SEQUENCE LISTING

```
<110> JOHNS HOPKINS UNIVERSITY
<120> ENHANCEMENT OF ADENOVIRAL ONCOLYTIC ACTIVITY IN
      PROSTATE CELLS BY MODIFICATION OF THE E1A GENE PRODUCT
<130> 71699/59562-PCT
<140> PCT/US03/25171
<141> 2003-08-08
<150> 60/401,919
<151> 2002-08-08
<160> 22
<170> PatentIn Ver. 2.1
<210> 1
<211> 3768
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificia.
      nucleotide sequence const
accgggactg aaaatgagac atattatctg ccacggaggt gttattaccg aagaaatggc 60
cgccagtctt ttggaccagc tgatcgaaga ggtactggct gataatcttc cacctcctag 120
ccattttgaa ccacctaccc ttcacgaact gtatgattta gacgtgacgg cccccgaaga 180
tcccaacgag gaggcggttt cgcagatttt tcccgactct gtaatgttgg cggtgcagga 240
agggattgac ttactcactt ttccgccggc gcccggttct ccggagccgc ctcacctttc 300
ccggcagccc gagcagccgg agcagagagc cttgggtccg gtttctatgc caaaccttgt 360
accggaggtg atcgatctta cctgccacga ggctggcttt ccacccagtg acgacgagga 420
tgaagagggt gaggagtttg tgttagatta tgtggagcac cccgggcacg gttgcaggtc 480
ttgtcattat caccggagga atacggggga cccagatatt atgtgttcgc tttgctatat 540
gaggacctgt ggcatgtttg tctacagtaa gtgaaaatta tgggcagtgg gtgatagagt 600
ggtgggtttg gtgtggtaat ttttttttta atttttacag ttttgtggtt taaagaattt 660
tgtattgtga tttttttaaa aggtcctgtg tctgaacctg agcctgagcc cgagccagaa 720
ccggagcctg caagacctac ccgccgtcct aaaatggcgc ctgctatcct gagacgcccg 780
acatcacctg tgtctagaga atgcaatagt agtacggata gctgtgactc cggtccttct 840
aacacacctc ctgagataca cccggtggtc ccgctgtgcc ccattaaacc agttgccgtg 900
agagttggtg ggcgtcgcca ggctgtggaa tgtatcgagg acttgcttaa cgagcctggg 960
caacctttgg acttgagctg taaacgcccc aggccagcgg ccgcagaagt gcagttaggg 1020
ctgggaaggg tctaccctcg gccgccgtcc aagacctacc gaggagcttt ccagaatctg 1080
ttccagagcg tgcgcgaagt gatccagaac ccgggcccca ggcacccaga ggccgcgagc 1140
gcagcacctc ccggcgccag tttgctgctg ctgcagcagc agcagcagca gcagcagcag 1200
cagcagcagc agcagcagca gcagcagcag cagcaagaga ctagccccag gcagcagcag 1260
cagcagcagg gtgaggatgg ttctccccaa gcccatcgta gaggccccac aggctacctg 1320
gtcctggatg aggaacagca accttcacag ccgcagtcgg ccctggagtg ccaccccgag 1380
agaggttgcg tcccagagcc tggagccgcc gtggccgcca gcaaggggct gccgcagcag 1440
ctgccagcac ctccggacga ggatgactca gctgccccat ccacgttgtc cctgctgggc 1500
```

```
cccactttcc ccggcttaag cagctgctcc gctgacctta aagacatcct gagcgaggcc 1560
agcaccatge aacteettea geaacageag caggaageag tateegaagg cagcageage 1620
gggagagega gggaggeete gggggeteee aetteeteea aggacaatta ettaggggge 1680
acttcgacca tttctgacaa cgccaaggag ttgtgtaagg cagtgtcggt gtccatgggc 1740
ctgggtgtgg aggcgttgga gcatctgagt ccaggggaac agcttcgggg ggattgcatg 1800
tacgcccac ttttgggagt tccacccgct gtgcgtccca ctccttgtgc cccattggcc 1860
gaatgcaaag gttctctgct agacgacagc gcaggcaaga gcactgaaga tactgctgag 1920
tattcccctt tcaagggagg ttacaccaaa gggctagaag gcgagagcct aggctgctct 1980
ggcagcgctg cagcagggag ctccgggaca cttgaactgc cgtctaccct gtctctctac 2040
aagtccggag cactggacga ggcagctgcg taccagagtc gcgactacta caactttcca 2100
ctggctctgg ccggaccgcc gcccctccg ccgcctcccc atccccacgc tcgcatcaag 2160
ctggagaacc cgctggacta cggcagcgcc tgggcggctg cggcggcgca gtgccgctat 2220
ggggacctgg cgagcctgca tggcgcgggt gcagcgggac ccggttctgg gtcaccctca 2280
geogeogett ceteateetg geacactete tteacageeg aagaaggeea gttgtatgga 2340
ccgtgtggtg gtggtggggg tggtggcggc ggcggcggcg gcggcggcgg cggcggcggc 2400
ggeggeggeg geggeggega ggegggaget gtageceet acggetacae teggeeeeet 2460
caggggctgg cgggccagga aagcgacttc accgcacctg atgtgtggta ccctggcggc 2520
atggtgagca gagtgcccta tcccagtccc acttgtgtca aaagcgaaat gggcccctgg 2580
atggatagct actccggacc ttacggggac atgcgtttgg agactgccag ggaccatgtt 2640
ttgcccattg actattactt tccaccccag aagacctgcc tgatctgtgg agatgaagct 2700
tctgggtgtc actatggagc tctcacatgt ggaagctgca aggtcttctt caaaagagcc 2760
gctgaaggga aacagaagta cctgtgcgcc agcagaaatg attgcactat tgataaattc 2820
cgaaggaaaa attgtccatc ttgtcgtctt cggaaatgtt atgaagcagg gatgactctg 2880
ggagcccgga agctgaagaa acttggtaat ctgaaactac aggaggaagg agaggcttcc 2940
agcaccacca gccccactga ggagacaacc cagaagctga cagtgtcaca cattgaaggc 3000
tatgaatgtc agcccatctt tctgaatgtc ctggaagcca ttgagccagg tgtagtgtt 3060
gctggacacg acaacaacca gcccgactcc tttgcagcct tgctctctag cctcaatgaa 3120
ctgggagaga gacagettgt acaegtggte aagtgggeea aggeettgee tggetteege 3180
aacttacacg tggacgacca gatggctgtc attcagtact cctggatggg gctcatggtg 3240
tttgccatgg gctggcgatc cttcaccaat gtcaactcca ggatgctcta cttcgcccct 3300
gatctggttt tcaatgagta ccgcatgcac aagtcccgga tgtacagcca gtgtgtccga 3360
atgaggcacc teteteaaga gtttggatgg etecaaatea eeceecagga atteetgtge 3420
atgaaagcac tgctactctt cagcattatt ccagtggatg ggctgaaaaa tcaaaaattc 3480
tttgatgaac ttcgaatgaa ctacatcaag gaactcgatc gtatcattgc atgcaaaaga 3540
aaaaatccca catcctgctc aagacgcttc taccagctca ccaagctcct ggactccgtg 3600
cagcctattg cgagagagct gcatcagttc acttttgacc tgctaatcaa gtcacacatg 3660
gtgagcgtgg actttccgga aatgatggca gagatcatct ctgtgcaagt gcccaagatc 3720
ctttctggga aagtcaagcc catctatttc cacacccagt gactcgag
```

```
<210> 2
```

<220>

<223> Description of Artificial Sequence: Synthetic nucleotide sequence construct EA1/TAD

```
<400> 2
accgggactg aaaatgagac atattatctg ccacggaggt gttattaccg aagaaatggc 60
cgccagtctt ttggaccagc tgatcgaaga ggtactggct gataatcttc cacctcctag 120
ccattttgaa ccacctaccc ttcacgaact gtatgatta gacgtgacgg ccccgaaga 180
tcccaacgag gaggcggttt cgcagatttt tcccgactct gtaatgttgg cggtgcagga 240
```

<211> 2970

<212> DNA

<213> Artificial Sequence

```
agggattgac ttactcactt ttccgccggc gcccggttct ccggagccgc ctcacctttc 300
ccggcagccc gagcagccgg agcagagagc cttgggtccg gtttctatgc caaaccttgt 360
accggaggtg atcgatctta cctgccacga ggctggcttt ccacccagtg acgacgagga 420
tgaagagggt gaggagtttg tgttagatta tgtggagcac cccgggcacg gttgcaggtc 480
ttgtcattat caccggagga atacggggga cccagatatt atgtgttcgc tttgctatat 540
gaggacctgt ggcatgtttg tctacagtaa gtgaaaatta tgggcagtgg gtgatagagt 600
ggtgggtttg gtgtggtaat ttttttttta atttttacag ttttgtggtt taaagaattt 660
tgtattgtga tttttttaaa aggtcctgtg tctgaacctg agcctgagcc cgagccagaa 720
ccggagcctg caagacctac ccgccgtcct aaaatggcgc ctgctatcct gagacgcccg 780
acatcacctg tgtctagaga atgcaatagt agtacggata gctgtgactc cggtccttct 840
aacacacctc ctgagataca cccggtggtc ccgctgtgcc ccattaaacc agttgccgtg 900
agagttggtg ggcgtcgcca ggctgtggaa tgtatcgagg acttgcttaa cgagcctggg 960
caacetttgg acttgagetg taaacgeece aggecagegg cegeagaagt geagttaggg 1020
ctgggaaggg tctaccctcg gccgccgtcc aagacctacc gaggagcttt ccagaatctg 1080
ttccagagcg tgcgcgaagt gatccagaac ccgggcccca ggcacccaga ggccgcgagc 1140
gcagcacctc coggogocag tttgctgctg ctgcagcagc agcagcagca gcagcagcag 1200
cagcagcagc agcagcagca gcagcagcag cagcaagaga ctagccccag gcagcagcag 1260
cagcagcagg gtgaggatgg ttctccccaa gcccatcgta gaggccccac aggctacctg 1320
gtcctggatg aggaacagca accttcacag ccgcagtcgg ccctggagtg ccaccccgag 1380
agaggttgcg tcccagagcc tggagccgcc gtggccgcca gcaaggggct gccgcagcag 1440
ctgccagcac ctccggacga ggatgactca gctgccccat ccacgttgtc cctgctgggc 1500
cccactttcc ccggcttaag cagctgctcc gctgacctta aagacatcct gagcgaggcc 1560
agcaccatgc aactccttca gcaacagcag caggaagcag tatccgaagg cagcagcagc 1620
gggagagega gggaggeete gggggeteee aetteeteea aggacaatta ettaggggge 1680
acttcgacca tttctgacaa cgccaaggag ttgtgtaagg cagtgtcggt gtccatgggc 1740
ctgggtgtgg aggcgttgga gcatctgagt ccaggggaac agcttcgggg ggattgcatg 1800
tacgccccac ttttgggagt tccacccgct gtgcgtccca ctccttgtgc cccattggcc 1860
gaatgcaaag gttctctgct agacgacagc gcaggcaaga gcactgaaga tactgctgag 1920
tattcccctt tcaagggagg ttacaccaaa gggctagaag gcgagagcct aggctgctct 1980
ggcagcgctg cagcagggag ctccgggaca cttgaactgc cgtctaccct gtctctctac 2040
aagtccggag cactggacga ggcagctgcg taccagagtc gcgactacta caactttcca 2100
ctggctctgg ccggaccgcc gcccctccg ccgcctcccc atccccacgc tcgcatcaag 2160
ctggagaacc cgctggacta cggcagcgcc tgggcggctg cggcggcgca gtgccgctat 2220
ggggacctgg cgagcctgca tggcgcgggt gcagcgggac ccggttctgg gtcaccctca 2280
geogeogett ceteatectg geacactete tteacagecg aagaaggeea gttgtatgga 2340
ccgtgtggtg gtggtggggg tggtggcggc ggcggcggcg gcggcggcggc 2400
ggcggcggcg gcggcggcga ggcgggagct gtagccccct acggctacac tcggccccct 2460
caggggctgg cgggccagga aagcgacttc accgcacctg atgtgtggta ccctggcggc 2520
atggtgagca gagtgcccta tcccagtccc acttgtgtca aaagcgaaat gggcccctgg 2580
atggatagct actccggacc ttacggggac atgcgtttgg agactgccag ggaccatgtt 2640
ttgcccattg actattactt tccaccccag aagacctgcc tgatctgtgg agatgaagct 2700
tctgggtgtc actatggagc tctcacatgt ggaagctgca aggtcttctt caaaagagcc 2760
gctgaaggga aacagaagta cctgtgcgcc agcagaaatg attgcactat tgataaattc 2820
cgaaggaaaa attgtccatc ttgtcgtctt cggaaatgtt atgaagcagg gatgactctg 2880
ggagcccgga agctgaagaa acttggtaat ctgaaactac aggaggaagg agaggcttcc 2940
                                                                  2970
agcaccacca gccccactga gtgactcgag
```

<210> 3

<211> 1305

<212> DNA

<213> Artificial Sequence

```
<220>
<223> Description of Artificial Sequence: Synthetic
      nucleotide sequence construct EA1/DBD
<400'> 3
accgggactg aaaatgagac atattatctg ccacggaggt gttattaccg aagaaatggc 60
cgccagtctt ttggaccagc tgatcgaaga ggtactggct gataatcttc cacctcctag 120
ccattttgaa ccacctaccc ttcacgaact gtatgattta gacgtgacgg cccccgaaga 180
tcccaacgag gaggcggttt cgcagatttt tcccgactct gtaatgttgg cggtgcagga 240
agggattgac ttactcactt ttccgccggc gcccggttct ccggagccgc ctcacctttc 300
ccggcagccc gagcagccgg agcagagagc cttgggtccg gtttctatgc caaaccttgt 360
accggaggtg atcgatctta cctgccacga ggctggcttt ccacccagtg acgacgagga 420
tgaagaggt gaggagtttg tgttagatta tgtggagcac cccgggcacg gttgcaggtc 480
ttgtcattat caccggagga atacggggga cccagatatt atgtgttcgc tttgctatat 540
gaggacctgt ggcatgtttg tctacagtaa gtgaaaatta tgggcagtgg gtgatagagt 600
ggtgggtttg gtgtggtaat ttttttttta atttttacag ttttgtggtt taaagaattt 660
tgtattgtga tttttttaaa aggtcctgtg tctgaacctg agcctgagcc cgagccagaa 720
ceggageetg caagacetae eegeegteet aaaatggege etgetateet gagaegeeeg 780
acatcacctg tgtctagaga atgcaatagt agtacggata gctgtgactc cggtccttct 840
aacacacete etgagataca eceggtggte ecgetgtgee ecattaaace agttgeegtg 900
agagttggtg ggcgtcgcca ggctgtggaa tgtatcgagg acttgcttaa cgagcctggg 960
caacctttgg acttgagctg taaacgcccc aggccagcgg ccgcaaagac ctgcctgatc 1020
tgtggagatg aagcttctgg gtgtcactat ggagctctca catgtggaag ctgcaaggtc 1080
ttcttcaaaa gagccgctga agggaaacag aagtacctgt gcgccagcag aaatgattgc 1140
actattgata aattccgaag gaaaaattgt ccatcttgtc gtcttcggaa atgttatgaa 1200
gcagggatga ctctgggagc ccggaagctg aagaaacttg gtaatctgaa actacaggag 1260
gaaggagagg cttccagcac caccagcccc actgagtgac tcgag
<210> 4
<211> 3514
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      nucleotide sequence construct 12S/AR
accgggactg aaaatgagac atattatctg ccacggaggt gttattaccg aagaaatggc 60
cgccagtctt ttggaccagc tgatcgaaga ggtactggct gataatcttc cacctcctag 120
ccattttgaa ccacctaccc ttcacgaact gtatgattta gacgtgacgg cccccgaaga 180
tcccaacgag gaggcggttt cgcagatttt tcccgactct gtaatgttgg cggtgcagga 240
agggattgae ttactcactt ttccgccggc gcccggttct ccggagccgc ctcacctttc 300
ccggcagccc gagcagccgg agcagagagc cttgggtccg gtttctatgc caaaccttgt 360
accggaggtg atcgatctta cctgccacga ggctggcttt ccacccagtg acgacgagga 420
tgaagagggt cctgtgtctg aacctgagcc tgagcccgag ccagaaccgg agcctgcaag 480
acctacccgc cgtcctaaaa tggcgcctgc tatcctgaga cgcccgacat cacctgtgtc 540
tagagaatgc aatagtagta cggatagctg tgactccggt ccttctaaca cacctcctga 600
```

gatacacccg gtggtcccgc tgtgccccat taaaccagtt gccgtgagag ttggtgggcg 660 tcgccaggct gtggaatgta tcgaggactt gcttaacgag cctgggcaac ctttggactt 720 gagctgtaaa cgccccaggc cagcggccgc agaagtgcag ttagggctgg gaagggtcta 780 ccctcggccg ccgtccaaga cctaccgagg agctttccag aatctgttcc agagcgtgcg 840 cgaagtgatc cagaacccgg gccccaggca cccagaggcc gcgagcgcag cacctcccgg 900

```
cgccagtttg ctgctgctgc agcagcagca gcagcagcag cagcagcagc agcagcagca 960
gcagcagcag cagcagcagc aagagactag ccccaggcag cagcagcagc agcagggtga 1020
ggatggttct ccccaagccc atcgtagagg ccccacaggc tacctggtcc tggatgagga 1080
acagcaacct tcacagccgc agtcggccct ggagtgccac cccgagagag gttgcgtccc 1140
agagectgga geegeegtgg eegeeageaa ggggetgeeg eageagetge eageacetee 1200
ggacgaggat gactcagctg ccccatccac gttgtccctg ctgggcccca ctttccccgg 1260
cttaagcagc tgctccgctg accttaaaga catcctgagc gaggccagca ccatgcaact 1320
ccttcagcaa cagcagcagg aagcagtatc cgaaggcagc agcagcggga gagcgaggga 1380
ggcctcgggg gctcccactt cctccaagga caattactta gggggcactt cgaccatttc 1440
tgacaacgcc aaggagttgt gtaaggcagt gtcggtgtcc atgggcctgg gtgtggaggc 1500
gttggagcat ctgagtccag gggaacagct tcggggggat tgcatgtacg ccccactttt 1560
gggagttcca cccgctgtgc gtcccactcc ttgtgcccca ttggccgaat gcaaaggttc 1620
totgotagac gacagogoag gcaagagoac tgaagatact gotgagtatt cocotttcaa 1680
gggaggttac accaaagggc tagaaggcga gagcctaggc tgctctggca gcgctgcagc 1740
agggagetee gggacaettg aactgeegte taccetgtet etetacaagt ceggageact 1800
ggacgaggca gctgcgtacc agagtcgcga ctactacaac tttccactgg ctctggccgg 1860
accgccgccc cctccgccgc ctccccatcc ccacgctcgc atcaagctgg agaacccgct 1920
ggactacggc agcgcctggg cggctgcggc ggcgcagtgc cgctatgggg acctggcgag 1980
cctgcatggc gcgggtgcag cgggacccgg ttctgggtca ccctcagccg ccgcttcctc 2040
atcctggcac actctcttca cagccgaaga aggccagttg tatggaccgt gtggtggtgg 2100
cggcgaggcg ggagctgtag ccccctacgg ctacactcgg ccccctcagg ggctggcggg 2220
ccaggaaagc gacttcaccg cacctgatgt gtggtaccct ggcggcatgg tgagcagagt 2280
gccctatccc agtcccactt gtgtcaaaag cgaaatgggc ccctggatgg atagctactc 2340
cggaccttac ggggacatgc gtttggagac tgccagggac catgttttgc ccattgacta 2400
ttactttcca ccccagaaga cctgcctgat ctgtggagat gaagcttctg ggtgtcacta 2460
tggagctctc acatgtggaa gctgcaaggt cttcttcaaa agagccgctg aagggaaaca 2520
gaagtacctg tgcgccagca gaaatgattg cactattgat aaattccgaa ggaaaaattg 2580
tccatcttgt cgtcttcgga aatgttatga agcagggatg actctgggag cccggaagct 2640
gaagaaactt ggtaatctga aactacagga ggaaggagag gcttccagca ccaccagccc 2700
cactgaggag acaacccaga agctgacagt gtcacacatt gaaggctatg aatgtcagcc 2760
catctttctg aatgtcctgg aagccattga gccaggtgta gtgtgtgctg gacacgacaa 2820
caaccagece gacteetttg cageettget etetageete aatgaactgg gagagagaca 2880
gcttgtacac gtggtcaagt gggccaaggc cttgcctggc ttccgcaact tacacgtgga 2940
cgaccagatg gctgtcattc agtactcctg gatggggctc atggtgtttg ccatgggctg 3000
gcgatccttc accaatgtca actccaggat gctctacttc gcccctgatc tggttttcaa 3060
tgagtaccgc atgcacaagt cccggatgta cagccagtgt gtccgaatga ggcacctctc 3120
tcaagagttt ggatggctcc aaatcacccc ccaggaattc ctgtgcatga aagcactgct 3180
actetteage attatteeag tggatggget gaaaaateaa aaattetttg atgaactteg 3240
aatgaactac atcaaggaac tcgatcgtat cattgcatgc aaaagaaaaa atcccacatc 3300
ctgctcaaga cgcttctacc agctcaccaa gctcctggac tccgtgcagc ctattgcgag 3360
agagctgcat cagttcactt ttgacctgct aatcaagtca cacatggtga gcgtggactt 3420
tccggaaatg atggcagaga tcatctctgt gcaagtgccc aagatccttt ctgggaaagt 3480
                                                                 3514
caageceate tatttecaca eccagtgact egag
```

```
<210> 5
```

<211> 2716

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic nucleotide sequence construct 12S/TAD

```
<400> 5
accgggactg aaaatgagac atattatctg ccacggaggt gttattaccg aagaaatggc 60
cgccagtctt ttggaccagc tgatcgaaga ggtactggct gataatcttc cacctcctag 120
ccattttgaa ccacctaccc ttcacgaact gtatgattta gacgtgacgg cccccgaaga 180
teceaaegag gaggeggttt egeagatttt teeegaetet gtaatgttgg eggtgeagga 240
agggattgac ttactcactt ttccgccggc gcccggttct ccggagccgc ctcacctttc 300
ccggcagccc gagcagccgg agcagagagc cttgggtccg gtttctatgc caaaccttgt 360
accggaggtg atcgatctta cctgccacga ggctggcttt ccacccagtg acgacgagga 420
tgaagagggt cctgtgtctg aacctgagcc tgagcccgag ccagaaccgg agcctgcaag 480
acctacccgc cgtcctaaaa tggcgcctgc tatcctgaga cgcccgacat cacctgtgtc 540
tagagaatgc aatagtagta cggatagctg tgactccggt ccttctaaca cacctcctga 600
gatacacccg gtggtcccgc tgtgccccat taaaccagtt gccgtgagag ttggtgggcg 660
tcgccaggct gtggaatgta tcgaggactt gcttaacgag cctgggcaac ctttggactt 720
gagctgtaaa cgccccaggc cagcggccgc agaagtgcag ttagggctgg gaagggtcta 780
ccctcggccg ccgtccaaga cctaccgagg agctttccag aatctgttcc agagcgtgcg 840
cgaagtgatc cagaacccgg gccccaggca cccagaggcc gcgagcgcag cacctcccgg 900
cgccagtttg ctgctgctgc agcagcagca gcagcagcag cagcagcagc agcagcagca 960
gcagcagcag cagcagcagc aagagactag ccccaggcag cagcagcagc agcagggtga 1020
ggatggttct ccccaagccc atcgtagagg ccccacaggc tacctggtcc tggatgagga 1080
acagcaacct tcacagccgc agtcggccct ggagtgccac cccgagagag gttgcgtccc 1140
agageetgga geegeegtgg eegeeageaa ggggetgeeg eageagetge eageacetee 1200
ggacgaggat gactcagctg ccccatccac gttgtccctg ctgggcccca ctttccccgg 1260
cttaagcagc tgctccgctg accttaaaga catcctgagc gaggccagca ccatgcaact 1320
ccttcagcaa cagcagcagg aagcagtatc cgaaggcagc agcagcggga gagcgaggga 1380
ggcctcgggg gctcccactt cctccaagga caattactta gggggcactt cgaccatttc 1440
tgacaacgcc aaggagttgt gtaaggcagt gtcggtgtcc atgggcctgg gtgtggaggc 1500
gttggagcat ctgagtccag gggaacagct tcggggggat tgcatgtacg ccccactttt 1560
gggagttcca cccgctgtgc gtcccactcc ttgtgcccca ttggccgaat gcaaaggttc 1620
tctgctagac gacagcgcag gcaagagcac tgaagatact gctgagtatt cccctttcaa 1680
gggaggttac accaaagggc tagaaggcga gagcctaggc tgctctggca gcgctgcagc 1740
agggagetee gggacaettg aactgeegte taccetgtet etetacaagt eeggageaet 1800
ggacgaggca gctgcgtacc agagtcgcga ctactacaac tttccactgg ctctggccgg 1860
accgccgccc cctccgccgc ctccccatcc ccacgctcgc atcaagctgg agaacccgct 1920
ggactacggc agcgcctggg cggctgcggc ggcgcagtgc cgctatgggg acctggcgag 1980
cctgcatggc gcgggtgcag cgggacccgg ttctgggtca ccctcagccg ccgcttcctc 2040
atcctggcac actctcttca cagccgaaga aggccagttg tatggaccgt gtggtggtgg 2100
cggcgaggcg ggagctgtag ccccctacgg ctacactcgg ccccctcagg ggctggcggg 2220
ccaggaaagc gacttcaccg cacctgatgt gtggtaccct ggcggcatgg tgagcagagt 2280
gccctatccc agtcccactt gtgtcaaaag cgaaatgggc ccctggatgg atagctactc 2340
cggaccttac ggggacatgc gtttggagac tgccagggac catgttttgc ccattgacta 2400
ttactttcca ccccagaaga cctgcctgat ctgtggagat gaagcttctg ggtgtcacta 2460
tggagctctc acatgtggaa gctgcaaggt cttcttcaaa agagccgctg aagggaaaca 2520
gaagtacctg tgcgccagca gaaatgattg cactattgat aaattccgaa ggaaaaattg 2580
tccatcttgt cgtcttcgga aatgttatga agcagggatg actctgggag cccggaagct 2640
gaagaaactt ggtaatctga aactacagga ggaaggagag gcttccagca ccaccagccc 2700
                                                                 2716
cactgagtga ctcgag
```

<210> 6

<211> 1051

<212> DNA

<213> Artificial Sequence

```
<220>
<223> Description of Artificial Sequence: Synthetic
      nucleotide sequence construct 12S/DBD
accgggactg aaaatgagac atattatctg ccacggaggt gttattaccg aagaaatggc 60
cgccagtctt ttggaccagc tgatcgaaga ggtactggct gataatcttc cacctcctag 120
ccattttgaa ccacctaccc ttcacgaact gtatgattta gacgtgacgg cccccgaaga 180
teccaaegag gaggeggttt egeagatttt tecegaetet gtaatgttgg eggtgeagga 240
agggattgac ttactcactt ttccgccggc gcccggttct ccggagccgc ctcacctttc 300
ccggcagccc gagcagccgg agcagagagc cttgggtccg gtttctatgc caaaccttgt 360
accggaggtg atcgatctta cctgccacga ggctggcttt ccacccagtg acgacgagga 420
tgaagagggt cctgtgtctg aacctgagcc tgagcccgag ccagaaccgg agcctgcaag 480
acctacccgc cgtcctaaaa tggcgcctgc tatcctgaga cgcccgacat cacctgtgtc 540
tagagaatgc aatagtagta cggatagctg tgactccggt ccttctaaca cacctcctga 600
gatacacccg gtggtcccgc tgtgccccat taaaccagtt gccgtgagag ttggtgggcg 660
tcgccaggct gtggaatgta tcgaggactt gcttaacgag cctgggcaac ctttggactt 720
gagetgtaaa egeeceagge eageggeege aaagaeetge etgatetgtg gagatgaage 780
ttctgggtgt cactatggag ctctcacatg tggaagctgc aaggtcttct tcaaaagagc 840
cgctgaaggg aaacagaagt acctgtgcgc cagcagaaat gattgcacta ttgataaatt 900
ccgaaggaaa aattgtccat cttgtcgtct tcggaaatgt tatgaagcag ggatgactct 960
gggagcccgg aagctgaaga aacttggtaa tctgaaacta caggaggaag gagaggcttc 1020
                                                                   1051
cagcaccacc agccccactg agtgactcga g
<210> 7
<211> 1164
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      amino acid sequence construct 12S/AR
<400> 7
Met Arg His Ile Ile Cys His Gly Gly Val Ile Thr Glu Glu Met Ala
Ala Ser Leu Leu Asp Gln Leu Ile Glu Glu Val Leu Ala Asp Asn Leu
Pro Pro Pro Ser His Phe Glu Pro Pro Thr Leu His Glu Leu Tyr Asp
         35
                             40
Leu Asp Val Thr Ala Pro Glu Asp Pro Asn Glu Glu Ala Val Ser Gln
Ile Phe Pro Asp Ser Val Met Leu Ala Val Gln Glu Gly Ile Asp Leu
                     70
Leu Thr Phe Pro Pro Ala Pro Gly Ser Pro Glu Pro Pro His Leu Ser
                 85
                                     90
```

Arg	Gln	Pro	Glu 100	Gln	Pro	Glu	Gln	Arg 105	Ala	Leu	Gly	Pro	Val 110	Ser	Met
Pro	Asn	Leu 115	Val	Pro	Glu	Val	Ile 120	Asp	Leu	Thr	Cys	His 125	Glu	Ala	Gly
Phe	Pro 130	Pro	Ser	Asp	Asp	Glu 135	Asp	Glu	Glu	Gly	Pro 140	Val	Ser	Glu	Pro
Glu 145	Pro	Glu	Pro	Glu	Pro 150	Glu	Pro	Glu	Pro	Ala 155	Arg	Pro	Thr	Arg	Arg 160
Pro	Lys	Met	Ala	Pro 165	Ala	Ile	Leu	Arg	Arg 170	Pro	Thr	Ser	Pro	Val 175	Ser
Arg	Glu	CAa	Asn 180	Ser	Ser	Thr	Asp	Ser 185	Cys	Asp	Ser	Gly	Pro 190	Ser	Asn
Thr	Pro	Pro 195	Glu	Ile	His	Pro	Val 200	Val	Pro	Leu	Cys	Pro 205	Ile	Lys	Pro
	210					Gly 215					220				
225					230	Gly				235					240
				245		Glu			250	_				255	
			260			Thr		265					270		
Gln	Ser	Val 275	Arg	Glu	Val	Ile	Gln 280	Asn	Pro	Gly	Pro	Arg 285	His	Pro	Glu
	290					Pro 295					300				
Gln 305	Gln	Gln	Gln	Gln	Gln 310	Gln	Gln	Gln	Gln	Gln 315	Gln	Gln	Gln	Gln	Gln 320
Gln	Gln	Gln	Glu	Thr 325	Ser	Pro	Arg	Gln	Gln 330	Gln	Gln	Gln	Gln	Gly 335	Glu
Asp	Gly	Ser	Pro 340	Gln	Ala	His	Arg	Arg 345	Gly	Pro	Thr	Gly	Tyr 350	Leu	Val
Leu	Asp	Glu 355	Glu	Gln	Gln	Pro	Ser 360	Gln	Pro	Gln	Ser	Ala 365	Leu	Glu	Cys
His	Pro 370	Glu	Arg	Gly	Cys	Val 375	Pro	Glu	Pro	Gly	Ala 380	Ala	Val	Ala	Ala

Ser 385	ГÀЗ	Gly	Leu	Pro	Gln 390	Gln	Leu	Pro	Ala	Pro 395	Pro	Asp	Glu	Asp	Asp 400
Ser	Ala	Ala	Pro	Ser 405	Thr	Leu	Ser	Leu	Leu 410	Gly	Pro	Thr	Phe	Pro 415	Gly
Leu	Ser	Ser	Cys 420	Ser	Ala	Asp	Leu	Lys 425	Asp	Ile	Leu	Ser	Glu 430	Ala	Ser
Thr	Met	Gln 435	Leu	Leu	Gln	Gln	Gln 440	Gln	Gln	Glu	Ala	Val 445	Ser	Glu	Gly
Ser	Ser 450	Ser	Gly	Arg	Ala	Arg 455	Glu	Ala	Ser	Gly	Ala 460	Pro	Thr	Ser	Ser
Lys 465	Asp	Asn	Tyr	Leu	Gly 470	Gly	Thr	Ser	Thr	Ile 475	Ser	Asp	Asn	Ala	Lys 480
				485					490	Gly				495	
			500					505					510		Tyr
Ala	Pro	Leu 515	Leu	Gly	Val	Pro	Pro 520	Ala	Val	Arg	Pro	Thr 525	Pro	Cys	Ala
	530					535				Asp	540				
545					550					555					Thr 560
_				565					570	Ser				575	
_			580					585					590		Lys
	_	595					600					605			Tyr
Asn	Phe 610	Pro	Leu	Ala	Leu	Ala 615	Gly	Pro	Pro	Pro	Pro 620	Pro	Pro	Pro	Pro
													_		
625					630					635					Ser 640
Ala	Trp	Ala	Ala	Ala 645	Ala	Ala	Gln	Cys	Arg 650	Tyr	Gly	Asp	Leu	Ala 655	Ser
Leu	His	Gly	Ala 660	Gly	Ala	Ala	Gly	Pro 665	Gly	Ser	Gly	Ser	Pro 670	Ser	Ala

Ala	Ala	Ser 675	Ser	Ser	Trp	His	Thr 680	Leu	Phe	Thr	Ala	Glu 685	Glu	Gly	Gln
Leu	Tyr 690	Gly	Pro	Cys	Gly	Gly 695	Gly	Gly.	Gly	Gly	Gly 700	Gly	Gly	Gly	Gly
Gly 705	Gly	Gly	Gly	Gly	Gly 710	Gly	Gly	Gly	Gly	Gly 715	Gly	Gly	Glu	Ala	Gly 720
Ala	Val	Ala	Pro	Tyr 725	_	Tyr	Thr	Arg	Pro 730	Pro	Gln	Gly	Leu	Ala 735	Gly
Gln	Glu	Ser	Asp 740	Phe	Thr	Ala	Pro	Asp 745	Val	Trp	Tyr	Pro	Gly 750	Gly	Met
Val	Ser	Arg 755	Val	Prò	Tyr	Pro	Ser 760	Pro	Thr	Cys	Val	Lys 765	Ser	Glu	Met
Gly	Pro 770	Trp	Met	Asp	Ser	Tyr 775	Ser	Gly	Pro	Tyr	Gly 780	Asp	Met	Arg	Leu
Glu 785	Thr	Ala	Arg	Asp	His 790	Val	Leu	Pro	Ile	Asp 795	Tyr	Tyr	Phe	Pro	Pro 800
Gln	Lys	Thr	Cys	Leu 805	Ile	Cys	Gly	Asp	Glu 810	Ala	Ser	Gly	Cys	His 815	Tyr
Gly	Ala	Leu	Thr 820	Cys	Gly	Ser	Cys	Lys 825	Val	Phe	Phe	Lys	Arg 830	Ala	Ala
Glu	Gly	Lys 835	Gln	Lys	Tyr	Leu	Cys 840	Ala	Ser	Arg	Asn	Asp 845	Сув	Thr	Ile
Asp	Lys 850	Phe	Arg	Arg	Lys	Asn 855	Cys	Pro	Ser	Cys	Arg 860	Leu	Arg	Lys	Cys
Tyr 865	Glu	Ala	Gly	Met	Thr 870	Leu	Gly	Ala	Arg	Lys 875	Leu	Lys	Lys	Leu	Gly 880
Asn	Leu	Lys	Leu	Gln 885	Glu	Glu	Gly	Glu	Ala 890	Ser	Ser	Thr	Thr	Ser 895	Pro
Thr	Glu	Glu	Thr 900	Thr	Gln	Lys	Leu	Thr 905	Val	Ser	His	Ile	Glu 910	Gly	Tyr
Glu	Cys	Gln 915	Pro	Ile	Phe	Leu	Asn 920	Val	Leu	Glu	Ala	Ile 925	Glu	Pro	Gly
Val	Val 930	Cys	Ala	Gly	His	Asp 935	Asn	Asn	Gln	Pro	Asp 940	Ser	Phe	Ala	Ala
Leu 945	Leu	Ser	Ser	Leu	Asn 950	Glu	Leu	Gly	Glu	Arg 955	Gln	Leu	Val	His	Val 960

Val Lys Trp Ala Lys Ala Leu Pro Gly Phe Arg Asn Leu His Val Asp 965 970 975

Asp Gln Met Ala Val Ile Gln Tyr Ser Trp Met Gly Leu Met Val Phe 980 985 990

Ala Met Gly Trp Arg Ser Phe Thr Asn Val Asn Ser Arg Met Leu Tyr 995 1000 1005

Phe Ala Pro Asp Leu Val Phe Asn Glu Tyr Arg Met His Lys Ser Arg 1010 1015 1020

Met Tyr Ser Gln Cys Val Arg Met Arg His Leu Ser Gln Glu Phe Gly 1025 1030 1035 1040

Trp Leu Gln Ile Thr Pro Gln Glu Phe Leu Cys Met Lys Ala Leu Leu 1045 1050 1055

Leu Phe Ser Ile Ile Pro Val Asp Gly Leu Lys Asn Gln Lys Phe Phe 1060 1065 1070

Asp Glu Leu Arg Met Asn Tyr Ile Lys Glu Leu Asp Arg Ile Ile Ala 1075 1080 1085

Cys Lys Arg Lys Asn Pro Thr Ser Cys Ser Arg Arg Phe Tyr Gln Leu 1090 1095 1100

Thr Lys Leu Leu Asp Ser Val Gln Pro Ile Ala Arg Glu Leu His Gln 1105 1110 1115 1120

Phe Thr Phe Asp Leu Leu Ile Lys Ser His Met Val Ser Val Asp Phe 1125 1130 1135

Pro Glu Met Met Ala Glu Ile Ile Ser Val Gln Val Pro Lys Ile Leu 1140 1145 1150

Ser Gly Lys Val Lys Pro Ile Tyr Phe His Thr Gln 1155 1160

<210> 8

<211> 898

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic amino acid sequence construct 12S/TAD

<400> 8

Met Arg His Ile Ile Cys His Gly Gly Val Ile Thr Glu Glu Met Ala 1 5 10 15

Ala	Ser	Leu	Leu 20	Asp	Gln	Leu	Ile	Glu 25	Glu	Val	Leu	Ala	Asp 30	Asn	Leu
Pro	Pro	Pro 35	Ser	His	Phe	Glu	Pro 40	Pro	Thr	Leu	His	Glu 45	Leu	Tyr	Asp
Leu	Asp 50	Val	Thr	Ala	Pro	Glu 55	Asp	Pro	Asn	Glu	Glu 60	Ala	Val	Ser	Gln
Ile 65	Phe	Pro	Asp	Ser	Val 70	Met	Leu	Ala	Val	Gln 75	Glu	Gln	Ile	Asp	Leu 80
Leu	Thr	Phe	Pro	Pro 85	Ala	Pro	Gly	Ser	Pro 90	Glu	Pro	Pro	His	Leu 95	Ser
Arg	Gln	Pro	Glu 100	Gln	Pro	Glu	Gln	Arg 105		Leu	Gly	Pro	Val 110	Ser	Met
Pro	Asn	Leu 115	Val	Pro	Glu	Val	Ile 120	Asp	Leu	Thr	Cys	His 125	Glu	Ala	Gly
Phe	Pro 130	Pro	Ser	Asp	Asp	Glu 135	Asp	Glu	Glu	Gly	Pro 140	Val	Ser	Glu	Pro
Glu 145	Pro	Glu	Pro	Glu	Pro 150	Glu	Pro	Glu	Pro	Ala 155	Arg	Pro	Thr	Arg	Arg 160
Pro	Lys	Met	Ala	Pro 165	Ala	Ile	Leu	Arg	Arg 170	Pro	Thr	Ser	Pro	Val 175	Ser
Arg	Glu	Cys	Asn 180	Ser	Ser	Thr	Asp	Ser 185	Cys	Asp	Ser	Gly	Pro 190	Ser	Asn
Thr	Pro	Pro 195	Glu	Ile	His	Pro	Val 200	Val	Pro	Leu	Cys	Pro 205	Ile	Lys	Pro
Val	Ala 210	Val	Arg	Val	Gly	Gly 215	Arg	Arg	Gln	Ala	Val 220	Glu	Cys	Ile	Glu
Asp 225	Leu	Leu	Asn	Glu	Pro 230	Gly	Gln	Pro	Leu	Asp 235	Leu	Ser	Сув	Lys	Arg 240
Pro	Arg	Pro	Ala	Ala 245	Ala	Glu	Val	Gln	Leu 250		Leu	Gly	Arg	Val -255	Tyr
Pro	Arg	Pro	Pro 260	Ser	Lys	Thr	Tyr	Arg 265	Gly	Ala	Phe	Gln	Asn 270	Leu	Phe
Gln	Ser	Val 275	Arg	Glu	Val	Ile	Gln 280	Asn	Pro	Gly	Pro	Arg 285	His	Pro	Glu
Ala	Ala 290	Ser	Ala	Ala	Pro	Pro 295	Gly	Ala	Ser	Leu	Leu 300	Leu	Leu	Gln	Gln

Gln 305	Gln	Gln	Gln	Gln	Gln 310	Gln	Gln	Gln	Gln	Gln 315	Gln	Gln	Gln	Gln	Gln 320
Gln	Gln	Gln	Glu	Thr 325	Ser	Pro	Arg	Gln	Gln 330	Gln	Gln	Gln	Gln	Gly 335	Glu
Asp	Gly	Ser	Pro 340	Gln	Ala	His	Arg	Arg 345	Gly	Pro	Thr	Glý	Tyr 350	Leu	Val
Leu	Asp	Glu 355	Glu	Gln	Gln	Pro	Ser 360	Gln	Pro	Gln	Ser	Ala 365	Leu	Glu	Cys
His	Pro 370	Glu	Arg	Gly	Cys	Val 375	Pro	Glu	Pro	Gly	Ala 380	Ala	Val	Ala	Ala
Ser 385	Lys	Gly	Leu	Pro	Gln 390	Gln	Leu	Pro	Ala	Pro 395	Pro	Asp	Glu	Asp	Asp 400
Ser	Ala	Ala	Pro	Ser 405	Thr	Leu	Ser	Leu	Leu 410	Gly	Pro	Thr	Phe	Pro 415	Gly
Leu	Ser	Ser	Cys 420	Ser	Ala	Asp	Leu	Lys 425	Asp	Ile	Leu	Ser	Glu 430	Ala	Ser
Thr	Met	Gln 435	Leu	Leu	Gln	Gln	Gln 440	Gln	Gln	Glu	Ala	Val 445	Ser	Glu	Gly
Ser	Ser 450	Ser	Gly	Arg	Ala	Arg 455	Glu	Ala	Ser	Gly	Ala 460	Pro	Thr	Ser	Ser
Lys 465	Asp	Asn	Tyr	Leu	Gly 470	Gly	Thr	Ser	Thr	Ile 475	Ser	Asp	Asn	Ala	Lys 480
Glu	Leu	Cys	Lys	Ala 485	Val	Ser	Val	Ser	Met 490	Gly	Leu	Gly	Val	Glu 495	Ala
Leu	Glu	His	Leu 500	Ser	Pro	Gly.	Glu	Gln 505	Leu	Arg	Gly	Asp	Cys 510	Met	Tyr
Ala	Pro	Leu 515	Leu	Gly	Val	Pro	Pro 520	Ala	Val	Arg	Pro	Thr 525	Pro	Cys	Ala
Pro	Leu 530	Ala	Glu	Сув	Lys	Gly 535	Ser	Leu	Leu	Asp	Asp 540	Ser	Ala	Gly	Lys
Ser 545	Thr	Glu	Asp	Thr	Ala 550	Glu	Tyr	Ser	Pro	Phe 555	Lys	Gly	Gly	Tyr	Thr 560
Lys	Gly	Leu	Glu	Gly 565	Glu	Ser	Leu	Gly	Cys 570	Ser	Gly	Ser	Ala	Ala 575	Ala
Gly	Ser	Ser	Gly 580	Thr	Leu	Glu	Leu	Pro 585	Ser	Thr	Leu	Ser	Leu 590	Tyr	Lys

Ser	Gly	Ala 595	Leu	Asp	Glu	Ala	Ala 600	Ala	Tyr	Gln	Ser	Arg 605	Asp	Tyr	Tyr
Asn	Phe 610	Pro	Leu	Ala	Leu	Ala 615	Gly	Pro	Pro	Pro	Pro 620	Pro	Pro	Pro	Pro
His 625	Pro	His	Ala	Arg	Ile 630	Lys	Leu	Glu	Asn	Pro 635	Leu	Asp	Tyr	Gly	Ser 640
Ala	Trp	Ala	Ala	Ala 645	Ala	Ala	Gln	Сув	Arg 650	Tyr	Gly	Asp	Leu	Ala 655	Ser
Leu	His	Gly	Ala 660	Gly	Ala	Ala	Gly:	Pro 665	Gly	Ser	Gly	Ser	Pro 670	Ser	Ala
Ala	Ala	Ser 675	Ser	Ser	Trp	His	Thr 680	Leu	Phe	Thr	Ala	Glu 685	Glu	Gly	Gln
Leu	Tyr 690	Gly	Pro	Cys	Gly	Gly 695	Gly	Gly	Gly	Gly	Gly 700	Gly	Gly	Gly	Gly
Gly 705	Gly	Gly	Gly	Gly	Gly 710	Gly	Gly	Gly	Gly	Gly 715	Gly	Gly	Glu	Ala	Gly 720
Ala	·Val	Ala	Pro	Tyr 725	Gly	Tyr	Thr	Arg	Pro 730	Pro	Gln	Gly	Leu	Ala 735	Gly
Gln	Glu	Ser	Asp 740	Phe	Thr	Ala	Pro	Asp 745	Val	Trp	Tyr	Pro	Gly 750	Gly	Met
Val	Ser	Arg 755	Val	Pro	Tyr	Pro	Ser 760	Pro	Thr	Cys	Val	Lys 765	Ser	Glu	Met
Gly	Pro 770	Trp	Met	Asp	Ser	Tyr 775	Ser	Gly	Pro	Tyr	Gly 780	Asp	Met	Arg	Leu
Glu 785	Thr	Ala	Arg	Asp	His 790	Val	Leu	. Pro	·Ile	Asp 795	Tyr	Tyr	Phe	Pro	Pro 800
Gln	Lys	Thr	Сув	Leu 805	Ile	Cys	Gly	Asp	Glu 810	Ala	Ser	Gly	Cys	His 815	Tyr
Gly	Ala	Leu	Thr 820	Cys	Gly	Ser	Cys	Lys 825	Val	Phe	Phe	Lys	Arg -830		Ala
Glu	Gly	Lys 835		Lys	Tyr	Leu	Cys 840		Ser	Arg	Asn	Asp 845	Cys	Thr	Ile
Asp	Lys 850	Phe	Arg	Arg	Lys	Asn 855	. Cys	Pro	Ser	Cys	Arg 860	Leu	Arg	Lys	Cys
Tyr 865	Glu	Ala	Gly	Met	Thr 870	Leu	Gly	Ala	Arg	Lys 875	Leu	Lys	Lys	Leu	Gly 880

Asn Leu Lys Leu Gln Glu Glu Gly Glu Ala Ser Ser Thr Thr Ser Pro 885 890 895

Thr Glu

<210> 9

<211> 343

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic amino acid sequence construct 12S/DBD

<400> 9

Met Arg His Ile Ile Cys His Gly Gly Val Ile Thr Glu Glu Met Ala 1 5 10 15

Ala Ser Leu Leu Asp Gln Leu Ile Glu Glu Val Leu Ala Asp Asn Leu 20 25 30

Pro Pro Pro Ser His Phe Glu Pro Pro Thr Leu His Glu Leu Tyr Asp 35 40 45

Leu Asp Val Thr Ala Pro Glu Asp Pro Asn Glu Glu Ala Val Ser Gln 50 55 60

Ile Phe Pro Asp Ser Val Met Leu Ala Val Gln Glu Gly Ile Asp Leu65707580

Leu Thr Phe Pro Pro Ala Pro Gly Ser Pro Glu Pro Pro His Leu Ser 85 90 95

Arg Gln Pro Glu Gln Pro Glu Gln Arg Ala Leu Gly Pro Val Ser Met 100 105 110

Pro Asn Leu Val Pro Glu Val Ile Asp Leu Thr Cys His Glu Ala Gly 115 120 125

Phe Pro Pro Ser Asp Asp Glu Asp Glu Glu Gly Pro Val Ser Glu Pro 130 135 140

Glu Pro Glu Pro Glu Pro Glu Pro Glu Pro Ala Arg Pro Thr Arg Arg 145 150 155 160

Pro Lys Met Ala Pro Ala Ile Leu Arg Arg Pro Thr Ser Pro Val Ser 165 170 175

Arg Glu Cys Asn Ser Ser Thr Asp Ser Cys Asp Ser Gly Pro Ser Asn 180 185 190

Thr Pro Pro Glu Ile His Pro Val Val Pro Leu Cys Pro Ile Lys Pro 200 195 Val Ala Val Arg Val Gly Gly Arg Arg Gln Ala Val Glu Cys Ile Glu 215 220 Asp Leu Leu Asn Glu Pro Gly Gln Pro Leu Asp Leu Ser Cys Lys Arg Pro Arg Pro Ala Ala Ala Lys Thr Cys Leu Ile Cys Gly Asp Glu Ala 250 Ser Gly Cys His Tyr Gly Ala Leu Thr Cys Gly Ser Cys Lys Val Phe Phe Lys Arg Ala Ala Glu Gly Lys Gln Lys Tyr Leu Cys Ala Ser Arg Asn Asp Cys Thr Ile Asp Lys Phe Arg Arg Lys Asn Cys Pro Ser Cys Arg Leu Arg Lys Cys Tyr Glu Ala Gly Met Thr Leu Gly Ala Arg Lys 315 Leu Lys Lys Leu Gly Asn Leu Lys Leu Gln Glu Glu Gly Glu Ala Ser 325 330 Ser Thr Thr Ser Pro Thr Glu 340 <210> 10 <211> 986 <212> DNA <213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic nucleotide sequence construct EA1

<400> 10
atgagacata ttatctgcca cggaggtgtt attaccgaag aaatggccgc cagtcttttg 60
gaccagctga tcgaagaggt actggctgat aatcttccac ctcctagcca ttttgaacca 120
cctacccttc acgaactgta tgatttagac gtgacggccc ccgaagatcc caacgaggag 180
gcggtttcgc agatttttcc cgactctgta atgttggcgg tgcaggaagg gattgactta 240
ctcacttttc cgccggcgcc cggttctccg gagccgcctc acctttcccg gcagcccgag 300
cagccggagc agagagcctt gggtccggtt tctatgccaa accttgtacc ggaggtgatc 360
gatttacct gccacgaggc tggcttcca cccagtgacg acgaggtgat agagggtgag 420
gagtttgtgt tagattatgt ggagcacccc gggcacggtt gcaggatta gaagggtgag 420
cggaggaata cgggggaccc agatattatg tgttcgcttt gctatatgag gacctgtggc 540
atgtttgtct acagtaagtg aaaattatg gcagtgggtg atagagtggt gggtttggtg 600
tggtaatttt tttttaatt tttacagttt tgtggtttaa agaattttgt attgtgattt 660
ttttaaaagg tcctgtgtct gaacctgagc ctgagcccga gccagaaccg gagcctgcaa 720
gacctacccg ccgtcctaaa atggcgcctg ctatcctgag acgcccgaca tcacctgtgt 780

```
ctagagaatg caatagtagt acggatagct gtgactccgg tccttctaac acacctcctg 840
agatacaccc ggtggtcccg ctgtgcccca ttaaaccagt tgccgtgaga gttggtgggc 900
gtcgccaggc tgtggaatgt atcgaggact tgcttaacga gcctgggcaa cctttggact 960
tgagctgtaa acgccccagg ccataa
<210> 11
<211> 986
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      nucleotide sequence construct EA1/TAD
<400> 11
atgagacata ttatctgcca cggaggtgtt attaccgaag aaatggccgc cagtcttttg 60
gaccagctga tcgaagaggt actggctgat aatcttccac ctcctagcca ttttgaacca 120
cctacccttc acgaactgta tgatttagac gtgacggccc ccgaagatcc caacgaggag 180
gcggtttcgc agatttttcc cgactctgta atgttggcgg tgcaggaagg gattgactta 240
ctcacttttc cgccggcgcc cggttctccg gagccgcctc acctttcccg gcagcccgag 300
cagccggagc agagagcctt gggtccggtt tctatgccaa accttgtacc ggaggtgatc 360
gatcttacct gccacgaggc tggctttcca cccagtgacg acgaggatga agagggtgag 420
gagtttgtgt tagattatgt ggagcacccc gggcacggtt gcaggtcttg tcattatcac 480
cggaggaata cgggggaccc agatattatg tgttcgcttt gctatatgag gacctgtggc 540
atgtttgtct acagtaagtg aaaattatgg gcagtgggtg atagagtggt gggtttggtg 600
tggtaatttt ttttttaatt tttacagttt tgtggtttaa agaattttgt attgtgattt 660
ttttaaaagg tcctgtgtct gaacctgagc ctgagcccga gccagaaccg gagcctgcaa 720
gacctacccg ccgtcctaaa atggcgcctg ctatcctgag acgcccgaca tcacctgtgt 780
ctagagaatg caatagtagt acggatagct gtgactccgg tccttctaac acacctcctg 840
agatacaccc ggtggtcccg ctgtgcccca ttaaaccagt tgccgtgaga gttggtgggc 900
gtcgccaggc tgtggaatgt atcgaggact tgcttaacga gcctgggcaa cctttggact 960
tgagctgtaa acgccccagg ccataa
<210> 12
<211> 1022
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      nucleotide sequence construct EA1/AR
atgagacata ttatctgcca cggaggtgtt attaccgaag aaatggccgc cagtcttttg 60
gaccagetga tegaagaggt aetggetgat aatetteeae eteetageea ttttgaacca 120
cctacccttc acgaactgta tgatttagac gtgacggccc ccgaagatcc caacgaggag 180
gcggtttcgc agatttttcc cgactctgta atgttggcgg tgcaggaagg gattgactta 240
ctcacttttc cgccggcgcc cggttctccg gagccgcctc acctttcccg gcagcccgag 300
cagccggagc agagagcctt gggtccggtt tctatgccaa accttgtacc ggaggtgatc 360
gatcttacct gccacgaggc tggctttcca cccagtgacg acgaggatga agagggtgag 420
gagtttgtgt tagattatgt ggagcacccc gggcacggtt gcaggtcttg tcattatcac 480
```

cggaggaata cgggggaccc agatattatg tgttcgcttt gctatatgag gacctgtggc 540

```
atgtttgtct acagtaagtg aaaattatgg gcagtgggtg atagagtggt gggtttggtg 600
tggtaatttt ttttttaatt tttacagttt tgtggtttaa agaattttgt attgtgattt 660
ttttaaaagg tcctgtgtct gaacctgagc ctgagcccga gccagaaccg gagcctgcaa 720
gacctacceg cegtectaaa atggegeetg etateetgag acgeeegaca teacetgtgt 780
ctagagaatg caatagtagt acggatagct gtgactccgg tccttctaac acacctcctg 840
agatacaccc ggtggtcccg ctgtgcccca ttaaaccagt tgccgtgaga gttggtgggc 900
gtcgccaggc tgtggaatgt atcgaggact tgcttaacga gcctgggcaa cctttggact 960
tgagctgtaa acgccccagg ccataagcgg ccgcagaagt gcagttaggg ctgggaaggg 1020
                                                                  1022
<210> 13
<211> 1022
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     nucleotide sequence construct EA1/AR(C685Y)
<400> 13
atgagacata ttatctgcca cggaggtgtt attaccgaag aaatggccgc cagtcttttg 60
gaccagetga tegaagaggt aetggetgat aatetteeae eteetageea ttttgaacca 120
cctacccttc acgaactgta tgatttagac gtgacggccc ccgaagatcc caacgaggag 180
gcggtttcgc agatttttcc cgactctgta atgttggcgg tgcaggaagg gattgactta 240
ctcacttttc cgccggcgcc cggttctccg gagccgcctc acctttcccg gcagcccgag 300
cagccggagc agagagcctt gggtccggtt tctatgccaa accttgtacc ggaggtgatc 360
gatettacet gecacgagge tggettteca eccagtgacg acgaggatga agagggtgag 420
gagtttgtgt tagattatgt ggagcacccc gggcacggtt gcaggtcttg tcattatcac 480
cggaggaata cgggggaccc agatattatg tgttcgcttt gctatatgag gacctgtggc 540
atgtttgtct acagtaagtg aaaattatgg gcagtgggtg atagagtggt gggtttggtg 600
tggtaatttt ttttttaatt tttacagttt tgtggtttaa agaattttgt attgtgattt 660
ttttaaaagg tcctgtgtct gaacctgagc ctgagcccga gccagaaccg gagcctgcaa 720
gacctacccg ccgtcctaaa atggcgcctg ctatcctgag acgcccgaca tcacctgtgt 780
ctagagaatg caatagtagt acggatagct gtgactccgg tccttctaac acacctcctg 840
agatacaccc ggtggtcccg ctgtgcccca ttaaaccagt tgccgtgaga gttggtgggc 900
gtcgccaggc tgtggaatgt atcgaggact tgcttaacga gcctgggcaa cctttggact 960
tgagctgtaa acgccccagg ccataagcgg ccgcagaagt gcagttaggg ctgggaaggg 1020
<210> 14
<211> 36
                        ______
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     primer
```

tcactcggat ccaccgggac tgaaaatgag acatat

<210> 15 <211> 41 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic primer	
<400> 15 tacatcactc gcggccgctg gcctggggcg tttacagctc a	41
<210> 16 <211> 41 <212> DNA <213> Artificial Sequence	·
<220> <223> Description of Artificial Sequence: Synthetic primer	
<400> 16 tacatcactc gcggccgcag aagtgcagtt agggctggga a	41
<210> 17 <211> 39 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic primer	
<400> 17 tcactcctcg agtcactggg tgtggaaata gatgggctt	39
<210> 18 <211> 41 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic primer	
<400> 18 tacatcactc gcggccgcag aagtgcagtt agggctggga a	41

<210> 19 <211> 39 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic primer	
<400> 19 tcactcctcg agtcactcag tggggctggt ggtgctgga	39
<210> 20 <211> 43 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic primer	
<400> 20 tacatcactc gcggccgcaa agacctgcct gatctgtgga gat	43
<210> 21 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic primer	
<400> 21 cccaagcttt ccttctaaca cacctcctg	29
<210> 22 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic primer	
<400> 22 cgggatccga ggtcagatgt aaccaaga	28

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.