

#### **Problem Statement**

Given 10 pre-selected bars around campus, we want to create a mixed linear program to find the optimal bar hopping schedule and minimize the cost for a student visiting bars on a Friday night on the OSU Columbus campus.





















# **Process Overview**

- 1. Shortlist the popular bars on campus
- 2. Generate a table of the prices of drinks, review ratings, time spent at each bar, and the distance between bar i and bar j
  - a. Find the average price per drink for each bar
- Set a reasonable college friendly budget for each bar
- 4. Use I/O to read the data as constraints
- 5. Find the bars to visit which minimize the average price per drink
- 6. Find the optimal route to take for the best walking path

# **Assumptions and Simplifications**

- Little to no wait time outside the bar
- Going out on Friday night only after 10pm.
- Average of 3 of the most popular drinks are considered for the average cost of going to a bar.
- Distance is calculated in miles and cost is calculated in dollars.
- The 10 most popular bars around campus are considered.



### Data

| Serial no. | Name              | Price - bud light | Price - tequila shot | Price - vodka soda | Avg Price | Rating | Hours (Friday) | How much time do people spend?(mins) |
|------------|-------------------|-------------------|----------------------|--------------------|-----------|--------|----------------|--------------------------------------|
| 1          | Threes Above High | \$2               | \$3                  | \$6                | \$3.67    | 4.4    | 7PM - 2AM      | 23                                   |
| 2          | Little Bar        | \$2               | \$5                  | \$7                | \$4.67    | 4.2    | 4PM - 2AM      | 20                                   |
| 3          | Library Bar       | \$3               | \$3                  | \$3                | \$3       | 4.3    | 1PM - 2AM      | 25                                   |
| 4          | Horseshoe         | \$3               | \$5                  | \$6                | \$4.67    | 4      | 6PM - 2:30AM   | 50                                   |
| 5          | Bullwinkles       | \$5               | \$3                  | \$6                | \$4.67    | 3.1    | 9PM - 2:15AM   | 35                                   |
| 6          | Midway            | \$3               | \$6                  | \$7                | \$5.33    | 3.5    | 2PM - 2AM      | 60                                   |
| 7          | Ethyl and Tank    | \$5               | \$8                  | \$9                | \$7.33    | 4.2    | 12PM - 2AM     | 57                                   |
| 8          | Skybar (BigBar)   | \$5               | \$8                  | \$8                | \$7       | 2.9    | 8PM - 2AM      | 45                                   |
| 9          | Leo's             | \$2               | \$4                  | \$7                | \$4.33    | 4.5    | 5PM - 2AM      | 30                                   |
| 10         | Village idiot     | \$3               | \$4                  | \$8                | \$5       | 4.5    | 5PM - 2:30AM   | 35                                   |

How to read - "Usually at bar 1, people on average spend \$3.67 per drink. They spend around 20 mins there. The bar is open from 7pm - 2am on Fridays with a rating of 4.4 out of 5 stars."

# Data: distance matrix

|    | 1     | 2     | 3      | 4      | 5     | 6      | 7     | 8      | 9   | 10  |
|----|-------|-------|--------|--------|-------|--------|-------|--------|-----|-----|
| 1  | 0     | 0.041 | 0.04   | 0.053  | 0.6   | 0.7    | 0.7   | 0.8    | 0.9 | 1.1 |
| 2  | 0.041 | 0     | 0.045  | 0.059  | 0.6   | 0.7    | 0.7   | 0.7    | 8.0 | 1.1 |
| 3  | 0.04  | 0.045 | 0      | 0.0136 | 0.6   | 0.6    | 0.6   | 0.6    | 8.0 | 1   |
| 4  | 0.053 | 0.059 | 0.0136 | 0      | 0.6   | 0.6    | 0.6   | 0.6    | 8.0 | 1   |
| 5  | 0.6   | 0.6   | 0.6    | 0.6    | 0     | 0.059  | 0.07  | 0.07   | 0.2 | 0.5 |
| 6  | 0.7   | 0.7   | 0.6    | 0.6    | 0.059 | 0      | 0.014 | 0.0185 | 0.1 | 0.4 |
| 7  | 0.7   | 0.7   | 0.6    | 0.6    | 0.07  | 0.014  | 0     | 0.06   | 0.2 | 0.5 |
| 8  | 8.0   | 0.7   | 0.6    | 0.6    | 0.07  | 0.0185 | 0.06  | 0      | 0.1 | 0.4 |
| 9  | 0.9   | 8.0   | 0.8    | 8.0    | 0.2   | 0.1    | 0.2   | 0.1    | 0   | 0.3 |
| 10 | 1.1   | 1.1   | 1      | 1      | 0.5   | 0.4    | 0.5   | 0.4    | 0.3 | 0   |

Example: "Distance between bar 1 and bar 2 is 0.041 miles"

# **Results**

Visit bars 1, 3, 6, 7, and 9. Purchase 2 drinks at bar 1, 3 drinks at bar 3, and 2 drinks at bar 9.

The minimum total cost is approximately \$25.



# **Results**

The optimal route to minimise the walking distance based on the bars chosen in the first part of the problem looks like this:

3's -> The Library Bar -> Midway -> Leo's on the alley -> Ethyl and tank -> 3's

The minimum distance is 1.64 miles



# HAVE FU BUT PLEAS DRIN