THANK YOU FOR PURCHASING THIS PRODUCT See below for other products

If you like my prodicts please follow my store curio

Acknowledgements

Teacher Notes

These algorithm mazes are an unplugged way for students to work through the logical sequence of coding an algorithm, which is just a set of instructions or directions to follow.

These are best done in pairs. Student #1 is the computer programmer and creates the algorithm for student #2, who is the computer robot, to complete. Student #2 must follow the algorithm exactly as written.

If the algorithm is unsuccessful this is a chance for the students to 'de-bug' the program and find the errors. A great learning opportunity.

Students can switch places with the programmer trying to find a different way for the computer robot to reach the house.

Here is an example for a successful algorithm for maze 1

Unplugged Coding - Algorithms 1

Using the commands RIGHT - LEFT- UP-DOWN create an algorithm (step-by-step plan) to guide your partner through the maze.

Can your friendly monster find his home? Did it work the first time? Will you have to add further instructions?

Unplugged Coding - Algorithms 2

Using the commands RIGHT - LEFT- UP-DOWN create an algorithm (step-by-step plan) to guide your partner through the maze.

Can your friendly monster find his home? Did it work the first time? Will you have to add further instructions?

Unplugged Coding - Algorithms 3

Using the commands RIGHT - LEFT- UP-DOWN create an algorithm (step-by-step plan) to guide your partner through the maze.

Can your friendly monster find his home? Did it work the first time? Will you have to add further instructions?