Reversed logical models for the study of basins of attraction

A Naldi¹, S Fueyo², P Monteiro³, J Dorier⁴, E Remy⁵, C Chaouiya²

- 1. Univ Montpellier, now IBENS Paris
 - 2. IGC, Lisbon
 - 3. INESC-ID, Lisbon
 - 4. SIB-UNIL, Lausanne
 - 5. IML, Marseille

Logical Formalism

Regulatory Graph

- Components
- Interactions
- Logical functions
 - \blacksquare $f_A = A \land \neg B$
 - \blacksquare $f_B = A \land \neg B : 2$

Dynamical Behaviour

Asynchronous

Other updatings

- Sequential
- Block-sequential
- Random walks

Synchronous

Properties

- Attractors stable states/oscillations
- Reachability

STG for a toy model with 2 attractors

Weak basin: states from which the attractor is reachable

Strong basin: states from which no other attractor is reachable

External frontier: external predecessors of the basin

Internal frontier: states of the basin with external predecessors

Identification of basins of attraction is hard

- Identification of attractors is well studied...
- ... as well as some specific reachability properties...
- ... but not on full basins of attraction.
- No formal identification methods
- Require a costly analysis of the full STG?
- Build them directly going *backward* from *known attractors*

⇒ **Reversed model**: logical functions yield predecessor states

- x: state, i.e. vector of the levels of all components
- \blacksquare x_i level of the component i in state x
- \bar{x}^i : flip the value of x_i in state x
- \blacksquare $f_i(x)$: function of the component i applied to the state x
- $f_i^r(x)$: reversed function for i

Without self-regulation: $f_i(x) = f_i(\bar{x}^i)$

$$\boxed{0} \longrightarrow \boxed{1}$$

$$f_i^r(x) = \neg f_i(x)$$

With self-regulation: $f_i(x) \neq f_i(\bar{x}^i)$

(1)

$$\boxed{0} \longleftrightarrow \boxed{1}$$

$$f_i^r(x) = \neg f_i(\bar{x}^i)$$

$$f_1(x) = x_1 \wedge \neg x_2$$

Reversed state transition graph

Properties

- Garden of eden ⇔ attractors
- Reversal preserve the structure of the model and STG
- The reversed reversed model is the original model

Efficient computation of basins using boolsim

Core features of boolsim

- Store a set a states as BDD
- Compute all successors of a set in one shot
- Classical combination of BDDs (AND, OR)

A Garg et al. *Bioinformatics* (2008)

Application to the identification of basins

- \blacksquare *n* attractors $A_1, A_2, \dots A_n$
- W_i (weak basin of A_i): $prev \circ prev \circ \cdots \circ prev(A_i)$
- S_i (strong basin of A_i): $W_i \{A_j \ \forall j \neq i\}$
- E_i (external frontier): $prev(S_i) S_i$
- I_i (internal frontier): $next(E_i) \cap S_i$

Reversing multivalued models

- Intermediate values are reachable from both sides
- No valid model yields the reversed STG
- ⇒ Most multivalued models can not be reversed

Reversing multivalued models

- Intermediate values are reachable from both sides
- No valid model yields the reversed STG
- ⇒ Most multivalued models can not be reversed

Use mapped Boolean model

- All multivalued models can be booleanized
- All Boolean models can be reversed

Booleanization

Choice of Boolean mapping

- Classical binary unsuitable: $00 \rightarrow 01 \rightarrow 10 \rightarrow 11$
- \blacksquare custom mapping confusing: 00 \rightarrow 01 \rightarrow 11 \rightarrow 10
- lacksquare Our pick: van Ham mapping: 000 o 001 o 011 o 111
 - Preserves the structure of the model
- One boolean component per activity level k \Rightarrow Its function is f_i^k
- Introduces many non-admissible states: 100, 010, 110, 101
- Extra work to ensure "good booleanization":
 - No path from admissible to non-admissible states
 - No non-admissible states in any attractor

Booleanization and reversal

Multivalued

Booleanized

Definition of $f_i^k(x)$

- Based on $f_i(x) \ge k$
- Restricted to escape non-admissibles

Booleanization and reversal

Multivalued

Booleanized

Reversed

Definition of $f_i^k(x)$

- Based on $f_i(x) \ge k$
- Restricted to escape non-admissibles
- Repeat restriction after reversal

Summary

- Construct reversed asynchronous models
 - Does NOT work for synchronous updating
 - Extend to multivalued models through boolean mapping
- Study basins of attraction
 - Requires known attractors
 - Using boolsim to compute set of reachable states
 - Identify decisive states and transitions
- Related ongoing work by Klarner & Siebert
 - Modified model checker (patch NuSMV)
- Refine reachability analysis?