Esercizi del corso

Algebra Lineare

Secondo semestre 2024/2025

Foglio 3: Basi e dimensioni

Stabilire se ognuno dei seguenti sottoinsiemi di \mathbb{R}^3 è formato da vettori linearmente indipendenti e se è un insieme di generatori. Se il sottoinsieme non costituisce una base di \mathbb{R}^3 , completarlo ad una base o estrarre una base.

(a)
$$S = \{(1,0,0), (1,1,0), (0,1,1)\};$$

(b)
$$T = \{(1,0,0), (0,1,1), (5,1,1)\};$$

(c)
$$U = \{(1,0,0), (5,1,1)\};$$

(d)
$$V = \{(1,1,0), (0,1,1), (5,1,1), (1,2,1)\};$$

Esercizio 2 (Generatori e basi)

Stabilire se ognuno dei seguenti sottoinsiemi di \mathbb{R}^4 è formato da vettori linearmente indipendenti e se è un insieme di generatori. Se il sottoinsieme non costituisce una base di \mathbb{R}^4 , completarlo ad una base o estrarre una base.

(a)
$$S = \{(1,0,0,0), (1,1,0,0), (1,1,1,0), (1,1,1,1)\};$$

(b)
$$T = \{(1,0,0,0), (1,1,1,0), (1,1,1,1)\};$$

(c)
$$U = \{(1,0,0,0), (0,1,1,1), (1,1,1,0), (1,1,1,1)\};$$

(d)
$$V = \{(1,0,0,0), (0,1,1,1), (1,1,1,0), (1,1,1,1), (0,3,0,0)\};$$

Esercizio 3 (Generatori e basi)

Stabilire se ognuno dei seguenti sottoinsiemi di $\mathbb{R}_2[x]$ è formato da vettori linearmente indipendenti e se è un insieme di generatori. Se il sottoinsieme non costituisce una base di $\mathbb{R}_2[x]$, completarlo ad una base o estrarre una base.

(a)
$$S = \{1, x, x^2\};$$

(f)
$$S = \{1, x, 2 + x\};$$

(b)
$$S = \{1, x\};$$

(g)
$$S = \{1, x, x^2, 2 - x\};$$

(c)
$$S = \{x, x^2\};$$

(h)
$$S = \{2 - x, x, x^2\};$$

(d)
$$S = \{1 + x, x, x^2\};$$

(i)
$$S = \{1, x + x^2, 1 + x + x^2\};$$

(e)
$$S = \{1, x, x^2, 1 + x\};$$

(j)
$$S = \{1, x + x^2, 1 + x - x^2\};$$

Pagina Moodle del corso

(k) $S = \{x + x^2, 1 + x + x^2\};$

(a) Stabilire se i vettori di \mathbb{R}^4

$$v_1 = (1, 0, 2, -2), \quad v_2 = (2, 0, 2, 1) \quad e \quad v_3 = (1, 1, 0, 1)$$

sono linearmente indipendenti.

- (b) Stabilire se $S = (v_1, v_2, v_3)$ è una base di \mathbb{R}^4 .
- (c) È possibile trovare un vettore v_4 che completi S a una base di \mathbb{R}^4 ?

Esercizio 5 (Sottospazi vettoriali).....

Sono dati i vettori di \mathbb{R}^3 :

$$v_1 = (1, 2, 1), \quad v_2 = (1, 0, 2), \quad v_3 = (1, k, -1).$$

- (a) Per quali valori di $k \in \mathbb{R}$ i tre vettori formano una base di \mathbb{R}^3 ?
- (b) Calcolare, al variare di $k \in \mathbb{R}$, la dimensione del sottospazio $E = \text{Span}\{v_1, v_2, v_3\}$.
- (c) Calcolare, al variare di $k \in \mathbb{R}$, la dimensione del sottospazio $F = \text{Span}\{v_2, v_3\}$.

Esercizio 6 (Soluzioni di sistemi lineari).....

Sono dati i seguenti sistemi lineari omogenei nelle incognite $x, y \in z$:

$$S_1: x-y+2z=0$$
 $S_2: \begin{cases} x+y-z=0\\ x-3y=0 \end{cases}$ $S_3: \begin{cases} x+y-z=0\\ x-3y=0\\ 2x+y=0 \end{cases}$

Determinare in ciascun caso una base (e quindi la dimensione) del sottospazio di \mathbb{R}^3 formato dalle soluzioni del sistema.

Esercizio 7 (Soluzioni di sistemi lineari).....

Sono dati i seguenti sistemi lineari omogenei nelle incognite x,y,z e w:

$$S_1: x - 2y + w = 0$$
 $S_2: \begin{cases} x - 2y + w = 0 \\ x + y + z = 0 \end{cases}$

Determinare in ciascun caso una base (e quindi la dimensione) del sottospazio di \mathbb{R}^4 formato dalle soluzioni del sistema.

Esercizio 8 (Sottospazi vettoriali).....

- (a) Stabilire per quali valori di $t \in \mathbb{R}$ il vettore u = (2, t, 0, 1) appartiene al sottospazio W generato da v = (1, 0, 0, 1) e w = (0, 1, 0, 1).
- (b) Calcolare poi la dimensione del sottospazio di \mathbb{R}^4 generato da u, v e w al variare di $t \in \mathbb{R}$.