

Measuring Cluster Stability for Bayesian Nonparametrics Using the Linear Bootstrap

Ryan Giordano^{1*} Runjing Liu^{1*} Nelle Varoquaux^{1*} Michael I. Jordan¹ Tamara Broderick²

* These authors contributed equally

¹ Department of Statistics, UC Berkeley ² Department of EECS, MIT

Overview

- We employ a **Bayesian nonparametric** model to cluster time-course gene expression data, and do inference using mean field variational Bayes.
- To assess the **clustering stability** of our results, one approach is to do **bootstrap** sampling. However, this is computationally expensive and requires fitting new VB parameters to each simulated data-set.
- Therefore, we propose a fast, automatic approximation to a full bootstrap analysis based on the infinitesimal jackknife [1]. We call this alternative bootstrap analysis the linear bootstrap.

Data

We study data from [4] wherein mice were infected with influenza virus, and gene expressions were measured at 14 time points after infection.

Figure 1: The time-course gene expression data (left) and the B-splines basis (right).

We cluster genes based on their time-course gene expression:

Figure 2: Clusters recovered by our BNP model. Each curve is the measured timecourse expression pattern of one gene.

Model

We show a graphical representation of our model below:

Figure 3: y_q is the expression level for gene g, and each gene has a unique shift b_q . σ^2 is the common variance for all genes about its B-spline fit. Each cluster is defined by its B-spline coefficients β_k , which are drawn from a Dirichlet process mixture model.

Results

A cold start refers to doing 10 random restarts for each bootstrap sample. A warm start refers to starting from a (high quality) optimum found for the full data set.

Speed comparisons:

	Total time (sec) (200 bootstrap samples)	Time per fit (sec)
Initial fit (200 random restarts)	_	16100
Full bootstrap (cold start)	184000	931
Full bootstrap (warm start)	10800	53.4
Hessian inverse (for linear bootstrap)	_	12.7
Linear bootstrap (given Hessian inverse)	0.0284	0.000145

- The linear bootstrap is orders of magnitudes faster.
- The full bootstrap requires re-optimizing, while the linear approximation requires a one time computation and factorization of the KL Hessian [2].
- The KL Hessian can be easily computed with modern auto-differentiation tools [3].

Accuracy comparisions:

We compare distributions of cluster similarity under the full and the linear bootstrap.

Figure 4: We examine the Fowlkes-Mallows index and the normalized mutual information score as a measure of clustering similarity.

Figure 5: Standard deviations of elements of the co-clustering matrix for a randomly selected subset of genes. Pairs with both standard deviations < 0.03 on both axes are not shown.

Figure 6: Distribution of KL divergence relative to the warm start

The linear bootstrap

- Augment the model by adding per-gene weights $W=(w_1,...,w_{n_q}),w_i\geq 0$.
- The likelihood becomes $\sum_{q} w_g \log p \left(y_g | \theta \right)$.
- The optimal variational parameter $\eta^*(W)$ is now a function of W.
- Note letting $W = W_1 := (1, ..., 1)$ we recover the original fit on the whole data set.
- A bootstrap sample draws $W_b \sim Multinomial(n_g, n_g^{-1})$, and evaluates $\eta^*(W_b)$.
- The infinitesimal jackknife approximates this with a first order Taylor expansion:

$$\eta^*(W_b) \approx \eta_{lin}^*(W_b) := \eta^*(W_1) + \frac{d\eta^*}{dW}|_{W_1}(W_b - W_1)$$

- Auto-differentiation and numerical linear algebra software can evaluate $\frac{d\eta^*}{dW}|_{W_1}$.
- For a stability measure ϕ , we approximate the full bootstrap distribution $\phi(\eta^*(W_h))$ using $\phi(\eta_{lin}^*(W_b))$.
- We call $\phi(\eta_{lin}^*(W_b))$ the linear bootstrap. Note that, unlike the infinitesimal jackknife, we do not assume linearity of ϕ .

Conclusion

- The linear bootstrap is a fast and reasonable alternative to the full bootstrap.
- However, the linear bootstrap underestimates the variance of the full bootstrap.
- A main reason for the underestimation is the presence of local optima.

Figure 7: The infinitesimal jackknife. Blue: the surface describing the parameter η as a function of the weights vector W over the n-dimensional resampling simplex Δ^{n-1} . Red: the linear approximation, i.e., the tangent plane at the original weight vector $W_1 = (1, ..., 1)$.

References

- [1] B. Efron. The jackknife, the bootstrap and other resampling plans. SIAM, 1982.
- [2] R. Giordano, T. Broderick, and M. I. Jordan. Covariances, robustness, and variational bayes. arXiv preprint arXiv:1709.02536, 2017.
- [3] D. Maclaurin, D. Duvenaud, and R. P. Adams. Autograd: Effortless gradients in numpy. In *International Conference on* Machine Learning 2015 AutoML Workshop, 2015.
- [4] J. E. Shoemaker, S. Fukuyama, A. J. Eisfeld, D. Zhao, E. Kawakami, S. Sakabe, T. Maemura, T. Gorai, H. Katsura, Y. Muramoto, S. Watanabe, T. Watanabe, K. Fuji, Y. Matsuoka, H. Kitano, and Y. Kawaoka. An Ultrasensitive Mechanism Regulates Influenza Virus-Induced Inflammation. PLoS Pathogens, 11(6):1-25, 2015.

Acknowledgments: Ryan Giordano and Nelle Varoquaux's research was funded in full by the Gordon and Betty Moore Foundation through Grant GBMF3834 and by the Alfred P. Sloan Foundation through Grant 2013-10-27 to the University of California, Berkeley. Runjing Liu's research was funded by the NSF graduate research fellowship. Tamara Broderick's research was supported in part by a Google Faculty Research Award and the Office of Naval Research under contract/grant number N00014-17-1-2072. **Contact:** rgiordano@berkeley.edu, runjing_liu@berkeley.edu, nelle@berkeley.edu