# Estruturas de Dados e Algoritmos

© 2001, Claudio Esperança

## Introdução

- O que é um algoritmo?
  - Processo sistemático para computar um resultado a partir de dados de entrada
- O que são estruturas de dados?
  - Maneira de organizar dados e operar sobre eles
- Algoritmos + estruturas de dados = programas
  - Um programa é a expressão em linguagem formal (inteligível por um computador) de um algoritmo.

## Projeto de Algoritmos

- Entender a entrada
- Entender o que se espera na saída
- Repetir:
  - Bolar um método,
  - Se o método é correto, então
    - Analisar a complexidade do método,
    - Se complexidade é aceitável, terminar.
- Implementar (programar)

### Projeto de Estruturas de Dados

- Uma modelagem abstrata dos objetos a serem manipulados e das operações sobre eles
  - Tipo de Dados Abstrato ("Abstract Data Type")
  - Ex.: Uma "pilha", com operações "push", "pop" etc.
- Uma modelagem concreta do TDA, isto é, como armazenar o TDA em memória/disco e que algoritmos devem ser usados para implementar as operações
  - Ex.: Pilha armazenada como lista encadeada ou vetor ...

### Projeto versus Implementação

- Um bom projeto leva a uma boa implementação
  - Todas as idéias principais já foram estudadas
  - A tradução do projeto em programa é *quase* mecânica
- (ou não)
  - Programar é uma *arte*
  - Um algoritmo inferior bem programado pode ser mais útil que um algoritmo eficiente mal programado
  - Há considerações práticas quase tão importantes quanto um bom projeto, como por exemplo,
    - Interfaces
    - Manutenibilidade
    - Documentação

### Algoritmos e Complexidade

- Eficiência de um algoritmo
  - Complexidade de tempo: quanto "tempo" é necessário para computar o resultado para uma instância do problema de tamanho *n* 
    - Pior caso: Considera-se a instância que faz o algoritmo funcionar mais lentamente
    - Caso médio: Considera-se todas as possíveis instâncias e mede-se o tempo médio
- Eficiência de uma estrutura de dados
  - Complexidade de espaço: quanto "espaço de memória/disco" é preciso para armazenar a estrutura (pior caso e caso médio)
- Complexidade de espaço e tempo estão frequentemente relacionadas

### Algoritmos e Complexidade

- Eficiência medida objetivamente depende de:
  - Como o programador implementou o algoritmo/ED
  - Características do computador usado para fazer experimentos:
    - Velocidade da CPU
    - Capacidade e velocidade de acesso à memória primária / secundária
    - Etc
  - Linguagem / Compilador / Sistema Operacional / etc
- Portanto, a medição formal de complexidade tem que ser subjetiva, porém matematicamente consistente
  - ⇒ Complexidade assintótica

### Complexidade Assintótica

- Tempo / espaço medidos em número de "passos" do algoritmo / "palavras" de memória ao invés de segundos ou bytes
- Análise do algoritmo / e.d. permite estimar uma função que depende do tamanho da entrada / número de dados armazenados (*n*).
  - Ex.:  $T(n) = 13n^3 + 2n^2 + 6n \log n$
- Percebe-se que à medida que *n* aumenta, o termo cúbico começa a dominar
- A constante que multiplica o termo cúbico tem relativamente a mesma importância que a velocidade da CPU / memória
- Diz-se que  $T(n) \in O(n^3)$

### Complexidade Assintótica

Definição:

 $T(n) \in O(f(n))$  se existem constantes c e  $n_0$  tais que  $T(n) \le c f(n)$  para todo  $n \ge n_0$ 

Alternativamente,

 $T(n) \in O(f(n))$  se  $\lim_{n\to\infty} T(n) / f(n)$  é constante (mas não infinito)

Exemplo:

$$\lim_{n \to \infty} \frac{T(n)}{f(n)} = \lim_{n \to \infty} \frac{13n^3 + 2n^2 + 6n\log n}{n^3}$$
$$= \lim_{n \to \infty} \left( 13 + \frac{2}{n} + \frac{\log n}{n^2} \right)$$
$$= 13$$

### Limite Superior e Limite Inferior

- Notação O é usada para estabelecer limites superiores de complexidade
- lacktriangle Para estabelecer limites inferiores de complexidade usa-se a notação  $\Omega$
- Definição

 $T(n) \in \Omega$  (f(n)) se existem constantes c e  $n_0$  tais que  $c f(n) \le T(n)$  para todo  $n \ge n_0$ 

Alternativamente,

 $T(n) \in \Omega$  (f(n)) se  $\lim_{n\to\infty} T(n)/f(n) > 0$  para todo  $n \ge n_0$  (pode ser, inclusive, infinito)

#### **Limites Justos**

- Observe que se  $T(n) \in O(n^3)$  então,  $T(n) \in O(n^4)$ ,  $T(n) \in O(n^5)$ , etc
- Analogamente, se  $T(n) \in \Omega(n^3)$  então,  $T(n) \in \Omega(n^2)$ ,  $T(n) \in \Omega(n)$ , etc
- Se uma função T(n) tem como limites superior e inferior a mesma função f(n), então diz-se que f(n) é um limite justo de T(n), ou  $T(n) \in \Theta(f(n))$
- Definição
  - $T(n) \in \Theta(f(n)) \Leftrightarrow T(n) \in O(f(n)) \land T(n) \in \Omega(f(n))$

### Inventário de funções de complexidade

- $T(n) \in O(1)$ : constante mais rápido, impossível
- $T(n) \in O(\log \log n)$ : super-rápido
- $T(n) \in O(\log n)$ : logarítmico muito bom
- $T(n) \in O(n)$ : linear é o melhor que se pode esperar se algo não pode ser determinado sem examinar toda a entrada
- $T(n) \in O(n \log n)$ : limite de muitos problemas práticos, ex.: ordenar uma coleção de números
- $T(n) \in O(n^2)$ : quadrático
- $T(n) \in O(n^k)$ : polinomial ok para n pequeno
- $T(n) \in O(k^n)$ , O(n!),  $O(n^n)$ : exponencial evite!

### Exemplo: Pontos máximos em 2D

- Um ponto máximo de uma coleção é um que não é dominado por nenhum outro (da coleção)
- Diz-se que um ponto  $(x_1, y_1)$  domina um ponto  $(x_2, y_2)$  se  $x_1 \ge x_2$  e  $y_1 \ge y_2$



### Exemplo – Algoritmo Força Bruta

Basta testar todos os pontos e verificar se são máximos:

```
proc maximos (Inteiro n, Ponto p [1..n]) {
   para i desde 1 até n fazer {
      dominado \leftarrow falso
     j \leftarrow 1
      enquanto \neg dominado \land j \leq n fazer {
         se i\neq j \land domina \ (p[j],p[i]) então
            dominado \leftarrow verdadeiro
        j \leftarrow j + 1
      se \neg dominado então reportar (p[i])
```

### Observações sobre pseudo-código

- É uma descrição do algoritmo para humanos
- Não precisa conter detalhes desnecessários
- Ex.: Assumimos que p não contém pontos duplicados, mas este pode ser um detalhe importante para o implementador
- Precisa ser inteligível
- Se o algoritmo usa outro algoritmo, este deve ser óbvio ou deve ser explicitado.
- Ex.: função domina deve ser explicitada?
   proc domina (Ponto p, Ponto q) {
   retornar p.x≥q.x ∧ p.y≥q.y
   }

### Correção do algoritmo

- Se o algoritmo não é óbvio, deve-se dar uma justificativa de sua correção
- Em particular:
  - Enumere restrições sobre a entrada admitida pelo algoritmo
  - Diga porque cada resultado computado satisfaz o que é pedido
  - Diga porque nenhum resultado correto é omitido

### Análise de complexidade (pior caso)

- O pior caso acontece quando todos os pontos são máximos
- O interior do laço mais interno tem complexidade constante, digamos 2 (o comando "se" e a atribuição a "j")
- O laço mais interno tem complexidade  $\sum_{i=1}^{n} 2^{i}$
- O interior do laço mais externo tem complexidade  $3 + \sum_{i=1}^{n} 2^{i}$
- O algoritmo tem complexidade

$$\sum_{i=1}^{n} \left( 3 + \sum_{j=1}^{n} 2 \right) = n(3+2n) = 3n + 2n^{2}$$

#### **Somatórios**

Propriedades

$$\sum_{i=1}^{n} c a_i = c \sum_{i=1}^{n} a_i$$

$$\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$$

### Alguns somatórios notáveis

Série aritmética : para  $n \ge 0$ 

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + n = \frac{n(n+1)}{2} = \Theta(n^2)$$

Série geométrica : seja x uma constante  $\neq 1$ 

$$\sum_{i=0}^{n} x^{i} = 1 + x + x^{2} + \dots + x^{n} = \frac{x^{n+1} - 1}{x - 1} = \begin{cases} \Theta(1), \text{ se } 0 < x < 1 \\ \Theta(x^{n}), \text{ se } x > 1 \end{cases}$$

Série Harmônica:

$$H_n = \sum_{i=1}^n \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \approx \ln n = \Theta(\ln n)$$

#### Resolvendo somatórios

O que faríamos se não soubéssemos que

$$\sum_{i=1}^{n} i^2 = \frac{2n^3 + 3n^2 + n}{6} = \Theta(n^3)$$

Usar limites aproximados

$$\sum_{i=1}^{n} i^2 \le \sum_{i=1}^{n} n^2 = n^3 = \Theta(n^3)$$

Aproximar por integrais

$$\sum_{i=1}^{n} i^2 \le \int_{1}^{n+1} x^2 dx = \frac{x^3}{3} \Big|_{x=1}^{n+1} = \frac{(n+1)^3}{3} - \frac{1}{3} = \frac{n^3 + 3n^2 + 3n}{3}$$

# Justificando a aproximação por integral





### Resolvendo somatórios por indução

Formula-se um palpite e tenta-se prová-lo. Ex.:

$$\sum_{i=1}^{n} i^2 = an^3 + bn^2 + cn + d$$

- Prova do caso base:
  - Para n = 0, o somatório é 0
  - Trivialmente verdadeiro se admitirmos d = 0
- Prova do caso genérico

$$\sum_{i=1}^{n} i^{2} = \left(\sum_{i=1}^{n-1} i^{2}\right) + n^{2}$$

$$= a(n-1)^{3} + b(n-1)^{2} + c(n-1) + n^{2}$$

$$= an^{3} + (-3a+b+1)n^{2} + (3a-2b+c)n + (-a+b-c)$$

### Resolvendo somatórios por indução

- Prova do caso genérico:
  - Coeficientes de potências iguais têm "bater"

$$a = a$$
,  $b = -3a + b + 1$ ,  $c = 3a - 2b + c$   $-a + b - c = 0$ 

• Resolvendo temos a = 1/3, b = 1/2 e c = 1/6

$$\sum_{i=1}^{n} i^2 = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6} = \frac{2n^3 + 3n^2 + n}{6}$$

### Array (vetores, matrizes)

 Organiza dados de mesma natureza (mesmo tamanho) em posições sucessivas da memória

- Cada dado é identificado por um índice
- Dado um índice *i* é possível computar o endereço de memória correspondente em tempo constante
  - Se o array é alocado a partir do endereço  $A_0$  e cada dado ocupa k posições, então o i-ésimo elemento está no endereço  $A_i = A_0 + i.k$
- Matrizes são construídas analogamente como vetores de vetores

### Array

- Estrutura de dados fundamental
  - Diversas outras estruturas são implementadas usando arrays
  - Em última análise, a própria memória é um array
- Problemas:
  - Alocação de memória
    - Quantas posições deve ter o array para uma dada aplicação?
    - O que fazer se precisarmos mais?
  - Como inserir um novo dado entre o *k*-ésimo e o (*k*+1)-ésimo elemento?
  - Como remover o *k*-ésimo elemento?

### Busca em Arrays

- Dado um array A contendo n valores nas posições A[0] ... A[n-1] e um valor v, descobrir:
  - Se *v* pertence ao array (problema + simples)
  - Qual ou quais posições de *A* contêm *v* (normalmente assume-se que todos os dados em *A* são distintos)
- Algoritmo trivial: busca sequencial proc buscasequencial (v, n, A[0..n-1]) { achei ← falso i ← 0 enquanto i < n e não achei fazer { se A[i] = v então achei ← verdadeiro senão i ← i + 1 } se achei então reportar (i) senão reportar(-1)</p>

### Busca em Arrays

- Busca sequencial simples testa três condições dentro do laço.
- É possível alterar o algoritmo para empregar apenas um teste no laço de repetição
- Busca com *Sentinela*:
  - Usa-se uma posição a mais no final do array (A[n]) que é carregada com uma cópia do dado sendo buscado (v)
  - Como é garantido que v será encontrado, não é preciso se precaver contra o acesso de uma posição i não existente

### Busca Sequencial com Sentinela

```
proc busca\_com\_sentinela (v, n, A[0..n]) {
  A[n] \leftarrow v
  i \leftarrow 0
  enquanto A[i] \neq v fazer {
     i \leftarrow i + 1
  se i < n então
     reportar (i)
                            % encontrado
  senão
     reportar(-1)
                            % não encontrado
```

### Busca Sequencial – Análise

- A análise de pior caso de ambos os algoritmos para busca seqüencial são obviamente O(n), embora a busca com sentinela seja mais rápida
- A análise de caso médio requer que estipulemos um modelo probabilístico para as entradas. Sejam:
  - $E_0$ ,  $E_1$ , ...  $E_{n-1}$  as entradas v correspondentes às situações onde v=A[0], v=A[1], ... v=A[n-1]
  - $E_n$  entradas v tais que v <u>não</u> pertence ao array A
  - $p(E_i)$  a probabilidade da entrada  $E_i$  ocorrer
  - $t(E_i)$  a complexidade do algoritmo quando recebe a entrada  $E_i$
- Assumimos:
  - $p(E_i) = q/n$  para i < n
  - $p(E_n) = 1-q$

### Busca Sequencial – Análise de Caso Médio

• Se admitirmos  $t(E_i) = i+1$ , então temos como complexidade média:

$$\sum_{i=0}^{n} p(E_i) t(E_i) = (n+1)(1-q) + \frac{q}{n} \left( \sum_{i=0}^{n-1} i + 1 \right)$$

$$= (n+1)(1-q) + \frac{q}{n} \frac{n(n+1)}{2}$$

$$= \frac{(n+1)(2-q)}{2}$$

- Para q=1/2, temos complexidade média ≈ 3n/4
- Para q=0, temos complexidade média ≈ n
- Para q=1, temos complexidade média ≈ n/2

### **Arrays Ordenados**

- Se os dados se encontram ordenados (em ordem crescente ou decrescente), a busca pode ser feita mais eficientemente
- Ordenação toma tempo  $\Theta(n \log n)$
- Útil se a coleção não é alterada ou se é alterada pouco frequentemente
- Busca seqüencial ordenada tem complexidade média = n/2
- Busca binária tem complexidade pior caso  $O(\log n)$

### Busca Sequencial Ordenada

```
proc busca_ordenada (v, n, A [0 .. n]) {
    A[n] \leftarrow v
    i \leftarrow 0
    enquanto A [i] < v fazer i \leftarrow i + 1
    se i < n e A [i] = v então
        reportar (i) % encontrado
    senão
    reportar (-1) % não encontrado
}</pre>
```

#### Busca Binária

```
proc busca_binária (v, n, A [0 .. n-1]) {
  inf \leftarrow 0 % limite inferior
  sup \leftarrow n-1 % limite superior
  enquanto inf \leq sup fazer {
     meio \leftarrow (inf + sup) \text{ div } 2
     se A[meio] < v então
        inf \leftarrow meio + 1
     senão se A[meio] > v então
        sup \leftarrow meio - 1
     senão
        retornar (meio) % Valor encontrado
                  % Valor não encontrado
  retornar (-1)
```

## Busca Binária - Análise de Complexidade

- O algoritmo funciona examinando as posições A[inf], A[inf+1], ... A[sup]
- Cada iteração do laço elimina aproximadamente metade das posições ainda não examinadas. No pior caso:
  - Inicialmente: n
  - Após a 1ª iteração: ~ n/2
  - Após a 2ª iteração: ~ n/4

. . .

- Após a *k*-ésima iteração: ~  $n/2^k = 1$
- Logo, no pior caso, o algoritmo faz  $\sim \log_2 n$  iterações, ou seja, o algoritmo tem complexidade  $O(\log n)$

### Arrays - Inserção e Remoção de Elementos

- É preciso empregar algoritmos de busca se:
  - A posição do elemento a ser removido não é conhecida
  - O array não pode conter elementos repetidos
- Se o array é ordenado, deseja-se preservar a ordem
  - Deslocar elementos para criar / fechar posições
- Se o array não é ordenado,
  - Inserção: Adicionar elemento no final do array
  - Remoção: Utilizar o elemento do final do array para ocupar a posição removida
- Se todas as posições estão preenchidas, inserção ocasiona overflow
  - Realocar o array
  - Reportar erro

### Exemplo: Inserção em Array Ordenado

- Assume-se que o array A pode conter elementos iguais
- Expressões lógicas são avaliadas em curto-circuito

```
proc inserção\_ordenada (v, n, max, A [0 .. max - 1]) {
   se n < max então {
      i \leftarrow n
      enquanto i > 0 e A[i-1] > v fazer {
          A[i] \leftarrow A[i-1]
          i \leftarrow i-1
      A[i] \leftarrow v
      n \leftarrow n + 1
   senão reportar ("Overflow")
```

### Exemplo: Remoção em Array Ordenado

- Algoritmo remove o elemento A [i]
- Pressupõe-se que *i* foi obtido por uma operação de busca

```
proc remoção\_ordenada (i, n, A [0 .. n-1]) {
   se i < n então {
      n \leftarrow n-1
      enquanto i < n fazer {
         A[i] \leftarrow A[i+1]
         i \leftarrow i+1
   senão reportar ("Erro")
```

# Complexidade de Inserção e Remoção

- Os dois algoritmos para arrays ordenados têm complexidade de pior caso O(n)
- É possível realizar inserção e remoção em *O*(1) se não for necessário preservar ordem entre os elementos
- Observe que:
  - Array ordenado
    - Busca (binária) =  $O(\log n)$
    - Inserção/Remoção = O(n)
  - Array não ordenado
    - Busca (seqüencial) = O(n)
    - Inserção/Remoção = O(1)

#### Pilhas, Filas e Deques

- Arrays, assim como listas\*, são freqüentemente usados para implementar coleções seqüenciais de dados onde as alterações (inserção/remoção) são efetuadas apenas no início ou no final da seqüência:
  - <u>Pilha</u>: inserção e remoção na mesma extremidade
  - Fila: inserção numa extremidade e remoção na outra
  - <u>Deque</u> (*double-ended queue*): inserção e remoção em ambas extremidades
  - \* OBS.: Lembre que estamos empregando o termo "*array*" para denotar coleções de dados de mesmo tamanho armazenados contiguamente em memória. Falaremos de *listas* mais tarde.

#### **Pilhas**

- Dada uma pilha P, podemos definir as seguintes operações:
  - *Empilha* (dado *v*, pilha *P*): acrescenta o dado *v* no topo da pilha. Pode ocasionar *overflow*
  - *Desempilha* (pilha *P*): descarta o dado mais recentemente empilhado (no topo da pilha). Pode ocasionar *underflow*
  - *Altura* (pilha *P*): retorna o número de elementos de *P*
  - Topo (pilha P): retorna o dado mais recentemente empilhado. Definida apenas se Altura (P) > 0
- A política de inserção e remoção à maneira de uma pilha é também conheciada como "LIFO": Last In, First Out

# Implementando Pilhas com Arrays

- Assumimos que uma pilha P tem os seguintes campos/componentes:
  - *P.max* = número máximo de dados comportado pela pilha
  - P.A [0...P.max 1] = array com P.max elementos
  - P.n = número de elementos presentes na pilha (inicialmente 0)
- Nossa implementação armazena os dados na pilha em P.A [0 .. P.n − 1], na mesma ordem em que foram empilhados:
  - P.A [0] é o dado mais antigo
  - P.A[P.n-1] é o dado mais recente

# Implementando Pilhas com Arrays

```
proc empilha (dado v, pilha P) {
    se P.n < P.max então {
        P.A [P.n] \leftarrow v
        P.n \leftarrow P.n + 1
    }
    senão reportar ("Overflow")
}
```

```
proc desempilha (pilha P) {
se P.n > 0 então P.n \leftarrow P.n - 1
senão reportar ("Underflow")
}
```

```
proc altura (pilha P) {
    retornar (P.n)
}

proc topo (pilha P) {
    retornar (P.A [P.n - 1])
}
```

#### Complexidade da Implementação de Pilha

- Todas as operações são O(1)
- Se for necessário tratar *overflow* com realocação, inserção pode ter complexidade de pior caso O(n)
  - Um novo array de comprimento maior (ex.: 2 *max*) é alocado
  - Todos os elementos são copiados para o novo array

#### Filas

- São comumente definidas as seguintes operações sobre filas:
  - Enfileira (dado v, fila F): o dado v é posto na fila F
  - *Desenfileira* (fila *F*) : descarta o dado mais antigo (menos recentemente enfileirado) da fila *F*
  - *Comprimento* (fila *F*) : retorna o número de elementos na fila *F*
  - *Próximo* (fila *F*) : retorna o dado mais antigo da fila *F*
- A política de inserção e remoção de dados à maneira de uma fila é conhecida como "FIFO" First In First Out

# Filas Implementadas com Arrays

- Uma fila F pode ser implementada usando uma estrutura com os seguintes campos
  - F.max = número máximo de dados
  - F.A [0..F.max-1] = array onde os dados são postos
  - *F.início* = índice do 1º elemento da fila (inicialmente 0)
  - F.n = número de elementos da fila
- Os elementos da fila são armazenados consecutivamente a partir de *F.A* [*F.início*] podendo "dar a volta" e continuar a partir de *F.A* [0]. Exemplo:



# Filas Implementadas com Arrays

```
proc enfileira (dado v, fila F) {
   se F.n < F.max então {
      F.A [(F.inicio + F.n) \mod F.max] \leftarrow v
      F.n \leftarrow F.n + 1
   senão reportar ("Overflow")
proc desenfileira (fila F) {
   se F.n > 0 então {
      F.inicio \leftarrow (F.inicio + 1) \mod F.max
      F.n \leftarrow F.n - 1
   senão reportar ("Underflow")
```

```
proc comprimento (fila F) {
   retornar F.n
proc pr\acute{o}ximo (fila F) {
   retornar F.A [F.início]
```

### Ordenação de Arrays

- Operação de grande importância teórica e prática
- Muitos algoritmos conhecidos com complexidade  $O(n \log n)$ :
  - HeapSort
  - QuickSort
  - MergeSort
- Frequentemente, algoritmos com complexidade assintótica pior tipicamente  $O(n^2)$  acabam sendo mais eficientes para n pequeno:
  - BubbleSort
  - InsertionSort

#### Dividir para Conquistar

- Vamos estudar o MergeSort, um algoritmo sob o princípio "Dividir para Conquistar" ou "Divide and Conquer"
- Consiste de:
  - Dividir a tarefa em pequenas subtarefas
  - "Conquistar" resolver cada subtarefa aplicando o algoritmo recursivamente a cada uma
  - Combinar as soluções das subtarefas construindo assim a solução do problema como um todo
- Tipicamente, algoritmos do tipo "Dividir para Conquistar" são recursivos
- Na análise de algoritmos recursivos os limites de complexidade precisam ser determinados resolvendo recorrências

- Considere um array A[1..n]. O algoritmo consiste das seguintes fases
  - **Dividir** *A* em 2 sub-coleções de tamanho  $\approx n/2$
  - Conquistar: ordenar cada sub-coleção chamando MergeSort recursivamente
  - Combinar as sub-coleções ordenadas formando uma única coleção ordenada
- Se uma sub-coleção tem apenas um elemento, ela já está ordenada e configura o caso base do algoritmo



- A rotina *MergeSort* abaixo ordena as posições i, i+1, ... i+n-1 do array A[]
- A rotina *Merge* é dada a seguir

```
proc MergeSort (A [], i, n) {
    se n > 1 então {
        m \leftarrow n div 2
            MergeSort (A, i, m)
            MergeSort (A, i + m, n - m)
            Merge (A, i, i + m, n)
        }
}
```

```
proc Merge (A [], i1, i2, n) {
   array B []
   i, j, k \leftarrow i1, i2, i1
   enquanto i < i2 e j < i1 + n fazer {
       se A[i] \leq A[j] então {
          B[k] \leftarrow A[i]
          k, i \leftarrow k+1, i+1
       } senão {
          B[k] \leftarrow A[j]
          k, j \leftarrow k+1, j+1
```

```
enquanto i < i2 fazer {
B[k] \leftarrow A[i]
i, k \leftarrow i + 1, k + 1
}
para i desde i1 até j-1 fazer {
A[i] \leftarrow B[i]
}
```

### MergeSort - Considerações

- MergeSort é um algoritmo de ordenação <u>estável</u>
  - Se dois elementos são iguais eles nunca são trocados de ordem
  - Importante, por exemplo, se os elementos já estão ordenados segundo alguma chave secundária
- O array auxiliar B não pode ser evitado sem piorar a performance do algoritmo
- O "overhead" da recursão pode ser aliviado empregandose um algoritmo mais simples quando os arrays forem pequenos (algumas dezenas)

### MergeSort - Considerações

- Pode-se aliviar a situação evitando a cópia dos elementos de B de volta para A
  - Usa-se 2 arrays A e B de mesmo comprimento
  - Em níveis pares da recursão, *Merge* opera em *A* usando *B* para armazenar o resultado
  - Em níveis impares a situação é invertida
  - Ao final pode ser necessário copiar de *B* para *A* novamente (se o número de níveis de recursão for ímpar)

#### MergeSort - Análise

- Análise da rotina Merge:
  - Cada chamada mescla um total de *n* elementos
  - Há três laços de repetição, sendo que cada iteração executa um número fixo de operações (que não depende de n)
  - O total de iterações dos 2 primeiros laços não pode exceder *n*, já que cada iteração copia exatamente um elemento de *A* para *B*
  - O total de iterações do terceiro laço não pode exceder *n*, já que cada iteração copia um elemento de *B* para *A*
  - Vemos então que no máximo 2n iterações são executadas no total e portanto o algoritmo é O(n)

### MergeSort - Análise

- Análise da rotina MergeSort
  - Admitamos que *T*(*n*) represente a complexidade (número de passos, comparações, etc) de *MergeSort*
  - Para n = 1, o tempo é constante. Como estamos desprezando fatores constantes, digamos que T(1) = 1
  - Para n > 1, a rotina chama:
    - a si mesma, recursivamente:
      - » Uma vez c/ n valendo  $\lfloor n/2 \rfloor$
      - » Outra vez c/ n valendo  $n \lfloor n/2 \rfloor = \lceil n/2 \rceil$
    - Merge, que executa n operações
  - Portanto, para n > 1,  $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + n$

#### Resolvendo Recorrências

Vimos que a análise do algoritmo MergeSort resultou numa fórmula recorrente:

$$T(n) = \begin{cases} 1 & \text{se } n = 1, \\ T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + n & \text{se } n > 1. \end{cases}$$

- Para resolver tais problemas, pode-se empregar muitas técnicas. Vamos ver apenas algumas:
  - "Chute" + verificação por indução
  - Iteração

#### Percebendo padrões

• Vejamos como T(n) se comporta para alguns valores de n

$$T(1) = 1$$

$$T(2) = T(1) + T(1) + 2 = 1 + 1 + 2 = 4$$

$$T(3) = T(2) + T(1) + 3 = 4 + 1 + 3 = 8$$

$$T(4) = T(2) + T(2) + 4 = 4 + 4 + 4 = 12$$

. . .

$$T(8) = T(4) + T(4) + 8 = 12 + 12 + 8 = 32$$

. . .

$$T(16) = T(8) + T(8) + 16 = 32 + 32 + 16 = 80$$

. . .

$$T(32) = T(16) + T(16) + 32 = 80 + 80 + 32 = 192$$

#### Percebendo Padrões

- Podemos vislumbrar que como o algoritmo opera dividindo os intervalos sempre por 2, um padrão pode emergir para valores de *n* iguais a potências de 2
- De fato observamos o seguinte quando consideramos o valor de T(n) / n:

```
T(1) / 1=1
T(2) / 2=2
T(4) / 4=3
T(8) / 8=4
T(16) / 16=5
...
T(2^k) / 2^k = k+1
```

• Ou seja, para potências de 2,  $T(n) / n = (\log_2 n) + 1$ , ou  $T(n) = (n \log_2 n) + n$ 

# Provando o Palpite por Indução

- Primeiro vamos nos livrar dos arredondamentos  $T(\lfloor n/2 \rfloor)$  e  $T(\lceil n/2 \rceil)$  provando o teorema apenas para valores de n iguais a potências de 2
- Esta hipótese simplificadora se justifica pois o algoritmo não se comporta de maneira significativamente diferente quando *n* não é uma potência de 2
- Portanto, temos

$$T(n) = \begin{cases} 1 & \text{se } n = 1, \\ 2T(n/2) + n & \text{se } n > 1. \end{cases}$$

■ Vamos provar por indução que, para n = 1 ou qualquer valor par de n maior que 1,  $T(n) = (n \log_2 n) + n$ 

### Provando o Palpite por Indução

- Caso base: n = 1
  - $T(1) = (1 \log_2 1) + 1 = 0 + 1 = 1$
- Caso geral: como n é uma potência de 2, n/2 também é e podemos admitir que a hipótese é verdadeira para qualquer potência de 2n' < n
  - T(n) = 2 T (n/2) + n  $= 2 ((n/2) \log_2 (n/2) + n/2) + n$   $= (n \log_2 (n/2) + n) + n$   $= n \log_2 (n/2) + 2n$   $= n (\log_2 n - \log_2 2) + 2n$   $= n (\log_2 n - 1) + 2n$  $= n \log_2 n + n$

# Método da Iteração

- Nem sempre temos intuição suficiente sobre o funcionamento do algoritmo para dar um palpite correto
- O método da iteração permite que se reconheça um padrão sem necessidade de chutar
- Quando funciona, a solução do problema da recorrência é obtida resolvendo-se um somatório
- O método consiste esquematicamente de:
  - Algumas iterações do caso geral são expandidas até se encontrar uma lei de formação
  - O somatório resultante é resolvido substituindo-se os termos recorrentes por fórmulas envolvendo apenas o(s) caso(s) base

# Resolvendo o MergeSort por Iteração

$$T(n) = 2T(n/2) + n$$

$$= 2(2T(n/4) + n/2) + n = 4T(n/4) + 2n$$

$$= 4(2T(n/8) + n/4) + 2n = 8T(n/8) + 3n$$

$$= 8(2T(n/16) + n/8) + 3n = 16T(n/16) + 4n$$

$$= ...$$

$$= 2^{k}T(n/(2^{k})) + kn$$

- Lembramos que, no limite, temos que chegar no caso base da recursão, ou seja, T(1)
- Para termos a fórmula acima em termos de T(1),  $n/(2^k)$  tem que convergir para 1, e isso só acontece se  $2^k=1$ , ou seja,  $k=\log_2 n$

### Resolvendo o *MergeSort* por Iteração

Temos então

$$T(n) = 2^{\log_2 n} T(n/(2^{\log_2 n})) + (\log_2 n)n$$

$$= n^{\log_2 2} T(1) + n \log_2 n$$

$$= n + n \log_2 n$$

- Chegamos à mesma fórmula, mas agora sem "chutar"
- Lembre-se dessas úteis relações envolvendo logaritmos:
  - $\log(ab) = \log a + \log b$
  - $\bullet \quad \log a^b = b \log a$
  - $\bullet \quad \log_a x = \frac{\log_b x}{\log_b a}$
  - $\bullet \quad a^{\log_b x} = x^{\log_b a}$

#### Exemplo Mais Complexo de Iteração

Vamos tentar resolver a seguinte recorrência por iteração:

$$T(n) = \begin{cases} 1 & \text{se } n = 1, \\ 3T(n/4) + n & \text{se } n > 1. \end{cases}$$

Temos

$$T(n) = 3T(n/4) + n$$

$$= 3(3T(n/16) + n/4) + n = 9T(n/16) + 3n/4 + n$$

$$= 9(3T(n/64) + n/16) + 3n/4 + n = 27T(n/64) + 9n/16 + 3n/4 + n$$

$$= ...$$

$$= 3^{k}T(n/4^{k}) + 3^{k-1}(n/4^{k-1}) + ... + 3^{2}(n/4^{2}) + 3(n/4) + n$$

$$= 3^{k}T\left(\frac{n}{4^{k}}\right) + n\sum_{i=0}^{k-1} \left(\frac{3}{4}\right)^{i}$$

### Exemplo Mais Complexo de Iteração

■ No limite, temos  $n/4^k=1$  e portanto,  $k=\log_4 n$ . Usando este valor na equação, temos

$$T(n) = 3^{\log_4 n} T(n/4^{\log_4 n}) + n \sum_{i=0}^{(\log_4 n) - 1} (3/4)^i$$
$$= n^{\log_4 3} + n \sum_{i=0}^{(\log_4 n) - 1} (3/4)^i$$

Lembrando a fórmula para a soma de termos de uma PG:

$$\sum_{i=0}^{m} x^{i} = \frac{x^{m+1} - 1}{x - 1}$$

### Exemplo Mais Complexo de Iteração

Temos finalmente

$$T(n) = n^{\log_4 3} + n \frac{(3/4)^{\log_4 n} - 1}{-1/4}$$

$$= n^{\log_4 3} + n \frac{n^{\log_4 (3/4)} - 1}{-1/4}$$

$$= n^{\log_4 3} - 4n(n^{(\log_4 3) - 1} - 1)$$

$$= n^{\log_4 3} - 4n^{\log_4 3} + 4n$$

$$= 4n - 3n^{\log_4 3}$$

$$= 4n - 3n^{0.79} \in \Theta(n)$$

#### Árvores de Recursão

- Maneira gráfica de visualizar a estrutura de chamadas recursivas do algoritmo
- Cada nó da árvore é uma instância (chamada recursiva)
- Se uma instância chama outras, estas são representadas como nós-filhos
- Cada nó é rotulado com o tempo gasto apenas nas operações locais (sem contar as chamadas recursivas)
- Exemplo: MergeSort

# Árvore de Recursão do MergeSort



# Árvore de Recursão do MergeSort

- Observamos que cada nível de recursão efetua no total n passos
- Como há  $\log_2 n + 1$  níveis de recursão, o tempo total é dado por  $n \log_2 n + n$ , o mesmo que encontramos na solução por iteração
- Outro exemplo: considere a recorrência dada por

$$T(n) = \begin{cases} 1 & \text{se } n = 1, \\ 3T(n/2) + n^2 & \text{se } n > 1. \end{cases}$$

# Árvore de Recursão - Outro exemplo



# Árvore de Recursão - Outro exemplo

• Vemos que a soma das complexidades locais pelos k+1 níveis da recursão nos dá

$$T(n) = n^2 + \sum_{i=0}^{k} (3/4)^i$$

- Na verdade, a complexidade assintótica do algoritmo já pode ser estabelecida aqui como sendo  $\Theta(n^2)$  uma vez que sabemos que o somatório acima converge para uma constante finita mesmo que k tenda a infinito
- Se quisermos uma fórmula mais exata, podemos observar (pelo mesmo raciocínio usado na recursão do *MergeSort*) que *k*=log<sub>2</sub>*n*. Aplicando a fórmula da soma de termos de uma PG obtemos

$$T(n) = 4n^2 - 3n^{\log_2 3}$$

# O Teorema Mestre (Simplificado)

- Podemos observar que as fórmulas de recorrência provenientes de algoritmos do tipo *Dividir-para-Conquistar* são muito semelhantes
- Tais algoritmos tendem a dividir o problema em *a* partes iguais, cada uma de tamanho *b* vezes menor que o problema original
- Quando, além disso, o trabalho executado em cada instância da recursão é uma potência de n, existe um teorema que nos dá diretamente a complexidade assintótica do algoritmo
- Em outras palavras, o *Teorema Mestre* pode resolver recorrências cujo caso geral é da forma  $T(n)=a T(n/b) + n^k$

# Teorema Mestre Simplificado

- Dadas as constantes  $a \ge 1$  e  $b \ge 1$  e uma recorrência da forma T(n)=a T (n/b) +  $n^k$ , então,
  - Caso 1: se  $a > b^k$  então  $T(n) \in \Theta(n^{\log_b a})$
  - Caso 2: se  $a = b^k$  então  $T(n) \in \Theta(n^k \log n)$
  - Caso 3: se  $a < b^k$  então  $T(n) \in \Theta(n^k)$
- (Como antes, assumimos que *n* é uma potência de *b* e que o caso base *T*(1) tem complexidade constante)

# Teorema Mestre Simplificado

- Exemplos:
  - MergeSort: T(n)=2T(n/2)+n
    - -a=2, b=2, k=1.
    - **caso 2** se aplica e T(n) ∈  $\Theta(n \log n)$
  - $T(n)=3T(n/2)+n^2$ 
    - -a=3, b=2, k=2
    - **caso 3** se aplica (3<2<sup>2</sup>) e T(n) ∈  $\Theta(n^2)$
  - $T(n)=2T(n/2)+n\log n$ 
    - Teorema mestre (simplificado ou completo) n\u00e3o se aplica
    - Pode ser resolvida por iteração

# Teorema Mestre e Árvores de Recursão

- Os três casos do teorema mestre podem ser entendidos como as três maneiras de distribuir o trabalho na árvore de recursão:
  - Caso 1: O trabalho é concentrado nas folhas (ex.: T(n)=4T(n/3)+n)
  - Caso 2: O trabalho é dividido igualmente entre todos os níveis (ex.: MergeSort)
  - Caso 3: O trabalho é concentrado nas raízes (ex.:  $3T(n/2) + n^2$ )

### QuickSort

- O QuickSort é provavelmente o algoritmo mais usado na prática para ordenar arrays
- Sua complexidade de caso médio é  $\Theta(n \log n)$
- Sua complexidade de pior caso é  $\Theta(n^2)$  mas a probabilidade do pior caso acontecer fica menor à medida que n cresce (caindo para 0 à medida que n tende a infinito)
- O passo crucial do algoritmo é escolher um elemento do array para servir de <u>pivô</u>
- O QuickSort pode se tornar um algoritmo de complexidade de pior caso  $\Theta(n \log n)$  se escolhermos sempre a mediana como pivô. Usando um algoritmo que seleciona a mediana dos elementos em  $\Theta(n)$ , mas na prática o algoritmo acaba tendo um desempenho ruim

# QuickSort: Partição

- O QuickSort utiliza como base um algoritmo de particionamento
- Particionar um array em torno de um <u>pivô</u> *x* significa dividi-lo em três segmentos contíguos contendo, respectivamente, todos os elementos menores que *x*, iguais a *x*, e maiores que *x*.
- Vamos definir uma função *partição* que divide um array A de n elementos indexados a partir do índice i, isto é, A[i], A[i+1] ... A[i+n-1]
- Como pivô, escolheremos x = valor inicial de A[i]
- A rotina retorna *m*, o número de elementos menores que *x*
- Assumimos também que o array tem todos os seus elementos distintos, logo, ao final da chamada, os segmentos são:
  - A[i] ... A[i + m 1]
  - A[i+m]
  - $A[i + m + 1] \dots A[i + n 1]$

# QuickSort : Partição



# QuickSort: Partição

```
proc partição(i, n, A[i ... i + n - 1]) {
   m \leftarrow 0
    para j desde i+1 até i+n-1 fazer {
       se A[j] < A[i] então {
           m \leftarrow m + 1
           \operatorname{trocar} A[j] \operatorname{com} A[i+m]
   \operatorname{trocar} A[i] \operatorname{com} A[i+m]
    retornar m
```

### QuickSort

- É fácil ver que o algoritmo *partição* tem complexidade  $\Theta(n)$
- Se quisermos escolher outro elemento como pivô, k digamos, basta trocar A[i] com A[k] antes de chamar  $partiç\~ao$
- O QuickSort funciona particionando o array recursivamente até que todos os segmentos tenham tamanho <= 1</li>
- Na prática, utiliza-se um pivô randômico. Prova-se que isso garante complexidade de caso médio Θ(n log n) para o QuickSort
- Diz-se que o quicksort é um algoritmo de Las Vegas, isto é, sua complexidade é uma variável randômica. A complexidade desses algoritmos é determinada fazendo-se uma média de todas as escolhas possíveis

### QuickSort

```
proc QuickSort (i, n, A [i .. i + n - 1]) {
    se n > 1 então {
        escolha um valor k entre i e i + n - 1
        trocar A [k] com A [i]
        m \leftarrow particao (i, n, A)
        QuickSort (i, m, A)
        QuickSort (i+m+1, n-m-1, A)
    }
}
```

### Análise do QuickSort

A análise de pior caso do algorimo resulta na recorrência

$$T(n) = \begin{cases} 1 & \text{se } n \le 1, \\ \max_{m=0..n-1} (T(m) + T(n-m-1) + n) & \text{se } n > 1. \end{cases}$$

- A pergunta da vez é: qual valor de m maximiza T(n)?
  - Nesse caso, a resposta é: valores de m iguais a 0 ou n-1 fazem  $T(n) \in \Theta(n^2)$
  - A argumentação formal é complicada, mas podemos observar que se ao invés de valores extremos, escolhermos um valor médio de *m* minimizaremos T(n)
  - Em particular, se pudermos sempre obter m = n/2, teremos a fórmula de recorrência do MergeSort que resulta em  $T(n) \in \Theta(n \log n)$

### Análise do QuickSort – Usando a Mediana

- Escolher sempre um pivô que resulta em m=n/2 implica em termos um algoritmo para calcular a mediana
- Obviamente, só podemos gastar tempo O(n) para fazer essa escolha
- De fato, existe um algoritmo que permite calcular a mediana de um array (ou, na verdade, o k-ésimo maior elemento do array) em O(n)
- Este algoritmo também utiliza a técnica do pivô
- Na verdade, prova-se que esse algoritmo tem complexidade O(n) se pudermos sempre escolher um pivô de forma a garantir que  $cn \le m \le (1-c) n$  para alguma constante c
- Existe um algoritmo (bastante enrolado) para fazer essa escolha do pivô que garante  $n/4 \le m \le 3n/4$

# Mediana – Algoritmo para escolher Pivô

■ 1º passo: Dividir o array em grupos de 5

| 14 | 32 | 23 | 5  | 10 | 60 | 29 |
|----|----|----|----|----|----|----|
| 57 | 2  | 52 | 44 | 27 | 21 | 11 |
| 24 | 43 | 12 | 17 | 48 | 1  | 58 |
| 6  | 30 | 63 | 34 | 8  | 55 | 39 |
| 37 | 25 | 3  | 64 | 19 | 41 |    |

# Mediana – Algoritmo para escolher Pivô

- 2º passo: Computar as medianas dos grupos de 5
  - Cada mediana pode ser computada em O(1)

# Mediana – Algoritmo para escolher Pivô

- 3º passo: Computar a mediana das medianas
  - OBS.: Para tanto, chamamos recursivamente o algoritmo das medianas, que roda em O(n)



# QuickSort – Considerações Finais

- É comum limitar a recursão do QuickSort empregando um algoritmo mais simples para *n* pequeno
- As implementações de QuickSort com pivô randômico são as mais usadas na prática pois as arquiteturas modernas de computadores executam mais rápido códigos que têm localidade de referência
  - As comparações são sempre entre o pivô (que pode ser guardado num registrador) e posições consecutivas do array,
- O MergeSort também tem boa localidade de referência, mas precisa de um array auxiliar
- O HeapSort não precisa de um array auxiliar mas tem péssima localidade de referência

### Listas

- Uma lista é um arranjo seqüencial de elementos
- Dada uma lista *L*, as seguintes operações são típicas
  - Encontrar o primeiro elemento de L
  - Dado um elemento de *L*, encontrar o próximo ou o anterior
  - Encontrar o k-ésimo elemento da lista
- Arrays, são listas onde os elementos são de mesmo tamanho e armazenados contiguamente na memória do computador
- Vamos agora considerar listas encadeadas, que não têm as principais restrições dos arrays:
  - É possível inserir ou remover elementos em O(1)
  - O problema de overflow não existe, ou melhor, acontece apenas quando a memória do computador se esgota

### Listas Encadeadas

- Listas encadeadas também têm desvantagens:
  - Utilizam mais memória que arrays
  - Acesso direto i.e., O(1) ao k-ésimo elemento não é possível
- Existem muitas maneiras de implementar listas encadeadas
  - Listas *a la* LISP
  - Listas com ponteiros
- Um assunto muito intimamente ligado a estruturas encadeadas é o problema de alocação de memória

### Listas Encadeadas

- Elementos são armazenados na memória em endereços arbitrários
- Ordem sequencial entre os elementos é armazenada explícitamente (elos, ponteiros, links)
- Deve ser possível determinar o elo correspondente a cada elemento (armazenamento consecutivo / 2 elos)
- A lista propriamente só pode ser acessada sabendo-se o endereço do seu primeiro elemento
- Deve haver alguma maneira de determinar o comprimento da lista (elo nulo, comprimento armazenado)



### Listas Encadeadas

- Vamos assumir inicialmente:
  - Cada nó (par elemento/elo) é armazenado em posições contíguas de memória
  - Usamos um elo nulo para indicar o fim da lista
  - Uma lista é referida por um elo que leva ao primeiro nó da lista
- Sendo assim, vamos propositalmente confundir o conceito de elo e lista e definir lista da seguinte forma:
  - Uma lista é
    - Uma *lista nula* ou
    - Um par elemento/lista

### Busca Seqüencial em Listas Encadeadas

- Vamos usar a seguinte notação:
  - *Nulo* : elo (lista) nulo
  - $L^{\wedge}$ : denota primeiro nó da lista L. Definido apenas se L não é nula
  - No. Elemento: denota o elemento armazenado em No.
  - *No.Elo*: denota o elo armazenado em No

```
proc Busca (Lista L, Valor v) {
    se L = Nulo então
        retornar falso
    senão
        se L^.Elemento = v então
            retornar verdadeiro
        senão
        retornar Busca (L^.Elo, v)
}
```

### Busca Seqüencial em Listas

```
(Versão não recursiva)
proc Busca (Lista L, Valor v) {
  tmp \leftarrow L
   enquanto tmp \neq Nulo fazer {
      se tmp^*.Elemento = v então
         retornar verdadeiro
      senão
         tmp \leftarrow tmp^{\wedge}.Elo
   retornar falso
```

# Alocação de Memória

- É preciso haver algum mecanismo que permita gerenciar a memória livre
- Quando se quer alocar um nó, requisita-se uma área contígua de memória livre suficientemente grande
  - *Aloca (Tipo)* retorna um elo para uma área de memória grande suficiente para guardar uma estrutura de dados do tipo *Tipo*
  - Ex.: *Aloca* (NoLista) retorna um elo para um nó de lista, isto é, uma *Lista*
- Quando uma área de memória está mais em uso, ela é retornada ao gerenciador para ser reutilizada posteriormente
  - *Libera*(*Elo*) retorna a área de memória contígua apontada por *Elo*

### Criando uma Lista

Para criar uma lista com um único elemento igual a v

```
 \begin{array}{l} \textbf{proc } \textit{CriaListaUnária (Valor v) } \{ \\ \textit{L} \leftarrow \textit{Aloca (NoLista)} \\ \textit{L^{\wedge}.Elemento} \leftarrow \textit{v} \\ \textit{L^{\wedge}.Elo} \leftarrow \textit{Nulo} \\ \textbf{retornar } \textit{L} \\ \} \end{array}
```

 Para criar uma lista com um elemento igual a v à frente de uma lista S

```
proc CriaNoLista (Valor v, Lista S) {
L \leftarrow Aloca (NoLista)
L^{\wedge}.Elemento \leftarrow v
L^{\wedge}.Elo \leftarrow S
retornar L
```

CriaNoLista (v, S)

CriaNoLista (v, S)  $L \leftarrow Aloca (NoLista)$  V = S  $L \leftarrow P = S$  V = S V = S V = S V = S V = S V = S V = S V = S

CriaNoLista (v, S)  $L \leftarrow Aloca (NoLista)$   $L^{\wedge}.Elemento \leftarrow v$   $L^{\wedge}.Elo \leftarrow S$ 

Para destruir o primeiro nó de uma lista

```
proc DestroiNoLista (var Lista L) {
    tmp \leftarrow L
    L \leftarrow L^.Elo
    Libera (tmp)
}
```

Para destruir uma lista inteira

```
proc DestroiLista (\underline{var} Lista L) {
    enquanto L \neq Nulo fazer
    DestroiNoLista (L)
}
```

• (Note que em ambas rotinas, *L* é um parâmetro <u>variável</u>, isto é, passado por referência)

### DestroiNoLista (L)









# Inserção e Remoção

- Todos os procedimentos de inserção e remoção de elementos de uma lista encadeada podem ser escritos com o auxílio das rotinas *CriaNoLista* e *DestroiNoLista*
- Rotina para inserir um elemento v numa lista ordenada L
   proc InsereListaOrdenada (Valor v, var Lista L) {

```
se L = Nulo então

L \leftarrow CriaListaUnária (v)

senão

se L^{\wedge}.Elemento > v então

L \leftarrow CriaNoLista (v, L)

senão

InsereListaOrdenada (v, L^{\wedge}.Elo)
```

# Inserção e Remoção

 Rotina para remover um elemento igual a v de uma lista ordenada L

```
proc RemoveListaOrdenada (Valor\ v, var Lista\ L) {
    se L \neq Nulo\ então
    se L^{\wedge}.Elemento = v\ então
        DestroiNoLista (L)
    senão
        RemoveListaOrdenada (v, L^{\wedge}.Elo)
}
```

- A utilização de ponteiros para designar elos de uma estrutura encadeada pode levar a uma série de ambigüidades
- Por exemplo, sejam  $L_1$  e  $L_2$  duas listas conforme definidas anteriormente. O que significa a instrução " $L_2 \leftarrow L_1$ "?
  - Duas interpretações são razoáveis:
    - 1. A lista  $L_2$  recebe uma cópia da lista  $L_1$
    - 2.  $L_1$  e  $L_2$  passam a designar a mesma lista
  - No entanto, nenhuma das duas é verdadeira na maioria das linguagens de programação!









 $DestroiLista(L_1)$ 

#### Problemas Comuns com Ponteiros

- Ponteiro no vazio (dangling pointer)
  - Um ponteiro acaba apontando para uma área de memória não mais sob controle do programa, ou
  - Um ponteiro acaba apontando para uma área qualquer de memória do programa sem que o programador se dê conta
- Vazamento de memória (memory leak)
  - Uma área de memória alocada para o programa é "esquecida" por um programa
  - Em alguns casos, se o procedimento é repetido muitas vezes, o programa acaba falhando por falta de memória

#### Coleta de Lixo

- Muitas linguagens de programação (e.g., Java, LISP, Modula-3) aliviam esses problemas adotando o princípio da "Coleta de Lixo" (*Garbage Collection*)
  - O programador aloca memória explicitamente mas não a libera explicitamente
  - Variáveis que não são mais necessárias (ex. saem de escopo), são entregues a um procedimento automático (coletor de lixo) que se encarrega de devolvê-las ao banco de memória livre
  - O coletor de lixo só devolve a variável ao banco de memória livre se ela não pode mais ser acessada, isto é, se nenhum ponteiro do programa aponta para ela
  - O esquema mais usado para se implementar coletores de lixo é o do contador de referências

- A cada variável alocada dinamicamente é associado um contador de referências, isto é, um inteiro que indica o número de ponteiros que apontam para a variável
- Quando o contador de referências chega a 0, a variável dinâmica é retornada para o banco de memória livre

- A cada variável alocada dinamicamente é associado um contador de referências, isto é, um inteiro que indica o número de ponteiros que apontam para a variável
- Quando o contador de referências chega a 0, a variável dinâmica é retornada para o banco de memória livre



- A cada variável alocada dinamicamente é associado um contador de referências, isto é, um inteiro que indica o número de ponteiros que apontam para a variável
- Quando o contador de referências chega a 0, a variável dinâmica é retornada para o banco de memória livre



- A cada variável alocada dinamicamente é associado um contador de referências, isto é, um inteiro que indica o número de ponteiros que apontam para a variável
- Quando o contador de referências chega a 0, a variável dinâmica é retornada para o banco de memória livre



- A cada variável alocada dinamicamente é associado um contador de referências, isto é, um inteiro que indica o número de ponteiros que apontam para a variável
- Quando o contador de referências chega a 0, a variável dinâmica é retornada para o banco de memória livre



- A cada variável alocada dinamicamente é associado um contador de referências, isto é, um inteiro que indica o número de ponteiros que apontam para a variável
- Quando o contador de referências chega a 0, a variável dinâmica é retornada para o banco de memória livre



- A cada variável alocada dinamicamente é associado um contador de referências, isto é, um inteiro que indica o número de ponteiros que apontam para a variável
- Quando o contador de referências chega a 0, a variável dinâmica é retornada para o banco de memória livre



$$L_1 \leftarrow CriaNoLista (v, L_1)$$

- A cada variável alocada dinamicamente é associado um contador de referências, isto é, um inteiro que indica o número de ponteiros que apontam para a variável
- Quando o contador de referências chega a 0, a variável dinâmica é retornada para o banco de memória livre



$$L_1 \leftarrow Nulo$$

- A cada variável alocada dinamicamente é associado um contador de referências, isto é, um inteiro que indica o número de ponteiros que apontam para a variável
- Quando o contador de referências chega a 0, a variável dinâmica é retornada para o banco de memória livre



#### Iteradores de Listas

- Quando coleta de lixo não está disponível ou se torna excessivamente custosa, estruturas com ponteiros podem ser manipuladas com menos chance de erro distinguindose os seguintes conceitos:
  - variável do tipo lista (ou seja, listas propriamente ditas)
  - ponteiros para nós de lista (ou seja, iteradores de listas)
- (Pense num array!)



- Uma lista encadeada é ideal para ser usada na implentação de pilhas já que inserção e remoção podem ser feitas com naturalidade em *O*(1) no início da lista
- Para implementar uma fila é necessário manter dois ponteiros: um para o início e outro para o fim da fila

- Uma lista encadeada é ideal para ser usada na implentação de pilhas já que inserção e remoção podem ser feitas com naturalidade em *O*(1) no início da lista
- Para implementar uma fila é necessário manter dois ponteiros: um para o início e outro para o fim da fila



- Uma lista encadeada é ideal para ser usada na implentação de pilhas já que inserção e remoção podem ser feitas com naturalidade em *O*(1) no início da lista
- Para implementar uma fila é necessário manter dois ponteiros: um para o início e outro para o fim da fila



- Uma lista encadeada é ideal para ser usada na implentação de pilhas já que inserção e remoção podem ser feitas com naturalidade em *O*(1) no início da lista
- Para implementar uma fila é necessário manter dois ponteiros: um para o início e outro para o fim da fila



- O uso de dois ponteiros tem que ser cuidadoso para contemplar os casos especiais onde a lista tem 0 ou 1 elemento
- Uma solução mais elegante é usar listas circulares
- Neste caso, utiliza-se apenas um ponteiro para o fim da fila e fica implícito que o início da fila é o nó seguinte

- O uso de dois ponteiros tem que ser cuidadoso para contemplar os casos especiais onde a lista tem 0 ou 1 elemento
- Uma solução mais elegante é usar listas circulares
- Neste caso, utiliza-se apenas um ponteiro para o fim da fila e fica implícito que o início da fila é o nó seguinte



- O uso de dois ponteiros tem que ser cuidadoso para contemplar os casos especiais onde a lista tem 0 ou 1 elemento
- Uma solução mais elegante é usar listas circulares
- Neste caso, utiliza-se apenas um ponteiro para o fim da fila e fica implícito que o início da fila é o nó seguinte



- O uso de dois ponteiros tem que ser cuidadoso para contemplar os casos especiais onde a lista tem 0 ou 1 elemento
- Uma solução mais elegante é usar listas circulares
- Neste caso, utiliza-se apenas um ponteiro para o fim da fila e fica implícito que o início da fila é o nó seguinte



### Listas Duplamente Encadeadas

- Para implementar deques, precisamos ser capazes de seguir a seqüência de nós em ambos os sentidos
- Para tanto, utiliza-se listas duplamente encadeadas
- Cada nó possui dois elos, um apontando para o nó seguinte e outro para o nó anterior
- Também neste caso podemos denotar o início e o fim da cadeia explicitamente ou utilizando listas circulares



# Árvores

- Árvores são estruturas das mais usadas em computação
- Árvores são usadas para representar hierarquias
- Uma árvore pode ser entendida como um grafo acíclico conexo onde um dos vértices – chamado raiz da árvore – é diferenciado dos demais



# Árvores

- Uma maneira mais útil de se definir árvores é a seguinte:
  - Uma árvore *T* é um conjunto finito de nós (ou vértices) tal que
    - $-T = \emptyset$ , isto é, uma árvore vazia
    - Um nó raiz e um conjunto de árvores não vazias, chamadas de subárvores do nó raiz
- É comum associar-se rótulos aos nós das árvores para que possamos nos referir a eles
- Na prática, os nós são usados para guardar informações diversas

# Árvores



Representação Gráfica



Representação Indentada

(A(B)(C(E(F)(G)))(D))

Representação com Parênteses

### Árvores – Nomenclatura



- "A" é o <u>pai</u> de "B", "C" e "D"
- "B", "C" e "D" são <u>filhos</u> de "A"
- "B", "C" e "D" são <u>irmãos</u>
- "A" é um <u>ancestral</u> de "G"
- "G" é um <u>descendente</u> de "A"
- "B", "D", "F" e "G" são <u>nós folhas</u>
- "A", "C" e "E" são nós internos
- O grau do nó "A" é 3
- O <u>comprimento</u> do <u>caminho</u> entre "C" e "G" é 2
- O <u>nível</u> de "A" é 1 e o de "G" é 4
- A <u>altura</u> da árvore é 4

### Árvores Ordenadas

- Se é considerada a ordem entre os filhos de cada nó, a árvore é chamada de *ordenada*
- Pode-se definir o conceito de árvores isomorfas quando elas têm a mesma relação de incidência entre nós mas são desenhadas de forma diferente, isto é, são distintas quando consideradas como árvores ordenadas



### Árvores Binárias

- Uma árvore binária é
  - Uma árvore vazia ou
  - Um nó *raiz* e duas subárvores binárias denominadas subárvore *direita* e subárvore *esquerda*
- Observe que uma árvore binária não é propriamente uma árvore já que os filhos de cada nó têm nomes (esquerdo e direito)



### Número de Subárvores Vazias

- Se uma árvore tem n > 0 nós, então ela possui n+1 subárvores vazias
- Para ver isso, observe que
  - Uma árvore com um só nó tem 2 subárvores vazias
  - Sempre que "penduramos" um novo nó numa árvore, o número de nós cresce de 1 e o de subárvores vazias também cresce de 1

# Tipos Especiais de Árvores Binárias

- Uma árvore binária é <u>estritamente binária</u> sse todos os seus nós têm 0 ou 2 filhos
- Uma árvore binária completa é aquela em que todas as subárvores vazias são filhas de nós do último ou penúltimo nível
- Uma <u>árvore binária cheia</u> é aquela em que todas as subárvores vazias são filhas de nós do último nível

# Tipos Especiais de Árvores Binárias

- Uma árvore binária é <u>estritamente binária</u> sse todos os seus nós têm 0 ou 2 filhos
- Uma árvore binária completa é aquela em que todas as subárvores vazias são filhas de nós do último ou penúltimo nível
- Uma <u>árvore binária cheia</u> é aquela em que todas as subárvores vazias são filhas de nós do último nível



### Tipos Especiais de Árvores Binárias

- Uma árvore binária é <u>estritamente binária</u> sse todos os seus nós têm 0 ou 2 filhos
- Uma árvore binária completa é aquela em que todas as subárvores vazias são filhas de nós do último ou penúltimo nível
- Uma <u>árvore binária cheia</u> é aquela em que todas as subárvores vazias são filhas de nós do último nível



### Tipos Especiais de Árvores Binárias

- Uma árvore binária é <u>estritamente binária</u> sse todos os seus nós têm 0 ou 2 filhos
- Uma árvore binária completa é aquela em que todas as subárvores vazias são filhas de nós do último ou penúltimo nível
- Uma <u>árvore binária cheia</u> é aquela em que todas as subárvores vazias são filhas de nós do último nível



- O processo de busca em árvores é normalmente feito a partir da raiz na direção de alguma de suas folhas
- Naturalmente, são de especial interesse as árvores com a menor altura possível
- Se uma árvore  $T \operatorname{com} n > 0$  nós é completa, então ela tem altura mínima. Para ver isso observe que mesmo que uma árvore mínima não seja completa é possível torná-la completa movendo folhas para níveis mais altos

- O processo de busca em árvores é normalmente feito a partir da raiz na direção de alguma de suas folhas
- Naturalmente, são de especial interesse as árvores com a menor altura possível
- Se uma árvore  $T \operatorname{com} n > 0$  nós é completa, então ela tem altura mínima. Para ver isso observe que mesmo que uma árvore mínima não seja completa é possível torná-la completa movendo folhas para níveis mais altos



- O processo de busca em árvores é normalmente feito a partir da raiz na direção de alguma de suas folhas
- Naturalmente, são de especial interesse as árvores com a menor altura possível
- Se uma árvore  $T \operatorname{com} n > 0$  nós é completa, então ela tem altura mínima. Para ver isso observe que mesmo que uma árvore mínima não seja completa é possível torná-la completa movendo folhas para níveis mais altos



- O processo de busca em árvores é normalmente feito a partir da raiz na direção de alguma de suas folhas
- Naturalmente, são de especial interesse as árvores com a menor altura possível
- Se uma árvore  $T \operatorname{com} n > 0$  nós é completa, então ela tem altura mínima. Para ver isso observe que mesmo que uma árvore mínima não seja completa é possível torná-la completa movendo folhas para níveis mais altos



- A altura mínima de uma árvore binária com n > 0 nós é  $h = 1 + \lfloor \log_2 n \rfloor$
- Prova-se por indução. Seja *T* uma árvore completa de altura *h* 
  - Vale para o caso base (n=1)
  - Seja *T*' uma árvore cheia obtida a partir de *T* pela remoção de *k* folhas do último nível
    - Então T' tem n' = n k nós
    - Como T' é uma árvore cheia,  $n' = 1 + 2 + ... + 2^{h-2} = 2^{h-1} - 1$  e  $h = 1 + \log_2(n'+1)$
    - Sabemos que  $1 \le k \le n' + 1$  e portanto  $\log_2(n'+1) = \lfloor \log_2(n'+k) \rfloor = \lfloor \log_2 n \rfloor$

## Implementando Árvores Binárias com Arrays

- Assim como listas, árvores binárias podem ser implementadas utilizando-se o armazenamento contíguo proporcionado por arrays
- A idéia é armazenar níveis sucessivos da árvore seqüencialmente no array





## Implementando Árvores Binárias com Arrays

- Assim como listas, árvores binárias podem ser implementadas utilizando-se o armazenamento contíguo proporcionado por arrays
- A idéia é armazenar níveis sucessivos da árvore seqüencialmente no array





## Implementando Árvores Binárias com Arrays

- Dado um nó armazenado no índice i, é possível computar o índice
  - do nó filho esquerdo de *i* : 2 *i*
  - do nó filho direito de i:2i+1
  - do nó pai de *i* : *i* div 2
- Para armazenar uma árvore de altura h precisamos de um array de  $2^h 1$  (número de nós de uma árvore cheia de altura h)
- Nós correspondentes a subárvores vazias precisam ser marcados com um valor especial diferente de qualquer valor armazenado na árvore
- A cada índice computado é preciso se certificar que está dentro do intervalo permitido
  - Ex.: O nó raiz é armazenado no índice 1 e o índice computado para o seu pai é 0

## Implementando Árvores Binárias com Ponteiros

- A implementação com arrays é simples porém tende a desperdiçar memória, e é pouco flexível quando se quer alterar a árvore (inserção e deleção de nós)
- Via-de-regra, árvores são implementadas com ponteiros:
  - Cada nó *X* contém 3 campos:
    - X. Val: valor armazenado no nó
    - − *X.Esq*: Ponteiro p/ árvore esquerda
    - − *X.Dir*: Ponteiro p/ árvore direita
  - Uma árvore é representada por um ponteiro para seu nó raiz



## Implementando Árvores Binárias com Ponteiros



### Aplicação: Expressões

 Uma aplicação bastante corriqueira de árvores binárias é na representação e processamento de expressões algébricas, booleanas, etc



### Avaliando uma Expressão

 Se uma expressão é codificada sob a forma de uma árvore, sua avaliação pode ser feita percorrendo os nós da árvore

```
proc Avalia (Arvore T) {
   se T^.Val é uma constante ou uma variável então
      retornar o valor de T^.Val
   senão {
      operando1 \leftarrow Avalia (T^{\land}.Esq)
      operando2 \leftarrow Avalia (T^{\wedge}.Dir)
      se T^{\wedge}.Val = "+" então
         retornar operando1 + operando2
      senão se T^{\wedge}.Val = "-" então
         retornar operando 1 – operando 2
      senão se T^{\wedge}.Val = "*" então
         retornar operando1 * operando2
      senão se T^{\wedge}.Val = "/" então
         retornar operando1 / operando2
```

### Percurso de Árvores Binárias

- Existem essencialmente 3 ordens "naturais" de se percorrer os nós de uma árvore
  - Pré-ordem: raiz, esquerda, direita
  - Pós-ordem: esquerda, direita, raiz
  - In-ordem: esquerda, raiz, direita
- Por exemplo:
  - percorrendo uma árvore que representa uma expressão em in-ordem, obtém-se a expressão em sua forma usual (infixa);
  - um percurso em pós-ordem produz a ordem usada em calculadoras "HP";
  - um percurso em pré-ordem retorna a expressão em forma infixa, como usado em LISP

### Árvores Costuradas

- Notamos que o percurso de árvores pode ser feito usando uma rotina recursiva em O(n), onde n é o número de nós
- Algumas vezes é interessante se poder percorrer árvores binárias sem usar rotinas recursivas ou pilhas
- Uma idéia consiste em usar os ponteiros esquerdo e direito dos nós folhas para apontar para os nós anterior e posterior do percurso em in-ordem



#### Dicionários

- A operação de busca é fundamental em diversos contextos da computação
- Por exemplo, um *dicionário* é uma estrutura de dados que reúne uma coleção de chaves sobre a qual são definidas as seguintes operações :
  - Inserir (x, T): inserir chave x no dicionário T
  - Remover(x, T): remover chave x do dicionário T
  - Buscar(x, T): verdadeiro apenas se x pertence a T
- Outras operações são comuns em alguns casos:
  - Encontrar chave pertencente a T que sucede ou precede x
  - Listar todas as chaves entre x1 e x2

### Árvores Binárias de Busca

- Uma maneira simples e popular de implementar dicionários é uma estrutura de dados conhecida como árvore binária de busca
- Numa árvore binária de busca, todos os nós na subárvore à esquerda de um nó contendo uma chave x são menores que x e todos os nós da subárvore à direita são maiores que x



```
proc Buscar (Chave x, Árvore T) {
   se T = Nulo então retornar falso
   se x = T^{\wedge}.Val então retornar verdadeiro
   se x < T^{\wedge}.Val então retornar Buscar(x, T^{\wedge}.Esq)
   retornar Buscar(x, T^{\wedge}.Dir)
proc Inserir (Chave x, var Árvore T) {
   se T = Nulo então {
       T \leftarrow Alocar (NoArvore)
       T^{\wedge}.Val, T^{\wedge}.Esq, T^{\wedge}.Dir \leftarrow x, Nulo, Nulo
   senão {
       se x < T^{\wedge}.Val então Inserir (x, T^{\wedge}.Esq)
       se x > T^{\wedge}.Val então Inserir(x, T^{\wedge}.Dir)
```











- Para remover uma chave x de uma árvore T temos que distinguir os seguintes casos
  - x está numa folha de T: neste caso, a folha pode ser simplesmente removida
  - x está num nó que tem sua subárvore esquerda ou direita vazia: neste caso o nó é removido substituído pela subárvore não nula

*Remover* (19, *T*)

- Para remover uma chave *x* de uma árvore *T* temos que distinguir os seguintes casos
  - x está numa folha de T: neste caso, a folha pode ser simplesmente removida
  - x está num nó que tem sua subárvore esquerda ou direita vazia: neste caso o nó é removido substituído pela subárvore não nula



- Para remover uma chave *x* de uma árvore *T* temos que distinguir os seguintes casos
  - x está numa folha de T: neste caso, a folha pode ser simplesmente removida
  - x está num nó que tem sua subárvore esquerda ou direita vazia: neste caso o nó é removido substituído pela subárvore não nula



*Remover* (19, *T*)

- Se x está num nó em que ambas subárvores são não nulas, é preciso encontrar uma chave y que a possa substituir. Há duas chaves candidatas naturais:
  - A menor das chaves maiores que x ou
  - A maior das chaves menores que x

- Se x está num nó em que ambas subárvores são não nulas, é preciso encontrar uma chave y que a possa substituir. Há duas chaves candidatas naturais:
  - A menor das chaves maiores que x ou
  - A maior das chaves menores que x



*Remover* (10, *T*)

- Se x está num nó em que ambas subárvores são não nulas, é preciso encontrar uma chave y que a possa substituir. Há duas chaves candidatas naturais:
  - A menor das chaves maiores que x ou
  - A maior das chaves menores que x



*Remover* (10, *T*)

- Se x está num nó em que ambas subárvores são não nulas, é preciso encontrar uma chave y que a possa substituir. Há duas chaves candidatas naturais:
  - A menor das chaves maiores que x ou
  - A maior das chaves menores que x



*Remover* (10, *T*)

```
proc RemoverMenor (var Árvore T) {
   se T^{\Lambda}.Esq = Nulo então {
       tmp \leftarrow T
      y \leftarrow T^{\wedge}.Val
       T \leftarrow T^{\wedge}.Dir
      Liberar (tmp)
       retornar y
   senão
       retornar RemoverMenor (T^.Esq)
```

```
proc RemoverMenor (var Árvore T) {
   se T^{\Lambda}.Esq = Nulo então {
       tmp \leftarrow T
      y \leftarrow T^{\wedge}.Val
       T \leftarrow T^{\wedge}.Dir
      Liberar (tmp)
       retornar y
   senão
       retornar RemoverMenor (T^.Esq)
```

```
proc RemoverMenor (var Árvore T) {
   se T^{\Lambda}.Esq = Nulo então {
       tmp \leftarrow T
      y \leftarrow T^{\wedge}.Val
       T \leftarrow T^{\wedge}.Dir
      Liberar (tmp)
       retornar y
   senão
       retornar RemoverMenor (T^.Esq)
```

```
proc RemoverMenor (var Árvore T) {
   se T^{\Lambda}.Esq = Nulo então {
       tmp \leftarrow T
      y \leftarrow T^{\wedge}.Val
       T \leftarrow T^{\wedge}.Dir
      Liberar (tmp)
       retornar y
   senão
       retornar RemoverMenor (T^.Esq)
```

```
proc RemoverMenor (var Árvore T) {
   se T^{\Lambda}.Esq = Nulo então {
       tmp \leftarrow T
      y \leftarrow T^{\wedge}.Val
       T \leftarrow T^{\wedge}.Dir
      Liberar (tmp)
       retornar y
   senão
       retornar RemoverMenor (T^.Esq)
```

## Remoção em Árvores Binárias de Busca

```
proc RemoverMenor (var Árvore T) {
   se T^{\Lambda}.Esq = Nulo então {
       tmp \leftarrow T
      y \leftarrow T^{\wedge}.Val
       T \leftarrow T^{\wedge}.Dir
      Liberar (tmp)
       retornar y
   senão
       retornar RemoverMenor (T^.Esq)
```

## Remoção em Árvores Binárias de Busca

```
proc Remover (Chave x, Árvore T) {
   se T \neq Nulo então
       se x < T^{\wedge}.val então Remover(x, T^{\wedge}.Esq)
       senão se x > T^{\wedge}.val então Remover(x, T^{\wedge}.Dir)
       senão
           se T^{\wedge}.Esq = Nulo então {
               tmp \leftarrow T
               T \leftarrow T^{\wedge}.Dir
               Liberar (tmp)
           senão se T^{\wedge}.Dir = Nulo então {
               tmp \leftarrow T
               T \leftarrow T^{\wedge}.Esq
               Liberar (tmp)
           senão T^{\wedge}.Val \leftarrow RemoverMenor (T^{\wedge}.Dir)
```

## Árvores Binárias de Busca - Complexidade

- A busca em uma árvore binária tem complexidade O(h)
- A altura de uma árvore é,
  - no pior caso, n
  - no melhor caso,  $\lfloor \log_2 n \rfloor + 1$  (árvore completa)
- Inserção e remoção também têm complexidade de pior caso O(h), e portanto, a inserção ou a remoção de n chaves toma tempo
  - $O(n^2)$  no pior caso ou
  - $O(n \log n)$  se pudermos garantir que árvore tem altura logarítmica

#### Árvores de Busca de Altura Ótima

• É fácil ver que podemos garantir uma árvore de altura ótima para uma coleção de chaves se toda vez que temos que escolher uma chave para inserir, optamos pela mediana:

```
proc InserirTodos (i, n, A [i .. i+n-1], var Árvore T) {
    se n = 1 então Inserir (A [i], T)
    senão {
        j \leftarrow Mediana (i, n, A)
        trocar A[i] com A [j]
        m \leftarrow Particao (i, n, A)
        Inserir (A [i+m], T)
        InserirTodos (i, m, A, T^*.Esq)
        InserirTodos (i+m+1, n-m-1, A, T^*.Dir)
    }
}
```

### Árvores de Busca de Altura Ótima

- Sabendo que tanto Mediana quanto Particao podem ser feitos em O(n) o algoritmo InsereTodos executa em tempo  $O(n \log n)$
- O algoritmo pode ser reescrito de forma mais sucinta se admitimos que o array A se encontra ordenado
- Nem sempre, entretanto, podemos garantir que conhecemos todas as chaves de antemão
- O que esperar em geral?
  - Percebemos que a altura da árvore final depende da ordem de inserção
  - Temos *n*! possíveis ordens de inserção
  - Se todas as ordens de inserção são igualmente prováveis, no caso médio teremos uma árvore de altura ≈ 1 + 2.4 log n

#### Altura de Árvores Binárias de Busca – Caso Médio

- Eis uma explicação intuitiva para o fato de que no caso médio, a altura de uma árvore binária de busca é  $O(\log n)$
- Considere uma coleção ordenada de *n* chaves
  - Vemos que se escolhemos a k'ésima chave para inserir primeiro, teremos à esquerda do nó raiz uma subárvore com k-1 nós e à direita uma subárvore com n-k nós
  - No melhor caso k = n / 2
  - No pior caso, k = 1 ou k = n
  - Admitamos que o caso médio corresponde a k = n/4 ou k=3n/4 (estamos ignorando tetos, pisos, etc)

#### Altura de Árvores Binárias de Busca – Caso Médio

- Em qualquer caso, a subárvore com 3n/4 nós vai dominar a altura da árvore como um todo
- Resolvendo a recursão (novamente ignorando o fato que 3n/4 nem sempre é um inteiro), temos

$$H(1) = 1$$

$$H(n) = 1 + H(3n/4)$$

$$= 2 + H(9n/16)$$

$$= 3 + H(27n/64)$$

$$= ...$$

$$= m + H((3/4)^{m}n)$$

$$\therefore m = \frac{\log_{2} n}{\log_{2} 4/3} \approx 2.4 \log_{2} n$$

$$H(n) = 1 + 2.4 \log_{2} n$$

## Árvores Binárias de Busca Ótimas

- Dada uma árvore binária de busca, um dado importante é o número total de comparações que precisamos fazer durante a busca de uma chave
  - Se a chave buscada é uma chave  $s_k$  pertencente à árvore, o número de comparações é o nível da chave na árvore, isto é,  $l_k$
  - Se a chave *x* sendo buscada não pertence à árvore, o número de comparações corresponde à subárvore vazia (também chamada de *nó externo*) que encontramos durante o processo de busca
    - Cada subárvore nula  $R_i$  corresponde a um intervalo entre duas chaves da árvore, digamos  $s_i$  e  $s_{i+1}$ , isto é,  $s_i < x < s_{i+1}$  para algum i entre 1 e n
    - Os casos extremos  $R_0$  e  $R_n$  correspondem a  $x < s_1$  e  $s_n < x$
    - O número de comparações para encontrar x, portanto, é o nível dessa subárvore nula (a que chamaremos de  $l'_k$ ) menos 1

### Árvore de Busca Ótima



- Comprimento de Caminho Interno:  $I(T) = \sum_{1 \le i \le n} l_i$
- Comprimento de Caminho Externo  $E(T) = \sum_{0 \le i \le n} (l'_i - 1)$
- No exemplo, I(T)=1+2\*2+3\*3+4=18E(T)=2+5\*3+2\*4=25
- Em geral, E(T)=I(T)+n
- Árvores completas minimizam tanto *E(T)* quanto *I(T)*

- Admitindo probabilidade uniforme no acesso de quaisquer chaves, as árvores completas são ótimas
- Entretanto, se a distribuição não é uniforme, precisamos empregar um algoritmo mais elaborado
- Sejam
  - $f_k$  a frequência de acesso à k'ésima menor chave, armazenada em T no nível  $l_k$ ,
  - $f'_k$ a frequência de acesso a chaves que serão buscadas nos nós externos  $R_k$ , armazenados em T no nível  $l'_k$ ,
- Então, o custo médio de acesso é dado por

$$c(T) = \sum_{1 \le k \le n} f_k l_k + \sum_{0 \le k \le n} f'_k (l'_k - 1)$$

- O algoritmo para construção de árvores ótimas baseia-se no fato de que subárvores de árvores ótimas são também ótimas
  - se assim não fosse, poderíamos substituir uma subárvore não ótima por uma ótima e diminuir o custo da árvore ótima, o que é um absurdo
- O algoritmo consiste de testar todas as n chaves como raízes da árvore e escolher aquela que leva ao custo mínimo
  - As subárvores são construídas de forma recursivamente idêntica

- Seja T(i, j) a árvore ótima para as chaves  $\{s_{i+1}, s_{i+2}, ..., s_j\}$
- Seja F(i, j) a soma de todas as freqüências relacionadas com T(i, j), isto é,

$$F(i,j) = \sum_{i < k \le j} f_k + \sum_{i \le k \le j} f_k'$$

Assumindo que T(i, j) foi construída escolhendo  $s_k$  como raiz, então prova-se que

$$c(T(i,j)) = c(T(i,k-1)) + c(T(k,j)) + F(i,j)$$

 Portanto, para encontrar o valor de k apropriado, basta escolher aquele que minimiza a expressão acima

- Seria possível em computar recursivamente c(T(0,n)) usando como caso base c(T(i,i))=0
- No entanto, esse algoritmo iria computar cada c(T(i,j)) e F(i,j) múltiplas vezes
- Para evitar isso, valores já computados são armazenados em duas matrizes: c[0..n, 0..n] e F[0..n, 0..n]
- Podemos também dispensar a construção recursiva e computar iterativamente o custo de todas as n(n+1)/2 árvores envolvidas no processo
  - As árvores com d nós depende apenas do custo de árvores com  $0, 1, 2 \dots$  e até d-1 nós
  - Computar F(i,j) também não oferece dificuldade

```
proc CustoArvoreOtima\ (n, f[1 .. n], f'[0 .. n]) {
   array c [0..n, 0..n], F [0..n, 0..n]
   para j desde 0 até n fazer {
      c[j,j] \leftarrow 0
      F[j,j] \leftarrow f'[j]
   para d desde 1 até n fazer
      para i desde 0 até n-d fazer {
         j \leftarrow i + d
         F[i,j] \leftarrow F[i,j-1] + f[j] + f'[j]
          tmp \leftarrow \inf
          para k desde i + 1 até j fazer
             tmp \leftarrow \min(tmp, c[i, k-1] + c[k, j])
          c[i,j] \leftarrow tmp + F[i,j]
```

- O algoritmo para computar o custo da árvore ótima tem complexidade  $O(n^3)$
- O algoritmo para criar a árvore ótima é trivial, bastando para isso usar como raízes os nós de índice k que minimizam o custo de cada subárvore (pode-se armazenar esses índices numa terceira matriz)
- É possível obter um algoritmo de complexidade  $O(n^2)$  utilizando a propriedade de monotonicidade das árvores binárias de busca
  - Se  $s_k$  é a raiz da árvore ótima para o conjunto  $\{s_i...s_j\}$  então a raiz da árvore ótima para o conjunto  $\{s_i...s_j, s_{j+1}\}$  é  $s_q$  para algum  $q \ge k$
  - (Analogamente,  $q \le k$  para  $\{s_{i-1}, s_i ... s_j\}$ )

#### Árvores Balanceadas

- Vimos que árvores completas garantem buscas utilizando não mais que  $\lfloor \log_2 n \rfloor + 1$  comparações
- Mais importante, vimos que árvores binárias de busca, se construídas por inserção aleatória de elementos têm altura logarítmica (em *n*) na média
- Entretanto, não podemos assegurar que árvores binárias de busca construídas segundo qualquer ordem de inserção sempre têm altura logarítmica
- A idéia então é modificar os algoritmos de inserção e remoção de forma a assegurar que a árvore resultante é sempre de altura logarítmica
- Duas variantes mais conhecidas:
  - Árvores AVL
  - Árvores Graduadas

#### Árvores AVL

- Em geral, rebalancear uma árvore quando ela deixa de ser completa (devido a uma inserção ou remoção por exemplo) pode ser muito custoso (até *n* operações)
- Uma idéia é estabelecer um critério mais fraco que, não obstante, garanta altura logarítmica
- O critério sugerido por <u>A</u>delson-<u>V</u>elskii e <u>L</u>andis é o de garantir a seguinte invariante:
  - Para cada nó da árvore, a altura de sua subárvore esquerda e de sua subárvore direita diferem de no máximo 1
- Para manter essa invariante depois de alguma inserção ou remoção que desbalanceie a árvore, utiliza-se operações de custo *O*(1) chamadas *rotações*

### Árvores AVL

- Uma árvore AVL tem altura logarítmica?
  - Seja N(h) o número mínimo de nós de uma árvore AVL de altura h
  - Claramente, N(1) = 1 e N(2) = 2
  - Em geral, N(h) = N(h-1) + N(h-2) + 1
  - Essa recorrência é semelhante à recorrência obtida para a série de Fibonacci
  - Sua solução resulta aproximadamente em

$$N(h) \approx \left(\frac{1+\sqrt{5}}{2}\right)^h \approx 1.618^h$$

## Rotações em Árvores Binárias de Busca



## Rotações em Árvores Binárias de Busca



















- Precisamos manter em cada nó um campo extra chamado alt que vai registrar a altura da árvore ali enraizada
  - Na verdade, apenas a diferença de altura entre a subárvore esquerda e direita precisa ser mantida (2 bits)
- Vamos precisar das seguintes rotinas para acessar e atualizar as alturas das árvores:

```
proc Altura (Arvore T) {
    se T = Nulo então retornar 0 senão retornar T^*.Alt
}

proc AtualizaAltura (Arvore T) {
    se T \neq Nulo então
    T^*.Alt \leftarrow max (Altura (T^*.Esq), Altura (T^*.Dir)) + 1
}
```

```
proc RotacaoEsquerda (var Arvore T) {
    T, T^*.Dir, T^*.Dir^*.Esq \leftarrow T^*.Dir, T^*.Dir^*.Esq, T
    AtualizaAltura (T^*.Esq)
    AtualizaAltura (T)
}
```



```
proc RotacaoEsquerda (var Arvore T) {
          T, T^.Dir, T^.Dir^.Esq \leftarrow T^.Dir, T^.Dir^.Esq, T
          AtualizaAltura (T^.Esq)
          AtualizaAltura (T)
}
```



```
proc RotacaoEsquerda (var Arvore T) {
          T, T^.Dir, T^.Dir^.Esq \leftarrow T^.Dir, T^.Dir^.Esq, T
          AtualizaAltura (T^.Esq)
          AtualizaAltura (T)
}
```



```
proc RotacaoEsquerda (var Arvore T) {
    T, T^*.Dir, T^*.Dir^*.Esq \leftarrow T^*.Dir, T^*.Dir^*.Esq, T
    AtualizaAltura (T^*.Esq)
    AtualizaAltura (T)
}
```



```
proc RotacaoDireita (var Arvore T) {
    T, T^{\wedge}.Esq, T^{\wedge}.Esq.Dir \leftarrow T^{\wedge}.Esq, T^{\wedge}.Esq^{\wedge}.Dir, T
    AtualizaAltura (T^.Dir)
    AtualizaAltura (T)
proc RotacaoDuplaEsquerda (var Arvore T) {
    RotacaoDireita (T^.Dir)
    RotacaoEsquerda (T)
proc RotacaoDuplaDireita (var Arvore T) {
    RotacaoEsquerda (T^.Esq)
    RotacaoDireita (T)
```

```
proc InserirAVL (Chave x, var Arvore T) {
   se T = Nulo então {
       T \leftarrow Alocar (NoArvore)
       T^{\wedge}.Val, T^{\wedge}.Esq, T^{\wedge}.Dir, T^{\wedge}.Alt \leftarrow x, Nulo, Nulo, 1
   } senão {
          se x < T^{\wedge}.Val então {
               InserirAVL(x, T^{\wedge}.Esq)
               se Altura (T^{\wedge}.Esq) - Altura (T^{\wedge}.Dir) = 2 então
                     se x < T^*.Esq^*.Val então RotacaoDireita (T)
                     senão RotacaoDuplaDireita (T)
          } senão {
               InserirAVL (x, T^{\wedge}.Dir)
               se Altura (T^{\wedge}.Dir) - Altura (T^{\wedge}.Esq) = 2 então
                     se x > T^{\wedge}.Dir^{\wedge}.Val então RotacaoEsquerda (T)
                     senão RotacaoDuplaEsquerda (T)
          AtualizaAltura (T)
```

### Análise do Algoritmo de Inserção em AVLs

- Pode-se ver que apenas uma rotação (dupla ou simples) no máximo é necessária (O(1))
- A atualização do campo altura (O(1)) pode ter de ser feita mais do que uma vez
  - Na verdade, tantas vezes quantos forem os nós no caminho até a folha inserida
  - No total,  $O(\log n)$
- No mais, o algoritmo é idêntico ao da inserção em árvores binárias de busca, e portanto a complexidade é  $O(\log n)$

- Segue as mesmas linhas do algoritmo de inserção
  - Faz-se a remoção do nó como uma árvore de busca comum
  - Analisa-se a informação de balanceamento aplicando a rotação apropriada se for necessário
- Diferentemente da inserção, pode ser necessário realizar mais do que uma rotação
  - Na verdade, até log *n* rotações
  - Não afeta a complexidade do algoritmo de remoção que continua *O* (log *n*)



RemoverAVL(8, T)



RemoverAVL(8, T)



RemoverAVL(8, T)

#### Skip Lists

- Uma das principais motivações para as árvores balanceadas como a AVL é que não se pode garantir que a inserção de nós se faz de maneira aleatória, o que garantiria altura logarítmica
- Em particular, pode-se imaginar que se a ordem de inserção é estipulada por um adversário, sua árvore sempre resultará balanceada. Ex.: Os nós são sempre dados em ordem crescente
- Uma estrutura de dados elegante que resolve esse problema sem apelar para algoritmos complicados é a Skip List
- A idéia é usar randomização de forma a impedir que o adversário de selecionar ordens de inserção ruins
- Na verdade, a probabilidade com que as Skip Lists acabam funcionando mal é MUITO pequena e diminui à medida que a lista aumenta

- Uma Skip List é, até certo ponto, parecida com uma lista ordenada comum, entretanto, cada nó pode conter, além de 1 ponteiro para o próximo nó, vários outros ponteiros que o ligam a nós subseqüentes mais distantes
- Usando esses ponteiros adicionais, pode-se "pular" vários nós de forma a encontrar a chave procurada mais rápidamente
- Numa skip list determinística, existe uma cadeia de ponteiros ligando cada segundo nó da lista, cada quarto nó, cada oitavo nó, etc.
- A maneira de se implementar essa estrutura é usar em cada nó um array de ponteiros de tamanho variável



Cabeça da Lista



Cabeça da Lista

#### Skip Lists Randômicas

- Skip Lists determinísticas não são práticas já que a inserção ou remoção de um nó pode forçar diversos nós a mudarem de "altura"
- A solução é
  - Nunca mudar a altura de um nó já inserido
  - Ao inserir um novo nó, determinar sua altura randomicamente:
    - Fazer altura = 0
    - Repetir
      - » Incrementar altura
      - » Jogar uma moeda
    - Até a moda dar "cara"

#### Skip Lists Randômicas

- Observe que, devido a termos usado uma moeda, dos n nós inseridos na lista, podemos esperar que
  - A metade terá altura 2
  - Um quarto terá altura 3
  - ...
  - No máximo 1 nó terá altura log<sub>2</sub> n
- Ao realizar a busca, temos que comparar
  - 1 nó de altura  $\log_2 n$
  - 2 nós de altura  $(\log_2 n) 1$
  - 2 nós de altura  $(\log_2 n) 2$
  - ...
  - 2 nós de altura 1
- Tempo esperado da busca é  $O(\log_2 n)$

- São árvores balanceadas segundo um critério ligeiramente diferente do usado em árvores AVL
- A todos os nós é associada uma cor que pode ser vermelha ou negra de tal forma que:
  - 1. Nós externos (folhas ou nulos) são negros
  - 2. Todos os caminhos entre um nó e qualquer de seus nós externos descendentes percorre um número idêntico de nós negros
  - 3. Se um nó é vermelho (e não é a raiz), seu pai é negro
- Observe que as propriedades acima asseguram que o maior caminho desde a raiz uma folha é no máximo duas vezes maior que o de o qualquer outro caminho até outra folha e portanto a árvore é aproximadamente balanceada

 Altura negra de um nó = número de nós negros encontrados até qualquer nó folha descendente



- Lema 1: Um nó x de uma árvore rubronegra tem no mínimo 2<sup>an(x)</sup> − 1 nós internos, onde an(x) é a altura negra de x
- Prova por indução
  - Caso base: Um nó de altura 0 (i.e., nó-folha) tem  $0 = 2^0 1$  nós internos
  - Caso genérico: Um nó x de altura h > 0 tem 2 filhos com altura negra an(x) ou an(x) 1, conforme x seja vermelho ou negro. No pior caso, x é negro e as subárvores enraizadas em seus 2 filhos têm  $2^{\operatorname{an}(x)-1}-1$  nós internos cada e x tem  $2(2^{\operatorname{an}(x)-1}-1)+1=2^{\operatorname{an}(x)}-1$  nós internos

- Lema 2: Uma árvore rubro-negra com n nós tem no máximo altura  $2 \log_2 (n+1)$ 
  - Prova: Se uma árvore tem altura h, a altura negra de sua raiz será no mínimo h/2 (pelo critério 3 de construção) e a árvore terá  $n \ge 2^{h/2} 1$  nós internos (Lema 1)
- Como consequência, a árvore tem altura  $O(\log n)$  e as operações de busca, inserção e remoção podem ser feitas em  $O(\log n)$

- Ao contrário da árvore AVL, agora temos agora vários critérios para ajustar simultaneamente
- Ao inserir um nó *x* numa posição vazia da árvore (isto é, no lugar de um nó nulo) este é pintado de vermelho. Isto garante a manutenção do critério (2), já que um nó vermelho não contribui para a altura negra



- [Caso 0] Se x não tem pai ou se p, o pai de x, é negro, nada mais precisa ser feito já que o critério (3) também foi mantido
- [Caso 1] Suponha agora que p é vermelho. Então, se p não tem pai, então p é a raiz da árvore e basta trocar a cor de p para negro



[Caso 2] Suponha agora que p é vermelho e a, o pai de p (e avô de x) é preto. Se t, o irmão de p (tio de x) é vermelho, ainda é possível manter o critério (3) apenas fazendo a recoloração de a, t e p



Obs.: Se o pai de *a* é vermelho, o rebalanceamento tem que ser feito novamente

- [Caso 3] Finalmente, suponha que p é vermelho, seu pai a é preto e seu irmão t é preto. Neste caso, para manter o critério (3) é preciso fazer rotações envolvendo a, t, p e x.
   Há 4 subcasos que correspondem às 4 rotações possíveis:
  - [Caso 3a] Rotação Direita





- [Caso 3] Finalmente, suponha que p é vermelho, seu pai a é preto e seu irmão t é preto. Neste caso, para manter o critério (3) é preciso fazer rotações envolvendo a, t, p e x.
   Há 4 subcasos que correspondem às 4 rotações possíveis:
  - [Caso 3a] Rotação Direita



• [Caso 3b] Rotação Esquerda





• [Caso 3c] Rotação Dupla Esquerda





• [Caso 3d] Rotação Dupla Direita





```
proc InsereRN (Chave v, var ArvoreRN a, p, x) {
   se x = Nulo então {
       x \leftarrow Aloca (NoArvoreRN)
       x^{\wedge}.Esq, x^{\wedge}.Dir, x^{\wedge}.Val, x^{\wedge}.Cor \leftarrow Nulo, Nulo, v, Vermelho
   } senão {
       se v < x^{\wedge}.val então
          InsereRN (v, p, x, x^{\wedge}.Esq)
       senão se v > x^{\wedge}.val então
          InsereRN (v, p, x, x^{\wedge}.Dir)
   Rebalanceia (a, p, x)
```

```
proc Rebalanceia (var ArvoreRN a, p, x) {
   se x^{\wedge}.Cor = Vermelho e p \neq Nulo então
      se p^{\wedge}.Cor = Vermelho então
         se a = Nulo então
                                                                   % Caso 1
            p^{\wedge}.cor := Negro
         senão se a^{\wedge}.Cor = Negro então
            se a^*.Esq \neq Nulo e a^*.Dir \neq Nulo e a^*.Esq^*.Cor = Vermelho
                e a^.Dir^.Cor = Vermelho então
                                                                        % Caso 2
                a^{\wedge}.Cor, a^{\wedge}.Esq^{\wedge}.Cor, a^{\wedge}.Dir^{\wedge}.Cor \leftarrow Vermelho, Negro, Negro
             senão
                se p = a^{\wedge}.Esq
                   se x = p^{\wedge}.Esq então RotacaoDireita (a)
                                                                   % Caso 3a
                   senão RotacaoDuplaDireita (a)
                                                                  % Caso 3d
                senão
                   se x = p^{\wedge}.Dir então RotacaoEsquerda (a) % Caso 3b
                   senão RotacaoDuplaEsquerda (a)
                                                                   % Caso 3c
```

```
proc RotacaoDireita (var ArvoreRN T) {
    T, T^{\land}.Esq, T^{\land}.Esq^{\land}.Dir \leftarrow T^{\land}.Esq, T^{\land}.Esq^{\land}.Dir, T
    T^{\wedge}.Cor, T^{\wedge}.Dir^{\wedge}.Cor \leftarrow T^{\wedge}.Dir^{\wedge}.Cor, T^{\wedge}.Cor
proc RotacaoEsquerda (var ArvoreRN T) {
    T, T^{\wedge}.Dir, T^{\wedge}.Dir^{\wedge}.Esq \leftarrow T^{\wedge}.Dir, T^{\wedge}.Dir^{\wedge}.Esq, T
    T^{\wedge}.Cor, T^{\wedge}.Esq^{\wedge}.Cor \leftarrow T^{\wedge}.Esq^{\wedge}.Cor, T^{\wedge}.Cor
proc RotacaoDuplaDireita (var ArvoreRN T) {
   RotacaoEsquerda (T^.Esq)
   RotacaoDireita (T)
proc RotacaoDuplaEsquerda (var ArvoreRN T) {
   RotacaoDireita (T^.Dir)
   RotacaoEsquerda (T)
```

#### Complexidade da Inserção em Árvore Rubro-Negra

- Rebalanceia tem custo O(1)
- RotacaoXXX têm custo O(1)
- *InsereRN* tem custo  $O(\log n)$

#### Árvores 2-3-4

- É uma árvore onde cada nó pode ter mais do que uma chave
- Na verdade, uma árvore 2-3-4 é uma árvore B onde a capacidade de cada nó é de até 3 chaves (4 ponteiros)



#### Árvores 2-3-4

■ Exemplo de inserção em árvores 2-3-4



Insertion sequence: a-i-b-h-c-g-d-f-e

#### Árvores 2-3-4

 Na verdade, uma árvore 2-3-4 pode ser implementada como uma árvore binária Rubro-Negra



## Árvores de Difusão (Splay)

#### Vimos:

- Árvores de Busca: garantem inserção / remoção/busca em tempo logarítmico no caso médio mas não no pior caso
- Árvores AVL / Rubro-Negra: garantem inserção / remoção/busca em tempo logarítmico no pior caso
  - Precisamos guardar informação adicional em cada nó (altura da árvore/cor)
- Skip Lists: garantem inserção / remoção/busca em tempo logarítmico no caso médio e que o pior caso nunca pode ser adivinhado por um adversário, Probabilisticamente, o pior caso fica menos provável à medida que *n* aumenta
- Árvores de Difusão: Garantem boa performance amortizada

#### Árvores de Difusão

- São árvores binárias de busca cujo desempenho amortizado é ótimo
  - Começando com uma árvore vazia, o tempo total para realizar qualquer seqüência de *m* operações de inserção/remoção/busca é  $O(m \log n)$ , onde *n* é o maior número de nós alcançado pela árvore
- Custo (desempenho) amortizado não é o mesmo que custo médio
  - Custo médio leva em conta todas as possíveis sequências de operações e o limite é obtido na média
  - Custo amortizado é obtido para qualquer seqüência de operações (o adversário pode obrigar uma ou outra operação a ter má performance, mas não todas)

#### Árvores de Difusão

- Uma árvore de difusão não guarda informações sobre o balanceamento das subárvores
- É uma estrutura auto-ajustável, isto é, cada operação que é executada com mau desempenho "rearruma" a estrutura de forma a garantir que a mesma operação, se repetida, seja executada eficientemente
- Na árvore de difusão, a rearrumação é chamada "splaying" que significa difundir, espalhar, misturar
- Todos acessos para inserir/remover/buscar uma chave *x* em uma árvore de difusão *T* são precedidos/sucedidos por uma chamada à função *splay* (*x*, *T*)

- Em nossa implementação, para simplificar, assumiremos que *splay* (*x*, *T*) só é chamada quando se pode garantir que *x* pertence à árvore
  - Após uma busca bem sucedida de x em T
  - Após uma inserção de *x* em *T*
  - Como toda remoção é precedida de uma busca, se esta for bem sucedida, chama-se *splay* (*x*, *T*) antes de remover *x* de *T*
  - Alternativamente, quando x é removido de T, chama-se splay(y, T), onde y é o pai de x (caso haja)
- O efeito de chamar *splay* (*x*, *T*) é mover o nó *x* para a raiz da árvore *T* por meio de uma série de rotações efetuadas de baixo para cima na árvore (das folhas para a raiz)

■ Antes de vermos o procedimento *splay* (*x*, *T*) vamos analisar um procedimento mais simples considerando que a árvore *T* tem apenas três níveis



Nada a fazer



■ Antes de vermos o procedimento *splay* (*x*, *T*) vamos analisar um procedimento mais simples considerando que a árvore *T* tem apenas três níveis



Caso 2.1: x = b (filho esquerdo)

■ Antes de vermos o procedimento *splay* (*x*, *T*) vamos analisar um procedimento mais simples considerando que a árvore *T* tem apenas três níveis



Caso 2.2: x = c (filho direito)

RotaçãoEsquerda (T)

■ Antes de vermos o procedimento *splay* (*x*, *T*) vamos analisar um procedimento mais simples considerando que a árvore *T* tem apenas três níveis



Caso 3.1: x = d (neto esquerdo / esquerdo)

■ Antes de vermos o procedimento *splay* (*x*, *T*) vamos analisar um procedimento mais simples considerando que a árvore *T* tem apenas três níveis



Caso 3.1: x = d (neto esquerdo / esquerdo)

■ Antes de vermos o procedimento *splay* (*x*, *T*) vamos analisar um procedimento mais simples considerando que a árvore *T* tem apenas três níveis



Caso 3.1: x = d (neto esquerdo / esquerdo)

RotaçãoDireita (T)

■ Antes de vermos o procedimento *splay* (*x*, *T*) vamos analisar um procedimento mais simples considerando que a árvore *T* tem apenas três níveis



Caso 3.1: x = d (neto esquerdo / esquerdo)

RotaçãoDireita (T)

■ Antes de vermos o procedimento *splay* (*x*, *T*) vamos analisar um procedimento mais simples considerando que a árvore *T* tem apenas três níveis



Caso 3.2: x = e (neto esquerdo / direito)

RotaçãoDuplaDireita (T)

■ Antes de vermos o procedimento *splay* (*x*, *T*) vamos analisar um procedimento mais simples considerando que a árvore *T* tem apenas três níveis



Caso 3.3: x = f (neto direito / esquerdo)

RotaçãoDuplaEsquerda (T)

■ Antes de vermos o procedimento *splay* (*x*, *T*) vamos analisar um procedimento mais simples considerando que a árvore *T* tem apenas três níveis



Caso 3.4: x = g (neto direito / direito)

RotaçãoEsquerda (T) RotaçãoEsquerda (T)

- Se nenhum desses nós é x, então x descende de d, e, f, ou g
  - Após aplicarmos o procedimento recursivamente à subárvore enraizada em d, e, f ou g, x passará a ser a raiz daquela subárvore
  - Basta então aplicar as rotações como vimos anteriormente



```
proc Splay (Chave x, var T Arvore) {
    se T^{\wedge}.Val = x então retornar
    se x < T^{\wedge}.Val então {
        se x = T^*.Esq^*.Val então RotacaoDireita (T)
        senão se x < T^{\wedge}.Esq^{\wedge}.Val
           então {
                se x \neq T^*.Esq^*.Esq^*.Val então Splay(x, T^*.Esq^*.Esq)
                RotacaoDireitaDireita (T)
           } senão {
                se x \neq T^*.Esq^*.Dir^*.Val então Splay(x, T^*.Esq^*.Dir)
                RotacaoDuplaDireita (T)
      senão { \% x > T^{\land}.Val
```

```
proc Splay (Chave x, var T Arvore) {
     se T^{\wedge}.Val = x então retornar
     se x < T^{\wedge}.Val então {
     } senão { \% x > T^{\land}.Val
         se x = T^{\cdot}.Dir^{\cdot}.Val then RotacaoEsquerda (T)
         senão se x > T^{\wedge}.Dir^{\wedge}.Val
            então {
                  se x \neq T^{\wedge}.Dir^{\wedge}.Val então Splay(x, T^{\wedge}.Dir^{\wedge}.Dir)
                  RotacaoEsquerdaEsquerda(T)
             } senão {
                  se x \neq T^{\wedge}.Dir^{\wedge}.Esq^{\wedge}.Val então Splay(x, T^{\wedge}.Dir^{\wedge}.Esq)
                  RotacaoDuplaEsquerda (T)
                                                                                    199
```









### Complexidade de Árvores de Difusão

- Não faremos uma análise completa da complexidade amortizada de árvores de difusão (veja livro texto)
- É possível entretanto entender intuitivamente porque o custo amortizado é de  $O(m \log n)$
- De forma geral, há dois fatores a considerar:
  - <u>Custo real</u>: tempo que a função *Splay* leva para completar seu trabalho. É proporcional ao nível de *x* na árvore
  - Melhora no balanceamento: O quanto a aplicação da função *Splay* melhora o balanceamento da árvore

### Complexidade de Árvores de Difusão

- Considere o caso em que o elemento sendo buscado se encontra em um nível muito profundo da árvore (na subárvore A ou B abaixo, por exemplo)
  - Então, gastou-se muito tempo para fazer o splay
  - Entretanto, a subárvore A ou B, que necessáriamente contém muitos nós, agora se encontra mais próxima da raiz e a árvore agora está mais balanceada



### Complexidade de Árvores de Difusão

- Considere o caso em que o elemento sendo buscado se encontra em um nível raso da árvore.
  - Então, gastou-se pouco tempo para fazer o splay
  - Se isso acontece sempre, a árvore está balanceada
- De forma geral, podemos ver que ou o splay não tem custo alto ou então ele contribui para melhorar o desempenho da árvore em futuras buscas

#### Listas de Prioridades

- Em muitas aplicações, dados de uma coleção são acessados por ordem de *prioridade*
- A prioridade associada a um dado pode ser qualquer coisa: tempo, custo, etc, mas precisa ser um escalar
- Nesse contexto, as operações que se costuma querer implementar eficientemente são
  - Seleção do elemento com maior (ou menor) prioridade
  - Remoção do elemento de maior (ou menor) prioridade
  - Inserção de um novo elemento

### Listas de Prioridade

#### Implementação

| Operação                  | Lista        | Lista<br>Ordenada | Árvore<br>Balanceada |
|---------------------------|--------------|-------------------|----------------------|
| Seleção                   | O(n)         | <i>O</i> (1)      | $O(\log n)$          |
| Inserção                  | <i>O</i> (1) | O(n)              | $O(\log n)$          |
| Remoção<br>(do menor)     | O(n)         | O(1)              | $O(\log n)$          |
| Alteração (de prioridade) | O(n)         | O(n)              | $O(\log n)$          |
| Construção                | O(n)         | $O(n \log n)$     | $O(n \log n)$        |

### Listas de Prioridade

#### Implementação

| Operação                  | Lista        | Lista<br>Ordenada | Árvore<br>Balanceada | Неар         |
|---------------------------|--------------|-------------------|----------------------|--------------|
| Seleção                   | O(n)         | <i>O</i> (1)      | $O(\log n)$          | <i>O</i> (1) |
| Inserção                  | <i>O</i> (1) | O(n)              | $O(\log n)$          | $O(\log n)$  |
| Remoção<br>(do menor)     | O(n)         | <i>O</i> (1)      | $O(\log n)$          | $O(\log n)$  |
| Alteração (de prioridade) | O(n)         | O(n)              | $O(\log n)$          | $O(\log n)$  |
| Construção                | O(n)         | $O(n \log n)$     | $O(n \log n)$        | O(n)         |

#### Heaps

- Estruturas próprias para implementação de listas de prioridade
- Podem ser pensadas como árvores binárias (mas <u>não</u> de busca) onde todos os nós possuem as propriedades
  - chave do nó ≤ chave do nó à esquerda (se houver)
  - chave do nó ≤ chave do nó à direita (se houver)
- Como essas propriedades valem para toda a árvore, a raiz contém a chave (prioridade) de menor valor
- Diferentemente de árvores binárias de busca, heaps são implementados usando arrays

### Implementando Árvores Binárias com Arrays

- Dado um nó armazenado no índice i, é possível computar o índice
  - do nó filho esquerdo de *i* : 2 *i*
  - do nó filho direito de i:2i+1
  - do nó pai de *i* : *i* div 2
- Para armazenar uma árvore de altura h precisamos de um array de  $2^h 1$  (número de nós de uma árvore cheia de altura h)





### Implementando Árvores Binárias com Arrays

- Dado um nó armazenado no índice i, é possível computar o índice
  - do nó filho esquerdo de *i* : 2 *i*
  - do nó filho direito de i:2i+1
  - do nó pai de *i* : *i* div 2
- Para armazenar uma árvore de altura h precisamos de um array de  $2^h 1$  (número de nós de uma árvore cheia de altura h)





#### Alterando a Prioridade em Heaps

- Se um nó tem seu valor alterado, a manutenção das propriedades do Heap pode requerer que nó migre na árvore
  - para cima (se ele diminuir de valor)
  - para baixo (se ele aumentar de valor)
- Para cada uma dessas situações utiliza-se um algoritmo de migração:
  - *subir* (*i*, *n*, *H*) migra o nó *i* para cima no heap *H*
  - *descer* (*i*,*n*,*H*) migra o nó *i* para baixo no heap *H* (sendo *n* o número total de nós da árvore/heap)
- OBS.: Num heap os algoritmos de inserção e remoção mantêm os *n* nós da árvore nas *n* primeiras posições do array.

```
proc Pai(i) { retornar i \text{ div } 2 }
proc Esq(i) { retornar i * 2 }
proc Dir(i) { retornar i * 2 + 1 }
proc Subir (i, n, H [1 .. n]) {
   se i > 1 e H[Pai(i)] > H[i] então {
       H[i], H[Pai(i)] \leftarrow H[Pai(i)], H[i]
       Subir(Pai(i), n, H)
proc Descer(i, n, H[1..n]) {
   se Dir(i) \le n e H[Dir(i)] < H[Esq(i)]
        então filho \leftarrow Dir(i)
        senão filho \leftarrow Esq(i)
   se filho \le n e H [filho] < H [i] então {
       H[i], H[filho] \leftarrow H[filho], H[i]
       Descer (filho, n, H)
```















# Migração de valores num Heap



# Migração de valores num Heap



## Inserção e Remoção num Heap

- Claramente, Subir e Descer têm complexidade O(log n) já que percorrem no máximo um caminho igual à altura da árvore que é completa
- Para inserir, basta colocar o novo valor na posição n + 1 do heap e chamar *Subir*
- Para remover o menor valor, basta substituir a raiz (H [1]) por H (n) e chamar Descer

```
proc Inserir (x, n, H [1 .. n + 1]) {
    n \leftarrow n + 1
    H [n] \leftarrow x
    Subir (n, n, H)
}

proc RemoverMinimo (n, H [1 .. n]) {
    H [1] \leftarrow H [n]
    n \leftarrow n - 1
    Descer (1, n, H)
}
```

- Se queremos construir um Heap com *n* elementos, podemos recorrer a um algoritmo ingênuo, isto é, inserir os *n* elementos um a um num heap inicialmente vazio.
- Mais simplesmente, podemos colocar os *n* elementos no array *H* e "subí-los" um a um

#### para i desde 2 até n fazer Subir(i, i, H)

- Este algoritmo ingênuo tem complexidade  $O(n \log n)$
- Entretanto, pode-se ordenar o heap em O(n) se observarmos:
  - As folhas da árvore (elementos H[n div 2+1 ... n]) não têm descendentes e portanto já estão ordenadas em relação a eles
  - Se acertarmos todos os nós internos (elementos
     H [1 .. n div 2]) em relação a seus descendentes (rotina Descer), o heap estará pronto
  - É preciso trabalhar de trás para frente desde *n* div 2 até 1 pois as propriedades da heap são observadas apenas nos níveis mais baixos

























## Complexidade do algoritmo de construção de Heap

- Suponhamos que a árvore seja cheia. Então,
  - $n = 2^h 1$ , onde h é a altura
  - desses, apenas  $2^{h-1} 1$  são nós internos
  - A raiz da árvore pode descer no máximo h-1 níveis
  - Os dois nós de nível 2 podem descer h-2 níveis
  - ...
  - Os  $2^{h-2}$  nós de nível h-1 podem descer 1 nível
  - Logo, no total temos

$$S = 1(h-1) + 2(h-2) + 2^{2}(h-3) + \dots + 2^{h-2}(1)$$

### Complexidade do algoritmo de construção de Heap

 Para resolver esse somatório, dobramos S e a seguir subtraímos S agrupando os termos com mesma potência de 2

$$S = 1(h-1) + 2(h-2) + 2^{2}(h-3) + \dots + 2^{h-2}(1)$$

$$2S = 0 + 2(h-1) + 2^{2}(h-2) + \dots + 2^{h-2}(2) + 2^{h-1}(1)$$

$$2S - S = (-h+1) + 2(h-1-h+2) + \dots + 2^{h-2}(2-1) + 2^{h-1}(1)$$

$$= 1 - h + 2 + 2^{2} + \dots + 2^{h-2} + 2^{h-1}$$

$$= -h + \sum_{i=0}^{h-1} 2^{i} = -h + 2^{h} - 1 = -h + n = O(n)$$

## **HeapSort**

- Uma vez que dispomos dos algoritmos para operar sobre um heap é possível usá-los para ordenar um array:
  - Construir o heap usando o método explicado anteriormente
  - Repetidamente remover o menor elemento e movê-lo para o fim do array, acertando o heap:

```
m \leftarrow n

enquanto m > 1 fazer {

H[1], H[m] \leftarrow H[m], H[1]

Descer(1, m, H)

}
```

- Ao final, o array está ordenado decrescentemente
- Para obter ordem crescente, ou inverte-se a ordem do array (O(n)) ou utiliza-se um heap onde a raiz é o maior de todos os elementos

## Tabelas de Dispersão (Hash Tables)

- São tabelas (arrays) cujos índices são de alguma forma relacionadas com os conteúdos das posições respectivas
  - O relacionamento é estabelecido por uma função  $h:N\rightarrow M$ , onde o domínio N é o espaço de chaves e M é o espaço de índices
  - Exemplo:
    - − *N* é o conjunto de todas as cadeias alfabéticas
    - M é um inteiro entre 65 e 91
    - − h é o código ASCII do primeiro caractere da cadeia

```
h('AMORA') = 65
```

$$h('ZEBRA') = 91$$

- A idéia é obter um método para implementação de dicionários onde o acesso a uma dada chave pode ser feito em O(1) na média.
  - No pior caso, entretanto, o acesso pode ter custo O(n)

## Funções de Dispersão

- Idealmente, funções de dispersão deveriam ser injetivas, isto é, todas as chaves deveriam ser mapeadas por h em um índice distinto
  - Isto só é possível se  $|N| \le |M|$
  - Mesmo assim, pode não ser trivial construir a função de dispersão
    - Por exemplo, considere o conjunto S de nomes dos alunos deste curso. Então
      - » |S| < 100 mas é impossível escrever uma função injetiva para esse domínio que não leve O(|S|) para ser avaliada
      - » Precisamos considerar como o domínio de *h* o conjunto de todas as cadeias alfabéticas (de até 40 caracteres, digamos)
  - Um caso trivial é h(x) = x. Em programação comercial isto é conhecido como *acesso direto*
  - Em geral,  $|N| \gg |M|$
- Quando a função de dispersão não é injetiva, pode-se ter duas chaves x e y,  $x \neq y$  tais que h(x) = h(y). Se se tentar inserir ambas as chaves na tabela tem-se o que é conhecido como colisão

## Funções de Dispersão

- Em geral, uma boa função de dispersão deve reunir as seguintes qualidades
  - produzir poucas colisões
    - Depende de se conhecer algo sobre a distribuição das chaves sendo acessadas
    - Ex.: se as chaves são códigos alfanuméricos que começam sempre por 'A' ou 'B', usar o primeiro caractere das chaves pode levar a muitas colisões
  - ser fácil de computar
    - Típicamente, funções contendo poucas operações aritméticas
  - ser uniforme
    - Idealmente, o número máximo de chaves que são mapeadas num mesmo índice deve ser |N|/|M|

## Funções de Dispersão – Método da Divisão

Assumindo  $N = \{0 ... n - 1\}$  e  $M = \{0 ... m - 1\}$ , a função de dispersão é dada por

$$h(x) = x \mod m$$

- Qual deve ser o valor de *m*?
  - não deve ser uma potência de 2
    - se  $m = 2^k$ , h(x) = k bits menos significativos de x
  - não deve ser um número par,
    - se m é par então h(x) é par ⇔ x é par
  - na prática, bons resultados são obtidos com:
    - -m = número primo não próximo a uma potência de 2
    - -m = número sem divisores primos menores que 20
- Não é bom que chaves sucessivas sejam mapeadas em índices sucessivos. Por isso, comumente se multiplica a chave por uma constante *k* antes de se fazer a divisão (*m* e *k* devem ser primos entre si):

$$h(x) = x k \mod m$$

## Funções de Dispersão – Método da Multiplicação

- Assume-se  $m = 2^k$ .
- A idéia é multiplicar a chave por ela mesma ou por alguma constante c. Se o resultado cabe numa palavra com b bits, toma-se os k bits do meio da palavra descartando os (b − k)/2 bits mais e menos significativos

$$h(x) = (x^2 \operatorname{div} 2^{(b-k)/2}) \mod 2^k$$
  
ou  
 $h(x) = (x c \operatorname{div} 2^{(b-k)/2}) \mod 2^k$ 

| 7 | 3 | 2 | 1 |
|---|---|---|---|
| 8 | 5 |   |   |



Suponha que a chave seja dada por uma seqüência de dígitos escritos numa folha de papel. O método consiste em dobrar sucessivamente a folha de papel após o j-ésimo dígito somando os dígitos que se superpoem (sem fazer o "vai um")

2 1

8 3

$$\begin{array}{c|cccc}
2 & 1 \\
+ & 8 & 3 \\
\hline
= & 0 & 4
\end{array}$$

Suponha que a chave seja dada por uma seqüência de dígitos escritos numa folha de papel. O método consiste em dobrar sucessivamente a folha de papel após o j-ésimo dígito somando os dígitos que se superpoem (sem fazer o "vai um")

0 4

- Uma outra variação consiste em fazer a dobra de *k* em *k*bits, ou seja, considerando os "dígitos" 0 e 1 da
  representação binária do número. O resultado é um índice entre 0 e 2 <sup>k</sup> 1
- Nesse caso, ao invés de somar os bits, utiliza-se uma operação de ou-exclusivo entre os bits
  - Não se usa "e" ("ou") pois estes produzem resultados menores (maiores) que os operandos
- Exemplo: Suponha k = 5  $71 = 0001000111_2$  $h(71) = 00010_2 xor 00111_2 = 00101_2 = 5$

## Funções de Dispersão – Método da Análise dos Dígitos

- Usado em casos especialíssimos
- É preciso conhecer todos os valores de antemão
- Ver Livro do Jayme
- Se alguma aplicação precisar de uma função de hash ajustada para uma coleção particular de chaves, deve usar um dos métodos para computar funções de hash perfeitas
- e.g.: *gperf* [Schmidt 90]

- Mesmo com boas funções de dispersão, à medida que o fator de carga α (número de chaves armazenadas / número de índices) aumenta, a probabilidade de haver colisões aumenta
- De maneira geral qualquer tabela de espalhamento precisa prever algum esquema para tratamento de colisões
- Uma das maneiras mais empregadas para lidar com colisões é permitir que cada posição da tabela seja ocupada por mais de uma chave
  - Em vez de guardar uma chave, guarda-se uma <u>lista</u> de chaves
  - Na verdade, pode-se usar qualquer estrutura uma árvore, por exemplo – mas como a ocorrência de colisões deve ser relativamente rara, uma lista ordenada ou não costuma ser suficiente



- Quantas comparações podemos esperar em média para um acesso a chaves não presentes (buscas sem sucesso)?
  - Supomos que h é uma função uniforme, que o fator de carga da tabela é  $\alpha$  e que as listas são não ordenadas
  - Então a probabilidade de h computar cada índice i é uniforme e igual a 1/m
  - O número de comparações feitas ao se acessar a entrada i da tabela é o comprimento da lista  $L_i$
  - Então,

Custo Médio = 
$$\frac{1}{m} \sum_{i=0}^{m-1} |L_i| = \frac{n}{m} = \mathbf{a}$$
 = Fator de Carga

- Quantas comparações podemos esperar em média para um acesso a chaves presentes (buscas bem-sucedidas)?
  - Para achar uma chave x, pesquisa-se uma lista  $L_i$
  - Além da comparação bem sucedida com a chave armazenada em  $L_i$ , o número de comparações malsucedidas é o comprimento da lista  $L_i$  no momento em que x foi originalmente inserido na tabela
  - Se x foi a (j+1)-ésima chave a ser incluída, então o comprimento médio de  $L_i$  é j/m
  - Então o custo médio é dado por

$$CM = \frac{1}{n} \sum_{j=0}^{n-1} (1 + \frac{j}{m}) = \frac{1}{n} \left( n + \frac{1}{m} \sum_{j=0}^{n-1} j \right) = 1 + \frac{n(n-1)}{2nm} = 1 + \frac{a}{2} - \frac{1}{2m}$$

- Portanto, se mantemos o fator de carga baixo (menor que uma constante α), temos que a complexidade média da busca é O(1)
- A única desvantagem do encadeamento exterior é que ele requer o uso de estruturas externas e com isso o uso de alocação dinâmica de memória e o "overhead" correspondente
- Para contornar isso pode-se usar encadeamento interior ou endereçamento externo

- A idéia é usar como nós das listas as próprias entradas da tabela
- Há duas variantes
- Na primeira, a tabela de m entradas é dividida em duas porções:
  - A função de dispersão h retorna apenas índices na primeira porção de 0 a p –1, por exemplo
  - A segunda porção índices de *p* a *m*-1é usada como área comum para overflow
  - Pode acontecer que a área de overflow seja toda tomada sem que todas as entradas da tabela tenham sido usadas
  - Pode-se aumentar a área de overflow diminuindo-se p, mas isso também é ineficiente. No limite, p=1 e a tabela resume-se a uma lista encadeada

- Na segunda variante, todo o espaço de endereçamento é usado
- O maior problema dessa abordagem é que pode haver colisões secundárias, isto é colisões entre chaves não sinônimas  $(h(x) \neq h(y))$
- Quando ocorre uma colisão, a chave é armazenada na primeira posição livre após h(x), a posição d, digamos
- Se agora incluirmos y tal que h(y)=d, teremos a fusão das listas correspondentes a h(x) e h(y), diminuindo a eficiência do esquema

- Um outro problema refere-se às dificuldades introduzidas no processo de exclusão
  - Não se pode simplesmente retirar o elemento da cadeia
  - Além do valor de chave especial que indica "posição vazia", é preciso criar um valor de chave especial que indica "elemento removido"
  - Uma inserção posterior pode reaproveitar posições marcadas com "elemento removido"
- Na verdade, encadeamento interior com espaço de endereçamento único não é uma boa idéia, já que os problemas são os mesmos encontrados no tratamento de colisões por endereçamento aberto, sendo que nesse último temos a vantagem de não precisar de ponteiros

## Tratamento de Colisões – Endereçamento Aberto

- Ao invés de usar ponteiros, utiliza-se uma outra função de dispersão que indica o próximo índice a ser tentado. Em geral temos a função de dispersão h(x, k) onde
  - *x é* a chave
  - k = 0, 1, 2, etc. é o número da tentativa
- h(x, k) tem que ser desenhada de tal forma a visitar todos os m endereços em m tentativas
- No pior caso, *m* tentativas são feitas

## Tratamento de Colisões – Endereçamento Aberto

- Tentativa linear:
  - $h(x, k) = (h'(x) + k) \mod m$
  - Tem a desvantagem de agrupar tentativas consecutivas
- Tentativa quadrática
  - $h(x, k) = (h'(x) + c_1 k + c_2 k^2) \mod m$
  - Resolve o problema do agrupamento primário
  - Problema do agrupamento secundário
    - chaves x e y tais que h'(x) = h'(y) geram a mesma sequência de tentativas
- Dispersão dupla
  - $h(x, k) = (h'(x) + k h''(x)) \mod m$