Assignment 3

Victor Nyström Oliver Öberg vicny135 oliob926

Task 1

Relation schema, R(A, B, C, D, E, F) and FDs: FD1: $\{A\} \to \{B,C\}$ FD2: $\{C\} \to \{A,D\}$ FD3: $\{D,E\} \to \{F\}$

a)

Derive $\{C\} \rightarrow \{B\}$: Decomposition on FD2, $\{C\} \rightarrow \{A\}$ Decomposition on FD1, $\{A\} \rightarrow \{B\}$ Transitivity on $\{C\} \rightarrow \{A\}$ and $\{A\} \rightarrow \{B\}$ to get $\{C\} \rightarrow \{B\}$

b)

Derive $\{A,E\} \to \{F\}$: Decomposition on FD1, $\{A\} \to \{C\}$ Decomposition on FD2, $\{C\} \to \{D\}$ Transitivity on $\{A\} \to \{C\}$ and $\{C\} \to \{D\}$ to get $\{A\} \to \{D\}$ We lastly use $\{A\} \to \{D\}$ for pseudo-transitivity on FD3 to get $\{A,E\} \to \{F\}$

Task 2

Compute the attribute closure X^+ :

a)

$$X = \{A\}$$
:

We can see from FD1 that A determines B and C. We can also see from FD2 that C determines A and D, therefore we know that the closure of X is the following set below since they are logically implied by X. $\{A, B, C, D\}$

b)

$$X = \{C, E\}$$
:

From FD2 we can see that C determines A and D, we can with FD1 see with transitivity that C also determines B since A determines B. Further, we can see from decomposition on FD3 that E determines F so the closure of X is therefore the following set below since they are logically implied by X. $\{A, B, C, D, E, F\}$

Task 3

Relation schema, R(A, B, C, D, E, F) and FDs: FD1: $\{A, B\} \rightarrow \{C, D, E, F\}$ FD2: $\{E\} \rightarrow \{F\}$ FD3: $\{D\} \rightarrow \{B\}$

a)

Determine the candidate key(s) for R:

From FD1 we can see that $\{A,B\}$ determines all other attributes in R so with A and B included, it is a superkey since it determines all attributes in the schema. If the case were that A or B is removed from the key, all attributes are no longer determined and the key is no longer a superkey. Therefore since $\{A,B\}$ is the smallest subset of the superkey it is a candidate key for R. With the same reasoning as above, $\{A,D\}$ is also a candidate key since from FD3 we can see that D determines B so $\{A,D\}$ determines all attributes in the schema as $\{A,B\}$ does, and it is the smallest subset of that superkey.

b)

Note that R is not in BCNF. Which FD(s) violate the BCNF condition?

FD1 is a superkey for the schema but FD2 and FD3 are not. FD2 and FD3 therefore violate the BCNF condition which states that a relation is in BCNF if, for every functional dependency $X \to Y$ it has, X is a superkey.

c)

Decompose R into a set of BCNF relations:

```
Decompose based on \{E\} \to \{F\}, creates the relation schema R_1\{E,F\} with candidate key E. Decompose based on \{D\} \to \{B\}, creates the relation schema, R_2\{D,B\} with the candidate key D. And R_3\{A,C,D,E\} with FD4(\{A,D\} \to \{C,D,E\}) R_1,R_2 and R_3 are all in BCNF so R is decomposed into R_1,R_2 and R_3.
```

Task 4

```
Relation schema, R(A, B, C, D, E) and FDs: 
\text{FD1: } \{A,B,C\} \rightarrow \{D,E\} \qquad \text{FD2: } \{B,C,D\} \rightarrow \{A,E\} \qquad \text{FD3: } \{C\} \rightarrow \{D\}
```

a)

Show that R is not in BCNF:

 $\{A,B,C\}$ and $\{B,C,D\}$ are superkeys, but $\{C\}$ is not. $\{C\}$ is not a superkey since it only determines $\{C,D\}$ and not all the attributes in the relation, while $\{A,B,C\}$ and $\{B,C,D\}$ determine all the attributes in the relation. Therefore the relation schema R is not in BCNF.

b)

Decompose R into a set of BCNF relations:

Decompose based on $\{C\} \to \{D\}$, creates the relation schema $R_2\{C,D\}$ with FD3. $R_1\{A,B,C,E\}$ with FD3($\{A,B\} \to \{C,E\}$) and FD4($\{B,C\} \to \{A,E\}$). R_2 is in BCNF and R_1 is in BCNF. R is therefore decomposed into $R_1\{A,B,C,E\}$, $R_2\{C,D\}$