A3-Assignment-CH3.1

John Akujobi - Math 374 - Spring 2025

(i) Info

All web searches referenced were done with Perplexity app

7.

? Question

Prove Inequality (1).

$$|r-c_n| \leq \frac{b_0-a_0}{2^{n+1}}$$

(i) Info

Information from our Text Book

If the bisection algorithm is now applied and if the computed quantities are denoted by $a_0, b_0, c_0, a_1, b_1, c_1$, and so on, then by the same reasoning,

$$|r-c_n| \leq rac{b_n-a_n}{2} \quad (n \geq 0)$$

Since the widths of the intervals are divided by 2 in each step, we conclude that

$$|r-c_n| \leq \frac{b_0-a_0}{2^{n+1}}$$

To summarize, a theorem can be written as follows:

Bisection Method Theorem: If the bisection algorithm is applied to a continuous function f on an interval [a,b], where f(a)f(b)<0, then, after n steps, an approximate root will have been computed with error at most:

$$\frac{b-a}{2^{n+1}}$$

If an error tolerance has been prescribed in advance, it is possible to determine the number of

steps required in the bisection method. Suppose that we want:

$$|r-c_n|<\epsilon$$

Then it is necessary to solve the following inequality for n:

$$rac{b-a}{2^{n+1}}<\epsilon$$

By taking logarithms (with any convenient base), we obtain:

$$n>\frac{\log(b-a)-\log(2\epsilon)}{\log 2}$$

Solution

$$|r-c_n|\leq \frac{b_0-a_0}{2^{n+1}}$$

- The bisection method produces a sequence of intervals $[a_n,b_n]$ that contain the root r, with the midpoint given by $c_n=\frac{a_n+b_n}{2}$. Since r lies in the interval, we have $|r-c_n|\leq \frac{b_n-a_n}{2}$.
- At each step, the interval length is halved, so we get $b_n-a_n=rac{b_0-a_0}{2^n}.$
- Substituting $b_n-a_n=rac{b_0-a_0}{2^n}$ into the error bound gives us $|r-c_n|\leq rac{1}{2}\cdotrac{b_0-a_0}{2^n}=rac{b_0-a_0}{2^{n+1}}.$
- Sooo, we have proven that $|r-c_n| \leq rac{b_0-a_0}{2n+1}$.

8.

Question

If a=0.1 and b=1.0, how many steps of the bisection method are needed to determine the root with an error of at most $\frac{1}{2} \times 10^{-8}$?

Solution

- First, what do i have here:
 - Initial interval: a = 0.1 and b = 1.0, so the width is b a = 0.9.
 - Error tolerance that we want: $\epsilon = \frac{1}{2} \times 10^{-8}$.
- With the bisection method, after n steps the error is bounded by $|r-c_n| \leq rac{b_0-a_0}{2^{n+1}}.$

• To guarantee an error of at most ϵ , we require $\frac{0.9}{2^{n+1}} \leq \frac{1}{2} \times 10^{-8}$.

- This inequality can be rearranged as follows:
 - 1. Multiply both sides by 2^{n+1} :

$$0.9 \le \frac{1}{2} \times 10^{-8} \cdot 2^{n+1}$$
.

2. Multiply both sides by 2:

$$1.8 \le 10^{-8} \cdot 2^{n+1}.$$

3. Rearranging gives:

$$2^{n+1} \ge \frac{1.8}{10^{-8}} = 1.8 \times 10^8$$
.

• Taking logarithms (base 2):

$$n+1 \ge \log_2(1.8 \times 10^8) = \log_2(1.8) + \log_2(10^8).$$

- I remember that:
 - $\log_2(10^8) = 8\log_2(10) \approx 8 \times 3.32193 \approx 26.57544$
 - $\log_2(1.8) \approx 0.848$
- Thus,

$$n+1 \ge 26.57544 + 0.848 \approx 27.42344.$$

Since n + 1 must be an integer, we have

$$n+1 \geq 28 \implies n \geq 27.$$

✓ Success

Soo, we need at least 27 steps

14.

Question

Denote the successive intervals that arise in the bisection method by $[a_0, b_0]$, $[a_1, b_1]$, $[a_2, b_2]$, and so on. Show that

- a. $a_0 \le a_1 \le a_2 \le \ldots$ and $b_0 \ge b_1 \ge b_2 \ge \ldots$
- b. $b_n a_n = 2^{-n}(b_0 a_0)$
- c. $a_nb_n + a_{n-1}b_{n-1} = a_{n-1}b_n + a_nb_{n-1}$ for all n.

(a) $a_0 \le a_1 \le a_2 \le \dots$ and $b_0 \ge b_1 \ge b_2 \ge \dots$

(i) Info

Searching online, i found out that this is called the monotonicity of Endpoints

At each step of the bisection method an interval is chosen that is a subinterval of the previous one. That is, if we start with the interval $[a_n, b_n]$ and compute the midpoint $c_n = \frac{a_n + b_n}{2}$, then either

- the new interval is $[a_n, c_n]$, or
- it is $[c_n, b_n]$.

In the first case, the left endpoint remains the same $(a_{n+1}=a_n)$ and the right endpoint becomes c_n with $a_n < c_n \le b_n$. In the second case, the right endpoint remains the same $(b_{n+1}=b_n)$ and the left endpoint becomes c_n with $a_n \le c_n < b_n$. Thus, in every step we have

$$a_n \leq a_{n+1}$$
 and $b_{n+1} \leq b_n$.

✓ Success

This shows that the sequence a_0, a_1, a_2, \ldots is non-decreasing and b_0, b_1, b_2, \ldots is non-increasing.

(b)
$$b_n - a_n = 2^{-n}(b_0 - a_0)$$

(i) Info

Searching online, i found out that this is called the Length of the Intervals

- The initial interval has length b_0-a_0 . At each step the interval is halved, so that after one step $b_1-a_1=\frac{b_0-a_0}{2}$
- By induction, after n steps the length of the interval is $b_n-a_n=rac{b_0-a_0}{2^n}$.

(c)
$$a_nb_n + a_{n-1}b_{n-1} = a_{n-1}b_n + a_nb_{n-1}$$
 for all n .

(i) Info

Searching online, i found out that this is called the Endpoint Product Identity

We need to show that for all n

$$A_n b_n + a_{n-1} b_{n-1} = a_{n-1} b_n + a_n b_{n-1}$$

• Subtract the right-hand side from the left-hand side:

$$A_nb_n + a_{n-1}b_{n-1} - a_{n-1}b_n - a_nb_{n-1}$$

• Group the terms as follows:

$$ig(a_nb_n-a_nb_{n-1}ig)-ig(a_{n-1}b_n-a_{n-1}b_{n-1}ig)=a_n(b_n-b_{n-1})-a_{n-1}(b_n-b_{n-1}).$$

• Factor out $b_n - b_{n-1}$:

$$(a_n - a_{n-1})(b_n - b_{n-1}).$$

• In the bisection method, in each iteration only one endpoint changes (either $a_n = a_{n-1}$ or $b_n = b_{n-1}$), so one of the factors is zero. Hence,

$$(a_n - a_{n-1})(b_n - b_{n-1}) = 0,$$

Which means

$$A_nb_n + a_{n-1}b_{n-1} = a_{n-1}b_n + a_nb_{n-1}.$$

15.

Question

(Continuation) Can $a_0 = a_1 = a_2 = \dots$ happen?

I searched online that constant left endpoints are possible.

It happens if at every step the interval selected is of the form $[a_n,c_n]$ instead of $[c_n,b_n]$. In that case the left endpoint stays the same throughout the iterations (i.e. $a_{n+1}=a_n$ for all n). Here the, function values meet $f(a_n)f(c_n)<0$ at every step, which makes the algorithm to choose the left half of the interval every time.

Soo, constant Left endpoints like a0=a1=a3=.... are possible

16.

② Question

(Continuation) Let $c_n=(a_n+b_n)/2$. Show that >

$$\lim_{n\to\infty}c_n=\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n.$$

Define the midpoint $c_n = \frac{a_n + b_n}{2}$. We have already shown that the sequence a_n is non-decreasing and the sequence b_n is non-increasing. Since each a_n is bounded above (by any b_n) and each b_n is bounded below (by any a_n), both sequences converge. Denote

$$\lim_{n \to \infty} a_n = \ell_a \quad ext{and} \quad \lim_{n \to \infty} b_n = \ell_b.$$

From part (b) we know

$$B_n-a_n=rac{b_0-a_0}{2^n}$$

• Taking the limit as $n o \infty$ yields

$$\lim_{n o\infty}(b_n-a_n)=0$$
,

So that

$$\ell_b - \ell_a = 0$$
 or $\ell_a = \ell_b$

• Since $c_n = \frac{a_n + b_n}{2}$, its limit is

$$lim_{n o\infty}c_n=rac{ ilde{\ell}_a+\ell_b}{2}=\ell_a.$$

So, we conclude that

$$\lim_{n\to\infty} c_n = \lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n$$
.

(i) Info

Searching online, i found out that this is called the Convergence of the Endpoints and Midpoints

22.

Question

If the bisection method is applied with starting interval $[2^m, 2^{m+1}]$, where m is a positive or negative integer, how many steps should be taken to compute the root to full machine precision on a 32-bit word-length computer?

Solution

• We are given a starting interval of the form $[2^m, 2^{m+1}]$, where m is any integer. The width of this interval is

$$b_0 - a_0 = 2^{m+1} - 2^m = 2^m$$
.

• After n steps, the error bound is

$$|r-c_n| \leq rac{2^m}{2^{n+1}} = 2^{m-n-1}.$$

• On a 32-bit word-length computer (using IEEE single precision), the number is represented with a 24-bit significand (including the implicit bit). This means that for numbers of magnitude about 2^m , the spacing between adjacent representable numbers is approximately 2^{m-23} .

- To achieve full machine precision, the error must be no larger than this spacing. Hence, we require $2^{m-n-1} < 2^{m-23}$.
- Canceling 2^m from both sides yields: $2^{-n-1} < 2^{-23}$.
- Taking logarithms (base 2):

$$-n-1 \le -23 \implies n+1 \ge 23 \implies n \ge 22.$$

✓ Success

Sooo, we need 22 steps to compute the root to full machine precision.