A Quantum Algorithm to Simulate Open Quantum Systems

Nishchay Suri $^{\dagger 1,2,3}$, Joseph Barreto $^{\dagger 1,2,4}$, Stuart Hadfield 1,2 , Nathan Wiebe 5 , Eleanor Rieffel 1,2 , Filip Wudarski 1,2 , Jeffrey Marshall 1,2

¹Quantum Artificial Intelligence Laboratory (QuAIL), NASA Ames Research Center, Moffett Field, CA, USA ²USRA Research Institute for Advanced Computer Science, Mountain View, CA, USA ³Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA ⁴QuTech, Delft University of Technology, Delft, The Netherlands ⁵Department of Computer Science, University of Toronto, Toronto, ON, Canada †These authors contributed equally to this work

Motivation for Open Quantum Systems (OQS)

Prior Work

Analog

 Harness existing open dynamics to emulate OQS (physically non-unitary)

Digital

 Induce open dynamics to create OQS through feedback, measurement, trace-out, etc. (operationally non-unitary)

Parallel

 Reconstruct open dynamics from separate measurements of dilated Kraus operators

- Parallel methods block-encode each Kraus matrix A in its own unitary, which are measured separately
- We must rely on post-selection, and thus fail with some probability
- This probability depends both on the initial state and the embedded operator, neither of which may be known *a priori*
- We propose a quantum algorithm to resolve this drawback

T T	$\lceil A \rceil$]
$U_A =$	•	•

$$U_A|0\rangle|\psi\rangle = |0\rangle \otimes A|\psi\rangle + |\psi_{\perp}\rangle$$
if $|0\rangle \to \frac{A}{\sqrt{p_{succ}}}|\psi\rangle$

$$p_{succ} = \langle \psi | A^{\dagger} A | \psi \rangle$$

Two-Unitary Decomposition Algorithm (TUD)

- * Kraus operators are *contractions*: $\sum_k A_k^{\dagger} A_k = 1 \rightarrow |A| \leq 1$
- Any contraction A admits a two-unitary decomposition^[1]: $A = (U_1 + U_2)/2$
- \clubsuit We can use QSVT^[2,3] to process a block encoding of A into $\sqrt{1-A^2}$ without explicitly performing SVD

- We use LCU to add/subtract A and $i\sqrt{1-A^2}$ to produce $U_{1,2}/2$
- ❖ With 2 extra calls to the algorithm, oblivious amplitude amplification^[5] (OAA) can boost this to $p \approx 1$

Implementation method	State preparation oracle calls	Kraus operator oracle calls
Block	$\mathcal{O}(1/p\ln(1/\beta))$	$\mathcal{O}(1/p \ln(1/\beta))$
TUD	$\mathcal{O}(\ln(1/\beta))$	$\mathcal{O}(1/\delta \ln(1/\epsilon) \ln(1/\beta))$

We obtain a query complexity independent of the success probability

Error Behavior

- We process $H_1 = (A +$ $A^{\dagger})/2$ and $H_2 = i(A A^{\dagger}$)/2 to avoid poor error scaling near 0 due to a parity constraint ("four-unitary decomposition")
- With Hermitian inputs, we can rescale and shift the eigenvalues as desired to access lowerror portions of the profile (dashed vertical line)

Example: Amplitude Damping Channel

0.01

We can simulate lowweight Kraus operators with much fewer queries, and this scaling does not depend on the system dimension

We achieve an error

scaling $|\langle A_k^{\dagger} O A_k \rangle \langle A_{\iota}^{\dagger} O A_{k} \rangle | \leq 2(\epsilon + h)$ where ϵ is the error from QSVT and h is the initial

block encoding error

 $|Tr(\Lambda(\rho)O) - Tr(\Lambda(\tilde{\rho})O)|$

Acknowledgements and References

I would like to acknowledge my collaborator Nishchay Suri, our mentors Dr. Filip Wudarski and Dr. Jeffrey Marshall, and the entire Quantum Al group and USRA. We are grateful for support from NASA Ames Research Center and NAMS Contract No. NNA16BD14C.

- [1] Cui et al. "An optimal expression of a Kraus operator as a linear combination of unitary matrices". J. Phys. A: Math. Theor. **45** 444011 (2012).
- [2] Gilyen et al. "Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics". STOC 2019.
- [3] Martyn et al. "Grand Unification of Quantum Algorithms". PRX Quantum 2, 040203 (2021).
- [4] John M. Martyn, Zane M. Rossi, Andrew K. Tan, and Isaac L. Chuang. Quantum signal processing. https://github.com/ichuang/pyqsp.
- [5] Berry, et al. "Exponential improvement in precision for simulating sparse Hamiltonians". Forum of Mathematics, Sigma, Volume 5, 2017.