Samlefil for alle data til prøveeksamen

Filen 1A.txt

Perioden P er 137.2 millioner år

Filen 1B/Oppgave1B_Figur_A.png

Figure 1: Figur fra filen 1B/Oppgave1B_Figur_A.png

$Filen~1B/Oppgave1B_Figur_B.png$

Figure 2: Figur fra filen 1B/Oppgave1B_Figur_B.png

$Filen~1B/Oppgave1B_Figur_C.png$

Figure 3: Figur fra filen 1B/Oppgave1B_Figur_C.png

$Filen~1B/Oppgave1B_Figur_D.png$

Figure 4: Figur fra filen 1B/Oppgave1B_Figur_D.png

Filen 1B/Oppgave1B_Figur_E.png

Figur E 657.25 657.23 657.20 Bølgelengde (nm) 657.18 657.15 657.13 657.10 657.08 5 10 25 0 15 20 30 35 Periode (år)

Figure 5: Figur fra filen 1B/Oppgave1B_Figur_E.png

Filen 1D.txt

Stjerna A: Tilsynelatende visuell størrelseklasse m
-V = 1.78, tilsynelatende blå størrelseklass $m_B=3.99$

Stjerna B: Tilsynelatende visuell størrelseklasse m
_V = 1.78, tilsynelatende blå størrelseklass $m_B = 2.99$

Stjerna C: Tilsynelatende visuell størrelseklasse m $_{\text{-}}\mathrm{V}=9.82,$ tilsynelatende

blå størrelseklass m_B = 11.03

Stjerna D: Tilsynelatende visuell størrelseklasse m
_V = 9.82, tilsynelatende blå størrelseklass $m_B = 12.03$

Filen 1E.txt

For stjerne 1 sin bane om massesenteret er elliptisiteten e=0.42 og store halvakse a=47.93 AU.

For stjerne 2 sin bane om massesenteret er elliptisiteten e=0.42 og store halvakse a=20.14 AU.

Filen 1F.txt

Ved bølgelengden 522.68 nm finner du størst fluks

$Filen~1G/Oppgave1G_Figur_A.png$

Figure 6: Figur fra filen 1G/Oppgave1G_Figur_A.png

$Filen~1G/Oppgave1G_Figur_B.png$

Figure 7: Figur fra filen 1G/Oppgave1G_Figur_B.png

$Filen \ 1G/Oppgave1G_Figur_C.png$

Figure 8: Figur fra filen 1G/Oppgave1G_Figur_C.png

$Filen~1G/Oppgave1G_Figur_D.png$

Figure 9: Figur fra filen 1G/Oppgave1G_Figur_D.png

Filen 1G/Oppgave1G_Figur_E.png

Figur E 7.00 Tilsynelatende størrelsklasse m_V 6.80 6.60 6.40 6.20 0.0 2.5 5.0 7.5 12.5 15.0 17.5 10.0 Observasjonstid (dager)

Figure 10: Figur fra filen 1G/Oppgave1G_Figur_E.png

Filen 1I.txt

Gass-sky A har masse på 10.40 solmasser, temperatur på 60.60 Kelvin og tetthet 8.63e-21 kg per kubikkmeter

Gass-sky B har masse på 10.60 solmasser, temperatur på 41.70 Kelvin og tetthet 6.02e-21 kg per kubikkmeter

Gass-sky C har masse på 22.60 solmasser, temperatur på 88.60 Kelvin og

tetthet 2.51e-21 kg per kubikkmeter

Gass-sky D har masse på 25.00 solmasser, temperatur på 15.20 Kelvin og tetthet 8.36e-21 kg per kubikkmeter

Gass-sky E har masse på 19.80 solmasser, temperatur på 39.60 Kelvin og tetthet 3.97e-21 kg per kubikkmeter

Filen 1J.txt

STJERNE A) stjernas energi kommer hovedsaklig fra heliumfusjon i skall

STJERNE B) stjernas energi kommer hovedsaklig fra hydrogenfusjon i sentrum

STJERNE C) stjernas energi kommer hovedsaklig fra fusjon av magnesium i sentrum

STJERNE D) stjernas energi kommer fra Planck-stråling alene

STJERNE E) stjerna har en degenerert heliumkjerne

Filen 1L.txt

Stjerne A har spektralklasse A1 og visuell tilsynelatende størrelseklasse m_V = 10.07

Stjerne B har spektralklasse F5 og visuell tilsynelatende størrelseklasse m_V = 9.36

Stjerne C har spektralklasse K4 og visuell tilsynelatende størrelseklasse m_V = 2.03

Stjerne D har spektralklasse A4 og visuell tilsynelatende størrelseklasse m_V

= 4.91

Stjerne E har spektralklasse B6 og visuell tilsynelatende størrelseklasse m_V = 9.22

Filen 1P.txt

Halvparten av partiklene har hastighetskomponent kun langs synsretningen som er enten 100 m/s mot deg eller fra deg (like mange i hver retning) og tilsvarende for den andre halvparten av partiklene men disse har 50 m/s mot deg eller fra deg

$Filen~2A/Oppgave 2A_Figur 1.png$

1 -

i

ź

3

Figur 1

10

9

8

7

4

3

2

5

x-posisjon (buesekunder)

9

10

Figure 11: Figur fra filen 2A/Oppgave2A_Figur1.png

$Filen~2A/Oppgave 2A_Figur 2.png$

Figur 2 10 9

Figure 12: Figur fra filen 2A/Oppgave2A_Figur2.png

$Filen\ 2B/Oppgave 2B_Figur\ 4.png$

Figure 13: Figur fra filen 2B/Oppgave2B_Figur 4.png

4.png

Filen 2B/Oppgave2B_Figur3.png

Figur 3 10 9 8 y-posisjon (buesekunder) 7 6 5 3 2 1 i ż 5 ġ ż 10 x-posisjon (buesekunder)

Figure 14: Figur fra filen 2B/Oppgave2B_Figur3.png

Filen 2C.txt

Avstand til solen er 1.060000000000000532907 AU.

Tangensiell hastighet er 37048.758286426251288503 m/s.

Filen 2D.txt

Kometens avstand fra jorda i punkt 1 er r1=2.624 AU.

Kometens avstand fra jorda i punkt 2 er r2=5.245 AU.

Kometens tilsynelatende størrelseklasse i punkt 1 er m1=17.090.

Filen 3A.txt

Romskipets hastighet langs x-aksen er 0.9400 ganger lyshastigheten.

Tiden mellom utsendelse av strålene er 0.00047 sekunder målt i bakkesystemet.

Filen 3B.txt

Avstanden mellom de to romskipene ved første utsendelse er D=940.0 km.

Romskip2 sin hastighet langs x-aksen er 0.9932 ganger lyshastigheten.

Filen 3E.txt

Bølgelengden målt i romskipet som sender ut er 763.50 nm.

Filen 4A.txt

Stjernas masse er 1.30 solmasser.

Stjernas radius er 0.44 solradier.

Filen 4C.png

Figur 4C 2.4000 2.2000 2.0000 Sannsynlighetstetthet i 10⁻⁴ % 1.8000 1.6000 1.4000 1.2000 1.0000 0.8000 0.6000 0.4000 0.2000 0.0000 -200 200 -600 -400 400 600 Hastighet i x-retning (km/s)

Figure 15: Figur fra filen 4C.png

Filen 4D.txt

Kun hvis du ikke fikk til forrige oppgave, skal du bruke denne temperaturen her: 26.76 millioner K

Filen 4G.txt

Massen til det sorte hullet er 2.94 solmasser.

r-koordinaten til det innerste romskipet er r $=8.77~\mathrm{km}.$

r-koordinaten til det innerste romskipet er r $=15.42~\mathrm{km}.$