Домашняя работа по ТРЯП N9

Автор - Айвазов Денис из 671 группы 1 ноября 2017

1 Построить SLG G_n порождающую слово

$$a^nba^{n-1}b\dots a^3ba^2bababa^2ba^3b\dots a^{n-1}ba^nb$$

Грамматика G_n будет описана правилами:

- 1. $S \to C_n$ 1 вывод
- 2. $A_1 \to a; A_2 \to A_1A_1; A_3 \to A_2A_1; A_4 \to A_3A_1 \dots A_n \to A_{n-1}A_1;$ всего п выводов. A_i порождает a^i
- 3. $C_1 \to A_1bA_1b; C_2 \to A_2bC_1A_2b; C_3 \to A_3bC_2A_3b; \dots C_n \to A_nbC_{n-1}A_nb;$ В итоге получаем, что для какого-то п имеем длину описания: 1+2n+5n+1=7n+2< 8n т.е. c=8 и грамматика является SLG.

Само доказательство того, что грамматика порождает именно слово $a^nba^{n-1}b\dots a^3ba^2bababa^2ba^3b\dots a^{n-1}ba^nb$. Вывод выглядит так: $S\Rightarrow C_n\Rightarrow A_nbC_{n-1}A_nb\Rightarrow A_nbA_{n-1}bC_{n-2}A_{n-1}bA_nb\Rightarrow^*A_nbA_{n-1}b\dots A_1bA_1b\dots A_{n-1}bA_nb\Rightarrow^*a^nba^{n-1}b\dots abC_1ab\dots a_{n-1}ba_nb$

заметим, что все выводы являются детерминированными (т.е. тут однозначно строится дерево выводов) и ни у какого вывода нет двух возможных "толкований".

2 * Построить и доказать алгоритм

3 Построить LZW-автомат и SLG по слову

3.1 $\omega_1 = a^8$

SLG задается переходами: $S \to A_1 A_2 A_3 A_4 A_5 A_6 A_7$; $A_1 \to a$; $A_2 \to A_1 b$; $A_3 \to A_2 b$; $A_6 \to A_2 a$; $A_7 \to A_6 b$; $A_4 \to b$; $A_5 \to A_4 a$.

3.2 $\omega_2 = tobeornot tobeornot$

По тому же алгоритму построим:

t	О	b	e	or	n	ot	to	be	ort	ob	eo	r	no	t
A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8	A_9	A_{10}	A_{11}	A_{12}	A_{13}	A_{14}	$A_{15} \equiv A_1$

Сама грамматика будет иметь вид:

$$S \to A_1 A_2 A_3 A_4 \dots A_{14} A_{15};$$

$$A_1 \to t; A_2 \to o;$$

$$A_3 \to b; A_4 \to e;$$

$$A_5 \to A_2 r; A_6 \to n;$$

$$A_7 \rightarrow A_2 t; A_8 \rightarrow A_1 o;$$

$$A_9 \rightarrow A_3 e; A_{10} \rightarrow A_5 t;$$

$$A_{11} \rightarrow A_2b; A_{12} \rightarrow A_4o;$$

$$A_{13} \rightarrow r; A_{14} \rightarrow A_5 t;$$

$$A_{15} \rightarrow A_1$$
;

Заметим, что хоть эта грамматика построена по данному алгоритму абсолютно верно, с точки зрения сжимания она не оптимальна. Сумма длин правых частей правил у нее: 15+7+8*2=38. При длине слова 24. В следующем задании мы ее улучшим.

4 Построить для ω_2 более оптимальную SLG

Заметим, что по данному слову грамматику можно построить проще:

 $S \to A_5 A_4 A_5; \ A_5 \to A_4 A_3; \ A_4 \to A_1 A_2; \ A_3 \to not; \ A_2 \to tobe; \ A_1 \to or;$ Выводимость также однозначна и показана на рисунке, который можно интерпретировать как дерево вывода слова ω_2 из нетерминала S. В данном случае сумма длин правых частей равна: 3+2+2+3+4+2=16, что меньше длины слова (24) и тем более меньше результата из прошлого задания (38)

5 Построить ДМП-автомат для языка L; $L = \{xcy \mid x, y \in \{a,b\}^*; x \neq y^R\}$

Вот построенный по языку L МП-автомат, принимающий по принимающему состоянию.

 σ_1, σ_2 на схеме это буквы из $\{a,b\}$. Причем σ_1 может быть равно σ_2 , а может и не быть. Сразу опишем что значат состояния: МП прокручивает слово х и кладет его в стек в состоянии q_0 . Как только он встретит c, то по переходу $q_0 \to q_1$ попадет в состояние q_1 , уже будет прокручивать y и сравнивать его побуквенно со стеком. Тогда возможны варианты:

- 1. $y^R = x$ тогда он будет крутиться в q_1 пока буквы в стеке и поступающие на вход не закончатся одновременно. И он перейдет по переходу $\varepsilon, z_0/\varepsilon$ в состояние q_2 которое говорит, что наше слово паллиндром с c посередине. А это слово не принимается и не принадлежит L
- 2. $\exists i: x_i^R \neq y_i$ значит мы нашли несовпадение. И слово уже принадлежит языку L. А как только автомат получил несовпадение, то ему ничего не остается кроме как пойти по $a, b/\varepsilon$ или $b, a/\varepsilon$ в состояние q_3 которое значит, что несовпадение найдено и слово уже принимается (хотя и может продолжить крутиться до конца стека и у)
- 3. |y| > |x| (при равных предыдущих символах) т.е. стек опустеет быстрее, хотя буквы на входе еще будут. Этому соответствуют переходы $a, z_0/z_0$; $b, z_0/z_0$ из q_1 в q_3 . Слово принимается как языком так и автоматом.
- 4. |y| < |x| (при равных предыдущих символах) т.е. слова на входе закончатся при непустом стеке. Значит наш автомат перейдет в состояние q_4 по переходу ε , σ/σ и остановится в этом принимающем состоянии. Считаем, что он переходит по эпсилон-переходам только с пустым входом. В данном случае слово тоже принимается как автоматом так и языком.

Из рассмотрения всех возможных случаев следует, что построенный ДМП распознает язык L.

Он является детерминированным по определению

6 * язык префиксов всех слов языка

7 Построить приведенную грамматику

Грамматика выглядела так:

$S \rightarrow$	A	В	С	Е	AG
$A \rightarrow$	С	aABC	ε		
$B \rightarrow$	bABa	aCbDaGb	ε		
$C \rightarrow$	BaAbC	aGD	ε		
$F \rightarrow$	aBaaCbA	aGE			
$E \rightarrow$	A				
	$\begin{array}{c} B \to \\ C \to \\ F \to \end{array}$	$B \rightarrow \text{bABa}$ $C \rightarrow \text{BaAbC}$ $F \rightarrow \text{aBaaCbA}$	$B \rightarrow \text{bABa}$ aCbDaGb $C \rightarrow \text{BaAbC}$ aGD $F \rightarrow \text{aBaaCbA}$ aGE	$B \rightarrow \text{bABa}$ aCbDaGb ε $C \rightarrow \text{BaAbC}$ aGD ε $F \rightarrow \text{aBaaCbA}$ aGE	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Теперь удалим из нее все бесплодные символы действуя по алгоритмы: $V_0 = \{a,b\}; V_1 = \{a,b,A,B,C\}; V_2 = \{a,b,A,B,C,S,F,E\}; V_3 = \{a,b,A,B,C,S,F,E\} = V_2 N = \{\underbrace{S,A,B,C,E,F}_{S o A} \Rightarrow \underbrace{G}_{B} \text{ Бесплод.}$

	D	11	ם		12
	$A \rightarrow$	С	aABC	ε	
o: -	$B \rightarrow$	bABa	ε		
	$C \rightarrow$	BaAbC	ε		
	$F \rightarrow$	aBaaCbA			
	$E \rightarrow$	А			

Удалим его и все, что с ним связанно

Займемся поиском недоступных символов в точности следуя алгоритму: $V_0 = \{S\}; \quad V_1 = \{S, A, B, C, E\}; \quad V_2 = \{S, A, B, C, E\} = V_1.$ Значит F

	$S \rightarrow$	A	В	С	Е
	$A \rightarrow$	С	aABC	ε	
-недоступен. Расстрелять.	$B \rightarrow$	bABa	ε		
	$C \rightarrow$	BaAbC	ε		
	$E \rightarrow$	A			