

40 ZETTABYTES

[43 TRILLION GIGABYTES]

of data will be created by 2020, an increase of 300 times from 2005

It's estimated that 2.5 QUINTILLION BYTES

[2.3 TRILLION GIGABYTES]

6 BILLION **PEOPLE** have cell phones

Volume SCALE OF DATA

Most companies in the U.S. have at least

100 TERABYTES

100,000 GIGABYTES] of data stored

The New York Stock Exchange captures

WORLD POPULATION: 7 BILLION

1 TB OF TRADE **INFORMATION**

during each trading session

ANALYSIS OF

By 2016, it is projected there will be

18.9 BILLION NETWORK CONNECTIONS

- almost 2.5 connections per person on earth

Modern cars have close to **100 SENSORS**

that monitor items such as fuel level and tire pressure

Velocity

STREAMING DATA

The FOUR V's of Big Data

stored, and analyzed to enable the technology and services that the world relies on every day.

As a leader in the sector, IBM data scientists break big data into four dimensions: Volume, **Velocity, Variety and Veracity**

4.4 MILLION IT JOBS

As of 2011, the global size of data in healthcare was estimated to be

150 EXABYTES

[161 BILLION GIGABYTES]

30 BILLION PIECES OF CONTENT are shared on Facebook

every month

Variety

DIFFERENT **FORMS OF DATA** By 2014, it's anticipated there will be 420 MILLION WEARABLE, WIRELESS **HEALTH MONITORS**

4 BILLION+ **HOURS OF VIDEO**

are watched on YouTube each month

are sent per day by about 200 million monthly active users

1 IN 3 BUSINESS **LEADERS**

don't trust the information they use to make decisions

T ne

\$3.1 TRILLION A YEAR

Poor data quality costs the US

27% OF RESPONDENTS

in one survey were unsure of how much of their data was inaccurate

Veracity

UNCERTAINTY **OF DATA**

economy around

Big Data Landscape 2016

FIRSTMARK

A Internet das Coisas (do inglês, Internet of Things) é uma revolução tecnológica a fim de conectar dispositivos eletrônicos utilizados no dia-a-dia (como aparelhos eletrodomésticos, eletroportáteis, máquinas industriais, meios de transporte etc.) à Internet, cujo desenvolvimento depende da inovação técnica dinâmica em ... www.infowester.com

Internet das coisas – Wikipédia, a enciclopédia livre https://pt.wikipedia.org/wiki/Internet_das_coisas

1999 Apache Software Foundation (ASF) formed as a non-profit 2002 Nutch created by Doug Cutting and Mike Cafarella

Nutch divided and Hadoop is born

2006 Cutting joins Yahoo, takes Nutch with him

2008

Yahoo releases Hadoop as open-source project to ASF

HADOOP timeline

2008

Hadoop-based start-up Cloudera incorporated

2009

Cutting leaves Yahoo for Cloudera

2011

2013 MapR Technologies releases Hadoop distro

> Hadoop distro, Pivotal HD

Greenplum releases

2011

Yahoo spins off Hortonworks as commercial Hadoop distro

ALTA DISPONIBLIDADE

BALANCEAMENTO DE CARGA

PROCESAMENTO PARALELO

1000 Kilobytes = 1 Megabyte 1000 Megabytes = 1 Gigabyte 1000 Gigabytes = 1 Terabyte 1000 Terabytes = 1 Petabyte 1000 Petabytes = 1 Exabyte **1000 Exabytes = 1 Zettabyte** 1000 Zettabytes = 1 Yottabyte 1000 Yottabytes = 1 Brontobyte 1000 Brontobytes = 1 Geobyte

Crescimento Vertical Troca ou aumento de Processador Memória 64 GB Utilização de recursos 100% Aumento de Memória 4 X Pentium I7 Upgrade de HD HD 10 TB

Crescimento Horizontal

Memória 64 GB

Pentium 17

HD 1 TB

CADA MÁQUINA

Crescimento vertical aumenta a escalabilidade e diminui o custo, uma vez que o hardware utilizado é mais barato.

Utilização de recursos Em 100%

PROCESSAMENTO DISTRIBUIDO E PARALELO CLUSTER

Originado pela Google

Modelo de Programação

Utilizado para processar grandes data sets

Altamente escalável

MAP

REDUCE

Fase de Map


```
PERU
"_id": "sand_peru",
" ref": "83722-APA",
"pão": 1,
"presunto": 0,
"salame": 0,
"peru": 3,
"queijo": 1,
"alface": 3,
"tomate":1
```

```
PRESUNTO
"_id": "sand_presunt",
" ref": "83722-API",
"pão": 1,
"presunto": 4,
"salame": 0,
"peru": 0,
"queijo": 1,
"alface": 3,
"tomate":1
```

Fase de Map

Id: "sand_presunt", Key: "pão", Value: 1

Id: "sand_peru", Key: "pão", Value: 1

Id: "sand_italiano", Key: "pão", Value: 1

Id: "sand_presunt",
Key: "alface",
Value: 3

Id: "sand_peru",
Key: "alface",
Value: 3

Id: "sand_italiano",
Key: "alface",
Value: 3

Id: "sand_presunt",
Key: "tomate",
Value: 1

Id: "sand_peru",
Key: "tomate",
Value: 1

Id: "sand_italiano",
Key: "tomate",
Value: 1

Id: "sand_presunt",
Key: "queijo",
Value: 1

Id: "sand_peru", Key: "queijo", Value: 1

Id: "sand_italiano",
Key: "queijo",
Value: 1

Id: "sand_presunt",
Key: "presunto",
Value: 4

Id: "sand_italiano", Key: "presunto", Value: 3

Id: "sand_italiano",
Key: "salame",
Value: 2

Id: "sand_peru",
Key: "peru",
Value: 3

Id: "sand_italiano",
Key: "peru",
Value: 2

Fase de Reduce

Key: "pão",

Value: 3

Key: "alface",

Value: 3

Key: "tomate",

Value: 3

Key: "queijo",

Value: 3

Key: "presunto",

Value: 7

Key: "salame",

Value: 2

Key: "peru",

Value: 5

