MATH-300 Andrew Jones

Worksheet 3

Let $A,\ B,\ and\ C$ be sets. Prove or disprove the following statements.

1. If $A \cap B = \emptyset$ and $B \cap C = \emptyset$, then $A \cap C = \emptyset$

	<i>Proof.</i> Let $A=\{a\}$ and $C=\{a,c\}$ and $B=\{b\}$. Observe $\{a\}\cap\{b\}=\emptyset$ and $\{b\}\cap\{a,c\}=\emptyset$ while $\{a\}\cap\{a,c\}=\{a\}$
2.	If $A \not\subseteq B$ and $B \not\subseteq C$, then $A \not\subseteq C$
	<i>Proof.</i> Let $A=\{a\}$ and $C=\{a,c\}$ and $B=\{b\}$ Observe $\{a\}\not\subseteq\{b\}$ and $\{b\}\not\subseteq\{a,c\},$ while $\{a\}\subset\{a,c\}$
3.	If $A \subseteq \emptyset$, then $a = \emptyset$
	<i>Proof.</i> Assume the negation $A\subseteq\emptyset$ and $A\neq\emptyset$. If $A\neq\emptyset$ then $A\not\subseteq\emptyset$ by definition of \emptyset
4.	If $A \subseteq C$ and $B \subseteq C$, then $A \cap B \subseteq C$
	<i>Proof.</i> Assume that $A\subseteq C$ and $B\subseteq C$ there for 2 cases can occur for $A\cap B\subseteq C$
	Case 1: $A \cap B = \emptyset$ there for $A \cap C \subseteq C$ as $\emptyset \subset C$ Case 2: $A \cap B \neq \emptyset$ then $\forall e \in A \cap B : e \in C$ there for $A \cap B \subseteq C$
5.	If $f:A\to B$ is injective and $g:B\to C$ is injective, then $g\circ f:A\to C$ is injective.
	<i>Proof.</i> Assume that $\forall x,y \in A$ if $f(x)=f(y)$ then $x=y$ and the same for g . $f(A)\subseteq B$ and $g(B)\subseteq C$ there for as both f and g are injective, the subset of B passed from f to g will also be injective. Hence $g\circ f$ is injective.
6.	If $f:A\to B$ is surjective and $g:B\to C$ is surjective, then $g\circ f:A\to C$ is surjective
	<i>Proof.</i> By the definition of surjective f maps to all values in B , similarly g maps to all values in C . Hence $g \circ f$ maps to all values in C and is surjective. \Box
7.	Give an example of a function $f:A\to A$ that is injective but not surjective.

	<i>Proof.</i> $g:b\mapsto 2b$ maps to only the even co-domain
8.	Give an example of a function $g:A\to A$ that is surjective but not injective.
	<i>Proof.</i> $f:a\mapsto \sin(a)$ every number in the co-domain is covered, but multiple numbers in the domain map to the same value.
9.	Let $f:A\to B$ and $g:B\to A$. If $g\circ f=id_a$, then both f and g are bijections.
	<i>Proof.</i> As previously proved the composition of two surjective functions are surjective and the same for injective, hence for $g \circ f$ to be bijective both f and g must also be bijective.
10.	If $f:A\to A$ is surjective, and if A is a finite set, then f is injective.
	<i>Proof.</i> By definition of surjective $\forall a \in A : \exists b \in A : f(b) = a$. By definition of a function no parameter may map to more than one value. Hence, if the domain and co-domain are both a finite set and the function is surjective then the function must be injective.
11.	If $f: A \to A$ satisfies the property that $f \circ f = id_a$ then f is a bijection.
	<i>Proof.</i> As previously proved the composition of two surjective functions are surjective and the same for injective, hence for $f \circ f$ to be bijective f must also be bijective.