Quadratic Equation Week-3

Quadratic Equation 2^{nd} Degree Polynomial Equation in X = 0The coefficient of $X^2 \neq 0$

General Form

- ► $ax^2 + bx + c = 0$ where $a \ne 0$ and a, b, c are real
- 2 Values of x satisfy the Equation.
- ► They are called Roots (Real or Imaginary)

General Method

- Roots can be found by
- (i) Factorising the expression
- (ii) Using standard formula

$ax^2 + bx + c = 0$ where $a \ne 0$ and a, b, c are real Sum of the Roots = -b/a Product of the Roots = c/a

Finding Roots by Factorisation

- ► Write in the form $(x-\alpha)(x-\beta) = 0$
- \triangleright The roots of the equation are α,β
- Eg: $x^2 5x + 6 = 0$
- (x-3)(x-2) = 0
- ► The Roots are 3, 2

Finding Roots by Formula

Eg:
$$x^2 - 5x + 6 = 0$$

$$x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(6)}}{2(1)}$$

$$x = \frac{5\pm 1}{2} \rightarrow x = 3, 2$$

Nature of the Roots $ax^2 + bx + c = 0$ where $a \ne 0$ $b^2 - 4ac$ is called "DISCRIMINANT"

S.No.	Discriminant	Roots (when a, b, c are real)	Roots (when a, b, c are rational)
1	$b^2 - 4ac < 0$	Complex Conjugates	Complex and Unequal
2	$b^2 - 4ac = 0$	Real and Equal	Rational and Equal
3	$b^2 - 4ac > 0$ and a perfect Square	Real and Distinct	Rational and Unequal
4	$b^2 - 4ac > 0$ but not a perfect Square	Real and Distinct	Irrational and Unequal

Find the roots of the Equation

$$x^2 + 10x + 24 = 0$$

$$x(x+4)+6(x+4)=0$$

$$(x+4)(x+6)=0$$

Find the roots of the Equation

$$1(x^2 - 27x + 152 = 0$$

$$2\frac{152}{2}$$

$$2\frac{76}{38}$$

$$19$$

$$1$$

$$52 = 2 \times 19$$

$$8$$

Find the roots of the Equation
$$x^2 + 38x + 360 = 0$$
 $73^2 + 5^2 = 9,40$ $360 = 325 \times 2 \longrightarrow 32 \times 2,5 \times 2 = 15,20$

Find the roots of the Equation

 $15x^2 - 44x + 21 = 0$

$$|5 \times 2| = 5 \times 3 \times 7 \times 3$$

= -35 \times -9

Roots =
$$\frac{35}{15}$$
, $\frac{9}{15}$ = $\frac{7}{3}$, $\frac{3}{5}$

$$x = -b + \sqrt{b^{2} - 4ac}$$

$$= 44 + \sqrt{936 - 1260}$$

$$= 44 + 26$$

$$= 73, 35$$

A and B are the roots of the Equation $x^2 - 22x + 120 = 0$. Find the value of $A^2 + B^2$

$$S = 22$$
 $P = 120$

$$A + B = 22$$
 $AB = 120$

$$A^{2} + B^{2} = (A + B)^{2} - 2AB$$

$$= 22^{2} - 2(120)$$

$$= 244$$

A and B are the roots of a Quadratic Equation. (A+B)=22, A*B=120. Find the value of $A^2 + B^2$

$$(A+B)^2 = 22$$

 $A^2 + B^2 + 1AB = 22$

Comment on the nature of the roots of $8x^2 - 2x - 4 = 0$

Comment on the nature of the roots of $3x^2 - x - 4 = 0$

Form a Quadratic Equation whose roots are 7 and 3

$$x = |0x + 2| = 0$$

If p + \sqrt{q} is one root of a quadratic equation with rational coefficients, then find the other root.

Form a Quadratic Equation with rational coefficients one of whose roots is $4 + \sqrt{7}$