

(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11)

EP 1 226 871 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
31.07.2002 Bulletin 2002/31(51) Int Cl.7: B01L 3/00, C12Q 1/68,
G01N 33/543, G01N 33/552

(21) Application number: 02001708.3

(22) Date of filing: 24.01.2002

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE TR
Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 24.01.2001 JP 2001016012

(71) Applicant: EBARA CORPORATION
Ohta-ku, Tokyo (JP)(72) Inventor: Nagasawa, Hiroshi
Hirakata-shi, Osaka (JP)(74) Representative: Wagner, Karl H., Dipl.-Ing. et al
WAGNER & GEYER
Patentanwälte
Gewürzmühlstrasse 5
80538 München (DE)

(54) Reactive probe chip and reactive detection system

(57) A reaction probe chip comprising a substrate having a plurality of discrete, regularly arranged through-holes; and a carrier filled into and held in the through-holes, the carrier having probe molecules fixed thereto such that the probe molecules are different according to the through-holes. The carrier having the probe molecules fixed thereto is preferably a porous membrane, a nonwoven fabric, or porous glass entangled with or bound to the porous membrane or nonwo-

ven fabric. A reaction product detection system flows a sample, including fluorescence labeled DNA to be detected, simultaneously and slowly through a plurality of discrete through-holes regularly arranged in a substrate, thereby binding an analyte to probe molecules, and detects the analyte by a fluorescence detector. The reaction probe chip and the detection system based on a convenient method for preparing DNA Chip can be used in various diagnoses of physiological functions, including DNA polymorphism.

Fig. 1

Description

[0001] This invention relates to a reaction probe chip, which is used for diagnosis of genes and physiological functions and which enables recognition of many functional molecules, and a detection system for detecting a reaction product obtained by the reaction probe chip.

Description of the Related Art

[0002] Detection of polymorphism due to variation of a gene, especially variation of one base (sequence), is effective for diagnosis of a disease ascribed to mutation or the like, e.g., cancer. Its detection is also necessary for guidelines on drug response and adverse reactions, and contributes to analysis of genes related to causes of multiple factor diseases and contributes to predictive medical care. The use of a so-called DNA chip is known to be effective for this detection.

[0003] A hitherto utilized DNA chip having short DNA strands fixed thereto, so-called Gene Chip of Affymetrix, usually comprises 10,000 or more oligo-DNA fragments (DNA probes) fabricated on a silicon or glass substrate 1 cm square by photolithography technology. When a DNA sample, for example, labeled with fluorescence is flowed on this DNA chip, DNA fragments having sequences complementary to the probes on the DNA chip bind to the probes. Only the bound portions can be distinguished by fluorescence, and the particular sequences of the DNA fragments in the DNA sample can be recognized and quantitatively determined. This method has already been shown to be capable of detecting mutation of an oncogene or detecting gene polymorphism.

[0004] A microarray having cDNA's arranged on a slide glass is also used.

[0005] The earlier technologies, however, have posed some problems.

[0006] For DNA Chip to be produced using photolithography, for example, at least four photomasks are needed for synthesis in one stage, and a cycle of photolithography, coupling and washing has to be repeated four times. Since this procedure is repeated for the necessary strand length, a high cost is involved. In changing patterns, the photomasks need to be changed accordingly. DNA Chip's of various designs, which flexibly meet the needs, have not been available.

[0007] DNA Microarray Chip, spotted with a solution of synthetic oligonucleotides at a high density, has been proposed as an alternative method. This type of chip has to undergo a complicated procedure which comprises introducing a modification group in succession to oligonucleotide synthesis, cutting off the modified oligonucleotides from the carrier, followed by detachment and purification, to obtain oligonucleotides, and reacting the oligonucleotides with functional groups introduced onto fixation glass. Thus, this chip is costly, like DNA Chip relying on photolithography.

[0008] During detection with these reaction chips, hy-

bridization is localized to lead to a loss in quantitative determinability, and a device dedicated to hybridization should be used and put to a long-term reaction. Thus, detection of various pieces of genetic information, including one for the purpose of bone marrow transplantation, by use of the reaction chips is laborious and time-consuming, and incurs a lot of expenses.

[0009] The object of the present invention is to establish a more convenient method for preparing DNA Chip, and to provide a reaction detecting chip and a detection system which can be used in various diagnoses of physiological functions, including DNA polymorphism.

[0010] To attain the foregoing object, the present inventors conducted various studies on materials for and shapes of reaction probe chips. Through such studies, they attempted to realize a reaction probe chip, which has on the surface a high integration degree comparable to that obtained by the aforementioned photolithography facilities, without using photolithographic technologies requiring a lengthy, complicated reaction process, posing difficulty in flexibly attaining different objects, and involving huge costs, and without employing a device dedicated to hybridization.

[0011] Based on these studies, the inventors found that the above-described problems could be solved by filling and holding carriers into a plurality of through-holes regularly arranged in a substrate, the carriers having different probe molecules fixed for the respective holes, and then introducing a sample into the carrier-filled holes. This finding led them to accomplish the present invention.

[0012] The present invention solves the above problems by the following means:

35 (1) A reaction probe chip comprising:

a substrate having a plurality of discrete, regularly arranged through-holes; and
40 a carrier filled into and held in the through-holes, the carrier having probe molecules fixed thereto such that the probe molecules are different according to the through-holes.

If necessary, the probe molecules fixed to through-holes may be the same according to two or more through-holes in a chip. Alternatively, two or more different probe molecules may be fixed in one through-hole.

50 (2) The reaction probe chip of (1), wherein
the carrier having the probe molecules fixed thereto is a porous membrane or a nonwoven fabric, and
the porous membrane or the nonwoven fabric is pasted to the substrate so as to close the through-holes.

55 (3) The reaction probe chip of (1), wherein
the carrier having the probe molecules fixed thereto is a powder of porous glass, and

the powder of porous glass is entangled with or bound to a porous membrane or a nonwoven fabric pasted to the substrate so as to close the through-holes.

(4) The reaction probe chip of any one of (1) to (3), wherein

the probe molecules are DNA's, RNA's or PNA's and fragments thereof, oligonucleotides having arbitrary base sequences, antigens, antibodies or epitopes, and enzymes, proteins or functional site polypeptide chains thereof.

(5) A reaction product detection system adapted to flow a sample simultaneously and slowly through a plurality of discrete through-holes regularly arranged in a substrate, the sample including fluorescence labeled DNA to be detected, thereby binding an analyte to probe molecules fixed in the through-holes, and

detect the analyte by a fluorescence detector.

[0013] According to the present invention, there can be easily provided a reaction detection chip which has reactive substances integrated on its surface, the reactive substances including proteins having arbitrary configurations or oligonucleotides having arbitrary base sequences. The detection chip can be provided without the need for special equipment such as photolithography equipment.

[0014] Moreover, the reaction time can be shortened dramatically, the reproducibility of the reaction can be improved, and the total throughput can be increased. Hence, the preparation of a reaction detection chip for DNA or the like, which meets individuals' needs, becomes possible, contributing to made-to-order medical care.

[0015] The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus are not limitative of the present invention, and wherein:

FIG. 1 is a plan view of a reaction probe chip according to the present invention;

FIGS. 2(a) to 2(d) are partial sectional views showing the state of disposition of various carriers in through-holes of a substrate in the reaction probe chip of the present invention, the carriers in FIGS. 2(a) to 2(d) being a porous substance, a porous membrane, a nonwoven fabric, and a porous glass powder fixed to the membrane or the like, respectively;

FIGS. 3(e) to 3(g) are enlarged partial sectional views illustrating the porous substance, the nonwoven fabric, and the porous glass powder fixed to the nonwoven fabric, respectively;

FIGS. 4(h) and 4(i) are enlarged partial cross-sectional views of the carriers having probe molecules fixed thereto, the carriers being the porous sub-

stance in FIG. 4(h) and the nonwoven fabric in FIG. 4(i);

FIG. 5 shows, in cross section, the reaction probe chip of the present invention having the carrier held in the holes, and a stack of the reaction probe chips; FIGS. 6(j) to 6(l) are sectional explanatory drawings of the reaction probe chip of the present invention fixed in a reaction cell, FIG. 6(j) illustrating the fixed state of the reaction chip in the reaction cell, FIG. 6(k) illustrating the initial state of feeding and suction of a fluorescence labeled sample, and FIG. 6(l) illustrating the distributed state of hybridized spots in the reaction chip;

FIG. 7 is a sectional view illustrating the principle of fluorescence detection showing fluorescence emission from the hybridized spots in the reaction probe chip of the present invention when exposed to ultraviolet radiation;

FIG. 8 is a plan view showing the distributed state of spots upon hybridization of the reaction probe chip of the present invention;

FIG. 9 is a conceptual view of a fluorescence detection system using the reaction probe chip of the present invention; and

FIG. 10 is a schematic drawing of a detection system in which the conceptual view of the fluorescence detection system of the present invention in FIG. 9 is expressed as devices.

[0016] Embodiments of the present invention will be described in more detail with reference to the accompanying drawings.

[0017] FIG. 1 is an explanatory drawing showing the relationship between a substrate constituting the reaction probe chip of the present invention and a carrier having probe molecules fixed thereto, the substrate having a plurality of discrete through-holes regularly arranged therein. FIG. 1 illustrates, in a plan view, the arranged state of plural through-holes 3 in a substrate 2 which are filled with and hold a carrier 1.

[0018] FIGS. 2(a) to 2(d) are partial sectional views showing the state of disposition of various carriers 1 in the through-hole 3 of the substrate 2 in the reaction probe chip shown in FIG. 1. The carriers are liquid permeable, and materials having such properties are collectively called "porous medium or media". Various materials can be used as the porous media. FIG. 2(a) shows a state in which a porous substance 1a as the carrier 1 is filled to the full and held in the through-hole 3. FIG. 2(b) shows a state in which the porous substance 1a is filled in a lower half of the through-hole 3. FIG. 2(c) shows a state in which a porous membrane 1b or a nonwoven fabric 1c, as the carrier 1, is pasted to the lower surface of the through-hole 3. FIG. 2(d) shows a state in which a fine powder of porous glass 1d is further fixed, as a carrier, to the membrane 1b or nonwoven fabric 1c. The porous membrane 1b has liquid permeable micropores, and includes a microporous film.

3

[0019] FIGS. 3(e) to 3(g) are enlarged sectional views showing the microstructures of the porous media used in FIGS. 1 and 2(a) to 2(d). In these drawings, black portions represent the solid portions of the porous medium, while white portions represent the porous portions of the porous medium. FIG. 3(e) is an enlarged sectional view of the porous substance 1a as the carrier 1. FIG. 3(f) is an enlarged sectional view of the nonwoven fabric as the carrier 1. FIG. 3(g) is an enlarged sectional view showing the entangled binding of the fine porous glass powder 1d fixed to the fibers of the nonwoven fabric 1c.

[0020] FIGS. 4(h) and 4(i) are enlarged sectional views showing the microstructures of the carriers 1 having probe molecules 4 fixed thereto. FIG. 4(h) illustrates the state of the probe molecules 4 fixed in the porous substance 1a (shaded portions), FIG. 4(i) illustrates the state of the probe molecules 4 fixed to the surfaces of the fibers (shaded portions) of the nonwoven fabric 1c.

[0021] FIG. 5 is a sectional view of the reaction probe chip 5 in which the carrier 1 having different probe molecules 4, 4, and so on fixed thereto is filled and held in a plurality of the through-holes 3, 3, etc. regularly arranged in the substrate 2, along with a sectional view showing a multi-layer stack of the reaction probe chips 5 for simultaneously presenting many of the reaction probe chips 5, 5 ... having the same characteristics.

[0022] FIGS. 6(j) to 6(l) are sectional views for explaining the status of detection of a sample with the use of the reaction probe chip 5 fixed in a reaction cell 6. FIG. 6(j) is a sectional view showing a state of fixing, in which the reference numeral 7 denotes a sample inlet, 8 denotes a sample suction port, and the other numerals denote portions having the same functions as described earlier. FIG. 6(k) is a sectional view showing a state in which a fluorescence labeled sample 9 begins to be fed and sucked. FIG. 6(l) is a sectional view of hybridized spots 10, 10 upon binding to several types of specific probe molecules 4.

[0023] FIGS. 7 and 8 are views illustrating the principle of detection of the hybridized spots 10, 10 by a fluorescence detector. FIG. 7 is a sectional view for explaining a state in which the reaction probe chip 5 having the hybridized spots 10, 10 shown in FIG. 6(l) is irradiated with ultraviolet (UV) radiation 11, and only the spots 10, 10 emit fluorescence 12. FIG. 8 is a plan view showing the distributed state of the through-holes 3 having the hybridized spots 10, 10 among the plural through-holes 3 regularly arranged in the substrate 2. FIG. 8 also shows the locations of emission of the fluorescence 12 at the spots, 10, 10 ... in the plural through-holes 3 of the substrate 2.

[0024] FIG. 9 is a conceptual view of a fluorescence detection system using the reaction probe chip of the present invention. In a detection portion 14, ultraviolet radiation from an excitation light source 15 is directed at the reaction probe chip, fluorescence emitted is subjected to fluorescence detection 16, and data on the detected fluorescence is transferred to a data processing

portion 17 for processing of the data.

[0025] FIG. 10 expresses the conceptual view of FIG. 9 schematically as devices. This drawing shows a detection system in which hybridized spots obtained in a hybridization device 18 are observed for fluorescence by a fluorescence observation device 19 composed of a light source portion 20, a module accommodation portion 21, and an observation unit 22, and data obtained are processed by the data processing portion 17.

[0026] Next, the materials for and dimensions of the substrate, carrier, etc. described in the drawings are explained.

[0027] The reaction probe chip of the present invention can be prepared by a process comprising the steps of:

providing a substrate;
opening a regular array of discrete through-holes in the substrate that connect at least two of its surfaces;
fixing a carrier having a reactive surface, such as a powder of porous glass, a porous membrane or non-woven fabric, to at least one of the through-holes, which carrier bears on its surface a reacting substance such as DNA, RNA or PNA, antigen, antibody or epitope thereof, enzyme, protein or a functional fragment thereof.

[0028] Alternatively, the reactive substance may be carried on the surface of the carrier after fixing the latter to at least one of the through-holes.

[0029] The substrate may be a material unchanged and stable to the detection system, and needs to have surface characteristics suitable for fixing of the carrier.

[0030] The preferred substrate is a glass substrate such as quartz glass or boro-silicate glass, or an inorganic substrate such as a silicon wafer. However, an organic substrate, such as a polyester film or a polyethylene film, can be used, if a method for bonding it to the carrier can be worked out. Suitable surface treatment can be applied to the surface of the substrate in order to adjust, for example, compatibility with a carrier binder.

[0031] In terms of its shape, the substrate is particularly preferably a flat plate, such as a film or a sheet. If the substrate is in the plate form, the thickness or size of the substrate is not restricted. The thickness of the substrate is determined, as desired, in consideration of shape stability required of the substrate. The size of the substrate is determined, as desired, in consideration of, for example, the number of the through-holes provided in the surface of the substrate.

[0032] The dimension of the plural through-holes regularly arranged in the substrate is not restricted, but is preferably 0.5 to 2 mm, particularly preferably about 1 mm.

[0033] The carrier is a material for bearing a reactive substance (probe molecule), such as DNA, RNA or PNA, antigen, antibody or an epitope thereof, enzyme,

protein or a functional site polypeptide chain thereof. Preferred examples of the carrier are porous materials, such as a powder of porous glass, a porous membrane, and a nonwoven fabric. The shapes of the pores may be any shapes, as long as the porous material has a porous structure. Suitable surface treatment is preferably applied to the surface of the carrier in order to adjust, for example, compatibility with the reactive substance. The carrier in the through-hole should have a structure in which when a liquid is flowed during carriage of the reactive substance or during reaction for detection, the liquid can be flowed through the through-hole from top to bottom.

[0033] That is, the porous material, as the site of reaction, may be a material which fixes or grows the reaction probe molecule. There is no restriction on the type of the material, but porous glass powder or a glass fiber filter paper (nonwoven fabric) is preferred.

[0034] The method of carrying the reactive substance (probe molecule) onto the carrier need not be specified. However, any means usable for fixing can be used, such as a method which comprises fixing an amino group to the surface of the carrier, and then fixing a polypeptide chain with the use of glutaraldehyde. The reactive substance of a particular size need not be fixed and carried, but it is permissible to synthesize the reactive substance on the carrier as in the synthesis of oligonucleotide or oligopeptide, and use it unchanged.

[0035] The size and shape of the carrier can be selected arbitrarily. In view of the fact that the carrier bearing many various reactive substances is fixed onto the substrate, however, the preferred carrier is a powder with 1 to 100 microns, particularly preferably 3 to 20 microns. This is because a larger particle size is preferred in terms of the work efficiency of the process for carrying the reactive substance, but a smaller particle size is preferred when fixing the carrier after carriage of the reactive substance. The fixation of the carrier to the substrate is performed by dispersing the carrier in a solvent, such as water, together with a cellulose-based adhesive, such as cellulose nitrate, and arranging or printing the dispersion onto the substrate by means of a dispenser, spotter or the like.

[0036] The pore size of the porous glass powder or membrane is preferably 0.1 to 0.5 µm, and the fine gaps of the nonwoven fabric or filter paper are preferably several micrometers or less. Too small a pore size makes it difficult to filter the fluorescence labeled sample, so that a pore size of 0.1 µm or more is necessary.

[0037] The "reactivity" in the "reactive probe" described in the present invention refers not only to the properties of changing a chemical structure or the like ascribed to ionic bond or covalent bond by a chemical reaction, but also to the properties of bringing about binding to other substance by other mode, such as van der Waals force, hydrogen bond, coordinate bond, chemical adsorption, or physical adsorption. Examples of such a reactive probe are, but of course not restricted

to, enzymes, antigens, DNA fragments, antibodies, epitopes, and proteins.

5 [0038] If an oligonucleotide, a DNA fragment synthesized on the carrier, is used as the reactive probe, for example, its hybridization with a DNA sample to be detected can result in the detection of DNA having a particular sequence.

10 [0039] Preparation processes for the reaction probe chip of the present invention, and a detection system using it will be described.

[0040] The reaction probe chip of the present invention has a structure in which the substrate is perforated with the through-holes and the reaction probes are fixed there (FIGS. 1 and 2(a) to 2(d)). At the site of reaction, such as the porous medium or nonwoven fabric, the probe molecules are fixed as shown in FIGS. 4(h) and 4(i).

15 [0041] The shape of the reaction site in the through-hole may include some cases, as shown in FIGS. 2(a) to 2(d). In any of these cases, the through-hole should be enough large to allow passage of a gene or the like to be analyzed, and should be designed to hold a reactive probe molecule.

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600 9605 9610 9615 9620 9625 9630 9635 9640 9645 9650 9655 9660 9665 9670 9675 9680 9685 9690 9695 9700 9705 9710 9715 9720 9725 9730 9735 9740 9745 9750 9755 9760 9765 9770 9775 9780 9785 9790 9795 9800 9805 9810 9815 9820 9825 9830 9835 9840 9845 9850 9855 9860 9865 9870 9875 9880 9885 9890 9895 9900 9905 9910 9915 9920 9925 9930 9935 9940 9945 9950 9955 9960 9965 9970 9975 9980 9985 9990 9995 9999

[0044] The present invention will be described in further detail by reference to the following examples, which in no way limit the invention.

Example 1:

[0045] A quartz glass substrate (length 70 mm, width 25 mm, thickness 0.5 mm) having 10 × 5 regularly arranged through-holes of 1 mm in diameter was prepared. A powder of porous glass with a pore size of 100 nm and a particle size of 10 microns was filled into the through-holes, and baked. The upper and lower surfaces of the substrate were smoothed by polishing. The substrate was chemically cleaned, and then surface amminated using a silane coupling agent. Ten of the substrates were superposed, one on another, and different types of cDNA's were fixed to the respective through-holes by the customary method.

[0046] The substrates were placed in a reaction cell of polypropylene, and fluorescence labeled cDNA to be detected was poured into the reaction cell, and reacted. After reaction and washing, the chips were withdrawn from the cell, and analyzed by a fluorescence detector.

Example 2:

[0047] A polyethylene terephthalate substrate (length 50 mm, width 30 mm, thickness 0.3 mm) having an arrangement of through-holes of 2 mm in diameter was prepared. A glass fiber filter paper was sandwiched between the substrates, and the composite was heat sealed to prepare a reaction chip substrate. One-hundred of the substrates were superposed, one on another, and reagents were sequentially passed through the respective holes vertically communicating with each other to synthesize different oligonucleotides.

[0048] The substrates were placed in a reaction cell of polypropylene, and fluorescence labeled cDNA to be detected was poured into the reaction cell, and reacted. After reaction and washing, the chips were withdrawn from the cell, and analyzed by a fluorescence detector.

Example 3:

[0049] A Pyrex glass substrate (length 80 mm, width 30 mm, thickness 0.5 mm) having an arrangement of through-holes of 0.5 mm in diameter was prepared. A porous membrane comprising regenerated cellulose was pasted to the upper surface of the substrate. Separately, a powder of porous glass with a pore size of 100 nm and a particle diameter of 5 microns was prepared, and various oligonucleotides were synthesized by the customary method. These materials were dipped into the respective holes, and a dilute solution of cellulose nitrate, a cellulose-based adhesive, was added drop-wise to fix the porous glass powder.

[0050] The substrates were placed in a reaction cell of polypropylene, and fluorescence labeled cDNA to be

detected was poured into the reaction cell, and reacted. After reaction and washing, the chip was withdrawn from the cell, and analyzed by a fluorescence detector.

[0051] In all of the Examples, the hybridized spots emitted a strong fluorescence upon exposure to ultraviolet radiation. The sequences of DNA fragments in the DNA sample were elucidated by the fluorescence detector.

[0052] While the present invention has been described in the foregoing fashion, it is to be understood that the invention is not limited thereby, but may be varied in many other ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the appended claims.

Claims

- 20 1. A reaction probe chip comprising:
25 a substrate having a plurality of discrete, regularly arranged through-holes; and
25 a carrier filled into and held in the through-holes, the carrier having probe molecules fixed thereto such that the probe molecules are different according to the through-holes.
- 30 2. The reaction probe chip of claim 1, wherein
35 the carrier having the probe molecules fixed thereto is a porous membrane or a nonwoven fabric, and
35 the porous membrane or the nonwoven fabric is pasted to the substrate so as to close the through-holes.
- 40 3. The reaction probe chip of claim 1, wherein
45 the carrier having the probe molecules fixed thereto is a powder of porous glass, and
45 the powder of porous glass is entangled with or bound to a porous membrane or a nonwoven fabric pasted to the substrate so as to close the through-holes.
- 45 4. The reaction probe chip of any one of claims 1 to 3,
50 wherein
50 the probe molecules are DNA's, RNA's or PNA's and fragments thereof, oligonucleotides having arbitrary base sequences, antigens, antibodies or epitopes, and enzymes, proteins or functional site polypeptide chains thereof.
- 55 5. A reaction product detection system adapted to
55 flow a sample simultaneously and slowly through a plurality of discrete through-holes regularly arranged in a substrate, the sample including fluorescence labeled DNA to be detected, thereby

binding an analyte to probe molecules fixed in the through-holes, and detect the analyte by a fluorescence detector.

5

10

15

20

25

30

35

40

45

50

55

7

Fig. 1

Fig. 2a

Fig. 2b

Fig. 2c

Fig. 2d

Fig. 3e

Fig. 3f

Fig. 3g

Fig. 4h

Fig. 4i

Fig. 5

Fig. 6k

Fig. 6l

Fig. 7

Fig. 8

Fig. 9

Fig. 10

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.