第 10 回数值解析演習

081531257, 早乙女 献自

課題 1 Jacobi 法、Gauss-Seidel 法

$$\begin{pmatrix} 7 & -2 & 1 \\ -1 & -5 & -2 \\ -2 & -1 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 6 \\ 3 \\ 14 \end{pmatrix}$$

(1) 上記連立方程式似ついて、Jacobi 法と Gauss-Seidel 法の漸化式を導出した。以下に示す。 Jacobi 法

$$\begin{cases} x_1^{(k+1)} = \frac{1}{7}(6 + 2x_2^{(k)} - x_3^{(k)}) \\ x_2^{(k+1)} = \frac{1}{5}(3 + x_1^{(k)} - x + 2x_3^{(k)}) \\ x_3^{(k+1)} = \frac{1}{6}(14 + 2x_1^{(k)} - 6x_2^{(k)}) \end{cases}$$

Gauss-Seidel 法

$$\begin{cases} x_1^{(k+1)} = \frac{1}{7}(6 + 2x_2^{(k)} - x_3^{(k)}) \\ x_2^{(k+1)} = \frac{1}{5}(3 + x_1^{(k+1)} - x + 2x_3^{(k)}) \\ x_3^{(k+1)} = \frac{1}{6}(14 + 2x_1^{(k+1)} - 6x_2^{(k+1)}) \end{cases}$$

(2) 上記で求めた漸化式についてプログラムにより解を求めた。ただし、初期値は $(x_1,x_2,x_3)=(1,1,1)$ とした。以下に結果を示す。

Jacobi 法

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0.9999998 \\ 1.9999995 \\ 2.9999996 \end{pmatrix} \tag{1}$$

なお、カウント回数は count=16 となった。

Gauss-Seidel 法

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0.9999997 \\ 1.9999997 \\ 2.9999999 \end{pmatrix}$$
 (2)

なお、カウント回数は count=11 となった。

(3)解 $(x_1,x_2,x_3)=(1,2,3)$ との差を反復ごとに出力した。結果を以下に示す。 Jacobi 法

反復回数	x 1 の誤差	x 2 の誤差	x 3 の誤差
0	0.0000000	1.000000	2.0000000
1	0.0000000	-0.8000000	-0.1666667
2	-0.2047619	-0.0666667	-0.1333333
3	0.0000000	-0.0942857	-0.0793651
4	-0.0156009	-0.0317460	-0.0157143
5	-0.0068254	-0.0094059	-0.0104913
6	-0.0011886	-0.0055616	-0.0038428
7	-0.0010401	-0.0017748	-0.0013231
8	-0.0003181	-0.0007373	-0.0006425
9	-0.0001189	-0.0003206	-0.0002289
10	-0.0000589	-0.0001153	-0.0000931
11	-0.0000197	-0.0000490	-0.0000389
12	-0.0000084	-0.0000195	-0.0000147
13	-0.0000035	-0.0000076	-0.0000061
14	-0.0000013	-0.0000031	-0.0000024
15	-0.0000005	-0.0000012	-0.0000010
16	-0.0000002	-0.0000005	-0.0000004

Gauss-Seidel 法

反復回数	x 1 の誤差	x_2 の誤差	x3 の誤差
0	0.0000000	1.000000	2.0000000
1	0.0000000	-0.8000000	-0.1333333
2	-0.2095238	-0.0952381	-0.0857143
3	-0.0149660	-0.0372789	-0.0112018
4	-0.0090509	-0.0062909	-0.0040654
5	-0.0012166	-0.0018695	-0.0007171
6	-0.0004317	-0.0003732	-0.0002061
7	-0.0000772	-0.0000979	-0.0000420
8	-0.0000220	-0.0000212	-0.0000109
9	-0.0000045	-0.0000052	-0.0000024
10	-0.0000012	-0.0000012	-0.0000006
11	-0.0000003	-0.0000003	-0.0000001

表から分かるとおり、Gauss-Seidel 法の方が早く収束した。