ANÁLISIS NUMÉRICO PARA INGENIERÍA

JUAN PABLO ALVARADO VILLALOBOS KEVIN STEVEN CORDERO ZÚÑIGA EMANUEL ESQUIVEL LÓPEZ LUIS LÓPEZ SALAS

Tarea 1 - I Parte

La tarea consiste en hallar la distancia d entre los nodos A y B por medio de la ecuación (1).

$$F(d) = \frac{\log_{10}(x_1/d)}{\sigma_R^2 \ln(10)} + \frac{d(x_2 - d)}{\sigma_c^2}$$
 (1)

- 1. Significados de los parámetros.
 - r: Este valor es el radio de alcance del sensor.
 - x_1 y x_2 : Es la posición de los nodos A y B.
 - ullet λ : Parámetro de distribución de Poisson.
 - σ_{dB} : Raíz de la varianza que experimenta la señal.
 - ullet α : Exponente de perdida de ruta.
 - g(d): Denota la probabilidad que haya una conexión de largo d entre nodos.
- 2. Para los métodos propuestos determinamos los valores iniciales.
 - a) Biseccion: Intervalo [a, b] con a = 6 y b = 6, 5
 - b) Secante: Valores $x_0 = 6$ y $x_1 = 6, 5$.
 - c) Falsa posición: Valores $x_0 = 6$ y $x_1 = 6, 5$.

Estos valores se determinaron analizando la gráfica de la función con GeoGebra, la cual se adjunta en la figura.

Figura 1: Intersección con el eje X de la función.

3. Método Steffensen-secant

a) Formulación matemática:

$$x_{k+1} = x_k - \frac{[f(x_k)]^3}{[f(x_k + f(x_k)) - f(x_k)][f(x_k) - f(y_k)]}$$
(2)

Donde y_k es la k-esima iteración del método de Steffensen dado por:

$$y_k \rightarrow x_{k+1} = x_k - \frac{f(x_k)}{\rho(x_k)}$$

con

$$\rho(x_k) = \frac{f(x_k + f(x_k))}{f(x_k)} - 1$$

b) Valores iniciales:

Este método tiene como valor inicial x_0 , el cual debe estar cerca de la raíz.

- c) Ventajas y desventajas:
 - Ventajas
 - Solo se necesita un valor inicial.
 - Converge rápidamente.
 - No necesita la derivada de la función.
 - Desventajas
 - Si el valor de x_0 no esta lo suficientemente cerca de la raíz puede fallar o converger mas lento.
 - Puede tomarse mas tiempo ya que posee una doble evaluación.
- d) Pseudocódigo.

Paso 1: Primero se selecciona un valor inicial x0 cercano a la raíz.

Paso 2: Se asigna a una variable interna a el valor inicial.

Paso 3: Se calcula yk mediante el método de Steffensen.

Paso 4: Se utiliza la ecuación (2) para calcular el termino siguiente xk+1

Paso 5: Se cambia el valor de a por xk+1.

Paso 6: Se repiten los pasos con el nuevo valor de a hasta cumplir la condición de parada.

4. Resumen de los métodos:

Metodo	Valores Iniciales	k	x_k	$ f(x_k) $
Biseccion	a = 6 y b = 6, 5	34	6,19194970690296	$4,22 \times 10^{-12}$
Secante	$x_0 = 6 \text{ y } x_1 = 6, 5$	5	6,191949706902693	$4,88 \times 10^{-15}$
Falsa posicion	$x_0 = 6 \text{ y } x_1 = 6, 5$	4	6,191949706902693	$4,88 \times 10^{-15}$
Steffensen-Secante	$x_0 = 6$	3	6,191949706902693	$4,88 \times 10^{-15}$

Cuadro 1: Tabla de resumen usando como criterio $|f(x_k)| \leq 10^{-10}$

En la figura 3, se muestra la comparativa del comportamiento del error en función de las iteraciones.

Figura 2: Gráfica de error de los métodos utilizados.

Se concluye que el método de Steffensen - Secante, es la mejor opción, ya que para valores iniciales solo es necesario 1, mientras que los demás métodos necesitan 2 los cuales tienen ciertas condiciones, ademas de esto este método tiene una velocidad de convergencia mayor que los otros mencionados.

Anexos

Funciones

Acá haremos referencias a las funciones hechas en python.

$$S=\pi r^2$$

```
def S():
    r=10
    return math.pi*r**2
```

$$\sigma_R^2 = \sigma_{dB}^2/(10\alpha)^2$$

```
def R():

a=4

dB=4

return (dB**2)/(10*a)**2
```

$$g(d) = \frac{2S}{\pi} \arccos\left(\frac{d}{2r}\right) - d\sqrt{r^2 - \frac{d^2}{4}}$$

```
def G(d):
    r=10
    return ((2*S())/(math.pi))*math.acos(d/(2*r))-d*math.sqrt(r**2-(d**2)/4)
```

```
k = 10\alpha/\ln(10)
```

```
def k():
    a=4
    return (10*a)/(math.log(10))
```

$$\sigma_c^2 = \frac{g^2(d)}{2\lambda k^2} \left(\frac{1}{g(d)} + \frac{1}{S} \right)$$

```
def C(d):
    L=1
    return ((G(d))**2)/(2*L*(k())**2)*(1/G(d)+1/S())
```

$$F(d) = \frac{\log_{10}(x_1/d)}{\sigma_R^2 \ln(10)} + \frac{d(x_2-d)}{\sigma_c^2}$$

```
def f(d):
    #Valores iniciales
    x1=7
    x2=6
    return (math.log10(x1/d))/(R()*math.log(10))+(d*(x2-d))/(C(d))
```

Método implementado

Función de python asociada a cada parte del método

$$x_{k+1} = x_k - \frac{[f(x_k)]^3}{[f(x_k + f(x_k)) - f(x_k)][f(x_k) - f(y_k)]}$$
(3)

def stef_secant(f,x0,tol):

Método de Steffensen

$$y_k \to x_{k+1} = x_k - \frac{f(x_k)}{\rho(x_k)}$$

def stef(a):
 c=a-f(a)/g(a)
 return c

$$\rho(x_k) = \frac{f(x_k + f(x_k))}{f(x_k)} - 1$$

def g(a):
 c = ((f(a+f(a)))/(f(a)))-1
 return c