MATH 689 - Physics for Mathematicians

Lectures by Igor Zelenko, transcribed by Seth Hoisington

Ausust 31, 2023

1 Continued from last class:

Lemma 1. For any Hamiltonian $H: T^*M \to \mathbb{R}$, there exists a unique vector field, denoted by \vec{H} such that

$$\iota_{\vec{H}}\sigma = -dH. \tag{1}$$

Moreover, in the canonical coordinates $(p_1, \ldots, p_n, q^1, \ldots, q^n) \in T^*M$,

$$\vec{H} = \sum_{i} \frac{\partial H}{\partial p_{i}} \frac{\partial}{\partial q^{i}} - \frac{\partial H}{\partial q^{i}} \frac{\partial}{\partial p_{i}}.$$
 (2)

Thus, a curve $\lambda(t)$ in T^*M satisfies $\lambda(t) = \vec{H}(\lambda(t))$ if and only if

$$\begin{cases} \dot{q}^i(t) = \frac{\partial H}{\partial p_i}(p(t), q(t)) \\ \dot{p}^i(t) = -\frac{\partial H}{\partial q^i}(p(t), q(t)) \end{cases}$$

Proof. (Continued from previous lecture) We shall now prove (2). Assume $\vec{H} = \sum_i v^i \frac{\partial}{\partial q^i} + w_i \frac{\partial}{\partial p_i}$ and let $z = \sum_i x_i \frac{\partial}{\partial q^i} + y_i \frac{\partial}{\partial p_i}$. Then

$$\sigma(\vec{H}, z) = \sum_{i} (dp_i \wedge dq^i)(\vec{H}, z)$$
$$= \sum_{i} w_i x^i - v^i y_i.$$
$$= \sum_{i} w_i dq^i(z) - v^i dp_i(z).$$

Therefore, $\iota_{\vec{H}} = \sum_{i} w_i dq^i - v^i dp_i$. Since

$$-dH = \sum_{i} -\frac{\partial H}{\partial q^{i}} dq^{i} - \frac{\partial H}{\partial p_{i}} dp_{i},$$

we have that $w_i = -\frac{\partial H}{\partial q^i}$ and $v^i = \frac{\partial H}{\partial p_i}$.

Definition 1. \vec{H} is called the **Hamiltonian vector field** associated to H.

2 Poisson Brackets

Let $H, G \in C^{\infty}(T^*M)$. Then the Poisson Bracket $\{H, G\}$ is given by:

$$\{H,G\}:=\sigma(\vec{H},\vec{G})=dG(\vec{H})=\vec{H}(G)$$

2.1 Properties of the Poisson Bracket:

- Skew-symmetry: $\{H,G\} = -\{G,H\}$. Follows from skew-symmetry of σ .
- Jacobi Identity Exercise 3 of Homework 1. Specifically, Since $\overline{\{H,G\}} = \begin{bmatrix} \vec{H}, \vec{G} \end{bmatrix}$, then the Jacobi Identity for the Poisson bracket follows from the Lie bracket (??).
- Thus, the Poisson Bracket is a Lie bracket on $C^{\infty}(T^*M)$, making the space a (very big) Lie algebra!

2.2 Coordinate Expression for Poisson Brackets in canonical coordinates

We see that $\{H,G\} = \vec{H}(G) = \sum_i \frac{\partial H}{\partial p_i} \frac{\partial G}{\partial q^i} - \frac{\partial H}{\partial q^i} \frac{\partial G}{\partial p_i}$, we have that $\{p_i,p_j\} = \{q^i,q^j\} = 0$ and $\{p_i,q^j\} = \delta_{ij}$.

3 First integrals in the Hamiltonian setting

Now, we consider the following Hamiltonian system:

$$\begin{cases} \dot{q}^i = \{H, q^i\} = \frac{\partial H}{\partial p_i} \\ \dot{p}_i = \{H, p_i\} = -\frac{\partial H}{\partial q^i} \end{cases}$$

Let us consider the first integrals of motion of this system.

Definition 2. Akin to the Lagrangian case, a **trajectory** $\lambda(t)$ of the Hamiltonian system defined by H is a curve in T^*M which is a solution of the system $\dot{\lambda} = \vec{H}(\lambda(t))$.

Definition 3. A function $G: T^*M \to \mathbb{R}$ is called a first integral of the Hamiltonian system $\dot{\lambda} = \vec{H}\lambda$ if, for any trajectory $\lambda(t)$ of the system, $G(\lambda(t))$ is constant.

Proposition 1. G is an integral of the Hamiltonian system defined by H if and only if $\{G, H\} = 0$.

Proof. First, we see that, in coordinates,

$$\begin{split} \frac{d}{dt}G(\lambda(t)) &= DG_{\lambda(t)}(\dot{\lambda}(t)) \\ &= DG_{\lambda(t)}\left(\vec{H}_{\lambda(t)}\right) \\ &= \sum_{i} \frac{\partial G}{\partial p_{i}} \left(\vec{H}_{\lambda(t)}\right)_{p_{i}} + \frac{\partial G}{\partial q^{i}} \left(\vec{H}_{\lambda(t)}\right)_{q^{i}} \\ &= \sum_{i} \frac{\partial G}{\partial p_{i}} \left(-\frac{\partial H}{\partial q^{i}}\right)_{p_{i}} + \frac{\partial G}{\partial q^{i}} \left(\frac{\partial H}{\partial p_{i}}\right) \\ &= \sum_{i} \frac{\partial H}{\partial p_{i}} \frac{\partial G}{\partial q^{i}} - \frac{\partial H}{\partial q^{i}} \frac{\partial G}{\partial p_{i}} \\ &= \vec{H}(G). \end{split}$$

Therefore,

$$G(\lambda(t)) \equiv \text{constant}$$

 $\Leftrightarrow \frac{d}{dt}G(\lambda(t)) \equiv 0$
 $\Leftrightarrow \vec{H}(G) = 0$
 $\Leftrightarrow \{H, G\} = 0$

Corollary 1. H is the integral of $\dot{\lambda} = \vec{H}(\lambda)$

Proof. $\{H, H\} = 0$ by antisymmetry.

Theorem 1 (Noether's Theorem in the Hamiltonian setting). Assume that the mechanical system is defined by a Lagrangian $L:TM\to\mathbb{R}$ and H is the corresponding Hamiltonian (via the Legendre transform). Let X be a vector field on M which generates a 1-parameter group of symmetries of L, φ^s . Then, for $q\in M, p\in T_q^*M$,

$$H_X(p,q) = p(X(q)),$$

is an integral of the system $\dot{\lambda} = \vec{H}(\lambda)$.

Proof. Recall from the previous lecture that a curve $q(t) \in M$ is a solution to the Lagrangian system if and only if, for $p(t) = \frac{\partial L}{\partial \dot{q}}\Big|_{(q(t),\dot{q}(t))}$, then the curve $\lambda(t) = (p(t),q(t))$ is a trajectory for the Hamiltonian system. We also recall that by the original Noether Theorem,

$$I(q,\dot{q}) = \frac{\partial L}{\partial \dot{q}^i} X^i$$

is a first integral for the Lagrangian system. Therefore, letting $\lambda(t)=(p(t),q(t))$ be a trajectory, we have that

$$\begin{split} H_X(\lambda(t)) &= p(t) \left(X_{q(t)} \right) \\ &= \frac{\partial L}{\partial \dot{q}} \Big|_{(q(t), \dot{q}(t))} X_{q(t)} \\ &= \frac{\partial L}{\partial \dot{q}} \Big|_{(q(t), \dot{q}(t))} \frac{\partial \varphi^s}{\partial s} \Big|_{s=0} \end{aligned} = I(q(t), \dot{q}(t))$$

This quantity is constant along $(q(t), \dot{q}(t))$, so $H_x(\lambda(t))$ is constant.

Remark 1. H_X is called the quasi-impulse of X (by the analogy that $H_{\frac{\partial}{\partial q^i}} = p_i$). H_X is linear on each fiber, and vice-versa if $H \in C^{\infty}(T^*M)$ is linear on each fiber then there exists $X \in \mathcal{X}(M)$ such that $H = H_X$

Remark 2. If $X, Y \in \mathcal{X}(M)$, then $\{H_X, H_Y\} = H_{[X,Y]}$. Therefore, the algebra of infinitesimal symmetries of the Lagrangian (w.r.t Poisson Bracket) is isomorphic to the algebra of integrals of the Hamiltonian system $\dot{\lambda} = \vec{H}(\lambda)$ which is linear on fibers of T^*M .

Example 1. Integrals in \mathbb{R}^3

Let $M = \mathbb{R}^3 \sim \vec{F}$. Let

$$L = \frac{m|\vec{r}|^2}{2} - U(|\vec{r}|)$$

This is called the central field. Then, the group of symmetries of L is SO(3), so

$$H_i = \langle \vec{r} \times m\dot{\vec{r}}, \vec{e} \rangle = \langle m\dot{\vec{r}}, \vec{e} \times \vec{r} \rangle$$

are integrals of E-L (identifying the vector $\vec{e} \times \vec{r}$ with the generator $Y_{\vec{e}} \in \mathfrak{so}(3)$. Also, $H_i(p, \vec{r}) = p(\vec{e} \times \vec{r})$ are integrals of $\dot{\lambda} = \vec{H}(\lambda)$. (Recall that $H = \frac{\|p\|^2}{2m} + U(\vec{r})$). It can be shown that

$$\begin{array}{ll} (Y_1,Y_2) = Y_3 & \{H_1,H_2\} = H_3 \\ (Y_2,Y_3) = Y_1 & \Leftrightarrow & \{H_2,H_3\} = H_1 \\ (Y_3,Y_1) = Y_2 & \{H_3,H_1\} = H_2 \end{array}.$$

On the other hand, if $G = H_1^2 + H_2^2 + H_3^2$, then we claim that $\{G, H_i\} = 0$. For example,

$$\begin{aligned} \{G, H_3\} &= \{H_1^2 + H_2^2 + H_3^2, H_3\} \\ &= 2H_1\{H_1, H_3\} + 2H_2\{H_2, H_3\} + 2H_3\{H_3, H_3\} \\ &= 2H_1(-H_2) + 2H_2(H_1) + 2H_3(0) \\ &= 0 \end{aligned}$$

Hence, (H, G, H_i) are integrals which pairwise commute.

Remark 3. The construction of Hamiltonian vector fields and Poisson brackets can be done exactly the same way for any Symplectic manifold (N, ω) .

All symplectic manifolds of the same dimension are locally equivalent, i.e. if (N_1, ω_1) and (N_2, ω_2) are 2 symplectic manifolds with dim $N_1 = \dim N_2$, then for all $\lambda_1 \in N_1$ and $\lambda_2 \in N_2$, there exists a neighborhood U_1 and U_2 of each point and a diffeomorphism $\varphi: U_1 \to U_2$ such that $\varphi(\lambda_1) = \lambda_2$ and that $\varphi^*\omega_2 = \omega_1$.

Theorem 2 (Darboux's Theorem). If (N, ω) is a a symplectic manifold of dimension 2n, then around every point λ , there exists a coordinate system $(p_1, \ldots, p_n, q^1, \ldots, q^n)$ such that $\omega = \sum_i dp_i \wedge dq^i$.

WILL GO THROUGH THE PROOF LATER