Math 355 Assignment 3

Instructor: Dr Ryan Hamilton Name: Yifeng Pan UCID: 30063828

Fall 2019

- 1 Suppose $S \subseteq \mathbb{R}$.
- a Show that if $S \neq \mathbb{R}$ and $S \neq \emptyset$, then $\mathbf{bd}(S) \neq \emptyset$.

We prove the contrapositive: If $\operatorname{bd}(S) = \varnothing$, then $S = \mathbb{R}$ or $S = \varnothing$. Suppose $\operatorname{bd}(S) = \varnothing$. If $S = \varnothing$, we are done. Let $S \neq \varnothing$. We prove $S = \mathbb{R}$. Since $\operatorname{bd}(S) = \varnothing$, $S = \operatorname{int}(S)$. Since $S \neq \varnothing$, let $x_1 \in S$. Since x_1 is an interior point of S, $\exists \epsilon_1$ such that $(x_1 - \epsilon_1, x_1 + \epsilon_1) \subseteq S$. Let $x_2 = x_1 + \epsilon_1$. If $x_2 \notin S$, then x_2 would be a boundary point of S, which would be a contradiction. Therefore $x_2 \in S$. We repeat to construct the sequence $\{x_n\}$, and $\{\epsilon_n\}$, such that $x_{n+1} > x_n$, and if $x_n < y < x_{n+1}$, then $y \in N_{\epsilon_n}(x_n) \subseteq S$. Therefore, $\forall n, [x_1, x_n) \subseteq S$. As $n \to \infty$, if $\{x_n\}$ is convergent to L, then L is a boundary point of S, which is a contradiction. Therefore $\{x_n\}$ is divergent to infinity, as it's increasing. Therefore $[x_1, \infty) \subseteq S$. Simularly, we construct the sequence in the negative direction to prove $(-\infty, x_1] \subseteq S$. Therefore $S = \mathbb{R}$.

b Show that $\mathbf{bd}(S) = \overline{S} \cap \overline{\mathbb{R} \setminus S}$.

We know $\mathrm{bd}(S)=\mathrm{bd}(\mathbb{R}\setminus S)$, As they have the same definition.

Suppose $x \in \mathrm{bd}(S)$. Since $\mathrm{bd}S \subseteq \overline{S}$, $x \in \overline{S}$. Since $x \in \mathrm{bd}(S) = \mathrm{bd}(\mathbb{R} \setminus S)$, $x \in \overline{\mathbb{R} \setminus S}$. Therefore $x \in \overline{S} \cap \overline{\mathbb{R} \setminus S}$.

Suppose $x \in \overline{S} \cap \overline{\mathbb{R} \setminus S} = (S \cup \mathrm{bd}(S)) \cap ((\mathbb{R} \setminus S \cup \mathrm{bd}(\mathbb{R} \setminus S))$. Therefore $x \notin S \to x \in \mathrm{bd}(S)$ and $x \in S \to x \notin \mathbb{R} \setminus S \to x \in \mathrm{bd}(\mathbb{R} \setminus S) = \mathrm{bd}(S)$. Therefore $x \in \mathrm{bd}(S)$ is both cases.

Therefore $\mathrm{bd}(S) = \overline{S} \cap \overline{\mathbb{R} \setminus S}$.

2 Using ϵ - δ arguments, directly prove the following limits:

а

$$\lim_{x \to 4} \frac{2x - 3}{\sqrt{x - 3}} = 5$$

Let $\epsilon > 0$. Choose $\delta = \min\{\frac{1}{2}, \epsilon\left(\frac{18 + 21 + \frac{148}{0.5}}{4\sqrt{0.5} + 2.5}\right)^{-1}\}$. Suppose $0 < |x - 4| < \delta$. So, $|x - 4| < \frac{1}{2}$, 3.5 < x < 4.5. Now.

$$\begin{split} |f(x)-5| &= \left|\frac{2x-3}{\sqrt{x-3}}-5\right| = \left|\frac{2x-3-5\sqrt{x-3}}{\sqrt{x-3}}\right| \\ &= \left|\frac{(2x-3)^2-(5\sqrt{x-3})^2}{(2x-3+5\sqrt{x-3})\sqrt{x-3}}\right| = \left|\frac{4x^2-12x+9-25(x-3)}{(2x-3+5\sqrt{x-3})\sqrt{x-3}}\right| = \left|\frac{4x^2-37x-64}{(2x-3+5\sqrt{x-3})\sqrt{x-3}}\right| \\ &= \left|\frac{(4x-21-\frac{148}{x-4})(x-4)}{(2x-3+5\sqrt{x-3})\sqrt{x-3}}\right| = \frac{\left|4x-21-\frac{148}{x-4}\right||x-4|}{\left|(2x-3+5\sqrt{x-3})\sqrt{x-3}\right|} \\ &< |x-4|\frac{\left|4(4.5)-21-\frac{148}{x-4}\right|}{\left|(2(3.5)-3+5\sqrt{3.5-3})\sqrt{3.5-3}\right|} = |x-4|\frac{\left|4(4.5)-21-\frac{148}{x-4}\right|}{4\sqrt{0.5}+2.5} \\ &< |x-4|\frac{18+21+\left|\frac{148}{x-4}\right|}{4\sqrt{0.5}+2.5} < |x-4|\frac{18+21+\frac{148}{0.5}}{4\sqrt{0.5}+2.5} \\ &< \epsilon \left(\frac{18+21+\frac{148}{0.5}}{4\sqrt{0.5}+2.5}\right)^{-1}\frac{18+21+\frac{148}{0.5}}{4\sqrt{0.5}+2.5} = \epsilon \end{split}$$

b

$$\lim_{x \to -1^-} \frac{1}{x^2 - 1} = \infty$$

Let M>0. Choose $\delta=\min\{1,\frac{1}{3M}\}$. Suppose $0<-1-x<\delta$. So, 0<-1-x<1, 1<-x<2, -1>x>-2. Now,

$$f(x) = \frac{1}{x^2 - 1}$$

$$= \frac{1}{(x+1)(x-1)}$$

$$> \frac{1}{(x+1)(-2-1)} = \frac{1}{-(-x-1)(-3)}$$

$$> \frac{1}{-\frac{1}{3M}(-3)} = M$$

3 Suppose $f:[0,\infty)\to\mathbb{R}$ is continuous, monotone and bounded. Show that f is uniformly continuous. (Hint: We know that $f([0,\infty))$ is an interval.)

TODO

Since f is monotone and bounded, f(n) = L as $n \to \infty$.

Let $a = \min\{f(0), L\}, b = \max\{f(0), L\}.$

From the Intermediate Value Theorem, we know $\forall t \in (a,b), \exists c \in [0,\infty)$ such that f(c)=t.

We define $g:(a,b)\to [0,\infty)$. The range of $g\subseteq [0,\infty)$. So $\forall y\in (a,b), f\circ g(y)=y$.

Let $\epsilon > 0$.

Let $h:(a,b-\epsilon)\to (0,\infty), h(y)=|g(y)-g(y+\epsilon)|$. h is strictly positive.

Let δ be the absolute minimum of the range of h.

Let $x, y \in [0, \infty), |x - y| < \delta$.

So $\forall z \in (a, b - \epsilon), |x - y| < |g(z) - g(z + \epsilon)|.$

4 Suppose $f:I\to\mathbb{R}$ where I is an open interval containing a. Suppose further that f is n times differentiable at a and let p_n be the nth Taylor polynomial for f at a. Apply L'Hôpital's rule n-1 times to show that

$$\lim_{x \to a} \frac{f(x) - p_n(x)}{(x - a)^n} = 0$$

Let $g(x) = (f(x) - p_n(x))$. Let $h(x) = (x - a)^n$. As $\forall k, 1 < k \le n, h^{(k)}(x)$ is non-zero for all deleted nhds of a, we can apply L'Hôpital's rule n times. So $g^{(n)} = f^{(n)}(x) - p_n^{(n)}(x)$, and $h^{(n)} = n!$.

$$\lim_{x \to a} \frac{f(x) - p_n(x)}{(x - a)^n} = \lim_{x \to a} \frac{f^{(n)}(x) - p_n^{(n)}(x)}{n!}$$

$$= \lim_{x \to a} \frac{f^{(n)}(a) - p_n^{(n)}(a)}{n!} \text{ (TODO, are } f^{(n)}, p_n^{(n)} \text{ are continuous?)}$$

$$= \lim_{x \to a} \frac{0}{n!}$$

$$= 0$$

5 Use the inverse function theorem to verify that $f(x) = \arcsin(x)$ is differentiable on (-1,1) and that $\arcsin'(x) = \frac{1}{\sqrt{1-x^2}}$ for $x \in (-1,1)$.

We know $g:(-\frac{\pi}{2},\frac{\pi}{2})\to (-1,1), g(x)=\sin(x)$ is diff., and $g'(x)=\cos(x)$ is strictly positive for $(-\frac{\pi}{2},\frac{\pi}{2})$. Therefore, by the Inverse Function Theorem:

- 1. $g^{-1}: (-1,1) \to (-\frac{\pi}{2},\frac{\pi}{2})$ exists. Let $f(x) = g^{-1}(x) = \arcsin(x)$.
- 2. q^{-1} is differentiable.
- 3. $(g^{-1})'(\sin(x)) = \frac{1}{\cos(x)}$.

Therefore $(g^{-1})'(x) = \frac{1}{\cos(\arcsin(x))} = \frac{1}{\sqrt{1-x^2}}$.

- 6 Suppose that f, g are bounded and integrable functions on [a, b].
- a Show that f^2 is integrable on [a, b].

(6a) is a corollary of (6b).

b Show that fg is integrable on [a, b].

Draft 1:

Let $\epsilon > 0$.

We split the interval [a, b] into 4 parts, $[a, b] = A \cup B \cup C \cup D$, where

$$A = \{x | x \in [a, b], f(x) \ge 0, g(x) \ge 0\}$$

$$B = \{x | x \in [a, b], f(x) \ge 0, g(x) < 0\}$$

$$C = \{x | x \in [a, b], f(x) < 0, g(x) \ge 0\}$$

$$D = \{x | x \in [a, b], f(x) < 0, g(x) < 0\}$$

Case A:

Let $F=\int_A f, G=\int_A g$, where F and G are both non-negative from construction of A. Let $\delta=\min\{\frac{\epsilon}{2(F+G+1)},\frac{\sqrt{\epsilon}}{2}\}$. We know \exists partition P on A 1 so that $U(f,P)-L(f,P)<\delta$, and $U(g,P)-L(g,P)<\delta$. So,

$$U(fg, P) = \sup\{f(x)g(x)|x \in [x_{i-1}, x_i]\}$$

= \sup\{f(x)|x \in [x_{i-1}, x_i]\} \sup\{g(x)|x \in [x_{i-1}, x_i]\}
= U(f, P)U(g, P)

$$L(fg, P) = \inf\{f(x)g(x)|x \in [x_{i-1}, x_i]\}$$

= \inf\{f(x)|x \in [x_{i-1}, x_i]\} \inf\{g(x)|x \in [x_{i-1}, x_i]\}
= L(f, P)L(g, P)

$$\begin{split} U(fg,P) &= U(f,P)U(g,P) \\ &< (L(f,P)+\delta)(L(g,P)+\delta) \\ &= L(f,P)L(g,P) + (L(f,P)+L(g,P))\delta + \delta^2 \\ &= L(fg,P) + (L(f,P)+L(g,P))\delta + \delta^2 \end{split}$$

 $^{^1}A$ might not be an interval, but the definition of partition can be extended in this case as $A \subseteq [a,b]$. I can't prove this.

$$\begin{split} U(fg,P) - L(fg,P) &< (L(f,P) + L(g,P))\delta + \delta^2 \\ &\leq (F+G)\delta + \delta^2 \\ &\leq (F+G)\frac{\epsilon}{2(F+G+1)} + \frac{\sqrt{\epsilon^2}}{2^2} \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{4} < \epsilon \end{split}$$

Case B:

Let $F=\int_B f, G=\int_B g$, where $F\geq 0$ and G<0 from construction of B. Let $\delta=\min\{\frac{\epsilon}{2|G|},\frac{\sqrt{\epsilon}}{2}\}$. We know \exists partition P on B so that $U(f,P)-L(f,P)<\delta$, and $U(g,P)-L(g,P)<\delta$. So,

$$0 \ge U(fg, P) = \sup\{f(x)g(x)|x \in [x_{i-1}, x_i]\}$$

$$= \inf\{f(x)|x \in [x_{i-1}, x_i]\} \sup\{g(x)|x \in [x_{i-1}, x_i]\}$$

$$= L(f, P)U(g, P)$$

$$0 \ge L(fg, P) = \inf\{f(x)g(x)|x \in [x_{i-1}, x_i]\}$$

$$= \sup\{f(x)|x \in [x_{i-1}, x_i]\} \inf\{g(x)|x \in [x_{i-1}, x_i]\}$$

$$= U(f, P)L(g, P)$$

$$0 \ge U(fg, P) = L(f, P)U(g, P)$$

$$< (U(f, P) - \delta)U(g, P)$$

$$< (U(f, P) - \delta)L(g, P)$$

$$= U(f, P)L(g, P) - \delta L(g, P)$$

$$= L(fg, P) - \delta L(g, P)$$

$$= L(fg, P) - \delta L(g, P)$$

$$= \delta |L(g, P)|$$

$$< \delta |U(g, P) - \delta|$$

$$\le \delta |G - \delta|$$

$$= |G\delta - \delta^2|$$

$$\le |G\delta| + \delta^2$$

$$< |G\frac{\epsilon}{2|G|}| + \frac{\sqrt{\epsilon^2}}{2^2}$$

Case C, D are simular.

c Show that $\max(f,g)(x) := \max\{f(x),g(x)\}$ and $\min(f,g)(x) := \min\{f(x),g(x)\}$ are both integrable on [a,b].

TODO. Simular to (6b), split [a, b] into two sets.

7 For what real values of α is $f(x) = x^{\alpha} \log(x)$ uniformly continuous on $(0, \infty)$? Support your claims.

$$f(x) = x^{\alpha} \log(x) \text{ is UC on } (0, \infty) \iff f'(x) \text{ is bounded on } (0, \infty).$$

$$f'(x) = \alpha x^{\alpha - 1} \log(x) + x^{\alpha} / x = (\alpha \log(x) + 1) x^{\alpha - 1}.$$

- 8 Suppose f is continuous on [a,b] where a < b and let $M = \sup_{a \le x \le b} (|f(x)|)$.
- a If M>0 and p is any positive constant, show that for every $\epsilon>0$ there are constants c< d so that $[c,d]\subseteq [a,b]$ and

$$(M-\epsilon)^p(d-c) \leq \int_a^b \left|f(x)
ight|^p dx \leq M^p(d-a)$$

b Prove that

$$\lim_{p o\infty}\left(\int_{a}^{b}\left|f(x)
ight|^{p}dx
ight)^{rac{1}{p}}=M$$