자연어 처리 및 응용

The 13th KIAS CAC Summer School on the Parallel Computing and Artificial Intelligence

한양대학교 컴퓨터소프트웨어학부 김은솔

≡ 매일경제 뉴스 │ 경제 기업 사회 국제 부동산 증권 정치 IT·과학 문화

대기업들이 뛰어드는 '초거대 AI'는 무엇

임영신 기자 | 입력 : 2021.07.08 10:23:10 수정 : 2021.07.08 10:23:26

글로벌초거대 AI 성능비교

초거대 AI	개발사	주요 가능	파라미터 개수	발표 시점
RoBERTa	페0스북	언어 생성 · 번역 · 검색 · 7사 작성 등	3억5500만	2019년 7월
GPT-2	오픈AI	언어 생성 · 번역 · 검색 · 기사 작성등	15억	2019년 8월
T5	궏	언어 생성 · 번역 · 검색 · 기사 작성 등	110억	2020년 2월
GPT-3	오픈AI	기존 모든 기능의 고도화· 프로그래밍	1750억	2020년 6월
하이퍼클로바	네이버	기존 모든 기능의 고도화·한국어 문장생성 탁월	2040억	2021년 5월
우다오2.0	베이징지위안인공자능연구원	기존모든기능의고도화·중국어문장및이미지생성탁월	1조7500억	2021년 6월
LG초거대AI	LG그룹	언어 · 이미지 이해 및 생성 · 데이터 추론	6000억	올하반기(예정)
GPT-4	오픈AI	GPT-3초월전망	100조	2023년 (예정)

동아일보

국내 기업	의 주요 초거대 인공	지능(AI) 기술 자료: 각사
	초거대 AI	특징
카카오	코지피티(KoGPT)	 한국어 특화 AI 언어모델 구글 텐서 처리장치 활용, 연산속도 고도화
브레인	민달리(minDALL-E)	 1400만 장의 텍스트·이미지 세트 사전 학습 텍스트 명령어 입력하면 실시간 이미지 생성
네이버	하이퍼클로바 (HyperCLOVA)	 2040억 개에 이르는 매개변수(파라미터) 학습 데이터의 한글 비중 97%, 한국어 집중 교육
LG	엑사원 (EXAONE)	■ 언어·이미지·영상 등을 다루는 멀티 모댈리티 능력 ■ 제조·연구·교육·금융 분야 상위 1% 전문가 목표

Transformer in Biological Science

Highly accurate protein structure prediction with AlphaFold

https://doi.org/10.1038/s41586-021-03819-2
Received: 11 May 2021
Accepted: 12 July 2021
Published online: 15 July 2021
Open access

Check for updates

John Jumper^{1,4}, Richard Evans^{1,4}, Alexander Pritzel^{1,4}, Tim Green^{1,4}, Michael Figurnov^{1,4}, Olaf Ronneberger^{1,4}, Kathryn Tunyasuvunakool^{1,4}, Russ Bates^{1,4}, Augustin Žídek^{1,4}, Anna Potapenko^{1,4}, Alex Bridgland^{1,4}, Clemens Meyer^{1,4}, Simon A. A. Kohl^{1,4}, Andrew J. Ballard^{1,4}, Andrew Cowie^{1,4}, Bernardino Romera-Paredes^{1,4}, Stanislav Nikolov^{1,4}, Rishub Jain^{1,4}, Jonas Adler¹, Trevor Back¹, Stig Petersen¹, David Reiman¹, Ellen Clancy¹, Michal Zielinski¹, Martin Steinegger^{2,3}, Michalina Pacholska¹, Tamas Berghammer¹, Sebastian Bodenstein¹, David Silver¹, Oriol Vinyals¹, Andrew W. Senior¹, Koray Kavukcuoglu¹, Pushmeet Kohli¹ & Demis Hassabis^{1,4} ■

Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences

Alexander Rives^{a,b,1,2}, Joshua Meier^{a,1}, Tom Sercu^{a,1}, Siddharth Goyal^{a,1}, Zeming Lin^b, Jason Liu^a, Demi Guo^{c,3}, Myle Ott^a, C. Lawrence Zitnick^a, Jerry Ma^{d,e,3}, and Rob Fergus^b

Contents

- Word Embedding
 - One-hot embedding
 - Word2Vec (Skip-gram, CBOW)
 - GloVe
- Language Model
 - n-gram
 - Recurrent Neural Network
 - Attention Methods
- Transformer
- Large-scale Language Models
- Applications
 - Machine Translation
 - Question Answering

Word Embedding

Data Representation

Table of baby-name data (baby-2010.csv)

				Field
name	rank	gender	year -	names
Jacob	1	boy	2010	One row
Isabella	1	girl	2010	(4 fields)
Ethan	2	boy	2010	
Sophia	2	girl	2010	
Michael	3	boy	2010	
	rows told			-

Data Representation – Text

- Conventional Word Representations
 - 이미지, 음성과 달리 언어 데이터는 discrete
 - One-hot encoding
 - 데이터에 포함된 단어로 사전을 만들고, 이를 기반으로 one-hot encoding을 하여 단어를 표 현
 - Discrete, Sparse
- All vectors are orthogonal
 - There are no natural notion of similarity for one-hot vectors

Word	One-hot encoding
economic	000010
growth	001000
has	100000
slowed	000001

Word Embedding

- Assumption: Distributional semantics (hypothesis)
 - Linguistic items with similar distributions have similar meanings
 - Representing words by their context

...government debt problems turning into banking crises as happened in 2009...

...saying that Europe needs unified banking regulation to replace the hodgepodge...

...India has just given its banking system a shot in the arm...

These context words will represent **banking**

Word Embedding

- Build a dense vector for each word
- similar to vectors of words that appear in similar contexts

- Efficient Estimation of Word Representations in Vector Space
 - T. Mikolov et al., ICLR Workshop, 2013
- Distributed Representations of Words and Phrases and their Compositionality
 - T. Mikolov et al., 2013, NeurIPS

Distributed Representations of Words and Phrases and their Compositionality

Tomas Mikolov
Google Inc.
Mountain View
mikolov@google.com

Ilya Sutskever
Google Inc.
Mountain View
ilyasu@google.com

Kai Chen Google Inc. Mountain View kai@google.com

Greg Corrado
Google Inc.
Mountain View
gcorrado@google.com

Jeffrey Dean Google Inc. Mountain View jeff@google.com

- Key Idea
 - Find word representations that are useful for predicting the surrounding words
 - Use the similarity of the word vectors to calculate the probability

		W_{t-2}	w_{t-1}	w_t	W_{t+1}	W_{t+2}	
The	e	training	objective	of	the	Skip-gram	model
		contex	t words	center word	contex		

	w_{t-2}	w_{t-1}	w_t	w_{t+1}	w_{t+2}	
The	training	objective	of	the	Skip-gram	model
	contex	t words	center word	contex		

training objective function
$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \leq j \leq c, j \neq 0} \log p(w_{t+j}|w_t)$$

$$p(w_O|w_I) = \frac{\exp\left(v'_{w_O}^\top v_{w_I}\right)}{\sum_{w=1}^W \exp\left(v'_w^\top v_{w_I}\right)}$$

Interesting Results of the Word2Vec

Another Word (Neural) Embedding

• Using co-occurrence information

	œ	as	chuck	Plnoo	how	if	much	Poom	woodch.	Pinom		?	œ	as	chuck	Plnoo	how	if	much	Poom	Woodch.	PlnoM		٠.
a	13	24	12	3	9	20	22	31	16	23 1	8 0	7	13	7	31	26	0	14	4	21	50	9 1	6 7	7
as	7	8	15	11	0	5	9	25	10	0	3 0	17	24	8	2	3	0	9	10	10	20	13 1	1 0	0
chuck	31	2	5	20	5	14	6	9	36	15 12	2 0	0	12	15	5	6	0	9	8	30	10	2 1	1 9	12
could	26	3	6	0	0	16	2	4	30	9 14	4 0	0	3	11	20	0	0	0	6	23	2	1	0 8	8
how	0	0	0	0	0	0	0	0	0	0	0 0	0	9	0	5	0	0	3	10	9	7	8	4 0	0
if	14	9	9	0	3	0	8	11	16	15 20	0 0	2	20	5	14	16	0	0	3	14	18	0	0 5	5
much	4	10	8	6	10	3	0	8	5	0 2	2 0	9	22	9	6	2	0	8	0	20	18	15 1	0 0	0
wood	21	10	30	23	9	14	20	7	26	5 1	1 0	8	31	25	9	4	0	11	8	7	26	20 1	4 10	10
woodch.	50	20	10	2	7	18	18	26	13	20 1	6 0	5	16	10	36	30	0	16	5	26	13	10 1	8 9	9
would	9	13	2	1	8	0	15	20	10	0	0 0	4	23	0	15	9	0	15	0	5	20	0 1	7 3	0
,	16	11	11	0	4	0	10	14	18	17	0 0	3	18	3	12	14	0	20	2	11	16	0	0 4	4
	7	0	9	8	0	5	0	10	9	3 4	1 0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
?	7	0	12	8	0	5	0	10	9	0 4	4 0	0	7	17	0	0	0	2	9	8	5	4	3 0	0

Co-occurrence based word vectors

- Singular Value
 Decomposition of co occurrence matrix X
- Factorize X into $U\Sigma V^{T}$
 - U, V are orthogonal

An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence

Douglas L. T. Rohde

Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences

Laura M. Gonnerman

Lehigh University, Department of Psychology

David C. Plaut

Carnegie Mellon University, Department of Psychology, and the Center for the Neural Basis of Cognition

November 7, 2005

GloVe: Global Vectors for Word Representation

GloVe

Jeffrey Pennington, Richard Socher, Christopher D. Manning

Computer Science Department, Stanford University, Stanford, CA 94305 jpennin@stanford.edu, richard@socher.org, manning@stanford.edu

- Key idea
 - Ratios of co-occurrence probabilities can encode meaning components

	x = solid	x = gas	x = water	x = random		
P(x ice)	large	small	large	small		
P(x steam)	small	large	large	small		
$\frac{P(x \text{ice})}{P(x \text{steam})}$	large	small	~1	~1		

GloVe: Global Vectors for Word Representation

GloVe

Jeffrey Pennington, Richard Socher, Christopher D. Manning

Computer Science Department, Stanford University, Stanford, CA 94305 jpennin@stanford.edu, richard@socher.org, manning@stanford.edu

- Key idea
 - Ratios of co-occurrence probabilities can encode meaning components

	x = solid	x = gas	x = water	x = fashion
P(x ice)	1.9 x 10 ⁻⁴	6.6 x 10 ⁻⁵	3.0 x 10 ⁻³	1.7 x 10 ⁻⁵
P(x steam)	2.2 x 10 ⁻⁵	7.8 x 10 ⁻⁴	2.2 x 10 ⁻³	1.8 x 10 ⁻⁵
$\frac{P(x \text{ice})}{P(x \text{steam})}$	8.9	8.5 x 10 ⁻²	1.36	0.96

GloVe

Training Objective

$$w_i \cdot w_j = \log P(i|j)$$

$$J = \sum_{i,j=1}^{V} f\left(X_{ij}\right) \left(w_i^T \tilde{w}_j + b_i + \tilde{b}_j - \log X_{ij}\right)^2$$

GloVe

Language Models

Language Models

The training objective of the Skip-gram model

Language Models

 Language modeling is the task of predicting what word comes next.

$$P(x^{t+1}|x^t,...,x^1)$$

$$V = \{w_1, w_2, \dots, w_{|V|}\}$$

$$P(x^1, \dots, x^t) = P(x^1) \times P(x^2 | x^1) \times \dots \times P(x^t | x^{t-1}, \dots, x^1)$$

 $P(This is a sentence) = P(This) \times P(is | This) \times P(a | This is) \times P(sentence| This is a)$

n-gram Language Models

- Modeling with Markov assumption
 - x^t depends only on the preceding (n-1) words

$$P(x^{t+1}|x^t,...,x^1) = P(x^{t+1}|x^t,...,x^{t-n+2})$$

• For example, if n=3

```
P(This is a sentence from AAA) = P(This)

x P(is | This)

x P(a | This is )

x P(sentence| This is a )

x P(from | This is a sentence)

x P(AAA | This is a sentence from)
```

calculate by counting the phrases in large corpus of text

Neural Word Embedding

- Neural network의 hidden vector 값을 이용하여 단어의 의미를 표현하는 기법
- Neural network language model (NNLM, 2003)

Recurrent Neural Network (RNN)

An illustrative example

Recurrent Neural Network (RNN)

output distribution

$$\hat{\boldsymbol{y}}^{(t)} = \operatorname{softmax}\left(\boldsymbol{U}\boldsymbol{h}^{(t)} + \boldsymbol{b}_2\right) \in \mathbb{R}^{|V|}$$

hidden states

$$\boldsymbol{h}^{(t)} = \sigma \left(\boldsymbol{W}_h \boldsymbol{h}^{(t-1)} + \boldsymbol{W}_e \boldsymbol{e}^{(t)} + \boldsymbol{b}_1 \right)$$

 $m{h}^{(0)}$ is the initial hidden state

word embeddings

$$\boldsymbol{e}^{(t)} = \boldsymbol{E} \boldsymbol{x}^{(t)}$$

words / one-hot vectors

$$\boldsymbol{x}^{(t)} \in \mathbb{R}^{|V|}$$

Model

Learning

$$\frac{\partial E_3}{\partial V} = \frac{\partial E_3}{\partial \hat{y}_3^{\hat{}}} \frac{\partial \hat{y}_3^{\hat{}}}{\partial V}$$

$$= \frac{\partial E_3}{\partial \hat{y}_3^{\hat{}}} \frac{\partial \hat{y}_3^{\hat{}}}{\partial z_3} \frac{\partial z_3}{\partial V}$$

$$= (\hat{y}_3^{\hat{}} - y_3) \otimes s_3$$

$$\frac{\partial E_3}{\partial W} = \frac{\partial E_3}{\partial \dot{y}_3^{\hat{}}} \frac{\partial \dot{y}_3^{\hat{}}}{\partial s_3} \frac{\partial s_3}{\partial W}$$

$$\frac{\partial E_3}{\partial W} = \sum_{k=0}^{3} \frac{\partial E_3}{\partial \dot{y}_3^{\hat{}}} \frac{\partial \dot{y}_3^{\hat{}}}{\partial s_3} \frac{\partial s_3}{\partial s_k} \frac{\partial s_k}{\partial W}$$

RNN Applications

Automatic Text Generation

```
PANDARUS:
Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,
I should not sleep.
Second Senator:
They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.
DUKE VINCENTIO:
Well, your wit is in the care of side and that.
Second Lord:
They would be ruled after this chamber, and
my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.
Clown:
Come, sir, I will make did behold your worship.
VIOLA:
I'll drink it.
```

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

RNN Applications

Automatic Image Caption Generation

"construction worker in orange safety vest is working on road."

"two young girls are playing with lego toy."

"girl in pink dress is jumping in air."

"black and white dog jumps over bar."

"young girl in pink shirt is swinging on swing."

http://cs.stanford.edu/people/karpathy/deepimagesent/rankingdemo/

RNN Applications— Question Answering

RNN Applications – Machine Translation

