Enabling High-Rate Backscatter Sensing at Scale

Mingqi Xie, Meng Jin, Fengyuan Zhu, Yuzhe Zhang, Xiaohua Tian, Xinbing Wang, Chenghu Zhou

Shanghai Jiao Tong University

Today's wireless sensing...

Challenge: Performing <u>high-rate</u> sampling of the targets <u>at scale</u>

However...

However...

Number of items

Can we build a sensor that can be tracked seamlessly at scale?

Can we build a sensor that can be tracked seamlessly at scale?

μTag

Concurrency: 150

Sampling Rate: 12KHz

Can we build a sensor that can be tracked seamlessly at scale?

V.S.

RFID

μTag

Concurrency: 150

Sampling Rate: 12KHz

150X↑

240X[↑]

Concurrency: 1

Sampling Rate: 50 Hz

Core of µTag: RF "gene editing" technology

OOK backscatter V.S. RF "gene editing"

OOK backscatter:

1001 0110 1010 -> Miller decoder -> ID: 101

Flip the state for more than **N** times to transmit a N-bit ID

RF "gene editing":

 $\{P_i, W_i\} \rightarrow ID: 1010011...$

Flip the state for three times to transmit its ID, no matter how long the ID is

Gain in concurrency

OOK backscatter RF "gene editing" One tag Long stable time **Two tags 100 tags Edges from different** tags are separated

Gain in per-tag sampling rate

OOK backscatter:

Treat one **RFID packet** as one sample of the tag's **motion state**

Gain in power and cost

- The pattern of a square signal that characterize a tag can be controlled using ultra-low power (sub- μW -level) low cost analog circuits
- The high concurrency property allows **no-protocol design**, with no decoding, no MAC, no packet buffers, and no high-speed RF oscillators

Identification and sensing

Receiver signal Backscatter signal ID: 1010011... ID: 1001101... ID: 1100100...

Identification and sensing

Receiver signal Backscatter signal ID: 1010011... ID: 1001101... ID: 1100100...

Identification and sensing

Frequency domain processing

Frequency domain processing

Frequency domain processing

More details can be found in our paper

Evaluation

Implementation

Reader: USRP N210 SDR with commercial antennas

(433MHz/915MHz/2.4GHz)

Tag side: Including rigid tag and flexible tag.

Power Consumption: 38-107μW (PCB measured); 0.13-0.52μW (IC simulation)

μTag hardware design

μTag PCB prototype

Experimental setup

Open Space

Multipath Rich

Identification accuracy

Achieving 99th percentile error of 0

Large-scale and high-speed sampling

μTag can support concurrent tracking of <u>150 targets</u> with a <u>12kHz per-tag sampling rate</u>

Sensing performance

μTag can accurately sense large-scale moving targets

Conclusion

- A novel RF gene editing technique that enables KHz-level sampling of hundreds of tags in parallel.
- A full system μ Tag, which involves a set of well-rounded techniques, from hardware design, modulation method, to decoding algorithm
- We present a prototype of μ Tag, which shows that all of the above can be achieved on ultra-low-power devices.

Thanks Q&A