LEARNING MULTI-ATTENTION CONVOLUTIONAL NEURAL NETWORK FOR FINE-GRAINED IMAGE RECOGNITION

HELIANG ZHENG, JIANLONG FU, TAO MEI, JIEBO LUO (ICCV, 2017)

7107053120 許庭瑄

ABSTRACT

- Objection: Fine-grained recognition
- Proposed Method: Multi-Attention Convolutional Neural Network (MA-CNN)

ARCHITECTURE

W * X: the extracted deep representation

* : convolution, pooling, activation

Weight vector : $d_j(X) = [d_{j1}, ..., d_{j512}], j = 1 \sim 4$

Part representation

 $P_j(X) = \sum_i [W * X]_i \cdot M_j(X)$

OBJECTIVE FUNCTION

•
$$L(X) = \sum_{i=1}^{4} [L_{cls}(Y^{(i)}, Y^*)] + L_{cng}(M_i(X))$$

• L_{cls} : classification loss on each of 4 parts

• $L_{cng}(M_i(X)) = Dis(M_i(X)) + \lambda Div(M_i(X))$

•
$$Dis(M_i(X)) = \sum_{(x,y) \in M_i(X)} m_i(x,y) \left[\left| |x - t_x| \right|^2 + ||y - t_y||^2 \right]$$

• $Div(M_i(X)) = \sum_{(x,y) \in M_i(X)} m_i(x,y) [\max_{k \neq i} m_k(x,y) - mrg]$

 $Y^{(i)}$: predict label vector

 Y^* : ground truth label vector

 L_{cng} : channel grouping loss

 $m_i(x, y)$: the value of $M_i(X)$ at (x, y)

mrg: a margin

RESULT

Figure 4: Four bird examples of the visualized part localization results by (a) initial parts by channel clustering, (b) optimizing channel grouping loss L_{cng} , and (c) joint learning $L_{cng} + L_{cls}$.

Table 3: Comparison results on CUB-200-2011 dataset. Train Anno. represents using bounding box or part annotation in training.

Approach	Train Anno.	Accuracy
PN-CNN(AlexNet) [1]	✓	75.7
Part-RCNN(AlexNet) [34]	✓	76.4
PA-CNN [14]	✓	82.8
MG-CNN [27]	✓	83.0
FCAN [18]	✓	84.3
B-CNN (250k-dims) [17]	✓	85.1
Mask-CNN [29]	✓	85.4
TLAN(AlexNet) [31]		77.9
MG-CNN [27]		81.7
FCAN [18]		82.0
B-CNN (250k-dims) [17]		84.1
ST-CNN (Inception net) [10]		84.1
PDFR [35]		84.5
RA-CNN [5]		85.3
MA-CNN (2 parts + object)		85.4
MA-CNN (4 parts + object)		86.5

REFERENCE

- [1] Very deep convolutional networks for large-scale image recognition.
- [2] Caltech-UCSD Birds 200.
- [3] Bird species categorization using pose normalized deep convolutional nets.