Einführung in LATEX

Daniel Renschler

17. Juli 2023

- 2 Beispiele
- 3 Syntax & etc.
- 4 Anderes

Geschichte

Donald Knuth hat 1977-1986 TEXgemacht, da er die typografische Qualität seiner Bücher nicht gut fand. (The Art of Computer Programming)

Was ist LATEX?

IAT_EX? 0●000

- Textsatzystem.
- Ermöglicht Erstellen von Dokumenten.
- Beliebt im Akademischen Bereich/Wissenschaft.
- Erstellt hochwertige PDF Ausgabe.

Warum L⁴T_EX?

IAT_EX?

- Ist sehr intuitiv.
- Sehr extensiv mit packages.
- Kümmert sich um viel von alleine
- Man muss sich nicht mit Typografie und Vergleichbarem vertraut machen¹.
- Macht spaß

¹Es funktioniert einfach und sieht gut aus.

Warum nicht Word? (oder andere WYSIWYG² software)

- Word macht es schwerer Änderungen an großen Dokumenten vorzunehmen.
- Bibliografien werden nicht automatisch gemacht, auch Zitierstil nachträglich änderbar.
- Seitenzahlen, Referenzen, etc. werden nicht automatisch erzeugt.
- kann man nicht in Vim benutzen.

²WYSIWYG = What you see is what you get

Nutzzwecke

MEX?

- Ausarbeitungen/Laborberichte
- Präsentationen
- Dokumente
- Lebenslauf
- Bücher

Berichte

Laborberichte

Abbildung: Laborprotokoll Gravitationsgesetz

Intuitively, the index of a critical point p is 'the number of downward direc-Example 1.3. Let M be the torus T^2 embedded in \mathbb{R}^2 as its strated in Figure 1.1. Then the height function $h: T^2 \to \mathbb{R}$ which is the projection on Example 1.4. In Figure 1.2, we have illustrated two embeddings of S^2 in

Nonespeeds 1.5. Let M = R² and f : R² = R : (e, v) = e². Then all makes an an in the second of the function in control of the function in control of the Newspaper 1 & Let May Band C : Bay B : year 2. Then you fill in a critical point, but if is not Morse. Note however that if we add a small

1.2 Coordinate-free definition

Definition 1.7 (Hessian), Let M be a manifold and $f:M\to\mathbb{R}$ a

Because we are only considering the Hessian AL, at critical points, this is a

 $H_0 = 2(-dx_1^2 - \cdots - dx_k^2 + dx_{k+1}^2 + \cdots + dx_k^2).$ where $dx_i^2=dx_i\otimes dx_i$. Note in particular that H_0 is non-degenerate and

 $f(x) = f(p) - x_1^2 - \dots - x_n^2 + x_{n+1}^2 + \dots + x_n^2,$

Lemma I.I (Mone Lemma). Let M be a manifold and $f: M \to \mathbb{R}$ a

Proof. We follow the proof of Milno¹¹. We may assume that $M = \mathbb{R}^n$, p is $\frac{11}{2}$ Jules billion. More theory (AM.53). Vol. 51. Proof for surround area, 2016, a. 6.

 $f(x) = f(y) + \sum_{i=1}^{n} (x_i - y_i) g_i(x)$

Because this sum is symmetric in / and j., we may assume that h_{ij} is symmetric

which is non-degenerate by assumption. Now we imitate the proof of diagonalization of a non-degenerate quadratic

The value of N_p also does not depend on the extension of the vector field. Indeed, suppose \hat{Y} and \hat{Y} are two different extensions of Y. Then by symmetry of N_p , we have

Abbildung: Auszug einer Masterarbeit über Morse Theory

Beispiel 1

Beispiele:

Irgendwas mit Euler [1]

$$\mathcal{L} = \frac{\partial}{\partial t} + \frac{1}{2} \sum_{k=1}^{m} \frac{\partial^2}{\partial y_k^2}.$$

Analysis Aufgabe:

$$\lim_{x \to \int_0^\infty \sqrt{t}e^{-t}dt} \left(\left(\sum_{n=0}^\infty \frac{x^{4n_4}}{(2n+1)(4n+3)(4n+4)} \right)'' \right).$$

Toeplitz Matrix

$$A = \begin{bmatrix} a_0 & a_{-1} & a_{-2} & \dots & a_{-n+1} \\ a_1 & a_0 & a_{-1} & \ddots & \vdots \\ a_2 & a_1 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & a_{-1} & a_{-2} \\ \vdots & & \ddots & a_1 & a_0 & a_{-1} \\ a_{n-1} & \dots & \dots & a_2 & a_1 & a_0 \end{bmatrix}$$

Physik Beispiel

Sequential Quantum Circuits as Maps between Gapped Phases.[2]

$$\begin{split} &\frac{1}{|G|} \sum_{g} X_{i}^{g} \to \sum_{h} T_{i-1}^{h} T_{i}^{h}, \quad i = 2, \dots, N, \\ &\frac{1}{|G|} \sum_{g} X_{1}^{g} \to \frac{1}{|G|} \sum_{h,h'} e^{-\frac{2\pi i}{|G|} (h'-h)g} T_{1}^{h} T_{N}^{h'} \prod_{i=1}^{N} X_{i}^{g}, \\ &\sum_{h} T_{i}^{h} T_{i+1}^{h} \to \frac{1}{|G|} \sum_{g} X_{i}^{g}, i = 2, \dots, N \\ &\sum_{h} T_{1}^{h} T_{2}^{h} \to \frac{1}{|G|} \sum_{g} X_{1}^{g} \prod_{i=1}^{N} X_{i}^{g}. \end{split}$$

Abbildungen (tikz)

Syntax

- Commands beginnen mit \, nicht zu verwechseln mit /
- Umgebungen (environments) beginnen und enden immmer gleich, man kann/muss nesten.

Struktur

Struktur die in jedem Dokument eingehalten werden muss:

```
\documentclass{article}
\usepackage{tikz} % Fuer Zeichnungen
\usepackage{amsmath} % Fuer mathematische Symbole
\begin{document}
\end{document}
```


Documentclasses

Gibt viele, die wichtigsten sind:

- article: "normale Klasse" Titel ist auf erster Seite
- report: Titel hat eigene Seitenzahlen
- beamer: Für Präsentationen (diese z.B.)
- Andere sind: book, letter, etc.

Sections

Es gibt verschiedene an Sections.

- section
- subsection
- subsubsection

Diese werden dann z.B. in Inhaltsverzeichnissen angezeigt und sich untergeordnet.

- Section
 - subsection
 - subsubsection

Fußnoten und Bibliografien

Eine Fußnote macht man:

\footnote {Fußnoteninhalt}

Eine Zitat macht man:

\cite{Zitat}

Eine Bibliografie macht man:

\printbibliography

Fußnote³
Zitat [3]

³Fußnoteninhalt

Math environments

Mathe wird in math-environments geschrieben.

- inline math, z.B. $f(x) = x^2$: \$. . . \$
- display-math, z.b.

$$\frac{1}{|G|} \sum_{g} X_i^g$$

mit: \[... \]

Gleichungen, mit einem align environment.

Mathe 1

- superscript: ^, bzw. ^{}
 - e^x : e^x
- subscript: _, bzw. _{}
 - \mathbf{e}_x : \mathbf{e}_x
- Brüche: \frac{}{}
 - $\frac{a}{b}, \frac{1}{\frac{2}{3}}$

$$\frac{1}{\frac{1}{\frac{1}{2}2}2}$$

Mathe 2

Integral: \int_0^{\pi}

$$\int_0^{\tau}$$

■ Summe: \sum_0^1

$$\sum_0^1,\ \prod_0^1$$

Aus gestalterischer Sicht

Im Vergleich zu Affinity Publisher

Publisher	LAT _E X
Wird unübersichtlich, wenn man nicht genau weiß, was man macht.	Wird auf größeres Dokument nicht unübersichtlich.
Man muss alles grafisch anordnen.	Sachen sind da, wo sie hingehören.

Wie man es benutzt

- Arch-basiert: pacman -S texlive-basic
- Debian-basiert: apt-get install texlive-full
- MacOS: MacTeX
- Windows: MiKTeX
- Online: Overleaf

Weitere Resourcen

- diese Präsentation: https://github.com/d-rens/LaTeX-Einfuehrung/
- L^AT_EX Tutorials, von Luke Smith
- Overleaf Tutorials
- "The T_EXbook", von Donald E. Knuth

Literatur

- [1] Marcin Baranek u. a. On the randomized Euler algorithm under inexact information. 2023. arXiv: 2307.04718 [math.NA].
- [2] Xie Chen u. a. Sequential Quantum Circuits as Maps between Gapped Phases. 2023. arXiv: 2307.01267 [cond-mat.str-el].
- [3] Luke Smith. Making Bibliographies with Biber and BibLaTeX. Youtube. 2017. URL: https://www.youtube.com/watch?v=46piog3Fzp4.

