安全なコード移動が可能な コード生成言語の型システムの設計と実装

大石純平 亀山幸義

筑波大学 コンピュータサイエンス専攻

2017/1/27 筑波大学修論審査会

アウトライン

- 1 準備
- 2 問題点
- 3 研究の目的, 概要
- 4 解決策
- 5 まとめと今後の課題

2 / 28

実行結果

アウトライン

1 準備

- 2 問題点
- 3 研究の目的, 概要
- 4 解決策
- 5 まとめと今後の課題

コード生成

コード生成をサポートするプログラム言語 (=コード生成言語)

3 / 28

4 / 28

コード生成言語による記述例

let 挿入(コード移動) の実現方法

コード生成器 生成されるコード

$$(\underline{\mathsf{int}} \ 3) \rightsquigarrow^* <3>$$

$$(\underline{\mathsf{int}} \ 3) + (\underline{\mathsf{int}} \ 5) \rightsquigarrow^* <3+5>$$

$$\lambda x. \ x + (\underline{\mathsf{int}} \ 3) \rightsquigarrow^* <\lambda x'.x'+3>$$

$$\underline{\mathsf{for}}\ x = \cdots \,\underline{\mathsf{to}}\ \cdots \,\underline{\mathsf{do}}\ \cdots \, \rightsquigarrow^* < \!\!\mathsf{for}\ x' = \cdots \,\underline{\mathsf{to}}\ \cdots \,\underline{\mathsf{do}}\ \cdots >$$

コードコンビネータ

- 下線つきの演算子
- コードを引数にとり、コードを返す

コード生成器

• for
$$x = e1$$
 to $e2$ do
• for $y = e3$ to $e4$ do
set $\langle a \rangle (x, y)$ • cc

生成されるコード

$$<$$
let $u' = cc'$ in
for $x' = e1'$ to $e2'$ do
for $y' = e3'$ to $e4'$ do
 $a[x', y'] \leftarrow u'>$

shift0/reset0の導入

。 のところに shift0/reset0 を用いることで、多段階 let 挿入を 行う

5/28

6 / 28

8 / 28

shift0/reset0 による let 挿入

reset0 (
$$E[$$
shift0 $k \rightarrow e]) \rightsquigarrow e\{k \Leftarrow E\}$

コード生成器: reset① for
$$x=e1$$
 to $e2$ do for $x=e1$ to $e2$ do for $y=e3$ to $e4$ do for $y=e3$ to $e4$ do set a (x,y) set a (x,y) ccshift① $k \rightarrow k \Leftarrow for x=e1$ to $e2$ do for $y=e3$ to $e4$ do set a (x,y) []

生成コード:
$$<$$
 let $u'=cc'$ in for $x'=e1'$ to $e2'$ do for $y'=e3'$ to $e4'$ do $a[x',y']\leftarrow u'>$

shift0/reset0 による多段階 let 挿入

 $b[x', y'] \leftarrow w' >$

reset0
$$(E[\mathbf{shift0}\ k \to e]) \leadsto e\{k \Leftarrow E\}$$

コード生成器: reset① for
$$x=e1$$
 to $e2$ do reset① for $y=e3$ to $e4$ do set a (x,y) shift① $k_1 \rightarrow$ let $u=cc1$ in throw k_1 u ; set b (x,y) shift① $k_1 \rightarrow$ shift① $k_2 \rightarrow$ let $w=cc2$ in throw k_2 (throw k_1 w) 生成コード: $<$ let $w'=cc2'$ in for $x'=e1'$ to $e2'$ do let $u'=cc1'$ in for $y'=e3'$ to $e4'$ do $a[x',y'] \leftarrow u'$

アウトライン 1 準備 2 問題点 問題点 3 研究の目的, 概要 4 解決策 5 まとめと今後の課題 9/28 10 / 28 コード生成前・後でスコープの包含関係が逆転 アウトライン $\underline{\mathbf{for}}\ x = e1\ \underline{\mathbf{to}}\ e2\ \mathbf{do}$ 1 準備 $\gamma 0$ reset0 for y = e3 to e4 do $\gamma 1$ shift $0 \ k \rightarrow let \ u = cc \ in$ コード生成器: γ_2 throw k $\gamma 3 \ge \frac{\gamma}{2} \ge \frac{\gamma}{2}$ 2 問題点 $\gamma 3$ set a(x,y) u3 研究の目的, 概要 4 解決策 < for x'=e1' to e2' do $\gamma 0$ let u' = cc' in 5 まとめと今後の課題 $\gamma 2$ for y' = e3' to e4' do 生成コード: $\gamma 3 \quad \boxed{a[(x',y')] \leftarrow u' >}$ $\gamma 3 \geq \gamma 1 \geq \gamma 2$ 11 / 28 12 / 28

研究の目的、概要 アウトライン 目的 「表現力と安全性を兼ね備えたコード生成言語の構築 1 準備 • 表現力: 多段階 let 挿入等の技法を表現 2 問題点 • 安全性: 生成されるコードの一定の性質を静的に検査 3 研究の目的, 概要 概要 「本研究: 簡潔で強力なコントロールオペレータに基づ 4 解決策 くコード生成体系の構築 • コントロールオペレータ shift0/reset0 を利用し、let 挿入な 5 まとめと今後の課題 どのコード生成技法を表現 • 型システムを構築して型安全性を保証 13 / 28 14 / 28 コード生成前に型付け, 生成後のコードの型安 全性を保証 ステージ0 ステージ1 生成されたコード 実行結果 コード生成器 動的 静的 解決策 ステージ0 ステージ1 コード生成器 実行結果 生成されたコード 静的 動的 型が付く ステージ0 ステージ1 実行結果 コード生成器 生成されたコード 15/2816 / 28

環境識別子(EC)を利用したスコープ表現 [Sudo+2014]

スコープ	使えるコード変数
$\gamma 0$	なし
$\gamma 1$	x
$\gamma 2$	x, y

 $\gamma 2 > \gamma 1 > \gamma 0$

17 / 28

環境識別子(EC)を利用したスコープ表現 [sudo+2014]

型システムでコード変数のスコープを表現は

$$\Gamma = \gamma 2 \ge \gamma 1, \ x : \langle \text{int} \rangle^{\hat{}} \gamma 1, \ y : \langle \text{int} \rangle^{\hat{}} \gamma 2$$

$_{-}$	$\gamma 2$
$\Gamma \vdash x : \langle int \rangle^{} \gamma 1 OK$	$\Gamma \vdash x : \langle int \rangle^{} \gamma 2 OK$
$\Gamma \vdash y : \langle int \rangle^{} \gamma 1 NG$	$\Gamma \vdash y : \langle int \rangle^{} \gamma 2 OK$
$\Gamma \vdash x + y : \langle int \rangle^{\gamma} 1 \text{ NG}$	$\Gamma \vdash x + y : \langle int \rangle^{} \gamma 2 \text{ OK}$

コードレベルのラムダ抽象の型付け規則で固有変数条件を利用は

$$\frac{\Gamma, \ \gamma_2 \geq \gamma_1, \ x: \langle t_1 \rangle \hat{\ } \gamma_2 \vdash e: \langle t_2 \rangle \hat{\ } \gamma_2}{\Gamma \vdash \underline{\lambda} x.e: \langle t_1 \rightarrow t_2 \rangle \hat{\ } \gamma_1} \ (\gamma_2 \text{ is eigen var})$$

18 / 28

環境識別子(EC)を利用したスコープ表現

先行研究:

- 局所的なスコープをもつ破壊的変数をもつコード生成の体系に対する (型安全な) 型システムの構築
 [Sudo,Kiselyov,Kameyama 2014]
- グローバルなスコープをもつ破壊的変数への拡張 [Kiselyov,Kameyama,Sudo 2016]
- コントロールオペレータには非対応

問題点:

shift0/reset0 などのコントロールオペレータは、スコープの包含 関係を逆転させてしまう。

本研究の解決策

- $\gamma 1$ のコード変数は $\gamma 2$ では使ってはいけない
- $\gamma 2$ のコード変数は $\gamma 1$ では使ってはいけない
- $\Rightarrow \gamma 1$ と $\gamma 2$ の間に順序を付けない
- $\gamma 1, \gamma 2$ のコード変数は $\gamma 3$ で使ってよい
- ⇒ Sudo **らの体系に** ∪ (ユニオン) を追加

19 / 28

20 / 28

型付けの例(1) コード生成+shift0/reset0 の型システム (の一部) reset0: $e = \mathbf{reset0}$ (for x = e1 to e2 do $\Gamma \vdash e : \langle t \rangle \hat{\gamma} ; \langle t \rangle \hat{\gamma}, \sigma$ shift $0 k \rightarrow \text{let } u = | \text{int } 3 x + (\text{int } 3) |$ $\Gamma \vdash \mathbf{reset0} \ e : \langle t \rangle \hat{\ } \gamma ; \ \sigma$ in throw k ushift0: $\overline{\Gamma b \vdash u :} \langle t \rangle^{\hat{}} \gamma 1 \cup \gamma 2; \ \sigma$ $\Gamma, k: \langle t1 \rangle^{\hat{}} \gamma 1 \Rightarrow \langle t0 \rangle^{\hat{}} \gamma 0 \vdash e: \langle t0 \rangle^{\hat{}} \gamma 0; \sigma \quad \Gamma \models \gamma 1 \geq \gamma 0$ $\Gamma b \vdash \text{throw } k \ u : \langle t \rangle^{\hat{}} \gamma 2; \ \epsilon \quad \Gamma a \vdash | \text{ int } 3 \ x + (\text{int } 3)$ $|:\langle t\rangle^{\hat{}}\gamma_0;\;\epsilon$ $\Gamma \vdash$ **shift0** $k \rightarrow e : \langle t1 \rangle^{\gamma}1 : \langle t0 \rangle^{\gamma}0, \sigma$ $\overline{\Gamma a} \vdash \mathbf{let} \ u = \dots : \langle t \rangle \hat{\ } \gamma 0; \ \epsilon$ $\frac{\gamma 1 \geq \gamma 0, \ x : \langle t \rangle \hat{\ } \gamma 1 \vdash \mathbf{shift0} \ k \rightarrow \ldots : \langle t \rangle \hat{\ } \gamma 1; \ \langle t \rangle \hat{\ } \gamma 0}{\vdash \underline{\mathbf{for}} \ x = \ldots : \langle t \rangle \hat{\ } \gamma 0; \ \langle t \rangle \hat{\ } \gamma 0} \ (\gamma 1^*)$ throw: $\Gamma \vdash v : \langle t1 \rangle^{\hat{}} \gamma 1 \cup \gamma 2 ; \sigma \quad \Gamma \models \gamma 2 \ge \gamma 0$ $\Gamma, \ k: \langle t1 \rangle^{\hat{}} \gamma 1 \Rightarrow \langle t0 \rangle^{\hat{}} \gamma 0 \vdash \mathbf{throw} \ k \ v: \langle t0 \rangle^{\hat{}} \gamma 2 \ ; \ \sigma$ $\vdash e : \langle t \rangle^{\hat{}} \gamma_0 : \epsilon$ $\Gamma a = \gamma 1 \ge \gamma 0, \ x : \langle t \rangle^{\gamma} 1, \ k : \langle t \rangle^{\gamma} 1 \Rightarrow \langle t \rangle^{\gamma} 0$ $\Gamma b = \Gamma a, \ \gamma 2 > \gamma 0, \ u : \langle t \rangle^{\gamma} 2$ 21 / 28 22 / 28

型付けの例(2)

型推論アルゴリズム

24 / 28

```
e' = \operatorname{reset0} \ (\operatorname{\underline{for}} \ x = e1 \ \operatorname{\underline{to}} \ e2 \ \operatorname{\underline{do}} \ \operatorname{reset0} \ (\operatorname{\underline{for}} \ y = e3 \ \operatorname{\underline{to}} \ e4 \ \operatorname{\underline{do}} \ \operatorname{\underline{shift0}} \ k_2 \to \operatorname{\underline{shift0}} \ k_1 \to \operatorname{\underline{let}} \ u = \boxed{\underline{\underline{\underline{lin}}} \ \operatorname{throw}} \ k_1 \ (\operatorname{\underline{throw}} \ k_2 \ e5))) \vdots \vdots \underline{\Gamma e \vdash e5 : \langle t \rangle \widehat{\phantom{\gamma}} 2 \cup \gamma 1 \cup \gamma 3; \quad \epsilon} \ \underline{\Gamma e \vdash \operatorname{\underline{throw}} \ k_2 \ e5 : \langle t \rangle \widehat{\phantom{\gamma}} \gamma 1 \cup \gamma 3; \quad \epsilon} \ \underline{\Gamma e \vdash \operatorname{\underline{throw}} \ k_2 \ e5 : \langle t \rangle \widehat{\phantom{\gamma}} \gamma 1 \cup \gamma 3; \quad \epsilon} \ \underline{\Gamma e \vdash \operatorname{\underline{\Gamma}} d, \gamma 3 \geq \gamma 0, u : \langle t \rangle \widehat{\phantom{\gamma}} \gamma 3 \vdash \operatorname{\underline{throw}} \ k_1 \dots : \langle t \rangle \widehat{\phantom{\gamma}} \gamma 3; \quad \epsilon} \ \underline{\Gamma d \vdash \underline{\underline{\underline{Lin}}} : \langle t \rangle \widehat{\phantom{\gamma}} \gamma 1 \Rightarrow \langle t \rangle \widehat{\phantom{\gamma}} \gamma 1 \mapsto \operatorname{\underline{Lin}} \ u = \dots : \langle t \rangle \widehat{\phantom{\gamma}} \gamma 0; \quad \epsilon} \ \underline{\Gamma d \vdash \underline{\Gamma c, k_1} : \langle t \rangle \widehat{\phantom{\gamma}} \gamma 1 \Rightarrow \langle t \rangle \widehat{\phantom{\gamma}} \gamma 1 \vdash \operatorname{\underline{shift0}} \ k_1 \dots : \langle t \rangle \widehat{\phantom{\gamma}} \gamma 1; \quad \langle t \rangle \widehat{\phantom{\gamma}} \gamma 0; \quad \epsilon} \ \underline{\Gamma d \vdash \underline{\Gamma c, k_1} : \langle t \rangle \widehat{\phantom{\gamma}} \gamma 2 \Rightarrow \langle t \rangle \widehat{\phantom{\gamma}} \gamma 1 \vdash \operatorname{\underline{shift0}} \ k_1 \dots : \langle t \rangle \widehat{\phantom{\gamma}} \gamma 1; \quad \langle t \rangle \widehat{\phantom{\gamma}} \gamma 0; \quad \epsilon} \ \underline{\Gamma d \vdash \underline{\Gamma c, k_1} : \langle t \rangle \widehat{\phantom{\gamma}} \gamma 2 \Rightarrow \langle t \rangle \widehat{\phantom{\gamma}} \gamma 1 \vdash \operatorname{\underline{shift0}} \ k_2 \dots : \langle t \rangle \widehat{\phantom{\gamma}} \gamma 1; \quad \langle t \rangle \widehat{\phantom{\gamma}} \gamma 0; \quad \epsilon} \ \underline{\Gamma d \vdash \underline{\Gamma c, k_1} : \langle t \rangle \widehat{\phantom{\gamma}} \gamma 2 \Rightarrow \langle t \rangle \widehat{\phantom{\gamma}} \gamma 1 \vdash \operatorname{\underline{shift0}} \ k_2 \dots : \langle t \rangle \widehat{\phantom{\gamma}} \gamma 2; \quad \langle t \rangle \widehat{\phantom{\gamma}} \gamma 1, \langle t \rangle \widehat{\phantom{\gamma}} \gamma 0} \ \underline{\Gamma d \vdash \underline{\Gamma c, k_1} : \langle t \rangle \widehat{\phantom{\gamma}} \gamma 2 \Rightarrow \langle t \rangle \widehat{\phantom{\gamma}} \gamma 1; \quad \langle t \rangle \widehat{\phantom{\gamma}} \gamma 2; \quad \langle t \rangle \widehat{\phantom{\gamma}} \gamma 1, \langle t \rangle \widehat{\phantom{\gamma}} \gamma 0}} \ \underline{\Gamma d \vdash \underline{\Gamma c, k_1} : \langle t \rangle \widehat{\phantom{\gamma}} \gamma 2 \Rightarrow \langle t \rangle \widehat{\phantom{\gamma}} \gamma 1 \vdash \operatorname{\underline{shift0}} \ k_2 \dots : \langle t \rangle \widehat{\phantom{\gamma}} \gamma 2; \quad \langle t \rangle \widehat{\phantom{\gamma}} \gamma 1, \langle t \rangle \widehat{\phantom{\gamma}} \gamma 0} \ \underline{\Gamma d \vdash \underline{\Gamma c, k_1} : \langle t \rangle \widehat{\phantom{\gamma}} \gamma 2 \Rightarrow \langle t \rangle \widehat{\phantom{\gamma}} \gamma 1; \quad \langle t \rangle \widehat{\phantom{\gamma}} \gamma 1; \quad \langle t \rangle \widehat{\phantom{\gamma}} \gamma 0;}} \ \underline{\Gamma d \vdash \underline{\Gamma c, k_1} : \langle t \rangle \widehat{\phantom{\gamma}} \gamma 2 \Rightarrow \langle t \rangle \widehat{\phantom{\gamma}} \gamma 1; \quad \langle t \rangle \widehat{\phantom{\gamma}} \gamma 1; \quad \langle t \rangle \widehat{\phantom{\gamma}} \gamma 1; \quad \langle t \rangle \widehat{\phantom{\gamma}} \gamma 0}} \ \underline{\Gamma d \vdash \underline{\Gamma c, k_1} : \langle t \rangle \widehat{\phantom{\gamma}} \gamma 1 \vdash \underline{\Gamma c, k_1} : \langle t \rangle \widehat{\phantom{\gamma}} \gamma 1; \quad \langle t \rangle \widehat{\phantom{\gamma}} \gamma 1; \quad \langle t \rangle \widehat{\phantom{\gamma}} \gamma 0;}} \ \underline{\Gamma d \vdash \underline{\Gamma c, k_1} : \langle t \rangle \widehat{\phantom{\gamma}} \gamma 1; \quad \langle t \rangle \widehat{\phantom{\gamma}} \gamma 1; \quad \langle t \rangle \widehat{\phantom{\gamma}} \gamma 1;} \ \underline{\Gamma d \vdash \underline{\Gamma c, k_1} : \langle t \rangle \widehat{\phantom{\gamma}} \gamma 1;} \ \underline{\Gamma d \vdash \underline{\Gamma c, k_1} : \langle t \rangle \widehat{\phantom{\gamma}} \gamma 1;} \ \underline{\Gamma d \vdash \underline{\Gamma c, k_1} : \langle t \rangle \widehat{\phantom{\gamma}} \gamma 1;} \ \underline{\Gamma d \vdash \underline{\Gamma
```

- 制約生成
- 制約解消

制約生成	制約解消
こういう制約が出てくる	先の制約を解消して ,型を決定する
25	26 / 28
アウトライン	28 26/28 まとめと今後の課題
	まとめと今後の課題 まとめ ・コード生成言語にコード移動を許す仕組み (shift0/reset0) を 導入し、その安全性を保証するための型システムの設計を
アウトライン	まとめと今後の課題 まとめ ・コード生成言語にコード移動を許す仕組み (shift0/reset0) を
アウトライン 1 準備	まとめと今後の課題 まとめ ・コード生成言語にコード移動を許す仕組み (shift0/reset0) を 導入し、その安全性を保証するための型システムの設計を 行い
アウトライン 準備 問題点 研究の目的, 概要 	まとめと今後の課題 まとめ ・ コード生成言語にコード移動を許す仕組み (shift0/reset0) を 導入し、その安全性を保証するための型システムの設計を 行い ・ 安全性: Scope extrusion が起きないようにする
アウトライン 準備 問題点 	まとめと今後の課題 まとめ ・コード生成言語にコード移動を許す仕組み (shift0/reset0) を 導入し、その安全性を保証するための型システムの設計を 行い ・安全性: Scope extrusion が起きないようにする ・型推論アルゴリズムの開発を行った 今後の課題 ・設計した型システムの健全性の証明 (Subject reduction)
アウトライン 準備 問題点 研究の目的, 概要 	まとめと今後の課題 まとめ ・コード生成言語にコード移動を許す仕組み (shift0/reset0) を 導入し、その安全性を保証するための型システムの設計を 行い ・安全性: Scope extrusion が起きないようにする ・型推論アルゴリズムの開発を行った 今後の課題 ・設計した型システムの健全性の証明 (Subject reduction) ・型推論アルゴリズム (制約解消) の実装
アウトライン 1 準備 2 問題点 3 研究の目的, 概要 4 解決策	まとめと今後の課題 まとめ ・コード生成言語にコード移動を許す仕組み (shift0/reset0) を 導入し、その安全性を保証するための型システムの設計を 行い ・安全性: Scope extrusion が起きないようにする ・型推論アルゴリズムの開発を行った 今後の課題 ・設計した型システムの健全性の証明 (Subject reduction)
アウトライン1 準備2 問題点3 研究の目的, 概要4 解決策	まとめと今後の課題 まとめ ・コード生成言語にコード移動を許す仕組み (shift0/reset0) を 導入し、その安全性を保証するための型システムの設計を 行い ・安全性: Scope extrusion が起きないようにする ・型推論アルゴリズムの開発を行った 今後の課題 ・設計した型システムの健全性の証明 (Subject reduction) ・型推論アルゴリズム (制約解消) の実装 ・言語の拡張