FREUDE AM KOPFRECHNEN VERMITTELN

EINE UNTERRICHTSEINHEIT PLANEN, MIT DEM ZIEL
OBERSTUFENSCHÜLERN FREUDE AM KOPFRECHEN ZU
VERMITTELN

eine Maturaarbeit von

Jérôme Landtwing

21. August 2016

Inhaltsverzeichnis

1	Vor 1.1	$egin{array}{lll} \mathbf{wort} \\ \mathbf{DANKSAGUNGEN:} & \dots & $	1										
2	Ein	eitung	2										
3	Ein	eitung	2										
4	Ma	erial und Methoden	4										
5	Inhalte der Lektion												
	5.1	Übergeordnetes Ziel	4										
	5.2	die Grundgesetze der Mathematik	5										
		5.2.1 Assoziativgesetz	5										
		5.2.2 Distributivgesetz	5										
		5.2.3 Kommutativgesetz	5										
	5.3	Addition	5										
		5.3.1 Von rechts nach links	6										
		5.3.2 Gruppen Bilden	6										
		5.3.3 Hinüberschieben	7										
	5.4	Subtraktion	8										
		5.4.1 die schriftliche Subtraktion	8										
		5.4.2 Kettenrechnungen	8										
		5.4.3 Der unsichtbare Helfer	9										
		5.4.4 Subtraktion einer schönen Zahl	9										
	5.5	Multiplikation	9										
		5.5.1 Faktoren Aufteilen	9										
		5.5.2 Summen Bilden	11										
		5.5.3 Doppelte Summe	11										
6	Ver	mittlung der einzelnen Inhalten	13										
	6.1	Arbeitsformen	13										
		6.1.1 Vormachen - Nachmachen - Üben	14										
		6.1.2 Lehrervortrag	14										
		6.1.3 Motorisches Lernen	14										
	6.2	Lektionsaufbau	15										
	6.3	Theorie erarbeiten	16										
7	Dui	chführung	19										
	7.1	Verlauf der Doppellektion	19										
	7.2	Verlauf der Übungsphase	21										
	7 2	Abaehluga	21										

1 Vorwort

8	Mein Eindruck						
	8.1	mein Fazit	22				
9	Aus	wertung des Projektes	22				
	9.1	Auswertung des Unterrichts	23				
	9.2	Auswertung der Leistungen	23				
	9.3	Streuung der Klasse	24				
	9.4	Quantiätsverlauf	25				
	9.5	Qualitätsetwicklung	26				
	9.6	Das Unmessbare	27				
10	Disk	kussion der Ergebnisse	28				
	10.1	Allgemeine Ergebnisse	30				
		Quantitative Entwicklung	30				
		Entwicklung der Qualität	32				
	10.4	Zusammenfassung	32				
11	Schl	usswort	33				
12	Nüt	zliches	33				
Lit	erat	ur	33				

1 Vorwort

- Weshalb habe ich dieses Thema gewählt: Freude an Mathematik, Freude weitergeben, evtl. Absicht später im Lehrerberuf tätig zu sein
- Mir fällt es leicht, mit Zahlen zu jonglieren, Mathematik hat mich von klein auf begeistert, möchte mein Wissen, meine Freude weitergeben!
- Meist verlieren junge Menschen die Lust am Kopfrechnen, an der Mathematik weil sie überfordert werden, Aufgaben nur nach Schema XY lösen müssen.

1.1 DANKSAGUNGEN:

Testpublikum Probelektion: Sanja, Evelin, Jeannine und Céline Céline fürs Zuhören und die private Unterstützung.

\input{abstract } Kurzzusammenfassung \rightarrow am Schluss schreiben. 1 A4 Seite

2 Einleitung

- Gegenstand der Untersuchung
- Problemstellung
- Hypothese
- Theorie und Ziel meiner Arbeit
- Eingrenzung des Untersuchungsfeldes
- Ausgangslage Skizzieren
- 2 A4 Seiten

3 Einleitung

Weshalb ist die Mathe unter meinen Mitschülern so unbeliebt? Weshalb fürchten sich so viele Schüler vor dem Kopfrechnen? Diese Fragen habe ich mir auch gestellt, denn für mich sind sowohl die Mathematik als auch das Rechnen im Kopf zwei Dinge, die ich mit Leidenschaft und gerne tue. Vielfach treffe ich bei meinen Mitschülern auf eine Hilfslosigkeit oder anders ausgedrückt gehen sie Aufgaben, die sie im Kopf lösen sollen mit sehr brachialen Methoden an und überfordern so ihren Kopf und sich selbst damit. Genau diese Schüler sind es, die mich mit schrägen Blicken beäugen, wenn ich ihnen erzähle, dass ich mich in der Freizeit freiwillig mit Mathematik beschäftige. Jedoch befasse ich mich in der Freizeit nicht mit Schulmathematik, welche hauptsächlich daraus besteht Zahlen aus Aufgaben herauszulesen und in Formeln, die allenfalls umgeformt werden müssen, einzusetzen. Solche Aufgaben, welche Beispielsweise von Matheolympiaden stammen, sind so aufgebaut, dass sie nicht mit Zahlen erschlagen werden können, sondern vielmehr durch kreative Lösungsansätze und aufdecken von Systemen gelöst werden können. Genau um diese Kreativität geht es in meiner Arbeit, ich möchte einer Oberstufenklasse vermitteln, dass es in der Mathematik eben nicht darum geht, Zahlen aus Aufgaben herauszulesen und in Formeln einzusetzen, sondern vielmehr dass Mathematik sehr viel mit Kreativität zu tun hat. Dies ist auch ein Thema dass Dambeck (2012) beschäftigt. Dambeck (2012, S. 83) erzählt von einer Studie, welche dem Phänomen der Kapitänsaufgabe genauer auf den Grund gegangen ist. Die Kapitänsaufgabe gibt es in vielen verschiedenen Varianten, das in der von Dambeck (2012) erwähnten Studie verwendete Beispiel lautet wie folgt: "Ein 27 Jahre alter Hirte hat 25 Schafe und 10 Ziegen. Wie alt ist der Hirte?"(Dambeck, 2012, S. 82) Um die Antwort zu erlangen, darf man – um himmels Willen – nichts rechnen, sondern muss nur die Aufgabe genau lesen, um herauszufinden, dass der Hirte 27 Jahre alt ist. Dennoch errechneten erstaunlich viele Kinder ein Alter für den Kapitän. Das verwunderliche dieser Studie war, desto älter die Kinder waren, desto mehr Kinder errechneten eine Lösung für die Aufgabe. Um die Ergebnisse der Studie zusammenzufassen: "Je mehr Mathematikunterricht die Schüler erlebt haben, umso schneller rechne sie ohne nachzudenken einfach blind drauflos." (Dambeck, 2012, s. 83). Die Schüler werden also in der Schule darauf getrimmt, Zahlen aus der Aufgabe herauszulesen, einer Variable zuzuordnen und eine Formel einzusetzen. Das führt auch dazu, dass die Schüler aus einer Anzahl Jahren, einer Anzahl Schafen und einer Anzahl Ziegen zu einer Anzahl Jahren zusammenzählen. Vielmehr ist die Mathematik die Kunst, eine möglichst einfache Lösung für ein komplexes Problem zu finden. Diesen Grundgedanken wollte ich einer Oberstufenklasse vermitteln. Besonders geeignet dafür erschien mir das Thema Kopfrechnen. Denn gerade im Kopfrechnen kann man extrem viel herausholen, indem man eine geschickte Lösung sucht. Laut Dambeck (2012, S. 10) gewinnen die Schüler Freude an der Mathematik, wenn sie eigene Wege suchen und auch gehen können. Genau dafür eignet sich das Kopfrechnen besonders gut, da es eine Vielzahl an verschiedenen Wegen gibt, die ans Ziel führen. Ich möchte somit gleich zweierlei Dinge erreichen. Ich möchte einer Gruppe von Oberstufenschülern einige Techniken beibringen, die es ihnen erlauben Kopfrechenaufgaben auf verschiedene Weisen zu lösen und ihnen so einerseits auf der einen Seite Freude am Kopfrechnen vermitteln und andererseits auf einer Metaebene ihnen zeigen, worum es in der Mathematik wirklich geht.

Bei dieser Gelegenheit möchte ich sogleich noch zwei wichtige Begriffe einführen, die im Verlauf der Arbeit eine wichtige Rolle spielen. Unter Kopfrechnen versteht Krauthausen und Scherer (2014, S. 43): "Kopfrechnen, bei dem ohne einen Notation von Zwischenschritten die Lösung einer Aufgab im Kopf erfolgt (dies geschieht unter Ausnutzung von Strategien) [...] "diese Definition kann ich 1:1 zustimmen und werde sie deshalb auch so übernehmen. Die Definition des halbschriftlichen Rechnens lautet wie folgt: "Halbschriftliches (oder gestütztes Kopfrechnen), welches durch die Notation von Zwischenschritten oder Teilergebnissen gekennzeichnet ist. "(Krauthausen & Scherer, 2014, S. 43) Das halbschriftliche Rechnen dient, in meinem Sinne, vor allem dazu sich Strategien für das Kopfrechnen anzulegen und so auf einem begleiteten Wege auszuprobieren und zu verinnerlichen.

In der Arbeit werde ich des öfteren von mathematischen Tricks sprechen. Diese mathematischen Tricks sind einfache Termumformungen, die kompliziert aussehende Rechnungen so umformen, damit sie im Kopf lösbar sind. Diese Tricks gründen auf den mathematischen Grundgesetzen und sind mathematisch korrekt!

Wenn es um das Kopfrechnen geht ist die Vedische Mathematik nicht weit.

Die Vedische Mathematik besteht vorallem auf abkürzungen, die einem Helfen Rechnungen im Kopf zu lösen auf. Ich habe mich bewusst von der Vedischen Mathemaik ferngehalten, da ich diese Tricks selbst nicht durchschauen kann, weiter braucht es um erfolgreich zu sein ein sehr breites Repetoire und sehr viel Übung. Es funktioniert, aber ich weiss nicht wie

4 Material und Methoden

5 Inhalte der Lektion

Das Ziel meiner Lektion war den Schülern die Freude am Kopfrechnen zu vermitteln, die ich besitze. Dies wollte ich erreichen, indem ich ihnen einige Tricks beibringen wollte, mit denen sich Rechnungen so vereinfachen lassen und sich so im Kopf lösbar sind. Im folgenden Kapitel geht es darum, was ich vermitteln möchte. Es werden die mathematischen Grundlagen und wie die Tricks funktionieren erklärt.

5.1 Übergeordnetes Ziel

Bei der Planung der Lektion waren mit vielerlei Dinge sehr wichtig:

- Verständlich für alle Schüler
- verschiedene Werkzeuge für die Schüler, damit sie selbst kreativ werden können
- das Verständnis des mathematischen Grundgedankens
- Alle Schüler sollen Freude am Kopfrechnen und der Mathe erhalten
- Schüler sollen daraus profitieren

Ich möchte den Schülern diverse Tricks beibringen, die ihnen helfen Rechnungen zu vereinfachen. Diese Tricks sind im wesentlichen algebraische Umformungen und mathematisch korrekt! Damit kein Durcheinander entsteht, bespreche und erläutere ich im kommenden Teil nacheinander die vier Grundrechenarten: den Hintergrund und die Tricks, welche für die jeweilige Rechenart angewendet werden können bezüglich der jeweiligen Rechenart.

Die meisten Tricks bauen auf den 3 Grundgesetze der Mathematik auf. Die Schüler haben sie im Unterricht bereits kennengelernt, deshalb werde ich sie hier nur kurz anschneiden und nicht gründlich ausführen.

5.2 die Grundgesetze der Mathematik

5.2.1 Assoziativgesetz

$$(a+b) + c = a + (b+c) \tag{1}$$

In Worten ausgedrückt heisst das, dass die Reihenfolge der Ausführung keine Rolle spielt. Es spielt also keine Rolle ob ich zuerst a und b zusammenzähle und dann c addiere oder zuerst b und c addiere und dann a dazuzähle. Das Assoziativgesetz ist gültig für die Addition und die Multiplikation, jedoch nicht für die Subtraktion und Division.

5.2.2 Distributivgesetz

$$a \cdot (b+c) = a \cdot b + a \cdot c \tag{2}$$

Das Distributivgesetz besagt, dass bei der Multiplikation eines Faktors mit einer Summe (oder auch einer Differenz) die Multiplikation in zwei Teilschritte aufgeteilt werden darf, indem man die beiden Summanden (in der Allgemeinen Formel b und c) einzeln mit dem Faktor a multipliziert und aus diesen zwei Teilprodukten $(a \cdot c, b \cdot c)$ die Summe bildet. Ausformuliert bedeutet das Distributivgesetz, dass bei einer Multiplikation die Faktoren in Summe aufgeteilt werden und nach obigem Schema weitergerechnet werden kann, das Distributivgesetz gilt für den allgemeinen Fall einer Multiplikation, wobei die Faktoren sowohl in Summen als auch in eine Differenzen aufgeteilt werden dürfen.

Das Distributivgesetz, kann auch angewendet werden, wenn beide Faktoren als Summe bzw. Differenz vorliegen:

5.2.3 Kommutativgesetz

$$a + b = b + a \tag{3}$$

Hier wird verdeutlicht, dass die Anordnung der einzelnen Summanden das Resultat nicht beeinflusst. Bei der Addition und der Subtraktion darf die Reihenfolge, in der man die einzelnen Summanden zusammenzählt bzw. die Faktoren multipliziert frei gewählt werden. Konkret erlaubt uns dieses Gesetz die einzelnen Summanden oder Faktoren so zu gruppieren, dass es uns leichter fällt sie zusammenzuzählen. Mehr dazu auf Seite ??.

5.3 Addition

Bei einer Addition werden zwei oder mehr Zahlen zusammengezählt. Formal wird eine Addition so dargestellt:

 $Summand_1 + Summand_2 + Summand_3 + \ldots + Summand_n = Summe$

Plusrechnen, was tut man genau?, was passiert?, evtl Zahlenstrahl

5.3.1 Von rechts nach links

Da ich mich in meiner Arbeit mit dem Rechnen im Kopf befasse und meine Probanden die Oberstufe besuchen, setze ich die Kenntnis der schriftlichen Addition voraus. Deshalb werde ich hier nur kurz im Tiefflug darüberstreifen, um zu repetieren, exerzieren oder aufzufrischen.

Die schriftliche Addition funktioniert folgendermassen: Man schreibt die Zahlen untereinander und beginnt von der Einerstelle, fährt weiter mit der Zehnerstelle und arbeitet sich nach links vor, bis man bei der Stelle mit der grössten Zehnerpotenz angekommen (im Beispiel die Hunderterstelle) ist. Die Rechenrichtung ist von rechts nach links. Ist das Ergebnis in einer Spalte grösser als 10, so wird dies als Übertrag in die nächste Spalte (nächst grössere Zehnerstelle) eingeschrieben.

		Hunderter	Zehner	Einer
		1	3	4
		1	6	4
	+		5	3
		2	14	11
		2	4	1
Überträge	+	1	1	
		3	5	1

Abbildung 1: Die schriftliche Addition von 134 + 164 + 53

Eine beliebte Methode, bei der man exakt die gleichen Rechenschritte wie bei der schriftlichen Addition durchführt, jedoch ohne sich die Zahlen untereinander aufzuschreiben. Man Rechnet also nach dem gleichen Schema wie in Abbildung 1. Man rechnet Zeile für Zeile, beginnend bei der Einerstelle und arbeitet sich Zeile für Zeile nach links vor bis die Zahlen ausgehen. Dies ist jedoch eine sehr brachiale Standardmethode, klar führt auch sie ans Ziel, doch muss man sich, und das sei der grosse Nachteil dieser Methode extrem viele Zwischenresultate merken. Ich möchte niemanden der sich diese Methode zu eigen gemacht hat davon abhalten so zu rechnen, jedoch werde ich im folgenden einige Tricks zeigen, mit welchen man solche Rechnungen auf eine andere Weise lösen kann.

5.3.2 Gruppen Bilden

Die Definition des Kommutativgesetzes (zu finden auf Seite 5 Gleichung 3) besagt, dass bei Additionen und Multiplikationen die Reihenfolge der Summanden bzw. Faktoren frei gewählt werden kann. Dies ist vor allem bei Kettenrechnungen ein sehr mächtiges Werkzeug! Am besten ordnet man die einzelnen Glieder einer Kettenrechnung so an, dass man mit dem kleinstmöglichen Aufwand ans Ziel kommt.

Das Kommutativgesetz wurde bereits auf Seite 5, Gleichung 3 vorgestellt. Hier erläutere ich nun, wie man sich die vom Kommutativgesetz besagten Regeln zu nutze machen kann. Aus dem Kommutativgesetz folgt, dass die Reihenfolge, in der man die verschiednen Summanden zusammenzählen will frei wählbar ist. Am besten wählt man sie so, dass man möglichst wenig zu rechnen hat, indem man zum Beispiel Gruppen bilden, die Zusammen eine runde Zahl ergeben. Der Trick, Gruppen zu bilden, ist vor allem wenn es um Kettenrechnungen geht ein sehr mächtiges Werkzeug!

$$13 + 56 + 34 + 53 = ?$$

Versucht man Gruppen zu bilden, so wird den meisten ins Auge stechen, dass sich die Einerstellen der Zahlen 56 und 34 zusammen auf 10 ergänzen, 56 + 34 also eine runde Zahl (90) ergeben. Wendet man diesen Weg an, so kann man die Rechnung wie folgt vereinfachen:

$$(56+34)+13+53=90+13+53=103+53=156$$

Jedoch könnte man auch sehen, dass die Einerstellen der Zahlen 13, 34, 53 sich auch auf 10 ergänzen und die Rechnung wie folgt vereinfachen:

$$(13+34+53)+56=100+56=156$$

Sowohl der erste als auch der zweite Weg sind korrekt, klar könnte man auch im Kopf von Links nach Rechts immer eine Zahl zur nächsten dazu addieren, jedoch entstehen dabei eine Vielzahl an Zwischenschritten / Zwischenresultaten und das wollen wir beim Kopfrechnen vermeiden. Mit diesem Beispiel möchte ich zeigen, dass es viele verschiedene Wege gibt, eine Aufgabe im Kopf zu rechnen. Es gibt dabei weder richtig noch falsch vielmehr sind es Wege. Jeder Schüler soll also seinen eigenen Weg finden, der für ihn am logischsten erscheint.

5.3.3 Hinüberschieben

Die Summe verändert sich nicht, wenn beim einen Summanden eine Zahl addiert wird, wenn man beim anderen Summanden die selbe Zahl wieder abzieht. Diesen Trick ist sehr hilfreich um **Zehnerübergänge zu vermeiden**. Man vermeidet den Zehnerübergang indem man die eine Zahl zu einer Zehnerzahl ergänzt bzw. reduziert. Dadurch führt man nicht einen Zehnerschritt im eigentlichen Sinne aus, sondern macht den Schritt zum vollen Zehner. Ein ganz banales Beispiel hierfür ist die Addition von 99. Was ergibt 23 + 99. In diesem Beispiel lohnt es sich (23 - 1) + (99 + 1) zu rechnen, also 22 + 100 = 122 Die Korrektheit dieses Tricks lässt sich ganz einfach wie folgt beweisen.

$$(a+x) + (b-x) = a+b+(x-x) = a+b$$

5.4 Subtraktion

Bei einer Subtraktion werden eine oder mehrere Zahlen von einer Zahl abgezogen. Der Allgemeine Fall wird so dargestellt.

$$Minuend - Subtrahend_1 - Subtrahend_2 - \dots - Subtrahend_n = Differenz$$
(4)

5.4.1 die schriftliche Subtraktion

Wie bereits bei der Addition werde ich auch die schriftliche Subtraktion nur aus dem Gründen der Anschaulichkeit hier besprechen. Wie bei der schriftlichen Addition werden die Zahlen untereinander hingeschrieben so dass Einer-, Zehner- und Hunderterstelle übereinander stehen. Danach wird in jeder Spalte einzeln jeweils alle Subtrahenden vom Minuenden abgezogen. Ist die Summe der Subtrahenden kleiner als der Minuend, so kann die Differenz problemlos ausgerechnet werden und in der jeweiligen Spalte als Ergebnis eingetragen werden. Etwas komplizierter wird es, wenn die Summe der Subtrahenden grösser ist als der Minuend, also eine grosse Zahl von einer kleinen abgezogen werden soll. Da wir uns in der Menge der natürlichen Zahlen bewegen gibt es keine negativen Zahlen und Resultate. Deshalb muss man, damit die Subtraktion dennoch vollführt werden kann von der nächsthöheren Stelle einen oder mehrere Zehner geborgt werden. (in der Abbildung grün hervorgehoben.) Wer möchte kann es auch wie folgt umstellen und den Überschlag als zusätzlichen Subtrahenden in der jeweiligen Zeile hineinschreiben. Eine alternative Methode findet sich im Kapitel ??. Summe bilden und ergänzen im Kapitel Gruppen bilden erklären!

		Hunderter	Zehner	Einer
Minuend		(6 -1)	2	8
Subtrahend	-	1	8	2
Das wird gerechnet		(6 - 1) - 1	12 - 8	8-2
Differenz		4	4	6

Abbildung 2: Die schriftliche Subtraktion: 628 - 182

5.4.2 Kettenrechnungen

Zieht man nacheinander mehrere Zahlen von einer Zahl ab, kann die Summe aller Subtrahenden vom Minuenden abgezogen werden. Dies lässt sich ganz einfach mit dem Trick bewirken, das man alle Subtrahenden in eine Klammer setzt und ein Minus davor. Denn das Minus wechselt alle Vorzeichen in der Klammer.

$$a - b - c - d = a - (b + c + d)$$

5.4.3 Der unsichtbare Helfer

Die Differenz gibt an, wie gross der Unterschied zwischen zwei Zahlen ist. Als Beispiel möchte ich zwei fiktive nebeneinander stehende Hochhäuser ins Leben rufen, das eine ist 10 Meter höher als das andere. Meine Überlegungen zu diesem Beispiel: Niemand hat definiert, von wo aus der Höhenunterschied zwischen den beiden Häusern korrekterweise gemessen werden muss. Man könnte von Dach des einen Hochhauses messen, wie auch von der Oberfläche, auf der die beiden Häuser stehen. Aus dieser Überlegung habe ich den folgenden Trick abgeleitet: die Differenz verändert sich nicht, wenn sowohl beim Minuenden als auch beim Subtrahenden die gleiche Zahl addiert oder subtrahiert wird. Der algebraische Beweis sieht so aus:

$$(a-x) - (b-x) = a - x - b + x = a - b - x + x = a - b$$

 $(a+x) - (b+x) = a + x - b - x = a - b + x - x = a - b$

Weil das Minus die Vorzeichen in der Klammer wechselt, entstehen im Zusammenhang mit x zwei gegenteilige Vorzeichen, die sich gegenseitig auslöschen.

5.4.4 Subtraktion einer schönen Zahl

Der Begriff schöne Zahlen wurde in der Einleitung definiert. Am Beispiel der Rechnung 1000 - 738 möchte ich erklären, wie man die Subtraktion von einer Runden zahl vereinfachen kann: Wie man sieht ist in allen Spalten ausser

	Tausender	Hunderter	Zehner	Einer
	1	0	0	0
-		7	3	8
Überträge	1	1	1	
		2	6	2

Abbildung 3: Die Subtraktion von einer schönen Zahl

der Einerstelle ein übertrag von 1 entstanden, dies ist keine Überraschung, denn zieht man von Null eine Zahl die ungleich 0 ist ab, so muss man sich einen Zehner von der nächst grösseren Stelle borgen. Da das für alle schönen Zahlen der Fall ist, kann man die folgende Regel ableiten: Subtraktion einer schönen Zahl: Alle von 9 abziehen, die letzte von 10.

5.5 Multiplikation

5.5.1 Faktoren Aufteilen

Da die Multiplikation assoziativ ist, darf eine Multiplikation in mehrere Schritte aufgeteilt werden. Beispielsweise darf eine Multiplikation mit 4 als eine Multiplikation mit zwei und nochmals mit zwei angesehen werden. Oder

eine Multiplikation mit 5 darf als eine Multiplikation mit 10 und eine anschliessende Division mit 2 (äquivalent zu der Multiplikation mit $\frac{1}{2}$

$$(a \cdot b) \cdot c = a \cdot (b \cdot c) = a \cdot b \cdot c \tag{5}$$

Nähere Erläuterungen möchte ich am Beispiel der Rechnung $4\cdot27$ durchführen. man kann die Rechnung wie folgt ansehen:

$$4 \cdot 27$$

Betrachtet man die formale Schreibweise des multiplikativen Assoziativgesetzes (Formel 5 auf Seite 10) so kann man die Rechnung auf die folgenden Arten anschauen:

• Man interpretiert die Rechnung so, dass der Faktor 4 als $(a \cdot b)$ angesehen wird also sähe die Rechnung so aus:

$$(4) \cdot 27 = ?$$

Wie in Formel 5 zu sehen ist, können in der Klammer mehrere Faktoren stehen. Damit sich das Ergebnis der Rechnung nicht verändert muss jedoch das Produkt in der Klammer 4 ergeben. Es bieten sich die folgenden Rechnungen an: $1\cdot 4$ oder $2\cdot 2$ (natürlich gäbe es noch viel mehr Multiplikationen mit dem Ergebnis 4. Diese Rechnungen würden jedoch negative Zahlen und oder Brüche beinhalten und sowohl negative Zahlen als auch Brüche sind schwieriger zu handhaben als positive, ganze Zahlen.) Da mit der Umformung $1\cdot 4$ lediglich Anschauungskosmetik ist, da die Multiplikation mit 1 vernachlässigt werden kann, fahren wir mit der zweiten Möglichkeit $(4=2\cdot 2)$ Also schreiben wir die Rechnung so:

$$(2 \cdot 2) \cdot 27 = ??$$

Da die Multiplikation kommutativ ist, dürfen die Faktoren in eine beliebige Reihenfolge gebracht werden. Da die Multiplikation mit 2 einfacher ist als die Multiplikation mit 27 nehmen wir die 27 an den Anfang und multiplizieren diese zweimal mit der Zwei.

$$(27 \cdot 2) \cdot 2 = (54) \cdot 2 = 108$$

• Es ist jedoch auch erlaubt, die 27 in Faktoren zu zerlegen. Hier gibt es wiederum zwei Möglichkeiten: 1 · 27 und 3 · 9. Wie im vorherigen Beispiel wird mit der Umformung von 27 zu 27 · 1 keine Vereinfachung herbeigeführt. Deshalb fahren wir weiter mit der Umformung von 27 zu 3 · 9 fort und erhalten die folgende Rechnung:

$$4 \cdot (27) = 4 \cdot (3 \cdot 9) = 4 \cdot 3 \cdot 9 = 12 \cdot 9$$

So wurde aus der Rechnung $4 \cdot 27$ eine völlig andere Rechnung $9 \cdot 12$. Wie man das einfach ausrechnen kann, wird im nächsten Kapitel erklärt.

5.5.2 Summen Bilden

Um diesen Trick anzuwenden macht man sich das Distributivgesetz zu nutze indem man sich aus einem Faktor eine Summe bildet. Es entstehen zwei Teilrechnungen, deshalb macht es vor allem dann Sinn, diesen Trick anzuwenden, wenn man das eine Teilresultat bereits kennt. Vor allem bei der Multiplikation mit Zahlen die nahe an einem Zehner liegen ist dies ein Mittel um sehr schnell an das Resultat zu gelangen. Im vorangehenden Kapitel tauchte die Rechnung $7 \cdot 17$ auf. Vielfach wird das Distributivgesetz unbewusst angewandt: 15 * 7 = 10*7 + 5*7

Man wandelt 17 in eine Summe um, es bietet sich an die Summanden so zu wählen, dass die weiteren Rechenschritte möglichst einfach sind, also wählt man in diesem Beispiel die Summanden 10 und 7. Danach multiplizieren wir diese Summe unter Anwendung des Distributivgesetzes aus:

$$7 \cdot (10+7) = 10 \cdot 7 + 7 \cdot 7 = 70 + 49 = 119$$

Die Multiplikation mit 10 ist keine schwierige Sache, lediglich eine null muss am Ende der Zahl angehängt werden und die zweite Teilrechnung $(7 \cdot 7)$ gehört zum kleinen Einmaleins und ist den meisten geläufig. Also erhält man die Zwischenresultate ohne grosse Rechnereien.

5.5.3 Doppelte Summe

Die Methode "doppelte Summe" ist im Grunde genommen nichts anderes als die Weiterführung der Methode "Summen bilden". Statt eine Zahl in eine Summe umzuwandeln, bildet man in diesem Fall aus beiden Zahlen eine Summe bildet. Allgemein sieht eine Multiplikation so aus:

$$(a+b) \cdot (c+d) = ac + ad + bc + bd$$

Diese etwas unschöne Formel, kann man vereinfachen, unter Einführung der Nebenbedingung, dass in beiden Summen der gleiche Summand vorkommen soll. Wir gehen davon aus, dass die Summen so gewählt wurden, dass die Variabel a und c den gleichen Wert haben und deshalb beide mit der Variabel a dargestellt werden können:

$$(a+b) \cdot (a+d) = a^2 + ab + ad + bd$$

Unter Anwendung des Distributivgesetzes (kap. 5.2.2) kann der Term wie folgt vereinfacht werden:

$$a^{2} + ab + ad + bd = a^{2} + a \cdot (b+d) + bd$$

Somit wurde die Multiplikation von zwei Faktoren umgewandelt in die Addition von einer Quadratzahl und zwei Produkten. Damit diese Endformel

auch wirklich für jedermann im Kopf lösbar ist, sollten die Zahlen geschickt gewählt werden. Besonders einfach wird die Rechnung, wenn die Variable a so gewählt wird, dass sie eine ganze Zehnerzahl ist. Dass man dank diesem Kniff eine schwierige Multiplikation, im Kopf lösen kann, möchte ich mit folgendem Beispiel untermauern.

$$23 \cdot 16 = ?$$

als erstes wandeln wir beide Faktoren in eine Summe um und achten darauf, dass in beiden Summen der gleiche Summand vorkommt. Besonders geschickt ist es, diesen Summanden als eine ganze Zehnerzahl zu wählen. Hat man zwei Zahlen in der Nähe des gleichen Zehners, in unserem Beispiel 20, so macht es sinn Summen mit diesem Zehner zu bilden. Streng genommen ist die Umwandlung von 16 zu (20-4) keine Addition sondern eine Subtraktion, auch das ist erlaubt. Einschub, dass Subtraktion 20 - 4 auch als Addition (20+(-4)) angesehen werden kann?

$$(20+3) \cdot (20-4) = ?$$

$$(20+3) \cdot (20-4) = 20^2 + 3 \cdot 20 - 4 \cdot 20 - 3 \cdot 4$$

Aus vier Zwischenresultaten wurden drei und von diesen dreien ist eines (a^2) eine Quadratzahl, sollte also den Schülern bekannt sein. Also bleiben noch zwei Rechenschritte übrig: $a \cdot (b+d)$ Hier ist es wichtig, dass zuerst die Klammer ausgerechnet und erst anschliessend die Multiplikation durchgeführt wird, um den Aufwand möglichst gering zu halten. Zum Schluss muss einzig noch die Rechnung $b \cdot d$ wirklich ausgerechnet werden. Im normalen Fall sollte dies jedoch mit dem kleinen Einmaleins möglich sein.

Ein Spezialfall

Die dritte binomische Formel sieht wie folgt aus:

$$(a+b) \cdot (a-b) = a^2 - b^2$$

Diese Formel kann man sich zu nutze Machen, sobald man zwei Zahlen haben, die nahe beieinander liegen, bevorzugt mit einem Zehner in der Mitte. Beispiel: $22 \cdot 18 = (20+2) \cdot (20-2) = 400-4 = 496$

- Lektionen weshalb?
- Weshalb ein grosses Arsenal an Werkzeugen -¿ Damit die Schüler eigene Lösungswege suchen können und diese weiterentwickeln können.
- Aufbau der Lektion
- Aufbau der Übungsblättern / Tests

6 Vermittlung der einzelnen Inhalten

 ohne entsprechende Mittel kann man nicht kreativ werden, speziell nicht in Mathematik! Deshalb vermittelte ich den Schülern verschiedne Werkzeuge, damit sie kreativ werden können. Nicht das Erarbeiten der verschiednen Tricks steht im Vordergrund, sondern das beherrschen davon.

Mir war von Anfang an bewusst, dass ich eine grosse Fülle von Stoff in einer Doppellektion vermitteln wollte. Das zuvor erarbeitete Repertoire an Tricks ist bereits eine gekürzte Fassung einer Auswahl von Tricks. Ich war mir bewusst, dass es zeitlich sehr knapp werden könnte. Dennoch trennte ich mich von keinem weiteren Trick. Mein Ziel war, die Schüler nich zu nötigen nach einem vorgegebenen Schema zu rechnen, sondern dass sie selbst einen Weg suchen können und das ist nur möglich, wenn sie ein breites Arsenal an zu Verfügung stehenden Möglichkeiten haben. Ich möchte den Schülern Werkzeuge beibringen, je nach Situation ist ein schweizer Taschenmesser ein sehr wertvolles Utensil, man kann damit notfalls auch einen Baum fällen, jedoch lässt sich ein Baum leichter mit einer Säge fällen. Mein Ziel war den Schülern einige Grundlegende Werkzeuge für die drei wichtigsten Grundrechenarten mitzugeben. Also ihren Werkzeugkasten mit Hammer, Schraubenzieher und einigen Zangen auszurüsten, damit sie alle im Alltag auftretenden Probleme lösen können.

In diesem Kapitel möchte ich nun genau beschreiben, wie ich die Lektion aufgebaut habe. Was ich aus welchem Grund so gemacht habe. Laut Meyer (2015) soll eine Lektion in die folgenden Teile aufgeteilt werden: Einstieg, Interesse wecken, Theorie erarbeiten, Umsetzung, Abschluss. Ich habe mich dazu entschieden, dass ich die Schritte Theorie erarbeiten und die Umsetzung in einem Schritt zusammen nehme und für jeden Trick einzeln durchführen werde. Dies tat ich aus dem einfachen Grund, damit zum einen keine Verwirrung entsteht, zum anderen, damit die Schüler nicht zu lange Zeit nur zuhören müssen, sondern selbst aktiv werden können.

6.1 Arbeitsformen

Damit die Schüler kreativ werden können, brauchen sie eine Fülle an Tricks. Deshalb legte ich den Fokus nicht auf das gemeinsame Erarbeiten des Inhalts, dafür fehlte schlicht und einfach die Zeit. Ich rückte das Verstehen und die Fähigkeit, die erlangten die Tricks zu anzuwenden und bestenfalls weiter zu entwickeln in den Mittelpunkt.

6.1.1 Vormachen - Nachmachen - Üben

Das Prinzip Vormachen - Nachmachen - Üben wurde von Landwehr (1997, s. 151f) vorgestellt. Diese Technik dient der Vermittlung von Fertigkeiten und Handlungstechniken. Der Name ist Programm, das System baut, wie es der Name sagt darauf auf, dass die Lehrperson eine Technik vorzeigt, die Schüler diese imitieren und sie anschliessend selbst anwenden indem sie Ubungen mit gezeigter Methode üben. Bemängelt werden, die fehlende Erkenntnisgewinnung und der mangelnde Platz für die eigene Lösungsvorschläge. Diesen Kritikpunkten kann ich insofern entgegensprechen, als dass die Technik lediglich der Vermittlung von Lösungsstrategien dient und diese Lösungsstrategien dazu da sind, damit die Schüler später, beim Lösen der Aufgaben, eigene Lösungsvorschläge kreieren können. Die Technik Vormachen - Nachmachen - Üben ist also lediglich Mittel zum Zweck, um den Schülern die notwendigen Werkzeuge mitzugeben, damit sie einen eigenen Lösungsweg für die verschiednen Rechnungen entwickeln können. Ich entschied mich für diese Technik, weil die gemeinsame Erarbeitung der einzelnen Strategien, nicht das übergeordnete Ziel ist und die Zeit dafür schlicht zu knapp war.

6.1.2 Lehrervortrag

geeignete Quelle suchen, um zu Erklären, worum es geht. Ich habe mich für den Lehrervortrag entschieden, da ich den Schülern, viele Inputs in kurzer Zeit mitgeben wollte. Deshalb hatte ich die Zeit nicht, die Schüler verschiedenste Techniken selbständig erarbeiten zu lassen. Sehrwohl achtete ich im Vortrag darauf, dass ich immer wieder Schülerinputs einbrachte indem ich sie beispielsweise fragte, wie sie solche Rechnungen lösen würden

6.1.3 Motorisches Lernen

Um den Schülern das Merken der Tricks zu vereinfachen, wollte ich diese so verständnisvoll wie möglich vermitteln. Damit sie es sich noch besser einprägen können, untermauerte ich die Theorie, wann immer Möglich mit Bilder beziehungsweise liess sie selbst Bewegungen ausführen. Ich wollte für die Schüler eine möglichst abwechslungsreiche Doppellektion vorbereiten. Aus diesem Grund und weil ich den Schülern auch vermitteln wollte, dass die Mathematik greifbar ist, wollte ich ihnen auf die Chance geben sich aktiv motorisch zu betätigen. Ich gab mir Mühe, wann immer möglich das, was ich erklärte mit Bildern zu untermaueren. Ich wollte den Schülern ein Gefühl mitgeben, für das was sie taten. Ich wollte den Schülern nicht nur plumpe Tricks mitbringen, sondern diese Tricks auch anreichern mit einer Bewegung oder einem Gefühl für das was sie taten. Deshalb probierte ich wann immer möglich den Theorieteil anzureichern beziehungweise die Schüler gewisse Bewegungen selbst ausführen zu lassen. Dies bezweckte ich, indem ich ihnen vorzeigte, dass man die Zahlen verschieben darf.

6.2 Lektionsaufbau

Ein von Meyer (2015) vorgestelltes Modell für den Unterrichtsaufbau nennt sich AITUS und gliedert sich in 5 Phasen: Anfangen, Interesse wecken, Theorie erarbeiten, Umsetzen, Schluss. Diesen Aufbau erachtete ich als geeignet und kompatibel mit dem zuvor vorgestellten Prinzip Vormachen - Nachmachen - Üben. Ich wollte die Doppelstunde so aufbauen, dass ich für jeden Trick einzeln die Schritte Theorie erarbeiten und Umsetzen durchführen wollte. Somit ergaben sich 9 kleine Theorieblöcke mit anschliessender Übungsphase. Durch das Aufteilen in kleine Portionen wollte ich verhindern, dass die Schüler zu lange passiv zuhören müssen. Dadurch sollte sich ein guter Mix aus abwechselnd kleinen Theoriehäppchen, gefolgt von einer kurzen Übungsphase ergeben.

Der erste Punkt von Meyer (2015) vorgestellte Punkt ist, das gegenseitige Kennenlernen. Dies setzte ich um, indem ich zu beginn eine Vorstellungsrunde machte. Ich wollte jedoch über das plumpe nennen des Vornamens hinausgehen, da ich auch etwas mehr über die Schüler erfahren wollte. Aus diesem Grund sollte sich jeder kurz vorstellen, indem er neben seinem Namen auch noch erwähnen, was ihn mit der Mathematik verbindet und wo ihm Mathematik im Alltag begegnet ist. Die zwei Zusatzbedingungen hatten den positiven Nebeneffekt, dass die Schüler bereits ein erstes mal damit befassten, inwiefern Mathematik und Kopfrechnen im Alltag präsent ist. Da es für die Schüler eine spezielle Situation war und ich als Schüler in solchen Situationen meist sehr schüchtern war, machte ich den Anfang. Zusätzlich erklärte ich den Schülern, dass sie mich nicht zu siezen brauchen, sondern mich beim Vornamen nennen dürfen. Dadurch wollte ich auch noch eine gewisse Nähe schaffen beziehungsweise die Distanz die das Siezen schafft aus dem Weg räumen. Ich stellte mich also in etwa so vor: Mein Name ist Jérôme, ich bin 18 Jahre alt. Mathematik faszinierte mich schon als Kleinkind. Mathematik begegnet mir im Alltag sehr oft. Wenn ich auf den Zug stresse und auf die Uhr blicke und ausrechne, wie viel Zeit ich noch habe. Im Supermarkt in der Schule, beim Volleyballspielen. Weiter gehört die Bekanntgabe der Absicht und der Zielsetzung unter den Punkt Anfang

Nach Meyer sollte man weiterfahren, indem man Vorwissen aktiviert und Lust auf den Stoff zu versprühen. Dem wollte ich gerecht werden, indem ich ihnen erklärte, um was es in meinem Projekt geht und ihnen die Ziele bekannt gab. Um sie dort abzuholen wo sie standen, machte ich zu Beginn eine Repetition der Grundgesetzte und gab bereits einige Inputs gab, die auf das Bevorstehende abzielten. Um die nächsten zwei Aspekte: Theorie erarbeiten und Umsetzen in die Praxis zu übertragen, bereitete ich die kurzen Theorieblöcke und dazu passende Aufgaben vor. Die Aufgaben waren jeweils so gestaltet, dass sie sich gut mit der soeben vorgestellten Technik lösen liessen. Auf dem Aufgabenblatt waren jeweils 6 Aufgaben darauf, der Schwierigkeitslevel steigerte sich von Aufgabe zu Aufgabe.

Zum Schluss der Lektion, auch wenn es nicht explizit von Meyer empfohlen wurde, machte ich einen Ausblick und erzählte den Schülern, wie das Projekt nun weiterläuft.

6.3 Theorie erarbeiten

Mir war es sehr wichtig, dass die Schüler auch wirklich verstanden, was ich ihnen vermittle. Um dies zu erreichen wollte ich den Unterricht weg von der einen Dimension Wandtafel lösen und in die Dimension selbst Hand anlegen und erfahren, was man tut übertragen. Dies will ich erreichen indem ich mir selbst die Aufgabe stellte die Mathematik, die nur im Imaginären stattfindet so in Modelle zu übersetzen, dass die Schüler sie selbst erfahren können in einer Weise in der sie diese auch verstehen. Ein weiteres Problem meiner Arbeit ist, dass wenn die Schüler alles im Kopf rechnen, ich ihren Lösungsweg nicht nachvollziehen kann. Da jedoch genau das einer der zentralen Punkte für die Auswertung ist, musste ich eine Lösung finden. Ich führte den Begriff halbschriftlich ins Leben. Der Begriff wird Halbschriftlich definierte ich als: Das aufschreiben des Lösungsweges, jedoch ohne Zwischenresultate zu notieren. Dadurch will ich erreichen dass ich ihre Rechenwege nachvollziehen kann, sie aber dennoch den grössten Teil im Kopf rechnen müssen. Dass die Schüler zu Beginn halbschriftlich rechneten, erachtete ich auch als einen Vorteil für sie. Dadurch konnten sie sich anfangs nur auf den Rechenweg selbst konzentrieren, ohne sich die Zwischenresultate merken zu müssen. Im folgenden werde ich nun erklären, wie ich die einzelnen Tricks vermitteln will:

Gruppen Bilden

Ich schrieb die Zahlen 13, 56, 34, 53 auf Papier und heftete sie mit Magneten an die Wandtafel und schrieb jeweils ein Additionszeichen dazwischen. Dann liess ich den Schülern kurz Zeit, sich zu überlegen, wie sie das Resultat ausrechnen würden. Danach erwähnte ich nochmals kurz, was genau das Kommutativgesetz besagt und zeigte ihnen, dass man bei der Addition die Summanden vertauschen darf, so dass es einem am besten geht. Um das ganze zu verbildlichen, löste ich die Zahlen von der Wandtafel ab und vertauschte die Reihenfolge, so dass es einfach zu rechnen war.

Von rechts nach links

Um das zu erklären, bedarf es keiner weiteren Hilfsmittel. Ich löste ihnen die Aufgabe schriftlich vor und sagte, dass sie diese Schritte (zuerst einer Zusammenzählen, dann Zehner, dann Hunderter, ...) auch auf die gleiche Weise im Kopf durchführen können. Man könnte auch hier die Streichhölzer einbinden indem die Schüler die zu addierenden Zahlen mit Streichhölzern darstellen

und danach ein Wirbelsturm über den Tisch fegt und alles durcheinanderbringt. Die Summe der beiden Zahlen kann immernoch bestimmt werden jedoch nicht die einzelnen Summanden - indem man zählt wie viele Einer, Zehner und Hunderter im Durcheinander liegen. Diesen Schritt können wir auch ohne die Streichhölzer und den Wirbelsturm durchführen indem wir direkt Einer, Zehner und Hunderter der Zahlen im Kopf zusammenzählen.

Hinüberschieben

Wie dieser Trick funktioniert, wurde bereits im Kapitel 5.3.3 erklärt. Wie ich ihn vermitteln will hier. Ich bereitete für jeden Schüler eine Streichholzschachtel vor die je 20 schwarze, weisse und rote Streichhölzer enthielt. Die verschiedenfarbigen Streichhölzer stehen jeweils für Hunderter, Zehner und Einer. BILD: content of a box of matches Damit konnten die Schüler die Zahlen auf ihren Schreibtischen auslegen. Dies hatte den Sinn, dass sie am eigenen Leib erfahren konnten, dass sie von der einen Zahl etwas wegnehmen und bei der anderen Zahl hinzufügen. Nach zwei Beispielen nur mit den Streichhölzern legten wir die Streichhölzer beiseite und schrieben nieder. Da das Vorgehen bei diesem Trick sehr ähnlich ist wie das des Trickes der unsichtbare Helfer habe ich für die Schüler eine Eselsbrücke vorbereitet:

Das Pluszeichen (+) besteht aus zwei Strichen, folglich müssen wir zwei verschiedene Operationen (Addition **und** Subtraktion) verwenden

Ergänzen auf 1000

Da dieser Trick so simpel wie genial ist, wollte ich hier nicht zu viel Schnickschnack rundherum aufbauen. Ich rechnete ihnen schriftlich vor und zeigte ihnen, dass bei allen Stellen ausser der Einerstelle das Resultat und der Subtrahenden zusammen 9 ergeben, bei der Einerstelle 10. Ich erklärte ihnen weshalb dass immer so ist wenn man von $100, 1'000, 10'000, \dots, 10^n$ subtrahiert. Um das ganze zu vertiefen, schrieb ich eine Zahl auf, die so viele Nullen hatte, wie Schüler anwesend waren und jeder Schüler sagte der Reihe nach welche Zahl ich als nächstes aufschreiben muss.

der unsichtbare Helfer

Ich zeigte den Schülern die Abbildung und erzählte vom selben Experiment, welches auch schon zuvor im Theorieteil (5.4.3) beschrieben wurde. Danach machte ich mit ihnen ein Gedankenexperiment und erzählte dass verschiedene Leute an verschiedenen Orten (Plattform zwischen den beiden Hochhäusern, Erdoberfläche, aus dem Erdinnern) und siehe da, alle drei kommen auf das selbe Resultat! Also dürfen wir uns auch weiter von den Häusern entfernen oder eine Plattform auf einer gewissen Höhe bilden. Dies

können wir bewerkstelligen indem wir einen Betrag zu beiden Zahlen hinzuzählen oder von beiden Zahlen abziehen. Wie bereits erwähnt ist dieser Trick leicht verwechselbar mit dem Trick Hinüberschieben deshalb habe ich auch hier eine Eselsbrücke vorbereitet.

Das Subtraktionszeichen (-) besteht aus einem Strich, deshalb müssen wir nur eine Operation anwenden. Entweder zählen wir bei beiden Zahlen den gleichen Betrag hinzu oder ziehen bei beiden Operatoren den gleichen Betrag ab.

Kettenrechnungen Subtraktion

Wie schon um die Kettenrechnung der Addition zu verbildlichen heftete ich auch um die Subtraktion mit mehreren Subtrahenden Zahlen auf Papier mit Zetteln an die Wandtafel, diesmal Schrieb ich Subtraktionszeichen (–) dazwischen. Nun öffnete ich nach dem Minuenden eine Klammer und schloss sie nach dem letzten Subtrahenden wieder und fragte, was ich tun muss, damit sich das Resultat nicht verändert - alle Subtraktionszeichen in der Klammer müssen zu Additionszeichen abgeändert werden.

Summen bilden

Um diesen Trick den Schüler näherzubringen, rief ich nochmals das Distributivgesetz in Erinnerung und zeigte an einem praktischen Beispiel vor, wie man sich das zu nutze machen kann. Das sollte reichen, damit die Idee dieses Tricks klar ist und die Schüler bereit sind Aufgaben zu lösen.

Doppelte Summe

Hier wollte ich einsteigen, indem ich den Schülern den Trick algebraisch vorstellte. Danach wollte ich ihnen an der Lösung zeigen, dass mit dieser Formel schwierig aussehende Rechnungen einfach lösbar werden, weil man grosse Teile des Resultats bereits kennt und der Rest einfach ausrechenbar ist.

Faktoren aufteilen

Hier rief ich das Assoziativgesetz in Erinnerung und erklärte ihnen die Bedeutung dessen. Dadurch dass man die Faktoren aufteilen und so zusammensetzen kann, wie man gerne möchte, ergeben sich viele neue Konstellationen die ursprüngliche Rechnung zu vereinfachen.

Die Übungsphase

Nach dieser Doppellelstunde Theorie folgte eine Übungsphase. Die Übungsphase zieht sich über eine Periode von drei Wochen. Aufbauen wollte ich die

Übungsphase wie folgt:

- Übungsblätter 1 4: halbschriftlich, mit Theorieblatt
- Übungsblätter 5 6: halbschriftlich, ohne Theorieblatt
- Übungsblatt 7 8: Kopfrechnen, ohne Theorieblatt

7 Durchführung

Ich durfte die Doppellektion am 15.6.2016 gleich zweimal, mit zwei verschiedenen Klassen durchführen. Es handelte sich um zwei Mathematikkurse des Niveaus A, der zweiten Sek in Einsiedeln. In den nächsten Kapiteln findet sich ein Protokoll angereichert mit meinen Erfahrungen. Die Lektionen haben sich praktisch gleich abgespielt, deshalb werde ich beide Lektionen in ein Protokoll hineinpacken.

7.1 Verlauf der Doppellektion

Im folgenden Kapitel werde ich protokollieren, wie die Lektion abgelaufen ist. Folgendes Equipment stand mit zu Verfügung: Eine herkömmliche Wandtafel, wobei eine Seite als Beamer agierte. Ebenfalls vorhanden war ein Presenter, die überholte Version des Beamers, der es mir ermöglichte das Blatt auf den Beamer zu projizieren und gemeinsam es mit den Schülern auszufüllen.

Ich führte die Doppelstunde am selben Morgen mit zwei Klassen durch. Ich werde hier jedoch beide Doppelstunden gemeinsam protokollieren und auch nur von einer Doppellektion sprechen, da sie praktisch identisch verlaufen sind. Zum Ende der zweiten Doppelstunde, musste der Klassenlehrer die Klasse vorzeitig verlassen und ich durfte die Stunde alleine zu Ende führen und die Schüler verabschieden.

Zu Beginn der Doppelstunde begrüsste der Klassenlehrer die Klasse und erklärte ihnen, dass ich die heutige Doppelstunde übernehmen würde. Danach übergab er mir das Wort und mit dem Wort auch die Zügel für die Klasse. Ich stieg ein, indem ich die Eröffnungsrunde einleitete, ich stellte mich kurz vor und übergab das Wort danach den Schülern. Die Vorstellungsrunde stockte etwas, da viele Schüler nicht wussten, was sie sagen sollten. Nach 10 Minuten leitete ich über und erzählte den Schülern von meiner Maturaarbeit und deklarierte die gemeinsamen Ziele und wie wir diese erreichen. Das Ganze wurde gestützt durch eine an die Wandtafel gebeamte Präsentation. Danach hielt ich mein kurzes Referat, welches die Schüler mit meiner Ansicht von Mathematik und dem Kopfrechnen vertraut machte und mit einer Repetition der Grundgesetze abgerundet wurde. Anschliessend teilte ich ihnen ein Theoriedossier und ein Aufgabendossier für die Doppelstunde aus.

Bis hierhin waren etwa 20 Minuten vergangen.

Anschliessend startete der Teil, in welchem die Schüler gefordert wurden. Ich stieg ein mit dem Trick *Gruppen bilden*, verbildlichte ihnen der Ablauf dieser Methode an der Wandtafel. Ich zeigte ihnen, wie man Kettenrechnungen möglichst einfach lösen kann. Danach teilte ich ihnen das Theorie und das Aufgabendossier aus und füllte ersteres mit ihnen aus, anschliessend lösten die Schüler einige Aufgaben mit dieser Technik. Danach korrigierten wir gemeinsam die Aufgaben. Dieser Teil dauerte etwas länger als geplant etwa 15 Minuten.

Der nächste Trick von links nach rechts war ein Selbstläufer, alle Schüler wussten sofort, worum es geht und wie man diese Technik anwenden soll. Nach dem gemeinsamen Ausfüllen des Theorieblattes lösten die Schüler einige Aufgaben zu dieser Technik, wiederum mit gemeinsamer Korrektur. Dauer für diesen Block etwa 10 Minuten.

Der Trick hinüberschieben erklärte ich den Schülern mit Hilfe der Streichhölzer, dafür teilte ich jedem Schüler eine Streichholzschachtel mit drei verschiedenfarbigen Streichhölzern aus (symbolisch für Einer, Zehner und Hunderter). Wir lösten zwei Beispiele mit den Streichhölzern, füllten das Theorieblatt aus und die Schüler lösten wiederum die Aufgaben auf dem Aufgabenblatt. Wir besprachen gemeinsam die Lösungswege und korrigierten die Resultate. Nun war insgesamt (15) eine Stunde vergangen. Während der ganzen Zeit tauchten keine Fragen auf.

Wir legten eine zweiminütige Pause ein und wechselten danach zur Subtraktion. Ich erklärte ihnen am Presenter, wie man Zahlen von 1000 subtrahiert und die Schüler lösten Aufgaben dazu, danach gab ich die Kurzlösungen bekannt. Für diesen Block brauchten wir rund 5 Minuten

In den nächsten 10 Minuten erklärte ich den Schülern wie der Trick der unsichtbare Helfer anhand einer auf dem Beamer projizierte Skizze. Danach füllten wir das Theorieblatt aus und lösten Aufgaben dazu und ich gab die Kurzlösungen bekannt. Um die Subtraktion abzuschliessen erklärte ich den Schülern, wie man Subtraktionskettenrechnungen umstellen kann. Für Erklärung, Ausfüllen des Theorieblattes und für das Lösen und Kontrollieren zweier Beispiele brauchten wir knapp 5 Minuten. 1h20

Und um die Lektion abzurunden widmeten wir uns zum Schluss noch der Multiplikation. Am Beamer rief ich nochmals das Distributivgesetz in Erinnerung und leitete über zum Trick Summen bilden. Ich füllte gemeinsam mit ihnen das Theorieblatt dazu aus, sie lösten Aufgaben mit dieser Technik und ich gab die Kurzlösungen bekannt.

Die Zeit war schon fast um, deshalb schnitt ich in der verbleibenden Zeit noch kurz den Trick doppelte Summe an, erklärte den Schülern, wie sie ihn anwenden können und verewigten ihn auf dem Theorieblatt. Da die Zeit zu knapp war noch Aufgaben mit diesem Trick zu bearbeiten, brach ich an dieser Stelle ab und schob bevor es läutete und ich die Schüler verabschiedete noch einen Ausblick, wie das Projekt weiterläuft ein.

7.2 Verlauf der Übungsphase

Danach erhielten die Schüler zu Beginn jeder Mathestunde 5 Minuten Zeit, auf einem von mir erstellten Aufgabenblatt, in denen sie so viele Aufgaben wie möglich lösen sollten. Dies geschah also 3 Mal wöchentlich. Bis zum Stichtag wären insgesamt acht Übungsserien geplant gewesen. Aus diversen Gründen fand an einigen Tagen kein regulärer Matheunterricht statt, weshalb die beiden Klassen nur fünf respektive sechs Übungsserien gelöst haben. Die Übungsserien korrigierte ich zu Hause und wertete sie aus. Damit die Schüler wussten wo sie stehen, schrieb ich nach vier Übungsblättern jedem Schüler eine persönliche Rückmeldung. Die Rückmeldung verschaffte den Schülern einen Überblick, wo sie stehen, was sie gut machen, wo sie sich noch verbessern können und worauf sie besonders gut achten müssen.

7.3 Abschluss

Am 6.7.2016 besuchte ich die Klassen ein zweites Mal, um ihnen mitzuteilen, wie das Projekt verlaufen ist und gleiches mit ihnen auszuwerten. Zuerst machten wir den finalen Test welcher im wesentlichen ein Zusammenschnitt aus einer Kopfrechnungsprüfung die sie vor einem Jahr gelöst hatten war. Dieser Test führte der Klassenlehrer selbst mit den Schülern, durch damit die Bedingungen auch die selben waren. Danach korrigierten sie gegenseitig die Prüfungen und verglichen sie mit den Leistungen vor einem Jahr. Als dies abgeschlossen war, erlöste ich die Schüler und erzählte ihnen wie das Projekt verlaufen war. Nachdem sie erfahren haben, wie meine Sicht auf das Projekt ist, wollte ich von ihnen erfahren wie sie darüber denken und liess sie einen Fragebogen ausfüllen, gefolgt von einem offenen Gespräch.

8 Mein Eindruck

Zu beginn der Doppellektion war ich extrem angespannt, diese Anspannung legte sich nur zum Teil nieder. Während den Lektionen habe ich die Zeit völlig vergessen und deshalb zu Beginn eher ein zu langsames Tempo angeschlagen, was dazu führte, dass ich nicht so weit kam, wie ich es mir

gewünscht hätte. Die Schüler waren während der ganzen Zeit aufmerksam dabei und verstanden, nach meinem Gefühl, was ich ihnen vermitteln wollte. Der Kurzvortrag kam soweit gut an bei den Schülern, alle Schüler hörten aktiv zu und niemand schweifte merklich ab oder machte etwas anderes nebenbei. Meiner Meinung nach sehr gut angekommen ist der Einstieg mit dem Trick Summen bilden, da dieser für praktisch alle Schüler ein Aha-Erlebnis beinhaltete und ihnen ein erstes Mal zeigte, dass Mathematik auch einfach geht. Dadurch waren sie gespannt auf das weitere, dass sie lernen können.

Was für mich ungewohnt war, dass mich alle Schüler, trotz der Erlaubnis mich zu duzen, mich permanent Siezten. Einerseits zeigte sich dass sie mich, trotz des geringen Altersunterschiedes, als Autoritätsperson wahrnahmen, dennoch fühlte es sich komisch an.

Ich hatte das Arbeitstempo der Schüler etwas unterschätzt, sie brauchten länger als von mir geplant um die Aufgaben zu bearbeiten. Auf der anderen Seite gab es einige sehr schnelle Schüler, die nach kurzer Zeit fertig waren und keine weitern Aufgaben mehr hatten. Zeit begrenzen, so dass alle beschäftigt sind

Mit dem Verlauf der Übungsserien, war ich sehr zufrieden. Bei der Auswertung der Übungsserien, stand ich vor dem Problem, dass ich keinen direkten Kontakt zu den Schülern hatte. Deshalb schrieb ich für jeden Schüler eine Rückmeldung, damit er erfuhr, wo er steht und worauf er besonders achten musste. Während der Übungsphase hatte ich das Gefühl, dass die Schüler grundsätzlich verstanden haben, um was es geht.

8.1 mein Fazit

9 Auswertung des Projektes

Im folgenden Kapitel geht es darum, eine Billanz zu ziehen. Diese Billanz habe ich erstellt mit Hilfe der Schülerfragebogen, eines Gesprächs mit dem Klassenlehrer und aufgrund der Leistungen, welche die Schüler während der Übungsphase geleistet haben. Die Auswertung gliedert sich in drei Teile. Im ersten Teil werde ich den Unterricht auswerten, was gut war uns was ich ein nächstes Mal anders machen würde. Im nächsten Unterkapitel geht es um die Messbaren Werte, haben die Schüler ihre Kopfrechenfähigkeit verbessert? Zum Schluss werde ich auswerten, ob ich meine Ziele erreicht habe: haben die Schüler mehr Freude am Kopfrechnen gewonnen? Ist der mathematische Grundgedanke bei ihnen angekommen? Diese Auswertung ist statistisch nicht aussagekräftig, weil einerseits zu wenige Schüler am Projekt teilgenommen haben und andererseits waren es Schüler, welche gut in Mathematik sind und den Mathekurs des höchsten Niveaus besuchen.

9.1 Auswertung des Unterrichts

Beim zweiten Besuch in der Klasse, fühlte ich den Schülern auf den Zahn und wollte von ihnen wissen, was ihnen gefallen hat, was nicht und wie es ihnen ergangen ist. In diesem Gespräch kam heraus, dass auch den Schülern aufgefallen ist, dass ich (zu) viel Stoff in diese Doppellektion hineinpressen wollte. Viele Schüler wünschten sich ein etwas langsameres Tempo und etwas mehr Zeit zwischen den einzelnen Inputs. Auch erwähnt wurde, dass die Stoffdichte sehr hoch war und sie sehr stark forderte. Die weiteren Rückmeldungen waren positiv, alle Schüler stimmten zu, dass die Rückmeldung, die sie erhalten haben, sie sehr stark motivierte. So wussten sie, einerseits auf welchem Weg sie sich befanden (alle befanden sich auf sehr gutem Weg) andererseits motivierte sie die positive Rückmeldung und spornte sie an. Viel Schüler gaben auch an, dass es ihnen wirklich etwas gebracht hat und sie etwas gelernt haben. Dinge die sie gelernt haben variierten vom: Erlernen des Minusrechnens im Kopf bis zum Erlernen neuer Wege beziehungsweise neuer Strategien. Eine Mehrheit der Schüler empfand die Einschübe zu Beginn jeder Lektion als eine willkommene Abwechslung zum Hauptthema, einige Schüler jedoch empfanden diese Abwechslung als störend.

Nach der zweiten Doppelstunde besprach ich das Projekt mit dem Klassenlehrer. Die folgenden Sachen fielen ihm positiv auf: Die Lektion war seiner Meinung nach sehr gut und ausführlich vorbereitet. Der Stoff war gut auf ihr Können abgestimmt und die Lektion war didaktisch gut aufgebaut.

Folgende Punkte sind verbesserungswürdig: Mein Auftreten war, vor allem zu Beginn, sehr angespannt und nervös. Zu viel Stoff für so kurze Zeit Ich habe sehr stark doziert und somit die Schüler wenig eingebunden Die Schüler mehr einbinden, warten bis sie sich zu Wort melden. So erlöste ich die Schüler, nach kurzer Zeit peinlichen Schweigens und teilte ihnen jeweils die Lösung mit, wenn sich niemand meldete. Die Rückmeldung an die Schüler war NOTWENDIG, ich hätte viel lieber noch mehr Kontakt gehabt und viel unmittelbarer eingreifen können.

9.2 Auswertung der Leistungen

Ich werde mich im folgenden Teil den folgenden Mittel und Begriffe bedienen: Boxplotdiagramme, Median, Quartil und Streuung. Damit keine Verwirrungen entstehen, wird hier kurz das wichtigste, dass es über die Begriffe zu wissen gibt erklärt:

Median: Der Median ist der Mittelwert einer Probe, vergleichbar mit dem Durchschnitt. Um den Median zu berechnen werden alle Werte der Grösse nach geordnet, wobei der Median dem Element in der Mitte entspricht (beziehungsweise dem Durchschnitt der zwei mittleren Elementen bei einer geraden Anzahl Elementen). Ich verwende den Median anstelle des Durchschnittes, weil der Median weniger beeinflusst wird durch Ausreisser und

somit für meine Auswertungen aussagekräftiger ist. (Kalisch, Bühlmann & Künsch, 2016, S. 45)

Quantil: Als α -Quantil wird der Schwellenwert bezeichnet, bei welchem genau $\alpha\%$ der Werte unterhalb und $(100-\alpha)\%$ oberhalb dieser Grenze liegen. Verschiedene Quantile geben Auskunft über die Verteilung der Proben. Ein 25% Quantil bezeichnet die Stelle, an welcher genau 25% kleiner sind als dieser Schwellenwert. Der Median ist eigentlich ein Spezialfall eines Quantils ist der Median, welcher eigentlich ein 50% Quantil ist.

Boxplot: Der Boxplot teilt sich auf in die rechteckige Box und die Antennen, auch Whisker genannt. Innerhalb der Box befindet sich eine Linie, welche den Median bezeichnet, folglich befinden sich 50% der Werte überhalb und 50% der Werte unterhalb dieser Linie. Die Box wird nach oben und unten durch das 75% respektive 25% Quartil begrenzt. Was bedeutet, dass genau die Hälfte aller Werte innerhalb der Box liegen. Der restliche Teils des Boxplottes besteht aus dem Whisker, welcher den kleinsten erreichten normalen Wert mit der Box verbindet. Als normale Werte werden Werte bezeichnet, welche weniger als das 1.5-fache der Quartilsdifferenz von der Box entfernt sind. Werte, welche weiter als die eineinhalbfache Quartilsdifferenz von der Box entfernt sind, werden als Ausreisser bezeichnet und durch Punkte dargestellt. Werde ich im folgenden Teil von der Streuung sprechen, so beziehe ich mich dabei auf die Quartilsdifferenz. Ein Boxplot gibt also Auskunft über die Lage und Verteilung der Werte.

Wichtig für die Interpretation der Diagramme ist, dass die Aufgaben tendenziell immer schwieriger wurden. Während die Aufgaben der Übungsserie 1, bewusst offensichtlich und einfach gewählt wurden, wurden mit der Zeit immer schwierigere Aufgaben, bei welchen eine einfache Lösung nicht auf den ersten Blick erkennbar war eingestreut.

Innerquartilsabstand: Unter dem Interquartilabstandes (oder auch Quartilsdifferenz) wird die Differenz zwischen dem 75% und dem 25% Quartil verstanden. Im Boxplot entspricht diese Grösse der Länge der Box. Dies ist ein alternatives Mass zur Standartabweichung, welches Auskunft über die Streuung gibt.

9.3 Streuung der Klasse

In Abbildung 5 ist abgebildet wie viele Aufgaben jeder Schüler nach fünf Arbeitsblättern richtig gelöst hat. Bei dieser Darstellung wurden nur die ersten fünf Arbeitsblätter gewertet, da nur Klasse 1 sechs Arbeitsblätter gelöst hat.

Abbildung 4: Beispiel eines Boxplotdiagrammes Bildquelle: https://de.wikipedia.org/wiki/Boxplot

Abbildung 5: Gesamthaft richtig gelöste Aufgaben pro Schüler nach 5 Übungsserien

9.4 Quantiätsverlauf

In Abbildung 6 ist die Verteilung der quantitativen Leistungen der Klasse 1 abgebildet. Selbes Diagramm für Klasse 2 findet sich in Abbildung 8 Wie sich jeder Schüler der Klasse 1 individuell quantitativ entwickelt hat, ist in Abbildung 7 visuell dargestellt. Die selbige Abbildung für Klasse 2 ist in

Abbildung 6: Quantitätsentwicklung der Klasse 1 dargestellt als Boxplot. Der Median ist bei Übung 1 und Übung 4 mit dem oberen, bei Übung 6 mit dem unteren Ende der Box zusammengefallen

Abbildung 9 visualisiert.

9.5 Qualitätsetwicklung

Dieser Teil der Auswertung betrachtet den Quotienten zwischen der Anzahl richtig gelösten Aufgaben im Verhältnis zu den falsch gelösten Aufgaben. Der prozentuale Anteil richtig gelöster Aufgaben lässt sich wie folgt errechnen:

$$\frac{\text{Anzahl richtig gelöste Aufgaben}}{\text{Anzahl total gelöste Aufgaben}} \cdot 100$$

Die Abbildungen 10 und 11 zeigen den Qualitätsverlauf der Klasse 1 respektive Klasse 2.

Abbildung 7: Quantitätsentwicklung der Klasse 1 dargestellt als Liniendiagramm

Der Verlauf der medialen Fehlerquote ist in Abbildung 12 dargestellt. Hier wurde die Anstelle der prozentual richtig gelösten Aufgaben die prozentual falsch gelösten Aufgaben verwendet. Dieser Wert lässt sich auf die folgenden zwei Arten berechnen:

Fehlerquote = 100% – Prozentsatz richtig gelöste Aufgaben

oder

$$\label{eq:Fehlerquote} \text{Fehlerquote} = \frac{\text{Anzahl falsch gelöste Aufgaben}}{\text{Anzahl gelöste Aufgaben total}}$$

Abbildung 13 zeigt den Quantitätsverlauf beider Klassen im Vergleich, gemessen am Median, also dem mittleren Schüler

9.6 Das Unmessbare

Zum Schluss der Auswertung geht es darum, ob ich meine Ziele erreicht habe oder nicht. Da Werte wie Freude oder Motivation von Person zu Person unterschiedlich aufgefasst werden, ist es beinahe unmöglich solche Werte zuverlässig mit Zahlen zu erfassen und auszudrücken. Deshalb habe ich diese Auswertung aufgrund eines Kreisgespräches erstellt. Rund $\frac{2}{3}$ der Schüler gaben an, dass sie nach dem Projekt motivierter als vorhin an Kopfrechnungsaufgaben herangingen. $\frac{4}{5}$ der Schüler gaben an, neue Techniken erlernt zu

Abbildung 8: Quantitätsentwicklung der Klasse 2, dargestellt als Boxplot. Bei Übung 1 bestand die Testgruppe aus 14 Personen, bei Übung 6 aus 13 Personen. Die restlichen Übungen wurden von allen 15 Schülern der Klasse 2 gelöst. Der Median ist bei Übung 1 mit dem unteren Ende der Box zusammengefallen

haben, der Rest rechnete weiterhin mit bereits zuvor selbst erlernten Methoden. Jeder dritte Schüler stimmte zu, dass er Freude am Kopfrechnen gewonnen hatte. Schlussendlich, und das sei das wichtigste, gaben alle Schüler an, dass sie sich besser zu helfen wussten als zu vor. Mit einigem nachhaken stimmten alle Schüler zu, dass die mathematischen Gesetze nicht nur da sind um Schüler zu plagen, sondern auch nützlich sein können und ausgenutzt werden dürfen. Dass es in der Mathematik darum geht, sich eine möglichst einfache Lösung für ein vorhandenes Problem zu suchen, dem stimmten auch alle Schüler zu.

10 Diskussion der Ergebnisse

Hier möchte ich abermals anmerken, dass es nicht darum geht eine statistisch aussagekräftige Analyse meines Projektes durchzuführen. Vielmehr geht es darum auszuwerten ob das Projekt, so wie es durchgeführt wurde, erfolgreich war oder nicht.

Abbildung 9: Quantitätsentwicklung der Klasse 2, dargestellt als Liniendiagramm. Bei Übung 1 war eine Person abwesend, bei Übung 6 fehlten zwei Personen.

Abbildung 10: Visualisierung der Qualitätsentwicklung der Schüler der Klasse 1

Abbildung 11: Qualitätsentwicklung der Schüler der Klasse 2

Abbildung 12: Verlauf der Fehlerquote des *mittleren Schülers* beider Klassen im Vergleich

10.1 Allgemeine Ergebnisse

10.2 Quantitative Entwicklung

Einerseits lässt sich bei Betrachtung der Abbildungen 6, 7, 8 und 9 relativ schnell erkennen, dass die Schüler im Verlauf des Projektes fähig waren

Abbildung 13: Megngenmässige Enwticklung des mittleren Schülers beider Klassen

mehr Aufgaben in der gleichen Zeit zu lösen. Dies ist einerseits nicht verwunderlich, da sie mit der Zeit den Ablauf kannten und auch die Methoden verinnerlicht haben. Unter Einbezug des Indizes, dass die Aufgaben mit der Zeit schwieriger wurden, lässt sich dennoch auf eine Verbesserung schliessen. Untersucht man in Abbildung 6 genauer, so erkennt man, dass sich in der Klasse 1 sowohl die Anfangs schlechten Schüler, als auch die Anfangs besseren Schüler verbessert haben. Der gleiche Trend ist für Klasse 2 in Abbildung 8 erkennbar. Auffallend ist dass bei beiden Klassen Übung 5 schlechter ausgefallen ist, als Übung 4. Dies ist darauf zurückzuführen, dass sie bis und mit Übung 4 das Theorieblatt zu Hilfe nehmen durften. Klasse 1 hatte bei Übung 4 einen Abschiffer, was vermutlich auf einen schlechten Tag hinweist, denn Klasse 2 hatte unter den gleichen Bedingungen ihr Spitzenresultat abgeliefert.

In den Abbildungen 7 und 9 lässt sich der individuelle Verlauf der einzelnen Testpersonen nachvollziehen. Gut Erkennbar ist, dass die tiefsten Werte immer von unterschiedlichen Schülern erreicht wurden. In Klasse 2 zeigt sich eine Ausnahme wobei eine Testperson etwas zum Schluss unten wegfällt. Diese Testperson hat einen Trick falsch verstanden und folglich auch falsch angewandt. Dies führte dazu, dass sie alle Aufgaben des gleichen Typs falsch löste, ebenfalls diese Testperson realisierte in Abbildung 11 jeweils einen der tiefsten Werte. Vergleicht man die Verteilung der Werte, also die Streuung der Leistungen, so zeigt sich in beiden Klassen zunächst

eine sehr kleine Streuung, welche jedoch im Verlauf des Projektes stark zunimmt. Die Streuung wird in den Boxplots dargestellt durch die Länge der Box, beziehungsweise in den Liniendiagrammen durch die Dichte der Linien. Diese grösserwerdende Streuung weist darauf hin, dass die Schüler sehr unterschiedliche Entwicklungsgeschwindigkeiten aufweisen. Aber nichts desto trotz, ist bei allen Schülern eine Verbesserung erkennbar.

10.3 Entwicklung der Qualität

Um die qualitative Entwicklung zu verfolgen, dienen die Abbildungen 10 und 11. Eine sehr starke Entwicklung legte die Klasse 1 an den Tag. Sehr schön ist der Trend erkennbar, dass der grüne Anteil der Säulen immer grösser wird. Setzt man die Abbildung 10 in Korellation mit Abbildung 6 so fällt auf, dass die Schüler nicht nur fähig waren mehr Aufgaben zu lösen sondern von diesen Aufgaben auch einen grösseren Anteil korrekt lösten. Setzt man diese zwei Erkenntnisse in den Verbindung mit dem Fakt, dass die Aufgaben stetig schwieriger wurden, so erkennt man: Klasse 1 hat eine grosse Entwicklung hingelegt. Sie haben immer mehr immer schwierigere Aufgaben korrekt gelöst.

Die qualitative der Klasse 2 bewegt sich in einem ähnlichen Bereich wie derjenige der Klasse 1. Aus Abbildung11 lässt sich ablesen, dass auch die Testpersonen der Klasse 2 den Anteil richtig gelöster Aufgaben verbessern konnten. Anzumerken ist, dass die zwei Personen, welche bei Übung 5 abwesend waren, bei Übung 4 einen Korrektheitsgrad zwischen (80% und 90% bzw. 90% - 100%) erreichten. Auffallend ist, dass sich hartnäckig eine oder zwei Testpersonen im dunkelorangen Bereich befanden, dies ist nicht weiter beunruhigend, da sich diese Werte auf verschiedene Tespersonen verteilen, welche vermutlich an diesem Tag einen schlechten Tag einzogen. Erstaunlich ist, dass diese Testperson, welche einen Trick falsch anwendete dennoch gute Werte erreichte und nur zweimal in den dunkelorangen Bereich abtauchte.

10.4 Zusammenfassung

Um die Ergebnisse nochmals kurz zusammenfassen, dienen die Abbildungen ?? und ??. Sie visualisieren sowohl die Quantitäts- als auch die Qualitätsentwicklung des Medians. Der Median steht für den mittleren Schüler, die Diagramme zeigen also die Entwicklung des mittleren Schülers, stellvertretend für die ganze Klasse. In Abbildung ?? zeigt sich dass in beiden Klassen die Fehlerquote reduziert wurde. Dass die Kurve der Klasse 1 zum Schluss wieder nach oben bewegt, deutet auf eine kollektiv ausserordentliche Leistung in der fünften Übungsserie hin. Die quantitative Entwicklung des mittleren Schülers, oder eben der Klassen, ist in Abbildung ?? dargestellt.Wiederum ist eine konstante Entwicklung erkennbar, auch hier Schön erkennbar, dass die Klasse 1 in der vierten Übungsserie einen schlechten,

Klasse 2 einen sehr guten Tag eingezogen haben. Zusammenfassend kann man sagen, dass sich beide Klassen qualitativ und quantitativ verbessert haben. Die Zahlen sprechen für sich, die Schüler waren am Ende des Projektes fähig, Kopfrechenaufgaben schneller und mit wenigern Fehlern zu lösen als zu Beginn des Projektes. Somit war das Projekt, mit diesen Schülern durchgeführt, definitiv ein Erfolg.

11 Schlusswort

Mit \cite {mittring2015} entsteht folgender Eintrag (Mittring, 2015) Mit \citeA {Schlüsselwort} entsteht folgender Eintrag (Mittring, 2011)

12 Nützliches

Sekundärzitat Krauthausen und Scherer (2014, zitiert nach; Radatz et al., 1998, S. 180)

Literatur

- Boxplot. (2016). Wikimedia Foundation. Zugriff am 20.8.2016 auf https://de.wikipedia.org/wiki/boxplot
- Dambeck, H. (2012). Je mehr löcher, desto weniger käse mathematik verblüffend einfach (5. Aufl.). Köln: Kiepenheuer & Witsch.
- Dambeck, H. (2013). Nullen machen einsen groß mathe-tricks für alle lebenslagen (1. Aufl.). Köln: Kiepenheuer & Witsch.
- Kalisch, M., Bühlmann, P. & Künsch, H. (2016, Februar). Statistik 1 für biologie, gesundheitswissenschaften und pharmazeutische wissenschaften. (Nicht offiziell veröffentlicht)
- Krauthausen, G. & Scherer, P. (2014). Einführung in die mathematikdidaktik (3. Aufl.). Springer Spektrum.
- Landwehr, N. (1997). Neue wege der wissensvermittlung: ein praxisorientiertes handbuch für lehrpersonen im bereich der sekundarstufen i und ii (berufsschulen, gymnasien) sowie in der lehrer- und erwachsenenbildung (3. Aufl.). Verlag für Berufsbildung, Sauerländer.
- Meyer, R. (2015). Aitus: Die fünf phasen im überblick. Airbowis. Zugriff am 4.8.2016 auf http://arbowis.ch/index.php/67-2014/erwachsenenbildung/unterrichtsplanung/phasenmodelle/42-aitus-5-phasen-unterrichtsaufbau
- Mittring, G. (2011). Rechnen mit dem weltmeister mathematik und gedächtnistraining für den alltag. Frankfurt am Main: S. Fischer Verlag.

Literatur

- Mittring, G. (2013). Fit im kopf mit rechenweltmeister dr. dr. mittring gedächtnistraining für jeden tag von kaffeekochen bis schäfchenzählen. Frankfurt am Main: S. Fischer Verlag.
- Mittring, G. (2015). Von pi nach pisa: mit zahlen die ganze welt verstehen neues vom rechenweltmeister. Fischer.
- Radatz, H. et al. (1998). Handbuch für den mathematikunterricht 1./2./3. schuljahr. Hannover.