NOIP 2018

Day 1

dy0607

August 1, 2018

题目名称	Prime	Sequence	Omeed
源文件名	prime	sequence	omeed
输入文件名	prime.in	sequence.in	omeed.in
输出文件名	prime.out	sequence.out	omeed.out
题目类型	传统型	传统型	传统型
每个测试点时限	1.0s	1.0s	1.0s
空间限制	512MB	512MB	512MB
编译命令	-lm -O2 -std=c++11		

Notes:

- 1. 评测在Ubuntu16.04(64bit)上进行, 评测时开启无限栈;
- 2. 评测机配置为Intel® Pentium(R) CPU G2030 @ 3.00GHz × 2, 内存4GB;
- 3. 遇到原题请不要大喊"这不是xx上的xx题吗",可以AK后提前离场;
- 4. 题目难度可能与顺序无关。

1 Prime

1.1 Description

众所周知,我们称一个大于1的整数x为质数,当且仅当:

$$\forall i \in [2, x-1], i \nmid x$$

小C认为这个定义不够优美,于是他定义了类质数. 他会给出一个常数K, 一个数x为类质数,当且仅当:

$$\forall i \in [2, \min(x-1, K)], i \nmid x$$

给出L, R, K, 求在[L, R]之内所有类质数的异或和。

1.2 Input

从文件prime.in中读入数据. 一行三个整数L, R, K.

1.3 Output

输出到文件*prime.out*中. 一行一个整数表示答案。

1.4 Sample1

1.4.1 Input

2 16 2

1.4.2 Output

3

1.4.3 Explanation

[2,16]中的类质数有:2,3,5,7,9,11,13,15.

NOIP 2018 Simulation 1 PRIME

1.5 Sample2

1.5.1 Input

100 1000 2333333

1.5.2 Output

561

1.6 Sample3

1.6.1 Input

1000000000 10000001000 423

1.6.2 Output

170

1.7 Subtasks

对于所有数据,有 $2 \le L \le R \le 10^{14}, 1 \le K \le 10^9, 0 \le R - L \le 10^7.$

子任务编号	R	K	R-L	分值
1	$\leq 10^{3}$	$\leq 10^{3}$	$\leq 10^{3}$	23
2	$\leq 10^7$	$\leq 10^7$	≥ 10°	7
3			$\leq 10^{7}$	18
4	$\leq 10^{14}$	= 1	<u> </u>	7
5		$=10^{9}$	$\leq 10^{5}$	27
6		$\leq 10^{9}$	$\leq 10^{6}$	5
7			$\leq 10^{7}$	13

2 Sequence

2.1 Description

一个长为n的序列,每个元素都在[1,k]之间。

现在小C想在序列后面再加上m个[1,k]之内的元素,使得本质不同的子序列个数尽量多。两个子序列被认为是不同的,当且仅当它们长度不同,或者至少一个对应位置的值不同。输出最大的不同子序列个数,对 10^9+7 取模。注意空序列不被看作一个子序列。

2.2 Input

从文件sequence.in中读入数据.

第一行三个整数n, m, k。

第二行n个整数描述初始序列。

2.3 Output

输出到文件 sequence.out 中. 输出一个整数表示答案.

2.4 Sample1

2.4.1 Input

2 1 3

1 3

2.4.2 Output

7

2.4.3 Explanation

最优的方案是在后面填上2. 此时有7种不同的子序列: "1", "2", "3", "1, 3", "1, 2", "3, 2", "1, 3, 2".

2.5 Sample2

2.5.1 Input

5 6 3

3 1 2 1 2

2.5.2 Output

987

2.6 Sample3

2.6.1 Input

9 980007 7

4 7 2 1 3 3 6 6 7

2.6.2 Output

608313080

2.7 Subtasks

对于所有数据, 有 $0 \le n \le 10^6, 0 \le m \le 10^{18}, 1 \le k \le 100, 1 \le A_i \le k$ 。

子任务编号	n	m	k	分值
1	≤ 8	= 0	≤ 3	12
2		≤ 6		11
3			= m	12
4		≤ 12		18
5	$\leq 10^{6}$	=0	≤ 100	14
6		$\leq 10^{6}$		11
7		$\leq 10^{18}$		22

NOIP 2018 Simulation 3 OMEED

3 Omeed

3.1 Description

"点一下,玩一年,曲包不花一分钱"

受这样的广告所吸引,小C点进了这款名为Omeed的音乐游戏。多年的健美操练习给了小C良好的乐感,不久之后,他便AC了游戏中内置的所有曲子。

小C觉得很无聊,于是向世界一流的作曲猫Shinetism求助,Shinetism顺手便作出一首由n个音符组成的乐曲。由于Shinetism实在是太快了,小C也有时无法跟上他的节奏。但他发现对于每个音符,都有一个概率 p_i ,表示他有 p_i 的概率在这个音符获得Perfect,否则会得到Bad. 这样他的成绩可以用一个长为n的0/1串S来表示,若 $S_i=1$ 则表示他在第i个音符获得了Perfect,否则获得了Bad.

接下来,他的基础分会这样计算(A是给定的常数):

$$BasicScore = A \times \sum_{i=1}^{n} S_i \tag{1}$$

而每个音符的连击分则需要一个函数来计算(t是给定的常数):

$$combo(i) = \begin{cases} S_i & i = 1\\ combo(i-1) + 1 & i \neq 1 \text{ and } S_i = 1\\ combo(i-1) \times t & \text{otherwise} \end{cases}$$
 (2)

他的连击分为(B是给定的常数):

$$ComboScore = B \times \sum_{i=1}^{n} S_i \times combo(i)$$
(3)

最后的总分为:

$$TotalScore = BasicScore + ComboScore \tag{4}$$

Shinetism想让小C的任务更富有挑战性,于是他会进行q次操作。每次操作要么修改其中的其中的一个音符,要么把一个区间的音符单独提出来给小C玩。小C会告诉你每次修改的位置,以及修改后获得Perfect的概率,你需要计算小C每次游戏的得分期望,对998244353取模。具体地,会有以下两种格式的操作:

- 0 x wa wb, 表示将原来的 p_x 修改为 $\frac{wa}{wb}$;
- 1 l r , 表示询问对于l到r的音符组成的乐曲, 小C的期望得分。

NOIP 2018 Simulation 3 OMEED

3.2 Hint

假设最后的答案可以表示为 $\frac{p}{q}$, 你需要输出 $p \times q^{-1} \mod 998244353$,其中 q^{-1} 代表q在模998244353意义下的乘法逆元.

在本题中, $x^{-1} = x^{998244351} \pmod{998244353}$

3.3 Input

从文件omeed.in中读入数据.

第一行一个整数表示子任务编号。

第二行六个整数n,q,ta,tb,A,B, 你需要计算得到 $t=\frac{ta}{tb}$, 其余信息与题目描述中一致。

接下来n行,每行两个整数 pa_i,pb_i ,你需要计算得到 $p_i = \frac{pa_i}{pb_i}$.

接下来q行,每行一个操作,格式见问题描述.

3.4 Output

输出到文件omeed.out中.

对于每个询问,输出一个整数表示期望得分。

3.5 Sample1

3.5.1 Input

3

3 5 1 2 2 3

1 2

0 2

2 2

1 1 2

1 1 3

0 2 3 7

0 3 2 9

1 1 3

3.5.2 Output

499122179

748683273

966554063

NOIP 2018 Simulation 3 OMEED

3.5.3 Explanation

对于第一组询问,有 $\frac{1}{2}$ 的概率S=10,此时分数为 $1\times2+(1+0)\times3=5$;有 $\frac{1}{2}$ 的概率S=00,此时没有分数。所以答案为 $\frac{5}{2}$,模意义下结果为499122179.

对于第二组询问,有 $\frac{1}{2}$ 的概率S=101,此时分数为 $2\times2+(1+0+\frac{3}{2})\times3=\frac{23}{2}$;有 $\frac{1}{2}$ 的概率S=001,此时分数为 $1\times2+(0+0+1)\times3=5$. 所以答案为 $\frac{1}{2}\times(\frac{23}{2}+5)=\frac{33}{4}$,在模意义下结果为748683273.

3.6 Sample2

见选手目录下的omeed/omeed2.in与omeed/omeed2.ans.

3.7 Sample3

见选手目录下的omeed/omeed3.in与omeed/omeed3.ans.

3.8 Subtasks

对于所有数据,有 $1 \le n \le 5 \times 10^5, 0 \le q \le 5 \times 10^5, 0 \le A, B \le 10^9,$ $0 \le ta \le tb < 998244353, 0 \le pa_i \le pb_i < 998244353, 0 \le wa \le wb < 998244353,$ $tb, wb, pb_i \ne 0, 1 \le x \le n, 1 \le l \le r \le n.$

所有数据中,操作种类都是随机生成的.

子任务编号	n	q	特殊性质	分值
1	≤ 10	= 0	无	3
2		≤ 10	性质1	12
3			无	9
4	$\leq 10^{3}$		性质3	24
5	$\leq 5 \times 10^5$		无	9
6		$\leq 10^5$	性质2	16
7			性质3	16
8		$\leq 5 \times 10^5$	无	11

• 性质1:无论何时都有 $p_i \in \{0,1\}$.

• 性质2: B = 0.

性质3: t = 0.