CS606 Project
Grid Operation-based
Outage Maintenance
Planning

Group 1:

Wong Songhan, Xie Fei, Yan Jin

24 Apr 2021



## **Motivation & Objective**

- Create robust, advanced and extensive electricity grids
- More complex grids due to greater diversity of energy sources
- Improve grid reliability via efficient and comprehensive maintenance planning





Source: EMA

# **Challenges in Maintenance Planning**

- How to guarantee grid reliability with a mix of live-line and off-line works?
- Ensuring network resilience to endure unexpected contingency
- Anticipating future maintenance operations due to aging network, new generation and consumption plans
- New integration of renewable energies
- Yet keeping cost affordable with <u>limited resources and</u> <u>time constraints</u>



## **ROADEF Grid Maintenance Planning Challenge**

- Biennial open competition (on-going since year 2020) by French Operational Research (OR) and Decision Support Society (ROADEF)
- Objective: Generate a maintenance interventions schedule that minimize risk for different simulated scenarios



### **Problem Definition**

• Extension of Resource Constrained Project Scheduling Problem (RPCPSP)



### **Problem Definition**



# **Model Variables & Assumptions**

- Time horizon,  $H=\{1,...,T\}$ For instance T = 365 for a day by day schedule and T = 53 for a week by week one
- Resources,  $C=\{c_1,c_2,...,c_N\}$ Equipment, manpower of different skill sets
- $(u^c_t)$  Upper bound of resources at different time step
- $(l_t^c)$  Lower bound of resources at different time step (prevent workforce from not being utilised on some days)
- Interventions,  $I=\{I_1,I_2,...,I_N\}$
- Time duration,  $\Delta_{i,t}$  Resource workload,  $r_{i,t'}^{c,t}$
- Intervention time and start time  $t \in H, t' \in H$

# **Model Variables & Assumptions**

- Risks,  ${
  m risk}_{i,t'}^{s,t}$  e.g the risk level of performing certain interventions during winter is higher as compared to summer time
- Scenario,  $s \in S_t$  e.g different load demand or extreme weather events

### **Decision Variable**

L-a list of L of pairs  $(i,t) \in I \times H$ , where t is the starting time of intervention i.

$$[(I_1:5), (I_2:2), (I_3:32), (I_4:23), (I_5:36), ..., (I_N:87)]$$

### **Constraints**

Once an intervention starts, it cannot be interrupted

$$t_{i,\mathrm{end}} = t'_i + \Delta_{i,t}$$

• All interventions must be scheduled, and must not exceed the maximum time allowed

$$1 \le t_i' + \Delta_{i,t'} \le T_{\max,i} \ \forall i, t'$$

Resource constraints

$$l_t^c \le \sum_{i \in I_t} r_{i,t_i'}^{c,t} \le u_t^c \quad \forall c \in C, t \in H$$

Disjunctive constraints

$$i_1 \in I_t \implies i_2 \notin I_t \quad \forall (i_1, i_2, t) \in \Phi_{\text{Exclusion}}$$

 $I_t \subseteq I$  the set of interventions in process at time  $t \in H$ 

# **Objective Function**

• Objective 1: Minimise total risks of all interventions averaged over all scenarios and time horizon

$$obj_1 = \frac{1}{T} \frac{1}{|S_t|} \sum_{s \in S_t, t \in H, i \in I_t} \operatorname{risk}_{i, t'_i}^{s, t}$$

• Objective 2: Minimise the excess of risks (indirect measure of variance)

$$obj_2 = \frac{1}{T} \sum_{t \in H} \max(0, Q_{\tau}^t - \overline{\operatorname{risk}^t})$$

where  $Q_{\tau}^{t}$  is the quantile of risk values among the scenarios at time t. For example,  $Q_{0.5}^{t}$  is the median.

• Total objective (Minimize)

$$obj(\tau) = \alpha \cdot obj_1 + (1 - \alpha) \cdot obj_2(\tau)$$

## **Problem Solving**

- Finding a feasible solution is non-trivial
- Naive Attempt: Mathematical Programming using Docplex
- Wise Attempt: Lagrangian Relaxation with Heuristics Searches in Python
  - o Random Iterated Local Search (RILS)
  - Ant Colony Optimization (ACO)
  - Local Beam Search (LBS)
  - Simulated Annealing (SA)
  - Genetic Algorithm (GA)

# **Mathematical Programming using Docplex**

Major difficulties: nested dictionary, cannot use decision variables as dict.keys()

o Solved by defining more decision variables and adding constrains

Objective Function: cannot sort inside decision variables

o Can only compute part of the objective, leading to non-optimal solutions

#### Suitable for small-size problems

- o As the problem size increase, the convergence process is VERY slow
- o 5 min -> 90% mipgap with horrible solutions
- o SUPER slow to load data with size > 100 MB



 $Risk_1 > Risk_2$ ?

```
18 Interventions 89 Interventions 180 Interventions 17 Periods 90 Periods 182 Periods

Problem Size
```

### Random Iterated Local Search (RILS)



Penalty = 1 penalty\_set = {I2,I3}

Randomly select a start time for I\_2 and I\_3 until no more conflicts

> Penalty =0 penalty\_set = {}

Feasible Solution!

Fix a good start\_time, change the conflicting start\_time.

Select the combinations with the **lowest penalty count** and repeat

### Random Iterated Local Search (RILS)

### Min-conflict approach

o Always guarantee a feasible solution

### ≈ Constraint Programming

- o Find as many feasible solutions as possible
- o Select the solution with the best objective value

### Cannot search neighborhood

- o Stop when the penalty = 0
- o No notion of gradient descent toward optimality



# **Lagrangian Relaxation**

Relax the hard constraints and include a penalty term to the objective function

- o Resource constraints
- o Disjunctive constraints

 $y_{i,t,c} = 1$  for every constraint violated

$$obj(\tau) = \alpha \cdot obj_1 + (1 - \alpha) \cdot obj_2 + P \sum_{i,t,c} y_{i,t,c}$$

where P is the cost of penalty.

## **Ant Colony Optimization (ACO)**



(Assuming max start time for I\_1 is 60)

Weighting: 100

# **Ant Colony Optimization (ACO)**

### Local Heuristic



Probability for intervention i to choose start time t

originally

1 max start\_time

But for some cases which feasible solutions are hard to find... Provide some hints for the searching process!



Feasible solution from Random Iterated Local Search (RILS)

# **Ant Colony Optimization (ACO)**

Local heuristic + pheromone trail → Normalization → Probability Matrix

- feasible solution
- infeasible solution

- o Ants explore the good solutions
- o Repeat until satisfied

#### Exploration

- o Assign some probability to explore alternative solutions
- o Increase the probability if good

### Dependent on the first feasible solution

- o When stuck, reset the pheromone trail and local heuristic matrix
- o Could be worse, but worth trying





### **Local Beam Search**

- Size of neighborhood = 50, initialize with random solutions
  - $\circ$  Select top k = 5 best solutions and apply perturbation to generate 10 child solutions for each parent
  - o repeat the process until convergence
- Mechanism of perturbation
  - o Pick interventions with p probability (e.g 0.05) and randomly shift the start time by W (e.g 5)
  - o Check and impose time constraints for each intervention



# **Simulated Annealing**

- Select solution with  $p = \exp(-E/kT)$ 
  - o E = obj (new) obj (old)
- Neighborhood generation
  - o One solution at a time
  - o Apply perturbations interventions with p (T) probability and randomly shift the start time by W(T)
  - o More perturbation at the start (higher temperature), and less perturbation as it cools down
- Temperature cooldown every N iterations

$$T' = T_{old} \cdot 0.7$$

• Python library from scikit-opt

# **Genetic Algorithm (GA)**

### Why choose GA?

- The structure of solution is easy perform cross-overs and mutations.
- More radical in exploring the solution space

### How to perform GA? (using scikit-opt)

- Generate initial chromosomes
- For each iteration, do:
  - Ranking
  - Selection
  - Cross-over
  - Mutation





# **Genetic Algorithm (GA)**

In general, GA's convergence is hard to predict and often stuck at local optima when there are many constraints.

#### How to tune GA?

- A larger mutation probability can help to escape from local optima but made it harder to reserve desirable genes.
- A larger population size can help to escape from local optima as it contains more possibility, but increase the time of iterations

| Problem Set | Size (interventions x periods x scenario) | Characteristics                                 |
|-------------|-------------------------------------------|-------------------------------------------------|
| A_01        | 181 x 90 x 1                              | Small size with few constraints                 |
| A_05        | 180 x 182 x 120                           | Large size but fewer constraints                |
| A_06        | 180 x 182 x 1                             | Medium size with moderate number of constraints |
| A_15        | 108 x 53 x 347                            | Medium size with large number constraints       |

Measure optimality gap at t = 60s, 300s, 600s, 900s

o \* Optimal value = best known solution from competition results

### Run benchmark for each algo

- o Performance varies for each algo slightly from run to run depending on initial random solution
- o Ideally should run for N tests for every algo and measure the mean/spread

Local Beam Search (LBS)

Genetic Algorithm (GA)

o A\_01 - 181 (interventions) x 90 (periods) x 1 (scenario)



Simulated Annealing (SA)

| Optimality<br>Gap | 60s           | Viol<br>atio<br>n | 300s   | Viola<br>tion | 600s   | Viola<br>tion | 900s       | Viola<br>tion |
|-------------------|---------------|-------------------|--------|---------------|--------|---------------|------------|---------------|
| RILS              | 15656.<br>87% | 0                 | 37.55% | 0             | 37.55% | 0             | 37.55<br>% | 0             |
| ACO               | 30.44<br>%    | 0                 | 24.95% | 0             | 24.95% | 0             | 24.95<br>% | 0             |
| LBS               | 15.61<br>%    | 0                 | 10.78% | 0             | 8.74%  | 0             | 7.66%      | 0             |
| SA                | 24.60<br>%    | 1                 | 17.56% | 1             | 17.56% | 1             | 17.56<br>% | 1             |
| GA                | 19.15<br>%    | 4                 | 6.71%  | 4             | 4.12%  | 4             | 3.18%      | 3             |

**Results** A\_05 - 180 interventions x 182 periods x 120 scenario **Optimality Gap (%)** 



| Optimality<br>Gap                   | 60s         | Viol<br>atio<br>n | 300s   | Viola<br>tion | 600s   | Viola<br>tion | 900s       | Viola<br>tion |
|-------------------------------------|-------------|-------------------|--------|---------------|--------|---------------|------------|---------------|
| Random<br>Iterated Local<br>Search  | 213.49<br>% | 0                 | 68.7%  | 0             | 49.12% | 0             | 49.12<br>% | 0             |
| Ant Colony<br>Optimization<br>(ACO) | 43.98<br>%  | 0                 | 18.81% | 0             | 15.95% | 0             | 14.43<br>% | 0             |
| Local Beam<br>Search (LBS)          | 30.89<br>%  | 0                 | 17.11% | 0             | 14.68% | 0             | 14.44<br>% | 0             |
| Simulated<br>Annealing<br>(SA)      | 46.87<br>%  | 0                 | 33.15% | 0             | 26.69% | 0             | 26.5%      | 0             |
| Genetic<br>Algorithm<br>(GA)        | 46.24<br>%  | 1                 | 17.28% | 0             | 8.94%  | 0             | 6.59%      | 0             |
|                                     |             |                   |        |               |        |               |            |               |

### A\_06 - 180 interventions x 182 periods x 1 scenario



| Optimality<br>Gap                   | 60s          | Viol<br>atio<br>n | 300s    | Viola<br>tion | 600s   | Viola<br>tion | 900s  | Viola<br>tion |
|-------------------------------------|--------------|-------------------|---------|---------------|--------|---------------|-------|---------------|
| Random<br>Iterated Local<br>Search  | 2318.42<br>% | 0                 | 65.33%  | 0             | 65.33% | 0             | 59.3% | 0             |
| Ant Colony<br>Optimization<br>(ACO) | 1938.4<br>%  | 0                 | 138.85% | 0             | 48.47% | 0             | 39.4% | 0             |
| Local Beam<br>Search (LBS)          | 59.11<br>%   | 36                | 22.4%   | 0             | 18.94% | 0             | 18.2% | 0             |
| Simulated<br>Annealing<br>(SA)      | 56.7%        | 23                | 28.8%   | 16            | 28.86% | 16            | 28.8% | 16            |
| Genetic<br>Algorithm<br>(GA)        | 56.9%        | 17                | 27.4%   | 10            | 21.35% | 9             | 19.5% | 9             |
|                                     |              |                   |         |               |        |               |       |               |

### $A_15 - 108$ interventions x 53 periods x 347 scenario





| Optimality<br>Gap                   | 60s        | Viol<br>atio<br>n | 300s   | Viola<br>tion | 600s       | Viola<br>tion | 900s       | Viola<br>tion |
|-------------------------------------|------------|-------------------|--------|---------------|------------|---------------|------------|---------------|
| Random<br>Iterated Local<br>Search  | 54.37<br>% | 0                 | 39.86% | 0             | 37.32<br>% | 0             | 37.32<br>% | 0             |
| Ant Colony<br>Optimization<br>(ACO) | 31.27<br>% | 0                 | 23.69% | 0             | 22.07<br>% | 0             | 17.9<br>%  | 0             |
| Local Beam<br>Search (LBS)          | 11.60<br>% | 9                 | 7.85%  | 7             | 7.85%      | 7             | 7.85<br>%  | 7             |
| Simulated<br>Annealing<br>(SA)      | 12.37<br>% | 7                 | 1.61%  | 7             | 1.61%      | 7             | 1.61<br>%  | 7             |
| Genetic<br>Algorithm<br>(GA)        | 22.66<br>% | 1                 | 14.61% | 1             | 10.40<br>% | 1             | 10.14<br>% | 1             |

# **Key Learning Points - Objective Function**





# **Key Learning Points**

- Neighborhood generation scheme
- Tuning of hyperparameters (penalty cost, probability threshold, time window ...)
  - o Convergence speed
  - o Adaptive design
  - o Ability to find feasible solution
  - o Exploitation vs exploration
- Sensitivity to initial solution
  - o How to be robust
  - o Usage of warm start
- How to escape from local optima
  - o Restart after N iterations with no improvement
- Time complexity and multiprocessing techniques

# **Key Learning Points - Multiple Processes**



## **Summary**

 Successful application of Langrange relaxation and several heuristics in solving an extended RPCPSP problem

• In general, ACO most robust but LBS most optimal

• Strategies to tune heuristics search to balance between exploration vs exploitation at different junctures