Self Assessment Sheet1: Operating System

code. ing.
nds and reacts in terms of actual time: b) Time sharing system d) all of the above.
nputer is to: b) manage resources d) only one of the above.
vstems. b) execute more jobs in same time period. d) all of the above
ultiprogramming? b) Shorter response time d) Decreased operating system overhead.
operating system of a computer executes several between them? b) Multitasking d) Multithreading
and processor, possibly of different types, and that may sor active at the same time, is known as: b) multithreading. d) multiprocessing.
core of the operating system. d into memory during booting. be loaded in running operating system. computer session.
b) contents of mainmemory. d) a job in secondary memory
and are ready and waiting to execute are kept on a list b) ready queue d) process queue
ed by the current process is provided by the: b) program counter d) pipe

12. In operating system, each process has its own:

a) address space and global variablesc) pending alarms, signals and signal handlers	b) open files d) all of the mentioned		
13. The interval from the time of submission of a pa) waiting timec) response time	orocess to the time of completion is termed as: b) turnaround time d) throughput		
14. Waiting time is: a) the total time in the blocked and waiting queues b) the total time spent in the ready queue c) the total time spent in the running queue d) the total time from the completion till the submis	ssion of a process		
15. An I/O bound program will typically have: a) a few very short CPU bursts c) many very short CPU bursts	b) many very short I/O bursts d) a few very short I/O bursts		
16. A process is selected from the queue bya) blocked, short termc) ready, short term	the scheduler, to be executed. b) wait, long term d) ready, long term		
17. The strategy of allowing processes that are logi a) preemptive scheduling c) shortest job first	cally runnable to be temporarily suspended is called: b) non preemptive scheduling d) first come first served		
18. FIFO algorithm: a) executes first the job that last entered the queue. b) executes first the job that first entered the queue. c) executes first the job that has been in the queue l d) executes first the job with the least processor need	ongest time.		
19. The dispatcher:a) actually schedules the task into the processor.c) never changes task priority.	b) puts tasks in I/O wait. d) none of the above.		
20. An SJF algorithm is simply a priority algorithm a) the predicted next CPU burst c) the current CPU burst	where the priority is: b) the inverse of the predicted next CPU burst d) anything the user wants		
21. In priority scheduling algorithm: a) CPU is allocated to the process with highest prior c) CPU is allocated to the process with lowest prior	0 , 1 1 01		
22. In priority scheduling algorithm, when a process with the priority of:	ss arrives at the ready queue, its priority is compared		
a) all processc) parent process	b) currently running processd) init process		
23. The SJF algorithm executes first the job:a) that last entered the queue.c) that has been in the queue for the longest time.	b) that first entered the queue.d) with the least processor needs.		
24. Which of the following scheduling algorithms a FCFS	gives minimum average waiting time? b) SJF		

c) Round – robin	d) Priority
25. The main function of dispatcher is:a) swapping a process to the disk.b) suspending some of the processes when the CP c) assigning ready process to the CPU.d) bringing process from the disk to the main men	_
26. Poor response time are caused by:a) processor being busy.c) any of the above.	b) high I/O rate. d) none of the above.
27. Scheduling is: a) allowing processes to use the processor. b) unr c) not required in uniprocessor systems.	related to performance consideration. d) the same regardless of the purpose of the system.
28. Time quantum is defined in: a) shortest job scheduling algorithm c) priority scheduling algorithm	b) round robin scheduling algorithm d) multilevel queue scheduling algorithm
29. Round-Robin scheduling:a) allows interactive tasks quicker access to the probin is quite complex to implement.c) gives each process the same chance at the process d) allows processor-bound processes more time in	essor.
30. With round robin scheduling algorithm in a tin a) using very large time slices converts it into First b) using very small time slices converts it into First c) using extremely small time slices increases perform d) using very small time slices converts it into Sho	t come First served scheduling algorithm. st come First served scheduling algorithm. formance.
31. Process are classified into different groups in: a) shortest job scheduling algorithm c) priority scheduling algorithm	b) round robin scheduling algorithm d) multilevel queue scheduling algorithm
32. Orders are processed in the sequence they arriva) earliest due date c) first come, first served	ve if rule sequences the jobs. b) slack time remaining d) critical ratio
33. Which of the following is a pre-emptive sched a) Round robin c) Priority base	uling algorithm? b) Shortest job next d) all of the above
34. Which of the following statements is false? a) a process scheduling algorithm is preemptive if b) time sharing systems generally use preemptive c) response time are more predictable in preemptive d) real time systems generally use non-preemptive	CPU scheduling. ve systems than in non preemptive systems.
35. Which of the following statements are true? I. Shortest remaining time first scheduling may c II. Preemptive scheduling may cause starvation III. Round robin is better than FCFS in terms of re	

a) I only c) II and III only	b) I and III only d) I, II and III		
a) mutual exclusion	is required for deadlock to be possible? urces while awaiting assignment of other resources ed from a process holding it		
37. Four necessary conditions for de a) mutual exclusion, preemption, dea b) mutual exclusion, no preemption, c) mutual exclusion, preemption, hold) mutual exclusion, no premeption,	dlock avoidance, circular wait. dedalock avoidance, circular wait . d and wait, circular wait.		
38. The circular wait condition can base a) defining a linear ordering of resourc) using pipes			
39. What problem is solved by Dijka a) Mutual exclusion c) Deadlock prevention	stra's Banker's Algorithm? b) Deadlock recovery d) Deadlock avoidance		
40. What is the drawback of banker'a) in advance processes rarely know b) the number of processes changes c) resource once available can disapped) all of the mentioned	that how much resource they will need as time progresses		
	number of resources available in the system. number of resources available in the system. of resources available in the system.		
a) whenever a resource is requested	condition never occurs in the system, it must be ensured that : by a process, it is not holding any other resources allocated all its resources before it begins its execution ly when it has none		
43. Which one of the following is a value a) Resource allocation graph c) Inversion graph	risual (mathematical) way to determine the deadlock occurrence? b) Starvation graph d) None of the mentioned		
44. A system is in the safe state if: a) the system can allocate resources b) there exist a safe sequence c) both (a) and (b) d) none of the mentioned	to each process in some order and still avoid a deadlock		
45. Given a priori information about the number of resources of each type that maybe requested for each process, it is possible to construct an algorithm that ensures that the system will never enter a deadlock state.			

a) minimum c) maximum	b) average d) approximat	te		
46. The wait-for graph is a deadloc a) all resources have a single instar c) both a and b	k detection algorithm that is applicabl ce b) all resource d) none of the	es have multiple instances		
<u> </u>	rives, with 'n' processes competing for of 'n' for which the system is guaranted c) 3 d) 4	<u> </u>		
48. The two ways of aborting processes and eliminating deadlocks are : (choose all that apply) a) Abort all deadlocked processes b) Abort all processes c) Abort one process at a time until the deadlock cycle is eliminated d) All of these				
49. Which of the following factors I. Priority of the process. II. Process is interactive or batch. III. How long the process has comp. IV. How much more long before its. V. How many more resources the p. VI. How many and what type of re. VII.How many resources are availated it. II, III, IV, VI, VII. c) I, II, III, V, VI, VII	completion process needs before its completion sources the process has used	ess that has to be aborted:		
50. If the resources are always pree a) deadlock c) aging	mpted from the same process, b) system crash d) starvation	can occur.		
Answers: 1) c. 2) c. 3) b. 4) b. 5) d. 11) b. 12) d. 13) b. 14) b. 15) c. 16) 21) a. 22) b. 23) d. 24) b. 25) c. 26) 31) d. 32) c. 33) d. 34) d. 35) d. 36 41) c. 42) d. 43) a. 44) c. 45) c. 46)	c. 17) a. 18) b. 19) a. 20) a. d. 27) a. 28) b. 29) c. 30) a. d. 37) d. 38) a. 39) d. 40) d.			