ALGEBRA 2

ANELLI

- $f: A \to B$ allora $\operatorname{Im} f \cong \frac{A}{\operatorname{Ker} f}$
- $I\subseteq A$ ideale, $B\subseteq A$ sottoanello allora vale $\frac{I+B}{I}\cong \frac{B}{I\cap B}$
- $I,J\subseteq A$ ideali e $I\subseteq J$. Allora vale $\frac{\frac{A}{J}}{\frac{J}{I}}\cong \frac{A}{J}$ Si ha inoltre la corrispondenza tra gli ideali di $\frac{A}{I}$ e gli ideali $J\subseteq A$ tali che $I\subseteq J$. In questa corrispondenza i primi ed i massimali si corrispondono
- $IJ \subseteq I \cap J$. Se vale I+J=1 allora $IJ=I \cap J$
- È FALSO che $I \cap (J + K) = (I \cap J) + (I \cap K)$. FALSO
- $I \subseteq \sqrt{I}$
- (A dominio) a primo $\implies a$ irriducibile
- (A UFD) a irriducibile $\implies a$ primo
- Se $H \subseteq A \times B$ è ideale allora $H = I \times J$ con $I \subseteq A$, $J \subseteq B$ ideali
- $A \cong A_1 \times A_2 \Leftrightarrow \exists e \in A, e \neq 0, 1 \quad e^2 = e$
- $\mathcal{D}(A) = \bigcup_{a \notin A^*} (0:a) = \bigcup_{a \notin A^*} \sqrt{(0:a)}$ e $\sqrt{\mathcal{D}(A)} = \mathcal{D}(A)$, anche se non è necessariamente un ideale
- $\{E_{\lambda}\}_{{\lambda}\in\Lambda}$ sottoinsiemi di A. Allora $\cup_{{\lambda}\in\Lambda}\sqrt{E_{\lambda}}=\sqrt{\cup_{{\lambda}\in\Lambda}E_{\lambda}}$
- Sia A dominio con un numero infinito di elementi e $\mid A^* \mid < \infty$ allora A possiede infiniti ideali massimali
- I massimale $\implies I$ primo $\implies I$ primario. Inoltre A dominio $\Leftrightarrow (0)$ ideale primo
- Sono equivalenti:
 - A ha un unico ideale massimale
 - ∃ \mathfrak{m} ⊆ A ideale massimale t.c. $\forall a \in A \setminus \mathfrak{m} \implies a \notin A^*$
 - \exists m ⊆ A ideale massimale t.c. ogni elemento della forma 1 + m è invertibile
- $a \in \mathcal{J}(A) \Leftrightarrow \forall b \in A \quad 1 ab \in A^*$
- $\sqrt{I} = \bigcap_{I \subseteq P \text{ primi } P}$
- (Lemma di Scansamento) P_1, \dots, P_n ideali primi. Sia $I \subseteq A$ ideale t.c. $I \subseteq \cup_{i=1}^n P_i$. Allora $\exists j$ t.c. $I \subseteq P_j$
- I_1, \ldots, I_n ideali e P ideale primo. $\bigcap_{i=1}^n I_i \subseteq P \implies \exists j \text{ t.c. } I_j \subset P$. Inoltre se $P = \bigcap_i I_i$ allora $\exists j \text{ t.c. } I_i = P$
- (Teorema cinese) Siano $I_1, \ldots, I_n \subseteq A$ ideali tali che $I_i + I_j = 1$. Allora $\forall a_1, \ldots, a_n \in A \exists a \in A \text{ t.c. } a \equiv a_i(I_i)$
- A anello c.u. Allora si ha che
 - $-f \in A[x]$ è un'unità $\Leftrightarrow f = \sum_{i=0}^n a_i x^i$ con $a_i \in A$ tali che $a_0 \in A^*$ e $a_i \in \mathcal{N}(A) \quad \forall i \geq 1$
 - $f \in A[x]$ è nilpotente $\Leftrightarrow \forall i \quad a_i \in \mathcal{N}(A)$

- $f \in A[x]$ è divisore di zero $\Leftrightarrow \exists c \in A, c \neq 0$ t.c. cf = 0

Si ha inoltre per gli anelli di polinomi che

- $I \text{ primo} \Leftrightarrow I[x] \text{ primo}$
- I primario $\Leftrightarrow I[x]$ primario

NON è vero che tutti gli ideali di A[x] sono del tipo I[x], come ad esempio (x)

- Gli ideali primi di $\mathbb{Z}[x]$ sono dei seguenti tipi:
 - -(0)
 - $(p)[x] \operatorname{con} p \in \mathbb{P}$
 - $-(f(x)) \operatorname{con} f$ irriducibile
 - (p, f(x)) con $p \in \mathbb{P}$ e f irriducibile modulo p (Questi sono anche massimali)
- $u \in A^*$, $a \in \mathcal{N}(A)$, allora $u + a \in A^*$ (Somma di un nilpotente e di un invertibile)
- \bullet *I* primo \Longrightarrow *I* irriducibile
- In A[x] si ha $\mathcal{N}(A[x]) = \mathcal{J}(A[x])$ (Mentre in generale vale solo che $\mathcal{N}(A) \subseteq \mathcal{J}(A)$)
- Sia $\phi:A\to B$ omomorfismo di anelli. Allora
 - $-\phi(\mathcal{N}(A))\subseteq\mathcal{N}(B)$
 - Se ϕ è surgettivo allora $\phi(\mathcal{J}(A)) \subseteq \mathcal{J}(B)$
 - A semilocale (con un numero finito di ideali massimali) $\implies \phi(\mathcal{J}(A)) = \mathcal{J}(B)$
- $A \text{ PID} \implies \mathcal{J}(A) = \mathcal{N}(A)$
- A t.c. ogni ideale è primo $\implies A$ è un campo
- A t.c. ogni ideale primo è principale $\implies A$ è un anello ad ideali principali

Basi di Gröbner

•