(1)

Q Search

7

Getting started

Data structures

Image

Subject

Dataset

Patch-based pipelines

Transforms

Medical image datasets

Additional interfaces

Examples gallery

GitHub repository ♂

Paper ♂

Subject

The <u>Subject</u> is a data structure used to store images associated with a subject and any other metadata necessary for processing.

All transforms applied to a Subject are saved in its history attribute (see Reproducibility).

Class to store information about the images corresponding to a subject.

DADAMETEDS

- *args If provided, a dictionary of items.
- **kwargs Items that will be added to the subject sample.

EXAMPLE

```
add_image(image: torchio.data.image.Image, image_name: str) → None [source]
Add an image.
```

apply_inverse_transform(**kwargs) - torchio.data.subject.Subject
Try to apply the inverse of all applied transforms, in reverse order.

PARAMETERS

**kwargs - Keyword arguments passed on to get_inverse_transform().

```
check_consistent_attribute(attribute: str, relative_tolerance: float = 1e-06,
    absolute_tolerance: float = 1e-06, message: Optional[str] = None) -- None
    Check for consistency of an attribute across all images.
[Source
```

PARAMETERS

- attribute Name of the image attribute to check
- relative tolerance Relative tolerance for numpy.allclose()
- absolute_tolerance Absolute tolerance for numpy.allclose()

EXAMPLE

```
>>> import numpy as np
>>> import torch
>>> import torch as tio
>>> scalars = torch.randn(1, 512, 512, 100)
>>> mask = torch.tensor(scalars > 0).type(torch.int16)
>>> af1 = np.eye([0.8, 0.8, 2.5000000000001, 1])
>>> af2 = np.eye([0.8, 0.8, 2.499999999999, 1]) # small difference here (e.g. due)
>>> subject = tio.Scalar/Image(tensor=scalars, affine=af1),
... mask = tio.LabelMap(tensor=mask, affine=af2)
... )
>>> subject.check_consistent_attribute('spacing') # no error as tolerances are > 0
```

Note

To check that all values for a specific attribute are close between all images in the subject, numpy.allclose() is used. This function returns True if $|a_i - b_i| \leq t_{abs} + t_{rel} * |b_i|$, where a_i and b_i are the i-th element of the same attribute of two images being compared, t_{abs} is the $\texttt{absolute_tolerance}$ and t_{rel} is the $\texttt{relative_tolerance}$.

Get a reversed list of the inverses of the applied transforms.

PARAMETERS

- warn Issue a warning if some transforms are not invertible.
- $\bullet \ \ \textbf{ignore_intensity} \textbf{If} \ \ \textbf{True} \ , \ \textbf{all instances of} \ \ \textbf{IntensityTransform} \ \ \textbf{will be ignored}.$
- image_interpolation Modify interpolation for scalar images inside transforms that perform resampling.

```
load() - None [source Load images in subject on RAM.
```

```
plot(**kwargs) - None [source]
```

Plot images using matplotlib.

property shape

Remove an image.

Return shape of first image in subject.

Consistency of shapes across images in the subject is checked first.

Example:

```
>>> import torchio as tio
>>> colin = tio.datasets.Colin27()
>>> colin.shape
(1, 181, 217, 181)
```

property spacing

Return spacing of first image in subject.

Consistency of spacings across images in the subject is checked first.

Example

```
>>> import torchio as tio
>>> colin = tio.datasets.Slicer()
>>> colin.shape
(1.0, 1.0, 1.2999954223632812)
```

property spatial_shape

Return spatial shape of first image in subject.

Consistency of spatial shapes across images in the subject is checked first.

Example:

```
>>> import torchio as tio
>>> colin = tio.datasets.Colin27()
>>> colin.shape
(181, 217, 181)
```

< Previous Image

Next >

Copyright © 2022, Fernando Pérez-García | Created using Sphinx and @pradyunsg's Furo theme. | Show Source

y: latest •