

第四讲 完全平方数的性质

例1. 求证:对任意正整数 *n*, 3" +2·17" 不是完全平方数.

证明:易知 $3^n \equiv 1$ 或 $3 \pmod{8}$, $2 \cdot 17^n \equiv 2 \cdot 1 = 2 \pmod{8}$.从而 $3^n + 2 \cdot 17^n = 3$ 或 $5 \pmod{8}$,而完全平方数模 8 只能余0,1,4.故 $3^n + 2 \cdot 17^n$ 不是完全平方数.

例2. 已知正整数 x、y、z 满足 $x^2 + y^2 = z^2$,求证: $60 \mid xyz$.

证明: 只要分别证明 3 | xyz , 4 | xyz , 5 | xyz .

- (1) 当3 $\nmid a$ 时, $a^2 \equiv 1 \pmod{3}$,所以若 x, y, z 均不是 3 的倍数,则 $2 \equiv x^2 + y^2 = z^2 \equiv 1 \pmod{3}$,矛盾,故 x, y, z 中至少有一个数为 3 的倍数,从而 $3 \mid xyz$.
- (2) 当 4 $\nmid a$ 时, $a^2 \equiv 1$ 或4(mod8),所以,若 x, y, z 均不是 4 的倍数,则 $x^2 + y^2 \equiv 0, 2, 5 \pmod{8}$,而 $z^2 \equiv 1$ 或4(mod8),矛盾,故 x, y, z 中至少有一个数为 4 的倍数,从而 $4 \mid xyz$.
- (2) 当 $5 \mid a$ 时, $a^2 \equiv 1$ 或 $4 \pmod 8$,所以,若 x, y, z 均不是 5 的倍数,则 $x^2 + y^2 \equiv 0, 2, 3 \pmod 8$,而 $z^2 \equiv 1$ 或 $4 \pmod 8$,矛盾,故 x, y, z 中至少有一个数为 5 的倍数,从而 $5 \mid xyz$. 命题得证.
- **例3.** 设正整数 m 和 n 满足 $m(m-1)=7n^2$, 求证: m 是完全平方数.

证明: 注意(m,m-1)=1, 故 $m=7a^2,m-1=b^2$ 或 $m=a^2,m-1=7b^2$. 前一种情况可得 $b^2\equiv 6\pmod{7}$, 不可能, 从而 $m=a^2$, 即m是完全平方数.

- **例4.** (1) 求证: 在下列整数 11, 111, 1111, 11111......中不存在完全平方数:
 - (2)以上各数中是否存在某数,它可以表示为两个完全平方数(可以相同)之和?
 - (3) 找出以上各数中所有可以表示为三个完全平方数(可以相同)之和的数.
 - (1) 完全平方数模 4 只能为 0 或 1, 而 11, 111, 1111, 11111. ……均模 4 余 3, 故不存在.
 - (2) 完全平方数模 4 只能为 0 或 1, 从而两个完全平方数之和模 4 只能为 0 或 1 或 2, 而 11, 1111, 11111, 111111......均模 4 余 3, 故不存在.

例5. 是否存在正整数 x、y,使得 $x^2 + 2y$ 和 $y^2 + 2x$ 均为完全平方数?

解:不存在.

对 $\forall x, y \in \mathbb{Z}^+$,不妨设 $x \ge y$.

则 $x^2 < x^2 + 2y \le x^2 + 2x < (x+1)^2$, 从而 $x^2 + 2y$ 不为完全平方数.

例6. 对 $1^2, 2^2, \dots, 101^2$ 这 101 个数,它们除以 101 所得的余数一共有多少种可能?

解: 若 $1 \le b < a \le 101$, 且满足 $a^2 = b^2 \pmod{101}$, 则 $(a-b)(a+b) = a^2 - b^2 \equiv 0 \pmod{101}$,

而 101 为质数,且 0 < a - b < 101,故 $a + b \equiv 0 \pmod{101}$, a + b = 101.

从而 $1^2, 2^2, \dots, 50^2$ 模 101 各不相同,且 $i^2 \equiv (101-i)^2 \not\equiv 0 \pmod{101}$, $i = 1, 2, \dots, 50$.

又 $101^2 \equiv 0 \pmod{101}$, 故余数有 51 种可能.

例7. 已知 n 为正整数,求证:不存在正整数 $a \times b \times c \times d$,使得 $n^2 < a < b < c < d < (n+1)^2$,且 ad = bc.

证明:反证法,若存在正整数a、b、c、d满足条件.

则 ad=bc 可变形为 $\frac{b}{a}=\frac{d}{c}$,从而存在 (p,q)=1 满足 $\frac{p}{q}=\frac{b}{a}=\frac{d}{c}$,其中 b,d 为 p 的倍数,a,c 为 q 的倍数.另外,由 $\frac{b}{a}>1$ 知, $p\geq q+1$.

不妨设 $a = kq > n^2$,则b = kp,而d > b,从而 $d \ge (k+1)p$,

而 $(k+1)p \ge (k+1)(q+1) = kq + (k+q) + 1 \ge kq + 2\sqrt{kq} + 1 > n^2 + 2n + 1 = (n+1)^2$,矛盾.

命题得证.