- Flexible hardware that can be structured to fit the natural organization and data flow of a computation
- Two types: Fixed computing and Programmable computing
 - Fixed computing: Fixed logic devices are permanent
 - Programmable computing: Can be altered at any time to perform any number of functions

- With programmable devices, the same functionality can be obtained with one IC rather than using several individual logic chips
- Less board space
- Less power required
- Greater reliability
- Less inventory
- Overall lower cost in manufacturing

- Advantages of Fixed logic devices:
 - Appropriate for large volume applications because they are economical for mass-production
 - Best choice for high performance applications
- Advantages of Programmable logic devices:
 - Provides flexibility during the design cycle
 - Do not require long lead times for prototypes or production parts
 - Do not require users to pay for large NRE costs
 - Can be reprogrammed even after a piece of equipment is shipped to a customer

- Two logic planes
- Any combination of ANDs/ORs
- Sharing of AND terms across multiple ORs

- Three categories:
 - ROM-Based: The input connection matrix is hardwired. The user can modify the output connection matrix.
 - Programmable Logic Array (PLA): The user can modify both the input connection matrix and the output connection matrix.
 - Programmable Array Logic (PAL): The output connection matrix is hardwired. The user can modify the input connection matrix.

- Programmable Logic Array (PLA)
 - A programmable array of AND gates feeding a programmable array of OR gates
 - Two programmable ground planes
 - Any combination of ANDs/ORs
 - Sharing of AND terms across multiple ORs
 - Highest logic density available to user
 - High fuse count; slower than PALs

- Programmable Array Logic (PAL)
 - A programmable array of AND gates feeding a fixed array of OR gates
 - Benefit of faster propagation delay
 - Less complex software

Programmable Logic Devices: ROM-Based

Table: Programmability Comparison

Device	AND-Array	OR-Array
ROM	Fixed	Programmable
PLA	Programmable	Programmable
PAL	Programmable	Fixed
GAL	Programmable	Fixed

Programming by blowing fuses

AND gate before programming

AND gate after programming

Programming by blowing fuses

$$\frac{a}{b}$$

$$\frac{b}{c}$$

$$\frac{a+b+c}{a+b+c}$$

OR gate before programming

$$\frac{a}{b} = \frac{a \cdot b \cdot c}{a + b} = \frac{a \cdot b \cdot c}{a + b}$$

OR gate after programming

Programming by blowing fuses

Programming Methods

■ Fuses or anti-fuses:

- Programmed by passing a large current
- One-time programmable (OTP) because user can't rewire them internally once the fuses are blown

■ Pass transistors:

- Opened or closed by storing a charge on their gate electrodes using a high-voltage pulse
- Programmable device resembles an EPROM or EEPROM
- User can erase it and then place it in a special programmer socket and reprogram it

■ Static RAM or Flash bits:

- To control the pass transistors for each interconnection
- User can control whether the switch is closed or opened (i.e., two logic elements are connected or not) by loading 1 or 0.
- PLDs built using RAM/Flash switches can be reprogrammed without removing them from the PCB
- Often called in-circuit reconfigurable or programmable

Comparative study on some PLD technology

Technology	Typical data retention time	Typical erase / program cycles	Typical erase / program times
EPROM	Greater than 10-20 years	OTP-10,000 times	Some minutes UV-light / about 0.1 msec, per cell
EEPROM	Greater than 10-20-years	Greater than 1,000- 10.000 times	Some milliseconds per cell / about 0.1 msec, per cell
Flash EPROM	Greater than 10-20 years	Greater than 50-10,000 times	About 1 sec. for whole chip / about 0.1 msec, per cell
SRAM	Only at stable power-on (volatile)	Unlimited	About some milliseconds / milliseconds minutes for whole chip (depends on ROM-interface)
Anti-Fuse	Unlimited	1 time (OTP)	Not erasable / some minutes for whole chip (depends on chip complexity)
Fuse	Unlimited	1 time (OTP)	Not erasable / some minutes for whole chip (depends on chip complexity)

PLD Architecture

- Consists several logic gates and switches
- Three Types:
 - Simple Programmable Logic Devices (SPLDs)
 - Complex Programmable Logic Devices (CPLDs)
 - Field Programmable Gate Arrays (FPGAs)
- CLPDs and FPGAs are often referred to as high-capacity programmable logic devices (HCPLDs)

- First real PLD was developed by Monolithic Memories Inc. (MMI) in 1978
- Kind of PAL architecture
- Predictable timing and easy to develop
- Inefficient resource utilization and only for simple logic functions
- Vendor-specific name of SPLD is Generic Array Logic (GAL)
 - GAL devices were created by Lattice Semiconductor Corporation in 1983
 - Offered sophisticated CMOS electrically erasable variations on PAL architecture

37 A10 D110

SPLD Manufacturers

ATMEL High Performance SPLD: ATF16V8CZ

Pin	Function
CLK	Clock
1	Logic Inputs
I/O	Bidirectional Buffers
ŌĒ	Output Enable
V _{cc}	+5V Supply
PD	Power-Down
GND	Ground

Features of ATF16V8CZ:

- Industry Standard Architecture
 - Emulates Many 20-pin PALs
 - Low-cost, Easy to Use Software Tools
- High Speed EEPLD: 5-ns Maximum Pin-to-pin Delay
- Low Power, 100μ A Pin Controlled Power-down Mode Option
- CMOS and TTL Compatible Inputs and Outputs
- Advanced Flash Technology: Reprogrammable
- High Reliability CMOS Process
 - 20 Year Data Retention and 100 Erase/Write Cycles
 - 2,000V ESD Protection and 200mA Latchup Immunity
- Commercial and Industrial Temperature Ranges
- Dual-in-line & Surface Mount Packages in standard pinouts
- PCI Compliant
- Green (ROHS Compliant) Package Options Available

ATF16V8C: Block Diagram

ATF16V8C: Macrocell Configuration

- Automatically select the device type, generally based on the register usage and output enable (\overline{OE}) usage
- Register usage on the device forces the software to choose the registered mode
- All combinatorial outputs with \overline{OE} controlled by the product term will force the software to choose the complex mode
- Each macrocell can be configured as either a **registered** or **combinatorial** output or I/O, or as an input
- The software will choose the simple mode only when all outputs are dedicated combinatorial without \overline{OE} control

ATF16V8C: Macrocell Configuration

- Registered Mode:
 - One or more registers are required
 - Eight product terms are allocated to the sum term
 - For a combinatorial output or I/O, the output enable is controlled by a product term, and seven product terms are allocated to the sum term
 - When the macrocell is configured as an input, the output enable is permanently disabled

ATF16V8C: Macrocell Configuration

1) Registered Configuration for Registered Mode

ATF16V8C: Macrocell Configuration

2) Combinatorial Configuration for Registered Mode

ATF16V8C: Macrocell Configuration

- Simple Mode:
 - Eight product terms are allocated to the sum term
 - Pins 15 and 16 (center macrocells) are permanently configured as combinatorial outputs
 - Other macrocells can be either inputs or combinatorial outputs with pin feedback to the AND-array
 - The compiler selects this mode when all outputs are combinatorial without \overline{OE} control

^{*} Pins 15 and 16 are always enabled

ATF16V8C: Macrocell Configuration

- Complex Mode:
 - Combinatorial output and I/O functions are possible
 - Each macrocell has seven product terms going to the sum term and one product term enabling the output
 - Combinatorial applications with an \overline{OE} requirement will make the compiler select this mode

