Formulación de problemas de Optimización de Redes

Patricia Jaramillo Álvarez

Nodos	Arcos	Flujo	
Ciudades	Carreteras	Vehículos	
Aeropuertos	Rutas aéreas	Aviones	
Puntos de conmutación	Cables, canales	Mensajes	
Canteras o Botaderos	Carreteras	Material	
Sitios	Rutas de transporte de mercancía	Mercancía	

Problemas típicos de redes

Los siguientes problemas no son aplicables exactamente en problemas reales, pero sirven como base para afrontar estos problemas configurando **híbridos** entre ellos y complementándolos con **objetivos o restricciones adicionales**:

- 1. Problema del camino más corto
- 2. Problema del Flujo máximo
- 3. Problema de Flujo de costo mínimo
- 4. Planificación de proyectos
- 5. El problema del agente viajero TSP

El Problema del Camino más Corto

Determinar la mejor manera de cruzar una red para encontrar la forma mas económica posible desde un origen a un destino dado.

Existe un costo C_{ij} asociado con cada arco (i a j) en la red. Formalmente, el problema del camino más corto (CC) es encontrar el camino más corto desde el nodo de comienzo 1 hasta el nodo final m.

El Camino más corto

Variables de decisión

X_{ii}: 1 si el tramo ij pertenece al camino más corto, 0 en caso contrario

$$Min \sum_{i} \sum_{j} C_{ij} x_{ij}$$

$$\sum_{i} x_{ij} = 1$$

para i = nodo origen

$$\sum_{j} x_{jm} = 1$$

para m= nodo final

$$\sum_{j} x_{ji} = \sum_{j} x_{ij}$$

para todo i = nodo intermedio

$$x_{ij} \in \left\{0,1\right\}$$

Problema de Flujo de Costo Mínimo

Es el caso más general.

Considera:

- Flujos en las redes con capacidades.
- Un costo por flujo hacia un arco.
- Permite múltiples orígenes y destinos.
- El problema es minimizar el costo total sujeto a la disponibilidad y la demanda de algunos nodos, y de la capacidad superior de flujo a través de cada arco.

Problema de Flujo de Costo Mínimo

En la gráfica se presentan las distancias – la capacidad. Cuando no existe segundo término la capacidad es 15.

Flujo de costo mínimo

X_{ii}: cantidad de material o bienes transportadas a través del tramo i-j

$$Min \sum_{i} \sum_{j} C_{ij} x_{ij}$$

Sujeto a:

$$\sum_{i} x_{ji} + O_i = \sum_{i} x_{ij} + D_i$$
 para todo i

$$x_{ij} \leq K_{ij}$$

$$x_{ij} \geq 0$$

El Problema de Vendedor viajero TSP

Un "vendedor" debe visitar las ciudades 1, 2,...n, y su viaje comienza y debe finalizar en el Hogar (nodo 1). d_{ij} es el costo (o distancia, o riesgo, etc) de viajar de la ciudad i a la ciudad j. El problema es determinar una ruta óptima para viajar por todas las ciudades de tal forma que el costo sea mínimo.

Modelo TSP

X_{ii}: 1 si el tramo ij pertenece a la ruta del vendedor viajero, 0 en caso contrario

$$Min\sum_{i}\sum_{j}d_{ij}x_{ij}$$

Sujeto a:

$$\sum_{j} x_{ij} = 1$$
 para cada i

$$\sum_{i} x_{ji} = 1$$
 para cada i

$$x_{ij} \in \{0,1\}$$

Una curiosidad

http://www.math.uwaterloo.ca/tsp/poke/index.html

Planificación de Proyectos: ruta crítica

El Método de Camino (o trayectoria) Crítico (MCC) intenta analizar la planificación de proyectos. Esto posibilita un mejor control y evaluación del proyecto.

Por ejemplo, se quiere saber ¿cuánto tiempo durará el proyecto?, ¿Cuándo se estará listo para comenzar una tarea en particular?; si la tarea no es completada a tiempo, ¿El resto del proyecto se retrasará?, ¿Qué tareas deben ser aceleradas (efectivo) de forma tal que el proyecto termine antes?

La ruta crítica será la ruta de máxima duración

Los arcos son actividades con una duración promedio

La ruta crítica

X_{ii}: 1 si el tramo ij pertenece a la ruta crítica, 0 en caso contrario

$$Max \sum_{i} \sum_{j} d_{ij} x_{ij}$$

Sujeto a:

$$\sum_{j} x_{ij} = 1$$
 para i = nodo origen

$$\sum_{j} x_{ji} = 1$$
 para i= nodo final

$$\sum_{i} x_{ji} = \sum_{i} x_{ij}$$
 para todo i = nodo intermedio

$$x_{ij} \in \{0,1\}$$

Problema del ruteo VRP

- Planifica de forma optima la entrega o recolección de productos.
- En su forma más básica consiste en la determinación de un conjunto de rutas que minimicen la distancia recorrida o el costo total de viaje para una flota de vehículos con capacidad conocida, que parten de algunos puntos (conocido como depósitos) y que visitan a cada uno de un conjunto de nodos (conocido como receptores) antes de regresar al punto de partida, sin violar la restricción de capacidad de carga de los vehículos.
- Se da la cantidad de productos promedio de cada nodo M_i, la distancia entre nodos d_{ij} y la capacidad de los camiones K

Actividad. Diseño de rutas para recolección

Parte I

Diseñar una ruta para 1 camión tal que recoja todos los paquetes de 8 sitios y se minimicen las distancias totales recorridas. Cada ruta empieza y termina en el nodo 0. El camión tiene una capacidad de 25 ton.

Con base en el modelo de TSP, formule este problema.

Nodo	Paquetes (ton)			
1	2.5			
2	1.0			
3	3.0			
4	5.0			
5	1.1			
6	2.0			
7	3.5			
8	3.2			

Actividad. Diseño de rutas para recolección

Parte II

Diseñar rutas para 2 camiones tal que recojan entre los dos todo los paquetes de 8 nodos, que su peso no exceda la capacidad de los camiones y se minimicen las distancias totales recorridas. Cada ruta empieza y termina en el nodo origen 0.

Camión	Capacidades Ton/viaje	
C1	15	
C2	18	

Con base en el modelo de TSP, formule este problema.

Ejemplo: Problema de telecomunicaciones

En una red de telecomunicaciones, las líneas de transmisión se usan para el flujo de llamadas y esas líneas son un link entre estaciones : el tráfico es ruteado de una estación a la próxima hasta que alcance el destino. se asumirá que el origen y destino de la llamada son estaciones.

Cada estación tiene una Capacidad de nodo que es la cantidad de tráfico que puede pasar a través de el durante un periodo de tiempo especifico. Cada línea también tiene una capacidad limite

Un camino completo desde un origen a un destino a través de una red es una ruta

El trafico od puede ser dividido en la red y subsecuentemente recombinado en algún nodo para que todo llegue a d.

Se da el siguiente ejemplo:

	Amsterdam	Utrecht	Hague	Gouda	Arnhem	Maastricht
Amsterdam		55	95	20	30	45
Utrecht	90		50	10	15	20
Hague	85	45		15	10	30
Gouda	35	25	35		10	15
Arnhem	45	15	2040	5		35
Maastricht	60	25		10	30	

Requerimientos de trafico entre todos los orígenes y destinos

	Amst.	Utrecht	Hague	Gouda	Arnhem	Maas.	Cap.nod
Amst.		360	300		240		490
Utrecht				60	90	120	340
Hague				90		180	400
Gouda					40	120	220
Arnhem						210	280
Maas.							340

Capacidades de nodos y arcos

Modelo

Minimizar: la máxima fracción de arco o nodo usado (el operado Min-max busca equilibrio de repartición en la cargas)

Sujeto a:

- Para cada par de origen-destino, el trafico total conectando este par es igual a la cantidad requerida de trafico.
- Para cada arco: el trafico total que usa ese arco es igual a la fracción de capacidad de arco disponible.
- Para cada nodo: el trafico total que usa ese nodo es igual a la fracción de la capacidad disponible de ese nodo
- Para cada arco, la capacidad usada es menor o igual que la máxima fracción permitida
- Para cada nodo: la capacidad usada es menor o igual que la máxima fracción permitida
- En casos en que las opciones son muchas puede ser muchas las opciones puede pre filtrase un grupo de rutas posibles entre cada nodo od y las variables de decisión son rutas completas

Origen-dest.	Ruta posible
Amsterdam - Maastricht	AmsThe Hague – Maastricht
Amsterdam - Maastricht	AmsThe Hague –Utrecht-Maastricht
Amsterdam -Maastricht	AmsThe Hague- Utrecht- Gouda- Maastricht
Amsterdam - Maastricht	AmsThe Hague - Utrecht- Gouda –Arnhem- Maastricht
Amsterdam - Maastricht	AmsThe Hague - Utrecht-Arnhem- Maastricht
Amsterdam - Maastricht	AmsThe Hague -Utrecht-Arnhem- Gouda -Maastricht
Amsterdam -Maastricht	AmsThe Hague –Gouda-Maastricht
Amsterdam - Maastricht	AmsThe Hague-Gouda –Utrecht- Maastricht
Amsterdam - Maastricht	AmsThe Hague-Gouda –Utrecht- Arnhem -Maastricht
Amsterdam - Maastricht	AmsThe Hague-Gouda –Arnhem - Utrecht- Arnhem -Maastricht
Amsterdam - Maastricht	Ams Utrecht- Maastricht
Amsterdam - Maastricht	Ams Utrecht -The Hague- Maastricht
Amsterdam - Maastricht	

Ejemplo de posibles rutas entre Amsterdam y Maastricht

Conjuntos:

- n nodos
- a arcos
- o,d nodos origen-destino
- p rutas
- S_{od} todas las rutas posibles entre un origen o y un destino d

Parámetros:

- A_{ap} 1 si el arco 1 pertenece a la ruta p
- B_{np} 1 si el nodo n pertenece a la ruta p
- C_a capacidad del arco a
- C_n capacidad del nodo n
- D_{od} tráfico requerido entre origen o y destino d

Variables de decisión:

- x_p tráfico a lo largo de la ruta p
- f_a fracción de capacidad disponible del arco a
- f_n fracción de capacidad disponible del nodo n
- M máxima fracción de capacidad del arco o de nodoT

Formulación

Minimizar M
Sujeto a
$$f_{a} \leq M \quad \forall a$$

$$f_{n} \leq M \quad \forall n$$

$$\sum_{p \in S_{od}} x_{p} = D_{od} \quad \forall o, d$$

$$\sum_{p \in S_{od}} A_{ap} x_{p} = f_{a} C_{a} \quad \forall a$$

$$\sum_{p \in S_{od}} B_{np} x_{p} = f_{n} C_{n} \quad \forall n$$

Si M óptimo <=1 las capacidades actuales son suficientes, Si M óptimo >1 implica que se requiere una expansión de las capacidades del sistema