Neural Circuits and Computations Unit RIKEN Center for Brain Science louis.kang@riken.jp https://louiskang.group

Updated 3 June 2024

Positions —	
Unit Leader (Junior Group Leader), Neural Circuits and Computations Unit RIKEN Center for Brain Science, Wako, Japan	2020-
Miller Postdoctoral Fellow University of California, Berkeley, USA Host departments: Physics and Helen Wills Neuroscience Institute Host faculty: Mike DeWeese	7–2020
Visiting and Adjunct Positions —	
Adjunct Associate Professor, Graduate School of Informatics Kyoto University, Japan	2021-
Visiting Scientist RIKEN Center for Brain Science, Wako, Japan Host faculty: Taro Toyoizumi	er 2019
Research Statement —	
Human cognition ultimately emerges from sophisticated computations performed by network neurons. I use and develop theoretical tools to investigate how our brains make sense of and reto our dynamic environments. In particular, I am interested in how hippocampal circuits prememory and how they are disrupted in neurological diseases.	espond
Education —	
MD, Perelman School of Medicine University of Pennsylvania, Philadelphia, USA	2017
PhD, Department of Physics & Astronomy University of Pennsylvania, Philadelphia, USA Thesis advisor: Tom Lubensky Thesis title: Chirality and its spontaneous symmetry breaking in two liquid crystal systems	2015
AB in Chemistry and Physics and Mathematics summa cum laude Harvard University, Cambridge, USA	2009
Publications *equal contribution †corresponding author	

- excitability adaptation related to ketogenic diet. Chaos 34, 053128 (2024). doi:10.1063/5.0180954.
- 12. **Kang L** † , Toyoizumi T. Distinguishing examples while building concepts in hippocampal and artificial networks. *Nat Commun* 15, 647 (2024). doi:10.1038/s41467-024-44877-0.
- 11. **Kang L** † , Toyoizumi T. A Hopfield-like model with complementary encodings of memories. *Phys Rev E* 108, 054410 (2023). doi:10.1103/PhysRevE.108.054410.
- 10. Wang R, **Kang L**[†]. Multiple bumps can enhance robustness to noise in continuous attractor networks. *PLOS Comput Biol* 18, e1010547 (2022). doi:10.1371/journal.pcbi.1010547.
- 9. **Kang L**[†], Xu B, Morozov D. Evaluating state space discovery by persistent cohomology in the spatial representation system. *Front Comput Neurosci* 15, 616748 (2021). doi:10.3389/fncom.2021.616748.
- 8. Kang L^{\dagger} , DeWeese MR. Replay as wavefronts and theta sequences as bump oscillations in a grid cell attractor network. *eLife* 8, e46351 (2019). doi:10.7554/eLife.46351.
- 7. **Kang** L^{\dagger} , Balasubramanian V. A geometric attractor mechanism for self-organization of entorhinal grid modules. *eLife* 8, e46687 (2019). doi:10.7554/eLife.46687.
- Kang L[†], Lubensky TC. Chiral twist drives raft formation and organization in membranes composed of rod-like particles. *Proc Natl Acad Sci USA* 114, E19 (2017). doi:10.1073/pnas.1613732114.
- Kang L[†], Gibaud T, Dogic Z, Lubensky TC. Entropic forces stabilize diverse emergent structures in colloidal membranes. Soft Matter 12, 386 (2016). doi:10.1039/C5SM02038G.
- 4. Davidson ZS*, **Kang L***, Jeong J*,†, Still T, Collings PJ, Lubensky TC, Yodh AG. Chiral structures and defects of lyotropic chromonic liquid crystals induced by saddle-splay elasticity. *Phys Rev E* 91, 050501 (2015). doi:10.1103/PhysRevE.91.050501.
- 3. Jeong J^{*,†}, **Kang L***, Davidson ZS, Collings PJ, Lubensky TC, Yodh AG. Chiral structures from achiral liquid crystals in cylindrical capillaries. *Proc Natl Acad Sci USA* 112, E1837 (2015). doi:10.1073/pnas.1423220112.
- 2. Idema T, Dubuis JO, **Kang L**, Manning ML, Nelson PC, Lubensky TC, Liu AJ † . The syncytial *Drosophila* embryo as a mechanically excitable medium. *PLOS ONE* 8, e77216 (2013). doi:10.1371/journal.pone.0077216.
- 1. Heo M, **Kang L**, Shakhnovich EI[†]. Emergence of species in evolutionary "simulated annealing". *Proc Natl Acad Sci USA* 106, 1869 (2009). doi:10.1073/pnas.0809852106.

Grants, Awards, and Honors -

KAKENHI Grant-in-Aid for Early-Career Scientists

2022 - 2024

Japan Society for the Promotion of Science

Project role: PI

Project title: The influence of attractor topology on seizure initiation in the hippocampal region (22K15209)

Collaborative Research Travel Grant

2019 - 2020

Burroughs Wellcome Fund

Project role: PI

Project title: Complementary input pathways enhance associative memory in a model of CA3

Travel Award Computational Neuroscience Meeting (CNS*2018)	2018
Miller Research Fellowship University of California, Berkeley	17–2020
Mary Ellis Bell Prize University of Pennsylvania, Perelman School of Medicine "This prize is given to a student in the School of Medicine who is engaged in noteworthy in any field related to medicine."	2016 research
Werner Teutsch Memorial Prize University of Pennsylvania, Department of Physics & Astronomy "Awarded annually to the graduate student who, by his or her performance in the first year shows the most promise for outstanding achievement in research."	2012 courses,
Medical Scientist Training Program National Institutes of Health (USA), awarded through the University of Pennsylvania	09-2017
Phi Beta Kappa Harvard University	2009
Conference Presentations †talk —	
Summer Cluster at the Simons Institute for the Theory of Computing: AI, Psyc and Neuroscience, Berkeley, USA Distinguishing examples while building concepts in hippocampal and artificial networks [‡]	chology, 2024
Bernstein Conference, Berlin, Germany Multiscale encodings of memories in hippocampal and artificial networks	2022
Computational and Systems Neuroscience (Cosyne), Lisbon, Portugal Multiscale encodings of memories in hippocampal and artificial networks	2022
Computational and Systems Neuroscience (Cosyne), Denver, USA Complementary encoding pathways build a memory hierarchy in a model of hippocampus	2020
Society for Neuroscience Meeting, Chicago, USA Replay as wavefronts and theta sequences as bump oscillations in a grid cell attractor netro	2019 $work$
Bernstein Conference, Berlin, Germany Replay arises naturally as a traveling wavefront in an entorhinal attractor network [‡]	2018
Computational Neuroscience Meeting (CNS*2018), Seattle, USA A geometric attractor mechanism for the self-organization of entorhinal grid modules [‡]	2018
Interdisciplinary Navigation Symposium (iNAV), Mont-Tremblant, Canada A geometric attractor mechanism for the self-organization of entorhinal grid modules [‡]	2018
American Physical Society March Meeting, Los Angeles, USA Self-organization of entorhinal grid modules through commensurate lattice relationships [‡]	2018
Computational and Systems Neuroscience (Cosyne), Denver, USA Self-organization of entorhinal grid modules through commensurate lattices	2018
American Physical Society March Meeting, New Orleans, USA	2017

$Membrane\ rafts\ stabilized\ by\ chiral\ liquid\ crystal$	correction to bare interfacial tension [‡]	
Computational and Systems Neuroscience Coupling between attractor networks naturally ge		2017
Gordon Research Conference & Seminar of Roles of entropy and chirality in depletion-induced	- , , , , , , , , , , , , , , , , , , ,	2015
American Chemical Society Colloid & Sur Philadelphia, USA		2014
A theory for depletion-induced colloidal membrar		
American Physical Society March Meeting A theory for depletion-induced colloidal membrar		2014
IAS Program on Frontiers of Soft Matter A theory for depletion-induced colloidal membran	• ,	2014
American Physical Society March Meeting Mitotic wavefronts mediated by mechanical signal		2013
SCIENTIFIC COMMUNITY INVOLVEMENT —		
Workshop organizer, Computational and Syst Seeking universality while celebrating heterogeneity Speakers: Misha Tsodyks, Lisa Giocomo, Yi Gu, Yoram Burak, Tatiana Engel, Ila Fiete, Christian hakrishnan, Joanna Chang, Albert Compte, Luc	ity among biological attractor networks Kechen Zhang, Dan Turner-Evans, Laura ne Linster, Kevin Franks, Kayvon Daie, A	dit Rad-
Peer Reviewer Nature Communications, PLOS Computational Frontiers in Computational Neuroscience, Neur	2 , 3	,
Teaching —		
An introduction to computational neurosc RIKEN Center for Brain Science, Brain Science Two-hour lecture for graduate students once a year	Training Program	2022-
Recurrent neural networks in the brain Kyoto University, Graduate School of Informatic Three-hour lecture for graduate students once a		2021-
References —		
Mike DeWeese Postdoctoral advisor University of California, Berkeley Redwood Center for Theoretical Neuroscience deweese@berkeley.edu	Taro Toyoizumi Research mentor RIKEN Center for Brain Science Neural Adaptation and Computation taro.toyoizumi@riken.jp	Lab
Tom McHugh Experimental collaborator	Yoram Burak Expert in computational neuroscience	

RIKEN Center for Brain Science Circuit and Behavioral Physiology Lab thomas.mchugh@riken.jp Hebrew University of Jerusalem Safra Center for Brain Sciences yoram.burak@elsc.huji.ac.il