Spring 2018: STA 6448 Advanced Probability and Inference II Lecture 21

Yun Yang

► High-dimensional linear regression

RIP and restricted nullspace

Property

If the RIP constant of order 2s satisfies $\delta_{2s} < 1/3$, then the *uniform restricted nullspace property* holds for any subset S of cardinality $|S| \le s$.

- ▶ The RIP constants for sub-Gaussian random matrices with i.i.d. elements are well-controlled as long as $n = \Omega(s \log(d/s))$.
- Neither the pairwise incoherence condition nor the RIP condition are necessary conditions.
- ▶ Counter-example: $\Sigma = (1 \mu)I_d + \mu \mathbf{1}\mathbf{1}^T$ for $\mu \in (0, 1)$.

Estimation in noisy settings

Focusing on the observation model

$$y = X\theta^* + w,$$

where $w \in \mathbb{R}^n$ is the noise vector.

As a natural extension of the basis pursuit linear program, we consider the Lasso program

$$\widehat{\theta} \in \underset{\theta \in \mathbb{R}^d}{\operatorname{argmin}} \left\{ \frac{1}{2n} \| y - X\theta \|_2^2 + \lambda_n \| \theta \|_1 \right\}.$$

Here $\lambda_n > 0$ is a regularization parameter.

Two different constrained forms that are equivalent to the Lasso.

Restricted eigenvalue condition

- No longer expect to achieve perfect recovery.
- Need a condition slightly stronger than the restricted nullspace property.
- For a constant $\alpha > 1$, define

$$\mathcal{C}_{\alpha}(S) = \{ \Delta \in \mathbb{R}^d : \|\Delta_{S^c}\|_1 \le \alpha \|\Delta_S\|_1 \}.$$

Definition

The matrix X satisfies the *restricted eigenvalue* (RE) condition over S with parameters (κ,α) if

$$\frac{1}{n} \|X\Delta\|_2^2 \ge \kappa \|\Delta\|_2^2 \quad \text{for all } \Delta \in \mathcal{C}_{\alpha}(S).$$

Bounds on ℓ_2 -error

Conditions:

- (A1) θ^* is supported on S with |S| = s
- (A2) X satisfies the restricted eigenvalue condition over S with parameters $(\kappa, 3)$.

Theorem

Under conditions (A1) and (A2), if $\lambda_n \geq 2 \|\frac{X^T w}{n}\|_{\infty}$, then any Lasso solution satisfies

$$\|\widehat{\theta} - \theta^*\|_2 \le \frac{3}{\kappa} \sqrt{s} \lambda_n$$
, and $\|\widehat{\theta} - \theta^*\|_1 \le 4\sqrt{s} \|\widehat{\theta} - \theta^*\|_2$.

Example: Classical linear Gaussian model

Consider deterministic design regression

$$y = X\theta + w, \quad w \sim \mathcal{N}(0, \sigma^2 I_n),$$

where $X \in \mathbb{R}^{n \times d}$ is fixed.

Suppose X satisfies the RE condition, and is C-column normalized, meaning

$$\max_{j} \frac{\|X_{j}\|_{2}}{\sqrt{n}} \leq C.$$

By standard Gaussian tail bounds, we have

$$\mathbb{P}\Big[\Big\|\frac{X^Tw}{n}\Big\|_{\infty} \geq C\sigma\Big(\sqrt{\frac{2\log d}{n}} + \delta\Big)\Big] \leq 2\,e^{-\frac{n\delta^2}{2}}, \quad \text{for all } \delta > 0.$$

Example: Classical linear Gaussian model

Property

If $\lambda_n = 2C \, \sigma \left(\sqrt{\frac{2 \log d}{n}} + \delta \right)$, then any Lasso solution satisfies

$$\|\widehat{\theta} - \theta^*\|_2 \le \frac{6C\sigma}{\kappa} \sqrt{s} \left(\sqrt{\frac{2\log d}{n}} + \delta \right)$$

with probability at least $1 - 2e^{-\frac{n\delta^2}{2}}$.

Example: Compressed sensing

The design matrix X can be chosen by the user, and one standard choice is the standard Gaussian matrix with i.i.d. $\mathcal{N}(0,1)$ entries.

Suppose the noise vector $w \in \mathbb{R}^n$ is deterministic, with bounded entries $||w||_{\infty} \leq \sigma$.

Then each variable $X_j^T w/\sqrt{n}$ is zero-mean sub-Gaussian with parameter σ^2 . We have a similar finite sample error bound as in the previous example.

Proof outline

Denote the objective function by

$$L(\theta; \lambda_n) = \frac{1}{2n} \|y - X\theta\|_2^2 + \lambda_n \|\theta\|_1.$$

▶ Since $\widehat{\theta}$ minimizes $L(\theta; \lambda_n)$, we have

$$L(\widehat{\theta}; \lambda_n) \leq L(\theta^*; \lambda_n).$$

Let $\widehat{\Delta} = \widehat{\theta} - \theta^*$. Re-arranging yields the basic inequality

$$0 \leq \frac{1}{2n} \|X\widehat{\Delta}\|_2^2 \leq \frac{w^T X \widehat{\Delta}}{n} + \lambda_n (\|\theta^*\|_1 - \|\widehat{\theta}\|_1).$$

▶ If $\lambda_n \geq 2 \|\frac{X^T w}{n}\|_{\infty}$, then this leads to $\widehat{\Delta} \in \mathcal{C}_3(S)$, and

$$\kappa \|\widehat{\Delta}\|_2^2 \leq 3\lambda_n \sqrt{s} \|\widehat{\Delta}\|_2.$$

Restricted nullspace and eigenvalues for random designs

Theorem

Consider a random matrix $X \in \mathbb{R}^{n \times d}$, in which each row $x_i \in \mathbb{R}^d$ is drawn i.i.d. from a $\mathcal{N}(0,\Sigma)$ distribution. Then there are universal positive constants $c_1 < 1 < c_2$ such that

$$\frac{\|X\theta\|_2^2}{n} \ge c_1 \|\sqrt{\Sigma}\,\theta\|_2^2 - c_2\,\rho^2(\Sigma) \,\frac{\log d}{n} \,\|\theta\|_1^2 \quad \text{for all } \theta \in \mathbb{R}^d,$$

where $\rho^2(\Sigma)$ is the maximum diagonal entry of the covariance matrix Σ .

This result implies that an RE condition (and hence a restricted nullspace condition) holds over $\mathcal{C}_3(S)$, uniformly over all subsets S of cardinality $|S| \leq c \frac{\lambda_{\min}(\Sigma)}{\rho^2(\Sigma)} \frac{n}{\log d}$.

Bounds on prediction error

In some applications, we might be interested in finding a good predictor, meaning a vector $\theta \in \mathbb{R}^d$ such that *mean-squared* prediction error below is small,

$$\frac{\|X(\theta - \theta^*)\|_2^2}{n} = \frac{1}{n} \sum_{i=1}^n (\langle x_i, \theta - \theta^* \rangle)^2.$$

The problem of finding a good predictor is generally easier than estimating θ^* well in ℓ_2 -norm (why?).

Bounds on prediction error

Theorem

Prediction error bounds If $\lambda_n \geq 2 \|\frac{X^T w}{n}\|_{\infty}$, then any Lasso solution satisfies the bound

(Slow rates)
$$\frac{\|X(\theta - \theta^*)\|_2^2}{n} \le 12 \|\theta^*\|_1 \lambda_n.$$

In addition, suppose θ^* is supported on a subset S and the design matrix satisfies the $(\kappa; 3)$ -RE condition over S, then

(Fast rates)
$$\frac{\|X(\theta - \theta^*)\|_2^2}{n} \le \frac{9}{\kappa} |S| \lambda_n^2.$$

Proof: Apply the basic inequality of the Lasso program.