Estimacija parametara modela

- Neka je $\hat{ heta}$ ocena parametara heta
- Ocena $\hat{ heta}$ je *nepristrasna* (*centrirana*) ako važi

$$E[\hat{\theta}] = \theta$$

- Razlika $E[\hat{\theta}] \theta$ je sistematsko odstupanje (bias) ocene $\hat{\theta}$
- Nepristrasna ocena koja ima manju varijansu je bolja od nepristrasne ocene koja ima veću varijansu

Pristrastnost – primer

Da li je medijana uzorka nepristrastna ocena medijane populacije?

- Loptice označene brojevima 0-32
- Izmešamo u bubnju, izvučemo 5 loptica i izračunamo medijanu uzorka
- Ponovimo eksperiment 50 puta

Pristrastnost – primer

Da li je medijana uzorka nepristrastna ocena medijane populacije?

Pristrastnost – primer

• μ_{ML} , σ_{ML} su *ocene maksimalne verodostojnosti* za stvarne vrednosti μ i σ

- U slučaju da su podaci IID iz normalne raspodele:
 - μ_{ML} odgovara srednjoj vrednosti uzorka (nepristransa ocena)
 - σ_{ML} ne odgovara varijansi uzorka (nije nepristrasna ocena)
- ML pristup sistematski podcenjuje varijansu distribucije. Ovo je primer fenomena koji se zove sistematsko odstupanje (bias)
- Povezan je sa problemom overfitting-a koji smo videli kod fitovanja polinomijalne krive

• Ocena $\hat{\theta}$ je *nepristrasna* (*centrirana*) ako važi $E[\hat{\theta}] = \theta$

$$E[\mu_{ML}] = E\left[\frac{1}{N}\sum_{n=1}^{N} x^{(n)}\right] = \frac{1}{N}\sum_{n=1}^{N} E[x^{(n)}] = \frac{1}{N}\sum_{n=1}^{N} \mu = \mu$$

$$E[\alpha x + \beta y] = \alpha E[x] + \beta E[y]$$
raspodele
$$E[\alpha x + \beta y] = \alpha E[x] + \beta E[y]$$

- Pošto je $E[\mu_{ML}] = \mu$, μ_{ML} je nepristrasna ocena (*unbiased estimate*) parametra μ
- U proseku, ML ocena će rezultovati korektnom srednjom vrednošću

$$E[\sigma_{ML}^{2}] = E\left[\frac{1}{N}\sum_{n=1}^{N}(x_{n} - \mu_{ML})^{2}\right] =$$

$$E[\alpha x + \beta y] = \alpha E[x] + \beta E[y]$$

$$= E\left[\frac{1}{N}\sum_{n=1}^{N}(x_{n})^{2} - 2\mu_{ML}\frac{1}{N}\sum_{n=1}^{N}x_{n} + \frac{1}{N}N\mu_{ML}^{2}\right] =$$

$$= E\left[\frac{1}{N}\sum_{n=1}^{N}(x_{n})^{2} - \mu_{ML}^{2}\right] = \frac{1}{N}\sum_{n=1}^{N}E[x_{n}^{2}] - E[\mu_{ML}^{2}] =$$

$$= \frac{1}{N}\sum_{n=1}^{N}(\sigma^{2} + \mu^{2}) - \left(\frac{\sigma^{2}}{N} + \mu^{2}\right) = \frac{(N-1)\sigma^{2}}{N}$$

$$var[x] = \sigma^{2} = E[x^{2}] - \mu^{2} \qquad var[\mu] = \sigma^{2}/N = E[\mu^{2}] - \mu^{2}$$

https://onlinecourses.science.psu.edu/stat414/node/167

• Pošto je $E[\sigma_{ML}^2] \neq \sigma^2$, σ_{ML}^2 je pristrasna ocena (*biased estimate*) parametra σ^2

- U proseku, ova ocena će podceniti pravu varijansu za faktor (N-1)/N
- Nepristrasna ocena σ^2 :

$$\tilde{\sigma}^2 = \frac{N}{N-1} \sigma_{ML}^2 = \frac{1}{N-1} \sum_{n=1}^{N} (x_n - \mu_{ML})^2$$

Ako bi se μ_{ML} uprosečio na ova tri skupa podataka, dobili bismo μ

 σ^2 je sistematski podcenjena jer se računa relativno u odnosu na prosek uzorka (μ_{ML}), a ne u odnosu na μ