Primordial Non-Gaussianity: Simulations

Jaafar Chakrani w/ J. R. Bond, J. Braden, T. Morrison, G. Stein.

27/08/2019@IAP

Outline

- Introduction
- 1. Non-Gaussianity from inflationary models
- 2. Modeling non-Gaussianity for numerical simulations
- 3. Independent Component Analysis
 - Conclusion

Outline

- Introduction
- 1. Non-Gaussianity from inflationary models
- 2. Modeling non-Gaussianity for numerical simulations
- 3. Independent Component Analysis
 - Conclusion

Why non-Gaussianity?

Detection of primordial non-Gaussianity is like:

 Detection of Higgs particles for the Standard Model

- Direct detection of Dark Matter

$$\mathcal{L}(\phi) = \frac{1}{2} (\partial \phi)^2 - V(\phi)$$

- Inflaton motion drives the exponential expansion
- Predicts Gaussian and nearly scale invariant perturbations

Classical inflation Single-field slow-roll

$$\mathcal{L}(\phi) = \frac{1}{2} (\partial \phi)^2 - V(\phi)$$
$$\phi(\mathbf{x}, t) = \phi_0(t) + \delta \phi(\mathbf{x}, t)$$

- Background evolution: solves flatness and horizon problems

Classical inflation Single-field slow-roll

Perturbations: seeds to the CMB and LSS

Classical inflationSingle-field slow-roll

Observable: Curvature Perturbations

$$ds_3^2 = a^2 e^{2\zeta} \delta_{ij} dx^i dx^j$$

Observable: Curvature Perturbations

$$ds_3^2 = a^2 e^{2\zeta} \delta_{ij} dx^i dx^j$$

Physical variable: $\delta\phi({f x},t)
ightarrow \zeta({f x},t)$

Observable: Curvature Perturbations

$$ds_3^2 = a^2 e^{2\zeta} \delta_{ij} dx^i dx^j$$

Physical variable: $\delta\phi(\mathbf{x},t) o \zeta(\mathbf{x},t)$

Classical inflation predicts:
$$P_{\zeta} \approx \frac{1}{2M_P^2\epsilon} \left(\frac{H}{2\pi}\right)^2$$

$$\approx A_{\phi} \left(\frac{k}{k_0}\right)^{n_s-1}$$
 Measured by Planck

Curvature perturbations

Curvature perturbations constant curvature constant density

constant curvatur

- Gravity

$$S_{EH} = \int d^4x \sqrt{-g} \left(\frac{R}{2} + \mathcal{L}_m \right) \to S_{F(R)} = \int d^4x \sqrt{-g} \left(\frac{F(R)}{2} + \mathcal{L}_m \right)$$

$$S_{EH} = \int d^4x \sqrt{-g} \left(\frac{R}{2} + \mathcal{L}_m \right) \to S_{f(\phi)} = \int d^4x \sqrt{-g} \left(\frac{f(\phi)}{2} + \mathcal{L}_m \right)$$

- Gravity
- Stochastic inflation

$$\phi(\mathbf{x},t) = \phi_0(t) + \delta\phi(\mathbf{x},t) \rightarrow \phi(\mathbf{x},t) = \phi_{cg}(\mathbf{x},t) + \phi_{fg}(\mathbf{x},t)$$

- Gravity
- Stochastic inflation

$$\phi(\mathbf{x},t) = \phi_0(t) + \delta\phi(\mathbf{x},t) \rightarrow \phi(\mathbf{x},t) = \phi_{cg}(\mathbf{x},t) + \phi_{fg}(\mathbf{x},t)$$

- Gravity
- Stochastic inflation

$$\dot{\phi}(\mathbf{x}, t) = \phi_0(t) + \delta\phi(\mathbf{x}, t) \to \phi(\mathbf{x}, t) = \phi_{cg}(\mathbf{x}, t) + \phi_{fg}(\mathbf{x}, t)$$
$$\dot{\phi}_0 = -\frac{1}{3H}V'(\phi_0) \to \dot{\phi}_{cg} = -\frac{1}{3H}V'(\phi_{cg}) + \frac{H^{3/2}}{2\pi}\xi(t)$$

- Gravity
- Stochastic inflation
- Multiple fields

$$\mathcal{L} = \frac{1}{2} (\partial \phi)^2 - V(\phi) \to \mathcal{L} = \sum_{i} \frac{1}{2} (\partial \phi_i)^2 - V(\phi_1, \dots, \phi_n)$$

- Gravity
- Stochastic inflation
- Multiple fields
- ..

Outline

- Introduction
- 1. Non-Gaussianity from inflationary models
- 2. Modeling non-Gaussianity for numerical simulations
- 3. Independent Component Analysis
- Conclusion

During inflation: potential instability

Two fields: $\phi + \chi$

 ϕ -localized instability in the potential along χ

$$V(\chi,\phi) = \frac{1}{4}\lambda\phi^4 + \Delta V(\phi,\chi)$$

During inflation: potential instability

Two fields: $\phi + \chi$

 ϕ -localized instability in the potential along χ

$$V(\chi,\phi) = \frac{1}{4}\lambda\phi^4 + \Delta V(\phi,\chi)$$

During inflation: potential instability

Two fields: $\phi + \chi$

 ϕ -localized instability in the potential along χ

$$V(\chi,\phi) = \frac{1}{4}\lambda\phi^4 + \Delta V(\phi,\chi)$$

During inflation: stochastic inflation

The non-trivial inflaton trajectory may yield non-Gaussian contributions

Non-Gaussianity from stochastic inflation can also give more accurate PBH formation [Bullock, Primack '97]

After inflation: preheating [Greene, Kofman, Linde, Starobinsky '97]

Fields: Inflaton
$$\phi$$
 + massless χ
Potential: $V(\phi,\chi)=\frac{1}{4}\lambda\phi^4+\frac{1}{2}g^2\chi^2\phi^2$
$$\tilde{\chi}_k''+\left[\kappa^2+\frac{g^2}{\lambda}\operatorname{cn}^2(\tilde{\tau},1/\sqrt{2})\right]\tilde{\chi}_k=0,\quad \kappa^2=\frac{k^2}{\lambda A_\phi^2}$$

$$\tilde{\chi}_k(\tilde{\tau})=e^{\mu(\kappa,g^2/\lambda)\tilde{\tau}}f(\tilde{\tau})$$

After inflation: preheating [Greene, Kofman, Linde, Starobinsky '97]

Fields: Inflaton ϕ + massless χ

Potential:
$$V(\phi,\chi) = \frac{1}{4}\lambda\phi^4 + \frac{1}{2}g^2\chi^2\phi^2$$

$$\tilde{\chi}_k(\tilde{\tau}) = e^{\mu(\kappa, g^2/\lambda)\tilde{\tau}} f(\tilde{\tau})$$

After inflation: preheating

[Bond, Frolov, Huang, Kofman '09]

Obtained from many highly accurate symplectic lattice simulations.

$$\zeta = \zeta_G + F_{NL}(\chi)$$

Outline

- Introduction
- 1. Non-Gaussianity from inflationary models
- 2. Modeling non-Gaussianity for numerical simulations
- 3. Independent Component Analysis
 - Conclusion

Inflation: lattice simulations

Solve the fields evolution equations in FLRW metric:

- Initial conditions: Bunch-Davies vacuum
- Equations: $\ddot{\phi}_i \frac{1}{a^2} \Delta \phi_i + 3H \dot{\phi}_i + \frac{\partial V}{\partial \phi_i} (\phi_1, ..., \phi_n) = 0$ + Friedmann eqs.
- Curvature perturbations: $\dot{\zeta} = \frac{\dot{\rho} + 3H(\rho + p)}{3H(\rho + p)} = \frac{1}{a^2} \sum_{i} \frac{\nabla \cdot \left(\dot{\phi}_i \nabla \phi_i\right)}{3(\rho + p)}$

Inflation: lattice simulations

Solve the fields evolution equations in FLRW metric:

- Initial conditions: Bunch-Davies vacuum
- Equations: $\ddot{\phi}_i \frac{1}{a^2} \Delta \phi_i + 3H \dot{\phi}_i + \frac{\partial V}{\partial \phi_i} (\phi_1, ..., \phi_n) = 0$ + Friedmann eqs.
- Curvature perturbations: $\dot{\zeta} = \frac{\dot{\rho} + 3H(\rho + p)}{3H(\rho + p)} = \frac{1}{a^2} \sum_{i} \frac{\nabla \cdot \left(\dot{\phi}_i \nabla \phi_i\right)}{3(\rho + p)}$

Non-Gaussianity with vanishing, e.g., bispectrum? (T. Morrison)

N-body approximation: Peak Patch

[Stein, Alvarez, Bond '18]

Fast generation of halo catalogues

Full-sky extragalactic CMB mocks: WebSky 15.4Gpc/h, 12288³ particles https://mocks.cita.utoronto.ca/

Mapmaking capabilities

Uncorrelated non-Gaussianity

$$P(k) = A_{\phi} \left(\frac{k}{k_0}\right)^{n_s - 1}$$

Effects on statistics

Effects on statistics

Correlated non-Gaussianity

Smoothing

Smoothing \rightarrow more compact structures Also used after applying F_{NL}

Effects on statistics

Effects on statistics

Outline

- Introduction
- Non-Gaussianity from inflationary models
- 2. Modeling non-Gaussianity for numerical simulations
- 3. Independent Component Analysis
 - Conclusion

ICA: principle

ICA: principle

ICA: principle

Non-Gaussianity = Independence

Non-Gaussianity = Independence

Each component of \mathbf{x} is a linear combination of the original signals

Non-Gaussianity = Independence

Each component of x is a linear combination of the original signals \Rightarrow more Gaussian (Central Limit theorem)

Non-Gaussianity = Independence

Each component of \mathbf{x} is a linear combination of the original signals

- ⇒ more Gaussian (Central Limit theorem)
- ⇒ each extracted component needs to maximize non-Gaussianity to match one of the source signals

Non-Gaussianity measures

Kurtosis

Negentropy

Non-Gaussianity measures

Kurtosis

$$\kappa_4 = \mathbb{E}\left[\left(\frac{X-\mu}{\sigma}\right)^4\right]$$

Negentropy

$$H(\mathbf{y}) = -\int f(\mathbf{y}') \ln f(\mathbf{y}') d\mathbf{y}'$$
$$J(\mathbf{y}) = H(\mathbf{y}_{\mathbf{G}}) - H(\mathbf{y})$$

Non-Gaussianity measures

Kurtosis

$$\kappa_4 = \mathbb{E}\left[\left(\frac{X-\mu}{\sigma}\right)^4\right]$$

Easily computed from a sample Sensitive to outliers

Negentropy

$$H(\mathbf{y}) = -\int f(\mathbf{y}') \ln f(\mathbf{y}') d\mathbf{y}'$$
$$J(\mathbf{y}) = H(\mathbf{y}_{\mathbf{G}}) - H(\mathbf{y})$$

Only approximated in practice Robust measure of non-Gaussianity

Sources and measurements

Test: white noise

Test: "pink noise"

Test: "brown noise"

Outline

- Introduction
- Non-Gaussianity from inflationary models
- 2. Modeling non-Gaussianity for numerical simulations
- 3. Numerical evolution: Large-Scale Structure
 - Conclusion

Conclusion

- Non-trivial non-Gaussianity may arise in (post-)inflationary models
- Lattice simulations can be used to understand complicated models
- Spatially-localized prominence, either correlated or uncorrelated, can skew the PDF and have a peaky contribution to the power spectrum.
- ICA, as a potential way to extract non-Gaussian contributions, gives better results with negentropy as a non-Gaussianity measure.