Optimized Spatial Hashing for Collision Detection of Deformable Objects

Vision Modeling and Visualization 2003 Matthias Teschner et al. **Analyzed by Po-Ram Kim**

2 March 2010

Korea University Computer Graphics Lab.

Abstract

- We propose a new approach to collision and self collision detection of dynamically deforming objects that consist of tetrahedrons
- The presented algorithm is integrated in a physically based environment
 - be used in game engines and surgical simulators
- Using hash function
 - Not always provide a unique mapping of grid cells
 - Optimize the parameter
- The algorithm can detect collisions and self-collisions in environments of up to 20k tetrahedrons in real-time

- The detection of collisions and self-collisions of deformable objects based on spatial hashing-1
 - Algorithm classifies all object primitives
 - Object primitives: vertices and tetrahedrons
 - Tetrahedrons → AABB
 - Using hash function
 - 3D boxes (cells) → 1D hash value
 - Each hash value contains a number of object primitives
 - Self-collision can be detected well

- The detection of collisions and self–collisions of deformable objects based on spatial hashing-2
 - Using barycentric coordinates of a vertex with respect to a penetrated tetrahedron
 - To estimate the penetration depth for a pair of colliding tetrahedrons
 - Can be used for collision response

- Using a hash function is very efficient
 - Do not need to Spatial Hashing
 - Pre-processing
 - _ To estimation that the global bounding box and the cell size
- The hash mechanism does not always provide a unique mapping of grid cells to hash table entries
 - the performance decreases
 - To reduce the number of index collisions
 - Optimized the parameters
 - _ Characteristics of the hash function, hash table size, and the cell size

- The paper presents experimental results
 - using physically-based environments for deformable objects with varying geometrical complexity
- 20000 tetrahedrons can be tested for collisions and self-collisions in real-time on a PC

• 1. Bounding Box

• 2. Collision Detection using BSP Trees

- 3. Collision detection for Bounding Box
- 4. If collision detection is detected for bounding boxes
 - → collision detection for primitives
- Many types of BVs have been investigated

Sphere BV

- AABB BV
 - Efficient models
 - Journa
 - G. var

eformable

- Physically–based simulation
 - →computational surgery
 - Dynamic Real-Time Deformations using Space & Time Adaptive Sampling
 - SIGGRAPH 2001
 - Gilles Debunne et al.

- Cloth modeling
 - Robust treatment of collisions, contact and friction for cloth animation
 - SIGGRAPH '02
 - R. Bridson et al.

- In a first pass
 - All vertices of all objects are classified with respect to these small 3D cells
- In a second
 - All tetrahedrons are classified with respect to the same 3D cells
- Intersection test
 - Using barycentric coordinates

- Collisions and self–collisions
 - Collisions
 - If
 - _ A vertex penetrates a tetrahedron
 - Then
 - _ Collision is detected
 - Self-collisions
 - If
 - _ A vertex penetrates a tetrahedron
 - _ The vertex and the tetrahedron belong to the same object
 - Then
 - Self-collisions is detected

- Spatial Hashing of Vertices-1
 - position (x, y, z) → integer (i, j, k): i = |x/l|, j = |y/l|, k = |z/l|
 - Example
 - $P(0.28,0.72) \rightarrow I(1,3)$
 - $i: 0.28/0.2 = 1.4 \rightarrow 1$
 - J: $0.72/0.2 = 3.6 \rightarrow 3$

- Spatial Hashing of Vertices-1
 - The hash function
 - Mapping the discretized 3D position(i, j, k) to a 1D index h
 - The vertex and object information is stored
 - In a hash table at this index h: h = hash(i, j, k)
- In a first pass
 - Spatial Hashing of Vertices
 - Compute the AABBs of all tetrahedrons

- Spatial Hashing of Tetrahedrons-2
 - First,
 - The minimum and maximum values describing the AABB of a tetrahedron, are discretized
 - These values are divided by the user-defined cell size and rounded down to the next integer
 - Second,
 - Hash values are computed for all cells affected by the AABB of a tetrahedron

- Spatial Hashing of Tetrahedrons-2
 - All cells are traversed from the discretized minimum to the discretized maximum of the AABB
 - All vertices found at the according hash table index are tested for intersection

- Intersection Test-1
 - If
 - **p** and *t* are mapped to the same hash index
 - p is not part of t
 p : vertex , t : tetrahedron
 - Then
 - a penetration test has to be performed

- Intersection Test-2(The actual intersection test)
 - First,
 - **p** is checked against the AABB of *t*
 - second
 - Whether **p** is inside *t*
 - = This test computes barycentric coordinates of \mathbf{p} with respect to a vertex of \mathbf{t}

Parameters

- Optimize all these aspects of the algorithm
 - The characteristics of the hash function
 - The size of the hash table
 - The size of a 3D cell for spatial subdivision
 - The actual intersection test influence the performance of the algorithm

Hash Function

- The hash function has to work
 - Vertices of the same object, that are close to each other
 - Vertices of different objects, that are farther away
 - Hash function

$$hash(x,y,z) = (x p1 \text{ xor } y p2 \text{ xor } z p3) \text{ mod } n$$

- where p1, p2, p3 are large prime numbers in our case 73856093, 19349663, 83492791
- _ The value n is the hash table size

- Larger hash tables
 - reduce the risk of mapping different 3D positions to the same hash index
 - The algorithm generally works faster
 - The performance slightly decreases
 - due to memory management
- If (the hash table size > the number of object primitives)
 - the risk of hash collisions is minimal

- Performance of the collision detection algorithm for two deformable vessels
- An overall number of 5898 vertices and 20514 tetrahedrons

- Performance of the collision detection algorithm for 100 deformable objects
- An overall number of 1200 vertices and 1000 tetrahedrons

- NO re-initialization of hash table in each simulation step
 - These would reduce the efficiency
 - To avoid this problem
 - each simulation step is labeled with a unique time stamp
 - be performed during the simulation
 - would be comparatively costly for larger hash tables

Parameters

Grid Cell Size

- The grid cell size
 - : used for spatial hashing
 - Influences the number of object primitives
 - Mapping to the same hash index
- In case of larger cells,
 - → (cell width size << tetrahedron's edge length)
 - The number of primitives per hash index increases
 - The intersection test slows down

Grid Cell Size

- If (cell size << tetrahedron size)
 - → (cell width size << tetrahedron's edge length)
 - The tetrahedron
 - Covers a larger number of cells
 - has to be checked against vertices in a larger number of hash entries

Intersection Test

- Compare two tests for detecting whether a vertex
 p penetrates a tetrahedron t
 - Barycentric coordinates test
 - Half–space test
 - Checks whether a vertex is in the positive or negative half—space of oriented faces of a tetrahedron
 - barycentric-coordinate test
 is faster than the half-space test
 - Using Barycentric coordinates test

P is a vertex of another tetrahedron.

Intersection Test

- Barycentric coordinates test
 - Barycentric coordinates with respect to x0

$$\beta = (\beta_1, \beta_2, \beta_3)^T$$

$$\mathbf{p} = \mathbf{x}_0 + \mathbf{A}\beta$$

$$\mathbf{A} = [\mathbf{x}_1 - \mathbf{x}_0, \mathbf{x}_2 - \mathbf{x}_0, \mathbf{x}_3 - \mathbf{x}_0]$$

$$\mathbf{P} = \mathbf{X}0 + \beta_1 \cdot \mathbf{V}_1 + \beta_2 \cdot \mathbf{V}_2 + \beta_3 \cdot \mathbf{V}_3$$

$$\beta = \mathbf{A}^{-1}(\mathbf{p} - \mathbf{x}_0)$$

Intersection Test

- Barycentric coordinates
 - → Triangle

$$\beta = (\beta_1, \beta_2, \beta_3)^T$$

- Barycentric coordinates
 - → Tetrahedron

• if
$$\beta_1 + \beta_2 + \beta_3 \le 1$$

 $\beta_1 \ge 0, \beta_2 \ge 0, \beta_3 \ge 0$

- then
 - The vertex is inside the tetrahedron

Time Complexity

- Let *n* be the number of primitives
 - Primitives: vertices and tetrahedrons
- Time complexity : $O(n^2)$
- The goal of our approach : O(n)
- During the first pass takes O(n) time
 - All vertices are inserted into the hash table

Time Complexity

- In the second pass takes : $O(n \cdot p \cdot q)$
 - p is the average number of ceils intérsected by a tetrahedron
 - q is the average number of vertices per cell
 - If the cell size is chosen to be proportional to the average tetrahedron size p is a constant
 - If there are no hash collisions q is a constant
 - hash collisions : different primitives mapping same hash index
- Therefore
 - The time complexity of the algorithm turns out to be linearly dependent on the number of primitives

Results

- The performance is independent from the number of objects
 - It only depends on the number of object primitives

setup	objects	tetras	vertices	
A	100	1000	1200	
В	8	4000	1936	
\mathbf{C}	20	10000	4840	
D	2	20514	5898	
E	100	50000	24200	

setup	ave [ms]	min [ms]	max [ms]	dev [ms]
A	4.3	4.1	6.5	0.24
В	12.6	11.3	15.0	0.59
C	30.4	28.9	34.4	1.25
D	70.0	68.5	72.1	0.86
E	172.5	170.5	174.6	1.08

Discussion

- The proposed algorithm
 - Detects whether a vertex penetrates a tetrahedron
- Does NOT detect whether an edge intersects with a tetrahedron
 - The performance of the algorithm would decrease significantly
 - = The relevance of an edge test is unclear in case of densely sampled objects
 - It is hard to do collision response in case of penetrating edges

Discussion

- Tetrahedrons are usually mapped to several hash indices
 - · Leads to a larger number of elements in the hash table
 - decreasing the performance of the algorithm
- The comparison of the performance with other CD
 It is difficult
 - RAPID [9], PQP [18], and SWIFT [7]
 - These are NOT optimized for deformable objects
 - They work with data structures
 - That can be pre-computed for rigid bodies
 - But they have to be updated in case of deformable objects

OngoingWork

- Correct collision response based on our algorithm
 - Our algorithm provides the exact position of a vertex inside a penetrated tetrahedron
 - we can easily derive the penetration depth
- For real-time simulation of deformable objects
 - → can be used in game engines or surgical simulators
 - Completed with the collision response(above mentioned)
 - the framework will handle interacting deformable models of up to several thousand tetrahedrons in real-time

Conclusion

- We have introduced
 - Detecting collisions and self–collisions of dynamically deforming objects
 - Origin: computing the global bounding box of all objects and explicitly performing a spatial subdivision
 - Ours : using a hash function that maps 3D cells to a hash table
 - Actual vertex-in-tetrahedron test
 - Using barycentric coordinates
 - Using this information
 : can be used for physically-based collision response
 - optimized the parameters
 - 20k tetrahedrons can be processed in real-time