Compañero 1

- Coordina con el compañero 2:
 - Asegúrate de que la estructura de tus matrices sea compatible con sus funciones de multiplicación.

Objetivo:

- Pedir al usuario el número de filas y columnas (debe validar que sean números enteros positivos).
- Solicitar cada elemento de la matriz uno por uno (debe asegurarse de que sean números válidos, no letras ni símbolos).

Suma de matrices:

1. Suma de matrices:

- Crear el código para sumar las matrices A y B.
 - Verifique que ambas matrices sean del mismo tamaño.
 - Retorne una nueva matriz con la suma de cada elemento
- Manejar error como las que las dimensiones coincidan y se podría mostrar un mensaje del error

IMPORTANTE:

- No usar input() o print().
- Asegurarse de que las entras solo acepten números
- Comentar el código para entenderlo mejor explicando la función que cumple esa parte del código.

El nombre de las funciones:

- Para este modulo se usara el nombre de modulo matricesSuma.py.
- **Función** crearMatriz(fila, columnas)
- Función- sumarMatrices(A,B)

Compañero 2

- Tus funciones serán usadas por:
 - o El menú principal para mostrar resultados al usuario
 - o El compañero 4 para resolver sistemas de ecuaciones
 - o El compañero 3 para algunos cálculos de determinantes

Coordina con el compañero 1:

- Asegúrate que la estructura de matrices sea compatible
- Verifica cómo manejan los errores para ser consistentes

Objetivo

Crear todas las herramientas necesarias para que el programa pueda realizar *multiplicaciones con matrices*.

1- Multiplicación por Escalar

Qué debes hacer:

- o Crear una función que tome una matriz y un número para multiplicarlos
- Multiplicar cada elemento de la matriz por ese número
- o Devolver la nueva matriz resultante

Validaciones importantes:

- Asegurarte que el escalar sea un número válido (puede ser entero o decimal, positivo o negativo)
- Verificar que la matriz no esté vacía

2-Multiplicación entre Matrices

- Qué debes hacer:
 - Crear una función que pueda multiplicar dos matrices (A × B)
 - o Seguir las reglas matemáticas de multiplicación de matrices

 Verificar que las dimensiones sean compatibles (el número de columnas de A debe ser igual al número de filas de B)

Manejo de errores:

 Si las matrices no son compatibles para multiplicación, mostrar un mensaje de error

Operación Combinada (αA + βB)

Qué debes hacer:

- Crear una función que combine las multiplicaciones por escalar con la suma de matrices
- o Primero multiplicar cada matriz por su escalar (α por A, β por B)
- Luego sumar los resultados

IMPORTANTE:

- o No interactuar directamente con el usuario:
- o Tus funciones solo reciben datos y devuelven resultados
- o El menú principal se encargará de mostrar mensajes al usuario
- Comentar el código para entenderlo mejor explicando la función que cumple esa parte del código.

• El nombre de las funciones:

modulo matricesMultiplicacion.py

Compañero 3

Tu trabajo es crucial para que el Compañero 4 pueda resolver sistemas de ecuaciones.

Qué debes hacer exactamente:

- Crearás una función que reciba una matriz cuadrada.
- Implementarás dos métodos distintos:

Para matrices 2×2: Usarás la fórmula rápida Para matrices 3×3: Aplicarás la Regla de Sarrus

- Validarás que:
 - La matriz sea cuadrada (2×2, 3×3, etc.)

- Todos los elementos sean números
- La matriz no esté vacía

2. Cálculo de Matriz Inversa

Proceso detallado:

- 1. Primero calcularás el determinante (usando tu propia función)
- 2. Si el determinante es cero → mostrar error "Matriz no invertible"
- 3. Para matrices 2×2 aplicarás:
 - o Intercambiarás a y d
 - Cambiarás el signo de b y c
 - o Dividirás cada elemento por el determinante

Manejo de Errores

Casos que debes anticipar:

- 1. Matriz rectangular (no cuadrada):
 - o Error: "La matriz debe ser cuadrada para calcular su determinante"
- 2. Matriz con texto o valores no numéricos:
 - o Error: "Todos los elementos deben ser valores numéricos"
- 3. Matriz singular (determinante cero):
 - o Error: "Matriz no invertible determinante es cero"

Integración con el Proyecto

Cómo conectará tu código:

- El Compañero 4 usará tu función de inversa para resolver sistemas de ecuaciones
- El menú principal mostrará tus resultados en una interfaz grafica usaremos la biblioteca de tkinter
- Todos usarán tú mismo sistema de reporte de errores

• IMPORTANTE:

- o Usa variables temporales para hacer tus cálculos más legibles
- o Considera usar round() para redondear decimales
- Comentar el código para entenderlo mejor explicando la función que cumple esa parte del código.

Compañero 4

Resolución de Sistemas de Ecuaciones Lineales (Ax = B)

Qué debes crear:

- Una función resolverSistema(A, B) que:
 - 1. Reciba:
 - A: Matriz de coeficientes (cuadrada)
 - B: Vector de términos independientes
 - 2. Usará funciones de los compañeros:
 - La inversa de A (del Compañero 3)
 - Multiplicación de matrices (del Compañero 2)
 - 3. Devolverá:
 - Vector solución x o
 - Error si el sistema no tiene solución única

Validaciones críticas:

Verificar que A sea cuadrada Comprobar que las dimensiones de A y B sean compatibles Manejar el caso cuando A no sea invertible (determinante = 0)

Operaciones con Vectores

Funciones para implementar:

1. Suma de vectores:

- o Validar que tengan la misma longitud
- o Retornar vector resultante

o Ejemplo: [1, 2] + [3, 4] = [4, 6]

2. Producto punto:

- o Calcular la suma de productos de elementos correspondientes
- o Ejemplo: $[1, 2] \cdot [3, 4] = (1 \times 3) + (2 \times 4) = 11$

3. Manejo de errores:

Vectores de diferentes longitudes → Error claro