Dynamic programming

CS 2860: Algorithms and Complexity I

Magnus Wahlström, McCrea 113

Magnus.Wahlstrom@rhul.ac.uk

December 5, 2014

Dynamic Programming, review

- ► Some problems (e.g., Fibonacci numbers) have an easy recursive algorithm which is very slow
- ➤ Sometimes, the reason is that the program repeats computations e.g., fib(10) computes fib(5) over and over and over
- Options for speed-up:
 - Memoization: Remember all computed subproblems to avoid recomputation in a big table
 - Dynamic programming: Replace "recursive scaffolding" to work directly on the table

Fibonacci: Recursive and iterative

Number of computation steps with/without speedup:

n	1	2	3	4	5	6	7	8	9	10	
Recursive	1	2	3	5	8	13	21	34	55	89	
Iterative	1	2	3	4	5	6	7	8	9	10	

Recursive grows as $1.61...^n$ (exponential) vs iterative O(n)

Dynamic programming features

- ► For both memoization and dynamic programming, time is roughly proportional to number of different subproblems
- ▶ If these are few, then an efficient solution is possible (at the cost of more memory)
- Alert: For some problems, first must invent good recursive procedure (which produces only few different subproblems)

Knapsack

Knapsack problem def.

Given n items $[I_1, I_2, \ldots, I_n]$, each with a size I.size (integer!) and a value I.value, and a total capacity c, find the most valuable way to pack items of total size at most c.

- ▶ Example: Items with sizes (8,5,3,2), values (9,6,4,3), capacity 10: Can pack 8+2 for 12 points or 5+3+2 for 13 points
- Will see:
 - 1. Recursive solution scheme
 - 2. A Dynamic Programming speedup for it

1. Recursive procedure

- ► Situation: Want to solve knapsack for *n* items, capacity *c*, recursively
- ► Idea:
 - 1. Pick an item (say, item n)
 - 2. Look for solutions that contain item n
 - 3. Look for solutions that do not contain item n
 - 4. Return the best of the two

Recursive procedure (more detail)

- ▶ Solving knapsack for items $[I_1, ..., I_n]$, total capacity c
- ▶ Solutions that contain item I_n :
 - Solve knapsack for items $[I_1, \ldots, I_{n-1}]$, total capacity $c I_n$. size
 - ▶ Add *I_n* to the solution
- ▶ Solutions that do not contain item I_n :
 - ▶ Solve knapsack for items $[I_1, ..., I_{n-1}]$, total capacity c
 - Use this solution without adding anything
- ▶ Base case: n = 0 items (empty solution)

Recursive exponential-time Knapsack

```
Set<Item> best_knapsack(Item[] items, int n, int capacity) {
if (n <= 0)
  (return empty Set<Item>);
int size = items[n-1].size;
if (size > capacity)
  return best_knapsack(items, n-1, capacity);
else {
  Set<Item> sol1 = best_knapsack(items, n-1, capacity);
  Set<Item> sol2 = best_knapsack(items, n-1, capacity-size);
  sol2.add(items[n-1]);
  (return the best solution of sol1 and sol2);
```

Branching algorithms

- ► This scheme (pick a decision, try both options recursively, return the best one) is called branching
- ▶ No better bound than $O(2^n)$ in general
- But with some tricks (pruning: remove "hopeless branches"), can work quite well for simpler (realistic) instances
- Example: SAT solvers: Very efficient solvers for otherwise difficult problems (e.g., hardware verification)

2. Identifying subproblems

- Common traits of all our subproblems:
 - ► Capacity is between 0 and original
 - ▶ Item list is $[I_1, I_2, ..., I_i]$: First i items
- ▶ In fact, this is all we need to know (solution independence)
- ▶ BestKnapsack(n, cap) = Best of:
 - BestKnapsack(n-1, cap),
 - 2. BestKnapsack(n-1, cap size_n) + Item_n.
- Only n*cap different subproblems solved!
- Memoization:
 - Keep a cache that stores and remembers the answer for BestKnapsack(x,y) for all calls (x,y) made to the function

3. Dynamic programming

- We identified n*capacity subproblems; if we solve these problems, we will find a solution
- ▶ With memoization, would in principle be done:
 - ► Construct n*capacity table of solutions
 - Run the recursive algorithm
 - ► For every recursive call (x,y), if it is in the table already:
 - Return the solution from the table
 - ...otherwise:
 - ▶ Keep running the algorithm
 - Get a solution S for (x,y)
 - ► Put table[x,y]=S, return S

DP table

- ► Table of size n_items*capacity, one entry per subproblem
- ▶ Entry table[i,c] should contain best solution using items $[l_1, l_2, ..., l_i]$ and max capacity c
- Fill in iteratively, bottom-up
- Use our recursive scheme to find how to do this...
 - 1. table[0,c]=0 for every c from 0 to max_capacity
 - 2. table[i,c]=table[i-1,c] if item i does not fit in capacity c
 - 3. table[i,c]=best(table[i-1,c], table[i-1,c-size(i)]+(item i)), otherwise
- ► Works if we fill in all values table[i-1,c2] before table[i,c]

Table fill-in example (solution values only)

Assume: Items of sizes [2,3,8,5], of values [3,4,9,6], capacity 10

Item set	0	1	2	3	4	5	6	7	8	9	10
[/1]	0	0	3	3	3	3	3	3	3	3	3
$[I_1, I_2]$	0	0	3	4	4	7	7	7	7	7	7
$[I_1, I_2, I_3]$	0	0	3	4	4	7	7	7	9	9	12
$[I_1, I_2, I_3, I_4]$	0	0	3	4	4	7	7	9	10	10	13

So original problem (i = 4, c = 10) has best solution value 13.

Problem 2: Longest Common Subsequence

- Situation: Have two strings, want to find the longest subsequence that occurs in both (not substring!)
- Subsequence: May occur "with gaps"
 - ▶ Technically: S is subsequence of T: Can delete characters from T to get S
- Example: "abc" occurs in "fabric" and "tablecloth"
- ► Applications: DNA comparison, "diff" file comparisons
 - Related to edit distance (strings) or some notion of mutation distance (DNA)

Longest Common Subsequence: Recursion

- Ex: Find LCS of "fabric" and "tablecloth"
- ▶ Recursive calls: 'f' \neq 't', so we need to search:
 - 1. Find LCS of "abric" and "tablecloth"
 - 2. Find LCS of "fabric" and "ablecloth"
- ▶ Ex 2: Find LCS of "abric" and "ablecloth":
 - ► Answer is 'a'+(LCS of "bric" and "blecloth")
- Convince yourself: There is no "danger" in always using the first letter if it is the same in both words

Longest Common Subsequence: Subproblems

- ► We have a recursive scheme ("remove" first character of one of the strings, unless the first characters match)
- Resulting subproblems:
 - LCS("fabric", "tablecloth")
 - LCS("abric,", "tablecloth")
 - LCS("fabric", "ablecloth")
 - ► LCS("bric", "tablecloth")
 - LCS("bric", "ablecloth")
 - **.** . . .
- ▶ All problems LCS(String1(i...n1), String2(j...n2))

Longest Common Subsequence: Composing

- ► Have subproblems: LCS(String1(i ... n1), String2(j ... n2))
- Answer stored in table[i,j]
- ▶ Have recursive scheme:
 - ▶ Base case: LCS("",S)="" (empty string), so table[n1, j]= "" for every value of j
 - If first characters match, set table[i,i]=(first character)+table[i+1,i+1]
 - Otherwise set table[i,j]=best(table[i+1,j], table[i,j+1])
- ▶ Dependency: Fill in all of row i+1 before row i, and entry (i,j+1) before entry (i,j)

Dynamic Programming, summary

- ► Powerful method to solve problem (recursively or iteratively) by composing the final solution out of smaller solutions
- Need "composing" strategy (recursive scheme) which produces few different subproblems
- Can get tricky to find the "right" composing strategy!
 (See [CLRS], Chapter 15 for examples)
- Dynamic Programming also heavily used in string problems, graph problems