

691701586

529 Rec'd PCT/PTC 30 NOV 2000

TRANSMITTAL LETTER TO THE UNITED STATES

ATTORNEY'S DOCKET NUMBER 49100

DESIGNATED/ELECTED OFFICE (DO/EO/US)
CONCERNING A FILING UNDER 35 U.S.C. 371

U.S. APPLICATION NO. (If known, see 37 CFR 1.5)

INTERNATIONAL APPLICATION NO. PCT/EP 99/03889 INTERNATIONAL FILING DATE 4 June 1999 PRIORITY DATE CLAIMED
5 June 1998
1 March 1999

TITLE OF INVENTION: POLY(ADP-RIBOSE)POLYMERASE-GENE

APPLICANT(S) FOR DO/EO/US Michael KOCK, Thomas HOEGER, Burkhard KROEGER, Bernd OTTERBACH
Wilfried LUBISCH, Hans-Georg LEMAIRE

Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:

1. This is a FIRST submission of items concerning a filing under 35 U.S.C. 371.
 2. This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371.
 3. This express request to begin national examination procedures (35 U.S.C.371(f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. 371(b) and PCT Articles 22 and 39(1).
 4. A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date.
 5. A copy of the International Application as filed (35 U.S.C. 371(c)(2)).
 - a. is transmitted herewith (required only if not transmitted by the International Bureau).
 - b. has been transmitted by the International Bureau.
 - c. is not required, as the application was filed in the United States Receiving Office (RO/USO).
 6. A translation of the International Application into English (35 U.S.C. 371(c)(2)).
 7. Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3)).
 - a. are transmitted herewith (required only if not transmitted by the International Bureau).
 - b. have been transmitted by the International Bureau.
 - c. have not been made; however, the time limit for making such amendments has NOT expired.
 - d. have not been made and will not be made.
 8. A translation of the amendments to the claims under PCT Article 19(35 U.S.C. 371(c)(3)).
 9. An oath or declaration of the inventor(s)(35 U.S.C. 171(c)(4)).
 10. A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)).
- Items 11. to 16. below concern other document(s) or information included:
11. An Information Disclosure Statement under 37 CFR 1.97 and 1.98.
 12. An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.
 13. A FIRST preliminary amendment.
 A SECOND or SUBSEQUENT preliminary amendment.
 14. A substitute specification.
 15. A change of power of attorney and/or address letter.
 16. Other items or information.
International Search Report
International Preliminary Examination Report

529 Rec'd PCT/PTO 30 NOV 2000

U.S. Appln. No. (If Known)	INTERNATIONAL APPLN. NO.	ATTORNEY'S DOCKET NO.
09/761586	PCT/EP99/03889	49790
17. /X The following fees are submitted		CALCULATIONS
BASIC NATIONAL FEE (37 CFR 1.492(a)(1)-(5)):		PTO USE ONLY
Search Report has been prepared by the EPO or JPO.....	\$860.00	
International preliminary examination fee paid to USPTO (37 CFR 1.482).....	\$750.00	
No international preliminary examination fee paid to USPTO (37 CFR 1.482) but international search fee paid to USPTO (37 CFR 1.445(a)(2)).....	\$700.00	
Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO	\$ 970.00	
International preliminary examination fee paid to USPTO (37 CFR 1.482) and all claims satisfied provisions of PCT Article 33(2)-(4).....	\$96.00	
ENTER APPROPRIATE BASIC FEE AMOUNT = \$ 860.00		
Surcharge of \$130.00 for furnishing the oath or declaration later than / / 20 / 30 months from the earliest claimed priority date (37 CFR 1.492(e)).		
Claims	Number Filed	Number Extra
Total Claims	32 -20	12
Indep. Claims	1 -3	X\$18. X\$80.
Multiple dependent claim(s)(if applicable)	+270.	
TOTAL OF ABOVE CALCULATION		= 1,076.00
Reduction of 1/2 for filing by small entity, if applicable.		
Verified Small Entity statement must also be filed (Note 37 CFR 1.9, 1.27, 1.28).		
SUBTOTAL		= 1,076.00
Processing fee of \$130. for furnishing the English translation later than / / 20 / 30 months from the earliest claimed priority date (37 CFR 1.492(f)). +		
TOTAL NATIONAL FEE		= 1,076.00
Fee for recording the enclosed assignment (37 CFR 1.21(h)).		
The assignment must be accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31) \$40.00 per property = 40.00		
TOTAL FEES ENCLOSED		= \$ 1,116.00
Amount to be refunded: \$ _____ Charged \$ _____		

- a./X A check in the amount of \$ 1,116.00 to cover the above fees is enclosed.
- b./I Please charge my Deposit Account No. _____ in the amount of \$ _____ to cover the above fees. A duplicate copy of this sheet is enclosed.
- c./X The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. 11-0345. A duplicate copy of this sheet is enclosed.

NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b) must be filed and granted to restore the application to pending status.

SEND ALL CORRESPONDENCE TO:
KEIL & WEINKAUF
1101 Connecticut Ave., N.W.
Washington, D. C. 20036

SIGNATURE

Herbert B. Keil
NAME
Registration No. 18,967

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

JCD2 Rec'd PCT/PTO 25 APR 2002

8
Box Sequence

In re Application of) Box Sequence
KOCK et al.)
Serial No. 09/701,586)
Filed: November 30, 2000)
For: POLY(ADP-RIBOSE) POLYMERASE-GENE

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to: Commissioner of Patents and Trademarks, Washington, D.C. 20231 on

April 23, 2002

Date of Deposit	Herbert B. Keil
Person Making Deposit	<i>HBKeil</i>
Signature	April 23, 2002
Date of Signature	

Honorable Commissioner of
Patents and Trademarks
Washington, D.C. 20231

PRELIMINARY AMENDMENT
AND
RESPONSE TO NOTIFICATION OF DEFECTIVE RESPONSE

Sir:

In response to the Notification of Defective Response, mailed April 11, 2002, applicants respectfully request entry of the following amendments, in accordance with 37 CFR §1.115.

KOCK et al., Serial No. 09/701,586

CLEAN VERSION OF AMENDMENTS

IN THE SPECIFICATION

Please replace the sequence listing on pages 48 to 82 of the specification with the substitute sequence listing appended hereto, numbered pages 1 to 36.

KOCK et al., Serial No. 09/701,586

REMARKS

In response to the Notice of Defective Response, a copy of the substitute sequence listing in computer readable form is attached hereto. The content of the paper copy of the sequence listing and the copy of the sequence listing in computer readable form is the same, and includes no new matter.

It is believed that by submitting the present amendment and the sequence listing diskette, the application now fully complies with the requirements of 37 CFR §§ 1.821-1.825. Applicants respectfully solicit issuance of the patent.

Please charge any shortage in fees due in connection with the filing of this paper, including Extension of Time fees to Deposit Account No. 11-0345. Please credit any excess fees to such deposit account.

Respectfully submitted,
KEIL & WEINKAUF

David C. Liechty
Reg. No. 48,692

1101 Connecticut Ave., N.W.
Washington, D.C. 20036
(202)659-0100

DCL/kas

09/701586

529 Rec'd PCT/PTC 30 NOV 2000

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the Application of)
KOCK et al.) BOX PCT
)
International Application)
PCT/EP 99/03889)
)
Filed: June 4, 1999)
)
For: POLY(ADP-RIBOSE)POLYMERASE-GENE

PRELIMINARY AMENDMENT

Honorable Commissioner of
Patents and Trademarks
Washington, D.C. 20231

Sir:

Prior to examination, kindly amend the above-identified application as follows:

IN THE CLAIMS

3. A PARP homolog as claimed in claim 1 [either of the preceding claims], comprising at least another one of the following part-sequence motifs:

LX₉NX₂YX₂QLLX(D/E)X_{10/11}WGRVG,
AX₃FXKX₄KTXNXWX₅FX₃PXK,
QXL(I/L)X₂IX₉MX₁₀PLGKLX₃QIX₆L,
FYTXIPHFGX₃PP; and
KX₃LX₂LXDIEXAX₂L,

in which the X radicals are, independently of one another, any amino acid.

4. A PARP homolog as claimed in claim 1 [any of the preceding claims], selected from human PARP homologs, which has the amino acid sequence shown in SEQ ID NO: 2 (human PARP2) or SEQ ID NO: 4 or 6 (human PARP3 type 1 or 2); or murine PARP homologs which have the amino acid sequence shown in SEQ ID NO:8 (mouse PARP long form) or SEQ ID No:10 (mouse PARP short form); and the functional equivalents thereof.

5. A binding partner for PARP homologs as claimed in claim 1 [any of the preceding claims], selected from
- antibodies and fragments thereof,
 - protein-like compounds which interact with a part-sequence of the protein, and
 - low molecular weight effectors which modulate the catalytic PARP activity or another biological function of a PARP molecule.
6. A nucleic acid comprising
- a nucleotide sequence coding for at least one PARP homolog as claimed in claim 1 [any of claims 1 to 4], or the complementary nucleotide sequence thereof;
 - a nucleotide sequence which hybridizes with a sequence as specified in a) under stringent conditions; or
 - nucleotide sequences which are derived from the nucleotide sequences defined in a) and b) through the degeneracy of the genetic code.
8. An expression cassette comprising, under the genetic control of at least one regulatory nucleotide sequence, at least one nucleotide sequence as claimed in claim 6 [either of claims 6 and 7].
12. A PARP-deficient mammal or PARP-deficient eukaryotic cell, in which functional expression of at least one gene which codes for a PARP homolog as claimed in claim 1 [any of claims 1 to 4] is inhibited.
13. An in vitro detection method for PARP inhibitors, which comprises
- incubating an unsupported or supported polyADP-ribosylatable target with a reaction mixture comprising
 - a PARP homolog as claimed in claim 1 [any of claims 1 to 4],
 - a PARP activator; and
 - a PARP inhibitor or an analyte in which at least one PARP inhibitor is suspected;
 - carrying out the polyADP ribosylation reaction; and

- c) determining the polyADP ribosylation of the target qualitatively or quantitatively.
15. A method as claimed in claim 13 [either of claims 13 and 14], wherein the polyADP-ribosylatable target is a histone protein.
16. A method as claimed in claim 13 [any of claims 13 to 15], wherein the PARP activator is activated DNA.
17. A method as claimed in claim 13 [any of claims 13 to 16], wherein the polyADP ribosylation reaction is started by adding NAD⁺.
18. A method as claimed in claim 13 [any of claims 13 to 17], wherein the polyADP ribosylation of the supported target is determined using anti-poly(ADP-ribose) antibodies.
19. A method as claimed in claim 13 [any of claims 13 to 17], wherein the unsupported target is labeled with an acceptor fluorophore.
21. A method as claimed in claim 19 [either of claims 19 and 20], wherein the target is biotinylated histone, and the acceptor fluorophore is coupled thereto via avidin or streptavidin.
22. A method as claimed in claim 20 [either of claims 20 and 21], wherein the anti-poly(ADP-ribose) antibody carries a europium cryptate as donor fluorophore.
23. An in vitro screening method for binding partners for a PARP molecule, which comprises
- a1) immobilizing at least one PARP homolog as claimed in claim 1 [any of claims 1 to 4] on a support;
 - b1) contacting the immobilized PARP homolog with an analyte in which at least one binding partner is suspected; and

- PCT/GB2003/002236 2003-07-29 2003-07-29
- c1) determining, where appropriate after an incubation period, analyte constituents bound to the immobilized PARP homolog;
- or
- a2) immobilizing on a support an analyte which comprises at least one possible binding partner for a PARP molecule;
- b2) contacting the immobilized analyte with at least one PARP homolog as claimed in claim 1 [any of claims 1 to 4] for which a binding partner is sought; and
- c2) examining the immobilized analyte, where appropriate after an incubation period, for binding of the PARP homolog.
24. A method for the qualitative or quantitative determination of nucleic acids encoding a PARP homolog as claimed in claim 1 [any of claims 1 to 4], which comprises
- incubating a biological sample with a defined amount of an exogenous nucleic acid [as claimed in either of claims 6 and 7], hybridizing under stringent conditions, determining the hybridizing nucleic acids and, where appropriate, comparing with a standard; or
 - incubating a biological sample with a pair of oligonucleotide primers with specificity for a PARP homolog-encoding nucleic acid, amplifying the nucleic acid, determining the amplification product and, where appropriate, comparing with a standard.
25. A method for the qualitative or quantitative determination of a PARP homolog as claimed in claim 1 [any of claims 1 to 4], which comprises
- incubating a biological sample with a binding partner specific for a

- PARP homolog,
- b) detecting the binding partner/PARP complex and, where appropriate,
 - c) comparing the result with a standard.
27. A method as claimed in claim 24 [any of claims 24 to 26] for diagnosing energy deficit-mediated illnesses.
28. A method for determining the efficacy of PARP effectors, which comprises
- a) incubating a PARP homolog as claimed in claim 1 [any of claims 1 to 4] with an analyte which comprises an effector of a physiological or pathological PARP activity; removing the effector again where appropriate; and
 - b) determining the activity of the PARP homolog, where appropriate after adding substrates or cosubstrates.
29. A gene therapy composition, which comprises in a vehicle acceptable for gene therapy a nucleic acid construct which
- a) comprises an antisense nucleic acid against a coding nucleic acid as claimed in claim 6 [either of claims 6 and 7]; or
 - b) a ribozyme against a nucleic acid as claimed in claim 6 [either of claims 6 and 7]; or
 - c) codes for a specific PARP inhibitor.
30. A pharmaceutical composition comprising, in a pharmaceutically acceptable vehicle, at least one PARP protein as claimed in claim 1 [any of claims 1 to 4], at least one PARP binding partner [as claimed in claim 5] or at least one coding nucleotide sequence [as claimed in claim 6 or 7].

R E M A R K S

The claims have been amended to eliminate multiple dependency and to put them in better form for U.S. filing. No new matter is included. A clean copy of the claims is attached.

Favorable action is solicited.

Respectfully submitted,

KEIL & WEINKAUF

Herbert B. Keil

Reg. No. 18,967

1101 Connecticut Ave., N.W.
Washington, D.C. 20036
(202)659-0100

10050/49100/49790

CLEAN COPY OF THE CLAIMS

1. A poly(ADP-ribose) polymerase (PARP) homolog which has an amino acid sequence which has
 - a) a functional NAD⁺ binding domain and
 - b) no zinc finger sequence motif of the general formula

in which

m is an integral value from 28 or 30, and the X radicals are, independently of one another, any amino acid; and the functional equivalents thereof.

2. A PARP homolog as claimed in claim 1, wherein the functional NAD⁺ binding domain comprises one of the following general sequence motifs:

PX_n(S/T)GX₃GKGIYFA,

(S/T)XGLR(I/V)XPX_n(S/T)GX₃GKGIYFA or

LLWHG(S/T)X₇IL(S/T)XGLR(I/V)XPX_n(S/T)GX₃GKGIYFAX₃SKSAXY

in which

n is an integral value from 1 to 5, and the X radicals are, independently of one another, any amino acid.

3. A PARP homolog as claimed in claim 1, comprising at least another one of the following part-sequence motifs:

LX₉NX₂YX₂QLLX(D/E)X_{10/11}WGRVG,
AX₃FXKX₄KTXNXWX₅FX₃PXK,

20050/49100/49790

QXL(I/L)X₂IX₉MX₁₀PLGKLX₃QIX₆L,
FYTXIPHXFGX₃PP; and
KX₃LX₂LXDIEXAX₂L,

in which the X radicals are, independently of one another, any amino acid.

4. A PARP homolog as claimed in claim 1, selected from human PARP homologs, which has the amino acid sequence shown in SEQ ID NO: 2 (human PARP2) or SEQ ID NO: 4 or 6 (human PARP3 type 1 or 2); or murine PARP homologs which have the amino acid sequence shown in SEQ ID NO:8 (mouse PARP long form) or SEQ ID No:10 (mouse PARP short form); and the functional equivalents thereof.
5. A binding partner for PARP homologs as claimed in claim 1, selected from
 - a) antibodies and fragments thereof,
 - b) protein-like compounds which interact with a part-sequence of the protein, and
 - c) low molecular weight effectors which modulate the catalytic PARP activity or another biological function of a PARP molecule.
6. A nucleic acid comprising
 - a) a nucleotide sequence coding for at least one PARP homolog as claimed in claim 1, or the complementary nucleotide sequence thereof;
 - b) a nucleotide sequence which hybridizes with a sequence as specified in a) under stringent conditions; or
 - c) nucleotide sequences which are derived from the nucleotide sequences defined in a) and b) through the degeneracy of the genetic code.
7. A nucleic acid as claimed in claim 6, comprising
 - a) nucleotides +3 to +1715 shown in SEQ ID NO:1;

30050/49100/49790

- b) nucleotides +242 to +1843 shown in SEQ ID NO:3;
 - c) nucleotides +221 to +1843 shown in SEQ ID NO:5;
 - d) nucleotides +112 to +1710 shown in SEQ ID NO:7; or
 - e) nucleotides +1 to +1584 shown in SEQ ID NO:9.
8. An expression cassette comprising, under the genetic control of at least one regulatory nucleotide sequence, at least one nucleotide sequence as claimed in claim 6.
9. A recombinant vector comprising at least one expression cassette as claimed in claim 8.
10. A recombinant microorganism comprising at least one recombinant vector as claimed in claim 9.
11. A transgenic mammal comprising a vector as claimed in claim 9.
12. A PARP-deficient mammal or PARP-deficient eukaryotic cell, in which functional expression of at least one gene which codes for a PARP homolog as claimed in claim 1 is inhibited.
13. An in vitro detection method for PARP inhibitors, which comprises
- a) incubating an unsupported or supported polyADP-ribosylatable target with a reaction mixture comprising
 - a1) a PARP homolog as claimed in claim 1,
 - a2) a PARP activator; and
 - a3) a PARP inhibitor or an analyte in which at least one PARP inhibitor is suspected;
 - b) carrying out the polyADP ribosylation reaction; and
 - c) determining the polyADP ribosylation of the target qualitatively or

40050/49100/49790

quantitatively.

14. A method as claimed in claim 13, wherein the PARP homolog is preincubated with the PARP activator and the PARP inhibitor or an analyte in which at least one PARP inhibitor is suspected, before the polyADP ribosylation reaction is carried out.
15. A method as claimed in claim 13, wherein the polyADP-ribosylatable target is a histone protein.
16. A method as claimed in claim 13, wherein the PARP activator is activated DNA.
17. A method as claimed in claim 13, wherein the polyADP ribosylation reaction is started by adding NAD⁺.
18. A method as claimed in claim 13, wherein the polyADP ribosylation of the supported target is determined using anti-poly(ADP-ribose) antibodies.
19. A method as claimed in claim 13, wherein the unsupported target is labeled with an acceptor fluorophore.
20. A method as claimed in claim 19, wherein the polyADP ribosylation of the unsupported target is determined using anti-poly(ADP-ribose) antibody which is labeled with a donor fluorophore which is able to transfer energy to the acceptor fluorophore.
21. A method as claimed in claim 19, wherein the target is biotinylated histone, and the acceptor fluorophore is coupled thereto via avidin or streptavidin.
22. A method as claimed in claim 20, wherein the anti-poly(ADP-ribose) antibody

50050/49100/49790

carries a europium cryptate as donor fluorophore.

23. An in vitro screening method for binding partners for a PARP molecule, which comprises
 - a1) immobilizing at least one PARP homolog as claimed in claim 1 on a support;
 - b1) contacting the immobilized PARP homolog with an analyte in which at least one binding partner is suspected; and
 - c1) determining, where appropriate after an incubation period, analyte constituents bound to the immobilized PARP homolog;
 - or
 - a2) immobilizing on a support an analyte which comprises at least one possible binding partner for a PARP molecule;
 - b2) contacting the immobilized analyte with at least one PARP homolog for which a binding partner is sought; and
 - c2) examining the immobilized analyte, where appropriate after an incubation period, for binding of the PARP homolog.
24. A method for the qualitative or quantitative determination of nucleic acids encoding a PARP homolog as claimed in claim 1, which comprises
 - a) incubating a biological sample with a defined amount of an exogenous nucleic acid, hybridizing under stringent conditions, determining the hybridizing nucleic acids and, where appropriate, comparing with a standard; or
 - b) incubating a biological sample with a pair of oligonucleotide primers with specificity for a PARP homolog-encoding nucleic acid, amplifying the nucleic acid, determining the amplification product and, where appropriate, comparing with a standard.

60050/49100/49790

25. A method for the qualitative or quantitative determination of a PARP homolog as claimed in claim 1, which comprises
 - a) incubating a biological sample with a binding partner specific for a PARP homolog,
 - b) detecting the binding partner/PARP complex and, where appropriate,
 - c) comparing the result with a standard.
26. A method as claimed in claim 25, wherein the binding partner is an antibody or a binding fragment thereof, which carries a detectable label where appropriate.
27. A method as claimed in claim 24 for diagnosing energy deficit-mediated illnesses.
28. A method for determining the efficacy of PARP effectors, which comprises
 - a) incubating a PARP homolog as claimed in claim 1 with an analyte which comprises an effector of a physiological or pathological PARP activity; removing the effector again where appropriate; and
 - b) determining the activity of the PARP homolog, where appropriate after adding substrates or cosubstrates.
29. A gene therapy composition, which comprises in a vehicle acceptable for gene therapy a nucleic acid construct which
 - a) comprises an antisense nucleic acid against a coding nucleic acid as claimed in claim 6; or
 - b) a ribozyme against a nucleic acid as claimed in claim 6; or
 - c) codes for a specific PARP inhibitor.
30. A pharmaceutical composition comprising, in a pharmaceutically acceptable vehicle, at least one PARP protein as claimed in claim 1, at least one PARP binding partner or at least one coding nucleotide sequence

70050/49100/49790

31. The use of low molecular weight PARP binding partners as claimed in claim 5 for the diagnosis or therapy of pathological states in the development and/or progress of which at least one PARP protein, or a polypeptide derived therefrom, is involved.
32. The use of low molecular weight PARP binding partners as claimed in claim 5 for the diagnosis or therapy of pathological states mediated by an energy deficit.

7/PRTS

(2)
09/701586
529 Rec'd PCT/PTC 30 NOV 2000Novel poly(ADP-ribose) polymerase genes

The present invention relates to novel poly(ADP-ribose) polymerase (PARP) genes and to the proteins derived therefrom; antibodies with specificity for the novel proteins; pharmaceutical and gene therapy compositions which comprise products according to the invention; methods for the analytical determination of the proteins and nucleic acids according to the invention; methods for identifying effectors or binding partners of the proteins according to the invention; methods for determining the activity of such effectors and use thereof for the diagnosis or therapy of pathological states.

In 1966, Chambon and co-workers discovered a 116 kD enzyme which was characterized in detail in subsequent years and is now called PARP (EC 2.4.2.30) (poly(adenosine-5'-diphosphoribose) polymerase), PARS (poly(adenosine-5'-diphosphoribose) synthase) or ADPRT (adenosine-5'-diphosphoribose transferase). In the plant kingdom (*Arabidopsis thaliana*) a 72kD (637 amino acids) PARP was found in 1995 (Lepiniec L. et al., FEBS Lett 1995; 364(2): 103-8). It was not clear whether this shorter form of PARP is a plant-specific individuality or an artefact ("splice" variant or the like). The 116 kD PARP enzyme has to date been unique in animals and in man in its activity, which is described below. It is referred to as PARP1 below to avoid ambiguity.

The primary physiological function of PARP 1 appears to be its involvement in a complex repair mechanism which cells have developed to repair DNA strand breaks. The primary cellular response to a DNA strand break appears moreover to consist of PARP1-catalyzed synthesis of poly(ADP-ribose) from NAD⁺ (cf. De Murcia, G. et al. (1994) TIBS, 19, 172).

PARP 1 has a modular molecular structure. Three main functional elements have been identified to date: an N-terminal 46 kD DNA binding domain; a central 22 kD automodification domain to which poly(ADP-ribose) becomes attached, with the PARP 1 enzyme activity decreasing with increasing elongation; and a C-terminal 54 kD NAD⁺ binding domain. A leucine zipper region has been found within the automodification domain, indicating possible protein-protein interactions, only in the PARP from *Drosophila*. All PARPs known to date are presumably active as homodimers.

The high degree of organization of the molecule is reflected in the strong conservation of the amino acid sequence. Thus, 62% conservation of the amino acid sequence has been found for PARP 1

from humans, mice, cattle and chickens. There are greater structural differences from the PARP from *Drosophila*. The individual domains themselves in turn have clusters of increased conservation. Thus, the DNA binding region contains two so-called 5 zinc fingers as subdomains (comprising motifs of the type CX₂CX_{28/30}H₂C), which are involved in the Zn²⁺-dependent recognition of DNA single strand breaks or single-stranded DNA overhangs (e.g. at the chromosome ends, the telomeres). The C-terminal catalytic domain comprises a block of about 50 amino 10 acids (residues 859-908), which is about 100% conserved among vertebrates (PARP "signature"). This block binds the natural substrate NAD⁺ and thus governs the synthesis of poly(ADP-ribose) (cf. de Murcia, loc.cit.). The GX₃GKG motif in particular is characteristic of PARPs in this block.

15

The beneficial function described above contrasts with a pathological one in numerous diseases (stroke, myocardial infarct, sepsis etc.). PARP is involved in cell death resulting from ischemia of the brain (Choi, D.W., (1997) *Nature Medicine*, 20 3, 10, 1073), of the myocardium (Zingarelli, B., et al (1997), *Cardiovascular Research*, 36, 205) and of the eye (Lam, T.T. (1997), *Res. Comm. in Molecular Pathology and Pharmacology*, 95, 3, 241). PARP activation induced by inflammatory mediators has also been observed in septic shock (Szabo, C., et al. (1997), *Journal of Clinical Investigation*, 100, 3, 723). In these cases, activation of PARP is accompanied by extensive consumption of NAD⁺. Since four moles of ATP are consumed for the biosynthesis of one mole of NAD⁺, the cellular energy supply decreases drastically. The consequence is cell death.

25

PARP1 inhibitors described in the abovementioned specialist literature are nicotinamide and 3-aminobenzamide. 3,4-Di-hydro-5-[4-(1-piperidinyl)butoxy]-1(2H)-isoquinolone is disclosed by Takahashi, K., et al (1997), *Journal of Cerebral Blood Flow and Metabolism* 17, 1137. Further inhibitors are described, for example, in Banasik, M., et al. (1992) *J. Biol. Chem.*, 267, 3, 1569 and Griffin, R.J., et al. (1995), *Anti-Cancer Drug Design*, 10, 507.

40 High molecular weight binding partners described for human PARP1 include the base excision repair (BER) protein XRCC1 (X-ray repair cross-complementing 1) which binds via a zinc finger motif and a BRCT (BRCA1 C-terminus) module (amino acids 372-524) (Masson, M., et al., (1998) *Molecular and Cellular Biology*, 18, 6, 45 3563).

It is an object of the present invention, because of the diverse physiological and pathological functions of PARP, to provide novel PARP homologs. The reason for this is that the provision of homologous PARPs would be particularly important for developing 5 novel targets for drugs, and novel drugs, in order to improve diagnosis and/or therapy of pathological states in which PARP, PARP homologs or substances derived therefrom are involved.

We have found that this object is achieved by providing PARP 10 homologs, preferably derived from human and non-human mammals, having an amino acid sequence which has
a) a functional NAD⁺ binding domain, i.e. a PARP "signature" sequence having the characteristic GX₃GKG motif;
and
15 b) especially in the N-terminal sequence region, i.e. in the region of the first 200, such as, for example, in the region of the first 100, N-terminal amino acids, no PARP zinc finger sequence motifs of the general formula

20 in which
m is an integral value from 28 or 30, and the X radicals are, independently of one another, any amino acid;
and the functional equivalents thereof.

25 Since the PARP molecules according to the invention represent in particular functional homologs, they naturally also have a poly(ADP-ribose)-synthesizing activity. The NAD binding domain essentially corresponds to this activity and is localized to the C terminus.

30 Thus an essential characteristic of the PARPs according to the invention is the presence of a functional NAD⁺ binding domain (PARP signature) which is located in the C-terminal region of the amino acid sequence (i.e. approximately in the region of the last 35 400, such as, for example, the last 350 or 300, C-terminal amino acids), in combination with an N-terminal sequence having no zinc finger motifs. Since the zinc finger motifs in known PARPs presumably contribute to recognition of the DNA breakages, it is to be assumed that the proteins according to the invention do not 40 interact with DNA or do so in another way. It has been demonstrated by appropriate biochemical tests that the PARP2 according to the invention can be activated by 'activated DNA' (i.e. DNA after limited DNaseI digestion). It can be concluded from this further that the PARP2 according to the invention has 45 DNA binding properties. However, the mechanism of the DNA binding and enzyme activation differs between the PARPs according to the invention and PARP1. Its DNA binding and enzyme activation is, as

mentioned, mediated by a characteristic zinc finger motif. No such motifs are present in the PARPs according to the invention. Presumably these properties are mediated by positively charged amino acids in the N-terminal region of the PARPs according to 5 the invention. Since the 'activated DNA' (i.e. for example DNA after limited treatment with DNaseI) has a large number of defects (single strand breaks, single strand gaps, single-stranded overhangs, double strand breaks etc.), it is possible that although PARP1 and the PARPs according to the 10 invention are activated by the same 'activated DNA', it is by a different subpopulation of defects (e.g. single strand gaps instead of single strand breaks).

The functional NAD⁺ binding domain (i.e. catalytic domain) binds
15 the substrate for poly-(ADP-ribose) synthesis. Consistent with
known PARPs, the sequence motif GX¹X²X³GKG, in which G is glycine,
K is lysine, and X¹, X² and X³ are, independently of one another,
any amino acid, is present in particular. However, as shown,
surprisingly, by comparison of the amino acid sequences of the
20 NAD⁺ binding domains of PARP molecules according to the invention
with previously disclosed human PARP1, the sequences according to
the invention differ markedly from the known sequence for the NAD⁺
binding domain.

25 A group of PARP molecules which is preferred according to the invention preferably has the following general sequence motif in the catalytic domain in common:

30 PX_n(S/T)GX₃GKGIYFA (SEQ ID NO:11), in particular
(S/T)XGLR(I/V)XPX_n(S/T)GX₃GKGIYFA (SEQ ID NO:12),
preferably
LLWHG(S/T)X₇IL(S/T)XGLR(I/V)XPX_n(S/T)GX₃GKGIYFAX₃SKSAXY
(SEQ ID NO:13)

35 in which (S/T) describes the alternative occupation of this sequence position by S or T, (I/V) describes the alternative occupation of this sequence position by I or V, and n is an integral value from 1 to 5, and the X radicals are, independently of one another, any amino acid. The last motif is also referred
40 to as the "PARP signature" motif.

The automodification domain is preferably likewise present in the PARPs according to the invention. It can be located, for example, in the region from about 100 to 200 amino acids in front of the 45 N-terminal end of the NAD⁺ binding domain.

5

PARP homologs according to the invention may additionally comprise, N-terminally of the NAD⁺ binding domain (i.e. about 30 to about 80 amino acids closer to the N terminus), a leucine zipper-like sequence motif of the general formula

5 (L/V)X₆LX₆LX₆L (SEQ ID NO:14)

in which

(L/V) represents the alternative occupation of this sequence position by L or V, and the X radicals are, independently of one another, any amino acid. The leucine zipper motifs observed

10 according to the invention differ distinctly in position from those described for PARP from Drosophila. Leucine zippers may lead to homodimers (two PARP molecules) or heterodimers (one PARP molecule with a binding partner differing therefrom).

15 The PARP homologs according to the invention preferably additionally comprise, N-terminally of the abovementioned leucine zipper-like sequence motifs, i.e. about 10 to 250 amino acid residues closer to the N terminus, at least another one of the following part-sequence motifs:

20

LX ₉ NX ₂ YX ₂ QLLX(D/E)X _b WGRVG,	(motif 1; SEQ ID NO:15)
AX ₃ FXXX ₄ KTXNXWX ₅ FX ₃ PXK,	(motif 2; SEQ ID NO:16)
QXL(I/L)X ₂ IX ₉ MX ₁₀ PLGKLX ₃ QIX ₆ L,	(motif 3; SEQ ID NO:17)
FYTXIPHFGX ₃ PP,	(motif 4; SEQ ID NO:18)

25

and

KX ₃ LX ₂ LXDIEXAX ₂ L	(motif 5; SEQ ID NO:19),
---	--------------------------

in which (D/E) describes the alternative occupation of this sequence position by D or E, (I/L) describes the alternative 30 occupation of this sequence position by I or L, b is the integral value 10 or 11, and the X radicals are, independently of one another, any amino acid. It is most preferred for these motifs 1 to 5 all to be present in the stated sequence, with motif 1 being closest to the N terminus.

35

The abovementioned PARP signature motif is followed in the proteins according to the invention by at least another one of the following motifs:

40 GX₃LXEVALG (motif 6; SEQ ID NO:20)
 GX₂SX₄GX₃PX_aLXGX₂V (motif 7; SEQ ID NO:21) and
 E(Y/F)X₂YX₃QX₄YLL (motif 8; SEQ ID NO:22)

in which (Y/F) describes the alternative occupation of this sequence position by Y or F, a is equal to 7 to 9 and X is in 45 each case any amino acid. It is most preferred for the three

C-terminal motifs all to be present and in the stated sequence, with motif 8 being closest to the C terminus.

A preferred PARP structure according to the invention may be
5 described schematically as follows:

Motifs 1 to 5/PARP signature/motifs 6 to 8 or
motifs 1 to 5/leucine zipper/PARP signature/motifs 6 to 8

10 it being possible for further amino acid residues, such as, for example, up to 40, to be arranged between the individual motifs and for further amino acid residues, such as, for example, up to 80, to be arranged at the N terminus and/or at the C terminus.

15 PARP homologs which are particularly preferred according to the invention are the proteins human PARP2, human PARP3, mouse PARP3 and the functional equivalents thereof. The protein referred to as human PARP2 comprises 570 amino acids (cf. SEQ ID NO:2). The protein referred to as human PARP3 possibly exists in two forms.

20 Type 1 comprises 533 amino acids (SEQ ID NO:4) and type 2 comprises 540 amino acids (SEQ ID NO:6). The forms may arise through different initiation of translation. The protein referred to as mouse PARP3 exists in two forms which differ from one another by a deletion of 5 amino acids (15 bp). Type 1 comprises
25 533 amino acids (SEQ ID NO: 8) and type 2 comprises 528 amino acids (SEQ ID NO:10). The PARP-homologs of the present invention differ in their sequences significantly over said PARP protein of *Arabidopsis thaliana* (see above). For example, PARP2 and PARP3 do not comprise the plant PARP specific peptide sequence AAVLDQWIPD,
30 corresponding to amino acid residues 143 to 152 of the *Arabidopsis* protein.

The invention further relates to the binding partners for the PARP homologs according to the invention. These binding partners
35 are preferably selected from

- a) antibodies and fragments such as, for example, Fv, Fab, F(ab')₂, thereof

b) protein-like compounds which interact, for example via the above leucine zipper region or another sequence section, with PARP, and

c) low molecular weight effectors which modulate a biological PARP function such as, for example, the catalytic PARP activity, i.e. NAD⁺-consuming ADP ribosylation, or the binding to an activator protein or to DNA.

- a) a nucleotide sequence coding for at least one PARP homolog according to the invention, or the complementary nucleotide sequence thereof;
- b) a nucleotide sequence which hybridizes with a sequence as specified in a), preferably under stringent conditions; or
- c) nucleotide sequences which are derived from the nucleotide sequences defined in a) and b) through the degeneracy of the genetic code.

10 Nucleic acids which are suitable according to the invention comprise in particular at least one of the partial sequences which code for the abovementioned amino acid sequence motifs.

Nucleic acids which are preferred according to the invention 15 comprise nucleotide sequences as shown in SEQ ID NO: 1 and 3, and, in particular, partial sequences thereof which are characteristic of PARP homologs according to the invention, such as, for example, nucleotide sequences comprising

- 20 a) nucleotides +3 to +1715 shown in SEQ ID NO:1;
- b) nucleotides +242 to +1843 shown in SEQ ID NO:3;
- c) nucleotides +221 to +1843 shown in SEQ ID NO:5;
- d) nucleotides +112 to +1710 shown in SEQ ID NO:7; or
- e) nucleotides +1 to +1584 shown in SEQ ID NO:9

25 or partial sequences of a), b), c), d) and e) which code for the abovementioned characteristic amino acid sequence motifs of the PARP homologs according to the invention.

30 The invention further relates to expression cassettes which comprise at least one of the above-described nucleotide sequences according to the invention under the genetic control of regulatory nucleotide sequences. These can be used to prepare recombinant vectors according to the invention, such as, for 35 example, viral vectors or plasmids, which comprise at least one expression cassette according to the invention.

Recombinant microorganisms according to the invention are transformed with at least one of the abovementioned vectors.

40 The invention also relates to transgenic mammals transfected with a vector according to the invention.

The invention further relates to an in vitro detection method, 45 which can be carried out homogeneously or heterogeneously, for PARP inhibitors, which comprises

- a) incubating an unsupported or supported poly-ADP-ribosylatable target with a reaction mixture comprising

5 a1) a PARP homolog according to the invention;

a2) a PARP activator; and

a3) a PARP inhibitor or an analyte in which at least one PARP inhibitor is suspected;

b) carrying out the polyADP ribosylation reaction; and

c) determining the polyADP ribosylation of the target qualitatively or quantitatively.

10 The detection method is preferably carried out by preincubating the PARP homolog with the PARP activator and the PARP inhibitor or an analyte in which at least one PARP inhibitor is suspected, for example for about 1-30 minutes, before carrying out the poly-

15 ADP ribosylation reaction.

After activation by DNA with single strand breaks (referred to as "activated DNA" according to the invention), PARP poly-ADP ribosylates a large number of nuclear proteins in the presence of 20 NAD. These proteins include, on the one hand, PARP itself, but also histones etc.

The poly-ADP-ribosylatable target preferably used in the detection method is a histone protein in its native form or a poly-
25 ADP-ribosylatable equivalent derived therefrom. A histone preparation supplied by Sigma (SIGMA, catalogue No. H-7755; histone type II-AS from calf thymus, Luck, J. M., et al., J. Biol. Chem., 233, 1407 (1958), Satake K., et al., J. Biol. Chem., 235, 2801 (1960)) was used by way of example. It is possible in principle
30 to use all types of proteins or parts thereof amenable to poly-ADP-ribosylation by PARP. These are preferably nuclear proteins, e.g. histones, DNA polymerase, telomerase or PARP itself. Synthetic peptides derived from the corresponding proteins can also act as target.

35 In the ELISA according to the invention it is possible to use amounts of histones in the range from about 0.1 µg/well to about 100 µg/well, preferably about 1 µg/well to about 10 µg/well. The amounts of the PARP enzyme are in a range from about 0.2 pmol/
40 well to about 2 nmol/well, preferably from about 2 pmol/well to about 200 pmol/well, the reaction mixture comprising in each case 100 µg/well. Reductions to smaller wells and correspondingly smaller reaction volumes are possible.

45 In the HTRF assay according to the invention, identical amounts of PARP are employed, and the amount of histone or modified histones is in the range from about 2 ng/well to about 25 µg/well,

preferably about 25 ng/well to about 2.5 µg/well, the reaction mixture comprising in each case 50 µl/well. Reductions to smaller wells and correspondingly smaller reaction volumes are possible.

- 5 The PARP activator used according to the invention is preferably activated DNA.

Various types of damaged DNA can function as activator. DNA damage can be produced by digestion with DNases or other DNA-modifying enzymes (e.g. restriction endonucleases), by irradiation or other physical methods or chemical treatment of the DNA. It is further possible to simulate the DNA damage situation in a targeted manner using synthetic oligonucleotides. In the assays indicated by way of example, activated DNA from calf thymus was 15 employed (Sigma, product No. D4522; CAS: 91080-16-9, prepared by the method of Aposhian and Kornberg using calf thymus DNA (SIGMA D-1501) and deoxyribonuclease type I (D-4263). Aposhian H. V. and Kornberg A., J. Biol. Chem., 237, 519 (1962)). The activated DNA was used in a concentration range from 0.1 to 1000 µg/ml, prefera- 20 bly from 1 to 100 µg/ml, in the reaction step.

The polyADP ribosylation reaction is started in the method according to the invention by adding NAD⁺. The NAD concentrations were in a range from about 0.1 µM to about 10 mM, preferably in a 25 range from about 10 µM to about 1 mM.

In the variant of the above method which can be carried out heterogeneously, the polyADP ribosylation of the supported target is determined using anti-poly(ADP-ribose) antibodies. To do this, 30 the reaction mixture is separated from the supported target, washed and incubated with the antibody. This antibody can itself be labeled. However, as an alternative for detecting bound anti-poly(ADP-ribose) antibody a labeled secondary antibody or a corresponding labeled antibody fragment may be applied. Suitable 35 labels are, for example, radiolabeling, chromophore- or fluorophore-labeling, biotinylation, chemiluminescence labeling, labeling with paramagnetic material or, in particular, enzyme labels, e.g. with horseradish peroxidase. Appropriate detection techniques are generally known to the skilled worker.

40 In the variant of the above process which can be carried out homogeneously, the unsupported target is labeled with an acceptor fluorophore. The target preferably used in this case is biotinylated histone, the acceptor fluorophore being coupled via avidin 45 or streptavidin to the biotin groups of the histone. Particularly suitable as acceptor fluorophore are phycobiliproteins (e.g. phycocyanins, phycoerythrins), e.g. R-phycocyanin (R-PC), allophyco-

cyanin (APC), R-phycoerythrin (R-PE), C-phycocyanin (C-PC), B-phycoerythrin (B-PE) or their combinations with one another or with fluorescent dyes such as Cy5, Cy7 or Texas Red (Tandem system) (Thammapalerd, N. et al., Southeast Asian Journal of Tropical Medicine & Public Health, 27(2): 297-303 (1996); Kronick, M. N. et al., Clinical Chemistry, 29(9), 1582-1586 (1986); Hicks, J. M., Human Pathology, 15(2), 112-116 (1984)). The dye XL665 used in the examples is a crosslinked allophycocyanin (Glazer, A. N., Rev. Microbiol., 36, 173-198 (1982); Kronick, M. N., J. Immunol., 92, 1-13 (1986); MacColl, R. et al., Phycobiliproteins, CRC Press, Inc., Boca Raton, Florida (1987); MacColl, R. et al., Arch. Biochem. Biophys., 208(1), 42-48 (1981)).

It is additionally preferred in the homogeneous method to determine the polyADP ribosylation of the unsupported target using anti-poly(ADP-ribose) antibody which is labeled with a donor fluorophore which is able to transfer energy to the acceptor fluorophore when donor and acceptor are close in space owing to binding of the labeled antibody to the polyADP-ribosylated histone. A europium cryptate is preferably used as donor fluorophore for the anti-poly(ADP-ribose) antibody.

Besides the europium cryptate used, other compounds are also possible as potential donor molecules. This may entail, on the one hand, modification of the cryptate cage. Replacement of the europium by other rare earth metals such as terbium is also conceivable. It is crucial that the fluorescence has a long duration to guarantee the time delay (Lopez, E. et al., Clin. Chem. 39/2, 196-201 (1993); US Patent 5,534,622).

The detection methods described above are based on the principle that there is a correlation between the PARP activity and the amount of ADP-ribose polymers formed on the histones. The assay described herein makes it possible to quantify the ADP-ribose polymers using specific antibodies in the form of an ELISA and an HTRF (homogenous time-resolved fluorescence) assay. Specific embodiments of these two assays are described in detail in the following examples.

The developed HTRF (homogeneous time-resolved fluorescence) assay system measures the formation of poly(ADP-ribose) on histones using specific antibodies. In contrast to the ELISA, this assay is carried out in homogeneous phase without separation and washing steps. This makes a higher sample throughput and a smaller susceptibility to errors possible. HTRF is based on the fluorescence resonance energy transfer (FRET) between two fluorophores. In a FRET assay, an excited donor fluorophore can

11

transfer its energy to an acceptor fluorophore when the two are close to one another in space. In HTRF technology, the donor fluorophore is a europium cryptate [(Eu)K] and the acceptor is XL665, a stabilized allophycocyanin. The europium cryptate is 5 based on studies by Jean Marie Lehn (Strasbourg) (Lopez, E. et al., Clin. Chem. 39/2, 196-201 (1993); US Patent 5,534,622).

In a homogeneous assay, all the components are also present during the measurement. Whereas this has advantages for carrying out 10 the assay (rapidity, complexity), it is necessary to preclude interference by assay components (inherent fluorescence, quenching by dyes etc.). HTRF precludes such interference by time-delayed measurement at two wavelengths (665 nm, 620 nm). The HTRF has a very long decay time and time-delayed measurement is therefore 15 possible. There is no longer any interference from short-lived background fluorescence (e.g. from assay components or inhibitors of the substance library). In addition, measurement is always carried out at two wavelengths in order to compensate for quench effects of colored substances. HTRF assays can be carried out, 20 for example, in 96- or 384-well microtiter plate format and are evaluated using a discovery HTRF microplate analyzer (Canberra Packard).

Also provided according to the invention are the following in 25 vitro screening methods for binding partners for PARP, in particular for a PARP homolog according to the invention.

A first variant is carried out by
30 a1) immobilizing at least one PARP homolog on a support;
b1) contacting the immobilized PARP homolog with an analyte in which at least one binding partner is suspected; and
c1) determining, where appropriate after an incubation period, analyte constituents bound to the immobilized PARP homolog.

35 A second variant entails
a2) immobilizing on a support an analyte which comprises at least one possible binding partner for the PARP homolog;
b2) contacting the immobilized analyte with at least one PARP homolog for which a binding partner is sought; and
40 c3) examining the immobilized analyte, where appropriate after an incubation period, for binding of the PARP homolog.

The invention also relates to a method for the qualitative or quantitative determination of a nucleic acid encoding a PARP 45 homolog, which comprises

12

- a) incubating a biological sample with a defined amount of an exogenous nucleic acid according to the invention (e.g. with a length of about 20 to 500 bases or longer), hybridizing, preferably under stringent conditions, determining the hybridizing nucleic acids and, where appropriate, comparing with a standard; or
 - b) incubating a biological sample with a defined amount of oligonucleotide primer pairs with specificity for a PARP homolog-encoding nucleic acid, amplifying the nucleic acid, determining the amplification product and, where appropriate, comparing with a standard.

The invention further relates to a method for the qualitative or
15 quantitative determination of a PARP homolog according to the
invention, which comprises

- a) incubating a biological sample with at least one binding partner specific for a PARP homolog,
b) detecting the binding partner/PARP complex and, where appropriate,
c) comparing the result with a standard.

The binding partner in this case is preferably an anti-PARP antibody or a binding fragment thereof, which carries a detectable label where appropriate.

The determination methods according to the invention for PARP, in particular for PARP homologs and for the coding nucleic acid sequences thereof, are suitable and advantageous for diagnosing 30 sepsis- or ischemia-related tissue damage, in particular strokes, myocardial infarcts, diabetes or septic shock.

The invention further comprises a method for determining the efficacy of PARP effectors, which comprises

- 35 a) incubating a PARP homolog according to the invention with an analyte which comprises an effector of a physiological or pathological PARP activity; removing the effector again where appropriate; and

b) determining the activity of the PARP homolog, where appropriate after adding substrates or cosubstrates.

The invention further relates to gene therapy compositions which comprise in a vehicle acceptable for gene therapy a nucleic acid construct which

- 45 a) comprises an antisense nucleic acid against a coding nucleic acid according to the invention; or

13

- b) a ribozyme against a noncoding nucleic acid according to the invention; or
- c) codes for a specific PARP inhibitor.

5 The invention further relates to pharmaceutical compositions comprising, in a pharmaceutically acceptable vehicle, at least one PARP protein according to the invention, at least one PARP binding partner according to the invention or at least one coding nucleotide sequence according to the invention.

10

Finally, the invention relates to the use of binding partners of a PARP homolog for the diagnosis or therapy of pathological states in the development and/or progress of which at least one PARP protein, in particular a PARP homolog according to the 15 invention, or a polypeptide derived therefrom, is involved. The binding partner used can be, for example, a low molecular weight binding partner whose molecular weight can be, for example, less than about 2000 dalton or less than about 1000 dalton.

20 The invention additionally relates to the use of PARP binding partners for the diagnosis or therapy of pathological states mediated by an energy deficit. An energy deficit for the purpose of the present invention is, in particular, a cellular energy deficit which is to be observed in the unwell patient systemically or 25 in individual body regions, organs or organ regions, or tissues or tissue regions. This is characterized by an NAD and/or ATP depletion going beyond (above or below) the physiological range of variation of the NAD and/or ATP level and mediated preferably by a protein with PARP activity, in particular a PARP homolog according to the invention, or a polypeptide derived therefrom.

"Energy deficit-mediated disorders" for the purpose of the invention additionally comprise those in which tissue damage is attributable to cell death resulting from necrosis or apoptosis. The 35 methods according to the invention are suitable for treating and preventing tissue damage resulting from cell damage due to apoptosis or necrosis; damage to nerve tissue due to ischemias and/or reperfusion; neurological disorders; neurodegenerative disorders; vascular stroke; for treating and preventing cardiovascular 40 disorders; for treating other disorders or conditions such as, for example, age-related macular degeneration, AIDS or other immunodeficiency disorders; arthritis; atherosclerosis; cachexia; cancer; degenerative disorders of the skeletal muscles; diabetes; cranial trauma; inflammatory disorders of the gastrointestinal 45 tract such as, for example, Crohn's disease; muscular dystrophy; osteoarthritis; osteoporosis; chronic and/or acute pain; kidney failure; retinal ischemia; septic shock (such as, for example,

endotoxin shock); aging of the skin or aging in general; general manifestations of aging. The methods according to the invention can additionally be employed for extending the life and the proliferative capacity of body cells and for sensitizing tumor cells 5 in connection with irradiation therapy.

The invention particularly relates to the use of a PARP binding partner as defined above for the diagnosis or therapy (acute or prophylactic) of pathological states mediated by energy deficits 10 and selected from neurodegenerative disorders, or tissue damage caused by sepsis or ischemia, in particular of neurotoxic disturbances, strokes, myocardial infarcts, damage during or after infarct lysis (e.g. with TPA, Reteplase or mechanically with laser or Rotablator) and of microinfarcts during and after heart 15 valve replacement, aneurysm resections and heart transplants, trauma to the head and spinal cord, infarcts of the kidney (acute kidney failure, acute renal insufficiency or damage during and after kidney transplant), damages of skeletal muscle, infarcts of the liver (liver failure, damage during or after a liver trans- 20 plant), peripheral neuropathies, AIDS dementia, septic shock, diabetes, neurodegenerative disorders occurring after ischemia, trauma (craniocerebral trauma), massive bleeding, subarachnoid hemorrhages and stroke, as well as neurodegenerative disorders like Alzheimer's disease, multi-infarct dementia, Huntington's 25 disease, Parkinson's disease, amyotrophic lateral sclerosis, epilepsy, especially of generalized epileptic seizures such as petit mal and tonoclonic seizures and partial epileptic seizures, such as temporal lobe, and complex partial seizures, kidney failure, also in the chemotherapy of tumors and prevention of meta- 30 stasis and for the treatment of inflammations and rheumatic disorders, e.g. of rheumatoid arthritis; further for the treatment of revascularization of critically narrowed coronary arteries and critically narrowed peripheral arteries, e.g. leg arteries.

35 "Ischemia" comprises for the purposes of the invention a localized undersupply of oxygen to a tissue, caused by blockage of arterial blood flow. Global ischemia occurs when the blood flow to the entire brain is interrupted for a limited period. This may be caused, for example, by cardiac arrest. Focal ischemia occurs 40 when part of the brain is cut off from its normal blood supply. Focal ischemia may be caused by thromboembolic closure of a blood vessel, by cerebral trauma, edemas or brain tumor. Even transient ischemias can lead to wideranging neuronal damage. Although damage to "nerve tissue" may occur days or weeks after the start of 45 the ischemia, some permanent damage (e.g. necrotic cell death) occurs in the first few minutes after interruption of the blood supply. This damage is caused, for example, by the neurotoxicity

15

of glutamate and follows secondary reperfusion, such as, for example, release of free radicals (e.g. oxygen free radicals, NO free radicals). Ischemias may likewise occur in other organs and tissues such as, for example, in the heart (myocardial infarct 5 and other cardiovascular disorders caused by occlusion of the coronary arteries) or in the eye (ischemia of the retina).

The invention additionally relates to the use of an effective therapeutic amount of a PARP binding partner for influencing neuronal activity. "Neuronal activity" for the purposes of the invention may consist of stimulation of damaged neurons, promotion 10 of neuronal regeneration or treatment of neuronal disorders.

"Neuronal damage" for the purposes of the invention comprises every type of damage to "nerve tissue" and every physical or mental impairment or death resulting from this damage. The cause of 15 the damage may be, for example, metabolic, toxic, chemical or thermal in nature and includes by way of example ischemias, hypoxias, trauma, cerebrovascular damage, operations, pressure, hemorrhages, irradiation, vasospasms, neurodegenerative disorders, infections, epilepsy, perception disorders, disturbances of glutamate metabolism and the secondary effects caused thereby.

"Nerve tissue" for the purposes of the invention comprises the various components forming the nervous system, consisting of, inter alia, neurons, glia cells, astrocytes, Schwann cells, the vascular system inside and for supplying, the CNS, brain, brain stem, spinal cord, peripheral nervous system etc.

30 "Neuroprotective" for the purposes of the invention comprises the reduction, the cessation, the slowing down or the improvement of neuronal damage and the protection, the restoration and the regeneration of nerve tissue which was exposed to neuronal damage.

35 "Prevention of neurodegenerative disorders" includes the possibility of preventing, slowing down and improving neurodegenerative disorders in people for whom such a disorder has been diagnosed or who are included in appropriate risk groups for these neurodegenerative disorders. Treatments for people already suffering 40 from symptoms of these disorders are likewise meant.

"Treatment" for the purposes of the invention comprises
45 (i) preventing a disorder, a disturbance or a condition in people with a predisposition thereto;

(ii) preventing a disorder, a disturbance or a condition by slowing down its advance; and

(iii) improving a disorder, a disturbance or a condition.

5

Examples of "neurological disorders" which can be treated by the methods according to the invention are neuralgias (trigeminal, glossopharyngeal), myasthenia gravis, muscular dystrophies, amyotrophic lateral sclerosis (ALS), progressive muscular atrophy, peripheral neuropathies caused by poisoning (e.g. lead poisoning), Guillain-Barré syndrome, Huntington's disease, Alzheimer's disease, Parkinson's disease, or plexus disorders. The methods according to the invention are preferably suitable for treating neurological disorders selected from peripheral neuropathies caused by physical injury or illness; cranial trauma such as, for example, traumatic brain injury; physical damage to the spinal cord; stroke associated with brain damage, such as vascular stroke in conjunction with hypoxia and brain damage, and cerebral reperfusion damage; demyelinating disorders (myelopathies, Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis).

The methods according to the invention can additionally be used for treating cardiovascular disorders. "Cardiovascular disorders" for the purposes of the invention comprise those which cause ischemias or are caused by ischemias or ischemia/reperfusion of the heart. Examples are coronary vessel disorders (for example atherosclerosis), angina pectoris, myocardial infarct, cardiovascular damage due to cardiac arrest or bypass operation.

30

The methods according to the invention can be used for treating cancer or for sensitizing cancer cells for irradiation therapy. The term "cancer" is to be understood in the widest sense. Modulators of the proteins according to the invention can be used as "anti-cancer therapy agents". For example, the methods can be used for treating types of cancer or tumor cells, such as ACTH-producing tumors, acute lymphatic or lymphoblastic leukemia; acute or chronic lymphocytic leukemia; acute nonlymphocytic leukemia; bladder cancer; brain tumors; breast cancer; cervical carcinoma; chronic myelocytic leukemia; bowel cancer; T-zone lymphoma; endometriosis; esophageal cancer; gall bladder cancer; Ewing's sarcoma; head and neck cancer; cancer of the tongue; Hodgkin's lymphoma; Kaposi's sarcoma; renal cancer; liver cancer; lung cancer; mesothelioma; multiple myeloma; neuroblastoma; non-Hodgkin lymphoma; osteosarcoma; ovarian carcinoma; glioblastoma; mammary carcinoma; cervical carcinoma; prostate cancer; pancreatic cancer; penis cancer; retinoblastoma; skin cancer; stomach

cancer; thyroid cancer; uterine carcinoma; vaginal carcinoma; Wilm's tumor; or trophoblastoma.

"Radiosensitizer" or "irradiation sensitizer" for the purposes of
5 the invention relates to molecules which increase the sensitivity
of the cells in the body to irradiation with electromagnetic ra-
diation (for example X-rays) or speed up this irradiation treat-
ment. Irradiation sensitizers increase the sensitivity of cancer
cells to the toxic effects of the electromagnetic radiation.
10 Those disclosed in the literature include mitomycin C, 5-bromo-
deoxyuridine and metronidazole. It is possible to use radiation
with wavelengths in the range from 10^{-20} to 10 meters, preferably
gamma rays (10^{-20} to 10^{-13} m), X-rays (10^{-11} to 10^{-9} m), ultraviolet
radiation (10 nm to 400 nm), visible light (400 nm to 700 nm),
15 infrared radiation (700 nm to 1 mm) and microwave radiation (1 mm
to 30 cm).

Disorders which can be treated by such a therapy are, in particu-
lar, neoplastic disorders, benign or malignant tumors and cancer.
20 The treatment of other disorders using electromagnetic radiation
is likewise possible.

The present invention will now be described in more detail with
reference to the appended figures. These show:

25 In Figure 1 a sequence alignment of human PARP (human PARP1) and
two PARPs preferred according to the invention (human PARP2,
human PARP3, murine PARP3). Sequence agreements between human
PARP1 and human PARP2, human PARP3 or murine PARP3 are depicted
30 within frames. The majority sequence is indicated over the
alignment. The zinc finger motifs of human PARP1 are located in
the sequence sections corresponding to amino acid residues 21 to
56 and 125 to 162;
35 In Figure 2 Northern blots with various human tissues to
illustrate the tissue distribution of PARP2 and PARP3 molecules
according to the invention. Lane 1: brain; lane 2: heart; lane 3:
skeletal muscle; lane 4: colon; lane 5: thymus; lane 6: spleen;
lane 7: kidney; lane 8: liver; lane 9: intestine; lane 10: pla-
40 centa; lane 11: lung; lane 12: peripheral blood leukocytes; the
respective position of the size standard (kb) is indicated.

In Figure 3 a Northern blot with further various human tissues to
illustrate the tissue distribution of the PARP3 molecule accord-
45 ing to the invention. Lane 1: heart; lane 2: brain; lane 3: pla-
centa; lane 4: lung; lane 5: liver; lane 6: skeletal muscle; lane

18

7: kidney; lane 8: pancreas; the respective position of the size standard (kb) is indicated.

In Figure 4 a Western blot with various human tissues to illustrate the tissue distribution of the PARP3 molecule according to the invention at the protein level. Lane 1: heart; lane 2: lung; lane 3: liver; lane 4: spleen; lane 5: kidney; lane 6: colon; lane 7: muscle; lane 8: brain; the respective position of the size standard (kd) is indicated.

10

In Figure 5 a Western blot with various human tissues to illustrate the tissue distribution of the PARP3 molecule according to the invention. Lane 1: frontal cortex; lane 2: posterior cortex; lane 3: cerebellum; lane 4: hippocampus; lane 5: olfactory bulb; lane 6: striatum; lane 7: thalamus; lane 8: midbrain; lane 9: entorhinal cortex; lane 10: pons; lane 11: medulla; lane 12: spinal cord.

In Figure 6 a diagrammatic representation of the PARP assay
20 (ELISA)

In Figure 7 a diagrammatic representation of the PARP assay
(HTRF)

25 Further preferred embodiments of the invention are described in the following sections.

PARP homologs and functional equivalents

30 Unless stated otherwise, for the purposes of the present description amino acid sequences are indicated starting with the N terminus. If the one-letter code is used for amino acids, then G is glycine, A is alanine, V is valine, L is leucine, I is isoleucine, S is serine, T is threonine, D is aspartic acid, N is asparagine, E is glutamic acid, Q is glutamine, W is tryptophan, H is histidine, R is arginine, P is proline, K is lysine, Y is tyrosine, F is phenylalanine, C is cysteine and M is methionine.

The present invention is not confined to the PARP homologs
40 specifically described above. On the contrary, those homologs which are functional equivalents thereof are also embraced. Functional equivalents comprise both natural, such as, for example, species-specific or organ-specific, and artificially produced variants of the proteins specifically described herein.
45 Functional equivalents according to the invention differ by addition, substitution, inversion, insertion and/or deletion of one or more amino acid residues of human PARP2 (SEQ ID NO:2),

human PARP3 (SEQ ID NO: 4 and 6) and mouse PARP3 (SEQ ID:8 and 10), there being at least retention of the NAD-binding function of the protein mediated by a functional catalytic C-terminal domain. Likewise, the poly(ADP-ribose)-producing catalytic 5 activity should preferably be retained. Functional equivalents also comprise where appropriate those variants in which the region similar to the leucine zipper is essentially retained.

It is moreover possible, for example, starting from the sequence 10 for human PARP2 or human PARP3 to replace certain amino acids by those with similar physicochemical properties (bulk, basicity, hydrophobicity, etc.). It is possible, for example, for arginine residues to be replaced by lysine residues, valine residues by isoleucine residues or aspartic acid residues by glutamic acid 15 residues. However, it is also possible for one or more amino acids to be exchanged in sequence, added or deleted, or several of these measures can be combined together. The proteins which have been modified in this way from the human PARP2 or human PARP3 sequence have at least 60%, preferably at least 75%, very 20 particularly preferably at least 85%, homology with the starting sequence, calculated using the algorithm of Pearson and Lipman, Proc. Natl. Acad. Sci (USA) 85(8), 1988, 2444-2448.

The following homologies have been determined at the amino acid 25 level and DNA level between human PARP1, 2 and 3 (FastA program, Pearson and Lipman, loc. cit.):

Amino acid homologies:

30		Percent identity	Percent identity in PARP signature
35	PARP1/PARP2	41.97% (517)	86% (50)
	PARP1/PARP3	33.81% (565)	53.1% (49)
	PARP2/PARP3	35.20% (537)	53.1% (49)

40 Numbers in parentheses indicate the number of overlapping amino acids.

DNA Homologies:

	Percent identity in the ORF	Percent identity in PARP signature
5		
PARP1/PARP2	60.81% (467)	77.85% (149)
10 PARP1/PARP3	58.81% (420)	59.02% (61)
PARP2/PARP3	60.22% (269)	86.36% (22)

Numbers in parentheses indicate the number of overlapping nucleotides.

- 15 The polypeptides according to the invention can be classified as homologous poly(ADP-ribose) polymerases on the basis of the great similarity in the region of the catalytic domain.
- 20 It is also essential to the invention that the novel PARP homologs do not have conventional zinc finger motifs. This means that these enzymes are not necessarily involved in DNA repair or are so in a way which differs from PARP1, but are still able to carry out their pathological mechanism (NAD⁺ consumption and thus energy consumption due to ATP consumption). The strong protein expression, particularly of PARP3, observable in the Western blot suggests a significant role in the NAD consumption. This is particularly important for drug development. Potential novel inhibitors of the polymerases according to the invention can thus inhibit the pathological functions without having adverse effects on the desired physiological properties. This was impossible with inhibitors against the PARPs known to date since there was always also inhibition of the DNA repair function. The potentially mutagenic effect of known PARP inhibitors is thus easy to understand. It is also conceivable to design PARP inhibitors so that they efficiently inhibit all PARP homologs with high affinity. In this case, a potentiated effect is conceivable where appropriate.
- 30
- 35
- 40 The PARP homolog which is preferred according to the invention and is shown in SEQ ID NO:2 (human PARP2) can advantageously be isolated from human brain, heart, skeletal muscle, kidney and liver. The expression of human PARP2 in other tissues or organs is distinctly weaker.
- 45

21

The PARP homolog which is preferred according to the invention and is shown in SEQ ID NO: 4 and 6 (human PARP3) can advantageously be isolated from human brain (in this case very preferentially from the hippocampus), heart, skeletal muscle, 5 liver or kidney. The expression of human PARP3 in other tissues or organs, such as muscle or liver, is distinctly weaker.

The skilled worker familiar with protein isolation will make use of the combination of preparative methodologies which is most suitable in each case for isolating natural PARPs according to the invention from tissues or recombinantly prepared PARPs according to the invention from cell cultures. Suitable standard preparative methods are described, for example, in Cooper, T.G., Biochemische Arbeitsmethoden, published by Walter de Gruyter, Berlin, New York or in Scopes, R. Protein Purification, Springer Verlag, New York, Heidelberg, Berlin.

The invention additionally relates to PARP2 and PARP3 homologs which, although they can be isolated from other eukaryotic species, i.e. invertebrates or vertebrates, especially other mammals such as, for example, mice, rats, cats, dogs, pigs, sheep, cattle, horses or monkeys, or from other organs such as, for example the myocardium, have the essential structural and functional properties predetermined by the PARPs according to the invention.

In particular, the human PARP2 which can be isolated from human brain, and its functional equivalents, are preferred agents for developing inhibitors of neurodegenerative diseases as for example stroke. This is because it can be assumed that drug development based on PARP2 as indicator makes it possible to develop inhibitors which are optimized for use in the human brain. However, it cannot be ruled out that inhibitors developed on the basis of PARP2 can also be employed for treating PARP-mediated pathological states in other organs, too (see tissue distribution of the proteins according to the invention).

PARP2 and presumably PARP3 are also, similar to PARP1, activated by damaged DNA, although by a presumably different mechanism.

40 Significance in DNA repair is conceivable. Blockade of the PARPs according to the invention would also be beneficial in indications such as cancer (e.g. in the radiosensitization of tumor patients).

45 Another essential biological property of PARPs according to the invention and their functional equivalents is to be seen in their ability to bind an interacting partner. Human PARP2 and 3 differ

from previously disclosed PARPs from higher eukaryotes such as, in particular, mammals by having potential so-called leucine zipper motifs. This is a typical motif for protein-protein interactions. It is possible that these motifs permit modulation 5 of PARP activity by an interacting partner. This additional structural element thus also provides a possible starting point for development of PARP effectors such as, for example, inhibitors.

10 The invention thus further relates to proteins which interact with PARP2 and/or 3, preferably those which bring about their activation or inactivation.

The invention further relates to proteins which still have the
15 abovementioned ligand-binding activity and which can be prepared
starting from the specifically disclosed amino acid sequences by
targeted modifications.

It is possible, starting from the peptide sequence of the
20 proteins according to the invention, to generate synthetic peptides which are employed, singly or in combination, as antigens for producing polyclonal or monoclonal antibodies. It is also possible to employ the PARP protein or fragments thereof for generating antibodies. The invention thus also relates to peptide
25 fragments of PARP proteins according to the invention which comprise characteristic partial sequences, in particular those oligo- or polypeptides which comprise at least one of the abovementioned sequence motifs. Fragments of this type can be obtained, for example, by proteolytic digestion of PARP proteins
30 or by chemical synthesis of peptides.

Novel specific PARP2 and PARP3 binding partners

Active and preferably selective inhibitors against the proteins
35 according to the invention were developed using the specific assay systems described above for binding partners for PARP2 and PARP3. These inhibitors optionally are also active vis a vis PARP1.

40 Inhibitors provided according to the invention have a strong inhibitory activity on PARP2. The K_i values may in this case be less than about 1000 nM, such as less than about 700 nM, less than about 200 nM or less than about 30 nM, e.g. about 1 to 20 nM.

45 Inhibitors according to the invention may also have a surprising selectivity for PARP2. This is shown by the $K_i(\text{PARP1}) : K_i(\text{PARP2})$ ratio for such inhibitors according to the invention which is,

23

for example, greater than 3 or greater than 5, as for example greater than 10 or greater than 20.

An example which should be mentioned is 4-(N-(4-hydroxyphe-
5 nyl)aminomethyl)-(2H)-dihydrophthalazine-1-one. The preparation of this and other analogous compounds may be performed according to Puodzhyunas et al., Pharm. Chem. J. 1973, 7, 566 or Mazkanowa et al., Zh. Obshch. Khim., 1958, 28, 2798, or Mohamed et al., Ind. J. Chem. B., 1994, 33, 769 each incorporated by reference.

10

The above identified compound shows a Ki value of 113 nM for PARP2 and is eight times more selective for PARP2 than for PARP3.

Nucleic acids coding for PARP homologs:

15

Unless stated otherwise, nucleotide sequences are indicated in the present description from the 5' to the 3' direction.

The invention further relates to nucleic acid sequences which
20 code for the abovementioned proteins, in particular for those having the amino acid sequence depicted in SEQ ID NO: 2, 4, 6, 8 and 10, but without being restricted thereto. Nucleic acid sequences which can be used according to the invention also comprise allelic variants which, as described above for the amino
25 acid sequences, are obtainable by deletion, inversion, insertion, addition and/or substitution of nucleotides, preferably of nucleotides shown in SEQ ID NO: 1, 3, 7 and 9, but with essential retention of the biological properties and the biological activity of the corresponding gene product. Nucleotide sequences
30 which can be used are obtained, for example, by nucleotide substitutions causing silent (without alteration of the amino acid sequence) or conservative amino acid changes (exchange of amino acids of the same size, charge, polarity or solubility).

35 Nucleic acid sequences according to the invention also embrace functional equivalents of the genes, such as eukaryotic homologs for example from invertebrates such as *Caenorhabditis* or *Drosophila*, or vertebrates, preferably from the mammals described above. Preferred genes are those from vertebrates which code for
40 a gene product which has the properties essential to the invention as described above.

The nucleic acids according to the invention can be obtained in a conventional way by various routes:

45

24

For example, a genomic or a cDNA library can be screened for DNA which codes for a PARP molecule or a part thereof. For example, a cDNA library obtained from human brain, heart or kidney can be screened with a suitable probe such as, for example, a labeled single-stranded DNA fragment which corresponds to a partial sequence of suitable length selected from SEQ ID NO: 1 or 3, or sequence complementary thereto. For this purpose, it is possible, for example, for the DNA fragments of the library which have been transferred into a suitable cloning vector to be, after transformation into a bacterium, plated out on agar plates. The clones can then be transferred to nitrocellulose filters and, after denaturation of the DNA, hybridized with the labeled probe. Positive clones are then isolated and characterized.

The DNA coding for PARP homologs according to the invention or partial fragments can also be synthesized chemically starting from the sequence information contained in the present application. For example, it is possible for this purpose for oligonucleotides with a length of about 100 bases to be synthesized and sequentially ligated in a manner known per se by, for example, providing suitable terminal restriction cleavage sites.

The nucleotide sequences according to the invention can also be prepared with the aid of the polymerase chain reaction (PCR). For this, a target DNA such as, for example, DNA from a suitable full-length clone is hybridized with a pair of synthetic oligonucleotide primers which have a length of about 15 bases and which bind to opposite ends of the target DNA. The sequence section lying between them is then filled in with DNA polymerase. Repetition of this cycle many times allows the target DNA to be amplified (cf. White et al. (1989), Trends Genet. 5, 185).

The nucleic acid sequences according to the invention are also to be understood to include truncated sequences, single-stranded DNA or RNA of the coding and noncoding, complementary DNA sequence, mRNA sequences and cDNAs derived therefrom.

The invention further embraces nucleotide sequences hybridizing with the above sequences under stringent conditions. Stringent hybridization conditions for the purpose of the present invention exist when the hybridizing sequences have a homology of about 70 to 100%, such as, for example about 80 to 100% or 90 to 100% (preferably in an amino acid section of at least about 40, such as, for example, about 50, 100, 150, 200, 400 or 500 amino acids).

25

Stringent conditions for the screening of DNA, in particular cDNA banks, exist, for example, when the hybridization mixture is washed with 0.1X SSC buffer (20X SSC buffer = 3M NaCl, 0.3M sodium citrate, pH 7.0) and 0.1% SDS at a temperature of about

5 60°C.

Northern blot analyses are analyses are washed under stringent conditions with 0.1X SSC, 0.1% SDS at a temperature of about 65°C, for example.

10

Nucleic acid derivatives and expression constructs:

The nucleic acid sequences are also to be understood to include derivatives such as, for example, promoter variants or 15 alternative splicing variants. The promoters operatively linked upstream of the nucleotide sequences according to the invention may moreover be modified by nucleotide addition(s) or substitution(s), inversion(s), insertion(s) and/or deletion(s), but without impairing the functionality or activity of the 20 promoters. The promoters can also have their activity increased by modifying their sequence, or be completely replaced by more effective promoters even from heterologous organisms. The promoter variants described above are used to prepare expression cassettes according to the invention.

25

Specific examples of human PARP2 splicing variants which may be mentioned are:

Variant human PARP2a: Deletion of base pairs 766 to 904 (cf. SEQ ID NO:1). This leads to a frame shift with a new stop codon ("TAA" corresponding to nucleotides 922 to 924 in SEQ ID NO:1). Variant human PARP2b: Insertion of 5'- gta tgc cag gaa ggt cat ggg cca gca aaa ggg tct ctg -3' after nucleotide 204 (SEQ ID NO:1). This extends the amino acid sequence by the insertion: GMPGRSWASKRVS

Nucleic acid derivatives also mean variants whose nucleotide sequences in the region from -1 to -1000 in front of the start codon have been modified so that gene expression and/or protein expression is increased.

Besides the nucleotide sequence described above, the nucleic acid constructs which can be used according to the invention comprise in functional, operative linkage one or more other regulatory sequences, such as promoters, amplification signals, enhancers, polyadenylation sequences, origins of replication, reporter genes, selectable marker genes and the like. This linkage may,

26

depending on the desired use, lead to an increase or decrease in gene expression.

In addition to the novel regulatory sequences, it is possible for 5 the natural regulatory sequence still to be present in front of the actual structural genes. This natural regulation can, where appropriate, be switched off by genetic modification, and the expression of the genes increased or decreased. However, the gene construct may also have a simpler structure, that is to say no 10 additional regulatory signals are inserted in front of the structural genes, and the natural promoter with its regulation is not deleted. Instead, the natural regulatory sequence is mutated in such a way that regulation no longer takes place, and gene expression is enhanced or diminished. It is also possible to 15 insert additional advantageous regulatory elements at the 3' end of the nucleic acid sequences. The nucleic acid sequences can be present in one or more copies in the gene construct.

Advantageous regulatory sequences for the expression method 20 according to the invention are, for example, present in promoters such as cos, tac, trp, tet, trp-tet, lpp, lac, lpp-lac, lacIq, T7, T5, T3, gal, trc, ara, SP6, 1-PR or the 1-PL promoter, which are advantageously used in Gram-negative bacteria. Other 25 advantageous regulatory sequences are present, for example, in the Gram-positive promoters amy and SPO2, in the yeast promoters ADC1, MFa, AC, P-60, CYC1, GAPDH or in the plant promoters CaMV/35S, SSU, OCS, lib4, usp, STLS1, B33, nos or in the ubiquitin or phaseolin promoter.

30 It is possible in principle to use all natural promoters with their regulatory sequences. It is also possible and advantageous to use synthetic promoters.

Said regulatory sequences are intended to make specific 35 expression of the nucleic acid sequences and protein expression possible. This may mean, for example, depending on the host organism that the gene is expressed or overexpressed only after induction, or that it is immediately expressed and/or overexpressed.

40

The regulatory sequences or factors may moreover preferably have a positive influence on, and thus increase or decrease, the expression. Thus, enhancement of the regulatory elements may advantageously take place at the level of transcription by using 45 strong transcription signals such as promoters and/or enhancers.

However, it is also possible to enhance translation by, for example, improving the stability of the mRNA.

Enhancers mean, for example, DNA sequences which bring about increased expression via an improved interaction between RNA polymerase and DNA.

The recombinant nucleic acid construct or gene construct is, for expression in a suitable host organism, advantageously inserted into a host-specific vector which makes optimal expression of the genes in the host possible. Vectors are well known to the skilled worker and are to be found, for example, in "Cloning Vectors" (Pouwels P. H. et al., Ed., Elsevier, Amsterdam-New York-Oxford, 1985). Apart from plasmids, vectors also mean all other vectors known to the skilled worker, such as, for example, phages, viruses, such as SV40, CMV, baculovirus and adenovirus, transposons, IS elements, phasmids, cosmids, and linear or circular DNA. These vectors may undergo autonomous replication in the host organism or chromosomal replication.

20

Expression of the constructs:

The recombinant constructs according to the invention described above are advantageously introduced into a suitable host system and are expressed. Cloning and transfection methods familiar to the skilled worker are preferably used in order to bring about expression of said nucleic acids in the particular expression system. Suitable systems are described, for example, in Current Protocols in Molecular Biology, F. Ausubel et al., ed., Wiley 30 Interscience, New York 1997.

Suitable host organisms are in principle all organisms which make it possible to express the nucleic acids according to the invention, their allelic variants, their functional equivalents or derivatives of the recombinant nucleic acid construct. Host organisms mean, for example, bacteria, fungi, yeasts, plant or animal cells. Preferred organisms are bacteria such as those of the genera Escherichia, such as, for example, Escherichia coli, Streptomyces, Bacillus or Pseudomonas, eukaryotic microorganisms such as Saccharomyces cerevisiae, Aspergillus, higher eukaryotic cells from animals or plants, for example Sf9 or CHO cells.

The gene product can also, if required, be expressed in transgenic organisms such as transgenic animals such as, in particular, mice, sheep, or transgenic plants. The transgenic organisms may also be so-called knock-out animals or plants in which the corresponding endogenous gene has been switched off,

such as, for example, by mutation or partial or complete deletion.

The combination of the host organisms and the vectors appropriate
5 for the organisms, such as plasmids, viruses or phages, such as,
for example, plasmids with the RNA polymerase/promoter system,
phages λ , μ or other temperate phages or transposons and/or other
advantageous regulatory sequences forms an expression system. The
term expression systems preferably means, for example, a
10 combination of mammalian cells such as CHO cells, and vectors,
such as pCDNA3neo vector, which are suitable for mammalian cells.

As described above, the gene product can also be expressed advantageously in transgenic animals, e.g. mice, sheep, or 15 transgenic plants. It is likewise possible to program cell-free translation systems with the RNA derived from the nucleic acid.

The gene product can also be expressed in the form of therapeutically or diagnostically suitable fragments. To isolate
20 the recombinant protein it is possible and advantageous to use vector systems or oligonucleotides which extend the cDNA by certain nucleotide sequences and thus code for modified polypeptides which serve to simplify purification. Suitable modifications of this type are, for example, so-called tags which
25 act as anchors, such as, for example, the modification known as the hexa-histidine anchor, or epitopes which can be recognized as antigens by antibodies (described, for example, in Harlow, E. and Lane, D., 1988, Antibodies: A Laboratory Manual. Cold Spring Harbor (N.Y.) Press). These anchors can be used to attach the
30 proteins to a solid support such as, for example, a polymer matrix, which can, for example, be packed into a chromatography column, or to a microtiter plate or to another support.

These anchors can also at the same time be used to recognize the proteins. It is also possible to use for recognition of the proteins conventional markers such as fluorescent dyes, enzyme markers which form a detectable reaction product after reaction with a substrate, or radioactive markers, alone or in combination with the anchors for derivatizing the proteins.

40

Production of antibodies:

Anti-PARP2 antibodies are produced in a manner familiar to the skilled worker. Antibodies mean both polyclonal, monoclonal, 45 human or humanized antibodies or fragments thereof, single chain antibodies or also synthetic antibodies, likewise antibody fragments such as Fv, Fab and F(ab')₂. Suitable production methods

29

are described, for example, in Campbell, A.M., Monoclonal Antibody Technology, (1987) Elsevier Verlag, Amsterdam, New York, Oxford and in Breitling, F. and Dübel, S., Rekombinante Antikörper (1997), Spektrum Akademischer Verlag, Heidelberg.

5

Further use of the coding sequence:

The present cDNA additionally provides the basis for cloning the genomic sequence of the novel PARP genes. This also includes the relevant regulatory or promoter sequence, which is available, for example, by sequencing the region located 5' upstream of the cDNA according to the invention or located in the introns of the genes. The cDNA sequence information is also the basis for producing antisense molecules or ribozymes with the aid of known methods (cf. Jones, J.T. and Sallenger, B.A. (1997) Nat. Biotechnol. 15, 902; Nellen, W. and Lichtenstein, C. (1993) TIBS, 18, 419). The genomic DNA can likewise be used to produce the gene constructs described above.

20 Another possibility of using the nucleotide sequence or parts thereof is to generate transgenic animals. Transgenic overexpression or genetic knock-out of the sequence information in suitable animal models may provide further valuable information about the (patho)physiology of the novel genes.

25

Therapeutic applications:

In situations where there is a prevailing deficiency of a protein according to the invention it is possible to employ several methods for replacement. On the one hand, the protein, natural or recombinant, can be administered directly or by gene therapy in the form of its coding nucleic acid (DNA or RNA). It is possible to use any suitable vectors for this, for example both viral and non-viral vehicles. Suitable methods are described, for example, by Strauss and Barranger in Concepts in Gene Therapy (1997), Walter de Gruyter, publisher. Another alternative is provided by stimulation of the endogenous gene by suitable agents.

It is also possible to block the turnover or the inactivation of
40 PARPs according to the invention, for example by proteases.
Finally, inhibitors or agonists of PARPs according to the
invention can be employed.

In situations where a PARP is present in excess or is
45 overactivated, various types of inhibitors can be employed. This inhibition can be achieved both by antisense molecules,

ribozymes, oligonucleotides or antibodies, and by low molecular weight compounds.

The active substances according to the invention, i.e. PARP proteins, nucleic acids and PARP binding partners such as, for example, antibodies or modulators, can be administered either as single therapeutic active substances or as mixtures with other therapeutic active substances. They can be administered as such, but in general they are administered in the form of pharmaceutical compositions, i.e. as mixtures of the active substance(s) with at least one suitable pharmaceutical carrier or diluent. The active substances or compositions can be administered in any way suitable for the particular therapeutic purpose, e.g. orally or parenterally.

15

The nature of the pharmaceutical composition and of the pharmaceutical carrier or diluent depends on the required mode of administration. Oral compositions can be, for example, in the form of tablets or capsules and may contain customary excipients such as binders (e.g. sirup, acacia, gelatin, sorbitol, tragacanth or polyvinylpyrrolidone), bulking agents (e.g. lactose, sugar, corn starch, calcium phosphate, sorbitol or glycine), lubricants (e.g. magnesium stearate, talc, polyethylene glycol or silica), disintegrants (e.g. starch) or wetting agents (e.g. sodium lauryl sulfate). Oral liquid products may be in the form of aqueous or oily suspensions, solutions, emulsions, sirups, elixirs or sprays etc. or may be in the form of dry powders for reconstitution with water or another suitable carrier. Liquid products of these types may contain conventional additives, for example suspending agents, flavorings, diluents or emulsifiers. It is possible to employ for parenteral administration solutions or suspensions with conventional pharmaceutical carriers. Parenteral administration of active substances according to the invention advantageously takes place using a liquid pharmaceutical composition which can be administered parenterally, in particular intravenously. This preferably contains an effective amount of at least one active substance, preferably in dissolved form, in a pharmaceutically acceptable carrier suitable for this purpose. Examples of pharmaceutical carriers suitable for this purpose are, in particular, aqueous solutions such as, for example, physiological saline, phosphate-buffered saline, Ringer's solution, Ringer's lactate solution and the like. The composition may moreover contain further additions such as antioxidants, chelating agents or antimicrobial agents.

45

The choice in each case of the dosage of the active substances according to the invention and the particular dosage schedule are subject to a decision of the treating physician. The latter will select a suitable dose and an appropriate dosage schedule depending on the chosen route of administration, on the efficacy of the medicine in each case, on the nature and severity of the disorder to be treated, and on the condition of the patient and his response to the therapy. Thus, for example, the pharmacologically active substances can be administered to a mammal (human or animal) in doses of about 0.5 mg to about 100 mg per kg of body weight and day. They can be administered in a single dose or in several doses.

Nontherapeutic applications:

15 The nucleic acids according to the invention, such as, for example, cDNA, the genomic DNA, the promoter, and the polypeptide, and partial fragments thereof, can also be used in recombinant or nonrecombinant form for developing various test systems.

For example, it is possible to establish a test system which is suitable for measuring the activity of the promoter or of the protein in the presence of a test substance. The methods of measurement in this case are preferably simple ones, e.g. colorimetric, luminometric, fluorimetric, immunological or radioactive, and allow preferably a large number of test substances to be measured rapidly. Tests of this type are suitable and advantageous for so-called high-throughput screening. These test systems allow test substances to be assessed for their binding to or their agonism, antagonism or inhibition of proteins according to the invention.

Determination of the amount, activity and distribution of the proteins according to the invention or their underlying mRNA in the human body can be used for the diagnosis, for the determination of the predisposition and for the monitoring of certain diseases. Likewise, the sequence of the cDNA and the genomic sequence may provide information about genetic causes of and predispositions to certain diseases. It is possible to use for this purpose both DNA/RNA probes and antibodies of a wide variety of types. The nucleotide sequences according to the invention or parts thereof can further be used in the form of suitable probes for detecting point mutations, deletions or 45 insertions.

The proteins according to the invention can further be used to identify and isolate their natural ligands or interacting partners. The proteins according to the invention can additionally be used to identify and isolate artificial or synthetic ligands. For this purpose, the recombinantly prepared or purified natural protein can be derivatized in such a way that it has modifications which permit linkage to support materials. Proteins bound in this way can be incubated with various analytes, such as, for example, protein extracts or peptide libraries or other sources of ligands. Specifically bound peptides, proteins or low molecular weight, non-proteinogenous substances can be isolated and characterized in this way. Non-proteinogenous substances mean, for example, low molecular weight chemical substances which may originate, for example, from classical drug synthesis or from so-called substance libraries which have been synthesized combinatorially.

The protein extracts used are derived, for example, from homogenates of plants or parts of plants, microorganisms, human or animal tissues or organs.

Ligands or interacting partners can also be identified by methods like the yeast two-hybrid system (Fields, S. and Song, O. (1989) Nature, 340, 245). The expression banks which can be employed in this case may be derived, for example, from human tissues such as, for example, brain, heart, kidney etc.

The nucleic acid sequences according to the invention and the proteins encoded by them can be employed for developing reagents, agonists and antagonists or inhibitors for the diagnosis and therapy of chronic and acute diseases associated with the expression or activation of one of the protein sequences according to the invention, such as, for example, with increased or decreased expression thereof. The reagents, agonists, antagonists or inhibitors developed can subsequently be used to produce pharmaceutical preparations for the treatment or diagnosis of disorders. Examples of possible diseases in this connection are those of the brain, of the peripheral nervous system, of the cardiovascular system or of the eye, of septic shock, of rheumatoid arthritis, diabetes, acute kidney failure, or of cancer.

The relevance of the proteins according to the invention for said indications was verified using specific inhibitors in relevant animal models.

The invention is now illustrated in detail with reference to the following examples.

Example 1: Isolation of the PARP2 and PARP3 cDNA

5

The present cDNA sequences were found for the first time on sequence analysis of cDNA clones of a cDNA library from human brain (Human Brain 5'Stretch Plus cDNA Library, # HL3002a, Clontech). The mouse PARP3 clones were isolated from a "lambda 10 triplex mouse brain cDNA library" (Clontech order No. ML5004t). The sequences of these clones are described in SEQ ID NO:1, 3, 7 and 9.

Example 2: Expression of PARP2 and PARP3 in human tissues

15

The expression of human PARP2 and human PARP3 was investigated in twelve different human tissues by Northern blot analysis. A Human Multiple Tissue Northern Blot (MTN™) supplied by Clontech (#7760-1 and #7780-1) was hybridized for this purpose with an RNA 20 probe. The probe was produced by in vitro transcription of the corresponding cDNA of human PARP2 and human PARP3 in the presence of digoxigenin-labeled nucleotides in accordance with the manufacturer's method (BOEHRINGER MANNHEIM DIG Easy Hyb order No. 1603 558, DIG Easy Hyb method for RNA:RNA hybridization). The 25 protocol was modified to carry out the prehybridization: 2x1h with addition of herring sperm DNA (10 mg/ml of hybridization solution). Hybridization then took place overnight with addition of herring sperm DNA (10 mg/ml of hybridization solution). The bands were detected using the CDP-Star protocol (BOEHRINGER 30 MANNHEIM CDP-Star™ order No. 1685 627).

After stringent washing, the transcript of PARP2 was mainly detected in human brain, heart, skeletal muscle, kidney and liver. The transcript size of about 1.9 kb corresponds to the 35 length of the cDNA determined (1.85kb) (cf. Figure 2(A)).

In other tissues or organs, human PARP2 expression is considerably weaker.

40 After stringent washing, the transcript of PARP3 was mainly detected in heart, brain, kidney, skeletal muscle and liver. Expression in other tissues (placenta, lung, pancreas) is distinctly weaker (cf. Figure 2(B)). There are at least 2 transcripts for human PARP3, which can presumably be explained by 45 different polyadenylation sites or alternative splicing. Their size (about 2.2 kb and 2.5 kb respectively) corresponds to the length of the cDNA determined (2.3kb). Washing was carried out

with 0.2 x SSC/0.2% SDS at room temperature for 2 x 15 minutes and then with 0.1 x SSC/0.1% SDS at 65°C for 2 x 15 minutes (prepared from 20X SSC: 3M NaCl, 0.3M sodium citrate, pH 7.0).

5 Example 3: Production of antibodies

Specific antibodies against the proteins according to the invention were produced. These were used inter alia for analyzing the tissue distribution at the protein level of PARP2 and PARP3 by immunoblot (Western blot) analysis. Examples of the production of such antibodies are indicated below.

The following peptides were prepared by synthesis in the manner familiar to the skilled worker for the antibody production. In some cases, a cysteine residue was attached to the N or C terminals of the sequences in order to facilitate coupling to KLH (keyhole limpet hemocyanin).

PARP-2: NH₂-MAARRRRSTGGGRARALNES-CO₂H (amino acids 1-20;
20 SEQ ID NO: 23)
NH₂-KTELQSPEHPLDQHYRNLHC-CO₂H (amino acids 335-353;
SEQ ID NO: 24)
PARP-3: NH₂-CKGRQAGREEDPFRSTAELAK-CO₂H (amino acids 25-44
SEQ ID NO: 25)
NH₂-CKQIARGFEALEALEEALK-CO₂H (amino acids 230-248;
25 SEQ ID NO: 26)

The production of an anti-PARP3 antibody is described as a representative example.

30 For human PARP3, polyclonal antibodies were raised in rabbits
using a synthetic peptide having the peptide sequence H₂N-KQQIARG-
FEALEALEALK-CO₂H (SEQ ID NO: 27)(amino acids 230-248 of the human
PARP3 protein sequence). The corresponding mouse sequence differs
35 in this region only by one amino acid (H₂N-KQQIARGFEALEALEEAMK-
CO₂H; SEQ ID NO: 28). A cysteine was also attached to the N terminus
in order to make it possible for the protein to couple to
KLH.

40 Rabbits were immunized a total of five times, at intervals of
7-14 days, with the KLH-peptide conjugate. The antiserum obtained
was affinity-purified using the antigen. The specific IgG frac-
tion was isolated from the serum using the respective peptides
which, for this purpose, were initially immobilized on an affin-
45 ity column in the manner familiar to the skilled worker. The re-
spective antiserum was loaded onto this affinity column, and non-
specifically sorbed proteins were eluted with buffer. The spe-

cifically bound IgG fraction was eluted with 0.2 M glycine/HCl buffer pH 2.2. The pH was immediately increased using a 1M TRIS/HCl buffer pH 7.5. The eluate containing the IgG fraction was mixed 1:1 (volume) with saturated ammonium sulfate solution and 5 incubated at +4°C for 30 min to complete the precipitation. The resulting precipitate was centrifuged at 10,000 g and, after removal of the supernatant, dissolved in the minimum amount of PBS/TBS. The resulting solution was then dialyzed against PBS/TBS in the ratio 1:100 (volume). The antibodies were adjusted to a concentration of about 100 µg of IgG/ml. The PARP3 antibodies purified in this way had high specificity for PARP3. Whereas mouse PARP3 was recognized well, there was no observable cross-reaction with PARP1 or PARP2.

15 Example 4: Analysis of the tissue distribution by immunoblot (Western blot)

The tissue distribution at the protein level was also investigated for PARP2 and PARP3 by immunoblot (Western blot) analysis.

20 Preparation of the mouse tissues for protein gels:

Tissues or cells were homogenized using a Potter or Ultra-Turrax. For this, 0.5 g of tissue (or cells) was incubated in 5 ml of 25 buffer (10 mM Tris-HCl pH 7.5, 1 mM EDTA, 6 mM MgCl₂), one tablet of protease inhibitor cocktail (Boehringer Mannheim, order No.: 1836153) and benzonase (purity grade I, MERCK) at 37°C for 30 min. Tissue samples from mice were produced for heart, lung, liver, spleen, kidney, intestine, muscle, brain and for human embryonic 30 kidney cells (HEK293, human embryonal kidney).

Protein gels:

The NuPAGE system supplied by NOVEX was used according to the 35 instructions for protein gels. Polyacrylamide gels (NuPAGE 4-12% BisTris, NOVEX NP 0321), running buffer (MES-Running Buffer, NOVEX NP 0002), antioxidant (NOVEX NP 0005), protein size standard (Multi Mark Multi Colored Standard, NOVEX LC 5725), sample buffer (NuPAGE LDS Sample Buffer (4X), NOVEX NP 0007) were used. 40 The gels were run for 45 minutes at a voltage of 200 V.

Western blot:

Western blots were carried out using the NOVEX system in accordance with instructions. A nitrocellulose membrane (Nitrocellulose Pore size 45 µm, NOVEX LC 2001) was used. The transfer took 1 hour at a current of 200 mA. The transfer buffer consisted of 50 ml of

transfer buffer concentrate (NOVEX NP 0006), 1 ml of antioxidant (NOVEX NP 0002), 100 ml of analytical grade methanol and 849 ml of double-distilled water.

- 5 Besides the blots produced in this way, also used were premade
blots, for example from Chemicon (mouse brain blot, Chemicon,
catalog No.: NS 106 with the tissues 1. frontal cortex, 2. pos-
terior cortex, 3. cerebellum, 4. hippocampus, 5. olfactory bulb,
6. striatum, 7. thalamus, 8. mid brain, 9. entorhinal cortex, 10.
10 pons, 11. medulla, 12. spinal cord).

Antibody reaction with PARP3:

The Western blots were blocked in TBST (TBS + 0.3 % Tween 20) 15 with 5% dry milk powder for at least 2 hours (TBS: 100 mM Tris pH 7.5, 200 mM NaCl). The antibody reaction with the primary anti-
body (dilution 1:1000) took place in TBST with 5% dry milk powder (see above) at room temperature for at least 2 hours or at 4°C overnight, with gentle agitation (vertical rotator). This was 20 followed by washing three times in TBST for 5 minutes. Incubation with the secondary antibody (anti-rabbit IgG, peroxidase-coupled, SIGMA A-6154, dilution 1:2000) took place in TBST with 5% dry milk powder for 1 hour. This was followed by washing three times for 5 minutes each time as above. The subsequent detection was 25 based on chemiluminescence using the SUPER BLAZE kit (Pierce, Signal BLAZE Chemiluminescent Substrate 34095) as stated by the manufacturer. The "Lumi-Film" (Chemiluminescent Detection Film, Boehringer order No: 1666916) was used. The films were developed for about 2 min (X-ray developer concentrate, ADEFO-Chemie GmbH), 30 hydrated, fixed for about 4 min (Acidofix 85 g/l /AGFA), hydrated and then dried.

Example 5: Preparation of the enzymes

- 35 For comparison, human PARP1 was expressed recombinantly in the baculovirus system in the manner familiar to the skilled worker and partially purified as described (Shah et al., Analytical Biochemistry 1995, 227, 1-13). Bovine PARP1 in a purity of 30-50% (c= 0.22 mg/ml, spec. activity 170 nmol of ADP-ribose/min/mg of
 40 total protein at 25°C) was purchased from BIOMOL (order No. SE-165). Human and mouse PARP2 and PARP3 were expressed recombinantly in the baculovirus system (Bac-to-Bac system, BRL LifeScience). For this purpose, the appropriate cDNAs were cloned to the pFASTBAC-1 vector. Preparation of recombinant baculovirus DNA by
 45 recombination in *E. coli* was followed by transfection of insect cells (Sf9 or High-Five) with the appropriate recombinant baculovirus DNAs. Expression of the corresponding proteins was veri-

fied by Western blot analysis. Virus strains were amplified in the manner familiar to the skilled worker. Larger amounts of recombinant proteins were obtained by infecting 500 ml of insect cell culture (2×10^6 cells/ml) with viruses in an MOI (multiplicity of infection; ratio of viruses to cells) of 5-10 and incubating for 3 to 4 days. The insect cells were then pelleted by centrifugation, and the proteins were purified from the pellet.

The purification took place by classical methods of protein purification familiar to the skilled worker, detecting the enzymes with appropriate specific antibodies. In some cases, the proteins were also affinity-purified on a 3-aminobenzamide affinity column as described (Burtscher et al., Anal Biochem 1986, 152:285-290). The purity was >90%.

15

Example 6: Assay systems for determining the activity of PARP2 and PARP3 and the inhibitory action of effectors on PARP1, PARP2 and PARP3.

20 a) Production of antibodies against poly(ADP-ribose)

It is possible to use poly(ADP-ribose) as antigen for generating anti-poly(ADP-ribose) antibodies. The production of anti-poly(ADP-ribose) antibodies is described in the literature (Kanai Y et al. (1974) Biochem Biophys Res Comm 59:1, 300-306; Kawamaitsu H et al. (1984) Biochemistry 23, 3771-3777; Kanai Y et al. (1978) Immunology 34, 501-508).

The following were used, inter alia: anti-poly(ADP-ribose) antibodies (polyclonal antiserum, rabbits), BIOMOL; order No. SA-276, anti-poly(ADP-ribose) antibodies (monoclonal, mouse; clone 10H; hybridoma supernatant, affinity-purified).

The antisera or monoclonal antibodies obtained from hybridoma supernatant were purified by protein A affinity chromatography in the manner familiar to the skilled worker.

b) ELISA

40 Materials:

ELISA color reagent: TMB mix, SIGMA T-8540

A 96-well microtiter plate (FALCON Micro-Test III™ Flexible Assay Plate, # 3912) was coated with histones (SIGMA, H-7755). Histones were for this purpose dissolved in carbonate buffer (0.05M Na₂HCO₃; pH 9.4) in a concentration of 50 µg/ml. The individual

wells of the microtiter plate were each incubated with 150 µl of this histone solution at room temperature for at least 2 hours or at 4°C overnight. The wells are then blocked by adding 150 µl of a 1% BSA solution (SIGMA, A-7888) in carbonate buffer at room temperature for 2 hours. This is followed by three washing steps with washing buffer (0.05% Tween10 in 1x PBS; PBS (Phosphate buffered saline; Gibco, order No. 10010): 0.21g/l KH₂PO₄, 9g/l NaCl, 0.726g/l Na₂HPO₄ · 7H₂O, pH 7.4). Washing steps were all carried out in a microtiter plate washer ("Columbus" microtiter plate washer, SLT-LabInstruments, Austria).

Required for the enzyme reaction were an enzyme reaction solution and a substrate solution, in each case as a premix. The absolute amount of these solutions depended on the intended number of assay wells.

- Composition of the enzyme reaction solution per well:
- 4 µl of PARP reaction buffer (1M Tris-HCl pH 8.0, 100mM MgCl₂, 10mM DTT)
 - 20ng of PARP1 (human or bovine) or 8ng PARP2 (human or mouse)
 - 4 µl of activated DNA (1 mg/ml; SIGMA, D-4522)
 - H₂O ad 40 µl

- Composition of the substrate solution per well:
- 25 - 5 µl of PARP reaction buffer (10x)
 - 0.8 µl of NAD solution (10mM, SIGMA N-1511)
 - 44 µl H₂O

Inhibitors were dissolved in 1x PARP reaction buffer. DMSO, which was occasionally used to dissolve inhibitors in higher concentrations, was no problem up to a final concentration of 2%. For the enzyme reaction, 40 µl of the enzyme reaction solution were introduced into each well and incubated with 10 µl of inhibitor solution for 10 minutes. The enzyme reaction was then started by adding 50 µl of substrate solution per well. The reaction was carried out at room temperature for 30 minutes and then stopped by washing three times with washing buffer.

The primary antibodies employed were specific anti-poly(ADP-ribose) antibodies in a dilution of 1:5000. Dilution took place in antibody buffer (1% BSA in PBS; 0.05% Tween20). The incubation time for the primary antibodies was one hour at room temperature. After subsequently washing three times with washing buffer, incubation was carried out with the secondary antibody (anti-mouse IgG, Fab fragments, peroxidase-coupled, Boehringer Mannheim, order No. 1500.686; anti-rabbit IgG, peroxidase-coupled, SIGMA, order No. A-6154) in a dilution of 1:10,000 in antibody buffer at

room temperature for one hour. Washing three times with washing buffer was followed by the color reaction using 100 µl of color reagent (TMB mix, SIGMA) per well at room temperature for about 15 min. The color reaction was stopped by adding 100 µl of 2M H₂SO₄. This was followed by immediate measurement in an ELISA plate reader (EAR340AT "Easy Reader", SLT-LabInstruments, Austria) (450nm versus 620nm). The measurement principle is depicted diagrammatically in Figure 6.

- 10 Various concentrations were used to construct a dose-effect plot to determine the K_i value of an inhibitor. Values are obtained in triplicate for a particular inhibitor concentration. Arithmetic means are determined using Microsoft© Excel. The IC₅₀ is determined using the Microcal© Origin Software (Vers. 5.0)
- 15 ("Sigmoidal Fit"). Conversion of the IC₅₀ value is calculated in this way into K_i values took place by using "calibration inhibitors". The "calibration inhibitors" were also measured in each analysis. The K_i values of the "calibration inhibitors" were determined in the same assay system by analysis of the Dixon dia-
- 20 gram in the manner familiar to the skilled worker.

b) HTRF (homogenous time-resolved fluorescence) assay

In the HTRF PARP assay according to the invention, histones, as target proteins for modification by PARP, are labeled indirectly with an XL665 fluorophore. The anti poly(ADP ribose) antibody is directly labeled with a europium cryptate (anti-PAR-cryptate). If the XL665 fluorophore is in the direct vicinity in space, which is ensured by binding to the poly(ADP-ribose) on the histone,

25 then energy transfer is possible. The emission at 665 nm is thus directly proportional to the amount of bound antibody, which in turn is equivalent to the amount of poly(ADP-ribose). The measured signal thus corresponds to the PARP activity. The measurement principle is depicted diagrammatically in Figure 7.

30 The materials used are identical to those used in the ELISA (see above) unless expressly indicated.

Histones were dissolved in a concentration of 3 mg/ml in Hepes buffer (50mM, pH=7.5). Biotinylation took place with

35 sulfo-NHS-LC-biotin (Pierce, #21335T). A molar ratio of 4 biotin molecules per histone was used. The incubation time was 90 minutes (RT). The biotinylated histones were then purified on a G25 SF HR10/10 column (Pharmacia, 17-0591-01) in Hepes buffer (50mM, pH=7.0) in order to remove excess biotinylation reagent.

40 The anti-poly(ADP-ribose) antibody was labeled with europium cryptate using bifunctional coupling reagents (Lopez, E. et al., Clin. Chem. 39(2), 196-201 (1993); US Patent 5,534,622).

Purification took place on a G25SF HR10/30 column. A molar ratio of 3.1 cryptates per antibody was achieved. The yield was 25%. The conjugates were stored at -80°C in the presence of 0.1% BSA in phosphate buffer (0.1M, pH=7).

5

For the enzyme reaction, the following were pipetted into each well:

- 10 µl of PARP solution in PARP HTRF reaction buffer (50mM Tris-HCl pH 8.0, 10mM MgCl₂, 1mM DTT) with 20ng of PARP1 (human or bovine) or 8ng of PARP2 (human or mouse)
- 10 µl of activated DNA in PARP HTRF reaction buffer (50µg/ml)
- 10 µl of biotinylated histones in PARP HTRF reaction buffer (1.25µM)
- 10 µl of inhibitor in PARP HTRF reaction buffer

15

These reagents were incubated for 2 minutes before the reaction was started by adding

- 10 µl of NAD solution in PARP HTRF reaction buffer (41 µM/ml). The reaction time was 30 minutes at room temperature.

20

The reaction was then stopped by adding

- 10 µl of PARP inhibitor (25 µM, K_i=10nM) in "Revelation" buffer (100mM Tris-HCl pH 7.2, 0.2M KF, 0.05% BSA).

25

The following were then added:

- 10 µl of EDTA solution (SIGMA, E-7889, 0.5M in H₂O)
- 100 µl of Sa-XL665 (Packard Instruments) in "Revelation" buffer (15-31.25nM)
- 50 µl of anti-PAR cryptate in "Revelation" buffer (1.6-3.3nM).

30

Measurement was then possible after 30 minutes (up to 4 hours). The measurement took place in a "discovery HTRF microplate analyzer" (Canberra Packard Instruments). The K_i values were calculated as described for the ELISA.

35

Example 7: Test systems for determining the therapeutic efficacy of PARP inhibitors

40 Novel PARP inhibitors can have their therapeutic efficacy checked in relevant pharmacological models. Examples of some suitable models are listed in Table 1.

45

	Disorder	Model	Literature
5	Neurodegenerative disorders (stroke, Parkinson's, etc.)	NMDA excitotoxicity in mice or rats	See below for description
10	Stroke	Permanent MCAO ("middle cerebral arterial occlusion")	Tokime, T. et al., J. Cereb. Blood Flow Metab., 18(9): 991-7, 1998. Guegan, C., Brain Research. Molecular Brain Research, 55(1): 133-40, 1998.
15		Transient, focal MCAO in rats or mice	Eliasson MJL et al., Nat Med 1997, 3:1089-1095. Endres, M et al., J Cereb Blood Flow Metab 1997, 17:1143-1151.
20			Takahashi K et al., J Cereb Blood Flow Metab 1997, 17:1137-1142.
25	Parkinson's disease	MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) toxicity in mice/rats	Cosi C, et al., Brain Res., 1998 809(1):58-67. Cosi C, et al., Brain Res., 1996 729(2):264-9.
30	Myocardial infarct	Coronary vessel occlusion in rats, pigs or rabbits	Richard V, et al., Br. J. Pharmacol 1994, 113, 869-876. Thiemermann C, et al., Proc Natl Acad Sci U S A. 1997, 94(2):679-83. Zingarelli B, et al., Cardiovasc Res. 1997, 36(2):205-15.
35			
40		Langendorf heart model in rats or rabbits	See below for description
	Septic shock	Endotoxin shock in rats	Szabo C, et al., J Clin Invest, 1997, 100(3):723-35.

5	Zymosan- or carrageenan-induced multiple organ failure in rats or mice	Szabo C, et al. J Exp Med. 1997, 186(7):1041-9.Cuzzocrea S, et al. Eur J Pharmacol. 1998, 342(1):67-76.
10	Rheumatoid arthritis	Adjuvant- or collagen-induced arthritis in rats or mice
15	Diabetes	Streptozotocin- and alloxan-induced or obesity-associated
20	Cancer	In vitro model; see below

20

a) NMDA excitotoxicity model

Glutamate is the most important excitatory neurotransmitter in the brain. Under normal conditions, glutamate is secreted into the synaptic cleft and stimulates the post-synaptic glutamate receptors, specifically the glutamate receptors of the "NMDA" and "AMPA" types. This stimulation plays a significant part in numerous functions of the brain, including learning, memory and motor control.

30

Under the conditions of acute and chronic neurodegeneration (e.g. stroke), however, there is a great increase in the presynaptic glutamate secretion, resulting in excessive stimulation of the receptors. This leads to death of the cells stimulated in this way. These increased glutamate activities occur in a number of neurological disorders or psychological disturbances and lead to states of overexcitation or toxic effects in the central nervous system (CNS) but also in the peripheral nervous system. Thus, glutamate is involved in a large number of neurodegenerative disorders, in particular neurotoxic disturbances following hypoxia, anoxia, ischemia and after lesions like those occurring after stroke and trauma, and stroke, Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis (ALS; "Lou Gehring's disease"), cranial trauma, spinal cord trauma, peripheral neuropathies, AIDS dementia and Parkinson's disease. Another disease in which glutamate receptors are important is epilepsy (cf. Brain

Res Bull 1998; 46(4):281-309, Eur Neuropsychopharmacol 1998, 8(2):141-52.).

Glutamate effects are mediated through various receptors. One of
5 these receptors is called the NMDA (N-methyl-D-aspartate) receptor after a specific agonist (Arzneim.Forschung 1990, 40,
511-514; TIPS, 1990, 11, 334-338; Drugs of the Future 1989, 14,
1059-1071). N-Methyl-D-aspartate is a strong agonist of a particular class of glutamate receptors ("NMDA" type). Stimulation
10 of the NMDA receptor leads to influx of calcium into the cell and the generation of free radicals. The free radicals lead to DNA damage and activation of PARP. PARP in turn causes cell death through depletion of high-energy phosphates (NAD and ATP) in the cell. This explains the toxicity of NMDA. Treatment of animals
15 with NMDA can therefore be regarded as a model of the abovementioned disorders in which excitotoxicity is involved.

Because of the importance of glutamate receptors in neurodegeneration, many pharmacological approaches to date have been directed at specific blocking of precisely these receptors. However, because of their importance in normal stimulus conduction, these approaches have proved to be problematic (side effects). In addition, stimulation of the receptors is an event which takes place very rapidly so that administration of the receptors often comes too late ("time window" problem). Thus there is a great need for novel principles of action and inhibitors of NMDA-related neurotoxicity.

Protection against cerebral overexcitation by excitatory amino acids (NMDA antagonism in mice) can be regarded as adequate proof of the activity of a pharmacological effector of PARP in disorders based on excitotoxicity. Intracerebral administration of excitatory amino acids (EAA) induces such massive overexcitation that it leads within a short time to convulsions and death of the animals (mice).

In the present case there was unilateral intracerebroventricular administration of 10 µl of a 0.035% strength aqueous NMDA solution 120 minutes after intraperitoneal (i.p.) administration of the test substance. These symptoms can be inhibited by systemic, e.g. intraperitoneal, administration of centrally acting drugs. Since excessive activation of EAA receptors in the central nervous system plays an important part in the pathogenesis of various neurological disorders, information can be gained from the detected EAA antagonism *in vivo* about possible therapeutic utilization of the substances for such CNS disorders. An ED₅₀ at which 50% of the animals are, due to preceding i.p.

administration of the measured substance, free of symptoms with a fixed dose of NMDA was determined as a measure of the activity of the substances.

5 b) Langendorf heart model (model for myocardial infarct)

Male Sprague-Dawley rats (bodyweight 300-400 g; origin Janvier, Le Genest-St-Isle, France) were used for the test. The rats were treated orally by gavage with the active substance or placebo 10 (volume: 5 ml/kg). 50 minutes later, heparin is administered intraperitoneally (Liquemin N Roche, 125 IU/animal in 0.5 ml). The animals are anesthetized with Inactin® T133 (thiobetabarbital sodium 10%), fixed on the operating table, tracheotomized and ventilated with a "Harvard ventilatory pump" (40 beats/min, 15 4.5 ml/beat). Thoracotomy was followed by immediate catheterization of the aorta, removal of the heart and immediate retrograde perfusion. The hearts were perfused with a constant pressure of 75 mmHg, which is achieved using a "Gilson Miniplus 2 perfusion pump". Composition of the perfusate (mmol/l): NaCl 118, KCl 4.7, 20 CaCl₂ x 2 H₂O 2.52, MgSO₄ x 7 H₂O 1.64, NaHCO₃ 24.88, KH₂PO₄ 1.18, glucose 11. The temperature is kept at 37°C throughout the experiment. Functional parameters were continuously recorded using a "Gould 4-channel recorder". Measurements were made of the left-ventricular pressure (LVP; mmHg), LVEDP (mmHg), enzyme release 25 (creatinine kinase, mU/ml/g), coronary flow rate (ml/min), HR (pulse rate, min⁻¹). The left-ventricular pressure was measured using a liquid-filled latex balloon and a Statham23 Db pressure transducer. The volume of the balloon was initially adjusted to reach an LVEDP (left-ventricular end-diastolic pressure) of about 30 12 mmHg. The dP/dt_{max} (maximum pumping force) is derived from the pressure signal using a differentiator module. The heart rate was calculated from the pressure signal. The flow rate was determined using a drop counter (BMT Messtechnik GmbH Berlin). After an equilibration time of 20 minutes, the hearts were subjected to a 35 30-minute global ischemia by stopping the perfusate supply while keeping the temperature at 37°C. During the following 60-minute reperfusion period, samples of the perfusate were taken after 3, 5, 10, 15, 30, 45 and 60 min for analysis of creatine kinase (CK) activity. Means and standard deviations for the measured para- 40 meters were analyzed statistically (Dunnett test). The significance limit was p=0.05.

The experiment on rabbit hearts was carried out similarly. Male white New Zealand rabbits (obtained from: Interfauna) were used.

45 The hearts were prepared as described above for the rat model. The perfusion pressure was set at a maximum of 60 mmHg and the flow rate at about 25ml/min. The equilibration time was about

30 min. The substance was administered by infusion directly upstream of the heart. 15 min after starting the infusion, a 30-minute global ischemia was caused by stopping the flow while maintaining the temperature of the heart. A 30-minute reperfusion 5 followed. Perfusate was taken for investigation of CK activity before administration of the substance, after 15 min and at various times (5, 10, 15, 20, 30 min) during the reperfusion. The following parameters were measured: LVP (mmHg), LVEDP, LVdP/dt, PP (mmHg), HR (pulse rate; beats/min), CK activity (U/min/g heart 10 weight).

c) Animal model for acute kidney failure

The protective effect of intravenous administration of PARP 15 inhibitors (4 days) on the kidney function of rats with postischemic acute kidney failure was investigated.

Male Sprague-Dawley rats (about 330 g at the start of the experiments; breeder: Charles River) were used. 10-15 animals were 20 employed per experimental group. Administration of active substance/placebo took place continuously with an osmotic micropump into the femoral vein. Orbital blood was taken (1.5 ml of whole blood) under inhalation anesthesia with enflurane (Ethrane Abbot, Wiesbaden).

25

After the initial measurements (blood sample) and determination of the amount of urine excreted in 24h, the rats were anesthetized ("Nembutal", pentobarbital sodium, Sanofi CEVA; 50mg/kg i.p., volume injected 1.0 ml/kg) and fastened on a heatable operating table (37°C). 125 IU/kg heparin (Liquemin N, Roche) were administered i.v. into the caudal vein. The abdominal cavity was opened and the right kidney was exposed. The branching-off renal artery was exposed and clamped off superiorly using bulldog clamps (Diefenbach 38mm). The left renal artery was likewise exposed and clamped off (superiorly, about half way to the kidney). During the operation, an osmotic micropump was implanted into the femoral vein. The intestine was reinserted and the fluid loss was compensated with luke-warm 0.9% NaCl. The animals were covered with a moist cloth and kept warm under red light. After 40 min, 30 the appearance of the kidneys was recorded, and the clamps were removed, first the right then the left. The intestine was put back and 2 drops of antibiotic (Tardomyocel, Bayer) were added. The abdominal wall was closed with sterile cat gut (Ethicon No.4) 35 and treated once more with 1 drop of antibiotic. The epidermis was sutured with sterile Ethibond Exel (Ethicon) No.3/0, and the 40

46

suture was sprayed with Nebacetin N (Yamanouchi) wound spray. A tenth of a daily dose of drug/placebo is given as i.v. bolus.

Samples and blood were taken for investigating biochemical parameters in the serum and urine: Na, K, creatinine, protein (only in urine), on days 1, 2 and 4 of the experiment. In addition, the feed and water consumption, bodyweight and urine volume were recorded. After 14 days, the animals were sacrificed and the kidneys were assessed.

10

The assessment excluded all animals which died of an infarct during the experiment or showed an infarct at necropsy on day 14. The creatinine clearance and the fractional sodium excretion were calculated as kidney function parameters, comparing treated animals with control and sham.

15 d) In vitro model for radiosensitization (tumor therapy)

MCF-7-cells (human breast carcinoma) were cultivated in Dulbecco's modified Eagle's medium with 10% heat-inactivated FCS and 2 mM L-glutamine. Cells were seeded out overnight in cell densities of 100, 1000 or 10,000 cells per well in a 6-well plate and then exposed to ionizing radiation with a dose in the range from 0 to 10 Gy (¹³⁷Cs, Shepard Mark, model I-68A, dose rate 3.28 Gy/min). 10 days after the irradiation, the experiment was assessed, counting colonies with fifty cells as positive.

20 e) Stroke model (focal cerebral ischemia; MCA (middle cerebral artery) occlusion on a rat)

30

A focal ischemia was performed by means of cauterisation of the right distal MCA on Sprague-Dawley or Long-Evans rats. The rats may be treated before or after the beginning of the MCA occlusion with modulators of the proteins of the invention. As a rule, doses of 1-10 mg/kg are chosen (bolus application), optionally followed by a continuous infusion of 0.5-5 mg/kg/h.

The rats are anaesthetised with halothane in a mixture of 70 % nitrogen and 30 % oxygen (4% at initial phase and 0.8-1.2 % during the operation). The body temperature was permanently measured rectally and was kept constant at 37.5 °C ± 0.5 °C by means of a controllable heating blanket. Moreover, arterial blood pressure, arterial pH, (Pa(O₂) and Pa(CO₂) were optionally measured by means of a tail vein catheter. Thereafter, the focal ischemia was carried out using the method of Chen et al. (Stroke 17: 738-743; 1986) or Liu et al. (Am. J. Physiol. 256: H589-593; 1989) by means of continuous cauterisation of the distal part of the right

MCA. When the operation was terminated, the animals were kept in a warm environment for a further 24 hours. Then they were killed with the use of CO₂ and decapitated. Their brains were taken, shock-frozen (dry ice or liquid nitrogen) and stored at -80 °C.

5 The brains were cut into 0.02 mm thick slices and every 20th cut was used for the subsequent analysis. The corresponding cuts are stained with cresyl violet (Nissl staining). Alternatively, TTC (2,3,4-triphenyltetrazoliumchloride) may be used for staining.

The infarct volume may then be analysed under a microscope. For exact quantification, a computer-based image analyzing software may be used (J. Cereb. Blood Flow Metabol. 10: 290-293; 1990).

f) Septic shock

15 Groups of 10 male C57/BL mice (body weight 18-20 g) are treated with LPS (lipopolysaccharide, from *E. coli*, LD₁₀₀ 20 mg/animal i. v.) plus galactosamine (20 mg/animal i. v.). The substance to be tested is applied i. p. or i. v. during three succeeding days (e. g. 1-10 mg/kg), with the first dose being administered 30
20 minutes after the LPS treatment. The death rate is determined every 12 hours. Alternatively, the substance may also be applied in several doses spread over the days.

g) Determination of altered gene expression in aging cells

25

The aging of cells is simulated by changing the cell culture media from the complete medium with a reduced serum concentration and thereafter is analysed by means of quantitative PCR or Northern Blotting (Linskens et al., Nucleic Acids Res. 1995, 23(16): 3244-51). As typical markers for the aging of the skin for example collagen or elastin may be used. Human fibroblasts or fibroblast cell lines are used which simulate the aging of the skin. Modulators of the proteins of the invention are added to the medium and their effect on the changing of the gene expression is observed. An increased production of elastin in cells with a reduced aging process caused by means of said modulators may be observed.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT:

 - (A) NAME: BASF Aktiengesellschaft
 - (B) STREET:
 - (C) CITY: Ludwigshafen
 - (E) COUNTRY: Deutschland
 - (F) POSTAL CODE (ZIP): 67065

ii) TITLE OF INVENTION: Neue Poly ADP Ribose Polymerase Gene

iii) NUMBER OF SEQUENCES: 28

iv) COMPUTER READABLE FORM:

 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC DOS/MS DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)

(2) INFORMATION FOR SEQ ID NO: 1:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1843 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (F) TISSUE TYPE: Brain
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION:3..1715
 - (D) OTHER INFORMATION:/product= "Poly ADP Ribose Polymerase"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

```

CC ATG GCG GCG CGG CGG CGA CGG AGC ACC GGC GGC GGC AGG GCG AGA
Met Ala Ala Arg Arg Arg Arg Ser Thr Gly Gly Gly Arg Ala Arg
      1           5           10          15

```

47

95

0050/49100/49790

0050/49100/49790

GAC TCT TCC CCT GCC AAG AAA ACT CGT AGA TGC CAG AGA CAG GAG TCG Asp Ser Ser Pro Ala Lys Lys Thr Arg Arg Cys Gln Arg Gln Glu Ser 35 40 45	143
AAA AAG ATG CCT GTG GCT GGA GGA AAA GCT AAT AAG GAC AGG ACA GAA Lys Lys Met Pro Val Ala Gly Gly Lys Ala Asn Lys Asp Arg Thr Glu 50 55 60	191
GAC AAG CAA GAT GAA TCT GTG AAG GCC TTG CTG TTA AAG GGC AAA GCT Asp Lys Gln Asp Glu Ser Val Lys Ala Leu Leu Leu Lys Gly Lys Ala 65 70 75	239
CCT GTG GAC CCA GAG TGT ACA GCC AAG GTG GGG AAG GCT CAT GTG TAT Pro Val Asp Pro Glu Cys Thr Ala Lys Val Gly Lys Ala His Val Tyr 80 85 90 95	287
TGT GAA GGA AAT GAT GTC TAT GAT GTC ATG CTA AAT CAG ACC AAT CTC Cys Glu Gly Asn Asp Val Tyr Asp Val Met Leu Asn Gln Thr Asn Leu 100 105 110	335
CAG TTC AAC AAC AAC AAG TAC TAT CTG ATT CAG CTA TTA GAA GAT GAT Gln Phe Asn Asn Asn Lys Tyr Tyr Leu Ile Gln Leu Leu Glu Asp Asp 115 120 125	383
GCC CAG AGG AAC TTC AGT GTT TGG ATG AGA TGG GGC CGA GTT GGG AAA Ala Gln Arg Asn Phe Ser Val Trp Met Arg Trp Gly Arg Val Gly Lys 130 135 140	431
ATG GGA CAG CAC AGC CTG GTG GCT TGT TCA GGC AAT CTC AAC AAG GCC Met Gly Gln His Ser Leu Val Ala Cys Ser Gly Asn Leu Asn Lys Ala 145 150 155	479
AAG GAA ATC TTT CAG AAG AAA TTC CTT GAC AAA ACG AAA AAC AAT TGG Lys Glu Ile Phe Gln Lys Lys Phe Leu Asp Lys Thr Lys Asn Asn Trp 160 165 170 175	527
GAA GAT CGA GAA AAG TTT GAG AAG GTG CCT GGA AAA TAT GAT ATG CTA Glu Asp Arg Glu Lys Phe Glu Lys Val Pro Gly Lys Tyr Asp Met Leu 180 185 190	575
CAG ATG GAC TAT GCC ACC AAT ACT CAG GAT GAA GAG GAA ACA AAG AAA Gln Met Asp Tyr Ala Thr Asn Thr Gln Asp Glu Glu Glu Thr Lys Lys 195 200 205	623
GAG GAA TCT CTT AAA TCT CCC TTG AAG CCA GAG TCA CAG CTA GAT CTT Glu Glu Ser Leu Lys Ser Pro Leu Lys Pro Glu Ser Gln Leu Asp Leu 210 215 220	671
CGG GTA CAG GAG TTA ATA AAG TTG ATC TGT AAT GTT CAG GCC ATG GAA Arg Val Gln Glu Leu Ile Lys Leu Ile Cys Asn Val Gln Ala Met Glu 225 230 235	719
GAA ATG ATG ATG GAA ATG AAG TAT AAT ACC AAG AAA GCC CCA CTT GGG Glu Met Met Met Glu Met Lys Tyr Asn Thr Lys Lys Ala Pro Leu Gly 240 245 250 255	767
AAG CTG ACA GTG GCA CAA ATC AAG GCA GGT TAC CAG TCT CTT AAG AAG Lys Leu Thr Val Ala Gln Ile Lys Ala Gly Tyr Gln Ser Leu Lys Lys	815

0050/49100/49790

CC CCG TGT CCA GAT CGG GCT GGC CAG CAT GGA CGA GCT CTC ATG GAA

	260	265	270	
ATT GAG GAT TGT ATT CGG GCT GGC CAG CAT GGA CGA GCT CTC ATG GAA Ile Glu Asp Cys Ile Arg Ala Gly Gln His Gly Arg Ala Leu Met Glu	275	280	285	863
GCA TGC AAT GAA TTC TAC ACC AGG ATT CCG CAT GAC TTT GGA CTC CGT Ala Cys Asn Glu Phe Tyr Thr Arg Ile Pro His Asp Phe Gly Leu Arg	290	295	300	911
ACT CCT CCA CTA ATC CGG ACA CAG AAG GAA CTG TCA GAA AAA ATA CAA Thr Pro Pro Leu Ile Arg Thr Gln Lys Glu Leu Ser Glu Lys Ile Gln	305	310	315	959
TTA CTA GAG GCT TTG GGA GAC ATT GAA ATT GCT ATT AAG CTG GTG AAA Leu Leu Glu Ala Leu Gly Asp Ile Glu Ile Ala Ile Lys Leu Val Lys	320	325	330	1007
ACA GAG CTA CAA AGC CCA GAA CAC CCA TTG GAC CAA CAC TAT AGA AAC Thr Glu Leu Gln Ser Pro Glu His Pro Leu Asp Gln His Tyr Arg Asn	340	345	350	1055
CTA CAT TGT GCC TTG CGC CCC CTT GAC CAT GAA AGT TAC GAG TTC AAA Leu His Cys Ala Leu Arg Pro Leu Asp His Glu Ser Tyr Glu Phe Lys	355	360	365	1103
GTG ATT TCC CAG TAC CTA CAA TCT ACC CAT GCT CCC ACA CAC AGC GAC Val Ile Ser Gln Tyr Leu Gln Ser Thr His Ala Pro Thr His Ser Asp	370	375	380	1151
TAT ACC ATG ACC TTG CTG GAT TTG TTT GAA GTG GAG AAG GAT GGT GAG Tyr Thr Met Thr Leu Leu Asp Leu Phe Glu Val Glu Lys Asp Gly Glu	385	390	395	1199
AAA GAA GCC TTC AGA GAG GAC CTT CAT AAC AGG ATG CTT CTA TGG CAT Lys Glu Ala Phe Arg Glu Asp Leu His Asn Arg Met Leu Leu Trp His	400	405	410	1247
GGT TCC AGG ATG AGT AAC TGG GTG GGA ATC TTG AGC CAT GGG CTT CGA Gly Ser Arg Met Ser Asn Trp Val Gly Ile Leu Ser His Gly Leu Arg	420	425	430	1295
ATT GCC CCA CCT GAA GCT CCC ATC ACA GGT TAC ATG TTT GGG AAA GGA Ile Ala Pro Pro Glu Ala Pro Ile Thr Gly Tyr Met Phe Gly Lys Gly	435	440	445	1343
ATC TAC TTT GCT GAC ATG TCT TCC AAG AGT GCC AAT TAC TGC TTT GCC Ile Tyr Phe Ala Asp Met Ser Ser Lys Ser Ala Asn Tyr Cys Phe Ala	450	455	460	1391
TCT CGC CTA AAG AAT ACA GGA CTG CTG CTC TTA TCA GAG GTA GCT CTA Ser Arg Leu Lys Asn Thr Gly Leu Leu Leu Ser Glu Val Ala Leu	465	470	475	1439
GGT CAG TGT AAT GAA CTA CTA GAG GCC AAT CCT AAG GCC GAA GGA TTG Gly Gln Cys Asn Glu Leu Leu Glu Ala Asn Pro Lys Ala Glu Gly Leu	480	485	490	1487
CTT CAA GGT AAA CAT AGC ACC AAG GGG CTG GGC AAG ATG GCT CCC AGT				1535

Leu Gln Gly Lys His Ser Thr Lys Gly Leu Gly Lys Met Ala Pro Ser		
500	505	510
TCT GCC CAC TTC GTC ACC CTG AAT GGG AGT ACA GTG CCA TTA GGA CCA		1583
Ser Ala His Phe Val Thr Leu Asn Gly Ser Thr Val Pro Leu Gly Pro		
515	520	525
GCA AGT GAC ACA GGA ATT CTG AAT CCA GAT GGT TAT ACC CTC AAC TAC		1631
Ala Ser Asp Thr Gly Ile Leu Asn Pro Asp Gly Tyr Thr Leu Asn Tyr		
530	535	540
AAT GAA TAT ATT GTA TAT AAC CCC AAC CAG GTC CGT ATG CGG TAC CTT		1679
Asn Glu Tyr Ile Val Tyr Asn Pro Asn Gln Val Arg Met Arg Tyr Leu		
545	550	555
TTA AAG GTT CAG TTT AAT TTC CTT CAG CTG TGG TGA ATGTTGATAT		1725
Leu Lys Val Gln Phe Asn Phe Leu Gln Leu Trp *		
560	565	570
TAAATAAACCG AGAGATCTGA TCTTCAAGCA AGAAAATAAG CAGTGGTGTA CTTGTGAATT		1785
TTGTGATATT TTATGTAATA AAAACTGTAC AGGTCTAAAA AAAAAAAAAA AAAAAAAAA		1843

(2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 571 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Met Ala Ala Arg Arg Arg Ser Thr Gly Gly Gly Arg Ala Arg Ala			
1	5	10	15
Leu Asn Glu Ser Lys Arg Val Asn Asn Gly Asn Thr Ala Pro Glu Asp			
20	25	30	
Ser Ser Pro Ala Lys Lys Thr Arg Arg Cys Gln Arg Gln Glu Ser Lys			
35	40	45	
Lys Met Pro Val Ala Gly Gly Lys Ala Asn Lys Asp Arg Thr Glu Asp			
50	55	60	
Lys Gln Asp Glu Ser Val Lys Ala Leu Leu Lys Gly Lys Ala Pro			
65	70	75	80
Val Asp Pro Glu Cys Thr Ala Lys Val Gly Lys Ala His Val Tyr Cys			
85	90	95	
Glu Gly Asn Asp Val Tyr Asp Val Met Leu Asn Gln Thr Asn Leu Gln			
100	105	110	
Phe Asn Asn Asn Lys Tyr Tyr Leu Ile Gln Leu Leu Glu Asp Asp Ala			
115	120	125	
Gln Arg Asn Phe Ser Val Trp Met Arg Trp Gly Arg Val Gly Lys Met			

0050/49100/49790

130	135	140
Gly Gln His Ser Leu Val Ala Cys Ser Gly Asn Leu Asn Lys Ala Lys		
145	150	155
160		
Glu Ile Phe Gln Lys Lys Phe Leu Asp Lys Thr Lys Asn Asn Trp Glu		
165	170	175
Asp Arg Glu Lys Phe Glu Lys Val Pro Gly Lys Tyr Asp Met Leu Gln		
180	185	190
Met Asp Tyr Ala Thr Asn Thr Gln Asp Glu Glu Thr Lys Lys Glu		
195	200	205
Glu Ser Leu Lys Ser Pro Leu Lys Pro Glu Ser Gln Leu Asp Leu Arg		
210	215	220
Val Gln Glu Leu Ile Lys Leu Ile Cys Asn Val Gln Ala Met Glu Glu		
225	230	235
240		
Met Met Met Glu Met Lys Tyr Asn Thr Lys Lys Ala Pro Leu Gly Lys		
245	250	255
Leu Thr Val Ala Gln Ile Lys Ala Gly Tyr Gln Ser Leu Lys Lys Ile		
260	265	270
Glu Asp Cys Ile Arg Ala Gly Gln His Gly Arg Ala Leu Met Glu Ala		
275	280	285
Cys Asn Glu Phe Tyr Thr Arg Ile Pro His Asp Phe Gly Leu Arg Thr		
290	295	300
Pro Pro Leu Ile Arg Thr Gln Lys Glu Leu Ser Glu Lys Ile Gln Leu		
305	310	315
320		
Leu Glu Ala Leu Gly Asp Ile Glu Ile Ala Ile Lys Leu Val Lys Thr		
325	330	335
Glu Leu Gln Ser Pro Glu His Pro Leu Asp Gln His Tyr Arg Asn Leu		
340	345	350
His Cys Ala Leu Arg Pro Leu Asp His Glu Ser Tyr Glu Phe Lys Val		
355	360	365
Ile Ser Gln Tyr Leu Gln Ser Thr His Ala Pro Thr His Ser Asp Tyr		
370	375	380
Thr Met Thr Leu Leu Asp Leu Phe Glu Val Glu Lys Asp Gly Glu Lys		
385	390	395
400		
Glu Ala Phe Arg Glu Asp Leu His Asn Arg Met Leu Leu Trp His Gly		
405	410	415
Ser Arg Met Ser Asn Trp Val Gly Ile Leu Ser His Gly Leu Arg Ile		
420	425	430
Ala Pro Pro Glu Ala Pro Ile Thr Gly Tyr Met Phe Gly Lys Gly Ile		
435	440	445
Tyr Phe Ala Asp Met Ser Ser Lys Ser Ala Asn Tyr Cys Phe Ala Ser		

450	455	460
Arg Leu Lys Asn Thr Gly	Leu Leu Leu Ser	Glu Val Ala Leu Gly
465	470	475
Gln Cys Asn Glu Leu Leu Glu Ala Asn Pro	Lys Ala Glu Gly	Leu Leu
485	490	495
Gln Gly Lys His Ser Thr Lys Gly	Leu Gly Lys Met Ala Pro Ser Ser	
500	505	510
Ala His Phe Val Thr Leu Asn Gly Ser Thr Val Pro	Leu Gly Pro Ala	
515	520	525
Ser Asp Thr Gly Ile Leu Asn Pro Asp Gly Tyr	Thr Leu Asn Tyr Asn	
530	535	540
Glu Tyr Ile Val Tyr Asn Pro Asn Gln Val Arg	Met Arg Tyr Leu Leu	
545	550	555
Lys Val Gln Phe Asn Phe Leu Gln Leu Trp	*	
565	570	

(2) INFORMATION FOR SEQ ID NO: 3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2265 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI SENSE: NO

(vi) ORIGINAL SOURCE:

- (F) TISSUE TYPE: Uterus

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 242..1843
- (D) OTHER INFORMATION:/product= "Poly ADP Ribose Polymerase"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

TGGGACTGGT CGCCTGACTC GGCCTGCCCC AGCCTCTGCT TCACCCCCACT	GGTGGCCAAA	60
TAGCCGATGT CTAATCCCCC ACACAAGCTC ATCCCCGGCC TCTGGGATTG	TTGGGAATTC	120
TCTCCCTAAT TCACGCCTGA GGCTCATGGA GAGTTGCTAG ACCTGGGACT	GCCCTGGGAG	180
GCGCACACAA CCAGGCCGGG TGGCAGCCAG GACCTCTCCC ATGTCCCTGC	TTTTCTTGGC	240
C ATG GCT CCA AAG CCG AAG CCC TGG GTA CAG ACT GAG GGC CCT GAG		286
Met Ala Pro Lys Pro Trp Val Gln Thr Glu Gly Pro Glu		

0050/49100/49790

575	580	585	
AAG AAG AAG GGC CGG CAG GCA GGA AGG GAG GAG GAC CCC TTC CGC TCC Lys Lys Lys Gly Arg Gln Ala Gly Arg Glu Glu Asp Pro Phe Arg Ser 590	595	600	334
ACC GCT GAG GCC CTC AAG GCC ATA CCC GCA GAG AAG CGC ATA ATC CGC Thr Ala Glu Ala Leu Lys Ala Ile Pro Ala Glu Lys Arg Ile Ile Arg 605	610	615	382
GTG GAT CCA ACA TGT CCA CTC AGC AGC AAC CCC GGG ACC CAG GTG TAT Val Asp Pro Thr Cys Pro Leu Ser Ser Asn Pro Gly Thr Gln Val Tyr 620	625	630	430
GAG GAC TAC AAC TGC ACC CTG AAC CAG ACC AAC ATC GAG AAC AAC AAC Glu Asp Tyr Asn Cys Thr Leu Asn Gln Thr Asn Ile Glu Asn Asn Asn 635	640	645	478
AAC AAG TTC TAC ATC ATC CAG CTG CTC CAA GAC AGC AAC CGC TTC TTC Asn Lys Phe Tyr Ile Ile Gln Leu Leu Gln Asp Ser Asn Arg Phe Phe 655	660	665	526
ACC TGC TGG AAC CGC TGG GGC CGT GTG GGA GAG GTC GGC CAG TCA AAG Thr Cys Trp Asn Arg Trp Gly Arg Val Gly Glu Val Gly Gln Ser Lys 670	675	680	574
ATC AAC CAC TTC ACA AGG CTA GAA GAT GCA AAG AAG GAC TTT GAG AAG Ile Asn His Phe Thr Arg Leu Glu Asp Ala Lys Lys Asp Phe Glu Lys 685	690	695	622
AAA TTT CGG GAA AAG ACC AAG AAC AAC TGG GCA GAG CGG GAC CAC TTT Lys Phe Arg Glu Lys Thr Lys Asn Asn Trp Ala Glu Arg Asp His Phe 700	705	710	670
GTG TCT CAC CCG GGC AAG TAC ACA CTT ATC GAA GTC CAG GCA GAG GAT Val Ser His Pro Gly Lys Tyr Thr Leu Ile Glu Val Gln Ala Glu Asp 715	720	725	718
GAG GCC CAG GAA GCT GTG GTG AAG GTG GAC AGA GGC CCA GTG AGG ACT Glu Ala Gln Glu Ala Val Val Lys Val Asp Arg Gly Pro Val Arg Thr 735	740	745	766
GTG ACT AAG CGG GTG CAG CCC TGC TCC CTG GAC CCA GCC ACG CAG AAG Val Thr Lys Arg Val Gln Pro Cys Ser Leu Asp Pro Ala Thr Gln Lys 750	755	760	814
CTC ATC ACT AAC ATC TTC AGC AAG GAG ATG TTC AAG AAC ACC ATG GCC Leu Ile Thr Asn Ile Phe Ser Lys Glu Met Phe Lys Asn Thr Met Ala 765	770	775	862
CTC ATG GAC CTG GAT GTG AAG AAG ATG CCC CTG GGA AAG CTG AGC AAG Leu Met Asp Leu Asp Val Lys Lys Met Pro Leu Gly Lys Leu Ser Lys 780	785	790	910
CAA CAG ATT GCA CGG GGT TTC GAG GCC TTG GAG GCG CTG GAG GAG GCC Gln Gln Ile Ala Arg Gly Phe Glu Ala Leu Glu Ala Leu Glu Ala 795	800	805	958
CTG AAA GGC CCC ACG GAT GGT GGC CAA AGC CTG GAG GAG CTG TCC TCA			1006

.....

Leu Lys Gly Pro Thr Asp Gly Gly Gln Ser Leu Glu Glu Leu Ser Ser		
815	820	825
CAC TTT TAC ACC GTC ATC CCG CAC AAC TTC GGC CAC AGC CAG CCC CCG		1054
His Phe Tyr Thr Val Ile Pro His Asn Phe Gly His Ser Gln Pro Pro		
830	835	840
CCC ATC AAT TCC CCT GAG CTT CTG CAG GCC AAG AAG GAC ATG CTG CTG		1102
Pro Ile Asn Ser Pro Glu Leu Leu Gln Ala Lys Lys Asp Met Leu Leu		
845	850	855
GTG CTG GCG GAC ATC GAG CTG GCC CAG GCC CTG CAG GCA GTC TCT GAG		1150
Val Leu Ala Asp Ile Glu Leu Ala Gln Ala Leu Gln Ala Val Ser Glu		
860	865	870
CAG GAG AAG ACG GTG GAG GAG GTG CCA CAC CCC CTG GAC CGA GAC TAC		1198
Gln Glu Lys Thr Val Glu Glu Val Pro His Pro Leu Asp Arg Asp Tyr		
875	880	885
890		
CAG CTT CTC AAG TGC CAG CTG CAG CTG CTA GAC TCT GGA GCA CCT GAG		1246
Gln Leu Leu Lys Cys Gln Leu Gln Leu Leu Asp Ser Gly Ala Pro Glu		
895	900	905
TAC AAG GTG ATA CAG ACC TAC TTA GAA CAG ACT GGC AGC AAC CAC AGG		1294
Tyr Lys Val Ile Gln Thr Tyr Leu Glu Gln Thr Gly Ser Asn His Arg		
910	915	920
TGC CCT ACA CTT CAA CAC ATC TGG AAA GTA AAC CAA GAA GGG GAG GAA		1342
Cys Pro Thr Leu Gln His Ile Trp Lys Val Asn Gln Glu Gly Glu Glu		
925	930	935
GAC AGA TTC CAG GCC CAC TCC AAA CTG GGT AAT CGG AAG CTG CTG TGG		1390
Asp Arg Phe Gln Ala His Ser Lys Leu Gly Asn Arg Lys Leu Leu Trp		
940	945	950
CAT GGC ACC AAC ATG GCC GTG GTG GCC GCC ATC CTC ACT AGT GGG CTC		1438
His Gly Thr Asn Met Ala Val Val Ala Ala Ile Leu Thr Ser Gly Leu		
955	960	965
970		
CGC ATC ATG CCA CAT TCT GGT GGG CGT GTT GGC AAG GGC ATC TAC TTT		1486
Arg Ile Met Pro His Ser Gly Gly Arg Val Gly Lys Gly Ile Tyr Phe		
975	980	985
GCC TCA GAG AAC AGC AAG TCA GCT GGA TAT GTT ATT GGC ATG AAG TGT		1534
Ala Ser Glu Asn Ser Lys Ser Ala Gly Tyr Val Ile Gly Met Lys Cys		
990	995	1000
GGG GCC CAC CAT GTC GGC TAC ATG TTC CTG GGT GAG GTG GCC CTG GGC		1582
Gly Ala His His Val Gly Tyr Met Phe Leu Gly Glu Val Ala Leu Gly		
1005	1010	1015
AGA GAG CAC CAT ATC AAC ACG GAC AAC CCC AGC TTG AAG AGC CCA CCT		1630
Arg Glu His His Ile Asn Thr Asp Asn Pro Ser Leu Lys Ser Pro Pro		
1020	1025	1030
CCT GGC TTC GAC AGT GTC ATT GCC CGA GGC CAC ACC GAG CCT GAT CCG		1678
Pro Gly Phe Asp Ser Val Ile Ala Arg Gly His Thr Glu Pro Asp Pro		
1035	1040	1045
		1050

ACC CAG GAC ACT GAG TTG GAG CTG GAT GGC CAG CAA GTG GTG GTG CCC Thr Gln Asp Thr Glu Leu Glu Leu Asp Gly Gln Gln Val Val Val Pro 1055 1060 1065	1726
CAG GGC CAG CCT GTG CCC TGC CCA GAG TTC AGC AGC TCC ACA TTC TCC Gln Gly Gln Pro Val Pro Cys Pro Glu Phe Ser Ser Ser Thr Phe Ser 1070 1075 1080	1774
CAG AGC GAG TAC CTC ATC TAC CAG GAG AGC CAG TGT CGC CTG CGC TAC Gln Ser Glu Tyr Leu Ile Tyr Gln Glu Ser Gln Cys Arg Leu Arg Tyr 1085 1090 1095	1822
CTG CTG GAG GTC CAC CTC TGA GTGCCCGCCC TGTCACCGG GGTCTGCAA Leu Leu Glu Val His Leu * 1100 1105	1873
GGCTGGACTG TGATCTTCAA TCATCCTGCC CATCTCTGGT ACCCCTATAT CACTCCTTT TTTCAAGAAT ACAATACGTT GTTGTAACT ATAGTCACCA TGCTGTACAA GATCCCTGAA CTTATGCCCTC CTAACGTAAA TTTGTATTG TTTGACACAT CTGCCAGTC CCTCTCCCTCC CAGCCCCATGG TAACCAGCAT TTGACTCTTT ACTTGTATAA GGGCAGCTTT TATAGGTTCC ACATGTAAGT GAGATCATGC AGTGTGGTC TTTCTGTGCC TGGCTTATTT CACTCAGCAT AATGTGCACC GGGTTCACCC ATGTTTCAT AAATGACAAG ATTCCTCCT TTAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AA	1933 1993 2053 2113 2173 2233 2265

(2) INFORMATION FOR SEQ ID NO: 4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 534 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Met Ala Pro Lys Pro Lys Pro Trp Val Gln Thr Glu Gly Pro Glu Lys 1 5 10 15	
Lys Lys Gly Arg Gln Ala Gly Arg Glu Glu Asp Pro Phe Arg Ser Thr 20 25 30	
Ala Glu Ala Leu Lys Ala Ile Pro Ala Glu Lys Arg Ile Ile Arg Val 35 40 45	
Asp Pro Thr Cys Pro Leu Ser Ser Asn Pro Gly Thr Gln Val Tyr Glu 50 55 60	
Asp Tyr Asn Cys Thr Leu Asn Gln Thr Asn Ile Glu Asn Asn Asn 65 70 75 80	
Lys Phe Tyr Ile Ile Gln Leu Leu Gln Asp Ser Asn Arg Phe Phe Thr 85 90 95	
Cys Trp Asn Arg Trp Gly Arg Val Gly Glu Val Gly Gln Ser Lys Ile	

100	105	110
Asn His Phe Thr Arg Leu Glu Asp Ala Lys Lys Asp Phe Glu Lys Lys		
115	120	125
Phe Arg Glu Lys Thr Lys Asn Asn Trp Ala Glu Arg Asp His Phe Val		
130	135	140
Ser His Pro Gly Lys Tyr Thr Leu Ile Glu Val Gln Ala Glu Asp Glu		
145	150	155
Ala Gln Glu Ala Val Val Lys Val Asp Arg Gly Pro Val Arg Thr Val		
165	170	175
Thr Lys Arg Val Gln Pro Cys Ser Leu Asp Pro Ala Thr Gln Lys Leu		
180	185	190
Ile Thr Asn Ile Phe Ser Lys Glu Met Phe Lys Asn Thr Met Ala Leu		
195	200	205
Met Asp Leu Asp Val Lys Lys Met Pro Leu Gly Lys Leu Ser Lys Gln		
210	215	220
Gln Ile Ala Arg Gly Phe Glu Ala Leu Glu Ala Leu Glu Glu Ala Leu		
225	230	235
Lys Gly Pro Thr Asp Gly Gly Gln Ser Leu Glu Glu Leu Ser Ser His		
245	250	255
Phe Tyr Thr Val Ile Pro His Asn Phe Gly His Ser Gln Pro Pro Pro		
260	265	270
Ile Asn Ser Pro Glu Leu Leu Gln Ala Lys Lys Asp Met Leu Leu Val		
275	280	285
Leu Ala Asp Ile Glu Leu Ala Gln Ala Leu Gln Ala Val Ser Glu Gln		
290	295	300
Glu Lys Thr Val Glu Glu Val Pro His Pro Leu Asp Arg Asp Tyr Gln		
305	310	315
320		
Leu Leu Lys Cys Gln Leu Gln Leu Asp Ser Gly Ala Pro Glu Tyr		
325	330	335
Lys Val Ile Gln Thr Tyr Leu Glu Gln Thr Gly Ser Asn His Arg Cys		
340	345	350
Pro Thr Leu Gln His Ile Trp Lys Val Asn Gln Glu Gly Glu Glu Asp		
355	360	365
Arg Phe Gln Ala His Ser Lys Leu Gly Asn Arg Lys Leu Leu Trp His		
370	375	380
Gly Thr Asn Met Ala Val Val Ala Ala Ile Leu Thr Ser Gly Leu Arg		
385	390	395
400		
Ile Met Pro His Ser Gly Gly Arg Val Gly Lys Gly Ile Tyr Phe Ala		
405	410	415
Ser Glu Asn Ser Lys Ser Ala Gly Tyr Val Ile Gly Met Lys Cys Gly		

420	425	430
Ala His His Val Gly Tyr Met Phe Leu Gly Glu Val Ala Leu Gly Arg		
435	440	445
Glu His His Ile Asn Thr Asp Asn Pro Ser Leu Lys Ser Pro Pro Pro		
450	455	460
Gly Phe Asp Ser Val Ile Ala Arg Gly His Thr Glu Pro Asp Pro Thr		
465	470	475
Gln Asp Thr Glu Leu Glu Leu Asp Gly Gln Gln Val Val Val Pro Gln		
485	490	495
Gly Gln Pro Val Pro Cys Pro Glu Phe Ser Ser Ser Thr Phe Ser Gln		
500	505	510
Ser Glu Tyr Leu Ile Tyr Gln Glu Ser Gln Cys Arg Leu Arg Tyr Leu		
515	520	525
Leu Glu Val His Leu *		
530		

(2) INFORMATION FOR SEQ ID NO: 5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2265 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (F) TISSUE TYPE: Uterus
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 221..1843
 - (D) OTHER INFORMATION:/product= "Poly ADP Ribose Polymerase"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

TGGGACTGGT CGCCTGACTC GGCCTGCCCC AGCCTCTGCT TCACCCCCACT GGTGGCCAAA	60
TAGCCGATGT CTAATCCCCC ACACAAGCTC ATCCCCGGCC TCTGGGATTG TTGGGAATTTC	120
TCTCCCTAAC TCACGCCTGA GGCTCATGGA GAGTTGCTAG ACCTGGGACT GCCCTGGGAG	180
GCGCACACAA CCAGGCCGGG TGGCAGCCAG GACCTCTCCC ATG TCC CTG CTT TTC Met Ser Leu Leu Phe	235 535
TTG GCC ATG GCT CCA AAG CCG AAG CCC TGG GTA CAG ACT GAG GGC CCT	283

Leu Ala Met Ala Pro Lys Pro Lys Pro Trp Val Gln Thr Glu Gly Pro			
540	545	550	555
GAG AAG AAG AAG GGC CGG CAG GCA GGA AGG GAG GAG GAC CCC TTC CGC			331
Glu Lys Lys Lys Gly Arg Gln Ala Gly Arg Glu Glu Asp Pro Phe Arg			
560	565	570	
TCC ACC GCT GAG GCC CTC AAG GCC ATA CCC GCA GAG AAG CGC ATA ATC			379
Ser Thr Ala Glu Ala Leu Lys Ala Ile Pro Ala Glu Lys Arg Ile Ile			
575	580	585	
CGC GTG GAT CCA ACA TGT CCA CTC AGC AGC AAC CCC GGG ACC CAG GTG			427
Arg Val Asp Pro Thr Cys Pro Leu Ser Ser Asn Pro Gly Thr Gln Val			
590	595	600	
TAT GAG GAC TAC AAC TGC ACC CTG AAC CAG ACC AAC ATC GAG AAC AAC			475
Tyr Glu Asp Tyr Asn Cys Thr Leu Asn Gln Thr Asn Ile Glu Asn Asn			
605	610	615	
AAC AAC AAG TTC TAC ATC ATC CAG CTG CTC CAA GAC AGC AAC CGC TTC			523
Asn Asn Lys Phe Tyr Ile Ile Gln Leu Leu Gln Asp Ser Asn Arg Phe			
620	625	630	635
TTC ACC TGC TGG AAC CGC TGG GGC CGT GTG GGA GAG GTC GGC CAG TCA			571
Phe Thr Cys Trp Asn Arg Trp Gly Arg Val Gly Glu Val Gly Gln Ser			
640	645	650	
AAG ATC AAC CAC TTC ACA AGG CTA GAA GAT GCA AAG AAG GAC TTT GAG			619
Lys Ile Asn His Phe Thr Arg Leu Glu Asp Ala Lys Lys Asp Phe Glu			
655	660	665	
AAG AAA TTT CGG GAA AAG ACC AAG AAC AAC TGG GCA GAG CGG GAC CAC			667
Lys Lys Phe Arg Glu Lys Thr Lys Asn Asn Trp Ala Glu Arg Asp His			
670	675	680	
TTT GTG TCT CAC CCG GGC AAG TAC ACA CTT ATC GAA GTA CAG GCA GAG			715
Phe Val Ser His Pro Gly Lys Tyr Thr Leu Ile Glu Val Gln Ala Glu			
685	690	695	
GAT GAG GCC CAG GAA GCT GTG GTG AAG GTG GAC AGA GGC CCA GTG AGG			763
Asp Glu Ala Gln Glu Ala Val Val Lys Val Asp Arg Gly Pro Val Arg			
700	705	710	715
ACT GTG ACT AAG CGG GTG CAG CCC TGC TCC CTG GAC CCA GCC ACG CAG			811
Thr Val Thr Lys Arg Val Gln Pro Cys Ser Leu Asp Pro Ala Thr Gln			
720	725	730	
AAG CTC ATC ACT AAC ATC TTC AGC AAG GAG ATG TTC AAG AAC ACC ATG			859
Lys Leu Ile Thr Asn Ile Phe Ser Lys Glu Met Phe Lys Asn Thr Met			
735	740	745	
GCC CTC ATG GAC CTG GAT GTG AAG AAG ATG CCC CTG GGA AAG CTG AGC			907
Ala Leu Met Asp Leu Asp Val Lys Lys Met Pro Leu Gly Lys Leu Ser			
750	755	760	
AAG CAA CAG ATT GCA CGG GGT TTC GAG GCC TTG GAG GCG CTG GAG GAG			955
Lys Gln Ile Ala Arg Gly Phe Glu Ala Leu Glu Ala Leu Glu Glu			
765	770	775	

GCC CTG AAA GGC CCC ACG GAT GGT GGC CAA AGC CTG GAG GAG CTG TCC Ala Leu Lys Gly Pro Thr Asp Gly Gly Gln Ser Leu Glu Glu Leu Ser 780 785 790 795	1003
TCA CAC TTT TAC ACC GTC ATC CCG CAC AAC TTC GGC CAC AGC CAG CCC Ser His Phe Tyr Thr Val Ile Pro His Asn Phe Gly His Ser Gln Pro 800 805 810	1051
CCG CCC ATC AAT TCC CCT GAG CTT CTG CAG GCC AAG AAG GAC ATG CTG Pro Pro Ile Asn Ser Pro Glu Leu Leu Gln Ala Lys Lys Asp Met Leu 815 820 825	1099
CTG GTG CTG GCG GAC ATC GAG CTG GCC CAG GCC CTG CAG GCA GTC TCT Leu Val Leu Ala Asp Ile Glu Leu Ala Gln Ala Leu Gln Ala Val Ser 830 835 840	1147
GAG CAG GAG AAG ACG GTG GAG GAG GTG CCA CAC CCC CTG GAC CGA GAC Glu Gln Glu Lys Thr Val Glu Glu Val Pro His Pro Leu Asp Arg Asp 845 850 855	1195
TAC CAG CTT CTC AAG TGC CAG CTG CAG CTG CTA GAC TCT GGA GCA CCT Tyr Gln Leu Leu Lys Cys Gln Leu Gln Leu Asp Ser Gly Ala Pro 860 865 870 875	1243
GAG TAC AAG GTG ATA CAG ACC TAC TTA GAA CAG ACT GGC AGC AAC CAC Glu Tyr Lys Val Ile Gln Thr Tyr Leu Glu Gln Thr Gly Ser Asn His 880 885 890	1291
AGG TGC CCT ACA CTT CAA CAC ATC TGG AAA GTA AAC CAA GAA GGG GAG Arg Cys Pro Thr Leu Gln His Ile Trp Lys Val Asn Gln Glu Gly Glu 895 900 905	1339
GAA GAC AGA TTC CAG GCC CAC TCC AAA CTG GGT AAT CGG AAG CTG CTG Glu Asp Arg Phe Gln Ala His Ser Lys Leu Gly Asn Arg Lys Leu Leu 910 915 920	1387
TGG CAT GGC ACC AAC ATG GCC GTG GTG GCC GCC ATC CTC ACT AGT GGG Trp His Gly Thr Asn Met Ala Val Val Ala Ala Ile Leu Thr Ser Gly 925 930 935	1435
CTC CGC ATC ATG CCA CAT TCT GGT GGG CGT GTT GGC AAG GGC ATC TAC Leu Arg Ile Met Pro His Ser Gly Gly Arg Val Gly Lys Gly Ile Tyr 940 945 950 955	1483
TTT GCC TCA GAG AAC AGC AAG TCA GCT GGA TAT GTT ATT GGC ATG AAG Phe Ala Ser Glu Asn Ser Lys Ser Ala Gly Tyr Val Ile Gly Met Lys 960 965 970	1531
TGT GGG GCC CAC CAT GTC GGC TAC ATG TTC CTG GGT GAG GTG GCC CTG Cys Gly Ala His His Val Gly Tyr Met Phe Leu Gly Glu Val Ala Leu 975 980 985	1579
GGC AGA GAG CAC CAT ATC AAC ACG GAC AAC CCC AGC TTG AAG AGC CCA Gly Arg Glu His His Ile Asn Thr Asp Asn Pro Ser Leu Lys Ser Pro 990 995 1000	1627
CCT CCT GGC TTC GAC AGT GTC ATT GCC CGA GGC CAC ACC GAG CCT GAT Pro Pro Gly Phe Asp Ser Val Ile Ala Arg Gly His Thr Glu Pro Asp	1675

1005	1010	1015	
CCG ACC CAG GAC ACT GAG TTG GAG CTG GAT GGC CAG CAA GTG GTG GTG Pro Thr Gln Asp Thr Glu Leu Glu Leu Asp Gly Gln Gln Val Val Val			1723
1020	1025	1030	1035
CCC CAG GGC CAG CCT GTG CCC TGC CCA GAG TTC AGC AGC TCC ACA TTC Pro Gln Gly Gln Pro Val Pro Cys Pro Glu Phe Ser Ser Thr Phe			1771
1040		1045	1050
TCC CAG AGC GAG TAC CTC ATC TAC CAG GAG AGC CAG TGT CGC CTG CGC Ser Gln Ser Glu Tyr Leu Ile Tyr Gln Glu Ser Gln Cys Arg Leu Arg			1819
1055	1060		1065
TAC CTG CTG GAG GTC CAC CTC TGA GTGCCCGCCC TGTCCCCGG GGTCTGCAA Tyr Leu Leu Glu Val His Leu *			1873
1070	1075		
GGCTGGACTG TGATCTTCAA TCATCCTGCC CATCTCTGGT ACCCCTATAT CACTCCTTT TTTCAAGAAT ACAATACGTT GTTGTAACT ATAGTCACCA TGCTGTACAA GATCCCTGAA			1933
CTTATGCCCTC CTAAC TGAAA TTTGTATTG TTTGACACAT CTGCCAGTC CCTCTCCTCC CAGCCCATTGG TAACCAGCAT TTGACTCTTT ACTTGATATAA GGGCAGCTTT TATAGGTTCC			1993
ACATGTAAGT GAGATCATGC AGTGTGGTC TTTCTGTGCC TGGCTTATTT CACTCAGCAT AATGTGCACC GGGTTCACCC ATGTTTCAT AAATGACAAG ATTCCTCCT TTAAAAAAA			2053
AAAAAAAAAA AAAAAAAA AAAAAAAA AA			2113
			2173
			2233
			2265

(2) INFORMATION FOR SEQ ID NO: 6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 541 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Met	Ser	Leu	Leu	Phe	Leu	Ala	Met	Ala	Pro	Lys	Pro	Lys	Pro	Trp	Val
1							5			10				15	
Gln	Thr	Glu	Gly	Pro	Glu	Lys	Lys	Lys	Gly	Arg	Gln	Ala	Gly	Arg	Glu
								20					25		30
Glu	Asp	Pro	Phe	Arg	Ser	Thr	Ala	Glu	Ala	Leu	Lys	Ala	Ile	Pro	Ala
							35			40			45		
Glu	Lys	Arg	Ile	Ile	Arg	Val	Asp	Pro	Thr	Cys	Pro	Leu	Ser	Ser	Asn
							50			55			60		
Pro	Gly	Thr	Gln	Val	Tyr	Glu	Asp	Tyr	Asn	Cys	Thr	Leu	Asn	Gln	Thr
							65			70			75		80
Asn	Ile	Glu	Asn	Asn	Asn	Lys	Phe	Tyr	Ile	Ile	Gln	Leu	Leu	Gln	

85	90	95
Asp Ser Asn Arg Phe Phe Thr Cys Trp Asn Arg Trp Gly Arg Val Gly		
100	105	110
Glu Val Gly Gln Ser Lys Ile Asn His Phe Thr Arg Leu Glu Asp Ala		
115	120	125
Lys Lys Asp Phe Glu Lys Lys Phe Arg Glu Lys Thr Lys Asn Asn Trp		
130	135	140
Ala Glu Arg Asp His Phe Val Ser His Pro Gly Lys Tyr Thr Leu Ile		
145	150	155
Glu Val Gln Ala Glu Asp Glu Ala Gln Glu Ala Val Val Lys Val Asp		
165	170	175
Arg Gly Pro Val Arg Thr Val Thr Lys Arg Val Gln Pro Cys Ser Leu		
180	185	190
Asp Pro Ala Thr Gln Lys Leu Ile Thr Asn Ile Phe Ser Lys Glu Met		
195	200	205
Phe Lys Asn Thr Met Ala Leu Met Asp Leu Asp Val Lys Lys Met Pro		
210	215	220
Leu Gly Lys Leu Ser Lys Gln Gln Ile Ala Arg Gly Phe Glu Ala Leu		
225	230	235
Glu Ala Leu Glu Glu Ala Leu Lys Gly Pro Thr Asp Gly Gly Gln Ser		
245	250	255
Leu Glu Glu Leu Ser Ser His Phe Tyr Thr Val Ile Pro His Asn Phe		
260	265	270
Gly His Ser Gln Pro Pro Pro Ile Asn Ser Pro Glu Leu Leu Gln Ala		
275	280	285
Lys Lys Asp Met Leu Leu Val Leu Ala Asp Ile Glu Leu Ala Gln Ala		
290	295	300
Leu Gln Ala Val Ser Glu Gln Glu Lys Thr Val Glu Glu Val Pro His		
305	310	315
Pro Leu Asp Arg Asp Tyr Gln Leu Leu Lys Cys Gln Leu Gln Leu Leu		
325	330	335
Asp Ser Gly Ala Pro Glu Tyr Lys Val Ile Gln Thr Tyr Leu Glu Gln		
340	345	350
Thr Gly Ser Asn His Arg Cys Pro Thr Leu Gln His Ile Trp Lys Val		
355	360	365
Asn Gln Glu Gly Glu Glu Asp Arg Phe Gln Ala His Ser Lys Leu Gly		
370	375	380
Asn Arg Lys Leu Leu Trp His Gly Thr Asn Met Ala Val Val Ala Ala		
385	390	395
Ile Leu Thr Ser Gly Leu Arg Ile Met Pro His Ser Gly Gly Arg Val		

405	410	415	
Gly Lys Gly Ile Tyr Phe Ala Ser Glu Asn Ser Lys Ser Ala Gly Tyr			
420	425	430	
Val Ile Gly Met Lys Cys Gly Ala His His Val Gly Tyr Met Phe Leu			
435	440	445	
Gly Glu Val Ala Leu Gly Arg Glu His His Ile Asn Thr Asp Asn Pro			
450	455	460	
Ser Leu Lys Ser Pro Pro Pro Gly Phe Asp Ser Val Ile Ala Arg Gly			
465	470	475	480
His Thr Glu Pro Asp Pro Thr Gln Asp Thr Glu Leu Glu Leu Asp Gly			
485	490	495	
Gln Gln Val Val Val Pro Gln Gly Gln Pro Val Pro Cys Pro Glu Phe			
500	505	510	
Ser Ser Ser Thr Phe Ser Gln Ser Glu Tyr Leu Ile Tyr Gln Glu Ser			
515	520	525	
Gln Cys Arg Leu Arg Tyr Leu Leu Glu Val His Leu *			
530	535	540	

(2) INFORMATION FOR SEQ ID NO: 7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1740 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI SENSE: NO

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: *Mus musculus*

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 112..1710

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

CCCGGGCTTTC ACTTTTCTG CTGCCTCGGG GAACACCTCG AGCCAAGTGC TTCCTAACTC	60	
AGGGTGGGCA GAACTGACGG GATCTAAGCT TCTGCATCTC TGAGGAGAAC C ATG GCT	117	
Met Ala		
CCA AAA CGA AAG GCC TCT GTG CAG ACT GAG GGC TCC AAG AAG CAG CGA	165	
Pro Lys Arg Lys Ala Ser Val Gln Thr Glu Gly Ser Lys Lys Gln Arg		
545	550	555

CAA GGG ACA GAG GAG GAG GAC AGC TTC CGG TCC ACT GCC GAG GCT CTC Gln Gly Thr Glu Glu Asp Ser Phe Arg Ser Thr Ala Glu Ala Leu 560 565 570 575	213
AGA GCA GCA CCT GCT GAT AAT CGG GTC ATC CGT GTG GAC CCC TCA TGT Arg Ala Ala Pro Ala Asp Asn Arg Val Ile Arg Val Asp Pro Ser Cys 580 585 590	261
CCA TTC AGC CGG AAC CCC GGG ATA CAG GTC CAC GAG GAC TAT GAC TGT Pro Phe Ser Arg Asn Pro Gly Ile Gln Val His Glu Asp Tyr Asp Cys 595 600 605	309
ACC CTG AAC CAG ACC AAC ATC GGC AAC AAC AAC AAC AAG TTC TAT ATT Thr Leu Asn Gln Thr Asn Ile Gly Asn Asn Asn Lys Phe Tyr Ile 610 615 620	357
ATC CAA CTG CTG GAG GGT AGT CGC TTC TTC TGC TGG AAT CGC TGG Ile Gln Leu Leu Glu Glu Gly Ser Arg Phe Phe Cys Trp Asn Arg Trp 625 630 635	405
GGC CGC GTG GGA GAG GTG GGC CAG AGC AAG ATG AAC CAC TTC ACC TGC Gly Arg Val Gly Glu Val Gly Gln Ser Lys Met Asn His Phe Thr Cys 640 645 650 655	453
CTG GAA GAT GCA AAG AAG GAC TTT AAG AAG AAA TTT TGG GAG AAG ACT Leu Glu Asp Ala Lys Lys Asp Phe Lys Lys Phe Trp Glu Lys Thr 660 665 670	501
AAA AAC AAA TGG GAG GAG CGG GAC CGT TTT GTG GCC CAG CCC AAC AAG Lys Asn Lys Trp Glu Glu Arg Asp Arg Phe Val Ala Gln Pro Asn Lys 675 680 685	549
TAC ACA CTT ATA GAA GTC CAG GGA GAA GCA GAG AGC CAA GAG GCT GTA Tyr Thr Leu Ile Glu Val Gln Gly Glu Ala Glu Ser Gln Glu Ala Val 690 695 700	597
GTG AAG GCC TTA TCT CCC CAG GTG GAC AGC GGC CCT GTG AGG ACC GTG Val Lys Ala Leu Ser Pro Gln Val Asp Ser Gly Pro Val Arg Thr Val 705 710 715	645
GTC AAG CCC TGC TCC CTA GAC CCT GCC ACC CAG AAC CTT ATC ACC AAC Val Lys Pro Cys Ser Leu Asp Pro Ala Thr Gln Asn Leu Ile Thr Asn 720 725 730 735	693
ATC TTC AGC AAA GAG ATG TTC AAG AAC GCA ATG ACC CTC ATG AAC CTG Ile Phe Ser Lys Glu Met Phe Lys Asn Ala Met Thr Leu Met Asn Leu 740 745 750	741
GAT GTG AAG AAG ATG CCC TTG GGA AAG CTG ACC AAG CAG CAG ATT GCC Asp Val Lys Lys Met Pro Leu Gly Lys Leu Thr Lys Gln Gln Ile Ala 755 760 765	789
CGT GGC TTC GAG GCC TTG GAA GCT CTA GAG GAG GCC ATG AAA AAC CCC Arg Gly Phe Glu Ala Leu Glu Ala Leu Glu Glu Ala Met Lys Asn Pro 770 775 780	837
ACA GGG GAT GGC CAG AGC CTG GAA GAG CTC TCC TCC TGC TTC TAC ACT Thr Gly Asp Gly Gln Ser Leu Glu Leu Ser Ser Cys Phe Tyr Thr	885

0050/49100/49790

785	790	795	
GTC ATC CCA CAC AAC TTC GGC CGC AGC CGA CCC CCG CCC ATC AAC TCC Val Ile Pro His Asn Phe Gly Arg Ser Arg Pro Pro Pro Ile Asn Ser 800	805	810	933
CCT GAT GTG CTT CAG GCC AAG AAG GAC ATG CTG CTG GTG CTA GCG GAC Pro Asp Val Leu Gln Ala Lys Lys Asp Met Leu Leu Val Leu Ala Asp 820	825	830	981
ATC GAG TTG GCG CAG ACC TTG CAG GCA GCC CCT GGG GAG GAG GAG GAG Ile Glu Leu Ala Gln Thr Leu Gln Ala Ala Pro Gly Glu Glu Glu 835	840	845	1029
AAA GTG GAA GAG GTG CCA CAC CCA CTG GAT CGA GAC TAC CAG CTC CTC Lys Val Glu Glu Val Pro His Pro Leu Asp Arg Asp Tyr Gln Leu Leu 850	855	860	1077
AGG TGC CAG CTT CAA CTG CTG GAC TCC GGG GAG TCC GAG TAC AAG GCA Arg Cys Gln Leu Gln Leu Leu Asp Ser Gly Glu Ser Glu Tyr Lys Ala 865	870	875	1125
ATA CAG ACC TAC CTG AAA CAG ACT GGC AAC AGC TAC AGG TGC CCA AAC Ile Gln Thr Tyr Leu Lys Gln Thr Gly Asn Ser Tyr Arg Cys Pro Asn 880	885	890	1173
CTG CGG CAT GTT TGG AAA GTG AAC CGA GAA GGG GAG GGA GAC AGG TTC Leu Arg His Val Trp Lys Val Asn Arg Glu Gly Glu Gly Asp Arg Phe 900	905	910	1221
CAG GCC CAC TCC AAA CTG GGC AAT CGG AGG CTG CTG TGG CAC GGC ACC Gln Ala His Ser Lys Leu Gly Asn Arg Arg Leu Leu Trp His Gly Thr 915	920	925	1269
AAT GTG GCC GTG GTG GCT GCC ATC CTC ACC AGT GGG CTC CGA ATC ATG Asn Val Ala Val Ala Ala Ile Leu Thr Ser Gly Leu Arg Ile Met 930	935	940	1317
CCA CAC TCG GGT GGT CGT GTT GGC AAG GGT ATT TAT TTT GCC TCT GAG Pro His Ser Gly Gly Arg Val Gly Lys Gly Ile Tyr Phe Ala Ser Glu 945	950	955	1365
AAC AGC AAG TCA GCT GGC TAT GTT ACC ACC ATG CAC TGT GGG GGC CAC Asn Ser Lys Ser Ala Gly Tyr Val Thr Thr Met His Cys Gly Gly His 960	965	970	1413
CAG GTG GGC TAC ATG TTC CTG GGC GAG GTG GCC CTC GGC AAA GAG CAC Gln Val Gly Tyr Met Phe Leu Gly Glu Val Ala Leu Gly Lys Glu His 980	985	990	1461
CAC ATC ACC ATC GAT GAC CCC AGC TTG AAG AGT CCA CCC CCT GGC TTT His Ile Thr Ile Asp Asp Pro Ser Leu Lys Ser Pro Pro Pro Gly Phe 995	1000	1005	1509
GAC AGC GTC ATC GCC CGA GGC CAA ACC GAG CCG GAT CCC GCC CAG GAC Asp Ser Val Ile Ala Arg Gly Gln Thr Glu Pro Asp Pro Ala Gln Asp 1010	1015	1020	1557
ATT GAA CTT GAA CTG GAT GGG CAG CCG GTG GTG CCC CAA GGC CCG			1605

Ile Glu Leu Glu Leu Asp Gly Gln Pro Val Val Val Pro Gln Gly Pro			
1025	1030	1035	
CCT GTG CAG TGC CCG TCA TTC AAA AGC TCC AGC TTC AGC CAG AGT GAA			1653
Pro Val Gln Cys Pro Ser Phe Lys Ser Ser Phe Ser Gln Ser Glu			
1040	1045	1050	1055
TAC CTC ATA TAC AAG GAG AGC CAG TGT CGC CTG CGC TAC CTG CTG GAG			1701
Tyr Leu Ile Tyr Lys Glu Ser Gln Cys Arg Leu Arg Tyr Leu Leu Glu			
1060	1065	1070	
ATT CAC CTC TAAGCTGCTT GCCCTCCCTA GGTCCAAGCC			1740
Ile His Leu			

(2) INFORMATION FOR SEQ ID NO: 8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 533 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

Met Ala Pro Lys Arg Lys Ala Ser Val Gln Thr Glu Gly Ser Lys Lys			
1	5	10	15
Gln Arg Gln Gly Thr Glu Glu Glu Asp Ser Phe Arg Ser Thr Ala Glu			
20	25	30	
Ala Leu Arg Ala Ala Pro Ala Asp Asn Arg Val Ile Arg Val Asp Pro			
35	40	45	
Ser Cys Pro Phe Ser Arg Asn Pro Gly Ile Gln Val His Glu Asp Tyr			
50	55	60	
Asp Cys Thr Leu Asn Gln Thr Asn Ile Gly Asn Asn Asn Asn Lys Phe			
65	70	75	80
Tyr Ile Ile Gln Leu Leu Glu Gly Ser Arg Phe Phe Cys Trp Asn			
85	90	95	
Arg Trp Gly Arg Val Gly Glu Val Gly Gln Ser Lys Met Asn His Phe			
100	105	110	
Thr Cys Leu Glu Asp Ala Lys Lys Asp Phe Lys Lys Phe Trp Glu			
115	120	125	
Lys Thr Lys Asn Lys Trp Glu Glu Arg Asp Arg Phe Val Ala Gln Pro			
130	135	140	
Asn Lys Tyr Thr Leu Ile Glu Val Gln Gly Glu Ala Glu Ser Gln Glu			
145	150	155	160
Ala Val Val Lys Ala Leu Ser Pro Gln Val Asp Ser Gly Pro Val Arg			
165	170	175	
Thr Val Val Lys Pro Cys Ser Leu Asp Pro Ala Thr Gln Asn Leu Ile			

0050/49100/49790

180	185	190
Thr Asn Ile Phe Ser Lys Glu Met Phe Lys Asn Ala Met Thr Leu Met		
195	200	205
Asn Leu Asp Val Lys Lys Met Pro Leu Gly Lys Leu Thr Lys Gln Gln		
210	215	220
Ile Ala Arg Gly Phe Glu Ala Leu Glu Ala Leu Glu Ala Met Lys		
225	230	235
240		
Asn Pro Thr Gly Asp Gly Gln Ser Leu Glu Glu Leu Ser Ser Cys Phe		
245	250	255
Tyr Thr Val Ile Pro His Asn Phe Gly Arg Ser Arg Pro Pro Pro Ile		
260	265	270
Asn Ser Pro Asp Val Leu Gln Ala Lys Lys Asp Met Leu Leu Val Leu		
275	280	285
Ala Asp Ile Glu Leu Ala Gln Thr Leu Gln Ala Ala Pro Gly Glu Glu		
290	295	300
Glu Glu Lys Val Glu Glu Val Pro His Pro Leu Asp Arg Asp Tyr Gln		
305	310	315
320		
Leu Leu Arg Cys Gln Leu Gln Leu Leu Asp Ser Gly Glu Ser Glu Tyr		
325	330	335
Lys Ala Ile Gln Thr Tyr Leu Lys Gln Thr Gly Asn Ser Tyr Arg Cys		
340	345	350
Pro Asn Leu Arg His Val Trp Lys Val Asn Arg Glu Gly Glu Gly Asp		
355	360	365
Arg Phe Gln Ala His Ser Lys Leu Gly Asn Arg Arg Leu Leu Trp His		
370	375	380
Gly Thr Asn Val Ala Val Val Ala Ala Ile Leu Thr Ser Gly Leu Arg		
385	390	395
400		
Ile Met Pro His Ser Gly Gly Arg Val Gly Lys Gly Ile Tyr Phe Ala		
405	410	415
Ser Glu Asn Ser Lys Ser Ala Gly Tyr Val Thr Thr Met His Cys Gly		
420	425	430
Gly His Gln Val Gly Tyr Met Phe Leu Gly Glu Val Ala Leu Gly Lys		
435	440	445
Glu His His Ile Thr Ile Asp Asp Pro Ser Leu Lys Ser Pro Pro Pro		
450	455	460
Gly Phe Asp Ser Val Ile Ala Arg Gly Gln Thr Glu Pro Asp Pro Ala		
465	470	475
480		
Gln Asp Ile Glu Leu Glu Leu Asp Gly Gln Pro Val Val Val Pro Gln		
485	490	495
Gly Pro Pro Val Gln Cys Pro Ser Phe Lys Ser Ser Phe Ser Gln		

500

505

510

Ser Glu Tyr Leu Ile Tyr Lys Glu Ser Gln Cys Arg Leu Arg Tyr Leu
 515 520 525
 Leu Glu Ile His Leu
 530

(2) INFORMATION FOR SEQ ID NO: 9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1587 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mus musculus
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..1584

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

ATG GCT CCA AAA CGA AAG GCC TCT GTG CAG ACT GAG GGC TCC AAG AAG	48
Met Ala Pro Lys Arg Lys Ala Ser Val Gln Thr Glu Gly Ser Lys Lys	
535 540 545	
CAG CGA CAA GGG ACA GAG GAG GAC AGC TTC CGG TCC ACT GCC GAG	96
Gln Arg Gln Gly Thr Glu Glu Asp Ser Phe Arg Ser Thr Ala Glu	
550 555 560 565	
GCT CTC AGA GCA GCA CCT GCT GAT AAT CGG GTC ATC CGT GTG GAC CCC	144
Ala Leu Arg Ala Ala Pro Ala Asp Asn Arg Val Ile Arg Val Asp Pro	
570 575 580	
TCA TGT CCA TTC AGC CGG AAC CCC GGG ATA CAG GTC CAC GAG GAC TAT	192
Ser Cys Pro Phe Ser Arg Asn Pro Gly Ile Gln Val His Glu Asp Tyr	
585 590 595	
GAC TGT ACC CTG AAC CAG ACC AAC ATC GGC AAC AAC AAC AAG TTC	240
Asp Cys Thr Leu Asn Gln Thr Asn Ile Gly Asn Asn Asn Lys Phe	
600 605 610	
TAT ATT ATC CAA CTG CTG GAG GAG GGT AGT CGC TTC TTC TGC TGG AAT	288
Tyr Ile Ile Gln Leu Leu Glu Glu Gly Ser Arg Phe Phe Cys Trp Asn	
615 620 625	
CGC TGG GGC CGC GTG GGA GAG GTG GGC CAG AGC AAG ATG AAC CAC TTC	336
Arg Trp Gly Arg Val Gly Glu Val Gly Gln Ser Lys Met Asn His Phe	
630 635 640 645	

0050/49100/49790

ACC TGC CTG GAA GAT GCA AAG AAG GAC TTT AAG AAG AAA TTT TGG GAG Thr Cys Leu Glu Asp Ala Lys Lys Asp Phe Lys Lys Phe Trp Glu 650 655 660	384
AAG ACT AAA AAC AAA TGG GAG GAG CGG GAC CGT TTT GTG GCC CAG CCC Lys Thr Lys Asn Lys Trp Glu Arg Asp Arg Phe Val Ala Gln Pro 665 670 675	432
AAC AAG TAC ACA CTT ATA GAA GTC CAG GGA GAA GCA GAG AGC CAA GAG Asn Lys Tyr Thr Leu Ile Glu Val Gln Gly Glu Ala Glu Ser Gln Glu 680 685 690	480
GCT GTA GTG AAG GTG GAC AGC GGC CCT GTG AGG ACC GTG GTC AAG CCC Ala Val Val Lys Val Asp Ser Gly Pro Val Arg Thr Val Val Lys Pro 695 700 705	528
TGC TCC CTA GAC CCT GCC ACC CAG AAC CTT ATC ACC AAC ATC TTC AGC Cys Ser Leu Asp Pro Ala Thr Gln Asn Leu Ile Thr Asn Ile Phe Ser 710 715 720 725	576
AAA GAG ATG TTC AAG AAC GCA ATG ACC CTC ATG AAC CTG GAT GTG AAG Lys Glu Met Phe Lys Asn Ala Met Thr Leu Met Asn Leu Asp Val Lys 730 735 740	624
AAG ATG CCC TTG GGA AAG CTG ACC AAG CAG CAG ATT GCC CGT GGC TTC Lys Met Pro Leu Gly Lys Leu Thr Lys Gln Gln Ile Ala Arg Gly Phe 745 750 755	672
GAG GCC TTG GAA GCT CTA GAG GAG GCC ATG AAA AAC CCC ACA GGG GAT Glu Ala Leu Glu Ala Leu Glu Ala Met Lys Asn Pro Thr Gly Asp 760 765 770	720
GGC CAG AGC CTG GAA GAG CTC TCC TCC TGC TTC TAC ACT GTC ATC CCA Gly Gln Ser Leu Glu Leu Ser Ser Cys Phe Tyr Thr Val Ile Pro 775 780 785	768
CAC AAC TTC GGC CGC AGC CGA CCC CCG CCC ATC AAC TCC CCT GAT GTG His Asn Phe Gly Arg Ser Arg Pro Pro Ile Asn Ser Pro Asp Val 790 795 800 805	816
CTT CAG GCC AAG AAG GAC ATG CTG CTG GTG CTA GCG GAC ATC GAG TTG Leu Gln Ala Lys Lys Asp Met Leu Leu Val Leu Ala Asp Ile Glu Leu 810 815 820	864
GCG CAG ACC TTG CAG GCA GCC CCT GGG GAG GAG GAG GAG AAA GTG GAA Ala Gln Thr Leu Gln Ala Ala Pro Gly Glu Glu Glu Lys Val Glu 825 830 835	912
GAG GTG CCA CAC CCA CTG GAT CGA GAC TAC CAG CTC CTC AGG TGC CAG Glu Val Pro His Pro Leu Asp Arg Asp Tyr Gln Leu Leu Arg Cys Gln 840 845 850	960
CTT CAA CTG CTG GAC TCC GGG GAG TCC GAG TAC AAG GCA ATA CAG ACC Leu Gln Leu Leu Asp Ser Gly Glu Ser Glu Tyr Lys Ala Ile Gln Thr 855 860 865	1008
TAC CTG AAA CAG ACT GGC AAC AGC TAC AGG TGC CCA AAC CTG CGG CAT Tyr Leu Lys Gln Thr Gly Asn Ser Tyr Arg Cys Pro Asn Leu Arg His	1056

0050/49100/49790

870	875	880	885	
GTT TGG AAA GTG AAC CGA GAA GGG GAG GGA GAC AGG TTC CAG GCC CAC Val Trp Lys Val Asn Arg Glu Gly Glu Gly Asp Arg Phe Gln Ala His 890		895		1104
TCC AAA CTG GGC AAT CGG AGG CTG CTG TGG CAC GGC ACC AAT GTG GCC Ser Lys Leu Gly Asn Arg Arg Leu Leu Trp His Gly Thr Asn Val Ala 905	910		915	1152
GTG GTG GCT GCC ATC CTC ACC AGT GGG CTC CGA ATC ATG CCA CAC TCG Val Val Ala Ala Ile Leu Thr Ser Gly Leu Arg Ile Met Pro His Ser 920	925		930	1200
GGT GGT CGT GTT GGC AAG GGT ATT TAT TTT GCC TCT GAG AAC AGC AAG Gly Gly Arg Val Gly Lys Gly Ile Tyr Phe Ala Ser Glu Asn Ser Lys 935	940	945		1248
TCA GCT GGC TAT GTT ACC ACC ATG CAC TGT GGG GGC CAC CAG GTG GGC Ser Ala Gly Tyr Val Thr Met His Cys Gly Gly His Gln Val Gly 950	955	960	965	1296
TAC ATG TTC CTG GGC GAG GTG GCC CTC GGC AAA GAG CAC CAC ATC ACC Tyr Met Phe Leu Gly Glu Val Ala Leu Gly Lys Glu His His Ile Thr 970	975		980	1344
ATC GAT GAC CCC AGC TTG AAG AGT CCA CCC CCT GGC TTT GAC AGC GTC Ile Asp Asp Pro Ser Leu Lys Ser Pro Pro Pro Gly Phe Asp Ser Val 985	990		995	1392
ATC GCC CGA GGC CAA ACC GAG CCG GAT CCC GCC CAG GAC ATT GAA CTT Ile Ala Arg Gly Gln Thr Glu Pro Asp Pro Ala Gln Asp Ile Glu Leu 1000	1005	1010		1440
GAA CTG GAT GGG CAG CCG GTG GTG GTG CCC CAA GGC CCG CCT GTG CAG Glu Leu Asp Gly Gln Pro Val Val Val Pro Gln Gly Pro Pro Val Gln 1015	1020	1025		1488
TGC CCG TCA TTC AAA AGC TCC AGC TTC AGC CAG AGT GAA TAC CTC ATA Cys Pro Ser Phe Lys Ser Ser Phe Ser Gln Ser Glu Tyr Leu Ile 1030	1035	1040	1045	1536
TAC AAG GAG AGC CAG TGT CGC CTG CGC TAC CTG CTG GAG ATT CAC CTC Tyr Lys Glu Ser Gln Cys Arg Leu Arg Tyr Leu Leu Glu Ile His Leu 1050	1055		1060	1584
TAA				1587

(2) INFORMATION FOR SEQ ID NO: 10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 528 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

Met Ala Pro Lys Arg Lys Ala Ser Val Gln Thr Glu Gly Ser Lys Lys

1	5	10	15
Gln Arg Gln Gly Thr Glu Glu Glu Asp Ser Phe Arg Ser Thr Ala Glu			
20 25 30			
Ala Leu Arg Ala Ala Pro Ala Asp Asn Arg Val Ile Arg Val Asp Pro			
35 40 45			
Ser Cys Pro Phe Ser Arg Asn Pro Gly Ile Gln Val His Glu Asp Tyr			
50 55 60			
Asp Cys Thr Leu Asn Gln Thr Asn Ile Gly Asn Asn Asn Lys Phe			
65 70 75 80			
Tyr Ile Ile Gln Leu Leu Glu Gly Ser Arg Phe Phe Cys Trp Asn			
85 90 95			
Arg Trp Gly Arg Val Gly Glu Val Gly Gln Ser Lys Met Asn His Phe			
100 105 110			
Thr Cys Leu Glu Asp Ala Lys Lys Asp Phe Lys Lys Phe Trp Glu			
115 120 125			
Lys Thr Lys Asn Lys Trp Glu Glu Arg Asp Arg Phe Val Ala Gln Pro			
130 135 140			
Asn Lys Tyr Thr Leu Ile Glu Val Gln Gly Glu Ala Glu Ser Gln Glu			
145 150 155 160			
Ala Val Val Lys Val Asp Ser Gly Pro Val Arg Thr Val Val Lys Pro			
165 170 175			
Cys Ser Leu Asp Pro Ala Thr Gln Asn Leu Ile Thr Asn Ile Phe Ser			
180 185 190			
Lys Glu Met Phe Lys Asn Ala Met Thr Leu Met Asn Leu Asp Val Lys			
195 200 205			
Lys Met Pro Leu Gly Lys Leu Thr Lys Gln Gln Ile Ala Arg Gly Phe			
210 215 220			
Glu Ala Leu Glu Ala Leu Glu Ala Met Lys Asn Pro Thr Gly Asp			
225 230 235 240			
Gly Gln Ser Leu Glu Glu Leu Ser Ser Cys Phe Tyr Thr Val Ile Pro			
245 250 255			
His Asn Phe Gly Arg Ser Arg Pro Pro Pro Ile Asn Ser Pro Asp Val			
260 265 270			
Leu Gln Ala Lys Lys Asp Met Leu Leu Val Leu Ala Asp Ile Glu Leu			
275 280 285			
Ala Gln Thr Leu Gln Ala Ala Pro Gly Glu Glu Glu Lys Val Glu			
290 295 300			
Glu Val Pro His Pro Leu Asp Arg Asp Tyr Gln Leu Leu Arg Cys Gln			
305 310 315 320			
Leu Gln Leu Leu Asp Ser Gly Glu Ser Glu Tyr Lys Ala Ile Gln Thr			

325	330	335	
Tyr Leu Lys Gln Thr Gly Asn Ser	Tyr Arg Cys Pro Asn Leu Arg His		
340	345	350	
Val Trp Lys Val Asn Arg Glu Gly Glu Gly Asp Arg Phe Gln Ala His			
355	360	365	
Ser Lys Leu Gly Asn Arg Arg Leu Leu Trp His Gly Thr Asn Val Ala			
370	375	380	
Val Val Ala Ala Ile Leu Thr Ser Gly Leu Arg Ile Met Pro His Ser			
385	390	395	400
Gly Gly Arg Val Gly Lys Gly Ile Tyr Phe Ala Ser Glu Asn Ser Lys			
405	410	415	
Ser Ala Gly Tyr Val Thr Thr Met His Cys Gly Gly His Gln Val Gly			
420	425	430	
Tyr Met Phe Leu Gly Glu Val Ala Leu Gly Lys Glu His His Ile Thr			
435	440	445	
Ile Asp Asp Pro Ser Leu Lys Ser Pro Pro Pro Gly Phe Asp Ser Val			
450	455	460	
Ile Ala Arg Gly Gln Thr Glu Pro Asp Pro Ala Gln Asp Ile Glu Leu			
465	470	475	480
Glu Leu Asp Gly Gln Pro Val Val Val Pro Gln Gly Pro Pro Val Gln			
485	490	495	
Cys Pro Ser Phe Lys Ser Ser Ser Phe Ser Gln Ser Glu Tyr Leu Ile			
500	505	510	
Tyr Lys Glu Ser Gln Cys Arg Leu Arg Tyr Leu Leu Glu Ile His Leu			
515	520	525	

(2) INFORMATION FOR SEQ ID NO: 11:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 14 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: YES

(ix) FEATURE:

- (A) NAME/KEY: Region
- (B) LOCATION: 2
- (D) OTHER INFORMATION:/note= "Xaa steht fuer 1 bis 5
andere Aminosaeuren"

(ix) FEATURE:

DEUTSCHE PATENT- UND MARKENOFFICE
DEPARTMENT OF INTELLECTUAL PROPERTY

- (A) NAME/KEY: Region
- (B) LOCATION:3
- (D) OTHER INFORMATION:/note= "Xaa steht fuer Ser oder Thr"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

Pro Xaa Xaa Gly Xaa Xaa Xaa Gly Lys Gly Ile Tyr Phe Ala
1 5 10

(2) INFORMATION FOR SEQ ID NO: 12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: YES

(ix) FEATURE:

- (A) NAME/KEY: Region
- (B) LOCATION:1
- (D) OTHER INFORMATION:/note= "Xaa steht fuer Ser oder Thr"

(ix) FEATURE:

- (A) NAME/KEY: Region
- (B) LOCATION:6
- (D) OTHER INFORMATION:/note= "Xaa steht fuer Ile oder Val"

(ix) FEATURE:

- (A) NAME/KEY: Region
- (B) LOCATION:9
- (D) OTHER INFORMATION:/note= "Xaa steht fuer 1 bis 5 andere Aminosaeuren"

(ix) FEATURE:

- (A) NAME/KEY: Region
- (B) LOCATION:10
- (D) OTHER INFORMATION:/note= "Xaa steht fuer Ser oder Thr"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

Xaa Xaa Gly Leu Arg Xaa Xaa Pro Xaa Xaa Gly Xaa Xaa Xaa Gly Lys
1 5 10 15
Gly Ile Tyr Phe Ala
20

(2) INFORMATION FOR SEQ ID NO: 13:

(i) SEQUENCE CHARACTERISTICS:

DEPARTMENT OF ENERGY
DOE GENOME PROGRAM

- (A) LENGTH: 45 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: YES
- (ix) FEATURE:
 - (A) NAME/KEY: Region
 - (B) LOCATION:16
 - (D) OTHER INFORMATION:/note= "Xaa steht fuer Ser oder Thr"
- (ix) FEATURE:
 - (A) NAME/KEY: Region
 - (B) LOCATION:21
 - (D) OTHER INFORMATION:/note= "Xaa steht fuer Ile oder Val"
- (ix) FEATURE:
 - (A) NAME/KEY: Region
 - (B) LOCATION:24
 - (D) OTHER INFORMATION:/note= "Xaa steht fuer 1 bis 5 andere Aminosaeuren"
- (ix) FEATURE:
 - (A) NAME/KEY: Region
 - (B) LOCATION:25
 - (D) OTHER INFORMATION:/note= "Xaa steht fuer Ser oder Thr"
- (ix) FEATURE:
 - (A) NAME/KEY: Region
 - (B) LOCATION:6
 - (D) OTHER INFORMATION:/note= "Xaa steht fuer Ser oder Thr"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

Leu	Leu	Trp	His	Gly	Xaa	Xaa	Xaa	Xaa	Xaa	Xaa	Ile	Leu	Xaa
1					5						10		15
Xaa	Gly	Leu	Arg	Xaa	Xaa	Pro	Xaa	Xaa	Gly	Xaa	Xaa	Xaa	Gly
													30
Ile	Tyr	Phe	Ala	Xaa	Xaa	Ser	Lys	Ser	Ala	Xaa	Tyr		
												35	40
													45

(2) INFORMATION FOR SEQ ID NO: 14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 22 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: YES

(ix) FEATURE:

- (A) NAME/KEY: Region
- (B) LOCATION:1
- (D) OTHER INFORMATION:/note= "Xaa steht fuer Leu oder Val"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Leu Xaa Xaa Xaa Xaa Xaa Xaa Leu Xaa
1 5 10 15

Xaa Xaa Xaa Xaa Xaa Leu
20

(2) INFORMATION FOR SEQ ID NO: 15:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 27 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: YES

(ix) FEATURE:

- (A) NAME/KEY: Region
- (B) LOCATION:21
- (D) OTHER INFORMATION:/note= "Xaa steht fuer Asp oder Glu"

(ix) FEATURE:

- (A) NAME/KEY: Region
- (B) LOCATION:22
- (D) OTHER INFORMATION:/note= "Xaa steht fuer 10 oder 11 andere Aminosaeuren"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

Leu Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn Xaa Xaa Tyr Xaa Xaa
1 5 10 15

Gln Leu Leu Xaa Xaa Xaa Trp Gly Arg Val Gly
20 25

(2) INFORMATION FOR SEQ ID NO: 16:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 29 amino acids
- (B) TYPE: amino acid

0050/49100/49790

0050/49100/49790

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

Ala Xaa Xaa Xaa Phe Xaa Lys Xaa Xaa Xaa Xaa Lys Thr Xaa Asn Xaa		
1	5	10
Trp Xaa Xaa Xaa Xaa Xaa Phe Xaa Xaa Xaa Pro Xaa Lys		
20	25	

(2) INFORMATION FOR SEQ ID NO: 17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 44 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: YES

(ix) FEATURE:

- (A) NAME/KEY: Region
- (B) LOCATION: 4
- (D) OTHER INFORMATION:/note= "Xaa steht fuer Ile oder Leu"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

Gln Xaa Leu Xaa Xaa Xaa Ile Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa		
1	5	10
Met Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Pro Leu Gly Lys Leu		
20	25	30
Xaa Xaa Xaa Gln Ile Xaa Xaa Xaa Xaa Xaa Xaa Leu		
35	40	

(2) INFORMATION FOR SEQ ID NO: 18:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: YES

0050/49100/49790

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

Phe Tyr Thr Xaa Ile Pro His Xaa Phe Gly Xaa Xaa Xaa Pro Pro
1 5 10 15

(2) INFORMATION FOR SEQ ID NO: 19:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 17 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

Lys Xaa Xaa Xaa Leu Xaa Xaa Leu Xaa Asp Ile Glu Xaa Ala Xaa Xaa
1 5 10 15

Leu

(2) INFORMATION FOR SEQ ID NO: 20:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 11 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

Gly Xaa Xaa Xaa Leu Xaa Glu Val Ala Leu Gly
1 5 10

(2) INFORMATION FOR SEQ ID NO: 21:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: YES

(ix) FEATURE:

DEPARTMENT OF POLICE SCIENCE AND TECHNOLOGY

- (A) NAME/KEY: Region
- (B) LOCATION: 14
- (D) OTHER INFORMATION:/note= "Xaa steht fuer 7 bis 9
andere Aminosaeuren"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

Gly Xaa Xaa Ser Xaa Xaa Xaa Xaa Gly Xaa Xaa Xaa Pro Xaa Leu Xaa
1 5 10 15
Gly Xaa Xaa Val
20

(2) INFORMATION FOR SEQ ID NO: 22:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 16 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: YES

(ix) FEATURE:

- (A) NAME/KEY: Region
- (B) LOCATION: 2
- (D) OTHER INFORMATION:/note= "Xaa steht fuer Tyr oder
Phe"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

Glu Xaa Xaa Xaa Tyr Xaa Xaa Xaa Gln Xaa Xaa Xaa Xaa Tyr Leu Leu
1 5 10 15

(2) INFORMATION FOR SEQ ID NO: 23:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

Met Ala Ala Arg Arg Arg Arg Ser Thr Gly Gly Gly Arg Ala Arg Ala
1 5 10 15
Leu Asn Glu Ser

20

(2) INFORMATION FOR SEQ ID NO: 24:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

Lys	Thr	Glu	Leu	Gln	Ser	Pro	Glu	His	Pro	Leu	Asp	Gln	His	Tyr	Arg
1				5					10					15	
Asn Leu His Cys															
20															

(2) INFORMATION FOR SEQ ID NO: 25:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

Cys	Lys	Gly	Arg	Gln	Ala	Gly	Arg	Glu	Glu	Asp	Pro	Phe	Arg	Ser	Thr
1				5					10					15	
Ala Glu Ala Leu Lys															
20															

(2) INFORMATION FOR SEQ ID NO: 26:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

0050/49100/49790

Cys Lys Gln Gln Ile Ala Arg Gly Phe Glu Ala Leu Glu Ala Leu Glu
1 5 10 15

Glu Ala Leu Lys
20

(2) INFORMATION FOR SEQ ID NO: 27:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

Lys Gln Gln Ile Ala Arg Gly Phe Glu Ala Leu Glu Ala Leu Glu Glu
1 5 10 15

Ala Leu Lys

(2) INFORMATION FOR SEQ ID NO: 28:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

Lys Gln Gln Ile Ala Arg Gly Phe Glu Ala Leu Glu Ala Leu Glu Glu
1 5 10 15

Ala Met Lys

AKH/4 (7)

09/701586

529 Rec'd PCT/PTC 30 NOV 2000

We claim:

1. A poly(ADP-ribose) polymerase (PARP) homolog derived from a
 5 human or non-human mammal which has an amino acid sequence
 which has
 a) a functional NAD⁺ binding domain
 and
 b) no zinc finger sequence motif of the general formula

10

in which

15 m is an integral value from 28 or 30, and the X radicals
 are, independently of one another, any amino acid.

2. A PARP homolog as claimed in claim 1, wherein the functional
 NAD⁺ binding domain comprises one of the following general
 sequence motifs:

20

25

in which

n is an integral value from 1 to 5, and the X radicals are,
 independently of one another, any amino acid.

3. A PARP homolog as claimed in either of the preceding claims,
 30 comprising at least another one of the following
 part-sequence motifs:

35

40

in which the X radicals are, independently of one another,
 any amino acid.

45

4. A PARP homolog as claimed in any of the preceding claims,
 selected from human PARP homologs, which has the amino acid
 sequence shown in SEQ ID NO: 2 (human PARP2) or SEQ ID NO: 4
 or 6 (human PARP3 type 1 or 2); or murine PARP homologs which

82

have the amino acid sequence shown in SEQ ID NO:8 (mouse PARP long form) or SEQ ID NO:10 (mouse PARP short form).

5. A binding partner having specificity for PARP homologs as
claimed in any of the preceding claims, selected from
 - a) antibodies and fragments thereof,
 - b) protein-like compounds which interact with a part-sequence of the protein, and
 - c) low molecular weight effectors which modulate the catalytic PARP activity or another biological function of a PARP molecule.
 - 10
 - 15
 - 20
 - 25
 - 30
 - 35
 - 40
 - 11.
6. A nucleic acid comprising
 - a) a nucleotide sequence coding for at least one PARP homolog as claimed in any of claims 1 to 4, or the complementary nucleotide sequence thereof;
 - b) a nucleotide sequence which hybridizes with a sequence as specified in a) under stringent conditions; or
 - c) nucleotide sequences which are derived from the nucleotide sequences defined in a) and b) through the degeneracy of the genetic code.
 7. A nucleic acid as claimed in claim 6, comprising
 - a) nucleotides +3 to +1715 shown in SEQ ID NO:1;
 - b) nucleotides +242 to +1843 shown in SEQ ID NO:3;
 - c) nucleotides +221 to +1843 shown in SEQ ID NO:5;
 - d) nucleotides +112 to +1710 shown in SEQ ID NO:7; or
 - e) nucleotides +1 to +1584 shown in SEQ ID NO:9.
 8. An expression cassette comprising, under the genetic control of at least one regulatory nucleotide sequence, at least one nucleotide sequence as claimed in either of claims 6 and 7.
 9. A recombinant vector comprising at least one expression cassette as claimed in claim 8.
 10. A recombinant microorganism comprising at least one recombinant vector as claimed in claim 9.
 11. A transgenic mammal comprising a vector as claimed in claim 9.

12. A PARP-deficient mammal or PARP-deficient eukaryotic cell, in which functional expression of at least one gene which codes for a PARP homolog as claimed in any of claims 1 to 4 is inhibited.
- 5
13. An in vitro detection method for PARP inhibitors, which comprises
 - 10 a) incubating an unsupported or supported polyADP-ribosylatable target with a reaction mixture comprising
 - 15 a1) a PARP homolog as claimed in any of claims 1 to 4,
 - a2) a PARP activator; and
 - a3) a PARP inhibitor or an analyte in which at least one PARP inhibitor is suspected;
 - b) carrying out the polyADP ribosylation reaction; and
 - c) determining the polyADP ribosylation of the target qualitatively or quantitatively.
- 20 14. A method as claimed in claim 13, wherein the PARP homolog is preincubated with the PARP activator and the PARP inhibitor or an analyte in which at least one PARP inhibitor is suspected, before the polyADP ribosylation reaction is carried out.
- 25
15. A method as claimed in either of claims 13 and 14, wherein the polyADP-ribosylatable target is a histone protein.
- 30
16. A method as claimed in any of claims 13 to 15, wherein the PARP activator is activated DNA.
17. A method as claimed in any of claims 13 to 16, wherein the polyADP ribosylation reaction is started by adding NAD⁺.
- 35 18. A method as claimed in any of claims 13 to 17, wherein the polyADP ribosylation of the supported target is determined using anti-poly(ADP-ribose) antibodies.
- 40
19. A method as claimed in any of claims 13 to 17, wherein the unsupported target is labeled with an acceptor fluorophore.
20. A method as claimed in claim 19, wherein the polyADP ribosylation of the unsupported target is determined using anti-poly(ADP-ribose) antibody which is labeled with a donor fluorophore which is able to transfer energy to the acceptor fluorophore.
- 45

84

21. A method as claimed in either of claims 19 and 20, wherein
the target is biotinylated histone, and the acceptor
fluorophore is coupled thereto via avidin or streptavidin.
- 5 22. A method as claimed in either of claims 20 and 21, wherein
the anti-poly(ADP-ribose) antibody carries a europium
cryptate as donor fluorophore.
23. An in vitro screening method for binding partners for a PARP
10 molecule, which comprises
a1) immobilizing at least one PARP homolog as claimed in any
of claims 1 to 4 on a support;
b1) contacting the immobilized PARP homolog with an analyte
in which at least one binding partner is suspected; and
15 c1) determining, where appropriate after an incubation
period, analyte constituents bound to the immobilized
PARP homolog;
- 20 or
20 a2) immobilizing on a support an analyte which comprises at
least one possible binding partner for a PARP molecule;
b2) contacting the immobilized analyte with at least one PARP
homolog as claimed in any of claims 1 to 4 for which a
25 binding partner is sought; and
c2) examining the immobilized analyte, where appropriate
after an incubation period, for binding of the PARP
homolog.
- 30 24. A method for the qualitative or quantitative determination of
nucleic acids encoding a PARP homolog as claimed in any of
claims 1 to 4, which comprises
a) incubating a biological sample with a defined amount of
an exogenous nucleic acid as claimed in either of claims
35 6 and 7, hybridizing under stringent conditions,
determining the hybridizing nucleic acids and, where
appropriate, comparing with a standard; or
b) incubating a biological sample with a pair of
40 oligonucleotide primers with specificity for a PARP
homolog-encoding nucleic acid, amplifying the nucleic
acid, determining the amplification product and, where
appropriate, comparing with a standard.
- 45 25. A method for the qualitative or quantitative determination of
a PARP homolog as claimed in any of claims 1 to 4, which
comprises

85

- a) incubating a biological sample with a binding partner specific for a PARP homolog,
 - b) detecting the binding partner/PARP complex and, where appropriate,
 - 5 c) comparing the result with a standard.
26. A method as claimed in claim 25, wherein the binding partner is an antibody or a binding fragment thereof, which carries a detectable label where appropriate.
- 10 27. A method as claimed in any of claims 24 to 26 for diagnosing energy deficit-mediated illnesses.
- 15 28. A method for determining the efficacy of PARP effectors, which comprises
 - a) incubating a PARP homolog as claimed in any of claims 1 to 4 with an analyte which comprises an effector of a physiological or pathological PARP activity; removing the effector again where appropriate; and
 - 20 b) determining the activity of the PARP homolog, where appropriate after adding substrates or cosubstrates.
- 25 29. A gene therapy composition, which comprises in a vehicle acceptable for gene therapy a nucleic acid construct which
 - a) comprises an antisense nucleic acid against a coding nucleic acid as claimed in either of claims 6 and 7; or
 - b) a ribozyme against a nucleic acid as claimed in either of claims 6 and 7; or
 - c) codes for a specific PARP inhibitor.
- 30 30. A pharmaceutical composition comprising, in a pharmaceutically acceptable vehicle, at least one PARP protein as claimed in any of claims 1 to 4, at least one PARP binding partner as claimed in claim 5 or at least one coding nucleotide sequence as claimed in claim 6 or 7.
- 35 31. The use of low molecular weight PARP binding partners as claimed in claim 5 for the manufacture of a pharmaceutical agent for the diagnosis or therapy of pathological states in the development and/or progress of which at least one PARP protein, or a polypeptide derived therefrom, is involved.
- 40 32. The use of low molecular weight PARP binding partners as claimed in claim 5 for the manufacture of a pharmaceutical agent for the diagnosis or therapy of pathological states mediated by an energy deficit.
- 45

Abstract

The invention relates to poly(ADP-ribose)polymerase (PARP)
5 homologs which have an amino acid sequence which has
a) a functional NAD⁺ binding domain
and
b) no zinc finger sequence motif of the general formula

10

in which

m is an integral value from 28 or 30, and the X radicals are,
independently of one another, any amino acid;
and the functional equivalents thereof; nucleic acids coding
15 therefor; antibodies with specificity for the novel protein;
pharmaceutical and gene therapy compositions which comprise
products according to the invention; methods for the analytical
determination of the proteins and nucleic acids according to the
invention; methods for identifying effectors or binding partners
20 of the proteins according to the invention; novel PARP effectors;
and methods for determining the activity of such effectors.

25

30

35

40

45

09/701586

Fig. 1(1)

09/701586

0050/49100/49790

2/7

Fig. 1(2)

09/701586

0050/49100/49790

Fig. 1(3)

09/707586

0050/49100/49790

4 / 7

RIAPHEAP - SGGRVGKGIVPASENSKSAGYVXTSXCGHXVOLMULLQEVALGXHELXXA Majority	
	920
878	R I A P P E A P V T G Y H F G K G I Y P A D H V S K S A N Y C H T S Q - - G D P I O U I L L G E V A L G N M Y E U K H A humanPARP1
431	R I A P P E A P I T G Y H F G K G I Y P A D H S S K S A N Y C P A S R - - L K N T G Y U L L S E V A L G O C N E L L E A humanPARP2
407	R I H P H - - - S G G R V G K G I Y P A S B N S K S A G Y V I G M K C O A N H V O Y M P L O B V A D G R E H H I N T D humanPARP3
400	R I H P H - - - S G G R V G K G I Y F A S E N S K S A G Y V T T H H C O G H Q V Q Y H F L G E V A L G K E H H I T D murinePARP
	930
	940
	950
	960
	970
916	S H I S K - L P K G K H S V K G L G K T T P D P S A N I S L D - - - Q V D V P L Q T Q I S S Q V - - - N D T S L L Y N humanPARP1
489	N P K A E G L L Q G K H S T K Q L G K H A P S S A H P V T L N - - - Q S T V P L G P A S D T G I L N P D G Y T L N Y N humanPARP2
463	N P S L K S P P P Q F D S V I A R G H T E P D P T Q D T E U E L D G Q Q V V P Q G O P V P C P E F S S S T P S Q - - S humanPARP3
456	D P S L K S P P P Q F D S V I A R G Q T E P D P A Q D I E L E D G Q Q V V P Q V V P Q G P P V Q C P S F K S S S P S Q - - S murinePARP
	980
	990
	1000
	1010
	1020
	1030
	1040
	E Y L V Y X E S Q V R L R Y L L E V H P N P - X X L W -
988	E Y I V Y D I A Q V N L K Y L L K P N F K T S L W
545	E Y I V Y N P N Q V R M R Y L L K V Q P N F - L Q L W
521	E Y L I Y Q E S O C R L R Y L L E V H L - - - - L
514	E Y L I Y K E S Q C R L R Y L L E I H - - - - L

Fig. 1(4)

5/7

Fig. 2

Northern Blot Analysis
Human PARP3 Tissue DistributionWestern Blot Analysis
PARP3 Tissue Distribution

Fig. 3

Fig. 4

6/7

Fig. 5

HRP = Horseradish-Peroxidase

Fig. 6

7/7

Fig. 7

(9)

Declaration, Power of Attorney

Page 1 of 4

0050/049100

We (I), the undersigned inventor(s), hereby declare(s) that:

My residence, post office address and citizenship are as stated below next to my name,

We (I) believe that we are (I am) the original, first, and joint (sole) inventor(s) of the subject matter which is claimed and for which a patent is sought on the invention entitled

Poly(ADP-ribose)polymerase-gene

the specification of which

is attached hereto.

[] was filed on _____ as

Application Serial No. _____

and amended on _____.

[x] was filed as PCT international application

Number PCT/EP 99/ 03889

on June 4, 1999

and was amended under PCT Article 19

on _____ (if applicable).

We (I) hereby state that we (I) have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

We (I) acknowledge the duty to disclose information known to be material to the patentability of this application as defined in Section 1.56 of Title 37 Code of Federal Regulations.

We (I) hereby claim foreign priority benefits under 35 U.S.C. § 119(a)-(d) or § 365(b) of any foreign application(s) for patent or inventor's certificate, or § 365(a) of any PCT International application which designated at least one country other than the United States, listed below and have also identified below, by checking the box, any foreign application for patent or inventor's certificate, or PCT International application having a filing date before that of the application on which priority is claimed. Prior Foreign Application(s)

Application No.	Country	Day/Month/Year	Priority Claimed
19825213.7	Germany	05 June 1998	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No
19908837.3	Germany	01 March 1999	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No

Declaration

Page 2 of 4

0050/049100

We (I) hereby claim the benefit under Title 35, United States Codes, § 119(e) of any United States provisional application(s) listed below.

(Application Number)	(Filing Date)
(Application Number)	(Filing Date)

We (I) hereby claim the benefit under 35 U.S.C. § 120 of any United States application(s), or § 365(c) of any PCT International application designating the United States, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International application in the manner provided by the first paragraph of 35 U.S.C. § 112, I acknowledge the duty to disclose information which is material to patentability as defined in 37 CFR § 1.56 which became available between the filing date of the prior application and the national or PCT International filing date of this application.

Application Serial No.	Filing Date	Status (pending, patented, abandoned)

And we (I) hereby appoint **Messrs. HERBERT. B. KEIL**, Registration Number 18,967; and **RUSSEL E. WEINKAUF**, Registration Number 18,495; the address of both being Messrs. Keil & Weinkauf, 1101 Connecticut Ave., N.W., Washington, D.C. 20036 (telephone 202-659-0100), our attorneys, with full power of substitution and revocation, to prosecute this application, to make alterations and amendments therein, to sign the drawings, to receive the patent, and to transact all business in the Patent Office connected therewith.

We (I) declare that all statements made herein of our (my) own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Declaration

Page 3 of 4

0050/049100

100 Michael Kock
NAME OF INVENTOR

Michael Kock
Signature of Inventor

Date November 2, 2000

Lillengasse 80
67105 Schifferstadt
Germany
Citizen of: Germany
Post Office Address: same as residence

200 Thomas Höger
NAME OF INVENTOR

Thomas Höger
Signature of Inventor

Date November 2, 2000

Rathenaustr.12
68535 Edingen-Neckarhausen
Germany
Citizen of: Germany
Post Office Address: same as residence

300 Burkhard Kröger
NAME OF INVENTOR

Burkhard Kröger
Signature of Inventor

Date November 2, 2000

Tilsiter Str.21
67117 Limburgerhof
Germany
Citizen of: Germany
Post Office Address: same as residence

400 Bernd Overbaeh
NAME OF INVENTOR

Bernd Overbaeh
Signature of Inventor

Date November 2, 2000

Rossinistr.11
67061 Ludwigshafen
Germany
Citizen of: Germany
Post Office Address: same as residence

Declaration

Page 4 of 4

0050/049100

5-10
Wilfried Lubisch
NAME OF INVENTOR

Wilfried Lubisch
Signature of Inventor

Date November 2, 2000

Häusererstr. 15
69115 Heidelberg
Germany
Citizen of: Germany
Post Office Address: same as residence

6-10
Hans-Georg Lemaire
NAME OF INVENTOR

Hans-Georg Lemaire
Signature of Inventor

Date November 2, 2000

Mainstr. 8
67117 Limburgerhof
Germany
Citizen of: Germany
Post Office Address: same as residence

C'd PCT/PTO 25 APR 2002

#8

1

SEQUENCE LISTING

<110> Kock, Michael
Hoeger, Thomas
Kroeger, Burkhard
Otterbach, Bernd
Lubisch, Wilfried
Lemaire, Hans-Georg

<120> Poly (ADP-ribose) polymerase-gene

<130> 0050/49100

<140> US 09/701,586

<141> 1999-06-04

<150> PCT/EP99/03889

<151> 1999-06-04

<160> 33

<170> PatentIn/WordPerfect

<210> 1

<211> 1843

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (3)...(1715)

<223> product is Poly ADP Ribose Polymerase; from brain tissue

<400> 1

cc atg gcg gcg cgg cgg cga cgg agc acc ggc ggc ggc agg gcg aga	47
Met Ala Ala Arg Arg Arg Arg Ser Thr Gly Gly Gly Arg Ala Arg	
1 5 10 15	

gca tta aat gaa agc aaa aga gtt aat aat ggc aac acg gct cca gaa	95
Ala Leu Asn Glu Ser Lys Arg Val Asn Asn Gly Asn Thr Ala Pro Glu	
20 25 30	

gac tct tcc cct gcc aag aaa act cgt aga tgc cag aga cag gag tcg	143
Asp Ser Ser Pro Ala Lys Thr Arg Arg Cys Gln Arg Gln Glu Ser	
35 40 45	

aaa aag atg cct gtg gct gga gga aaa gct aat aag gac agg aca gaa	191
Lys Lys Met Pro Val Ala Gly Gly Lys Ala Asn Lys Asp Arg Thr Glu	
50 55 60	

gac aag caa gat gaa tct gtg aag gcc ttg ctg tta aag ggc aaa gct	239
Asp Lys Gln Asp Glu Ser Val Lys Ala Leu Leu Lys Gly Lys Ala	
65 70 75	

cct gtg gac cca gag tgt aca gcc aag gtg ggg aag gct cat gtg tat	287
Pro Val Asp Pro Glu Cys Thr Ala Lys Val Gly Lys Ala His Val Tyr	
80 85 90 95	

tgt gaa gga aat gat gtc tat gat gtc atg cta aat cag acc aat ctc Cys Glu Gly Asn Asp Val Tyr Asp Val Met Leu Asn Gln Thr Asn Leu 100 105 110	335
cag ttc aac aac aac aag tac tat ctg att cag cta tta gaa gat gat Gln Phe Asn Asn Asn Lys Tyr Tyr Leu Ile Gln Leu Leu Glu Asp Asp 115 120 125	383
gcc cag agg aac ttc agt gtt tgg atg aga tgg ggc cga gtt ggg aaa Ala Gln Arg Asn Phe Ser Val Trp Met Arg Trp Gly Arg Val Gly Lys 130 135 140	431
atg gga cag cac agc ctg gtg gct tgt tca ggc aat ctc aac aag gcc Met Gly Gln His Ser Leu Val Ala Cys Ser Gly Asn Leu Asn Lys Ala 145 150 155	479
aag gaa atc ttt cag aag aaa ttc ctt gac aaa acg aaa aac aat tgg Lys Glu Ile Phe Gln Lys Lys Phe Leu Asp Lys Thr Lys Asn Asn Trp 160 165 170 175	527
gaa gat cga gaa aag ttt gag aag gtg cct gga aaa tat gat atg cta Glu Asp Arg Glu Lys Phe Glu Lys Val Pro Gly Lys Tyr Asp Met Leu 180 185 190	575
cag atg gac tat gcc acc aat act cag gat gaa gag gaa aca aag aaa Gln Met Asp Tyr Ala Thr Asn Thr Gln Asp Glu Glu Glu Thr Lys Lys 195 200 205	623
gag gaa tct ctt aaa tct ccc ttg aag cca gag tca cag cta gat ctt Glu Glu Ser Leu Lys Ser Pro Leu Lys Pro Glu Ser Gln Leu Asp Leu 210 215 220	671
cgg gta cag gag tta ata aag ttg atc tgt aat gtt cag gcc atg gaa Arg Val Gln Glu Leu Ile Lys Leu Ile Cys Asn Val Gln Ala Met Glu 225 230 235	719
gaa atg atg atg gaa atg aag tat aat acc aag aaa gcc cca ctt ggg Glu Met Met Glu Met Lys Tyr Asn Thr Lys Lys Ala Pro Leu Gly 240 245 250 255	767
aag ctg aca gtg gca caa atc aag gca ggt tac cag tct ctt aag aag Lys Leu Thr Val Ala Gln Ile Lys Ala Gly Tyr Gln Ser Leu Lys Lys 260 265 270	815
att gag gat tgt att cgg gct ggc cag cat gga cga gct ctc atg gaa Ile Glu Asp Cys Ile Arg Ala Gly Gln His Gly Arg Ala Leu Met Glu 275 280 285	863
gca tgc aat gaa ttc tac acc agg att ccg cat gac ttt gga ctc cgt Ala Cys Asn Glu Phe Tyr Thr Arg Ile Pro His Asp Phe Gly Leu Arg 290 295 300	911
act cct cca cta atc cgg aca cag aag gaa ctg tca gaa aaa ata caa Thr Pro Pro Leu Ile Arg Thr Gln Lys Glu Leu Ser Glu Lys Ile Gln 305 310 315	959
tta cta gag gct ttg gga gac att gaa att gct att aag ctg gtg aaa Leu Leu Glu Ala Leu Gly Asp Ile Glu Ile Ala Ile Lys Leu Val Lys 320 325 330 335	1007

aca gag cta caa agc cca gaa cac cca ttg gac caa cac tat aga aac Thr Glu Leu Gln Ser Pro Glu His Pro Leu Asp Gln His Tyr Arg Asn 340 345 350	1055
cta cat tgt gcc ttg cgc ccc ctt gac cat gaa agt tac gag ttc aaa Leu His Cys Ala Leu Arg Pro Leu Asp His Glu Ser Tyr Glu Phe Lys 355 360 365	1103
gtg att tcc cag tac cta caa tct acc cat gct ccc aca cac agc gac Val Ile Ser Gln Tyr Leu Gln Ser Thr His Ala Pro Thr His Ser Asp 370 375 380	1151
tat acc atg acc ttg ctg gat ttg ttt gaa gtg gag aag gat ggt gag Tyr Thr Met Thr Leu Leu Asp Leu Phe Glu Val Glu Lys Asp Gly Glu 385 390 395	1199
aaa gaa gcc ttc aga gag gac ctt cat aac agg atg ctt cta tgg cat Lys Glu Ala Phe Arg Glu Asp Leu His Asn Arg Met Leu Leu Trp His 400 405 410 415	1247
ggg tcc agg atg agt aac tgg gtg gga atc ttg agc cat ggg ctt cga Gly Ser Arg Met Ser Asn Trp Val Gly Ile Leu Ser His Gly Leu Arg 420 425 430	1295
att gcc cca cct gaa gct ccc atc aca ggt tac atg ttt ggg aaa gga Ile Ala Pro Pro Glu Ala Pro Ile Thr Gly Tyr Met Phe Gly Lys Gly 435 440 445	1343
atc tac ttt gct gac atg tct tcc aag agt gcc aat tac tgc ttt gcc Ile Tyr Phe Ala Asp Met Ser Ser Lys Ser Ala Asn Tyr Cys Phe Ala 450 455 460	1391
tct cgc cta aag aat aca gga ctg ctg ctc tta tca gag gta gct cta Ser Arg Leu Lys Asn Thr Gly Leu Leu Leu Ser Glu Val Ala Leu 465 470 475	1439
ggg cag tgt aat gaa cta cta gag gcc aat cct aag gcc gaa gga ttg Gly Gln Cys Asn Glu Leu Leu Glu Ala Asn Pro Lys Ala Glu Gly Leu 480 485 490 495	1487
cct caa ggt aaa cat agc acc aag ggg ctg ggc aag atg gct ccc agt Leu Gln Gly Lys His Ser Thr Lys Gly Leu Gly Lys Met Ala Pro Ser 500 505 510	1535
tct gcc cac ttc gtc acc ctg aat ggg agt aca gtg cca tta gga cca Ser Ala His Phe Val Thr Leu Asn Gly Ser Thr Val Pro Leu Gly Pro 515 520 525	1583
gca agt gac aca gga att ctg aat cca gat ggt tat acc ctc aac tac Ala Ser Asp Thr Gly Ile Leu Asn Pro Asp Gly Tyr Thr Leu Asn Tyr 530 535 540	1631
aat gaa tat att gta tat aac ccc aac cag gtc cgt atg cggt tac ctt Asn Glu Tyr Ile Val Tyr Asn Pro Asn Gln Val Arg Met Arg Tyr Leu 545 550 555	1679
tta aag gtt cag ttt aat ttc ctt cag ctg tgg tga atgttgatat Leu Lys Val Gln Phe Asn Phe Leu Gln Leu Trp 560 565 570	1725

taaataaaacc agagatctga tcttcaagca agaaaataag cagtgttgta cttgtgaatt	1785
tttgtatatt ttatgtaata aaaactgtac aggtctaaaa aaaaaaaaaa aaaaaaaaa	1843

<210> 2
<211> 570
<212> PRT
<213> Homo sapiens

<400> 2

Met Ala Ala Arg Arg Arg Ser Thr Gly Gly Gly Arg Ala Arg Ala	
1 5 10 15	
Leu Asn Glu Ser Lys Arg Val Asn Asn Gly Asn Thr Ala Pro Glu Asp	
20 25 30	
Ser Ser Pro Ala Lys Lys Thr Arg Arg Cys Gln Arg Gln Glu Ser Lys	
35 40 45	
Lys Met Pro Val Ala Gly Gly Lys Ala Asn Lys Asp Arg Thr Glu Asp	
50 55 60	
Lys Gln Asp Glu Ser Val Lys Ala Leu Leu Lys Gly Lys Ala Pro	
65 70 75 80	
Val Asp Pro Glu Cys Thr Ala Lys Val Gly Lys Ala His Val Tyr Cys	
85 90 95	
Glu Gly Asn Asp Val Tyr Asp Val Met Leu Asn Gln Thr Asn Leu Gln	
100 105 110	
Phe Asn Asn Asn Lys Tyr Tyr Leu Ile Gln Leu Leu Glu Asp Asp Ala	
115 120 125	
Gln Arg Asn Phe Ser Val Trp Met Arg Trp Gly Arg Val Gly Lys Met	
130 135 140	
Gly Gln His Ser Leu Val Ala Cys Ser Gly Asn Leu Asn Lys Ala Lys	
145 150 155 160	
Glu Ile Phe Gln Lys Lys Phe Leu Asp Lys Thr Lys Asn Asn Trp Glu	
165 170 175	
Asp Arg Glu Lys Phe Glu Lys Val Pro Gly Lys Tyr Asp Met Leu Gln	
180 185 190	
Met Asp Tyr Ala Thr Asn Thr Gln Asp Glu Glu Glu Thr Lys Lys Glu	
195 200 205	
Glu Ser Leu Lys Ser Pro Leu Lys Pro Glu Ser Gln Leu Asp Leu Arg	
210 215 220	
Val Gln Glu Leu Ile Lys Leu Ile Cys Asn Val Gln Ala Met Glu Glu	
225 230 235 240	
Met Met Met Glu Met Lys Tyr Asn Thr Lys Lys Ala Pro Leu Gly Lys	
245 250 255	

Leu Thr Val Ala Gln Ile Lys Ala Gly Tyr Gln Ser Leu Lys Lys Ile
 260 265 270
 Glu Asp Cys Ile Arg Ala Gly Gln His Gly Arg Ala Leu Met Glu Ala
 275 280 285
 Cys Asn Glu Phe Tyr Thr Arg Ile Pro His Asp Phe Gly Leu Arg Thr
 290 295 300
 Pro Pro Leu Ile Arg Thr Gln Lys Glu Leu Ser Glu Lys Ile Gln Leu
 305 310 315 320
 Leu Glu Ala Leu Gly Asp Ile Glu Ile Ala Ile Lys Leu Val Lys Thr
 325 330 335
 Glu Leu Gln Ser Pro Glu His Pro Leu Asp Gln His Tyr Arg Asn Leu
 340 345 350
 His Cys Ala Leu Arg Pro Leu Asp His Glu Ser Tyr Glu Phe Lys Val
 355 360 365
 Ile Ser Gln Tyr Leu Gln Ser Thr His Ala Pro Thr His Ser Asp Tyr
 370 375 380
 Thr Met Thr Leu Leu Asp Leu Phe Glu Val Glu Lys Asp Gly Glu Lys
 385 390 395 400
 Glu Ala Phe Arg Glu Asp Leu His Asn Arg Met Leu Leu Trp His Gly
 405 410 415
 Ser Arg Met Ser Asn Trp Val Gly Ile Leu Ser His Gly Leu Arg Ile
 420 425 430
 Ala Pro Pro Glu Ala Pro Ile Thr Gly Tyr Met Phe Gly Lys Gly Ile
 435 440 445
 Tyr Phe Ala Asp Met Ser Ser Lys Ser Ala Asn Tyr Cys Phe Ala Ser
 450 455 460
 Arg Leu Lys Asn Thr Gly Leu Leu Leu Ser Glu Val Ala Leu Gly
 465 470 475 480
 Gln Cys Asn Glu Leu Leu Glu Ala Asn Pro Lys Ala Glu Gly Leu Leu
 485 490 495
 Gln Gly Lys His Ser Thr Lys Gly Leu Gly Lys Met Ala Pro Ser Ser
 500 505 510
 Ala His Phe Val Thr Leu Asn Gly Ser Thr Val Pro Leu Gly Pro Ala
 515 520 525
 Ser Asp Thr Gly Ile Leu Asn Pro Asp Gly Tyr Thr Leu Asn Tyr Asn
 530 535 540
 Glu Tyr Ile Val Tyr Asn Pro Asn Gln Val Arg Met Arg Tyr Leu Leu
 545 550 555 560
 Lys Val Gln Phe Asn Phe Leu Gln Leu Trp
 565 570

<210> 3
<211> 2265
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (242)...(1843)
<223> product is Poly ADP Ribose Polymerase; from uterus tissue

<400> 3

tggactgg	cgcctgactc	ggcctgcccc	agcctctgct	tcacccact	ggtggccaaa	60
tagccatgt	ctaattcccc	acacaagctc	atccccggcc	tctgggattg	ttgggaattc	120
tctccataat	tcacgcctga	ggctcatgga	gagttgctag	acctggact	gccctggag	180
gocgcacacaa	ccaggccggg	tggcagccag	gacctctccc	atgtccctgc	ttttcttggc	240
c atg gct cca aag ccg aag ccc tgg gta cag act gag ggc cct gag						286
Met Ala Pro Lys Pro Lys Pro Trp Val Gln Thr Glu Gly Pro Glu						
1	5	10	15			
aag aag aag ggc cgg cag gca gga agg gag gag gac ccc ttc cgc tcc						334
Lys Lys Lys Gly Arg Gln Ala Gly Arg Glu Glu Asp Pro Phe Arg Ser						
20	25	30				
acc gct gag gcc ctc aag gcc ata ccc gca gag aag cgc ata atc cgc						382
Thr Ala Glu Ala Leu Lys Ala Ile Pro Ala Glu Lys Arg Ile Ile Arg						
35	40	45				
gtg gat cca aca tgt cca ctc agc agc aac ccc ggg acc cag gtg tat						430
Val Asp Pro Thr Cys Pro Leu Ser Ser Asn Pro Gly Thr Gln Val Tyr						
50	55	60				
gag gac tac aac tgc acc ctg aac cag acc aac atc gag aac aac aac						478
Glu Asp Tyr Asn Cys Thr Leu Asn Gln Thr Asn Ile Glu Asn Asn Asn						
65	70	75				
aac aag ttc tac atc atc cag ctg ctc caa gac agc aac cgc ttc ttc						526
Asn Lys Phe Tyr Ile Ile Gln Leu Leu Gln Asp Ser Asn Arg Phe Phe						
80	85	90	95			
acc tgc tgg aac cgc tgg ggc cgt gtg gga gag gtc ggc cag tca aag						574
Thr Cys Trp Asn Arg Trp Gly Arg Val Gly Glu Val Gly Gln Ser Lys						
100	105	110				
atc aac cac ttc aca agg cta gaa gat gca aag aag gac ttt gag aag						622
Ile Asn His Phe Thr Arg Leu Glu Asp Ala Lys Lys Asp Phe Glu Lys						
115	120	125				
aaa ttt cgg gaa aag acc aag aac aac tgg gca gag cgg gac cac ttt						670
Lys Phe Arg Glu Lys Thr Lys Asn Asn Trp Ala Glu Arg Asp His Phe						
130	135	140				
gtg tct cac ccg ggc aag tac aca ctt atc gaa gta cag gca gag gat						718
Val Ser His Pro Gly Lys Tyr Thr Leu Glu Val Gln Ala Glu Asp						

145	150	155	
gag gcc cag gaa gct gtg gtg aag gtg gac aga ggc cca gtg agg act Glu Ala Gln Glu Ala Val Val Lys Val Asp Arg Gly Pro Val Arg Thr 160 165 170 175			766
gtg act aag cgg gtg cag ccc tgc tcc ctg gac cca gcc acg cag aag Val Thr Lys Arg Val Gln Pro Cys Ser Leu Asp Pro Ala Thr Gln Lys 180 185 190			814
ctc atc act aac atc ttc agc aag gag atg ttc aag aac acc atg gcc Leu Ile Thr Asn Ile Phe Ser Lys Glu Met Phe Lys Asn Thr Met Ala 195 200 205			862
ctc atg gac ctg gat gtg aag aag atg ccc ctg gga aag ctg agc aag Leu Met Asp Leu Asp Val Lys Lys Met Pro Leu Gly Lys Leu Ser Lys 210 215 220			910
caa cag att gca cgg ggt ttc gag gcc ttg gag gcg ctg gag gag gcc Gln Gln Ile Ala Arg Gly Phe Glu Ala Leu Glu Ala Leu Glu Ala 225 230 235			958
ctg aaa ggc ccc acg qat ggt ggc caa agc ctg gag gag ctg tcc tca Leu Lys Gly Pro Thr Asp Gly Gln Ser Leu Glu Glu Leu Ser Ser 240 245 250 255			1006
cac ttt tac acc gtc atc ccg cac aac ttc ggc cac agc cag ccc ccg His Phe Tyr Thr Val Ile Pro His Asn Phe Gly His Ser Gln Pro Pro 260 265 270			1054
ccc atc aat tcc cct gag ctt ctg cag gcc aag aag gac atg ctg ctg Pro Ile Asn Ser Pro Glu Leu Leu Gln Ala Lys Lys Asp Met Leu Leu 275 280 285			1102
gtg ctg gcg gac atc gag ctg gcc cag gcc ctg cag gca gtc tct gag Val Leu Ala Asp Ile Glu Leu Ala Gln Ala Leu Gln Ala Val Ser Glu 290 295 300			1150
cag gag aag acg gtg gag gag gtg cca cac ccc ctg gac cga gac tac Gln Glu Lys Thr Val Glu Val Pro His Pro Leu Asp Arg Asp Tyr 305 310 315			1198
cag ctt ctc aag tgc cag ctg cag ctg cta gac tct gga gca cct gag Gln Leu Leu Lys Cys Gln Leu Gln Leu Asp Ser Gly Ala Pro Glu 320 325 330 335			1246
tac aag gtg ata cag acc tac tta gaa cag act ggc agc aac cac agg Tyr Lys Val Ile Gln Thr Tyr Leu Glu Gln Thr Gly Ser Asn His Arg 340 345 350			1294
tgc cct aca ctt caa cac atc tgg aaa gta aac caa gaa ggg gag gaa Cys Pro Thr Leu Gln His Ile Trp Lys Val Asn Gln Glu Gly Glu Glu 355 360 365			1342
gac aga ttc cag gcc cac tcc aaa ctg ggt aat cgg aag ctg ctg tgg Asp Arg Phe Gln Ala His Ser Lys Leu Gly Asn Arg Lys Leu Leu Trp 370 375 380			1390
cat ggc acc aac atg gcc gtg gtg gcc gcc atc ctc act agt ggg ctc			1438

His Gly Thr Asn Met Ala Val Val Ala Ala Ile Leu Thr Ser Gly Leu			
385	390	395	
cgc atc atg cca cat tct ggt ggg cgt gtt ggc aag ggc atc tac ttt			1486
Arg Ile Met Pro His Ser Gly Gly Arg Val Gly Lys Gly Ile Tyr Phe			
400	405	410	415
gcc tca gag aac agc aag tca gct gga tat gtt att ggc atg aag tgt			1534
Ala Ser Glu Asn Ser Lys Ser Ala Gly Tyr Val Ile Gly Met Lys Cys			
420	425	430	
ggg gcc cac cat gtc ggc tac atg ttc ctg ggt gag gtg gcc ctg ggc			1582
Gly Ala His His Val Gly Tyr Met Phe Leu Gly Glu Val Ala Leu Gly			
435	440	445	
aga gag cac cat atc aac acg gac aac ccc agc ttg aag agc cca cct			1630
Arg Glu His His Ile Asn Thr Asp Asn Pro Ser Leu Lys Ser Pro Pro			
450	455	460	
cct ggc ttc gac agt gtc att gcc cga ggc cac acc gag cct gat ccg			1678
Pro Gly Phe Asp Ser Val Ile Ala Arg Gly His Thr Glu Pro Asp Pro			
465	470	475	
acc cag gac act gag ttg gag ctg gat ggc cag caa gtg gtg gtg ccc			1726
Thr Gln Asp Thr Glu Leu Glu Leu Asp Gly Gln Gln Val Val Val Pro			
480	485	490	495
cag ggc cag cct gtg ccc tgc cca gag ttc agc agc tcc aca ttc tcc			1774
Gln Gly Gln Pro Val Pro Cys Pro Glu Phe Ser Ser Ser Thr Phe Ser			
500	505	510	
cag agc gag tac ctc atc tac cag gag agc cag tgt cgc ctg cgc tac			1822
Gln Ser Glu Tyr Leu Ile Tyr Gln Glu Ser Gln Cys Arg Leu Arg Tyr			
515	520	525	
ctg ctg gag gtc cac ctc tga gtgccccccc tgtccccccgg ggtcctgcaa			1873
Leu Leu Glu Val His Leu			
530			
ggctggactg tgatcttcaa tcatcctgcc catctctggc acccctatat cactccttt			1933
tttcaagaat acaatacgtt gttgttaact atagtcacca tgctgtacaa gatccctgaa			1993
cttatgcctc ctaactgaaa ttttgtattc tttgacacat ctgcccagtc ccttcctcc			2053
cagcccatgg taaccagcat ttgactctt acttgtataa gggcagctt tataggttcc			2113
acatgttaagt gagatcatgc agtgttgtc tttctgtgcc tggcttattt cactcagcat			2173
aatgtgcacc gggttcaccc atgtttcat aaatgacaag atttcctcct taaaaaaaaa			2233
aaaaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aa			2265
<210> 4			
<211> 533			
<212> PRT			
<213> Homo sapiens			

<400> 4

Met	Ala	Pro	Lys	Pro	Lys	Pro	Trp	Val	Gln	Thr	Glu	Gly	Pro	Glu	Lys
1				5					10				15		
Lys	Lys	Gly	Arg	Gln	Ala	Gly	Arg	Glu	Glu	Asp	Pro	Phe	Arg	Ser	Thr
			20				25					30			
Ala	Glu	Ala	Leu	Lys	Ala	Ile	Pro	Ala	Glu	Lys	Arg	Ile	Ile	Arg	Val
	35					40					45				
Asp	Pro	Thr	Cys	Pro	Leu	Ser	Ser	Asn	Pro	Gly	Thr	Gln	Val	Tyr	Glu
	50				55					60					
Asp	Tyr	Asn	Cys	Thr	Leu	Asn	Gln	Thr	Asn	Ile	Glu	Asn	Asn	Asn	Asn
	65				70				75			80			
Lys	Phe	Tyr	Ile	Ile	Gln	Leu	Leu	Gln	Asp	Ser	Asn	Arg	Phe	Phe	Thr
			85				90					95			
Cys	Trp	Asn	Arg	Trp	Gly	Arg	Val	Gly	Glu	Val	Gly	Gln	Ser	Lys	Ile
					105					110					
Asn	His	Phe	Thr	Arg	Leu	Glu	Asp	Ala	Lys	Lys	Asp	Phe	Glu	Lys	Lys
	115					120					125				
Phe	Arg	Glu	Lys	Thr	Lys	Asn	Asn	Trp	Ala	Glu	Arg	Asp	His	Phe	Val
	130					135				140					
Ser	His	Pro	Gly	Lys	Tyr	Thr	Leu	Ile	Glu	Val	Gln	Ala	Glu	Asp	Glu
	145					150			155			160			
Ala	Gln	Glu	Ala	Val	Val	Lys	Val	Asp	Arg	Gly	Pro	Val	Arg	Thr	Val
				165				170				175			
Thr	Lys	Arg	Val	Gln	Pro	Cys	Ser	Leu	Asp	Pro	Ala	Thr	Gln	Lys	Leu
			180				185					190			
Ile	Thr	Asn	Ile	Phe	Ser	Lys	Glu	Met	Phe	Lys	Asn	Thr	Met	Ala	Leu
			195				200				205				
Met	Asp	Leu	Asp	Val	Lys	Lys	Met	Pro	Leu	Gly	Lys	Leu	Ser	Lys	Gln
			210			215				220					
Gln	Ile	Ala	Arg	Gly	Phe	Glu	Ala	Leu	Glu	Ala	Leu	Glu	Ala	Leu	
	225				230				235			240			
Lys	Gly	Pro	Thr	Asp	Gly	Gly	Gln	Ser	Leu	Glu	Glu	Leu	Ser	Ser	His
			245				250				255				
Phe	Tyr	Thr	Val	Ile	Pro	His	Asn	Phe	Gly	His	Ser	Gln	Pro	Pro	Pro
			260				265				270				
Ile	Asn	Ser	Pro	Glu	Leu	Leu	Gln	Ala	Lys	Lys	Asp	Met	Leu	Leu	Val
			275				280				285				
Leu	Ala	Asp	Ile	Glu	Leu	Ala	Gln	Ala	Leu	Gln	Ala	Val	Ser	Glu	Gln
			290				295			300					

Glu Lys Thr Val Glu Glu Val Pro His Pro Leu Asp Arg Asp Tyr Gln
 305 310 315 320

Leu Leu Lys Cys Gln Leu Gln Leu Leu Asp Ser Gly Ala Pro Glu Tyr
 325 330 335

Lys Val Ile Gln Thr Tyr Leu Glu Gln Thr Gly Ser Asn His Arg Cys
 340 345 350

Pro Thr Leu Gln His Ile Trp Lys Val Asn Gln Glu Gly Glu Glu Asp
 355 360 365

Arg Phe Gln Ala His Ser Lys Leu Gly Asn Arg Lys Leu Leu Trp His
 370 375 380

Gly Thr Asn Met Ala Val Val Ala Ala Ile Leu Thr Ser Gly Leu Arg
 385 390 395 400

Ile Met Pro His Ser Gly Gly Arg Val Gly Lys Gly Ile Tyr Phe Ala
 405 410 415

Ser Glu Asn Ser Lys Ser Ala Gly Tyr Val Ile Gly Met Lys Cys Gly
 420 425 430

Ala His His Val Gly Tyr Met Phe Leu Gly Glu Val Ala Leu Gly Arg
 435 440 445

Glu His His Ile Asn Thr Asp Asn Pro Ser Leu Lys Ser Pro Pro Pro
 450 455 460

Gly Phe Asp Ser Val Ile Ala Arg Gly His Thr Glu Pro Asp Pro Thr
 465 470 475 480

Gln Asp Thr Glu Leu Glu Leu Asp Gly Gln Gln Val Val Val Pro Gln
 485 490 495

Gly Gln Pro Val Pro Cys Pro Glu Phe Ser Ser Ser Thr Phe Ser Gln
 500 505 510

Ser Glu Tyr Leu Ile Tyr Gln Glu Ser Gln Cys Arg Leu Arg Tyr Leu
 515 520 525

Leu Glu Val His Leu
 530

<210> 5
 <211> 2265
 <212> DNA
 <213> Homo sapiens

<220>
 <221> CDS
 <222> (221)...(1843)
 <223> product is Poly ADP Ribose Polymerase; from uterus tissue
 <400> 5

tgggactgggt cgcctgactc ggcctgcccc agcctctgct tcaccccaact ggtggccaaa

tagccgatgt ctaatcccc acacaagctc atccccggcc tctgggattg ttgggaattc	120
tctcccta at tcacgcctga ggctcatgga gagttgctag acctgggact gcccctgggag	180
gcmcacacaa ccaggccggg tggcagccag gacctctccc atg tcc ctg ctt ttc Met Ser Leu Leu Phe	235
1 5	
ttg gcc atg gct cca aag ccg aag ccc tgg gta cag act gag ggc cct Leu Ala Met Ala Pro Lys Pro Lys Pro Trp Val Gln Thr Glu Gly Pro	283
10 15 20	
gag aag aag aag ggc cg gca gga agg gag gag gac ccc ttc cgc Glu Lys Lys Lys Gly Arg Gln Ala Gly Arg Glu Glu Asp Pro Phe Arg	331
25 30 35	
tcc acc gct gag gcc ctc aag gcc ata ccc gca gag aag cgc ata atc Ser Thr Ala Glu Ala Leu Lys Ala Ile Pro Ala Glu Lys Arg Ile Ile	379
40 45 50	
cgc gtg gat cca aca tgt cca ctc agc agc aac ccc ggg acc cag gtg Arg Val Asp Pro Thr Cys Pro Leu Ser Ser Asn Pro Gly Thr Gln Val	427
55 60 65	
tat gag gac tac aac tgc acc ctg aac cag acc aac atc gag aac aac Tyr Glu Asp Tyr Asn Cys Thr Leu Asn Gln Thr Asn Ile Glu Asn Asn	475
70 75 80 85	
aac aac aag ttc tac atc atc cag ctg ctc caa gac agc aac cgc ttc Asn Asn Lys Phe Tyr Ile Ile Gln Leu Leu Gln Asp Ser Asn Arg Phe	523
90 95 100	
ttc acc tgc tgg aac cgc tgg ggc cgt gtg gga gag gtc ggc cag tca Phe Thr Cys Trp Asn Arg Trp Gly Arg Val Gly Glu Val Gly Gln Ser	571
105 110 115	
aag atc aac cac ttc aca agg cta gaa gat gca aag aag gac ttt gag Lys Ile Asn His Phe Thr Arg Leu Glu Asp Ala Lys Lys Asp Phe Glu	619
120 125 130	
aag aaa ttt cgg gaa aag acc aac aac tgg gca gag cgg gac cac Lys Lys Phe Arg Glu Lys Thr Lys Asn Asn Trp Ala Glu Arg Asp His	667
135 140 145	
ttt gtg tct cac ccc ggc aag tac aca ctt atc gaa gta cag gca gag Phe Val Ser His Pro Gly Lys Tyr Thr Leu Ile Glu Val Gln Ala Glu	715
150 155 160 165	
gat gag gcc cag gaa gct gtg gtg aag gtg gac aga ggc cca gtg agg Asp Glu Ala Glu Ala Val Val Lys Val Asp Arg Gly Pro Val Arg	763
170 175 180	
act gtg act aag cgg gtg cag ccc tgc tcc ctg gac cca gcc acg cag Thr Val Thr Lys Arg Val Gln Pro Cys Ser Leu Asp Pro Ala Thr Gln	811
185 190 195	
aag ctc atc act aac atc ttc agc aag gag atg ttc aag aac acc atg Lys Leu Ile Thr Asn Ile Phe Ser Lys Glu Met Phe Lys Asn Thr Met	859
200 205 210	

gcc ctc atg gac ctg gat gtg aag aag atg ccc ctg gga aag ctg agc Ala Leu Met Asp Leu Asp Val Lys Lys Met Pro Leu Gly Lys Leu Ser 215 220 225	907
aag caa cag att gca cgg ggt ttc gag gcc ttg gag gcg ctg gag gag Lys Gln Ile Ala Arg Gly Phe Glu Ala Leu Glu Ala Leu Glu Glu 230 235 240 245	955
gcc ctg aaa ggc ccc acg gat ggt ggc caa agc ctg gag gag ctg tcc Ala Leu Lys Gly Pro Thr Asp Gly Gly Gln Ser Leu Glu Glu Leu Ser 250 255 260	1003
tca cac ttt tac acc gtc atc ccg cac aac ttc ggc cac agc cag ccc Ser His Phe Tyr Thr Val Ile Pro His Asn Phe Gly His Ser Gln Pro 265 270 275	1051
ccg ccc atc aat tcc cct gag ctt ctg cag gcc aag aag gac atg ctg Pro Pro Ile Asn Ser Pro Glu Leu Leu Gln Ala Lys Lys Asp Met Leu 280 285 290	1099
ctg gtg ctg gcg gac atc gag ctg gcc cag gcc ctg cag gca gtc tct Leu Val Leu Ala Asp Ile Glu Leu Ala Gln Ala Leu Gln Ala Val Ser 295 300 305	1147
gag cag gag aag acg gtg gag gag gtg cca cac ccc ctg gac cga gac Glu Gln Glu Lys Thr Val Glu Glu Val Pro His Pro Leu Asp Arg Asp 310 315 320 325	1195
tac cag ctt ctc aag tgc cag ctg cag ctc gac tct gga gca cct Tyr Gln Leu Leu Lys Cys Gln Leu Gln Leu Leu Asp Ser Gly Ala Pro 330 335 340	1243
gag tac aag gtg ata cag acc tac tta gaa cag act ggc agc aac cac Glu Tyr Lys Val Ile Gln Thr Tyr Leu Glu Gln Thr Gly Ser Asn His 345 350 355	1291
agg tgc cct aca ctt caa cac atc tgg aaa gta aac caa gaa ggg gag Arg Cys Pro Thr Leu Gln His Ile Trp Lys Val Asn Gln Glu Gly Glu 360 365 370	1339
gaa gac aga ttc cag gcc cac tcc aaa ctg ggt aat cgg aag ctg ctg Glu Asp Arg Phe Gln Ala His Ser Lys Leu Gly Asn Arg Lys Leu Leu 375 380 385	1387
tgg cat ggc acc aac atg gcc gtg gtg gcc gcc atc ctc act agt ggg Trp His Gly Thr Asn Met Ala Val Val Ala Ala Ile Leu Thr Ser Gly 390 395 400 405	1435
ctc cgc atc atg cca cat tct ggt ggg cgt gtt ggc aag ggc atc tac Leu Arg Ile Met Pro His Ser Gly Gly Arg Val Gly Lys Gly Ile Tyr 410 415 420	1483
ttt gcc tca gag aac agc aag tca gct gga tat gtt att ggc atg aag Phe Ala Ser Glu Asn Ser Lys Ser Ala Gly Tyr Val Ile Gly Met Lys 425 430 435	1531
tgt ggg gcc cac cat gtc ggc tac atg ttc ctg ggt gag gtg gcc ctg Cys Gly Ala His His Val Gly Tyr Met Phe Leu Gly Glu Val Ala Leu 440 445 450	1579

ggc aga gag cac cat atc aac acg gac aac ccc agc ttg aag agc cca Gly Arg Glu His His Ile Asn Thr Asp Asn Pro Ser Leu Lys Ser Pro 455 460 465	1627
cct cct ggc ttc gac agt gtc att gcc cga ggc cac acc gag cct gat Pro Pro Gly Phe Asp Ser Val Ile Ala Arg Gly His Thr Glu Pro Asp 470 475 480 485	1675
ccg acc cag gac act gag ttg gag ctg gat ggc cag caa gtg gtg gtg Pro Thr Gln Asp Thr Glu Leu Glu Leu Asp Gly Gln Gln Val Val Val 490 495 500	1723
ccc cag ggc cag cct gtg ccc tgc cca gag ttc agc agc tcc aca ttc Pro Gln Gly Gln Pro Val Pro Cys Pro Glu Phe Ser Ser Thr Phe 505 510 515	1771
tcc cag agc gag tac ctc atc tac cag gag agc cag tgt cgc ctg cgc Ser Gln Ser Glu Tyr Leu Ile Tyr Gln Glu Ser Gln Cys Arg Leu Arg 520 525 530	1819
tac ctg ctg gag gtc cac ctc tga gtgccccccc tgccccccgg ggtcctgcaa Tyr Leu Leu Glu Val His Leu 535 540	1873
ggctggactg tgatcttcaa tcatcctgcc catctctggg acccctatat cactcctttt tttcaagaat acaatacggt gttgttaact atagtcacca tgctgtacaa gatccctgaa cttatgcctc ctaactgaaa ttttgtattc tttgacacat ctgcccagtc cctctctcc cagcccatgg taaccagcat ttgactctt acttgtataa gggcagctt tataaggttcc acatgttaagt gagatcatgc agtgtttgtc tttctgtgcc tggcttattt cactcagcat aatgtgcacc gggttcaccc atgtttcat aaatgacaag atttcctcct taaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aa	1933 1993 2053 2113 2173 2233 2265

<210> 6
<211> 540
<212> PRT
<213> Homo sapiens

<400> 6

Met Ser Leu Leu Phe Leu Ala Met Ala Pro Lys Pro Lys Pro Trp Val 1 5 10 15
Gln Thr Glu Gly Pro Glu Lys Lys Lys Gly Arg Gln Ala Gly Arg Glu 20 25 30
Glu Asp Pro Phe Arg Ser Thr Ala Glu Ala Leu Lys Ala Ile Pro Ala 35 40 45
Glu Lys Arg Ile Ile Arg Val Asp Pro Thr Cys Pro Leu Ser Ser Asn 50 55 60
Pro Gly Thr Gln Val Tyr Glu Asp Tyr Asn Cys Thr Leu Asn Gln Thr

65	70	75	80
Asn Ile Glu Asn Asn Asn Lys Phe Tyr Ile Ile Gln Leu Leu Gln			
85		90	95
Asp Ser Asn Arg Phe Phe Thr Cys Trp Asn Arg Trp Gly Arg Val Gly			
100		105	110
Glu Val Gly Gln Ser Lys Ile Asn His Phe Thr Arg Leu Glu Asp Ala			
115		120	125
Lys Lys Asp Phe Glu Lys Lys Phe Arg Glu Lys Thr Lys Asn Asn Trp			
130		135	140
Ala Glu Arg Asp His Phe Val Ser His Pro Gly Lys Tyr Thr Leu Ile			
145		150	155
Glu Val Gln Ala Glu Asp Glu Ala Gln Glu Ala Val Val Lys Val Asp			
165		170	175
Arg Gly Pro Val Arg Thr Val Thr Lys Arg Val Gln Pro Cys Ser Leu			
180		185	190
Asp Pro Ala Thr Gln Lys Leu Ile Thr Asn Ile Phe Ser Lys Glu Met			
195		200	205
Phe Lys Asn Thr Met Ala Leu Met Asp Leu Asp Val Lys Lys Met Pro			
210		215	220
Leu Gly Lys Leu Ser Lys Gln Gln Ile Ala Arg Gly Phe Glu Ala Leu			
225		230	235
Glu Ala Leu Glu Glu Ala Leu Lys Gly Pro Thr Asp Gly Gly Gln Ser			
245		250	255
Leu Glu Glu Leu Ser Ser His Phe Tyr Thr Val Ile Pro His Asn Phe			
260		265	270
Gly His Ser Gln Pro Pro Pro Ile Asn Ser Pro Glu Leu Leu Gln Ala			
275		280	285
Lys Lys Asp Met Leu Leu Val Leu Ala Asp Ile Glu Leu Ala Gln Ala			
290		295	300
Leu Gln Ala Val Ser Glu Gln Glu Lys Thr Val Glu Glu Val Pro His			
305		310	315
Pro Leu Asp Arg Asp Tyr Gln Leu Leu Lys Cys Gln Leu Gln Leu Leu			
325		330	335
Asp Ser Gly Ala Pro Glu Tyr Lys Val Ile Gln Thr Tyr Leu Glu Gln			
340		345	350
Thr Gly Ser Asn His Arg Cys Pro Thr Leu Gln His Ile Trp Lys Val			
355		360	365
Asn Gln Glu Gly Glu Glu Asp Arg Phe Gln Ala His Ser Lys Leu Gly			
370		375	380

Asn Arg Lys Leu Leu Trp His Gly Thr Asn Met Ala Val Val Ala Ala
385 390 395 400

Ile Leu Thr Ser Gly Leu Arg Ile Met Pro His Ser Gly Gly Arg Val
405 410 415

Gly Lys Gly Ile Tyr Phe Ala Ser Glu Asn Ser Lys Ser Ala Gly Tyr
420 425 430

Val Ile Gly Met Lys Cys Gly Ala His His Val Gly Tyr Met Phe Leu
435 440 445

Gly Glu Val Ala Leu Gly Arg Glu His His Ile Asn Thr Asp Asn Pro
450 455 460

Ser Leu Lys Ser Pro Pro Gly Phe Asp Ser Val Ile Ala Arg Gly
465 470 475 480

His Thr Glu Pro Asp Pro Thr Gln Asp Thr Glu Leu Glu Leu Asp Gly
485 490 495

Gln Gln Val Val Val Pro Gln Gly Gln Pro Val Pro Cys Pro Glu Phe
500 505 510

Ser Ser Ser Thr Phe Ser Gln Ser Glu Tyr Leu Ile Tyr Gln Glu Ser
515 520 525

Gln Cys Arg Leu Arg Tyr Leu Leu Glu Val His Leu
530 535 540

<210> 7

<211> 1740

<212> DNA

<213> Mus musculus

<220>

<221> CDS

<222> (112) ... (1710)

<400> 7

cccggttttc acttttctg ctgcctcggg gaacacctcg agccaaactgc ttcctaactc 60

agggtggca gaactgacgg gatctaagct tctgcatctc tgaggagaac c atg gct 117
Met Ala
1

cca aaa cga aag gcc tct gtg cag act gag ggc tcc aag aag cag cga 165
Pro Lys Arg Lys Ala Ser Val Gln Thr Glu Gly Ser Lys Lys Gln Arg
5 10 15

caa ggg aca gag gag gac agc ttc cgg tcc act gcc gag gct ctc 213
Gln Gly Thr Glu Glu Asp Ser Phe Arg Ser Thr Ala Glu Ala Leu
20 25 30

aga gca gca cct gct gat aat cgg gtc atc cgt gtg gac ccc tca tgt 261
Arg Ala Ala Pro Ala Asp Asn Arg Val Ile Arg Val Asp Pro Ser Cys
35 40 45 50

cca ttc agc cgg aac ccc ggg ata cag gtc cac gag gac tat gac tgt Pro Phe Ser Arg Asn Pro Gly Ile Gln Val His Glu Asp Tyr Asp Cys 55 60 65	309
acc ctg aac cag acc aac atc ggc aac aac aac aag ttc tat att Thr Leu Asn Gln Thr Asn Ile Gly Asn Asn Asn Lys Phe Tyr Ile 70 75 80	357
atc caa ctg ctg gag gag ggt agt cgc ttc ttc tgc tgg aat cgc tgg Ile Gln Leu Leu Glu Glu Gly Ser Arg Phe Phe Cys Trp Asn Arg Trp 85 90 95	405
ggc cgc gtg gga gag gtg ggc cag agc aag atg aac cac ttc acc tgc Gly Arg Val Gly Glu Val Gly Gln Ser Lys Met Asn His Phe Thr Cys 100 105 110	453
ctg gaa gat gca aag aag gac ttt aag aag aaa ttt tgg gag aag act Leu Glu Asp Ala Lys Lys Asp Phe Lys Lys Phe Trp Glu Lys Thr 115 120 125 130	501
aaa aac aaa tgg gag gag cgg gac cgt ttt gtg gcc cag ccc aac aag Lys Asn Lys Trp Glu Glu Arg Asp Arg Phe Val Ala Gln Pro Asn Lys 135 140 145	549
tac aca ctt ata gaa gtc cag gga gaa gca gag agc caa gag gct gta Tyr Thr Leu Ile Glu Val Gln Gly Glu Ala Glu Ser Gln Glu Ala Val 150 155 160	597
gtg aag gcc tta tct ccc cag gtg gac agc ggc cct gtg agg acc gtc Val Lys Ala Leu Ser Pro Gln Val Asp Ser Gly Pro Val Arg Thr Val 165 170 175	645
gtc aag ccc tgc tcc cta gac cct gcc acc cag aac ctt atc acc aac Val Lys Pro Cys Ser Leu Asp Pro Ala Thr Gln Asn Leu Ile Thr Asn 180 185 190	693
atc ttc agc aaa gag atg ttc aag aac gca atg acc ctc atg aac ctt Ile Phe Ser Lys Glu Met Phe Lys Asn Ala Met Thr Leu Met Asn Leu 195 200 205 210	741
gat gtg aag aag atg ccc ttg gga aag ctg acc aag cag cag att gcc Asp Val Lys Lys Met Pro Leu Gly Lys Leu Thr Lys Gln Gln Ile Ala 215 220 225	789
cgt ggc ttc gag gcc ttg gaa gct cta gag gag gcc atg aaa aac ccc Arg Gly Phe Glu Ala Leu Glu Ala Leu Glu Ala Met Lys Asn Pro 230 235 240	837
aca ggg gat ggc cag agc ctg gaa gag ctc tcc tcc tgc ttc tac act Thr Gly Asp Gly Gln Ser Leu Glu Glu Leu Ser Ser Cys Phe Tyr Thr 245 250 255	885
gtc atc cca cac aac ttc ggc cgc agc cga ccc ccg ccc atc aac tcc Val Ile Pro His Asn Phe Gly Arg Ser Arg Pro Pro Pro Ile Asn Ser 260 265 270	933
cct gat gtg ctt cag gcc aag aag gac atg ctg ctg gtg cta gcg gac Pro Asp Val Leu Gln Ala Lys Lys Asp Met Leu Leu Val Leu Ala Asp 275 280 285 290	981

atc gag ttg gcg cag acc ttg cag gca gcc cct ggg gag gag gag Ile Glu Leu Ala Gln Thr Leu Gln Ala Ala Pro Gly Glu Glu Glu 295 300 305	1029
aaa gtg gaa gag gtg cca cac cca ctg gat cga gac tac cag ctc ctc Lys Val Glu Glu Val Pro His Pro Leu Asp Arg Asp Tyr Gln Leu Leu 310 315 320	1077
agg tgc cag ctt caa ctg ctg gac tcc ggg gag tcc gag tac aag gca Arg Cys Gln Leu Gln Leu Leu Asp Ser Gly Glu Ser Glu Tyr Lys Ala 325 330 335	1125
ata cag acc tac ctg aaa cag act ggc aac agc tac agg tgc cca aac Ile Gln Thr Tyr Leu Lys Gln Thr Gly Asn Ser Tyr Arg Cys Pro Asn 340 345 350	1173
ctg cggtt tgg aaa gtg aac cga gaa ggg gag gga gac agg ttc Leu Arg His Val Trp Lys Val Asn Arg Glu Gly Glu Asp Arg Phe 355 360 365 370	1221
cag gcc cac tcc aaa ctg ggc aat cgg agg ctg ctg tgg cac ggc acc Gln Ala His Ser Lys Leu Gly Asn Arg Arg Leu Leu Trp His Gly Thr 375 380 385	1269
aat gtg gcc gtg gct gcc atc ctc acc agt ggg ctc cga atc atg Asn Val Ala Val Ala Ala Ile Leu Thr Ser Gly Leu Arg Ile Met 390 395 400	1317
cca cac tcg ggt ggt cgt gtt ggc aag ggt att tat ttt gcc tct gag Pro His Ser Gly Gly Arg Val Gly Lys Gly Ile Tyr Phe Ala Ser Glu 405 410 415	1365
aac agc aag tca gct ggc tat gtt acc acc atg cac tgt ggg ggc cac Asn Ser Lys Ser Ala Gly Tyr Val Thr Thr Met His Cys Gly His 420 425 430	1413
cag gtg ggc tac atg ttc ctg ggc gag gtg gcc ctc ggc aaa gag cac Gln Val Gly Tyr Met Phe Leu Gly Glu Val Ala Leu Gly Lys Glu His 435 440 445 450	1461
cac atc acc atc gat gac ccc agc ttg aag agt cca ccc cct ggc ttt His Ile Thr Ile Asp Asp Pro Ser Leu Lys Ser Pro Pro Pro Gly Phe 455 460 465	1509
gac agc gtc atc gcc cga ggc caa acc gag ccg gat ccc gcc cag gac Asp Ser Val Ile Ala Arg Gly Gln Thr Glu Pro Asp Pro Ala Gln Asp 470 475 480	1557
att gaa ctt gaa ctg gat ggg cag ccg gtg gtg ccc caa ggc ccg Ile Glu Leu Glu Leu Asp Gly Gln Pro Val Val Val Pro Gln Gly Pro 485 490 495	1605
cct gtg cag tgc ccg tca ttc aaa agc tcc agc ttc agc cag agt gaa Pro Val Gln Cys Pro Ser Phe Lys Ser Ser Ser Phe Ser Gln Ser Glu 500 505 510	1653
tac ctc ata tac aag gag agc cag tgt cgc ctg cgc tac ctg ctg gag Tyr Leu Ile Tyr Lys Glu Ser Gln Cys Arg Leu Arg Tyr Leu Leu Glu 515 520 525 530	1701

att cac ctc taagctgctt gccctcccta ggtccaagcc
Ile His Leu

1740

<210> 8
<211> 533
<212> PRT
<213> Mus musculus

<400> 8

Met	Ala	Pro	Lys	Arg	Lys	Ala	Ser	Val	Gln	Thr	Glu	Gly	Ser	Lys	Lys
1					5				10					15	
Gln	Arg	Gln	Gly	Thr	Glu	Glu	Glu	Asp	Ser	Phe	Arg	Ser	Thr	Ala	Glu
				20				25					30		
Ala	Leu	Arg	Ala	Ala	Pro	Ala	Asp	Asn	Arg	Val	Ile	Arg	Val	Asp	Pro
					35			40				45			
Ser	Cys	Pro	Phe	Ser	Arg	Asn	Pro	Gly	Ile	Gln	Val	His	Glu	Asp	Tyr
					50			55				60			
Asp	Cys	Thr	Leu	Asn	Gln	Thr	Asn	Ile	Gly	Asn	Asn	Asn	Asn	Lys	Phe
					65			70			75			80	
Tyr	Ile	Ile	Gln	Leu	Leu	Glu	Glu	Gly	Ser	Arg	Phe	Phe	Cys	Trp	Asn
					85			90				95			
Arg	Trp	Gly	Arg	Val	Gly	Glu	Val	Gly	Gln	Ser	Lys	Met	Asn	His	Phe
					100			105				110			
Thr	Cys	Leu	Glu	Asp	Ala	Lys	Lys	Asp	Phe	Lys	Lys	Phe	Trp	Glu	
					115			120			125				
Lys	Thr	Lys	Asn	Lys	Trp	Glu	Glu	Arg	Asp	Arg	Phe	Val	Ala	Gln	Pro
					130			135			140				
Asn	Lys	Tyr	Thr	Leu	Ile	Glu	Val	Gln	Gly	Glu	Ala	Glu	Ser	Gln	Glu
					145			150			155			160	
Ala	Val	Val	Lys	Ala	Leu	Ser	Pro	Gln	Val	Asp	Ser	Gly	Pro	Val	Arg
					165			170				175			
Thr	Val	Val	Lys	Pro	Cys	Ser	Leu	Asp	Pro	Ala	Thr	Gln	Asn	Leu	Ile
					180			185				190			
Thr	Asn	Ile	Phe	Ser	Lys	Glu	Met	Phe	Lys	Asn	Ala	Met	Thr	Leu	Met
					195			200			205				
Asn	Leu	Asp	Val	Lys	Lys	Met	Pro	Leu	Gly	Lys	Leu	Thr	Lys	Gln	Gln
					210			215			220				
Ile	Ala	Arg	Gly	Phe	Glu	Ala	Leu	Glu	Ala	Leu	Glu	Glu	Ala	Met	Lys
					225			230			235			240	
Asn	Pro	Thr	Gly	Asp	Gly	Gln	Ser	Leu	Glu	Glu	Leu	Ser	Ser	Cys	Phe
					245			250			255				

Tyr Thr Val Ile Pro His Asn Phe Gly Arg Ser Arg Pro Pro Pro Ile
 260 265 270
 Asn Ser Pro Asp Val Leu Gln Ala Lys Lys Asp Met Leu Leu Val Leu
 275 280 285
 Ala Asp Ile Glu Leu Ala Gln Thr Leu Gln Ala Ala Pro Gly Glu Glu
 290 295 300
 Glu Glu Lys Val Glu Glu Val Pro His Pro Leu Asp Arg Asp Tyr Gln
 305 310 315 320
 Leu Leu Arg Cys Gln Leu Gln Leu Leu Asp Ser Gly Glu Ser Glu Tyr
 325 330 335
 Lys Ala Ile Gln Thr Tyr Leu Lys Gln Thr Gly Asn Ser Tyr Arg Cys
 340 345 350
 Pro Asn Leu Arg His Val Trp Lys Val Asn Arg Glu Gly Glu Gly Asp
 355 360 365
 Arg Phe Gln Ala His Ser Lys Leu Gly Asn Arg Arg Leu Leu Trp His
 370 375 380
 Gly Thr Asn Val Ala Val Val Ala Ala Ile Leu Thr Ser Gly Leu Arg
 385 390 395 400
 Ile Met Pro His Ser Gly Gly Arg Val Gly Lys Gly Ile Tyr Phe Ala
 405 410 415
 Ser Glu Asn Ser Lys Ser Ala Gly Tyr Val Thr Thr Met His Cys Gly
 420 425 430
 Gly His Gln Val Gly Tyr Met Phe Leu Gly Glu Val Ala Leu Gly Lys
 435 440 445
 Glu His His Ile Thr Ile Asp Asp Pro Ser Leu Lys Ser Pro Pro Pro
 450 455 460
 Gly Phe Asp Ser Val Ile Ala Arg Gly Gln Thr Glu Pro Asp Pro Ala
 465 470 475 480
 Gln Asp Ile Glu Leu Glu Leu Asp Gly Gln Pro Val Val Val Pro Gln
 485 490 495
 Gly Pro Pro Val Gln Cys Pro Ser Phe Lys Ser Ser Ser Phe Ser Gln
 500 505 510
 Ser Glu Tyr Leu Ile Tyr Lys Glu Ser Gln Cys Arg Leu Arg Tyr Leu
 515 520 525
 Leu Glu Ile His Leu
 530

<210> 9
 <211> 1587
 <212> DNA
 <213> Mus musculus

<220>
<221> CDS
<222> (1)...(1584)

<400> 9

atg gct cca aaa cga aag gcc tct gtg cag act gag ggc tcc aag aag	48
Met Ala Pro Lys Arg Lys Ala Ser Val Gln Thr Glu Gly Ser Lys Lys	
1 5 10 15	
cag cga caa ggg aca gag gag gac agc ttc cgg tcc act gcc gag	96
Gln Arg Gln Gly Thr Glu Glu Asp Ser Phe Arg Ser Thr Ala Glu	
20 25 30	
gct ctc aga gca gca cct gct gat aat cgg gtc atc cgt gtg gac ccc	144
Ala Leu Arg Ala Ala Pro Ala Asp Asn Arg Val Ile Arg Val Asp Pro	
35 40 45	
tca tgt cca ttc agc cgg aac ccc ggg ata cag gtc cac gag gac tat	192
Ser Cys Pro Phe Ser Arg Asn Pro Gly Ile Gln Val His Glu Asp Tyr	
50 55 60	
gac tgt acc ctg aac cag acc aac atc ggc aac aac aac aag ttc	240
Asp Cys Thr Leu Asn Gln Thr Asn Ile Gly Asn Asn Asn Lys Phe	
65 70 75 80	
tat att atc caa ctg ctg gag gag ggt agt cgc ttc ttc tgc tgg aat	288
Tyr Ile Ile Gln Leu Leu Glu Glu Gly Ser Arg Phe Phe Cys Trp Asn	
85 90 95	
cgc tgg ggc cgc gtg gga gag gtg ggc cag agc aag atg aac cac ttc	336
Arg Trp Gly Arg Val Gly Glu Val Gly Gln Ser Lys Met Asn His Phe	
100 105 110	
acc tgc ctg gaa gat gca aag aag gac ttt aag aag aaa ttt tgg gag	384
Thr Cys Leu Glu Asp Ala Lys Asp Phe Lys Lys Phe Trp Glu	
115 120 125	
aag act aaa aac aaa tgg gag gag cgg gac cgt ttt gtg gcc cag ccc	432
Lys Thr Lys Asn Lys Trp Glu Glu Arg Asp Arg Phe Val Ala Gln Pro	
130 135 140	
aac aag tac aca ctt ata gaa gtc cag gga gaa gca gag agc caa gag	480
Asn Lys Tyr Thr Leu Ile Glu Val Gln Gly Glu Ala Glu Ser Gln Glu	
145 150 155 160	
gct gta gtg aag gtg gac agc ggc cct gtg agg acc gtg gtc aag ccc	528
Ala Val Val Lys Val Asp Ser Gly Pro Val Arg Thr Val Val Lys Pro	
165 170 175	
tgc tcc cta gac cct gcc acc cag aac ctt atc acc aac atc ttc agc	576
Cys Ser Leu Asp Pro Ala Thr Gln Asn Leu Ile Thr Asn Ile Phe Ser	
180 185 190	
aaa gag atg ttc aag aac gca atg acc ctc atg aac ctg gat gtg aag	624
Lys Glu Met Phe Lys Asn Ala Met Thr Leu Met Asn Leu Asp Val Lys	
195 200 205	
aag atg ccc ttg gga aag ctg acc aag cag cag att gcc cgt ggc ttc	672

Lys Met Pro Leu Gly Lys Leu Thr Lys Gln Gln Ile Ala Arg Gly Phe				
210	215	220		
gag gcc ttg gaa gct cta gag gag gcc atg aaa aac ccc aca ggg gat				720
Glu Ala Leu Glu Ala Leu Glu Glu Ala Met Lys Asn Pro Thr Gly Asp				
225	230	235	240	
ggc cag agc ctg gaa gag ctc tcc tcc tgc ttc tac act gtc atc cca				768
Gly Gln Ser Leu Glu Glu Leu Ser Ser Cys Phe Tyr Thr Val Ile Pro				
245	250	255		
cac aac ttc ggc cgc agc cga ccc ccg ccc atc aac tcc cct gat gtg				816
His Asn Phe Gly Arg Ser Arg Pro Pro Ile Asn Ser Pro Asp Val				
260	265	270		
ctt cag gcc aag aag gac atg ctg ctg gtg cta gcg gac atc gag ttg				864
Leu Gln Ala Lys Lys Asp Met Leu Leu Val Leu Ala Asp Ile Glu Leu				
275	280	285		
gcg cag acc ttg cag gca gcc cct ggg gag gag gag gag aaa gtg gaa				912
Ala Gln Thr Leu Gln Ala Ala Pro Gly Glu Glu Glu Lys Val Glu				
290	295	300		
gag gtg cca cac cca ctg gat cga gac tac cag ctc ctc agg tgc cag				960
Glu Val Pro His Pro Leu Asp Arg Asp Tyr Gln Leu Leu Arg Cys Gln				
305	310	315	320	
ctt caa ctg ctg gac tcc ggg gag tcc gag tac aag gca ata cag acc				1008
Leu Gln Leu Leu Asp Ser Gly Glu Ser Glu Tyr Lys Ala Ile Gln Thr				
325	330	335		
tac ctg aaa cag act ggc aac agc tac agg tgc cca aac ctg cgg cat				1056
Tyr Leu Lys Gln Thr Gly Asn Ser Tyr Arg Cys Pro Asn Leu Arg His				
340	345	350		
gtt tgg aaa gtg aac cga gaa ggg gag gga gac agg ttc cag gcc cac				1104
Val Trp Lys Val Asn Arg Glu Gly Glu Gly Asp Arg Phe Gln Ala His				
355	360	365		
tcc aaa ctg ggc aat cgg agg ctg ctg tgg cac ggc acc aat gtg gcc				1152
Ser Lys Leu Gly Asn Arg Arg Leu Leu Trp His Gly Thr Asn Val Ala				
370	375	380		
gtg gtg gct gcc atc ctc acc agt ggg ctc cga atc atg cca cac tcg				1200
Val Val Ala Ala Ile Leu Thr Ser Gly Leu Arg Ile Met Pro His Ser				
385	390	395	400	
ggt ggt cgt gtt ggc aag ggt att tat ttt gcc tct gag aac agc aag				1248
Gly Gly Arg Val Gly Lys Gly Ile Tyr Phe Ala Ser Glu Asn Ser Lys				
405	410	415		
tca gct ggc tat gtt acc acc atg cac tgt ggg ggc cac cag gtg ggc				1296
Ser Ala Gly Tyr Val Thr Met His Cys Gly Gly His Gln Val Gly				
420	425	430		
tac atg ttc ctg ggc gag gtg gcc ctc ggc aaa gag cac cac atc acc				1344
Tyr Met Phe Leu Gly Glu Val Ala Leu Gly Lys Glu His His Ile Thr				
435	440	445		

atc gat gac ccc agc ttg aag agt cca ccc cct ggc ttt gac agc gtc Ile Asp Asp Pro Ser Leu Lys Ser Pro Pro Pro Gly Phe Asp Ser Val 450 455 460	1392
atc gcc cga ggc caa acc gag ccg gat ccc gcc cag gac att gaa ctt Ile Ala Arg Gly Gln Thr Glu Pro Asp Pro Ala Gln Asp Ile Glu Leu 465 470 475 480	1440
gaa ctg gat ggg cag ccg gtg gtg ccc caa ggc ccg cct gtg cag Glu Leu Asp Gly Gln Pro Val Val Val Pro Gln Gly Pro Pro Val Gln 485 490 495	1488
tgc ccg tca ttc aaa agc tcc agc ttc agc cag agt gaa tac ctc ata Cys Pro Ser Phe Lys Ser Ser Phe Ser Gln Ser Glu Tyr Leu Ile 500 505 510	1536
tac aag gag agc cag tgt cgc ctg cgc tac ctg ctg gag att cac ctc Tyr Lys Glu Ser Gln Cys Arg Leu Arg Tyr Leu Leu Glu Ile His Leu 515 520 525	1584
taa	1587

<210> 10
<211> 528
<212> PRT
<213> Mus musculus

<400> 10

Met Ala Pro Lys Arg Lys Ala Ser Val Gln Thr Glu Gly Ser Lys Lys 1 5 10 15
Gln Arg Gln Gly Thr Glu Glu Asp Ser Phe Arg Ser Thr Ala Glu 20 25 30
Ala Leu Arg Ala Ala Pro Ala Asp Asn Arg Val Ile Arg Val Asp Pro 35 40 45
Ser Cys Pro Phe Ser Arg Asn Pro Gly Ile Gln Val His Glu Asp Tyr 50 55 60
Asp Cys Thr Leu Asn Gln Thr Asn Ile Gly Asn Asn Asn Lys Phe 65 70 75 80
Tyr Ile Ile Gln Leu Leu Glu Glu Gly Ser Arg Phe Phe Cys Trp Asn 85 90 95
Arg Trp Gly Arg Val Gly Glu Val Gly Gln Ser Lys Met Asn His Phe 100 105 110
Thr Cys Leu Glu Asp Ala Lys Lys Asp Phe Lys Lys Phe Trp Glu 115 120 125
Lys Thr Lys Asn Lys Trp Glu Glu Arg Asp Arg Phe Val Ala Gln Pro 130 135 140
Asn Lys Tyr Thr Leu Ile Glu Val Gln Gly Glu Ala Glu Ser Gln Glu 145 150 155 160

Glu Leu Asp Gly Gln Pro Val Val Val Pro Gln Gly Pro Pro Val Gln
 485 490 495

Cys Pro Ser Phe Lys Ser Ser Ser Phe Ser Gln Ser Glu Tyr Leu Ile
 500 505 510

Tyr Lys Glu Ser Gln Cys Arg Leu Arg Tyr Leu Leu Glu Ile His Leu
 515 520 525

<210> 11
<211> 18
<212> PRT
<213> artificial sequence

<220>
<223> NAD+ binding domain

<220>
<221> VARIANT
<222> (2)...(6), (9)...(11)
<223> any amino acid; residues 3 to 6 may be present or absent

<220>
<221> VARIANT
<222> (7)
<223> amino acid residue 7 is either Ser or Thr

<400> 11

Pro Xaa Xaa Xaa Xaa Xaa Xaa Gly Xaa Xaa Xaa Gly Lys Gly Ile Tyr
 1 5 10 15

Phe Ala

<210> 12
<211> 25
<212> PRT
<213> artificial sequence

<220>
<223> NAD+ binding domain

<220>
<221> VARIANT
<222> (1), (14)
<223> amino acid residues 1 and 14 are either Ser or Thr

<220>
<221> VARIANT
<222> (2), (7), (9)...(13), (16)...(18)
<223> may be any amino acid; 10-13 may be present or absent

<220>
<221> VARIANT
<222> (6)
<223> amino acid residue 6 is either Ile or Val

<400> 12

Xaa Xaa Gly Leu Arg Xaa Xaa Pro Xaa Xaa Xaa Xaa Xaa Xaa Gly Xaa			
1	5	10	15

Xaa Xaa Gly Lys Gly Ile Tyr Phe Ala	
20	25

<210> 13

<211> 49

<212> PRT

<213> artificial sequence

<220>

<223> NAD+ binding domain

<220>

<221> VARIANT

<222> (6), (16), (29)

<223> Ser or Thr

<220>

<221> VARIANT

<222> (7)...(13), (17), (22), (24)...(28), (31)...(33), (41)...(43), (48)

<223> may be any amino acid; residues 25-28 may be present or absent

<220>

<221> VARIANT

<222> 21

<223> Ile or Val

<400> 13

Leu Leu Trp His Gly Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Ile Leu Xaa			
1	5	10	15

Xaa Gly Leu Arg Xaa Xaa Pro Xaa Xaa Xaa Xaa Xaa Xaa Gly Xaa Xaa		
20	25	30

Xaa Gly Lys Gly Ile Tyr Phe Ala Xaa Xaa Xaa Ser Lys Ser Ala Xaa		
35	40	45

Tyr

<210> 14

<211> 22

<212> PRT

<213> artificial sequence

<220>

<223> leucine zipper motif

<220>

<221> VARIANT

<222> (1)

<223> Leu or Val

<220>
 <221> VARIANT
 <222> (2)...(7), (9)...(14), (16)...(21)
 <223> may be any amino acid

<400> 14

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Leu Xaa Xaa Xaa Xaa Xaa Xaa Xaa Leu Xaa
 1 5 10 15

Xaa Xaa Xaa Xaa Xaa Leu
 20

<210> 15
 <211> 37
 <212> PRT
 <213> artificial sequence

<220>
 <223> part-sequence motif 1

<220>
 <221> VARIANT
 <222> (21)
 <223> Asp or Glu

<220>
 <221> VARIANT
 <222> (2)...(10), (12)...(13), (15)...(16), (20), (22)...(32)
 <223> may be any amino acid; residue 32 may be present or absent

<400> 15

Leu Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Asn Xaa Xaa Tyr Xaa Xaa
 1 5 10 15

Gln Leu Leu Xaa
 20 25 30

Trp Gly Arg Val Gly
 35

<210> 16
 <211> 29
 <212> PRT
 <213> artificial sequence

<220>
 <223> part-sequence motif 2

<220>
 <221> VARIANT
 <222> (2)...(4), (6), (8)...(11), (14), (16), (18)...(22), (24)...(26), (28)
 <223> may be any amino acid

<400> 16

Ala Xaa Xaa Xaa Phe Xaa Lys Xaa Xaa Xaa Xaa Lys Thr Xaa Asn Xaa
 1 5 10 15

Trp Xaa Xaa Xaa Xaa Xaa Phe Xaa Xaa Xaa Pro Xaa Lys
 20 25

<210> 17

<211> 44

<212> PRT

<213> artificial sequence

<220>

<223> part-sequence motif 3

<220>

<221> VARIANT

<222> (2), (5)...(6), (8)...(16), (18)...(27), (33)...(35), (38)...(43)

<223> may be any amino acid

<220>

<221> VARIANT

<222> (4)

<223> Ile or Leu

<400> 17

Gln Xaa Leu Xaa Xaa Xaa Ile Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
 1 5 10 15

Met Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Pro Leu Gly Lys Leu
 20 25 30

Xaa Xaa Xaa Gln Ile Xaa Xaa Xaa Xaa Xaa Xaa Leu
 35 40

<210> 18

<211> 15

<212> PRT

<213> artificial sequence

<220>

<223> part-sequence motif 4

<220>

<221> VARIANT

<222> (4), (8), (11)...(13)

<223> may be any amino acid

<400> 18

Phe Tyr Thr Xaa Ile Pro His Xaa Phe Gly Xaa Xaa Xaa Pro Pro
 1 5 10 15

<210> 19

<211> 17

<212> PRT

<213> artificial sequence

<220>

<223> part-sequence motif 5

<220>

<221> VARIANT

<222> (2)...(4), (6)...(7), (9), (13), (15)...(16)

<223> may be any amino acid

<400> 19

Lys Xaa Xaa Xaa Leu Xaa Xaa Leu Xaa Asp Ile Glu Xaa Ala Xaa Xaa
 1 5 10 15

Leu

<210> 20

<211> 11

<212> PRT

<213> artificial sequence

<220>

<223> part-sequence motif 6

<220>

<221> VARIANT

<222> (2)...(4), (6)

<223> may be any amino acid

<400> 20

Gly Xaa Xaa Xaa Leu Xaa Glu Val Ala Leu Gly
 1 5 10

<210> 21

<211> 28

<212> PRT

<213> artificial sequence

<220>

<223> part-sequence motif 7

<220>

<221> VARIANT

<222> (2)...(3), (5)...(8), (10)...(12), (14)...(22), (24), (26)...(27)

<223> may be any amino acid; residues 21 and 22 may be present or absent

<400> 21

Gly Xaa Xaa Ser Xaa Xaa Xaa Gly Xaa Xaa Xaa Pro Xaa Xaa Xaa
 1 5 10 15

Xaa Xaa Xaa Xaa Xaa Leu Xaa Gly Xaa Xaa Val
 20 25

<210> 22
<211> 16
<212> PRT
<213> artificial sequence

<220>
<223> part-sequence motif 8

<220>
<221> VARIANT
<222> (2)
<223> Tyr or Phe

<220>
<221> VARIANT
<222> (3)...(4), (6)...(8), (10)...(13)
<223> may be any amino acid

<400> 22

Glu	Xaa	Xaa	Xaa	Tyr	Xaa	Xaa	Xaa	Gln	Xaa	Xaa	Xaa	Xaa	Tyr	Leu	Leu
1					5				10					15	

<210> 23
<211> 20
<212> PRT
<213> artificial sequence

<220>
<223> synthetic sequence for antibody production

<400> 23

Met	Ala	Ala	Arg	Arg	Arg	Arg	Ser	Thr	Gly	Gly	Gly	Arg	Ala	Arg	Ala
1					5				10				15		

Leu	Asn	Glu	Ser
		20	

<210> 24
<211> 20
<212> PRT
<213> artificial sequence

<220>
<223> synthetic sequence for antibody production

<400> 24

Lys	Thr	Glu	Leu	Gln	Ser	Pro	Glu	His	Pro	Leu	Asp	Gln	His	Tyr	Arg
1					5				10				15		

Asn	Leu	His	Cys
		20	

<210> 25
<211> 21
<212> PRT
<213> artificial sequence

<220>
<223> synthetic sequence for antibody production

<400> 25

Cys Lys Gly Arg Gln Ala Gly Arg Glu Glu Asp Pro Phe Arg Ser Thr
1 5 10 15

Ala Glu Ala Leu Lys
20

<210> 26
<211> 20
<212> PRT
<213> artificial sequence

<220>
<223> synthetic sequence for antibody production

<400> 26

Cys Lys Gln Gln Ile Ala Arg Gly Phe Glu Ala Leu Glu Ala Leu Glu
1 5 10 15

Glu Ala Leu Lys
20

<210> 27
<211> 19
<212> PRT
<213> artificial sequence

<220>
<223> synthetic sequence for antibody production

<400> 27

Lys Gln Gln Ile Ala Arg Gly Phe Glu Ala Leu Glu Ala Leu Glu Glu
1 5 10 15

Ala Leu Lys

<210> 28
<211> 19
<212> PRT
<213> Mus musculus

<400> 28

Lys Gln Gln Ile Ala Arg Gly Phe Glu Ala Leu Glu Ala Leu Glu Glu
1 5 10 15

Ala Met Lys

<210> 29
<211> 7
<212> PRT
<213> artificial sequence

<220>
<223> NAD+ binding domain

<220>
<221> VARIANT
<222> (2)...(4)
<223> may be any amino acid residue

<400> 29

Gly Xaa Xaa Xaa Gly Lys Gly
1 5

<210> 30
<211> 38
<212> PRT
<213> Artificial Sequence

<220>
<223> PARP zinc finger sequence motif

<220>
<221> VARIANT
<222> (2)...(3), (5)...(34), (36)...(37)
<223> may be any amino acid; residues 33 and 34 may be present or absent

<400> 30

Cys Xaa Xaa Cys Xaa
1 5 10 15

Xaa
20 25 30

Xaa Xaa His Xaa Xaa Cys
35

<210> 31
<211> 10
<212> PRT
<213> Arabidopsis thaliana

<400> 31

Ala Ala Val Leu Asp Gln Trp Ile Pro Asp
1 5 10

<210> 32

<211> 39
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (1) . . . (39)

<400> 32

gta tgc cag gaa ggt cat ggg cca gca aaa ggg tct ctg
Gly Met Pro Gly Arg Ser Trp Ala Ser Lys Arg Val Ser
1 5 10

39

<210> 33
<211> 13
<212> PRT
<213> Homo sapiens

<400> 33

Gly Met Pro Gly Arg Ser Trp Ala Ser Lys Arg Val Ser
1 5 10