

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Computation and Validation of the Dynamic Response Index (DRI)

6 August 2013

Dacie Manion

UNCLASSIFIED: Distribution A. Approved for public release

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headquuld be aware that notwithstanding and DMB control number.	tion of information. Send comment larters Services, Directorate for Inf	s regarding this burden estimate ormation Operations and Reports	or any other aspect of the s, 1215 Jefferson Davis	his collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 06 AUG 2013		2. REPORT TYPE Briefing Charts		3. DATES COVE 10-05-2013	ERED 3 to 01-08-2013	
4. TITLE AND SUBTITLE	I		5a. CONTRACT	NUMBER		
Computation and \	Validation of the Dy	namic Response In	dex (DRI)	5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)					5d. PROJECT NUMBER	
Dacie Manion				5e. TASK NUMBER		
					5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army TARDEC,6501 East Eleven Mile Rd,Warren,Mi,48397-5000					8. PERFORMING ORGANIZATION REPORT NUMBER #24165	
	RING AGENCY NAME(S) A	10. SPONSOR/MONITOR'S ACRONYM(S) TARDEC				
				11. SPONSOR/M NUMBER(S) #24165	IONITOR'S REPORT	
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distribut	ion unlimited				
13. SUPPLEMENTARY NO Smart Scholarship	otes Program Briefing 2	2014				
14. ABSTRACT Briefing Charts						
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF	18. NUMBER	19a. NAME OF	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Public Release	OF PAGES 21	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Introduction

- Motivation and background
- DRI overview
- 1-DOF and 3-DOF models
- Usage
- Validation
- EARTH metric
- Summary
- Ongoing work

DRI Code: Motivation

- Develop a fast in-house code for calculating the Dynamic Response Index (DRI) injury metric using test or simulation results as input.
- Code should be stand-alone in nature and should lend itself easily to process automation.

Background

- Various metrics are used to predict the occupant response and evaluate the safety of vehicle designs in underbody blast events.
- Underbody blast events cause a predominant risk of thoraco-lumbar spine injury.
- The Dynamic Response Index (DRI) has been used historically as a metric for spinal compression.

From (NATO, 2007).

Dynamic Response Index (DRI)

- Measure of spinal injury risk that accounts for the time duration of a load.
- Occupant torso modeled as a spring-mass-damper system.
- Calculated from maximum relative displacement between the pelvis and upper torso.

$$DRI = \frac{(\omega_n^2)(\delta_{\max})}{g}$$
 ω_n = natural frequency (of spring-mass system) δ_{\max} = maximum relative displacement g = gravitational acceleration

• Tolerance level of 17.7 for 10% risk of AIS 2+ injuries.

1-DOF model

Takes anthropomorphic test device (ATD) pelvis acceleration or seat acceleration as input (pelvis preferred).

$$\begin{split} m\ddot{x}_1(t) &= F_{spring} + F_{damper} \\ m\ddot{x}_1(t) &= -k(x_1 - x) - c(\dot{x}_1 - \dot{x}) \\ m(\ddot{\delta} + \ddot{x}) &= -k\delta - c\dot{\delta} \\ \ddot{\delta} + \ddot{x} &= -\frac{k}{m}\delta - \frac{c}{m}\dot{\delta} \\ \ddot{\delta} + \ddot{x} &= -\omega_n^2\delta - 2\xi\omega_n\dot{\delta} \\ \ddot{x} &= -\ddot{\delta} - 2\xi\omega_n\dot{\delta} - \omega_n^2\delta \\ -\ddot{x}(t) &= \ddot{\delta} + 2\xi\omega_n\dot{\delta} + \omega_n^2\delta \end{split}$$

- δ is the relative displacement between the upper body and pelvis = (x₁-x)
- ζ is the damping coefficient³³ (0.224)
- ω_n is the natural frequency³³ (52.9 rad/s)

$$\omega_n^2 = k/m$$

$$\mathbf{\xi}_{i} = \frac{c}{2\sqrt{mk}}$$

1-DOF Computational model

Acceleration data from physical test:

3-DOF model

- Takes hull acceleration as input.
- Accounts for energy absorption by the floor and seat.
- Springs representing the floor and seat are piecewise-linear.
- The spring representing the spine is still linear.

$$m_{3}\ddot{x}_{3}(t) = F_{spring3} + F_{damper3} \qquad z_{3} = x_{3} - x_{2}$$

$$m_{3}\ddot{x}_{3}(t) = -k_{3}(x_{3} - x_{2}) - c_{3}(\dot{x}_{3} - \dot{x}_{2}) \qquad z_{2} = x_{2} - x_{1}$$

$$m_{3}(\ddot{z}_{3} + \ddot{x}_{2}) = -k_{3}z_{3} - c_{3}\dot{z}_{3} \qquad z_{1} = x_{1} - x$$

$$m_{3}\ddot{z}_{3}(t) = -m_{3}\ddot{x}_{2} - k_{3}z_{3} - c_{3}\dot{z}_{3}$$

$$\begin{split} m_2\ddot{x}_2(t) &= -F_{spring3} - F_{damper3} + F_{spring2} + F_{damper2} \\ m_2\ddot{x}_2(t) &= k_3(x_3 - x_2) + c_3(\dot{x}_3 - \dot{x}_2) - k_2(x_2 - x_1) - c_2(\dot{x}_2 - \dot{x}_1) \\ m_2(\ddot{z}_2 + \ddot{x}_1) &= k_3z_3 + c_3\dot{z}_3 - k_2z_2 - c_2\dot{z}_2 \\ m_2\ddot{z}_2(t) &= -m_2\ddot{x}_1 + k_3z_3 + c_3\dot{z}_3 - k_2z_2 - c_2\dot{z}_2 \end{split}$$

$$\begin{split} m_1\ddot{x}_1(t) &= -F_{spring3} - F_{damper3} + F_{spring2} + F_{damper2} \\ m_1\ddot{x}_1(t) &= k_2(x_2 - x_1) + c_2(\dot{x}_2 - \dot{x}_1) - k_1(x_1 - x) - c_1(\dot{x}_1 - \dot{x}) \\ m_1(\ddot{z}_1 + \ddot{x}) &= k_2z_2 + c_2\dot{z}_2 - k_1z_1 - c_1\dot{z}_1 \\ m_1\ddot{z}_1(t) &= -m_1\ddot{x} + k_2z_2 + c_2\dot{z}_2 - k_1z_1 - c_1\dot{z}_1 \end{split}$$

3-DOF Computational model

Triangular pulse input data (from previously developed Excel code):

DRI Code

- Written in Python.
 - Requires Python
 2.7+ and matplotlib plotting library.
- Executed from command line.
- Allows several optional arguments.
- Runs on Windows, Linux, UNIX, and Mac OS X.

Outputs from 1-DOF code with triangular pulse input

Time (s)

Time (s)

User manual

- Explains input formatting and output files generated.
- Includes example commandline calls and full test cases.
- Test cases used to validate code against:
 - Previously developed Excel code
 - Known DRI values for several physical tests

Triangular pulse input data with given time duration and peak acceleration:

DRI output from Excel:

DRI output from Python:

Acceleration data from physical test:

Python output DRI vs. Time:

Validation

- Validated against Excel code for both 1-DOF and 3-DOF.
- Used physical test results with DRI calculations previously done in other software to further validate 1-DOF model.
- Validated 3-DOF model against 1-DOF model by setting very large spring constants.

EARTH Code: Motivation

- Error Assessment of Response Time Histories (EARTH)
 - Compares time histories to validate M&S results.
 - New rigorous, quantitative tool for in-house VV&A.
- MATLAB code delivered by the Automotive Research Center (ARC) with several papers but no user manual
 - (Pan, 2012)
 - (Sarin, 2008)
 - (Sarin et al., 2010)

EARTH code

- Combines existing measures and algorithms.
- Quantifies and separates error due to:
 - Phase shift
 - Magnitude differences
 - Topology (shape) discrepancy
- Takes two time histories as inputs along with a few parameters.
- Outputs:
 - Plots of original, shifted, and warped time histories
 - Derivatives of shifted and warped time histories
 - Error metrics for phase, magnitude, and topology
 - Uses Bayesian framework to determine model confidence for original, phase-shifted, warped, and warped derivative data.

EARTH code validation

- ARC provided electrothermal battery model example:
 - Test vs. simulation data for terminal voltage.
 - EARTH input parameters.
- Used to ensure code was working properly.
- Results were consistent with those of the ARC (Pan, 2012).

Error Metric	Result
Phase	1
Magnitude	0.0017
Topological	0.4511

Simple test of EARTH code

Time (s)

Acceleration (m/s^2)

- Compared Excel output vs. Python output for 1-DOF DRI model. Used triangular pulse input data with:
 - Input peak acceleration
 - Input time duration
- Down-sampled from ~25,000 to ~1200 data points to reduce computation time.
- Very low error across each category as expected.

Error Metric	Result
Phase	1
Magnitude	0.0011
Topological	0.0058

Phase shift test of EARTH code

Time (s)

Acceleration (m/s^2)

- Introduced a phase shift of 1000 data points in the original vector.
- Down-sampled to ~800 data points. (phase shift of 33)
- EARTH code recognized and handled the phase shift, yielding low magnitude and topological error again as expected.

Error Metric	Result
Phase	34
Magnitude	0.0022
Topological	0.0103

Validation of EECS models

Original data from drop tower tests.

Error Metric	Result	
Case 1		
Phase	3	
Magnitude	0.4508	
Topological	0.7635	
Case 2		
Phase	4	
Magnitude	0.6779	
Topological	0.8296	

Ongoing work

- Write EARTH code user manual for in-house use at TARDEC.
- Use DRI code to help evaluate new concept vehicles for DARPA.
- Update Hybrid Lumped-Finite Element (HLF) code (HyperMesh script for generating hull models) to add 3-DOF occupant models.

Summary

1. DRI

- Developed 1-DOF and 3-DOF code in Python.
- Validated against Excel code and physical test results.
- Documented usage and examples.

2. EARTH code

- Learned and tested EARTH code.
- Gathered example I/O data.
- Applied to EECS Team data to support in-house model VV&A efforts.
- Documented code for future VV&A at TARDEC.
- 3. Summarized all work in a technical report.

References

- NATO Science and Technology Organization. Test Methodology for Protection of Vehicle Occupants against Anti-Vehicular Landmine Effects. RTO-TR-HFM-090 AC/323(HFM-090)TP/72, Technical Report, April 2007.
- Pan, H. (2012), On the Integration of EARTH metric into the Bayesian Validation Framework, Technical Report, University of Michigan, Ann Arbor, MI, USA.
- Yorra, A.J. (1956), The Investigation of the Structural Behavior of the Intervertebral Discs, Masters Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Ruff, S. (1950), Brief Acceleration: Less than One Second, German Aviation Medicine in World War II, Vol. I, Chapter VI-C, Department of the Air Force.
- Ramalingam, J. and R. Thyagarajan. (2013, Jan 23). Design and Analysis of Vertically Stroking Floors (OCP-TECD). Technical briefing.
- Sarin, H. (2008), Error Assessment of Response Time Histories (EARTH): A metric to validate simulation models, M.S. Thesis, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Sarin, H., Kokkolaras, M., Hulbert, G., Papalambros, P., Barbat, S., and R.-J. Yang (2010), Comparing Time Histories for Validation of Simulation Models: Error Measures and Metrics, *Journal of Dynamic Systems, Measurement, and Control*, Vol. 132, pp. 061401-1 – 061401-10.

Acknowledgments

- Matt Castanier
- Ravi Thyagarajan
- Sara Pace
- Hao Pan
- Gregory Hulbert
- Michael Kokkolaras