Zadania z Matematyki Dyskretnej – Struktury Algebraiczne

- 1. Sprawdzić, czy następujące działanie jest łączne, przemienne i czy ma element neutralny:
 - a) $a * b = \frac{a+b}{2} \le \mathbb{Q}$, b) $w_1 \otimes w_2 = w_1 w_2 \le \Sigma^*$ c) $a \odot b = a+b+ab \le \mathbb{R}$
- 2. Sprawdzić, czy następujący zbiór z danym działaniem jest grupą, a jeśli tak, to czy jest grupą przemienną:
 - a) $(\mathbb{Z}, +)$ b) (\mathbb{Z}, \cdot) c) $(\mathbb{R}, +)$ d) (\mathbb{R}, \cdot) e) $(\{-1, 1\}, \cdot)$ f) $(\mathbb{Z}_n, +_n)$ g) (\mathbb{Z}_n, \cdot_n)
- 3. Sporządzić tabelkę grupy izometrii:
 - a) prostokąta Izom $_p$, b) trójkąta równobocznego D_3
- 4. Dane są permutacje

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 4 & 1 & 5 & 2 \end{pmatrix} i \ \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 5 & 4 & 1 & 3 & 6 \end{pmatrix}$$

rozłożyć je na cykle rozłączne, obliczyć $\pi\circ\sigma,\ \sigma\circ\pi,\ \pi^{-1},$ rozłożyć na transpozycje.

- 5. Które z poniższych grup są grupami przemiennymi, a które z nich cyklicznymi:
 - a) \mathbb{Z}_4 , b) \mathbb{Z}_5 , c) S_3 , d) D_4 , e) grupa obrotów płaszczyzny o wielokrotność kąta $\frac{\pi}{3}$ wokół ustalonego punktu, f) $\mathbb{Z}_2 \times \mathbb{Z}_2$, g) $\mathbb{Z}_2 \times \mathbb{Z}_3$, h) $(\{1, -1, i, -i\}, \cdot)$?
- 6. (Tw. Lagrange'a bez dowodu)

Znajdź wszystkie podgrupy grupy:

- a) \mathbb{Z}_5 , b) \mathbb{Z}_6 , c) Izom_p, d) S_3 .
- 7. Czy jest homomorfizmem grup funkcja:
 - a) $\phi_1 : \mathbb{Z}_4 \to \mathbb{Z}_6 \ i \ \phi_1(1) = 3$,
 - b) $\phi_2 : \mathbb{Z}_5 \to \mathbb{Z}_9 \text{ i } \phi_2(1) = 1$,
 - c) $\phi_3: \mathbb{Z}_6 \to \operatorname{Izom}_p i \phi_3(1) = O_{\pi}$,
 - d) ϕ_4 : Izom_n $\rightarrow \mathbb{Z}_8$ i $\phi_4(O_\pi) = 4$ i $\phi_4(S_a) = 4$,
 - e) $\phi_5 : \text{Izom}_n \to \mathbb{Z}_2 \times \mathbb{Z}_2 \text{ i } \phi_5(O_\pi) = (0,1) \text{ i } \phi_5(S_a) = (1,0),$
 - f) $\phi_6: \mathbb{Z} \to \mathbb{Z}_n \text{ i } \phi_6(1) = 1$,
 - g) $\phi_7: \mathbb{Z}_n \to \mathbb{Z} \text{ i } \phi_7(1) = 1$,
 - h) $\phi_8: \mathbb{R} \to \mathbb{Z} \text{ i } \phi_8(1) = 1$,
 - i) $\phi_9: \mathbb{Z} \to \mathbb{R}$ i $\phi_9(1) = 1$,

Dla tych, które są, znajdź jądra i obrazy.

8. Niech $\phi: (G, \cdot) \to (H, \circ)$ będzie homomorfizmem grup. Udowodnij, że $\operatorname{Ker}(\phi)$ jest podgrupą grupy G, a $\operatorname{Im}(\phi)$ podgrupą grupy H.