Manasa and Pizza

With the college fest approaching soon, Manasa is following a strict dieting regime. Today, she just cannot resist her temptation for having a pizza. An inner conflict ensues, and she decides that she will have a pizza, only if she comes up with a solution to the problem stated below. Help her get the pizza for herself.

Given a list L of N numbers, where

$$L = \{ a_1, a_2, a_3, a_4 \dots, a_N \}$$

Find the value of M that is computed as described below.

$$\begin{split} M &= \sum_{\substack{S \text{ is a sublist of } L}} F\left(\left|\Sigma(S) - \Sigma(\overline{S})\right|\right) \\ \text{where } F(0) &= 1 \\ F(1) &= 3 \\ F(n) &= 6F(n-1) - F(n-2), \ \forall n \geq 2 \\ \text{and } \Sigma(S) &= \text{sum of all elements in the list } S \end{split}$$

Input Format

The first line contains an integer N i.e. size of the list L.

The next line contains N space separated integers, each representing an element of the list L.

Output Format

Print the value of M modulo $(10^9 + 7)$.

Constraints

 $1 \le N \le 5100$ $0 \le a_i \le 10^{15}$, where $i \in [1..N]$

Sample Input 00

3 123

Sample Output 00

40392

Explanation

There are 8 subsets of given set,

1.
$$S = \{1,2,3\}$$
 and $L - S = \{0\}$ value of $F(6) = 19601$

2.
$$S = \{1,2\}$$
 and $L - S = \{3\}$ value of $F(0) = 1$

3.
$$S = \{1,3\}$$
 and $L - S = \{2\}$ value of $F(2) = 17$

4.
$$S = \{2,3\}$$
 and $L - S = \{1\}$ value of $F(4) = 577$

5.
$$S = \{1\}$$
 and $L - S = \{2,3\}$ value of $F(4) = 577$

6.
$$S = \{2\}$$
 and $L - S = \{1,3\}$ value of $F(2) = 17$

7.
$$S = \{3\}$$
 and $L - S = \{1,2\}$ value of $F(0) = 1$

8.
$$S = \{\}$$
 and $L - S = \{1,2,3\}$ value of $F(6) = 19601$

Adding all these values, we get M = 40392.