研究内容詳細

クラスタリング手法の評価に向けて

池辺 颯一 2018年12月15日

芝浦工業大学

概要・背景

- 情報化社会の発展によりデータが複雑かつ膨大に
- ビッグデータを人の手で分類するのは難しい
- それらのデータを自動的に分類するクラスタリングに着目
- 機械学習における教師なし学習にあたる

クラスタリング前

クラスタリング後

目的・目標

目的

● クラスタリング手法の 1 つである Fussy c-means にクラスタ サイズ調整変数を導入した最適化問題の中から最も精度が高 いものを発見する

目標

- 各クラスタリング手法のプログラムを C++を用いて開発
- プログラムの実行結果からクラスタリング精度を評価

実験対象

既存手法

- sFCM
- pFCM
- eFCM

提案手法

- クラスタサイズ調整変数を導入
- sFCMA
- pFCMA
- eFCMA

クラスタリングの最適化問題

eFCMA

$$\underset{u,v,\pi}{\text{minimize}} \ \textstyle \sum_{i=1}^{C} \sum_{k=1}^{N} u_{i,k} ||x_k - v_i||_2^2 + \lambda^{-1} \sum_{i=1}^{C} \sum_{k=1}^{N} u_{i,k} \log(\frac{u_{i,k}}{\pi_i})$$

qFCMA

minimize
$$\sum_{i=1}^{C} \sum_{k=1}^{N} (\alpha_i)^{1-m} (u_{i,k})^m ||x_k - v_i||_2^2 + \frac{\lambda^{-1}}{m-1} \sum_{i=1}^{C} \sum_{k=1}^{N} (\alpha_i)^{1-m} (u_{i,k})^m$$

sFCMA

minimize
$$\sum_{i=1}^{C} \sum_{k=1}^{N} (\alpha_i)^{1-m} (u_{i,k})^m ||x_k - v_i||_2^2$$

subject to $\sum_{i=1}^{C} u_{i,k} = 1$, $\sum_{i=1}^{C} \alpha_i = 1$ and $u_{i,k} \in [0,1]$ $m > 1$

- N:個体数
- C:クラスタ数
- *λ*, *m*: ファジィ化パラメータ
- *u_{i,k}*: *i* 番目の個体におけるクラスタ *k* に対する帰属度
- v_i: i 番目のクラスタ中心
- x_k: k 番目の個体

アルゴリズム

FCM(Fusssy c-means)

- 1. 初期クラスタ中心 V を与える
- 2. V から帰属度 U を更新する
- 3. V を更新する
- 4. 収束条件を満たせば終了。満たさなければ2へ。

実験方法

評価方法

ARI (Adjusted Rand Index)

- -1 から 1 までの範囲で精度評価を行う指標
- 1 の時に完全一致で0の時にランダム
- マイナスの値はランダムの期待値を下回る
- ARIの値が高いほど高評価

使用する実データ

Yeast Data Set

- Yeast(酵母)の形など9属性を収録したデータ
- ソース: UCI Machine Learning Repository
- 個体数:1484
- クラス数:10

進捗状況

- sFCM を動作させるのに必要なプログラムを実装済
 - sFCM
 - pFCM
 - eFCM

課題

- 処理の高速化
- 既存手法からの継承

まとめ

目的

 クラスタリング手法の1つである Fussy c-means を応用した 最適化問題の中から最も精度が高いものを発見する

目標

- 各クラスタリング手法のプログラム C++を用いて開発
- プログラムの実行結果からクラスタリング精度を評価

進捗

• sFCM を動作させるのに必要なプログラムが完成

課題

• 処理の高速化