

Unconstrained Monotonic Neural Networks

Antoine Wehenkel & Gilles Louppe antoine.wehenkel@uliege.be

What?

UMNN is a new neural network architecture for modelling monotonic functions.

How?

The strictly positive scalar output of a neural network is numerically integrated.

Applications?

We combine UMNNs with autoregressive flows to perform density estimation.

Code

Arxiv 1908.05164

Monotonic Networks (UMNN)

A necessary and sufficient condition for a continuously derivable function to be strictly monotonic is for its derivative to be of constant sign.

Change of variables

The adequate bijective function combined with any base distribution is able to represent any continuous random variable.

Autoregressive Density Estimation

Autoregressive transformations can be written as

$$g(\mathbf{x};\theta) = [g_1(x_1;\theta) \dots g_i(\mathbf{x}_{1:i};\theta) \dots g_d(\mathbf{x}_{1:d};\theta)].$$

Invertible? Yes, if each scalar transformation in \mathbf{h}^i is itself invertible.

$$x_1 = g_1^{-1}(y_1; \theta)$$

$$x_i = g_i^{-1}(y_i, \mathbf{x}_{1:i-1}; \theta)$$

The induced multivariate density can be expressed by the chain rule as

$$p(\mathbf{x}; \theta) = p(x_1; \theta) \prod_{i=1}^{a-1} p(x_{i+1} | \mathbf{x}_{1:i}; \theta).$$

We build UMNN into an autoregressive transformation as

$$g^{i}\left(\mathbf{x}_{1:i};\theta\right) = F^{i}\left(x_{i},\mathbf{h}^{i}\left(\mathbf{x}_{1:i-1}\right)\right) = \int_{0}^{x_{i}} f^{i}\left(t,\mathbf{h}^{i}\left(\mathbf{x}_{1:i-1}\right)\right) dt + \beta^{i}\left(\mathbf{h}^{i}\left(\mathbf{x}_{1:i-1}\right)\right)$$

The autoregressive embeddings \mathbf{h}^i are computed with a masked autoregressive network.

We call this transformation UMNN-MAF, it leads to the following elegant expression of the log-likelihood of a point given the model:

$$\log p(\mathbf{x}; \theta) = \log p_{\mathbf{y}}(\mathbf{g}(\mathbf{x}; \theta)) + \sum_{i=1}^{d} \log f^{i}(x_{i}, \mathbf{h}^{i}(\mathbf{x}_{1:i-1})).$$

Architecture

The combination of a UMNN with autoregressive transformations can be visualized as follows:

Results

Dataset	POWER	GAS	HEPMASS	MINIBOONE	BSDS300	MNIS'
RealNVP - Dinh et al. [2017]	$-0.17_{\pm .01}$	$-8.33_{\pm .14}$	$18.71_{\pm .02}$	$13.55_{\pm .49}$	$-153.28_{\pm 1.78}$	-
(a) Glow - Kingma and Dhariwal [2018]	$-0.17_{\pm .01}$	$-8.15_{\pm .40}$	$19.92_{\pm.08}$	$11.35_{\pm .07}$	$-155.07_{\pm .03}$	-
FFJORD - Grathwohl et al. [2018]	$\frac{-0.46}{\pm .01}$	$\frac{-8.59}{\pm .12}$	$14.92_{\pm .08}$	$10.43_{\pm .04}$	$\frac{-157.40}{\pm.19}$	-
MADE - Germain et al. [2015]	$3.08_{\pm .03}$	$-3.56_{\pm .04}$	$20.98_{\pm .02}$	$15.59_{\pm.50}$	$-148.85_{\pm .28}$	2.04_{\pm}
(b) MAF - Papamakarios et al. [2017]	$-0.24_{\pm .01}$	$-10.08_{\pm .02}$	$17.70_{\pm .02}$	$11.75_{\pm .44}$	$-155.69_{\pm .28}$	1.89_{\pm}
TAN - Oliva et al. [2018]	$\frac{-0.60}{\pm .01}$	$-12.06_{\pm .02}$	$13.78_{\pm .02}$	$11.01_{\pm .48}$	$-159.80_{\pm.07}$	1.19
NAF - Huang et al. [2018]	$-0.62_{\pm .01}$	$-11.96_{\pm .33}$	$15.09_{\pm .40}$	8.86 _{±.15}	$-157.73_{\pm .30}$	-
(c) B-NAF - De Cao et al. [2019]	$-0.61_{\pm .01}$	$\frac{-12.06}{\pm .09}$	$14.71_{\pm .38}$	$8.95_{\pm .07}$	$-157.36_{\pm.03}$	-
SOS - Jaini et al. [2019]	$-0.60_{\pm .01}$	$-11.99_{\pm .41}$	$15.15_{\pm.1}$	$8.90_{\pm .11}$	$-157.48_{\pm .41}$	1.81
UMNN-MAF (ours)	$-0.63_{+0.1}$	$-10.89_{\pm .7}$	$13.99_{+.21}$	$9.67_{\pm .13}$	$\frac{-157.98}{\pm .01}$	1.13_{+}

MNIST

Take home messages

- Any monotonic function can be modeled by a neural network that represents the function derivative.
- The backward pass is memory efficient thanks to Leibniz rule.
- UMNNs can be used as building blocks of autoregressive bijective maps and provide a state of the art density estimator.