Monocular Depth Estimation

Authors

Mahdi Abdollah Chalaki

Masoud Jafaripour

Outline

- Problem Statement
- Applications
- Methods
- Deep Learning
- Baseline Model
- Improved Models
- Comparing Methods
- Implementation

Problem Statement

- Depth estimation (DE):
 - Prediction of depth of a scene using 2D images
 - Easy task for humans and difficult for computational models
 - Input: 2D RGB pictures
 - **Output**: depth map representing the distance between the object and the camera viewpoint
- Monocular Depth estimation (MDE):
 - Estimating depth from a single RGB image

Source: Smolyanskiy et al (2018 CVPR)

Applications

Navigation

Source: github.com/nianticlabs/monodepth2

Augmented Reality

Source: thegamer.com/improved-depth-estimation-in-augmented-reality-is-here/

3D Scene Reconstruction

Source: github.com/ialhashim/DenseDepth

Methods

- Binocular/Multi-View DE
- Using Depth Sensors for DE (active)
 - LiDAR
 - RGB-D cameras
- Classical Methods for Stereo DE (passive)
 - Focus/defocus
 - SIFT
- Monocular Depth Estimation:
 - Benefits
 - Challenges

Source: Kumar et al. (Symmetry 2020)

Our system prototype

Binocular stereo

Source: Baek et al. Computer Vision and Image Understanding (May 2016)

Deep Learning

- Our goal
- Supervised learning
- Convolutional Neural Networks (CNNs)
- Common model architecture:

Source: Guo et al. arXiv:1808.06586v1

Let's get to training!

Datasets

NYUv2

- Pictures of indoor scenes captured by Microsoft Kinect
- A resolution of 640*480
- Contains 120K training samples and 654 testing samples
- The depth maps have an upper bound of 10 meters

KITTI

- 44K stereo images and corresponding 3D laser scans of outdoor scenes
- captured using equipment mounted on a moving vehicle
- A resolution of around 1241*376
- corresponding depth maps have lots of missing data

Source: Silberman et al. (ECCV12)

Source: Geiger et al. (2012CVPR)

Evaluation

Metrics Eigen

[Eigen et al. (NIPS 2014)]

- Average relative error (rel):
- Root mean squared error (rms):
- Average (log₁₀) error:
- Threshold accuracy (δ_i) :

$$rac{1}{n}\sum_{p}^{n}rac{\left|y_{p}-\hat{y}_{p}
ight|}{y}$$

$$\sqrt{rac{1}{n}\sum_{p}^{n}\left(y_{p}-\hat{y}_{p}
ight)^{2}}$$

$$\frac{1}{n}\sum_{p}^{n}\bigl|\log_{10}(y_p)-\log_{10}\bigl(\hat{y}_p\bigr)\bigr|$$

$$\% ext{ of } y_p ext{ s.t. } ext{max}igg(rac{y_p}{\hat{y}_p},rac{\hat{y}_p}{y_p}igg) \quad = \quad \delta < thr ext{ for } thr = 1.25, 1.25^2, 1.25^3$$

$$y_p$$
: a pixel in depth image y

$$\widehat{m{y_p}}$$
 : a pixel in the predicted depth image $\hat{m{y}}$

Baseline Model

Model Architecture:

- Encoder Decoder model : 3 Conv layers & 3 Deconv layers
- Loss function: Structural similarity index(SSIM) + L1-loss
- Input size: 256*256
- Output size: 256*256
- Batch size: 32
- Epochs: 30
- Optimizer: Adam (learning rate = 0.0002)
- Activation function: ReLU function
- Trained on the NYU Depth V2 dataset

Results:

Input image

Ground truth depth map

Predicted depth map

We should use improved models!

Using Transfer learning

U-net

- Convolutional Networks for Biomedical Image Segmentation
- Skip connections
- Architecture

Dense-Net 169

Source: Ronneberger et al. (MICCAI 2015)

11

Using Transfer learning

Data augmentation

Source: towardsdatascience.com/machinex-image -data-augmentation-using-keras-b459ef87cd22

Transfer learning

Source: topbots.com/transfer-learning-in-nlp/

Loss function: Previous one +

$$L_{ ext{grad}}\left(y,\hat{y}
ight) = rac{1}{n} \sum_{p}^{n} ig| g_{\mathbf{x}}ig(y_{p},\hat{y}_{p}ig) ig| + ig| g_{\mathbf{y}}ig(y_{p},\hat{y}_{p}ig) ig|$$

Results

Method	$\delta_1 \uparrow$	$\delta_2\uparrow$	$\delta_3 \uparrow$	rel↓	sq. rel↓	rms↓	$log_{10} \downarrow$
Using transfer learning	0.886	0.965	0.986	0.093	0.589	<u>4.170</u>	0.171

Source: Alhashim et al. arXiv:1812.11941v2

epoch 15

 Standard Batch size 2

- Batch size 16

- No skip-connections

- Random weights

Results

Input image

Predicted depth map

Vision Transformers for Dense Prediction

• Goal: Using vision transformers as a backbone on encoder-decoder design

Network Architecture:

- <u>Transformer</u> encoder
- Convolutional decoder
 - (Reassemble & Fusion)
- Loss Functions:
 - scale- & shift-invariant trimmed loss together with the gradient-matching loss

Results:

Comparison to the state-of-the-art model

Source: Ranftl et al. (2021ICCV)

AdaBins: Depth Estimation using Adaptive Bins

- Goal: Transforming MDE to a classification task by discretizing depth range using bins which changing adaptively
- Network Architecture

Source: Bhat et al. (2021CVPR)

• Loss Function: Scale-Invariant loss (SI) & bi-directional Chamfer Loss

$$\mathcal{L}_{pixel} = \alpha \sqrt{\frac{1}{T} \sum_{i} g_i^2 - \frac{\lambda}{T^2} (\sum_{i} g_i)^2} \qquad g_i = \log \tilde{d}_i - \log d_i$$

$$\mathcal{L}_{bins} = chamfer(X, c(\mathbf{b})) + chamfer(c(\mathbf{b}), X)$$

$$\mathcal{L}_{total} = \mathcal{L}_{pixel} + \beta \mathcal{L}_{bins}$$

Results:

- In comparison to the state-of-the-art methods outperform them in all metrics
 - On NYU-Depth-v2 dataset

• On **KITTI** dataset

Source: Bhat et al. (2021CVPR)

Source: Bhat et al. (2021CVPR)

Comparing Methods:

Comparison of performances on the NYU-Depth-v2 dataset

Method	$\delta_{_{1}}$	δ_{2}	$\delta_{_{3}}$	REL	RMS
BTS (Lee et all, arXiv preprint 2019)	0.885	0.978	0.994	0.110	0.392
Transfer Learning (Dense-Net 169)	0.846	0.974	0.994	0.123	0.465
Dense Prediction Transformer (DPT)	0.904	0.988	0.998	0.110	0.357
AdaBins	0.903	0.984	0.997	0.103	0.364

Comparison of performances on the KITTI dataset

Method	$\delta_{_{1}}$	$\delta_{\!\scriptscriptstyle 2}$	$\delta_{_3}$	REL	RMS
BTS (Lee et all, arXiv preprint 2019)	0.956	0.993	0.998	0.059	2.756
Transfer Learning (Dense-Net 169)	0.886	0.965	0.986	0.093	4.170
Dense Prediction Transformer (DPT)		0.995	0.999	0.062	2.573
AdaBins	0.964	0.995	0.999	0.058	2.360

Implementation Results:

• Testing last two approaches on RGB photos taken by ourselves from campus (all are indoor)

Thanks for your Attention

