

1 功能介绍

该流水线处理器基于 32-bit RISC-V(RV32I)指令集架构,目前仅支持 R 型指令 add, sub, and, or, slt; I 型指令 lw, addi; S 型指令 sw; B 型指令 beq; J 型指令 jal。

2 设计结构框图

该 5 级流水线 RISC-V 处理器的顶层框图如 Figure 1 所示。

Figure 1

具体的内部模块结构如 Figure 2 所示。

Figure 2

模块的端口及部分内部信号描述如 Table 1 所示。

Table 1

Name	Direction	Bits	Description
clk	I	1	处理器的时钟域
reset	I	1	Active high, 异步复位输入
PCF	В	32	程序计数器,用于指令存储器的地址
InstrF	В	32	机器指令
ALUResultM	В	32	ALU运算结果
WriteDataM	В	32	数据存储器写数据
ReadDataM	В	32	数据存储器读数据
MemWriteM	В	1	数据存储器写使能控制信号

3 详细逻辑实现

Main Decoder:

Instruction	Opcode	RegWrite	ImmSrc	ALUSrc	MemWrite	ResultSrc	Branch	ALUOp	Jump
1 w	0000011	1	00	1	0	01	0	00	0
SW	0100011	0	01	1	1	xx	0	00	0
R-type	0110011	1	xx	0	0	00	0	10	0
beq	1100011	0	10	0	0	xx	1	01	0
I-type ALU	0010011	1	00	1	0	00	0	10	0
jal	1101111	1	11	X	0	10	0	xx	1

ALU Decoder

ALUOp	funct3	{op ₅ , funct7 ₅ }	ALUControl	Instruction
00	X	X	000 (add)	lw, sw
01	X	X	001 (subtract)	beq
10	000	00, 01, 10	000 (add)	add
	000	11	001 (subtract)	sub
	010	X	101 (set less than)	slt
	110	X	011 (or)	or
	111	X	010 (and)	and

Sign Extension:

ImmSrc	ImmExt	Type	Description
00	{{20{Instr[31]}}, Instr[31:20]}	I	12-bit signed immediate
01	{{20{Instr[31]}}, Instr[31:25], Instr[11:7]}	S	12-bit signed immediate
10	{{20{Instr[31]}}, Instr[7], Instr[30:25], Instr[11:8], 1'b0}	В	13-bit signed immediate
11	{{12{Instr[31]}}, Instr[19:12], Instr[20], Instr[30:21], 1'b0}	J	21-bit signed immediate

Hazard Unit:

Forward to solve data hazards when possible³:

if
$$((Rs1E == RdM) \& RegWriteM) \& (Rs1E != 0)$$
 then
$$ForwardAE = 10$$
 else if $((Rs1E == RdW) \& RegWriteW) \& (Rs1E != 0)$ then
$$ForwardAE = 01$$
 else
$$ForwardAE = 00$$

Stall when a load hazard occurs:

$$lwStall = ResultSrcE_0 \& ((Rs1D == RdE) | (Rs2D == RdE))$$

 $StallF = lwStall$
 $StallD = lwStall$

Flush when a branch is taken or a load introduces a bubble:

4 配置寄存器

寄存器堆的寄存器号及用途见 Table 2。

Table 2

Name	Register Number	Use
zero	x0	Constant value 0
ra	x1	Return Address
sp	x2	Stack pointer
gp	x3	Global pointer
tp	x4	Thread pointer
t0~2	x5~7	Temporory registers
s0/fp	x8	Saved register / Frame pointer
s1	х9	Saved registers
a0~1	x10~11	Function argument / Return values
a2~7	x12~17	Function arguments
s2~11	x18~27	Saved registers
t3~6	x28~31	Temporary registers

5 测试结果

测试指令序列如下:

```
1 # riscvtest.s
 3 # David Harris@hmc.edu
 4 # 27 Oct 2020
 6 # Test the RISC-V processor:
 7 # add, sub, and, or, slt, addi, lw, sw, beq, jal 8 # If successful, it should write the value 25 to address 100
               RISC-V Assembly
                                                                                                                Machine Code
 9 #
                                                                                         Address
               addi x2, x0, 5
                                                                                                                 00500113
               addi x3, x0, 12
addi x7, x3, -9
or x4, x7, x2
and x5, x3, x4
11
12
                                                                                                                 00C00193
                                                                                                                 FF718393
13
                                                 # x4 = (3 0R 5) = 7
                                                                                                                 0023E233
                                                # x5 = (12 AND 7) = 4
                                                                                                                 0041F2B3
               add x5, x5, x4
beq x5, x7, end
slt x4, x3, x4
15
                                                                                                                004282B3
                                                 # shouldn't be taken
                                                                                                                 02728863
17
                                                                                                                0041A233
               beq x4, x0, around
                                               # should be taken
                                                                                                                00020463
19 addi x5, x0, 0
20 around: slt x4, x7, x2
21 add x7, x4, x5
                                                                                                                00000293
                                                                                                                 0023A233
21
22
23
24
25
26
                                                                                                                005203B3
                                                                                                                 402383B3
               sw x7, 84(x3)
lw x2, 96(x0)
add x9, x2, x5
                                                                                                                0471AA23
                                                # x2 = [96] = 7
# x9 = (7 + 11) = 18
                                                                                                                 06002103
                                                                                                                 005104B3
                                                                                          4<sup>⊙</sup>
                                                                                                                 008001EF
27
               addi x2, x0, 1
add x2, x2, x9
sw x2, 0x20(x3)
beq x2, x2, done
                                                                                          44
                                                                                                                 00100113
28 end:
                                                                                                                 00910133
29
                                                  # [100] = 25
                                                                                          4C
                                                                                                                 0221A023
30 done:
                                                  # infinite loop
                                                                                          50
                                                                                                                 00210063
```

仿真波形如下:

基本与参考结果一致。