

Sajjad Hussain

Block 3 Lectures

Types of Transistors

Bipolar Junction Transistor

- Invention of BJT in 1948 at Bell Labs led to electronics changing the way we work, play, and live.
- BJTs can be found in several electronic devices such mobile phones, radios, etc.
- BJTs are mainly used for amplification and switching.

Bipolar Junction Transistor

- BJTs can be thought of as two diodes (p-n junctions) sharing a common region.
- Thus, there are two possible configurations with three terminals (emitter, base and collector)
 - npn BJT
 - pnp BJT
- In a *npn* transistor, the BJT consists of three semiconductor regions: the emitter region (*n* type), the base region (*p* type), and the collector region (*n* type).

• A pnp transistor has a p-type emitter, an n-type base, and a p-type collector.

BJT Modes of Operation

BJT Modes of Operation

Active Mode npn-BJT

Active Mode npn-BJT

 I_C is an exponential function of forward V_{BE} and independent of reverse V_{CB} .

Common-Emitter Configuration

BJT Characteristic Curve – I_C vs V_{CE}

Collector Current

 D_B : base minority carrier (electron) diffusion constant

N_B: Base doping concentration

A_E: Surface Area of Emitter

W_B: Base width

 n_{iB} : intrinsic carrier concentration of Base

Base Current

Some holes are injected from the P-type base into the N⁺ emitter. The holes are provided by the base current, I_B .

For a uniform emitter,

$$I_{B} = A_{E} q \frac{D_{E} n_{iE}^{2}}{W_{E} N_{E}} (e^{qV_{BE}/kT} - 1)$$

Current Gain

Common-emitter current gain, β_F :

$$\beta_F \equiv \frac{I_C}{I_B}$$

Common-base current gain:

$$I_C = \alpha_F I_E$$

$$\alpha_F \equiv \frac{I_C}{I_E} = \frac{I_C}{I_B + I_C} = \frac{I_C / I_B}{1 + I_C / I_B} = \frac{\beta_F}{1 + \beta_F}$$

It can be shown that $\beta_F = \frac{\alpha_F}{1 - \alpha_F}$

$$\beta_F = \frac{\alpha_F}{1 - \alpha_F}$$

$$\beta_{F} = \frac{G_{E}}{G_{B}} = \frac{D_{B}W_{E}N_{E}n_{iB}^{2}}{D_{E}W_{B}N_{B}n_{iE}^{2}}$$

EXAMPLE: Current Gain

A BJT has $I_C = 1$ mA and $I_B = 10$ μ A. What are I_E , β_F and α_F ?

Solution:

$$I_E = I_C + I_B = 1 \text{ mA} + 10 \text{ } \mu\text{A} = 1.01 \text{ mA}$$

 $\beta_F = I_C / I_B = 1 \text{ mA} / 10 \text{ } \mu\text{A} = 100$
 $\alpha_F = I_C / I_E = 1 \text{ mA} / 1.01 \text{ mA} = 0.9901$

We can confirm

$$\alpha_F = \frac{\beta_F}{1 + \beta_F}$$
 and $\beta_F = \frac{\alpha_F}{1 - \alpha_F}$

EXAMPLE: BJT Circuit

A BJT has R_C = 5 k Ω and R_B = 20 k Ω . Consider V_{CC} =12 V and β =70. What value of V_{BB} will be needed to bring the transistor to saturation?

BJT Power consumption

• Power consumption is given by,

$$P = VI$$

- In BJT, we have different currents and voltages, to be considered in power calculation. Current I_B and I_C are mainly responsible for the power consumption inside BJT.
- The total power in the transistor is:

$$P = V_{BE}I_B + V_{CE}I_C$$

• The collector current will be much larger than the base current, and thus the power in the transistor can be simplified to:

$$P \approx V_{CE}I_C$$

Base-Width Modulation

Output resistance:

$$r_0 \equiv \left(\frac{\partial I_C}{\partial V_{CE}}\right)^{-1} = \frac{V_A}{I_C}$$

Large V_A (large r_o) is desirable for a large voltage gain

Modern Semiconductor Devices for Integrated Circuits (C. Hu)

Base-Width Modulation by Collector Voltage

Modern Semiconductor Devices for Integrated Circuits (C. Hu)

Base-Width Modulation – how can we reduce the impact?

The base-width modulation effect is reduced if we

- (A) Increase the base width,
- (B) Increase the base doping concentration, N_B , or
- (C) Decrease the collector doping concentration, N_C .

- The base-emitter junction is usually forward-biased while the base-collector is reverse-biased. $V_{\rm BE}$ determines the collector current, $I_{\rm C}$.
- The base (input) current, I_B , is related to I_C by the commonemitter current gain, β_F . This can be related to the commonbase current gain, α_F . $\alpha_F = \frac{I_C}{I_E} = \frac{\beta_F}{1 + \beta_F}$
- In a npn BJT, an emitter is efficient if the emitter current is mostly the useful electron current injected into the base with little useless hole current (the base current). The emitter efficiency is defined as:

$$\gamma_E = \frac{I_E - I_B}{I_E} = \frac{I_C}{I_C + I_B}$$

 Base-width modulation by V_{CB} results in a significant slope of the I_C vs. V_{CE} curve in the active region (known as the Early effect).

Modern Semiconductor Devices for Integrated Circuits (C. Hu)