THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

Tutorial Week 5

STAT3023: Statistical Inference

Semester 2, 2023

- 1. Suppose X_1, \ldots, X_n is a random sample.
 - (a) If X_i are iid Bernoulli(θ) with $\theta \in (0,1)$, show that the likelihood function can be written in the canonical form of the exponential family

$$L(\theta) = h(x) \exp \left\{ \eta T(\mathbf{x}) - A^*(\eta) \right\}$$

for $\mathbf{X} = (X_1, \dots, X_n)$, $x_i \in \{0, 1\}$. Identify a sufficient statistic T for θ , and find E(T) and Var(T) using A^* .

- (b) Using the same argument, show that if X_i are iid $N(\theta, 1)$, then $T = \sum_{i=1}^n X_i$ is a sufficient statistic for θ . Identify E(T) and Var(T).
- (c) Using the same argument, if X_i are iid $N(0,\theta)$, find a sufficient statistic for θ .
- 2. This question reviews the method of moment and maximum likelihood estimates from STAT2011/2911.

Suppose X_1, \ldots, X_n is a random sample from the Gamma distribution Gamma(α, β), i.e., the density of each X_i is

$$f_X(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta}, \quad x > 0.$$

- (a) Assuming α is known, find a method of moment and maximum likelihood estimates for β .
- (b) If both α and β are unknown, write out an equation that is used to solve for the maximum likelihood of α .
- **3.** Suppose X_1, \ldots, X_n is a random sample from Poisson(λ) distribution. Note that

$$\theta = P(X_i = 0) = e^{-\lambda}$$
, for $i = 1, ..., n$

- (a) Find the maximum likelihood estimator for λ , then the corresponding maximum likelihood estimator for θ . Denote this estimator to be $\hat{\theta}_1$.
- (b) Find the bias and variance of $\hat{\theta}_1$.
- (c) Now, let Y be the number of zeros among X_1, \ldots, X_n . What is the distribution of Y?
- (d) Based on part (c), identify an unbiased estimator for θ . Denote this estimator to be $\hat{\theta}_2$. What is the variance of this estimator?
- (e) (For advanced students STAT3923/4023 only) Using the Delta method, compare the asymptotic relative efficiency of $\hat{\theta}_1$ and $\hat{\theta}_2$.