MONOID k-FUNCTORS AND THEIR REPRESENTATIONS

1. Introduction and notation

In these notes we study algebraic structures in the category of *k*-functors with special emphasis on monoid objects.

Throughout these notes k is a fixed commutative ring and \mathbf{Alg}_k denote the category of commutative k-algebras. If A, B are k-algebras, then we denote by $\mathrm{Mor}_k(A,B)$ the set of all morphisms $A \to B$ of k-algebras. Similarly if X, Y are k-schemes (i.e. schemes together with morphism to $\mathrm{Spec}(k)$), then we denote by $\mathrm{Mor}_k(X,Y)$ the set of all morphisms $X \to Y$ of k-schemes (morphisms of schemes that preserve structure morphisms to $\mathrm{Spec}(k)$). If M is a monoid, then we denote by M^* the group of units of M. If R is a ring, then we denote by R^* its multplicative monoid. Let A be a k-algebra and let V be an A-module and V be an element of V. Then for A-algebra B we denote by V_B the element $1 \otimes V$ of $B \otimes_A V$. If V is an A-module, then we denote $\mathrm{Hom}_A(V,A)$ by V^\vee . Thus we have a contravariant functor

$$(-)^{\vee}: \mathbf{Mod}(A)^{\mathrm{op}} \to \mathbf{Mod}(A)$$

2. Algebraic structures in the category of k-functors

In the sequel we assume that the reader is familiar with notions of a monoid, group etc. in arbitrary category with finite products. For definitions and some discussion related to these notions cf. [ML98, pages 2-5].

Definition 2.1. *A monoid (group, abelian group, ring) k-functor* is a monoid (group, abelian group, ring) object in the category of *k*-functors.

Example 2.2. Let \mathfrak{X} be a k-functor such that \mathcal{M} or $_k(\mathfrak{X},\mathfrak{X})$ exists. Then \mathcal{M} or $_k(\mathfrak{X},\mathfrak{X})$ is a monoid k-functor with respect to composition of morphisms.

Example 2.3. Let \mathfrak{G} be a monoid k-functor. Then we denote by \mathfrak{G}^* the k-subfunctor of \mathfrak{G} defined by

$$\mathfrak{G}^*(A) = \mathfrak{G}(A)^*$$

for every k-algebra A. We call \mathfrak{G}^* the unit group k-functor of \mathfrak{G} .

Example 2.4. Basic example of a ring k-functor is a k-functor \Re given by

$$\mathfrak{K}(A) = k$$
, $\mathfrak{K}(f) = 1_k$

for any k-algebra A and morphism f of k-algebras. It can be described as a constant k-functor ([ML98, page 67]) corresponding to k.

Definition 2.5. Let \mathfrak{R} be a ring k-functor. Then we denote by \mathfrak{R}^{\times} the k-subfunctor of \mathfrak{R} defined by

$$\mathfrak{R}^{\times}(A) = \mathfrak{R}(A)^{\times}$$

for every k-algebra A. We call \Re^{\times} the multiplicative monoid k-functor of \Re .

Definition 2.6. Let \mathfrak{A} be a commutative ring k-functor. An \mathfrak{A} -algebra is an \mathfrak{A} -algebra object in the category of k-functors.

1

3. Global regular functions on a k-functor

Recall the ring k-functor \mathfrak{K} from Example 2.4. Note that a \mathfrak{K} -algebra \mathfrak{A} can be viewed as a functor $\mathfrak{A} : \mathbf{Alg}_k \to \mathbf{Alg}_k$.

Definition 3.1. The \Re -algebra \mathfrak{O}_k given by the identity functor on \mathbf{Alg}_k is called *the structure* \Re -algebra.

Let $|-|: \mathbf{Alg}_k \to \mathbf{Set}$ be the forgetful k-functor. Note that |-| is the underlying k-functor of \mathfrak{K} -algebra \mathfrak{O}_k . Recall that the affine line \mathbb{A}^1_k is an affine k-scheme having k-algebra of polynomials with one variable as a k-algebra of regular functions.

Fact 3.2. Let $|-|: \mathbf{Alg}_k \to \mathbf{Set}$ be the forgetful k-functor. Then we have natural isomorphism

$$\mathfrak{P}_{\mathbb{A}^1_{k}}\cong |-|$$

Proof. Let *B* be a *k*-algebra. We have the following chain of identifications

$$\mathfrak{P}_{\mathbb{A}^1_k}(B) = \operatorname{Mor}_k\left(\operatorname{Spec} B, \mathbb{A}^1_k\right) = \operatorname{Mor}_k\left(\operatorname{Spec} B, \operatorname{Spec} k[x]\right) = \operatorname{Mor}_k\left(k[x], B\right) = |B|$$

natural in B.

In particular, since |-| carries the structure \mathfrak{K} -algebra \mathfrak{O}_k , we derive that $\mathfrak{P}_{\mathbb{A}^1_k}$ admits a structure of \mathfrak{K} -algebra isomorphic to \mathfrak{O}_k .

No we introduce regular functions on *k*-functors.

Definition 3.3. Let \mathfrak{X} be a k-functor and assume that \mathcal{M} or $_k(\mathfrak{X}, \mathfrak{O}_k)$ is a set. Then $\mathrm{Mor}_k(\mathfrak{X}, \mathfrak{O}_k)$ is a k-algebra with respect to the structure induced by \mathfrak{O}_k . We call this k-algebra the k-algebra of global regular functions on \mathfrak{X} . Its elements are called global regular functions on \mathfrak{X} .

Definition 3.4. Let \mathfrak{X} be a k-functor. Suppose that A is a k-algebra, $x \in \mathfrak{X}(A)$ and $f \in \operatorname{Mor}_k(\mathfrak{X}, \mathfrak{O}_k)$. The element $f(x) \in A$ is called *the value of f on a point x*.

For given k-functor \mathfrak{X} we describe k-algebra operations on $\operatorname{Mor}_k(\mathfrak{X}, \mathfrak{O}_k)$ in terms of values of its elements on points of \mathfrak{X} . For this consider $\alpha \in k$ and $f, g_1 \in \operatorname{Mor}_k(\mathfrak{X}, \mathfrak{O}_k)$. We have formulas

$$(f+g)(x) = f(x) + g(x), (f \cdot g)(x) = f(x) \cdot g(x), (\alpha \cdot f)(x) = \alpha \cdot f(x)$$

in which right hand side are *k*-algebra operations in *A*.

Example 3.5. Let \mathfrak{X} be a k-functor and assume that \mathcal{M} or $_k(\mathfrak{X}, \mathfrak{O}_k)$ exists. Fix k-algebra A. Note that $\mathrm{Mor}_A(\mathfrak{X}_A, \mathfrak{O}_A)$ is an A-algebra of global regular functions on \mathfrak{X}_A . Moreover, if B is an A-algebra, then

$$\operatorname{Mor}_A(\mathfrak{X}_A, \mathfrak{O}_A) \ni f \mapsto f_B \in \operatorname{Mor}_B(\mathfrak{X}_B, \mathfrak{O}_B)$$

is a morphism of A-algebras. This implies that \mathcal{M} or $_k(\mathfrak{X}, \mathfrak{O}_k)$ admits a canonical structure of an \mathfrak{O}_k -algebra k-functor.

4. Internal hom and product of k-functors

We denote by $\mathbf{1}$ a k-functor that assigns to every k-algebra a set with one element. Then for every k-algebra A the restriction $\mathbf{1}_A$ is a terminal object in the category of A-functors.

Fact 4.1. Let \mathfrak{X} be a k-functor. Suppose A is a k-algebra and $x \in \mathfrak{X}(A)$. Then x determines a morphism $\mathbf{1}_A \to \mathfrak{X}_A$ that for every A-algebra B with structural morphism $f: A \to B$ sends a unique element of $\mathbf{1}_A(B)$ to $\mathfrak{X}(f)(x) \in \mathfrak{X}_A(B)$. This gives rise to a bijection

$$\mathfrak{X}(A) \cong \operatorname{Mor}_{A}(\mathbf{1}_{A}, \mathfrak{X}_{A})$$

Proof. Left to the reader as an exercise.

The discussion below is partially an application of the main result in [Mon19a, section 6]. For reader's convenience we make our presentation self-contained.

Definition 4.2. Let $\mathfrak{U},\mathfrak{X},\mathfrak{Y}$ be k-functors and let $\sigma:\mathfrak{U}\times\mathfrak{X}\to\mathfrak{Y}$ be a morphism of k-functors. Fix $z\in\mathfrak{U}(A)$ for some k-algebra A. We denote by $i_z:\mathbf{1}_A\to\mathfrak{U}_A$ the morphism of A-functors corresponding to z by Fact 4.1. Since $\mathbf{1}_A$ is terminal A-functor, a morphism $\sigma_A\cdot(i_z\times\mathbf{1}_{\mathfrak{X}_A})$ is isomorphic to a morphism $\sigma_z:\mathfrak{X}_A\to\mathfrak{Y}_A$ of A-functors. We call σ_z the slice of σ along z.

Definition 4.3. Let $\mathfrak{X},\mathfrak{Y}$ be k-functors. Let \mathfrak{J} be a k-functor such that $\mathfrak{J}(A)$ is a subset of a class $\operatorname{Mor}_A(\mathfrak{X}_A,\mathfrak{Y}_A)$ for every k-algebra A. Assume that for every morphism $f:A\to B$ of k-algebras and every $\sigma\in\mathfrak{J}(A)$ we have

$$\mathfrak{J}(f)(\sigma) = \sigma_B$$

where $\sigma_B \in \text{Mor}_B(\mathfrak{X}_B, \mathfrak{Y}_B)$ is the restriction of σ along f. Then we call \mathfrak{J} a k-subfunctor of internal hom of \mathfrak{X} and \mathfrak{Y} .

Definition 4.4. Let $\mathfrak{X},\mathfrak{Y},\mathfrak{U}$ be k-functors and let $\sigma: \mathfrak{U} \times \mathfrak{X} \to \mathfrak{Y}$ be a morphism of k-functors. Suppose that \mathfrak{J} is a k-subfunctor of internal hom of \mathfrak{X} and \mathfrak{Y} . Assume that $\sigma_z: \mathfrak{X}_A \to \mathfrak{Y}_A$ is contained in $\mathfrak{J}(A)$ for every k-algebra A and $z \in \mathfrak{U}(A)$. Then we call σ a family of \mathfrak{J} -morphisms parametrized by \mathfrak{U} .

Let $\mathfrak J$ be a k-subfunctor of internal hom of $\mathfrak X$ and $\mathfrak D$. Assume that $\sigma: \mathfrak U \times \mathfrak X \to \mathfrak D$ is a $\mathfrak J$ -family of morphism parametrized by $\mathfrak U$. Then the family of maps

$$\mathfrak{U}(A) \ni z \mapsto \sigma_z \in \mathfrak{J}(A)$$

gives rise to a morphism $\tau: \mathfrak{U} \to \mathfrak{J}$ of k-functors. Indeed, for a morphism $f: A \to B$ of k-algebras and $z \in \mathfrak{U}(A)$ we have

$$\sigma_B \cdot (i_{\mathfrak{U}(f)(z)} \times 1_{\mathfrak{X}_B}) = (\sigma_A \cdot (i_z \times 1_{\mathfrak{X}_A}))_B$$

and hence $\sigma_{\mathfrak{U}(f)(z)} = (\sigma_z)_B$. This gives rise to a map Φ of classes

$$\left\{ \text{families } \mathfrak{U} \times \mathfrak{X} \to \mathfrak{Y} \text{ of } \mathfrak{J}\text{-morphisms parametrized by } \mathfrak{U} \right\} \ni \sigma \mapsto \tau \in \text{Mor}_{k}\left(\mathfrak{U},\mathfrak{J}\right)$$

Consider next a morphism $\tau: \mathfrak{U} \to \mathfrak{J}$ of k-functors and define $\sigma: \mathfrak{U} \times \mathfrak{X} \to \mathfrak{Y}$ by formula $\sigma^A(z,x) = \left(\tau^A(z)\right)^A(x)$ for every k-algebra A and points $z \in \mathfrak{U}(A)$, $x \in \mathfrak{X}(A)$. Let $f: A \to B$ be a morphism of k-algebras. Then

$$\sigma^{B}\left(\mathfrak{U}(f)(z),\mathfrak{X}(f)(x)\right) = \left(\tau^{B}\left(\mathfrak{U}(f)(z)\right)\right)^{B}\left(\mathfrak{X}(f)(x)\right) = \left(\left(\tau^{A}(z)\right)_{B}\right)^{B}\left(\mathfrak{X}(f)(x)\right) = \left(\tau^{A}(z)\right)^{B}\left(\mathfrak{X}(f)(x)\right) = \mathfrak{Y}(f)\left(\left(\tau^{A}(z)\right)^{A}(x)\right) = \mathfrak{Y}(f)\left(\sigma^{A}(z,x)\right)$$

Thus $\sigma: \mathfrak{U} \times \mathfrak{X} \to \mathfrak{Y}$ is a morphism of k-functors. For every k-algebra A and $z \in \mathfrak{U}(A)$ we have $\sigma_z = \tau^A(z)$. Indeed, let $f: A \to B$ be a morphism of k-algebras and x be an element in $\mathfrak{X}(B)$ then we have

$$(\sigma_z)^B(x) = \sigma^B(\mathfrak{U}(f)(z), x) = \left(\tau^B(\mathfrak{U}(f)(z))\right)^B(x) = \left(\left(\tau^A(z)\right)_B\right)^B(x) = \left(\tau^A(z)\right)^B(x)$$

Hence σ is a family of \mathfrak{J} -morphisms parametrized by \mathfrak{U} . This gives rise to a map Ψ of classes

$$\operatorname{Mor}_{k}(\mathfrak{U},\mathfrak{J})\ni \tau\mapsto\sigma\in\left\{ \operatorname{families}\mathfrak{U}\times\mathfrak{X}\to\mathfrak{Y} \text{ of }\mathfrak{J}\operatorname{-morphisms} \text{ parametrized by }\mathfrak{U}\right\}$$

Now we have the following result, which is an instance [Mon19a, Theorem 6.3]. To make presentation self-contained we give a complete proof.

Theorem 4.5. Let \mathfrak{X} , \mathfrak{Y} be k-functors and let \mathfrak{J} be a k-subfunctor of internal hom of \mathfrak{X} and \mathfrak{Y} . Then maps

$$\Phi:\left\{families\:\mathfrak{U}\times\mathfrak{X}\to\mathfrak{Y}\:of\:\mathfrak{J}\text{-morphisms parametrized by}\:\mathfrak{U}\right\}\to\operatorname{Mor}_{k}\left(\mathfrak{U},\mathfrak{J}\right)$$

and

$$\Psi: \operatorname{Mor}_k(\mathfrak{U}, \mathfrak{J}) \to \left\{ \text{families } \mathfrak{U} \times \mathfrak{X} \to \mathfrak{Y} \text{ of } \mathfrak{J}\text{-morphisms parametrized by } \mathfrak{U} \right\}$$

are mutually inverse bijections.

Proof. Pick a morphism $\tau: \mathfrak{U} \to \mathfrak{J}$ of *k*-functors. Let *A* be a *k*-algebra and $z \in \mathfrak{U}(A)$. In the discussion preceding the statement we showed that $\Psi(\tau)_z = \tau^A(z)$. Thus

$$\left(\Phi(\Psi(\tau))\right)^A(z) = \Psi(\tau)_z = \tau^A(z)$$

and hence $\Phi \cdot \Psi$ is the identity.

Pick a family of \mathfrak{J} -morphism $\sigma: \mathfrak{U} \times \mathfrak{X} \to \mathfrak{Y}$ parametrized by \mathfrak{U} . Let A be a k-algebra and $z \in \mathfrak{U}(A)$, $x \in \mathfrak{X}(A)$ be points. Then

$$(\Psi(\Phi(\sigma)))^A(z,x) = \left(\Phi(\sigma)^A(z)\right)^A(x) = \sigma_z^A(x) = \sigma^A(z,x)$$

Thus $\Psi \cdot \Phi$ is the identity map.

Now we formulate some consequences of Theorem 4.5.

Corollary 4.6. Let $\mathfrak{X}, \mathfrak{Y}$ be k-functors. Assume that for every k-algebra A the class $\operatorname{Mor}_A(\mathfrak{X}_A, \mathfrak{Y}_A)$ is a set. Then there is a bijection

$$Mor_k (\mathfrak{U} \times \mathfrak{X}, \mathfrak{Y}) \rightarrow Mor_k (\mathfrak{U}, \mathcal{M}or_k (\mathfrak{X}, \mathfrak{Y}))$$

of classes.

Definition 4.7. Let $\mathfrak{X},\mathfrak{Y}$ be k-functors. If $\operatorname{Iso}_A(\mathfrak{X}_A,\mathfrak{Y}_A)$ is a set for every k-algebra A, then we define a k-subfunctor $\mathcal{I}\operatorname{so}_k(\mathfrak{X},\mathfrak{Y})$ of $\operatorname{\mathcal{M}or}_k(\mathfrak{X},\mathfrak{Y})$ by

$$\mathcal{I}$$
so_k $(\mathfrak{X},\mathfrak{Y})(A) = I$ so_A $(\mathfrak{X}_A,\mathfrak{Y}_A)$

for every k-algebra A. We call $\mathcal{I}so_k(\mathfrak{X},\mathfrak{Y})$ the k-functor of isomorphism.

Definition 4.8. Let $\mathfrak{X},\mathfrak{Y},\mathfrak{U}$ be k-functors and let $\sigma:\mathfrak{U}\times\mathfrak{X}\to\mathfrak{Y}$ be a morphism of k-functors. Assume that $\sigma_z:\mathfrak{X}_A\to\mathfrak{Y}_A$ is an isomorphism of A-functors for every k-algebra A. Then we call σ a family of isomorphisms parametrized by \mathfrak{U} .

Corollary 4.9. Let $\mathfrak{U}, \mathfrak{X}, \mathfrak{Y}$ be k-functors and suppose that for every k-algebra A the class Iso_A $(\mathfrak{X}_A, \mathfrak{Y}_A)$ is a set. The the following map

$$\left\{ \textit{families} \ \mathfrak{U} \times \mathfrak{X} \rightarrow \mathfrak{Y} \ \textit{of isomorphism parametrized by} \ \mathfrak{U} \right\} \rightarrow \operatorname{Mor}_{k} \left(\mathfrak{U}, \mathcal{I} so_{k} \left(\mathfrak{X}, \mathfrak{Y} \right) \right)$$

is a bijection of classes.

5. ACTIONS OF MONOID k-FUNCTORS

In this section we assume that the reader is familiar with notion of an action of a monoid object in arbitrary category with finite products. For definitions and some discussion related to these notions cf. [ML98, pages 5].

Let $\mathfrak G$ be a monoid k-functor and $\mathfrak X$ be a k-functor together with an action $\alpha:\mathfrak G\times\mathfrak X\to\mathfrak X$. Next assume that k-functor $\operatorname{Mor}_k(\mathfrak X,\mathfrak X)$ exists. By Example 2.2 it is a monoid k-functor. We define a morphism $\rho:\mathfrak G\to\operatorname{Mor}_k(\mathfrak X,\mathfrak X)$ of k-functors by formula $\rho(g)=\alpha_g$. Note that by discussion preceding Theorem 4.5, we deduce that ρ is a well defined morphism of k-functors. We show now that ρ is a morphism of monoids. For this pick k-algebra k and k-functors. We show a constant k-functors are k-functors and k-functors we deduce that k-functors and k-functors are k-functors.

$$\rho(g_1\cdot g_2)=\alpha_{g_1\cdot g_2}=\alpha_{g_1}\cdot \alpha_{g_2}=\rho(g_1)\cdot \rho(g_2)$$

Therefore, ρ is a morphism of monoid k-functors. This shows how to construct a morphism of monoid k-functors ρ from an action α of \mathfrak{G} .

Theorem 5.1. Let \mathfrak{G} be a monoid k-functor and let \mathfrak{X} be a k-functor such that \mathcal{M} or $_k(\mathfrak{X},\mathfrak{X})$ exists. Suppose that

$$\left\{actions\ of\ \mathfrak{G}\ on\ \mathfrak{X}\right\} \longrightarrow \left\{Morphisms\ \rho:\mathfrak{G}\to \mathcal{M}\mathrm{or}_k(\mathfrak{X},\mathfrak{X})\ of\ monoid\ k\text{-functors}\right\}$$

is a map of classes described above. Then it is bijection.

Proof. Our goal is to construct the inverse of the map. Substitute $\mathfrak{J} = \mathcal{M}or_k(\mathfrak{X},\mathfrak{X})$ in Theorem 4.5. Consider maps

$$\Phi:\left\{\text{families }\mathfrak{G}\times\mathfrak{X}\rightarrow\mathfrak{X}\text{ of morphisms}\right\}\rightarrow\text{Mor}_{k}\left(\mathfrak{G},\mathcal{M}\text{or}_{k}(\mathfrak{X},\mathfrak{X})\right)$$

and

$$\Psi: \operatorname{Mor}_{k}(\mathfrak{G}, \mathcal{M}\operatorname{or}_{k}(\mathfrak{X}, \mathfrak{X})) \to \left\{ \operatorname{families} \mathfrak{G} \times \mathfrak{X} \to \mathfrak{X} \text{ of morphisms} \right\}$$

in that Theorem. Then the map in the statement above is the restriction of Φ to $\mathfrak G$ -actions on $\mathfrak X$ on the right and morphisms $\mathfrak G \to \mathcal{M}\mathrm{or}_k(\mathfrak X,\mathfrak X)$ of monoid k-functors on the left. Since by Theorem 4.5 maps Φ and Ψ are mutually inverse, it suffices to check that Ψ sends a morphism $\rho:\mathfrak G \to \mathcal{M}\mathrm{or}_k(\mathfrak X,\mathfrak X)$ of monoids to an action of $\mathfrak G$ on $\mathfrak X$. For this denote $\Psi(\rho)$ by α . Consider k-algebra A and A-points $g_1,g_2\in \mathfrak G(A)$, $x\in \mathfrak X(A)$. Then

$$\alpha(g_1, \alpha(g_2, x)) = \rho(g_1)(\rho(g_2)(x)) = (\rho(g_1) \cdot \rho(g_2))(x) = \rho(g_1 \cdot g_2)(x) = \alpha(g_1 \cdot g_2, x)$$

Therefore, α is an action of \mathfrak{G} on \mathfrak{X} .

Proposition 5.2. Let \mathfrak{G} be a monoid k-functor and let \mathfrak{X}_1 , \mathfrak{X}_2 be k-functors such that $\mathcal{M}or_k(\mathfrak{X}_1,\mathfrak{X}_1)$, $\mathcal{M}or_k(\mathfrak{X}_2,\mathfrak{X}_2)$ exist. Suppose that $\alpha_1: \mathfrak{G} \times \mathfrak{X}_1 \to \mathfrak{X}_1$, $\alpha_2: \mathfrak{G} \times \mathfrak{X}_2 \to \mathfrak{X}_2$ are actions of \mathfrak{G} , respectively. Suppose that $\sigma: \mathfrak{X}_1 \to \mathfrak{X}_2$ is a morphism of k-functors. Then the following assertions are equivalent.

(i) The square

$$\mathfrak{G} \times \mathfrak{X}_{1} \xrightarrow{1_{\mathfrak{G}} \times \sigma} \mathfrak{G} \times \mathfrak{X}_{2}$$

$$\downarrow^{\alpha_{1}} \qquad \downarrow^{\alpha_{2}}$$

$$\mathfrak{X}_{1} \xrightarrow{\sigma} \mathfrak{X}_{2}$$

is commutative.

(ii) For every k-algebra A and $g \in \mathfrak{G}(A)$ we have

$$\sigma_A \cdot \rho_1(g) = \rho_2(g) \cdot \sigma_A$$

where $\rho_1: \mathfrak{G} \to \mathcal{M}\mathrm{or}_k(\mathfrak{X}_1,\mathfrak{X}_1)$ and $\rho_2: \mathfrak{G} \to \mathcal{M}\mathrm{or}_k(\mathfrak{X}_2,\mathfrak{X}_2)$ are morphism of monoid k-functors corresponding to α_1 and α_2 , respectively.

Proof. Conditions expressed in (i) and (ii) are directly translatable to each other by virtue of the bijection in Theorem 5.1.

Definition 5.3. Let \mathfrak{G} be a monoid k-functor and let $(\mathfrak{X}_1, \alpha_1)$, $(\mathfrak{X}_2, \alpha_2)$ be k-functors with actions of \mathfrak{G} . Suppose that $\sigma : \mathfrak{X}_1 \to \mathfrak{X}_2$ is a morphism k-functors such that the square

$$\mathfrak{G} \times \mathfrak{X}_{1} \xrightarrow{1_{\mathfrak{G}} \times \sigma} \mathfrak{G} \times \mathfrak{X}_{2}$$

$$\downarrow^{\alpha_{1}} \qquad \downarrow^{\alpha_{2}}$$

$$\mathfrak{X}_{1} \xrightarrow{\sigma} \mathfrak{X}_{2}$$

is commutative. Then σ is called an \mathfrak{G} -equivariant morphism.

6. Modules over ring k-functors

Definition 6.1. Let \mathfrak{R} be a ring k-functor. Suppose that \mathfrak{M} is an abelian group k-functor and there exists a morphism $\mathfrak{R} \times \mathfrak{M} \to \mathfrak{M}$ of k-functors that for each k-algebra A makes $\mathfrak{M}(A)$ into an $\mathfrak{R}(A)$ -module. Then we say that \mathfrak{M} is a module k-functor over \mathfrak{R} .

Definition 6.2. Let \Re be an ring k-functor and let $\mathfrak{M}_1, \mathfrak{M}_2$ be module k-functors over \Re . Suppose that $\sigma : \mathfrak{M}_1 \to \mathfrak{M}_2$ is a morphism of abelian group k-functors such that the diagram

is commutative, where $\alpha_i : \Re \times \mathfrak{M}_i \to \mathfrak{M}_i$ define \Re -module structure on \mathfrak{M}_i for i = 1, 2. Then σ is a morphism of modules over \Re .

Let \mathfrak{M}_1 and \mathfrak{M}_2 be module k-functors over \mathfrak{R} . We denote by

$$\operatorname{Hom}_{\mathfrak{R}}(\mathfrak{M}_1,\mathfrak{M}_2)$$

the class of all morphisms of modules $\mathfrak{M}_1 \to \mathfrak{M}_2$ over \mathfrak{R} . We denote the category of \mathfrak{R} -modules by $\mathbf{Mod}(\mathfrak{R})$.

Definition 6.3. Let \mathfrak{M}_1 and \mathfrak{M}_2 be module k-functors over \mathfrak{R} . Assume that $\operatorname{Hom}_{\mathfrak{R}_A}((\mathfrak{M}_1)_A,(\mathfrak{M}_2)_A)$ is a set for every k-algebra A. Then we define a k-subfunctor $\operatorname{Hom}_{\mathfrak{R}}(\mathfrak{M}_1,\mathfrak{M}_2)$ of internal hom of \mathfrak{M}_1 and \mathfrak{M}_2 by formula

$$\mathbf{Alg}_k \ni A \mapsto \mathrm{Hom}_{\mathfrak{R}_A} \left((\mathfrak{M}_1)_A, (\mathfrak{M}_2)_A \right) \in \mathbf{Set}$$

We call $\mathcal{H}om_{\mathfrak{R}}(\mathfrak{M}_1,\mathfrak{M}_2)$ a k-functor of module morphisms of \mathfrak{M}_1 and \mathfrak{M}_2 .

If \mathfrak{M} is a module k-functor over some ring k-functor \mathfrak{R} , then we denote (if it exists) $\mathcal{H}om_{\mathfrak{R}}(\mathfrak{M},\mathfrak{M})$ by $\mathcal{E}nd_{\mathfrak{R}}(\mathfrak{M})$.

Example 6.4. Let \mathfrak{M} be a module over a ring k-functor \mathfrak{R} . Assume that $\mathcal{E}nd_{\mathfrak{R}}(\mathfrak{M})$ exists. Then $\mathcal{E}nd_{\mathfrak{R}}(\mathfrak{M})$ is a ring k-functor with respect to composition of morphisms of modules as the multiplication and the usual addition of module morphisms. Moreover, if \mathfrak{A} is a commutative ring k-functor, then $\mathcal{E}nd_{\mathfrak{A}}(\mathfrak{M})$ (if exists) admits additional structure of a \mathfrak{A} -algebra k-functor induced via a unique morphism $\mathfrak{A} \to \mathcal{E}nd_{\mathfrak{R}}(\mathfrak{M})$ of ring k-functors that sends $1 \mapsto 1_{\mathfrak{M}}$.

Let $\mathfrak A$ be a commutative ring k-functor and let $\mathfrak R$ be a $\mathfrak A$ -algebra k-functor. This means that there exists a morphism $\mathfrak A \to \mathfrak R$ of ring k-functors and for every k-algebra A induced morphism $\mathfrak A(A) \to \mathfrak R(A)$ sends $\mathfrak A(A)$ to the center of a ring $\mathfrak R(A)$. Fix a module $\mathfrak M$ over $\mathfrak A$. Next assume that k-functor $\mathcal End_{\mathfrak A}(\mathfrak M)$ exists. By Example 6.4 it is a ring k-functor.

Definition 6.5. In the setting above suppose that $\alpha: \mathfrak{R} \times \mathfrak{M} \to \mathfrak{M}$ is a morphism of k-functors. Suppose that α makes \mathfrak{M} into \mathfrak{R} -module and moreover, for every k-algebra A and for every point $x \in \mathfrak{R}(A)$ morphism α_x is a morphism of \mathfrak{A}_A -modules. Then α is called a \mathfrak{A} -linear \mathfrak{R} -action on \mathfrak{M} .

We continue the discussion. We assume that we are given an \mathfrak{A} -linear \mathfrak{R} -action $\alpha: \mathfrak{R} \times \mathfrak{M} \to \mathfrak{M}$ on \mathfrak{M} . We define a morphism $\rho: \mathfrak{R} \to \mathcal{E}nd_{\mathfrak{A}}(\mathfrak{M})$ of k-functors by formula $\rho(r) = \alpha_r$. As in Section 5 we can prove that ρ is a morphism of ring k-functors. Now we have the following result.

Theorem 6.6. Let \mathfrak{R} be an algebra k-functor over commutative ring \mathfrak{A} k-functor and let \mathfrak{M} be a \mathfrak{A} -module such that $\operatorname{End}_{\mathfrak{A}}(\mathfrak{M})$ exists. Suppose that

$$\left\{\mathfrak{A} \text{ linear actions of } \mathfrak{R} \text{ on } \mathfrak{M}\right\} \longrightarrow \left\{\text{Morphisms } \rho: \mathfrak{R} \to \mathcal{E}nd_{\mathfrak{O}_k}(\mathfrak{M}) \text{ of ring } k\text{-functors}\right\}$$

is a map of classes described above. Then it is bijection.

Proof. The proof is similar to the proof of Theorem 5.1.

7. Monoid algebra $\mathfrak{O}_k[\mathfrak{G}]$ and its modules

Definition 7.1. Let \mathfrak{G} be a monoid k-functor. Then we construct an \mathfrak{O}_k -algebra $\mathfrak{O}_k[\mathfrak{G}]$ as follows. For every k-algebra A we define

$$\mathfrak{O}_k[\mathfrak{G}](A) = A[\mathfrak{G}(A)]$$

where the right hand side is monoid A-algebra for the abstract monoid $\mathfrak{G}(A)$. The structure of monoid k-functor on \mathfrak{G} and \mathfrak{K} -algebra \mathfrak{O}_k makes $\mathfrak{O}_k[\mathfrak{G}]$ into a ring k-functor. Moreover, we have a morphism $\mathfrak{O}_k \to \mathfrak{O}_k[\mathfrak{G}]$ which for every k-algebra A is given by the canonical inclusion

$$A \hookrightarrow A[\mathfrak{G}(A)]$$

Thus $\mathfrak{O}_k[\mathfrak{G}]$ is \mathfrak{O}_k -algebra. We call $\mathfrak{O}_k[\mathfrak{G}]$ a monoid \mathfrak{O}_k -algebra over \mathfrak{G} .

Fact 7.2. Let \mathfrak{G} be a monoid k-functor and let \mathfrak{R} be an \mathfrak{D}_k -algebra k-functor. Then every morphism

$$\sigma:\mathfrak{G}\to\mathfrak{R}^{\times}$$

of monoid k-functors admits a unique extension

$$\tilde{\sigma}: \mathfrak{O}_k[\mathfrak{G}] \to \mathfrak{R}$$

to a morphism of \mathfrak{O}_k -algebras.

Proof. This follows from the analogical universal property of algebras over abstract monoids.

Definition 7.3. Let \mathfrak{G} be a monoid k-functor and let \mathfrak{M} be a module over \mathfrak{O}_k . Suppose that $\alpha: \mathfrak{G} \times \mathfrak{M} \to \mathfrak{M}$ is an action of \mathfrak{G} such that for any k-algebra A and point $g \in \mathfrak{G}(A)$ morphism $\alpha_g: \mathfrak{M}_A \to \mathfrak{M}_A$ is a morphism of \mathfrak{O}_A -modules. Then α is called a *linear* \mathfrak{G} -action on \mathfrak{M} .

Suppose now that \mathfrak{G} is a monoid k-functor and \mathfrak{M} is a module \mathfrak{O}_k . Note that every linear \mathfrak{G} -action $\alpha:\mathfrak{G}\times\mathfrak{M}\to\mathfrak{M}$ extends uniquely to a \mathfrak{O}_k -linear action $\mathfrak{O}_k[\mathfrak{G}]\times\mathfrak{M}\to\mathfrak{M}$ of monoid \mathfrak{O}_k -algebra. This gives a bijection

$$\left\{\text{Linear actions of }\mathfrak{G}\text{ on }\mathfrak{M}\right\} \longrightarrow \left\{\mathfrak{O}_k\text{-linear actions }\mathfrak{O}_k[\mathfrak{G}]\times\mathfrak{M}\to\mathfrak{M}\right\}$$

Next assume that k-functor $\mathcal{E}nd_{\mathfrak{O}_k}(\mathfrak{M})$ exists. By Example 6.4 it is an \mathfrak{O}_k -algebra k-functor. Next by Theorem 6.6 we have a bijection

$$\left\{\mathfrak{O}_k\text{-linear actions of }\mathfrak{O}_k[\mathfrak{G}]\times\mathfrak{M}\to\mathfrak{M}\right\} \longrightarrow \left\{\text{Morphisms }\mathfrak{O}_k[\mathfrak{G}]\to\mathcal{E}nd_{\mathfrak{O}_k}(\mathfrak{M})\text{ of }\mathfrak{O}_k\text{-algebras}\right\}$$

Finally Fact 7.2 implies that we have a bijection

$$\left\{ \mathsf{Morphisms}\, \mathfrak{O}_k[\mathfrak{G}] \to \mathcal{E}nd_{\mathfrak{O}_k}(\mathfrak{M}) \text{ of } \mathfrak{O}_k\text{-algebras} \right\} \longrightarrow \left\{ \mathsf{Morphisms}\, \mathfrak{G} \to \mathcal{E}nd_{\mathfrak{O}_k}(\mathfrak{M}) \text{ of monoids} \right\}$$

This chain of bijections sends a linear action $\alpha: \mathfrak{G} \times \mathfrak{M} \to \mathfrak{M}$ of \mathfrak{G} to a morphism $\rho: \mathfrak{G} \to \mathcal{E}nd_{\mathfrak{D}_k}(\mathfrak{M})$ of monoid k-functors given by $\rho(g) = \alpha_g$ for every $g \in \mathfrak{G}(A)$ and every k-algebra A. We proved the following result.

Proposition 7.4. Let \mathfrak{G} be a monoid k-functor and let \mathfrak{M} be a \mathfrak{O}_k -module such that $\operatorname{End}_{\mathfrak{O}_k}(\mathfrak{M})$ exists. Then the following classes are in canonical bijections described above.

- **(1)** Linear actions of \mathfrak{G} on \mathfrak{M} .
- **(2)** \mathfrak{O}_k -linear actions $\mathfrak{O}_k[\mathfrak{G}] \times \mathfrak{M} \to \mathfrak{M}$. These are precisely $\mathfrak{O}_k[\mathfrak{G}]$ -modules.
- **(3)** Morphisms $\mathfrak{O}_k[\mathfrak{G}] \to \mathcal{E}nd_{\mathfrak{O}_k}(\mathfrak{M})$ of \mathfrak{O}_k -algebras.
- **(4)** Morphisms $\mathfrak{G} \to \mathcal{E}nd_{\mathfrak{D}_{k}}(\mathfrak{M})$ of monoids.

Moreover, the bijection between class (1) and (2) does not require the existence of \mathcal{E} nd $\mathfrak{O}_{k}(\mathfrak{M})$.

Now in a similar manner we can describe morphisms.

Proposition 7.5. Let \mathfrak{G} be a monoid k-functor and let \mathfrak{M}_1 , \mathfrak{M}_2 be k-functors of \mathfrak{O}_k -modules such that $\mathcal{E}nd_{\mathfrak{O}_k}(\mathfrak{M}_1)$, $\mathcal{E}nd_{\mathfrak{O}_k}(\mathfrak{M}_2)$ exist. Suppose that $\alpha_1:\mathfrak{G}\times\mathfrak{M}_1\to\mathfrak{M}_1$, $\alpha_2:\mathfrak{G}\times\mathfrak{M}_2\to\mathfrak{M}_2$ are linear actions of \mathfrak{G} . Suppose that $\sigma:\mathfrak{M}_1\to\mathfrak{M}_2$ is a morphism of modules over \mathfrak{O}_k . Then the following assertions are equivalent.

(i) The square

$$\mathfrak{G} \times \mathfrak{M}_{1} \xrightarrow{1_{\mathfrak{G}} \times \sigma} \mathfrak{G} \times \mathfrak{M}_{2}$$

$$\downarrow^{\alpha_{1}} \qquad \downarrow^{\alpha_{2}}$$

$$\mathfrak{M}_{1} \xrightarrow{\sigma} \mathfrak{M}_{2}$$

is commutative.

(ii) The square

$$\mathfrak{O}_{k}[\mathfrak{G}] \times \mathfrak{M}_{1} \xrightarrow{1_{\mathfrak{O}_{k}[\mathfrak{G}]} \times \sigma} \mathfrak{O}_{k}[\mathfrak{G}] \times \mathfrak{M}_{2}$$

$$\downarrow^{\tilde{\alpha_{1}}} \qquad \qquad \downarrow^{\tilde{\alpha_{2}}}$$

$$\mathfrak{M}_{1} \xrightarrow{\sigma} \mathfrak{M}_{2}$$

is commutative, where α_1 and α_2 are \mathfrak{O}_k -linear actions of $\mathfrak{O}_k[\mathfrak{G}]$ corresponding to α_1 and α_2 , respectively. This states that σ is a morphism of $\mathfrak{O}_k[\mathfrak{G}]$ -modules.

(iii) For every k-algebra A and $g \in \mathfrak{G}(A)$ we have

$$\sigma_A \cdot \tilde{\rho}_1(g) = \tilde{\rho}_2(g) \cdot \sigma_A$$

where $\tilde{\rho}_1: \mathfrak{D}_k[\mathfrak{G}] \to \mathcal{E}nd_{\mathfrak{D}_k}(\mathfrak{M}_1)$ and $\tilde{\rho}_2: \mathfrak{D}_k[\mathfrak{G}] \to \mathcal{E}nd_{\mathfrak{D}_k}(\mathfrak{M}_2)$ are morphism of \mathfrak{D}_k -algebras corresponding to $\tilde{\alpha}_1$ and $\tilde{\alpha}_2$, respectively.

(iv) For every k-algebra A and $g \in \mathfrak{G}(A)$ we have

$$\sigma_A \cdot \rho_1(g) = \rho_2(g) \cdot \sigma_A$$

where $\rho_1:\mathfrak{G}\to\mathcal{E}nd_{\mathfrak{D}_k}(\mathfrak{M}_1)$ and $\rho_2:\mathfrak{G}\to\mathcal{E}nd_{\mathfrak{D}_k}(\mathfrak{M}_2)$ are restrictions of $\tilde{\rho_1}$ and $\tilde{\rho_2}$, respectively.

The equivalence of (i) and (ii) does not require the existence of $\mathcal{E}nd_{\mathfrak{D}_k}(\mathfrak{M}_1)$ and $\mathcal{E}nd_{\mathfrak{D}_k}(\mathfrak{M}_2)$.

Proof. Conditions expressed in (i)-(iv) are directly translatable to each other by virtue of bijections in Proposition 7.4.

Let \mathfrak{G} be a monoid k-functor. We denote by $\mathbf{Mod}(\mathfrak{O}_k[\mathfrak{G}])$ the category of $\mathfrak{O}_k[\mathfrak{G}]$ -modules.

8. Linear representations of a monoid k-functors

We start the discussion with some results that relates categories $\mathbf{Mod}(k)$ and $\mathbf{Mod}(\mathfrak{O}_k)$.

Example 8.1. Let V be a k-module. We define a k-functor V_a . We set

$$V_{a}(A) = A \otimes_{k} V$$
, $V_{a}(f) = f \otimes_{k} 1_{V}$

for every k-algebra A and every morphism $f: A \to B$ of k-algebras. Note that V_a is \mathfrak{O}_k -module. Suppose that $\phi: V \to W$ is a morphism of k-modules, then we define $\phi_a: V_a \to W_a$ by formula

$$\phi_a^A = 1_A \otimes_k \sigma$$

for every k-algebra. Then ϕ_a is a morphism of \mathfrak{O}_k -modules.

Remark 8.2. Let *V* be a finitely generated, projective *k*-module. Then for each *k*-algebra *A* we have an isomorphism

$$\mathfrak{P}_{\operatorname{Spec}\operatorname{Sym}(V^{\vee})}(A) = \operatorname{Mor}_{k}(\operatorname{Sym}(V^{\vee}), A) = \operatorname{Hom}_{k}(V^{\vee}, A) \cong A \otimes_{k} V$$

Clearly this isomorphism is natural in A. Thus V_a is representable by a k-scheme Spec Sym(V^{\vee}).

Proposition 8.3. The functor $(-)_a : \mathbf{Mod}(k) \to \mathbf{Mod}(\mathfrak{O}_k)$ is full and faithful.

Proof. Fix *k*-modules *V*, *W*. Then

$$\operatorname{Hom}_{\mathfrak{O}_{k}}(V_{a}, W_{a}) \ni \sigma \mapsto \sigma^{k} \in \operatorname{Hom}_{k}(V, W)$$

and

$$\operatorname{Hom}_{k}(V, W) \ni \phi \mapsto \phi_{a} \in \operatorname{Hom}_{\mathfrak{O}_{k}}(V_{a}, W_{a})$$

are mutually inverse bijections. Hence the functor is full and faithful.

Example 8.4. Let V be a k-module. We define a k-functor \mathcal{L}_V . We set

$$\mathcal{L}_V(A) = \operatorname{Hom}_A(A \otimes_k V, A \otimes_k V)$$

for every k-algebra A. Next for every morphism $f:A\to B$ of k-algebras and every morphism $\phi:A\otimes_k V\to A\otimes_k V$ of A-modules we define $\mathcal{L}_V(f)(\phi)$ as a unique morphism of B-modules such that the diagram

$$A \otimes_k V \xrightarrow{\phi} A \otimes_k V$$

$$f \otimes_k 1_V \downarrow \qquad \qquad \downarrow f \otimes_k 1_V$$

$$B \otimes_k V \xrightarrow{\mathcal{L}_V(\phi)} B \otimes_k V$$

is commutative. Note also that $\mathcal{L}_V(A)$ is an A-algebra for every k-algebra A. Hence \mathcal{L}_V is a monoid \mathfrak{O}_k -algebra. Note that we have natural identification

$$\mathcal{L}_V(A) = \operatorname{Hom}_k(V, A \otimes_k V)$$

for every k-algebra. One can describe \mathfrak{O}_k -algebra structure on \mathcal{L}_V in terms of this identification as follows. Since $\operatorname{Hom}_k(V,A\otimes_k V)$ carries canonical structure of A-module it suffices to describe the multiplication. For this suppose that $d_1,d_2\in\operatorname{Hom}_k(V,A\otimes_k V)$. Then their product is given by

$$(\mu_A \otimes_k 1_V) \cdot (1_A \otimes d_2) \cdot d_1$$

where $\mu_A : A \otimes_k A \to A$ is the multiplication on A.

Remark 8.5. Let *V* be a *k*-module. Proposition 8.3 implies that there are bijective maps that make the square

$$\mathcal{L}_{V}(A) \xrightarrow{\cong} \mathcal{E}nd_{\mathfrak{D}_{A}}\left((V_{\mathbf{a}})_{A}, (V_{\mathbf{a}})_{A}\right)$$

$$\downarrow^{\sigma \mapsto \sigma_{B}}$$

$$\mathcal{L}_{V}(B) \xrightarrow{\cong} \mathcal{E}nd_{\mathfrak{D}_{B}}\left((V_{\mathbf{a}})_{B}, (V_{\mathbf{a}})_{B}\right)$$

commutative for every morphism $f: A \to B$ of k-algebras. This induces an identification $\mathcal{L}_V = \mathcal{E}nd_{\mathcal{D}_k}(V_a)$ of \mathcal{D}_k -algebras.

Remark 8.6. Suppose that V is a finitely generated, projective k-module. Then for each k-algebra A we have an isomorphism

$$\mathcal{L}_{V}(A) = \operatorname{Hom}_{A}(V, A \otimes_{k} V) \cong A \otimes_{k} V^{\vee} \otimes_{k} V$$

Clearly this isomorphism is natural in A. Hence \mathcal{L}_V is isomorphic with $(V^{\vee} \otimes_k V)_a$ and thus (Remark 8.2) it is representable by a k-scheme Spec Sym $(V \otimes_k V^{\vee})$.

Definition 8.7. Let \mathfrak{G} be a monoid k-functor. A pair (V, ρ) consisting of a k-module V and a morphism $\rho : \mathfrak{G} \to \mathcal{L}_V$ of k-monoids is called a *linear representation of* \mathfrak{G} .

Next result characterizes linear representations of monoid *k*-functors.

Corollary 8.8. Let \mathfrak{G} be a monoid k-functor and let V be a k-module. Then the following classes are in canonical bijections.

- **(1)** Linear actions of \mathfrak{G} on V_a .
- **(2)** \mathfrak{O}_k -linear actions $\mathfrak{O}_k[\mathfrak{G}] \times V_a \to V_a$. These are precisely $\mathfrak{O}_k[\mathfrak{G}]$ -modules.
- **(3)** Morphisms $\mathfrak{O}_k[\mathfrak{G}] \to \mathcal{L}_V$ of \mathfrak{O}_k -algebras.
- **(4)** Morphisms $\mathfrak{G} \to \mathcal{L}_V$ of monoids.

Proof. This follows from Proposition 7.4.

Definition 8.9. Let \mathfrak{G} be a monoid k-functor and let (V, ρ) , (W, δ) be its linear representations. A morphism $\phi : V \to W$ of k-modules such that

$$\phi_{\mathbf{a}}^{A} \cdot \rho(g) = \delta(g) \cdot \phi_{\mathbf{a}}^{A}$$

for every *k*-algebra *A* and $g \in \mathfrak{G}(A)$ is called a morphism of linear representations of \mathfrak{G} .

Next result characterizes morphisms of linear representations of monoid *k*-functor.

Corollary 8.10. Let \mathfrak{G} be a monoid k-functor and let V, W be k-modules. Suppose that $\alpha_1: \mathfrak{G} \times V_a \to V_a$, $\alpha_2: \mathfrak{G} \times W_a \to W_a$ are linear actions of \mathfrak{G} . Suppose that $\phi: V \to W$ is a morphism of k-modules. Then the following assertions are equivalent.

(i) The square

$$\mathfrak{G} \times V_{\mathbf{a}} \xrightarrow{1_{\mathfrak{G}} \times \phi_{\mathbf{a}}} \mathfrak{G} \times W_{\mathbf{a}}$$

$$\downarrow^{\alpha_{1}} \qquad \qquad \downarrow^{\alpha_{2}}$$

$$V_{\mathbf{a}} \xrightarrow{\phi_{\mathbf{a}}} W_{\mathbf{a}}$$

is commutative.

(ii) The square

$$\mathcal{O}_{k}[\mathfrak{G}] \times V_{a} \xrightarrow{1_{\mathfrak{O}_{k}[\mathfrak{G}]} \times \phi_{a}} \mathfrak{O}_{k}[\mathfrak{G}] \times W_{a}$$

$$\downarrow^{\tilde{\alpha_{1}}} \qquad \downarrow^{\tilde{\alpha_{2}}} \qquad \downarrow$$

is commutative, where $\tilde{\alpha_1}$ and $\tilde{\alpha_2}$ are \mathfrak{D}_k -linear actions of $\mathfrak{D}_k[\mathfrak{G}]$ corresponding to α_1 and α_2 , respectively.

(iii) For every k-algebra A and $g \in \mathfrak{G}(A)$ we have

$$\phi_a^A \cdot \tilde{\rho}_1(g) = \tilde{\rho}_2(g) \cdot \phi_a^A$$

where $\tilde{\rho}_1: \mathfrak{O}_k[\mathfrak{G}] \to \mathcal{L}_V$ and $\tilde{\rho}_2: \mathfrak{O}_k[\mathfrak{G}] \to \mathcal{L}_W$ are morphism of \mathfrak{O}_k -algebras corresponding to $\tilde{\alpha}_1$ and $\tilde{\alpha}_2$, respectively.

(iv) For every k-algebra A and $g \in \mathfrak{G}(A)$ we have

$$\phi_{\rm a}^A \cdot \rho_1(g) = \rho_2(g) \cdot \phi_{\rm a}^A$$

where $\rho_1: \mathfrak{G} \to \mathcal{L}_V$ and $\rho_2: \mathfrak{G} \to \mathcal{L}_W$ are restrictions of $\tilde{\rho_1}$ and $\tilde{\rho_2}$, respectively. This states that ϕ is a morphism of linear representations of \mathfrak{G} .

Proof. This follows from Proposition 7.5.

Let \mathfrak{G} be a monoid k-functor. We denote by $\mathbf{Rep}(\mathfrak{G})$ its category of linear representations. Note that $\mathbf{Rep}(\mathfrak{G})$ is a full subcategory of $\mathbf{Mod}(\mathfrak{O}_k[\mathfrak{G}])$.

9. Constructions of linear representations

Example 9.1 (Outer tensor product of representations). Let (V_1, ρ_1) and (V_2, ρ_2) are linear representations of monoid k-functors \mathfrak{G}_1 and \mathfrak{G}_2 , respectively. Then we define a linear representation of $\mathfrak{G}_1 \times \mathfrak{G}_2$ with $V_1 \otimes_k V_2$ as the underlying k-module that corresponds to a morphism $\rho: \mathfrak{G}_1 \times \mathfrak{G}_2 \to \mathcal{L}_{V_1 \otimes_k V_2}$ of monoid k-functors given by

$$\rho\left(g_{1},g_{2}\right)=\rho_{1}\left(g_{1}\right)\otimes_{A}\rho_{2}\left(g_{2}\right):A\otimes_{k}V_{1}\otimes_{k}V_{2}\rightarrow A\otimes_{k}V_{1}\otimes_{k}V_{2}$$

for $(g_1, g_2) \in \mathfrak{G}_1(A) \times \mathfrak{G}_2(A)$, where *A* is a *k*-algebra.

Example 9.2 (Tensor product of representations). Let (V_1, ρ_1) and (V_2, ρ_2) are linear representations of monoid k-functor \mathfrak{G} . Then we define a linear representation of \mathfrak{G} with $V_1 \otimes_k V_2$ as the underlying k-module given as the composition of the outer tensor product of (V_1, ρ_1) and (V_2, ρ_2) with the diagonal $\mathfrak{G} \hookrightarrow \mathfrak{G} \times \mathfrak{G}$.

Example 9.3 (Tensor operations). Let \mathfrak{G} be a monoid k-functor, let V be k-module and let $\rho : \mathfrak{G} \to \mathcal{L}_V$ be a morphism of monoid k-functors. Then both $\bigwedge^n V$ and $\operatorname{Sym}^n(V)$ for $n \in \mathbb{N}$ carry canonical structure of linear representation of \mathfrak{G} .

Note that if V is a finitely generated, projective k-module, then there is a canonical isomorphism of A-modules $(V^{\vee})_a(A) \cong (A \otimes_k V)^{\vee}$ natural in k-algebra A. Under these assumptions on V there exists an anti-isomorphism of A-algebras

$$\operatorname{Hom}_{A}(A \otimes_{k} V, A \otimes_{k} V) \ni \phi \mapsto \phi^{\vee} \in \operatorname{Hom}_{A}((A \otimes_{k} V)^{\vee}, (A \otimes_{k} V)^{\vee})$$

natural in *k*-algebra *A*. This proves the following result.

Fact 9.4. Let V be a finitely generated, projective k-module. Then we have an identification of k-functors of \mathfrak{D}_k -algebras

$$\mathcal{L}_V^{\mathrm{op}}$$
 = \mathcal{L}_{V^\vee}

Example 9.5 (Dual representation). Let \mathfrak{G} be a monoid k-functor, let V be k-module and let $\rho:\mathfrak{G}\to\mathcal{L}_V$ be a morphism of monoid k-functors. Suppose that V is a projective and finitely generated k-module. Fact 9.4 implies that morphism of a monoid k-functors $\rho^{\mathrm{op}}:\mathfrak{G}^{\mathrm{op}}\to\mathcal{L}_V^{\mathrm{op}}$ can be identified with $\rho^\vee:\mathfrak{G}^{\mathrm{op}}\to\mathcal{L}_V^{\mathrm{op}}$. Hence a pair (V^\vee,ρ^\vee) is a linear representation of $\mathfrak{G}^{\mathrm{op}}$.

Example 9.6 (Hom representation). Let (V_1, ρ_1) and (V_2, ρ_2) are linear representations of monoid k-functor \mathfrak{G} . Suppose that V_1, V_2 are finitely generated, projective k-module. Then we have an identification

$$\operatorname{Hom}_{k}(V_{1}, V_{2})_{a} = (V_{1}^{\vee} \otimes_{k} V_{2})_{a}$$

of \mathfrak{O}_k -modules. By Examples 9.1 and 9.5 this isomorphism makes $\operatorname{Hom}_k(V_1, V_2)$ into linear representation of $\mathfrak{G} \times \mathfrak{G}^{\operatorname{op}}$.

10. Example of \mathfrak{G} -action: Regular functions k-functor

First we need the following notion.

Definition 10.1. Let $(-)^{op}: \mathbf{Mon} \to \mathbf{Mon}$ be the opposite monoid functor and let \mathfrak{G} be a monoid k-functor. Then the composition $\mathfrak{G}^{op} = (-)^{op} \cdot \mathfrak{G}$ is called *the opposite monoid k-functor of* \mathfrak{G} .

Let $\mathfrak G$ be a monoid k-functor. In this section we discuss important example of a $\mathfrak O_k[\mathfrak G]$ -module. Fix a k-functor $\mathfrak X$ for which $\mathcal M$ or $_k(\mathfrak X, \mathfrak O_k)$ exists. Recall that by Example 3.5 $\mathcal M$ or $_k(\mathfrak X, \mathfrak O_k)$ is $\mathfrak O_k$ -algebra k-functor. Let $\alpha:\mathfrak G\times\mathfrak X\to\mathfrak X$ be an action of $\mathfrak G$ on $\mathfrak X$. For every k-algebra A we have a map of sets

$$\operatorname{Mor}_{A}(\mathfrak{X}_{A},(\mathfrak{O}_{k})_{A})\ni f\mapsto f\cdot\alpha_{g}\in\operatorname{Mor}_{A}(\mathfrak{X}_{A},(\mathfrak{O}_{k})_{A})$$

where $g \in \mathfrak{G}(A)$. From this description it follows that the map $f \mapsto f \cdot \alpha_g$ is a morphism of A-algebras. Moreover, note that if $g_1, g_2 \in \mathfrak{G}(A)$, then $(f \cdot \alpha_{g_1}) \cdot \alpha_{g_2} = f \cdot \alpha_{g_1 \cdot g_2}$, where $g_1 \cdot g_2 \in \mathfrak{G}(A)$ is a product of g_1 and g_2 . Thus the opposite monoid $\mathfrak{G}^{op}(A)$ acts on the A-algebra Mor $_A(\mathfrak{X}_A, (\mathfrak{O}_k)_A)$ by morphism of A-algebras. Next for every A-algebra B and every point $x \in \mathfrak{X}(B)$ we have

$$(f \cdot \alpha_{g})(x) = f(\alpha_{g}(x))$$

where $g \in \mathfrak{G}(A)$. This proves the following result.

Proposition 10.2. Let \mathfrak{X} be a k-functor and let $\alpha:\mathfrak{G}\times\mathfrak{X}\to\mathfrak{X}$ be an action of a monoid k-functor \mathfrak{G} . Suppose that \mathcal{M} or $_k(\mathfrak{X},\mathfrak{O}_k)$ exists. Then \mathfrak{G}^{op} acts canonically on \mathfrak{O}_k -algebra k-functor \mathcal{M} or $_k(\mathfrak{X},\mathfrak{O}_k)$ by morphisms of \mathfrak{O}_k -algebras.

Let us note one important consequence of this result.

Corollary 10.3. Let \mathfrak{G} be a monoid k-functor. The action of $\mathfrak{G} \times \mathfrak{G}^{op}$ on \mathfrak{G} induces the action of $\mathfrak{G}^{op} \times \mathfrak{G}$ on \mathfrak{O}_k -algebra k-functor $\mathcal{M}or_k(\mathfrak{X}, \mathfrak{O}_k)$ by morphisms of \mathfrak{O}_k -algebras.

11. MATRIX COEFFICIENTS OF A REPRESENTATION

Proposition 11.1. Let \mathfrak{G} be a monoid k-functor and let V be a finitely generated, projective k-module. Fix a morphism $\rho: \mathfrak{G} \to \mathcal{L}_V$ of monoid k-functors. Fix k-algebra A and elements $v \in A \otimes_k V$, $w \in A \otimes_k V^{\vee}$. For every A-algebra B and $g \in \mathfrak{G}(B)$ we consider the formula

$$c_{v,w}(g) = \langle \rho_A(g) \cdot v_B, w_B \rangle$$

Then $c_{v,w}$ defines a regular function on \mathfrak{G}_A for every k-algebra A.

Proof. Suppose that $f: B \to C$ is a morphism of A-algebras and pick $g \in \mathfrak{G}(B)$. Since ρ_A is natural and $w: A \otimes_k V \to A$ is a morphism of A-modules, we derive that the diagram

$$\begin{array}{ccc}
B \otimes_{k} V & \xrightarrow{\rho_{A}(g)} & B \otimes_{k} V & \xrightarrow{w_{B}} & B \\
f \otimes_{A} 1_{A \otimes_{k} V} & & \downarrow f \\
C \otimes_{k} V & \xrightarrow{\rho_{A}(\mathfrak{G}_{A}(f)(g))} & C \otimes_{k} V & \xrightarrow{w_{C}} & C
\end{array}$$

is commutative. Hence

$$c_{v,w}(\mathfrak{G}_A(f)(g)) = \langle \rho_A(\mathfrak{G}_A(f)(g)) \cdot v_C, w_C \rangle = f(\langle \rho_A(g) \cdot v_B, w_B \rangle) = f(c_{v,w}(g))$$

and this implies that $c_{v,w}: \mathfrak{G}_A \to \mathfrak{O}_A$ is a morphism of *A*-functors.

Definition 11.2. Let $\mathfrak G$ be a monoid k-functor and let (V,ρ) be its representation with finitely generated, projective underlying k-module V. Fix k-algebra A and elements $v \in A \otimes_k V$, $w \in A \otimes_k V^{\vee}$. Then the regular function $c_{v,w}$ on $\mathfrak G_A$ is called *the matrix coefficient of v and w.*

Proposition 11.3. *Let* \mathfrak{G} *be a monoid k-functor and let* (V, ρ) *be its representation with finitely generated projective underlying k-module* V. *Then the following assertions holds.*

(1) For every k-algebra A map

$$(A \otimes_k V) \times (A \otimes_k V^{\vee}) \ni (v, w) \mapsto c_{v,w} \in \operatorname{Mor}_A (\mathfrak{G}_A, \mathfrak{O}_A)$$

is A-bilinear.

(2) Suppose that $Mor_k(\mathfrak{G}, \mathfrak{O}_k)$ exists. Then the collection of maps

$$\left\{ \left(A \otimes_k V \right) \times \left(A \otimes_k V^{\vee} \right) \ni (v, w) \mapsto c_{v, w} \in \operatorname{Mor}_A (\mathfrak{G}_A, \mathfrak{O}_A) \right\}_{A \in \mathbf{Alg}_k}$$

gives rise to a morphism of k-functors

$$V_a \times V_a^{\vee} \longrightarrow \mathcal{M}or_k (\mathfrak{G}, \mathfrak{O}_k)$$

Proof. We left the proof of **(1)** to the reader.

We prove (2). Consider k-algebra A and an A-algebra B with structural morphism $f:A\to B$. Fix $v\in A\otimes_k V$, $w\in A\otimes_k V^\vee$. We prove that restriction of $c_{v,w}:\mathfrak{G}_A\to\mathfrak{O}_A$ to the category \mathbf{Alg}_B is c_{v_B,w_B} . For this pick a B-algebra C and an element $g\in\mathfrak{G}(C)$. Note that

$$c_{v,w}(g) = \langle \rho_A(g) \cdot v_C, w_C \rangle = \langle \rho_B(g) \cdot v_C, w_C \rangle = \langle \rho_B(g) \cdot (v_B)_C, (w_B)_C \rangle = c_{v_B,w_B}(g)$$

and hence $c_{v,w|\mathbf{Alg}_B} = c_{v_B,w_B}$. Consider the square

$$V_{a}(A) \times V_{a}^{\vee}(A) \longrightarrow \mathcal{M}or_{k}(\mathfrak{G}, \mathfrak{O}_{A})(A)$$

$$V_{a}(f) \times V_{a}^{\vee}(f) \qquad \qquad \downarrow \mathcal{M}or_{k}(\mathfrak{G}, \mathfrak{O}_{k})(f)$$

$$V_{a}(B) \times V_{a}^{\vee}(B) \longrightarrow \mathcal{M}or_{k}(\mathfrak{G}, \mathfrak{O}_{B})(B)$$

in which both horizontal arrows are given by formula $(v, w) \mapsto c_{v,w}$. We proved that the square commutes. Since f is an arbitrary morphism of k-algebras, we conclude the assertion.

Corollary 11.4. Let \mathfrak{G} be a monoid k-functor and let (V, ρ) be its representation with finitely generated projective underlying k-module V. Suppose that $\mathcal{M}or_k(\mathfrak{G}, \mathfrak{O}_k)$ exists. Then there exists a morphism of k-functors

$$(V \otimes_k V^{\vee})_{\mathbf{a}} \xrightarrow{c} \mathcal{M}\mathrm{or}_k (\mathfrak{G}, \mathfrak{O}_k)$$

given by formula

$$(A \otimes_k V) \otimes_A (A \otimes_k V^{\vee}) \ni (v, w) \mapsto c_{v,w} \in \operatorname{Mor}_A (\mathfrak{G}_A, \mathfrak{O}_A)$$

Moreover, c is a morphism of k-functors equipped with $\mathfrak{G} \times \mathfrak{G}^{op}$ *-actions.*

Proof. The first part is an immediate consequence of Proposition 11.3. We prove that c is a morphism of k-functors equipped with $\mathfrak{G} \times \mathfrak{G}^{\mathrm{op}}$ -actions. For this we fix a k-algebra k and elements $v \in A \otimes_k V$, $w \in A \otimes_k V^{\vee}$. Pick a morphism of k-algebras $f : A \to B$, $(g_1, g_2) \in \mathfrak{G}(A) \times \mathfrak{G}(A)^{\mathrm{op}}$ and $g \in \mathfrak{G}(B)$. Then we have

$$c_{\rho(g_{1})\cdot v,w\cdot\rho(g_{2})}(g) = \langle \rho_{A}(g)\cdot(\rho(g_{1})\cdot v)_{B},(w\cdot\rho(g_{2}))_{B} \rangle =$$

$$= \langle \rho_{A}(g)\cdot\rho_{A}((\mathfrak{G}_{A}(f)(g_{1})))\cdot v_{B},w_{B}\cdot\rho_{A}(\mathfrak{G}_{A}(f)(g_{2})) \rangle = w_{B}(\rho_{A}(\mathfrak{G}_{A}(f)(g_{2}))\cdot\rho_{A}(g)\cdot\rho_{A}(\mathfrak{G}_{A}(f)(g_{1}))\cdot v_{B}) =$$

$$= w_{B}(\rho_{A}(\mathfrak{G}_{A}(f)(g_{2})\cdot g\cdot\mathfrak{G}_{A}(f)(g_{1}))\cdot v_{B}) = \langle \rho_{A}(\mathfrak{G}_{A}(f)(g_{2})\cdot g\cdot\mathfrak{G}_{A}(f)(g_{1}))\cdot v_{B},w_{B} \rangle =$$

$$= c_{v,w}(\mathfrak{G}_{A}(f)(g_{2})\cdot g\cdot\mathfrak{G}_{A}(f)(g_{1}))$$

and hence *c* is a morphism of *k*-functors equipped with actions of $\mathfrak{G} \times \mathfrak{G}^{op}$.

12. Monoid k-schemes

Definition 12.1. A monoid k-scheme **M** is a monoid object in the category of k-schemes. If **M** is affine, then we say that **M** is an affine monoid k-scheme.

Definition 12.2. A group k-scheme G is a group object in the category of k-schemes. If G is affine, then we say that G is an affine group k-scheme.

Corollary 12.3. The functor

$$\mathbf{Sch}_k \xrightarrow{\mathfrak{P}}$$
 the category of *k*-functors

induces an equivalence of categories

the category of monoid k-schemes \cong monoid k-functors representable by k-schemes *Similarly for categories of groups.*

Recall that by Example 2.3 each monoid k-functor \mathfrak{G} has its group k-functor \mathfrak{G}^* of units.

Proposition 12.4. *Let* \mathbf{M} *be an affine monoid k-scheme. Then the k-functor of units* $\mathfrak{P}_{\mathbf{M}}^*$ *is representable (by an affine k-scheme).*

Proof. Note that \mathfrak{P}_{M}^{\star} fits into a cartesian square

where $m : \mathbf{M} \times \mathbf{M} \to \mathbf{M}$ is the multiplication and $e : \operatorname{Spec} k \to \mathbf{M}$ is the unit. By [Mon19b, Fact 4.1] the functor \mathfrak{P} preserves finite products and hence it preserves fiber-products. This implies that $\mathfrak{P}_{\mathbf{M}}^*$ is represented by a unique (up to an isomorphism) k-scheme \mathbf{M}^* that fit into a cartesian square below.

Note that if M is affine, then also M^* is affine.

Definition 12.5. Let **M** be a monoid *k*-scheme. Then the group *k*-scheme \mathbf{M}^* representing $\mathfrak{P}_{\mathbf{M}}^*$ is called *the group of units of* **M**.

Remark 12.6. Under the embedding given in Corollary 12.3 notions defined for monoid *k*-functors can be translated to monoid *k*-schemes.

We give two instances of the use of Remark 12.6 below.

Definition 12.7. Let **M** be a monoid k-scheme. Then the category of linear representations of **M** is the category of linear representations of the monoid k-functor $\mathfrak{P}_{\mathbf{M}}$. We denote this category by $\mathbf{Rep}(\mathbf{M})$.

Definition 12.8. Let **M** be a monoid k-functor and let $\alpha : \mathfrak{P}_{\mathbf{M}} \times \mathfrak{X} \to \mathfrak{X}$ be an action of $\mathfrak{P}_{\mathbf{M}}$ on a k-functor \mathfrak{X} . Then we say that α is an action of \mathbf{M} on \mathfrak{X} .

13. BIALGEBRAS AND AFFINE MONOID k-SCHEMES

We start here with a general notion of *k*-coalgebras.

Definition 13.1. Let (C, Δ, ξ) be a triple consisting of a module C over k and morphisms

$$\Delta: C \to C \otimes_k C, \xi: C \to k$$

of k-modules such that the following diagrams are commutative.

Then (C, Δ, ξ) is called a *k-coalgebra*. Morphisms Δ , ξ are called a *comultiplication* and a *counit*, respectively.

Definition 13.2. Let (C_1, Δ_1, ξ_1) and (C_2, Δ_2, ξ_2) are k-coalgebras. Then a morphism $f : C_1 \to C_2$ of k-modules is a morphism of k-coalgebras if the following diagrams are commutative.

By *k*-algebra we mean commutative and unital *k*-algebra.

Definition 13.3. Let B be a k-module with structures of both k-algebra and k-coalgebra. Assume that the comultiplication and the counit of B are morphisms of k-algebras with respect to k-algebra structure of B. Then we say that B with these structures is a k-bialgebra.

Definition 13.4. Let B_1 , B_2 be k-bialgebras and let $f: B_1 \to B_2$ be a morphism of k-modules. We say that f is a morphism of k-bialgebras if it is simultaneously morphism of k-algebras and k-coalgebras.

Theorem 13.5. The functor Spec : $\mathbf{Alg}_k \to \mathbf{Sch}_k$ induces an equivalence of categories

k-bialgebras \cong the category of affine monoid k-schemes

Proof. This is an exercise in translation. For details see [DG70, II, 1.6].

Let M be an affine monoid k-scheme. Then we denote by k[M] its coordinate k-bialgebra, by Δ_M its comultiplication and by ξ_M its counit. This is a notation that we consistently use in these notes.

14. COMODULES OVER k-COALGEBRAS

Definition 14.1. Let C be a k-coalgebra with the comultiplication Δ and the counit ξ . A pair (V,d) consisting of a k-module V and a morphism $d:V\to C\otimes_k V$ of k-modules such that the following diagrams are commutative

is called a *C-comodule*. Morphism *d* is called a coaction of *C* on *V*.

Definition 14.2. Let C be a k-coalgebra and let $(V_1, d_1), (V_2, d_2)$ be two comodules over C. A morphism of k-modules $f: V_1 \to V_2$ is a morphism of C-comodules if the diagram

$$C \otimes_{k} V_{1} \xrightarrow{1_{C} \otimes_{k} f} C \otimes_{k} V_{2}$$

$$\downarrow d_{1} \qquad \qquad \downarrow d_{2}$$

$$V_{1} \xrightarrow{f} V_{2}$$

is commutative.

We denote by coMod(C) the category of C-comodules for a k-coalgebra C.

Theorem 14.3. Let C be a k-coalgebra. Then the forgetful functor $\mathbf{coMod}(C) \to \mathbf{Mod}(k)$ creates colimits.

Proof. Let Δ , ξ be the comultiplication and the counit of C, respectively. Suppose that $I \ni i \mapsto (V_i, d_i) \in \mathbf{coMod}(C)$ is a diagram of C-comodules indexed by some category I. Let V together with $u_i : V_i \to V$ for $i \in I$ be a colimit of the diagram $I \ni i \mapsto V_i \in \mathbf{Mod}(k)$. By the universal property of colimit we deduce that there exists a unique morphism $d : V \to C \otimes_k V$ such that diagrams

$$C \otimes_k V_i \xrightarrow{1_C \otimes_k u_i} C \otimes_k V$$

$$\downarrow^{d_i} \qquad \uparrow^{d_i} \qquad \downarrow^{d_i}$$

$$V_i \xrightarrow{u_i} V$$

are commutative for every $i \in I$. In order to verify that diagrams

are commutative it suffices to note that for every $i \in I$ we have chains of equalities

 $(1_C \otimes_k d) \cdot d \cdot u_i = (1_C \otimes_k 1_C \otimes_k u_i) \cdot (1_C \otimes_k 1_C \otimes_k d_i) \cdot d_i = (1_C \otimes 1_C \otimes_k u_i) \cdot (\Delta \otimes_k 1_{V_i}) \cdot d_i = (\Delta \otimes_k 1_V) \cdot d \cdot u_i$ and

$$(\xi \otimes_k 1_V) \cdot d \cdot u_i = (1_k \otimes_k u_i) \cdot (\xi \otimes_k 1_{V_i}) \cdot d_i = (1_k \otimes_k u_i) \cdot j_{V_i} = j_V \cdot u_i$$

where $j_W: W \to k \otimes_k W$ is the natural isomorphism for every k-module W. Hence (V,d) is a C-comodule. Suppose now that (W,e) is a C-comodule and $w_i: V_i \to W$ for $i \in I$ is a family of C-comodule morphisms compatible with the diagram $I \ni i \mapsto (V_i, d_i) \in \mathbf{coMod}(C)$. Since $\{u_i: V_i \to V\}_{i \in I}$ form a colimiting cocone for $I \ni i \mapsto V_i \in \mathbf{Mod}(k)$, there exists a unique morphism of k-modules $f: V \to W$ such that $f \cdot u_i = w_i$. Note that

$$e \cdot f \cdot u_i = e \cdot w_i = (1_C \otimes_k w_i) \cdot d_i = (1_C \otimes_k f) \cdot (1_C \otimes_k u_i) \cdot d_i = (1_C \otimes_k f) \cdot d \cdot u_i$$

for every $i \in I$. Hence $e \cdot f = (1_C \otimes_k f) \cdot d$. Thus f is a morphism of C-comodules. Thus (V, d) together with family $\{u_i : (V_i, d_i) \to (V, d)\}_{i \in I}$ is a colimit of the diagram $I \ni i \mapsto (V_i, d_i) \in \mathbf{coMod}(C)$ of C-comodules. This implies that the forgetful functor $\mathbf{coMod}(C) \to \mathbf{Mod}(k)$ creates colimits.

Theorem 14.4. *Let* C *be a* k-coalgebra such that C *is a flat* k-module. Then the forgetful functor $\mathbf{coMod}(C) \to \mathbf{Mod}(k)$ *creates finite limits.*

Proof. The proof is similar to the proof of Theorem 14.3.

Corollary 14.5. *Let* C *be a coalgebra over* k *and assume that* C *is flat as a* k*-module. Then* $\operatorname{\mathbf{coMod}}(C)$ *is an abelian category with small colimits.*

Proof. This follows from Theorems 14.3 and 14.4.

The next result is of fundamental importance.

Theorem 14.6. Let C be a k-coalgebra that is free as a k-module. Suppose that V is a C-comodule over C. Then for every finitely generated k-submodule $U \subseteq V$ there exists a C-subcomodule W of V such that $U \subseteq W$ and W is a finitely generated k-module.

The theorem follows from the following simple lemma.

Lemma 14.6.1. Let C be a k-coalgebra over k that is free as a k-module. Suppose that V is a C-comodule over C and fix an element $v \in V$. Then there exists a C-subcomodule W of V such that $v \in W$ and W is a finitely generated k-module.

Proof of the lemma. Let $\{e_j\}_{j\in J}$ be a free basis of C over k and let $d:V\to C\otimes_k V$ be a left coaction of C on V. Denote by $\Delta:C\to C\otimes_k C$ the comultiplication of C. Then we have

$$d(v) = \sum_{j \in J} e_j \otimes v_j$$

where $v_i \in V$ are zero for almost all $j \in J$. Next according to

$$(\Delta \otimes_k 1_V) \cdot d = (1_C \otimes_k d) \cdot d$$

we derive that equality

$$\sum_{j \in J} e_j \otimes d(v_j) = (1_C \otimes_k d) \big(d(v) \big) = \big(\Delta \otimes_k 1_V \big) \big(d(v) \big) = \sum_{j \in J} \Delta(e_j) \otimes v_j \subseteq \sum_{j \in J} C \otimes_k C \otimes_k k \cdot v_j$$

holds. This implies that $d(v_i) \subseteq C \otimes_k (\sum_{i \in I} k \cdot v_i)$. Hence k-submodule W of V generated by v and $\{v_i\}_{i\in I}$ is C-subcomodule of V. It is finitely generated as a k-module and $v\in W$.

Proof of the theorem. Suppose that *U* is generated by $\{v_1,...,v_n\}$ as a *k*-module. For each *i* pick *C*subcomodule W_i of V such that W_i is finitely generated as a k-module and $v_i \in W_i$. This can be done by Lemma 14.6.1. Next

$$W = W_1 + ... + W_n$$

is a *C*-subcomodule of *V* that is finitely generated as a *k*-module and contains *U*.

15. Linear representations and comodules

Let **M** be an affine monoid k-scheme and let $\rho: \mathfrak{P}_{\mathbf{M}} \to \mathcal{L}_V$ be a morphism of functors of sets, where V is a k-module. Yoneda Lemma implies that ρ is determined by some element (Example 8.4)

$$d_{\rho} \in \operatorname{Hom}_{k}(V, k[\mathbf{M}] \otimes_{k} V)$$

Theorem 15.1. *Let* **M** *be an affine monoid k-scheme. Then the correspondence*

$$Rep(\mathbf{M}) \ni (V, \rho) \mapsto (V, d_{\rho}) \in \mathbf{coMod}(k[\mathbf{M}])$$

is an isomorphism of categories over Mod(k).

Proof. We fix notation in the proof. We denote by $\mu_A: A \otimes_k A \to A$ the multiplication and by $\eta_A:$ $k \to A$ the unit for every k-algebra A. If A is a k-algebra, then we denote by e_A the composition $\eta_A \cdot \xi_{\mathbf{M}} : k[\mathbf{M}] \to A$. Note that $e_A \in \mathfrak{P}_{\mathbf{M}}(A)$ is the neutral element.

We start the proof with some useful remarks. If *V* is a *k*-module, then

$$\mathcal{L}_V(A) = \operatorname{Hom}_k(V, A \otimes_k V)$$

for every *k*-algebra *A* with \mathfrak{O}_k -algebra structure discussed in Example 8.4. Moreover, if $\rho: \mathfrak{P}_{\mathbf{M}} \to$ \mathcal{L}_V is a morphism of k-functors corresponding to $d_\rho: V \to k[\mathbf{M}] \otimes_k V$, then for every k-algebra A and a morphism $f: k[\mathbf{M}] \to A$ of k-algebras we have

$$\rho(f) = (f \otimes_k 1_V) \cdot d_{\rho}$$

Our discussion in Example 8.4 and Yoneda Lemma show that the following assertions hold.

(1) For *k*-algebra *A* and $f_1, f_2 \in \operatorname{Hom}_k(k[\mathbf{M}], A) = \mathfrak{P}_{\mathbf{M}}(A)$ we have

$$\rho(f_1) \cdot \rho(f_2) = (\mu_A \otimes_k 1_V) \cdot (f_2 \otimes_k f_1 \otimes_k 1_V) \cdot (1_{k[\mathbf{M}]} \otimes_k d_\rho) \cdot d_\rho$$

and

$$\rho(f_1 \cdot f_2) = (\mu_A \otimes_k 1_V) \cdot (f_2 \otimes_k f_1 \otimes_k 1_V) \cdot (\Delta_{\mathbf{M}} \otimes_k 1_V) \cdot d_{\rho}$$

(2) For *k*-algebra *A* we have

$$\rho(e_A) = (\eta_A \otimes_k 1_V) \cdot (\xi_{\mathbf{M}} \otimes_k 1_V) \cdot d_{\rho}$$

Now (1) imply that if $(\Delta_{\mathbf{M}} \otimes_k 1_V) \cdot d_{\rho} = (1_{O_{\mathbf{M}}} \otimes_k d_{\rho}) \cdot d_{\rho}$ then $\rho(f_1 \cdot f_2) = \rho(f_1) \cdot \rho(f_2)$. On the other hand suppose that $\rho(f_1 \cdot f_2) = \rho(f_1) \cdot \rho(f_2)$ for any two $f_1, f_2 : k[\mathbf{M}] \to A$ morphism of k-algebras and for every k-algebra A. Pick inclusions $f_1, f_2 : k[\mathbf{M}] \to k[\mathbf{M}] \otimes_k k[\mathbf{M}]$ onto first and second component, respectively. Then

$$\left(\mu_{k[\mathbf{M}]\otimes_{k}k[\mathbf{M}]}\otimes_{k}1_{V}\right)\cdot\left(f_{2}\otimes_{k}f_{1}\otimes_{k}1_{V}\right)=1_{k[\mathbf{M}]}\otimes_{k}1_{k[\mathbf{M}]}\otimes_{k}1_{V}$$

and hence $(\Delta_{\mathbf{M}} \otimes_k 1_V) \cdot d_{\rho} = (1_{O_{\mathbf{M}}} \otimes_k d_{\rho}) \cdot d_{\rho}$ by **(1)**. Now if $(\xi_{\mathbf{M}} \otimes_k 1_V) \cdot d_{\rho}$ is the canonical isomorphism $V \cong k \otimes_k V$. Then by **(2)** we derive that $\rho(e_A)$

is the canonical morphism $V \to A \otimes_k V$. On the other hand if $\rho(e_A)$ is $V \to A \otimes_k V$ for every k-algebra A, then substituting k for A we deduce by (2) that $\rho(e_k) = (\xi_{\mathbf{M}} \otimes_k 1_V) \cdot d_\rho$ is the canonical isomorphism $V \cong k \otimes_k V$.

These considerations prove that ρ is a morphism of monoid k-functors if and only if d_{ρ} is a coaction of $k[\mathbf{M}]$ on V.

Now suppose that V_1, V_2 are k-modules and $\rho_1: \mathfrak{P}_{\mathbf{M}} \to \mathcal{L}_V, \rho_2: \mathfrak{P}_{\mathbf{M}} \to \mathcal{L}_W$ are morphisms of k-functors. Suppose that $\phi: V_1 \to V_2$ is a morphism of k-modules. Pick a k-algebra A and a morphism $f: k[\mathbf{M}] \to A$ of k-algebras. Assume that the diagram

$$k[\mathbf{M}] \otimes_k V_1 \xrightarrow{1_{k[\mathbf{M}]} \otimes_k \phi} k[\mathbf{M}] \otimes_k V_2$$

$$\downarrow^{d_{\rho_1}} \qquad \qquad \uparrow^{d_{\rho_2}}$$

$$V_1 \xrightarrow{\phi} V_2$$

is commutative. Since the square

$$A \otimes_{k} V_{1} \xrightarrow{1_{A} \otimes_{k} \phi} A \otimes_{k} V_{2}$$

$$f \otimes_{k} 1_{V} \qquad \qquad \qquad \uparrow f \otimes_{k} 1_{W}$$

$$k[\mathbf{M}] \otimes_{k} V_{1} \xrightarrow{1_{k[\mathbf{M}]} \otimes_{k} \phi} k[\mathbf{M}] \otimes_{k} V_{2}$$

is commutative, we derive that

Moreover, if the square above commutes for every k-algebra A, then it also commutes for $A = k[\mathbf{M}]$ and this recovers the commutativity of the first square. Suppose now that (V, ρ_1) and (W, ρ_2) are linear representations of \mathbf{M} , then the discussion above implies that ϕ is a morphism of linear representations if and only if ϕ is a morphism of $k[\mathbf{M}]$ -comodules (V, d_{ρ_1}) and (W, d_{ρ_2}) . \square

We obtain immediate consequence.

Corollary 15.2. Let k be a field. Let (V, ρ) be a linear representation of an affine monoid k-scheme M. Then for every finitely generated k-subspace $U \subseteq V$ there exists a subrepresentation W of (V, ρ) such that $U \subseteq W$ and W is a finitely generated k-module.

Proof. This follows from Theorems 15.1 and 14.6.

REFERENCES

- [DG70] Michel Demazure and Pierre Gabriel. *Groupes algébriques. Tome I. Géométrie algébrique généralités. Groupes commutatifs.* North-Holland, 1970.
- [ML98] Saunders Mac Lane. Categories for the working mathematician, volume 5 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1998.
- [Mon19a] Monygham. Categories of presheaves. github repository: "Monygham/Pedo-mellon-a-minno", 2019.

[Mon19b] Monygham. Geometry of k-functors. github repository: "Monygham/Pedo-mellon-a-minno", 2019.
[Mon20] Monygham. Monoid k-functors and their representations. github repository: "Monygham/Pedo-mellon-a-minno", 2020.