Zahlensysteme

In diesem Abschnitt geht es um die generelle Darstellung verschiedener Zahlenwerte. Diese hat nicht direkt etwas mit dem Computer zu tun.

Dezimalsystem Eine Rationale Zahl schreiben wir für gewöhnlich als vorzeichenbehaftete Dezimalzahl, also in einem Stellenwertsystem zur Basis 10. Der Wert einer Dezimalzahl ist also

$$ext{Repr"asentation} = z_m z_{m-1} \dots z_1 z_0, z_{-1} z_{-2} \dots z_{-n} \quad ext{Wert} = \sum_{i=-n}^m z_i \cdot 10^i$$

Stellenwertsystem - Generell Man kann nun einen Wert auch in einem Stellenwertsystem mit jeder anderen Basis $b \in \mathbb{N}_{>1}$ darstellen. Als Ziffern stehen dabei immer die Symbole $\{0, \ldots, b-1\}$ zur Verfügung. Der Wert der Zahl ist dann immer

$$\text{Repr\"asentation} = z_m z_{m-1} \dots z_1 z_0, z_{-1} z_{-2} \dots z_{-n} \quad \text{Wert} = \sum_{i=-n}^m z_i \cdot b^i$$

Binärsystem Das Binärsystem hat eine Basis von 2.

Oktalsystem Das Oktalsystem hat eine Basis von 8. Das Praktische hierbei ist, dass je drei Stellen einer Binärzahl einer Stelle einer Oktalzahl entsprächen.

Hexadezimalsystem Das Hexadezimalsystem hat eine Basis von 16. Das Praktische hierbei ist, dass je vier Stellen einer Binärzahl einer Stelle einer Oktalzahl entsprächen.

Konvertierungstabelle

Da man in der Informatik wirklich regelmäßig zwischen Dual, Hexadezimal und Oktalsystem hin und her rechnen muss, lernt man die folgende Tabelle am besten auswendig.

BIN	HEX	OKT	BIN	HEX
0000	0	0	1000	8
0001	1	1	1001	9
0010	2	2	1010	A
0011	3	3	1011	В
0100	4	4	1100	С
0101	5	5	1101	D
0110	6	6	1110	G
0111	7	7	1111	F

Konertierung vom Dezimalsystem Will man eine Dezimalzahl in ein anderes System umwandeln mach man dies mit Kettendivision und Kettenmultiplikation.

Kettendivison verwendet man für den Teil vor dem Komma: Sei Z die Zahl in Dezimal ohne Kommastelle und b die Basis des Zielsystems, so dividiert man Z schrittweise durch b. Die Reste

ergeben dann jeweils die Ziffer der niedrigsten Stelle in der neuen Zahl. Man wiederholt dies bis als Ergebnis 0 raus kommt.

$$210: 8 = 26 \; Rest \; 2$$
 $26: 8 = 3 \; Rest \; 2$ $3: 8 = 0 \; Rest \; 3$ Repräsentation = 322

Kettenmultiplikation verwendet man für den Teil nach dem Komma:: Sei Z eine Zahl in Dezimal der Form $0,1\ldots$ und b die Basis des Zielsystems, so multipliziert man Z schrittweise mit b. Tritt ein Wert größer als 1 auf, wird dessen ganzzahliger anteil wieder entfernt. Am Ende - also wenn als Ergebnis einer Multiplikation 1,0 vor kommt - ergeben alle ganzzahligen Anteile die Nachkommastellen von vorne nach hinten.

$$0.123 \cdot 8 = 0.984$$

 $0.984 \cdot 8 = 7.872$
 $0.872 \cdot 8 = 6.976$
 $0.976 \cdot 8 = 7.808$
...

Repräsentation = 0,0767...

Konvertierung ins Dezimalsystem Will man eine Zahl zur Basis b ins Dezimalsystem wandeln rechnet man einfach den Wert der jeweiligen Zahl aus. Also

$$DecZ = \sum_{i=-n}^m z_i \cdot b^i$$

Wichtige Rechenoperationen Sei b die Basis eines Stellenwertsystems und Z eine Zahl in diesem System. So ist

- $Z0 = b \cdot Z$: Anfügen einer Null gleich Multiplikation mit der Basis.
- $z_m \dots z_1 = Z//b$: Entfernen der letzen Stelle gleich ganzzahlige Division durch die Basis.
- Addieren, Multiplizieren und Subtrahieren(ohne Negative Zahlen) klappt dabei wie im Dezimalsystem, man muss jedoch bei Überträgen Aufpassen. z.B.:

$$1_{(2)} + 1_{(2)} = 0_{(2)}$$
 Übertrag: $1_{(2)}$