ACL2020

Named Entity Recognition as Dependency Parsing

Juntao Yu

Queen Mary University London, UK Bernd Bohnet

Google Research Netherlands Massimo Poesio

Queen Mary University London, UK

juntao.yu@qmul.ac.uk bohnetbd@google.com m.poesio@qmul.ac.uk

Main Work

- In this paper, we use ideas from graph-based dependency parsing to provide our model a global view on the input via a biaffine model
- The biaffine model scores pairs of start and end tokens in a sentence which we use to explore all spans, so that the model is able to predict named entities accurately
- We show that the model works well for both nested and flat NER through evaluation on 8 corpora and achieving SoTA performance on all of them, with accuracy gains of up to 2.2 percentage points.

CASE

Figure 1: Examples for *nested* entities from GENIA and ACE04 corpora.

Model

BERT, fastText & Char Embeddings

Biaffine Classifier

$$h_s(i) = FFNN_s(x_{s_i})$$

$$h_e(i) = FFNN_e(x_{e_i})$$

$$r_m(i) = h_s(i)^{\top} U_m h_e(i)$$

$$+ W_m(h_s(i) \oplus h_e(i)) + b_m$$

where s_i and e_i are the start and end indices of the span i, U_m is a $d \times c \times d$ tensor, W_m is a $2d \times c$ matrix and b_m is the bias.

STRATEGY

- For nested NER, a entity is selected as long as it does **not clash** the boundaries of higher ranked entities.
- We denote a entity i to **clash** boundaries with another entity j if $si < sj \le ei < ej$ or $sj < si \le ej < ei$
 - (the Bank of China: the Bank of clashs Bank of China)
- For flat NER, we apply one more constraint, in which any entity containing or is inside an entity ranked before it will not be selected

Model	P	R	F1
ACE 2004			
Katiyar and Cardie (2018)	73.6	71.8	72.7
Wang et al. (2018)	-	-	73.3
Wang and Lu (2018)	78.0	72.4	75.1
Straková et al. (2019)	-	-	84.4
Luan et al. (2019)	-	-	84.7
Our model	87.3	86.0	86.7
ACE 2005			
Katiyar and Cardie (2018)	70.6	70.4	70.5
Wang et al. (2018)	_	-	73.0
Wang and Lu (2018)	76.8	72.3	74.5
Lin et al. (2019)	76.2	73.6	74.9
Fisher and Vlachos (2019)	82.7	82.1	82.4
Luan et al. (2019)	_	-	82.9
Straková et al. (2019)	_	-	84.3
Our model	85.2	85.6	85.4
GENIA			
Katiyar and Cardie (2018)	79.8	68.2	73.6
Wang et al. (2018)	_	-	73.9
Ju et al. (2018)	78.5	71.3	74.7
Wang and Lu (2018)	77.0	73.3	75.1
Sohrab and Miwa (2018) ⁵	93.2	64.0	77.1
Lin et al. (2019)	75.8	73.9	74.8
Luan et al. (2019)	-	-	76.2
Straková et al. (2019)	-	-	78.3
Our model	81.8	79.3	80.5

Table 2: State of the art comparison on ACE 2004, ACE 2005 and GENIA corpora for nested NER.

Model	P	R	F1	
ONTONOTE	ONTONOTES			
Chiu and Nichols (2016)	86.0	86.5	86.3	
Strubell et al. (2017)	-	-	86.8	
Clark et al. (2018)	-	-	88.8	
Fisher and Vlachos (2019)	-	-	89.2	
Our model	91.1	91.5	91.3	
CONLL 2003 E	nglish			
Chiu and Nichols (2016)	91.4	91.9	91.6	
Lample et al. (2016)	-	-	90.9	
Strubell et al. (2017)	-	-	90.7	
Devlin et al. (2019)	-	-	92.8	
Straková et al. (2019)	-	-	93.4	
Our model	93.7	93.3	93.5	
CONLL 2003 Ge	erman			
Lample et al. (2016)	-	-	78.8	
Straková et al. (2019)	-	-	85.1	
Our model	88.3	84.6	86.4	
CONLL 2003 Germa	n revi	sed ⁶		
Akbik et al. (2018)	-	-	88.3	
Our model	92.4	88.2	90.3	
CONLL 2002 Sp	anish			
Lample et al. (2016)	-	-	85.8	
Straková et al. (2019)	-	-	88.8	
Our model	90.6	90.0	90.3	
CONLL 2002 Dutch				
Lample et al. (2016)	-	-	81.7	
Akbik et al. (2019)	_	_	90.4	
Straková et al. (2019)	-	-	92.7	
Our model	94.5	92.8		

ACL2020

A Unified MRC Framework for Named Entity Recognition

Xiaoya Li*, Jingrong Feng*, Yuxian Meng*, Qinghong Han*, Fei Wu* and Jiwei Li*

Department of Computer Science and Technology, Zhejiang University

Shannon.AI

{xiaoya_li, jingrong_feng, yuxian_meng,qinghong_han}@shannonai.com

wufei@cs.zju.edu.cn, jiwei_li@shannonai.com

Main Work

• In this paper, we reformalize the NER task as a MRC question answering task.

- This formalization comes with two key advantages:
 - being capable of addressing overlapping or nested entities;
 - the query encodes significant prior knowledge about the entity category to extract.

• The proposed method obtains SOTA results on both nested and flat NER datasets, which indicates its effectiveness.

Dataset Construction

• Firstly we need to transform the tagging-style annotated NER dataset to a set of (QUESTION, ANSWER, CONTEXT) triples.

 The question generation procedure is important since queries encode prior knowledge about labels and have a significant influence on the final results.

How to Construct Queries

- Position index of labels: a query is constructed using the index of a tag to, i.e., "one", "two", "three".
- **Keyword:** a query is the keyword describing the tag, e.g., the question query for tag ORG is "organization".
- Rule-based template filling: generates questions using templates. The query for tag ORG is "which organization is mentioned in the text".
- Wikipedia: a query is constructed using its wikipedia definition. The query for tag ORG is "an organization is an entity comprising multiple people, such as an institution or an association."
- **Synonyms:** are words or phrases that mean exactly or nearly the same as the original keyword extracted using the Oxford Dictionary. The query for tag ORG is "association".
- Keyword+Synonyms: the concatenation of a keyword and its synonym.
- Annotation guideline notes: is the method we use in this paper. The query for tag ORG is "find organizations including companies, agencies and institutions".

Annotation Guideline Note

Entity	Natural Language Question
Location	Find locations in the text, including non-
	geographical locations, mountain ranges
	and bodies of water.
Facility	Find facilities in the text, including
	buildings, airports, highways and bridges.
Organization	Find organizations in the text, including
	companies, agencies and institutions.

Table 1: Examples for transforming different entity categories to question queries.

Model

Model Backbone

 To be in line with BERT, the question and the passage are concatenated, forming the combined string:

$$\{[CLS], q_1, q_2, ..., q_m, [SEP], x_1, x_2, ..., x_n\}$$

Span Selection

 the strategy is to have two binary classifiers, one to predict whether each token is the start index or not, the other to predict whether each token is the end index or not.

```
P_{\text{start}} = \operatorname{softmax}_{\text{each row}}(E \cdot T_{\text{start}}) \in \mathbb{R}^{n \times 2}
\hat{I}_{\text{start}} = \{i \mid \operatorname{argmax}(P_{\text{start}}^{(i)}) = 1, i = 1, \cdots, n\}
\hat{I}_{\text{end}} = \{j \mid \operatorname{argmax}(P_{\text{end}}^{(j)}) = 1, j = 1, \cdots, n\}
P_{i_{\text{start}}, j_{\text{end}}} = \operatorname{sigmoid}(m \cdot \operatorname{concat}(E_{i_{\text{start}}}, E_{j_{\text{end}}}))
```

Train and Test

Two losses for start and end index predictions:

$$\mathcal{L}_{\text{start}} = \text{CE}(P_{\text{start}}, Y_{\text{start}})$$

 $\mathcal{L}_{\text{end}} = \text{CE}(P_{\text{end}}, Y_{\text{end}})$

• The start-end index matching loss is given as follows:

$$\mathcal{L} = \alpha \mathcal{L}_{\text{start}} + \beta \mathcal{L}_{\text{end}} + \gamma \mathcal{L}_{\text{span}}$$

English ACE 2004			
Model	Precision	Rrecall	F1
Hyper-Graph (Katiyar and Cardie, 2018)	73.6	71.8	72.7
Seg-Graph (Wang and Lu, 2018)	78.0	72.4	75.1
Seq2seq-BERT (Straková et al., 2019)	-	-	84.40
Path-BERT (Shibuya and Hovy, 2019)	83.73	81.91	82.81
DYGIE (Luan et al., 2019)	-	-	84.7
BERT-MRC	85.05	86.32	85.98
			(+1.28)
English ACE	2005		
Model	Precision	Recall	F1
Hyper-Graph (Katiyar and Cardie, 2018)	70.6	70.4	70.5
Seg-Graph (Wang and Lu, 2018)	76.8	72.3	74.5
ARN (Lin et al., 2019a)	76.2	73.6	74.9
Path-BERT (Shibuya and Hovy, 2019)	82.98	82.42	82.70
Merge-BERT (Fisher and Vlachos, 2019)	82.7	82.1	82.4
DYGIE (Luan et al., 2019)	-	-	82.9
Seq2seq-BERT (Straková et al., 2019)	-	-	84.33
BERT-MRC	87.16	86.59	86.88
			(+2.55)
English GEN	IA		
Model	Precision	Recall	F1
Hyper-Graph (Katiyar and Cardie, 2018)	77.7	71.8	74.6
ARN (Lin et al., 2019a)	75.8	73.9	74.8
Path-BERT (Shibuya and Hovy, 2019)	78.07	76.45	77.25
DYGIE (Luan et al., 2019)	-	-	76.2
Seq2seq-BERT (Straková et al., 2019)	-	-	78.31
BERT-MRC	85.18	81.12	83.75
			(+5.44)
English KBP	2017		
Model	Precision	Recall	F1
KBP17-Best (Ji et al., 2017)	76.2	73.0	72.8
ARN (Lin et al., 2019a)	77.7	71.8	74.6
BERT-MRC	82.33	77.61	80.97
			(+6.37)

English CoNLL 2003				
Model	Precision	Recall	F1	
BiLSTM-CRF (Ma and Hovy, 2016)	-	-	91.03	
ELMo (Peters et al., 2018b)	-	-	92.22	
CVT (Clark et al., 2018)	-	-	92.6	
BERT-Tagger (Devlin et al., 2018)	-	-	92.8	
BERT-MRC	92.33	94.61	93.04	
			(+0.24)	
English OntoN	otes 5.0			
Model	Precision	Recall	F1	
BiLSTM-CRF (Ma and Hovy, 2016)	86.04	86.53	86.28	
Strubell et al. (2017)	-	-	86.84	
CVT (Clark et al., 2018)	-	-	88.8	
BERT-Tagger (Devlin et al., 2018)	90.01	88.35	89.16	
BERT-MRC	92.98	89.95	91.11	
			(+1.95)	
Chinese MS	SRA			
Model	Precision	Recall	F1	
Lattice-LSTM (Zhang and Yang, 2018)	93.57	92.79	93.18	
BERT-Tagger (Devlin et al., 2018)	94.97	94.62	94.80	
Glyce-BERT (Wu et al., 2019)	95.57	95.51	95.54	
BERT-MRC	96.18	95.12	95.75	
			(+0.21)	
Chinese OntoN	Chinese OntoNotes 4.0			
Model	Precision	Recall	F1	
Lattice-LSTM (Zhang and Yang, 2018)	76.35	71.56	73.88	
BERT-Tagger (Devlin et al., 2018)	78.01	80.35	79.16	
Glyce-BERT (Wu et al., 2019)	81.87	81.40	81.63	
BERT-MRC	82.98	81.25	82.11	
			(+0.48)	

Table 3: Results for *flat* NER tasks.

English OntoNotes 5.0		
Model	F1	
LSTM tagger (Strubell et al., 2017)	86.84	
BiDAF (Seo et al., 2017)	87.39 (+0.55)	
QAnet (Yu et al., 2018)	87.98 (+1.14)	
BERT-Tagger	89.16	
BERT-MRC	91.11 (+1.95)	

Table 4: Results of different MRC models on English OntoNotes5.0.

English OntoNotes 5.0		
Model	F1	
BERT-Tagger	89.16	
Position index of labels	88.29 (-0.87)	
Keywords	89.74 (+0.58)	
Wikipedia	89.66 (+0.59)	
Rule-based template filling	89.30 (+0.14)	
Synonyms	89.92 (+0.76)	
Keywords+Synonyms	90.23 (+1.07)	
Annotation guideline notes	91.11 (+1.95)	

Table 5: Results of different types of queries.

In a joint statement Wednesday, India and Russia called for further measures against Afghanistan's dominant Taliban faction.

Models	Train	Test	F1
BERT-tagger	OntoNotes5.0	OntoNotes5.0	89.16
BERT-MRC	OntoNotes5.0	OntoNotes5.0	91.11
BERT-tagger	CoNLL03	OntoNotes5.0	31.87
BERT-MRC	CoNLL03	OntoNotes5.0	72.34

Table 6: Zero-shot evaluation on OntoNotes5.0. BERT-MRC can achieve better zero-shot performances.