EE 111 Homework 7

Due date: May.22nd,2019

Turn in your homework in class

Rules:

- Work on your own. Discussion is permissible, but similar submissions will be judged as plagiarism.
- Please show all intermediate steps: a correct solution without an explanation will get zero credit.
- Please submit on time. No late submission will be accepted.
- Please prepare your submission in English only. No Chinese submission will be accepted.

- 1. (a) For the three coupled coils in Fig. (a), calculate the total inductance.
 - (b) For the coupled coils in Fig. (b), show that

$$L_{\rm eq} = \frac{L_1 L_2 - M^2}{L_1 + L_2 - 2M} \ .$$

- 2. With $i_s = 8\cos(600t)$ A and $v_s = 100\cos(600t + 60^\circ)$ V,
 - (a) find the coupling coefficient,
 - (b) use mesh analysis to find \dot{i}_{x} ,
 - (c) determine the energy stored in the coupled inductors at t = 2 s.

- 3 . For the network in the figure, find
- (a) the complex power supplied by the source,
- (b) the average power delivered to the $8\text{-}\Omega$ resistor.

4. Calculate the average power dissipated by the 40Ω resistor.

5. Sketch the Bode plots for

$$G(s) = \frac{s}{(s+2)^2(s+1)}, \qquad s = j\omega$$

6. The magnitude plot below represents the transfer function of a preamplifier. Find H(s).

7. For the circuit shown, find $\,\omega_0,\,B,$ and Q, as seen by the voltage across the inductor.

8. For the circuit below, $R=50\Omega$, $L_1=5mH$, $L_2=20mH$, $C_2=1\mu F$, when the frequency of voltage source $f=\frac{10^4}{2\pi}\,Hz$, R, L_1 , C_1 is **in resonance as observed between Points**

A and B.

At this moment, the voltage Uc_1 of capacitor C_1 is 10 V (Uc_1 =10 V). Please find C_1 and U(rms).

