Positive Collaborative Representation for Subspace Clustering

June 10, 2017

Abstract

1 Introduction

2 Motivation

- Positive collaborative representation could achieve sparse representation since similar points are sparse while dissimilar points are dense.
- Positive supports are positive to self-representation while negative supports are negative to self-representation.
- Better performance. Faster?

3 LSR Model

The least squares regression (LSR) model [1] is proposed by Lu et al. can be formulated as follows:

$$\min_{\boldsymbol{A}} \|\boldsymbol{X} - \boldsymbol{X}\boldsymbol{A}\|_F^2 + \lambda \|\boldsymbol{A}\|_F^2 \text{ s.t. } \mathrm{diag}(\boldsymbol{A}) = \boldsymbol{0}. \quad (1)$$

Here we denote by diag(A) both a diagonal matrix whose diagonal elements are the diagonal entries of A and the vector consisted of the diagonal elements. According to [1], the above problem has the optimal solution as

$$\hat{A} = -Z(\operatorname{diag}(Z)) \text{ s.t. } \operatorname{diag}(\hat{A}) = 0,$$
 (2)

where
$$\boldsymbol{Z} = (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I})^{-1}$$
.

The constraint of ${\rm diag}(A)=0$ in (1) could be removed and the LSR model achieves similar performance.

4 Collaborative Representation based Clustering with Constraint diag(A) = 0

The LSR model can be reformulated as a collaborative representation model [2] for subspace clustering with an additional constraint of $\operatorname{diag}(A) = 0$. The constraint of $\operatorname{diag}(A) = 0$ is used to avoid the samples to represent themselves.

By introducing auxiliary variables into the optimization program, we can set C = A. The LSR model (1) can be transformed into

$$\min_{\boldsymbol{A},\boldsymbol{C}} \|\boldsymbol{X} - \boldsymbol{X}\boldsymbol{A}\|_F^F + \lambda \|\boldsymbol{C}\|_F^2$$
 s.t. $\boldsymbol{C} = \boldsymbol{A} - \operatorname{diag}(\boldsymbol{A}),$ (3)

whose solution for A coincides with the solution of Eq. (1). By introducing a Lagrangian multipliers Δ and a penalty parameter ρ , the Lagrangian function of the Eq. (31) can be written as

$$\mathcal{L}(\boldsymbol{A}, \boldsymbol{C}, \boldsymbol{\Delta}, \rho) = \|\boldsymbol{E}\|_{p}^{p} + \lambda \|\boldsymbol{A}\|_{F}^{2}$$

$$+ \frac{\rho}{2} \|\boldsymbol{E} - \boldsymbol{X} + \boldsymbol{X}\boldsymbol{C} + \rho^{-1}\boldsymbol{\Delta}\|_{F}^{2}$$

$$+ \frac{\rho}{2} \|\boldsymbol{C} - \boldsymbol{A} + \operatorname{diag}(\boldsymbol{A}) + \rho^{-1}\boldsymbol{\delta}\|_{F}^{2}$$
(4)

Denote by (C_k, A_k, E_k) the optimization variables at iteration k, by (Δ_k, δ_k) the Lagrangian multipliers at iteration k, and by ρ_k the penalty parameter at iteration k. Taking detivatives of $\mathcal L$ with respect to the variables and setting the derivatives to be zeros, we can alternatively update the variables as follows:

(1) Obtain A_{k+1} by minimizing \mathcal{L} with respect to A, while fixing $(C_k, E_k, \Delta_k, \delta_k)$. This is equivalent to solve

the following problem:

$$A_{k+1} = J - \operatorname{diag}(J),$$

$$J = (\rho_k + 2\lambda)^{-1} (\rho_k C_k + \delta_k)$$
(5)

(2) Obtain C_{k+1} by minimizing \mathcal{L} with respect to C, while fixing $(A_{k+1}, E_k, \Delta_k, \delta_k)$. This is equivalent to solve the following problem:

$$C_{k+1} = \arg\min_{C} \frac{\rho_k}{2} \| E_k - X + XC + \rho_k^{-1} \Delta_k \|_F^2 + \frac{\rho_k}{2} \| C - A_{k+1} + \rho_k^{-1} \delta_k \|_F^2$$
(6)

This is a least squares regression problem which has a closed-form solution as

$$C_{k+1} = H - \operatorname{diag}(H),$$

$$(X^{\top}X + I)H = X^{\top}P_k + Q_k.$$
(7)

where $m{P}_k = m{X} - m{E}_k -
ho_k^{-1} m{\Delta}_k$ and $m{Q}_k = m{A}_{k+1} -
ho_k^{-1} m{\delta}_k$.

(3) Obtain E_{k+1} by minimizing \mathcal{L} with respect to E, while fixing $(C_{k+1}, A_{k+1}, \Delta_k, \delta_k)$. This is equivalent to solve the following problem:

$$\min_{E} \frac{1}{2} \| (\boldsymbol{X} - \boldsymbol{X} \boldsymbol{C}_{k+1} - \rho_k^{-1} \boldsymbol{\Delta}_k) - \boldsymbol{E} \|_F^2 + \rho_k^{-1} \| \boldsymbol{E} \|_1.$$
(8)

The solution of E can be computed in closed-form as

$$E_{k+1} = S_{\rho_k^{-1}}(X - XC_{k+1} - \rho_k^{-1}\Delta_k),$$
 (9)

where $S_{\tau}(x) = \text{sign}(x) * \text{max}(|x| - \tau, 0)$ is the soft-thresholding operator.

(4) Obtain the Lagrangian multipliers $(\Delta_{k+1}, \delta_{k+1})$ while fixing $(C_{k+1}, A_{k+1}, E_{k+1})$:

$$\Delta_{k+1} = \Delta_k + \tau \rho_k (\boldsymbol{E}_{k+1} - \boldsymbol{X} + \boldsymbol{X} \boldsymbol{C}_{k+1}),$$

$$\delta_{k+1} = \delta_k + \tau \rho_k (\boldsymbol{C}_{k+1} - \boldsymbol{A}_{k+1}),$$
 (10)

where $\tau \in (0, \frac{\sqrt{5}+1}{2})$ is the dual step size and is usually set as $\tau = 1$.

(5) Update the penalty parameter ρ as $\rho_{k+1}=\mu\rho_k$, where $\mu>1$.

5 Large Scale Subset Selection Via Woodbury Identity

The Woodbury Identity is

$$(A+UCV)^{-1} = A^{-1}-A^{-1}U(C^{-1}+VA^{-1}U)^{-1}VA^{-1}.$$
(11)

We can also restrict that diag(A) = 0 to avoid the samples to be self-represented. However, I want to mention that the proposed model solved by ADMM algorithm with three variables and does not have convergence results.

Then the model above can be

$$\min_{\mathbf{A}} \|\mathbf{X} - \mathbf{X}\mathbf{A}\|_F^2 + \lambda \|\mathbf{A}\|_{p,1}. \tag{12}$$

By introducing an auxiliary variable C into the optimization program, we can get

$$\min_{A,C} \|X - XA\|_F^2 + \lambda \|C\|_{p,1} \text{ s.t. } C = A,$$
 (13)

whose solution for A coincides with the solution of Eq. (31). By introducing two Lagrangian multipliers Δ , the Lagrangian function of the Eq. (31) can be written as

$$\mathcal{L}(\boldsymbol{A}, \boldsymbol{C}, \boldsymbol{\Delta}, \rho) = \|\boldsymbol{X} - \boldsymbol{X}\boldsymbol{A}\|_F^2 + \lambda \|\boldsymbol{C}\|_{p,1} + \langle \boldsymbol{\Delta}, \boldsymbol{C} - \boldsymbol{A} \rangle + \frac{\rho}{2} \|\boldsymbol{C} - \boldsymbol{A}\|_F^2$$
(14)

Denote by (C_k, A_k) the optimization variables at iteration k, by Δ_k the Lagrangian multipliers at iteration k, and by ρ_k the penalty parameter at iteration k. Taking detivatives of $\mathcal L$ with respect to the variables and setting the derivatives to be zeros, we can alternatively update the variables as follows:

(1) Obtain A_{k+1} by minimizing \mathcal{L} with respect to A, while fixing (C_k, Δ_k) . This is equivalent to solve the following problem:

$$\min_{\mathbf{A}} \|\mathbf{X} - \mathbf{X}\mathbf{A}\|_F^2 + \frac{\rho}{2} \|\mathbf{A} - (\mathbf{C}_k + \rho_k^{-1} \mathbf{\Delta}_k)\|_F^2,$$
 (15)

which is equalivalently to solve the following problem

$$\boldsymbol{A} = (\boldsymbol{X}^{\top} \boldsymbol{X} + \frac{\rho_k}{2} \boldsymbol{I})^{-1} (\boldsymbol{X}^{\top} \boldsymbol{X} + \frac{\rho_k}{2} \boldsymbol{C}_k + \frac{1}{2} \boldsymbol{\Delta}_k)$$
(16)

Since the matrices $X^{\top}X$ is of $N \times N$ dimension. It is computational expensive when N is very large. By employing the Woodburry Identity mentioned above, we can

have

$$(\frac{\rho_k}{2}\boldsymbol{I} + \boldsymbol{X}^{\top}\boldsymbol{X})^{-1} = \frac{2}{\rho_k}\boldsymbol{I} - (\frac{2}{\rho_k})^2 \boldsymbol{X}^{\top} (\boldsymbol{I} + \frac{2}{\rho_k} \boldsymbol{X} \boldsymbol{X}^{\top})^{-1} \boldsymbol{X}.$$
(17)

and transform this problem as

$$\mathbf{A} = \left(\frac{2}{\rho_k}\mathbf{I} - \left(\frac{2}{\rho_k}\right)^2 \mathbf{X}^{\top} \left(\mathbf{I} + \frac{2}{\rho_k} \mathbf{X} \mathbf{X}^{\top}\right)^{-1} \mathbf{X}\right)$$

$$* \left(\mathbf{X}^{\top} \mathbf{X} + \frac{\rho_k}{2} \mathbf{C}_k + \frac{1}{2} \mathbf{\Delta}_k\right)$$
(18)

which will save a lot of computational costs.

(2) Obtain C_{k+1} by minimizing \mathcal{L} with respect to C, while fixing (A_{k+1}, Δ_k) . This is equivalent to solve the following problem:

$$\min_{C} \frac{1}{2} \| (\boldsymbol{A}_{k+1} - \rho_k^{-1} \boldsymbol{\Delta} k) - C \|_F^2 + \frac{\lambda}{\rho_k} \| C \|_{p,1}.$$
 (19)

Since the $\ell_{p,1}$ norm is separable with respect to each row, we can write the above problem as

of
$$\mathcal{L}$$
 with respect to the variables and setting the derivative $\sum_{i=1}^{M} \frac{1}{2} \|(\mathbf{A}_{k+1})_{i*} - \rho_k^{-1}(\mathbf{\Delta}_k)_{i*} - \mathbf{C}_{i*}\|_2^2 + \frac{\lambda}{\rho_k} \|\mathbf{C}_{i*}\|_p$, tives to be zeros, we can alternatively update the variables as follows:

where F_{i*} is the *i*th row of the matrix F. Since this step is separable w.r.t. each row, we can employ parallel processing resources and reduce its computational time.

(3) Obtain the Lagrangian multipliers (Δ_{k+1}) while fixing (C_{k+1}, A_{k+1}) :

$$\boldsymbol{\Delta}_{k+1} = \boldsymbol{\Delta}_k + \rho_k (\boldsymbol{C}_{k+1} - \boldsymbol{A}_{k+1}). \tag{21}$$

(5) Update the penalty parameter ρ as $\rho_{k+1} = \mu \rho_k$, where $\mu > 1$.

6 Robust Large Scale Subset Selection via Dissimilarity based Outlier Detection

We can also introduce a dissimilarlity based matrix D to replace the ℓ_p or $\ell_{2,1}$ norms to ensure robustness. This can also remore the additional term Z on modeling the outliers with the restriction of ℓ_1 norm. The matrix D

should better be diagonal matrix. How to design the matrix D is another problem need to be solved.

Then the proposed model can be formulated as

$$\min_{\mathbf{A}} \| (\mathbf{X} - \mathbf{X}\mathbf{A})\mathbf{D} \|_F^2 + \lambda \|\mathbf{A}\|_{p,1}.$$
 (22)

By introducing an auxiliary variable C into the optimization program, we can get

$$\min_{A,C} \|(X - XA)D\|_F^2 + \lambda \|C\|_{p,1} \text{ s.t. } C = A.$$
 (23)

By introducing a Lagrangian multiplier Δ , the Lagrangian function of the Eq. (31) can be written as

$$\mathcal{L}(\boldsymbol{A}, \boldsymbol{C}, \boldsymbol{\Delta}, \rho) = \|(\boldsymbol{X} - \boldsymbol{X}\boldsymbol{A})\boldsymbol{D}\|_F^2 + \lambda \|\boldsymbol{C}\|_{p,1} + \langle \boldsymbol{\Delta}, \boldsymbol{C} - \boldsymbol{A} \rangle + \frac{\rho}{2} \|\boldsymbol{C} - \boldsymbol{A}\|_F^2$$
(24)

Denote by (A_k, C_k) the optimization variables at iteration k, by Δ_k the Lagrangian multiplier at iteration k, and by ρ_k the penalty parameter at iteration k. Taking detivatives of $\mathcal L$ with respect to the variables and setting the derivatives to be zeros, we can alternatively update the variables as follows:

(1) Obtain A_{k+1} by minimizing \mathcal{L} with respect to A, while fixing (C_k, Δ_k) . This is equivalent to solve the following problem:

$$\min_{\mathbf{A}} \| (\mathbf{X} - \mathbf{X}\mathbf{A})\mathbf{D} \|_F^2 + \frac{\rho}{2} \| \mathbf{A} - (\mathbf{C}_k - \rho_k^{-1} \mathbf{\Delta}_k) \|_F^2,$$
(25)

which is equalivalently to solve the following problem

$$\boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{A} \boldsymbol{D} \boldsymbol{D}^{\top} + \frac{\rho_k}{2} \boldsymbol{A} = \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{D} \boldsymbol{D}^{\top} + \frac{\rho_k}{2} (\boldsymbol{C}_k - \rho_k^{-1} \boldsymbol{\Delta}_k)$$
(26)

Since the matrices $X^{T}X$ and $D^{T}D$ are positive semidefinite and positive definite, respectively. The above equation is a standard Sylvester equation which has a unique solution.

(2) Obtain C_{k+1} by minimizing \mathcal{L} with respect to C, while fixing (A_{k+1}, Δ_k) . This is equivalent to solve the following problem:

$$\min_{C} \frac{1}{2} \| (\boldsymbol{A}_{k+1} + \rho_k^{-1} \boldsymbol{\Delta} k) - \boldsymbol{C} \|_F^2 + \frac{\lambda}{\rho_k} \| \boldsymbol{C} \|_{p,1}. \quad (27)$$

Since the $\ell_{p,1}$ norm is separable with respect to each row, ρ_k the penalty parameter at iteration k. Taking detivatives we can write the above problem as of \mathcal{L} with respect to the variables and setting the deriva-

$$\min_{C} \sum_{i=1}^{M} \frac{1}{2} \| (\boldsymbol{A}_{k+1})_{i*} + \rho_{k}^{-1} (\boldsymbol{\Delta}_{k})_{i*} - \boldsymbol{C}_{i*} \|_{2}^{2} + \frac{\lambda}{\rho_{k}} \| \boldsymbol{C}_{i*} \|_{p}, \text{ as follows:}$$
(28) while fixing

where F_{i*} is the *i*th row of the matrix F. Since this step is separable w.r.t. each row, we can employ parallel processing resources and reduce its computational time.

(3) Obtain the Lagrangian multipliers (Δ_{k+1}) while fixing (C_{k+1}, A_{k+1}) :

$$\Delta_{k+1} = \Delta_k + \rho_k (C_{k+1} - A_{k+1}). \tag{29}$$

(5) Update the penalty parameter ρ as $\rho_{k+1} = \mu \rho_k$, where $\mu > 1$.

7 Large Scale Subset Selection Via Row-Column Separation

We can also restrict that diag(A) = 0 to avoid the samples to be self-represented. However, I want to mention that the proposed model solved by ADMM algorithm with three variables and does not have convergence results.

Then the model above can be

$$\min_{\boldsymbol{A}} \|\boldsymbol{X} - \boldsymbol{X}\boldsymbol{A}\|_F^2 + \lambda \|\boldsymbol{A}\|_{p,1} \quad \text{s.t.} \quad \text{diag}(\boldsymbol{A}) = \boldsymbol{0}. \tag{30}$$

By introducing an auxiliary variable C into the optimization program, we can get

$$\min_{\boldsymbol{A},\boldsymbol{C}} \|\boldsymbol{X} - \boldsymbol{X}\boldsymbol{C}\|_F^2 + \lambda \|\boldsymbol{A}\|_{p,1}$$
s.t. $\boldsymbol{C} = \boldsymbol{A} - \operatorname{diag}(\boldsymbol{A}),$ (31)

whose solution for A coincides with the solution of Eq. (31). By introducing two Lagrangian multipliers Δ , the Lagrangian function of the Eq. (31) can be written as

$$\mathcal{L}(\boldsymbol{A}, \boldsymbol{C}, \boldsymbol{\Delta}, \rho) = \|\boldsymbol{X} - \boldsymbol{X}\boldsymbol{C}\|_F^2 + \lambda \|\boldsymbol{A}\|_{p,1} + \langle \boldsymbol{\Delta}, \boldsymbol{C} - (\boldsymbol{A} - \operatorname{diag}(\boldsymbol{A})) \rangle + \frac{\rho}{2} \|\boldsymbol{C} - (\boldsymbol{A} - \operatorname{diag}(\boldsymbol{A}))\|_F^2$$
(32)

Denote by (C_k, A_k) the optimization variables at iteration k, by Δ_k the Lagrangian multipliers at iteration k, and by

 ρ_k the penalty parameter at iteration k. Taking detivatives of \mathcal{L} with respect to the variables and setting the derivatives to be zeros, we can alternatively update the variables as follows:

(1) Obtain A_{k+1} by minimizing \mathcal{L} with respect to A, while fixing (C_k, Δ_k) . This is equivalent to solve the following problem:

$$\begin{aligned} \boldsymbol{A}_{k+1} &= \boldsymbol{J} - \operatorname{diag}(\boldsymbol{J}), \\ \boldsymbol{J} &= \arg\min_{\boldsymbol{J}} \frac{1}{2} \|\boldsymbol{C}_k + \rho_k^{-1} \boldsymbol{\Delta}_k - \boldsymbol{J}\|_F^2 + \frac{\lambda}{\rho_k} \|\boldsymbol{J}\|_{p,1}. \end{aligned} \tag{33}$$

(2) Obtain C_{k+1} by minimizing \mathcal{L} with respect to C, while fixing (A_{k+1}, Δ_k) . This is equivalent to solve the following problem:

$$\min_{C} \|X - XC\|_F^2 + \frac{\rho_k}{2} \|C - A_{k+1} + \frac{1}{\rho_k} \Delta_k\|_F^2$$
 (34)

This is a least squares regression problem which has a closed-form solution as

$$C_{k+1} = (X^{\top}X + \frac{\rho_k}{2}I)^{-1}(X^{\top}X + \frac{\rho_k}{2}A_{k+1} - \frac{1}{2}\Delta_k).$$
(35)

(3) Obtain the Lagrangian multipliers (Δ_{k+1}) while fixing (C_{k+1}, A_{k+1}) :

$$\Delta_{k+1} = \Delta_k + \rho_k (C_{k+1} - A_{k+1}). \tag{36}$$

(5) Update the penalty parameter ρ as $\rho_{k+1} = \mu \rho_k$, where $\mu > 1$.

References

- Can-Yi Lu, Hai Min, Zhong-Qiu Zhao, Lin Zhu, De-Shuang Huang, and Shuicheng Yan. Robust and efficient subspace segmentation via least squares regression. *ECCV*, pages 347–360, 2012.
- [2] Lei Zhang, Meng Yang, and Xiangchu Feng. Sparse representation or collaborative representation: Which helps face recognition? *ICCV*, pages 471–478, 2011.