# 统计分析 - 斯特鲁普效应

#### 一、调查背景

STROOP 效应是指字义对命名的干扰效应。一般认为,念字和命名是两个不同的认知过程。Stroop 于 1935 年做了一个实验,他使用的刺激字与书写它所用的颜色相矛盾,结果发现,说字的颜色时会受到字义的干扰。

一般认为,STROOP 效应是由于念字自动化造成的。人们对字加工快,而对颜色加工慢,因此,当要说颜色时,就会受到字义的干扰,而反过来,念字却不会受到字的颜色的干扰。

#### 二、研究方法

斯特鲁普在相同的测试中使用不同的变化以创造不同的刺激:

- 1. 以相同于文字名字所代表的颜色显示的文字。
- 2. 以不同于文字名字所代表的颜色显示的文字。

这两种刺激中,第一种代表"一致的条件"(congruous condition),念出与颜色相同色标的名字。而相反的,在刺激 2 中,颜色的名字与所使用的颜色不一致(例如文字"红色"是以"绿色"油墨印出)

在每个情况中,将计量说出同等大小的列表中的墨色名称的时间。每位参与者必 须全部完成并记录每种条件下使用的时间。

### 三、研究结果

#### 变量

- 1. 自变量是文字含义与文字颜色是否一致
- 2. 因变量是受试者读出所有文字颜色所用的时间

## 假设

零假设是,无论文字的颜色和含义一致或是不一致时,对于受试者没有差别。

对立假设是,文字含义和颜色一致时,受试者的完成测试用的时间比不一致时更短

这里用  $H_0$  表示零假设,用  $H_A$  表示对立假设,用  $\mu_C$  表示文字含义与颜色一致的总体的均值。用  $\mu_C$  表示文字含义与颜色不一致的总体的均值。

 $H_0$ :  $\mu_C = \mu_1$  $H_A$ :  $\mu_C < \mu_1$ 

#### 统计测试类型

由研究方法所知,这是一组受试者参加两次测试所得到的两个样本,也就是所谓的相依样本。由于不知道总体参数 $\sigma$ ,因此采用t检验。在相依样本t检验的测试类型中,有一种叫做重复测量设计,就是在两个处理中使用相同个体组成的同一个样本(一个被试样本,得到两个统计样本,这两个统计样本是相关样本)

这里,将采用负方向的单尾检验。

因为我们的对立假设是文字含义和颜色一致时,受试者的反应时间更短。所以检验必须具有方向行,不使用双尾检验,而使用单尾检验。从我们对立假设  $\mu_{C} < \mu_{I}$  可以得知,检测的方向是负方向。

#### t-test 前提

两个样本的 t-test 前提是:

- 1. 数据是连续的,而非离散的
- 2. 数据遵循正态分布
- 3. 两个总体的方差相等(对于相依样本,自动认为其总体方差相等)
- 4. 两个样本是独立的,对于一个因变量的观察独立与对于其它因变量的观察。
- 5. 两个样本都是从他们对应总体中随机抽取的,总体中的每个个体都有同等的机会被选中。

#### 样本数据

n = 24

| Congruent | Incongruen | x <sub>c</sub> -x <sub>i</sub> |
|-----------|------------|--------------------------------|
|           | t          |                                |
| 12.079    | 19.278     | -7.199                         |
| 16.791    | 18.741     | -1.95                          |
| 9.564     | 21.214     | -11.65                         |
| 8.63      | 15.687     | -7.057                         |
| 14.669    | 22.803     | -8.134                         |
| 12.238    | 20.878     | -8.64                          |
| 14.692    | 24.572     | -9.88                          |
| 8.987     | 17.394     | -8.407                         |

| 20.762 | -11.361                                                                                                                               |
|--------|---------------------------------------------------------------------------------------------------------------------------------------|
| 26.282 | -11.802                                                                                                                               |
| 24.524 | -2.196                                                                                                                                |
| 18.644 | -3.346                                                                                                                                |
| 17.51  | -2.437                                                                                                                                |
| 20.33  | -3.401                                                                                                                                |
| 35.255 | -17.055                                                                                                                               |
| 22.158 | -10.028                                                                                                                               |
| 25.139 | -6.644                                                                                                                                |
| 20.429 | -9.79                                                                                                                                 |
| 17.425 | -6.081                                                                                                                                |
| 34.288 | -21.919                                                                                                                               |
| 23.894 | -10.95                                                                                                                                |
| 17.96  | -3.727                                                                                                                                |
| 22.058 | -2.348                                                                                                                                |
| 21.157 | -5.153                                                                                                                                |
|        | 26.282<br>24.524<br>18.644<br>17.51<br>20.33<br>35.255<br>22.158<br>25.139<br>20.429<br>17.425<br>34.288<br>23.894<br>17.96<br>22.058 |

## 样本数据可视化





从直方图中可以观察到,文字含义和颜色一致时,受试者的用时集中在 12 到 20 之间 文字含义和颜色不一致时,受试者的用时集中在 16 到 26 之间

## 数据集的统计描述

均值

 $\overset{\boldsymbol{-}}{\boldsymbol{X}_c} = \textbf{14.05}$ 

$$\overline{X}_{I} = 22.02$$

前后二者所用的时间均值的差别

$$\bar{X}_{c} - \bar{X}_{I} = -7.97$$

标准偏差

 $S_{\rm C} = 3.56$ 

 $S_I = 4.80$ 

 $S_{\rm D} = 4.86$ 

标准误差

SEM = 0.99

t 统计量

t-statistic = -8.05

t临界值

这里使用 α级别为 0.05 的单尾检验,自由度是 23, t 临界值是-1.714

置信区间

自由度是 23, 95%置信区间的 t 临界值是 2.069, 误差界限是 t-critical \* SEM= 2.069 \* 0.99 = 2.05

置信区间 CI:  $\mathbf{x}_D \pm 2.05 = -7.97 \pm 2.05 = (-10.02, -5.92)$ 

关于均值差异的置信区间: 95% CI = (-10.02, -5.92)

决策

t(23) = -8.05, P < .05, one-tailed

根据t统计量和t临界值,结果有统计上的显著性。

t 统计量落在临界区内, P < .05, 拒绝零假设

实验证明,当文字颜色和文字含义一致时,受试者完成测试使用的时间更短

Cohen's d

d = -1.64

效应量 r2

 $r^2 = 0.74$ 

也就是说74%的差异,是由文字的颜色和含义一致与不一致所造成的。

### 四、参考文献

斯特鲁普效应

When to use a t-score vs z-score

Assumptions for the t-test