## T-tests: Paired samples

Research Methods for Human Inquiry
Andrew Perfors

### Today's story...

The economy doesn't explain everything, so what is going on?



#### Today's story...

The economy doesn't explain everything, so what is going on?



# Comparing two means within a repeated measures design, using a paired samples t-test

## Suppose you have repeated measurements?

|           | 5 years ago | Now  |
|-----------|-------------|------|
| Location1 | 63.7        | 47.3 |
| Location2 | 62.9        | 53.6 |
| Location3 | 90.5        | 67.7 |
| Location4 | 71.4        | 63.3 |
| Location5 | 60.8        | 57.9 |

#### As always, let's graph them...



That's odd — probably don't want to include these, since no crops are being grown on this land at all

#### As always, let's graph them...

Crop yield now compared to five years ago (Completely nonproductive land removed)



But this is still not *quite* what we're interested in!

#### What are we really interested in here?

- We don't want to compare groups, we want to look at changes within individuals!
  - What we actually want to know is whether each location had its crop yield go up, down, etc
  - That is, we're interested in the difference scores...

#### Paired samples t-test

- How the paired samples t-test works
  - Run a **one sample** t-test on the <u>difference</u> scores
  - Null hypothesis: mean difference is 0
  - Alternative hypothesis: mean difference is not 0

|           |      | Now  | Change |
|-----------|------|------|--------|
| Location1 | 63.7 | 47.3 | -16.4  |
|           | 62.9 | 53.6 | -9.3   |
|           | 90.5 | 67.7 | -22.8  |
|           | 71.4 | 63.3 | -8.1   |
| Location5 | 60.8 | 57.9 | -2.9   |

Is this different from zero?

#### Let's look at this data



#### Paired samples t-test

- How the paired samples t-test works
  - Run a **one sample** t-test on the <u>difference</u> scores
  - Null hypothesis: mean difference is 0
  - Alternative hypothesis: mean difference is not 0
- There is nothing conceptually interesting here
  - It is <u>exactly</u> the same test as a one-sample t-test
  - So I won't bother repeating myself telling you how it works, because you already know.
  - Instead, let's jump to "doing it in R"...

#### Our data can be in both wide form and long form

```
> head(dc2)
# A tibble: 6 x 3
 location past present
 <chr>
         <dbl>
                 <dbl>
1 IOL7lwIV 69.6 56.9
2 AGfZ9hKP 63.5
               60.9
3 Vz10ctUb 78.0
               71.5
4 RpLC77GF 82.3
               75.8
          81.6
               73.0
5 Ggynz3I1
6 5Nt0dKug
          55.8
                  43.9
```

```
> head(dc_long2)
# A tibble: 6 x 3
 location time
                  yield
          <chr>
                  <dbl>
  <chr>
                   69.6
1 IOL7lwIV past
                   56.9
2 IOL7lwIV present
3 AGfZ9hKP past
                  63.5
4 AGfZ9hKP present 60.9
5 Vz10ctUb past
               78.0
6 Vz10ctUb present
                   71.5
```

wide form: different columns for time 1 and time 2

**long form:** one variable indicates which time it was

#### Wide form paired-sample t-test in R

You can use the t.test() command

> t.test(x=dc2\$past, y=dc2\$present, paired=TRUE)



indicates a paired-sample t-test rather than independent-sample t-test

#### Wide form paired-sample t-test in R

You can use the t.test() command

```
> t.test(x=dc2$past, y=dc2$present, paired=TRUE)
   Paired t-test
data: dc2$past and dc2$present
t = 17.693, df = 68, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
  8.961695 11.240102
sample estimates: ↑
                                   all standard output, except here it shows
mean of the differences
                                    it is a paired t-test and is looking at the
                 10.\1009
                                   difference in means (subtracts y from x)
```

and the confidence interval is on the size of the difference score

### Long form paired-sample t-test in R

You can use the t.test() command



#### Long form paired-sample t-test in R

You can use the t.test() command

```
> t.test(formula = yield ~ time, data=dc_long2, paired=TRUE)

Paired t-test

data: yield by time
t = 17.693, df = 68, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    8.961695 11.240102
sample estimates:
mean of the differences
    10.1009</pre>
```

Exercises are in w7day2exercises.Rmd