Dokumentacja

Yevhenii Palamarchuk 126931

1. Opis problemu

Tariff rates (power generation)

Celem tego projektu jest określenie optymalnego harmonogramu pracy zestawu generatorów mocy w celu zaspokojenia zmieniających się zapotrzebowań na energię elektryczną w ciągu dnia, przy jednoczesnym minimalizowaniu całkowitych kosztów operacyjnych. Dodatkowo, dążymy do obliczenia marginalnego kosztu produkcji energii elektrycznej w każdym okresie oraz analizy wpływu gwarancji rezerwowej mocy na koszty.

12 p.m. to 6 a.m.	15 000 MW
6 a.m. to 9 a.m.	30 000 MW
9 a.m. to 3 p.m.	25 000 MW
3 p.m. to 6 p.m	40 000 MW
6 p.m. to 12 p.m.	27 000 MW

Dostępne są trzy typy jednostek generujących: 12 typu 1, 10 typu 2 oraz 5 typu 3. Każdy generator musi pracować pomiędzy minimalnym a maksymalnym poziomem mocy. Istnieje godzinowy koszt pracy każdego generatora na minimalnym poziomie. Dodatkowo, istnieje dodatkowy godzinowy koszt za każdy megawat, o który jednostka jest operowana powyżej minimalnego poziomu. Uruchomienie generatora wiąże się również z kosztami. Wszystkie te informacje znajdują się w Tabeli 12.6 (koszty w £). Oprócz spełnienia szacowanych zapotrzebowań na obciążenie, musi być wystarczająca liczba pracujących generatorów w każdym momencie, aby możliwe było zaspokojenie wzrostu obciążenia do 15%. Ten wzrost musiałby zostać osiągnięty poprzez dostosowanie mocy wyjściowej generatorów już działających w ramach ich dozwolonych limitów.

Generator	Minimum	Maximum	Cost per	Cost per hour	Startup Cost
type	level	level	hour at	per megawatt	
			minimum	above minimum	
Type1	850 MW	2000 MW	1000	2	2000
Type 2	1250 MW	1750 MW	2600	1.30	1000
Type 3	1500 MW	4000 MW	3000	3	500

Pytania do rozwiązania:

- Które generatory powinny działać w poszczególnych okresach dnia, aby zminimalizować całkowity koszt?
- Jaki jest marginalny koszt produkcji energii elektrycznej w każdym okresie dnia; to znaczy, jakie taryfy powinny być naliczane?
- Jakie byłyby oszczędności wynikające z obniżenia gwarancji rezerwy mocy o 15%; to znaczy, ile kosztuje ta gwarancja bezpieczeństwa dostaw?

2. Opis rozwiązania

a. Zestawy

- i. G = [1,2,3] typy generatorów (indeksowane jako i)
- ii. T = [1,2,3,4,5] okresy czasu (indeksowane jako j)

b. Parametry

- i. $D_i = [15000, 30000, 25000, 40000, 27000] zapotrzebowanie$
- ii. $M_i = [850, 1250, 1500] minimalny poziom$
- iii. $M_i = [2000, 1750, 4000] maksymalny poziom$
- iv. $E_i = [1000, 2600, 3000]$ koszt godzinowy przy minimalnym poziomie
- v. C_i = [2.0, 1.3, 3.0] dodatkowy koszt godzinowy za MW powyżej minimalnego poziomu
- vi. $F_i = [2000, 1000, 500]$ koszt uruchomienia generatora
- vii. $N_i = [12, 10, 5]$ liczba jednostek generujących
- viii. $H_i = [6, 3, 6, 3, 6]$ godziny w każdym okresie czasu

c. Zmienne decyzyjne

- i. X_{ij} całkowita moc wyjściowa z generatorów typu i w okresie j
- ii. n_{ij} liczba jednostek generujących typu i pracujących w okresie j
- iii. S_{ij} liczba generatorów typu i uruchomionych w okresie j

d. Funkcja minimalizacji

i.
$$Cost = \sum_{ij} C_i^* H_j^* (x_{ij} - m_i^* n_{ij}) + \sum_{ij} m_i^* H_j^* n_{ij} + \sum_{ij} F_i^* s_{ij}$$

e. Ograniczenia

i. Zapotrzebowanie musi być spełnione w każdym okresie $\sum_i x_{ii} >= D_i$

$$x_{ij} \ge m_i * n_{ij}$$

$$\chi_{ii} \le M_i * n_{ii}$$

iii. Dodatkowe gwarantowane zapotrzebowanie na moc (15%)

$$\sum_{i} M_{i} * n_{ii} > = D_{i} * 1.15$$

iv. Liczba generatorów uruchomionych w okresie

$$s_{ij} \ge n_{ij} - n_{ij-1}$$

v. Górne granice liczby generatorów używanych dla każdego typu w każdym okresie czasu

$$n_{ij} \le N_i$$

vi. Górne granice liczby generatorów uruchomionych w każdym okresie czasu

$$s_{ij} \le N_i$$

3. Implementacja w OPL

Opisany powyżej model został zaimplementowany w IBM ILOG CPLEX Optimization Studio przy użyciu języka OPL.

Dodatkowe Wyrażenia Decyzyjne

costPerPeriod[j]: Dodatkowe wyrażenie decyzyjne dla kosztu na okres.
costPerMWPerPeriod[j]: Dodatkowe wyrażenie decyzyjne dla kosztu za 1 MW na okres.

Wyniki

1. Całkowity koszt: 988,540

2. Koszt na godzinę dla każdego okresu:

Okres 1: 1.41 £

Okres 2: 1.71 £

Okres 3: 1.58 £

Okres 4: 1.75 £

Okres 5: 1.61 £

4. Wnioski

Zoptymalizowany harmonogram pracy generatorów mocy minimalizuje całkowite koszty operacyjne, jednocześnie spełniając zmieniające się zapotrzebowania na energię elektryczną w ciągu dnia. Analiza dostarcza informacji na temat marginalnego kosztu produkcji energii elektrycznej oraz wpływu gwarancji rezerwowej mocy na koszty.

5. Bibliografia

- H. Paul Williams Model Building in Mathematical Programming, 5th Edition (Zadanie 12.15 Tariff rates (power generation))
- Link do GitHub https://github.com/YevheniiPalamarchuk/tariff_rates