## CMSC 641, Design and Analysis of Algorithms, Spring 2010

Sandipan Dev. Homework Assignment - 2 30/30

February 23, 2010

## Problem 1 Solution

Part (a)

In the worst case, one needs to search all the sorted arrays  $A_0, A_1, \dots, A_{k-1}$ ,

where  $k = \lceil lg(n+1) \rceil = \theta(lg|n)$ , with  $n = \sum_{i=0}^{k-1} size(A_i) = \sum_{i=0}^{k-1} 2^i = 2^k - 1$ .

The worst case time to perform binary search on the ith sorted array  $= T(size(A_i)) = \lceil lg(size(A_i)) \rceil = \lceil lg(2^i) \rceil = i$ 

Hence, the worst case total SEARCH time

$$= T(n) = T\left(\sum_{i=0}^{k-1} size(A_i)\right) = \sum_{i=0}^{k-1} T(size(A_i)) = \sum_{i=0}^{k-1} T(2^i)$$

$$= \sum_{i=0}^{k-1} i = \frac{k(k-1)}{2} = \theta(k^2) = \theta(\lg^2 n).$$

Algorithm 1 Search element e from sorted k-array-set  $A = \{A_0, \dots, A_{k-1}\}$ 

SEARCH(A, e)

1: i - not\_found. {array index}

2 for  $r \leftarrow 0$  to k-1 do

3:  $j \leftarrow \text{BINSEARCH}(A_r, e)$  {element index}

if  $j \neq not\_found$  then {found!}

 $i \leftarrow r$  {array index}

break

7: end if

8: end for

9: return  $\{i, j\}$ .  $\{j^{th} \text{ element in } i^{th} \text{ array}\}$ 

### Part (b)

Let's first establish a 1-1 correspondence between the INSERT in the set of INSERT Algorithm arrays and INCREMENT in the binary counter problem. We must have

arrays and intermination 
$$size(A_i) = \left\{ \begin{array}{ll} 2^i & if \ n_i = 1 \\ 0 & if \ n_i = 0 \end{array} \right\}$$



Figure 1: Equivalence of INSERT and INCREMENT for binary counter

The INSERT algorithm is described (with comparison to binary counter IN-CREMENT) in the following figure. It will insert element e in an array if  $n < 2^k - 1$ , i.e., all the k arrays are not already full. It starts by copying the element to an auxiliary array B and then replaces the array  $A_i$  by B if empty, otherwise merges sorted arrays  $A_i$  and B into B and goes to the next array  $A_{i+1}$  and repeats the same thing until it finds an empty array, staring from  $A_0$ .

## Worstcase running time

Line 1-2 of the INSERT algorithm is  $\theta(1)$ .

Merging two sorted arrays on line 5 of the algorithm takes  $\theta(2^i + 2^i) = \theta(2^{i+1})$ time. Line 6 takes  $\theta(1)$  time if we maintain an extra bit empty for each array  $A_i$ , which will be true if the array is empty, false otherwise. Line 7 is again  $\theta(1)$ . Hence, running time lines 5-7 is  $\theta(2^{i+1})$  for each  $i=0,1,\ldots k-2$ .

In the worst case (when  $n = 2^{k-1} - 1$ ), all the arrays  $A_0, A_1, \dots A_{k-2}$  will be full, hence k-1 merges will be needed (while loop 3-7 will execute k-1 times),

with the worstcase total merging time 
$$=\sum_{i=0}^{k-2}\theta(2^{i+1})=\theta\left(\sum_{i=0}^{k-2}2^{i+1}\right)=\theta(2^k-2).$$

Finally, line 9 involves copying / replacing the empty array  $A_i$ , in the worst

| INCREMENT(n, k)             | INSERT(A, e, k)                                                                  |
|-----------------------------|----------------------------------------------------------------------------------|
| 1                           | $B \leftarrow \{e\}  \triangleright auxiliary array B$                           |
| 1 ← 0                       | 140                                                                              |
| while $i < k$ and $n_i = 1$ | while $i < k$ and $A_i$ is full $\triangleright$ if $size(A_i) = 2^i$            |
| do do                       |                                                                                  |
| 5                           | $B \leftarrow Merge(A_i, B)  \triangleright size(B) \leftarrow 2^{i+1}$          |
| $n_i \leftarrow 0$          | empty $A_i \supset size(A_i) \leftarrow 0$                                       |
| $7  i \leftarrow i+1$       | i ← i + l                                                                        |
| 8 if i < k                  | if i < k                                                                         |
| 9 then $n_i \leftarrow 1$   | then $A_i \leftarrow B \triangleright replace A_i$ , size $(A_i) \leftarrow 2^i$ |

Figure 2: Binary Counter INCREMENT vs Array INSERT algorithm

case the array  $A_{k-1}$  needs to be replaced, with running time  $= \theta(2^{k-1})$ . Hence, the worstcase total running time  $= \theta(2^k - 2 + 2^{k-1}) = \theta(3 \cdot 2^{k-1} - 2) = \mathbf{V}$  $\theta(3 \cdot n - 2) = \theta(n)$ , with  $n = 2^{k-1} - 1$ .

Also, we notice how the worstcase scenario for SEARCH differs from the same for INSERT.

## Worst case for SEARCH vs Worst case for INSERT

Figure 3: The Worst Case Scenarios

## Amortized running time

## Aggregate method

Let's consider a sequence of n INSERT operations, starting from all the k arrays empty, with  $k = \lceil lg(n+1) \rceil$ .

First consider the merges inside the while loop. As we can see from the algorithm, the temporary array B has to be merged with the array  $A_i \Leftrightarrow n_i$  flips from  $1 \to 0$ ,  $\forall i = 0, 1, \ldots, k-2$ . But  $n_i$  flips from  $1 \to 0$  only for  $\left\lfloor \frac{n}{2^{i+1}} \right\rfloor$  times,  $\forall i = 0, 1, \ldots, k-1$ .

Since, merging of B and  $A_i$  takes  $\theta(2^{i+1})$  time, the total merging  $(B \leftarrow Merge(A_i, B))$  time for the sequence of n INSERT operations

$$= \sum_{i=0}^{k-2} \left\lfloor \frac{n}{2^{i+1}} \right\rfloor . \theta(2^{i+1}) = \sum_{i=0}^{k-2} n . \theta(1) = \theta(n.(k-1))$$
$$= \theta(n.(\lceil \lg(n+1) \rceil - 1)) = \theta(n \lg n).$$

Also, consider the copying of the temporary array B into  $A_i$ . This has to happen only when  $n_i$  flips from  $0 \to 1$ , which happens at most  $\left\lceil \frac{n}{2^{i+1}} \right\rceil$  times and each copying operation takes  $\theta(2^i)$  time.

Hence, the total copying  $(A_i \leftarrow B)$  time for the sequence of n INSERT operations

$$=\sum_{i=0}^{k-1}\left\lceil\frac{n}{2^{i+1}}\right\rceil.\theta(2^i)=\sum_{i=0}^{k-1}\frac{n}{2}.\theta(1)=\theta\left(\frac{n.k}{2}\right)=\theta(n.(\lceil lg(n+1)\rceil))=\theta(nlg|n).$$

Hence, the total amortized cost for sequence of all INSERT operations =  $\theta(nlg\ n)$ . The amortized cost per INSERT operation =  $\theta(nlg\ n)/n = \theta(lg\ n)$ .



## Accounting method

We notice that during the sequence of operations an element can move on to array with higher index while merging and can never come back. Since there are k arrays, this transition from array with lower index to array with higher index for a given element can happen only for k-1 times. Hence the accounting analysis is as follows:

- Charge  $k = \lceil lg(n+1) \rceil$  \$ to INSERT an element.
- Pay 1\$ for insertion immediately.
- Store rest of the k − 1 charges to the element itself, so that it can always
  pay for future merges and transition from array A<sub>i</sub> to A<sub>i+1</sub>. But since
  it,
   Store rest of the k − 1 charges to the element itself, so that it can always
  such transition can happen at most for k − 1 times, it always can pay for
  - Hence amortized cost for each INSERT =  $k = \theta(\lg n)$ .

#### Part (c)

DELETE Algorithm: Delete element e from k-array-set  $A_0, \ldots, A_{k-1}$ 

- Call SEARCH(A, e). Suppose it returns A<sub>i</sub>, i.e., e ∈ A<sub>i</sub>.
- n ← size(A). Find the first non-zero bit j from right in n, i.e., find
   j|n<sub>j</sub> = 1, n<sub>τ</sub> = 0, ∀τ < j. It gives the first full array index. Let el ← the
   last element of A<sub>j</sub>.
- A<sub>i</sub> ← A<sub>i</sub> − {e} ∪ {eℓ}, i.e., remove e from A<sub>i</sub> and put eℓ into A<sub>i</sub>. Then
  move eℓ to its correct place in A<sub>i</sub>.
- A<sub>j</sub> is supposed to be with empty (since in n<sub>j</sub> = 1, n<sub>r</sub> = 0, ∀r < j, in n-1, j<sup>th</sup> bit from the right will be 0 and all the following bits on the right will be 1, by binary counter DECREMENT) and all A<sub>r</sub> with r ≤ j will be full. Hence, divide A<sub>j</sub> (with 2<sup>j</sup> 1 elements left): the 1st element goes into array A<sub>0</sub>, the next 2 elements go into array A<sub>1</sub>, the next 4 elements go into array A<sub>2</sub>, and so forth. Mark array A<sub>j</sub> as empty. The new arrays are created already sorted.

#### Runtime of DELETE

The worstcase running time of DELETE  $= \theta(lg^2n) \text{ {SEARCH }} A_i \} \\ + \theta(lg n) \text{ {Find 1st NonZero Bit }} j \} \\ + \theta(n) \text{ {INSERT in sorted }} A_i \text{ in proper positon, linear time in } size(A_i) = 2^i, \\ \text{worst case } 2^{k-1} = \theta(n) \} \\ + \theta(n) \text{ {Copy }} A_j \text{ to lower index arrays, total number of elements to copy } = 2^j, \\ \text{worst case } 2^{k-1} = \theta(n) \} \\ = \theta(n).$ 

## Problem 2 Solution



#### Part (a)

- Perform an IN-ORDER-WALK (call IN-ORDER-WALK(A, x, 0)) starting from node x, the output will be sorted (since output for all node n in IN-ORDER-WALK is by definition in the order n<sub>L</sub> → n → n<sub>R</sub> and for a binary search tree n<sub>L</sub>.val < n.val < n<sub>R</sub>.val by definition, here n<sub>L</sub> and n<sub>R</sub> denotes left-child and right child of node n respectively).
- Store the sorted output in the auxiliary storage (e.g., array A with size  $\theta(size(x))$ ).
- Recursively find the MEDIAN of each interval and assign it to be the root of the current subtree using the construct\_balanced\_tree (divide and conquer) algorithm. Call construct\_balanced\_tree(A, x, 0, size(x) - 1).

First consider the merges inside the while loop. As we can see from the algorithm, the temporary array B has to be merged with the array  $A_i \Leftrightarrow n_i$  flips from  $1 \to 0$ ,  $\forall i = 0, 1, \ldots, k-2$ . But  $n_i$  flips from  $1 \to 0$  only for  $\left\lfloor \frac{n}{2^{i+1}} \right\rfloor$  times,  $\forall i = 0, 1, \ldots, k-1$ .

Since, merging of B and  $A_i$  takes  $\theta(2^{i+1})$  time, the total merging  $(B \leftarrow Merge(A_i, B))$  time for the sequence of n INSERT operations

$$= \sum_{i=0}^{k-2} \left\lfloor \frac{n}{2^{i+1}} \right\rfloor . \theta(2^{i+1}) = \sum_{i=0}^{k-2} n . \theta(1) = \theta(n.(k-1))$$

$$= \theta(n.(\lceil lg(n+1) \rceil - 1)) = \theta(nlg \ n).$$

Also, consider the copying of the temporary array B into  $A_i$ . This has to happen only when  $n_i$  flips from  $0 \to 1$ , which happens at most  $\lceil \frac{n}{2^{i+1}} \rceil$  times and each copying operation takes  $\theta(2^i)$  time.

Hence, the total copying  $(A_i \leftarrow B)$  time for the sequence of n INSERT operations

$$=\sum_{i=0}^{k-1}\left\lceil\frac{n}{2^{i+1}}\right\rceil.\theta(2^i)=\sum_{i=0}^{k-1}\frac{n}{2}.\theta(1)=\theta\left(\frac{n.k}{2}\right)=\theta(n.(\lceil lg(n+1)\rceil))=\theta(nlg|n).$$

Hence, the total amortized cost for sequence of all INSERT operations =  $\theta(nlg\ n)$ . The amortized cost per INSERT operation =  $\theta(nlg\ n)/n = \theta(lg\ n)$ .

#### Accounting method

We notice that during the sequence of operations an element can move on to array with higher index while merging and can never come back. Since there are k arrays, this transition from array with lower index to array with higher index for a given element can happen only for k-1 times. Hence the accounting analysis is as follows:

- Charge  $k = \lceil lg(n+1) \rceil$  \$ to INSERT an element.
- Pay 1\$ for insertion immediately.
- Store rest of the k − 1 charges to the element itself, so that it can always
  pay for future merges and transition from array A, to A<sub>i+1</sub>. But since
  such transition can happen at most for k − 1 times, it always can pay for
  it.
- Hence amortized cost for each INSERT = k = θ(lg n).

DELETE Algorithm: Delete element e from k-array-set  $A_0, \dots, A_{k-1}$ 

- Call SEARCH(A, e). Suppose it returns A<sub>i</sub>, i.e., e ∈ A<sub>i</sub>.
- n ← size(A). Find the first non-zero bit j from right in n, i.e., find  $j|n_j=1,\,n_r=0, \forall r< j.$  It gives the first full array index. Let  $e'\leftarrow$  the last element of  $A_j$ .
- $A_i \leftarrow A_i \{e\} \cup \{e'\}$ , i.e., remove e from  $A_i$  and put e' into  $A_i$  . Then move et to its correct place in Ai.
- A<sub>j</sub> is supposed to be with empty (since in n<sub>j</sub> = 1, n<sub>r</sub> = 0, ∀r < j, in n-1,</li>  $j^{th}$  bit from the right will be 0 and all the following bits on the right will be 1, by binary counter DECREMENT) and all  $A_r$  with  $r \leq j$  will be full. Hence, divide  $A_j$  (with  $2^j - 1$  elements left): the 1st element goes into array  $A_0$ , the next 2 elements go into array  $A_1$ , the next 4 elements go into array  $A_2$ , and so forth. Mark array  $A_j$  as empty. The new arrays are created already sorted.

## Runtime of DELETE

The worstcase running time of DELETE

 $= \theta(lg^2n)$  (SEARCH  $A_i$ )

+ θ(lg n) {Find 1st NonZero Bit j} +  $\theta(n)$  (INSERT in sorted  $A_i$  in proper positon, linear time in  $size(A_i) = 2^i$ ,

 $+ \theta(n)$  {Copy  $A_j$  to lower index arrays, total number of elements to copy =  $2^j$ , worst case  $2^{k-1} = \theta(n)$ 

 $=\theta(n).$ 

## Problem 2 Solution

## Part (a)

- Perform an IN-ORDER-WALK (call IN-ORDER-WALK(A, x, 0)) starting from node x, the output will be sorted (since output for all node n in IN-ORDER-WALK is by definition in the order  $n_L \to n \to n_R$  and for a binary search tree  $n_L.val < n.val < n_R.val$  by definition, here  $n_L$  and  $n_R$ denotes left-child and right child of node n respectively).
- ullet Store the sorted output in the auxiliary storage (e.g., array A with size  $\theta(size(x))).$
- Recursively find the MEDIAN of each interval and assign it to be the root of the current subtree using the construct\_balanced\_tree (divide and conquer) algorithm. Call construct\_balanced\_tree(A, x, 0, size(x) - 1).

# Algorithm 2 IN-ORDER-WALK on a binary (search) tree rooted at node

## IN-ORDER-WALK(A, node, i)

- 1: if node = NULL then
- IN-ORDER-WALK(A, node.left, i)
- $A[i] \leftarrow node.val$
- IN-ORDER-WALK(A, node.right, i)
- 6: end if

## Algorithm 3 Constructs the $\frac{1}{2}$ balanced tree rooted at node

construct\_balanced\_tree(A, node, i, j)

- 1: if  $i \leq j$  then
- 加一 当
- if node = NULL then
- node ← allocate\_node 4:
- end if 5:
- $node.val \leftarrow A[m]$
- node.left  $\leftarrow$  construct\_balanced\_tree(A, node\_left, i, m 1)
- ${\tt node.right} \leftarrow {\tt construct\_balanced\_tree}(A,\,node.right,\,m+1,\,j)$
- 9: end if
- 10: return node

## Runtime of construct\_balanced\_tree

Let n = size(A) = size(x). Then

 $T(n) = 2T(n/2) + \theta(1) \Rightarrow T(n) = \theta(n^{\log_2 2}) = \theta(n)$ , by Master theorem.

Hence, running time of construct\_balanced\_tree =  $\theta(size(x))$ . Similarly, running time of IN-ORDER-WALK is also =  $\theta(size(x))$ . Hence the runtime of the algorithm =  $\theta(size(x))$ .

## Part (b)



For the worst case search time analysis in a-balanced binary search tree, we have the following:

$$n_L + n_R + 1 = n \land n_L \le \alpha.n \land n_R \le \alpha.n \Rightarrow max(n_L, n_R) \le \alpha.n$$
$$T(n) \le T(max(n_L, n_R)) + \theta(1) \le T(\alpha.n) + \theta(1)$$

Hence, in the worst case, we have,

$$T(n) = T(\alpha.n) + \theta(1) = T(\alpha.\alpha.n) + \theta(1) + \theta(1)$$

$$T(n) = T(\alpha.n) + \theta(1) = T(\alpha.\alpha.n) + \theta(1) + \theta(1)$$

$$= \dots = T(\alpha^k.n) + k.\theta(1), \text{ if } \alpha^k.n = 1 \Rightarrow n = \left(\frac{1}{\alpha}\right)^k \Rightarrow k = \lg_{\frac{1}{\alpha}}n.$$

$$T(1) = 1 \Rightarrow T(n) = 1 + theta(k) = \theta\left(lg_{\frac{1}{\alpha}}n\right) = \theta\left(\frac{lg\ n}{lg_{\frac{1}{\alpha}}}\right) = \theta(lg\ n).$$



Figure 4: Runtime for SEARCH in  $\alpha$ -balanced binary search tree

Part (c) Define  $\Delta(x) = |size(left(x)) - size(right(x))|$  and the potential  $\phi(T) = c$ .  $\sum \Delta(x)$ , c sufficiently large.

By definition of potential since c is sufficiently large, c>0, we have  $\Delta(x)\geq 0 \Rightarrow \phi(T)\geq 0$  (mod function non-negative by definition).

For  $\alpha = \frac{1}{2}$ , we have the following:

$$size(left(x)) \leq \frac{1}{2}.size(x), \ \forall x \in T$$
 
$$size(right(x)) \leq \frac{1}{2}.size(x), \ \forall x \in T$$
 
$$size(left(x)) + size(right(x)) + 1 = size(x), \ \forall x \in T$$
 
$$\Rightarrow size(left(x)) = size(x) - size(right(x)) - 1 \geq size(right(x)) - 1$$
 
$$\Rightarrow size(right(x)) - size(left(x)) \leq 1$$
 Similarly  $size(left(x)) - size(right(x)) \leq 1$  
$$\Rightarrow |size(left(x)) - size(right(x))| \leq 1$$
 
$$\Rightarrow |size(left(x)) - size(right(x))| \leq 1$$
 
$$\Rightarrow |x \in T: \Delta(x) \geq 2| = 0$$
 
$$\Rightarrow \phi(T) = 0$$

## Part (d)

Let's figure out the minimum possible potential in the tree that would cause us to rebuild a subtree of size-m rooted at x.

Now, x must not be  $\alpha$ -balanced, otherwise we wouldnt need to rebuild the subtree. Let's say the left subtree is larger. Then, to violate the  $\alpha$ -balanced criteria, we must have:

= 100 4.3.2=24

 $\Rightarrow size(right(x)) = m - 1 - size(left(x)) < m - 1 - \alpha.m = (1 - \alpha)m - 1$   $\Rightarrow \Delta(x) = leize(left(x))$  $\Rightarrow \Delta(x) = |size(left(x)) - size(right(x))| > \alpha.m - ((1-\alpha)m - 1) = (2\alpha - 1)m + 1$   $\Rightarrow \phi(T) = c$  $size(left(x)) > \alpha m$ . Also, size(left(x)) + size(right(x)) = m - 1 $\Rightarrow \phi(T) = c$ .

This potential must be at least equal to m units to pay for rebuilding the m(assuming  $m \ge \frac{1}{2\alpha - 1}$ , we have,  $\Delta(x) \ge 2$ ). node subtree (since we must have amortized cost providing an upper bound over the actual cost, i.e.,  $c_{rebuild} \ge c_{rebuild} + \phi_i - \phi_{i-1}$ , with actual cost m and amortized cost O(1), we have,  $O(1) \ge m + \phi_i - \phi_{i-1}$ , with  $\phi_{i-1} \ge m$ , since the end potential  $\phi_i$  is always greater than zero). Hence, we have  $\phi(T)>c\left((2\alpha-1)m+1\right)\geq m\Rightarrow c\geq \frac{m}{(2\alpha-1)m+1}=\frac{1}{(2\alpha-1)+\frac{1}{m}}>\frac{1}{2\alpha}.$ 

Hence if  $c > \frac{1}{2\alpha}$ , we can rebuild the subtree of size m in amortized cost O(1).

Part (e)

- The amortized cost of the insert or delete operation in an n-node α- balanced tree is the actual cost plus the difference in potential between the
- Search takes O(lgn) time (as shown in part (b)) in an α-balanced tree, so two states. the actual time to insert or delete will be O(lgn).
- When we insert or delete a node x, we can only change the∆(i) for nodes i that are on the path from the node x to the root. All other  $\Delta(i)$  will remain the same since we dont change their subtree sizes. At worst, we will increase each of the  $\Delta(i)$  for i in the path by 1 since we may add the node x to the larger subtree in every case. Again, as shown in part (b), there are O(lgn) such nodes.
- The potential  $\phi(T)$  can therefore increase by at most c.  $\sum_{i \in path} 1 = O(clgn) =$ O(lgn).
- So, the amortized cost for insertion and deletion is O(lgn) + O(lgn) =O(lgn).

## Problem 3 Solution

10

Out of total m = 2n - 1 operations, # of MAKE-SET operations = n (since # of objects = n to start with). Rest n-1 operations can be arbitrary combinations of UNION and FIND-SET. Let's assume # of UNION operations = k.  $(0 \le k \le n-1$ , since there are n objects to start with and each UNION decreases # of objects by exactly 1, hence there can be at most n-1 UNION operations).  $\Rightarrow \#$  of FIND-SET operations = n-1-k = m-n-k. Also, # with the largest possible set size = k.

Now, MAKE-SET and FIND-SET are O(1) operations (since FIND-SET only needs to follow the representative pointer) and since each object can at most update its representative pointer for at most  $O(\lg k)$  times for sequence of k UNION operations with weighted union heuristics, total time for the entire sequence of operations

= n.O(1) + (m - n - k).O(1) + k.O(lg k) = O(n + m - n - k + k lg k)= O(m - k + k lg k) = O(m + k lg k)

 $\Rightarrow \exists constant \ c > 0$ : total time for the sequence  $\leq c \ (m + k \lg k)$ .

| Operations | #     | Time/Operation | TotalTime        |
|------------|-------|----------------|------------------|
| MAKE-SET   | n     | O(1)           | n * O(1)         |
| UNION      | k     | $O(\lg k)$     | $k * O(\lg k)$   |
| FIND-SET   | m-n-k | O(1)           | (m-n-k) * O(1)   |
| Total      | 771   |                | $O(m + k \lg k)$ |

Table 1: Set Operations

Now, let's assign the following charges and calculate the total amortized time for the entire sequence of m operations:

· MAKE-SET: C\$

• UNION:  $C(\log n + 1)$ \$

· FIND-SET: C8

where C is a +ve constant and choose C > c.

Note that if we can show that the total amortized cost (time) provides an upper bound to the total actual time  $\left(\sum_{i} \hat{c}_{i} \geq \sum_{i} c_{i}\right)$ , we are done.

|            |       | charge per speration | total amortized cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------|-------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| operations | #     | that he bet operate  | n5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MAKE-SET   | 73    | (/0                  | k(lg n + 1)8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| UNION      | - k   | $C(\lg n + 1)8$      | (m-n-k)8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | m-n-k | (28                  | $C(m+k\lg n)$ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Total      | 173   |                      | The state of the s |

Table 2: Set Operations Amortized Costs

Now  $n-1 \ge k \Rightarrow n > k \land C > c$  $\Rightarrow$  total amortized cost  $= C(m+k \lg n) > c(m+k \lg k) \ge$  total actual cost,

