

Ziming Wang 1 , Xiaoliang Huo 1 , Zhenghao Chen 2 , Jing Zhang 1 , Lu Sheng , and Dong Xu 3

¹ School of Software, Beihang University

² School of Electrical and Information Engineering, The University of Sydney ³ Department of Computer Science, The University of Hong Kong

TEL AVIV 2022

Introduction

- We introduce a Geometry-Aware Visual Feature Extractor (GAVE) to generate distinctive but comprehensive geometric-visual features for point cloud registration.
- We propose a Local Linear Transformation (LLT) module, which employs the Bilateral Grid and an edgeaware guidance map to generate our content-aware linear coefficient.
- ➤ By collaborate multi-scale LLT modules in GAVE, we observe a significant performance enhancement.

Network Architecture

Local Linear Transformation (LLT)

- > We progressively apply the local linear transformation to learn the visual-geometric features in a multi-scale manner.
- > The slicing operation is performed between a Bilateral Grid and the guidance map.
- > The final local linear transformation can be obtained by first using a point-wise transformation and then using a channel-wise concatenation

Experimental Results

Methods	Train Set Sup		Features	R	Rotation			nslat	ion	Chamfer		
Methods			Visual 3I) 5	10	45	5	10	25	1	5	10
SIFT 27	N/A		✓	55.2	75.7	89.2	17.7	44.5	79.8	38.1	70.6	78.3
SuperPoint 14	N/A		✓	65.5	86.9	96.6	21.2	51.7	88.0	45.7	81.1	88.2
FCGF 10	N/A		✓	70.2	87.7	96.2	27.5	58.3	82.9	52.0	78.0	83.7
BYOC 16	3D Match		✓	66.5	85.2	97.8	30.7	57.6	88.9	54.1	82.8	89.5
DGR 8	3D Match	✓	✓	81.1	89.3	94.8	54.5	76.2	88.7	70.5	85.5	89.0
3D MV Reg 19	3D Match	\checkmark	✓	87.7	93.2	97.0	69.0	83.1	91.8	78.9	89.2	91.8
UR&R 15	3D Match		✓	87.6	93.1	98.3	69.2	84.0	93.8	79.7	91.3	94.0
UR&R (RGB-D) 15	3D Match		✓ ✓	87.6	93.7	98.8	67.5	83.8	94.6	78.6	91.7	94.6
Ours	3D Match		✓ ✓	93.4	96.5	98.8	76.9	90.2	96.7	86.4	95.1	96.8
		-			_							

Ablation Study

Component effectiveness

MS: multi-scale strategy

DC: dilated convolutions in the visual feature extractor

MS DC LLT Rotation Rotation Error					A	Tr ccura		tion Eri	ror	Cham Accuracy							
			5	10	45	Mean	Med.	5	10	25	Mean	Med.	1	5	10	Mean	Med.
			88.4	94.2	98.6	3.8	1.1	67.3	83.8	94.5	8.5	3.0	78.9	91.7	94.6	6.5	0.2
\checkmark			88.5	94.4	98.6	3.8	1.1	68.1	84.5	94.8	8.3	3.0	79.5	92.1	94.9	6.3	0.2
\checkmark	✓		90.4	95.0	98.6	3.6	1.0	70.8	86.5	95.3	8.1	2.8	81.8	93.1	95.4	6.2	0.2
\checkmark	√	√	93.4	96.5	98.8	3.0	0.9	76.9	90.2	96.7	6.4	2.4	86.4	95.1	96.8	5.3	0.1

> Optimized in supervised manner

Methods	Rotatic Accuracy				on Error		Transla Accuracy				Chan Accuracy				
	5	10	45	Mean	Med.	5	10	25	Mean	Med.	1	5	10	Mean	Med.
UR&R (RGB-D)	92.3	95.3	98.2	3.8	0.8	77.6	89.4	95.5	7.8	2.3	86.1	94.0	95.6	6.7	0.1
Ours	96.5	97.8	98.8	2.7	0.8	83.8	93.8	97.6	5.8	2.0	91.2	96.7	97.6	4.8	0.1