Title

Author

Date

P 1 problem 3.10

Suppose that $(X_{\alpha})_{\alpha \in A}$ is an indexed family of topological spaces, and Y is an topological space. A map $f: \coprod_{\alpha \in A} X_{\alpha} \to Y$ is continuous if and only if its restriction to each X_{α} is continuous. The disjoint union topology is the unique topology on $\coprod_{\alpha \in A} X_{\alpha}$ with this property.

(sol) 1.1 problem 3.10

The gluing lemma shows that if each restriction is continuous, then f is continuous. Assume that f is continuous. Then the restriction to each X_{α} must also be continuous because each open set in X_{α} is also open in the disjoint union space since X_{α} is by definition open so any open set intersected with it is also open.

The disjoint union topology is the unique topology with this property because...

P 2

(sol) 2.1