

ReMKiT1D Workshop January 2024 Complex Derivations in ReMKiT1D

Imperial College London

Introduction

2nd year PhD student at Imperial College London.

Improving sheath boundary conditions for scrape off layer modelling.

Active ReMKiT1D user, utilising ReMKiT1D's fluid modelling capabilities to build model testbench.

Presenting my own workflow using ReMKiT1D.

Background- Temperature Anisotropy in the **SOL**

High Magnetic field within the SOL causes anisotropy in parallel and perpendicular transport

When taking moments of the kinetic equation, distinguishing between parallel and perpendicular velocity components leads to two-temperature fluid model.

Li et al 2022

Trigger Warning, Maths Ahead!

Anisotropic Fluid Model

$$\frac{\partial \rho^{\rm s}}{\partial t} + \frac{\partial}{\partial x_{\alpha}} (\rho^{\rm s} V_{\alpha}^{\rm s}) = 0. \tag{1}$$

$$\rho^{s} \frac{\mathrm{d}^{s} V_{\alpha}^{s}}{\mathrm{d}t} + \frac{\partial}{\partial x_{\beta}} p_{\alpha\beta}^{s} - \rho^{s} \left[\frac{q^{s}}{m^{s}} E_{\alpha} + \omega_{c}^{s} [\mathbf{V}^{s} \times \mathbf{h}]_{\alpha} \right] = \sum_{\mathbf{r}} I_{\alpha}^{s\mathbf{r}}.$$
 (2)

$$\begin{split} \frac{\mathrm{d}^{\mathrm{s}}p_{\perp}^{\mathrm{s}}}{\mathrm{d}t} + \frac{\partial V_{\alpha}^{\mathrm{s}}}{\partial x_{\beta}} \left[p_{\perp}^{\mathrm{s}}\tau_{\alpha\beta} + 2p_{\perp}^{\mathrm{s}}n_{\alpha\beta} + \pi_{\beta\gamma}^{\mathrm{s}}n_{\alpha\gamma} \right] \\ + \frac{\partial}{\partial x_{\alpha}} S_{\alpha}^{\mathrm{s}\perp} + S_{\alpha}^{\mathrm{s}\perp}h_{\alpha} \frac{\partial}{\partial x_{\beta}} h_{\beta} + S_{\alpha}^{\mathrm{s}\parallel}h_{\beta} \frac{\partial}{\partial x_{\beta}} h_{\alpha} + \frac{1}{2}\pi_{\alpha\beta} \frac{\mathrm{d}^{\mathrm{s}}}{\mathrm{d}t} \tau_{\alpha\beta} = \frac{1}{2} \sum_{\mathrm{r}} J_{\alpha\beta}^{\mathrm{s}\mathrm{r}}n_{\alpha\beta} \end{split}$$

$$\frac{\mathrm{d}^{s}p_{\parallel}^{s}}{\mathrm{d}t} + \frac{\partial V_{\alpha}^{s}}{\partial x_{\beta}} \left[p_{\parallel}^{s} n_{\alpha\beta} + 3p_{\parallel}^{s} \tau_{\alpha\beta} + 2\pi_{\beta\gamma}^{s} \tau_{\alpha\gamma} \right]
+ \frac{\partial}{\partial x_{\alpha}} S_{\alpha}^{s\parallel} - 2S_{\alpha}^{s\parallel} h_{\beta} \frac{\partial}{\partial x_{\beta}} h_{\alpha} - 2S_{\alpha}^{s\perp} h_{\alpha} \frac{\partial}{\partial x_{\beta}} h_{\beta} - \pi_{\alpha\beta} \frac{\mathrm{d}^{s}}{\mathrm{d}t} \tau_{\alpha\beta} = \sum_{r} J_{\alpha\beta}^{sr} \tau_{\alpha\beta}.$$

$$-\omega_{c}^{s}h_{\delta}(\varepsilon_{\alpha\gamma\delta}\pi_{\beta\gamma}^{s} + \varepsilon_{\beta\gamma\delta}\pi_{\alpha\gamma}^{s}) + p_{\parallel}^{s}\left(\frac{\partial V_{\alpha}^{s}}{\partial x_{\delta}}\tau_{\delta\beta} + \frac{\partial V_{\beta}^{s}}{\partial x_{\delta}}\tau_{\delta\alpha} - 2\frac{\partial V_{\gamma}^{s}}{\partial x_{\delta}}\tau_{\gamma\delta}\tau_{\alpha\beta}\right) + p_{\perp}^{s}\left(\frac{\partial V_{\alpha}^{s}}{\partial x_{\delta}}n_{\delta\beta} + \frac{\partial V_{\beta}^{s}}{\partial x_{\delta}}n_{\delta\alpha} - \frac{\partial V_{\gamma}^{s}}{\partial x_{\delta}}n_{\gamma\delta}n_{\alpha\beta}\right) + (p_{\parallel}^{s} - p_{\perp}^{s})\frac{d^{s}}{dt}\tau_{\alpha\beta} \\ = \sum_{r} [J_{\alpha\beta}^{sr} - (\frac{1}{2}n_{\alpha\beta}n_{\gamma\delta} + \tau_{\alpha\beta}\tau_{\gamma\delta})J_{\gamma\delta}^{sr}].$$
(5)

$$(p_{\parallel}^{s}\tau_{\beta\gamma} + p_{\perp}^{s}n_{\beta\gamma})\frac{\partial}{\partial x_{\beta}}\left[\frac{p_{\perp}^{s}}{\rho^{s}}(\tau_{\alpha\gamma} + 2n_{\alpha\gamma})\right] - \omega_{c}^{s}[S^{s\perp} \times \mathbf{h}]_{x}$$

$$-\frac{1}{2}(P_{\alpha\beta}^{s}P_{\gamma\delta}^{s} + P_{\alpha\gamma}^{s}P_{\beta\delta}^{s} + P_{\beta\gamma}^{s}P_{\alpha\delta}^{s})\frac{\partial}{\partial x_{\delta}}n_{\beta\gamma}$$

$$= \sum_{r}\left[\frac{1}{2}L_{\alpha\beta\gamma}^{sr}n_{\beta\gamma} - \frac{p_{\perp}^{s}}{\rho^{s}}(\tau_{\alpha\beta} + 2n_{\alpha\beta})I_{\beta}^{sr}\right].$$
(6)

$$(p_{\parallel}^{s} \tau_{\beta \gamma} + p_{\perp}^{s} n_{\beta \gamma}) \frac{\partial}{\partial x_{\beta}} \left[\frac{p_{\parallel}^{s}}{\rho^{s}} (3\tau_{\alpha \gamma} + n_{\alpha \gamma}) \right] - \omega_{c}^{s} [\mathbf{S}^{s \parallel} \times \mathbf{h}]_{\alpha}$$

$$- (P_{\alpha \beta}^{s} P_{\gamma \delta}^{s} + P_{\alpha \gamma}^{s} P_{\beta \delta}^{s} + P_{\beta \gamma}^{s} P_{\alpha \delta}^{s}) \frac{\partial}{\partial x_{\delta}} \tau_{\beta \gamma}$$

$$= \sum_{r} \left[L_{\alpha \beta \gamma}^{s r} \tau_{\beta \gamma} - \frac{p_{\parallel}^{s}}{\rho^{s}} (3\tau_{\alpha \beta} + n_{\alpha \beta}) I_{\beta}^{s r} \right]. \tag{7}$$

Mass conservation

Momentum conservation

Perpendicular energy conservation

Parallel energy conservation

Heat flux

ReMKiT1D Workflow

Collisional Energy Exchange and **Temperature Isotropisation**

Hands on session will explore a reduced set of equations for electrons:

$$\frac{\partial W_{\perp}}{\partial t} = 2nv[T_{\perp}(K_{002} - K_{200})]$$

$$\frac{\partial W_{\parallel}}{\partial t} = 4nv[T_{\parallel}(K_{200} - K_{002})] \qquad X = \frac{T_{\perp}}{T_{\parallel}} - 1$$

$$X = \frac{T_{\perp}}{T_{\parallel}} - 1$$

Terms K_{200} and K_{002} :

$$K_{200} = \frac{1}{X} [-1 + (1+X)\varphi(X)] \approx \frac{2}{3} - \frac{2}{15}X$$

$$K_{002} = \frac{2}{X} [1 - \varphi(X)] \approx \frac{2}{3} - \frac{2}{5}X$$

With the function $\varphi(X)$:

$$\varphi(X) = \begin{cases} \frac{\tan^{-1}(\sqrt{X})}{\sqrt{X}} & X > 0\\ \frac{\log \frac{1 + \sqrt{-X}}{1 - \sqrt{-X}}}{2\sqrt{-X}} & X < 0 \end{cases} \approx 1 - \frac{X}{3} + \frac{X^2}{5} + \cdots$$

Hands-on session