Iterative Improvement

CS3230: Design and Analysis of Algorithms

Roger Zimmermann

National University of Singapore Spring 2017

Chapter 10: Iterative Improvement

- Greedy vs. Iterative Improvement
 - Greedy strategy constructs a solution to an optimization problem piece by piece.
 - Iterative improvement starts with a feasible solution and improves it repeatedly through small, localized steps.

Iterative Improvement

Goal:

Find a feasible solution with an improved objective function.

Obstacles:

- Need initial solution. Sometimes we can start with trivial solution or one obtained by greedy strategy. However, sometimes finding an initial solution is complex.
- How to check efficiently if modified solution is better.
- Local vs. global optimium.

Linear Programming

- Simplex Method
- Problem statement: optimize a linear function of several variables subject to a set of constraints.
 - Maximize (or minimize) $c_1x_1 + \ldots + c_nx_n$
 - subject to

$$a_{i1}x_1 + \ldots + a_{in}x_n \leq (\text{or } \geq \text{ or } =) b_i \text{ for } i = 1, \ldots, m$$

- $-x_1 \ge 0, \dots, x_n \ge 0.$
- Two researchers, L. V. Kantorovich and T. C. Koopmans, received the Nobel Price in Economics for their contributions to linear programming.

Simplex Method Example

Example 1:

maximize
$$3x + 5y$$

subject to $x + y \le 4$
 $x + 3y \le 6$
 $x \ge 0, y \ge 0$

- A feasible solution is any point (x, y) that satisfies all constraints of the problem.
- A feasible region is the set of all feasible points.
- An optimal solution is a feasible point that maximizes the objective function.

Simplex Method Example (2)

Simplex Method Example (3)

- Some linear programming problems are infeasible.
- Ex.: $x + y \le 1$ and $x + y \ge 2$.
- Some linear programming problems result in an unbounded region.
- Ex.: $x + y \ge 4$ and $x + 3y \ge 6$.
- (If we want to find the minimum optimal value then the problem has a solution.)

Simplex Method Example (4)

Extreme Points

THEOREM (Extreme Point Theorem)

Any linear programming problem with a nonempty bounded feasible region has an optimal solution; moreover, an optimal solution can always be found at an extreme point of the problem's feasible region.

- Thus, to solve problem, inspect a finite number of points in the feasible region.
- Compute value of objective function at each extreme point.
 Select the one with the best value.

Simplex Method

Standard form:

It must be a maximization problem.

All the constraints (except for the nonnegativity constraints) must be in the form of linear equations.

All the variables must be required to be nonnegative.

• Thus, m constraints and n unknowns $(n \ge m)$:

maximize
$$c_1x_1 + \ldots + c_nx_n$$

subject to $a_{i1}x_1 + \ldots + a_{in}x_n = b_i$ for $i = 1, 2, \ldots, m$
 $x_1 \geq 0, \ldots, x_n \geq 0$.

Simplex Method (2)

Notes:

- The standard form can also be written in matrix form.
- If objective function needs to be minimized \Rightarrow replace coefficients c_j with $-c_j, j=1,2,\ldots,n$.
- If a constraint is given as an inequality ⇒ add a slack variable.
- Ex.: x + y + u = 4 where $u \ge 0$ and x + 3y + v = 6 where $v \ge 0$, instead of $x + y \le 4$ and $x + 3y \le 6$.
- Variables must be nonnegative. If not, x_j can be replaced with two variables as follows: $x_j = x_j' x_j''$, $x_j' \ge 0$, $x_j'' \ge 0$.

Simplex Method (3)

- Identify extreme points as follows.
- Given: m equations in n unknowns $(n \ge m)$.
- Set n-m variables to zero to obtain a system of m equations and m unknowns.
- If system has a unique solution we have a basic solution.
 - The coordinates set to zero are called nonbasic.
 - The coordinates obtained by solving the system are called basic.
- If all the coordinates of a basic solution are ≥ 0 the basic solution is called a basic feasible solution.

Simplex Method (4)

Example:

maximize
$$3x + 5y + 0u + 0v$$

subject to $x + y + u = 4$
 $x + 3y + v = 6$
 $x, y, u, v \ge 0$.

- If $x, y = 0 \Rightarrow$ basic feasible solution (0, 0, 4, 6).

$$u = 4; v = 6$$

- If $x, u = 0 \Rightarrow$ basic not feasible solution (0, 4, 0, -6).

$$y = 4; 3y + v = 6; \Rightarrow v = -6$$

-(0,0,4,6) is an extreme point of the feasible region.

Simplex Method (5)

Simplex tableau:

- m+1 rows and n+1 columns.
- m rows with coefficients of corresponding constraint equation.
- Last row is the objective row. Initialize with coefficients of objective function with signs reversed.

Simplex Method (6)

- Objective row: used to check whether tableau represents an optimal solution (all coefficients > 0, except possibly last column).
- Ex.: Basic feasible solution (0, 0, 4, 6) is not optimal.
- Negative value in x-column means we can increase objective function z = x + 3y + 0u + 0v.
- Idea: increase value of x, but "compensate" with u and v to keep point feasible.

$$x+u=4$$
 where $u\geq 0$ $x+v=6$ where $v\geq 0$ $x\leq \min\{4,6\}=4$.

• New extreme point (4,0,0,2) with z=12.

Simplex Method (6b)

- Objective row: used to check whether tableau represents an optimal solution (all coefficients > 0, except possibly last column).
- Another choice:
- Negative value in y-column means we can increase objective function z = x + 3y + 0u + 0v.
- Idea: increase value of y, but "compensate" with u and v to keep point feasible.

$$y + u = 4$$
 where $u \ge 0$
 $3y + v = 6$ where $v \ge 0$
 $y \le \min\{4, \frac{6}{3}\} = 2$.

• New extreme point (0, 2, 2, 0) with z = 10.

Simplex Method (6c)

- Common Rule 1: Choose the most negative variable/value in the objective row. This hopefully leads to the largest increase in the objective function.
 - Terminology: entering variable in pivot column.
- Rule 2: For each positive entry in the pivot column, compute the θ-ratio by dividing the row's last entry by the entry in the pivot column.

• Ex.:
$$\theta_u = \frac{4}{1} = 4$$
, $\theta_v = \frac{6}{3} = 2$.

Simplex Method (7)

- The row with the smallest θ determines the departing variable \rightarrow identifies pivot row.
- Departing variable: basic variable to become nonbasic in the next tableau.

u	1	1	1	0	4
v	1	3	0	1	6

Simplex Method (7b)

Divide all the entries in the pivot row by the pivot.

$$r\overset{\leftarrow}{ow}_{new}$$
: $\frac{1}{3}$ 1 0 $\frac{1}{3}$ 2.

Replace each of the other rows by the following difference:

 $row - c \cdot row_{new}$ (c: row's entry in pivot column).

$$row \ 1 - 1 \cdot row_{new} : \frac{2}{3} \ 0 \ 1 \ - \frac{1}{3} \ 2.$$

$$row \ 3 - (-5) \cdot row^{\leftarrow}_{new} : -\frac{4}{3} \ 0 \ 0 \ -\frac{5}{3} \ 10.$$

Simplex Method (8)

Next Simplex tableau:

• Basic feasible solution (0, 2, 2, 0) with z = 10.

Simplex Method (8b)

Final Simplex tableau:

- Basic feasible solution (3, 1, 0, 0) with z = 14.
- Optimal solution because all values in objective row are positive.

Maximum Matching

- Def.: A matching in a graph G is a subset of its edges with the property that no two edges share a vertex.
- Def.: A maximum matching is a matching with the largest number of edges.
- Maximum matching problem: find a maximum matching in a graph G.
- Simpler case: consider a bipartite graph where all the vertices can be partitioned into disjoint sets V and U, so that every edge connects a vertex in one of these sets in the other set.

Maximum Matching

- A graph is bipartite if it is 2-colorable.
- Def.: A perfect matching matches all vertices of a graph.

Stable Matching Problem

Goal: Given n men and n women, find a "suitable" matching.

$$Y = \{m_1, m_2, \dots, m_n\}$$
: set of *n* men.

$$X = \{w_1, w_2, \dots, w_n\}$$
: set of n women.

- Participants rate members of opposite sex (no ties).
- Each man lists women in order of preference from best to worst.
- Each woman lists men in order of preference from best to worst.

Stable Matching Problem (2)

• Men's preference profile:

	favorite		least favorite
	\downarrow		\
	$\overline{1^{st}}$	2^{nd}	3^{rd}
Xavier	Amy	Bertha	Clare
Yancey	Bertha	Amy	Clare
Zeus	Amy	Bertha	Clare

Stable Matching Problem (3)

Women's preference profile:

	favorite		least favorite
	\downarrow		\
	$\overline{1^{st}}$	2^{nd}	3^{rd}
Amy	Yancey	Xavier	Zeus
Bertha	Xavier	Yancey	Zeus
Clare	Xavier	Yancey	Zeus

Stable Matching Problem (4)

Representation in Ranking Matrix:

	Amy	Bertha	Claire
Xavier	1,2	2,1	3,1
Yancey	2,1	1, <mark>2</mark>	3,2
Zeus	1,3	2,3	3,3

Stable Matching Problem (5)

- Perfect matching: everyone is matched monogamously.
 - Each man is matched to exactly one woman.
 - Each woman is matched to exactly one man.
- Stability: no incentive for some pair of participants to undermine assignment by joint action.
 - In matching M, an unmatched pair m-w is unstable if man m and woman w prefer each other to current partners.
 - Unstable pair m-w could each improve by eloping.
- Stable matching: perfect matching with no unstable pairs.

Stable Matching Problem (6)

• Stable matching problem: Given the preference lists of n men and n women, find a stable matching if one exists.

Stable Matching Problem (7)

• Q: Is assignment X-C, Y-B, Z-A stable?

	favorite		least favorite
	\downarrow		\
	$\frac{1}{1^{st}}$	2^{nd}	3^{rd}
Xavier	Amy	Bertha	Clare
Yancey	Bertha	Amy	Clare
Zeus	Amy	Bertha	Clare

Stable Matching Problem (8)

• Q: Is assignment X-C, Y-B, Z-A stable?

	favorite		least favorite
	\downarrow		\
	$\overline{1^{st}}$	2^{nd}	3^{rd}
Amy	Yancey	Xavier	Zeus
Bertha	Xavier	Yancey	Zeus
Clare	Xavier	Yancey	Zeus

Stable Matching Problem (9)

- Q: Is assignment X-C, Y-B, Z-A stable?
- A: No. Bertha and Xavier will hook up.

	favorite		least favorite
	\downarrow		\downarrow
	$\overline{1^{st}}$	2^{nd}	3^{rd}
Xavier	Amy	Bertha	Clare
Yancey	Bertha	Amy	Clare
Zeus	Amy	Bertha	Clare

Stable Matching Problem (10)

- Q: Is assignment X-C, Y-B, Z-A stable?
- A: No. Bertha and Xavier will hook up.

	favorite		least favorite
	\downarrow		\
	$\overline{1^{st}}$	2^{nd}	3^{rd}
Amy	Yancey	Xavier	Zeus
Bertha	Xavier	Yancey	Zeus
Clare	Xavier	Yancey	Zeus

Stable Matching Problem (11)

- Q: Is assignment X-A, Y-B, Z-C stable?
- A: Yes.

	favorite		least favorite
	\downarrow		\
	$\overline{1^{st}}$	2^{nd}	3^{rd}
Xavier	Amy	Bertha	Clare
Yancey	Bertha	Amy	Clare
Zeus	Amy	Bertha	Clare

Stable Matching Problem (12)

- Q: Is assignment X-A, Y-B, Z-C stable?
- A: Yes.

	favorite		least favorite
	\downarrow		↓
	$\overline{1^{st}}$	2^{nd}	3^{rd}
Amy	Yancey	Xavier	Zeus
Bertha	Xavier	Yancey	Zeus
Clare	Xavier	Yancey	Zeus

Propose-And-Reject Algorithm

 Propose-and-reject algorithm. [Gale-Shapley 1962]. Intuitive method that guarantees to find a stable matching.

Propose-And-Reject Algorithm

```
ALGORITHM Propose - And - Reject
 Initialize each person to be free.
while (some man is free and hasn't proposed to every
woman) do
   Arbitrarily select a man m and choose
   w = \text{next woman on } m's list to whom m has not yet
   proposed
      if (w \text{ is free})
         assign m and w to be engaged
      else if (w prefers m to her fiance m')
         assign m and w to be engaged, and m' to be
         free
      else
         w rejects m
```

- Observation 1: Men propose to women in decreasing order of preference.
- Observation 2: Once a woman is matched, she never becomes unmatched; she only "trades up."
- Claim: Algorithm terminates after at most n^2 interations of while loop.
- Proof: Each time through the while loop a man proposes to a new woman. There are only n^2 possible proposals.

	1^{st}	2^{nd}	3^{rd}	4^{th}	5^{th}
Victor	Α	В	С	D	E
Wyatt	В	C	D	A	Ε
Xavier	C	D	Α	В	Ε
Yancey	D	Α	В	C	Ε
Zeus	Α	В	С	D	Е

• n(n-1)+1 proposals required.

	1^{st}	2^{nd}	3^{rd}	4^{th}	5^{th}
Amy	W	X	Υ	Z	V
Bertha	X	Υ	Z	V	W
Clare	Y	Z	V	W	X
Diane	Z	V	W	X	Y
Erika	V	W	X	Y	Z

• n(n-1)+1 proposals required.

- Claim: All men and women get matched.
- Proof (by contradiction):
 - Suppose, for the sake of contradiction, that Zeus is not matched upon termination of the algorithm.
 - Then some woman, say Amy, is not matched upon termination.
 - By Observation 2, Amy was never proposed to.
 - But, Zeus proposes to everyone, since he ends up unmatched.

Proof of Correctness: Stability

- Claim: No unstable pairs.
- Proof (by contradiction):
 - Suppose A-Z is an unstable pair: each prefers each other to partner in Gale-Shapley matching S^* .
 - Case 1: Z never proposed to A.
 - \Rightarrow Z prefers his GS partner to A.
 - \Rightarrow A-Z is stable.
 - Case 2: Z proposed to A.
 - ⇒ A rejected Z (right away or later).
 - \Rightarrow A prefers her GS partner to Z.
 - \Rightarrow A-Z is stable.
 - In either case A-Z is stable, a contradiction.

Summary

- Stable matching problem. Given *n* men and *n* women, and their preferences, find a stable matching if one exists.
- Gale-Shapley algorithm. Guarantees to find a stable matching for any problem instance.