「複素関数論」小テスト No.8

2019年12月9日(月)

学籍	番号				学科	氏名
				·		
1				I		

問 次の問に答えなさい.

(1) 単一閉曲線 C を原点 0 を中心とする半径 2 の円周とする. このとき, 次の **(ア)** \sim **(ウ)** の関数 f(z) に 対し、**コーシーの定理から直ちに** $\int_C f(z) dz = 0$ となることがわかるものをすべて選びなさい.

(ア)
$$f(z) = \frac{1}{(z+3)(z-i)}$$
 (イ) $f(z) = \frac{1}{z^2-1}$ (ウ) $f(z) = \frac{1}{z^2+2z+3}$

(1)
$$f(z) = \frac{1}{z^2 - 1}$$

(ウ)
$$f(z) = \frac{1}{z^2 + 2z + 3}$$

(2) C を α を中心とする半径 1 の円周とする. $\int_C \frac{1}{z-\alpha} dz$ は次のようにして求めることができる; C のパラメータ表示は $z(t)=\alpha+e^{ti}$ (ただし, $0\leq t\leq 2\pi$)と書ける. このとき, $z'(t)=i\,e^{ti}$ なので,

$$\int_C \frac{1}{z - \alpha} dz = \int_0^{2\pi} \frac{1}{(\alpha + e^{ti}) - \alpha} \cdot i e^{ti} dt = i \int_0^{2\pi} dt = i [t]_0^{2\pi} = 2\pi i$$

となる.

以上を参考にして、 $\int_C \frac{1}{(z-\alpha)^n} dz$ (ただし、n>2) を求めなさい.