# Reinforcement Learning AI/ML Bootcamp

Vaibhav Unhelkar
Assistant Professor of Computer Science
Director, Human-centered AI Group
Rice University

vaibhav.unhelkar@rice.edu

### Overview

- Mathematical Preliminaries
- Reinforcement Learning vis-à-vis Supervised Learning
- Models for Sequential Decision-Making
  - Multi-armed Bandits (1-Step Decisions)
  - Markov Decision Process (N-Step Decisions)
- RL: Problem Formulation
- RL: Algorithms
  - Q Learning
  - Deep Q Learning
- RL Safety

### RL requires Interaction



- Please ask questions (even if they seem tangentially related)
- Please answer questions (even if they seem rhetorical)

# **Decision Making**

### Tic-Tac-Toe



How will you create a program to play Tic-Tac-Toe?

### Autonomous Maze Solving



How will you create a program to solve this maze?

## Sequential Decision Making



Can you use your Tic-Tac-Toe program to solve the maze?

Can you use your Maze program to solve Tic-Tac-Toe?

## Game Playing



How will you create a program to play this game?

### Chat Bots and Language Models



How will you create a program to train a chat bot / language model?









# Reinforcement learning offers a unified approach to solve a large class of decision-making problems.









Sutton and Barto. Reinforcement Learning: An Introduction. MIT Press, 2018.

Reinforcement learning offers a unified approach to solve a large class of decision-making problems.

The idea of RL is so general that some even think Solving RL = Artificial General Intelligence.

# Preliminaries

### Random Variables 101

A variable whose values are numerical outcomes of a random phenomena





### Expected Value (1/2)

Discrete random variable

$$\mathbb{E}_{p(x)}[g(x)] = \sum_{\{x \in X\}} g(x)p(x)$$

where p(x) is the probability mass function of the random variable.

When g(x) = x, the expected value corresponds to the mean of the r.v.

### Expected Value (2/2)

Continuous random variable

$$\mathbb{E}_{p(x)}[g(x)] = \int_{x} g(x)p(x)dx$$

where p(x) is the probability density function of the random variable.

For ease of notation, often the subscript is not denoted

$$\mathbb{E}_{p(x)}[g(x)] = \mathbb{E}[g(x)]$$

### Optimization 101



Parameter  $\theta$ 

The general (unconstrained) optimization problem:

$$\max_{\theta} J(\theta)$$

where  $J(\theta)$  is referred to as the objective function.

### **Gradient Ascent**

Optimization Problem:

$$\max_{\theta} J(\theta)$$

Solution: Repeat until convergence

- Compute the gradient of the objective w.r.t. the parameters
- Update the parameters based on the gradient

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$

### Stochastic Gradient Ascent

Optimization Problem:

$$\max_{\theta} J(\theta)$$

Solution: Repeat until convergence

- Compute the **stochastic** gradient of the objective w.r.t. the parameters
- Update the parameters based on the **stochastic** gradient

$$\nabla_{\theta} J(\theta) = \mathbb{E}[g(\theta)]$$

$$\theta \leftarrow \theta + \alpha g(\theta)$$

# Reinforcement Learning vis-àvis Supervised Learning

## machine learning

unsupervised learning

supervised learning

reinforcement learning







### Supervised Learning

#### Given

- A finite set of training data,  $D = \{(x_1, y_1), (x_2, y_2), ..., (x_m, y_m)\}$
- A class of models,  $f: X \to Y \in F$
- A loss function,  $L: Y \times Y \to \mathcal{R}$

#### Find

$$f^* = \operatorname{argmin}_{f \in F} \frac{1}{m} \sum_{i} L(\hat{y}_i, y_i)$$

### Supervised Learning

#### ... assumes training dataset is fixed and given.

However, in practice, we have (some) control over data collection. We can use this ability to improve data collection and learning.

#### Given

- A finite set of training data,  $D = \{(x_1, y_1), (x_2, y_2), ..., (x_m, y_m)\}$
- A class of models,  $f: X \to Y \in F$
- A loss function,  $L: Y \times Y \to \mathcal{R}$

#### Find

$$f^* = \operatorname{argmin}_{f \in F} \frac{1}{m} \sum_{i} L(\hat{y}_i, y_i)$$



### Supervised Learning

#### Given

... assumes each model input is independent of the previous ones. However, in certain cases, model inputs depend on the previous model inputs and even the model outputs.

- A finite set of training data,  $D = \{(x_1, y_1), (x_2, y_2), ..., (x_m, y_m)\}$
- A class of models,  $f: X \to Y \in F$
- A loss function,  $L: Y \times Y \to \mathcal{R}$

#### Find

$$f^* = \operatorname{argmin}_{f \in F} \frac{1}{m} \sum_{i} L(\hat{y}_i, y_i)$$





## Towards Reinforcement Learning (1/3)

#### Given

- The ability to collect training data,  $D = \{(x_1, y_1), (x_2, y_2), \dots\}$
- A class of models,  $f: X \to Y \in F$
- A loss function,  $L: Y \times Y \to \mathcal{R}$

#### Find

$$f^* = \operatorname{argmin}_{f \in F} \frac{1}{m} \sum_{i} L(\hat{y}_i, y_i)$$

## Towards Reinforcement Learning (2/3)

#### Given

- The ability to collect training data,  $D = \{(x_1, y_1), (x_2, y_2), ...\}$  such that  $x_{t+1} \sim T(\cdot | x_t, y_t)$
- A class of models,  $f: X \to Y \in F$
- A loss function,  $L: Y \times Y \to \mathcal{R}$

#### Find

$$f^* = \operatorname{argmin}_{f \in F} \frac{1}{m} \sum_{i} L(\hat{y}_i, y_i)$$

## Towards Reinforcement Learning (3/3)

#### Given

- The ability to collect training data,  $D = \{(x_1, y_1), (x_2, y_2), ...\}$  such that  $x_{t+1} \sim T(\cdot | x_t, y_t)$
- A class of models,  $f: X \to Y \in F$
- A reward function,  $R: X \times Y \to \mathcal{R}$

#### Find

• The best model  $f^* \in F$  that maximizes the cumulative reward

$$f^* = \operatorname{argmax}_{f \in F} \frac{1}{m} \sum_{i} R(x_i, \hat{y}_i)$$

### Reinforcement Learning

#### Given

- The ability to collect training data,  $D = \{(s_1, a_1), (s_2, a_2), ...\}$  such that  $s_{t+1} \sim T(\cdot | s_t, a_t)$
- A class of models,  $\pi: S \to \Pr(A) \in \Pi$
- A reward function,  $R: S \times A \rightarrow \mathcal{R}$

#### Find

• The best model  $\pi^* \in \Pi$  that maximizes the cumulative reward

$$\pi^* = \operatorname{argmax}_{\pi} \sum_{i} R(s_i, a_i)$$

## **Environment and Agents**



### Reinforcement Learning Paradigm



Reinforcement learning (RL) offers a unified approach to solve a large class of problems, where

- The learner can interact with its environment,
- Trial and error is possible, and
- The learn receives a signal of its success and failures (reward, feedback or reinforcements).









### **Environment and Agents**



RL is particularly suited for sequential and stochastic problems for which specifying the desired outcome (reward signal) is easier than specifying how to achieve it (policy).

# Bandits



### The Multi-armed Bandit Model



## Bandit: Key Terms



# Q. Select the Optimal Action

| Action | Pr(Reward   Action)                              |
|--------|--------------------------------------------------|
| $a_1$  | 5 with probability 0.5<br>0 with probability 0.5 |
| $a_2$  | 5 with probability 0.9<br>0 with probability 0.1 |
| $a_3$  | 5 with probability 0.6 -1 with probability 0.4   |

# Q. Select the Optimal Action

| Action | Pr(Reward   Action)                              |
|--------|--------------------------------------------------|
| $a_1$  | 2 with probability 0.5<br>0 with probability 0.5 |
| $a_2$  | 10 million w.p. 10 <sup>-7</sup><br>0 otherwise  |
| $a_3$  | 1 always                                         |

## **Bandits: Problem Formulation**















Actions (selected by Agent)

#### Inputs

- Sequence of actions and rewards, (a<sub>1</sub>, r<sub>1</sub>, a<sub>2</sub>, r<sub>2</sub>, a<sub>3</sub>, r<sub>3</sub>, a<sub>4</sub>, r<sub>4</sub>, ...).
- Not all inputs available at once.
- Agent's past actions influence the future inputs.

#### Output

• Policy,  $\pi_t$  (a), a probability distribution over which action to pick next that maximizes the objective.

#### Objective

$$\max_{\{a_1,a_2,\dots\}} \mathbb{E}[\Sigma_t r_t] = \max_{\pi} \mathbb{E}[\Sigma_t r_t]$$

# Q. Select the Optimal Action

| Action | Pr(Reward   Action)                              |
|--------|--------------------------------------------------|
| $a_1$  | 2 with probability 0.5<br>0 with probability 0.5 |
| $a_2$  |                                                  |
| $a_3$  |                                                  |

# Exploration v/s Exploitation Tradeoff



# Intuition: Making Decision in Bandits



# A Value-Based Bandit Algorithm

#### A simple bandit algorithm

Initialize, for a = 1 to k:

$$Q(a) \leftarrow 0$$

$$N(a) \leftarrow 0$$

Loop forever:

$$A \leftarrow \left\{ \begin{array}{ll} \operatorname{argmax}_a Q(a) & \text{with probability } 1 - \varepsilon \\ \operatorname{a random \ action} & \text{with probability } \varepsilon \end{array} \right. \quad \text{(breaking ties randomly)}$$

$$R \leftarrow bandit(A)$$

$$N(A) \leftarrow N(A) + 1$$

$$Q(A) \leftarrow Q(A) + \frac{1}{N(A)} [R - Q(A)]$$

# A Value-Based Bandit Algorithm

### A simple bandit algorithm

Initialize, for a = 1 to k:

$$Q(a) \leftarrow 0$$

$$N(a) \leftarrow 0$$

Loop forever:

$$A \leftarrow \left\{ \begin{array}{ll} \operatorname{argmax}_a Q(a) & \text{with probability } 1 - \varepsilon \\ \operatorname{a random action} & \text{with probability } \varepsilon \end{array} \right.$$

 $R \leftarrow bandit(A)$ 

$$N(A) \leftarrow N(A) + 1$$

$$Q(A) \leftarrow Q(A) + \frac{1}{N(A)} [R - Q(A)]$$



(breaking ties randomly)

Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

# Q. Select the Optimal Action

| Action | Pr(Reward   Action)                              |
|--------|--------------------------------------------------|
| $a_1$  | 2 with probability 0.5<br>0 with probability 0.5 |
| $a_2$  | 10 million w.p. 10 <sup>-7</sup><br>0 otherwise  |
| $a_3$  | 10 million w.p. 0.5 -9 million w.p. 0.5          |





## **Contextual Bandits**

State changes arbitrarily.







# Sequential Decision Making

State may change based on agent behavior.



# Sequential Decision Making



In contrast to Bandits, in the full RL problem (general sequential decision-making) the environment may change based on agent's actions.

# Markov Decision Processes

# Markov Property

Consider a sequence of random variables

$$S_1, S_2, S_3, \cdots, S_n$$

The sequence is Markovian if

$$\Pr(s_n|s_1, s_2, \dots, s_{n-1}) = \Pr(s_n|s_{n-1}) \quad \forall \quad n$$

# Markov Decision Processes (MDPs)



MDPs are a special case of the general sequential decision-making problem, where

- Agent's observation completely describe the current state of the problem,
- Sequence of observations conditioned on the agent's action is Markovian, and
- A scalar signal (reward) is sufficient to describe the problem objective.

## MDP: Definition



- S is the state space, A is the action space,
- T is the transition function, R is the reward function, and
- $\gamma$  is the discount factor.

## **MDP: Definition**

Note: In practice, an important step for employing RL is to convert the real-world problem that you want to solve to an MDP model that is both useful and computationally tractable.



- S is the state space, A is the action space,
- T is the transition function, R is the reward function, and
- $\gamma$  is the discount factor.

## MDP: Example #1



- S is the state space, A is the action space,
- T is the transition function, R is the reward function, and
- $\gamma$  is the discount factor.

## MDP: Example #2



- S is the state space, A is the action space,
- T is the transition function, R is the reward function, and
- $\gamma$  is the discount factor.

## Discount Factor: Motivation

Let us say the agent receives rewards as money and has two actions:

- 1. Action 1 gives \$100 today.
- 2. Action 2 gives \$50 today and \$60 a year from now.

Which action should the agent choose?

## Discount Factor: Motivation

Let us say the agent receives rewards as money and has two actions:

- 1. Action 1 gives \$100 today.
- 2. Action 2 gives \$50 today and \$60 a year from now.

Which action should the agent choose?

- 1. Return 1 = \$100
- 2. Return 2 =  $$50 + \gamma 60$

## Reward Design

Note: RL requires specification of sound reward functions. Rewards should convey "what" is the Agent's task, and not "how" the Agent should do this task.



- S is the state space, A is the action space,
- T is the transition function, R is the reward function, and
- $\gamma$  is the discount factor.

# Reinforcement Learning: Problem Formulation

# Decision-Making Policy



Given a real-world decision-making problem described as an Markov Decision Process, the Agent needs a "policy" to make decisions and collect rewards.

# Decision-Making Policy



The policy for an MDP can be described as either sequence of actions  $a_1, a_2, a_3, \cdots$ Or, more compactly, as the "Markov policy function"  $\pi(a|s)$ 

# Decision-Making Objective



For an MDP, we can have many policies. Some good, some not so good. We seek the optimal policy  $(\pi^*)$  that provides the highest return:  $J = \Sigma_i R(s_i, a_i)$ 

# Reinforcement Learning: Problem



Find the optimal policy  $\pi^*$  for an MDP  $(S, A, T, R, \gamma)$  given the knowledge of  $(S, A, \gamma)$  and ability to interact with the environment.

# Reinforcement Learning: Problem

#### Given

- The ability to collect training data,  $D = \{(s_1, a_1), (s_2, a_2), ...\}$  such that  $s_{t+1} \sim T(\cdot | s_t, a_t)$
- A class of models,  $\pi: S \to \Pr(A) \in \Pi$
- A reward function,  $R: S \times A \rightarrow \mathcal{R}$

#### Find

• The best model  $\pi^* \in \Pi$  that maximizes the cumulative reward

$$\pi^* = \operatorname{argmax}_{\pi} \sum_{i} R(s_i, a_i)$$

# Q Learning

# Intuition: Making Decision in Bandits



# Intuition: Making Decisions in RL

### Algorithm sketch

- 1. Start with a policy,  $\pi$
- 2. Collect experience ( $\mathcal{D}$ ) using the policy,  $\pi$
- 3. Estimate value using data,  $Q \leftarrow PolicyEvaluationUsingData(\pi, \mathcal{D})$
- 4. Improve policy based on the value,  $\pi \leftarrow Policy\ Improvement(\pi, Q)$
- 5. Repeat 2-4, Stop when policy no longer improves

This is just one type of algorithmic sketch for RL, which results in many algorithms based on how each subroutine (2,3,4) is designed.

# Q-Learning: Pseudocode

#### Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

```
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0

Initialize Q(s,a), for all s \in \mathbb{S}^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal, \cdot) = 0

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)

Take action A, observe R, S'

Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]

S \leftarrow S'

until S is terminal
```

# Q-Learning: Reducing Sample Complexity

```
Q-learning (off-policy TD control) for estimating \pi \approx \pi_*

Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0

Initialize Q(s,a), for all s \in \mathbb{S}^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal,\cdot) = 0

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)

Take action A, observe R, S'

Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]
S \leftarrow S'

until S is terminal
```

# Q-Learning: Challenges in Scaling Up

```
Q-learning (off-policy TD control) for estimating \pi \approx \pi_*

Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0

Initialize Q(s,a), for all s \in \mathbb{S}^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal, \cdot) = 0

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)

Take action A, observe R, S'

Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]
S \leftarrow S'

until S is terminal
```

#### Blackjack: tiny.cc/rl-blackjack



# Deep Q Learning

# Tabular RL approaches are intractable even for modestly complex games



# Tabular RL is almost always intractable for applications in the real world







#### How can we make RL tractable?

### Function Approximation: Deep Learning + RL



### General Recipe for Deep Q Learning

- 1. Initialize optimal policy, value, and target network:  $\pi$  ,  $Q_{*,oldsymbol{\phi}}$  ,  $Q_{*,oldsymbol{\phi}}$
- 2. Collect J experiences using behavior policy and update replay buffer  $\mathcal{D}_b$
- 3. Estimate value using data,  $Q_{*,\phi} \leftarrow PolicyEvaluationUsingData(\pi, \mathcal{D}_b)$  by sampling a mini-batch of I experiences and updating Q

$$(s_i, a_i, r_i, s_i') \sim \mathcal{D}_b$$

$$\hat{G}_i = r_i + \max_{a} Q_{*, \phi^T}(s_i', a)$$

$$\phi \leftarrow \underset{\phi}{\operatorname{argmin}} \mathcal{L}(Q_{*, \phi}(s_i, a_i) - \hat{G}_i)$$

- 4. Improve the policy based on value,  $\pi \leftarrow Policy\ Improvement(\pi, Q_*)$
- 5. Update target network every K steps,  $\phi^T \leftarrow \phi$
- 6. Repeat 2-5, Stop when policy no longer improves

#### Deep Q Network

- 1. Initialize optimal policy, value, and target network:  $\pi$  ,  $Q_{*,oldsymbol{\phi}}$  ,  $Q_{*,oldsymbol{\phi}}$  ,
- 2. Collect J=1 experiences using behavior policy & update replay buffer  $\mathcal{D}_b$
- 3. Estimate value using data,  $Q_{*,\phi} \leftarrow PolicyEvaluationUsingData(\pi, \mathcal{D}_b)$  by sampling a mini-batch of |>1 experiences and updating Q

$$(s_i, a_i, r_i, s_i') \sim \mathcal{D}_b$$

$$\hat{G}_i = r_i + \max_{a} Q_{*, \phi^T}(s_i', a)$$

$$\phi \leftarrow \underset{\phi}{\operatorname{argmin}} \mathcal{L}(Q_{*, \phi}(s_i, a_i) - \hat{G}_i)$$

- 4. Improve the policy based on value,  $\pi \leftarrow Policy\ Improvement(\pi, Q_*)$
- 5. Update target network every K>1 steps,  $\phi^T \leftarrow \phi$
- 6. Repeat 2-5, Stop when policy no longer improves

# Blackjack: tiny.cc/rl-mountain-car



# **RL Safety**

For more details, please see: Amodei, Dario, et al. "Concrete problems in Al safety." arXiv preprint arXiv:1606.06565 (2016).

#### **Expected Values and Scalar Rewards**



# Q. Select the Optimal Action

| Action | Pr(Reward   Action)                              |
|--------|--------------------------------------------------|
| $a_1$  | 2 with probability 0.5<br>0 with probability 0.5 |
| $a_2$  | 10 million w.p. 10 <sup>-7</sup><br>0 otherwise  |
| $a_3$  | 10 million w.p. 0.5 -9 million w.p. 0.5          |

# **Ensuring Safe Exploration**



## **Ensuring Safe Exploration**



# Preventing Reward Hacking



### Improving Robustness to Distribution Shifts



# **Concluding Remarks**









# Reinforcement learning offers a unified approach to solve a large class of decision-making problems.









Sutton and Barto. Reinforcement Learning: An Introduction. MIT Press, 2018.

#### **Environment and Agents**



RL is particularly suited for sequential and stochastic problems for which specifying the desired outcome (reward signal) is easier than specifying how to achieve it (policy).