In [1]: 'https://www.kaggle.com/aungpyaeap/supermarket-sales'

Out[1]: 'https://www.kaggle.com/aungpyaeap/supermarket-sales'

In [2]: import pandas as pd
 import numpy as np
 import seaborn as sb
 import matplotlib.pyplot as plt
%matplotlib inline

In [3]: # Load the data
 df = pd.read_csv('/Users/ahmedalshaibani/Desktop/super-market-back-up/su
 permarket_sales.csv')

In [4]: df.head()

Out[4]:

	Invoice ID	Branch	City	Customer type	Gender	Product line	Unit price	Quantity	Tax 5%	
0	750- 67- 8428	А	Yangon	Member	Female	Health and beauty	74.69	7	26.1415	5
1	226- 31- 3081	С	Naypyitaw	Normal	Female	Electronic accessories	15.28	5	3.8200	8
2	631- 41- 3108	Α	Yangon	Normal	Male	Home and lifestyle	46.33	7	16.2155	3
3	123- 19- 1176	А	Yangon	Member	Male	Health and beauty	58.22	8	23.2880	4
4	373- 73- 7910	Α	Yangon	Normal	Male	Sports and travel	86.31	7	30.2085	6

```
In [5]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1000 entries, 0 to 999
        Data columns (total 17 columns):
        Invoice ID
                                     1000 non-null object
        Branch
                                     1000 non-null object
                                     1000 non-null object
        City
        Customer type
                                     1000 non-null object
                                     1000 non-null object
        Gender
                                     1000 non-null object
        Product line
        Unit price
                                     1000 non-null float64
                                     1000 non-null int64
        Quantity
        Tax 5%
                                     1000 non-null float64
        Total
                                     1000 non-null float64
        Date
                                     1000 non-null object
                                     1000 non-null object
        Time
        Payment
                                     1000 non-null object
        cogs
                                     1000 non-null float64
        gross margin percentage
                                     1000 non-null float64
        gross income
                                     1000 non-null float64
                                     1000 non-null float64
        Rating
        dtypes: float64(7), int64(1), object(9)
        memory usage: 132.9+ KB
In [6]: df.isnull().sum()
Out[6]: Invoice ID
                                     0
                                     0
        Branch
        City
                                     0
        Customer type
                                     0
        Gender
                                     0
        Product line
                                     0
        Unit price
                                     0
        Quantity
                                     0
        Tax 5%
                                     0
        Total
                                     0
        Date
                                     0
        Time
                                     0
        Payment
                                     0
        cogs
                                     0
        gross margin percentage
                                     0
        gross income
                                     0
                                     0
        Rating
        dtype: int64
In [7]: df.duplicated().sum()
```

Out[7]: 0

```
In [8]: df.describe()
```

Out[8]:

3/29/2021

	Unit price	Quantity	Tax 5%	Total	cogs	gross margin percentage	
count	1000.000000	1000.000000	1000.000000	1000.000000	1000.00000	1.000000e+03	1
mean	55.672130	5.510000	15.379369	322.966749	307.58738	4.761905e+00	1
std	26.494628	2.923431	11.708825	245.885335	234.17651	6.220360e-14	1
min	10.080000	1.000000	0.508500	10.678500	10.17000	4.761905e+00	0
25%	32.875000	3.000000	5.924875	124.422375	118.49750	4.761905e+00	5
50%	55.230000	5.000000	12.088000	253.848000	241.76000	4.761905e+00	1
75%	77.935000	8.000000	22.445250	471.350250	448.90500	4.761905e+00	2
max	99.960000	10.000000	49.650000	1042.650000	993.00000	4.761905e+00	4

```
In [9]: df.columns
 Out[9]: Index(['Invoice ID', 'Branch', 'City', 'Customer type', 'Gender',
                 'Product line', 'Unit price', 'Quantity', 'Tax 5%', 'Total', 'Da
         te',
                 'Time', 'Payment', 'cogs', 'gross margin percentage', 'gross inc
         ome',
                 'Rating'],
               dtype='object')
In [10]: df.rename(columns = {'Customer type':'Customer type'}, inplace = True)
In [11]: df['Customer_type'].value_counts()
Out[11]: Member
                   501
         Normal
                   499
         Name: Customer_type, dtype: int64
In [12]: df['Gender'].value counts()
                   501
Out[12]: Female
                   499
         Male
         Name: Gender, dtype: int64
```

In [13]: pd.crosstab(df.Gender, df.Customer_type)

Out[13]:

Customer_type	Member	Normal	
Gender			
Female	261	240	
Male	240	259	

```
In [14]: pd.crosstab(df.Gender, df.Branch)
Out[14]: .
```

Branch	Α	В	C
Gender			
Female	161	162	178
Male	179	170	150

```
In [15]: df['Branch'].value_counts()
Out[15]: A
              340
              332
         С
              328
         Name: Branch, dtype: int64
In [16]: group df = df.groupby("Gender")
         mean_df = group_df.sum()
In [17]: mean df = mean df.reset index()
In [18]:
         print(mean_df)
            Gender Unit price Quantity
                                            Tax 5%
                                                          Total
                                                                      cogs
            Female
                      27687.24
                                    2869
                                          7994.425 167882.925
                                                                 159888.50
         1
              Male
                      27984.89
                                    2641
                                          7384.944 155083.824
                                                                 147698.88
            gross margin percentage gross income Rating
         0
                        2385.714286
                                         7994.425
                                                    3489.2
                        2376.190476
                                         7384.944
                                                    3483.5
         1
In [19]: df['Rating'].mean()
Out[19]: 6.972700000000003
```

In [20]: labels = df['Gender'].value counts().index

values = df['Gender'].value_counts().values

3/29/2021 Super_Market_Sales

```
In [21]: plt.figure(figsize=(5,5))
    plt.pie(values, labels=labels, autopct='%1.1f%%', startangle = 120)
    plt.title('Gender')
    plt.show
```

Out[21]: <function matplotlib.pyplot.show>

In [22]: plt.figure(figsize=(10,5))
sb.countplot(x=df['Branch'],hue=df['Gender']);

