

Lecture 3: Exercise Solutions

MSE Algorithms - Metaheuristics

Solutions: Manual Local Search

Task 1: Manual Local Searches

y\x	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
-6	248	216	210	222	230	234	256	304	336	372	428	495	585	650	754
-5	193	175	157	166	174	181	215	249	295	329	382	454	539	597	707
-4	138	144	126	116	124	150	184	194	250	305	361	425	480	566	646
-3	123 ^L	89	85	97	105	109	129	179	209	246	302	368	458	525	627
-2	92	58	70	70	78	94	98	148	168	223	282	339	413	510	582
-1	68	34	46	46	54	70	74	124	144	199	258	315	388	486	558
0	51	17	_ 14	25	33	38	57	107	136	174	230	296	386	454	555
1	18	25	↓ 5	-4	3	29	65	74	131	185	240	305	361	445_	_527
2	27	6	'-10	0	8	13	46	83	126	160	213	284	371_	429	539
3	33	0	-3	7	15	20	39	89	118	156	212	278	368	436	537
4	33	12	▲ -4	<u></u> 6	14	19	52	89	132	166	219	290	377	435	545
5	30	37	17 __	7	15	41	77	86	143	197	252	317	373	457	539
6	69	35	32	43	51	56	75	125	154	192	248	314	404	472	573
7	92	58	70	70	78	94	98	148	168	223	282	339	412	510	_ 582

Best move policy

First improving move policy

Solutions: 2-opt and 3-opt moves for TSP

Task 2: 2-opt and 3-opt moves for TSP

- a) c1-c2-c5-c6-c3-c4-c7-c8-c1.
- b) c1-c2-c4-c3-c6-c5-c7-c8-c1.
- c) c1-c2-c6-c5-c4-c3-c7-c8-c1.

Solutions: Greedy for Knapsack Problem

Task 3: Greedy for Knapsack Problem

- a) Let n = W and $v_1 = 2$, $w_1 = W$, $v_2 = v_3 \dots = v_n = 1$, $w_2 = w_3 = \dots = w_n = 1$. Then Naive Greedy takes item 1 with value 2, whereas a better solution would be to take all other items with value n-1.
- b) Worst case for Smarter Greedy: Let $v_1 = 2$, $w_1 = 1$, $v_2 = W$ and $w_2 = W$. Then Smarter Greedy takes item 1, but item 2 would be much better.
- c) Potential Neighbourhoods:
 - Flip one bit x_i, if result is a valid solution.
 - Exchange one item with another, if result is a valid solution.

Solutions: Knapsack with SA

Task 4: Knapsack Problem with Simulated Annealing Optimal Solution for Instance Knapsack_P08:

Value = 13549094

Items: 110111000110100100000111

Source: http://people.sc.fsu.edu/~jburkardt/datasets/knapsack_01/knapsack_01.html

Solutions: Solving TSP with SA

	berlin52	bier127	tsp225	pr1002	pr2391	rl5915	reseau_ suisse	sw24978
Simon Stuck								
stucksi2@students.zhaw.ch	7544	118371	393342	265772	398526	651679	N/A	N/A
Will be updated periodically								
until end of lecture								
arrai erra er reetare								
Samuel Beer – ZHAW			MSE Algo	rithms				6