Допуск к коллоквиуму 3 (экзамену) – таблица производных (см. лекции А. Бойцева стр.147). Знать наизусть без подготовки без одной ошибки.

	f	f'	Область определения f'
1.	1	0	R
2.	x^{α}	$\alpha x^{\alpha-1}$.	смотри описание выше
3.	$\sin x$	$\cos x$	R
4.	$\cos x$	$-\sin x$	R
5.	$\operatorname{tg} x$	$\frac{1}{\cos^2 x}$	$\mathbb{R} \setminus \left\{ \frac{\pi}{2} + \pi k, \ k \in \mathbb{Z} \right\}$
6.	$\operatorname{ctg} x$	$-\frac{1}{\sin^2 x}$	$\mathbb{R}\setminus\{\pi k,\ k\in\mathbb{Z}\}$
7.	$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$	(-1,1)
8.	$\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$	(-1,1)
9.	$\operatorname{arctg} x$	$\frac{1}{1+x^2}$	R
10.	$\operatorname{arcctg} x$	$-\frac{1}{1+x^2}$	R
11.	$\log_a x $	$\frac{1}{x \ln a}$	$\mathbb{R}\setminus\{0\}$
12.	$\ln x $	$\frac{1}{x}$	$\mathbb{R}\setminus\{0\}$
13.	a^x	$a^x \ln a$	R
14.	e^x	e^x	\mathbb{R}

Вопросы к коллоквиуму 3 по математическому анализу (экзаменационные вопросы)

Все леммы, теоремы, следствия, критерии, необходимые условия, достаточные условия, формулы, таблицу производных, правила необходимо привести с доказательством.

- 1. Производная функции. Определение. Примеры. Дифференцируемость функции в точке и на множестве. Теорема о связи производной и дифференцируемости. Лемма о непрерывности дифференцируемой функции.
- 2. Производная и дифференциал функции. Геометрический смысл производной и дифференциала. Касательная. Лемма об уравнении касательной. Вертикальная касательная. Примеры.
- 3. Основные правила дифференцирования. Теорема о производной суммы, произведения и частного. Следствие о дифференциале суммы, произведения и частного. Примеры.
- 4. Теорема о производной композиции. Следствие о дифференциале композиции. Примеры.
- 5. Теорема о производной обратной функции. Следствие о дифференциале обратного отображения.
- 6. Таблица производных (с доказательством).
- 7. Параметрически заданная функция. Определение, примеры. Теорема о производной функции, заданной параметрически.
- 8. Точки локального экстремума. Определение, примеры. Теорема Ферма.
- 9. Теорема Ролля. Теорема Лагранжа.
- 10. Критерий монотонности функции, критерий постоянства функции. Теорема о пределе производной. Теорема Коши.
- 11. Правило Лопиталя. Примеры.
- 12. Производные высших порядков. Определение, примеры. Классы гладкости. Дифференциалы высших порядков. Вывести формулы для производных n-го порядка следующих функций: $f(x) = a^x$, $f(x) = \sin x$, $f(x) = \cos x$, $f(x) = \ln x$.
- 13. Формула Лейбница.
- 14. Многочлен Тейлора. Понятие отклонения. Формула Тейлора с остатком в форме Пеано (теорема). Теорема об единственности многочлена Тейлора.
- 15. Теорема о характеристике остаточного члена. Остаточный член в форме Лагранжа, в форме Коши.
- 16. Разложение функций $f(x) = e^x$, $f(x) = \sin x$, $f(x) = \cos x$, $f(x) = \ln(1+x)$, $f(x) = (1+x)^{\alpha}$, $f(x) = \arctan x$ по формуле Маклорена.
- 17. Теорема о связи монотонности и производной. Необходимое условие экстремума. Первое достаточное условие экстремума.
- 18. Классификация точек экстремума. Второе достаточное условие экстремума.
- 19. Понятие выпуклой функции. Геометрический смысл выпуклости функции. Критерий выпуклости дифференцируемой функции. Критерий выпуклости дважды дифференцируемой функции. Понятие точки перегиба.
- 20. Понятие асимптоты графика функции. Вертикальная асимптота. Наклонная асимптота. Формулы для коэффициентов наклонной асимптоты.

Типы задач:

- 1. Вычислить производную функции, используя логарифмическое дифференцирование.
- 2. Вычислить производную (первого порядка, второго порядка) функции, заданной неявно.
- 3. Вычислить производную (первого порядка, второго порядка) функции, заданной параметрически.
- 4. Найти производную *n*-го порядка (данного порядка) данной функции (вывод и доказательство с помощью метода математической индукции, с помощью формулы Лейбница).
- 5. Вычислить предел с помощью правила Лопиталя.
- 6. Доказать, что правило Лопиталя неприменимо к вычислению предела. Найти предел другим способом.
- 7. Разложить функцию в ряд Маклорена, используя известные разложения функций.
- 8. Найти предел функции, используя разложение функции в ряд Маклорена.
- 9. Найти асимптоты графика функции.
- 10. Найти промежутки выпуклости вверх/вниз, точки перегиба.
- 11. Найти промежутки монотонности функции, точки экстремума.
- 12. Построить график функции по результатам исследования.