

Chapter 1

Solved questions

1 Analysis

1. What is the relationship between harmonic functions on \mathbb{R}^2 and holomorphic functions?

Chapter 2

Unsolved questions

1 Analysis

- 1. If f is a Lebesgue integrable function on [a,b], for any ε there exists a continuous function g such that $\int_a^b |f-g| \, d\mu < \varepsilon$.
- 2. When is $\frac{d}{dx} \int_a^x f(t) dt = f(x)$? When are you allowed to differentiate under an integral sign?
- 3. Compare the bounds for harmonic functions with the bounds for holomorphic functions.
- 4. What definite integrals are amenable to contour integration?
- 5. If two holomorphic functions agree on a subset with a limit point, then they agree everywhere.
- 6. Find effective bounds for the Stone-Weierstrass Theorem. See here: http://en.wikipedia.org/wiki/Bernstein_polynomial.
- 7. For Fourier expansion: what happens if we choose a different orthonormal basis? Are we similarly doomed?
- 8. PDE: heat equation. Does it always approach steady-state; in what sense; how does energy decrease?

2 Number theory

- 1. Try to prove the following statement for as small a y as possible: $\pi(x+y) \pi(x) \sim \frac{y}{\ln x}$.
- 2. Find the asymptotics of the numbers n < x that can be expressed as the sum of 2 squares.

3 Geometry

1.

Chapter 3

Research questions

1 Geometry

- 1. Consider a ball rolling in a polygonal pool table. Suppose its trajectory is not periodic. Is it ergodic?
- 2. Ravi's problem.