

Parsivanath Charitable Trust's A. IP. SITIATI INSTITUTION OF TIDELINOLOGY

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING (DATA SCIENCE)

UNIT TEST-I

Class:TEDS Semester:V Subject:DWM

Date: 05-Aug-2023 Time:10:00 to 11:30am Max marks: 40

Note the following instructions

1. Attempt all questions.

- 2. Draw neat diagrams wherever necessary.
- 3. Write everything in Black ink (no pencil) only.
- 4. Assume data, if missing, with justification.

Q.N	Questions				MAR	CO	Bloom	PO
					KS		Level	
Q.1.	Attempt any two.							
A.	Data for salary analysis include				[5]	CO2	L3	PO1
	30, 36,47,50,52,52,56,60,63,70,70,110							
	Compute the	e for this data.						
	Construct box							
В.	Suppose a group of sales price records has been sorted as follows: 6,9,12,13,15,25,50,70,72,92,204,232. Partition them into three bins by equal frequency (Eqi-depth) partitioning method. Make use of bin mean method to perform data smoothing.					CO2	L3	PO1
C.	Identify the value of correlation coefficient from the following table				[5]	CO2	L3	PO1
	Subject	Age	Glucose_Level					
	1	43	99					
	2	21	65					
	3	25	79					
	4	42	75					
	5	57	87					
	6 59 81							

D.	Data for sal	Data for salary analysis include			[5]	CO2	L3	PO1	
	30, 36,47,50,52,52,56,60,63,70,70,110								
	Apply Min-max, Z score, Decimal Scaling to normalize the data.								
Q.2.	Attempt any two								
A.	Apply the decision tree algorithm and show the generated rules for the following: A simple example of the stock market involving only discrete ranges has profit as categorical attribute, with values {up, down} and the training data set is as shown in the table.					[10]	CO3	L3	PO2
	Age	Competition	Ty	ne	Profit				
İ	Old	Yes	Softv		Down				
	Old Pes No		Softv		Down				
	Old				Down				
	Mid	Yes			Down				
	Mid	Yes	Hardy		Down				
	Mid	No							
	Mid	No		Hardware Up Software Up					
	New	Yes			Up				
				Software Up					
		New No Hardware Up New No Software Up							
	New	No	Sonv	vare	Up				
В.	Apply Naive Bayes classifier algorithm for buys computer and classify the tuple X= <age=young, credit-rating="fair" income="Medium," student="Yes,"></age=young,>					[10]	CO3	L3	PO2
	ID Age	Income	Student	Credit-rating	Buys-Com.				
	1 Young		No	Fair	No				
	2 Young		No	Good	No				
	3 Middle 4 Old	e High Medium	No No	Fair Fair	Yes Yes				1
	5 Old	Low	Yes	Fair	Yes				1
	6 Old	Low	Yes	Good	No				1
	7 Middle		Yes	Good	Yes				1
	8 Young	_	No	Fair	No				1
	9 Young	g Low	Yes	Fair	Yes				1
	10 Old	Medium	Yes	Fair	Yes				1
	11 Young		Yes	Good	Yes				1
	12 Middle		No Vos	Good	Yes				1
	13 Middle 14 Old	e High Medium	Yes No	Fair Good	Yes No				1
		ivicululli	TNU	1 0000	I INO				
C.	Ruild confi	icion moteix	and idea	tify all ayab	lation massures	[10]	CO3	L3	PO2
C.	Build confusion matrix and identify all evaluation measures					003	נת	102	
	for the confusion matrix for the following: Suppose in a data							1	
set of the cancer, there are total 10000 tuples,				out of that 300				1	
	are positive and 9700 are negative and our model has								1
	predicated 90 are positive and 9560 are negative.								
								1	1

Q.3.	Attempt any one.				
A.	College Wants to record the Marks for the courses completed by students using the dimensions: i) Course ii) Student iii) Time & a measure Aggregate marks. Construct a Cube and perform following OLAP operations. i) Rollup ii) Drill down iii) Slice v) Dice v) Pivot	[10]	CO1	L3	PO1
В.	Consider following dimensions for a supermarket chain: Product, Store, Time and Promotion. With respect to this business scenario, answer the following questions. Clearly state any reasonable assumptions you make. a) Construct the star schema b) Can you convert the star schema to snowflake schema? If yes, justify and build the snowflake schema. Clearly depict the fact table(s). Dimension tables their attributes and measures.	[10]	CO1	L3	PO1