Matemática Discreta

Turma A

20 de Dezembro de 2011

1. (3.0 pontos) Considere o Algoritmo $\mathsf{Exp}(x,n)$ dado por

$\operatorname{Exp}(x,n)$	
Se $n = 0$ Devolva 1 $e \leftarrow \text{Exp}(x, \lfloor n/2 \rfloor)$	PRE 11 26 N=0
$e \leftarrow e \times e$	Hit. Explaining
Se <i>n é par</i> Devolva <i>e</i>	
Devolva $x \times e$	

Prove por indução em n uma das seguintes afirmações.

- (a) $\text{Exp}(x, n) = x^n$ para todo $x \neq 0$ e todo $n \in \mathbb{N}$.
- (b) A execução de $\mathsf{Exp}(x,n)$ efetua no máximo 2($\lfloor \lg n \rfloor + 1$) multiplicações para todo x > 0 e
- 2. (4.0 pontos) Resolva uma das seguintes recorrências explicando cada etapa da resolução.

(a)
$$f(n) = \begin{cases} 1, & \text{se } n = 0, \\ 2f\left(\left\lfloor \frac{n}{5} \right\rfloor\right) + n, & \text{se } n > 0. \end{cases}$$

(b)
$$f(n) = \begin{cases} n, & \text{se } n > 0. \\ f(\lfloor \sqrt{n} \rfloor) + 1, & \text{se } n > 1. \end{cases}$$

3. (4.0 pontos) Dê uma expressão livre de somatórios para uma das somas abaixo, explicando cada

(a)
$$\sum_{i=0}^{n} \frac{i}{3^{i}}.$$

$$\sum_{i=0}^{n} \frac{i}{3^{i}}.$$

(a)
$$\sum_{i=0}^{n} \frac{i}{3^{i}}.$$

$$\sum_{i=0}^{n} F(i),$$
 onde F é a sequência de Fibonacci dada por

onde F é a sequência de Fibonacci dada por

$$F(n) = \begin{cases} n, & \text{se } n \leq 1 \\ F(n-1) + \rho F(n-2), & \text{se } n > 1. \end{cases}$$