A Book of Abstract Algebra (2nd Edition)

Chapter 23, Problem 6EF

Bookmark

Show all steps: (

ON

Problem

Prove part:

Under the conditions of part 3, if t is a common multiple of $\phi(m)$ and $\phi(n)$, then $a^t \equiv 1 \pmod{mn}$. Generalize to three integers l, m, and n.

Step-by-step solution

Step 1 of 3

Consider any two relatively prime numbers m and n, that is, gcd(m, n) = 1. Suppose that gcd(a, mn) = 1. Then

$$a^{\phi(m)\phi(n)} \equiv 1 \pmod{mn}.$$

If t is a common multiple of $\phi(m)$, $\phi(n)$, then objective is to prove that

$$a' \equiv 1 \pmod{mn}$$

Consider the following result:

If
$$a \equiv 1 \pmod{m}$$
 and $a \equiv 1 \pmod{n}$ where $gcd(m, n) = 1$, then $a \equiv 1 \pmod{mn}$.

Comment

Step 2 of 3

Since t is a common multiple of $\phi(m)$, $\phi(n)$, so for some integers x and y one have,

$$t = x \cdot \phi(m)$$
,

$$t = y \cdot \phi(n).$$

Then

$$a^{t} = a^{x\phi(m)}$$

$$= (a^{\phi(m)})^{x}$$

$$\equiv 1^{x} (\text{mod } m)$$

$$\equiv 1 (\text{mod } m).$$
Similarly,
$$a^{t} = a^{y\phi(n)}$$

$$= (a^{\phi(n)})^{y}$$

$$\equiv 1^{y} (\text{mod } n)$$

$$\equiv 1 (\text{mod } n).$$

Comment

Step 3 of 3

Since m and n are both relatively primes, therefore by the above result

$$a^y \equiv 1 \pmod{mn}$$

Comment