Digital Integrated Circuits Designing Sequential Circuits

Fuyuzhuo

Sequential Logic Circuits

- Introduction
- Timing
- Static Latches and Registers
- Dynamic Latches and Registers

Sequential Logic Circuits

- Introduction
- Timing
- Static Latches and Registers

Dynamic Latches and Registers

Comb. or Seq.

Sequencing

- Combinational logic
 - output depends on current inputs
- Sequential logic
 - output depends on current and previous inputs
 - Requires separating previous, current, future
 - Called state or tokens
 - Ex: FSM, pipeline

Sequencing Elements

- Latch: Level sensitive
 - a.k.a. transparent latch, D latch
- Flip-flop: edge triggered
 - A.k.a. master-slave flip-flop, D flip-flop, D

register

Timing Diagrams

Transparent

Opaque

Edge-trigger

Sequential Logic

Synchronous, rising/positive edge triggered, falling edge/negative edge triggered

Timing Definitions

- Setup time: the time that the data inputs must be valid before clock transition
- Phold time: the time that the data must remain valid after the clock transition

Propagate delay time

7/76

Characterizing Timing

Register

Latch

8/76

Sequencing Methods

- Flip-flops
- 2-Phase Latches
- Pulsed Latches

Design Sequential Logic Circuits

- Introduction
- Timing
- Static Latches and Registers
- Dynamic Latches and Registers

Timing Diagrams

Contamination and **Propagation** Delays

clk

clk

Q

Logic Prop. Delay
Logic Cont. Delay
Latch/Flop Clk-Q Prop Delay
Latch/Flop Clk-Q Cont. Delay
Latch D-Q Prop Delay
Latch D-Q Cont. Delay
Latch/Flop Setup Time
Latch/Flop Hold Time

Max-Delay: Flip-Flops

$$t_{pd} < T_c - \underbrace{\left(t_{\text{setup}} + t_{pcq}\right)}_{\text{sequencing overhead}}$$

$$\frac{\text{clk}}{\text{Combinational Logic}}$$

$$\frac{\text{Clk}}{\text{Clk}}$$

$$\frac{\text{Clk}}{\text{Clk}}$$

$$\frac{\text{Clk}}{\text{D2}}$$

Max Delay: 2-Phase Latches

Max Delay: Pulsed Latches

$$T_{c} \ge \max(t_{pdq} + t_{pd}, t_{peq} + t_{pd} + t_{setup} - t_{pw})$$

$$t_{pd} = T_c - \max(t_{pdq}, t_{pcq} + t_{setup} - t_{pw})$$
Digital IC Sequencing overhead

Min-Delay: Flip-Flops

Min-Delay: 2-Phase Latches

Hold time reduced by nonoverlap

Paradox: hold applies □2 □2

twice each cycle, vs.

only once for flops.

But a flop is made of ϕ_2 two latches!

Min-Delay: Pulsed Latches

Clock skew

- Definition
 - The spatial variation in arrival time of a clock transition on an integrated circuit
- Sources
 - Static mismatches in the clock paths and differences in the clock load

Positive/negative skew

Clock skew about FF

<u>negative</u> skew

$$t_{pdq} \le T_c - (t_{peq} + t_{setup} + t_{skew})$$

Positive skew for better condition

Large is better !

Ex. t_{pcq} =20ps, t_{setup} =30ps, T_c =300ps, t_{skew} =50ps

 $t_{pdq} \le 300-20-30=250$, $t_{pdq} = 240$ is OK

D2

Clock skew about FF

Clock tree

H-Trees

- Fractal structure
 - Gets clock arbitrarily close to any point
 - Matched delay along all paths
- Delay variations cause skew
- A and B might see big skew

Design Sequential Logic Circuits

- Introduction
- Timing
- Static Latches and Registers
- Dynamic Latches and Registers

Static vs Dynamic Storage

- Static storage
 - preserve state as long as the power is on
 - have positive feedback (regeneration)
 - useful when updates infrequent (clock gating)
- Dynamic storage
 - store state on parasitic capacitors
 - only hold state for short periods of time (ms)
 - require periodic refresh
 - usually simpler, higher speed, lower power

Static Latches and Registers

- The bistability principle
- Multiplexer-based latches
- Master-slave edge-triggered register
- Low-voltage static latches
- Static SR Flip-flops-writing data by pure force

Static Latches and Registers

- The bistability principle
- Multiplexer-based latches
- Master-slave edge-triggered register
- Low-voltage static latches
- Static SR Flip-flops-writing data by pure force

Review: The Regenerative Property

cascaded inverters

Bistable Circuits

- The cross-coupling of two inverters results in a bistable circuit (a circuit with two stable states)
- Have to be able to change the stored value by making A (or B) temporarily unstable by increasing the loop gain to a value larger than 1
 - done by applying a trigger pulse at Vi1 or Vi2
 - the width of the trigger pulse need be only a little larger than the total propagation delay around the loop circuit (twice the delay of an inverter)

SR Latch

Clocked D Latch

Static Latches and Registers

- The bistability principle
- Multiplexer-based latches
- Master-slave edge-triggered register
- Low-voltage static latches
- Static SR Flip-flops-writing data by pure force

Mux-Based Latches

Negative latch (transparent when CLK= 0) Positive latch (transparent when CLK= 1)

$$Q = Clk \cdot Q + \overline{Clk} \cdot In$$

$$Q = \overline{Clk} \cdot Q + Clk \cdot In$$

Writing into a Static Latch

Use the clock as a decoupling signal, that distinguishes between the **transparent** and **opaque** states

Converting into a MUX

Forcing the state(can implement as NMOS-only)

Mux-Based Latch

NMOS only

Non-overlapping clocks

Latch Design

- Pass Transistor Latch
- Pros
 - + Tiny
 - + Low clock load
- Cons
 - V_t drop
 - nonrestoring
 - backdriving
 - output noise sensitivity
 - dynamic
 - diffusion input

Used in 1970's

- Transmission gate
 - + No V_t drop
 - Requires inverted clock

- Inverting buffer
 - + Restoring
 - + No backdriving
 - + Fixes either
 - Output noise sensitivity
 - Or diffusion input
 - Inverted output

- Tristate feedback
 - + Static
 - Backdriving risk
- Static latches are now essential

- Buffered input
 - + Fixes diffusion input
 - + Noninverting

- Buffered output
 - + No backdriving

- Widely used in standard cells
 - + Very robust (most important)
 - Rather large
 - Rather slow (1.5 2 FO4 delays)
 - High clock loading

Static Latches and Registers

- The bistability principle
- Multiplexer-based latches
- Master-slave edge-triggered register
- Low-voltage static latches
- Static SR Flip-flops-writing data by pure force

Master-Slave (Edge-Triggered) Register

Two opposite latches trigger on edge Also called master-slave latch pair

Master-Slave Register

Multiplexer-based latch pair

Clk-Q Delay

Setup Time

Reduced Clock Load Master-Slave Register

Avoiding Clock Overlap

(b) Overlapping clock pairs

Race and hazard

Signal A and Second phase signal, meet with each one at gate G have **Race**

Result is Error which means Hazard

Race and hazard

Signal A and Second phase signal, meet with each one at gate G have **Race**

Result is Error which means Hazard

Race and hazard

First phase signal A and Second phase signal P3, meet with each one at gate G4 and have race

Why hazard happen

- Hazard is driven by race
- Race condition
 - when at least two input signal change to different direction
 - two changing input come at different time
- A and P₃ are race signal

Hazard condition is B=0 let A and P3 meet, B=1 not

Hazard examples

$$P = A + \overline{A}$$

0-hazard

Stable sate is "1", 0-1, so 0 is unstable hazard state

$$P = A\overline{A}$$

1-hazard

Stable sate is "0", 1-0, so 1 is unstable hazard state

$$P_{1} = AB + \overline{A}C$$

$$P_{2} = (A+B)(\overline{A}+C)$$

$$P_{3} = \overline{A}B + A\overline{C} + \overline{B}C$$

When $B=C=1,P1=A+\sim A,"0"$ hazard happen When $B=C=0,P2=A\sim A,"1"$ hazard happen When $B=1/C=0,P3=A+\sim A,"0"$ hazard happen When $C=1/A=0,P3=B+\sim B,~0"$ hazard happen When $A=1/B=0,P3=C+\sim C,~0"$ hazard happen

glitches

Design Sequential Logic Circuits

- Introduction
- Timing
- Static Latches and Registers
- Dynamic Latches and Registers

Dynamic ET Flipflop

master transparent slave hold

 $t_{su} = t_{pd_tx}$ $t_{hold} = zero$ $t_{c-q} = 2 t_{pd_inv} + t_{pd_tx}$

master hold slave transparent

Dynamic ET FF Race Conditions

0-0 overlap race condition

$$t_{\text{overlap0-0}} < t_{\text{T1}} + t_{\text{I1}} + t_{\text{T2}}$$

1-1 overlap race condition

$$t_{\text{overlap1-1}} < t_{\text{hold}}$$

Fix 1: Dynamic Two-Phase ET FF

C²MOS (Clocked CMOS) ET Flipflop

C²MOS FF 0-0 Overlap Case

Hold state...

C²MOS FF 1-1 Overlap Case

Setup state...
Digital IC

Pipelining using C²MOS

aka NORA (NO RAce) Logic

What are the constraints on F and G?

Fix 3: True Single Phase Clocked (TSPC) Latches

hold when clk = 1 transparent when clk = 0 transparent when clk = 1 hold when clk = 0

Traditional Domino Circuits

Ping-pang approach for overlapping the precharge time

Skew-tolerant Domino Circuits

- Latch function
 - Prevent nonmonotonic signals from entering the next domino gate while it evaluates
 - Hold the results of the half-cycle while it precharges and the next half-cycle evaluates

