HYPOTHESIS TESTING WITH ONE SAMPLE

MAT 152 – Statistical Methods I

Lecture 3

Instructor: Dustin Roten

Fall 2020

FULL HYPOTHESIS TEST EXAMPLES

- Three different distributions for hypothesis testing
 - Normal Distribution (known population standard deviation)
 - T-Distribution (unknown population standard deviation)
 - Binomial Distribution

- A college football coach records the mean weight that his players can bench press as 275 pounds, with a standard deviation of 55 pounds. Three of his players thought that the mean weight was **more than** that amount. They asked 30 of their teammates for their estimated maximum lift on the bench press exercise. $\bar{x} = 286.2$ lbs (from the sample)
- Conduct a hypothesis test using a 2.5% level of significance to determine if the bench press mean is **more than 275 pounds**.

$$H_0$$
: $\mu = 275$

$$H_a$$
: $\mu > 275$

Since we know the standard deviation, a normal distribution will be used. The distribution must be constructed for the SAMPLE MEANS.

$$\bar{X} \sim N\left(275, \frac{55}{\sqrt{30}}\right) = N(275, 10.042)$$

Now, we calculate the probability of our sample mean: $P(\bar{X} > 286.2) = 0.13236$

 $(H_a: \mu > 275 \text{ mean right-tailed test})$

Interpretation of the p-value:

If H_0 is true, then there is a 0.13236 (13.24%) that the football players can lift a mean weight of 286.2 pounds or more. Because a 13.23% chance is large enough, a mean weight lift of 286.2 pounds or more is not an extreme event.

0.025 < 0.13236

Do not reject the null hypothesis!

Full conclusion:

At the 2.5% level of significance, from the sample data, there is not sufficient evidence to conclude that the true mean weight lifted is more than 275 pounds.

EXAMPLE (T-DISTRIBUTION)

Statistics students believe that the mean score on the first statistics test is 65. A statistics instructor thinks the mean score is higher than 65. He samples ten statistics students and obtains the score. He performs a hypothesis test using a 5% level of significance. (Since the data are grades, they are assumed to be normal.) The statistics from the sample are: $\bar{x} = 67$ and $s \approx 3.2$.

Set up the hypothesis test:

 H_0 : $\mu = 65$

 $\overline{H_a: \mu > 65}$ (A right-tailed test is required)

Random variable: \bar{X} = average score on the first statistics test

EXAMPLE (T-DISTRIBUTION)

Since no population standard deviation is given and the data are assumed to be normal, a t-test is needed. We will use $T \sim t_{df}$.

We must determine $P(\bar{x} > 67)$ using the t-Distribution.

It is important to note that our t-Distribution calculator only accepts tscores, not the actual values.

$$t = \frac{\bar{x} - \mu}{\frac{S}{\sqrt{n}}} = \frac{67 - 65}{\frac{3.2}{\sqrt{10}}} \approx 1.976$$

$$p - value = P(\bar{x} > 67) = 0.03979$$

EXAMPLE (T-DISTRIBUTION)

Decision:

Since $p < \alpha$ where 0.0397 < 0.05 we reject H_0 .

Thus, we believe that the mean is greater than 65.

Conclusion:

At a 5% level of significance, the sample data show sufficient evidence that the mean (average) test score is more than 65, just as the math instructor thinks.

June believes that 50% of first-time brides in the United States are younger than their grooms. She performs a hypothesis test to determine if the percentage is the same or different from 50%. June samples 100 first-time brides and 53 reply that they are younger than their grooms. For the hypothesis test, she uses a 1% level of significance.

 H_0 : p=0.50 H_a : $p\neq 0.50$ (Can be above or below, so two-tailed test) $\alpha=0.01$

Random variable: P' = percent of first-time brides who are younger than their grooms.

This is a proportion problem so a binomial distribution must be used. From June's assumptions, we can build an approximate normal distribution:

$$P' \sim N\left(p, \sqrt{\frac{p \cdot q}{n}}\right) = N\left(0.5, \sqrt{\frac{0.5 \cdot 0.5}{100}}\right) = N(0.5, 0.05)$$

We need to examine the likelihood of obtaining her sample proportion

$$p' = \frac{53}{100} = 0.53$$

This is a two-tailed test so the probability must be investigated on BOTH sides of the distribution.

$$P(p' < 0.47 \mid p' > 0.53) = P(p' < 0.47) + P(p' > 0.53) = 0.5485$$

Interpretation:

If the null hypothesis is true, then there is 0.5485 (54.85%) probability that the sample proportion p' is 0.53 or more OR 0.47 or less.

Decision:

Since $\alpha < p$ (0.01 < 0.5485), we cannot reject the null hypothesis.

Conclusion:

At the 1% level of significance, the sample data do not show sufficient evidence that the percentage of first-time brides who are younger than their grooms is different from 50%.

So, June may be wrong be we don't have sufficient evidence to prove it.