Agentes Inteligentes

agente inteligente

raciocínio do agente

função / programa que decide que ação tomar em função da perceção

o robô aspirador

- ambiente
 - 2 locais: A e B
 - sujidade: verdadeiro, falso
- perceção
 - local
 - sujidade
- ação
 - mover: para a direita, para a esquerda
 - aspirar
 - nada

o robô aspirador

raciocínio simples

perceção [local, sujidade]	ação
[A, Falso]	mover para a direita
[A, Verdadeiro]	aspirar
[B, Falso]	mover para a esquerda
[B, Verdadeiro]	aspirar

problemas?

como melhorar? — medida
de custo

custo

não há uma medida de custo universal um problema pode admitir várias medidas de custo o contexto do problema ajuda a definir

- custo de cada ação: <0 | 0 | >0
- ...

o problema (caderno de encargos) pode ter uma medida de custo já definida

nota: minimizar custo = maximizar desempenho (ou utilidade)

caraterísticas do contexto I

- observabilidade
 - completa
 - local (ex: só vê sujidade na própria célula)

- nº de agentes
 - agente único
 - multi-agente: competitivo, colaborativo, misto
 - comunicação

caraterísticas do contexto II

- determinismo
 - determinista
 - estocástico (nem sempre com probabilidades associadas)
 - pode decorrer de observabilidade local...
 - incerto
- episódios
 - episódico (ex: classificador)
 - sequencial (ex: navegador)

caraterísticas do contexto III

- dinâmica
 - estático: só há alterações por ação do agente
 - dinâmico: ambiente pode mudar sem intervenção do agente
 - semi-dinâmico: medida de utilidade depende do tempo gasto
 - mas ambiente n\u00e4o muda por si
- discretização: estados, perceções, ações, tempo
 - discreto: ex. xadrez estado, perceção, ação
 - contínuo: ex. condução autónoma

contextos (exemplos)

ambiente	observabil.	agentes	determin.	episódios	dinâmica	discretiz.
palavras cruzadas	completa	único	determin.	sequencial	estático	discreto
xadrez c/ relóg.	completa	multi	determin.	sequencial	semi	discreto
poker	parcial	multi	estocástico	sequencial	estático	discreto
gamão	completa	multi	estocástico	sequencial	estático	discreto
condução	parcial	multi	estocástico	sequencial	dinâmico	contínuo
diag. méd.	parcial	único	estocástico	sequencial	dinâmico	contínuo
análise img	completa	único	determin.	episódico	semi	contínuo
robot manip	parcial	único	estocástico	episódico	dinâmico	contínuo
control quím	parcial	único	estocástico	sequencial	dinâmico	contínuo
tutor interat.	parcial	multi	estocástico	sequencial	dinâmico	discreto

agentes

omnisciência

- só em ambientes estáticos (único agente), observabilidade completa, determinístico (ex. sudoku)
- noutros é necessário atuar para obter informação (explorar)
 - e atuar sob melhor estimativa

aprendizagem

- aprender (ou não) a partir da própria experiência (ex. vespa)

autonomia

dependência de auxílio (aprendizagem aumenta autonomia)

estrutura dos agentes

agente = arquitetura + programa

arquitetura = dispositivo com sensores e atuadores

corporização

- agente corporizado: existe no mundo físico (mecânica, dinâmica, eletromagnetismo, ...) – muito difícil de prever...
- agente n\(\tilde{a}\) corporizado ex. web crawler

programação de agentes

O raciocínio (ver diagr. slide 3)

- reflexos simples
- reflexos baseados em modelos
- baseado em objetivos
- baseado em custo

aprendizagem

reflexos simples

reflexos – função

função Agente-Reflexo-Simples (perceção) retorna ação persistente: regras, conjunto de regras condição-ação situação ← Interpreta-Entrada (perceção) regra ← Emparelha-Regra (situação, regras) ação ← regra.Ação retorna ação

reflexos – condição-ação

regra condição-ação
 se temperatura inferior a limiar então liga aquecedor

revendo aspirador

se sujidade então aspira

se ¬sujidade e local é A então mover para a direita

se ¬sujidade e local é B então mover para a esquerda

imediatismo do raciocínio

reflexos baseados em modelos

reflexos baseados em modelo – função

```
função Agente-Reflexo-Baseado-Em-Modelo (perceção) retorna ação
 persistente: estado, como o agente considera estar o contexto
              modelo, como o próximo estado depende do atual e da ação
              regras, conjunto de regras condição—ação
              ação, a ação ação mais recente (inicialmente nenhuma)
estado ← Atualiza-Estado (estado, ação, perceção, modelo)
regra ← Emparelha-Regra (estado, regras)
ação ← regra.Ação
retorna ação
```


reflexos baseados em modelos - memória

- o estado é uma forma de memória
 - permite realizar ações diferentes em estados do mundo idênticos ex. aquecedor com memória
 - se temperatura inferior a limiar e está desligado há mais de 5 minutos então liga aquecedor
- o modelo do mundo (e das suas ações) permite prever
 - ex: **se** carro adiante pisca à direita **então** desacelera
- continua a ser um modelo reativo (mas mais elaborado)

raciocínio baseado em objetivos

raciocínio com objetivos I

importante para agentes com mais complexidade

ex: como reage um agente condutor reativo ao chegar a um cruzamento?

outra vantagem é a de os objetivos serem mutáveis

- ex: conduz para casa, conduz para a praia X, conduz para a rua Y

possibilita a pró-atividade do agente

raciocínio com objetivos II

quando o objetivo é estipulado externamente

- pode ser necessário fazer uma procura de uma sequência de ações que permita atingi-lo
- ou delinear um plano uma sequência de ações, através de um conjunto de sub-objetivos
 - articulando sequenciais com paralelos

raciocínio baseado em custo

raciocínio baseado em custo

várias sequências permitem atingir o mesmo objetivo

 escolha pode ser feita usando medida de custo (complementar de utilidade)

permite

- expectativas de custo a longo prazo
- não determinismo (associando probabilidades a resultados)
- especificar vários objetivos com graus de preferência

aprendizagem

em vez de o humano escrever todo o programa

agente aprende por si

- de raíz (from scratch) mais difícil
- ou com algum conhecimento à partida
- no limite inferior pode ser apenas adaptação de valores de parâmetro
- no limite superior...
 de aprendizagem automática² em diante...

