

Online

Machine Learning

Assessment from Unit 11

Agenda

- 1. General introduction to the task and dataset
- 2. Validation set
- 3. Convolution Neural Network
- 4. Architecture of the model
- 5. Model details: activation function
- 6. Model details: loss function
- 7. Strategy of the model's design
- 8. Conclusion and outcomes
- 9. Reflections and lessons learnt
- 10. References
- 11. Appendix 1. Confusion matrix
- 12. Appendix 2. Code listing

General introduction to the task and dataset

General introduction

- The task is to create an artificial neural network recognizing pictures from ten different categories based on the CIFAR-10 dataset.
- CIFAR-10: 60,000 RGB pictures of 32px x 32px in ten given categories.

Explanatory Data Analysis

- The dataset is initially divided into two groups: a training set (50,000 elements) and a test set (10,000 elements).
- The data is structured in four arrays (or two tuples) see Pic.1.
- The dataset is consistent and complete.

	Training					
Picture	50,000 elements of 32x32x3	10,000 elements of 32x32x3				
Label	50,000 elements of 1	10,000 elements of 1				

Pic. 1. Dataset structure.

Validation set

Online

The importance of maintaining a separate validation set

- Independent indicator of an accuracy gaining rate by the model.
- A trigger to finish the training procedure after a number of ineffective training epochs.
- Efficient method of overtraining detecting.

The proportion of training / validation / testing sets

- "To train multilayer perceptrons is more art than science" (M. Kubat, An Introduction to Machine Learning)
- As there is no general rule, the scholars seem to generally agree that the bigger the dataset, the share of a training part should tower above the rest.
- However, the proportion for this task will be 2/3 (66%) training, 1/6 (17%) validation, 1/6 (17%) testing.

	Training	Validation	Testing
Picture	40,000 elements of 32x32x3	10,000 elements of 32x32x3	10,000 elements of 32x32x3
Label	40,000 elements of 1	10,000 elements of 1	10,000 elements of 1

Convolutional Neural Network

- For the task given in the assignment, we will use Convolutional Neural Network—a type of neural network where a multi-layer perceptron is followed by a number of convolutional filters and spatial reduction.
- These layers preprocess the input image for subsequent deep networks: they detect important features, reduce noise and downscale where the amount of provided details is excessive.

Convolution Neural Network (CNN)

Pic. 2. Convolutional Neural Network layers. Author: Pratham Modi (https://medium.com/@prathammodi001/convolutional-neural-networks-for-dummies-a-step-by-step-cnn-tutorial-e68f464d608f)

Architecture of the model

As cited in previous slide, tuning a neural network is more an art than a procedure. In this task I decided
to try a few different architecture structures to examine obtained results.

		Layers	Size	
baseline model		Input layer	32x32x3	
	1	Convolutional 2D no.1	29x29x32	
		MaxPooling2D no.1	14x14x32	
		Convolutional 2D no.2	11x11x32	+ 1st added
	_	MaxPooling2D no.2	5x5x32	modification
baseline model		Flattening	As above	
)	Hidden neural layer	256 neurons	
		Hidden neural layer	256 neurons	+ 2nd added modification
baseline model	{	Output neural layer	10 neurons	modification
	-			

- Accuracy of the model with different architecture and fixed remaining hyperparameters:
 - Baseline model: accuracy 0.607 (6 epochs)
 - Baseline model w/ 1st modification: accuracy 0.659 (9 epochs)
 - Baseline model w/ 2nd modification: accuracy 0.662 (7 epochs)

Model details: activation function

- Activation function is a mathematical processing of amplification or dumping of a sum of weighted neuron's inputs.
- Frequently, artificial neural networks use one of the following activation functions:

Model details: loss function

 The loss function represents a difference between calculated and expected output. It helds an important role both in indicating the accuracy, and also in the backpropagation process.
 Hence, its computational complexity is of extreme importance.

- There are many types of loss functions, e.g.:
 - log₂ loss function,
 - Mean Squared Error
 - Mean Absolute Error

The loss function for models with softmax activation function is:

$$L_i = -\log_2 p_i$$
.

As described earlier, softmax function outcomes are possibilities (here: p_i). Low loss function means that the model is accurate, accordingly.

Strategy of the model's design

Version

Layers	Size	Description	I	П	Ш	IV	V	VI
Input layer	32x32x3	Picture size	32x32x3					
Convolutional 2D no.1	29x29x	Kernel output (29x29) times numer of filters: act. function:	32 32 ReLU sigm		32 ReLU	32 ReLU	64 ReLU	64 ReLU
MaxPooling2D no.1	14x14x	Pooling by 2x2 element	As above					
Convolutional 2D no.2			32 sigm	32 sigm	64 ReLU	128 ReLU	128 ReLU	
MaxPooling2D no.2	5x5x	Pooling by 2x2 element	ment As above					
Flattening	800	Flattening the 3D array into 1D	800 800 800			1600	3200	3200
Hidden neural layer	 neurons	No. of network neurons: act. function:	256 ReLU	256 sigm	256 ReLU	256 ReLU	256 ReLU	512 ReLU
Output neural layer 10 neurons		No. of network neurons: act. function:	10 Softmax					
	Model accuracy:					0.683	0.687	0.683
		Epochs:	5	17	12	7	6	5

Conclusion and outcomes

Given network specification

Layers Size

3126		
32x32x3		
29x29x 64		
14x14x64		
11x11x 128		
5x5x128		
800		
256 neurons		
10 neurons		

Network performance metrics

• Accuracy: **0.687**

Precision: 0.67

Recall: 0.66

• F1-score: 0.66

Confusion matrix – see Appendix 1

Classification for 5 random elements from validation set

Reflections and lessons learnt

Reflections on the learnings acquired throughout the activity

The importance of profound familiarity with field research prior to constructing the model structure

Proficiency in understanding/sensing when to stop searching for a more optimal model is critical

The crucial role of the validation set

The complementary notions of Recall and Precision

References

Bhatt, A. (2024) *Activation Functions, Global Average Pooling, Softmax, Negative Likelihood Loss.*Available at:

https://medium.com/@anilaknb/activation-functions-global-average-pooling-softmax-negative-likelihood-loss-86fb50232459 (Accessed: 20.01.2025).

Brownlee, J. (2019) Loss and Loss Functions for Training Deep Learning Neural Networks. Available at: https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/ (Accessed: 20.01.2025).

Kubat, M. (2015) An introduction to Machine Learning. Miami: Springer International Publishing.

Pant, A. (2019) *Introduction to Machine Learning for Beginners*. Available at: https://towardsdatascience.com/introduction-to-machine-learning-for-beginners-eed6024fdb08 (Accessed: 20.01.2025).

Appendices

Appendix 1. Confusion matrix

775	29	80	6	8	2	6	7	37	50
15	829	19	8	2	3	5	1	15	103
56	13	733	21	49	42	30	28	11	17
25	23	177	392	60	158	63	28	12	62
27	12	202	34	524	40	45	82	13	21
16	13	169	127	29	553	16	39	8	30
6	20	135	37	39	31	686	8	11	27
20	6	112	24	45	62	8	672	3	48
87	58	21	10	7	8	4	7	737	61
31	100	20	9	1	8	4	5	15	807

Appendix 2. Code listing (1/4)

```
import keras
from keras.datasets import cifar10 as cifar10
import pandas as pd
import numpy as np
from collections import Counter
import tensorflow as tf
from keras.models import Sequential
                                         #to define model/ layers
from keras.layers import Dense, Conv2D, MaxPool2D, Flatten
from sklearn.metrics import confusion matrix
from IPython.display import display
from keras.preprocessing.image import array_to_img
from tensorflow.keras.utils import to categorical
import matplotlib.pyplot as plt
(x train, label train), (x test, label test) = cifar10.load data()
print('Shape of a training elements set: '+str(x train.shape))
print('Shape of a training label set: '+str(label train.shape))
print('Shape of a testing elements set: '+str(x_test.shape))
print('Shape of a testing label set: '+str(label test.shape)+'\n\n')
print('Single element dimensions: {} height x {} width x {} colours'.format(x train.shape[1], x train.shape[2], x train.shape[3]))
print('Number of training examples: {}, number of testing examples: {}\n\n'.format(x train.shape[0], x test.shape[0]))
LABEL NAMES = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
```


Appendix 2. Code listing (2/4)

```
ind = np.random.randint(0,50000)
x_train[ind]
pic = array to img(x train[ind])
display(pic)
print(LABEL NAMES[label train[ind][0]])
print(ind)
unique, counts = np.unique(label_train, return_counts=True)
print(np.asarray((unique, counts)).T)
unique, counts = np.unique(label test, return counts=True)
print(np.asarray((unique, counts)).T)
# PREPROCESSING THE DATA
# NORMALIZING THE DATA
x_{train} = x_{train}/255
x test = x test/255
VALIDATION SIZE = 10000
x_valid = x_train[:VALIDATION_SIZE]
label_valid = label_train[:VALIDATION_SIZE]
x train = x train[VALIDATION SIZE:]
label_train = label_train[VALIDATION_SIZE:]
print('Values (validation set): {} Categories (validation set): {} '.format(x valid.shape, label valid.shape))
print('Values (train set): {} Categories (train set): {} '.format(x_train.shape, label_train.shape))
print('Values (test set): {} Categories (test set): {} '.format(x test.shape, label test.shape))
```


Appendix 2. Code listing (3/4)

```
label_valid_cat = to_categorical(label_valid,num_classes=10)
label train cat = to categorical(label train, num classes=10)
label test cat = to categorical(label test,num classes=10)
# BUILDING THE MODEL
model = Sequential()
## ****** FIRST SET OF LAYERS **************
# CONVOLUTIONAL LAYER
model.add(Conv2D(filters=64, kernel size=(4,4),input shape=(32, 32, 3), activation='relu',))
# POOLING LAYER
model.add(MaxPool2D(pool size=(2, 2)))
## ******* SECOND SET OF LAYERS **************
# Since the shape of the data is 32 \times 32 \times 3 = 3072 \dots
# We need to deal with this more complex structure by adding yet another convolutional layer
model.add(Conv2D(filters=128, kernel_size=(4,4),input_shape=(32, 32, 3), activation='relu',))
# POOLING LAYER
model.add(MaxPool2D(pool_size=(2, 2)))
# FLATTEN IMAGES FROM 32 x 32 x 3 =3072 BEFORE FINAL LAYER
model.add(Flatten())
# 256 NEURONS IN DENSE HIDDEN LAYER (YOU CAN CHANGE THIS NUMBER OF NEURONS)
model.add(Dense(256, activation='relu'))
```


Appendix 2. Code listing (4/4)

```
# LAST LAYER IS THE CLASSIFIER, THUS 10 POSSIBLE CLASSES
model.add(Dense(10, activation='softmax'))
model.summary()
model.compile(loss='categorical crossentropy',
       optimizer='adam',
       metrics=['accuracy'])
from tensorflow.keras.callbacks import EarlyStopping
early stop = EarlyStopping(monitor='val loss',patience=2)
history = model.fit(x train,label train cat,epochs=25,validation data=(x valid,label valid cat),callbacks=[early stop])
metrics = pd.DataFrame(model.history.history)
metrics[['accuracy', 'val accuracy']].plot()
plt.title('Training Accuracy Vs Validation Accuracy', fontsize=16)
plt.show()
from sklearn.metrics import classification_report, confusion_matrix
predictions = np.argmax(model.predict(x test), axis=-1)
print(classification_report(label_test,predictions))
rand = np.random.randint(0,len(x valid))
plt.imshow(x valid[rand])
print(np.argmax(model.predict(x valid[rand].reshape(1,32,32,3))))
print('Predicted: '+LABEL_NAMES[np.argmax(model.predict(x_valid[rand].reshape(1,32,32,3)))])
print('Original label: '+LABEL NAMES[label valid[rand][0]])
confusion matrix(label test, predictions)
```