Skriveguide, fononer

Kristian Knakkergaard Nielsen

28. november 2016

Målet med dette dokument er at give et forslag til, hvordan en rapport i projektet omkring fononer kan opbygges. Ligningsreferencer refererer til linearchain_quantization.pdf.

1 Introduktion/Indledning

Skal indeholde:

- Motivér hvorfor vi kigger på det system, vi gør.
- Forklar de relevante fysiske antagelser. (Born-Oppenheimer, harmonisk og nærmeste nabo approksimationerne)

Længde: 1/2 - 3/4 side.

2 Hamiltonoperatoren i stedrum og impulsrum

Skal indeholde:

- Introducér Hamiltonoperatoren i stedrum. Forklar fysikken bag leddene.
- Forklar kort transformationen til impulsrum.
- Opskriv Hamiltonoperatoren in impulsrum.
- Understreg dispersions relationen $\omega(k)$.
- Med udgangspunkt i den harmoniske oscillator fra Griffiths: forklar a-operatorerne. Opskriv den endelige Hamiltonoperator.
- Forklar, hvad en fonon er, og herunder hvad grundtilstanden er.
- Forklar formen af $\omega(k)$ for lave k (lydhastighed).

Kan indeholde:

- Udregning af grundtilstandsenergien. Relatér til uafhængige partikler.
- Lav en tegning af en harmoniske oscillator for at beskrive fononer nærmere.

Længde: $1 \frac{1}{2} - 2$ sider.

3 Tidsudvikling og oscillation

Skal indeholde:

- Forklar Heisenberg-billedet kort.
- Udled ligning (21). Forklar kort.
- Forklar ligning (22).
- Forklar kort hvordan ligning (24) udledes. Beskriv fysikken bag denne ligning.
- Forklar kort hvordan ligning (25) udledes.
- Brug ligning (24) og (25) til lave en figur i stil med figur 1. Forklar hvad den viser.

Kan indeholde:

• En forklaring af ligning (21) som en feltekspansion.

Længde: $1 \frac{1}{2} - 2$ sider.

4 Kontrolleret forstyrrelse eller Termodynamiske egenskaber

Dette afsnit kan enten handle om kontrolleret forstyrrelse eller de termodynamiske egenskaber.

4.1 Termodynamiske egenskaber

Hvis dette afsnit vælges foreslår jeg at holde længden af afsnittene omkring Hamiltonoperatoren og tidsudviklingen på et minimum.

Skal indeholde:

- Forklar partitions funktionen. Udled Z_k (kort).
- Udled ligning (34) og heraf ligning (35).
- Beskriv tilstandstætheden (density of states) for systemet.
- Beregn analytisk den totale energi i de to grænser (høj og lav temperatur) og kommentér på højtemperaturgrænsen ud fra ligefordelingsloven.
- Find herfra varmekapaciteten og relatér lavtemperaturgrænsen til termodynamikkens tredje lov.

Kan indeholde:

• En grafisk sammenligning af de analytisk fundne grænser for den totale energi sammen med en numerisk beregning heraf.

Længde: 1 - 2 sider.

4.2 Kontrolleret forstyrrelse

Skal indeholde:

- Opskriv ligning (27)
- Forklar hvad $|\alpha\rangle$ -tilstanden er.
- Forklar, hvordan ligning (28) udledes.
- Et par konkrete eksempler for b_l . F.eks.: $b_l = (-1)^l b$.

Længde: 3/4 - 1 side.

5 Konklusion

Skal indeholde:

- En kort opridsning af, hvad vi har vist.
- ullet Herunder: hvad er den overordnede opførsel af $\omega(k)$ og den fysiske betydning heraf.
- Hvordan kommer dispersionsrelationen til udtryk i de grafer, I har lavet?
- \bullet For kontrolleret forstyrrelse eller termodynamiske egenskaber: oprids kort resultaterne.

Længde: højst 1/2 side.