

Analog Transmission

This presentation will cover the fundamental principles of analog transmission, exploring key concepts and practical applications.

The History of Analog Transmission

- Ancient Communication

 Early forms of
 communication, such as
 smoke signals and drums.
- Telegraphy and Telegraph

 While technically digital (using Morse code).
- The Telephone Era

 Alexander Graham Bell's
 invention of the telephone in
 1876 marked the beginning of
 analog voice transmission.
- Radio and Television Broadcasting

The development of radio and television broadcasting expanded the use of analog signals for mass media.

1) Digital to Analog Conversion

Definition

Digital-to-analog conversion is the process of converting discrete digital signals into continuous analog waveforms for transmission.

Key Components

Modulator: Converts digital signals into analog waveforms. Demodulator: Recovers the original digital data from the analog signal. Link: The physical medium that carries the signal (wires, radio waves, etc.).

Steps of Digital to Analog Conversion

Sampling

Converts continuoustime signals into discrete-time signals by taking samples at regular intervals.

Encoding

Represents the sampled values using a binary code, allowing for digital representation of the signal.

Modulation

Impresses the digital data onto a carrier wave, making it suitable for transmission over analog channels.

Importance of Digital to Analog Conversion

Compatibility

Digital data can be transmitted over existing analog infrastructure, such as telephone lines and radio waves.

Communication

Enables digital communication through traditional media, expanding the reach of digital signals.

Data Rate Versus Signal Rate

Amplitude Shift Keying (ASK)

Frequency Shift Keying (FSK)

Binary FSK (BFSK)

Uses two distinct frequencies to represent digital "1" and "0".

Multi-level FSK

Employs multiple frequencies, allowing for higher data rates.

Phase Shift Keying (PSK)

Definition

Modulates the phase of a carrier wave based on the digital signal.

BPSK

Uses two distinct phases to represent digital "1" and "0".

QPSK

Employs four distinct phases, providing higher data rates.

3

Quadrature Amplitude Modulation (QAM)

Definition

1

Modulates the phase of a carrier wave based on the digital signal.

BPSK

フ

Uses two distinct phases to represent digital "1" and "0".

QPSK

3

Employs four distinct phases, providing higher data rates.

Quadrature Amplitude Modulation (QAM)

Quadrature Amplitude Modulation (QAM) - Combines amplitude and phase

Advantages:

- High Data Transmission Rates
- Efficient Bandwidth Utilization

Disadvantages:

- Complex Implementation
- Sensitive to Noise and Interference

Constellation Diagrams in QAM

Visualizing Modulated Signals

Constellation diagrams offer a visual representation of modulated signals, mapping their variations in amplitude and phase. This graphical tool is essential for understanding QAM.

Signal Analysis and Error Detection

By analyzing constellation diagrams, we can assess signal quality, identify potential errors, and optimize system performance. This is crucial for reliable communication.

Types of Constellation Diagrams

BPSK

Binary Phase Shift Keying (BPSK) uses two points on the constellation diagram, representing binary 0 and 1, to encode data.

QPSK

Quadrature Phase Shift Keying (QPSK) uses four points, representing combinations of amplitude and phase shifts, to encode data.

QAM

Quadrature Amplitude Modulation (QAM) employs multiple points, often arranged in a grid pattern, to represent numerous combinations of amplitude and phase shifts for encoding data.

Analog-to-Analog Conversion

Analog-to-analog conversion, or analog modulation, involves representing analog information using an analog signal. Modulation is essential for transmitting analog signals over bandpass channels, like radio waves.

ANALIOG MODULATION

Amplitude Modulation (AM)

1 AM Definition

In Amplitude Modulation (AM), the amplitude of a carrier wave is varied in proportion to the amplitude of the input signal.

2 AM Applications

AM is widely used in radio broadcasting, airband communication, and other applications where simplicity and cost-effectiveness are crucial.

3 AM Advantages and Disadvantage

While AM is simple and cost-effective, it's prone to noise and less efficient than other modulation techniques.

Frequency Modulation (FM)

2

FM Definition

Frequency Modulation (FM) varies the frequency of the carrier wave in proportion to the amplitude of the input signal.

FM Applications

FM is commonly used in FM radio broadcasting and two-way radios, offering higher fidelity and less susceptibility to noise than AM.

Phase Modulation (PM)

1

PM Definition

In Phase Modulation (PM), the phase of the carrier wave is varied in proportion to the amplitude of the input signal.

2

PM Applications

PM finds applications in GPS technology, mobile communication, and other systems that utilize precise phase control for reliable data transmission.