به نام خدا

LATEX

فاطمه علیملکی امیررضا جهانگیری محمدحسین چهکندی مهدی حقوردی خدیجه نظری

فهرست مطالب

مقدمه

معماری کامپیوتر - دیروز تا امروز

اجزا

معماريهاي مختلف

معماری کامپیوتر در آینده

هوش مصنوعی و معماری کامپیوتر

TY / \

مقدمه

- در این ارائه به بررسی معماری کامپیوتر میپردازیم
- ابتدا سرگذشت و روند تکاملی معماری را بررسی میکنیم،
 - سپس به معرفی اجزای اصلی یک کامپیوتر میپردازیم،
- پس از آن به داخل CPU میرویم و معماریهای متفاوت آن را میبینیم،
 - سپس در مورد آیندهی معماری کامپیوتر صحبت میکنیم
- و در آخر، تاثیر هوش مصنوعی به روی معماری کامپیوتر را بررسی میکنیم.

معماری کامپیوتر - دیروز تا امروز

تكامل معماري كامپيوتر

- در دنیای امروزی کامپیوترها برای اهداف زیاد و توسط افراد زیادی استفاده میشوند،
- كارها و اتفاقاتي كه زماني غير قابل تصور بود، براي جامعهي ما بسيار بديهي و مرسوم است،
- تکنولوژی معماری کامپیوتر در طول سالیان متمادی، عمدتا به دلیل پیشرفتهای تکنولوژی ساخت قطعات الکترونیکی، پیشرفت علوم کامپیوتر و نیازهای افراد پیشرفت کرده است.

نسل اول كامپيوترها

- در سال ۱۹۳۷، اولین کامپیوتر با استفاده از لامپهای خلاء توسط پروفسور ایکن اختراع شد.
- در سال ۱۹۴۷، دانشگاه پنسیلوانیا کامپیوتری به نام ENIAC را طراحی کرد که از مبنای دودویی برای نمایش اطلاعات استفاده می کرد.
- معماری کامپیوترهای این دوره (و تمام دورهها،) بر اساس مدل Von Neumann بود (و هست،) که شامل
 - ۲. واحد پردازش،
 - ۰۳ واحد کنترل و
 - ۰۴. واحد ورود*ی/خروجی*
 - مىشود.

نسل دوم كامپيوترها

- در دههی ۱۹۵۰، ترانزیستورها به جای لامپهای خلاء در کامپیوترها استفاده شدند،
 - این باعث کاهش حجم و افزایش سرعت کامپیوترها شد.
 - در این دوره کامپیوترهای دیجیتال و مینیکامپیوترها شروع به ظهور کردند

نسل سوم كامپيوترها

- در دههی ۱۹۶۰، مدارهای مجتمع (IC) جایگزین ترانزیستورها شدند.
- استفاده از ICها باعث افزایش قابلیت پیچیدگی و کارای کامپیوترها شد.
- این به این معنیست که تعداد بیشتری ترانزیستورها را در یک تراشه کوچکتر قرار دادند و این امر به کامپیوتر امکان انجام محاسبات پیچیدهتر و سریعتر را میداد.
 - کامپیوترهای این دوره (و دورههای بعدی) از معماری مجموعه دستورات Instruction Set) Architecture)
 - معماری کامپیوتر 1BM 360 از معماریهای مشهور این دوره است.

نسل چهارم كامپيوترها

- در دهه ۱۹۷۰، ریزپردازندهها به جای ICها استفاده شدند.
- این باعث افزایش قابلیت انعطاف پذیری و کاهش هزینهی ساخت کامپیوترها شد.
 - در این دوره معماری کامپیوترها شخصی و کامپیوترهای قابل حمل توسعه یافت.

نسل پنجم كامپيوترها

- در دورهی نسل پنجم کامپیوترها که از دههی ۱۹۸۰ شروع شد، تحولات مهمی در معماری کامیپوتر رخ داد.
- در این دوره کامپیوترهای موازی که قدرت پردازش با با استفاده از چندین واحد پردازشگر به صورت همزمان را داشتند، طراحی و ساخته شدند.
 - کامپیوترهای برداری، یکی دیگر از پیشرفتها این دوره بود. این کامپیوترها مجهز به پردازندههایی بودند که مخصوص انجام عملیات به روی بردارها و ماتریسها بودند و برای برنامههای علمی و مهندسی که با این دادهها سر و کار داشتند بسیار مناسب بودند.
 - در این دوره استفاده از ICهای فوق بزرگ ICا و ICا و ICا نیز رایج شد.
 - در این دوره شاهد ظهور کامپیوترهای شخصی (Personal Computer) و سیستمهای توزیع شده (Distributed Systems) هستیم.

اجزا

- در سطح بالا CPU از دو قسمت اصلی تشکیل شده که خود به قسمتهای دیگری تقسیم میشوند: (Data Path)
 - این قسمت عملیاتهای ریاضی و محاسبات را انجام میدهد.

Data Path از قسمتهایی همچون:

Register File \.\

ALU Y.

Multiplexer و واحدهای جمع و Multiplexer تشکیل شده است.

Control Unit

واحد کنترل پردازنده، به data path ، مموری و دستگاههای I/O دستورات لازم برای اینکه چه کاری را باید انجام دهند، میدهد.

Control Unit

- وقتی برای یک معماری، Instruction Set نوشته می شود، به این معنی ست که هر یک از instruction set معنی می دهد، یک سری ریجستر خاص را نیاز دارد و باید از مسیر متفاوتی از داخل data path رد بشود،

- کدگشایی و کنترل کردن مسیر گذر یک instruction و دادههایش به عهده Control Unit است.

AMD Barcelona Microprocessor

AMD Barcelona Microprocessor Sketch

AMD Barcelona Microprocessor

معماريهاي مختلف

مقدمه

- اگر شما الان بخواهید یک کامپیوتر بخرید، از بین معماریهای مختلف دو معماری اصلی پیش روی شما هستند:

x86 · \

ARM .Y

- این معماری بر پایهی معماری Intel 8008 که در سال ۱۹۷۲ معرفی شد، است.
- در واقع کدهایی که برای این معماری نوشته شدهاند را میتوان برای آخرین CPUهای Intel یا AMD اسمبل و اجرا کرد.
- پس از 16-bit 8088 Intel 8088 معماریهای 8088 Intel 8088 و سپس 80186، 80186 و سمونی شدند و در کل x86 نام گرفتند.
 - پردازندههای شرکتهای Intel و AMD همگی بر پایه این معماری هستند.

معماري ARM

- نام این معماری برگرفته از Advanced RISC Machines که قبلتر از Advanced RISC Machine گرفته شده بود، است.

- پردازندههای آرم، بخاطر
 - قیمت ارزان،
- مصرف انرژی کم و
 - تولید گرمای کم

برای دستگاههای سبک و دارای باتری، مثل تلفنهای هوشمند و لپتاپها بسیار مناسب هستند.

- بین سالهای ۲۰۲۰ تا ۲۰۲۲ سریعترین سوپرکامپیوتر دنیا (Fugako) هم از پردازندههای معماری آرم استفاده می کرد.
 - چیپهای سری M شرکت اپل هم از معماری آرم استفاده میکنند.

معماري كامپيوتر در آينده

آیندهی معماری کامپیوتر ← رفع نیازهای جدید

- هوش مصنوعی و یادگیری ماشین
 - پردازشهای دادههای کلان
 - محاسبات كوانتومى
 - محاسبات نورومورفیک

LATEX

معماري كوانتومي

Qubits -کیوبیت بجای بیتهای صفر و یک. استفاده از گیتها و ساختارهای جدید بر اساس کیوبیتها

نتايج:

- سرعت بالا در حل مسائل پیچیده
- توانایی محاسبات مختلف به صورت موازی و همزمان
 - دسترسی به رمزنگاری و امنیت بالاتر
 - فناورىهاى نورومورفيك

هوش مصنوعی و معماری کامپیوتر

مقدمه

- در دهههای ۸۰ و ۹۰ میلادی، کامپیوترها هر ۱۸ تا ۲۴ ماه (قانون مور) سریعتر میشدند.
- این یعنی اگر شما امسال یک کامپیوتر میخریدید و دوستان شما یک سال بعد از شما کامپیوتر جدیدی می خریدند، کامپیوتر آنها بسیار سریعتر میبود
 - اما امروزه، تنها راه پیشرفت در معماری کامپیوتر ساخت سختافزار برای یک کاربرد خاص است.
- برای مثال پردازندهها گرافیکی (GPU) برای انجام محاسبات گرافیکی بسیار کارامد هستند. آنها میتوانند میلیونها ضرب ماتریس در یک هر ثانیه انجام بدهند.

TPU پردازندهی

- با رخ دادن انقلابی در هوش مصنوعی به نام یادگیری ماشین که به ضرب ماتریسی متکی بود، نیاز به پردازندههای مخصوص ضرب تانسورها برای اجرا سریعتر و دقیقتر الگوریتمها یادگیری ماشین احساس می شد،
- واحد پردازش تانسور (Tensor Processing Unit (TPU)) شتاب دهنده ی یادگیری ماشین است که توسط گوگل طراحی شده است. TPUها برای ضرب ماتریسها بسیار کارامند هستند که برای آموزش شبکههای عصبی ANN ضروریست.

TPU: High-level Chip Architecture

- The Matrix Unit: 65,536 (256x256) 8-bit multiplyaccumulate units
- 700 MHz clock rate
- Peak: 92T operations/second
 - 65,536 * 2 * 700M
- >25X as many MACs vs GPU
- >100X as many MACs vs CPU
- 4 MiB of on-chip Accumulator memory
 + 24 MiB of on-chip Unified Buffer (activation memory)
- 3.5X as much on-chip memory vs GPU
- 8 GiB of off-chip weight DRAM memory

Perf/Watt TPU vs CPU & GPU

Using production applications vs contemporary CPU and GPU

Measure performance of Machine Learning?

See MLPerf.org ("SPEC for ML")

- Benchmark suite being developed by 23 companies and 7 universities
- 1st Results November 2018