### \* Announcement

# STAT 88: Lecture 12

#### Contents

Section 5.2: Functions of Random Variables

Section 5.3: Method of Indicators

#### Last time

<u>Sec 5.1</u> The expectation of a random variable X, denoted E(X), is the average of the possible values of X weighted by their probabilities:

$$E(X) = \sum_{\text{all } x} x P(X = x).$$

(Bernoulli RV)

$$X = \begin{cases} 1 & \text{with probability } p \\ 0 & \text{with probability } 1 - p \end{cases}$$

Then

$$E(X) = 1 \cdot p + 0 \cdot (1 - p) = p.$$

(<u>Uniform distribution</u>) X has a uniform distribution on  $\{1, 2, ..., n\}$  if

$$P(X = k) = \frac{1}{n} \text{ for } k = 1, \dots, n.$$

Then

$$E(X) = \sum_{k=1}^{n} k \cdot \frac{1}{n} = \frac{n+1}{2}.$$

(Poisson distribution) X has a Poisson distribution if

$$P(X = k) = \frac{e^{-\mu}\mu^k}{k!}$$
 for  $k = 0, 1, ...$ 

Then

$$E(X) = \sum_{k=0}^{\infty} k \cdot \frac{e^{-\mu} \mu^k}{k!} = \mu.$$
 Querage of Counts

**Sec 5.2** Let Y = g(X) be a function of the random variable X. Then

$$E(Y) = E(g(X)) = \sum_{\text{all } x} g(x)P(X = x).$$

Warm up: (Exercise 5.7.1) Let X have the distribution displayed in the table below.

|                                                                   | x           | -2  | -1   | 0    | 1   |
|-------------------------------------------------------------------|-------------|-----|------|------|-----|
|                                                                   | P(X = x)    | 0.2 | 0.25 | 0.35 | 0.2 |
|                                                                   | g(x)=  x-() | 3   | 2.   | ,    | 0   |
| (c) Find $E[X-1]$ . $9^{(x)=(x-1)^2}$ $9$ (d) Find $E((X-1)^2)$ . |             |     | 4    |      | 6   |

(c) Find 
$$E|X-1|$$
.

$$(0) E[x-1] = 3*(0.2) + 2*(0.25) + (*(0.35) + 0*(0.2))$$
  
= 1.45

(d) 
$$E(x-t) = 9 * (0.2) + 4 * (0.25) + 1 * (0.35) + 0 * (0.2)$$
  
= 3.15

## 5.2. Functions of Random Variables (Continued)

Recall that a random variable is a function on the outcome space  $\Omega, X : \Omega \to \mathbb{R}$ .

Example: Flip a fair coin twice.  $\Omega = \{HH, HT, TH, TT\}$ . Let X = # heads in 2 coin tosses. Then X(HH) = 2.  $\times$ (HT)  $\times$  =  $1 = \times$ (TH)  $\Upsilon(HT) = 1^2 = \Upsilon(TH)$ 

Now if  $Y = g(X) = X^2$ , this is also a function of the outcome space

$$Y(HH) = (X(HH))^2 = 4.$$
 So a function of a random variable is itself a random variable.



Joint Distribution Suppose two draws are made at random without replacement from a population that has five elements labeled 1,2,2,3,3. Define the following random variables:

- 1,2,3 •  $X_1$  is the number on the first draw
- $X_2$  is the number on the second draw 1,2,3

### ( Vector)

The pair  $(X_1, X_2)$  is a random variable and we describe its distribution in a table

$$\begin{split} P(X_1 = 1 ) X_2 = 1) &= P(X_1 = 1) P(X_2 = 1 | X_1 = 1) = \frac{1}{5} \cdot 0 = 0. \\ P(X_1 = 1, X_2 = 2)? &\text{rule} \\ P(X_1 = 1) P(X_2 = 2 | X_1 = 1) &= \frac{1}{5} * \frac{2}{45} &= \frac{2}{20} = \frac{1}{10} \end{split}$$

This fills out the table:

|           | $X_2 = 1$      | $X_2 = 2$      | $X_2 = 3$      |          |
|-----------|----------------|----------------|----------------|----------|
| $X_1 = 1$ | 0              | $\frac{2}{20}$ | $\frac{2}{20}$ | Sum to 1 |
| $X_1 = 2$ | $\frac{2}{20}$ | 2/20           | $\frac{4}{20}$ |          |
| $X_1 = 3$ | $\frac{2}{20}$ | $\frac{4}{20}$ | $\frac{2}{20}$ | J        |

Find 
$$P(X_1 + X_2 = 4)$$
?  $P(X_1 = 1, X_2 = 3) + P(X_1 = 2, X_2 = 2) + P(X_1 = 3, X_2 = 1)$   
=  $\frac{2}{20} + \frac{2}{20} + \frac{2}{20} = \frac{6}{20}$ 

$$p(X_1 = X_L) = p(X_1 = 1, X_2 = 1) + p(X_1 = 2, X_L = 2) + p(X_1 = 3, X_2 = 3)$$

$$= \frac{4}{2}$$

+ P(X, x2=4)

### Marginal Distribution Note that

$$P(X_1=1)=P(X_1=1,X_2=1)+P(X_1=1,X_2=2)+P(X_1=1,X_2=3).$$

So we can recover the distribution of  $X_1$  from the joint distribution.

|            | $X_2 = 1$      | $X_2 = 2$      | $X_2 = 3$      | Dist of $X_1$                       |
|------------|----------------|----------------|----------------|-------------------------------------|
| $X_1 = 1$  | 0              | $\frac{2}{20}$ | $\frac{2}{20}$ | $\frac{\frac{4}{20}}{=\frac{1}{5}}$ |
| $X_1 = 2$  | $\frac{2}{20}$ | $\frac{2}{20}$ | $\frac{4}{20}$ | $\frac{\frac{8}{20}}{=\frac{2}{5}}$ |
| $X_1 = 3$  | $\frac{2}{20}$ | $\frac{4}{20}$ | $\frac{2}{20}$ | $\frac{\frac{8}{20}}{=\frac{2}{5}}$ |
| Dist of Xz | 4 20           | 8 20           | 8 20           |                                     |

You can get the distribution of  $X_2$  by summing along columns.

Are 
$$X_1$$
 and  $X_2$  independent? 
$$P(X_1=2, X_2=2) \neq P(X_1=2) P(X_2=2) \Rightarrow N_2 = N_3 = N_4 =$$

$$P(X_1 = a, X_2 = b) = P(X_1 = a)P(X_2 = b)$$

for all cells in the joint table.

**Expectations of Functions** We can find the expectation of any function g of two random variables X and Y by extending our method for finding the expectation of a function of X.

- Take a cell of the joint distribution table of X and Y. This corresponds to one possible value (x, y) of the pair (X, Y).
- Apply the function g to get g(x,y).
- Weight this by the probability in the cell, to get the product g(x,y)P(X = x, Y = y).
- Add these products over all the cells of the table.

Example: Find  $E|X_1 - X_2|$ .  $g(x_1,x_2) = |x_1-x_2|$ 

|           | $X_2 = 1$                   | $X_2 = 2$                             | $X_2 = 3$              |
|-----------|-----------------------------|---------------------------------------|------------------------|
| $X_1 = 1$ | 0 3(1/1)=0                  | 2 9(1,2)=1<br>20 ×                    | 2/20 9(1,3) ≠≥         |
| $X_1 = 2$ | $\frac{2}{20} \Re(x,y) = 0$ | $\frac{2}{20} \mathfrak{I}^{(2,2)=0}$ | 4 <u>9(23)=۱</u><br>20 |
| $X_1 = 3$ | 2 3(3,1)=2<br>20            | $\frac{4}{20}$ 9(3,2)                 | ₹\ <u>2</u> 9(3,3)=0   |

Example: A joint distribution for two random variables M and S is given below.

|           | M = 2         | M = 3         |
|-----------|---------------|---------------|
| S=2       | 0             | $\frac{1}{3}$ |
| S=1       | $\frac{1}{3}$ | $\frac{1}{3}$ |
| Dist of M | 13            | ماس           |

Find 
$$E(M)$$
.

 $Exercise$ 

$$E(M) = 2* ( $\frac{1}{3}$ ) +  $3* ( $\frac{2}{3}$ )
$$= \frac{8}{3}$$$$$

## **5.3.** Method of Indicators

**Preliminary: Additivity of Expectation** No matter what the joint distribution of X and Y is, we have

$$E(X+Y) = E(X) + E(Y).$$

This <u>additivity</u> is <u>one</u> of the most important properties of expectation, because it is true whether the random variables are dependent or independent.

Furthermore, for any constants a and b, the linearity also holds:

$$E(aX + bY) = aE(X) + bE(Y)$$
. (3)

#### Method of Indicators to find E(X):

Key idea Counting the number of successful trials is the same as adding zeros and ones.

Example: A success is blue, and failure non blue

BRRGBB  

$$I \circ \circ \circ I \circ I \circ I$$
  
#blue =  $1 + 0 + 0 + 0 + 1 + 0 + 1 + 1 = 4$ .

<u>Recall</u> (Bernoulli (indicator) random variable)

$$X = \begin{cases} 1 & \text{with probability } p \\ 0 & \text{with probability } 1 - p \end{cases}$$

**Binomial** X is the number of successes in n independent trials all with the same probability p of success. To find E(X), write X as a sum of n indicators.

where 
$$I_j = \begin{cases} 1 & \text{if } j \text{th trial is success} \\ 0 & \text{otherwise} \end{cases}$$
 Then 
$$\mathbb{E}(X) = \mathbb{P}(I_j) + \mathbb{P}(I_j) + \mathbb{P}(I_j) + \mathbb{P}(I_j) + \mathbb{P}(I_j) + \mathbb{P}(I_j) = \mathbb{P}(I_j) =$$

$$E(X) = E(I_1 + I_2 + \dots + I_n) = E(I_1) + E(I_2) + \dots + E(I_n) = np.$$

Addievoly



**Hypergeometric** X is the number of good elements in a simple random sample of size n drawn from a population N elements of which G are good. To find E(X), write X as a sum of n indicators.

$$X = I_1 + I_2 + \cdots I_n,$$

where

$$I_j = \begin{cases} 1 & \text{if } j \text{th draw yields a good element} \\ 0 & \text{otherwise} \end{cases}$$

Then

$$E(X) = E(I_1 + I_2 + \dots + I_n) = E(I_1) + E(I_2) + \dots + E(I_n) = n \frac{G}{N}.$$
Additivity
$$E(\mathfrak{I}_{\overline{J}}) = \frac{G}{N}$$
by Symmetry