





### TIMELINE

Fault Injection in MOBATSim



Data Evaluation and PreProcessing



Analysis and Result Comparison





DATA Collection with respect to different possibilities



Implementation of DL Model





### FAULT INJECTION









#### FAULT DETAILS

| Vehicle   | Target<br>Component | Target<br>Variable         | Fault type                        | Fault<br>duration                          | Injection<br>Type                      |
|-----------|---------------------|----------------------------|-----------------------------------|--------------------------------------------|----------------------------------------|
| Vehicle 2 | Speed Sensor        | Speed<br>Reference         | Noise,<br>StuckAt,<br>Offset/Bias | 0.6, 1.2, 1.8,<br>2.4, 3.0, 3.6,<br>4.2, 5 | Uniform (At<br>10 secs, At<br>30 secs) |
|           | Distance<br>Sensor  | Intervehicular<br>Distance | Noise,<br>StuckAt,<br>Offset/Bias | 0.6, 1.2, 1.8,<br>2.4, 3.0, 3.6,<br>4.2, 5 | Uniform (At<br>10 secs, At<br>30 secs) |
| Vehicle 6 | Speed Sensor        | Speed<br>Reference         | Noise,<br>StuckAt,<br>Offset/Bias | 0.6, 1.2, 1.8,<br>2.4, 3.0, 3.6,<br>4.2, 5 | Uniform (At<br>10 secs, At<br>30 secs) |
|           | Distance<br>Sensor  | Intervehicular<br>Distance | Noise,<br>StuckAt,<br>Offset/Bias | 0.6, 1.2, 1.8,<br>2.4, 3.0, 3.6,<br>4.2, 5 | Uniform (At<br>10 secs, At<br>30 secs) |



# COLLECTION AND EVALUATION OF DATASET

- •Three driving scenarios have been considered: Urban City Traffic, Platoon Control, and Road Merge Collision
- •Three Error category has been considered: Bias/Offset, Stuck-at fault, and Noise.
- •For every scenario, 8 faulty cases will be simulated for each error category (80 faulty cases for each category as there are 10 vehicles)
- •Error values (for offset error), Injection time, and error duration have been predefined and chosen.
- •Bias/ Offset and Noise takes value 5.
- •Fault duration can any value in: [0.6, 1.2,1.8, 2.4, 3.0, 3.6, 4.2, 5]
- •The data is already resampled to a 0.02-sec sampling rate.
- •A total of 4000 samples are collected in every dataset.





# URBAN CITY TRAFFIC











## PLATOON CONTROL













#### ROAD MERGE COLLISION









#### FINAL DATA FORMAT

| Time    | Speed | Rotation | Position | Translation |
|---------|-------|----------|----------|-------------|
| Seconds | Float | Float    | Float    | Float       |

•Minimum No. of Attributes: 4

•Initial Data Sample Rate: 0.005 seconds

•Final Data Sample Rate: 0.02 seconds

•Every Simulation Duration: 80 seconds (4000

entries for each simulation)

•Total no. of simulations: 30 (Fault-free) +

240\*3 (Faulty) = 750

[Faulty data includes fault-free entries where

there is no error injection.]

University of Stuttgart 1/20/2016

10





#### DATA PREPROCESSING

- Initial Dataset is obtained with Timestamp and 8 data columns.
- After evaluation, the final dataset format is Timestamp and 4 columns named: Speed, Rotation, Position, and Translation
- During preprocessing, data is split into training examples, validation examples, and test examples
- Pre-Processing will be performed with respect to every attribute:
  Speed, Position, Rotation, and Translation
- All the features are concatenated and encoded accordingly for better accuracy in Deep Learning model





University of Stuttgart 1/20/2016

#### **DL MODEL OUTPUT (Accuracy and Loss)**





University of Stuttgart 1/20/2016 14

#### TOPICS TO DISCUSS

- DATA GENERATION: Willing to include dataset for a non-uniform sample as well
- DATA PREPROCESSING AND OUTPUT: Preprocessing and Output (in forms of accuracy and Loss) will be recorded for every attribute as well as for uniform and non-uniform dataset
- FINAL REQUIREMENTS FOR THE THESIS: Need to know if any other processes should be executed.
- **SUBMISSION**: Probable submission date for Thesis by 30<sup>th</sup> May, 2022





# THANK YOU FOR YOUR TIME AND ATTENTION

