PIZZO

Trzecia lista zadań

Zadanie 1. Niech L_6 będzie językiem nad alfabetem $A_6 = \{0, 1, ..., 9\}$ składającym się z tych słów, które zawierają wystąpienia wszystkich liter alfabetu.

- Czy istnieje niedeterministyczny automat skończony, który rozpoznaje L_6 i ma mniej niż 500 stanów?
 - Wskazówka: dla podzbioru $X \subseteq A_6$ niech w_X będzie dowolnym słowem zawierającym dokładnie wszystkie litery ze zbioru X, na przykład $w_{\{3,5,8\}} = 358$. Dla każdego $X \subset A_6 \setminus \{9\}$, rozpatrz przebieg akceptujący na słowie $w_X w_{\bar{X}}^{-1}$. Takich przebiegów jest 512, a stanów mniej niż 500 co z tego wynika?
- \bullet Czy istnieje dwukierunkowy deterministyczny automat skończony, który rozpoznaje dopełnienie L_6 i ma mniej niż 30 stanów?

Zadanie 2. Niech $L_7 = \{ww^R \mid w \in \{0,1\}^*\}$. Przez w^R oznaczamy odwrócenie słowa w.

- 1. Czy język L_7 da się rozpoznać dwukierunkowym automatem skończonym?
- 2. Czy każde przecięcie języka regularnego z L_7 jest językiem regularnym?
- 3. Czy istnieją dwa języki nieregularne, których przecięcie jest regularne?

W poniższych zadaniach wystarczy podać ogólną koncepcję rozwiązania, nie trzeba podawać dokładnych definicji funkcji przejścia

Zadanie 3. Opisz maszynę nad alfabetem $\{0,1,;\}$, która uruchomiona na wejściu postaci $\alpha n_1; n_2\omega$, gdzie $n_1, n_2 \in \{0,1\}^*$ są binarnymi zapisami liczb, ustawi na taśmie roboczej słowo $> nBBB\ldots$ i przejdzie do stanu akceptującego, gdzie n jest binarnym zapisem:

- Sumy n_1 i n_2 .
- Iloczynu n_1 i n_2 .

Zadanie 4. Które z poniższych problemów są rozstrzygalne?

- Czy dana maszyna Turinga może osiągnąć stan akceptujący?
- Czy dana maszyna Turinga może osiągnąć parzyście wiele różnych stanów?
- Czy dana maszyna Turinga ma parzyście wiele różnych stanów?
- Czy dany program zawsze się zapętla?
- Czy dany program uruchomiony na dowolnym wejściu wykonuje co najwyżej 100 kroków/instrukcji procesora?

Zadanie 5. Udowodnij, że problem osiągnięcia stanu akceptującego dla maszyn Turinga bez taśmy wejściowej² jest nierozstrzygalny.

¹gdzie \bar{X} to dopełnienie X do alfabetu A_6

 $^{^2}$ Można myśleć, że na taśmie wejściowej zawsze jest napisane tylko >B