Undergraduate Complexity Theory Lecture 27: Hardness within P

Marcythm

July 30, 2022

1 Lecture Notes

 $P = \text{efficient? } O(n^2) = \text{efficient? What really awesome is like } O(n \operatorname{polylog}(n)).$

Remark 1.1. For $O(n^2)$ time vs $O(n \log n)$ the <u>model</u> matters. (in this lecture we use RAM model)

e.g. LCS in time $O(n^2)$ by dynamic programming. can we show it's not in time $O(n^{1.99})$? By THT we can know that $\exists L \text{ s.t. } L \in \mathsf{TIME}(n^2) \backslash \mathsf{TIME}(n^{1.99})$. Let base it on some assumption, dream: $\mathsf{P} \neq \mathsf{NP}$. But we don't know how to do it, so make a backup dream, then derive many consequences.

Theorem 1.2 (2010's). Assuming SETH, $\forall \epsilon > 0 : LCS \notin TIME(n^{2-\epsilon})$.

there are tons of such results, EDIT-DIST $\geq n^2$, Graph-Diameter $\geq mn$, etc.

3SUM: give an array a of n integers, determine if $\exists i, j, k : a_i + a_j + a_k = 0$. It's not too hard to get some algo like $O(n^2 \log n)$. With assumption 3SUM $\geq n^2$, we can derive: 3 points colinear $\geq n^2$, hole in bunch of triangles $\geq n^2$, etc.

APSP: all pairs shortest path, $O(n^3)$. With assumption APSP $\geq n^3$, we have: Graph radius $\geq n^3$, negtive triangles $\geq n^3$, etc.

k-CLIQUE: $\geq n^{\omega k/3}$, where ω is the best number exponent of multiplying two $n \times n$ matrices, i.e. $O(n^{\omega})$ (till now $\omega = 2.3 \cdots$). With assumption k-CLIQUE $\geq n^{\omega k/3}$, we have: CFG parsing $\geq n^{\omega}$, RNA folding $\geq n^{\omega}$, etc.

fine-grained complexity: finer grain than just sth. is in P or not in P, figure out what is the fastest poly time algorithm. Reduction: for problem A, instance x, size n, a reduction is mapping in time r(n) to problem B, instance y, size s(n), s.t. $x \in A \iff y \in B$. Suppose have time t(n) algo for B, can have time t(s(n)) + r(n) algo for A. Conversely: no t(s(n)) + r(n) time algo for A implies no t(n) time algo for B.

Conjecture 1.3 (Strong ETH). $\forall \epsilon > 0 : \exists k : \mathsf{k-SAT} \notin \mathsf{TIME}(2^{(1-\epsilon)n})$

Conjecture 1.4 (CNF-SETH). $\forall \epsilon > 0$, for CNF-SAT problems with m clauses, n variables, $2^{(1-\epsilon)n}$ poly(m) time required.

Definition 1.5. DIAMETER: give graph G with n vertices, m edges, compute $\max_{u,v \in V} \operatorname{dist}(u,v)$.

with Dijkstra's algo, DIAMETER is about O(mn) time. Open Question: faster than O(mn) time?

Remark 1.6. Try approximation when stuck on an algorithmic problem.

ACIM'96: $\tilde{O}(m\sqrt{n})$ time for "factor 2/3 approximation", i.e. find D s.t. 2/3 diam $(G) \leq D \leq \text{diam}(G)$.

Theorem 1.7. CNF-SETH $\implies \nexists O(MN^{1-\epsilon})$ time DIAMETER algo.

Proof. Reduction from a CNF-SAT instance $\phi(x_1, x_2, \ldots, x_n)$ with m clauses to a DIAMETER instance G with $N = 2^{n/2} + m + 2$ vertices and $M = 2^{n/2}O(m)$ edges. This reduction runs in time $2^{n/2}\operatorname{poly}(m)$, very slow, but it's nothing comparing to the to-be-constructed $2^{(1-\epsilon)n}\operatorname{poly}(m)$ algo for CNF-SAT. By this reduction, $\operatorname{diam}(G) = 2 + [\phi \in \mathsf{CNF-SAT}]$. If exists $O(MN^{1-\epsilon})$ time algo for exactly (cool fact: even for

2/3 approximation) DIAMETER, then exists time $2^{(1-\epsilon/2)n}$ poly(m) algo for CNF-SAT, contradicts with the CNF-SETH.

details: one vertex C_i for each clause, let C_i be a clique; two hang-out vertices s,t, connected to C_i . (main trick) Setup $2^{n/2}$ vertices X_{α} , one for each partial assignment α to the first n/2 variables. Similar $2^{n/2}$ vertices Y_{β} for the other half. Promise for every X_{α} there is at least one edge connects to it, and the same for Y_{β} .

Thus diam $(G) \leq 3$, and diam(G) = 2 iff $\forall \alpha, \beta : \exists i : \{(X_{\alpha}, C_i), (C_i, Y_{\beta})\} \subseteq E$.

Connect X_{α} to C_i iff C_i is <u>not</u> (already) sat'd by α . e.g. for n=4, C_i for $x_1 \vee x_2 \vee x_3$ will be connected to X_{00} but not X_{10} . Consider previous promise, if some X_{α} is isolated, then we can know $\phi \in \mathsf{CNF}\text{-}\mathsf{SAT}$, thus abandon any construction and output any graph with diameter 3.