Отчет по лабораторной работе №N по Мат Моделированию

1-2. Содержательная постановка задачи

1.1

Суть поставленной задачи:

Исследовать изменчивость численности первой армии $N_2(t)$ длясоотношенийтемповпотерьиз — задействийсоперника (\beta_1 / \beta2), атакжеисследоватьизменчивостьармии N_2(t) приусловии получения подкрепления каждой армией (\gamma 1 != 0 и \gamma 2 != 0)

1.2

Суть поставленной задачи:

Исследовать изменчивость численности партизан $N_2(t)$ для разных соотношений темпов потерь из-за действий соперника (β_1/β_2) , а так же исследовать изменчивость численности армии $N_1(t)$ при условии получения подкрепления армией (\gamma 1!= 0 и \gamma 2!=0)

3. Концептуальная постанока задачи

3.1 и 3.2

Главной характеристикой противоборствующих сторон в рассматриваемой модели являются численности сторон $N_1(t)>=0$ и $N_2(t)>=0$. Если какой-то момент времени одна из численностей обращается в нуль, то данная сторона считается потерпевшей поражение (притом, что в этот момент численность другой стороны положительная).

В случае действий между регулярными частями динамика их численности определяется тремя факторами:

- 1. Скоростью уменьшения состава из-за причин, непосредственно не связанных с боевыми действиями (болезни, травмы, дезертирство), которое учитывается коэффициентами $\alpha_1(t)$ и $\alpha_2(t)$ соответственно:
- 2. Темпом потерь, обусловленных боевыми действиями противоборствующей стороны (которые в свою очередь определяются качеством ее стратегии и тактики, уровнем морального духа и

профессионализмом бойцов, вооружениями и т.д.), которое учитывается коэффициентами $\beta_1(t)$ и $\beta_2(t)$ соответственно;

3. Скоростью поступления подкреплений, которая считается некоторой заданной функцией времени $\gamma_1(t)$ и $\gamma_2(t)$

4. Математическая постановка задачи

4.1

При этих предположениях для $N_1(t), N_2(t)$ получаем систему уравнений

$$\left\{ egin{aligned} rac{dN_1}{dt} &= -lpha_1(t)N_1 - eta_2(t)N_2 + \gamma_1(t), \ rac{dN_2}{dt} &= -lpha_2(t)N_2 - eta_1(t)N_1 + \gamma_2(t), \end{aligned}
ight.$$

из которой при заданных функциях $lpha_i,eta_i,\gamma_i$ (i=1,2) и начальных значениях $N_1(t_0)=N_1(0),$ $N_2(t_0)=N_2(0),$ однозначно определяется решение в любой момент времени t>0. Коэффициенты $lpha_{1,2}>=0$ характеризуют скорости потерь в силу обычных (не боевых) причин, $eta_{1,2}>=0$ - темпы потерь из-за действий соперника, $\gamma_{1,2}>=0$ -скорости поступлений подкреплений

Используем модель Ланчестера

$$\left\{ egin{aligned} rac{dN_1}{dt} &= -lpha_1(t)N_1 - eta_2(t)N_2 + \gamma_1(t), \ rac{dN_2}{dt} &= -lpha_2(t)N_2 - eta_1(t)N_1 + \gamma_2(t), \end{aligned}
ight.$$

в частном случае:

 $1.\gamma_1=\gamma_2=0$ (стороны не получают подкреплений и как бы предоставлены сами себе). $2.\alpha_1=const, \alpha_1=const, \beta_1=const, \beta_2=const$ (последнее означает, в частности, что у противников всегда найдется достаточное количество вооружений, которое может использоваться годными к несению службы бойцам).

Модель становиться автономной и принимает вид

$$egin{cases} rac{dN_1}{dt} = -lpha_1N_1 - eta_2N_2, \ rac{dN_2}{dt} = -lpha_2N_2 - eta_1N_1. \end{cases}$$

Из данной системы уравнений видно, что в данном случае численности сторон с течением времени могут только убывать

4.2

Темпы потерь партизан, проводящих операции в разных местах на некоторой территории, пропорционален не только численности армейких соединений

 $N_1(t)$, ноичисленностисамихпратизан, т.е.определяетсячленомвида\beta_1(t)*N_1(t)*N_2(t)

.Врезультатемодельстановитсянелинейной :
$$\begin{cases} \frac{dN_1}{dt} = -\alpha_1(t)N_1 - \beta_2(t)N_2 + \gamma_1(t), \\ \frac{dN_2}{dt} = -\alpha_2(t)N_2 - \beta_1(t)N_1N_2 + \gamma_2(t), \end{cases}$$

Всевеличиныимеюттотжесмысл, чтоивмоделибоевыхдействийдвухармий. Коэффициенты \alpha_{1,2}>=0характеризуютскоростипотерьвсилуобчных (небоевых) причин,\beta_{1,2}>=0 — темпыпотерьиз — задействийсоперника,\gamma_{1,2}>=0\$ - скорости поступления подкреплений.

Рассмотрим теперь действия регулярной армии против партизан в тех же упрощениях, что и в предыдущем случае. Модель приобретает вид

$$\begin{cases} rac{dN_1}{dt} = -eta_2 N_2, \ rac{dN_2}{dt} = -eta_1 N_1 N_2. \end{cases}$$
 Численностисторон, какипрежде, убываютсовременем, ноподругомузакону.

5. Реализация

5.1

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
def ode_n1_n2(N, t, alpha, beta, gamma):
    N1, N2 = N
    dN1 = -alpha[0] * N1 - beta[0] * N2 + gamma[0]
    dN2 = -alpha[1] * N2 - beta[1] * N1 + gamma[1]
    return [dN1, dN2]
alpha = [0.05, 0.05]
gamma = [0, 0]
plt.figure(figsize=(10, 6))
for beta1 in np.arange(0, 1.1, 0.2):
    beta = [beta1, 1.0]
    N0 = [500, 500]
    t = np.linspace(0, 1, 100)
    N = odeint(ode_n1_n2, N0, t, args=(alpha, beta, gamma))
    plt.plot(t, N[:, 0], label=f'$\\beta = {beta[0] / beta[1]:.5f}$')
plt.xlabel('t')
plt.ylabel('N1')
plt.title('Изменчивость численности первой армии N1(t)')
plt.legend()
plt.grid()
plt.show()
alpha = [0.05, 0.05]
beta = [0.1, 0.1]
plt.figure(figsize=(10, 6))
for gamma1 in np.arange(0, 151, 50):
    gamma = [gamma1, 50]
    N0 = [500, 500]
    t = np.linspace(0, 1, 100)
    N = odeint(ode_n1_n2, N0, t, args=(alpha, beta, gamma))
```

```
plt.plot(t, N[:, 1], label=f'$\\gamma1/\\gamma2 = {gamma[0] / gamma[1]:.5f}$')
plt.xlabel('t')
plt.ylabel('N2')
plt.title('Изменчивость численности второй армии N2(t)')
plt.legend()
plt.grid()
plt.show()
```

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
def ode_n1_n2(N, t, alpha, beta, gamma):
    N1, N2 = N
    dN1 = -alpha[0] * N1 - beta[1] * N2 + gamma[0]
    dN2 = -alpha[1] * N2 - beta[0] * N1 * N2 + gamma[1]
    return [dN1, dN2]
alpha = [0.05, 0.05]
gamma = [0, 0]
plt.figure(figsize=(10, 6))
for beta1 in np.arange(0, 1.1, 0.2):
    beta = [beta1, 0.7]
    N\Theta = [100, 1000]
    t = np.linspace(0, 1, 100)
    N = odeint(ode_n1_n2, N0, t, args=(alpha, beta, gamma))
    plt.plot(t, N[:, 1], label=f'beta1/beta2 = {beta[0] / beta[1]:.5f}')
plt.xlabel('t')
plt.ylabel('N2')
plt.title('Изменчивость численности партизан N2(t)')
plt.legend()
plt.grid()
plt.show()
plt.figure(figsize=(10, 6))
alpha = [0.05, 0.05]
beta = [0.1, 0.1]
for gamma1 in np.arange(0, 151, 50):
    gamma = [gamma1, 50]
    N0 = [500, 500]
    t = np.linspace(0, 1, 100)
```

```
N = odeint(ode_n1_n2, N0, t, args=(alpha, beta, gamma))

plt.plot(t, N[:, 0], label=f'gamma1/gamma2 = {gamma[0] / gamma[1]:.5f}')

plt.xlabel('t')
plt.ylabel('N1')
plt.title('Изменчивость численности армии N1(t)')
plt.legend()
plt.grid()
plt.show()
```

6. Численное иследование модели

6.1

0.4

0.6

t

0.8

1.0

0.2

0.0

Изменчивость численности армии N1(t)

