Zadání semest rál ního projekt u IEL 2017/18

Vypracujte protokol, který bude obsahovat postup výpočtu, výsledky, Vaše jméno a login. V závěru protokolu uveď te přehlednou tabulku s čísly úloh, Vašimi variantami zadání a výsledky (za chybějící tabulku bude BODOVÁ SRÁŽKA!!!).

Tento protokol se odevzdává ve formátu PDF a zdrojový soubor v TEXu (zabalený v zipu, pojmenovaný podle loginu, např. xnovak00.zip). Odevzdání zdrojového programu v TEXu není povinné, ale bude garantovi předmětu sloužit při případném rozhodování o korekci výsledného hodnocení.

Veškeré výpočty provádějte v obecném tvaru a číselné hodnoty dosaď te až do výsledných vzorců. Z vypracovaného projektu musí být zřejmý obecný postup výpočtu. Výsledky uvádějte na 4 platná desetinná místa. Dbejte na správný převod jednotek úhlů (radiány na stupně - pozor na kvadrant u komplexního čísla!!!).

Za protokol je možné získat max. 12 bodů v závislosti na věcné správnosti postupu výpočtu a estetických kvalitách protokolu (9 bodů za správné řešení a 3 body za zpracování). Pro získání zápočtu v předmětu IEL je zapotřebí získat ze semestrálního projektu MINIMÁLNĚ 3 BODY !!! Protokol odevzdejte do 20. 12. 2017 prostřednictvím IS FIT (maximální velikost souboru je nastavena na 2MB). Projekty odevzdané po tomto termínu nebudou hodnoceny.

Důležité upozornění: Projekty do předmětu IEL má plně v kompetenci pouze a jedině dr. Vádav Šátek (satek@fit.vutbr.cz). Neobtěžujte svými dotazy na projekt garanta a jiné vyučující.

 $\boxed{1}$ (2 body) Stanovte napětí $U_{R\,1}$ a proud $I_{R\,1}$. Použijte metodu postupného zjednodušování obvodu.

sk.	U ₁ [V]	U ₂ [V]	R ₁ [Ω]	R ₂ [Ω]	R ₃ [Ω]	R ₄ [Ω]	R ₅ [Ω]	R ₆ [Ω]	R ₇ [Ω]	R ₈ [Ω]
Α	80	120	350	650	410	130	360	750	310	190
В	95	115	650	730	340	330	410	830	340	220
С	100	80	450	810	190	220	220	720	260	180
D	105	85	420	980	330	280	310	710	240	200
Е	115	55	485	660	100	340	575	815	255	225
F	125	65	510	500	550	250	300	800	330	250
G	130	60	380	420	330	440	450	650	410	275
Н	135	80	680	600	260	310	575	870	355	265

 $\fbox{2}$ (1 bod) Stanovte napětí U_{R3} a proud I_{R3} . Použijte metodu Théveninovy věty.

sk.	U ₁ [V]	U ₂ [V]	$R_1[\Omega]$	R ₂ [Ω]	R_3 [Ω]	R ₄ [Ω]
Α	50	100	525	620	210	530
В	100	50	310	610	220	570
С	200	70	220	630	240	450
D	150	200	200	660	200	550
Е	250	150	335	625	245	600
F	130	180	350	600	195	650
G	180	250	315	615	180	460
Н	220	190	360	580	205	560

 $\fbox{3}$ (2 body) Stanovte napětí U_{R5} a proud I_{R5} . Použijte metodu uzlových napětí (U_A , U_B , U_C).

sk.	U [V]	I ₁ [A]	I ₂ [A]	R ₁ [Ω]	R ₂ [Ω]	R ₃ [Ω]	R ₄ [Ω]	R ₅ [Ω]
Α	120	0.9	0.7	53	49	65	39	32
В	150	0.7	0.8	49	45	61	34	34
С	110	0.85	0.75	44	31	56	20	30
D	115	0.6	0.9	50	38	48	37	28
Е	135	0.55	0.65	52	42	52	42	21
F	145	0.75	0.85	48	44	53	36	25
G	160	0.65	0.45	46	41	53	33	29
Н	130	0.95	0.50	47	39	58	28	25

4 (2 body)

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t)$, $u_2 = U_2 \cdot \sin(2\pi f t)$. Ve vztahu pro napětí $u_{C_1} = U_{C_1} \cdot \sin(2\pi f t + \varphi_{C_1})$ určete $|U_{C_1}|$ a φ_{C_1} . Použijte metodu smyčkových proudů.

Pozn: Pomocné "směry šipek napájecích zdrojů platí pro speciální časový okamžik (t = $\frac{\pi}{2\omega}$)."

sk.	U ₁ [V]	U ₂ [V]	$R_1[\Omega]$	R ₂ [Ω]	R ₃ [Ω]	L ₁ [mH]	L ₂ [mH]	C ₁ [μF]	C ₂ [µF]	f [Hz]
Α	35	55	12	14	10	120	100	200	105	70
В	25	40	11	15	12	100	85	220	95	80
С	35	45	10	13	11	220	70	230	85	75
D	45	50	13	15	13	180	90	210	75	85
Е	50	30	14	13	14	130	60	100	65	90
F	20	35	12	10	15	170	80	150	90	65
G	55	50	13	12	11	140	60	160	80	60
Н	65	60	10	10	12	160	75	155	70	95

 $\boxed{5}$ (2 body) Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení u_c = f (t). Proveď te kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

sk.	U [V]	C [F]	R [Ω]	u _C (0) [V]
Α	20	50	10	9
В	40	10	20	8
С	60	5	30	7
D	50	5	25	6
Е	80	30	40	5
F	45	30	15	4
G	75	50	25	3
Н	5	50	40	2

