马中琪群论(第二版)

p44-45 3, 4, 6, 8, 10

3. 设 H_1 和 H_2 是群 G 的两个子群,证明 H_1 和 H_2 的公共元素的集合也构成群 G 的子群。

证明: 假设 $H = H_1 \cap H_2$,要证明 H 构成群,即证 H 中元素满足群乘法定义,

- (1). 恒元。 H_1, H_2 均为 G 的子群, 故两者均包含单位元 E, 即 E \in H。
- (2). 逆元。对于 H 除恒元外任意元素 R, 因为 R \in H₁, H₂,由子群性质可知,必有R $^{-1}$ \in H₁, H₂,即有R $^{-1}$ \in H.
- (3). 封闭性。对于任意 $R_1, R_2 \in H$,因 $R_1, R_2 \in H_1, H_2$,由子群性质可知, $R_1R_2 \in H_1, H_2$,即 $R_1R_2 \in H$.
 - (4).乘法结合律可由由群 G 的性质保证。 END
- 4. 证明当群 G 的阶数为 5, 6 或 7 时, 除恒元外, 不可能所有元素的 阶都是 2.

证明:

- (1).当群 G 的阶数为 5 或 7 时, 因群的阶数必须是群元素阶数的倍数, 因此不可能存在有阶数为 2 的元素。
- (2) .当群 G 的阶数为 6 时,其除自身阶数外可存在有阶数为 2 或 3 的元素。但重排定理不允许所有元素阶数都为 2.理由如下:假设存在这样的群 $\{a,b,c,d,e,f\}$,那么有 $a^2 = b^2 = c^2 = d^2 = f^2 = e$ 。不失普遍性设 ab=c,于是可直接给出 ac=b,cb=a。

由此可填充表格至表 1 的状态:

表 1.

	e	a	b	С	d	f
e	e	a	b	С	d	f
a	a	e	С	b		
b	b	С	e	a		
С	С	С	a	e		
d	d				e	
f	f					e

而此时{e,a,b,c}将构成 G 的子群, 阶数为 4, 得到矛盾。故六阶群不可能每个元素的阶均为 2. END

6. 设群 G 的阶数g = 2n, n 是大于 2 的素数,准确到同构,证明群 G 只有两种:循环群 G_{2n} 和正多边形对成群 D_n 。

证明:由群 G 的阶数为g = 2n且 n 为质数可知,群 G 元素的阶只能是 2, n 或 2n. 对此以下进行分类讨论:

- (1). 当存在群元素阶为 2n 时,此时 G 为循环群 C_{2n} .
- (2). 当存在群元素阶为 n 时。将 n 阶循环群写成{E,R ... R^{n-1} },不失 普遍性,将其陪集记成{ S_0 , S_1 ... S_{n-1} },满足 $R^mS_j = S_{j+m}$,其中 $S_{j+n} = S_j$.由重排定理可知, S_j^2 不能等于 S_k (可由乘法表得知)。此外, S_j^2 不能够等于 R 或者 R^2 ,否则 S_j 将成为 2n 阶群元。因此只能有 $S_i^2 = E$ 。于是有 $R^m = S_{j+m}S_j$ 和 $S_iR^m = S_{j-m}$.由此我们得到了

 D_N 的乘积规则,即此时 G 为 D_N 群。

(3).当群元素除了恒元阶数均为 2 阶时,可发现不可避免会出现四阶子群(正如表 1 所示),而 4 不是 2n 的约数,矛盾。

因此只有两种群:循环群 G_{2n} 和正 n 边形对称群 D_n . END

8. 证明由iσ₁和iσ₂的所有可能乘积和幂次的集合构成群,列出此群的乘法表,指出此群的阶数,各元素的阶数,群包含的各类和不变子群,不变子群的商群和什么群同构。说明该群和D₄不同构。由iσ₁和iσ₂乘积扩充的群有 8 个元素,乘法表如下:

	1	$i\sigma_1$	$i\sigma_2$	$i\sigma_3$	-1	$-i\sigma_1$	$-i\sigma_2$	$-i\sigma_3$
1	1	$i\sigma_1$	$i\sigma_2$	$i\sigma_3$	-1	$-i\sigma_1$	$-i\sigma_2$	$-i\sigma_3$
iσ ₁	iσ ₁	-1	$-i\sigma_3$	iσ ₂	$-i\sigma_1$	1	$i\sigma_3$	$-i\sigma_2$
$i\sigma_2$	iσ ₂	$i\sigma_3$	-1	$-i\sigma_1$	$-i\sigma_2$	$-i\sigma_3$	1	$i\sigma_1$
$i\sigma_3$	$i\sigma_3$	$-i\sigma_2$	$i\sigma_1$	-1	$-i\sigma_3$	iσ ₂	$-i\sigma_1$	1
-1	-1	$-i\sigma_1$	$-i\sigma_2$	$-i\sigma_3$	1	iσ ₁	iσ ₂	iσ ₃
$-i\sigma_1$	$-i\sigma_1$	1	$i\sigma_3$	$-i\sigma_2$	$i\sigma_1$	-1	$-i\sigma_3$	iσ ₂
$-i\sigma_2$	$-i\sigma_2$	$-i\sigma_3$	1	iσ ₁	iσ ₂	iσ ₃	-1	$-i\sigma_1$
$-i\sigma_3$	$-i\sigma_3$	iσ ₂	$-i\sigma_1$	1	iσ ₃	$-i\sigma_2$	iσ ₁	-1

由乘法表可知,这 8 个元素的集合对元素的乘积是封闭的, 矩阵的乘积满足结合律,E=1 是这个集合的恒元,-1 是自逆元素, $i\sigma_a$ 和 $-i\sigma_a$ ($1 \le a \le 3$)互为逆元。因此这个集合构成群,阶数为 8.恒元 1 的阶数为 1,-1 的阶数为 2, $i\sigma_a$ 和 $-i\sigma_a$ 的阶数均 为 4.1 和 -1 各自成一类, $i\sigma_a$ 和 $-i\sigma_a$ (a=1,2,3) 构成一类,共 5 个类。不变子群有 $\{1, -1\}$, $\{1, -1, i\sigma_1, -i\sigma_1\}$, $\{1, -1, i\sigma_2, -i\sigma_2\}$, $\{1, -1, i\sigma_3, -i\sigma_3\}$.后三个不变子群的商群都是二阶群,与 V_2 群同构。第一个不变子群的陪集是互差负号的两个矩阵,即 $\{i\sigma_a, -i\sigma_a\}$ (a=1,2,3),它们的平方均等于不变子群 $\{1, -1\}$,故此商群与 V_4 群同构。因为此群包含 6 个阶数为 4 的元素,故不与 D_4 群同构。(D_4 仅含 4 个阶数为 4 的元素)。

10.准确到同构,证明九阶群 G 只有两种 循环群 C_9 与直乘群 $C_3 \otimes C_3$ 。证明:对于九阶群,除恒元外,元素的阶数只能为 3 和 9.若至少存在一个群元素的阶数为 9 阶,那么此群为循环群 C_9 。

若九阶群中没有九阶元素,即除恒元外的元素都是 3 阶元素。任取一个 3 阶元素,记作 A,由 A 构成的循环子群 $\{E,A,A^2\}$,一个右陪集记作 $\{B,C,D\}$ 。

不失普遍性。可设 AB=C, AC=D, AD=B, (1) 其中 B, C, D 均为 三阶元素,它们的平方不能等于 E, A 或者 A^2 ,又由重排定理(乘法表)可知,其平方也不能等于 B, C, D, 此外它们之间也不能彼此相等(由上面关系式(1)可推知)。因此可将 $\{B^2, C^2, D^2\}$ 构成另一个陪集。由重排定理, $AB^2=CB$ 不能等于 C^2 和 B^2 ,只能等于 D^2 。由以上关系式可填充该群乘法表,可知该群是个阿贝尔群,即证该群为直乘群 $C_3 \otimes C_3$ 。 END

课堂布置习题:

1. (1).列举D₃的子群。

 $\{E,A\}, \{E,B\}, \{E,C\}, \{E,D,F\}$

(2).说明 $H=\{E,D,F\}$ 是 D_3 的正规子群。由 D_3 群元素的乘法规则,可计算得

AH={A,C,B}=HA, BH={B,A,C}=HB, CH={C,B,A}=HC 故 H 为D₃的正规子群。

- 2. a. H_1 与 H_2 是两个群,G 是一个集合,对其元素有 $g=(h_1,\ h_2)$,则 $G=H_1\times H_2$,
 - b. H_1 和 H_2 是 G 的两个子群, $H_1 \cap H_2 = \{e\}$, $\forall h_1 \in H_1, h_2 \in$ H_2 , $h_1h_2 = h_2h_1$. $\forall g \in G$, $\exists h_1, h_2$, $g = h_1h_2$,则 G 为 $H_1 \times H_2$. 证明 a 与 b 等价。

证明:

 $a \to b$: 由 $g = (h_1, h_2)$, 因 H_1 与 H_2 是两个群,故可保证 G 构成群。 取 $h_1 = e_1$,此时有 $(e_1, h_2)(e_1, h_2') = (e_1, h_2 h_2')$,因 H_2 本身构成群,故 (e_1, H_2) 构成 G 的子群。同理, (H_1, e_2) 也为 G 子群。 H_1 和 H_2 为不同群,故有 $(e_1, H_2) \cap (H_1, e_2) = (e_1, e_2)$.对于 $\forall (h_1, e_2) \in (H_1, e_2)$, $(e_1, h_2) \in (e_1, H_2)$, $(h_1, e_2)(e_1, h_2) = (e_1, h_2)(h_1, e_2)$,且 G 中所有元素均由g $= (h_1, h_2)$ 构成,于是由条件 a 给出了条件 b.

 $b \to a$:由于 H_1 和 H_2 构成群,显然 (e_1, H_2) 和 (H_1, e_2) 也构成群。因 $\forall h_1 \in H_1, h_2 \in H_2, h_1 h_2 = h_2 h_1. \ \forall g \in G, \exists h_1, h_2, g = h_1 h_2, \$ 故可将所

有 g 写成 (h_1, h_2) 的形式,可由条件 b 给出条件 a。 综上,两种表述等价。 END

3. 定理: $G'\sim G$, $\varphi^{-1}(e)\subset G$,则 $H=\varphi^{-1}(e)$ 为 G 的正规子群。

试证:(1).H 构成群

(2) . $\forall g$, gH = Hg

证明见马中骐群论 P31 定理二