TEMA №13

Физика

Съдържание

Тема 13: Физика

- Плавност
- Вибрация
- Топане
- Свободно летене
- Скачане
- Вълни

Плавност

Физика

Физика в компютърната графика

- Създава чувство за реалност
- Поддържа естествено поведение на обектите

Често

 Физичните явления се моделират приближено – физически неточно, но визуално приемливо

Физични закони

Често използвани закони и явления

- Запазване на енергията
- Триене и съпротивления
- Привличане и гравитация
- Инерция

Движенията винаги са плавни

 Изключение – удар в твърдо тяло (ама и това изключение не е изключение)

Плавност

Плавни движения

- Плавно тръгване и спиране
- Плавна промяна на разстояние

Реализация

- Линейна
- Полиномиална
- Експоненциална/логаритмична
- Тригонометрична

Линейна плавност

 Параметърът се променя линейно до достигане на желаната стойност

Пример

Засилване и спиране

- Без заглаждане
- С линейно заглаждане

Проблем

Проблем на линейната плавност

 Случва се да се възприема като не чак толкова естествена

Човек има инстинктивен усет към

- Пространството
- Първата му производна (скоростта)
- Втората му производна (ускорението)

В примера с линейната промяна

– Ускорението "скача" рязко

(математически – не е непрекъснато)

Нелинейна плавност

Нелинейна плавност

- Използваме друга функция за постигане на плавност
- Според конкретния случай избираме полиномиална, тригонометрична, експоненциална

Тригонометрична плавност

- Използваме фрагменти от $\cos x$
- Може и от $\sin x$, ако искаме да съгрешим

- Изрязваме желан фрагмент
- Трансформираме го до желаната форма

$$v(t) = \frac{1}{2}(v_1 + v_0) + \frac{1}{2}(v_1 - v_0)\cos\frac{t - t_0}{t_1 - t_0}\pi$$

като
$$v(t_0) = v_0$$
 и $v(t_1) = v_1$

Как намираме тази формула?

- Стъпка 1: $t \in [t_0, t_1]$ преобразуваме в $[-\pi, 0]$
- Стъпка 2: смятаме соѕ ∈ [-1,1]
- Стъпка 3: резултатът преобразуваме във $[v_0, v_1]$

- Стъпка 1:
$$[t_0,t_1]$$
 в $[-\pi,0]$ $[t_0,t_1] \xrightarrow{-t_0} [0,t_1-t_0] \xrightarrow{1/t_1-t_0} [0,1] \xrightarrow{-1} [-1,0] \xrightarrow{\pi} [-\pi,0]$ (до тук имаме израза $\left(\frac{t-t_0}{t_1-t_0}-1\right)\pi$, т.е. $\frac{t-t_1}{t_1-t_0}\pi$)

 $[-\pi,0] \stackrel{cos}{\longrightarrow} [-1,1]$

- Стъпка 2: $[-\pi,0]$ в [-1,1]

(изразът вече става
$$\cos\frac{t-t_1}{t_1-t_0}\pi$$
)

– Стъпка 3:
$$[-1,1]$$
 във $[v_0, v_1]$

$$[-1,1] \xrightarrow{+1} [0,2] \xrightarrow{\frac{v_1-v_0}{2}} [0,v_1-v_0] \xrightarrow{+v_0} [v_0,v_1]$$

(така достигаме до израза
$$v_0 + \frac{1}{2}(v_1 - v_0)\left(1 + \cos\frac{t - t_1}{t_1 - t_0}\pi\right)$$
)

– След механично преобразуване получаваме:

$$v(t) = \frac{v_1 + v_0}{2} + \frac{v_1 - v_0}{2} \cos \frac{t - t_1}{t_1 - t_0} \pi$$

– Да сравним с линейно заглаждане

Пример

Пример с плавно движение

– Пергел рисуващ ин-ян

"Compass drawing Yin-Yang" http://youtu.be/H4UfFBaWGVE

Вибрация

Вибрация

Вибрация – периодично трептене

Амплитуда+период (дължина, честота)

Затихване

- Симулира загуба на енергия
- Ние си избираме как

Загуба на енергия

Най-често намаляване с коефициент

– Начална амплитуда a_0 и $0 \ll k < 1$

– На всяка стъпка (не период!) $a_i=ka_{i-1}$

Различни k според материята

- Близки до 1 силно стегната материя
- Не толкова близки еластична материя

Трептенето

- Винаги го има, но не се вижда $a_i \approx 0$
- При удар сменяме текущата амплитуда

Пример

Пример с вибрации

- Еластични системи
- Вибрация на секундната стрелка

"Lab experiments with elastic blobs" http://youtu.be/lAlvYxAMoLk

"Being punished for the recess" http://youtu.be/XfBdOg-p_zU

Топане

Топане

Физическа представа

- Падащ предмет с дадена скорост
- При удар векторът на скоростта се отразява

Топане

- Най-често с хоризонтална повърхност
- Обръщане на знака на z-компонентата на скоростта

Идеи за реализация

При физическа точност

- Използваме уравнения от балистиката
- Отчитаме маса, скорост и земно привличане

При симулация

- Можем да заменим топането с $\cos t$
- Физически грешно, но визуално приемливо

Формула на топането

- Може както със $\sin t$, така и с $\cos t$

Примери с топчета в куб

- Отблъскване от стени
- Симулиране на вертикално топане
- Топане с отблъскване

Свободно летене

Свободно летене

Изисквания

- Начално положение и скорост
- Влияние само на гравитацията

Частни случаи

- Балистика колинеарна гравитация (т.е. безкрайно отдалечен център)
- Орбитална механика точкова гравитация (т.е. крайно отдалечен)

Орбитална механика

– Траекториите са конични сечения

Балистика

- Траекториите са параболи
- Начална позиция \vec{p}_0 , скорост \vec{v}_0 и земно ускорение $g \approx 9.81 \, m/s^2$

Пример

Фонтан от тухли

- Тухли изригват в случайна посока
- Всяка се движи по парабола

Балистична парабола

Изчисляване на параболата

- Чрез уравнението спрямо началните параметри $\vec{p}(t) = \frac{1}{2} \vec{g} t^2 + \vec{v}_0 t + \vec{p}_0$
- Чрез постъпково изчисление спрямо текущите параметри, с риск от акумулиране на грешка
 $\vec{a} = const$

$$\vec{g} = const$$

$$\vec{v}_i = \vec{v}_{i-1} + \vec{g}$$

$$\vec{p}_i = \vec{p}_{i-1} + \vec{v}$$

Задача за 2 бонус-точки

Най-вътрешната орбита е елипса

 Защо тогава като хвърлим тухла тя лети по парабола, а не по елипса?

Примери

Балистични примери

 Параболи апроксимирани с елипси, пръскалка във всички посоки и въртящо се мокро колело

"Water Fountain"

"Sprinkler"

"Wet Wheel"

http://youtu.be/Z7HxlTALKTE http://youtu.be/CKSXVkjntXg http://youtu.be/Y2pujOMQJcg

Скачане

Скачане

Моделиране на скачане

- По същество това е балистична крива
- Точен модел с парабола
- Приближени модели с елипса или с $\cos x$

При (пре-)скачане

 Обикновено се извършва в по-ранен момент спрямо евентуалния удар

Идея

Налични обекти

- Преграда, която се върти
- Обект, който я прескача

Идея за реализация

- Работим в полярни координати
- Ъгъл на обект $lpha_0$, на преграда $lpha_n$
- Когато двата ъгъла станат близки, обектът скача

Ще използваме хитрост

- Гледаме ъгловото разстояние $lpha_0$ $lpha_n$
- Ако $-\Delta \alpha \le \alpha_0 \alpha_n \le \Delta \alpha$ то $z(\alpha) = h \cos(\alpha_0 \alpha_n)$
- Височината на скока е h, а $\Delta \alpha$ определя колко предварително се скача

Реализация

Много скачащи пешки

 Всяка се интересува единствено от ъгловото разстояние до преградата

Вълни

Задача

Модел на водна повърхност

- Има вълни (като в басейн
- Физически модел прекалено сложен

Опростен модел

- Мрежа от точки
- Точките се движат нагоре-надолу
- Движат се случайно, но не изцяло случайно

Реализация

Начална конструкция

- Имаме мрежа от точки
- Движение нагоре-надолу $y(t) = \sin t$
- Всички го правят заедно 🕾

Подобрена (уж) конструкция

- Добавяме случайно отместване на синусоидата с не е грешка — число от 0 до 2π : $y(t) = \sin(t + \psi(2\pi))$
 - Резилтатът е хаотичен и се губи ролята на $\sin x$
 - Ето го резилтатът

Последен вариант

- Случайността се определя еднократно за всяка точка $\psi_{i,j} = \psi(2\pi)$
- При вълнение отместванията не се променят $z_{i,j} = \sin(t + \psi_{i,j})$
- Резултатът е по-приемлив

Пример

Пример с водни вълни

- Апроксимирана чрез сплайн-повърхнина
- Физичен модел на кръгово движение

"Water waves" http://youtu.be/lx6XUzG0Dt4

"Water waves" http://youtu.be/fSwKRiPf7VE

Хоризонтални вълни

Нова задача

- Модел на ливада с тревички
- Духа средно силен вятър

Идея

- Същата, като при вълните в басейн
- Но с допълнение: съседни тревички трябва да се вълнуват почти синхронно

Решение

Разглеждаме матрица от тревички

- Тревичка $T_{i,j}$ има отместване във времето $\Delta_{i,j}$
- За съседни треви, отместванията трябва да са близки (с точност ε)

$$\begin{aligned} \left| \Delta_{i,j} - \Delta_{i+1,j} \right| &< \varepsilon \\ \left| \Delta_{i,j} - \Delta_{i,j+1} \right| &< \varepsilon \end{aligned}$$

 Не бива да забравяме, че тревичките се вълнуват двумерно, а не едномерно

Ако сме достатъчно луди

- Ще направим невидима водна повърхност
- Вертикалното водно отместване дава ъгловото отместване на тревичка
- За плавност вместо случайно начално отместване има отместване, зависещо от мястото на тревичката $\psi_{i,j} = a_{\Psi} \sin(b_{\Psi} i + c_{\Psi})$
- Коефициентите избираме такива, че крайното отместване на тревичките да е каквото искаме

Резултат до момента

- Поглед отгоре на ливадата
- Отместванията са само по едно направление, защото в $\psi_{i,j} = a_{\Psi} \sin(b_{\Psi} i + c_{\Psi})$ участва i, но не и j

Хоризонталното отместване е в 2D

 Затова си правим още един невидим басейн, който дава другото отместване

$$\varphi_{i,j} = a_{\varphi} \sin(b_{\varphi}i + c_{\varphi})$$

- Отместванията са вече по две направления

Като сглобим всичко в едно

- Хоризонтални отмествания по X и Z
- Включена е сила на вятъра
- Свобода на избор къде и как участва
 (степен на наклона, отместване между съседни треви, ...)

"Grass in the wind" http://youtu.be/IMTZ1sTpcOw

Поуката

Поуката

За моделиране на физични явления

 Можем да използваме всякакви функции, ако не се търси точност

Основният гъдел е

- Да комбинираме познати функции,
 за да получим исканото поведение
- В тази лекция бяха показани само някои идеи от многото възможности

Въпроси?

Повече информация

```
[AGO2] ctp. 190-192
```

[**BAGL**] ctp. 154-161

[KLAW] ctp. 214-218

[**LENG**] ctp. 352-362, 389-395, 401-415

[PARE] ctp. 84-92, 283-291, 480-485

А също и:

Trajectories and orbits
 http://history.nasa.gov/conghand/traject.htm

Край

(не си тръгвайте)

Край