Instruments and Identification

Chris Conlon

September 20, 2020

Grad IO

Parametric Identification

ullet Once we have $\delta_{jt}(heta_2)$ identification of linear parameters is pretty straightforward

$$\delta_{jt}(\theta_2) = x_{jt}\beta - \alpha p_{jt} + \xi_j + \xi_t + \Delta \xi_{jt}$$

- This is either basic linear IV or panel linear IV.
- How are θ_2 taste parameters identified?
 - ullet Consider increasing the price of j and measuring substitution to other products k,k' etc.
 - If sales of k increase with p_j and $(x_j^{(1)}, x_k^{(1)})$ are similar then we increase the σ that corresponds to $x^{(1)}$.
 - Price is the most obvious to vary, but sometimes this works for other characteristics (like distance).
 - Alternative: vary the set of products available to consumers by adding or removing an option.

Instruments

- Recall the nested logit, where there are two separate endogeneity problems
 - Price: this is the familiar one!
 - Nonlinear characteristics σ this is the other one.
- We are doing nonlinear GMM: Start with $E[\xi_{jt}|x_{jt},w_{jt}]=0$ use $E[\xi'_{jt}Z^D_{jt}]=0$ with $Z^D_{jt}=[x_{jt}\,z_{jt}]$.
 - In practice this means that for valid instruments (x, w) any function f(x, w) is also a valid instrument $E[\xi_{jt}f(x_{jt}, w_{jt})] = 0$.
 - We can use x, x^2, x^3, \ldots or interactions $x \cdot w, x^2 \cdot w^2, \ldots$
 - ullet What is a reasonable choice of $f(\cdot)$?
 - Where does w come from?

Exclusion Restrictions

$$\delta_{jt}(\mathcal{S}_t, \widetilde{\theta}_2) = [x_{jt}, \mathbf{v}_{jt}]\beta - \alpha p_{jt} + \xi_{jt}$$

$$f(p_{jt} - \eta_{jt}(\theta_2, \mathbf{p}, \mathbf{s})) = h(x_{jt}, \mathbf{w}_{jt}; \theta_3) + \omega_{jt}$$

The first place to look for exclusion restrictions/instruments:

- Something in another equation!
- ullet v_j shifts demand but not supply
- \bullet w_i shifts supply but not demand
- If it doesn't shift either is it really relevant?

Markup Shifters

The equilibrium markup is a function of everything! $\eta_{jt}(\mathbf{p}, \mathbf{s}, \xi_t, \omega_t, x_t, w_t, v_t, \theta_2)$:

- It is literally endogenous (depends on error terms)!
- But lots of potential instruments beyond excluded v_t or w_t .
- ullet Also v_{-j} and w_{-j} and x_{-j} (these don't depend on ξ_{jt},ω_{jt})
- Not p_{-j} or ξ_{-j} , (these depend on ξ_{jt}, ω_{jt}).
- The idea is that these instruments shift or rotate the marginal revenue curve.
- What is a good choice of $f(x_{-j})$? etc.

BLP Instruments

- Common choices are average characteristics of other products in the same market $f(x_{-j,t})$. BLP instruments
 - Same firm $z_{1jt}=\overline{x}_{-j_f,t}=\frac{1}{\left|F_j\right|}\sum_{k\in\mathcal{F}_j}x_{kt}-\frac{1}{\left|F_j\right|}x_{jt}.$
 - Other firms $z_{2jt} = \overline{x}_{\cdot t} \overline{x}_{-j_f,t} \frac{1}{J}x_{jt}$.
 - Plus regressors $(1, x_{jt})$.
 - Plus higher order interactions
- Technically linearly independent for large (finite) J, but becoming highly correlated.
 - Can still exploit variation in number of products per market or number of products per firm.
- ullet Correlated moments o "many instruments".
 - May be inclined to "fix" correlation in instrument matrix directly.

Armstrong (2016): Weak Instruments?

Consider the limit as $J \to \infty$

$$\frac{s_{jt}(\mathbf{p_t})}{\left|\frac{\partial s_{jt}(\mathbf{p_t})}{\partial p_{jt}}\right|} = \frac{1}{\alpha} \frac{1}{1 - s_{jt}} \to \frac{1}{\alpha}$$

- Hard to use markup shifting instruments to instrument for a constant.
- How close to the constant do we get in practice?
- Average of x_{-j} seems like an especially poor choice. Why?
- Shows there may still be some power in: products per market, products per firm.
- Convergence to constant extends to mixed logits (see Gabaix and Laibson 2004).
- Suggests that you really need cost shifters.

Differentiation Instruments: Gandhi Houde (2019)

- ullet Also need instruments for the random coefficient parameters $\widetilde{ heta}_2.$
- Instead of average of other characteristics $f(x) = \frac{1}{J-1} \sum_{k \neq j} x_k$, can transform as distance to x_j .

$$d_{jkt} = x_{kt} - x_{jt}$$

 And use this transformed to construct two kinds of IV (Squared distance, and count of local competitors)

$$\begin{split} z_{jt}^{\mathsf{quad}} &= & \sum_{k \in F} d_{jkt}^2, & \sum_{k \notin F} d_{jkt}^2 \\ z_{jt}^{\mathsf{local}} &= & \sum_{k \in F} I[d_{jkt} < c] & \sum_{k \notin F} I[d_{jkt} < c] \end{split}$$

ullet They choose c to correspond to one standard deviation of x across markets.

Optimal Instruments (Chamberlain 1987)

Chamberlain (1987) asks how can we choose $f(z_i)$ to obtain the semi-parametric efficiency bound with conditional moment restrictions:

$$E[g(z_i, \theta)|z_i] = 0 \Rightarrow E[g(z_i, \theta) \cdot f(z_i)] = 0$$

The answer is to choose instruments related to the Jacobian of moment conditions w.r.t θ :

$$E\left[\frac{\partial g(z_i,\theta)}{\partial \theta}|z_i\right]$$

Dominguez and Lobatto (2004) point out we can get unlucky and choose an $f(z_i)$ such that θ is no longer identified(!)

Optimal Instruments (Chamberlain 1987)

Consider the simplest IV problem:

$$\begin{aligned} y_i &= \beta x_i + \gamma v_i + u_i \quad \text{ with } \quad E[u_i|v_i,z_i] = 0 \\ u_i &= (y_i - \beta x_i - \gamma v_i) \\ g(x_i,v_i,z_i) &= (y_i - \beta x_i - \gamma v_i) \cdot [v_i,\,z_i] \end{aligned}$$

Which gives:

$$E\left[\frac{\partial g(x_i, v_i, z_i, \theta)}{\partial \gamma} \mid v_i, z_i\right] = v_i$$

$$E\left[\frac{\partial g(x_i, v_i, z_i, \theta)}{\partial \beta} \mid v_i, z_i\right] = E\left[x_i \mid v_i, z_i\right]$$

We can't just use x_i (bc endogenous!), but you can also see where 2SLS comes from...

Optimal Instruments (Newey 1990)

From previous slide, nothing says that $E[x_i \mid v_i, z_i]$ needs to be linear!

- Since any f(x,z) satisfies our orthogonality condition, we can try to choose f(x,z) as a basis to approximate optimal instruments.
- Why? Well affine tranformations of instruments are still valid, and we span the same vector space!
- We are essentially relying on a non-parametric regression that we never run (but could!)
 - This is challenging in practice and in fact suffers from a curse of dimensionality.
 - ullet This is frequently given as a rationale behind higher order x's.
 - When the dimension of x is low this may still be feasible. $(K \le 3)$.
 - But recent improvements in sieves, LASSO, non-parametric regression are encouraging.

Optimal Instruments (see Conlon Gortmaker 2020)

BLP 1999 tells us the (Chamberlain 1987) optimal instruments for this supply-demand system of $G\Omega^{-1}$ where for a given observation n, we need to compute $E[\frac{\partial \xi_{jt}}{\partial \theta}|x,v,w]$ and $E[\frac{\partial \omega_{jt}}{\partial \theta}|x,v,w]$

$$G_{n} := \underbrace{\begin{bmatrix} \frac{\partial \xi}{\partial \beta} & \frac{\partial \omega}{\partial \beta} \\ \frac{\partial \xi}{\partial \alpha} & \frac{\partial \omega}{\partial \alpha} \\ \frac{\partial \xi}{\partial \sigma} & \frac{\partial \omega}{\partial \sigma} \\ \frac{\partial \xi}{\partial \gamma} & \frac{\partial \omega}{\partial \gamma} \end{bmatrix}_{n}}_{(K_{1}+K_{2}+K_{3})\times 2} = \begin{bmatrix} -x & 0 \\ \xi_{\alpha} & \omega_{\alpha} \\ \xi_{\sigma} & \omega_{\sigma} \\ 0 & -x \\ 0 & -w \end{bmatrix}_{n} \qquad \Omega := \underbrace{\begin{bmatrix} v_{\xi}^{2} & v_{\xi\omega} \\ v_{\xi\omega} & v_{\omega}^{2} \end{bmatrix}}_{2\times 2}$$

Optimal Instruments: (see Conlon Gortmaker 2020)

$$G_n \Omega^{-1} = \frac{1}{v_{\xi}^2 v_{\omega}^2 - (v_{\xi\omega})^2} \times \begin{bmatrix} -v_{\omega}^2 x & v_{\xi\omega} x \\ v_{\omega}^2 \xi_{\alpha} - v_{\xi\omega} \omega_{\alpha} & v_{\xi}^2 \omega_{\alpha} - v_{\xi\omega} \xi_{\alpha} \\ v_{\omega}^2 \xi_{\sigma} - v_{\xi\omega} \omega_{\sigma} & v_{\xi}^2 \omega_{\sigma} - v_{\xi\omega} \xi_{\sigma} \\ v_{\xi\omega} x & -v_{\xi}^2 x \\ v_{\xi\omega} w & -v_{\xi}^2 w \end{bmatrix}_n$$

Clearly rows 1 and 4 are co-linear.

#4: Optimal Instruments

$$(G_n\Omega^{-1}) \circ \Theta = \frac{1}{v_{\xi}^2 v_{\omega}^2 - (v_{\xi\omega})^2} \times \begin{bmatrix} -v_{\omega}^2 x & 0\\ v_{\omega}^2 \xi_{\alpha} - v_{\xi\omega} \omega_{\alpha} & v_{\xi}^2 \omega_{\alpha} - v_{\xi\omega} \xi_{\alpha}\\ v_{\omega}^2 \xi_{\sigma} - v_{\xi\omega} \omega_{\sigma} & v_{\xi}^2 \omega_{\sigma} - v_{\xi\omega} \xi_{\sigma}\\ 0 & -v_{\xi}^2 x\\ v_{\xi\omega} w & -v_{\xi}^2 w \end{bmatrix}_n$$

Now we can partition our instrument set by column into "demand" and "supply" instruments as

$$z_{nD} := (G_n \Omega^{-1} \circ \Theta)_{\cdot 1}$$
$$z_{nS} := (G_n \Omega^{-1} \circ \Theta)_{\cdot 2}$$

Aside: What does Supply tell us about Demand?

$$\partial \alpha : v_{\omega}^2 \xi_{\alpha} - v_{\xi\omega} \omega_{\alpha} \quad v_{\xi}^2 \omega_{\alpha} - v_{\xi\omega} \xi_{\alpha}$$
$$\partial \sigma : v_{\omega}^2 \xi_{\sigma} - v_{\xi\omega} \omega_{\sigma} \quad v_{\xi}^2 \omega_{\sigma} - v_{\xi\omega} \xi_{\sigma}$$

- Under optimal IV these are overidentifying restrictions
- Maybe cases where one part of these instruments is trivial.

Optimal Instruments

How to construct optimal instruments in form of Chamberlain (1987)

$$E\left[\frac{\partial \xi_{jt}}{\partial \theta}|X_t, w_{jt}\right] = \left[\beta, E\left[\frac{\partial \xi_{jt}}{\partial \alpha}|X_t, w_{jt}\right], E\left[\frac{\partial \xi_{jt}}{\partial \sigma}|X_t, w_{jt}\right]\right]$$

Some challenges:

- 1. p_{jt} depends on X_t, w_t, ξ_t in a highly nonlinear way (no explicit solution!).
- 2. $E[\frac{\partial \xi_{jt}}{\partial \sigma}|X_t, w_t] = E[[\frac{\partial \mathbf{s_t}}{\partial \delta_t}]^{-1}[\frac{\partial \mathbf{s_t}}{\partial \sigma}]|X_t, w_t]$ (not conditioned on endogenous p!)

"Feasible" Recipe:

- 1. Fix $\hat{\theta} = (\hat{\alpha}, \hat{\beta}, \hat{\sigma})$ and draw ξ_t from empirical density
- 2. Solve fixed point equation for $\hat{p_{jt}}$
- 3. Compute necessary Jacobian
- 4. Average over all values of ξ_t . (Lazy approach: use only $\xi=0$).

Simplified Version: Reynaert Verboven (2014)

ullet Optimal instruments are easier to work out if p=mc.

$$c = p + \underbrace{\Delta^{-1}s}_{\to 0} = X\gamma_1 + W\gamma_2 + \omega$$

• Linear cost function means linear reduced-form price function.

$$E\left[\frac{\partial \xi_{jt}}{\partial \alpha}|z_{t}\right] = E[p_{jt}|z_{t}] = x_{jt}\gamma_{1} + w_{jt}\gamma_{2}$$

$$E\left[\frac{\partial \omega_{jt}}{\partial \alpha}|z_{t}\right] = 0, \quad E\left[\frac{\partial \omega_{jt}}{\partial \sigma}|z_{t}\right] = 0$$

$$E\left[\frac{\partial \xi_{jt}}{\partial \sigma}|z_{t}\right] = E\left[\frac{\partial \delta_{jt}}{\partial \sigma}|z_{t}\right]$$

- If we are worried about endogenous oligopoly markups is this a reasonable idea?
- Turns out that the important piece tends to be shape of jacobian for σ_x .

Optimal Instruments: Reynaert Verboven (2014)

Table 2: Bias and Efficiency with Imperfect Competition

	Bias	g_{jt}^1		Single	Equation	GMM			
	Bias								
	Bias				g_{it}^2			g_{jt}^3	
0.17		St Err	RMSE	Bias	St Err	RMSE	Bias	St Err	RMSE
-0.12	-0.127	0.899	0.907	-0.155	0.799	0.814	-0.070	0.514	0.519
-0.06	-0.068	0.899	0.901	0.089	0.766	0.770	-0.001	0.398	0.398
0.00	0.006	0.052	0.052	0.010	0.049	0.050	0.010	0.043	0.044
-0.16	-0.162	0.634	0.654	-0.147	0.537	0.556	-0.016	0.229	0.229
				Joint	Equation	GMM			
		g_{jt}^1							
		g_{it}^1			g_{it}^2			g_{it}^3	
ie Bia	Bias	g_{jt}^1 St Err	RMSE	Bias	g_{jt}^2 St Err	RMSE	Bias	g_{jt}^3 St Err	RMSE
	Bias -0.095		RMSE 0.720	Bias -0.103			Bias 0.005		RMSE 0.459
-0.09		St Err			St Err	RMSE		St Err	
-0.09 0.08	-0.095	St Err 0.714	0.720	-0.103	St Err 0.677	RMSE 0.685	0.005	St Err 0.459	0.459
-0.09 0.08 0.00	-0.095 0.089	St Err 0.714 0.669	0.720 0.675	-0.103 0.098	St Err 0.677 0.621	RMSE 0.685 0.628	0.005 -0.009	St Err 0.459 0.312	0.312
	,	-0.095 0.089 0.001	Bias St Err -0.095 0.714 0.089 0.669 0.001 0.047	Bias St Err RMSE -0.095 0.714 0.720 0.089 0.669 0.675 0.001 0.047 0.047	Bias St Err RMSE Bias -0.095 0.714 0.720 -0.103 0.089 0.669 0.675 0.098 0.001 0.047 0.047 0.002	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Bias, standard errors (St Err) and root mean squared errors (RMSE) are computed from 1000 Monte Carlo replications. Estimates are based on the MPEC algorithm and Sparse Grid integration. The instruments g_{jt}^* , g_{jt}^* , and g_{jt}^* are defined in section 2.4 and 2.5.

Differentiation Instruments: Gandhi Houde (2016)

Figure 4: Distribution of parameter estimates in small and large samples

IV Comparison: Conlon and Gortmaker (2019)

Each plot profiles the GMM objective $Q(\theta)$ with respect to a single parameter for our "Simple" simulation scenario and a single simulation. We fix either σ_s or and re-optimize over other parameters and plot the restricted objective in each subplot. The top row profiles the objective over the price parameter α_s while the bottom row profiles over the random coefficient σ_s . The left column uses moments from demand alone, while the right column uses both supply and demand moments.