PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-249417

(43) Date of publication of application: 26.09.1995

(51)Int.CI.

H01M 8/02 H01M 8/10

H01M 8/24

(21)Application number: 06-067732

(71)Applicant:

TOYOTA MOTOR CORP

(22)Date of filing:

10.03.1994

(72)Inventor:

NONOBE YASUHIRO

TAKAHASHI TAKESHI TOOHATA YOSHIKAZU

(54) UNIT CELL FOR FUEL CELL AND MANUFACTURE THEREOF

(57) Abstract:

PURPOSE: To even bearing stress to be applied to the laminated surface of each member of a fuel cell so as to reduce the internal resistance of a fuel cell, and also to prevent the mixture and the leak of the fuel gas.

CONSTITUTION: Each electrolytic film member 150, in which a spacer 60 having its diameter equal to or larger than the thickness of an electrolytic film 30 and the electrolytic film 30 are pinched by a pair of frames 100, and each separator 200, to which a collecting electrode 50 is deposited by fusing and which is coated with the elastic bonding agent 420 so as to seal the fuel gas, are laminated to assemble a cell module 10. A predetermined voltage is applied to both ends of the fuel module 10, and the pressure load is adjusted so as to obtain the predetermined internal resistance to harden the elastic bonding agent 420, and the fuel module 10 is completed. The elastic bonding agent 420 absorbs the stress generated in a fuel cell to restrict the deformation of the members, and prevents the mixture and the leak of the fuel gas. The spacer 60 maintains the thickness of the electrolyte film member 150 constant, and evens the bearing stress to be applied to the electrolytic film member 150 to reduce the internal resistance of a fuel cell.

LEGAL STATUS

[Date of request for examination]

11.01.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-249417

(43)公開日 平成7年(1995)9月26日

(51)Int.Cl. ⁶ H 0 1 M	8/02 8/10 8/24	_	庁内整理番号 9444-4K 9444-4K 9444-4K	FΙ	技術表示箇所
				審査請求	未請求 請求項の数8 FD (全 17 頁)
(21)出願番号	•	特膜平6-67732		(71)出願人	000003207 トヨタ自動車株式会社
(22)出顧日		平成6年(1994)3月10日		(ma) representa	愛知県豊田市トヨタ町1番地
				(72)発明者	野々部 康宏 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内
				(72)発明者	
					愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内
				(72)発明者	
					愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内
				(74)代理人	弁理士 下出 隆史 (外1名)

(54) 【発明の名称】 燃料電池の単電池およびその製造方法

(57)【要約】

【目的】 燃料電池の各部材の積層面に作用する面圧を 均等にして燃料電池の内部抵抗を小さくすると共に燃料 ガスの混合や漏れを防止する。

【構成】 電解質膜30の厚みと同等か大きな直径のスペーサ60と電解質膜30とを一対のフレーム100で挟持した電解質膜30とを一対のフレーム100で挟持した電解質膜部材150と、集電極50が融着され燃料ガスをシールするよう弾性接着剤420を塗布したセパレータ200とを積層して電池モジュール10を組み付ける。電池モジュール10の両端に所定電圧を加え、その内部抵抗が所定値となるよう押圧加重を調節して弾性接着剤420を硬化させ、電池モジュール10を完成させる。弾性接着剤420は、燃料電池に発生する応力を吸収して部材の変形を抑制し、燃料ガスの混合や漏れを防止する。スペーサ60は、電解質膜部材150の厚みを一定とし、電解質膜部材150に作用する面圧を均等にして燃料電池の内部抵抗を小さくする。

1

【特許請求の範囲】

【請求項1】 電解質膜を備えた燃料電池の単電池であ って、

絶縁性材料で形成され、前記電解質膜の外縁部を支持す るフレームと、

導電性材料で形成され、前記フレームの両側に配置され る2つセパレータとを備え、

前記フレームと前記2つのセパレータとを該単電池の内 部抵抗が所定の値となるよう弾性接着剤により接着して なる単電池。

【請求項2】 前記フレームは、

前記電解質膜の外縁部を挟持する一対のフレーム部材

前記電解質膜と共に前記一対のフレーム部材に挟持さ れ、該挟持方向に該電解質膜の厚さを規定するスペーサ

前記一対のフレーム部材で前記電解質膜と前記スペーサ とを挟持した状態で接着剤により一体化してなる請求項 1記載の単電池

造方法であって、

絶縁性材料で形成されたフレームで前記電解質膜の外縁 部を支持する支持工程と、

導電性材料で形成された2つのセパレータと前記フレー ムとを該単電池の内部抵抗が所定の値となるよう弾性接 着剤により接着する接着工程とからなる単電池の製造方 法。

【請求項4】 前記接着工程は、前記2つのセパレータ に押圧荷重を加えて該単電池の内部抵抗を所定の値とし て接着する工程である請求項3記載の単電池の製造方 法。

【請求項5】 前記接着工程は、前記弾性接着剤が硬化 後にカソード側またはアノード側の燃料ガスの少なくと も一方をシールするシール部材として作用するよう前記 フレームまたは前記セパレータの所定の位置に該弾性接 着剤を塗り付けて接着する工程である請求項3または4 記載の単電池の製造方法。

【請求項6】 前記支持工程は、前記フレームが一対の フレーム部材からなり、該一対のフレーム部材に挟持さ れたときに該挟持方向に前記電解質膜の厚みを規定する スペーサを該電解質膜と共に該一対のフレーム部材で挟 持し、該挟持状態で該スペーサと該電解質膜と該一対の フレームとを接着剤により一体化する工程である請求項 3ないし5記載の単電池の製造方法。

【請求項7】 電解質膜の外縁部を絶縁性材料で形成さ れた一対のフレームで挟持してなる、燃料電池の単電池 の電解質膜部材であって、

前記電解質膜と共に前記一対のフレームに挟持され、該 挟持方向に該電解質膜の厚さを規定するスペーサを備 え、

前記一対のフレームで前記電解質膜と前記スペーサとを 挟持した状態で接着剤により一体化してなる電解質膜部

【請求項8】 単電池を複数積層した電池モジュール を、複数積層してなる燃料電池であって、

前記単電池は、請求項1または2記載の単電池であり、 前記電池モジュールは、前記単電池間を、該電池モジュ ールの内部抵抗が所定の値となるよう弾性接着剤により 接着してなる燃料電池。

10 【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、燃料電池の単電池およ びその製造方法に関し、詳しくは、電解質膜を備えた燃 料電池の単電池およびおよびその製造方法に関する。

[0002]

【従来の技術】従来、単電池の積層面に作用する面圧を 均等にして燃料電池の内部抵抗を小さくする燃料電池と しては、単電池を積層した積層体の積層端に配置された 押え板の積層面に複数のバネを設け、このバネで押え板 【請求項3】 電解質膜を備えた燃料電池の単電池の製 20 を均等に押圧して積層体を締め付ける燃料電池が提案さ れている(例えば、特開昭61-248368号公 報)。単電池の積層面に作用する面圧を均等にするの は、面圧が均等でないと、面圧が過小となる部分では、 単電池内部あるいは単電池間で十分な接触が得られず内 部抵抗や接触抵抗が大きくなってしまい、面圧が過大と なる部分では、十分な接触は得られるが、面圧の大きさ によっては、面圧が単電池を構成する部材の材料強度を 超えて、その部材を損傷させてしまうことがあるからで ある。

> 30 【0003】また、この燃料電池では、カソード側燃料 ガスとアノード側燃料ガスとの混合や各燃料ガスの漏れ を防止するために、シール部材としてガスケットが用い られている。燃料ガスの混合や漏れは、燃料電池の単位 燃料当たりの発電量を低下させると共に資源の有効利用 に資することができないといった不都合を招くから、燃 料ガスの混合や漏れを防止することは大切である。

[0004]

【発明が解決しようとする課題】しかしながら、この燃 料電池では、単電池を積層して組み付ける際に、組み付 け位置にバラツキが生じると、バラツキの生じた単電池 の積層面には均等な面圧が作用せず、前述の不都合が生 じる場合があった。この不都合を回避するためには、積 層体の組み付けと積層体に加える押圧荷重の加え方とに 高い精度が要求されるが、多数の単電池を積層する場 合、これらの高い精度を維持するのは困難であった。

【0005】また、単電池を構成する部材によっては、 燃料電池が発生する熱や振動等により生じる応力によ り、部材に歪みが生じ、ガスケットのシールの信頼性を 著しく損なうことがあるという問題があった。さらに、

50 ガスケットが熱疲労やクリープ等によりへたりを生じて

3

シールの信頼性を損なう場合もあった。

【0006】本発明の燃料電池の単電池およびその製造方法は、こうした問題を解決し、燃料電池の各部材の積層面に作用する面圧を均等にして燃料電池の内部抵抗を小さくすると共に燃料ガスの混合や漏れを防止することを目的とし、次の構成を採った。

[0007]

【課題を解決するための手段】本発明の燃料電池の単電池は、電解質膜を備えた燃料電池の単電池であって、絶縁性材料で形成され、前記電解質膜の外縁部を支持する 10 フレームと、導電性材料で形成され、前記フレームの両側に配置される2つセパレータとを備え、前記フレームと前記2つのセパレータとを該単電池の内部抵抗が所定の値となるよう弾性接着剤により接着してなることを要旨とする。

【0008】ここで、前記単電池において、前記フレームは、前記電解質膜の外縁部を挟持する一対のフレーム部材と、前記電解質膜と共に前記一対のフレーム部材に挟持され、該挟持方向に該電解質膜の厚さを規定するスペーサとを備え、前記一対のフレーム部材で前記電解質 20 膜と前記スペーサとを挟持した状態で接着剤により一体化してなる構成とすることもできる。

【0009】本発明の燃料電池の単電池の製造方法は、電解質膜を備えた燃料電池の単電池の製造方法であって、絶縁性材料で形成されたフレームで前記電解質膜の外縁部を支持する支持工程と、導電性材料で形成された2つのセパレータと前記フレームとを該単電池の内部抵抗が所定の値となるよう弾性接着剤により接着する接着工程とからなることを要旨とする。

【0010】ここで、前記単電池の製造方法において、 前記接着工程は、前記2つのセパレータに押圧荷重を加 えて該単電池の内部抵抗を所定の値として接着する工程 である構成とすることもできる。また、前記単電池の製 造方法において、前記接着工程は、前記弾性接着剤が硬 化後にカソード側またはアノード側の燃料ガスの少なく とも一方をシールするシール部材として作用するよう前 記フレームまたは前記セパレータの所定の位置に該弾性 接着剤を塗り付けて接着する工程である構成とすること もできる。あるいは、前記単電池の製造方法において、 前記支持工程は、前記フレームが一対のフレーム部材か 40 らなり、該一対のフレーム部材に挟持されたときに該挟 持方向に前記電解質膜の厚みを規定するスペーサを該電 解質膜と共に該一対のフレーム部材で挟持し、該挟持状 態で該スペーサと該電解質膜と該一対のフレームとを接 着剤により一体化する工程である構成とすることもでき

【0011】本発明の単電池の電解質膜部材は、電解質膜の外縁部を絶縁性材料で形成された一対のフレームで挟持してなる、燃料電池の単電池の電解質膜部材であって、前記電解質膜と共に前記一対のフレームに挟持さ

れ、該挟持方向に該電解質膜の厚さを規定するスペーサ を備え、前記一対のフレームで前記電解質膜と前記スペ ーサとを挟持した状態で接着剤により一体化してなるこ とを要旨とする。

【0012】本発明の燃料電池は、単電池を複数積層した電池モジュールを、複数積層してなる燃料電池であって、前記単電池は、請求項1または2記載の単電池であり、前記電池モジュールは、前記単電池間を、該電池モジュールの内部抵抗が所定の値となるよう弾性接着剤により接着してなることを要旨とする。

[0013]

【作用】以上のように構成された本発明の燃料電池の単電池は、弾性接着剤が、燃料電池が発生する熱や振動に基づく応力を吸収し、単電池の耐久性を向上させる。また、弾性接着剤により単電池が一体化されるので、単電池を積層する際の取り扱いが容易となる。さらに、単電池の内部抵抗を所定の値とするので、この単電池を積層してなる燃料電池の性能を標準化する。

【0014】ここで、スペーサを備えた単電池では、スペーサが、電解質膜と共に一体化したフレームの積層方向の厚みを一定として、積層方向の剛性を高める。

【0015】本発明の燃料電池の単電池の製造方法は、支持工程で、絶縁性材料で形成されたフレームで電解質膜の外縁部を支持し、接着工程で、導電性材料で形成された2つのセパレータとフレームとを単電池の内部抵抗が所定の値となるよう弾性接着剤により接着する。こうして製造された単電池は、弾性接着剤が硬化後に燃料電池に生じる熱や振動に基づく応力を吸収し、単電池の耐久性を向上させる。また、単電池の内部抵抗を所定の値30とするので、この単電池を積層してなる燃料電池の性能を標準化する。

【0016】ここで、セパレータに押圧荷重を加えて単電池の内部抵抗を所定の値とする単電池の製造方法では、加える押圧荷重を調整して単電池の内部抵抗を所定の値とする。 弾性接着剤が硬化後に燃料ガスのシール部材となるようフレームまたはセパレータの所定の位置に弾性接着剤を塗り付けて接着する単電池の製造方法では、燃料ガスのシールをも同時に行なうことができ、単電池を構成する部材数を少なくする。スペーサと電解質膜とを一対のフレーム部材で挟持して接着する単電池の製造方法では、スペーサがフレームの積層方向の厚みを一定とし、積層方向の剛性を高くする。

【0017】本発明の燃料電池の単電池の電解質膜部材では、スペーサが、電解質膜と共に一対のフレームに挟持されて、一対のフレームの挟持方向の厚みを一定とし、挟持方向の剛性を高くする。

【0018】本発明の燃料電池では、単電池を複数積層 してなる電池モジュールとしたことにより、燃料電池の 組み付けが極めて容易となる。また、電池モジュールの 50 内部抵抗を所定の値としたので、電池モジュールを積層

してなる燃料電池の性能を標準化する。 [0019]

【実施例】以上説明した本発明の構成・作用を一層明ら かにするために、以下本発明の好適な実施例について説 明する。図1は、本発明の好適な一実施例である固体高 分子型燃料電池の電池モジュール10の構成を示した説 明図である。 図2は、この電池モジュール10等を積層 した積層体7の外観を例示した斜視図である。

【0020】固体高分子型燃料電池は、積層体7(図 2)と、積層体7に酸化ガス(酸素または空気)および 10 燃料ガス(水素)を供給する燃料ガス供給装置(図示せ ず)と、積層体7に冷却媒体(例えば、純水,代替フロ ン、絶縁油等)を供給する冷却媒体供給装置(図示せ ず)とから構成される。積層体7は、図2に示すよう に、電池モジュール10と電池モジュール11とセパレ ータ200と冷却部材300とから構成され、電池モジ ュール10と電池モジュール11とが交互に複数積層さ れ、一方の積層端にセパレータ200が、他端に冷却部 材300が装着されている。また、積層体7には、積層 方向に貫通する一対の酸化ガス(酸素または空気)流路 20 12A,燃料ガス(水素)流路12Bおよび二対の冷却 媒体流路14A、14Bが形成されている。

【0021】図1に示すように、電池モジュール10 は、発電単位である単電池20,22,24の3つを積 層して構成される。単電池20は、電解質膜30と2つ の電極40とを備える電解質膜部材150と、電解質膜 部材150の両側に設けられ電極40とで酸化ガスまた は燃料ガスの流路を形成する2つの集電極50と、さら にその両側に設けられた2つのセパレータ200とから 材で構成されており、一方のセパレータ200を隣接す る単電池20とで共用している。単電池24は、単電池 20と同じ電解質膜部材150と、その両側に設けられ た2つの電極40と、セパレータ200と、冷却部材3 00とを積層して構成されており、隣接する単電池22 とでセパレータ200を共用している。各単電池の電解 質膜部材150とセパレータ200および単電池24の 電解質膜部材150と冷却部材300は、弾性接着剤4 20により接着されている。

【0022】電解質膜部材150は、電解質膜30と、 2つの電極40と、一対のフレーム100と、一対のフ レーム100の間隔を一定として剛性を持たせる多数の スペーサ60とから構成され、電解質膜30の外縁部を 多数のスペーサ60と共に一対のフレーム100で挟持 した状態で接着剤410により接着されて一体となって いる。また、電解質膜30の両側には、電極40が配置 されてサンドイッチ構造となっている。以下に電池モジ ュール10を構成する各部材について詳細に説明する。 【0023】電解質膜30は、高分子材料、例えば、フ

μmのイオン交換膜であり、湿潤状態で良好な電気伝導 性を示す。2つの電極40は、共に炭素繊維からなる糸 で織成したカーボンクロスにより形成されており、この カーボンクロスには、触媒としての白金または白金と他 の金属からなる合金等を担持したカーボン粉がクロスの 電解質膜30側の表面および隙間に練り込まれている。 この電解質膜30と2つの電極40は、2つの電極40 が電解質膜30を挟んでサンドイッチ構造とした状態 で、100℃ないし160℃好ましくは120℃ないし 155℃の温度で、1MPa {10.2kgf/cm²}ない し10MPa {102kgf/cm²} 好ましくは3MPa {31kgf/cm²}ないし7MPa {71kgf/cm²}の圧 力を作用させて接合するホットプレス法により接合され ている。なお、実施例では、2つの電極40をカーボン クロスにより形成したが、炭素繊維からなるカーボンペ ーパーまたはカーボンフェルトにより形成する構成も好 適である。

6

【0024】スペーサ60は、ポリスチレンにより形成 され、電解質膜30の厚みより若干大きな直径の球体を している。スペーサ60の直径は、電解質膜30の厚み と同等か大きければ如何なる大きさでもかまわないが、 電池モジュール10の厚みを薄くする必要から200μ mから500μmとするのが好ましい。スペーサ60の 直径は、多数のスペーサ60で一対のフレーム100の 間隔を一定とすることにより、一定の値に揃っているこ とが好ましい。実施例では、150μmの厚みの電解質 膜30に対し300μmの直径のスペーサ60を用い た。なお、実施例では、スペーサ60をポリスチレンに より形成したが、電池モジュール10に作用する押圧加 構成されている。単電池22は、単電池20と同一の部 30 重(後述)に耐え得る剛性を有すれば如何なる材料で形 成してもかまわない。例えば、ガラスにより形成する構 成も好適である。また、スペーサ60は、他の導電性材 料により形成された部材(例えば電解質膜30)と接触 しない配置とすれば導電性材料で形成してもかまわない が、他の部材との接触を考慮しなくてもよい絶縁性材料 で形成するのが好ましい。実施例では、スペーサ60の 形状を球体としたが、一対のフレーム100を一定の間 隔に保てばよいので、円柱、多面体等であってもかまわ ない。

【0025】一対のフレーム100は、樹脂(例えば、 フェノール樹脂、ポリフェニレンサルファイド(PP S),ポリアミド等)により形成されている。電解質膜 30と一体化される前のフレーム100を図3に示す。 図3は、接着される前のフレーム100の外観を例示し た斜視図である。図示するように、フレーム100は正 方形の薄板状に形成されており、フレーム100の中央 には、電解質膜30および電極40等により形成される 発電層を配置する正方形の孔(発電孔)110が形成さ れている。また、フレーム100の四隅には、積層体7 ッ素系樹脂により形成された厚さ100μmから200 50 を形成した際に積層体7を積層方向に貫通する二対の冷 却媒体流路14Aおよび14Bをなす円形の孔(冷却 孔) 140が形成されている。このフレーム100の四 隅に形成された各冷却孔140の相互間には、積層体7 を積層方向に貫通する酸化ガス流路12Aおよび燃料ガ ス流路12Bをなす矩形の燃料孔120および130が 形成されている。この燃料孔120と130は、同一形 状で各辺に対する配置も同じである。また、発電孔11 0と燃料孔120との間には、燃料孔130の長手方向 に沿って平行に配置された溝128が形成されている。 この溝128は、電池モジュール10が組み付けられた 10 ときに燃料孔120と発電孔110とを連絡する酸化ガ スまたは燃料ガスの通路となる。

【0026】こうして形成された一対のフレーム100 は、各フレーム100に形成された溝128が外側を向 き、一方のフレーム100の燃料孔120が他方のフレ ーム100の燃料孔130に整合するように向き合わ せ、各フレーム100の発電孔110の周縁部で電解質 膜30の外縁部を挟持すると共に発電孔110の周縁部 以外では複数のスペーサ60を挟持した状態で接着剤4 10により接着されて電解質膜部材150となる。図4 に電解質膜部材150の外観を例示した斜視図を示す。 図示するように、各フレーム100に形成された溝12 8は、外側を向き直交する配置となっている。また、一 対のフレーム100の燃料孔120と130とは整合し ており、向かい合う2組の燃料孔135Aおよび135 Bをなす。なお、接着剤410としては、電解質膜30 およびフレーム100との接着性および耐久性に優れた エポキシ系の接着剤を用いた。接着剤410は、エポキ シ系の接着剤の他に、シリコン系の接着剤等でもよく、 VゴムやウレタンRTVゴム等でも差し支えない。

【0027】次に、一対のフレーム100等を接着して 電解質膜部材150とする様子について説明する。ま ず、一対のフレーム100の一方の面(図3に表示した 面の裏面)の全面に接着剤410を塗布し、電解質膜3 0に接合した電極40が発電孔110に嵌合するよう に、接着剤410が塗布された発電孔110の周縁部に 電解質膜30の外縁部をおく。次に、発電孔110の周 縁部以外の接着剤410が塗布された部分に1cm² 当た るようスペーサ60を均等に散布する。この際、電解質 膜30および電極40の上にスペーサ60を散布しない ように注意する。スペーサ60を電解質膜30の上に散 布すると、一対のフレーム100を接着して電解質膜部 材150としたときに、その部分の厚みが大きくなり、 均等な厚みの電解質膜部材150とすることができず、 電池モジュール10ひいては固体高分子型燃料電池の性 能を低下させるからであり、また、電解質膜30とフレ ーム100または電解質膜部材150とセパレータ20 0とを一体化する際の押圧によって、スペーサ60が電 50 Я

解質膜30に入り込んで電解質膜30を損傷させ、電解 質膜30の有する燃料ガスの回り込み防止機能を低下さ せるおそれが生じるからである。電極40の上にスペー サ60を散布すると、電極40と集電極50との接触抵 抗が大きくなるからである。図5に、フレーム100に 電解質膜30を配置し、多数のスペーサ60を散布した 状態の外観を示す。

【0028】次に、もう一方のフレーム100の面(図 3に表示した面の裏面)の全面に接着剤410を塗布 し、図5に示した状態のフレーム100に、各フレーム 100に形成された溝128が直交するよう重ね合わ せ、一対のフレーム間に押圧加重(200k Pa {2Kg f/cm²}から2000kPa{20Kgf/cm²})を作用 させて、スペーサ60が各フレーム100に接触した状 態で接着剤410を硬化させる。したがって、一対のフ レーム100の間隔は、スペーサ60の直径で一定に保 たれる。また、電解質膜部材150に押圧加重を作用さ せても、多数のスペーサ60が一対のフレーム100間 を支持して剛性を保つので、一対のフレーム100が歪 20 むことを防止する。なお、実施例では、2つの電極40 をホットプレス法により電解質膜30に接合してから一 対のフレーム100で挟持したが、電解質膜30を一対 のフレーム100で挟持して接着剤410により接着し た後に2つの電極40を電解質膜30に接合する構成と しても差し支えない。

【0029】集電極50は、多孔質でガス透過性を有す る気孔率が40%ないし80%のポーラスカーボンによ り形成されている。図6は、集電極50およびセパレー タ200の外観を例示した斜視図である。 図示するよう 後述する弾性接着剤420として用いるシリコーンRT 30 に、集電極50は、正方形の板状で、フレーム100の 発電孔110に丁度嵌合するよう形成されており、その 一面には、平行に配置された複数のリブ56が形成され ている。このリブ56は、電極40の表面とで酸化ガス または燃料ガスの通路をなすガス通路58を形成する。 【0030】セパレータ200は、カーボンを圧縮して ガス不透過としたガス不透過カーボンにより形成されて おり、電解質膜30と2つの電極40と2つの集電極5 0とにより構成される単電池20の隔壁をなす。図6に 示すように、セパレータ200は、正方形の板状に形成 り10個から100個好ましくは20個から50個とな 40 されており、その四隅には、フレーム100の四隅に設 けられた冷却孔140と同一の位置に同一の孔(冷却 孔)240が形成されている。この冷却孔240は、フ レーム100の冷却孔140と共に、積層体7を積層方 向に貫通する冷却媒体流路14Aおよび14Bを形成す る。また、各冷却孔240相互間には、フレーム100 に設けられた燃料孔120および130と同一の位置に 同一の孔(燃料孔)220が形成されている。この燃料 孔220も燃料孔120および130と共に、積層体7 を積層方向に貫通する酸化ガス流路12Aおよび燃料ガ ス流路12Bを形成する。

【0031】こうして形成された集電極50とセパレー タ200とは、セパレータ200のフレーム100の発 電孔110に相当する位置に集電極50のリブ56が形 成されていない面が整合するよう、テフロンディスパー ジョン等で融着されている。図1に示すように、集電極 50が両側に融着されたセパレータ200では、両側に 融着された集電板50のリブ56が直交する配置となっ ている。

【0032】図7は、冷却部材300の外観を例示した 斜視図である。冷却部材300は、ガス不透過カーボン 10 により形成されており、図示するように、積層する面が 正方形状の板状部材で、積層する面の四隅には、フレー ム100の四隅に設けられた冷却孔140と同一の位置 に同一の孔(冷却孔)340および342が形成されて いる。この冷却孔340および342も、フレーム10 0の冷却孔140と共に積層体7を積層方向に貫通する 冷却媒体流路14Aおよび14Bを形成する。また、冷 却孔340と342の間には、フレーム100に設けら れた燃料孔120および130と同一の位置に同一の孔 (燃料孔) 320および330が形成されている。この 20 燃料孔320および330も、フレーム100の燃料孔 120および130と共に積層体7を積層方向に貫通す る酸化ガス流路12Aおよび燃料ガス流路12Bを形成 する。

【0033】冷却部材300のフレーム100の発電孔. 110に相当する位置には、他の表面より低い段差部3 54が形成されており、この段差部354には、複数の 平行なリブ356が形成されている。このリブ356 は、電池モジュール10が積層された際に、隣接する他 の電池モジュール10を構成するセパレータ200とで 30 冷却媒体の通路358を形成する。また、この段差部3 54は、対角の位置に形成された2つの冷却孔342と 2つの溝352で連絡されており、冷却部材300は、 一方の冷却孔342から冷却媒体が段差部354に流入 し、他方の冷却孔342から流出する構成となってい る。なお、実施例では、段差部354に複数のリブ35 6を設けて冷却媒体の通路358を形成したが、2つの 冷却孔342を葛折状等の溝で連絡して冷却媒体の通路 を形成する構成も好適である。

【0034】弾性接着剤420には、シリコーンRTV 40 ゴムやウレタンRTVゴム等 (例えば、Three B ond社の液状ガスケット1211、コニシボンドのエ ポキシ樹脂に変性シリコンを加えたMOS7)が使用で き、硬化後に、硬度が20ないし40, 引張りせん断強 度が800kPa {8.2Kgf/cm²} ないし10000 kPa {102 kgf/cm²}, 伸びが150%ないし30 0%程度の性状を示すのが好ましい。なお、実施例で は、Three Bond社の液状ガスケット1211 を用いた。

【0035】次に、こうして構成された各部材により電 50 モジュール10と同一の部材(3つの電解質膜部材15

10

池モジュール10を組み付ける様子について説明する。 まず、セパレータ200および冷却部材300の所定の 位置に弾性接着剤420を塗布する。セパレータ200 の弾性接着剤420を塗布する位置の一例を図8に示 す。弾性接着剤420は、セパレータ200の図8の斜 線のハッチの部分(燃料孔220と集電極50との間お よび各孔の周辺以外の部分)に塗布する。冷却部材30 0の弾性接着剤420を塗布する位置も、セパレータ2 00の塗布する位置と同様である。

【0036】続いて、電解質膜部材150を挟んで対峙 する集電極50のリブ56が直交するように、弾性接着 剤420を塗布したセパレータ200と電解質膜部材1 50とを交互に積層し、その積層端の電解質膜部材15 0に集電極50および冷却部材300を装着して電池モ ジュール10とする。

【0037】電池モジュール10を組み付けた後、弾性 接着剤420が硬化する前に、積層端のセパレータ20 0と冷却部材300とに所定電圧(例えば、100V) を加え、さらに電池モジュール10の積層方向に調節可 能な押圧加重を加える。そして、この押圧加重を調節し て積層端のセパレータ200と冷却部材300とに生じ る電気抵抗を所定値以下とし、その状態で弾性接着剤4 20を硬化させる。実施例では、電解質膜30を湿潤状 態としたときに単電池当たり1mΩとなるよう電気抵抗 の所定値を設定した。したがって、電池モジュール10 では、積層端のセパレータ200と冷却部材300との 間に単電池を3つ積層しているので電気抵抗の所定値を 3mΩに設定し、電解質膜30を湿潤状態とするために 電池モジュール10を水蒸気中に置いた。また、実施例 では、電気抵抗を所定値とするのに加えられる押圧加重 は、400kPa {4.1Kgf/cm²} ないし700kP a {7.1 Kgf/cm²} とした。ここで、単電池当たりに 設定される電気抵抗の所定値は、単電池の構成や単電池 を構成する各部材の材質等によって定められるものであ り、積層端のセパレータ200と冷却部材300との間 に設定される電気抵抗の所定値は、電池モジュール10 として積層された単電池の数や電池モジュール10を構 成する各部材の材質等によって定められるものである。 電池モジュール10の積層方向に加えられる押圧加重

は、弾性接着剤420の硬化前の物性や電池モジュール 10を構成する各部材の材料強度等によって定められる ものである。

【0038】なお、実施例では、電解質膜30を湿潤状 態とするために電池モジュール10を水蒸気中に置いて 弾性接着剤420を硬化させたが、予め電解質膜30の 含水率と電気抵抗値との関係を求めておき、この関係と 弾性接着剤420を硬化させる際の電解質膜30の含水 率とから電気抵抗の所定値を定める構成も好適である。 【0039】図2に示した電池モジュール11は、電池

0と3つのセパレータ200と冷却部材300)により 構成されており、冷却部材300の配置を除いて同一の 積層構造をしている。図1に示したように、電池モジュ ール10の冷却部材300は、段差部354に形成され たリブ356と冷却部材300と接触する集電極50に 形成されたリブ56とが直交する配置で装着されている が、電池モジュール11の冷却部材300は、リブ35 6とリブ56とが平行となる配置で装着されている。し たがって、電池モジュール10と電池モジュール11と を交互に積層すると、電池モジュール11の冷却孔34 10 2は、電池モジュール10の冷却孔340と連絡する。 【0040】図2に示した積層体7は、こうして形成さ れた電池モジュール10と電池モジュール11とを交互 に積層し、積層端の一方にセパレータ200を、他方に 冷却部材300を装着して組み付けられる。電池モジュ ール10と電池モジュール11とは、電池モジュール1 0の積層端のセパレータ200に電池モジュール11の 冷却部材300が接するように、かつ、電池モジュール 10の冷却部材300のリブ356と電池モジュール1 1の冷却部材300のリブ356とが直交するように積 20 層する。このように積層することで、電池モジュール1 Oから電池モジュール11にかけて隣り合う集電極50 のリブ56も直交する配置となる。

【0041】こうして形成された積層体7に燃料ガス供 給装置 (図示せず)と冷却媒体供給装置 (図示せず)と を取り付けて固体高分子型燃料電池を完成する。こうし て完成された固体高分子型燃料電池の一対の酸化ガス流 路12Aを酸化ガスの流入流路および排出流路とし、燃 料ガス流路12Bを燃料ガスの流入流路および排出流路 として、酸化ガスおよび燃料ガスを流せば、電解質膜3 30 0を挟んで直交するガス通路58に酸化ガスおよび燃料 ガスが流れ、電解質膜30の両側に配置された両電極4 0に酸化ガスおよび燃料ガスが供給されて、次式に示す 電気化学反応が行なわれ、化学エネルギを直接電気エネ ルギに変換する。

[0042]

カソード反応:2H++2e⁻+(1/2)O₂→H₂O アノード反応: H₂→2 H⁺ + 2 e⁻

【0043】また、積層体7の積層面の対角に位置する 二対の冷却媒体流路 1 4 A および 1 4 B の各対の一方の 40 流路を冷却媒体供給装置から供給される冷却媒体の流入 流路とし他方の流路をその排出流路として冷却媒体を流 すことによって固体高分子型燃料電池が冷却される。

【0044】電解質膜部材150の組み付けの様子、電 池モジュール10の組み付けの様子および固体高分子型 燃料電池の組み付けの様子については、既に大方説明し たが、以下に図9ないし図11に基づき説明する。図 9. 図10. 図11は、それぞれ電解質膜部材150の 組み付けの様子、電池モジュール10の組み付けの様

工程図である。

【0045】電解質膜部材150の組み付けは、図9に 示すように、まず、2つの電極40で電解質膜30を挟 んでサンドイッチ構造とし、この状態で100℃ないし 160℃好ましくは120℃ないし155℃の温度で、 1MPa { 10. 2kgf/cm² } ないし10MPa { 10 2kgf/cm² } 好ましくは3MPa {31kgf/cm² } ない し7MPa {71kgf/cm²}の圧力を作用させて接合す る(工程11)。次に、一対のフレーム100の面(図 3に表示した面の裏面)の全面に接着剤410を塗布し (工程12)、一方のフレーム100の接着剤410が 塗布された面の発電孔110の外縁部に電解質膜30の 外縁部を、電解質膜30に接合した電極40が発電孔1 10に嵌合するように配置する(工程13)。

12

【0046】続いて、電解質膜30が配置されたフレー ム100の発電孔110の周縁部以外の接着剤410が 塗布された部分に、スペーサ60を1cm2 当たり10個 から100個好ましくは20個から50個となるよう均 等に散布する(工程14)。スペーサ60が散布された フレーム100に、図3に表示した面の裏面全体に接着 剤410が塗布されたフレーム100を、各フレーム1 00に形成された溝128が直交するように重ね合わせ る(工程15)。重ね合わせた一対のフレームに押圧加 重(200kPa{2Kgf/cm²}から2000kPa {20 Kgf/cm²}) を作用させて、スペーサ60が各フ レーム100に接触した状態とし、この状態で接着剤4 10を硬化させて(工程16)、電解質膜部材150を 完成する。なお、電解質膜30と電極40との接合(工 程11)は、工程16の後に行なってもよい。

【0047】電池モジュール10の組み付けは、図10 に示すように、まず、集電極50を、セパレータ200 のフレーム100の発電孔110に相当する位置に集電 極50のリブ56が形成されていない面が整合するよう にテフロンディスパージョン等により融着する(工程2 1)。なお、セパレータ200の両面に集電極50を融 着する場合には、セパレータ200の両側の集電極50 のリブ56が直交する配置となるよう融着する。次に、 セパレータ200および冷却部材300に、図8に示し たセパレータ200の斜線のハッチの部分(燃料孔22 0と集電極50との間および各孔の周辺以外の部分)に 弾性接着剤420を塗布する(工程22)。続いて、電 解質膜部材150を挟んで対峙する集電極50のリブ5 6が直交するように弾性接着剤420を塗布したセパレ ータ200と電解質膜部材150とを交互に積層し、そ の積層端の電解質膜部材150に集電極50および冷却 部材300を装着する(工程23)。

【0048】この積層直後に、積層端のセパレータ20 0と冷却部材300とに所定電圧(例えば、100V) を供給する電極と電流計を設置する(工程24)。電極 子,固体高分子型燃料電池の組み付けの様子を例示した 50 が設置された積層体に押圧加重を加え、この押圧加重

を、積層端のセパレータ200と冷却部材300とに生 じる電気抵抗値が所定値以下となるよう調節する(工程 25)。実施例での電気抵抗値の所定値は、前述したよ うに単電池20に許容される電気抵抗を1 mΩに設定し たものであり、積層端のセパレータ200と冷却部材3 00との間では、3mΩである。積層端のセパレータ2 00と冷却部材300とに生じる電気抵抗値が所定値以 下となるよう調節された状態で弾性接着剤420を硬化 させて(工程26)、電池モジュール10を完成する。 なお、実施例では、集電極50をセパレータ200に融 10 着させたが、融着させない構成でもかまわない。この場 合には、工程21は不要である。また、電池モジュール 11も電池モジュール10と同様にして組み付けられ

【0049】固体高分子型燃料電池の組み付けは、図1 1に示すように、まず、電池モジュール10と電池モジ ュール11とを電池モジュール10の積層端のセパレー タ200に電池モジュール11の冷却部材300が接す るように、かつ、電池モジュール10の冷却部材300 リブ356とが直交するように交互に積層し、積層端の 一方にセパレータ200を、他方に冷却部材300を装 着して積層体7とする(工程31)。この積層体7に燃 料ガス供給装置(図示せず)と冷却媒体供給装置(図示 せず)とを取り付けて(工程32)、固体高分子型燃料 電池を完成する。

【0050】以上説明した実施例の固体高分子型燃料電 池では、弾性接着剤420により電解質膜部材150と セパレータ200とを接着したので、電解質膜部材15 きる。したがって、接着剤410に乾燥後は硬化するエ ポキシ系の接着剤を用いて電解質膜30とスペーサ60 と一対のフレーム100とを一体化しても、固体高分子 型燃料電池等が発生する熱や振動等によるずれは、弾性 接着剤420が吸収することので、電解質膜30とフレ ーム100とに相対的なずれが発生することがなく、こ の相対的なずれが生じることによる電解質膜30の損傷 を防止することができる。また、弾性接着剤420が酸 化ガスおよび燃料ガスをシールするシール部材を兼ねる ので、電池モジュール10を構成する部品数を少なくし て製造を容易とすることができる。さらに、固体高分子 型燃料電池が発生する熱や固体高分子型燃料電池の外部 から加えられる振動等により生じる応力を弾性接着剤4 20により吸収することができる。したがって、電極4 0等に不均一な面圧が作用するのを防止すると共に酸化 ガスおよび燃料ガスの漏れを防止することができ、発電 効率を高く維持することができる。加えて、前述の応力 を弾性接着剤420が吸収するので、固体高分子型燃料 電池の耐久性を向上させることができる。

【0051】また、電池モジュール10の両端に位置す 50 の数はいくつでもかまわない。また、電池モジュール1

14

るセパレータ200と冷却部材300との間の電気抵抗 値を所定値以下として電池モジュール10を形成したの で、電池モジュール10を積層して形成される固体高分 子型燃料電池の抵抗値不良を減少することができ、固体 高分子型燃料電池の性能を標準化することができる。電 池モジュール10を積層して固体高分子型燃料電池とし たので、電池モジュール10単位で抵抗値のチェックや 燃料ガスの漏れのチェックを行なうことができる。

【0052】実施例の電解質膜部材150では、電解質 膜30と共に電解質膜30の厚みと同等か大きな直径を 有するスペーサ60を一対のフレーム100で挟持した ので、その積層方向の剛性を高めることができ、電解質 膜部材150の積層方向の厚み均一にすることができ る。したがって、他の部材と積層した後に押圧加重を加 えた際、作用する面圧を一定にすることができ、高品質 な固体高分子型燃料電池の形成を可能とすることができ る。また、接着剤410に乾燥後は硬化するエポキシ系 の接着剤を用いたので、電解質膜30とスペーサ60と 一対のフレーム100とを一体化した後は、電解質膜3 のリブ356と電池モジュール11の冷却部材300の 20 0とフレーム100とに相対的なずれが発生することが なく、この相対的なずれが生じることによる電解質膜3 0の損傷を防止することができる。さらに、電解質膜3 0は、フレーム100の発電孔110より少し大きけれ ばよいので、フレーム100の外縁部まで必要とされる 場合に比較して電解質膜30の面積を小さくすることが でき、製造コストを低減することができる。

【0053】実施例の固体高分子型燃料電池の製造方法 では、弾性接着剤420で電解質膜部材150とセパレ ータ200とを接着するので、容易に単電池20を複数 ○0やセパレータ2○○の厚みの誤差を吸収することがで 30 積層して電池モジュール1○を形成することができる。 したがって、形成された電池モジュール10を積層して 固体高分子型燃料電池を形成するので、各構成部品を積 層して固体高分子型燃料電池を形成する場合に比較し て、きわめて容易に固体高分子型燃料電池を組み付ける ことができる。

> 【0054】なお、実施例では、スペーサ60を挟持し た電解質膜部材150を用いたが、スペーサ60の代わ りにフレーム100の接合面に電解質膜30の厚みより 若干甲高の突起を複数設ける構成も好適であり、スペー サ60を備えず突起も設けない構成であってもかまわな い。また、実施例では、電池モジュール10に冷却部材 300を備えたが、冷却部材300を備えない構成も差 し支えない。さらに、実施例では、別体の電極40,集 電極50およびセパレータ200を備えたが、電解質膜 30と接触する接触部と酸化ガスまたは燃料ガスの通路 とをセパレータに形成し、別体の電極および集電極を備 えない構成でも差し支えない。

> 【0055】実施例では、電池モジュール10に内蔵さ れる単電池20を3つとしたが、内蔵される単電池20

0を形成する手法を単電池の形成に用いる構成も好適である。この構成例を図12に示す。図示するように、単電池20Aは、電池モジュール10を構成する電解質膜部材150、集電極50、セパレータ200と同一の部材により構成され、その積層の仕方も電池モジュール10の積層の仕方と同じである。また、セパレータ200に弾性接着剤420を塗布する部分も電池モジュール10の場合と同一である。積層したセパレータ200間に所定電圧(例えば、100V)を接続し、電気抵抗値が所定値(例えば1mΩ)以下となるようセパレータ2010に押圧加重を加えて弾性接着剤420を硬化させ、単電池20Aとする。こうして形成された単電池20Aおよびこの単電池20Aを複数積層して構成される燃料電池についても上述の効果と同様な効果を得ることができる。

【0057】図13は、電池モジュール10Bの構成を 例示した説明図である。図示するように、電池モジュー ル10日は、電解質膜30と2つの電極40とを備える 2つの電解質膜部材150Bと、同じく電解質膜30と 2つの電極40とを備える電解質膜部材150Cと、電 極40とで酸化ガスまたは燃料ガスの流路を形成する6 つの集電極50と、積層した際に単電池20日の隔壁を なすと共に電解質膜部材150B間等に内蔵される2つ のセパレータ250と、電池モジュール10の一端に装 着されるセパレータ200と、他端に装着される冷却部 40 材300とから構成され、セパレータ250と電解質膜 部材150Bの間等は弾性接着剤420により接着され ている。電解質膜部材150Bは、電解質膜30と、2 つの電極40と、フレーム500と、フレーム600 と、スペーサ60とから構成され、電解質膜30の外縁 部および電極40の外縁部を多数のスペーサ60と共に フレーム500とフレーム600とで挟持した状態で接 着剤410により接着されて一体となっている。

【0058】フレーム500は、樹脂(例えば、フェノ より電解質膜30に接合されている。また、電解質膜部 ール樹脂, ポリフェニレンサルファイド(PPS), ポ 50 材150Bの組み付けの様子については、第1実施例の

16

リアミド等)により形成されている。電解質膜30等と 一体化される前のフレーム500を図14に示す。図示 するように、フレーム500は正方形の薄板状に形成さ れており、フレーム500の中央には、電解質膜30お よび電極40等により形成される発電層を配置する正方 形の孔(発電孔)510が形成されており、発電孔51 0の周囲には、段差部515が形成されている。また、 フレーム500の四隅には、積層体を形成した際に積層 体を積層方向に貫通する冷却媒体流路をなす円形の孔 (冷却孔)540が形成されている。このフレーム50 0の四隅に形成された各冷却孔540の相互間には、積 層体を積層方向に貫通する酸化ガス流路および燃料ガス 流路をなす矩形の燃料孔520および530が形成され ている。この燃料孔520と530は、同一形状で各辺 に対する配置も同じである。また、発電孔510と燃料 孔520との間には、燃料孔530の長手方向に沿って 平行に配置された溝528が形成されている。図15 は、フレーム500の図14に現わされた面の裏面(矢 印I方向から見た面)を例示した斜視図である。図示す るように、フレーム500の発電孔510の周囲には、 段差部518が形成されている。

【0059】フレーム600も、フレーム500と同様 に、樹脂(例えば、フェノール樹脂、ポリフェニレンサ ルファイド (PPS), ポリアミド等) により形成され ている。電解質膜30等と一体化される前のフレーム6 00を図16に示す。図示するように、フレーム600 にも正方形の薄板状に形成されており、フレーム600 の中央には発電孔610が形成されている。また、フレ ーム500と同様に、フレーム600の四隅にも、冷却 30 媒体流路をなす冷却孔640が形成されていおり、各冷 却孔640の相互間には、酸化ガス流路および燃料ガス 流路をなす燃料孔620および630が形成されてい る。発電孔610と燃料孔620との間には、燃料孔6 30の長手方向に沿って平行に配置された溝628が形 成されている。図17は、フレーム600の図16に現 わされた面の裏面(矢印II方向から見た面)を例示し た斜視図である。図示するように、フレーム600の発 電孔610の周囲には、フレーム500の段差部518 と同一形状の段差部618が形成されている。

0 【0060】こうして形成されたフレーム500とフレーム600とを、溝528と溝628が外側を向き、フレーム500の燃料孔520がフレーム600の燃料孔630に整合するように向き合わせ、フレーム500の段差部518とフレーム600の段差部618で電極40の外縁部を挟持すると共に複数のスペーサ60を挟持した状態で、接着剤410により接着して電解質膜部材150Bとする。なお、電極40は、段差部518に嵌合する形状に形成されており、上述のホットプレス法により電解質膜30に接合されている。また、電解質膜部が60材150Bの組み付けの様子については第1字節例の

電解質膜部材150と同様なので、その説明は省略す る。

【0061】電解質膜部材150Cは、電解質膜30 と、2つの電極40と、複数のスペーサ60と、2つの フレーム600とから構成されている。電解質膜部材1 50は、2つのフレーム600を、各フレーム600の 溝628が外側を向き、一方のフレーム600の燃料孔 620が他方のフレーム600の燃料孔630に整合す るように向き合わせ、各フレーム600の段差部618 0を挟持した状態で接着剤410により接着されて一体 となっている。

【0062】図18は、集電極50およびセパレータ2 50の外観を例示した斜視図である。セパレータ250 は、カーボンを圧縮してガス不透過としたガス不透過カ ーボンにより形成されている。図示するように、セパレ ータ250は、フレーム500に形成された段差部51 5に嵌合する正方形状で、その厚みは、段差部515の 深さより若干薄く形成されている。セパレータ250の 両面の中央には、各集電極50のリブ56が直交する配 20 置となるようテフロンディスパージョン等により融着さ れている。

【0063】次に、こうして構成された各部材により電 池モジュール10Bを組み付ける様子について説明す る。まず、電解質膜部材150Bのフレーム600およ びセパレータ250に弾性接着剤420を塗布する。図 19は、フレーム600に弾性接着剤420を塗布する 部分(斜線のハッチの部分)を例示した説明図である。 弾性接着剤420は、図示するように、フレーム600 の周辺部、2つの燃料孔620を囲む位置、冷却孔64 30 エネルギを直接電気エネルギに変換する。 0を囲む位置、燃料孔630を「コ」の字形で開口部を 内側に向けた位置に塗布される。図20は、セパレータ 250に弾性接着剤420を塗布する部分(斜線のハッ チの部分)を例示した説明図である。図示するように、 弾性接着剤420は、セパレータ250の集電極50に 形成されたリブ56と平行な辺付近に塗布される。

【0064】続いて、電解質膜部材150Bのフレーム 500の段差部515に、セパレータ250の弾性接着 剤420が塗布された面と段差部515が接触するよう に、かつ、セパレータ250の弾性接着剤420が塗布 40 な効果を奏する。 された面に融着された集電極50のリブ56とフレーム 500に形成された溝528とが平行な配置となるよう にセパレータ250を装着する。この配置とすることに より、セパレータ250は、段差部515の溝528が 形成されていない辺の面に弾性接着剤420によって接 着される。次に、2つの電解質膜部材150Bを、一方 の電解質膜部材150Bのフレーム500と他方の電解 質膜部材150Bのフレーム600とがセパレータ25 〇を挟んで向き合うように、かつ、一方の電解質膜部材

18

の電解質膜部材150Bのフレーム600に形成された 溝628が直交するように重ね合わせる。なお、電解質 膜部材150Bと電解質膜部材150Cとの重ね合わせ の配置も電解質膜部材150B同士の重ね合わせの配置 と同様である。こうして重ね合わせた電解質膜部材15 OCに集電極50および冷却部材300を装着し、電解 質膜部材150Bにセパレータ200を装着して電池モ ジュール10Bとする。

【0065】電池モジュール10Bを組み付けた後、弾 で電極40の外縁部を挟持すると共に複数のスペーサ6 10 性接着剤420が硬化する前に、積層端のセパレータ2 00と冷却部材300とに所定電圧を加え、この間の電 気抵抗値を所定値以下となるよう押圧加重を作用させ て、弾性接着剤420を硬化させる。この様子について は、第1実施例の電池モジュール10の場合と同一なの で、その説明は省略する。

> 【0066】電池モジュール11Bは、電池モジュール 10Bと同一の部材により構成されており、冷却部材3 00を、段差部354に形成されたリブ356と冷却部 材300と接触する集電極50に形成されたリブ56と が直交する配置として装着したものである。

> 【0067】第2実施例の固体高分子型燃料電池は、こ うして形成された電池モジュール10Bと電池モジュー ル11Bとを交互に積層し、積層端の一方にセパレータ 200を、他方に冷却部材300を装着して積層体を組 み付け、この積層体に燃料ガス供給装置(図示せず)と 冷却媒体供給装置(図示せず)とを取り付けて完成す る。この第2実施例の固体高分子型燃料電池も燃料ガス 供給装置から酸化ガスおよび燃料ガスが供給されること により前述した反応式の電気化学反応が行なわれ、化学

> 【0068】以上説明した第2実施例の固体高分子型燃 料電池では、セパレータ250をフレーム500の段差 部515に嵌合する形状とし、装着したときにフレーム 500に内蔵される構成としたので、セパレータ250 に燃料孔や冷却孔等の加工の必要がなく、製造を容易と することができる。また、電極40を電解質膜30と共 にフレーム500とフレーム600により挟持したの で、電極40が電解質膜30からめくれるといった不都 合を回避することができる。この他、第1実施例と同様

> 【0069】以上本発明の実施例について説明したが、 本発明はこうした実施例に何等限定されるものではな く、本発明の要旨を逸脱しない範囲内において、種々な る態様で実施し得ることは勿論である。

[0070]

【発明の効果】以上説明したように本発明の燃料電池の 単電池では、燃料電池が発生する熱や振動に基づく応力 を弾性接着剤が吸収するので、単電池の耐久性を向上さ せることができる。また、単電池の内部抵抗を所定の値 150Bのフレーム500に形成された溝528と他方 50 としたので、この単電池を積層してなる燃料電池の抵抗

値不良を減少させ、燃料電池の性能を標準化することができる。さらに、弾性接着剤により単電池を一体化するので、電解質膜やセパレータを多数積層して燃料電池を組み付ける場合に比較して、組み付けを容易とすることができる。もとより、電解質膜の外縁部をフレームで支持したので、コストの高い電解質膜のほとんどを発電に用いることができる。

【0071】請求項2記載の単電池では、電解質膜と共にスペーサを一対のフレーム部で挟持して一体化したので、フレームの挟持部における積層方向の厚みを一定に 10 することができ、積層方向の剛性を高めることができる。したがって、単電池を積層した際、積層面に作用する応力等によるフレームの挟持部の変形を防止することができ、燃料ガスの混合や漏れを防止することができる。

【0072】本発明の燃料電池の単電池の製造方法では、接着工程で、2つのセパレータとフレームとを単電池の内部抵抗が所定の値となるよう弾性接着剤により接着するので、内部抵抗が均一な単電池を製造することができる。したがって、こうした単電池を積層して燃料電池とすれば、抵抗値不良の少ない燃料電池とすることができ、燃料電池の性能を標準化することができる。また、弾性接着剤で接着して単電池を製造するので、単電池は一体となり、燃料電池を積層する際の組み付けを容易とすることができる。もとより、支持工程で、電解質膜の外縁部をフレームで支持するので、電解質膜が発電に用いられる有効面積を多くすることができ、コストの低減化を図ることができる。

【0073】請求項4記載の単電池の製造方法では、加 える押圧荷重を調整することにより容易に単電池の内部 30 抵抗を所定の値とすることができる。

【0074】請求項5記載の単電池の製造方法では、弾性接着剤を、燃料ガスをシールするシール部材とすることができる。したがって、単電池を構成する部材数を少なくすることができ、その製造を容易とすることができる。

【0075】請求項6記載の単電池に製造方法では、スペーサを電解質膜と共に一対のフレーム部材で挟持して一体化するので、フレームの挟持部における積層方向の厚みを均一にすることができ、積層方向の剛性を高める 40ことができる。したがって、積層面に作用する応力によるフレームの変形を抑制して燃料ガスの混合や漏れを防止することができる。

【0076】本発明の燃料電池の単電池の電解質膜部材では、スペーサを電解質膜と共に一対のフレームで挟持して一体化するので、フレームの挟持方向の厚みを均等にすることができ、挟持方向の剛性を高めることができる。したがって、単電池を積層して燃料電池を構成した際、積層面に作用する応力によるフレームの変形を抑制して燃料ガスの混合や漏れを防止することができる。

20

【0077】本発明の燃料電池では、単電池を複数積層し、所定の内部抵抗として接着した電池モジュールを更に積層して燃料電池としたので、燃料電池の組み付けを極めて容易とすることができる。また、燃料電池が発生する熱や振動に基づく応力を弾性接着剤が吸収するので、燃料電池の耐久性を向上させることができる。さらに、電池モジュールの内部抵抗を所定の値としたので、この電池モジュールを積層してなる燃料電池の抵抗値不良を減少させ、燃料電池の性能を標準化することができる。加えて、電池モジュール毎に燃料ガスのリークのチェックまたは内部抵抗値のチェックを行なうことができるので、燃料電池が所定の性能を示さないときに、容易にチェックすることができる。

【図面の簡単な説明】

【図1】本発明の一実施例である固体高分子型燃料電池の電池モジュール10の構成を示した説明図である。

【図2】電池モジュール10等を積層した積層体7の外 観を例示した斜視図である。

【図3】フレーム100の外観を例示した斜視図である。

【図4】電解質膜30と一体化した一対のフレーム10 0の外観を例示する斜視図である。

【図5】電解質膜30および多数のスペーサ60を配置したフレーム100の外観を例示した説明図である。

【図6】集電極50およびセパレータ200の外観を例示した斜視図である。

【図7】冷却部材300の外観を例示した斜視図である。

【図8】セパレータ200に弾性接着剤420を塗布する部分を例示した説明図である。

【図9】電解質膜部材150の組み付けの様子を例示した工程図である。

【図10】電池モジュール10の組み付けの様子を例示した工程図である。

【図11】第1実施例の固体高分子型燃料電池の組み付けの様子を例示した工程図である。

【図12】単電池20Aの構成を例示した説明図である。

【図13】第2実施例である固体高分子型燃料電池の電池モジュール10Bの構成を例示した説明図である。

【図14】フレーム500の外観を例示した斜視図である。

【図15】図14に示したフレーム500を裏面から見た斜視図である。

【図16】フレーム600の外観を例示した斜視図である

【図17】図16に示したフレーム600を裏面から見た斜視図である。

【図18】集電極50およびセパレータ250の外観を 50 例示した斜視図である。

22

【図19】フレーム600に弾性接着剤420を塗布する部分を示した説明図である。

【図20】セバレータ250に弾性接着剤420を塗布する部分を例示した説明図である。

【符号の説明】

7…積層体

10,10B…電池モジュール

11,11B…電池モジュール

12A…酸化ガス流路

12B…燃料ガス流路

14A, 14B…冷却媒体流路

20, 20A, 20B…単電池

30…電解質膜

40…電極

50…集電極

56…リブ

58…ガス通路

60…スペーサ

100…フレーム

110…発電孔

120,130…燃料孔

128…溝

140…冷却孔

150, 150B, 150C…電解質膜部材

200…セパレータ

220…燃料孔

240…冷却孔

250…セパレータ

300…冷却部材

320…燃料孔

340,342…冷却孔

352…溝

354…段差部

356…リブ

10 358…通路

410…接着剤

420…弾性接着剤

500…フレーム

510…発電孔

515,518…段差部

520,530…燃料孔

528…溝

540…冷却孔

600…フレーム

20 610…発電孔

618…段差部

620,630…燃料孔

628…溝

640…冷却孔

06/12/2002, EAST Version: 1.03.0002

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim]

[Claim 1] The cell which pastes up with elastic adhesives and becomes so that may be the cell of the fuel cell equipped with the electrolyte layer, it may be formed with an insulating material, it may have the frame which supports the felly section of the aforementioned electrolyte layer, and 2 separators which are formed with a conductive material and arranged at the both sides of the aforementioned frame and the internal resistance of this cell may serve as a predetermined value in the aforementioned frame and the two aforementioned separators.

[Claim 2] The aforementioned frame is the cell [a claim 3] of the claim 1 publication which it comes to unify with adhesives where the frame component of the aforementioned couple ****ed with the frame component and the aforementioned electrolyte layer of the couple which ****s the felly section of the aforementioned electrolyte layer, it had the spacer which specifies the thickness of this electrolyte layer in this **** orientation and the aforementioned electrolyte layer and the aforementioned spacer are ****ed by the frame component of the aforementioned couple. The manufacture technique of a cell which consists of an adhesion process which pastes up the support process which supports the felly section of the aforementioned electrolyte layer with the frame which is the manufacture technique of the cell of the fuel cell equipped with the electrolyte layer, and was formed with the insulating material, and two separators and the aforementioned frame which were formed with the conductive material with elastic adhesives so that the internal resistance of this cell may serve as a predetermined value.

[Claim 4] The aforementioned adhesion process is the manufacture technique of the cell the claim 3 publication which is the process which adds a **** load to the two aforementioned separators, and pastes up the internal resistance of this cell as a predetermined value.

[Claim 5] The aforementioned adhesion process is the manufacture technique of a cell the claim 3 which is the process which plasters the position of the aforementioned frame or the aforementioned separator with these elastic adhesives, and is pasted up on it so that it may act as a seal component which carries out the seal at least of one side of the fuel gas by the side of a cathode or an anode after the aforementioned elastic adhesives' hardening, or given in four.

[Claim 6] The aforementioned support process is the manufacture technique of a cell the claim 3 which is the process which ****s the spacer which specifies the thickness of the aforementioned electrolyte layer in this **** orientation by the frame component of this couple with this electrolyte layer when the aforementioned frame consists of a frame component of a couple and is ****ed by the frame component of this couple, and unifies this spacer, this electrolyte layer, and the frame of this couple with adhesives in the state of this ****, or given in five.

[Claim 7] The electrolyte layer component which it comes to unify with adhesives where it is the electrolyte layer component of the cell of the fuel cell which comes to **** the felly section of an electrolyte layer with the frame of the couple formed with the insulating material, and the frame of the aforementioned couple ****ed with the aforementioned electrolyte layer, it had the spacer which specifies the thickness of this electrolyte layer in this **** orientation and the aforementioned electrolyte layer and the aforementioned spacer are ****ed with the frame of the aforementioned couple.

[Claim 8] It is the fuel cell which pastes up with elastic adhesives and becomes so that it may be the fuel cell which comes to carry out two or more laminatings of the battery module which carried out two or more laminatings of the cell, the aforementioned cell may be a cell the claim 1 or given in two and the aforementioned battery module may serve as a value predetermined in the internal resistance of this battery module in between the aforementioned cells.

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3. In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed description]

[0001]

[Field of the Invention] the cell of the fuel cell which this invention equipped with the electrolyte layer in detail about the cell and its manufacture technique of a fuel cell -- and -- and it is related with the manufacture technique [0002]

[Prior art] Two or more springs are prepared in the laminating side of the pressure plate arranged at the laminating edge of the layered product which carried out the laminating of the cell as a fuel cell which equalizes conventionally **** which acts on the laminating side of a cell, and makes internal resistance of a fuel cell small, and the fuel cell which binds *********** tight equally is proposed in the pressure plate with this spring (for example, Provisional-Publication-No. 248368 [61 to] official report). It is because the material strength of the component from which **** constitutes a cell with some size of **** although contact sufficient in the fraction which contact sufficient between the interior of a cell or a cell in the fraction which will become [too little / ****] if equalizing **** which acts on the laminating side of a cell does not have equal **** is not obtained, but internal resistance and contact resistance become large, and becomes excessive / **** / is obtained is exceeded and the component may be damaged.

[0003] Moreover, in this fuel cell, in order to prevent the mixture with cathode side fuel gas and anode side fuel gas, and the leakage of each fuel gas, the gasket is used as a seal component. Since mixture of fuel gas and leakage cause un-arranging that it cannot ** to the deployment of resources] while they reduce the amount of power generation per unit propellant of a fuel cell, they are important for preventing mixture of fuel gas, and leakage.

[Object of the Invention] However, in this fuel cell, when the laminating of the cell was carried out, it was attached and variation arose in the attachment position, equal **** did not act on the laminating side of the cell which variation produced, but there was a case where above-mentioned un-arranging arose. Although a high precision was required of how to add the **** load added to attachment of a layered product and a layered product in order to avoid this un-arranging, when carrying out the laminating of many cells, it was difficult to maintain such high precision.

[0005] Moreover, with the stress produced by the heat which a fuel cell generates by some component which constitutes a cell, vibration, etc., asymmetry arose in the component and there was a problem that the reliability of the seal of a gasket might be spoiled remarkably. Furthermore, when a gasket produced a setting by the thermal fatigue, the creep, etc. and spoiled the reliability of a seal, it was.

[0006] The cell and its manufacture technique of a fuel cell of this invention solved such a problem, and they took the following configuration for the purpose of preventing mixture of fuel gas, and leakage while they equalized **** which acts on the laminating side of each part material of a fuel cell and made internal resistance of a fuel cell small.

[The means for solving a technical problem] The cell of the fuel cell of this invention is a cell of the fuel cell equipped with the electrolyte layer, it is formed with an insulating material, is equipped with the frame which supports the felly section of the aforementioned electrolyte layer, and 2 separators which are formed with a conductive material and arranged at the both sides of the aforementioned frame, and makes it a summary to paste up with elastic adhesives and to become so that the internal resistance of this cell may serve as a predetermined value in the aforementioned frame and the two aforementioned separators.

[0008] Here, in the aforementioned cell, the aforementioned frame is ****ed by the frame component of the aforementioned couple with the frame component and the aforementioned electrolyte layer of the couple which ****s the felly section of the aforementioned electrolyte layer, can be equipped with the spacer which specifies the thickness of this electrolyte layer in this **** orientation, and can also consider it as the configuration which it comes to unify with adhesives where the aforementioned electrolyte layer and the aforementioned spacer are ****ed by the frame component of the aforementioned couple.

[0009] Let it be a summary that the manufacture technique of the cell of the fuel cell of this invention consists of an adhesion process which pastes up the support process which supports the felly section of the aforementioned electrolyte layer with the frame which is the manufacture technique of the cell of the fuel cell equipped with the electrolyte layer, and was formed with the insulating material, and two separators and the aforementioned frame which were formed with the conductive material

with elastic adhesives so that the internal resistance of this cell may serve as a predetermined value.

[0010] Here, in the manufacture technique of the aforementioned cell, the aforementioned adhesion process can add a **** load to the two aforementioned separators, and can also consider internal resistance of this cell as the configuration which is the process pasted up as a predetermined value. Moreover, in the manufacture technique of the aforementioned cell, the aforementioned adhesion process can also be considered as the configuration which is the process which plasters the position of the aforementioned frame or the aforementioned separator with these elastic adhesives, and is pasted up on it so that it may act as a seal component which carries out the seal at least of one side of the fuel gas by the side of a cathode or an anode after the aforementioned elastic adhesives' hardening. Or in the manufacture technique of the aforementioned cell, the aforementioned support process ****s the spacer which specifies the thickness of the aforementioned electrolyte layer in this **** orientation by the frame component of this couple with this electrolyte layer, when the aforementioned frame consists of a frame component of a couple and is *****ed by the frame component of this couple, and it can also consider this spacer, this electrolyte layer, and the frame of this couple as the configuration which is the process unified with adhesives in the state of this *****

[0011] The electrolyte layer component of the cell of this invention comes to **** the felly section of an electrolyte layer with the frame of the couple formed with the insulating material. Are the electrolyte layer component of the cell of a fuel cell, and the frame of the aforementioned couple ****s with the aforementioned electrolyte layer. It has the spacer which specifies the thickness of this electrolyte layer in this **** orientation, and let it be a summary to come to unify with adhesives, where the aforementioned electrolyte layer and the aforementioned spacer are ****ed with the frame of the aforementioned couple. [0012] The fuel cell of this invention is a fuel cell which comes to carry out two or more laminatings of the battery module which carried out two or more laminatings of the cell, the aforementioned cell is a cell the claim 1 or given in two, and the aforementioned battery module makes it a summary to paste up with elastic adhesives and to become about between the aforementioned cells, so that the internal resistance of this battery module may serve as a predetermined value. [0013]

[Operation] Elastic adhesives absorb the stress based on the heat and vibration which a fuel cell generates, and the cell of the fuel cell of this invention constituted as mentioned above raises the endurance of a cell. Moreover, since a cell is unified by elastic adhesives, the handling at the time of carrying out the laminating of the cell becomes easy. Furthermore, since internal resistance of a cell is made into a predetermined value, the performance of the fuel cell which comes to carry out the laminating of this cell is standardized.

[0014] Here, in the cell equipped with the spacer, a spacer sets constant the thickness of the orientation of a laminating of the frame unified with the electrolyte layer, and raises the rigidity of the orientation of a laminating.

[0015] The manufacture technique of the cell of the fuel cell of this invention is a support process, the felly section of an electrolyte layer is supported with the frame formed with the insulating material, and it is an adhesion process, and two separators and frame which were formed with the conductive material are pasted up with elastic adhesives so that the internal resistance of a cell may serve as a predetermined value. In this way, the manufactured cell absorbs the stress based on the heat and vibration which are produced in a fuel cell after elastic adhesives' hardening, and raises the endurance of a cell. Moreover, since internal resistance of a cell is made into a predetermined value, the performance of the fuel cell which comes to carry out the laminating of this cell is standardized.

[0016] Here, by the manufacture technique of the cell which adds a **** load to a separator and makes internal resistance of a cell a predetermined value, the **** load to add is adjusted and let internal resistance of a cell be a predetermined value. By the manufacture technique of the cell which plasters the position of a frame or a separator with elastic adhesives, and is pasted up on it so that it may become the seal component of fuel gas, after elastic adhesives' hardening, the seal of fuel gas can also be performed simultaneously and the number of components which constitutes a cell is lessened. By the manufacture technique of the cell which a spacer and an electrolyte layer are ****ed by the frame component of a couple, and is pasted up, a spacer sets the thickness of the orientation of a laminating of a frame constant, and makes rigidity of the orientation of a laminating high.

[0017] In the electrolyte layer component of the cell of the fuel cell of this invention, a spacer is ****ed by the frame of a couple with an electrolyte layer, sets thickness of the **** orientation of the frame of a couple constant, and makes rigidity of the **** orientation high.

[0018] In the fuel cell of this invention, attachment of a fuel cell becomes very easy by having considered as the battery module which comes to carry out two or more laminatings of the cell. Moreover, since internal resistance of a battery module was made into the predetermined value, the performance of the fuel cell which comes to carry out the laminating of the battery module is standardized.

[0019]

[Example] In order to clarify much more a configuration and an operation of this invention explained above, the suitable example of this invention is explained below. <u>Drawing 1</u> is explanatory drawing having shown the configuration of the battery module 10 of the solid-state macromolecule type fuel cell which is one suitable example of this invention. <u>Drawing 2</u> is the perspective diagram which illustrated the appearance of the layered product 7 which carried out the laminating of this battery module 10 etc.

[0020] A solid-state macromolecule type fuel cell consists of a layered product 7 (<u>drawing 2</u>), a fuel gas feeder (not shown) which supplies oxidization gas (oxygen or air) and fuel gas (hydrogen) to a layered product 7, and a cooling medium feeder

(not shown) which supplies cooling mediums (for example, a pure water, a chlorofluorocarbon-replacing material, insulating oil, etc.) to a layered product 7. As a layered product 7 is shown in drawing 2, it consists of a battery module 10, a battery module 11, a separator 200, and a cooling component 300, and two or more laminatings of a battery module 10 and the battery module 11 are carried out by turns, one laminating edge is equipped with a separator 200, and the other end is equipped with the cooling component 300. Moreover, oxidization gas (oxygen or air) passage 12A of the couple penetrated in the orientation of a laminating, fuel gas (hydrogen) passage 12B, and two pairs of cooling medium passage 14A and 14B are formed in the layered product 7.

[0021] As shown in drawing 1, a battery module 10 carries out the laminating of three of the cells 20, 22, and 24 which are power generation units, and is constituted. The cell 20 consists of an electrolyte layer component 150 equipped with the electrolyte layer 30 and two electrodes 40, two collecting electrodes 50 which are prepared in the both sides of the electrolyte layer component 150, and form the passage of oxidization gas or fuel gas by the electrode 40, and two separators 200 further formed in the both sides. The cell 22 consists of the same component as a cell 20, and is sharing one separator 200 by the adjoining cell 20. A cell 24 carries out the laminating of the same electrolyte layer component 150 as a cell 20, two electrodes 40 prepared in the both sides, the separator 200, and the cooling component 300, is constituted, and is sharing the separator 200 by the adjoining cell 22. The electrolyte layer component 150 of each cell, the separator 200, and the electrolyte layer component 150 and the cooling component 300 of a cell 24 are pasted up with the elastic adhesives 420.

[0022] The electrolyte layer component 150 consists of many spacers 60 which set constant the spacing of the electrolyte layer 30, two electrodes 40, the frame 100 of a couple, and the frame 100 of a couple, and give rigidity, and where the felly section of the electrolyte layer 30 is ****ed with the frame 100 of a couple with many spacers 60, it pastes up with adhesives 410 and it is united. Moreover, an electrode 40 is arranged and it has the sandwich structure at the both sides of the electrolyte layer 30. Each part material which constitutes a battery module 10 is explained in detail below.

[0023] The electrolyte layer 30 is 200-micrometer ion exchange membrane from 100 micrometers in thickness formed by polymeric materials, for example, a fluorine system resin, and shows good electrical conductivity according to a damp or wet condition. Both two electrodes 40 are formed of the carbon cross woven with the yarn which consists of a carbon fiber, and the carbon powder which ****ed the alloy which becomes this carbon cross from the platinum as a catalyst or platinum, and other metals is scoured in the front face and opening by the side of the electrolyte layer 30 of a cross. This electrolyte layer 30 and two electrodes 40 are in the status which two electrodes 40 made the sandwich structure on both sides of the electrolyte layer 30. 100 degrees C cannot be found and 160 degrees C is 120 degrees C or 155 degrees C in temperature preferably. 1 -- MPa {10.2kgf/cm2} or 10MPa{102kgf/cm2} -- desirable -- 3 -- it is joined by the hot pressing which the pressure of MPas {31kgf/cm2} or 7MPa{71kgf/cm2} is made to act, and is joined In addition, although two electrodes 40 were formed by the carbon cross in the example, the configuration formed by the carbon paper or carbon felt which consists of a carbon fiber is also suitable.

[0024] A spacer 60 is formed of polystyrene and is carrying out the sphere of a diameter bigger a little than the thickness of the electrolyte layer 30. Although all the size will also be available for it in the thickness and the EQC of the electrolyte layer 30 if the diameter of a spacer 60 is large, it is desirable to be referred to as 200 to 500 micrometers from the need of making thickness of a battery module 10 thin. As for the diameter of a spacer 60, it is desirable that it is equal to the fixed value by setting the spacing of the frame 100 of a couple constant with many spacers 60. In the example, the spacer 60 with a diameter of 300 micrometers was used to the electrolyte layer 30 with a thickness of 150 micrometers. In addition, in the example, although the spacer 60 was formed by polystyrene, as long as it has the rigidity which can be equal to the **** load (after-mentioned) which acts on a battery module 10, you may form with any material. For example, the configuration formed with glass is also suitable. Moreover, although a spacer 60 may be formed with the arrangement which does not contact the component (for example, electrolyte layer 30) formed of other conductive materials, then a conductive material, it is desirable to form with the insulating material which does not need to take the contact to other components into consideration. Although the configuration of a spacer 60 was made into the sphere in the example, since what is necessary is just to maintain the frame 100 of a couple at a fixed spacing, you may be a circular cylinder, a polyhedron, etc.

[0025] The frame 100 of a couple is formed with resins (for example, phenol resin, polyphenylene sulfide (PPS), a polyamide, etc.). The frame 100 before uniting with the electrolyte layer 30 is shown in drawing 3. Drawing 3 is the perspective diagram which illustrated the appearance of the frame 100 before pasting up. The frame 100 is formed in the shape of [square] sheet metal, and the hole (power generation hole) 110 of the square which arranges the power generation layer formed of the electrolyte layer 30, the electrode 40, etc. is formed in the center of a frame 100 so that it may illustrate. Moreover, when a layered product 7 is formed, the circular hole (cooling hole) 140 which makes two pairs of cooling medium passage 14A and 14B which penetrates a layered product 7 in the orientation of a laminating is formed in the four corners of a frame 100. each cooling formed in the four corners of this frame 100 -- the propellant of the rectangle which makes oxidization gas-passageway 12A and fuel gas passage 12B which penetrate a layered product 7 in the orientation of a laminating between holes 140 -- holes 120 and 130 are formed this propellant -- the same of holes 120 and 130 is said of arrangement of as opposed to each side at the same configuration moreover, power generation -- a hole 110 and a propellant -- between holes 120 -- a propellant -- the slot 128 arranged in parallel along with the longitudinal direction of a hole 130 is formed the time of a battery module 10 being attached, as for this slot 128 -- a propellant -- a hole 120 and power generation -- it becomes the path of the oxidization gas or fuel gas which connects a hole 110

[0026] In this way, the frame 100 of the formed couple It is made to face each other so that it may have consistency in a hole

3 of 10

130. the slot 128 formed in each frame 100 -- an outside -- suitable -- the propellant of one frame 100 -- a hole 120 -- the propellant of the frame 100 of another side -- power generation of each frame 100 -- while the felly section of the electrolyte layer 30 is ****ed in the circumference section of a hole 110 -- power generation -- except the circumference section of a hole 110, where two or more spacers 60 are ****ed, it pastes up with adhesives 410, and it becomes the electrolyte layer component 150 The perspective diagram which illustrated the appearance of the electrolyte layer component 150 to drawing 4 is shown. The slot 128 formed in each frame 100 serves as the arrangement which turns to an outside and intersects perpendicularly so that it may illustrate moreover, the propellant of the frame 100 of a couple -- 2 sets of propellants which adjust holes 120 and 130 and face each other -- holes 135A and 135B are made In addition, as adhesives 410, the adhesives of the epoxy system excellent in the adhesive property with the electrolyte layer 30 and the frame 100 and endurance were used. The adhesives of a silicon system etc. are sufficient as adhesives 410 besides the adhesives of an epoxy system, and silicone RTV rubber or urethane RTV rubber which are mentioned later and which are used as elastic adhesives 420 do not interfere, either.

[0027] Next, a mode that paste up the frame 100 of a couple etc. and it considers as the electrolyte layer component 150 is explained. first, the electrode 40 which applied adhesives 410 all over one field (rear face of the field displayed on drawing 3) of the frame 100 of a couple, and was joined to the electrolyte layer 30 -- power generation -- the power generation to which adhesives 410 were applied so that a fitting might be carried out to a hole 110 -- the felly section of the electrolyte layer 30 is set among the circumference section of a hole 110 next, power generation -- the fraction to which adhesives 410 other than the circumference section of a hole 110 were applied -- 1cm2 per -- preferably from ten pieces 100 pieces, from 20 pieces, a spacer 60 is equally sprinkled so that it may become 50 pieces In this case, it warns against sprinkling a spacer 60 on the electrolyte layer 30 and the electrode 40. When the spacer 60 was sprinkled on the electrolyte layer 30, and the frame 100 of a couple is pasted up and it considers as the electrolyte layer component 150 Thickness of the fraction cannot become large and it cannot consider as the electrolyte layer component 150 of equal thickness. By **** at the time of being because the performance of the battery module 10, as a result a solid-state macromolecule type fuel cell being reduced, and unifying the electrolyte layer 30, the frame 100 or the electrolyte layer component 150, and the separator 200 It is because a possibility of reducing the surroundings lump prevention function of the fuel gas which a spacer 60 enters into the electrolyte layer 30, is made damaging the electrolyte layer 30, and the electrolyte layer 30 has arises. When a spacer 60 is sprinkled on an electrode 40, it is because the contact resistance of an electrode 40 and the collecting electrode 50 becomes large. The electrolyte layer 30 is arranged on a frame 100 at drawing 5, and the appearance of the status that many spacers 60 were sprinkled is shown. [0028] Next, adhesives 410 are applied all over the field (rear face of the field displayed on drawing 3) of another frame 100. It lays on top of the frame 100 of the status which showed in drawing 5 so that the slot 128 formed in each frame 100 may intersect perpendicularly. A **** load (from 200kPa{2Kgf/cm2} to 2000kPa{20Kgf/cm2}) is made to act on inter-frame [of a couple 1, and adhesives 410 are stiffened after the spacer 60 has contacted each frame 100. Therefore, the spacing of the frame 100 of a couple is kept constant for the diameter of a spacer 60. Moreover, since many spacers 60 maintain rigidity in support of between the frames 100 of a couple even if it makes a **** load act on the electrolyte layer component 150, it prevents that the frame 100 of a couple is distorted. In addition, in the example, although it ****ed with the frame 100 of a couple after joining two electrodes 40 to the electrolyte layer 30 by the hot pressing, after ****ing the electrolyte layer 30 with the frame 100 of a couple and pasting up with adhesives 410, it does not interfere as a configuration which joins two electrodes 40 to the electrolyte layer 30.

[0029] The porosity in which a collecting electrode 50 has gas permeability by porous material is formed of 40% or 80% of the porous carbon. Drawing 6 is the perspective diagram which illustrated the appearance of the collecting electrode 50 and the separator 200. it illustrates -- as -- a collecting electrode 50 -- tabular [square] -- it is -- power generation of a frame 100 -- it is formed so that a fitting may be exactly carried out to a hole 110, and two or more ribs 56 arranged in parallel are formed in the whole surface This rib 56 forms the gas passageway 58 which makes the path of oxidization gas or fuel gas on the front face of an electrode 40.

[0030] The separator 200 is formed with gas the non-penetrated carbon which compressed carbon and it presupposed gas un-penetrating, and makes the septum of the cell 20 constituted by the electrolyte layer 30. two electrodes 40, and two collecting electrodes 50. cooling which the separator 200 is formed in tabular [square] and prepared in the four corners in the four corners of a frame 100 as shown in drawing 6 -- the same hole (cooling hole) 240 is formed in the same position as a hole 140 this cooling -- a hole 240 -- cooling of a frame 100 -- the cooling medium passage 14A and 14B which penetrates a layered product 7 in the orientation of a laminating with a hole 140 is formed moreover, each cooling -- a hole -- the propellant prepared in the frame 100 between 240 -- the same hole (propellant hole) 220 is formed in the same position as holes 120 and 130 this propellant -- a hole 220 -- a propellant -- oxidization gas-passageway 12A and fuel gas passage 12B which penetrate a layered product 7 in the orientation of a laminating with holes 120 and 130 are formed [0031] in this way, the collecting electrode 50 and the separator 200 which were formed -- power generation of the frame 100 of a separator 200 -- it is welded by the Teflon dispersion etc. so that the field where the rib 56 of a collecting electrode 50 is not formed in the position equivalent to a hole 110 may have consistency As shown in drawing 1, in the separator 200 with which the collecting electrode 50 was welded to both sides, it is the arrangement arrangement and the rib 56 of the collecting electrode 50 welded to both sides cross at right angles.

[0032] <u>Drawing 7</u> is the perspective diagram which illustrated the appearance of the cooling component 300. cooling prepared in the four corners of the field which the field which carries out a laminating is square-like plate-like part material,

and carries out a laminating so that the cooling component 300 may be formed with gas non-penetrated carbon and it may illustrate in the four corners of a frame 100 -- the same holes (cooling hole) 340 and 342 are formed in the same position as a hole 140 this cooling -- holes 340 and 342 -- cooling of a frame 100 -- the cooling medium passage 14A and 14B which penetrates a layered product 7 in the orientation of a laminating with a hole 140 is formed moreover, cooling -- the propellant prepared among holes 340 and 342 at the frame 100 -- the same holes (propellant hole) 320 and 330 are formed in the same position as holes 120 and 130 this propellant -- holes 320 and 330 -- the propellant of a frame 100 -- oxidization gas-passageway 12A and fuel gas passage 12B which penetrate a layered product 7 in the orientation of a laminating with holes 120 and 130 are formed

[0033] power generation of the frame 100 of the cooling component 300 -- the level difference section 354 lower than other front faces is formed in the position equivalent to a hole 110, and two or more parallel ribs 356 are formed in this level difference section 354 This rib 356 forms the path 358 of a cooling medium with the separator 200 which constitutes other adjoining battery modules 10, when the laminating of the battery module 10 is carried out. moreover, two cooling to which this level difference section 354 was formed in the diagonal position -- it connects in a hole 342 and two slots 352 -- having -- **** -- the cooling component 300 -- one cooling -- a hole 342 to a cooling medium -- the level difference section 354 -- flowing -- cooling of another side -- it is the configuration which flows out of a hole 342 in addition -- although two or more ribs 356 were formed in the level difference section 354 and the path 358 of a cooling medium was formed in the example -- two cooling -- the configuration which connects a hole 342 in slots, such as the shape of ****, and forms the path of a cooling medium is also suitable

[0034] It is desirable that can use silicone RTV rubber, urethane RTV rubber, etc. for the elastic adhesives 420 (for example, MOS7 which added denaturation silicon to the epoxy resin of the liquefied gasket_1211_of Three Bond and ****** bond), and 20 or 40, and the tension shear strength show 800kPa{8.2Kgf/cm2} or 10000kPa{102Kgf/cm2}, and elongation shows a degree of hardness] 150% or about 300% of a character after hardening. In addition, at an example, it is Three. The liquefied gasket 1211 of Bond was used.

[0035] Next, a mode that a battery module 10 is attached by each part material constituted in this way is explained. First, the elastic adhesives 420 are applied to the position of the separator 200 and the cooling component 300. An example of the position which applies the elastic adhesives 420 of a separator 200 is shown in drawing 8. the elastic adhesives 420 are applied to the fraction (a propellant -- between a hole 220 and the collecting electrodes 50 -- and -- each -- fractions other than the circumference of a hole) of the hatch of the oblique line of drawing 8 of a separator 200 The position which applies the elastic adhesives 420 of the cooling component 300 is the same as the position which a separator 200 applies. [0036] Then, the laminating of the separator 200 and the electrolyte layer component 150 which applied the elastic adhesives 420 is carried out by turns, and the electrolyte layer component 150 of the laminating edge is equipped with the collecting electrode 50 and the cooling component 300, and it considers as a battery module 10 so that the rib 56 of a collecting electrode 50 which confronts each other on both sides of the electrolyte layer component 150 may intersect perpendicularly. [0037] After attaching a battery module 10, before the elastic adhesives 420 harden, a predetermined voltage (for example, 100V) is applied to the separator 200 and the cooling component 300 of a laminating edge, and the **** load which can further be adjusted in the orientation of a laminating of a battery module 10 is added. And the electric resistance which adjusts this **** load and is produced in the separator 200 and the cooling component 300 of a laminating edge is made below into a predetermined value, and the elastic adhesives 420 are stiffened in the status. In the example, when the electrolyte layer 30 was made into a damp or wet condition, the predetermined value of electric resistance was set up so that it might be set to Imohm per cell. Therefore, in the battery module 10, since 3 laminatings of the cell are carried out between the separator 200 of a laminating edge, and the cooling component 300, in order to set the predetermined value of electric resistance as 3mohm and to make the electrolyte layer 30 into a damp or wet condition, the battery module 10 was placed into the steam. Moreover, in the example, the **** load added to making electric resistance into a predetermined value was taken as 400kPa{4.1Kgf/cm2} or 700kPa{7.1Kgf/cm2}. Here, the predetermined value of the electric resistance set as per cell is defined according to the quality of the material of each part material which constitutes the configuration of a cell, and a cell etc., and the predetermined value of the electric resistance set up between the separator 200 of a laminating edge and the cooling component 300 is defined according to the quality of the material of each part material which constitutes the number and the battery module 10 of the cell by which the laminating was carried out as a battery module 10 etc. The **** load added in the orientation of a laminating of a battery module 10 is defined with the material strength of each part material which constitutes the physical properties and the battery module 10 before hardening of the elastic adhesives 420 etc. [0038] In addition, although the battery module 10 was placed into the steam and the elastic adhesives 420 were stiffened in the example in order to make the electrolyte layer 30 into a damp or wet condition, the configuration which defines the predetermined value of electric resistance from the water content of the electrolyte layer 30 at the time of asking for the relation between the water content of the electrolyte layer 30 and an electric resistance value beforehand, and stiffening this relation and the elastic adhesives 420 is also suitable.

[0039] The battery module 11 shown in <u>drawing 2</u> is constituted by the same component (three electrolyte layer components 150, three separators 200, and cooling component 300) as a battery module 10, and is carrying out the same laminated structure except for arrangement of the cooling component 300. As shown in <u>drawing 1</u>, although equipped with the cooling component 300 of a battery module 10 by the arrangement arrangement and the rib 56 formed in the collecting electrode 50 in contact with the rib 356 formed in the level difference section 354 and the cooling component 300 cross at right angles, it

5 of 10 6/12/02 2:19 PM

is equipped with it by the arrangement which becomes parallel [the cooling component 300 of a battery module 11 / a rib 356 and the rib 56]. therefore -- if the laminating of a battery module 10 and the battery module 11 is carried out by turns -- cooling of a battery module 11 -- a hole 342 -- cooling of a battery module 10 -- a hole 340 is connected with [0040] The layered product 7 shown in drawing 2 carries out the laminating of the battery module 10 and the battery module 11 which were formed in this way by turns, and it is equipped with a separator 200 at one side of a laminating edge, another side is equipped with the cooling component 300, and it is attached. The laminating of a battery module 10 and the battery module 11 is carried out so that the cooling component 300 of a battery module 11 may touch the separator 200 of the laminating edge of a battery module 10, and so that the rib 356 of the cooling component 300 of a battery module 10 and the rib 356 of the cooling component 300 of a battery module 11 may intersect perpendicularly. Thus, it becomes the arrangement arrangement and the rib 56 of the collecting electrode 50 which is missing from a battery module 11 and adjoins it from a battery module 10 by carrying out a laminating also cross at right angles.

[0041] In this way, a fuel gas feeder (not shown) and a cooling medium feeder (not shown) are attached in the formed layered product 7, and a solid-state macromolecule type fuel cell is completed. In this way, make oxidization gas-passageway 12A of the couple of the completed solid-state macromolecule type fuel cell into the inflow passage and the outflow way of oxidization gas, and if oxidization gas and fuel gas are passed as the inflow passage and the outflow way of fuel gas, fuel gas passage 12B Oxidization gas and fuel gas flow to the gas passageway 58 which intersects perpendicularly on both sides of the electrolyte layer 30, oxidization gas and fuel gas are supplied to the two electrodes 40 arranged at the both sides of the electrolyte layer 30, electrochemical reaction shown in the following formula is performed, and chemical energy is changed into direct electrical energy.

[0042]

Cathode-reaction: 2H++2e-+(1/2) O2 ->H2O anode-reaction:H2 ->2H++2e-[0043] Moreover, a solid-state macromolecule type fuel cell is cooled by pouring a cooling medium, considering as the inflow passage of a cooling medium to which one which is located in the vertical angle of the laminating side of a layered product 7] passage of each set of two pairs of cooling medium passage 14A and 14B is supplied from a cooling medium feeder, and using passage of another side as the outflow way.

[0044] The mode of attachment of the electrolyte layer component 150, the mode of attachment of a battery module 10, and the mode of attachment of a solid-state macromolecule type fuel cell are explained below based on drawing 9 or drawing 11, although already explained almost. Drawing 9, drawing 10, and drawing 11 are process drawings which illustrated the mode of attachment of the electrolyte layer component 150, the mode of attachment of a battery module 10, and the mode of attachment of a solid-state macromolecule type fuel cell, respectively.

[0045] As shown in drawing 9, first, on both sides of the electrolyte layer 30, it considers as a sandwich structure by two electrodes 40, and in this status, attachment of the electrolyte layer component 150 does not have 100 degrees C, and is 120 degrees C or 155 degrees C in temperature preferably 160 degrees C. 1 -- MPa {10.2kgf/cm2} or 10MPa{102kgf/cm2} -- desirable -- 3 -- the pressure of MPas {31kgf/cm2} or 7MPa{71kgf/cm2} is made to act, and it joins (process 11) next, power generation of the field where adhesives 410 are applied all over the field (rear face of the field displayed on drawing 3) of the frame 100 of a couple (process 12), and the adhesives 410 of one frame 100 were applied -- the electrode 40 which joined the felly section of the electrolyte layer 30 to the electrolyte layer 30 at the felly section of a hole 110 -- power generation -- it arranges so that a fitting may be carried out to a hole 110 (process 13)

[0046] then, power generation of the frame 100 by which the electrolyte layer 30 has been arranged -- the fraction to which adhesives 410 other than the circumference section of a hole 110 were applied -- a spacer 60 -- 1cm2 per -- preferably from ten pieces 100 pieces, from 20 pieces, it sprinkles equally so that it may become 50 pieces (process 14) The frame 100 by which adhesives 410 were applied to the whole rear face of the field displayed on drawing 3 is laid on top of the frame 100 by which the spacer 60 was sprinkled so that the slot 128 formed in each frame 100 may intersect perpendicularly (process 15). A **** load (from 200kPa{2Kgf/cm2} to 2000kPa{20Kgf/cm2}) is made to act on the frame of a couple on which you made it put each other, and a spacer 60 considers as the status that each frame 100 was contacted, stiffens adhesives 410 in this status (process 16), and completes the electrolyte layer component 150. In addition, you may perform the junction (process 11) to the electrolyte layer 30 and the electrode 40 after a process 16.

[0047] attachment of a battery module 10 is shown in <u>drawing 10</u> -- as -- first -- a collecting electrode 50 -- power generation of the frame 100 of a separator 200 -- it welds by the Teflon dispersion etc. so that the field where the rib 56 of a collecting electrode 50 is not formed in the position equivalent to a hole 110 may have consistency (process 21) In addition, in welding a collecting electrode 50 to both sides of a separator 200, it welds so that it may become the arrangement arrangement and the rib 56 of the collecting electrode 50 of the both sides of a separator 200 cross at right angles. next, the elastic adhesives 420 are applied to the fraction (a propellant -- between a hole 220 and the collecting electrodes 50 -- and -- each -- fractions other than the circumference of a hole) of the hatch of the oblique line of the separator 200 shown in the separator 200 and the cooling component 300 at <u>drawing 8</u> (process 22) Then, the laminating of the separator 200 and the electrolyte layer component 150 which applied the elastic adhesives 420 is carried out by turns so that the rib 56 of a collecting electrode 50 which confronts each other on both sides of the electrolyte layer component 150 may intersect perpendicularly, and the electrolyte layer component 150 of the laminating edge is equipped with the collecting electrode 50 and the cooling component 300 (process 23).

[0048] Immediately after this laminating, the electrode and ammeter which supply a predetermined voltage (for example,

6 of 10 6/12/02 2:19 PM

100V) to the separator 200 and the cooling component 300 of a laminating edge are installed (process 24). A **** load is added to the layered product in which the electrode was installed, and this **** load is adjusted so that the electric resistance value produced in the separator 200 and the cooling component 300 of a laminating edge may become below a predetermined value (process 25). The predetermined value of the electric resistance value in an example sets the electric resistance permitted by the cell 20 as 1 mohm, as mentioned above, and it is 3 mohm between the separator 200 of a laminating edge, and the cooling component 300. The elastic adhesives 420 are stiffened in the status that it was adjusted so that the electric resistance value produced in the separator 200 and the cooling component 300 of a laminating edge might become below a predetermined value (process 26), and a battery module 10 is completed. In addition, although the collecting electrode 50 was made to weld to a separator 200 in the example, the configuration which is not made to weld may be used. In this case, the process 21 is unnecessary. Moreover, the battery module 11 as well as a battery module 10 is attached. [0049] as shown in drawing 11, as for attachment of a solid-state macromolecule type fuel cell, the rib 356 of the cooling component 300 of a battery module 10 and the rib 356 of the cooling component 300 of a battery module 11 intersect perpendicularly first so that the cooling component 300 of a battery module 11 may touch the separator 200 of the laminating edge of a battery module 10 in a battery module 10 and the battery module 11 -- as -- alternation -- a laminating -- carrying out -- one side of a laminating edge -- a separator 200 -- another side -- the cooling component 300 -- equipping A fuel gas feeder (not shown) and a cooling medium feeder (not shown) are attached in this layered product 7 (process 32), and a solid-state macromolecule type fuel cell is completed.

[0050] In the solid-state macromolecule type fuel cell of an example explained above, since the electrolyte layer component 150 and the separator 200 were pasted up with the elastic adhesives 420, the error of the thickness of the electrolyte layer component 150 or the separator 200 is absorbable. Therefore, even if it unifies the electrolyte layer 30, the spacer 60, and the frame 100 of a couple using the adhesives of the epoxy system hardened after drying in adhesives 410 The gap by heat, vibration, etc. which a solid-state macromolecule type fuel cell etc. generates is that the elastic adhesives 420 absorb, and can prevent trauma of the electrolyte layer 30 by a gap relative to the electrolyte layer 30 and the frame 100 not occurring, and this relative gap arising. Moreover, since the elastic adhesives 420 serve as the seal component which carries out the seal of oxidization gas and the fuel gas, the number of parts which constitutes a battery module 10 can be lessened, and a manufacture can be made easy. Furthermore, the stress produced by vibration added from the exterior of the heat which a solid-state macromolecule type fuel cell generates, or a solid-state macromolecule type fuel cell is absorbable with the elastic adhesives 420. Therefore, while it prevents that uneven **** acts on an electrode 40 etc., the leakage of oxidization gas and fuel gas can be prevented, and a generating efficiency can be maintained highly. In addition, since the elastic adhesives 420 absorb the above-mentioned stress, the endurance of a solid-state macromolecule type fuel cell can be raised. [0051] Moreover, since the electric resistance value between the separators 200 and the cooling components 300 which are located in the ends of a battery module 10 was made below into the predetermined value and the battery module 10 was formed, it can decrease in the poor resistance of the solid-state macromolecule type fuel cell which carries out the laminating of the battery module 10, and is formed, and the performance of a solid-state macromolecule type fuel cell can be standardized. Since the laminating of the battery module 10 was carried out and it considered as the solid-state macromolecule type fuel cell, the leakage of the check of resistance or fuel gas can be checked in battery-module 10 unit. [0052] In the electrolyte layer component 150 of an example, since the spacer 60 which has thickness, and the EQC or the big diameter of the electrolyte layer 30 with the electrolyte layer 30 was ****ed with the frame 100 of a couple, the rigidity of the orientation of a laminating can be raised and it can be made the thickness homogeneity of the orientation of a laminating of the electrolyte layer component 150. Therefore, when a **** load is added after carrying out a laminating to other components, **** which acts can be made regularity and formation of a quality solid-state macromolecule type fuel cell can be enabled. Moreover, since the adhesives of the epoxy system hardened after drying in adhesives 410 were used, after unifying the electrolyte layer 30, the spacer 60, and the frame 100 of a couple, trauma of the electrolyte layer 30 by a gap relative to the electrolyte layer 30 and the frame 100 not occurring, and this relative gap arising can be prevented. furthermore, the electrolyte layer 30 -- power generation of a frame 100 -- since what is necessary is just somewhat larger than a hole 110, as compared with the case where it is needed to the felly section of a frame 100, area of the electrolyte layer 30 can be made small, and a manufacturing cost can be reduced

[0053] By the manufacture technique of the solid-state macromolecule type fuel cell of an example, since the electrolyte layer component 150 and the separator 200 are pasted up with the elastic adhesives 420, two or more laminatings of the cell 20 can be carried out easily, and a battery module 10 can be formed. Therefore, since the laminating of the formed battery module 10 is carried out and a solid-state macromolecule type fuel cell is formed, as compared with the case where carry out the laminating of each component part, and a solid-state macromolecule type fuel cell is formed, a solid-state macromolecule type fuel cell can be attached very easily.

[0054] In addition, although the electrolyte layer component 150 which ****ed the spacer 60 was used in the example, you may be the configuration of the configuration which prepares two or more salients of shell quantity a little being also more suitable than the thickness of the electrolyte layer 30 for the plane of composition of a frame 100 instead of the spacer 60, not having a spacer 60, and not preparing a salient, either. Moreover, in the example, although the battery module 10 was equipped with the cooling component 300, the configuration which is not equipped with the cooling component 300 does not interfere, either. Furthermore, in the example, although it had the electrode 40, the collecting electrode 50, and the separator 200 of another field, the path of the contact section in contact with the electrolyte layer 30, oxidization gas, or fuel gas is

formed in a separator, and the configuration which is not equipped with the electrode and collecting electrode of another field does not interfere, either.

[0055] An example is available for the number of the cells 20 built in without limit, although the cell 20 built in a battery module 10 was set to three. Moreover, the configuration which uses the technique of forming a battery module 10 for formation of a cell is also suitable. This example of a configuration is shown in drawing 12. Cell 20A is constituted by the same component as the electrolyte layer component 150 which constitutes a battery module 10, the collecting electrode 50, and the separator 200, and the method of the laminating of it is the same as the method of the laminating of a battery module 10 so that it may illustrate. Moreover, the fraction which applies the elastic adhesives 420 to a separator 200 is also the same as that of the case of a battery module 10. A predetermined voltage (for example, 100V) is connected between the separators 200 which carried out the laminating, a **** load is added to a separator 200 and the elastic adhesives 420 are stiffened so that an electric resistance value may become below a predetermined value (for example, 1mohm), and it is referred to as cell 20A. In this way, an above-mentioned effect and the same effect can be acquired also about the fuel cell constituted by carrying out two or more laminatings of formed cell 20A and this cell 20A.

[0056] Next, the solid-state macromolecule type fuel cell of the 2nd example of this invention is explained. The solid-state macromolecule type fuel cell of the 2nd example is the thing of structure which made the separator of a part of solid-state macromolecule type fuel cell of the 1st example build in a frame. Therefore, since a part of component which constitutes the solid-state macromolecule type fuel cell of the 2nd example is the same as the component which constitutes the solid-state macromolecule type fuel cell of the 1st example, it gives the same sign to the same component, and omits the explanation. In addition, the solid-state macromolecule type fuel cell of the 2nd example consists of a layered product which comes by turns to carry out the laminating of two kinds of battery-module 10B from which arrangement of the cooling component 300 is different, and the battery-module 11B like the solid-state macromolecule type fuel cell of the 1st example, a fuel gas feeder (not shown) which supplies oxidization gas and fuel gas to this layered product, and a cooling medium feeder (not shown) which similarly supplies a cooling medium to a layered product.

[0057] Drawing 13 is explanatory drawing which illustrated the configuration of battery-module 10B. Two electrolyte layer component 150B which battery-module 10B equips with the electrolyte layer 30 and two electrodes 40 so that it may illustrate, Electrolyte layer component 150C similarly equipped with the electrolyte layer 30 and two electrodes 40. Six collecting electrodes 50 which form the passage of oxidization gas or fuel gas by the electrode 40, Two separators 250 built in among electrolyte layer component 150B etc. while the septum of cell 20B is made, when a laminating is carried out, It consists of a separator 200 with which the end of a battery module 10 is equipped, and a cooling component 300 with which the other end is equipped, and has pasted up with the elastic adhesives 420 between a separator 250 and electrolyte layer component 150B etc. Electrolyte layer component 150B consists of the electrolyte layer 30, two electrodes 40, a frame 500, a frame 600, and a spacer 60, and where the felly section of the electrolyte layer 30 and the felly section of an electrode 40 are ****ed with a frame 500 and the frame 600 with many spacers 60, it pastes up with adhesives 410 and it is united. [0058] The frame 500 is formed with resins (for example, phenol resin, polyphenylene sulfide (PPS), a polyamide, etc.). The frame 500 before uniting with the electrolyte layer 30 etc. is shown in drawing 14. the frame 500 is formed in the shape of square] sheet metal, and the hole (power generation hole) 510 of the square which arranges the power generation layer formed of the electrolyte layer 30, the electrode 40, etc. forms it in the center of a frame 500 so that it may illustrate -- having -- **** -- power generation -- the level difference section 515 is formed in the periphery of a hole 510 Moreover, when a layered product is formed, the circular hole (cooling hole) 540 which makes the cooling medium passage which penetrates a layered product in the orientation of a laminating is formed in the four corners of a frame 500. each cooling formed in the four corners of this frame 500 -- the propellant of the rectangle which makes the oxidization gas passageway and fuel gas passage which penetrate a layered product in the orientation of a laminating between holes 540 -- holes 520 and 530 are formed this propellant -- the same of holes 520 and 530 is said of arrangement of as opposed to each side at the same configuration moreover, power generation -- a hole 510 and a propellant -- between holes 520 -- a propellant -- the slot 528 arranged in parallel along with the longitudinal direction of a hole 530 is formed Drawing 15 is the perspective diagram which illustrated the rear face (field seen from arrow head I) of the field expressed to drawing 14 of a frame 500. it illustrates -- as -- power generation of a frame 500 -- the level difference section 518 is formed in the periphery of a hole 510 [0059] The frame 600 as well as a frame 500 is formed with resins (for example, phenol resin, polyphenylene sulfide (PPS), a polyamide, etc.). The frame 600 before uniting with the electrolyte layer 30 etc. is shown in drawing 16. it forms also in a frame 600 in the shape of [square] sheet metal so that it may illustrate -- having -- **** -- the center of a frame 600 -power generation -- the hole 610 is formed moreover, cooling which makes cooling medium passage in the four corners of a frame 600 as well as a frame 500 -- a hole 640 forms -- having -- **** -- getting down -- each cooling -- the propellant which makes an oxidization gas passageway and fuel gas passage between holes 640 -- holes 620 and 630 are formed power generation -- a hole 610 and a propellant -- between holes 620 -- a propellant -- the slot 628 arranged in parallel along with the longitudinal direction of a hole 630 is formed Drawing 17 is the perspective diagram which illustrated the rear face (field seen from arrow head II) of the field expressed to drawing 16 of a frame 600. it illustrates -- as -- power generation of a frame 600 -- the level difference section 618 of the same configuration as the level difference section 518 of a frame 500 is formed in the periphery of a hole 610

[0060] in this way, the frame 500 and the frame 600 which were formed -- a slot 528 and the slot 628 -- an outside -- suitable -- the propellant of a frame 500 -- a hole 520 -- the propellant of a frame 600 -- while it is made to face each other so that it

may have consistency in a hole 630 and the felly section of an electrode 40 is ****ed in the level difference section 518 of a frame 500, and the level difference section 618 of a frame 600, where two or more spacers 60 are ****ed, it pastes up In addition, the electrode 40 is formed in the configuration which carries out a fitting to the level difference section 518, and is joined to the electrolyte layer 30 by the above-mentioned hot pressing. Moreover, about the mode of attachment of electrolyte layer component 150B, since it is the same as that of the electrolyte layer component 150 of the 1st example, the explanation is omitted.

[0061] Electrolyte layer component 150C consists of the electrolyte layer 30, two electrodes 40, two or more spacers 60, and two frames 600. the electrolyte layer component 150 -- two frames 600 -- the slot 628 of each frame 600 -- an outside -- suitable -- the propellant of one frame 600 -- a hole 620 -- the propellant of the frame 600 of another side -- while it is made to face each other so that it may have consistency in a hole 630 and the felly section of an electrode 40 is ****ed in the level difference section 618 of each frame 600, where two or more spacers 60 are ****ed, it pastes up with adhesives 410 and is united

[0062] <u>Drawing 18</u> is the perspective diagram which illustrated the appearance of the collecting electrode 50 and the separator 250. The separator 250 is formed with gas the non-penetrated carbon which compressed carbon and it presupposed gas un-penetrating. A separator 250 has the shape of a square which carries out a fitting to the level difference section 515 formed in the frame 500, and the thickness is thinly formed a little from the depth of the level difference section 515 so that it may illustrate. It is welded in the center of both sides of a separator 250 by the Teflon dispersion etc. so that it may become the arrangement arrangement and the rib 56 of each collecting electrode 50 cross at right angles.

[0063] Next, a mode that battery-module 10B is attached by each part material constituted in this way is explained. First, the elastic adhesives 420 are applied to the frame 600 and the separator 250 of electrolyte layer component 150B. Drawing 19 is explanatory drawing which illustrated the fraction (fraction of the hatch of the oblique line) which applies the elastic adhesives 420 to a frame 600, the elastic adhesives 420 are illustrated -- as -- the circumference section of a frame 600, and two propellants -- the position surrounding a hole 620, and cooling -- the position surrounding a hole 640, and a propellant -- a hole 630 is applied to the position towards inside in opening by the typeface of "**" Drawing 20 is explanatory drawing which illustrated the fraction (fraction of the hatch of the oblique line) which applies the elastic adhesives 420 to a separator 250. The elastic adhesives 420 are applied near [parallel to the rib 56 formed in the collecting electrode 50 of a separator 250] the side so that it may illustrate.

[0064] Then, it equips with a separator 250 so that the field where the elastic adhesives 420 of a separator 250 were applied to the level difference section 515 of the frame 500 of electrolyte layer component 150B, and the level difference section 515 may contact, and so that the slot 528 formed in the rib 56 and the frame 500 of the collecting electrode 50 welded to the field where the elastic adhesives 420 of a separator 250 were applied may serve as parallel arrangement. By considering as this arrangement, a separator 250 is pasted up on the field of the side in which the slot 528 of the level difference section 515 is not formed with the elastic adhesives 420. Next, two electrolyte layer component 150B is piled up so that the frame 500 of one electrolyte layer component 150B and the frame 600 of electrolyte layer component 150B of another side may face each other on both sides of a separator 250, and so that the slot 528 formed in the frame 500 of one electrolyte layer component 150B and the slot 628 formed in the frame 600 of electrolyte layer component 150B of another side may intersect perpendicularly. In addition, arrangement of the superposition of electrolyte layer component 150B and electrolyte layer component 150C is the same as that of arrangement of the superposition of electrolyte layer component 150B. In this way, piled-up electrolyte layer component 150C is equipped with the collecting electrode 50 and the cooling component 300, electrolyte layer component 150B is equipped with a separator 200, and it is referred to as battery-module 10B. [0065] Apply a predetermined voltage to the separator 200 and the cooling component 300 of a laminating edge, a **** load is made to act so that it may become below a predetermined value about an electric resistance value in the meantime before the elastic adhesives 420 harden, after attaching battery-module 10B, and the elastic adhesives 420 are stiffened. About this mode, since it is the same as that of the case of the battery module 10 of the 1st example, the explanation is omitted. [0066] Battery-module 11B is constituted by the same component as battery-module 10B, and equips with the cooling component 300 as arrangement arrangement and the rib 56 formed in the collecting electrode 50 in contact with the rib 356 formed in the level difference section 354 and the cooling component 300 cross at right angles.

[0067] The solid-state macromolecule type fuel cell of the 2nd example carries out the laminating of battery-module 10B and battery-module 11B which were formed in this way by turns, it is equipped with a separator 200 at one side of a laminating edge, another side is equipped with the cooling component 300, and a layered product is attached, and a fuel gas feeder (not shown) and a cooling medium feeder (not shown) are attached in this layered product, and it completes. Electrochemical reaction of the reaction formula which also mentioned above the solid-state macromolecule type fuel cell of this 2nd example by supplying oxidization gas and fuel gas from a fuel gas feeder is performed, and chemical energy is changed into direct electrical energy.

[0068] since it considered as the configuration built in a frame 500 when a separator 250 was made into the configuration which carries out a fitting and the level difference section 515 of a frame 500 was equipped with it in the solid-state macromolecule type fuel cell of the 2nd example explained above -- a separator 250 -- a propellant -- a hole and cooling -- there is no need for manipulations, such as a hole, and a manufacture can be made easy Moreover, since the electrode 40 was ****ed by the frame 500 and the frame 600 with the electrolyte layer 30, it is avoidable un-arranging [of an electrode 40 entwining electrolyte layer 30 and giving]. In addition, the same effect as the 1st example is done so.

[0069] Although the example of this invention was explained above, as for this invention, it is needless to say that it can carry out in the mode which becomes various within limits which are not limited to such an example at all and do not deviate from the summary of this invention.

[0070]

[Effect of the invention] Since elastic adhesives absorb the stress based on the heat and vibration which a fuel cell generates in the cell of the fuel cell of this invention as explained above, the endurance of a cell can be raised. Moreover, since internal resistance of a cell was made into the predetermined value, the poor resistance of the fuel cell which comes to carry out the laminating of this cell can be decreased, and the performance of a fuel cell can be standardized. Furthermore, since a cell is unified with elastic adhesives, as compared with the case where carry out the laminating of many electrolyte layers or separators, and a fuel cell is attached, attachment can be made easy. From the first, since the felly section of an electrolyte layer was supported with the frame, most high electrolyte layers of a cost can be used for power generation, and a cost can be reduced.

[0071] In the cell of claim 2 publication, since the spacer was ****ed in the frame section of a couple and it unified with the electrolyte layer, thickness of the orientation of a laminating in ****** of a frame can be made regularity, and the rigidity of the orientation of a laminating can be raised. Therefore, when the laminating of the cell is carried out, deformation of ****** of the frame by the stress which acts on a laminating side can be prevented, and mixture of fuel gas and leakage can be prevented.

[0072] By the manufacture technique of the cell of the fuel cell of this invention, since two separators and a frame are pasted up with elastic adhesives at an adhesion process so that the internal resistance of a cell may serve as a predetermined value, the cell with uniform internal resistance can be manufactured. Therefore, the laminating of such a cell can be carried out, it can consider as a fuel cell, then the few fuel cell with poor resistance, and the performance of a fuel cell can be standardized. Moreover, since it pastes up with elastic adhesives and a cell is manufactured, a cell is united and can make easy attachment at the time of carrying out the laminating of the fuel cell. From the first, at a support process, since the felly section of an electrolyte layer is supported with a frame, effective area by which an electrolyte layer is used for power generation can be made [many], and reduction-ization of a cost can be attained.

[0073] Let internal resistance of a cell be a predetermined value easily by the manufacture technique of the cell claim 4 publication by adjusting the **** load to add.

[0074] Let elastic adhesives be the seal component which carries out the seal of the fuel gas by the manufacture technique of the cell claim 5 publication. Therefore, the number of components which constitutes a cell can be lessened and the manufacture can be made easy.

[0075] Since a spacer is ****ed to the cell of claim 6 publication by the frame component of a couple with an electrolyte layer and it unites with it by the manufacture technique, thickness of the orientation of a laminating in ****** of a frame can be made uniform, and the rigidity of the orientation of a laminating can be raised. Therefore, deformation of the frame by the stress which acts on a laminating side can be suppressed, and mixture of fuel gas and leakage can be prevented.

[0076] In the electrolyte layer component of the cell of the fuel cell of this invention, since a spacer is ****ed with the frame of a couple with an electrolyte layer and it unifies, thickness of the **** orientation of a frame can be equalized and the rigidity of the **** orientation can be raised. Therefore, when the laminating of the cell is carried out and a fuel cell is constituted, deformation of the frame by the stress which acts on a laminating side can be suppressed, and mixture of fuel gas and leakage can be prevented.

[0077] In the fuel cell of this invention, since two or more laminatings of the cell were carried out, the laminating of the battery module pasted up as predetermined internal resistance was carried out further and it considered as the fuel cell, attachment of a fuel cell can be made very easy. Moreover, since elastic adhesives absorb the stress based on the heat and vibration which a fuel cell generates, the endurance of a fuel cell can be raised. Furthermore, since internal resistance of a battery module was made into the predetermined value, the poor resistance of the fuel cell which comes to carry out the laminating of this battery module can be decreased, and the performance of a fuel cell can be standardized. In addition, since the check of a leakage of fuel gas or the check of an internal resistance value can be performed for every battery module, when a fuel cell does not show a predetermined performance, it can check easily.

[Translation done.]