International Rectifier

IRFR/U1205

HEXFET® Power MOSFET

- Ultra Low On-Resistance
- Surface Mount (IRFR1205)
- Straight Lead (IRFU1205)
- Fast Switching
- Fully Avalanche Rated

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve the lowest possible on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient device for use in a wide variety of applications.

The D-PAK is designed for surface mounting using vapor phase, infrared, or wave soldering techniques. The straight lead version (IRFU series) is for throughhole mounting applications. Power dissipation levels up to 1.5 watts are possible in typical surface mount applications.

Absolute Maximum Ratings

	Parameter	Max.	Units
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	44⑤	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	31⑤	Α
I _{DM}	Pulsed Drain Current ⊕⑦	160	
P _D @T _C = 25°C	Power Dissipation	107	W
	Linear Derating Factor	0.71	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy@⑦	210	mJ
I _{AR}	Avalanche Current ① ⑦	25	А
E _{AR}	Repetitive Avalanche Energy ① ⑦	11	mJ
dv/dt	Peak Diode Recovery dv/dt ③	5.0	V/ns
T _J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		1.4	
$R_{\theta JA}$	Junction-to-Ambient (PCB mount) **		50	°C/W
$R_{\theta JA}$	Junction-to-Ambient		110	

www.irf.com 1 5/11/98

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.055		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.027		V _{GS} = 10V, I _D = 26A ⊕
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
g _{fs}	Forward Transconductance	17			S	V _{DS} = 25V, I _D = 25A⑦
	5			25		$V_{DS} = 55V, V_{GS} = 0V$
I _{DSS}	Drain-to-Source Leakage Current			250	μA	V _{DS} = 44V, V _{GS} = 0V, T _J = 150°C
	Gate-to-Source Forward Leakage			100	n 1	V _{GS} = 20V
I_{GSS}	Gate-to-Source Reverse Leakage			-100	nA	$V_{GS} = -20V$
Qg	Total Gate Charge			65		I _D = 25A
Q _{gs}	Gate-to-Source Charge			12	nC	$V_{DS} = 44V$
Q _{gd}	Gate-to-Drain ("Miller") Charge			27		V _{GS} = 10V, See Fig. 6 and 13 ⊕ ⑦
t _{d(on)}	Turn-On Delay Time		7.3			V _{DD} = 28V
t _r	Rise Time		69		ns	$I_D = 25A$
t _{d(off)}	Turn-Off Delay Time		47		115	$R_G = 12\Omega$
tf	Fall Time		60			$R_D = 1.1\Omega$, See Fig. 10 \oplus \bigcirc
	Internal Drain Inductance		4.5		nH	Between lead,
L_D						6mm (0.25in.)
L _S	Internal Source Inductance		7.5			from package
						and center of die contact® s
C _{iss}	Input Capacitance		1300			$V_{GS} = 0V$
Coss	Output Capacitance		410		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		150			$f = 1.0$ MHz, See Fig. 5 $ \odot $

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			44⑤		MOSFET symbol
	(Body Diode)		440	A	showing the	
I _{SM}	Pulsed Source Current		400		integral reverse	
	(Body Diode) ①⑦		160		p-n junction diode.	
V _{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 22A$, $V_{GS} = 0V$ 4
t _{rr}	Reverse Recovery Time		65	98	ns	$T_J = 25^{\circ}C, I_F = 25A$
Q _{rr}	Reverse RecoveryCharge		160	240	nC	di/dt = 100A/µs ⊕ ⑦
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $^{\circ}$ V_{DD} = 25V, starting T_J = 25°C, L = 470μH R_G = 25Ω, I_{AS} = 25A. (See Figure 12)
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.
- Calculated continuous current based on maximum allowable junction temperature; Package limitation current = 20A
- © This is applied for I-PAK, Ls of D-PAK is measured between lead and center of die contact
- ② Uses IRFZ44N data and test conditions
- ** When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994

International

TOR Rectifier

IRFR/U1205

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

www.irf.com 3

tion

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

IRFR/U1205

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

Fig 14. For N-Channel HEXFETS

IRFR/U1205

International

TOR Rectifier

FIRST PORTION

OF PART NUMBER

Package Outline

TO-252AA Outline

Dimensions are shown in millimeters (inches)

Part Marking Information TO-252AA (D-PARK)

EXAMPLE: THIS IS AN IRFR120

WITH ASSEMBLY LOT CODE 9U1P

RECTIFIER LOGO

IRFR OF PART NUMBER

10R 120

9U 1P

ASSEMBLY

SECOND PORTION

8 www.irf.com

LOT CODE

INTERNATIONAL

International

Rectifier

IRFR/U1205

Package Outline

TO-251AA Outline

Dimensions are shown in millimeters (inches)

Part Marking Information TO-251AA (I-PARK)

EXAMPLE: THIS IS AN IRFU120

WITH ASSEMBLY LOT CODE 9U1P

IRFR/U1205

International

TOR Rectifier

Tape & Reel Information

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:

1. OUTLINE CONFORMS TO EIA-481.

International Rectifier

5/98

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331
EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T 3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111
IR FAR EAST: 171 (K&H Bldg.) 30-4 Nishi-ikebukuro 3-chome, Toshima-ku, Tokyo Japan Tel: 81 33 983 0086
IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 16907 Tel: 65 221 8371

10 www.irf.com

Data and specifications subject to change without notice.

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/