实验四报告

2016K8009907007 黄熠华

一、实验任务(10%)

增加 BREAK 指令,地址错、整数溢出、保留指令例外支持。

硬件上增加 CPO 寄存器 COUNT、 COMPARE。

增加时钟中断支持,将其绑定在硬件中断5号上,也就是CAUSE对应的IP7上。

增加 6 个硬件中断支持以及两个软件中断支持,完成功能测试以及运行 lab3 的电子表程序,实现相同功能。 完成 lab4 fun 2 功能测试。

二、实验设计(30%)

在实现任务要求例外的过程中,我并没有采用老师上课讲授的思路,即给例外指令记上标记,统一到某个阶段提交的方式。而是根据例外发生情况尽早提交例外,减少气泡指令。因为提交例外的时间并不确定,我用一组 cancel 信号来进行阶段指令的取消,保证精确例外。需要注意的是,某些例外需要将自己取消掉,比如整形溢出例外需要将该条运算指令置为 invalid,保证其不写回寄存器,某些例外则不必要取消自己,比如 syscacll。

取址例外是由 jump 指令跳一个非法地址产生的, jump 指令并不报例外, 其延迟槽指令也必须执行完。因此, 该 jump 指令不能取消掉其下一条指令, 而是取消掉其下下条指令。

LB, LH, LW 等指令的访存地址有着不同的要求, 触发地址例外也有不同的条件。

延迟槽指令发生例外时,EPC 写地址是前一条指令的地址,因此需要用额外的寄存器来为延迟槽指令记上标记,令其 EPC 和 Cause 寄存器的 bd 位能够正确赋值。

三、实验过程(60%)

(一) 实验流水账

11.24: 写完 cp0 系列寄存器以及各种中断

11.26: 调试通过

(二) 错误记录

1、错误1

(1) 错误现象

Epc 内容发生错误。

(2) 分析定位过程

发现指令取址例外和 syscall 同时发生,结果 EPC 写地址出错。

(3) 错误原因

同时触发例外的情况没有处理好 EPC 的赋值问题。

(4) 修正效果

处理好 EPC 的赋值问题之后, EPC 内容正确。

(5) 归纳总结(可选)

本次实验使用了触发例外的阶段不固定的方式,可能会同时触发多种例外,需要做好 cp0 寄存器赋值的处理。

1、错误2

(1) 错误现象

LB 指令触发例外。

(2) 分析定位过程

发现 LB 指令后跳转到了例外处理地址。

(3) 错误原因

LB 指令意外的触发了地址错例外。

(4) 修正效果

综合考虑 LH,LB,LW,SB,SH,SW 各指令后,修改地址错例外的判定条件。

(5) 归纳总结(可选)

四、实验总结(可选)

本次实验设计难度较小,因此我写代码速度较快,导致了后续 debug 工作费时较长。以后写代码还是要设计好清晰的架构再开始。