10/553394

JCO6 Rec'd PCT/PTO 17 OCT 2005

DESCRIPTION

OPTICALLY ACTIVE 2-ALLYLCARBOXYLIC ACID DERIVATIVE AND PROCESS FOR PRODUCING THE SAME

5

TECHNICAL FIELD

The present invention relates to a novel intermediate compound, namely a 2-allylcarboxamide derivative, and to a process for producing an optically active 2-allylcarboxylic acid derivative utilizing such intermediate. For example, an optically active 2-allyloctanoic acid producible in accordance with the present invention is known to serve as an intermediate in the production of astrocyte function improvers (Japanese Kokai Publication Hei-07-316092).

15

20

25

30

35

10

BACKGROUND ART

Known in the art for the production of an optically active 2-allyloctanoic acid are 1) the process comprising reacting an octanamide compound of camphorsultam, which is an optically active compound, with diisopropyllithium amide, then reacting the product with an allyl halide to introduce an allyl group diastereoselectively into the octanamide moiety at the position 2 thereof, and eliminating the auxiliary camphorsultam group using a peracid or, alternatively, introducing a propargyl group in lieu of the above-mentioned allyl group, followed by reduction thereof to an allyl group (WO 99/58513), and 2) the process comprising optically resolving racemic propynyloctanoic acid by fractional crystallization using optically active phenethylamine and reducing the thus-obtained optical isomer (Japanese Kokai Publication Hei-08-291106), among others.

However, there are a number of problems in putting the above-mentioned process (1) into practice on a commercial scale; for example, camphorsultam, which is a very expensive chiral auxiliary group, is required, the allylation or

propalgylation reaction is to be carried out at a very low temperature of -78°C, and hydrogen peroxide is required to eliminate the auxiliary camphorsultam group. As for the prior art process (2), the optical resolution efficiency is low and, for obtaining 2-propynyloctanoic acid having a sufficiently high optical purity for use as an pharmaceutical intermediate, in particular, a plurality of repetitions of fractional crystallization are required, which inevitably results in a reduction in yield.

SUMMARY OF THE INVENTION

In view of the above-discussed problems with the prior art processes, the present inventors made intensive investigations in an attempt to develop a process capable of being carried out safely even on a large scale using only those starting materials or reagents which can be handled with ease on an industrial scale and are inexpensive and readily available. As a result, they have developed a process for producing and obtaining 2-allylcarboxylic acids having a high optical purity with great efficiency via novel and important intermediates, namely 2-allylcarboxamide compounds by utilizing very inexpensive optically active sources as asymmetric auxiliary groups, stereoselectively allylating carboxylic acids at the position 2 thereof without utilizing any very low temperature reaction, realizing protective group elimination very efficiently and, further, utilizing an enzymatic reaction.

Thus, the present invention provides

a process for producing an optically active 2-allylcarboxylic acid represented by the following formula (5);

wherein R⁴ represents a substituted or unsubstituted alkyl group containing 1 to 18 carbon atoms, a substituted or unsubstituted aryl group containing 6 to 20 carbon atoms or a substituted or unsubstituted aralkyl group containing 7 to 20 carbon atoms and *2 indicates that the carbon atom marked therewith is an asymmetric carbon atom;,

which comprises:

(a) reacting a carboxamide compound represented by the following formula (2);

 $\begin{array}{c|c}
R^1 & R^2 \\
 & & \\
R^4 & & \\
O & &
\end{array}$ (2)

wherein R¹, R² and R⁴ each independently represents a substituted or unsubstituted alkyl group containing 1 to 18 carbon atoms, a substituted or unsubstituted aryl group containing 6 to 20 carbon atoms or a substituted or unsubstituted aralkyl group containing 7 to 20 carbon atoms and *1 indicates that the carbon atom marked therewith is an asymmetric carbon atom; with an organometallic compound and then further with a compound represented by the formula; C1COOR⁵

wherein R⁵ represents a substituted or unsubstituted alkyl group containing 1 to 18 carbon atoms, a substituted or unsubstituted aryl group containing 6 to 20 carbon atoms or a substituted or unsubstituted aralkyl group containing 7 to 20 carbon atoms; to give a 2-allylcarboxamide derivative represented by the following formula (3);

10

15

20

25

30

$$\begin{array}{c|c}
R^1 & R^2 \\
 & *1 \\
 & COOR^5
\end{array} (3)$$

wherein R^1 , R^2 , R^4 , R^5 , *1 and *2 are as defined above;,

10 (b) reacting the derivative (3) with a compound represented by the formula MOR^6

wherein M represents an alkali metal and ${\rm R}^6$ represents a substituted or unsubstituted alkyl group containing 1 to 20 carbon atoms

to give a 2-allylcarboxylic acid ester derivative represented by the following formula (4);

$$\mathbb{R}^{4} \stackrel{*2}{\longrightarrow} \mathbb{C}OOR^{6}$$

wherein R^4 , R^6 and *2 are as defined above;, and

25 (c) further hydrolyzing the derivative (4).

The invention also provides

a process for producing a 2-allylcarboxamide derivative represented by the following formula (6);

wherein R^1 , R^2 , R^4 and *1 are as defined above and *2 indicates that the carbon atom marked therewith is an asymmetric carbon atom;,

which comprises reacting a carboxamide compound represented by the formula (2) given above with an organometallic compound.

The invention also provides

a process for producing a 2-allylcarboxamide derivative represented by the formula (3) given above,

which comprises reacting a compound represented by the formula (6) given above in the presence of a base and further with a compound represented by the formula;

wherein R⁵ is as defined above.

5

15

20

35

The invention further provides

a process for producing a 2-allylcarboxamide derivative represented by the formula (3) given above,

which comprises reacting a carboxamide compound represented by the formula (2) given above with an organometallic compound and further with a compound represented by the formula; ClCOOR⁵

wherein R⁵ is as defined above.

The invention further provides

a process for producing a 2-allylcarboxylic acid represented by the following formula (8);

wherein R⁴ is as defined hereinabove, R⁹ represents a hydrogen atom or a substituted or unsubstituted alkyl group containing 1 to 20 carbon atoms, and * indicates that the carbon atom marked

therewith is an asymmetric carbon atom or an ester derivative thereof;,

which comprises reacting a 2-allylcarboxamide derivative represented by the following formula (7);

5

10

15

20

wherein R⁴ is as defined hereinabove, R⁷ and R⁸ each represents a substituted or unsubstituted alkyl group containing 1 to 18 carbon atoms, a substituted or unsubstituted aryl group containing 6 to 20 carbon atoms or a substituted or unsubstituted aralkyl group containing 7 to 20 carbon atoms and R⁷ and R⁸ may be bound together to form a ring, X represents C, S or S(0), Y represents CH, O or NH and * is as defined hereinabove;

with a compound represented by the formula MOR^9 wherein M represents an alkali metal and R^9 is as defined hereinabove and,

25

if necessary, hydrolyzing the resulting ester.

The invention still further provides
a process for producing an optically active

2-allylcarboxylic acid represented by the formula (5) given above,

which comprises causing an enzyme source having asymmetric hydrolysis activity to act on a 2-allylcarboxylic acid ester derivative represented by the formula (4) given above and

collecting the resulting optically active 2-allylcarboxylic acid.

Furthermore, the invention provides
a process for producing an optically active
2-allylcarboxylic acid ester represented by the formula (4)
given above,

which comprises causing an enzyme source having asymmetric hydrolysis activity to act on a 2-allylcarboxylic acid ester derivative represented by the formula (4) given above and

collecting the unreacted optically active 10 2-allylcarboxylic acid ester.

Finally, the invention relates to a 2-allylcarboxamide derivative compound represented by the following formula (1);

5

25

30

35

wherein R^1 , R^2 , R^3 , R^4 , *1 and *2 are as defined above.

DETAILED DESCRIPTION OF THE INVENTION

In the following, the invention is described in detail.

First, the 2-allylcarboxamide derivative compound represented by the formula (1) is described.

In the formula, R¹ and R² each independently represents an alkyl group, aryl group or aralkyl group. The alkyl group is a substituted or unsubstituted one containing 1 to 18 (preferably 1 to 10, more preferably 1 to 6) carbon atoms, such as, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group or n-hexyl group.

The aryl group is a substituted or unsubstituted one containing 6 to 20 (preferably 6 to 10) carbon atoms, such as, for example, phenyl group, 1-naphthyl group, 2-naphthyl group, 4-methylphenyl group, 3-methylphenyl group, 2-methylphenyl group, 4-ethylphenyl group, 3-methoxyphenyl group, 4-methoxyphenyl group, 3-methoxyphenyl group, 2-methoxyphenyl group, 4-nitrophenyl group, 4-phenylphenyl group, 4-chlorophenyl group or 4-bromophenyl group.

5

The aralkyl group is a substituted or unsubstituted one containing 7 to 20 (preferably 7 to 10) carbon atoms, such as, for example, benzyl group, 4-methylbenzyl group, 3-methylbenzyl group, 2-methylbenzyl group, 4-methoxybenzyl group, 3-methoxybenzyl group, 2-methoxybenzyl group, 1-phenylethyl group, 2-phenylethyl group,

15 1-(4-methylphenyl)ethyl group, 1-(4-methoxyphenyl)ethyl group, 3-phenylpropyl group or 2-phenylpropyl group.

Preferred as R¹ is a substituted or unsubstituted aryl group containing 6 to 20 carbon atoms. In particular, phenyl group, 4-methylphenyl group, 4-methoxyphenyl group,

3-methoxyphenyl group, 4-nitrophenyl group, 4-chlorophenyl group, 4-bromophenyl group, 1-naphthyl group and 2-naphthyl group are preferred. Preferred as R² is a substituted or unsubstituted alkyl group containing 1 to 18 carbon atoms and, in particular, methyl group is preferred.

The combination of R¹ and R² may be that of any two substituents arbitrarily selected from among those specifically enumerated hereinabove. Preferred are the combination of an aryl group as R¹ and an alkyl group as R² and the combination of an aryl group as R¹ and an aralkyl group as R². More preferred are the combination of phenyl group, 4-methylphenyl group, 1-naphthyl group, 2-naphthyl group, 4-methoxyphenyl group, 3-methoxyphenyl group, 4-nitrophenyl group, 4-chlorophenyl group or 4-bromophenyl group as R¹ and methyl group as R² and the combination of phenyl group as R¹ and 4-methylbenzyl group as R². More preferred is the

combination of phenyl group as R1 and methyl group as R2.

In the relevant formula, R⁴ represents an alkyl group, aryl group or aralkyl group. The alkyl group is a substituted or unsubstituted one containing 1 to 18 (preferably 1 to 10, more preferably 1 to 6) carbon atoms, such as, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group or n-hexyl group.

5

10

15

20

The aryl group is a substituted or unsubstituted one containing 6 to 20 (preferably 6 to 10) carbon atoms, such as, for example, phenyl group, 1-naphthyl group, 2-naphthyl group, 4-methylphenyl group, 3-methylphenyl group, 2-methylphenyl group, 4-ethylphenyl group, 3-ethylphenyl group, 4-methoxyphenyl group, 3-methoxyphenyl group, 2-methoxyphenyl group, 4-nitrophenyl group, 4-phenylphenyl group, 4-chlorophenyl group or 4-bromophenyl group.

The aralkyl group is a substituted or unsubstituted one containing 7 to 20 (preferably 7 to 10) carbon atoms, such as, for example, benzyl group, 4-methylbenzyl group, 3-methylbenzyl group, 2-methylbenzyl group, 4-methoxybenzyl group, 3-methoxybenzyl group, 2-methoxybenzyl group, 2-phenylethyl group, 1-(4-methylphenyl)ethyl group, 1-(4-methoxyphenyl)ethyl group, 3-phenylpropyl group or 2-phenylpropyl group.

Among those groups, an alkyl group is preferred as R⁴, and n-hexyl group is more preferred.

R³ represents a hydrogen atom, an alkyloxycarbonyl group, an aryloxycarbonyl group or an aralkyloxycarbonyl group.

The alkyloxycarbonyl group is a substituted or

unsubstituted one containing 2 to 20 (preferably 2 to 11, more
preferably 2 to 7) carbon atoms, such as, for example,
methyloxycarbonyl group, ethyloxycarbonyl group,
n-propyloxycarbonyl group, isopropyloxycarbonyl group,
n-butyloxycarbonyl group, isobutyloxycarbonyl group,
sec-butyloxycarbonyl group, tert-butyloxycarbonyl group,

n-pentyloxycarbonyl group, isopentyloxycarbonyl group or n-hexyloxycarbonyl group.

The aryloxycarbonyl group is a substituted or unsubstituted one containing 7 to 20 (preferably 7 to 11) carbon 5 atoms, such as, for example, phenyloxycarbonyl group, 1-naphthyloxycarbonyl group, 2-naphthyloxycarbonyl group, 4-methylphenyloxycarbonyl group, 3-methylphenyloxycarbonyl group, group, 2-methylphenyloxycarbonyl group, 4-ethylphenyloxycarbonyl group, 3-ethylphenyloxycarbonyl group, 3-methoxyphenyloxycarbonyl group, 3-methoxyphenyloxycarbonyl group, 4-mitrophenyloxycarbonyl group, 4-nitrophenyloxycarbonyl group, 4-phenylphenyloxycarbonyl group, 4-chlorophenyloxycarbonyl group or 4-bromophenyloxycarbonyl group.

The aralkyloxycarbonyl groups is a substituted or unsubstituted one containing 8 to 20 (preferably 8 to 11) carbon atoms, such as, for example, benzyloxycarbonyl group, 4-methylbenzyloxycarbonyl group, 3-methylbenzyloxycarbonyl group, 2-methylbenzyloxycarbonyl group,

4-methoxybenzyloxycarbonyl group, 3-methoxybenzyloxycarbonyl group, 2-methoxybenzyloxycarbonyl group, 3-phenylpropyloxycarbonyl group or 2-phenylpropyloxycarbonyl group.

25

30

35

As preferred species, there may be mentioned a hydrogen atom, phenyloxycarbonyl group, isopropyloxycarbonyl group, isobutyloxycarbonyl group, sec-butyloxycarbonyl group and tert-butyloxycarbonyl group. More preferred are a hydrogen atom, phenyloxycarbonyl group and isopropyloxycarbonyl group.

The asymmetric carbon atom marked with *1 may have either the R-form absolute configuration or the S-form absolute configuration. Similarly, the asymmetric carbon atom marked with *2 may have either the R-form absolute configuration or the S-form absolute configuration.

Now, the step of producing the 2-allylcarboxamide derivative of the formula (3) by reacting the carboxamide

compound of the formula (2) with an organometallic compound and then with a chlorocarbonate ester of the formula ClCOOR⁵ is described.

The compound (2) to be used in this step can be prepared, for example by the amidation reaction between the corresponding carboxylic acid halide or carboxylic anhydride and N-allylamine derivative, which are readily available, or by the N-allylation reaction of the corresponding carboxamide compound. The compound (2) to be used may be in the form of a racemic mixture or in an optically active form. The use of an optically active form is preferred.

5

10

15

In the relevant formulas, R¹ and R² each independently represents an alkyl group, aryl group or aralkyl group. The alkyl group is a substituted or unsubstituted one containing 1 to 18 (preferably 1 to 10, more preferably 1 to 6) carbon atoms, such as, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group or n-hexyl group.

The aryl group is a substituted or unsubstituted one containing 6 to 20 (preferably 6 to 10) carbon atoms, such as, for example, phenyl group, 1-naphthyl group, 2-naphthyl group, 4-methylphenyl group, 3-methylphenyl group, 2-methylphenyl group, 4-ethylphenyl group, 3-ethylphenyl group,

4-methoxyphenyl group, 3-methoxyphenyl group, 2-methoxyphenyl group, 4-nitrophenyl group, 4-phenylphenyl group, 4-chlorophenyl group or 4-bromophenyl group.

The aralkyl group is a substituted or unsubstituted one containing 7 to 20 (preferably 7 to 10) carbon atoms, such as, for example, benzyl group, 4-methylbenzyl group, 3-methylbenzyl group, 2-methylbenzyl group, 4-methoxybenzyl group, 3-methoxybenzyl group, 2-methoxybenzyl group, 1-phenylethyl group, 2-phenylethyl group, 1-(4-methylphenyl)ethyl group, 1-(4-methoxyphenyl)ethyl group, 3-phenylpropyl group or 2-phenylpropyl group.

Preferred as R¹ in the formula (2) is an aryl group and, in particular, phenyl group, 4-methylphenyl group, 4-methoxyphenyl group, 3-methoxyphenyl group, 4-nitrophenyl group, 4-chlorophenyl group, 4-bromophenyl group, 1-naphthyl group and 2-naphthyl group are preferred.

5

10

15

20

25

30

Preferred as R^2 in the formula (2) are methyl group, benzyl group and 4-methylbenzyl group, and methyl group and 4-methylbenzyl group are more preferred.

The combination of R¹ and R² may be that of any two substituents arbitrarily selected from among those specifically enumerated hereinabove. Preferred are the combination of an aryl group as R¹ and an alkyl group as R² and the combination of an aryl group as R¹ and an aralkyl group as R². More preferred are the combination of phenyl group, 4-methylphenyl group, 1-naphthyl group, 2-naphthyl group, 4-methoxyphenyl group, 3-methoxyphenyl group, 4-nitrophenyl group, 4-chlorophenyl group or 4-bromophenyl group as R¹ and methyl group as R² and the combination of phenyl group as R¹ and 4-methylbenzyl group as R². More preferred is the

In the relevant formulas, R⁴ represents an alkyl group, aryl group or aralkyl group. The alkyl group is a substituted or unsubstituted one containing 1 to 18 (preferably 1 to 10, more preferably 1 to 6) carbon atoms, such as, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group or n-hexyl group.

combination of phenyl group as R1 and methyl group as R2.

The aryl group is a substituted or unsubstituted one containing 6 to 20 (preferably 6 to 10) carbon atoms, such as, for example, phenyl group, 1-naphthyl group, 2-naphthyl group, 4-methylphenyl group, 3-methylphenyl group, 2-methylphenyl group, 4-ethylphenyl group, 3-ethylphenyl group, 4-methoxyphenyl group, 3-methoxyphenyl group, 2-methoxyphenyl group, 4-nitrophenyl group, 4-phenylphenyl group,

35 4-chlorophenyl group or 4-bromophenyl group.

The aralkyl group is a substituted or unsubstituted one containing 7 to 20 (preferably 7 to 10) carbon atoms, such as, for example, benzyl group, 4-methylbenzyl group, 3-methylbenzyl group, 2-methylbenzyl group, 4-methoxybenzyl group, 3-methoxybenzyl group, 2-methoxybenzyl group, 2-phenylethyl group, 1-(4-methylphenyl)ethyl group, 1-(4-methoxyphenyl)ethyl group, 3-phenylpropyl group or 2-phenylpropyl group.

Among those, an alkyl group is preferred, and n-hexyl is 10 more preferred.

5

15

25

The organometallic compound to be used includes organolithium compounds, organopotassium compounds and organomagnesium compounds. Organomagnesium compounds are preferred, tert-butylmagnesium halides are more preferred, and tert-butylmagnesium chloride is most preferred. As for the usage, the organometallic compound is to be used generally in an amount of not less than 1 mole, preferably 1.0 to 2.0 moles, more preferably 1.1 to 1.3 moles, per mole of the compound of the formula (2).

In the formula ClCOOR⁵, R⁵ represents an alkyl group, aryl group or aralkyl group.

The alkyl group is a substituted or unsubstituted one containing 1 to 18 (preferably 1 to 10, more preferably 1 to 6) carbon atoms, such as, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group or n-hexyl group.

The aryl group is a substituted or unsubstituted one containing 6 to 20 (preferably 6 to 10) carbon atoms, such as, for example, phenyl group, 1-naphthyl group, 2-naphthyl group, 4-methylphenyl group, 3-methylphenyl group, 2-methylphenyl group, 4-ethylphenyl group, 3-ethylphenyl group, 4-methoxyphenyl group, 3-methoxyphenyl group, 2-methoxyphenyl group, 4-nitrophenyl group, 4-phenylphenyl group,

35 4-chlorophenyl group or 4-bromophenyl group.

The aralkyl group is a substituted or unsubstituted one containing 7 to 20 (preferably 7 to 10) carbon atoms, such as, for example, benzyl group, 4-methylbenzyl group, 3-methylbenzyl group, 2-methylbenzyl group, 4-methoxybenzyl group, 3-methoxybenzyl group, 2-methoxybenzyl group, 3-phenylpropyl group or 2-phenylpropyl group.

5

10

15

20

25

35

Preferred as R⁵ are phenyl group, isopropyl group, isobutyl group, sec-butyl group and tert-butyl group. More preferred are phenyl group and isopropyl group.

The usage of the chlorocarbonate compound represented by the formula $ClCOOR^5$ is not particularly restricted but should be not less than 1 mole per mole of the compound (2). Preferably, it is 1.0 to 5.0 moles per mole of the compound (2).

The solvent to be used in carrying out the reaction is not particularly restricted but may be any of those which will not adversely affect the reaction. Thus, there may be mentioned, for example, hexane, toluene, xylene, tetrahydrofuran, diethyl ether, tert-butylmethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, dimethylformamide (DMF), and mixtures of these. Toluene is preferred.

As for the reaction temperature, the reaction with the organometallic compound is generally carried out at 25°C to 100°C, preferably 60°C to 90°C. The reaction time, which may vary depending on the reaction temperature and the amount of the organometallic compound used, is generally 1 hour to 24 hours, preferably 5 hours to 10 hours.

The reaction with the chlorocarbonate ClCOOR⁵ is generally carried out at 0°C to 100°C, preferably 10°C to 70°C, more preferably 20°C to 50°C. The reaction time, which may vary depending on the usage of ClCOOR⁵ and the reaction temperature, is generally 1 hour to 48 hours, preferably 5 hours to 24 hours.

The process for producing the compound (3) from the compound (2) can be carried out continuously, as mentioned above. If necessary, however, the reactions may be carried out each independently. Thus, it is possible to derive the compound of

the formula (6) from the compound of the formula (2) by reaction with the organometallic compound, then react the compound (6) in the presence of a base and further with the compound $ClCOOR^5$ to produce the compound (3). R^1 , R^2 , R^4 and R^5 are as described hereinabove.

5

10

15

20

25

The mode of practice of the step of producing the compound (6) from the compound (2) is as described above. The mode of practice of the step of deriving the compound (3) from the compound (6) is also as described above, wherein the base is an alkali metal compound or an alkaline earth metal compound. As the alkali metal compound, there may be mentioned organolithium compounds, organopotassium compounds and, further, alkali metal hydrides. Among those, alkali metal hydrides, such as sodium hydride, potassium hydride and lithium hydride, are preferred, and sodium hydride is more preferred. As the alkaline earth metal compound, there may be mentioned such organomagnesium compounds as mentioned hereinabove.

After the reaction, the compound (3) or compound (6) formed can be recovered by extraction with an organic solvent such as ethyl acetate, ether, hexane or toluene and, if necessary, can be purified and isolated by such a procedure as chromatography, crystallization or distillation. The compound (3) or compound (6) is generally formed as a diastereomer mixture. However, the diastereomeric excess can be appropriately increased by crystallization. Here, the diastereomeric excess is defined as follows:

[(amount of diastereomer A - amount of diastereomer B)/(amount of diastereomer A + amount of diastereomer B)] x 100.

The solvent to be used in crystallization is not

particularly restricted but includes, among others, pentane,
hexane, heptane, octane, water, methanol, ethanol, n-propanol,
isopropanol, n-butanol, isobutanol, tert-butanol, benzene,
xylene, trimethylbenzene, tetrahydrofuran, tetrahydropyran,
1,3-dioxane, 1,4-dioxane, methyl acetate, ethyl acetate,
n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl

acetate, tert-butyl acetate, dimethyl ether, tert-butyl methyl ether, acetonitrile, propionitrile, butyronitrile, acetone, DMF, dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP), and mixed solvents comprising two or more of these. The crystallization condition can be properly determined.

The reaction product can be used in the next step without extraction, if necessary after dehydration or dehydration and concentration.

5

10

15

20

25

30

35

The step of producing the compound (4) from the compound (3) is now described. In this step, the compound (4) is produced by reacting the compound (3) with a compound represented by the formula MOR^6 . R^1 , R^2 , R^4 and R^5 are as described hereinabove.

As R⁶ in the formula MOR⁶, there may be mentioned a substituted or unsubstituted alkyl group containing 1 to 20 (preferably 1 to 10, more preferably 1 to 6) carbon atoms, such as, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, sec-pentyl group and isopentyl group. Methyl group and ethyl group are preferred, and methyl group is more preferred.

M represents an alkali metal atom such as a lithium atom, sodium atom and potassium atom. A sodium atom is preferred.

As for the usage of the compound represented by the formula MOR⁶, that compound is generally used in an amount of not less than 1 mole, preferably 1.1 to 3.0 moles, per mole of the compound (3). When used in combination in an amount of not less than 1.0 mole per mole of the compound (3), however, the amount of MOR⁶ may be 1.0 mole or less per mole of the compound (3). When R⁶OH is used, the amount thereof is not less than 1.0 mole per mole of the compound (3), without any further particular restriction. Furthermore, in that case, the amount of MOR⁶ is preferably 0.01 to 10.0 moles, more preferably 0.1 to 3.0 moles, still more preferably 0.5 to 2.5 moles, per mole of the compound (3).

The solvent to be used is not particularly restricted but

may be any of those which will not adversely affect the reaction. Thus, there may be mentioned, in addition to the above-mentioned R⁶OH, hexane, toluene, xylene, tetrahydrofuran, diethyl ether, tert-butyl methyl ether, DMF, DMSO, NMP, and mixtures of these. Among them, hexane and tetrahydrofuran are particularly preferred.

5

10

15

20

25

The reaction is generally carried out at -20°C to 50°C, preferably -10°C to 30°C. The reaction time is generally 0.5 hour to 24 hours, preferably 1 hour to 18 hours.

After the reaction, the compound (4) formed can be recovered by extraction with an organic solvent such as ethyl acetate, toluene, hexane or ether and, if necessary, can be purified by such a procedure as chromatography, crystallization or distillation. The reaction mixture may be used in the next step without extraction, if necessary after dehydration or dehydration and concentration.

The step of deriving the compound (8) from the compound (7) is now described. R^4 is as described hereinabove. In the relevant formula, R^7 and R^8 each represents an alkyl group containing 1 to 18 carbon atoms, an aryl group containing 6 to 20 carbon atoms or an aralkyl group containing 7 to 20 carbon atoms and they may be bound together to form a ring. Furthermore, an asymmetric carbon atom may be contained therein.

The alkyl group is a substituted or unsubstituted one containing 1 to 18 (preferably 1 to 10, more preferably 1 to 6) carbon atoms, such as, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group or n-hexyl group.

The aryl group is a substituted or unsubstituted one containing 6 to 20 (preferably 6 to 10) carbon atoms, such as, for example, phenyl group, 1-naphthyl group, 2-naphthyl group, 4-methylphenyl group, 3-methylphenyl group, 2-methylphenyl group, 4-ethylphenyl group, 3-ethylphenyl group,

35 4-methoxyphenyl group, 3-methoxyphenyl group, 2-methoxyphenyl

group, 4-nitrophenyl group, 4-phenylphenyl group, 4-chlorophenyl group or 4-bromophenyl group.

The aralkyl group is a substituted or unsubstituted one containing 7 to 20 (preferably 7 to 10) carbon atoms, such as, for example, benzyl group, 4-methylbenzyl group, 3-methylbenzyl group, 2-methylbenzyl group, 4-methoxybenzyl group, 3-methoxybenzyl group, 2-methoxybenzyl group, 1-phenylethyl group, 2-phenylethyl group, 3-phenylpropyl group or 2-phenylpropyl group.

In cases where R^7 and R^8 are bound together, the compound of the formula (7) is represented by the following formula (9);

5

10

30

35

; or the following formula (10);

wherein R^4 , X, Y and * are as defined hereinabove and R^{10} , R^{11} , R^{12} , R^{13} , R^{14} and R^{15} each independently represents a substituted or unsubstituted alkyl group containing 1 to 18 carbon atoms, a substituted or unsubstituted aryl group containing 6 to 20 carbon atoms or a substituted or unsubstituted aralkyl group

containing 7 to 20 carbon atoms.

5

10

15

20

25

Preferred as R^7 is 1-phenylethyl group having the (R) or (S) absolute configuration. Preferred as R^8 are phenyl group and isopropyl group.

In the formulas (7), (9) and (10), X represents C, S or S(0), and Y represents CH, O or NH. Carbon is preferred as X, and oxygen is preferred as Y.

As R⁹ in the formula MOR⁹, there may be mentioned a hydrogen atom or a substituted or unsubstituted alkyl group containing 1 to 20 (preferably 1 to 10, more preferably 1 to 6) carbon atoms, such as, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, sec-pentyl group and isopentyl group. Among them, methyl group and ethyl group are preferred, and methyl group is more preferred.

M represents an alkali metal atom, such as a lithium atom, sodium atom or potassium atom. A sodium atom is preferred.

As for the usage, the compound represented by the formula MOR^9 is generally used in an amount of not less than 1 mole, preferably 1.1 to 3.0 moles, per mole of the compound (7). When R^9OH (wherein R^9 is other than H) is used in combination in an amount of not less than 1.0 mole per mole of the compound (7), however, the amount of MOR^9 may be 1.0 mole or less per mole of the compound (7). When R^9OH is used, the amount thereof is not less than 1.0 mole, without any further particular restriction. Furthermore, in that case, the amount of MOR^9 is preferably 0.01 to 10.0 moles, more preferably 0.1 to 3.0 moles, still more preferably 0.5 to 2.5 moles, per mole of the compound (7).

When R⁹ in MOR⁹ is a hydrogen atom, it is generally possible to carry out the reaction in the presence of hydrogen peroxide according to need and, in this case, the compound (8) formed is a 2-allylcarboxylic acid represented by the formula (5) given hereinabove. When R⁹ is other than a hydrogen atom, the compound (8) formed is a 2-allylcarboxylic acid ester

represented by the formula (4) given hereinabove. When the product is a 2-allylcarboxylic acid ester (4), this may be converted to the corresponding 2-allylcarboxylic acid (5) by hydrolysis according to need. When hydrogen peroxide is used, this is used generally in an amount of not less than 1.0 mole, preferably 1.0 to 50 moles, more preferably 1.1 to 30 moles, per mole of MOR⁹.

5

10

15

20

35

The solvent to be used is not particularly restricted but may be any of those which will not adversely affect the invention. Thus, there may be mentioned, in addition to above mentioned R⁹OH, hexane, toluene, xylene, tetrahydrofuran, diethyl ether, tert-butyl methyl ether, DMF, DMSO, NMP, and mixed solvents composed of two or more of these. Preferred are hexane and tetrahydrofuran, in particular.

The reaction is generally carried out at -20°C to 50°C, preferably -10°C to 30°C. The reaction time is generally 0.5 hour to 24 hours, preferably 1 hour to 18 hours.

After the reaction, the compound (8) formed can be recovered by extraction with an organic solvent such as ethyl acetate, toluene, hexane or ether and, if necessary, can be purified by such a procedure as chromatography, crystallization or distillation. The reaction mixture may be used in the next step without extraction, if necessary after dehydration or dehydration and concentration.

Finally, the step of producing the compound (5) from the compound (4) is described. R⁴ and R⁶ are as described hereinabove. In this step, any of those methods generally used in hydrolyzing esters can be employed without any particular restriction. More preferably, however, the compound (4) is stereoselectively hydrolyzed using an enzyme source capable of asymmetrically hydrolyzing the same to give a product improved in optical purity. The compound (4) to be used may be either a racemic mixture or an optically active form.

The enzyme source is not particularly restricted but may be any one capable of stereoselectively hydrolyzing the ester

moiety of the compound (4). The enzyme may be a microorganism-derived, animal cell-derived or plant cell-derived one. Specifically, there may be mentioned enzyme sources derived from microorganisms belonging to the genus Candida, Humicola, Mucor, Pseudomonas, Rhizopus, Brevundimonas, Cellulomonas, Jensenia, Rhodococcus, Saccharomycopsis or Trichosporon.

More specifically, mention may be made of enzyme sources derived from Candida antarctica, Candida lipolitica, Candida cylindracea, Candida rugosa, Humicola sp., Humicola lanuginosa, Mucor meihei, Mucor javanicus, Pseudomonas sp., Rhizopus delemar, Rhizopus javanicus, Brevundimonas diminuta, Cellulomonas fimi, Jensenia canicruria, Rhodococcus erythropolis, Candida pini, Saccharomycopsis selenospora, Trichosporon cutaneum or Trichosporon debeurmannianum.

The "enzyme source" so referred to herein includes not only purified enzymes but also roughly purified enzymes and microbial cells, and the like. Furthermore, the enzyme or microbial cells may be immobilized on an inorganic carrier, organic polymer carrier, and/or the like.

The hydrolysis reaction using the enzyme source mentioned above may be carried out in water or in a mixed solvent composed of water and an organic solvent. The organic solvent to be used in admixture with water is, for example, methanol, ethanol, propanol, acetone, dioxane, tetrahydrofuran, toluene or ethyl acetate. The substrate compound (4) or compound (8) is used in an amount within the range of 0.1 to 50% by weight on the reaction mixture basis, and the enzyme source is used in an amount of 0.01 to 500% by weight based on the substrate, although the amount thereof may depend on the mode of utilization thereof. The enzyme source may be added either all at once at the start of the reaction or in divided portions. Similarly, the substrate compound (4) or compound (8) may be added either all at once at the start of the reaction or in divided portions.

The temperature at which the enzyme source is to act on

the substrate is preferably 10 to 60° C, more preferably 25 to 40° C, and may depend on the properties of the enzyme.

The pH of the reaction mixture is preferably within the range of 3 to 10, more preferably within the range of 5 to 8. For the pH adjustment of the solution, an aqueous solution of an alkali such as sodium hydroxide or sodium carbonate may be used or, alternatively, a buffer solution such as a phosphate buffer may be used. The pH value may be decreased with the progress of the reaction in some instances. As long as the pH value is within the above-mentioned preferred range, no pH adjustment will be required. Optionally, the pH value may be maintained at a constant level by adequate addition of an aqueous solution of an alkali.

After completion of the reaction, the unreacted optically active compound (4) or compound (8) may be isolated by adjusting the reaction mixture to an alkaline pH by addition thereto of an aqueous solution of an alkali such as sodium hydroxide and extracting the organic phase with an organic solvent such as ethyl acetate, hexane or toluene. After extraction with the organic phase, the aqueous phase is adjusted to an acidic pH by addition thereto of an acid such as sulfuric acid and extracted with such an organic solvent as ethyl acetate, hexane or toluene, where-upon the optically active compound (5), which is the hydrolysis product, can be isolated. Furthermore, each compound can be purified by distillation, silica gel column chromatography, and the like.

BEST MODES FOR CARRYING OUT THE INVENTION

The following examples illustrate the present invention in further detail. These are, however, by no means limitative of the scope of the invention.

(Preparation Example 1)

5

10

15

20

- (R)-N-Octanoyl-1-phenylethylamine
- 35 A solution of 50.0 g (412.6 mmol) of

(R)-1-phenylethylamine and 41.75 g (412.6 mmol) of triethylamine in 750 ml of toluene was cooled to 0°C, and 73.85 g (453.9 mmol) of octanoyl chloride was added dropwise thereto. After completion of the addition, the reaction was allowed to proceed at room temperature for 3 hours. The reaction mixture was again cooled to 0°C and then the reaction was terminated by addition of 200 ml of 10% hydrochloric acid. The toluene phase was separated, washed with 300 ml of a 10% aqueous solution of sodium hydroxide, and dried over anhydrous sodium sulfate. The solvent was then distilled off, and the residue was quantitated by HPLC. Thus was obtained 19.81 g (97%) of the

¹H-NMR (400 MHz, CDCl₃) δ 0.87 (t, 3H, J = 7.3 Hz), 1.26-1.29 (m, 8H), 1.48 (d, 3H, J = 7.1 Hz), 1.61-1.64 (m, 2H), 15 2.17 (t, 2H, J = 7.3 Hz), 5.15 (q, 1H, J = 7.1 Hz), 5.64 (brs, 1H), 7.28-7.36 (m, 5H).

(Preparation Examples 2 to 5)

title compound.

The compounds given in Table 1 were obtained in the same 20 manner as in Preparation Example 1.

25

10

Table 1

	Preparation Example	Compound	Yield (%)	¹H-NMR (400 Mz, CDCI₃)
5	2	n-C ₇ H ₁₅ NH	95	0.87 (t, 3 H, J=7.3 Hz), 1.26-1.30 (m, 8 H), 1.46 (d, 3 H, J=6.8 Hz), 1.61 (t, 2 H, J=7.1 Hz), 2.15 (q, 2 H, J=7.3 Hz), 3.79 (s, 3 H), 5.09 (q, 1 H, J=6.8 Hz), 5.70 (brs, 1 H), 6.85-6.88 (m, 2 H) 7.22-7.26 (m, 2 H).
10	3	PCH15 OMe	. 96	0.86 (t, 3 H, J=7.3 Hz), 1.28-1.30 (m, 8 H), 1.46 (d, 3H, J=7.1 Hz), 1.59-1.70 (m, 2 H), 2.17-2.32 (m, 2 H), 3.79 (s, 3 H), 5.08 (m, 1 H), 5.82-5.77 (m, 1 H), 6.78-6.89 (m, 3 H), 7.21-7.29 (m, 1 H).
	4	n-C ₇ H ₁₅ N	98	0.86 (t, 3 H, J=7.3 Hz), 1.23-1.26 (m, 8 H), 1.60 -1.63 (m, 2 H), 1.67 (d, 2 H, J=6.6 Hz), 2.12-2.17 (m, 2 H), 5.62 (brs, 1 H), 5.95 (q, 1 H, J=6.6 Hz), 7.44-7.56 (m, 4 H), 7.79-7.88 (m, 2 H), 8.09 (d, 1 H, J=8.1 Hz).
15	5	0 Ph	96	0.87 (t, 3 H, J=7.3 Hz), 1.23-1.29 (m, 8 H), 1.51-1.57 (m, 2 H), 2.11 (t, 2 H, J=7.3 Hz), 2.29 (s, 3 H),3.00-3.12 (m, 2 H), 5.27 (q, 1 H, J=7.3 Hz), 5.65 (brs, 1 H), 6.94 (d, 2 H, J=8.1 Hz), 7.03 (d, 2 H, J=8.1 Hz), 7.26-7.32 (m, 5 H).

20 (Preparation Example 6)

25

30

35

(R)-N-Octanoyl-1-phenylethylamine

Octanoic anhydride (5.58 g, 20.6 mmol) was added dropwise to a solution of 2.75 g (22.7 mmol) of (R)-1-phenylethylamine and 2.09 g (20.6 mmol) of triethylamine in 35 ml of toluene at room temperature. The reaction was allowed to proceed for 18 hours and then the reaction was terminated by addition of 20 ml of 10% hydrochloric acid. The toluene phase was separated, washed with two 30-ml portions of 10% sodium hydroxide and dried over anhydrous sodium sulfate. After removal of the solvent by distillation, the residue was quantitated by HPLC. Thus was obtained 4.55 g (89%) of the title compound.

(Preparation Example 7)

(R)-N-Allyl-N-octanoyl-1-phenylethylamine

Sodium hydride (60%) (0.65 g, 16.3 mmol) was washed with

three 20-ml portions of hexane and then suspended in 5 ml of THF. Hereto were added a solution of 2.00 g (8.1 mmol) of (R)-N-octanoyl-1-phenylethylamine in 15 ml of THF, and 1.96 g (16.3 mmol) of allyl bromide, and the reaction was allowed to proceed at room temperature for 1 hour and, then, at 70°C for 2 hours. The reaction mixture was cooled to room temperature and added dropwise to 20 ml of ice-cooled 1 M hydrochloric acid to thereby terminate the reaction. The resulting mixture was extracted with 30 ml of hexane. The organic phase was washed with a saturated aqueous solution of sodium chloride and dried over anhydrous sodium sulfate, and the solvent was then distilled off. The desired product was purified on a silica gel column. Thus was obtained 7.59 g (94%) of the title compound.

¹H-NMR (400 MHz, CDCl₃) δ 0.87 (t, 3H, J = 7.3 Hz), 1.28-1.30 (m, 8H), 1.48 (d, 3H, J = 7.1 Hz), 1.61-1.68 (m, 2H), 2.81 (t, 2H, J = 7.3 Hz), 3.58-3.74 (m, 2H), 4.96-5.08 (m, 2H), 5.55-5.62 (m, 1H), 6.12 (q, 1H, J = 7.1 Hz), 7.23-7.36 (m, 5H).

20 (Preparation Examples 8 to 11)

The compounds given in Table 2 were obtained in the same manner as in Preparation Example 7.

25

5

10

Table 2

	Preparation Example	Compound	Yield (%)	¹ H-NMR (400 Mz, CDCl ₃)
5	8	n-C ₇ H ₁₅	99	0.86-0.89 (m, 3 H), 1.28-1.30 (m, 8 H), 1.45 (d, 2 H, J=7.3 Hz), 1.57-1.69 (m, 3 H), 2.17-2.47 (m, 2 H), 3.37-4.08 (m, 5 H), 4.96-5.13 (m, 2 H), 5.52-6.10 (m, 2 H), 6.84-6.89 (m, 2 H), 7.21-7.27 (m, 2H).
10	9	n-C ₇ H ₁₅ OMe	96	0.84-0.87 (m, 3H), 1.25-1.28 (m, 8 H), 1.47 (d, 2 H, J=6.8 Hz), 1.61-1.64 (m, 3 H), 2.31-2.35(m, 2 H), 3.61-3.67(m, 1 H), 3.70-3.80 (m, 4 H), 5.07-5.14 (m, 2 H), 5.50-5.69(m, 1 H), 6.06-6.10 (m, 1 H).
	10	n-C ₇ H ₁₅	93	0.85-0.88 (m, 3 H), 1.26-1.29 (m, 8 H), 1.43- 1.70 (m, 5 H), 2.29 (t, 2 H, J=7.5 Hz), 2.58- 3.61 (m, 2 H), 4.76-4.80 (m, 2 H), 5.10-5.18 (m, 1 H), 6.69-6.74 (m, 1 H), 7.44-7.55 (m, 4 H), 7.80-7.86 (m, 2 H), 8.01-8.03 (m, 1 H).
15	11	n-C ₇ H ₁₅	94	0.87 (t, 3 H, J=7.3 Hz), 1.23-1.26 (m, 8 H), 1.50 (t, 2 H, J=6.8 Hz), 1.56-1.58 (m, 2 H), 2.17 (t, 2 H, J=7.1 Hz), 2.27 (s, 3 H), 3.22-3.30 (m, 2 H), 3.61-3.79 (m, 2 H), 4.84-4.95 (m, 2 H), 6.22 (t, 1 H, J=8.1 Hz), 7.04-7.23 (m, 4 H), 7.28-7.40 (m, 5 H).

20 (Preparation Example 12)

(R)-N-Allyl-N-octanoyl-1-phenylethylamine

A solution of 10.0 g (40.0 mmol) of

(R)-N-octanoyl-1-phenylethylamine in 20 ml of toluene, and 9.90 g (80.0 mmol) of allyl bromide were added to a suspension of 3.20 g (80.0 mmol) of sodium hydride (60%) in 74 ml of toluene, and the reaction was allowed to proceed at 100°C for 6 hours. The reaction mixture was cooled to room temperature and added dropwise to 80 ml of ice-cooled 1 N hydrochloric acid to thereby terminate the reaction. The resulting mixture was extracted with three 30-ml portions of hexane. The organic phase was washed with 50 ml of water and then dried over anhydrous sodium sulfate, and the solvent was distilled off. The residue was quantitated by HPLC. Thus was obtained 9.87 g (86%) of the title compound.

25

(Example 1)

(R) -N-(2-Allyloctanoyl)-1-phenylethylamine

To a solution of 24.0 g (83.0 mmol) of

- (R)-N-allyl-N-octanoyl-1-phenylethylamine in 240 ml of toluene was added dropwise 61.5 ml (98.0 mmol) of tert-butylmagnesium chloride (1.6 M) at room temperature and, after completion of the addition, the reaction was allowed to proceed at 70°C for 6 hours. After completion of the reaction, the reaction mixture was added dropwise to 240 ml of 1 N aqueous hydrochloric acid on an ice bath. The resulting mixture was extracted with 300 ml of hexane, and the organic layer was washed with 100 ml of a saturated aqueous solution of sodium chloride and then concentrated under reduced pressure to give 25.0 g of a crude product. The crude product was purified by column chromatography on silica gel (hexane:ethyl acetate = 10:1) to
- N-[(R)-2-allyloctanoyl]-1-phenylethylamine. ${}^{1}\text{H-NMR} \ (400 \ \text{MHz}, \ \text{CDCl}_{3}) \ \delta \ 0.83-0.87 \ (\text{m}, \ 3\text{H}), \ 1.18-1.23} \\ (\text{m}, \ 8\text{H}), \ 1.42-1.50 \ (\text{m}, \ 4\text{H}), \ 1.52-1.59 \ (\text{m}, \ 1\text{H}), \ 2.01-2.06 \ (\text{m}, \ 20), \ 2.14-2.21 \ (\text{m}, \ 1\text{H}), \ 2.33-2.41 \ (\text{m}, \ 1\text{H}), \ 4.94-5.20 \ (\text{m}, \ 3\text{H}), \ 2.33-2.41 \ (\text{m}, \$

give 13.1 g (76%, (1R, 2S): (1R, 2R) = 80:20) of

5.60-5.81 (m, 1H), 7.23-7.33 (m, 5H).

(Examples 2 to 7)

The compounds given in Table 3 were obtained in the same 25 manner as in Example 1.

Table 3

	Example	Compound	Solvent	Yield(%) (Diastereomar ratio)	¹H-NMR (400 MHz, CDCl₃)
5	2	n-C ₆ H ₁₃	THF	46 (1S,2R) : (1S,2S) =72:28	As described in Example 1
	3	nCgHg • NH	Hexane	72 (1S,2R) : (1S,2S) =82:18	As described in Example 1
10	4	n-Cylin - T	Toluene	77 (1R,2S): (1R,2R) =81:19	0.86-0.88 (m, 3 H), 1.21-1.26 (m, 8 H), 1.45- 1.46 (m, 3 H), 1.59-1.67 (m, 2 H), 2.02-2.34 (m, 3 H), 3.79 (a, 3 H), 4.94-5.13 (m, 2 H), 5.59-5.61 (m, 1 H), 5.72-5.76 (m, 1 H), 6.86 (d, 2 H, 1=7.3 Hz), 7.23 (d, 2 H, 1=7.3 Hz)
15	5	nc.H.D. The come	Toluene	80 (1R,2S) : (1R,2R) =77:23	0.82-0.86 (m, 3 H), 1.20-1.45 (m, 8 H), 1.43- 1.45 (m, 4 H), 1.55-1.62 (m, 1 H), 2.10-2.18 (m, 2 H), 2.34-2.36 (m, 1 H), 3.77 (a, 3 H), 4.93-5.12 (m, 3 H), 5.68-5.76 (m, 1 H), 5.98 -6.10 (m, 1 H), 6.77 (d, 1 H, J=7.1 Hz), 6.85- 6.90 (m, 2 H), 7.21-7.24 (m, 1 H).
	6	n-Cathas I	Toluene	60 (1S,2R*) : (1S,2S*) =72:28	0.80-0.88 (m, 3 H), 1.15-1.36 (m, 8 H), 1.60-1.75 (m, 5 H), 1.98-2.04 (m, 1 H), 2.16-2.18 (m, 1 H), 2.28-2.38 (m, 1 H), 5.00-5.08(m, 2 H), 5.72-5.76 (m, 1 H), 5.93-5.95 (m, 1 H), 7.45-7.51 (m, 4 H), 7.79-7.86 (m, 2 H), 8.09 -8.11 (m, 1 H).
20	7	nc.n.	Toluene	81 (1S,2R*): (1S,2S*) =85:15	0.82-0.89 (m, 3 H), 1.14-1.20 (m, 8 H), 1.59 (a, 3 H), 1.99-2.26 (m, 2 H), 2.29 (S, 3 H), 2.96-3.00 (m, 1 H), 3.01-3.11 (m, 1 H), 4.87 -4.98 (m, 2 H), 5.26-5.31 (m, 1 H), 5.47-5.57 (m, 1 H), 5.66-5.67 (m, 1 H), 6.96-7.05 (m, 4 H), 7.24-7.52 (m, 5 H).

(Example 8)

25

30

N-(2-Allyloctanoyl)-(R)-1-(3-methoxyphenyl) ethylamine diastereomer purification

n-Pentane (25 ml) was added to 1.0 g of an N-(2-allyloctanoyl)-(R)-1-(3-methoxyphenyl)ethylamine diastereomer mixture ((1R,2S):(1R,2R) = 77:23), and the mixture was warmed to 40° C and then allowed to cool slowly to room temperature. The crystalline precipitate was collected by filtration. Thus was obtained 0.47 g (58% recovery upon recrystallization, diastereomer ratio (1R,2S):(1R,2R) = 94:6) of the title compound.

35 (Example 9)

N-(2-Allyloctanoyl)-(S)-1-phenyl-2-(4-methylphenyl)ethylamine diastereomer purification Acetone (6 ml) was added to 1.0 g of an N-(2-allyloctanoyl)-(S)-1-phenyl-2-5 (4-methylphenyl)ethylamine diastereomer mixture $((1S, 2R^*): (1S, 2S^*) = 85.3:14.7)$ and, after dissolution at 50° C, 20 ml of hexane was added, and the resulting mixture was allowed to cool slowly to room temperature. The crystalline precipitate was collected by filtration to give 0.40 g of 10 crystals $((1S, 2R^*): (1S, 2S^*) = 95.7:4.3)$. Acetone (4 ml) was added to the crystals obtained and, after dissolution at 50°C, 10 ml of hexane was added, and the resulting mixture was allowed to cool slowly to room temperature. The crystalline precipitate was collected by filtration to give 0.17 g of white 15 crystals (25% recovery upon recrystallization, $(1S, 2R^*): (1S, 2S^*) = 99.3:0.7$.

(Example 10)

20

25

30

35

N-Isopropyloxycarbonyl-N-(2-allyloctanoyl)-(R)-1-phenylethylamine

To a solution of 40.0 g (0.14 mol) of (R)-N-allyl-N-octanoyl-1-phenylethylamine in 400 ml of toluene was added dropwise 105 ml (0.17 mol) of tert-butylmagnesium chloride (1.6 M) at room temperature, and the reaction was allowed to proceed at 70°C for 6 hours. The reaction mixture was cooled to room temperature and, then, 51.0 g (0.42 mol) of isopropyl chlorocarbonate was added, and the reaction was allowed to proceed at room temperature for 15 hours. After completion of the reaction, the reaction mixture was added dropwise to 170 ml of a 1 N aqueous solution of hydrochloric acid in an ice bath. The reaction mixture was extracted with 400 ml of hexane, and the organic layer was washed with 100 ml of a saturated aqueous solution of sodium chloride and then concentrated under reduced pressure to give 52.1 g of a crude product. The crude product was purified by column

chromatography on silica gel (hexane:ethyl acetate = 10:1) to give 41.0 g of the title compound as a colorless oil (yield 78%, diastereomer ratio (1R, 2S):(1R, 2R) = 80:20).

 1 H-NMR (400 MHz, CDCl₃) δ 0.72 (d, 3H, J = 7.3 Hz), 0.82-0.83 (m, 3H), 1.16 (d, 3H, J = 7.3 Hz), 1.18-1.20 (m, 8H), 1.48-1.52 (m, 3H), 1.57-1.69 (m, 3H), 2.22-2.49 (m, 1H), 3.58 (m, 1H), 4.77-4.81 (m, 1H), 4.90-5.19 (m, 2H), 5.68-77 (m, 1H), 5.98-6.02 (m, 1H), 7.20-7.41 (m, 5H).

10 (Examples 11 to 14)

The following compounds were obtained in the same manner as in Example 10.

20

5

25

Table 4

	Example	R	CICOOR (amountused; equivalents)	1011	¹H−NMR (400 MHz, CDCl₃)
5	11	COOMe	3.0	86	0.88 (t, 3 H, J=7.3 Hz), 1.21-1.29 (m, 8 H), 1.52-1.55 (m, 3 H) 1.66 (d, 3 H, J=6.8 Hz), 2.22-2.52 (m, 2 H), 3.34-3.48 (m, 1 H) 3.52 (s, 3 H), 4.97-5.30 (m, 2 H), 5.66-5.82 (m, 1 H), 5.97-5.98 (m, 1 H), 7.21-7.30 (m, 5 H).
10	12	COO− <i>sec−</i> Bu	1.0	54	0.54 (m, 3 H), 0.85-0.94 (m, 6 H), 1.17-1.49 (m, 10 H), 1.52-1.67 (m, 2 H), 1.75-1.80 (m, 3 H), 2.24-2.56 (m, 2 H), 3.50-3.65 (m, 1 H), 4.61-4.68 (m, 1 H), 4.98-5.17 (m, 2 H), 5.70-5.85 (m, 1 H), 6.01-7.20 (m, 5 H).
·: ·	13	COOPh	2.0	94	0.85-0.87 (m, 3 H), 1.26-1.39 (m, 8 H), 1.55-1.56 (m, 2 H), 1.78 (d, 3 H, J=6.8 Hz), 2.27-2.31 (m, 1 H), 2.43-2.50 (m, 1 H), 3.61-3.64 (m, 1 H), 5.03-5.10 (m, 2 H), 5.72-5.86 (m, 1 H), 6.17-6.20 (m, 1 H), 7.16-7.44 (m, 10 H).
15	14	COO- 4−NO₂Ph	2	69	0.85-0.87 (m, 3 H), 1.22-1.36 (m, 8 H), 1.55-1.57 (m, 2 H), 1.77 (d, 3 H, J=6.8 Hz), 2.27-2.31 (m, 1 H), 2.39-2.41 (m, 1 H), 3.60-3.64 (m, 1 H), 5.03-5.10 (m, 2 H), 5.72-5.88 (m, 1 H), 6.10-6.12 (m, 1 H), 7.44 (d, 2 H, J=9.0 Hz), 8.33 (d, 2 H, J=9.0 Hz).

(Example 15)

25

30

35

N-Ethyloxycarbonyl-N-(2-allyloctanoyl)-(R)-1-

20 (3-methoxyphenyl)ethylamine

A solution of 0.40 g (1.3 mmol) of N-(2-allyloctanoyl)-(R)-1-(3-methoxyphenyl)ethylamine (diastereomer ratio (1R,2S):(1R,2R) = 77:23) in 2 ml of DMF was added to a solution of 151 mg (3.8 mmol) of sodium hydride in 2 ml of DMF at room temperature, and the reaction was allowed to proceed at 50°C for 1 hour. To the reaction mixture was added 0.48 ml (5.0 mmol) of ethyl chlorocarbonate, and the mixture was stirred at 50°C for 12 hours. The reaction mixture was added dropwise to a mixed solution composed of 5 ml of a 1 N aqueous solution of hydrochloric acid and 5 ml of hexane with ice cooling, and the resulting mixture was extracted with two 20-ml portions of hexane. The organic layer was washed with 5 ml of a saturated aqueous solution of sodium chloride and concentrated under reduced pressure to give 0.49 g of a crude product. The crude product was purified on a silica gel column (ethyl

acetate:hexane = 20:1) to give 0.224 g of the title compound as a colorless oil (yield 46%, (1R,2S):(1R,2R) = 77:23).

 1 H-NMR (400 MHz, CDCl₃) δ 0.86-0.88 (m, 3H), 0.98-1.03 (m, 3H), 1.22-1.27 (m, 8H), 1.62-1.68 (m, 2H), 1.81-185 (m, 3H), 2.20-2.55 (m, 2H), 3.52 (m, 1H), 3.78 (s, 3H), 3.82-4.02 (m, 2H), 4.98-5.11 (m, 2H), 5.70-5.76 (m, 1H), 5.83-5.98 (m, 1H), 6.75-6.86 (m, 3H), 7.19-7.26 (m, 1H).

(Example 16)

10 Methyl 2-allyloctanoate

A solution of 0.345 g (1.0 mmol) of N-methyloxycarbonyl-N-(2-allyloctanoyl)-1-(R)-phenylethylamine in 5 ml of methanol was cooled to 0°C, 0.386 g (2.0 mmol) of NaOMe (28% solution in methanol) was added, and the mixture was stirred for 22 hours. The reaction was terminated by addition of 2 ml of 1 N hydrochloric acid, and the product was extracted with ethyl acetate. The extract was dried over anhydrous sodium sulfate, the solvent was distilled off, and the residue was isolated/purified on a silica gel column to give 0.10 g (51%) of the title compound. N-(2-Allyloctanoyl)-(R)-1-phenylethylamine was formed as a byproduct in 45% yield.

¹H-NMR (400 MHz, CDCl₃) δ 0.87 (t, 3H, J = 6.8 Hz), 1.24-1.28 (m, 8H), 1.54-1.56 (m, 3H), 2.20-2.45 (m, 2H), 3.66 (s, 3H), 4.99-5.04 (m, 2H), 5.68-5.78 (m, 1H).

(Example 17)

25

Methyl 2-allyloctanoate

A solution of 0.345 g (1.0 mmol) of

N-methyloxycarbonyl-N-(2-allyloctanoyl)-1-(R)phenylethylamine in 5 ml of THF was cooled to 0°C, 0.386 g (2.0 mmol) of NaOMe (28% solution in methanol) was added, and the mixture was stirred for 22 hours. The reaction was terminated by addition of 2 ml of 1 N hydrochloric acid, and the product was extracted with ethyl acetate. The extract was dried over

anhydrous sodium sulfate, the solvent was distilled off, and the residue was quantitated by GC. Thus was obtained 0.109 g (55%) of the title compound.

N-(2-Allyloctanoyl)-(R)-1-phenylethylamine was formed as a byproduct in 36% yield.

(Example 18)

Methyl 2-allyloctanoate

A solution of 25.12 g (67.5 mmol) of

N-isopropyloxycarbonyl-N-(2-allyloctanoyl)-1-(R)phenylethylamine ((1R,2S):(1R,2R) = 77:23) in 338 ml of THF was
cooled to -10°C, 26.1 g (135 mmol) of NaOMe (28% solution in
methanol) was added dropwise and, after completion of the
addition, the mixture was further stirred for 45 minutes. The
reaction was terminated by addition of 120 ml of 1 N hydrochloric
acid, and the product was extracted with hexane (100 ml x 2).
The extract was dried over anhydrous sodium sulfate, and the
solvent was distilled off to give 25.90 g of a crude product.
This was purified on a silica gel column to give 12.32 g (92%,
54% ee) of the title compound.

(Example 19)

Methyl 2-allyloctanoate

A solution of 40 g (110 mmol) of

N-isopropyloxycarbonyl-N-(2-allyloctanoyl)-1-(R)phenylethylamine ((1R,2S):(1R,2R) = 80:20) in 400 ml of hexane
was cooled to 0°C, 41.5 g (220 mmol) of NaOMe (28% solution in
methanol) was added dropwise and, after completion of the
addition, the mixture was further stirred for 5 hours. The
reaction was terminated by addition of 230 ml of 1 N hydrochloric
acid, and the product was extracted with hexane (400 ml). The
organic layer was washed with 100 ml of a saturated aqueous
solution of sodium hydrogen carbonate and then with 100 ml of
water and dried over anhydrous sodium sulfate, and the solvent
was distilled off. The residue was quantitated by GC. Thus

was obtained 103.42 g (94%, 60% ee) of the title compound.

(Example 20)

Methyl 2-allyloctanoate

A solution of 0.374 g (1.0 mmol) of N-isopropyloxycarbonyl-N-(2-allyloctanoyl)-1-(R)-phenylethylamine ((1R,2S):(1R,2R) = 77.6:22.4) in 5 ml of THF was cooled to 0°C, 0.386 g (2.0 mmol) of NaOMe (28% solution in methanol) was added, and the mixture was stirred for 1 hour.

10 The reaction was terminated by addition of 2 ml of 1 N hydrochloric acid, and the product was extracted with ethyl acetate ($30\,\text{ml}\times2$). The extract was dried over anhydrous sodium sulfate, and the solvent was distilled off. The residue was quantitated by GC. Thus was obtained 0.165 g (83%, 55.3% ee)

15 of the title compound.

(Example 21)

Methyl 2-allyloctanoate

A solution of 0.374 g (1.0 mmol) of

N-isopropyloxycarbonyl-N-(2-allyloctanoyl)-1-(R)phenylethylamine ((1R,2S):(1R,2R) = 77.6:22.4) in 5 ml of THF
was cooled to 0°C. A solution of 11 mg (0.2 mmol) of NaOMe in
methanol (0.04 g) was added, and the mixture was stirred for
7 hours. The reaction was terminated by addition of 1 ml of
1 N hydrochloric acid, and the product was extracted with ethyl
acetate (30 ml x 2). The extract was dried over anhydrous sodium
sulfate, and the solvent was distilled off. The residue was
quantitated by GC. Thus was obtained 0.163 g (82%, 55.0% ee)
of the title compound.

30

(Example 22)

Methyl 2-allyloctanoate

A solution of 0.374 g (1.0 mmol) of N-isopropyloxycarbonyl-N-(2-allyloctanoyl)-1-(R)-

35 phenylethylamine ((1R, 2S): (1R, 2R) = 77.6:22.4) in 5 ml of

toluene was cooled to 0°C, 0.386 g (2.0 mmol) of NaOMe (28% solution in methanol) was added, and the mixture was stirred for 21 hours. The reaction was terminated by addition of 2 ml of 1 N hydrochloric acid, and the product was extracted with ethyl acetate (30 ml x 2). The extract was dried over anhydrous sodium sulfate, and the solvent was distilled off. The residue was quantitated by GC. Thus was obtained 0.149 g (75%, 54.2% ee) of the title compound.

10 (Example 23)

15

20

Methyl 2-allyloctanoate

N-phenyloxycarbonyl-N-(2-allyloctanoyl)-1-(R)-phenylethylamine in 2 ml of methanol was cooled to 0°C, 0.38 g (1.0 mmol) of LiOMe was added, and the mixture was stirred for 22 hours. The reaction was terminated by addition of 2 ml of 1 N hydrochloric acid, and the product was extracted with ethyl acetate (30 ml x 2). The extract was dried over anhydrous sodium sulfate, and the solvent was distilled off. The residue was quantitated by GC. Thus was obtained 0.057 g (58%) of the

A solution of 0.218 g (0.5 mmol) of

(Example 24)

title compound.

2-Allyloctanoic acid

An aqueous solution of hydrogen peroxide (31% by weight; 0.5 ml, 55.0 mmol) and 0.043 g (1.0 mmol) of lithium hydroxide monohydrate were added dropwise to a solution of 0.20 g (0.50 mmol) of N-ethyloxycarbonyl-N-(2-allyloctanoyl)-(R)-1-(3-methoxyphenyl)ethylamine ((1R,2S):(1R,2R) = 77:23) in a mixture of 4 ml of THF and 1 ml of water on an ice bath. The mixture was stirred on an ice bath for 3 hours and then at room temperature for 20 hours. A 2 N aqueous solution of sodium sulfite (5 ml) was added dropwise to the reaction mixture on an ice bath, and the resulting mixture was stirred at room temperature for 2 hours. Water (15 ml) was added to the reaction

mixture, and the whole mixture was washed with 5 ml of ethyl acetate. To the aqueous layer was added 2 ml of a 1 N aqueous solution of hydrochloric acid (pH = 2), and the resulting mixture was extracted with two 40-ml portions of ethyl acetate. The organic layer was concentrated under reduced pressure to give 0.078 g (83%, 62% ee) of the title compound as a colorless oil.

(Example 25)

5

10 2-Allyloctanoic acid

An aqueous solution of hydrogen peroxide (31% by weight; 0.6 ml, 5.6 mmol) and 0.047 g (1.1 mmol) of lithium hydroxide monohydrate were added dropwise to a solution of 0.20 g (0.56 mmol) of N-ethyloxycarbonyl-N-(2-allyloctanoyl)-(R)-1-15 phenylethylamine (diastereomer ratio (1R, 2S): (1R, 2R) = 81:19) in a mixture of 4 ml of THF and 1 ml of water on an ice bath. The mixture was stirred on an ice bath for 1 hour and then at room temperature for 18 hours. A 2 N aqueous solution of sodium sulfite (10 ml) was added dropwise to the reaction mixture on 20 an ice bath, and the resulting mixture was stirred at room temperature for 1 hour. Water (15 ml) was added to the reaction mixture, and the whole mixture was washed with 5 ml of ethyl acetate. To the aqueous layer was added 6 ml of a 1 N aqueous solution of hydrochloric acid (pH = 2), and the resulting 25 mixture was extracted with two 40-ml portions of ethyl acetate. The organic layer was concentrated under reduced pressure to give 0.043 g (42%, 62% ee) of the title compound as a colorless oil.

30 (Examples 26 to 43)

2-Allyloctanoic acid and methyl 2-allyloctanoate

A 10-mg portion of each of the commercial enzymes
specified in Table 5 was weighed in a test tube, 1 ml of 500
mM phosphate buffer (pH 7) and 10 mg of racemic methyl

35 2-allyloctanoate were added and, after tight closure, shaking

was carried out at 30°C for 26 hours. After completion of the reaction, the reaction mixture was acidified by adding 0.25 ml of 3 M hydrochloric acid and then extracted with 1 ml of ethyl acetate. The ethyl acetate phase was analyzed by gas chromatography, and the degree of conversion, the optical purity of the product, 2-allyloctanoic acid, and the optical purity of the remaining substrate, methyl 2-allyloctanoate were determined. The results are shown in Table 5.

m	_	h	1	_	_
٦.	$\overline{}$	n		\boldsymbol{e}	רי

	Tabl																			
	Optical purity of Remaining substrate	Absolute configuration	R	R	S	R	S	S	S	S	S	S	S	Я	S	S	S	S	S	S
5	Optica Remaini	(% e.e.)	28	80	54	26	94	47	8	8	90	49	56	9	10	8	30	24	5	24
	Optical purity of the product	Absolute configuration	S	S	R	S	R	ď	œ	α	ď	8	æ	S	R	R	R	R	æ	8
10	Opti of th	(% e.e.)	98	68	6	24	14	3	53	58	10	34	37	76	9	12	14	1	10	3
	Degree of	conversion (%)	22	54	96	.25	87	94	13	12	90	59	60	7	63	32	89	96	33	68
15		Source	Candida antarctica	Candida antarctica	Candida cylindracea	Candida cylindracea	Candida lipolitica	Candida rugosa	Humicola lanuginosa	Humicola sp.	Mucorjavanicus	Mucor meihei	Mucor miehei	Pseudomonas sp.	Rhizopus defemar	Rhizopus delemar	Rhizopus javanicus	Rhizopus delemar	Rhizopus javanicus	Rhizopus delemar
20		Manufacturer	Novozymes Japan Ltd.	Novozymes Japan Ltd.	Meito Sangyo Co., Ltd.	Sigma Co.	Biocatalysts Limited	Amano Enzyme Inc.	Biocatalysts Limited	Novozymes Japan Ltd.	Biocatalysts Limited	Novozymes Japan Ltd.	Novozymes Japan Ltd.	Boehringer Mannheim GmbH	Amano Enzyme Inc.	Biocatalysts Limited	Nagase Chemtex Corporation	Seikagaku Corporation	Osaka Saikin Kenkyusho	Amano Enzyme Inc.
30		Enzyme	Navazym CALB L	Lipase SP525	Lipase OF	Lipase (Type VII)	Lipase L-049	Lipase AYS	Lipase L-053	Lipase SP523	Lipase L-166P	Lipozyme 10000L	Lipase SP388	Lipase WO 2-12	Lipase D	Lipase L-058	Lipase Saiken 50	Lipase	Olipase 4S	Lipase D
35		Example	28	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43

(Examples 44 to 61)

2-Allyloctanoic acid and ethyl 2-allyloctanoate

Racemic ethyl 2-allyloctanoate was subjected to the same procedure as in Examples 26 to 43, and the degree of conversion, the optical purity of the product, 2-allyloctanoic acid, and the optical purity of the remaining substrate, ethyl 2-allyloctanoate were determined. The results are shown in Table 6.

5 10	Optical purity Optical purity of page of the product Remaining substrate	conversion (% e.e.) Absolute (% e.e.) configuration	33 96	antarctica 58 65 S 90 R	95 4 R 76	Sylindracea 57 36 S 48 R	lipolitica 96 1 R 24 S	a rugosa 90 10 S 90 R	lanuginosa 2 66 R 1 S	20/8 sp. 38 63 R 39 S	avanicus 91 4 R 40 S	. meihei 92 1 R 12 S	. miehei 77 11 R 37 S	nonas sp. 6 92 S 6 R	s defemar 82 0 0	s delemar 53 5 R 6 S	71 10 R 24	68 2 R 4	38 20 R 12	
5	Optical Remaining	(% e.e.)		06	76	48	24	06	-	39	40	12	37	9	0	9	24	4	12	
	cal purity ne product	Absolute configuration	S	S	œ	S	Y	S	æ	Я	R	R	8	S		æ	œ	œ	œ	
10	Opti of th	(% e.e.)		65	4	36	1	10	99	63	4	1	11	92	0	2	10	2	20	
	Degrae of	conversion (%)	33	58	98	57	96	90	2	38	91	92	77	9	82	53	71	89	38	
15	d Constitution		Candida antarctica	Candida anterctica	Candida cylindracea	Candida cylindracea	Candida lipolitica	Candida rugosa	Humicola lanuginosa	Humicola sp.	Mucor javanicus	Mucor meihei	Mucor miehei	Pseudomonas sp.	Rhizopus defemar	Rhizopus delemar	Rhizopus javanicus	Rhizopus delemar	Rhizopus javanicus	
20	M	Manuacturer	Novozymes Japan Ltd.	Novozymes Japan Ltd.	Meito Sangyo Co., Ltd.	Sigma Co.	Biocatalysts Limited	Amano Enzyme Inc.	Biocatalysts Limited	Novozymes Japan Ltd.	Biocatalysts Limited	Novozymes Japan Ltd.	Novozymes Japan Ltd.	Boehringer Mannheim GmbH	Amano Enzyme Inc.	Biocatalysts Limited	Nagase Chemtex Corporation	Seikagaku Corporation	Osaka Saikin Kenkyusho	1
30	Foxyme		Novozym CALB L	Lipase SP525	Lipase OF	Lipase (Type VII)	Lipase L-049	Lipase AYS	Lipase L-053	Lipase SP523	Lipase L-166P	Lipozyme 10000L	Lipase SP388	Lipase WO 2-12	Lipase D	Lipase L-058	Lipase Saiken 50	Lipase	Olipase 4S	
35	L	схатріє	44	45	46	47	48	49	20	51	25	53	54	55	56	57	58	59	9	;

(Examples 62 to 77)

2-Allyloctanoic acid and methyl 2-allyloctanoate

A medium (pH 7.0) comprising 1% of polypeptone, 1% of meat extract, 0.5% of yeast extract and 0.3% of sodium chloride was distributed in 5-ml portions into test tubes and, after sterilization, seeded respectively with the microorganisms specified in Table 7. Shake culture was performed aerobically at 30°C for 2 days. Cells were collected from each culture fluid by centrifugation and suspended in 1 ml of 500 mM phosphate buffer (pH 7.0). A 5-mg portion of racemic methyl 2-allyloctanoate was added to the suspension and, after tight closure, shaking was carried out at 30°C for 15 hours. After the reaction, the reaction mixture was acidified by addition of 0.25 ml of 3 M hydrochloric acid and then extracted with 1 ml of ethyl acetate. The ethyl acetate phase was analyzed by gas chromatography, and the degree of conversion, the optical purity of the product, 2-allyloctanoic acid and the optical purity of the remaining substrate, methyl 2-allyloctanoate were determined. The results thus obtained are shown in Table 7.

20

5

10

15

25

Table 7

	-	Mi	Degree of	-	cal purity ne product	Optical purity of Remaining substrate		
	Example	Microorganism	conversion (%)	(% e.e.)	Absolute configuration	(% e.e.)	Absolute configuration	
5	62	Brevundimonas diminuta IFO 13181	14	50	s	8	R	
	63	Brevundimonas diminuta IFO 13182	13	47	S	7.	R	
	64	Cellulomonas fimi IFO15513	60	46	s	69	R	
	65	Jensenia canicruria IFO 13914	42	96	s	70	R	
	66	Rhodococcus erythropolis IFO 12320	44	92	s	72	R	
10	67	Rhodococcus erythropolis IFO 12538	30	87	s	38	R	
10	68	Rhodococcus erythropolis IFO 12539	30	85	s	37	R	
	69	Rhodococcus erythropolis IAM 1474	17	62	s	13	R	
	70	Rhodococcus erythropolis IFO 12320	41	84	s	58	R	
	71	Rhodococcus erythropolis JCM 3132	33	88	s	44	R	
	72	Rhodococcus erythropolis IAM 1440	36	87	s	49	_R	
15	73	Rhodococcus erythropolis IAM 1452	37	84	S	50	R	
	74	Rhodococcus erythropolis IAM 1463	36	90	s	51	R	
	75	Rhodococcus erythropolis IAM 1494	25	66	s	22	R	
	76	Rhodococcus erythropolis IAM 1474	21	67	S	18	R	
	77	Rhodococcus erythropolis IAM 12122	15	75	S	13	R ·	

20 (Examples 78 to 81)

2-Allyloctanoic acid and methyl 2-allyloctanoate

Using the microorganisms listed in Table 8, the procedure of Examples 62 to 77 was repeated in the same manner except that a medium (pH 6.5) comprising 2% of malt extract, 2% of glucose, 0.3% of peptone and 0.3% of yeast extract was used, and the degree of conversion, the optical purity of the product, 2-allyloctanoic acid and the optical purity of the remaining substrate, methyl 2-allyloctanoate were determined in each run. The results obtained are shown in Table 8.

30

Table 8

5

15

20

25

35

Example	Microorganism	Degree of		ical purity ne product	Optical purity of Remaining substrate		
Example	Microorganism	conversion (%)	(% e.e.)	Absolute configuration	(% e.e.)	Absolute configuration	
78	Candida pini IFO 1327	30	90	R	39	s	
79	Saccharomycopsis selenospora IFO 1850	18	82	R	18	S	
80	Trichosporon cutaneum IFO 1198	13	71	s	10	R	
81	Trichosporon debeurmannianum CBS 1896	19	94	R	22	s	

(Example 82)

10 2-Allyloctanoic acid and methyl 2-allyloctanoate

In a flask, there were placed 50 ml of 100 mM phosphate buffer (pH 6.0), 6 g of Novozyme CALB L (product of Novozyms) and 2 g of methyl (S)-2-allyloctanoate (60% ée) prepared in Example 31. After tight closure, the flask was shaken at 40°C for 77 hours. To the mixture was added 0.35 ml of a 55% (w/w)aqueous solution of sulfuric acid, and the resulting mixture was extracted with two 100-ml portions of ethyl acetate. organic phases were combined, and the product was transferred to 100 ml of a 0.3 M aqueous solution of sodium carbonate. Furthermore, 5 ml of a 55% (w/w) aqueous solution of sulfuric acid was added to that aqueous phase, followed by extraction with 50 ml of ethyl acetate. The organic phase was washed with 50 ml of water, and the solvent was then distilled off to give 1.21 g of (S)-2-allyloctanoic acid (99% ee). The organic phase remaining after the transfer of the reaction product to the 100 ml portion of the 0.3 M aqueous solution of sodium carbonate was washed with 50 ml of water, and the solvent was then distilled off to give 0.63 g of methyl (R)-2-allyloctanoate (14% ee).

30 INDUSTRIAL APPLICABILITY

As described hereinabove, it is possible to produce an optically active 2-allylcarboxylic acid derivative, which is useful as an intermediate for the manufacture of medicinal compounds, and the like, from readily available and inexpensive starting materials by the process which can be practiced on a

commercial scale in a simple and easy manner. Furthermore, certain 2-allylcarboxamide derivative compounds, which are novel and important intermediates in that process, can be provided.