Multi Variable Calculus

Mathias Balling Christiansen

Last updated: December 20, 2023

Contents

1	Fourier	
2	Laplace	;
3	Several-Variables	
4	Double-Integrals	
	4.1 Riemann Sum	
	4.2 Double Integrals over General domains	
	4.3 Iteration of Double Integrals	
	4.4 Double Integrals in Polar Coordinates	
	4.5 Change of Variables in Double Integrals	
	4.6 Examples	
	4.6.1 Example 1: Change of Variables	
	4.6.2 Example 2: Riemann Sum	
	4.6.3 Example 3: By iteration	
5	Fields-Curve	
6	Theorems	
7	PDE	
	7.1 Classification of PDEs	
	7.2 Characteristics of PDEs	
	7.3 Initial and Boundary Conditions	
	7.4 Wave Equation (1D)	
	7.4.1 D'Alembert's Solution of the Wave Equation	
	7.5 Heat Equation (1D)	1
	7.6 Example exercises	1

1 Fourier

2 Laplace

3 Several-Variables

4 Double-Integrals

4.1 Riemann Sum

$$\sum_{i=1}^{n} f(x_i^*, y_i^*) \Delta A_i$$

$$I = \iint_D f(x,y)dA$$
 where D is a region in \mathbb{R}^2 and dA is $dxdy$

4.2 Double Integrals over General domains

If f(x,y) is defined and bounded on domain D, then $\hat{f}(x,y)$ is zero outside D.

$$\iint_D f(x,y) \, dA = \iint_R \hat{f}(x,y) \, dA$$

4.3 Iteration of Double Integrals

4.4 Double Integrals in Polar Coordinates

$$dA = dxdy = r \ drd\theta$$

$$x = r\cos(\theta)$$
 $r^2 = x^2 + y^2$
 $y = r\sin(\theta)$ $\tan(\theta) = \frac{y}{x}$

4.5 Change of Variables in Double Integrals

If x and y are given as a function of u and v:

$$x = x(u, v)$$
$$y = y(u, v)$$

These can be transformed or mapped from points (u, v) in the uv-plane to points (x, y) in the xy-plane.

The inverse transformation is given by:

$$u = u(x, y)$$
$$v = v(x, y)$$

Scaled area element:

$$dA = dxdy = \left| \frac{\partial(x,y)}{\partial(u,v)} \right| dudv$$

where the Jacobian is:

$$\left| \frac{\partial(x,y)}{\partial(u,v)} \right| = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}$$

Let x(u,v) and y(u,v) be a one-to-one transformation from a domain S in the uv-plane onto a domain D xy-plane.

Suppose, that function x and y, and first partial derivatives with respect to u and v are continuous in S. If f(x,y) is integrable on D, then g(u,v) = f(x(u,v),y(u,v)) is integrable on S and:

$$\iint_D f(x,y) dA = \iint_S g(u,v) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du dv$$

5

4.6 Examples

4.6.1 Example 1: Change of Variables

Evaluate the double integral:

$$\iint (x-3y)dA$$

where R is triangular region with vertices (0,0), (2,1), and (1,2) using the transformation:

$$x = 2u + v$$
$$y = u + 2v$$

4.6.2 Example 2: Riemann Sum

4.6.3 Example 3: By iteration

5 Fields-Curve

6 Theorems

7 PDE

Partial Differential Equations are equations with multiple variables and derivatives. They are used to model many physical phenomena, such as heat, sound, and light. The totality of solutions to a PDE is called its general solution, and there can be a lot.

7.1 Classification of PDEs

General representation of a PDE:

$$A\frac{\partial^2 u}{\partial x^2} + B\frac{\partial^2 u}{\partial x \partial y} + C\frac{\partial^2 u}{\partial y^2} + D\frac{\partial u}{\partial x} + E\frac{\partial u}{\partial y} + Fu = G$$

$$Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = G$$

Conditions:

Linear: A, B, C, D, E, F are constants **Quasi-linear:** A, B, C are constants

Fully non-linear: A, B, C, D, E, F are functions of u and its partial derivatives

7.2 Characteristics of PDEs

 $B^2-4AC>0$ 2 real roots 2 characteristics **Hyperbolic PDE** $B^2-4AC=0$ 1 real roots 1 characteristics **Parabolic PDE** $B^2-4AC<0$ 0 real roots 0 characteristics **Elliptic PDE**

Tyoes of varius PDEs:

Wave Equation: Hyperbolic PDE Heat Equation: Parabolic PDE Laplace Equation: Elliptic PDE

7.3 Initial and Boundary Conditions

7.4 Wave Equation (1D)

One dimensional wave equation is given by:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \quad \text{where } c^2 = \left[\frac{T(x,t)}{\mu_x} \right]$$
 (1)

Steps to solve:

- 1. Method of Separation of Variables u(x,t) = X(x)T(t)
- 2. Satify the Boundary Conditions test
- 3. Fourier Series Validation

7.4.1 D'Alembert's Solution of the Wave Equation

His solution is given by eq. (1) but extended to two variables:

$$v = (x - ct) w = (x + ct) (2)$$

I.e. u(v, w). Partial derivatives from chain rule:

$$u_x = u_v \cdot v_x + u_w \cdot w_x = u_v + u_w$$

For double derivatives:

$$u_{xx} = (u_v + u_w)_x = (u_v + u_w)_v v_x + (u_v + u_w)_w w_x = u_{vv} + 2u_{vw} + u_{ww}$$

With respect to t:

$$u_{tt} = c^2 u_{xx} = c^2 (u_{vv} + 2u_{vw} + u_{ww})$$

From eq. (1) and eq. (2):

$$u_{vw} = \frac{\partial^2 u}{\partial w \partial v} = 0$$

This can be solved by integrating with respect to v and w:

$$\frac{\partial u}{\partial v} = h(v)$$
 and $u = \int h(v) \ dv + \psi(w)$

Here, h(v) and $\psi(w)$ are arbitrary functions of v and w, respectively. The solution in term for x:

$$u = \phi(v) + \psi(w)$$

This is d'Alembert's solution, which is the general solution to the wave equation.

$$u(x,t) = \phi(x+ct) + \psi(x-ct)$$

This solution satisfies the wave equation and the initial conditions:

7.5 Heat Equation (1D)

$$\frac{\partial u}{\partial t} = c \frac{\partial^2 u}{\partial x^2} \tag{3}$$

Conditions:

- PDE is linear and homogeneous.
- Boundary conditions are linear and homogeneous. The two for u(x,t) is u(0,t)=0 and u(L,t)=0 for all t>0.
- One initial condition at time (t = 0): u(x, 0) = f(x).

Solve the

Solution:

$$u(x,t) = \sum_{n=1}^{\infty} B_n \sin\left(\frac{n\pi x}{L}\right) e^{-\lambda_n^2 t}$$

where

$$\lambda_n = \frac{cn\pi}{L}$$

and

$$B_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi x}{L}\right) dx \qquad \text{for } n = 1, 2, 3 \dots$$

7.6 Example exercises