

Data Processing

Chapter 2 – Hands on Data Analytics for Everyone

October 17, 2022

北京师范大学-香港浸会大学联合国际学院 United International College

Contents

- **Data Summary and Visualization**
 - **Descriptive Statistics**

 - Visualization for 1 or 2 Dimensions Visualization for Higher Dimensions

October 17, 2022

Basic Descriptive Statistics

Statistical measures can be used to describe a dataset:

- Range
- Min/max values

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)^2$$

$$\sigma = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i - \mu)^2}$$

- Median (The middle number; found by ordering all data points and picking out the one in the middle or if there are two middle numbers, taking the mean of those two numbers)
- Mode (Most frequently occurring value)
- Percentiles (Quartiles)
- Number of missing values
- ...

Median, Quantiles, Quartiles, Interquartile Range

- **Median:** The value in the middle (for values sorted in increasing order)
- q%-quantile (0 < q < 100): The value for which q% of the values are smaller and 100q% are larger. The median is the 50%-quantile
- Quartiles: 25%-quantile (1st quartile), median (2nd quantile), 75%-quantile (3rd quartile)
- Interquartile range (IQR): 3rd quartile 1st quartile

Median, Quantiles, Quartiles, Interquartile Range - Example

Example: 5, 7, 4, 4, 6, 2, 8

Put them in order: 2, 4, 4, 5, 6, 7, 8

Cut the list into quarters:

And the result is:

- Quartile 1 (Q1) = 4
- Quartile 2 (Q2), which is also the Median, = 5
- Quartile 3 (Q3) = 7

Median, Quantiles, Quartiles, Interquartile Range - Example

Example: 1, 3, 3, 4, 5, 6, 6, 7, 8, 8

The numbers are already in order

Cut the list into quarters:

In this case Quartile 2 is half way between 5 and 6:

$$Q2 = (5+6)/2 = 5.5$$

And the result is:

- Quartile 1 (Q1) = 3
- Quartile 2 (Q2) = **5.5**
- Quartile 3 (Q3) = 7

Median, Quantiles, Quartiles, Interquartile Range - Example

Example:

The **Interquartile Range** is:

$$Q3 - Q1 = 7 - 4 = 3$$

https://www.mathsisfun.com/data/quartiles.html

Contents

- Data Summary and Visualization
 - Descriptive Statistics
 - Visualization for 1 or 2 Dimensions
 - Visualization for Higher Dimensions
- Feature Selection and Dimensionality Reduction
- Data Cleaning
 - Missing Values Imputation
 - Outliers
 - Data Type (Numerical and Categorical) Transformation
 - Data Normalization
 - String REGEX
- Feature Engineering
- Data Integration
- Lab (Demo): Data Import, Filtering and Visualization
- Assignment 3 (In-Class Lab): Data Processing with KNIME
 - Lab3.1: Visualization
 - Lab 3.2: Data Cleaning
- Assignment 4: In-Class Quiz

October 17, 2022

A bar chart is a simple way to depict the frequencies of the values of a categorical attribute.

- A histogram shows the frequency distribution for a numerical attribute.
- The range of the numerical attribute is discretized into a fixed number of intervals (bins), usually of equal length.
- For each interval, the (absolute) frequency of values falling into it is indicated by the height of a bar.

Choice of Number of Bins

The histogram in the figures resulted from a sample of size n = 1000

Choosing a low number of bins, the two peaks of the original distribution are no longer visible, and one gets the wrong impression that the distribution is unimodal

Choosing a high number of bins usually leads to a very scattered histogram in which it is difficult to distinguish true peaks from random peaks

Best choice for number k of bins in the histogram?

• Sturge's Rule $k = \lceil log_2(n) + 1 \rceil$

https://www.khanacade my.org/math/statisticsrobability/summarizing -quantitative-data

The maximum length of each whisker is 1.5 times the length of the interquartile range. But if there is no data point at the maximum length of a whisker, the corresponding whisker is shortened until it reaches the next data point.

Data points lying outside the whiskers are considered as outliers and are indicated in the form of small circles.

Scatter Plot for Two Attributes

Petal length and width provide better class separation than sepal length and width

Scatter plots of the Iris(鸢(yuan)尾花) data set for sepal(萼片) length vs. sepalwidth (left) and for petal (花瓣) length vs. petal width (right). All quantities are measured in centimetres

- In scatter plots two attributes are plotted against each other
- Can be enriched with additional features (color, shape, size)
- Suitable for small number of points; not suitable for large datasets
- Points can hide each other -> add **Jitter** (a small random value to each point)

Scatter Plot for Two Attributes

Density plot (left) and a plot based on hexagonal binning (right) for a dataset with n = 100,000 instances

Both plots indicate a higher density of the data around the point (0.6, 0.4), which cannot be seen in the simple scatter plot

- Scatter plot is not suitable for large datasets
- Alternatives:
 - Density plot (*hexagonal binning*) for example using semi-transparent points: the more points in the same place the less transparent
 - Binning points into rectangles or hexagons and heat scale color

Contents

- Data Summary and Visualization
 - Descriptive Statistics
 - Visualization for 1 or 2 Dimensions
 - Visualization for Higher Dimensions
- Feature Selection and Dimensionality Reduction
- Data Cleaning
 - Missing Values Imputation
 - Outliers
 - Data Type (Numerical and Categorical) Transformation
 - Data Normalization
 - String REGEX
- Feature Engineering
- Data Integration
- Lab (Demo): Data Import, Filtering and Visualization
- Assignment 3 (In-Class Lab): Data Processing with KNIME
 - Lab3.1: Visualization
 - Lab 3.2: Data Cleaning
- Assignment 4: In-Class Quiz

October 17, 2022

انج. Visualization of Three-dimensional Data: 3D Plot

A display or plot is **by definition two-dimensional**, so that only maximum two axes (attributes) can be incorporated. **3D** techniques can be used to incorporate three axes (attributes).

3D scatter plot

Example

- A data set distributed over a cube in a chessboard-like pattern.
- The colors are only meant to make the different cubes more easily discernible (可辨别的). They do not indicate classes.
- Note the outlier in the upper left corner

. الماني الماني الم

Visualization of Three-dimensional Data: Scatter Matrixes

- A matrix of scatter plots $m \times m$ where m is the number of attributes (data dimensionality)
- For *m* attributes there are $\binom{m}{2} = m(m-1)/2$ possible scatter plots
- e.g. For 50 attributes there are 2450/2 scatter plots!

Scatter matrix

Parallel Coordinates Plot

- Parallel coordinates draw the coordinate axes for each attribute parallel to each other, so that there is no limitation for the number of axes to be displayed.
- For each data object, a polyline is drawn connecting the values of the attributes on the corresponding axes.
- Maintains the original attributes
- Limited number of entries
- How do we spot correlation between features?

Parallel coordinates plot for the Iris data set

امنان المنافقة المنا

- Similar idea of the Parallel Coordinates plot
- Axes are drawn in a star-like fashion intersecting in one point
- Also called spider plots
- Suitable for small datasets

اریانی: Radar Plot

Sunburst Chart

- Display multidimensional hierarchical nominal data in a radial layout
- One section ⇔ one attribute
- Root attribute in the center, external sections are attributes located deeper in the hierarchy
- Area of a section represents the accumulated value of all descending sections

Contents

- Data Summary and Visualization
 - Descriptive Statistics
 - Visualization for 1 or 2 Dimensions
 - Visualization for Higher Dimensions
- Feature Selection and Dimensionality Reduction
- Data Cleaning
 - Missing Values Imputation
 - Outliers
 - Data Type (Numerical and Categorical) Transformation
 - Data Normalization
 - String REGEX
- Feature Engineering
- Data Integration
- Lab (Demo): Data Import, Filtering and Visualization
- Assignment 3 (In-Class Lab): Data Processing with KNIME
 - Lab3.1: Visualization
 - Lab 3.2: Data Cleaning
- Assignment 4: In-Class Quiz

October 17, 2022 27

Is there such a thing as "too much data"?

"Too much data":

- Consumes storage space
- Eats up processing time
- Is difficult to visualize
- Inhibits ML algorithm performance
- Beware of the model: **Garbage** in → Garbage out

Feature Selection vs. Dimensionality Reduction

Both methods are used for reducing the number of features in a dataset. However:

- Feature selection is simply selecting and excluding given features without changing them.
- Dimensionality reduction **might transform** the features into a lower dimension.
- Feature selection is often a somewhat more aggressive and more computationally expensive process.
 - Backward Feature Elimination
 - Forward Feature Construction

- **Feature Selection**: choose a subset of the features (attributes) that is **as small as** possible and sufficient for the data analysis (= still informative!)
- Feature Selection includes:
 - Removing (more or less) irrelevant features/fields and
 - Removing redundant features
- Evaluation function to compare sets of attributes
- Strategy (heuristic) to select the possible feature subsets to be compared against each other with this measure

Forward selection

Start with the **empty** set of features and **add** features one by one. In each step, add the feature that yields the best improvement of the **performance**.

Backward elimination

Start with the **full** set of features and **remove** features one by one. In each step, remove the feature that results in the smallest decrease in **performance**.

- 1. First, train *n* separate models on one single input feature and keep the feature that produces the best **accuracy**.
- 2. Then, train n-1 separate models on 2 input features, the selected one and one more. At the end keep the additional feature that produces the best accuracy.
- 3. And so on ··· Continue until an acceptable error rate is reached.

Why we do Feature Selection? Model Evaluation and Feature Selection

Size in feet ²	# of bedrooms	# of floors	Age of home (years)	Price (\$) in 1000's	Pet free?	In flood zone?	
2104	5	1	45	460	Υ	Ν	
1416	3	2	40	232	N	Υ	
1534	3	2	30	315	Υ	N	
852	2	1	36	178	N	N	

- 1. First train one model on *n* input features
- 2. Then train n separate models each on n-1 input features and remove the feature whose removal produced the least **disturbance**
- 3. Then train n-1 separate models each on n-2 input features and remove the feature whose removal produced the least disturbance
- 4. And so on. Continue until desired **maximum error rate** on *training* data is reached.

Dimensionality Reduction Techniques

- Measure based
 - Ratio of missing values
 - Low variance
 - High Correlation

Dimensionality Reduction Based on Missing Values Ratio

▲ First partition (as defined in dialog) - 0:337:0:276 - Partitioning (80% vs. 20%)

A First partition	(as defined	riir dialog) 0.53	77.0.270 Taruu	oning (00% v	3. 2070)								
File Hilite Navig		1											
Table "default" - Rows: 40000 Spec - Columns: 231 Propert		231 Properties	Flow Variables										
Row ID	D Var 16	Var 17	Var 18	Var 19	S Var20	Var21	Var22	Var23	Var24	Var25	Var26	Var27	D Var28
Row0	?	?	?	?	?	464	580	?	14	128	?	?	166.56
Row1	?	?	?	?	?	168	210	?	2	24	?	?	353.52
Row2	?	?	?	?	?	1212	1515	?	26	816	?	?	220.08
Row4	?	?	?	?	?	64	80	?	4	64	?	?	200
Row7	?	?	?	?	?	32	40	?	2	16	?	?	230.56
Row8	?	?	?	?	?	200	250	?	2	64	?	?	300.32
Row10	?	?	?	?	?	92	115	?	6	112	?	?	133.12
Row11	?	?	?	?	?	236	295	?	8	40	?	?	133.12
Row12	?	?	?	?	?	0	0	?	?	0	?	?	240.56
Row13	?	?	?	?	?	480	600	?	10	216	?	?	176.56
Row14	?	?	?	?	?	148	185	?	0	8	?	?	236.08
Row16	?	?	?	?	?	584	730	?	6	320	?	?	220.08
Row17	?	?	?	?	?	168	210	?	2	32	?	?	166.56
Row18	?	?	?	?	?	12	15	?	2	0	?	?	253.52
Row20	?	?	?	?	?	168	210	?	2	56	?	?	272.08
Row21	?	?	?	?	?	20	25	?	2	0	?	?	86.96
Row22	?	IE (% m	issing v	alua >	throch	ماط /	THEN	romo	ro colui	00 IO	?	?	166.56
Row23	?	IF (% III	issing v	aiue /	unesn			remov	ve colui		?	?	198.88
Row24	?	?	?	?	?	216	270	?	8	128	?	?	200
Row25	?	?	?	?	?	152	190	?	4	16	?	?	20.08
Row26	?	0	0	0	?	?	?	?	?	?	?	?	?
Row28	?	?	?	?	?	0	0	?	?	0	?	?	257.28
Row29	?	?	?	?	?	312	390	?	0	120	?	?	200
Row30	?	?	?	?	?	112	140	?	4	56	?	?	166.56
Row31	?	?	?	?	?	28	35	?	0	16	?	?	sing Value
Row33	?	?	?	?	?	160	200	?	4	40	?	? [[VIIS	
Row36	?	?	?	?	?	612	765	?	14	360	?	?	200
Row37	?	?	?	?	?	380	475	?	4	208	?	?	336.56
Row38	?	?	?	?	?	76	95	?	0	16	?	?	213.36
Row40	?	?	?	?	?	228	285	?	22	56	?	?	200
Row41	?	?	?	?	?	120	150	?	10	80	?	?	133.12
Row42	?	5	0	0	?	?	?	?	?	?	?	?	?
Row43	?	?	?	?	?	72	90	?	0	40	?	?	191.36
Row44	?	?	?	?	?	0	0	?	?	0	?	?	120.4
Row47	?	?	?	?	?	0	0	?	?	0	?	?	186.64
Row48	?	?	?	?	?	172	215	?	4	200	?	?	137.68
Row49	}	<u> </u>	?	?	?	0	0	?	?	0	?	?	274.16

Dimensionality Reduction Based on Low Variance

Note: requires minmax-normalization, and only works for **numeric** columns

If column has **constant** value (variance = $\mathbf{0}$), it contains no useful information

In general: IF (variance < threshold) THEN remove column

Two highly correlated input variables probably carry similar information

 $IF(corr(var1, var2) > threshold \Rightarrow remove var1)$

Note: requires min-max-normalization of numeric columns

Contents

- Data Summary and Visualization
 - Descriptive Statistics
 - Visualization for 1 or 2 Dimensions
 - Visualization for Higher Dimensions
- Feature Selection and Dimensionality Reduction
- Data Cleaning
 - Missing Values Imputation
 - Outliers
 - Data Type (Numerical and Categorical) Transformation
 - Data Normalization
 - String REGEX
- Feature Engineering
- Data Integration
- Lab (Demo): Data Import, Filtering and Visualization
- Assignment 3 (In-Class Lab): Data Processing with KNIME
 - Lab3.1: Visualization
 - Lab 3.2: Data Cleaning
- Assignment 4: In-Class Quiz

October 17, 2022

Missing Value Imputation: Motivation

Data is not always available

 E.g., many tuples have no recorded value for several attributes, such as weight in a people database

Missing data may be due to:

- Equipment malfunctioning (broken sensors)
- Inconsistency with other recorded data and thus deleted
- Data not entered (manually)
- Data not considered important at the time of collection
- Data format / contents of database changes
- Refusal to answer a question
- Irrelevant attribute for the corresponding object (pregnant (yes/no) for men)
- Missing value might not necessarily be indicated as missing (instead: zero or default values).

Types of missing values:

Example: Suppose you are modeling weight Y as a function of sex X

- **Missing Completely At Random** (MCAR): the probability that a value for X is missing does neither depend on the value of X nor on other variables. There may be no particular reason why some people told you their weights and others didn't.
- Missing At Random (MAR): the probability that Y is missing depends only on the value of X.
 One sex X may be less likely to disclose its weight Y.
- **Not Missing At Random** (NMAR): the probability that Y is missing depends on the unobserved value of Y itself.
 - Heavy (or light) people may be less likely to disclose their weight.

How to handle missing values?

- Ignore/delete the record
- Fill in (impute) missing value as:
- **Fixed value**: e.g., "unknown", -9999, -1 when only positive numbers in the domain, etc.
- Attribute mean / median / mode
- Attribute most frequent value
- Next / previous /avg interpolation / moving avg value (in time series)
- A predicted value based on the other attributes (inference-based such as Bayesian, Decision Tree, ...)

Contents

- Data Summary and Visualization
 - Descriptive Statistics
 - Visualization for 1 or 2 Dimensions
 - Visualization for Higher Dimensions
- Feature Selection and Dimensionality Reduction
- Data Cleaning
 - Missing Values Imputation
 - Outliers
 - Data Type (Numerical and Categorical) Transformation
 - Data Normalization
 - String REGEX
- Feature Engineering
- Data Integration
- Lab (Demo): Data Import, Filtering and Visualization
- Assignment 3 (In-Class Lab): Data Processing with KNIME
 - Lab3.1: Visualization
 - Lab 3.2: Data Cleaning
- Assignment 4: In-Class Quiz

October 17, 2022 43

What are outliers?

- An outlier is a value or data object that is far away or very different from all or most of the other data.
- Errors in measurements or exceptional conditions that don't describe the common functioning of the underlying system
- Outliers are supposed to be rare

Causes for outliers:

- Data quality problems (erroneous data coming from wrong measurements or typing mistakes)
- Exceptional or unusual situations/data objects.

Outlier handling:

- Outliers coming from erroneous data should be excluded from the analysis.
- Even if the outliers are correct (exceptional data), it is sometimes useful to exclude them from the analysis.
- For example, a single extremely large outlier can lead to completely misleading values for the mean value.

المجانية. Outlier Detection

An outlier could be, for example, a rare behaviour, a system defect, a measurement error, or a reaction to an unexpected event

Outlier Detection Techniques

- Knowledge-based
 - We know that a 200 year old person must be a mistake
 - We know that "A" in a number corpus is an outlier
- Statistics-based
 - Distance from the median
 - Position in the distribution tails
 - Distance to the closest cluster center
 - Error produced by an autoencoder
 - Number of random splits to isolate a data point from other data

Statistical Methods for Outlier Detection

- Quantile-based: **Box plot**
- Distribution-based: **Z-Score**
- Cluster-based: DBSCAN
- Neural Autoencoder
- Isolation Forest

•

Quartile based (Box Plots)

Challenges:

- Outliers in the data expand the quantiles
- Skewed data might require different k to detect upper and lower outliers
- One-dimensional

Flag data points outside the upper and lower whiskers of a box plot as outliers

Z-score Based Outlier

Challenges:

- Normality assumption
- The parameters of the distribution are sensitive to outliers
- Doesn't work for data with a trend and seasonality

Flag data points in the distribution tails as outliers

Outliers

Contents

- Data Summary and Visualization
 - Descriptive Statistics
 - Visualization for 1 or 2 Dimensions
 - Visualization for Higher Dimensions
- Feature Selection and Dimensionality Reduction
- Data Cleaning
 - Missing Values Imputation
 - Outliers
 - Data Type (Numerical and Categorical) Transformation
 - Data Normalization
 - String REGEX
- Feature Engineering
- Data Integration
- Lab (Demo): Data Import, Filtering and Visualization
- Assignment 3 (In-Class Lab): Data Processing with KNIME
 - Lab3.1: Visualization
 - Lab 3.2: Data Cleaning
- Assignment 4: In-Class Quiz

October 17, 2022 51

From Categorical to Numerical

- Binary attribute: numerical attribute with the values 0 and 1.
- Ordinal attribute ("sortable"): enumerate in the correct order 1, . . . , k
- Categorical attribute (not ordinal) with more than two values, say $a_1, ..., a_k$, should **not be converted into a single numerical attribute instead: convert to** k **attributes** $A_1, ..., A_k$ **with values 0 and 1.**
- a_i is represented by $a_i = 1$ and $a_j = 0$ for $i \neq j$ (1-of-n encoding).

Data Transformation: Discretization Techniques

From Numerical to Categorical

Splitting a numerical range into a number of bins

- **Equi-width discretization:** splits the range into intervals (bins) of the same length.
- Equi-frequency discretization: splits the range into intervals such that each interval (bin) contains (roughly) the same number of records.
- **V-optimal discretization:** minimizes $\sum_i n_i V_i$ where n_i is the number of data objects in the *i*-th interval and V_i is the sample variance of the data in this interval.

Contents

- Data Summary and Visualization
 - Descriptive Statistics
 - Visualization for 1 or 2 Dimensions
 - Visualization for Higher Dimensions
- Feature Selection and Dimensionality Reduction
- Data Cleaning
 - Missing Values Imputation
 - Outliers
 - Data Type (Numerical and Categorical) Transformation
 - Data Normalization
 - String REGEX
- Feature Engineering
- Data Integration
- Lab (Demo): Data Import, Filtering and Visualization
- Assignment 3 (In-Class Lab): Data Processing with KNIME
 - Lab3.1: Visualization
 - Lab 3.2: Data Cleaning
- Assignment 4: In-Class Quiz

October 17, 2022 54

- For some data analysis techniques (e.g. PCA, MDS; cluster analysis) the influence of an attribute depends on the scale or measurement unit.
- To guarantee impartiality, some kind of standardization or normalization should be applied.

Example:

- Lengths in cm (100 200) and weights in kilogram (30 150) fall both in approximately the same scale
- What about lengths in m (1-2) and weights also in gram (30000 150000)?
 → The weight values in mg dominate over the length values for the similarity of records!

• Oh vs 1h can be expressed as 0min vs 60min

Goal of normalization:

Transformation of attributes to make record ranges comparable

Construct Data: Assure Impartiality

In absence of domain knowledge, different techniques can be applied

min-max normalization

$$n: dom X \to [0,1], x \mapsto \frac{x-minX}{max_x-minX}$$
Sensitive to outliers!

z-score standardization

$$s: dom X \to \mathbb{R}, \ x \mapsto \frac{x - \widehat{\mu}_X}{\widehat{\sigma}_X}$$

robust z-score standardization
$$s: dom X \to \mathbb{R}, x \mapsto \frac{x - \tilde{x}}{IQR_X}$$

decimal scaling

$$d: dom X \rightarrow [0,1], x \mapsto \frac{x}{10^s}$$

Normalization: Techniques

min-max normalization

$$n: dom(X) \rightarrow [0,1]$$

$$y = \frac{x - x_{min}}{x_{max} - x_{min}} (y_{max} - y_{min}) + y_{min}$$

z-score normalization

$$s: dom(X) \to \mathbb{R}$$

$$y = \frac{x - \hat{\mu}(X)}{\hat{\sigma}(X)}$$

normalization by decimal scaling

$$d: dom(X) \rightarrow [0,1]$$

$$y = \frac{x}{10^{j}}$$
 where j is the smallest integer value larger than $\log_{10}(\max(X))$

Contents

- Data Summary and Visualization
 - Descriptive Statistics
 - Visualization for 1 or 2 Dimensions
 - Visualization for Higher Dimensions
- Feature Selection and Dimensionality Reduction
- Data Cleaning
 - Missing Values Imputation
 - Outliers
 - Data Type (Numerical and Categorical) Transformation
 - Data Normalization
 - String REGEX
- Feature Engineering
- Data Integration
- Lab (Demo): Data Import, Filtering and Visualization
- Assignment 3 (In-Class Lab): Data Processing with KNIME
 - Lab3.1: Visualization
 - Lab 3.2: Data Cleaning
- Assignment 4: In-Class Quiz

October 17, 2022 59

Data in string format is difficult to process (see unstructured data)

We can extract some information from string if the string feature has some pattern. For example the data below contains several useful information if properly cleaned

Job Title	Salary Estimate	Job Description	Rating	Company Name	Location	Headquarters	Size	Founded	Type of ownership	Sector F
Senior Data Scientist	\$111K-\$181K (Glassdoor est.)	ABOUT	3.	5 Hopper	New York, NY	Montreal, Canad	501 to 1000 employees	2007	Company - Private	Travel & Tourisn l
Data Scientist, Product Analytics	\$111K-\$181K (Glassdoor est.)	At Noom, we	4.	5 Noom US	New York, NY	New York, NY	1001 to 5000 employees	2008	Company - Private	Consumer Servic l
Data Science Manager	\$111K-\$181K (Glassdoor est.)	Decode_M	-	1 Decode_M	New York, NY	New York, NY	1 to 50 employees	-1	Unknown	-1 l
Data Analyst	\$111K-\$181K (Glassdoor est.)	Sapphire	3.	4 Sapphire Digital	Lyndhurst, NJ	Lyndhurst, NJ	201 to 500 employees	2019	Company - Private	Information Tec l
Director, Data Science	\$111K-\$181K (Glassdoor est.)	Director, Data	3.	4 United	New York, NY	New York, NY	51 to 200 employees	2007	Company - Private	Business Service U
Data Scientist	\$111K-\$181K (Glassdoor est.)	Job Brief	2.	9 IFG Companies	New York, NY	Hartford, CT	201 to 500 employees	1985	Company - Private	Insurance (
Quantitative Researcher	\$111K-\$181K (Glassdoor est.)	Experience:	4.	4 PDT Partners	New York, NY	New York, NY	51 to 200 employees	1993	Company - Private	Finance (
Quantitative Research Associate	\$111K-\$181K (Glassdoor est.)	Seeking a	-	1 Enlightenment Resea	New York, NY	New York, NY	1 to 50 employees	-1	Unknown	-1 l
Al Scientist	\$111K-\$181K (Glassdoor est.)	Paige is a		5 Paige	New York, NY	New York, NY	1 to 50 employees	2018	Company - Private	Information Tec l
Quantitative Researcher	\$111K-\$181K (Glassdoor est.)	About the	4.	8 Jane Street	New York, NY	New York, NY	501 to 1000 employees	2000	Company - Private	Finance (
Data Scientist	\$111K-\$181K (Glassdoor est.)	Company	3.	9 Quartet Health	New York, NY	New York, NY	201 to 500 employees	2014	Company - Private	Information Tec l
Data Scientist/Machine Learning	\$111K-\$181K (Glassdoor est.)	PulsePoint,Ñ¢,	4.	4 PulsePoint	New York, NY	New York, NY	51 to 200 employees	2011	Company - Private	Information Tec \$
Data Scientist, Acorn Al Labs	\$111K-\$181K (Glassdoor est.)	Medidata:	4.	3 Medidata Solutions	New York, NY	New York, NY	1001 to 5000 employees	1999	Company - Public	Information Tec \$
Data Scientist	\$111K-\$181K (Glassdoor est.)	A Career with	3.	9 Point72	New York, NY	Stamford, CT	1001 to 5000 employees	2014	Company - Private	Finance (
Data Scientist - Alpha Insights	\$111K-\$181K (Glassdoor est.)	Two Sigma is a	4.	4 Two Sigma	New York, NY	New York, NY	1001 to 5000 employees	2001	Company - Private	Finance (
Data Scientist	\$111K-\$181K (Glassdoor est.)	Data Scientist		3 Affinity Solutions	New York, NY	New York, NY	51 to 200 employees	1998	Company - Private	Business Servic∈ L
Data Scientist, Analytics	\$111K-\$181K (Glassdoor est.)	Company Descri	3.	6 Etsy	Brooklyn, NY	Brooklyn, NY	501 to 1000 employees	2005	Company - Public	Retail \$
Data Scientist/ML Engineer	\$111K-\$181K (Glassdoor est.)	Data	3.	3 PA Consulting	New York, NY	London, United	1001 to 5000 employees	1943	Company - Private	Business Service \$
Data Scientist	\$111K-\$181K (Glassdoor est.)	Job Description	3.	6 Etsy	New York, NY	Brooklyn, NY	501 to 1000 employees	2005	Company - Public	Retail \$
VP, Data Science	\$111K-\$181K (Glassdoor est.)	We are looking	3.	9 7Park Data	New York, NY	New York, NY	51 to 200 employees	2012	Company - Private	Business Service L
Data Scientist, Disney+ Personaliz	\$111K-\$181K (Glassdoor est.)	Job Summary:Co		4 Walt Disney Co.	New York, NY	Burbank, CA	10000+ employees	1923	Company - Public	Media \$
Senior Data Scientist, Data Science	\$111K-\$181K (Glassdoor est.)	We,Äôre	3.	4 Squarespace	New York, NY	New York, NY	1001 to 5000 employees	2003	Company - Private	Information Tec l
Quantitative Researcher ,Äì Intern	\$111K-\$181K (Glassdoor est.)	Job Description	4.	1 Citadel Securities	New York, NY	Chicago, IL	201 to 500 employees	2002	Company - Private	Finance (
Senior Data Engineer (Healthcare	\$111K-\$181K (Glassdoor est.)	Key	3.	4 Enterprise	New York, NY	Jacksonville, FL	51 to 200 employees	1998	Company - Private	Information Tec \$
Data Scientist	\$111K-\$181K (Glassdoor est.)	Job Description	4.	4 WITHIN	New York, NY	New York, NY	51 to 200 employees	2015	Company - Private	Business Service L
Data Scientist, Marketplace Econo	\$111K-\$181K (Glassdoor est.)	We are looking	3.	8 Spotify	New York, NY	Stockholm, Swe	1001 to 5000 employees	2006	Company - Public	Information Tec l
Data Scientist	\$111K-\$181K (Glassdoor est.)	About Datadog:	4.	1 Datadog	New York, NY	New York, NY	1001 to 5000 employees	2010	Company - Public	Information Tec \$
Lead Data Scientist	\$111K-\$181K (Glassdoor est.)	Description: Its	3.	3 Aetna	New York, NY	Hartford, CT	10000+ employees	1853	Company - Public	Insurance \$
Data Scientist, Personalization	\$111K-\$181K (Glassdoor est.)	About		5 Hungryroot	New York, NY	New York, NY	1 to 50 employees	2015	Company - Private	Consumer Servic \$
Principal Data Scientist	\$111K-\$181K (Glassdoor est.)	Description: Its	3.	3 Aetna	New York, NY	Hartford, CT	10000+ employees	1853	Company - Public	Insurance \$
Data Scientist	\$120K-\$140K (Glassdoor est.)	Caserta is a bes	4.	3 Caserta	New York, NY	New York, NY	51 to 200 employees	2001	Company - Private	Information Tec l
Data Scientist, Decisions	\$120K-\$140K (Glassdoor est.)	At Lyft, our	3.	7 Lyft	New York, NY	San Francisco, C	5001 to 10000 employees	2012	Company - Public	Information Tec l

One way to clean the string data is through data **deletion** and **replacement** through the use of Regular Expressions (regex)

Regular expression is a pattern defining a class of strings. Some examples:

Given a column of strings

- "AnyWord" search for pattern "AnyWord"
- "^AnyWord" search for values starting with "AnyWord"
- "AnyWord\$" search for values ending with "AnyWord"
- "[a-zA-Z]" search for values containing any non numeric character
- "[a-zA-Z]{3}" search for values containing at least 3 non-numeric character
- "Any.*Word" search for values containing Any and Word and anything inbetween the two words.
- "[^0-9]" search for values containing any numeric character

The following nodes have Regex compatibility to transform string data:

- String Manipulation
- Regex Split

Example String Manipulation in KNIME

Contents

- Data Summary and Visualization
 - Descriptive Statistics
 - Visualization for 1 or 2 Dimensions
 - Visualization for Higher Dimensions
- Feature Selection and Dimensionality Reduction
- Data Cleaning
 - Missing Values Imputation
 - Outliers
 - Data Type (Numerical and Categorical) Transformation
 - Data Normalization
 - String REGEX
- Feature Engineering
- Data Integration
- Lab (Demo): Data Import, Filtering and Visualization
- Assignment 3 (In-Class Lab): Data Processing with KNIME
 - Lab3.1: Visualization
 - Lab 3.2: Data Cleaning
- Assignment 4: In-Class Quiz

October 17, 2022 64

Why we do Feature Engineering? Model Evaluation and Feature Engineering

Size in feet ²	# of bedrooms	# of floors	Age of home (years)	Price (\$) in 1000's	Pet free?	In flood zone?
2104	5	1	45	460	Y	N
1416	3	2	40	232	Ν	Υ
1534	3	2	30	315	Υ	N
852	2	1	36	178	N	N

Add more columns to the dataset

Feature Engineering Example

Sometimes transforming the original data leads to better modeling results

Euclidean to polar coor

Radius
$$r = \sqrt{x^2 + y^2}$$

Angle
$$\theta = Tan^{-1}(y/x)$$

Feature Engineering Example

Offering new features that were difficult to represent by the original model

Example for the usefulness of derived features:

for a number of journeys, the travel time and distance are shown; the color indicates whether the driver was ticketed or not. Discriminating both classes with axis-parallel rectangles is laborious, but easy with a new attribute for travel speed

Feature engineering includes all **transformation techniques** of existing attributes and and **construction** of new attributes that may (or may not) replace the original attributes

Exploit domain knowledge to improve the model results

Scale Conversion

- Categorical → Numerical: map categorical and ordinal values to a set of binary values
- Numerical → Categorical: Discretization (equal-width, equal-depth, V-optimal)

Example: Engineering Ratio Attributes

Feature Engineering refers to generating new features from the existing ones Example: **Find the best workers in a company.**

Attributes available:

- the tasks, a worker has finished within each month,
- the number of hours he has worked each month,
- the number of hours that are normally needed to finish each task.

These attributes do *contain* information about the efficiency of the worker. But instead of using these three "raw" attributes, it might be more useful to define a new attribute *efficiency*.

$$efficiency = \frac{hours \ actually \ spent \ to \ finish \ the \ tasks}{hours \ usually \ spent \ to \ finish \ the \ tasks}$$

Example: Feature Engineering with Box-Cox Transform

Typical assumption: some variables obey a certain distribution (e.g. Gaussian)

 Transform the data to better approximate the distribution using the power transform (Box-Cox Transform)

$$y \mapsto \begin{cases} \frac{y^{\lambda} - 1}{\lambda \overline{y}^{(\lambda - 1)}} & \text{if } \lambda \neq 0 \\ \overline{y} \log y & \text{if } \lambda = 0 \end{cases}$$

Note: Only idea behind those techniques

Complex Data Types and Feature Extraction

Complex data types:

- Texts
- Graphs
- Images
- Molecules
- Other Objects

Especially for complex data types, feature extraction is required

- Text data analysis. Frequency of keyword, . . .
- **Time series data analysis.** Fourier or wavelet coefficients, . . .
- Image data analysis. Fourier or wavelet coefficients, . . .
- Graph data analysis. Number of vertices, number of edges, . . .

Contents

- Data Summary and Visualization
 - Descriptive Statistics
 - Visualization for 1 or 2 Dimensions
 - Visualization for Higher Dimensions
- Feature Selection and Dimensionality Reduction
- Data Cleaning
 - Missing Values Imputation
 - Outliers
 - Data Type (Numerical and Categorical) Transformation
 - Data Normalization
 - String REGEX
- Feature Engineering
- Data Integration
- Lab (Demo): Data Import, Filtering and Visualization
- Assignment 3 (In-Class Lab): Data Processing with KNIME
 - Lab3.1: Visualization
 - Lab 3.2: Data Cleaning
- Assignment 4: In-Class Quiz

October 17, 2022 73

Vertical Data Integration (Concatenation)

- Unify database structures
- Remove duplicates

id	Last name	First name	Gender
p2	Mayer	Susan	F
р5	Smith	Walter	М
p7	Brown	Jane	F

Shopper id	Item id	Price
p2	i254	12.50
p5	i4245	1.99
p5	i32123	1.29
р5	i254	12.50
p5	i21435	5.99
р7	i254	12.50

Horizontal Data Integration (Join)

- Overrepresentation of items
- Data explosion

Item id	Price	Last name	First name	Gender
i254	12.50	Mayer	Susan	F
i4245	1.99	Smith	Walter	М
i32123	1.29	Smith	Walter	М
i254	12.50	Smith	Walter	М
i21435	5.99	Smith	Walter	М
i254	12.50	Brown	Jane	F

+

The two data sets on top contain information about customers and product purchases. The joint data set at the bottom combines these two tables. Note how we loose information about individual customers and how a lot of duplicate information is introduced. In reality this effect is, of course, far more dramatic

Contents

- Data Summary and Visualization
 - Descriptive Statistics
 - Visualization for 1 or 2 Dimensions
 - Visualization for Higher Dimensions
- Feature Selection and Dimensionality Reduction
- Data Cleaning
 - Missing Values Imputation
 - Outliers
 - Data Type (Numerical and Categorical) Transformation
 - Data Normalization
 - String REGEX
- Feature Engineering
- Data Integration
- Lab (Demo): Data Import, Filtering and Visualization
- Assignment 3 (In-Class Lab): Data Processing with KNIME
 - Lab3.1: Visualization
 - Lab 3.2: Data Cleaning
- Assignment 4: In-Class Quiz

October 17, 2022 75

Lab: Visualization of sales data

You will learn how to do basic data preparation in KNIME. You will learn:

- 1. How to read csv data file
- 2. How to filter columns and rows
- 3. How to visualize your results in different charts.

October 17, 2022 76

Step 1: Create a new KNIME workflow

- In KNIME Explorer, under LOCAL menu, right click your mouse, it will pop up a window, select New KNIME Workflow menu
- After click the New Workflow menu, the following window will pop up. You need to provide a name for your workflow. Then click finish button.

Step 2: Add a CSV Reader Node

- An empty working space is shown, allowing you to drag and drop some nodes in side.
- In Node Repository window, find IO menu, select CSV Reader, drag and drop it into your empty working sheet.

Step 3: Configure CSV Reader Node

- Right click your mouse on the node. A window will pop up, click the configuration menu.
- You need to provide your csv data file location on your machine. For example, out data file is sales_data.csv, and located in E:/KNIME, you can type: E:/KNIME/sales_data.csv. The contents will displayed and click ok/apply button, and done. Your Node 1 becomes yellow indicting the data is ready.

Step 4: Add a column Filter Node

• In Node Repository, find Column Filter under Column Filter of Manipulation menu. Drag and drop a Column Filter node into sheet, and connect CSV Reader to this Column Filter Node, as figure shows:

Step 5: Configure column Filter Node

 Right click on node Colum Filter, a window pop up, click configure menu, the following configuration window pop up. We will exclude a few columns from right to left, as figure shown. Click Ok or Apply button

Step 6: Check the Filtered Data

 Right click the node Colum Filter, a window pop up, click Filtered table.

						1
	🛕 Filtered table	e - 3:2 - Colu	mn Filter	_		×
	File Edit Hilite	Navigation	View			
	Spec - Colu		Properties	Flor	w Variable	_
	Spec Cold		default" - Ro		* vallable	5
	Row ID	S country	S date	amount		
	Row0	unknown	2008-12-12			
	Row1	China		160		
	Row2	China	2009-04-10	160		
	Row3	China		160		
	Row4	USA	2009-05-10	1600		
	Row5	Brazil		1200		
	Row6		2009-06-08	70		
		USA	2009-07-04	70		
	Row7	USA	2009-07-14			
	Row8	USA	2009-08-20	1600		
	Row9	Germany	2009-11-02	600		
	Row10	Germany	2009-11-22	600		
	Row11	Germany	2009-12-02	35		
	Row12	China	2009-12-12	35		
	Row13	USA	2010-01-03	1600		
	Row14	Germany	2010-01-10	35		
	Row15	Germany	2010-01-13	80		
	Row16	Germany	2010-01-15	1000		
	Row17	USA	2010-01-20	80		
	Row18	USA	2010-02-12	240		
	Row19	USA	2010-02-22	240		
	Row20	Brazil	2010-03-11	240		
	Row21	China	2010-03-12	80		
	Row22	Germany	2010-03-14	160		
	Row23	USA	2010-03-17	80		
	Row24	Germany	2010-03-31	200		
	Row25	USA	2010-04-22	400		
	Row26	China	2010-05-12	160		
	Row27	USA	2010-05-17	175		
	Row28	Germany	2010-06-22	240		
	Row29	China	2010-06-28	350		
	Row30	USA	2010-07-07	480		
K-I	Row31	Brazil	2010-07-17	175		
4	Row32	China	2010-08-28	350		
	Row33	Germany	2010-08-31	200		

2010-09-14 160

Step 7: Add a Row Filter Node

• In Node Repository, find Row Filter under Row Filter of Manipulation menu. Drag and drop a Row Filter node into sheet, and connect Column Filter Node 2 to Row Filter Node 3, as figure shows:

Step 8: Configure the Row Filter Node

 Right click node Row Filter, a window pop up, click configure menu, the following configuration window pop up. We will exclude rows by attribute value for unknow for all columns (amount, country, date).
 Click OK or Apply.

🛕 Dialog - 3:3 - Row Filter	- □ X
File	
Filter Criteria Flow Variables Mer	mory Policy
	Column value matching
	Column to test: S date
	filter based on collection elements
	Matching criteria
	use pattern matching
	unknown
O Include rows by attribute value	✓ case sensitive match
Exclude rows by attribute value	regular expression
O Include rows by number	
Exclude rows by number	Ouse range checking
O Include rows by row ID	lower bound:
Exclude rows by row ID	upper bound:
	appez ovaza.
	Only missing values match
	OK Apply Cancel

Step 9: Check the data output of the Row **Filter Node**

Right click node Row Filter, a window pop up, click Filtered menu.

ile Edit Hilite	e Navigation	n View			
Spec - Col			s Flo	w Variables	
	Table '	'default" - R	ows: 47		
Row ID	S country	S date	amount		
Row0	unknown	2008-12-12	3		٨
Row1	China	2009-04-10	160		
Row2	China	2009-04-10	160		
Row3	China	2009-05-10	160		
Row4	USA	2009-05-20	1600		
Row5	Brazil	2009-06-08	1200		
Row6	USA	2009-07-04	70		
Row7	USA	2009-07-14	70		
Row8	USA	2009-08-20	1600		
Row9	Germany	2009-11-02	600		
Row10	Germany	2009-11-22	600		
Row11	Germany	2009-12-02	35		
Row12	China	2009-12-12	35		
Row13	USA	2010-01-03	1600		
Row14	Germany	2010-01-10	35		
Row15	Germany	2010-01-13	80		
Row16	Germany	2010-01-15	1000		
Row17	USA	2010-01-20	80		
Row18	USA	2010-02-12	240		
Row19	USA	2010-02-22	240		
Row20	Brazil	2010-03-11	240		
Row21	China	2010-03-12	80		
Row22	Germany	2010-03-14	160		
Row23	USA	2010-03-17	80		
Row24	Germany	2010-03-31	200		
Row25	USA	2010-04-22	400		
Row26	China	2010-05-12	160		
Row27	USA	2010-05-17	175		
Row28	Germany	2010-06-22	240		
Row29	China	2010-06-28	350		
Row30	USA	2010-07-07	480		
Row31	Brazil	2010-07-17	175		
Row32	China	2010-08-28	350		
Row33	Germany	2010-08-31	200		
Row34	Germany	2010-09-14	160		٧

🛕 Filtered - 3:3 - Row Filter

Step 10: Add a Stacked Area Chart Node and Pie/Donut Chart Node

In Node Repository, find Stacked Area Chart and Pie/Donut Chart under JavaScript of Views menu.
 Drag and drop a Stacked Area Chart node and a Pie/Donut Chart Node into sheet, and connect Row Filter Node 3 to these two Nodes, as figure shows. We are ready to go.

Step 11: Configure the Chart Nodes

 Right Stacked Area Chart Node, We don't need to configure anything this time. But for Pie/Donut Chart, we configure as figure shows. Click OK or Apply.

△ Dialog - 3:5 - Pie/Donut Chart	_		\times			
File						
Options General Plot Options Control Options Interactivity	Flow	Variables				
General Settings Generate image						
Category Column S country V						
Aggregation Method Occurence Count O Sum Average						
☑ Report on missing values						
☑ Include 'Missing values' category						
Frequency Column amount ~						
✓ Process table in memory						
OK Apply Cancel		?				

Step 12: Run each node one by one

- Right click each Node, from the pop up menu, click Execute, the Node should become green.
- Eventually, all Nodes should be green.

Step 13: Check the Stacked Area Chart

Click the Stacked Area Chart Node first, then click the toolbar, the Stacked Area Chart will pop up.

Step 14: Check the Pie Chart

Click the Pie/Donut Chart Node first, then click the toolbar, the Pie Chart will pop up.

