

SF1684 Algebra and geometri Tentamen med lösningsförslag Friday April 22 april, 2022

KTH Teknikvetenskap

1. Let
$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$
.

(a) Determine a
$$2 \times 2$$
 matrix P such that $P^{-1}AP$ is a diagonal matrix. (4 p)

(b) Determine
$$A^{10} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
. (2 p)

Lösningsförslag.

(a) The characteristic polynomial of A is given by $\det(A-\lambda I)=\lambda^2-6\lambda+8=(\lambda-4)\cdot(\lambda-2)$. Hence the eigenvalues of A are $\lambda_1=2$ och $\lambda_2=4$. In order to find the corresponding eigenvectors, we solve the augmented systems

$$\begin{bmatrix} 3-2 & 1 & 0 \\ 1 & 3-2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

and

$$\left[\begin{array}{cc|c} 3-4 & 1 & 0 \\ 1 & 3-4 & 0 \end{array}\right] = \left[\begin{array}{cc|c} -1 & 1 & 0 \\ 1 & -1 & 0 \end{array}\right] \sim \left[\begin{array}{cc|c} -1 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right]$$

with solutions given by $\vec{x} = t \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ and $\vec{x} = t \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, respectively, where t is a real parameter. In order for the transition matrix P to give a diagonal matrix, the columns need to be eigenvectors. Hence we can choose

$$P = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$$

to get
$$P^{-1}AP = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$$
.

(b) Since $\begin{bmatrix} -1\\1 \end{bmatrix}$ is an eigenvector with eigenvalue 2, we get $A^{10}\begin{bmatrix} -1\\1 \end{bmatrix} = 2^{10}\begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} -2^{10}\\2^{10} \end{bmatrix} = \begin{bmatrix} -1024\\1024 \end{bmatrix}$.

2. Let

$$\vec{u} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$.

(a) Determine the angle between \vec{u} and \vec{v} .

(3 p)

(b) Determine the intersection point between the line (x, y, z) = (-1 + t, 2 + 2t, 2t) and the plane through the origine that is spanned by the vectors \vec{u} and \vec{v} . (3 p)

Lösningsförslag.

(a) Let α be the angle between \vec{u} and \vec{v} . We have that

$$1 = \vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \alpha.$$

Since $\|\vec{u}\| = \|\vec{v}\| = \sqrt{2}$ we get that $\cos \alpha = 1/2$ and hence $\alpha = \pi/3$.

(b) The plane spanned by \vec{u} och \vec{v} has a normal vector given by the cross product $\vec{u} \times \vec{v}$. We get

$$\vec{u} \times \vec{v} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 - 0 \\ 0 - 1 \\ 1 - 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

Hence the equation for the plane is given by x-y+z=0 and we can find the intersection point by substituting the parameter form of the line in the equation.

$$(-1+t) - (2+2t) + 2t = 0 \iff t = 3.$$

Hence, the intersection point is $(-1 + 3, 2 + 2 \cdot 3, 2 \cdot 3) = (2, 8, 6)$.

- 3. Let Π be the plane given by the equation 2x + 3y 6z = 0.
 - (a) Determine the orthogonal projection of the vector $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ on the plane Π . (3 p)
 - (b) Determine the standard matrix A for the linear transformation $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ that corresponds to the orthogonal projection on the plane Π .
 - (c) Determine if the matrix A is invertible. (1 \mathbf{p})

Lösningsförslag.

(a) The projection is given by

$$\operatorname{Proj}_{\Pi} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} - \frac{\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T \cdot \begin{bmatrix} 2 & 3 & -6 \end{bmatrix}^T}{\begin{bmatrix} 2 & 3 & -6 \end{bmatrix}^T \cdot \begin{bmatrix} 2 & 3 & -6 \end{bmatrix}^T} \begin{bmatrix} 2 \\ 3 \\ -6 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} - \frac{2}{49} \begin{bmatrix} 2 \\ 3 \\ -6 \end{bmatrix} = \frac{1}{49} \begin{bmatrix} 45 \\ -6 \\ 12 \end{bmatrix}$$

(b) For the standard matrix of the projection, we need to compute also the images of the other two standard basis vectors, $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T$ och $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$.

$$\begin{aligned} & \operatorname{Proj}_{\Pi} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} - \frac{\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^{T} \cdot \begin{bmatrix} 2 & 3 & -6 \end{bmatrix}^{T}}{\begin{bmatrix} 2 & 3 & -6 \end{bmatrix}^{T}} \begin{bmatrix} 2 \\ 3 \\ -6 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} - \frac{3}{49} \begin{bmatrix} 2 \\ 3 \\ -6 \end{bmatrix} = \frac{1}{49} \begin{bmatrix} -6 \\ 40 \\ 18 \end{bmatrix} \\ & \operatorname{Proj}_{\Pi} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} - \frac{\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{T} \cdot \begin{bmatrix} 2 & 3 & -6 \end{bmatrix}^{T}}{\begin{bmatrix} 2 & 3 & -6 \end{bmatrix}^{T}} \begin{bmatrix} 2 \\ 3 \\ -6 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} - \frac{-6}{49} \begin{bmatrix} 2 \\ 3 \\ -6 \end{bmatrix} = \frac{1}{49} \begin{bmatrix} 12 \\ 18 \\ 13 \end{bmatrix} \end{aligned}$$

The standard matrix has the images of the standar basis vectors as its columns and is hence given by

$$A = \frac{1}{49} \begin{bmatrix} 45 & -6 & 12 \\ -6 & 40 & 18 \\ 12 & 18 & 13 \end{bmatrix}$$

(c) The matrix A is not invertible since the normal vector to the plane is mapped to zero.

4. Let $P = \begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix}$ be the transition matrix from the basis \mathcal{B} to the basis \mathcal{C} where \mathcal{B} and \mathcal{C} are bases for the same subspace V of \mathbb{R}^3 .

- (a) Determine the dimension of the subspace V. (1 p)
- (b) Determine the transition matrix from the basis C to the basis B. (2p)
- (c) Give an example of a subspace V and bases \mathcal{B} and \mathcal{C} such that P is the transition matrix from the basis \mathcal{B} to the basis \mathcal{C} .

Lösningsförslag.

- (a) Since the transition matrix is of size 2×2 the subspace must have dimension 2.
- (b) The opposite change of bases is given by the inverse of the transition matrix. Hence by $P^{-1} = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$ (c) If we choose the subspace to by given by z=0 and

$$\mathcal{C} = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$$

we get the basis \mathcal{B} by the transition matrix from that \mathcal{B} to the basis \mathcal{C} should be given by the coordinates of the basis vectors in \mathcal{B} relative to the basis \mathcal{C} . Hence we have

$$\mathcal{B} = \left\{ \begin{bmatrix} 2 \\ -3 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix} \right\}$$

5. Let V be a k-dimensional subspace of \mathbb{R}^n , let M_{nm} denote the set of $n \times m$ -matrices, and let W be the set of $n \times m$ -matrices A that satisfies that $\operatorname{Range}(A)$ is a subspace of V.

(a) Show that
$$W$$
 is a subspace of M_{nm} . (3 p)

(b) Determine the dimension of
$$W$$
. (3 \mathbf{p})

Lösningsförslag.

- (a) If B is a matrix with row space V^{\perp} we have that a matrix A is in W precisely if BA=0. Henc W is given as the set of solutions to a homogenous linear system of equation, which shows that it is a subspace of M_{nm} .
- (b) For each column of A the soluges lösningsmängden av k parametrar eftersom B har rang n-k. Sammanlagt behövs därmed $k\cdot m$ parametrar och dimensionen för W är km.
- **6.** An $n \times n$ -matrix A is said to be *expansive* if $||A\vec{x}|| > ||\vec{x}||$ for all non-zero \vec{x} i \mathbb{R}^n . We say that $\vec{x_0}$ in \mathbb{R}^n is a *fixed point* to a mapping $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ if $f(\vec{x_0}) = \vec{x_0}$.
 - (a) Show that if A is an $n \times n$ -matrix such that all eigenvalues of A have absolute value greater that 1, then the matrix $A I_n$ is invertible. (2 p)
 - (b) Show that if A is an expansive $n \times n$ -matrix, then the matrix $A I_n$ is invertible.
 - (c) If \vec{b} is a vector in \mathbb{R}^n and A is an $n \times n$ -matrix, we define a mapping $f \colon \mathbb{R}^n \longrightarrow \mathbb{R}^n$ by $f(\vec{x}) = A\vec{x} + \vec{b}$, for all \vec{x} in \mathbb{R}^n .

Show that if A is expansive, then f must have a unique fixed point. (2 p)

Lösningsförslag.

- (a) The matrix $A I_n$ is invertible if and only if 1 is not an eigenvalue of A. If all eigenvalues of A have absolute value greater than 1, then 1 cannot be an eigenvalue of A and hence the matrix $A I_n$ is invertible.
- (b) If 1 is an eigenvalue of A, there is a non-zero vector $\vec{x_o}$ with $A\vec{x_0} = \vec{x_0}$ and hance $||A\vec{x_0}|| = ||\vec{x_0}||$ which cannot happen if A is expansive.
- (c) We have that

$$f(\vec{x}) = \vec{x} \iff A\vec{x} + \vec{b} = \vec{x} \iff (A - I_n)\vec{x} = -\vec{b}.$$

Since A is expansive, the matrix $A - I_n$ is invertible according to part (b) and hence there is a unique solution to $(A - I_n)\vec{x} = -\vec{b}$, which gives a unique fixed point of f.