Name:	id:
SC217: Electromagnetic Theory,	AUTUMN'15 MIDSEM1
DA-IICT, B.Tech, Sem III	14:00-15:00 PM 10 th Sep'15 25 marks
<u>-</u>	be answered in the question paper. Others are to be anour name and ID above on the question paper and return
1. Encircle the correct choice. Ans	swer this in the question paper ($2 \times 5 = 10$)
(a) Consider two dimensional space the quantity A_xB_y -	vectors \vec{A} and \vec{B} . Under rotation in this two dimensional A_yB_x transforms as
(a) a scalar,(c) neither scalar nor vector	(b) a vector,or,(d) both, scalar and vector
(b) The velocity vector on the	surface of a whirlpool is given as $\vec{v} = \frac{y\hat{i} - x\hat{j}}{\sqrt{x^2 + y^2}}$. A light tiny
boat is found to spin in the	is whirlpool at a distance of 2 units from the center of the eed of this spin (not the revolution) in radians per second is
(a) 0 (b) 2 (c) $F(\vec{r}) = r^2$ where r is the of the over the surface $r = r^2$	listance from the origin.
(a) 6 (b) 3	
(d) $F(x, y, z) = f(\frac{x}{\sqrt{x^2 + y^2}})$ is	a scalar function in three dimension. $\vec{\nabla} F$ is proportional to
	(c) $\hat{\theta}$ (d) \hat{k}
(e) $A = i(y - z) + j(z - x)$ radius a on the x - y plane y	$+\hat{k}(x-y)$. The line integral $\oint \vec{A} \cdot \vec{dl}$ over a circular loop of with center at origin, traversed clockwise, is

(b) 0 **(c)** $-2\pi a^2$ **(d)** $4\pi a^2$

(a) $2\pi a^2$

- 2. An infinitely long wire along the z axis carries a uniform charge with density λ per unit length. Calculate the electric field due to this wire. (5)
- 3. Consider a vector field $\vec{A} = \vec{\omega} \times \vec{r}$. Evaluate

$$\int_{S} (\vec{\nabla} \times \vec{A}) \cdot \hat{n} da$$

over the upper half surface of an ellipsoid $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$. (The part that lies above the x-y plane).

You may use the fact that area of the ellipse $x^2/a^2 + y^2/b^2 = 1$ is πab . (5)

4. The electric field in a region is given as

$$\vec{E}(\vec{r}) = \frac{ca^2}{\epsilon_0} \frac{\hat{r}}{r^2} ; r \ge a$$

$$= 0 ; r < a$$

Describe the charge densities in the region, i.e, outside, inside and on the sphere r=a (5)

Gradient, divergence and curl in spherical and cylindrical co-ordinate systems

Spherical polar system

$$\vec{\nabla}F = \frac{\partial F}{\partial r}\hat{\mathbf{r}} + \frac{1}{r}\frac{\partial F}{\partial \theta}\hat{\theta} + \frac{1}{r\sin\theta}\frac{\partial F}{\partial \phi}\hat{\phi}$$

$$\vec{\nabla} \cdot \vec{\mathbf{A}} = \frac{1}{r^2}\frac{\partial}{\partial r}(r^2A_r) + \frac{1}{r\sin\theta}\frac{\partial}{\partial \theta}(\sin\theta A_\theta) + \frac{1}{r\sin\theta}\frac{\partial A_\phi}{\partial \phi}$$

$$\vec{\nabla} \times \vec{\mathbf{A}} = \frac{1}{r\sin\theta}\left[\frac{\partial}{\partial \theta}(\sin\theta A_\phi) - \frac{\partial A_\theta}{\partial \phi}\right]\hat{\mathbf{r}} + \frac{1}{r}\left[\frac{1}{\sin\theta}\frac{\partial A_r}{\partial \phi} - \frac{\partial}{\partial r}(rA_\phi)\right]\hat{\theta} + \frac{1}{r}\left[\frac{\partial}{\partial r}(rA_\theta) - \frac{\partial A_r}{\partial \theta}\right]\hat{\phi}$$

Cylindrical System

$$\vec{\nabla}F = \frac{\partial F}{\partial s}\hat{\mathbf{s}} + \frac{1}{s}\frac{\partial F}{\partial \phi}\hat{\phi} + \frac{\partial F}{\partial z}\hat{\mathbf{z}}$$

$$\vec{\nabla} \cdot \vec{\mathbf{A}} = \frac{1}{s}\frac{\partial}{\partial s}(sA_s) + \frac{1}{s}\frac{\partial A_{\phi}}{\partial \phi} + \frac{\partial A_z}{\partial z}$$

$$\vec{\nabla} \times \vec{\mathbf{A}} = \left[\frac{1}{s}\frac{\partial A_z}{\partial \phi} - \frac{\partial A_{\phi}}{\partial z}\right]\hat{\mathbf{s}} + \left[\frac{\partial A_s}{\partial z} - \frac{\partial A_z}{\partial s}\right]\hat{\phi} + \frac{1}{s}\left[\frac{\partial}{\partial s}(sA_{\phi}) - \frac{\partial A_s}{\partial \phi}\right]\hat{\mathbf{z}}$$