Definition (Ramsay Number).

Definition (Ramsay Number). R(p,q) the smallest number n

Definition (Ramsay Number). R(p,q) the smallest number n such that a graph with n vertices,

Definition (Ramsay Number). R(p,q) the smallest number n such that a graph with n vertices, and each pair of vertices is joined by exactly one edge,

Definition (Ramsay Number). R(p,q) the smallest number n such that a graph with n vertices, and each pair of vertices is joined by exactly one edge, and each coloured by either red or blue,

Example.

Example. Consider a graph with

$$n = R(p-1,q) + R(p,q-1) - 1$$

vertices,

Example. Consider a graph with

$$n = R(p-1,q) + R(p,q-1) - 1$$

vertices, such that every pair vertices is joined by exactly one edge

Example. Consider a graph with

$$n = R(p-1,q) + R(p,q-1) - 1$$

vertices, such that every pair vertices is joined by exactly one edge which can be coloured either red, or blue.

Example. Consider a graph with

$$n = R(p-1,q) + R(p,q-1) - 1$$

vertices, such that every pair vertices is joined by exactly one edge which can be coloured either red, or blue.

Assume R(p-1,q) and R(p,q-1) are both even.

Example. Consider a graph with

$$n = R(p-1,q) + R(p,q-1) - 1$$

vertices, such that every pair vertices is joined by exactly one edge which can be coloured either red, or blue. Assume R(p-1,q) and R(p,q-1) are both even. Show that there is a red p-clique or a blue q-clique.

Example. Consider a graph with

$$n = R(p-1, q) + R(p, q-1) - 1$$

vertices, such that every pair vertices is joined by exactly one edge which can be coloured either red, or blue. Assume R(p-1,q) and R(p,q-1) are both even. Show that there is a red p-clique or a blue q-clique.

Solution.

Example. Consider a graph with

$$n = R(p-1, q) + R(p, q-1) - 1$$

vertices, such that every pair vertices is joined by exactly one edge which can be coloured either red, or blue. Assume R(p-1,q) and R(p,q-1) are both even. Show that there is a red p-clique or a blue q-clique.

Solution.

Let the set of vertices be,

Example. Consider a graph with

$$n = R(p-1, q) + R(p, q-1) - 1$$

vertices, such that every pair vertices is joined by exactly one edge which can be coloured either red, or blue. Assume R(p-1,q) and R(p,q-1) are both even. Show that there is a red p-clique or a blue q-clique.

Solution.

Let the set of vertices be, V :=

Example. Consider a graph with

$$n = R(p-1, q) + R(p, q-1) - 1$$

vertices, such that every pair vertices is joined by exactly one edge which can be coloured either red, or blue. Assume R(p-1,q) and R(p,q-1) are both even. Show that there is a red p-clique or a blue q-clique.

Solution.

Let the set of vertices be, $V := \{v_1, v_2, \dots, v_n\}$

Example. Consider a graph with

$$n = R(p-1,q) + R(p,q-1) - 1$$

vertices, such that every pair vertices is joined by exactly one edge which can be coloured either red, or blue. Assume R(p-1,q) and R(p,q-1) are both even. Show that there is a red p-clique or a blue q-clique.

Solution.

Let the set of vertices be, $V := \{v_1, v_2, \dots, v_n\}$ v_1 is joined with n-1 vertices.

Example. Consider a graph with

$$n = R(p - 1, q) + R(p, q - 1) - 1$$

vertices, such that every pair vertices is joined by exactly one edge which can be coloured either red, or blue. Assume R(p-1,q) and R(p,q-1) are both even. Show that there is a red p-clique or a blue q-clique.

Solution.

Let the set of vertices be, $V := \{v_1, v_2, \dots, v_n\}$ v_1 is joined with n-1 vertices.

Case 1: At least R(p-1,q) edges are red

Example. Consider a graph with

$$n = R(p - 1, q) + R(p, q - 1) - 1$$

vertices, such that every pair vertices is joined by exactly one edge which can be coloured either red, or blue. Assume R(p-1,q) and R(p,q-1) are both even. Show that there is a red p-clique or a blue q-clique.

Solution.

Let the set of vertices be, $V := \{v_1, v_2, \dots, v_n\}$ v_1 is joined with n-1 vertices.

Example. Consider a graph with

$$n = R(p-1,q) + R(p,q-1) - 1$$

vertices, such that every pair vertices is joined by exactly one edge which can be coloured either red, or blue. Assume R(p-1,q) and R(p,q-1) are both even. Show that there is a red p-clique or a blue q-clique.

Solution.

Let the set of vertices be, $V := \{v_1, v_2, \dots, v_n\}$ v_1 is joined with n-1 vertices.

Definition (Ramsay Number). R(p,q) the smallest The sub-graph formed out of those vertices number n such that a graph with n vertices, and each either has a q blue clique, pair of vertices is joined by exactly one edge, and each coloured by either red or blue, will have either a p-clique which is entirely red, or a q-clique which is entirely blue.

Example. Consider a graph with

$$n = R(p-1,q) + R(p,q-1) - 1$$

vertices, such that every pair vertices is joined by exactly one edge which can be coloured either red, or blue. Assume R(p-1,q) and R(p,q-1) are both even. Show that there is a red p-clique or a blue q-clique.

Solution.

Let the set of vertices be, $V := \{v_1, v_2, \dots, v_n\}$ v_1 is joined with n-1 vertices.

Definition (Ramsay Number). R(p,q) the smallest The sub-graph formed out of those vertices number n such that a graph with n vertices, and each either has a q blue clique, then we are done. pair of vertices is joined by exactly one edge, and each coloured by either red or blue, will have either a p-clique which is entirely red, or a q-clique which is entirely blue.

Example. Consider a graph with

$$n = R(p-1,q) + R(p,q-1) - 1$$

vertices, such that every pair vertices is joined by exactly one edge which can be coloured either red, or blue. Assume R(p-1,q) and R(p,q-1) are both even. Show that there is a red p-clique or a blue q-clique.

Solution.

Let the set of vertices be, $V := \{v_1, v_2, \dots, v_n\}$ v_1 is joined with n-1 vertices.

Example. Consider a graph with

$$n = R(p-1,q) + R(p,q-1) - 1$$

vertices, such that every pair vertices is joined by exactly one edge which can be coloured either red, or blue. Assume R(p-1,q) and R(p,q-1) are both even. Show that there is a red p-clique or a blue q-clique.

Solution.

Let the set of vertices be, $V := \{v_1, v_2, \dots, v_n\}$ v_1 is joined with n-1 vertices.

Example. Consider a graph with

$$n = R(p-1,q) + R(p,q-1) - 1$$

vertices, such that every pair vertices is joined by exactly one edge which can be coloured either red, or blue. Assume R(p-1,q) and R(p,q-1) are both even. Show that there is a red p-clique or a blue q-clique.

Solution.

Let the set of vertices be, $V := \{v_1, v_2, \dots, v_n\}$ v_1 is joined with n-1 vertices.

Example. Consider a graph with

$$n = R(p - 1, q) + R(p, q - 1) - 1$$

vertices, such that every pair vertices is joined by exactly one edge which can be coloured either red, or blue. Assume R(p-1,q) and R(p,q-1) are both even. Show that there is a red p-clique or a blue q-clique.

Solution.

Let the set of vertices be, $V := \{v_1, v_2, \dots, v_n\}$ v_1 is joined with n-1 vertices.

Example. Consider a graph with

$$n = R(p - 1, q) + R(p, q - 1) - 1$$

vertices, such that every pair vertices is joined by exactly one edge which can be coloured either red, or blue. Assume R(p-1,q) and R(p,q-1) are both even. Show that there is a red p-clique or a blue q-clique.

Solution.

Let the set of vertices be, $V := \{v_1, v_2, \dots, v_n\}$ v_1 is joined with n-1 vertices.

Case 1: At least R(p-1,q) edges are red Let those vertices connected to v_1 via red edges be $\{v_{i_1}, v_{i_2}, \dots, v_{i_m}\}$, where m = R(p-1, q)

Case 2: At least R(p, q - 1) edges are blue

Example. Consider a graph with

$$n = R(p - 1, q) + R(p, q - 1) - 1$$

vertices, such that every pair vertices is joined by exactly one edge which can be coloured either red, or blue. Assume R(p-1,q) and R(p,q-1) are both even. Show that there is a red p-clique or a blue q-clique.

Solution.

Let the set of vertices be, $V := \{v_1, v_2, \dots, v_n\}$ v_1 is joined with n-1 vertices.

Case 1: At least R(p-1,q) edges are red Let those vertices connected to v_1 via red edges be $\{v_{i_1}, v_{i_2}, \dots, v_{i_m}\}$, where m = R(p-1, q)

Case 2: At least R(p, q - 1) edges are blue Simlar to case 1

Example. Consider a graph with

$$n = R(p - 1, q) + R(p, q - 1) - 1$$

vertices, such that every pair vertices is joined by exactly one edge which can be coloured either red, or blue. Assume R(p-1,q) and R(p,q-1) are both even. Show that there is a red p-clique or a blue q-clique.

Solution.

Let the set of vertices be, $V := \{v_1, v_2, \dots, v_n\}$ v_1 is joined with n-1 vertices.

Case 1: At least R(p-1,q) edges are red Let those vertices connected to v_1 via red edges be $\{v_{i_1}, v_{i_2}, \dots, v_{i_m}\}$, where m = R(p-1, q)

Case 2: At least R(p, q - 1) edges are blue Simlar to case 1

Case 3: Exactly R(p-1,q)-1 red edges,

Example. Consider a graph with

$$n = R(p - 1, q) + R(p, q - 1) - 1$$

vertices, such that every pair vertices is joined by exactly 1) - 1 blue edges one edge which can be coloured either red, or blue. Assume R(p-1,q) and R(p,q-1) are both even. Show that there is a red p-clique or a blue q-clique.

Solution.

Let the set of vertices be, $V := \{v_1, v_2, \dots, v_n\}$ v_1 is joined with n-1 vertices.

Case 1: At least R(p-1,q) edges are red Let those vertices connected to v_1 via red edges be $\{v_{i_1}, v_{i_2}, \dots, v_{i_m}\}$, where m = R(p-1, q)

Case 2: At least R(p, q - 1) edges are blue Simlar to case 1

Case 3: Exactly R(p-1,q)-1 red edges, and R(p,q-1)

Example. Consider a graph with

$$n = R(p - 1, q) + R(p, q - 1) - 1$$

vertices, such that every pair vertices is joined by exactly R(p, q - 1) - 1 blue edges adjacent to **each** vertex. one edge which can be coloured either red, or blue.

Assume R(p-1,q) and R(p,q-1) are both even. Show that there is a red p-clique or a blue q-clique.

Solution.

Let the set of vertices be, $V := \{v_1, v_2, \dots, v_n\}$ v_1 is joined with n-1 vertices.

Case 1: At least R(p-1,q) edges are red Let those vertices connected to v_1 via red edges be $\{v_{i_1}, v_{i_2}, \dots, v_{i_m}\}$, where m = R(p-1, q)

Case 2: At least R(p, q - 1) edges are blue Simlar to case 1

Case 3: Exactly R(p-1,q)-1 red edges, and

Example. Consider a graph with

$$n = R(p - 1, q) + R(p, q - 1) - 1$$

vertices, such that every pair vertices is joined by exactly R(p, q - 1) - 1 blue edges adjacent to **each** vertex. one edge which can be coloured either red, or blue.

Assume R(p-1,q) and R(p,q-1) are both even. Show that there is a red p-clique or a blue q-clique.

Solution.

Let the set of vertices be, $V := \{v_1, v_2, \dots, v_n\}$ v_1 is joined with n-1 vertices.

Case 1: At least R(p-1,q) edges are red Let those vertices connected to v_1 via red edges be $\{v_{i_1}, v_{i_2}, \dots, v_{i_m}\}$, where m = R(p-1, q)

Case 2: At least R(p, q - 1) edges are blue Simlar to case 1

Case 3: Exactly R(p-1,q)-1 red edges, and

 $2 \times \text{number of red edges} = n \times (R(p-1,q)-1)$

Example. Consider a graph with

$$n = R(p - 1, q) + R(p, q - 1) - 1$$

vertices, such that every pair vertices is joined by exactly R(p, q - 1) - 1 blue edges adjacent to **each** vertex. one edge which can be coloured either red, or blue.

Assume R(p-1,q) and R(p,q-1) are both even. Show that there is a red p-clique or a blue q-clique.

Solution.

Let the set of vertices be, $V := \{v_1, v_2, \dots, v_n\}$ v_1 is joined with n-1 vertices.

Case 1: At least R(p-1,q) edges are red Let those vertices connected to v_1 via red edges be $\{v_{i_1}, v_{i_2}, \dots, v_{i_m}\}$, where m = R(p-1, q)

Case 2: At least R(p, q - 1) edges are blue Simlar to case 1

Case 3: Exactly R(p-1,q)-1 red edges, and

 $2 \times \text{number of red edges} = n \times (R(p-1,q)-1)$ But n is odd

Example. Consider a graph with

$$n = R(p - 1, q) + R(p, q - 1) - 1$$

vertices, such that every pair vertices is joined by exactly R(p, q - 1) - 1 blue edges adjacent to **each** vertex. one edge which can be coloured either red, or blue.

Assume R(p-1,q) and R(p,q-1) are both even. Show that there is a red p-clique or a blue q-clique.

Solution.

Let the set of vertices be, $V := \{v_1, v_2, \dots, v_n\}$ v_1 is joined with n-1 vertices.

Case 1: At least R(p-1,q) edges are red Let those vertices connected to v_1 via red edges be $\{v_{i_1}, v_{i_2}, \dots, v_{i_m}\}$, where m = R(p-1, q)

Case 2: At least R(p, q - 1) edges are blue Simlar to case 1

Case 3: Exactly R(p-1,q)-1 red edges, and

 $2 \times \text{number of red edges} = n \times (R(p-1,q)-1)$ But n is odd and R(p-1,q)-1 is odd

Example. Consider a graph with

$$n = R(p - 1, q) + R(p, q - 1) - 1$$

vertices, such that every pair vertices is joined by exactly R(p, q - 1) - 1 blue edges adjacent to **each** vertex. one edge which can be coloured either red, or blue.

Assume R(p-1,q) and R(p,q-1) are both even. Show that there is a red p-clique or a blue q-clique.

Solution.

Let the set of vertices be, $V := \{v_1, v_2, \dots, v_n\}$ v_1 is joined with n-1 vertices.

Case 1: At least R(p-1,q) edges are red Let those vertices connected to v_1 via red edges be $\{v_{i_1}, v_{i_2}, \dots, v_{i_m}\}$, where m = R(p-1, q)

Case 2: At least R(p, q - 1) edges are blue Simlar to case 1

Case 3: Exactly R(p-1,q)-1 red edges, and

 $2 \times \text{number of red edges} = n \times (R(p-1,q)-1)$ But n is odd and R(p-1,q)-1 is odd

Inclusion and Exclusion principle

 $|A_1 \cup A_2 \cup \ldots \cup A_n|$

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \Sigma |A_i|$$

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \Sigma |A_i| -$$

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \Sigma |A_i| - \Sigma |A_i \cap A_j|$$

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \Sigma |A_i| - \Sigma |A_i \cap A_j| +$$

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \Sigma |A_i| - \Sigma |A_i \cap A_j| + \cdots$$

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \Sigma |A_i| - \Sigma |A_i \cap A_j| + \cdots + (-1)^n |A_1 \cap \ldots \cap A_n|$$

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \Sigma |A_i| - \Sigma |A_i \cap A_j| + \cdots + (-1)^n |A_1 \cap \ldots \cap A_n|$$

$$|A_1 \cup A_2 \cup \ldots \cup A_n|$$

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \Sigma |A_i| - \Sigma |A_i \cap A_j| + \cdots + (-1)^n |A_1 \cap \ldots \cap A_n|$$

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = |A_1 \cup \ldots \cup A_{n-1}| +$$

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \Sigma |A_i| - \Sigma |A_i \cap A_j| + \cdots + (-1)^n |A_1 \cap \ldots \cap A_n|$$

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = |A_1 \cup \ldots \cup A_{n-1}| + |A_n| - |A_n|$$

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \Sigma |A_i| - \Sigma |A_i \cap A_j| + \cdots + (-1)^n |A_1 \cap \ldots \cap A_n|$$

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = |A_1 \cup \ldots \cup A_{n-1}| + |A_n| - |(A_1 \cup \ldots \cup A_{n-1}) \cap A_n|$$

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \Sigma |A_i| - \Sigma |A_i \cap A_j| + \cdots + (-1)^n |A_1 \cap \ldots \cap A_n|$$

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = |A_1 \cup \ldots \cup A_{n-1}| + |A_n| - |(A_1 \cup \ldots \cup A_{n-1}) \cap A_n|$$

= $|A_1 \cup \ldots \cup A_{n-1}| +$

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \Sigma |A_i| - \Sigma |A_i \cap A_j| + \cdots + (-1)^n |A_1 \cap \ldots \cap A_n|$$

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = |A_1 \cup \ldots \cup A_{n-1}| + |A_n| - |(A_1 \cup \ldots \cup A_{n-1}) \cap A_n|$$

= $|A_1 \cup \ldots \cup A_{n-1}| + |A_n| -$

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \Sigma |A_i| - \Sigma |A_i \cap A_j| + \cdots + (-1)^n |A_1 \cap \ldots \cap A_n|$$

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = |A_1 \cup \ldots \cup A_{n-1}| + |A_n| - |(A_1 \cup \ldots \cup A_{n-1}) \cap A_n|$$

= $|A_1 \cup \ldots \cup A_{n-1}| + |A_n| - |(A_1 \cap A_n) \cup \ldots \cup (A_{n-1} \cap A_n)|$

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \Sigma |A_i| - \Sigma |A_i \cap A_j| + \cdots + (-1)^n |A_1 \cap \ldots \cap A_n|$$

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = |A_1 \cup \ldots \cup A_{n-1}| + |A_n| - |(A_1 \cup \ldots \cup A_{n-1}) \cap A_n|$$

$$= |A_1 \cup \ldots \cup A_{n-1}| + |A_n| - |(A_1 \cap A_n) \cup \ldots \cup (A_{n-1} \cap A_n)|$$

$$= (\Sigma |A_i| -$$

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \Sigma |A_i| - \Sigma |A_i \cap A_j| + \cdots + (-1)^n |A_1 \cap \ldots \cap A_n|$$

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = |A_1 \cup \ldots \cup A_{n-1}| + |A_n| - |(A_1 \cup \ldots \cup A_{n-1}) \cap A_n|$$

$$= |A_1 \cup \ldots \cup A_{n-1}| + |A_n| - |(A_1 \cap A_n) \cup \ldots \cup (A_{n-1} \cap A_n)|$$

$$= (\Sigma |A_i| - \Sigma |A_i \cap A_j| +$$

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \Sigma |A_i| - \Sigma |A_i \cap A_j| + \cdots + (-1)^n |A_1 \cap \ldots \cap A_n|$$

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = |A_1 \cup \ldots \cup A_{n-1}| + |A_n| - |(A_1 \cup \ldots \cup A_{n-1}) \cap A_n|$$

$$= |A_1 \cup \ldots \cup A_{n-1}| + |A_n| - |(A_1 \cap A_n) \cup \ldots \cup (A_{n-1} \cap A_n)|$$

$$= (\Sigma |A_i| - \Sigma |A_i \cap A_j| + \cdots + (-1)^{n-1} |A_1 \cap \ldots \cap A_{n-1}|)$$

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \Sigma |A_i| - \Sigma |A_i \cap A_j| + \cdots + (-1)^n |A_1 \cap \ldots \cap A_n|$$

$$|A_{1} \cup A_{2} \cup \ldots \cup A_{n}| = |A_{1} \cup \ldots \cup A_{n-1}| + |A_{n}| - |(A_{1} \cup \ldots \cup A_{n-1}) \cap A_{n}|$$

$$= |A_{1} \cup \ldots \cup A_{n-1}| + |A_{n}| - |(A_{1} \cap A_{n}) \cup \ldots \cup (A_{n-1} \cap A_{n})|$$

$$= (\Sigma |A_{i}| - \Sigma |A_{i} \cap A_{j}| + \cdots + (-1)^{n-1} |A_{1} \cap \ldots \cap A_{n-1}|)$$

$$+ |A_{n}| -$$

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \Sigma |A_i| - \Sigma |A_i \cap A_j| + \cdots + (-1)^n |A_1 \cap \ldots \cap A_n|$$

$$|A_{1} \cup A_{2} \cup \ldots \cup A_{n}| = |A_{1} \cup \ldots \cup A_{n-1}| + |A_{n}| - |(A_{1} \cup \ldots \cup A_{n-1}) \cap A_{n}|$$

$$= |A_{1} \cup \ldots \cup A_{n-1}| + |A_{n}| - |(A_{1} \cap A_{n}) \cup \ldots \cup (A_{n-1} \cap A_{n})|$$

$$= (\Sigma |A_{i}| - \Sigma |A_{i} \cap A_{j}| + \cdots + (-1)^{n-1} |A_{1} \cap \ldots \cap A_{n-1}|)$$

$$+ |A_{n}| - |(A_{1} \cap A_{n}) \cup \ldots \cup (A_{n-1} \cap A_{n})|$$

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \Sigma |A_i| - \Sigma |A_i \cap A_j| + \cdots + (-1)^n |A_1 \cap \ldots \cap A_n|$$

$$|A_{1} \cup A_{2} \cup \ldots \cup A_{n}| = |A_{1} \cup \ldots \cup A_{n-1}| + |A_{n}| - |(A_{1} \cup \ldots \cup A_{n-1}) \cap A_{n}|$$

$$= |A_{1} \cup \ldots \cup A_{n-1}| + |A_{n}| - |(A_{1} \cap A_{n}) \cup \ldots \cup (A_{n-1} \cap A_{n})|$$

$$= (\Sigma |A_{i}| - \Sigma |A_{i} \cap A_{j}| + \cdots + (-1)^{n-1} |A_{1} \cap \ldots \cap A_{n-1}|)$$

$$+ |A_{n}| - |(A_{1} \cap A_{n}) \cup \ldots \cup (A_{n-1} \cap A_{n})|$$

Rest, exercise!

Example. Find the number of positive integers

Example. Find the number of positive integers below 100

Solution.

 A_2

$$A_2 := \{2, 4, \dots, 100\}$$

$$A_2 := \{2, 4, \dots, 100\}$$

$$|A_2| =$$

$$A_2 := \{2, 4, \dots, 100\}$$

$$|A_2| = \lfloor 100/2 \rfloor =$$

$$A_2 := \{2, 4, \dots, 100\}$$

$$|A_2| = \lfloor 100/2 \rfloor = 50$$

Solution.

$$A_2 := \{2, 4, \dots, 100\}$$

 $|A_2| = \lfloor 100/2 \rfloor = 50$

 A_5

$$A_2 := \{2, 4, \dots, 100\}$$

 $|A_2| = |100/2| = 50$

$$A_5 := \{5, 10, \dots, 100\}$$

$$A_2 := \{2, 4, \dots, 100\}$$

 $|A_2| = |100/2| = 50$

$$A_5 := \{5, 10, \dots, 100\}$$

 $|A_5| =$

$$A_2 := \{2, 4, \dots, 100\}$$

 $|A_2| = \lfloor 100/2 \rfloor = 50$

$$A_5 := \{5, 10, \dots, 100\}$$

 $|A_5| = |100/5| =$

$$A_2 := \{2, 4, \dots, 100\}$$

 $|A_2| = \lfloor 100/2 \rfloor = 50$

$$A_5 := \{5, 10, \dots, 100\}$$

 $|A_5| = |100/5| = 20$

Solution.

$$A_2 := \{2, 4, \dots, 100\}$$

 $|A_2| = \lfloor 100/2 \rfloor = 50$

$$A_5 := \{5, 10, \dots, 100\}$$

 $|A_5| = \lfloor 100/5 \rfloor = 20$

 A_7

$$A_2 := \{2, 4, \dots, 100\}$$

 $|A_2| = \lfloor 100/2 \rfloor = 50$

$$A_5 := \{5, 10, \dots, 100\}$$

 $|A_5| = \lfloor 100/5 \rfloor = 20$

$$A_7 := \{7, 10, \dots, 98\}$$

$$A_2 := \{2, 4, \dots, 100\}$$

 $|A_2| = \lfloor 100/2 \rfloor = 50$

$$A_5 := \{5, 10, \dots, 100\}$$

 $|A_5| = \lfloor 100/5 \rfloor = 20$

$$A_7 := \{7, 10, \dots, 98\}$$

 $|A_7| =$

$$A_2 := \{2, 4, \dots, 100\}$$

 $|A_2| = \lfloor 100/2 \rfloor = 50$

$$A_5 := \{5, 10, \dots, 100\}$$

 $|A_5| = \lfloor 100/5 \rfloor = 20$

$$A_7 := \{7, 10, \dots, 98\}$$

 $|A_7| = |100/7| =$

$$A_2 := \{2, 4, \dots, 100\}$$

 $|A_2| = \lfloor 100/2 \rfloor = 50$

$$A_5 := \{5, 10, \dots, 100\}$$

 $|A_5| = \lfloor 100/5 \rfloor = 20$

$$A_7 := \{7, 10, \dots, 98\}$$

 $|A_7| = |100/7| = 14$

$$A_2 := \{2, 4, \dots, 100\}$$

 $|A_2| = \lfloor 100/2 \rfloor = 50$

$$A_5 := \{5, 10, \dots, 100\}$$

 $|A_5| = \lfloor 100/5 \rfloor = 20$

$$A_7 := \{7, 10, \dots, 98\}$$

 $|A_7| = \lfloor 100/7 \rfloor = 14$

$$|A_2 \cap A_5| =$$

$$A_2 := \{2, 4, \dots, 100\}$$

 $|A_2| = \lfloor 100/2 \rfloor = 50$

$$A_5 := \{5, 10, \dots, 100\}$$

 $|A_5| = \lfloor 100/5 \rfloor = 20$

$$A_7 := \{7, 10, \dots, 98\}$$

 $|A_7| = |100/7| = 14$

$$|A_2 \cap A_5| = |A_{10}| =$$

$$A_2 := \{2, 4, \dots, 100\}$$

 $|A_2| = \lfloor 100/2 \rfloor = 50$

$$A_5 := \{5, 10, \dots, 100\}$$

 $|A_5| = \lfloor 100/5 \rfloor = 20$

$$A_7 := \{7, 10, \dots, 98\}$$

 $|A_7| = \lfloor 100/7 \rfloor = 14$

$$|A_2 \cap A_5| = |A_{10}| = |100/10| =$$

$$A_2 := \{2, 4, \dots, 100\}$$

 $|A_2| = \lfloor 100/2 \rfloor = 50$

$$A_5 := \{5, 10, \dots, 100\}$$

 $|A_5| = \lfloor 100/5 \rfloor = 20$

$$A_7 := \{7, 10, \dots, 98\}$$

 $|A_7| = \lfloor 100/7 \rfloor = 14$

$$|A_2 \cap A_5| = |A_{10}| = \lfloor 100/10 \rfloor = 10$$

$$A_2 := \{2, 4, \dots, 100\}$$

 $|A_2| = \lfloor 100/2 \rfloor = 50$

$$A_5 := \{5, 10, \dots, 100\}$$

 $|A_5| = \lfloor 100/5 \rfloor = 20$

$$A_7 := \{7, 10, \dots, 98\}$$

 $|A_7| = |100/7| = 14$

$$|A_2 \cap A_5| = |A_{10}| = \lfloor 100/10 \rfloor = 10$$

 $|A_5 \cap A_7| =$

$$A_2 := \{2, 4, \dots, 100\}$$

 $|A_2| = \lfloor 100/2 \rfloor = 50$

$$A_5 := \{5, 10, \dots, 100\}$$

 $|A_5| = \lfloor 100/5 \rfloor = 20$

$$A_7 := \{7, 10, \dots, 98\}$$

 $|A_7| = \lfloor 100/7 \rfloor = 14$

$$|A_2 \cap A_5| = |A_{10}| = \lfloor 100/10 \rfloor = 10$$

 $|A_5 \cap A_7| = |A_{35}| =$

$$A_2 := \{2, 4, \dots, 100\}$$

 $|A_2| = \lfloor 100/2 \rfloor = 50$

$$A_5 := \{5, 10, \dots, 100\}$$

 $|A_5| = \lfloor 100/5 \rfloor = 20$

$$A_7 := \{7, 10, \dots, 98\}$$

 $|A_7| = |100/7| = 14$

$$|A_2 \cap A_5| = |A_{10}| = \lfloor 100/10 \rfloor = 10$$

 $|A_5 \cap A_7| = |A_{35}| = \lfloor 100/35 \rfloor =$

$$A_2 := \{2, 4, \dots, 100\}$$

 $|A_2| = \lfloor 100/2 \rfloor = 50$

$$A_5 := \{5, 10, \dots, 100\}$$

 $|A_5| = \lfloor 100/5 \rfloor = 20$

$$A_7 := \{7, 10, \dots, 98\}$$

 $|A_7| = |100/7| = 14$

$$|A_2 \cap A_5| = |A_{10}| = \lfloor 100/10 \rfloor = 10$$

 $|A_5 \cap A_7| = |A_{35}| = \lfloor 100/35 \rfloor = 2$

$$A_2 := \{2, 4, \dots, 100\}$$

 $|A_2| = \lfloor 100/2 \rfloor = 50$

$$A_5 := \{5, 10, \dots, 100\}$$

 $|A_5| = \lfloor 100/5 \rfloor = 20$

$$A_7 := \{7, 10, \dots, 98\}$$

 $|A_7| = |100/7| = 14$

$$|A_2 \cap A_5| = |A_{10}| = \lfloor 100/10 \rfloor = 10$$

 $|A_5 \cap A_7| = |A_{35}| = \lfloor 100/35 \rfloor = 2$
 $|A_7 \cap A_2| =$

$$A_2 := \{2, 4, \dots, 100\}$$

 $|A_2| = \lfloor 100/2 \rfloor = 50$

$$A_5 := \{5, 10, \dots, 100\}$$

 $|A_5| = \lfloor 100/5 \rfloor = 20$

$$A_7 := \{7, 10, \dots, 98\}$$

 $|A_7| = |100/7| = 14$

$$|A_2 \cap A_5| = |A_{10}| = \lfloor 100/10 \rfloor = 10$$

 $|A_5 \cap A_7| = |A_{35}| = \lfloor 100/35 \rfloor = 2$
 $|A_7 \cap A_2| = |A_{14}| =$

$$A_2 := \{2, 4, \dots, 100\}$$

 $|A_2| = \lfloor 100/2 \rfloor = 50$

$$A_5 := \{5, 10, \dots, 100\}$$

 $|A_5| = \lfloor 100/5 \rfloor = 20$

$$A_7 := \{7, 10, \dots, 98\}$$

 $|A_7| = |100/7| = 14$

$$|A_2 \cap A_5| = |A_{10}| = \lfloor 100/10 \rfloor = 10$$

 $|A_5 \cap A_7| = |A_{35}| = \lfloor 100/35 \rfloor = 2$
 $|A_7 \cap A_2| = |A_{14}| = \lfloor 100/14 \rfloor =$

$$A_2 := \{2, 4, \dots, 100\}$$

 $|A_2| = \lfloor 100/2 \rfloor = 50$

$$A_5 := \{5, 10, \dots, 100\}$$

 $|A_5| = \lfloor 100/5 \rfloor = 20$

$$A_7 := \{7, 10, \dots, 98\}$$

 $|A_7| = |100/7| = 14$

$$|A_2 \cap A_5| = |A_{10}| = \lfloor 100/10 \rfloor = 10$$

 $|A_5 \cap A_7| = |A_{35}| = \lfloor 100/35 \rfloor = 2$
 $|A_7 \cap A_2| = |A_{14}| = \lfloor 100/14 \rfloor = 7$

$$A_2 := \{2, 4, \dots, 100\}$$

 $|A_2| = \lfloor 100/2 \rfloor = 50$

$$A_5 := \{5, 10, \dots, 100\}$$

 $|A_5| = \lfloor 100/5 \rfloor = 20$

$$A_7 := \{7, 10, \dots, 98\}$$

 $|A_7| = |100/7| = 14$

$$|A_2 \cap A_5| = |A_{10}| = \lfloor 100/10 \rfloor = 10$$

 $|A_5 \cap A_7| = |A_{35}| = \lfloor 100/35 \rfloor = 2$
 $|A_7 \cap A_2| = |A_{14}| = \lfloor 100/14 \rfloor = 7$

$$|A_2 \cap A_5 \cap A_7| =$$

$$A_2 := \{2, 4, \dots, 100\}$$

 $|A_2| = \lfloor 100/2 \rfloor = 50$

$$A_5 := \{5, 10, \dots, 100\}$$

 $|A_5| = \lfloor 100/5 \rfloor = 20$

$$A_7 := \{7, 10, \dots, 98\}$$

 $|A_7| = \lfloor 100/7 \rfloor = 14$

$$|A_2 \cap A_5| = |A_{10}| = \lfloor 100/10 \rfloor = 10$$

 $|A_5 \cap A_7| = |A_{35}| = \lfloor 100/35 \rfloor = 2$
 $|A_7 \cap A_2| = |A_{14}| = \lfloor 100/14 \rfloor = 7$

$$|A_2 \cap A_5 \cap A_7| = |A_{70}| =$$

$$A_2 := \{2, 4, \dots, 100\}$$

 $|A_2| = \lfloor 100/2 \rfloor = 50$

$$A_5 := \{5, 10, \dots, 100\}$$

 $|A_5| = \lfloor 100/5 \rfloor = 20$

$$A_7 := \{7, 10, \dots, 98\}$$

 $|A_7| = \lfloor 100/7 \rfloor = 14$

$$|A_2 \cap A_5| = |A_{10}| = \lfloor 100/10 \rfloor = 10$$

 $|A_5 \cap A_7| = |A_{35}| = \lfloor 100/35 \rfloor = 2$
 $|A_7 \cap A_2| = |A_{14}| = \lfloor 100/14 \rfloor = 7$

$$|A_2 \cap A_5 \cap A_7| = |A_{70}| = \lfloor 100/70 \rfloor =$$

$$A_2 := \{2, 4, \dots, 100\}$$

 $|A_2| = \lfloor 100/2 \rfloor = 50$

$$A_5 := \{5, 10, \dots, 100\}$$

 $|A_5| = \lfloor 100/5 \rfloor = 20$

$$A_7 := \{7, 10, \dots, 98\}$$

 $|A_7| = |100/7| = 14$

$$|A_2 \cap A_5| = |A_{10}| = \lfloor 100/10 \rfloor = 10$$

 $|A_5 \cap A_7| = |A_{35}| = \lfloor 100/35 \rfloor = 2$
 $|A_7 \cap A_2| = |A_{14}| = \lfloor 100/14 \rfloor = 7$

$$|A_2 \cap A_5 \cap A_7| = |A_{70}| = \lfloor 100/70 \rfloor = 1$$

$$|A_2 \cup A_5 \cup A_7|$$

$$A_2 := \{2, 4, \dots, 100\}$$

 $|A_2| = \lfloor 100/2 \rfloor = 50$

$$A_5 := \{5, 10, \dots, 100\}$$

 $|A_5| = \lfloor 100/5 \rfloor = 20$

$$A_7 := \{7, 10, \dots, 98\}$$

 $|A_7| = |100/7| = 14$

$$|A_2 \cap A_5| = |A_{10}| = \lfloor 100/10 \rfloor = 10$$

 $|A_5 \cap A_7| = |A_{35}| = \lfloor 100/35 \rfloor = 2$
 $|A_7 \cap A_2| = |A_{14}| = \lfloor 100/14 \rfloor = 7$

$$|A_2 \cap A_5 \cap A_7| = |A_{70}| = \lfloor 100/70 \rfloor = 1$$

Example. Find the number of positive integers below

100 which are divisible by 2, 5, or 7

$$|A_2 \cup A_5 \cup A_7| = (|A_2| + |A_5| + |A_7|)$$

$$A_2 := \{2, 4, \dots, 100\}$$

 $|A_2| = \lfloor 100/2 \rfloor = 50$

$$A_5 := \{5, 10, \dots, 100\}$$

 $|A_5| = \lfloor 100/5 \rfloor = 20$

$$A_7 := \{7, 10, \dots, 98\}$$

 $|A_7| = |100/7| = 14$

$$|A_2 \cap A_5| = |A_{10}| = \lfloor 100/10 \rfloor = 10$$

 $|A_5 \cap A_7| = |A_{35}| = \lfloor 100/35 \rfloor = 2$
 $|A_7 \cap A_2| = |A_{14}| = \lfloor 100/14 \rfloor = 7$

$$|A_2 \cap A_5 \cap A_7| = |A_{70}| = \lfloor 100/70 \rfloor = 1$$

$$A_2 := \{2, 4, \dots, 100\}$$

 $|A_2| = \lfloor 100/2 \rfloor = 50$

$$A_5 := \{5, 10, \dots, 100\}$$

 $|A_5| = \lfloor 100/5 \rfloor = 20$

$$A_7 := \{7, 10, \dots, 98\}$$

 $|A_7| = |100/7| = 14$

$$|A_2 \cap A_5| = |A_{10}| = \lfloor 100/10 \rfloor = 10$$

 $|A_5 \cap A_7| = |A_{35}| = \lfloor 100/35 \rfloor = 2$
 $|A_7 \cap A_2| = |A_{14}| = \lfloor 100/14 \rfloor = 7$

$$|A_2 \cap A_5 \cap A_7| = |A_{70}| = \lfloor 100/70 \rfloor = 1$$

$$|A_2 \cup A_5 \cup A_7| = (|A_2| + |A_5| + |A_7|) - (|A_2 \cap A_5| + |A_5 \cap A_7| + |A_7 \cap A_2|)$$

$$A_2 := \{2, 4, \dots, 100\}$$

 $|A_2| = \lfloor 100/2 \rfloor = 50$

$$A_5 := \{5, 10, \dots, 100\}$$

 $|A_5| = \lfloor 100/5 \rfloor = 20$

$$A_7 := \{7, 10, \dots, 98\}$$

 $|A_7| = \lfloor 100/7 \rfloor = 14$

$$|A_2 \cap A_5| = |A_{10}| = \lfloor 100/10 \rfloor = 10$$

 $|A_5 \cap A_7| = |A_{35}| = \lfloor 100/35 \rfloor = 2$
 $|A_7 \cap A_2| = |A_{14}| = \lfloor 100/14 \rfloor = 7$

$$|A_2 \cap A_5 \cap A_7| = |A_{70}| = \lfloor 100/70 \rfloor = 1$$

$$|A_2 \cup A_5 \cup A_7| = (|A_2| + |A_5| + |A_7|)$$

$$- (|A_2 \cap A_5| + |A_5 \cap A_7| + |A_7 \cap A_2|)$$

$$+ |A_2 \cap A_5 \cap A_7|$$

$$A_2 := \{2, 4, \dots, 100\}$$

 $|A_2| = \lfloor 100/2 \rfloor = 50$

$$A_5 := \{5, 10, \dots, 100\}$$

 $|A_5| = \lfloor 100/5 \rfloor = 20$

$$A_7 := \{7, 10, \dots, 98\}$$

 $|A_7| = \lfloor 100/7 \rfloor = 14$

$$|A_2 \cap A_5| = |A_{10}| = \lfloor 100/10 \rfloor = 10$$

 $|A_5 \cap A_7| = |A_{35}| = \lfloor 100/35 \rfloor = 2$
 $|A_7 \cap A_2| = |A_{14}| = \lfloor 100/14 \rfloor = 7$

$$|A_2 \cap A_5 \cap A_7| = |A_{70}| = \lfloor 100/70 \rfloor = 1$$

$$|A_{2} \cup A_{5} \cup A_{7}| = (|A_{2}| + |A_{5}| + |A_{7}|)$$

$$- (|A_{2} \cap A_{5}| + |A_{5} \cap A_{7}| + |A_{7} \cap A_{2}|)$$

$$+ |A_{2} \cap A_{5} \cap A_{7}|$$

$$= (50 + 20 + 14)$$

$$A_2 := \{2, 4, \dots, 100\}$$

 $|A_2| = \lfloor 100/2 \rfloor = 50$

$$A_5 := \{5, 10, \dots, 100\}$$

 $|A_5| = \lfloor 100/5 \rfloor = 20$

$$A_7 := \{7, 10, \dots, 98\}$$

 $|A_7| = |100/7| = 14$

$$|A_2 \cap A_5| = |A_{10}| = \lfloor 100/10 \rfloor = 10$$

 $|A_5 \cap A_7| = |A_{35}| = \lfloor 100/35 \rfloor = 2$
 $|A_7 \cap A_2| = |A_{14}| = \lfloor 100/14 \rfloor = 7$

$$|A_2 \cap A_5 \cap A_7| = |A_{70}| = \lfloor 100/70 \rfloor = 1$$

$$|A_{2} \cup A_{5} \cup A_{7}| = (|A_{2}| + |A_{5}| + |A_{7}|)$$

$$- (|A_{2} \cap A_{5}| + |A_{5} \cap A_{7}| + |A_{7} \cap A_{2}|)$$

$$+ |A_{2} \cap A_{5} \cap A_{7}|$$

$$= (50 + 20 + 14) - (10 + 2 + 7)$$

$$A_2 := \{2, 4, \dots, 100\}$$

 $|A_2| = \lfloor 100/2 \rfloor = 50$

$$A_5 := \{5, 10, \dots, 100\}$$

 $|A_5| = \lfloor 100/5 \rfloor = 20$

$$A_7 := \{7, 10, \dots, 98\}$$

 $|A_7| = \lfloor 100/7 \rfloor = 14$

$$|A_2 \cap A_5| = |A_{10}| = \lfloor 100/10 \rfloor = 10$$

 $|A_5 \cap A_7| = |A_{35}| = \lfloor 100/35 \rfloor = 2$
 $|A_7 \cap A_2| = |A_{14}| = \lfloor 100/14 \rfloor = 7$

$$|A_2 \cap A_5 \cap A_7| = |A_{70}| = \lfloor 100/70 \rfloor = 1$$

$$|A_{2} \cup A_{5} \cup A_{7}| = (|A_{2}| + |A_{5}| + |A_{7}|)$$

$$- (|A_{2} \cap A_{5}| + |A_{5} \cap A_{7}| + |A_{7} \cap A_{2}|)$$

$$+ |A_{2} \cap A_{5} \cap A_{7}|$$

$$= (50 + 20 + 14) - (10 + 2 + 7) + 1$$

Example. Find the number of positive integers below

100 which are divisible by 2, 5, or 7

$$A_2 := \{2, 4, \dots, 100\}$$

 $|A_2| = |100/2| = 50$

$$A_5 := \{5, 10, \dots, 100\}$$

 $|A_5| = \lfloor 100/5 \rfloor = 20$

$$A_7 := \{7, 10, \dots, 98\}$$

 $|A_7| = \lfloor 100/7 \rfloor = 14$

$$|A_2 \cap A_5| = |A_{10}| = \lfloor 100/10 \rfloor = 10$$

 $|A_5 \cap A_7| = |A_{35}| = \lfloor 100/35 \rfloor = 2$
 $|A_7 \cap A_2| = |A_{14}| = \lfloor 100/14 \rfloor = 7$

$$|A_2 \cap A_5 \cap A_7| = |A_{70}| = \lfloor 100/70 \rfloor = 1$$

$$|A_{2} \cup A_{5} \cup A_{7}| = (|A_{2}| + |A_{5}| + |A_{7}|)$$

$$- (|A_{2} \cap A_{5}| + |A_{5} \cap A_{7}| + |A_{7} \cap A_{2}|)$$

$$+ |A_{2} \cap A_{5} \cap A_{7}|$$

$$= (50 + 20 + 14) - (10 + 2 + 7) + 1$$

$$= 66$$

Example. Consider the set $\{2^1-1, 2^2-1, \dots 2^{n-1}-1\}$,

$$|A_{2} \cup A_{5} \cup A_{7}| = (|A_{2}| + |A_{5}| + |A_{7}|)$$

$$- (|A_{2} \cap A_{5}| + |A_{5} \cap A_{7}| + |A_{7} \cap A_{2}|)$$

$$+ |A_{2} \cap A_{5} \cap A_{7}|$$

$$= (50 + 20 + 14) - (10 + 2 + 7) + 1$$

$$= 66$$

Example. Consider the set $\{2^1 - 1, 2^2 - 1, \dots 2^{n-1} - 1\}$, where $n \ge 3$

$$|A_{2} \cup A_{5} \cup A_{7}| = (|A_{2}| + |A_{5}| + |A_{7}|)$$

$$- (|A_{2} \cap A_{5}| + |A_{5} \cap A_{7}| + |A_{7} \cap A_{2}|)$$

$$+ |A_{2} \cap A_{5} \cap A_{7}|$$

$$= (50 + 20 + 14) - (10 + 2 + 7) + 1$$

$$= 66$$

Example. Consider the set $\{2^1-1, 2^2-1, \dots 2^{n-1}-1\}$, where $n \geq 3$ is odd.

$$|A_{2} \cup A_{5} \cup A_{7}| = (|A_{2}| + |A_{5}| + |A_{7}|)$$

$$- (|A_{2} \cap A_{5}| + |A_{5} \cap A_{7}| + |A_{7} \cap A_{2}|)$$

$$+ |A_{2} \cap A_{5} \cap A_{7}|$$

$$= (50 + 20 + 14) - (10 + 2 + 7) + 1$$

$$= 66$$

Example. Consider the set $\{2^1-1, 2^2-1, \dots 2^{n-1}-1\}$,

where $n \geq 3$ is odd. Prove that there is a number from this set

$$|A_{2} \cup A_{5} \cup A_{7}| = (|A_{2}| + |A_{5}| + |A_{7}|)$$

$$- (|A_{2} \cap A_{5}| + |A_{5} \cap A_{7}| + |A_{7} \cap A_{2}|)$$

$$+ |A_{2} \cap A_{5} \cap A_{7}|$$

$$= (50 + 20 + 14) - (10 + 2 + 7) + 1$$

$$= 66$$

Example. Consider the set $\{2^1-1, 2^2-1, \dots 2^{n-1}-1\}$, where $n \geq 3$ is odd. Prove that there is a number from this set divisible by n.

$$|A_{2} \cup A_{5} \cup A_{7}| = (|A_{2}| + |A_{5}| + |A_{7}|)$$

$$- (|A_{2} \cap A_{5}| + |A_{5} \cap A_{7}| + |A_{7} \cap A_{2}|)$$

$$+ |A_{2} \cap A_{5} \cap A_{7}|$$

$$= (50 + 20 + 14) - (10 + 2 + 7) + 1$$

$$= 66$$

Example. Consider the set $\{2^1-1, 2^2-1, \dots 2^{n-1}-1\}$, where $n \geq 3$ is odd. Prove that there is a number from this set divisible by n.

Solution. Exercise to be discussed in tomorrow's lecture.

$$|A_{2} \cup A_{5} \cup A_{7}| = (|A_{2}| + |A_{5}| + |A_{7}|)$$

$$- (|A_{2} \cap A_{5}| + |A_{5} \cap A_{7}| + |A_{7} \cap A_{2}|)$$

$$+ |A_{2} \cap A_{5} \cap A_{7}|$$

$$= (50 + 20 + 14) - (10 + 2 + 7) + 1$$

$$= 66$$