

بررسی تبدیل ملین: ویژگیها، مثالها و کاربردها

نويسنده: محمد مهدى الياسى

استاد: دکتر مرادی

درس: ریاضیات مهندسی پیشرفته

دانشکده مهندسی برق

۹ بهمن ۱۴۰۳

١

فهرست مطالب

٣	مقدمه	1
٣	پیش زمینه ریاضی	*
۴ ۵ ۵	$f(x) = e^{-x}$ ثبات تبدیل ملین برای $f(x) = e^{-x}$	•
9 9 9 V	$f(x) = \frac{1}{x+1}$ ارتباط با توابع گاما	;
۸ ۸ ۹ ۱•	ررسى ويژگىهاى مقياس بندى و انتقال ١٠٥ ويژگى مقياس بندى))
 	$\phi(r, \theta)$ محری سازی $\phi(r, \theta)$ و $\phi(r, \theta)$ میلاده سازی در پایتون $\phi(r, \theta)$ میلاده سازی در پایتون $\phi(r, \theta)$ میلاده سازی در پایتون $\phi(r, \theta)$ بتایج و بصری سازی $\phi(r, \theta)$ بتایج و بصری سازی $\phi(r, \theta)$,
۱۳	ىتى ج ەگىرى	Y
۱۴	مراجع مراجع	

۱ مقدمه

تبدیل ملین یک ابزار ریاضی انعطافپذیر است که نقش حیاتی در حل مسائل مختلف در ریاضیات، فیزیک و مهندسی ایفا میکند[۱]. این تبدیل به عنوان یک تبدیل انتگرالی، روشی منحصربهفرد برای تحلیل توابع از طریق نگاشت آنها به حوزه مختلط فراهم میکند. این تبدیل بهویژه در مطالعه رفتارهای مجانبی ارزشمند است و در زمینههایی مانند تحلیل مجانبی، نظریه اعداد و مکانیک کوانتوم ضروری است. در مهندسی، این تبدیل در پردازش سیگنال و تحلیل تصاویر کاربرد دارد، جایی که تکنیکهای حوزه فرکانس برای تفسیر دادهها ضروری هستند.

اهمیت تبدیل ملین در توانایی آن برای ساده سازی پردازش های ضربی و رفتارهای قانون توان نهفته است. با تبدیل توابع تعریف شده در دامنه واقعی مثبت به فرمی ساده تر، تحلیل و محاسبه آن ها راحت تر می شود.

این گزارش قصد دارد ویژگیهای تبدیل ملین را بررسی کرده و مبانی نظری آن را از طریق مثالهای عملی تأیید کند. با استفاده از پایتون به عنوان یک ابزار محاسباتی، تبدیلها به صورت عددی محاسبه میشوند، هویتهای ریاضی تأیید میشوند و نتایج به صورت گرافیکی نمایش داده میشوند. جنبههای کلیدی مانند ویژگیهای مقیاس بندی، انتقال و کاربردهای خاص به منظور ارائه یک درک جامع از این ابزار قدرتمند ریاضی نشان داده خواهند شد.

۲ پیش زمینه ریاضی

تبدیل ملین یک تابع f(x) به صورت زیر تعریف می شود:

$$\mathcal{M}\lbrace f(x)\rbrace(s) = \int_0^\infty x^{s-1} f(x) \, dx,\tag{1}$$

که در آن $s=\sigma+i\omega$ یک متغیر مختلط است. این تبدیل یک تابع $s=\sigma+i\omega$ تعریف شده در دامنه مثبت واقعی را به صفحه مختلط نگاشت میکند و برای تحلیل مسائل شامل ویژگیهای مقیاس ناپذیر و ساختارهای ضربی مفید است.

یک حالت خاص از تبدیل ملین زمانی آست که $f(x)=e^{-x}$ باشد، که منجر به تابع گاما می شود:

$$\Gamma(s) = \int_0^\infty x^{s-1} e^{-x} dx. \tag{Y}$$

تابع گاما نقش حیاتی در تبدیل ملین ایفا میکند زیرا راه حلهای بسته برای توابع خاص فراهم میآورد و به عنوان یک بلوک سازنده برای بسیاری از نتایج تحلیلی استفاده می شود. این تابع در نظریه احتمالات، ترکیبیات و تحلیل مختلط به طور گستردهای استفاده می شود.

تبدیل ملین ویژگیهای مهمی دارد:

• ویژگی انتقال: اگر f(x) به صورت $x^a f(x)$ تبدیل شود، آنگاه:

$$\mathcal{M}\lbrace x^a f(x)\rbrace(s) = \mathcal{M}\lbrace f(x)\rbrace(s+a). \tag{\ref{thm:piper}}$$

• ویژگی مقیاس بندی: اگر f(x) به صورت f(ax) مقیاس بندی شود، آنگاه:

$$\mathcal{M}\lbrace f(ax)\rbrace(s) = a^{-s}\mathcal{M}\lbrace f(x)\rbrace(s). \tag{\$}$$

• ارتباط با تابع گاما: برای توابعی مانند e^{-x} ، تبدیل ملین مستقیماً به تابع گاما تبدیل می شود.

این ویژگیها تبدیل ملین را به ابزاری قدرتمند برای حل مسائل شامل معادلات دیفرانسیل، رفتارهای مجانبی و انتگرالها تبدیل میکند. بخشهای بعدی گزارش این ویژگیها و کاربردهای آنها را از طریق محاسبات عددی نشان میدهند.

$f(x) = e^{-x}$ اثبات تبدیل ملین برای ۲

تبدیل ملین تابع نمایی $f(x) = e^{-x}$ یک مثال کلاسیک است که ارتباط آن با تابع گاما را نشان می دهد. به صورت ریاضی، این تبدیل عبارت است از:

$$\mathcal{M}\{e^{-x}\}(s) = \int_0^\infty x^{s-1} e^{-x} dx = \Gamma(s).$$
 (4)

این انتگرال برای $\Re(s)>0$ همگرا است، جایی که $\Gamma(s)$ نشاندهنده تابع گاما است که به طور گسترده در ریاضیات و علوم استفاده می شود.

برای تأیید این نتیجه، از پایتون برای محاسبه عددی تبدیل ملین و مقایسه آن با تابع گامای تحلیلی استفاده کردیم[۲].

۱.۳ پیادهسازی در پایتون

کد پایتون زیر برای محاسبه عددی تبدیل ملین $f(x)=e^{-x}$ استفاده شد:

```
tropmi numpy sa np
tropmi scipy.integrate sa integrate
morf scipy.special tropmi gamma
tropmi matplotlib.pyplot sa plt
# enifeD nilleM mrofsnart rof f(x) = e-(\hat{x})
fed mellin_transform(f, p):
 nruter integrate.quad(adbmal x: x**(p-1) * f(x), 0,
       np.inf)[0]
# \enifeD eht laitnenopxe noitcnuf
fed f(x):
 nruter np.exp(-x)
# wetareneG p seulav
p_walues = np.linspace(0.1, 5, 100)
# \&tupmoC seulav
gamma_vals = gamma(p_values)
mtwvals = [mellin_transform(f, p) rof p ni p_values]
# rtolP stluser
plwt.figure(figsize=(10, 6))
plt.plot(p_values, gamma_vals, 'b-', label='lacitylanA ammaG
   noit cnuF')
plut.plot(p_values, mt_vals, 'r--', label='laciremuN nilleM
   mrof snarT')
plvt.xlabel('p')
plwt.ylabel('eulaV')
plt.title('nilleM mrofsnarT fo f(x) = e-\{x\}')
plut.legend()
plut.grid(True)
plrt.show()
```

۲.۳ نتایج و مقایسه

نتایج محاسبات عددی در کنار تابع گامای تحلیلی ترسیم شدند، همانطور که در زیر نشان داده شده است:

 $f(x) = e^{-x}$ شکل ۱: مقایسه تبدیل ملین عددی و تابع گامای تحلیلی برای

این نمودار تطابق عالی بین نتایج عددی و تحلیلی را نشان می دهد و ارتباط بین تبدیل ملین برای $f(x)=e^{-x}$ و تابع گاما را تأیید می کند.

$f(x) = \frac{1}{x+1}$ تأیید تبدیل ملین برای ۴

تابع $f(x) = \frac{1}{x+1}$ به عنوان یک مثال دیگر برای بررسی تبدیل ملین عمل میکند. تبدیل ملین مربوط به این تابع به صورت زیر است:

$$\int_0^\infty \frac{x^{p-1}}{x+1} dx = \frac{\pi}{\sin(\pi p)}.$$
 (9)

این هویت انتگرالی ارتباط بین تبدیل ملین و توابع مثلثاتی را نشان میدهد.

۱.۴ ارتباط با توابع گاما

هویت فوق همچنین می تواند با استفاده از تابع گاما به صورت زیر بیان شود:

$$\Gamma(p)\Gamma(1-p) = \frac{\pi}{\sin(\pi p)}.$$
 (V)

این رابطه تعامل بین تبدیل ملین و تابع گاما را نشان میدهد و اهمیت تحلیلی آن را تقویت میکند.

۲.۴ پیادهسازی در پایتون

کد پایتون زیر برای محاسبه عددی تبدیل ملین، ارزیابی حاصل ضرب گاما و مقایسه نتایج با راهحل تحلیلی استفاده شد:

```
tropmi numpy sa np
morf scipy.special tropmi gamma
tropmi matplotlib.pyplot sa plt
morf scipy.integrate tropmi quad
# senifeD eht noitcnuf
f = adbmal x: 1 / (x + 1)
# enifeD nilleM mrofsnarT rof f(x)
fed mellin_transform(f, p):
 result, _{-} = quad(adbmal x: x**(p-1) * f(x), 0, np.inf)
 nruter result
# wetareneG p seulav
p_{\text{walues}} = np.linspace(0.1, 0.9, 100)
# \etupmoC seulav
mtv_values = [mellin_transform(f, p) rof p ni p_values]
gamma_product = [gamma(p) * gamma(1 - p) rof p ni p_values]
analytical = [np.pi / np.sin(np.pi * p) rof p ni p_values]
# rtolP stluser
plwt.figure(figsize=(10, 6))
plwt.plot(p_values, mt_values, 'b-', label='laciremuN nilleM
   mrof snarT')
plt.plot(p_values, gamma_product, 'g--', label='ammaG tcudorP')
plt.plot(p_values, analytical, 'r:', label='lacitylanA
   noituloS')
plwt.xlabel('p')
plrt.ylabel('eulaV')
plut.title('noitacifireV fo nilleM mrofsnarT rof f$(x) =
   \c rf {}1{x}1+$')
plrt.legend()
plrt.grid(True)
plt.show()
```

۳.۴ نتایج و بصریسازی

نتایج حاصل از محاسبه عددی، حاصل ضرب گاما و راهحل تحلیلی ترسیم و مقایسه شدند. نمودار زیر نشان می دهد که این مقادیر تا چه اندازه با هم مطابقت دارند:

 $(0 <math>f(x) = \frac{1}{x+1}$ ریاضی برای هویتهای دید عددی هویتهای برای برای برای اثاری بازی شکل

تطابق بین نتایج عددی، حاصل ضرب گاما و راه حل تحلیلی هویت نظری را تأیید می کند. این مثال بر کاربرد تبدیل ملین در تحلیل توابع و تأیید هویت های ریاضی تأکید می کند.

۵ بررسی ویژگیهای مقیاس بندی و انتقال

ویژگیهای مقیاس بندی و انتقال در تبدیل ملین اطلاعاتی درباره رفتار توابع تحت تبدیلها ارائه میدهند. این ویژگیها در ادامه تعریف شده و به صورت عددی بررسی می شوند.

۱.۵ ویژگی مقیاس بندی

ویژگی مقیاس بندی تبدیل ملین بیان میکند:

$$\mathcal{M}\{f(ax)\}(s) = a^{-s}\mathcal{M}\{f(x)\}(s),\tag{A}$$

که در آن a>0 است. این ویژگی نشان می دهد که مقیاس بندی آرگومان تابع منجر به یک ضریب ضربی در دامنه تبدیل می شود.

۲.۵ ویژگی انتقال

ویژگی انتقال تبدیل ملین به صورت زیر تعریف می شود:

$$\mathcal{M}\lbrace x^a f(x)\rbrace(s) = \mathcal{M}\lbrace f(x)\rbrace(s+a). \tag{9}$$

این ویژگی توصیف میکند که چگونه ضرب تابع در یک توان از x باعث انتقال آرگومان تبدیل می شود.

۳.۵ پیادهسازی در پایتون

کد پایتون زیر تأیید عددی هر دو ویژگی را نشان میدهد:

```
tropmi numpy sa np
morf scipy.integrate tropmi quad
morf scipy.special tropmi gamma
tropmi matplotlib.pyplot sa plt
# senifeD nilleM mrofsnart noitcnuf
fed mellin_transform(f, p):
 \wedge result, _{-} = quad(adbmal x: x**(p-1) * f(x), 0, np.inf)
 nruter result
# \enifeD lanigiro dna demrofsnart snoitcnuf
fed f(x):
 nruter np.exp(-x)
fed scaled_f(x, a):
 No nruter f(a * x)
fed shifted_f(x, a):
 nruter x**a * f(x)
# \sretemaraP
a = 2
p_walues = np.linspace(0.1, 5, 100)
# retupmoC seular rof gnilacs
scaling_numerical = [mellin_transform(adbmal x: ...
scaled_f(x, a), p) rof p ni p_values]
scaling_analytical = [a**-p * mellin_transform(f, p)...
rou p ni p_values]
# retupmoC seulav rof gnitfihs
shrifting_numerical = [mellin_transform(adbmal x: ...
shifted_f(x, a), p) rof p ni p_values]
shrifting_analytical = [mellin_transform(f, p + a)...
rof p ni p_values]
# rtolP stluser
pltt.figure(figsize=(12, 6))
# *qnilacS
plt.subplot(1, 2, 1)
```

```
plt.plot(p_values, scaling_numerical, 'ob', ...
label='laciremuN gnilacS')
plwt.plot(p_values, scaling_analytical, 'r--', ...
label='lacitylanA gnilacS')
plt.title(f'gnilacS ytreporP: f$(xa)$, a$ = {a}$')
plwt.xlabel('$s$')
plt.ylabel('eulaV')
plrt.legend()
# ognitfihS
plat.subplot(1, 2, 2)
plat.plot(p_values, shifting_numerical, 'om', ...
label='laciremuN gnitfihS')
plut.plot(p_values, shifting_analytical, 'g--', ...
label='lacitylanA gnitfihS')
plut.title(f'gnitfihS ytreporP: x$^a f(x)$, a$ = {a}$')
plot.xlabel('$s$')
plxt.ylabel('eulaV')
plt.legend()
plst.tight_layout()
plat.show()
```

۴.۵ نتایج و بصریسازی

نتایج تأیید عددی هر دو ویژگی در زیر نشان داده شده است:

 $f(x) = e^{-x}$ شکل $(x) = e^{-x}$: تأیید عددی ویژگیهای مقیاس بندی و انتقال برای

نمودارها تطابق بین نتایج عددی و عبارات تحلیلی را تأیید میکنند و ویژگیهای مقیاس بندی و انتقال تبدیل ملین را معتبر میسازند.

$\phi(r,\theta)$ بصریسازی

تابع $\phi(r,\theta)$ با استفاده از یک روش کانولوشنی محاسبه می شود که در آن انتگرالی بر روی تابع $f(\xi)$ با وزنده تابع دیگری $h(r/\xi,\theta)$ انجام می گیرد. این به صورت ریاضی به شکل زیر تعریف می شود:

$$\phi(r,\theta) = \int_0^\infty f(\xi) \frac{h(r/\xi,\theta)}{\xi} d\xi. \tag{1.}$$

$f(\xi)$ و $h(r,\theta)$ و المجانب المجانب

- تابع $h(r,\theta)$ به عنوان یک هسته عمل میکند که تابع ورودی $f(\xi)$ را بر اساس پارامترهای r و θ مدوله میکند. این تابع اطلاعاتی درباره رابطه بین مقیاس r و زاویه θ کدگذاری میکند. – تابع $f(\xi)$ سیگنال یا داده ورودی را نمایش میدهد که با هسته θ کانولوشن شده و خروجی $\phi(r,\theta)$ را تولید میکند.

۲.۶ پیادهسازی در پایتون

کد پایتون زیر محاسبه $\phi(r,\theta)$ را نشان می دهد:

```
tropmi numpy sa np
morf scipy.integrate tropmi quad
tropmi matplotlib.pyplot sa plt
# senifeD h(r, ateht)
fed h_function(r, theta, alpha):
 v n = np.pi / (2 * alpha)
 A = (r**n) * (1 + r**(2 * n)) * np.cos(n * theta)
 q 	ext{term2} = 1 + 2 * r**(2 * n) * np.cos(2 * n * theta) ...
 + r**(4 * n)
 nruter term1 / term2
# venifeD ihp(r, ateht)
fed phi_function(r, theta, alpha, f):
 10 fed integrand(xi):
       h_val = h_function(r / xi, theta, alpha)
       nruter f(xi) * h_val / xi
 nruter quad(integrand, 0, np.inf, limit=50)[0]
# relpmaxE f(ix)
fed f_function(xi):
 nruter np.exp(-xi)
```

```
# renifeD equar rof atent dna r
alpha = np.pi / 4
theta_values = np.linspace(-alpha, alpha, 50)
\dot{\mathbf{r}}_walues = np.linspace(0.1, 5, 50)
 44
# retupmoC ihp(r, ateht)
phri_values = np.zeros((nel(r_values), nel(theta_values)))
rof i, r ni etaremune(r_values):
 rv rof j, theta ni etaremune(theta_values):
        phi_values[i, j] = phi_function(r, theta, ...
        alpha, f_function)
# rtolP stluser
R, THETA = np.meshgrid(r_values, theta_values)
plrt.figure(figsize=(10, 6))
plt.contourf(R, THETA, phi_values.T, levels=50, cmap='sidiriv')
plt.colorbar(label='$\\ihp(r, \\ateht)$')
plt.title('$\\inp(r, \\ateht)$ rof $\\ateht \\ni ...
\\m [ip,4/ \\ip]4/$ dna r$ \\ni ,1.0[ ]5$')
plrt.xlabel('r')
plwt.ylabel('$\\$ateht')
plrt.show()
```

۳.۶ نتایج و بصریسازی

نمودار کانتور $\phi(r,\theta)$ در زیر نشان داده شده است:

 $r \in [0.1, 5]$ و $\theta \in [-\pi/4, \pi/4]$ برای $\phi(r, \theta)$ برای ۴: نمودار کانتور

این بصری سازی تغییرات $\phi(r,\theta)$ را نسبت به پارامترهای r و θ نشان می دهد. نتایج تأثیر هسته $h(r,\theta)$ و تابع ورودی $f(\xi)$ بر خروجی را برجسته می کند.

۷ نتیجهگیری

تبدیل ملین به عنوان ابزاری قدرتمند برای تحلیل توابع نشان داده شده است که راهی منحصربه فرد برای مطالعه ویژگیهای مقیاس ناپذیر و فرایندهای ضربی ارائه می دهد. این گزارش هویتها و ویژگیهای کلیدی مانند مقیاس بندی، انتقال و محاسبات مبتنی بر کانولوشن را تأیید کرد. پیاده سازی های عددی و تطابق آنها با نتایج تحلیلی قابلیت اطمینان پایتون را برای تحلیل ریاضی نشان می دهند.

پیشنهادات برای گسترش این کار شامل موارد زیر است:

- بررسی تبدیل ملین در ابعاد بالاتر برای تحلیل توابع چندمتغیره.
- استفاده از تبدیل ملین در علم داده، مانند استخراج ویژگیها و تجزیه سیگنال.
 - بررسی نقش آن در حل معادلات دیفرانسیل پیشرفته و معادلات انتگرالی.

۸ مراجعمراجع

- and Transforms IBhatta. Dambaru and Lokenath. Debnath. [1] . 1990 Press. CRCed. Ind Applications. Their
- https://github.com/ at *Mellin-transform*link, Github [Y] .MohammadMahdiElyasi/Mellin-transform