KMV model replicate

指導教授/助教:林士貴、何杰操、葉宗瑋

組員:鄧昱辰、朱庭萱、劉沛岑

January 12, 2023

Contents

- Research Framework
- 2 Data
- Methodology
- 4 Empirical Results
- 5 Further Issue
- 6 Appendix

- The entire framework is devided into two parts: validation and research.
 - We select the data which is similar to the paper to validate whether our model is correct or not.
 - Research: We selected the top 14 banks in America from 2005 to 2021 based on asset size and market capitalization size to see their distance to default in different years.

Describe

- Validate: We select the data of 20 listed companies in Shanghai and Shenzhen A share market between 2005 and 2012. This period matches our main validation target of world's economic crisis of 2008.
- Main purpose: We selected the top 14 banks in America from 2005 to 2021 based on asset size and market capitalization size.

China's sample

Table 2.1: China's data - I

Date	\mathbf{Type}	Assets	Liabilities	Equity	Name
2005-03-31	A	1.809956e + 10	1.143824e + 10	6.661321e + 09	万科 A
2005-06-30	A	$1.887858e{+10}$	$1.198151e{+10}$	6.897070e + 09	万科 A
2005-09-30	\mathbf{A}	2.119836e + 10	1.418953e + 10	7.008836e + 09	万科 A
2005-12-31	A	$2.199239e{+}10$	1.341117e + 10	8.581223e + 09	G 万科 A
2006-03-31	A	$2.427262\mathrm{e}{+10}$	1.406068e + 10	$1.021193e{+}10$	G 万科 A
2006-06-30	A	2.872782e + 10	1.711082e + 10	$1.161700e{+10}$	G 万科 A
2006-09-30	A	$4.224511e{+10}$	3.046972e + 10	$1.177539e{+}10$	G 万科 A
2006-12-31	A	$4.850792e{+10}$	$3.150192e{+10}$	1.700600e + 10	万科 A
2007-03-31	A	5.017858e + 10	3.222737e + 10	$1.795121e{+10}$	万科 A
2007-06-30	A	6.367034e + 10	4.543295e+10	1.823739e + 10	万科 A

Table 2.2: China's Data II

DD	DP	IV	$\mathbf{EA1}$	Name
9.605137e + 09	0.372440	1.728327e + 10	1.192817	万科 A
1.004909e + 10	0.363859	$2.063995e{+}10$	1.410228	万科 A
$1.222840\mathrm{e}{+10}$	0.350231	2.477453e + 10	1.445938	万科 A
1.213547e + 10	0.374194	$1.903442\mathrm{e}{+10}$	0.968605	G 万科 A
$1.344719e{+10}$	0.380563	2.714407e + 10	1.325930	G 万科 A
$1.532350\mathrm{e}{+10}$	0.374144	$2.574300e{+10}$	1.081805	G 万科 A
2.758942e + 10	0.286249	$4.154807\mathrm{e}{+10}$	1.173675	G 万科 A
$2.669345\mathrm{e}{+10}$	0.349601	5.095757e + 10	1.362018	万科 A
$2.603126e{+10}$	0.360986	5.344019e + 10	1.420802	万科 A
3.746758e + 10	0.312383	6.018121e+10	1.208199	万科A

USA's sample

Table 2.3: America's data - I

Date	Assets	Liabilities	Equity	Name
2005/1/1	531379.0	504491.0	26888.0	GS
2006/1/1	706804.0	675638.0	31166.0	GS
2007/1/1	838201.0	802415.0	40545.0	GS
2008/1/1	1119796.0	1069731.0	50065.0	GS
2009/1/1	884547.0	819084.0	66012.0	GS
2010/1/1	848942.0	777268.0	71674.0	GS
2011/1/1	911332.0	833104.0	78228.0	GS
2012/1/1	923225.0	851396.0	71829.0	GS
2013/1/1	938555.0	862331.0	76224.0	GS
2014/1/1	911507.0	832714.0	78793.0	GS

Table 2.4: America's data - II

DP	IV	Name
464143.0	0.355191	GS
625634.5	0.353634	GS
727927.0	0.349143	GS
970994.0	0.345802	GS
725970.5	0.351396	GS
679124.0	0.346814	GS
738980.5	0.355977	GS
760534.0	0.358113	GS
774196.0	0.362213	GS
748469.5	0.364429	GS

Models

Models

• KMV model

$$E = AN(d_1) - Le^{-rT}N(d_2)$$

Where L is Default Point (DP) which equals to $STD + 0.5 \times LTD$

• Distance to Default (DD)

$$DD = \frac{E(A_1) - DP}{E(A_1)\sigma_A}$$

Where

$$E(A_1) = A \times (1+g)$$

and

$$\sigma_A = \sigma_E \times \frac{E}{4} N(d_1)$$

Steps

Steps

- ullet Use KMV model to estimate the value of companies' equity E
- Use Newton method[1] to estimate σ_E and transfer to σ_A
- Calculate the Distance to Default of each company and time

Empirical Results

After calculating the DD of each company, we have the same result with the paper we've read, that is, KMV model doesn't have the ability to separate companies with high default risk or not[2].

Empirical Results - China

China

Table 4.1: KMV model results

ST company	$\mathbf{D}\mathbf{D}$	Non-ST company	DD
ST donghang	1.605	shangcai	1.632
ST guofa	0.864	shanghaijichang	1.415
ST nanfang	0.872	zhongtian	1.036
ST guotong	0.862	yunwei	0.918
ST xincai	0.773	fosu	1.257
ST hehua	0.757	hongda	0.905
ST meili	1.142	hengfeng	0.912
ST changyou	1.078	wuzhong	1.652
ST lubei	2.243	shuini	1.341
ST heihua	0.467	baiyun	1.915

ch Framework Data Methodology **Empirical Results** Further Issue References Appendix

Empirical Results - China

China

Figure 4.1: DD between ST and non-ST companies

Empirical Results - China

China

In the below figure, we can see that during 2008-01-01 to 2009-01-01, the average default to distance of all companies has drop sharply. This is because those companies are suffering Economic crisis.

ch Framework Data Methodology **Empirical Results** Further Issue References Appendix

Empirical Results - China

China

Figure 4.2: Average DD with different date - China

Empirical Results - USA

USA

Table 4.2: KMV model results - USA

Company	DD	Company	DD
GS	1.464	ВК	0.257
MS	0.419	WFC	0.693
$_{ m JPM}$	0.361	NYCB	0.198
Citi	0.483	NTRS	0.224
BAC	0.519	PNC	0.307
WBS	0.446	SVB	0.358
AXP	0.499	SCHW	0.433

Empirical Results - USA

USA

- During 2008 to 2009, the average DD of all banks had dropped sharply, banks are suffering Economic crisis.
 - \Rightarrow Endogenous instability of the financial system
- \bullet Period during the COVID-19 pandemic, average DD had not dropped dramatically.
 - \Rightarrow Exogenous impact of natural disasters on the real economy.

search Framework Data Methodology **Empirical Results** Further Issue References Appendix

Empirical Results - USA

USA

Figure 4.3: Average DD with different date - USA

Further Issue

Describe

- Bond default, 2018
 - During 2015-2016, some companies raised large amounts of capital, so the significant expansion of debt has raised the default risk
 - In 2017, China implemented deleveraging, but some companies had already expanded their borrowings significantly.
 - 2018 and 2019 is the period of concentration of payment. The narrowing funds in the stock market and the decrease in deposits from banks led to significant bond defaults.
- COVID-19, 2020
 - COVID-19 seems to have a small influence on companies' default probability.

Further Issue

Figure

Figure 5.1: DD of 50 companies

References

References

- [1] Chen, Y. and Chu, G. (2014). Estimation of default risk based on kmv model—an empirical study for chinese real estate companies. *Journal of Financial Risk Management*, 2014.
- [2] Li, L., Yang, J., and Zou, X. (2016). A study of credit risk of chinese listed companies: Zpp versus kmv. *Applied Economics*, 48(29):2697–2710.

Appendix-A

```
1  ## Estimate equity by KMV model
2  def Equity(A, L, r, sigma, T):
3     d1 = (ln(A/L) + (r + 0.5*sigma**2)*T) / (sigma*sqrt(T))
4     d2 = d1 - sigma*sqrt(T)
5     return A*N(d1) - L*e(-r*T)*N(d2)
```

Appendix-B

```
## Estimate implied volatility by Newton Method
    def vega(A, L, r, sigma, T):
3
       d1 = (\ln(A/L) + (r + 0.5*sigma**2)*T) / (sigma*sqrt(T))
4
       firm vega = A * N(d1) * sqrt(T)
5
       return firm_vega
6
    iv = 0.5
    def Newton(A, L, r, T, E, iv):
8
       Max_iter = 10000
9
       for i in range(Max_iter):
           iv = ((Equity(A, L, r, iv, T)-E)/vega(A, L, r, iv, T))*0.001
10
11
       return iv
```

Appendix-C

```
## Calculate Distance to Default
  def d1(A, L, r, T, sigma):
3
      return (\ln(A/L)+(r+0.5*sigma**2)*T)/(sigma*sqrt(T))
  for i in Id_list:
5
      for j in range(len(d[{""}.format(i)])):
          d[{""}.format(i)]['IV'].iloc[j] = d[{""}.format(i)]['IV'].iloc[j] *
6
              d[{""}.format(i)]["Equity"].iloc[i] /
              d[{""}.format(i)]["Assets"].iloc[j] *
              d1(d[{""}.format(i)]["Assets"].iloc[j],
              d[{""}.format(i)]["Liabilities"].iloc[i].
              d[{""}.format(i)]["r"].iloc[j], T, d[{""}.format(i)]["IV"].iloc[j])
  def DD(df):
8
      df['EA1'] = df['Assets'] * (1 + df['g'])
9
      return (df['EA1'] - df['DP']) / (df['EA1'] * df['IV'])
```