UNIVERSITY OF TWENTE.

Soft RTOS Design for Simulated Sensor Network Coordination

Muhammad Arief Kurniawan

April 2025

Contents

1	Introduction	1
	1.1 Objectives	1
	1.2 Problem Statement	
	1.3 Purpose	1
2	Requirement Analysis	2
	2.1 System Components	2
	2.2 Task Classification	2
	2.3 Functional Requirements	3
	2.4 Non-Functional Requirements	
	2.5 Initial Simulation Parameters	3
3	System Architecture	4
	3.1 Distributed Sensor Network	4
	3.2 RTOS Architecture	5
4	Timeline	6
	4.1 Gantt Chart	6
	4.2 Deliverables	7

Introduction

This document presents the project objectives and roadmap. This project combines several theoretical fundamentals that revolve around real-time operating systems. It consists of the application of scheduling theory, real-time system design, and distributed system simulation and implementation.

1.1 Objectives

The table below showcases the high-level objectives of the project.

No.	Objective	Description	
1	Design and implement soft RTOS	Designing an RTOS in user space	
2	Simulate a dynamic sensor network	e a dynamic sensor network Create "virtual" sensors that replicate a network of sensors with diverse task priorities and deadline	
3	System analysis Perform analysis of system performance, timing constraints, and message latency		
4	Load handling Demonstrate how system performs under load		

Table 1.1: Table of Project objectives

1.2 Problem Statement

Design and simulate a soft real-time operating system that manages a dynamic set of sensor nodes. Each sensor periodically generates and sends data to the central node. A **Real-Time Operating System (RTOS)** ensures tasks are scheduled and completed as close to deadlines.

1.3 Purpose

The purpose of this project is to design and simulate a soft real-time operating system tailored for managing distributed sensor networks under timing constraints. Such systems are deployed in applications like environmental monitoring and industrial automation where tasks must be completed within a certain time bounds. With simulating sensor nodes, real-time task scheduling, and inter-task communication, this project enables exploration of RTOS design principles and the trade-off between system responsiveness, resource allocation, and deadline adherence.

Requirement Analysis

This section presents the analysis of required system components and tasks. Additionally, it presents the analysis of functional and non-functional requirements.

2.1 System Components

No.	Component	Description	
1	Sensor Nodes (simulated)	Virtual processes generating data peridocially	
2	RTOS Kernel Simulator	Core layer managing task scheduling, queues, clocks, and logging	
3	Scheduler	Handles task prioritisation and execution	
4	Inter-Process Communication (IPC) Message queues for parsing sensor data		
5	Logger	Tracks execution statistics, deadlines, and timing behaviour	
6	Visualisation Module	ion Module Graphically show Gantt charts or task timelines	

Table 2.1: Table of System Components

2.2 Task Classification

No.	Туре	Characteristic	Example
1	Periodic	Fixed intervals	Sensor data read
2 Sporadic Irregular, but with known minimum interva		Motion detection alert	
3	Aperiodic	Unpredictable, triggered externally	Network diagnostic task

Table 2.2: Table of Task Classification

2.3 Functional Requirements

No.	Requirement	
1	Create and manage simulated sensor nodes with deadlines	
	Implement soft real-time scheduler supporting:	
2	- Round-robin (baseline)	
	- Optional: EDF or Rate Monotonic	
3	Handle task creation, execution, and inter-task communication	
4	Log metrics	
5	Support dynamic addition/removal of sensor nodes	

Table 2.3: Table of Functional Requirements

2.4 Non-Functional Requirements

No	Requirement	
1	Modular and extensible code structure using C++	
2	Runtime configurability of task frequencies and deadlines	
3	Deterministic task handling for reproducibility in experiments	
4	Lightweight simulation suitable for academic environments	

Table 2.4: Table of Non-Functional Requirements

2.5 Initial Simulation Parameters

No.	Parameter	Value
1	Number of sensors 3 (scalable)	
2	Sensor period range	50ms to 100ms
3	3 Simulation duration 60 seconds (dyna	
4	Soft deadline tolerance	10% margin

Table 2.5: Table of Simulation Parameters

System Architecture

This section showcases an overview of the distributed sensor network and the proposed system architecture.

3.1 Distributed Sensor Network

Figure 3.1: Distributed Sensor Network

3.2 RTOS Architecture

Figure 3.2: System Architecture Diagram

Timeline

4.1 Gantt Chart

Figure 4.1: Gantt Chart for Project Timeline

4.2 Deliverables

Week	Phase	Key Task	Deliverables
			Requirements Specification
1	Phase 1: Requirements Analysis & System Design	Finalize system objectives, components, architecture diagram, and task types	System Design Document
			Architecture Diagram
0.0	2-3 Phase 2: Core RTOS Simulation Framework	Implement task abstraction, timing engine, and base scheduler (e.g., round-robin).	RTOS Kernel Simulation (Task Manager + Scheduler)
2-3		Add task logging and a simple runtime interface.	Test Suite for Basic Tasks
4-5	Phase 3: Sensor Network Simulation Laver	Create configurable simulated sensor nodes. Implement message queues, event handling,	Simulated Sensor Network
4-0	Filase 3. Selisor Network Sillidiation Layer	and fault injection (optional).	IPC Mechanism (Queues or Mailboxes)
6	Phase 3 (Cont'd)	Integrate sensor node execution with scheduler and logging. Introduce dynamic task	Dynamic Simulation Support
		addition/removal and sensor parameter configuration.	Logging Subsystem
7-8	Phase 4: Evaluation and Metrics Collection	Run experiments under varying loads and scheduling algorithms. Collect and visualize	Experimental Results
1-0		metrics (deadline misses, task response times, CPU utilization).	Evaluation Report (Charts & Analysis)
0	Phase 5: Documentation and Presentation	Write academic report with results and methodology. Prepare summary and optionally	Final Project Report
		a presentation/demo video.	Presentation Slides (optional)
10	Buffer & Optional Extensions	Add improvements (e.g., EDF scheduler, energy modeling). Perform final polish	Optional Features
10	Bullet & Optional Extensions	and address feedback.	Final Review and Submission

Table 4.1: Table of Project Deliverables