JUSTIFIQUEU TOTES LES RESPOSTES

1. [3 punts]

- (a) Demostreu que tot graf d'ordre $n \geq 2$ té almenys dos vèrtexs del mateix grau.
- (b) Doneu la definició de vèrtex de tall i d'aresta pont. Doneu una caracterització d'aresta pont. És possible que un graf tingui vèrtexs de tall, però no tingui cap aresta pont?
- (c) Enuncieu el Teorema de Dirac. Doneu un contraexemple que mostri que el recíproc no és cert. Doneu un exemple que mostri que la condició del teorema és ajustada.
- 2. [3 punts] Sigui G un graf bipartit d'ordre $n \geq 3$.
 - (a) Demostreu que si G és hamiltonià, aleshores l'ordre de G ha de ser parell.
 - (b) Demostreu que si $n \geq 5$, aleshores el graf complementari de G no pot ser bipartit.
 - (c) Demostreu que G és bipartit complet si i només si el diàmetre de G és 2.
- 3. [4 punts] Sigui $r \ge 2$ un enter. Sigui $H_r = (V_r, A_r)$ el graf tal que V_r és el conjunt de les paraules binàries de longitud r (amb l'alfabet $\{0,1\}$) i A_r està definit d'acord a la regla següent: dues paraules són adjacents si i només si difereixen en una única posició. Per exemple, per a r = 3 el conjunt de vèrtexs és $V_3 = \{000, 001, 010, 011, 100, 101, 110, 111\}$ i el conjunt de vèrtexs adjacents al vèrtex 100 és $\{000, 110, 101\}$.
 - (a) Calculeu l'ordre, la seqüència de graus i la mida del graf H_r en funció de r.
 - (b) Calculeu el diàmetre i el radi de H_r en funció de r.
 - (c) Per a quins valors de r és H_r eulerià?
 - (d) Doneu els arbres generadors obtinguts a l'aplicar els algorismes BFS i DFS al graf H_3 prenent com a vèrtex inicial 000 i els vèrtexs ordenats lexicogràficament (o sigui, amb l'ordre: 000, 001, 010, 011, 100, 101, 110, 111). Indiqueu en quin ordre s'obtenen els vèrtexs de l'arbre generador en cada cas. Són isomorfs els arbres obtinguts?

Instruccions

- La durada de l'examen és de 1h 45m.
- Cal entregar les 3 preguntes per separat.
- Escriviu amb tinta negra o blava.
- No es poden utilitzar apunts, llibres, calculadores, mòbils,...

Informacions

- Les notes es publicaran com a tard el dia 16 de gener a la tarda.
- La revisió es farà el dia 17 de gener a les 15:15 a l'aula A5202.

Model de solució

1. [3 punts]

- (a) Demostreu que tot graf d'ordre $n \geq 2$ té almenys dos vèrtexs del mateix grau.
 - **Solució.** Els graus dels vèrtexs d'un graf d'ordre n són valors entre 0 i n-1, és a dir, hi ha exactament n valors possibles. Si no hi hagués dos vèrtexs amb el mateix grau, la seqüència de graus hauria de ser $n-1, n-2, \ldots, 2, 1, 0$. Però això no és possible si $n \geq 2$, ja que implica que hi ha un vèrtex de grau 0, o sigui no adjacent a cap altre vèrtex, i un vèrtex de grau n-1>0, o sigui adjacent a tots els altres vèrtexs.
- (b) Doneu la definició de vèrtex de tall i d'aresta pont. Doneu una caracterització d'aresta pont. És possible que un graf tingui vèrtexs de tall, però no tingui cap aresta pont?
 - **Solució.** Sigui G = (V, A) un graf. Un vèrtex u és vèrtex de tall en G si el graf G u té més components connexos que G. Una aresta a de G és aresta pont si el graf G a té més components connexos que G. Una caracterització de les arestes pont és la següent: una aresta a és pont si i només si a no és de cap cicle.
 - Hi pot haver grafs amb vèrtexs de tall que no tingui arestes pont. Per exemple, el graf $G = ([5], \{12, 23, 13, 14, 45, 15\})$ no té arestes pont, perquè totes són d'algun cicle, però 1 és un vèrtex de tall.
- (c) Enuncieu el Teorema de Dirac. Doneu un contraexemple que mostri que el recíproc no és cert. Doneu un exemple que mostri que la condició del teorema és ajustada.

Solució.

Teorema de Dirac. Si G és un graf d'ordre $n \ge 3$ tal que per a tot vèrtex v es compleix que $g(v) \ge n/2$, aleshores G és hamiltonià.

Exemple que mostra que el recíproc no és cert. Qualsevol graf cicle C_n amb $n \ge 5$. En efecte, C_n és hamiltonià, però per a tot vèrtex u es compleix $g(u) = 2 < 5/2 \le n/2$.

Exemple que mostra que la designaltat del teorema no es pot millorar. Per a n senar, considerem el graf G d'ordre n consistent en la reunió de dos grafs complets $K_{(n-1)/2}$ juntament amb un vèrtex addicional z que no és de cap d'ells però que és adjacent a tots els vèrtexs de cadascun dels complets.

Els graus de tots els vèrtexs de G diferents de z són (n-1)/2 i el grau de z és n-1. Tots els graus són més grans o iguals que (n-1)/2 i, en canvi, no és un graf hamiltonià perquè z és un vèrtex de tall. Per tant, reduint de n a n-1, el teorema de Dirac deixa de ser cert.

- **2.** [3 punts] Sigui G un graf bipartit d'ordre $n \geq 3$.
 - (a) Demostreu que si G és hamiltonià, aleshores l'ordre de G ha de ser parell.
 - **Solució.** Suposem que G = (V, A) és un graf hamiltonià d'ordre n amb conjunt de vèrtexs $\{u_1, \ldots, u_n\}$ i que $u_1u_2 \ldots u_nu_1$ és un cicle hamiltonià en G. Per ser G bipartit, existeix una partició $V = V_1 \cup V_2$ tal que totes les arestes tenen un extrem en V_1 i l'altre a V_2 . Per tant, vèrtexs consecutius del cicle són de parts diferents, és a dir, els que tenen subíndex senar són d'una part, podem suposar que aquesta és V_1 , i aleshores els que tenen subíndex parell seràn de V_2 . Però u_n i u_1 , són adjacents. Per tant, al ser $u_1 \in V_1$, ha de ser $u_n \in V_2$, és a dir, n ha de ser parell.

(b) Demostreu que si $n \geq 5$, aleshores el graf complementari de G no pot ser bipartit.

Solució. Per ser G bipartit, existeix una partició $V = V_1 \cup V_2$ tal que totes les arestes tenen un extrem en V_1 i l'altre a V_2 . Si $n \geq 5$, una de les dues parts ha de tenir almenys 3 vèrtexs. Aquests vertèxs formes un cicle de longitud 3 en el complementari. Per tant, G^c no és bipartit.

(c) Demostreu que G és bipartit complet si i només si el diàmetre de G és 2.

Solució. Per ser G bipartit, existeix una partició $V = V_1 \cup V_2$ tal que totes les arestes tenen un extrem en V_1 i l'altre a V_2 . Per ser $n \geq 3$, almenys una de les dues parts té com a mínim 2 vèrtexs.

Si G és bipartit complet, aleshores els vèrtexs de parts diferents estan a distància 1 i els vèrtexs d'una mateixa part estan a distància 2. Per tant, el diàmetre és 2.

Per a demostrar el recíproc, suposem que G no és bipartit complet. En aquest cas existeixen dos vèrtexs $u \in V_1$ i $v \in V_2$ que no són adjacents en G. La distància de u a v no pot ser 2, ja que cap vèrtex w és adjacent alhora a u i a v (u només pot ser adjacent a vèrtexs de V_2 diferents de v i v només pot ser adjacent a vèrtexs de v diferents de v i v només pot ser adjacent a vèrtexs de v diferents de v i v només pot ser adjacent a vèrtex de v diferents de v i v només pot ser adjacent a vèrtex de v diferents de v i v només pot ser adjacent a vèrtex de v diferents de v i v només pot ser adjacent a vèrtex de v diferents de v i v només pot ser adjacent a vèrtex de v diferents de v i v només pot ser adjacent a vèrtex de v diferents de v i v només pot ser adjacent a vèrtex de v diferents de v i v només pot ser adjacent a vèrtex de v diferents de v i v només pot ser adjacent a vèrtex de v diferents de v i v només pot ser adjacent a vèrtex de v diferents de v i v només pot ser adjacent a vèrtex de v diferents de v i v només pot ser adjacent a vèrtex de v diferents de v i v només pot ser adjacent a vèrtex de v diferents de v i v només pot ser adjacent a vèrtex de v diferents de v i v només pot ser adjacent a vèrtex de v diferents de v i v només pot ser adjacent a vèrtex de v diferents de v i v només pot ser adjacent a vèrtex de v diferents de v i v només pot ser adjacent a vèrtex de v diferents d

- 3. [4 punts] Sigui $r \geq 2$ un enter. Sigui $H_r = (V_r, A_r)$ el graf tal que V_r és el conjunt de les paraules binàries de longitud r (amb l'alfabet $\{0,1\}$) i A_r està definit d'acord a la regla següent: dues paraules són adjacents si i només si difereixen en una única posició. Per exemple, per a r=3 el conjunt de vèrtexs és $V_3 = \{000,001,010,011,100,101,110,111\}$ i el conjunt de vèrtexs adjacents al vèrtex 100 és $\{000,110,101\}$.
 - (a) Calculeu l'ordre, la sequència de graus i la mida del graf H_r en funció de r.

Solució. L'ordre és el nombre de paraules binàries de longitud r, o sigui, 2^r . La seqüència de graus és r, \ldots, r , ja que tots els vèrtexs tenen grau r, perquè podem canviar el dígit de cadascuna de les r posicions per a obtenir vèrtexs adjacents. Pel lema de les encaixades, la mida és $m = \frac{1}{2} \sum_{u \in V_r} g(u) = \frac{1}{2} 2^r r = r2^{r-1}$.

(b) Calculeu el diàmetre i el radi de H_r en funció de r.

Solució. Tots els vèrtexs tenen excentricitat r. En efecte, la distància entre dos vèrtexs és el nombre de posicions en què difereixen, ja que hi ha un camí de l'un a l'altre que s'obté canviant cada vegada el valor d'una sola posició. Per tant, tant el radi com el diàmetre són iguals a r.

(c) Per a quins valors de r és H_r eulerià?

Solució. El graf és connex perquè el diàmetre és finit. Per tant, serà eulerià quan tots els vèrtexs tinguin grau parell, i això és equivalent a que r sigui parell, ja que tal com hem vist al primer apartat, el graf és r-regular.

(d) Doneu els arbres generadors obtinguts a l'aplicar els algorismes BFS i DFS al graf H_3 prenent com a vèrtex inicial 000 i els vèrtexs ordenats lexicogràficament (o sigui, amb l'ordre: 000, 001, 010, 011, 100, 101, 110, 111). Indiqueu en quin ordre s'obtenen els vèrtexs de l'arbre generador en cada cas. Són isomorfs els arbres obtinguts?

Solució. Els arbres que s'obtenen són:

Els vèrtexs de l'arbre BFS s'obtenen en l'ordre següent:

$$000, 001, 010, 100, 011, 101, 110, 111.$$

Els vèrtexs de l'arbre DFS s'obtenen en l'ordre següent:

No són isomorfs, ja que en el primer cas hi ha vèrtexs de grau 3 i en el segon, tots els vèrtexs tenen grau com a molt 2 (és un graf trajecte).