《阻尼振动和受迫振动》预习报告

一、实验步骤

- 1、调整仪器使波尔共振仪处于工作状态,避免光电门与测量盘接触,并检查摆轮自由摆动情况。
- 2、测量最小阻尼时的阻尼比和固有频率,读取振幅与10倍周期 $10\overline{T}_d$,由 $\theta=\theta_ie^{-\beta t}cos(\sqrt{\omega_0^2-\beta^2t}+\phi_i)$,用 $ln\theta_1,ln\theta_2...$ 进行线性拟合,所得b即为 $-\frac{2\pi}{\sqrt{\xi^2-1}}$

所以
$$\xi = \sqrt{(rac{-2\pi}{b})^2 + 1}$$
, $\omega_0 = rac{2\pi}{T_d\sqrt{1-\xi^2}}$,此处 T_d 应代入所有 T_d 平均值 $\overline{T_d}$

- 3、测量其他2-3种阻尼状态的振幅,仿照上述方法求 ξ ,只要求测多于10个 θ 即可,侧后求出 ξ + $\Delta\xi$
- 4、测定受迫振动的幅频特性与相频特性曲线。将用此法测得的 ω_0 与已有结果进行比较,逐点计算 ϕ 值,并计算与测量值的偏差。

二、原始数据表格

1、阻尼振动

(1) 无电磁阻尼

序号	heta	ln heta
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		

1	11
1	12
1	13
1	14
1	15
1	16
1	17
1	18
1	19
2	20
	21
2	22
2	23
2	24
2	25
	26
	27
	28
2	29
3	30
3	31
3	32
3	33
3	34
3	35
3	36
3	37
3	38

	39									
	40									
	41									
	42									
	43									
	44									
	45									
	46									
	47									
	48									
	49									
	50									
序号		1		2		3		4	ļ	5
$10\overline{T_d}$										
(2) 电磁	阻尼在_	挡:								
序号		1		2		3	4		5	
θ										
$ln\theta$										
序号		6		7		8	9		10	
θ										
ln heta										
序号	1	2	3	4	5	6	7	8	9	10
$\overline{T_d}/s$										
(3) 电磁	阻尼在_	挡:								
序号		1		2		3	4		5	

 θ
 lnθ

 序号
 6
 7
 8
 9
 10
 10

 θ
 lnθ
 5
 6
 7
 8
 9
 10

 $\overline{T_d}/s$

2、受迫振动

(1) 电磁阻尼在____挡

T/s	ω/ω_0	ω	$ heta/^\circ$	$\phi_1/^\circ$	$\phi_2/^\circ$	$\phi=rac{\phi_1+\phi_2}{2}$	ϕ 计算值	$rac{\phi-\phi_{orall}\ \mathtt{\#}}{\phi} imes100\%$

(2)电磁阻	巨大	144					
		化任_						
				$\phi_1/^\circ$	$\phi_2/^\circ$	$\phi=rac{\phi_1+\phi_2}{2}$	φ计算值	$rac{\phi-\phi_{ ext{ht }\#}}{\phi} imes 100\%$
				$\phi_1/^\circ$	$\phi_2/^\circ$	$\phi=rac{\phi_1+\phi_2}{2}$	φ计算值	$rac{\phi-\phi_{ m ht}}{\phi} imes 100\%$
				$\phi_1/^\circ$	$\phi_2/^\circ$	$\phi=rac{\phi_1+\phi_2}{2}$	φ计算值	$rac{\phi-\phi$ H # $}{\phi} imes 100\%$