

Description

The VSM25N10 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 100V, I_D = 25A$ $R_{DS(ON)} < 36mΩ @ V_{GS} = 10V$ (Typ:31 mΩ)
- Special process technology for high ESD capability
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM25N10-T1	VSM25N10	TO-251	-	-	-

Absolute Maximum Ratings (T_c=25 ℃ unless otherwise noted)

Symbol	Parameter	Limit	Unit
V _{DS}	V _{DS} Drain-Source Voltage		V
V _G s	Gate-Source Voltage	±20	V
I _D	Drain Current-Continuous	25	А
I _D (100℃)	Drain Current-Continuous(TC=100°ℂ)	17.6	А
I _{DM}	Pulsed Drain Current	70	Α
P _D	Maximum Power Dissipation	70	W
	Derating factor	0.5	W/℃
E _{AS}	Single pulse avalanche energy (Note 5)	110	mJ
T_{J}, T_{STG}	STG Operating Junction and Storage Temperature Range -55 To 175		$^{\circ}$ C

Thermal Characteristic

R _{0JC} Thermal Resistance, Junction-to-Case (Note 2) 2 °C/W

Electrical Characteristics (T_C=25°C unless otherwise noted)

Symbol		Parameter	Condition	Min	Тур	Max	Unit
Off Character	istics			•			
BV _{DSS}	Drain-Source Break	Drain-Source Breakdown Voltage		100	110	-	V
I _{DSS}	Zero Gate Voltage I	Zero Gate Voltage Drain Current		-	-	1	μΑ
I _{GSS}	Gate-Body Leaka	Gate-Body Leakage Current		-	-	±100	nA
On Character	istics (Note 3)						
V _{GS(th)}	Gate Threshold	Gate Threshold Voltage		1.0	1.6	2.2	V
R _{DS(ON)}	Drain-Source On-Sta	Drain-Source On-State Resistance		V _{GS} =10V, I _D =15A -		36	mΩ
g FS	Forward Transco	Forward Transconductance		-	12	-	S
Dynamic Cha	racteristics (Note4)	1		1			
C _{lss}	Input Capac	itance		-	3000	-	PF
Coss	Output Capac	citance	$V_{DS}=50V, V_{GS}=0V,$	-	92	-	PF
C _{rss}	Reverse Transfer (Capacitance	F=1.0MHz	-	18.3	-	PF
Switching Ch	aracteristics (Note 4)	1					1
t _{d(on)}	Turn-on Dela	y Time		-	9	-	nS
t _r	Turn-on Rise	Time	V_{DD} =50 V , R_L =5 Ω	-	9	-	nS
$t_{d(off)}$	Turn-Off Dela	y Time	V_{GS} =10V, R_{GEN} =3 Ω	-	31	-	nS
t _f	Turn-Off Fal	Time		-	9	-	nS
Qg	Total Gate C	harge)/ F0)/ OF A	-	70.4	-	nC
Q _{gs}	Gate-Source	Charge	$V_{DS}=50V, I_{D}=25A,$	-	9.0	-	nC
Q _{gd}	Gate-Drain C	Charge	V _{GS} =10V	-	15.3	-	nC
Drain-Source	Diode Characteristics	1		1			
V _{SD}	Diode Forward Vo	oltage (Note 3)	V _{GS} =0V,I _S =25A	-	-	1.2	V
Is	Diode Forward Cu		-	-	-	25	Α
t _{rr}	Reverse Recov	ery Time	TJ = 25°C, IF = 25A	-	34	-	nS
Qrr	Reverse Recove	ry Charge	$di/dt = 100A/\mu s^{(Note3)}$	-	56	-	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS Condition : Tj=25 $^{\circ}\text{C}\,\text{,V}_\text{DD}\text{=}50\text{V}\text{,V}_\text{G}\text{=}10\text{V}\text{,L=}0.5\text{mH,Rg=}25\Omega$

Test Circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10ID Current- Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance