Regula de l'Hospitala

Zad 1. Oblicz granicę:

(a)
$$\lim_{x\to 0} \frac{e^x - e^{-x}}{x}$$
;

(b)
$$\lim_{x \to 1^+} \frac{\ln x}{\sqrt{x^2 - 1}};$$

(c)
$$\lim_{x \to 0} \frac{e^x - e^{-x}}{\sin x}$$
; (d) $\lim_{x \to 0} \frac{x - \sin x}{x^3}$; (e) $\lim_{x \to \infty} \frac{\ln(\ln x)}{x}$;

(d)
$$\lim_{x\to 0} \frac{x-\sin x}{x^3}$$

(e)
$$\lim_{x\to\infty} \frac{\ln(\ln x)}{x}$$

(f)
$$\lim_{x\to 0} \frac{e^{2x}-1}{\ln(1+2x)}$$
;

(g)
$$\lim_{x \to 1} \frac{1-x}{\ln x}$$
;

(f)
$$\lim_{x\to 0} \frac{e^{2x}-1}{\ln(1+2x)};$$
 (g) $\lim_{x\to 1} \frac{1-x}{\ln x};$ (h) $\lim_{x\to 1^-} (1-x)\ln(1-x);$ (i) $\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{\sin x}\right);$ (j) $\lim_{x\to 0} \frac{x-\operatorname{tg} x}{x^2\operatorname{tg} x};$ (k) $\lim_{x\to 1} x^{\frac{1}{1-x}};$ (l) $\lim_{x\to \infty} x^{\frac{1}{x}};$ (m) $\lim_{x\to 0} \left(\frac{1}{x^2} - \frac{1}{x\sin x}\right);$ (n) $\lim_{x\to 1} (1-x)\operatorname{tg}\left(\frac{\pi x}{2}\right);$ (o) $\lim_{x\to 0^+} (\operatorname{tg} x)^{\operatorname{tg} x};$ (p) $\lim_{x\to 0^+} \left(\frac{1}{x}\right)^{\sin x};$ (q) $\lim_{x\to 0^+} x^x;$ (r) $\lim_{x\to 0} \left(e^{2x} + x\right)^{\frac{1}{x}};$ (s) $\lim_{x\to 1^-} \frac{\operatorname{tg} \frac{\pi}{2}x}{\ln(1-x)};$ (t) $\lim_{x\to 0^+} \frac{\ln x}{1+2\ln(\sin x)};$ (u) $\lim_{x\to 1} \frac{x\ln x}{x-1};$ (v) $\lim_{x\to \infty} \frac{x}{\ln x};$ (w) $\lim_{x\to 0} \frac{e^{a\sqrt{x}}-1}{\sqrt{\sin bx}};$ (x) $\lim_{x\to 2} \left(2-\frac{x}{2}\right)^{\operatorname{tg} \frac{\pi x}{4}};$ (y) $\lim_{x\to 0} \left(\frac{1}{x^2} - \operatorname{ctg}^2 x\right);$

(i)
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{\sin x}\right);$$

$$\mathbf{(j)} \lim_{x \to 0} \frac{x - \lg x}{x^2 \lg x};$$

(k)
$$\lim_{x \to 1} x^{\frac{1}{1-x}}$$
;

(1)
$$\lim_{x \to \infty} x^{\frac{1}{x}};$$

(m)
$$\lim_{x\to 0} \left(\frac{1}{x^2} - \frac{1}{x\sin x}\right)$$
;

(n)
$$\lim_{x\to 1} (1-x) \operatorname{tg}\left(\frac{\pi x}{2}\right)$$

(o)
$$\lim_{x\to 0^+} (\operatorname{tg} x)^{\operatorname{tg} x};$$

(p)
$$\lim_{x\to 0^+} \left(\frac{1}{x}\right)^{\sin x}$$
;

(q)
$$\lim_{x\to 0^+} x^x$$

(r)
$$\lim_{x\to 0} \left(e^{2x} + x\right)^{\frac{1}{x}}$$
;

(s)
$$\lim_{x \to 1^-} \frac{\operatorname{tg} \frac{\pi}{2} x}{\ln(1-x)}$$

(t)
$$\lim_{x\to 0^+} \frac{\ln x}{1+2\ln(\sin x)}$$
;

(u)
$$\lim_{x\to 1} \frac{x \ln x}{x-1}$$
;

(v)
$$\lim_{x\to\infty}\frac{x}{\ln x}$$
;

(w)
$$\lim_{x\to 0} \frac{e^{a\sqrt{x}}-1}{\sqrt{\sin bx}}$$
;

(x)
$$\lim_{x \to 2} (2 - \frac{x}{2})^{\text{tg } \frac{\pi x}{4}}$$

(y)
$$\lim_{x\to 0} \left(\frac{1}{x^2} - \operatorname{ctg}^2 x\right);$$

(z)
$$\lim_{x \to \infty} \frac{e^{\frac{1}{x^2}-1}}{2 \operatorname{arc} \operatorname{ctg} x^2 - \pi};$$

Regula de l'Hospitala - odpowiedzi

Zad 1.

)
$$\frac{1}{6}$$
; (e) 0;

(a) 2; (b) 0; (c) 2; (d)
$$\frac{1}{6}$$
; (e) 0; (f) ; (g) -1; (h) 0; (i) 0; (j) ; (k) e^{-1} ; (l) 1;

k)
$$e^{-1}$$
: (l) 1

(m)
$$-\frac{1}{6}$$
; (n); (o); (p) 1; (q) 1; (r) 0; (s); (t); (u); (v); (w) $\frac{a}{\sqrt{b}}$; (x) e^{π} ;

$$\mathbf{w}) \frac{a}{\sqrt{\lambda}};$$
 (2)

(y)
$$\frac{2}{3}$$
; (z) $-\frac{1}{2}$;

$$(z) -\frac{1}{2}$$

Różniczka funkcji

Zad 1. Wyznacz przybliżona wartość wyrażenia:

(a)
$$\sqrt[3]{63}$$
; (b) $\arctan (1,005)$; (c) $\sin (29^{\circ})$; (d) $2^{2,9999}$;

(c)
$$\sin(29^\circ)$$
;

(d)
$$2^{2,9999}$$

Różniczka funkcji - odpowiedzi

Zad 1.

(a)
$$4 - \frac{1}{48} \approx 3,9792;$$

(b)
$$\frac{\pi}{4} + \frac{0.005}{2} \approx 0.7879$$

(c)
$$\frac{1}{2} - \frac{\pi\sqrt{3}}{360} \approx 0,4849;$$

(a)
$$4 - \frac{1}{48} \approx 3,9792$$
; (b) $\frac{\pi}{4} + \frac{0,005}{2} \approx 0,7879$; (c) $\frac{1}{2} - \frac{\pi\sqrt{3}}{360} \approx 0,4849$; (d) $8 - 0,0008 \ln 2 \approx 7,9994$;

Styczna i normalna

Zad 1. Napisać równanie stycznej i normalnej do wykresu zadanej funkcji we wskazanym punkcie:

(a)
$$f(x) = x^2$$
, $(2, f(2))$;

(b)
$$f(x) = \arcsin \frac{x}{2}$$
, $(1, f(1))$;

(a)
$$f(x) = x^2$$
, $(2, f(2))$; (b) $f(x) = \arcsin \frac{x}{2}$, $(1, f(1))$; (c) $f(x) = \ln (x^2 + e)$, $(0, f(0))$;

(d)
$$f(x) = e^{\operatorname{tg} x}$$
, $\left(\frac{\pi}{4}, f\left(\frac{\pi}{4}\right)\right)$; (e) $f(x) = \sqrt{2x^2 - 2}$, $(3, f(3))$; (f) $f(x) = \frac{2x}{1+x^2}$, $\left(\sqrt{2}, f\left(\sqrt{2}\right)\right)$;

(e)
$$f(x) = \sqrt{2x^2 - 2}$$
, $(3, f(3))$

(d)
$$f(x) = e^{-x}$$
, $f(x) = e^{-x}$,

(i)
$$f(x) = \frac{\ln x}{1 + 2\pi}$$
 (e. $f(e)$):

(j)
$$f(x) = \frac{\ln x}{x}$$
, $(e, f(e))$; (k) $f(x) = \arctan \frac{1-x}{1+x}$, $(1, f(1))$;

Zad 2. Znajdź kąt pod jakim przecinają się wykresy funkcji:

(a)
$$f(x) = x^2$$
, $g(x) = \sqrt[3]{x}$;

b)
$$f(x) = 4 - x$$
, $g(x) = 4 - \frac{x^2}{2}$;

(a)
$$f(x) = x^2$$
, $g(x) = \sqrt[3]{x}$; (b) $f(x) = 4 - x$, $g(x) = 4 - \frac{x^2}{2}$; (c) $f(x) = \lg x$, $g(x) = \operatorname{ctg} x$, $x \in (0, \frac{\pi}{2})$;

(d)
$$f(x) = \frac{1}{x}, \quad g(x) = \sqrt{x};$$

Styczna i normalna - odpowiedzi

Zad 1.

(a)
$$y_s = 4x - 4$$
, $y_n = -\frac{1}{4}x + \frac{9}{2}$; (b) ; (c) ; (d) ; (e) ;

(f)
$$y_s = -\frac{2}{9}x + \frac{8}{9}\sqrt{2}$$
, $y_n = \frac{9}{2}x - \frac{23}{6}\sqrt{2}$; (g); (h); (i); (j) $y_s = \frac{1}{3}$, $x_n = e$; (k);

(a)
$$\alpha = \frac{\pi}{2}, (x = 0); \quad \alpha = \frac{\pi}{4}, (x = 1);$$
 (b) ; (c) ; (d) $\alpha \approx -71.57^{\circ};$

(d)
$$\alpha \approx -71.57$$

Przebieg zmienności funkcji

Zad 1. Wyznacz dziedzinę funkcji:

(a)
$$y = \ln(x - \frac{1}{x});$$
 (b) $y = \ln(1 - \ln x);$

Zad 2. Zbadaj granice funkcji na krańcach przedziału określoności:

(a)
$$y = \frac{x \ln x}{x-1}$$
; (b) $y = \frac{(x-1)^2}{\ln x}$;

Zad 3. Znaleźć asymptoty funkcji:

(a)
$$y = \frac{x^2 - x - 2}{2 - x}$$
; (b) $y = x + 3 \arctan x$; (c) $y = x^2 e^{-\frac{1}{x}}$; (d) $y = \frac{x^2 - 4}{x^2 + x - 6}$; (e) $y = x + \frac{\ln x}{x}$;

(f)
$$y = \frac{x^2}{(x+3)^2}$$
; (g) $y = x\sqrt[3]{\left(\frac{x+2}{x-1}\right)^2}$; (h) $y = 2x + 1 + \frac{1}{\sqrt{x}}$; (i) $y = \frac{3-x^2}{2-x}$; (j) $y = \frac{x^3 + x^2 - 2x}{x^2 - 1}$;

(k)
$$y = e^{\frac{1}{x}} - x;$$
 (l) $y = xe^{-\frac{1}{x}};$ (m) $y = 2x + \frac{2}{x-1};$

Zad 4. Znaleźć przedziały monotoniczności i ekstrema funkcji:

(a)
$$y = 2x^3 - 3x^2$$
; (b) $y = x^2 \ln x$; (c) $y = x - \ln(1 + x^2)$; (d) $y = e^{-x^2}(1 + x^2)$;

(e)
$$y = \frac{\ln x}{\sqrt{x}}$$
; (f) $y = \ln x + \frac{1}{\ln x}$; (g) $y = e^{\frac{1}{x^2(x+1)}}$; (h) $y = 2x^3 - 6x^2 - 18x + 7$;

(i)
$$y = \frac{x}{\ln x}$$
; (j) $y = x^2 e^{-x}$; (k) $y = \frac{x}{e^x}$; (l) $y = x - 2 \arctan x$; (m) $y = \frac{2}{3}x - \sqrt[3]{(x-2)^2}$; (n) $y = \frac{1}{3}x - \sqrt[3]{x-2}$;

(m)
$$y = \frac{2}{3}x - \sqrt[3]{(x-2)^2}$$
; (n) $y = \frac{1}{3}x - \sqrt[3]{x-2}$;

Zad 5. Znaleźć przedziały wypukłości i punkty przegięcia funkcji:

(a)
$$y = e^{\arctan x}$$
; (b) $y = 1 - \ln(x^2 - 4)$; (c) $y = \frac{x}{e^x}$; (d) $y = x^2 e^{-x}$;

(e)
$$y = \ln^3 x - 2 \ln x;$$
 (f) $y = x^3 - 3x^2 + 3x + 7;$ (g) $y = \frac{x^3}{(1+x)^2};$ (h) $y = 3x^5 - 5x^4 + 3x - 2;$ (i) $y = x^4 (12 \ln x - 7);$ (j) $y = e^{\frac{1}{x}} - x;$ (k) $y = x^3 e^{-x};$ (l) $y = x\sqrt[3]{\left(\frac{x+2}{x-1}\right)^2};$

(m)
$$y = \frac{5}{6}x^2 - \sqrt[3]{(x-2)^5}$$
; (n) $y = \frac{2}{6}x^2 - \sqrt[3]{(x-2)^4}$; (o) $y = \frac{x^2}{2} + 5\ln(x+6)$;

Zad 6. Znaleźć wartość największą i najmniejsza funkcji we wskazanych przedziałach:

(a)
$$f(x) = 2x^3 - 3x^2 - 36x - 8$$
, $x \in [-3, 6]$; (b) $f(x) = x - 2\sqrt{x}$, $x \in [0, 5]$;

(c)
$$f(x) = 2\sin x + \sin 2x$$
, $x \in [0, \frac{3}{2}\pi]$;

Zad 7. Zbadaj przebieg zmienności funkcji i naszkicuj jej wykres:

(a)
$$y = (x-2)^3(x+4)$$
; (b) $y = \frac{5}{6}x - \sqrt[6]{(x-2)^5}$; (c) $y = \frac{2}{3}x - \sqrt[3]{(x-2)^2}$; (d) $y = \frac{1}{\arcsin x}$;

(e)
$$y = x^2 e^{-\frac{1}{x}}$$
; (f) $y = x \sqrt[3]{\left(\frac{x+2}{x-1}\right)^2}$; (g) $y = \frac{3-x^2}{2-x}$; (h) $y = e^{\frac{1}{x}} - x$;

(i)
$$y = x - \ln(1 + x^2)$$
; (j) $y = x^2 \ln x$; (k) $y = e^{-x^2} (1 + x^2)$; (l²/₂) $y = \ln x + \frac{1}{\ln x}$; (m) $y = \frac{x}{\ln x}$; (o) $y = \frac{x}{e^x}$; (p) $y = x - 2 \arctan x$

(m)
$$y = \frac{x}{\ln x}$$
; (o) $y = x^2 e^{-x}$; (p) $y = x - 2 \arctan x$;

(q)
$$y = 1 - \ln |x^2 - 4|$$
; (r) $y = \ln^3 x - 2 \ln x$; (s) $y = \frac{x^3}{(1+x)^2}$; (t) $y = x^3 e^{-x}$;

(m)
$$y = \frac{x}{\ln x}$$
; (n) $y = x^2 e^{-x}$; (o) $y = \frac{x}{e^x}$; (p) $y = x - 2 \arctan (x)$; (q) $y = 1 - \ln |x^2 - 4|$; (r) $y = \ln^3 x - 2 \ln x$; (s) $y = \frac{x^3}{(1+x)^2}$; (t) $y = x^3 e^{-x}$; (u) $y = \frac{e^{-\frac{1}{x}}}{x}$; (v) $y = \frac{x-a}{\sqrt{x}}$ gdzie a jest parametrem; (w) $y = \arcsin \frac{x-2}{x}$; (x) $y = \ln \left(e - \frac{1}{x}\right)$; (y) $y = \frac{2}{9}x^2 - \sqrt[3]{(x-2)^4}$; (z) $y = \frac{10}{9}x - \sqrt[3]{(x-2)^5}$;

(a) $y = \frac{4-x^2}{x^2-1}$; (b) $y = \frac{x^3}{x-1}$; (c) $y = x^x$; (d) $y = x \ln^2 x$; (e) $y = \frac{x\sqrt{x^2-9}}{x-3}$; (f) $y = \frac{2+x-x^2}{x-3}$; (g) $y = (x+3)e^{\frac{x+1}{x-1}}$

Zad 8. Zbadaj przebieg zmienności funkcji i naszkicuj jej wykres:

Przebieg zmienności funkcji - odpowiedzi

Zad 1.

(a) $x \in (-1,0) \cup (1,\infty);$ (b) $x \in (0,e);$

Zad 2.

(a)
$$\lim_{x \to 0^+} f(x) = 0$$
, $\lim_{x \to 1} f(x) = 1$, $\lim_{x \to \infty} f(x) = \infty$; (b) $\lim_{x \to 0^+} f(x) = 0$, $\lim_{x \to 1} f(x) = 1$, $\lim_{x \to \infty} f(x) = \infty$;

Zad 3.

- (a) y = -x 1; (b) y = x; (c) x = 0; (d) x = -3, y = 1;
- (e) x = 0, y = x; (f) x = -3, y = 1; (g) x = 1, y = x + 2; (h) ;
- (i) x = 2, y = x + 2; (j) x = -1, y = x + 1; (k) x = 0, y = -x + 1; (l) y = x 1;
- (m) x = 1, y = 2x;

Zad 4.

- (a) $f \nearrow : x \in (-\infty, 0) \lor x \in (1, \infty), f \searrow : x \in (0, 1), f_{\max} = (0, 0), f_{\min} = (1, -1);$
- (b) $f \searrow : x \in (0, \frac{1}{\sqrt{e}}), f \nearrow : x \in (\frac{1}{\sqrt{e}}, \infty), f_{\min} = (\frac{1}{\sqrt{e}}, -\frac{1}{2e});$
- (c) $f \nearrow : x \in \mathbb{R}$, brak ekstremów;
- (d) $f \nearrow : x \in (-\infty, 0), f \searrow : x \in (0, \infty), f_{\max} = (0, 1);$
- (e) $f \nearrow : x \in (0, e^2), f \searrow : x \in (e^2, \infty), f_{\max} = (e^2, \frac{2}{e});$
- (f) $f \nearrow : x \in (0, \frac{1}{e}) \lor x \in (e, \infty), f \searrow : x \in (\frac{1}{e}, 1) \lor x \in (1, e), f_{\max} = (e^{-1}, -2), f_{\min} = (e, 2);$
- (g) $f \nearrow : x \in (-\frac{2}{3}, 0), f \searrow : x \in (-\infty, -1) \lor x \in (-1, -\frac{2}{3}) \lor x \in (0, \infty), f_{\min} = \left(-\frac{2}{3}, e^{\frac{27}{4}}\right);$
- (h) $f \nearrow : x \in (-\infty, -1) \lor x \in (3, \infty), f \searrow : x \in (-1, 3), f_{\min} = (3, -47), f_{\max} = (-1, 17);$
- (i) $f \nearrow : x \in (e, \infty), f \searrow : x \in (0, 1) \lor x \in (1, e), f_{\min} = (e, e);$
- (j) $f \nearrow : x \in (0,2), f \searrow : x \in (-\infty,0) \lor x \in (2,\infty), f_{\min} = (0,0), f_{\max} = (2,\frac{4}{c^2});$
- (k) $f \nearrow : x \in (-\infty, 1), f \searrow : x \in (1, \infty), f_{\max} = (1, \frac{1}{a});$
- (1) $f \nearrow : x \in (-\infty, -1) \lor x \in (1, \infty), f \searrow : x \in (-1, 1), f_{\min} = (1, 1 \frac{\pi}{2}), f_{\max} = (-1, \frac{\pi}{2} 1);$

Zad 5.

- (a) $f_{\smile}: x \in (-\infty, \frac{1}{2}), f_{\frown}: x \in (\frac{1}{2}, \infty), P_p = (\frac{1}{2}, e^{\arctan \frac{1}{2}});$
- **(b)** f_{\smile} : $x \in (-\infty, -2) \lor x \in (2, \infty)$, brak Pp;
- (c) $f_{\smile}: x \in (2, \infty), f_{\frown}: x \in (-\infty, 2), P_p = (2, \frac{2}{e^2});$
- (d) $f_{\smile}: x \in (-\infty, 2-\sqrt{2}) \lor x \in (2+\sqrt{2}, \infty), f_{\frown}: x \in (2-\sqrt{2}, 2+\sqrt{2}),$

$$P_{p_1} = (2 - \sqrt{2}, (2 - \sqrt{2})^2 e^{-2 + \sqrt{2}}), P_{p_2} = (2 + \sqrt{2}, (2 + \sqrt{2})^2 e^{-2 - \sqrt{2}})$$

(e)
$$f_{\smile} : x \in (e^{1-\sqrt{\frac{5}{3}}}, e^{1+\sqrt{\frac{5}{3}}}), f_{\frown} : x \in (0, e^{1-\sqrt{\frac{5}{3}}}) \lor x \in (e^{1+\sqrt{\frac{5}{3}}}, \infty),$$

$$P_{p_1} = (e^{1-\sqrt{\frac{5}{3}}}, 4 - \frac{8\sqrt{\frac{5}{3}}}{3}); P_{p_2} = (e^{1+\sqrt{\frac{5}{3}}}, 4 + \frac{8\sqrt{\frac{5}{3}}}{3})$$

- (f) $f_{\smile}: x \in (2, \infty), f_{\frown}: x \in (-\infty, 2), P_p(1, 8);$
- (g) $f_{\smile}: x \in (0, \infty), f_{\frown}: x \in (-\infty, -1) \lor x \in (-1, 0), P_p(0, 0);$
- (h) $f_{\smile}: x \in (1, \infty), f_{\frown}: x \in (-\infty, 1), P_n(1, -1);$
- (i) $f_{\smile}: x \in (1, \infty), f_{\frown}: x \in (0, 1), P_p(1, -7);$
- (j) $f_{\smile}: x \in (-\frac{1}{2}, 0) \lor x \in (0, \infty), f_{\frown}: x \in (-\infty, -\frac{1}{2}), P_p(-\frac{1}{2}, e^{-2} + \frac{1}{2});$
- (k) $f_{\smile}: x \in (0, 3 \sqrt{3}) \lor x \in (3 + \sqrt{3}, \infty), f_{\frown}: x \in (-\infty, 0) \lor x \in (3 \sqrt{3}, 3 + \sqrt{3}),$

$$P_{p_1}(0,0), P_{p_2}(3+\sqrt{3},6(9+5\sqrt{3})e^{-3-\sqrt{3}}), P_{p_3}(3-\sqrt{3},-6(-9+5\sqrt{3})e^{-3+\sqrt{3}});$$

(1)
$$f_{\smile}: x \in (-4, -2) \lor x \in (-2, 2) \lor x \in (2, \infty), f_{\frown}: x \in (-\infty, -3), P_p(-4, -4\left(\frac{2}{5}\right)^{2/3});$$

Zad 6.

(a)
$$f_{\min} = (3, -89), f_{\max} = (6, 100);$$

(b)
$$f_{\min} = (1, -1), f_{\max} = (5, 5 - 2\sqrt{5});$$

(c)
$$f_{\min} = (\frac{3}{2}\pi, -2), f_{\max} = (\frac{\pi}{3}, \frac{3}{2}\sqrt{3});$$

Zad 7.

