Министерство образования Республики Беларусь

Учреждение образования

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет информационный технологий и управления
Кафедра интеллектуальных информационных технологий
Дисциплина: «Проектировка баз знаний»

Лабораторная работа №3 по теме: «Создание базы данных и запросов к ней с помощью средств графовой СУБД neo4j»

Студент гр. 121702 Заломов Р.А.

Проверила:

Липницкая Н. Г.

Тема

Изучение средств создания базы данных и выполнения запросов к ней с использованием графовой СУБД neo4j.

Цель

Получить навыки создания базы данных и выполнения запросов к ней с помощью средств графовой СУБД neo4j.

Задание

- 1) Сформировать базу данных по выбранной предметной области.
- 2) Составить список из 10 запросов к базе данных.
- 3) С помощью шаблонов запросов получить выборку для каждого запроса из п.2).
- 4)В отчёте отразить в графической или текстовой форме содержимое базы данных, шаблоны запросов и полученные выборки с комментариями.

Выполнение задания

Создание базы данных

Создание базы данных было автоматизировано при помощи языка программирования Python и модуля neo4j для него.

```
import pandas as pd
from neo4j import GraphDatabase
from neo4j.exceptions import DriverError, Neo4jError
df = pd.read_csv('SP_500_ESG_Risk_Ratings.csv')
df.dropna(inplace=True)
df.drop(['ESG Risk Percentile', 'Description'], inplace=True, axis=1)
class CompaniesFiller:
    def __init__(self, uri, user, password, database = None):
        self.driver = GraphDatabase.driver(uri, auth=(user, password))
        self.database = database
    def create_companies(self, companies_df: pd.DataFrame):
        with self.driver.session() as session:
             for row in companies_df.iterrows():
                 result = self._create_and_return_company(row[1])
                 print(f'Created company: {result}')
    def _create_and_return_company(self, company_data):
        query = (
             "CREATE (adr:Address { name: $address }) "
          "CREATE (ind:Industry { name: $industry })
          record = self.driver.execute_query(
              address=company_data['Address'],
              industry=company_data['Industry'],
              controversy_level=company_data['Controversy Level'],
controversy score=company_data['Controversy Score'].
                             =company_data['Controversy Score']
```

Источником данных послужила таблица с различными компаниями, а также их характеристиками. Таблица доступна по ссылке: https://www.kaggle.com/datasets/pritish509/s-and-p-500-esg-risk-ratings

Написание запросов к базе данных

1. Выбрать абсолютно все вершины

```
Запрос:
//SELECT ABSOLOUTELY ALL
MATCH (n) RETURN n
```


Примечание: при просмотре результатов запросов в режиме графа для обеспечения оптимизации neo4j отображает не более 300 вершин.

2. Выбрать только вершины компаний

Запрос:

```
//SELECT ONLY COMPANIES
MATCH (cmp:Company)
RETURN cmp
```



```
cmp

(:Company {name: "Best Buy Co Inc"})

(:Company {name: "Becton Dickinson and Co"})

(:Company {name: "Franklin Resources Inc"})

(:Company {name: "Bunge Ltd"})

(:Company {name: "Biogen Inc"})

(:Company {name: "Bio Rad Laboratories A"})

(:Company {name: "Bank of New York Mellon Corp"})

(:Company {name: "Booking Holdings Inc"})

(:Company {name: "Blackrock Inc"})

(:Company {name: "Bristol Myers Squibb Co"})
```

3. Выбрать те, компании, в которых уровень споров низкий (Low) или средний (Moderate)

Запрос:

```
//GET COMPANIES WHERE CONTROVERSY LEVEL IS LOW OR MODERATE
MATCH (cmp:Company)-[:CONTROVERSY_LEVEL]→(lvl:Controversy_Level)
WHERE lvl.value IN ['Low', 'Moderate']
RETURN cmp, lvl
```


cmp	 lvl
(:Company {name: "Bath & Body Works Inc"})	(:Controversy_Level {value: "Moderate"})
(:Company {name: "Best Buy Co Inc"})	(:Controversy_Level {value: "Moderate"})
(:Company {name: "Franklin Resources Inc"})	(:Controversy_Level {value: "Moderate"})
(:Company {name: "Bio Rad Laboratories A"})	(:Controversy_Level {value: "Low"})
(:Company {name: "Blackrock Inc"})	(:Controversy_Level {value: "Moderate"})
(:Company {name: "Bristol Myers Squibb Co"})	(:Controversy_Level {value: "Moderate"})
(:Company {name: "Broadridge Financial Solutio"})	(:Controversy_Level {value: "Moderate"})
(:Company {name: "Brown & Brown Inc"})	(:Controversy_Level {value: "Low"})
(:Company {name: "Boston Scientific Corp"})	(:Controversy_Level {value: "Moderate"})
(:Company {name: "Borgwarner Inc"})	(:Controversy_Level {value: "Moderate"})

4. Получить средний уровень риска в компаниях:

Запрос:

```
//GET AVERAGE RISK SCORE
MATCH (cmp:Company)-[:RISK_SCORE]→(score:Number)
RETURN avg(score.value) as avg_score
```

Результат:

5. Получить минимальное количество работников в компаниях

Запрос:

```
//GET MINIMAL AMOUNT OF EMPLOYEES
MATCH (cmp:Company)-[:EMPLOYEE_AMOUNT]→(emp:Number)
RETURN min(emp.value) as min_emp
```

Результат:

6. Выбрать компании, в именах которых содержится слово «American»

Запрос:

```
//MATCH COMPANIES WHICH NAMES CONTAIN 'American'
MATCH (cmp:Company)
WHERE cmp.name CONTAINS 'American'
RETURN cmp
```

```
cmp
(:Company {name: "American Tower Corp"})
(:Company {name: "American Express Co"})
```

7. Выбрать компании, в которых работает меньше 20000 сотрудников

Запрос:

```
//MATCH COMPANIES WITH LESS THAN 20000 EMPLOYEES
MATCH (cmp:Company)-[:EMPLOYEE_AMOUNT]→(emp:Number)
WHERE emp.value < 20000
RETURN cmp, emp</pre>
```

Результат:

cmp	emp
(:Company {name: "Franklin Resources Inc"})	(:Number {value: 9300})
(:Company {name: "Biogen Inc"})	(:Number {value: 8725})
(:Company {name: "Bio Rad Laboratories A"})	(:Number {value: 8200})
(:Company {name: "Blackrock Inc"})	(:Number {value: 19300})
(:Company {name: "Broadridge Financial Solutio"})	(:Number {value: 14700})
(:Company {name: "Brown & Brown Inc"})	(:Number {value: 15201})
(:Company {name: "Boston Properties Inc"})	(:Number {value: 780})
(:Company {name: "Conagra Brands Inc"})	(:Number {value: 18600})
(:Company {name: "Cboe Global Markets Inc"})	(:Number {value: 1543})
(:Company {name: "Celanese Corp"})	(:Number {value: 13263})

8. Выбрать компании, в которых уровень риска ниже среднего по компаниям

Запрос:

```
//GET COMPANIES WITH RISK SCORE LOWER THAN AVERAGE
CALL {
    MATCH (cmp:Company)-[:RISK_SCORE]→(score:Number)
    RETURN avg(score.value) AS avg_risk
}
MATCH (cmp)-[:RISK_SCORE]→(score)
WHERE score.value < avg_risk
RETURN cmp, score</pre>
```

cmp	score
(:Company {name: "Agilent Technologies Inc"})	(:Number {value: 15.0})
(:Company {name: "Advance Auto Parts Inc"})	(:Number {value: 12.0})
(:Company {name: "Apple Inc"})	(:Number {value: 17.0})
(:Company {name: "Amerisourcebergen Corp"})	(:Number {value: 12.0})
(:Company {name: "Accenture Plc Cl A"})	(:Number {value: 10.0})
(:Company {name: "Adobe Inc"})	(:Number {value: 12.0})
(:Company {name: "Automatic Data Processing"})	(:Number {value: 14.0})
(:Company {name: "Aflac Inc"})	(:Number {value: 17.0})
(:Company {name: "Arthur J Gallagher & Co"})	(:Number {value: 21.0})
(:Company {name: "Akamai Technologies Inc"})	(:Number {value: 17.0})

9. Получить средний уровень риска в компаниях

Запрос:

```
//GET AVERAGE RISK SCORE
MATCH (cmp:Company)-[:RISK_SCORE]→(score:Number)
RETURN avg(score.value) as avg_score
```

Результат:

10.Выбрать те, компании, которые занимаются планами в здравоохранении (Healthcare Plans) или средствами связи (Communication Equipment), в которых степень риска меньше, чем поделённая пополам максимальная степень рискам по компаниям, а также в которых работают больше человек, чем стократное минимальное количество

Запрос:

```
//GET COMPANIES WHICH INDUSTRY IS HEALTHCARE PLANS OR COMMUNICATION EQUIPMENT, EMPLOYEE AMOUNT MO
DIVIDED BY TWO
CALL {
     MATCH (cmp:Company)-[:EMPLOYEE_AMOUNT] → (emp:Number)
     RETURN min(emp.value) * 100 AS min_emp_hun

CALL {
     MATCH (cmp)-[:RISK_SCORE] → (score:Number)
     RETURN max(score.value) / 2 AS score_twice
}
MATCH (cmp:Company)-[:INDUSTRY] → (ind:Industry), (cmp:Company)-[:EMPLOYEE_AMOUNT] → (emp:Number),
     (cmp:Company)-[:RISK_SCORE] → (score:Number)
WHERE
ind.name in ['Communication Equipment', 'Healthcare Plans']
AND
emp.value > min_emp_hun
AND
score.value < score_twice
RETURN cmp, ind, score, emp</pre>
```

Результат:

omp	ind	score	emp
(:Company {name: "The Cigna Group"})	(:Industry {name: "Healthcare Plans"})	(:Number {value: 12.0})	(:Number {value: 71300})
(:Company {name: "Centene Corp"})	(:Industry {name: "Healthcare Plans"})	(:Number {value: 21.0})	(:Number {value: 74300})
(:Company {name: "Elevance Health Inc"})	(:Industry {name: "Healthcare Plans"})	(:Number {value: 11.0})	(:Number {value: 102300})
(:Company {name: "Hewlett Packard Enterprise"})	(:Industry {name: "Communication Equipment"})	(:Number {value: 12.0})	(:Number {value: 60200})
(:Company {name: "Humana Inc"})	(:Industry {name: "Healthcare Plans"})	(:Number {value: 22.0})	(:Number {value: 67100})
(:Company {name: "Motorola Solutions Inc"})	(:Industry {name: "Communication Equipment"})	(:Number {value: 14.0})	(:Number {value: 20000})
(:Company {name: "Unitedhealth Group Inc"})	(:Industry {name: "Healthcare Plans"})	(:Number {value: 18.0})	(:Number {value: 400000})

Вывод

В лабораторной работе были изучены основы работы с графовыми СУБД на примере Neo4j. Были предприняты решения по автоматизации создания базы данных на примере языка программирования Python и библиотеки neo4j. Помимо этого был рассмотрен язык запросов Cypher, были написаны различные запросы при помощи данного языка запросов.