Problem 1:

Consider $g: \{z \in \mathbb{C}: 0 < \operatorname{Im}(z) < 2\pi\} \to \mathbb{C}$ given by $g(z) = e^z$. We know that g is holomorphic. Define $A = \{z \in \mathbb{C}: 0 < \operatorname{Im}(z) < 2\pi\}$.

Also, g is injective: let g(z) = g(w), where $z = a + bi \in A$ and $w = c + di \in A$ (and $a, b, c, d \in \mathbb{R}$). Then:

$$e^{z} = e^{w}$$

$$e^{a+bi} = e^{c+di}$$

$$e^{a}e^{bi} = e^{c}e^{di}$$

So $e^a = e^c$, so a = c. Also, $e^{bi} = e^{di}$, so because $b, d \in (0, 2\pi)$, we have that b = d.

So z = w, as desired.

So g is an injective holomorphism: it is a biholomorphism between A and g(A).

Moreover, $g(\{z \in \mathbb{C} : 0 < \operatorname{Im}(z) < 2\pi\}) = \mathbb{C} \setminus \mathbb{R}^+$: if $z \in \mathbb{C} \setminus \mathbb{R}^+$, then $\ln(|z|) + i \operatorname{arg}(z) \mapsto z$.

Also, if $z \in \mathbb{R}^+$, then $e^{a+bi} = z$ implies that b is a natural number times 2π , which all lie outside our domain.

Problem 2:

(Note: I read a stronger version of this proof in Complex Made Simple prior to this problem being assigned; the extra assumption allows for a lot of stripping away of details.)

Let Ω be a convex open set, $\phi \in \mathcal{O}(\Omega)$, with $\text{Re}(\phi'(z)) > 0$.

We know that ϕ is holomorphic.

Consider $\phi(a) - \phi(b)$. Because Ω is convex, we can calculate this by integrating over the line segment [a, b]:

$$|\phi(a) - \phi(b)| = \left| \int_{[a,b]} \phi'(z) dz \right|$$

$$\geq \left| \int_{[a,b]} \operatorname{Re}(\phi'(z)) dz \right|$$

Because $\text{Re}(\phi'(z)) > 0$, the absolute value of the integral is greater than zero if $a \neq b$. So $\phi(a) - \phi(b) \neq 0$ if $a \neq b$. That is, ϕ is injective.

So ϕ is a biholomorphism.

Problem 3:

Let $S_{0,\alpha} = \{z \in \mathbb{C} : 0 < \arg(z) < \alpha\}$ for all $0 < \alpha \le 2\pi$.

Consider $S_{0,\alpha}$ and $S_{0,\beta}$. The map $\phi: S_{0,\alpha} \to S_{0,\beta}$ given by $\phi(re^{i\theta}) = re^{\frac{\beta}{\alpha}i\theta}$ is a biholomorphism.

First, ϕ is well defined: if $re^{i\theta} \in S_{0,\alpha}$, then $\phi(z) = re^{\frac{\beta}{\alpha}i\theta}$ has $0 < \frac{\beta}{\alpha}\theta < \beta$, so that $\phi(z) \in S_{0,\beta}$. Moreover, because $0 < \alpha < 2\pi$, for each z there is a unique θ with r > 0 and $re^{i\theta} = z$.

Next, ϕ is a holomorphism, and this is clear using polar coordinates.

Last, ϕ is injective: let $\phi(z) = \phi(w)$, with $z = ae^{ib}$ and $w = ce^{id}$ with $a, b, c, d \in \mathbb{R}$. Then:

$$ae^{\frac{\beta}{\alpha}ib} = ce^{\frac{\beta}{\alpha}id}$$

So a=c, and $e^{\frac{\beta}{\alpha}ib}=e^{\frac{\beta}{\alpha}id}$. Because $\frac{\beta}{\alpha}b,\frac{\beta}{\alpha}d\in(0,2\pi]$, this means that b=d. So z=w, as desired.

So we have a biholomorphism, $\phi: S_{0,\alpha} \to S_{0,\beta}$. Thus, $S_{0,\alpha}$ and $S_{0,\beta}$ are conformally equivalent.

Problem 4:

Consider $A = \operatorname{Aut}(\{z : \operatorname{Im}(z) > 0\})$ and B, the set of maps of the form $z \mapsto \frac{az+b}{cz+d}$ with $a, b, c, d \in \mathbb{R}$ and ad-bc > 0.

Let $\phi \in B$.

First, ϕ is injective: let $\phi(z) = \phi(w)$. Then:

$$\frac{az+b}{cz+d} = \frac{aw+b}{cw+d}$$
$$(az+b)(cw+d) = (aw+b)(cz+d)$$
$$acwz + adz + bcw + bd = acwz + adw + bcz + bd$$
$$(ad-bc)z = (ad-bc)w$$
$$z = w$$

So where ϕ is defined, ϕ is injective.

Also, ϕ is a holomorphism: except in the cases where $c \neq 0$ and at the point z = -d/c, this is clear. But because -d/c is real, we don't have to consider this: it lies outside of our domain.

Thus, ϕ is a biholomorphism into some set.

Now, $\phi(A) = A$:

Let $z \in A$. Then...

Also, if $z \in \phi(A)$, then...

Let $\phi \in A$. Then...

So A = B, as desired.

Problem 5:

Let $g: D_1(0) \to D_1(0)$ be holomorphic, with $g(0) = g'(0) = \dots g^{(k)}(0) =$ 0.

Then
$$h(z) = \frac{g(z)}{z^{k+1}}$$
 is holomorphic; on $D_1(0)$, $h(z) = \frac{\sum_{n=k+1}^{\infty} a_n z^n}{z^{k+1}} = \sum_{n=k+1} a_n z^{n-(k+1)}$. at is, h is represented as a power series, h is holomorphic.

That is, h is represented as a power series, h is holomorphic.

Now, $|h(z)| \leq \max_{\partial D_r(0)} |h|$ for all $z \in D_r(0)$ with r < 1. So $|h(z)| \leq \frac{1}{r}$ for all

r < 1. By taking limits as $r \to 1$, we get that $|h(z)| \le 1$ for all $z \in D_1(0)$.

So $g(z) \le |z|^{k+1}$ for $z \in D_1(0)$.

Now, if we have $g(z) = |z|^{k+1}$ for some $z \in D_1(0)$, we get |h(z)| = 1. That is, h achieves its maximum. So by the maximum principle, h is constant; say h=c. So then we have $g(z)=cz^{k+1}$, for some $c\in\mathbb{C}$ with |c|=1.