Lee Introduction To Manifolds Exercises

Robert

February 2023

1 Exercise 2.4

Definition 1. Let (M, d) be a metric space

Then, $B_r^{(d)}(x) = \{ y \in M : d(y,x) < r \}$ is the **open ball** of radius r around x

Definition 2. Let (M, d) be a metric space.

Then, $B_r^{(d)}[x] = \{ y \in M : d(y,x) \le r \}$ is the **closed ball** of radius r around x

Definition 3. Let (M, d) be a metric space. Then, we call \mathcal{T}_d the metric topology generated by d (the set of all possible unions of open sets in M) ^a

^aIt is important to note that in metric spaces, all open sets are unions of open balls

1.1 Exercise 2.4 (a)

Theorem 1.1.1. Let M be a metric space with metrics d and d'. Then, the metric topologies generated by d, denoted as \mathcal{T}_d and d', denoted as $\mathcal{T}_{d'}$ are equivalent, $\mathcal{T}_d = \mathcal{T}_{d'}$ iff for every $x \in M$ and every r > 0 there exists $r_1, r_2 > 0$ such that $B_r^{(d')}(x) \subseteq B_r^{(d)}(x)$ and $B_{r_2}^{(d)}(x) \subseteq B_r^{(d')}(x)$

Proof. (\Rightarrow) Suppose $\mathcal{T}_d = \mathcal{T}_{d'}$. Let $x \in M$ and r > 0 be arbitrary. Since $\mathcal{T}_d = \mathcal{T}_{d'}$, we have that $B_r^{(d)}(x) \in \mathcal{T}_{d'}$. So, $B_r^{(d)}(x)$ is the union of open balls in $\mathcal{T}_{d'}$. But this means we must have some $r_1 > 0$ such that $B_{r_1}^{(d')}(x) \subseteq B_r^{(d)}(x)$. It's trivial to see that $B_r^{(d')}(x) \in \mathcal{T}_d$ which again means it is the union of open balls in \mathcal{T}_d , thus implying we must have some $r_2 > 0$ such that $B_{r_2}^{(d)}(x) \subseteq B_r^{(d')}(x)$. This completes the proof of the forward direction.

(\Leftarrow) Suppose that for every $x \in M$ and every r > 0 there exists r_1, r_2 such that $B_r^{(d')}(x) \subseteq B_r^{(d)}(x)$ and $B_{r_2}^{(d)}(x) \subseteq B_r^{(d')}(x)$. Suppose for contradiction that

 $\mathcal{T}_d \neq \mathcal{T}_{d'}$. So, either we have an $O^{(d)}$ such that $O^{(d)} \notin \mathcal{T}_{d'}$ or we have $O^{(d')}$ such that $O^{(d)} \notin \mathcal{T}_{d}$. Let's do case 1 first, that $O^{(d)} \notin \mathcal{T}_{d'}$. Since $O^{(d)}$ is not open in $\mathcal{T}_{d'}$, there is an $x_0 \in O^{(d)}$ such that

$$\forall j > 0, \quad B_j^{(d')}(x_0) \nsubseteq O^{(d)}$$
 (1)

Since $O^{(d)}$ is open in \mathcal{T}_d , for this particular x_0 , we have $r_0 > 0$ such that $B_{r_0}^{(d)}(x_0) \subseteq O^{(d)}$. By hypothesis, we now have an $r_1 > 0$ such that $B_{r_1}^{(d')}(x_0) \subseteq B_{r_0}^{(d)}(x_0)$. But now, we have that $B_{r_1}^{(d')}(x_0) \subseteq B_{r_0}^{(d)}(x_0) \subseteq O^{(d)}$, but this contradicts Equation (1). The argument for the other case is similar and left out because it is tedious.

1.2 Exercise 2.4 (b)

Claim 1.2.1. Let (M,d) be a metric space, let c>0 and define $d'(x,y)=c\cdot d(x,y)$. Then, $\mathcal{T}_d=\mathcal{T}_d'$

Proof. Let $O \in \mathcal{T}_d$. Let $\Lambda \subseteq \mathbb{R} \times M$ be the radius-point pairs such that $O = \bigcup_{(r,x)\in\Lambda} B_r^{(d)}(x)$. Let $(r,x)\in\Lambda$ be arbitrary. Expanding the definition of $B_r^{(d)}(x)$, we get that

$$\begin{split} B_r^{(d)}(x) &= \{ y \in M : d(y, x) < r \} \\ &= \{ y \in M : c \cdot d(y, x) < cr \} \\ &= \{ y \in M : d'(y, x) < cr \} \\ &= B_{cr}^{(d')}(x) \end{split}$$

So, $O = \bigcup_{(r,x)\in\Lambda} B_{cr}^{(d')}(x) \in \mathcal{T}_{d'}$. This shows that $\mathcal{T}_d \subseteq \mathcal{T}_{d'}$. The argument $\mathcal{T}_d \supseteq \mathcal{T}_{d'}$ is similar and tedious and so skipped.

Alternative proof by using Theorem 1.1.1

Proof. Since $d'(x,y)=c\cdot d(x,y)$, we have $\frac{d'(x,y)}{c}=d(x,y)$ Pick $r_1=\frac{r}{c}$. Then $B_{r_1}^{(d')}(x)\subseteq B_r^{(d)}(x)$ Now, for $r_2=cr$, it is immediately obvious that $B_{r_2}^{(d)}(x)\subseteq B_r^{(d')}(x)$

1.3 Exercise 2.4 (c)

This is exercise B.1 but I included it here because it's useful.

Lemma 1.3.1. For $x \in \mathbb{R}^n$ such that $x = (x_1, x_2, \dots, x_n)$, we have

$$\max\{ |x_1|, |x_2|, \dots, |x_n| \} \le |x| \le \sqrt{n} \max\{ |x_1|, |x_2|, \dots, |x_n| \}$$

 $^{^{1}{}m the}$ balls are actually equal but whatever

Proof. Suppose $|x_i| = \max\{|x_1|, |x_2|, \dots, |x_n|\}$ for $1 \le i \le n$. Then, $|x| = \sqrt{x_1^2 + x_2^2 + \dots + x_i^2 + \dots + x_n^2} \ge \sqrt{x_i^2} = |x_i|$. For the next bit, we have that $|x| = \sqrt{x_1^2 + x_2^2 + \dots + x_i^2 + \dots + x_n^2} \le \sqrt{n \cdot x_i^2} = \sqrt{n} \cdot |x_i|$

Claim 1.3.2. Let (\mathbb{R}^n, d) be Euclidean *n*-space with the Euclidean metric $d(x,y) = \sqrt{(x_1-y_1)^2 + (x_2-y_2)^2 + \cdots + (x_n-y_n)^2}$

Let $d'(x,y) = \max\{|x_1 - y_1|, |x_2 - y_2|, \dots, |x_n - y_n|\}$ be defined for \mathbb{R}^n . Then, $\mathcal{T}_d = \mathcal{T}_{d'}$

Note: This proof is incomplete since I am confused by my justification

Proof. We will make use of Theorem 1.1.1. Let $x \in \mathbb{R}^n$ and r > 0. Then, choose $r_1 = r$. Now, let $y \in B_{r_1}^{(d')}(x)$. So, from Lemma 1.3.1 we have $d'(y, x) < r_1 = r \le d(y, x)$. So, $y \in B_r^{(d)}(x)$ and thus $B_{r_1}^{(d')}(x) \subseteq B_r^{(d)}(x)$. Choose $r_2 = r\sqrt{n}$. Let $y \in B_{r_2}^{(d)}(x)$. Now

$$d'(y,x) < r$$

$$\implies \sqrt{n} \cdot d'(y,x) < r\sqrt{n}$$

$$\implies d(x,y) \le \sqrt{n} \cdot d'(y,x) < r\sqrt{n}$$

$$\implies \frac{d(x,y)}{\sqrt{n}} \le d'(y,x) < r$$

Again, by Lemma 1.3.1, $d(y, x) < r_2 \le d'(y, x) < r$ Thus $B_{r_2}^{(d)}(x) \subseteq B_r^{(d')}(x)$

2 Exercise 2.5

Claim 2.0.1. Let X be a topological space and Y be an open subset of X. Then, the collection of all open subsets of X in Y is a topology on Y.

Proof. Let (X, \mathcal{T}) denote the topological space of X. Let \mathcal{O}_Y denote the collection of all open subsets of X in Y. To do so, we just need to check the properties of a topology on Y, namely, that $\varnothing, Y \in \mathcal{O}_Y$, if $O_1, O_2 \subseteq Y$ are open, then $O_1 \cap O_2$ is open in Y (aka, $O_1 \cap O_2 \in \mathcal{O}_Y$), and the arbitrary union $\bigcup_{\lambda \in \Lambda} O_{\lambda}$ is also open in Y.

Firstly, since \varnothing and Y are obviously open in Y by definition, $\varnothing, Y \in \mathcal{O}_Y$. Now, let $O_1, O_2 \subseteq Y$ be arbitrary open subsets of Y. Since Y is open in X, any subset of Y must also be open in X, so this means that $O_1, O_2 \in \mathcal{T}$. And since \mathcal{T} is a topology, $O_1 \cap O_2 \in \mathcal{T}$. Of course, $O_1 \cap O_2 \subseteq Y$, so $O_1 \cap O_2 \in \mathcal{O}_Y$. (The inductive case is trivial)

Now, let Λ be some indexing set such that for each $\lambda \in \Lambda$, O_{λ} is open in Y. Of course, this means that $\bigcup_{\lambda \in \Lambda} O_{\lambda} \subseteq Y$ and so the arbitrary union is open in Y. And since $\bigcup_{\lambda \in \Lambda} O_{\lambda} \in \mathcal{T}$, $\bigcup_{\lambda \in \Lambda} O_{\lambda} \in \mathcal{O}_{Y}$.

Since \mathcal{O}_Y is demonstrated to have the properties of a topology on Y, the proof is complete.

3 Exercise 2.6

Claim 3.0.1. Let X be a set, and let $\{\mathcal{T}_{\alpha}\}_{{\alpha}\in A}$ be a collection of topologies on X. Then, $\mathcal{T}=\bigcap_{{\alpha}\in A}\mathcal{T}_{\alpha}$ is a topology on X.

Proof. Obviously, \varnothing , $X \in \mathcal{T}$.

Let $O_1, O_2 \in \mathcal{T}$. So, $\forall \alpha \in A O_1, O_2 \in \mathcal{T}_{\alpha}$. But since each \mathcal{T}_{α} is a topology, we know that $O_1 \cap O_2 \in \mathcal{T}_{\alpha}$. So obviously, $O_1 \cap O_2 \in \mathcal{T}$.

Let Λ be an indexing set such that $O_{\lambda} \in \mathcal{T}$ for $\lambda \in \Lambda$. Now, this means each $O_{\lambda} \in \mathcal{T}_{\alpha}$. But of course, since each \mathcal{T}_{α} is a topology, $\bigcup_{\lambda \in \Lambda} O_{\lambda} \in \mathcal{T}_{\alpha}$. And since \mathcal{T}_{α} was arbitrary, $\bigcup_{\lambda \in \Lambda} O_{\lambda} \in \mathcal{T}$.

4 Exercise 2.9

Prove proposition 2.8

Definition 4. Let (X, \mathcal{T}) be a topological space. Let $x \in X$. Then V(x) is a neighborhood of x meaning that $V(x) \in \mathcal{T}$ (or that it is an open subset of X)

Let (X, \mathcal{T}) be a topological space and let $A \subseteq X$. Let $A^c = X \setminus A$

Proposition 4.0.1. Textbook Proposition 2.8a $x \in \text{Int } A$ iff there exists $V(x) \subseteq A$

Proof. (\Rightarrow) Let $x \in \text{Int } A$. Then, by definition of Int A, we have some $C \subseteq X$ such that $C \subseteq A$ and $C \in \mathcal{T}$ (C is open). Then C will serve as V(x).

$$(\Leftarrow)$$
 trivial

Proposition 4.0.2. Textbook Proposition 2.8b $x \in \text{Ext } A$ iff there exists $V(x) \subseteq A^c$

Proof. (\Rightarrow)

$$\overline{A}^c = \left(\bigcap_{\lambda \in \Lambda} B_{\lambda}\right)^c$$
 Each B_{λ} is closed
$$= \bigcup_{\lambda \in \Lambda} (B_{\lambda})^c$$
 And now each $(B_{\lambda})^c$ is open

The rest is trivial

(⇐) trivial

Proposition 4.0.3. Textbook Proposition 2.8c $x \in \partial A$ iff for every V(x), some $y_1 \in A \cap V(x)$ and some $y_2 \in A^c \cap V(x)$

Proof. (\Rightarrow) . Let $x \in \partial A$. Let $V(x) \in \mathcal{T}$ be arbitrary.

Here, note that C_{λ} are open in X and are subsets of A. And that B_{γ} are closed in X and contain A

$$\partial A = (\operatorname{Int} A \cup \operatorname{Ext} A)^{c}$$

$$= \left(\bigcup_{\lambda \in \Lambda} C_{\lambda} \cup \overline{A}^{c}\right)^{c}$$

$$= \left(\bigcup_{\lambda \in \Lambda} C_{\lambda}\right)^{c} \cap \overline{A}$$

$$= \bigcap_{\lambda \in \Lambda} (C_{\lambda})^{c} \cap \overline{A}$$

$$= \bigcap_{\lambda \in \Lambda} (C_{\lambda})^{c} \cap \bigcap_{\gamma \in \Gamma} B_{\gamma}$$

Proposition 4.0.4. Textbook Proposition 2.8d $x \in \overline{A}$ iff every V(x) has $y \in A \cap V(x)$

Proof. (\Rightarrow) Let $x \in \overline{A}$. Let $\mathcal{F} = \{B_{\lambda} : \lambda \in \Lambda\}$ be a collection of every closed set in X that contains A, so $\overline{A} = \bigcap \mathcal{F}$. Suppose for contradiction that $V(x) \in \mathcal{T}$ is a neighborhood that contains no points of A, or in other words, $V(x) \cap A = \emptyset$. Since V(x) is open and disjoint from A, $A \subseteq X \setminus V(x)$. So, $X \setminus V(x)$ is a closed set that contains A. Thus, $X \setminus V(x) \in \mathcal{F}$. But since $x \in \overline{A} = \bigcap \mathcal{F}$, $x \in X \setminus V(x)$. And by hypothesis, $x \in V(x)$. This is obviously absurd.

(\Leftarrow) Suppose x is such that every V(x) has a $y \in A \cap V(x)$. Let $\mathcal{F} = \{B_{\lambda} : \lambda \in \Lambda\}$ be a collection of every closed set in X that contains A, so $\overline{A} = \bigcap \mathcal{F}$.

Proposition 4.0.5. Textbook Proposition 2.8e $\overline{A} = A \cup \partial A = \text{Int } A \cup \partial A$

Proof.

$$\partial A = X \setminus \operatorname{Int} A \cap$$

Proposition 4.0.6. Textbook Proposition 2.8f Int A, Ext $A \in \mathcal{T}$ and \overline{A}^c , $(\partial A)^c \in \mathcal{T}$. In other words, the interior and exterior are open sets, while the closure and the boundary and closed sets.

Proof. Int A is the union of open sets which is an open set.

 \overline{A} is the intersection of closed sets, which is a closed set.

Ext $A = X \setminus \overline{A}$ is an open set because \overline{A} is closed.

$$\partial A = X \setminus (\operatorname{Int} A \cup \operatorname{Ext} A)$$
 is closed because $\operatorname{Int} A \cup \operatorname{Ext} A$ is open.

Proposition 4.0.7. Textbook Proposition 2.8g The following are equivalent:

- A is open in X
- $A = \operatorname{Int} A$
- A contains none of its boundary points (aka, $\partial A \cap A = \emptyset$)
- For all $x \in A$, there exists $V(x) \subseteq A$

Proof. Suppose A is open in X. Then $A \in \mathcal{T}$. Obviously, Int $A \subseteq A$. $A \subseteq \text{Int } A$ follows from the definition of Int A, namely, since, $A \subseteq A$ and A is open in X.

Suppose A = Int A. Then by definition of $\partial A = X \setminus (\text{Int } A \cup \text{Ext } A), \ \partial A \cap A = \emptyset$ immediately follows.

Suppose that $\partial A \cap A = \emptyset$. Let $x \in A$ be arbitrary. This means that $x \notin \partial A$, so $x \in \text{Int } A \cup \text{Ext } A$. Of course, $x \notin \text{Ext } A$. So, $x \in \text{Int } A$. So, Int A can be a neighborhood of x, and obviously since Int $A \subseteq A$ we are done.

Suppose that every point of A has a neighborhood contained in A. Then, we know $\bigcup_{x\in A}V(x)\subseteq A$. Now, let $x\in A$. Then we have some V(x), so $V(x)\subseteq\bigcup_{y\in A}V(y)$. And so $\bigcup_{y\in A}V(y)=A$. Since the union of open sets is open, A is open.

Proposition 4.0.8. Textbook Proposition 2.8h The following are equivalent:

- \bullet A is closed in X
- \bullet $A = \overline{A}$
- A contains all of its boundary points (aka, $\partial A \subseteq A$)

• For all $x \in A^c$, there exists $V(x) \subseteq A^c$

Proof. Observe that A is closed iff A^c is open, and apply Proposition 4.0.7 \Box

5 Exercise 2.9

Proposition 5.0.1. Book Exercise 2.10 Let (X, \mathcal{T}) be a topological space and let $A \subseteq X$. Then, A is closed iff it contains all of its limit points

Proof. (\Rightarrow) Suppose A is closed. Let p be a limit point of A. Suppose for contradiction that $p \notin A$, so $p \in A^c$. Since A^c is open, p must have some neighborhood in A^c , call it V. Since p is a limit point, we must have some point $a_0 \in A$ such that $a_0 \in V$ and $a_0 \neq p$. But then, $V \subseteq A^c$, so $a_0 \in A$ and $a_0 \in A^c$, which is absurd.

Suppose A contains all of its limit points. We shall use Proposition 4.0.4 and Proposition 4.0.8 to show that $A = \overline{A}$ and thus A is closed.

7