INTRODUÇÃO AOS SISTEMAS DE COMUNICAÇÃO

O Canal de Comunicação e seus Efeitos

MODELO DE SISTEMAS DE COMUNICAÇÃO DIGITAL

CANAL DE TEMPO CONTÍNUO

CANAL DE TEMPO CONTÍNUO

CANAL DE TEMPO DISCRETO

MODELO MATEMÁTICO

$$x[n] = u[n] u[n-5]$$

MODELO
MATEMÁTI
 $y[n] = (1-a_{n+1})u[n]$
 $+ \dots$
Resposta do modelo

Atenuação (diminuição da amplitude)

- Atenuação (diminuição da amplitude)
- Atraso

- Atenuação (diminuição da amplitude)
- Atraso
- Nível DC (offset)

- Atenuação: k
- Atraso: d
- Nível DC: c

$$y[n]=kx[n-d]+c$$

- Atenuação (diminuição da amplitude)
- Atraso
- Nível DC (offset)
- Ruído

- Atenuação (diminuição da amplitude)
- Atraso
- Nível DC (offset)
- Ruído
- Suavização das transições

20 AMOSTRAS POR BIT

Entrada Saída

10 AMOSTRAS POR BIT

Entrada Saída

5 AMOSTRAS POR BIT

• Um sistema é algo que recebe a forma de onda de entrada x[n] e produz uma forma de onda de saída y[n].

 Um sistema linear é um sistema que satisfaz as mesmas duas propriedades de uma função linear:

- Aditividade
- Homogeneidade

Aditividade

Homegeneidade

EXEMPLO

• O Sistema abaixo é linear e invariante no tempo?

$$y[n]=kx[n-d]+c$$

Modelo recursivo

$$y[n] = \frac{1}{a_0} \left(\sum_{p=0}^{M} k_p x[n-p] - \sum_{p=1}^{N} a_p y[n-p] \right)$$

MODELO RECURSIVO É SLIT?

$$y[n] = \frac{1}{a_0} \left(\sum_{p=0}^{M} k_p x[n-p] - \sum_{p=1}^{N} a_p y[n-p] \right)$$

- Seja a = $\frac{1}{2}$ e y[n<0] = 0.
- $y[n] = a \cdot y[n-1] + (1-a) \cdot x[n] = \frac{1}{2} y[n-1] + \frac{1}{2} x[n]$
- x[n] = [1, 0, 0, 0, ...]

n x[n] y[n]

- Seja a = $\frac{1}{2}$ e y[n<0] = 0.
- $y[n] = a \cdot y[n-1] + (1-a) \cdot x[n] = \frac{1}{2} y[n-1] + \frac{1}{2} x[n]$
- x[n] = [1, 0, 0, 0, ...]

n	0
x[n]	1
y[n]	$\frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 1$

- Seja a = $\frac{1}{2}$ e y[n<0] = 0.
- $y[n] = a \cdot y[n-1] + (1-a) \cdot x[n] = \frac{1}{2} y[n-1] + \frac{1}{2} x[n]$
- x[n] = [1, 0, 0, 0, ...]

n	0	1	
x[n]	1	0	
y[n]	1/2	$\frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot 0$	

- Seja a = $\frac{1}{2}$ e y[n<0] = 0.
- $y[n] = a \cdot y[n-1] + (1-a) \cdot x[n] = \frac{1}{2} y[n-1] + \frac{1}{2} x[n]$
- x[n] = [1, 0, 0, 0, ...]

n	0	1	2	
x[n]	1	0	0	
y[n]	1/2	1/4	$\frac{1}{2} \cdot \frac{1}{4} + \frac{1}{2} \cdot 0$	

- Seja a = $\frac{1}{2}$ e y[n<0] = 0.
- $y[n] = a \cdot y[n-1] + (1-a) \cdot x[n] = \frac{1}{2} y[n-1] + \frac{1}{2} x[n]$
- x[n] = [1, 0, 0, 0, ...]

n	0	1	2	3
x[n]	1	0	0	0
y[n]	1/2	1/4	1/8	$\frac{1}{2} \cdot \frac{1}{8} + \frac{1}{2} \cdot 0$

- Seja a = $\frac{1}{2}$ e y[n<0] = 0.
- $y[n] = a \cdot y[n-1] + (1-a) \cdot x[n] = \frac{1}{2} y[n-1] + \frac{1}{2} x[n]$
- x[n] = [1, 0, 0, 0, ...]

n	0	1	2	3
x[n]	1	0	0	0
y[n]	1/2	1/4	1/8	1/16

EXEMPLO: IMPULSO

EXEMPLO: RESPOSTA AO IMPULSO

CONVOLUÇÃO

• Esta operação de deslocar e somar sinais é conhecida por convolução.

RESUMO

INTRODUÇÃO AOS SISTEMAS DE COMUNICAÇÃO

O Canal de Comunicação e seus Efeitos