# Justice in decarbonizing heating systems consistent with the Paris Climate Agreement: subsidy balance between landlords and tenants at the multi-apartment building level

Sebastian Zwickl-Bernhard<sup>a,\*</sup>, Hans Auer<sup>a</sup>, Antonia Golab<sup>a</sup>

<sup>a</sup>Energy Economics Group (EEG), Technische Universität Wien, Gusshausstrasse 25-29/E370-3, 1040 Wien, Austria

| Abstract  |  |  |  |
|-----------|--|--|--|
| Keywords: |  |  |  |

 ${\it Email~address:}~{\tt zwickl@eeg.tuwien.ac.at}~({\tt Sebastian~Zwickl-Bernhard})$ 

<sup>\*</sup>Corresponding author

# ${\bf Nomenclature}$

| Type                                  | Description                                                       | Unit                        |
|---------------------------------------|-------------------------------------------------------------------|-----------------------------|
| Set and index                         |                                                                   |                             |
| $y \in \mathcal{Y} = \{1, \dots, Y\}$ | Years, index by $y$                                               |                             |
| $m \in \mathcal{M} = \{1, \dots, M\}$ | Months, index by $m$                                              |                             |
| Decision variables                    |                                                                   |                             |
| $inv_{grant}$                         | Landlord's investment grants                                      | EUR                         |
| $sub_{heat,y,m}$                      | Tenant's heating costs subsidy in $y$ and $m$                     | EUR                         |
| $q_{init,y,m}$                        | Heat demand supplied by the initial heating system                | kWh                         |
| $q_{alt,y,m}$                         | Heat demand supplied by the heating system alternative            | kWh                         |
| $\Pi_{alt}$                           | Newly installed heating system alternative capacity               | kW                          |
| $r_{y,m}$                             | Rent charge adjustment in $y$ and $m$                             | $\mathrm{EUR}/\mathrm{m}^2$ |
| Parameters                            |                                                                   |                             |
| $n_{ten}$                             | Number of tenants                                                 | 1                           |
| i                                     | Interest rate                                                     | %                           |
| $q_{load,y,m}$                        | Total heat demand in $y$ and $m$                                  | kWh                         |
| $\alpha_m$                            | Ratio between total heat demand and peak load in $\boldsymbol{m}$ | 1                           |
| $c_{alt,hs}$                          | Specific heating system alternative investment costs              | $\mathrm{EUR}/\mathrm{kW}$  |
| $C_{alt,con}$                         | Heating system alternative construction costs                     | EUR                         |
| $ar{r}$                               | Initial rent price                                                | ${\rm EUR/m^2}$             |
| a                                     | Rented area per tenant                                            | $\mathrm{m}^2$              |
| $p_{init,y}$                          | Energy price fueling the initial heating system                   | EUR/kWh                     |
| $p_{alt,y,m}$                         | Energy price fueling the heating system alternative               | EUR/kWh                     |

# 1. Introduction

- Green deal: climate neutrality in Europe until 2050
- Fit for 55: measures until 2030 ensuring a  $\rm CO_2$  reduction of at least 55 %
- Fair and sustainable future for all citizens (leaving no one left behind)
- Special initial conditions in the heating sector: (i) high shares of fossil fuels, and (ii) ownership structure in urban areas
- Natural gas face out
- Renewable energy: historical development of PV systems: investment grants and feed-in tariffs

Against this background · · ·

# 2. State-of-the-art and progress beyond

Focus here on renewable technologies in the heating sector; without energy communities; sharing renewable energy generation

- 2.1. Local renewable heating and cooling systems
  - options for the sustainable provision of heating and cooling demand: [1], [2]
  - using network infrastructure (district heating and cooling) 

     — fueling energy mix: [3]: primary energy sources
  - local on-site generation

2.2. Justice in energy systems: fair and socially balanced sustainable energy transition

the three energy justice tenets (distributive, recognitional and procedural)

A review Energy justice - equality [4] Sehr schwer aber zu generalisieren weil
geopgraphische und lokale Apsekte berücksichtigt werden sollten Energy justice
in the transition to low carbon energy systems: Exploring key themes in interdisciplinary research: non-western Westliche Welt nicht auf die ganze Welt
schließen (inklusive nicht entwickelte Länder) [5] case study von Mozambik
Harnessing social innovation for energy justice: A business model perspective: Energy justice may be operationalised through market principles but not
through the market alone [6]

We examine two local energy transitions from an energy justice perspective [7] show that energy justice and transitions frameworks can be combined [8] Recently 2021, do renewable energy communities deliver energy justice? Exploring insights from 71 European cases [9]

- "We aim to show how when low-carbon transitions unfold, deeper injustices related to equity, distribution, and fairness invariably arise" [10]
- energy justice in household low carbon innovations; low carbon heating;
   collection of opportunities but also threats; who wins and who loses; difficulties to people without the capital, or who do not own their own home.
   ([11])

Wir müssen speziell auf low-income households und renters schauen: Energy efficiency and energy justice for U.S. low-income households: An analysis of multifaceted challenges and potential: Low-income households and renters have fewer energy efficiency appliances; need tailored assistance [12] low-income haben auch höheren residential heating energy use intensity, an en-

low-income haben auch höheren residential heating energy use intensity, an energy efficiency proxy [13]

"They are grinding us into the ground" – The lived experience of (in)energy justice amongst low-income older households: Energy justice was experienced

on four separately distinguishable levels of social relationships: intra-households, household-energy retailer relations, immediate social networks and wider social relations. simple retrofits improved householder heating capabilities [14]

- 2.3. Trade-offs between overnight investments and net present value decisions
- 2.4. Progress beyond state-of-the-art
  - heating system change and sustainable heat supply takes place
  - analytical and modeling framework; justice; qualitative analysis
  - ullet Trade-off analysis between governance, landlords, and tenants  $\longrightarrow$  required incentives
  - Sensitivity analysis helps us to better understand the different ownership structure and its influence on the sustainable energy transition

# 3. Materials and methods

This section explains the methodology and the optimization model developed in this work. The section starts with an introduction and overview of the model in Section 3.1. This is followed by a detailed description of the mathematical formulation in Section 3.2. A case study description and empirical settings are presented in Section 3.3, and model validation is shown in Section 3.4.

# 3.1. Introduction and overview of the model



Figure 1

# 3.2. Mathematical formulation of the model

Objective function. The objective function of the model is to minimize the governance's total costs for investment grants and subsidies. Therefore, the objective function can be written as follows:

$$\min_{x} \underbrace{inv_{grant}}_{\text{landlord}} + \sum_{y} \sum_{m} n_{ten} \cdot \frac{1}{(1+i_g)^y} \cdot \underbrace{sub_{heat,y,m}}_{\text{tenant}} \tag{1}$$

where  $inv_{grant}$  is the investment grant for the landlord and  $sub_{heat,y,m}$  the tenant's subsidy for the heating costs in year y and month m. In addition,  $n_{ten}$  is the number of tenants<sup>1</sup> and  $i_g$  the governance's interest rate. The model's decision variables are included in the decision variable vector x.

Decision variables. In order to improve the readability of the section, we explicitly list all the decision variables of the model using x

$$\underline{x} = [inv_{qrant}, sub_{heat,y,m}, q_{init,y,m}, q_{alt,y,m}, \Pi_{alt}, r_{y,m}]$$
(2)

where  $q_{init,y,m}$  is the quantity of heat demand supplied by the initial heating system using conventional fuels and  $q_{alt,y,m}$  using the sustainable heating system alternative in y and m.  $\Pi_{alt}$  is the capacity of the newly installed heating system alternative and  $r_{y,m}$  the rent charge in y and m.

Constraints. Equation 3 describes the load satisfaction in each time steps (year and month)

$$q_{load,y,m} \le q_{init,y,m} + q_{alt,y,m} \quad : \forall y,m \tag{3}$$

where  $q_{load,y,m}$  is the total heat demand of the multi-apartment building. Equation 4 defines the minimum required newly installed capacity of the heating system alternative

$$\alpha_m \cdot q_{alt,y,m} \le \Pi_{alt} : \forall y, m$$
 (4)

where  $\alpha_m$  is a factor that transforms the amount of monthly heat demand to the corresponding peak demand (i.e., monthly heating system load factor).

 $<sup>^{1}</sup>$ It is assumed that the multi-apartment building consists of  $n_{ten}$  equal tenants. This is a simplification, however, in this paper we do not focus on the socially balanced between tenants, but on that between the landlord and the tenants.

Equation 5 defines the landlord's investment costs  $(costs_{inv})$ 

$$costs_{inv} = \Pi_{alt} \cdot (c_{alt,hs} + n_{ten} \cdot c_{alt,con}) - inv_{grant}$$
 (5)

where  $c_{alt,hs}$  is the specific investment costs of the heating system alternative and  $c_{alt,con}$  the related construction costs associated with the heating system change. Equation 6 sets the rent-related revenues of the landlord  $(rev_{rent,y,m})$ 

$$rev_{rent,y,m} = (\bar{r} + r_{y,m}) \cdot a \cdot n_{ten} : \forall y, m$$
 (6)

where  $\bar{r}$  is the initial rent price,  $r_{y,m}$  the additional rent charge resulting from the heating system change in y and m and a the area of a tenant's dwelling. Equation 7 defines the landlord's net present value constraint and ensures economic viability of the heating system change

$$-costs_{inv} + \sum_{y} \sum_{m} \frac{1}{(1+i_l)^y} \cdot rev_{rent,y,m} \ge 0$$
 (7)

where  $i_l$  is the landlord's interest rate. Equation 8 describes the initial annual spendings of all tenants  $(s_y)$ 

$$s_y = n_{ten} \cdot (\bar{r} \cdot a + \sum_m q_{load,y,m} \cdot p_{init,y}) \quad : y = y_0$$
 (8)

where  $p_{init,y}$  is the price of the conventional fuel initially supplying the heat demand. Building on this, Equation 9 sets the tenants' total spendings  $(s_{total})$ 

$$s_{total} = -\sum_{y} \frac{1}{(1+i)^y} \cdot s_{y_0} \tag{9}$$

where  $s_{y_0}$  represents the initial spendings from Equation 8 above. Equation 10 defines the total spendings of all tenants using the sustainable heating system

alternative  $(s_{alt})$ 

$$s_{alt} = -\sum_{y} \frac{n_{ten}}{(1+i)^y} \sum_{m} (\bar{r} + r_{y,m}) \cdot a + q_{alt,y,m} \cdot p_{alt,y,m} + sub_{heat,y,m}$$
 (10)

and Equation 11 ensures economic viability of the tenants (i.e., greater net present value than in the initial case) in case of the heating system change

$$s_{total} \le s_{alt}$$
 (11)

Equation 12 defines the parity of the landlord's investment grant and rent charge as well as the tenants' heating costs subsidy and ensures socially balanced parity from an economic perspective at the multi-apartment building.

$$sub_{inv} = n_{ten} \left( \sum_{y} \sum_{m} \frac{1}{(1+i)^{y}} \cdot (sub_{heat,y,m} - r_{y,m}) \right)$$
 (12)

### 3.3. Empirical settings and case study description

| Scenario                                   | Climat target   | Heat pump | District heating |
|--------------------------------------------|-----------------|-----------|------------------|
| Low CO <sub>2</sub> price development (LD) | none            | <b>✓</b>  | <b>✓</b>         |
| Gradual Development (GD)                   | $2.0\mathrm{C}$ | <b>✓</b>  | <b>✓</b>         |
| Societal Commitment (SC)                   | $1.5\mathrm{C}$ | <b>✓</b>  | -                |
| Directed Transition (DT)                   | 1.5 C           | -         | <b>✓</b>         |

Table 1

Interest rate: 3 (governance), 5 (tenants), 7 (landlord) percentage; inflation

# 3.4. Validation of the model

This section aims to test the presented model and its functionalities. However, a model validation using existing empirical data can not be applied in this case. There is simply a lack of comparable data from real cases. Therefore, a small illustrative case study is chosen to demonstrate the main functionalities and to verify the model. We assume a single landlord and tenant in a representative

single-family household implementing a heat pump. It is assumed that the landlord's and tenant's interest rate is equal (3%). A detailed description of the empirical settings can be found in Appendix A. Figure 2 shows the landlord's (a) and tenant's (b) net present value.



Figure 2: Landlord's and tenant's net present value and equal financial support. The landlord reaches a net present value equal to zero in 2040 resulting from an investment grant and rent-charge related revenues. The tenant's net present value remains constant compared to the conventional heating system resulting from heating costs subsidy payments.

Both agents receive equal financial support with a total of 13 750 EUR. One finfth of the landlord's support is paid as an investment grant and four-fifths as rent-charge related revenues. The tenant receives a heating costs subsidy. The level of financial support results exactly in (i) a landlord's net present value equal to zero within the time horizon of 15 years (see Figure 2a) and (ii) a constant remaining net present value of tenant compared to the conventional (existing) heating system (including the initial rent charge) (see Figure 2b).

### 3.5. Development of an open-source package building on pyam

# 4. Results and discussion

### 5. Sensitivity analysis

### 6. Conclusions and recommendations

sozial ausgewogenen bedeutet hier, dass kosten für den mieter dürfen nicht stark ansteigen investitionsförderung und dem mieter erlauben höhere mieten zu ver-



Figure 3

langen aufgrund von renewable enery systems

viel mehr muss der staat hier geld in die hand nehmen um profitability sicherzustellen Socially-balanced heating system transition in urban areas (landlords and tenants) hilft uns CO2 nicht als Trigger anders als in übrigen analysen co2 nur als trigger wenn man die kosten auf des co2 preises auf beide akteure aufteilt und nicht nur auf den mieter packt, dann kann co2 preis trigger sein, dass hat die sensitivität analyse gezeigt

zeigt, dass wir uns nicht nur alleine auf den co2 verlassen dürfen, im wärmesektor muss geld in die hand genommen werden.

Future work: investment grants depend on building renovation

### Declaration of interests

None.

# **Declaration of Competing Interest**

The authors report no declarations of interest.



### Acknowledgments

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 835896. The authors acknowledge TU Wien Bibliothek for financial support through its Open Access Funding Programme.

## References

- [1] K. Seyboth, L. Beurskens, O. Langniss, R. E. Sims, Recognising the potential for renewable energy heating and cooling, Energy Policy 36 (7) (2008) 2460–2463. doi:https://doi.org/10.1016/j.enpol.2008.02.046.
- [2] E. Popovski, T. Fleiter, H. Santos, V. Leal, E. O. Fernandes, Technical and economic feasibility of sustainable heating and cooling supply options in southern european municipalities-a case study for matosinhos, portugal,

- Energy 153 (2018) 311-323. doi:https://doi.org/10.1016/j.energy. 2018.04.036.
- [3] A. Lake, B. Rezaie, S. Beyerlein, Review of district heating and cooling systems for a sustainable future, Renewable and Sustainable Energy Reviews 67 (2017) 417-425. doi:https://doi.org/10.1016/j.rser.2016. 09.061.
- [4] G. Pellegrini-Masini, A. Pirni, S. Maran, Energy justice revisited: A critical review on the philosophical and political origins of equality, Energy Research & Social Science 59 (2020) 101310. doi:https://doi.org/10.1016/j.erss.2019.101310.
- [5] V. C. Broto, I. Baptista, J. Kirshner, S. Smith, S. N. Alves, Energy justice and sustainability transitions in mozambique, Applied Energy 228 (2018) 645–655. doi:https://doi.org/10.1016/j.apenergy.2018.06.057.
- [6] R. Hiteva, B. Sovacool, Harnessing social innovation for energy justice: A business model perspective, Energy Policy 107 (2017) 631-639. doi:https://doi.org/10.1016/j.enpol.2017.03.056.
- [7] L. Mundaca, H. Busch, S. Schwer, 'successful'low-carbon energy transitions at the community level? an energy justice perspective, Applied Energy 218 (2018) 292-303. doi:https://doi.org/10.1016/j.apenergy.2018.02. 146.
- [8] K. Jenkins, B. K. Sovacool, D. McCauley, Humanizing sociotechnical transitions through energy justice: An ethical framework for global transformative change, Energy Policy 117 (2018) 66–74. doi:https://doi.org/10.1016/j.enpol.2018.02.036.
- [9] F. Hanke, R. Guyet, M. Feenstra, Do renewable energy communities deliver energy justice? exploring insights from 71 european cases, Energy Research & Social Science 80 (2021) 102244. doi:https://doi.org/10.1016/j. erss.2021.102244.

- [10] B. K. Sovacool, M. Martiskainen, A. Hook, L. Baker, Decarbonization and its discontents: a critical energy justice perspective on four low-carbon transitions, Climatic Change 155 (4) (2019) 581–619. doi:https://doi. org/10.1007/s10584-019-02521-7.
- [11] B. K. Sovacool, M. M. Lipson, R. Chard, Temporality, vulnerability, and energy justice in household low carbon innovations, Energy Policy 128 (2019) 495–504. doi:https://doi.org/10.1016/j.enpol.2019.01.010.
- [12] X. Xu, C.-f. Chen, Energy efficiency and energy justice for us low-income households: An analysis of multifaceted challenges and potential, Energy Policy 128 (2019) 763-774. doi:https://doi.org/10.1016/j.enpol. 2019.01.020.
- [13] T. G. Reames, Targeting energy justice: Exploring spatial, racial/ethnic and socioeconomic disparities in urban residential heating energy efficiency, Energy Policy 97 (2016) 549-558. doi:https://doi.org/10.1016/j.enpol.2016.07.048.
- [14] N. Willand, R. Horne, "they are grinding us into the ground"—the lived experience of (in) energy justice amongst low-income older households, Applied Energy 226 (2018) 61-70. doi:https://doi.org/10.1016/j. apenergy.2018.05.079.
- [15] D. Huppmann, E. Kriegler, V. Krey, IAMC 1.5°C Scenario Explorer and Data hosted by IIASA (version 2.0, retrieved on 04.09.2021, https://data.ece.iiasa.ac.at/iamc-1.5c-explorer/ (2019). doi:https://doi.org/10.5281/zenodo.3363345.

### Appendix A. Empirical settings of the small case example

| Variable                          | Unit                          | Value |
|-----------------------------------|-------------------------------|-------|
| Heat pump investment costs        | EUR/kW                        | 1000  |
| Construction costs                | EUR                           | 1000  |
| Initial rent price                | $\mathrm{EUR}/\mathrm{m}^2$   | 10    |
| Rented area                       | $m^2$                         | 100   |
| Total heat demand                 | kWh                           | 22000 |
| Peak heat demand                  | kW                            | 13    |
| $CO_2$ price (2025-2034)          | $\mathrm{EUR}/\mathrm{tCO}_2$ | 50    |
| $CO_2$ price (2035-2040)          | $\mathrm{EUR}/\mathrm{tCO}_2$ | 100   |
| Natural gas price                 | $\mathrm{EUR}/\mathrm{kWh}$   | 0.05  |
| Electricty price                  | $\mathrm{EUR}/\mathrm{kWh}$   | 0.2   |
| Specific emissions of electricity | ${\rm kgCO_2/kWh}$            | 0.130 |

Table A.1: Data assumptions of the small case example  $\,$