Solving Linear Systems in C

Various Matrix Decompositions for Ax = b

Ian William Hoppock

IAM851: High Performance Computing

University of New Hampshire

April 13, 2017

A Note on Notation

- Hermitian Conjugate: A^* , A^{\dagger} , or A^H
 - A^* is complex case of the transpose: A^T
 - Hermitian Matrix: $A = A^*$
- Unitary Matrix: Q
 - $-Q^*$ is complex case of an orthogonal matrix $(A^{-1} = A^T)$
 - I.e., $QQ^* = Q^*Q = I$ and $AA^T = A^TA = I$
- Lower Triangular Matrix: L
- Upper Triangular Matrix: U
- Diagonal Matrix: D

Matrix Decompositions

Solving systems of linear equations: Ax = b

- QR decomposition: A = QR (need not be square)
- *LU* decompositions:
 - No pivoting: A = LU
 - Partial pivoting: PA = LU
 - Full pivoting: PAQ = LU
 - Unit triangular and diagonal: A = LDU
 - LU reduction (runs LU in parallel)
- Cholesky decomposition: $A = L^*L$

Matrix Decompositions

Eigenvalues and related concepts: $Ax = \lambda x$

- Eigendecomposition: $A = PDP^{-1}$
- Jordan: $A = PJP^{-1}$
- Schur: *A* = *QUQ**
- Singular Value: $A = USV^*$ (need not be square)

$$A = QR$$

$$Ax = b$$

$$QRx = b$$

$$Q^*QRx = Q^*b$$

$$Rx = Q^*b$$

$$Rx = y$$

LU

- Twice as fast as QR
- Pivoting adds stability

$$A = LU$$

$$LUx = b$$

$$Ly = b$$

$$Ux = y$$

Cholesky

- Must be Hermitian and positive-definite
- I.e., positive eigenvalues
- Twice as fast as LU (where appropriate)

$$A = L^*L$$

$$L^*Lx = b$$

$$L^*y = b$$

$$Lx = y$$