# 13 - DrFAQ: Benchmarking and Analysis of Language Model Transfer Learning for a Plug-and-Play Question Answering Chatbot

Authors: New Jun Jie, Elysia Tan Ziyi, Chua Xinhui, Sarah, Chik Cheng Yao (School of Computing) Email: e0389098@u.nus.edu, e0036110@u.nus.edu, e0035831@u.nus.edu, e0174850@u.nus.edu

#### **Abstract**

With the rise of deep Natural Language Processing (NLP), companies race to streamline processes by employing question answering (QA) to automate interaction services via chatbots. DrFAQ is an open-source QA chatbot architecture, to which we extend by improving and analysing the NLP QA procedure within. Our contributions include benchmarking 6 language models (LMs) BERT, DistilBERT, RoBERTa, DistilRoBERTa, ALBERT and MobileBERT by their zero-shot and fine-tuned performance, and analysing QA capabilities by question categories, on 3 existing QA datasets (SQuAD, CoQA and QuAC) and 11 QA datasets generated from company information found online. Our experiments empirically show that RoBERTa performs best for large and clean QA datasets while MobileBERT performs best for small and unclean generated QA datasets. We contribute code for the transfer learning procedure, dataset generation and question classification.

## 1 Introduction

Industry trends show that companies are searching for ways to improve customer service experience while reducing costs. A leading solution is to automate the service process using chatbots. For instance, DBS uses a question answering (QA) chatbot called Jim to address job applicants' questions regarding the organization and the role they are applying for. However, the majority of current chatbots, like Jim, are rule-based with little machine learning or deep learning involved (DBS, 2018). Consequently, most chatbots currently available in the industry are highly specific to a single use case, and the creation of chatbots is highly manual and laborious.

Nonetheless, in recent years, the success of deep Natural Language Processing (NLP) has sparked interest in applying deep NLP to QA chatbots to make them more flexible and suitable for a wider range of use cases. For example, over 70 Singapore government agency websites use a single NLP QA chatbot, Jamie, which is able to tailor her answers to the specific website (GovTech, n.d.).

Thus, a natural tendency is to investigate the practicality of creating a plug-and-play QA chatbot, comprising a language model (LM) that can be generally fine-tuned to any organization's text corpora (i.e. uses the same fine-tuning methods regardless of text corpora). This can help to automate the manual process of creating customised QA chatbots, improving manpower efficiency and reducing costs.

DrFAQ is an existing open-source project by a team member that implements a 4-step QA methodology: 1) FAQ matching, 2) NLP QA, 3) Search and 4) Human intervention. However, DrFAQ has some limitations. It is based on an arbitrarily selected BERT LM pre-trained on SQuAD, which is not fine-tuned to any target QA datasets, and was not subject to any evaluation studies to investigate its limitations. In particular, it is unknown whether the pre-trained BERT LM can be adapted to the contexts of different companies.

Therefore, our project aims to extend DrFAQ by improving and analysing the NLP QA procedure within, through our following contributions:

- We benchmark 6 LMs (BERT, DistilBERT, ROBERTA, DistilRoBERTa, ALBERT and MobileBERT) instead of just one;
- We generated 11 QA datasets from company information found from websites and Wikipedia pages, which we call "corpora-of-interest" or CoI, alongside the 3 QA research datasets commonly used in the QA literature (SQuAD 1.1, CoQA and QuAC) to simulate the real world use case.
- 3. We perform zero-shot QA using the LMs on the 14 datasets to evaluate their zero-shot performance based on the F1 and Exact Match (EM) metrics.
- 4. We further fine-tune the LMs (beyond the initial fine-tuning on SQuAD) on all datasets except SQuAD to evaluate their fine-tuned performance based on F1 and EM, and assess the extent of catastrophic forgetting on the SQuAD dataset.
- We analyse the degree of improvement of LMs and their limitations on all datasets by question categories, classified using a rule-based heuristic.
- We contribute code for the transfer learning procedure, QA Col dataset generation and question type classification.

In particular, we investigate the following 2 research questions (RQ):

- 1. Which LM, after fine-tuning on different QA datasets, adapts best to new ones?
- What errors and limitations in question answering do these LMs have, and why?

By understanding the qualities and capabilities of each model, companies will be able to make a more informed decision with regards to the LM that will best suit their own use case.

### 2 Related Work

With the efforts of the open-source and NLP community, there exists thousands of readily-available pre-trained and fine-tuned LMs on different datasets and using various combinations of training hyperparameters, many of which can easily be used as the LM base for an extractive QA system.

Adoma et al. (2020) compared several LMs - BERT, RoBERTa, DistilBERT and XLNet - and their relative efficacy in recognising emotions from text. When the same hyperparameters were used, RoBERTa performed the best with 0.743 accuracy while DistilBERT performed the worst with 0.601 accuracy, on the International Survey Emotion Antecedents and Reactions dataset. As can be seen, with the many available LMs to choose from, there is likely a model that performs better in certain contexts. Our project is similar but differs from Adoma et al. (2020) in that we are comparing the efficacy of LMs in terms of QA capabilities.

Pre-trained LMs are commonly used in QA systems by fine-tuning on the target QA dataset. Min et al. (2017) studied transfer learning, in the context of QA, with BiDAF by using SQuAD as the source dataset and WikiQA and SemEval 2016 as the targets. They found that directly training the LM on the target dataset resulted in poorer performance than when it was first pre-trained on SQuAD. This provides support for the methodology adopted in this project where LMs are first trained on SQuAD before being fine-tuned on the target dataset. Our project differs in the choice of LMs and datasets

experimented with. Furthermore, we conduct in-depth analysis to understand the QA capabilities of the LMs.

TANDA (Garg et al. 2019) is a recent work that we take reference from. TANDA (Transfer-and-Adapt) is a two-step fine-tuning process where the LM is initially fine-tuned on a general, large and high-quality QA dataset such as SQuAD to develop QA capabilities, and then further fine-tuned on the target QA dataset to adapt the LM to the target domain. The main advantage of TANDA is its ability to adapt the LM to small target QA datasets because of the initial fine-tuning on a general QA dataset. Therefore, TANDA is a compelling method to be used to employ DrFAQ's goals, where companies may not have a large dataset or text corpora. Our project differs from Garg et al. (2019) in terms of the analysis done, we focus on understanding the QA capabilities of LMs.

## 3 Language Model

Since one of the RQs of this project was to identify the LM that is best able to adapt to new datasets, six LMs were experimented with. Given that BERT was a landmark LM and a well-studied baseline, we chose to focus our study on BERT and its related LMs - Roberta, DistilRoberta, DistilBert, MobileBert and Albert.

| BERT | RoBERTa | DistilRoBERTa | Distil<br>BERT | Mobile<br>BERT | ALBERT |
|------|---------|---------------|----------------|----------------|--------|
| 110  | 125     | 82            | 66             | 25.3           | 12     |

Table 1: No. of Parameters in LMs (millions)

The BERT model (bert-base-uncased) contains 12 layers of transformer blocks each with 12 attention heads and 768 hidden layers resulting in a total of 110 million parameters (Devlin et al., 2019).

The RoBERTa model (roberta-base) used has the same architecture as BERT, except that it has a total of 125 million parameters instead of 110 million (Liu et al., 2019).

The DistilRoBERTa model (distilroberta-base) used has the same architecture as RoBERTa, except that it has 6 layers of transformer blocks instead of 12 resulting in a total of 82 million parameters (HuggingFace, n.d.).

The Distilbert model (distilbert-base-uncased) used has a similar architecture as BERT, except that it has 6 layers of transformer blocks, half that of BERT, resulting in a total of 66 million parameters (Sanh et al., 2019).

The same distillation process was used in both DistilBERT and DistilRoBERTa. For DistilBERT, the model was initialised using alternate layers from BERT. It was then trained on a concatenation of English Wikipedia and Toronto Book Corpus using a training loss which is a linear combination of the distillation loss over the soft target probabilities of the teacher (original BERT), masked language modelling loss and cosine embedding loss (Sanh et al., 2019).

The MobileBERT model (mobilebert-uncased) used has a slightly different architecture from BERT. It has 24 layers of transformer blocks, twice that of BERT. Each block has 4 attention heads and 128 hidden layers resulting in a total of 25.3 million parameters (Sun et al., 2020).

Similar to BERT, MobileBERT was trained on a concatenation of English Wikipedia and Toronto Book Corpus using a distillation loss

which is a linear combination of the original masked language modelling (MLM) loss, next sentence prediction (NSP) loss and a new MLM Knowledge Distillation loss. Additionally, the model was trained using Progressive Knowledge Transfer where knowledge is transferred from the teacher (inverted-bottleneck BERT) to the student (MobileBERT) layer by layer (Sun et al., 2020).

The ALBERT model (albert-base-v2) used has the same architecture as BERT, except that it only has 12 million parameters as compared to 110 million in BERT. It employs cross-layer parameter sharing for all parameters (Lan et al., 2019) which contributed to the lower number of parameters despite the same architecture.

## 4 Data

Since different companies have different use cases, some companies may use DrFAQ for answering new employees' queries during onboarding and others may use it for answering customers' frequently-asked questions (hence 'FAQ') on their customer-facing company website. As such, RQ1 investigates the transferability of LMs to QA datasets that may come from customer-facing websites that are phrased to sound attractive to customers but less informative, or from factually-phrased corpora-of-interest (CoI) such as Standard Operating Procedure (SOP) documents.

Thus, aside from the research QA datasets, SQuAD 1.1, CoQA and QuAC, we generate 11 QA datasets from the CoI (Tables 2 and 3). From the corpora, passages that are in full sentences are extracted (excluding headers), questions and answers are then generated sentence-by-sentence using a multi-task QA-QG library (Patil, 2021).

| Website   | Samples |
|-----------|---------|
| ByteDance | 78      |
| Discord   | 67      |
| Reddit    | 62      |
| Patsnap   | 69      |
| Ripple    | 72      |
| CS4248    | 368     |

| W  | /ikipedia | Samples |
|----|-----------|---------|
| Ву | rteDance  | 120     |
|    | Discord   | 207     |
|    | Reddit    | 568     |
|    | Spotify   | 473     |
|    | Strava    | 52      |
|    |           |         |

Table 2: No. of Samples in Website-Generated Datasets

Table 3: No. of Samples in Wikipedia-Generated Datasets

Websites and Wikipedia pages of the industry companies were chosen so as to obtain a mix of differently-phrased text corpora. Company websites are meant for customers to view and do not contain much factual information, while Wikipedia pages act as a knowledge base of company information, so datasets generated from websites tend to be smaller and messier while datasets generated from Wikipedia pages tend to be larger and cleaner (see examples in Appendix A), with the exception of the CS4248 website, which serves as a source of course information for class students.

## 5 Software and Hardware

All work was done in Python 3.7, using the HuggingFace library for access to QA datasets, pre-trained LMs and the fine-tuning procedure. NLTK was used for data pre-processing prior to the open-source QA-QG library for dataset generation from company information (Patil, 2021). Matplotlib was used for data visualisation. All experiments were run using the GPUs available on Google Colab (Tesla K80, P100) and NUS Compute Clusters (Tesla V100).

## 6 Methodology

### 6.1 Zero-Shot Experiment



Fig 1: Procedure for Zero-Shot Experiments

The first experiment evaluates the zero-shot performance of LMs on target QA datasets. LMs are initially fine-tuned on SQuAD 1.1 using a linearly declining learning rate of 2e<sup>-5</sup> (Garg et al. 2019) with a weight decay rate of 0.01. For all models, a train and evaluation batch size of 16 was used and the number of training epochs was set to 3. The maximum length of a question-answer pair was set to 384 and the maximum overlapping length of two contexts, when splitting was required, was set to 128 tokens. SQuAD was arbitrarily chosen as the initial fine-tuning dataset as it is one of the most well-studied QA dataset in the literature, and we leave alternative choices of initial dataset for future work. The QA models are then evaluated on the 3 QA datasets and generated datasets for their zero-shot performance.

## **6.2 Fine-Tuning Experiment**



Fig 2: Procedure for Fine-Tuning Experiments

The second experiment evaluates the fine-tuned performance of LMs on target QA datasets. The LMs initially fine-tuned on SQuAD were further fine-tuned on the target QA datasets using the same fine-tuning procedure but with a smaller, linearly declining learning rate of 1e<sup>-6</sup> as recommended by Garg et al. (2019). The further fine-tuned QA models were then evaluated on the 2 target QA datasets and 11 generated datasets for their performance.

One limitation of further fine-tuning is catastrophic forgetting, where capacities on the initial fine-tuned dataset is reduced after further fine-tuning on the target (Goodfellow, 2013). Recognising this limitation, we evaluate the further fine-tuned QA models on SQuAD to investigate the severity of catastrophic forgetting.

### 6.3 Model Evaluation

The languages are evaluated using the F1 and Exact Match (EM) scores (Rajpukar 2017).

$$F1 Score = \frac{2 \times (Precision \times Recall)}{Precision + Recall}$$

The F1 score is computed for each question-answer pair, with precision and recall computed on a word-by-word basis:

$$Precision = \frac{\textit{Number of words in predicted answer in the same position as correct answer}}{\textit{Length of the predicted answer}}$$

$$Recall = \frac{\textit{Number of words in predicted answer in the same position as correct answer}}{\textit{Length of the correct answer}}$$

The F1 score of a LM evaluated on a dataset is therefore the average F1 score over all samples in the dataset.

$$Exact\ Match\ = \frac{Num\ of\ questions\ with\ predicted\ answer\ exactly\ matching\ correct\ answer}{Total\ number\ of\ questions}$$

The LM that scores higher on both F1 and EM is the superior model.

#### 6.4 Analysis

To identify which LM adapts best to a new dataset (RQ1), F1 and EM scores of fine-tuned models are compared on each dataset and on average. The scores are also compared within models for zero-shot and fine-tuned QA performance to understand to what extent fine-tuning helped improve QA capabilities of each LM. The improvement from fine-tuning can be computed by the difference in performance pre- and post-fine-tuning. Further, it is unclear whether fine-tuning on a target, especially if it is relatively small and unclean, necessarily improves or might even worsen QA performance.

To understand the errors and limitations of various LMs in QA (RQ2), error analysis is conducted by categorising questions into different question types. Questions in each validation dataset are classified into their respective question types, namely who, what, when, where, which, why and how, using a rule-based heuristic of keywords and simple parsed syntax (Biswal et al. 2014), and others as a catch-all category. Some question types were further split into more granular categories, e.g. definition, descriptive or factoid questions, but given the very small sample size of the granular categories, the more general categories were used instead. We hypothesise that some question categories such as why and how may be more difficult than others like who and what. Analysing the relative performance of each question category therefore gives insight into the relative strengths and limitations of each LM.

LMs are fine-tuned on the full training dataset (inclusive of all question categories), then evaluated on the validation split segregated by question categories.

## 7 Experimental Results

## 7.1 Zero-Shot and Fine-Tuning Experiments on QA Datasets



Fig 3: F1 and EM of Zero-Shot QA on CoQA and QuAC

As shown in Fig. X, RoBERTa scored the highest F1 and EM scores for zero-shot QA (CoQA F1: 43.6, EM: 32.0) (QuAC F1: 31.1, EM: 14.1). This empirical finding on zero-shot performance is consistent with the literature as RoBERTa is the largest LM with the most trainable parameters (Staliunaite et al. 2020).



Fig 4: F1 and EM of Fine-Tuned LMs on CoQA and QuAC

As shown in Fig 4, RoBERTa also scored the highest F1 and EM on QuAC after fine-tuning (F1: 52.2, EM: 39.8), as expected of the largest LM. However, ALBERT scored the best F1 on CoQA after fine-tuning (F1: 33.6) and DistilRoBERTa scored the best EM (EM: 16.0). It is important to note that F1 and EM scores on CoQA across all LMs dropped after fine-tuning, with worst being MobileBERT by F1 (F1: -10.7) and RoBERTa by EM (-16.5), which we explore further in section 9. RoBERTa improved the most on QuAC by absolute value after fine-tuning (F1: +21.0, EM: +25.7).

## 7.2 Catastrophic Forgetting on SQuAD



Fig 5: F1 scores Before and After Fine-tuning on CoQA and QuAC

As shown in Fig 5, all LMs suffered catastrophic forgetting on SQuAD. ALBERT suffered the worst catastrophic forgetting after fine-tuning on both CoQA and QuAC (CoQA F1: -26.3, EM: -43.7) (QuAC F1:-25.7, EM:-45.5). With the exception of EM on CoQA, DistilRoBERTa suffered the least from catastrophic forgetting (CoQA F1: -21.085) (QuAC F1: -18.080, EM: -32.439).

## 7.3 Zero-Shot and Fine-Tuning Experiments on Generated Datasets



Fig. 6: Average F1 and EM of Zero-shot LMs on Generated Datasets



Fig 7: Average F1 and EM of Fine-Tuned LMs on Generated Datasets

As shown in Fig 6 and Fig 7, MobileBERT scored the highest average F1 and EM on zero-shot QA (F1: 89.5, EM: 79.5) across the generated datasets, and also the highest average F1 and EM after fine-tuning (F1: 90.1, EM: 80.2). ROBERTa and DistilROBERTa negligibly improved on average (ROBERTa F1: 0.0, EM: +0.1) (DistilROBERTa F1: +0.0, EM: 0.0) after fine-tuning while ALBERT worsened marginally (F1: -0.1, EM: -0.5).

## 8 Error Analysis

## 8.1 Error Analysis on Fine-Tuned QA by Question Categories

As can be seen from section 7.1, RoBERTa performed the best on the 2 research QA datasets and from section 7.3, MobileBERT performed the best on the generated datasets. Thus, in this section, for simplicity sake, the focus will be on RoBERTa for the research QA datasets and MobileBERT for generated datasets.



Fig 8: Average F1 of RoBERTa on QA Datasets and MobileBERT on Generated Datasets, by Question Category

From Fig 8, RoBERTa scored highest on 'Who' (F1: 55.2) and 'When' (F1: 53.9) questions and worst on 'Why' (F1: 42.6) and 'Others' (F1: 27.4) questions on the research QA datasets. MobileBERT scored best on 'When' (F1: 91.8) questions across the generated datasets. Across other types of questions, it is unclear which model is the best due to a small sample size or a lack of pattern.

## 8.2 Error Analysis on Catastrophic Forgetting



Fig 9: F1 Scores of LMs Before and After Fine-tuning on QA Datasets



Fig 10: EM Scores of LMs Before and After Fine-tuning on QA
Datasets

Fig 9 and Fig 10 show that the extent of catastrophic forgetting of SQuAD varies across question categories. When fine-tuned on CoQA, 'Where' questions suffered the biggest deterioration (F1: -34.3, EM: -53.5), followed by 'Others' and 'When' questions. When fine-tuned on QuAC, 'How' questions suffered the most forgetting (F1: -33.4, EM: -54.6), followed by 'Where' questions.

### 9 Discussion

In section 7.1, as shown in Fig 4, fine-tuning on CoQA resulted in an unexpected deterioration in QA performance. We conjecture the reason for the deterioration being that most questions in CoQA required conversation history to answer, due to the large frequency of coreferences in the questions (Yaskar et al. 2018). Examples of CoQA questions with coreferences can be referenced in Appendix A. This suggests some limitations on the generalisability of a LM to new datasets. Therefore, potential improvements can be made towards accounting for different types of datasets, such as dialogue-based QA datasets, for future work.

In section 6.1, we showed that on QuAC, RoBERTa performed best and DistilBERT performed worst. This is empirically consistent with Adoma et al. (2020)'s finding that RoBERTa performed best and DistilBERT performs worst on emotion recognition, albeit on a different task. While fine-tuned performance is evaluated on different tasks and domains, this suggests that the performance of RoBERTa > BERT > DistilBERT may hold for natural language tasks in general (Staliunaite et al. 2020, Cheang et al. 2020).

In section 6.3, we showed that MobileBERT performed best on generated datasets but not Roberta, even though Roberta performed best at CoQA and QuAC. We conjecture that MobileBERT performed better at generated datasets because of a smaller sample size and generally unclean dataset, and since MobileBERT is a smaller model so is less likely than Roberta to overfit to the generated datasets. Nonetheless, ALBERT is a smaller model yet performs worse than MobileBERT. We rule out the explanation that the cross-layer parameter-sharing architecture employed by ALBERT worsening the degree of catastrophic forgetting as ALBERT performed better than MobileBERT after fine-tuning on CoQA and QuAC. We acknowledge that due to many variables, such as architectural and parameter count differences, the reason for the superior performance of MobileBERT is difficult to identify, and we leave this for future work.

In section 7.1, we showed that 'Who' and 'When' questions were least difficult while 'Why' questions were the most difficult. This finding is not surprising given that 'Who' and 'When' questions are largely factual and thus easily referenced and extracted, while 'Why' questions usually require inference of entailment, especially when the passage does not phrase the answer explicitly. Nevertheless, it is

important to note that, in the context of DrFAQ, the inability of the LM to answer 'Why' questions well is not a significant limitation of the LM as FAQs are generally factual in nature.

In sections 7.2 and 8.2, we showed that all LMs suffered from catastrophic forgetting after further fine-tuning on the target dataset. Catastrophic forgetting is a widely acknowledged problem of further fine-tuning and many researchers have proposed possible mitigations, such as by Chen et al. (2020) and Xu et al. (2020). Further, Rongali et al. (2020) showed that LMs which suffered less from catastrophic forgetting were more robust for the downstream task. As such, it will be important for companies to take this into account when training their own QA chatbots.

Overall, our benchmarking experiments and error analysis presents a few actionable insights for language model transfer learning. For a large and clean QA dataset, RoBERTa is the best LM. For a small and relatively unclean generated QA dataset, MobileBERT is the best LM. RoBERTa excels in 'Who' and 'When' questions while MobileBERT excels in 'When' questions. Full experimental results can be found in Appendix B.

### 10 Conclusion

In conclusion, from benchmarking and analysing language model transfer learning of BERT, DistilBERT, ROBERTa, DistilROBERTa, ALBERT and MobileBERT, across 3 existing QA datasets and 11 QA datasets generated from company information found online, we empirically show that ROBERTa performs best for large and clean QA datasets while MobileBERT performs best for small and unclean generated QA datasets, and that 'Who' and 'When' questions are the least difficult while 'Why' and 'Others' questions are the most difficult. With these insights from our project, DrFAQ will be more robustly generalisable to different companies' use cases, depending on their size, quality and distribution of datasets.

## References

- [1] Abu-Mostafa, Yaser M., Magdon-Ismail, Malik and Lin, Hsuan-Tien. (2012) *Learning From Data*, AMLBook.
- [2] Adoma, A. F., Henry, N. M., & Chen, W. (2020, December). Comparative Analyses of Bert, Roberta, Distilbert, and XInet for Text-Based Emotion Recognition. In 2020 17th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP) (pp. 117-121). IEEE.
- [3] Bishop, Christopher M. (2006) Pattern Recognition and Machine Learning. Springer.
- [4] ByteDance. (2021, 9 April). In *Wikipedia*. https://en.wikipedia.org/w/index.php?title=ByteDance&oldid=1016 864444.
- [5] Cheang, B., Wei, B., Kogan, D., Qiu, H., & Ahmed, M. (2020). Language Representation Models for Fine-Grained Sentiment Classification. *arXiv* preprint arXiv:2005.13619.
- [6] Chen, S., Hou, Y., Cui, Y., Che, W., Liu, T., & Yu, X. (2020). Recall and learn: Fine-tuning deep pretrained language models with less forgetting. arXiv preprint arXiv:2004.12651.
- [7] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
- [8] DBS. (2018). DBS introduces Jim, Southeast Asia's first virtual bank recruiter. DBS. https://www.dbs.com/newsroom/DBS\_introduces\_Jim\_Southeast\_A

sias first virtual bank recruiter

[9] Discord. (2021, 9 April). In *Wikipedia*. https://en.wikipedia.org/w/index.php?title=Discord\_(software)&oldid=1016844476.

- [10] Garg, S., Vu, T., & Moschitti, A. (2020, April). Tanda: Transfer and adapt pre-trained transformer models for answer sentence selection. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 05, pp. 7780-7788).
- [11] Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A., & Bengio, Y. (2013). An empirical investigation of catastrophic forgetting in gradient-based neural networks. *arXiv preprint arXiv:1312.6211*.
- [12] GovTech. (n.d.). 'Ask Jamie' Virtual Assistant. GovTech. https://www.tech.gov.sg/products-and-services/ask-jamie/
- [13] HuggingFace. (n.d.). *distilroberta-base*. Hugging Face. https://huggingface.co/distilroberta-base.
- [14] Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). Albert: A lite bert for self-supervised learning of language representations. *arXiv preprint arXiv:1909.11942*.
- [15] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. *arXiv* preprint *arXiv*:1907.11692.
- [16] Min, S., Seo, M., & Hajishirzi, H. (2017). Question answering through transfer learning from large fine-grained supervision data. *arXiv preprint arXiv:1702.02171*.
- [17] Patil, S. (2021, February 17). *Question Generation using transformers*. GitHub.

### https://github.com/patil-suraj/question\_generation

- [18] Rajpurkar, P. (2017, April 3). The Stanford Question Answering Dataset: Background, Challenges, Progress. GitHub. https://rajpurkar.github.io/mlx/qa-and-squad/.
- [19] Reddit. (2021, 11 April). In *Wikipedia*. https://en.wikipedia.org/w/index.php?title=Reddit&oldid=10172317 64.
- [20] Rongali, S., Jagannatha, A., Rawat, B. P. S., & Yu, H. (2020). Continual Domain-Tuning for Pretrained Language Models. *arXiv* preprint arXiv:2004.02288.
- [21] Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. *arXiv* preprint arXiv:1910.01108.
- [22] Spotify. (2021, 10 April). In *Wikipedia*. https://en.wikipedia.org/w/index.php?title=Spotify&oldid=1016971 500.
- [23] Staliūnaitė, I., & Iacobacci, I. (2020). Compositional and Lexical Semantics in RoBERTa, BERT and DistilBERT: A Case Study on CoQA. *arXiv preprint arXiv:2009.08257*.
- [24] Strava. (2021, 9 April). In *Wikipedia*. https://en.wikipedia.org/w/index.php?title=Strava&oldid=10168077 28.
- [25] Sun, Z., Yu, H., Song, X., Liu, R., Yang, Y., & Zhou, D. (2020). Mobilebert: a compact task-agnostic bert for resource-limited devices. *arXiv preprint arXiv:2004.02984*.
- [26] Xu, Y., Zhong, X., Yepes, A. J. J., & Lau, J. H. (2020, July). Forget me not: Reducing catastrophic forgetting for domain adaptation in reading comprehension. In 2020 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.

## Appendix A

# **Examples of Questions and Answers in Datasets:**

| Dataset   | Que      | Questions                                                                 |          | swers                              |
|-----------|----------|---------------------------------------------------------------------------|----------|------------------------------------|
| SQuAD 1.1 | 1.<br>2. | Who became president<br>in 2013?<br>When were the free<br>elections held? | 1.<br>2. | Michel<br>Djotodia<br>October 1992 |
| CoQA      | 1.       | What colour was                                                           | 1.       | White                              |

|                          | Cotton? 2. Where did she live?                                                                                                                       | 2. In a barn                                                                                    |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| QuAC                     | <ol> <li>What happened in 1983?</li> <li>Did she have any other children?</li> </ol>                                                                 | In May 1983,<br>she married<br>Nikos Karvelas     CANNOT<br>ANSWER                              |
| ByteDance<br>(Website)   | Who is the founder and CEO of ByteDance?     How many languages is Helo available in?                                                                | 1. Yiming Zhang<br>2. 15                                                                        |
| Discord<br>(Website)     | <ol> <li>What is the name of<br/>the conversation?</li> <li>What do people create<br/>for gaming, yoga<br/>classes, comedy fan<br/>clubs?</li> </ol> | Organized     Conversation.     Discord     servers                                             |
| Patsnap<br>(Website)     | <ol> <li>What do we invest in?</li> <li>What do our platform<br/>and collaboration tools<br/>seamlessly integrate<br/>into?</li> </ol>               | Al and innovation     integrate into your workflow                                              |
| Reddit<br>(Website)      | <ol> <li>What does one up or down vote mean?</li> <li>What is the best way to gain karma?</li> </ol>                                                 | +1 or -1 karma     submit posts     that other     people find     valuable and     interesting |
| Ripple<br>(Website)      | <ol> <li>What is an alternative to pre-funding?</li> <li>What page provides job opportunities?</li> </ol>                                            | On-Demand     Liquidity     Careers                                                             |
| CS4248<br>(Website)      | 1. What rule states that you are free to meet with fellow students and discuss assignments with them?  2. What libraries will we use?                | Pokemon Go Rule     SciKitLearn and PyTorch                                                     |
| ByteDance<br>(Wikipedia) | Where did ByteDance release Resso?     Who is the Chinese-specific counterpart to TikTok?                                                            | India and     Indonesia     Douyin                                                              |
| Discord<br>(Wikipedia)   | <ol> <li>How many users did         Discord reach in July of         2016?</li> <li>What is the monthly         subscription fee?</li> </ol>         | 1. 11 million<br>2. \$4.99                                                                      |
| Reddit<br>(Wikipedia)    | When did Reddit claim to have acquired Team Fortress 2?     Where is Reddit based?                                                                   | April Fools'     Day 2013     San Francisco,     California                                     |

| Spotify<br>(Wikipedia) | 1.       | Canvas is only available<br>for what apps?<br>Who believed Spotify<br>users on the app store<br>were Apple's<br>customers? | 1.       | iOS and<br>Android<br>Apple |
|------------------------|----------|----------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------|
| Strava<br>(Wikipedia)  | 1.<br>2. | What is the Suffer<br>Score used for?<br>When did Strava switch<br>to Mapbox maps and<br>imagery?                          | 1.<br>2. | Training Plans<br>July 2015 |

# Appendix B

Results of Zero-Shot Experiments of LMs on CoQA and QuAC after Training on SQuAD:

| Iraining on SQUAD: |                     |        |        |        |        |        |  |
|--------------------|---------------------|--------|--------|--------|--------|--------|--|
|                    | Evaluation (F1, EM) |        |        |        |        |        |  |
|                    | SQuAD               |        | CoQA   |        | QuAC   |        |  |
| LM                 | F1 EM               |        | F1     | EM     | F1     | EM     |  |
| BERT               | 88.237              | 80.851 | 40.264 | 28.623 | 26.857 | 10.552 |  |
| DistilBERT         | 85.339              | 77.010 | 37.342 | 26.732 | 23.290 | 8.988  |  |
| RoBERTa            | 92.101              | 85.799 | 43.576 | 31.955 | 31.136 | 14.142 |  |
| DistilRoBERTa      | 88.300              | 81.296 | 40.181 | 29.237 | 26.496 | 11.694 |  |
| ALBERT             | 90.236              | 82.706 | 42.403 | 30.177 | 31.305 | 14.142 |  |
| MobileBERT         | 88.937              | 81.41  | 41.441 | 29.663 | 27.148 | 10.892 |  |

## Results of Fine-Tuning Experiments of LMs on CoQA and QuAC:

|               | Further F | ine-tunir | ng on Co | Further Fine-tuning on QuAC |        |        |        |      |
|---------------|-----------|-----------|----------|-----------------------------|--------|--------|--------|------|
|               | CoQA      |           | SQuAD    |                             | QuAC   |        | SQuAD  |      |
| LM            | F1        | EM        | F1       | EM                          | F1     | EM     | F1     | EM   |
| BERT          | 31.608    | 15.771    | 65.851   | 42.564                      | 41.579 | 33.805 | 67.946 | 45.7 |
| DistilBERT    | 28.999    | 14.268    | 62.899   | 45.279                      | 41.383 | 32.132 | 61.944 | 39.5 |
| RoBERTa       | 33.537    | 15.420    | 65.851   | 42.564                      | 52.18  | 39.829 | 73.982 | 52.2 |
| DistilRoBERTa | 31.929    | 16.022    | 67.214   | 46.055                      | 46.788 | 34.770 | 70.220 | 48.8 |
| ALBERT        | 33.609    | 15.984    | 63.902   | 39.054                      | 50.39  | 39.638 | 64.489 | 37.1 |
| MobileBERT    | 30.73     | 15.558    | 65.459   | 45.449                      | 38.904 | 30.854 | 65.051 | 40.4 |

# Results of Zero-Shot Experiments of LMs on Generated Datasets (Websites):

| (VVCD3ICC3).  |           |        |         |        |         |        |
|---------------|-----------|--------|---------|--------|---------|--------|
|               | ByteDance |        | Discord |        | Patsnap |        |
| LM            | F1        | EM     | F1      | EM     | F1      | EM     |
| BERT          | 81.667    | 79.167 | 78.464  | 57.143 | 86.933  | 66.667 |
| DistilBERT    | 90        | 87.5   | 84.579  | 76.19  | 85.152  | 61.905 |
| RoBERTa       | 85.833    | 83.333 | 79.153  | 61.905 | 86.133  | 66.667 |
| DistilRoBERTa | 96.548    | 91.667 | 90.949  | 71.429 | 91.464  | 76.19  |
| ALBERT        | 94.167    | 91.667 | 79.552  | 52.381 | 88.015  | 71.429 |
| MobileBERT    | 92.778    | 87.5   | 84.314  | 61.905 | 90.171  | 80.952 |

|    | Reddit |    | Ripple |    | CS4248 |    |
|----|--------|----|--------|----|--------|----|
| LM | F1     | EM | F1     | EM | F1     | EM |

| BERT          | 80.802 | 68.421 | 81.946 | 68.182 | 92.312 | 84.685 |
|---------------|--------|--------|--------|--------|--------|--------|
| DistilBERT    | 86.065 | 73.684 | 82.249 | 68.182 | 90.266 | 81.081 |
| RoBERTa       | 90.1   | 78.947 | 87.943 | 68.182 | 88.462 | 81.081 |
| DistilRoBERTa | 82.699 | 68.421 | 86.224 | 68.182 | 93.405 | 86.486 |
| ALBERT        | 90.51  | 78.947 | 86.515 | 63.636 | 90.34  | 83.784 |
| MobileBERT    | 91.738 | 84.211 | 88.079 | 63.636 | 93.548 | 85.586 |

# Results of Zero-Shot Experiments of LMs on Generated Datasets (Wikipedia Pages):

|               | ByteDance Wiki |        | Discord Wiki |        | Reddit Wiki |        |
|---------------|----------------|--------|--------------|--------|-------------|--------|
| LM            | F1             | EM     | F1           | EM     | F1          | EM     |
| BERT          | 89.074         | 80.556 | 84.473       | 73.016 | 83.556      | 73.099 |
| DistilBERT    | 87.685         | 77.778 | 87.052       | 73.016 | 80.879      | 70.175 |
| RoBERTa       | 87.422         | 75     | 85.3         | 71.429 | 83.275      | 73.684 |
| DistilRoBERTa | 91.296         | 80.556 | 89.054       | 77.778 | 82.476      | 72.515 |
| ALBERT        | 89.034         | 80.556 | 83.909       | 69.841 | 84.775      | 73.684 |
| MobileBERT    | 89.907         | 77.778 | 84.18        | 73.016 | 85.357      | 71.93  |

|               | Spotify Wiki |        | Strava Wiki |       |
|---------------|--------------|--------|-------------|-------|
| LM            | F1           | EM     | F1          | EM    |
| BERT          | 88.107       | 79.577 | 88.542      | 75    |
| DistilBERT    | 88.764       | 80.986 | 88.571      | 75    |
| RoBERTa       | 90.741       | 84.507 | 91.875      | 87.5  |
| DistilRoBERTa | 87.689       | 80.986 | 89.792      | 81.25 |
| ALBERT        | 91.289       | 85.211 | 96.094      | 87.5  |
| MobileBERT    | 91.464       | 85.915 | 95.238      | 87.5  |

# Results of Fine-Tuning Experiments of LMs on Generated Datasets (Websites):

| (vvensites).  |           |        |         | _      |         |        |
|---------------|-----------|--------|---------|--------|---------|--------|
|               | ByteDance |        | Discord |        | Patsnap |        |
| LM            | F1        | EM     | F1 EM I |        | F1      | EM     |
| BERT          | 90        | 87.5   | 79.552  | 57.143 | 86.933  | 66.667 |
| DistilBERT    | 90        | 87.5   | 82.991  | 71.429 | 85.152  | 61.905 |
| RoBERTa       | 85.833    | 83.333 | 79.153  | 61.905 | 86.133  | 66.667 |
| DistilRoBERTa | 96.548    | 91.667 | 89.656  | 66.667 | 91.464  | 76.19  |
| ALBERT        | 94.167    | 91.667 | 80.418  | 52.381 | 88.015  | 71.429 |
| MobileBERT    | 96.944    | 91.667 | 87.489  | 66.667 | 90.171  | 80.952 |

|               | Reddit |        | Ripple | •      | CS4248 |        |  |
|---------------|--------|--------|--------|--------|--------|--------|--|
| LM            | F1     | EM     | F1     | EM     | F1     | EM     |  |
| BERT          | 84.721 | 73.684 | 81.946 | 68.182 | 92.312 | 84.685 |  |
| DistilBERT    | 89.297 | 73.684 | 83.159 | 72.727 | 90.567 | 81.982 |  |
| RoBERTa       | 90.1   | 78.947 | 87.943 | 68.182 | 88.462 | 81.081 |  |
| DistilRoBERTa | 82.699 | 68.421 | 86.224 | 68.182 | 93.945 | 87.387 |  |
| ALBERT        | 90.51  | 78.947 | 86.515 | 63.636 | 90.85  | 82.882 |  |

| MobileBERT | 91.738 | 84.211 | 88.079 | 63.636 | 93.548 | 85.586 |
|------------|--------|--------|--------|--------|--------|--------|
|------------|--------|--------|--------|--------|--------|--------|

# Results of Fine-Tuning Experiments of LMs on Generated Datasets (Wikipedia Pages):

|               | ByteDance | Wiki   |        | Wiki   | Reddit W | iki    |
|---------------|-----------|--------|--------|--------|----------|--------|
| LM            | F1        | EM     | F1     | EM     | F1       | EM     |
| BERT          | 89.074    | 80.556 | 84.473 | 73.016 | 83.963   | 73.684 |
| DistilBERT    | 87.685    | 77.778 | 87.647 | 74.603 | 81.297   | 70.76  |
| RoBERTa       | 87.422    | 75     | 85.3   | 71.429 | 82.641   | 73.099 |
| DistilRoBERTa | 91.852    | 83.333 | 89.054 | 77.778 | 83.227   | 73.099 |
| ALBERT        | 86.257    | 75     | 83.909 | 69.841 | 86.072   | 74.269 |
| MobileBERT    | 89.907    | 77.778 | 83.298 | 71.429 | 85.997   | 73.684 |

|               | Spotify Wiki | •      | Strava Wiki | •     |
|---------------|--------------|--------|-------------|-------|
| LM            | F1           | EM     | F1          | EM    |
| BERT          | 88.107       | 79.577 | 88.542      | 75    |
| DistilBERT    | 88.059       | 88.282 | 88.571      | 75    |
| RoBERTa       | 91.361       | 85.915 | 91.875      | 87.5  |
| DistilRoBERTa | 87.689       | 80.986 | 89.732      | 81.25 |
| ALBERT        | 90.672       | 84.507 | 96.094      | 87.5  |
| MobileBERT    | 91.464       | 85.915 | 95.238      | 87.5  |

# Catastrophic Forgetting: Breakdown of SQuAD Questions by Category for Zero-Shot QA

|                   | SQuAD  | SQuAD (Before fine-tuning on CoQA and QuAC) |        |        |        |        |        |        |  |  |  |
|-------------------|--------|---------------------------------------------|--------|--------|--------|--------|--------|--------|--|--|--|
|                   | F1     | F1                                          |        |        |        |        |        |        |  |  |  |
| LM                | Who    | What                                        | When   | Where  | Why    | Which  | How    | Others |  |  |  |
| BERT              | 91.718 | 87.847                                      | 94.413 | 85.576 | 75.641 | 86.795 | 89.323 | 87.131 |  |  |  |
| DistilBERT        | 88.208 | 84.638                                      | 92.634 | 81.915 | 75.905 | 85.345 | 87.177 | 84.075 |  |  |  |
| RoBERTa           | 94.759 | 91.745                                      | 96.313 | 89.492 | 84.552 | 92.084 | 92.512 | 91.501 |  |  |  |
| DistilRoBE<br>RTa | 91.097 | 87.768                                      | 94.076 | 86.761 | 78.528 | 88.732 | 89.153 | 87.932 |  |  |  |
| ALBERT            | 93.369 | 89.774                                      | 95.925 | 87.622 | 81.487 | 89.546 | 91.532 | 90.439 |  |  |  |
| MobileBE<br>RT    | 91.766 | 88.384                                      | 96.037 | 84.663 | 79.243 | 88.745 | 90.489 | 87.85  |  |  |  |

|                   | SQuAD (E | Before fine-to | uning on | CoQA and | d QuAC) |        |        |        |
|-------------------|----------|----------------|----------|----------|---------|--------|--------|--------|
|                   | EM       |                |          |          |         |        |        |        |
| LM                | Who      | What           | When     | Where    | Why     | Which  | How    | Others |
| BERT              | 88.418   | 80.136         | 90.948   | 75.058   | 49.669  | 80.879 | 81.913 | 78.997 |
| DistilBER<br>T    | 84.463   | 75.683         | 89.511   | 70.67    | 49.007  | 78.022 | 78.274 | 73.668 |
| RoBERTa           | 91.62    | 85.218         | 93.822   | 80.139   | 64.238  | 87.473 | 85.031 | 83.699 |
| DistilRoB<br>ERTa | 88.23    | 80.417         | 90.661   | 75.982   | 59.603  | 83.516 | 81.289 | 80.094 |
| ALBERT            | 90.113   | 82.304         | 92.96    | 78.984   | 58.94   | 83.956 | 83.888 | 81.818 |

| MobileB |        |        |       |        |        |        |        |        |
|---------|--------|--------|-------|--------|--------|--------|--------|--------|
| ERT     | 87.571 | 80.483 | 92.96 | 74.596 | 56.954 | 83.077 | 83.056 | 78.683 |

# Catastrophic Forgetting: Breakdown of SQuAD questions by Category After Fine-Tuning on CoQA

|                   | SQuAD (A | QuAD (After fine-tuning on CoQA) |        |        |        |        |        |        |  |  |
|-------------------|----------|----------------------------------|--------|--------|--------|--------|--------|--------|--|--|
|                   | F1       |                                  |        |        |        |        |        |        |  |  |
| LM                | Who      | What                             | When   | Where  | Why    | Which  | How    | Others |  |  |
| BERT              | 73.96    | 68.215                           | 69.383 | 54.119 | 66.506 | 76.861 | 64.056 | 59.352 |  |  |
| DistilBER<br>T    | 73.506   | 62.662                           | 68.186 | 50.74  | 51.125 | 71.758 | 62.404 | 52.606 |  |  |
| RoBERTa           | 75.005   | 66.515                           | 62.989 | 50.774 | 66.785 | 76.099 | 63.612 | 56.029 |  |  |
| DistilRoB<br>ERTa | 75.907   | 67.733                           | 68.148 | 52.569 | 62.79  | 77.354 | 63.289 | 57.941 |  |  |
| ALBERT            | 73.383   | 65.024                           | 63.092 | 54.159 | 64.824 | 75.661 | 62.15  | 54.019 |  |  |
| MobileB<br>ERT    | 74.854   | 66.189                           | 68.646 | 47.673 | 55.322 | 74.865 | 60.344 | 56.112 |  |  |

|                   | SQuAD ( <i>A</i> | After fine-tur | ning on C | oQA)   |        |        |        |        |
|-------------------|------------------|----------------|-----------|--------|--------|--------|--------|--------|
|                   | EM               |                |           |        |        |        |        |        |
| LM                | Who              | What           | When      | Where  | Why    | Which  | How    | Others |
| BERT              | 59.134           | 48.999         | 49.569    | 24.249 | 32.45  | 64.396 | 43.451 | 41.379 |
| DistilBER<br>T    | 61.488           | 44.264         | 51.868    | 26.559 | 20.53  | 59.341 | 44.699 | 36.52  |
| RoBERTa           | 57.062           | 42.824         | 37.213    | 19.169 | 24.503 | 60.22  | 41.892 | 35.58  |
| DistilRoB<br>ERTa | 62.053           | 48.287         | 45.546    | 23.326 | 23.841 | 63.956 | 41.788 | 40.125 |
| ALBERT            | 55.085           | 40.821         | 35.92     | 21.247 | 26.49  | 60.879 | 39.709 | 33.856 |
| MobileB<br>ERT    | 58.098           | 46.631         | 46.408    | 19.861 | 17.881 | 62.418 | 38.565 | 36.207 |

# Catastrophic Forgetting: Breakdown of SQuAD questions by Category After Fine-Tuning on QuAC

|                   | SQuAD ( <i>A</i> | SQuAD (After fine-tuning on QuAC) |        |        |        |        |        |        |  |  |  |
|-------------------|------------------|-----------------------------------|--------|--------|--------|--------|--------|--------|--|--|--|
|                   | F1               |                                   |        |        |        |        |        |        |  |  |  |
| LM                | Who              | What                              | When   | Where  | Why    | Which  | How    | Others |  |  |  |
| BERT              | 71.767           | 68.148                            | 70.124 | 61.24  | 65.884 | 73.785 | 61.774 | 71.47  |  |  |  |
| DistilBER<br>T    | 70.748           | 62.032                            | 68.052 | 56.323 | 60.675 | 67.848 | 49.442 | 62.929 |  |  |  |
| RoBERTa           | 80.645           | 74.688                            | 76.356 | 66.089 | 71.699 | 82.74  | 62.629 | 74.113 |  |  |  |
| DistilRoB<br>ERTa | 76.177           | 68.459                            | 73.575 | 59.248 | 69.251 | 79.221 | 63.227 | 69.539 |  |  |  |
| ALBERT            | 73.821           | 64.887                            | 67.139 | 58.306 | 65.755 | 76.462 | 49.176 | 64.634 |  |  |  |
| MobileB<br>ERT    | 70.712           | 65.547                            | 67.367 | 56.324 | 66.812 | 74.112 | 53.298 | 66.536 |  |  |  |

|    | SQuAD ( <i>A</i> | After fine-tur | ning on Q | uAC)  |     |       |     |        |  |  |
|----|------------------|----------------|-----------|-------|-----|-------|-----|--------|--|--|
|    | EM               |                |           |       |     |       |     |        |  |  |
| LM | Who              | What           | When      | Where | Why | Which | How | Others |  |  |

| BERT              | 54.049 | 46.085 | 47.701 | 31.871 | 29.801 | 56.923 | 35.655 | 53.292 |
|-------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| DistilBER<br>T    | 55.461 | 39.613 | 47.701 | 27.714 | 20.53  | 51.868 | 20.894 | 41.693 |
| RoBERTa           | 65.16  | 53.567 | 54.31  | 36.721 | 33.113 | 70.11  | 33.368 | 53.605 |
| DistilRoB<br>ERTa | 62.618 | 48.105 | 52.155 | 31.178 | 33.113 | 66.813 | 37.63  | 51.724 |
| ALBERT            | 52.825 | 38.04  | 37.644 | 23.095 | 27.152 | 58.462 | 15.177 | 38.245 |
| MobileB<br>ERT    | 51.036 | 41.5   | 43.103 | 24.942 | 23.841 | 56.923 | 22.869 | 42.79  |

Breakdown of Generated Datasets' Questions into Categories after Fine-Tuning on the Respective Generated Dataset's Training Dataset:

## 1. ByteDance

|                   | Bytedan | ce    |           |        |           |           |        |     |
|-------------------|---------|-------|-----------|--------|-----------|-----------|--------|-----|
|                   | F1      | F1 EM |           | EM     | F1        | EM        | F1     | EM  |
| LM                | Who (4) |       | What (15) |        | Where (3) | Where (3) |        |     |
| BERT              | 100     | 100   | 84        | 80     | 100       | 100       | 100    | 100 |
| DistilBER<br>T    | 100     | 100   | 97.333    | 93.333 | 33.333    | 33.333    | 100    | 100 |
| RoBERTa           | 100     | 100   | 77.333    | 73.333 | 100       | 100       | 100    | 100 |
| DistilRoB<br>ERTa | 100     | 100   | 94.476    | 86.667 | 100       | 100       | 100    | 100 |
| ALBERT            | 100     | 100   | 97.333    | 93.333 | 66.667    | 66.667    | 100    | 100 |
| MobileB<br>ERT    | 100     | 100   | 97.333    | 93.333 | 100       | 100       | 83.333 | 50  |

# 2. Discord

|               | Discord | iscord |           |        |           |     |  |  |  |  |  |
|---------------|---------|--------|-----------|--------|-----------|-----|--|--|--|--|--|
|               | F1      | EM     | F1        | EM     | F1        | EM  |  |  |  |  |  |
| LM            | Who (1) |        | What (18) |        | Where (1) |     |  |  |  |  |  |
| BERT          | 50      | 0      | 82.811    | 66.667 | 80        | 0   |  |  |  |  |  |
| DistilBERT    | 50      | 0      | 89.601    | 83.333 | 80        | 0   |  |  |  |  |  |
| RoBERTa       | 100     | 100    | 81.235    | 61.111 | 100       | 100 |  |  |  |  |  |
| DistilRoBERTa | 50      | 0      | 93.21     | 77.778 | 80        | 0   |  |  |  |  |  |
| ALBERT        | 50      | 0      | 83.821    | 61.111 | 80        | 0   |  |  |  |  |  |
| MobileBERT    | 100     | 100    | 92.07     | 72.222 | 80        | 0   |  |  |  |  |  |

## 3. Patsnap

|                   | Patsnap |     |           |        |         |     |  |  |  |
|-------------------|---------|-----|-----------|--------|---------|-----|--|--|--|
|                   | F1      | EM  | F1        | F1 EM  |         | EM  |  |  |  |
| LM                | Who (2) |     | What (17) |        | How (2) |     |  |  |  |
| BERT              | 100     | 100 | 83.858    | 58.824 | 100     | 100 |  |  |  |
| DistilBERT        | 100     | 100 | 81.658    | 52.941 | 100     | 100 |  |  |  |
| RoBERTa           | 100     | 100 | 82.87     | 58.824 | 100     | 100 |  |  |  |
| DistilRoBER<br>Ta | 100     | 100 | 89.455    | 70.588 | 100     | 100 |  |  |  |

| ALBERT     | 100 | 100 | 85.195 | 64.706 | 100 | 100 |
|------------|-----|-----|--------|--------|-----|-----|
| MobileBERT | 100 | 100 | 87.858 | 76.471 | 100 | 100 |

## 4. Reddit

|               | Reddit    |     |         |     |
|---------------|-----------|-----|---------|-----|
|               | F1        | EM  | F1      | EM  |
| LM            | What (18) |     | How (1) |     |
| BERT          | 83.872    | 100 | 72.222  | 100 |
| DistilBERT    | 88.702    | 100 | 72.222  | 100 |
| RoBERTa       | 89.55     | 100 | 77.778  | 100 |
| DistilRoBERTa | 81.738    | 100 | 66.667  | 100 |
| ALBERT        | 89.983    | 100 | 77.778  | 100 |
| MobileBERT    | 91.279    | 100 | 83.333  | 100 |

# 5. Ripple

|                   | Ripple  |     |           |        |         |    |
|-------------------|---------|-----|-----------|--------|---------|----|
|                   | F1      | EM  | F1        | EM     | F1      | EM |
| LM                | Who (1) |     | What (17) | -      | How (4) |    |
| BERT              | 100     | 100 | 77.813    | 64.706 | 95      | 75 |
| DistilBERT        | 100     | 100 | 78.205    | 64.706 | 95      | 75 |
| RoBERTa           | 50      | 0   | 88.514    | 70.588 | 95      | 75 |
| DistilRoBER<br>Ta | 50      | 0   | 86.29     | 70.588 | 95      | 75 |
| ALBERT            | 100     | 100 | 83.725    | 58.824 | 95      | 75 |
| MobileBERT        | 100     | 100 | 85.749    | 58.824 | 95      | 75 |

# 6. ByteDance Wiki

|                   | ByteD | ance V | Viki     |        |     |        |         |        |        |    |
|-------------------|-------|--------|----------|--------|-----|--------|---------|--------|--------|----|
|                   | F1    | EM     | F1       | EM     | F1  | EM     | F1      | EM     | F1     | EM |
| LM                | Who   | (10)   | What (9) |        | Whe | n (10) | Where ( | 3)     | How (4 | )  |
| BERT              | 90    | 90     | 82.963   | 66.667 | 90  | 90     | 100     | 100    | 90     | 50 |
| DistilB<br>ERT    | 90    | 90     | 94.074   | 77.778 | 90  | 90     | 66.667  | 66.667 | 77.5   | 25 |
| RoBER<br>Ta       | 90    | 90     | 91.852   | 66.667 | 90  | 90     | 70.175  | 66.667 | 77.5   | 25 |
| DistilR<br>oBERTa | 90    | 90     | 94.074   | 77.778 | 90  | 90     | 100     | 100    | 90     | 50 |
| ALBER<br>T        | 85    | 80     | 88.519   | 66.667 | 90  | 90     | 76.19   | 66.667 | 82.5   | 50 |
| Mobile<br>BERT    | 95    | 90     | 91.852   | 66.667 | 90  | 90     | 66.667  | 66.667 | 90     | 50 |

## 7. Discord Wiki

|    | Discor | d Wiki            |    |          |    |         |    |          |    |    |
|----|--------|-------------------|----|----------|----|---------|----|----------|----|----|
|    | F1     | EM                | F1 | EM       | F1 | EM      | F1 | EM       | F1 | EM |
| LM | Who (  | Who (1) What (45) |    | When (6) |    | Why (1) |    | How (10) |    |    |

| BERT              | 100 | 100 | 81.818 | 68.889 | 100 | 100 | 60  | 0   | 88     | 80 |
|-------------------|-----|-----|--------|--------|-----|-----|-----|-----|--------|----|
| DistilB<br>ERT    | 100 | 100 | 86.483 | 71.111 | 100 | 100 | 50  | 0   | 88     | 80 |
| RoBER<br>Ta       | 100 | 100 | 83.568 | 66.667 | 100 | 100 | 100 | 100 | 81.333 | 70 |
| DistilR<br>oBERTa | 100 | 100 | 87.342 | 73.333 | 100 | 100 | 100 | 100 | 88     | 80 |
| ALBER<br>T        | 100 | 100 | 80.139 | 62.222 | 100 | 100 | 100 | 100 | 88     | 80 |
| Mobile<br>BERT    | 100 | 100 | 80.074 | 64.444 | 100 | 100 | 100 | 100 | 84.444 | 80 |

## 8. Reddit Wiki

|                   | Reddit W | /iki          |           |        |          |        |           |        |
|-------------------|----------|---------------|-----------|--------|----------|--------|-----------|--------|
| •                 | F1       | EM            | F1        | EM F1  |          | EM     | F1        | EM     |
| LM                | Who (17) |               | What (90) |        | When (32 | )      | Where (6) |        |
| BERT              | 93.529   | 93.529 88.235 |           | 72.222 | 86.369   | 81.25  | 78.148    | 50     |
| DistilBER<br>T    | 96.078   | 94.118        | 79.56     | 68.889 | 88.125   | 81.25  | 78.148    | 50     |
| RoBERTa           | 96.471   | 94.118        | 84.947    | 74.444 | 83.281   | 78.125 | 78.148    | 50     |
| DistilRoB<br>ERTa | 91.176   | 88.235        | 84.271    | 74.444 | 86.369   | 81.25  | 61.481    | 33.333 |
| ALBERT            | 93.529   | 88.235        | 87.358    | 73.333 | 89.494   | 84.375 | 78.148    | 50     |
| MobileB<br>ERT    | 85.294   | 82.353        | 85.631    | 70     | 91.25    | 84.375 | 84.656    | 66.667 |

|                   | Reddit Wiki |     |          |     |          |        |           |     |  |  |
|-------------------|-------------|-----|----------|-----|----------|--------|-----------|-----|--|--|
|                   | F1          | EM  | F1       | EM  | F1       | EM     | F1        | EM  |  |  |
| LM                | Why (1)     |     | Which(2) |     | How (21) |        | Others(1) |     |  |  |
| BERT              | 100         | 100 | 100      | 100 | 72.857   | 66.667 | 8.333     | 0   |  |  |
| DistilBER<br>T    | 66.667      | 0   | 100      | 100 | 69.683   | 57.143 | 26.667    | 0   |  |  |
| RoBERTa           | 0           | 0   | 100      | 100 | 71.429   | 57.143 | 0         | 0   |  |  |
| DistilRoB<br>ERTa | 57.143      | 0   | 100      | 100 | 72.222   | 57.143 | 100       | 100 |  |  |
| ALBERT            | 100         | 100 | 100      | 100 | 74.444   | 61.905 | 7.407     | 0   |  |  |
| MobileB<br>ERT    | 61.538      | 0   | 100      | 100 | 80.794   | 71.429 | 100       | 100 |  |  |

# 9. Spotify Wiki

|                   | Spotify Wiki |     |            |        |           |        |           |     |  |  |  |
|-------------------|--------------|-----|------------|--------|-----------|--------|-----------|-----|--|--|--|
|                   | F1           | EM  | F1         | EM     | F1        | EM     | F1        | EM  |  |  |  |
| LM                | Who (4)      |     | WhatDF(77) |        | When (26) |        | Where (4) |     |  |  |  |
| BERT              | 100          | 100 | 85.204     | 75.325 | 96.795    | 92.308 | 89.286    | 75  |  |  |  |
| DistilBER<br>T    | 100          | 100 | 85.931     | 77.922 | 96.795    | 92.308 | 75        | 75  |  |  |  |
| RoBERTa           | 100          | 100 | 87.099     | 79.221 | 96.795    | 92.308 | 100       | 100 |  |  |  |
| DistilRoB<br>ERTa | 100          | 100 | 84.092     | 76.623 | 96.795    | 92.308 | 75        | 75  |  |  |  |
| ALBERT            | 100          | 100 | 86.159     | 77.922 | 96.795    | 92.308 | 100       | 100 |  |  |  |

| MobileB |     |     |        |        |        |        |    |    |
|---------|-----|-----|--------|--------|--------|--------|----|----|
| ERT     | 100 | 100 | 89.107 | 81.818 | 94.103 | 88.462 | 75 | 75 |

|                   | Spotify Wiki |     |          |        |            |     |  |  |  |  |
|-------------------|--------------|-----|----------|--------|------------|-----|--|--|--|--|
| •                 | F1 EM        |     | F1       | EM     | F1         | EM  |  |  |  |  |
| LM                | Which(2)     |     | How (28) |        | Others (1) |     |  |  |  |  |
| BERT              | 100          | 100 | 84.881   | 75     | 100        | 100 |  |  |  |  |
| DistilBERT        | 100          | 100 | 86.667   | 75     | 44.444     | 0   |  |  |  |  |
| RoBERTa           | 50           | 50  | 98.214   | 96.429 | 100        | 100 |  |  |  |  |
| DistilRoBER<br>Ta | 100          | 100 | 87.857   | 78.571 | 100        | 100 |  |  |  |  |
| ALBERT            | 50           | 50  | 99.286   | 96.429 | 44.444     | 0   |  |  |  |  |
| MobileBERT        | 50           | 50  | 99.286   | 96.429 | 100        | 100 |  |  |  |  |

## 10. Strava Wiki

|                   | Strava W | Strava Wiki |         |        |          |     |         |     |  |  |  |  |
|-------------------|----------|-------------|---------|--------|----------|-----|---------|-----|--|--|--|--|
| •                 | F1       | EM          | F1      | EM     | F1       | EM  | F1      | EM  |  |  |  |  |
| LM                | Who (1)  |             | What (9 | )      | When (4) |     | How (2) |     |  |  |  |  |
| BERT              | 100      | 100         | 79.63   | 55.556 | 100      | 100 | 100     | 100 |  |  |  |  |
| DistilBER<br>T    | 100      | 100         | 79.683  | 55.556 | 100      | 100 | 100     | 100 |  |  |  |  |
| RoBERTa           | 100      | 100         | 85.556  | 77.778 | 100      | 100 | 100     | 100 |  |  |  |  |
| DistilRoB<br>ERTa | 100      | 100         | 85.45   | 77.778 | 100      | 100 | 100     | 100 |  |  |  |  |
| ALBERT            | 100      | 100         | 93.056  | 77.778 | 100      | 100 | 100     | 100 |  |  |  |  |
| MobileB<br>ERT    | 100      | 100         | 91.534  | 77.778 | 100      | 100 | 100     | 100 |  |  |  |  |

# 11. CS4248 website

|                   | CS4248  |     |           |       |           |     |          |        |  |  |  |
|-------------------|---------|-----|-----------|-------|-----------|-----|----------|--------|--|--|--|
| •                 | F1      | EM  | F1        | EM    | F1        | EM  | F1       | EM     |  |  |  |
| LM                | Who (2) |     | What (80) |       | Where (3) |     | How (26) |        |  |  |  |
| BERT              | 100     | 100 | 90.688    | 81.25 | 100       | 100 | 95.833   | 92.308 |  |  |  |
| DistilBER<br>T    | 80      | 50  | 88.765    | 78.75 | 100       | 100 | 95.833   | 92.308 |  |  |  |
| RoBERTa           | 100     | 100 | 85.658    | 76.25 | 100       | 100 | 94.872   | 92.308 |  |  |  |
| DistilRoB<br>ERTa | 100     | 100 | 92.849    | 85    | 100       | 100 | 96.154   | 92.308 |  |  |  |
| ALBERT            | 100     | 100 | 88.693    | 78.75 | 100       | 100 | 95.726   | 92.308 |  |  |  |
| MobileB<br>ERT    | 100     | 100 | 92.298    | 82.5  | 100       | 100 | 96.154   | 92.308 |  |  |  |