A. support for abstraction

Readability: good with readability, because it's easier to read without complex details.

Writeability: good with writeability, because you able to use functions without details.

Reliability: good with reliability, because with reliable abstraction you'll have less errors.

B. Orthogonality

Readability: good with readability, fewer exceptions combination the easier you can read.

Writeability: good with writeability, because by providing a more flexible and expressive language

Reliability: good with reliability, because fewer combination the less exceptions.

C. Pointers in C and C++

Readability: bad in readability, harder to read and know where the pointer points at.

Writeability: good with writeability, as they allow us to use vars, array, objects using their address in memory

Reliability: bad in reliability, as mistakes can happen when we use arithmetic pointers.

Compare between java, C++:

Readability: java is more readable, has simplicity design and easy to read. C++ 'mentioned above'.

Writeability: C++ is better, we use pointers, 'mentioned above'.

Reliability: java is better, has type checking, exception handling and indexing, it checks if array index is out of bound or not, while C++ 'mentioned above'.

Portability: java is better; you can compile it to an intermediate language (byte code) then JVM will translate it any machine you want. In C++ you have to recompile it.

Cost of execution: C++ is better, java is strong checking language, for example, it checks if array index is out of bound, this increase the cost, while C++ doesn't check.

C++ translate directly into machine code, while java translate to intermediate language then to machine, this increase cost.

Why were modular languages developed?

- To support huge applications.
- Divide and conquer approach for developers.
- Data abstraction.

discuss how the Von Neumann architecture influenced the design of programming language?

- Data and programs stored in memory
- Memory is separate from CPU
- Instructions and data are piped from memory to CPU
- Basis for imperative languages

2nd Term 2020-2021

Department of Computer Science King Saud University

St. Name:

St. Number

Q1) (14 marks) Put a circle around the symbol of the best answer for each of the following

- 1) Which of the following features must be available in a programming language to be suitable for writing embedded systems
 - Provide constructs for low-level control over hardware.
 - b. Use floating point representation
 - c. Have features to analyse data
 - d. All of the above.
- 2) An orthogonal programming language
 - a. Has a relatively small set of primitive constructs that can be combined in a relatively small number of ways to get the desired results.
 - b. Has a fewer number of exceptions because every possible combination is legal.
 - c. Is good with respect to reliability
 - d. All of the above
- 3) Which of the following features a programming language need to have in order to be good with respect to reliability
 - a. Data types
 - b. Support for abstraction
 - c. Exception handling
 - (d.) all of the above
- 4) Having a small number of manageable features and constructs, makes a programming language good with respect to
 - a. Readability
 - b. Writability
 - c. Reliability
 - d. All of the above
- 5) A language with too many operators and special symbols is
 - a. good with respect to writability
 - b. bad with respect to reliability
 - c. bad with respect to readability
 - all of the above
- 6) Java is partly compiled and partly interpreted (hybrid implementation) makes is
 - (a.) Good for writing portable programs
 - b. Good for writing efficient programs
 - c. Good for reducing the cost of training
- 7) Classes, inheritance and polymorphism designed in programming languages as a result of
 - a. The Von-Neumann architecture
 - Programming methodologies
 - c. People preferences
 - d. None of the above

