Función Python para la aproximación del número π

Técnicas Experimentales Práctica de Laboratorio #6

12 de marzo de 2014

Resumen

El objetivo de esta práctica es definir una función en Python que permita la aproximación del valor de π con un una precisión dada.

1. Motivación y Objetivos

El número π se puede aproximar numéricamente con la siguiente fórmula:

$$\pi \approx \frac{1}{n} \sum_{i=1}^{n} f(x_i)$$
, con $f(x) = \frac{4}{(1+x^2)}$, $x_i = \frac{i-\frac{1}{2}}{n}$, para $i = 1, \dots, n$

Un mayor número de intervalos hace mayor la precisión en los decimales de la aproximación de π . Por lo tanto, se concluye que n ha de constituir un parámetro de la función Python que aproxime π . En la Figura 1 se muestra gráficamente utilizando n=4.

Figura 1: Aproximación de pi numéricamente

2. Ejercicios propuestos

Escriba una función que reciba como parámetro el número de intervalos con los que se desea abordar la aproximación de π y que devuelva el valor aproximado.

Compruebe la exactitud de la aproximación, invocando a la fución tantas veces como indique el usuario y almacenando los resultados en una lista.

Por ejemplo, si se desean 10 aproximaciones utilizando intervalos mútiplos de 10, la salida debería ser:

```
TE/prct6/src$ ./pi.py 10 10
El modo de uso es: ./pi.py [factor] [veces]
[3.1424259850010987, 3.1418009868930943, 3.1416852461797484, 3.1416447369226574, 3.1416259869230028, 3.141615801737901, 3.1416096603924974, 3.1416056744231198, 3.141602941655633, 3.1416009869231254]
```

3. Entregable

En la tarea habilitada para esta práctica en el Aula Virtual, se subirá la dirección del repositorio github donde se ha almacenado la práctica.

4. Para saber más...

Amplíe el programa Python que ha desarrollado para que muestre por la consola los valores de la lista y su diferencia con con una aproximación de 35 decimales. ¿Cómo y dónde se encuentra la primera aproximación de 3 decimales exactos?

```
TE/prct6/src$ ./pi.py 10 10
El modo de uso es: ./pi.py [factor] [veces]
        PI35DT
                         lista i
                                         PI35DT - lista i
         3.1415926536
                         3.1424259850
                                         0.0008333314
1
2
                         3.1418009869
                                         0.0002083333
         3.1415926536
3
         3.1415926536
                         3.1416852462
                                         0.0000925926
4
         3.1415926536
                         3.1416447369
                                         0.0000520833
5
         3.1415926536
                         3.1416259869
                                         0.0000333333
6
         3.1415926536
                         3.1416158017
                                         0.0000231481
7
         3.1415926536
                         3.1416096604
                                         0.0000170068
8
         3.1415926536
                         3.1416056744
                                         0.0000130208
         3.1415926536
                         3.1416029417
                                         0.0000102881
```

Referencias

[1] Tutorial de Python. http://docs.python.org/2/tutorial/