Model Overview

School of Information Studies

SYRACUSE UNIVERSITY

So Many Models

Someone who appears in magazines?

A small car or railroad?

A data model (such as an ERD)?

 An "object" created in R that we can use for data understanding and data prediction

Why Use a Linear Model?

A linear model

—used for prediction (kind of like extrapolation)

Note that:

- It's not "perfect"
- Minimize "distance"
 from points to the line

$$Y = MX + B$$

An Example

- Car maintenance (how often to change the oil)
- We manage a "fleet" of cars
 - Cars get replaced every three years
 - Have information on:
 - Past repairs
 - Miles driven
 - # of oil changes during past three years
- → Can we build a model to predict the cost of repairs?

Data for the Analysis

	oilChanges	repairs	miles
1	3	300	20100
2	5	300	23200
3	2	500	19200
4	3	400	22100
5	1	700	18400
6	4	420	23400
7	6	100	17900
8	4	290	19900
9	3	475	20100
10	2	620	24100
11	0	600	18200
12	10	0	19600
13	7	200	20800
14	8	50	19700

Question

Which are independent and which are dependent variables?

Why?

	oilChanges	repairs	miles
1	3	300	20100
2	5	300	23200
3	2	500	19200
4	3	400	22100
5	1	700	18400
6	4	420	23400
7	6	100	17900
8	4	290	19900
9	3	475	20100
10	2	620	24100
11	0	600	18200
12	10	0	19600
13	7	200	20800
14	8	50	19700

Working Through an Example

Back to our Data

Let's use this data to build a model

	oilChanges	repairs	miles
1	3	300	20100
2	5	300	23200
3	2	500	19200
4	3	400	22100
5	1	700	18400
6	4	420	23400
7	6	100	17900
8	4	290	19900
9	3	475	20100
10	2	620	24100
11	0	600	18200
12	10	0	19600
13	7	200	20800
14	8	50	19700

Exploring the Data

> plot(oil\$oilChanges, oil\$repairs)

Exploring the Data

> plot(oil\$miles, oil\$repairs)

Generating the First Model

```
> model1 <- lm(formula=repairs ~ oilChanges, data=oil)
> summary(model1)
          Call:
          Im(formula = repairs ~ oilChanges, data = oil)
          Residuals:
             Min 1Q Median 3Q Max
          -136.208 -48.195 -0.211 54.782 119.803
          Coefficients:
                Estimate Std. Error t value Pr(>|t|)
          (Intercept) 652.191  40.537  16.089  1.74e-09 ***
          oilChanges -71.994 8.202 -8.778 1.44e-06 ***
          Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
          Residual standard error: 82 72 on 12 degrees of freedom
          Multiple R-squared: 0.8653, Adjusted R-squared: 0.854
          F-statistic: 77.05 on 1 and 12 DF, p-value: 1.436e-06
```

Interpreting the Model

- R-squared value 0.8653.
- Known as the coefficient of determination
- The proportion of the variation that is accounted for in the dependent variable by the whole set of independent variables.
- The closer to 1.0, the greater the influence the independent variable has on predicting the value of the dependent variable.
- The R-squared value of 0.8653 indicates that the oil changes accounts for 86.53% of the cost of repairs.

Looking at the "abline"

abline(model1)

The model suggests that we should do as many oil changes as possible.

→ it predicts very low (almost 0) repairs if we do 9 or more oil changes, but about \$680 if we do no oil changes.

Question

What if we factor in the cost to change the oil?

- → How "model" the cost?
- → What might be some ranges of the cost?

Working Through a Refined Example

Include the Cost of an Oil Change

- What if oil changes cost \$350 each?
 - > oil\$oilChangeCost <- oil\$oilChanges * 350
 - > oil\$totalCost <- oil\$oilChangeCost + oil\$repairs</p>
 - > m <- lm(formula=totalCost ~ oilChanges, data=oil)
 - > plot(oil\$oilChanges, oil\$totalCost)
 - > abline(m)

Viewing the Data

What if oil changes cost \$350 each?

Using the Model to Predict

Prediction equation

3432.247

```
> test = data.frame(oilChanges=0)
> predict(m,test, type="response")
652.191
> test = data.frame(oilChanges=5)
> predict(m,test, type="response")
2042.219
> test = data.frame(oilChanges=10)
> predict(m,test, type="response")
```

Question

How accurate is the model?

- Did we have all the facts?
- Did we have all the data?

School of Information Studies SYRACUSE UNIVERSITY