

Final Presentation

[Data Science Digital Talent Scholarship 2024]

[CHALLENGE I] Persebaran Virus Covid 19 di Indonesia

[Studi Kasus Persebaran Covid 19 Di Indonesia]

1. Jumlah total kasus Covid-19 aktif yang baru di setiap provinsi lalu diurutkan berdasarkan jumlah kasus yang paling besar

Row	Province •	Total_New_Active_Ca
1	Jawa Barat	13496
2	DKI Jakarta	10922
3	Banten	2558
4	Jawa Tengah	1423
5	Jawa Timur	1136
6	Daerah Istimewa Yogyakarta	669
7	Sumatera Utara	664
8	Sulawesi Utara	565
9	Bali	474

2. Mengambil 2 (dua) location iso code yang memiliki total kematian karena Covid-19 paling sedikit

Row /	Location_ISO_Code ▼	le	Total_Deaths ▼
1	ID-MA		147196
2	ID-MU		16751 <mark>1</mark>

3. Data tentang tanggal-tanggal ketika rate kasus recovered di Indonesia paling tinggi berserta jumlah ratenya

Row /	Date ▼	Highest_Recovery_Ra
1	2020-03-26	28.0
2	2020-03-28	13.0
3	2020-04-01	5.8571
4	2020-04-08	2.405
5	2020-04-09	2.25
6	2020-04-10	2.1396
7	2020-04-11	2.1238
8	2020-04-12	1.916699999999
9	2020-04-13	1.88
10	2020-04-14	1.88
11	2020-04-16	1.3824
12	2020-04-17	1.3429
12	2020-04-19	1 202

4. Total case fatality rate dan case recovered rate dari masing-masing location iso code yang diurutkan dari data yang paling rendah

SELECT

Location_ISO_Code,

SUM(Case_Fatality_Rate) AS
Total_Case_Fatality_Rate,

SUM(Case_Recovered_Rate) AS
Total_Case_Recovered_Rate
FROM

`data_covid19.kasus_covid`
GROUP BY

Location_ISO_Code
ORDER BY

Total_Case_Recovered_Rate ASC;

Total_Case_Fatality_Rate ASC,

Row	Location_ISO_Code ▼	Total_Case_Fatality_l	Total_Case_Recove
1	ID-KU	14.28500000000	733.7265999999
2	ID-NT	15.93450000000	700.8207999999
3	ID-PA	16.89530000000	608.2326000000
4	ID-JA	17.32679999999	760.5292000000
5	ID-SG	19.66869999999	741.6644000000
6	ID-KB	20.56099999999	771.5737999999
7	ID-SR	21.75560000000	732.8722999999
8	ID-SN	22.45740000000	775.2974000000
9	ID-SB	24.01030000000	754.2531
10	ID-PB	24.33410000000	757.1986999999

5. Data tentang tanggal-tanggal saat total kasus Covid-19 mulai menyentuh angka 30.000-an

SELECT Date
FROM kasus_covid.covid19
WHERE Total_Cases >= 30000

/	Date ▼	Row
	2020-06-06	1
	2020-06-07	2
	2020-06-08	3
	2020-06-09	4
	2020-06-10	5
	2020-06-11	6
	2020-06-12	7
	2020-06-13	8
	2020-06-14	9
	2020-06-15	10
	2020-06-16	11
	2020-06-17	12

6. Jumlah data yang tercatat ketika kasus Covid-19 lebih dari atau sama dengan 30.000

SELECT COUNT(*)

FROM kasus_covid.covid19

WHERE Total_Cases >= 30000

Row	f0_ ▼	le
1		14399

[Studi Kasus Persebaran Covid 19 Di Indonesia]

Analisis Persebaran Populasi dan Jumlah Kematian

Variabel **Population** dan **Area_km2**_ dapat memberikan pemahaman tentang **kepadatan populasi dan ukuran wilayah** yang dapat mempengaruhi penyebaran virus.

Perbandingan Tingkat Kematian dan Kesembuhan

New_Recovered, New_Deaths, dan Province memberikan pemahaman tentang tingkat kematian dan kesembuhan kasus COVID-19 dari berbagai provinsi di Indonesia

Analisis Penyebaran Kasus Baru dan Kematian

Growth_Factor_of_New_Cases dan Growth_Factor_of_New_Deaths memberikan gambaran tentang kecepatan penyebaran kasus baru dan kematian harian.

Analisis Perbandingan Total Kasus dengan Tingkat Kematian

New_Cases dan New_Deaths memberikan pemahaman tentang perbandingan total kasus yang terjadi dengan tingkat kematian karena Covid-19 di setiap bulan.

Analisis Perbandingan Total Urbanisasi dan Ruralisasi

Data tentang **Total_Urban Villages** dan **Total_Rural_Villages** dapat memberikan gambaran tentang **seberapa urbanisasi dan ruralisasi suatu wilayah**, yang dapat mempengaruhi penyebaran virus.

Analisis Perbandingan Demografi Kasus Covid

Dengan data Location_ISO_code dan New_cases kita dapat membandingkan kasus COVID-19 di berbagai provinsi.

[CHALLENGE II] Churn Classification

Project Overview

Customer churn didefinisikan sebagai ketika pelanggan atau pelanggan berhenti melakukan bisnis dengan perusahaan atau layanan.

Karena sebagian besar perusahaan memiliki banyak pelanggan, sulit untuk mempertahankan pelanggan individual. Biayanya akan lebih besar daripada pendapatan tambahannya. Namun, perusahaan dapat berkonsentrasi pada retensi pelanggan hanya pada klien yang "berisiko tinggi" jika mereka tahu pelanggan mana yang kemungkinan besar akan meninggalkan perusahaan. Memperluas cakupannya dan mendapatkan lebih banyak pelanggan adalah tujuan utamanya. Pelanggan adalah kunci sukses di pasar ini.

Karena mempertahankan pelanggan yang sudah ada jauh lebih murah daripada mendapatkan pelanggan baru, perpindahan pelanggan adalah metrik penting. **Untuk mengurangi churn pelanggan, perusahaan telekomunikasi perlu memprediksi pelanggan mana yang berisiko tinggi mengalami churn.**

Business Understanding

Business Understanding

Problem Statements

- 1. Perkembangan industri telekomunikasi memperketat persaingan antar provider
- 2. Perusahaan harus dapat mengetahui pelanggan yang akan churn dan faktor yang mempengaruhinya

Goals

1. Melakukan prediksi agar bisa memetakan strategi bisnis untuk mempertahankan pelanggan.

Solutions Statements

- 1. Membuat model machine learning yang dapat memprediksi pelanggan yang berpotensi churn
- 2. Mengetahui pola/parameter pelanggan churn

Data Understanding

Data Understanding

Dataset Info

Dataset yang digunakan dalam proyek ini merupakan data yang berisi informasi mengenai customer churn. Berikut adalah informasi pada dataset:

- Dataset memiliki format CSV
- Dataset memiliki 4250 sampel dengan 20 fitur yang dapat digunakan
- Dataset tidak memiliki missing value (null value) dan duplikat data

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4250 entries, 0 to 4249
Data columns (total 20 columns):
# Column
                                  Non-Null Count Dtype
    state
                                  4250 non-null object
    account length
                                  4250 non-null int64
    area code
                                  4250 non-null
                                                 object
    international plan
                                  4250 non-null
                                                 object
    voice mail plan
                                  4250 non-null
                                                 object
    number vmail messages
                                                 int64
6 total day minutes
                                  4250 non-null float64
    total_day_calls
                                  4250 non-null int64
8 total day charge
                                  4250 non-null float64
9 total eve minutes
                                  4250 non-null float64
10 total eve calls
                                  4250 non-null int64
 11 total eve charge
                                  4250 non-null float64
 12 total night minutes
                                  4250 non-null float64
 13 total night calls
                                  4250 non-null
                                                 int64
 14 total night charge
                                  4250 non-null
                                                 float64
 15 total intl minutes
                                  4250 non-null float64
 16 total intl calls
                                                 int64
 17 total intl charge
                                  4250 non-null
                                                 float64
 18 number_customer_service_calls 4250 non-null
                                                 int64
 19 churn
                                  4250 non-null object
dtypes: float64(8), int64(7), object(5)
memory usage: 664.2+ KB
```

Data Understanding

Dataset Info

- Dataset terdiri dari 15 fitur numerikal dan 5 fitur kategorikal
- 15 fitur numerikal diantaranya sebagai berikut:

```
['account length', 'number vmail messages', 'total day minutes', 'total day calls',
  'total day charge', 'total eve minutes', 'total eve calls', 'total eve charge',
'total night minutes', 'total night calls', 'total night charge', 'total intl minutes',
  'total intl calls', 'total intl charge', 'number customer service calls']
```

• 5 fitur kategorikal diantaranya sebagai berikut:

```
['state', 'area_code', 'international_plan', 'voice_mail_plan', 'churn']
```


Exploratory Data Analyst (EDA)

Account Length

Grafik ini menggambarkan **banyak orang yang berlangganan** selama jangka waktu tertentu:

Bar plot tersebut menunjukkan bahwa mayoritas customers ternyata berlangganan ke layanan ISP ini cukup lama (~100 bulan, 8 tahun).

Number of Voice Email

Untuk variabel ini, bar plot menunjukkan tingginya frekuensi orang yang tidak menerima pesan suara (voicemail) sama sekali. Ternyata, mayoritas orang tidak menerima voicemail karena tidak mendaftarkan diri ke program voicemail.

②		total_day_minutes	total_day_calls	total_day_charge
	total_day_minutes	1.000000	0.000747	1.000000
	total_day_calls	0.000747	1.000000	0.000751
	total_day_charge	1.000000	0.000751	1.000000

•		total_night_minutes	total_night_calls	total_night_charge
	total_night_minutes	1.000000	0.023815	0.999999
	total_night_calls	0.023815	1.000000	0.023798
	total_night_charge	0.999999	0.023798	1.000000

	total_eve_minutes	total_eve_calls	total_eve_charge
total_eve_minutes	1.000000	0.003101	1.00000
total_eve_calls	0.003101	1.000000	0.00312
total_eve_charge	1.000000	0.003120	1.00000

Day, Night and Eve Variables

Dalam dataset ini, penggunaan telepon customer pada periode waktu tertentu dicatat dalam 3 variabel, yaitu **total calls** (jumlah panggilan), **total minutes** (lamanya panggilan), dan **total charge** (banyak tagihan).

Ternyata, apabila dicari koefisien korelasi Pearson antara ketiganya, akan didapatkan korelasi sempurna antara total minutes dan total charge. Dengan demikian, bisa dipilih salah satu variabel saja sebagai input features pada model machine learning. Di sini, baik variable day, night, maupun eve, dipilih total_minuets dan total_calls, sedangkan total charge akan di drop.

Day, Night and Eve Variables*

Grafik di samping menggambarkan jumlah dan durasi panggilan pada malam hari, dimana terlihat ada probable outlier untuk variabel jumlah panggilan, yaitu pengguna dengan jumlah panggilan 0 saat malam dan intensitas normal di periode lain. Fenomena tersebut mungkin saja terjadi karena pengguna terkait benar-benar tidak melakukan aktivitas saat malam hari, sehingga data points tersebut bukan pasti error dan tidak perlu dihapus.

Hal ini juga terjadi untuk variabel **total_day_calls** dan **total_eve_calls**, sehingga juga tidak ada data yang dihapus untuk variabel tersebut

International Variables

Pada dataset ini, ada 4 variabel yang berhubungan dengan panggilan internasional yang diduga colinear satu sama lain. Ternyata, koefisien korelasi menunjukkan tingginya hubungan antara total_intl_minutes dan total_intl_charge saja, sehingga variabel charge akan di-drop dan yang lain di-keep.

•		international_plan	total_intl_minutes	total_intl_calls	total_intl_charge
	international_plan	1 000000	0.023815	0.006956	0.023799
	total_intl_minutes	0.023815	1.000000	0.019328	0.999993
	total_intl_calls	0.006956	0.019328	1.000000	0.019414
	total_intl_charge	0.023799	0.999993	0.019414	1.000000

Di sisi lain, **central tendency total_intl_calls** relatif rendah dibanding jenis panggilan lain, sehingga **16 kali panggilan** sudah dianggap probable outlier. Karena masih masuk akal, maka data ini akan **tetap dipertahankan dalam dataset**.

Number Customer Service Call

Pada variabel

number_customer_service_calls, karena central tendency variabelnya rendah, upper outer fence-nya pun cukup rendah, sehingga 6 kali panggilan pun sudah dianggap tidak masuk akal dan dikategorikan sebagai probable outlier.

Dengan demikian, tidak dilakukan penghapusan data lagi di variabel ini.

Churn

Grafik ini menggambarkan frekuensi pelanggan yang lanjut (**churn='no'**) dan berhenti (**churn='yes'**) berlangganan.

Pada bar plot, terlihat bahwa jumlah customer yang melanjutkan berlangganan jauh lebih banyak daripada yang berhenti. Idealnya, dilakukan teknik seperti *Synthetic Minority Oversampling Technique* (**SMOTE**) untuk mengatasi imbalanced classification, namun pada challenge ini dataset training akan diterima seadanya dengan asumsi dataset representatif terhadap kondisi populasi.

Label kategori biner ini juga perlu di-encode pada feature engineering dengan mengganti 'no' menjadi 0 dan 'yes' menjadi 1.

EDA - Univariate Analysis (Categorical)

International Plan dan Voice Mail Plan

Kedua variabel ini menunjukkan status langganan customer terhadap layanan **international plan** dan **voicemail plan**. Pengguna yang tidak memiliki layanan voicemail tidak bisa menerima pesan suara sama sekali (sehingga

number_vmail_messages=0), sedangkan orang yang tidak memiliki international plan masih bisa melakukan panggilan internasional namun dengan rate yang lebih tinggi.

EDA - Univariate Analysis (Categorical)

Area Code*

Di dataset ini, hanya ada 3 kategori dalam variabel kode area. Hal ini cukup mencurigakan karena area code di USA umumnya dibagi berdasarkan wilayah geografisnya, sehingga karena ada 51 negara bagian maka pasti ada >51 kode area.

Ternyata, untuk data dengan kode area 415 yang seharusnya ada di California (CA), tercatat ada 51 unique values pada variabel state. Ini menunjukkan variabel **area_code** kemungkinan besar adalah error yang harus di drop pada feature engineering.

EDA - Bivariate

Area Code

Area 415 memiliki jumlah (count) customer paling tinggi. Secara rasio, pada setiap area memiliki persentase customer yang churn tidak jauh berbeda yaitu 14 - 15 %

EDA - Bivariate

International Plan

Angka pelanggan yang memiliki International Plan cukup rendah namun memiliki tingkat churn yang tinggi • Churn pada pelanggan yang memiliki Internatiol plan ini kemungkinan dapat terjadi karena biaya roaming yang tinggi atau masalah kualitas jaringan provider

EDA - Bivariate

Voice Mail

Mayoritas pelanggan tidak memiliki voice mail plan, dan pelanggan yang tidak memiliki voice mail plan lebih berpotensi untuk churn. Kemungkinan pelanggan churn karena jika pelanggan tidak memiliki voice mail plan, mereka tidak akan dapat menerima pesan suara dari orang-orang yang mencoba menghubungi mereka ketika mereka tidak dapat menjawab telepon. Ini dapat menyebabkan ketidaknyamanan bagi pelanggan.

Total Charge, Calls, Minute

Total harga yang dibebankan pada panggilan di pagi hari memiliki pengaruh yang cukup besar terhadap tingkat churn pelanggan. Terlihat bahwa mayoritas pelanggan churn yang memiliki durasi menit panggilan lebih lama, mendapatkan harga panggilan yang lebih besar. Hal tersebut kemungkinan dapat disebabkan karena pelanggan tidak puas terhadap harga untuk telepon dengan durasi yang lama (mungkin terlalu mahal untuk pagi hari).

Handling Outliers

Outliers masih dapat ditoleransi atau bukan kesalahan input data atau nilai ekstrim, sehingga tidak dilakukan penanganan pada outliers

Features Encoding

Dilakukan Label Encoding pada fitur 'international_plan', 'voice_mail_plan', 'churn' (Yes – 1, No – 0), dan area_code

```
le = LabelEncoder()
#
for col in df_en.columns:
   if df_en[col].dtype == '0':
        df_en[col] = le.fit_transform(df_en[col])
```


Features Selection

Memilih fitur yang akan digunakan pada model. Melakukan drop pada beberapa fitur diantaranya:

'number_vmail_messages ',
'total_day_minutes',
'total_eve_minutes',
'total_night_minutes',
'total_intl_minutes', 'state'

Modeling Dan Evaluation

Model Evaluation

Random Forest adalah model
terbaik daripada model lain yang
dibandingkan, karena menggunakan
algoritma pembelajaran supervisi
(Supervised Learning) dan memiliki nilai
AUC tinggi untuk memaksimalkan
prediksi.

	Models	Recall	AUC	AUC Train
1	Random Forest Classiefier	0.89	0.93	0.94
O	Logistic Regression	0.78	0.84	0.82

Confusion Matrix

Recall berkonsentrasi pada seberapa banyak pelanggan churn yang dapat diidentifikasi. Model dapat menentukan jumlah pelanggan yang mungkin **meninggalkan layanan** (TP+FP). Hal ini dilakukan untuk membantu bisnis menghindari masalah dan mempertahankan pelanggan. Selain itu, **kesalahan prediksi customer** non-churn (FN) memiliki nilai paling rendah, menurut hasil confusion matrix.

Appendix	Link
Gdocs (SQL Query)	https://docs.google.com/document/d/1P-YbAG m5-UcLisZN4aETeSvEdKxXDxzh_jwCvpqJHGI/ edit?usp=sharing
Dashboard	https://lookerstudio.google.com/reporting/1f8f 8fe5-ee21-4524-9c62-cd3f382f462a
Churn Classification	https://colab.research.google.com/drive/1wut7s C3xb3568nl9z6REyS-G_2o03OE1?usp=sharing

DASHBOARD SEBARAN KASUS COVID-19

DASHBOARD SEBARAN KASUS COVID-19

Thank You