Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа программной инженерии

Курсовая Работа

по дисциплине «Математические модели»

Выполнил:Ферапонтов М.В.Группа:гр. 3530904/00104

Проверил: Воскобойников С. П.

Санкт-Петербург 2023

Содержание

1	Вст	упление	2
	1.1	Постановка задачи	2
2	Pasi	ностная схема	3
	2.1	Внутренние точки	3
	2.2	На левой границе	4
	2.3	На правой границе	5
	2.4	На нижней границе	6
	2.5	На верхней границе	7
	2.6	Левый-нижний угол	7
	2.7	Левый-верхний угол	8
	2.8	Правый-верхний угол	8
	2.9	Правый-нижний угол	9
3	Нев	язка разностной схемы	10
	3.1	Невязка в цилиндрической системе координат	10
	3.2	Невязка во внутренних точках	10
	3.3	Невязка на левой границе	13
	3.4	Невязка на правой границе	15
4	Зап	ись СЛАУ	18
	4.1	Запись для внутренних точек	18
	4.2	Запись для левой границы	19
	4.3	Запись для правой границы	20
	4.4	Запись для нижней границы	20
	4.5	Запись для верхней границы	21
	4.6	Запись для левой нижней граничной точки	22
	4.7	Запись для правой нижней граничной точки	22
5	Mea	од сопряжённых градиентов	26
		Явный метод	26
		Неявный метод	26
6	Tec	гирование	28
7	Зак	лючение	32
Кa	л пра	ог раммы	33
	~~	ve provinces	

1 Вступление

1.1 Постановка задачи

Вариант N7. Используя интегро-интерполяционный метод, разработать подпрограмму для моделирования распределения температуры в цилиндре, описываемого математической моделью

$$-\left[\frac{1}{r}\frac{\partial}{\partial r}\left(rk_1(r,z)\frac{\partial u}{\partial r}\right)+\frac{\partial}{\partial z}\left(k_2(r,z)\frac{\partial u}{\partial z}\right)\right]=f(r,z)$$

$$0 \leq c_{11} \leq k_1(r,z) \leq c_{12}, \quad 0 \leq c_{11} \leq k_2(r,z) \leq c_{22}, \quad 0 \leq r \leq R, \ 0 \leq z \leq L$$

С граничными условиями:

$$\begin{aligned} \left.u\right|_{r=0} &-\text{ограничено} & \left.-k_1\frac{\partial u}{\partial r}\right|_{r=R} &= \left.\chi_2 \left.u\right|_{r=R} - \varphi_2(z) \\ \left.k_2\frac{\partial u}{\partial z}\right|_{z=0} &= \left.\chi_3 \left.u\right|_{z=0} - \varphi_3(r) & \left.u\right|_{z=L} &= \varphi_4(r) \\ \chi_2 &\geq 0 & \chi_3 \geq 0 \end{aligned}$$

Матрица алгебраической системы должна храниться в упакованной форме - сжатый разреженный строчный вид. Пример:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
A	13	7	1	14	8	2	15	3	16	9	4	17	10	5	18	6	19	11	20	12	21
IC	1	2	4	2	3	5	3	6	4	5	7	5	6	8	6	9	7	8	8	9	9

	1	2	3	4	5	6	7	8	9	10
IR	1	4	7	9	12	15	17	19	21	22

2 Разностная схема

Введем основную сетку:

Введем дополнительную сетку:

$$\begin{split} r_{i-\frac{1}{2}} &= \frac{r_i + r_{i-1}}{2} \quad i = 1, \cdots, N_r \\ \hbar_i &= \begin{cases} \frac{h_r}{2}, \ i = 0 \\ h_r, \ i = 1, 2, \dots, N_r - 1 \\ \frac{h_r}{2}, \ i = N_r \end{cases} &\qquad \qquad \\ \hbar_j &= \begin{cases} \frac{h_z}{2}, \ j = 0 \\ h_z, \ j = 1, 2, \dots, N_z - 1 \\ \frac{h_z}{2}, \ j = N_z \end{cases} \end{split}$$

Преобразуем наше начальное уравнение домножив на г

$$-\left[\frac{\partial}{\partial r}\left(rk_1(r,z)\frac{\partial u}{\partial r}\right)+\frac{\partial}{\partial z}\left(rk_2(r,z)\frac{\partial u}{\partial z}\right)\right]=rf(r,z)$$

2.1 Внутренние точки

Проинтегрируем данное нам в задании уравнение во внутренних точках сетки:

$$-\int\limits_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}}\int\limits_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}}\left[\frac{\partial}{\partial r}\left(rk_1(r,z)\frac{\partial u}{\partial r}\right)+\frac{\partial}{\partial z}\left(rk_2(r,z)\frac{\partial u}{\partial z}\right)\right]drdz=\int\limits_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}}\int\limits_{z_{j-\frac{1}{2}}}^{r_{i+\frac{1}{2}}}rf(r,z)drdz$$

Получим:

$$\begin{split} &-\left.\left[\int\limits_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}}rk_{1}(r,z)\frac{\partial u}{\partial r}\right|_{r=r_{i+\frac{1}{2}}}dz-\int\limits_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}}rk_{1}(r,z)\frac{\partial u}{\partial r}\Big|_{r=r_{i-\frac{1}{2}}}dz\\ &+\int\limits_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}}rk_{2}(r,z)\frac{\partial u}{\partial z}\Big|_{z=z_{j+\frac{1}{2}}}dr-\int\limits_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}}rk_{2}(r,z)\frac{\partial u}{\partial z}\Big|_{z=z_{j-\frac{1}{2}}}dr\right]=\int\limits_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}}\int\limits_{z_{j-\frac{1}{2}}}^{r}rf(r,z)drdz \end{split}$$

Воспользуемся формулами численного дифференцирования:

$$\left.k_1(r,z)\frac{\partial u}{\partial r}\right|_{r=r_{i-\frac{1}{2}}}\approx k_1(r_{i-\frac{1}{2}},z)\frac{v_{i,j}-v_{i-1,j}}{h_r}$$

$$\left.k_2(r,z)\frac{\partial u}{\partial r}\right|_{z=z_{j-\frac{1}{2}}}\approx k_2(r,z_{j-\frac{1}{2}})\frac{v_{i,j}-v_{i,j-1}}{h_z}$$

Также воспользуемся формулой средних прямоугольников:

$$\int\limits_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}}r\varphi(r,z)dr=\hbar_{i}r_{i}\varphi_{i}$$

$$\int\limits_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}}\int\limits_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}}r\varphi(r,z)drdz=\hbar_{i}\hbar_{j}r_{i}\varphi_{i,j}$$

В итоге получим уравнение разностной схемы в общем виде во внутренних точках сетки, а то есть для $i=1,2,\dots,N_r-1$ и $j=1,2,\dots,N_z-1$.

$$\begin{split} &-\left[\hbar_{j}r_{i+\frac{1}{2}}k_{1}(r_{i+\frac{1}{2}},z_{j})\frac{v_{i+1,j}-v_{i,j}}{h_{r}}-\hbar_{j}r_{i-\frac{1}{2}}k_{1}(r_{i-\frac{1}{2}},z_{j})\frac{v_{i,j}-v_{i-1,j}}{h_{r}}\right.\\ &\left.+\hbar_{i}r_{i}k_{2}(r_{i},z_{j+\frac{1}{2}})\frac{v_{i,j+1}-v_{i,j}}{h_{z}}-\hbar_{i}r_{i}k_{2}(r_{i},z_{j-\frac{1}{2}})\frac{v_{i,j}-v_{i,j-1}}{h_{z}}\right]=\hbar_{i}\hbar_{j}r_{i}f_{i,j} \end{split}$$

Так как мы имеем равномерно разбитую сетку, мы можем перейти к обозначениям для основной сетки для \hbar_i и \hbar_i :

$$\begin{split} &-\left[h_zr_{i+\frac{1}{2}}k_1(r_{i+\frac{1}{2}},z_j)\frac{v_{i+1,j}-v_{i,j}}{h_r}-h_zr_{i-\frac{1}{2}}k_1(r_{i-\frac{1}{2}},z_j)\frac{v_{i,j}-v_{i-1,j}}{h_r}\right.\\ &+\left.h_rr_ik_2(r_i,z_{j+\frac{1}{2}})\frac{v_{i,j+1}-v_{i,j}}{h_z}-h_rr_ik_2(r_i,z_{j-\frac{1}{2}})\frac{v_{i,j}-v_{i,j-1}}{h_z}\right]=h_rh_zr_if_{i,j} \end{split}$$

2.2 На левой границе

Проинтегрируем данное в задании уравнение на левой границе сетки.

$$-\int\limits_{r_{i}}^{r_{i+\frac{1}{2}}z_{j+\frac{1}{2}}}\!\!\left[\frac{\partial}{\partial r}\left(rk_{1}(r,z)\frac{\partial u}{\partial r}\right)+\frac{\partial}{\partial z}\left(rk_{2}(r,z)\frac{\partial u}{\partial z}\right)\right]drdz=\int\limits_{r_{i}}^{r_{i+\frac{1}{2}}z_{j+\frac{1}{2}}}\!\!\int\limits_{z_{j-\frac{1}{2}}}^{r_{i+\frac{1}{2}}z_{j+\frac{1}{2}}}\!\!rf(r,z)drdz$$

Получаем:

$$\begin{split} & - \left. \left[\int\limits_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}} r k_1(r,z) \frac{\partial u}{\partial r} \right|_{r=r_{i+\frac{1}{2}}} dz - \int\limits_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}} r k_1(r,z) \frac{\partial u}{\partial r} \right|_{r=r_i} dz \\ & + \left. \int\limits_{r_i}^{r_{i+\frac{1}{2}}} r k_2(r,z) \frac{\partial u}{\partial z} \right|_{z=z_{j+\frac{1}{2}}} dr - \int\limits_{r_i}^{r_{i+\frac{1}{2}}} r k_2(r,z) \frac{\partial u}{\partial z} \right|_{z=z_{j-\frac{1}{2}}} dr \right] = \int\limits_{r_i}^{r_{i+\frac{1}{2}}} \int\limits_{z_{j-\frac{1}{2}}}^{r} r f(r,z) dr dz \end{split}$$

Имеем граничное условие:

$$\left.u\right|_{r=0}-$$
 ограничено, т. е $\left.\frac{\partial u}{\partial r}\right|_{r=0}=0$

$$\int\limits_{r_{i}}^{r_{i+\frac{1}{2}}} rfdr \approx f_{i} \int\limits_{r_{i}}^{r_{i+\frac{1}{2}}} rdr = f_{i} \frac{r_{i+\frac{1}{2}}^{2}}{2} = \frac{h_{r}}{2} f_{i} \frac{r_{i+\frac{1}{2}}}{2}, \quad i = 0, \quad r_{i} = 0, r_{i+\frac{1}{2}} = \frac{h_{r}}{2}$$

Получаем уравнение разностной схемы в общем виде на левой границе сетки, а то есть для i=0 и $j=1,2,\ldots,N_z-1.$

$$\begin{split} &-\left[\hbar_{j}r_{i+\frac{1}{2}}k_{1}(r_{i+\frac{1}{2}},z_{j})\frac{v_{i+1,j}-v_{i,j}}{h_{i+1}}-0\right.\\ &+\left.\hbar_{i}\frac{r_{i+\frac{1}{2}}}{2}k_{2}(r_{i},z_{j+\frac{1}{2}})\frac{v_{i,j+1}-v_{i,j}}{h_{j+1}}-\hbar_{i}\frac{r_{i+\frac{1}{2}}}{2}k_{2}(r_{i},z_{j-\frac{1}{2}})\frac{v_{i,j}-v_{i,j-1}}{h_{j}}\right]=\hbar_{i}\hbar_{j}\frac{r_{i+\frac{1}{2}}}{2}f_{i,j} \end{split}$$

Перейдём к обозначениям основной сетки для \hbar_i и \hbar_j :

$$\begin{split} &-\left[h_zr_{\frac{1}{2}}k_1(r_{\frac{1}{2}},z_j)\frac{v_{1,j}-v_{0,j}}{h_r}-0\right.\\ &\left.+\frac{h_r}{2}\frac{r_{\frac{1}{2}}}{2}k_2(r_0,z_{j+\frac{1}{2}})\frac{v_{0,j+1}-v_{0,j}}{h_z}-\frac{h_r}{2}\frac{r_{\frac{1}{2}}}{2}k_2(r_0,z_{j-\frac{1}{2}})\frac{v_{0,j}-v_{0,j-1}}{h_z}\right]=\frac{h_r}{2}\frac{r_{\frac{1}{2}}}{2}h_zf_{0,j} \end{split}$$

2.3 На правой границе

Проинтегрируем данное в задании уравнение на правой границе сетки.

$$-\int\limits_{r_{i-\frac{1}{2}}}^{r_{i}}\int\limits_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}}\left[\frac{\partial}{\partial r}\left(rk_{1}(r,z)\frac{\partial u}{\partial r}\right)+\frac{\partial}{\partial z}\left(rk_{2}(r,z)\frac{\partial u}{\partial z}\right)\right]drdz=\int\limits_{r_{i-\frac{1}{2}}}^{r_{i}}\int\limits_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}}rf(r,z)drdz$$

Получаем:

$$\begin{split} & - \left| \int\limits_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}} r k_1(r,z) \frac{\partial u}{\partial r} \right|_{r=r_i} dz - \int\limits_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}} r k_1(r,z) \frac{\partial u}{\partial r} \Big|_{r=r_{i-\frac{1}{2}}} dz \\ & + \int\limits_{r_{i-\frac{1}{2}}}^{r_i} r k_2(r,z) \frac{\partial u}{\partial z} \Big|_{z=z_{j+\frac{1}{2}}} dr - \int\limits_{r_{i-\frac{1}{2}}}^{r_i} r k_2(r,z) \frac{\partial u}{\partial z} \Big|_{z=z_{j-\frac{1}{2}}} dr \right] = \int\limits_{r_{i-\frac{1}{2}}}^{r_i} \int\limits_{z_{j-\frac{1}{2}}}^{r_j} r f(r,z) dr dz \end{split}$$

Имеем граничное условие:

$$-k_1\frac{\partial u}{\partial r}\Big|_{r=R} = \chi_2 \left.u\right|_{r=R} - \varphi_2(z)$$

Получаем уравнение разностной схемы в общем виде на правой границе сетки, а то есть для $i=N_r$ и $j=1,2,\dots,N_z-1.$

$$\begin{split} &-\left[-\hbar_{j}r_{i}(\chi_{2}v_{i}-\varphi_{2}(z))-\hbar_{j}r_{i-\frac{1}{2}}k_{1}(r_{i-\frac{1}{2}},z_{j})\frac{v_{i,j}-v_{i-1,j}}{h_{r}}\right.\\ &\left.+\hbar_{i}r_{i}k_{2}(r_{i},z_{j+\frac{1}{2}})\frac{v_{i,j+1}-v_{i,j}}{h_{z}}-\hbar_{i}r_{i}k_{2}(r_{i},z_{j-\frac{1}{2}})\frac{v_{i,j}-v_{i,j-1}}{h_{z}}\right]=\hbar_{i}\hbar_{j}r_{i}f_{i,j} \end{split}$$

Перейдём к обозначениям основной сетки для h_i и h_i :

$$\begin{split} &-\left[-h_zr_{N_r}(\chi_2v_{N_r}-\varphi_2(z))-h_zr_{N_r-\frac{1}{2}}k_1(r_{N_r-\frac{1}{2}},z_j)\frac{v_{N_r,j}-v_{N_r-1,j}}{h_r}\right.\\ &\left.+\frac{h_r}{2}r_{N_r}k_2(r_{N_r},z_{j+\frac{1}{2}})\frac{v_{N_r,j+1}-v_{N_r,j}}{h_z}-\frac{h_r}{2}r_{N_r}k_2(r_{N_r},z_{j-\frac{1}{2}})\frac{v_{N_r,j}-v_{N_r,j-1}}{h_z}\right]=\frac{h_r}{2}r_{N_r}h_zf_{N_r,j} \end{split}$$

2.4 На нижней границе

Проинтегрируем данное в задании уравнение на нижней границе сетки.

$$-\int\limits_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}}\int\limits_{z_{j}}^{z_{j+\frac{1}{2}}}\left[\frac{\partial}{\partial r}\left(rk_{1}(r,z)\frac{\partial u}{\partial r}\right)+\frac{\partial}{\partial z}\left(rk_{2}(r,z)\frac{\partial u}{\partial z}\right)\right]drdz=\int\limits_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}}\int\limits_{z_{j}}^{z_{j+\frac{1}{2}}}rf(r,z)drdz$$

Получаем:

$$\begin{split} & - \left[\int\limits_{z_{j}}^{z_{j+\frac{1}{2}}} r k_{1}(r,z) \frac{\partial u}{\partial r} \Big|_{r=r_{i+\frac{1}{2}}} dz - \int\limits_{z_{j}}^{z_{j+\frac{1}{2}}} r k_{1}(r,z) \frac{\partial u}{\partial r} \Big|_{r=r_{i-\frac{1}{2}}} dz \\ & + \int\limits_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}} r k_{2}(r,z) \frac{\partial u}{\partial z} \Big|_{z=z_{j+\frac{1}{2}}} dr - \int\limits_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}} r k_{2}(r,z) \frac{\partial u}{\partial z} \Big|_{z=z_{j}} dr \right] = \int\limits_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}} \int\limits_{z_{j}}^{z_{j+\frac{1}{2}}} r f(r,z) dr dz \end{split}$$

Имеем граничное условие:

$$\left.k_2\frac{\partial u}{\partial z}\right|_{z=0} = \chi_3 \left.u\right|_{z=0} - \varphi_3(r)$$

Получаем уравнение разностной схемы в общем виде на нижней границе сетки, а то есть для $i=1,2,\ldots,N_r-1$ и j=0.

$$\begin{split} &-\left[\hbar_{j}r_{i+\frac{1}{2}}k_{1}(r_{i+\frac{1}{2}},z_{j})\frac{v_{i+1,j}-v_{i,j}}{h_{r}}-\hbar_{j}r_{i-\frac{1}{2}}k_{1}(r_{i-\frac{1}{2}},z_{j})\frac{v_{i,j}-v_{i-1,j}}{h_{r}}\right.\\ &\left.+\hbar_{i}r_{i}k_{2}(r_{i},z_{j+\frac{1}{2}})\frac{v_{i,j+1}-v_{i,j}}{h_{z}}-\hbar_{i}r_{i}(\chi_{3}v_{i}-\varphi_{3}(r))\right]=\hbar_{i}\hbar_{j}r_{i}f_{i,j} \end{split}$$

Перейдём к обозначениям основной сетки для \hbar_i и \hbar_j :

$$\begin{split} -\left[\frac{h_z}{2}r_{i+\frac{1}{2}}k_1(r_{i+\frac{1}{2}},z_0)\frac{v_{i+1,0}-v_{i,0}}{h_r} - \frac{h_z}{2}r_{i-\frac{1}{2}}k_1(r_{i-\frac{1}{2}},z_0)\frac{v_{i,0}-v_{i-1,0}}{h_r} \right. \\ \left. + h_r r_i k_2(r_i,z_{\frac{1}{2}})\frac{v_{i,1}-v_{i,0}}{h_z} - h_r r_i (\chi_3 v_{i,0} - \varphi_3(r))\right] = h_r \frac{h_z}{2}r_i f_{i,0} \end{split}$$

2.5 На верхней границе

В качестве уравнения разностной схемы на верхней границе сетки, а то есть $i=1,2,\dots,N_r-1$ и $j=N_z$, возьмём известное граничное условие:

$$u|_{z=L} = \varphi_r(r)$$

$$v_{i,N_z} = \varphi(r_i)$$

2.6 Левый-нижний угол

Проинтегрируем данное в задании уравнение в левой-нижней граничной точке сетки.

$$-\int\limits_{r_{i}}^{r_{i+\frac{1}{2}}}\int\limits_{z_{j}}^{z_{j+\frac{1}{2}}}\left[\frac{\partial}{\partial r}\left(rk_{1}(r,z)\frac{\partial u}{\partial r}\right)+\frac{\partial}{\partial z}\left(rk_{2}(r,z)\frac{\partial u}{\partial z}\right)\right]drdz=\int\limits_{r_{i}}^{r_{i+\frac{1}{2}}}\int\limits_{z_{j}}^{z_{j+\frac{1}{2}}}rf(r,z)drdz$$

Получаем:

$$\begin{split} &-\left.\left[\int\limits_{z_{j}}^{z_{j+\frac{1}{2}}}rk_{1}(r,z)\frac{\partial u}{\partial r}\right|_{r=r_{i+\frac{1}{2}}}dz-\int\limits_{z_{j}}^{z_{j+\frac{1}{2}}}rk_{1}(r,z)\frac{\partial u}{\partial r}\Big|_{r=r_{i}}dz\\ &+\left.\int\limits_{r_{i}}^{r_{i+\frac{1}{2}}}rk_{2}(r,z)\frac{\partial u}{\partial z}\Big|_{z=z_{j+\frac{1}{2}}}dr-\int\limits_{r_{i}}^{r_{i+\frac{1}{2}}}rk_{2}(r,z)\frac{\partial u}{\partial z}\Big|_{z=z_{j}}dr\right]=\int\limits_{r_{i}}^{r_{i+\frac{1}{2}}}\int\limits_{z_{j}}^{z_{j+\frac{1}{2}}}rf(r,z)drdz \end{split}$$

Имеем граничное условие:

$$\left.u\right|_{r=0}-$$
 ограничено, т. е $\left.\frac{\partial u}{\partial r}\right|_{r=0}=0$

$$\int\limits_{r_{i}}^{r_{i+\frac{1}{2}}} rfdr \approx f_{i} \int\limits_{r_{i}}^{r_{i+\frac{1}{2}}} rdr = f_{i} \frac{r_{i+\frac{1}{2}}^{2}}{2} = h_{r} f_{i} \frac{r_{i+\frac{1}{2}}}{2}, \quad i = 0, \quad r_{i} = 0, r_{i+\frac{1}{2}} = \frac{h_{r}}{2}$$

Также:

$$k_2 \frac{\partial u}{\partial z}\Big|_{z=0} = \chi_3 \left. u \right|_{z=0} - \varphi_3(r)$$

Получаем уравнение разностной схемы в общем виде в левой-нижней граничной точке сетки, а то есть для i=0 и j=0.

$$\begin{split} &-\left[\hbar_{j}r_{i+\frac{1}{2}}k_{1}(r_{i+\frac{1}{2}},z_{j})\frac{v_{i+1,j}-v_{i,j}}{h_{r}}-0\right.\\ &+\left.\hbar_{i}\frac{r_{i+\frac{1}{2}}}{2}k_{2}(r_{i},z_{j+\frac{1}{2}})\frac{v_{i,j+1}-v_{i,j}}{h_{z}}-\hbar_{i}\frac{r_{i+\frac{1}{2}}}{2}(\chi_{3}\left.u\right|_{z=0}-\varphi_{3}(r_{0}))\right]=\hbar_{i}\hbar_{j}\frac{r_{i+\frac{1}{2}}}{2}f_{i,j} \end{split}$$

Перейдём к обозначениям основной сетки для \hbar_i и \hbar_i :

$$\begin{split} &-\left[\frac{h_z}{2}r_{\frac{1}{2}}k_1(r_{\frac{1}{2}},z_0)\frac{v_{1,0}-v_{0,0}}{h_r}-0\right.\\ &\left.+\frac{h_r}{2}\frac{r_{\frac{1}{2}}}{2}k_2(r_0,z_{\frac{1}{2}})\frac{v_{0,1}-v_{0,0}}{h_z}-\frac{h_r}{2}\frac{r_{\frac{1}{2}}}{2}(\chi_3v_{0,0}-\varphi_3(r_0))\right]=\frac{h_r}{2}\frac{h_z}{2}\frac{r_{\frac{1}{2}}}{2}f_{0,0} \end{split}$$

2.7 Левый-верхний угол

В качестве уравнения разностной схемы в левой-верхней граничной точке сетки, а то есть i=0 и $j=N_z$, возьмём известное граничное условие:

$$\left.u\right|_{z=L}=\varphi_r(r)$$

$$v_{0,N_z}=\varphi(r_0)$$

2.8 Правый-верхний угол

В качестве уравнения разностной схемы в левой-верхней граничной точке сетки, а то есть $i=N_r$ и $j=N_z$, возьмём известное граничное условие:

$$u|_{z=L}=\varphi_r(r)$$

$$v_{N_r,N_z} = \varphi(r_{N_r})$$

2.9 Правый-нижний угол

Проинтегрируем данное в задании уравнение в правой-нижней граничной точке сетки.

$$-\int\limits_{r_{i-\frac{1}{2}}}^{r_{i}}\int\limits_{z_{j}}^{z_{j+\frac{1}{2}}}\left[\frac{\partial}{\partial r}\left(rk_{1}(r,z)\frac{\partial u}{\partial r}\right)+\frac{\partial}{\partial z}\left(rk_{2}(r,z)\frac{\partial u}{\partial z}\right)\right]=\int\limits_{r_{i-\frac{1}{2}}}^{r_{i}}\int\limits_{z_{j}}^{z_{j+\frac{1}{2}}}rf(r,z)$$

Получаем:

$$\begin{split} &-\left[\int\limits_{z_{j}}^{z_{j+\frac{1}{2}}}rk_{1}(r,z)\frac{\partial u}{\partial r}\Big|_{r=r_{i}}\,dz-\int\limits_{z_{j}}^{z_{j+\frac{1}{2}}}rk_{1}(r,z)\frac{\partial u}{\partial r}\Big|_{r=r_{i-\frac{1}{2}}}\,dz\\ &+\int\limits_{r_{i-\frac{1}{2}}}^{r_{i}}rk_{2}(r,z)\frac{\partial u}{\partial z}\Big|_{z=z_{j+\frac{1}{2}}}\,dr-\int\limits_{r_{i-\frac{1}{2}}}^{r_{i}}rk_{2}(r,z)\frac{\partial u}{\partial z}\Big|_{z=z_{j}}\,dr\right]=\int\limits_{r_{i-\frac{1}{2}}}^{r_{i}}\int\limits_{z_{j}}^{z_{j+\frac{1}{2}}}rf(r,z)drdz \end{split}$$

Имеем граничные условия:

$$\begin{split} -k_1 \frac{\partial u}{\partial r} \Big|_{r=R} &= \chi_2 \left. u \right|_{r=R} - \varphi_2(z) \\ k_2 \frac{\partial u}{\partial z} \Big|_{z=0} &= \chi_3 \left. u \right|_{z=0} - \varphi_3(r) \end{split}$$

Получаем уравнение разностной схемы в общем виде в правой-нижней граничной точке сетки, а то есть для $i=N_r$ и j=0.

$$\begin{split} &-\left[-\hbar_{j}r_{i}(\chi_{2}\left.u\right|_{r=R}-\varphi_{2}(z))-\hbar_{j}r_{i-\frac{1}{2}}k_{1}(r_{i-\frac{1}{2}},z_{j})\frac{v_{i,j}-v_{i-1,j}}{h_{r}}\right.\\ &\left.+\hbar_{i}r_{i}k_{2}(r_{i},z_{j+\frac{1}{2}})\frac{v_{i,j+1}-v_{i,j}}{h_{z}}-\hbar_{i}r_{i}(\chi_{3}v_{i}-\varphi_{3}(r))\right]=\hbar_{i}\hbar_{j}r_{i}f_{i,j} \end{split}$$

Перейдём к обозначениям основной сетки для \hbar_i и \hbar_j :

$$\begin{split} -\left[-\frac{h_z}{2}r_{N_r}(\chi_2v_{N_r,0}-\varphi_2(z)) - \frac{h_z}{2}r_{N_r-\frac{1}{2}}k_1(r_{N_r-\frac{1}{2}},z_0)\frac{v_{N_r,0}-v_{N_r-1,0}}{h_r}\right.\\ \left. + \frac{h_r}{2}r_{N_r}k_2(r_{N_r},z_{\frac{1}{2}})\frac{v_{N_r,1}-v_{N_r,0}}{h_z} - \frac{h_r}{2}r_{N_r}(\chi_3v_{N_r,0}-\varphi_3(r))\right] = \frac{h_r}{2}\frac{h_z}{2}r_{N_r}f_{N_r,0} \end{split}$$

3 Невязка разностной схемы

3.1 Невязка в цилиндрической системе координат

Возьмём наше уже преобразованное уравнение

$$-\left[\frac{\partial}{\partial r}\left(rk_1(r,z)\frac{\partial u}{\partial r}\right)+\frac{\partial}{\partial z}\left(rk_2(r,z)\frac{\partial u}{\partial z}\right)\right]=rf(r,z)$$

Сделаем следующие замены:

$$\tilde{k}_1(r,z)=rk_1(r,z)$$

$$\tilde{k}_2(r,z)=rk_2(r,z)$$

$$\tilde{f}(r,z) = rf(r,z)$$

Получаем:

$$-\left[\frac{\partial}{\partial r}\left(\tilde{k}_1(r,z)\frac{\partial u}{\partial r}\right)+\frac{\partial}{\partial z}\left(\tilde{k}_2(r,z)\frac{\partial u}{\partial z}\right)\right]=\tilde{f}(r,z)$$

3.2 Невязка во внутренних точках

Запишем для уравнения разностной сетки во внутренних точках невязку:

$$\begin{split} &-\left[h_z\tilde{k}_1(r_{i+\frac{1}{2}},z_j)\frac{v_{i+1,j}-v_{i,j}}{h_r}-h_z\tilde{k}_1(r_{i-\frac{1}{2}},z_j)\frac{v_{i,j}-v_{i-1,j}}{h_r}\right.\\ &+\left.h_r\tilde{k}_2(r_i,z_{j+\frac{1}{2}})\frac{v_{i,j+1}-v_{i,j}}{h_z}-h_r\tilde{k}_2(r_i,z_{j-\frac{1}{2}})\frac{v_{i,j}-v_{i,j-1}}{h_z}\right]=h_rh_z\tilde{f}_{i,j} \end{split}$$

$$\begin{split} \xi_{i,j} &= h_r h_z \tilde{f}_{i,j} + \left[h_z \tilde{k}_1(r_{i+\frac{1}{2}}, z_j) \frac{u_{i+1,j} - u_{i,j}}{h_r} - h_z \tilde{k}_1(r_{i-\frac{1}{2}}, z_j) \frac{u_{i,j} - u_{i-1,j}}{h_r} \right. \\ &\left. + h_r \tilde{k}_2(r_i, z_{j+\frac{1}{2}}) \frac{u_{i,j+1} - u_{i,j}}{h_z} - h_r \tilde{k}_2(r_i, z_{j-\frac{1}{2}}) \frac{u_{i,j} - u_{i,j-1}}{h_z} \right] \end{split}$$

Напишем разложение Тейлора для невязки:

$$\begin{split} u_{i,j-1} &= u(r_i, z_j - h_z) = \left[u - h_z \frac{\partial u}{\partial z} + \frac{h_z^2}{2} \frac{\partial^2 u}{\partial z^2} - \frac{h_z^3}{6} \frac{\partial^3 u}{\partial z^3} + \frac{h_z^4}{24} \frac{\partial^4 u}{\partial z^4} \right]_{i,j} + \mathcal{O}(h_y^5) \\ &\frac{u_{i,j} - u_{i,j-1}}{h_z} = \left[\frac{\partial u}{\partial z} - \frac{h_z}{2} \frac{\partial^2 u}{\partial z^2} + \frac{h_z^2}{6} \frac{\partial^3 u}{\partial z^3} - \frac{h_z^3}{24} \frac{\partial^4 u}{\partial z^4} \right]_{i,j} + \mathcal{O}(h_y^4) \end{split}$$

$$\tilde{k}_2(r_i,z_{j-\frac{1}{2}}) = r_i k_2(r_i,z_j - \frac{h_z}{2}) = \left[\tilde{k}_2 - \frac{h_z}{2}\frac{\partial \tilde{k}_2}{\partial z} + \frac{h_z^2}{8}\frac{\partial^2 \tilde{k}_2}{\partial z^2} - \frac{h_z^3}{48}\frac{\partial^3 \tilde{k}_2}{\partial z^3}\right]_{i,j} + \mathcal{O}(h^4)$$

$$\begin{split} \tilde{k}_2(r_i,z_{j-\frac{1}{2}}) \frac{u_{i,j} - u_{i,j-1}}{h_z} &= \left[\tilde{k}_2 \frac{\partial u}{\partial z} \right]_{i,j} - h_z \left[\frac{1}{2} \tilde{k}_2 \frac{\partial^2 u}{\partial z^2} + \frac{1}{2} \frac{\partial \tilde{k}_2}{\partial z} \frac{\partial u}{\partial z} \right]_{i,j} + \\ &+ h_z^2 \left[\frac{1}{6} \tilde{k}_2 \frac{\partial^3 u}{\partial z^3} + \frac{1}{4} \frac{\partial \tilde{k}_2}{\partial z} \frac{\partial^2 u}{\partial z^2} + \frac{1}{8} \frac{\partial^2 \tilde{k}_2}{\partial z^2} \frac{\partial u}{\partial z} \right]_{i,j} - \\ &- h_z^3 \left[\frac{1}{24} \tilde{k}_2 \frac{\partial^4 u}{\partial z^4} - \frac{1}{12} \frac{\partial \tilde{k}_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{16} \frac{\partial^2 \tilde{k}_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{48} \frac{\partial^3 \tilde{k}_2}{\partial z^3} \frac{\partial u}{\partial z} \right]_{i,j} + \\ &+ \mathcal{O}(h^4) \end{split}$$

Для $\tilde{k}_2(r_i,z_{j+\frac{1}{2}})$ можно получить невязку аналогичным способом:

$$\begin{split} \tilde{k}_2(r_i,z_{j+\frac{1}{2}}) \frac{u_{i,j+1} - u_{i,j}}{h_z} &= \left[\tilde{k}_2 \frac{\partial u}{\partial z} \right]_{i,j} + h_z \left[\frac{1}{2} \tilde{k}_2 \frac{\partial^2 u}{\partial z^2} + \frac{1}{2} \frac{\partial \tilde{k}_2}{\partial z} \frac{\partial u}{\partial z} \right]_{i,j} + \\ &\quad + h_z^2 \left[\frac{1}{6} \tilde{k}_2 \frac{\partial^3 u}{\partial z^3} + \frac{1}{4} \frac{\partial \tilde{k}_2}{\partial z} \frac{\partial^2 u}{\partial z^2} + \frac{1}{8} \frac{\partial^2 \tilde{k}_2}{\partial z^2} \frac{\partial u}{\partial z} \right]_{i,j} + \\ &\quad + h_z^3 \left[\frac{1}{24} \tilde{k}_2 \frac{\partial^4 u}{\partial z^4} - \frac{1}{12} \frac{\partial \tilde{k}_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{16} \frac{\partial^2 \tilde{k}_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{48} \frac{\partial^3 \tilde{k}_2}{\partial z^3} \frac{\partial u}{\partial z} \right]_{i,j} + \\ &\quad + \mathcal{O}(h^4) \end{split}$$

$$\begin{split} u_{i-1,j} &= u(r_i - h_r, j) = \left[u - h_r \frac{\partial u}{\partial r} + \frac{h_r^2}{2} \frac{\partial^2 u}{\partial r^2} - \frac{h_r^3}{6} \frac{\partial^3 u}{\partial r^3} + \frac{h_r^4}{24} \frac{\partial^4 u}{\partial r^4} \right]_{i,j} + \mathcal{O}(h^5) \\ & \frac{u_{i,j} - u_{i-1,j}}{h_r} = \left[\frac{\partial u}{\partial r} - \frac{h_r}{2} \frac{\partial^2 u}{\partial r^2} + \frac{h_r^2}{6} \frac{\partial^3 u}{\partial r^3} - \frac{h_r^3}{24} \frac{\partial^4 u}{\partial r^4} \right]_{i,j} + \mathcal{O}(h^4) \\ & \tilde{k}_1(r_{i-\frac{1}{2}}, z_j) = \tilde{k}_1(r_i - \frac{h_r}{2}, z_j) = \left[\tilde{k}_1 - \frac{h_r}{2} \frac{\partial \tilde{k}_1}{\partial r} + \frac{h_r^2}{8} \frac{\partial^2 \tilde{k}_1}{\partial r^2} - \frac{h_r^3}{48} \frac{\partial^3 \tilde{k}_1}{\partial r^3} \right]_{i,j} + \mathcal{O}(h^4) \end{split}$$

$$\begin{split} \tilde{k}_1(r_{i-\frac{1}{2}},z_j) \frac{u_{i,j} - u_{i-1,j}}{h_r} &= \left[\tilde{k}_1 \frac{\partial u}{\partial r} \right]_{i,j} - h_r \left[\frac{1}{2} \tilde{k}_1 \frac{\partial^2 u}{\partial r^2} + \frac{1}{2} \frac{\partial \tilde{k}_1}{\partial r} \frac{\partial u}{\partial r} \right]_{i,j} + \\ &+ h_r^2 \left[\frac{1}{6} \tilde{k}_1 \frac{\partial^3 u}{\partial r^3} + \frac{1}{4} \frac{\partial \tilde{k}_1}{\partial r} \frac{\partial^2 u}{\partial r^2} + \frac{1}{8} \frac{\partial^2 \tilde{k}_1}{\partial r^2} \frac{\partial u}{\partial r} \right]_{i,j} - \\ &- h_r^3 \left[\frac{1}{24} \tilde{k}_1 \frac{\partial^4 u}{\partial r^4} - \frac{1}{12} \frac{\partial \tilde{k}_1}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{16} \frac{\partial^2 \tilde{k}_1}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{48} \frac{\partial^3 \tilde{k}_1}{\partial r^3} \frac{\partial u}{\partial r} \right]_{i,j} + \\ &+ \mathcal{O}(h^4) \end{split}$$

Для $\tilde{k}_1(r_{i=\frac{1}{2}},z_j) \frac{u_{i+1,j}-u_{i,j}}{h_r}$ можно получить невязку аналогично:

$$\begin{split} \tilde{k}_1(r_{i+\frac{1}{2}},z_j) \frac{u_{i+1,j} - u_{i,j}}{h_r} &= \left[\tilde{k}_1 \frac{\partial u}{\partial r} \right]_{i,j} + h_r \left[\frac{1}{2} \tilde{k}_1 \frac{\partial^2 u}{\partial r^2} + \frac{1}{2} \frac{\partial \tilde{k}_1}{\partial r} \frac{\partial u}{\partial r} \right]_{i,j} + \\ &+ h_r^2 \left[\frac{1}{6} \tilde{k}_1 \frac{\partial^3 u}{\partial r^3} + \frac{1}{4} \frac{\partial \tilde{k}_1}{\partial r} \frac{\partial^2 u}{\partial r^2} + \frac{1}{8} \frac{\partial^2 \tilde{k}_1}{\partial r^2} \frac{\partial u}{\partial r} \right]_{i,j} + \\ &+ h_r^3 \left[\frac{1}{24} \tilde{k}_1 \frac{\partial^4 u}{\partial r^4} - \frac{1}{12} \frac{\partial \tilde{k}_1}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{16} \frac{\partial^2 \tilde{k}_1}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{48} \frac{\partial^3 \tilde{k}_1}{\partial r^3} \frac{\partial u}{\partial r} \right]_{i,j} + \\ &+ \mathcal{O}(h^4) \end{split}$$

Тогда:

$$\begin{split} &h_z \tilde{k}_1(r_{i+\frac{1}{2}},z_j) \frac{u_{i+1,j} - u_{i,j}}{h_r} - h_z \tilde{k}_1(r_{i-\frac{1}{2}},z_j) \frac{u_{i,j} - u_{i-1,j}}{h_r} = h_r h_z \left(\left[\tilde{k}_1 \frac{\partial^2 u}{\partial r^2} + \frac{\partial \tilde{k}_1}{\partial r} \frac{\partial u}{\partial r} \right]_{i,j} + \right. \\ &+ \left. h_r^2 \left[\frac{1}{12} \tilde{k}_1 \frac{\partial^4 u}{\partial r^4} - \frac{1}{6} \frac{\partial \tilde{k}_1}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{8} \frac{\partial^2 \tilde{k}_1}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{24} \frac{\partial^3 \tilde{k}_1}{\partial r^3} \frac{\partial u}{\partial r} \right] + \mathcal{O}(h_r^4) \right) \end{split}$$

$$\begin{split} &h_x \tilde{k}_2(r_i, z_{j+\frac{1}{2}}) \frac{u_{i,j+1} - u_{i,j}}{h_z} - h_x \tilde{k}_2(r_i, z_{j-\frac{1}{2}}) \frac{u_{i,j} - u_{i,j-1}}{h_z} = h_r h_z \left(\left[\tilde{k}_2 \frac{\partial^2 u}{\partial z^2} + \frac{\partial \tilde{k}_2}{\partial z} \frac{\partial u}{\partial z} \right]_{i,j} + \right. \\ &+ \left. h_z^2 \left[\frac{1}{12} \tilde{k}_2 \frac{\partial^4 u}{\partial z^4} - \frac{1}{6} \frac{\partial \tilde{k}_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{8} \frac{\partial^2 \tilde{k}_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{24} \frac{\partial^3 \tilde{k}_2}{\partial z^3} \frac{\partial u}{\partial z} \right]_{i,j} + \mathcal{O}(h_z^4) \right) \end{split}$$

Будем искать невязку в следующем виде:

$$\tilde{\xi}_{i,j} = \frac{\xi_{i,j}}{h_r h_z}$$

Тогда:

$$\begin{split} &\tilde{\xi}_{i,j} = \tilde{f}_{i,j} + \left[\tilde{k}_1 \frac{\partial^2 u}{\partial r^2} + \frac{\partial \tilde{k}_1}{\partial r} \frac{\partial u}{\partial r}\right]_{i,j} + \left[\tilde{k}_2 \frac{\partial^2 u}{\partial z^2} + \frac{\partial \tilde{k}_2}{\partial z} \frac{\partial u}{\partial z}\right]_{i,j} + \\ &+ h_r^2 \left[\frac{1}{12} \tilde{k}_1 \frac{\partial^4 u}{\partial r^4} - \frac{1}{6} \frac{\partial \tilde{k}_1}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{8} \frac{\partial^2 \tilde{k}_1}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{24} \frac{\partial^3 \tilde{k}_1}{\partial r^3} \frac{\partial u}{\partial r}\right] + \mathcal{O}(h_r^3) + \\ &+ h_z^2 \left[\frac{1}{12} \tilde{k}_2 \frac{\partial^4 u}{\partial z^4} - \frac{1}{6} \frac{\partial \tilde{k}_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{8} \frac{\partial^2 \tilde{k}_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{24} \frac{\partial^3 \tilde{k}_2}{\partial z^3} \frac{\partial u}{\partial z}\right]_{i,j} + \mathcal{O}(h_z^3) \end{split}$$

Можно заметить, что:

$$\left[\tilde{k}_1 \frac{\partial^2 u}{\partial r^2} + \frac{\partial \tilde{k}_1}{\partial r} \frac{\partial u}{\partial r}\right]_{i,j} = \frac{\partial}{\partial r} \left(\tilde{k}_1 \frac{\partial u}{\partial r}\right)$$

$$\left[\tilde{k}_2 \frac{\partial^2 u}{\partial z^2} + \frac{\partial \tilde{k}_2}{\partial z} \frac{\partial u}{\partial z}\right]_{i,j} = \frac{\partial}{\partial z} \left(\tilde{k}_2 \frac{\partial u}{\partial z}\right)$$

Тем самым:

$$r_i f_{i,j} + \frac{\partial}{\partial r} \left(k_1 \frac{\partial u}{\partial r} \right) + \frac{\partial}{\partial z} \left(k_2 \frac{\partial u}{\partial z} \right) = 0$$

Получаем:

$$\begin{split} \tilde{\xi}_{i,j} &= h_r^2 \left[\frac{1}{12} \tilde{k}_1 \frac{\partial^4 u}{\partial r^4} - \frac{1}{6} \frac{\partial \tilde{k}_1}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{8} \frac{\partial^2 \tilde{k}_1}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{24} \frac{\partial^3 \tilde{k}_1}{\partial r^3} \frac{\partial u}{\partial r} \right]_{i,j} + \mathcal{O}(h_r^3) + \\ &+ h_z^2 \left[\frac{1}{12} \tilde{k}_2 \frac{\partial^4 u}{\partial z^4} - \frac{1}{6} \frac{\partial \tilde{k}_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{8} \frac{\partial^2 \tilde{k}_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{24} \frac{\partial^3 \tilde{k}_2}{\partial z^3} \frac{\partial u}{\partial z} \right]_{i,j} + \mathcal{O}(h_z^3) \end{split}$$

Уберём замену и вернёмся к старым обозначеням:

$$\begin{split} \tilde{\xi}_{i,j} &= h_r^2 \left[\frac{1}{12} r k_1 \frac{\partial^4 u}{\partial r^4} - \frac{1}{6} \frac{\partial r k_1}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{8} \frac{\partial^2 r k_1}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{24} \frac{\partial^3 r k_1}{\partial r^3} \frac{\partial u}{\partial r} \right]_{i,j} + \mathcal{O}(h_r^3) + \\ &+ h_z^2 \left[\frac{1}{12} r k_2 \frac{\partial^4 u}{\partial z^4} - \frac{1}{6} \frac{\partial r k_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{8} \frac{\partial^2 r k_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{24} \frac{\partial^3 r k_2}{\partial z^3} \frac{\partial u}{\partial z} \right]_{i,j} + \mathcal{O}(h_z^3) \end{split}$$

Порядок аппроксимации $p_r=2-0=2,\, p_z=2-0=2.$

3.3 Невязка на левой границе

Запишем для уравнения разностной сетки на левой границе невязку:

$$\begin{split} &-\left[h_{z}r_{\frac{1}{2}}k_{1}(r_{\frac{1}{2}},z_{j})\frac{v_{1,j}-v_{0,j}}{h_{r}}-0\right.\\ &+\frac{h_{r}}{2}\frac{r_{\frac{1}{2}}}{2}k_{2}(r_{0},z_{j+\frac{1}{2}})\frac{v_{0,j+1}-v_{0,j}}{h_{z}}-\frac{h_{r}}{2}\frac{r_{\frac{1}{2}}}{2}k_{2}(r_{0},z_{j-\frac{1}{2}})\frac{v_{0,j}-v_{0,j-1}}{h_{z}}\right]=\frac{h_{r}}{2}\frac{r_{\frac{1}{2}}}{2}h_{z}f_{0,j}\\ &\left.\xi_{0,j}=\frac{h_{r}}{2}h_{z}f_{0,j}+\left[2h_{z}k_{1}(r_{\frac{1}{2}},z_{j})\frac{u_{1,j}-u_{0,j}}{h_{r}}-0\right.\right.\\ &\left.+\frac{h_{r}}{2}k_{2}(r_{0},z_{j+\frac{1}{2}})\frac{u_{0,j+1}-u_{0,j}}{h_{z}}-\frac{h_{r}}{2}k_{2}(r_{0},z_{j-\frac{1}{2}})\frac{u_{0,j}-u_{0,j-1}}{h_{z}}\right] \end{split}$$

Напишем разложение Тейлора для невязки:

$$\begin{split} k_1(r_{\frac{1}{2}},z_j)\frac{u_{1,j}-u_{0,j}}{h_r} &= \left[k_1\frac{\partial u}{\partial r}\right]_{i,j} + \frac{h_r}{2}\left[\frac{\partial}{\partial r}\left(k_1\frac{\partial u}{\partial r}\right)\right]_{i,j} + \\ &+ h_r^2\left[\frac{1}{6}k_1\frac{\partial^3 u}{\partial r^3} + \frac{1}{4}\frac{\partial k_1}{\partial r}\frac{\partial^2 u}{\partial r^2} + \frac{1}{8}\frac{\partial^2 k_1}{\partial r^2}\frac{\partial u}{\partial r}\right]_{i,j} + \mathcal{O}(h_r^3) \end{split}$$

$$\begin{split} &h_r k_2(r_0, z_{j+\frac{1}{2}}) \frac{u_{0,j+1} - u_{0,j}}{h_z} - h_r k_2(r_0, z_{j-\frac{1}{2}}) \frac{u_{0,j} - u_{0,j-1}}{h_z} = h_r \left[h_z \left(\frac{\partial}{\partial z} \left(k_2 \frac{\partial u}{\partial z} \right) \right)_{i,j} + \right. \\ &\left. + h_z^3 \left(\frac{1}{12} k_2 \frac{\partial^4 u}{\partial z^4} + \frac{1}{6} \frac{\partial k_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{8} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{24} \frac{\partial^3 k_2}{\partial z^3} \frac{\partial u}{\partial z} \right)_{0,i} + \mathcal{O}(h_z^4) \right] \end{split}$$

$$\begin{split} &\xi_{0,j} = \frac{h_r}{2} h_z f_{0,j} + \left[2 h_z \left(\left[k_1 \frac{\partial u}{\partial r} \right]_{i,j} + \frac{h_r}{2} \left[\frac{\partial}{\partial r} \left(k_1 \frac{\partial u}{\partial r} \right) \right]_{i,j} + \right. \\ & + h_r^2 \left[\frac{1}{6} k_1 \frac{\partial^3 u}{\partial r^3} + \frac{1}{4} \frac{\partial k_1}{\partial r} \frac{\partial^2 u}{\partial r^2} + \frac{1}{8} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial u}{\partial r} \right]_{i,j} + \mathcal{O}(h_r^3) \right) - 0 + \\ & \left. \frac{h_r}{2} \left(h_z \left[\frac{\partial}{\partial z} \left(k_2 \frac{\partial u}{\partial z} \right) \right]_{i,j} + h_z^3 \left[\frac{1}{12} k_2 \frac{\partial^4 u}{\partial z^4} + \frac{1}{6} \frac{\partial k_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{8} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{24} \frac{\partial^3 k_2}{\partial z^3} \frac{\partial u}{\partial z} \right]_{0,j} + \mathcal{O}(h_z^4) \right) \right] \end{split}$$

Будем искать невязку в следующем виде:

$$\tilde{\xi}_{0,j} = \frac{\xi_{0,j}}{2h_z}$$

$$\begin{split} &\tilde{\xi}_{0,j} = \frac{h_r}{4} \left[f + 2 \frac{\partial}{\partial r} \left(k_1 \frac{\partial u}{\partial r} \right) + \frac{\partial}{\partial z} \left(k_2 \frac{\partial u}{\partial z} \right) \right]_{0,j} + \left[k_1 \frac{\partial u}{\partial r} \right]_{0,j} + \\ &+ h_r^2 \left[\frac{1}{6} k_1 \frac{\partial^3 u}{\partial r^3} + \frac{1}{4} \frac{\partial k_1}{\partial r} \frac{\partial^2 u}{\partial r^2} + \frac{1}{8} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial u}{\partial r} \right]_{i,j} + \mathcal{O}(h_r^3) + \\ &+ \frac{h_r}{4} \left[h_z^2 \left(\frac{1}{12} k_2 \frac{\partial^4 u}{\partial z^4} + \frac{1}{6} \frac{\partial k_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{8} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{24} \frac{\partial^3 k_2}{\partial z^3} \frac{\partial u}{\partial z} \right)_{0,j} + \mathcal{O}(h_z^3) \right] \end{split}$$

Можно заметить, что:

$$\begin{split} \left. \frac{\partial u}{\partial r} \right|_{r=0} &= 0 \\ \left[f + 2 \frac{\partial}{\partial r} \left(k_1 \frac{\partial u}{\partial r} \right) + \frac{\partial}{\partial z} \left(k_2 \frac{\partial u}{\partial z} \right) \right]_{0,i} &= 0 \end{split}$$

Получаем:

$$\begin{split} \tilde{\xi}_{0,j} &= h_r^2 \left[\frac{1}{6} k_1 \frac{\partial^3 u}{\partial r^3} + \frac{1}{4} \frac{\partial k_1}{\partial r} \frac{\partial^2 u}{\partial r^2} + \frac{1}{8} \frac{\partial^2 k_1}{\partial r^2} \frac{\partial u}{\partial r} \right]_{i,j} + \mathcal{O}(h_r^3) + \\ &+ \frac{h_r}{4} \left[h_z^2 \left(\frac{1}{12} k_2 \frac{\partial^4 u}{\partial z^4} + \frac{1}{6} \frac{\partial k_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{8} \frac{\partial^2 k_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{24} \frac{\partial^3 k_2}{\partial z^3} \frac{\partial u}{\partial z} \right)_{0,j} + \mathcal{O}(h_z^3) \right] \end{split}$$

Порядок аппроксимации $p_r = 2 - 0 = 2, p_z = 2 - 0 = 2.$

3.4 Невязка на правой границе

Запишем для уравнения разностной сетки на правой границе невязку:

$$\begin{split} &-\left[-h_{z}r_{N_{r}}(\chi_{2}v_{N_{r}}-\varphi_{2}(z))-h_{z}\tilde{k}_{1}(r_{N_{r}-\frac{1}{2}},z_{j})\frac{v_{N_{r},j}-v_{N_{r}-1,j}}{h_{r}}\right.\\ &+\frac{h_{r}}{2}\tilde{k}_{2}(r_{N_{r}},z_{j+\frac{1}{2}})\frac{v_{N_{r},j+1}-v_{N_{r},j}}{h_{z}}-\frac{h_{r}}{2}\tilde{k}_{2}(r_{N_{r}},z_{j-\frac{1}{2}})\frac{v_{N_{r},j}-v_{N_{r},j-1}}{h_{z}}\right]=\frac{h_{r}}{2}h_{z}\tilde{f}_{N_{r},j}\\ &\xi_{N_{r},j}=\frac{h_{r}}{2}h_{z}\tilde{f}_{N_{r},j}+\left[-h_{z}r_{N_{r}}(\chi_{2}u_{N_{r}}-\varphi_{2}(z))-h_{z}\tilde{k}_{1}(r_{N_{r}-\frac{1}{2}},z_{j})\frac{u_{N_{r},j}-u_{N_{r}-1,j}}{h_{r}}\right.\\ &\left.+\frac{h_{r}}{2}\tilde{k}_{2}(r_{N_{r}},z_{j+\frac{1}{2}})\frac{u_{N_{r},j+1}-u_{N_{r},j}}{h}-\frac{h_{r}}{2}\tilde{k}_{2}(r_{N_{r}},z_{j-\frac{1}{2}})\frac{u_{N_{r},j}-u_{N_{r},j-1}}{h}\right] \end{split}$$

Напишем разложение Тейлора для невязки:

$$\begin{split} \tilde{k}_1(r_{N_r-\frac{1}{2}},z_j) \frac{u_{N_r,j}-u_{N_r-1,j}}{h_r} &= \left[\tilde{k}_1\frac{\partial u}{\partial r}\right]_{N_r,j} - \frac{h_2}{2} \left[\frac{\partial}{\partial r} \left(\tilde{k}_1\frac{\partial u}{\partial r}\right)\right]_{N_r,j} + \\ &+ h_r^2 \left[\frac{1}{6}\tilde{k}_1\frac{\partial^3 u}{\partial r^3} + \frac{1}{4}\frac{\partial \tilde{k}_1}{\partial r}\frac{\partial^2 u}{\partial r^2} + \frac{1}{8}\frac{\partial^2 \tilde{k}_1}{\partial r^2}\frac{\partial u}{\partial r}\right]_{N_r,j} - \\ &- h_r^3 \left[\frac{1}{24}\tilde{k}_1\frac{\partial^4 u}{\partial r^4} + \frac{1}{12}\frac{\partial \tilde{k}_1}{\partial r}\frac{\partial^3 u}{\partial r^3} + \frac{1}{16}\frac{\partial^2 \tilde{k}_1}{\partial r^2}\frac{\partial^2 u}{\partial r^2} + \frac{1}{48}\frac{\partial^3 \tilde{k}_1}{\partial r^3}\frac{\partial u}{\partial r}\right]_{N_r,j} + \mathcal{O}(h_r^4) \end{split}$$

$$\begin{split} &\frac{h_r}{2}\tilde{k}_2(r_{N_r},z_{j+\frac{1}{2}})\frac{u_{N_r,j+1}-u_{N_r,j}}{h_z} - \frac{h_r}{2}\tilde{k}_2(r_{N_r},z_{j-\frac{1}{2}})\frac{u_{N_r,j}-u_{N_r,j-1}}{h_z} = \\ &\frac{h_r}{2}\left[h_z\left(\frac{\partial}{\partial z}\left(\tilde{k}_2\frac{\partial u}{\partial z}\right)\right)_{N_r,j} + h_z^3\left(\frac{1}{12}\tilde{k}_2\frac{\partial^4 u}{\partial z^4} + \frac{1}{6}\frac{\partial\tilde{k}_2}{\partial z}\frac{\partial^3 u}{\partial z^3} + \frac{1}{8}\frac{\partial^2\tilde{k}_2}{\partial z^2}\frac{\partial^2 u}{\partial z^2} + \frac{1}{24}\frac{\partial^3\tilde{k}_2}{\partial z^3}\frac{\partial u}{\partial z}\right)_{N_r,j}\right] + \\ &+ \mathcal{O}(h_z^4) \end{split}$$

$$\begin{split} &\xi_{N_r,j} = \frac{h_r}{2} h_z \tilde{f}_{N_r,j} - h_z r_{N_r} (\chi_2 u_{N_r} - \varphi_2(z)) - h_z \left[\left[\tilde{k}_1 \frac{\partial u}{\partial r} \right]_{N_r,j} - \frac{h_2}{2} \left[\frac{\partial}{\partial r} \left(\tilde{k}_1 \frac{\partial u}{\partial r} \right) \right]_{N_r,j} + \right. \\ &+ \left. h_r^2 \left[\frac{1}{6} \tilde{k}_1 \frac{\partial^3 u}{\partial r^3} + \frac{1}{4} \frac{\partial \tilde{k}_1}{\partial r} \frac{\partial^2 u}{\partial r^2} + \frac{1}{8} \frac{\partial^2 \tilde{k}_1}{\partial r^2} \frac{\partial u}{\partial r} \right]_{N_r,j} - \\ &- h_r^3 \left[\frac{1}{24} \tilde{k}_1 \frac{\partial^4 u}{\partial r^4} + \frac{1}{12} \frac{\partial \tilde{k}_1}{\partial r} \frac{\partial^3 u}{\partial r^3} + \frac{1}{16} \frac{\partial^2 \tilde{k}_1}{\partial r^2} \frac{\partial^2 u}{\partial r^2} + \frac{1}{48} \frac{\partial^3 \tilde{k}_1}{\partial r^3} \frac{\partial u}{\partial r} \right]_{N_r,j} + \mathcal{O}(h_r^4) \right] + \\ &+ \frac{h_r}{2} \left[h_z \left(\frac{\partial}{\partial z} \left(\tilde{k}_2 \frac{\partial u}{\partial z} \right) \right)_{N_r,j} + h_z^3 \left(\frac{1}{12} \tilde{k}_2 \frac{\partial^4 u}{\partial z^4} + \frac{1}{6} \frac{\partial \tilde{k}_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{8} \frac{\partial^2 \tilde{k}_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{24} \frac{\partial^3 \tilde{k}_2}{\partial z^3} \frac{\partial u}{\partial z} \right)_{N_r,j} + \\ &+ \mathcal{O}(h_z^4) \right] \end{split}$$

Будем искать невязку в следующем виде:

$$\tilde{\xi}_{N_r,j} = \frac{\xi_{N_r,j}}{h_z}$$

$$\begin{split} &\tilde{\xi}_{N_r,j} = \frac{h_r}{2} \left[\tilde{f} + \frac{\partial}{\partial r} \left(\tilde{k}_1 \frac{\partial u}{\partial r} \right) + \frac{\partial}{\partial z} \left(\tilde{k}_2 \frac{\partial u}{\partial z} \right) \right]_{N_r,j} - \left[\tilde{k}_1 \frac{\partial u}{\partial r} + r(\chi_2 u - \varphi(z)) \right]_{N_r,j} + \\ &+ h_r^2 \left[\frac{1}{6} \tilde{k}_1 \frac{\partial^3 u}{\partial r^3} + \frac{1}{4} \frac{\partial \tilde{k}_1}{\partial r} \frac{\partial^2 u}{\partial r^2} + \frac{1}{8} \frac{\partial^2 \tilde{k}_1}{\partial r^2} \frac{\partial u}{\partial r} \right]_{N_r,j} + \mathcal{O}(h_r^3) + \\ &+ \frac{h_r}{2} \left[h_z^2 \left(\frac{1}{12} \tilde{k}_2 \frac{\partial^4 u}{\partial z^4} + \frac{1}{6} \frac{\partial \tilde{k}_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{8} \frac{\partial^2 \tilde{k}_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{24} \frac{\partial^3 \tilde{k}_2}{\partial z^3} \frac{\partial u}{\partial z} \right)_{N_r,j} + \mathcal{O}(h_z^3) \right] \end{split}$$

Уберём замену и вернёмся к старым обозначениям:

$$\begin{split} &\tilde{\xi}_{N_r,j} = \frac{h_r}{2} \left[rf + \frac{\partial}{\partial r} \left(rk_1 \frac{\partial u}{\partial r} \right) + \frac{\partial}{\partial z} \left(rk_2 \frac{\partial u}{\partial z} \right) \right]_{N_r,j} - \left[rk_1 \frac{\partial u}{\partial r} + r(\chi_2 u - \varphi(z)) \right]_{N_r,j} + \\ &+ h_r^2 \left[\frac{1}{6} rk_1 \frac{\partial^3 u}{\partial r^3} + \frac{1}{4} \frac{\partial rk_1}{\partial r} \frac{\partial^2 u}{\partial r^2} + \frac{1}{8} \frac{\partial^2 rk_1}{\partial r^2} \frac{\partial u}{\partial r} \right]_{N_r,j} + \mathcal{O}(h_r^3) + \\ &+ \frac{h_r}{2} \left[h_z^2 \left(\frac{1}{12} rk_2 \frac{\partial^4 u}{\partial z^4} + \frac{1}{6} \frac{\partial rk_2}{\partial z} \frac{\partial^3 u}{\partial z^3} + \frac{1}{8} \frac{\partial^2 rk_2}{\partial z^2} \frac{\partial^2 u}{\partial z^2} + \frac{1}{24} \frac{\partial^3 rk_2}{\partial z^3} \frac{\partial u}{\partial z} \right)_{N_r,j} + \mathcal{O}(h_z^3) \right] \end{split}$$

Заметим, что:

$$\begin{split} \left[rk1\frac{\partial u}{\partial r} + r(\chi_2 u - \varphi(z)) \right]_{N_r,j} &= 0 \\ \left[rf + \frac{\partial}{\partial r} \left(\tilde{k}_1 \frac{\partial u}{\partial r} \right) + \frac{\partial}{\partial z} \left(\tilde{k}_2 \frac{\partial u}{\partial z} \right) \right]_{N_r,j} &= 0 \end{split}$$

Порядок аппроксимации $p_r=2-0=2, p_z=2-0=2.$ Можно сделать вывод, что полученная разностная схема имеет второй порядок аппроксимации.

4 Запись СЛАУ

Перейдём к одноиндексной записи

$$m = j(N_r + 1) + i$$

Индексы изменяются в следующих границах:

$$0 \le i \le N_r$$

$$0 \le j \le N_z$$

Тогда имеем:

$$0 \leq m < (N_r+1)(N_y+1)$$

4.1 Запись для внутренних точек

Перепишем наше уравнение с использованием нового индеса для $i\in(0,N_r)$ и $j\in(0,N_z)$:

$$\begin{split} &-\left[h_zr_{i+\frac{1}{2}}k_1(r_{i+\frac{1}{2}},z_j)\frac{v_{i+1,j}-v_{i,j}}{h_r}-h_zr_{i-\frac{1}{2}}k_1(r_{i-\frac{1}{2}},z_j)\frac{v_{i,j}-v_{i-1,j}}{h_r}\right.\\ &\left.+h_rr_ik_2(r_i,z_{j+\frac{1}{2}})\frac{v_{i,j+1}-v_{i,j}}{h_z}-h_rr_ik_2(r_i,z_{j-\frac{1}{2}})\frac{v_{i,j}-v_{i,j-1}}{h_z}\right]=h_rh_zr_if_{i,j} \end{split}$$

$$\begin{split} &-\frac{h_r}{h_z}r_ik_2(r_i,z_{j-\frac{1}{2}})v_{i,j-1}-\frac{h_z}{h_r}r_{i-\frac{1}{2}}k_1(r_{i-\frac{1}{2}},z_j)v_{i-1,j}+\\ &+\left[\frac{h_z}{h_r}r_{i+\frac{1}{2}}k_1(r_{i+\frac{1}{2}},z_j)+\frac{h_z}{h_r}r_{i-\frac{1}{2}}k_1(r_{i-\frac{1}{2}},z_j)+\frac{h_r}{h_z}r_ik_2(r_i,z_{j+\frac{1}{2}})+\frac{h_r}{h_z}r_ik_2(r_i,z_{j-\frac{1}{2}})\right]v_{i,j}\\ &-\frac{h_z}{h_r}r_{i+\frac{1}{2}}k_1(r_{i+\frac{1}{2}},z_j)v_{i+1,j}-\frac{h_r}{h_z}r_ik_2(r_i,z_{j+1})v_{i,j+\frac{1}{2}}=h_rh_zr_if_{i,j} \end{split}$$

Введём новые обозначения:

$$a_m w_{m-L} + b_m w_{m-1} + c_m w_m + d_m w_{m+1} + e_m w_{m+L} = g_m$$

где коэффициенты равны:

$$a_m=-\frac{h_r}{h_z}r_ik_2(r_i,z_{j-\frac{1}{2}})$$

$$b_m = -\frac{h_z}{h_-} r_{i-\frac{1}{2}} k_1(r_{i-\frac{1}{2}}, z_j)$$

$$c_m = \frac{h_z}{h_r} r_{i+\frac{1}{2}} k_1(r_{i+\frac{1}{2}}, z_j) + \frac{h_z}{h_r} r_{i-\frac{1}{2}} k_1(r_{i-\frac{1}{2}}, z_j) + \frac{h_r}{h_z} r_i k_2(r_i, z_{j+\frac{1}{2}}) + \frac{h_r}{h_z} r_i k_2(r_i, z_{j-\frac{1}{2}})$$

$$\begin{split} d_m &= -\frac{h_z}{h_r} r_{i+\frac{1}{2}} k_1(r_{i+\frac{1}{2}}, z_j) \\ e_m &= -\frac{h_r}{h_z} r_i k_2(r_i, z_{j+\frac{1}{2}}) \\ g_m &= h_r h_z r_i f_{i,j} \end{split}$$

4.2 Запись для левой границы

Перепишем наше уравнение с использованием нового индекса для i=0 и $j\in(0,N_z)$:

$$\begin{split} &-\left[h_{z}r_{\frac{1}{2}}k_{1}(r_{\frac{1}{2}},z_{j})\frac{v_{1,j}-v_{0,j}}{h_{r}}-0\right.\\ &+\frac{h_{r}}{2}\frac{r_{\frac{1}{2}}}{2}k_{2}(r_{0},z_{j+\frac{1}{2}})\frac{v_{0,j+1}-v_{0,j}}{h_{z}}-\frac{h_{r}}{2}\frac{r_{\frac{1}{2}}}{2}k_{2}(r_{0},z_{j-\frac{1}{2}})\frac{v_{0,j}-v_{0,j-1}}{h_{z}}\right]=\frac{h_{r}}{2}\frac{r_{\frac{1}{2}}}{2}h_{z}f_{0,j}\\ &-\frac{h_{r}}{2h_{z}}\frac{r_{\frac{1}{2}}}{2}k_{2}(r_{0},z_{j-\frac{1}{2}})v_{0,j-1}+\\ &+\left[\frac{h_{z}}{h_{r}}r_{\frac{1}{2}}k_{1}(r_{\frac{1}{2}},z_{j})+\frac{h_{r}}{2h_{z}}\frac{r_{\frac{1}{2}}}{2}k_{2}(r_{0},z_{j+\frac{1}{2}})+\frac{h_{r}}{2h_{z}}\frac{r_{\frac{1}{2}}}{2}k_{2}(r_{0},z_{j-\frac{1}{2}})\right]v_{0,j}\\ &-\frac{h_{z}}{h}r_{\frac{1}{2}}k_{1}(r_{\frac{1}{2}},z_{j})v_{1,j}-\frac{h_{r}}{2h}\frac{r_{\frac{1}{2}}}{2}k_{2}(r_{0},z_{j+\frac{1}{2}})v_{0,j+1}=\frac{h_{r}}{2}\frac{r_{\frac{1}{2}}}{2}h_{z}f_{0,j} \end{split}$$

Введём новые обозначения:

$$a_m w_{m-L} + c_m w_m + d_m w_{m+1} + e_m w_{m+L} = g_m$$

где коэффициенты равны:

$$\begin{split} a_m &= -\frac{h_r}{2h_z} \frac{r_{\frac{1}{2}}}{2} k_2(r_0, z_{j-\frac{1}{2}}) \\ c_m &= \frac{h_z}{h_r} r_{\frac{1}{2}} k_1(r_{\frac{1}{2}}, z_j) + \frac{h_r}{2h_z} \frac{r_{\frac{1}{2}}}{2} k_2(r_0, z_{j+\frac{1}{2}}) + \frac{h_r}{2h_z} \frac{r_{\frac{1}{2}}}{2} k_2(r_0, z_{j-\frac{1}{2}}) \\ d_m &= -\frac{h_z}{h_r} r_{\frac{1}{2}} k_1(r_{\frac{1}{2}}, z_j) \\ e_m &= -\frac{h_r}{2h_z} \frac{r_{\frac{1}{2}}}{2} k_2(r_0, z_{j+\frac{1}{2}}) \\ g_m &= \frac{h_r}{2} \frac{r_{\frac{1}{2}}}{2} h_z f_{0,j} \end{split}$$

4.3 Запись для правой границы

Перепишем наше уравнение с использованием нового индекса для $i=N_r$ и $j\in(0,N_z)$:

$$\begin{split} &-\left[-h_{z}r_{N_{r}}(\chi_{2}v_{N_{r},j}-\varphi_{2}(z))-h_{z}r_{N_{r}-\frac{1}{2}}k_{1}(r_{N_{r}-\frac{1}{2}},z_{j})\frac{v_{N_{r},j}-v_{N_{r}-1,j}}{h_{r}}\right.\\ &+\frac{h_{r}}{2}r_{N_{r}}k_{2}(r_{N_{r}},z_{j+\frac{1}{2}})\frac{v_{N_{r},j+1}-v_{N_{r},j}}{h_{z}}-\frac{h_{r}}{2}r_{N_{r}}k_{2}(r_{N_{r}},z_{j-\frac{1}{2}})\frac{v_{N_{r},j}-v_{N_{r},j-1}}{h_{z}}\right]=\frac{h_{r}}{2}r_{N_{r}}h_{z}f_{N_{r},j}\\ &-\frac{h_{r}}{2h_{z}}r_{N_{r}}k_{2}(r_{N_{r}},z_{j-\frac{1}{2}})v_{N_{r},j-1}-\frac{h_{z}}{h_{r}}r_{N_{r}-\frac{1}{2}}k_{1}(r_{N_{r}-\frac{1}{2}},z_{j})v_{N_{r}-1,j}\\ &+\left[h_{z}r_{N_{r}}\chi_{2}+\frac{h_{z}}{h_{r}}r_{N_{r}-\frac{1}{2}}k_{1}(r_{N_{r}-\frac{1}{2}},z_{j})+\frac{h_{r}}{2h_{z}}r_{N_{r}}k_{2}(r_{N_{r},z_{j+\frac{1}{2}}})+\frac{h_{r}}{2h_{z}}r_{N_{r}}k_{2}(r_{N_{r}},z_{j-\frac{1}{2}})\right]v_{N_{r},j}\\ &-\frac{h_{r}}{2h}r_{N_{r}}k_{2}(r_{N_{r}},z_{j+\frac{1}{2}})v_{N_{r},j+1}=\frac{h_{r}}{2}r_{N_{r}}h_{z}f_{N_{r},j}+h_{z}r_{N_{r}}\varphi_{2}(z) \end{split}$$

Введём новые обозначения:

$$a_m w_{m-L} + b_m w_{m-1} + c_m w_m + e_m w_{m+L} = g_m$$

где коэффициенты:

$$\begin{split} a_m &= -\frac{h_r}{2h_z} r_{N_r} k_2(r_{N_r}, z_{j-\frac{1}{2}}) \\ b_m &= -\frac{h_z}{h_r} r_{N_r - \frac{1}{2}} k_1(r_{N_r - \frac{1}{2}}, z_j) \\ c_m &= h_z r_{N_r} \chi_2 + \frac{h_z}{h_r} r_{N_r - \frac{1}{2}} k_1(r_{N_r - \frac{1}{2}}, z_j) + \frac{h_r}{2h_z} r_{N_r} k_2(r_{N_r, z_{j+\frac{1}{2}}}) + \frac{h_r}{2h_z} r_{N_r} k_2(r_{N_r}, z_{j-\frac{1}{2}}) \\ e_m &= -\frac{h_r}{2h_z} r_{N_r} k_2(r_{N_r}, z_{j+\frac{1}{2}}) \\ g_m &= \frac{h_r}{2} r_{N_r} h_z f_{N_r, j} + h_z r_{N_r} \varphi_2(z) \end{split}$$

4.4 Запись для нижней границы

Перепишем наше уравнение с использованием нового индекса для $i \in (0,N_r)$ и j=0:

$$\begin{split} -\left[\frac{h_z}{2}r_{i+\frac{1}{2}}k_1(r_{i+\frac{1}{2}},z_0)\frac{v_{i+1,0}-v_{i,0}}{h_r} - \frac{h_z}{2}r_{i-\frac{1}{2}}k_1(r_{i-\frac{1}{2}},z_0)\frac{v_{i,0}-v_{i-1,0}}{h_r} \right. \\ \left. + h_r r_i k_2(r_i,z_{\frac{1}{2}})\frac{v_{i,1}-v_{i,0}}{h_z} - h_r r_i(\chi_3 v_{i,0} - \varphi_3(r))\right] = h_r \frac{h_z}{2}r_i f_{i,0} \end{split}$$

$$\begin{split} &-\frac{h_z}{2h_r}v_{i-\frac{1}{2}}k_1(r_{i-\frac{1}{2}},z_0)v_{i-1,0} \\ &+\left[h_rr_i\chi_3+\frac{h_z}{2h_r}r_{i+\frac{1}{2}}k_1(r_{i+\frac{1}{2}},z_0)+\frac{h_z}{2h_r}r_{i-\frac{1}{2}}k_1(r_{i-\frac{1}{2}},z_0)+\frac{h_r}{h_z}r_ik_2(r_i,z_{\frac{1}{2}})\right]v_{i,0} \\ &-\frac{h_z}{2h_r}r_{i+\frac{1}{2}}k_1(r_{i+\frac{1}{2}},z_0)v_{i+1,0}-\frac{h_r}{h_z}r_ik_2(r_i,z_{\frac{1}{2}})v_{i,1}=h_r\frac{h_z}{2}r_if_{i,0}+h_rr_i\varphi(r) \end{split}$$

Введём новые обозначения:

$$b_m w_{m-1} + c_m w_m + d_m w_{m+1} + e_m w_{m+L} = g_m$$

где коэффициенты ранвы:

$$\begin{split} b_m &= -\frac{h_z}{2h_r} r_{i-\frac{1}{2}} k_1(r_{i-\frac{1}{2}}, z_0) \\ c_m &= h_r r_i \chi_3 + \frac{h_z}{2h_r} r_{i+\frac{1}{2}} k_1(r_{i+\frac{1}{2}}, z_0) + \frac{h_z}{2h_r} r_{i-\frac{1}{2}} k_1(r_{i-\frac{1}{2}}, z_0) + \frac{h_r}{h_z} r_i k_2(r_i, z_{\frac{1}{2}}) \\ d_m &= -\frac{h_z}{2h_r} r_{i+\frac{1}{2}} k_1(r_{i+\frac{1}{2}}, z_0) \\ e_m &= -\frac{h_r}{h_z} r_i k_2(r_i, z_{\frac{1}{2}}) \\ g_m &= h_r \frac{h_z}{2} r_i f_{i,0} + h_r r_i \varphi_3(r) \end{split}$$

4.5 Запись для верхней границы

Перепишем наше уравнение с использованием нового индекса для $i \in [0,N_r]$ и $j=N_z$:

$$v_{i,N_z} = \varphi(r_i)$$

Перейдём к новым обозначениям:

$$c_m w_m = \varphi_m$$

где:

$$c_m = 1, \quad \varphi_m = \varphi_4(r_i)$$

4.6 Запись для левой нижней граничной точки

Перепишем наше уравнение с использованием нового индекса для i=0 и j=0:

$$\begin{split} &-\left[\frac{h_z}{2}r_{\frac{1}{2}}k_1(r_{\frac{1}{2}},z_0)\frac{v_{1,0}-v_{0,0}}{h_r}-0\right.\\ &\left.+\frac{h_r}{2}\frac{r_{\frac{1}{2}}}{2}k_2(r_0,z_{\frac{1}{2}})\frac{v_{0,1}-v_{0,0}}{h_z}-\frac{h_r}{2}\frac{r_{\frac{1}{2}}}{2}(\chi_3v_{0,0}-\varphi_3(r))\right]=\frac{h_r}{2}\frac{h_z}{2}\frac{r_{\frac{1}{2}}}{2}f_{0,0} \end{split}$$

$$\begin{split} & \left[\frac{h_z}{2h_r} r_{\frac{1}{2}} k_1(r_{\frac{1}{2}}, z_0) + \frac{h_r}{2h_z} \frac{r_{\frac{1}{2}}}{2} k_2(r_0, z_{\frac{1}{2}}) + \frac{h_r}{2} \frac{r_{\frac{1}{2}}}{2} \chi_3 \right] v_{0,0} - \\ & - \frac{h_z}{2h_r} r_{\frac{1}{2}} k_1(r_{\frac{1}{2}}, z_0) v_{1,0} - \frac{h_r}{2h_z} \frac{r_{\frac{1}{2}}}{2} k_2(r_0, z_{\frac{1}{2}}) v_{0,1} = \frac{h_r}{2} \frac{h_z}{2} \frac{r_{\frac{1}{2}}}{2} f_{0,0} + \frac{h_r}{2} \frac{r_{\frac{1}{2}}}{2} \varphi_3(r_0) \end{split}$$

Введём новые обозначения:

$$c_m w_m + d_m w_{m+1} + e_m w_{m+L} = g_m$$

где коэффициенты ранвы:

$$\begin{split} c_m &= \frac{h_z}{2h_r} r_{\frac{1}{2}} k_1(r_{\frac{1}{2}}, z_0) + \frac{h_r}{2h_z} \frac{r_{\frac{1}{2}}}{2} k_2(r_0, z_{\frac{1}{2}}) + \frac{h_r}{2} \frac{r_{\frac{1}{2}}}{2} \chi_3 \\ d_m &= -\frac{h_z}{2h_r} r_{\frac{1}{2}} k_1(r_{\frac{1}{2}}, z_0) \\ e_m &= -\frac{h_r}{2h_z} \frac{r_{\frac{1}{2}}}{2} k_2(r_0, z_{\frac{1}{2}}) \\ g_m &= \frac{h_r}{2} \frac{h_z}{2} \frac{r_{\frac{1}{2}}}{2} f_{0,0} + \frac{h_r}{2} \frac{r_{\frac{1}{2}}}{2} \varphi_3(r_0) \end{split}$$

4.7 Запись для правой нижней граничной точки

Перепишем наше уравнение с использованием нового индекса для $i=N_r$ и j=0:

$$\begin{split} -\left[-\frac{h_z}{2}r_{N_r}(\chi_2v_{N_r,0}-\varphi_2(z)) - \frac{h_z}{2}r_{N_r-\frac{1}{2}}k_1(r_{N_r-\frac{1}{2}},z_0)\frac{v_{N_r,0}-v_{N_r-1,0}}{h_r}\right.\\ \left. + \frac{h_r}{2}r_{N_r}k_2(r_{N_r},z_{\frac{1}{2}})\frac{v_{N_r,1}-v_{N_r,0}}{h_z} - \frac{h_r}{2}r_{N_r}(\chi_3v_{N_r,0}-\varphi_3(r))\right] = \frac{h_r}{2}\frac{h_z}{2}r_{N_r}f_{N_r,0} \end{split}$$

$$\begin{split} &-\frac{h_z}{2h_r}r_{N_r-\frac{1}{2}}k_1(r_{N_r-\frac{1}{2}},z_0)v_{N_r-1,0} + \\ &+ \left[\frac{h_z}{2}r_{N_r}\chi_2 + \frac{h_z}{2h_r}r_{N_r-\frac{1}{2}}k_1(r_{N_r-\frac{1}{2}},z_0) + \frac{h_r}{2h_z}r_{N_r}k_2(r_{N_r,z_{\frac{1}{2}}}) + \frac{h_r}{2}r_{N_r}\chi_3\right]v_{N_r,0} - \\ &- \frac{h_r}{2h_z}r_{N_r}k_2(r_{N_r},z_{\frac{1}{2}})v_{N_r,1} = \frac{h_r}{2}\frac{h_z}{2}r_{N_r}f_{N_r,0} + \frac{h_z}{2}r_{N_r}\varphi_2(z) + \frac{h_r}{2}r_{N_r}\varphi_3(r) \end{split}$$

Введём новые обозначения:

$$b_m w_{m-1} + c_m w_m + e_m w_{m+L} = g_m$$

где коэффициенты равны:

$$\begin{split} b_m &= -\frac{h_z}{2h_r} r_{N_r - \frac{1}{2}} k_1(r_{N_r - \frac{1}{2}}, z_0) \\ c_m &= \frac{h_z}{2} r_{N_r} \chi_2 + \frac{h_z}{2h_r} r_{N_r - \frac{1}{2}} k_1(r_{N_r - \frac{1}{2}}, z_0) + \frac{h_r}{2h_z} r_{N_r} k_2(r_{N_r, z_{\frac{1}{2}}}) + \frac{h_r}{2} r_{N_r} \chi_3 \\ e_m &= -\frac{h_r}{2h_z} r_{N_r} k_2(r_{N_r}, z_{\frac{1}{2}}) \\ g_m &= \frac{h_r}{2} \frac{h_z}{2} r_{N_r} f_{N_r, 0} + \frac{h_z}{2} r_{N_r} \varphi_2(z) + \frac{h_r}{2} r_{N_r} \varphi_3(r) \end{split}$$

В итоге мы получаем СЛАУ с нессиметричной матрицей, а метод сопряжённых градиентов требует от нас использования системы с симметричной матрицей. Для того чтобы привести нашу матрицу к симметричной, воспользуемся сложением и вычитанием строк.

В итоге мы получаем симметричную матрицу:

Данную систему мы будем решать методом сопряжённых градиентов.

5 Метод сопряжённых градиентов

Для решения системы линейных алгебраических уравнений использовать метод сопряженных градиентов с предобусловливанием. Опишем метод решения следующей системы:

$$Ax = b$$

где А - симметричная, положительно определённая, матрица.

5.1 Явный метод

```
1 r^{(0)} = b - Ax^{(0)}

2 s^{(1)} = r^{(0)}

3 \gamma = \sqrt{(b,b)}

4 for k = 1 to k_{max} do

5 \alpha_k = \frac{\left(r^{(k-1)}, r^{(k-1)}\right)}{\left(As^{(k)}, s^{(k)}\right)}

6 x^{(k)} = x^{(k-1)} + \alpha_k s^{(k)}

7 r^{(k)} = r^{(k-1)} - \alpha_k s^{(k-1)}

8 if \sqrt{(r^{(k)}, r^{(k)})} < \gamma \varepsilon then

9 break

10 end

11 \beta_k = \frac{\left(r^{(k)}, r^{(k)}\right)}{\left(r^{(k-1)}, r^{(k-1)}\right)}

12 s^{(k+1)} = r^{(k)} + \beta_k s^{(k)}

13 end
```

5.2 Неявный метод

Неявный метод основывается на использовании предобуславливания. Идея заключается в том, чтобы выбрать матрицу ${\bf B}$, которая является симметричной и положительно определенной, и приблизительно равна матрице ${\bf A}$. Мы выбираем ${\bf B}$ в виде $B=\tilde{L}\tilde{L}^T$, где $\tilde{L}\tilde{L}^T$ представляет собой неполное разложение Холецкого для матрицы ${\bf A}$. Позже мы объясним, почему такой выбор матрицы ${\bf B}$ считается оптимальным.

```
1 r^{(0)} = b - Ax^{(0)}
  2 Bw^{(0)} = r^{(0)}
  s^{(1)} = w^{(0)}
  4 Bg = b
  5 \gamma = \sqrt{(g, b)}
 \begin{array}{ll} \mathbf{5} & \mathbf{7} - \mathbf{V}(g,\, \theta) \\ \mathbf{6} & \mathbf{for} \ k = 1 \ \mathbf{to} \ k_{max} \ \mathbf{do} \\ \mathbf{7} & \alpha_k = \frac{\left(w^{(k-1)}, \ r^{(k-1)}\right)}{\left(As^{(k)}, \ s^{(k)}\right)} \\ \mathbf{8} & x^{(k)} = x^{(k-1)} + \alpha_k s^{(k)} \end{array}
                      r^{(k)} = r^{(k-1)} - \alpha_k s^{(k-1)}
  9
                      Bw^{(k)}=r^{(k)}
10
                      if \sqrt{(w^{(k)}, r^{(k)})} < \gamma \varepsilon then
11
                                    break
12
                      end
13
                    \begin{split} \beta_k &= \frac{\left(w^{(k)}, \ r^{(k)}\right)}{\left(w^{(k-1)}, \ r^{(k-1)}\right)} \\ s^{(k+1)} &= w^{(k)} + \beta_k s^{(k)} \end{split}
14
15
16 end
```

Для решения системы Bw(k)=r(k) мы используем метод Гаусса. При выборе $B=\tilde{L}\tilde{L}^T$, нам остается выполнить только две обратные подстановки: $\tilde{L}z^{(k)}=r^k$ и $\tilde{L}^Tw^{(k)}=z^{(k)}$.

6 Тестирование

Протестируем постренную модель на следующих тестовых наборах:

<u>№</u> теста	$k_1(r,z)$	$k_2(r,z)$	u(r,z)
1	r + z + 3	r + z + 3	1
2	3r + 2z + 1	3r + 2z + 1	r^2
3	$(r+z+3)^2$	$(r+z+3)^2$	$(r + 2z)^2$
4	$(r+2z+3)^3$	$(r+2z+3)^3$	$r^3 + z^2$

Все тесты имеют общие значения:

$$r\in[0,1],\quad z\in[0,2]$$

$$\chi_2 = 2, \quad \chi_3 = 3$$

Функция $f, \varphi_2, \varphi_3, \varphi_4$ вычисляют программно с использованием символичных вычислений и не приведены в описании тестов.

Погрешность решения задачи вычисляется следующим образом:

$$\delta_1 = \frac{||v - \tilde{v}||_1}{||v||_1}$$

$$\delta_2 = \frac{||v - \tilde{v}||_2}{||v||_2}$$

$$\delta_3 = \frac{||v - \tilde{v}||_{\infty}}{||v||_{\infty}}$$

Значение ε для метода сопряжённых градиентов равно 10^{-8} .

Тест №1Имеем лишь ошибку округления.

N_r	N_z	n	δ_1	δ_2	δ_3
2	2	8	4.324e - 16	7.63e - 16	4.064e - 16
4	4	27	2.514e - 11	2.419e - 11	2.88e - 11
8	8	62	1.354e - 10	1.284e - 10	1.868e - 10
16	16	117	2.3e - 10	6.527e - 10	1.151e - 10
32	32	306	5.921e - 09	1.849e - 09	4.102e - 09

Таблица 1: Явный метод

N_r	N_z	n	δ_1	δ_2	δ_3
2	2	5	9.509e - 16	4.186e - 16	9.29e - 16
4	4	9	2.395e - 11	2.574e - 11	4.137e - 11
8	8	15	1.62e - 10	2.34e - 10	1.97e - 10
16	16	25	6.74e - 10	9.82e - 10	2.23e - 10
32	32	46	1.12e - 9	1.59e - 9	3.37e - 9

Таблица 2: Неявный метод

Тест №2 Присутствует ошибка округления и ошибка аппроксимации.

N_r	N_z	n	δ_1	δ_2	δ_3
2	2	8	3.471e - 4	4.164e - 4	7.953e - 4
4	4	21	8.689e - 5	1.041e - 4	1.986e - 4
8	8	55	2.181e - 5	2.624e - 5	4.971e - 5
16	16	107	5.378e - 6	6.47e - 6	1.249e - 5
32	32	208	1.485e - 6	1.589e - 6	3.136e - 6

Таблица 3: Явный метод

$\overline{N_r}$	N_z	n	δ_1	δ_2	δ_3
2	2	5	3.471e - 4	4.164e - 4	7.953e - 4
4	4	8	8.689e - 5	1.041e - 4	1.986e - 4
8	8	14	2.181e - 5	2.624e - 5	4.971e - 5
16	16	27	5.378e - 6	6.47e - 6	1.249e - 5
32	32	44	1.485e - 6	1.589e - 6	3.136e - 6

Таблица 4: Неявный метод

Тест №3

Присутствует ошибка округления и ошибка аппроксимации.

N_r	N_z	n	δ_1	δ_2	δ_3
2	2	7	6.74e - 2	7.374e - 2	6.27e - 2
4	4	22	1.989e - 2	1.842e - 2	1.566e - 2
8	8	41	4.975e - 3	4.587e - 3	3.918e - 3
16	16	163	1.214e - 3	1.11e - 3	9.937e - 4
32	32	269	3.256e - 4	2.976e - 4	2.232e - 4

Таблица 5: Явный метод

N_r	N_z	n	δ_1	δ_2	δ_3
2	2	5	6.74e - 2	7.374e - 2	6.27e - 2
4	4	8	1.989e - 2	1.842e - 2	1.566e - 2
8	8	15	4.975e - 3	4.587e - 3	3.918e - 3
16	16	25	1.214e - 3	1.11e - 3	9.937e - 4
32	32	47	3.256e - 4	2.976e - 4	2.232e - 4

Таблица 6: * Неявный метод

Тест №4 Присутствует ошибка округления и ошибка аппроксимации.

N_r	N_z	n	δ_1	δ_2	δ_3
2	2	7	1.074e - 1	9.374e - 2	1.28e - 1
4	4	22	2.7029e - 2	2.4e - 3	3.176e - 2
8	8	41	6.64e - 3	6.036e - 3	8.085e - 3
16	16	107	1.568e - 3	1.491e - 3	1.78e - 3
32	32	246	4.755e - 4	3.628e - 4	5.098e - 4

Таблица 7: Явный метод

N_r	N_z	n	δ_1	δ_2	δ_3
2	2	4	1.074e - 1	9.374e - 2	1.28e - 1
4	4	7	2.7029e - 2	2.4e - 3	3.176e - 2
8	8	17	6.64e - 3	6.036e - 3	8.085e - 3
16	16	29	1.568e - 3	1.491e - 3	1.78e - 3
32	32	51	4.755e - 4	3.628e - 4	5.098e - 4

Таблица 8: Неявный метод

По значениям наших тестов можно сделать следующие выводы:

- Неявный метод имеет значительно большую скорость сходимости.
- Увеличение числа разбиений в два раза приводит к уменьшению погрешности примерно в четыре раза при наличии ошибки аппроксимации.

7 Заключение

В рамках данной курсовой работы мы использовали свои практические знания для написания программного обеспечения, которое моделирует стационарные процессы теплопроводности. Мы построили дискретную модель и протестировали её.

Была разработана программа моделирования стационарных процессов теплопроводности. Привидены результаты экспериментального исследования точности программного обеспечения.

Код программы

```
--- grid.py -
   from typing import Tuple, Callable
3
   def get_x(a: float, b: float, Nx: int) -> Tuple[Callable[[int], float], Callable[[int],

  float]]:

       hx = (b - a) / Nx
5
6
        def inner1(i: int) -> float:
7
            """returns x_{i}"""
            if i < 0 or i > Nx:
                raise KeyError()
10
11
            return a + i * hx
12
13
        def inner2(i: int) -> float:
14
            """returns x_{i+1/2}"""
15
            if i < 0 or i >= Nx:
16
                raise KeyError()
17
18
            return a + (i + 0.5) * hx
19
20
        return (inner1, inner2)
21
22
23
   def get_y(c: float, d: float, Ny: int) -> Tuple[Callable[[int], float], Callable[[int],
24

  float]]:

        hy = (d - c) / Ny
25
26
        def inner1(j: int) -> float:
27
            """returns y {j}"""
28
            if j < 0 or j > Ny:
29
                raise KeyError()
30
31
            return c + j * hy
32
33
        def inner2(j: int) -> float:
34
            """returns y_{j+1/2}"""
35
            if j < 0 or j >= Ny:
36
                raise KeyError()
37
38
            return c + (j + 0.5) * hy
39
40
        return (inner1, inner2)
41
```

```
- linalg.py _-
   import math
1
   from typing import List
   from sparse_matrix import *
5
   def is_symmetric(m: SparseMatrix):
6
        sz = m.size()
7
        for i in range(sz):
10
            for j in range(sz):
                if m.get(i, j) != m.get(j, i):
11
                     return False
12
13
        return True
14
15
16
    def add_vv(v1: List[float], v2: List[float]) -> List[float]:
17
        sz = len(v1)
18
19
        rez = [0] * sz
20
        for i in range(sz):
21
            rez[i] = v1[i] + v2[i]
22
23
        return rez
24
25
   def mul_sv(a: float, v: List[float]) -> List[float]:
26
27
        sz = len(v)
        rez = [0] * sz
28
29
        for i in range(sz):
30
            rez[i] = v[i] * a
31
32
        return rez
33
34
   def sub_vv(v1: List[float], v2: List[float]) -> List[float]:
35
        return add_vv(v1, mul_sv(-1, v2))
36
37
   def mul_vv(v1: List[float], v2: List[float]) -> float:
38
        sz = len(v1)
39
        rez = 0
40
41
        for i in range(sz):
42
            rez += v1[i] * v2[i]
43
44
45
        return rez
```

46

```
def mul_mv(m: SparseMatrix, v: List[float]) -> List[float]:
47
        sz = len(v)
48
        rez = [0] * sz
49
50
        for i in range(sz):
51
            for j, d in m.get(i):
52
                 if i == j:
53
                     continue
54
                 rez[i] += d * v[j]
55
                 if m.is_symmetric():
56
                     rez[j] += d * v[i]
57
        for i in range(sz):
59
            rez[i] += m.get(i, i) * v[i]
60
61
        return rez
62
63
    def mul_mm(m1: SparseMatrix, m2: SparseMatrix) -> SparseMatrixCOO:
64
        sz = m1.size()
65
        rez = SparseMatrixCOO()
66
        for i in range(sz):
68
            for j in range(sz):
69
                 acc = 0
70
                 for k in range(sz):
71
                     acc += m1.get(i, k) * m2.get(k, j)
72
73
                 rez.set(i, j, acc)
74
75
76
        return rez
77
    def transpose(m: SparseMatrix) -> SparseMatrixCOO:
78
        sz = m.size()
79
        rez = SparseMatrixCOO()
80
81
        for i in range(sz):
82
            for j, d in m.get(i):
83
84
                 rez.set(j, i, d)
85
        return rez
86
87
   def copy_v(v: List[float]) -> List[float]:
88
        sz = len(v)
89
        rez = [0] * sz
90
91
        for i in range(sz):
92
```

```
rez[i] = v[i]
93
94
95
         return rez
96
    def _cholesky_solve(L: SparseMatrix, r: List[float]) -> List[float]:
97
         sz = len(r)
98
99
         LT = transpose(L)
100
101
         z = [0] * sz
102
         for i in range(sz):
103
             acc = r[i]
104
             for j, d in L.get(i):
105
                  if j < i:
106
                      acc -= d * z[j]
107
108
             z[i] = acc / L.get(i, i)
109
110
         w = [0] * sz
111
         for i in range(sz - 1, -1, -1):
112
             acc = z[i]
113
             for j, d in LT.get(i):
114
                  if j > i:
115
                      acc -= d * w[j]
116
117
             w[i] = acc / LT.get(i, i)
118
119
         return w
120
121
    def conjgrad(A: SparseMatrix, b: List[float], x: List[float],
122
123
                   eps: float, maxiter: int=10000, L: SparseMatrix=None) -> List[float]:
124
         nsteps = 0
125
         if L == None:
126
             r = sub_vv(b, mul_mv(A, x))
127
             p = copy_v(r)
128
             gamma = math.sqrt( mul_vv(b, b) )
129
130
             rsold = mul_vv(r, r)
131
132
             while nsteps < maxiter:
133
                  nsteps += 1
134
135
                  Ap = mul_mv(A, p)
136
                  alpha = rsold / mul_vv(p, Ap)
137
138
```

```
x = add_vv(x, mul_sv(alpha, p))
139
                  r = sub_vv(r, mul_sv(alpha, Ap))
140
141
                  rsnew = mul_vv(r, r)
142
                  if math.sqrt(rsnew) < gamma * eps:</pre>
143
                      break
144
145
                  p = add_vv(r, mul_sv(rsnew / rsold, p))
146
                  rsold = rsnew
147
         else:
148
             r = sub_vv(b, mul_mv(A, x))
149
             w = _cholesky_solve(L, r)
150
151
             p = w
152
             g = _cholesky_solve(L, b)
             gamma = math.sqrt( mul_vv(g, b) )
153
154
             rsold = mul_vv(w, r)
155
156
             while nsteps < maxiter:
157
                  nsteps += 1
158
159
                  Ap = mul_mv(A, p)
160
                  alpha = rsold / mul_vv(p, Ap)
161
162
                  x = add_vv(x, mul_sv(alpha, p))
163
                  r = sub_vv(r, mul_sv(alpha, Ap))
164
                  w = _cholesky_solve(L, r)
165
166
                  rsnew = mul_vv(w, r)
167
                  if math.sqrt(rsnew) < gamma * eps:</pre>
168
                      break
169
170
                  p = add_vv(w, mul_sv(rsnew / rsold, p))
171
                  rsold = rsnew
172
173
174
         return (x, nsteps)
                                               _{-} main.py
    from sympy import symbols, Float, log, cos, sin
    from utils import *
    import math
 4
 5
    from model import Model
 6
    from linalg import *
    from grid import *
 8
```

```
a = 0
10
   b = 1
11
12
   c = 0
   d = 2
13
   chi2 = 2
15
   chi3 = 3
16
17
   x, y = symbols("x y")
18
19
   def print_matrix(m):
20
        dummy = ""
21
22
23
        sz = m.size()
24
        print(f"{dummy:3s}", end=" ")
25
        for i in range(sz):
26
            print(f"{i:7d}", end=" ")
27
        print()
28
29
        for i in range(sz):
30
            print(f"{i:3d}", end=" ")
31
            for j in range(sz):
32
                 x = m.get(i, j)
33
                 if x == 0:
34
                     print(f" {0:+7.2f}", end=" ")
35
                 else:
36
                     print(f" {m.get(i, j):+7.2f}", end=" ")
37
            print()
38
39
40
    def print_matrix2(m):
        dummy = ""
41
42
        sz = m.size()
43
44
        # print(f"{dummy:3s}", end=" ")
45
        for i in range(sz):
46
            for j in range(sz):
47
                 x = m.get(i, j)
48
                 if x == 0:
49
                     pass
50
                 else:
51
                     print("\\fill[color=blue!60] (", i, "," , sz - j, ")" , "rectangle (",
52

    j,",", sz - i,");")
            print()
53
54
```

```
def print_vector(label, v):
55
                    print(f"{label}: ", end="")
56
57
                     for x in v:
58
                               print(f"{x:+.5f}", end=" ")
59
60
                    print()
61
62
63
          test_cases = [
64
                     # ( (x + y + 1)**2, (x + y + 1)**3, Float(1) * x**2),
65
                     \# ( (x + y + 1), (x + y + 1), (2 * x + 3 * y + 1) ),
66
                     ((x + y + 1)**2, (x + y + 1)**2, (2 * x + 3 * y + 1) * x**2),
67
                     \# ( (x + y + 1)**3, (x + y + 1)**3, (2 * x + 3 * y + 1) ),
68
                     # ( Float(1), Float(1), (2 * x + 3 * y + 1)**2 ),
69
                     \# ( (x + y + 1), (x + y + 1), (2 * x + 3 * y + 1)**2),
70
                     \# ((x + y + 1), (x + y + 1), (2 * x + 3 * y + 1) **3 * x **2),
71
                     # ( (\cos(x * y) + 2), (\sin(x) * \sin(y) + 2), (x * \log(y + 1))),
72
         ]
73
74
         fmt = "{:>2s}, {:>3s}, {:>4s}, {:>8s}, {:>8s}, {:>4s}, {:>8s}, {:
75
           header = fmt.format(
76
                     "no", "Nx", "Ny",
77
                     "n1", "delta11", "delta12", "delta13",
78
                     "n2", "delta21", "delta22", "delta23"
79
80
         print(header)
81
82
         for test_num, test_case in enumerate(test_cases):
83
84
85
                    k1, k2, u = test_case
86
                    g2 = get_g2(b, chi2, k1, u)
87
                    g3 = get_g3(c, chi3, k2, u)
88
                    g4 = get_g4(d, u)
89
                     f = get_f(u, k1, k2)
91
                    k1 = get_k1(k1)
                    k2 = get_k2(k2)
93
                    u = get_u(u)
94
95
                    mod = Model(a, b, c, d, [k1, k2], f, [chi2, chi3], [g2, g3, g4])
96
97
                    sizes = [
98
                               # (2, 2),
99
```

```
(4, 4),
100
             # (8, 8),
101
             # (16, 16),
102
             # (32, 32),
103
             # (64, 64),
104
         ]
105
106
         for Nx, Ny in sizes:
107
             A, g, L = mod.init_data(Nx, Ny)
108
             sz = A.size()
109
110
             # for i in g:
111
                  print("g =", i)
112
113
             x1, _ = get_x(a, b, Nx)
114
             y1, _ = get_y(c, d, Ny)
115
116
             x0 = [0] * sz
117
118
             x = []
119
             for j in range(Ny + 1):
120
                 for i in range(Nx + 1):
121
                      x.append(u(x1(i), y1(j)))
122
123
             print_matrix2(A)
124
125
             # y, n_steps_1 = conjgrad(A, g, x0, eps=1e-12)
126
127
             # # print_vector("x", x)
128
             # # print_vector("y", y)
129
             # # print_vector("q", q)
130
             # # print_vector("Ay", mul_mv(A, y))
131
             # # print_vector("Ax", mul_mv(A, x))
132
133
             \# delta = sub\_vv(x, y)
134
135
             \# delta_11 = sum([abs(i) for i in delta]) / sum([abs(i) for i in x])
136
             \# delta_12 = math.sqrt(mul_vv(delta, delta) / mul_vv(x, x))
137
             # delta_13 = abs(max(delta, key=lambda x: abs(x)) / max(x, key=lambda x:
138
              \rightarrow abs(x))
139
             \# y, n\_steps\_2 = conjgrad(A, g, x0, eps=1e-8, L=L)
140
141
             \# delta = sub\_vv(x, y)
142
143
             \# delta_21 = sum([abs(i) for i in delta]) / sum([abs(i) for i in x])
144
```

```
# delta_22 = math.sqrt( mul_vv(delta, delta) / mul_vv(x, x) )
145
             # delta_23 = abs(max(delta, key=lambda x: abs(x)) / max(x, key=lambda x:
146
              \rightarrow abs(x)))
147
             # fmt = "{:2d}, {:3d}, {:3d}, {:4d}, {:8.5e}, {:8.5e}, {:8.5e}, {:4d}, {:8.5e},
148

    {:8.5e}, {:8.5e}"

             # record = fmt.format(
149
                    test_num, Nx, Ny,
150
                   n_steps_1, float(delta_11), float(delta_12), float(delta_13),
151
                   n_steps_2, float(delta_21), float(delta_22), float(delta_23),
152
             # )
153
             # # print(record, flush=True)
154
                                             \_ model.py \_
    import math
    from typing import Callable, Tuple
 2
 3
    from grid import *
 4
    from sparse_matrix import *
 5
    from linalg import *
    real1_fn = Callable[[float], float]
    real2_fn = Callable[[float, float], float]
 9
10
11
    def _cholesky_decomp(A, Nx, Ny):
12
         n = (Nx + 1) * (Ny + 1)
13
        m = Nx + 1
14
15
         a = [A.get(i, i) for i in range(n)]
16
         b = [A.get(i, i + 1) for i in range(n - 1)]
17
18
         c = [A.get(i, i + m) for i in range(n - m)]
19
         a_new = []
20
         b_new = []
21
         c_{new} = []
22
23
24
         L = SparseMatrixC00()
25
         for i in range(n):
26
27
             if i - 1 < 0:
28
                 ai = math.sqrt(a[i])
29
             elif i - m < 0:</pre>
30
                 ai = math.sqrt(a[i] - b_new[i - 1]**2)
31
             else:
32
                 ai = math.sqrt(a[i] - b_new[i - 1]**2 - c_new[i - m]**2)
33
```

```
34
            a_new.append(ai)
35
36
            if i < n - 1:</pre>
37
                 bi = b[i] / ai
38
                 b_new.append(bi)
39
40
            if i < n - m:
41
                 ci = c[i] / ai
42
                 c_new.append(ci)
43
44
        for i in range(n):
45
            L.set(i, i, a_new[i])
46
47
        for i in range(n - 1):
48
            L.set(i, i + 1, b_new[i])
49
50
        for i in range(n - m):
51
            L.set(i, i + m, c_new[i])
52
53
        return transpose(L)
55
56
    class Model:
57
        def __init__(self,
58
                      a: float, b: float,
59
                       c: float, d: float,
60
                      k: Tuple[real2_fn],
61
                      f: real2_fn,
62
                       chi: Tuple[float],
63
                      g: Tuple[real1_fn]) -> None:
64
65
            self.a = a
            self.b = b
66
            self.c = c
67
            self.d = d
68
            self.k = k
69
            self.f = f
70
            self.chi = chi
71
             self.g = g
72
73
        def init_data(self, Nx: int, Ny: int):
74
75
            k1, k2 = self.k
76
            f = self.f
77
78
            chi2, chi3 = self.chi #
79
```

```
g2, g3, g4 = self.g \#\varphi
80
81
82
             hx = (self.b - self.a) / Nx
             hy = (self.d - self.c) / Ny
83
84
             x1, x2 = get_x(self.a, self.b, Nx)
85
             y1, y2 = get_y(self.c, self.d, Ny)
86
87
             M = (Nx + 1) * (Ny + 1)
88
             L = (Nx + 1)
89
90
             mtrx = SparseMatrixCOO()
91
92
             g = [0] * M
93
             # inner space
94
             for i in range(1, Nx):
95
                 for j in range(1, Ny):
96
                     m = j * L + i
97
98
                      #print("inner space i =", i, "j =", j, "m =", m)
99
100
                     a1 = (hx / hy) * x1(i) * k2(x1(i), y2(j - 1))
101
                     a2 = (hy / hx) * x2(i - 1) * k1( x2(i - 1), y1(j) )
102
                     a3 = (hy / hx) * x2(i) * k1( x2(i), y1(j) )
103
                     a4 = (hx / hy) * x1(i) * k2( x1(i), y2(j) )
104
105
                     mtrx.set(m, m - L, -a1)
106
                     mtrx.set(m, m - 1, -a2)
107
                     mtrx.set(m, m, a1 + a2 + a3 + a4)
108
                     mtrx.set(m, m + 1, -a3)
109
                     mtrx.set(m, m + L, -a4)
110
111
                     g[m] = hx * hy * x1(i) * f(x1(i), y1(j))
112
             # left edge
113
             i = 0
114
             for j in range(1, Ny):
115
                 m = j * L + i
116
117
                 #print("left edge i=", i, "j =", j, "m =", m)
118
119
                 a1 = (hx / hy / 2) * (x2(i) / 2) * k2( x1(i), y2(j - 1) )
120
                 a3 = (hy / hx) * x2(i) * k1( x2(i), y1(j) )
121
                 a4 = (hx / hy / 2) * (x2(i) / 2) * k2(x1(i), y2(j))
122
123
                 mtrx.set(m, m - L, -a1)
124
                 mtrx.set(m, m, a1 + a3 + a4)
125
```

```
mtrx.set(m, m + 1, -a3)
126
                 mtrx.set(m, m + L, -a4)
127
                 g[m] = (hx / 2) * (x2(i) / 2) * hy * f(x1(i), y1(j))
128
129
             # right edge
130
             i = Nx
131
             for j in range(1, Ny):
132
                 m = j * L + i
133
134
                 \#print("right\ edge\ i=",\ i,\ "j=",\ j,\ "m=",\ m)
135
136
                 a1 = (hx / hy / 2) * x1(i) * k2(x1(i), y2(j - 1))
137
138
                 a2 = (hy / hx) * x2(i - 1) * k1(x2(i - 1), y1(j))
139
                 a3 = hy * x1(i) * chi2
                 a4 = (hx / hy / 2) * x1(i) * k2(x1(i), y2(j))
140
141
                 mtrx.set(m, m - L, -a1)
142
                 mtrx.set(m, m - 1, -a2)
143
                 mtrx.set(m, m, a1 + a2 + a3 + a4)
144
145
                 mtrx.set(m, m + L, -a4)
                 g[m] = (hx / 2) * x1(i) * hy * f(x1(i), y1(j)) + hy * x1(i) * g2(y1(j))
146
147
             # bottom edge
148
             j = 0
149
             for i in range(1, Nx):
150
                 m = j * L + i
151
152
                 \#print("bottom\ edge\ i=",\ i,\ "j=",\ j,\ "m=",\ m)
153
154
                 a1 = hx * x1(i) * chi3
155
                 a2 = (hy / hx / 2) * x2(i - 1) * k1( x2(i - 1), y1(j) )
156
157
                 a3 = (hy / hx / 2) * x2(i) * k1( x2(i), y1(j) )
                 a4 = (hx / hy) * x1(i) * k2( x1(i), y2(j) )
158
159
                 mtrx.set(m, m - 1, -a2)
160
                 mtrx.set(m, m, a1 + a2 + a3 + a4)
161
                 mtrx.set(m, m + 1, -a3)
162
                 mtrx.set(m, m + L, -a4)
163
                 g[m] = hx * (hy / 2) * x1(i) * f(x1(i), y1(j)) + hx * x1(i) * g3(x1(i))
164
165
             # top edge
166
             j = Ny
167
             for i in range(1, Nx):
168
                 m = j * L + i
169
170
                 #print("top edge i=", i, "j =", j, "m =", m)
171
```

```
172
                  mtrx.set(m, m, 1)
173
                  g[m] = g4(x1(i))
174
175
             # left bottom
176
             i, j = 0, 0
177
             m = j * L + i
178
179
             \#print("left\ bottom\ i=",\ i,\ "j=",\ j,\ "m=",\ m)
180
181
             a1 = (hx / 2) * (x2(i) / 2) * chi3
182
             a3 = (hy / hx / 2) * x2(i) * k1(x2(i), y1(j))
183
             a4 = (hx / hy / 2) * (x2(i) / 2) * k2(x1(i), y2(j))
184
185
             mtrx.set(m, m, a1 + a3 + a4)
186
             mtrx.set(m, m + 1, -a3)
187
             mtrx.set(m, m + L, -a4)
188
             g[m] = (hx / 2) * (hy / 2) * (x2(i) / 2) * f(x1(i), y1(j)) + (hx / 2) * (x2(i))
189
              \rightarrow / 2) * g3(x1(i))
190
             # right bottom
191
             i, j = Nx, 0
192
             m = j * L + i
193
194
             \#print("right\ bottom\ i=",\ i,\ "j=",\ j,\ "m=",\ m)
195
196
             a1 = (hy / 2) * x1(i) * chi2
197
             a2 = (hy / hx / 2) * x2(i - 1) * k1(x2(i - 1), y1(j))
198
             a3 = (hx / 2) * x1(i) * chi3
199
             a4 = (hx / hy / 2) * x1(i) * k2(x1(i), y2(j))
200
201
202
             mtrx.set(m, m - 1, -a2)
             mtrx.set(m, m, a1 + a2 + a3 + a4)
203
             mtrx.set(m, m + L, -a4)
204
             g[m] = (hx / 2) * (hy / 2) * x1(i) * f(x1(i), y1(j)) + (hy / 2) * x1(i) *
205
              \rightarrow g2(y1(i)) + (hx / 2) * x1(i) * g3(x1(i))
206
207
             # right top corner
             i, j = Nx, Ny
208
             m = j * L + i
209
210
             \#print("right top i=", i, "j =", j, "m =", m)
211
212
             mtrx.set(m, m, 1)
213
             g[m] = g4(x1(i))
214
215
```

```
# left top corner
216
             i, j = 0, Ny
217
             m = j * L + i
218
219
            # print("left top i=", i, "j =", j, "m =", m)
220
221
222
             mtrx.set(m, m, 1)
             g[m] = g4(x1(i))
223
224
             #remove extra elements
225
             # for i in range(1, Nx):
226
                   m1 = (Ny - 1) * L + i
227
                    m2 = Ny * L + i
228
                    x = mtrx.get(m1, m1 + L)
229
                   mtrx.set(m1, m1 + L, 0)
230
231
                    q[m1] -= q[m2] * x
232
233
             \# m1 = (Ny - 1) * L
234
             \# m2 = Ny * L
235
             \# x = mtrx.get(m1, m1 + L)
236
             # mtrx.set(m1, m1 + L, 0)
237
238
             \# q[m1] -= q[m2] * x
239
240
             \# m1 = (Ny - 1) * L + Nx
241
             \# m2 = Ny * L + Nx
242
             \# x = mtrx.get(m1, m1 + L)
243
             \# mtrx.set(m1, m1 + L, 0)
244
245
             \# q[m1] -= q[m2] * x
246
247
             \# L = \_cholesky\_decomp(mtrx, Nx, Ny)
248
249
             # mtrx = mtrx.to_symmetric().to_CSR()
250
             print(f"LOG: {is_symmetric(mtrx)}")
251
             \# L = L.to\_CSR()
252
253
             return (mtrx, g, L)
254
                                         _{-} sparse_matrix.py _{-}
    from typing import Tuple, List
    from abc import ABC, abstractmethod
    import numpy as np
 3
 4
 5
    class SparseMatrix(ABC):
```

```
@abstractmethod
7
        def get(self, i: int, j: int=None) -> float:
8
9
            pass
10
        @abstractmethod
11
        def size(self) -> int:
12
            pass
13
14
        @abstractmethod
15
        def is_symmetric() -> bool:
16
            pass
17
    class SparseMatrixCOO(SparseMatrix):
20
        def __init__(self, symmetric=False) -> None:
21
            self.symmetric = symmetric
22
            self.row = []
23
            self.col = []
24
            self.data = []
25
26
        def get(self, i: int, j: int=None) -> float:
27
            # self._validate_index(i, j)
28
29
            if j == None:
30
                return self._get_by_row(i)
31
32
            if self.symmetric:
33
                i, j = self._get_symmetric_index(i, j)
34
35
            idx_pairs = zip(self.row, self.col)
36
37
38
            for idx, pair in enumerate(idx_pairs):
                ir, ic = pair
39
40
                if ir == i and ic == j:
41
                     return self.data[idx]
42
43
44
            return 0
45
        def _get_by_row(self, i):
46
            rez = [(self.col[idx], self.data[idx]) for idx in range(len(self.row)) if
47

    self.row[idx] == i]

            return rez
48
49
        def set(self, i: int, j: int, x: float) -> None:
50
            # self._validate_index(i, j)
51
```

```
52
            if self.symmetric:
53
                i, j = self._get_symmetric_index(i, j)
55
            idx_pair = zip(self.row, self.col)
56
57
            for idx, pair in enumerate(idx_pair):
58
                ir, ic = pair
59
60
                if ir == i and ic == j:
                     if x == 0:
62
                         self.row.pop(idx)
63
                         self.col.pop(idx)
64
                         self.data.pop(idx)
65
                     else:
66
                         self.data[idx] = x
67
                     return
68
69
            if x != 0:
70
71
                self._add_value(i, j, x)
72
        def size(self) -> int:
73
            max_row = max(self.row) + 1
74
            max_col = max(self.col) + 1
75
            return max(max_row, max_col)
76
77
        def is_symmetric(self) -> bool:
78
            return self.symmetric
79
80
        def to_symmetric(self):
81
            m = SparseMatrixCOO(symmetric=True)
82
83
            for i, j, d in zip(self.row, self.col, self.data):
                m.set(i, j, d)
84
            return m
85
86
        def to_CSR(self):
87
            row = np.array(self.row)
88
            col = np.array(self.col)
89
            data = np.array(self.data)
91
            permutation = sorted(range( len(self.row) ), key=lambda idx: row[idx])
92
93
            row = row[permutation]
94
            col = col[permutation]
95
            data= data[permutation]
96
```

97

```
new_row = []
98
99
             for r in np.unique(row):
100
                 index = row == r
101
                 new_row.append( row.tolist().index(r) )
102
103
                 col_per_row = col[index]
104
                 data_per_row = data[index]
105
106
                 permutation = sorted(range( len(col_per_row) ), key=lambda idx:
107

    col_per_row[idx])

108
                 col_per_row = col_per_row[permutation]
109
                 data_per_row = data_per_row[permutation]
110
111
                 col[index] = col_per_row
112
                 data[index] = data_per_row
113
114
             row = np.array(new_row)
115
116
             return SparseMatrixCSR(row, col, data, symmetric=self.symmetric)
117
118
         def _add_value(self, i: int, j: int, x: float) -> None:
119
             self.row.append(i)
120
             self.col.append(j)
121
             self.data.append(x)
122
123
         def _validate_index(self, i: int, j: int) -> None:
124
             if i < 0 or j < 0:
125
                 raise KeyError()
126
127
         def _get_symmetric_index(self, i: int, j: int) -> Tuple[int, int]:
128
             return (j, i) if j > i else (i, j)
129
130
131
    class SparseMatrixCSR(SparseMatrix):
132
         def __init__(self, row: np.ndarray, col: np.ndarray, data: np.ndarray,
133

    symmetric=False) → None:

             self.symmetric = symmetric
134
             self.row = row
135
             self.col = col
136
             self.data = data
137
138
         def get(self, i: int, j: int=None) -> float:
139
             # self._validate_index(i, j)
140
141
```

```
if j == None:
142
                 return self._get_by_row(i)
143
144
             if self.symmetric:
145
                 i, j = self._get_symmetric_index(i, j)
146
147
             sz = self.size()
148
149
             ic1 = self.row[i]
150
             ic2 = None if i + 1 == sz else self.row[i + 1]
151
152
153
             try:
                 idx = ic1 + self.col[ic1:ic2].tolist().index(j)
154
155
             except ValueError:
                 return 0
156
157
             return self.data[idx]
158
159
         def _get_by_row(self, i):
160
             sz = self.size()
161
             ic1 = self.row[i]
163
             ic2 = None if i + 1 == sz else self.row[i + 1]
164
165
             col = self.col[ic1:ic2].tolist()
166
             data = self.data[ic1:ic2].tolist()
167
168
             return [(j, d) for j, d in zip(col, data)]
169
170
         def size(self) -> int:
171
             return self.col.max() + 1
172
173
         def is_symmetric(self) -> bool:
174
             return self.symmetric
175
176
         def _validate_index(self, i: int, j: int) -> None:
177
             sz = self.size()
178
             if i < 0 or i > sz:
179
                 raise KeyError()
180
             if j < 0 or j > sz:
181
                 raise KeyError()
182
183
         def _get_symmetric_index(self, i: int, j: int) -> Tuple[int, int]:
184
             return (j, i) if j > i else (i, j)
185
```

1 from typing import Callable

- utils.py -

```
from sympy import Symbol, symbols, simplify, Subs, N, diff
3
4
    def get_u(u: Symbol) -> Callable[[float, float], float]:
        def inner(x: float, y: float):
6
            expr = Subs(u, "x", x)
8
            expr = Subs(expr, "y", y)
9
            return N(expr)
10
        return inner
11
12
    def get_k1(k1: Symbol) -> Callable[[float, float], float]:
13
        def inner(x: float, y: float):
            expr = Subs(k1, "x", x)
15
            expr = Subs(expr, "y", y)
16
            return N(expr)
17
18
        return inner
19
20
    def get_k2(k2: Symbol) -> Callable[[float, float], float]:
21
        def inner(x: float, y: float):
22
            expr = Subs(k2, "x", x)
23
            expr = Subs(expr, "y", y)
24
            return N(expr)
25
26
        return inner
27
28
   def get_f(u: Symbol, k1: Symbol, k2: Symbol) -> Callable[[float, float], float]:
29
        x= symbols("x")
30
        expr1 = x * k1 * diff(u, "x")
31
        expr2 = k2 * diff(u, "y")
32
        f = -((1 / x) * diff(expr1, "x") + diff(expr2, "y"))
33
        f = simplify(f)
34
35
        # print("f =", f)
36
37
        def inner(x: float, y: float):
38
            expr = Subs(f, "x", x)
39
            expr = Subs(expr, "y", y)
40
            return N(expr)
41
42
        return inner
43
44
    \# \ def \ get\_g1(a: \ float, \ chi1: \ float, \ k1: \ Symbol, \ u: \ Symbol) \ -> \ Callable[[float, \ float], 
45
    \hookrightarrow float]:
          q1 = Subs(chi1 * u - k1 * diff(u, "x"), "x", a)
46
```

```
def inner(y: float):
47
              return \ N(\ Subs(g1,\ "y",\ y)\ )
48
49
          return inner
50
51
    # def get_g2(b: float, u: Symbol) -> Callable[[float, float], float]:
52
          g2 = Subs(u, "x", b)
53
          def inner(y: float):
54
              return \ N(\ Subs(g2,\ "y",\ y)\ )
55
56
          return inner
57
59
    \# def \ get_g3(c: float, chi3: float, k2: Symbol, u: Symbol) -> Callable[[float, float], float]
       float]:
          q3 = Subs(chi3 * u - k2 * diff(u, "y"), "y", c)
60
          def inner(x: float):
61
              return N(Subs(q3, "x", x))
62
63
          return inner
64
65
    # def get_g4(d: float, chi4: float, k2: Symbol, u: Symbol) -> Callable[[float, float],
          g4 = Subs(chi4 * u + k2 * diff(u, "y"), "y", d)
67
          def inner(x: float):
68
              return N(Subs(g4, "x", x))
69
70
          return inner
71
72
73
   def get_g2(b: float, chi2: float, k1: Symbol, u: Symbol) -> Callable[[float, float],
        g2 = Subs(chi2 * u + k1 * diff(u, "x"), "x", b)
74
75
        def inner(y:float):
            return N( Subs(g2, "y", y))
76
77
        return inner
78
79
   def get_g3(c: float, chi3: float, k2: Symbol, u: Symbol) -> Callable[[float, float],
80
        g3 = Subs(chi3 * u - k2 * diff(u, "y"), "y", c)
81
        def inner(x: float):
82
            return N( Subs(g3, "x", x))
83
84
        return inner
85
86
   def get_g4(d: float, u: Symbol) -> Callable[[float, float], float]:
87
        g4 = Subs(u, "y", d)
88
```

```
def inner(x: float):
return N( Subs(g4, "x", x))
return inner
```