

Agenda

- Background information on Brown Dwarfs and Spectral Binaries
- •Goal of my research
- Background information on my source
- Different methods used and discuss the results of each
- Summarize results and future work
- Acknowledgements

Background Information

M L T

3500-2100K 2100-1300K 1300-600K <600K

Photo Credit: NASA/JPL Source Credit: Physics Today

Spectral Binaries and their Importance

•20% are binary systems

 Sources whose spectrum show distinct peculiarities from combined light of components

 Better understand the formation of Brown dwarfs and brown dwarf spectral binaries

Photo Credit: space.com

Source Credit: Burgasser et al. (2010) and Bardalez Gagliuffi et al. (2014)

Goal of project

•Characterize the unresolved spectral binary J1453+1420

•Implementing tools into Spex Prism Library Analysis Toolkit (SPLAT)

 An understanding of my source will help with the identification and characterization of future binaries

Background information on my Source

•IRCS Coordinates: 14 53 25.829 +14 20 41.01

Distance: 40.3 parsecs [7.7 parsecs]

Spectral Type: L2.0

Gravity Classification: Field

Photo Credit: Digital Sky Survey

Source Credit: Vizier

Prior Analysis

Standard Template

Classify by Template

- Used SPLAT routine to perform comparison to other brown dwarf spectra
- •Fitted the dwarf J2354-1852 (L1.0)
- Deviates too much at around 1.3 microns

Not a sufficient fit

Best Subdwarf Template

Classify by Template

Best Subdwarf Fit

Best Young Template

Classify by Template

Best Young Fit

Classify by Template

Constructed Binary Template

Summary of Results and Next Steps

- •My source fell in 11 of the 12 selected regions
- •Fitted to a binary template composed of a L1 primary and a T6 secondary
- Use model fitting to calculate primary and secondary masses

Implement a more efficient binary fitting method

Acknowledgements

UC San Diego

CAMPARE

STARS

PI: Adam Burgasser

Lab Group: Daniella Bardalez Galiguffi, Christian Aganze, Caleb Choban, and Gretal Mercado

References

- Bardalez Gagliuffi, Daniella C., et al. SpeX Spectroscopy of Unresolved Very Low Mass Binaries: Identification of 14 Candidate Binaries with Late-M/Early-L and T Dwarf Components. N.p.: Astrophysical Journal, 2014. Print.
- Burgasser, Adam J., et al. SpeX Spectroscopy of Unresolved Very Low Mass Binaries. I. Identification of 17 Candidate Binaries Straddling the L Dwarf/T Dwarf Transition. N.p.: The Astrophysical Journal, 2010. Print.
- •"Digital Sky Survey." Map. IRSA. N.p., n.d. Web. 12 Aug. 2015.
 .
- "Vizier." Vizier. Centre de Données astronomiques de Strasbourg, n.d. Web. 12 Aug. 2015. http://vizier.u strasbg.fr/vizbin/VizieR4? ref=VIZ5509063b0789&to=4c%3DGo%21b&from=1&this=4c%3DGo%21&%2F%2Fc=14+53+25.89+%2B14+20+41.8& out.max=50&%2F%2FCDSportal=http%3A%2F%2Fcdsportal.u- strasbg.fr%2FStoreVizierData.html&out.form=HTML+Table&out.add>.