

Edexcel A Level Maths: Pure

11.1 Vectors in 2 Dimensions

Contents

- * 11.1.1 Basic Vectors
- * 11.1.2 Magnitude & Direction
- * 11.1.3 Vector Addition
- * 11.1.4 Position Vectors
- * 11.1.5 Problem Solving using Vectors

11.1.1 Basic Vectors

Your notes

Basic Vectors

What is a vector?

- Vectors represent a movement of a certain **magnitude** (size) in a given **direction**
- You should have already come across **vectors** when translating functions of graphs
- They appear in many contexts of maths including **mechanics** for modelling forces
- Vectors can be represented in different ways such as a **column vector** or as an **i and j unit vector**

Your notes

Page 3 of 32

Examiner Tip

- Think of vectors like a journey from one place to another.
- Diagrams can help, if there isn't one, draw one.
- In your exam you can't write in **bold** so should <u>underline</u> your vector notation.

Worked example

a) From the diagram below, write the column vector for \overrightarrow{AB} .

b) Write the column vector $\begin{pmatrix} -2 \\ 5 \end{pmatrix}$ using the unit vectors i and j.

b)
$$\binom{-2}{5} = -2i + 5j$$
 THE VECTOR USING i AND j

IN YOUR EXAM YOU WOULD WRITE $-2\underline{i} + 5\underline{j}$

Copyright © Save My Exams. All Rights Reserved

11.1.2 Magnitude & Direction

Your notes

Magnitude & Direction

What is the magnitude of a vector?

- The magnitude of a vector is simply its size
- It also tells us the distance between two points
- You can find the magnitude of a vector using Pythagoras' theorem
- The magnitude of a vector \mathbf{a} is written $|\mathbf{a}|$ when typed (or $|\mathbf{a}|$ when handwritten)

Copyright © Save My Exams. All Rights Reserved

- To work out the **unit vector** in the direction of a given vector
- A unit vector has a magnitude of 1
 So to find the unit vector of a given vector, divide by its magnitude

Head to www.savemyexams.com for more awesome resources

UNIT VECTOR IN THE DIRECTION OF a

e.g.
$$\frac{(3i-6j)}{3\sqrt{5}} = \frac{\sqrt{5}}{5}i - \frac{2\sqrt{5}}{5}j$$

THE ANSWER IS THE UNIT VECTOR IN THE DIRECTION $\begin{pmatrix} 3 \\ -6 \end{pmatrix}$ FROM THE EXAMPLE ABOVE

Copyright © Save My Exams. All Rights Reserve

What is the direction of a vector?

- Vectors have opposite direction if they are the same size but opposite signs
 - e.g. if \mathbf{a} or $\overrightarrow{BC} = \begin{pmatrix} -3 \\ 8 \end{pmatrix}$ then $-\mathbf{a}$ or $\overrightarrow{CB} = \begin{pmatrix} 3 \\ -8 \end{pmatrix}$
- The direction of a vector is what makes it more than just a scalar
 - Eg. two objects with velocities of 7 m/s and -7 m/s are travelling at the **same speed** but in **opposite** directions
- Two vectors are **parallel** if and only if one is a **scalar multiple** of the other
- For real-life contexts such as mechanics, direction can be calculated from a given vector using trigonometry (see Right-Angled Triangles)
- It is usually calculated **anticlockwise** from the **positive x-axis** (unless otherwise stated eg. a bearing)

How do I write a vector in component form?

- We have already seen that vectors can be written in different forms
- Component form means writing a vector in terms of i and j components
- Given the **magnitude** and **direction** of a vector you can work out its components and vice versa

Copyright © Save My Exams. All Rights Reserved

Copyright © Save My Exams. All Rights Reserved

 $Head to \underline{www.savemyexams.com} for more awe some resources$

Examiner Tip

- Diagrams can help, especially when working out direction if there isn't a diagram, draw one.
- Remember, resolving a vector just means writing it in component form.

✓ Worked example	

A vector
$$\overrightarrow{XY} = \begin{pmatrix} -9 \\ 6 \end{pmatrix}$$
.

- a) Find $|\overrightarrow{XY}|$, giving your answer to 3 significant figures.
- b) Write the exact value of the unit vector in the direction of XY, giving your answer in simplified surd form.

Page 12 of 32

Head to www.savemyexams.com for more awesome resources

11.1.3 Vector Addition

Your notes

Vector Addition

Vector addition

- Adding vectors together lets us describes the movement between two points
- The **single** vector this creates is called the **resultant** vector
- Subtracting a vector is the same as adding the negative vector
- Adding the vectors PQ and QP gives the zero vector, denoted by a bold zero 0

• You can add and subtract vectors in any of the forms previously described:

Head to www.savemyexams.com for more awesome resources

Scalars and parallel vectors

- Multiplying by a positive **scalar** only changes the **size** of a vector, not its **direction**
- Two vectors are **parallel** if and only if one is a **scalar multiple** of the other

Head to www.savemyexams.com for more awesome resources

LABEL PARALLEL SIDES ON DIAGRAMS, TO MAKE NEW VECTORS FASIER TO SPOT

Page 16 of 32

Converight © Savo My Evams All Rights Reserved

Examiner Tip

- Think of vectors like a journey from one place to another you may have to take a detour eg. A to B might be A to O then O to B.
- Diagrams can help, so if there isn't one, draw one. If there are any, labelling parallel vectors will help.

Worked example	

Your notes

ABCD is a parallelogram with $\overrightarrow{AB} = \mathbf{r}$ and $\overrightarrow{AC} = \mathbf{s}$.

Point X lies on \overrightarrow{AC} such that AX : XC = 1 : 2 and

point Y lies on \overrightarrow{CB} such that CY : YB = 1 : 2

Show that \overrightarrow{XY} is parallel to \overrightarrow{AD} .

DRAW A DIAGRAM TO HELP, LABEL ALL PARALLEL SIDES

$$\overrightarrow{AD} = \mathbf{s} + \mathbf{r}$$

$$\overrightarrow{CB} = \mathbf{r} - \mathbf{s}$$

$$\overrightarrow{XY} = \frac{2}{3}(\mathbf{s}) + \frac{1}{3}(\mathbf{r} - \mathbf{s}) \overset{\text{def}}{=} \mathbf{s}$$

$$\overrightarrow{XY} = \frac{2}{3}(\overrightarrow{AC}) + \frac{1}{3}(\overrightarrow{CB})$$
"THINK ABOUT THE SEPARATE PARTS OF THE "JOURNEY"

$$\overrightarrow{XY} = \frac{2}{3}\mathbf{s} + \frac{1}{3}\mathbf{r} - \frac{1}{3}\mathbf{s} = \frac{1}{3}\mathbf{r} + \frac{1}{3}\mathbf{s} = \frac{1}{3}(\mathbf{r} + \mathbf{s})$$

$$\overrightarrow{XY} = \frac{1}{3}(\overrightarrow{AD})$$

THEY ARE SCALAR MULTIPLES SO MUST BE PARALLEL

Copyright © Save My Exams. All Rights Reserve

11.1.4 Position Vectors

Your notes

Position Vectors

What is a position vector?

- Position vectors describe the **position of a point** in relation to the origin
- They are different to displacement vectors which describe the direction and distance between any two points

Copyright © Save My Exams. All Rights Reserve

Distance between two points

 The distance between two points is the magnitude of the vector between them (see Magnitude Direction)

Copyright © Save My Exams. All Rights Reserved

How do I find the magnitude of a displacement vector?

- You can use coordinate geometry to find magnitudes of displacement vectors from A to B
 - From the **position vectors** of A and B you know their coordinates

• If
$$\mathbf{a} = \overrightarrow{OA} = x_1 \mathbf{i} + y_1 \mathbf{j} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$
, then point A has coordinates (x_1, y_1)
• If $\mathbf{b} = \overrightarrow{OB} = x_2 \mathbf{i} + y_2 \mathbf{j} = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$, then point B has coordinates (x_2, y_2)

If
$$\mathbf{b} = \overrightarrow{OB} = x_2 \mathbf{i} + y_2 \mathbf{j} = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$$
, then point B has coordinates (x_2, y_2)

The **distance** between two points is given by
$$d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$
 so $|\overrightarrow{AB}|=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$

so
$$|\overrightarrow{AB}| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

• For example, if points A and B have position vectors $5\mathbf{i} + 3\mathbf{j}$ and $3\mathbf{i} - 6\mathbf{j}$ respectively

Head to www.savemyexams.com for more awesome resources

• then
$$|\overrightarrow{AB}| = \sqrt{(5-3)^2 + (3-(-6))^2} = \sqrt{85} = 9.22 \text{ (3 s.f.)}$$

- Alternatively, you could find $|\overrightarrow{AB}|$ by
 - first using $\overrightarrow{AB} = -\overrightarrow{OA} + \overrightarrow{OB}$ to find \overrightarrow{AB} in **vector form**
 - and then calculating its **magnitude** directly
 - See the Worked Example below

Examiner Tip

- Remember if asked for a position vector, you must find the vector all the way from the origin.
- Diagrams can help, if there isn't one, draw one.

Worked example

The points X and Y have position vectors 3i + 5j and 6i - 4j respectively.

Point P is on the line XY such that XP : PY = 1 : 2.

Determine the position vector of P.

Page 23 of 32

Head to www.savemyexams.com for more awesome resources

11.1.5 Problem Solving using Vectors

Your notes

Problem Solving using Vectors

Problem-solving with vectors

- Vectors can be used to prove two lines are **parallel** (see Vector Addition)
- They can also be used to show points are **collinear** (lie on the same straight line)
- Vectors can be used to find missing vertices of a given shape
- You will need a good understanding of how to divide a line segment into a given ratio

VECTORS ARE PARALLEL IF ONE IS A SCALAR **MULTIPLE** OF THE OTHER

 \overrightarrow{AB} IS PARALLEL TO \overrightarrow{CD} $\overrightarrow{AB} = \mathbf{s} \overrightarrow{CD} = \overrightarrow{CA} + \overrightarrow{AB} + \overrightarrow{BD}$ $= \mathbf{s} - \mathbf{t} + \mathbf{s} + \mathbf{t}$ $= 2\mathbf{s}$ $2\mathbf{s} \text{ IS A MULTIPLE OF } \mathbf{s}$ $\overrightarrow{CD} = 2\overrightarrow{AB}$

FIND SIMPLIFIED VECTOR
FOR BOTH AB AND CD
TO PROVE THEY ARE
PARALLEL

THREE POINTS P,Q,R ARE COLLINEAR IF PQ AND PR ARE PARALLEL

A, X AND D ARE COLLINEAR $\overrightarrow{AX} = \overrightarrow{AC} + \overrightarrow{CX}$ $= \mathbf{t} - \mathbf{s} + \frac{4}{5}(2\mathbf{s} - \frac{1}{2}\mathbf{t})$ $= \frac{3}{5}\mathbf{s} + \frac{3}{5}\mathbf{t}$ $\overrightarrow{AD} = \mathbf{s} + \mathbf{t}$ $\overrightarrow{AX} = \frac{3}{5}\overrightarrow{AD} \text{ SO } \overrightarrow{AX} \text{ IS PARALLEL}$ TO \overrightarrow{AD}

FIND SIMPLIFIED VECTOR
FOR BOTH AX AND AD TO
PROVE THEY ARE PARALLEL
THEREFORE COLLINEAR

ABCD IS A QUADRILATERAL $\overrightarrow{AB} = \mathbf{s}, \overrightarrow{BD} = \mathbf{t}$ AND $\overrightarrow{CA} = \mathbf{s} - \mathbf{t}$ M IS THE MIDPOINT OF BD

X IS A POINT ON CM SUCH THAT CX:XM = 4:1

THE POINT E FORMS A PARALLELOGRAM CXDE

PARALLEL SIDES OF A PARALLELOGRAM HAVE THE SAME VECTOR

 \rightarrow \rightarrow \rightarrow

Your notes

Head to www.savemyexams.com for more awesome resources

Copyright © Save My Exams. All Rights Reserve

Using trig in vector problems

- When problem-solving with vectors, trigonometry can help us:
 - convert between **component form** and magnitude/direction form (see Magnitude Direction)
 - find the angle between two vectors using Cosine Rule (see Non-Right-Angled Triangles)
 - find the **area of a triangle** using a variation of **Area Formula** (see Non-Right-Angled Triangles)

Page 28 of 32

Copyright © Save My Exams, All Rights Reserved

Examiner Tip

- Think of vectors like a journey from one place to another you may have to take a detour eg. A to B might be A to O then O to B.
- Diagrams can help, if there isn't one, draw one. For a given diagram labelling all known vectors and quantities will help.

Worked example	

The vectors \overrightarrow{AB} and \overrightarrow{AC} are 2i – 3j and 5i + j respectively. Find the area of triangle ABC.

Give your answer to 3 significant figures.

$$|\overrightarrow{AB}| = \sqrt{2^2 + 3^2} = \sqrt{13}$$

$$|\overrightarrow{AC}| = \sqrt{5^2 + 1^2} = \sqrt{26}$$

$$\overrightarrow{IBCI} = \sqrt{3^2 + 4^2} = \sqrt{25} = 5$$

STEP 3: FIND **MAGNITUDE** OF EACH SIDE-LEAVE ANSWERS IN **SURD FORM**

$$\cos\theta = \frac{b^2 + c^2 - a^2}{2bc}$$
STEP 4: USE COSINE RULE
TO FIND θ BE CAREFUL TO
LABEL TRIANGLE CORRECTLY
WITH a OPPOSITE θ

Page 31 of 32

