Lecture 9

常用分布及其应用-II

Probability and Statistics Beihang University

9.1 正态分布

定义 9.1.1 随机变量 X 称为具有参数为 μ 和 $\sigma^2(\mu \in \mathbb{R}, \sigma > 0)$ 的 **正态分布**, 如果 X 具有密度函数

$$f(x|\mu,\sigma^2) = \frac{1}{(2\pi)^{1/2}\sigma} \exp\left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right\}, x \in \mathbb{R}$$
 (9.1)

通常记作 $X \sim \mathcal{N}\left(\mu, \sigma^2\right)$. 若 $X \sim \mathcal{N}\left(0, 1\right)$, 则称 X 服从**标准正态分布**.

可以验证 $f(x|\mu,\sigma^2)$ 是一个概率密度函数. 容易看出关于 $f(x|\mu,\sigma^2)$ 的无穷积分收敛. 令 $y=(x-\mu)/\sigma$, 那么

$$\int_{-\infty}^{\infty} f(x|\mu, \sigma^2) \, dx = \frac{1}{(2\pi)^{1/2}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}y^2} dy$$

2

注意到

$$\left(\int_{-\infty}^{\infty} e^{-\frac{1}{2}y^2} dy\right)^2 = \int_{-\infty}^{\infty} e^{-\frac{1}{2}y^2} dy \int_{-\infty}^{\infty} e^{-\frac{1}{2}z^2} dz$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(y^2 + z^2)} dy dz$$
$$= \int_{0}^{2\pi} \int_{0}^{\infty} e^{-\frac{1}{2}r^2} r dr d\theta = 2\pi$$

因此

$$\int_{-\infty}^{\infty} f(x|\mu, \sigma^2) dx = \frac{1}{(2\pi)^{1/2}} \cdot (2\pi)^{1/2} = 1$$

注记 9.1.1 由上面的变量代换看出, $X \sim \mathcal{N}\left(\mu,\sigma^2\right)$ 那么 $Y = \frac{X-\mu}{} \sim \mathcal{N}\left(0,1\right)$.

3

定理 9.1.1 $X \sim \mathcal{N}(0,1)$, 那么 X 存在任意阶矩, 并且 $\forall k =$ 0. 1. 2. ...

$$E\left(X^{2k+1}\right) = 0,$$

$$E\left(X^{2k}\right) = 1 \cdot 3 \cdot 5 \cdots (2k-1).$$

■ 容易看出 $E(X^0) = 1$, 并且由密度函数对称性 $E(X^{2k+1}) = 0$. 当 $n \ge 2$ 由分部积分

$$E(X^{n}) = \frac{1}{(2\pi)^{1/2}} \int_{-\infty}^{\infty} x^{n} e^{-\frac{1}{2}x^{2}} dx$$

$$= -\frac{1}{(2\pi)^{1/2}} \int_{-\infty}^{\infty} x^{n-1} d\left(e^{-\frac{1}{2}x^{2}}\right)$$

$$= (n-1) E\left(X^{n-2}\right)$$

因此定理成立.

由此可见标准正太分布 $\mathcal{N}(0,1)$ 的期望为 0, 方差为 1.

定理 9.1.2 $X \sim \mathcal{N}(\mu, \sigma^2)$, 那么

- (1) $E(X) = \mu$;
- (2) $Var(X) = \sigma^2$;
- $(3) \psi(t) = E(e^{tX}) = \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right), t \in \mathbb{R}.$
- **(**1)

$$E(X) = \int_{-\infty}^{\infty} x \frac{1}{(2\pi)^{1/2} \sigma} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2} dx$$

$$= \sigma \int_{-\infty}^{\infty} \frac{x-\mu}{\sigma} \frac{1}{(2\pi)^{1/2} \sigma} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2} dx$$

$$+ \mu \int_{-\infty}^{\infty} \frac{1}{(2\pi)^{1/2} \sigma} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2} dx$$

$$= \mu$$

(2) 由 (9.1.1), 标准正太分布 2 阶矩为 1,

$$Var(X) = \int_{-\infty}^{\infty} (x - \mu)^{2} \frac{1}{(2\pi)^{1/2} \sigma} e^{-\frac{1}{2} \left(\frac{x - \mu}{\sigma}\right)^{2}} dx$$

$$= \sigma^{2} \int_{-\infty}^{\infty} \left(\frac{x - \mu}{\sigma}\right)^{2} \frac{1}{(2\pi)^{1/2} \sigma} e^{-\frac{1}{2} \left(\frac{x - \mu}{\sigma}\right)^{2}} dx$$

$$= \sigma^{2} \int_{-\infty}^{\infty} y^{2} \frac{1}{(2\pi)^{1/2}} e^{-\frac{1}{2}y^{2}} dy = \sigma^{2}$$

(3) 对 $t \in \mathbb{R}$ 下列积分存在,

$$E\left(e^{tX}\right) = \int_{-\infty}^{\infty} e^{tx} \frac{1}{\left(2\pi\right)^{1/2} \sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} dx$$

通过配完全平方

$$-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2 + tx = -\frac{1}{2\sigma^2}\left(x-\mu\right)^2 + \frac{2\sigma^2t}{2\sigma^2}x$$

$$= -\frac{1}{2\sigma^2} \left[x - \left(\mu + \sigma^2 t \right) \right]^2 + \frac{2\mu\sigma^2 t + \sigma^4 t^2}{2\sigma^2}$$
$$= -\frac{1}{2\sigma^2} \left[x - \left(\mu + \sigma^2 t \right) \right]^2 + \mu t + \frac{1}{2}\sigma^2 t^2$$

因此

$$E\left(e^{tX}\right) = \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right)$$

根据生成函数与矩的关系, 可以通过计算 $\psi^{(n)}(0)$ 来验证定理 9.1.1. 例如 $\mathcal{N}(\mu, \sigma^2)$ 的 0 阶矩, 1 阶矩, 2 阶矩分别为

$$\psi^{(0)}(0) = \psi(0) = 1$$

$$\psi'(0) = \left[\left(\mu + \sigma^2 t \right) \exp \left(\mu t + \frac{1}{2} \sigma^2 t^2 \right) \right]_{t=0} = \mu$$

$$\psi''(0) = \left[\left[\sigma^2 + \left(\mu + \sigma^2 t \right)^2 \right] \exp \left(\mu t + \frac{1}{2} \sigma^2 t^2 \right) \right]_{t=0} = \sigma^2 + \mu^2$$

定理 9.1.3
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
. 令 $Y = aX + b \ (a \neq 0)$, 那么 $Y \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$.

■ $Y 与 \mathcal{N}(a\mu + b, a^2\sigma^2)$ 具有相同的生成函数,

$$E(e^{tY}) = E(e^{atX+bt}) = e^{\mu(at) + \frac{1}{2}\sigma^2(at)^2}e^{bt} = e^{(a\mu+b)t + \frac{1}{2}(a\sigma)^2t^2}$$

亦可用密度变换公式直接证明.

li

定理 9.1.4 随机变量 $X_1,...,X_n$ 相互独立, $X_k \sim \mathcal{N}(\mu_k, \sigma_k^2)$, k = 1,2,...n. 那么

$$Y = X_1 + \cdots + X_n \sim \mathcal{N}\left(\sum_{k=1}^n \mu_k, \sum_{k=1}^n \sigma_k^2\right)$$

■ Y的生成函数为

$$E\left(e^{tY}\right) = E\left(e^{t\sum_{k=1}^{n}X_{k}}\right) = \prod_{k=1}^{n}E\left(e^{tX_{k}}\right) = e^{\left(\sum\mu_{k}\right)t + \frac{1}{2}\left(\sum\sigma_{k}^{2}\right)t^{2}}$$

亦可用密度卷积公式直接证明.

这一结论也可以进一步推广为: 随机变量 $X_1,...,X_n$ 相互独立, $X_k \sim \mathcal{N}\left(\mu_k, \sigma_k^2\right), k = 0, 1, 2, ...n.$ $a_k \in \mathbb{R}$ (k = 0, 1, 2, ...n) 不全 $0, b \in \mathbb{R}$. 那么

$$Y = a_1 X_1 + \cdots + a_n X_n + b \sim \mathcal{N}\left(\sum_{k=1}^n a_k \mu_k + b, \sum_{k=1}^n a_k^2 \sigma_k^2\right)$$

定义 9.1.2 随机变量 $X_1,...,X_n$ 的平均值 $\frac{1}{n}(X_1+\cdots+X_n)$ 称为样本平均, 通常记为 \overline{X} .

利用上面的定理可知, 如果随机变量 $X_1,...,X_n$ 相互独立, $X_k \sim \mathcal{N}\left(\mu,\sigma^2\right)$. 那么 $\overline{X} \sim \mathcal{N}\left(\mu,\sigma^2/n\right)$.

9

9.2 协方差矩阵

定义 9.2.1 随机向量 $X = (X_1, ..., X_n)^T$ 的期望为

$$E(X) = (EX_1, ..., EX_n)^T$$

X的协方差矩阵为

$$C(X) = E\left[(X - E(X)) (X - E(X))^{T} \right]$$

这里 $E(\cdot)$ 对矩阵的作用理解为对矩阵的每一个元素取期望.

注记 9.2.1 若假设 $EX_i^2 < \infty, \forall i = 1, ..., n$, 那么运用 Schwarz 不等式可知, X 的期望, 方差-协方差矩阵都是存在的.

为简化书写,记

$$\sigma_{i} = \left(E\left[\left(X_{i} - E\left(X_{i}\right)\right)^{2}\right]\right)^{1/2}, \rho_{ij} = \rho_{ji} = cov\left(X_{i}, X_{j}\right) / \left(\sigma_{i}\sigma_{j}\right)$$

例题 9.2.1 假设 $EX_i^2 < \infty$, $\forall i = 1, 2$, 写出 (X_1, X_2) 的协方差矩阵 C, $\det C$ 以及 (C 非退化时) C^{-1}

■ \diamondsuit $X = (X_1, X_2)$, 将 $(X - E(X))(X - E(X))^T$ 展开为

$$\left(\begin{array}{cc} (X_{1}-EX_{1}) (X_{1}-EX_{1}) & (X_{1}-EX_{1}) (X_{2}-EX_{2}) \\ (X_{2}-EX_{2}) (X_{1}-EX_{1}) & (X_{2}-EX_{2}) (X_{2}-EX_{2}) \end{array}\right)$$

那么 (X_1, X_2) 的协方差矩阵 C 为

$$C = \left(\begin{array}{cc} \sigma_1^2 & \rho_{12}\sigma_1\sigma_2\\ \rho_{21}\sigma_1\sigma_2 & \sigma_2^2 \end{array}\right)$$

当 C 非退化时,即 $\det C \neq 0$,($\sigma_1 > 0$, $\sigma_2 > 0$, $\rho_{12} \in (-1,1)$),那 么 C^{-1} 存在,并且 $\det C = \sigma_1^2 \sigma_2^2 \left(1 - \rho_{12}^2\right)$,

$$C^{-1} = \frac{1}{\det C} \begin{pmatrix} \sigma_2^2 & -\rho_{12}\sigma_1\sigma_2 \\ -\rho_{21}\sigma_1\sigma_2 & \sigma_1^2 \end{pmatrix}$$

$$= \frac{1}{1 - \rho_{12}^2} \left(\begin{array}{cc} \frac{1}{\sigma_1^2} & -\rho_{12} \frac{1}{\sigma_1 \sigma_2} \\ -\rho_{21} \frac{1}{\sigma_1 \sigma_2} & \frac{1}{\sigma_2^2} \end{array} \right)$$

111

定理 9.2.1 随机向量 $X = (X_1, ..., X_n)^T$ 的协方差矩阵 C(X) 是对称, 正半定矩阵.

■ 对称性容易看出. 为证明正半定性, 任取 $z \in \mathbb{R}^n$,

$$z^{T}C(X) z = \sum_{i=1}^{n} \sum_{j=1}^{n} E[z_{i}(X_{i}-E(X_{i}))(X_{j}-E(X_{j})z_{j})]$$
$$= E[(z^{T}(X-EX)) \cdot (z^{T}(X-EX))^{T}]$$

因此 $z^T C(X) z \ge 0$, $\forall z$, 即正半定.

例题 9.2.2 假设 $EX_i^2 < \infty$, $\sigma_i > 0$, $\forall i = 1, 2$, 其相关系数 $|\rho| < 1$, 那么 (X_1, X_2) 的协方差矩阵 C 是对称正定的, 并且存在下三角矩阵 G, 使得 $C = GG^T$.

注记 9.2.2 这一结论称为 C 的 Cholesky 分解. 它对一般的对称正定矩阵成立:假设 A 为对称正定矩阵, 那么存在下三角矩阵 G, 其对角元素为正, 使得 $A = GG^T$.

■ 根据题设 $\det C \neq 0$, 因而非退化, 从而是对称正定的. 令

$$G = \left(egin{array}{cc} \sigma_1 & 0 \
ho\sigma_2 & \sigma_2 \left(1-
ho^2
ight)^{1/2} \end{array}
ight)$$

则有

$$GG^T = \left(egin{array}{cc} \sigma_1^2 &
ho\sigma_1\sigma_2 \
ho\sigma_1\sigma_2 & \sigma_2^2 \end{array}
ight) = C$$

h

例题 9.2.3 假设 $Z = (Z_1, Z_2)$ 为随机向量, $Z_i \sim \mathcal{N}(0, 1)$, i = 1, 2 相互独立, 那么 (Z_1, Z_2) 的协方差矩阵为单位矩阵.

9.3 二元正态分布

例题 9.3.1 假设 $Z = (Z_1, Z_2)^T$ 为随机向量, $Z_i \sim \mathcal{N}(0, 1), i = 1, 2$ 相互独立 . $\mu_i \in \mathbb{R}, \sigma_i > 0, i = 1, 2, |\rho| < 1.$ 令 $\mu = (\mu_1, \mu_2)^T$,

$$\left(egin{array}{c} X_1 \ X_2 \end{array}
ight) = G \left(egin{array}{c} Z_1 \ Z_2 \end{array}
ight) + \mu, G = \left(egin{array}{cc} \sigma_1 & 0 \
ho\sigma_2 & \sigma_2 \left(1 -
ho^2
ight)^{1/2} \end{array}
ight)$$

试写出 $X = (X_1, X_2)^T$ 的联合密度函数与协方差矩阵.

■ 由于 Z₁, Z₂ 相互独立, 其联合密度函数为

$$g(z_1, z_2) = \frac{1}{2\pi} \exp \left[-\frac{1}{2} \left(z_1^2 + z_2^2 \right) \right], (z_1, z_2) \in \mathbb{R}^2.$$

由题解得

$$\begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix} = \frac{1}{(1-\rho^2)^{1/2} \sigma_1 \sigma_2} \begin{pmatrix} \sigma_2 \left(1-\rho^2\right)^{1/2} & 0 \\ -\rho \sigma_2 & \sigma_1 \end{pmatrix} \begin{pmatrix} X_1 - \mu_1 \\ X_2 - \mu_2 \end{pmatrix}$$

或者写作

$$Z_1 = rac{X_1 - \mu_1}{\sigma_1}, Z_2 = rac{1}{(1 -
ho^2)^{1/2}} \left(rac{X_2 - \mu_2}{\sigma_2} -
ho rac{X_1 - \mu_1}{\sigma_1}
ight)$$

因此由密度变换公式得到 (X_1,X_2) 的联合密度函数

$$f(x_1, x_2) = g(z_1, z_2) |\det G|^{-1}$$

$$= \frac{1}{2\pi (1 - \rho^2)^{1/2} \sigma_1 \sigma_2} \cdot \exp \left\{ -\frac{1}{2 (1 - \rho^2)} \left[\left(\frac{x_1 - \mu_1}{\sigma_1} \right)^2 - 2\rho \left(\frac{x_1 - \mu_1}{\sigma_1} \right) \left(\frac{x_2 - \mu_2}{\sigma_2} \right) + \left(\frac{x_2 - \mu_2}{\sigma_2} \right)^2 \right] \right\}$$

下面计算 X_1, X_2 的协方差矩阵. 由题设 $X = GZ + \mu, EX = \mu$,

$$C(X) = E\left[(X-\mu) \cdot (X-\mu)^T \right] = E\left[GZ \cdot (GZ)^T \right]$$

$$= GE \left[Z \cdot Z^T \right] G^T = GG^T$$

lir

基于上面的计算我们有

定义 9.3.1 如果 $X = (X_1, X_2)$ 具有如下联合密度函数, $(x_1, x_2) \in \mathbb{R}^2$

$$f(x_1, x_2) = \frac{1}{2\pi (1 - \rho^2)^{1/2} \sigma_1 \sigma_2} \cdot \exp\left\{-\frac{1}{2 (1 - \rho^2)} \left[\left(\frac{x_1 - \mu_1}{\sigma_1}\right)^2 - 2\rho \left(\frac{x_1 - \mu_1}{\sigma_1}\right) \left(\frac{x_2 - \mu_2}{\sigma_2}\right) + \left(\frac{x_2 - \mu_2}{\sigma_2}\right)^2 \right] \right\}$$

那么称 $X = (X_1, X_2)$ 具有参数为 $\mu = (\mu_1, \mu_2)^T$, $C = GG^T$ 的**二元正太分布**. 记作 $X \sim \mathcal{N}(\mu, C)$. 这里 $\sigma_1 > 0$, $\sigma_2 > 0$, $\rho \in (-1, 1)$. det $C = \sigma_1^2 \sigma_2^2 \left(1 - \rho^2\right) = 0$ 时称该二元正太分布为

退化的. 若 $\mu=0$, C 为单位矩阵 I, 那么称 $\mathcal{N}\left(0,I\right)$ 为标准二元 正太分布.

结合我们在例题 (9.2.1, 9.2.2) 中计算过的 C 和 C^{-1} , 容易看到, 定义 (9.3.1) 的二元正太分布密度也可以表达为简洁的矩阵形式: $\forall x = (x_1, x_2)^T$

$$f(x) = \frac{1}{2\pi (\det C)^{1/2}} \exp\left\{-\frac{1}{2} (x - \mu)^T C^{-1} (x - \mu)\right\}$$

从定义 (9.3.1) 的二元正太分布密度的表达式可以看出

定理 9.3.1 如果 $X = (X_1, X_2)^T \sim \mathcal{N}(\mu, C)$,那么关于 X_1 和 X_2 的边际分布仍然是正太分布, $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$, $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$.

正太条件分布

定理 9.3.2 如果 (X_1, X_2) 具有如定义 (9.3.1) 所给出的二元正太分布, 那么 X_2 在给定 $X_1 = x_1$ 时的条件分布是一个正态分布, 其期望方差分别为

$$E(X_2|x_1) = \mu_2 + \rho \sigma_2 \cdot \frac{x_1 - \mu_1}{\sigma_1}, Var(X_2|x_1) = (1 - \rho^2) \sigma_2^2$$

■ 注意到二元正太分布 (X_1, X_2) 是由 $Z = (Z_1, Z_2)^T \sim \mathcal{N}(0, I)$ 经过线性变换而得到的 (例题 (9.3.1)):

$$\begin{cases} X_1 = \sigma_1 Z_1 + \mu_1, \\ X_2 = \sigma_2 \left[\rho Z_1 + \left(1 - \rho^2 \right)^{1/2} Z_2 \right] + \mu_2. \end{cases}$$

将 X_2 重写为

$$X_2 = \sigma_2 \left(1 - \rho^2\right)^{1/2} Z_2 + \sigma_2 \rho Z_1 + \mu_2$$

就可以看出, 当 $X_1 = x_1$ 给定 (从而 $Z_1 = (X_1 - \mu_1)/\sigma_1$ 也给定), X_2 的条件分布就由 Z_2 在给定 Z_1 时的条件分布决定, 然而 Z_1, Z_2 是相互独立的, 因此 Z_2 在给定 Z_1 时的条件分布就是 Z_2 的分布. 由于 $Z_2 \sim \mathcal{N}(0,1)$, 因此 Z_2 在给定 $Z_1 = x_1$ 时的条件分布是

$$\mathcal{N}\left(\mu_2+\sigma_2
ho\cdotrac{X_1-\mu_1}{\sigma_1},\left(1-
ho^2
ight)\sigma_2^2
ight).$$

lh

正太分布独立与不相关等价

如果 X_1, X_2 相互独立, 那么它们是不相关的, 反过来的结论一般不成立. 但对正太分布, 我们有

定理 9.3.3 如果 $X = (X_1, X_2)^T$ 服从二元正太分布. 那么 X_1, X_2 相互独立当且仅当它们互不相关.

■ 独立则有不相关. 反过来, 假设 X_1, X_2 不相关, 那么相关系数 $\rho=0$, 此时定义 (9.3.1) 中的联合密度函数变为, $\forall (x_1,x_2) \in \mathbb{R}^2$

$$f(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2} \cdot \exp\left[-\frac{1}{2} \left(\frac{x_1 - \mu_1}{\sigma_1}\right)^2 - \frac{1}{2} \left(\frac{x_2 - \mu_2}{\sigma_2}\right)^2\right]$$

$$= \frac{1}{(2\pi)^{1/2}\sigma_1} \exp\left[-\frac{1}{2} \left(\frac{x_1 - \mu_1}{\sigma_1}\right)^2\right].$$

$$\frac{1}{(2\pi)^{1/2}\sigma_2} \exp\left[-\frac{1}{2} \left(\frac{x_2 - \mu_2}{\sigma_2}\right)^2\right]$$

即 $f(x_1, x_2)$ 分解为边际分布 $\mathcal{N}(\mu_1, \sigma_1^2)$, $\mathcal{N}(\mu_2, \sigma_2^2)$ 的密度乘积, 因此 X_1, X_2 相互独立.

同样的推理可证明

定理 9.3.4 如果 $X = (X_1, X_2)^T$ 服从二元正太分布. 那么 X_1, X_2 相互独立当且仅当其协方差矩阵为对角矩阵.

正太分布的线性变换

在例题 (9.3.1) 中我们看到, 如果 $Z = (Z_1, Z_2)^T \sim \mathcal{N}(0, I)$, 那 么 $X = (X_1, X_2)^T = GZ + \mu$ 服从正太分布 $\mathcal{N}(\mu, GG^T)$. 一般地, 我们有

定理 9.3.5 如果 $X = (X_1, X_2)^T$ 服从二元正太分布 $\mathcal{N}(\mu, C)$. L 为 1×2 或者 2×2 矩阵, Y = LX. 那么 $Y \sim \mathcal{N}(L\mu, LCL^T)$, 即正太分布的线性变换仍然是正态分布.

■ 若 $L = (l_1, l_2)$, 即 $Y = l_1 X_1 + l_2 X_2$, 由例题 (9.3.1) 可知, 存在 a_1, a_2 使得 $Y = a_1 Z_1 + a_2 Z_2$, 其中 Z_1, Z_2 是相互独立的标准正太分布, 因此 Y 也服从正态分布 (定理 (9.1.4)). 若 L 为 2 × 2 退化

矩阵, 可归为前一种情形. 若 L 为 2×2 非退化矩阵, 可运用密度变化公式证明.

9.4 多元正态分布

定义 9.4.1 多元随机变量 $X = (X_1, ..., X_n)^T \in \mathbb{R}^n$ 称为具有 n 元正太分布, 如果它具有如下密度函数, $x \in \mathbb{R}$

$$f(x|\mu,\Sigma) = \frac{1}{\left(2\pi\right)^{n/2} \left(\det\Sigma\right)^{1/2}} \exp\left\{-\frac{1}{2} \left(x-\mu\right)^T \Sigma^{-1} \left(x-\mu\right)\right\},\,$$

其中 Σ 为对称正定矩阵. 通常记作 $X \sim \mathcal{N}(\mu, \Sigma)$. 当 Σ 为退化矩阵时, 称 X 为退化的 n 元正太分布.

注记 9.4.1 一个等价定义: 多元随机变量 $X = (X_1, ..., X_n)^T \in \mathbb{R}^n$ 称为具有 n 元正太分布, 如果任意的线性组合 $Y = \sum_i^n a_i X_i$ 都服从 (一维) 正态分布 (含退化情形, 例如所有 $a_i = 0, Y \sim \mathcal{N}(0,0)$) 多元正太分布许多性质与二元情形类似, 例如我们有

定理 9.4.1 如果 $X = (X_1, ..., X_n)^T$ 服从多元正太分布. $X_1, ..., X_n$ 相互独立当且仅当它们互不相关.

定理 9.4.2 如果 $X = (X_1, ..., X_n)^T$ 服从多元正太分布. $X_1, ..., X_n$ 相互独立当且仅当其协方差矩阵为对角矩阵.

定理 9.4.3 如果
$$X = (X_1, ..., X_n)^T$$
 服从多元正太分布 $\mathcal{N}(\mu, \Sigma)$. L 为 $m \times n$ 矩阵, $Y = LX$. 那么 $Y \sim \mathcal{N}(L\mu, L\Sigma L^T)$.

■ 一般情形可通过生成函数证明. 仅证明 L 为可逆矩阵的情形. 由于线性变换 y = Lx 的 Jacobian 行列式为 $\det L$, 由密度变换公式, Y 的密度为

$$f(L^{-1}y) \cdot \frac{1}{|\det L|} = \frac{1}{(2\pi)^{n/2} (\det \Sigma)^{1/2} |\det L|} \exp\left\{-\frac{1}{2} (L^{-1}y - \mu)^T \Sigma^{-1} (L^{-1}y - \mu)\right\}$$

$$= \frac{1}{\left(2\pi\right)^{n/2} \left(\det\left(L\Sigma L^{T}\right)\right)^{1/2}} \cdot \exp\left\{-\frac{1}{2} \left(y - L\mu\right)^{T} \left(L^{-1}\right)^{T} \Sigma^{-1} \left(L^{-1}\right) \left(y - L\mu\right)\right\}$$

因此 Y 服从期望 $L\mu$,协方差 $\left(\left(L^{-1}\right)^T\Sigma^{-1}\left(L^{-1}\right)\right)^{-1}=L\Sigma L^T$ 的正态分布.

例题 9.4.1 用 I 表示单位矩阵. 如果 $\mu \in \mathbb{R}$, $\sigma > 0$, $X \sim \mathcal{N}(\mu, \sigma^2 I)$, A 为正交矩阵. 令 Y = AX, 那么 $Y \sim \mathcal{N}(A\mu, \sigma^2 I)$, 即正交变换不改变 X 的协方差及其各分量独立性.

■ 直接运用上一结论.