Subject: ___ @ show that 2 is a primitive root modulo 11. Ans: we need to show that smallest positive integer k for which-2K = 1 (mod 11) is $K = \Phi(11) = 10$ compute powers of 2 modulo 11 21 = 2 (mod 11) 2° = 4 (mod 11) 23 = 8 (med 11) 2 = 5 (mod 11) 25 = 10 (mod 11) 26 = 9 (mod 11) 27 = 7 (mod 11) 28 = 3 (mod 11) :CEF

Subject:	Date:
2° = 6 (mod	11)
2 = 6 (mo	1))
210 = 10 (mod	11)
The smollest	made of hasn 301 1274
so the first	time we get 1. is at
exponent 10.	so the order of 2
modulo 11 is	10. Hence 2 is
a promitive	root modulo 11.
	(LA hom) 2 = 1g
	(III ham) H & To
	(11 bin) g z 6 g
	(11 kam) 3 2 7 c
	(11 1019) 01 2 50
	11 - 2001 6 3 - 6 6
	BENERAL BRUST F E TO
	;CEFAI

Subject: Date:
2) How many incongruent primitive roots does
14 have?
Ans: Firest need to find, weather 14 hos
praimitive root.
A number on has primitive root if
only if-
n=2,4, pt on 2 pt where p is an
odd numbor.
Here, 14 = 2×7 & fits
so, 14 has primifive voots = $\varphi(\varphi(14))$
compate- $\varphi(14) = \varphi(2) \times \varphi(7) = 1 \times 6 = 6$
$\varphi(\varphi(14)) = \varphi(6) = \varphi(2\times3) = 1\times2$
Therefore, 14 has 2 incongruent
preimitive roots.
:CEFALO

Subject: _ 3) suppose n is pos int and at the multiplicative inverse of a (mod) a show and n(a) = and n(a") let, ord n(a) = K Then by definition $ak \equiv 1 \pmod{n}$ Take inverse both sides $(a')^{k} = 1^{k} = 1 \pmod{n}$ so worder of at divides k similarly, if (a+) = 2 (mod n) then am 2 1 (mod n) so the order of a divides m Hence order (a) zond (a-1) CEFALC

Subject : Date :
(6) If a is a primitive root mod n
must at also be a prainitive most?
since a is a primitive root
ond (a) = 9(n)
Forcm(a)
and n(at) = ondn (a)
= P (81)
Therefore, at also has orderen
a(n) so, it a also a
preimitive root modulo n
at is also a prainitive root
modulo n.
:CEFALO