Name: Yumna Irfan

Registration number: 2023-bs-ai-021

Operating System

An Operating System (OS) is a software that acts as an intermediary between computer hardware and the user. It manages hardware resources and provides services for computer programs. The OS is essential for the functioning of a computer system, as it enables the execution of applications and manages the hardware components.

Basics of Operating Systems

1. Functions of an Operating System:

- Process Management: The OS handles the creation, scheduling, and termination of processes. It ensures that each process gets enough CPU time and manages the execution of multiple processes simultaneously.
- Memory Management: The OS manages the computer's memory, including RAM and cache. It keeps track of each byte in a computer's memory and allocates memory to processes as needed.
- File System Management: The OS manages files on storage devices, providing a way to create, read, write, and delete files. It organizes files into directories for easy access.
- Device Management: The OS manages device communication via drivers. It acts as a bridge between the hardware and the applications that use the hardware.
- User Interface: The OS provides a user interface (UI), which can be command-line based or graphical, allowing users to interact with the computer system.

2. Key Components of an Operating System:

- Kernel: The core part of the OS that manages system resources and communication between hardware and software.

- Shell: The interface that allows users to interact with the OS, either through command-line

or graphical interfaces.

- File System: The structure that the OS uses to manage files on storage devices.

- Device Drivers: Specialized software that allows the OS to communicate with hardware

devices.

Types of Operating Systems

Operating systems can be categorized based on various criteria, including their design,

functionality, and intended use. Here are the main types of operating systems:

1. Batch Operating Systems:

- Description: These systems execute jobs in batches without user interaction. Jobs with

similar needs are grouped together and processed sequentially.

- Example: Early mainframe systems like IBM's OS/360.

2. Time-Sharing Operating Systems:

- Description: These systems allow multiple users to access the computer simultaneously. The

CPU time is divided among users, giving the illusion of dedicated resources.

- Example: UNIX, Linux.

3. Distributed Operating Systems:

- Description: These systems manage a group of independent computers and make them

appear to the user as a single coherent system. They handle resource sharing and

communication between machines.

- Example: Google's Android OS, which runs on multiple devices.

4. Network Operating Systems:

- Description: These systems provide services to computers connected to a network. They

manage network resources and allow file sharing and communication between devices.

- Example: Windows Server, Novell NetWare.

5. Real-Time Operating Systems (RTOS):

- Description: These systems are designed to process data as it comes in, typically without

buffering delays. They are used in environments where timing is critical.

- Example: VxWorks, QNX.

6. Embedded Operating Systems:

- Description: These are specialized OS designed to operate on embedded systems, which are

dedicated to specific tasks. They are often found in devices like appliances, vehicles, and

medical equipment.

- Example: FreeRTOS, Embedded Linux.

7. Mobile Operating Systems:

- Description: These are designed specifically for mobile devices, focusing on touch interfaces

and power efficiency.

- Example: Android, iOS.

8. Cloud Operating Systems:

- Description: These systems manage cloud resources and services, allowing users to access

applications and data over the internet.

- Example: Google Cloud Platform, Microsoft Azure.