ch4_datacube.md 2025-05-05

OLTP vs. OLAP 区别总结

特性	OLTP (On-Line Transactional Processing)	OLAP (On-Line Analytical Processing)
功能	面向客户:日常操作、事务和查询处理	面向市场:复杂查询、数据分析、决策支持
用户	文员、客户、数据库管理员、IT 专业人员	知识工作者:经理、执行者、分析师
数据内容	当前、实时数据,过于详细,不易用于决策	大量历史数据,汇总、集成,不同粒度的信 息
数据库设 计	面向应用:实体-关系 (ER) 数据模型	面向主题:星型或雪花模型
视图范围	企业或部门内部	多版本数据库模式,跨组织数据
数据访问	数据写入: 读/写,主键索引/哈希	信息读取:大量只读扫描
数据规模	数十条记录;GB 到高阶 GB;数千用户	数百万条记录;TB;数百用户

为什么需要专门的 Data Warehouse

原因	解释	
高性能	数据库管理系统 (DBMS) 优化用于 OLTP,而数据仓库优化用于 OLAP,支持复杂查询和 多维分析。	
数据和功能的差 异	数据仓库结构化用于分析,具有标准化的模式和整合的历史数据;而操作型数据库处理频繁的事务和更新。	
独立性	数据仓库是独立的存储,避免了操作型数据库的性能瓶颈。	
一 可扩展性和可维 护性	数据仓库支持大规模数据分析,具有更好的可扩展性和维护性。	

什么是 Data Cube

Data Cube 是一种基于多维数据模型的表示形式,用于支持数据仓库中的多维分析。它将数据组织为多个维度和度量的组合,便于用户从不同的角度观察和分析数据。

- 维度 (Dimensions): 描述数据的不同视角,例如时间 (time)、产品 (product)、地点 (location) 等。
- 度量 (Measures): 数值型数据,用于分析,例如销售额 (sales)、数量 (quantity) 等。
- 基本概念:
 - Base Cuboid (基础立方体): 包含所有维度的最详细数据。
 - Apex Cuboid (顶点立方体): 包含最高级别汇总数据的立方体。
 - 多维立方体 (n-Dimensional Cube): 包含从基础到顶点的所有立方体。

Data Cube 支持多种 OLAP 操作,例如 Roll-up、Drill-down、Slice、Dice 和 Pivot,用于灵活地探索和分析数据。

Data Cube 示例

ch4_datacube.md 2025-05-05

以下是一个包含 0-D、1-D、2-D 和 3-D (Base Cuboid) 的 Data Cube 示例,基于销售数据:

数据维度

• 时间 (Time): 年 (Year)

• 产品 (Product): 类别 (Category)

• 地区 (Region): 国家 (Country)

示例数据

Time	Product	Region	Sales (\$)
2023	Electronics	USA	1000
2023	Furniture	USA	500
2023	Electronics	Canada	700
2023	Furniture	Canada	300

Cuboid 层次

1. O-D (Apex Cuboid): 汇总所有维度的数据。

○ 总销售额: \$2500

2. 1-D Cuboid: 按单一维度汇总数据。

。 按时间汇总:

Time	Sales (\$)
2023	2500

。 按产品汇总:

Product	Sales (\$)	
Electronics	1700	
Furniture	800	

。 按地区汇总:

Region	Sales (\$)
USA	1500
Canada	1000

- 3. 2-D Cuboid: 按两个维度汇总数据。
 - 。 按时间和产品汇总:

Time	Product	Sales (\$)
2023	Electronics	1700

ch4_datacube.md 2025-05-05

Time	Product	Sales (\$)
2023	Furniture	800

。 按时间和地区汇总:

Time	Region	Sales (\$)
2023	USA	1500
2023	Canada	1000

4. 3-D Cuboid (Base Cuboid): 包含所有维度的详细数据。

。 见示例数据表。

通过这些 Cuboid,可以灵活地进行 OLAP 操作,如 Roll-up、Drill-down、Slice 和 Dice.