Metoda mnożników Lagrange'a

Twierdzenie o mnożnikach Lagrange'a. U jest otwartym podzbiorem \mathbb{R}^n , g jest funkcją, a

$$S = \{x \in U : g(x) = c\}$$

Jeśli funkcja $f|_S$ przyjmuje minimum lokalne w punkcie x_0 oraz $\nabla g(x_0) \neq 0$ to: $\nabla f(x_0) = \lambda \nabla g(x_0)$ dla pewnej λ

W sytuacji, gdy mamy zbiór zwarty o niepustym wnętrzu i brzegu za-danym jako poziomica (1.19), procedura znajdowania wartości największej i najmniejszej funkcji jest następująca:

- 1. Znale1ć punkty krytyczne funkcji wewnątrz zbioru, tzn. punkty stacjonarne oraz punkty, w których nie można obliczyć pochodnych cząstkowych.
- 2. Znale
1ć punkty krytyczne funkcji obciętej do brzegu zbioru, np. metodą mnożników Lagrange'a.
- 3. Obliczyć wartości funkcji w znalezionych punktach.
- 4. Wybrać wartość największą i najmniejszą.

Dla wiecej zmiennych: Załóżmy, że wektory $\nabla g1(x0), \nabla g2(x0), ..., \nabla gk(x0)$ są liniowo niezależne. Jeśli funkcja f S posiada ekstremum w punkcie $x_0 \in S$, to

$$\nabla f(x0) = \lambda_1 \nabla g_1(x_0) + \lambda_2 \nabla g_2(x_0) + \dots + \lambda_k \nabla g_k(x_0)$$

dla pewnych stałych $\lambda_1, \lambda_2, ..., \lambda_k$.

Tw. o funkcji uwikłanej

Uwaga. Aby znale
1ć punkt x_0 trzeba rozwiązać n+k równań przy
n+k niewiadomych: n współrzędnych i k lambd.

Załóżmy, że funkcja $F: \mathbb{R}^n \to \mathbb{R}$ jest klasy C^1 .

Oraz $F(x_0,z_0)=0$ oraz $\frac{\partial F}{\partial z}(x_0,z_0)\neq 0$ Wtedy równanie F(x,z)=0 ma jednoznacznie rozwiązanie w pobliżu (x_0,z_0)

Tw. o funkcji odwrotnej

Niech $U \subset$ będzie otwartym podzbiorem przestrzeni \mathbb{R}^n . Funkcje $f_1, f_2, \dots f_n$ są klasy C^1 na U. Załóżmy, że układ * ma rozwiązanie x = a, y = b dla $a \in U$. Jeśli:

$$\Delta = det \left[\frac{\partial f_i}{\partial x_j}(a) \right] \neq 0$$

To układ ma jednoznacznie rozwiązanie dla y w pobliżu b i x w pobliżu a