Algèbre 1

Actions de groupes

Question 1/16

Formule des classes

Réponse 1/16

Si G agit sur X et \mathcal{R} est un ensemble de représentants des orbites de l'action alors

$$|X| = \sum_{x \in \mathcal{R}} (|G/\operatorname{stab}(x)|)$$

Question 2/16

$$|G/\operatorname{stab}(x)|$$
 pour G fini

Réponse 2/16

$$|G/\operatorname{stab}(x)| = \frac{|G|}{|\operatorname{stab}(x)|} = |G \cdot x|$$

Question 3/16

Fixateurs de g

Réponse 3/16

$$fix(g) = \{x \in X, g \cdot x = x\}$$

Question 4/16

Non-trivialité de X^G pour G un p-groupe

Réponse 4/16

$$\left|X^{G}\right| \equiv \left|X\right| \left[p\right]$$

En particulier, $Z(G)$ est non trivial

Question 5/16

Action transitive

Réponse 5/16

$$\forall (x,y) \in X^2, \exists g \in G, g \cdot x = y$$

Question 6/16

Formule de Burnside

Réponse 6/16

Le nombre d'orbites N d'une action de G sur $X \text{ vérifie } N = \frac{1}{|G|} \sum_{g \in G} (|\text{fix}(g)|)$

Question 7/16

Action libre

Réponse 7/16

$$\forall g \neq 1, \, \text{fix}(g) \neq \emptyset$$

Question 8/16

Action simplement transitive

Réponse 8/16

Action libre et transitive
$$\forall (x,y) \in X^2, \exists ! g \in G, g \cdot x = y$$

Question 9/16

Orbite de x

Réponse 9/16

$$G \cdot x = \{g \cdot x, g \in G\}$$

Question 10/16

Lemme de Cauchy

Réponse 10/16

Si $p \in \mathbb{P}$ divise l'ordre de G, alors G possède un élément d'ordre p

Question 11/16

Action fidèle

Réponse 11/16

 α est injective

Question 12/16

Stabilisateur de x

Réponse 12/16

$$stab(x) = \{g \in G, g \cdot x = x\}$$

Question 13/16

 X^G

Réponse 13/16

$$\bigcap_{g \in G} (\operatorname{fix}(g))$$

Question 14/16

p-groupe

Réponse 14/16

Pour $p \in \mathbb{P}$, un p-groupe est un groupe G vérifiant $|G| = p^n$

Question 15/16

Lemme de Cayley et conséquence

Réponse 15/16

Tout groupe G fini se realise comme un sous-groupe de $\mathfrak{S}(G) \cong \mathfrak{S}_n$ Si \mathbb{k} est un corps, G est isomorphe à un sous-groupe de $\mathrm{GL}_n(\mathbb{k})$

Question 16/16

Action d'un groupe G sur un ensemble X

Réponse 16/16

Morphisme
$$\alpha: G \to (\mathfrak{S}(X), \circ)$$