

KOMUNIKASI DATA PACKET SWITCHING

PACKET SWITCHING

Beberapa alasan mengapa Packet Switching dipilih dibandingkan Circuit Switching :

- 1. Pada waktu koneksi data, sebagian besar waktu user/host berada pada status *idle*, sehingga tidak efisien menggunakan *Circuit Switching*
- 2. Pada *Circuit Switching* koneksi data dilakukan dalam rate data yang sama antara dua simpul yang terhubung.
 - Pada *Packet Switching* rate data antara satu simpul dengan simpul yang lain tidak harus sama.
- 3. Efisiensi pemakaian jalur lebih besar jika menggunakan *Packet Switching*, karena paket dilewatkan sendiri-sendiri melalui rute pada jalur yang kosong, tanpa menunggu giliran pada jalur yang sama..
- Pada Circuit Switching, jika jalur penuh, data berikutnya dibloking.
 Pada Packet Switching, data berikutnya menunggu antrian.

Prinsip Kerja Packet Switching

- 1. Data yang akan ditransmisikan dari asal ke tujuan, dilengkapi dengan informasi kontrol (berupa *header*).
- 2. Bila panjang data melebihi ukuran maksimum, akan dipotong-potong menjadi paket-paket. Masing-masing paket dilengkapi dengan *header* yang sama.
- 3. Header berisikan alamat tujuan serta fungsi-fungsi kontrol yang lain.
- 4. Paket diumpankan ke simpul yang paling dekat dengan asal.
- 5. Dari simpul tersebut, paket diantrikan ke rute sembarang, tergantung jalur yang kosong.
- 6. Masing-masing paket dapat melalui rute yang sama atau berbeda.
- 7. Setiap simpul yang dilewati akan memeriksa, menyimpan sementara (dalam kondisi antrian) dan mengarahkan paket ke simpul berikutnya.
- 8. Apabila sudah sampai ke tujuan, paket akan diatur kembali sesuai urutan semula.

Dua pendekatan pada Jaringan Packet Switching:

- Pendekatan DATAGRAM
- 2. Pendekatan VIRTUAL CIRCUIT

1. Pendekatan DATAGRAM

- Setiap paket berisi alamat tujuan.
- Setiap simpul yang dilewati harus membuat keputusan untuk menentukan jalur yang akan dipilih untuk masing-masing paket.
- Masing-masing paket diperlakukan secara terpisah, tidak dikaitkan dengan paket yang sudah lewat sebelumnya.
- Tidak memerlukan set up panggilan.
- Simpul dapat mencarikan jalur alternatif bagi paket yang lain, apabila jalur utama sedang digunakan.

2. Pendekatan VIRTUAL CIRCUIT

- Rute diantara dua station sudah dibentuk sebelum melakukan transfer data
- Pertama dikirim paket informasi kontrol, disebut Paket Permintaan Panggilan
- Paket ini meminta koneksi logika antara station asal dan tujuan.
- Apabila melalui simpul-simpul, maka antar simpul dibentuk koneksi logika.
- Bila station tujuan sudah siap menerima koneksi, akan dikirim Paket Penerima panggilan melalui simpul-simpul ke station asal.
- Transfer data bisa dilakukan
- Bila salah satu station memutuskan mengakhiri koneksi, digunakan Paket Clear Request.
- Setiap station dapat memiliki lebih dari satu sirkuit Virtual dengan station-station yang lain.
- Simpul yang dilewati tidak perlu membuat keputusan routing untuk setiap paket yang diterima.
- Paket diterima di station tujuan berdasarkan urutan asli.

- ✓ Keuntungan pelayanan DATAGRAM dibandingkan VIRTUAL CIRCUIT :
- 1. Tidak memerlukan fase set up panggilan
- 2. Jika terjadi kemacetan (*congestion*) pada sebuah jalur, maka paket data dapat dicarikan jalur alternatif seketika itu juga.
- Bila sebuah simpul mengalami kegagalan, maka paket-paket berikutnya dapat dikirim melalui rute simpul yang lain.

Ukuran Paket

Ukuran Paket menunjukkan keterkaitan dengan waktu transmisi

Jika:

X = station asal 1 paket = 40 byte

Y = station tujuan 1 header = 3 byte

a,b = simpul yang dilewati

a) Waktu transmisi untuk pesan 1 paket

$$t = (40+3)+(40+3)+(40+3) = 43x3 = 129$$
 byte-waktu

b) Waktu transmisi untuk pesan 2 paket

$$t = (40/2+3)+(40/2+3)+(40/2+3)+(40/2+3) = 23x4 = 92$$
 byte-waktu

c) Waktu transmisi untuk pesan 5 paket

$$t = (40/5+3)+(40/5+3)+(40/5+3)+(40/5+3)+(40/5+3)+(40/5+3)+(40/5+3)$$

$$(40/5+3)+(40/5+3)$$

= 11x7 = 77 byte-waktu

d) Waktu transmisi untuk pesan 10 paket

$$t = (40/10+3)+$$

= 7x12 = 84 byte-waktu

PARAMETER PENENTU KINERJA JARINGAN SWITCHING

1. Penundaan Perambatan (Propagation Delay)

Waktu yang diperlukan sinyal merambat dari satu simpul ke simpul berikutnya.

2. Waktu transmisi

Waktu yang diperlukan transmitter untuk mengirim sebuah blok data

3. Penundaan Simpul

Waktu yang diperlukan sebuah simpul untuk melakukan fungsi di pengolahan saat switching data

Perbandingan Antara Teknik-teknik Switching Komunikasi

Circuit Switching	Packet-switching Datagram	Packet-switching Virtual Circuit
Disediakan jalur utk transmisi	Tidak tersedia jalur	Tidak tersedia jalur
Transmisi data berlangsung terus menerus	Pentransmisian Paket-paket	Pentransmisian Paket-paket
Pesan-pesan tidak disimpan	Paket-paket dapat disimpan sampai saatnya dikirim	Paket-paket dapat disimpan sampai saatnya dikirim
Jalur ditetapkan utk seluruh percakapan	Rute ditetapkan utk masing- masing paket	Rute ditetapkan utk seluruh percakapan
Sinyal sibuk bila pihak yg dipanggil sedang sibuk	Pengirim diberitahu bila paket tidak terkirim	Pengirim diberitahu bila ada penolakan koneksi
Bandwidth tertentu	Penggunaan bandwidth secara dinamis	Penggunaan bandwidth secara dinamis
Tidak ada bit overhead (header) setelah panggilan	Header dalam setiap paket	Header dalam setiap paket

ROUTING

Beberapa unsur yang menunjang Teknik Routing pada Jaringan Paket Switching:

Kriteria Kinerja:

Jumlah lompatan

Biaya

Penundaan

Laju penyelesaian

Keputusan Waktu:

Paket (datagram)

Sesi (virtual circuit)

Keputusan Tempat:

Setiap simpul (didistribusikan)

Simpul pusat

Simpul Awal

Sumber informasi Jaringan:

Tak ada sama sekali

Lokal

Simpul yg berdekatan

Simpul di sepanjang rute

Seluruh simpul

Waktu pembaruan informasi:

Secara terus menerus

Periodik

Perubahan muatan utama

Perubahan Topologi

Contoh Jaringan Packet-Switching dengan Biaya Saluran

Strategi Routing

1. Fixed Routing

- Sebuah rute tunggal dan permanen dibentuk untuk setiap pasangan sumber-tujuan.
- Berisi nomor simpul-simpul yang akan dilewati rute tersebut
- Rute sudah pasti
- Hanya berubah jika ada perubahan topologi jaringan

Direktori Routing Pusat

Dari simpul

					,
1	2	3	4	5	6
-	1	5	2	4	5
2	1	5	2	4	5
4	3	-	5	3	5
4	4	5	1	4	5
4	4	5	5	1	5
4	4	5	5	6	-

Fixed Routing
(Sesuai Gambar Contoh

Jaringan Packet-Switching)

Ke simpul 4
5

Direktori Simpul 1

Tujuan	Simpul
	berikut
2	2
3	4
4	4
5	4
6	4

Direktori Simpul 2

Tujuan	Simpul
	berikut
1	1
3	3
4	4
5	4
6	4

Direktori Simpul 3

Tujuan	Simpul berikut
1	5
2	5
4	5
5	5
6	2

Direktori Simpul 4

Tujuan	Simpul berikut
1	2
2	2
3	5
5	5
6	5

Direktori Simpul 5

Tujuan	Simpul
	berikut
1	4
2	4
3	3
4	4
5	6

Direktori Simpul 6

Tujuan	Simpul berikut
1	5
2	5
3	5
4	5
5	5

2. Flooding (kebanjiran)

- Sebuah Paket dikirim oleh sumber kepada setiap simpul yang berdekatan
- Pada masing-masing simpul, paket yang datang tersebut
 (dalam bentuk copy) ditransmisikan pada semua jalur keluar,
 kecuali untuk jalur dimana paket tersebut tiba
- Begitu seterusnya sampai tiba di simpul tujuan
- Simpul tujuan hanya mengambil satu copy paket, yang lainnya dibuang

c) Lompatan Ketiga

- Pada lompatan ke-dua, salah satu copy paket sudah sampai ke simpul 6 (tujuan)
- Pada lompatan ke-tiga, simpul 6 mendapat 4 copy paket lagi, yang akan dibuang (hanya diambil 1 paket saja).

Soal-soal Latihan

- 1. Jelaskan bahwa dengan memotong pesan menjadi paket-paket yang lebih kecil tidak menjamin waktu transmisi dari paket-paket tersebut menjadi semakin cepat.
- 2. Diketahui sebuah pesan sepanjang 52 byte mempunyai bit overhead sepanjang 16 bit. Dapatkan waktu transmisinya apabila pesan tersebut berasal dari simpul X menuju simpul Y dan melalui 4 lompatan (simpul a, b dan c) dimana :
 - a. Pesan ditransmisikan seluruhnya dalam 1 paket
 - b. Pesan dibagi menjadi 2 paket
 - c. Pesan dibagi menjadi 4 paket
- 3. Amati sebuah jaringan Packet-Switching dari N simpul, yang dihubungkan dengan beberapa topolgi :
 - a. Star : Satu simpul pusat; seluruh simpul lain terhubung dengan simpul pusat.
 - b. Loop: Setiap simpul terhubung ke dua simpul lainnya yang berdekatan
 - c. Mesh: Setiap simpul secara langsung terhubung ke seluruh simpul lainnya. Untuk masing-masing kasus, berikan jumlah lompatan rata-rata antara sepasang station yang melewati simpul-simpul tersebut.

4. Diketahui parameter-parameter berikut ini :

N = jumlah lompatan di antara dua simpul

L = panjang pesan (dalam bit)

B = rate data, dalam bps

P = Ukuran paket tertentu, dalam bit

H = Bit-bit Overhead (header) per paket

S = waktu set up panggilan (sircuit switching atau virtual circuit), dalam detik

D = penundaan perambatan per lompatan, dalam detik

Untuk N = 4, L = 3200, B = 9600, P = 1024, H = 16, S = 0,2, D = 0,001.

Hitunglah penundaan ujung-ke-ujung untuk :

- a. Circuit Switching
- b. Packet-Switching Virtual Circuit
- c. Packet-Switching Datagram
- 5. Dalam penjelasan tentang Flooding, simpul 1 mengirim sebuah paket ke simpul 6 dengan melalui beberapa simpul yang kemudian membuat copy dari paket tersebut untuk disebarkan ke simpul berikutnya.
- a. Hitunglah jumlah paket total yang dihasilkan pada lompatan ke tiga bila masing-masing simpul membuang duplikat paket yang datang
- b. Jika simpul tujuan adalah simpul 5, berapa jumlah total muatan pada lompatan ke 3?

6. Susunlah sebuah direktori routing pusat untuk jaringan dari gambar di bawah ini :

