Simboličko izvršavanje programa

- cilj: automatsko pronalaženje kvarova generiranjem ispitnih slučajeva
- zadatak: potrebno proći kroz sve (što veći) broj puteva
- tek se odnedavno koristi zbog razvoja SAT rješavača i rješavača ograničenja
- problemi: grananje, pretlje, raspon vrijednosti varijabli, istovremenost, memorija,...
- značajke
 - 1. za ulazne vrijednosti koriste se simboličke umjesto konkretnih vrijednosti
 - 2. var. programa prikazuju se kao simbolički izrazi nad simboličkim vrijednostima
 - 3. kod ispitivanja simboličko izvršavanje koristi za gen. ul. pod. za ostvarive puteve
 - tijekom izvođenja dodaju se nova ograničenja nad varijablama
- u svakom trenutku održava:
 - o (sigma) simboličko stanje dotad posjećene var. -> simb. izrazi
 - SPC simboličko ograničenje puta posjećene grane, FOL bez kvant.
- obrada ograničenja
 - pokreće se **rješavač ograničenja** koji pronalazi pridruživanje varijablama
 - na mjestima grananja da se izbjegnu istraživanja ako su ogr. nezadovoljiva
 - na mjestu pogreške da se utvrde konkretne vrijednosti pogreške
 - koriste se SMT-rješavači
 - beskonačne petlje potrebno postaviti ogr. na pretragu puteva

SMT-rješavači

- odlučuju o zadovoljivosti temeljne formule FOL u odnosu na pozadinske teorije
 - temeljna formula ne sadrži slobodne varijable
- samostalni i brzi, uspješno rade s 100k varijabli i 100k linija koda
- teorija (logički dijelovi) dio log. form. koji tvori ograničenje pr. slajdovi 15.-18.
 - teorija jednakosti, peano aritmetika
- primjeri zadataka:
 - klasični problem raspoređivanja poslova n poslova, svaki od m zadataka koji moraju završiti kad su počeli + max. vrijeme trajanja
 - ograničenja: postoji redoslijed zadataka u 1 poslu, dva zadatka koji trebaju isti stroj ne mogu biti pokrenuta istovremeno
- aritmetika razlike podvrsta lin. aritmetike u kojoj su dozvoljene samo form. t s <= c gdje su t
 i s varijable, a c numerička konstanta
 - može ih se svesti na aritm. razlike t.d. **z = 0, tj. s <= -c**
 - iz ograničenja u tom obliku oblikuje se težinski usmjereni graf
 - svaka var. je čvor, a t -s <= c je usmjereni brid od s do t uz težinu c
 - traže se negativni ciklusi u grafu za pretragu zadovoljivosti
 - pokazivanje zadovoljivosti lazy offline pristup
 - ograničenja se pretvore u SAT problem
 - ako je SAT nezadovoljiv => problem nezad., inače SMT provjerava SAT model

- kombiniranje teorija - vrlo težak problem, i odlučivost i konzistentnost, ne samo rješenje

Konkretno/simboličko izvršavanje

- problem simboličkog izvršavanja ispitni slučaj ne može se generirati ako SMT-rješavač ne može učinkovito razriješiti ograničenje nemamo garanciju
 - -> rješenje: kombinacija konkretnog i simboličkog izvršavanja
- pristupi kombiniranja:
 - konkoličko ispitivanje konkretno upravlja simboličkim, izvodi se konkr. i pamte simboličke vrijednosti
 - izvršavanjem generirano ispitivanje prije svake oper. provjerava se jesu li sve vrijednosti konkretne ako jesu -> konkretno izvršavanje, inače -> simboličko
- primjeri 31.-35.

Heuristike, optimizacije, alati

- problem eksplozije broja puteva, a nije ih puno ostvarivo
- heuristike pretraživanja puta
 - slučajni put ako su oba ostvariva na grananju
 - statički graf kontrolnog puta istraživanje najbližeg dotad nepokrivenog
- problm rješavanja ograničenja SMT treba što manje pozivati
 - uklanjanje nebitnih ograničenja
- istovremeno izvođenje
 - cili otkriti redundantna izvršavanja i utrke za resursima
- alati za simb. verif.: DART, CUTE, EXE i KLEE, S2E, JPF
- SMT-rješavači: Z3, Yices 2, CVC4, MathSAT5, Boolector