# Using High Density Conductive Polyethylene Black Foam as a restive sensor to build spatial object awareness in robotic grippers

Magnus Sörensen, Daniel Stenekap

Märlardalens högskola

2019

#### Contents

- 1 Introduction
- 2 Method
- 3 Results
- 4 Question

### Introduction



# High Density Conductive Polyethylene Black Foam

What is High Density Conductive Polyethylene Black Foam?



#### Contents

Introduction

2 Method

3 Results

Questions

#### How is this used?



#### What was done



#### What was done

















## Hardware implementation







#### How the measurements was done



## Software design



#### **Contents**

- 1 Introduction
- 2 Method
- 3 Results
- 4 Question

#### Results

Due to project complexity, the electronics of the project could not be completed within time scope.

- Proof of concept measurements of the foam resistance drop when exposed to pressure.
- Result from program with dummy text string as input is shown on the next slide. This corresponds somewhat to Proof of concept measurements.

### Results



#### Results

|    | Α            | В | С   | D      | Е          | F        | G          | Н       | 1       |
|----|--------------|---|-----|--------|------------|----------|------------|---------|---------|
| 1  | Array2Matrix | + | GND | Values | Shifted V_ | INDX Map | ARRAY INDX | V_INDX1 | V_INDX2 |
| 2  | 3            | 1 | 1   | 3      | 2          | 8        | 0          | 0       | 6       |
| 3  | 3            | 1 | 2   | 3      | 2          | 4        | 1          | 0       | 2       |
| 4  | 3            | 1 | 4   | 3      | 3          | 4        | 2          | 1       | 2       |
| 5  | 3            | 2 | 2   | 3      | 3          | 11       | 3          | 1       | 9       |
| 6  | 3            | 2 | 3   | 3      | 5          | 11       | 4          | 3       | 9       |
| 7  | 3            | 2 | 5   | 3      | 5          | 7        | 5          | 3       | 5       |
| 8  | 3            | 3 | 1   | 3      | 6          | 7        | 6          | 4       | 5       |
| 9  | 3            | 3 | 4   | 3      | 6          | 15       | 7          | 4       | 13      |
| 10 | 3            | 3 | 6   | 3      | 8          | 9        | 8          | 6       | 7       |
| 11 | 3            | 4 | 2   | 3      | 4          | 9        | 9          | 2       | 7       |
| 12 | 3.55         | 4 | 4   | 4.1    | 4          | 12       | 10         | 2       | 10      |
| 13 | 3.55         | 4 | 5   | 3.18   | 11         | 12       | 11         | 9       | 10      |
| 14 | 3.09         | 4 | 7   | 4.3    | 11         | 13       | 12         | 9       | 11      |
| 15 | 3.09         | 5 | 3   | 3      | 7          | 13       | 13         | 5       | 11      |
| 16 | 3            | 5 | 5   | 3      | 6          | 16       | 14         | 4       | 14      |
| 17 | 3            | 5 | 8   | 3      | 15         | 16       | 15         | 13      | 14      |
| 18 | 3            | 6 | 4   | 4.08   | 9          | 10       | 16         | 7       | 8       |
| 19 | 3.54         | 6 | 6   | 3      | 9          | 18       | 17         | 7       | 16      |
| 20 | 4.09         | 6 | 7   | 4.21   | 12         | 18       | 18         | 10      | 16      |
| 21 | 4.2          | 6 | 9   | 3.5    | 12         | 14       | 19         | 10      | 12      |
| 22 | 3.74         | 7 | 5   | 3      | 13         | 14       | 20         | 11      | 12      |
| 23 | 3.09         | 7 | 7   | 3.05   | 13         | 22       | 21         | 11      | 20      |
| 24 | 3            | 7 | 8   | 3      | 16         | 22       | 22         | 14      | 20      |
| 25 | 3            | 7 | 10  | 3      | 16         | 17       | 23         | 14      | 15      |
| 26 | 3            | 8 | 6   | 3      | 10         | 19       | 24         | 8       | 17      |
| 27 | 3.54         | 8 | 9   | 3      | 18         | 19       | 25         | 16      | 17      |
| 28 | 4.145        | 8 | 11  | 3      | 18         | 20       | 26         | 16      | 18      |



#### Contents

1 Introduction

2 Method

3 Results

Questions

# The end Questions?