Backtracking on Affine Gap Tables

Affine Gap Tables

 Affine gap tables are subgraphs of the linear gap tables, connected to each other

Begin with table values

 Once the table values are determined, we backtrack through the grid to find the optimal alignment

Matches, Mismatches only

Α

	С	Α	G	T	Α
0	-10.5	-11	-11.5	-12	-12.5
-∞	-21	-9.5	-10	-10.5	-11
-∞	-21.5	-20	-8.5	-9	-9.5
-8	-22	-20.5	-19	-12.5	-13

Horizontal gaps only

		С	Α	G	Т	Α
	0	-∞	-∞	-∞	-∞	_∞
С	-10.5	-21	-21.5	-22	-22.5	-23
A	-11	-9.5	-15	-20.5	-19.5	-20
Т	-11.5	-10	-8.5	-19	-19.5	-20

A node (i, j) in the M graph

Has edges coming from:

- M[i-1, j-1] (cost +1 or -4)
 - This is either a match (+1) or a mismatch (-4)
- X[i, j] (cost 0)
 - This corresponds to the end of a gap in sequence x (the sequence on the left)
- Y[i, j] (cost 0)
 - This corresponds to the end of a gap in sequence y (the sequence on top)

Has edges going to:

- -M[i+1, j+1] (cost +1 or -4)
 - Also a match or a mismatch
- -X[i, j+1] (cost S (-10) + E (-.5))
 - Open a new gap in sequence x
- Y[i+1, j] (cost S (-10) + E (-.5))
 - Open a new gap in sequence y

A node (i, j) in the X graph

Has edges coming from:

- M[i, j-1] (cost S + E)
 - This is for a new gap coming from a match or mismatch
- -X[i, j-1] (cost E (-.5))
 - This extends a gap in sequence x (the sequence on the left)
- Y[i, j-1] (cost S (-10) + E (-.5))
 - This is for a new gap coming from a gap in sequence y (top)
- Has edges going to:
 - M[i, j] (cost 0)
 - This is for ending the gap
 - -X[i, j+1] (cost E (-.5))
 - Extend the gap in sequence x
 - -Y[i, j+1] (cost S + E)
 - Open a new gap in sequence y

A node (i, j) in the Y graph

Has edges coming from:

- -M[i-1, j] (cost S + E)
 - This is for a new gap coming from a match or mismatch
- -X[i-1, j] (cost S + E)
 - This is for a new gap coming from a gap in sequence x (left)
- Y[i-1, j] (cost S)
 - This extends a gap in sequence y (the sequence on the top)
- Has edges going to:
 - M[i, j] (cost 0)
 - This is for ending the gap
 - -X[i+1, j] (cost S + E)
 - Open a new gap in sequence x
 - Y[i+1, j] (cost E)
 - Extend the gap in sequence y

Start Here, M[3,5]

 Note that this is the same as the lower right corner in M, X, or Y, because of edge to get here are zero.

0	-∞	-∞	-∞	-∞	-∞
-∞	1	-13.5	-14	-14.5	-15
-∞	-13.5	2	-12.5	-13	-8.5
-∞	-14	-12.5	-2	-11.5	-17

Matches, Mismatches only

	С	Α	G	Т	Α
0	-10.5	-11	-11.5	-12	-12.5
-∞	-21	-9.5	-10	-10.5	-11
-∞	-21.5	-20	-8.5	-9	-9.5
-∞	-22	-20.5	-19	-12.5	-13

Horizontal gaps only

	С	Α	G	Т	Α
0	-∞	-∞	-∞	_∞	-∞
-10.5	-21	-21.5	-22	-22.5	-23
-11	-9.5	-20	-20.5	-21	-21.5
-11.5	-10	-8.5	-19	-19.5	-19

- The best transition: X[3,5]
 - Note that this is the same as the lower right corner in M, X, or Y, because of edge to get here are zero.

Possible backtracks:

M[2,4]: -13 - 4

X[3,5]: -13 + 0

Y[3,5]: -19 + 0

	С	Α	G	Т	Α
0	-10.5	-11	-11.5	-12	-12.5
-∞	-21	-9.5	-10	-10.5	-11
-∞	-21.5	-20	-8.5	-9	-9.5
-∞	-22	-20.5	-19	-12.5	-13

Horizontal gaps only

	С	Α	G	Т	Α
0	-∞	-∞	_∞	_∞	-∞
-10.5	-21	-21.5	-22	-22.5	-23
-11	-9.5	-20	-20.5	-21	-21.5
-11.5	-10	-8.5	-19	-19.5	-19

 Note that this is the same as the lower right corner in M, X, or Y, because of edge to get here are zero.

Matches, Mismatches only

C

Α

Possible backtracks:

M[2,4]: -13 - 4

X[3,5]: -13 + 0

Y[3,5]: -19 + 0

A

		С	Α	G	T	Α
	0	-10.5	-11	-11.5	-12	-12.5
С	-∞	-21	-9.5	-10	-10.5	-11
Α	-∞	-21.5	-20	-8.5	-9	-9.5
Т	-∞	-22	-20.5	-19	5	-13
	Horizon	tal	- Lo X	(13,5]		

Horizontal
First transition: M[3,5] to X[3,5]

-10.5	-21	-21.5	-22	-22.5	-23
-11	-9.5	-20	-20.5	-21	-21.5
-11 5	-10	-8.5	-19	-19.5	-19

Now we are here: X[3,5]

Based on the X node transition diagram, we have 3 backtrack possibilities

Matches, Mismatches only

A

C

Α

	С	Α	G	Т	Α
0	-10.5	-11	-11.5	-12	-12.5
-∞	-21	-9.5	-10	-10.5	-11
-∞	-21.5	-20	-8.5	-9	-9.5
-∞	-22	-20.5	-19	-12.5	-13

Horizontal gaps only

	С	Α	G	Т	А
0	-∞	-∞	-∞	-∞	-∞
-10.5	-21	-21.5	-22	-22.5	-23
-11	-9.5	-20	-20.5	-21	-21.5
-11.5	-10	-8.5	-19	-19.5	-19

- Now we are here: X[3,5]
 - Based on the X node transition diagram, we have 3 backtrack possibilities

	C		G		
0	-∞	-∞	-∞	-∞	-∞
-∞	1	-13.5	-14	-14.5	-15
-∞	-13.5	2	-12.5	-13	-8.5
-∞	-14	-12.5	-2	-11.5	<u>-17</u>

Matches, Mismatches only

Possible backtracks:

	С	Α	G	Т	Α
0	-10.5	-11	-11.5	-12	-12.5
-8	-21	-9.5	-10	-10.5	-11
-∞	-21.5	-20	-8.5	-9	-9.5
-∞	-22	-20.5	-19	-12.5	-13

Horizontal gaps only

Α

	С	А	G	Т	Α
0	-∞	-∞	-∞	_∞	-∞
-10.5	-21	-21.5	-22	-22.5	-23
-11	-9.5	-20	-20.5	-21	-21.5
-11.5	-10	-8.5	-19	-19.5	-19

- Best Transition: X[3,4]
 - Based on the X node transition diagram, we have 3 backtrack possibilities

	C	А	G		A
0	-∞	-∞	-∞	-∞	-∞
-∞	1	-13.5	-14	-14.5	-15
-∞	-13.5	2	-12.5	-13	-8.5
-∞	-14	-12.5	-2	-11.5	<u>-17</u>

Matches, Mismatches only

Possible backtracks:

	С	Α	G	Т	Α
O	-10.5	-11	-11.5	-12	-12.5
-∞	-21	-9.5	-10	-10.5	-11
-∞	-21.5	-20	-8.5	-9	-9.5
-∞	-22	-20.5	-19	-12.5	13
	tal gans	ر دادر د			

Horizontai gaps oniy Second Transition: X[3,5] to X[3,4]

	С	Α	G	T	Α
0	-∞	-∞	-∞	_∞	-8
-10.5	-21	-21.5	-22	-22.5	-23
-11	-9.5	-20	-20.5	-21	-21.5
-11.5	-10	-8.5	-19	-19.5	-19

Now we are here: X[3,4]

Possible backtracks:

M[3,3]: -2 - S - E

X[3,3]: -19 - E

Y[3,3]: -19 - S - E

TA --

	С	Α	G	Т	Α
0	-10.5	-11	-11.5	-12	-12.5
-∞	-21	-9.5	-10	-10.5	-11
-∞	-21.5	-20	-8.5	-9	-9.5
-∞	-22	-20.5	-19	-12.5	-13

Horizontal gaps only

	С	А	G	Т	Α
0	-∞	-∞	-∞	_∞	-∞
-10.5	-21	-21.5	-22	-22.5	-23
-11	-9.5	-20	-20.5	-21	-21.5
-11.5	-10	-8.5	-19	-19.5	-19

- M[3,3] scores a lot higher than the other two options
- Mismatch was chosen over the dual gap, because of gap opening costs

Matches, Mismatches only

-14

_∞

-12.5

Possible backtracks:

GTA T--

	С	Α	G	Т	Α
0	-10.5	-11	-11.5	-12	-12.5
-8	-21	-9.5	-10	-10.5	-11
-∞	-21.5	-20	-8.5	-9	-9.5
-∞	-22 11 to M	12 31		-12.5	-13
	11 to M	$I[\mathfrak{I}^{\mathfrak{I},\mathfrak{I}_{\mathfrak{I}}}]$			

C G 0 _ ∞ _∞ -8 -8 -8 -10.5 -21 -21.5 -22 -22.5 -23 -11 -9.5 -20 -20.5 -21 -21.5 -10 -8.5 -19.5 -11.5 -19

Now we are here: X[3,3]

Possible backtracks:

M[2,2]: 2 + -4

X[3,3]: -19 - 0

Y[3,3]: -19 - 0

GTA T--

	С	Α	G	Т	Α
0	-10.5	-11	-11.5	-12	-12.5
-∞	-21	-9.5	-10	-10.5	-11
-∞	-21.5	-20	-8.5	-9	-9.5
-8	-22	-20.5	-19	-12.5	-13

Horizontal gaps only

	С	Α	G	Т	Α
0	-∞	-∞	-∞	-∞	-∞
-10.5	-21	-21.5	-22	-22.5	-23
-11	-9.5	-20	-20.5	-21	-21.5
-11.5	-10	-8.5	-19	-19.5	-19

The best Transition: X[2,2]

Possible backtracks:

M[2,2]: 2 + -4

X[3,3]: -19 - 0

Y[3,3]: -19 - 0

AGTA

	С	Α	G	Т	Α
0	-10.5	-11	-11.5	-12	-12.5
-∞	-21	-9.5	-10	-10.5	-11
-∞	-21.5	-20	-8.5	-9	-9.5
-∞	-22	-20.5	-19	-12.5	-13

Horizontal gaps only

	С	Α	G	Т	Α
0	-∞	-∞	-∞	_∞	-∞
-10.5	-21	-21.5	-22	-22.5	-23
-11	-9.5	-20	-20.5	-21	-21.5
-11.5	-10	-8.5	-19	-19.5	-19

Now we are here: X[2,2]

Possible backtracks:

M[1,1]: 1 + 1

X[2,2]: -20 - 0

Y[2,2]: -20 - 0

AGTA
AT--

	С	Α	G	Т	Α
0	-10.5	-11	-11.5	-12	-12.5
-∞	-21	-9.5	-10	-10.5	-11
-∞	-21.5	-20	-8.5	-9	-9.5
-∞	-22	-20.5	-19	-12.5	-13

Horizontal gaps only

	С	Α	G	Т	Α
0	-∞	-∞	-∞	-∞	-∞
-10.5	-21	-21.5	-22	-22.5	-23
-11	-9.5	-20	-20.5	-21	-21.5
-11.5	-10	-8.5	-19	-19.5	-19

The best transition: X[1,1]

Possible backtracks:

M[1,1]: 1 + 1

X[2,2]: -20 - 0

Y[2,2]: -20 - 0

CAGTA

	С	Α	G	Т	Α
0	-10.5	-11	-11.5	-12	-12.5
-∞	-21	-9.5	-10	-10.5	-11
-∞	-21.5	-20	-8.5	-9	-9.5
-∞	-22	-20.5	-19	-12.5	-13

Horizontal gaps only

	С	Α	G	Т	Α
0	-∞	-∞	-∞	_∞	-∞
-10.5	-21	-21.5	-22	-22.5	-23
-11	-9.5	-20	-20.5	-21	-21.5
-11.5	-10	-8.5	-19	-19.5	-19

- Now we are here: M[1,1]
 - This is the final step, and it is kind of trivial, but important to be aware of:

Matches, Mismatches only

Possible backtracks:

M[0,0]: 0 + 1

X[1,1]: -21 - 0

Y[1,1]: -21 - 0

CAGTA

	С	Α	G	Т	Α
0	-10.5	-11	-11.5	-12	-12.5
-∞	-21	-9.5	-10	-10.5	-11
-∞	-21.5	-20	-8.5	-9	-9.5
-∞	-22	-20.5	-19	-12.5	-13

Horizontal gaps only

	С	Α	G	Т	Α
0	-∞	-∞	-∞	-∞	-∞
-10.5	-21	-21.5	-22	-22.5	-23
-11	-9.5	-20	-20.5	-21	-21.5
-11.5	-10	-8.5	-19	-19.5	-19

Final Transition: M[0,0]

Possible backtracks:

$$M[0,0]: 0 + 1$$

CAGTA

	С	Α	G	Т	Α
0	-10.5	-11	-11.5	-12	-12.5
-∞	-21	-9.5	-10	-10.5	-11
-∞	-21.5	-20	-8.5	-9	-9.5
-∞	-22	-20.5	-19	-12.5	-13

Horizontal gaps only

	С	Α	G	Т	Α
0	-∞	-∞	-∞	-∞	-∞
-10.5	-21	-21.5	-22	-22.5	-23
-11	-9.5	-20	-20.5	-21	-21.5
-11.5	-10	-8.5	-19	-19.5	-19

Some hints on the applications project

- Gene predictions from Glimmer and Genemark will be frequently incorrect and contradictory
 - Rather than assuming they are always correct, assume they are <u>wrong</u>.

Missing genes

- What you need to do is piece together information that indicates the real position of a gene
 - Blast the gene positions that are predicted
 - Use predictions where Glimmer and Genemark agree
 - Put contigs together and predict on the assembly

Blasting predicted Genes

 Suppose Glimmer and Genemark predict the following gene, A:

- Go to the contig that is predicted, and cut and and paste out the part of the contig that is predicted
- When you search for this in megaBLAST, you will find a number of things:
 - Genomes
 - This indicate what virus you have, but don't tell you what gene you have
 - Genes (suppose you find a gene B)
 - These tell you what gene you might have
 - Use ClustalW to align these genes to your gene, A:

The fact that B is longer, but still aligns, indicates that Genemark was off by some nucleotides

Now check to rest of the contig to see if it is the same as the rest of B

BLAST

How to really use BLAST

- By aligning BLAST genes to your input, you can see where the ends line up.
 - If B runs off the end of your contig, perhaps another contig has the same nucleotides as the one from blast – so check it out in the fasta file.
- The BLAST result is an actual gene
 - So if it aligns partially, use the blast result to define the actual end points of your gene, for correct results.

Using Genemark and Glimmer together

- Genemark and Glimmer do not always agree, but where they do, their predictions will overlap.
- If you want to be more certain of the predictions, try blasting for regions where predictions overlap.

Predicting on the assembly

Genemark Prediction 1 —

- Genemark and Glimmer change their predictions based on what you give them.
 - If you give them a longer contig, their prediction about the contig may be different, depending on what they see.
- Assembling contigs together can lead to more accurate predictions because of shortening
 - Especially when you know there is a longer gene that extends onto the other contig, you can try assembling them
 - Look at the sequence and see if the letters match up against BLAST results