

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 1 083 599 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

14.03.2001 Patentblatt 2001/11

(51) Int. Cl.7: H01L 23/051, H01L 23/40

(21) Anmeldenummer: 00119604.7

(22) Anmeldetag: 07.09.2000

(84) Benannte Vertragsstaaten:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE Benannte Erstreckungsstaaten:

AL LT LV MK RO SI

(30) Priorität: 08.09.1999 DE 19942915

(71) Anmelder: STILL GMBH D-22113 Hamburg (DE)

(72) Erfinder:

- Fromme, Georg, Dr.-Ing. 22145 Hamburg (DE)
- Suchanek, Joseph, Dipl.-Ing. 21079 Hamburg (DE)
- (74) Vertreter: Imhof, Dietmar
 Linde AG
 Zentrale Patentabteilung
 Dr.-Carl-von-Linde-Strasse 6-14
 82049 Höllriegelskreuth (DE)

(54) Leistungshalbleitermodul

(57) Die Erfindung betrifft ein Leistungshalbleitermodul mit einem elektrisch isolierenden und thermisch leitenden Substrat, auf dessen Oberfläche Leistungshalbleiter und elektrische Kontaktflächen angeordnet sind, und einer Anpreßvorrichtung, mit der die Unterseite des Substrates mit einem Kühlkörper in thermischen Kontakt gebracht wird. Die Anpreßvorrichtung (31) dient sowohl zum Anpressen des Substrats an den Kühlkörper (30) als auch als elektrische Zuleitung zu den elektrischen Kontaktflächen (22, 23).

Fig. 3

Beschreibung

[0001] Die Erfindung betrifft ein Leistungshalbleitermodul mit einem elektrisch isolierenden und thermisch
leitenden Substrat, auf dessen Oberfläche elektrische
Kontaktflächen und mindestens ein mit diesen elektrisch leitend verbundener Leistungshalbleiter angeordnet sind, und mit einer Anpreßvorrichtung, mit der die
Unterseite des Substrates zumindest teilweise mit
einem Kühlkörper in thermischen Kontakt gebracht
wird. Ferner bezieht sich die Erfindung auf einen mehrphasigen Umrichter mit mehreren elektrischen Halbbrücken, die jeweils aus zwei in Reihe geschalteten
Leistungsschaltern bestehen, wobei die Verbindungen
zwischen den zwei Leistungsschaltern jeweils einen
Ausgang des Umrichters darstellen.

[0002] Elektronische Leistungsschalter zählen zu den wesentlichen Bestandteilen von elektronischen Leistungsstellern, die zur Speisung von elektrischen Antriebsmaschinen eingesetzt werden. In Abhängigkeit vom gewählten Antriebskonzept werden diese Leistungsschalter in unterschiedlichen Kombinationen, beispielsweise als Gleichstromsteller oder als dreiphasiger Umrichter für eine Drehfeldmaschine, zusammengeschaltet.

[0003] Elektronische Leistungsschalter werden heute anwendungs- und herstellerspezifisch mit unterschiedlichen Halbleitertechnologien in verschiedenen Aufbauformen realisiert. Um die geforderte Stromtragfähigkeit zu erzielen, werden häufig mehrere Halbleiterchips parallel geschaltet.

[0004] Beim Aufbau der elektronischen Leistungsschalter sind verschiedene Randbedingungen zu berücksichtigen. Zunächst ist für eine ausreichende Befestigung der Halbleiterchips und eines ersten und eines zweiten elektrischen Leistungsanschlusses auf einem Grundkörper, in der Regel einem elektrisch isolierenden Substrat, meist einem sogenannten DCB-Substrat, zu sorgen. Bei Leistungsschaltern, die hohen Strombelastungen ausgesetzt werden, sind gegebenenfalls weitere Halbleiterchips parallel zu schalten. Zur Steuerung des Leistungsschalters ist ein entsprechender Steueranschluß zu realisieren, der bei Parallelschaltung mehrerer Halbleiterchips meist mit einem Entkopplungsnetzwerk versehen wird. Aufgrund der hohen Schaltgeschwindigkeit moderner Leistungshalbleiter ist ein möglichst induktivitätsarmer und niederohmiger Aufbau anzustreben, um eine Zerstörung der Halbleiterbauelemente durch Spannungsspitzen auszuschließen.

[0005] In der Regel müssen die Halbleiterchips an ein Kühlsystem angekoppelt werden, um die in den Halbleiterchips in Form von Wärme entstehende Verlustleistung abzuführen. Hierbei ist darauf zu achten, daß die Chips sowohl gegenüber dem Kühlsystem als auch gegenüber dem Gehäuse elektrisch isoliert sind. Der Aufbau ist ferner so auszulegen, daß er eine ausreichende thermische Zyklenfestigkeit aufweist und die

Halbleiterchips gegen Umwelteinflüsse, wie zum Beispiel Feuchtigkeit und Schmutz, schützt.

[0006] Es sind bereits zahlreiche Aufbauformen beschrieben worden, die die obengenannten Funktionen mehr oder weniger gut erfüllen. Den elektrischen Anforderungen, insbesondere dem induktivitätsarmen Aufbau, wird in der EP 0 265 833 dadurch Rechnung getragen, daß mit dem Sourcekontakt der MOSFETs ein Hilfsanschluß verbunden ist, und daß die beiden Leistungsanschlüsse als U-förmige ineinander verschachtelte Leiter ausgebildet sind.

[0007] In der DE 43 38 107 C1 ist ein Halbleitermodul beschrieben, welches Halbleiterchips aufweist, die auf der Oberseite eines elektrisch isolierenden und thermisch leitenden Substrats angebracht sind. Das Substrat ist stoffschlüssig mit der Oberseite einer Metallbodenplatte verbunden, deren Unterseite konvex ausgebildet ist. Die Metallbodenplatte wird an ihren Enden an einem Kühlkörper angeschraubt, so daß die Bodenplatte mit ihrer ganzen Fläche am Kühlkörper anliegt, um einen einwandfreien thermischen Kontakt zwischen ihr und dem Kühlkörper auch während des Betriebs des Halbleitermoduls zu ermöglichen.

[0008] Ferner sind Aufbauformen gemäß der IMS-Technologie bekannt. Bei dieser Technologie ist ein mehrschichtiger monolithischer Aufbau vorgesehen, bestehend aus Kühlkörper, Isolierfolie und geätzten Kupferflächen mit aufgelöteten Leistungshalbleitern in SMD-Gehäuse (Surface Mounted Device) oder mit aufgelöteten Halbleiterchips.

[0009] Ebenso ist bekannt, einzelne Leistungshalbleiter in Standardgehäuseformen isoliert auf Kühlkörper zu montieren, und die elektrischen Verbindungen über eine Leiterplatte herzustellen.

[0010] Aufgabe vorliegender Erfindung ist es, ein Leistungshalbleitermodul der eingangs genannten Art zu entwickeln, welches sich durch einen einfachen Aufbau auszeichnet und unter Betriebsbedingungen einen ausreichenden thermischen Kontakt des Substrats mit dem Kühlkörper gewährleistet.

[0011] Diese Aufgabe wird dadurch gelöst, daß die Anpreßvorrichtung als elektrische Zuleitung zu den elektrischen Kontaktflächen dient. Die Funktionen "Anpressen" des Substrates und "Kontaktierung" des Substrates werden erfindungsgemäß in einem Bauelement vereint. Die Leistungshalbleiter sowie weitere elektrische und elektronische Bauelemente, die mit den elektrischen Kontaktflächen verbunden sind, werden über die Anpreßvorrichtung elektrisch angeschlossen.

[0012] Das erfindungsgemäße Leistungshalbleitermodul besteht vorzugsweise aus einem Substrat, auf
dem die erforderliche Anzahl von Leistungshalbleitern
in einer Reihe nebeneinander angeordnet ist. Das Substrat besitzt eine Form, vorzugsweise Rechteckform, mit
einer durch die Abmessungen der Leistungshalbleiter
vorgegebenen möglichst geringen Breite. Unter Länge
und Breite des Substrates werden die Abmessungen in
der Ebene der Substratoberfläche verstanden, wobei

mit Länge die größere der beiden Substratabmessungen bezeichnet wird.

[0013] Die Leistungshalbleiter sind rechtwinklig zur Längsrichtung des Substrates nebeneinander in einer Reihe angeordnet, wobei der geringstmögliche zulässige Abstand zwischen den Leistungshalbleitern gewählt wird. Auf diese Weise wird ein äußerst platzsparender Aufbau erzielt. Hinsichtlich der Anzahl der parallel geschalteten Leistungshalbleiter auf einem Substrat besteht größtmögliche Flexibilität, da, ohne die Grundstruktur des Aufbaus, nämlich die Anordnung in einer Reihe, zu verändern, weitere Leistungshalbleiter leicht hinzugefügt werden können. Durch die Anordnung der Leistungshalbleiter in einer Reihe kann ein Substrat mit minimaler Breite verwendet werden.

[0014] Vorzugsweise verlaufen die elektrisch leitenden Kontaktflächen streifenförmig in Substratlängsrichtung und erstrecken sich besonders bevorzugt jeweils über die gesamte Länge des Substrats. Auf diese Weise wird eine flächige Stromführung über die Substratoberfläche erzielt.

[0015] Es ist günstig, einen weiteren in Substratlängsrichtung verlaufenden streifenförmigen elektrischen Kontakt vorzusehen, der als Steuereingang für die Leistungshalbleiter dient. Kommen als Leistungshalbleiter MOS-Transistoren zum Einsatz, sind die Gatewiderstände von Vorteil direkt auf dem als Steuereingang dienenden streifenförmigen Leiter untergebracht.

[0016] Bevorzugt werden weitere elektrische Komponenten auf einer Leiterplatte untergebracht, die mit der Anpreßvorrichtung verbunden ist und besonders bevorzugt oberhalb des Substrates angeordnet ist. Die unmittelbare Nähe der weiteren elektrischen Komponenten, beispielsweise von Zwischenkreiskondensatoren, zu den Leistungshalbleitern gewährleistet einen kompakten und niederinduktiven Aufbau.

[0017] Vorzugsweise besitzt das Leistungshalbleitermodul mindestens zwei Substrate, die stirnseitig aneinandergereiht werden, so daß die Leistungshalbleiter auf dem ersten Substrat und die Leistungshalbleiter auf dem zweiten Substrat in einer Reihe liegen. Durch die Aneinanderreihung der Substrate an den jeweiligen Stirnseiten kann die reihenförmige Anordnung der Leistungshalbleiter theoretisch beliebig erweitert werden. Die Abmessungen der einzelnen Substrate müssen nicht mehr zwingend nach der Anzahl der unterzubringenden Haibleiterchips ausgewählt werden. Es ist damit möglich, die Substrate auch unter wirtschaftlichen Gesichtspunkten zu gestalten.

[0018] Die Erfindung bezieht sich auch auf einen mehrphasigen Umrichter mit mehreren elektrischen Halbbrücken, die jeweils aus zwei in Reihe geschalteten Leistungsschaltern bestehen, wobei die Verbindungen zwischen den zwei Leistungsschaltern jeweils einen Ausgang des Umrichters darstellen.

[0019] Ein derartiger Umrichter wird erfindungsgemäß so ausgeführt, daß die Leistungsschalter ein elek-

trisch isolierendes und thermisch leitendes Substrat, auf dessen Oberfläche Leistungshalbleiter und elektrische Kontaktflächen angeordnet sind, und eine Anpreßvorrichtung aufweisen, mit der die Unterseite des Substrates zumindest teilweise mit einem Kühlkörper in thermischen Kontakt gebracht wird, und daß die Anpreßvorrichtung als elektrische Zuleitung zu den elektrischen Kontaktflächen dient.

[0020] Bevorzugt werden die Substrate des Umrichters so angeordnet, daß die elektrischen Kontaktflächen zweier nebeneinander liegender Substrate sich jeweils auf gleichem elektrischen Potential befinden. Besonders bevorzugt ist eine gemeinsame Anpreßvorrichtung für die beiden nebeneinander liegenden Substrate vorgesehen. Durch diesen Aufbau werden die Anzahl der Anpreßvorrichtungen und der gesamte Flächenbedarf des Umrichters minimiert.

[0021] Aufgrund der Struktur der Leistungshalbleitermodule können mehrere Module durch geeignete Anordnung leicht zu einem Drehstromumrichter kombiniert werden. Bekannte Drehstromumrichter bestehen aus mindestens drei Halbbrücken, die jeweils aus zwei identischen in Reihe geschalteten Leistungsschaltern bestehen, wobei zwei nicht gleiche Anschlüsse der Leistungsschalter miteinander verbunden sind. Der Verbindungspunkt der Schalter stellt einen motorseitigen Anschlüß des Umrichters dar, die beiden übrigen Anschlüsse der Halbbrücke sind entsprechend der Ausführung der Leistungsschalter mit dem Zwischenkreis des Umrichters verbunden.

[0022] Mit dem erfindungsgemäßen Aufbau eines Leistungshalbleitermoduls kann eine Halbbrücke einfach realisiert werden, indem zwei Leistungsschalter längsseitig nebeneinander angeordnet werden und mit einem elektrisch leitenden Doppeldruckstück angepreßt und elektrisch verbunden werden. Dieses Druckstück stellt gleichzeitig den Motoranschluß dar.

[0023] Die übrigen Halbbrücken werden ebenso angeordnet, jedoch jeweils um 180° verdreht gegeneinander. Dadurch liegen die Zwischenkreisanschlüsse der Halbbrücken mit gleichem Potential nebeneinander, so daß wieder ein elektrisch leitendes Doppeldruckstück eingesetzt werden kann. Dadurch ergibt sich ein einfacher und kompakter Aufbau eines aus mehreren Halbbrücken aufgebauten Umrichters.

[0024] Die Erfindung hat gegenüber den bekannten Halbleitermoduln zahlreiche Vorteile. So ermöglicht sie einen äußerst kostengünstigen Aufbau von Leistungshalbleitermodulen, wie z.B. einem Drehstromumrichter. Der Aufbau ist sehr kompakt und erleichtert die direkte Anbindung des Moduls an beispielsweise von dem Modul gesteuerte elektrische Einheiten, z.B. an einen Motor.

[0025] Die erfindungsgemäße Möglichkeit, ohne Veränderung der Grundstruktur des Aufbaus mehrere Substrate stirnseitig aneinanderzurelhen, erlaubt es, die Anzahl der Leistungshalbleiter pro Einheit theoretisch beliebig zu vergrößern, ohne durch die Substrat-

45

größe begrenzt zu sein. Das erfindungsgemäße Leistungshalbleitermodul ist über die Zahl der parallelgeschalteten Leistungshalbleiter bzw. über die Zahl der in Reihe angeordneten Substrate sehr einfach skalierbar. Die Stromtragfähigkeit des Leistungshalbleitermoduls ist durch die variable Anzahl von Leitungshalbleitern bei unveränderter Struktur des Moduls leicht einstellbar. Die Substrate können alle identisch aufgebaut werden und ermöglichen so eine kostengünstige Realisierung des Leistungshalbleitermoduls.

[0026] Die Erfindung ermöglicht den einfachen Aufbau von elektrischen Halbbrücken. Hierzu werden zwei Leistungsschalter, beispielsweise MOS-Leistungstransistoren, nebeneinander auf dem Substrat so angeordnet, daß zwei nicht gleiche Anschlüsse der Leistungsschalter verbunden sind. Werden zwei Leistungstransistoren eingesetzt, so liegen z.B. der Dram-Anschluß des ersten Transistors und der Source-Kontakt des zweiten Transistors auf dem gleichen Potential. Dieser gemeinsame Anschluß wird mit einer Anpreßvorrichtung auf den Kühlkörper gepreßt, elektrisch angeschlossen und dient als Zwischenkreisanschluß oder Motoranschluß.

[0027] Durch die Kombination mehrerer derartiger Halbbrücken können in einfacher Weise mehrphasige Umrichter realisiert werden. Die Substrate mit den einzelnen Halbbrücken werden so aneinander gereiht, daß elektrische Kontaktflächen, die sich auf dem gleichen Potential befinden, nebeneinander zu liegen kommen, so daß eine gemeinsame Anpreßvorrichtung verwendet werden kann.

[0028] Das erfindungsgemäße Aufbaukonzept für Leistungshalbleitermodule ist mit Vorteil in zahlreichen Anwendungen, wie Leistungsstellern aller Art, einsetzbar und sehr gut für den Aufbau eines jeden Leistungsteils für elektrische Antriebe geeignet.

[0029] Die Erfindung sowie weitere vorteilhafte Einzelheiten der Erfindung werden im folgenden anhand von in den Zeichnungen dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:

Figur 1 das elektrische Schaltbild eines Leistungshalbleitermoduls,

Figur 2 den Aufbau eines der mit Transistoren bestückten Substrate dieses Leistungshalbleitermoduls und

Figur 3 eine Seitenansicht des gesamten Leistungshalbleitermoduls.

[0030] In Figur 1 ist das elektrische Schaltbild eines Drehstromumrichters mit MOS-Lelstungstransistoren gezeigt. Die Schaltung weist drei identische Halbbrükken 1, 2, 3 auf, die sich wiederum aus zwei in Reihe geschalteten Leistungsschaltern 11a und 12a, 11b und 12b, 11c und 12c zusammensetzen. Die unteren Schalter 12a,b,c sind mit dem Minuspol M, die oberen Schalter 11a,b,c mit dem Pluspol P eines Zwischenkreises

verbunden. Die Verbindungen zwischen den Leistungsschaftern 11a und 12a, 11b und 12b sowie 11c und 12c stellen jeweils einen Ausgang A1, A2, A3 des Umrichters dar.

[0031] Alle Leistungsschalter 11a bis c bzw. 12a bis c besitzen identisch aufgebaute Substrate. Durch den identischen Aufbau aller Substrate eines Leistungsmoduls lassen sich diese kostengünstig realisieren.

[0032] In Figur 2 ist einer der Leistungsschalter 11a bis c bzw. 12a bis c im Detail gezeigt. Ein keramischer Isolator 20 in Scheibenform, beispielsweise ein DCB-Substrat, dessen Oberflächen metallisch, vorzugsweise mit Kupfer, beschichtet sind, bildet die Grundplatte 20. Auf der einen Oberfläche des Substrates 20 sind Leistungshalbleiter 21 möglichst dicht in einer Reihe angeordnet. Die gegenüberliegende Oberfläche dient als Kontaktfläche zu einem Kühlkörper, über den die als Abwärme anfallende Verlustleistung der Transistoren 21 abgeführt werden kann.

[0033] Das Substrat 20 besitzt eine rechteckige Form, wobei die Breite des Substrates 20 möglichst gering gehalten wird und im wesentlichen durch die Abmessungen der Leistungstransistoren 21 vorgegeben ist. Die Leistungskontakte 22 und 23 sowie die Steuerleitung 25 befinden sich möglichst nahe an den Transistoren 21.

[0034] Die Leistungstransistoren 21 sind in einer parallel zur Substratlängsachse verlaufenden Reihe möglichst dicht nebeneinander angeordnet. Dadurch ergibt sich ein sehr platzsparender Aufbau, der eine hohe Flexibilität hinsichtlich der Anzahl der auf einem Substrat 20 parallelgeschalteten Leistungshalbleiter 21 bietet, ohne daß die Grundstruktur verändert werden muß.

[0035] Das Substrat 20 weist weiterhin zwei sich jeweils über die gesamte Länge des Substrats 20 erstreckende elektrische Kontaktflächen 22 und 23 auf. Die elektrischen Kontaktflächen 22 und 23 dienen als Leistungskontakte für die Leistungshalbleiter 21, an denen jeweils der Drain- und der Sourcekontakt der Leistungshalbleiter 21 angeschlossen werden. Die elektrische Verbindung zwischen dem Leistungskontakt 22 und den Leistungshalbleitern 21 erfolgt über einen sich an der Unterseite der Chips 21 befindenden Anschluß, die Verbindung zum Leistungskontakt 23 wird über Bonddrähte 24 hergestellt. Die Stromführung erfolgt somit flächig über die Substratoberfläche 20.

[0036] Schließlich ist eine sich ebenfalls über die ganze Länge des Substrates erstreckende Steuerleitung 25 vorgesehen, an der mittels Bonddrähten 26 der Gatekontakt der Leistungshalbleiter 21 angeschlossen ist.

[0037] Jeder der in Figur 2 gezeigten Aufbauten stellt einen der Leistungsschalter 11a bis c bzw. 12a bis c dar. Die Kontaktflächen 22 und 23 entsprechen jeweils einem der Ausgänge M1, M2, M3, P1, P2, P3, A1, A2 oder A3. M1, M2 und M3 bezeichnen die mit dem Minuspol M des Zwischenkreises verbundenen Aus-

25

30

40

45

gänge der Transistoren 12a bis c, P1, P2 und P3 entsprechend die mit dem Pluspol P verbundenen Ausgänge der Transistoren 11a bis c.

[0038] Wenn die Substrate der Leistungsschalter in der Reihenfolge M1, A1, P1, P2, A2, M2, M3, A3, P3 angeordnet werden, d.h. die Leistungsschalter in der Reihenfolge 12a, 11a, 11b, 12b, 11c, 12c, so befinden sich jeweils zwei nebeneinander liegende Leistungsanschlüsse 22, 23 auf demselben Potential. Dadurch können jeweils zwei nebeneinander liegende Substrate 20 mit einem einzigen elektrisch leitenden Druckstück verbunden werden.

In Figur 3 ist ein derartiger Aufbau in der Sei-[0039] tenansicht zu sehen. Auf einem Kühlkörper 30 sind sechs DCB-Substrate 20 nebeneinander angeordnet. Auf die Substrate 20 sind Leistungshalbleiter 21, wie in Figur 2 gezeigt, aufgelötet und an Leistungs- und Steuerkontakte 22, 23 und 25 angeschlossen. Die streifenförmigen Kontaktflächen 22, 23 und 25 erstrecken sich in Substratlängsrichtung. In Figur 3 entspricht dies der 20 Richtung senkrecht zur Zeichenblattebene.

[0040] Die Substrate 20 werden durch elektrisch leitende Druckstücke 31 im Bereich der elektrischen Anschlußflächen 22 und 23 auf den Kühlkörper 30 gepreßt. Die Flächen 22 und 23 dienen sowohl als elektrische Kontaktflächen als auch als Anpreßflächen. Entsprechend üben auch die Druckstücke 31 eine Doppelfunktion aus, nämlich das Anpressen des Substrats 20 an den Kühlkörper 30 und die elektrische Zuleitung zu den Leistungshalbleitern 21.

Aufgrund der geringen Breite B der Substrate 20 genügt es, die Substrate 20 nur auf den Längsseiten, d.h. im Bereich der Kontaktflächen 22 und 23. auf den Kühlkörper 30 zu pressen.

Die Druckstücke 31 dienen gleichzeitig zur 35 Aufnahme einer über alle Substrate 20 durchgehenden Leiterplatte 32, auf der die Zwischenkreiskondensatoren C und gegebenenfalls weitere Komponenten, wie zum Beispiel Treiberschaltungen für die Leistungshalbleiter 11a bis c bzw. 12a bis c, untergebracht sind. Durch den geringen Abstand zwischen den Substraten 20 und der Leiterplatte 32 ergibt sich ein niederinduktiver Aufbau, der insbesondere durch die flächige Ausbildung der gesamten Leistungsverdrahtung begünstigt wird. Die Steuerleitung 25 ist über nicht dargestellte Kontakte mit der darüberliegenden Leiterplatte 32 verbunden.

Patentansprüche

1. Leistungshalbleitermodul mit einem elektrisch isolierenden und thermisch leitenden Substrat, auf dessen Oberfläche elektrische Kontaktflächen und mindestens ein mit diesen elektrisch leitend verbundener Leistungshalbleiter angeordnet sind, und mit einer Anpreßvorrichtung, mit der die Unterseite des Substrates zumindest teilweise mit einem Kühlkörper in thermischen Kontakt gebracht wird,

dadurch gekennzelchnet, daß die Anpreßvorrichtung (31) als elektrische Zuleitung zu den elektrischen Kontaktflächen (22, 23) dient.

- Leistungshalbleitermodul nach Anspruch dadurch gekennzeichnet, daß mehrere Leistungshalbleiter (21) vorgesehen sind, die in einer Reihe nebeneinander angeordnet sind.
- 10 3. Leistungshalbleitermodul nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß sich die elektrisch leitenden Kontaktflächen (22, 23) jeweils über die gesamte Länge des Substrats (20) erstrek-
 - Leistungshalbleitermodul nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß ein wei-Substratlängsrichtung verlaufender terer in streifenförmiger elektrischer Kontakt (25) vorgese-
 - 5. Leistungshalbleitermodul einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß eine mit der Anpreßvorrichtung (31) verbundene Leiterplatte (32) zur Aufnahme weiterer elektrischer Komponenten (C) vorgesehen ist.
 - Leistungshalbleitermodul nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß mindestens zwei Substrate (20) vorgesehen sind, die stirnseitig aneinandergereiht werden, so daß die Leistungshalbleiter auf dem ersten Substrat und die Leistungshalbleiter auf dem zweiten Substrat in einer Reihe liegen.
 - 7. Leistungshalbleitermodul nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß mit einer elektrischen Kontaktfläche zwei nicht gleiche Anschlüsse zweier Leistungshalbleiter elektrisch leitend verbunden sind.
 - 8. Leistungshalbleitermodul nach einem der Ansprüche 1 bis 7 mit mindestens zwei Substraten, dadurch gekennzeichnet, daß die Substrate (20) so angeordnet werden, daß nebeneinander liegende elektrische Kontaktflächen benachbarter Substrate (20) jeweils auf gleichem elektrischen Potential lie-
 - Leistungshalbleitermodul nach Anspruch dadurch gekennzeichnet, daß zwei nebeneinander liegende elektrische Kontaktflächen (20) eine gemeinsame Anpreßvorrichtung (31) aufweisen.
 - 10. Mehrphasiger Umrichter mit mehreren elektrischen Halbbrücken, die jeweils aus zwei in Reihe geschalteten Leistungsschaltern bestehen, wobei die Verbindungen zwischen den zwei Leistungsschaltern

jeweils einen Ausgang des Umrichters darstellen, dadurch gekennzeichnet, daß die Leistungsschalter (11a,b,c, 12a,b,c) ein elektrisch isolierendes und thermisch leitendes Substrat (20), auf dessen Oberfläche Leistungshalbleiter (21) und 5 elektrische Kontaktflächen (22, 23) angeordnet sind, und eine Anpreßvorrichtung (31) aufweisen, mit der die Unterseite des Substrates (20) zumindest teilweise mit einem Kühlkörper (30) in thermischen Kontakt gebracht wird, und daß die Anpreßvorrichtung (31) als elektrische Zuleitung zu den elektrischen Kontaktflächen (22, 23) dient.

11. Mehrphasiger Umrichter nach Anspruch 10, dadurch gekennzeichnet, daß die Substrate (20) so 15 angeordnet werden, daß nebeneinander liegende elektrische Kontaktflächen benachbarter Substrate (20) jeweils auf gleichem elektrischen Potential liegen.

12. Mehrphasiger Umrichter nach einem der Ansprüche 10 oder 11, dadurch gekennzeichnet, daß zwei nebeneinander liegende Substrate (20) eine gemeinsame Anpreßvorrichtung (31) aufweisen.

20

25

30

35

40

45

50

55

Fig. 1

12/5/2005, EAST Version: 2.0.1.4

DERWENT- 2001-452919

ACC-NO:

DERWENT- 200149

WEEK:

COPYRIGHT 2005 DERWENT INFORMATION LTD

TITLE: Semiconductor power module for bringing the underside of a

substrate into thermal contact with a heat sink uses a

press-on device to press the substrate on the heat sink and

to feed power to electrical contact surfaces.

INVENTOR: FROMME, G; SUCHANEK, J

PATENT-ASSIGNEE: STILL GMBH[SILC]

PRIORITY-DATA: 1999DE-1042915 (September 8, 1999)

PATENT-FAMILY:

PUB-NO PUB-DATE LANGUAGE PAGES MAIN-IPC

EP 1083599 A2 March 14, 2001 G 008 H01L 023/051

DE 19942915 A1 March 15, 2001 N/A 000 H01L 025/07

DESIGNATED- AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV

STATES: MC MK NL PT RO SE SI

APPLICATION-DATA:

PUB-NO APPL-DESCRIPTOR APPL-NO APPL-DATE

EP 1083599A2 N/A 2000EP-0119604 September 7, 2000

DE 19942915A1 N/A 1999DE-1042915 September 8, 1999

INT-CL H01L023/051, H01L023/32 , H01L023/34 , H01L023/40 ,

(IPC): H01L023/48 , H01L025/07 , H02M007/48

ABSTRACTED-PUB-NO: EP 1083599A

BASIC-ABSTRACT:

- NOVELTY A semiconductor power module with an electrically insulating and thermally conductive substrate (20) on whose surface
- 3 power semiconductors (21) and electrical contact surfaces are fitted has a press-on device (31) for bringing the underside of the
- \mathbf{s} substrate into thermal contact with a heat sink (30). This device serves to press the substrate on the heat sink and also as an

7 electrical feed to the electrical contact surfaces.

USE - In multi-phase converters with multiple electrical semibridges.

ADVANTAGE - This module has a simple construction and ensures satisfactory thermal contact between a substrate and a heat sink during operating conditions.

DESCRIPTION OF DRAWING(S) - The drawing shows an electrical circuit diagram for a semiconductor power module.

Substrate 20

Power semiconductor 21

Heat sink 30

Press-on device 31

CHOSEN-

Dwg.3/3

DRAWING:

TITLE-TERMS: SEMICONDUCTOR POWER MODULE UNDERSIDE SUBSTRATE THERMAL CONTACT HEAT SINK PRESS DEVICE PRESS SUBSTRATE HEAT SINK

FEED POWER ELECTRIC CONTACT SURFACE

DERWENT-CLASS: U11 V04

EPI-CODES: U11-D02B2; V04-T03B;

SECONDARY-ACC-NO:

Non-CPI Secondary Accession Numbers: N2001-335333