GIẢI TÍCH III

TS. Lê Văn Tứ

Hanoi University of Science and Technology

Chuỗi luỹ thừa

Định nghĩa

Cho $(a_n)_{n\geq 0}$ là một dãy số. Chuỗi hàm $u_n(x)$ được gọi là một chuỗi luỹ thừa với dãy hệ số a_n nếu nó có dang

$$\sum_{n=0}^{\infty} a_n x^n.$$

Ghi chú: Dãy chỉ số n có thể bắt đầu từ 0 hoặc từ một số nguyên dương k.

Ví du

- Với
$$|x|<1$$
, $\sum\limits_{n=0}^{\infty}x^n=rac{1}{1-x}$

- Với
$$|x|<1$$
, $\sum\limits_{n=0}^{\infty}x^n=rac{1}{1-x}$.
- Với $|x|<1$, $\sum\limits_{n=1}^{\infty}rac{x^n}{n}=-\ln(1-x)$.

Dinh lí Abel

Định lí

$$\sum_{n=0}^{\infty} a_n x_0^n \text{ hội tụ } \Rightarrow \sum_{n=0}^{\infty} a_n x^n \text{ hội tụ tuyệt đối trên } (-|x_0|,|x_0|).$$

Chứng minh. $\sum_{n=0}^{\infty} a_n x_0^n$ hội tụ $\Rightarrow \lim_{n \to +\infty} a_n x_0^n = 0 \Rightarrow$ Tồn tại $M > 0, n_0 > 0$ sao cho

$$\forall n > n_0, |a_n x_0^n| < M.$$

Khi đó, với $|x| < |x_0|$ và $n \ge n_0$,

$$|a_n x^n| = |a_n x_0^n| \left| \frac{x}{x_0} \right|^n < M \left| \frac{x}{x_0} \right|^n.$$

$$\left|\frac{x}{x_0}\right| < 1 \Rightarrow \sum_{n=n_0}^{\infty} \left|\frac{x}{x_0}\right|^n$$
 hội tụ $\Rightarrow \sum_{n=0}^{\infty} a_n x^n$ hội tụ tuyệt đối.

Bán kính hôi tu

Hệ quả

Cho chuỗi $\sum\limits_{n=0}^{\infty}a_{n}x^{n}$. Tồn tại $0\leq R\leq +\infty$ thoả mãn:

- Chuỗi $\sum_{n=0}^{\infty} a_n x^n$ hội tụ trên (-R, R).
- Chuỗi $\sum_{n=1}^{\infty} a_n x^n$ phân kì trên $(-\infty, -R) \cup (R, +\infty)$.

Giá trị R được gọi là bán kính hội tụ.

Ví du

- Chuỗi $\sum\limits_{n=0}^{\infty} n^n x^n$ có R=0. Chuỗi $\sum\limits_{n=0}^{\infty} x^n$ có R=1. Chuỗi $\sum\limits_{n=0}^{\infty} \frac{x^n}{n!}$ có $R=+\infty$.

Tính toán bán kính hội tụ

Định lí

Cho chuỗi $\sum_{n=0}^{\infty} a_n x^n$ với bán kính hội tụ R.

$$\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho \Rightarrow R = \begin{cases} \frac{1}{\rho} & \text{khi } \rho \neq 0 \\ 0 & \text{khi } \rho = +\infty \\ +\infty & \text{khi } \rho = 0 \end{cases}$$

Ta có phát biểu tương tự khi $\lim_{n\to+\infty} \sqrt[n]{|a_n|} = \rho$.

Gợi ý chứng minh. Với $\rho \neq 0$, xét tiêu chuẩn D'Alembert

$$\left|\frac{a_{n+1}x^{n+1}}{a_nx^n}\right| = \left|\frac{a_{n+1}}{a_n}x\right| \xrightarrow{n \to +\infty} |x|\rho.$$

Nếu $|x|<\frac{1}{\rho}$ thì $|x|\rho<1$, chuỗi hội tụ tuyệt đối. Nếu $|x|>\frac{1}{\rho}$ thì $|x|\rho>1$, chuỗi phân kì.

Tìm miền hội tụ D của chuỗi $\sum_{n=0}^{\infty} \frac{n2^n}{n^2+1} x^n$

Xét

$$\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to +\infty} \frac{(n+1)2^{n+1}}{(n+1)^2 + 1} \cdot \frac{n^2 + 1}{n2^n} = 2.$$

 \Rightarrow Bán kính hội tụ $R = \frac{1}{2}$.

- Tại $x = \frac{1}{2}$, $a_n \left(\frac{1}{2}\right)^n = \frac{n}{n^2+1} \sim \frac{1}{n}$. Theo tiêu chuẩn so sánh, chuỗi phân kì tại $\frac{1}{2}$.

- Tại $x=-\frac{1}{2}$, $a_n\left(-\frac{1}{2}\right)^n=\frac{(-1)^nn}{n^2+1}$. Do $\frac{n}{n^2+1}$ giảm về 0 khi $n\to+\infty$, chuỗi hội tụ tại $-\frac{1}{2}$ theo Leibniz.

Kết luận: $D = [-\frac{1}{2}, \frac{1}{2})$.

4□ > 4□ > 4 = > 4 = > = 90

Ví du

Tìm miền hội tụ D của $\sum_{n=0}^{\infty} \frac{x^{2n}}{2^n}$

Chuỗi có dạng $\sum_{n=0}^{\infty} a_n u_n(x)$ với $a_n = \frac{1}{2^n}$, $u_n(x) = x^{2n}$.

$$\lim_{n\to+\infty}\left|\frac{a_{n+1}}{a_n}\right|=\lim_{n\to+\infty}\frac{2^n}{2^{n+1}}=\frac{1}{2}.$$

Vậy bán kính hội tụ là R=2.

Tuy nhiên, tại $x = \frac{3}{2} \in (-2, 2), \sum_{n=0}^{\infty} a_n u_n(\frac{3}{2}) = \sum_{n=0}^{\infty} \frac{3^{2n}}{2^{2n} 2^n} = \sum_{n=0}^{\infty} \left(\frac{9}{8}\right)^n$ phân kì.

Sai lầm ở đâu ? Sai lầm: Nếu viết $\sum\limits_{n=0}^{\infty} \frac{x^{2n}}{2^n}$ dưới dạng chuỗi luỹ thừa $\sum\limits_{n=0}^{\infty} a_n x^n$ thì

$$a_n = egin{cases} 0 & ext{n\'eu} & n = 2k + 1 \ rac{1}{2^n} & ext{n\'eu} & n = 2k \end{cases} .$$

- 4 ロ ト 4 御 ト 4 恵 ト 4 恵 ト - 恵 - 夕 Q G

Tìm miền hội tụ D của $\sum_{n=0}^{\infty} \frac{x^{2n}}{2^n}$

Đặt
$$y=x^2$$
. Xét chuỗi $\sum_{n=0}^{\infty} a_n y^n = \sum_{n=0}^{\infty} \frac{y^n}{2^n}$.

$$\lim_{n\to+\infty}\left|\frac{a_{n+1}}{a_n}\right|=\lim_{n\to+\infty}\frac{2^n}{2^{n+1}}=\frac{1}{2}.$$

Bán kính hội tụ của $\sum_{n=0}^{\infty} a_n y^n$ là $R=2 \Rightarrow (-2,2)$ thuộc miền hội tụ của $\sum_{n=0}^{\infty} a_n y^n$.

$$\Rightarrow (-\sqrt{2}, \sqrt{2}) \subset D.$$

Tại $x=\sqrt{2}$, chuỗi có dạng $\sum\limits_{n=0}^{\infty}\frac{\sqrt{2}^{2^n}}{2^n}=\sum\limits_{n=0}^{\infty}1$ phân kì. Tương tự, tại $x=-\sqrt{2}$,

chuỗi
$$\sum_{n=0}^{\infty} \frac{x^{2n}}{2^n}$$
 phân kì.

Kết luận:
$$D = (-\sqrt{2}, \sqrt{2})$$
.

4□ > 4問 > 4 = > 4 = > = 90

Tính chất của chuỗi luỹ thừa

Định lí

Cho chuỗi luỹ thừa $\sum_{n=0}^{\infty} a_n x^n$ với bán kính hội tụ R>0. Đặt $S(x)=\sum_{n=0}^{\infty} a_n x^n$ trên (-R,R).

- Với mọi $[a,b] \subset (-R,R)$, chuỗi $\sum_{n=0}^{\infty} a_n x^n$ hội tụ đều trên [a,b].
- S(x) liên tục trên (-R, R).
- Với mọi $[a,b] \subset (-R,R)$, S(x) khả tích trên [a,b] và

$$\int_{a}^{b} S(x)dx = \sum_{n=0}^{\infty} \int_{a}^{b} a_n x^n dx.$$

• S(x) khả vi trên (-R, R) và

$$S'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}.$$

Tính tổng $\sum_{n=0}^{\infty} (n+1)x^n$

Đây là chuỗi luỹ thừa bán kính R=1. Đặt $S(x)=\sum_{n=0}^{\infty}(n+1)x^n$.

$$\int S(x)dx = \sum_{n=0}^{\infty} \int (n+1)x^n dx$$
$$= \sum_{n=0}^{\infty} x^{n+1} = \sum_{n=1}^{\infty} x^n$$
$$= \frac{x}{1-x}$$

$$\Rightarrow S(x) = \frac{d}{dx} \left(\frac{x}{1-x} \right) = \frac{1}{(1-x)^2}.$$

Lê Văn Tứ (BKHN)

Khai triển Taylor cấp n

Định lí

Cho hàm $f:(a,b)\to\mathbb{R}$ có đạo hàm đến cấp n+1 trên (a,b). Cố định $x_0\in(a,b)$. Với mọi $x\in(a,b)$,

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}.$$

với c nằm giữa x và x_0 .

Đại lượng $R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}$ còn được gọi là phần dư Lagrange của khai triển Taylor.

Dinh lí

Cho hàm $f:(a,b) o \mathbb{R}$ có đạo hàm mọi cấp. Cố định $x_0 \in (a,b)$. Với $x \in (a,b)$,

$$\lim_{n \to +\infty} R_n(x) = 0 \Rightarrow f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n.$$

Đọc thêm: Hàm khả vi vô hạn lần nhưng không bằng chuỗi Maclaurin

Xét hàm
$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & \text{n\'eu } x \neq 0 \\ 0 & \text{n\'eu } x = 0 \end{cases}$$

•
$$f'(0) = \lim_{x \to 0} \frac{e^{-\frac{1}{x^2}}}{x} = 0 \Rightarrow f'(x) = \begin{cases} \frac{2}{x^3} e^{-\frac{1}{x^2}} & \text{n\'eu } x \neq 0 \\ 0 & \text{n\'eu } x = 0 \end{cases}$$
.

• Bằng qui nạp,
$$f^{(n)}(x) = \begin{cases} \frac{e^{-\frac{1}{x^2}}P_{2n-2}(x)}{x^{3n}} & \text{nếu } x \neq 0 \\ 0 & \text{nếu } x = 0 \end{cases}$$
.

với $P_{2n-2}(x)$ là đa thức bậc 2n-2.

$$\Rightarrow$$
 Chuỗi Maclaurin của f có dạng $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = 0 + 0 + \dots$

Vậy f(x) khác chuỗi Maclaurin của nó trong bất kì lân cận nào của 0.

◆ロト ◆御 ト ◆注 ト ◆注 ト ○注 ・ から(*)

Chuỗi Taylor - Chuỗi Maclaurin

Định lí

Cho hàm $f:(a,b)\to\mathbb{R}$ có đạo hàm mọi cấp. Cố định $x_0\in(a,b)$. Nếu tồn tại M>0 sao cho

$$\forall x \in (a,b), |f^{(n)}(x)| < M \Rightarrow f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

Khi đó, ta gọi $\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n$ là chuỗi Taylor của f trong lân cận (a,b) của x_0 .

Ghi chú

- Sự hội tụ của chuỗi Taylor là sự hội tụ điểm. Chuỗi Taylor có thể không hội tụ đều về f(x).
- Nếu x_0 , chuỗi $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$ được gọi là chuỗi Maclaurin của f trong một lân cận của 0.

Các chuỗi Maclaurin cơ bản

•
$$e^{x} = \sum_{n=0}^{\infty} \frac{1}{n!} x^{n} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \dots, \quad R = +\infty.$$

•
$$\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots, \quad R = +\infty.$$

•
$$cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots, \quad R = +\infty.$$

•
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots, R = 1.$$

•
$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n = 1 - x + x^2 - x^3 + x^4 - \dots, R = 1.$$

•
$$(1+x)^{\alpha}=1+\sum_{n=1}^{\infty}\frac{\alpha(\alpha-1)\ldots(\alpha-n+1)}{n!}x^n, \alpha\in\mathbb{R}, R=1.$$

•
$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots, R = 1.$$

•
$$arctan(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n+1)} x^{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots, R = 1.$$

Khai triển hàm $f(x) = \frac{1}{x^2 - 9}$ thành chuỗi luỹ thừa của x - 2

Ta có
$$f(x) = \frac{1}{6} \left(\frac{1}{x-3} - \frac{1}{x+3} \right)$$
.

•
$$\frac{1}{x-3} = \frac{1}{(x-2)-1} = -\frac{1}{1-(x-2)} = -\sum_{n=0}^{\infty} (x-2)^n$$
.

•
$$\frac{1}{x+3} = \frac{1}{(x-2)+5} = \frac{1}{5} \frac{1}{1+\frac{x-2}{5}} = \frac{1}{5} \sum_{n=0}^{\infty} (-1)^n \left(\frac{x-2}{5}\right)^n$$
.

$$\Rightarrow \frac{1}{x^2 - 9} = \frac{1}{6} \left(-1 - \frac{(-1)^n}{5^{n+1}} \right) (x - 2)^n.$$

Lê Văn Tứ (BKHN)

Chuỗi - PTVP - BĐ Laplace

Ví du

Tính chuỗi Maclaurin của $f(x) = e^x \cos x$

Do

•
$$f'(x) = e^x(\cos x - \sin x) = \sqrt{2}e^x \cos(x + \frac{\pi}{4})$$
.

•
$$\frac{d}{dx}\left(\sqrt{2}^n e^x \cos\left(x + \frac{n\pi}{4}\right)\right) = \sqrt{2}^n e^x \left(\cos\left(x + \frac{n\pi}{4}\right) - \sin\left(x + \frac{n\pi}{4}\right)\right) = \sqrt{2}^{n+1} e^x \cos\left(x + \frac{(n+1)\pi}{4}\right).$$

$$\Rightarrow$$
 Theo qui nap, $f^{(n)}(x) = 2^{\frac{n}{2}}e^x \cos\left(x + \frac{n\pi}{4}\right)$.

Vây chuỗi Maclaurin của $e^x \cos(x)$ có dạng

$$f(x) = \sum_{n=0}^{\infty} \frac{2^{\frac{n}{2}} \cos\left(\frac{n\pi}{4}\right)}{n!} x^{n}.$$

