Projekt 2

Matematyka dyskretna

Zastosowania przeszukiwania grafów

Ivan Kaliankovich

Spis treści	
Algorytm przeszukiwania grafu w głąb	2
Algorytm przeszukiwania grafu we wszerz	2
Zad 1	3
Zad 2	4
Cel zadania	4
Wejście / wyjście	4
Narzędzie do realizacji zadania	4
Realizacja zadania	5
Podsumowanie	6

Algorytm przeszukiwania grafu w głąb

Funkcja DFS przeszukiwania w głąb i wypisywania wszystkich odwiedzonych wierzchołków:

```
function odwiedzone = dfs(G, v)
2
           odwiedzone = [];
3
           stos = [v];
4 🖹
           while ~isempty(stos)
5
               u = stos(1);
               stos = stos(2:end);
6
                if u >= 1 && ~any(ismember(odwiedzone, u))
7
                    odwiedzone = [odwiedzone u];
8
9
                    fprintf('%d\n', u);
                    for v = find(G(u, :))
10 🗀
                        if ~ismember(v, odwiedzone)
11
12
                            stos = [stos v];
                            fprintf('%d -> %d\n', u, v);
13
14
15
                    end
16
                end
17
           end
18
       end
```

Funkcja polega na użyciu stosu

Algorytm przeszukiwania grafu we wszerz

Funkcja BFS przeszukiwania we wszerz i wypisywania wszystkich odwiedzonych wierzchołków:

```
zadl.m × bts.m × dts.m × +
1 🖃
       function odwiedzone = bfs(G, v)
 2
           odwiedzone = [];
 3
           kolejka = [v];
 4 🗀
           while ~isempty(kolejka)
 5
               u = kolejka(1);
               kolejka = kolejka(2:end); % Usunięcie pierwszego elementu kolejki
 6
 7
               if ~ismember(u, odwiedzone)
 8
                   odwiedzone = [odwiedzone u];
 9
                   fprintf('%d\n', u);
10 [-]
                   for v = find(G(u, :))
                        if ~ismember(v, odwiedzone)
11
                            fprintf('%d -> %d\n', u, v);
12
                            kolejka = [kolejka v];
13
14
                        end
15
                   end
16
               end
17
           end
18
       end
19
```

Funkcja polega w tym przypadku na użycie kolejki

Zad 1

Dla powyższego grafu została stworzona macierz sąsiedztwa

Kolejne wierzchołki od a do i odpowiadają wierszom, natomiast kolumny oznaczają czy dany wierzchołek ma krawędź z innym wierzchołkiem.

Po wywołaniu funkcji DFS przez graf G i punkt początkowy a dostaję taką odpowiedź :

```
WYPISYWANIE DFS

1

1 -> 2

1 -> 4

1 -> 8

2

2 -> 8

4

4 -> 8

8 -> 3

8 -> 5

8 -> 6

3

5 -> 6

6 -> 7

6 -> 9

7 -> 9
```

Natomiast funkcja BFS:

```
WYPISYWANIE BFS

1
1 -> 2
1 -> 4
1 -> 8
2
2 -> 8
4
4 -> 8
8 -> 3
8 -> 5
8 -> 6
3
5
5 -> 6
6
6 -> 7
6 -> 9
7
7 -> 9
9
```

Zad 2

Cel zadania

Celem tego zadania było znalezienia najtańszych połączeń samolotowych dla turystów, którzy nie chcą zatrzymywać się w jednym miejscu, lecz chcą mieć długie podróże zawierające dużo przelotów i przystanków z tym warunkiem, że żaden z przystanków nie może się powtarzać. Przystanki / punkty do odwiedzenia są w tym przypadku wierzchołkami grafu oraz loty są krawędziami pomiędzy tymi punktami.

Wejście / wyjście

Na wejście podaje się macierz sąsiedztwa, czyli punkty turystyczne z wagami oraz największy koszt, który turysta jest w stanie ponieść. Na wyjście uzyskuję się połączenia drzewa, które zostało uzyskane z grafu podanego na wejście z tym warunkiem, że nigdy nie zostanie przekroczona kwota maksymalna.

Narzędzie do realizacji zadania

Do rozwiązania zadania został użyty algorytm Kruskala. Jest dobrym do tego narzędziem, ponieważ algorytm Kruskala sortuję krawędzi grafu według ich wag. Sortowanie pozwala

algorytmowi wybrać krawędzie o najmniejszej wadze w pierwszej kolejności, co jest celem turysty.

Realizacja zadania

Do realizacji zadania stworzona została funkcja Kruskal

```
function [minimalneDrzewo, koszt] = kruskal(macierzSasiedztwa, maksymalnyKoszt)
2
           n = size(macierzSasiedztwa, 1); % liczba miast
3
           krawedzie = [];
4
5
           % Tworzenie listy krawędzi w formie [waga, miasto1, miasto2]
6 E
           for i = 1:n
               for j = i+1:n
8
                   if macierzSasiedztwa(i, j) > 0
                       krawedzie = [krawedzie; macierzSasiedztwa(i, j), i, j];
9
LØ
11
               end
12
           end
13
           % Sortowanie krawędzi według wag
L4
15
           krawedzie = sortrows(krawedzie);
16
           % Inicjalizacja zbiorów rozłącznych
L7
           rodzice = 1:n;
18
19
           minimalneDrzewo = {};
20
           koszt = 0;
21
22
23
           % Algorytm Kruskala
24 🖃
           for i = 1:size(krawedzie, 1)
25
               waga = krawedzie(i, 1);
               miasto1 = krawedzie(i, 2);
26
               miasto2 = krawedzie(i, 3);
7
28
               if check_cykl(rodzice, miasto1) ~= check_cykl(rodzice, miasto2) % Sprawdzenie, czy cykl
19
30
                   if koszt + waga <= maksymalnyKoszt % Sprawdzenie, czy przekroczbny max koszt
                       koszt = koszt + waga;
31
                       minimalneDrzewo{end+1} = [miasto1, miasto2];
32
33
                       % Połączenie zbiorów rozłącznych
34
                       rodzice(check_cykl(rodzice, miasto1)) = check_cykl(rodzice, miasto2);
35
36
                   else
                       break; % Przerwanie algorytmu, gdy osiągnięto maksymalny koszt
37
38
                   end
39
               end
10
           end
11
```

Funkcja przyjmuje na wejście macierz sąsiedztwa oraz max koszt, na wyjście zwraca koszt wszystkich krawędzi, które znalazł algorytm.

```
function reprezentant = check_cykl(rodzice, miasto)

while rodzice(miasto) ~= miasto

miasto = rodzice(miasto);

end

reprezentant = miasto;

end

47

48

end
```

Algorytm też korzysta z funkcji pomocniczej do sprawdzenia czy wybierając krawędź, czyli zbiór wierzchołków zostanie osiągnięty cykl w grafie. Jeśli mają różnych reprezentantów, oznacza to, że należą do różnych zbiorów rozłącznych, i można je połączyć bez utworzenia cyklu w grafie minimalnego drzewa rozpinającego.

```
miastaWloch = [
           0 570 220 700 0 510 300 40 340; % 0 - Rome
2
           570 0 760 400 0 150 350 0 0; % 1 - Milano
220 760 0 830 0 400 0 670 0; % 2 - Napoli
3
 4
           700 400 830 0 0 630 0 0 520; % 3 - Torino
5
 6
             0 0 0 0 0 0 0 0 0;
                                           % 4 - Palermo (brak połączeń w przykładowej macierzy)
                                         % 5 - Genova
7
          510 150 400 630 0 0 250 0 0;
             300 350 0 0 0 250 0 900 0;
8
                                            % 6 - Bologna
             40 0 670 0 0 0 900 0 620;
                                            % 7 - Catania
9
             340 0 0 520 0 0 0 620 0
                                             % 8 - Venezia
10
         1;
11
12
         [minDrzewo, minKoszt] = kruskal(miastaWloch, 1000);
13
         disp(minDrzewo);
14
         disp(minKoszt);
15
```

Do sprawdzenia wyników utworzyłem macierz o nazwie miasta Włoch posiadającej 9 elementów i podałem na wejście . Uzyskałem następujące wyniki:

```
>> zad2
{[1 8]} {[2 6]} {[1 3]} {[6 7]} {[1 7]}

960
```

Podsumowanie

Algorytm Kruskala doskonale się sprawdza do znalezienia drzewa rozpinającego w grafie o najmniejszej wadzę. W podanym przeze mnie przykładzie znalazł najlepsze połączenia, natomiast decyzję o trasie podejmuję turysta bazując na przeznaczonym przez niego budżecie oraz o wynik algorytmu. Widząc krawędzie wyniku algorytmu Kruskala jest w stanie stworzyć manualnie trasę podróży.