Engineering Mathematics-4 19MHB111A

Tutorial and Assignment-1

Tutorial-1

Form a partial differential equation by eliminating arbitrary constants or arbitrary functions:

- 1. z = ax + by + cz.
- 2. $(x-a)^2 + (y-b)^2 + z^2 = r^2$.
- 3. $a(x^2 + y^2) + bz^2 = 1$.
- 4. y = f(x at) + F(x + at).
- 5. $(x+y+z) = f(x^2+y^2+z^2)$.

Solve the following partial differential equations:

- 1. $x^2p + y^2q = z^2$.
- 2. $(y^2z/x)p + xzq = y^2$.
- 3. $py + qx = xyz^2(x^2 y^2)$.
- 4. $xy^2p y^3q + axz = 0$.
- 5. $x(y^2 z^2)p y(z^2 + x^2)q = z(x^2 + y^2)$.
- 6. $(y+zx)p (x+yz)q = x^2 y^2$.

Assignment-1

- 1. Form a partial differential equation by eliminating arbitrary constants 'c' and '\alpha' from the equation $x^2 + y^2 = (z c)^2 \tan^2 \alpha$. (3 marks)
- 2. Form a partial differential equation by eliminating arbitrary functions 'f' and 'g' from the equation $z = f(x^2 y) + g(x^2 + y)$. (3 marks)
- 3. Obtain the general solution of $(x+2z)p + (4zx-y)q = (2x^2+y)$. (4 marks)

Note: Submit assignment to the respective course leader on or before 31st January 2020.