

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM				
WHOI-79-87	3. RECIPIENT'S CATALOG NUMBER				
A COMPILATION OF MOORED CURRENT METER DATA AND ASSOCIATED OCEANOGRAPHIC OBSERVATIONS, VOLUME XXII (1973 OBSERVATIONS)	Technical Tept.				
Susan/Tarbell Richard/Payne	CONTRACT OR GRANT NUMBER(+)				
Woods Hole Oceanographic Institution Woods Hole, MA 02543	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS				
11. CONTROLLING OFFICE NAME AND ADDRESS NORDA	December 179				
National Space Technology Laboratory Bay St. Louis, MS 39529 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	12 + microfiche 23				
	154. DECLASSIFICATION/DOWNGRADING SCHEDULE				
7. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, If different fr	om Report)				
18. SUPPLEMENTARY NOTES					
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)				
 Moored Currents Temperature 					
Current and temperature measurements from in 1973 at Site D and the Muir Seamount are presente vertical arrays are presented using low-passed fitime series from individual current meters are ditables, spectral diagrams, progressive vector plo versus time.	struments on moorings set in d. Both horizontal and ltered data. The basic splayed with statistical				
381000					

WHOI-79-87

A COMPILATION OF MOORED CURRENT METER DATA AND ASSOCIATED OCEANOGRAPHIC OBSERVATIONS, VOLUME XXII (1973 OBSERVATIONS)

by

Susan Tarbell and Richard Payne

WOODS HOLE OCEANOGRAPHIC INSTITUTION Woods Hole, Massachusetts 02543

December 1979

TECHNICAL REPORT

Prepared for the Office of Naval Research under Contract NO0014-76-C-0197, NR 083-400.

Reproduction in whole or in part is permitted for any purpose of the United States Government. This report should be cited as Woods Hole Oceanographic Institution Technical Report WHOI-79-87.

Approved for public release; distribution unlimited.

Approved for Distribution:

Valentine Worthington, Chairman Department of Physical Oceanography

ABSTRACT

Current and temperature measurements from instruments on moorings set in 1973 at Site D and the Muir Seamount are presented. Both horizontal and vertical arrays are presented using low-passed filtered data. The basic time series from individual current meters are displayed with statistical tables, spectral diagrams, progressive vector plots, and plots of variables versus time.

The Microfiche pages in this document may be obtained from: Woods Hole Oceanographic Institution, ATTN: Document Library, Woods Pole, MA 02543

Accession For	
NTIS Grandi DDC TAB	
Unannounced Justification	
Ву	
Distribution	
- Evoi	· e
Dist	
A	

INDEX

Printed Pages	Page
ABSTRACT	i
INDEX	ii
ACKNOWLEDGMENTS	v
PREFACE	v i
INTRODUCTION	vii
MOORINGS SET IN 1973	×
MOORING DEPLOYMENTS	xiii
INSTRUMENTATION	xiii
DATA PROCESSING	xiii
DATA PRESENTATION	xiv
REFERENCES	xvi
Minustiche Pages	

Microfiche Pages	Piche/ROW/Column
Mooring Diagrams	1/ B /1-14
Temperature Salinity Traces	1/ c /1-14
Site D Composites	1/ D /1-4 to 1/G/1-3
Muir Seamount Composites	1/ D /11=14 to 1/E/11=14

Time Series

4901	2/ A /1
4902	2/ B /1
4911	2/ C /1
4912	2/ D /1
4913	2/ E /1
4914	2/ F /1
4922	2/ G /1
5061	1/ G /8
5062	2/ A /8
5063	2/ B /8
5072	2/ A /7
5073	2/ C /8
5074	2/ D /8
5081	3/ A /1
5082	3/ B /1

INDEX (cont.)

Time Series	Fiche/Row/Column
5084	3/ C /1
5085	3/ C /6
5086	3/ D /1
5087	3/ E /1
5088	3/ F /1
508,10	3/ G /1
5091	2/ E /8
5092	2/ F /8
5093	2/ G /8
5181	3/ A /7
5182	3/ B /7
5191	3/ C /7
5192	3/ D /7
5201	3/ E /7
5202	3/ F /7
5203	3/ G /7

					······································)
Mid	rofic	he #	2											
SITE D March to October 1973	Statistics and Spectral plots	Progressive vector plot	Histograms	Variables vs. Time	Variables vs. Time	Variables vs. Time C C C	SITE D October to April 1974	Statistics and Spectral plots	Progressive vector plots	Histograms	Variables vs. time	continued	continued	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	
	I T E D March to October 1973	SITE D March to October 1973 Statistics and Spectral plots	SITE D March to October 1973 Statistics and Spectral plots Progressive vector plot	SITE D March to October Statistics and Spectral plots Progressive vector plot Histograms	SITE D March to October 1973 Statistics and Spectral plots Progressive vector plot Histograms Variables vs. Time	SITE D March to October 1973 Statistics and Spectral plots Progressive vector plot Histograms Variables vs. Time	SITE D March to October 1973 Statistics and Spectral plots Progressive vector plot Histograms Variables vs. Time Variables vs. Time	SITE D March to October 1973 Statistics and Spectral plots Progressive vector plot Histograms Variables vs. Time Variables vs. Time Variables vs. Time SITE D October to April 1974	SITE D March to October 1973 Statistics and Spectral plots Progressive vector plot Histograms Variables vs. Time Variables vs. Time Variables vs. Time SITE D October to April 1974 Statistics and Spectral plots	SITE D March to October 1973 Statistics and Spectral plots Progressive vector plot Histograms Variables vs. Time Variables vs. Time Variables vs. Time SITE D October to April 1974 Statistics and Spectral plots Progressive vector plots	Statistics and Spectral plots Progressive vector plot Histograms Variables vs. Time Variables vs. Time SITE D October to April 1974 Statistics and Spectral plots Progressive vector plots Histograms	SITE D March to October 1973 Statistics and Spectral plots Progressive vector plot Histograms Variables vs. Time Variables vs. Time Variables vs. Time SITE D October to April 1974 Statistics and Spectral plots Progressive vector plots Histograms Wariables vs. time	SITE D March to October 1973 Statistics and Spectral plots Progressive vector plot Histograms Variables vs. Time Variables vs. Time Variables vs. Time SITE D October to April 1974 Statistics and Spectral plots Progressive vector plots Histograms Variables vs. time continued	SITE D March to October 1973 Statistics and Spectral plots Progressive vector plot Histograms Variables vs. Time Variables vs. Time Variables vs. Time SITE D October to April 1974 Statistics and Spectral plots Progressive vector plots Histograms Variables vs. time continued continued

	Mi	crofi	che #	3								• • • • • • • • • • • • • • • • • • • •	
А В С	ir to November 1973	ral plots	plots			5085	UNT	ral plots	plot				
D 	October	d spectral	vector pl		time	75	A M O	spectral	vector p		Time		d Vivivi
E	Q	cal and		S	s vs.	continued	S E	cs and		S	s vs.	continued	continued
F	3 t	Statistical	Progressive	Histograms	Variables	8	UIR	Statistics	Progressive	Histograms	Variables	COD	con
G	S I	Sta	Pro	His	Vau		×	St	Ĕ	His	Vai		

Acknowledgments

Credit for attacking and solving the problems which inevitably crop up in a new instrument, in this case the VACM, should go to J. Dean and the Buoy Group Instrument Shop personnel. David Simoneau and Mooring Shop personnel did their usual excellent job of fabricating, deploying, and retrieving the moorings with the usual excellent support of the WHOI ships' crews.

PREFACE

This volume is the twenty-second in a series of WHOI Technical Reports presenting moored current meter data collected by the WHOI Buoy Group.

Volume $\chi\chi_{\rm II}$ presents data from moorings set during 1973 and completes the data presentation for that year.

Volume Number	Ref. #	Authors	Year, Experiments Notes
I	65-44	Webster, F. and N. P. Fofonoff	
II	66-60	Webster, F. and N. P. Fofonoff	
III	67 -6 6	Webster, F. and N. P. Fofonoff	
IV	70-40	Pollard, R. T.	1965 Measurements
v	71-50	Tarbell, S. and F. Webster	1966 Measurements
VI	74-4	Tarbell, S.	1967 Measurements
VII	74-52	Chausse, D. and S. Tarbell	1968 Measurements
VIII	75-7	Pollard, R. T. and S. Tarbell	1970 Array Data
IX	75-68	Tarbell, S., M.G. Briscoe and D. Chausse	1973 IWEX Array
x	76-40	Tarbell, S.	1969A Measurements
ХI	76-41	Tarbell, S.	1969B Measurements
XII	76-101	Chausse, D. and S. Tarbell	1973 MODE Array
XIII	77-18	Tarbell, S. and A. W. Whitlatch	1970 Measurements
xıv	77-41	Tarbell, S., R. Payne and R. Walden	1976 St. Croix Mooring
xv	77-56	Tarbell, S. and A. W. Whitlatch	1971 Measurements
XVI	78-5	Tarbell, S. and A. Spencer	1971-1975 MODE Site
XVII	78-49	Tarbell, S., A. Spencer and R. Payne	POLYMODE Array II
XVIII	78-93	Tarbell, S., M.G. Briscoe and R.A. Weller	1978 JASIN
XIX	79-34	Spencer, A., C. Mills and R. Payne	1974-1975 POLYMODE Array
xx	79-56	Spencer, A.	1974-1975 Rise Array
XXI	79-85	Mills, C. and P. Rhines	1978 W.B.U.C.

INTRODUCTION

The data presented in this report are the results of three separate experiments which took place in 1973:

- A. A continuation of the long time series at Site D (see Preface; Volumes I-VIII, X, XI, XIII, and XV contain earlier data from this site).
- B. A current meter comparison at Site D.
- C. Three moorings set in the vicinity of the Muir Seamount. Figure 1 shows the locations of Site D and the Muir Seamount and the relative mooring locations.

With this report we continue our presentations of the Site D mooring series which began in 1965 and continued for 10 years with only a few gaps.

On mooring 508, also at Site D, were placed nine VACMs and one Model 850 spaced at four meter intervals from 2649 m to 2685 m depth, the 850 at the bottom. The purpose of this mooring was to test a number of modifications to the original instrument, mainly in bearings and electronics.

The Muir Seamount experiment was designed by Professor Carl Wunsch of M.I.T. to examine the oceanic variability near the Seamount to test the hypothesis that diurnal period waves would be found trapped, forced by the barotropic diurnal tide. Evidence for the trapped waves was indeed found. Some of the observations and a simple analytical model which provides an approach to the dynamics of such waves may be found in Hendry (1975). See also Wunsch (1975, 1976).

Figure 1. The upper chart shows where moorings were set in the North Western Atlantic in 1973. The Site D chart (lower left) uses the following key:

- * Mooring set March to October 1963
- O Mooring set October to April 1974
- Mooring set October, December 1963

The Muir Seamount chart (lower right) indicates mooring position relative to the bottom topography.

Figure 2. The time series presented in this report

Moorings Set in 1973

There were 43 moorings set in 1973. Twenty-one of the moorings were set as part of the Mid-Ocean Dynamics Experiment (MODE) and are described in WHOI Reference 76-101. Seven moorings were set for the Internal Wave Experiment (IWEX) and are included in WHOI Reference 75-68. Two moorings were set in the Windward Passage and are described in WHOI Reference 77-29. Our first 1 year mooring is described in WHOI Reference 79-56. Two moorings aborted during launch leaving ten moorings to be included in this report. Seven of the ten moorings are at Site D (39°20.0°N, 70°00.0°W) and three were set near the Muir Seamount (33°N, 62°W). Sur = Surface Mooring; Int = Intermediate Mooring; Btm = Bottom Mooring.

		•
Tab	10	ı

Moor.	Latitude Longitude	Set Date Retrieval	Num. CM,TP	Dur- ation	Depth m	Comments
480 Sur	28°03.8'N 69°39.0'W	Mar. 10 1973	-, -	Lost	5412	Surface mooring Believed stolen
481 Int	27°59.8'N 69°39.0'W	Mar. 10 1973 Jul. 4 1973	8,11	116	5462	MODE-1 WHOI Ref. 76-101
482	28°09.3'N 68°39.3'W	Mar. 12 1973 Jun. 26 1973	6, 2	106	5239	MODE-1 WHOI Ref. 76~101
483 Int	29°02.3'N 68°13.8'W	Mar. 12 1973 Mar. 12 1973	5, 3	113	5192	MODE-1 WHOI Ref. 76-101
484 Int	27°25.1'N 67°59.5'W	Mar. 13 1973 Jul. 3 1973	5, 2	112	5151	MODE-1 WHOI Ref. 76-101
485 Int	26°23.8'N 69°21.0'W	Mar. 13 1973 Jul. 2 1973	5, 8	111	5420	MODE-1 WHOI Ref. 76-101
486 Int	26°57.5'N 71°02.6'W	Mar. 14 1973 Jul. 2 1973	5, 2	110	5474	MODE-1 WHOI Ref. 76-101
487		Mar. 15 1973 Mar. 15 1973		0		Aborted during launch Line parted below release
488 Int	28°33.1'N 71°22.9'W	Mar. 15 1973 Jul. 1 1973	5, 2	108	5325	MODE-1 WHOI Ref. 76-101
489 Int	29°35.0'N 69°59.1'W	Mar. 16 1973 Jun. 30 1973	5, 2	106	5440	MODE-1 WHOI Ref. 76-101
490 Int	39°23.7'N 69°59.3'W	Mar. 26 1973 Oct. 15 1973	2, -	203	2559	Site D
491 Int	39°07.2'N 69°58.0'W	Mar. 26 1973 Oct. 16 1973		204	2654	Site D

Table 1 (cont.)

Moor.	Latitude Longitude	Set Date Retrieval	Num.	Dur- ation	Depth m	Comments
492 Int	39°10.0'N 70°30.4'W	Mar. 29 1973 Oct. 16 1973	2, -	201	2794	Site D
493 Int	28°42.0'N 70°15.8'W	Mar. 31 1973 Jun. 30 1973	5, 3	91	5446	MODE-1 ™HOI Ref. 76-101
494 Int	27°49.8'N 70°39.8'W	Apr. 1 1973 Jun. 29 1973	5, 3	89	5446	MODE-1 WHOI Ref. 76-101
495 Int	27°08.8'N 70°00.0'W	Apr. 1 1973 Jun. 29 1973	5, 3	89	5447	MODE-1 WHOI Ref. 76-101
496		Apr. 2 1973 Apr. 2 1973	-, -	0		Aborted during launch Line parted below release
497 Int	27° 18.0'N 69°01.0'W	Apr. 2 1973 Jun. 28 1973	6, 8	87	5296	MODE-1 WHOI Ref. 76-101
498 Int	27°33.1'N 69°34.1'W	Apr. 3 1973 Jun. 28 1973	4, 3	86	5463	MODE-1 WHOI Ref. 76-101
499 Int	28°08.9'N 70°08.1'W	Apr. 3 1973 Jun. 28 1973	4, 3	86	5461	MODE-1 WHOI Ref. 76-101
500 Int	28°17.0'N 69°16.3'W	Apr. 4 1973 Jun. 27 1973	4, 3	84	5456	MODE-1 WHOI Ref. 76-101
501 Int	28°50.1'N 69°18.0'W	Apr. 4 1973 Jun. 30 1973	6, 2	87	5379	MODE-1 WHOI Ref. 76-101
502 Int	28°08.9'N 68°41.4'W	Apr. 26 1973 Dec. 13 1973	3, -	231	5255	MODE WHOI Ref. 78-5
503 Int	28°00.2'N 69°44.4'W	Apr. 27 1973 Dec. 14 1973	3, -	231	5461	MODE WHOI Ref. 78-5
504 Int	20°18.0'N 73°38.0'W	Nov. 10 1973 Mar. 2 1974	2, 3	112	1539	WHOI Ref. 77-29
505 Int	20°17.0'N 73°38.0'W	Nov. 10 1973 Mar. 2 1973	2, 3	112	1543	WHOI Ref. 77-29
506 Int	39°23.2'N 69°59.6'W	Oct. 15 1973 Apr. 9 1974	3, -	176	2559	Site D
507 Int	39°09.8'N 70°00.8'W	Oct. 16 1973 Apr. 10 1974	5, -	176	2662	Site D
508 Int	39°09.8'N 70°10.9'W	Oct. 16 1973 Dec. 7 1973	10, -	52	2714	Site D VACM comparison
509 Int	39°08.5'N 70°32.4'W	Oct. 17 1973 Apr. 11 1974	3, -	176	2746	Site D
510 Sur	27°44.1'N 69°47.7'W	Oct. 27 1973 Dec. 16 1973	-, -	51	5459	IWEX WHOI Ref. 75-68

Table 1 (cont.)

Moor.	Latitude Longitude	Set Date Retrieval	Num. CM, TP	Dur- ation	Depth m		Con	ime nt:	5
511 Sur	27°48.7'N 69°51.0'W	Oct. 26 1973	-, -	Lost	5461	IWEX	WHOI	Pef.	75-68
512 Btm	27°43.9'N 69°49.0'W	Oct. 27 1973 Nov. 4 1973	-, -	8	5455	IWEX	WHOI	Ref.	75-68
513 Btm	27°45.4'N 69°52.0'W	Oct. 27 1973 Nov. 4 1973	-, -	8	5455	IWEX	WHOI	Ref.	75-68
514 Btm	27°42.4'N 69°52.0'W	Oct. 27 1973 Nov. 4 1973	-, -	8	5455	IWEX	WHOI	Ref.	75-68
515 Tri- moor	27 °43.9'N 69°50.9'W	Nov. 1 1973 Dec. 16 1973	-, -	42	5455	IWEX	MHOI	Ref.	75-68
516 Sur	27°44.0'N 69°48.0'W	Nov. 3 1973 Nov. 5 1973	4, -	1		IWEX	WHOI	Ref.	75-68
517 Int	39°11.8'N 70°00.0'W	Dec. 7 1973 Dec. 5 1974	2, -	363	2647	Site	D WHOI	Ref.	79-56
518 Int	33°35.0'N 62°29.3'W	Dec. 10 1973 Apr. 23 1974	2, -	134	3138	Muir	Seamount		
519 Int	33°29.1'N 62°28.6'W	Dec. 10 1973 Apr. 23 1974	2, -	134	3088	Muir	Seamount		
520 Int	33°30.0'N 62°36.7'W	Dec. 11 1973 Apr. 23 1974	3, -	133	4366	Muir	Seamount		
521 Int	28°09.5'N 68°41.5'W	Dec. 13 1973 Apr. 20 1974	3, 9	128	5265	MODE	WHOI "	Ref.	78-5
522 Int	28°00.5'N 69°44.8'W	Dec. 14 1973 Apr. 21 1974	3, 9	128	5462	MODE	MHOI	Ref.	78~5

FAKING BOX MOORING DEPLOYMENTS

Moorings 490 and 491 were set by a faking box technique. Ordinarily the Buoy Group's deployment technique is to gradually pay out mooring components while the ship steams slowly ahead. We start with the top flotation; the last thing over is the anchor. Deploying mooring 492, similar to 490 and 491, took about one hour by this technique. In the faking box technique, the entire mooring, line, flotation, instruments and all, was placed very carefully in specially designed wooden boxes at the rail. The anchor was kicked over which then pulled the rest of the mooring overboard, item by item, while the crew watched with mounting suspense. Deploying an entire mooring took about 10 minutes from anchor over to last item over. Although quick and successful in these two deployments concern arose over the possible damage which could be done to mooring components if something snagged and over the nervous condition of the spectators. The technique was retired after these two deployments.

INSTRUMENTATION

The instruments whose data are described are Vector Averaging Current Meters (VACM) and Model 850 current meters. They both use the same sensors, i.e., Savonius rotor, vane and internal compass to give speed and direction, but differ in their treatment of the data before recording. The VACM vector averages continually while the 850 burst samples once per recording interval.

The VACM records on Phillilps-type magnetic tape cassettes and the 850 on endless loop cartridges

The VACMs all record temperature using a thermistor embedded in the end cap. The conversion of the 850s to measure temperature had just begun in 1973, however, and only a few of the instruments had a similar arrangement.

DATA PROCESSING

The Phillips-type cassettes and endless-loop cartirdges were transcribed to 9-track computer compatible tapes, converted to scientific units, edited to remove launch and retrieval transients and bad data points, and linearly interpolated across missing or erroneous data cycles.

whoI data are identified by a mooring number, a sequential instrument position number (e.g., 5074 is the fourth instrument down on mooring 507), a letter to indicate the data version (5074B is the second editing of 5074), and a number to indicate the recording interval for that data version (e.g., 5074B3600 is the one hour (3600 seconds) averaged version).

DATA PRESENTATION

The presentations in this report are time series, histograms, mean statistics, progressive vector plots and spectra. Additional details are below. The overall scheme is by experiment, chronologically by mooring, and by increasing depth. This report is presented on three sheets of microfiche with selected pages of the text and composite plots printed for easy reference. The first fiche contains text, composite plots of one day averaged data, mooring diagrams and temperature, salinity profiles. The second and third sheet display the basic data using the following programs (see diagrams of fiche layout, page iii, iv):

Time Series

Speed, direction, east and north components, and temperature, where recorded, are presented. Speed, direction and east, and north components are presented as analogue plots; low passed (Gaussian filter with 24 hour half width) versions of east and north subsampled once per day are presented as "stick" plots. Histograms

Each variable is plotted as frequency of occurrence versus variable magnitude. The mean value is marked on the horizontal axis; on the histogram of the north component of the current, read $\frac{1}{4}$, $\frac{1}{5}$ as $\frac{1}{10}$.

Mean Statistics

The statistics for each variable, for the time period shown, are given. Also, the east and north covariance, correlation, and vector statistics are given.

The mean values for each variable are the same as those plotted in the histograms.

For reference, note that a Gaussian random variable would have a kurtosis of 3 and a skewness of zero.

Progressive Vector Plots

Based on a one-hour averaged time series, the current vectors are placed tail-to-head so as to show the path that a perfect particle in a perfectly homogeneous fluid would have traveled. The plots are excellent for giving an idea of flow regimes and low frequency behavior. Each tenth midnight is annotated with the date.

Spectra

The horizontal kinetic energy (HKE) and (where available) the temperature are displayed as spectra.

The horizontal kinetic energy spectrum is half the sum of the spectra of the east and north components; it has the advantage of not being tied to a particular coordinate system.

The HKE and temperature spectra have units of (cm²/sec²) and (m deg C/m)², respectively. The spectra are all one-sided, i.e. the area under the spectrum is equal to the variance of the original record. The plots are all log-log hence are not "variance preserving", i.e. the contributions of various frequency bands to the total variance are not in proportion to the displayed areas.

The spectra are all calculated from the basic series in a single piece followed by frequency band averaging across 3 frequencies.

TIMSAN, the WHOI program (Hunt, 1978) used to produce the spectra, additionally averages the spectra in increasingly large groups at the higher frequencies to prevent having to plot thousands of points. This gives few degrees of freedom (d.o.f.) at the lowest frequencies, many at the highest frequencies.

Table 1 lists all moorings set in 1973 with the WHOI reference numbers for those which have already been described in data reports. A description of techniques and materials used in the 1973 moorings, as well as in moorings of other years is given in Heinmiller (1976). Table 2 gives more detailed information on the current meter records presented in this report. Table 3 contains an evaluation of data quality for all current meter records included in this report.

REFERENCES

- Heinmiller, R. H., 1976, The Woods Hole Buoy Project moorings, 1960 through 1974. Woods Hole Oceanographic Institution Technical Report 76-53.
- Hendry, R. M., 1975, The generation, energetics and propagation of internal tides in the western North Atlantic Ocean. Ph.D. Thesis, M.I.T and WHOI Joint Program.
- Hunt, M., 1978, A program for spectral analysis of time series. Woods Hole Oceanographic Institution Technical Memorandum 2-77.
- Metcalf, W. G., M. C. Stalcup and M. Zemanovic, 1977, Current meter and temperature records from the Windward Passage. Woods Hole Oceanographic Institution Technical Report 77-29
- Payne, R. E., A. L. Bradshaw, J. P. Dean and K. E. Schleicher, 1976, Accuracy of temperature measurement with the VACM. Woods Hole Oceanographic Institution Technical Report 76-94.
- Wunsch, C., 1975, Internal tides in the ocean. Rev. Geophys. & Space Phys., 13, 167-182.
- Wunsch, C., 1976, Geographical variability of the internal wave field: a search for sources and sinks. J. Phys. Oceanogr., 6, 471-485.
- Wunsch, C. and S. Webb, 1979, Climatology of the deep ocean inertial wave field. J. Phys. Oceanogr., (in press).

Table 2

Data	Depth (m)	Variables Comp. Temp.	Instr. Type	Strobes Sampling Rate (sec)	<i>D</i> uration Days
4901	999	c	850	23/3600	201
4902	2011	С	850	23/3600	201
4911	205	С	850	23/3600	119
4912	1019	С	850	23/3600	203
4913	2030	С	850	23/3600	203
4914	2550	С	850	23/3600	203
4922	2019	С	850	23/3600	201
5061	185	CT	850	23/3600	175
5062	988	С	850	23/3600	175
5063	1995	С	850	23/3600	175
5072	491	T	850	23/3600	169
5073	999	С	850	23/3600	176
5074	2006	С	850	23/3600	176
5081	2649	CT	VACM	900	51
5082	2653	CT	VACM	900	51
5084	2661	CT	VACM	900	51
5085	2665	T	VACM	900	51
5086	2669	CT	VACM	900	51
5087	2673	CT	VACM	900	51
5088	2677	CT	VACM	900	51
508,10	2685	CT	850	15/900	51
5091	179	С	850	23/3600	176
5092	980	c	850	23/3600	176
5093	1987	C	850	23/3600	176
5181	2140	CT	VACM	900	133
5182	3039	С	VACM	900	133
5191	2089	CT	VACM	3600	132
5192	2988	CT	VACM	3600	132
5201	2181	CT	VACM	900	42
5202	3023	CT	VACM	900	132
5203	3027	CT	VACM	900	132

Table 3

Comments on Moorings and Instruments

Mooring 490 - Set by Faking Box

4901 - Good

4902 - Good

Mooring 491 - Set by Faking Box

4911 - All variables bad July 24-29; no data recoverable after Aug. 3rd.

4912 - Good

4913 - Compass and vane have some bit problems in May and June

4914 - Good

Mooring 492 - Set by normal float first method. 59 minutes between float over and anchor over (1764 meters)

4921 - No speeds; no data presented

4922 - Good

Mooring 506

5061 - Good

5062 - Minor bit problem in compass last two months

5063 - Good

Mooring 507

5071 - No recoverable data; mechanical problems

5072 - Every other temperature word was bad. Bad values replaced by previous good value. Use data with caution as post-cruise instrument check showed non-standard components had been used.

5073 - Good

5074 - Least significant bit in vane always zero. Greatest possible error \pm 3°.

Mooring 508 - All current meters separated by 2 meters of 3/8" chain and to glass spheres in hard hats. Bottom instrument 25 meters off the sea floor. Top instrument 65 meters off the sea floor, 2613 meters below the surface.

5081 - Good

5082 - Second least significant vane B.T. always zero. Greatest possible error \pm 6°.

5083 - No data - mechanical problems

5084 - Good

5085 - Temperature data presented - modification to rotor circuit caused bad speed values.

Table 3 (continued)

Comments on Moorings and Instruments

5086 - Good

5087 - Good

5088 - Vane is sticky Nov. 1st to end of record

5089 - No recoverable rotor or temperature values

508,10 - Good; instrument had been miswired switching polarity.

Modified computer program recovered data.

Mooring 509

5091 - Unusually strong event March 14th

5092 - Good

5093 - Good

Mooring 517

5171 - Corrosion module

5172 - Good

5173 - No temperature data

Mooring 518

5181 - Good

5182 - No temperature data - vane sticky after March 3rd. Time error greater than 1 recording cycle (15 minutes).

Mooring 519

5191 - Good

5192 - Good

Mooring 520

5201 - Vane progressively sticky from Jan. 23rd to Feb. 7th. Stuck Feb. 7th to end April 23.

5202 - Good

5203 - Temperature resolution is good. However the absolute values are uncertain as it is not known which thermistor was used in this instrument.

APR MAY JUN JUL RUG SEP

APR 73	нач	NUL	JUL	AUG	SEP
0 IMM/SEC) 250 				
- Aller Alles	And K. K.	The state of the s			
490181DGAU24					
	11 114	777.71			
4912B1DGAU24	., .)			, illu	

APR MAY NUL JUL AUG SEP 4902B1DGAU24 2011 H 4913C1DGAU24 2030 H 4922B1DGAU24 2018 H HTROM IMM/SEC) 250 MAY AUG AFJ. JUN JUL SEP

APR 73	ИАҮ	AUL	, _ JNF	AUG	SEP

491481DGAU24

OCT NOV DEC JAN FEB MAR

508181DGAU24

OCT NOV DEC JAN FEB HAR

OEC 5181010G24 2148 H 5191C1DG24 5201B1DG24 NORTH (MM/SEC) 250 OFF

MANDATORY DISTRIBUTION LIST

FOR UNCLASSIFIED TECHNICAL REPORTS, REPRINTS, AND FINAL REPORTS PUBLISHED BY OCEANOGRAPHIC CONTRACTORS OF THE OCEAN SCIENCE AND TECHNOLOGY DIVISION OF THE OFFICE OF NAVAL RESEARCH

(REVISED NOVEMBER 1978)

Deputy Under Secretary of Defense (Research and Advanced Technology) Military Assistant for Environmental Science Room 3D129 Washington, D.C. 20301

Office of Naval Research 800 North Quincy Street Arlington, VA 22217

- ATTN: Code 483
- ATTN: Code 460
- ATTN: 102B
- CDR J. C. Harlett, (USN) ONR Representative Woods Hole Oceanographic Inst. Woods Hole, MA 02543

Commanding Officer Naval Research Laboratory Washington, D.C. 20375 6 ATTN: Library, Code 2627

Defense Documentation Center 12 Cameron Station Alexandria, VA 22314 ATTN: DCA

> Commander Naval Oceanographic Office NSTL Station Bay St. Louis, MS 39522

- ATTN: Code 8100 ATTN: Code 6000 ATTN: Code 3300
- NODC/NOAA Code D781 Wisconsin Avenue, N.W. Washington, D.C. 20235

vector plots, and plots of variables versus time.	1. Terreil, Sisen 1. Payre, Richard 11. Payre, Richard 111. POCO14.76-(-0197; 110. POCO14.76-(-0197; 111. POCO14.7	A COMPILATION OF MORED CURRENT METER DATA AND ASSOCIATED CORRECTIONS, CONTRACTORS, VIOLENCIAR METER DATA AND ASSOCIATED SASAN "arte") and Pichard Payne. 12 Dages test/remainder matter. Accomber 1979. Prepared for the Office of Maral Research under Contract, MODIA-76-C-0197; MR 083-400. Towners and temperature measurements from instruments and moorings set in 1973 at Site D and the Mutr Sembunt are presented. Both horizontal and vertical arrays are presented using low-passed filtered data. The basic time series from individual current meters are displaced with statistical tables, spectral diagrams, progressive vector plots, and plots of variables versus time.	2. Currents 3. Temperature 1. Tarbell, Susan 11. Payne, Richard 111. MODOJa-76-C-0197; 110. MG 083-400 This card is UNCLASSIFIED
MEDIATION CF WORED CURRENT WETER DATA AND ASSOCIATED OCCEANDSAMPLE OBSERVATIONS, VOLUME AND IT (1930 SOSTANTIONS) by SASAM TANNER DECEMBER 1979. Prepared for the Office of Naval Research of Content and Navalation of Properties of Navalations of N	1. Moored 2. Currents 3. Temperature 1. Tarbell, Susan 11. Payne, Richard 111. Payne and 15 "VCLASSIFIED	Hoods thie Oceanographic Institution A COMPLATION OF MODRED CURRENT METR DATA AND ASSOCIATED OCEMOGRAPHIC OSSERVATIONS, VOICE XXII 1973 OSSERVATIONS) by SASAN Farbil and Richard Payne. 12 pages test/fremsinger effort. Fiched. December 1979, Prepared for the Office of Naval Research Michael December 1979, Prepared for the Office of Naval Research Fiched. December 1973 as set in 1973 at Site D and the Muri Sembout are presented. Most horizontal and temperature measurements from individual current meters Also from the Sasistical Lables, spectral diagrams, progressive are displayed with statistical Lables, spectral diagrams, progressive	1. Mored 2. Currents 3. Temperature 1. Tarbell, Susan 11. Payne, Richard 111. MO001e-76-C-0197; 118. 00001e-16-C-0197; 119. Card is UNCLASSIFIED