Formulaire d'analyse vectorielle et d'Électromagnétisme Valentin COLIN

Coordonnées orthogonales

Coordonnées cartésiennes

- base : $\widehat{e_x}$, $\widehat{e_y}$, $\widehat{e_z}$ coordonnées : x,y,z
- déplacement élémentaire :

$$\overrightarrow{\mathrm{d}l} = \mathrm{d}x \; \widehat{e_x} + \mathrm{d}y \; \widehat{e_y} + \mathrm{d}z \; \widehat{e_z}$$

1.2 Coordonnées cylindriques

- $\begin{array}{ll} & \text{ base : } \widehat{e_{\rho}}, \widehat{e_{\phi}}, \widehat{e_{z}} \\ & \text{ coordonnées : } \rho, \varphi, z \end{array}$
- déplacement élémentaire :

$$\overrightarrow{\mathrm{d}l} = \mathrm{d}\rho \; \widehat{e_\rho} + \rho \; \mathrm{d}\varphi \; \widehat{e_\varphi} + \mathrm{d}z \; \widehat{e_z}$$

1.3 Coordonnées sphériques

- base: $\widehat{e_r}$, $\widehat{e_\theta}$, $\widehat{e_\varphi}$
- coordonnées : r, θ, φ
- déplacement élémentaire :

$$\overrightarrow{dl} = dr \ \widehat{e_r} + r \ d\theta \ \widehat{e_\theta} + r \sin\theta \ d\varphi \ \widehat{e_\varphi}$$

1.4 Notation générale

- base : \widehat{e}_1 , \widehat{e}_2 , \widehat{e}_3
- coordonnées: s₁, s₂, s₃
 déplacement élémentaire:

$$\vec{\mathrm{d}}\vec{l} = \sum_{i=1}^{3} \mu_i \, \mathrm{d} s_i \, \hat{e}_i$$

où μ_i est le multiplicateur de la coordonnée s_i .

multiplicateurs repérage	μ_1	μ_2	μ_3
cartésien : $s_1 = x$, $s_2 = y$, $s_3 = z$	1	1	1
cylindrique : $s_1 = \rho$, $s_2 = \varphi$, $s_3 = z$	1	ρ	1
sphérique : s_1 = r, s_2 = θ , s_3 = φ	1	r	$r \sin \theta$

2 Expressions des opérateurs en coordonnées orthogonales

2.1 Gradiant

$$\overrightarrow{\nabla} f = \overrightarrow{grad} f = \sum_{i} \frac{1}{\mu_{i}} \frac{\partial f}{\partial s_{i}} \widehat{e}_{i} = \begin{vmatrix} \frac{1}{\mu_{1}} \frac{\partial f}{\partial s_{1}} \\ \frac{1}{\mu_{2}} \frac{\partial f}{\partial s_{2}} \\ \frac{1}{\mu_{3}} \frac{\partial f}{\partial s_{3}} \end{vmatrix}$$

Coordonnées cartésiennes

$$\left(\overrightarrow{\nabla} f = \frac{\partial f}{\partial x}\widehat{e_x} + \frac{\partial f}{\partial y}\widehat{e_y} + \frac{\partial f}{\partial z}\widehat{e_z}\right)$$

Coordonnées cylindriques

$$\left(\overrightarrow{\nabla} f = \frac{\partial f}{\partial \rho} \widehat{e_{\rho}} + 1 \rho \frac{\partial f}{\partial \varphi} \widehat{e_{\varphi}} + \frac{\partial f}{\partial z} \widehat{e_{z}} \right)$$

Coordonnées sphériques

$$\left(\overrightarrow{\nabla} f = \frac{\partial f}{\partial r} \widehat{e_r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \widehat{e_\theta} + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \widehat{e_\phi} \right)$$

2.2 Divergence

$$\overrightarrow{\nabla}.\overrightarrow{A} = div\overrightarrow{A} = \frac{1}{\mu_1\mu_2\mu_3} \sum_{PC} \frac{\partial}{\partial s_1} (\mu_2\mu_3 A_1)$$

Coordonnées cartésiennes

$$\overrightarrow{\nabla} \cdot \overrightarrow{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

Coordonnées cylindriques

$$\left(\overrightarrow{\nabla}.\overrightarrow{A} = \frac{1}{\rho}\frac{\partial(\rho A_{\rho})}{\partial\rho} + \frac{1}{\rho}\partial A_{\varphi}\partial\varphi + \frac{\partial A_{z}}{\partial z}\right)$$

Coordonnées sphériques

$$\overrightarrow{\nabla}.\overrightarrow{A} = \frac{1}{r^2} \frac{\partial (r^2 A_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial (\sin \theta A_\theta)}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial A_\varphi}{\partial \varphi}$$

2.3 Rotationnel

$$\overrightarrow{\nabla} \wedge \overrightarrow{A} = \begin{array}{c|c} \frac{\widehat{e}_1}{\mu_2 \mu_3} & \frac{\partial}{\partial s_1} & \mu_1 A_1 & \frac{\widehat{e}_1}{\mu_2 \mu_3} \left[\frac{\partial(\mu_3 A_3)}{\partial s_2} - \frac{\partial(\mu_2 A_2)}{\partial s_3} \right] \\ \overrightarrow{\nabla} \wedge \overrightarrow{A} = \begin{array}{c|c} \frac{\widehat{e}_2}{\mu_1 \mu_3} & \frac{\partial}{\partial s_2} & \wedge & \mu_2 A_2 & = & \frac{\widehat{e}_2}{\mu_1 \mu_3} \left[\frac{\partial(\mu_1 A_1)}{\partial s_3} - \frac{\partial(\mu_3 A_3)}{\partial s_1} \right] \\ \frac{\widehat{e}_3}{\mu_1 \mu_2} & \frac{\partial}{\partial s_3} & \mu_3 A_3 & \frac{\widehat{e}_3}{\mu_1 \mu_2} \left[\frac{\partial(\mu_2 A_2)}{\partial s_1} - \frac{\partial(\mu_1 A_1)}{\partial s_2} \right] \end{array}$$

Coordonnées cartésiennes

$$\overrightarrow{\nabla} \wedge \overrightarrow{A} = \begin{bmatrix} \widehat{e_x} \left[\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right] \\ \widehat{e_y} \left[\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right] \\ \widehat{e_z} \left[\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right] \end{bmatrix}$$

Coordonnées cylindriques

$$\overrightarrow{\nabla} \wedge \overrightarrow{A} = \begin{bmatrix} \frac{1}{\rho} \frac{\partial A_z}{\partial \varphi} - \frac{\partial A_{\varphi}}{\partial z} \end{bmatrix}$$

$$\overrightarrow{\nabla} \wedge \overrightarrow{A} = \begin{bmatrix} \widehat{e_{\varphi}} \left[\frac{\partial A_{\rho}}{\partial z} - \frac{\partial A_z}{\partial \rho} \right] \\ \widehat{e_z} \frac{1}{\rho} \left[\frac{\partial A_{\varphi}}{\partial \rho} - \frac{\partial A_{\rho}}{\partial \varphi} \right] \end{bmatrix}$$

Coordonnées sphériques

$$\overrightarrow{\nabla} \wedge \overrightarrow{A} = \begin{bmatrix} \widehat{e_r} \frac{1}{r \sin \theta} \left[\frac{\partial (\sin \theta A_{\varphi})}{\partial \theta} - \frac{\partial A_{\theta}}{\partial \varphi} \right] \\ \widehat{e_{\theta}} \frac{1}{r \sin \theta} \left[\frac{\partial A_r}{\partial \varphi} - \sin \theta \frac{\partial (r A_{\varphi})}{\partial r} \right] \\ \widehat{e_{\varphi}} \frac{1}{r} \left[\frac{\partial (r A_{\theta})}{\partial r} - \frac{\partial A_r}{\partial \theta} \right] \end{bmatrix}$$

2.4 Laplacien d'un champ scalaire

Notations de l'opérateur Laplacien : Δ , Lap, $\overrightarrow{\nabla^2}$.

$$\Delta f = div\left(\overrightarrow{grad}f\right) = \frac{1}{\mu_1\mu_2\mu_3} \sum_{PC} \frac{\partial}{\partial s_1} \left[\frac{\mu_2\mu_3}{\mu_1} \frac{\partial f}{\partial s_1} \right]$$

Coordonnées cartésiennes

$$\left(\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}\right)$$

Coordonnées cylindriques

$$\Delta f = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial f}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 f}{\partial \varphi^2} + \frac{\partial^2 f}{\partial z^2}$$

Coordonnées sphériques

$$\Delta f = \frac{1}{r} \frac{\partial^2}{\partial r^2} (rf) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \phi^2}$$

2.5 Laplacien d'un champ vectoriel

$$\overrightarrow{\Delta A} = \overrightarrow{grad}(\overrightarrow{div A}) - \overrightarrow{rot}(\overrightarrow{rot A})$$

2.6 D'Alembertien

$$\Box = \Delta - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}$$

I.S.E.P 2019-2020 formulaire PSI

3 Formulaire relatif aux opérateurs

$$\begin{cases} \operatorname{div}(\overrightarrow{rotA}) &= 0 \\ \overline{\nabla}.(\overrightarrow{\nabla}\wedge\overrightarrow{A}) &= 0 \end{cases}$$

$$\begin{cases} \overrightarrow{rot}(\operatorname{grad}f) &= \overrightarrow{0} \\ \overline{\nabla}\wedge(\overrightarrow{\nabla}f) &= \overrightarrow{0} \end{cases}$$

$$\begin{cases} \operatorname{div}(\operatorname{grad}f) &= \Delta f \\ \overline{\nabla}(\overrightarrow{\nabla}) &= \Delta f \end{cases}$$

$$\begin{cases} \overrightarrow{rot}(\operatorname{rot}\overrightarrow{A}) &= \operatorname{grad}(\operatorname{div}\overrightarrow{A}) - \Delta \overrightarrow{A} \\ \overline{\nabla}\wedge(\overrightarrow{\nabla}\wedge\overrightarrow{A}) &= \overline{\nabla}(\overrightarrow{\nabla}.\overrightarrow{A}) - \Delta \overrightarrow{A} \end{cases}$$

$$\begin{cases} \overrightarrow{rot}(f) &= f(\operatorname{grad}g) + g(\operatorname{grad}f) \\ \overline{\nabla}(f) &= f(\operatorname{grad}g) + g(\operatorname{grad}f) \end{cases}$$

$$\begin{cases} \overrightarrow{rot}(f) &= f(\operatorname{grad}g) + g(\operatorname{grad}f) \\ \overline{\nabla}(f) &= f(\operatorname{grad}f) + \overline{A}(\operatorname{grad}f) \end{cases}$$

$$\begin{cases} \overrightarrow{rot}(f) &= f(\operatorname{grad}f) + \overline{A}(\operatorname{grad}f) \\ \overline{\nabla}.(f) &= f(\operatorname{grad}f) + \overline{A}(\operatorname{grad}f) \end{cases}$$

$$\begin{cases} \overrightarrow{rot}(f) &= g(\operatorname{grad}f) + \overline{A}(\operatorname{grad}f) \\ \overline{\nabla}.(f) &= f(\operatorname{grad}f) + \overline{A}(\operatorname{grad}f) \end{cases}$$

$$\begin{cases} \overrightarrow{rot}(f) &= g(\operatorname{grad}f) + \overline{A}(\operatorname{grad}f) \\ \overline{\nabla}.(f) &= g(\operatorname{grad}f) + \overline{A}(\operatorname{grad}f) \end{cases}$$

$$\begin{cases} \overrightarrow{rot}(f) &= g(\operatorname{grad}f) + \overline{A}(\operatorname{grad}f) \\ \overline{\nabla}.(f) &= g(\operatorname{grad}f) + \overline{A}(\operatorname{grad}f) \end{cases}$$

$$\begin{cases} \overrightarrow{rot}(f) &= g(\operatorname{grad}f) + \overline{A}(\operatorname{grad}f) \\ \overline{\nabla}.(f) &= g(\operatorname{grad}f) + \overline{A}(\operatorname{grad}f) \end{cases}$$

$$\begin{cases} \overrightarrow{rot}(f) &= g(\operatorname{grad}f) + \overline{A}(\operatorname{grad}f) + \overline{A}(\operatorname{grad}f) \\ \overline{\nabla}.(f) &= g(\operatorname{grad}f) + \overline{A}(\operatorname{grad}f) + \overline{A}(\operatorname{grad}f) \end{cases}$$

$$\begin{cases} \overrightarrow{rot}(f) &= g(\operatorname{grad}f) + \overline{A}(\operatorname{grad}f) + \overline{A}(\operatorname{grad}f) \\ \overline{\nabla}.(f) &= g(\operatorname{grad}f) + \overline{A}(\operatorname{grad}f) \\ \overline{\nabla}.(f) &= g(\operatorname$$

4 Théorèmes intégraux

4.1 Théorème de Gauss

$$\iint_{S} \overrightarrow{E} \, ds = \frac{Q_{int}}{\epsilon_0}$$

4.2 Théorème d'Ampère

$$\oint_C \overrightarrow{B} \, d\overrightarrow{l} = \mu_0 \sum I_{enlac\'es}$$

4.3 Théorème de Stokes

$$\oint_C \overrightarrow{E} \, d\overrightarrow{l} = \iint_S \overrightarrow{rot} \left[\overrightarrow{E} (M) \right] d\overrightarrow{s}$$

4.4 Théorème de Kelvin

Equivalent du théorème de Stokes pour les fonctions scalaires

$$\oint_C f(M) \overrightarrow{dl} = \iint_S \overrightarrow{ds} \wedge \overrightarrow{grad} f(M)$$

4.5 Théorème d'Ostrogradski

$$\iiint_{V} di \, v \left[\overrightarrow{E}(M) \right] dV = \oiint_{S} \overrightarrow{E}(M) \overrightarrow{ds}$$

4.6 Théorème du gradiant

Equivalent du théorème d'Ostrogradski pour les fonctions scalaires

$$\iiint_{V} \overrightarrow{grad} [f(M)] dV = \oiint_{S} f(M) \overrightarrow{ds}$$

4.7 Théorème du rotationnel

$$\iint_{S} \overrightarrow{E}(M) \wedge \overrightarrow{ds} = -\iiint_{S} \overrightarrow{rot} \left[\overrightarrow{E}(M) \right] dV$$

5 Rappel: double produit vectoriel

$$\overrightarrow{A} \wedge (\overrightarrow{B} \wedge \overrightarrow{C}) = \overrightarrow{B} (\overrightarrow{A} \overrightarrow{C}) - \overrightarrow{C} (\overrightarrow{A} \overrightarrow{B})$$

6 Équations

6.1 Loi d'Ohm local

$$\vec{j} = \sigma \vec{E}$$

Où σ est la conductivité électrique du matériau

6.2 Équation de conservation de la charge

$$\frac{\partial \rho}{\partial t} + di \, v(\vec{j}) = 0$$

6.3 Équations de Maxwell (dans le vide)

$$div(\overrightarrow{E}) = \frac{\rho}{\epsilon_0} \qquad \overrightarrow{rot}(\overrightarrow{E}) = -\frac{\partial \overrightarrow{B}}{\partial t}$$
(Maxwell-Gauss) (Maxwell-Faraday)
$$div(\overrightarrow{B}) = 0 \qquad \overrightarrow{rot}(\overrightarrow{B}) = \mu_0 \overrightarrow{J} + \frac{1}{c^2} \frac{\partial \overrightarrow{E}}{\partial t}$$
(Maxwell-Flux) (Maxwell-Ampère)

6.4 Expression des champs Électrique et Magnétique

Expression du champ au point M selon la distribution de source \mathcal{D} .

$$\overrightarrow{E}(M) = \frac{1}{4\pi\epsilon_0} \iiint_{\mathscr{D}} \rho(P) \frac{\overrightarrow{PM}}{PM^3} d\tau(P)$$

$$\overrightarrow{B}(M) = \frac{\mu_0}{4\pi} \iiint_{\mathscr{D}} \frac{\overrightarrow{J}(P) \wedge \overrightarrow{PM}}{PM^3} d\tau(P)$$

6.5 Lien entre champ et potentiel

Soit \overrightarrow{E} (resp. \overrightarrow{B}) un champ électrique (resp. magnétique) et V (resp. \overrightarrow{A}) un potentiel électrique (resp. magnétique) associé à \overrightarrow{E} (resp. à \overrightarrow{B}).

$$\overrightarrow{E} = -\overrightarrow{grad} V - \frac{\partial \overrightarrow{A}}{\partial t}$$

$$\overrightarrow{B} = rot(\overrightarrow{A})$$

6.6 Équations de Poisson pour le potentiel scalaire/vecteur

$$\Delta V = -\frac{\rho}{\epsilon_0}$$

$$\Delta \overrightarrow{A} = -\mu_0 \overrightarrow{J}$$

7 Équation de Maxwell en régime lentement variable : Induction

7.1 Rappels

$$-div\vec{B} = 0 \text{ (car } \vec{B} = \overrightarrow{rot}\vec{A}\text{)}$$

$$-\overrightarrow{rotB} = \mu_0 \overrightarrow{1}$$

— Biot et Savart :
$$\overrightarrow{B}(M) = \frac{\mu_0}{4\pi} \iiint_{\mathfrak{D}} \frac{\overrightarrow{J}(P) \wedge \overrightarrow{PM}}{PM^3} d\tau(P)$$

7.2 Force de Lorentz

$$\vec{F} = q\vec{E} + q\vec{v} \wedge \vec{B}$$

7.3 Force de Laplace

La force de Laplace est la résultante de toutes les forces de Lorentz sur les charges mobiles.

$$\overrightarrow{dF} = I\overrightarrow{dl} \wedge \overrightarrow{B}$$

Cette force agit directement sur les charges fixes du matériaux (ex. protons)

7.4 Loi de Lenz

Loi 1 (Loi de Lenz)

Les conséquences de l'induction s'opposent aux causes qui lui donne naissance.

7.5 Force électromotrice

Loi 2 (Loi de Faraday)

Soit ϕ un flux magnétique alors la force électromotrice (induite) e est égale à l'opposer de la variation temporelle du flux magnétique.

$$e = -\frac{\mathrm{d}\phi}{\mathrm{d}t}$$

(Cette loi n'est pas toujours valide notamment lors de circuit à contact glissant)

On peut aussi écrire cette f.e.m (écriture toujours valide) :

$$e = \int_{Circuit} \overrightarrow{E_m} \, \overrightarrow{dl}$$
 tel que $\overrightarrow{E_m} = \overrightarrow{v} \wedge \overrightarrow{B} - \frac{\partial \overrightarrow{A}}{\partial t}$

Où $\overrightarrow{E_m}$ est le champ <u>électromoteur</u> (induit) le long du circuit

7.6 Potentiels et choix de jauge

7.6.1 Choix de jauge

Proposition 1 (Jauge de Lorentz)

Soit V et \overrightarrow{A} un potentiel scalaire et vecteur. On impose donc :

$$div\overrightarrow{A} + \frac{1}{c^2}\frac{\partial V}{\partial t} = 0$$

Proposition 2 (Jauge de Coulomb)

Soit \overrightarrow{A} un potentiel vecteur. On impose donc :

$$div\overrightarrow{A} = 0$$

7.6.2 D'Alembertiens des Potentiels

En Jauge de Lorentz en retrouve les équation de Poisson.

$$\Box V = -\frac{\rho}{\epsilon_0}$$

$$\Box \overrightarrow{A} = -\mu_0 \overrightarrow{J}$$

$$\Box \overrightarrow{A} = -\mu_0 \overrightarrow{J}$$

7.6.3 D'Alembertiens des Champs Électriques et Magnétiques

Équation de D'Alembert du champ Électrique et Magnétique.

$$\Box \overrightarrow{E} = \overrightarrow{0}$$

$$\Box \overrightarrow{B} = \overrightarrow{0}$$