Clustering Methods and Correlated Data: Simulations

Parker Knight

9/29/2021

Overview

- 1. Review of methods
- 2. Simulation design
- 3. Results
- 4. Directions

Methods of Interest

- 1. K-means
- 2. Hierarchical clustering
- 3. Spectral clustering

K-means

Let $X \in \mathbb{R}^{n \times p}$ be a given data matrix. Our goal is to partition the n data points into k non-overlapping clusters, denoted by the set $S = \{S_1, S_2, ..., S_k\}$.

The k-means algorithms does so by minimizing the Euclidean distance between each point and the centroid of it's assigned cluster:

$$\min_{S} \sum_{i=1}^{k} \sum_{X_j \in S_i} ||X_j - \mu_i||_2^2$$

where μ_i is centroid of the points in S_i .

K-means (cont.)

Key points:

- k must be specified up front
- Computation is NP-hard (objective function is not convex)
- ▶ By default, uses Euclidean distances
 - ► alternate versions exist (K-medoids)
- Assumes separation between clusters is convex

Hierarchical clustering

Let D = dist(X) be the pairwise distance matrix of the n samples.

In agglomerative HC, we start with every observation in a singleton cluster, join clusters G and H together based on the following criteria:

- i. $d_{SL} = \min_{i \in G, j \in H} d_{i,j}$ (single linkage)
- ii. $d_{CL} = \max_{i \in G, j \in H} d_{i,j}$ (complete linkage)
- iii. $d_{GA} = \frac{1}{N_G N_H} \sum_{i \in G} \sum_{j \in H} d_{i,j}$ (group average)

In divisive HC, we begin with data all in one cluster and split into sub-clusters with K-means.

HC (cont.)

 ${\sf Key\ points:}$

Spectral clustering