WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C12N 15/57, 9/54, C07K 3/08 // (C12N 9/54, C12R 1:07)

(11) International Publication Number:

WO 92/21760

A1 |

(43) International Publication Date:

10 December 1992 (10.12.92)

(21) International Application Number:

PCT/US92/04306

(22) International Filing Date:

21 May 1992 (21.05.92)

(30) Priority data:

706,691

29 May 1991 (29.05.91)

US \

(71) Applicant: COGNIS, INC. [US/US]; 2330 Circadian Way, Santa Rosa, CA 95407 (US).

(72) Inventors: CHRISTIANSON, Teresa; 208 Eucalyptus Avenue, Cotati, CA 94931 (US). GODDETTE, Dean; 806 Carlita Circle, Rohnert Park, CA 94928 (US). LAD-IN, Beth, Frances; 4836 Fernglen Drive, Santa Rosa, CA 95405 (US). LAU, Maria, R.; 3177 Serra Court, Fairfield, CA 94533 (US). PAECH, Christian; 2803 Audubon Court, Santa Rosa, CA 95403 (US). REYNOLDS, Robert, B.; 412 Corlano Avenue, Santa Rosa, CA 95404 (US). WILSON, Charles, R.; 2323 Pacheco Place, Santa Rosa, CA 95401 (US). YANG, Shiow-Shong; 1108 Navarro Street, Santa Rosa, CA 95401 (US).

(74) Agent: DRACH, John, E.; Henkel Corporation, 140 Germantown Pike, Suite 150, Plymouth Meeting, PA 19002 (US).

(81) Designated States: AT (European patent), BE (European patent), CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), GR (European patent), IT (European patent), JP, LU (European patent), MC (European patent), NL (European patent), SE (European patent).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: MUTANT PROTEOLYTIC ENZYMES FROM BACILLUS

(57) Abstract

Mutant B. lentus DSM 5483 proteases are derived by the replacement of at least one amino acid residue of the mature form of the B. lentus DSM 5483 alkaline protease. The mutant proteases are expressed by genes which are mutated by site-specific mutagenesis. The amino acid sites selected for replacement are identified by means of a computer based method which compares the three dimensional structure of the wild-type protease and a reference protease.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	AT.	Austria	FI	Finland ·	Mi	Mali
	AŧJ	Amtralia	FR	France	MN	Mongolia
	88 8	Barbados	GA	Gabon	MR	Mauritanja
	BE	Belgrom	GB	United Kingdom	MW	Malawi
		•-	GN	Guinca	' NI.	Netherlands
٠	BF	Burkina Faso	GR	Circece	NO	Norway
	BC	Bulgaria	HU	Hungary	PL	Poland
	BJ	Benin		ircland	RO	Romania
	BR	Brazil	ΙE		RU	Russian Federation
	CA	Canada	IT	Italy	SD	Sudan
	CF	Central African Republic	JP	Japan		
	CG.	Congo	KP	Democratic People's Republic	SE	Sweden
	CH	Switzerland		of Korca	SN	Senegal
	Ci	Côte d'Ivotre	KR	Republic of Korea	SU	Soviet Union
	CM	Cameroon	LI	l iechtenstein	TD	Chad
	CS	Czechoslovakia	LK	Sri Lanka	TG	Togo
	DE	Ciernany	LU	Luxembourg	US	United States of America
		•	MC	Monaco		
	DK	Denmark	MG	Madaguwar	•	
	ES	Spain	MU	turning		

MUTANT PROTEOLYTIC ENZYMES FROM BACILLUS

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to mutant proteolytic enzymes having improved properties relative to the wild-type enzyme, to genetic constructs which code for the mutant proteolytic enzymes, to methods of predicting mutations which enhance the stability of the enzyme, and to methods of producing the mutant proteolytic enzymes.

2. Description of the Related Art

Subtilisins are a family of extracellular proteins having molecular weights in the range of 25,000-35,000 daltons and are produced by various Bacillus species. These proteins function as peptide hydrolases in that they catalyze the hydrolysis of peptide linkages in protein substrates at neutral and alkaline pH values. Subtilisins are termed serine proteases because they contain a specific serine residue which participates in the catalytic hydrolysis of peptide substrates. A subtilisin enzyme isolated from soil samples and produced by Bacillus lentus for use in detergent formulations having increased protease and oxidative stability over commercially available enzymes under conditions of pH 7 to 10 and at temperature of 10 to 60°C in aqueous solutions has been disclosed in copending patent application serial number 07/398,854, filed on

20

15

5

10

10

15

20

25

30

35

8/25/89. This B. lentus alkaline protease enzyme (BLAP, vide infra) is obtained in commercial quantities by cultivating a Bacillus licheniformis ATCC 53926 strain which had been transformed by an expression plasmid which contained the wild type BLAP gene and the B. licheniformis ATCC 53926 alkaline protease gene promoter.

Industrial processes generally are performed under physical conditions which require highly stable enzymes. Enzymes may be inactivated by high temperatures, pH extremes, oxidation, and surfactants. Even though Bacillus subtilisin proteases are currently used in many industrial applications, including detergent formulations, stability improvements are still needed. Market trends are toward more concentrated detergent powders, and an increase in Increased shelf stability liquid formulations. oxidative stability, with retention of catalytic efficiency It is therefore desirable to isolate novel are needed. enzymes with increased stability, or to improve the enzymes, including subtilisin stability of existing proteases such as BLAP.

The stability of a protein is a function of its three dimensional structure. A protein folds into a three dimensional conformation based upon the primary amino acid sequence, and upon its surrounding environment. The function and stability of a protein are a direct result of its three dimensional structure.

A large body of information has been published which describes changes in enzyme properties as a result of alterations in the primary amino acid sequence of the enzyme. These alterations can result from random or site specific alterations of the gene which expresses the enzyme using genetic engineering techniques. Random approaches mutagenize total cellular DNA, followed by selection for the synthesis of an enzyme with improved properties. This the knowledge of requires neither approach dimensional structure of the enzyme, nor any predictive capability on the part of the researcher. Site directed

10

15

20

25

30

35

mutagenesis, on the other hand, requires a rational approach for the introduction of amino acid changes. this approach one or more amino acids may be replaced by other residues by altering the DNA sequence which encodes accomplished be This can. protein. the oligonucleotide directed in vitro mutagenesis. The teach site-directed mutagenesis references following acid amino specific generate to procedures used substitution(s): Hines, J.C., and Ray, D.S. (1980) Gene 11:207-218; Zoller, M.J., and Smith, M. (1982) Nucleic Acids Res. 10:6487-6500; Norrander, J., et al. (1983) Gene 26:101-106; Morinaga, Y., et al. (1984) Bio/Technology 2:636-639; Kramer, W., et al. (1984) Nucleic Acids Res. 12:9441-9456; Carter, P., et al. (1985) Nucleic Acids Res. 13:4431-4443; Kunkel, T.A. (1985) Proc. Natl. Acad. Sci. USA 82:488-492; Bryan, P., et al. (1986) Proc. Natl. Acad. Sci. USA 83:3743-3745.

A rational approach may or may not require knowledge of a protein's structure. For example, patent application WO 89/06279 describes the comparison of the primary amino acid sequence of different subtilisins while contrasting differences in physical and chemical properties. The primary amino acid sequences of the different subtilisins are aligned for the greatest homology, while taking into account amino acid insertions, deletions, and total number of amino acids.

Currently, the amino acid sequences of at least 10 subtilisin proteases have been published. Eight of these subtilisins were isolated from species of Bacilli, and include subtilisin 168 (Stahl, M.L., and Ferrari, E. (1984) J. Bacteriol. 158:411-418), subtilisin BPN'(Vasantha, N., et al., (1984) J. Bacteriol. 159:811-819), subtilisin Carlsberg (Jacobs, M., et al. (1985) Nucleic Acids Res. 13:8913-8926), subtilisin DY (Nedkov, P., et al. (1985) Biol. Chem. Hoppe-Seyler 366:421-430), subtilisin amylosacchariticus (Kurihara, M., et al. (1972) J.Biol. Chem. 247:5619-5631), subtilisin mesenticopeptidase

10

15

20

25

30

(Svendsen, I., et al. (1986) FEBS Lett. 196:228-232), subtilisin 147 and subtilisin 309 (Hastrup et al. (1989) WO 89/06279), subtilisin PB92 (Van Eekelen et al. (1989) EP 0328229), and subtilisin BLAP (Ladin, B., et al. (1990). Society for Industrial Microbiology Annual Meeting, Abstract P60). The remaining two subtilisin sequences are thermitase from the fungus Thermoactinomyces vulgaris (Meloun, B., et al. (1985) FEBS Lett. 183:195-200), and proteinase K from the fungus Tritirachium album limber (Jany, K.-D., and Mayer, B. (1985) Biol. Chem. Hoppe-Seyler 366:485-492).

Methods for obtaining optimum alignment of homologous proteins are described in Atlas of Protein Sequence and Structure, Vol. 5, Supplement 2 (1976) (Dayhoff, M.O., ed., Natl. Biomed. Res. Found., Silver Springs, MD). This comparison is then used to identify specific amino acid alterations which might produce desirable improvements in the target enzyme. Wells, J.A., et al. (1987) Proc. Natl. USA 84:1219-1223, used primary sequence Sci. alignment to predict site directed mutations which affect the substrate specificity of a subtilisin. alignment approach WO 89/06279 teaches the construction of mutant subtilisins having improved properties including an increased resistance to oxidation, increased proteolytic activity, and improved washing performance for laundry Patent applications WO 89/09819, detergent applications. and WO 89/09830 teach improvement in the thermal stability of subtilisin BPN' by the introduction of one or more amino acid changes based on the alignment of the primary amino acid sequences of subtilisin BPN' with the more thermal stable subtilisin Carlsberg. From hereon, amino acids will . be referred to by the one or three letter code as defined in Table 1.

TABLE 1

One and Three Letter Code for Amino Acids

A = Ala = Alanine

C = Cys = Cysteine

5 D = Asp = Aspartic acid or aspartate

E = Glu = Glutamic acid or glutamate

F = Phe = Phenylalanine

G = Gly = Glycine

H = His = Histidine

10 I = Ile = Isoleucine

K = Lys = Lysine

L = Leu = Leucine

M = Met = Methionine

N = Asn = Asparagine

15 P = Pro = Proline

O = Gln = Glutamine

R = Arg = Arginine

s = Ser = Serine

T = Thr = Threonine

v = Val = Valine

25

30

35

W = Trp = Tryptophan

Y = Tyr = Tyrosine

Rational mutational approaches may also predict mutations which improve an enzyme property based upon the three dimensional structure of an enzyme, in addition to the alignment of primary amino acid sequences described above. One method for determining the three dimensional structure of a protein involves the growing of crystals of the protein, followed by X-ray crystallographic analysis. This technique has been successfully used to determine several high resolution subtilisin structures such as thermitase (Teplyakov, A.V., et al. (1990) 214:261-279), subtilisin BPN' (Bott, R., et al. (1988) J. Biol. Chem. 263:7895-7906) and subtilisin Carlsberg (Bode, W., et al. (1986) EMBO J. 5:813-818), for example.

EP 0251446 teaches the construction of mutant carbonyl hydrolases (proteases) which have at least one property

different from the parental carbonyl hydrolase. It describes mutations which effect (either improve stability, substrate specificity, decrease) oxidative catalytic activity, thermal stability, alkaline stability, pH activity profile, and resistance to autoproteolysis. 5 These mutations were selected for introduction Bacillus amyloliquefaciens subtilisin BPN' after alignment of the primary sequences of BPN' and proteases from B_* subtilis, B. licheniformis, and thermitase. Such alignment can then be used to select amino acids in these 10 other proteases which differ, as substitutes for the equivalent amino acid in the B. amyloliquefaciens carbonyl This application also describes alignment on the basis of a 1.8 Å X-ray crystal structure of the B. amyloliquefaciens protease. Amino acids in the carbonyl 15 hydrolase of B. amyloliquefaciens which when altered can affect stability, substrate specificity, or catalytic Met50, Met124, and Met222 for efficiency include: Tyr104, Ala152, Glu15f, oxidative stability; Gly169, Phe189, and Tyr217 for substrate specificity; N155 20 alterations were found to decrease turnover, and lower Km; Asp36, Ile107, Lys170, Asp197, Ser204, Lys213, and Met222 for alkaline stability; and Met199, and Tyr21 for thermal stability. Alteration of other amino acids was found to affect multiple properties of the protease. 25 this category are Ser24, Met50, Asp156, Gly166, Gly169, and Substitution at residues Ser24, Met50, Ile107, Glu156, Gly166, Gly169, Ser204, Lys213, Gly215, and Tyr217 was predicted to increase thermal and alkaline stability. An important point about this patent application is that 30 with the exception of those mutations effecting substrate specificity, no rational mutational approach for improving the alkaline or temperature stability of a protease based upon computer simulations of an X-ray crystal structure is described. 35

WO 88/08028 teaches a method for redesigning proteins to increase stability by altering amino acid residues that

10

15

20

25

30

35

are in close proximity to the protein's metal ion binding This application describes the alteration of a site. calcium ion binding site present within subtilisin BPN' through the substitution, insertion, or deletion of amino acid residue(s) in close proximity to that site so that the electrostatic attraction between the amino acids and the The characterization of the calcium ion is increased. calcium ion binding site is accomplished through the analysis of a 1.3 Å three dimensional structure of subtilisin BPN' using a high resolution computer graphics This approach allows the selection of amino acids acceptable for replacing the native amino acids in the protease by first simulating the change using the computer model. This allows for the identification of any problems including steric hindrance prior to the actual construction and testing of the mutant proteases.

US patents 4908773 and 4853871 teach a computer based method for evaluating the three dimensional structure of a protein to select amino acid residues where the introduction of a novel disulfide bond will potentially stabilize the protein. Potentially acceptable amino acid residues can then be ranked, and replaced using computer simulation, prior to the actual construction of the mutant protein using site directed mutagenesis protocols.

Several patent applications combine published data on biochemical stability with computer analysis of three dimensional protease structures in order to predict mutations which stabilize the enzyme. US 4,914,031 and WO 88/08033 and WO 87/04461 teach a method for improving the pH and thermal stability of subtilisin aprA by replacing asparagine residues present in asparagine/glycine pairs. Asparagine/glycine pairs in proteins have been shown to to form imide cyclization cyclic undergo anhydroaspartylglycine (Bornstein, P., and Balian, G. (1977) Methods Enzymol. 47:132-145). This cyclic imide is susceptible to base hydrolyzed cleavage leading to inactivation of the enzyme. Computer analysis of the three

10

15

20

25

30

35

dimensional structure of the aprA protease also predicted that formation of the cyclic imide could lead to protease inactivation resulting from a shift of the side chain of the active site serine. The decision to replace the asparagine residue and not the glycine residue was based upon alignment of the aprA sequence with other subtilisinlike enzymes, cucumisin and proteinase K.

Sensitivity to oxidation is an important deficiency of serine proteases used in detergent applications (Stauffer, C.E., and Etson, D. (1969) J. Biol. Chem. 244:5333-5338). EP 0130756, EP 0247647, and US 4,760,025 teach a saturation mutation method where one or multiple mutations are introduced into the subtilisin BPN' at amino acid residues Asp32, Asn155, Tyr104, Met222, Gly166, His64, Ser221, Gly169, Glu156, Ser33, Phe189, Tyr217, and/or Ala152. Using this approach mutant proteases exhibiting improved oxidative stability, altered substrate specificity, and/or altered pH activity profiles are obtained. A method is taught in which improved oxidative stability is achieved by substitution of methionine, cysteine, tryptophan, and These publications also teach that lysine residues. mutations within the active site region of the protease are also most likely to influence activity. Random or selected mutations can be introduced into a target gene using the experimental approach but neither EP 0130756, EP 0247647, nor US 4,760,025 teach a method for predicting amino acid alterations which will improve the thermal or surfactant stability of the protease.

WO 8705050 teaches a random mutagenesis approach for construction of subtilisin mutants exhibiting enhanced thermal stability. One or more random mutations are introduced into single stranded target DNA using the chemical mutagens sodium bisulfite, nitrous acid, and formic acid. Subsequently, the mutated DNA is transformed into a Bacillus host and at least 50,000 colonies are screened by a filter assay to identify proteases with improved properties. Site directed mutagenesis can then be

10

15

20

25

30

35

used to introduce all possible mutations into a site identified through the random mutagenesis screen. No method for pre selection of amino acids to be altered is taught.

EP 0328229 teaches the isolation and characterization of PB92 subtilisin mutants with improved properties for laundry detergent applications based upon wash test results. It teaches that biochemical properties are not reliable parameters for predicting enzyme performance in the wash. Methods for selection of mutations involve the substitution of amino acids by other amino acids in the (polar, nonpolar, aromatic, category. aliphatic, and neutral), the substitution of polar amino acids asparagine and glutamine by charged amino acids, and increasing the anionic character of the protease at sites not involved with the active site. No method for identifying which specific amino acids should be altered is taught, and no rational mutational approach is taught which is based on alignment of X-ray structures of homologous proteases with different properties.

mutants with altered transesterification rate/hydrolysis rate ratios and nucleophile specificities by changing specific amino acid residues within 15 Å of the catalytic triad. Russell, A.J., and Fersht, A.R. (1987) Nature 328:496-500, and Russell, A.J., et al. (1987) J. Mol. Biol. 193:803-813, teach the isolation of a subtilisin BPN' mutant (D099S) that had a change in the surface charge 14-15 Å from the active site. This substitution causes an effect on the pH dependence of the subtilisin's catalytic reaction.

There are a number of different strategies for increasing protein stability. Many of these methods suggest types of substitutions to improve the stability of a protein but do not teach a method for identifying amino acid residues within a protein which should be substituted. From entropic arguments, many types of substitutions have

10

15

20

25

30

35

been suggested such as Gly to Ala and any amino acid to Pro (Matthews, B.W., et al. (1987) Proc. Natl. Acad. Sci. 84:6663-6667). Likewise, while it is clear that increasing the apolar size of an amino acid in the core will add to stability, adverse packing effects may more than compensate for the hydrophobic effect, resulting in a decrease in protein stability (Sandberg, W.S., and Terwilliger, T.C. (1989) Science 245:54-57). Menéndez-Arias, L., and Argos, Mol. Biol. 206:397-406, performed a J. statistical evaluation of amino acid substitutions of thermophilic and mesophilic molecules and proposed that decreased flexibility and increased hydrophobicity in the α -helical regions contributes most towards increasing protein stability. From their data, they formulated a set of empirical rules to improve stability.

Increasing the hydrophobicity of certain side chains has long been suggested as a means to improve protein The hydrophobic exclusion of nonpolar amino acids is the largest force driving protein folding. This has been studied by examining the partitioning of amino acids or amino acid analogs from water to a hydrophobic While the numbers vary depending on the work, these studies generally agree that burying a hydrophobic side chain increases protein stability. For example, Kellis, J.T., Jr., et al. (1988) Nature 333:784-786, estimated that the removal of a methyl group destabilizes the enzyme by 1.1 kcal/mole assuming no other structural perturbations occur. Conversely, this predicts that the addition of a methylene group should add 1.1 kcal/mol if no unfavorable contacts occur. Similarly, Sandberg, W.S., and Terwilliger, T.C. (1989) Science 245:54-57, showed that the effect of removing or adding methylene groups is the sum of the hydrophobic effect and structural distortions. Simply adding buried hydrophobic groups may not increase protein stability because the total effect of adding or deleting a methyl group on the local packing structure must be considered. As the protein interior has a para-crystalline

10

15

20

25

30

35

structure (Chothia, C. (1975) Nature 254:304-308), small distortions in the remainder of the structure resulting from the addition methyl group may exact a high cost and reduce rather than increase stability.

Along the same lines, the core of λ repressor has been shown to be amazingly tolerant to apolar amino acid substitutions in a functional assay (Bowie, J.U., et al. (1990) Science 247:1306-1310). It is not clear that this is true for larger proteins. The constraints on the hydrophobic core of a small protein may be less stringent than a larger protein simply due to the volume of the core relative to the number of amino acids which need to pack into the region. As the volume of the hydrophobic core increases, the number of amino acids which must pack together correctly increases, requiring more specific nonlocal interactions.

It has been recognized that increasing the interior hydrophobicity of a protein as a means of increasing the stability is hampered by the difficulty of determining which positions in the protein will lead to stabilization when substituted (Sandberg, W.S., and Terwilliger, T.C. (1991) Trends Biotechnol. 9:59-63). The methods discussed above provide a means of determining what substitutions to make to improve stability but do not identify which sites in the protein are most important. The present invention provides a method of determining which positions in the protein will lead to stabilization when substituted.

SUMMARY OF THE INVENTION

Other than in the operating examples, or where otherwise indicated, all numbers expressing quantities of ingredients or reaction conditions used herein are to be understood as modified in all instances by the term "about".

The native or wild-type protease from which the mutant proteases according to the invention are derived is a B. lentus alkaline protease (BLAP) obtained from B. lentus DSM 5483 having 269 amino acid residues, a molecular mass

15

20

25

30

35

of 26,823 daltons, and a calculated isoelectric point of 9.7 based on standard pK values. The BLAP gene is obtained by isolating the chromosomal DNA from the B. lentus strain DSM 5483, constructing DNA probes having homology to putative DNA sequences encoding regions of the B. lentus protease, preparing genomic libraries from the isolated chromosomal DNA, and screening the libraries for the gene of interest by hybridization to the probes.

Mutant B. lentus DSM 5483 proteases have been made which are derived by the replacement of at least one amino acid residue of the mature form of the B. lentus DSM 5483 alkaline protease. The sites for replacement are selected from the group consisting of Ser3, Val4, Ser36, Asn42, Ala47, Thr56, Thr69, Glu87, Ala96, Ala101, Ile102, Ser104, Asn114, His118, Ala120, Ser130, Ser139, Thr141, Ser142, Ser157, Ala188, Val193, Val199, Gly205, Ala224, Lys229, Ser236, Asn237, Asn242, His243, Asn255, Thr268. The replacement amino acid residues are listed in Table 2. The numbering of the mutant proteases is based on the B. lentus DSM 5483 wild-type protease as given in the SEQ ID NO:52.

Genes which express the mutant B. lentus DSM 5483 proteases according to the invention are made by altering one or more codons of the wild-type B. lentus DSM 5483 alkaline protease gene which encode for a protease derived by accomplishing at least one of the amino acid substitutions listed in Table 2.

The protease sites listed in Table 2 are sites predicted to affect thermal and surfactant stability relative to the wild-type protease. These sites are identified by means of a computer based method which compares the three dimensional structure of the wild-type protease (henceforth, the target protein) and a homologous protease (henceforth, the reference protein). The three dimensional coordinates of the wild-type protease are probed with an uncharged probe molecule to produce a probe-accessible surface which has an external surface the

10

15

20

25

30

35

interior of which contains one or more probe-accessible internal cavities. The amino acids of the reference protein having side chains lying outside the solvent-accessible surface or inside the internal cavities of the target protein are identified by aligning the three dimensional coordinates of the target protein and the reference protein.

Proteins having greater thermal and surfactant stability are produced by replacing the amino acid in the target protein if the amino acid in the target protein can be changed without creating unacceptable steric effects. The amino acid in the target protein is altered by site directed mutagenesis of the gene which expresses the target protein.

Genetic constructs are made which contain in the direction of transcription a promoter, ribosomal binding site, initiation codon and the major portion of the pre region of the Bacillus licheniformis ATCC 53926 alkaline protease gene operably linked to a portion of the pre region and all of the pro and mature regions of the Bacillus lentus DSM 5483 alkaline protease gene followed by bp DNA fragment containing the transcription terminator from the ATCC 53926 alkaline protease gene. The Bacillus lentus DSM 5483 alkaline protease gene is altered to produce a mutant gene which encodes for a protease derived by accomplishing at least one of the amino acid substitutions listed in Table 2. Mutant protease is made by fermenting a Bacillus strain transformed with a genetic construct containing a mutated Bacillus lentus DSM 5483 alkaline protease gene.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 shows the atomic coordinates for Bacillus lentus alkaline protease (BLAP) to 1.4 Å resolution.

Figure 2 shows the restriction map for plasmid pCB13C which contains a hybrid gene fusion between the Bacillus licheniformis ATCC 53926 protease gene and the Bacillus lentus DSM 5483 BLAP gene. The promoter, ribosomal binding

15

20

25

30

site and presequence (P-53926) from ATCC 53926 were fused to the pro- and mature sequence of the BLAP gene. The transcription terminator of ATCC 53926 (T-53926) was appended to the BLAP coding region.

Figure 3 shows the restriction map for plasmid pMc13C which is derived from pMac5-8 and contains the BLAP gene and carries an amber mutation in the Ap^R gene which renders it inactive.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

One aspect of the invention relates to mutant proteolytic enzymes which have superior thermal stability and surfactant stability relative to the wild-type protease as determined by laboratory tests. The mutant proteases according to the invention are those derived by the replacement of at least one amino acid residue of the mature Bacillus lentus DSM 5483 alkaline protease wherein said one amino acid residue which is selected from the group consisting of Ser3, Val4, Ser36, Asn42, Ala47, Thr56, Thr69, Glu87, Ala96, Ala101, Ile102, Ser104, Asn114, Hisl18, Ala120, Ser130, Ser139, Thr141, Ser142, Ser157, Ala188, Val193, Val199, Gly205, Ala224, Lys229, Ser236, Asn237, Asn242, His243, Asn255, Thr268 is replaced with the amino acid residues listed in Table 2. Table 2 shows the identity and position of the wild-type amino acid and the amino acid residue(s) which replace it in the mutant protein. For example, the first entry in Table 2 shows Ser3, a serine residue at position 3 which can be replaced by threonine (abbreviated as T using the one letter code for amino acids) or any small amino acid. A small amino acid is defined as glycine, alanine, valine, serine, threonine or cysteine. A small hydrophobic amino acid is defined as glycine, alanine, threonine, valine or isoleucine. A charged amino acid is defined as lysine,

arginine, histidine, glutamate or aspartate. abbreviation a.a. stands for "amino acid" residue.

TABLE 2

	<u>Residue</u>	Replacement Amino Acid
5	Ser3	T or any small, hydrophobic a.a.
	Val4	I, S or any small a.a.
	Ser36	A, T or any small a.a.
	Ser42	F, A, T, V, I, Y
	Ala47	W or any small a.a. except A
10	Thr56	V, S or any small, hydrophobic a.a.
	Thr69	R, A or any charged a.a.
	Glu87	R, M or any charged a.a.
	Ala96	I, N, S or any small, hydrophobic a.a.
	Ala101	T, S or any small, hydrophobic a.a.
15	Ile102	W or any small a.a. except P
	Ser104	T or any small, hydrophobic a.a.
	Asn114	S, Q or any small, hydrophobic a.a.
	Hisll8	F or any a.a. except P and W
	Ala120	V or any small, hydrophobic a.a.
20	Ser130	A, T or any small, hydrophobic a.a.
	Ser139	A, T, Y or any a.a. except P and W
	Thr141	W or any a.a. except P
*	Ser142	A, T or any small, hydrophobic a.a.
	Ser157	T or any small, hydrophobic a.a.
25	Ala188	P or any small, hydrophobic a.a.
	Val193	M or any small, hydrophobic a.a.
	Val199	I or any small, hydrophobic a.a.
	G1y205	V or any small, hydrophobic a.a.
	A1a224	V or any small, hydrophobic a.a.
30	Lys229	W or any a.a. except P
٠	Ser236	A, T or any small, hydrophobic a.a.
	Asn237	A, N, Q, M or any small, hydrophobic a.a.
	Asn242	A, N, Q, M or any small, hydrophobic a.a.
	His243	A, N, Q, M or any small, hydrophobic a.a.
35	Asn255	P or any small, hydrophobic a.a.
	Thr268	V or any small, hydrophobic a.a.

10

\$36\mathbb{\text{\lambda}}

The amino acid sequences of the preferred proteolytic enzymes are given in SEQ ID NO:1 to SEQ ID NO:51. The preferred mutated B. lentus DSM 5483 proteases which are encoded for by genes according to the invention as disclosed above are given in SEQ ID NO: 53 to 105. These proteases are produced by bacterial strains which have been transformed with plasmids containing a native or hybrid gene, mutated at one or more nucleotide base pairs by known mutagenesis methods. These mutant genes encode for proteases in which selected amino acid residues have been substituted for by other amino acids.

The mutant proteases according to the invention are listed in Table 3.

	Tab	ole 3	le 3			
15	Mutation	Temperature Stability SDS Stability				
15		50°C,	60°C,	pH 10.5,	pH 8.6,	
		pH 11.0	рн 10.0	50°C	50°C	
		th (min)	th (min)	th (min)	th(min)	
20				3.2	12	
	S3T, V4I, A188P, V193K, V199I	120	67		18.5	
	S3T, A188P, V193M, V199I	95	60	3.75	3.75	
	V4I, A188P, V193H, V199I	72	39	1.75	4.6	
•	S139Y, A188P, V193M, V199I	69	. 33	1.4		
25	S130T, S139Y, A188P, V193H, V199I	64	22	2	6.3	
	A188P, V193H, V199I	55	23.5	3.0	12.5	
	S3T, A188P, V193H	54	21	1.5	3.4	
	S157T	52	17.5	1.2	0.95	
	A188P, V193H	50	27	2.5	7.25	
30	A188P	48	19	1.4	2.8	
	S3T, V4I, A188P, V193M	43	21	1.4	3.7	
	V193X	42	16.6	1.2	3.0	
	S104T	42	8	1.0	1.8	
	T69V	41	12.3	0.8	1.8	
35	V4I, A188P, V193H	40	19	1.25	2.7	
-	A224V	39	15	0.9	1.1	
	V199I	38.5	11.6	1.0	2.0	
	V4I	32.5	10	0.75	1.0	
	SIT	32	6.6	1.2	2.8	
40	\$139¥	26	8.8	1.0	2.0	
40	N242A	26	7.4	0.9	1.9	
	8236T	25.5	8.4	1.0	2.0	
	836A	23.8	8.6	0.9	1.8	

TABLE 4 (cont.)

	Mutation	Temperature Stability SDS Stability			
		50°C,	60°C,	pH 10.5, pH 8.6,	
		pH 11.0	pH 10.0	50°C	50°C
		th (min)	th (min)	th (min)	th (min)
,					
	H243A	23	5.9	0.8	1.7
-	A101T	23	4.7	0.5	2.75
	S236A	23	5.1	0.8	1.3
	E87R	22.5	9.0	0.4	1.2
5	N114S	22	7.9	1.1	1.3
	A47W	21	7.2	0.9	1.05
	A120S	20.5	8.4	0.9	1.4
	T56V	20	8.5	0.8	0.7
	A120V	20	11.8	0.65	1.9
10	G205V	20	6.8	1.1	2.8
	S130A	20	8.8	0.4	1.0
	S130T	20	7.2	0.4	1.1
	A 96I	19	12	1.0	1.4
	S104T, S139Y, A224V	18	9.5	1.0	1.8
15	S139A	18.5	7.8	0.5	0.8
	S142T	17.5	11.5	0.9	1.7
	S139T	16.5	4.3	0.5	0.8
	I102W	16.5	7.2	0.7	1.6
	A96N	16	6	0.9	0.95
20	N42F	16	5.9	1.0	1.4
20	S142A	16	9	1.0	1.7
	H118F	15.8	5.1	1.0	1.3
	N237A	15	7.8	0.67	1.3
	N255P	15.0	5.3	1.2	1.25
25	T141W, N237A	14	5.4	0.33	1.1
25	T268V	14	3.8	0.75	1.1
	K229W	13.4	4.6	1.0	1.4
	T141W	12	6.5	0.6	1.4
•	wildtype	12.0	3.0	0.8	1.6
30		•			

Any of the proteases listed in Table 3 will exhibit greater stability in some manner than the wild-type protease BLAP. The entries under the "Mutation" heading of Table 3 shows the identity of the wild-type amino acid (using the one letter code), its position, and the amino acid which

10

15

20

25

30

35

replaces it in the mutant protease. For example, S3T signifies that the serine at position 3 of the mature protease is replaced with a threonine. Some of the preferred mutant proteases are single replacements at specific locations such as a protease wherein valine at position 4 is replaced by isoleucine to specific combinations of replacements such as a protease wherein threonine at position 141 is replaced by tryptophan and asparagine at position 237 is replaced by alanine. The latter protease containing two replacements is one of only a number of possibilities.

The preferred mutant proteases according to the invention are identified as: (S3T, V4I, A188P, V193M, V199I); E87R; (S3T, A188P, V193M, V199I); N114S; (V4I, A188P, V193M, V199I); A47W; (S139Y, A188P, V193M, V199I); A188P, V193M, V199I); S139Y, (S130T, A120S; A120V; (A188P, V193M, V199I); G205V; (S3T, A188P, V193M); S130T; S157T; A96I; (S104T, S139Y, A224V); S139A; S142T; S139T; I102W; V193M; A96N; N42F; S142A; H118F; N237A; N255P; (T141W, N237A); T268V; K229W; T141W; (A188P, V193M); V4I; S3T; S139Y; N242A; S236T; S36A; H243A; A101T; S236A; A188P; (S3T, V4I, A188P, V193M); V193M; S104T; T69V; (V4I, A188P, V193M); A224V; V199I. The system used to designate the above preferred proteases first lists the amino acid residue in the mature form of the B. lentus DSM 5483 alkaline protease at the numbered position followed by the replacement amino acid residue using the one letter codes for amino acids. For example, V193M is a protease in which valine has been replaced by methionine at position 193 of the mature B. lentus DSM 5483 alkaline protease. A protease identified by more than designation is a mutant protease which contains all of the indicated substitutions. For example, (A188P, V193M) is a protease in which valine has been replaced by methionine at position 193 of the mature B. lentus DSM 5483 protease and alanine at position 188 has been replaced by proline.

15

20

25

30

35

Mutant forms of the B. lentus DSM 5483 alkaline protease are prepared by site-specific mutagenesis of DNA encoding the mature form of either wild-type BLAP, or a The DNA fragment encoding the mature form of wild type BLAP was prepared using plasmid pCB13C. Plasmid hybrid fusion between contains · a B. licheniformis ATCC 53926 protease gene and the B. lentus DSM 5483 BLAP gene, shown in Figure 2. Specifically, this hybrid fusion contains DNA encoding the promoter, ribosomal binding site, and 21 residues of the pre sequence from the ATCC 53926 protease gene fused to a DNA sequence encoding the last five residues of the BLAP pre sequence and all of the pro and mature residues of BLAP. This fusion is referred to as the ClaI fusion because this restriction site is located at the juncture between the ATCC 53926 and DSM 5483 DNA's. A new ClaI restriction site had to be introduced into the ATCC 53926 alkaline protease gene near to the junction of the pre and pro sequences. site was introduced into the ATCC 53926 alkaline protease gene by using a polymerase chain reaction (PCR) to amplify a DNA fragment containing sequence information from the Nterminal part of the ATCC 53926 alkaline protease gene. The amplified fragment included the ATCC 53926 alkaline ribosomal binding site, protease promoter, initiation codon, and most of the pre sequence. This 292 bp DNA fragment was flanked by AvaI and ClaI restriction sites at its 5' and 3' ends, respectively. The BLAP gene already contained a naturally occurring ClaI site Analysis of the DNA sequence corresponding position. across the fusion of the ATCC 53926 and BLAP genes confirmed the expected DNA and amino acid sequences.

Before any mutagenesis can be carried out, the gene is subcloned into the mutagenesis vector pMa5-8. This is accomplished by synthesizing a DNA fragment containing the ClaI fusion gene and the ATCC 53926 transcription terminator as a SalI cassette using the PCR. The PCR was carried out using conditions as described by the

10

15

20

25

30

35

manufacturer (Perkin Elmer Cetus, Norwalk, CT.). PCR, two synthetic oligonucleotides bearing SalI sites are used as primers and Escherichia coli vector pCB13C DNA as a template. After cutting the PCR product with Sall, this fragment is cloned into the mutagenic plasmid pMc5-8 which has previously been cut with Sall and dephosphorylated with bacterial alkaline phosphatase. Plasmids pMc5-8, and pMa5-8 described below were obtained from H.-J. Fritz and are described by Stanssens, P., et al. (1989) Nucleic Acids Res. 17:4441-4454. SalI sites are chosen to allow the PCR fragment to be cloned into pMc5-8 in both orientations. The E. coli is transformed into mix Chloramphenicol resistant (CmR) transformants are screened for the presence of an insert and a correct plasmid construct pMc13C is identified as shown in Figure 3. Once the gene is cloned into the pMc vector and desirable sites for mutation are identified, the mutation(s) is introduced synthetic DNA oligonucleotides according to a modification of a published protocol (Stanssens, P., et al. Res. 17:4441-4454). Acids Nucleic (1989) oligonucleotide containing the mutation(s) to be introduced is annealed to a gapped duplex (gd) structure which carries the BLAP gene on a segment of single stranded (ss) DNA. The gapped duplex can be formed by annealing linear ss DNA from pMc13C with denatured and restricted pMa5-8 DNA. Plasmid pMa5-8 contains an active ampicillin resistance gene but has an inactivating point mutation in the chloramphenicol resistance gene, whereas plasmid pMc13C contains, in addition to an intact BLAP gene, an active chloramphenicol resistance gene, but has an inactivating point mutation in the ampicillin resistance gene. annealed product is the gd DNA which is a double stranded heteroduplex with a ss DNA gap spanning the entire cloned BLAP gene. The mutant oligonucleotide is able to anneal to homologous ss BLAP DNA within the gap and the remaining gap is filled in by DNA polymerase I (Klenow fragment) and ligated using T4 DNA ligase, purchased from New England

15

20

25

30

35

Biolabs Inc., Beverly, Ma. The mutagenic efficiency of such a system can be improved by the use of Exonuclease III (Exo III) purchased from New England Biolabs Inc., Beverly, Exo III is an exodeoxyribonuclease that digests double stranded DNA from the 3' end. As a free 3' end is required, closed circular as DNA or ds DNA is unaffected by this enzyme. A subsequent treatment of the product of the fill-in reaction with Exo III removes any species with only partially filled gaps. This significantly improves the mutagenic efficiency and is the preferred mutagenesis method. The product of the fill-in reaction is then transformed into a repair deficient E. coli strain such as WK6mutS and ampicillin resistant transformants (ApR) are Replication of the transformed heteroduplex selected. phasmid results in two different progenies. contains the wild type BLAP gene and chloramphenicol resistance gene, but an inactive ampicillin resistance gene. The other progeny contains a BLAP gene carrying the mutation of interest and is resistant to ampicillin but not to chloramphenicol.

Selection of ApR, CmS mutant transformants with ampicillin is not sufficient to stop some background growth of the ApS, CmR progeny carrying the wild type BLAP gene. is necessary to perform Therefore. it transformation into B. coli using plasmid DNA prepared from the ApR transformants of the WK6mutS strain. This second transformation uses a low plasmid concentration with a large number of recipient cells of a suppressor deficient strain of E. coli such as WK6. This approach decreases the likelihood of a recipient cell receiving plasmid DNA from both progeny. ApR transformants are selected and plasmid DNA from several transformants is isolated and screened for the presence of the mutation. The pMa mutant derivative of the first mutagenesis round can be used for a second round of mutagenesis by preparing as DNA of that species and annealing it to XbaI/HindIII restricted and denatured DNA of pMc5-8. Plasmid pMc5-8 is identical to pMa5-8 except

15

20

25

30

35

that it contains an active chloramphenicol resistance gene and an inactive ampicillin resistance gene. The general procedure is the same as that described above.

BLAP proteases can be produced mutant transferring the mutant BLAP genes from their particular E. coli pMa13C derivative vector into a plasmid vector which can replicate in Bacillus. To accomplish this, the mutant BLAP genes are separated from their pMa13C plasmids by digestion with the restriction endonucleases AvaI and SstI, followed by ligation to the larger AvaI/SstI fragment from These AvaI/SstI fragments either plasmid pH70 or pC51. from pH70 and pC51 include the DNA sequences necessary for replication in Bacillus and encode either kanamycin or tetracycline resistance (Km^R) resistance respectively. Plasmid pH70 is constructed by cloning the ATCC 53926 alkaline protease gene carried on a EcoRI/BamHI DNA fragment into the KmR plasmid pUB110 between the BcoRI and BamHI sites. Plasmid pC51 is constructed by cloning the ATCC 53926 protease gene carried on a EcoRI-BamHI fragment into the TcR plasmid pBC16 between the EcoRI and The larger AvaI-SstI fragment from either pH70 or pC51 used for cloning the mutant BLAP genes is first purified from other DNA fragments by high pressure liquid chromatography (HPLC) on a Gen-Pak FAX column (Waters, Milford, MA). The column is 4.6 mm by 100 mm in size and contains a polymer-based high performance anionexchange resin. Conditions for elution of the DNA are a flow rate of 0.75 ml/min with a gradient of Buffer A (25 mM tris(hydroxymethyl)aminomethane (Tris) pH 8.0 containing 1 mM disodium ethylenediamine tetraacetic acid (EDTA)) and Buffer B (25 mM Tris pH 8.0, 1 mM EDTA, 1 M NaCl) starting at 50% each and reaching a final concentration of 30% Buffer A and 70% Buffer B.

After ligation the mutant BLAP plasmids are transformed into B. subtilis DB104. The genes encoding the major alkaline and neutral proteases present in this strain have been inactivated (Kawamura, P., and Doi, R.A.

15

20

25

30

35

(1984) J. Bacteriol. 160:442-444). Cells of B. subtilis DB104 transformed by these plasmids grow on a nutrient-skim milk agar in the presence of either kanamycin or tetracycline. Transformants of DB104 that manufacture mutant protease are identified by the formation of clear zones of hydrolysis in the skim milk. Confirmation that the protease-producing transformants carry a plasmid-borne BLAP gene with the desired mutation(s) is accomplished by purifying plasmid DNA from a culture of each transformant. The plasmid DNA is purified away from cell protein and chromosomal DNA by SDS-salt precipitation followed by chromatography over a Qiagen ion-exchange column (Qiagen Corporation, Studio City, CA). AvaI-SstI digested plasmid DNAs from different transformants are compared with AvaI/SstI-digested derivatives of plasmid pH70 or pC51 known to carry an intact BLAP gene. Restriction digests of these plasmids are compared by agarose gel electrophoresis to identify plasmids that have the proper-sized AvaI/SstI DNA fragments. Selected plasmid DNAs are then sequenced across the region of the expected BLAP mutation(s) to confirm that the desired mutation(s) are present. more clones of each BLAP mutation are stored frozen in 15% glycerol at -70°C and also cultivated in shake flasks (Example 4, Production of Proteases) to produce mutant protease for characterization.

Another aspect of the invention provides a computer based method for identifying the sites which affect the storage, thermal, SDS and pH stability of a protein. This method is based on the hypothesis that protein stability may be enhanced by decreasing the volume of internal cavities and improving surface packing of amino acid side chains. The interior of a protein contains many apolar amino acids which are tightly packed into a nearly crystalline state. One way in which these interior amino acids affect protein stability is through packing effects. These include van der Waal interactions, distortion of the remainder of the protein and electrostatic effects.

10

15

20

25

30

35

Packing effects have been studied by measuring the contribution of methyl groups in the interior of a protein to the overall stability of the protein. It has been estimated that the removal of a methyl group from the interior of a protein destabilizes it by about 1.1 kcal/mol assuming no other perturbations occur (Kellis, J.T., Jr., et al. (1988) Nature 333:784-786). However, the inverse may not be true. Simply adding buried hydrophobic groups may not increase protein stability because the total effect of adding or deleting a methyl group on the local packing structure must be considered. As the protein interior has a para-crystalline structure (Chothia, C. (1975) Nature 254:304-308), small distortions in the remainder of the structure resulting from the addition methyl group may exact a high cost and reduce rather than increase stability.

While it is known in the art to make certain substitutions which may affect protein stability, there is no known way of identifying which sites in the protein will lead to stabilization when substituted. For example, it has been suggested that protein stability would be increased if alanine were substituted for glycine or serine; or if threonine were substituted for serine (Matthews, B.W., et al. (1987) Proc. Natl. Acad. Sci. 84:6663-6667); or if proline were substituted for glycine. sites in which one or more of these substitutions should be made has been so far unpredictable. Other methods depend on comparisons of the amino acid sequences of different but related proteins. However, this does not show which sites are important to stability, only which positions are different.

There are two computer based methods for identifying the sites which affect the stability of a protein according to the invention.

In the first method for identifying sites which affect the stability of protein, the first step comprises generating a probe-accessible surface by analyzing the

15

20

25

30

35 -

target protein coordinates with an uncharged probe molecule having a radius of about 0.9 to about 2.0 Å. It is important that no water molecules be included in the protein structure during this analysis. The second step of this method is the identification of the amino acids which form the boundaries of the internal cavities. These amino acids comprise a set of positions which, if mutated, may increase the stability of the protein. An increase in stability can be achieved by amino acid substitutions which decrease the volume of the internal cavities.

The molecular modeling program QUANTA (trademark of Polygen Corporation, 200 Fifth Ave., Waltham, MA 02254) was used to calculate probe-accessible surfaces as well as perform the alignment of the three dimensional coordinates of the proteins. These functions can be carried out equally well by other molecular modeling programs which are also commercially available. The following is a list of commercially available programs which can also be used to calculate probe-accessible surfaces: Insight or InsightII (trademark of Biosym Technologies, Inc., 10065 Barnes Canyon Road - Suite A, San Diego, CA 92121), BIOGRAF (trademark of Biodesign, Inc., 199 S. Los Robles Ave., \$270, Pasadena, CA 91101) or Sybyl (trademark of Tripos Associates, 1699 S. Hanley Road, St. Louis, MO 63144)

The probe-accessible surface referred to in step 1 of the first method can be generated in several ways (Richards, F.M. (1977) Annu. Rev. Biophys. Bioeng. 6:151-176): A spherical probe of radius R (0.9 to 2.0 Å) is allowed to roll on the outside of a molecule while maintaining contact with the van der Waal surface. The surface defined by the center of the probe is defined as the probe-accessible surface. Alternatively, a similar surface can be generated by increasing the van der Waal radii of all the atoms in a protein by the radius of the probe. Overlapping surfaces are eliminated and the remaining surface represents the probe-accessible surface. In the preferred embodiment, a three-dimensional box of

10

15

20

25

30

dimensions 50x50x50 Å with a 1 Å grid size in all three dimensions (x, y, and z) is centered on the center of mass of the target protein coordinates. Most preferrably, the dimensions of the probe map are adjusted such that all of the protein atoms fall within the probe map's bounds. The grid size of 1 Å provides a sufficiently high resolution to clearly define the probe-accessible surface although another grid size could be used, ranging from 0.5 to 3.0 Å. An uncharged probe molecule is positioned at each grid point and the energy of interaction between the probe and the target protein atoms is determined. The energy of nonbonded interaction $(E_{\rm nb})$ contains only the van der Waal component such that

EQUATION (1)

$$E_{nb} = \sum_{\text{monbonded}} 4 \varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r} \right)^{12} - \left(\frac{\sigma_{ij}}{r} \right)^{6} \right]$$
i, jpairs

where r is the nonbonded distance, ϵ_{ij} is the dispersion well depth and σ_{ij} is the Lennard-Jones diameter. The result is a map consisting of a box with energy values at each grid point. This map can be contoured at a particular energy value to generate surfaces which correspond to the solvent accessible surface and internal cavities (Goodford, P.J. (1985) J. Med. Chem. 28: 49-857). The value at which to contour the maps can var depending on the particular radius used and the parameters used to define the probe molecule and the particular method used to generate the probe. The preferred embodiment is to used a probe radius of 0.9 Å and contour the surface at 10 kcal/mol.

The external surface of the probe-accessible surface is also known as the solvent-accessible surface. Probe-accessible surfaces inside of the solvent accessible surface are defined as internal cavities and represent cavities large enough to accommodate a molecule with a

15

20

25

30

35

radius equal to the probe radius. The presence of such a cavity on the inside of a protein does not imply that the cavity will in fact be filled by one or more solvent molecules.

The second step of the method for identifying sites which affect the stability of a protein is the identification of the amino acids which form the internal cavities. The internal cavities are defined by the amino acids which make up its boundaries. These amino acids comprise a set of positions which, if mutated, may increase the stability of the protein.

In a second method for identifying sites which affect the stability of a protein, the first step comprises generating a probe-accessible surface by analyzing the target protein coordinates with an uncharged probe molecule having a radius of about 0.9 to about 2.0 Å. It is important that no water molecules be included in the protein structure during this analysis. This step is the same as the first step of the method set forth above.

the three aligning involves second step The dimensional structure of the target protein and a reference protein by moving the three dimensional coordinates of the reference protein into the coordinate frame of the target protein. The reference protein is usually chosen so that a high degree of similarity exists between it and the target protein so that packing differences between the target and reference protein which potentially affect the stability of the target protein can be identified. The reference protein can be any protein for which a three dimensional structure is available which is homologous to the target protein. Examples of such proetins include but are not limited to subtilisin Carlsberg, subtilisin BPN', proteinase K, and When the target protein is BLAP, one Thermitase. preferred reference protein is Thermitase. Thermitase is an extra-cellular subtilisin-like serine protease isolated from Thermoactinomyces vulgaris (Frömmel, C., et al. (1978) Acta Biol. Med. Ger. 37:1193-1204). The protein amino acid

10

15

20

25

30

35

sequence of thermitase is 42% identical to BLAP. The high degree of similarity between these two proteins provides an ideal system with which to examine packing differences that affect BLAP stability. In this second step the three dimensional structures of Thermitase and BLAP are aligned using the computer program QUANTATH. The three dimensional alignment is carried out by first aligning the primary sequences of the two proteins to determine which amino acids are equivalent. This is accomplished using FASTA (Myers, E.W., and Miller, W. (1988) Comput. Applic. Biosci. 4:11-17; Pearson, W.R., and Lipman, D.J. (1988) Proc. Natl. Acad. Sci. USA 85:2444-2448). Based on this alignment of the primary sequence, residues are matched for subsequent alignment of the three dimensional structures using MULTLSQ (Sutcliffe, M.J., et al. (1987) Protein Eng. 1:377-384; Kabsch, W. (1976) Acta Cryst. A32:922-923). uses one structure as fixed coordinates (the target protein coordinates) and then rotates and translates a second structure (the reference protein coordinates) so as to give the smallest root mean squared (r.m.s.) deviation between the two sets of three dimensional coordinates. example, the alignment of the BLAP and thermitase three dimensional coordinates results in an r.m.s. deviation between equivalent a-carbons of 0.8 Å. This demonstrates that the amino acid sequences of BLAP and thermitase fold into three dimensional structures which are extremely similar.

In the third step, the alignment of the three dimensional structures is used to identify sites which affect the stability of the target protein. This can be accomplished by a variety of methods. Using a computer program designed to display protein structures and surfaces such as QUANTATH, the structure of the reference protein can be displayed with the probe-accessible surface. The combined display of the reference protein and probe-accessible surface can then be visually examined to determine which amino acids in the reference protein fall

15

20

25

30

35

outside of the solvent-accessible surface or inside internal cavities. An alternative method which can be used comprises coloring the atoms of the reference protein by determining whether amino acids in the reference protein fall outside of the solvent-accessible surface or inside internal cavities. The probe-accessible surface map (probe map) was used to color the atoms in the transformed subtilisin BPN' structure. In order to color each atom, an energy value needs to be interpolated from the probe map at each atomic coordinate.

The probe map consists of three dimensional grid with an energy value (E) at each grid point. In the preferred embodiment, the probe map is a 50x50x50 Å box centered on the center of mass of the protein with a 1 Å grid unit in all three dimensions (x, y, and z). In its optimal conception, the size of the probe map is adjusted such that all of the protein atoms fall within the probe map's bounds. The energy value at each protein atom position was approximated by interpolating from the energy values from the surrounded eight grid points in the probe map. Given the energy value at each point from the probe map, the grid spacing, and the atomic coordinate, it is a simple matter for any one skilled in the art to interpolate an energy value at each atomic coordinate.

In one such method, an energy value of zero is assigned arbitrarily if an atom falls outside the bounds of the map. From a given atomic coordinate (x,y,z), the eight closest grid points from the probe map which surround identified such $(x_1 < x < x_2),$ that are (x,y,z) $(y_1 < y < y_2)$, and $(z_1 < z < z_2)$. The eight grid points are then $\lambda (x_1, y_1, z_1)$, $B (x_1, y_1, z_2)$, $C (x_1, y_2, z_2)$, $D(x_1, y_2, z_1), E(x_2, y_1, z_1), F(x_2, y_1, z_2),$ G (x_2, y_2, z_2) , and H (x_2, y_2, z_1) . The energy value (E) at a given grid point such as (x_1, y_1, z_1) is then $E(x_1, y_1, z_1)$ or equivalently $E_{\mathbf{A}}$. The energy at a specific atomic coordinate $E_{(x,y,z)}$ can be interpolated from the probe map given the eight nearest surrounding grid points (A through H, as

described above) and the value at each grid point (E_A through E_B). The equation which was used for calculating the energy at specific atomic coordinates, $E_{(x,y,z)}$, is shown in Equation (2). The energy value at each coordinate can then be stored and used to display the molecule.

EQUATION (2)

$$E_{(x,y,z)} = \left(\frac{x-x_1}{x_2-x_1}\right)(E_o-E_k)+E_k$$

where

$$E_o = \left(\frac{y - y_1}{y_2 - y_1}\right) (E_B - E_1) + E_1; \text{ and } E_k = \left(\frac{y - y_1}{y_2 - y_1}\right) (E_j - E_i) + E_i;$$

and where

$$E_{i} = \left(\frac{z - z_{1}}{z_{2} - z_{1}}\right) (E_{F} - E_{B}) + E_{B}; \quad E_{j} = \left(\frac{z - z_{1}}{z_{2} - z_{1}}\right) (E_{G} - E_{H}) + E_{H};$$

$$E_1 = \left(\frac{z-z_1}{z_2-z_1}\right)(E_B-E_A) + E_B : E_B = \left(\frac{z-z_1}{z_2-z_1}\right)(E_C-E_D) + E_D;$$

The protein atoms were colored on the basis of this interpolated energy value. The protein was displayed using QUANTATK and atoms with interpolated energies below 10 kcal/mol were colored as red. Atoms with interpolated energies above 10 kcal/mol were colored green. Visual inspection allowed identification of side chains which penetrated the solvent accessible surface or penetrated internal cavities.

There are also two computer based methods for increasing the stability of a protein. The first method comprises the steps of: (1) generating a probe-accessible surface of said target protein by probing the coordinates of said protein with an uncharged probe molecule having a radius of about 0.9 to about 2.0 Å, wherein said probe-accessible surface has an external surface the interior of which contains one or more probe-accessible internal

15

10

15

20

25.

30

35

cavities; (2) identifying the amino acids which make up the boundaries of the internal cavities, wherein said amino acids comprise a set of sites which when mutated increase the stability of the protein; (3) identifying an amino acid mutation which would decrease the volume of said internal cavities; (4) determining if said amino acid in said target protein can be changed without creating unacceptable steric interactions; (5) replacing the amino acid in said target protein by site-directed mutagenesis of the gene which expresses said target protein.

The first two steps of the above first method for improving the stability of a protein are the same as those disclosed above for the first computer based method for identifying the sites which affect the stability of a protein.

In step (3) an amino acid identified in step (2) is examined with the goal of identifying a mutation which would decrease the volume of said internal cavity. The size, shape and position of said internal cavity often defines and limits what mutations are acceptable and allowable given the distinct shape and size of each individual amino acid side chain. However, as a particular site in the protein has been identified for mutation, appropriate mutations can be also be determined by applying any of the various heuristics which define generally acceptable mutations (Matthews, B.W., et al. (1987) Proc. Natl. Acad. Sci. 84:6663-6667; Menéndez-Arias, L., and Argos, P. (1990) J. Mol. Biol. 206:397-406; Sandberg, W.S., and Terwilliger, T.C. (1991) Trends Biotechnol. 9:59-63; Bordo, D., and Argos, P. (1991) J. Mol. Biol. 217:721-729).

In step (4) a determination is then made if the amino acid identified for change in the target protein can be mutated or changed without creating a conformation of the target protein having unacceptable steric interactions. The separation distance between two atoms considered unacceptably short is some percentage of the sum of the van der Waal radii of the two atoms in question. Values of 90-

15

20

25

30

35

95% of the sum of the van der Waal radii are common though others could be used. Common atoms between the original and replacement amino acid side chain are located and fixed The new amino acid is rotated to in the same position. find the position with the least number of close contacts or unacceptable steric interactions (distances shorter than physically reasonable). The separation distance at which two atoms are considered unreasonably short is some percentage of the sum of the van der Waal radii of the two atoms in question. Values of 90-95% of the sum of the van der Waal radii are common though others could be used. If all conformations of the new amino acid have close contacts, the amino acid substitution is rejected. conformation with no close contacts which can be matched to a preferred amino acid conformation as defined by Ponder, J.W., and Richards, F.M. (1987) J. Mol. Biol. 193:775-791, is most highly desirable. In step (6) the amino acid identified for change to the corresponding amino acid in the same position in the reference protein is changed by site-directed mutagenesis of the gene which expresses the target protein by the methods disclosed above.

the steps of: comprises method second (1) generating a probe-accessible surface of said target protein by probing the three dimensional coordinates of said protein with an uncharged probe molecule having a radius of about 0.9 to about 2.0 Å, wherein said probeaccessible surface has an external surface the interior of which contains one or more probe-accessible internal cavities; (2) aligning said three dimensional coordinates of said target protein and a reference protein by moving the three dimensional coordinates of said reference protein into the coordinate frame of said target protein; (3) identifying an amino acid in said reference protein whose side chain lies outside said solvent-accessible surface of said protein or inside said internal cavities of said target protein; (4) identifying the amino acid in said target protein which occupies the equivalent position as

10

15

20

said amino acid in said reference protein; (5) determining if said amino acid in said target protein can be changed without creating unacceptable steric effects; (6) replacing the amino acid in said target protein with the corresponding amino acid in the equivalent position in said reference protein by site-directed mutagenesis of the gene which expresses said target protein.

The first three steps of this method are the same as steps (1), (2), and (3) of the second method for the second computer based method for identifying the sites which affect the stability of a protein.

In step (4) the amino acid in the target protein which occupies the equivalent position as the amino acid in the reference protein is identified. Equivalency is determined from the primary sequence alignment and three dimensional structure alignment described above. Given two protein structures, a target and a reference structure, which have been aligned, equivalent amino acids are defined as pairs of amino acids, one from the target and one from the reference protein, which may differ in identity but occupy close to the same position in the secondary and tertiary structure of the two proteins.

The following examples are meant to illustrate but not to limit the invention.

15

20

25

30

35

Example 1

Identification of Sites in BLAP for mutagenesis

structure of BLAP was obtained by X-ray crystallography and solved to 1.4 Å. The atomic coordinates are shown in Figure 1. Water molecules were removed from the structure and the protein coordinates were used to generate a probe-accessible surface using a computer program QUANTATH (version 3.0). This program can be used to calculate a probe-interaction map. The coordinates of BLAP were read into the computer and the following parameters were set in order to perform the probe interaction grid calculation. A Van der Waal calculation was requested with a "proton" probe (radius of 0.9 Å) with a charge of 0.0. The box dimensions were set to 50 Å with a grid size of 1 Å centered on the α -carbon of residue 219. The maximum energy was set to 500 and the minimum to -100. This means that energy values which exceed 500 will be set to 500. An energy value will exceed 500 when the probe is very close to an atom in the protein. The calculations were performed on a Silicon Graphics Inc. (2105 Landings Drive, Suite CA 94043) 4D/220 PowerIrisTH Mountain View, QUANTATH was used to visualize the probeworkstation. accessible surface. The map was contoured at 50 kcal/mol but this value depends on the particular constants in use and the method used to generate the probe accessible The map was displayed simultaneously with the surface. structure of BLAP and amino acid side chains which defined the boundaries of the internal cavities were identified visually.

One such amino acid was threonine-69. This side chain is completely buried with only 2% of its surface being solvent accessible. The hydroxyl group of the side chain defined part of the border of two internal cavities. These particular cavities are occupied by water molecules 278 on one side, and 280 on the other. Mutating this amino acid to valine represents a conservative change which increases the hydrophobicity of the side chain while having little

10

15

20

25

30

35

effect on size and shape. Using computer modeling, it was determined that mutating threonine-69 to valine would not create any close contacts with other protein atoms or significantly perturb the structure if the valine occupies the same position as the hydroxyl of threonine-69 in the wild type protein. An oligonucleotide was synthesized which carried a mutation of the codon for threonine-69 to valine (T69V). This oligonucleotide was used to create a site directed mutation in the BLAP gene which was subcloned into a Bacillus vector and expressed in B. subtilis DB104 (See Examples 4 and 5). Strains were identified which were expressing the mutant protease and several shake flasks were prepared to produce the mutant protein (See Example 5). The mutant protease was purified from the shake flask media and characterized for surfactant and temperature stability (See Examples 7, 10, and 11).

The mutation T69V resulted in a 340% increase in the half-life of the protease at 50°C, from 12 minutes to 41 minutes (See Table 3).

Example 2

Identification of Sites in BLAP for mutagenesis based on other proteases.

(A) Comparison to subtilisin Carlsberg.

The three dimensional coordinates of subtilisin Carlsberg (1CSE) were obtained from the Brookhaven Protein Database (Bernstein, F.C., et al. (1977) J. Mol. Biol. 112:535-542). The protease structures were aligned using the molecular modeling program QUANTATM. The BLAP coordinates were held fixed. The α-carbons of residues 1 to 32 of BLAP were matched to residues 1 to 32 of 1CSE, respectively; residues 40 to 60 of BLAP to residues 41 to 61 of 1CSE; residues 80 to 155 of BLAP to residues 82 to 157 of 1CSE; residues 170 to 269 of BLAP to residues 176 to 275 of 1CSE. The BLAP structure was held fixed, and the 1CSE structure was rotated and translated such that the r.m.s. deviation between the α-carbons of matched residues was minimized. The translation vector

15

20

25

30

(-10.68738, 31.28904, -5.32134) and the rotation matrix (0.17406 -0.65535 0.73500 -0.42119 -0.72422 -0.54599 0.89011 -0.21454 -0.40209)

were applied to the coordinates of 1CSE and the transformed coordinates were saved (henceforth, the transformed 1CSE structure). The final r.m.s. deviation between the matched 229 α -carbon pairs was 0.872 Å.

The probe-accessible surface map calculated in Example 1 was used to color the atoms in the transformed The entire map, which consists of three 1CSE structure. dimensional grid of (x, y, z) coordinates in space and an energy value at each position, was read into computer memory along with the protein coordinates (the transformed The energy value at each atom position 1CSE structure). was approximated by interpolating from the energy values of the surrounding eight nearest grid points in the probe map. The protein atoms were colored on the basis of this interpolated energy value. The protein was displayed using QUANTATH and atoms were displayed in different colors depending on their interpolated energy value. For example, if the energy were greater than 400 the atoms were dark blue; between 300 and 400, light blue; 200 and 300, green; 200 to 100 yellow; and between -100 and 100, red. inspection of such a display allowed identification of side chains which penetrated the solvent accessible surface or internal cavities.

One such amino acid was methionine-199 (1CSE numbering) in subtilisin Carlsberg. The amino acid was identified by visual inspection of the transformed 1CSE structure (as described above). Below, the coordinates of residue 199 from the transformed 1CSE structure are shown in the Brookhaven Protein Data Bank file format along with the interpolated energy values.

20

25

30

35

40

Coordinates of Methionine-199 from the 1.2 Å structure of subtilisin Carlsberg.

	ATOM	1364	N	MET	199	22.392	40.705	32.311	1.0 500.00
5	ATON	1365	CA	MET	199	21.675	40.581	31.054	1.0 500.00
•	ATON	1366	C	MET	199			30.103	1.0 500.00
	MOTA	1367	ŏ	MET	199				1.0 500.00
	ATOM	1368	CB	MET	199	21.621	41.991		1.0 500.00
	HOTA	1369	CG	MET	199				1.0 500.00
10	MOTA	1370	SD	MET	199				1.0 211.58
	MOTA	1371	CE	MET	199	18.273	43.395	30.493	1.0 41.68

Column 1 is the record type; column 2 is the atom number; column 3 is the atom name; column 4 is the residue name; column 5 is the residue number; columns 6, 7 & 8 are the x, y, z coordinates of the atom, respectively; column 9 is the occupancy; column 10 is normally the temperature factor but this has been replaced with the interpolated energy value. Note that a value of 500 in this column means that the atom in nearly completely within the van der Waal surface of the BLAP molecule. When the probe map was calculated (see Example 1), energy values greater than 500 were set to 500. As can be seen, atoms 1370 and 1371 have significantly lower energy values (column 10). The end of this methionine residue extends into an internal cavity in the BLAP molecule.

This residue is equivalent in secondary and tertiary structure to valine-193 in BLAP. Using computer modeling, valine-193 in BLAP was changed to methionine. The χ values for the new methionine side chain in BLAP were taken from the subtilisin BPN' structure. In this conformation, the new side chain had no close contacts except for the ϵ -carbon of the methionine which contacted a crystallographic water in the BLAP structure.

An oligonucleotide was synthesized which mutated the codon for valine-193 to methionine (V193M) in the BLAP gene. This oligonucleotide was used to create a site directed mutation in the BLAP gene which was subcloned into a Bacillus vector and expressed in B. subtilis DB104 (See Examples 3, 4, and 5). Strains were identified which were expressing the mutant protease and several shake flasks were prepared to produce the mutant protein (See Example

10

5). The mutant protease was purified from the shake flask media and characterized for temperature and surfactant stability (See Examples 6, 7, 10, and 11).

The mutation V193M resulted in a 350% increase in the half-life of the protease at 50°C, from 12 minutes to 42 minutes (See Table 3).

(B) Comparison to Thermitase.

The three-dimensional coordinates of thermitase (1TEC) were obtained from the Brookhaven Protein Database (Bernstein, F.C., et al. (1977) J. Mol. Biol. 112:535-542). The structures of BLAP and 1TEC were aligned using the molecular modeling program QUANTATH by matching equivalent α -carbons as listed below.

Matched a-carbons between

		4	Thermitase	(1TEC)
15	BLAP	End	THETHICSDE	,,

BLAP	1TEC
5-20	12-27
23-34	29-41
43-72	52-81
75-227	85-237
232-256	240-264

20

25

The BLAP structure was held fixed and the 1TEC structure was rotated and translated such that the r.m.s. deviation between the α -carbons of matched residues was minimized. The translation vector (14.92521, 33.43270, 40.92134) and the rotation matrix

30

were applied to the coordinates of 1TEC and the transformed coordinates were saved (henceforth, the transformed 1TEC structure). The final r.m.s. deviation between the matched 236 α -carbon pairs was 1.384 Å.

35

The probe-accessible surface map was used to color the atoms in the transformed 1TEC structure. The entire probe map was read into computer memory along with the coordinates of the transformed 1TEC structure. The energy value at each atomic position was interpolated from the

SUBSTITUTE SHEET

15

35

40

energy values of the eight surrounding grid points in the probe map. The protein was displayed using QUANTATH and atoms were displayed in different colors as a function of their interpolated energy value. For example, if the energy were greater than 400 the atoms were dark blue; between 300 and 400, light blue; 200 and 300, green; 200 to 100 yellow; and between -100 and 100, red. Visual inspection of such a display allowed identification of side chains which penetrated the solvent accessible surface or internal cavities.

One such amino acid was tyrosine-149 (1TEC numbering) in thermitase. The amino acid was identified by visual inspection of the transformed 1TEC structure. Below, the coordinates of residue 149 from the transformed 1TEC structure are shown in the Brookhaven Protein Data Bank file format along with the interpolated energy values.

Coordinates of Tyrosine-149

from the 2.0 Å structure of Thermitase.

	ATON	1052	N	TYR	149	19.783	23.026	47.326	1.0 500.00
20	HOTA	1053	CA	TYR	149	20.372	21.668	47.275	1.0 500.00
	MOTA	1054	С	TYR	149	21.456	21.557	46.165	
	ATOM	1055	0	TYR	149	22.619	21.330	46.486	1.0 500.00
	ATOM	1056	CB	TYR	149	19.282	20.595	47.169	1.0 500.00
	ATOM	1057	CG	TYR	149	19.859	19.183	46.935	1.0 500.00
25	ATOM	1058		TYR	149	20.262	18.427	48.038	1.0 227.30
	ATOM	1059		TYR	149	20.014	18.722		1.0 79.13
	ATOM	1060		TYR	149	20.762	17.146	45.608	1.0 275.01
	ATOM	1061		TYR	149	20.531		47.807	1.0 10.99
	ATOM	1062	CZ	TYR	149	20.860	17.425	45.371	1.0 500.00
30	MOTA	1063	OH	TYR	149			46.488	1.0 131.28
		2000	Un.	***	447	21.165	15.337	46.282	1.0 147.29

Column 10 is normally the temperature factor but this has been replaced with the interpolated energy value. As can be seen, the phenyl ring of the tyrosine side chain has significantly lower energy values (column 10 of atoms CG, CD1, CD2, CE1, CE2 and CZ).

This residue is equivalent in secondary and tertiary structure to serine-139 in BLAP. Using computer modeling, serine-139 in BLAP was changed to tyrosine. The χ values for the new tyrosine side chain in BLAP were taken from the thermitase structure. In this conformation, the new side chain had no close contacts that could not be alleviated by small changes (less than 5°) of the χ values. The modeled

10

15

20

25

30

35

tyrosine side chain in BLAP fits neatly into a crevice on the surface of the BLAP protein between two surface helices.

An oligonucleotide was synthesized which mutated the codon for serine-139 to tyrosine (S139Y) in the BLAP gene. This oligonucleotide was used to create a site directed mutation in the BLAP gene which was subcloned into a Bacillus vector and expressed in B. subtilis DB104 (See Examples 3, 4, and 5). Strains were identified which expressed the mutant protease and several shake flasks were prepared to produce the mutant protein (See Example 5). The mutant protease was purified from the shake flask culture and characterized for temperature and surfactant stability (See Examples 6, 7, 10, and 11).

The mutation S139Y resulted in a 216% increase in the half-life of the protease at 50°C, from 12 minutes to 26 minutes (See Table 3).

Example 3

Site Directed Mutagenesis of the BLAP gene

This mutagenesis procedure was first described by Stanssens, P., et al. (1989) Nucleic Acids Res. 17:4441-4454. While this is the preferred method, many other methods could be used to introduce oligonucleotide site-directed mutations, particularly those which use single stranded DNA. For example, the method of Kunkel (Kunkel, T.A. (1985) Proc. Natl. Acad. Sci. USA 82:488-492) has also been used.

A synthetic oligonucleotide was synthesized which mutates the codon of threonine-69 to the codon for valine. The mutagenic oligonucleotide was annealed to a gapped duplex DNA which carries the BLAP gene on a segment of single stranded (ss) DNA. The gapped duplex (gd) was formed by denaturing linear DNA's from pMc13C and pMa5-8 followed by re-annealing. The mutagenic oligonucleotide annealed to homologous ss BLAP DNA within the gap and the remaining gap was filled in by a DNA polymerase and ligated using T4 DNA ligase. Subsequent treatment of the product

10

15

20

25

30

35

of the fill-in reaction with ExoIII removed any species with only partially filled gaps.

The product of the fill-in reaction was then transformed into a repair deficient E. coli strain such as WK6muts. Plasmid DNA from the recombinant E. coli WK6muts was prepared and transformed in a low plasmid/recipient ratio into a suppressor deficient strain of E. coli such as WK6. Ampicillin resistant transformants were selected and plasmid DNA of several candidates was purified and checked for the presence of the mutation.

The mutant BLAP protease was expressed by transferring the mutant BLAP genes from their particular E. coli pMa13C derivative vector into a plasmid vector which can replicate in Bacillus such as pH70 or pC51. In the following the plasmids pC51 and pH70 can be used example, interchangeably with the exception that plasmid pH70 encodes resistance to kanamycin while plasmid pC51 encodes resistance to tetracycline. The mutant BLAP gene was separated from the pMa13C plasmids by digestion with the restriction endonucleases AvaI and SstI and then ligated with an AvaI-SstI cut fragment of plasmid pH70 that includes the regions necessary for kanamycin resistance and for replication in Bacillus. The pH70 AvaI-SstI fragment was purified by high pressure liquid chromatography (HPLC). After ligation the mutant BLAP plasmids were transformed into B. subtilis DB104, a strain that has been engineered to inactivate its own genes encoding the major alkaline and neutral proteases. B. subtilis DB104 transformed by these plasmids were grown on a nutrient-skim milk agar in the antibiotic kanamycin. Clones that the of presence manufactured mutant protease were identified by the formation of clear zones of hydrolysis in the skim milk. Plasmid DNA was purified from these clones to verify that the protease-producing clones carried the a plasmid-borne BLAP gene with the desired mutation. The plasmid DNA was purified away from cell protein and chromosomal DNA by SDSsalt precipitation followed by chromatography over a Qiagen

15

20

25

30

35

ion-exchange column (Qiagen Corporation). AvaI-SstI digested plasmid DNAs from different clones were compared with AvaI/SstI-digested derivatives of plasmid pH70 known to carry an intact BLAP gene. Plasmid digests were compared by agarose gel electrophoresis to identify plasmids that have the proper-sized AvaI/SstI DNA fragments. Selected plasmid DNAs were then sequenced across the region of the particular BLAP mutation to confirm that the mutation was present. One or more clones of each BLAP mutation were stored frozen in 15% glycerol at -70°C and also cultivated in shake flasks (Examples 4 and 5) to manufacture mutant protease for characterization.

Example 4

Production of Protesses

B. subtilis DB104 that carried a Each strain of plasmid with one of the mutant BLAP genes was cultivated in shake flasks to make the mutant protease. Strains were grown in 50 ml precultures of (Difco) Luria Broth (LB) with the antibiotic kanamycin for pH70 derived clones or tetracycline for pC51 derived clones at 37°C and 280 rpm in a New Brunswick Series 25 Incubator Shaker. After 7 to 8 hours of incubation 2.5 or 5.0 ml of the preculture was transferred to 50 or 100 ml of MLBSP medium (Table 5), respectively, with either 20 μ g/ml of kanamycin, 15 μ g/ml of tetracycline in 500 ml (Bellco) baffled shake flasks for growth and eventual production of the protease. These main shake flask cultures were incubated at 240 rpm and 37°C for 64 hours before the culture broths were treated to remove intact cells and cellular debris, and to reduce the pH to 5.8 before they were concentrated. The protease production of each culture was monitored by electrophoresis of culture supernatants with reverse polarity on 12.5% homogenous polyacrylamide gels with the Pharmacia PhastSystem.

Example 5

Production of Mutant Proteases in Shake Flasks

15

20

25

A hot loop was used to streak each mutant strain from a frozen cryovial culture onto an LB-skim milk agar containing either 20 μ g/ml of kanamycin or 15 μ g/ml of The plates were incubated at 37°C for 20 to tetracycline. 24 hours. A single, isolated colony producing a good zone of hydrolysis of the skim milk was picked into a 250 ml Erlenmeyer flask containing about 50 ml Luria Broth (LB) which contained either 20 μ g/ml kanamycin or 15 μ g/ml of tetracycline. The broth was incubated in a New Brunswick Series 25 Incubator Shaker at 37°C with shaking at 280 rpm for 7 to 8 hours. Either 2.5 ml of the turbid preculture was transferred into 50 ml of MLBSP containing either 20 μ g/ml kanamycin or 15 μ g/ml of tetracycline in each of four baffled 500 ml flasks, or 5 ml of preculture was used as an inoculum for 100 ml of MLBSP broth with antibiotic contained in each of two 500 ml baffled flasks (a 5% v/v transfer). All flasks were incubated at 240 rpm and 37°C for 64 hours. After 64 hours of incubation the set of flasks for each culture was consolidated, transferred to 50 ml centrifuge tubes, and centrifuged at 20,000 gay for 15 minutes at 4°C. The broth was filtered through Miracloth (Calbiochem Corp. #475855) into 400 ml beakers chilled on ice. The broth was slowly stirred on ice for 30 minutes before the broth pH was reduced to 5.8 by the slow addition of glacial acetic acid. More fine debris were removed by centrifugation again at 20,000 gav and the broth was filtered through Miracloth into graduated cylinders to measure the volume. Two sets of 1 ml samples were made for PhastSystem gels and activity assays. The broth was stored on ice until the protease could be purified. The MLBSP media used for the production of BLAP in shake flask cultures is described in Table 5.

35

30

TABLE 5
COMPOSITION OF MLBSP MEDIUM

Component	Quantity (for 1 liter of media)
deionized wate	r 750 ml
Difco Casitone	10 gm
Difco Tryptone	20 gm
Difco Yeast Ex	tract 10 gm
NaCl	5 gm
Sodium Succina	te 27 gm
adding the ste	rile stock solutions desolited to the
adding the ste while stirring	rile stock solutions desolited to the
adding the ste while stirring	ENDIX 1 (additions to MLBSP broth) Ouantity

¹ Piperazine-N,N'-bis(2-ethane sulfonic acid).
2 A sufficient amount of 1.5 K dibasic phosphate (K-HPO₄) was added to 200 ml of 1.5 K monobasic phosphate (KH₂PO₄) to adjust the pB to 6.0 using a Beckman pHI44 pH meter equipped with a Beckman combination electrode (#3952c). The final pH was adjusted to 7.0 with 4 K KOH. Either kanamycin or tetracycline antibiotic stock solutions were added to the media just before use to a final concentration of 20 µg/ml and 15 µg/ml respectively.

5 .

10

15

20

25

30

35

Example 6

Purification of BLAP

Permentation broth of transformed B. subtilis DB104, while still in the fermenter, was adjusted to pH 5.8 with 4 N H2SO4. The broth was collected and cooled to 4°C. If mentioned otherwise, all subsequent steps were An aliquot of the broth performed on ice or at 4°C. material was clarified by centrifugation at 15,000 x g. ... Floating lipid material was removed by for 60 min. aspiration, and the supernatant filtered through Miracloth. The dark brown solution was placed in dialysis tubing (Spectrapor; #1, 6 to 8 kilodalton (kDa) molecular-weightcut-off, 1.7 ml/cm) and dialyzed for 16 hours in 20 mM 2-(N-morpholino) ethanesulfonic acid (MES) containing 1 mM CaCl2, adjusted with NaOH to pH 5.8 ('MES buffer'). dialysate was clarified by centrifugation (20,000 x gav. for 10 min) and the pH of the solution was adjusted to 7.8 with 2 N NaOH. The enzyme solution containing approximately 0.9 g of protein in 1.2 liter was loaded at a flow rate of 150 ml/hour onto a column of S-Sepharose Fast Flow (SSFF, 25 mm diameter, 260 mm long) previously Pharmacia; equilibrated with 20 mM N-(2-hydroxyethyl)piperazine-N'-(2ethanesulfonic acid) [HEPES], containing 1 mM CaCl, adjusted with NaOH to pH 7.8 ('HEPES buffer'). After the application of the enzyme solution the column was washed with 2 column volumes (250 ml) of HEPES buffer and then developed at a flow rate of 140 ml/hour with a gradient of 0 to 0.25 M NaCl in 600 ml of HEPES buffer. The gradient eluate was fractionated into 5.2-ml aliquots which were collected into tubes containing 2 ml of 100 mM MES/Na+, pH 5.8. The enzyme eluted between 0.12 and 0.15 M NaCl. Fractions containing the enzyme were pooled and protein was precipitated with ammonium sulfate at 52% of saturation. solid salt (0.33 g per ml of solution) was added slowly with stirring over a period of 15 min, and stirring was continued for another 15 min. The precipitate was collected by centrifugation, the pellet was dissolved in

15

20

25

30

35

MES buffer and the protein concentration in the solution was adjusted to 5 to 7 mg/ml. Following dialysis for 16 hours in MES buffer the solution was clarified by centrifugation and the pH of the supernatant was adjusted to 7.2. The protease was purified further by a second All steps of this cation exchange separation on SSFF. procedure were the same as above except that the pH of the HEPES buffer was 7.2 and that the NaCl gradient was from 0 Protein in pooled to 0.25 M in 600 ml of HEPES buffer. fractions was precipitated as above with ammonium sulfate and the enzyme was stored as ammonium sulfate precipitate at -70°C. Prior to use the ammonium sulfate precipitate of the enzyme was dissolved in an appropriate buffer, typically MES buffer, at the desired protein concentration, and dialyzed overnight in the buffer of choice.

Example 7 Purification of BLAP Mutants

Permentation broth from shake flasks, on average 180 ml, was collected and clarified by centrifugation at 20,000 x gav. for 15 min. The supernatant was placed, with stirring, on ice and after 30 min the pH of the solution was adjusted to 5.8 with glacial acetic acid. mentioned otherwise, all subsequent steps were performed on ice or at 4°C. The solution was clarified again by 15 min) and for centrifugation (20,000 x gav. by ultrafiltration concentrated approximately 4-fold The dark brown solution was (Amicon; YM30 membrane). placed in dialysis tubing (Spectrapor; #1, 6 to 8 KDa molecular-weight-cut-off, 1.7 ml/cm) and dialyzed for 16 hours in 20 mM HEPES/Na+, pH 7.8, containing 1 mM CaCl₂ The dialysate was clarified by ('HEPES buffer'). centrifugation (20,000 x g_{av} for 10 min) and the pH of the solution, if necessary, was adjusted to 7.8 with 2 N NaOH. The enzyme solution was loaded at a flow rate of 60 ml/hour onto a column of SSFF (15 mm diameter, 75 mm long), previously equilibrated with HEPES buffer. colored by-products were eluted, the column was washed with

15

20

25

30

35

50 ml of HEPES buffer. Then, the enzyme was eluted with 0.25 M NaCl in HEPES buffer. Fractions of 1.2 ml were collected into tubes containing 0.5 ml of 100 mM MES/Na+, pH 5.8. Protein content in fractions was monitored either by a UV detector set at 280 nm or by protein assay as described below. Pooled fractions containing protease protein were placed on ice and protein was precipitated with a 5 to 8-fold volume excess of acetone at -20°C. The protein was allowed to precipitate for 6 min, the mixture was centrifuged for 4 min at 6,600 \times $g_{av.}$, the supernatant was discarded, the pellet was briefly exposed to vacuum (water aspirator) to remove most of the acetone, and the pellet was dissolved in 20 mM MES/Na+, pH 5.8, to give an approximate protein concentration of 30 mg/ml. any assays, the solution was centrifuged in an Eppendorf centrifuge for 3 min at full speed (13,000 \times $g_{max.}$).

Example 8

Protein Determination

Protein was determined by a modified biuret method (Gornall, A.G., et al. (1948) J. Biol. Chem. 177:751-766). The protein in a total volume of 500 μ l was mixed with 500 μ l of biuret reagent and incubated for 10 min at 50°C. The solution was briefly chilled and its absorbance was measured at 540 nm. Typically, a reagent blank and three different protein aliquots in duplicates were measured and recorded optical densities analyzed by regression. Bovine serum albumin (BSA, crystalline; Calbiochem) was used as protein standard. With purified BLAP protein the usefulness of BSA as protein standard in the biuret assay was confirmed. A BLAP sample was exhaustively dialyzed in 1 mM sodium phosphate, pH 5.8, and subsequently lyophilized. A sample of the solid material was weighed, dissolved in 1 mM sodium phosphate, pH 5.8, and used to generate a standard curve for the biuret assay. From the actual difference in phosphate content (Black, M.J., and Jones, M.E. (1983) Anal. Biochem. 135:233-238) of the final protein solution and the nominally 1 mM sodium

10

15

20

25

30

35

phosphate solution used to dissolve the protein, the contribution of phosphate to the weight of solid BLAP was estimated and used to correct the standard curve.

Example 9

Protease Assays

Two different protease assays were used. With the HPE method protease activity was established at a single concentration of casein (prepared according to Hammarsten; Merck, #2242) as substrate. In the AAPF-pNA assay initial rates of succinyl-1-alanyl-1-alanyl-1-prolyl-1-phenylalanyl-p-nitroanilide (AAPF-pNA; Bachem) supported catalysis were used to determine the kinetic parameters K_m , k_{cat} , and k_{cat}/K_m .

A. HPE Method.

of purified supernatants solutions or Culture proteases were diluted with chilled buffer (10 mM MES/Na*, pH 5.8) to give three different solutions with a protein concentration ratio of 1:3:5. The substrate solution contained 9.6 mg/ml casein, 24 mM Tris, and 0.4% (w/v) sodium tripolyphosphate, dissolved in synthetic tap water (STW; 0.029% (w/v) CaCl, • 2H,0, 0.014% (w/v) MgCl, • 6H,0, and 0.021% (w/v) NaHCO3 in deionized water) adjusted to pH 8.5 at 50°C, prepared as follows. With stirring for 10 min, 6 g of casein was dissolved in 350 ml of STW. 50 ml of 0.3 M Tris in STW was added and stirring was This solution was heated to continued for another 10 min. 70°C, then allowed to cool slowly. At 50°C, the pH was adjusted to 8.5 with 0.1 N NaOH. When the solution reached room temperature, the volume was adjusted to 500 ml with STW, followed by the addition of 125 ml of 2% (w/v) pentasodium tripolyphosphate in STW, pH 8.5 (adjusted with 3 N HCl). The protease assay was started by adding 50 μl of protease solution to 750 μ l of substrate solution placed in a 2.2 ml Eppendorf container preincubated for 10 min at 50°C. After 15 min, the reaction was terminated by the addition of 600 µl of trichloroacetic reagent (0.44 M trichloroacetic acid, 0.22 M sodium acetate in 3% (v/v)

10

15

20

25

30

35

glacial acetic acid). The mixture was placed on ice for 15 min, the precipitated protein removed by centrifugation for 8 min (at 13,000 x g_{max}) and a 900 μ l aliquot of the supernatant was mixed with 600 μ l of 2 N NaOH. The absorbance at 290 nm of this solution was recorded. Each dilution was assayed in duplicates and the data points for three different dilutions from one enzyme sample was analyzed by linear regression. A slope of 1 in this assay corresponds to 80 HPE units in the least diluted sample. In case of strongly colored culture supernatants with measurable quantities of UV absorbing material carried over by the diluted protease aliquot into the assay cuvette a control curve was constructed whose slope was subtracted from the slope of the protease assay before final HPE units were calculated.

B. AAPF-pNA Assay

diluted with samples were 50% (V/V) Protease 1.2-propanediol in 100 mM Tris, adjusted with 2 N HCl to pH 8.6 at 25°C ('Tris-propanediol buffer'), in which they were stable for at least 6 h at room temperature. A stock solution of 160 mM AAPF-pNA was prepared dimethylsulfoxide dried with a molecular sieve (Aldrich; 4 Å, 4-8 mesh) for at least 24 h prior to use. Fixed point assays were performed at 25°C with 1.6 mm AAPF-pNA in 100 mM Tris, adjusted with 2 N HCl to pH 8.6 at 25°C, in a total volume of 1.020 ml. The substrate was added to the assay buffer 1 min prior to the assay initiation and the reaction was started by addition of enzyme at a final concentration of 20 ng to 1.3 µg of protein per ml (0.75 to 48.5 nM enzyme) depending on specific activity. Release of p-nitroanilide was monitored at 410 nm, and a molar extinction coefficient of 8,480 M-1cm-1 was used calculate amount and concentration of product formed (DelMar, E.G., et al. (1979) Anal. Biochem. 99:316-320). Kinetic parameters were calculated from a velocity vs. substrate concentration plot constructed from initial rates measured once each at 12 different AAPF-pNA concentrations

10

15

20

25

30

35

ranging from 0.16 to 3.2 mM. Data were fitted to a hyperbolic curve and proportionally weighted using the program ENZFITTER (Leatherbarrow, R.J. (1987) ENZFITTER, Biosoft, Cambridge, UK). A nominal molecular weight of 26.8 kDa was used in all calculations that required the interconversion of protein concentration and molarity of protease enzyme.

Example 10

Temperature Stability of Purified Proteases

stability of protease proteins was evaluated under two different conditions: (a) 100 mM glycine/Na $^+$, pH 10 at 60°C, and (b) 100 mM glycine/Na $^+$, pH 11 at 50°C. At t = 0 min, the protein was diluted to approximately 0.25 mg/ml into incubation buffer maintained at the desired temperature. Periodically, an aliquot was removed from this incubation mixture and diluted into Tris-propanediol buffer chilled on ice. Residual protease activity was determined by the AAPF-pNA assay at a fixed AAPF-pNA concentration (1.6 mM). Stability is expressed as half-life ($t_{1/2}$) of activity determined from semi-logarithmic plots of residual activity as function of time. Each plot consisted of 6 data points with $t_{1/2}$ approximately in the center between experimental points.

Example 11

Resistance of Proteases to Sodium Dodecylsulfate (SDS)

SDS was selected as representative of surfactants in general. Resistance of proteases to SDS was evaluated under two different conditions: (a) 100 mM Tris adjusted with 2 N HCl to pH 8.6 at 50°C, containing 1% (w/v) SDS, and (b) 50 mM sodium carbonate, pH 10.5 at 50°C, containing 1% (w/v) SDS. Protease proteins were incubated at a final protein concentration of 0.25 mg/ml. Data were collected and evaluated as described above under Example 10.

Example 12

Polyacrylamide Gel Electrophoresis

Purity of protease samples was evaluated on 20% nondenaturing PhastSystem gels (Pharmacia) run with reversed

15

20

. 25

30

35

polarity. The same system was used to monitor the protease content of crude shake flask and fermentation broths. Buffer strips were prepared as described in Application File No. 300 (Pharmacia).

Molecular weight determinations were performed on 20% SDS PhastSystem gels, using the following markers: bovine serum albumin, 66 kDa; egg albumin, 45 kDa; glyceraldehydephosphate dehydrogenase, 36 kDa; carbonic anhydrase. 29 kDa; trypsinogen, 24 kDa; trypsin inhibitor, 20.1 kDa; α-lactalbumin, 14.2 kDa (all from Sigma). SDS-PAGE, a protease sample was denatured with formic acid at a final concentration of 30 to 50% (v/v). Upon dilution of formic acid to 15% (v/v) protein was precipitated with trichloroacetic acid at a final concentration of 10% (v/v). The collected pellet was washed once with water, then dissolved in 2% (w/v) SDS and heated for 2 min in a boiling waterbath. Gels were stained with Coomassie Brilliant Blue R-250 (Kodak).

DEPOSIT OF MICROORGANISMS

Living cultures of the following have been accepted for deposit under the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the purposes of patent procedure by the American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD 20852 on May 8, 1991 (the accession number preceeds each deposit description): ATCC 68614 - Bacillus licheniformis ATCC 53926 strain which contains a tetracycline-resistance plasmid originally derived from Bacillus plasmid pBC16 which carries the ATCC 53926 alkaline protease-BLAP ClaI fusion gene, whose structural gene has the mutations S3T, V4I, A188P, V193M, V199I; ATCC 68615 - E. coli WK6 which carries phasmid pMc13C, a chloramphenicol-resistant derivative of phasmid pMc5-8, that contains the ATCC 53926 alkaline protease- BLAP ClaI fusion gene and a 164 bp KpnI fragment carrying the ATCC 53926 alkaline protease gene's transcriptional terminator. The genotype of strain WK6 are Alac-proab, gale, stra, muts::Tn10/F'lacIq, ZAM15,

10

15

proA+B+ (Zell, R., and Fritz, H. -J. (1987) EMBO J. 6:1809-1815); ATCC 68616 - E. coli GM33 which carries plasmid pCB13C, an ampicillin-resistant derivative of Pharmacia plasmid vector pTZ19R (Pharmacia) that contains the ATCC 53926 alkaline protease-ClaI fusion gene. The GM33 strain's genotype is dam3 (dam-methylase minus (Marinus, M.G. and Morris, N.R. (1974) J. Mol. Biol. 85:309-322)); ATCC 68617 - E. coli WK6 which carries phasmid pMa5-8, an ampicillin-resistant mutagenesis vector described in Nucleic Acids Research Stanssens, P. et al. (1989) The genotype of strain WK6 mutations are 17:4441-4454. Alac-proAB, gale, strA, mutS::Tn10/F'lacIq, ZAM15, proA+B+ (Zell, R., and Fritz, H. -J. (1987) EMBO J. 6:1809-1815); ATCC 68618 - an E. coli WK6 which carries phasmid pMc5-8, a chloramphenicol-resistant mutagenesis vector described in Stanssens, P., et al. (1989) Nucleic Acids Res. 17:4441-4454. The genotype of strain WK6 are Alac-proAB, galE, strA, mutS::Tn10/F'lacIq, ZAM15, proA+B+ (Zell, R., and Fritz, H. -J. (1987) EMBO J. 6:1809-1815).

5

10

15

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: Christiansen, Teresa
 Goddette, Dean W.
 Ladin, Beth F.
 Lau, Maria R.
 Paech, Christian
 Reynolds, Robert B.
 Wilson, Charles R.
 Yang, Shiow-Shong
- (ii) TITLE OF INVENTION: Third Generation Protease Mutants
- (iii) NUMBER OF SEQUENCES: 105
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Henkel Corporation
 - (B) STREET: 140 Germantown Pike, Suite 150
 - (C) CITY: Plymouth Meeting
 - (D) STATE: Pennsylvania
 - (E) COUNTRY: USA
 - (F) ZIP: 19462
 - (V) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Drach, John E.
 - (B) REGISTRATION NUMBER: 32891
 - (C) REFERENCE/DOCKET NUMBER: M4922
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 215-832-2215
 - (B) TELEFAX: 215-941-6067
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown

- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: S3T, V4I, A188P, V193M, V199I
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
 - Ala Gln Thr Ile Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 10 15
 - His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30
 - Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser
 - Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60
 - His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80
 - Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95
 - Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala
 - Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125
 - Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
 130 135 140
 - Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Pro Gly Leu Asp Ile 180 185 190

Met Ala Pro Gly Val Asn Ile Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: S3T, A188P, V193M, V199I
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Ala Gln Thr Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Pro Gly Leu Asp Ile

Met Ala Pro Gly Val Asn Ile Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 240 Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: V4I, A188P, V193M, V199I
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Ala Gln Ser Ile Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu 100 105 110	Trp A	
---	-------	--

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 150 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Pro Gly Leu Asp Ile 180 185 190

Met Ala Pro Gly Val Asn Ile Gln Ser Thr Tyr Pro Gly Ser Thr Tyr
195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 230 235

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: S139Y, A188P, V193M, V199I
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala
100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Tyr Ala Thr Ser Arg Gly 130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Pro Gly Leu Asp Ile 180 185 190

Met Ala Pro Gly Val Asn Ile Gln Ser Thr Tyr Pro Gly Ser Thr Tyr

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg
260 265

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 (B) CLONE: S130T, S139Y, A188P, V193M, V199I
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr	Gly	Ile	Ser	Thr	His	Pro	Asp	Leu	Asn	Ile	Arg	Gly	Gly	Ala	Ser
	Ī	35					40					45		•	

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Thr Ala Thr Leu Glu Gln Ala Val Asn Tyr Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Pro Gly Leu Asp Ile 180 185 190

Met Ala Pro Gly Val Asn Ile Gln Ser Thr Tyr Pro Gly Ser Thr Tyr
195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240 Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (Vii) IMMEDIATE SOURCE:
 (B) CLONE: A188P, V193M, V199I
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95 Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala
100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Pro Gly Leu Asp Ile 180 185 190

Met Ala Pro Gly Val Asn Ile Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 (B) CLONE: S3T, A188P, V193M
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Ala Gln Thr Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln 165 170 175

SUBSTITUTE SHEET

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Pro Gly Leu Asp Ile 180 185 190

Met Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: S157T
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

							66							•	
Thr	Gly	Ile 35	Ser	Thr	His	Pro	Asp 40	Leu	Asn	Ile	Arg	Gly 45	Gly	Ala	Ser
Phe	Val	Pro	Gly	Glu	Pro	Ser 55	Thr	Gln	Asp	Gly	Asn 60	Gly	His	Gly	Thr
His 65	Val	Ala	Gly	Thr	Ile 70	Ala	Ala	Leu	Asn	Asn 75	Ser	Ile	Gly	Val	Leu 80
Gly	Val	Ala	Pro	Ser 85	Ala	Glu	Leu	Tyr	Ala 90	Val	Lys	Val	Leu	Gly 95	Ala
Asp	Gly	Arg	Gly 100	Ala	Ile	Ser	Ser	Ile 105	Ala	Gln	Gly	Leu	Glu 110	Trp	Ala
Gly	Asn	Asn 115	Gly	Met	His	Val	Ala 120	Asn	Leu	Ser	Leu	Gly 125	Ser	Pro	Ser
Pro	Ser	Ala	Thr	Leu	Glu	Gln 135	Ala	Val	Asn	ser	Ala 140	Thr	Ser	Arg	Gly
Val 145	Leu	val	Val	Ala	Ala 150	Ser	Gly	Asn	Ser	Gly 155	Ala	Thr	Ser	Ile	Ser 160
Туг	Pro	Ala	a Arg	Tyr 165	Ala	AST	n Ala	Met	: Ala 170	val	Gly	Ala	Thr	175	Gln
Ası	n Ası	n Asi	n Arg	, Ala	a Ser	Phe	e Sei	r Gli	ı Tyı	Gly	Ala	Gly	Leu 190	Asp	Ile:

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 200

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: A188P, V193M
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:
 - Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15
 - His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30
 - Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45
 - Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60
 - His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80
 - Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Pro Gly Leu Asp Ile 180 185 190

Met Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr

195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235

240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Serine Protease

(B) STRAIN: Bacillus lentus DSM 5843

(vii) IMMEDIATE SOURCE: (B) CLONE: A188P

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln 165 170 175

Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Pro Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr
195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 243

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: S3T, V4I, A188P, V193M
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Ala Gln Thr Ile Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala
100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Pro Gly Leu Asp Ile 180 185 190

Met Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240 Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 255

72

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE: (B) CLONE: V193M
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
 - Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15
 - His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30
 - Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser
 - Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 60
 - His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80
 - Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Met Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE: (B) CLONE: S104T
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 55 50

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 70 65

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85

Asp Gly Arg Gly Ala Ile Ser Thr Ile Ala Gln Gly Leu Glu Trp Ala 100

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 120

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly 135

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln 165

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: T69V
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

							76							1-1	٠
Thr	Gly	Ile 35	Ser	Thr	His	Pro	Asp 40	Leu	Asn	Ile	Arg	Gly 45	Gly	Ala	Ser
Phe	Val 50	Pro	Gly	Glu	Pro	Ser 55	Thr	Gln	Asp	Gly	Asn 60	Gly	His	Gly	Thr
His 65	Val	Ala	Gly	Val	Ile 70	Ala	Ala	Leu	Asn	Asn 75	Ser	Ile	Gly	Val	Leu 80
Gly	Val	Ala	Pro	Ser 85	Ala	Glu	Leu	Tyr	Ala 90	Val	Lys	Val	Leu	Gly 95	Ala
Asp	Gly	Arg	Gly 100		Ile	Ser	Ser	Ile 105	Ala	Gln	Gly	Leu	Glu 110	Trp	Ala
Gly	Asn	Asn 115	Gly	Met	His	Val	Ala 120	Asn	Leu	Ser	Leu	Gly 125	Ser	Pro	Ser
Pro	Ser 130	Ala	Thr	Leu	Glu	Gln 135	Ala	Val	Asn	Ser	Ala 140	Thr	Ser	Arg	Gly
Val 145	Leu	Val	Val	Åla	Ala 150	Ser	Gly	Asn	Ser	Gly 155	Ala	Ser	Ser	Ile	Ser 160
Tyr	Pro	Ala	Arg	Tyr 165	Ala	Asn	Ala	Met	Ala 170	Val	Gly	Ala	Thr	Asp 175	Gln
Asn	Asn	Asn	Arg 180	Ala	Ser	Phe	Ser	Gln 185	Tyr	Gly	Ala	Gly	Leu 190	Asp	Ile
Val	Ala	Pro 195		Val	Asn	Val	Gln 200	Ser	Thr	Tyr	Pro	Gly 205	Ser	Thr	Tyr

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (Vii) IMMEDIATE SOURCE:
 - (B) CLONE: V4I, A188P, V193M
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

Ala Gln Ser Ile Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala

10
15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 150 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Pro Gly Leu Asp Ile 180 185 190

Met Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: A224V
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

PCT/US92/04306 Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 185 180

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 200 195

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Val 220 215 210

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 235 230 225

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 255 245

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: V199I
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 10 5

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 25

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Ile Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE: (B) CLONE: V4I
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

Ala Gln Ser Ile Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110 Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE: (B) CLONE: S3T
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

Ala Gln Thr Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

"ly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln 165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg. 260 265

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE: (B) CLONE: S139Y
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu . 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Tyr Ala Thr Ser Arg Gly
130 135

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 230 235

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245

SUBSTITUTE SHEET

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE: (B) CLONE: N242A
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:
- Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15
- His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp
- Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser
- Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60
- His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75
- Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95
- Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala
 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 150 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 230 235

Arg Ala His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:22:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE: (B) CLONE: S236T
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 185 180

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 200 195

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 215

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Thr Asn Val Gln Ile 235 230 225

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 250 245

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 265

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE: (B) CLONE: S36A

 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 10

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20

Thr Gly Ile Ala Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln 165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:24:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE: (B) CLONE: H243A
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:
 - Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 10 15
 - His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30
 - Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser
 - Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr
 50 55 60
 - His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80
 - Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala . 90 95
 - Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala
 100 105 110

- Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125
- Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly 130 135 140
- Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160
- Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
 165 170 175
- Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190
- Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205
- Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220
- Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240
- Arg Asn Ala Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

- (2) INFORMATION FOR SEQ ID NO:25:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE: (B) CLONE: A101T
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp

30 25 20

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 40 35

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala

Asp Gly Arg Gly Thr Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 120 115

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly 135 130

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 155 150° 145

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln 170 165

PCT/US92/04306

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 230 235

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:26:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE: (B) CLONE: S236A
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln 165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ala Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg
260 265

(2) INFORMATION FOR SEQ ID NO:27:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE: (B) CLONE: E87R
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:
 - Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15
 - His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30
 - Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45
 - Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60
 - His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80
 - Gly Val Ala Pro Ser Ala Arg Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95
 - Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala
 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:28:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 (B) CLONE: N114S
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:
 - Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15
 - His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30
 - Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45
 - Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60
 - His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80
 - Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95
 - Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110
 - Gly Ser Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125
 - Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
 130 135 140
 - Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160
 - Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
 165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr
195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala
210 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 230 235

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg

(2) INFORMATION FOR SEQ ID NO:29:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE: (B) CLONE: A47W
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Trp Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr
195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

102

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 265

(2) INFORMATION FOR SEQ ID NO:30:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: A120S
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:
 - Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala
 - His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20
 - Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40
 - Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55
 - His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 80 65 70.
 - Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 95
 - Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala

Gly Asn Asn Gly Met His Val Ser Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg

(2) INFORMATION FOR SEQ ID NO:31:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE: (B) CLONE: T56V
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser

Phe Val Pro Gly Glu Pro Ser Val Gln Asp Gly Asn Gly His Gly Thr 50 55

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp 'Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:32:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: A120V
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser

WO 92/21760

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr
50 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala
100 105 110

Gly Asn Asn Gly Met His Val Val Asn Leu Ser Leu Gly Ser Pro Ser

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr
195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

(2) INFORMATION FOR SEQ ID NO:33:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
 - (vii) IMMEDIATE SOURCE:
 (B) CLONE: G205V
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:
 - Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15
 - His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30
 - Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45
 - Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60
 - His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80
 - Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95
 - Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln 165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Val Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:34:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 (B) CLONE: S130A
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:
 - Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15
 - His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30
 - Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser. 35 40 45
 - Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60
 - His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80
 - Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95
 - Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110
 - Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125
 - Pro Ala Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
 130 135 140
 - Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160
 - Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
 165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr
195
200
205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala . 210 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg

(2) INFORMATION FOR SEQ ID NO:35:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE: (B) CLONE: S130T
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly	Ile	Ser	Thr	His	Pro	Asp	Leu	Asn	Ile	Arg	Gly	Gly	Ala Ser	
	35					40					45		•	

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Thr Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245

- (2) INFORMATION FOR SEQ ID NO:36:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
 - (vii) IMMEDIATE SOURCE: (B) CLONE: A96I
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ile 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:37:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids.
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 (B) CLONE: S104T, S139Y, A224V
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Thr Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Tyr Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln 165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp ITe 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Val 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

- (2) INFORMATION FOR SEQ ID NO:38:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
 - (vii) IMMEDIATE SOURCE: (B) CLONE: S139A
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala 3er 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ala Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr
195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

- (2) INFORMATION FOR SEQ ID NO:39:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
 - (vii) IMMEDIATE SOURCE:
 (B) CLONE: S142T
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Thr Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160.

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln 165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:40:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE: (B) CLONE: \$139T
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Thr Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 185 180

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 200

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 215

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 235 230 225

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 265

- (2) INFORMATION FOR SEQ ID NO:41:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: I102W
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Trp Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly 130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

SUBSTITUTE SHEET

- (2) INFORMATION FOR SEQ ID NO:42:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
 - (vii) IMMEDIATE SOURCE: (B) CLONE: A96N
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Asn 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala
100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg
260 265

- (2) INFORMATION FOR SEQ ID NO:43:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:

- (A) ORGANISM: Serine Protease
- (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE: (B) CLONE: N42F
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:
- Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 10 15
- His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp
- Thr Gly Ile Ser Thr His Pro Asp Leu Phe Ile Arg Gly Gly Ala Ser
- Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55
- His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80
- Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95
- Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110
- Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser
- Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
 130 135 140
- Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 150 160
- Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln 165 170 175

7

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

- (2) INFORMATION FOR SEQ ID NO:44:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
 - (vii) IMMEDIATE SOURCE: (B) CLONE: S142A
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30 Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ala Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile.
225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

(2) INFORMATION FOR SEQ ID NO:45:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE: (B) CLONE: H118F
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala
100 105 110

- Gly Asn Asn Gly Met Phe Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125
- Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
 130 135 140
- Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 160.
- Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
 165 170 175
- Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190
- Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205
- Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 220
- Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240
- Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

- (2) INFORMATION FOR SEQ ID NO:46:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 (B) CLONE: N237A
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:
- Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15
- His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30
- Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45
- Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60
- His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80
- Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95
- Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala
 100 105 110
- Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125
- Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
 130 135 140
- Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160
- Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
 165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr.
195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Ala Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

- (2) INFORMATION FOR SEQ ID NO:47:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
 - (vii) IMMEDIATE SOURCE: (B) CLONE: N255P
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30 Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln 165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr
195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Pro Leu 245 250 255

- (2) INFORMATION FOR SEQ ID NO:48:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: T141W, N237A
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Trp Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Ala Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg
260 265

(2) INFORMATION FOR SEQ ID NO:49:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:

- (A) ORGANISM: Serine Protease
- (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE: (B) CLONE: T268V
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

SUBSTITUTE SHEET

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Val Arg 260 265

(2) INFORMATION FOR SEQ ID NO:50:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: K229W
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly
130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln 165 170 175

Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr 195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Trp Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240 Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:51:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- (Vii) IMMEDIATE SOURCE: (B) CLONE: T141W
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala
100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Trp Ser Arg Gly
130
135
140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 ,160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr
195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:52:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Serine Protease
 - (B) STRAIN: Bacillus lentus DSM 5843
- - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

Ala Gln Ser Val Pro Trp Gly Ile Ser Arg Val Gln Ala Pro Ala Ala 1 5 10 15

His Asn Arg Gly Leu Thr Gly Ser Gly Val Lys Val Ala Val Leu Asp 20 25 30

Thr Gly Ile Ser Thr His Pro Asp Leu Asn Ile Arg Gly Gly Ala Ser 35 40 45

Phe Val Pro Gly Glu Pro Ser Thr Gln Asp Gly Asn Gly His Gly Thr 50 55 60

His Val Ala Gly Thr Ile Ala Ala Leu Asn Asn Ser Ile Gly Val Leu 65 70 75 80

Gly Val Ala Pro Ser Ala Glu Leu Tyr Ala Val Lys Val Leu Gly Ala 85 90 95

Asp Gly Arg Gly Ala Ile Ser Ser Ile Ala Gln Gly Leu Glu Trp Ala 100 105 110

Gly Asn Asn Gly Met His Val Ala Asn Leu Ser Leu Gly Ser Pro Ser 115 120 125

Pro Ser Ala Thr Leu Glu Gln Ala Val Asn Ser Ala Thr Ser Arg Gly 130 135 140

Val Leu Val Val Ala Ala Ser Gly Asn Ser Gly Ala Ser Ser Ile Ser 145 150 155 160

Tyr Pro Ala Arg Tyr Ala Asn Ala Met Ala Val Gly Ala Thr Asp Gln
165 170 175

140

Asn Asn Asn Arg Ala Ser Phe Ser Gln Tyr Gly Ala Gly Leu Asp Ile 180 185 190

Val Ala Pro Gly Val Asn Val Gln Ser Thr Tyr Pro Gly Ser Thr Tyr
195 200 205

Ala Ser Leu Asn Gly Thr Ser Met Ala Thr Pro His Val Ala Gly Ala 210 215 220

Ala Ala Leu Val Lys Gln Lys Asn Pro Ser Trp Ser Asn Val Gln'Ile 225 230 235 240

Arg Asn His Leu Lys Asn Thr Ala Thr Ser Leu Gly Ser Thr Asn Leu 245 250 255

Tyr Gly Ser Gly Leu Val Asn Ala Glu Ala Ala Thr Arg 260 265

(2) INFORMATION FOR SEQ ID NO:53:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:

(B) STRAIN: Bacillus lentus DSM 5483

- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: S3T, V4I, A188P, V193M, V199I
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:
- GCGCAAACAA TCCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120

- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CCCAGGGCTT GACATTATGG CACCAGGGGT AAACATTCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC.
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:54:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE:

(B) CLONE: S3T, A188P, V193M, V199I

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:
- GCGCAAACAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CCCAGGGCTT GACATTATGG CACCAGGGGT AAACATTCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:55:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
- (Vii) IMMEDIATE SOURCE:
 (B) CLONE: V4I, A188P, V193M, V199I
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:
- GCGCAATCAA TCCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CCCAGGGCTT GACATTATGG CACCAGGGGT AAACATTCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780

CTTGTCAATG CAGAAGCGGC AACACGC

- (2) INFORMATION FOR SEQ ID NO:56:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE:
 (B) CLONE: S139Y, A188P, V193M, V199I
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATTATGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CCCAGGGCTT GACATTATGG CACCAGGGGT AAACATTCAG 600

- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:57:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYF THETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE:
 (B) CLONE: S130T, S139Y, A188P, V193M, V199I
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360

- PCT/US92/04306
- AATTTGAGTT TAGGAAGCCC TTCGCCAACA GCCACACTTG AGCAAGCTGT TAATTATGCG
 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC
- GCCAGCTTTT CACAGTATGG CCCAGGGCTT GACATTATGG CACCAGGGGT AAACATTCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA
 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:58:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
 - (Vii) IMMEDIATE SOURCE:
 (B) CLONE: A188P, V193M, V199I
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180

- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CCCAGGGCTT GACATTATGG CACCAGGGGT AAACATTCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:59:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: S3T, A188P, V193M

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:
- GCGCAAACAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG
 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CCCAGGGCTT GACATTATGG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:60:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)

- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
- (vii) IMMEDIATE SOURCE: (B) CLONE: S157T
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAC ATCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG 600
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC

SUBSTITUTE SHEET

- (2) INFORMATION FOR SEQ ID NO: 62:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: A188P, V193M
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CCCAGGGCTT GACATTATGG CACCAGGGGT AAACGTGCAG
 600
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660

- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:63:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE: (B) CLONE: A188P
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420

- PCT/US92/04306
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC
- GCCAGCTTTT CACAGTATGG CCCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG 600
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:64:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE: (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE: (B) CLONE: S3T, V4I, A188P, V193M
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:
- GCGCAAACAA TCCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA 60
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240

- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CCCAGGGCTT GACATTATGG CACCAGGGGT AAACGTGCAG
 600
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC
- (2) INFORMATION FOR SEQ ID NO:65:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE: (B) CLONE: V193M
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:

- PCT/US92/04306
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTATGG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:66:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
- (vii) IMMEDIATE SOURCE: (B) CLONE: S104T
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCA CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:67:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: T69V
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGGTTATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660

- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCA/ G CAGAAGCGGC AACACGC

7

- (2) INFORMATION FOR SEQ ID NO:68:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:

 (B) STRAIN: Bacillus len
 - (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE:
 (B) CLONE: V4I, A188P, V193M
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:
- GCGCAATCAA TCCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACCTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480

- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC
- GCCAGCTTTT CACAGTATGG CCCAGGGCTT GACATTATGG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:69:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO

 - (vii) IMMEDIATE SOURCE: (B) CLONE: A224V
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240

WO 92/21760

- PCT/US92/04306
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG 600
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG TTGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:70:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: V199I
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA 60

- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACATTCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:71:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO

- (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
- (vii) IMMEDIATE SOURCE: (B) CLONE: V4I
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:
- GCGCAATCAA TCCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
 600
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:72:
 - (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 807 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
- (vii) IMMEDIATE SOURCE: (B) CLONE: S3T
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:
- GCGCAAACAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720

CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA

CTTGTCAATG CAGAAGCGGC AACACGC 807

- (2) INFORMATION FOR SEQ ID NO:73:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE: (B) CLONE: S139Y
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATTATGCG
 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480

- PCT/US92/04306
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGCL 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG 600
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:74:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE: (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE: (B) CLONE: N242A
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT 300

400

- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
 600
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCGCACATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:75:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE: (B) CLONE: S236T
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA

- PCT/US92/04306
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
 600
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGACAAA TGTACAAATC
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA
- CTTGTCAATG CAGAAGCGGC AACACGC
- (2) INFORMATION FOR SEQ ID NO:76:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:

- (B) STRAIN: Bacillus lentus DSM 5483
- (vii) IMMEDIATE SOURCE: (B) CLONE: S36A
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTGCAAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:77:
 - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 807 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
- (vii) IMMEDIATE SOURCE: (B) CLONE: H243A
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG
- ACTICTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720

PCT/US92/04306

CGCAACGCAC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA

CTTGTCAATG CAGAAGCGGC AACACGC 807

- (2) INFORMATION FOR SEQ ID NO:78:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE: (B) CLONE: A101T
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- ACAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360 ·
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540

- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA
- CTTGTCAATG CAGAAGCGGC AACACGC
- (2) INFORMATION FOR SEQ ID NO:79:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE: (B) CLONE: S236A
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT

- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGGCAAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:80:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: E87R
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120

- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGCG TCTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
 600
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:81:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483

(vii) IMMEDIATE SOURCE: (B) CLONE: N114S

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:

- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA GCAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC
- (2) INFORMATION FOR SEQ ID NO:82:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
- (vii) IMMEDIATE SOURCE: (B) CLONE: A47W
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCTG GAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780

CTTGTCAATG CAGAAGCGGC AACACGC 807

(2) INFORMATION FOR SEQ ID NO:83:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
- (vii) IMMEDIATE SOURCE: (B) CLONE: A120S
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTAGC 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540

- PCT/US92/04306
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:84:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE: (B) CLONE: T56V
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCGTTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360

SUBSTITUTE SHEET

- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:85:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE:
 (B) CLONE: A120V
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120

- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGTT
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG
 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:86:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE:

(B) CLONE: G205V

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT
 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
 600
- AGCACATACC CAGTTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC
- (2) INFORMATION FOR SEQ ID NO:87:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
- (vii) IMMEDIATE SOURCE: (B) CLONE: S130A
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT
- AATTTGAGTT TAGGAAGCCC TTCGCCAGCA GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780

WO 92/21760 CTTGTCAATG CAGAAGCGGC AACACGC 807

-1

(2) INFORMATION FOR SEQ ID NO:88:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
- (vii) IMMEDIATE SOURCE: (B) CLONE: S130T
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAACA GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG

- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:89:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE: (B) CLONE: A96I
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:89:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAATTGA CGGTAGAGGT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360

- PCT/US92/04306 AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG 600
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:90:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE: (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE: (B) CLONE: S104T, S139Y, A224V
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180

- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCA CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATTATGCG
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG TTGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA
- CTTGTCAATG CAGAAGCGGC AACACGC
- (2) INFORMATION FOR SEQ ID NO:91:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE: (B) CLONE: \$139A

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA. TGGGCAGGGA ACAATGGCAT GCACGTTGCT
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATGCAGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:92:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)

- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
- (vii) IMMEDIATE SOURCE: (B) CLONE: S142T
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTACAAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC

(2) INFORMATION FOR SEQ ID NO:93:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
- (vii) IMMEDIATE DURCE: (B) CLONE: S139T
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATACAGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT

- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:94:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE: (B) CLONE: I102W
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCATGGAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG
 420

- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA
- CTTGTCAATG .CAGAAGCGGC AACACGC
- (2) INFORMATION FOR SEQ ID NO:95:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE: (B) CLONE: A96N
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240

- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAAACGA CGGTAGAGGT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:96:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE: (B) CLONE: N42F
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:

- WO 92/21760
- PCT/US92/04306 GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA 60
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTATTTATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG 600
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:97:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
- (vii) IMMEDIATE SOURCE: (B) CLONE: S142A
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:97:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
 - GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG
- ACTGCAAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
 600
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:99:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
- (vii) IMMEDIATE SOURCE:
 - (B) CLONE: H118F
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GTTTGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT

PCT/US92/04306

- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:100:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE: (B) CLONE: N237A
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480

- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCGC TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:101:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE:
 (B) CLONE: N255P
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240

GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT

PCT/US92/04306

- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGCCATTGTA TGGAAGCGGA
- CTTGTCAATG CAGAAGCGGC AACACGC 807
- (2) INFORMATION FOR SEQ ID NO:102:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: T141W, N237A
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA

- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG
- TGGTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
 600
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCGC TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC
- (2) INFORMATION FOR SEQ ID NO:103:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO

- (vi) ORIGINAL SOURCE:
 (B) STRAIN: Bacillus lentus DSM 5483
- (vii) IMMEDIATE SOURCE: (B) CLONE: T268V
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:103:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC 540
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AGTTCGC 807
- (2) INFORMATION FOR SEQ ID NO: 104:
 - (i) SEQUENCE CHARACTERISTICS:

SUBSTITUTE SHEET

- (A) LENGTH: 807 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MCLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
- (vii) IMMEDIATE SOURCE: (B) CLONE: K229W
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:104:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTTGGCAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720

CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA

CTTGTCAATG CAGAAGCGGC AACACGC 807

- (2) INFORMATION FOR SEQ ID NO:105:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (B) STRAIN: Bacillus lentus DSM 5483
 - (vii) IMMEDIATE SOURCE: (B) CLONE: T141W
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:105:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA 60
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240
- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGGT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- TGGTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC 480

- WO 92/21760 PCT/US92/04306
 TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCCC
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT 660
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807

- (2) INFORMATION FOR SEQ ID NO:106:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 807 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Bacillus lentus
 - (B) STRAIN: DSM 5483
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: wild type
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:
- GCGCAATCAG TGCCATGGGG AATTAGCCGT GTGCAAGCCC CGGCTGCCCA TAACCGTGGA
- TTGACAGGTT CTGGTGTAAA AGTTGCTGTC CTCGATACAG GTATTTCCAC TCATCCAGAC 120
- TTAAATATTC GTGGTGGCGC TAGCTTTGTA CCAGGGGAAC CATCCACTCA AGATGGGAAT 180
- GGGCATGGCA CGCATGTGGC CGGGACGATT GCTGCTTTAA ACAATTCGAT TGGCGTTCTT 240

SUBSTITUTE SHEET

- GGCGTAGCGC CTAGTGCGGA ACTATACGCT GTTAAAGTTT TAGGAGCCGA CGGTAGAGCT 300
- GCAATCAGCT CGATTGCCCA AGGGTTGGAA TGGGCAGGGA ACAATGGCAT GCACGTTGCT 360
- AATTTGAGTT TAGGAAGCCC TTCGCCAAGT GCCACACTTG AGCAAGCTGT TAATAGCGCG 420
- ACTTCTAGAG GCGTTCTTGT TGTAGCGGCA TCTGGGAATT CAGGTGCAAG CTCAATCAGC
- TATCCGGCCC GTTATGCGAA CGCAATGGCA GTCGGAGCTA CTGACCAAAA CAACAACCGC
- GCCAGCTTTT CACAGTATGG CGCAGGGCTT GACATTGTCG CACCAGGGGT AAACGTGCAG
- AGCACATACC CAGGTTCAAC GTATGCCAGC TTAAACGGTA CATCGATGGC TACTCCTCAT
- GTTGCAGGTG CAGCAGCCCT TGTTAAACAA AAGAACCCAT CTTGGTCCAA TGTACAAATC 720
- CGCAACCATC TAAAGAATAC GGCAACGAGC TTAGGAAGCA CGAACTTGTA TGGAAGCGGA 780
- CTTGTCAATG CAGAAGCGGC AACACGC 807

25

30

35

What is claimed is:

- 1. A mutant Bacillus lentus DSM 5483 protease derived by the replacement of at least one amino acid residue of the mature form of the Bacillus lentus DSM 5483 alkaline protease shown in SEQ ID NO:52 wherein said one amino acid residue which is selected from the group consisting of Ser3, Val4, Ser36, Asn42, Ala47, Thr56, Thr69, Glu87, Ala96, Ala101, Ile102, Ser104, Asn114, His118, Ala120, Ser130, Ser139, Thr141, Ser142, Ser157, Ala188, Val193, Val199, Gly205, Ala224, Lys229, Ser236, Asn237, Asn242, His243, Asn255, Thr268 is replaced with the amino acid residues listed in Table 2.
- 2. A mutant Bacillus lentus DSM 5483 protease of claim 1
 wherein the valine residue at position 199 is substituted
 by isoleucine, the valine residue at position 193 is
 substituted by methionine, the alanine residue at position
 188 is substituted by proline, the valine residue at
 position 4 is substituted by isoleucine, and the serine
 residue at position 3 is substituted by threonine.
 - 3. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the valine residue at position 199 is substituted by isoleucine, the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, and the serine residue at position 3 is substituted by threonine.
 - 4. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the valine residue at position 199 is substituted by isoleucine, the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, and the valine residue at position 4 is substituted by isoleucine.
 - 5. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the valine residue at position 199 is substituted

by isoleucine, the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, and the serine residue at position 139 is substituted by tyrosine.

5

10

- 6. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the valine residue at position 199 is substituted by isoleucine, the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, the serine residue at position 139 is substituted by tyrosine and the serine residue at position 130 is substituted by threonine.
- 7. A mutant Bacillus lentus DSM 5483 protease of claim 1
 wherein the valine residue at position 199 is substituted
 by isoleucine, the valine residue at position 193 is
 substituted by methionine, the alanine residue at position
 188 is substituted by proline.
- 8. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, and the serine residue at position 3 is substituted by threonine.

- 9. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the serine residue at position 157 is substituted by threonine.
- 10. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the valine residue at position 193 is substituted by methionine, and the alanine residue at position 188 is substituted by proline.
- 35 11. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the alanine residue at position 188 is substituted by proline.

- 12. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, the valine residue at position 4 is substituted by isoleucine and the serine residue at position 3 is substituted by threonine.
- 13. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the valine residue at position 193 is substituted by methionine.
 - 14. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the serine residue at position 104 is substituted by threonine.

10

- 15. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the threonine residue at position 69 is substituted by valine.
- 20 16. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the valine residue at position 193 is substituted by methionine, and the alanine residue at position 188 is substituted by proline, and the valine residue at position 4 is substituted by isoleucine.

- 17. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the alanine residue at position 224 is substituted by valine.
- 18. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the valine residue at position 199 is substituted by isoleucine.
- 19. A mutant Bacillus lentus DSM 5483 protease of claim 1
 wherein the valine residue at position 4 is substituted by isoleucine.

- 20. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the serine residue at position 3 is substituted by threonine.
- 5 21. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the serine residue at position 139 is substituted by tyrosine.
- 22. A mutant Bacillus lentus DSM 5483 protease of claim 1

 wherein the asparagine residue at position 242 is substituted by alanine.
 - 23. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the serine residue at position 236 is substituted by threonine.
 - 24. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the serine residue at position 36 is substituted by alanine.
 - 25. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the histidine residue at position 243 is substituted by alanine.
- 26. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the alanine residue at position 101 is substituted by threonine.
- 27. A mutant Bacillus lentus DSM 5483 protease of claim 1
 30 wherein the serine residue at position 236 is substituted by alanine.
- 28. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the glutamic acid residue at position 87 is substituted by arginine.

- 29. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the asparagine residue at position 114 is substituted by serine.
- 30. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the alanine residue at position 47 is substituted by tryptophan.
- 31. A mutant Bacillus lentus DSM 5483 protease of claim 1
 wherein the alanine residue at position 120 is substituted by serine.
 - 32. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the threonine residue at position 56 is substituted by valine.
 - 33. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the alanine residue at position 120 is substituted by valine.
 - 34. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the glycine residue at position 205 is substituted by valine.
- 25 35. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the serine residue at position 130 is substituted by alanine.
- 36. A mutant Bacillus lentus DSM 5483 protease of claim 1
 wherein the serine residue at position 130 is substituted by threonine.
- 37. A mutant Bacillus lentus DSM 5483 protease of claim i wherein the alanine residue at position 96 is substituted by isoleucine.

- 38. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the alanine residue at position 224 is substituted by valine, the serine residue at position 104 is substituted by threonine, and the serine residue at position 139 is substituted by tyrosine.
- 39. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the serine residue at position 139 is substituted by alanine.

5

- 40. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the serine residue at position 142 is substituted by threonine.
- 41. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the serine residue at position 139 is substituted by threonine.
- 42. A mutant Bacillus lentus DSM 5483 protease of claim 1
 20 wherein the isoleucine residue at position 102 is substituted by tryptophan.
 - 43. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the alanine residue at position 96 is substituted by asparagine.
 - 44. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the asparagine residue at position 42 is substituted by phenylalanine.

30

- 45. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the serine residue at position 142 is substituted by alanine.
- 35 46. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the histidine residue at position 118 is substituted by phenylalanine.

- 47. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the asparagine residue at position 237 is substituted by alanine.
- 5 48. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the asparagine residue at position 255 is substituted by proline.
- 49. A mutant Bacillus lentus DSM 5483 protease of claim 1

 10 wherein the asparagine residue at position 237 is substituted by alanine and the threonine residue at position 141 is substituted by tryptophan.
- 50. A mutant Bacillus lentus DSM 5483 protease of claim 1
 wherein the threonine residue at position 268 is substituted by valine.
 - 51. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the lysine residue at position 229 is substituted by tryptophan.
 - 52. A mutant Bacillus lentus DSM 5483 protease of claim 1 wherein the threonine residue at position 141 is substituted by tryptophan.

30

35

20

53. A mutant gene which encodes for a mutant Bacillus lentus DSM 5483 protease comprising in the direction of transcription a promoter, ribosomal binding site, initiation codon and the major portion of the pre region of the Bacillus licheniformis ATCC 53926 alkaline protease gene operably linked to a portion of the pre region and all of the pro and mature regions of the Bacillus lentus DSM 5483 alkaline protease gene wherein one or more codons of said Bacillus lentus DSM 5483 alkaline protease gene are altered to produce a mutant gene which encodes for a protease derived by the replacement of at least one amino acid residue of the mature form of the Bacillus lentus DSM

5483 alkaline protease wherein said one amino acid residue which is selected from the group consisting of Ser3, Val4, Ser36, Asn42, Ala47, Thr56, Thr69, Glu87, Ala96, Ala101, Ile102, Ser104, Asn114, His118, Ala120, Ser130, Ser139, Thr141, Ser142, Ser157, Ala188, Val193, Val199, Gly205, Ala224, Lys229, Ser236, Asn237, Asn242, His243, Asn255, Thr268 is replaced with the amino acid residues listed in Table 2.

- 10 54. The mutant gene of claim 53 which encodes for said mutant protease wherein the valine residue at position 199 is substituted by isoleucine, the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, the valine residue at position 4 is substituted by isoleucine, and the serine residue at position 3 is substituted by threonine.
 - 55. The mutant gene of claim 53 which encodes for said mutant protease wherein the valine residue at position 199 is substituted by isoleucine, the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, and the serine residue at position 3 is substituted by threonine.
 - 56. The mutant gene of claim 53 which encodes for said mutant protease wherein the valine residue at position 199 is substituted by isoleucine, the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, and the valine residue at position 4 is substituted by isoleucine.
 - 57. The mutant gene of claim 53 which encodes for said mutant protease wherein the valine residue at position 199 is substituted by isoleucine, the valine residue at position 193 is substituted by methionine, the alanine

SUBSTITUTE SHEET

residue at position 188 is substituted by proline, and the serine residue at position 139 is substituted by tyrosine.

- 58. The mutant gene of claim 53 which encodes for said mutant protease wherein the valine residue at position 199 is substituted by isoleucine, the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, the serine residue at position 139 is substituted by tyrosine and the serine residue at position 130 is substituted by threonine.
- 59. The mutant gene of claim 53 which encodes for said mutant protease wherein the valine residue at position 199 is substituted by isoleucine, the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline.
- 60. The mutant gene of claim 53 which encodes for said mutant protease wherein the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, and the serine residue at position 3 is substituted by threonine.
- 25 61. The mutant gene of claim 53 which encodes for said mutant protease wherein the serine residue at position 157 is substituted by threonine.
- 62. The mutant gene of claim 53 which encodes for said mutant protease wherein the valine residue at position 193 is substituted by methionine, and the alanine residue at position 188 is substituted by proline.
- 63. The mutant gene of claim 53 which encodes for said mutant protease wherein the alanine residue at position 188 is substituted by proline.

15

- 64. The mutant gene of claim 53 which encodes for said mutant protease wherein the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, the valine residue at position 4 is substituted by isoleucine and the serine residue at position 3 is substituted by threonine.
- 65. The mutant gene of claim 53 which encodes for said mutant protease wherein the valine residue at position 193 is substituted by methionine.
- 66. The mutant gene of claim 53 which encodes for said mutant protease wherein the serine residue at position 104 is substituted by threonine.
- 67. The mutant gene of claim 53 which encodes for said mutant protease wherein the threonine residue at position 69 is substituted by valine.
- 20 68. The mutant gene of claim 53 which encodes for said mutant protease wherein the valine residue at position 193 is substituted by methionine, and the alanine residue at position 188 is substituted by proline, and the valine residue at position 4 is substituted by isoleucine.
 - 69. The mutant gene of claim 53 which encodes for said mutant protease wherein the alanine residue at position 224 is substituted by valine.
- 70. The mutant gene of claim 53 which encodes for said mutant protease wherein the valine residue at position 199 is substituted by isoleucine.
- 71. The mutant gene of claim 53 which encodes for said mutant protease wherein the valine residue at position 4 is substituted by isoleucine.

- 72. The mutant gene of claim 53 which encodes for said mutant protease wherein the serine residue at position 3 is substituted by threonine.
- 73. The mutant gene of claim 53 which encodes for said mutant protease wherein the serine residue at position 139 is substituted by tyrosine.
- 74. The mutant gene of claim 53 which encodes for said mutant protease wherein the asparagine residue at position 242 is substituted by alanine.
- 75. The mutant gene of claim 53 which encodes for said mutant protease wherein the serine residue at position 236 is substituted by threonine.
 - 76. The mutant gene of claim 53 which encodes for said mutant protease wherein the serine residue at position 36 is substituted by alanine.
 - 77. The mutant gene of claim 53 which encodes for said mutant protease wherein the histidine residue at position 243 is substituted by alanine.
- 78. The mutant gene of claim 53 which encodes for said mutant protease wherein the alanine residue at position 101 is substituted by threonine.
- 79. The mutant gene of claim 53 which encodes for said mutant protease wherein the serine residue at position 236 is substituted by alanine.
- 80. The mutant gene of claim 53 which encodes for said mutant protease wherein the glutamic acid residue at position 87 is substituted by arginine.

- 81. The mutant gene of claim 53 which encodes for said mutant protease wherein the asparagine residue at position 114 is substituted by serine.
- 5 82. The mutant gene of claim 53 which encodes for said mutant protease wherein the alanine residue at position 47 is substituted by tryptophan.
- 83. The mutant gene of claim 53 which encodes for said mutant protease wherein the alanine residue at position 120 is substituted by serine.
- 84. The mutant gene of claim 53 which encodes for said mutant protease wherein the threonine residue at position 56 is substituted by valine.
 - 85. The mutant gene of claim 53 which encodes for said mutant protease wherein the alanine residue at position 120 is substituted by valine.
 - 86. The mutant gene of claim 53 which encodes for said mutant protease wherein the glycine residue at position 205 is substituted by valine.
- 25 87. The mutant gene of claim 53 which encodes for said mutant protease wherein the serine residue at position 130 is substituted by alanine.
- 88. The mutant gene of claim 53 which encodes for said mutant protease wherein the serine residue at position 130 is substituted by threonine.
- 89. The mutant gene of claim 53 which encodes for said mutant protease wherein the alanine residue at position 96 is substituted by isoleucine.

10

30

- 90. The mutant gene of claim 53 which encodes for said mutant protease wherein the alanine residue at position 224 is substituted by valine, the serine residue at position 139 is substituted by tyrosine and the serine residue at position 104 is substituted by threonine.
- 91. The mutant gene of claim 53 which encodes for said mutant protease wherein the serine residue at position 139 is substituted by alanine.
- 92. The mutant gene of claim 53 which encodes for said mutant protease wherein the serine residue at position 142 is substituted by threonine.
- 93. The mutant gene of claim 53 which encodes for said mutant protease wherein the serine residue at position 139 is substituted by threonine.
- 94. The mutant gene of claim 53 which encodes for said mutant protease wherein the isoleucine residue at position 102 is substituted by tryptophan.
- 95. The mutant gene of claim 53 which encodes for said mutant protease wherein the alanine residue at position 96 is substituted by asparagine.
 - 96. The mutant gene of claim 53 which encodes for said mutant protease wherein the asparagine residue at position 42 is substituted by phenylalanine.
 - 97. The mutant gene of claim 53 which encodes for said mutant protease wherein the serine residue at position 142 is substituted by alanine.

BUSE WITH THE BUSE OF

98. The mutant gene of claim 53 which encodes for said mutant protease wherein the histidine residue at position 118 is substituted by phenylalanine.

- 99. The mutant gene of claim 53 which encodes for said mutant protease wherein the asparagine residue at position 237 is substituted by alanine.
- 5 100. The mutant gene of claim 53 which encodes for said mutant protease wherein the asparagine residue at position 255 is substituted by proline.
- 101. The mutant gene of claim 53 which encodes for said mutant protease wherein the asparagine residue at position 237 is substituted by alanine and the threonine residue at position 141 is substituted by tryptophan.
- 102. The mutant gene of claim 53 which encodes for said mutant protease wherein the threonine residue at position 268 is substituted by valine.
 - 103. The mutant gene of claim 53 which encodes for said mutant protease wherein the lysine residue at position 229 is substituted by tryptophan.
 - 104. The mutant gene of claim 53 which encodes for said mutant protease wherein the threonine residue at position 141 is substituted by tryptophan.

25 105. A hybrid plasmid capable of replication in Bacillus comprised of a gene which encodes for a mutant Bacillus lentus DSM 5483 protease comprising in the direction of transcription a promoter, ribosomal binding site, initiation codon and the major portion of the pre region of 30 the Bacillus licheniformis ATCC 53926 alkaline protease gene operably linked to a portion of the pre region and all of the pro and mature regions of the Bacillus lentus DSM 5483 alkaline protease gene followed by a 164 bp DNA fragment containing the transcription terminator from the 35 ATCC 53926 alkaline protease gene wherein one or more codons of said Bacillus lentus DSM 5483 alkaline protease

10

15

20

25

gene are altered to produce a mutant gene which encodes for a protease derived by the replacement of at least one amino acid residue of the mature form of the Bacillus lentus DSM 5483 alkaline protease wherein said one amino acid residue which is selected from the group consisting of Ser3, Val4, Ser36, Asn42, Ala47, Thr56, Thr69, Glu87, Ala96, Ala101, Ile102, Ser104, Asn114, His118, Ala120, Ser130, Ser139, Thr141, Ser142, Ser157, Ala188, Val193, Val199, Gly205, Ala224, Lys229, Ser236, Asn237, Asn242, His243, Asn255, Thr268 is replaced with the amino acid residues listed in Table 2.

106. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the valine residue at position 199 is substituted by isoleucine, the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, the valine residue at position 4 is substituted by isoleucine, and the serine residue at position 3 is substituted by threonine.

107. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the valine residue at position 199 is substituted by isoleucine, the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, and the serine residue at position 3 is substituted by threonine.

108. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the valine residue at position 199 is substituted by isoleucine, the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, and the valine residue at position 4 is substituted by isoleucine.

10

15

20

25

30

35

109. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the valine residue at position 199 is substituted by isoleucine, the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, and the serine residue at position 139 is substituted by tyrosine.

110. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the valine residue at position 199 is substituted by isoleucine, the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, the serine residue at position 139 is substituted by tyrosine and the serine residue at position 130 is substituted by threonine.

111. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the valine residue at position 199 is substituted by isoleucine, the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline.

112. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the valine residue at position 193 is substituted by methionine, the alanine residue at position 188 is substituted by proline, and the serine residue at position 3 is substituted by threonine.

113. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the serine residue at position 157 is substituted by threonine.

114. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the valine

residue at position 193 is substituted by methionine, and the alanine residue at position 188 is substituted by proline.

- 115. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the alanine residue at position 188 is substituted by proline.
- 116. The hybrid plasmid of claim 105 wherein said mutant
 gene encodes for said mutant protease wherein the valine
 residue at position 193 is substituted by methionine, the
 alanine residue at position 188 is substituted by proline,
 the valine residue at position 4 is substituted by
 isoleucine and the serine residue at position 3 is
 substituted by threonine.
 - 117. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the valine residue at position 193 is substituted by methionine.
 - 118. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the serine residue at position 104 is substituted by threonine.
- 25 119. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the threonine residue at position 69 is substituted by valine.
- 120. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the valine residue at position 193 is substituted by methionine, and the alanine residue at position 188 is substituted by proline, and the valine residue at position 4 is substituted by isoleucine.

20

25

- 121. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the alanine residue at position 224 is substituted by valine.
- 5 122. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the valine residue at position 199 is substituted by isoleucine.
- 123. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the valine residue at position 4 is substituted by isoleucine.
- 124. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the serine residue at position 3 is substituted by threonine.
 - 125. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the serine residue at position 139 is substituted by tyrosine.
 - 126. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the asparagine residue at position 242 is substituted by alanine.
 - 127. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the serine residue at position 236 is substituted by threonine.
- 128. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the serine residue at position 36 is substituted by alanine.
- 129. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the histidine residue at position 243 is substituted by alanine.

SUBSTITUTE SHEET

- 130. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the alanine residue at position 101 is substituted by threonine.
- 131. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the serine residue at position 236 is substituted by alanine.
- 132. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the glutamic acid residue at position 87 is substituted by arginine.
- 133. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the asparagine residue at position 114 is substituted by serine.
- 134. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the alanine residue at position 47 is substituted by tryptophan.
 - 135. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the alanine residue at position 120 is substituted by serine.
 - 136. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the threonine residue at position 56 is substituted by valine.
- 137. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the alanine residue at position 120 is substituted by valine.
- 138. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the glycine residue at position 205 is substituted by valine.

- 139. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the serine residue at position 130 is substituted by alanine.
- 140. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the serine residue at position 130 is substituted by threonine.
- 141. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the alanine residue at position 96 is substituted by isoleucine.
- 142. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the alanine residue at position 224 is substituted by valine, the serine residue at position 139 is substituted by tyrosine and the serine residue at position 104 is substituted by threonine.
- 20 143. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the serine residue at position 139 is substituted by alanine.
- 144. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the serine residue at position 142 is substituted by threonine.
- 145. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the serine residue at position 139 is substituted by threonine.
 - 146. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the isoleucine residue at position 102 is substituted by tryptophan.

- 147. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the alanine residue at position 96 is substituted by asparagine.
- 5 148. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the asparagine residue at position 42 is substituted by phenylalanine.
- 10 149. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the serine residue at position 142 is substituted by alanine.
- 150. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the histidine residue at position 118 is substituted by phenylalanine.
- 151. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the asparagine residue at position 237 is substituted by alanine.
- 152. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the asparagine residue at position 255 is substituted by proline.
- 153. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the asparagine residue at position 237 is substituted by alanine and the threonine residue at position 141 is substituted by tryptophan.
- 154. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the threonine residue at position 268 is substituted by valine.

155. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the lysine residue at position 229 is substituted by tryptophan.

156. The hybrid plasmid of claim 105 wherein said mutant gene encodes for said mutant protease wherein the threonine residue at position 141 is substituted by tryptophan.

which affect the stability of a target protein comprising the steps of: (1) generating a probe-accessible surface of said target protein by probing the three dimensional coordinates of said protein with an uncharged probe molecule having a radius of about 0.9 to about 2.0 Å, wherein said probe-accessible surface has an external surface the interior of which contains one or more probe-accessible internal cavities; (2) identifying the amino acids which make up the boundaries of the internal cavities, wherein said amino acids comprise a set of sites which when mutated increase the stability of the protein.

158. The computer based method of claim 157 wherein said target protein is Bacillus lentus DSM 5483 alkaline protease.

25

30

35

159. A computer based method for identifying the sites which affect the stability of a target protein comprising the steps of: (1) generating a probe-accessible surface of said target protein by probing the three dimensional coordinates of said protein with an uncharged probe molecule having a radius of about 0.9 to about 2.0 Å, wherein said probe-accessible surface has an external surface the interior of which contains one or more probe-accessible internal cavities; (2) aligning said three dimensional coordinates of said target protein and a reference protein by moving the three dimensional coordinates of said reference protein into the coordinate

frame of said target protein; (3) identifying an amino acid in said reference protein whose side chain lies outside said solvent-accessible surface of said protein or inside said internal cavities of said target protein.

5

160. The computer based method of claim 159 wherein said target protein is Bacillus lentus DSM 5483 alkaline protease.

10

161. The computer based method of claim 159 wherein said reference protein is any protein for which a three dimensional structure is available which is homologous to the target protein.

15

162. The computer based method of claim 159 wherein said reference protein is thermitase.

20

163. The computer based method of claim 159 wherein said reference protein is subtilisin Carlsberg.

164. The computer based method of claim 159 wherein said reference protein is subtilisin BPN'.

25

165. The computer based method of claim 159 wherein said reference protein is proteinase K.

30

35

166. A. computer based method for increasing the stability of a protein comprising the steps of: (1) generating a probe-accessible surface of said target protein by probing the coordinates of said protein with an uncharged probe molecule having a radius of about 0.9 to about 2.0 Å, wherein said probe-accessible surface has an external surface the interior of which contains one or more probe-accessible internal cavities; (2) identifying the amino acids which make up the boundaries of the internal cavities, wherein said amino acids comprise a set of sites which when mutated increase the stability of the protein;

20

- (3) identifying an amino acid mutation which decreases the volume of said internal cavities; (4) determining if said amino acid in said target protein can be changed without creating unacceptable steric interactions; (5) replacing the amino acid in said target protein by site directed mutagenesis of the gene which expresses said target protein.
- 167. The computer based method of claim 166 wherein said target protein is Bacillus lentus DSM 5483 alkaline protease.
- 168. The computer based method of claim 166 wherein said reference protein is any protein for which a three dimensional structure is available which is homologous to the target protein.
 - 169. The computer based method of claim 166 wherein said reference protein is thermitase.
 - 170. The computer based method of claim 166 wherein said reference protein is subtilisin Carlsberg.
- 171. The computer based method of claim 166 wherein said reference protein is subtilisin BPN'.
 - 172. The computer based method of claim 166 wherein said reference protein is proteinase K.
- 173. A computer based method for increasing the stability of a protein comprising the steps of: (1) generating a probe-accessible surface of said target protein by probing the coordinates of said protein with an uncharged probe molecule having a radius of about 0.9 to about 2.0 Å, wherein said probe-accessible surface has an external surface the interior of which contains one or more probe-accessible internal cavities; (2) aligning said three

10

15

20

25

35

dimensional coordinates of said target protein and a reference protein by moving the three dimensional coordinates of said reference protein into the coordinate frame of said target protein; (3) identifying an amino acid in said reference protein whose side chain lies outside said solvent-accessible surface of said protein or inside said internal cavities of said target (4) identifying the amino acid in said target protein which occupies the equivalent position as said amino acid in said reference protein; (5) determining if said amino acid in said target protein can be changed without creating unacceptable steric effects; (6) replacing the amino acid in said target protein with the corresponding amino acid in the equivalent position in said reference protein by sitedirected mutagenesis of the gene which expresses said target protein.

174. The computer based method of claim 173 wherein said target protein is Bacillus lentus DSM 5483 alkaline protease.

175. The computer based method of claim 173 wherein said reference protein is any protein for which a three dimensional structure is available which is homologous to the target protein.

176. The computer based method of claim 173 wherein said reference protein is thermitase.

30 177. The computer based method of claim 173 wherein said reference protein is subtilisin Carlsberg.

178. The computer based method of claim 173 wherein said reference protein is subtilisin BPN'.

179. The computer based method of claim 173 wherein said reference protein is proteinase K.

			•			_		_		35 700	21.181
_	4	_	27.985	27.065	7.578		ILE	0	29.238	35.790	
	GLY	C	26.834	26.692	7.822	9	SER	N	28.225	36.591	19.284
_	GLY	0		25.660	5.657	9 .	6 e r	CX	29.270	37.572	19.075
1	GLY	M	27.785		6.143	9	SER	CB	29.158	38.161	17.652
1	GLY	CY	28.517	26.825	8.522	9 .	SIR	OG	29.411	37.107	16.718
2	GLN	K	28.745	27.585			SER	C	29.191	38.684	. 20. 145
2	GLN	CX	28.205	27.868	9.851		SER		30.236	39.113	20.660
2	GLN	CB	29.179	27.265	10.835	-		Ħ	27.977	39.085	20.540
	GLN	œ	28.905	27.589	12.287	10				40.132	21.537
2		æ	29.834	26.805	13.151		ARG	CY	27.775	40.132	21.686
2	GLN		29.476	25.685	13.540	10		CB	26.288	40.423	
2	GLN	OPI	31.008	27.317	13.461	10		œ	25.946	41.656	22.562
2	GLN			29.384	10.049	10		æ	26.666	42.953	22.101
2	GLM	C	28.045	30.159	9.642	10	ARG	ne	26.378	43.300	20.705
2	GLN	0	28.927	30.133	10.693	10	ARG	CZ	25.394	44.138	20.338
3	SER	N	26.940	29.781			ARG	NH1	25.226	44.365	19.048
3	SER	CX	26.568	31.160	10.999		ARG		24.604	44.767	21.215
3	SER	CB	25.036	31.390	10.712		ARG	C	28.351	39.782	22.893
3	SER	OG	24.576	30.913	9.455				28.942	40.673	23.476
3	SER	Č	26.815	31.424	12.488		ARG	0	28.222	38.532	23.377
3	SER	ŏ	26.464	30.580	13.314		VAL	N		38.186	24.642
		×	27.371	32.570	12.897		VAL	Cy	28.862		25.339
4	VAL		27.534	32.913	14.309		AYT	CB	28.127	37.003	
4	VAL	CX	28.860	33.625	14.552		VXL		26.664	37.416	25.538
4	VAL	СВ		33.965	16.045	11	VAL	œ2	28.227	35.723	24.530
4	VAL		29.008	32.739	14.035	11	VAL	C	30.343	37.832	24.471
4	VAL		30.006	32.737	14.655	- 11	VAL	0	31.021	37.393	25.404
4	VAL	C	26.397	33.869	14.097		GLN	N	30.868	37.944	23.261
4	VAL	0	26.344	34.990	15.449		GLN	CA	32.288	37.745	22.957
5	PRO	N	25.384	33.471	15.447		GLN	CB	33.129	38.763	23.772
5	PRO	CD	25.140	32.114	15.924		GLN	œ	32.773	40.196	23.319
5	PRO	CY	24.313	34.393	15.856		GLN	CD	33.643	41.252	23.997
5	PRO	CB	23.404	33.524	16.740			OZ 1	34.842	41.403	23.753
5	PRO	Œ	23.629	32.110	16.189				33.145	42.035	24.926
5	PRO	Č	24.823	35.677	16.538			NE2	32.806	36.330	23.186
_		ŏ	25.816	35.601	17.282		GLN	C	32.000	36.104	23.557
5	PRO	H	24.126	36.804	16.302		GLN		33.978		22.940
6	TRP		24.597	38.070	16.867		YTY		31.938	35.350	23.095
6	TRP	CY	23.589	39.231	16.567		YTY		32.333	33.978	
6	TRP	CB	_	39.360	17.414	13	YΤΥ	CB	31.189	33.004	22.890
6	TRP	∞	22.313	40.080	18.588	13	λLλ	С	33.418	33.589	22.084
6	TRP	CD2	22.238	39.872	18.955	13	λLλ	0	34.293	. 32.789	22.477
6	TRP	CE 2	20.905	10.074	19.364	14	PRO	N	33.507	34.053	20.808
6	TRP	CE3	23.091	40.874	17.097	14	PRO	CD	32.522	34.799	20.020
6		CD1	21.120	38.755	18.047	14	PRO	_	34.622	33.646	19.943
6	TRP	NE 1	20.274	39.089	20.142	14	PRO		34.311	34.283	18.601
6		CZ2	20.485	40.458	20.536	14	PRO		32.806	34.270	18.606
6	TRP	CZ3	22.638	41.455	20.530		PRO		35.977	34.034	20.525
6	_		21.339	41.249	20.918	14	PRO	_	36.900	33.216	20.393
6		C	24.859	38.028	18.378		ALA		36.096	35.170	21.257
	TRP		25.812	38.610	18.854		YEY		37.383	35.545	21.881
7	GLY	Й	24.056	37.299	19.142				37.253	36.887	22.612
	GLY		24.171	37.250	20.597	15	YLY	CB		34.470	22.892
			25.488	36.591	21.015	15	ALA	C	37.837	34.129	22.980
7			26.135	36.993	22.000	15	ALA	. 0	39.024		23.591
7			25.911	35.557	20.242	16	λLλ	N	36.899	33.826	
8			27.125	34.811	20.543		ALA		37.248	32.758	24.508
8					19.559	16	YL	CB	36.057	32.436	25.368
8			27.250		19.882	16	λLJ	, c	37.632	31.505	23.705
8	ILE		28.525		19.654	16	λIJ	. 0	38.587	30.787	24.026
8		CG1	26.016		21.080		HIS		36.927	31.180	22.610
8			25.683		20.363		HIS		37.206	29.941	21.872
8	ILE		28.303	35.772	20.303						

1	7 HI	5 CI	36.28	3 29.66	7 20.715		27 L	YB	¥ 29.79	99 19.81	15 32.58
	7 RI			0 29.66	9 21.066		27 L				
		8 CD					27 L				
		8 ND					27 L	YS O	Q 29.14	16 17.00	
		8 CE					27 L				
		8 NE					' 27 L	YS C			7 34.529
	7 HI						27 L	rs w	29.02	2 14.04	7 35.345
	7 HI						27 L	rs (C 27.39	4 20.33	
	8 AS						27 L		27.36	8 20.96	
	8 AS						28 VI		W 26.51	2 20.47	
	B AS						28 VI			5 21.47	
	B ASI						28 V7				4 30.583
		V OD1					28 VX	T COI			0 30.598
1		ND2					28 VX	L CC2			
	3 ASI						28 VA				
	ARC						28 VA	_	23.94		
	ARC						29 AL				
	ARG		41.579				29 AL				
19			41.755				29 AL				
	ARG		41.327				29 AL				
19			41.469				30 VA				
19	ARG		40.620	36.280			30 VA				
19	ARG	NH1	40.880	37.535	26.211		30 VA		19.123		
		NH2	39.567	35.963	27.217		30 VA		18.017		
_	ARG	-	41.924	29.600	23.992		30. VA		20.480		
	λRG		42.655	29.144	24.864		30 VA		17.731	21.519	
	GLY	_	41.166	28.766	23.312		30 VA		17.275	20.467	
	GLY		41.105	27.344	23.620		.31 LE		17.155		31.928
	CLY		40.056	26.959	24.682		31 LE		15.899	21.751	32.514
	GLY		40.026	25.824	25.187		31 LE		15.878		33.997
	LEU		39.130	27.872	25.003	•	31 LEG		16.523		34.997
	LEU	CX CB	38.098 38.012	27.626 28.796	26.023		31 LE	(20)	18.034		34.828
	LEU	œ	39.321	29.049	26.984 27.732		31 LEU	_	16.177	21.487	36.457
	LEU		39.370	30.463	28.219		31 LEU		14.832		31.724
	LEU		39.469	28.017	28.815		32 ASF		14.647		
21	LEU	C	36.767	27.463	25.284		32 ASP		14.163 13.254	21.816 22.474	30.801
21	LEU	0	36.254	28.371	24.622		32 ASP		14.173	23.197	29.860
22	THR	N	36.294	26.227	25.368		32 ASP	- œ	13.567	24.470	28.850 28.221
22	THR	CA	35.094	25.767	24.713		32 ASP	001	14.128	25.565	28.394
22	THR	CB	35.488	24.785	23.658		32 ASP		12.549	24.352	27.538
22	THR		36.139	23.695	24.331		32 ASP	C	12.331	21.405	29.226
22	THR		36.341	25.467	22.585		32 ASP	-	12.057	20.382	29.870
22	THR	C	34.069	25.126	25.622		33 THR		11.874	21.602	27.972
22	THR GLY	0	33.010 34.304	24.745	25.146		33 THR		10.956	20.709	27.245
	GLY	N		24.953	26.918		33 THR			21.562	26.131
	GLY	CX	33.327 33.680	24.232	27.761 27.973		33 THR 33 THR		11.275	22.099	25.255
	GLY	Ö	32.931	22.033	28.642		33 THR		9.394	22.669	26.737
	SER	N	34.808	22.329	27.403		33 THR	. C	11.600 10.948	19.465	26.594
	SER	CA	35.218	20.939	27.546		34 GLY	N	12.919	18.766 19.306	25.806
24	SER	CB	36.565	20.776	26.874		34 GLY	CÀ	13.720	18.216	26.830
	SER	œ	36.819	19.378	26.828		34 GLY	C	14.758	18.794	26.294 25.334
	SER	C	35.310	20.485	29.016		34 GLY	Ö	14.875	20.030	25.242
	SER	0	35.830	21.218	29.880		35 ILE	N	15.492	17.921	24.630
25	GLY	N	34.786	19.290	29.245		35 ILE	CA	16.417	18.299	23.557
	GLY	CA	34.688	18.702	30.571		35 ILE	CB	17.881	18.366	24.013
25 ·	GLY	C	33.657	19.387	31.517				18.614	19.017	22.822
25	GLI NAT	0	33.562	19.018	32.697		35 ILE		18.149	19.249	25.273
26 ·	VAL	N CA	32.861 31.862	20.356	31.079		35 ILE	ගු	19.589	19.096	25.859
26 '		CB	31.863	20.949 22.501	31.956 31.794		35 ILE	C	16.257	17.256	22.439
	VAL		30.812		32.729		35 ILE 36 SER		16.348	16.042	22.687
	VAL (35.281		32.071		6 SER		15.873 15.797	17.729	21.243
26 1			30.488		31.604		6 SER		14.885	18.83G- 17.400	20.099
26 1			30.089		30.446		6 SER		13.589	17.293	19.036
				•	•						19.580

3/18

3	6 SE	R C	17.166			4	ARO	C	24.39	12.08	8 27.123
_	5 8E	-				44	ARG				
	7 TH		17.380				GLY				
3.			18.541				GLY				
3	TH	R CB R OG1	18.300				GLY				
		R 002	18.169 19.401	12.722 13.039		49					
3			18.675	15.912			GLY	CA CA	20.524 19.453		
3		_	17.670	16.153		46		Ç	18.430		
= '	BIE		19.880	16.435			GLY	ŏ	18.632		
36	HIE	S CA	20.021	17.474			ALA	×	17.313		
	BIE		19.786	18.868	16.461		ALA	CA	16.222		
38			19.722	20.046	15.486		ALA	CB	16.461		33.779
		CD2	20.803	20.545	14.801	47		C	14.953		
38 38		C31	18.655 19.051	20.775 21.670	15.114		YLY	0	15.007		
		122	20.348	21.530	14.239 14.048	48	SER	CA	13.817 12.537	12.215	
	BIS		21.432	17.344	15.305		SER	CB	11.680		
	HIS		22.341	17.174	16.118		SER	OG	10.390	12.945	
39	PRO	H	21.740	17.555	14.025	48	SER	C	11.760	12.680	
39			20.795	17.752	12.918	48	SER	0	11.740	11.558	
39			23.135	17.467	13.571	49	PHE	X	11.224	13.808	
39			23.084	17.619	12.070	49	PHE	CA	10.358	13.821	34.885
39			21.744	18.261	11.799	49	PHE	CB	10.967	14.782	35.924
39 30	PRO PRO		24.112 25.318	18.457	14.195	49	PHE	&	12.302	14.253	36.403
40		_	23.645	18.260 19.520	14.162 14.832	49 49	PHE		13.454 12.383	14.844 13.128	35.923
40			24.583	20.488	15.375			CEI	14.676	14.300	37.204 36.225
40			24.218	21.897	14.900			CE2	13.616	12.590	37.509
40	ASP	Œ	25.453	22.801	14.740	49	PHE	CZ	14.760	13.176	37.008
40	ASP	001	26.526	22.264	14.551	49	PHE	C	8.915	14.206	34.546
40		002	25.389	24.037	14.740	49	PHE	0	8.115	14.601	35.418
	ASP	_	24.561	20.439	16.874		VAL	H	8.571	14.104	33.248
	ASP	0	24.918	21.450	17.480	50	AYT	Cy	7.230	14.424	32.796
	LEU	CY N	24.080 24.102	19.327 19.142	17.430 18.883		VAL	CB	7.264	15.245	31.450
	LEU	CB	22.713	19.260	19.513		VAL (5.869 7.766	15.427 16.635	30.821
	LEU	œ	21.938	20.541	19.465		VAL	C C	6.512	13.085	31.755 32.594
	LEU		20.485	20.249	19.882		VAL	ŏ	6.894	12.336	31.695
	LEU		22.642	21.595	20.331	51	PRO	R	5.443	12.724	33.315
	LEU	C	24.635	17.780	19.265		PRO	æ	4.826	13.553	34.344
	LEU	, O	24.417 25.298	16.802	18.530		PRO	CY	4.805	11.411	33.232
42	ASN	Cλ	25.792	17.707 16.443	20.415 20.953	51	PRO	CB CG	3.632 4.118	11.476 12.525	34.218
42	ASN	CB	27.341	16.452	21.066	51		℃	4.358	10.971	35.235 31.854
42	ASN	œ	27.960	15.195	21.667	51		ŏ	4.621	9.848	31.454
42	asn	001	29.168	15.169	21.967	52		N	3.693	11.820	31.082
		ND2	27.260	14.090	21.803	52		CX	3.269	11.377	29.746
	ASN	C	25.176	16.272	22.354	52		C	4.368	11.323	28.690
	ASN ILE	0	25.590	16.890	23.332	52		0	4.117	10.848	27.575
	ILE	N CA	24.152 23.458	15.442 15.252	22.457 23.736	53 (53 (N	5.606	11.757	28.996
	ILB	CB	21.958	15.077	23.423	53		CA CB	6.645 6.909	11.848	28.005 27.676
	ILE		21.208	14.865	24.766	53		œ	5.740	13.985	27.008
43	ILE		21.451	16.284	22.605	53		æ	5.991	15.433	26.597
	ILE	æ	20.150	16.044	21.857	53 (GLU O		7.145	15.826	26.393
	ILE	C	24.075	14.023	24.422		SLU O		5.012	16.167	26.462
	ILE	0	24.160	12.963	23.781	53 (C	7.901	11.202	28.519
	ARG ARG	N	24.520 25.246	14.131	25.675	53 (0	8.803	11.919	28.919
	ARG	CB CB	26.332	13.030 13.557	26.309 27.250	54 1		K K	8.059	9.880	28.483
	ARG	œ	27.060	14.753	26.730	54 1 54 1		CD CD	7.103 9.245	8.945 9.200	27.908
	ARG	æ	27.731	14.330	25.467	54 1		CB	8.817	7.745	29.004 28.993
44	A RG	NE	29.007	13.812	25.844	54 1		œ	7.964	7.702	27.752
	ARG	CI	30.106	14.554	25.653	54 1			10.548	9.487	28.240
	ARG		31.2/4	14.034	∡6.023	54 1		0	11.625	9.112	28.750
44	ARG	NH2	30.099	15.758	25.065	55 8	ER	H	10.497	10.048	27.015

						•							
5	5 8 2 1	R CJ	11.6	78 10.36	0 26.197		65	HIS	CA	16.7	49 26.1	60 20	
5	5 8 8 7	R CE	11.3	10 10.44			65		CB				. 98
	5 BRI		12.3	90 10.75			65		œ				.769
	5 SEF		12.2	50 11.70	2 26.559		65			15.66			23
	5 8KP		11.40	59 12.54			65		ומא	16.31			918
-	THE		13.53	33 11.96				HIS		16.43			
56	THE	i CA	14.08	34 13.31		,	65	HIS	NR2	16.05			
56								HIS	C	17.67			
	THR			3 12.43				HIS	ŏ	18.82			
	THR		15.74					VAL	N	17.22			
	THR		13.97					VAL	CÀ	18.08			
56	THR	. 0	14.37	0 15.35				VAL	CB	17.35			
	GLN	M	13.33					VAL		18.19			
	GLN	CA	13.25	2 14.317	7 22.886		66	VAL	CG2	16.26			
57		CB	12.74	3 13.379	21.797			VAL	Č	19.42			
57	GLN	œ	13.82	5 12.370				VAL	ŏ	20.49			
	GLN	යා	15.10					ALA	Ň	19.34			
57			15.09	1 13.752	19.766			ALA	CA	20.53			
57		NE2	16.26	7 12.793	21.390			ALA	CB	20.08			
	GLN	C	12.31	4 15.495	23.027		67		C	21.52	24.39		
	CLN	0	11.39	5 15.425	23.858			ALA:	ŏ	22.732			-
	ASP	Ħ	12.508				68		N	21.028			
58	λSP	CA	11.724				-68		CÄ	21.890			
58	ASP	CB	12.619				68			22.602			
		· 03	12.036				68		ŏ	23.730	26.68 26.88		
58	ASP	OD1	10.950				69 1		N	22.009			
58	ASP	OD2	12.737				69		Cλ				20
	ASP	C	10.499		21.573					22.727			
58	ASP	O	10.627					THR O		21.703			
	GLY	N	9.311		22.191			HR C		20.690			
	GLY	CA	8.021		21.500	•	69 1			22.339			
	GLY	C	7.601		21.318			HR		23.902			
	GLY	õ	6.527		20.754		70 I			24.986		– -	
60		N	8.431		21.802		70 I			23.686			
	ASN	CÀ	8.085		21.793		70 İ			24.771	26.952		
60		CB	8.166		23.222			LEC		24.305	25.947		
60		œ	7.768	23.804	23.268		70 1	LE C		25.501	25.525		
	ASN (8.585	24.702	23.090			LE C		23.197			
	ASN N		6.503	24.085	23.545		70 I			22.458			
60 2		Ċ	8.971	22.642	20.883		70 I			25.820	26.222		
60 1		ŏ	8.525	23.378	20.022	•	71 A		0 2	27.014	26.530	24.39	
61 6		N	10.269	22.585	21.093		71 A			25.447	25.251	23.45	
61 0		CA	11.202	23.372	20.337		71 Å			6.467	24.349	22.98	
61 G		c	12.035	24.187	21.318					6.523	23.129	23.948	3
61 G			13.231	24.429	21.115		71 AI 71 AI	_		6.352	23.895	21.578	
62 B		N	11.417	24.583	22.439		72 AI			6.869	22.805	21.29	5
62 H			12.068	25.515	23.336		72 AI			5.785	24.709	20.671	
62 B			11.034	25.886	24.385		72 AL			5.772 5.105	24.252	19.280	
52 H	IS		11.450	27.020	25.268		72 AL				25.252	18.367	
	IS C		11.218	28.363	25.048		72 AL			7.223	24.056	18.832	
52 A	IS N		11.969	26.858	26.498		73 LE			8.112	24.803	19.205	
52 B	IS C		12.011	28.039	27.067		73 LE			7.412	22.934	18.090	
52 H	IS N		11.572	28.932	26.189		73 LE		21	8.744	22.458	17.726	
2 H			13.371	24.957	23.944		73 LE			8.630	21.030	17.087	
2 H			14.409	25.642	23.918		73 LB	ט ככ		7.913	19.969	17.918	
3 G			13.351	23.723	24.453	-	3 LE	11 cm		7.805	18.638	17.193	
3 G1			4.577	23.186	25.039		3 LE			8.650	19.898	19.221	
3 G1			5.709		24.021					.465	23.384	16.782	
3 GI	LY		6.870		24.356		3 LE			8.857	23.968	15.858	
4 TE			5.375		22.746		4 ASI	_		768	23.410	17.002	
4 TE			6.392		21.700		4 ASI			.650	24.268	16.196	
4 TE			5.729		20.395		4 ASI 4 ASI				24.736	17.002	
	IR OG		5.057		20.709						25.786	16.240	
4 TH	ER CG		6.823	21.570	19.338		4 ASP				26.358	15.207	
4 TH			7.078		21.373		4 ASN				26.098	16.774	
4 TH	_		8.287		21.3/3		4 ASN			.170	23.435	15.022	
5 HI			6.252		21.308		4 ASN				22.639	15.197	
	_		V1232	4.030	44.300		5 ASN	i n	31	.602	23.663	13.836	

5/18

75	AS!	N C	N 31.83	3 22.80	12.665	85 SER C 31.718 21.142 28 143
75	ASP	f CI	30.95			A2 000
75	ASK	1 a	29.49			06 111 M 00 000 00 00 00
		T 001	28.91			26 373 63 56 56
75	ASN	ND2	28.869			20.30/
	ASN					06 333
75	ASN					06 373
76	SER	l M				67 67 8 8 66 666
	SER					67 67 6 60 60 60
	SER					93 67 8 93
	SER					87 GLU CB 29.274 17.235 28.985 87 GLU CG 30.727 16.927 28.555
	SER					20.032
	SER					97 077 081 30 400
	ILE					07 67 070 70 70
77						00 000
77	ILE		26.315		9.597	67 67 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
77	ILE		26.735		8.269	07 000 0 26.787 18.788 29.353
77	ILE		26.604			88 LEU N 26.340 18.241 27.230
	ILE	CD	25.657		10.887	88 LEU CA 24.949 18.654 27.326 88 LEU CB 24.566 19.080 25.810
	ILE	C	26.407		10.799	23.910
77	ILE	0	26.960	24.700	11.891	20.020
78	GLY	H	25.199	24.925	10.501	99 177 772 99
	GLY	CA	24.338	25.534	11.486	68 LEU CD2 23.521 20.293 24.093 88 LEU C 24.042 17.570 27.876
	GLY	C	24.874	26.773	12.159	00 750
	GLY	ō	25.345	27.713	11.542	88 LEU O 24.093 16.491 27.282
	VAL	H	24.781	26.721	13.475	89 TYR N 23.223 17.777 28.919 89 TYR CA 22.249 16.807 29.449
	VAL	CA	25.226	27.840	14.293	90 FVP OD 00 500
79	VAL	CB	23.977	28.470	15.058	20.342
79	VAL	CG1	23.105	29.130	14.034	90 500
79	VAL	œ2	23.172	27.468	15.841	00 000
79	VAL	C	26.342	27.460	15.258	99 500
79	VAL	0	27.035	26.445	15.015	00 000
80	LEU	K	26.574	28.266	16.310	90 570 00 00 100
80	LEU	CA	27.681	28.023	17.216	90 Fren 611 67 614 614 614 614 614 614 614 614 614 614
80		CB	28.856	28.882	16.777	00 mm
80	LEU	Œ	30.090	28.886	17.612	00 555
80	LEU	CD1	30.630	27.510	17.592	00 313
80 1	LEU (CD2	31.076	29.900	17.113	
80 1	LBU	C	27.210	28.436	18.614	20.000 20.000
80 1	LEU	0	26.667	29.536	18.725	90 313
81 (_	N	27.333	27.597	19.625	00 111
81 (CY	26.928	28.085	20.924	01 107
81 (C	28.076	28.805	21.662	01 171
81 (0	29.253	28.863	21.248	91 VAL CB 17.050 17.737 32.979
82 \		X	27.794	29.222	22.883	91 VAL CG1 16.278 17.172 34.186
82 V		CA	28.824	29.876	23.663	91 VAL CG2 18.529 17.434 33.152
82 V	AL.	CB	28.207	30.550	24.929	91 VAL C 15.086 17.576 31.413
82 V	AL C	3 61	29.266	31.108	25.913	91 VAL 0 14.803 18.789 31.545
82 V	AL C		27.250	31.691	24.395	92 LYS N 14.186 16.716 30.935
82 V		C	29.915	28.926	24.085	92 LYS CA 12.860 17.211 30.608
82 V		0	31.102	29.295	24.118	92 LYS CB 12.271 16.257 29.604
83 X		N	29.504	27.716	24.494	92 LYS CG 10.802 16.621 29.273
83 X		CA	30.437		24.970	92 LYS CD 10.070 15.579 28.398
83 A		CB	30.194		26.456	92 LYS CE 10.580 15.652 26.970
83 X		C	30.270		24.181	92 LYS NZ 9.873 14.730 26.095
83 X			29.605		24.615	92 LYS C 12.009 17.347 31.892
84 P			30.827		22.956	92 LYS O 11.719 16.396 32.624
84 P			31.627		22.334	93 VAL N 11.659 18.596 32.162
84 P			30.449		21.985	93 VAL CA 10.834 18.966 33.200
84 P					20.658	93 VAL CB 11.520 19.956 34.315
B4 P			31.954		20.928	93 VAL CG1 12.719 19.267 34.948
34 P					22.328	93 VAL CG2 11.808 21.301 33.634
35 SI				21.987	21.673	93 VAL C 9.545 19.632 32.844
					23.311	93 VAL O 8.636 19.907 33.627
35 SI					23.810	94 LEU N 9.434 19.988 31.564
35 S! 35 S!					23.914	94 LEU CA 8:252 20.523: 11.521
,	- ~ (og :	34.358	21.691	22.630	94 LEU CB 8.576 22.025 30.524

	4 LE			1 22.98	3 31.432		. 10	05 II	LE C	A 11.30	8 20.99	2 38.05
	4 LE				B 30.604			05 11				
)4 LE								LE CG			
	4 LE		7.78						LE CG	1 9.91		
	4 LE)5 II		9.19	1 24.03	6 36.79
	5 GL)5 II		C 12.18	6 20.70	3 39.29
	5 GL)5 II		13.40		9 39.16
	5 GL)6 AI		N 11.58		4 40.484
	5 GL)6 AL		12.32		
	6 ALI	-						6 AL				
	6 YLI						_	6 AL				
	6 AL							6 AL			5 18.70	
	6 ALI							7 GL	_			
	7 ASI					,		7 GL				
-	7 ASE							7 GL				
	7 ASE							7 GL				
	7 ASF		1.665						N OE1			
	7 ASP		2.704						N NE2			
9		OD2	0.596					7 GL				
9	7 ASP		3.645					7 GL	-			
_	7 ASP		3.058				7.7	B GL				
91	B GLY		4.885	23.232	26.820			B GL				
91	GLY	CA	5.597		27.561			GL		16.281		
	GLY		5.223	24.311	29.038			GL:		17.409		
98	GLY	0	5.866	24.997	29.828		109	LET		16.086		39.380
) ARG	N		23.548	29.442		109	LE	CA	17.203		
	ARG	Cy	3.746	23.492	30.813		109	LEC	J CB	16.703		40.941
99		CB	2.274	23.049	30.885			LEC		16.358	22.306	40.103
	ARG	<u> </u>	1.275	23.728	29.965				CD1	15.553	23.267	40.958
99		CD	1.373	25.198	30.169				CD2	17.613		39.579
	ARG	NE	0.065	25.771	29.978			LEU		17.899		41.088
	ARG	CZ	-0.085	27.070	29.703			LEU	-	19.137	18.923	41.163
	ARG		-1.339	27.516				GL		17.146		41.739
	ARG	NH2 C	0.956 4.518	27.923	29.560			GLO		17.767	16.997	42.502
	ARG	o	4.851	22.498 21.418	31.672 31.175			GLU		16.706	16.208	43.295
	GLY	N	4.746	22.767	32.962			GLU		16.044	17.043	44.443
	GLY	CX	5.370	21.790	33.846			GLU		16.869 16.284	17.518	45.693
	GLY	C	5.043	22.002	35.327			GLU		18.058	18.250	46.507
	GLY	ō	4.933	23.136	35.803			GLU		18.562		45.884 41.616
_	ALA	N	4.881	20.881	36.029			GLU		19.674	15.702	42.025
101	ALA	CX	4.592	20.897	37.462			TRP	N	18.111	15.691	40.389
101	ALA	CB	4.090	19.544	37.966			TRP	CÀ	18.867		39.469
101	YLY	С	5.844	21.210	38.278	,	111	TRP	CB	18.049	14.586	38.169
101		0	6.945	20.745	37.930		111	TRP	œ	18.743	13.709	37.091
102	ILE	N	5.672	21.920	39.412			TRP		19.617	14.121	36.111
	ILE	CY	6.812	22.262	40.268			TRP		19.919	12.914	35.467
	ILE	CB	6.297	23.134	41.461			TRP		20.195	15.302	35.658
	ILE		7.414	23.536	42.429			TRP		18.535	12.343	37.029
	ILE		5.672	24.383	40.856			TRP		19.264	11.895	36.042
	ILE	င္မ	6.675 7.555	25.257	40.045			TRP		20.803	12.903	34.389
_	ILE	ŏ	8.790	21.016 21.014	40.763 40.848			TRP		21.073	15.292	34.585
	SER	N	6.839	19.922	41.067		111	TRP		21.370	14.099	33.959
	SER	CÀ	7.477	18.691	41.459		111	TOD	C	20.160	15.563	39.124
	SER	CB	6.399	17.659	41.711		112		n	21.198	14.910	39.072
	SER	OG	5.570	17.479	40.562		112		CA	20.134 21.331	16.881	38.876
	SER	Ĉ	8.451	18.211	40.361		112		CB	21.029	17.620	38.528
	SER	ŏ	9.575	17.820	40.676		112		C	22.411	19.102 17.530	38.310
	SER	N	8.068	18.299	39.085		112		ŏ	23.578	17.330	39.612
	SER	CA	8.950	17.948	37.972		113		N	22.019	17.742	39.356 40.859
	SER	CB	8.185	18.077	36.660		113			22.962		40.859
	SER	œ	7.214	17.048	36.535		113			23.404	16.258	42.205
	SER	C	10.230	18.802	37.897		113	GLT		24.567	16.052	42.565
	SER	0	11.330	18.272	37.756		114			22.524	15.285	42.009
05	ILE	N	10.136	20.124	38 041		114	ASM		22.901	13 872	12 (3)

SUBSTITUTE SHEET

7/18

11	4 AS	N CB	21.735	12.858	42.176	12	3 SE	R OO	16.514	29.408	29.479
11	4 AS	N CG	20.764	12.994	43.318	12	3 8E				
		N 001	21.095	13.531	44.373		3 8E				
		N ND2	19.511	12.575	43.163		LE	_			
	ABI		23.820	13.339	41.111		il				
	I ASI	_		12.346	41.311		LE				
	λSI	_	23.767	13.953	39.923		LE				33.233
	ASI		24.558	13.494	38.817			n coj			35.610
	ASI		23.678	13.382	37.576			CD2		25.356	33.606
	ASI		22.871	12.090	37.637		L				34.347
		OD1	23.296	11.044	37.144		LE				35.045
		ND2	21.716	12.088	38.291		GL			30.177	34.709
	181		25.761	14.354	38.510		GL			31.019	35.884
	i asi		26.352	14.277	37.428		GL		8.243	31.204	36.140
116	GLY	' N	26.126	15.225	39.431	125	GL	r o	7.396	31.003	35.252
116	CLY	CA	27.354	15.971	39.331	126	SE	R N	7.991	31.643	37.370
116	GLY	Ç	27.372	16.991	38.204	126	SEI	R CA	6.640	31.772	37.888
116	GLY		28.450	17.247	37.614	126	SEI	R CB	6.331	30.503	38.752
117	MET	' N	26.235	17.614	37.909	126	SEI	300	5.242	30.673	39.682
117	MET	. CY	26.210	18.667	36.878	126	SE	C	6.623	33.055	38.707
117	MET	CB	24.807	19.105	36.509	126	SEF	0	7.650	33.353	39.302
117	MET		23.929	18.029	35.895		PRO		5.544	33.844	38.839
	KET		24.529	17.426	34.290		PRC		4.300	33.663	38.088
	XET		24.874	15.741	34.705	127			5.458	35.005	39.740
	XET		26.888	19.893	37.466		PRO		4.310	35.813	
	HET		26.805	20.170	38.688		PRO		3.377	34.706	39.157
	HIS		27.549	20.672	36.615		PRO		5.258	34.663	38.715
	HIS		28.186	21.879	37.094		PRO		5.342		41.234
	HIS		29.481	22.174	36.318		SER	-	4.904	35.518	42.119
	HIS		30.504	21.026	36.418		SER		4.673	33.408	41.511
			30.795	20.176	35.397		SER			32.939	42.860
	BIS			20.653	37.437				3.340	32.142	42.821
	HIS		31.283				SER		2.292	33.013	42.389
	HIS		32.020	19.622	37.044		SER		5.845	32.100	43.399
	HIS		31.715	19.339	35.797		SER		6.430	31.293	42.646
	HIS		27.256	23.067	36.967		PRO		6.223	32.275	44.678
	HIS		27.293	23.989	37.781		PRO		5.713	33.322	45.595
	VAL		26.349	23.070	35.989		PRO		7.185	31.419	45.363
	VAL		25.540	24.246	35.723		PRO		7.492	32.187	46.641
	VAL	CB	26.124	25.082	34.533		PRO	-	6.138	32.757	46.937
	VAL		25.194	26.267	34.244		PRO		6.639	29.999	45.605
	VXL		27.537	25.612	34.864		PRO		5.416	29.779	45.693
	VAL	Ç	24.194	23.670	35.344		SER		7.567	29.069	45.789
	AYT	0	24.123	22.627	34.674	130		CX	7.242	27.724	46.139
	YTY	N	23.150	24.305	35.817	130		CB	7.197		44.888
	ALA	CX	21.801	23.917	35.457	130		OG	7.387		45.215
120		CB	21.074	23.434	36.689	130		C	8.260	27.146	47.092
120		C	21.128	25.170	34.893	130		0	9.462	27.127	46.751
120		0	21.156	26.255	35.503	131		N	7.759	26.596	48.220
121		N	20.621	25.061	33.673	131		CA	8.619	25.896	49.154
121		CA	19.917	26.133	32.994	131		CB	7.818	25.334	50.312
121		CB	20.330	26.144	31.516	131		C	9.445	24.755	48.557
121		œ	19.771	27.348	30.778	131		0	10.670	24.654	48.755
121			20.464	28.304	30.514	132		N	8.761	23.973	47.716
121		ND2	18.511	27.315	30.418	132		CX	9.373	22.810	47.044
121	asn	C	18.399	25.942	33.133	132		CB	8.274	22.155	46.232
121	ASN	0	17.793	24.936	32.715	132	THR	OG1	7.351	21.804	47.256
122	LEU	N	17.740	26.917	33.768	132	THR	∝2	8.667	20.937	45.371
122		Cλ	16.277	26.942	33.962	132		C	10.547	23.223	46.156
122		CB	15.895	27.041	35.454	132		0	11.674	22.711	46.213
122	LEU	œ	16.010	25.856	36.340	133		N	10.257	24.266	45.394
122	LEU	CD1	15.879	26.350	37.770	133	LEU	CA	11.185	24.742	44.396
122			14.914	24.875	36.068	133		CB	10.467		43.511
122		C	15.706	28.182	33.264	133		œ	11.231		42.326
122		Ō	15.618	29.298	33.808	133			11.504		41.324
123		N	15.297	28.013	32.012	133			10.395		41.663
123		Cλ	14.756	29.116	31.232	133		C	12.393		45.081
123		СВ	15.184	28.969	29.748	133		ŏ	13.539		44.693
					•			-			74.033

						•	
	13	14 GI	Ü	N 12.1	64 26.19	5 46.111	143 ARG NE 22.030 17.901 45.580
		14 OL		A 13.2			44 44 44 44 44 44 44 44 44 44 44 44 44
		4 GL		B 12.7	49 27.78		149 300 400
		4 GL				6 48.645	141 100 100
		4 GL				0 49.814	143 100 0 00 010
	.13	4 OL	U OE	1 14.03			143 300
			UOE	2 12.04	16 29.33°		144 070 0 0 00
		4 QL		C 14.18	31 25.79	47.420	144 60 4 60
		4 QL		15.39	6 25.919	47.353	144 019
		5 OL		13.5 9	8 24.770	48.060	144 000
		5 GL			3 23.701	48.651	146 034 9 05 040
		5 GLI				49.331	146 931 63 06 465 000 02.180
		5 GIJI		13.89			145 447 00 04 100
		5 GL			3 20.790	- 50.764	145 931 001 03 500
			COE1			50.258	148 931 002 04 204
	135	5 GLI	NE2	13.14		52.060	140 1110
		GLI		15.24	8 22.952	47.620	145
		GLN					146 197 11 05 05 05 05 05 05 05 05 05 05 05 05 05
		YLA				46.420	146 790 02 02 02
		ALA				45.337	146 TPH OR OC 300
	136	YLY	CB			44.225	146
		ALA				44.802	146 177 001 05 010
		ALA		_		44.513	146 794 600
	137	VAL	N	16:313		44.677	144
		VAL		17.37		44.305	146 LBU 0 23.873 26.870 38.875
		VAL		16.834		44.238	147 VAL N 22.940 27.297 39.523
•	137	VAL	Œ1	17.998		44.134	147 VAL CA 21.611 27.371 38.926
:	137	VAL		15.876		43.047	147 VAL CB 20.552 27.093 40.011
		VAL	C	18.531		45.317	147 VAL CG1 19,153 27,272 10 207
		VAL	0	19.711			147 VAL CG2 20.649 25.642 40.526
1	130	ASN	N	18.136		46.588	147 VAL C 21.405 28.740 38.305
1	30	ASN	CY	19.136		47.616	147 VAL 0 21.480 29.768 38.965
•	30	ASN	CB	18.498			148 VAL N 21.138 28.776 37.003
•	18	ASN	CG	18.125 18.598		49.063	148 VAL CA 21.007 30.019 36.251
î	38	ASN	MD3	17.258	27.789 27.299	48.320	148 VAL CB 21.982 30.003 35.055
ī	38	ASN	C	19.869	23.832	49.985 47.685	148 VAL CG1 21.916 31.349 34.328
ī	38	ASN	ŏ	21.103	23.849	47.846	148 VAL CG2 23.403 29.791 35.562
		SER	. א	19.209	22.709	47.506	148 VAL C 19.557 30.040 35.781
		SER	Cλ	19.937	21.466	47.610	148 VAL O 19.127 29.064 35.128 149 ALA N 18.826 31.120 36.018
		SER	CB	19.001	20.303	47.649	30.019
		SER	OG	18.203	20.407	46.479	140 100
1	39	SER	C	20.860	21.316	46.403	37.003
		SZR	0	22.027	20.902	46.586	140 111
		ALA	N	20.431	21.663	45.160	150 333
	40 /		CA	21.392	21.545	44.053	174 174 174 174 174 174 174 174 174 174
	40 /		CB	20.755	21.895	42.723	150 ATA CR 14 427 33 300
	10 1		C	22.593	22.460	44.264	150 ALA C 14.588 34.558 34.469
	10 1		0	23.740	22.070	44.057	150 ALA O 13.789 34.092 35.290
	11 1		N	22.377	23.682	44.756	151 SER N 14.717 35.878 34.313
	11 7		CA	23.473	24.599	45.081	151 SER CA 13.991 36.841 35.145
14	1 7	THER .		22.851	25.918	45.587	151 SER CB 14.526 38.284 34.979
14	1 1	TER C	XG1	22.034		44.549	151 SER OG 14.430 38.730 33.630
14	1 1	THR C		23.908	26.914	45.924	151 SER C 12.485 36.873 34.867
	1 1			24.419		46.121	151 SER 0 11.692 37.218 35.761
	1 1			25.644		45.907	152 GLY N 12.062 36.534 33.633
	2 5			23.975		47.202	152 GLY CA 10.646 36.425 33.269
	2 S 2 S			24.937		48.134	152 GLY C 10.382 37.457 32.193
	2 S			24.216		49.442	152 GLY O 11.117 38.447 32.024
	2 S			23.086		49.207	153 ASN N 9.271 37.263 31.499
	2 S			25.620	21.592	47.583	153 ASN CA 8.969 38.082 30.352
	2 S.			26.616		48.150	153 ASN CB 8.689 37.237 29.116
	3 A			25.155		46.447	153 ASN CG 9.865 36 443 30 550
	3 2			25.865		45.761	153 ASN 001 11.041 36.707 28.880
	3 A			24.848 24.269		15,261 15,463	9.501 35.336 2,.94
	3 A			23.132		16.467	153 ASK C 7.759 38.990 30.526
•	- ~		~ <i>></i> .		17.127	46.152	153 ASN 0 7.190 39.421 29.524

154 SER N 7.390 39.398 31.739	164 ARG CB 12.939 36.127 43 000
154 SER CA 6.193 40.206 31.915	164 100
154 SER CB 5.577 39.973 33.284	164 ARG CG 12.741 37.084 44.237
184 600	164 ARG CD 13.377 38.408 43.906
164 000	104 ARG NE 13.251 39.367 44.988
164 077	164 ARG CZ 14.206 39.530 45 901
155 074	164 ARG NH1 14.020 40.475 46.838
155 GLY N 7.805 42.092 31.773	164 ADO NUA
155 GLY CA 8.154 43.499 31.759	164 300
155 GLY C 8.028 44.150 33.143	164 170
155 GLY O 8.292 45.349 33.278	164 ARG 0 15.559 35.875 44.807
166	165 TYR N 15.147 33.808 44.046
	105 TYR CA 15.787 33.157 45.176
	165 TYR CB 15.503 31.609 45.150
156 ALA CB 6.649 43.170 36.405	160 mus as as as
156 ALA C 8.814 44.359 36.187	16E MVB 001 13 300
156 ALA O 9.864 43.754 35.891	166 myp CB1 10 001
157 SBR N 8.746 45.315 37.132	16E MUD ADD
157 SER CA 9.857 45.747 37.932	165 TYR CD2 13.379 30.328 44.696
169 000	165 TYR CE2 12.067 30.003 44.992
150 000	165 TYR CZ 11.444 30.587 46 078
157 077	165 TYR OH 10.133 30.227 46.357
157 SER C 10.085 44.828 39.123	165 TVD 0 17 000
157 SER O 10.623 45.251 40.147	166 mun 0 17 000 17 179
158 SER N 9.695 43.568 39.049	444
158 SER CA 10.126 42.600 40.061	
150 000	166 ALA CA 19.222 33.986 46.544
	166 ALA CB 19.552 34.070 48.042
150 077	166 ALA C 20.231 33.070 45.878
150 000	166 ALA O 21.192 33.553 45.278
158 SER O 9.682 41.091 38.225	167 NOV N 10 000
159 ILE N 11.265 40.413 39.718	167 164 01 00 000
159 ILE CA 11.600 39.245 38.894	167 368 69 30 300
159 ILB CB 13.164 39.024 38.847	10.040
159 ILB CG2 13.801 40.300 38.272	167 300 001
159 ILB CG1 13.729 38.612 40.201	167 ASN OD1 22.592 30.238 47.502
	167 ASN ND2 21.130 28.931 48.461
150 777	167 ASN C 20.712 30.572 43.776
150 779	167 ASN 0 21.411 29.727 43 205
	168 ALA N 19.760 31.248 43.121
160 SER N 10.806 36.974 38.510	168 313 63 10 633
160 SER CA 10.114 35.754 38.841	160 111 00 10 000
160 SER CB 9,658 35,097 37 513	14.204
160 SER OG 10.700 34.817 36 581	170 171
160 SER C 10.947 34.777 39.691	168 ALA O 19.961 33.600 41.595
160 600	169 MET N 21.005 32.366 40.015
161 myn 11 16 16 16 16 16 16 16 16 16 16 16 16	169 MET CA 21.563 33.497 39.321
161 600	169 MET CB 22.854 33.069 38.636
161 mun	169 XET CG 23.476 34.273 37.972
161 mun	169 MET SD 25.057 33.851 37.212
3.030	160 VDM 671 05 645
161 TYR CD1 10.614 33.397 44.072	100 100
161 TYR CE1 10.459 34.368 45.057	30.305
161 TYR CD2 8.619 34.189 42 030	170 111
161 TYR CE2 8,459 35,175 43,906	170 313 01
161 TYR CZ 9.384 35.241 44.953	170 110 77
161 TYR OH 9.270 36.241 45.896	170 ALA CB 18.208 36.758 38.591
161 mun	170 ALA C 19.430 36.504 36.432
161 600	170 ALA O 20.278 37.405 36.596
162 220	171 VAL N. 18,927 36,158 35 241
162 000	171 VAL CA 19.332 36.739 33 966
	191
162 PRO CA 13.162 30.687 41.003	171 171 001 00 000
162 PRO CB 13.715. 29.232 40.966	171 1111 000 00 000
162 PRO CG 13.726 28 915 39 420	171 101
162 PRO C 14.243 31.756 40.879	101 101 101 101 101 101 101 101 101 101
162 PRO O 15.044 31.845 41 790	171 VAL 0 17.145 36.824 32.979
163 ALA N 14.352 32.580 39.814	172 GLY N 18.474 38.712 32.887
100	172 GLY CA 17.594 39.568 32.123
162 373	172 GLY C 18.038 39.553 30.640
4.59	172 GLY 0 19.106 39.023 30.302
162	173 ALA N 17.231 40.184 20 701
16. 350	177 171 01 19 461 40
16; ARG M 14.417 34.878 41.559	1. 1. A. C. 1. C.
164 ARG CA 14.385 35.740 42.745	173 171
	173 ALA C 17.667 41.631 27.812

				•								
	73 AI		0 16.98	7 42.59	9 28.169	18	2 8 E R	CE	9.73	46.3	38 25.96	. 7
_	74 TH	-	N 18.63		4 26.910	18	2 SER					
	74 TH						2 Ber		10.06	1 44.6		
_	74 TH					· 18	2 ser		9.55	7 44.9	57 28.87	9
		ir og:					3 PHE	×	10.05	8 43.3		
1	74 TH	IR CG				18.			9.50	1 42.23		
	74 TH						3 PHE				9 27.28	2
	74 TH						3 PHE					B
	75 AS						PHE					2
· †.	75 AS 75 AS	P C					PHE		10.65			
	75 AS						PHE		12.61		_ : : :	
1	75 AS	PODI					PHE		11.78			
	75 AS						PHE	CZ	12.77			
	75 AS						PHE	C	10.359 9.889			
	5 AS						SER	N	11.61			
	6 GL						SER	CX	12.551			
	6 GL						SER	CB	13.998		30.410	
	6 GLI				18.237		SER	OG	14.926			
	6 GLI		20.123	43.400	17.797	184	SER	C	12.281			
	6 CLI						SER	0	12.450			
	6 GL		17.837				GLN	H	11.911		32.727	
	6 GLI		18.083				GLN	CA	11.652			
	6 GLA		21.534	46.084			GLN	CB	11.034			
	6 GLN 7 ASN		22.690	46.302	19.783		GLN	œ	9.595			
	7 ASN		20.836 21.382	46.989 48.288	20.719 21.098		GLN	CD	8.912			
	7 ASN		20.321	49.300	20.975		GLN (8.817			
	7 ASN		19.832	49.550	19.587	185		C	8.397 12.960			
	7 ASN		20.577	49.605	18.631	185		ŏ	14.066	42.075 41.606		
	7 ASN		18.526	49.678	19.484	186		N	12.871	43.046		
	7 ASN		21.895	48.299	22.521	186		CA	14.048	43.618		
	7 asn		22.380	49.322	23.026	186		CB	14.488	44.924		
	B ASN		21.875	47.139	23.202	186		Œ	13.385	45.992		•
	B ASN		22.256	47.033	24.623		TYR (12.362	45.872	34.635	
	B ASN		23.735	47.479	24.896		TYR C		11.347	46.805	34.553	
	B ASN B ASN		24.734	46.515	24.314		TYR C		13.385	47.049	36.468	
	ASN		24.433 25.920	45.324 46.928	24.210 23.917		TYR C	_	12.386	47.988	36.396	
	ASN	C	21.345	47.835	25.547	186		CZ OB	11.376	47.855	35.450	
	ASN	ŏ	21.747	48.392	26.576	186		C	10.418	48.846	35.328	
	ASN	N	20.081	47.806	25.174	186		ŏ	12.616	43.925 43.620	37.819	
	ASN	CA	19.000	48.319	26.009	187			14.620	44.547	38.262 38.575	
179		CB	18.044	49.165	25.243	187			14.330	44.849	39.958	
	ASN	CG	18.566	50.593	25.088	187	GLY		15.232	44.062	40.892	
	ASN		19.289	51.155	25.949	187			16.318	43.548	40.541	
	ASN		18.250	51.181		188			14.782	43.915	42.140	
	asn asn	C	18.230 18.246	47.101	26.490	188			15.616	43.340	43.172	
	ARG	И	17.579	46.016 47.276	25.872 27.645	188 1			14.891	43.435	44.515	
	ARG	CÀ	16.734	46.241	28.230	188			15.973 15.134	41.884	42.894	
	ARG	CB	16.050	46.746	29.525	189			17.263	41.065 41.594	42.549	
	ARG	CG	15.269	45.653	30.233	189		CÀ :	17.747	40.223	42.986	
180	ARG	CD	14.562	46.201	31.492	189 (18.299	39.938	42.778 41.358	
180	ARG	NE	13.537	47.146	31.076	189 (18.911	38.873	41.139	
	ARG	CZ	12.271	46.850	30.720	190 I			18.128	40.857	40.397	
	ARG		11.476	47.846	30.339	190 I		2A 3	18.646	40.601	39.064	
	ARG	_	11.709	45.650	30.752	190 I			18.023	41.621	38.094	
	ARG	C	15.639	45.909	27.213	190 I			8.302	41.454	36.607	
	ARG ALA	0	14.991	46.855	26.715	190 I			7.688	40.163	36.140	
	YTY	N CA	15.377 14.225	44.644	26.848 26.002	190 L 190 L			7.844	42.716	35.848	
	YTY	CB	14.266	42.883	25.663	190 L			0.169 0.776	40.671	39.079	
	λLλ	C	12.942	44.677	26.771	191 A			_	41.624	39.589	
	ALA	ŏ	12.873	44.495	28.009	191 A				39.677 39.597	38.505	
	577	ĸ	11.894	45.172	26.133	191 A			2.732	39.397 38.163	38.558	
	SER	CA		45.650	26.927	191 A				37.668	26.777	
							-	-			40.182	

		P OD		3 38.25	41.148		201	SEI	R CI	19.47	6 28.58	4 17.356
19	1 AS	P OD:	21.689	5 36.71	7 40.309		201	SE				
19	1 AS	P (23.037	7 40.09	37.355			SEI				
	1 AS	-	24.122	2 40.674	37.449		201	SE	١ (18.87		
19			7 22.464	39.842	36.171		201	SEF	1 (18.06		
19	2 IL	E CA	23.192	40.070	34.908			THE				
19	2 IL:	E CE	24.291	38.919	34.852	•	202	THE	i ci			
19	2 IL	E CG2	23.628	37.619	34.325			THE				
19	2 IL	E CG1	25.513	39.314	34.012				0G1			
19	2 IL	E CD	26.686						CG2			
19	2 IL	E C	22.176	40.008	33.774			THE				
19	2 ILI							THR				
19	אע נ							TYR				
19:	3 VA	L CA						TYR				
19	3 VAI							TYR				
19:	3 VAI	L CG1						TYR		13.165		
		CG2	22.326		30.755				CD1	13.129		
	VAI								CEI	11.918		
193	VAI			39.799					CD2	11.996		
194	AL			39.376					CE2	10.770		
	ALA		22.453					TYR	CZ	10.757		
	ALA		22.770	37.303				TYR	ОН	9.560		
194	ALA		21.446	38.965	26.837			TYR	C	14.941	22.322	15.901
	ALA	-	20.264	39.273	27.044			TYR	ō	15.658	21.779	15.040
	PRO	-	21.872	38.794	25.576			PRO	N	13.905	21.662	
	PRO		23.294	38.583	25.188			PRO	CD	13.057	22.111	17.596
	PRO		21.018	38.880	24.377			PRO	Cλ	13.468	20.319	15.980
	PRO		21.899	38.465	23.180			PRO	CB	12.178	20.026	16.797
195	PRO		23.321	38.854	23.643			PRO	œ	12.414	20.819	18.098
195	PRO	C	19.802	38.002	24.479			PRO	C	13.249	20.306	14.463
195	PRO	0	19.931	36.816	24.761			PRO	Ŏ	12.965	21.337	13.825
196	GLY	N	18.648	38.574	24.192		05		N	13.473	19.119	13.895
196	GLY	CA	17.403	37.833	24.257		05		CÀ	13.358	18.927	12.435
196	GLY	C	16.401	38.217	23.175		05		C	14.643	19.310	11.724
196	GLY	0	15.214	37.925	23.303		05		ō	14.632	19.630	10.535
197	VAL	N	16.829	38.890	22.088			SER	N	15.770	19.252	12.442
197	VAL	CA	15.888	39.285	21.035		06		CA	17.067	19.586	11.924
	VAL		15.690	40.877	21.010		06 :		CB	17.523	18.417	11.036
	VAL		14.919	41.323	19.738	2	06 :	SER	OG	17.461	17.216	11.797
	VAL	CG2	15.038	41.327	22.327	2	06 8	SER	C	17.098	20.931	11.175
	VAL	C	16.483	38.785	19.727	2	D6 8	SER	0	17.591	21.045	10.047
	VAL	0	17.672	38.897	19.432	2	27 2	THR	N	16.566	21.968	11.842
	ASN	N	15.627	38.173	18.937		77 2		CA	16.518	23.294	11.258
	ASN	CY	15.957	37.626	17.630		77 7		CB	15.070	23.518	10.667
	asn	CB	16.220	38.703	16.520			TER (15.190	24.695	9.866
198		œ	15.814	38.095	15.160			TER	∝ 2	13.924	23.606	11.700
	ASN		15.010	37.149	15.093		77 1		C	16.928	24.275	12.354
	ASN		16.255	38.621	14.013		77 7		0	17.600	23.908	13.342
	ASN	C	17.160	36.718	17.695		8 1		N '	16.632	25.546	12.113
	ASN VAL	0	18.147	36.910	16.978	20	8 1	TR	Cy	17.071	26.693	12.914
		N	17.039	35.746	18.605		8 1		CB	18.333	27.321	12.307
199 199		CA	18.096	34.791	18.849	20	8 1	TR	œ	19.364	26.245	12.061
	VAL	CB	18.135	34.490	20.377			TR (19.428	25.565	10.842
	VAL		19.303	33.623	20.702			YR C		20.274		10.648
199		W ₂	18.493 17.872	35.732	21.205			TR		20.152	25.869	13.110
199		ŏ	16.912	33.522 32.776	18.017 18.194			YR C		20.978	24.825	12.917
200		N	18.706	33.324	17.005		B T		CZ	21.039	24.151	11.713
200		CÀ	18.771	32.144	16.138		8 T		OH	21.935	23.103	11.601
200		CB	19.584	32.515	14.908		8 T		C	15.936	27.689	12.911
200		œ	19.819	31.348	13.964		9 A		0	15.224	27.863	11.906
200		œ	20.240	31.677	12.544		9 A		CY CY	15.728	28.316	14.076
	GLN		21.324	32.176	12.338		9 A			14.653 13.489	29.234	14.266
	GLN		19.502	31.494	11.476		9 À			15.041	28.384	14.707
200		C	19.433	30.946	16.796		9 A			16.021	30.312	15.266
200		- ŏ	20.567	31.114	17.277		o s			14.378	30.178	16.019
201	SER	ĸ	18.810	29.763	16.799		0 \$			14.567	31.450	15.089
					137		رب	 `	~~·	~~. 30/	32.642	15.914

21	O SER	CB	14.614	33.893	15.065	22	O HI	s ∞	23.30	7 34.34	5 25,237
21	O SER	. 00	15.788	33.756	14.342	22	O HI	S CD2			1 24.048
	O SER		7.7					S ND1			
	O SER	_						S CE1			
	1 LEU		13.895					S NE2			
	1 LEU 1 LEU		12.990				HIS				
	LEU		12.963 12.368				VA	-			
	l LEU		12.346		20.657		VA				
	LEU			31.056	19.033		VA				
	LEU		13.372		20.110			CG1			
21	L LEU	0	14.547	34.927	20.110			GG2	24.119	35.194	
	2 asn	N	12.439		20.912		. VAI				
	2 ASN	CA	12.734		21.741		VAI				
	2 ASN	CB	11.883		21.413		, ALJ		24.617		
	2 asn 2 asn	CG CD1	11.961 12.979	37.853 38.246	19.972 19.415		ALA ALA		24.981 23.871		
212	ASN S	MD3	10.841	37.797	19.283		YLY		26.229		
	ASN	C	12.354	35.787	23.156		λLλ		27.129		
	ASN	Ŏ	11.336	35.119	23.350		GLY		26.258		
	GLY	N	13.070	36.197	24.217		GLY		27.463	28.928	
	GLY	CA	12.648		25.599		GLY		28.715		
	GLY	C	13.834	35.974	26.520		GLY		29.806		
	GLY THR	0	14.990 13.583	35.843 36.141	26.099 27.832		ALA		28.557 29.708		
	THR	.N CA	14.658	36.016	28.829		YLY		29.313		
	THR	CB	14.204	36.523	30.242		λίλ		30.261	31.051	31.147
	THR		12.998	35.812	30.594	224	λLλ	0	31.463	30.894	31.314
	THR		14.014	38.055	30.271		λLλ		29.387	30.580	
	THR	C	15.128		28.894		YTY		29.771	29.836	33.221
	THR SBR	O N	16.253 14.304	34.214 33.607	29.302 28.380		YTY		28.560 30.593	29.321 28.603	34.020
	SER	Cλ	14.663		28.217		ALA		31.630	28.374	32.864 33.487
	SER	CB	13.425	31.449	27.696		ALA	N	30.248	27.816	31.843
	SER	OG	12.324	31.235	28.564		λLλ	CA	31.033	26.664	31.490
	SER	C	15.860	31.981	27.237		ALA	CB		25.958	30.380
	SER	0	16.588	30.993	27.305		ALA	C	32.446	27.078	31.054
	MET	CA	16.039 17.165	32.907 32.901	26.272 25.324	227		O N	33.421 32.587	26.381 28.209	31.370 30.328
	MET	CB	16.776	33.575	24.055		LEU	CA	33.888	28.734	
	HET	○ G	15.843	32.791	23.121		LEU	CB	33.691	29.983	28.955
	MET	SD	14.133	32.519	23.660	227		œ	32.901	29.762	27.666
	MET	CE	14.311	30.783	23.925		LEU		32.816	31.015	26.813
	MET	C	18.372 19.506	33.638 33.386	25.885 25.460	227	LEU	CD2	33.598 34.782	28.704 29.060	26.902
	ALA	N	18.136	34.558	26.845	227		Ö	35.954	28.623	31.088 31.131
	ALA	CA	19.249	35.257	27.465	228		N	34.176	29.711	
	λLλ	CB	18.739	36.485	28.240	228		CY	34.951	30.076	33.286
	YTY	C	19.991	34.343	28.432	228		CB	34.114	31.094	34.168
	ALA THR	0	21.223	34.249	28.386 29.199	228 228		CG1	34.822	31.451	35.502
	THR	CY CY	19.211 19.756	33.574 32.657	30.231	228		∝2 C	33.950 35.340	32.402 28.814	33.362 34.074
218		CB	18.587	31.860	30.888	228		ŏ	36.468	28.777	34.573
	THR		17.719	32.837	31.429	229		H	34.502	27.781	34.115
	THR		19.040	30.887	31.979	229		CA	34.817	26.566	34.865
218		C	20.824	31.704	29.700	229		CB	33.575	25.679	34.978
218 219		O N	21.912 20.683	31.648 31.008	30.275 28.586	229 229		& E	33.758 34.180	24.324	35.713
219		CĎ.	19.479	30.843	27.793	229		CE	34.230	24.479 23.097	37.170 37.844
219		CX	21.708	30.099	28.089	229		NZ	34.394	23.211	39.298
219	PRO	CB	21.074	29.384	26.909	229	LYS	C	35.919	25.792	34.170
219		œ	19.943	30.268	26.471	229		0	36.804	25.233	34.841
219 219		C	23.027 24.060	30.765 30.108	27.704 27.745	230 230		CA CA	35.915	25.679	32.835
220		o K	22.994	32.051	27.745	230		CB	37.001 36.692	24.957 24.852	32.188
220		Cλ	24.239	32.770	27.094	230		œ	37.819	24.181	30.683 29.916
220		CB	23.997	34.219	26.600	230		æ	37.806	24.343	28.410

				04 007	22 221	. 238	UBT		30.741	31.770	43 333
		OE 1	36.941	24.907	27.731			C			43.322
230	GLN	NE2	38.866	23.779	27.864	238		0	30.584	32.955	42.971
230	GLN	C	38.324	25.710	32.453	239		N	31.903	31.146	43.181
230	GLN	0	39.365	25.106	32.722	239	GLN	CX	33.058	31.865	42.654
231	LYS	N	38.320	27.043	32.369	239	GLN	CB	34.348	31.007	42.712
	LYS		39.482	27.877	32.678	239	GLN	œ	34.787	30.771	44.165
	LYS		39.085	29.347	32.389	239	GLN	CD	36.001	29.847	44.293
	LYS		40.041	30.518	32.637	239			35.946	28.629	44.354
					31.945	239			37.174	30.441	44.326
	LYS	CD	41.380	30.478	31.743						
	LYS	CE	42.078	31.872	31.997	239		C	32.811	32.264	41.203
231	LYS	NZ	42.377	32.352	33.343	239		0	33.124	33.398	40.784
231	LYS	C	39.970	27.715	34.142	240		N	32.261	31.291	40.463
231	LYS	0	41.173	27.658	34.409	240	ILB	CX	31.950	31.500	39.047
	ASN	N	39.023	27.635	35.097	240	ILE	CB	31.410	30.186	38.368
	ASN	CÀ	39.292	27.588	36.520	240	ILR	CG2	31.025	30.399	36.876
	ASN	CB	38.801	28.848	37.227	240			32.503	29.161	38.463
					36.617	240		CD	32.041	27.775	37.973
	ASN	CG	39.339	30.115		240		C	30.902	32.584	38.896
	ASN		40.486	30.464	36.859						
	asn	ND2	38.537	30.834	35.845	240		0	31.087	33.511	38.104
232	ASN	C	38.595	26.402	37.158	241		N	29.819	32.484	39.667
232	ASN	0	37.635	26.555	37.907	241		CA	28.769	33.495	39.638
	PRO	N	39.057	25.173	36.945	241	ARG	CB	27.701	33.092	40.655
	PRO	CD	40.245	24.847	36.150	241 2	NRG	œ	26.634	34.192	40.895
	PRO	CA	38.320	23.978	37.376	241	ARG	CD	25.462	33.692	41.771
	-		39.053	22.819	36.729	241		NE	24.364	34.639	41.945
	PRO	CB			36.519	241		CZ	23.323	34.340	42.749
	PRO	œ	40.441	23.367		241			22.325	35.215	42.920
	PRO	С	38.155	23.820	38.863						
	PRO	0	37.266	23.094	39.274	241 /			23.252	33.149	43.371
234	SER	N	38.962	24.489	39.675	241 /		С	29.313	34.923	39.937
234	SER	Cλ	38.725	24.374	41.124	241 2		0	29.037	35.874	39.200
234	SER	CB	40.005	24.643	41.961	242 1	asn	N	30.153	35.073	40.959
	SER	OG	40.378	26.007	41.847	242 1	ASN	CA	30.649	36.413	41.277
	SER	C	37.635	25.309	41.680	242 1	ASN	CB	31.391	36.455	42.609
	SER	ŏ	37.203	25.124	42.824	242 1		CG	30.386	36.371	43.746
			37.151	26.270	40.878	242 1			29.177	36.652	43.659
235		N	-		41.393	242 7			30.877	35.881	44.877
235	TRP	CA	36.213	27.246		242 2					
235	TRP	CB	36.022	28.366	40.435			C	31.591	36.931	40.225
235	TRP	CG	37.165	29.323	40.391	242 1		0	31.631	38.152	39.938
235	TRP	CD2	37.103	30.539	39.761	243 I		N	32.330	36.012	39.584
235	.TRP	CE2	38.384	31.011	39.929	243 E		CA	33.284	36.451	38.593
235	TRP	CE3	36.167	31.261	39.083	243 E	iis	CB	34.183	35.327	38.178
235			38.405	29.059	40.930	243 E	IIS	œ	35.409	35.790	37.413
	TRP		39.136	30.109	40.623	243 E	iis	CD2	36.367	36.638	37.902
235	TRP		38.726	32.237	39.404	243 E	IIS	ND1	35.770	35.447	36.181
235	TRP		36.502	32.474	38.559	243 E	RIS	CE1	36.908	36.044	35.892
235	TRP		37.775	32.956	38.720	243 E			37.250	36.757	36.945
		_		26.643	41.637	243 E		C	32.559	36.966	37.370
	TRP	C	34.862		40.941	243 E			32.988	37.984	36.820
	TRP	0	34.427			244 I		o N	31.473	36.265	36.963
	SER	N	34.206	27.137	42.669				30.709	36.649	
236		CX	32.884	26.712	43.011	244 I		Cy			35.801
236		CB	32.771	26.915	44.541	244 I		CB	29.576	35.636	35.501
236	SER	OG	32.691	28.301	44.902	244 I		œ	29.971	34.234	34.958
236	SER	C	31.891	27.549	42.200	244 I			28.719	33.367	34.841
236	SER	0	32.195	28.606	41.637	244 I		CD2	30.649	34.360	33.602
237		N	30.645	27.084	42.278	244 I	.BU	C	30.147	38.007	36.104
237		CA	29.495	27.743	41.705	244 I	EU	0	30.189	38.853	35.217
237		CB	28.255	26.923	42.112	245 I	YS	n	29.690	38.289	37.328
237		œ	27.966	26.679	43.605	245 I		CX	29.178	39.632	37.654
227	ASN		28.706	27.112	44.495	245 I		CB	28.452	39.593	38.993
227	VOW.	AD.	26.851	26.017	43.928	245 1		œ	27.193	38.687	38.928
	ASN					245 I		6	26.536	38.412	40.289
237		C	29.388	29.219	42.117						
237		0	29.255	30.109	41.266	245 I		CE	25.811	39.677	40.573
238		N	29.592	29.555	43.414	245 I		ΝZ	25.221	39.607	41.886
238		CA	29.576	30.945	43.876	245 I		C	30.300	40.665	37.714
238	VAL	CB	29.553	30.919	45.442	245 L		0	30.125	41.805	37.257
	VAL	أمت	29.767	32.294	46.097	246 A		N	31.462	:0.279	22.199
	VAL		28.199	30.344	45.805	246 A	LSX	CA	32.579	41.194	38.352

24	6 AS	N CE	33.697	7 40.568	39.196		250	6 LE	v α	16.56	5 49.63	4 34.134
24	6 AS	N CC	33.286	40.502	40.651			6 LE				
24	6 AS	N OD1						5 LE				
	6 AS							5 LE				
	6 AS											
	6 AS	_						5 LE				
							257					
	7 TH							TY		20.59	45.39	0 34.268
	7 TH						257	TYI	R CB	21.60	46.22	5 33.447
	7 TH			39.916	34.179		257	TY	R CG	20.957	47.10	6 32.389
24	7 TH	R OG1	33.492	38.818	34.055		257	TYI	R CD1	20.349		
24		R CG2			35.059		257		CE1			
24	7 TH	R C			33.737				CD2			
	7 TH	_			32.575				CE2			
	B AL				34.123			TYF				
24					33.162							
	BAL							TYF				
					33.800	.*	257			21.424		
	B AL				32.731		_	TYR	-	22.226		
	BAL	_	30.961		33.440		258			21.305		36.542
249			29.950	43.949	31.551		258	GLY	CA	22.222		37.496
249	THI	S CY	30.001	45.323	31.096		258	GLY	C	23.630	44.552	37.201
249	THE	R CB	29.955	45.301	29.552		258	GLY	0	23.896	45.710	
249	THE	₹ OG1	31.151	44.706	29.080			SER		24.511	43.586	
249		CG2	29.830	46.690	28.965			SER		25.897	43.856	
249			28.830		31.676			SER	_	26.747	42.633	
249		_	27.664	45.760	31.425			SER		26.779		
	SER		29.067	47.214	32.412			SER			42.518	
	SER		27.941	47.994	32.947					26.153	44.278	
								SER		27.225	44.856	
	SER		28.405	49.102	33.875			GLY	N	25.225	44.013	34.600
250			27.267	49.862	34.279			GLY	CY	25.413	44.431	33.222
	SER	-	27.136	48.631	31.822			GLY	C	25.476	43.210	32.331
250			27.687	49.164	30.857			GLY	,0	24.999	42.106	32.672
_	. LEU		25.824	48.523	31.929			LBU	N	26.036	43.461	31.151
	LEU		24.949	49.115	30.934		261	LEU	CA	26.105	42.461	30.087
	LEU		24.067	48.019	30.342		261	LEU	CB	26.274	43.195	28.721
	LEU		24.737	46.908	29.627		261	LEU	CG	26.349	42.381	27.424
251	LEU	CD1	23.663	46.020	29.043		261	LEU	CD1	25.064	41.598	27.191
	LEU		25.595	47.430	28.481			LEU		26.675	43.372	26.282
	LEU		24.069	50.231	31.462		261		c	27.234	41.470	
	LEU	ŏ	23.214	50.787	30.769		261		ŏ	28.410	41.842	30.426
	GLY		24.239	50.606	32.703		262		N	26.851	40.192	30.263
252		CÀ	23.317	51.538	33.279		262		CA	27.872	39.161	
252			22.880	50.976	34.613		262		CB	27.227		30.432
252		ŏ	23.651	50.372	35.376						37.754	30.407
253							262			26.633	37.448	29.036
	SER	N	21.614	51.241	34.872		262			28.305	36.734	30.824
253		CY	20.958	50.918	36.106		262		C	28.935	39.300	29.331
253	SER	CB	19.470	51.165	35.891			VAL	0	28.661	39.699	28.193
253		OG	18.813	51.273	37.150		263		N	30.181	39.070	29.700
	SER	C	21.195	49.492	36.567		263		CY	31.271	39.216	28.755
	ser	0	20.900	48.587	35.786		263	asn	CB	31.866	40.599	28.993
	THR	N	21.694	49.321	37.796		263	asn	œ	33.072	40.880	28.136
254	THR	CY	21.773	48.021	38.431		263	asn	OD1	33.666	40.009	27.502
254	THR	CB	22.417	48.071	39.869	٠.	263	asn	ND2	33.498	42.124	28.143
254	THR	OG1	23.694	48.691	39.803		263		C	32.250	38.068	28.945
254	THR	CG2	22.671	46.670	40.414		263		O	33.119	37.994	29.826
	THR	C	20.311	47.594	38.557		264		N	32.136	37.126	28.030
	THR	ŏ	20.041	46.419	38.445		264		CÄ	32.947	35.931	
	ASN	N	19.316	48.480	38.694		264		CB	32.528	34.857	28.088
255	ASN	Cλ	17.930	48.038	38.783		264		C	34.404		27.080
255	ASN	CB	17.061	49.253	39.031		264				36.250	27.801
255		œ	15.600						0	35.259	35.517	28.331
				48.927	39.271		265 (34.752	37.304	27.054
	ASN		15.191	48.158	40.157		265 (36.169	37.625	26.884
433 433	ASN		14.771	49.580	38.459		265 (36.346	38.768	25.842
255	ASN	Ç	17.441	47.296	37.526		265 0			37.790	39.302	25.597
255		0	16.752	46.279	37.550		265 0				40.138	26.723
236		N	17.889	47.805	36.309		265 C			39.623	39.854	27.100
256		CX	17.437	47.297	35.108		265 G			37.835	41.060	27.255
256	LEU	CB	17.435	48.386	34.041		265 G	LU	C	36.745	38.057	28.227

						. *		•	
265	GLU	0	37.766	37.524	28.689	307 H2O OH2	26.065	37.253	43.741
266	S ALA	N	36.098	39.020	28.897	308 H2O OH2	11.945	45.684	23.380
266	5 ALA	CX	36.698	39.536	30.109	· 309 H2O OH2	19.643	10.507	
266	S ALA	CB	35.959	40.800	30.534				36.077
266	ALA	C	36.677	38.485	31.228	311 H2O OH2			
	, ALA		37.562	38.418	32.099	312 H2O OH2			
	YIY		35,677	37.593	31.161	313 H2O OR2			
	YTY		35.566	36.560	32.179	314 H2O OH2			
	YLY		34.165	35.963	32.078	315 H2O OH2			
	ALA	-	36.616	35.454	32.087	316 H2O OH2			
	YLY	_	36.811	34.737	33.081	317 H20 OH2			
_	THR		37.257	35.279	30.927	318 H2O OH2	17.725		
	THR		38.227	34.187	30.751	319 H2O OH2	34.481		
	THR		37.888	33.276	29.515	320 H2O OH2	19.764 13.211	37.086	
	THR		37.799	34.092	28.362 29.710	321 H2O OH2 322 H2O OH2	10.729		10.242
	THR		36.575	32.530	30.576	323 H2O OH2	22.023	31.502 36.663	26.207
	THR		39.617 40.534	34.741 33.996	30.378	324 H2O OH2	26.324	19.922	14.105 21.851
	ARG		39.728	36.045	30.801	325 H2O OH2	30.661		
	ARG		41.008	36.690	30.810	326 H2O OH2	8.433	17.883	24.882
	ARG		40.656	38.156	30.839	327 H2O OH2	32.021	21.783	19.092
	ARG		41.824	39.000	30.472	328 H2O OH2	32.606	20.038	14.623
	ARG		41.544	40.401	29.949	329 H2O OH2	27.918	17.370	24.830
	ARG	NE	42.811	40.930	29.432	330 H2O OH2	17.445	14.094	24.149
	ARG	CZ	43.324	42.136	29.787	331 H2O OH2	16.527	18.554	15.250
269	ARG	NH1	44.518	42.533	29.265	332 H2O OH2	15.380	14.546	15.873
269	ARG	NH2	42.681	42.951	30.667	333 H2O OH2	12.129	16.040	17.903
	ARG	C		36.161	32.014		13.873	16.685	15.209
	ARG		41.328	35.597	32.990	335 H2O OH2		- 18.751	34.243
	ARG		43.070	36.206	31.952	336 H2O OH2		16.951	35.536
270	CH	CM	27.629	24.423	14.043	337 H2O OH2	6.528	15.046	39.508
271	CM	CH	18.482	35.001	42.551	338 H2O OH2 339 H2O OH2	4.188 7.267	15.102	37.754
272	H20		19.773	16.277 36.339	36.682 42.049	340 H2O OH2	7.231	13.144 10.169	37.517 35.676
	H20		28.438	25.352	47.303	341 H2O OH2	9.229	11.210	38.524
	H20		25.023	30.639	43.381	342 H2O OH2	13.492	9.745	35.358
	H20		23.352	28.163	42.310.	343 H2O OH2	12.026	44.524	42.622
	H20		21.594	35.893	18.729	344 H2O OH2	11.004	41.120	45.663
	H20		22.058	31.111	19.688	345 H2O OB2	10.220	39.693	42.722
279	H20	OH2	18.752	45.063	40.645	346 H2O OH2	12.059	47.753	40.959
	H20		18.039	30.216	23.124	347 H2O OH2	9.164	48.300	42.769
	H20		14.078	9.380	32.356	348 H2O OH2	11.958	43.338	44.851
	H20		15.449	19.938	28.355	349 H2O OH2	11.239		44.371
	H20		15.927	25.605	30.476	350 H2O OH2	4.931	44.533	41.923
	H20		12.858		37.185	351 H2O OH2	6.403 5.564	36.291	34.865
	H20 H20		11.544	33.624	27.713 31.642	352 H2O OH2 353 H2O OH2	8.066	39.764 29.304	36.611
	H20		42.076	8.103 35.854	14.697	401 H2O OH2	23.985	29.300	32.467 19.050
	H20		B.591	11.660	25.062	402 H2O OH2	22.840	42.988	23.949
	H20		34.301	29.140	15.200	403 H2O OH2	24.648	47.653	34.651
	H20		30.440	24.492	43.369	404 H2O OH2	22.155	15.174	18.497
	H20		35.793	42.916	26.272	405 H2O OH2	22.394	50.724	27.973
292	H20	OH2	30.881	38.720	32.534	406 H2O OE2	25.205	15.404	16.200
	H20		29.323	24.894	39.464	407 H2O OH2	16.769	30.931	11.057
	H20		30.053	41.242	26.124	408 H2O OH2	6.421	46.954	36.986
	H20		26.029	30.946	34.554	409 H2O OH2	39.155	36.951	34.253
	H20		23.950	42.830	40.424	410 H2O OH2	30.425	43.985	26.477
	H20		22.857	33.906	20.288	411 H2O OH2	15.991	34.160	48.706
	H20		29.750	12.657	20.465	412 H2O OH2 413 H2O OH2	33.843 16.995	20.940	9.231
	H20 H20		16.182 20.509	42.867 35.549	32.920 16.195	415 H2O OH2	38.899	50.196 33.531	28.127 34.689
	H20		21.065	41.688	15.225	416 H2O OH2	17.892	19.864	44.040
	H20		12.353	41.495	42.254	417 H2O OH2	34.568	30.498	17.440
	H20		11.733	34.741	14.055	419 H2O OE2	35.622		42.959
	B20		7.156	35.456	31.880	420 H2O OE2	0.206		34.387
	ñ20		7.914	47.871	34.970	421 H2O 352	38.633	23.261	44.721
306	H20	OH2	5.154	42.915	39.674	422 H2O OH2	27.524		14.941

494 920 CH2 495 H2O CH2

496. H2O OH2

49.504

21.926

46.516

36.175

23.589

48.249

27.025 28.870 51.097

46.991

14.484

14.515

20.395 13.971

49.698 17.317

35.692 28.970 41.737

21.355 32.989

38.642 57.764

29.469

27.686

32.920

27.909

22.038

42.251

18.498

40.041

33.740

12.899

28.480

22.917

43.260

20.959

33.268

27.705 27.758

52.597

16/18

FIGURE 1

42 42 42 42 43 43 43 43	3 H2C 5 H2C 6 H2C 7 H2C 8 H2C 9 H2C 1 H2C 2 H2C 3 H2C 4 H2C 5 H2C	O OH2 O OH2 O OH2 O OH2 O OH2 O OH2 O OH2 O OH2 O OH2	33.375 10.662 28.400 37.069 35.149 14.410 34.593 33.293 18.935 36.888 6.433	39.759 51.211 26.227 31.271 22.967 35.423 37.589 43.729 12.276 38.642 44.367 14.502	31.397 37.076 22.233 18.172 42.892 17.549 20.470 30.636 22.731 39.753 36.634 42.412	499 500 501 502 503 504 505 506 507	H2O OH2 H2O OH2 H2O OH2 H2O OH2 H2O OH2 H2O OH2 H2O OH2 H2O OH2 H2O OH2 H2O OH2	39.498 20.574 41.254 18.615 23.238 11.027 6.051 20.329 34.042 18.800 23.984	
43 43 43	6 H20 7 H20 8 H20 9 H20	OH2 OH2 OH2	23.735 30.269 6.916 31.535		13.204 42.632 38.041 24.294	511 512 513	H2O OH2 H2O OH2 H2O OH2	14.955 31.742 13.014 3.857 8.348	
44 44 44	0 H20 1 H20 2 H20 3 H20 4 H20	OH2 OH2 OH2	21.133 26.156 20.961 10.366 15.664	38.497 30.548 41.888 9.353 13.252	43.405 26.735 36.136 42.909 41.086	515 516 517	H2O OH2 H2O OH2 H2O OH2 H2O OH2	9.871	
44 44 44	5 H2O 6 H2O 8 H2O 9 H2O	OH2 OH2 OH2 OH2	15.488 8.523 6.347 20.408	35.603 29.548 42.537 28.429	22.544 42.831 28.354 14.479 24.768	519 520	H2O OH2 H2O OH2 H2O OH2	43.085 20.416 40.300	
45 45 45	1 H2O 2 H2O 3 H2O 4 H2O 5 H2O	OH2 OH2 OH2	9.986 34.820 17.186 12.491 31.523	37.579 21.034 30.632 19.964 29.927	34.828 13.537 46.613 11.890				
45 45 45	6 H2O 7 H2O 8 H2O 9 H2O 0 H2O	OH2 OH2 OH2	12.628 33.466 19.599 16.152 12.458	27.138 44.288 43.860 29.460 29.430	21.026 34.479 38.560 52.727 17.126				
46: 46: 46:	H2O H2O H2O H2O	OH2 OH2 OH2 OH2	37.639 9.851 33.545 9.256	14.784 34.465 17.795 16.911	37.217 20.032 26.313 34.260 21.547				
46 46 46 47	5 H2O 7 H2O 8 H2O 9 H2O 1 H2O	OH2 OH2 OH2 OH2	35.476 23.365 11.732 30.073 16.204	39.839 24.048 35.837 50.380 22.887	13.490 17.577 31.035 7.809				•
473 473 474 475	H2O H2O H2O H2O H2O H2O	OH2 OH2 OH2 OH2	27.601 2.443 33.485 16.400 34.584	27.623 14.804 27.966 18.715 26.355	26.352 32.338 24.079 49.507 28.896			•	
478 478 479 480	H2O H2O H2O H2O	OH2 OH2 OH2 OH2	18.844 17.595 19.970 29.931	26.392 33.022 49.821 22.624	36.213 12.700 15.851 47.074 13.997				
483 484 484	H2O H2O H2O H2O H2O H2O	OH2 OH2 OH2 OH2	28.764 24.923 4.494 25.927 19.179	29.952 29.997 34.569 28.389 31.050	46.055 48.325 42.632 19.865				
486 489 490 491	H2O H2O H2O H2O H2O	OH2 OH2 OH2 OH2	33.544 7.275 18.187 14.703 14.414	35.859 28.059 52.286 47.608 29.083	34.951 36.209 20.471 24.076 26.931				
493 494	H2O H2O H2O	OH2 OH2	20.741 32.484 11.669	38.573 22.352	12.784 42.540 30.485				

30.485

19.908

32.823

21.376

11.669

25.506

SUBSTITUTE SHEET

International Application No

(if several classification symbols apply, indicate all)6 L CLASSIFICATION OF SUBJECT MATTER According to International Patent Classification (IPC) or to both National Classification and IPC //(C12N9/54, C07K3/08; C12N9/54; Int.Cl. 5 C12N15/57; C12R1:07) II. FIELDS SEARCHED Minimum Documentation Searched Classification Symbols Classification System C12N Int.C1. 5 Documentation Searched other than Minimum Documentation 'to the Extent that such Documents are Included in the Fields Searched III. DOCUMENTS CONSIDERED TO BE RELEVANT 9 Citation of Document, 11 with indication, where appropriate, of the relevant passages 12 Relevant to Claim No.13 Category ^o 1,29,53, WO.A.8 704 461 (AMGEN) 81,105, 30 July 1987 133 cited in the application see abstract 1-156 WO, A, 9 102 792 (HENKEL RESEARCH CORPORATION) 7 March 1991 see figure 1 1-179 WO, A, 8 906 279 (NOVO INDUSTRI) 13 July 1989 cited in the application see page 9 - page 17 1-179 WO, A, 8 909 830 (GENEX CORPORATION) 19 October 1989 cited in the application see page 9, paragraph 2 - page 11 "I" later socument published after the international filing date Special categories of cited documents: 10 or priority date and not in conflict with the application but cited to understand the principle or theory underlying the document defining the general state of the art which is not considered to be of particular relevance invention earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date involve an inventive step "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family IV. CERTIFICATION Date of Mailing of this International Search Report Date of the Actual Completion of the International Search **26.** 10. 92 07 OCTOBER 1992 Signature of Authorized Officer International Searching Authority VAN DER SCHAAL C.A. **EUROPEAN PATENT OFFICE**

		ROM THE SECOND SHEET)	Relevant to Claim No.
ategory °	Citation of Document, with indication, where appropriate	e, or the resevant people	
	WO,A,8 808 028 (GENEX CORPORATION 20 October 1988 cited in the application see page 14 - page 19	1)	1-179
• .			157-197
	SCIENCE vol. 245, 1989, LANCASTER, PA US pages 54 - 57 W.S. SANDBERG AND T.C. TERWILLIGH 'Influence of interior packing ar hydrophobicity on the stability of	10	
	protein'		
	•.		
			•
	·		·
			·
		,	
	•		e e
1			
		•	
•			·
1			
		•	

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO. US

9204306 61679

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 07/10/92

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO-A-8704461	30-07-87	AU-B- 604476 AU-A- 6939887 EP-A,B 0254735 JP-T- 63502396	20-12-90 14-08-87 03-02-88 14-09-88
WO-A-9102792	07-03-91	EP-A- 0493398	08-07-92
WO-A-8906279	13-07-89	EP-A- 0396608 JP-T- 3503477	14-11-90 08-08-91
WO-A-8909830	19-10-89	US-A- 5013657 EP-A- 0409878 JP-T- 3503602 US-A- 4990452	07-05-91 30-01-91 15-08-91 05-02-91
WO-A-8808 0 28	20-10-88	EP-A- 0353250 JP-T- 2502874 US-A- 4990452	07-02-90 13-09-90 05-02-91