Thermodynamics I

Lecture 12

Property Tables (Ch-3)
(Fixing States on Property Diagrams)

Dr. Ahmed Rasheed

In the region to the right of the saturated vapor line and at temperatures above the critical point temperature, a substance exists as superheated vapor.

In this region, temperature and pressure are independent properties.

	V	и	h
T,°C	m³/kg	kJ/kg	kJ/kg
	P = 0.11	MPa (99.	61°C)
Sat.	1.6941	2505.6	2675.0
100	1.6959	2506.2	2675.8
150	1.9367	2582.9	2776.6
	:	:	:
1300	7.2605	4687.2	5413.3
	P = 0.5	MPa (151	.83°C)
Sat.	0.37483	2560.7	2748.1
200	0.42503	2643.3	2855.8
250	0.47443	2723.8	2961.0

Superheated Vapor

Compared to saturated vapor, superheated vapor is characterized by

Lower pressures ($P < P_{\rm sat}$ at a given T)

Higher tempreatures ($T > T_{\rm sat}$ at a given P)

Higher specific volumes ($\lor > \lor_g$ at a given P or T)

Higher internal energies ($u > u_g$ at a given P or T)

Higher enthalpies ($h > h_g$ at a given P or T)

At a specified TP, superheated vapor exists at a higher h than the saturated vapor.

A partial listing of Table A-6.

Exercise Example

Determine the temperature of water at a state of P = 0.5 MPa and h = 2890 kJ/kg.

SOLUTION The temperature of water at a specified state is to be determined. **Analysis** At 0.5 MPa, the enthalpy of saturated water vapor is $h_g = 2748.1$ kJ/kg. Since $h > h_g$, as shown in Fig. 3–39, we again have superheated vapor. Under 0.5 MPa in Table A–6 we read

<i>T</i> , °C	h, kJ/kg
200	2855.8
250	2961.0

$$T = 216.3^{\circ}C$$

The compressed liquid properties depend on temperature much more strongly than they do on pressure.

$$y \cong y_{f@T}$$
 $y \rightarrow v$, u , or h

A more accurate relation for h

$$h \cong h_{f@T} + \vee_{f@T} (P - P_{sat@T})$$

Given: P and T

$$\begin{array}{l}
v \cong v_{f @ T} \\
u \cong u_{f @ T} \\
h \cong h_{f @ T}
\end{array}$$

A compressed liquid may be approximated as a saturated liquid at the given temperature.

At a given P and T, a pure substance will exist as a compressed liquid if $T < T_{\text{sat @ }P}$

Compressed Liquid

Compressed liquid is characterized by

Higher pressures $(P > P_{\text{sat}})$ at a given T) Lower tempreatures $(T < T_{\text{sat}})$ at a given P) Lower specific volumes $(V < V_f)$ at a given P or T) Lower internal energies $(u < u_f)$ at a given P or T) Lower enthalpies $(h < h_f)$ at a given P or T)

Exercise Example

Determine the internal energy of compressed liquid water at 80°C and 5 MPa, using (a) data from the compressed liquid table and (b) saturated liquid data. What is the error involved in the second case?

Analysis At 80°C, the saturation pressure of water is 47.416 kPa, and since T, °C \uparrow 5 MPa $> P_{\text{sat}}$, we obviously have compressed liquid, as shown in Fig. 3–41.

(a) From the compressed liquid table (Table A–7)

$$P = 5 \text{ MPa} T = 80^{\circ}\text{C}$$
 $u = 333.82 \text{ kJ/kg}$

(b) From the saturation table (Table A-4), we read

$$u \cong u_{f @ 80^{\circ}C} = 334.97 \text{ kJ/kg}$$

The error involved is

$$\frac{334.97 - 333.82}{333.82} \times 100 = \mathbf{0.34\%}$$

which is less than 1 percent.

Excercise Problem: P-v and T-v Diagrams

Determine the phases or phases in a system consisting of H₂O at the following conditions and sketch p-v and T-v diagrams showing the location of each state

(a)
$$p = 5$$
 bar, $T = 151.9$ °C

(b)
$$p = 5 \text{ bar}, T = 200 ^{\circ}\text{C}$$

(c)
$$T = 200 \, ^{\circ}C$$
, $p = 2.5 \, \text{Mpa}$

(d)
$$T = 160 \, ^{\circ}C$$
, $p = 4.8 \, bar$

Super Heated Region

(b) $p = 5 \text{ bar}, T = 200 ^{\circ}\text{C}$

(b) $p = 5 \text{ bar}, T = 200 ^{\circ}\text{C}$

Super Heated Region

Example 3-9: Determine the missing properties and the phase descriptions in the following table for water:

Determine the missing properties and the phase descriptions in the following table for water:

	<i>T</i> , °C	<i>P</i> , kPa	u, kJ/kg	\mathcal{X}	Phase description
(a)	120.21	200	1719.26	(0.6)	Sat. Liquid-Vapor Mix.
<i>(b)</i>	125		1600		
(c)		1000	2950		
(<i>d</i>)	75	500			
(e)		850		0.0	

$$U_{\text{avg}} = U_f + xU_{fg} \qquad (\text{m}^3/\text{kg})$$

(kJ/kg)

Remember: $u_{\text{avg}} = u_f + x u_{fg}$

$$h_{\text{avg}} = h_f + x h_{fg}$$
 (kJ/kg)

Example 3-9: Determine the missing properties and the phase descriptions in the following table for water:

Determine the missing properties and the phase descriptions in the following table for water:

	T, °C	<i>P</i> , kPa	u, kJ/kg	\mathcal{X}	Phase description
(a)	120.21	200	1719.26	0.6	Sat. Liquid-Vapor Mix.
(<i>b</i>)	125	232.23	(1600)	0.535	Sat. Liquid-Vapor Mix.
(c)		1000	2950		
(d)	75	500			
(e)		850		0.0	

Remember: if
$$u < u_f$$
 we have *compressed liquid* if $u_f \le u \le u_g$ we have *saturated mixture* if $u > u_g$ we have *superheated vapor*

$$u_{\text{avg}} = u_f + x u_{fg}$$
 (kJ/kg)

Example 3-9: Determine the missing properties and the phase descriptions in the following table for water:

Determine the missing properties and the phase descriptions in the following table for water:

	<i>T</i> , °C	<i>P</i> , kPa	u, kJ/kg	$\boldsymbol{\mathcal{X}}$	Phase description
(a)	120.21	200	1719.26	0.6	Sat. Liquid-Vapor Mix.
(b)	125	232.23	1600	0.535	Sat. Liquid-Vapor Mix.
(c)	395.2	1000	(2950)	N/A	Superheated Vapor
(d)	75	500			
(e)		850		0.0	

Application of interpolation method

Remember: if $u < u_f$ we have *compressed liquid* if $u_f \le u \le u_g$ we have *saturated mixture* if $u > u_{\varrho}$ we have superheated vapor

Example 3-9: Determine the missing properties and the phase descriptions in the following table for water:

Determine the missing properties and the phase descriptions in the following table for water:

	<i>T</i> , °C	<i>P</i> , kPa	u, kJ/kg	\mathcal{X}	Phase description
(a)	120.21	200	1719.26	0.6	Sat. Liquid-Vapor Mix.
(b)	125	232.23	1600	0.535	Sat. Liquid-Vapor Mix.
(c)	395.2	1000	2950	N/A	Superheated Vapor
(d)	75	500) u	$\cong u_{f@75^{\circ}C} = 313$	3.99 N/A	Compressed Liquid
(e)		850		0.0	
, ,					

Let's look for the saturation temperature at given pressure

Remember: if $T = T_{\text{sat @ given } P}$

if
$$T < T_{\text{sat @ given } P}$$

we have *compressed liquid*

$$T = T_{\text{sat @ given } P}$$

we have saturated mixture

if
$$T > T_{\text{sat @ given } P}$$

we have *superheated vapor*

A compressed liquid may be approximated as a saturated liquid at the given temperature.

Example 3-9: Determine the missing properties and the phase descriptions in the following table for water:

Determine the missing properties and the phase descriptions in the following table for water:

101 1100	4 •				
	T, °C	<i>P</i> , kPa	u, kJ/kg	$\boldsymbol{\mathcal{X}}$	Phase description
(a)	120.21	200	1719.26	0.6	Sat. Liquid-Vapor Mix.
(b)	125	232.23	1600	0.535	Sat. Liquid-Vapor Mix.
(c)	395.2	1000	2950	N/A	Superheated Vapor
(d)	75	500 u	$\cong u_{f@75^{\circ}C} = 313$	3.99 N/A	Compressed Liquid
(e)	→ 172.94	850	731.00	0.0	Saturated Liquid
$T_{\rm cot}$	@ 850 1/Da	u	<i>f @</i>	la.	
Sat	w oju ki a			a	

Exercise 3-23: Determine the missing properties and the phase descriptions in the following table for water:

T, °C	<i>P,</i> kPa	∨, m³/kg	Phase description
50	12.352	4.16	Sat. Liquid-Vapor Mix.
120.21	200	0.8858	Saturated vapor
250	400	0.5952	Superheated Vapor
110	600	0.001052	Compressed Liquid

Exercise 3-25

Complete the following table for H₂O

T, °C	<i>P,</i> kPa	<i>h,</i> kJ/kg	Х	Phase description
	200		0.7	
140		1800		
	950		0.0	
80	500			
	800	3162.2		

Solution:

T, °C	P, kPa	<i>h</i> , kJ/kg	X	Phase description
120.21	200	2045.8	0.7	Saturated mixture
140	361.53	1800	0.565	Saturated mixture
177.66	950	752.74	0.0	Saturated liquid
80	500	335.37		Compressed liquid
350.0	800	3162.2		Superheated vapor

Exercise 3-27

Complete the following table for Refrigerant – 134a

T, °C	<i>P,</i> kPa	u, kJ/kg	Phase description
20	572.07	95	Sat. Liquid-Vapor Mix.
-12	185.37	35.78	Saturated liquid
86.24	400	300	Super-heated Vapor
8	600	62.37	Compressed Liquid

Self-Exercise

Complete the following table for Refrigerant – 134a

T, °C	P, kPa	h, kJ/kg	X	Phase description
21.55	600	180	0.545	Saturated mixture
-10	(200.74)	(162.13)	0.6	Saturated mixture
-14	500	(33.40)		Compressed liquid
70	1200	300.61		Superheated vapor
44	(1131)	272.95	1.0	Saturated vapor