International Olympiad in Informatics 2013

6-13 July 2013 Brisbane, Australia Day 2 tasks

robots

magyar - 1.0

Marita speciális robotokat használ a szanaszét heverő játékok összegyűjtésére.

T játék van, ismerjük mindegyik W[i] súlyát és S[i] méretét. Kérféle robot van: könnyű és kicsi.

- A darab könnyű robot van. Az i. csak X[i] -nél kisebb súlyú játékot tud mozgatni a helyére. A játék mérete nem számít.
- B darab kicsi robot van. Az i. csak [Y[i]]-nél kisebb méretű játékot tud mozgatni a helyére. A játék súlya nem számít.

Mindegyik robot 1 perc alatt rak helyre 1 tárgyat. Egyszerre akárhány robot dolgozhat.

Feladatod megadni, hogy minimum mennyi idő alatt tudja az összes játékot helyre rakni vagy közölni, hogy nem megoldható a feladat.

Példák

Az első példában A = 3 könnyű robot van X = [6, 2, 9] súlykorláttal, B = 2 kicsi robot van Y = [4, 7] méretkorláttal, és T = 10 játék van:

Játék sorszám	0	1	2	3	4	5	6	7	8	9
Súly	4	8	2	7	1	5	3	8	7	10
Méret	6	5	3	9	8	1	3	7	6	5

Legkevesebb 3 perc alatt tudnak a robotok helyrerakni minden játékot:

	Könnyű robot 0	Könnyű robot 1	Könnyű robot 2	Kicsi robot 0	Kicsi robot 1
Első perc	0. játék	4. játék	1. játék	6. játék	2. játék
Második perc	5. játék		3. játék		8. játék
Harmadik perc			7. játék		9. játék

A második példában A = 2 könnyű robot van X = [2, 5] súlykorlátokkal, B = 1 kicsi robot Y = [2] méretkorláttal, és T = 3 játék:

Játék sorszám	0	1	2
Súly	3	5	2
Méret	1	3	2

Egyetlen robot sem tudja elvinni az 5 súlyú és 3 méretű játékot, tehát a problémának nincs megoldása.

Megvalósitás

A putaway () függvényt kell beküldened:

A függvényed: putaway()

```
C/C++ int putaway(int A, int B, int T, int X[], int Y[], int W[], int S[]);

Pascal function putaway(A, B, T : LongInt; var X, Y, W, S : array of LongInt) : LongInt;
```

Leirás

A függvény számítsa ki a legkisebb időt, ami alatt a robotok az összes játékot helyre rakják.

Paraméterek

- A: a könnyű robotok száma.
- B: a kicsi robotok száma.
- T: a játékok száma.
- X: A elemű tömb, a könnyű robotok súlykorlátját tartalmazza.
- Y: B elemű tömb, a kicsi robotok méretkorlátját taralmazza.
- W: T elemű tömb, a játékok súlyát tartalmazza.
- S: T elemű tömb, a játékok méretét tartalmazza.
- Visszatérési érték: a legkisebb idő, ami alatt a robotok az összes játékot helyre rakják.
 legyen az értéke, ha nincs megoldás.

Példák

Az első példa:

Paraméter	Érték
A	3
В	2
т	10
х	[6, 2, 9]
Y	[4, 7]
w	[4, 8, 2, 7, 1, 5, 3, 8, 7, 10]
s	[[6, 5, 3, 9, 8, 1, 3, 7, 6, 5]]
Visszatérési érték	3

Második példa:

Paraméter	Érték
A	2
В	1
Т	3
х	[2, 5]
Y	[2]
W	[3, 5, 2]
s	[1, 3, 2]
Visszatérési érték	-1

Korlátok

■ Időlimit: 3 másodperc

Memória limit: 64 MiB

■ 1 ≤ T ≤ 1,000,000

■ $0 \le A, B \le 50,000 \text{ és } 1 \le A + B$

■ $1 \le X[i], Y[i], W[i], S[i] \le 2,000,000,000$

Részfeladatok

Részfeladat	Pontszámok	További korlátok
1	14	T = 2 és A + B = 2 (pontosan 2 játék és 2 robot)
2	14	B = 0 (minden robot könnyű)
3	25	T ≤ 50 és A + B ≤ 50
4	37	T ≤ 10,000 és A + B ≤ 1,000
5	10	(Nincs)

Gyakorlás

A mintaértékelő a robots.in fájlból olvassa a bemenetet, amelynek formája:

```
■ 1. sor: A B T
```

■ 2. sor: X[0] ... X[A-1]

■ 3. sor: Y[0] ... Y[B-1]

■ a következő T sor: W[i] S[i]

Az első példa fájlja igy néz ki:

```
3 2 10
6 2 9
4 7
4 6
8 5
2 3
7 9
1 8
5 1
3 3
8 7
7 6
10 5
```

Ha A = 0 vagy B = 0, akkor a megfelelő sor (2. vagy 3.) üres.

Nyelvi előirások

```
C/C++ Importáld a #include "robots.h"-t.

Pascal Definiáld a unit Robots-t. A tömbök indexelése 0-tól kezdődik (nem 1-től).
```

Lásd a mintaprogramokat a gépeden!