Finanzas 1 Ayudantía 5

Profesor: Carlos Peréz Ayudantes: Pablo Fernández Gabriel Haensgen, Celena Magni y Constanza Magni

Ejercicio 1

Complete la siguiente tabla para bonos cero cupón y valor par de \$1.000

Precio	Duración (años)	YTM
\$400	20	
\$500	20	
\$500	10	
	10	10%
	10	8%
\$400		8%

Solución:

Precio	Duración (años)	YTM
\$400	20	$4,\!6880234\%$
\$500	20	$3{,}5264923\%$
\$500	10	$7{,}1773462\%$
385,5432894	10	10%
463,1934881	10	8%
\$400	11,90590354	8%

Ejercicio 2

Supón que las tasas al contado a uno y dos años son 6% y 10%.

A); Cuánto te costaría comprar un bono sin riesgo de crédito, cupón anual 12% y principal \$1.500 que madura en dos años?

Solución:

Datos:

 $t:1 \ge 2$ años

P: \$1.500

c: \$180 = (1.500 * 0, 12)

 $s_1 = 6\%$

 $s_2 = 10\%$

Resolvemos:

$$q_0 = \frac{c}{(1+s_1)^{t_1}} + \frac{c+P}{(1+s_2)^{t_2}}$$

$$q_0 = \frac{180}{(1+0,06)^1} + \frac{180+1500}{(1+0,1)^2}$$

$$q_0 = 169,8113208 + 1.388,429752$$

$$q_0 = 1.558, 241073$$

B)¿Cuál sería el rendimiento YTM del bono?

Solución:

Podemos ocupar la fórmula que se aproxima al YTM que se compone de la siguiente manera:

$$YTM = \frac{C + \frac{P - q_0}{n}}{\frac{P + q_0}{2}}$$

$$YTM = \frac{180 + \frac{1.500 - 1.558, 241073}{2}}{\frac{1.500 + 1.558, 241073}{2}}$$

$$YTM = 0,079626768$$

$$YTM = 7,96\%$$

Ejercicio 3

Calcule el precio de un bono cupón 3%anual y de FV de \$100

Time to Maturity	Spot Rates A	Spot Rates B
1 año	0.39%	4.08%
2 años	1.40%	4.01%
3 años	2.50%	3.70%
4 años	3.60%	3.50%

Solución:

Spot Rates A:

$$\frac{3}{(1.0039)} + \frac{3}{(1.0140)^2} + \frac{3}{(1.0250)^3} + \frac{103}{(1.0360)^4} = 2.988 + 2.918 + 2.786 + 89.412 = 98.104$$

Spot Rates B:

$$\frac{3}{(1.0408)} + \frac{3}{(1.0401)^2} + \frac{3}{(1.0370)^3} + \frac{103}{(1.0350)^4} = 2.882 + 2.773 + 2.690 + 89.759 = 98.104$$

Ejercicio 4

Considere los siguentes bonos que pagan interes anual, donde la tasa de descuento del mercado es 4% y el FV es \$ 100:

Bono	Tasa cupón	Tiempo de Madurez
A	5%	2 años
В	3%	2 años

¿Cual es la diferencia entre ambos valores presentes?

Solución:

Dada que la diferencia entre ambas tasas es 2%:

$$PV = \frac{2}{(1.04)} + \frac{2}{(1.04)^2} = 1.92 + 1.85 = 3.77$$

Ejercicio 5

Considere dos bonos sin riesgo de crédito, principal USD \$1.000 y vencimiento a un año. El bono A es de cupón cero y se negocia a USD \$890 en el mercado secundario. El bono B es de cupón semestral, tasa de cupón del 10% anual simple y se negocia a USD \$981 en el mercado secundario

A) ¿Cuál sería la tasa al contado o spot a un semestre?

Solución:

Lo primero es saber en ambos bonos se tranzan a la misma tasas, dado que estas son las tasas spot de cada período.

Dado que el bono A es de cupón 0, podemos sacar la tasa sin problemas, sin embargo, esta será a 1 año.

$$q_0 = \frac{P}{(1+S_2)^2}$$

$$890 = \frac{1.000}{(1+S_2)}$$

$$(1+S_2)^2 = \frac{1.000}{890}$$

$$S_2 = 0,05999788$$

Ahora podemos calcular la tasa semestral con el bono B.

$$q_0 = \frac{C}{(1+S_1)} + \frac{C+P}{(1+S_2)^2}$$

$$981 = \frac{50}{(1+S_1)} + \frac{1.050}{(1+0.005999788)^2}$$

$$981 = \frac{50}{(1+S_1)} + 934.5$$

$$46,5 = \frac{50}{(1+S_1)}$$
$$S_1 = 0,075268817$$

B) ¿Cuál sería la tasa forward de un semestre a un año?

Solución:

Dado que ya posemos nuestras tasas spot, tanto a un semetre como a un año, simplemente ocupamos la fórmula.

$$(1+S_2)^2 = (1+S_1) * (1+F_{12})$$
$$(1,05999788)^2 = (1,075268817) * (1+F_{12})$$
$$\frac{1,123595506}{1,075268817} = (1+F_{12})$$
$$F_{12} = 0,04494382$$