BY

M. VERNON JOHNS, JR.

TECHNICAL REPORT NO. 6
AUGUST 20, 1981

U.S. ARMY RESEARCH OFFICE
RESEARCH TRIANGLE PARK, NORTH CAROLINA
CONTRACT NO. DAAG29-79-C-0166

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA

BY

M. VERNON JOHNS, JR.

TECHNICAL REPORT NO. 6
AUGUST 20, 1981

U.S. ARMY RESEARCH OFFICE
RESEARCH TRIANGLE PARK, NORTH CAROLINA
CONTRACT NO. DAAG29-79-C-0166

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA

bу

M. Vernon Johns, Jr.

ABSTRACT

The basic problem of determining objective (frequentistic) confidence bounds for the reliability of a series system based on failure data from tests of the independent components is addressed. The notion of confidence bounds based on orderings imposed on the sample space is exploited, and certain optimality considerations are incorporated. Advantage is taken of the simplifications resulting from the use of the Poisson approximation for data from highly reliable components. Tables of exact confidence bounds are produced for the case of two-component systems. These bounds are computed using sample orderings generated sequentially by a two-stage, prospective optimization procedure. A generalization of the Lindstrom-Madden technique is proposed for using the tables to find confidence bounds for systems consisting of more than two components with differing sample sizes.

Key Words: Reliability, series-system, confidence bounds, Poisson approximation, Lindstrom-Madden, sample orderings.

By

M. Vernon Johns, Jr.

1. Introduction

Certainly one of the most basic statistical problems in the assessment of system reliability is that of determining a confidence bound on the reliability of a series system based on component failure data. The continuing appearance of papers concerned with this subject (e.g., Harris and Soms 1981, Butcher et al. 1978, and Winterbottom 1980) testifies to the elusiveness of solutions which are both practically feasible and acceptably precise. The present paper deals with the case of systems characterized by high intrinsic reliability (>90%) where the use of the Poisson approximation for the binomial distributions of component failure data does not introduce appreciable error. The emphasis is on objective, frequentistic confidence bounds which avoid the uncertainties of interpretation associated with posterior bounds obtained by Bayesian methods. of the Poisson distribution provides several advantages. It easily leads to valid results for cases involving zero observed failures for some components where maximum likelihood methods and other proposed approximations tend to break down (see, e.g., Madansky 1965 and Mann et al. 1974). It also permits the pooling of failure data for different components having the same test sample sizes. This potential reduction in the effective number of system components enhances the utility of tabulated bounds such as those presented here.

Because of the structure of the problem, universally optimal confidence bounds for system reliability (i.e., "uniformly most accurate" bounds in the sense of Lehmann 1959) do not generally exist. On the other hand, the ideas of Buehler (1957) may be exploited to produce a variety of valid confidence bounds based on total orderings of the sample points. Such bounds are exact in the sense that the desired coverage probability is guaranteed. The construction of good confidence bounds is thus reduced to the selection of suitable orderings imposed on the sample space. This is the approach adopted in the present study. Previous applications of these methods to reliability may be found, for example, in Harris and Soms (1980), Johnson (1969), and Lipow and Riley (1959).

Once the sample ordering approach has been chosen, there remains the problem of determining orderings which lead to confidence bounds which are "good" according to some criterion measuring the size (length) of the confidence region. An early proposal of the present author (Johns 1975) was to generate the ordering by means of a simple function of the observations which was asymptotically equivalent to the maximum likelihood confidence bound. This method guarantees asymptotic optimality when the numbers of component failures observed under testing is large. It was found, however, that the resulting bounds could be noticeably improved for small to moderate numbers of observed failures by more sophisticated methods. Another procedure investigated (Johns 1977) was a sequential method for generating the sample ordering starting at the origin (zero component failures observed) and selecting at each stage as the next sample

point the "adjacent" point producing the largest value for the lower bound on reliability. This method, while intuitively appealing, does not generally produce a "best" ordering as has been suggested by some investigators. In particular, it is improved upon by the method adopted in the present paper.

The non-existence of a unique optimal ordering leaves open the possibility of obtaining a confidence bound which is at least admissible by choosing the sample ordering to minimize the expected length of the confidence interval under some suitable prior distribution. Such a semi-Bayesian approach does not in any way impair the frequentistic interpretation of the confidence bounds obtained from the minimizing ordering. The implementation of such a minimization, while theoretically perfectly possible, turns out to be totally unfeasible computationally except for the earliest part of the ordering generated. Nevertheless, for a class of priors chosen to emulate certain properties of maximum likelihood, fragmentary orderings computed by this method provide a considerable justification for the two-stage "look-ahead" sequential method actually used to generate the tables which are a principal concern of this paper.

Suppose that the series system under consideration consists of k independent components and that the respective probabilities of component failure are $p_i = 1 - q_i$, i = 1, 2, ..., k. The system reliability R is given by

$$R = \prod_{i=1}^{k} q_{i} = \prod_{i=1}^{k} (1 - p_{i}) . \qquad (1.1)$$

If the observed numbers of failures for the k components are X_1, X_2, \ldots, X_k based on independent tests with corresponding sample sizes n_1, n_2, \ldots, n_k , we let $\lambda_i = n_i p_i$, $i = 1, 2, \ldots, k$, so that

$$R = \prod_{i=1}^{k} (1 - \lambda_i/n_i) \stackrel{\sim}{=} 1 - \sum_{i=1}^{k} \lambda_i/n_i . \qquad (1.2)$$

The approximation on the right will be best when the p_i 's (= λ_i/n_i) are all small which is just the case where R is close to one and the Poisson approximation for the distributions of the X_i's is valid.

It will be convenient to express the problem in a canonical form by introducing some further notation. Let $c = \sum_{i=1}^k 1/n_i$ and $a_i = 1/cn_i$, $i = 1, 2, \ldots, k$. Then letting $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_k)$ and

$$\theta(\lambda) = \sum_{i=1}^{k} a_i \lambda_i , \qquad (1.3)$$

we have

$$R \stackrel{\sim}{=} 1 - c \stackrel{\Sigma}{=} a_{i} \lambda_{i} = 1 - c\theta(\lambda) . \qquad (1.4)$$

We shall assume henceforth that the components are indexed so that $n_1 \geq n_2 \geq \ldots \geq n_k \text{ which implies that } a_1 \leq a_2 \leq \ldots \leq a_k. \text{ The problem of finding a lower confidence bound for R is thus reduced to that of finding an <u>upper</u> confidence bound for <math>\theta(\lambda)$. The fact that $\theta(\lambda)$ is a convex combination of the λ_i 's facilitates tabulation of the bounds by reducing the number of classification variables by one. In principle, confidence bounds for R could be constructed directly without introducing the approximation (1.2). Such an approach would,

however, eliminate the possibility of constructing useful tables of bounds, since separate entries would be required for every configuration of (n_1, n_2, \ldots, n_k) .

The vector of observations is $X = (X_1, X_2, \dots, X_k)$ so that the sample space on which a total ordering must be imposed consists of all vectors $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k)$ where the \mathbf{x}_i 's are non-negative integers. It seems reasonable to confine attention to orderings which are consistent with the natural partial ordering induced by dominence (see Section 2), and we shall do so. In Section 2 it is shown that the best upper confidence bound for $\theta(\lambda)$ with confidence coefficient $1-\alpha$ which is monotone in a prescribed total ordering (designated by the relation $\boldsymbol{\leq}$) is given by

$$t(x) = \sup_{\lambda \in S_{\alpha}^{*}(x)} \theta(\lambda) , \qquad (1.5)$$

where $S_{\alpha}^{*}(x) = \{\lambda : P_{\lambda}\{X \leq x\} = \alpha\}$. From (1.4) the lower confidence bound for system reliability is then given by

$$r(x) = 1 - ct(x)$$
 (1.6)

Because of the additive property of independent Poisson observations the effective number of components in the system may be reduced if some sample sizes are equal (or nearly equal) as follows: Suppose $n_1 = n_2 = \ldots = n_r = n$ for some r, $2 \le r < k$. Then $a_1 = a_2 = \ldots = a_r = a^*$ (say) and letting $\lambda^* = \sum_{i=1}^r \lambda_i$ we have

$$\theta(\lambda) = a^* \lambda^* + \sum_{i=r+1}^{k} a_i \lambda_i . \qquad (1.7)$$

Now $X^* = \sum_{i=1}^r X_i$ has a Poisson distribution with parameter λ^* so that the right hand side of (1.7) has the correct form for the case of dimension $k^* = k - r + 1$ except that the coefficients must each be divided by $c_0 = a^* + a_{r+1} + \dots + a_k$ to preserve convexity. The confidence bound for the k^* dimentional case based on X^*, X_{r+1}, \dots, X_k and the normalized coefficients may then be multipled by c_0 to obtain the bound for the original $\theta(\lambda)$ given by (1.7). Further reductions may be made in the same way if several groups of components have common sample sizes. If n_1, n_2, \dots, n_r are only approximately equal, their average may be used for n in the above calculations to obtain an approximate bound.

If all components are subjected to the same number of trials, we may take k equal to one and the problem reduces to the familiar one of finding an upper confidence bound for a single Poisson parameter.

The component failure data may be developed through independent testing of the components, or through testing of the complete system with the assignment of failures to the appropriate components. Even in the latter case component sample sizes may differ if components are redesigned during the course of testing so that the trials and failures observed prior to redesign are not relevant to the reliability of the final version of the system.

$$R = \prod_{i=1}^{k} e^{-\mu_{i}} = \exp \left\{ -\prod_{i=1}^{k} \mu_{i} \right\} = \exp \left\{ -\sum_{i=1}^{k} \lambda_{i} / \tau_{i} \right\} , \quad (1.8)$$

and the confidence bound problem is essentially the same as the one previously introduced except that no approximations are required.

The general theory of confidence bounds based on sample orderings is discussed in Section 2. In Section 3 the case of systems having two components is considered in detail, and the rational for, and use of, the tables for this case are explained. Section 4 includes suggestions for constructing approximate confidence bounds for cases of systems with $k \geq 3$ by finding approximately equivalent cases with k = 2. Use of the maximum likelihood ratio bounds for cases where the data are beyond the limits of the available tables is also discussed.

2. Bounds and Orderings: Generalities

The idea of using sample orderings to generate confidence bounds was first introduced by Buehler (1957) who discussed the validity of the proposed method in the context of a specific reliability problem. Bol'shev and Loginov (1969) discuss the construction of confidence bounds monotone in the sample orderings generated by certain functions of the observations. In the following, which is a revision and extension of Johns (1975), we develop the theory with emphasis on the sample orderings themselves rather than possible generators of the orderings.

To develop the general ideas relating exact confidence bounds to sample orderings it is convenient to introduce a fairly abstract statistical model. Let the sample space χ be endowed with a measurable total ordering relation " \leq " and let χ represent the random outcome of the experiment where the space of possible outcomes is χ . Suppose that the possible distributions of χ are determined by the family of probability measures P_{χ} , indexed by χ , an element of the parameter space χ . Our objective is to find a χ a level upper confidence bound for a specified real-valued function χ defined on χ where the range χ of χ is assumed to be closed and bounded below. The quantity χ (0,1) is regarded as fixed throughout. We make the following definitions and assumptions:

Definition D1. For each x & 1 let

$$S_{\alpha}(x) = \{\lambda : P_{\lambda}\{x \leq x\} > \alpha\}$$
 (2.1)

Definition D2. For each $x \in \chi$ let

$$t(x) = \begin{cases} \sup\{\theta(\lambda) : \lambda \in S_{\alpha}(x)\} , & \text{if } S_{\alpha}(x) \text{ is non-empty }, \\ \inf T, & \text{otherwise }. \end{cases}$$
 (2.2)

Remark 1. By D2 if $\theta(\lambda) > t(x)$, then necessarily $P_{\lambda}\{X \leq x\} \leq \alpha$.

Assumption A1. For every subset C of χ having the property that if $x \in C$ and $y \leqslant x$ then $y \in C$, there exists an ordered sequence $x_1 \leqslant x_2 \leqslant \ldots$ of elements of C such that $C = \bigcup_{n=1}^{\infty} \{x : x \leqslant x_n\}$.

Assumption A2. For each $x \in \mathcal{I}$, if $\theta(\lambda) = t(x)$, then $P_{\lambda}\{x \leq x\} \leq \alpha$.

Remark 2. By D1, D2, and A2 if $\theta(\lambda) = t(x)$, then $\lambda \notin S_{\alpha}(x)$, i.e., the supremum in D2 is never attained.

We now establish the following propositions.

Proposition P1. The function t(x) is monotone in the ordering on χ .

<u>Proof</u>: If $x,y \in \mathcal{I}$ and $x \leq y$, then $S_{\alpha}(x) \subset S_{\alpha}(y)$ (D1) which in turn implies $t(x) \leq t(y)$ (D2).

<u>Proposition P2</u>. Under assumptions A1 and A2 the function t(x) is an upper confidence bound for $\theta(\lambda)$ at level 1 - α . In particular,

$$P_{\lambda}\{\theta(\lambda) < t(X)\} \ge 1 - \alpha \quad \text{for all} \quad \lambda \in \Lambda$$
 (2.3)

<u>Proof</u>: For arbitrary $\lambda_0 \in \Lambda$, let $\theta_0 = \theta(\lambda_0)$ and $C_0 = \{x : t(x) \le \theta_0\}$. The result follows immediately for all λ_0 for which C_0 is empty. Assume that C_0 is non-empty. Then by P1 the set C_0 possesses the property required in A1 for the existence of a sequence $\{x_n\} \subset C_0$ such that $x_n \le x_{n+1}$ for all n, and $C_0 = \bigcup_{n=1}^{\infty} \{x : x \le x_n\}$. This implies that, as $n \to \infty$,

$$P_{\lambda_0} \{ \mathbf{x} \leq \mathbf{x}_n \} + P_{\lambda_0} \{ \mathbf{x} \in \mathbf{C}_0 \} \quad . \tag{2.4}$$

But by Remark 1 and A2, for all n, $P_{\lambda_0}\{x \leqslant x_n\} < \alpha$. Hence $P_{\lambda_0}\{x \in C_0\} \le \alpha$ and the desired result follows. \square

<u>Proposition P3.</u> Under assumptions A1 and A2, if $\tilde{t}(x)$ is any T-valued confidence bound such that $P_{\lambda}\{\theta(\lambda) < \tilde{t}(X)\} \ge 1 - \alpha$ for all $\lambda \in \Lambda$, then

- (i) $\sup_{y \le x} \tilde{t}(y) \ge t(x)$ for all $x \in \mathcal{I}$, and
- (ii) if t(x) is monotone in the ordering on χ , then $\tilde{t}(x) > t(x)$ for all $x \in \chi$.

<u>Proof:</u> First we assume that $\tilde{t}(x)$ is monotone and establish (ii). Suppose there exists an $x' \in \mathcal{I}$ such that $\tilde{t}(x') < t(x')$. Then $S_{\alpha}(x')$ must be non-empty and by Remark 2 following A2, the sup defining t(x') is not attained. Hence there exists a $\lambda' \in S_{\alpha}(x')$ such that $\tilde{t}(x') < \theta(\lambda') < t(x')$, and $P_{\lambda'}\{X \leqslant x'\} > \alpha$. Thus by the monotonicty of $\tilde{t}(x)$,

$$P_{\lambda},\{\tilde{t}(X) \leq \theta(\lambda^{\dagger})\} \geq P_{\lambda},\{\tilde{t}(X) \leq \tilde{t}(X^{\dagger})\} = P_{\lambda},\{X \leqslant X^{\dagger}\} > \alpha . \quad (2.5)$$

This contradicts the hypothesis that $P_{\lambda}\{\theta(\lambda) < \tilde{t}(X)\} \geq 1 - \alpha$ for all λ and establishes (ii). To show (i) we let $t^*(x) = \sup_{x \in \mathcal{X}} \tilde{t}(y)$ and $y \leqslant x$ observe that $t^*(x)$ is monotone in the ordering on χ and $t^*(x) \geq \tilde{t}(x)$ for all $x \in \chi$. Hence if $\tilde{t}(x)$ is a $1 - \alpha$ confidence bound for $\theta(\lambda)$, so is $t^*(x)$ and applying (ii) to $t^*(x)$ yields (i). \square .

In order to specialize these results in the direction of applications we henceforth assume that the parameter λ and the

observation X are both of dimension k, i.e., $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ and $X = (X_1, X_2, \dots, X_k)$ where the λ_i 's are real and the X_i 's are random variables. Without essential loss of generality we assume that Λ contains the positive orthant. Within this framework we make the following additional assumptions:

Assumption A3. The function $\theta(\lambda)$ is continuous and strictly increasing in each of the λ_i 's.

Assumption A4. For any $x \in I$, $P_{\lambda}\{x \leq x\}$ is continuous in each of the λ_i 's.

<u>Proposition P4</u>. Assumptions A3 and A4 imply that Assumption A2 is satisfied.

<u>Proof:</u> Suppose that for some $x' \in \mathcal{I}$ there exists a $\lambda' \in \Lambda$ such that $\theta(\lambda') = t(x')$ and $P_{\lambda'}\{X \preccurlyeq x'\} > \alpha$. Then by A3 and A4 we can find a $\lambda'' \in \Lambda$ with $\lambda_i'' \geq \lambda_i'$ for all i and $\lambda_i'' > \lambda_i''$ for some i_0 such that $\theta(\lambda'') > t(x')$ and $P_{\lambda''}\{X \preccurlyeq x'\} > \alpha$. This contradicts D2 and the result follows. \square

Corollary C1. If (i) the observations X_1, X_2, \dots, X_k are independent Poisson random variables with parameters $\lambda_1, \lambda_2, \dots, \lambda_k$ respectively, and (ii) $\theta(\lambda) = a_1\lambda_1 + a_2\lambda_2 + \dots + a_k\lambda_k$ where the a_i 's are positive, then t(x) given by D2 is an upper confidence bound for $\theta(\lambda)$ at level $1-\alpha$.

<u>Proof:</u> Al is satisfied for any ordering since χ is discrete. A3 is clearly satisfied for $\theta(\lambda)$ of the form given by (ii), and A4 is satisfied for Poisson random variables. The desired result follows from P4 and P2.

The actual computation of the bound t(x) given by D2 is greatly facilitated if $P_{\lambda}\{X \leq x\}$ is monotone in the components of λ . The following proposition gives conditions guaranteeing this property:

Assumption A5. The components of X are independent and for $i=1,2,\ldots,k$ the distribution of each X_i depends only on the corresponding λ_i and is stochastically increasing in λ_i .

<u>Definition D3</u>. We denote by $(\stackrel{*}{\preccurlyeq})$ the natural partial ordering of χ generated by componentwise dominance. That is, $x\stackrel{*}{\preccurlyeq} y$ if and only if $x_i \leq y_i$ for $i=1,2,\ldots,k$, with $x\stackrel{*}{\preccurlyeq} y$ if at least one of these inequalities is strict. An arbitrary total ordering $(\stackrel{*}{\preccurlyeq})$ on χ is $\frac{1}{3}$ consistent with $(\stackrel{*}{\preccurlyeq})$ if $x\stackrel{*}{\preccurlyeq} y$ implies $x \leqslant y$.

<u>Proposition P5</u>. If the ordering on χ is consistent with the natural partial ordering and Assumption A5 is satisfied, then for each $x \in \chi$, $P_{\chi}\{\chi \leq \chi\}$ is non-increasing in each component of λ .

<u>Proof:</u> For yɛl we introduce the representation $y = (y_1, y^{(2)})$ where $y^{(2)} = (y_2, y_3, \dots, y_k)$. For real z, fixed xɛl, and all yɛl, let $I_x(z, y^{(2)})$ be the indicator function of the set $\{y^{(2)}: (z, y^{(2)}) \leq x\}$.

Then

$$P_{\lambda}\{x \leq x\} = E_{\lambda} I_{x}(x_{1}, x^{(2)})$$
 (2.6)

For any ye X, if $z' \leq z''$, then $(z',y^{(2)}) \not\preceq (z'',y^{(2)})$, by the consistency hypothesis, and $I_x(z',y^{(2)}) \geq I_x(z'',y^{(2)})$. Hence letting $G_x(z) = E_\lambda\{I_x(X_1,X^{(2)}) | X_1 = z\}$ we see that $G_x(z)$ is non-increasing in z. Thus, since the distribution of X_1 is stochastically increasing in λ_1 (A5), we conclude that E_λ $I_x(X_1,X^{(2)}) = E_\lambda$ $G_x(X_1)$ is non-increasing in λ_1 . The same argument applies to the other components of λ establishing the desired result. \square

Suppose that Λ is the non-negative orthant of $R^{(k)}$ and let S be the simplex $S = \{\lambda : \Sigma_{i=1}^k \lambda_i = 1\}$. If A4 and A5 are satisfied, then by P5 we observe that for any $\lambda \in S$ and real c, $P_{c\lambda}\{X \leq x\}$ is continuous and non-increasing in c. If the lower bound of $P_{c\lambda}\{X \leq x\}$ as $c \to \infty$ is less than α for all $x \in X$ and all $\lambda \in S$, then for each $x \in X$ and $\lambda \in S$ there exists a smallest number $b = b(x,\lambda)$ such that $P_{b(x,\lambda)\lambda}\{X \leq x\} = \alpha$. The confidence bound t(x) defined by D2 is then given by

$$t(x) = \sup_{\lambda \in S} \theta(b(x,\lambda)\lambda)$$
 (2.7)

Now $b(x,\lambda)$ is easily computed using root-finding techniques so that the computation of t(x) reduces to searching over § for the maximum of $\theta(b(x,\lambda)\lambda)$. Many routines are available for implementing such searches. For the situation described in Corollary C1, the value of

b such that $P_{b\lambda}\{X \leq x\} = \alpha$ is unique and (2.7) is a computationally feasible version of (1.5).

All of the above results apply <u>mutatis</u> <u>mutandis</u> to the construction of <u>lower</u> confidence bounds and hence confidence intervals. Applications to the reliability of coherent systems involving the binomial or other distributions are possible. In particular, the above discussion applies directly to the binomial case under the transformation $\lambda_i = -\log(1-p_i)$, $i=1,2,\ldots,k$; $\theta(\lambda) = \sum_{i=1}^k \lambda_i = -\log \prod_{i=1}^k (1-p_i)$.

3. Systems With k = 2

As was noted in Section 1, if the system has effectively only one component (e.g., when all sample sizes are equal), then the problem reduces to the well-known case of finding an upper confidence bound for a single Poisson parameter. Then in the notation of Section 1, $\theta(\lambda) = \lambda$ and if t(x) is the confidence bound for λ , the lower confidence bound (1.6) for reliability R becomes

$$r(x) = 1 - t(x)/n$$
 , (3.1)

where n is the (common) sample size.

The two component case (k=2) presents all of the difficulties of the general case. The principal problem is to generate an ordering of the sample points $x=(x_1,x_2)$ which will lead to a "good" confidence bound t(x) computed using (1.5) or (2.7). Several different methods have been considered and implemented to varying extents

in the course of this investigation. These methods may be described briefly as follows:

- (i) The x's are ordered according to the values of the function $\tilde{t}(x) = a_1x_1 + a_2x_2 + z_{\alpha}\sqrt{a_1^2x_1 + a_2^2x_2}$, where z_{α} is the upper α -th quantile of the standard normal distribution.
- (ii) The x's are ordered according to the values of the approximate confidence bound obtained from the maximum likelihood ratio statistic (see Section 4).
- (iii) The ordering is generated sequentially by considering at each stage the group of points which are not yet ordered but could be adjoined without violating the natural partial ordering (see D3 of Section 2). The next point in the ordering is then chosen to be the "best" member of the candidate group, i.e., the point producing the smallest value of t(x) given by (1.5).
- (iv) The ordering is chosen so as to minimize $\mathbb{E}_{G}^{\{t(X)\}}$ for some suitable prior distribution G over the values of λ .
- (v) The ordering is generated sequentially in the manner of (iii) above except that at each stage the candidate points for the next two steps are considered as pairs and the next point selected is the first step component which, together with the best available point for the second step, produces the smallest sum for the two values of t(x). Note that the point that appears to be "best" two steps ahead may not actually be chosen when that stage is reached.

It is clear that none of these methods is special to the case k=2. Method (i), based on the function $\tilde{t}(x)$, which is really a maximum likelihood estimate of an asymptotically valid confidence bound, was used to generate tables of bounds for the case k=2 in Johns (1975). Method (ii) does not improve substantially on Method (i) for moderate values of the X_i 's. Methods (i) and (ii) are asymptotically equivalent when at least one X_i becomes large (see Johns 1975) and indeed standard maximum likelihood results guarantee that both are asymptotically optimal. Method (iii) discussed in Johns (1977) was found to be a substantial improvement on (i) in the strong sense that when the Method (iii) ordering is used the values of t(x) are often smaller and only rarely slightly larger than the values for corresponding x's produced by Method (i).

The semi-Bayesian approach of Method (iv), which minimizes the expected length of the confidence interval, is the only one of the five that is directly motivated by optimality considerations. The bound resulting from any reasonable prior must at least be admissible. In pursuing this approach it was decided in the spirit of objectivity and in the hope of rapid convergence to asymptotic optimality to choose a prior distribution leading to an unconditional probability mass function for \mathbf{x}_1 and \mathbf{x}_2 constant for constant values of the maximum likelihood estimator $\mathbf{a}_1\mathbf{x}_1 + \mathbf{a}_2\mathbf{x}_2$ for $\theta(\lambda)$. In particular, the prior density for λ_1 and λ_2 was taken to be

$$g(\lambda_1, \lambda_2) = b_1 b_2 e^{-b_1 \lambda_1 - b_2 \lambda_2}, \lambda_1, \lambda_2 > 0$$
, (3.2)

where $b_1 = (1-e^{-\beta a_1})$, $b_2 = (1-e^{-\beta a_2})$, $\beta > 0$. This produces the unconditional probability mass function

$$p(x_1, x_2) = b_1 b_2 e^{-\beta(a_1 x_1 + a_2 x_2)}, x_1, x_2 = 0, 1, ...,$$
 (3.3)

In the limiting case, as $\beta \to 0$, $p(x_1, x_2)$ becomes essentially uniform over any finite set of points (x_1, x_2) .

The actual minimization of $E_{C}\{t(X)\}$ may, in principle, be accomplished by finding the ordering which minimizes the contribution to $\mathbf{E}_{\mathbf{C}}$ among all orderings of length N where N may be arbitrarily large. This may be done systematically by starting at the origin (0,0) and constructing a tree whose nodes at each stage are characterized by a candidate point newly adjoined to the ordering and the corresponding value of $\Sigma p(x)t(x)$, where the sum is taken over all x's occurring in the path leading to the node, including the one just adjoined. At the N-th stage the node having the smallest accumulated sum identifies the optimal ordering of length N. This process may be facilitated by eliminating duplicate nodes and discontinuing branches when a node is reached whose value exceeds that known to be attainable in N stages. Nevertheless, because of the rapid increase in the number of nodes considered per stage, only the first forty or so points in the optimal orderings could be determined even using a very large computer facility.

In order to obtain examples of admissible orderings with which to compare the results of other methods, this computation was performed for two cases using an IBM 370/168. For both cases the

values α = .10 and a_1 = .30 were used. For the first case the probabilities given in (3.3) with β = 1 were used and the first 41 points of the optimal ordering were obtained. The forty-first stage of the computation produced 4557 nodes. For the second case the limiting situation as $\beta \rightarrow 0$ where the p(x)'s are all equal was used and the first 43 points of the optimal ordering were obtained. The number of nodes produced at the forty-third stage was 6478.

A comparison of these results with the corresponding results obtained using Methods (i), (iii), and (v) is indicated in Figure 1. The horizontal axis indexes the first 50 points in the ordering produced by Method (v), the two-step prospective sequential procedure. The values of t(x) for these indexed points for the five methods are indicated by the plotted symbols. Values of t(x) for methods other than (v) are shown only when they differ from those produced by that method. Based on this evidence it appears that Method (iv) and Method (v) differ very little and that both are better than the other methods. In fact, Method (iv) for the uniform case ($\beta = 0$) differs only trivially from Method (v). Since the use of Method (iv) for the construction of tables is now and probably always will be impractical, we are led to the choice for this purpose of the more tractible and virtually equivalent Method (v). Prospective sequential methods looking ahead more than two steps might be feasible, although the complexity of the computations increases rapidly with the number of steps. However, such procedures would be expected to produce only minute improvement over the two-step method.

Table 1 gives values of the upper confidence bound t(x) computed using (2.7) with the sample orderings generated by the two-step prospective sequential Method (v). The values are given for the first 100 points in each ordering for $\alpha = .01$, .05, .10, for $a_1 = .05(.05).45$. It is assumed that the components of the system are indexed so that $a_1 < a_2$ which implies $a_1 < .50$. For convenience the values of (x_1,x_2) are listed systematically rather than in the order generated by the two-step procedure. This table provides a basis for computing accurate confidence bounds for the case k = 2using only simple interpolation. If values of a_1 greater than .45 but (necessarily) less than .50 are required, the bound for $a_1 = .5$ (corresponding to $n_1 = n_2$) may be used for interpolation. This bound is obtained by simply multiplying the ordinary upper confidence bound for a single Poisson parameter based on $x = x_1 + x_2$ failures by .50 (see, e.g., Pearson and Hartley 1958 for tables). The use of Table 1 is illustrated by the following two examples:

Example 1. Suppose that the two components of a series system are tested independently using sample sizes $n_1 = 300$ and $n_2 = 100$ respectively with the corresponding observed numbers of failures $X_1 = 3$ and $X_2 = 4$. Then c = (1/300 + 1/100) = 4/300 and $a_1 = 1/cn_1 = .25 = 1 - a_2$. If we wish to find a 95 percent confidence interval, we take $\alpha = .05$, and from Table 1 we find the confidence bound t(x) for $\theta(\lambda)$ to be 7.333. Hence by (1.6) the 95 percent lower confidence bound for system reliability R is 1 - (4/300)(7.333) = .902.

Table 1. The Confidence Bound t(x) for k=2 for the First 100 Points Generated by the Two-Stage Optimal Ordering Method for Each a_1 and α .

	-	= 0.05	alpha	E e	0.01		10	= 0.05	elpha e	eq.	0.05		-	= 0.05	alg	= eyle	0.10
×	X	t(x1,x2)	×	X X	t(x1,x2)	×	×	t(x1,x2)	×	×	t(x1,x2)	×	XX	t(x1,x2)	×	×	t(x1,x2)
	!					-			1 1 1 1 1 1		1						
0	0	4.375	25	0	5.262	0	0	2.846	25	0	3.733	0	0	2.188	25	0	3.075
0		6.306	25	-	7.195	0		4.507	25	-	5.396	0	-	3.695	25	-	4.585
-	0	4.376	56	0	5.306	-	0	2.847	92	0	3.777	-	0	2.189	26	0	3.119
-	-	6.308	56	-		-	-	4.508	56	-	5.440	-	-	3.697	26	•	4.629
ea.	0	4.387	27	0	5.351	N	0	2.858	27	0	3.822	N	0	2.200	27	0	3.163
~ 1	-	6.319	27	-	7.284	N	-	4,519	27		5.485	e)	-	3.708	27	-	4.674
M	0	4.407	82	0	5.395	m	0	2.878	28	0		M	0	2.220	28	0	3.208
M	-	6.327	28	-	7.329	M	-	4.539	28	-	5.529	M	-	3.727	28	-	4.718
4	0	4.435	53	0	5.440	4	0	2.903	53	0	3.911	•	0	2.245	29	0	3.253
4	-	6.364	30	0	5.485	4	-	4.564	59	-	5.574	ď	_	3.753	29	-	4.763
Ŋ	0	4.461	3	0	5.530	Ŋ	0	2.932	30	0	3.956	ĸ	0	2.274	30	0	3.298
Ŋ		6.393	32	0	5.576	ΙŊ	-	4.593	30	-	5.619	រេ	-	3.781	30	-	4.809
•	0	4.493	M M	0	5.621	•	0	2.964	3	0	4.001	9	0	2.305	3	0	3.343
•	-	6.424	34	0	5.667	•	-	4.624	3	-	5.665	9	-	3.813	31	-	4.854
^	0	4.526	32	0	5.712	7	0	2.997	32	0	4.047	^	0	2.339	32	0	3.388
7		6.458	36	0	5.758	7	-	4.658	33	0	4.092	7	-	3.847	32	-	4.899
æ	0	4.561	37	0	5.804	•	0	3.032	34	0	4.138	۵	0	2.374	ĸ	0	3.434
00	-	6.493	39	0	5.850	00	-	4.693	35	0	4.183	0	-	3.882	33	-	4.945
0.	0	4.598	30	0	5.896	•	0	3.069	36	0	4.229	•	0	2.410	34	0	3.479
0	-	6.529	40	0	5.942	0	_	4.730	37	0	4.275	Φ.	_	3.918	iù M	0	3.525
0	0	4.635	4	0	5.989	0	0	3.106	38	0	4.321	9	0	2.447	36	0	3.571
0	-	6.567	42	0	6.035	10	-	4.767	36	0	4.367	10	-	3.956	37	0	3.616
=	0	4.673	43	0	6.081	Ξ	0	3.144	40	0	4.413	-	0	2.486	9	0	3,662
=	_	6.605	44	0	6.128	=	-	4.805	4	0	4.460	=	_	3.994	ው	0	3,709
2	0	4.712	45	0	6.174	2	0	3.183	42	0	4.506	12	0	2.525	40	0	3.755
N :	-	9.90	46	0	6.221	~	_	4.845	43	0	4.552	12	_	4.033	4	0	3.801
M :	0	4.752	47	0	6.268	<u>m</u>	0	3.223	44	0	4.599	13	0	2.565	42	0	3.847
<u>m</u> :		6.684	4	0	6.315	m	-	4.884	45	0	4.645	M	-	4.073	43	0	3.894
3 :	0	4.792	6.	0	6.362	<u>*</u>	0	3.264	46	0	4.692	14	0	2.605	44	0	3.940
<u> </u>	- 1	6.724	20	0	6.409	4	-	4.925	47	•	4.739	4		4.114	4	0	3.987
ń i	ο.	4.833	9	0	6.456	ž.	0	3.304	4	0	4.786	L	0	2.646	46	0	4.034
4	- (6.765	21 12	D	6.503	2	-	4.966	4	0	4.833	ī.	_	4.154	47	0	4.081
2 :	> •	4.0/5	10 i	5	6.550	9:	۰ م	3.346	20	0	4.880	9	0	2.687	40	0	4.127
0!	- <	708.9	ታ i	D	265.0	<u>e</u> !		5.007	2	0	4.927	9	- ,	4.196	40	0	4.174
	> •	4.410	n i	> •	ttq.0	2!	۰ د	3.388	2 1	5 (4.974	17	٥.	2.729	9	0	4.221
- 0	- c	0.04	1 0	-	0.0%	2 5	- «	V40.0	9 1	5 (9.021	7.	- (4.238	<u>.</u>	D (
) «	-	4 801	, a	.	4 704	<u>•</u>	-	0.450	t 11	5 6	9.000	2 4	٠ -	2.77	9 1	-	4.315
0	. 0	5.001	n o		4.836	9 0	- c	2 679	7	•	177 M	9 9	- c	007.4	n ú	> 0	4.306
6	-	6,933	9	0	6.881	0	-	5.134	, L	· c	200	0		40 A	4 4	•	
20	0	5.044	61	0	6.929	20.		10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	, K	9 6	7.27.7	- 6	- c	2 AK4	4 4	> <	
20	-	9.976	62	C	6.977	2 6	-	F 177	0 0	•	305	3 6		977. 9	9 10	•	
21		5.087	4	• •	7.024	3 6	- ح	45.5	704	ه د	F 7 5 7	9 6	- <	9000	0 4	9 6	4,556
2	-	7.019	99	0	7.072	7	-	7. 220	3 4	o c	2004		> -	4 400	0 0	•	4.577
22	0	5, 130	6.5		7.120	6	- ح	3 601	3	•	200	- 6	- 6	2004	7	,	1+0+
22	· -	7.063	9		7.168	1 %	•	2,00	, K	, c		3 6	-	6.743	9 4	o c	4.0.4
2 1	0	5.174	67	-	7.215	1 %	۰ ح	3,665	3 4	ه د	144. A	3 6	- c	4.400	2 6	ه د	7.7.7
23	-	7.107	68	0	7.263	23	-	5,307	5.5	0	5.501	3 5	> +	404.4	7 4	> c	724 7
24	0	5.218	69	0	7.311	56	. 0	3.689	9			3 6	۔ د	2 0 2 1	2 4	٥ د	100.4 188.4
54		7.151	20	0	7.359	24	-	5.351	67	0	5.686	24	-	4.540		• •	4.032
						i			,	,		i			;	•	

Table 1. (Continued)

						į						-				
×	t(x1,x2)	×	2×	t(x1,x2)	×	۵,	t(x1,x2)	×	₩ X	t(x1,x2)	×	×	t(x1,x2)	×	X	t(x1,x2)
										; ; ; ;					*	
0	4.145	17	0	5.384	0	0	2.696	16	-	5.426	0	0	2.072	15	_	4.56
		17	-	7.221	0	-	4.269	9	cu	6.827	0	-	3.501	Ţ	N	5.862
		€	0	5.477	0	ત	5.666	17	0	3.936	0	Q.	4.790	16	0	3,221
		18	-	7.314	0	M	6.978	17	-	5.519	0	М	6.013	16		4.650
		4	0	5.569	•	0	2.702	17	N	6.920	-	0	2.078	1.0		R 054
		6	_	7.407	-	-	4.275	₽	0	4.028	_	-	•	1		4 419
		50	0	5.662	-	N	5.672	9	_	5.612	_	• 64	- 4.796		•	4
		20	_	7.501	N	0	2,735	-		4.121	-	1 14	•		- 0	1.100
		2	0	5.756	۰ ۵	-			-	F 704	- 0	3 0	•		4 (20.0
				7 504		- 6	٠	- 6	- <	00/.0	.	> •	2.111	0 :	ο,	3.404
		- 6	- 6	0000	4 6	u e	001.0	2 6	> •	\$12.t	N# 4	- 1	5.540	φ.	-	4.850
		2 6	٠.	9.00	ኅ ነ	۰ د			_	5.800	N	N	4.829	<u> </u>	0	3,497
		7 1	- (7.691	M3 (-		2	0	4.307	es.	m	6.052	4	•	4.940
		53	0	5.945	M	N	5.757	21	-	5.895	m	0	2.163	20	0	3.59
		23	_	7.786	4	0	2.849	22	0	4.402	M	_	3.590	20	-	5.035
		54	Ö	0.040	4	-	4.422	22	_	5.991	PÜ	N	4.881	21	0	3.684
		52	_	7.682	4	8	5.819	23	0	4.496	m	М	6.104	8	-	5, 130
		ių V	0	6.135	ιń	0	2.917	23	-	6.087	4	0	2.225	6	- 0	7.778
		25	_	7.978	īŲ	_	4.491	54	0	4.591	4	-	3.654	6	-	F 227
		56	0	6.230	ΙŲ	~	5.889	24	_	6.183	•	٠ م	4.00.4	, ¢	- c	, k
		56	_	8.075	•	0	2.991	25	0	4.687	· M		200	9 6	•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		27	0	6.326	•	_	4.565	52	-	6.280	e señ	-	7.72%	9 6	· c	940
		27	_	8.172	40	•	5.963	25	٠.	4.782		- 0	, K	2 6	-	D . 400
		88	0	6.422	~	0	3.068	26	-	6.380	1		747	9 6	- c	446
		28	_	8.270	^	-	4.643	27		4.878	•	-	3.707	, e	-	1000
		62	0	6.519	7	64	6.040	27	-	6.478	· •	٠	5.087	3 %	٠ ح	4
		53	_	8.369	40	0	3,148	8	0	4.975		, c	2.444	3 6	-	7 4 10
		30	0	6.616	0	_		8 9		6.577		-	3. A75	9 6	- =	4 9 5 7
		30	_	8.467	40	N	6.121	53	0	5.073	~	۰ ۵	5. 165	0	-	71A
		3	0	6.713	•	0	3.230	29	_	6.676	40	0	2.524	28	. 0	45.45.4
		3	_	8.565	٥	-	4.806	30	0	5.170	40	_	3.955	28	-	5.817
		35	0	6.810	•	N	6.204	30	_	6.776	ø	N	5.246	8	0	4.45
		32	_	8.665	-	0	3.314	3	0	5.268	0	0	2.606	29		
		33	0	6.908	20	-	4.891	31	_	6.878	0	_	4.038	30	0	
		34	0	7.006	0	cu	6.289	32	0	5.366	0	ę,	5.329	30	•	6.016
		35	0	7.104	Ξ	0	3.400	33	0	5.464	0	0	2.690	100	0	
		36	0	7.202	=======================================	-	4.977	34	0	5.563	0	_	4.123	M	-	6.116
	-	37	0	7.300	=	N	6.376	35	0	5.661	0.	N	5.414	32	0	4.744
	_	38	0	7.399	<u>~</u>	0	3.487	36	0	5.760	=	0	2.776	33	0	4.843
	_	39	0	7.498	2	_	5.065	37	0	5.859	=	_	4.209	34	0	4.950
		40	0	7.600	12	cu	6.464	38	0	5,959	=	N	5.501	10	0	
		4	0	7.700	13	0	3.575	39	0	6.058	12	0	2,863	36	0	
	-	45		7.799	13	_	5.154	40	0	6.158	12	-	4.297	37	0	24
		63	0	7.899	ħ	N	6.553	41	0	6.258	7	N	5.590	38	0	
	_	545	0	8.000	4	0	3.664	45	0	6.359	13	0	2.951	39	0	
		45		8.100	4	_	5.244	43	0	6.459	13	_	4.386	40	0	
	เก๋	94		8.200	4	N	6.644	44	0	6.559	13	N	5.679	41	0	
	,	47		8.301	15	0	3.754	45	0	6.660	14	0	3.040	45	0	
2	8.631	84		8.402	15	-	5.334	46	0	6.761	14	_	4.476	43	0	5.853
	Ŋ,	64		A KOT	T.	¢	4 77E	**								
				101.0	1	J	0.735	/	0	6.862	4	٥J	5.770	44	0	5.955

Table 1. (Continued)

	-e	= 0.15	, re	1pha	0	0.01		10	0.15	alpha	II.	0.05		-	0.15	alpha	"	0.10
×	××	t(x1,x2	(2) x1	×		t(x1,x2)	į.	×S	t(x1,x2)	×	×	t(x1,x2)	×	N.X	t(x1,x2)	×	×	t(x1,x2)
1	1	; f. f. f.		i i i	- - '	1. 1: 1. 1.	- - - -) 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			19 11 11 11 11	1			1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0	0	3.914	13	-	7	.143	0	0	2.546	12	0	3.883	0	0	1.957	=	N	5.755
0 (- 1	5.643	FF) :	N ا	Q (1	,659	0	-	4.032	2	-	5,403	0	_	3.306	=	M	6.921
> (N I	7.195		o	10	.538	0	OJ I	5,351	š	N	6.728	0	N	4.524	72	0	3.293
> +	9 6	9.000	4	- 0	- 0	16.25	D (m «	6.591	M I	۰.	4.026	0 (m.	5.679	25	-	4,679
	> -	3.747 E 4EB			0 11	×00.		÷ ¢	00/./	2 !	- 4	5.560	٥.	.	6.795	<u>~</u> !	OJ I	5.905
-	۰ ۵	7,160	. <u>.</u>	-		*00.4 F04		5. •	4.501	<u> </u>	V C	6000		٥.	1.972	£ ;	٥.	9.438
-	3 PC	A KRA		- 0	- a	544.		- c	1.04	* 4	> -			(126.6	2 !		4.836
- 0	۹ د	2000		u c	D 14	+0.4		N 1	797.7	* •	- «	5.717		N I	4.530	<u>m</u>	& (6.055
4 6	-	20 TO T	0 4	•	0 0	100.		า ‹	9000	† !	N 4	7.034		Μ.	5.694	4	0	3.583
4 0	- 0	1 998		- «	- (+ P. O	- (a r 4	05/-	<u>د</u> ا	۰ د	4.319	- 1	.	6.810	4	-	4.993
J 6	4 14	A 410	0.1	u c	N A	020	N O	> •	0.0.0	٠ د	- 4	5,874	NI (٥.	2.037	4 !	er e	6.206
9 P	•			•	ŋ. h		ų c	- 6	010.1	<u>.</u> :	V (7.167	NJ 1		5,387	in i	.	3, 735
) H		, d		- 0	- 0	14/	N C	v	754.4	<u>•</u> :	.	4,468	N (N I	4.605	<u>.</u>	_	5,150
N 14	- 0	0.0		M 6		2/2	N. F	n (6.571	<u>•</u> :	- 1	6.032	~	ю.	5.759	īŪ	er.	6.368
ሳ ሶ	4 1	1.014	0.0	۰ د	6 I	971	ا . 1	٥.	•	9 !	N	7.341	N.	4	6.875	9	0	3.884
ባ ‹	n. e	2.7.5		- 1	-	106.	M i	- ,	4.206	17	0	4.617	ħ.J	0	2,129	9		5.307
3 4	۰.	4.1.4		NI (•	.427	M)	N , i	5.525	17	_	6.190	М		3.480	9	Ø.	6.522
.	- 1	5,924		0	۰	278	M	m	6.765	17	es.	7.496	M	₽	4.698	17	0	4.035
.	Ç,	7.427		-	00	.056	4	0		18	0	4.768	m	m	5.854	17	-	5.464
4	M	8.821		ଧ	6	583	4	<u>.</u>		9	-	6.348	M	4	6.970	17	N	6.676
N	0	4.311		0	•	429	4	~	5.635	60	e,	7.651	*	0	2.237	60	. .	4.186
រោ	_	6.042		-	0	212	ď	ю	6.875	6	0	4.919	4	_	3,589	9	-	5.623
ιŲ	N	7.546		0	•	588	RŲ	0	2.943	6	_	6.506	4	e cu	4.808	40		6.830
η	M:	8.941		-	80	381	ŧŪ	-	4.433	6-	cu.	7.807	4	ואַ ו	5.964	0		4.3
9	0	4.435		0	•	.741	W	¢4	•	20	0	5.072	M)		2.354			780
9	-	6.167		-	60	538	κĵ	m	6.995	50	_	6.665	រវា		3.708	0	٠.	480
9	a	7.672		0	9	.896	•	0		2	0	5.225	រវា	· <	6.928	50		404
•	140	9.067		-	ø	9.698	9	-	4.559	21	-	6.824	រវា	: M	6.085	20		Б
^	0	4.564		0	7	.050	•0	٥ı	5.881	22	0	5.378	•9	0	2.478	5	٠ ٥	4.645
^	_	6.297		-	40	8.855	•	m	7.123	22	_	6.982	•	_	3.834			6.096
~	ď	7.803		0	7	7.206	~	0	3.196	23	0	5.532	•	•	5.056	2	٠.	700
_	M	9.199		-	0.	014	7	_	4.690	23	-	7,141	40	947	6.216	0		4 254
φ.	0	4.696	56	0	7	362	7	¢J	6.013	24	0	5.687	7	. 0	2.606	1 M	٠.	4.954
0	-	6.435		•	6	9,173	^	M	7:256	24	_	7.300	7	-	3.966	M		6.411
ω (N)	7.939		0	٠.	7.519	40	0	3.328	25	0	5.843	~	Q)	5.189	24	0	5,109
10 (n o	9.336		•	6	9.333	Φ	-	4.825	\$2	_	7.459	7	M	6.347	54		6.569
> (٥.	4.831		0		.675	ø	Q.	6.150	56	0	5.998	æ	0	2.739	25	0	5.264
» (- 0	0.000		- 1	0.1	265	Φ.	M ·	7.394	56	_	7.617	•		4.102	25		6.727
۰ (41	0.0.0		5	-	.833	Φ.	0	3.463	27	0	6.154	œ	ر ده	5.327	92	0	5.419
7	n (9.476		0		166	0	····	4.964	27		7.776	ထ	m	6.485	26	_	6.885
5 C	۰ د	4.404		0	œ 4	148	О	~	6.290	28	0	6.310	۴		2.874	27 (0	5.575
2 :	- (607.9		0	8	307	0	m	7.536	53	0	6.467	6	_	4.241	28	0	5.731
0 :	NI I	8.223		0	0	465	0	0	3.601	30	0	6.624	6	a	5.469	29		
= :	0	5.109		0	ø	.624	0	_	5.105	3	0	6.781	6	m	5.627	30		
_	-	6.852		0	8	783	10	ر د	6,433	32	0	6.938	0	0	3,012	34		
= :	c,	8,364		0	တ်	942	10	M.	7.681	33	0	7.096	10	_	4.384	30		• .
2	.	5.251		0	٥.	. 101	-	0	3.741	34	0.	7.253	0	ω.	5.610	33 (. ~	
21 ((266.9		0	o.	.260	=		5.249	35	0	7.411	10	m	6.772	34 0	. ~	6.671
2 !	N.	8.510		0	6	.420	=	٩į	6.579	36	0	7.569	=	0	5,152	35 0	. ~	
m	0	5.394		0	0	580	90 .	143	7.829	37	0	7.727	=	_	4.529	36		6. 986
													,					

Table 1. (Continued)

	- e	2.0	alph	11	0.01	- R	0	.2	alpha	0	.05	-		0.2	alpha =	0	.10
}	N3	t(x1,x2)	×	X	t(x1,x2)	x1 x2		t(x1,x2)	×	×2	t(x1,x2)	×	×	t(x1,x2)	×	N X	t(x1,x2)
!	i ! !				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1										İ	
0		3.684	0	N	8.377	0	0	.397	٥	М	7.664	0	0	1.842	D.		4.572
0		5.311	10	M	9.716	0	-	.795	2	0	3.982	0	-	3.112	6	٥	5.716
0		6.725	_	0	5.469	0	W1	.037	9	_	5.440	0	N	4.258	6	m	6.820
0 (M ·	8.036	= :	- X	7.153	0 (91		2 :	~ 1	6.697	0	м.	5.345	0 :	0	3.438
۰.		7.284	= :	NA P	8.540	D 6	at i	.323	0:	m e	7.873	0 (dr I	6.395	2 :	- (4.786
		77.7		? c	7.730	-		014.		.	4.18/ F 453	-	n e	0.420	2 9	N 1	5.925
-		2.24 4 755		-	700) r	126	- :	- 0	2000		٠ -	2/01	2 •	9 6	7.050
		8 267	- 4	- 6	100 d		- 6	670	= :	u P	004.0		- 0	35.146	=:	۰ د	0.040
		414	7 0	u M	10.000		u w	, 00 v	- 2	n c	0.004 40E	- . -	4 P	4.200 F 47E	= :	- 0	5.001
- 6		100	1 .	•	- u		יינ	7 1 1 1	J 0	> -	0.00 m		n <	0.0.4	= :	4 8	0000
3 ev		5.00.0) F	-	200.6		- 44	144	2 0	- 6	7.000		; u	7 450	- 0	1 0	7.651
۰ د		6.864	2 =	٠ ،	000	- 4	, «	4	1 0	J P	A A	- 0	h =	070	4 0	> -	0000 H
1 6/		8.176	9		6.096	۵ د		920	. <u>M</u>	٠.	4.605		-	1.251		- 0	7.5
•		9.424	4	-	7.815	1 64	. 64	176	M C		6.158		- 6	4.308		ı M	7.671
M		3.965	4	N	9.236	۱ ۵	1 10	M46.	<u> </u>	٠ ۵	7,332	2 64	3 PC	5.486	- -) 6	4.067
M		5.595	15	0	6.308	١٨	· r	464	14	31	8.506	۰ ۵	4	6.536	- -	-	5.430
М		7.011	7	-	8.034	- N	- 4D	.552	4		4.816		. IU	7.561	M	٠ ٨	6.555
M		8.324	10	~	9.452	1 147		.677	4		6.320	I M		2.123	<u>_</u>	P.	7.681
M		9.573	9	0	6.522	'n	. 4	180	2	۰ ۵	7.544) PT	-	M	2) 6	6.20
•		4.128	19	-	8.252	M	. P.	325	IS		5.072	PIL 6	۰	4.547	4	-	444
-3		5.761	9	٠ ه	9.669	i M	1 40 1 M	104	10		6.536) PT	J 197	5.636	4	۰ ۵	6.766
4		7.179	17	0	6.776	m		.614	ក	٠ ۵۷	7,757	M	4	6.688	ın	0	4.491
4		8.494	17	-	8.471	4	2	840	9	0	5.288	10	. N	7.714	i iu	-	5.859
4		9.744	17	W	9.845	4	4	.248	9	_	6.752	4	0	2.286	IN.	N	6.930
ΙĄ		4.302	13	0	965.9	4	eri evi	965	16	e,	7.970	4	_	3.568	9	0	4.705
ល		5.940	18	-	8.691	4	3	.664	17	0	5.506	4	e.	4.719	16	_	6.073
RJ		7.361	6	~	10.060	4	+	.787	17	_	6.967	•	m		9	ø	7.139
ĽΛ		8.678	4	0	7.216	ΙŃ	m 0	.015	17	eu.	8.183	4	4	6.864	17	0	4.919
īψ		9.926	19	-	8.910	iń	4	.430	5	0	5.723	N	0	2.460	17	-	6.287
•		4.485	<u>o</u>	N	10.276	Ŋ	er en	.681	9		7.183	ιŲ	_	3.751	17	N	7.349
9		6.129	20	0	7.436	Ŋ	9	.850	8	e.	8.397	ĽΩ	es.	4.904	18	0	5.133
•		7.552	20	-	9.129	មា	4	.975	6-	0	5.941	Ń	m	5.999	8	_	6.502
•		8.872	2	0	7.657	•	n	.198	<u></u>		7.399	rQ.	•	7.056	8	cu	7.559
9	_	0.118	21	-	9.349	9	4	.640	20	0	6.104	•	0	2.643	6	0	5.348
~ 1		4.674	22	0	7.877	•	in i	.890	50		7.614	۰	.	3.944	6	-	6.716
۱ م		6.339	N 1	- 1		•	N (\$50.	2	0	6.376	φ.	QF I	5.099	50	0	5.563
_ 1		7.750	23	0	8.098	0	a D i	.172	2		7.830	Φ.	M ·	6.198	20	-	6.978
_		9.075	23	-		~ 1	m ·	. 386	25	0	6.594	•	4	7.228	N .	0	5.778
_	_	10.316	54	0	8.319	^	.	.855	2		8.046	_	0	2.832			7.189
60 (4.867	54	-	•	~ 1	Q I	.066	23	0	6.812	_ 1	,	4.146	22	۰.	5.994
6 3		6.557	25	0	8.540	~	·	544	23	_	8.262	~	N :	5.299	25		7.401
φ,		7.954	92	0	•		(. 375	54	.	7.029	7	m.	6.402	23	0	6.209
0		9.285	27	0	8.982	•	m.	.579	54	_	8.477	7	4	7.422	53	-	7.613
ው		5.064	28	0	9.203	40	-	.019	52	0	7.247	∞	0	3.025	54	0	6.425
σ.		6.729	29	0	9.452	Φ	4	. 269	56	0	7.465	න	_	4.356	52	0	6.641
Φ.		8.161	30	0	9.646	60	3	655	27	0	7.683	æ	N	5.509	56	0	6.857
0		9.500	m	0	9.802	Φ	n	.776	88	0	7.901	80	M	6.612	27	0	7.073
0		5.264	32	0	10.023	0	-	.230	53	0	8.119	80	•	7.627	88	0	7.289
-		056.9	33	0	10.244	о О	.	.474	30	0	8.337	٥	0	3.224	53	0	7.506

Table 1. (Continued)

	- a	= 0.25	•	elpha	ii G	0.01		-e	= 0.25	alpha	# ez	0.05		# #	0.25	alpha	ii eu	0.10
×		t(x1,x	,×23	_	% %	t(x1,x2)	×	X2	t(x,1,x2)	×	×2	t(x1,x2)	×	NX X	t(x1,x2)	×	NX X	t(x1,x2)
1	1	; ; ; ;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1	8 9 9 9 9	•			1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1			 		
0	0	3.454		0	4	10.491	0	0	2.247	€	-	5.307	0	0	1.727	80	0	3.441
0	-	4.975	•	6	0	5.406	0	-	3.558	0	N	6.432	0	-	2.917	æ	-	4.715
0	N	6.304		•	-	7.041	Ö.	es:	4.722	Φ.	M		0	N I	3.992	0	N)	5.756
0 (m .	7.534		۰ ۱	N I	8.345	0 1	m,	5.815	Φ (4 (8.680	0 (m.	5.011	6 0 ¢	m .	6.827
0 6	+ 1	8.704	284	> 0	ń <	186.6	5 6	+ 10	1000	• •	o .	012.4	5 6	+ L	5.445	20 C	•	1.741
-	ຄ ເ	7.00.F		^ 9	;	0.010	> c	n 4	0000	> 0	- c	0.000	5	A 4	4.400	> 0	-	2017.5
- •	٠ د	0.00	•	> 9	٠ د	0.7.0	> •	0 0		> ¢	,	1000	> •	D (P (- (2000
	- «	9.05		2 9	- «	7.325	- •	> -	2.501	r t	• •	/06./		-	1.781) (N P	1000
۰.	N T	0.50		2	M F	\$20.0		- 0	5.013	•	;	056.5		- •	276.2	~ (n .	0.028
÷,	n .	7.565		2:	ก่	7.857		N I	4.77	2 :	۰ د	\$. \$. \$	- •	N I	/+O-+	•	ar e	8.00.5
-	dr I	8.762		_ :	۰ د	6.003	,	ń,	5.87	2	- (5.856	<u>.</u>	n .	5.066	D :	۰ د	3.991
عن	Ŋ	9.887		_	_	4.609	_	đ	6.921	0	N	7.087	-	•	6.051	0	-	5.261
N	0	3.671		-	es:	8.902	-	Ŋ	7.941	9	ליו	8.181	_	ru.	7.012	0	en	6.292
N		5.200	_	=	m		-	•	8.938	=	0	4.630		9	7.955	-	m	7.294
¢1	es.	6.528	-	2	0	6.288	r.i	0	5.464	مئي سو	-	6.243	¢.	0	1.944	=	0	4.268
Ø	M	7.759		22	-	7.893	~4	-	3.781	-	сı	7.360	N	,—	3.142	=	-	5.533
¢,	4	8.931		2	N		N	~	4.948	-	m	8.455	**	N	4.221	=	ď	6.490
N	M	10.060		2	m	10.410	N	M	440.9	12	0	5,111	N	m	5.242	-	M	7.559
117	0	3.878		2	0	6.574	84	4	7.096	12	-	6.524	~	4	6.233	12	٥	4.545
347	-	5.435		147	-		è	М	8,118	-	•	7.633		ıcı	7.186	-	-	00 100 100
M	•	7119		K	۰ ۵		I M	•	2.471	2	H	A 1506	٥١	٠ ٠	9 1 10		۰۵	4 754
) M	1 M	7 081		<u> </u>	1 H	•) F	•	400) c	40%	, pr	, <		1 0	3 P	7
) H	ه (2) (700.0	•	- 10	F . 70	2 5	•	7.5.7	7 1	-	672) (
א ר	- 4	000		1 5	·	0.00	ין ני	4 1	4 97%	4 1	- ¢	10.00	1 P	- e	3000) P	٠ -	4.00.4
? <	n (007.00		<u> </u>	- «	201.00	1	1	1/2.0	2 !	u 1	19/0	1	N 1	4.450	2 !	~ «	2.0.0
* •	.	1.10		<u> </u>	N 6		n :	* 1	6.55	2 .	9 6	200.0	1	9 4	ADT-6	? ;	NJ I	2.095
.	- (5.050	_ `	۱ ۵	.	7.148	η.	A (8.308	*	٥.	2.007	ו מי	d I	555.0	2	M)	8.091
ď.	NI I	6.988		i G	- 1	8.747	.	0	2.901	*	-	6.961	m.	rð.	7.407	4	0	5.101
.	M ·	8.228		2	N	10.019	đ.	-	4.267	4	CI ·	8.058	4	0	2.381	4	_	6.350
đ.	đ	9.407		9	0	7.435	4	N	5.422	15	0	5.954	4		3.607	*	ผ	
4	ហ	10.545		9			ď	M	6.537	2	_	7.237	4	N	4.668	4	M	
Ŋ	0	4.352		9	cu	10.299	4	¢	7.599	10	N	8.331	4	M	5.692	Ţ	0	5.379
Ŋ	_	5.914		_	0	7.723	4	Ŋ	8.569	10	0	6.174	4	4	6.681	L	-	6.622
Ŋ	N	7.244		7	_	9.319	ឃាំ	0	3.145	16	-	7.514	4	ស	7.646	īŪ	€1	7.712
ın	m	8.489		_	¢4	•	ιū	•	4.549	16	બ	8.729	TU.	0	2.625	16	0	5.658
Ŋ	4	9.672		8	0	•	រប	¢1	5.639	17	0	6.458	ĸ	_	3.865	16		6.895
ហ	ΙŊ	10.754	-	8	_	9.603	សា	M	6.738	17	-	7.869	Ŋ	N	4.913	16	N	7.952
•	0	4.605		0	¢1		ហ	¢	7.793	17	ભ	9.003	Ŋ	м	5.938	17	0	5.937
•	-	6.182		6	0	8.298	ហ	ហ	8.815	18	0	6.798	Ŋ	4	6.928	17	-	7.167
જ	ď	7.507		0	-	9.888	•	0	3.398	\$		8.143	ស	Ŋ	7.894	<u>e</u>	0	6.216
•	'n	8.757		20	0	8.586	9	-	4.755	19	0	7.079	9	0	2.878	18	-	7.440
9	4	9.944		0.	**	10.173	9	'n	5.961	19	-	8.418	9	_	4.134	6	0	6.498
7	0	4.864		1.	0	8.874	•	M	7.000	20	0	7.369	•	c)	5.173	5	-	7,590
7	-	6.459		7.	-	10.458	9	4	8.052	20	-	8.628	9	M	6.197	20	0	6.777
7	N	7.792		S.	0		•	īŪ	9.075	21	0	7.650	-	•	7.215	20	-	7.862
7	м	9.036		2	-	10.743	7	0		21	-	8.906	•	ıc	8, 175	6	c	7.055
~	4	10.217		M	0	•	_	-	5.035	22	a	7.932	-		3.168		•	
ď	0	5.133		Ž		0.738	. ^	۰ ۵	4.166	1 6	· c	A 244			20.00 F0A	1 6	- د	•
α	-	477		i ii		•	- 1	1 14	7 263	3 6	,	2000		~ c	505.H	4 6	> 0	7 . 500
o a	- ^	970		3 4	,	20.02	- 1	ሳ ‹	7.000	4 6	> 0	0.470	- 1	4 1	+0+.0	S	> (7.002
0 4	4 6	0.00		0 1	.	10.365	•	† (8.312	S :	5 (8.777	- 1	φ,	6.559	5.5	o	7.985
٥	n	7.001		,	>	10.613	Þ	0		92	0	9.058	1	4	7.478	25	0	8.232

Table 1. (Continued)

	e –	= 0.3	alpha	11	0.01	æ		0.3	alpha =			æ	н	0.3	= eddle		0.10
1		t(x1,x2)	×	X2	t(x1,x2)	×	NX X	t(x1,x2)	×	×	t(x1,x2)	×	×2	t(x1,x2)	×	×2	t(x1,x2)
		E				1	;				1	<u> </u>					
0	0	3.224	^	8	7.907	0	0	2.097	7	_	5.319	0	0	1.612	9	Ŋ	8.102
0		4.647	_	M ·	9,143	0		3.321	۱ م	N I	6.465	0	-	2.723	~ 1	0	3.581
5 (, e	5 C C C C C C C C C C C C C C C C C C C	- 1	† L	10.206	> 0	u 1	4.407	٠,	n k	1.427	> •	N F	9.750	- 1	- •	4.701
> c	า ป	7.032 A 122	~ α	n c	11.09/ F 569	> c	n 4	5.428		2 m	286	> C	n 4	4.070 F 507	· r	N M	6,7,5
• 0	- M	9,176	0	-	7.104		M	7.359	• 40	, 0	4.446	•	m	6.492		1 4	7.540
0	•	10.199	0	· N	8.257		۰	8.290	• •	-	5.751	0	9	7.373	. ~	· W	8.260
0	~	11.200	Ø	м		0	~	9.204	60	***	6.810	0	~	8.240	0	0	3.929
-	0	3.315	ø	4	10.545	-	0	2.189	æ	m	7.667	-	0	1.703	40	-	5.101
-	-	4.741	o.	0	5.910	-	-	3.416	80	¢	8.620	-	-	2.818	69	ď	6.109
-	N	5.979	0		7.465	-	Ç.	4.504	o.	0	4.801	-	N	3.623	60	M	6.965
-	m	7.128	0	N	8.607	-	m	5.525	0	_	900.9	-	М	4.776	Φ	4	7.862
-	4	8.220	0.	М.	9.816	-	4	9.506	σ.	N I	6.987	-	.	5.696	Φ.	0	4.279
_	w.	9.274	0	4	10.885	_	N.	7.459	0	ю.	8.164	_	ın ·	6.594	σ.	-	5.284
- 1	•	10.298	2	0	6.273	-	ا و	8.390	σ.	.	8.953	- .	ا ۾	7.475	oin (N I	6.413
cu o	0	3.552	<u>.</u>	- 1	7.727	(~ (9.305	2	0	5.155	(_	8.337	о (м.	7.296
Q.	_	4.992	<u> </u>	OJ I	6.959	64	0	2.425	0	_	6.354	N	0	056.	6 - 5	dr (8.361
a	64	6.232	2	M	9.989	er.	_	3.666	2	er.	7.487	61	_	3.074	2	0	4.629
evi	м	7.386	-	Ŧ	11.248	cu	¢.	4.765	2	m	8.341	eu.	ķ	4.096	9	-	5.625
67	4	8.484	=	0	6.637	ruz.	m	5.798	0	4	9.284	~	m	5.060	<u></u>	N	6.745
~	Ŋ	9.543	Ξ	-	8.081	o.	4	6.785	=	0	5.510	N	4	5.932	<u></u>	M	7.612
¢1	•	10.573	Ξ	es.	9.311	~	w.	7.695	=	_	669.9	es :	ıń.	6.830	9	4	8.508
M	0	3.840	=	M	10.332	64	•	8.627	= :	er i	7.825	cu :	9 1	7.711	-	0	4.982
М	-	5.310	2	0	7.001	M i	0	2.714	= :	m.	8.772	e) i	~	8.579	-	ا سي	5.950
19	CL I	6.538	2	-	8.435	ro i	_	3.970	<u>~</u>	0	5.865	PG (0	2.228	= :	OJ I	7.076
M I	M)	7.699	2	61 1	9.665	- 1	64 i	5.082	2		7.108	M) I	- (3.384	= :	m,	7.937
M I	4 1	8.804	2 !	M (10.675	- 1	.	6.044	2 5	N 1	666.2	ra t	N 1	070.1		a (8.672
M I	Ŋ.	9.870	n :	о.	7.367	m i	et i	7.026	2 !	m (9.104	ب	η,	5.236	72	۰ م	5.399
m ·	•	10.909	<u>ب</u>	(8.788	in i	ń.	0.065	<u>.</u>	.	6.221	ו חי	+ 1	6.212	2 :	- (6.283
4	0 .	4.154	M I	64 I	10.089	m .	۰	8.907	<u>.</u>		7.289	m i	9 .	7.111	2 5	N I	7.407
dr «	- 0	5.663	2 :	43 6	11.018	o r <	٠.	3.027	2:	N P	205.8	** <	0 9	7.992		1 (100
dr K	N F	0.00 0.00 0.00	<u> </u>	-	0.850	dr <	- «	4.2.4 4.2.4	2 \$	1 (4.430 F77	.	-	7.040	2 -	> -	7.137
.	n <	0.00	1 5	- 6	40.47	t <	u #	201 4	1 5	. •	7 630	r 4	- 6	4.7.4	2 1	- 0	744
ria	M	10.01	<u> </u>		8.186	t	1 4	7.322	2	- ~	8.841	•	s #1	5.540	2	9	6.079
• •	1	11.212	, T	-	9.406	. 4	· m	8.275	ın	. 0	6.934	4	•	6.517	4	-	6.951
Ŋ	0	4.483	70	N	10.785	4	90	9.213	ħ	-	8.131	4	ın	7.415	4	N	8.068
ΙŊ	-	6.024	91	0	8.547	ΙĠ	0	3.360	5	cu.	9.179	4	9	8.425	5	0	9,446
រហ	<u< td=""><td>7.214</td><td>91</td><td>-</td><td>9.850</td><td>ĸ</td><td>-</td><td>4.637</td><td>9</td><td>0</td><td>7.387</td><td>ιū</td><td>0</td><td>2.892</td><td>Ť.</td><td>-</td><td>7.284</td></u<>	7.214	91	-	9.850	ĸ	-	4.637	9	0	7.387	ιū	0	2.892	Ť.	-	7.284
ហ	m	8.371	16	o,	11.131	ŧΩ	ત્ય	5.658	9	_	8.310	ĸ	_	4.047	15	∾.	8.399
м	4	9.382	17	0	8.909	ĸ	m	6.670	9	N	9.518	T.	N	4.962	2	0	6.782
ĸ	N)	10,433	17	-	10.203	ស	4	7.77	_	0	7.735	15	ю.	5.992	9		7.630
9	0	4.837	8	0	9.270	LTI	rU.	8.728	-	_	8.652	ın :	.	6.898	9	C)	8.573
9	-	6.384	€	-	10.557	•	0	3.742	©	0	8.008	100	ru .	7.787	11	o .	7.118
9	∾:	7.559	<u>6</u>	0	9.631	•	1	4.977	©	_ (8.993	ığ.	•	8.661	12	- 1	7.963
•	ю.	8.712	6	- 1	10.911	۰ و	N 1	6.129	6 :	٥.	8.426	•	٥,	5.235	<u>e</u> :	۰ د	7.455
۰ م	4 1	9.714	202	۰ ۵	966.6	۰ م	9	7.148	<u>~</u>	- •	9.333	ø .	- «	4.427	2 5	- 6	9.530
ا ب	a c	10.763.	5	9 0	10.356	۰ م	# L	206.7	200	5 6	0//0	٥ ،	1 1/	7.427	<u> </u>	> 0	
~ r	D •	5.192	27.	0 0	10./18	٦ ۵	n c	9.05¢		5 6	9.117	٥ ،	ሳ ‹	7.511	2 5	> c	0.170
•	-	44/ 0	3	5	11.000	_	>	4.0.4	22	>	295.6	٥	t	1.612	7	>	

Table 1. (Continued)

	, =	67.0	1	8	10.0		2	0.35	e diame	3				- 0.33	B Id T		
;	징 X	t(x1,x2)	×	X2	t(x1,x2)	×	% %	t(x1,x2)	×	×2	t(x1,x2)	×	χ	t(x1,x2)	×	×	t(x1,x2)
	i !		 - -	! !		; ; ;											
0	0	2.993	9	ઢ	7.650	0	0	1.947	9	-	5.235	0	0	1.497	•	0	3.687
0	-	4.315	9	m	8.678	0	-	3.084	•	ابه	6.211	0	-	2.528	•	1	4.547
0	≈	5.464	9	4	9.681	0	N	4.092	٥	m	7.254	0	N I	3.460	۰ ه	N I	5.636
0	M	6.529	ø	ΙĤ	10.649	0	m	5.040	φ.	d I	7.999	0		M+11. +	۰ م	η.	0.4.0
0	4	7.543	ø	•	11.583	0	4	5.950	•	ιΛ.	8.796	0	4	5.196	•	4	7.323
0	'n	8.520	^	0	5.763	0	'n	6.834	_	0	4.614	0	N)	6.028	•	Ŋ.	7.950
0	•	9.471	^	-	6.965	0	•	7.698	~		5.652	0	9	9.8.9	9	ø	8.949
0	7	10.400	7	e,	8.082	0	~	8.546	7	N	6.619	0	~	7.651	^	0	4.120
0	40	11.312	7	М	9.102	0	œ	9.383	^	m	7.653	0	00	8.447	~		4.947
_	0	3.146	7	\$	10.094	-	0	2.100	1	4	8.524	-	0	1.649	7	N	5.962
_	-	4.478	7	Ŋ	11.059	-	-	3.243	7	w	9.190	-	•	2.690	7	M	946.9
	•	E 672	• •	· C	6.211	-	0	4.256	a C	c	5.055	_	N	3.626	7	4	7.761
	ı M	4 402	α	-	7. 396	-	H	5.207	00	-	5.902	-	M	4.513	7	īŲ	8,333
	٠ <	100.7) 4	• •	0 tu	-	4	6 110	«	. 6	7.027	-	4	7.460	œ	C	4.641
	- 4	007.0	9 6	4 10	200		- 14	700	a	3 PF	7 878	-	- 86	4 204	• •	-	444
	n -	0.00	0 4	٠ (7.000		۱ (1000	o) <		- •	1	1000	a	- 0	7 7 7
_ ,	0 1	V-0-V	0 4	* 1	000.01		o I	7.0	D ¢	† L	0.4		1 0	1 0 1	0	4 L	10.01
_		500.01	0	ñ	11.299	,	•	12/10	0 (n i	7.505		- (100.7	0 (η,	
_	0	11.482	o-	0	6.659	-	10	9.559	D	0	2.497	- 1	1 0	8.628	1 0 (t I	0.00
٥,	0	3.485	6	-	7.828	ત્ય	0	2.439	0	-	6.486	~	0	1.988	0	Ŋ	8.718
cu	-	4.871	0	N	8.937	¢4	_	3.587	0	es.	7.435	C)	-	3.035	0	0	5.048
c,	¢.	5.971	Φ.	M	9.938	¢4	ď	4.603	ው	M	6.221	ev	ત્ય	3.975	0	-	5.749
٧.	m	7.043	0	4	10.923	¢.	M	5.557	Φ.	đ	9.321	N	M	4.865	•	હ	6.749
2	4	8.056	2	0	7.108	~1	4	6.471	0	0	690.9	cu	đ	5.724	•	M	7.462
c.	Ŋ	9.037	2	-	8.260	S	W	7.359	9	_	6.793	≈ i	ស	6.562	0	¢	8.483
N	•	9.990	0	N	9.345	બ	•	8.123	10	Q,	8.058	2	9	7.383	0	0	5.454
cu	_	10.921	0	M	10.356	cu	7	6.971	0	M	8.642	~	7	8.071	9	-	6.149
м	0	3.831	9	4	11.470	M	0	2.834	10	4	9, 708	61	40	8.991	0	¢.	7.210
м	-	5.203	=	8	7.557	m	_	3.971	=	0	6.373	243	0	2.384	0	M	7.852
м	6V	6.361	Ξ	-	8.721	М	ø	4.984	=	-	7.203	м	-	3.417	10	4	8.870
м	m	7.440	=	N	9.768	M	М	5.818	Ξ	64	8.347	M	N	4.233	Ξ	0	5.860
м	4	8.439	=	М	10.774	m	4	6.724	-	м	9.037	M	m	5.111	=		6.548
M	n	9.419	12	0	8.007	m	Ŋ	7.743	12	0	6.903	M	4	5.944	=	c)	7.603
M	9	10.373	12	-	9.151	M	9	8.608	12	-	7.612	m	īŪ		-	M	8.243
м	~	11.179	12	eu	10.191	m	2	9.312	72	∼	8.748	m	ø	7.711	12	0	6.266
4	0	4.304	2	M	11.191	4	0	3.301	12	m	9.437	m	7	8.412	7		6.924
J	-	5.615	13	0	8.457	4	-	4.402	13	0	7.318	4	0	2.826	~	N	7.996
4	Q	6.803	13	-	9.580	4	83	5.399	M	-	7.960	4	-	3.830	7	m	8.633
4	М	7.869	<u>M</u>	¢,	10.613	4	М	6.342	13	N	9.150	4	N	4.755	13	0	6.671
. 4	4	8.859	4	0	8.909	4	4	7.140	10	M		4	m	•	2	-	7.344
4	ıc	934	4	-	10.008	4	M.	8.241	14	0	7.733	4	3	6.363	M	N	8,389
•	9	10.783	4	۵	11.034	4	9	9.078	4	_	8,456	•	Ŋ	7.187	14	0	7.078
LC	0	4.758	ī,	0	9.365	4	7	9.718	4	Q	9.552	4	9	8,192	7	-	7.736
M.	_	6.103	Ť.	-	10.437	I.O.	0	3,736	TU.	0	8,147	4	7	8.802	14	8	8,781
II.	~	7.226	Ť.	N	11.437	I.C	-	4.817	<u>s</u>	-	8.863	ΙΛ	0	3,254	ហ្វ	0	7.480
L L	М	8.291	16	0	9.811	ın	ผ	5.998	16	0	8.561	īΟ	-	4.362	Ť	_	8.137
L LLY	4	9.267	19	_	10.854	រវា	м	6.850	19	-	9.269	រោ	a	5.248	16	0	7.881
យា	ю	10.239	17	0	10.258	IA.	4	7.528	17	0	8.973	TU.	М	6.105	9	-	8.532
TU:	9	11.374	17	-	11.291	M.	K	8.401	17	-		LC1	4		17	0	8.282
s 4	· c	4 4	1	c	10 70 K		i	0 440	. 4	٠	•	14	. n	7 7		-	200 8
D 4	> -	212.4	0 0	> <	10.75	9 4	, 0	92.0	2 0	> <	2002	ם מ	9 4	675.0	- a	- c	72.0
٥	-	6.555	-	>	0+1.1	٥	>	<i>*</i>	<u>^</u>	>	4.145	ā	٥	6.307	0	>	200.0

Table 1. (Continued)

į	-	+0.0=	alpha	ارا	0.01	6		4.0	= eydle		0.05	- e	"	0 .4	alpha	"	0.10	
	ณ X	t(x1,x2)	×	X X	t(x1,x2)	_	×2	t(x1,x2)	×	×	t(x1,x2)	×	۲ ۲	t(x1,x2)	×	×	ţ	t(x1,x2)
											5 5 1 1 1				! ! !		1	1
0	0	2.763	ស	4	9.059	0	0	1.797	ΙÑ	M	6.770	0	0	1.382	ΤŲ	M	•	053
0	-	'n	ΙΛ	IU.	9.926	0	-	2.846	ស	4	7.580	0	-	2.334	ın	4	6.7	26
0	C)		Ŋ	9	10.889	0	N	3.778	Ŋ	r)	8.373	0	N	3.193	ιń	ru	7.3	. 349
0	M		•	0	5.902	0	M	4.652	ເກ	9		0	113	4.008	ĸ	•	4.8	.414
0	4		•	-	6.748	0	ţ	5.492	Ŋ	_	9.913	0	4	4.796	ĸ	~ ;	8.821	21
0	Ľή	7.865	9	N	7.943	0	Ŋ	6.308	9	0	4.737	0	u)	5.565	4	0	4.2	.213
0	•		•	M	8.651	0	9	7.114	9	_	5.576	0	9	6.319	•	-	4.951	51
0	1		•	\$	9.763	0	_	7.889	•	cu	6.421	0	~	7.063	9	Ø	5.7	739
0	00		9	īŲ	10.521	0	0	8.661	•	M	7.241	0	40	7.797	•	M	9	305
0	0		9	•	11.370	0	•	9.423	•	•	8.047	0	0	8.524	-40	4	7.5	564
-	0		7	0	6.442	-	0	2.057	•	T.	8.836	-	•	1.641	-40	W.	0	016
•	-	4.270	7	-	7.258	_	-	3.080	•	•	9.577	_	-	2.563	•	•	0.6	033
-	Ø	5.368	7	N	8,456	- wn	٠ د ا	4.103	_		5.259	-	٠ ه	3.416	•	•	4	708
-	M	6.258	_	М	9.370		i M	4.876	. ^	-	6.065	-	ı M	4.228	. ^	-	п	427
-	4	7.190	7	ď	10.260		•	5,713			6.899	-	9	F. 014		• •	4	446
-	T.C.	8.090	7	10	11.006	- 194	L.	6.528	. ^) P	7.719		· w	5 7A2		1 14	. 4	073
-	ک ا	9,00	. 1-	۷ (11.703	-	٠ ،	7. 426	. [-	٠.	10 L		4	5.70¢		3 <	0 1	707
-	1	000	۰ «) C	A 680	-	1	A +07	. ^	- 14	2010		1	2000	- 1	H	000	
	- a	10.7) q	•	700, 7		٠ ۵	0.00	٠ ۵	,	755		- 0		- 6	•	•	- 6
	0 0	200.01	0 4	- 0	0 067		0 0	0,0,0	D q	.	7//-		0 0	0.0	0 0	> •	. u	0.0
- 0	۰ د		0 4	4 1	70.40	- 6	٠.	7.040	0 0	- 6	1 111	- «	٠.	0.12	0 4	- 6		- !
N 6	۰ د	4.0.0	0 0	9 4	070.7	NI 6	•	7.047	0 4	N I	//5//	N 4	.	2.133	*	N I	6.833	55
NI ((49.784	10	# 1	10.635	NJ (-	3.503	10	m,	8.183	N	- 1	2.974	Φ.	(14)	7.21	9 !
N (NJ I	5.843	20 1	iğ (11.490	NJ (N 1	4.415	20 (or i	8.983	N	N	3.618	®	d i	8.467	29
N	Μ.	6.675	•	0	7.519	N	M)	5.282	0	in ·	9.751	N	M	4.626	ထ	LÍ)	8.702	02
N	4	7.604	•	-	8.317	~4	4	6.118	•	•	6.282	N	4	5.409	•	0	5.682	82
cu.	IN.	8.502	•	N	9.248	N	RJ.	6.932	Φ.	-	7.037	N	IA.	6.175	•	*	9	148
a	•	9.376	0	M	10.145	∼	9	7.728	0	e)	7.854	N	•	6.927	•	N	7.3	. 386
a	7	10.227	•	4	11.126	æ	1	8.502	•	m	8.653	N	_	7.668	0	m	7.6	.674
N	40	11.072	0	0	8.058	લ્ય	∞	9.272	•	•	9.615	61	Φ	8.358	•	4	8.8	878
M	0	4.077	9	-	8.835	ના	0	10.033	<u>-</u>	0	6.785	N	0	9.127	•	Ŋ	9.153	53
м		5.169	0	ď	9.986	m	0	3.158	9	_	7.521	M	0	2.681	9	0	6.282	82
м	CJ .	6.394	2	m	10.751	M	-	3.982	9	Q.	8.330	m	_	3.532	9	-	6.615	ių.
M !	M ·	7.287	0	4	11.784	M	en i	5.086	2	M ·	9, 123	M	N I	4.352	0	N I	7.889	60
M I	\$	8.193	= :	0	8.596	m i	м.	5.831	2	4	9.985	m	M.	5.144	2	M 4	8.13	- M
M I	S	9.169	= :	- (9.476	m i	er i	6.651	= :	٥,	7.283	ו מי	đ i	5.917	= ;	о.	6.752	25
9 (ا م	10.038	= :	NI I	10.370	M) (n.	7.452	_ :	_ ,	8.002	M I	'n.	2/0.0	= :	(0.7	0 0
ω i	\	10.780	= :	n (11.248	M 1	o 1		= :	N I	9.804	n 1	ا ہ	7.485	= :	N I	8.301	5 5
η,	10	11.611	2 :	ь.	9.128	M) (_	9.013	= :	M (9.397	m i	-	8.154	= :	n e	6.587	
d	0	4.655	2	- 1	9.863	M)	.	9.778	2	.	7.77	m ·	100	8.948	2	ο.	7.236	36
J ·	، نــ	5.687	2	N I	10.868	or ·	ь.	3.679	2 :	_ (8.482	.	D	3.197	2 :	, (. 5.	D (
đ.	N I	606.9	~	m ·	11.634	d		4.581	2	NI I	9.524	\$	-	3.996	N :	NI I	8.7	758
4	ιψ ·	7.760	<u> </u>	0		.	61 1		2 !	M	9.868	₫,	N I	4.814	<u>N</u> !	m e	9.042	Z :
4	4	8.773	7	_	10.489	4	M	6.289	m T	0	8.267	4	173	5.598	2	0	7.7	-
4	ın	9.539	<u> </u>	N.		4	d	7.104	<u>m</u> :	-	8.960	d	4	6.510	m i	-	8.005	ទ
4	•	10.397	4	0	10.178	4	ιζ	7.911	2	cu.	0.059	4	Ŋ	7.117	~	N	9	3
4	7	11.239	4	-	10.992	\$	9	8.694	<u></u>	0	8.755	4	9	7.865	4	0	8.163	63
īΩ	0	5.325	15	0	10.697	\$	_	9.461	4	_	9.229	4	7	8.593	4	-	8.4	20
ľΩ	-	6.210	ار	-	11.497	ın	0	4.209	15	0	9.357	ιĠ	0	3.710	5	0	8.624	24
īŲ	N	7.428	16	0	11.212	ιń	-	4.971	7	_	9.703	រវា	_	4.478	5		8.9	25
πJ	M	8.277	17	0	11.724	ιū	ผ	5.942	16	0	9.833	ĿΩ	ผ	5.276	16	0	9.0	3 ¢

Table 1. (Continued)

×		t(x1,x2)	×	×	t(x1,x2)	×	×	t(x1,x2)	Ι×	×	t(x1,x2)	×	×2	t(x1,x2)
44WWWWWWWWWWWWWWWWWWWW	7 00 0 1 1													
**************************************		100	•	•			•		,					
เพพพพพพพพพพพพพพพพพพพ การและกระสมสพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพ		1 574	> c	> ~	040.	t «	0 1	- t+ t	0 (0 •	1.266	4.	•	7.795
N N N N N N N N N N N N N N N N N N N		5.899	9 0	- ~	4 600	td	- α	0000	> <	- ¢	2.139	\$	٠,	8.490
ηηηηηηηοφοροφοννν συσπίονο∞συσπόνο≈σι	-	6.666	0	ı	4.264	r w	9 0	4.809	> c	y 24	* 67.4 *	† u	0 c	7.116
nnnnnnaaaaaaa6661	çı	7.491	0	4	5.034	10	-	5.270	• •	•	4.4	n K	> -	4.503
nnnnn00000000000000000000000000000000	m	8.300	0	ĸ	5.782	Ŋ	N	6.124	0	ะน	5.101) kr	۰ ۵	5.670
n n n n a a a a a a a a a a a a a a a a	•	9.107	0	9	6.513	ιŋ	m	6.848	0	•	5.793	ı ın	M	6.152
nnaaaaaaav\r\: ave=auaauavo=ai	2	9.870	0	_	7.232	រវា	4	7.591	0	^	6.474	II.	4	6.856
n a a a a a a a a c c c c i	-	0.634	0	89		N)	ιŋ	8.283	0	00	7.147	N)	ΙŊ	7.505
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	1.387	0	0		Ŋ	9	8.984	0	•	7.813	ĸ	•	8.173
6666666777 1 60m4 10470←01	0	6.557	0	2	•	Ŋ	~	9.677	0	10	8.474	ĸ	~	8.834
000000FF	•	7.129	0	=	10,033	9	0	5.397	0	=	9.129	40	0	4.791
00000LL	e e	8.099	-	0	2.135	9	-	5.843	-	0	1.750	•	_	
0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0	M)	8.894	•	_	3.011	9	N	6.692	-	-	2.528	•	~	
000LL		9.693	-	N	3.839	9	Ю.	7.409	-	es.	3.290	•	m	6.685
00rr1 0r0-01	<u> </u>	9.444	-	M.	4.626	9	4	8.141	-	m	4.024	•	4	7.385
0 L L L L L	-	1.180	_	4.	5.391	•	RJ	8.672	-	4	4.742	•	ιΩ	8.027
~ ~ ~ ~ !	-	1.929		Ŋ	6.134	•	9	9.521	-	岭	5.437	•	•	8.691
- KI	-	7.288	-	9	6.861	9	~	10.055	-	•	6.124	_	0	5.344
L 1	_	7.803	_	1	7.569	~	0	5.977	-	7	6.802	_	-	
	~	8.721	-	0	8.273	7	_	6.371	-	0	7,472		٠ م	6.547
9		9.506	-	φ.	8.969	1	¢4	7.252	-	0	8.136		1 PF	7.055
7 4	=	0.286	-	•	9.659	7	M	7.961	-	0	8.794	. ~	4	7.913
7	=	1.016	¢.	0	2.833	7	4	8.825	N	0	2.395	_	M)	8.301
9	=	1.773	a	_	3.411	7	Ŋ	9.365	~	,	2.887	_	.	9.207
0	_	7.916	€.	es	4.405	0	0	6.550	8	N	3.830	• •	0	
•		8.410	~	m	5.173	∞	_	6.974	es.	м	4.346	• •	-	6.279
80	•	9.312	ત્ય	4	5.930	0	٧	7.809	N	4	5.260	σ	٠ ا	7.215
m .	<u> </u>	0.090	N	'n	6.653	ø	m	8.510	cu	ın	5.940	0	110	7.736
90	= :	0.866	e,	9	7.372	40	4	9.234	Ø	ø	6.622	0	4	8.547
φ (= '	1.613	ς,	_	8.080	Φ	Ŋ	9.903	¢4	7	7.295	40	ιΩ	8.943
•		8.530	N (*	8.589	6	0	7.118	ત્ય	Φ	7.961	0	0	6.432
- ·	<i>y</i>	9.011	en e	σ.	9.472	0	-	7.533	તા	0	8.622	o	-	6.814
,,		206.4	N 1	9	9.969	6	N :	8.362	αı	10	9.277	•	cu	7.611
) d		2/0.0	9 F	> +	1.0.5	D (м,	9.056	M I	0	3.097	o	m	8.267
•	- 0		א ר	- «	4.00.4	•	d 4	9.776	M I	-	3.51	o	4	9.057
	- 0	407	1	J P	4.7/3	2 :	5 •	089.7	ا (۱۰	NI I	4.651	0	0	6.971
	. 0	0.000	4 6) d	•	2 9	- «		n 1	η,	5.074	<u> </u>		7.345
) K	-	200) P	r u	0.553	2 :	V 1	6.917	19	đ i	5.628	0	es.	8.139
) c	•	1621	n 1	a ·	7.183	0.	· 6	9.599	m	rU.	6.314	0	143	8.789
•	•	101.	n :	۱ ۵	7.895	0	-	0.129	M	9	6.990	=	0	7.505
- 6		2.1%	n 1	- (8.795		Ο.	8.238	m	~	7.659			7.874
V 1		4/0.	' 1	8	9.293	=	_	8.638	M	Φ	8.322	Ξ	ر دن	8.665
2 4	- :	929	m ·	-	0.174	=	ผ	9.457	m	٥	8.982	=	M	9.310
) ·	0.	1.331	ţ	0	4.211	2	0	8.791	4	0	3.666	12	0	
- 1	0 :	783	4	-	4.689	12	_	9.185	4	-	4.099	2	_	8,407
N 4	- (.654	4	~	5.555	12	~	0.001	4	٥ı	4.925	2	٠.	9,188
ο·	2		4	m	6.478	10	0		4	М	5.788	M	0	8.564
- 0	= :	.365	.	4	7.037	1 3	_		¢	4	6.450	10	-	8,924
>	-	.506	4	LΩ	7.735	44	0	9.887	4	ĸ		4	0	9.089
		0-080-0	0 - 2 M M M M M M M M M M M M M M M M M M			1 0 9.737 3 6 7 8 6 7 1 1 1 10.197 3 7 8 9 9 10 2 0 10.331 4 1 1 4 2 2 2 11.654 4 2 5 5 3 1 11.365 4 4 7 7 4 7 7 4 1 11.365 4 4 7 7 7 4 1 11.365 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 0 9.737 3 6 7 8 6 7 1 1 1 10.197 3 7 8 9 9 10 2 0 10.331 4 1 1 4 2 2 2 11.654 4 2 5 5 3 1 11.365 4 4 7 7 4 7 7 4 1 11.365 4 4 7 7 7 4 1 11.365 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 0 9.737 3 6 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 9.737 3 6 7.895 10 4 1 1 10.197 3 7 8.795 11 0 1 1 2 11.074 3 8 9.293 11 1 1 2 0 1 0.331 4 0 4.211 12 0 2 1 10.783 4 1 4.689 12 1 1 2 2 1 1 0.783 4 1 4.689 12 1 1 2 2 1 1 0.283 1 1 1 1.365 4 5 5.555 13 1 1 1 1.365 4 5 7.735 14 0	1 0 9.737 3 6 7.895 10 4 1 1 10.197 3 7 8.795 11 0 1 1 2 11.074 3 8 9.293 11 1 1 2 0 1 0.331 4 0 4.211 12 0 2 1 10.783 4 1 4.689 12 1 1 2 2 1 1 0.783 4 1 4.689 12 1 1 2 2 1 1 0.283 1 1 1 1.365 4 5 5.555 13 1 1 1 1.365 4 5 7.735 14 0	1 0 9.737 3 6 7.895 10 4 1 1 10.197 3 7 8.795 11 0 1 1 2 11.074 3 8 9.293 11 1 1 2 0 10.331 4 0 4.211 12 0 2 1 10.783 4 1 4.689 12 1 1 2 2 1 10.783 4 2 5.555 12 2 1 3 1 11.365 4 4 5 7.735 13 1 4 0 11.506 4 5 7.735 14 0	1 0 9.737 3 6 7.895 10 4 10.129 3 6 6.795 1 1 10.197 3 7 8.795 11 0 6.238 3 7 7 1 2 11.074 3 9 11 1 8.638 3 8 8 7 7 2 1 2.531 4 9 11 2 9.457 3 9 8 8 8 8 8 9 10 7	1 0 9.737 3 6 7.895 10 4 10.129 3 6 6 1 1 10.197 3 7 8.795 11 0 8.238 3 7 7 1 2 11.024 3 9 9 11 1 8.638 3 8 8 2 0 10.331 4 0 11 2 9.457 3 9 8 2 0 10.331 4 0 1 2 9.457 3 9 8 2 1 10.783 4 4 4 6 9.185 4 1 4 6 4 1 3 0 10.921 4 2 5.555 12 2 10.001 4 2 4 6 4 6 4 6 4 6 4 6 4 6 6 4 6 6 4 6 6 4 6 6 4 6 6 4 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6 <t< td=""><td>1 0 9.737 3 6 7.895 10 4 10.129 3 6 6 1 1 10.197 3 7 8.795 11 0 8.238 3 7 7 1 2 11.024 3 9 9 11 1 8.638 3 8 8 2 0 10.331 4 0 11 2 9.457 3 9 8 2 0 10.331 4 0 1 2 9.457 3 9 8 2 1 10.783 4 4 4 6 9.185 4 1 4 6 4 1 3 0 10.921 4 2 5.555 12 2 10.001 4 2 4 6 4 6 4 6 4 6 4 6 4 6 6 4 6 6 4 6 6 4 6 6 4 6 6 4 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6 <t< td=""></t<></td></t<>	1 0 9.737 3 6 7.895 10 4 10.129 3 6 6 1 1 10.197 3 7 8.795 11 0 8.238 3 7 7 1 2 11.024 3 9 9 11 1 8.638 3 8 8 2 0 10.331 4 0 11 2 9.457 3 9 8 2 0 10.331 4 0 1 2 9.457 3 9 8 2 1 10.783 4 4 4 6 9.185 4 1 4 6 4 1 3 0 10.921 4 2 5.555 12 2 10.001 4 2 4 6 4 6 4 6 4 6 4 6 4 6 6 4 6 6 4 6 6 4 6 6 4 6 6 4 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6 <t< td=""></t<>

A somewhat more complicated case making use of the possibility of combining component data when some sample sizes are equal, as described in Section 1, is illustrated by

Example 2. Consider a five-component series system with test data $X_1 = 0$, $X_2 = 4$, $X_3 = 2$, $X_4 = 1$, $X_4 = 3$, based on corresponding sample sizes $n_1 = n_2 = n_3 = 300$, $n_4 = n_5 = 200$. Here c = (3/300 + 2/200) = .02, $a_1 = a_2 = a_3 = 1/300(.02) = 1.6$, $a_4 = a_5 = 1/200(.02) = 1/4$. For the equivalent $k^* = 2$ problem we divide the two distinct values of the a_1 's by their sum $c_0 = 1/6 + 1/4 = 5/12$, obtaining $a_1^* = .40$, $a_2^* = .60$. The corresponding numbers of failures are $X_1^* = X_1 + X_2 + X_3 = 6$ and $X_2^* = X_4 + X_5 = 4$. For the reduced problem we consult Table 1 for $\alpha = .10$ to find the 90 percent confidence bound 7.564. This must be multiplied by c_0 to obtain the bound for the original $\theta(\lambda)$. The 90 percent lower bound r(x) for the system reliability given by (1.6) thus becomes $1 - c_0 c_1 c_2 c_2 c_3 c_4 c_4 c_5 c_5 c_6 c_5$.

If the observed numbers of failures fall outside the limits of Table 1, the approximate methods discussed in the next section may be employed.

4. Approximations

In this section approximate confidence bounds for systems with more than two components having distinct sample sizes are developed. The use of the maximum likelihood ratio confidence bound for cases falling outside the scope of Table 1 is also discussed.

For k > 2 it is impractical to generate the optimal ordering and the corresponding values of the upper confidence bound for more than a few illustrative cases. Thus, some method of approximating solutions for k > 2 with acceptable precision is required. The approach to be followed here is to find a k = 2 problem which is sufficiently similar in structure to the given k > 2 problem so that the confidence bounds for the two problems are essentially the same except for a normalizing factor. This method may be thought of as an extension and refinement of the Lindstrom-Madden procedure (see Lloyd and Lipow 1977, and cf. Harris and Soms 1980).

The Lindstrom-Madden method first estimates the reliability by maximum likelihood and then uses the k=1 confidence bound solution for the component with the smallest sample size and a fictitious number of failures determined so as to reproduce the estimated system reliability. The procedure proposed here is to estimate \underline{two} quantities, the value of θ and the variance of the maximum likelihood estimate of θ , and to use these estimates to find a k=2 problem based on two of the original a_1 's with a pair of corresponding fictitious observation values chosen to reproduce the estimated quantities. The two a_1 's are chosen to be as large as possible (corresponding to sample sizes as small as possible) subject to two constraints. The

first constraint guarantees that the resulting fictitious observations are non-negative. The second constraint requires that a_i 's corresponding to zero failures in the original problem not be considered unless all but one of the components have zero failures. These considerations lead to a unique k=2 problem whose solution provides a very good approximation to the solution for the original k>2 problem.

The elimination of a_i's for components exhibiting zero failures is justified by the fact that the maximum likelihood ratio confidence bound (discussed later) is invariant under such transformations. That is, if the dimension k is reduced by the elimination of all a_i's corresponding to zero failures, then the value of the maximum likelihood ratio bound remains unchanged.

The choice of the two quantities whose estimates are used to determine the pair of fictitious observations is supported by analogy with Lindstrom-Madden (in the case of θ) and by the fact that the two estimates are the ingredients of the asymptotic maximum likelihood ratio confidence bound thereby insuring asymptotic optimality. The details of the approximation algorithm are as follows:

(a) First $\theta(\lambda) = \sum_{i=1}^{k} a_i \lambda_i$ is estimated by

$$\hat{\theta} = \sum_{i=1}^{k} a_i X_i , \qquad (4.1)$$

and the quantity $Var(\hat{\theta}) = \sum_{i=1}^{k} a_i^2 \lambda_i$ is estimated by

$$\hat{\mathbf{v}} = \sum_{i=1}^{k} \mathbf{a}_{i}^{2} \mathbf{x}_{i} . \tag{4.2}$$

(b) Next if at least one component exhibits one or more failures, the pair (a_i, a_j) , i < j, is selected so that

(i)
$$a_i \leq \hat{v}/\hat{\theta}$$
 , and

(ii)
$$a_{j} \geq \hat{v}/\hat{\theta}$$
.

Subject to these conditions, a_i and a_j are taken to be the largest available values associated with at least one failure. If all a_i 's satisfying (i) correspond to zero failures, then a_i is taken to be the largest in that group. If all the a_j 's satisfying (ii) correspond to zero failures, then a_j is taken to be a_k . If all components exhibit zero failures, $\hat{v}/\hat{\theta}$ is indeterminate and a_i and a_j are taken to be a_i and a_k respectively.

(c) The pseudo-observations x_1^* and x_2^* are computed by the formulae

$$x_1^* = \frac{a_j \hat{\theta} - \hat{v}}{a_i (a_j - a_i)}$$
, (4.3)

$$x_2^* = \frac{\hat{\mathbf{v}} - \mathbf{a_i} \hat{\boldsymbol{\theta}}}{\mathbf{a_j} (\mathbf{a_j} - \mathbf{a_i})} .$$

These values will be non-negative by conditions (i) and (ii) of (b), and when associated with a and a respectively they

¹For this case the resulting confidence bound is exact and is the same as would be obtained by multiplying a_k times the upper confidence bound for a single Poisson parameter when zero failures are observed, i.e., $t(0) = a_k \log (1/\alpha)$.

reproduce the values of $\hat{\theta}$ and $\hat{\mathbf{v}}$ provided all other observations are replaced by zeros.

- (d) The k = 2 problem with x_1^* and x_2^* associated with $a_1^* = a_1/(a_1 + a_1)$ and $a_2^* = a_1/(a_1 + a_1)$ respectively may now be treated using Table 1 to yield $t(x_1^*, x_2^*)$. Since x_1^* and x_2^* are not necessarily integers, it may be necessary to interpolate with respect to these arguments as well as the value of $a_1 = a_1^*$.
- (e) The approximate upper confidence bound t* for θ for the original k > 2 problem is then given by

$$t^*(x) = (a_1 + a_1)t(x_1^*, x_2^*)$$
 (4.4)

In order to check the validity of this approximation algorithm, the confidence bounds for the first 24 points in the optimal (two-stage prospective) ordering were computed for a typical k=3 case. These results were obtained by a rather laborious method based on formula (2.7) and involving repeated interactive searches of the $(\lambda_1,\lambda_2,\lambda_3)$ simplex. The approximation algorithm was applied to each of these points and the comparative results are shown in Table 2. The values of a_1 , a_2 , and a_3 for this example were chosen to be of roughly the same magnitude but not so close that the combination of any two would be indicated.

To check the algorithm for cases farther from the origin several additional examples were considered using a somewhat different method which avoids the necessity for sequentially generating the

Table 2. The Performance of the Approximation Algorithm for the First 24 Ordered Points for a Typical Example With k=3.

	Two-		Approximation Algorithm			
n	*1	*2	×3	t(x)	t*(x)	Relative Error
1	0	0	0	1.498	1.498	+ 00.0 %
2	1	0	0	1.553	1.555	+ 00.1
3	0	1	0	1.656	1.663	+ 00.4
4	2	0	0	1.703	1.705	+ 00.2
5	1	1	0	1.756	1.540	- 12.3
6	2	1	0	1.861	1.752	- 05.9
7	3	0	0.	1.933	1.891	- 02.1
8	0	2	0	1.981	1.995	+ 00.7
9	1	2	0	2.085	2.052	- 01.6
10	4	0	0	2.088	2.094	+ 00.3
11	3	1	0	2.162	1.991	- 07.9
12	2	2	0	2.268	2.208	- 02.7
13	5	0	0	2.300	2.309	+ 00.4
14	0	3	0	2.354	2.397	+ 01.8
15	0	0	1	2.372	2.372	+ 00.0
16	4	1	0	2.382	2.291	- 03.9
17	1	0	1	2.429	2.431	+ 00.1
18	1	3	0	2.472	2,438	- 01.4
19	5	1	0	2.504	2.486	- 00.7
20	0	1	1	2.543	2.529	- 00.5
21	6	0	0	2.575	2.551	- 01.0
22	2	O	1	2.602	2.589	- 00.8
23	2	3	0	2.609	2.641	+ 01.2
24	1	1	1	2.660	2.668	+ 00.3

optimal ordering of the sample points. For these examples the ordering was generated by the values of the maximum likelihood ratio confidence bounds (see below) associated with the sample points. Since this ordering is asymptotically optimal (for large λ_i 's), it can be expected to produce good results for sample points well removed from the origin. The values of the confidence bounds calculated using (2.7) and the approximations obtained by the proposed algorithm are shown for these examples in Table 3.

In Table 3 the tendency of the computed values of t(x) to be slightly larger than the algorithm values may be due to the fact that the ordering used to compute the former is non-optimal. Formal application of the algorithm may occasionally result in the selection of nearly equal values a_i and a_j in step (b). When this happens, improved results may be obtained by first reducing the dimension k by combining the nearly equal a_i 's and then applying the algorithm. This method was used for the two cases in Table 3 marked by (†). The algorithm values for all cases where a = (.14, .16, .70) or a = (.15, .41, .44) do not differ substantially from the values which would be obtained by reducing to the k = 2 case by combining the nearly equal a_i 's. Similarly, the values for the cases where a = (.32, .33, .35) can be nearly reproduced by multiplying the k = 1 bound by a = .333.

The number of sample points appearing in the ordering before a given level of t(x) is reached increases rapidly as k increases.

Table 3. Several Examples Comparing the Algorithm Values With the Exact Bounds Based on the Ordering Generated by the mlrb.

$\alpha = .05$					
a ₁ a ₂ a ₃	*1 *2 *3	Position in Ordering	t(x)	Algorithm Value $t^*(x)$	mlrb
.20,.30,.50	2, 2, 1	50	3.329	3.273	3.070
	5, 0, 2	100	4.068	3.957	3.798
	6, 6, 0	200	4.887	4.789	4.708
	9, 1, 3	400	5.980	5.892	5.795
.14, .16, .70	5, 4, 0	. 50	3.026	3.084 [†]	2.218
	2,10, 0	100	3.424	3.531 [†]	2.921
	2, 5, 1	200	4.407	4.086	3.729
.15, .41, .44	13, 0, 0	50	3.245	3.223	2.980
	5, 2, 1	100	4.028	3.860	3.699
	3, 3, 2	200	4.861	4.738	4.559
.32,.33,.35	0, 3, 2	50	3.492	3.518	3.256
	1, 5, 1	100	4.339	4.332	4.076
4454	1, 5, 3	200	5.198	5.234	4.993

 $^{^{\}dagger}$ Reduction to k=2 case by combining a_1 and a_2 .

Hence for k > 2 the algorithm may be applied to sample points positioned quite far along in the ordering without requiring values beyond the scope of Table 1, as is seen in the examples of Table 3.

The results detailed in Tables 2 and 3 suggest that the application of the proposed algorithm together with the combining of nearly equal a_i 's when indicated will nearly always produce confidence bounds for $\theta(\lambda)$ subject to relative errors not exceeding 10 percent and often much less. Furthermore, the lower confidence bound for reliability r(x) given by (1.6) will exhibit a much smaller relative error since the relative error in approximations for t(x) applies only to the difference between the lower bound and one; a quantity which at worst is of the order of 1/10 in the contemplated applications.

In situations where very large sample sizes are available, it may happen that the observed numbers of failures exceed the limits of Table 1 even though the system reliability is high. For such cases the maximum likelihood ratio bound (m&rb) may be used. This approximatic confidence bound is obtained in the usual way from the maximum likelihood ratio statistic for testing the hypothesis $\mathbf{H}_0: \theta(\lambda) = \theta_0$ versus all alternatives. The corresponding one-sided confidence bound may be shown (see Johns 1975) to be determined as follows: Let $\hat{\mu}$ be the positive real root less than 1/(largest \mathbf{a}_i for which $\mathbf{X}_i > 0$) of the equation

$$\chi_{1,2\alpha}^2 = 2 \sum_{i=1}^k \chi_i \left\{ \frac{a_{i\hat{\mu}}}{1 - a_{i}\hat{\mu}} + \log(1 - a_{i}\hat{\mu}) \right\},$$
 (4.5)

where $\chi^2_{1,2\alpha}$ is the upper 100(2 α)-th percentage point of the chisquared distribution with one degree of freedom. Then the quantity

$$\hat{t}(X) = \sum_{i=1}^{k} a_i X_i / (1 - a_i \hat{\mu})$$
 (4.6)

is the approximate upper 1- α level confidence bound for $\theta(\underline{\lambda})$. As $\max(\lambda_1,\lambda_2,\ldots,\lambda_n) \to \infty$, the mlrb $\hat{t}(X)$ may be shown (see Johns 1975) to be asymptotically equivalent to

$$\widetilde{\mathbf{t}}(\mathbf{X}) = \sum_{i=1}^{k} \mathbf{a}_{i} \mathbf{X}_{i} + \mathbf{z}_{\alpha} \begin{bmatrix} \mathbf{k} & \mathbf{a}_{1}^{2} \mathbf{X}_{i} \\ \mathbf{\Sigma} & \mathbf{a}_{1}^{2} \mathbf{X}_{i} \end{bmatrix}^{\frac{1}{2}}, \qquad (4.7)$$

where z_{α} is the $100\alpha-$ th percentage point of the standard normal distribution.

Neither of these approximate bounds is useful for sample points near the origin in the usual orderings, but \hat{t} given by (4.6) becomes sufficiently precise for application to sample points beyond the scope of Table 1. A comparison of $t(x_1, x_2)$ and the corresponding m&rb for the last (i.e., the 100-th) points in each of the optimal orderings for the cases covered in Table 1 is given in Table 4.

Table 4. $mlrb/t(x_1,x_2)$ for the 100-th Point in Each Ordering

	a ₁ .								
α	.05	.10	.15	.20	.25	.30	.35	.40	.45
.01	.62	.95	.97	.97	.98	.97	.98	.97	.99
.05	.72	.88	.96	.95	.98	.97	.99	.95	.96
.10	.89	.95	.95	.96	.97	1.00	.97	.96	.98

These results suggest that the mlrb possesses satisfactory precision for sample points beyond those listed in Table 1 for k=2 whenever $a_1 \geq .10$. The last column of Table 3 giving the mlrb values for the examples considered illustrates the fact that for k>2 the mlrb tends to underestimate the correct value of the bound for sample points within the range that can be dealt with using Table 1 and the algorithm.

Two potential sources of error for the lower confidence bound on system reliability remain to be discussed. They are (i) the Poisson approximation to the binomial distribution of the observed failures, and (ii) the approximation for reliability given in (1.2) and reflected in the formula (1.6) for the lower bound r(x). It is intuitively clear from (1.1) ff. that the "worst case" for the Poisson approximation should occur when k = 1; since to match a given k = 1 level of reliability, say 1-p, by a k > 1 case, we must have $p = \sum_{i=1}^{k} p_i$, so that the p_i 's must be smaller than p which tends to improve the Poisson approximation.

For the case k = 1 the familiar upper confidence bounds for a single Poisson parameter apply and the actual coverage probabilities for the proposed method (3.1) can be computed for any n and p from tables of the binomial distribution. The results of several such calculations are shown in Table 5.

Table 5. "Worst Case" Analysis (k=1). Minimum Coverage Probabilities for r(x).

Reliability	1 - α				
q = 1 - p	.90	.95	.99		
.95	.906	.954	.991		
.90	.912	.958	.992		
.80	.924	.965	.995		
.70	.936	.972	.997		

These values suggest that the approximations operate to make the proposed confidence bounds slightly conservative. It is interesting to observe that the minimum coverage probabilities are not drastically different from the nominal values, even for a true reliability as low as .70.

5. Acknowledgments and Remarks Concerning the Computations

The computations for Table 1 were performed on a Digital Equipment PDP-11/34 running under a UNIX operating system. The production program for these computations (506 lines) was written in the "C" language by the author. The method used for the

computation of the upper bounds was an implementation of (2.7); and as has been noted, the sample points were ordered by the two-step prospective sequential method. The tabled results were subjected to various checks to insure that the correct global maxima were found in each case.

The computations involved in obtaining the one-step look-ahead results and the tree analysis associated with the semi-Bayesian results discussed in Section 3 were done on an IBM 370/168 machine using Fortran programs developed by David Pasta. These programs compute the upper bounds by a somewhat more complicated method used in the earlier phases of the study and detailed in Johns (1975).

Thanks are also due to Barry Eynon who helped with the development of Figure 1 and the display of Table 1, and to Robert Bell and Keaven Anderson for careful readings of Sections 2.

REFERENCES

- BOL'SHEV, L.N., and LOGINOV, E.A. (1969), "Interval Estimates in the Presence of Noise," <u>Theory of Probability and Its Applications</u>, 11, 82-94.
- BUEHLER, R.J. (1957), "Confidence Intervals for the Product of Two Binomial Parameters," <u>Journal of the American Statistical</u>
 <u>Association</u>, 52, 482-493.
- BUTCHER, A., LAMPKIN, H., and WINTERBOTTOM, A. (1978), "Transformations Improving Maximum Likelihood Confidence Intervals for System Reliability," Technometrics, 20, 467-473.
- EL MAWAZINY, A.H., and BUEHLER, R.J. (1967), "Confidence Limits for the Reliability of a Series Systems," <u>Journal of the American</u> <u>Statistical Association</u>, 62, 1452-1459.
- HARRIS, B., and SOMS, A.P. (1980), "Bounds for Optimal Confidence Limits for Series Systems," Technical Summary Report No. 2093, University of Wisconsin-Madison, Mathematics Research Center.
- (1981), "Improved Sudakov-Type Bounds for Optimal Confidence Limits on the Reliability of Series Systems," Technical Report No. 637, University of Wisconsin-Madison, Department of Statistics.
- JOHNS, M.V., JR. (1975), "Reliability Assessment for Highly Reliable Systems," Technical Report No. 1, Stanford University, Department of Statistics.
- JOHNS, M.V., JR. (1977), "Some Aspects of Reliability Assessment Based on Sample Orderings," <u>Proceedings of the ARO Workshop on Reliability and Probabilistic Design</u>, 101-110.
- JOHNSON, J.R. (1969), "Confidence Interval Estimation of the Reliability of Multicomponent Systems Using Component Test Data," PhD dissertation, University of Delaware.
- LEHMANN, E.L. (1959), <u>Testing Statistical Hypotheses</u>, New York: John Wiley and Sons.
- LENTER, M.M., and BUEHLER, R.J. (1963), "Some Inferences About Gamma Parameters with an Application to a Reliability Problem," <u>Journal</u> of the American Statistical Association, 58, 670-677.
- LIEBERMAN, G.J., and ROSS, S.M. (1971), "Confidence Intervals for Independent Exponential Series Systems," <u>Journal of the American Statistical Association</u>, 66, 837-840.

- LIPOW, M., and RILEY, J. (1959), "Tables of Upper Confidence Limits on Failure Probability of 1, 2, and 3 Component Serial Systems," Report No. TR-59-0000-00756, Space Technology Laboratories, Inc.
- LLOYD, D.K., and LIPOW, M. (1977), Reliability: Management, Methods, and Mathematics, 2nd ed., Redondo Beach: Published by the Authors.
- MADANSKY, A. (1965), "Approximate Confidence Limits for the Reliability of Series and Parallel Systems," <u>Technometrics</u>, 7, 495-503.
- MANN, N.R., and GRUBBS, F.E. (1974), "Approximately Optimum Confidence Bounds for System Reliability Based on Component Test Data," Technometrics, 16, 335-348.
- ______, SCHAFER, R.E., and SINGPURWALLA, N.D. (1974), Methods for Statistical Analysis of Reliablity and Life Data, New York: John Wiley and Sons.
- PEARSON, E.S., and HARTLEY, H.O. (1958), Biometrika Tables for Statisticians, Vol. I, 2nd Ed., Cambridge: University Press.
- STECK, G.P. (1957), "Upper Confidence Limits for the Failure Probability of Complex Networks," Technical Report No. SC-433, Sandia Corporation.
- WINTERBOTTOM, A. (1974), "Lower Limits for Series System Reliability from Binomial Data," <u>Journal of the American Statistical</u>
 Association, 69, 782-788.
- WINTERBOTTOM, A. (1980), "Asymptotic Expansions to Improve Large Sample Confidence Intervals for System Reliability," <u>Biometrika</u>, 67, 351-357.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION F	READ INSTRUCTIONS BEFORE COMPLETING FORM			
No. 6	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER		
FEASIBLE OBJECTIVE CONFIDENCE BOU	5. TYPE OF REPORT & PERIOD COVERED Technical Report			
RELIABILITY 7. AUTHOR(s)		6. PERFORMING ORG. REPORT NUMBER 8. CONTRACT OR GRANT NUMBER(a)		
M. Vernon Johns, Jr.		ARO DAAG29-79-C-0166		
Department of Statistics Stanford University Stanford, California		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS		
1. CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Research Office		12. REPORT DATE August 20, 1981		
Research III and I arm, 1970	709	13. NUMBER OF PAGES 45		
14. MONITORING AGENCY NAME & ADDRESS(If different	from Controlling Office)	15. SECURITY CLASS. (of this report) Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE		

Approved for public release; distribution unlimited.

- 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)
- 18. SUPPLEMENTARY NOTES

The view, opinions, and/or findings contained in this report are those of the author and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Reliability, series-system, confidence bounds, Poisson approximation,

Lindstrom-Madden, sample orderings

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

The basic problem of determining objective (frequentistic) confidence bounds for the reliability of a series system based on failure data from tests of the independent components is addressed. The notion of confidence bounds based on orderings imposed on the sample space is exploited, and certain optimality considerations are incorporated. Advantage is taken of the simplifications resulting from the use of the Poisson approximation for data from highly reliable components. Tables of exact confidence bounds are produced for the case of two-These bounds are computed using sample orderings component systems.

				_
Unc	4	 	• •	
Imc		 		en.
OLIC		 	_	

differing sample sizes.

cont. abstract for report no. 6

generated sequentially by a two-stage, prospective optimization procedure. A generalization of the Lindstrom-Madden technique is proposed for using the tables to find confidence bounds for systems consisting of more than two components with

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)