Introduction to Machine Learning

Hossein Pourreza

January 2018

What is machine learning?

 A branch of artificial intelligence, concerned with the design and development of algorithms that allow computers to evolve behaviors based on empirical data

- Every machine learning problem is basically an optimization problem
 - To find either a maximum or a minimum of a specific function

What is machine learning?

Traditional Programming

Machine Learning

Figure is from https://courses.cs.washington.edu/courses/cse446/14wi/slides/intro.pdf

Machine learning applications

Handwriting detection

Image classification

Spam filtering

Fraud detection

Market basket analysis

Data and machine learning

 In order to let a machine learn, you need to provide it with enough data

- Data has features used by the machine learning algorithm
 - E.g., columns of tabular data
- Selecting features correctly increases the learning accuracy

Types of learning

Supervised learning

Unsupervised learning

Reinforcement learning

Supervised learning

Uses a training set including both features and desired output

Classification

Regression

Unsupervised learning

 There is no defined output and it learns what normally happens

Representing data

 Data is usually represented as NxM matrix where N is the number of samples and M is the number of features

Labels (outputs) are represented as a column vector

Training and test set

Training set

Test set

Nearest neighbor

Overfitting and underfitting

Model complexity

Cross validation

- In cross validation, you split your data into multiple folds, usually 5 or 10, and build multiple models
- For each of the splits of the data, you get a model evaluation and a score
- Better use of data but longer running time

Cross validation + test data

- Start out by splitting of the test data, then perform crossvalidation on the training data
- Once the right setting of the parameters is found, re-train on the whole training set and evaluate on the test set
- The GridSearchCV function can perform CV+test

Preprocessing

- Consider the Boston housing dataset
 - The idea is to predict house prices based on a number of factors
 - Not all the factors have the same scale
- Some methods, e.g. KNeighborsRegressor, want data to be in the same scale
- Using StandardScaler, fit on training set, transform training set, fit KNeighborsRegressor on scaled data, transform test data, score scaled test data
- To scale, always fit on the training set and apply transform on both the training and the test set.

Categorical data

- Let's say you have three possible values for a given measurement for each setup
 - E.g., red, green, and blue
- You could try to encode these into a single real number, say 0, 1 and 2

 But, it imposes a linear relation between them, and in particular it defines an order between the categories

Categorical data

 A better way is to add one new feature for each category, and that feature encodes whether a sample belongs to this category or not.

 This method is called a one-hot encoding, because only one of the features is active at a time

	red	green	blue
Setup1	1	0	1
Setup2	0	1	0
Setup3	0	0	1

Machine learning in the cloud

 Companies such as Microsoft and IBM offer machine learning services in the cloud

Easy to get started but works as a black box

There could be some cost associated with using the model

Useful links and references

- https://github.com/rccuchicago/Workshops/tree/master/IntrotoML
- http://scikit-learn.org/stable/documentation.html
- https://github.com/amueller/ml-training-intro ¹
- http://www2.cs.uh.edu/~ceick/ML/ML09.html
- www.cs.washington.edu/446

¹ Slides are adopted from material in the repository