EN.520.637: Foundations of Reinforcement Learning Homework 4

Ha Manh Bui (CS Department) hbui13@jhu.edu

Fall 2023

1 Problem 1

Given a finite MDP with optimal policy π^* and the corresponding optimal action value function $q^*(s,a)$. Let q(s,a) be another state-action value function with the greedy policy of q is given by $\pi_q(s) = \arg\max_a q(s,a)$. Let $0 < \gamma < 1$ be the discounting factor of the reward. Here we assume π^* and π_q are deterministic polices. We let $||q||_{\infty} := \max_{(s,a)} |q(s,a)|$ and $||v||_{\infty} := \max_s |v(s)|$.

(a) Suppose for the reward, we have $|r| \leq r_{\text{max}}, \forall r \in \mathbb{R}$, show that for any policy π ,

$$||q_{\pi}||_{\infty} \le \frac{1}{1-\gamma} r_{\max}.$$

Proof. By definition, for any policy π , we have

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} R_{k+1} | S_{0} = s, A_{0} = a \right].$$

Due to $|r| \leq r_{\text{max}}, \forall r \in \mathbb{R}$, we get

$$q_{\pi}(s, a) \le \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k r_{\max} \right] = r_{\max} \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k \right].$$

Since $0 < \gamma < 1$, we achieve

$$q_{\pi}(s, a) \le \lim_{k \to \infty} \frac{1 - \gamma^k}{1 - \gamma} r_{\text{max}} = \frac{1}{1 - \gamma} r_{\text{max}}.$$
 (1)

On the other hand, since $||q_{\pi}||_{\infty} := \max_{(s,a)} |q_{\pi}(s,a)|$, combining with the result from Eq. 1, $\forall \pi(a|s)$, we obtain

$$||q_{\pi}||_{\infty} \le \frac{1}{1-\gamma} r_{\text{max}}.\tag{2}$$

(b) Let $v^*(s)$ be the optimal value function and $v_{\pi_q}(s)$ be the state value function under policy π_q . (i) Show that $\forall s \in \mathcal{S}$,

$$v^*(s) - v_{\pi_q}(s) = q^*(s, \pi^*(s)) - q^*(s, \pi_q(s)) + \gamma \sum_{s'} p(s'|s, \pi_q(s)) \left[v^*(s') - v_{\pi_q}(s') \right]$$

Proof. Since π^* and $\pi_q(s) = \arg \max_a q(s, a)$ are deterministic policies, $\forall s \in \mathcal{S}$, we have

$$v^{*}(s) - v_{\pi_{q}}(s) = \max_{a} q^{*}(s, a) - \max_{a} q(s, a)$$

$$= q^{*}(s, \pi^{*}(s)) - q(s, \pi_{q}(s))$$

$$= q^{*}(s, \pi^{*}(s)) - q^{*}(s, \pi_{q}(s)) + q^{*}(s, \pi_{q}(s)) - q(s, \pi_{q}(s)).$$
(3)

Consider the term $q^*(s, \pi_q(s)) - q(s, \pi_q(s))$, by definition of the Q-function, we have

$$q^{*}(s, \pi_{q}(s)) - q(s, \pi_{q}(s)) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma v^{*}(S_{t+1}) | S_{t} = s, A_{t} = \pi_{q}(s) \right] - \mathbb{E}_{\pi} \left[R_{t+1} + \gamma v_{\pi_{q}}(S_{t+1}) | S_{t} = s, A_{t} = \pi_{q}(s) \right]$$

$$= r(s, \pi_{q}(s)) + \gamma \sum_{s'} p(s'|s, \pi_{q}(s)) v^{*}(s') - r(s, \pi_{q}(s)) - \gamma \sum_{s'} p(s'|s, \pi_{q}(s)) v_{\pi_{q}}(s')$$

$$= \gamma \sum_{s'} p(s'|s, \pi_{q}(s)) \left[v^{*}(s') - v_{\pi_{q}}(s') \right].$$

Replace this result to Eq. 3, $\forall s \in \mathcal{S}$, we obtain

$$v^*(s) - v_{\pi_q}(s) = q^*(s, \pi^*(s)) - q^*(s, \pi_q(s)) + \gamma \sum_{s'} p(s'|s, \pi_q(s)) \left[v^*(s') - v_{\pi_q}(s') \right]. \tag{4}$$

(ii) Show that $\forall s \in \mathcal{S}$

$$v^*(s) - v_{\pi_q}(s) \le 2||q - q^*||_{\infty} + \gamma||v_{\pi_q} - v^*||_{\infty}$$

Proof. Firstly, let consider the first term $q^*(s, \pi^*(s)) - q^*(s, \pi_q(s))$ in Eq. 4 we have

$$q^*(s, \pi^*(s)) - q^*(s, \pi_q(s)) = q^*(s, \pi^*(s)) - q(s, \pi^*(s)) + q(s, \pi^*(s)) - q^*(s, \pi_q(s)).$$

Since $\pi_q(s) = \arg \max_a q(s, a)$, we get

$$q(s, \pi_q(s)) \ge q(s, a), \forall a \in \mathcal{A}, s \in \mathcal{S}$$

$$\Rightarrow q(s, \pi_q(s)) \ge q(s, \pi^*(s)), \forall s \in \mathcal{S}.$$

This yields

$$\begin{split} q^*(s,\pi^*(s)) - q^*(s,\pi_q(s)) &= q^*(s,\pi^*(s)) - q(s,\pi^*(s)) + q(s,\pi^*(s)) - q^*(s,\pi_q(s)) \\ &\leq q^*(s,\pi^*(s)) - q(s,\pi^*(s)) + q(s,\pi_q(s)) - q^*(s,\pi_q(s)) \\ &\leq \max_s |q^*(s,\pi^*(s)) - q(s,\pi^*(s))| + \max_s |q(s,\pi_q(s)) - q^*(s,\pi_q(s))|. \end{split}$$

By $||q||_{\infty} = \max_{(s,a)} |q(s,a)|$, we obtain

$$q^*(s, \pi^*(s)) - q^*(s, \pi_q(s)) \le 2||q - q^*||_{\infty}.$$
(5)

On the other hand, consider the second term $\gamma \sum_{s'} p(s'|s, \pi_q(s)) \left[v^*(s') - v_{\pi_q}(s') \right]$ in Eq. 4, since $||v||_{\infty} = \max_s |v(s)|$, we have

$$\gamma \sum_{s'} p(s'|s, \pi_q(s)) \left[v^*(s') - v_{\pi_q}(s') \right] \le \gamma \sum_{s'} p(s'|s, \pi_q(s)) \left[\max_{s'} |v^*(s') - v_{\pi_q}(s')| \right] \\
\le \gamma ||v_{\pi_q} - v^*||_{\infty}.$$
(6)

Replace results in Eq. 5 and Eq. 6 to Eq. 4, $\forall s \in \mathcal{S}$, we obtain

$$v^*(s) - v_{\pi_a}(s) \le 2||q - q^*||_{\infty} + \gamma ||v_{\pi_a} - v^*||_{\infty}. \tag{7}$$

(iii) Show that

$$||v^* - v_{\pi_q}||_{\infty} \le \frac{2||q - q^*||_{\infty}}{1 - \gamma}$$

In other word, when we obtain a q that is "close" to the optimal q^* , the value function of its greedy policy π_q is also "close" to the optimal value function.

Proof. From the result in Eq. 7, we have

$$v^*(s) - v_{\pi_q}(s) \le 2||q - q^*||_{\infty} + \gamma||v_{\pi_q} - v^*||_{\infty},$$

 $\forall s \in \mathcal{S}$, this yields

$$\max_{s'} \left[v^*(s') - v_{\pi_q}(s') \right] \le 2||q - q^*||_{\infty} + \gamma||v_{\pi_q} - v^*||_{\infty}.$$

Since $||v||_{\infty} = \max_{s} |v(s)|$, we obtain

$$||v^* - v_{\pi_q}|| \le 2||q - q^*||_{\infty} + \gamma||v_{\pi_q} - v^*||_{\infty}$$

$$\Leftrightarrow ||v^* - v_{\pi_q}|| - \gamma||v_{\pi_q} - v^*||_{\infty} \le 2||q - q^*||_{\infty}$$

$$\Leftrightarrow ||v^* - v_{\pi_q}||_{\infty} \le \frac{2||q - q^*||_{\infty}}{1 - \gamma}.$$
(8)

(c) The Value Iteration on state-action value function is given by

$$q^{(k+1)} = \mathcal{T}_{\max}^q q^{(k)}, \quad q^{(0)} = 0,$$

where \mathcal{T}_{\max}^q is the Bellman optimality operator for q, and $q^* = \mathcal{T}_{\max}^q q^*$. Show that when $k \ge \left(\log \frac{1}{\gamma}\right)^{-1} \log \frac{2r_{\max}}{(1-\gamma)^2 \epsilon}$, we have

$$||v_{\pi_a(k)} - v^*||_{\infty} \le \epsilon.$$

Proof. We have

$$k \ge \left(\log \frac{1}{\gamma}\right)^{-1} \log \frac{2r_{\max}}{(1-\gamma)^2 \epsilon} \Leftrightarrow k \log \frac{1}{\gamma} \ge \log \frac{2r_{\max}}{(1-\gamma)^2 \epsilon} \Leftrightarrow \frac{1}{\gamma^k} \ge \frac{2r_{\max}}{(1-\gamma)^2 \epsilon}$$
$$\Leftrightarrow \quad \gamma^k \le \frac{(1-\gamma)^2 \epsilon}{2r_{\max}} \Leftrightarrow \gamma^k 2r_{\max} \le (1-\gamma)^2 \epsilon \Leftrightarrow \frac{\gamma^k 2r_{\max}}{(1-\gamma)^2} \le \epsilon.$$

Using the result from Eq. 2, i.e., $||q_{\pi}||_{\infty} \leq \frac{1}{1-\gamma}r_{\max}$, we get

$$\epsilon \ge \frac{\gamma^k 2r_{\max}}{(1-\gamma)^2} \ge \frac{2\gamma^k}{1-\gamma}||q_{\pi} - 0||_{\infty} \ge \frac{2\gamma^k}{1-\gamma}||q^* - q^{(0)}||_{\infty}.$$

Apply the fact that \mathcal{T}_{\max}^q is γ -contracting w.r.t. $||\cdot||_{\infty}$, i.e., $||\mathcal{T}_{\max}^q q^* - \mathcal{T}_{\max}^q q^{(0)}||_{\infty} \le ||q^* - q^{(0)}||_{\infty}$, we obtain

$$\epsilon \ge \frac{2\gamma^k}{1-\gamma}||q^* - q^{(0)}||_{\infty} \ge \frac{2\gamma^k}{1-\gamma}||\mathcal{T}_{\max}^q q^* - \mathcal{T}_{\max}^q q^{(0)}||_{\infty}.$$

Using the result from Eq. 8, i.e., $||v^* - v_{\pi_q}||_{\infty} \le \frac{2||q - q^*||_{\infty}}{1 - \gamma}$, we obtain

$$\epsilon \ge \frac{2\gamma^k}{1-\gamma} ||\mathcal{T}_{\max}^q q^* - \mathcal{T}_{\max}^q q^{(0)}||_{\infty} \ge ||v_{\pi_q(k)} - v^*||_{\infty}.$$

2 Problem 2

Given an MDP $M = (S, A, \mathcal{R}, p, \gamma)$, where $0 < \gamma < 1$ is the discounting factor. Consider a modified/approximate MDP $\hat{M} = (S, A, \mathcal{R}, \hat{p}, \gamma)$. The $\hat{p}(s', r|s, a)$ is chosen such that

$$\hat{p}(s'|s,a) = p(s'|s,a), \forall s', s, a,$$

and

$$|\hat{r}(s, a) - r(s, a)| \le \epsilon$$
, i.e., $\left| \sum_{r} r\hat{p}(r|s, a) - \sum_{r} rp(r|s, a) \right| \le \epsilon, \forall s, a$.

(a) Let $v^*(s)$ and $\hat{v}^*(s)$ be the optimal value functions of M and \hat{M} , respectively. Show that

$$||v^* - \hat{v}^*||_{\infty} \le \frac{\epsilon}{1 - \gamma}.$$

Proof. By definition of the Q-function, $\forall a \in \mathcal{A}, s \in \mathcal{S}$, we have

$$q^*(s,a) - \hat{q}^*(s,a) = \left[r^*(s,a) + \gamma \sum_{s'} v^*(s') p(s'|s,a) \right] - \left[\hat{r}^*(s,a) + \gamma \sum_{s'} \hat{v}^*(s') \hat{p}(s'|s,a) \right].$$

Using $\hat{p}(s'|s, a) = p(s'|s, a), \forall s', s, a \text{ and } |\hat{r}(s, a) - r(s, a)| \le \epsilon, \forall s, a, \text{ we get}$

$$q^*(s,a) - \hat{q}^*(s,a) \le \epsilon + \gamma \sum_{s'} p(s'|s,a) \left[v^*(s') - \hat{v}^*(s') \right]. \tag{9}$$

Consider the term $v^*(s) - \hat{v}^*(s), \forall s \in \mathcal{S}$, by definition, we have

$$v^*(s) - \hat{v}^*(s) = q^*(s, \pi^*(s)) - \hat{q}^*(s, \hat{\pi}^*(s)),$$

since $\hat{\pi}^*$ is the estimator of the true optimal π^* , getting

$$v^*(s) - \hat{v}^*(s) \le q^*(s, \pi^*(s)) - \hat{q}^*(s, \pi^*(s)),$$

applying the result in Eq. 9, yielding

$$\begin{split} v^*(s) - \hat{v}^*(s) &\leq \epsilon + \gamma \sum_{s'} p(s'|s, \pi^*(s)) \left[v^*(s') - \hat{v}^*(s') \right] \\ &\leq \epsilon + \gamma \sum_{s'} p(s'|s, \pi^*(s)) ||v^* - \hat{v}^*||_{\infty} \\ &\leq \epsilon + \gamma ||v^* - \hat{v}^*||_{\infty}. \end{split}$$

As a result, we obtain

$$||v^* - \hat{v}^*||_{\infty} \le \epsilon + \gamma ||v^* - \hat{v}^*||_{\infty},$$

i.e.,

$$||v^* - \hat{v}^*||_{\infty} \le \frac{\epsilon}{1 - \gamma}.$$

(b) Suppose that

$$\hat{r}(s, a) = r(s, a) + \epsilon, \forall s, a.$$

Show that

$$\hat{v}^*(s) = v^*(s) + \frac{\epsilon}{1 - \gamma}, \forall s.$$

Proof. By definition, we have

$$\hat{v}^*(s) = \max_{\pi} \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k \hat{R}_{k+1} | S_0 = s \right],$$

since $\hat{r}(s,a) = r(s,a) + \epsilon, \forall s,a$ and $\hat{p}(s'|s,a) = p(s'|s,a), \forall s',s,a,$ getting

$$\hat{v}^*(s) = \max_{\pi} \left\{ \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k \left(R_{k+1} + \epsilon \right) | S_0 = s \right] \right\}$$
$$= \max_{\pi} \left\{ \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{k+1} | S_0 = s \right] + \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k \epsilon | S_0 = s \right] \right\},$$

combining with $0 < \gamma < 1$, we obtain

$$\hat{v}^*(s) = \max_{\pi} \left\{ \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{k+1} | S_0 = s \right] + \epsilon \lim_{k \to \infty} \frac{1 - \gamma^k}{1 - \gamma} \right\}$$

$$= \max_{\pi} \left\{ \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{k+1} | S_0 = s \right] + \frac{\epsilon}{1 - \gamma} \right\}$$

$$= \max_{\pi} \left\{ \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{k+1} | S_0 = s \right] \right\} + \frac{\epsilon}{1 - \gamma}$$

$$= v^*(s) + \frac{\epsilon}{1 - \gamma}, \forall s.$$