

A Report on the Course Project of

Engineering Exploration course (15ECRP101)

Titled

AWSM-15

Ву

Sneha K Bankolli	1302
Sourabh Jain	1310
Ujjwal Singh	1329
Priyanka Buduru	1343

Under the guidance of

Mr Sanjeev M. Kavale B.E

Lecturer, School of Mechanical Engineering

Centre for Engineering Education Research

Academic Year 2017-2018, Even Semester

Centre for Engineering Education Research

CERTIFICATE

This is to certify that the project entitled "AWSM-15" is carried out by below mentioned students as part of Engineering Exploration Course (15ECRP101), KLE Technological University, Hubballi, during 2nd Semester of B.E program for the academic year 2017-18. The project report fulfils the requirements prescribed.

1302

Sneha K Bankolli

Sourabh Jain	1310
Ujjwal Singh	1329
Priyanka Buduru	1343
Guide	Course Instructor
Mr. Sanjeev M. Kavale	Mr. Sanjeev M. Kavale
Examiner 1:	Examiner 2:

DECLARATION

We hereby declare that the project work entitled "AWSM-15" submitted as a part of Engineering Exploration Course during 2nd semester of academic year 2017-2018 to KLE Technological University, Hubballi, is a record of an original work done by us under the guidance of Mr Sanjeev M. Kavale. Neither project work nor part of this report is plagiarized to the best of our knowledge.

Date: 27/04/2018

Sneha K Bankolli	Sourabh Jain	Ujjwal Singh	Priyanka Buduru
1302	1310	1329	1343

ACKNOWLEDGEMENT

We would like to thank several people who contributed selflessly and tirelessly to make our project a success. Their expertise, guidance, positive criticism and motivation helped us to complete this project.

The completion of this project wouldn't be possible without the guidance and encouragement of our mentor Mr Sanjeev M. Kavale. We would also like to thank Mr Manikanta, Mr Aadarsh, and Ms Jyoti who also guided us through every stage of the project so that our endeavour would be a success.

Mr Vijay, Mr Udaykumar, Ms Lalithamma, Ms Kamalamma, Mr Yallappa and Mr Ramesh were always there to extend a helping hand whenever we needed it irrespective of the time was. We would like to express our sincere gratitude to the entire CEER team to constantly motivate us which gave us the confidence to complete our project. We would like to thank our batch mates like Ritushree, Raghavendra, Swastik, Sachin, Sougat, Usman, Soumya S and all our friends who helped us overcome several difficulties. We would also thank our seniors for their invaluable advice which was of great help. A sincere thanks to our parents for always being a guiding light in our lives and for their blessing. Finally, we would like to thank KLE Technological University to give us the opportunity to undertake such a project and also providing us with the necessary resources and freedom to make this project a success.

Abstract:

One of the most used consumable item in any laboratory like the tinkering lab in the KLETech campus are wires that are used to make electrical connections in any circuit or system. It is a very tedious, repetitive and time-consuming process to cut and strip the wires. Therefore to address this problem we designed and prototyped a simple portable and user-friendly wire cutting and stripping machine.

The machine basically draws wire from a wire roll, strips the wire and cuts the wire to the present standard length. After a lot of research, we designed the machine in such a way that cutting and stripping of the wire is accomplished by the use of only one cutting plier which makes the machine cost effective.

The intake of the wire is achieved by the use of rollers which feeds the wire to the cutting plier for cutting and stripping of the wire. The machine also indicates the completion of the process when the cut and the stripped wire is dispensed in the collector tray.

The project needed the use of motor, motor driver, Arduino. The knowledge of Arduino programming was required to achieve the controlled movement of motors and to couple the other electronic devices for the synchronised functioning of all the components in order to achieve the desired result.

There can be many more functions that can be added to the machine that would make the machine more versatile. A user input keypad or LCD display can be incorporated in the system which lets the user to choose not only the length of wire to be cut but also gives him/her the options to cut and strip wires with different diameters. Also the length of the wire that needs to strip can be varied.

Table of Contents:

List of Figures	vii
List of Tables	viii
1. Problem Definition	х
1.1. Need Statement	х
1.2. Gathering Pertinent Information	11
1.3. Questions asked to client / users for arriving at Objectives, Functions	18
and Constraints	
1.4. Requirements Analysis	19
1.5. List of Objectives	19
1.6. Segregated Objectives	20
1.7. Objective tree	20
1.8. Pair-wise Comparison Chart (PCC)	21
1.9. Prioritized Objective List	21
1.10. List of constraints	21
1.11. List of functions	21
1.12. Problem Statement	22
2. Project Schedule	23
3. Conceptual Design	26
3.1. Black Box Representation	26
3.2. Glass Box Representation	27
3.3. Morphological Chart	29
3.4. Concept Generations Using Morphological Chart	30
3.4.1. Concept 1	30
3.4.2. Concept 2	31
3.4.3. Concept 3	32
3.4.4. Concept 4	33
3.5. Assigning the Weight age to the Objectives	34
3.6. PUGH Chart	35

3.7. Se	lected Concept	35
4. Product Arc	hitecture	36
4.1. Gla	ass Box with clustering	36
4.2. Su	b Systems Identified	36
4.3. Co	mponent Hierarchy	37
4.4. Int	eraction Details	38
5. Implementa	ation	39
5.1. lm	plementation Progress Sheet	39
5.2. Sp	rint 1	40
	5.2.1. 3D model and Drawings of the Sub System 1	40
	5.2.2. Bill of Materials	43
	5.2.3. Electrical/Electronic Circuit Diagram	44
	5.2.4. Flowchart	45
	5.2.5. Test Plan	46
	5.2.6. Fabricated Sub System	46
	5.2.7. Test Results	46
5.3. Sp	rint 2	47
	5.3.1. 3D model and Drawings of the Sub System 1 and	47
	Sub System 2	
	5.3.2. Bill of Materials	56
	5.3.3. Electrical/Electronic Circuit Diagram	58
	5.3.4. Flowchart	59
	5.3.5. Test Plan	60
	5.3.6. Fabricated Sub System	60
	5.3.7. Test Results	61
5.4. Sp	rint 3	61
	5.4.1. 3D model and Drawings of entire System	61
	5.4.2. Bill of Materials	67
	5.4.3. Electrical/Electronic Circuit Diagram	69

5.4.4. Flowchart	70
5.4.5. Test Plan	71
5.4.6. Fabricated Sub System	71
5.4.7. Test Results	72
5.5. Statement of Expenditure	72
6. Limitations of Present work and Future Scope	73
References	74

List of Figures

Fig No.	Contents	Page No.
Fig. 1	A cutting plier	12
Fig. 2	Eco Strip 9380	13
Fig. 3	CS800 Wire cut and strip	14
Fig. 4	CS800 Wire cut and strip image 2	14
Fig. 5	SIENN 900	15
Fig. 6	SIENN 900 image 2	15
Fig. 7	Wire cutting machine	16
Fig. 8	Components of wire cutting machine	16
Fig. 9	Circuit diagram	16
Fig. 10	Page 1 of Gantt chart	23
Fig. 11	Page 2 of Gantt chart	24
Fig. 12	Page 3 of Gantt chart	25
Fig. 13	Concept 1 design	30
Fig. 14	Concept 2 design	31
Fig. 15	Concept 3 design	32
Fig. 16	Concept 4 design	33
Fig. 17	Selected concept design	35
Fig. 18	Implementation sheet	39
Fig. 19	3D model of sprint 1	40
Fig. 20	Base for the cutting plier	41
Fig. 21	Small component to increase the motor height	42
Fig. 22	Sprint 1 electronic circuit	44

Fig. 23	Sprint 1 flowchart	45
Fig. 24	Fabricated image of sprint 1	46
Fig. 25	3D model of sprint 2	47
Fig. 26	3D image of sprint2	48
Fig. 27	60mm diameter roller	49
Fig. 28	40mm diameter roller	50
Fig. 29	A stand for rollers	51
Fig. 30	A stand for wire roller	52
Fig. 31	Alignment tube holder	53
Fig. 32	Base of the machine	54
Fig. 33	A covering board for the motor	55
Fig. 34	Sprint 2 electronic circuit	58
Fig. 35	Sprint 2 flowchart	59
Fig. 36	Sprint model image	60
Fig. 37	Sprint 2 fabricated image	60
Fig. 38	3D model of sprint 3	61
Fig. 39	Sprint3 3D model	62
Fig. 40	Entry slab	63
Fig. 41	Exit board	64
Fig. 42	Front system enclosing slab	65
Fig. 43	Back system enclosing slab	66
Fig.44	Sprint 3 electronic circuit	69
Fig.45	Sprint 3 flowchart	70
Fig.46	Fabricated image of sprint3	71

List of Tables

Table No.	Content	Page No.
Table.1	Questions asked to client	18
Table.2	Requirement analysis	19
Table.3	List of objectives	19
Table.4	Segregated object list	20
Table.5	Pair wise comparison chart	21
Table.6	Prioritized objective list	21
Table.7	List of constrains	21
Table.8	List of functions	21
Table.9	Morphological chart	28
Table.10	Concept 1 function chart	30
Table.11	Concept 2 function chart	31
Table.12	Concept 3 function chart	32
Table.13	Concept 4 function chart	33
Table.14	Assigning weightage to objectives	34
Table.15	PUGH chart	35
Table.16	Interaction details	38
Table.17	Bill of materials sprint1	43
Table.18	Bill of materials sprint2	56
Table.19	Bill of materials sprint3	67
Table.20	Statement of expenditure	72

1. Problem Definition

1.1. Need Statement

In every semester the faculty of CEER has to make kits for Engineering Exploration class, which consists of many components including wires of different lengths. Cutting and stripping wire to required length is fatigue and consumes lot of time. There is a need to automate the process of cutting and stripping of wires

1.2. Gathering Pertinent Information

INTRODUCTION

Wire cutting and stripping is one of the most basic electrical wiring skills. It is also is an important component in making good electrical connections [1]. According to Wikipedia, The simple definition of wire stripper is that wire stripper is a tool used to strip the electrical insulation from electric wires. Wire cutting machines are automatic or semi-automatic machines that provide precise cutting of wire and cables. A wire cutting and stripping machine uses a rotating blade to follow the contour of the cable, cutting away the cable insulation to expose a portion of the cable [2].

NEED FOR AUTOMATIC WIRE STRIPPING ANDCUTTING MACHINE.

Automatic wire stripping machine is very beneficial in places such as large scale industries, workshops, labs, colleges and many more. In manufacturing plants where automobiles are manufactured on a large production basis, considerable labour is required in cutting wires of the desired length and stripping the insulation from the ends therefore Wire cutting and stripping machine plays a very important role in making various connections between the battery and generator and in the ignition and lighting systems thus decreasing the time and making the work easy [3].

HISTORICAL BENCHMARKS IN TECHNOLOGY

Wires have been in use since the early 1800's to conduct electricity and make connections in electrical and electronics system. The wires started to be insulated so as to prevent accidental contact with other conductors of electricity, thereby preventing short circuit. Insulation also prevents humans from getting electrocuted due to accidental contact with current carrying contact wires.

Manual wire strippers were introduced to remove the insulation of wires for making connections. A US-style simple manual wire stripper is a pair of opposing blades much like scissors or wire cutters. The addition of a center notch makes it easier to cut the insulation without cutting the wire. Because of manual wire stripper is not efficient (since the process of wire stripping and cutting becomes tedious and time consuming) therefore with the development of technology the automated wire stripper came into existence [2].

The compound automatic wire stripper was first patented in 1915 by Stuart G. Wood of Brooklyn, NY. When engaged, a compound automatic wire stripper first, simultaneously grips the wire in one side and in the other side closes its V shaped blades cutting the insulation around the conductor. After the sides have completed their strokes the two sides

of the mechanism spread apart to push the cut tube of insulation from the end of the conductor. This device allows even a novice to strip most wires very quickly.

The most recent innovation for wire stripping and cutting is the laser wire stripping and cutting machine. A laser wire stripper is a computer-controlled machine, much like a CNC router, which uses a laser to burn off the insulation of the wire. Laser wire stripping machines are used mostly for very fine gauge wires since they do not damage the conductor. A typical CO2 laser wire stripping machine should be capable of stripping the insulation from any size wire [4].

EXISTING SOLUTIONS TO THE PROBLEM

Manual wire stripping machine

Cutting plier

Wire stripping in the earlier stage was done by cutting plier, the cutting plier was operated manually.

Components

The cutting plier was consisting of two blades which would look like scissors. The feature added was centre notch which made it much easier to cut the insulation around the wire. There are many wire cutting and stripping tools for a variety of automotive wiring sizes and options. The Self-Adjusting Cut and Strip Tool strips wires from 34 to 8 gauge wire without adjustment. The Heavy Duty Cable Stripping Tool strips electrical wires and cables of all insulation types. It features two interchangeable cable guides for a cable capacity of 0.18" up to 1.57". It also features three blade positions to provide circular, lengthwise or spiral cuts. Replacement blades for the heavy duty cable stripper are contained inside the tool. The Precision Stripping Tool is a 9-position tool that strips jackets of most cables up to 0.43" with insulation thickness up to .04". Regardless of size or specification, many of the wire stripping and cutting tools feature comfortable plastic covered handles that help reduce wrist fatigue [1].

DN-WSRJ

Figure 1. A Cutting Plier [1]

Eco Strip 9380

The EcoStrip 9380 is a simply capable entry level machine for cut & strip applications that need to meet professional standards. It cleverly combines the latest technology with Schleuniger's industry renowned precision, making it easier than ever to process a wide range of entry level applications.

This flexible machine can be configured with rollers or a belt feeding unit. The unique 3-position design of the optional belt feeding unit can be set for normal mode, roller mode or short mode processing. The EcoStrip 9380's economical price point, along with its high level of cut & strip quality, makes it the perfect choice for both newcomers and cut & strip professionals alike.

Figure 2.EcoStrip 9380 [3]

• CS800 Wire Cut & Strip

Eraser's Model CS800 Wire Cut & Strip is a fully programmable, fully electric bench top wire cutter and stripper. The working principle of the automatic wire stripper is delivering the wire by feeding and discharging roller, and then cutting and stripping by the cutting structure [6].

Components

1. Wire feeding roller: Feeding the wire and strip the head end of wire. While stripping the short wire, it can strip the head and end of the wire (length is less than 50mm), it also could strip the middle parts of the wires.

- 2. **Pressure adjusting wheel for feeding roller**: adjust the pressure of the wire feeding roller, when it is pulled and rotated in clockwise direction, the pressure of feeding roller is increased; when it is pulled and rotated in counter clockwise direction, the pressure of the feeding is decreased. (The pressure is adjusted as per the strength of the wire)
- 3. Adjusting wheel for the gap of the feeding roller: adjust the gap between the wire feeding rollers, gap will be increased while rotated in the right and the gap will be decreased while rotated in the left. (The gap is adjusted as per the diameter of the wire)
- 4. Wire discharging wheel: it deliver the wire and strip the end of the wire (it doesn't work while stripping the short wire, the gap between the discharging wheels should be the max. distance)
- 5. Pressure adjusting button for discharging roller: It adjusts the pressure of the discharging roller, when it is pulled and rotated in counter clockwise direction, the pressure of discharging roller is increased; when it is pulled and rotated in clockwise direction, the pressure of the discharging is decreased. (The pressure is adjusted as per the strength of the wire)
- 6. Adjusting wheel for the gap of the discharging roller: adjust the gap between the wires discharging roller, gap will be increased while rotated in the left and the gap will be decreased while rotated in the right. (The gap is adjusted as per the diameter of the wire)
- 7. **Cutting frame**: wire cutting, head stripping and end stripping. When the machine is stop, the distance between up and down blades should be the max which makes the wire smoothly getting through [7].

Figure 3.CS800 Wire Cut & Strip [4]

Figure 4.CS800 Wire Cut & Strip 2 [4]

SIENNA 900

SIENNA 900 is a modular laser-based magnet wire stripping units designed for complete integrated into medium to high volume production lines, new or existing, manufacturing wound components and other products using enamel insulated magnet wire.

Working principle

The laser (in the machine) delivers enough energy to effectively remove the insulating material by either photo-thermal or photo-chemical ablation process. Photo-thermal is essentially the heating and resulting evaporation of the insulator while photo-chemical ablation describes the breaking of chemical bonds in the material. Qualitatively, the two mechanisms produce very different results.

Absorption of the conductor (wire) implies the delivered laser energy to the wire results in local heating that leads to evaporation of the surrounding insulating layer. An alternate mechanism is recoil stripping, where the insulating layer is removed by the shock wave created at the wire surface by the laser pulse.

Working

It is critical to be able to strip insulation precisely from wire without damage to the conductor. Laser-based wire strippers accomplish this simply, by relying on the ability of light to selectively remove non-metallic insulating materials while leaving the metallic conductor completely untouched [8].

Benefits

The Benefits of this machine is that it has a selective, clean, non-contact process. No consumable parts like with brush or blade methods are used. No risk of product contamination due to presence of insulation debris. Conductor surface is left completely clean and also oxide-free. Optimum electrical termination can be achieved through precise control of resulting surface texture [9]

Figure 6.SIENNA 900 [5]

Figure 5.SIENNA 900 image 2 [5]

WORKING OF WIRE CUTTING AND STRIPPING MACHINE

The inputs should be processed by Arduino nano and then the command should be given to stepper motor to feed required length of wire and instruct the server to make cut of required quantity. The components required are Arduino nano, stepper motor, motor driver, servo motor, cutter, PCB terminals. For base of the machine 3mm thick white acrylic sheet can be used and all the components should be tightly mount on the sheet [11].

Figure 7.Wire cutting machine [7]

Figure 8.Components of machine [7]

The Circuit of the machine would be like

Figure 9.Circuit Diagram [7]

THE TECHNOLOGY, COMPONENTS OR MODULES THAT ARE NEEDED FOR THE DESIGN OF WIRE CUTTING AND STRIPPING MACHINE

Based on the features and components used in all the above machines there are many components or modules that are needed for the design of Wire cutting and stripping machine. Machine body structure that can house the parts in a compact state can be adopted thus enhancing the sturdiness and durability of the machine. A newly designed blade block, which activates the top and bottom blades made of ultra-fine-grain alloy simultaneously, can be employed to insure the quality and neat finish. Machine components should be designed in modular-type so that it becomes easy to assemble and disassemble in minutes. V-Blade Design can be used to ensure Cut and Strip Shape. Assembly Type of Split Blade, can be exchanged as require. Adjustable-type cylinders, machine base and tooling designs should be used so that it permits wire stripping to any wire diameter and length. Adjustable tool and clamp holders can be fixed so that operator can use the unique one-for-all tooling for stripping of either flat cables or circular wires of any diameter. Tool and clamp holders could be mutually exchanged for use in performing any specific wire-stripping task [10].

DIFFERENT EXPERTISE NEEDED FOR DESIGNING THE MACHINE

Expertise of different branches involved in the project are computer science engineer who will help us in writing the program for the electronic elements involved. Electronics engineer who will be helping in building electronic components which are required. Mechanical engineer would be needed for building up the outer frames, etc. Even guidance of course instructor and guide Sanjeev Sir, Manikanta sir, Jyoti madam, and Raghu sir is needed to design the machine.

DISCUSSING WITH THE OTHER TEAMS HAVING SAME NEED STATEMENT

When discussed about the project with other teams their idea is to make automatic wire stripper machine. The main drawback of this idea could be high cost of the machine and even making the machine would take long time and hence time management would be difficult. The positive thing about their product could be that the cutting and stripping would be done with accuracy and precision. However since it is the initial stage of our project, we are not sure about its working.

THE FACTORS IMPORTANT TO SOLVE NEED STATEMENT

Some of the factors important to solve the problem would be materials used to build the product should be eco-friendly, edges should cut in proper way so that it doesn't hurt the users in anyway, the blade should not be exposed as it may cut the user, all the components should be sealed to avoid Human contact, also the product need to be portable and even the budget of the machine would be around 3000 rupees.

1.3. Questions asked to client / users for arriving at Objectives, Functions and Constraints.

Table 1.Questions asked to client

1	Which material should be used for machine parts?
2	Should the insulation material of wire be thick or thin?
3	Should the machine be portable or not?
4	Do you suggest time limit for stripping of the insulation of each wire?
5	What should be the size of machine?
6	What should be the cost range?
7	What should be the power source of this machine?
8	What should be the length of wire to be cut & strip?
9	What should be machine able to perform?
10	Should it be automatic or semi-automatic?
11	Should it contain any display or an indicator?

1.4. Requirements Analysis

Table 2 requirement analysis

A. no	Answer	0	С	F
1	Which material should be used for machine parts?	1		
2	Should the insulation material of wire be thick or thin?	1		
3	Should the machine be portable or not?	1		
4	Do you suggest time limit for stripping of the insulation of each wire?	1		
5	What should be the size of machine?		1	
6	What should be the cost range?		1	
7	What should be the power source of this machine?		1	
8	What should be the length of wire to be cut & strip?		1	
9	What should be machine able to perform?			1
10	Should it be automatic or semi-automatic?			1
11	Should it contain any display or an indicator?			1

1.5. List of Objectives

Table 3.List of objectives

SI. No	Objectives
1	The machine should be electric shock proof.
2	The device should be sealed properly.
3	Each wire should be stripped & cut in precise way.
4	The machine should have less maintenance cost.
5	The machine should light weight.
6	The machine should be affordable.
7	The machine should be portable
8	The machine should be stationery while cutting & stripping wire.

1.6. Segregated Objectives

Table 4.Segregated Objects

Category1: Safety	Category2: Portability	Category3: Cost Effective
No sharp edges	Easy to Carry from place to place	Affordability
Blades should be properly covered	Light weight	
Electric Shock proof		

1.7. Objective tree

1.8. Pair-wise Comparison Chart (PCC)

Table 5 PCC chart

Goals	Safety	Portability	Cost effective	Total score
Safety	*	1	1	2
Portability	0	*	1	1
Cost effective	0	0	*	0

1.9. Prioritized Objective List

Table 6 Prioritized object list

SI. No	Objective
1	Safety
2	Portability
3	Cost effective

1.10. List of constraints

Table 7 List of constraints

SI. No	Constraints
1	The length of the wire to be cut should be 15cm.
2	The machine should strip 1 cm of the wire from both the ends.
3	The size of the machine should not exceed 14*14*14 inches

1.11. List of functions

Table 8 List of functions

SI. No	Functions
1	The machine should cut and strip one wire at a time.
2	The machine should be semi-automatic i.e. the machine should sense the input
3	The machine should indicate the completion of the process

1.12. Problem Statement

Design a wire stripping and cutting machine which should be safe to use and should be properly insulated. The machine should be light weight, compact and portable. The machine should cut 15cm of the insulated wire of diameter 1.25mm (diameter of inner conductor is 0.35mm) and it should strip 1cm from both the ends. The size of the machine should not exceed 14*14*14 inches. The cost of the machine should not exceed Rs.3000. The machine should be able to cut and strip one wire at a time and should be able to sense the user input and dispense the trimmed wire in the collecting tray. The machine should also indicate the completion of the process.

2. Project Schedule

Figure 10 Page 1 Gantt chart

Name Begin da Need statement selection 11/1/18 Gathering pertinent information 11/1/18 Problem definition 19/1/18 Review 1 30/1/18		2
	Begin date End date	
Concept generation 23/1		
Concept selection 6/2/		
re		
Minor 1 21/2		
Review 3 27/2		
Performance test		
	18 16/4/18 18 17/4/18	

Figure 11 Page 2 of Gantt chart

Figure 12 Page 3 Gantt chart

3. Conceptual Design

3.1. Black Box Representation

3.2. Glass Box Representation

3.3. Morphological Chart

Table 9. Morphological Chart

Functions	Mean1	Mean2	Mean3	Mean4
Function 1 Intake of wire	Roller feed mechanism	Movable wire holder	Robotic arm	Extruder Mechanism
Function 2 Aligning of wire	Multiple roller NN 8132 Bit 2 Dougloom KN 8149 Earlie Fred Fred Fillers	Robotic arm	Wire holder	Alignment tubes
Function 3 Cutting	V Shaped Blade	Cutting plier	Circular blade	Two Sharpener Blades aligned at 45 degrees
Function 4 Stripping	Blade with a notch	Cutting Plier	V shaped blade	Two Sharpener Blades aligned at 45 degrees
Function 5 Movement of blades	Cam mechanism	Using Servo motor	Wedge Screw Mechanism	Reciprocating Mechanism

Function 6 Movement of stripping equipment	Rack and pinion	Using servo Motor	Toggle clamp	Four link level screw mechanism
	Switch	Keypad	Bluetooth	Remote
Function 7 User input	ON OFF		(((😵))	
Function 8 Dispense	Tray	Guiding tubes	Incline plane made with acrylic sheet	
	Buzzer	LCD display	LED light	
Function 9 Indicate		LCD DISPLAY 16x2		

3.4. Concept Generations Using Morphological Chart

3.4.1. Concept 1:

Table 10.Concept 1 function chart

Function	Means Selected
Cutting	Cutting plier
Stripping	Cutting plier
Alignment	Alignment tubes
Movement	Roller

3.4.2. Concept 2:

Table 11.Concept 2 function chart

Function	Means Selected
Cutting	V shaped blades
Stripping	V shaped blades
Alignment	Alignment tubes
Movement	Roller

3.4.3. Concept 3:

Table 12.Concept 3 function chart

Function	Means Selected
Cutting	Blades
Stripping	Blades
Alignment	Alignment tubes
Movement	Robotic arm

3.4.4. Concept 4:

Table 13. Concept 4 function chart

Function	Means Selected
Cutting	Blades
Stripping	Blades
Alignment	Wire gripper (holder)
Movement	Robotic Arm

3.5. Assigning the Weightage to the Objectives:

Table 14 Weightage to objectives

Objectives	Weight
1.Safety	8
Justification:	
Since the machine uses sharp blades to cut and strip if it is unsafe to use as it could severely	
injure the user if proper care of safety is not taken.	
2. User Friendly	7
Justification:	
The machine should be user friendly so that the user easily understands the functioning and	
can operate the machine with ease.	
Objectives	Weight
3.Electrical shock proof	6
Justification:	
The user should be not be exposed to electrical shock during the operation as it could lead	
to serious injury and may also lead to hospitalization. Therefore special care should be taken	
while designing the machine.	
4. Portability	7
Justification:	
A wire cutting and stripping machine needs to portable since the user/client will require to	
take it from one location to another to complete the required tasks.	
5. Cost Effective	3
Justification:	
The machine may be reasonable priced since target groups are institutions and laboratories.	

3.6. PUGH Chart:

Table 15 PUGH chart

Objectives	Weightage	Concept 1	Concept 2	Concept 3	Concept \$
Safety	8	++	Datum	0	+
User-friendly	7	+	Datum	++	+
Electrical	6	0	Datum	-	0
Shock proof					
Portability	7	-	Datum	-	-
Cost Effective	3	0	Datum	0	0
+ Score		24	0	14	15
- Score		5	0	13	7
Total		18	0	1	8

3.7 Selected Concept

CONCEPT 1

Figure 17 Selected concept design

4. Product Architecture

4.1. Glass box with clustering

4.2 Subsystems Identified

- 1. Cutting and Stripping system
- 2. Movement system
- 3. Electronic System

4.3. Component Hierarchy

4.4 Interaction Details

Table 16 interaction details

		Movement subsystem	Electronic subsystem
Cutting and	Material Interaction	✓	Х
stripping subsystem	Data Interaction	X	✓
	Energy Interaction	Х	Х
	Spatial Interaction	Х	Х

Interactions

There is material interaction between alignment subsystem and cutting and stripping subsystem when wire moves from rollers into the plier. The electronic subsystem(arduino) gives command to the servo motor when to strip and cut the wire

		Cutting and stripping subsystem	Electronic subsystem
Movement	Material Interaction	✓	X
subsystem	Data Interaction	Х	1
	Energy Interaction	Х	Х
	Spatial Interaction	Х	Х

The wire moves from alignment subsystem and cutting and stripping subsystem therefore there is material interaction. The Electronic system controls the motion of the rollers so that the wire can be fed with precision. Therefore there is data interaction between the movement subsystem and the alignment subsystem.

		Cutting and stripping subsystem	Movement subsystem
Electronic subsystem	Material Interaction	X	X
subsystem	Data Interaction	✓	✓
	Energy Interaction	Х	Х
	Spatial Interaction	Х	Х

There is data interaction between the cutting and stripping subsystem for the movement of the cutting plier. The data regarding completion of process received by the electronic system and the indication when the bulb glows

5. Implementation

5.1. Implementation Progress Sheet

Figure 18 Implementation sheet

5.2 Sprint 1

5.2.1 3D model and Drawings of the Sub System 1

Figure 19 3D model of sprint 1

Figure 20 Base for the cutting plier

Figure 21 Small component to increase height of motor

5.2.2. Bill of Materials

Table 17 Sprint 1 BOM

Sl.no	PART NAME	MATERIAL WITH WHICH THE PART IS MADE OF	DESCRIPTION ABOUT PART	QUANTITY	FABRICATION PROCESS REQUIRED
1	Stand of servo motor	Foam board	1.2cm thick,5cm long,7cm width	1	Hex blade
3	Stand of subsystem	Foam board	10cm length 20cm height 3mm thick	1	Hex blade
2	U shape clamp		3" size	1	
4	Cutting plier	_	Standard sized	1	
4	Servo motor		4.8V- 6V	1	
5	Micro controller		Arduino mega 2560	1	
6	Nuts		16 -6mm length and 3mm diameter	2	
7	Bolts		2 -25mm length and 3mm diameter	2	
8	Jumper cables		male to male, male to female	5	_
9	Nylon thread		8cm length	1	_

5.2.3. Electrical/Electronic Circuit Diagram

Figure 22 Sprint 1 electronic circuit

5.2.4. Flowchart

Figure 23 Sprint 1 flowchart

5.2.5. Test Plan

When the switch is turned on, the servo motor receives the signal from arduino which specifies the rotation angle as 110 degrees, hence stripping the wire. Within a delay of 1 second, the plier again stripes the wire again at certain length. For cutting of the wire, the servo is rotated at 170 degrees by the micro controller. This whole process is repeated once the cutting of wire is done. The output of this result is a wire cut of specific length and stripped at its both ends.

5.2.6. Fabricated Sub System:

Figure 24 Fabricated sprint1 image

5.2.7. Test Results

A 12V adapter is used to test the working of sub system, the testing is achieved by connecting the adapter to the motor and feeding a proper program to the arduino. The test result delivered a cut and stripped wire of required length.

5.3. Sprint 2

5.3.1 3D model and Drawings of the Sub System 1 and 2

Figure 25 3D model of sprint 2

Figure 26 3D model of sprint 2 image 2

Figure 27 60mm diameter roller

Figure 28 40mm diameter roller

Figure 29 A stand for rollers

Figure 30 A stand for wire rollers

Figure 31 Alignment tube holder

Figure 32 Base of the machine

Figure 33 A covering board for the motor

5.2.2. Bill of Materials

Table 18 Sprint 2 BOM

Sl.no	PART NAME	MATERIAL WITH WHICH THE PART IS MADE OF	DESCRIPTION ABOUT PART	QUANTITY	FABRICATION PROCESS REQUIRED
1	Stand of servo motor	Foam board	1.2cm thick,5cm long,7cm width	1	Hex blade
3	Stand of subsystem	Foam board	10cm length 20cm height 3mm thick	1	Hex blade
2	U shape clamp		3" size	1	
4	Cutting plier	_	Standard sized	1	
4	Servo motor		4.8V- 6V	1	
5	Micro controller		Arduino mega 2560	1	
6	Nuts		16 -6mm length and 3mm diameter	2	
7	Bolts		2 -25mm length and 3mm diameter	2	
8	Jumper cables		male to male, male to female	5	_
9	Nylon thread		8cm length	1	_

10	Rollers	Foam board	4cm diameter,2cm thickness	2	Cutting tool
11	DC geared motor		300 rpm	1	_
12	Rubber belt	_	12cm length,2cm width	2	_
13	Alignment tube	Nylon fiber	0.9cm diameter,25cm length	1	_
14	Stand for alignment tube	Acrylic sheet	5cm length,3cm width,4mm thickness	2	Laser cutting
15	Wire roller	_	5cm long	1	_
16	Stand for wire roller	Acrylic sheet	10cm long, 5cm width.	2	Laser cutting
17	Spacer	Nylon fiber	0.6cm diameter	2	_

5.3.3. Electrical/Electronic Circuit Diagram

Figure 34 Circuit diagram of sprint 2

5.3.4. Flowchart

Figure 35 Flowchart of sprint 2

5.3.5. Test Plan

When the switch is turned on, the DC motors rotates the rollers which feeds in the wire, the arduino is programmed in such a way that the rollers stop just as the wire reaches the plier. The plier stripes and cuts the wire under the control of arduino.

5.3.6. Fabricated Sub System:

Figure 36 Sprint 2 model

Figure 37 Sprint 2 subsystems

5.3.7. Test Results

The unit testing is done by connecting the 12V adapter to the arduino, the roller connected to the DC motor rotates which in turn turns the rollers. Due to the circular motion, the rollers feed in the wire. And when the system is integrated with the cutting plier, it is stripped and cut according the program fed. The end result is a cut and stripped wire fed through rollers.

5.4. Sprint 3

5.4.1 3D model and Drawings of entire System

Figure 38 3D model of sprint 3

Figure 39 3D model sprint 3 [1]

Figure 40 Entry slab

Figure 41 Exit board

Figure 42 Front system enclosing slab

Figure 43 Back system enclosing slab

5.4.2. Bill of Materials

Table 19 Sprint 3 BOM

Sl.no	PART NAME Stand of servo motor	MATERIAL WITH WHICH THE PART IS MADE OF Foam board	DESCRIPTION ABOUT PART 1.2cm thick,5cm long,7cm width	QUANTITY 1	FABRICATION PROCESS REQUIRED Hex blade
3	Stand of subsystem	Foam board	10cm length 20cm height 3mm thick	1	Hex blade
2	U shape clamp		3" size	1	
4	Cutting plier	_	Standard sized	1	
4	Servo motor		4.8V- 6V	1	
5	Micro controller		Arduino mega 2560	1	
6	Nuts		16 -6mm length and 3mm diameter	2	
7	Bolts		2 -25mm length and 3mm diameter	2	
8	Jumper cables		male to male, male to female	5	_
9	Nylon thread		8cm length	1	_
10	Rollers	Foam board	4cm diameter,2cm thickness	2	Cutting tool
11	DC geared motor		300 rpm	1	_
12	Rubber belt	_	12cm length,2cmwidth	2	_

13	Alignment tube	Nylon fiber	0.9cm diameter,25cm length	1	
14	Stand for alignment tube	Acrylic sheet	5cm length,3cm width,4mm thickness	2	Laser cutting
15	Wire roller		5cm long	1	
16	Stand for wire roller	Acrylic sheet	10cm long, 5cm width.	2	Laser cutting
17	Spacer	Nylon fiber	0.6cm diameter	2	_
18	Buzzer	_	_	1	_
19	Switch			1	
20	PCB board	_		1	_
21	Outer casing	Foam board		4	Hex blade
22	L clamps	_	1" size	20	_
23	Front casing	Acrylic sheet		1	Laser cutting
24	Hinges	_	Small size	6	_
25	Nuts and bolts	_	M3 size	40	_
26	Washers	_	M3 size	40	

5.4.3. Electrical/Electronic Circuit Diagram

Figure 44 Sprint 3 electronic diagram

5.4.4. Flowchart

Figure 45 Sprint 3 flowchart

5.4.5. Test Plan

The 12V adapter is connected to the micro controller, as the switch is turned on, the rollers feed in the wires till a certain length and the plier stripes and cuts the wire, the arduino is programmed in such a way that as the wire is cut, the buzzer receives a input signal from the arduino and buzzes for a short time indicating the user completion of the process..

5.4.6. Fabricated System:

Figure 46 Fabricated image of sprint 3

5.4.7. Test Results

The unit testing is done by connecting a 12V adapter to the arduino. As the switch is turned on, the buzzer takes in the signal from arduino and gives the output as a buzzing sound. The buzzing sounds indicates the completion of process. So this results the completion of unit testing. The integration of this system with the rollers and the cutting plier is tested, the end result is a wire passed through the rollers, stripped and cut of required length, giving out a buzzing sound when the wire is cut. The performance test was also conducted successfully for a duration of three hours, yielding cut and stripped wires of same length

5.5. Statement of Expenditure

Table 20 Statement of expenditure

Sl. No	Item with description	Quantity	Price in Rs.
1	Servo motor of 6V	1	400
2	DC geared motor	1	150
3	Foam board 3mm thick	1	180
4	12mm thick foam board	1	
5	Nuts, bolts, screws	30	
6	Cutting plier	1	80
7	12V adapter	1	200
8	L clamps, U clamps	20	
9	Arduino Mega	1	800
10	Wire roller	1	
12	Limit switch	1	18
13	Buzzer	1	20
14	Rubber belt	1	
15	Jumper cables	10	
16	PCB Board	1	
17	Arduino cable	1	
18	L298n motor drive	1	160
		Total	2008

5. Limitations of Present work and Future Scope

LIMITATIONS

- 1. A wire of only one specific length can be cut and stripped.
- 2. The wire is both stripped and cut, either of the function cannot be achieved singularly.
- 3. The machine cannot give an indication if the wire stored in is emptied. The user will have to check the amount of wire remaining manually.
- 4. The rollers made of foam board may wear and tear or become smooth hindering the feeding of wires with time.
- 5. The outer casing of the machine done with 3mm thick foam board can only serve as temporary protection purpose. It may wear off with time.
- 6. The indication of the process is though a buzzer which beeps a sound when wire is cut and stripped, it may not be feasible in all cases. (Like in noisy places, for a deaf user).

FUTURE SCOPE

- 1. A LCD display and a keypad can be integrated, and the program can be modified so that the user can enter the desired length of the wire to be cut and stripped.
- 2. The outer casing done by foam board can be replaced by any hard and durable material like wood, metal, plastic.
- 3. A sensor can be added to the wire roller, so that it indicates the user whenever the wire roll is empty.
- 4. The buzzer can be replaced by an android signal which sends a message to the user when process is completed.

References:

Sl. No.	Website URL
1	https://www.waytekwire.com/products/1445/Cutters-Strippers/
<u>2</u>	https://en.m.wikipedia.org/wiki/Wire_stripper
<u>3</u>	http://www.schleuniger.com/products/p/ecostrip-9380/
4	http://www.wire-processor.com/news/Automatic-wire-stripping-machine-working-principle 1466.html
	WOTKING PERFORMAN
<u>5</u>	http://www.spectrumtech.com/about-us/technology/laser-wire-stripping/
<u>6</u>	http://www.mega-choice.com/?cid=66737&product=Machines for Wire Harness
_	
	http://www.instructobles.com/id/DIV Andring Deced Automotic Wine Cutting
7	http://www.instructables.com/id/DIY-Arduino-Based-Automatic-Wire-Cutting-Machine/
	Delta del la conde
	Patent Journals
1	D. D. Cross, "WIRE CUTTING AND STRIPPING MACHINE", U.S. Patent 1,733,294, issued Oct. 29, 1929
2	S. G. WOOD.,"INSULATED WIRE STRIPPING DEVICE", U. S. Patent 1,151,319, issued Aug 24, 1915