Hazard Analysis SE 4G06, TRON 4TB6

Team 26, STRONE Jordan Bierbrier Azriel Gingoyon Taranjit Lotey Udeep Shah Abraham Taha

Table 1: Revision History

Date	Developer(s)	Change
10/14/22 Date2	Azriel G. Name(s)	Added sections 1, 2, and 3 Description of changes

Contents

7	Roadmap	5										
	6.2 Access Requirements	5 5 5										
6	Safety and Security Requirements 6.1 System Isolation Requirements	5										
5	5 Failure Mode and Effect Analysis											
4	Critical Assumptions											
3	System Boundaries and Components	1										
2	Scope and Purpose of Hazard Analysis											
1	Introduction	1										

1 Introduction

This document is the hazard analysis for the entirety of Synesthesia Wear. For context, Synesthesia Wear is an inexpensive and non-intrusive hearing aid bracelet with a purpose of improving quality of life by providing users with an alternate channel for sound recognition within their surroundings. Furthermore, this bracelet will have a corresponding application that will be made to be user-friendly so that users can easily access and configure their bracelets to whatever settings they so desire. Lastly, for the purposes of this document, the Synesthesia Wear developers believe that the definition of a hazard is one that is derived from Nancy Leveson's work. With that in mind, a hazard is any property or condition within the Synesthesia Wear system where after pairing up with any conditions in the environment, a potential for loss to the system now exists.

2 Scope and Purpose of Hazard Analysis

The scope of this document is to identify any and all possible hazards within the system, clarify the mitigation steps of each identified hazard, determine the causes and effects of all failures, and define all safety and security requirements that have resulted from the overall analysis.

3 System Boundaries and Components

The hazard analysis will be conducted on the Synesthesia Wear system which will be comprised of the following components:

- 1. The Bracelet which also consists of:
 - (a) Vibration Motor
 - (b) Sound Sensor
 - (c) Microcontroller
- 2. The Application to be installed on the users' devices which consists of:
 - (a) User Interface
 - (b) Bracelet Settings Configuration
- 3. The Device that runs the application
 - (a) Operating System

With the above in mind, the system boundary is limited to the above 3 components with each having their own respective subcomponents. Furthermore, it is important to note that not all components in the above list can be controlled (i.e. Device's Operating System) by the Synesthesia Wear developers. However, these components still needed to be listed down in the system boundary as the potential for a hazard can still be correlated to them.

4 Critical Assumptions

- CA1. The battery will not need to be replaced during product lifespan
- CA2. Signal input devices will be consistent with the results they produce
- CA3. Software application failure will not diminish usage of product
- CA4. Failure of one electrical components will allow user to continue use of product

5 Failure Mode and Effect Analysis

	n: Wearable Devid Mode: System R							
Sub Sys- tem	 	Failure Mode	Effects of Failure	Causes of Failure	Recommended actions	RPN	SR	Ref.
Battery	Power the various components of the device	Battery stops deliv- ering power to the device	Device loses all function- alities	 Battery was not charged. Battery fails and stopholding charge. Battery gets disconnected from the controller 	charging practices to avoid battery failure i.e (only charge to 80%, don't leave	d y e e e d -		H1-1
		Battery supplies incorrect power		ose schattenydfaohality or may we components may get damaged. • Low charge in the battery	ork in Hamewalye should be able to cut -Microcontroller can signal the u			
		Battery overheats	-Battery can m -Burn the user	iner characterity temporary melt other components of wearab r • Battery failure re battery performance	threast dysnice proper adding conditions ble device fer to H1-2 a. - Install a battery that can opera - refer to H1-1 b.			
Microphon	ne Sound detection	Sound is not detected on		Exosesive neutints draw Miosephonneds idas naged	Microcontroller can throw an User can check the microphon			
l		Sound is falsely detected	-Device functions incorrectly	Loose connectionsMicrophone is damaged	• Refer to H2-1 b.			H2-2

	- Mobile	-Sound process	si ngigapabiltties:aradbil e phone an	d -Pevivides dosotilfication i go ethehase ravbedrdishe s	igenal 1463-eIngth is dimin
	device loses	- Vibration mo	otesignoaltiselekiekesighad to pxovida	Infactors with the device are	nd phone when signal is
	connection		-Other signals such as wifi, micro	wavEnesurechiused idesigferentehewithodulutetloostladigg	make clearing for the bl
Bluetooth MB down in a com	mwnikatioblaere	am between mol	bilephone end war able devicer		
	tooth mod-		1		
	ule				
	-Invalid mes-	-Unexpected	-Message corrupted during transi	missiAnd a checksum into the bluetooth signal to	ched#3f2r message int
	sage	or incorrect	-Message corrupted during recept	tion Only accept predefined messages, discard fo	reign/ undefined messa
		output from		v	
		device			
	Motor does	- User does	-loose connections	- Microcontroller can signal the user in case of	f mottor-disconnect
	not vibrate	not get	-defective vibration motor	- Refer to H4-2.	
Vibration Morrowide haptic	notification to	userted			
	Incorrect vi-	-User in-	- defective vibration motor	- User can calibrate the vibration	H4-3
	bration	correctly		intensity and check the output	
		identifies the			
		sound			
	Vibration	-Painful or	- Motor drawing excess current	- Refer to H4-3.	H4-4
	too intense	annoying to		- Hardware connection is current limited.	
		the user			

6 Safety and Security Requirements

Bold statements are an extension of the SRS document safety requirements which should have been included in revision 1.

6.1 System Isolation Requirements

- SIR1. Product is isolated from electrical components at contact locations
- SIR2. Auto shut-off when water penetration detected

6.2 Access Requirements

ACR1. Authorized users can access preferred vibration/sensitivity settings through application site.

ACR2. Authorized users can retrain the watch through watch interface.

6.3 Integrity Requirements

- IR1. Only required variables will be given access to change
- IR2. Data will be accessible by authorized users
- **IR3.** After synchronization, a copy of data is loaded to system application
- IR4. No pairs of modes allowed identical settings
- IR5. Stored data overridden only at synchronization request

6.4 Privacy Requirements

- PPR1. Personalized access code will be created for user application accessibility
- PRR2. Data is not transferable between accounts
- PRR3. Watch interface locked if user application connection not established

7 Roadmap

The requirements implemented according to the hardware research milestone created in the development plan are as listed are the following, system isolation requirements and privacy requirements. With access requirements, integrity requirements and privacy requirements being researched in the future development plan.