Interrogation

Durée : 1 heure. Note : $CC1 = \min\{CC1_{ecrit}, 10\}$

Rappel de notations :

On utilise l'abréviation i.i.d pour signifier indépendantes et identiquement distribuées.

Exercice 1. Echauffement - Vecteur gaussian (2 points)

Soit (X,Y) un vecteur aléatoire sur \mathbb{R}^2 dont la densité est donnée par

$$f_{X,Y}(x,y) = \frac{1}{2\pi} \exp\left(-\frac{x^2 + y^2}{2}\right).$$

- 1. Déterminer la loi marginale de X et celle de Y. Sont-elles indépendantes ?
- 2. Déterminer la loi de $(X^2 + Y^2)$.

Exercice 2. Loi de Cauchy (2 points)

Soit X une variable aléatoire réelle de densité $f_X(x) := \frac{1}{\pi(1+x^2)}$.

- 1. Déterminer la loi de 1/X.
- 2. Montrer que $\forall 0 < \varepsilon < 1, \mathbb{E}[|X|^{\varepsilon}] < \infty$.

Exercice 3. Loi de Poisson (3+1 points)

Soient X_1 et X_2 deux variables aléatoires indépendantes de loi de Poisson de paramètres λ_1 et λ_2 .

- 1. Calculer l'espérance et la fonction génératrice de $(X_1 + X_2)$.
- 2. Soit Y une variable aléatoire de loi de Bernoulli de paramètre p et indépendante que (X_1, X_2) . On définit Z par

$$Z(\omega) = \begin{cases} X_1(\omega) & \text{si } Y(\omega) = 1\\ X_2(\omega) & \text{si } Y(\omega) = 0. \end{cases}$$
 (1)

Déterminer la loi de Z et calculer $\mathbb{E}[Z]$.

Exercice 4. Maximum de lois uniformes (4+1 points)

Soit $(X_i)_{i\geq 1}$ une suite de variables aléatoires i.i.d qui suit la loi uniforme sur [0,1]. On définit le maximum des n premières variables

$$\forall n \in \mathbb{N}^+, \quad M_n = \max_{1 \le i \le n} X_i.$$

- 1. Calculer la fonction de répartition F_{M_n} et la fonction de densité f_{M_n} de M_n .
- 2. Calculer $\mathbb{E}[M_n]$ et $Var[M_n]$. (Indication : On pourra utiliser f_{M_n}).
- 3. $\forall c \in]0,1[$, calculer $F_{M_n}\left(1-\frac{c}{n}\right)$. Que vaut la limite $\lim_{n\to\infty} \mathbb{P}\left(M_n \leq 1-\frac{c}{n}\right)$?

Exercice 5. Inégalité de Paley-Zygmund (3 points)

Soit $Z \geq 0$ une variable aléatoire de variance finie, et soit $0 < \theta < 1$, on veut démontrer

$$\mathbb{P}\left[Z \ge \theta \mathbb{E}[Z]\right] \ge (1 - \theta)^2 \frac{\mathbb{E}[Z]^2}{\mathbb{E}[Z^2]},$$

par trois étapes:

- 1. Rappeler l'inégalité de Cauchy-Schwartz.
- 2. Appliquer l'inégalité de Cauchy-Schwartz sur Z^2 et $\mathbf{1}_{\{Z \geq \theta \mathbb{E}[Z]\}}$.
- 3. Conclure l'inégalité.