Formale Sprachen und Automaten Prof. Dr. Uwe Nestmann - 27. Juli 2022

Schriftlicher Test

Studierendenidentifikation:

NACHNAME	
VORNAME	
MATRIKELNUMMER	
STUDIENGANG	□ Informatik Bachelor, □

Ich möchte die von mir in der Hausaufgabe erreichten Punkte anrechnen lassen. (Ja/Nein)

Aufgabenübersicht:

AUFGABE	SEITE	PUNKTE	THEMENBEREICH		
1	3	15	Modelle Regulärer Sprachen		
2	4	15	Untermengen-Konstruktion		
3	5	22	MINIMIERUNG EINES DFA		
4	6	12	CYK-ALGORITHMUS		
5	7	11	Modelle Kontextfreier Sprachen I		
6	8	5	Modelle Kontextfreier Sprachen II		

Zwei Punkte in diesem Test entsprechen einem Portfoliopunkt.

Korrektur:

AUFGABE	1	2	3	4	5	6	\sum
PUNKTE	15	15	22	12	11	5	80
ERREICHT							
KORREKTOR:IN							
EINSICHT							

Aufgabe 1: Modelle Regulärer Sprachen

(15 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{a, b\},\$ die reguläre Sprache $A_1 \triangleq \{ (ba)^n b(aa)^m \mid m, n \in \mathbb{N} \},$ die reguläre Grammatik $G_2 \triangleq (\{ S, T, U, W \}, \Sigma, P_2, S)$ und der NFA $M_3 \triangleq (\{q_0, q_1, q_2, q_3\}, \Sigma, \Delta_3, \{q_0\}, \{q_3\})$ mit:

a. (6 Punkte) Gib einen DFA M_1 mit $L(M_1) = A_1$ an.

b. (4,5 Punkte) Gib eine Typ-3 Grammatik G_1 mit $L(G_1) = A_1$ an.

- c. (2 Punkte) $Gib L(G_2)$ an, ohne auf Automaten oder Grammatiken zu verweisen.
- d. (2.5 Punkte) $Gib L(M_3)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

Aufgabe 2: Untermengen-Konstruktion

(15 Punkte)

Gegeben sei der NFA $M \triangleq (\{q_0, q_1, q_2, q_3, q_4, q_5\}, \Sigma, \Delta, \{q_0, q_1\}, \{q_2\})$ mit $\Sigma \stackrel{\triangle}{=} \{ a, b \} \text{ und } \Delta$:

a. (13 Punkte) Konstruiere nur mit Hilfe der Untermengen-Konstruktion den DFA M^\prime zum NFA M. Gib die bei der Untermengen-Konstruktion entstehende Tabelle sowie das Tupel des entstehenden Automaten M' an.

Hinweis: Es ist nicht nötig die Übergangsfunktion δ' von M' (graphisch) anzugeben.

b. (2 Punkte) Gib L(M) an, ohne auf Automaten oder Grammatiken zu verweisen.

Aufgabe 3: Minimierung eines DFA

(22 Punkte)

Gegeben sei der DFA $M \triangleq (Q, \Sigma, \delta, q_0, \{q_0, q_6\})$ mit $Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8\}, \Sigma = \{a, b\}$ und δ :

- a. (1 Punkt) Gib an: Welche Zustände sind nicht erreichbar?
- b. (9 Punkte) *Gib an:* Fülle die folgende Tabelle entsprechend des Table-Filling-Algorithmus zum Minimieren von DFAs mit Kreuzen (x) und Kreisen (o) aus. *Hinweis: Bitte streiche zunächst alle Zeilen und Spalten für nicht erreichbare Zustände, falls es solche Zustände in M gibt.*

c. (4 Punkte) Die Minimierung unterteilt Q in Äquivalenzklassen. Gib alle Äquivalenzklassen an, die sich aus der Tabelle ergeben.

Hinweis: Die Namen der Klassen in der Form $[q_0]$ genügen hier nicht. Es müssen auch die zugehörigen Mengen, also so etwas wie $[q_0] = \{ \dots \}$, angegeben werden.

d. (5 Punkte) Gib den minimierten DFA M' an.

e. (3 Punkte) Gib L(M) an, ohne auf Automaten oder Grammatiken zu verweisen.

Aufgabe 4: CYK-Algorithmus

(12 Punkte)

Gegeben sei ein Alphabet $\Sigma \triangleq \{a, b\}$, sowie die Grammatiken $G_1 \triangleq (\{S_1, X, Y, Z\}, \Sigma, P_1, S_1) \text{ und } G_2 \triangleq (\{S, T, U, V, W\}, \Sigma, P_2, S) \text{ mit:}$

a. (4 Punkte) Gib eine Grammatik G in CNF an mit $L(G_1) = L(G)$.

b. (8 Punkte) Berechne: Gegeben sei ein Wort $w \triangleq aabab$. Löse mit dem CYK-Algorithmus das Wortproblem: $w \in L(G_2)$ oder $w \notin L(G_2)$?

115011tillitus au	o vvoitpioo	$\alpha \subset \mathbf{D}$	(a_2) oder a	\mathcal{L} $\mathcal{L}(G_2)$.	
$CYK_w(i,j)$	1	2	3	4	5
1: a					
2: a					
3: b					
4: a					
5: b					

<i>Matrikelnummer: Name:</i>

Aufgabe 5: Modelle Kontextfreier Sprachen I

(11 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{\ a,\ b,\ c\ \}$ und die kontextfreie Sprache:

$$A \triangleq \left\{ xa^nb^mc \mid n, m \in \mathbb{N}^+ \land x \in \{ c, cba \}^* \land |x|_c = |x|_b + n \right\}$$

a. (5.5 Punkte) Gib eine Typ-2 Grammatik G mit $\mathcal{L}(G)=A$ an.

b. (5.5 Punkte) Gib einen PDA M mit $L_{End}(M) = L_{Kel}(M) = A$ an.

Aufgabe 6: Modelle Kontextfreier Sprachen II

(5 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{\ 0,\ 1,\ 2\ \}$ und der PDA $M \stackrel{\Delta}{=} (\{ q_0, q_1, q_2, q_3 \}, \Sigma, \{ \Box, +, \bullet \}, \Box, \Delta, q_0, \{ q_3 \})$ mit Δ :

a. (2 Punkte) $Gib \ L_{End}(M)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

b. (3 Punkte) $\mathit{Gib}\ \mathrm{L}_{\mathrm{Kel}}(M)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

<i>Matrikelnummer:</i> —	Name:
Auf dieser Seite löse	ich einen Teil der Aufgabe:
Teilaufgabe:	8

Matrikelnummer: _	Name:	
Auf dieser Seite lös	se ich einen Teil der Aufgabe — :	
	se ich enten der Aufgabe	
Teilaufgabe:		