jshiftio/kubernetes-maven-plugin

Roland Huß, James Strachan

Version 0.1.0, 2019-07-12

kubernetes-maven-plugin

1.	Introduction	2	2
	1.1. Building Images.	2	2
	1.2. Kubernetes Resources	2	2
	1.3. Configuration	2	2
	1.4. Examples		3
	1.4.1. Zero-Config	4	1
	1.4.2. XML Configuration	(3
	1.4.3. Resource Fragments	()
2.	Compatibility with Kubernetes	. 11	1
	2.1. Kubernetes Compatibility	. 13	1
3.	Installation	. 12	2
4.	Goals Overview	. 14	1
5.	Build Goals	. 16	3
	5.1. k8s:resource	. 16	3
	5.1.1. Labels and Annotations.	. 16	3
	5.1.2. Secrets	. 18	3
	5.1.3. Resource Validation	. 19)
	5.1.4. Route Generation	. 20)
	5.1.5. Other flags	. 21	1
	5.2. k8s:build	. 22	2
	5.2.1. Kubernetes Build.	. 22	2
	5.2.2. OpenShift Build	. 22	2
	5.2.3. Configuration	. 23	3
	5.2.4. Kubernetes Access Configuration	. 27	7
	5.2.5. Image Configuration	. 28	3
	5.2.6. Build Configuration	. 29)
	5.2.7. Assembly	. 38	3
	5.2.8. Environment and Labels.	. 42	2
	5.2.9. Startup Arguments	. 43	3
	5.2.10. Build Args	. 44	1
	5.3. k8s:push	. 44	1
	5.4. k8s:apply	. 45	5
	5.5. k8s:helm .	. 45	5
6.	Development Goals	. 48	3
	6.1. k8s:deploy	. 48	3
	6.2. k8s:undeploy	. 49)
	6.3. k8s:log .	. 49)
	6.4. k8s:debug	. 50)

6.4.1. Speeding up debugging	50
6.4.2. Debugging with suspension	51
6.5. k8s:watch	52
6.5.1. Spring Boot	53
6.5.2. Docker Image	53
7. Generators	54
7.1. Default Generators	56
7.1.1. Java Applications	57
7.1.2. Spring Boot.	59
7.1.3. Wildfly Swarm	59
7.1.4. Thorntail v2	59
7.1.5. Vert.x	60
7.1.6. Karaf	60
7.1.7. Web Applications	61
7.1.8. Quarkus	62
7.2. Generator API	62
8. Enrichers	64
8.1. Default Enrichers	64
8.1.1. Standard Enrichers	66
8.2. Enricher API	89
9. Profiles	90
9.1. Generator and Enricher definitions	91
9.2. Lookup order	91
9.3. Using Profiles	92
9.4. Predefined Profiles.	93
9.5. Extending Profiles	94
10. Access configuration	97
10.1. Docker Access	97
10.2. OpenShift and Kubernetes Access	97
11. Registry handling	98
12. Authentication	100
12.1. Pull vs. Push Authentication	101
12.2. OpenShift Authentication	102
12.3. Password encryption	103
12.4. Extended Authentication	103
13. Volume Configuration	104
14. FAQ	107
14.1. General questions	107
14.1.1. How do I define an environment variable?	107
14.1.2. How do I define a system property?	107
14.1.3. How do I mount a config file from a ConfigMap?	107

14.1.4. How do I use a Persistent Volume?	108
15. Appendix	110
15.1. Kind/Filename Type Mapping	110
15.2. Custom Kind/Filename Mapping	111

© 2016 The original authors.

Chapter 1. Introduction

The **kubernetes-maven-plugin** (k8-m-p) brings your Java applications on to **Kubernetes**. It provides a tight integration into Maven and benefits from the build configuration already provided. This plugin focus on two tasks: *Building Docker images* and *creating Kubernetes resource descriptors*. It can be configured very flexibly and supports multiple configuration models for creating: A *Zero-Config* setup allows for a quick ramp-up with some opinionated defaults. For more advanced requirements, an *XML configuration* provides additional configuration options which can be added to the pom.xml. For the full power, in order to tune all facets of the creation, external *resource fragments* and *Dockerfiles* can be used.

1.1. Building Images

The **k8s:build** goal is for creating Docker images containing the actual application. These then can be deployed later on Kubernetes or OpenShift. It is easy to include build artifacts and their dependencies into these images. This plugin uses the assembly descriptor format from the mavenassembly-plugin to specify the content which will be added to the image. That images can then be pushed to public or private Docker registries with **k8s:push**.

Depending on the operational mode, for building the actual image either a Docker daemon is used directly or an OpenShift Docker Build is performed.

A special **k8s:watch** goal allows for reacting to code changes to automatically recreate images or copy new artifacts into running containers.

These image related features are inherited from the jshiftio/docker-maven-plugin which is part of this plugin.

1.2. Kubernetes Resources

Kubernetes resource descriptors can be created or generated from **k8s:resource**. These files are packaged within the Maven artifacts and can be deployed to a running orchestration platform with **k8s:apply**.

Typically you only specify a small part of the real resource descriptors which will be enriched by this plugin with various extra information taken from the pom.xml. This drastically reduces boilerplate code for common scenarios.

1.3. Configuration

As mentioned already there are three levels of configuration:

- **Zero-Config** mode makes some very opinionated decisions based on what is present in the pom.xml like what base image to use or which ports to expose. This is great for starting up things and for keeping quickstart applications small and tidy.
- XML plugin configuration mode is similar to what docker-maven-plugin provides. This allows for type-safe configuration with IDE support, but only a subset of possible resource descriptor

features is provided.

• **Kubernetes & OpenShift resource fragments** are user provided YAML files that can be *enriched* by the plugin. This allows expert users to use a plain configuration file with all their capabilities, but also to add project specific build information and avoid boilerplate code.

The following table gives an overview of the different models

Table 1. Configuration Models

Model	Docker Images	Resource Descriptors
Zero- Config	Generators are used to create Docker image configurations. Generators can detect certain aspects of the build (e.g. whether Spring Boot is used) and then choose some default like the base image, which ports to expose and the startup command. They can be configured, but offer only a few options.	Default Enrichers will create a default Service and Deployment (DeploymentConfig for OpenShift) when no other resource objects are provided. Depending on the image they can detect which port to expose in the service. As with Generators, Enrichers support a limited set of configuration options.
XML configurat ion	jshift-m-p inherits the XML based configuration for building images from the docker-maven-plugin and provides the same functionality. It supports an assembly descriptor for specifying the content of the Docker image.	A subset of possible resource objects can be configured with a dedicated XML syntax. With a decent IDE you get autocompletion on most object and inline documentation for the available configuration elements. The provided configuration can be still enhanced by Enhancers which is useful for adding e.g. labels and annotations containing build or other information.
Resource Fragments and Dockerfile s	Similarly to the docker-maven-plugin, jshift-m-p supports external Dockerfiles too, which are referenced from the plugin configuration.	Resource descriptors can be provided as external YAML files which specify a skeleton. This skeleton is then filled by Enrichers which add labels and more. Maven properties within these files are resolved to thier values. With this model you can use every Kubernetes / OpenShift resource object with all their flexibility, but still get the benefit of adding build information.

1.4. Examples

Let's have a look at some code. The following examples will demonstrate all three configurations variants:

1.4.1. Zero-Config

This minimal but full working example pom.xml shows how a simple spring boot application can be dockerized and prepared for Kubernetes. The full example can be found in directory samples/zero-config.

Example

```
ct>
 <modelVersion>4.0.0</modelVersion>
 <groupId>io.jshift
 <artifactId>jshift-maven-sample-zero-config</artifactId>
 <version>0.1.0
 <packaging>jar</packaging>
 <parent>
   <groupId>org.springframework.boot
   <artifactId>spring-boot-starter-parent</artifactId> ①
   <version>1.5.5.RELEASE
 </parent>
 <dependencies>
   <dependency>
     <groupId>org.springframework.boot
     <artifactId>spring-boot-starter-web</artifactId> ②
   </dependency>
 </dependencies>
 <build>
   <plugins>
     <plugin>
       <groupId>org.springframework.boot
       <artifactId>spring-boot-maven-plugin</artifactId> 3
     </plugin>
     <plugin>
       <groupId>io.jshift
       <artifactId>k8s-maven-plugin</artifactId> 4
       <version>0.1.0</version>
     </plugin>
   </plugins>
 </build>
</project>
```

- ① This minimalistic spring boot application uses the spring-boot parent POM for setting up dependencies and plugins
- ② The Spring Boot web starter dependency enables a simple embedded Tomcat for serving Spring MVC apps
- ③ The spring-boot-maven-plugin is responsible for repackaging the application into a fat jar, including all dependencies and the embedded Tomcat

4 The kubernetes-maven-plugin enables the automatic generation of a Docker image and Kubernetes / OpenShift descriptors including this Spring application.

This setup make some opinionated decisions for you:

- As base image jshift.java-jboss-openjdk8-jdk is chosen which enables Jolokia and jmx_exporter. It also comes with a sophisticated startup script.
- It will create a Kubernetes Deployment and a Service as resource objects
- It exports port 8080 as the application service port (and 8778 and 9779 for Jolokia and jmx_exporter access, respectively)

These choices can be influenced by configuration options as decribed in Spring Boot Generator.

To start the Docker image build, you simply run

mvn package k8s:build

This will create the Docker image against a running Docker daemon (which must be accessible either via Unix Socket or with the URL set in DOCKER_HOST). Alternatively, when connected to an OpenShift cluster (or using the openshift mode explicitly), then a Docker build will be performed on OpenShift which at the end creates an ImageStream.

To deploy the resources to the cluster call

mvn k8s:resource k8s:deploy

By default a *Service* and a *Deployment* object pointing to the created Docker image is created. When running in OpenShift mode, a *Service* and *DeploymentConfig* which refers the *ImageStream* created with k8s:build will be installed.

Of course you can bind all those jshift.goals to execution phases as well, so that they are called along with standard lifecycle goals like install. For example, to bind the building of the Kubernetes resource files and the Docker images, add the following goals to the execution of the f-m-p:

If you'd also like to automatically deploy to Kubernetes each time you do a mvn install you can add the deploy goal:

Example for lifecycle bindings with automatic deploys for mvn install

1.4.2. XML Configuration

XML based configuration is only partially implemented and is not recommended for use right now.

Although the Zero-config mode and its generators can be tweaked with options up to a certain degree, many cases require more flexibility. For such instances, an XML-based plugin configuration can be used, in a way similar to the XML configuration used by docker-maven-plugin.

The plugin configuration can be roughly divided into the following sections:

- Global configuration options are responsible for tuning the behaviour of plugin goals
- <images> defines which Docker images are used and configured. This section is similar to the image configuration of the docker-maven-plugin, except that <run> and <external> sub-elements are ignored)
- <resource> defines the resource descriptors for deploying on an OpenShift or Kuberneres cluster.
- <generator> configures generators which are responsible for creating images. Generators are used as an alternative to a dedicated <images> section.
- <enricher> configures various aspects of enrichers for creating or enhancing resource descriptors.

A working example can be found in the samples/xml-config directory. An extract of the plugin configuration is shown below:

Example for an XML configuration

```
<configuration>
 <namespace>test-ns</namespace>
 <images> ①
   
 </images>
 <resources> ②
   <labels> ③
     <all>
       <group>quickstarts</group>
     </all>
   </labels>
   <deployment> 4
     <name>${project.artifactId}</name>
     <replicas>1</replicas>
```

```
<containers> (5)
        <container>
          <alias>camel-app</alias> ⑥
          <ports>
            <port>8778</port>
          </ports>
          <mounts>
            <scratch>/var/scratch</scratch>
          </mounts>
        </container>
      </containers>
      <volumes> ⑦
        <volume>
          <name>scratch</name>
          <type>emptyDir</type>
        </volume>
      </volumes>
    </deployment>
    <services> ®
      <service>
        <name>camel-service</name>
        <headless>true</headless>
      </service>
    </services>
    <serviceAccounts>
      <serviceAccount>
        <name>build-robot</name>
      </serviceAccount>
    </serviceAccounts>
 </resources>
</configuration>
```

- ① Standard docker-maven-plugin configuration for building one single Docker image
- 2 Kubernetes / OpenShift resources to create
- 3 Labels which should be applied globally to all resource objects
- 4 Definition of a Deployment to create
- **5** Containers to include in the deployment
- 6 An *alias* is used to correlate a container's image with the image definition in the <images> section where each image carry an alias. Can be omitted if only a single image is used
- 7 Volume definitions used in a Deployment's ReplicaSet
- (8) One or more Service definitions.

The XML resource configuration is based on plain Kubernetes resource objects. When targeting OpenShift, Kubernetes resource descriptors will be automatically converted to their OpenShift

counterparts, e.g. a Kubernetes Deployment will be converted to an OpenShift DeploymentConfig.

1.4.3. Resource Fragments

The third configuration option is to use an external configuration in form of YAML resource descriptors which are located in the src/main/jshift directory. Each resource get its own file, which contains a skeleton of a resource descriptor. The plugin will pick up the resource, enrich it and then combine all to a single kubernetes.yml and openshift.yml file. Within these descriptor files you are can freely use any Kubernetes feature.

Note: In order to support simultaneously both OpenShift and Kubernetes, there is currently no way to specify OpenShift-only features this way, though this might change in future releases.

Let's have a look at an example from samples/external-resources. This is a plain Spring Boot application, whose images are auto generated like in the Zero-Config case. The resource fragments are in src/main/jshift.

Example fragment "deployment.yml"

```
spec:
 replicas: 1
 template:
    spec:
      volumes:
        - name: config
          gitRepo:
            repository: 'https://github.com/jstrachan/sample-springboot-config.git'
            revision: 667ee4db6bc842b127825351e5c9bae5a4fb2147
            directory: .
      containers:
        - volumeMounts:
            - name: config
              mountPath: /app/config
          env:
            - name: KUBERNETES_NAMESPACE
              valueFrom:
                fieldRef:
                  apiVersion: v1
                  fieldPath: metadata.namespace
      serviceAccount: ribbon
```

As you can see, there is no metadata section as would be expected for Kubernetes resources because it will be automatically added by the kubernetes-maven-plugin. The object's Kind, if not given, is automatically derived from the filename. In this case, the kubernetes-maven-plugin will create a Deployment because the file is called deployment.yml. Similar mappings between file names and resource type exist for each supported resource kind, the complete list of which (along with associated abbreviations) can be found in the Appendix.

Now that sidecar containers are supported in this plugin(if jshift.sidecar is enabled), be careful whenever you're supplying container name in the resource fragment. If container specified in resource fragment doesn't have a name or it's name is equal to default fmp generated application's container name; it would not be treated as sidecar and it would be merged into main container. However, You can override plugin's default name for main container via jshift.generator.alias property.

Additionally, if you name your fragment using a name prefix followed by a dash and the mapped file name, the plugin will automatically use that name for your resource. So, for example, if you name your deployment fragment myapp-deployment.yml, the plugin will name your resource myapp. In the absence of such provided name for your resource, a name will be automatically derived from your project's metadata (in particular, its artifactId as specified in your POM).

No image is also referenced in this example because the plugin also fills in the image details based on the configured image you are building with (either from a generator or from a dedicated image plugin configuration, as seen before).

For building images there is also an alternative mode using external Dockerfiles, in addition to the XML based configuration. Refer to k8s:build for details.

Enrichment of resource fragments can be fine-tuned by using profile sub-directories. For more details see Profiles.

Now that we have seen some examples for the various ways how this plugin can be used, the following sections will describe the plugin goals and extension points in detail.

Chapter 2. Compatibility with Kubernetes

2.1. Kubernetes Compatibility

Table 2. Kubernetes Compatibility

KMP	netes		netes	Kuber netes 1.10.0	netes	netes	netes	netes	Kuber netes 1.5.1	Kuber netes 1.4.0
KMP 0.1.0	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

Chapter 3. Installation

This plugin is available from Maven central and can be connected to pre- and post-integration phase as seen below. The configuration and available goals are described below.

By default, Maven will only search for plugins in the org.apache.maven.plugins and org.codehaus.mojo packages. In order to resolve the provider for the Jshift plugin goals, you need to edit ~/.m2/settings.xml and add the io.jshift namespace so the <pluginGroups> configuration.

```
<settings>
...

<pluginGroups>
    <pluginGroup>io.jshift</pluginGroup>
    </pluginGroups>
...
</settings>
```

```
<plugin>
 <groupId>io.jshift
 <artifactId>k8s-maven-plugin</artifactId>
 <version>0.1.0</version>
 <configuration>
     . . . .
     <images>
        <!-- A single's image configuration -->
        
        . . . .
     </images>
 </configuration>
 <!-- Connect k8s:resource, k8s:build and k8s:helm to lifecycle phases -->
 <executions>
    <execution>
       <id>jshift</id>
       <goals>
         <goal>resource</goal>
         <goal>build</goal>
         <goal>helm</goal>
       </goals>
    </execution>
 </executions>
</plugin>
```

Chapter 4. Goals Overview

This plugin supports a rich set for providing a smooth Java developer experience. These goals can be categorized in multiple groups:

- Build goals are all about creating and managing Kubernetes build artifacts like Docker images or S2I builds.
- Development goals target help not only in deploying resource descriptors to the development cluster but also to manage the lifecycle of the development cluster as well.

Table 3. Build Goals

Goal	Description
k8s:build	Build images
k8s:push	Push images to a registry
k8s:resource	Create Kubernetes or OpenShift resource descriptors
k8s:apply	Apply resources to a running cluster

Table 4. Development Goals

Goal	Description
k8s:deploy	Deploy resources decriptors to a cluster after creating them and building the app. Same as [k8s:run] except that it runs in the backgorund.
k8s:undeploy	Undeploy and remove resources decriptors from a cluster.
k8s:watch	Watch for file changes and perform rebuilds and redeployments
k8s:log	Show the logs of the running application
k8s:debug	Enable remote debugging

Depending on whether the OpenShift or Kubernetes operational mode is used, the workflow and the performed actions differs :

Table 5. Workflows

Use Case	Kubernetes	OpenShift
Build	 k8s:build k8s:push Creates a image against an exposed Docker daemon (with a docker.tar) Pushes the image to a registry which is then referenced from the configuration 	 k8s:build Creates or uses a BuildConfig Creates or uses an ImageStream which can be referenced by the deployment descriptors in a DeploymenConfig Starts an OpenShift build with a docker.tar as input

Use Case	Kubernetes	OpenShift				
Deploy	k8s:deploy	k8s:deploy				
	• Applies a Kubernetes resource descriptor to cluster	• Applies an OpenShift resource descriptor to a cluster				

Chapter 5. Build Goals

5.1. k8s:resource

This goal generates kubernetes resources based upon your project. It can either be opinionated defaults or based upon the configuration provided in XML config or resource fragments in src/main/jshift. Generated resources are in target/classes/META-INF/jshift/kubernetes directory.

5.1.1. Labels and Annotations

Labels and annotations can be easily added to any resource object. This is best explained by an example.

```
<plugin>
 <configuration>
    . . .
    <resources>
      <labels> ①
        <all> (1)
          cproperty> ②
            <name>organisation</name>
            <value>unesco</value>
          </property>
        </all>
        <service> ③
          cproperty>
            <name>database</name>
            <value>mysql</value>
          </property>
          cproperty>
            <name>persistent</name>
            <value>true</value>
          </property>
        </service>
        <replicaSet> ④
        </replicaSet>
        <pod> ⑤
          . . .
        </pod>
        <deployment> 6
        </deployment>
      </labels>
      <annotations> ⑦
      </annotations>
      <remotes> ®
<remote>https://gist.githubusercontent.com/lordofthejars/ac2823cec7831697d09444bbaa76c
d50/raw/e4b43f1b6494766dfc635b5959af7730c1a58a93/deployment.yaml</remote>
      </remotes>
    </resource>
 </configuration>
</plugin>
```

- ① <labels> section with <resources> contains labels which should be applied to objects of various kinds
- 2 Within <all> labels which should be applied to every object can be specified

- 3 <service> labels are used to label services
- 4 <replicaSet> labels are for replica set and replication controller
- (5) <pod> holds labels for pod specifications in replication controller, replica sets and deployments
- 6 <deployment> is for labels on deployments (kubernetes) and deployment configs (openshift)
- 7 The subelements are also available for specifying annotations.
- 8 <remotes> you can set location of fragments as URL.

Labels and annotations can be specified in free form as a map. In this map the element name is the name of the label or annotation respectively, whereas the content is the value to set.

The following subelements are possible for <labels> and <annotations> :

Table 6. Label and annotation configuration

Element	Description
all	All entries specified in the <all> sections are applied to all resource objects created. This also implies build object like image stream and build configs which are create implicitely for an OpenShift build.</all>
deployment	Labels and annotations applied to Deployment (for Kubernetes) and DeploymentConfig (for OpenShift) objects
pod	Labels and annotations applied pod specification as used in ReplicationController, ReplicaSets, Deployments and DeploymentConfigs objects.
replicaSet	Labels and annotations applied to ReplicaSet and ReplicationController objects.
service	Labels and annotations applied to Service objects.

5.1.2. Secrets

Once you've configured some docker registry credentials into ~/.m2/setting.xml, as explained in the Authentication section, you can create Kubernetes secrets from a server declaration.

XML configuration

You can create a secret using xml configuration in the pom.xml file. It should contain the following fields:

key	required	description
dockerSer verId	true	the server id which is configured in ~/.m2/setting.xml
name	true	this will be used as name of the kubernetes secret resource
namespac e	false	the secret resource will be applied to the specific namespace, if provided

This is best explained by an example.

Yaml fragment with annotation

You can create a secret using a yaml fragment. You can reference the docker server id with an annotation maven.jshift.io/dockerServerId. The yaml fragment file should be put under the src/main/jshift/folder.

Example

```
apiVersion: v1
kind: Secret
metadata:
   name: mydockerkey
   namespace: default
   annotations:
     maven.jshift.io/dockerServerId: ${docker.registry}
type: kubernetes.io/dockercfg
```

5.1.3. Resource Validation

Resource goal also validates the generated resource descriptors using API specification of Kubernetes.

Table 7. Validation Configuration

Configura tion	Description	Default
jshift.skip	If value is set to true then resource validation is skipped. This may be	false
ResourceV	useful if resource validation is failing for some reason but you still want	
alidation	to continue the deployment.	

Configura tion	Description	Default
-	If value is set to true then any validation error will block the plugin execution. A warning will be printed otherwise.	false
nError		

5.1.4. Route Generation

When the k8s:resource goal is run, an OpenShift Route descriptor (route.yml) will also be generated along the service if an OpenShift cluster is targeted. If you do not want to generate a Route descriptor, you can set the jshift.openshift.generateRoute property to false.

Table 8. Route Generation Configuration

Configuration	Description	Default
jshift.openshift.generateRout e	If value is set to false then no Route descriptor will be generated. By default it is set to true, which will create a route.yml descriptor and also add Route resource to openshift.yml.	true

If you do not want to generate a Route descriptor, you can also specify so in the plugin configuration in your POM as seen below.

Example for not generating route resource by configuring it in pom.xml

```
<plugin>
    <groupId>io.jshift</groupId>
    <artifactId>k8s-maven-plugin</artifactId>
    <version>0.1.0</version>
    <configuration>
          <generateRoute>false</generateRoute>
          </configuration>
          </plugin>
```

If you are using resource fragments, then also you can configure it in your Service resource fragment (e.g. service.yml). You need to add an expose label to the metadata section of your service and set it to false.

Example for not generating route resource by configuring it in resource fragments

```
metadata:
   annotations:
    api.service.kubernetes.io/path: /hello
   labels:
    expose: "false"
spec:
   type: LoadBalancer
```

In case both the label and the property have been set with conflicting values, precedence will be given to the property value, so if you set the label to true but set the property to false then no Route descriptor will be generated because precedence will be given to the property value.

5.1.5. Other flags

Table 9. Other options available with resource goal

Configuration	Description	Default
jshift.profile	Profile to use. A profile contains the enrichers and generators to use as well as their configuration. Profiles are looked up in the classpath and can be provided as yaml files.	default
jshift.sidecar	Whether to enable sidecar behavior or not. By default pod specs are merged into main application container.	false
jshift.skipHealthCheck	Whether to skip health checks addition in generated resources or not.	false
jshift.workDir	The Jshift working directory	<pre>\${project.build.directory}/jsh ift</pre>
jshift.environment	Environment name where resources are placed. For example, if you set this property to dev and resourceDir is the default one, plugin will look at src/main/jshift/dev.	NULL
jshift.useProjectClassPath	Should we use the project's compile time classpath to scan for additional enrichers/generators?	false

Configuration	Description	Default
jshift.resourceDir	Folder where to find project specific files	\${basedir}/src/main/jshift
jshift.targetDir	The generated Kubernetes manifests	<pre>\${project.build.outputDirector y}/META-INF/jshift</pre>

5.2. k8s:build

This goal is for building Docker images. Images can be built in two different ways depending on the mode configuration (controlled by the <code>jshift.mode</code> property). By default the mode is set to auto. In this case the plugin tries to detect which kind of build should be performed by contacting the API server. If this fails or if no cluster access is configured e.g. with oc login then the mode is set to kubernetes in which case a standard Docker build is performed. It can also be forced to openshift to perform an OpenShift build.

5.2.1. Kubernetes Build

If the mode is set to kubernetes then a normal Docker build is performed. The connection configuration to access the Docker daemon is described in Access Configuration.

In order to make the generated images available to the Kubernetes cluster the generated images need to be pushed to a registry with the goal **k8s:push**. This is not necessary for single node clusters, though as there is no need to distribute images.

5.2.2. OpenShift Build

For the openshift mode, OpenShift specific builds will be performed. These are so called Binary Source builds ("binary builds" in short), where the data specified with the build configuration is sent directly to OpenShift as a binary archive.

There are two kind of binary builds supported by this plugin, which can be selected with the buildStrategy configuration option (jshift.build.strategy property)

Table 10. Build Strategies

buildStrate gy	Description
s2i	The Source-to-Image (S2I) build strategy uses so called builder images for creating new application images from binary build data. The builder image to use is taken from the base image configuration specified with from in the image build configuration. See below for a list of builder images which can be used with this plugin.
docker	A Docker Build is similar to a normal Docker build except that it is done by the OpenShift cluster and not by a Docker daemon. In addition this build pushes the generated image to the OpenShift internal registry so that it is accessbile in the whole cluster.

Both build strategies update an Image Stream after the image creation.

The Build Config and Image streams can be managed by this plugin. If they do not exist, they will be automatically created by k8s:build. If they do already exist, they are reused, except when the buildRecreate configuration option (property jshift.build.recreate) is set to a value as described in Configuration. Also if the provided build strategy is different than the one defined in the existing build configuration, the Build Config is edited to reflect the new type (which in turn removes all build associated with the previous build).

This image stream created can then be directly referenced from Deployment Configuration objects created by k8s:resource. By default, image streams are created with a local lookup policy, so that they can be used also by other resources such as Deployments or StatefulSets. This behavior can be turned off by setting the jshift.s2i.imageStreamLookupPolicyLocal property to false when building the project.

In order to be able to to create these OpenShift resource objects access to an OpenShift installation is required. The access parameters are described in Access Configuration.

Regardless of which build mode is used, the images are configured in the same way.

The configuration consists of two parts: * a global section which defines the overall behaviour of this plugin * and an <images> section which defines how the images should be build

Many of the options below are relevant for the Kubernetes Workflow or the OpenShift Workflow with Docker builds as they influence how the Docker image is build.

For an S2I binary build, on the other hand, the most relevant section is the Assembly one because the build depends on which buider/base image is used and how it interprets the content of the uploaded docker.tar.

5.2.3. Configuration

The following sections describe the usual configuration, which is similar to the build configuration used in the docker-maven-plugin.

In addition a more automatic way for creating predefined build configuration can be performed with so called Generators. Generators are very flexible and can be easily created. These are described in an extra section.

Global configuration parameters specify overall behavior common for all images to build. Some of the configuration options are shared with other goals.

Table 11. Global configuration

Element	Description	Property
apiVersion	Use this variable if you are using an older version of docker not compatible with the current default use to communicate with the server.	docker.apiVe rsion

Element	Description	Property
authConfig	Authentication information when pulling from or pushing to Docker registry. There is a dedicated section Authentication for how doing security.	
autoPull	 Decide how to pull missing base images or images to start: on: Automatic download any missing images (default) off: Automatic pulling is switched off always: Pull images always even when they are already exist locally once: For multi-module builds images are only checked once and pulled for the whole build. 	docker.autoP ull
buildRecrea te	If the effective mode is openshift then this option decides how the OpenShift resource objects associated with the build should be treated when they already exist: • buildConfig or bc: Only the BuildConfig is recreated • imageStream or is: Only the ImageStream is recreated • all: Both, BuildConfig and ImageStream are recreated • none: Neither BuildConfig nor ImageStream is recreated The default is none. If you provide the property without value then all is assumed, so everything gets recreated.	jshift.build .recreate
buildStrateg y	If the effective mode is openshift then this option sets the build strategy. This can be: • s2i for a Source-to-Image build with a binary source • docker for a Docker build with a binary source By default S2I is used.	jshift.build .strategy
forcePull	Applicable only for OpenShift, S2I build strategy. While creating a BuildConfig, By default, if the builder image specified in the build configuration is available locally on the node, that image will be used. Using forcePull will override the local image and refresh it from the registry the image stream points to.	jshift.build .forcePull

Element	Description	Property
certPath	Path to SSL certificate when SSL is used for communicating with the Docker daemon. These certificates are normally stored in ~/.docker/. With this configuration the path can be set explicitly. If not set, the fallback is first taken from the environment variable DOCKER_CERT_PATH and then as last resort ~/.docker/. The keys in this are expected with it standard names ca.pem, cert.pem and key.pem. Please refer to the Docker documentation for more information about SSL security with Docker.	docker.certP ath
dockerHost	The URL of the Docker Daemon. If this configuration option is not given, then the optional <machine> configuration section is consulted. The scheme of the URL can be either given directly as http depending on whether plain HTTP communication is enabled or SSL should be used. Alternatively the scheme could be tep in which case the protocol is determined via the IANA assigned port: 2375 for http and 2376 for https. Finally, Unix sockets are supported by using the scheme unix together with the filesystem path to the unix socket. The discovery sequence used by the docker-maven-plugin to determine the URL is:</machine>	docker.host
	1. value of dockerHost (docker.host)	
	2. the Docker host associated with the docker-machine named in <machine>, i.e. the DOCKER_HOST from docker-machine env. See below for more information about Docker machine support.</machine>	
	3. the value of the environment variable DOCKER_HOST.	
	4. unix:///var/run/docker.sock if it is a readable socket.	
image	In order to temporarily restrict the operation of plugin goals this configuration option can be used. Typically this will be set via the system property docker.image when Maven is called. The value can be a single image name (either its alias or full name) or it can be a comma separated list with multiple image names. Any name which doesn't refer an image in the configuration will be ignored.	docker.image
machine	Docker machine configuration. See Docker Machine for possible values	

Element	Description	Property
mode	The build mode which can be • kubernetes: A Docker image will be created by calling a Docker daemon. See Kubernetes Build for details.	jshift.mode
	• openshift: An OpenShift Build will be triggered, which can be either a <i>Docker binary build</i> or a <i>S2I binary build</i> , depending on the configuration buildStrategy. See OpenShift Build for details.	
	 auto : The plugin tries to detect the mode by contacting the configured cluster. 	
	auto is the default. (Because of technical reasons, "kubernetes" is currently the default, but will change to "auto" eventually)	
maxConnec tions	Number of parallel connections are allowed to be opened to the Docker Host. For parsing log output, a connection needs to be kept open (as well for the wait features), so don't put that number to low. Default is 100 which should be suitable for most of the cases.	docker.maxCo nnections
access	Group of configuration parameters to connect to Kubernetes/OpenShift cluster	
outputDirec tory	Default output directory to be used by this plugin. The default value is target/docker and is only used for the goal jshift:build.	docker.targe t.dir
portPropert yFile	Global property file into which the mapped properties should be written to. The format of this file and its purpose are also described in Port Mapping.	
profile	Profile to which contains enricher and generators configuration. See Profiles for details.	jshift.profi le
pullSecret	The name to use for naming pullSecret to be created to pull the base image in case pulling from a private registry which requires authentication for Openshift. The default value for pull registry will be picked from	jshift.build .pullSecret
registry	"docker.pull.registry/docker.registry". Specify globally a registry to use for pulling and pushing images. See Registry handling for details.	docker.regis try
resourceDir	Directory where jshift.resources are stored. This is also the directory where a custom profile is looked up. Default is <pre>src/main/jshift</pre> .	jshift.resou rceDir
environmen t	Environment name where resources are placed. For example, if you set this property to dev and resourceDir is the default one, Fabric8 will look at src/main/jshift/dev. If not set then root resourceDir directory is used.	jshift.envir onment
skip	With this parameter the execution of this plugin can be skipped completely.	docker.skip

Element	Description	Property
skipBuild	If set not images will be build (which implies also <i>skip.tag</i>) with <code>jshift:build</code>	docker.skip. build
skipBuildPo m	If set the build step will be skipped for modules of type pom. If not set, then by default projects of type pom will be skipped if there are no image configurations contained.	jshift.skip. build.pom
skipTag	If set to true this plugin won't add any tags to images that have been built with jshift:build	docker.skip. tag
skipMachin e	Skip using docker machine in any case	docker.skip. machine
sourceDirec tory	Default directory that contains the assembly descriptor(s) used by the plugin. The default value is <pre>src/main/docker</pre> . This option is only relevant for the jshift:build goal.	docker.sourc e.dir
verbose	Boolean attribute for switching on verbose output like the build steps when doing a Docker build. Default is false	docker.verbo se

5.2.4. Kubernetes Access Configuration

You can configure parameters to define how plugin is going to connect to Kubernetes cluster instead of relaying on default parameters.

Element	Description	Property (System property or Maven property)
username	Username on which to operate	jshift.usern ame
password	Password on which to operate	jshift.passw ord
namespace	Namespace on which to operate	jshift.names pace
masterUrl	Master URL on which to operate	jshift.maste rUrl

Element	Description	Property (System property or Maven property)
apiVersion	Api version on which to operate	jshift.apiVe rsion
caCertFile	CaCert File on which to operate	jshift.caCer tFile
caCertData	CaCert Data on which to operate	jshift.caCer tData
clientCertFi le	Client Cert File on which to operate	jshift.clien tCertFile
clientCertD ata	Client Cert Data on which to operate	jshift.clien tCertData
clientKeyFil e	Client Key File on which to operate	jshift.clien tKeyFile
clientKeyDa ta	Client Key Data on which to operate	jshift.clien tKeyData
clientKeyAl go	Client Key Algorithm on which to operate	jshift.clien tKeyAlgo
clientKeyPa ssphrase	Client Key Passphrase on which to operate	jshift.clien tKeyPassphra se
trustStoreFi le	Trust Store File on which to operate	jshift.trust StoreFile
trustStoreP assphrase	Trust Store Passphrase on which to operate	jshift.trust StorePassphr ase
keyStoreFil e	Key Store File on which to operate	jshift.keySt oreFile
keyStorePas sphrase	Key Store Passphrase on which to operate	jshift.keySt orePassphras e

5.2.5. Image Configuration

The configuration how images should be created a defined in a dedicated <images> sections. These are specified for each image within the <images> element of the configuration with one 
    
 </images>
</configuration>
```

There is some special behaviour when using an externally provided registry like described above:

- When *pulling*, the image pulled will be also tagged with a repository name **without** registry. The reasoning behind this is that this image then can be referenced also by the configuration when the registry is not specified anymore explicitly.
- When *pushing* a local image, temporarily a tag including the registry is added and removed after the push. This is required because Docker can only push registry-named images.

Chapter 12. Authentication

When pulling (via the autoPull mode of jshift:start) or pushing image, it might be necessary to authenticate against a Docker registry.

There are five different locations searched for credentials. In order, these are:

- Providing system properties docker.username and docker.password from the outside.
- Using a <authConfig> section in the plugin configuration with <username> and <password> elements.
- Using OpenShift configuration in ~/.config/kube
- Using a <server> configuration in ~/.m2/settings.xml
- Login into a registry with docker login (credentials in a credential helper or in ~/.docker/config.json)

Using the username and password directly in the pom.xml is not recommended since this is widely visible. This is easiest and transparent way, though. Using an <authConfig> is straight forward:

The system property provided credentials are a good compromise when using CI servers like Jenkins. You simply provide the credentials from the outside:

Example

```
mvn -Ddocker.username=jolokia -Ddocker.password=s!cr!t jshift:push
```

The most *mavenish* way is to add a server to the Maven settings file ~/.m2/settings.xml:

The server id must specify the registry to push to/pull from, which by default is central index docker.io (or index.docker.io / registry.hub.docker.com as fallbacks). Here you should add your docker.io account for your repositories. If you have multiple accounts for the same registry, the second user can be specified as part of the ID. In the example above, if you have a second account 'fabric8io' then use an <id>docker.io/fabric8io</id> for this second entry. I.e. add the username with a slash to the id name. The default without username is only taken if no server entry with a username appended id is chosen.

The most *secure* way is to rely on docker's credential store or credential helper and read confidential information from an external credentials store, such as the native keychain of the operating system. Follow the instruction on the docker login documentation.

As a final fallback, this plugin consults \$DOCKER_CONFIG/config.json if DOCKER_CONFIG is set, or ~/.docker/config.json if not, and reads credentials stored directly within this file. This unsafe behavior happened when connecting to a registry with the command docker login from the command line with older versions of docker (pre 1.13.0) or when docker is not configured to use a credential store.

12.1. Pull vs. Push Authentication

The credentials lookup described above is valid for both push and pull operations. In order to narrow things down, credentials can be provided for pull or push operations alone:

In an <authConfig> section a sub-section <pull> and/or <push> can be added. In the example below the credentials provider are only used for image push operations:

When the credentials are given on the command line as system properties, then the properties docker.pull.username / docker.pull.password and docker.push.username / docker.push.password are used for pull and push operations, respectively (when given). Either way, the standard lookup algorithm as described in the previous section is used as fallback.

12.2. OpenShift Authentication

When working with the default registry in OpenShift, the credentials to authenticate are the OpenShift username and access token. So, a typical interaction with the OpenShift registry from the outside is:

```
oc login
...
mvn -Ddocker.registry=docker-registry.domain.com:80/default/myimage \
-Ddocker.username=$(oc whoami) \
-Ddocker.password=$(oc whoami -t)
```

(note, that the image's username part ("default" here") must correspond to an OpenShift project with the same name to which you currently connected account has access).

This can be simplified by using the system property docker.useOpenShiftAuth in which case the plugin does the lookup. The equivalent to the example above is

```
oc login
...
mvn -Ddocker.registry=docker-registry.domain.com:80/default/myimage \
-Ddocker.useOpenShiftAuth
```

Alternatively the configuration option <useOpenShiftAuth> can be added to the <authConfig> section.

For dedicated *pull* and *push* configuration the system properties docker.pull.useOpenShiftAuth and docker.push.useOpenShiftAuth are available as well as the configuration option <useOpenShiftAuth>

in an <pull> or <push> section within the <authConfig> configuration.

If useOpenShiftAuth is enabled then the OpenShift Konfiguration will be looked up in \$KUBECONFIG or, if this environment variable is not set, in ~/.kube/config.

12.3. Password encryption

Regardless which mode you choose you can encrypt password as described in the Maven documentation. Assuming that you have setup a *master password* in ~/.m2/security-settings.xml you can create easily encrypt passwords:

Example

```
$ mvn --encrypt-password
Password:
{QJ6wvuEfacMHklqsmrtrn1/Cl0LqLm8hB7yUL23K0Ko=}
```

This password then can be used in authConfig, docker.password and/or the <server> setting configuration. However, putting an encrypted password into authConfig in the pom.xml doesn't make much sense, since this password is encrypted with an individual master password.

12.4. Extended Authentication

Some docker registries require additional steps to authenticate. Amazon ECR requires using an IAM access key to obtain temporary docker login credentials. The docker:push and docker:pull goals automatically execute this exchange for any registry of the form <awsAccountId> .dkr.ecr. <awsRegion> .amazonaws.com, unless the skipExtendedAuth configuration (docker.skip.extendedAuth property) is set true.

Note that for **ECR** repository with URI 123456789012.dkr.ecr.eu-west-1.amazonaws.com/example/image docker.registry the d-m-p's should be set to 123456789012.dkr.ecr.eu-west-1.amazonaws.com and example/image is the <name> of the image.

You can use any IAM access key with the necessary permissions in any of the locations mentioned above except ~/.docker/config.json. Use the IAM Access key ID as the username and the Secret access key as the password. In case you're using temporary security credentials provided by the AWS Security Token Service (AWS STS), you have to provide the security token as well. To do so, either specify the docker.authToken system property or provide an <auth>auth> element alongside username & password in the authConfig.

In case you are running on an EC2 instance that has an appropriate IAM role assigned (e.g. a role that grants the AWS built-in policy *AmazonEC2ContainerRegistryPowerUser*) authentication information doesn't need to be provided at all. Instead the instance meta-data service is queried for temporary access credentials supplied by the assigned role.

Chapter 13. Volume Configuration

Kubernetes maven plugin supports volume configuration in XML format in pom.xml. These are the volume types which are supported:

Table 41. Supported Volume Types

V ol u m e T y p e	Description
ho stP ath	Mounts a file or directory from the host node's filesystem into your pod
pty	Containers in the Pod can all read and write the same files in the emptyDir volume, though that volume can be mounted at the same or different paths in each Container. When a Pod is removed from a node for any reason, the data in the emptyDir is deleted forever.
git Re po	It mounts an empty directory and clones a git repository into it for your Pod to use.
sec ret	It is used to pass sensitive information, such as passwords, to Pods.
nfs Pat h	Allows an existing NFS(Network File System) share to be mounted into your Pod.
gce Pd Na me	Mounts a Google Compute Engine(GCE) into your Pod. You must create PD using gcloud or GCE API or UI before you can use it.
_	Allows a Glusterfs (an open source networked filesystem) volume to be mounted into your Pod.

V ol u m e T y p e	Description
pe rsi ste nt Vol um eCl ai m	Used to mount a PersistentVolume into a Pod.
aw sEl ast icB loc kSt ore	Mounts an Amazon Web Services(AWS) EBS Volume into your Pod.
az ur eDi sk	Mounts a Microsoft Azure Data Disk into a Pod
az ur eFi le	Mounts a Microsoft Azure File Volume(SMB 2.1 and 3.0 into a Pod.
ce ph fs	Allows an existing CephFS volume to be mounted into your Pod. You must have your own Ceph server running with the share exported before you can use it.
fc	Allows existing fibre channel volume to be mounted in a Pod. You must configure FC SAN Zoning to allocate and mask those LUNs (volumes) to the target WWNs beforehand so that Kubernetes hosts can access them.
flo ck er	Flocker is an open source clustered Container data volume manager. A flocker volume allows a Flocker dataset to be mounted into a Pod. You must have your own Flocker installation running before you can use it.
isc si	Allows an existing ISCSI(SCSI over IP) volume to be mounted into your Pod.

V ol u m e T y p e	Description
po rt wo rx Vol um e	A portworxVolume is an elastic block storage layer that runs hyperconverged with Kubernetes.
qu ob yte	Allows existing Quobyte volume to be mounted into your Pod. You must have your own Quobyte setup running the volumes created.
rb d	Allows a Rados Block Device volume to be mounted into your Pod.
sca leI O	ScaleIO is a software-based storage platform that can use existing hardware to create clusters of scalable shared block networked storage. The scaleIO volume plugin allows deployed Pods to access existing ScaleIO volumes.
	A storageos volume allows an existing StorageOS volume to be mounted into your Pod. You must run the StorageOS container on each node that wants to access StorageOS volumes
vs ph ere Vol um e	Used to mount a vSphere VMDK volume into your Pod.
do wn wa rd AP I	A downwardAPI volume is used to make downward API data available to applications. It mounts a directory and writes the requested data in plain text files.

Chapter 14. FAQ

14.1. General questions

14.1.1. How do I define an environment variable?

The easiest way is to add a src/main/jshift/deployment.yml file to your project containing something like:

```
spec:
    template:
    spec:
    containers:
    -env:
    - name: FOO
      value: bar
```

The above will generate an environment variable \$F00 of value bar

For a full list of the environments used in java base images, see this list

14.1.2. How do I define a system property?

The simplest way is to add system properties to the JAVA_OPTIONS environment variable.

For a full list of the environments used in java base images, see this list

e.g. add a src/main/jshift/deployment.yml file to your project containing something like:

```
spec:
  template:
  spec:
    containers:
    - env:
    - name: JAVA_OPTIONS
     value: "-Dfoo=bar -Dxyz=abc"
```

The above will define the system properties foo-bar and xyz-abc

14.1.3. How do I mount a config file from a ConfigMap?

First you need to create your ConfigMap resource via a file src/main/jshift/configmap.yml

```
data:
    application.properties: |
    # spring application properties file
    welcome = Hello from Kubernetes ConfigMap!!!
    dummy = some value
```

Then mount the entry in the ConfigMap into your Deployment via a file src/main/jshift/deployment.yml

```
metadata:
 annotations:
    configmap.jshift.io/update-on-change: ${project.artifactId}
spec:
  replicas: 1
  template:
    spec:
      volumes:
        - name: config
          configMap:
            name: ${project.artifactId}
            items:
            - key: application.properties
              path: application.properties
      containers:
        - volumeMounts:
            - name: config
              mountPath: /deployments/config
```

Here is an example quickstart doing this

Note that the annotation <code>configmap.jshift.io/update-on-change</code> is optional; its used if your application is not capable of watching for changes in the <code>/deployments/config/application.properties</code> file. In this case if you are also running the <code>configmapcontroller</code> then this will cause a rolling upgrade of your application to use the new <code>ConfigMap</code> contents as you change it.

14.1.4. How do I use a Persistent Volume?

First you need to create your PersistentVolumeClaim resource via a file src/main/jshift/foo-pvc.yml where foo is the name of the PersistentVolumeClaim. It might be your app requires multiple vpersistent volumes so you will need multiple PersistentVolumeClaim resources.

```
spec:
   accessModes:
   - ReadWriteOnce
   resources:
    requests:
     storage: 100Mi
```

Then to mount the PersistentVolumeClaim into your Deployment create a file src/main/jshift/deployment.yml

```
spec:
    template:
    spec:
    volumes:
    - name: foo
        persistentVolumeClaim:
        claimName: foo
    containers:
    - volumeMounts:
        - mountPath: /whatnot
        name: foo
```

Where the above defines the PersistentVolumeClaim called foo which is then mounted into the container at /whatnot

Here is an example application

Chapter 15. Appendix

15.1. Kind/Filename Type Mapping

Kind	Filename Type
BuildConfig	bc, buildconfig
ClusterRole	cr, crole, clusterrole
ConfigMap	cm, configmap
ClusterRoleBinding	crb, clusterrb, clusterrolebinding
CronJob	cj, cronjob
CustomResourceDefinition	crd, customerresourcedefinition
DaemonSet	ds, daemonset
Deployment	deployment
DeploymentConfig	dc, deploymentconfig
ImageStream	is, imagestream
ImageStreamTag	istag, imagestreamtag
Ingress	ingress
Job	job
LimitRange	lr, limitrange
Namespace	ns, namespace
OAuthClient	oauthclient
PolicyBinding	pb, policybinding
PersistentVolume	pv, persistentvolume
PersistentVolumeClaim	pvc, persistemtvolumeclaim
Project	project
ProjectRequest	pr, projectrequest
ReplicaSet	rs, replicaset
ReplicationController	rc, replicationcontroller
ResourceQuota	rq, resourcequota
Role	role
RoleBinding	rb, rolebinding
RoleBindingRestriction	rbr, rolebindingrestriction
Route	route
Secret	secret

Kind	Filename Type
Service	svc, service
ServiceAccount	sa, serviceaccount
StatefulSet	statefulset
Template	template
Pod	pd, pod

15.2. Custom Kind/Filename Mapping

You can add your custom Kind/Filename mappings. To do it you have two approaches:

- Setting an environment variable or system property called jshift.mapping pointing out to a .properties files with pairs <kind>⇒filename1>, <filename2> By default if no environment variable nor system property is set, scan for a file located at classpath /META-INF/jshift.kind-filename-type-mapping-default.properties.
- By embedding in MOJO configuration the mapping: