Corrigé partiel 2019

Exercice 1. Soit $f: \mathbf{R} \to \mathbf{R}$ une application.

- 1. Écrire une définition de l'ensemble f(]-1,1[).
- 2. Écrire une assertion mathématique correspondant à la phrase "f a pour limite 1 en 0."

Solution de l'exercice 1. 1. (1 point) Voici deux définitions possibles :

$$f(]-1,1[) = \{y \in \mathbf{R} \mid \exists x \in]-1,1[,f(x)=y\} = \{f(x),x \in]-1,1[\}.$$

2. (1 point) $\forall \varepsilon \in \mathbf{R}_{+}^{*}, \exists \eta \in \mathbf{R}_{+}^{*}, \forall x \in \mathbf{R}_{+}^{*}, |x| < \eta \implies |f(x) - 1| < \varepsilon$.

Exercice 2. Soit $f_1, f_2 : \mathbf{R} \to \mathbf{R}$ deux applications. Soit P l'assertion

$$\forall y \in \mathbf{R}, \forall i \in \{1, 2\}, ((f_i(y) < 0) \implies (\exists j \in \{1, 2\}, f_j(y) > 0)).$$

- 1. Écrire la négation de l'assertion P.
- 2. Que signifie P (en français)?
- 3. Donner un exemple de deux fonctions f_1, f_2 , qui satisfont P.
- 4. Donner un exemple de deux fonctions f_1, f_2 , qui ne satisfont pas P.

Solution de l'exercice 2. 1. (1 point) $\exists y \in \mathbf{R}, \exists i \in \{1, 2\}, ((f_i(y) < 0) \land (\forall j \in \{1, 2\}, f_j(y) \le 0)).$

2. (1 point) En tout point y de \mathbf{R} , si l'une des deux fonctions f_1, f_2 est strictement négative en y, alors l'une des deux fonctions est strictement positive en y (et donc c'est l'autre fonction qui est strictement positive).

Autrement dit : les deux fonctions ne peuvent être simultanément négatives.

- 3. (1 point) Deux fonctions constantes $f_1(x) = 1$ et $f_2(x) = 1$ marchent : elles ne sont jamais négatives, donc il n'y a rien à vérifier. Elles satisfont donc P trivialement. Un exemple moins trivial : $f_1(x) = \sin x$ et $f_2(x) = -\sin x$. Lorsqu'une des deux fonctions est négative, l'autre est positive, donc elles satisfont P.
- 4. (1 point) Deux fonctions constantes $f_1(x) = -1$ et $f_2(x) = -1$ marchent : lorsque f_1 est négative, f_2 l'est aussi.

Exercice 3. Pour chaque assertion suivante, dire si elle est vraie ou fausse, et le démontrer.

- 1. $\forall x \in \mathbf{R}, \exists y \in \mathbf{R}, x^2 > y^2$
- 2. $\forall x \in \mathbf{R}, \exists y \in \mathbf{R}, x^3 > y^3$

- 3. $\forall x \in \mathbf{R}, \exists y \in \{-1, 0, +1\}, |x| = xy$
- 4. $\forall x, y \in \mathbf{R}_+, \exists s \in \{-1, +1\}, |x y| = s \times (|x| |y|)$

Solution de l'exercice 3. 1. (1 point) L'assertion est fausse. En effet sa négation est $\exists x \in \mathbf{R}, \forall y \in \mathbf{R}, x^2 \leq y^2$. Il suffit alors de choisir x = 0 pour que la négation soit vraie : pour tout y réel, on a bien $0 \leq y^2$.

- 2. (1 point) L'assertion est vraie. En effet la fonction $x \mapsto x^3$ est strictement croissante, donc pour x fixé, on peut poser (1 point) y = x 1, et on a alors $x^3 > (x 1)^3 = y^3$.
- 3. (1 point) L'assertion est vraie. Démontrons-le. Soit x un réel quelconque. Séparons deux cas.

Cas $1: x \ge 0$. Alors on a |x| = x, et donc en posant y = +1, on a |x| = x = xy. Cas 2: x < 0. Alors on a |x| = -x, et donc en posant y = -1, on a |x| = -x = xy.

4. (1 point) L'assertion est vraie. En effet comme x et y sont positifs, on a |x|-|y|=x-y d'une part, et d'autre part, si x-y est positifs on a $|x-y|=x-y=1\times (|x|-|y|)$ et si x-y est négatif on a $|x-y|=-x+y=(-1)\times (|x|-|y|)$. Dans tous les cas on trouve un $s\in\{-1,+1\}$ tel que $|x-y|=s\times (|x|-|y|)$.

Exercice 4. Décrire les sous-ensembles de ${\bf R}$ ci-dessous comme intervalles ou réunions d'intervalles.

- 1. $\{x \in \mathbf{R} \mid |x 2| < 0\},\$
- 2. $\{x \in \mathbf{R} \mid |x 3| \ge 5\},\$
- 3. $\{x \in \mathbf{R} \mid x^2 3x < 0\},\$
- 4. $\{x \in \mathbf{R} \mid |x+1| \ge |3x-1|\}.$

Solution de l'exercice 4. 1. (1 point) Comme la valeur absolue est une fonction qui prend ses valeurs de \mathbf{R}_+ , elle n'est jamais strictement négative, par conséquent on a $\{x \in \mathbf{R} \mid |x-2| < 0\} = \emptyset$.

2. (2 points) Séparons deux cas.

Cas 1 : si $x-3 \ge 0$, alors on a

$$|x-3| \ge 5 \iff x-3 \ge 5 \iff x \ge 8,$$

donc on trouve l'intervalle $[8, +\infty[$, dont les points satisfont bien $x-3 \ge 0$. Cas 2: si x-3<0, alors on a

$$|x-3| \ge 5 \iff -x+3 \ge 5 \iff x \le 2,$$

donc on trouve l'intervalle $]-\infty,2]$, dont les points satisfont bien x-3<0. En conclusion, on a $\{x\in\mathbf{R}\mid |x-3|\geq 5\}=]-\infty,2]\cup[8,+\infty[$. 3. (1 point) On a $x^2 - 3x = x(x - 3)$. On peut donc faire un tableau de signes :

On voit alors que x(x-3) < 0 est équivalent à $x \in]0,3[$.

4. (3 points) Là encore on commence par un tableau de signes :

On sépare alors trois cas.

Cas $1: x \in]-\infty, -1[$. Alors on a |x+1|=-x-1 et |3x-1|=-3x+1. On a alors

$$|x+1| \ge |3x-1| \iff -x-1 \ge -3x+1 \iff 2x \ge 2 \iff x \ge 1.$$

L'ensemble des solutions dans ce cas est donc $]-\infty,-1[\cap[1,+\infty[=\emptyset.$

Cas 2: $x \in [-1, \frac{1}{3}[$. Alors on a |x+1| = x+1 et |3x-1| = -3x+1, d'où

$$|x+1| \ge |3x-1| \iff x+1 \ge -3x+1 \iff 4x \ge 0 \iff x \ge 0.$$

L'ensemble des solutions dans ce cas est donc $[-1, \frac{1}{3}] \cap \mathbf{R}_+ = [0, \frac{1}{3}]$.

Cas $3: x \in [\frac{1}{3}, +\infty[$. Alors on a |x+1| = x+1 et |3x-1| = 3x-1, d'où

$$|x+1| \ge |3x-1| \iff x+1 \ge 3x-1 \iff 2 \ge 2x \iff x \le 1.$$

L'ensemble des solutions dans ce cas est donc $\left[\frac{1}{3}, +\infty\right[\cap] - \infty, 1\right] = \left[\frac{1}{3}, 1\right].$

En conclusion, l'ensemble des solutions est donc $\emptyset \cup [0, \frac{1}{3}[\cup[\frac{1}{3}, 1] = [0, 1]]$.

Exercice 5. Soit $f: \mathbf{R} \to \mathbf{R}$ l'application $x \mapsto x^2$. Pour chaque assertion suivante, dire si elle est vraie ou fausse, et le démontrer.

1.
$$\forall x \in \mathbf{R}, |x-2| < 10^{-1} \implies |f(x) - f(2)| < 10^{-2}$$

2.
$$\forall x \in \mathbf{R}, |x-2| < 10^{-2} \implies |f(x) - f(2)| < 10^{-1}$$

3.
$$\forall x \in \mathbf{R}, |f(x) - f(2)| < 10^{-1} \implies |x - 2| < 10^{-2}$$

Solution de l'exercice 5. 1. (1 point) Au voisinage du nombre 2, la fonction carré a tendance a multiplier les imprécisions par 4. Cette assertion semble donc fausse. Voici un contre-exemple : prenons x = 2,05, alors on a bien $|x-2| = |2,05-2| = 0,05 < 10^{-1}$. D'autre part on a $f(x) = (2+0,05)^2 = 4+0,1+0,0025 = 4,1025$.

En particulier on a |f(x) - f(2)| = 0, $1025 > 10^{-2}$. Par conséquent l'assertion est fausse.

2. (2 points) On a remarqué dans la question précédente que la fonction f multiplie les imprécisions par enviton 4 au voisinage de 2, comme $4 \times 10^{-2} < 10^{-1}$, on s'attend à ce que l'assertion soit vraie. Démontrons-la.

Soit x réel tel que $|x-2| < 10^{-2}$. Alors on a $|f(x)-f(2)| = |x^2-2^2| = |(x+2)(x-2)| = |x+2| \times |x-2|$. Or comme on a $x \in [2-10^{-2}, 2+10^{-2}]$, on a $x+2 \in [4-10^{-2}, 4+10^{-2}]$, et donc en particulier |x+2| < 5 < 10. Par conséquent on a $|f(x)-f(2)| = |x+2| \times |x-2| < 10 \times |x-2| < 10 \times 10^{-2} = 10^{-1}$. L'assertion est donc vraie.

3. (1 point) L'assertion est fausse. Il suffit de prendre x=-2 pour avoir $|f(x)-f(2)|=|4-4|=0<10^{-1}$, mais on a aussi $|-2-2|=4\leq 10^{-2}$, ce qui prouve que l'implication est fausse.

Exercice 6. 1. Calculer $\sum_{j=1}^{3} \left(\sum_{k=j}^{3} (j \times k) \right)$.

2. Démontrer que pour tout $n \in \mathbb{N}$ on a $\sum_{i=0}^{n} i(i+1) = \frac{n(n+1)(n+2)}{3}$.

Solution de l'exercice 6. 1. (1 point) On peut développer :

$$\sum_{j=1}^{3} \left(\sum_{k=j}^{3} (j \times k) \right) = \left(\sum_{k=1}^{3} (1 \times k) \right) + \left(\sum_{k=2}^{3} (2 \times k) \right) + \left(\sum_{k=3}^{3} (3 \times k) \right)$$

$$= \left((1 \times 1) + (1 \times 2) + (1 \times 3) \right) + \left((2 \times 2) + (2 \times 3) \right) + \left((3 \times 3) \right)$$

$$= (1 + 2 + 3) + (4 + 6) + (9)$$

$$= 6 + 10 + 9$$

$$= 25.$$

2. (2 points) Faisons une preuve par récurrence. Pour l'initialisation, on a d'une part $\sum_{i=0}^{0} i(i+1) = 0 \times (0+1) = 0, \text{ et d'autre part } \frac{0(0+1)(0+2)}{3} = 0.$

Pour l'hérédité, soit $n \in \mathbb{N}$ et supposons qu'on a $\sum_{i=0}^{n} i(i+1) = \frac{n(n+1)(n+2)}{3}$.

Alors on a

$$\sum_{i=0}^{n+1} i(i+1) = \left(\sum_{i=0}^{n} i(i+1)\right) + (n+1)(n+2)$$

$$= \frac{n(n+1)(n+2)}{3} + (n+1)(n+2)$$

$$= \frac{n(n+1)(n+2) + 3(n+1)(n+2)}{3}$$

$$= \frac{(n+1)(n+2)(n+3)}{3},$$

ce qui conclut.

Exercice 7. Soit $f: \mathbf{R}_+ \to \mathbf{R}_+$ l'application $x \mapsto \sqrt{x}$.

- 1. Pour $x, y \in \mathbf{R}_+$, simplifier l'expression $(\sqrt{x} \sqrt{y})(\sqrt{x} + \sqrt{y})$.
- 2. En déduire une constante réelle C telle que, pour tous $x, y \in [1, 10]$, on ait

$$|\sqrt{x} - \sqrt{y}| \le C|x - y|.$$

- 3. En déduire que la restriction de la fonction f à l'intervalle [1, 10] est continue.
- 4. En utilisant la question 2, dire si l'estimation e = 2.718... permet de connaître la valeur de \sqrt{e} avec une précision de 10^{-4} .
- 5. Montrer que f est continue.

Solution de l'exercice 7. 1. (1 point) On a $(\sqrt{x} - \sqrt{y})(\sqrt{x} + \sqrt{y}) = \sqrt{x^2} - \sqrt{y^2} = |x| - |y|$. Comme x et y sont positifs, on peut simplifier cette dernière expression en x - y.

2. (2 points) Par définition cela revient à montrer que pour tout $a \in [1, 10]$ on a $f|_{[1,10]}(x) \xrightarrow{x \to a} f(a)$, ce qui se traduit par l'assertion

$$\forall a \in [1, 10], \forall \varepsilon \in \mathbf{R}_+^*, \exists \eta \in \mathbf{R}_+^*, \forall x \in [1, 10], (|x - a| < \eta) \implies (f(x) - f(a) < \varepsilon).$$

Démontrons cette dernière assertion. Soit $a \in [1,10]$ et soit $\varepsilon \in \mathbf{R}_+^*$. Posons $\eta = 2\varepsilon$ (nous verrons plus bas pourquoi le 2 est ce qu'il nous faut ici). Soit $x \in [1,10]$, et supposons que x vérifie $|x-a| < \eta$. Alors d'après la question 2, on a $|f(x) - f(a)| \le \frac{1}{2}|x-a| < \frac{1}{2}\eta = \frac{1}{2}2\varepsilon = \varepsilon$, ce qui prouve l'assertion.

- 3. (1 point) L'estimation $e=2,718\ldots$ est précise à 10^{-3} près, c'est-à-dire qu'on a $|2,718-e|<10^{-3}$. Or d'après la question 2, on a alors $|\sqrt{2,718}-\sqrt{e}|\leq \frac{1}{2}|2,718-e|<10^{-3}/2$. Ce dernier nombre n'est pas inférieur ou égal à 10^{-4} , donc l'estimation n'est ici pas suffisante pour avoir une précision de 10^{-4} .
- 4. (3 points) Pour montrer la continuité de f sur \mathbf{R}_+ , il faut montrer l'assertion

$$\forall a \in \mathbf{R}_+, \forall \varepsilon \in \mathbf{R}_+^*, \exists \eta \in \mathbf{R}_+^*, \forall x \in \mathbf{R}_+, (|x - a| < \eta) \implies (|f(x) - f(a)| < \varepsilon).$$

Le schéma est le même qu'à la question 3, mais la constante C ne marche pas partout. Le raisonnement de la question 2 montre que si a est strictement positif, alors pour tout $a \in \left[\frac{a}{2}, \frac{3a}{2}\right]$, on a $|\sqrt{x} - \sqrt{a}| = |\frac{|x| - |a|}{\sqrt{x} + \sqrt{a}}| = \frac{|x - a|}{\sqrt{x} + \sqrt{a}} \le \frac{|x - a|}{\sqrt{a/2} + \sqrt{a/2}} = \frac{1}{\sqrt{2a}}|x - a|$.

On peut alors démontrer l'assertion. Soit $a \in \mathbf{R}_+$. On sépare deux cas : Cas 1: a > 0. Soit $\varepsilon > 0$. On pose alors $\eta = \sqrt{2a\varepsilon}$. Soit $x \in \mathbf{R}_+$ tel que $|x-a| < \eta$. On a alors $|f(x) - f(a)| \le \frac{1}{\sqrt{2a}}|x-a| < \frac{1}{\sqrt{2a}}\eta = \frac{1}{\sqrt{2a}}\sqrt{2a\varepsilon} = \varepsilon$, ce qui prouve l'assertion dans ce cas.

Cas 2 : a = 0. Soit $\varepsilon \in \mathbf{R}_+^*$. On pose $\eta = \varepsilon^2$. Soit $x \in \mathbf{R}_+$ tel que $|x| < \eta$. Alors on a $|f(x) - f(a)| = \sqrt{x} < \sqrt{\eta} = \sqrt{\varepsilon^2} = \varepsilon$, ce qui conclut dans ce cas.

Comme on a épuisé tous les cas pour a, l'assertion est bien montrée pour tout $a \in \mathbf{R}_+$.

Exercice 8. Soit x un nombre réel tel que $x + \frac{1}{x}$ est dans \mathbf{Z} .

- 1. Démontrer que le nombre $x^2 + \frac{1}{x^2}$ est aussi dans **Z**.
- 2. Démontrer que pour tout $n \in \mathbf{N}$ le nombre $x^n + \frac{1}{x^n}$ est dans \mathbf{Z} . (Indication : Démontrer le résultat par récurrence en considérant l'assertion P(n) : "Les nombres $x^n + \frac{1}{x^n}$ et $x^{n+1} + \frac{1}{x^{n+1}}$ sont dans \mathbf{Z} ".)
- **Solution de l'exercice 8.** 1. (1 point) On a $(x+\frac{1}{x})^2=x^2+2+\frac{1}{x^2}$. On a alors $x^2+\frac{1}{x^2}=(x+\frac{1}{x})^2-2$. Or par hypothèse $(x+\frac{1}{x})^2$ est un entier, et 2 aussi, donc leur différence $x^2+\frac{1}{x^2}$ aussi.
 - 2. (2 points) On considère l'assertion P(n): "Les nombres $x^n + \frac{1}{x^n}$ et $x^{n+1} + \frac{1}{x^{n+1}}$ sont dans \mathbf{Z} ", que l'on va démontrer par récurrence sur n, en partant de n = 0.

Pour n=0, l'assertion revient à dire que $x^0+\frac{1}{x^0}=2$ et $x+\frac{1}{x}$ sont entiers, ce qui est vrai par hypothèse.

Supposons maintenant qu'on a démontré P(n). Développons $(x^n + \frac{1}{x^n})(x + \frac{1}{x}) = x^{n+1} + x^{n-1} + \frac{1}{x^{n-1}} + \frac{1}{x^{n+1}} = (x^{n+1} + \frac{1}{x^{n+1}}) + (x^{n-1} + \frac{1}{x^{n-1}})$. Par conséquent on a $x^{n+1} + \frac{1}{x^{n+1}} = (x^n + \frac{1}{x^n})(x + \frac{1}{x}) - (x^{n-1} + \frac{1}{x^{n-1}})$.

Par hypothèse de récurrence, le membre de droite dans l'équation précédente est un entier, par conséquent $x^{n+1} + \frac{1}{x^{n+1}}$ est aussi entier. Comme $x^n + \frac{1}{x^n}$ est supposé entier, on a bien démontré P(n+1), ce qui achève la récurrence (et ce corrigé).