Adatszerkezetek és algoritmusok 1. kis házi feladat

Csatornatisztítás

Marvin egy csatornatisztító robot, aki minden reggel bejárja a város alatti csatornarendszert, és letisztítja a falakakat. Írj programot, amely a csatornahálózat térképének függvényében meghatároz egy olyan útvonalat, amely az egészet bejárja.

Marvin négy keréken gurul, és a jobb oldalán van a tisztító eszköz, tehát mindig a mindenkori jobboldali falat tisztítja; tehát minden folyosón kétszer kell végigmenni, egyszer az egyik, következőnek a másik irányba.

Viszont Marvin utálja a felesleges munkát, ezért nem akar egy olyan folyosón olyan falat takarítani, amelyet már letakarított. Ezért a programodnak olyan útvonalat kell terveznie, amely minden folyosón pontosan kétszer halad át: egyszer az egyik, következőnek a másik irányba.

A csatornarendszer M folyosóból és a találkozási pontokon kereszteződésekből áll. Az N darab kereszteződést 1-től N-ig számozzuk. A térképen fel vannak sorolva a folyosók, két számmal reprezentálva: (a,b) folyosó köti össze az a-val számozott kereszteződést a b-vel számozott kereszteződéssel. A csatorarendszer mindig összefüggő, tehát bármely két kereszteződés között van legalább egy útvonal.

Marvin bármelyik kereszteződésből elindulhat, és bárhova megérkezhet (nem feltétlenül ugyanoda).

Példa

1. ábra. Példa gráf.

Példa bemenet (lerajzolva az 1. ábrán): N=5, M=6, az élek:

- 1 2
- 2 3
- 2 4
- 4 3
- 4 5
- 3 5

Egy lehetséges megoldás:

$$2 \xrightarrow{e_2} 3 \xrightarrow{e_4} 4 \xrightarrow{e_3} 2 \xrightarrow{e_1} 1 \xrightarrow{\overline{e_1}} 2 \xrightarrow{\overline{e_3}} 4 \xrightarrow{e_5} 5 \xrightarrow{e_6} 3 \xrightarrow{\overline{e_6}} 5 \xrightarrow{\overline{e_5}} 4 \xrightarrow{\overline{e_4}} 3 \xrightarrow{\overline{e_2}} 2$$

Itt a nyilak feletti feliratok az éleket jelzik (az 1. ábra szerinti jelöléssel), az oda- és visszafele irányt önkényesen megkülönböztetve felülvonással. A te implementációd egyszerűen csak a számsorozatot fogja visszaadni

Nem ez az egyetlen megoldás.

Limitek

A feladatok során a bemenetek nem léphetnek túl a limiteken, ezt nem kell külön ellenőrizni.

```
\begin{array}{l} \bullet & 2 \leq N \leq 10^6 \\ \\ \bullet & 2 \leq M \leq 10^7 \\ \\ \bullet & \mbox{Minden folyosóra: } 1 \leq a,b \leq N \end{array}
```

ullet Időlimit: tesztesetenként 5 másodperc

Memórialimit:

```
– heap: 500~{\rm MiB} (nem számítva az ellenőrző által lefoglalt, \approx 120~{\rm MB-t}) – stack: 8~{\rm MiB}
```

API

A megoldást a következő függvényben kell implementálni:

```
template<typename Iterator>
std::vector<std::int32_t> plan(Iterator corridors_begin, Iterator corridors_end, size_t N);
A típusparaméter egy iterátor típusa¹. Az iterátor által mutatott érték típusa Corridor:
struct Corridor {
  std::int32_t from, to;
};
```

A megoldás egy std::vector<int>, amely az útvonal során érintett kereszteződések sorszámát tartalmazza sorrendben, beleértve azt, ahonnan Marvin elindul, és azt, ahova érkezik.

Tanácsok

Próbáld meg először lerajzolni a teszteseteket (az egyszerűbbekkel kezdve), és fejből kitalálni, hogy mi lehet egy jó megoldás. Próbáld elemezni, hogy hogyan néznek ki a megoldások. Ha van egy működőnek látszó algoritmusod, próbálj meg olyan esetet rajzolni, ahol nem működik.

Másik fontos kérdés, hogy hogyan reprezentáljátok a csatornahálózatot? Az mindenképp segít, ha a matekos tárgyakból tanultakat nem felejted el.

Jó munkát!

¹A behelyettesített paraméter egy *LegacyContiguouslterator* (szintén nem kell ellenőrizni).