Lecture #16

Ray Tracing - Basics

Computer Graphics
Winter Term 2016/17

Marc Stamminger / Roberto Grosso

- Up to now: Rasterization
 - Scanline algorithm
 - Local illumination using Phong lighting

• Ray Tracing:

A different rendering paradigm

- More illumination effects → Global Illumination
- Physically motivated illumination computations

Up to now: Rasterization

for each triangle t find pixels inside t shade pixel

Ray Casting

• Ray Casting ⊂ Ray Tracing

Ray Casting → Ray Tracing

- Having a method at hand that intersects a ray with our scene, we use this to generate new lighting effects that are not directly possible with rasterization
 - → reflections
 - → refractions
 - → shadows
 - → indirect illumination (later)

• • •

Ray Tracing

• 1968: Ray Casting: Arthur Appel

• 1979: Recursive ray tracing: Turner Whitted

Image by Henrik Wann Jensen. He writes: One of my first ray tracing images (1990-1991). Rendered first time on an Amiga in HAM mode (the good old days).

• Car with reflections, refractions, environment lighting

Indirect Illumination → not possible with simple ray tracing

Caustics: light patterns generated by reflections off specular surfaces
 → not possible with simple ray tracing

graphics.ucsd.edu

https://blenderartists.org/forum/showthread.php?116585-Realistic-underwater-lighting-and-caustics-added-tutorial-link

Ray Tracing

- Today: Basics of Ray Tracing
 - how to generate eye rays
 - how to intersect a ray with scene geometry
 - a first ray caster
- Tomorrow:
 - how to generate secondary rays
 - recursive ray tracing procedure
- Next weeks:
 - accelerations structures for fast ray tracing
 - special effects possible with ray tracing
 - the rendering equation

Rays

- Mathematical representation of an (eye) ray
 - Parametric line from ray origin (eye)
 e in direction d

$$p(t) = e + td$$

- p(0) = e
- $t_1, t_2 > 0$ and $t_1 < t_2 \Rightarrow p(t1)$ closer to the eye than p(t2)
- $t < 0 \Rightarrow p(t)$ behind the eye

• find intersection of ray with scene with smallest t > 0

- Every eye ray belongs to one pixel
- Starting point of eye ray: camera
- Eye ray goes through pixel on image plane

- Intersection with objects:
 - t-values (t > 0)
 - Smallest t ⇒ first intersection ⇒
 visible object

Remember from Lecture #07: Viewing
 Given camera position, view direction and up-vector
 → compute camera basis vectors u, v, w

• Use this to generate an image plane: e+w+xu+yv

• Point (x, y) on image plane:

$$e + w + xu + yv$$

• Using the field of view *fovy* and *aspect* ratio, a window is defined on the image plane:

$$(x,y) \in [-x_m,x_m] \times [-y_m,y_m]$$
 with $y_m = \tan\frac{fovy}{2}$, $x_m = aspect\ y_m$

• Finally, we have to map integer pixel coordinates (i, j) to this window:

$$x = \left(\frac{i+0.5}{n_x} \times 2 - 1\right) x_m, \quad y \text{ analog}$$
number of relative pixels in x coordinate

- Eye ray computation:
 - compute (u, v, w) for camera frame
 - for pixel (i, j): eye ray is e + td with

e = camera position

$$x = \left(\frac{i+0.5}{n_x} \times 2 - 1\right) \times aspect \times \tan\frac{fovy}{2}$$
 and

$$y = \left(\frac{j + 0.5}{n_y} \times 2 - 1\right) \times \tan\frac{fovy}{2}$$

$$d = \frac{w + xu + yv}{\|w + xu + yv\|}$$

• With this model, we can handle other camera types than projective pin hole cameras, e.g. panorama cameras, fish eye lenses or similar

By Nickj (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0) or GFDL (http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons

This is not possible with rasterization and a pinhole camera (why?)

Ray – Object Intersection

Does ray intersect a scene object?
 And if so, at which t?

 Today we look at triangles, polygons, and spheres

Ray – Object Intersection

- Planes and plane equations
 - Normal

$$n = (B - A) \times (C - A) / \|(B - A) \times (C - A)\|$$

• plane equation, point-normal form

$$n \circ (x - A) = 0$$

constant-normal form

$$n \circ x = d$$
 (= $n \circ A$)

• d is the distance to the origin of the coord. system

Ray – Object Intersection

Halfspaces

- positive half space $\{x \in \mathbb{R}^3 : n \circ x d > 0\}$
- negative half space $\{x \in \mathbb{R}^3 : n \circ x d < 0\}$
- the positive halfspace lies on the side in which the normal points, and the negative halfspace on the opposite side.
- a point is in front of the plane, if it is in the positive halfspace, and a point is behind the plane, if it is in the negative halfspace

Distance

• $n \circ x - d$ is the distance of x to the plane

Ray - Plane intersection

Parametric representation of a ray

$$p(t) = e + td$$
, $||d|| = 1$ or $p(t) = e + t(s - e)$, where s is a point in space, e.g. pixel mid point

• Implicit equation of a plane

$$\pi = (n, d) = \{x \in \mathbb{R}^3 : n \cdot x = d\}$$

• n is the plane's normal, if ||n|| = 1, d is the distance of the plane to the origin

Ray - Plane intersection

• Set p(t) in the implicit equation for the plane π

$$n \circ p(t) = d$$

$$t = \frac{d - n \circ e}{n \circ d}$$

$$q = e + \frac{d - n \circ e}{n \circ d} d$$

- Many algorithms exist for this problem
- Here barycentric coordinates are used for the parametric plane containing the triangle
- System of equations:

$$e + td = a + \beta(b - a) + \gamma(c - a)$$

- Unknowns: t, β, γ
- Intersection at R = e + td if
 - t > 0 (R on positive part of ray)
 - $\beta > 0, \gamma > 0, \beta + \gamma < 1$ (R within triangle)

• Solve
$$e + td = a + \beta(b - a) + \gamma(c - a)$$
:
$$\underbrace{\begin{pmatrix} \vdots & \vdots & \vdots \\ d & a - b & a - c \end{pmatrix}}_{M} \binom{t}{\beta} = a - e$$

• Solve using Cramer's rule:

•
$$t = \det \begin{pmatrix} \vdots & \vdots & \vdots \\ a - e & a - b & a - c \end{pmatrix} / \det A$$

• $\beta = \det \begin{pmatrix} \vdots & \vdots & \vdots \\ d & a - e & a - c \end{pmatrix} / \det A$
• $\gamma = \det \begin{pmatrix} \vdots & \vdots & \vdots \\ d & a - b & a - e \end{pmatrix} / \det A$

- If $\det A = 0$, then
 - The triangle is degenerate (a line or a point) or
 - The ray is parallel to the triangle

```
return false
         return false
   return false
else
  return true
```

```
// dividing by d until intersection has been found to pierce triangle
Vector ap = p - a;
```


Interpretation of ray-triangle intersection test, Möller Trumbore

- Ray Polygon Intersection
 - Given a planar polygon with
 - m vertices p_1 through p_m
 - All on a plane with normal n
 - Method
 - 1) compute intersection p of ray with the plane containing the polygon
 - 2) test if *p* is within the polygon

- Ray Polygon Intersection
 - Ray e + td
 - Compute intersection with plane containing polygon

$$p = e + \frac{(p_1 - e) \circ n}{d \circ n} d$$

- Location of p with respect to polygon
 - Project polygon and p onto the coordinate plane with the largest projection.
 - Then do 2D inside-outside test

In this example, we would project the triangle to the xy-plane because the normal has maximal component in z

- Two different cases:
 - Polygon is convex → simple edge tests possible
 - Polygon can be non-convex → more complicated in/out test needed

- Convex polytopes (polyhedra)
 - A polyhedron (convex polygon in 2D) can be described as the intersection of a set of halfspaces
 - a point x is inside the polyhedron, if it is behind all the halfspaces

$$n_1 \circ x - d_1 < 0$$

 $n_2 \circ x - d_2 < 0$
 $n_3 \circ x - d_3 < 0$

- Inside Outside test for convex polygons
 - convert edges to half space representation
 - check point for all half spaces
 - \rightarrow as soon as one fails, point is outside
 - → if none fails, point is inside
 - ideally: half space vectors stored with triangle
 - → fast, but consumes memory

- For non-convex polygons, the previous test is not correct
 → example ?
- General polygon inside-outside test
 - Generate ray from point in arbitrary direction
 - Count intersections with polygon boundary
 - Even -> outside
 - Odd -> inside

- Polygon inside-outside test
 - Problem: ray hits one vertex
 → should it count twice or once?
 - in the example on the right, the upper ray should count two intersections, the lower one only one...
 - Simple robust solution:
 If such a boundary case is detected,
 use other ray with new direction

Ray – Sphere Intersection

- Implicit surface equation f(x) = 0
- Example: sphere with center c and radius r:

$$(x-c)\circ(x-c)-r^2=0$$

• Set the ray in the implicit equation and find t and the intersection point p, if possible

$$f(p(t)) = 0 \Rightarrow \text{ray parameter } t$$

Ray – Sphere Intersection

• Intersection with ray p(t) = e + td:

$$(e+td-c)\circ(e+td-c)-r^2=0$$

Results in quadratic equation

$$(d \circ d)t^2 + 2 d \circ (e - c)t + (e - c) \circ (e - c) - r^2 = 0$$

• Since $(d \circ d) = 1$:

$$t = \frac{-b \pm \sqrt{b^2 - 4c}}{2}$$

with $b = 2 d \circ (e - c)$ and $c = (e - c) \circ (e - c) - r^2$

Ray – Sphere Intersection

- Meaning of the discriminant $b^2 4c$
 - If negative → no intersections
 - If positive → two solutions
 - where ray enters the sphere
 - where ray leaves the sphere
 - If zero → ray touches sphere at exactly one point

- Always check discriminant first!
- Remark: sphere-ray intersection important
- Using sphere as bounding object for more complex objects
- Provides sufficient information about existence of intersection

Ray – Quadric intersection

- Similar tests available for
 - cylinders
 - cones
 - tori
 - •

Ray Casting

Up to now, we have the following:

```
for each pixel p in image plane
    generate eye ray (e,d) through pixel p
                                                      just learned
    tmin = infinity; omin = null;
    for each scene object o
        t = intersect ray (e,d) with object o
                                                        just learned
        if ray intersects object and t < tmin</pre>
            tmin = t;
            omin = o;
    if omin != null
        compute lighting at hit point on object omin
                                                              333
        set p to this color
    else
        set p to background color
```

Ray Casting - Lighting

- How to do the lighting at a found hit point?
- \rightarrow we need the hit point, its surface normal, maybe texture coordinates etc.
- In a triangle mesh, these can be computed from barycentric coordinates of hit point
- Typically, this information is stored in a Hit-Object

```
struct Hit {
    float t; // ray parameter
    Obj *obj; // hit scene object
    float alpha,beta,gamma; // barycentric coordinates

    vec3 getPost() { ... }
    vec3 getNormal() { ... }
    vec2 getTexCoord() { ... }
}
Hit Scene::intersect(Ray &ray) { ... }
```

Ray Casting - Lighting

new version

```
for each pixel p in image plane
    Ray ray = camera->getEyeRay(p);
   Hit closestHit = null;
    for each scene object o
        Hit hit = o.intersect(ray);
        if closestHit == null || hit.t < closestHit.t</pre>
            closestHit = hit;
    if closestHit != null
        c = closestHit.obj.shader.computeLighting(
                closestHit.getPos(),
                closestHit.getNormal(),
                ...);
        setPixelColor(p,c);
    else
        setPixelColor(p,backgroundColor);
```

Next Lecture

- New effects using secondary rays
 - shadows, reflections, refractions
 - recursive ray tracing