Orthogonal Polynomials and Recurrence Coefficients

Name	Notation	Polynomial	Weight Fn.	Interval	$lpha_k$	$eta_{m{k}}$
		, ,				$\beta_0 = 2,$
Legendre	l_m	$\left[(x^2 - 1)^m \right]^{(m)}$	1	[-1, 1]	0	$\beta_k = (4 - k^{-2})^{-1}, k \ge 1$
						$\beta_0 = \pi,$
Chebyshev 1^{st}	T_m	$\cos\left(m \arccos x\right)$	$(1-x^2)^{-\frac{1}{2}}$	[-1, 1]	0	$\beta_1 = \frac{1}{2},$
						$\beta_k = \frac{1}{4}, k \ge 2$
		• [/]				$\beta_0 = \frac{\pi}{2},$
Chebyshev 2 nd	Q_m	$\frac{\sin\left[(m+1)\arccos x\right]}{\sqrt{1-x^2}}$	$(1-x^2)^{\frac{1}{2}}$	[-1,1]	0	$\beta_k = \frac{1}{4}, k \ge 1$
						$\beta_0 = \Gamma(1+a),$
Laguerre	L_m^a	$x^{-a}e^x \left(x^{m+a}e^{-x}\right)^{(m)}$	$x^a e^{-x}, \ a > -1$	$[0,\infty)$	2k + a + 1	$\beta_k = k(k+a), k \ge 1$
						$\beta_0 = \sqrt{\pi},$
Hermite	H_m	$(-1)^m e^{x^2} \left(e^{-x^2}\right)^{(m)}$	e^{-x^2}	$(-\infty,\infty)$	0	$\beta_k = \frac{k}{2}, k \ge 1$