Лабораторная работы 2.4.1

Старостин Александр, Б01-401 $28 \ \Phi {\rm евраля}, \ 2025 \ {\rm год}$

Определение теплоты испарения жидкости

1 Аннотация

Цель работы: 1) измерение давления насыщенного пара жидкости при разной температуре; 2) вычисление по полученным данным теплоты испарения с помощью уравнения Клайперона-Клаузиса.

В работе используются: термостат; герметический сосуд, заполненный исследуемой жидкостью; отсечённый микроскоп.

2 Теоретические сведения

Теплоту испарения жидкости можно определить из формулы Клайперона-Клаузиса (описание кривой фазового перехода):

$$\frac{dP}{dT} = \frac{L}{T(V_2 - V_1)},\tag{1}$$

где P - давление насыщенного пара жидкости при абсолютной температуре жидкости T, L - теплота парообразования, V_2 - объём пара, V_1 - объём жидкости.

В формуле (1) L, V_1 , и V_2 должны относиться к одному и тому же количеству вещества. В нашем случае к 1 молю.

При нашей точности опыта V_1 в (1) можно пренебречь и $V_2=V$

Уравнение Вандер-Ваальса:

$$(P + \frac{a}{V^2})(V - b) = RT. \tag{2}$$

Коэффициентами a и b можно пренебречь, тк b одно порядка с V_1 , а a при давлении ниже атмосферного вносит малую ошибки (при пренебрежении).

Получаем, что:

$$V = \frac{RT}{P}. (3)$$

Подставляя (3) в (1), пренебрегая V_1 и выражая L, получаем:

$$L = \frac{RT^2}{P} \frac{dP}{dT} = -R \frac{d(\ln P)}{d(1/T)}.$$
 (4)

Используя (1) и (4) и найдя отношения через графики, можно найти значение L

3 Установка

Схема установки:

Рисунок 1: Схема установки для определения теплоты испарения.

В запаянной трубке 13 находится исследуемая жидкость 14 (в нашем случае спирт). В сосуде В находится вода. Меняя температуру воды с помощью термостата A (температура не должны превышать $40^{\circ}C$, тк при

такой температуре в наших условиях спирт начнёт закипать), мы будем менять давление насыщенного пара в колбе 13 (увеличивая T, мы будем увеличивать $P_{\text{нас}}$). И по разнице высот столбиков на манометре 15 мы смодем измерить $P_{\text{нас}}$. Сделать это можно при помощи микроскопа 16 (по нему будем определять границы столбцов) и электронного измерительного прибора 17 (он будет фиксировать длину сдвига микроскопа, а следовательно, и мерить разницу высот).

4 Ход работы

4.1 Измерение начальных условий

В начальный момоент времени:

$$\Delta H = |H_2 - H_1| = (44.45 \pm 0.03 * \sqrt{2}) \text{ mm} \approx (44.45 \pm 0.04) \text{ mm},$$

$$\sigma_{\Delta H} = 0.04 \text{ mm},$$

$$t_0 = (20.21 \pm 0.03)^{\circ}C,$$

$$\sigma_t = 0.03^{\circ}C,$$

$$\sigma_T = 0.03K,$$

Вещество в колбе - спирт,

$$\begin{split} R &= (8.31 \pm 0.01) \frac{\mathcal{J}_{\text{K}}}{\text{K}^*_{\text{MOJIb}}}, \\ \sigma_R &= 0.01 \frac{\mathcal{J}_{\text{K}}}{\text{K}^*_{\text{MOJIb}}}, \\ g &= (9.8 \pm 0.1) \frac{\text{M}}{\text{c}^2}, \\ \sigma_g &= 0.1 \frac{\text{M}}{\text{c}^2}, \\ \rho_{\text{pT}} &= (13595.1 \pm 0.1) \frac{\text{K}\Gamma}{\text{M}^3}, \\ \sigma_{\rho_{\text{pT}}} &= 0.1 \frac{\text{K}\Gamma}{\text{M}^3}, \\ P &= P_{\text{Hac}} = \rho_{\text{pT}} g \Delta H, \\ \sigma_P &= P \sqrt{(\frac{\sigma_{\Delta H}}{\Delta H})^2 + (\frac{\sigma_g}{g})^2 + (\frac{\sigma_{\rho_{\text{pT}}}}{\rho_{\text{pT}}})^2}. \end{split}$$

4.2 Измерения при нагревании

Проведём измерения при нагревании:

$t^{\circ}C$	T, K	H, mm	P , Πa	1/T , $1/K$	lnP	L, Дж/моль
24.00	297.15	54.7	7287.8	0.003365	8.89	54368.9
25.00	298.15	57.5	7660.8	0.003354	8.94	52070.1
26.00	299.15	60.7	8083.2	0.003343	9.00	49681.0
27.00	300.15	64.5	8593.5	0.003332	9.06	47043.9
28.00	301.15	69.7	9280.9	0.003320	9.14	43849.9
29.00	302.15	73.1	9736.6	0.003310	9.18	42075.9
30.00	303.15	77.1	10277.5	0.003299	9.24	40125.6
31.00	304.15	81.2	10822.4	0.003288	9.29	38357.1
32.00	305.15	85.7	11423.3	0.003277	9.34	36578.8
33.00	306.15	90.0	11990.9	0.003266	9.39	35076.2
34.00	307.15	95.4	12713.0	0.003256	9.45	33300.3
35.00	308.15	100.7	13417.8	0.003245	9.50	31756.9

Таблица 1: измерения при нагревании

L в каждой ситуации вычислялось по левой части формулы (4) уже после определения отношения $\frac{dP}{dT}$ по графику P от T.

4.3 Измерения при охлаждении

Проведём измерения при охлаждении:

$t^{\circ}C$	T, K	H, mm	Р, Па	1/T , $1/K$	lnP	L, Дж/моль
35.00	308.15	100.7	13417.8	0.003245	9.50	31756.9
34.00	307.15	96.0	12786.3	0.003256	9.46	33109.4
33.00	306.15	91.1	12130.8	0.003266	9.40	34671.7
32.00	305.15	87.0	11588.5	0.003277	9.36	36057.3
31.00	304.15	81.5	10854.4	0.003288	9.29	38244.1
30.00	303.15	77.8	10366.8	0.003299	9.25	39780.1
29.00	302.15	73.1	9739.3	0.003310	9.18	42064.3
28.00	301.15	68.7	9158.4	0.003320	9.12	44436.8
27.00	300.15	65.2	8689.4	0.003332	9.07	46524.6
26.00	299.15	62.9	8377.6	0.003343	9.03	47934.9
25.00	298.15	59.4	7911.3	0.003354	8.98	50421.5
24.00	297.15	57.1	7600.9	0.003365	8.94	52129.3

Таблица 2: измерения при охлаждении

L в каждой ситуации вычислялось по левой части формулы (4) уже после определения отношения $\frac{dP}{dT}$ по графику P от T.

4.4 Построение графиков

4.4.1 График *P* от *T*

Построим график зависимости P от T для левой части формулы (4):

Рисунок 2: График зависимости P от T.

Проведём наилучшую прямую f(x) = kx + b по МНК.

Тогда
$$k = \frac{dP}{dT} = \frac{< xy> - < x> < y>}{< x^2> - < x>^2} = 539.66$$
 Па/К.

И
$$\sigma_k = \sqrt{\frac{1}{24}} \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2}} = 10.79$$
 Па/К.

Тогда $\frac{dP}{dT}=(540\pm11)~\Pi a/K$. Используя это отношение и формулу (4), можно вычислить L в каждой точке. Результаты вычислений приведены в таблицах (1) и (2).

При этом в каждом случае: $\sigma_L = L\sqrt{(\frac{\sigma_k}{k})^2 + (\frac{\sigma_R}{R})^2 + (\frac{\sigma_P}{P})^2 + (2\frac{\sigma_T}{T})^2}$

4.4.2 График lnP от 1/T

Построим график зависимости lnP от 1/T для правой части формулы (4):

Рисунок 3: График зависимости lnP от 1/T.

Проведём наилучшую прямую f(x) = kx + b по МНК.

Тогда
$$k=\frac{d(lnP)}{d(1/T)}=\frac{\langle xy>-\langle x>\langle y>}{\langle x^2>-\langle x>^2}=-4857.7$$
 К.

И
$$\sigma_k = \sqrt{\frac{1}{24}} \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - k^2} = 97.15 \text{ K}.$$

Тогда $\frac{d(\ln P)}{d(1/T)} = (-4858 \pm 97)$ К. Используя это отношение и формулу (4), можно вычислить среднюю L в этом диапозоне температур.

Тогда $L = 40369.98 \; \text{Дж/моль}.$

При этом
$$\sigma_L = L\sqrt{(\frac{\sigma_k}{k})^2 + (\frac{\sigma_R}{R})^2} = 807.53 \text{ K}$$

Получаем, что $L = (40370 \pm 808)$ Дж/моль.

4.5 Вывод

Мы вычислили L двумя способами: в каждой точке и среднюю в диапозоне температур. Оба результата находятся в согласии друг с другом. Результаты измерений приблизительно совпадают с табличными ($L_{\text{таб}} = 40700~\text{Дж/моль}$).