Qual é a distribuição dos entrevistados por cada classe?
- Qual é a distribuição das variáveis índice de massa corporal, idade, nível de pessão arterial, nível de colestrol é igual em cada uma das classes?
- Quais os factores que mais influenciam na obtenção de diabetes?

O objetivo é dar a conhecer alguns *insigths* extraídos a partir dos dados e criar uma solução (modelo preditivo e dashboard) para a área de saúde que permite classificar um paciente de forma precoce nas seguintes classes: **diabético**, **pré-diabético** e não **diabéticos**.

Por fim, realçar que o grande impacto que o projeto terá na área de saúde é o que a seguir se descreve:

Esta ferramenta e/ou solução tecnológica permitirá que os orgãos responsáveis
pela saúde pública investiguem com mais detalhes o que contribui e/ou quais os
factores que influenciam nesta doença, de modo a definir-se estratégias a curto
prazo para identificação precoce de diabetes (no estágio de pré-diabetes) e
permitindo um tratamento mais eficaz.

**Pré-diabetes** é uma condição de saúde grave em que os **níveis de acuçar no sangue são mais altos do que o normal**, mais ainda não altos o suficiente para serem diagnosticados como diabetes do tipo 2 (Wikipédia).

# Solução Proposta

### **Tecnologias Utilizadas**

Para resolver este problema foi construida uma solução completa para armazenamento e gestão usando **Google Cloud Plataform** (GCP), além de explorar uma suite de tecnologias e/ou bibliotecas para análise, visualização de dados e *machine learning* tais como: pandas, matplotlib, seaborn, scikit-learn, streamlit, pycaret e pyspark.

**Pandas** – biblioteca usada para manipulação de dados



Matplotlib – biblioteca usada para visualização de dados.



**Seaborn** – biblioteca usada para visualização de dados baseada no matplotlib, permitindo construir graficos mais profissonais.



**Scikit-learn** – biblioteca usada para implementar os algoritmos de *machine learning* (utilizou-se o pickle para serializar o modelo em disco)



**Pycaret** – biblioteca open-source usada para fazer Auto-ML em um projeto de ciência` de dados.



**Streamlit** – biblioteca utilizada para desenvolver a aplicação e/ou fórmulário para testar o modelo em ambiente de produção.



#### Ferramentas de auxiliares:

**Pyspark** – para processamento de grandes volumes de dados em ambientes distribuído.



**Python** – liguagem de programação utilizada para desenvolver o projeto de ciência de dados.

**Google colab** – editor de código online que geralmente é organizado por células que permite executar todas as etapas de um projeto de ciência de dados.





**Github** – ferramenta que permite versionar, partilhar o código desenvolvido e também atribuir acesso a outros profissinais para colaborarem nos artefatos do projeto.



**Apache Airflow** - é uma plataforma de gerenciamento de fluxo de trabalho de código aberto para pipelines de engenharia de dados.



**Terraform** – é uma ferramenta do tipo infraestrutura como código (IaC) que permite o gerenciamento e provisionamento da infraestrutura por meio de códigos, em vez de

processos manuais. Esta ferramenta foi utilizada para criar os buckets de forma automatizada.



**Kubernetes** - é uma ferramenta para orquestrar os serviços disponibilizadas no docker, ou seja, é um plataforma de código aberto, portável e extensiva para o gerenciamento de cargas de trabalho e serviços distribuídos em contêineres, que facilita tanto a configuração declarativa quanto a automação



Google Cloud Plataform (GCP) - é uma suíte de computação em nuvem oferecida pelo Google, funcionando na mesma infraestrutura que a empresa usa para seus produtos dirigidos aos usuários



## Overview Geral de Tecnologias Utilizadas no Projeto



# Arquitecturas

Em seguida é ilustrada o overview da solução desde a **coleta** até ao **deploy** da solução desenvolvida.

Projetada pela squad **Jupyter** cujos os integrantes são:

- Pedro Lucas Data Analyst and Project Leader
- Celso Adamo Data Scientist
- Adilson Silva Data Engineer



Os principais desafios enfrentados foram:

- **Integrar** o notebook do <u>Google Colab</u> com o <u>GCS</u> usando emails pessoais, permitindo desta forma a leitura dos datasets armazenados no GCP.
- Carregar o modelo na app do streamlit devido a incompatibilidade de versões.
- Criar a api usando o framework web FastAPI.
- Conectar o GCS com api-ml e a aplicação.

## Resultados

### **Insights e Conhecimento Gerado**

Na etapa de Análise Exploratória dos Dados foram descobertos vários insights importantes abaixo descritas.

Pela análise estatistica básica feita sobre os dados apurou-se o seguinte:

- Em médias os entrevistados têm um **índice de massa corporal (BMI)** de **28.68**.
- Quase **metade** das pessoas entrevistadas **fumam e/ou comem frut**a.
- 73.34 % das pessoas entrevistadas praticam actividades físicas.
- 79.48 % das pessoas entrevistadas comem vegetais.
- Quase **ninguém** consume **álcool em altas proporções** (adult men having more than 14 drinks per week and adult women having more than 7 drinks per week).
- 94% das pessoas entrevistadas usaram algum plano e/ou seguro de saúde.

Foram feitas algumas questões sobre os dados e constatamos o seguinte:

A maioria das variáveis possuem uma **correlação fraca** entre elas exceptuando a variáveis \*\*PhysHlthe GenHlth\*\* que possuem uma **correlação média**.



Analisando a distribuição dos entrevistados por classes constatou-se que **83%** dos entrevistados **não tem diabetes**.



O índice de massa coporal tem o mesmo dominio de valores para as 3 classes envolvidas.



A maior parte das pessoas com **pré-diabetes e diabetes** estão em **idade** pertencentes a **categoria 6 em diante**. Não obstante, não chegamos a nenhuma conclusão de grau de obtenção de diabetes em função da idade.



A maior parte das pessoas com pressão arterial alta e/ou colesterol alto pertencem as categorias pré-diabetes e diabetes.



Grau de importâncias das variáveis preditoras no modelo em percentagem

| ВМІ                  | 18.426225 |
|----------------------|-----------|
| Age                  | 12.333248 |
| Income               | 10.112030 |
| PhysHlth             | 8.529593  |
| Education            | 7.265321  |
| GenHlth              | 6.537013  |
| MentHith             | 6.362040  |
| HighBP               | 3.627002  |
| Fruits               | 3.478912  |
| Smoker               | 3.473712  |
| Sex                  | 2.905548  |
| Veggies              | 2.750739  |
| PhysActivity         | 2.744945  |
| HighChol             | 2.641753  |
| DiffWalk             | 2.206154  |
| HeartDiseaseorAttack | 1.790474  |
| NoDocbcCost          | 1.541153  |
| Stroke               | 1.192858  |
| AnyHealthcare        | 0.894155  |
| HvyAlcoholConsump    | 0.799575  |
|                      |           |

#### Métricas de Performance

Para predizer se o paciente pertence a cada uma das classe foi implementado um modelo utilizando o **Random Forest** que atingiu uma performance **F1-Score** de aproximadamente **85%** (84.70% - superando um pouco um modelo de base que é de **75%**).

Como tratava-se de um problema de classes desbalanceadas e houve necessidade utilizar a técnica de *over sampling* denominada **SMOTE** e de analisar as métricas **precision** e **recall** como forma de analisar a performance de previsão de cada uma das classes.



# Conclusão

Através deste projeto foi possível praticar e implementar conceitos importantes de Ciência e Engenharia de Dados e propor uma solução para a área de saúde que permite **descobrir alguns** *insigths* sobre diabetes e **classificar se um paciente** pertence a cada uma das classes identificadas na secção do objectivo.

A resolução dos problemas acima mencionados, permitirá obter insights para desenhar e/ou alterar a estratégia aplicada á área de saúde no que concerne a diabetes, visto que, esta doença tem um impacto significativo na economia e pode ter complicações quando nao detectado em estágios mais precoces.

Com a implementação desta solução teremos como beneficio, um recurso organizacional que servirá de apoio aos médicos na leitura de análises médicas e contribuirá para identificar as principais variáveis que influenciam em cada uma das classes.

Por fim, como um processo de melhoria continua pode-se reduzir o erro de previsão do modelo utilizando outras técnicas como *feature engeneering*, redução de dimensionaldade, entre outras e criar mais interatividade no dashboard do streamlit.

### Anexos

Link do Streamlit e dashboard: <a href="http://34.69.222.196/">http://34.69.222.196/</a>

# App



### **Dashboard**

