

•••••

PROBLEM RESEARCH

The research objective is to develop a **predictive model** for diabetes diagnosis. This endeavor is motivated by the potential to **improve healthcare** by enabling early intervention and targeted care, contributing to public health insights, aiding clinical decision-making, and promoting preventative measures. Additionally, it provides an opportunity to **apply machine learning techniques** to a relevant healthcare challenge, ultimately benefiting both patients and the medical community.

DATASET INFORMATION

Pregnancies: To express the Number of pregnancies

Glucose: To express the Glucose level in blood

BloodPressure: To express the Blood pressure measurement

SkinThickness: To express the thickness of the skin

Insulin: To express the Insulin level in blood

BMI: To express the Body mass index

DiabetesPedigreeFunction: To express the Diabetes percentage

Age: To express the age

Outcome: To express the final result 1 is Yes and 0 is No

Data Visualization

There are **no features that have a high positive correlation**with each other.

Data Visualization

Data Visualization

Some data has many outliers, so these outliers must be removed

Machine Learning Output

Among the given machine learning algorithms, the **Random Forest algorithm** appears to perform the best with a test accuracy of 0.7857 and a relatively close train accuracy of 0.7997. Random Forest combines the strength of multiple decision trees and tends to be robust and accurate in a variety of scenarios, which **is reflected in its performance on the test data**. It strikes a **good balance** between generalization and overfitting, making it a strong candidate for the model of choice.