Programowanie proceduralne w Matlabie (Octave). Wybrane własności liniowych systemów dynamicznych*

Krzysztof Arent[†]

Należy napisać w Matlabie szereg funkcji umożliwiających założenie i analizę bazy danych systemów dynamicznych postaci $\left\{ \substack{x=Ax+Bu\\y=Cx+Du} \right\}$. Zakłada się, że system dynamiczny scharakteryzowany jest przez nazwę i macierze. A,B,C,D, np.

(RLC,
$$\begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$$
, $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 1 \end{bmatrix}$, 0).

Nie ma żadnych ograniczeń na liczbę zmiennych stanu, wejść i wyjść.

Specyfikacja poszczególnych funkcji jest następująca:

inicjalizacja_bd

INICJALIZACJA_BD - skrypt czyszczący przestrzeń roboczą Matlaba, dopisujący odpowiednią ścieżkę dostępu do zmiennej PATH, deklarujący zmienne globalne, jak np. baza - zmienna reprezentująca bazę danych, czy A, B, C, D - pewne zmienne pomocnicze.

function wczytaj_p(nazwa_pliku)

WCZYTAJ_P - funkcja, która z pliku nazwa_pliku, typu ASCII, wczytuje parametry systemów dynamicznych i przypisuje je odpowiednim polom zmiennej baza.

function wczytaj_k

WCZYTAJ_K - funkcja, która umożliwia dołączanie do bazy danych nowego systemu dynamicznego za pośrednictwem klawiatury.

function zapisz_bd(nazwa_pliku)

ZAPISZ_BD - funkcja, która zapisuje zawartość bazy danych do pliku (typu ASCII) nazwa_pliku.

Uwaga! Jeżeli pierwsze dwa elementy bazy danych są następujące: (RLC 1, $\begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \end{bmatrix}$, 1), (RLC 2, $\begin{bmatrix} 0 & 1 \\ -1 & -3 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 & 0 \end{bmatrix}$, 2)

to początek pliku przechowywującego tę bazę może mieć postać:

RLC 1
[0 1; -1 -2]
[0; 1]
[1 1]
1
RLC 2

^{*}Ćwiczenie laboratoryjne do kursu Teoria sterowania (W12AIR-SM0007, W12AIR-SM0723).

[©] K.Arent, 2023. Wszelkie prawa zastrzeżone. Dokument w trakcie rozwoju.

[†]Katedra Cybernetyki i Robotyki, Wydział Elektroniki, Fotoniki i Mikrosystemów, Politechnika Wrocławska

```
[0 1; -1 -3]
[0; 1]
[2 0]
2
```

......

function zawartosc_bd

ZAWARTOSC_BD - funkcja, która wyświetla na ekranie (ze stronicowaniem) nazwy wszystkich systemów dynamicznych w bazie danych.

function wyszukaj_bd(string)

WYSZUKAJ_BD - funkcja, która wyświetla na ekranie (ze stronicowaniem) nazwy systemów z bazy danych, zawierające w sobie ciąg znaków string.

function sortuj_N(macierz)

SORTUJ_N - funkcja, która wyświetla (ze stronicowaniem) nazwy systemów z bazy danych według rosnących wartości $||\text{macierz}||_2$, gdzie macierz $\in \{A, B, C, D\}$

function s_stabilne

S_STABILNE - funkcja, która wyświetla na ekranie (ze stronicowaniem) nazwy systemów z bazy danych, które są asymptotycznie stabilne.

function y=impuls(t)

IMPULS - funkcja matlabowa, która reprezentuje matematyczną funkcję impuls(t) = $\frac{1}{\sqrt{2\sigma^2\pi}}e^{-\frac{t^2}{2\sigma^2}}$. Wstępnie można przyjąć, że $\sigma\approx 0.005$.

function xdot=dynamika(t,x)

DYNAMIKA - funkcja reprezentująca równanie różniczkowe $\dot{x}=Ax+Bu$, gdzie u(t)=impuls(t). A,B są zmiennymi globalnymi.

function wykresy(nazwa, tk)

WYKRESY - funkcja, która wyświetla rysunek z dwoma wykresami, jeden nad drugim. Pierwszy wykres przedstawia wyjście systemu nazwa na przedziale czasu [0,tk] przy założeniu zerowych warunków początkowych i pobudzenia impulsowego. Drugi, dolny wykres przedstawia trajektorię w przestrzeni zmiennych stanu, o ile liczba zmiennych stanu jest równa 2 lub 3. Jeżeli ten warunek nie jest spełniony to w miejscu dolnego wykresu powinien pojawić się komunikat o treści: dim x > 3 lub dim x < 2.

Powyższe funkcje powinne tworzyć toolbox zadanie_1, udokumentowany w pliku Contents.m.

Sprawozdanie. Zawartość kartoteki zadanie_1 oraz pliku Contents.m należy umieścić w sprawozdaniu. Powinno ono zawierać również wydruk każdej funkcji z toolboxu, własnego pliku baza.txt oraz przykładową sesję z toolboxem (zarejstrowaną przy wykorzystaniu funkcji diary i print). W sprawozdaniu należy też przedstawić wyniki badań systemów dynamicznych, zamieszczonych w Dodatku (zob. też plik baza_z.txt). Posługując się funkcjami z zadanie_1, trzeba zbadać stabilność tych systemów oraz wykreślić odpowiedzi na pobudzenie impulsowe systemów stabilnych.

Sugestia. Poniżej przedstawiono funkcje Matlaba mogą być przydatne do realizacji zadania.

```
inicjalizacja: global, clear, []
 wczytaj_p(nazwa_pliku): fopen, fgetl, feof, length, eval, feval, while, if,
     disp, length, global
 wczytaj k: input, eval, feval, length, global
zapisz(nazwa pliku): fopen, disp, length, for, fprintf, mat2str, global
zawartosc: for, length, disp, fprintf, more, global
 wyszukaj(string): length, isempty, ~ , findstr, fprintf, for, if, global
sortuj_n(macierz): any, find, max, norm, length, for, while, fprintf, disp,
     more, global
s stabilne: length, all, real, eig, if, for, fprintf, disp, more, global
xdot = dynamika(t,x): impuls, global
wykresy(nazwa, tk): if, length, strmatch, isempty, ~ , size, ode23, zeros,
     subplot, plot, plot3, global
Dodatek (baza_z.txt).
system A
[-2,-1;1,0]
[1;0]
[1,1]
[0]
system B
[-2,-1;1,0]
[1;0]
[1,-1]
[0]
system C
[0,1;1,0]
[1;0]
[1,1]
[0]
system D
[0,-1;1,0]
[1;0]
[1,-1]
[0]
system E
[-2,-1.4142136; 1.4142136,0]
[1;0]
[1,-0.70710678]
[0]
system F
[-1,0;1,0]
[1;0]
[1,-1]
```

```
[0]
system G
[0,0;1,0]
[1;0]
[1,-1]
[0]
system H
[-1,0,0;1,-2,-1.4142136;0,1.4142136,0]
[1;0;0]
[1,-2,-2.1213203]
[0]
system I
[-1,0,0;1,-2,-1;0,1,0]
[1;0;0]
[1,-2,-2]
[0]
```