Package 'poilog'

November 26, 2007

Title Poisson lognormal and bivariate Poisson lognormal distribution
Version 0.3-3
Date 2007-11-20
Author Vidar Grøtan and Steinar Engen
Maintainer Vidar Grøtan <vidar.grotan@bio.ntnu.no></vidar.grotan@bio.ntnu.no>
Description Functions for obtaining the density, random deviates and maximum likelihood estimates of the Poisson lognormal distribution and the bivariate Poisson lognormal distribution.
License GPL-3
Encoding latin1
R topics documented:
poilog-package 1 Poisson lognormal 2 MLE for Poisson lognormal distribution 2 Bivariate Poisson lognormal 3 MLE for bivariate Poisson lognormal distribution 3 MLE for bivariate Poisson lognormal distribution 3
Index 10
poilog-package Poisson lognormal and bivariate Poisson lognormal distribution
D

Description

Type Package

Functions for obtaining the density, random deviates and maximum likelihood estimates of the Poisson lognormal distribution and the bivariate Poisson lognormal distribution.

Details

Package: poilog
Type: Package
Version: 0.3-3
Date: 12007-11-26
License: GPL-3

Poisson lognormal

dpoilog returns the density, rpoilog returns random deviates and poilogMLE performs maximum likelihood estimation of parameters for the Poisson lognormal distribution.

dbipoilog returns the density, rbipoilog returns random deviates and bipoilogMLE performs maximum likelihood estimation of parameters for the bivariate Poisson lognormal distribution.

Author(s)

Vidar Grøtan and Steinar Engen

Maintainer: Vidar Grøtan (vidar.grotan@bio.ntnu.no)

References

Bulmer, M. G. 1974. On fitting the Poisson lognormal distribution to species abundance data. Biometrics **30**, 651-660.

Engen, S., R. Lande, T. Walla and P. J. DeVries. 2002. Analyzing spatial structure of communities using the two-dimensional Poisson lognormal species abundance model. American Naturalist **160**, 60-73.

```
Poisson lognormal Poisson lognormal distribution
```

Description

Density and random generation for the Poisson lognormal distribution with parameters mu and sig.

Usage

```
dpoilog(n, mu, sig)
rpoilog(S, mu, sig, nu=1, condS=FALSE, keep0=FALSE)
```

Arguments

n	vector of observed individuals for each species
S	number of species in the community
mu	mean of lognormal distribution
sig	standard deviation of lognormal distribution
nu	sampling intensity, defaults to 1
condS	logical; if TRUE random deviates are conditonal on S
keep0	logical; if TRUE species with count 0 are included in the random deviates

Details

The following is written from the perspective of using the Poisson lognormal distribution to describe community structure (the distribution of species when sampling individuals from a community of several species).

Under the assumption of random sampling, the number of individuals sampled from a given species with abundance y, say N, is Poisson distributed with mean nu y where the parameter nu expresses the sampling intensity. If ln y is normally distributed with mean mu and standard deviation sig

Poisson lognormal 3

among species, then the vector of individuals sampled from all S species then constitutes a sample from the Poisson lognormal distribution with parameters (mu + ln nu, sig), where mu and sig are the mean and standard deviation of the log abundances. For nu = 1, this is the Poisson lognormal distribution with parameters (mu, sig) which may be written in the form

$$P(N=\mathrm{n};\mathrm{mu},\mathrm{sig}) = q(\mathrm{n};\mathrm{mu},\mathrm{sig}) = \int\limits_{-\infty}^{\infty} g_{\mathrm{n}}(\mathrm{mu},\mathrm{sig},u) \phi(u) \; du,$$

where $\phi(u)$ is the standard normal distribution and

$$g_{\texttt{N}}(\texttt{mu},\texttt{sig},u) = \frac{\exp(u\,\texttt{sig}\,\texttt{n} + \texttt{mu}\,\texttt{n} - \exp(u\,\texttt{sig} + \texttt{mu}))}{\texttt{n}!}$$

Since S is usually unknown, we only consider the observed number of individuals for the observed species. With a general sampling intensity nu, the distribution of the number of individuals then follows the zero-truncated Poisson lognormal distribution

$$\frac{q(\mathbf{n};\mathbf{mu},\mathbf{sig})}{1-q(0;\mathbf{mu},\mathbf{sig})}$$

Value

dpoilog returns the density rpoilog returns random deviates

Author(s)

Vidar Grøtan (vidar.grotan@bio.ntnu.no) and Steinar Engen

References

Engen, S., R. Lande, T. Walla & P. J. DeVries. 2002. Analyzing spatial structure of communities using the two-dimensional Poisson lognormal species abundance model. American Naturalist 160: 60-73.

See Also

poilogMLE for ML estimation

Examples

```
### plot density for given parameters
barplot(dpoilog(n=0:20,mu=2,sig=1),names.arg=0:20)

### draw random deviates from a community of 50 species
rpoilog(S=50,mu=2,sig=1)

### draw random deviates including zeros
rpoilog(S=50,mu=2,sig=1,keep0=TRUE)

### draw random deviates with sampling intensity = 0.5
rpoilog(S=50,mu=2,sig=1,nu=0.5)
```

```
### how many species are likely to be observed
### (given S,mu,sig2 and nu)?
hist(replicate(1000,length(rpoilog(S=30,mu=0,sig=3,nu=0.7))))
### how many individuals are likely to be observed
### (given S,mu,sig2 and nu)?
hist(replicate(1000,sum(rpoilog(S=30,mu=0,sig=3,nu=0.7))))
```

```
MLE for Poisson lognormal distribution
```

Maximum Likelihood Estimation for Poisson Lognormal Distribution

Description

 $\verb|poilogMLE| fits the Poisson lognormal distribution to data and estimates parameters mean \verb|mu| and standard deviation \verb|sig| in the lognormal distribution$

Usage

Arguments

n	A vector of counts
startVals	Starting values of parameters, see details
nboot	Number of parametric bootstraps, defaults to zero
zTrunc	Zero-truncated distribution, defaults to TRUE
method	Method to use during optimization, see details
control	A list of control parameters for the optimization routine, see details

Details

The function estimates parameters mean mu and standard deviation sig. In cases of incomplete sampling the estimate of mu will be confounded with the sampling intensity (see rpoilog). Assuming sampling intensity ν , the estimates of the mean is mu + ln(ν). Parameter sig can be estimated without any knowledge of sampling intensity.

The parameters must be given starting values for the optimization procedure (default starting values are used if starting values are not specified in the function call).

The function uses the optimization procedures in optim to obtain the maximum likelihood estimate. The method and control arguments are passed to optim, see the help page for this function for additional methods and control parameters.

A zero-truncated distribution (see dpoilog) is assumed by default (zTrunc = TRUE). In cases where the number of zeros is known the zTrunc argument should be set to FALSE.

Parametric bootstrapping is done by simulating new sets of observations using the estimated parameters (see rbipoilog).

Value

par	Maximum likelihood estimates of the parameters
logLval	Log likelihood of the data given the estimated parameters
gof	Godness of fit measure obtained by checking the rank of logLval against logLval's obtained during the bootstrap procedure, (gof<0.05) or (gof>0.95) indicates lack of fit
boot	A data frame containing the bootstrap replicates of parameters and logLval

Author(s)

Vidar Grøtan (vidar.grotan@bio.ntnu.no), Steinar Engen

References

Bulmer, M. G. 1974. On fitting the Poisson lognormal distribution to species abundance data. Biometrics **30**, 651-660.

Engen, S., R. Lande, T. Walla and P. J. DeVries. 2002. Analyzing spatial structure of communities using the two-dimensional Poisson lognormal species abundance model. American Naturalist **160**, 60-73.

See Also

```
optim, dpoilog, rpoilog
```

Examples

Bivariate Poisson lognormal

Bivariate Poisson Lognormal Distribution

Description

Density and random generation for the for the bivariate Poisson lognormal distribution with parameters mu1, mu2, sig1, sig2 and rho.

Usage

Arguments

n1	vector of observed individuals for each species in sample 1
n2	vector of observed individuals for each species in sample 2 (in the same order as in sample 1)
mu1	mean of lognormal distribution in sample 1
mu2	mean of lognormal distribution in sample 1
sig1	standard deviation of lognormal distribution in sample 1
sig2	standard deviation of lognormal distribution in sample 2
rho	correlation among samples
S	Total number of species in both communites
nu1	sampling intensity sample 1
nu2	sampling intensity sample 2
condS	logical; if TRUE random deviates are conditonal on S
keep0	logical; if TRUE species with count 0 in both communities are included in the random deviates

Details

The following is written from the perspective of using the Poisson lognormal distribution to describe community structure (the distribution of species when sampling individuals from a community of several species).

The following assumes knowledge of the **Details** section of dpoilog.

Consider two communities jointly and assume that the log abundances among species have the binormal distribution with parameters (mu1,sig1,mu2,sig2,rho). If sampling intensities are nu1 = nu2 = 1, samples from the communities will have the bivariate Poisson lognormal distribution

$$P(N_1=\text{n1},N_2=\text{n2};\;\text{mu1},\text{sig1},\text{mu2},\text{sig2},\text{rho})=$$

$$q(\text{n1},\text{n2};\;\text{mu1},\text{sig1},\text{mu2},\text{sig2},\text{rho})=$$

$$\int\limits_{-\infty}^{\infty}\int\limits_{-\infty}^{\infty}g_{\text{n1}}(\text{mu1},\text{sig1},u)g_{\text{n2}}(\text{mu2},\text{sig2},v)\,\phi(u,v;\text{rho})\,dudv,$$

where $\phi(u,v;\text{rho})$ here denotes the binormal distribution with zero means, unit variances and correlation rho. In the general case with sampling intensities nu1 and nu2, mu1 and mu2 should be replaced by mu1 + ln nu1 and mu2 + ln nu2 respectively. In this case, some species will be missing from both samples. The number of individuals for observed species will then have the truncated distribution

$$\frac{q(\texttt{n1},\texttt{n2};\,\texttt{mu1},\texttt{sig1},\texttt{mu2},\texttt{sig2},\texttt{rho})}{1-q(0,0;\,\texttt{mu1},\texttt{sig1},\texttt{mu2},\texttt{sig2},\texttt{rho})}$$

Value

```
dbipoilog returns the density rbipoilog returns random deviates
```

Author(s)

Vidar Grøtan (vidar.grotan@bio.ntnu.no) and Steinar Engen

References

Engen, S., R. Lande, T. Walla and P. J. DeVries. 2002. Analyzing spatial structure of communities using the two-dimensional Poisson lognormal species abundance model. American Naturalist **160**, 60-73.

See Also

bipoilogMLE for maximum likelihood estimation

Examples

```
### change in density of n2 for two different values of rho (given n1=10)
barplot (rbind (dbipoilog (n1=rep(10,21), n2=0:20, mu1=0, mu2=0, sig=1, sig2=1, rho=0.0),
              dbipoilog(n1=rep(10,21),n2=0:20,mu1=0,mu2=0,sig=1,sig2=1,rho=0.8)),
              beside=TRUE, space=c (0,0.2), names.arg=0:20, xlab="n2", col=1:2)
legend(35,0.0012,c("rho=0","rho=0.8"),fill=1:2)
### draw random deviates from a community of 50 species
rbipoilog(S=50, mu1=0, mu2=0, sig1=1, sig2=2, rho=0.7)
### draw random deviates including zeros
rbipoilog(S=50, mu1=0, mu2=0, sig1=1, sig2=2, rho=0.7, keep0=TRUE)
### draw random deviates with sampling intensities nu1=0.5 and nu2=0.7
rbipoilog(S=50, mu1=0, mu2=0, sig1=1, sig2=2, rho=0.7, nu1=0.5, nu2=0.7)
### draw random deviates conditioned on a certain number of species
rbipoilog(S=50, mu1=0, mu2=0, sig1=1, sig2=2, rho=0.7, nu1=0.5, nu2=0.7, condS=TRUE)
### how many species are likely to be observed in at least one of the samples
### (given S, mu1, mu2, sig1, sig2, rho)?
hist(replicate(1000, nrow(rbipoilog(S=50, mu1=0, mu2=0, sig1=1, sig2=2, rho=0.7))),
     main="", xlab = "Number of species observed in at least one of the samples")
### how many individuals are likely to be observed
### (given S, mu1, mu2, sig1, sig2, rho)?
hist(replicate(1000, sum(rbipoilog(S=50, mu1=0, mu2=0, sig1=1, sig2=2, rho=0.7))),
     main="", xlab="sum nr of individuals in both samples")
```

Description

bipoilogMLE fits the bivariate Poisson lognormal distribution to data

Usage

Arguments

n1	a vector or a matrix with two columns of pairwise counts of observed individuals for each species
n2	if $n1$ is not given as a matrix, a vector of counts with same ordering of species as in argument $n1$
startVals	starting values of parameters
nboot	number of parametric bootstraps, defaults to zero
zTrunc	logical; if TRUE (default) the zero-truncated distribution is fitted
file	text file to hold copies of bootstrap estimates
method	method to use during optimization, see details
control	a list of control parameters for the optimization routine, see details

Details

The function estimates the parameters mu1, sig1, mu2, sig2 and rho. In cases of incomplete sampling the estimates of mu1 and mu2 will be confounded with the sampling intensities (see rbipoilog). Assuming sampling intensities ν_1 and ν_2 , the estimates of the means are mu1+ln ν_1 and mu2 + ln ν_2 . Parameters sig1, sig2 and rho can be estimated without any knowledge of sampling intensities. The parameters must be given starting values for the optimization procedure (default starting values are used if starting values are not specified in the function call).

A zero-truncated distribution (see dbipoilog) is assumed by default (zTrunc = TRUE). In cases where the number of zeros is known the zTrunc argument should be set to FALSE.

The function uses the optimization procedures in optim to obtain the maximum likelihood estimate. The method and control arguments are passed to optim, see the help page for this function for additional methods and control parameters. In rare cases the optimization procedure will try to evaluate the likelihood for parameter values that can not be evaluated by numerical integration

Parametric bootstrapping could be time consuming for large data sets. If argument file is specified, e.g. file ='C:\\myboots.txt', the matrix with bootstrap estimates are copied into a tab-seperated text-file providing extra backup. Bootstrapping is done by simulating new sets of observations conditioned on the observed number of species (see rbipoilog).

Value

par	Maximum likelihood estimates of the parameters
logLval	Log likelihood of the data given the estimated parameters
gof	Godness of fit measure obtained by checking the rank of logLval against logLval's obtained during the bootstrap procedure, (gof < 0.05) or (gof > 0.95) indicates lack of fit
boot	A data frame containing the bootstrap replicates of parameters and logLval

Author(s)

Vidar Grøtan (vidar.grotan@bio.ntnu.no), Steinar Engen

References

Engen, S., R. Lande, T. Walla and P. J. DeVries. 2002. Analyzing spatial structure of communities using the two-dimensional Poisson lognormal species abundance model. American Naturalist **160**, 60-73.

See Also

```
optim, dbipoilog, rbipoilog
```

Examples

Index

```
*Topic distribution
   Bivariate Poisson lognormal,
   MLE for bivariate Poisson
       lognormal distribution, 8
   MLE for Poisson lognormal
       {\tt distribution,4}
   Poisson lognormal, 2
*Topic package
   poilog-package, 1
bipoilogMLE, 2, 7
bipoilogMLE (MLE for bivariate
       Poisson lognormal
       distribution), 8
Bivariate Poisson lognormal, 5
dbipoilog, 2, 8, 9
dbipoilog(Bivariate Poisson
       lognormal), 5
dpoilog, 1, 4-6
dpoilog(Poisson lognormal), 2
MLE for bivariate Poisson
       lognormal distribution, 8
MLE for Poisson lognormal
       distribution, 4
optim, 4, 5, 8, 9
poilog(poilog-package), 1
poilog-package, 1
poilogMLE, 1, 3
poilogMLE (MLE for Poisson
       lognormal distribution), 4
Poisson lognormal, 2
rbipoilog, 2, 4, 8, 9
rbipoilog(Bivariate Poisson
       lognormal), 5
rpoilog, 1, 4, 5
rpoilog(Poisson lognormal), 2
```