

大二模电期末试题汇总

南洋书院学生会制作

目录

2017 年模电期末试题	1
2014 年模电期末试题	6
2014年模电期末答案	11
2012年模电期末试题	12
2012年模电期末试题 2012年模电期末答案	

模电 2017 年 5 月试题

一、选择题(每个选项1分,共15分)

- 1. 图 1 所示电路中, 二极管性能均为理想, 则二极管的状态是
- A. D1 和 D2 均导通
- B. D1和D2均截止
- C. D1 导通 D2 截止
- D. D1 截止 D2 导通

- 2. 晶体管的参数受温度影响较大,当温度升高时,晶体管的 β , I_{CBO} , U_{BE} 的变 化情况是
- A. β 增加, I_{CBO} 和 U_{BE} 减小
- B. β 和 I_{CBO} 增加, U_{BE} 减小
- C. β 和 U_{BE} 减小, I_{CBO} 增加
- D. β , I_{CBO} 和 U_{BE} 都增加
- 3. 在图 2 所示电路中,己知场效应管 T_1 的的 $I_{DSS}=3$ mA、 $U_{GS(off)}=-5V$; T_2 的 $K = 2.25 \text{mA}/V^2$ 、 $U_{GS(th)} = 2V$ 。

- 图 2 (a) 管子工作在____。图 2 (b) 管子工作在
- A. 放大区
- B. 截止区
- C. 可变电阻区
- 4. 差分放大电路的共模抑制比 K_{CMR} 越大,表明电路_
- A. 放大倍数越稳定
- B. 交流放大倍数越大

- C. 直流放大倍数越大 D. 抑制零漂的能力越强
- 5. 图 3 所示电路是一个_____有源滤波电路。
- A. 一阶高通 B. 一阶低通 C. 二阶高通 D. 二阶低通

- 6. 图 4 所示电路中, 电阻引入的反馈类型为
- A. 电压 B. 电流 C. 串联

- D. 并联
- E. 正反馈
- F. 负反馈
- 7. 试用相位平衡条件判断图 5 所示电路是否有可能产生振荡,图 a , 图 b____
- A. 可能
- B. 不可能

- 8. 乙类互补推挽功率放大电路的能量转换效率最高是

- A. 50% B. 78.5% C. 80% D. 100%
- 9. 在常用的正弦波振荡器中,频率稳定度最好的是 振荡器。
- A. 石英晶体 B. 电感三点式 C. 电容三点式 D. RC型

- 10. 下列哪些耦合方式可以用于隔离放大器传递信号。

- A. 光电耦合 B. 电磁耦合 C. 直接耦合

二、(20分)

放大电路及参数如图 6 所示。其中,管子的 $\beta = 50$, $r_{bb} = 300\Omega$, $U_{BE} = 0.6V$,晶体管的结电容忽略不计。

- (1) 估算电路的静态工作点 I_{EQ} 、 U_{CEQ} ;
- (2) 画出中频微变等效电路,并求出rbe的值;
- (3) 计算电路的中频电压放大倍数 $A_{ums} = U_o/U_s$,输入电阻 R_i 和输出电阻 R_o ;
- (4) 计算电路的上下限截止频率fL和fH。
- (5) 设输入一正弦信号时,输出电压波形出现顶部削平失真。问产生了什么性质的失真?应增大还是减小电阻R_{B1}使之消除?
- (6) 假设输入信号 $u_s=20sin2\pi\times 10^3t+10sin2\pi\times 10^5t$ mV,请问输出信号是否有可能出现频率失真。

三、(12分)

电路如图 7 所示,设 $T_1 \sim T_3$ 管的 $\beta = 50$, $U_{BE} = 0.7V$,稳压管 D_Z 的稳定电压 $U_Z = 6V$,试计算:

- (1) T₁和 T₂管的集电极静态电位;
- (2) 差模电压放大倍数 A_{ud} , 共模电压放大倍数 A_{uc} , 共模抑制比 K_{CMR} ;
 - (3) 差模输入电阻R_{id}和输出电阻R_o。
 - (4) 若输入信号 $u_I = 1mV$,请问 $\Delta u_o = ?$

四、(10分)

已知图 8 所示各电路中的集成运放均为理想运放,模拟乘法器的乘积系数 k 大于零。试分别求解各电路的运算关系。

五、(13分)

电路如图 9,A 为理想运算放大器,且供电正常。当图中输入直流电压 $U_1=30V$,稳压管的稳定电压 U_Z 等于 6V。试问:

- (1) 说明电路的整流电路、滤波电路、调整管、基准电压电路、比较放大电路、采样电路等部分各由哪些元件组成?
- (2) 在一般工程中,变压器副边电压有效值 U_2 约为多少?
- (3) 输出电压Uo的最大值和最小值各等于多少伏?
- (4) 如果电容 C_1 开路时,电压 U_1 有何变化?

六、(15分)

功率放大电路如图 10 所示,假设运放为理想器件,电源电压为±12V。

- (1) 试分析R2引入的反馈类型;
- (2) 试求的 $A_{of} = U_o/U_i$ 值;
- (3) 试求 $u_i = sin\omega t$ V时的输出功率,电源供给功率及能量转换效率的值。

七、(15分)

电路图如图 11 所示。设 A₁和 A₂为理想运算放大器,其最大输出幅值为±15V, 忽略稳压管的正向压降,回答下列问题:

- (1) 画出 u_o 、 u_{o1} 至少两个周期的波形(画在同一个坐标系内);
- (2) 求 u_o 、 u_{o1} 的周期与幅值;
- (3) 如果运放 A_1 的反相输入端接入U > 0 的电压,运放 A_2 的同相输入端仍接地,请问输出波形有何变化?
- (4) 如果运放 A_2 的同相输入端接入U > 0的电压,运放 A_1 的反相输入端仍接地,请问输出波形有何变化?

2014 年模拟电子技术(A)

- 1. $(20~ \beta)$ 共射放大电路如题 1 图所示。已知 T 管是 NPN 型晶管, V_{cc} =15V, r_{bbK} '=300 Ω , β =150, U_{BEQ} =0.7V, R_{B1} =39 $k\Omega$, R_{B2} =10 $k\Omega$, R_E =1 $k\Omega$, R_C = R_L =2 $k\Omega$, C_1 = C_2 =10 μF , C_E =47 μF ,晶体管的结电容可以忽略。
- (1) 计算电路的静态工作点 I_{CQ} 和 U_{CEQ} ;
- (2) 计算中频时的电压放大倍数 A_u 、输入电阻 R_i 和输出电阻 R_o ;
- (3)若负载电阻 $R_{\scriptscriptstyle L}$ 并接电容 $C_{\scriptscriptstyle L}=6800\mu F$,计算电路上、下限截止频率 $f_{\scriptscriptstyle L}$ 与 $f_{\scriptscriptstyle H}$;

- 2. (10 分)结型场效应管组成的放大电路如题 2 图所示,假设电路静态工作点合适。 $R_G=1M\Omega, R_S=R_L=10$ k $\Omega, C_1=C_2=10$ μ $F, V_{DD}=18V, r_{dS}$ 可以忽略。
- 1. 请画出电路中频区的微变等效电路;
- 2. 已知 T 管的跨导 $g_m = 1mS$,计算电路的中频电压放大倍数 A_u 、输入电阻 R_i 和输出电阻 R_o 的值。
- 3. (15分) 电路如题 3 图所示。已知晶体管参数一致,假设静态工作点都合适。

其中 $V_{cc} = 15V$, $r_{bb}' = 300\Omega$, $\beta = 100$, $U_{BEQ} = 0.7V$, $R_{B1} = R_{B2} = 2k\Omega$, $R_{C1} = R_{C2} = R_{C3} = 100$

- $3.3k\Omega$, $R_{E3}=1k\Omega$, $R_{E4}=2k\Omega$, 恒流源的内阻可视为无穷大, 其电流 I=4mA 。
- (1) 当 $u_1 = 0$ 时,请计算晶体管的集电极电流 I_{CIO} 以及电压 U_{CIO} ;
- (2)加入信号 u_1 后,若信号从端子④输出,计算 T_1 和 T_2 差分电路的差模电压放大倍数 A_{ud} ,差模输入电阻 R_{id} 及输出电阻 R_o ;
- (3) 若晶体管 T_3 与 T_4 电路静态工作点合适,将电路端子④与端子⑥链接并组成多级反馈放大电路。试问反馈电阻的另一端应与差分电路①至③哪个输入端子连接才能组成负反馈放大电路?请给出此负反馈的基本类型。
- (4) 在上一问情况下,若电路满足深反馈条件,且负反馈后电路放大倍数 $|\dot{A}_{uf}| = \dot{U}_{o} / \dot{U}_{t} = 2$,试计算电阻的阻值应为多少?

4. $(15\
ho)$ 某一信号处理电路如图 4 所示。传感器得到的电压信号分别送到输入 端 u_A 与 u_B 。 设 运 放 A_1 ~ A_5 为 理 想 运 放 , 电 阻 $R_1=R_1'=330\Omega, R_2=R_2'=10k\Omega, R_3=$

 $R_3'=20k\Omega$, $R_4=2k\Omega$, $R_5=R_6=R_7=10k\Omega$ 。 C_1 与 C_2 容值待计算。

- (1) 请问运放 A_4 与 A_5 组成的电路功能分别是什么?
- (2) 若 $R_p = 100\Omega$,请计算中频时电路的电压放大倍数 $A_{um} = \frac{\dot{U_0}}{U_A U_B}$.
- (3)如果电路的下限截止频率 $f_L = 100Hz$, 上限截止频率 $f_H = 30Hz$, 请计算电容 C_1 与 C_2 容值分别是多少?

5. (15 分) 电路如题 5 图所示。已知运算放大器理想,运放的电±18V。 $R_1=R_2=10k\Omega$, $R_3=1k\Omega$, $R_4=R_6=2K\Omega$, $R_5=4K\Omega$, $C=0.1\mu F$,稳压管的稳压值 $U_Z=6V$,稳压管的正向压降可以忽略。

- (1) 运放 A_1, A_2 及 A_3 分别组成何种单元电路?运算工作状态是线性还是非线性?
- (2) 在同一坐标下分别定性画出输出电压 u_{01} 及 u_{02} 随时间的变化波形。
- (3) 输出电压 u_o 的频率是多少?
- (4) 电路调试中无意间将电 R_5 拔出,请问的 u_{o2} 的波形是否会变化?为什么?(简述不超过 50 字)

- 6. (15 分) 功率放大电路如题 6 图所示。已知 $R_L = 8\Omega$, $R_1 = 2k\Omega$, $R_2 = 15k\Omega$, $V_{cc} = 18V$,忽略功率管的饱和压降请问:
 - (1) 电路引入基本反馈类型是什么?
 - (2) 当输入电压为 $u_1 = 1V$,求此时的输出电压 u_0 大小?
 - (3)电路的最大输出功率 P_{omax} 和最大效率 η_{max} 分别是多少?
- (4) 二极管 D_1 和 D_2 的作用是什么?晶体管 T_1 与 T_2 的工作状态是甲类还是乙类还是甲乙类?

- 7. (10 分) 一种直流稳压电源如题 7 图所示,已知 $R_1 = 2k\Omega$, $R_2 = 0 \sim 5k\Omega$.LM7805 是集成三端稳压器。请问:
- (1) 四只二极管 $D_1 \sim D_4$ 组成电路的功能是什么?
- (2) 若要使电容C两端的电压 $U_1 = 40V$ 。则变压器次

级电压 u_2 的有效值应为多少伏?

(3) 若电流 $I_Q = 2mA$,求输出电压 U_o 的调节范围。

题7图

2014 模拟电子技术期末答案

—

 $1.I_{CQ} = 2.36 \, mA$ $U_{CEQ} = 7.92 \, V$

 $2.A_u = -76.9$ $R_i = 1.95 \, k\Omega$ $R_o = 2 \, k\Omega$

 $3.f_L = 295 \, Hz$ $f_H = 23.4 \, kHz$ $(C_l = 6800 pF)$

二、

1.图略

 $2.A_u = 0.833$ $R_i = 1 M\Omega$ $R_o = 0.909 k\Omega$

三、

 $1.I_{CQ} = 2 \, mA$ $U_{CQ} = 8.4 \, V$

 $2.A_{ud} = -45.83$ $R_i = 7.2 k\Omega$ $R_o = 3.3 k\Omega$

3. 3 电压串联负反馈

 $4.R_f = 2k\Omega$

四、

1.A₄为低通滤波器 A₅为高通滤波器

 $2.A_{um} = -38$

 $3.C_1 = 530pF$ $C_2 = 0.159uF$ $(f_H = 30kHz)$

五、

 $1.A_1$ 为方波发生器(非线性) A_2 为反向输入比例器(线性) A_3 反向输入积分器(线性)

2.图略

3.f=5kHz

 $4.U_{o2}$ 波形不变(幅值,频率改变) A_2 变成一个零电平比较器

六、

1.电压并联负反馈

2.7.5V

 $3.P_{omax} = 20.25W \quad \eta_{max} = 78.5\%$

4.提供直流偏置 甲乙类

七、

1.整流电路

 $2.U_2 = 28.28V$

3.5~27.5V

2012 年模拟电子技术期末

- 1 (20 分) 电路如图所示,其中 $V_{\rm CC}$ = 24V, $R_{\rm B1}$ = 62kΩ, $R_{\rm B2}$ = 15kΩ, $R_{\rm C}$ = 3kΩ, $R_{\rm E1}$ = 100Ω, $R_{\rm E2}$ = 1kΩ, $R_{\rm L}$ = 3kΩ, $C_{\rm 1}$ = $C_{\rm 2}$ = 10 μ F, $C_{\rm E}$ = 47 μ F, β = β = 50, $r_{\rm bb'}$ = 300Ω,T为硅管。 试求:
 - (1) 估计静态工作点 I_{BO} , I_{CO} , I_{CEO} 的值;
 - (2) 画出该电路中频区的微变等效电路;
 - (3) 求中频区的电压放大倍数 $\dot{A_u}$,输入电阻及输出电阻 R_o 的值;
- (4) 令 $R_{E1} = 0$,求该电路的下限截止频率 f_L 两端并联一个电容 $C_L = 2000$ pF,试求电路的上限截止频率 f_H 。

2 (6分) 在图 2 所示电路中, R_{G} 均为 $100k\Omega$, R_{D} 均为 $3.3k\Omega$, V_{DD} = 10V, V_{GG} = 2V,又已知, T_{1} 的 I_{DSS} = 3mA, $U_{GS(off)}$ = -5V; T_{3} 的 I_{DSS} = -6mA, $U_{GS(off)}$ = 4V。试分析各电路中的场效应管工作于放大区、截止区、可变电阻区中的哪个区(写出分析过程)。

南洋出品,必属精品

3 (12 分)电路如图 3 所示,图中 u_i 为两个输入端的差值。设 $T_1 \sim T_3$ 管的 $\beta = 60$, $U_{BE} = 0.7V$,稳压管 D_Z 的稳压值 $U_Z = 6V$,负载 $R_L = 50k\Omega$, $r_{bb'} = 300\Omega$ 。试求:

- (1) 稳态工作点 I_{C1} , I_{C2} , I_{E1} , U_{C1} , U_{C2} 的值;
- (2) 差模电压放大倍数 A_{ud} ;
- (3) 差模输入电阻 R_{id} 和输出电阻 R_{o} 。

图 3

- 4 (12分) 电路如图 4 所示, 试求:
 - (1) 写出 $\mathbf{u_0}$ 与 $\mathbf{u_i}$ 的关系;
- (2) 若已知 $R_1 = R_{F1} = R_{F2} = R_{F3} = 2R_2$,且 u_i 为正弦波,试画出与其对应的 u_0 输出波形,并说明该电路的功能。

5 (10 分) 该电路如图 1 所示,其中 $R_1=40k\Omega$, $R_2=10k\Omega$,试代入 R_1 R_2 后 求输出电压 u_0 与输入电压 u_{in1} , u_{in2} ,参考电压 u_{REF} 的关系。

6(6分)试判断图 6 所示的两个电路是否可能产生正弦波振荡。如果可能振荡,写出其振荡频率的近似表达式,设电容 $C_{\rm b}$, $C_{\rm c}$ 很大,在交流通路中可视为短路,(a)中图 $L_{\rm 1}$, $L_{\rm 2}$ 之间的互感为 $\rm M$ 。

图 6

- 7 (12 分) 电路如图 7 所示,设 A_1 和 A_2 为理想运算放大器,其最大输出幅值为± **12V**, 稳压管的稳压值 $u_z=6.5$ V试求:
- (1)分别说明 A_1 , A_2 所组成的是什么电路,整体组成的是什么电路;
- (2)在一个坐标上画出 U_{01} , U_{0} 的波形;
- (3) 试求的 U_{01} , U_{0} 的幅值以及该电路的振荡频率 f。

8 (12 分)功率放大电路如图 8 (图片丢失)所示,已知 $R_L = 10k\Omega$, $R_1 = 2k\Omega$,

 $R_{\rm F}=1k\Omega$, $V_{\rm CC}=6V$,忽略功率管的饱和压降,耦合电容 C_1 , C_2 的电容足够大请问:

- (1) 电路存在的反馈类型(电压/电流、串联/并联、正/负);
- (2) 当输入电压 $u_i = \sqrt{2}\sin\omega t$, C_1 与 C_2 的容抗可以忽略不计,求此时电路的输出功率 P_0 电源提供功率 P_V 和效率 η 是多少;
- (3)二极管 D_1 , D_2 的作用是什么晶体管的工作状态是甲类、乙类还是甲乙类?

题7图

模拟电子技术参考答案 (2012)

1. (1)
$$I_{\text{BQ}}=0$$
, 071mA $I_{\text{CQ}}=3.64$ mA $U_{\text{CEQ}}=9.24$ V

(2) 电路图

(3)
$$A_{u=-13.8}$$
 $R_{i=3.75k\Omega}$ $R_{o=3k\Omega}$

(4)
$$f_{H=53.08kHz}$$

2. 放大区 可变电阻区

3. (1)
$$I_{C1} = I_{C2} = \frac{1}{2} I_{E3} = 1.15 \text{mA}$$
 $U_{C1} = U_{C2} = 4.87 \text{V}$

(2)
$$A_{ud=44.0}$$

(3)
$$R_{id=7.52k\Omega} R_{0=6.2k\Omega}$$

$$\underbrace{\frac{R_{F1}}{R_{1}}}_{4. (1)} \underbrace{u_{o1} = -\frac{R_{F1}}{R_{1}}}_{u_{i}} \underbrace{\frac{R_{F1}R_{F2}}{u_{o} = (\frac{R_{F1}R_{F2}}{R_{1}R_{2}} - \frac{R_{F2}}{R_{F3}})}_{u_{i}} u_{i}$$

(2) 线性检波

$$=\frac{(R_3+R_4)[5(u_{in+}+u_{in-})-u_{REF}]-R_4u_{REF}}{R_3}$$

5.
$$u_{o}=$$

6. 略

7. (1) 同相输入迟滞比较器;积分器;方波三角波发生器

- (2) 略
- (3) f = 926 Hz
- 8.(1) 电压; 串联; 负

(2)
$$P_{o=10W}$$
 $P_{v=} \frac{32\sqrt{2}}{\pi}_{W}$ $\eta=69.4\%$

(3) 甲乙类

更多精彩,尽在南洋书院学生会微信公众 号的南卷汇专栏,欢迎通过公众号提供题目或 反馈错题信息,南卷汇需要您的支持。

