When Language Meets Vision: A Multimodal Perspective on the NLP World

Sapienza NLP Group Bianca Scarlini scarlini@di.uniroma1.it Reading Group @ Sapienza NLP

How do text models learn?

- Learn syntactic relations Clark et al. 2019
- Not grounded in the real world Bender and Koller 2020

How do visual models learn?

A dog is sitting on a couch with its toy.

 Learn relations within objects in an image

Cadene et al. 2019

Need detailed semantics of the image for visual understanding

Johnson et al. 2015

How do models learn?

A _ is sitting on a couch with its toy.

How do models learn?

Single-stream architecture

Single-stream architecture

Two-stream architecture

Single-stream architecture

Two-stream architecture

Single-stream architecture

Two-stream architecture

Visual and linguistic contents interact freely

Pretrain on visual-linguistic and text-only data

Add new visual features to BERT input embeddings

Fast R-CNN Girshick, 2015

→ Object detection model

Region of Interests (RoI)

Fast R-CNN Girshick, 2015

Object detection model

Appearance Feature Feature vector prior to the output layer of RoI

Fast R-CNN Girshick, 2015

→ Object detection model

Geometry Embedding
Sine and cosine
functions in different
wavelengths applied to
normalized coordinates
of RoI

Bianca Scarlini - When Language Meets Vision - Reading Group @ Sapienza NLP

Masked Language Modeling with Visual Clues

Masked RoI Classification with Linguistic Clues

Masked Language Modeling

Book Captions Zhu et al., 2015

English Wikipedia

Single-stream architecture

Uses object tags in an image as anchor points

Ease the learning of image-text alignment

A dog is sitting on a couch.

A dog is sitting on a couch.

Faster R-CNN, Ren et al., 2015

Conceptual Captions Sharma et al., 2018

COCO Lin et al., 2014 etc.

Masked Token Loss

Contrastive loss

Conceptual Captions Sharma et al., 2018

> COCO Lin et al., 2014 etc.

no bird A dog is sitting on a couch. balloon

Double-stream architecture

Builds both intra-modality and cross-modality relations

Five diverse pre-training tasks

Image Encoder

Image Encoder

Image Encoder

Cross-Modality Output [CLS]

MS COCO Lin et al., 2014

Visual Genome Krishna et al., 2017

etc.

Masked Language Modeling with Visual Clues

MS COCO Lin et al., 2014

Visual Genome Krishna et al., 2017

etc.

Detected-Label Classification

LxMERT [Tan and Bansal, 2020]

Cross-Modality Matching

MS COCO Lin et al., 2014

Visual Genome Krishna et al., 2017

etc.

LxMERT [Tan and Bansal, 2020]

Image Question Answering

MS COCO Lin et al., 2014

Visual Genome Krishna et al., 2017

etc.

Experimental Setup

Image Text Retrieval

Visual Question Answering

Visual Commonsense Reasoning

Grounding Referring Expression

Image Captioning

Natural Language Visual Reasoning for Real

... and many more

Visual Question Answering

VQA v2.0 Goyal et al., 2017

Visual Question Answering

Natural Language Visual Reasoning for Real

NLVR² Suhr et al., 2019

Natural Language Visual Reasoning for Real

VCR Zellers et al., 2019

Image

Questions

Rationales

VCR Zellers et al., 2019

Given the image and the question, return the correct answer $Q \rightarrow A$

VCR Zellers et al., 2019

Given the image, the question and the answer return the correct rationale $QA \rightarrow R$

VCR Zellers et al., 2019

Given the image and the question return the correct answer and rationale $Q \rightarrow AR$

Conclusions

Vision-and-language models gained much interest in the last couple of years

Straightforward techniques to incorporate visual features in contextualized language models

Vision-and-language models raised the bar for the state-of-the-art in many vision-and language tasks

Many directions that are still worth to be explored!

Thanks for your attention! Any questions? Feel free to ask

