UNIVERSIDADE PAULISTA - UNIP

773Z Projeto Lógico de Computadores

Prof.: Renê de Souza Pinto

Lista de Exercícios para a Prova 1

Questão 1: Converta para o sistema decimal: a) 101111_2 b) 11111000001_2 c) 10011_2 d) $4AB_{16}$ e) 16_{16} f) $4C2D_{16}$

Questão 2: Converta para o sistema binário: a) 128_{10} b) 255_{10} c) 19_{10}

Questão 3: Explique o conceito de hierarquia de memória citando: Registradores, Cache, RAM e Disco Rígido.

Questão 4: Cite a principal diferença entre memória RAM estática e dinâmica.

Questão 5: Com base na figura 1 comente o conceito de máquinas multiníveis.

Figura 1: Máquina Multiníveis

Questão 6: Explique a diferença entre memórias ROM, PROM, EPROM, EPROM e FLASH.

Questão 7: Comente a funcionalidade da Unidade Lógica Arimética (ULA), Unidade de Controle (UC), Registradores e Contador de Programa (PC) nos processadores.

Questão 8: Explique sucintamente o que é um Barramento.

Questão 9: Qual é a diferença entre um Microprocessador e um Microcontrolador?

Questão 10: Explique o ciclo: Busca (fetch) \rightarrow Decodifica (decode) \rightarrow Executa (execute).

- Questão 11: Explique como funciona o mecanismo de pipeline nos processadores.
- Questão 12: Explique o que é e qual a vantagem do uso de pipelines nos processadores.
- Questão 13: Explique a principal diferença entre arquiteturas CISC e RISC.
- **Questão 14**: Além das instruções aritméticas, quais são outros tipos básicos de instruções encontrados nas arquiteturas de computadores?
 - Questão 15: O que são registradores?

Questão 16: A figura 2 ilustra a Arquitetura de Von Neumann com os nomes de alguns elementos da arquitetura representados por **?**. Cite o nome de todos os elementos e comente de uma maneira geral sobre a arquitetura e seu funcionamento.

Figura 2: Arquitetura de Von Neumann

Questão 17: Considere os chips de memória representados na figura 3. Elabore o circuito de uma memória de 256 palavras e 8 bits de dados utilizando apenas os chips especificados, ou seja, de 256 palavras e 4 bits de dados.

Figura 3: Chips de memória

Questão 18: Considere os chips de memória representados na figura 4. Elabore o circuito de uma memória de 512 palavras e 8 bits de dados utilizando apenas os chips especificados, ou seja, de 256 palavras e 8 bits de dados.

Figura 4: Chips de memória