Exercices

Exercice 1

1)
$$9x + 2 = 39$$

2)
$$4y + 8 + 5y = y^2 + 3$$

Pour chaque équation, indique :

- a) l'inconnue;
- b) le ou les termes comportant l'inconnue ;
- c) le ou les termes constants ;
- d) les membres de l'équation.

Exercice 2

a) Le nombre - 5 est-il solution de l'équation 5 - 4x = 19? Et le nombre - 6?

b) Le nombre 8 est-il solution de l'équation 5y - 3 = 2y + 2 ? Et le nombre - 3 ? Et $\frac{5}{3}$?

c) Parmi les nombres 5, - 3 et 2, lesquels sont solutions de l'équation $z^2 + z - 6 = 0$?

Exercice 3. Parmi les équations suivantes, quelles sont celles qui admettent pour solution celle de l'équation 7y + 5 = 3y + 8. Justifie.

a)
$$4y + 5 = 3y + 8$$

c)
$$14y + 10 = 6y + 16$$

b)
$$7y = 3y + 4$$

L. Billard - 2 - Exercices : les équations

Exercice 4. Résous les équations suivantes :

a)
$$x + 6 = 8$$

d)
$$1 + x = -2$$

Exercice 5. Résous les équations suivantes :

a)
$$3x = 9$$

c)
$$4z = -7$$

e)
$$7x = 4$$

d)
$$-2z = -8$$

Exercice 6. Résous les équations suivantes :

a)
$$2x - 2 = 2$$

c)
$$1 - y = 0$$

d)
$$1 + 5x = -39$$

e)
$$2 + 3z = 9$$

f)
$$6 - y = -2.3$$

Exercices : les équations

Exercice 7. Équations du type ax + b = 0

a) Résous les équations suivantes :

$$4x - 12 = 0$$

$$4x + 1 = 0$$

$$2x - 3 = 0$$

$$2 - 3x = 0$$

b) On considère l'équation ax + b = 0 où a et b sont des nombres relatifs, a étant non nul. Exprime la solution x de cette équation en fonction de a et de b. Vérifie alors tes résultats précédents.

c) Déduis-en directement la solution de chacune des équations suivantes :

$$2x + 8 = 0$$

$$2 - 7x = 0$$

$$3x - 1 = 0$$

$$7x + 8 = 0$$

$$11x + 1 = 0$$

Exercice 8. Résous les équations suivantes :

a)
$$6x = 6x + 1$$

Exercice 9. Résous les équations suivantes :

a)
$$5x = 3x + 3$$

d)
$$7x + 1 = -4 - x$$

b)
$$8x = 12x + 4$$

e)
$$2 + 3x = 7 - 3x$$

f)
$$5 + 6x = -x - 9$$

Exercice 10. Résous les équations suivantes :

a)
$$4(x + 5) = 10x + 3$$

b)
$$7x - (5x + 3) = 5(x - 3) + 2$$

c)
$$7(n + 2) - 3 = 25 - (3n + 4)$$

Exercice 11. Résous les équations suivantes :

$$\alpha) \qquad x - \frac{5}{4} = \frac{4}{3}$$

d)
$$\frac{1}{3} - x = -\frac{2}{9}$$

b)
$$x + \frac{7}{3} = \frac{5}{7}$$

e)
$$\frac{5}{18} - x = \frac{11}{45}$$

c)
$$x - \frac{5}{8} = \frac{3}{12}$$

f)
$$x - \frac{12}{25} = -\frac{11}{15}$$

Exercice 12. Résous les équations suivantes :

a)
$$\frac{z}{5} = \frac{3}{4}$$

d)
$$\frac{x}{-8} = \frac{8}{9}$$

$$g) \qquad \frac{2x}{9} = -\frac{7}{27}$$

$$b) \qquad \frac{x}{7} = \frac{7}{6}$$

$$e) \qquad -\frac{x}{12} = \frac{7}{3}$$

$$h) \qquad \frac{-3x}{7} = \frac{7}{8}$$

c)
$$\frac{x}{11} = -\frac{2}{13}$$

$$f) \qquad \frac{7x}{2} = \frac{1}{4}$$

i)
$$\frac{-11}{9}x = \frac{-1}{5}$$

Exercice 13. Résous les équations suivantes :

a)
$$\frac{7}{9}y + 5 = 8$$

c)
$$\frac{1}{4}x - \frac{3}{8} = \frac{2}{3}$$

b)
$$\frac{1}{16}x - 2 = \frac{5}{8}$$

d)
$$\frac{3}{7}y - \frac{5}{35} = -\frac{8}{14}$$

Exercice 14. Résous les équations suivantes :

$$\alpha) \qquad \frac{x}{3} = \frac{x}{4} - \frac{6}{5}$$

c)
$$\frac{2x}{7} + \frac{3}{14} = \frac{x}{7} - \frac{1}{14}$$

d) $\frac{2}{5}x - \frac{1}{9} = \frac{3}{9}x + \frac{4}{5}$

b)
$$\frac{5x}{8} - \frac{3}{10} = \frac{7x}{40}$$

d)
$$\frac{2}{5}x - \frac{1}{9} = \frac{3}{9}x + \frac{4}{5}$$

Exercice : deux fois				-		•			-	
Exercice : exemple)	16. No	mbres (consécut	rifs (des	nombres	qui se s	suivent, co	omme 60	, 61 et 6	2 par
a) Trouve	trois r	nombres	s entiers	consécu	itifs dont	la somn	ne vaut 5	13.		
b) Peux-to	u trouv	er trois	s nombre	es entier	s conséc	utifs don	it la somn	ne vaut 2	00 ? Jus	tifie.

L. Billard - 14 - Exercices : les équations

c) Trouve quatre nombres entiers consécutifs dont la somme vaut 1 254.	
<u>Exercice 17</u> . Joey pense à un nombre. Il lui ajoute 11, multiplie le tout par 3 et d résultat obtenu il retranche 3. Joey obtient 51. Quel est ce nombre de départ ?	ıu
,	

L. Billard - 15 - Exercices : les équations

L. Billard - 16 - Exercices : les équations

Exercice 20. Périmètre d'un triangle

Trouve la valeur de z sachant que le périmètre du triangle ci-contre vaut 61.

Les mesures sont dans la même unité.

Exercice 21. Surfaces égales

Soient le trapèze et le parallélogramme ci-dessous. Les mesures sont dans la même unité.

Quelle doit être la valeur de x pour que le trapèze ait la même surface que le parallélogramme ?

L. Billard - 17 - Exercices : les équations