Investigation of Bonding Reliability in Low-Temperature Curable Photo-Sensitive Polyimide Film

Jui-Han Liu, Bruce Peng, Demin Liu, and Kuan-Neng Chen | National Yang-Ming Chiao Tung University

Introduction and Motivation

- Photo-sensitive Polyimide (PSPI) is widely used in advanced packaging because of its convenient processing, cost-effectiveness, and electrical performance.
- To mitigate warpage concerns and enhance integration yield, we aim for a lower thermal budget, achieving curing and bonding temperatures below 200 °C.
- As curing temperature lowered, cross-linked polymer film quality decreased, the trade-off between process requirements and polymer chemistry was investigated.

Organic Interposer for rapid data access

Material Properties

PI_A serves as the benchmark material. PI_A+ includes an additional curing catalyst,
PI_B incorporates a crosslinker for a 150°C-curing, and PI_C is a preimidized film.

Material Candidate	Polyimide_A	Polyimide_A+	Polyimide_B	Polyimide_C
Type	Precursor	Precursor	Precursor	Pre-imidized
Curing Condition (°C.Hr)	230.3H	200.3H	150.3H	170.2H
Tensile Strength (MPa)	181	178	124	123
Young's Modulus (GPa)	2.49	2.62	2.8	2.8
Tg (°C)	208	210	182	242
CTE (ppm/°C)	57	50	71.3	62
Elongation (%)	83	74	68	65

Experimental Procedure

- PI is spin-coated onto 4-inch substrate, cured in a nitrogen oven, followed by wafer-level bonding under 4*10⁻⁶ torr working pressure, 10k N of force for 30 minutes.
- After bonding, samples are diced into 1*1 cm² dies, SEM image and pulling test are used for bonding quality verification.

Polyimide Imidization

Reliability Test Condition

- > Temperature cycling test
 - -55 °C ~125 °C (500/1000 cycle)
- Pressure Cooker Test
 - 121°C / 100% R.H (96 hrs)
- High Temperature Storage
 - 150°C (24/48 hrs)

Description

- TCT testing, as a fatigue test, impacts the mechanical properties of the films.
- PCT testing, under rigorous humidity conditions, intrusion of moisture leads to gradual hydrogen failure between films.
- High-temp. environmental test by storing under 150 °C for 24 / 48 hours

Results and Discussion

- The difference between Tg and bonding temperature affect the pull strength of PI films.
- Reliable bonding strength is achieved below 200 °C.

- PI_B stands out due to its lowest Tg before the reliability tests.
- After PCT test, failure of Hydrogen bond makes the bonding strength comparable.
- Bonding strength of each film declines after reliability tests but retains sufficient strength.

Summary and Future Work

- Tested PI films exhibit good bonding strength after each reliability test, confirming the robustness of low-temperature-cured PI bonding below 200 °C.
- 3DIC lab at NYCU is currently working on the low-temperature Cu/Polyimide hybrid bonding platform, combining Cu-to-Cu bonding with passivation metal.

Cu-to-Cu bonding with passivation metal

Cu / Polyimide hybrid bonding

Acknowledgement

• I would like to thank NYCU 3DIC lab and Semiconductor Research Corporation (SRC) for supporting this research.

