Metody numeryczne - projekt 2.

Kinga Świderek

1 Zadanie 1.

Należy znaleźć wszystkie pierwiastki funkcji:

$$f(x) = -1.65 + 0.3x - xe^{-0.5x}$$

w przedziale [-4, 10]

Rysunek 1: Wykres funkcji $f(x) = -1.65 + 0.3x - xe^{-0.5x}$ w przedziale [-4, 10]

1.1 Opis metody - zmodyfikowana regula falsi

Metoda regula falsi jest iteracyjną metodą szukania pierwiastków równania. Należy zacząć poszukiwanie od pewnego przedziału izolacji pierwiastka α : $[a_0,b_0]$. W każdej iteracji będziemy dzielić ten przedział na dwa mniejsze podprzedziały, używając do tego prostej łączącej punkty $(a_n,f(a_n))$ i $(b_n,f(b_n))$. Sieczna ta przecina oś rzędnych w punkcie oznaczonym jako c_n . Wobec tego:

$$\frac{f(b_n) - f(a_n)}{b_n - a_n} = \frac{f(b_n) - 0}{b_n - c_n}$$

Po przekształceniu:

$$c_n = \frac{a_n f(b_n) - b_n f(a_n)}{f(b_n) - f(a_n)}$$

 c_n dzieli nasz przedział na dwa podprzedziały: $[a_n, c_n]$ oraz $[c_n, b_n]$. Należy obliczyć iloczyny $f(a_n)f(c_n)$ oraz $f(c_n)f(b_n)$. Nowym podprzedziałem - $[a_{n+1}, b_{n+1}]$ - będzie ten, dla którego iloczyn wartości funkcji jest ujemny.

Istnieją takie funkcje, dla których przedział zmienia się tylko z jednej strony, a drugi koniec pozostaje stały. Metoda nie prowadzi wówczas do zmniejszenia wielkości przedziału izolacji pierwiastka do zera, co prowadzi do wolnej zbieżności. Wobec tego wprowadzona jest modyfikacja:

wartość funkcji odpowiadającej niezmieniającemu się końcowi przedziału jest dzielona przez 2. Dla a_n niezmieniającego się przez co najmniej 2 iteracje:

$$c_n = \frac{a_n f(b_n) - b_n \frac{f(a_n)}{2}}{f(b_n) - \frac{f(a_n)}{2}}$$

Dla b_n niezmieniającego się przez co najmniej 2 iteracje:

$$c_n = \frac{a_n \frac{f(b_n)}{2} - b_n f(a_n)}{\frac{f(b_n)}{2} - f(a_n)}$$

1.2 Opis metody wyznaczania przedziałów izolacji pierwiastków

Aby powyżej opisana metoda znalazła poszukiwane rozwiązanie, konieczne jest odpowiednie wyznaczenie przedziałów izolacji pierwiastków. W tym celu wykorzystane zostanie twierdzenie Darboux: jeżeli f(a)f(b) < 0, to istnieje taki punkt c w przedziale (a,b), dla którego f(c) = 0. Poszukiwanie zaczniemy od małego przedziału, w którym nie ma żadnych pierwiastków $(f(a_0)f(b_0) > 0)$. Przedział ten będzie zwiększany do momentu znalezienia takich punktów, dla których $f(a_n)f(b_n) < 0$.

1.3 Wyniki

Znalezione pierwiastki funkcji:

Rysunek 2: Znalezione miejsca zerowe funkcji: $x_1 = -1.1303$, $x_2 = 6.3766$

Metoda regula falsi wołana z poniższymi przedziałami izolacji:

	a	b	f(a)	f(b)
x_1	-4	0	26.706	-1.65
x_2	0	8	-1.65	0.60347

Metoda Newtona wołana z parametrami: dokładność - 100*eps, maksymalna liczba iteracji - 100 oraz punktami startowymi:

	x_0	$f(x_0)$
x_1	0	-1.65
x_2	8	0.60347

W poniższej tabeli przedstawione dokładne wyniki metody regula falsi i Newtona:

	$Regula\ falsi$	Newton
x_1	-1.1303	-1.1303
$f(x_1)$	-1.2212e-14	2.2204e-16
l. iteracji dla x_1	46	7
czas wykonania dla x_1	0.0030	2.6000e-05
x_2	6.3766	6.3766
$f(x_2)$	5.5511e-17	-2.7756e-16
l. iteracji dla x_2	8	4
czas wykonania dla x_2	3.7000e-04	1.0000e-05

Obie metody osiągnęły dokładność lepszą niż 100*eps (2.2204e-14). Metoda Newtona rozwiązywała dany problem szybciej od regula falsi - zarówno pod względem ilości iteracji jak i rzeczywistego czasu wykonania programu. Pierwszy z pierwiastków z większą dokładnością odnalazła metoda Newtona, natomiast w przypadku drugiego lepiej poradziła sobie regula falsi.

2 Zadanie 2.

Należy znaleźć wszystkie pierwiastki wielomianu:

$$f(x) = x^4 + 0.9x^3 - 6x^2 + 3x - 1$$

Rysunek 3: Wykres funkcji $f(x) = x^4 + 0.9x^3 - 6x^2 + 3x - 1$ w przedziale [-4, 3]

2.1 Opis metody Müllera MM2

W tej metodzie otoczenie rozwiązania jest przybliżane funkcją kwadratową. W przypadku MM2 do konstrukcji paraboli wykorzystywany będzie jeden punkt x_k , przybliżający zero, oraz pierwsza i druga pochodna wielomianu w tym punkcie.

Jako z oznaczamy:

$$z = x - x_k$$

Szukana funkcja kwadratowa jest postaci:

$$y(x) = az^2 + bz + c$$

Wobec tego, w punkcie z=0 wartości funkcji i jej pochodnych:

$$y(0) = c = f(x_k)$$

 $y'(0) = b = f'(x_k)$
 $y''(0) = 2a = f''(x_k)$

Pierwiastki paraboli wyrażone są wzorami:

$$z_{+} = \frac{-2c}{b + \sqrt{b^{2} - 4ac}} = \frac{-2f(x_{k})}{f'(x_{k}) + \sqrt{(f'(x_{k}))^{2} - 2f(x_{k})f''(x_{k})}}$$
$$z_{-} = \frac{-2c}{b - \sqrt{b^{2} - 4ac}} = \frac{-2f(x_{k})}{f'(x_{k}) - \sqrt{(f'(x_{k}))^{2} - 2f(x_{k})f''(x_{k})}}$$

Następnym przybliżeniem zera x_{k+1} będzie poprzednie powiększone o pierwiastek paraboli o mniejszym module: $x_{k+1}=x_k+z_{min}$.

2.2 Wyniki

Znaleziono dwa miejsca zerowe w dziedzinie rzeczywistej i dwa w dziedzinie zespolonej: -3.144, 0.2504-0.3461i, 0.2504+0.3461i, 1.7433

Rysunek 4: Płaszczyzna zespolona z zaznaczonymi pierwiastkami wielomianu $f(x)=x^4+0.9x^3-6x^2+3x-1$

Na poniższym wykresie zaznaczono miejsca zerowe w przestrzeni rzeczywistej:

Rysunek 5: Płaszczy
zna rzeczywista z zaznaczonymi pierwiastkami wielomian
u $f(x)=x^4+0.9x^3-6x^2+3x-1\,$

Przeliczenie wartości błędu dla każdego znalezionego pierwiastka $(|f(x_0) - f(x)| = |f(x_0)|)$ daje następujące wyniki:

x	f(x)
-3.144	1.0660e-14
0.2504 - 0.3461i	2.8866e-15
0.2504 + 0.3461i	2.6645e-15
1.7433	1.0931e-15

Wyniki są zatem poprawne - wartość błędu w każdym przypadku nie przekracza wartości $100\,*\,eps.$