CAD Project I: Classical Machine Learning

KAOUTHER MOUHEB
RACHIKA ELHASSNA HAMADACHE
MAIA 2021-2023

Outline

- 1. Proposal Analysis
- 2. Implementation and Design
 - 1. Preprocessing
 - 2. Feature Extraction
 - 3. Sampling
 - 4. Parameter Fine-tuning
 - 5. Feature Selection
 - 6. Model Selection
- 3. Experimental Results and Evaluation
- 4. Bag Of Visual Words
- 5. Conclusion

Proposal Analysis

Proposed Pipeline

Proposed Pipeline

Preprocessing

Hair removal

Figure 2: Hair removal pipeline

Vignette removal

Vignette removal pipeline

Color Constancy

A *color compensation* technique to reduce the influence of the acquisition setup on the color features extracted from the images. It uses the Minkowski norm to estimate the color of the illuminant.

The illuminant e is obtained as follows:

$$\left(\frac{\int (I_c(\mathbf{x}))^p d\mathbf{x}}{\int d\mathbf{x}}\right)^{1/p} = ke_c$$

Where *Ic* denotes the cth component of the image, k a normalization factor, p the degree of the norm.

Color Normalization Example

Full Preprocessing Pipeline

Preprocessing pipeline

Design and Implementation

Feature Extraction

Color features

- 1. Color variegation : quantified by the normalized standard deviation of the red, green and blue components of the image.
- 2. Color moments: 4 measures characterizing the color distribution of the images: mean, standard deviation, skewness and variance.
- 3. Color histograms: histogram of each channel of the 3 color spaces: RGB, HSV and Lab

Texture features

- 1. LBP: Local binary patterns with P=16 and R=2.
- 2. Haralick: texture features based on the GLCM matrix and computing 13 measures.
- 3. GLCM: 5 main properties computed for 4 different angles with unit step: correlation, homogeneity, contrast, energy and dissimilarity

Parameter Fine-tuning

Parameter Estimation

- For challenge 1, a subset of 4000 images (2000 per class) was sampled to perform fine-tuning.
- All features are used for this step.
- GridSearchCV was used with 5 folds to estimate the Following parameters:

Random Forest XGBoost: SVM: K-NN: and Extra Trees: Maximum Maximum Penalization - The number of neighbors k. depth depth parameter C. Number of - Number of **Estimators Estimators** Criterion Learning rate

Challenge 1: Nevus Versus Others

Feature Selection

A =: All features	A =: All features		
B =: All features but color moments			
C =: All features but RGB histograms			
D =: All features but LAB histogram	H =: Best features based on the results [B - G]]	
E =: All features but HSV histogram	H Dest leatures based on the results [b - G]		
F =: All features but texture features			
G =: All features but variegation			
Select k best			
PCA	I =: Sci-kit learn feature selection result		
Select from model			
		.	
All features with Yeo-Johnson normalization	J =: All features with Yeo-Johnson normalization		
Visually selected features (before normalization)	K =: Visually selected features (before normalization)		
Visually selected features (after normalization)	L =: Visually selected features (after normalization)		

Best Features

Model Selection

Challenge 1

The best model is selected based on the following evaluation metrics:

$$\kappa = rac{2 imes (TP imes TN - FN imes FP)}{(TP+FP) imes (FP+TN) + (TP+FN) imes (FN+TN)}$$

$$ext{Accuracy} = rac{TP + TN}{TP + TN + FP + FN}$$

True Labels

		Nevus	Other
Labels	Nevus	TP	FP
Predicted Labels	Other	FN	TN

Challenge 1 (Cont'd)

The following models were compared:

- Nearest Neighbor (Baseline)
- K-Nearest Neighbors
- Support Vector Machines
- Gradient Boosting (XGBoost)
- Extra Trees
- Random Forest
- Stacking ensemble (SVM + XGboost + Extra trees with Logistic Regression as meta classifier)
- Averaging ensemble (SVM + XGboost + Extra trees)
- Majority voting ensemble (SVM + XGboost + Extra trees)
- Ensembling the pre-trained models with averaging
- Ensembling the pre-trained models with majority voting

Experimental Results

Feature Visualization

With MatPlotLib

Variegation

Color Moments

Mean RGB Histograms For Each Class

Mean HSV Histograms For Each Class

Mean LAB Histograms For Each Class

GLCM Features

Haralick Features

LBP Histograms

Training and Evaluation

Feature selection & model training results

Global Results Evaluation

Boxplot of the kappa metric for each feature vector across all models

Boxplot of the kappa metric for each classifier across all feature vectors

Best Results Per Classifier

Classifier	Parameters	Features	Time	Accuracy	Карра
K-NN	k=20	L	0035.718	0.794783	0.589447
XGboost	n_estimators = 2000, depth = 9, lr = 0.1	А	2214.809	0.842729	0.685325
SVM	C = 8	L	0318.782	0.835879	0.671699
RF	n_estims = 500, depth = 20, criterion = gini	А	0135.674	0.828240	0.656174
Extra Trees	n_estims = 2000, depth = 9, criterion = gini	J	0080.913	0.832718	0.665179
Stacking	XGboost + SVM + Extra Trees	L	10339.71	0.840358	0.680631
Averaging (sklearn)	XGboost + SVM + Extra Trees	L	2687.811	0.842992	0.685815
Majority Voting (Sklearn)	XGboost + SVM + Extra Trees	L	2564.247	0.843256	0.686305
Averaging (manual)	XGboost + SVM	L	-	0.844573	0.689023
Majority Voting (manual)	XGboost + SVM + Extra Trees	L	-	0.844046	0.687884

Best Classifier Results

Examples of Correctly Classified Images

Examples of Wrongly Classified Images

Challenge 2: Melanoma VS BCC VS SCC

Notes

- For this challenge, we follow the same proposed pipeline as in Challenge 1.
- The same preprocessing steps were applied.
- The same features were extracted.

Sampling

Class imbalance with SMOTE and Undersampling

For Challenge 2, class imbalance is tackled by sampling: Oversampling the minority class (~1700 samples) with SMOTE, then randomly undersampling the other classes to that same amount.

- 1. SMOTE: an oversampling technique used on minority class. It works by selecting samples from the minority class and finding the k-nearest neighbors of each of them. Then, synthetic examples are created at a randomly selected point between two of those neighbors.
- 2. Random Undersampling: Randomly selecting samples from the majority classes without replacement, while keeping the minority class unchanged.

Synthetic Minority Oversampling Technique

Feature Selection

A =: All features A =: All features B =: All features but color moments C =: All features but RGB histograms D =: All features but LAB histogram H =: Best features based on the results [B - G] E =: All features but HSV histogram F =: All features but texture features **G** =: All features but variegation **Best Features** Select k best **PCA** I =: Sci-kit learn feature selection result Select from model All features with Standard Scaler preprocessing J =: All features with Standard Scaler preprocessing Visually selected features (after normalization) L =: Visually selected features (after normalization)

Model Selection

Challenge 2

The best model is selected based on the following evaluation metrics:

Kanna —	Pr(a) - Pr(e)
Kappa =	1-Pr(e)

$$exttt{balanced-accuracy} = rac{1}{3} igg(rac{TP}{TP + FN}igg)$$

	Mel	Всс	Scc
Scc	TN	FP	TN
Всс	FN	TP	FN
Mel	TN	FP	TN

Irue Labels

Challenge 2 (Cont'd)

The following models were compared:

- Nearest Neighbor (Baseline)
- K-Nearest Neighbors
- Support Vector Machines
- Gradient Boosting (XGBoost)
- Extra Trees
- Random Forest
- Stacking ensemble
- Majority voting ensemble (soft)
- Ensembling the pre-trained models with averaging
- Hierarchical architecture with previous classifiers

Experimental Results

Feature Visualization

With MatPlotLib

Variegation

Color Moments

Mean RGB Histograms For Each Class

Mean HSV Histograms For Each Class

Mean LAB Histograms For Each Class

GLCM Features

Haralick Features

LBP Histograms

Training and Evaluation

Feature selection & model training results

Global Results Evaluation

Boxplot of the kappa metric for each feature vector across all models

Boxplot of the kappa metric for each classifier across all feature vectors

Best Results Per Classifier

Classifier	Parameters	Features	Карра	Bma	Time (s)
Baseline NN	k =1	Α	0.621365	0.747204	17.2943
K-NN	k=5	I	0.593095	0.742710	14.6484
XGboost	n_estimators = 500, depth = 7, lr = 0.1	E	0.693371	0.721120	419.1023
SVM	C = 11	I	0.735959	0.747785	635.5958
RF	n_estimators = 500, depth = 13, criterion = entropy	А	0.634628	0.698730	99.1131
Extra Trees	n_estimators = 1000, depth = 13, criterion = entropy	G	0.639188	0.716365	50.6742
Stacking (sklearn)	SVM + XGBoost + XTrees + RF + KNN	Α	0.734990	0.741193	2300.3030
Majority Voting (Sklearn)	SVM + XGBoost	А	0.752323	0.741561	497.1405
Averaging (manual)	SVM + XGBoost + XTrees	А	0.731742	0.742417	-
Hierarchical (manual)	XGBoost	А	0.652815	0.674347	-

Best Classifier Results

Examples of Correctly Classified Images

Examples of Wrongly Classified Images

Confusion matrix on the validation set

Bag Of Visual Words

Pipeline

Bag-of-visual-words based classification pipeline

Keypoint detection

Keypoint Detection Pipeline

Segmentation

Segmentation pipeline

*ASF: Alternating Sequential Filtering to reduce image complexity and make it more homogeneous

*Mask: removing some artefacts (colorful disks) on the borders when using the blue channel

Feature Extraction

Feature Extraction Pipeline

Extracted Features

Histogram of the vocabulary occurrences in the train set in each class using SIFT descriptor.

Model Training and Evaluation

- GridSearchCV with 5 folds was used for parameter estimation.
- SMOTE and undersampling were used for balancing the dataset.
- The following models were evaluated:
 - O K-NN
 - SVM
 - XGBoost
 - Random Forest
 - Extra Trees
 - Ensembles of the previously trained models
- The models were compared based on balanced multi-class accuracy and kappa metrics.
- Models were trained using a combination of SIFT + BRISK + ORB features.

Experimental Results

With Segmentation mask

Model	Train Data	Best Kappa	ВМА
NN	All samples	0.486241	0.595114
KNN	All samples	0.486241	0.595114
XGBST	1694 samples/class	0.489844	0.560988
SVM	All samples + balanced weights	0.457248	0.588034
RF	All samples + balanced weights	0.478247	0.516117
XTrees	1694 samples/class	0.472977	0.562755

Without segmentation mask

Model	Train Data	Best Kappa	BMA
NN	All samples	0.530192	0.646191
KNN	All samples	0.530192	0.646191
XGBST	1694 samples/class	0.545448	0.601006
SVM	1694 samples/class	0.537877	0.656429
RF	All samples + balanced weights	0.515091	0.543635
XTrees	All samples	0.543117	0.601907

Experimental Results: SIFT+ORB+BRISK

Model	Train Data	Best Kappa	ВМА
NN	All samples	0.531296	0.661191
KNN	All samples	0.531296	0.661191
XGBST	All samples	0.579542	0.574249
SVM	1694 samples/class	0.578807	0.637399
RF	All samples	0.524012	0.535706
XTrees	1694 samples/class	0.536174	0.589971
Ensemble	All data + all models	0.599591	0.601939

Conclusion

Conclusion

- For skin lesion classification, Color and texture features play a major role in distinguishing classes.
- Sampling helps tackling imbalanced data classes.
- Normalized features to a gaussian-like distribution minimizes skewness and improves results.
- Ensembling classifiers improves the performance.
- SVM and XGB are indeed robust and they provide the best results.

Future prospects

- Apply segmentation to enhance the ROI and focus on relevant features only.
- Improve the Hierarchical approach.
- Optimize the BoW approach by tuning the vocabulary size and adding more descriptors (e.g. color)

Thank you