NCTU Introduction to Machine Learning, Homework 4 109550136 邱弘竣

Part. 1, Coding (50%):

1. (10%) K-fold data partition: Implement the K-fold cross-validation function. Your function should take K as an argument and return a list of lists (*len(list) should equal to K*), which contains K elements. Each element is a list containing two parts, the first part contains the index of all training folds (index_x_train, index_y_train), e.g., Fold 2 to Fold 5 in split 1. The second part contains the index of the validation fold, e.g., Fold 1 in split 1 (index_x_val, index_y_val)

Note: You need to handle if the sample size is not divisible by K. Using the strategy from sklearn. The first n_samples % n_splits folds have size n_samples // n_splits + 1, other folds have size n_samples // n_splits, where n_samples is the number of samples, n_splits is K, % stands for modulus, // stands for integer division. See this post for more details

Note: Each of the samples should be used **exactly once** as the validation data

Note: Please shuffle your data before partition

2. (20%) Grid Search & Cross-validation: using <u>sklearn.svm.SVC</u> to train a classifier on the provided train set and conduct the grid search of "C" and "gamma," "kernel'='rbf' to find the best hyperparameters by cross-validation. Print the best hyperparameters you found.

Note: We suggest using K=5

3. (10%) Plot the grid search results of your SVM. The x and y represent "gamma" and "C" hyperparameters, respectively. And the color represents the average score of validation folds.

Note: This image is for reference, not the answer

Note: matplotlib is allowed to use

4. (10%) Train your SVM model by the best hyperparameters you found from question 2 on the whole training data and evaluate the performance on the test set.

Accuracy	Your scores
acc > 0.9	10points
0.85 <= acc <= 0.9	5 points

acc < 0.85 0 points

Part. 2, Questions (50%):

(10%) Show that the kernel matrix $K = [k(x_n, x_m)]_{nm}$ should be positive semidefinite is the necessary and sufficient condition for k(x, x') to be a valid kernel.

Let
$$X$$
 be a gositive semidefinite matrix

 $X_{ij} = X(x_i, x_j) = \emptyset(x_i)^T \emptyset(x_j) = \emptyset(x_j)^T \emptyset(x_i) = X_{j,i} = \emptyset$ symmetric matrix

Thus, we have $X = V \wedge V^T$

consider the feature map $\emptyset : x_i \mapsto (J_{X_i} \vee t_i)^T_{U_i} \in \mathbb{R}^n$

we find that $\emptyset(x_i)^T \emptyset(x_j) = \sum_{i=1}^n \lambda_i t \vee t_i \vee t_j = (V_{A_i} \vee t_j)^T \emptyset(x_i)^T \emptyset(x_j)^T \emptyset(x$

(10%) Given a valid kernel $k_1(x, x')$, explain that $k(x, x') = exp(k_1(x, x'))$ is also a valid kernel. Your answer may mention some terms like _____ series or ____ expansion.

2.
$$exp(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \left(\frac{taylor}{expansion} \right)$$
 a golynomial with $x(x,x') = exp(x_1(x,x')) = f(x_1(x,x'))$ yositive soethisients each golynomial \rightarrow a product of xernels with a positive soethisient $\frac{x}{x} = \frac{x^2}{x^2} + \frac{x^3}{3!} + \dots \left(\frac{taylor}{expansion} \right)$ $\frac{x}{x} = \frac{x^2}{x^2} + \frac{x^3}{3!} + \dots \left(\frac{taylor}{expansion} \right)$ $\frac{x}{x} = \frac{x^2}{x^2} + \frac{x^3}{3!} + \dots \left(\frac{taylor}{expansion} \right)$ $\frac{x}{x} = \frac{x^2}{x^2} + \frac{x^3}{3!} + \dots \left(\frac{taylor}{expansion} \right)$ $\frac{x}{x} = \frac{x^2}{x^2} + \frac{x^3}{3!} + \dots \left(\frac{taylor}{expansion} \right)$ $\frac{x}{x} = \frac{x^2}{x^2} + \frac{x^3}{3!} + \dots \left(\frac{taylor}{expansion} \right)$ $\frac{x}{x} = \frac{x^2}{x^2} + \frac{x^3}{3!} + \dots \left(\frac{taylor}{expansion} \right)$ $\frac{x}{x} = \frac{x^2}{x^2} + \frac{x^3}{3!} + \dots \left(\frac{taylor}{expansion} \right)$ $\frac{x}{x} = \frac{x^2}{x^2} + \frac{x^3}{3!} + \dots \left(\frac{taylor}{expansion} \right)$ $\frac{x}{x} = \frac{x^2}{x^2} + \frac{x^3}{3!} + \dots \left(\frac{taylor}{expansion} \right)$ $\frac{x}{x} = \frac{x^2}{x^2} + \frac{x^3}{3!} + \dots \left(\frac{taylor}{expansion} \right)$ $\frac{x}{x} = \frac{x^2}{x^2} + \frac{x^3}{3!} + \dots \left(\frac{taylor}{expansion} \right)$ $\frac{x}{x} = \frac{x^2}{x^2} + \dots \left(\frac{taylor}{x} + \frac{x^3}{x^2} + \dots \left(\frac{taylor}{x} + \frac{x^$

(20%) Given a valid kernel $k_1(x, x')$, prove that the following proposed functions are or are not valid kernels. If one is not a valid kernel, give an example of k(x, x') that

the corresponding K is not positive semidefinite and show its eigenvalues.

```
a. k(x,x') = k_1(x,x') + 1
```

b.
$$k(x,x') = k_1(x,x') - 1$$

c.
$$k(x, x') = k_1(x, x')^2 + exp(||x||^2) * exp(||x'||^2)$$

d.
$$k(x,x') = k_1(x,x')^2 + exp(k_1(x,x')) - 1$$

3. (a)
$$f(r)=r+1$$
 \rightarrow jolynomial function with youther Let $r=k_1(x,x^2)$
 $\lambda(x,x^2)=f(\lambda_1(x,x^2))=\lambda_1(x,x^2)+1$.

Let $r=k_1(x,x^2)$
 $\lambda(x,x^2)=\lambda(x,x^2)+1$.

Let $\lambda(x,x^$

$$\frac{7 \cos x}{17968}$$

$$2 \cos (x,x')^{2} \text{ is a valid function} \leftarrow \text{textbook 6.18}$$

$$exp(||x'||) \exp(||x|||^{2}) = (|x| + \frac{|x|^{2}}{2!} + \frac{|x|^{2}}$$

(10%) Consider the optimization problem

minimize $(x-2)^2$ subject to $(x+3)(x-1) \le 3$

State the dual problem.

4. $(x+3)(x-1) \le 3$. $\Rightarrow -(x+3)(x-1) \ge 3$. $L(x,a) = (x-2)^2 - a((-x+3)(x-1) + 3)$ dL = 2x-4 + 2xa + 2a = 0, $x = \frac{2-a}{1+a}$ $dL = x^2 + 2x - b = 0$ $L(x,a) = x^2 + 4x + 4 - a(-x^2 - 2x + b)$ $= (1+a)x^2 + (-4+2a)x + 4-ba$ $= \frac{-7a^2 + 2a}{1+a}$ the dual yieldem = maximize $L(a) = \frac{-7a^2 + 2a}{1+a}$, subject to $a \ge 0$.