REDES DE DATOS I

CODIFICACIÓN DE DATOS

Generalidades

- Datos analógicos señal analógica
- Datos digitales señal analógica
- Datos analógicos señal digital
- Datos digitales señal digital

Generalidades

Generalidades

CODIFICACIÓN DE DATOS

- Generalidades
- Datos analógicos señal analógica
- Datos digitales señal analógica
- Datos analógicos señal digital
- Datos digitales señal digital

Modulación:

Hay veces que la transmisión en banda base no es eficiente (por ejemplo, en medios no guiados): se recurre a una banda pasante.

Mediante la modulación se pueden multiplexar varias señales en el canal.

Modulación por onda continua: proceso por el cual se modifica alguno de los parámetros de una señal portadora mediante una señal moduladora, que es la que contiene la información

Amplitud modulada

$$v_{p}(t) = V_{p}sen(2\pi f_{p}t)$$

$$v_{m}(t) = V_{m}sen(2\pi f_{m}t)$$

$$v_{p}(t) \longrightarrow \text{Modulador} \longrightarrow v(t)$$

$$v(t) = (V_p + v_m(t)) \operatorname{sen}(2\pi f_p t)$$

$$v(t) = V_p(1 + m \operatorname{sen}(2\pi f_m t)) \operatorname{sen}(2\pi f_p t)$$

$$m = \frac{V_m}{V_p}$$
 (ínidce de modulación)

$$v(t) = V_p sen(2\pi f_p t) + \frac{mV_p}{2} \cos(2\pi (f_p - f_m) t) + \frac{mV_p}{2} \cos(2\pi (f_p + f_m) t)$$

Señal moduladora

Señal portadora

Señal resultante

Frecuencia modulada

$$v_p(t) = V_p sen(2\pi f_p t)$$

$$v_m(t) = V_m sen(2\pi f_m t)$$

$$v(t) = V_p sen[2\pi \left(f_p + \Delta f sen(2\pi f_m t)\right)t]$$

$$v(t) = V_p sen[2\pi f_p t + \frac{\Delta f}{f_m} cos(2\pi f_m t)]$$

$$f = f_p + \Delta f sen(2\pi f_m t)$$

Δf es la desviación de frecuencia

$$m = \frac{\Delta f}{f_m}$$

m es el índice de modulación

CODIFICACIÓN DE DATOS

- Generalidades
- Datos analógicos señal analógica
- Datos digitales señal analógica
- Datos analógicos señal digital
- Datos digitales señal digital

La modulación implica variar uno o varios de los tres parámetros fundamentales característicos de la señal portadora: amplitud, frecuencia y fase

ASK: Desplazamiento de amplitud

Señal moduladora

$$v_m(t) = \begin{cases} \frac{1 \text{ para un "1" binario}}{0 \text{ para un "0" binario}} \end{cases}$$

Señal portadora

$$v_p(t) = V_p sen(2\pi f_p t)$$

Señal resultante

$$v(t) = \begin{cases} \frac{V_p sen(2\pi f_p t)}{0} & \text{para un "1" binario} \\ \hline 0 & \text{para un "0" binario} \end{cases}$$

ASK: Desplazamiento de amplitud

FSK: Desplazamiento de frecuencia

Señal moduladora

Señal portadora

Señal resultante

$$v(t) = \begin{cases} \frac{V_p sen(2\pi f_1 t)}{V_p sen(2\pi f_2 t)} & \text{para un "1" binario} \\ \text{para un "0" binario} \end{cases}$$

FSK: Desplazamiento de frecuencia

FSK: Desplazamiento de frecuencia

Especificación Bell 103 (AT&T) 300 bps

ITU V.21: esquema similar

Señal moduladora

Señal portadora

Señal resultante

$$v(t) = \begin{cases} \frac{V_p sen(2\pi f_p t)}{-V_p sen(2\pi f_p t)} & \text{para un "1" binario} \\ \frac{V_p sen(2\pi f_p t)}{V_p sen(2\pi f_p t)} & \text{para un "0" binario} \end{cases}$$

PSK: Desplazamiento de fase

DPSK: Desplazamiento de fase (diferencial)

- Para decodificar la señal PSK se requiere sincronizar el transmisor y receptor.
- Surge como variante DPSK (PSK diferencial)
- La información está contenida en las transiciones
- La referencia de fase se toma del intervalo inmediato anterior
- Decodifica la información en base a diferencias relativas de fase

1 cambio de fase 0 sin cambio

M-PSK: Multi desplazamiento de fase

La fase de la señal portadora puede tomar secuencialmente N valores posibles separados entre sí por un ángulo definido por:

$$\theta = \frac{2\pi}{N} \qquad \text{BW} = \frac{(1+r) V_T}{\log_2(N)}$$

Dibit	Fase	
00	0	
01	$\pi/2$	
10	π	
11	$3\pi/4$	

$$v(t) = \begin{cases} V_p sen(2\pi f_p t + \pi/4) & \text{para un "00" binario} \\ V_p sen(2\pi f_p t + 3\pi/4) & \text{para un "01" binario} \\ V_p sen(2\pi f_p t - 3\pi/4) & \text{para un "11" binario} \\ V_p sen(2\pi f_p t - \pi/4) & \text{para un "10" binario} \end{cases}$$

4-PSK o QPSK: Implementación

$$sen(\alpha + \beta) = sen(\alpha) cos(\beta) + cos(\alpha) sen(\beta)$$

$$\begin{cases} \operatorname{sen}(\alpha + \pi/4) = \operatorname{sen}(\alpha) \cos(\pi/4) + \cos(\alpha) \operatorname{sen}(\pi/4) &= 0.7(\operatorname{sen}(\alpha) + \cos(\alpha)) \\ \operatorname{sen}(\alpha + 3\pi/4) = \operatorname{sen}(\alpha) \cos(3\pi/4) + \cos(\alpha) \operatorname{sen}(3\pi/4) &= 0.7(-\operatorname{sen}(\alpha) + \cos(\alpha)) \\ \operatorname{sen}(\alpha - 3\pi/4) = \operatorname{sen}(\alpha) \cos(-3\pi/4) + \cos(\alpha) \operatorname{sen}(-3\pi/4) &= 0.7(-\operatorname{sen}(\alpha) - \cos(\alpha)) \\ \operatorname{sen}(\alpha - \pi/4) = \operatorname{sen}(\alpha) \cos(-\pi/4) + \cos(\alpha) \operatorname{sen}(-\pi/4) &= 0.7(\operatorname{sen}(\alpha) - \cos(\alpha)) \end{cases}$$

$$\begin{cases} \operatorname{sen}(\alpha + \pi/4) = 0.7(\operatorname{sen}(\alpha) + \operatorname{sen}(\alpha + \pi/2)) \\ \operatorname{sen}(\alpha + 3\pi/4) = 0.7(-\operatorname{sen}(\alpha) + \operatorname{sen}(\alpha + \pi/2)) \\ \operatorname{sen}(\alpha - 3\pi/4) = 0.7(-\operatorname{sen}(\alpha) - \operatorname{sen}(\alpha + \pi/2)) \\ \operatorname{sen}(\alpha - \pi/4) = 0.7(\operatorname{sen}(\alpha) - \operatorname{sen}(\alpha + \pi/2)) \end{cases}$$

$$cos(\alpha) = sen(\alpha + \pi/2)$$

4-PSK o QPSK: Implementación

QAM: Modulación de amplitud en cuadratura

- QAM es una combinación de ASK y PSK
- Dos portadoras, una en fase y otra en cuadratura, con diferentes niveles de amplitud para cada portadora (ASK en cada portadora)

8-QAM

Bit rate: 24bps

Baud rate: 8

Diagrama de constelación

- Es una representación de un esquema de modulación en un plano complejo.
- Los puntos en la constelación representan los símbolos de la modulación.
- Los símbolos se representan en términos de su amplitud y fase.
- El eje horizontal representa la componente en fase con la frecuencia portadora, y el eje vertical representa la componente en cuadratura.

Algunas recomendaciones de la ITU-T para módems telefónicos:

ITU-T	Baud Rate	Bit Rate	Modulación
V.21	300	300	FSK
V.22	600	1200	4-PSK
V.23	1200	1200	FSK
V.26	1200	2400	4-PSK
V.27	1600	4800	8-PSK
V.29	2400	9600	16-QAM

Surfboard SB5100 Cable-modem

30

CODIFICACIÓN DE DATOS

- Generalidades
- Datos analógicos señal analógica
- Datos digitales señal analógica
- Datos analógicos señal digital
- Datos digitales señal digital

- Se transforman los datos analógicos en digitales, mediante un dispositivo llamado codec
- Los datos digitales pueden transmitirse:
 - En forma directa, sin procesamiento
 - Codificando los datos (Datos digitales señal digital)
 - Convirtiendo los datos en señales analógicas, con algún tipo de modulación (Datos digitales – señal analógica)

Modulación de pulsos: se muestrea la señal moduladora a intervalos regulares; el receptor reconstruye la señal original a partir de dichas muestras.

Teorema del muestreo

Si una señal es muestreada en el tiempo a intervalos regulares a una frecuencia superior a dos veces la máxima frecuencia de la señal, las muestras contienen toda la información de la señal original.

$$f_s \geq 2 f_{max}$$

PDM: Modulación de pulsos en duración

- La duración del pulso es proporcional a la amplitud de la muestra
- La duración de los pulsos de la señal modulada está dada por el tiempo que la señal diente de sierra supera el nivel de muestreo.
- Análisis espectral complicado

PPM: Modulación de pulsos en posición

- Se obtiene a partir de PDM
- La duración de los pulsos de la señal modulada es fija
- La información está contenida en la posición del pulso .

Redes de datos l

PAM: Modulación de pulsos en amplitud

 Es una sucesión de pulsos unipolares, cuyas amplitudes son proporcionales a los valores (muestras) instantáneos del mensaje de datos.

PCM: Modulación de pulsos codificados

- Se realiza un muestreo de la señal, se cuantifica la misma y se la codifica.
- La cantidad de niveles de cuantificación depende de la cantidad de bits que se empleen en la codificación

PCM: Modulación de pulsos codificados

Pasos de la cuantificación:

- Suponer que la señal varía entre Vmin y Vmax
- Se divide el rango en L zonas, cada una de amplitud Δ:

- Se asignan valores cuantificados entre 0 y L-1 a cada zona
- Se aproxima el valor de la amplitud de la muestra a los valores cuantificados y se le asigna un código de $log_2(L)$ bits

L-1

PCM: Modulación de pulsos codificados

- La cuantificación es un proceso de aproximación
- Al muestrear, se elige el valor cuantificado más próximo.
- Error de cuantificación: es la diferencia entre el valor real de la señal y el valor cuantificado elegido: Δ/2 ≤ error ≤ Δ/2

$$SNR_{dB} = 6.02 n_b + 1.76 (dB)$$

donde n_b es el número de bits utilizados para codificar cada muestra

• Ejemplo: ¿Cuál es la velocidad de transmisión de una comunicación telefónica digitalizada utilizando PCM?

Canal telefónico:
$$f_{max} = 4 \text{ kHz}$$
 $f_s \ge 2 f_{max} = 2 \times 4 \text{ kHz} = 8 \text{ ksimb/s}$

Si codifico con 8 bits por muestra: V = 8 ksimb/s * 8 bits/m = 64 kbps

$$SNR_{dB} = 6.02 n_b + 1.76 (dB) = 6.02 \times 8 + 1.76 = 49.92 dB$$

Si codifico con 7 bits por muestra: V = 8 ksimb/s * 7 bits/m = 56 kbps

$$SNR_{dB} = 6.02 n_b + 1.76 (dB) = 6.02 \times 7 + 1.76 = 43.9 \text{ dB}$$

PCM: cuantificación uniforme vs no uniforme

- Hay aplicaciones en que la distribución de la amplitud de la señal no es uniforme
- Por ej., hay señales con mayores variaciones en pequeñas amplitudes que en grandes
- Para esos casos se utilizan zonas no uniformes, ∆ variable

G.711 { Ley μ : americana Ley a: europea

Teléfono IP: Grandstream GXP1405

CODIFICACIÓN DE DATOS

- Generalidades
- Datos analógicos señal analógica
- Datos digitales señal analógica
- Datos analógicos señal digital
- Datos digitales señal digital

- Un aumento de la velocidad de transmisión de datos provoca un aumento de la tasa de error de bits (BER)
- Un aumento de la relación señal/ruido (SNR) provoca una disminución de la BER.
- Un aumento del ancho de banda (BW) permite aumentar la velocidad de transmisión de datos.
- El otro factor que permite aumentar el rendimiento es el esquema de codificación: asignación de bits de datos a elementos de señal

Factores a considerar en esquemas de codificación

- Espectro / componente de continua (DC)
- Reloj / sincronización
- Detección de errores
- Interferencias e inmunidad al ruido
- Costo y complejidad

1 elemento de dato

1 elemento de señal r=1

2 elementos de dato

1 elemento de señal r=2

$$r = \frac{\text{elemento de dato}}{\text{elemento de señal}}$$

Esquema de codificación: correspondencia entre bits de datos y elementos de señal

$$S = N/r$$

S: velocidad de señal

N: velocidad de datos

1 elemento de dato

2 elementos de señal r=1/2

4 elementos de dato

3 elementos de señal r=4/3

- Códigos de línea
 - Esquema unipolar (NRZ)
 - Esquema polar (NRZ-L, NRZ-I, RZ, Bifase)
 - Esquema bipolar o binario multinivel (AMI, Pseudoternario)
 - Esquema multinivel (2B1Q, 8B6T, 4D-PAM5)
 - Multitransición (MLT-3)
- Códigos de bloque
 - 4B/5B
 - 8B/10B
- Aleatorización
 - B8ZS
 - HDB3

No retorno a cero (NRZ)

- Un nivel de amplitud para cada dígito binario (0 y 1)
- Es sencillo de implementar. Tiene componente de continua y dificultad de sincronización.

N: velocidad de transmisión (bps)

No retorno a cero (NRZ-L)

- También se puede representar con un nivel de amplitud positivo para un dígito binario, y un nivel negativo para el otro dígito.
- Un cambio de polaridad genera error de secuencia.

N: velocidad de transmisión (bps)

No retorno a cero, invertir en unos (NRZ-I)

- Un 1 se codifica como una transición al inicio del bit, mientras que un 0 se codifica como ausencia de transición.
- Es un sistema de codificación diferencial.
- Problema para sincronizar largas cadenas de 0s
- Se utiliza en 100BASE-FX (fibra)

N: velocidad de transmisión (bps)

Retorno a cero (RZ)

- El nivel de amplitud para cada dígito binario (0 y 1) vuelve a cero en la mitad de cada bit.
- Facilita la sincronización. No tiene componente de continua, pero duplica el ancho de banda. Necesita 3 niveles de amplitud.

N: velocidad de transmisión (bps)

Manchester (bifase)

- Combina la idea de RZ y NRZ-L
- La transición al medio del intervalo determina el bit transmitido. Una transición de alto a bajo representa un 0 (y viceversa).
- Mejora la sincronización, a costa de ancho de banda

IEEE 802.3

N: velocidad de transmisión (bps)

Manchester diferencial

Redes de datos

- Combina la idea de RZ y NRZ-I
- La transición al medio del intervalo es sólo para sincronización.
- El dato está en la transición (o ausencia) al comienzo del bit.
- Independiente de la polaridad.

Manchester

V

O

1

O

O

O

O

O

O

O

Transición

Transición

IEEE 802.5

N: velocidad de transmisión (bps)

Inversión de marca alternada (AMI)

- Un 0 binario se representa como ausencia de señal y un 1 binario como una amplitud que alterna entre positiva y negativa.
- No tiene componente de continua y el ancho de banda es menor que NRZ.
- Problema de sincronización con cadena de Os
- El pseudoternario invierte las asignaciones de 0 y 1s

N: velocidad de transmisión (bps)

Esquemas multinivel

- · Se codifica un patrón de m elementos de datos en un patrón de n elementos de señal.
- · Existen dos tipos de elementos de datos: 1 y 0. Así, un grupo de m elementos de datos puede generar 2^m patrones de datos.
- \cdot En los elementos de señal, si tenemos L niveles diferentes, entonces podemos producir L^n combinaciones de patrones de señal.

Esquemas multinivel

- · Se pueden dar las siguientes posibilidades:
 - $2^m = L^n$: Cada patrón de datos es codificado con un patrón de señal
 - $2^m < L^n$: los patrones de datos son un subconjunto de patrones de señal. Puedo elegir los patrones de señal para conseguir algún beneficio (sincronización, balanceo de DC, robustez ante errores, etc)
 - $2^m > L^n$: no es posible codificar ya que algunos patrones de datos no podrán asignarse a un único patrón de señal
- · Los códigos se designan como: mBnL

m : longitud del patrón de datos binario

B: datos binarios

L : número de niveles de señal

T: ternario

Q: cuaternario

Multinivel 2B1Q

- Codifica 2 bits en un elemento de señal cuaternaria
- Se consigue el doble de velocidad respecto de NRZ-L
- No hay señales redundantes
- Se utiliza en HDSL

Multinivel 8B6T

- Codifica 8 bits en 6 elementos de señal ternarios
- Hay $2^8 = 256$ patrones de datos y $3^6 = 729$ patrones de señal
- Provee sincronización, detección de errores y balanceo de DC
- El ancho de banda aprox. es 6N/8
- Se utiliza en 100BASE-4T
- Cada elemento de señal tiene un peso de 0 o +1 (DC)
- Luego del envío de un grupo con peso +1, el próximo grupo con peso +1 se invierte

Multinivel 4D-PAM5

- 4 dimensiones 5 PAM
- Uno de los niveles de PAM se utiliza sólo para control de errores.
- En una dimensión, se asemeja a un 8B4Q, que equivale a N/2 baudios
- Por cada par se puede enviar N/8 baudios
- Se utiliza en Gigabit Ethernet, donde 1 baudio = 2 bps, por lo que se transmite 250 Mbps por cada par

Multitransición MLT-3

Utiliza 3 niveles y 3 transiciones

- Similar a NRZ-I
- Concentra la energía en N/3

Categoría	Esquema	BW	Características
Unipolar	NRZ	N/2	Sin sincronización ante cadena de 0s o 1s, DC
	NRZ-L	N/2	Sin sincronización ante cadena de 0s o 1s, DC
Polar	NRZ-I	N/2	Sin sincronización ante cadena de 0s, DC
	Bifase	N	Auto sincronizante, sin DC, alto BW
Bipolar	AMI	N/2	Sin sincronización ante cadena de 0s, DC
	2B1Q	N/4	Sin sincronización ante cadena de mismo doble bit
Multinivel	8B6T	3N/4	Auto sincronizante, sin DC
	4D-PAM5	N/8	Auto sincronizante, sin DC
Multitransición MLT-3 N/3 Sin sincror		N/3	Sin sincronización ante cadena de 0s

- Códigos de línea
 - Esquema unipolar (NRZ)
 - Esquema polar (NRZ-L, NRZ-I, RZ, Bifase)
 - Esquema bipolar o binario multinivel (AMI, Pseudoternario)
 - Esquema multinivel (2B1Q, 8B6T, 4D-PAM5)
 - Multitransición (MLT-3)
- Códigos de bloque
 - 4B/5B
 - 8B/10B
- Aleatorización
 - B8ZS
 - HDB3

Códigos de bloque

Brindan redundancia que permite mejorar problemas como sincronismo, detección de errores y balanceo de DC.

Se pueden combinar con los códigos de línea para mejorar el desempeño.

Se cambia un bloque de m bits por otro bloque de n bits, donde m < n

La codificación por bloques se conoce como mB/nB (la / los distingue de los códigos multinivel)

4B/5B

Se diseñó para combinarse con NRZ-I, para solucionar problemas de sincronización (largas cadenas de 0s)

Los códigos de bloque no poseen mas de tres 0s consecutivos.

El código de salida de 5 bits no posee mas de un 0 al comienzo, ni dos al final.

Requiere una velocidad un 25% mayor, pero es menor a la bifase (Manchester).

No resuelve el problema de DC

65

Data Sequence	Encoded Sequence	Control Sequence	Encoded Sequence	
0000	11110	Q (Quiet)	00000	
0001	01001	I (Idle)	11111	
0010	10100	H (Halt)	00100	
0011	10101	J (Start delimiter)	11000	
0100	01010	K (Start delimiter)	10001	
0101	01011	T (End delimiter)	01101	
0110 01110		S (Set)	11001	
0111 01111		R (Reset)	00111	
1000	10010			
1001	10011			
1010	10110			
1011	10111			
1100	11010			
1101 11011				
1110	11100			
1111	11101			

- Códigos de línea
 - Esquema unipolar (NRZ)
 - Esquema polar (NRZ-L, NRZ-I, RZ, Bifase)
 - Esquema bipolar o binario multinivel (AMI, Pseudoternario)
 - Esquema multinivel (2B1Q, 8B6T, 4D-PAM5)
 - Multitransición (MLT-3)
- Códigos de bloque
 - 4B/5B
 - 8B/10B
- Aleatorización
 - B8ZS
 - HDB3

Aleatorización

Los esquemas bifase son adecuados para redes LAN, pero no así para larga distancia, debido a su requerimiento de ancho de banda.

Los códigos de bloque combinados con NRZ tampoco son adecuados por su DC.

AMI tiene bajo ancho de banda y sin DC, pero no sincroniza ante larga cadena de 0s.

La idea es sustituir las largas cadenas de 0s con diferentes niveles para sincronizar.

Aleatorización: se realiza simultáneamente con la codificación; no agrega bits.

B8ZS

Bipolar con sustitución de 8 ceros (basado en AMI).

Se reemplaza una secuencia de 8 ceros con un código que depende del último valor de tensión distinto de cero; introduce dos violaciones al código y dos 1s en regla.

Mantiene el balance de DC

Bipolar de alta densidad de 3 ceros (basado en AMI).

Una secuencia de 4 ceros se reemplaza con un código:

- 000V si la cantidad de 1s desde la última sustitución es impar
- B00V si la cantidad de 1s desde la última sustitución es par

Medio	Veloc/canal	Codificación	Canales	Msimb/canal	Eficiencia	Cable
10BASE-T	10	Manchester	1	20	50%	Cat.3
100BASE-X	100	4B5B+MLT-3	1	125	80%	Cat.5
1000BASE-TX	250	PAM-5	4	125	200%	Cat.5e
10GBASE-T	2500	PAM-16	4	833	300%	Cat.6a
1000BASE-X	1000	8B/10B	1	1250	80%	F.O.
10GBASE-R	10000	64B/66B	1	10312	97%	F.O.
40GBASE-R4	10000	64B/66B	4	10312	97%	F.O.
100GBASE-R4	25000	64B/66B	4	25781	97%	F.O.

