

GBI Tutorium Nr. 41

Foliensatz 8

Vincent Hahn – vincent.hahn@student.kit.edu | 13. Dezember 2012

Outline/Gliederung

Vincent Hahn - vincent.hahn@student.kit.edu

0-

Kalk[Pleaseinsertintopreamble]I/Landau-Symbole

Laufzeiten

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

0-

Kalk[Pleaseinsertintopreamble]I/Landau-

Symbole

Laufzeiten

O-Kalk [Please in sert into preamble] I/Landau-Symbole

Asymptotisches Wachstum

Vincent Hahn - vincent.hahn@student.kit.edu

0-

Kalk[Pleaseinsertintopreamble]I/Landau-

Symbole

Definition

Laufzeiten

Zwei Funktionen $f, g : \mathbb{N}_0 \to \mathbb{R}_0^+$ wachsen asymptotische genauso schnell, wenn es zwei Konstanten $c, c' \in \mathbb{R}^+$ gibt, so dass gilt:

$$\exists n' \in \mathbb{N}_0 \forall n > n' : c \cdot f(n) \leq g(n) \geq c' \cdot f(n)$$

Wir schreiben dafür auch

$$f \simeq g$$

4/19

Asymptotisches Wachstum

Vincent Hahn - vincent.hahn@student.kit.edu

O-

Kalk[Pleaseinsertintopreamble]l/Landau-Symbole Welche Eigenschaften hat diese Relation?

Laufzeiten fsymp g

Asymptotisches Wachstum

Vincent Hahn - vincent.hahn@student.kit.edu

0-

Kalk[Pleaseinsertintopreamble]l/Landau-Symbole Welche Eigenschaften hat diese Relation?

Laufzeiten

 $f \asymp g$

- symmetrisch
- reflexiv
- transitiv

Damit ist dies eine Äquivalenzrelation.

Äquivalenzklassen

Vincent Hahn - vincent.hahn@student.kit.edu

0-

Kalk[Pleaseinsertintopreamble]I/Landau-Symbole

Laufzeiten

Definition

 $\Theta(f)$ ist die **Menge** aller Funktionen g, die asymptotisch genauso schnell wachsen wie f, also

$$\Theta(f) = \{g|f \asymp g\}$$

6/19

Quickies

Vincent Hahn - vincent.hahn@student.kit.edu

O-

Kalk [Please insert into preamble] I/Landau-

Symbole

$$\mathsf{lst} \; 8 \cdot x^2 \in \Theta \left(x^2 \right) ?$$

Quickies

Vincent Hahn - vincent.hahn@student.kit.edu

O-

Kalk[Pleaseinsertintopreamble]I/Landau-

Symbole

Ist
$$8 \cdot x^2 \in \Theta(x^2)$$
? Ja, denn es gilt:

$$8 \cdot x^2 \asymp x^2$$

Ist
$$x^3 \in \Theta x^2$$
? Und gilt $e^x \in \Theta x^2$?

Quickies

Vincent Hahn - vincent.hahn@student.kit.edu

O-

Kalk[Pleaseinsertintopreamble]I/Landau-

Symbole

Ist
$$8 \cdot x^2 \in \Theta(x^2)$$
? Ja, denn es gilt:

Laufzeiten

$$8 \cdot x^2 \asymp x^2$$

Ist $x^3 \in \Theta x^2$? Und gilt $e^x \in \Theta x^2$? Nein.

Quickies

Vincent Hahn - vincent.hahn@student.kit.edu

0-

Kalk[Pleaseinsertintopreamble]I/Landau-

Symbole

Ist $8 \cdot x^2 \in \Theta(x^2)$? Ja, denn es gilt:

$$8 \cdot x^2 \asymp x^2$$

Ist
$$x^3 \in \Theta x^2$$
? Und gilt $e^x \in \Theta x^2$?
Nein. Ist $x^3 + x^2 \in \Theta(x^3)$?

Quickies

Vincent Hahn - vincent.hahn@student.kit.edu

0-

Kalk[Pleaseinsertintopreamble]I/Landau-

Symbole

Ist
$$8 \cdot x^2 \in \Theta(x^2)$$
? Ja, denn es gilt:

$$8 \cdot x^2 \asymp x^2$$

Ist
$$x^3 \in \Theta x^2$$
? Und gilt $e^x \in \Theta x^2$? Nein. Ist $x^3 + x^2 \in \Theta \left(x^3 \right)$? Ja!

Asympototisches Wachstum

Vincent Hahn - vincent.hahn@student.kit.edu

0-

Kalk[Pleaseinsertintopreamble]I/Landau-

Symbole

Definition

Laufzeiten

Für zwei Funktionen $f, g : \mathbb{N}_0 \to \mathbb{R}_0^+$ definiert man:

$$g \leq f \exists c \in \mathbb{R}^+ : \exists n' \in \mathbb{N}_0 : \forall n > n' :$$

$$g(n) \leq c \cdot f(n)$$

$$g \succeq f \exists c \in \mathbb{R}^+ : \exists n' \in \mathbb{N}_0 : \forall n > n' : \qquad g(n) \succeq c \cdot f(n)$$

Umgangssprächlich: "wächst asymptotisch höchstens so schnell wie" oder "wächst asymptotisch mindestens so schnell wie".

Aquivalenzklassen

Vincent Hahn - vincent.hahn@student.kit.edu

0-

Kalk[Pleaseinsertintopreamble]I/I Definition

Symbole

Laufzeiten

O(f) ist die Menge aller Funktionen, die asymptotische höchstens so schnell wachsen wie f.

$$O(f) = \{g | g \leq f\}$$

Definition

 $\Omega(f)$ ist die Menge aller Funktionen, die asymptotische mindestens so schnell wachsen wie f.

$$\Omega(f) = \{g | g \succeq f\}$$

Quickies

Vincent Hahn - vincent.hahn@student.kit.edu

0-

Kalk[Pleaseinsertintopreamble]I/Landau-

Symbole

Laufzeiten

$$x^3 + x^2 \in \Omega(x^2)$$

$$x^3 + x^2 \in \Omega(x^3)$$

$$x^3 + x^2 \in O\left(x^2\right)$$

$$x^3 + x^2 \in O\left(x^4\right)$$

$$e^x \in O(x^4)$$

$$\bullet e^{x} \in \Omega\left(x^{4}\right)$$

Quickies

Vincent Hahn - vincent.hahn@student.kit.edu

0-

Kalk[Pleaseinsertintopreamble]I/Landau-

Symbole

Laufzeiten

•
$$x^3 + x^2 \in \Omega(x^2)$$
 Wahr.

$$x^3 + x^2 \in \Omega(x^3)$$

$$x^3 + x^2 \in O\left(x^2\right)$$

$$x^3 + x^2 \in O\left(x^4\right)$$

$$\bullet e^x \in O\left(x^4\right)$$

$$\bullet e^{x} \in \Omega\left(x^{4}\right)$$

Quickies

Vincent Hahn - vincent.hahn@student.kit.edu

0-

Kalk[Pleaseinsertintopreamble]I/Landau-

Symbole

Laufzeiten

•
$$x^3 + x^2 \in \Omega(x^2)$$
 Wahr.

•
$$x^3 + x^2 \in \Omega(x^3)$$
 Wahr.

$$x^3 + x^2 \in O\left(x^2\right)$$

$$x^3 + x^2 \in O\left(x^4\right)$$

$$\bullet e^x \in O\left(x^4\right)$$

$$\bullet e^{x} \in \Omega\left(x^{4}\right)$$

Quickies

Vincent Hahn - vincent.hahn@student.kit.edu

0-

Kalk[Pleaseinsertintopreamble]I/Landau-

Symbole

Laufzeiten

•
$$x^3 + x^2 \in \Omega(x^2)$$
 Wahr.

•
$$x^3 + x^2 \in \Omega(x^3)$$
 Wahr.

•
$$x^3 + x^2 \in O(x^2)$$
 Falsch.

$$x^3 + x^2 \in O\left(x^4\right)$$

$$\bullet e^x \in O\left(x^4\right)$$

$$\bullet e^{x} \in \Omega\left(x^{4}\right)$$

Quickies

Vincent Hahn - vincent.hahn@student.kit.edu

0-

Kalk[Pleaseinsertintopreamble]I/Landau-

Symbole

Laufzeiten

•
$$x^3 + x^2 \in \Omega(x^2)$$
 Wahr.
• $x^3 + x^2 \in \Omega(x^3)$ Wahr.

$$x^3 + x^2 \in \Omega(x^2)$$
 Follook

•
$$x^3 + x^2 \in O(x^2)$$
 Falsch.

•
$$x^3 + x^2 \in O(x^4)$$
 Wahr.

$$e^x \in O(x^4)$$

$$\bullet e^{x} \in \Omega(x^{4})$$

Quickies

Vincent Hahn - vincent.hahn@student.kit.edu

0-

Kalk[Pleaseinsertintopreamble]I/Landau-

Symbole

Laufzeiten

•
$$x^3 + x^2 \in \Omega(x^2)$$
 Wahr.

•
$$x^3 + x^2 \in \Omega(x^3)$$
 Wahr.

•
$$x^3 + x^2 \in O(x^2)$$
 Falsch.

•
$$x^3 + x^2 \in O(x^4)$$
 Wahr.

•
$$e^x \in O(x^4)$$
 Falsch.

•
$$e^x \in \Omega(x^4)$$

Quickies

Vincent Hahn - vincent.hahn@student.kit.edu

0-

Kalk[Pleaseinsertintopreamble]I/Landau-

Symbole

Laufzeiten

Was stimmt?

• $x^3 + x^2 \in \Omega(x^2)$ Wahr.

• $x^3 + x^2 \in \Omega(x^3)$ Wahr.

• $x^3 + x^2 \in O(x^2)$ Falsch.

• $x^3 + x^2 \in O(x^4)$ Wahr.

• $e^x \in O(x^4)$ Falsch.

• $e^x \in \Omega(x^4)$ Wahr.

Ungenauigkeiten

Vincent Hahn - vincent.hahn@student.kit.edu

0-

Kalk[Pleaseinsertintopreamble]I/Landering wird auch das geschrieben

Symbole

Laufzeiten

Achtung: Falsche Schreibweise

$$f = \Theta(g)h = O(n^3)$$

$$k=\Omega\left(f+g\right)$$

Das gibt Punkteabzug.

Was genau ist hier falsch?

¡2-¿Links vom Gleichheitszeichen steht jeweils eine Funktion, rechts eine Menge. Das ist wie "Apfel ist gleich Korb" - einfach falsch.

Formalitäten

Vincent Hahn - vincent.hahn@student.kit.edu

0-

$$f(n) = n^4 + n^3$$

$$g(n) = n^2$$

Laufzeiten

Symbole

$$\frac{f(n)}{g(n)} = \frac{n^4 + n^3}{n^2} = n^2 + n$$

- Falls $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 1$. Dann: $f \in \Theta(g)$. In diesem Fall: Nicht
- Falls $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$. Dann: $g \in O(f)$ und dann auch: $f \in \Omega(g)$. Das stimmt hier

Wer gewinnt?

Vincent Hahn - vincent.hahn@student.kit.edu

0-

Kalk[Pleaseinsertintopreamble]l/Landau-Symbole

Notation	Beispiel
$f \in \mathcal{O}(1)$	<i>f</i> = 5
$f \in \mathcal{O}\left(\log\left(n\right)\right)$	$f = \ln(x)$
$f \in \mathcal{O}\left(\sqrt{n}\right)$	$f = 2 \cdot \sqrt{n}$
$f \in \mathcal{O}(n)$	$f = 7 \cdot n$
$f \in \mathcal{O}\left(\log\left(n\right) \cdot n\right)$	$f=3\cdot n\cdot \ln \left(n\right)$
$f\in\mathcal{O}\left(n^{2} ight)$	$f=3\cdot n^2$
$f \in \mathcal{O}(2^n)$	$f=3\cdot 2^n$
$f\in\mathcal{O}\left(n!\right)$	$f=3\cdot n!$

Logarithmus-Beispiel

Vincent Hahn - vincent.hahn@student.kit.edu

O- Zur Veranschaulichung:

Kalk[Pleaseinsertintopreamble]I/Landau-

Symbole

Laufzeiten

log ₈ n	log ₂ n	
0	0	
1	3	
2	6	
3	9	
4	12	
	0 1 2 3	

Was fällt auf?

Logarithmus-Beispiel

Vincent Hahn - vincent.hahn@student.kit.edu

O- Zur Veranschaulichung:

Kalk[Pleaseinsertintopreamble]I/Landau-

Symbole

Laufzeiten

n	log ₈ n	log ₂ n	
1	0	0	
8	1	3	
64	2	6	
512	3	9	
4096	4	12	

Was fällt auf?

 $\log_2 n = 3 \cdot \log_8 n$. Die beiden Logarithmen unterscheiden sich also nur durch einen konstanten Faktor.

Logarithmus

Vincent Hahn - vincent.hahn@student.kit.edu

0-Aus den Logarithmusregeln folgt:

Kalk[Pleaseinsertintopreamble]I/Landau-

Symbole
$$n = a^{\log_a(n)} \tag{1}$$
 Laufzeiten
$$n = b^{\log_b(n)} \tag{2}$$

Laufzeiten
$$n = b^{\log_b(n)}$$
 (2)

Was bringt das jetzt? Wir können zeigen, dass alle Logarithmen, egal zu welcher Basis, asymptotisch wachsen. Setze $c = c' = \log_b a$. Dann:

$$c \log_a n \le \log_b n \le c' \log_a n$$

(4)

Logarithmus

Vincent Hahn - vincent.hahn@student.kit.edu

O- Aus den Logarithmusregeln folgt:

Kalk[Pleaseinsertintopreamble]I/Landau-

Symbole
$$n = a^{\log_a(n)} \tag{1}$$

Laufzeiten
$$n = b^{\log_b(n)}$$
 (2)

$$(1) \Rightarrow (a)^{\log_a n} = \left(b^{\log_b a}\right)^{\log_a n} = b^{\log_b a \cdot \log_a n} \tag{3}$$

(2) und (3)
$$\Rightarrow$$
 $(b)^{\log_b n} = b^{\log_b a \cdot \log_a n}$ (4)

Was bringt das jetzt? Wir können zeigen, dass alle Logarithmen, egal zu welcher Basis, asymptotisch wachsen. Setze $c = c' = \log_b a$. Dann:

$$c \log_a n \leq \log_b n \leq c' \log_a n$$

Rechenregeln

Vincent Hahn - vincent.hahn@student.kit.edu

0-

Kalk[Pleaseinsertintopreamble]I/Landau-

Symbole

Laufzeiten

Das dürft ihr so verwenden:

- $\bullet \ f \in \mathcal{O}\left(g\right) \leftrightarrow g \in \Omega\left(f\right)$
- $\Theta(f) = \mathcal{O}(f) \cap \Omega(f) \text{ oder}$ $f \approx g \leftrightarrow f \succeq g \land f \preceq g$
- $O(f_1) + O(f_2) = O(f_1 + f_2)$
- Wenn $g \in O(f)$, dann ist auch $\mathcal{O}(g) \subseteq \mathcal{O}(f)$ und $O(f+g) = \mathcal{O}(f)$

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

0-

Kalk[Pleaseinsertintopreamble]l/Landau-Symbole

Laufzeiten

O-Kalk[Pleaseinsertintopreamble]I/Landau-Symbole

Beispielalgorithmus

Vincent Hahn - vincent.hahn@student.kit.edu

0-

Kalk[Pleaseinsertintopreamble]I/Landau-

Symbole

Laufzeiten

Input: $a \in \mathbb{R}$ Input: $n \in \mathbb{N}_+$ $x \leftarrow 1$ for $i \leftarrow 1$ to n do $x \leftarrow a \cdot x$ od
Output: x

Was passiert und in welcher Laufzeit?

Klassen

Vincent Hahn - vincent.hahn@student.kit.edu

0

Kalk[Pleaseinsertintopreamble]I/Landauche Funktionen gehören in welche Klasse(n)? Symbole

	$\mathcal{O}\left(n^2\right)$	$\Omega\left(n^2\right)$	$\mathcal{O}\left(\log n\right)$	⊖ (n)
$n^2 + n$	j	j	n	n
n ⋅ log n	j	n	n	n
$2 \cdot n + 1$	j	n	n	j
n^3	n	j	n	n
5	j	n	j	n