

Global United Technology Services Co., Ltd.

Report No.: GTS201912000096F01

Test Report

Applicant: Astera LED-Technology GmbH

Stahlgruberring 36, 81829 Munich, Germany **Address of Applicant:**

Manufacturer: Astera Manufacturing Limited

Address of Rm. 201, Huazhong Indutrial Park, No. 12 South Huancheng Road, Bantian Street, Longgang District, 518129 Shenzhen, Manufacturer:

China

Equipment Under Test (EUT)

Product Name: Stage Luminaires

Model No.: FP1, FP2

Trade Mark: **ASTERA**

FCC ID: X55FP

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: August 05, 2019

Date of Test: August 05-October 10, 2019

Date of report issued: December 12, 2019

Test Result: PASS *

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo **Laboratory Manager**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	December 12, 2019	Original

Prepared By:	Joseph Cu	Date:	December 12, 2019
	Project Engineer	-	
Check By:	Reviewer	Date:	December 12, 2019

3 Contents

_		Page
1	COVER PAGE	1
2	2 VERSION	2
3	CONTENTS	3
4	TEST SUMMARY	4
5	GENERAL INFORMATION	5
	5.1 GENERAL DESCRIPTION OF EUT	5
	5.2 TEST MODE	7
	5.3 DESCRIPTION OF SUPPORT UNITS	7
	5.4 DEVIATION FROM STANDARDS	
	5.5 ABNORMALITIES FROM STANDARD CONDITIONS	
	5.6 Test Facility	
	5.7 TEST LOCATION	7
6	TEST INSTRUMENTS LIST	8
7	TEST RESULTS AND MEASUREMENT DATA	10
	7.1 ANTENNA REQUIREMENT	10
	7.2 CONDUCTED EMISSIONS	11
	7.3 CONDUCTED PEAK OUTPUT POWER	16
	7.4 20DB EMISSION BANDWIDTH	18
	7.5 CARRIER FREQUENCIES SEPARATION	
	7.6 HOPPING CHANNEL NUMBER	
	7.7 DWELL TIME	
	7.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	7.9 BAND EDGE	
	7.9.1 Conducted Emission Method	
	7.9.2 Radiated Emission Method	
	7.10 Spurious Emission	
	7.10.1 Conducted Emission Method	
_	7.10.2 Radiated Emission Method	
8	B TEST SETUP PHOTO	61
a	ELIT CONSTRUCTIONAL DETAILS	62

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes	
Radiated Emission	30MHz-200MHz	3.8039dB	(1)	
Radiated Emission	200MHz-1GHz	3.9679dB	(1)	
Radiated Emission	1GHz-18GHz	4.29dB	(1)	
Radiated Emission	18GHz-40GHz	3.30dB	(1)	
AC Power Line Conducted Emission 0.15MHz ~ 30MHz 3.44dB				
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of 9	95%.	

5 General Information

5.1 General Description of EUT

•	
Product Name:	Stage Luminaires
Model No.:	FP1, FP2
Serial No.:	N/A
Test sample(s) ID:	GTS201912000096-1
Sample(s) Status:	Engineer sample
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK
Antenna Type:	PIFA Antenna
Antenna gain:	7.0dBi(Declare by applicant)
Power supply:	DC 14.4V
	Adaptor: PS1065-240T2B250
	Input: 100-240V~, 50-60Hz, 1.8A
	Output: DC 24V, 2.5A, 60W Max

Operation	Frequency eacl	h of channel	l				
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
0	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency		
The lowest channel	2402MHz		
The middle channel	2440MHz		
The Highest channel	2480MHz		

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• IC —Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

6 Test Instruments list

Radi	Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020			
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A			
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 26 2019	June. 25 2020			
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 26 2019	June. 25 2020			
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 26 2019	June. 25 2020			
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 26 2019	June. 25 2020			
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
8	Coaxial Cable	GTS	N/A	GTS213	June. 26 2019	June. 25 2020			
9	Coaxial Cable	GTS	N/A	GTS211	June. 26 2019	June. 25 2020			
10	Coaxial cable	GTS	N/A	GTS210	June. 26 2019	June. 25 2020			
11	Coaxial Cable	GTS	N/A	GTS212	June. 26 2019	June. 25 2020			
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 26 2019	June. 25 2020			
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 26 2019	June. 25 2020			
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 26 2019	June. 25 2020			
15	Band filter	Amindeon	82346	GTS219	June. 26 2019	June. 25 2020			
16	Power Meter	Anritsu	ML2495A	GTS540	June. 26 2019	June. 25 2020			
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 26 2019	June. 25 2020			
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 26 2019	June. 25 2020			
19	Splitter	Agilent	11636B	GTS237	June. 26 2019	June. 25 2020			
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 26 2019	June. 25 2020			
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 20 2018	Oct. 19 2019			
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 20 2018	Oct. 19 2019			
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 20 2018	Oct. 19 2019			
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 26 2019	June. 25 2020			

Con	ducted Emission					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 26 2019	June. 25 2020
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 26 2019	June. 25 2020
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
7	Thermo meter	KTJ	TA328	GTS233	June. 26 2019	June. 25 2020
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 26 2019	June. 25 2020
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 26 2019	June. 25 2020

RF C	RF Conducted Test:								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 26 2019	June. 25 2020			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020			
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 26 2019	June. 25 2020			
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 26 2019	June. 25 2020			
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 26 2019	June. 25 2020			
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 26 2019	June. 25 2020			
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 26 2019	June. 25 2020			
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 26 2019	June. 25 2020			

Gene	General used equipment:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 26 2019	June. 25 2020			
2	Barometer	ChangChun	DYM3	GTS255	June. 26 2019	June. 25 2020			

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

7.2 Conducted Emissions

 Oondacted Ennissions	<u></u>					
Test Requirement:	FCC Part15 (C Section 15.2	207			
Test Method:	ANSI C63.10	:2013				
Test Frequency Range:	150KHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9KHz,	VBW=30KHz	, Sweep tir	ne=auto		
Limit:	Fraguena	Frequency range (MHz) Limit (dBuV)				
			QU	ıasi-peak	Aver	
	l ————————————————————————————————————	15-0.5	- 6	66 to 56*	56 to	
		0.5-5		56	40	
		5-30 with the logari	ithm of the	frequency	50	J
Test setup:	Decreases	Reference PI		nequency.		
Test procedure:	Remark E.U.T. Equipment Under Test LISN Line impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a					
	 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test environment:			Humid.:	54%	Press.:	1012mbar
Test voltage:	AC 120V, 60Hz					
Test results:	Pass					
	1					

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data:

FP1: Line:

Condition : FCC PART15 CLASSB QP LINE

EUT name : Stage lunminaires

Test Model : FP1
Test Mode : 2.4G TX
T & H : 24°C 54%
Test Voltage: 120V/60Hz
Test Enginee: Sam

Remark :

(emari		Read Level	LISN Factor	Cable Loss	Leve1	Limit Line	Over Limit	Remark
-	MHz	dBuV	dB	₫B	dBuV	dBuV	dB	
1 2 3 4 5 6 7 8 9 10 11 12	0. 150 0. 150 0. 192 0. 192 0. 256 0. 256 0. 318 0. 318 0. 507 0. 507 0. 637 0. 637	46. 90 18. 91 49. 30 35. 05 43. 71 31. 36 38. 58 27. 49 37. 85 27. 40 35. 02 26. 63	0. 40 0. 40 0. 40 0. 40 0. 40 0. 39 0. 39 0. 31 0. 31 0. 28 0. 28	0. 07 0. 07 0. 11 0. 11 0. 10 0. 10 0. 10 0. 11 0. 11 0. 11 0. 12 0. 12	47. 37 19. 38 49. 81 35. 56 44. 21 31. 86 39. 07 27. 98 38. 27 27. 82 35. 42 27. 03	56.00 63.93 53.93 61.56 51.56 59.75 49.75 56.00 46.00 56.00	-14. 12 -18. 37 -17. 35 -19. 70 -20. 68 -21. 77 -17. 73 -18. 18 -20. 58	Average QP Average QP Average QP Average QP Average QP Average

Neutral:

Condition : FCC PART15 CLASSB QP NEUTRAL

EUT name : Stage lunminaires

Test Model : FP1
Test Mode : 2.4G TX
T & H : 24°C 54%
Test Voltage: 120V/60Hz
Test Enginee: Sam

Remark :

CHAIL E	Freq	Read Level	LISN Factor	Cable Loss	Leve1	Limit Line	Over Limit	Remark	
-	MHz	₫BuV	₫B	₫B	dBu₹	₫BuV	₫B		
1 2 3 4 5 6	0. 150 0. 150 0. 192 0. 192 0. 256 0. 256	47. 98 18. 78 50. 76 36. 96 43. 03 31. 33	0. 40 0. 40 0. 40 0. 40 0. 40	0.07 0.07 0.11 0.11 0.10	48. 45 19. 25 51. 27 37. 47 43. 53 31. 83	56.00 63.93 53.93 61.56 51.56	-12.66 -16.46 -18.03 -19.73	Average QP Average QP Average	
7 8 9 10 11 12	0.502 0.502 0.637 0.637 1.858 1.858	38. 25 27. 58 37. 59 28. 24 35. 08 22. 47	0. 31 0. 31 0. 28 0. 28 0. 20 0. 20	0. 11 0. 11 0. 12 0. 12 0. 17 0. 17	38. 67 28. 00 37. 99 28. 64 35. 45 22. 84	46.00 56.00 46.00 56.00	-18.01 -17.36 -20.55	Average QP Average	

FP2: Line:

Condition : FCC PART15 CLASSB QP LISN-2017 LINE

EUT name : Stage lunminaires

Test Model : FP2
Test Mode : 2.4G TX
T & H : 24℃ 54%
Test Voltage: 120V/60Hz

Test Enginee: Sam Remark :

Read Cable Limit Over Line Freq Level Loss Factor Level Limit Remark MHz dBuV dBuV dΒ dΒ dBuV dΒ 0.190 0.50 50.93 0.10 51.43 64.02 -12.59 QP 1 2 3 4 0.190 38.92 0.10 0.50 39.42 54.02 -14.60 Average 0.262 0.50 48.19 47.69 0.10 61.38 -13.19 QP 0.262 30.25 0.10 0.50 30.75 51.38 -20.63 Average 5 0.49942.80 42.37 0.11 0.4356.01 -13.21 QP 6 0.499 27.68 0.43 28.11 46.01 -17.90 Average 0.11 7 0.637 43.12 0.12 0.40 43.52 56.00 -12.48 QP 8 0.637 46.00 -17.07 Average 28.53 0.120.40 28.93 9 2.608 37.56 0.18 0.38 37.94 56.00 -18.06 QP 10 2.608 27.69 0.180.38 28.07 46.00 -17.93 Average 11 23.018 36.22 0.23 0.5636.78 60.00 -23.22 QP 23.018 26.93 50.00 -23.07 Average 12 26.37 0.23 0.56

Neutral:

Condition : FCC PART15 CLASSB QP LISN-2017 NEUTRAL

EUT name : Stage lunminaires

Test Model : FP2
Test Mode : 2.4G TX
T & H : 24°C 54%
Test Voltage: 120V/60Hz

Test Enginee: Sam

Remark

	Freq	Read Level	Cable Loss	Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	dB	dB	dBuV	dBuV	dB	
1 2 3 4 5 6 7 8 9 10	0. 186 0. 186 0. 255 0. 255 0. 502 0. 502 0. 634 0. 634 1. 839 1. 839 4. 874	51. 98 40. 00 45. 81 39. 17 38. 93 32. 64 38. 12 32. 49 36. 52 27. 14 32. 34	0.10 0.10 0.10 0.10 0.11 0.11 0.12 0.12	0.50 0.50 0.50 0.50 0.42 0.42 0.40 0.37 0.37	52. 48 40. 50 46. 31 39. 67 39. 35 33. 06 38. 52 32. 89 36. 89 27. 51 32. 71	54. 20 61. 60 51. 60 56. 00 46. 00 56. 00 46. 00 56. 00 46. 00	-15. 29 -11. 93 -16. 65 -12. 94 -17. 48 -13. 11 -19. 11	Average QP Average QP Average QP Average QP Average QP Average
12	4.874	22.56	0.17	0.37	22.93	46.00	-23.07	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

7.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)		
Test Method:	ANSI C63.10:2013		
Limit:	29dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
Lowest	-1.94		
Middle	-0.81	29dBm	Pass
Highest	0.12		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

7.4 20dB Emission Bandwidth

Measurement Data

Test channel	Test channel 20dB Emission Bandwidth (kHz)	
Lowest	914	
Middle	882	Pass
Highest	885	

Test plot as follows:

Lowest channel

Middle channel

Highest channel

7.5 Carrier Frequencies Separation

	-		
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak		
Limit:	20dB bandwidth		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Lowest	1007	914	Pass
Middle	1003	914	Pass
Highest	1003	914	Pass

Note: According to section 7.4

20dB bandwidth (kHz)	Limit (kHz)	
(worse case)	(Carrier Frequencies Separation)	
914	914	

Test plot as follows:

Lowest channel

Middle channel

Highest channel

7.6 Hopping Channel Number

<u> </u>			
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak		
Limit:	15 channels		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data:

Hopping chann	nel numbers	Limit	Result
79		15	Pass

Test plot as follows:

7.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)					
Test Method:	ANSI C63.10:2013					
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak					
Limit:	0.4 Second					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

Measurement Data

Frequency	Dwell time(ms)	Limit(ms)	Result
2402MHz	120.000	400	Pass
2440MHz	120.544	400	Pass
2480MHz	121.056	400	Pass

Remarks:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s 2402MHz time slot=0.3750(ms)*(1600/(2*79))*31.6=120.000ms 2440MHz time slot=0.3767(ms)*(1600/(2*79))*31.6=120.544ms 2480MHz time slot=0.3783(ms)*(1600/(2*79))*31.6=121.056ms

Test plot as follows:

2402MHz

2440MHz

2480MHz

7.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1)/g/h requirement:

a(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

- (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.
- (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹ -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

it permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted.

7.9 Band Edge

7.9.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013				
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Test plot as follows:

No-hopping mode

Hopping mode

No-hopping mode

Hopping mode

7.9.2 Radiated Emission Method

1.9.2 Radiated Emission We	tiloa					
Test Requirement:	FCC Part15 C Section 15.209 and 15.205					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	All of the restrict 2500MHz) data		tested, only	the worst	band's (2310MHz to	
Test site:	Measurement D	istance: 3m				
Receiver setup:	Frequency	Detector	RBW	VBW	Remark	
·	Above 1GHz	Peak Peak	1MHz 1MHz	3MHz 10Hz	Peak Value Average Value	
Limit:	Freque	ency	Limit (dBuV/	m @3m)	Remark	
	Above 1	GHz	54.0 74.0		Average Value Peak Value	
Test setup:	Tum Table < 150cm > .	< 3n	Test Antenna	1	THE PERSON NAMED IN THE PE	
Test Procedure:	ground at a 3 determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to de horizontal an measuremer 4. For each sus and then the and the rota maximum results. The test-recesults Specified Ba 6. If the emissic limit specified EUT would be 10dB margin average metics.	B meter cambe e position of the set 3 meters che was mounted the major that the m	r. The table is e highest race away from the don the top d from one naximum value rizations of the conferment of the ed from 0 decays set to Pealaximum Hole EUT in peak could be stop herwise the ed and then recognition of the ed and then recognition of the ed and then recognition of the education of the educati	was rotated diation. The interfere of a variable of the field the antenna was arrang this from 1 grees to 36 ak Detect Fid Mode. The mode was apped and the missions to one using	r meters above the d strength. Both are set to make the led to its worst case meter to 4 meters to degrees to find the led to lower than the led peak values of the led to lower than the led to lower	
Test Instruments:	Refer to section					
Test mode:	Refer to section	5.2 for details				
Test results:	Pass					

Measurement Data

FP1:

	Antenna Polarity:	Horizontal	Test channel:	Lowest
--	-------------------	------------	---------------	--------

FCC PART 15 (PK) 3m HORIZONTAL Stage luminaires Condition

EUT

Test Mode TX mode Test Engineer: Lee Model FP1 24°C 49% AC120V 60Hz T&H Test voltage 2402MHz

	Freq			Preamp Factor			Limit Line	Over Limit	Remark
	MHz	dBu∜	dB/m	₫B	₫B	dBuV/m	dBuV/m	₫B	
1 2 3 4 5	2390.000 2390.000 2400.000		27. 21 27. 21 27. 41 27. 41 27. 44 27. 44	37.01 37.01	6.19 6.31 6.31 6.33	34.34 25.84 35.48	74.00 54.00 74.00 54.00	-39.66 -28.16 -38.52 -12.70	Average Peak Average

Antenna Polarity:	Vertical	Test channel:	Lowest
-------------------	----------	---------------	--------

FCC PART 15 (PK) 3m VERTICAL Stage luminaires Condition

EUT

Test Mode TX mode Test Engineer: Lee Model FP1 24°C 49% AC120V 60Hz T&H

Test voltage 2402MHz

	Freq			Preamp Factor			Limit Line	Over Limit	Remark
	MHz	dBu∜	dB/m	₫B	₫B	dBuV/m	dBuV/m	₫B	
1 2 3 4 5	2310.000 2310.000 2390.000 2390.000 2400.000	28.69 37.91 41.89	27.41 27.41 27.44	36.95 36.95 37.01 37.01 37.01	6.19 6.31 6.31 6.33	35.87 25.40 34.62 38.65	74.00 54.00 74.00 54.00	-38.13 -28.60 -39.38 -15.35	Average Peak Average
6	2400.000	49.54	27.44	37.01	6.33	46.30	74.00	-27.70	Peak

Antenna Polarity:	Horizontal	Test channel:	Highest
-------------------	------------	---------------	---------

Condition : FCC PART 15 (PK) 3m HORIZONTAL

EUT : Stage luminaires
Test Mode : TX mode

Test Mode : TX mode Test Engineer: Lee Model : FP1

T&H : 24°C 49% Test voltage : AC120V 60Hz CH : 2480MHz

п			Antenna	Preamp Factor				Over Limit	Remark
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1 2 3	2483.500 2483.500 2500.000	39.77 30.90	27.66 27.70	37.07 37.09	6.45 6.47	36.81	74.00 54.00	-37.19 -26.02	Average

Antenna Polarity: Vertical Test channel: Highest

Condition : FCC PART 15 (PK) 3m VERTICAL

EUT : Stage luminaires

Test Mode : TX mode Test Engineer: Lee Model : FP1

	Freq			Preamp Factor					Remark
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1 2 3 4	2483.500 2483.500 2500.000 2500.000	37.11 28.44	27.66 27.70	37.07 37.09	6.45 6.47	34.15	74.00 54.00	-39.85 -28.48	Average

Remarks:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

7.10 Spurious Emission

7.10.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

Test channel: Lowest channel

30MHz~25GHz

Test channel:

Middle channel

30MHz~25GHz

Test channel:

Highest channel

30MHz~25GHz

7.10.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209								
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Distance: 3m								
Receiver setup:	Frequency	ency Detector		RB\	W	VBW		Value	
	9KHz-150KHz	-150KHz Quasi-peak		200l	Hz	600Hz		Quasi-peak	
	150KHz-30MHz	Quasi-peak		9KF	Ηz	30KHz		Quasi-peak	
	30MHz-1GHz Quasi-peak		120K	KHz 300KF		lz	Quasi-peak		
	Above 1GHz	Peak		1MHz		3MHz		Peak	
	Above 1GHz		Peak	1MHz		10Hz		Average	
Limit:	Frequency Limit (uV/m)		//m)	Value		Measurement Distance			
	0.009MHz-0.490MHz		2400/F(KHz)			QP		300m	
	0.490MHz-1.705MHz		24000/F(KHz)			QP		30m	
	1.705MHz-30MHz		30		QP		30m		
	30MHz-88MHz		100		QP				
	88MHz-216MHz		150		QP				
	216MHz-960MHz		200		QP			3m	
	960MHz-1GHz		500		QP				
	Above 1GHz		500		Average				
			5000		Peak				
Test setup:	For radiated emissions from 9kHz to 30MHz Tum Table Receiver Receiver								

Measurement data:

Remarks:

- 1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.
- 2. There are measurements in 18~25GHz, but they are not recorded in the report due to only the bo ttom noise

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

■ Below 1GHz

FP1:

Antenna Polarity: Horizontal Test channel: Lowest

Condition : FCC PART15 CLASS B 3m HORIZONTAL

EUT : Stage luminaires

2402MHz

Test Model : FP1
Test Mode : TX Mode
T&H : 25°C 48%
Test Engineer: Bourne
Test Voltage : 120V/60Hz

ReadAntenna Preamp Cable Limit 0ver Freq Level Factor Factor Loss Level Line Limit Remark MHz dBuV dB/m ₫B dB dBuV/m dBuV/m ďB 37.945 97.798 49.22 52.49 12.30 11.73 40.00 -13.38 QP 43.50 -14.81 QP 35.54 36.70 0.64 1.17 26.62ŝ 28.69 2. 07 2. 29 2. 67 3 239.987 46.00 -11.40 QP 58.34 11.56 37.37 34.60 57.09 4 285.978 13.01 37.41 34.98 46.00 -11.02 QP 5 360.448 48.45 14.68 37.48 28.32 46.00 -17.68 QP 32.31 46.00 -13.69 QP 842.130 43.62 21.67 37.61 4.63

Antenna Polarity: Vertical T	Test channel:	Lowest
------------------------------	---------------	--------

Condition : FCC PART15 CLASS B 3m VERTICAL

EUT : Stage luminaires

Test Model : FP1
Test Mode : TX Mode
T&H : 25°C 48%
Test Engineer: Bourne
Test Voltage : 120V/60Hz
CH : 2402MHz

0ver ReadAntenna Preamp Cable Limit Freq Level Factor Factor Level Loss Line Limit Remark dBuV dB/m MHz ďΒ dB dBuV/m dBuV/m ďB 32.00 25.21 25.72 27.66 36.895 55.65 11.20 35.48 0.63 40.00 -8.00 QP 1 2 3 93.113 49.75 10.98 36.66 1.14 43.50 -18.29 QP 10.88 1.97 221.392 50.22 37.35 46.00 -20.28 QP 4 37.37 46.00 -18.34 QP 239.987 2.07 51.40 11.56 46.00 -18.41 QP 46.00 -15.49 QP 289.002 37.41 2.31 27.59 49.58 13.11 37.61 4.63 842.130 41.82 21.67 30.51

Antenna Polarity:	Horizontal	Test channel:	Middle
-------------------	------------	---------------	--------

FCC PART15 CLASS B 3m HORIZONTAL Condition

EUT Stage luminaires FP1

Test Model TX Mode 25°C 48 Test Mode T&H 48%

Test Engineer: Bourne Test Voltage: 120V/60Hz 2440MHz

	Freq			Preamp Factor					
	MHz	dBu∜	dB/m	<u>dB</u>	<u>dB</u>	$\overline{dB}\overline{uV}/\overline{m}$	dBu∜/m	dB	
1	37.680	49.03	12.30	35.53	0.64	26.44	40.00	-13.56	QP
2	98.142	51.95	11.73	36.71	1.18	28.15	43.50	-15.35	QP
3	239.987	58.34	11.56	37.37	2.07	34.60	46.00	-11.40	QP
4	262.896	55.31	12.24	37.39	2.19	32.35	46.00	-13.65	QP
5	360.448	47.45	14.68	37.48	2.67	27.32	46.00	-18.68	QP
6	842.130	47.62	21.67	37.61	4.63	36.31	46.00	-9.69	QP

Antenna Polarity:	Vertical	Test channel:	Middle

FCC PART15 CLASS B 3m VERTICAL Stage luminaires FP1 TX Mode

Condition EUT

Test Model Test Mode 25°C 48% T&H Test Engineer: Bourne 120V/60Hz 2440MHz Test Voltage :

п		244011111		_					
		Read/	Antenna	Preamp	Cable		Limit	Over	
	Frea	Level	Factor	Factor	Loss	Level	Line	Limit	Remark
-	MHz	dBuV	40/-	d₿		4007/-	4077/-	dB	
	JILLIZ	ubuv	ub/ III	ш	ш	ubu v/ iii	ubuv/ iii	ш	
1	31.620	52.47	11.25	35.12	0.57	29.17	40.00	-10.83	QP
2	36, 127	54.94	11.20	35.43	0.62	31.33	40.00	-8.67	QP
3				36.72					•
_	239. 987							-17.34	
4									
5	289.002	49.58	13.11	37.41	2.31	27.59	46.00	-18.41	QP
6	842.130	41, 82	21, 67	37, 61	4, 63	30, 51	46, 00	-15.49	ΩP
-	042.100	11.02	21.01	001	00	00.01	20.00	10.40	4.

Antenna Polarity: Horizontal Test cl	nnel: Highest
--------------------------------------	---------------

Condition : FCC PART15 CLASS B 3m HORIZONTAL

EUT : Stage luminaires

Test Model : FP1
Test Mode : TX Mode
T&H : 25°C 48%
Test Engineer: Bourne
Test Voltage : 120V/60Hz

CH

2480MHz ReadAntenna Preamp Cable Limit Over Freq Level Factor Factor Loss Level Line Limit Remark MHz dBuV ďB dB dBuV/m dBuV/m dB/m ďB 37. 945 96. 775 12.30 11.35 0.64 1.17 25.62 28.29 40.00 -14.38 QP 43.50 -15.21 QP 48.22 35.54 1 2 3 52.46 36.69 239.987 59.34 11.56 37.37 2.07 35.60 46.00 -10.40 QP 12.53 37.40 37.48 2.22 33.40 27.32 46.00 -12.60 QP 46.00 -18.68 QP 4 269.428 56.05 5 360.448 47.45 14.68 842.130 46.62 21.67 37.61 4.63 35.31 46.00 -10.69 QP

Antenna Polarity:	Vertical	Test channel:	Highest
-------------------	----------	---------------	---------

FCC PART15 CLASS B 3m VERTICAL Stage luminaires

Condition EUT

1X Mode 25°C Bo Test Model Test Mode T&H 48% Test Engineer: Bourne 120V/60Hz

Test Voltage : 2480MHz ReadAntenna Preamp Cable

••	Freq			Preamp Factor				Over Limit	
	MHz	dBu₹	dB/m	₫B	₫B	dBuV/m	dBuV/m	₫B	
1 2 3 4 5 6	36.895 38.078 100.934 221.392 239.987 842.130	47.91 51.22 51.40	12.30 12.10 10.88 11.56	35.55 36.73 37.35 37.37	0.64 1.20 1.97 2.07	31.91 24.48 26.72 27.66	43.50 46.00 46.00	-8.09 -19.02 -19.28 -18.34	QP QP QP QP

Above 1GHz

Antenna Polarity:	Horizontal	Test channel:	Lowest
-------------------	------------	---------------	--------

FCC PART 15 (PK) 3m HORIZONTAL Stage luminaires Charging + 2.4GHz TX mode Condition

EUT

Test Mode : Char Test Engineer: Lee

Model FP1 24°C 49% T&H

Test voltage : AC120V 60Hz CH 2402MHzReadAntenna Preamp Cable Limit Over

	Freq	Level	Factor	Factor	Loss	Level	Line	Limit	Kemark
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1 2 3 4 5	4804.000 4804.000 7206.000 7206.000 9608.000	29.82 23.95 29.02	31.35 35.89 35.89	37.58 35.44 35.44	9.36 11.21 11.21	32.95 35.61 40.68	74.00 54.00 74.00	-41.05 -18.39 -33.32	Average Peak
6	9608, 000	29, 82	37, 74	34, 96	12, 91	45, 51	74, 00	-28.49	Peak

Limit

0ver

Condition : FCC PART 15 (PK) 3m VERTICAL

EUT : Stage luminaires

Test Mode : Charging + 2.4GHz TX mode

Test Engineer: Lee
Model : FP1
T&H : 24°C 49%
Test voltage : AC120V 60Hz
CH : 2402MHz

Freq Level Factor Factor Loss Level Line Limit Remark MHz dBuV dB/m ďΒ dB dBuV/m dBuV/m 22.37 28.70 22.41 54.00 -28.50 Average 74.00 -42.17 Peak 37.58 25.50 31.83 4804.000 31.35 31.35 9.36 4804.000 9.36 2 37.58 54.00 -19.93 Average 3 35.89 7206.000 35.44 11.21 34.07 11.21 74.00 -34.36 Peak 54.00 -16.98 Average 4 7206.000 27.98 35.89 35.44 39.64 21.33 37.74 12.91 37.02 5 9608.000 34.9627.39 37.74 9608.000 34.96 12.91 43.08 74.00 -30.92 Peak

ReadAntenna Preamp Cable

Antenna Polarity: Horizontal Test channel: Middle	ntenna Polarity: Ho	Horizontal	Test channel:	Middle
---	---------------------	------------	---------------	--------

FCC PART 15 (PK) 3m HORIZONTAL Stage luminaires Charging + 2.4GHz TX mode

Condition EUT Test Mode

Lee FP1 Test Engineer: Model 24°C Н₃ВТ 49%

AC120V 60Hz Test voltage : 2440MHz CH

	Freq			Preamp Factor				Over Limit	Remark
	MHz	dBu₹	dB/m	₫B	₫B	dBuV/m	dBuV/m	₫B	
1 2 3 4 5	4880,000 4880,000 7320,000 7320,000 9760,000 9760,000	29. 46 22. 01 28. 91 25. 24	31.48 36.17 36.17 38.07	37.59 35.47 35.47	9.42 11.30 11.30 13.01	32.77 34.01 40.91 41.23	74.00 54.00 74.00 54.00	-41.23 -19.99 -33.09 -12.77	Average Peak Average

Antenna Polarity:	Vertical	Test channel:	Middle
-------------------	----------	---------------	--------

Condition : FCC PART 15 (PK) 3m VERTICAL

EUT : Stage luminaires

Test Mode : Charging + 2.4GHz TX mode

Test Engineer: Lee Model : FP1 T&H : 24°C 49% Test voltage : AC120V 60Hz

T&H : 24°C 49% Test voltage : AC120V 60Hz CH : 2440MHz ReadAntem Freq Level Facto

	Freq			Preamp Factor					Remark
	MHz	dBu∀	dB/m	dB	dВ	dBuV/m	dBuV/m	dВ	
1	4880.000	24.44	31.48	37.59	9.42	27.75	54.00	-26.25	Average
2	4880.000	29.15	31.48	37.59	9.42	32.46	74.00	-41.54	Peak
3	7320.000	24.52	36.17	35.47	11.30	36.52	54.00	-17.48	Average
4	7320.000	29.77	36.17	35.47	11.30	41.77	74.00	-32.23	Peak
5	9760.000	23.13	38.07	35.09	13.01	39.12	54.00	-14.88	Average
6	9760.000	28.26	38.07	35.09	13.01	44.25	74.00	-29.75	Peak

Antenna Polarity:	Horizontal	Test channel:	Highest
-------------------	------------	---------------	---------

Condition : FCC PART 15 (PK) 3m HORIZONTAL

EUT : Stage luminaires

Test Mode : Charging + 2.4GHz TX mode

Test Engineer: Lee
Model : FP1
T&H : 24°C 49%
Test voltage : AC120V 60Hz
CH : 2480MHz

	•		Antenna	Preamp Factor			Limit	Over	Panarl	
	rreq	rever	ractor	ractor	LUSS	react	Line	LIMIT	Kemark	
	MHz	dBu∀	dB/m	d₿	d₿	dBuV/m	dBuV/m	₫B		
1	4960.000								Average	
2	4960.000 7440.000			35.49					reak Average	
4	7440.000	28.59	36.46	35.49	11.39	40.95	74.00	-33.05	Peak	
5	9920.000	22.01	38.42	35.23	13.13	38.33	54.00	-15.67	Average	
6	9920.000	28.15	38.42	35.23	13.13	44.47	74.00	-29.53	Peak	

Antenna Polarity: Vertical Test channel: Highest	Antenna Polarity:	Vertical	Test channel:	Highest
--	-------------------	----------	---------------	---------

Condition : FCC PART 15 (PK) 3m VERTICAL EUT : Stage luminaires

Test Mode : Charging + 2.4GHz TX mode

Test Engineer: Lee
Model : FP1
T&H : 24°C 49%
Test voltage : AC120V 60Hz
CH : 2480MHz

ReadAntenna Preamp Cable Limit 0ver Freq Level Factor Factor Loss Level Line Limit Remark MHz dBu∀ ₫₿ dB dBuV/m dBuV/m dB/m ďB 22.55 27.97 4960.000 37.60 9.48 26.06 54.00 -27.94 Average 31.63 31.48 35.96 9.48 2 74.00 -42.52 Peak 4960.000 37.60 31.63

54.00 -18.04 Average 23.60 3 7440.000 36.46 35.49 11.39 28.51 40.87 7440.000 36.46 35.49 11.39 74.00 -33.13 Peak 9920.000 21.60 38.42 35.23 13.13 37.92 54.00 -16.08 Average 9920.000 27.63 38.42 35.23 13.13 43.95 74.00 -30.05 Peak

FP2:

■ Below 1GHz

Antenna Polarity:	Horizontal	Test channel:	Lowest
-------------------	------------	---------------	--------

Condition : FCC PART15 CLASS B 3m HORIZONTAL

EUT : Stage luminaires

2402MHz

Test Model : FP2
Test Mode : TX Mode
T&H : 25°C 48%
Test Engineer: Bourne
Test Voltage : 120V/60Hz

CH

ReadAntenna Preamp Cable Limit 0ver Freq Level Factor Factor Level Line Limit Remark Loss MHz dBuV dB/m ďB dB dBuV/m dBuV/m 11.20 35.42 37.05 20.96 40.00 -19.04 QP 36.001 0.62 44.56 43.50 -15.88 QP 43.50 -15.88 QP 2 3 23.94 27.62 1.54 145.351 52.02 7.43 167.824 54.80 8.33 37.18 1.67 2.07 2.18 3.99 46.00 -13.20 QP 46.00 -15.59 QP 46.00 -11.23 QP 11.56 4 239.987 56.54 37.37 32.80 30.41 34.77 5 261.058 53.38 12.24 37.39 672.845 48.7437.61

Antenna Polarity: Vertical Test channel: Lowest	Antenna Polarity:	Vertical	Test channel:	Lowest
---	-------------------	----------	---------------	--------

Condition FCC PART15 CLASS B 3m VERTICAL

EUT

Test Model

Stage luminaires FP2 TX Mode 25°C 48% Test Mode H&T Test Engineer: Bourne 120V/60Hz Test Voltage : 2402MHz

/11		2402301	-						
		Read	Antenna	Preamp	Cable		Limit	0ver	
	Freq	Level	Factor	Factor	Loss	Level	Line	Limit	Remark
_									
	MHz	dBu∀	dB/m	dΒ	dΒ	dBuV/m	dBuV/m	d₿	
1	45. 217	51.76	12.25	35.95	0.72	28.78	40.00	-11.22	QP
2	76.244	57.78	7.33	36.51	1.00	29.60	40.00	-10.40	QP
3	150.011	55.35	7.50	37.08	1.57	27.34	43.50	-16.16	QP
4	181.920	50.15	8.80	37.25	1.75	23.45	43.50	-20.05	QP
5	261.975	48.63	12.24	37.39	2.18	25.66	46.00	-20.34	QP
6	672.845	47.44	19.65	37.61	3.99	33.47	46.00	-12.53	QP

Antenna Polarity: Horizontal Test channel: Middle

FCC PART15 CLASS B 3m HORIZONTAL Stage luminaires FP2 Condition EUT

Test Model 1X Mode 25°C Test Mode Т&Н

Test Engineer: Bourne Test Voltage CH 120V/60Hz 2440MHz

υH	:	244UMH2		_						
				Preamp						
	Freq	Level	Factor	Factor	Loss	Level	Line	Limit	Remark	
	MHz	dBu∀	dB/m	d₿	d₿	dBuV/m	dBuV/m	dB		
1	36.001	44.56	11.20	35.42	0.62	20.96	40.00	-19.04	QP	
2	56.792	44.72	11.67	36.28	0.83	20.94	40.00	-19.06	QΡ	
3	167.824									
4	239.987								•	
5	261.058									
6	842, 130						46.00			

Antenna Polarity:	Vertical	Test channel:	Middle
-------------------	----------	---------------	--------

Condition FCC PART15 CLASS B 3m VERTICAL

Stage luminaires FP2 EUT

Test Model TX Mode 25°C 48 Test Mode T&H Bourne

Test Engineer: Test Voltage: 120V/60Hz 2440MHz

	Freq			Preamp Factor					Remark	
-	MHz	dBu₹	dB/m	₫B	₫B	dBuV/m	dBuV/m	₫B		
1	40.559	52.53	12.27	35.70	0.67	29.77	40.00	-10.23	QP	
2	80.644	56.99	7.30	36.55	1.03	28.77	40.00	-11.23	QP	
3	146.374	55.96	7.43	37.06	1.55	27.88	43.50	-15.62	QP	
4	242.525	50.45	11.66	37.37	2.08	26.82	46.00	-19.18	QP	
5	672.845	44.44	19.65	37.61	3.99	30.47	46.00	-15.53	QP	
6	842.130	45.17	21.67	37.61	4.63	33.86	46.00	-12.14	QP	

	Antenna Polarity:	Horizontal	Test channel:	Highest
--	-------------------	------------	---------------	---------

FCC PART15 CLASS B 3m HORIZONTAL Stage luminaires FP2

Condition EUT Test Model Test Mode TX, Mode 25°C 48% T&H Test Engineer: Bourne Test Voltage CH 120V/60Hz 2480MHz

·п	-	240UIIII	۵							
		Read	Antenna	Preamp	Cable		Limit	0ver		
	Freq	Level	Factor	Factor	Loss	Level	Line	Limit	Remark	
	MHz	dBuV	dB/m	ā	<u>d</u> B	dBu∀/m	dBu∀/m	āB		
			_,							
1	36.001	44.56	11.20	35.42	0.62	20.96	40.00	-19.04	QP	
2	57.392	42.61	11.67	36.29	0.84	18.83	40.00	-21.17	QΡ	
3	145.351	54.02	7.43	37.05	1.54	25.94	43.50	-17.56	QP	
4	261.058	54.38	12.24	37.39	2.18	31.41	46.00	-14.59	QP	
5	336.035	50.93	14.21	37.46	2.55	30.23	46.00	-15.77	QP	
6	842, 130	45, 24	21.67	37, 61	4, 63	33, 93	46, 00	-12.07	ΩP	

Antenna Polarity:	Vertical	Test channel:	Highest
-------------------	----------	---------------	---------

FCC PART15 CLASS B 3m VERTICAL Stage luminaires FP2

Condition EUT Test Model 1X Mode 25°C Test Mode H.&T 48%

Test Engineer: Bourne 120V/60Hz 2480MHz Test Voltage :

			-				^	
Freq	Level	Factor	Factor	Loss	Level	Line	Limit	Remark
-								
Mu	dDW	4D/m	45	45	dD117/m	dD1177/m	45	
JILLIZ	ubu v	ub/ iii	ш	ш	ubuv/ iii	ubuv/ m	ш	
43.202	52.32	12.27	35.84	0.70	29.45	40.00	-10.55	QP
78.413	56, 71	7.33	36.53	1.01	28.52	40.00	-11.48	QP
								•
242.525	47.45	11.66	37.37	2.08	23.82	46. UU	-22.18	QP
672, 845	46, 44	19.65	37.61	3.99	32, 47	46, 00	-13.53	QΡ
044.130	45.11	41.01	31.01	4.03	31.00	40.00	-14.14	ŲΓ
	Freq MHz 43.202 78.413 150.011 242.525 672.845	Read/ Freq Level MHz dBuV 43.202 52.32 78.413 56.71 150.011 54.35 242.525 47.45 672.845 46.44	Freq Level Factor MHz dBuV dB/m 43.202 52.32 12.27 78.413 56.71 7.33 150.011 54.35 7.50 242.525 47.45 11.66 672.845 46.44 19.65	ReadAntenna Preamp Freq Level Factor Factor MHz dBuV dB/m dB 43.202 52.32 12.27 35.84 78.413 56.71 7.33 36.53 150.011 54.35 7.50 37.08 242.525 47.45 11.66 37.37 672.845 46.44 19.65 37.61	ReadAntenna Preamp Cable Freq Level Factor Factor Loss MHz dBuV dB/m dB dB 43.202 52.32 12.27 35.84 0.70 78.413 56.71 7.33 36.53 1.01 150.011 54.35 7.50 37.08 1.57 242.525 47.45 11.66 37.37 2.08 672.845 46.44 19.65 37.61 3.99	ReadAntenna Preamp Cable Loss Level MHz dBuV dB/m dB dB dBuV/m 43.202 52.32 12.27 35.84 0.70 29.45 78.413 56.71 7.33 36.53 1.01 28.52 150.011 54.35 7.50 37.08 1.57 26.34 242.525 47.45 11.66 37.37 2.08 23.82 672.845 46.44 19.65 37.61 3.99 32.47	ReadAntenna Preamp Cable Limit Freq Level Factor Factor Loss Level Line MHz dBuV dB/m dB dB dBuV/m dBuV/m 43.202 52.32 12.27 35.84 0.70 29.45 40.00 78.413 56.71 7.33 36.53 1.01 28.52 40.00 150.011 54.35 7.50 37.08 1.57 26.34 43.50 242.525 47.45 11.66 37.37 2.08 23.82 46.00 672.845 46.44 19.65 37.61 3.99 32.47 46.00	ReadAntenna Preamp Cable Loss Level Limit Over Loss MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m dB dB dBuV/m dBuV/m dB dB dBuV/m dBuV/m dB dB dBuV/m dBuV/m dB dB

Above 1GHz

Antenna Polarity: Horizontal Test channel: Lowest

FCC PART 15 (PK) 3m HORIZONTAL

Condition EUT

Stage luminaires Charging + 2.4GHz TX mode Test Mode

Lee FP2 24°C Test Engineer: Model

49% Test voltage : AC120V 60Hz 2402MHz

		L TOUMLT.	_							
		Read	Antenna	Preamp	Cable		Limit	Over		
	Freq	Level	Factor	Factor	Loss	Level	Line	Limit	Remark	
	_									
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB		٠
			,	_	_			_		
1	4804.000	23.37	31.35	37.58	9.36	26.50	54.00	-27.50	Average	
2	4804.000									
3	7206.000	22.79	35.89	35.44	11.21	34.45	54.00	-19.55	Average	
4	7206.000									
5	9608.000	23.88	37.74	34.96	12.91	39.57	54.00	-14.43	Average	
6	9608, 000									

Antenna Polarity:	Vertical	Test channel:	Lowest
-------------------	----------	---------------	--------

FCC PART 15 (PK) 3m VERTICAL

Condition EUT Test Mode

Stage luminaires Charging + 2.4GHz TX mode

2402MHz

Test Engineer: Lee Model FP2 Т&Н 24°C 49% AC120V 60Hz Test voltage :

CH

ReadAntenna Preamp Cable Limit Over Freq Level Factor Factor Level Line Limit Remark Loss MHz dBu∀ dB/m ďB dB dBuV/m dBuV/m ďB 54.00 -28.79 Average 74.00 -42.06 Peak 31.35 31.35 4804.000 22.08 9.36 25.21 4804.000 28.81 37.58 9.36 31.94 3 7206.000 23.65 35.89 35.44 11.21 35.31 54.00 -18.69 Average 28.10 22.29 35.89 37.74 74.00 -34.24 Peak 7206.000 35.44 11.21 39.76 54.00 -16.02 Average 74.00 -30.43 Peak 9608.000 34.96 12.91 37.98 9608.000 27.88 37.74 34.96 12.91 43.57

Antenna Polarity: Horizontal Test channel: Middle

FCC PART 15 (PK) 3m HORIZONTAL Stage luminaires Charging + 2.4GHz TX mode Condition

EUT

Test Mode

Test Engineer: Model Lee FP2 24°C

49% T&H Test voltage CH AC120V 60Hz 2440MHz

	Freq		Antenna	Preamp Factor				Over Limit	Remark	
	MHz	dBu∜	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		-
1 2 3 4 5	7320.000 7320.000 9760.000	27. 56 24. 61 29. 32 24. 88	31.48 36.17 36.17 38.07	37. 59 35. 47 35. 47 35. 09	9. 42 11. 30 11. 30 13. 01	30.87 36.61 41.32 40.87	74.00 54.00 74.00 54.00	-43.13 -17.39 -32.68 -13.13	Peak Average Peak Average	
6	9760.000	28.89	38.07	35.09	13.01	44.88	74.00	-29.12	Peak	

Antenna Polarity: Vertical Test channel: Middle	
---	--

Condition EUT

: FCC PART 15 (PK) 3m VERTICAL : Stage luminaires : Charging + 2.4GHz TX mode Test Mode

Test Engineer: Lee FP2 24°C Model 24°C 49% AC120V 60Hz Т&Н Test voltage : 2440MHz

	Freq			Preamp Factor			Limit Line		Remark
	MHz	dBu₹	₫B/m	₫B	<u>dB</u>	dBu∜/m	dBuV/m	₫B	
1 2 3 4	4880, 000 4880, 000 7320, 000 7320, 000		31.48	37.59	9.42 11.30	31.87	74.00 54.00	-42.13 -18.23	Peak Average
5 6	9760.000 9760.000								Average Peak

Antenna Polarity: Horizontal Test channel: Highest
--

Condition FCC PART 15 (PK) 3m HORIZONTAL

EUT Stage luminaires

Test Mode Charging + 2.4GHz TX mode

Test Engineer: Lee Model FP2 T&H 24℃ 49% Test voltage : AC120V 60Hz 2480MHz

			Antenna Factor	Preamp Factor	Loss	Level	Line		
	MHz	dBu∀	dB/m	d₿	dВ	dBuV/m	dBuV/m	dВ	
2	4960.000 4960.000	27.45		37.60 37.60	9.48	30.96	74.00	-43.04	
3 4 5 6	7440.000 7440.000 9920.000 9920.000	28.19 24.02	36.46 38.42	35.49	11.39 13.13	40.55 40.34	74.00 54.00	-33.45 -13.66	Average

Antenna Polarity: Vertical Test channel: Highest	Antenna Polarity:	Vertical	Test channel:	Highest
--	-------------------	----------	---------------	---------

Condition EUT FCC PART 15 (PK) 3m VERTICAL

Stage luminaires Charging + 2.4GHz TX mode Test Mode

Test Engineer: Lee FP2 Model 24°℃ 49% H&T AC120V 60Hz 2480MHz Test voltage

•			Intenna	Preamp Factor					Remark
	MHz	dBu₹	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2 3 4 5	4960,000 4960,000 7440,000 7440,000 9920,000	27. 69 22. 14 27. 79 23. 43	31.63 36.46 36.46 38.42	37.60 35.49 35.49 35.23	9.48 11.39 11.39 13.13	31.20 34.50 40.15 39.75	74.00 54.00 74.00 54.00	-42.80 -19.50 -33.85 -14.25	Peak Average Peak Average

Remarks:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

Reference to External picture and Internal picture for details.

-----End-----