Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	27October 2022
Team ID	PNT2022TMID49492
Project Name	Emerging Methods For Early Detection of Forest Fires.
Maximum Marks	8 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Registration	USN-1	As an user, I can register for the application by entering my email, password, and confirming my password.	2	High	Swetha K Nasreen M Keerthiga G Sangeetha M
Sprint-1	User Confirmation	USN-2	As an user, I will receive confirmation email once I have registered for the application	1	Medium	Nasreen M Keerthiga G
Sprint-1	Login	USN-3	As an user, I can log into the application by entering email & password	2	High	Sangeetha M Swetha K
Sprint-2	Data Collection	USN-1	Download the dataset used in Digital Naturalist – AI Enabled tools for Biodiversity Researchers		High	Swetha K Nasreen M Keerthiga G Sangeetha M

Sprint-2	Image Preprocessing	USN-1	Improving the image data that suppresses unwilling distortions or enhances some image features important for further processing, although performing some geometric transformations of images like rotation, scaling, etc.	1	High	Keerthiga G Nasreen M Sangeetha M
Sprint-3	Getting started with Convolutional Neural Network	USN-1	Neural network are integral for teaching computers to think and learn by classifying information, similar to how we as humans learn. With neural networks, the software can learn to recognize images, for example. Machines can also make predictions and decisions with a high level of accuracy based on data inputs.		High	Swetha K Keerthiga G Nasreen M Sangeetha M
Sprint-3	Evaluation and model saving	USN-1	well a model behaves after each iteration of optimization. An accuracy metric is used to measure the algorithm's performance in an interpretable way. The accuracy of a model is usually determined after the model parameters and is calculated in the form of a percentage. Saving The Model get_weights, set_weights.	1	Medium	Swetha K Nasreen M Keerthiga G Sangeetha M
Sprint-4	Application Building	USN-2	After the model is built, we will be integrating it to a web application so that normal users can also use it. The users need to give the images of species	1	High	Nasreen M Sangeetha M Keerthiga G
Sprint-4	Train the Model on IBM	USN-3	Build Deep learning model and computer vision Using the IBM cloud.	2	High	Swetha K Keerthiga G Nasreen M Sangeetha M

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	4 Days	24 Oct 2022	27 Oct 2022	20	29 Oct 2022
Sprint-2	20	5 Days	28 Oct 2022	01 Nov 2022	20	04 Nov 2022
Sprint-3	20	8 Days	02 Nov 2022	09 Nov 2022	20	11 Nov 2022
Sprint-4	20	9 Days	10 Nov 2022	18 Nov 2022	20	19 Nov 2022