# Universidade Federal de São Paulo

Instituto de Ciência e Tecnologia Projetos em Engenharia da Computação

| T               | Γ ↓ ~ _ ~ _ ~ _ ~ _ | TTJ               | /C - C+  |
|-----------------|---------------------|-------------------|----------|
| TomasBridge – 1 | integracao          | Haraware          | /Somware |
| Tomasbilage 1   | inchiação           | i i u i u v u i c | Joitwaic |

# **Table of Contents**

| 1. Introdução                   | 3 |
|---------------------------------|---|
| 2. Arquitetura do Sistema       |   |
| 3. Tecnologias Escolhidas       |   |
| 4. Detalhamento do Sistema      |   |
| 4.1. Servidor socket TCP        |   |
| 4.2. Verificação de programação |   |
| 5. Testes de Integração         |   |
|                                 |   |

# 1. Introdução

O sistema aqui denominado *TomasBridge*, consiste basicamente em um servidor TCP que é responsável pela integração do *hardware* da tomada inteligente *Tomas* com o banco de dados que contém as informações de estado e controle da tomada.

## 2. Arquitetura do Sistema

A arquitetura do sistema *Tomas* consiste basicamente no hardware da tomada com a capacidade de conexão a internet através de redes *WiFi*, um servidor onde roda o *TomasBridge* bem como o website e o banco dados de uso compartilhado pelo aplicativo, site e *TomasBridge*. Na Figura 1 pode-se visualizar como estão interligadas as partes que compõe o sistema.



Figura 1 – Sistema *Tomas* 

# 3. Tecnologias Escolhidas

Os componentes de software do sistema utilizam um servidor na nuvem, no caso é utilizado uma instância EC2 no AWS(Amazon Web Services), que é basicamente um computador linux que atende todas as necessidades do projeto além de fornecer um IP fixo real.

O SGBD(Sistema Gerenciador de Banco de Dados) escolhido foi o MySql que atende aos requisitos do projeto e é gratuito.

As tecnologias escolhidas para o desenvolvimento do *TomasBridge*, foram escolhidas baseadas na experiência da equipe envolvida, a linguagem escolhida foi a linguagem *Java*, que é bem consolidada e fornece grandes facilidades no uso de *Sockets*, bem como comunicação com o SGBD.

### 4. Detalhamento do Sistema

#### 4.1. Servidor socket TCP

O funcionamento do *TomasBridge* consiste basicamente em um rodar um servidor TCP que realiza a escuta de uma porta previamente definida, a porta escolhida para a conexão foi a 8000. Com isso o programa fica esperando requisições de conexão na porta 8000, requisições estas provenientes das tomadas.

Uma vez que a conexão é estabelecida, a tomada envia os dados, que na versão atual podem ser de dois tipos: requisição de status e valor de consumo. Uma vez recebida a mensagem de requisição de status, o *TomasBridge* realiza uma consulta ao banco de dados utilizando o ID da tomada requisitada e verificando seu estado que pode ser ligado ou desligado, uma vez a consulta realizada é enviada a resposta para a tomada, no caso do dado recebido ser o valor de consumo, o *TomasBridge* realiza o cálculo da corrente e salva esse dado no banco de dados. Após o tratamento desses dados ou a mensagem seja invalida ou não seja recebida, o sistema fecha a conexão e volta a aguardar novas conexões.

Um fluxograma do funcionamento dessa parte é mostrado na Figura 2.

TomasBridge - Integração Hardware/Software



Figura 2 – Fluxograma *TomasBridge* 

As mensagens enviadas pela tomada, bem como as respostas retornadas pelo servidor são descritas a seguir:

#### Requisição status

Mensagem: "tomada\nID\n", onde ID indica o número único da tomada

Exemplo: "tomada\n300\n"

#### Resposta status

Mensagem: "ON\n", indica que tomada está ligada

"OFF\n", indica que tomada está desligada

#### Dado de consumo

Mensagem: "idIDconsXX\n", onde ID indica o número único da tomada e XX o valor para o calculo da corrente.

Exemplo: "id300cons9\n"

### 4.2. Verificação de programação

Uma segunda responsabilidade do *TomasBridge*, é a realização da verificação de tomadas que estão programadas para alteração automática de status, para isso foi criada uma *Thread* que realiza a verificação periódica na tabela de programação no banco de dados, o período de verificação foi definido para cada minuto, se existir alteração para determinada tomada, o *TomasBridge* realiza a alteração na tabela de status da tomada. Assim quando a tomada solicitar seu status, este estará automaticamente atualizado.

## 5. Testes de Integração

Inicialmente foram realizados testes utilizando um programa cliente que simulava as requisições das tomadas, após validação do funcionamento, foram realizados testes e ajustes com a tomada real, testes estes que comprovaram o funcionamento do sistema.