

Skeletal Adaptation to Space

Transitioning Research to the Clinical Realm

Jean D. Sibonga, Ph.D.
Lead, Bone Discipline
Human Research Program
Johnson Space Center, Houston, TX
May 19, 2011

The Astronaut as the Human System

Systems Engineering & Integration

Overview

- Uniqueness of NASA
 - Three C's
- Unique Flight Data
- *Unique Recommendations*

How do you pitch the need for
biomedical research to
stakeholders who question the
existence of the risk?

Does spaceflight result in irreversible changes to bone that combine with age-related losses?

Consequence: Premature fractures in astronauts?

Constraints to Understanding Skeletal Adaptation

Dual-energy X-ray Absorptiometry [DXA] BMD @ Johnson Space Center

- Monitor astronaut skeletal health
- Characterize skeletal effects of long-duration spaceflight
- Evaluate efficacy of bone loss countermeasures
- Verify restored health status

The Long-duration Astronaut

- Typical space mission duration – 163 ± 32 d (range 90-215d)
- Average Age – 46.5 ± 4.5 y (range 36.8 – 55.3)
- Male to Female Ratio – 3.8 : 1
- Current total # per astronauts in corps – 34 of 331
- # repeat fliers – 4
- BMI – Male BMI 25.9 ± 2.2 (*range 20.6 to 30.6*); Female BMI 22.6 ± 2.2 (*range 20.4 to 25.4*)
- Wt and Ht- Males: Males: 81 ± 9 kg (*range 62 to 101 kg*),
 177 ± 6 cm (*range 163 to 185 cm*);
- Females: 65 ± 7 kg (*57 to 80 kg*), 170 ± 4 cm (*range 165 to 178 cm*)
- *MEDICAL PRIVACY OF THE ASTRONAUT.*

Microgravity Effects on the Human Body

From Scientific American

Overview

- Uniqueness of NASA
 - Three C's
- Unique Flight Data
- *Unique*
Recommendations

DXA: BMD losses are regional and rapid

Areal BMD g/cm ²	%/Month Change \pm SD
Lumbar Spine	-1.06 \pm 0.63*
Femoral Neck	-1.15 \pm 0.84*
Trochanter	-1.56 \pm 0.99*
Total Body	-0.35 \pm 0.25*
Pelvis	-1.35 \pm 0.54*
Arm	-0.04 \pm 0.88
Leg	-0.34 \pm 0.33*
*p<0.01, n=16-18	

DXA BMD increases in Postflight – is that recovery?

Trochanter

Femoral neck

Lumbar Spine

Medical Requirement, but Relative Risk based upon T-scores not very informative.

BMD T-Score Values* Expeditions 1-25 (n=33)
*Comparison to Population Normals

Change in DXA BMD after Long-Duration Mir and ISS Space Missions: %Change Normalized to 6-Month Mission Length

n = 40 (7 Mir, 33 ISS)

Insert SMS' slides

Research Technologies: QCT measures hip vBMD loss in trabecular bone compartment (n=16 ISS volunteers)

Index DXA	%/Month Change \pm SD	Index QCT	%/Month Change \pm SD
aBMD Lumbar Spine	1.06\pm0.63*	Integral vBMD Lumbar Spine	0.9\pm0.5
		Trabecular vBMD Lumbar Spine	0.7\pm0.6
aBMD Femoral Neck	1.15\pm0.84*	Integral vBMD Femoral Neck	1.2\pm0.7
		Trabecular vBMD Femoral Neck	2.7\pm1.9
aBMD Trochanter	1.56\pm0.99*	Integral vBMD Trochanter	1.5\pm0.9
*p<0.01, n=16-18		Trabecular vBMD Trochanter	2.2\pm0.9

LeBlanc, J Musculoskelet Neuronal Interact. 2000 ;
Lang , J Bone Miner Res, 2004;

QCT Postflight – Changes in at Femoral Neck

12 months after return

Bone Mineral Content
(g)

**Volumetric
Bone Mineral Density**
g/cm³

**Minimum
Cross-sectional Area**
cm²

Pre Post 12

Pre Post 12

Pre Post 12

$P < 0.05$ with respect to preflight*, postflight*

QCT: Trabecular BMD at Femoral neck does not appear to show a recovery 2 to 4 years postflight

QCT Extension Study (n=8) Postflight Trabecular BMD in hip. Carpenter, D et al. Acta Astronautica, 2010.

GAP: What is the impact of Trabecular Bone Loss on whole hip bone strength?

JOURNAL OF BONE AND MINERAL RESEARCH

Volume 23, Number 8, 2008

Published online on March 17, 2008; doi: 10.1359/JBMR.080316

© 2008 American Society for Bone and Mineral Research

Proximal Femoral Structure and the Prediction of Hip Fracture in Men: A Large Prospective Study Using QCT*

Dennis M Black,¹ Mary L Bouxsein,² Lynn M Marshall,³ Steven R Cummings,⁴ Thomas F Lang,⁵ Jane A Cauley,⁶ Kristine E Ensrud,⁷ Carrie M Nielson³ and Eric S Orwoll³ for the Osteoporotic Fractures in Men (MrOS) Research Group

Lower trabecular BMD was an independent predictor of hip fracture in elderly men.

Overall, QCT measures provide useful information regarding causation of hip fracture, evaluation of hip fracture risk and possible targets for intervention.

Overview

- Uniqueness of NASA
 - Three C's
- Unique Flight Data
- *Unique*
Recommendations

Bone Summit Panel Members

- Eric Orwoll, MD
 - Endocrinology and Male Osteoporosis
- E. Michael Lewiecki, MD, FACP, FACE
 - Endocrinology, ISCD
- Neil Binkley, MD, CCD
 - ISCD, Geriatrics and Vitamin D
- Shreyasee Amin, MD
 - Rheumatology, Male Osteoporosis and Epidemiology
- Sue Shapses, PhD
 - Nutritional Sciences and Weight-loss
- Robert A. Adler, MD
 - Male Osteoporosis and Epidemiology
- Steven Petak, MD, JD, FACE
 - Endocrinology, ISCD (
- Mehrsheed Sinaki, MD
 - Physical Medicine & Rehabilitation
- Nelson B. Watts, MD
 - Endocrinology, ISCD

Left to Right, Top Row down

Finite Element Modeling [FEM]:
What is it and what can it tell NASA about hip
fracture risk in the long-duration astronaut?

FEM – a computational tool to estimate failure loads to complex structures.

FEM of QCT data integrates multiple factors associated with fracture to provide a single composite number to estimate bone strength.

QCT + FEM has superior capabilities for estimating mechanical strength

QCT estimates fracture loads better than DXA

QCT + FEM has superior capabilities for estimating fracture loads

DD Cody: Femoral strength is better predicted by finite element models than QCT and DXA. J Biomechanics 32:1013 1999.

Astronaut Data– Hip Strength

N=11 crewmembers

Loading Condition	Mean (SD) Pre-flight	Mean (SD) Post-flight	p
Stance	13,200 N (2300 N)	11,200 N (2400 N)	<0.001
Fall	2,580 N (560 N)	2,280 N (590 N)	0.003
2.2% loss/month			
1.9% loss/month			
1.0-1.5% BMD loss /month			

Astronaut Data: Surrogates of bone strength do not correlate.

Stance: $R^2=0.23$

Fall: $R^2=0.05$

Summary

- Unique cohort, unique environment, unique changes in bone structure during long-duration missions in microgravity
- DXA – A widely-applied medical test to predict fracture risk in population at risk (menopausal, elderly)
- QCT – A Research Imaging Technology that increases our knowledge but applied on limited volunteer basis.
- FE modeling of strength – An improved estimate of hip bone strength for NASA to consider for clinical decisions.

Closing Remark

NASA Goal: To reduce the uncertainty of *spaceflight-induced* fracture risks in astronauts by increasing our understanding of spaceflight effects on bone -- by employing the best technologies and analyses available.

Thank you. Acknowledgements

NASA & EXTRAMURAL

- Adriana Babiak-Vasquez (NASA JSC)
- Harlan J. Evans, Ph.D. (NASA JSC)
- William Jeffs (NASA JSC)
- Joyce H. Keyak; Ph.D. (UC Irvine)
- Thomas F. Lang; PhD. (UC San Francisco)
- Adrian D. LeBlanc, Ph.D. (USRA)
- Jerry Myers, Ph.D. (NASA GRC)
- Jackie Reeves (NASA JSC)
- Robert Ploutz-Snyder, Ph.D (NASA JSC)
- Clarence Sams, Ph.D (NASA JSC)
- Richard Scheuring, M.D. (NASA JSC)
- Linda C. Shackelford, M.D. (NASA JSC)
- Scott M. Smith, Ph.D. (NASA JSC)
- Elisabeth R. Spector (NASA JSC)
- Piotr Truszkowski (NSBRI, Harvard Medical School)
- Robert Wermers, M.D. (Mayo Clinic)

