浙江大学 2014-2015 学年 秋冬 学期

《计算理论》课程期末考试试卷

课程号: <u>21120520</u> **开课学院:** 计算机学院

考试试卷: ☑ A卷 □ B卷

考试形式: ☑ 闭卷□ 开卷,允许带二 入场考试日期: 2015年 1 月 27 日,考试时间: 120 分钟

诚信考试、沉着应考、杜绝违纪

考生	姓名		学号			所属院系			
	题序	1	2	3	4	5	6	总分	
	得分								
	评卷人								

Zhejiang University Theory of Computation, Fall-Winter 2014 Final Exam

- 1. (24%) Determine whether the following statements are true or false. If it is true fill a \bigcirc otherwise a \times in the bracket before the statement.
 - (a) () If L is any language, then the language LL^R must be equal to $\{ww^R \mid w \in L\}$.
 - (b) () Language $\{a^ib^jc^k|i,j,k\in\mathbb{N} \text{ and } i+j\not\equiv k \pmod 3\}$ is not regular.
 - (c) () If A is non-regular and both of B and $A \cap B$ are regular, then $A \cup B$ is non-regular.
 - (d) () For all languages L_1 , L_2 and L_3 , if $L_1 \subseteq L_2 \subseteq L_3$ and both L_1 and L_3 are regular, then L_2 is also regular.
 - (e) () Language $\{xcy|x,y\in\{a,b\}^* \text{ and } |x|\leq |y|\leq 2|x|\}$ is context-free.
 - (f) () Let L_1 be a regular language and L_2 be a context-free language, then $\{uv|u\in L_1, v\in L_2 \text{ and } |u|=|v|\}$ is also context-free.
 - (g) () Let $\mathbf{D}_{DFA} = \{\text{"}M\text{"}| DFA M \text{ rejects "}M\text{"}, \text{ where "}M\text{"} \text{ is the encoding of DFA }M, \text{ just as Turing Machine}\}$, then \mathbf{D}_{DFA} is recursively enumerable but not regular.
 - (h) () Let L be a language and there is a Turing machine M halts on x for every $x \in L$, then L is decidable.
 - (i) () Every countably infinite language is recursively enumerable.
 - (j) () A language is recursively enumerable if and only if it is Turing enumerable.
 - (k) () Let A be a recursively enumerable language and $A \leq_{\tau} \overline{A}$, then A is recursive.
 - (l) () There are countably many Turing machines, and uncountably many languages, so most languages are not recursively enumerable.

2. (20%) Decide whether the following languages are regular or not and provide a formal proof for your answer. Let $\#_a(u)$ and $\#_a(v)$ be the number of a in string u and v, respectively.

(a)
$$L_1 = \{ucv \mid u, v \in \{a, b\}^*, \#_a(u) = 2 \cdot \#_a(v)\}$$

(b)
$$L_2 = \{uv \mid u, v \in \{a, b\}^*, \#_a(u) = 2 \cdot \#_a(v)\}$$

3. (24%) On PDA and Context-Free Languages

Let $L_3=\{xcy|x,y\in\{a,b\}^*,|x|=|y|, \text{ and } x\neq y^R \ \}.$

- (a) Construct a context-free grammar that generates the language L_3 .
- (b) Construct a pushdown automata that accepts L_3 .

Solution:

(a)

(b) The PDA $M=(K,\Sigma,\Gamma,\Delta,s,F)$ is defined below:

	(q,σ,eta)	(p,γ)
K =		
$\Sigma = \{a, b, c\}$		
$\Gamma = $		
s =		
F =		

4. (20%) The function $\varphi : \mathbb{N} \to \mathbb{N}$ given by

$$\varphi(x) = \begin{cases} 4x, & \text{if } x < 8\\ x + 2, & \text{if } x \ge 8 \end{cases}$$

(a) Try to construct a Turing Machine to compute the function $\varphi(x)$. When describing the Turing machines, you can use the elementary Turing machines described in textbook. Always assume that the Turing machines start computation from the configuration $\trianglerighteq \underline{\sqcup} x$ where x is represented by binary string, i.e. $x \in \{0,1\}^*$.

(b) Show that the function $\varphi(x)$ is primitive recursive.

5. (12%) Consider the language

Non-Empty = $\{$ "M" | Turing machine M halts some strings $\}$

Show that **Non-Empty** is recursively enumerable. Justify your answer, and an informal description suffices.