Operacijski sistemi

Jurij Mihelič, FRI, Uni LJ

Vsebina

- Niti
- Zakaj niti?
- Izvedba niti
- Nitni izzivi

Niti

- Glavni nalogi procesov
 - lastništvo oz. zaščita virov
 - izvajanje kode
 - neodvisnost obeh nalog

- Zakaj obeh nalog ne bi ločili?
 - procesi skrbijo za lastništvo virov
 - niti pa skrbijo za izvajanje kode
 - seveda brez virov ni mogoče izvajati kode

Niti

- Enonitnost in večnitnost
 - (single- vs. multi- threading)

Niti

- Kaj je nit?
 - skrbi za izvajanje kode
 - ima svoj izvajalni kontekst
 - stanje, registre in sklad
 - pripada nekemu procesu
 - vse niti procesa imajo isti naslovni prostor
 - in tudi ostale vire, npr. odprte datoteke

lahkokategorni proces

Zakaj niti?

- Prednosti večnitnosti
 - ustvarjanje in končanje niti je hitrejše
 - brez inicializacije naslovnega prostora
 - učinkovit preklop niti
 - preklop med nitmi istega procesa je bolj učinkovit kot preklop med procesa
 - naslovnega prostora ni potrebno preklopiti, ni potrebno prazniti TLB
 - učinkovita medprocesna komunikacija
 - niti si delijo pomnilnik

Zakaj niti?

- Prednosti večnitnosti
 - boljši izkoristek več-procesorskega sistema
 - boljša izkoriščenost virov
 - skupni naslovni prostor oz. deljenje pomnilnika
 - manjša poraba pomnilnika
 - cenejša sinhronizacija
 - specializacija in modularnost
 - vsaka nit niti skrbi za svoje opravilo
 - asinhrono procesiranje

Zakaj niti?

- Primeri uporabe
 - spletni brskalnik
 - nit za upodabljanje strani, niti za nalaganje podatkov
 - urejevalnik besedila
 - upodabljanje, odziv na uporabniške akcije, preverjanje slovnice
 - spletni strežnik
 - glavna sprejemna nit, nit za vsako zahtevo
 - večnitnost v jedru OS
 - niti za rokovanje prekinitev, nit za menjavo strani itd.

- Izvedba niti na jedrnem nivoju
 - OS razume in skrbi za niti ©
 - podpora nitim preko sistemskih klicev
 - razvrščevalnik razvršča niti (tako kot procese)
 - niti lahko izkoriščajo več procesorjev
 - OS poskrbi za morebitno sinhronizacijo
 - sistemski klici, ki blokirajo, niso problematični
 - blokira le ustrezna nit

- Izvedba niti na uporabniškem nivoju
 - upravljanje niti je izvedeno v uporabniškem programu
 - uporabe preko uporabniške knjižnice za nitenje
 - razvrščanje niti je lahko prilagojeno aplikaciji
 - lahko tečejo v kateremkoli OS
 - hitrejši preklop med nitmi (vse se zgodi na uporabniškem nivoju)
 - OS se teh niti ne zaveda
 - če ena nit blokira, potem blokira vse niti (celoten proces)
 - vse niti so izvedene v sklopu enega samega procesa
 - nezmožnost izkoriščanja več procesorjev in razvrščanja
 - nekatere slabosti je možno zaobiti s posebnimi tehnikami
 - jacketing: pretvorba blokirnega klica v ne-blokirnega

- Izvedba niti na uporabniškem nivoju
 - preslikava uporabniških niti v jedrne
 - več-v-eno
 - več uporabniških niti se preslika na eno jedrno nit
 - popolnoma uporabniške izvedbe
 - več-v-več
 - več uporabniških niti se preslika v manj ali enako število jedrnih niti
 - npr. IRIX, HP-UX, Tru64 Unix, Solaris <9
 - ena-v-eno
 - ena uporabniška nit upravljana s strani ene jedrne niti
 - Windows, Linux, Solaris 9+
 - ena-v-več
 - raziskovalni OS, niti se lahko selijo med procesi

Večnitni naslovni prostor

- Mehanizem za izvedbo niti
 - deskriptor niti (kontrolni blok niti)
 - podatkovna struktura (v jedru), ki hrani podatke v zvezi z nitjo
 - registri, stanje niti, sklad, PC
 - računovodske info. v zvezi z nitjo
 - souporaba pomnilnika
 - navidezni pomnilnik: enaka preslikava iz navideznega prostora v fizični pomnilnik

- Preklop niti
 - podobno preklopu procesa
 - ni zamenjave naslovnega prostora
 - ni praznenja preslikovalnega pomnilnika (TLB)

Stvaritev niti

Operacija	Uporabniške niti	Jedrne niti	Procesi
null fork	34	948	11300
signal wait	37	441	1840

null fork signal wait

stvaritev, razvrščanje, izvedba, končanje klica prazne funkcije čakanje na izvedbo ustvarjene niti/procesa

- Kaj naredi fork () v večnitnem procesu?
 - kloniranje vseh niti procesa
 - kloniranje samo klicoče niti
- Kaj naredi exec () v večnitnem procesu?
 - nadomesti celoten proces, torej vse niti

Kaj pa zagon novega programa v otroku: fork() & exec()

- Pokončanje niti
 - končanje niti preden zaključi opravilo
 - asinhrono končanje
 - niti se konča takoj
 - Java: Thread.stop() ... deprecated
 - odloženo končanje
 - niti se kočna, ko zaključi trenutno opravilo
 - navadno vsebuje preverjanje ali se mora končati
 - sproščanje zasedenih virov
 - Kdo sprosti vire, če se niti asinhrono konča?

- Rokovanje signalov
 - Katera nit rokuje signal?
 - tista, ki je vzrok, za pošiljanje signala
 - vse niti procesa
 - samo izbrane niti procesa
 - izbrana niti rokuje vse signale

- Število niti in bazeni niti (thread pool)
 - strežnik: ena nit na zahtevo
 - veliko zahtev → veliko niti
 - lahko povzroči preobremenitev sistema
 - rešitev: bazen niti (thread pool)
 - končno število (delavskih) niti (worker thread)
 - po končanju opravila se ponovno uporabijo
 - niti so vnaprej pripravljene
 - ni ustvarjanja in sproščanja niti