Table 2.1 summarizes the various activation functions we've discussed in this section.

Table 2.1 A cheat sheet of the most common activation functions

Activation function	Description	Plot	Equation
Linear trans- fer function (identity function)	The signal passes through it unchanged. It remains a linear function. Almost never used.	5 4 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	f(x) = x
Heaviside step function (binary classifier)	Produces a binary output of 0 or 1. Mainly used in binary classification to give a discrete value.	Step function 1.0- 0.8- 0.6- 0.4- 0.2- 0.04 -3 -2 -1 0 1 2 3 4	output = $\begin{cases} 0 & \text{if } w \cdot x + b \le 0 \\ 1 & \text{if } w \cdot x + b > 0 \end{cases}$

Table 2.1 A cheat sheet of the most common activation functions

Activation function	Description	Plot	Equation
Sigmoid/ logistic function	Squishes all the values to a probability between 0 and 1, which reduces extreme values or outliers in the data. Usually used to classify two classes.	0.0 -8 -6 -4 -2 0 2 4 6 8	$\sigma(z) = \frac{1}{1 + e^{-z}}$
Softmax function	A generalization of the sigmoid func- tion. Used to obtain classification proba- bilities when we have more than two classes.	0.0 -8 -6 -4 -2 0 2 4 6 8	$\sigma(x_j) = \frac{e^{x_j}}{\sum_j e^{x_j}}$
Hyperbolic tangent func- tion (tanh)	Squishes all values to the range of -1 to 1. Tanh almost always works better than the sigmoid function in hidden layers.	1.0- 0.5- 2 4 x	$tanh(x) = \frac{\sinh(x)}{\cosh(x)}$ $= \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$

