LGIC 010/PHIL 005

Scott Weinstein

University of Pennsylvania weinstein@cis.upenn.edu

Lecture 17

Binary Relations: Some Properties

Definition

L^A is reflexive if and only if

$$A \models (\forall x) Lxx$$
.

Definition

L^A is *irreflexive* if and only if

$$A \models (\forall x) \neg Lxx$$
.

Definition

LA is symmetric if and only if

$$A \models (\forall x)(\forall y)(Lxy \supset Lyx).$$

Binary Relations: Some Properties

Definition

LA is asymmetric if and only if

$$A \models (\forall x)(\forall y)(Lxy \supset \neg Lyx).$$

Definition

 L^A is transitive if and only if

$$A \models (\forall x)(\forall y)(\forall z)(Lxy \supset (Lyz \supset Lxz)).$$

Definition

A is a simple graph if and only if L^A is irreflexive and symmetric.

Binary Relations: Further Properties

Definition

 L^A is connected if and only if

$$A \models (\forall x)(\forall y)(x \neq y \supset (Lxy \lor Lyx)).$$

Definition

 L^A is a tournament if and only if L^A is asymmetric and L^A is connected.

Definition

 \mathcal{L}^A is a *strict linear order* if and only if \mathcal{L}^A is transitive and \mathcal{L}^A is a tournament.

Binary Relations: Further Properties

Counting Tournaments and Linear Orders

- Let T be a schema such that $A \models T$ if and only if T is a tournament.
- Observe that $|\mathbf{mod}(T, n)| = 2^{\binom{n}{2}}$.
- Let S be a schema such that $A \models S$ if and only if A is a strict linear order.
- Observe that $|\mathbf{mod}(S, n)| = n!$.

Binary Relations: Further Properties

Counting Isomorphism Types

- Let R be a schema. We define $\mathbf{iso}(R, n) = \{\mathbb{I}(A) \mid A \models R \text{ and } U^A = [n]\}.$
- Let's compute $|\mathbf{iso}(T,3)|$ and $|\mathbf{iso}(T,4)|$.

Functional Relations

Definitions

- Let F be an n+1-adic predicate.
- F^A is total if and only if $A \models (\forall x_1) \dots (\forall x_n)(\exists y) Fx_1 \dots x_n y$.
- F^A is single-valued if and only if $A \models (\forall x_1) \dots (\forall x_n)(\forall y)(\forall z)((Fx_1 \dots x_n y \land Fx_1 \dots x_n z) \supset y = z).$
- F^A is a an *n*-ary functional relation if and only if F^A is total and single-valued.
- Observe that F^A is an *n*-ary functional if and only if F^A is the graph of an *n*-ary total function mapping U^A to U^A .
- In order to perspicuously express properties of functional relations, we introduce a new syntactic category of symbols into our logical language, namely, function symbols, f, g, h, \ldots with specified number of argument places.

Functional Relations and Functions

Example: Associativity

- Let F be a ternary predicate and suppose we wish to formulate a schema S such that $A \models S$ if and only if F^A is the graph of a binary function f^A and f^A is associative.
- In order to do so we can conjoin the schema that expresses that F^A is a binary functional relation with the following schema.

$$(\forall x)(\forall y)(\forall z)(\forall u)(\forall v)(\forall w)((\textit{Fxyz} \land \textit{Fzuv} \land \textit{Fyuw}) \supset \textit{Fxwv})$$

- By use of the function symbol f, we may express this condition by the schema: f(f(x,y),z) = f(x,f(y,z)).
- By use of another function symbol such as \circ , with infix notation, we may express associativity yet more perspicuously by the schema: $(x \circ y) \circ z = x \circ (y \circ z)$.

Structures for Functional Vocabularies

Example: Groups

- Let A be a structure interpreting a binary function symbol \circ , a unary function symbol $^{-1}$ and a 0-ary function symbol (also known as a constant symbol) e.
- A is a *group* if and only if A satisfies the conjunction of the universal closures of the following schemata.
- $\bullet (x \circ y) \circ z = x \circ (y \circ z)$
- $x \circ e = x$
- $x \circ x^{-1} = e$
- Recall that \mathbb{S}_n , the collection of permutations of [n], equipped with the operations of function composition and function inverse is a group.

Structures for Functional Vocabularies

Counting: An Example

- Let S be the schema f(f(x)) = x.
- Let's compute mod(S, 5) and iso(S, 5).

Structures for Functional Vocabularies

Example: Peano-structures

- Let A be a structure interpreting a unary function symbol s and a constant symbol 0. A is a Peano-structure if and only if A satisfies the conjunction of the following schemata.
- $(\forall x)s(x) \neq 0$
- $(\forall x)(\forall y)(s(x) = s(y) \supset x = y$
- $(\forall x)(x \neq 0 \supset (\exists y)s(y) = x)$
- What do Peano-structures look like?