

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 1 073 339 B1

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent: 27.11.2002 Bulletin 2002/48
- (21) Application number: 99911638.7
- (22) Date of filing: 30.03.1999

- (51) Int Cl.7: **A21D 8/04**, A21D 2/26
- (86) International application number: PCT/DK99/00185
- (87) International publication number: WO 99/053769 (28.10.1999 Gazette 1999/43)
- (54) PREPARATION OF DOUGH AND BAKED PRODUCTS

HERSTELLUNG VON TEIG SOWIE BACKPRODUKTEN
PREPARATION DE PATE ET DE PRODUITS DE BOULANGERIE

- (84) Designated Contracting States:
 AT BE CH DE DK ES FI FR GB GR IE IT LI NL PT
 SE
- (30) Priority: 20.04.1998 DK 54398
- (43) Date of publication of application: 07.02.2001 Bulletin 2001/06
- (73) Proprietor: Novozymes A/S 2880 Bagsvaerd (DK)
- (72) Inventors:
 - SPENDLER, Tina DK-2880 Bagsv rd (DK)

- NILSSON, Lone
 CH-4102 Binningen (CH)
 THE CAMPA CAMPA
- FUGLSANG, Claus, Crone DK-2880 Bagsv rd (DK)
- (56) References cited:

EP-A2- 0 132 289 WO-A1-91/04669 US-A- 4 654 216 EP-A2- 0 171 995 US-A- 4 567 046

6

 JOURNAL OF FOOD SCIENCE M.R. KWEON ET AL.: 'Phospholipid Hydrolysate and Antistaling Amylase Effects on Retrogradation of Starch in Bread' vol. 59, no. 5, 1994, pages 1072 - 1076

EP 1 073 339 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

10

20

25

40

50

FIELD OF THE INVENTION

[0001] The invention relates to process for preparing a dough or a baked product prepared from the dough. More particularly, it relates to such a process where the bread has an improved softness, both when eaten on the same day and when eaten after several days storage.

BACKGROUND OF THE INVENTION

[0002] It is well known that the softness of bread deteriorates during storage from the time of baking to the time of consumption. The term staling is used to describe such undesirable changes in the properties of the bread. Staling results in an increase of the firmness of the crumb, a decrease of the elasticity of the crumb, and changes in the crust, which becomes tough and leathery.

[0003] Enzymatic retardation of staling by means of various amylases has been described. Thus, US 2,615,810; US 3,026,205 and O. Silberstein, "Heat-Stable Bacterial Alpha-Amylase in Baking", Baker's Digest 38(4), Aug. 1964, pp. 66-70 and 72, describe the use of alpha-amylase. WO 91/04669 (Novo Nordisk) describes the use of a maltogenic alpha-amylase from *Bacillus stearothermophilus*. It is also known to use p-amylase to retard staling.

[0004] It is also known to add a phospholipase to dough. Thus, US 4,567,046 and EP 171,995 (both to Kyowa Hakko) disclose that the addition of phospholipase A enhances the properties of dough and bread, including retardation of the staling.

[0005] M.R. Kweon et al., Journal of Food Science, 59 (5), 1072-1076 (1994) disclose the effect of 2-4 % by weight of phospholipid hydrolysate together with an antistaling amylase on the retrogradation of starch in bread.

SUMMARY OF THE INVENTION

[0006] The inventors confirmed that the addition of a maltogenic alpha-amylase reduces the rate of crumb firming during storage for 1-7 days after baking, but they found that there is a need to improve the softness in the initial period after baking, particularly the first 24 hours after baking. They further found that this can be achieved by using a phospholipase, so that bread made by the combined use of a maltogenic alpha-amylase and a phospholipase has improved softness, both when eaten on the same day and when stored for several days after baking. There is no significant change in the taste or smell of the baked product

[0007] Accordingly, The invention provides a process for preparing a dough or a baked product prepared from the dough which comprises adding to the dough a maltogenic alpha-amylase and a phospholipase. The invention also provides a dough and a pre-mix comprising these ingredients.

DETAILED DESCRIPTION OF THE INVENTION

[0008] The Maltogenic alpha-amylase used in the invention may be any amylase that is effective in retarding the staling (crumb firming) of baked products.

[0009] The amylase preferably has a temperature optimum in the presence of starch in the range of 30-90°C, preferably 50-80°C, particularly 55-75°C, e.g. 60-70°C. The temperature optimum may be measured in a 1 % solution of soluble starch at pH 5.5.

[0010] The maltogenic alpha-amylase (EC 3.2.1.133), may be from *Bacillus*. A maltogenic alpha-amylase from *B. stearothermophilus* strain NCIB 11837 is commercially available from Novo Nordisk A/S under the tradename Novamyl®. It is further described in US 4,598,048 and US 4,604,355 and in C. Christophersen et al., Starch, vol. 50, No. 1, 39-45 (1997).

[0011] The maltogeni alpha-amylase is added in an effective amount for retarding the staling (crumb firming) of the baked product. The amount of maltogenic alpha-amylase will typically be in the range of 0.01-10 mg of enzyme protein per kg of flour, e.g. 1-10 mglkg. The maltogenic alpha-amylase is preferably added in an amount of 50-5000 MANU/kg of flour, e.g. 100-1000 MANU/kg. One MANU (Maltogenic Amylase Novo Unit) may be defined as the amount of enzyme required to release one µmol of maltose per minute at a concentration of 10 mg of maltotriose (Sigma M 8378) substrate per ml of 0.1 M citrate buffer, pH 5.0 at 37 °C for 30 minutes.

5 Phospholipase

[0012] The phospholipase may have A_1 or A_2 activity to remove fatty acid from the phospholipid and form a lysophospholipid. It may or may not have lipase activity, i.e. activity on triglycerides. The phospholipase preferably has a

temperature optimum in the range of 30-90°C, e.g. 30-70°C.

[0013] The phospholipase may be of animal origin, e.g. from pancreas (e.g. bovine or porcine pancreas), snake venom or bee venom. Alternatively, the phospholipase may be of microbial origin, e.g. from filamentous fungi, yeast or bacteria, such as the genus or species Aspergillus, A. niger, Dictyostelium, D. discoideum, Mucor, M. javanicus, M. mucedo, M. subtilissimus, Neurospora, N. crassa, Rhizomucor, R. pusillus, Rhizopus, R. arrhizus, R. japonicus, R. stolonifer, Sclerotinia, S. libertiana, Trichophyton, T. rubrum, Whetzelinia, W. sclerotiorum, Bacillus, B. megaterium, B. subtilis, Citrobacter, C. freundii, Enterobacter, E. aerogenes, E. cloacae Edwardsiella, E. tarda, Erwinia, E. herbicola, Escherichia, E. coli, Klebsiella, K. pneumoniae, Proteus, P. vulgaris, Providencia, P. stuartii, Salmonella, S. typhimurium, Serratia. S. liquefasciens, S. marcescens, Shigella, S. flexneri, Streptomyces, S. violeceoruber, Yersinia, or Y. enterocolitica. A preferred phospholipase is derived from a strain of Fusarium, particularly F. oxysporum, e.g. from strain DSM 2672, as described in copending PCT/DK 97/00557.

[0014] The phospholipase is added in an amount which improves the softness of the bread during the initial period after baking, particularly the first 24 hours. The amount of phospholipase will typically be in the range of 0.01-10 mg of enzyme protein per kg of flour (e.g. 0.1-5 mg/kg) or 200-5000 LEU/kg of flour (e.g. 500-2000 LEU/kg).

[0015] A phospholipase with lipase activity is preferably added in an amount corresponding to an lipase activity of 20-1000 LU/kg of flour, particularly 50-500 LU/kg. One LU (Lipase Unit) is defined as the amount of enzyme required to release 1 µmol butyric acid per minute at 30.0°C; pH 7.0; with Gum Arabic as emulsifier and tributyrin as substrate.

Phospholipase activity (LEU)

20

25

30

5

10

[0016] In the LEU assay, the phospholipase activity is determined from the ability to hydrolyze lecithin at pH 8.0, 40°C. The hydrolysis reaction can be followed by titration with NaOH for a reaction time of 2 minutes. The phospholipase from porcine pancreas has an activity of 510 LEU/mg (taken as standard), and the phospholipase from *Fusarium oxysporum* has an activity of 1540 LEU/mg.

Phospholipid

[0017] The phospholipase may act on phospholipid provided by flour in the dough, so the separate addition of a phospholipid is not required. However, the softening effect may be increased by adding a phospholipid, preferably in an amount of 0.05-20 g/kg of flour, e.g. 0.1-10 g/kg. The phospholipid may be a diacyl-glycero-phospholipid, such as lecithin or cephalin.

Dough

[0018] The dough of the invention generally comprises wheat meal or wheat flour and/or other types of meal, flour or starch such as corn flour, corn starch, rye meal, rye flour, oat flour, oat meal, soy flour, sorghum meal, sorghum flour, potato meal, potato flour or potato starch.

[0019] The dough of the invention may be fresh, frozen or par-baked.

[0020] The dough of the invention is normally a leavened dough or a dough to be subjected to leavening. The dough may be leavened in various ways, such as by adding chemical leavening agents, e.g., sodium bicarbonate or by adding a leaven (fermenting dough), but it is preferred to leaven the dough by adding a suitable yeast culture, such as a culture of Saccharomyces cerevisiae (baker's yeast), e.g. a commercially available strain of S. cerevisiae.

[0021] The dough may also comprise other conventional dough ingredients, e.g.: proteins, such as milk powder, gluten, and soy; eggs (either whole eggs, egg yolks or egg whites); an oxidant such as ascorbic acid, potassium bromate, potassium iodate, azodicarbonamide (ADA) or ammonium persulfate; an amino acid such as L-cysteine; a sugar; a salt such as sodium chloride, calcium acetate, sodium sulfate or calcium sulfate.

[0022] The dough may comprise fat (triglyceride) such as granulated fat or shortening, but the invention is particularly applicable to a dough where less than 1 % by weight of fat (triglyceride) is added, and particularly to a dough which is made without addition of fat.

50 [0023] The dough may further comprise an emulsifier such as mono- or diglycerides, diacetyl tartaric acid esters of mono- or diglycerides, sugar esters of fatty acids, polyglycerol esters of fatty acids, lactic acid esters of monoglycerides, acetic acid esters of monoglycerides, polyoxyethylene stearates, or lysolecithin, but the invention is particularly applicable to a dough which is made without addition of emulsifiers (other than optionally phospholipid).

55 Additional enzyme

[0024] Optionally, an additional enzyme may be used together with the maltogenic alpha-amylase and the phospholipase. The additional enzyme may be a second amylase, such as an amyloglucosidase, a beta-amylase, a cyclodextrin

glucanotransferase, or the additional enzyme may be a peptidase, in particular an exopeptidase, a transglutaminase, a lipase, a cellulase, a hemicellulase, in particular a pentosanase such as xylanase, a protease, a protein disulfide isomerase, e.g., a protein disulfide isomerase as disclosed in WO 95/00636, a glycosyltransferase, a branching enzyme (1,4- α -glucan branching enzyme), a 4- α -glucanotransferase (dextrin glycosyltransferase) or an oxidoreductase, e.g., a peroxidase, a laccase, a glucose oxidase, a pyranose oxidase, a lipoxygenase, an L-amino acid oxidase or a carbohydrate oxidase.

[0025] The additional enzyme may be of any origin, including mammalian and plant, and preferably of microbial (bacterial, yeast or fungal) origin and may be obtained by techniques conventionally used in the art.

[0026] The xylanase is preferably of microbial origin, e.g. derived from a bacterium or fungus, such as a strain of Aspergillus, in particular of A. aculeatus, A. niger (cf. WO 91/19782), A. awamori (WO 91/18977), or A. tubigensis (WO 92/01793), from a strain of Trichoderma, e.g. T. reesei, or from a strain of Humicola, e.g. H. insolens (WO 92/17573, the contents of which is hereby incorporated by reference). Pentopan® and Novozym 384® (both from Novo Nordisk A/S) are commercially available xylanase preparations produced by Trichoderma reesei.

[0027] The amyloglucosidase may be an *A. niger* amyloglucosidase (such as AMG™, available from Novo Nordisk A/S, Denmark). Other useful amylase products include Grindamyl® A 1000 or A 5000 (available from Grindsted Products, Denmark) and Amylase® H or Amylase® P (available from Gist-Brocades, The Netherlands).

[0028] The glucose oxidase may be a fungal glucose oxidase, in particular an *Aspergillus niger* glucose oxidase (such as Gluzyme®, available from Novo Nordisk A/S, Denmark).

[0029] The protease may in particular be Neutrase® (available from Novo Nordisk A/S, Denmark).

[0030] The lipase may be derived from a strain of *Thermomyces* (*Humicola*), *Rhizomucor*, *Candida*, *Aspergillus*, *Rhizopus*, or *Pseudomonas*, in particular from *Thermomyces lanuginosus* (*Humicola lanuginosa*), *Rhizomucor miehei*, *Candida antarctica*, *Aspergillus niger*, *Rhizopus delemar* or *Rhizopus arrhizus* or *Pseudomonas cepacia*. In specific embodiments, the lipase may be Lipase A or Lipase B derived from *Candida antarctica* as described in WO 88/02775, or the lipase may be derived from *Rhizomucor miehei* as described in EP 238,023, or *Humicola lanuginosa* described in EP 305,216, or *Pseudomonas cepacia* as described in EP 214,761 and WO 89/01032.

Baked product

25

30

35

50

[0031] The process of the invention may be used for any kind of baked product prepared from dough, either of a soft or a crisp character, either of a white, light or dark type. Examples are bread (in particular white, whole-meal or rye bread), typically in the form of loaves or rolls, French baguette-type bread, pita bread, tortillas, cakes, pancakes, biscuits, cookies, pie crusts, crisp bread, steamed bread, pizza and the like.

Pre-mix

[0032] The present invention further relates to a pre-mix comprising flour together with a maltogenic alpha-amylase, a phospholipase and a phospholipid. The pre-mix may contain other dough-improving and/or bread-improving additives, e.g. any of the additives, including enzymes, mentioned above.

40 Enzyme preparation

[0033] The invention provides an enzyme preparation comprising amylase and a phospholipase, for use as a baking additive in the process of the invention. The enzyme preparation is preferably in the form of a granulate or agglomerated powder. It preferably has a narrow particle size distribution with more than 95 % (by weight) of the particles in the range from 25 to 500 µm.

[0034] Granulates and agglomerated powders may be prepared by conventional methods, e.g. by spraying the amylase onto a carrier in a fluid-bed granulator. The carrier may consist of particulate cores having a suitable particle size. The carrier may be soluble or insoluble, e.g. a salt (such as NaCl or sodium sulfate), a sugar (such as sucrose or lactose), a sugar alcohol (such as sorbitol), starch, rice, corn grits, or soy.

EXAMPLES

Example 1

5 [0035] Bread was baked with maltogenic alpha-amylase, phospholipase and phospholipid. As reference, bread was also baked without one or more of these ingredients.

[0036] The phospholipid was lecithin at a dosage of 10 g/kg. The phospholipase was from Fusarium oxysporum used at a dosage of 50, 250 or 500 LU/kg, corresponding to or 0.04, 0.19 or 0.38 mg/kg. The anti-staling amylase was

a maltogenic alpha-amylase from *B. stearothermophilus* (Novamyl) at a dosage of 750 MANU/kg (1 mg/kg). All dosages in the Examples were based on kg of flour.

[0037] Doughs were prepared according to a standard European straight dough procedure with 50 g yeast per kg of flour and 40 ppm of ascorbic acid. The doughs were scaled to 350 g and baked in lidded pans.

[0038] The crumb firmness was measured using a texture analyzer TA-XT2 from Stable Micro Systems. Texture was measured according to a modified ACCA method (American Cereal Chemists' Association). These measurements were made after 0 days (approximately 2 hours after baking) and again after 1, 2 and 7 days storage (wrapped in double plastic bags and stored at 22°C).

[0039] The results are shown as firmness versus additive and storage time:

Additives	Phospholipase dosage (LU/kg)	2 hours	1 day	2 days	7 days
Invention: Maltogenic alpha-	50	316	417	517	868
amylase + phospholipase + phospholipid	250	279	371	455	790
	500	248	324	410	752
Reference:					
None (control)	0	296	875	1207	2162
Maltogenic alpha-amylase	0	469	563	801	1083
Phospholipid +	50	208	470	782	1560
phospholipase	250	231	467	721	1424
	500	233	420	649	1303

Example 2

10

15

20

25

30

35

40

45

55

[0040] A baking test was made as in Example 1, but with dosages of 0.5 mg/kg of the phospholipase (770 LEU/kg) and 1 g/kg of the phospholipid. The results are given as firmness after storage, and for comparison the firmness is also expressed in % of the control.

Additives	2 hours	5 hours	12 hours	20 hours	day 2	day 3
Invention:	181	195	223	241	277	303
Maltogenic alpha- amylase + phospholipase + phospholipid	(78%)	(65%)	(51%)	(46%)	(34%)	(32%)
Reference:						-
None (control)	233 (100%)	302 (100%)	434 (100%)	526 (100%)	824 (100%)	959 (100%)
Maltogenic alpha- amylase	372 (160%)	468 (155%)	518 (119%)	482 (92%)	547 (66%)	637 (66%)
Phospholipid +	144	144	212	258	364	482
phospholipase	(62%)	(47%)	(49%)	(49%)	(44%)	(50%)

Example 3

[0041] A baking test was made as in Examples 1 and 2, using a different phospholipase. The phospholipase was from porcine pancreas at a dosage of 2 mg/kg (1020 LEU/mg). The dosages of the maltogenic alpha-amylase and the phospholipid were as in Example 2, and the results are presented as in Example 2:

Additives	2 hours	5 hours	12 hours	20 hours	day 2	day 3
Invention: Maltogenic alpha- amylase + phospholipase + phospholipid	342 (122%)	411 (103%)	420 (80%)	431 (73%)	485 (52%)	559 (48%)

(continued)

Additives	2 hours	5 hours	12 hours	20 hours	day 2	day 3
Reference:						
None (control)	281	398	524	588	937	1157
	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)
Maltogenic alpha-amylase	409	490	514	526	625	673
	(146%)	(123%)	(98%)	(89%)	(67%)	(58%)
Phospholipid +	218	260	367	472	668	906
phospholipase	(76%)	(65%)	(70%)	(80%)	(71%)	(78%)

15 [0042] The results of Examples 1-3 show that the addition of maltogenic alpha-amylase retards the crumb firming during storage, but increases the initial firmness compared to the control without additives. The addition of phospholipid + phospholipase according to the invention is effective in avoiding the increased initial firmness and further reduces the rate of crumb firming during storage, compared to the maltogenic alpha-amylase alone.

20 Example 4

5

10

25

30

35

40

45

50

55

[0043] Bread loaves were baked with and without phospholipid (lecithin) as indicated below. The phospholipase was F. oxysporum used at a dosage of 1 mg/kg (1540 LEU/kg). The maltogenic alpha-amylase and the baking conditions were as described in Example 1. The results are given as firmness after storage:

				Firmness		
	Maltogenicalpha-amylase MANU/kg	Phospholipase mg/kg	Phospholipid g/kg	2 hours	1 day	3 days
Control	0	0	0	294	687	1179
Invention	750	1	10	200	229	277
	750	1	2	167	218	287
	750	1	1	167	232	305
	750	1	0.5	189	269	333
	750	1	0.1	196	260	381
	750	1	0	199	264	372

[0044] The results show that addition of maltogenic alpha-amylase and phospholipase clearly improve the softness, both initial softness (2 hours) and softness after storage (3 days). The softening effect can be further improved by addition of phospholipid. The optimum dosage appears to be about 1 mg/kg of phospholipid.

Claims

- A process for preparing a dough or a baked product prepared from the dough, comprising incorporating into the dough a maltogenic alpha-amylase and a phospholipase.
- The process of the preceding claim wherein the maltogenic alpha-amylase has optimum activity in bread at 70-90°C.
- The process of either preceding claim wherein the maltogenic alpha-amylase is from B. stearothermophilus, preferably from strain NCIB 11837.
- 4. The process of any preceding claim wherein the phospholipase has a temperature optimum of 30-70°C.

- The process of any preceding claim wherein the phospholipase is fungal, preferably from Fusarium, most preferably from F. oxysporum.
- 6. The process of any preceding claim which further comprises incorporating a phospholipid (preferably lecithin) into the dough.
 - 7. The process of any preceding claim which does not comprise addition of fat.
 - 8. The process of any preceding claim which does not comprise addition of lysophospholipid.
 - 9. The process of any preceding claim which does not comprise addition of emulsifiers other than the phospholipid.
 - 10. The process of any preceding claim wherein the dough consists essentially of flour, water, yeast, salt and sugar.
- 15 11. A dough which comprises a maltogenic alpha-amylase and a phospholipase.
 - 12. A pre-mix for dough comprising flour, a maltogenic alpha-amylase and a phospholipase.
 - 13. An enzyme preparation which comprises a maltogenic alpha-amylase and a phospholipase.
 - 14. The preparation of the preceding claim which further comprises a phospholipid, preferably lecithin.
 - 15. The preparation of claim 13 or 14 which further comprises a hemicellulase, preferably a pentosanase, more preferably a xylanase.
 - 16. The preparation of any of claims 13-15 which is a granulate or an agglomerated powder.
 - 17. The preparation of any of claims 13-16 wherein more than 95 % (by weight) has a particle size between 25 and 500 μm .

Patentansprüche

10

20

25

30

35

45

55

- Verfahren zur Herstellung eines Teigs oder eines aus dem Teig hergestellten Backproduktes, dass das Einschließen einer maltogenen Alpha-Amylase und einer Phospholipase in den Teig umfasst.
 - 2. Das Verfahren nach dem vorangehenden Anspruch, wobei die maltogene Alpha-Amylase in Brot eine optimale Aktivität bei 70-90 °C aufweist.
- Das Verfahren nach jedem vorangehenden Anspruch, wobei die maltogene Alpha-Amylase aus B. stearothermophilus, vorzugsweise vom Stamm NCIB 11837 ist.
 - 4. Verfahren nach irgendeinem vorangehenden Anspruch, wobei die Phospholipase ein Temperaturoptimum von 30-70 °C hat.
 - 5. Verfahren nach irgendeinem vorangehenden Anspruch, wobei die Phospholipase aus Pilzen stammt, vorzugsweise aus Fusarium, besonders bevorzugt aus F. oxysporum.
- 6. Verfahren nach irgendeinem vorangehenden Anspruch, das darüber hinaus das Einschließen eines Phospholipids50 (vorzugsweise Lecithin) in den Teig umfasst.
 - 7. Verfahren nach irgendeinem vorangehenden Anspruch, das nicht den Zusatz von Fett umfasst.
 - 8. Verfahren nach irgendeinem vorangehenden Anspruch, das nicht den Zusatz von Lysophospholipid umfasst.
 - 9. Verfahren nach irgendeinem vorangehenden Anspruch, das nicht den Zusatz von anderen Emulgatoren als das Phospholipid umfasst.

- Verfahren nach irgendeinem vorangehenden Anspruch, wobei der Teig im Wesentlichen aus Mehl, Wasser, Hefe, Salz und Zucker besteht.
- 11. Teig, der eine maltogene Alpha-Amylase und eine Phospholipase einschließt.
- 12. Vor-Mischung für Teig, die Mehl, eine maltogene Alpha-Amylase und eine Phospholipase umfasst.
- 13. Enzymzubereitung, die eine maltogene Alpha-Amylase und eine Phospholipase umfasst.
- 10 14. Zubereitung nach dem vorangehenden Anspruch, die darüber hinaus ein Phospholipid, vorzugsweise Lecithin, umfasst.
 - 15. Zubereitung nach Anspruch 13 oder 14, die darüber hinaus eine Hemizellulase, vorzugsweise eine Pentosanase, besonders bevorzugt eine Xylanase, umfasst.
 - 16. Zubereitung nach irgendeinem der Ansprüche 13-15, die eine Granulat oder ein agglomeriertes Pulver ist.
 - 17. Zubereitung nach irgendeinem der Ansprüche 13-16, wobei mehr als 95 (Gew.-) % eine Teilchengröße zwischen 25 und 500 μm hat.

Revendications

5

15

20

25

35

45

- Un procédé de préparation de pâte ou de produits de boulangerie préparés à partir de la pâte, comprenant l'incorporation dans la pâte d'une alpha-amylase maltogène et d'une phospholipase.
- Le procédé de la revendication précédente, dans lequel l'alpha-amylase maltogène a une activité optimale dans le pain à 70-90°C.
- Le procédé selon l'une quelconque des revendications précédentes, dans lequel l'alpha-amylase maltogène est issue de B. stearothermophilus, de préférence de la souche NCIB 11837.
 - 4. Le procédé selon l'une quelconque des revendications précédentes, dans lequel la phospholipase a un optimum de température de 30-70°C.
 - Le procédé selon l'une quelconque des revendications précédentes, dans lequel la phospholipase est fongique, de préférence issue de Fusarium, plus préférablement de F. oxysporum.
- 6. Le procédé selon l'une quelconque des revendications précédentes, qui comprend également l'incorporation d'un phospholipide (de préférence la lécithine) dans la pâte.
 - 7. Le procédé selon l'une quelconque des revendications précédentes, qui ne comprend pas l'addition de graisse.
 - 8. Le procédé selon l'une quelconque des revendications précédentes, qui ne comprend pas l'addition de lysophospholipide.
 - Le procédé selon l'une quelconque des revendications précédentes, qui ne comprend pas l'addition d'émulsifiants autres que le phospholipide.
- 10. Le procédé selon l'une quelconque des revendications précédentes, dans lequel la pâte se compose essentiellement de farine, d'eau, de levure, de sel et de sucre.
 - 11. Une pâte qui comprend une alpha-amylase maltogène et une phospholipase.
- 55 12. Un prémélange pour la pâte comprenant de la farine, une alpha-amylase maltogène et une phospholipase.
 - 13. Une préparation enzymatique qui comprend une alpha-amylase maltogène et une phospholipase.

- 14. La préparation de la revendication précédente, qui comprend également un phospholipide, de préférence la lécithine.
- 15. La préparation de la revendication 13 ou 14, qui comprend également une hémicellulase, de préférence une pentosanase, plus préférablement, une xylanase.
 - 16. La préparation selon l'une quelconque des revendications 13 à 15, qui est un produit granulé ou une poudre agglomérée.
- 17. La préparation selon l'une quelconque des revendications 13 à 16, dans laquelle plus de 95 % (en poids) a une granulométrie comprise entre 25 et 500 μm.