AUTOMATES & ANALYSE LEXICALE (AAL3)

TD5 : Algorithmes de Glushkov et de Thompson - Lemme de l'étoile

Exercice 1 : De l'expression rationnelle à l'automate

1. Utiliser l'algorithme de Glushkov pour trouver des automates reconnaissant les langages décrits par les expressions rationnelles suivantes.

 $- E_1 = (a + ba + bba)^*,$

 $- E_2 = (a + ba + bba)^* (\epsilon + b + bb),$

 $-E_3 = (aa+b)^*,$

 $-E_4 = (aa+b)^*(a+bb)^*,$

 $-E_5 = (aa + bb + (ab + ba)(aa + bb)^*(ab + ba))^*.$

 $-E_6 = (a^*b^*)^*,$

 $-E_7 = b(ab)^* + (ba)^*b,$

 $-E_8 = (a+bb)^*(b+aa)^*.$

2. Faire de même avec l'algorithme de Thompson.

Exercice 2 : Lemme de l'étoile

Pour chacun des langages suivants, dire s'il est reconnaissable ou non. Justifier.

1. $\{a^mb^n: m, n \in \mathbb{N}\}$

2. $\{a^m b^n : m < n\}$

3. $\{a^p : p \text{ premier}\}$

4. $\{a^{2n} : n \in \mathbb{N}\}$

5. $\{a^{n^2} : n \in \mathbb{N}\}$

6. $\{a^{2^n}: n \in \mathbb{N}\}$

7. $\{a^m b^n : m > n\}$

8. $\{a^m b^n : m \neq n\}$

9. $\{uav : u, v \in \{a, b\}^*, |u| = |v|\}$

10. $\{a^m b^n : m + n \le 1024\}$

11. $\{a^3b^na^3 : n \equiv 0 \, [3]\}$

12. $\{a^m b^n : m \equiv n \, [3]\}$

13. $\{a^m b^n c^{m+n} : m, n \in \mathbb{N}\}$

14. $\{u\widetilde{u}: u \in \{a, b\}^*\}$

15. $\{uv\tilde{u}: u, v \in \{a, b\}^*\}$

16. $\{u^2 : u \in \{a, b\}^*\}$

17. $\{u \in \{a, b, c\}^* : |u|_a = |u|_b\}$

18. $\{u \in \{a, b, c\}^* : |u|_a \equiv |u|_b [3]\}$

19. $\{a^{n+2}b^n : n \in \mathbb{N}\}$

Exercice 3:

On considère l'alphabet $\Sigma = \{a, b\}$. Prouver l'égalité suivante :

$$(ab)^{+} = (a\Sigma^{*} \cap \Sigma^{*}b) \setminus (\Sigma^{*}aa\Sigma^{*} + \Sigma^{*}bb\Sigma^{*}).$$