MA 141 -2a PROVA - GABARITO

OBSERVAÇÕES:

A não ser que tenha sido requisitado o emprego de um determinado método, (e, neste caso, a questão **é** o método), em geral há várias maneiras logicamente válidas de resolver uma questão.

O mais importante é que o método empregado na resolução, qualquer que seja ele, tenha sido explicitado corretamente.

Na resolução numérica é importante também que as operações constitutivas do método tenham sido corretamente indicadas.

Por fim, **se tudo antes estiver correto**, o resultado numérico é o que menos interessa, especialmente se ele foi obtido sob pressão, o que é o caso de uma prova!

I-A reta r é a interseção dos planos x-z=1 e y=0 e a reta s contem o ponto $P_s=(3,2,-1)$ e é paralela ao vetor v=(0,1,1).

a)-[0,5 pt]-Mostrar que r e s são reversas.

b)-[1,0 pt]-Encontrar os planos π e α que contem respectivamente as retas r e s e que sejam paralelos. ($r \subset \pi$, $s \subset \alpha$ e $\pi \parallel \alpha$).

c)-[0,5 pt]-Encontrar a distancia entre os planos π e α do item anterior.

d)-[1,0 pt]-Encontrar os pontos P em r e Q em s tais que a reta que passa por P e Q seja perpendicular às duas retas r e s.

a-Duas retas são reversas no espaço se forem disjuntas (i.e., não se interceptam) e também não são paralelas.

A reta s é dada na forma paramétrica

 $X(t) = P_s + tv = (3,2,-1) + t(0,1,1) = (3,2+t,-1+t)$ e intercepta o plano y = 0, quando 2+t=0, ou, t=-2. Mas X(-2)=(3,0,-3) não pertence ao plano x-z=1, e portanto as duas retas não se interceptam.

Os planos que definem a reta r podem ser interpretados na forma vetorial: $X \cdot (1,0,-1) = X \cdot N_1 = 1$ e $X \cdot (0,1,0) = X \cdot N_2 = 0$. Portanto um vetor diretor u desta reta pode ser obtido na forma $u = N_1 \times N_2 = (e_1 - e_3) \times e_2 = e_3 + e_1$, onde $N_1 = e_1 - e_3$ e $N_2 = e_2$ são vetores ortogonais aos respectivos planos.

Portanto, estas retas não são paralelas pois o vetor $u = e_1 + e_3$ diretor de r (que tem componente nula na segunda coordenada) obviamente não é paralelo ao vetor $v = e_2 + e_3$ diretor da reta s.

Obs: Você verá que a resolução das questões abaixo responde esta primeira automaticamente; o produto vetorial não nulo entre os vetores diretores mostra que elas não são paralelas e a distancia não nula mostra que não são convergentes.

b-Estes planos π e α são perpendiculares ao vetor $v \times u = (e_2 + e_3) \times (e_1 \times e_3) = -e_3 + e_1 + e_2 = (1, 1, -1) = N$ e passam

respectivamente pelos pontos $P_r = (2,0,1) \in r$ e $P_s = (3,2,-1) \in s$. Assim, suas equações vetoriais são respectivamente, $(X - P_r) \cdot N = 0$ e $(X - P_s) \cdot N = 0$.

c-Tomando o vetor que liga dois pontos (quaisquer) das duas retas, por exemplo, $P_s - P_r = (1,2,-2)$, calculamos a sua projeção na direção do vetor unitário perpendicular a ambas e teremos a distancia entre elas, ou seja,

$$d = (P_s - P_r) \cdot \frac{N}{\|N\|} = (1, 2, -2) \cdot \frac{1}{\sqrt{3}} (1, 1, -1) = \frac{5}{\sqrt{3}}$$
. (A proposito, a

distancia entre as duas retas é distancia entre os dois planos π e α da questão anterior).

d-Estes pontos $P \in r$ e $Q \in s$ ocorrem quando o vetor P - Q for perpendicular aos dois vetores diretores das respectivas retas. A reta r pode ser descrita como $Y(\tau) = (1,2,-2) + \tau u$ enquanto a reta s é dada por X(t) = (3,2,-1) + tv. Assim, devemos resolver o seguinte sistema de duas equações lineares a duas incognitas $(\tau \in t)$

$$(Y(\tau) - X(t)) \cdot u = 0$$

$$(Y(\tau) - X(t)) \cdot v = 0$$

ou, numericamente, $2\tau-t=3$ e $\tau-2t=1$ de onde vem $\tau=\frac{5}{3}$, e $t=\frac{1}{3}$ e os pontos são $P=Y(\frac{5}{3})=(\frac{8}{3},2,1)$ e $Q=X(\frac{1}{3})=(3,\frac{5}{3},\frac{-2}{3})$.

- **II-[2,0 pt]-** Verificar se as afirmações abaixo são verdadeiras ou falsas.(*Respostas sem justificativas não serão consideradas*).
 - **a)**-Se u, v, w são três vetores no espaço tais que $u \times v = u \times w$ então, v = w.
- **b)**-O conjunto de pontos do espaço $\{X : X = \alpha u + \beta v, 0 \le \alpha \le 1, 0 \le \beta \le 1\}$ descreve um paralelogramo no espaço se os vetores u e v são tais que $u \times v \ne 0$.
- **c)**-A reta que passa pelo ponto $P_0=(2,3,-1)$ e é paralela ao vetor v=(2,1,-1) , também é paralela à reta definida pelas equações: $\frac{x-1}{-6}=\frac{y}{-3}=\frac{z-2}{3}$.
 - **d)**-A distancia do ponto P=(1,1,1) ao plano $\pi:x+y+z=0$ é igual a $\sqrt{3}$.

II-SEGUNDA QUESTÃO

a-FALSA- Se u=0 a afirmação é obviamente falsa, pois, $u \times v = u \times w$ quaisquer que sejam $v \in w$. Se $u \neq 0$ basta ver que para v = u e w = 2u a expressão $u \times v = u \times w$ é válida, mas não a conclusão.

b-VERDADEIRA: Um pequeno desenho (que ilustre as operações de multiplicação por escalar $0 \le \lambda \le 1$ e soma) mostra que a expressão $X = \alpha u + \beta v$, (para $0 \le \alpha \le 1$, $0 \le \beta \le 1$) está dentro do paralelogramo e, vice-versa, todo ponto interior desta figura pode ser escrito desta forma.

c-VERDADEIRA: A reta definida pelas equações simetricas $\frac{x-1}{-6} = \frac{y}{-3} = \frac{z-2}{3} = t$ pode ser reescrita na forma paramétrica: X(t) = (x, y, z) = (1 - 6t, -3t, 2 + 3t) = (1, 0, 2) + t(-6, -3, 3) = P + tu de

onde verificamos que o seu vetor diretor é um multiplo do vetor diretor v = (2, 1, -1), ou seja, u = 3v e, portanto, são, de fato, paralelas.

d-O plano $\pi: x+y+z=0$ é definido pela equação vetorial $X \cdot (1,1,1) = X \cdot N = 0$, e, portanto, passa pela origem e é ortogonal ao vetor N = (1,1,1). O ponto P = (1,1,1) está exatamente na direção desta normal e a uma distancia igual ao seu módulo $(\sqrt{3})$ da origem. Portanto a afirmação é VERDADEIRA.

III-[2,0 pt]-Encontrar a equação do plano que passa pelo ponto P=(1,2,1) e que contem a reta interseção entre os planos $\pi: 2x-3y+4z-1=0$ e $\alpha: x-3y-2z+2=0$.

III-TERCEIRA QUESTÃO

Inicialmente obtemos dois pontos distintos $P \in Q$ quaisquer da reta r determinada pela interseção dos dois planos $\pi \in \alpha$; Por exemplo, para simplificar (já que podem ser quaisquer) escolhemos P = (x,y,0) e, resolvendo o sistema de duas equações 2x-3y=1 e x-3y=-2 vem $P=(3,\frac{5}{3},0)$ e, tomando um ponto Q=(0,y,z) resolvemos -3y+4z=1, e 3y+2z=2, de onde vem $Q=(0,\frac{1}{3},\frac{1}{2})$. O plano requisitado passa pelos pontos P_0,P,Q , portanto, um vetor ortogonal a ele é $N=\{(P_0-P)\times(P_0-Q)\}$ e sua equação vetorial: $(X-P_0)\cdot\{(P_0-P)\times(P_0-Q)\}=0$.

IV-

IVa)-[1,0 pt]-Seja P_0 for um ponto do plano que contem os vértices P_1,P_2,P_3 de um triângulo Δ . Obtenha, justificando geometricamente, uma fórmula que produza a área do triângulo Δ em termos dos raios vetores $R_k=P_k-P_0$, e das operações vetoriais usuais (Soma, multiplicação por escalar, produto interno e produto vetorial).

Considere os dois casos, P_0 interior e, exterior ao triângulo.

IVb)-[2,0 pt]- Se $x=(x_1,x_2,x_3)^t$ for a matriz coluna que representa as coordenadas do ponto $X=x_1\overrightarrow{e_1}+x_2\overrightarrow{e_2}+x_3\overrightarrow{e_3}$, determine a **matriz** Π tal que $\Pi x=(y_1,y_2,y_3)^t$ representa as coordenadas do ponto $Y=y_1\overrightarrow{e_1}+y_2\overrightarrow{e_2}+y_3\overrightarrow{e_3}$ obtido geometricamente pela projeção ortogonal de X no plano $\pi=\{Z;\ Z\bullet N=0,\ \text{onde}\ N=N_1\overrightarrow{e_1}+N_2\overrightarrow{e_2}+N_3\overrightarrow{e_3},\ \text{\'e}\ \text{unitário}\}.$

IV-QUARTA QUESTÃO: (Resolvida em classe)

a-Se o ponto P_0 for interior ao triângulo, os raios vetores $R_k = P_k - P_0$ repartem o seu interior exatamente em três triângulos, o primeiro de lados, $R_1, R_2 - R_1, R_2$ e daí por diante. A área (vetorial) deste primeiro triângulo é dada por $\overrightarrow{A_1} = \frac{1}{2}R_1 \times R_2$ e as outras $\overrightarrow{A_2} = \frac{1}{2}R_3 \times R_2$ e $\overrightarrow{A_3} = \frac{1}{2}R_1 \times R_3$, todas elas representadas por vetores com o mesmo sentido. Assim, temos $A = A_1 + A_2 + A_3 = \frac{1}{2}R_2 \times R_1 + \frac{1}{2}R_3 \times R_2 + \frac{1}{2}R_1 \times R_3$, e a área escalar $|\Delta| = |\overrightarrow{A}| = |\overrightarrow{A_1}| + |\overrightarrow{A_2}| + |\overrightarrow{A_3}|$. Um desenho explica os

detalhes.

Se o ponto P_0 estiver fora do triângulo, a fórmula vetorial será a mesma $\overrightarrow{A} = \frac{1}{2}R_2 \times R_1 + \frac{1}{2}R_3 \times R_2 + \frac{1}{2}R_1 \times R_3$ só que, neste caso, uma das expressões (que depende da posição do ponto P_0 com relação ao triângulo) tem sentido contrário aos demais pois retira a área em excesso (exterior) calculada pelas outras. Portanto, a área escalar não pode ser calculada como antes e sim, com a expressão mais geral $|\Delta| = |\overrightarrow{A}| = |\frac{1}{2}R_2 \times R_1 + \frac{1}{2}R_3 \times R_2 + \frac{1}{2}R_1 \times R_3|$, que, obviamente, vale para o caso anterior também. Um desenho explica os detalhes.

b-Obtemos inicialmente a expressão vetorial que determina o ponto projetado: Como N é unitário normal ao plano, o vetor que liga ortogonalmente o ponto projetado Y ao ponto X é dado por $h=(X \cdot N)N$, e , assim, o ponto projetado (que é o vetor entre a origem e o ponto Y) é dado por $Y=X-h=X-(X \cdot N)N$. "Abrindo" os vetores em coordenadas, temos,

$$Y = (y_1, y_2, y_3) = (x_1, x_2, x_3) - [x_1N_1 + x_2N_2 + x_3N_3](N_1, N_2, N_3) = (x_1 - x_1N_1^2 - x_2) - ([1 - N_1^2 - N_1N_2 - N_1N_3]x_1, [1 - N_2N_1 - N_1^2 - N_2N_3]x_2, [1 - N_3N_1 - N_3N_2 - N_3^2]$$
 que pode ser escrito matricialmente na forma:

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 1 - N_1^2 & -N_1 N_2 & -N_1 N_3 \\ -N_2 N_3 & 1 - N_2^2 & -N_2 N_3 \\ -N_3 N_1 & -N_3 N_2 & 1 - N_3^2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

e, portanto a matriz Π de projeção pode ser escrita na forma:

$$\Pi = I - \begin{pmatrix} N_1^2 & N_1 N_2 & N_1 N_3 \\ N_2 N_3 & N_2^2 & N_2 N_3 \\ N_3 N_1 & N_3 N_2 & N_3^2 \end{pmatrix}$$

Observações:

1-A matriz acima $\Pi_N = I - \Pi$ é a matriz que realiza a projeção do ponto X sobre o vetor N.

2-Representando os vetores pelas matrizes colunas de suas respectivas coordenadas, o produto interno $X \cdot N = N \cdot X$, (matriz 1×1) ,pode ser escrito na forma $N^t X$ (onde N^t é a matriz transposta, 1×3 , da matriz coluna, 3×1 , N). Assim, a identidade vetorial $Y = X - (X \cdot N)N$ pode ser escrita como produto matricial, da seguinte forma:

 $Y = N(N^tX)$ e, sendo o produto matricial associativo, temos $Y = (NN^t)X$ de onde vem que, $\Pi = I - NN^t$.(A matriz (3 × 3) N^tN é produto de uma matriz(N^t) 3 × 1 por uma matriz (N^t) 1 × 3). Este argumento é bem mais limpo do que abrindo as entranhas dos vetores.

Isto foi sugerido em classe, mas quem fez na força bruta também acertou, mas não merece compaixão.