Applied Optimization

Lecturer:Mr.OLSela KU 2024/2025

Mathematical Concepts

Exercise 1: Convex set

- (a) A set $S = \{x \in \mathbb{R}^n : a^T x \leq b\}$ is a convex set.
- (b) Let $c \in \mathbb{R}^n$ and r > 0.Let $||\cdot||$ be an arbitrary norm defined on \mathbb{R}^n . Show that the open ball

$$B(c,r) = \{ x \in \mathbb{R}^n : ||x - c|| < r \}$$

and closed ball

$$B[c, r] = \{x \in \mathbb{R}^n : ||x - c|| \le r\}$$

are convex

Exercise 2:

Solve the following linear programming problem graphically. maximize

$$z = 5x_1 + 7x_2 \tag{1}$$

subject to

$$3x_1 + 8x_2 \le 12,$$

 $x_1 + x_2 \le 2,$
 $2x_1 \le 3,$
 $x_1 \ge 0, x_2 \ge 0$

Exercise 3:

Solve the following linear programming problem graphically. maximize

$$z = 10x_1 + 6x_2 \tag{2}$$

subject to

$$5x_1 + 3x_2 \le 30,$$

 $x_1 + 2x_2 \le 18,$
 $x_1 \ge 0, x_2 \ge 0.$

Exercise 4:

Consider the linear programming problem:

Maximize

$$z = 2x + 3y \tag{3}$$

subject to

$$2x + 3y \ge 12,$$

 $3x + 4y \le 12$
 $x \ge 0, y \ge 0.$

Exercise 5:

Consider the linear programming problem:

Maximize

$$z = 2x_1 + 4x_2 + 3x_3$$

subject to

$$x_1 + x_2 + x_3 \le 12,$$

 $x_1 + 3x_2 + 3x_3 \le 24,$
 $3x_1 + 6x_2 + 4x_3 \le 90,$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0.$

Exercise 6:

Solve the following linear programming problem graphically. maximize

$$z = 5x_1 + 6x_2 (4)$$

subject to

$$x_1 + x_2 \ge 6,$$

 $x_1 \le 4,$
 $x_2 < 1,$
 $x_1 \ge 0, x_2 \ge 0.$

Exercise 7:

Consider the linear programming problem Maximize , $z = 4x_1 + 2x_2 + 7x_3$ subject to

$$2x_1 - x_2 + 4x_3 \le 18,$$

$$4x_1 + 2x_2 + 5x_3 \le 10,$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0.$$

- Write down the matrix representation of this problem.
- Transform this problem to a problem in canonical form.
- Solve the problem geometrically.

Exercise 8:

Consider the linear programming in standard form Maximize , $z=c^Tx$ subject to

$$Ax \le b$$
$$x > 0.$$

Show that the constraints $Ax \leq b$ may be written as

$$Ax + Ix' = b$$

where x' is a vector of slack variables.