Technische Universität Berlin

Fakultät II – Institut für Mathematik Bärwolff, Tröltzsch

 $\begin{array}{c} {\rm WS}~05/06 \\ {\rm 20.~Februar}~2006 \end{array}$

Februar – Klausur (Rechenteil) Analysis II für Ingenieure

Name:	Vorname:					
MatrNr.:	Studi	engang	:		•••••	
Neben einem handbeschriebenen A4 zugelassen.	Blatt 1	nit No	tizen s	ind ke	ine Hil	fsmittel
Die Lösungen sind in Reinschrift auf schriebene Klausuren können nicht ge			_	ben. M	Iit Blei	stift ge-
Dieser Teil der Klausur umfasst die vollständigen Rechenweg an.	Recher	naufgal	oen. G	eben S	Sie imn	ner den
Die Bearbeitungszeit beträgt eine Stu	ınde.					
Die Gesamtklausur ist mit 40 von 80 beiden Teile der Klausur mindestens 1				,	v	
Korrektur						
	1	2	3	4	5	Σ

1. Aufgabe 9 Punkte

Bestimmen Sie das globale Maximum und das globale Minimum der Funktion $f(x,y) = \frac{1}{2}x^2 + x + y^2 - y$ auf der Menge $D = \{(x,y) \in \mathbb{R}^2 \mid \frac{x^2}{2} + y^2 \leq 3\}$, falls diese exisitieren.

2. Aufgabe 9 Punkte

Sei $B=\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2+z^2\leq 1,\ x,y,z\geq 0\}$ Skizzieren Sie B und berechnen Sie $\iint\limits_{\partial B} \vec{v}\cdot d\vec{O}$, wobei \vec{v} das Vektorfeld $\vec{v}(x,y,z):=\begin{pmatrix} xy^2\\ x^2y\\ \frac{1}{3}z^3 \end{pmatrix}$ ist.

3. Aufgabe 8 Punkte

Gegeben sei die Kegelfläche

$$K = \{(x, y, z) \mid z = 1 - \sqrt{x^2 + y^2}, \ x^2 + y^2 \le 1\}.$$

Skizzieren Sie Fläche K und berechnen Sie ihren Flächeninhalt.

4. Aufgabe 7 Punkte

Bestimmen Sie das Taylorpolynom 2. Grades der Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}, \qquad f(x,y) = \cos(x)e^y$$

im Entwicklungspunkt $(x_0, y_0) = (0, 0)$.

5. Aufgabe 7 Punkte

Sei $B = \{(x, y) \in \mathbb{R}^2 \mid x \ge 0, y \ge 0, x^2 + y^2 \le 4\}$. Berechne

$$\iint\limits_{B} xydxdy.$$