Introduction aux sciences économiques (ECO 361) 30 juin 2021, 14h-16h (Paris time)

Examen final

Aucun document autorisé

A/ Questions courtes (4 points)

Tâchez d'effectuer des réponses brèves (vous n'avez pas besoin de plus de 3 ou 4 phrases par question).

1/ L'équilibre concurrentiel est obtenu comme le point d'intersection entre la courbe de demande des acheteurs et la courbe d'offre des producteurs. Ce concept est-il selonvous une bonne description des marchés avec un grand nombre de producteurs et de consommateurs ? Que se passe-t-il lorsque le nombre de producteurs est petit ? Ou lorsque le nombre de consommateurs est petit ? (1.5 points)

2/ Le tableau ci-dessous indique le nombre d'heures de travail nécessaire à la production d'ordinateurs et de voitures.

	Voiture	Ordinateur
Europe	100	50
Chine	300	100

En autarcie (en l'absence de commerce international), quel serait le prix relatif d'une voiture en Europe et en Chine (c'est à dire le prix d'une voiture en unités d'ordinateurs)? Quel serait l'impact de l'ouverture des frontières sur ce prix en Europe et en Chine? Comment se spécialiserait chaque pays? (1.5 points)

3/ En arrivant à la Maison Blanche, le Président Joe Bidden a mis en place un plan de relance budgétaire de 1900 milliards de dollars (près de 9% du PIB américain). Cela va augmenter fortement la demande agrégée, risquant de provoquer une surchauffe de l'économie américaine et, donc, une augmentation de l'inflation. Comment est-ce que la Réserve Fédérale (la banque centrale américaine) pourrait réagir afin d'éviter une inflation trop élevée (en supposant qu'elle contrôle directement le taux d'intérêt)? Expliquez. (1 point)

B/ Le marché du travail (9 points)

1/ Soit un marché du travail compétitif. Déterminez graphiquement le niveau du salaire w^* et de l'emploi L^* à l'équilibre en supposant que l'offre de travail des ménages est beaucoup moins élastique que la demande de travail des entreprises. (1 point)

2/ Afin d'encourager l'embauche de travailleurs, le gouvernement donne aux entreprises une subvention égale à s pour chaque heure de travail effectuée. Représentez graphiquement l'incidence de cette subvention. Qui bénéficie principalement de cette subvention? Expliquez. [Note: Vous pouvez appeler w^M le salaire perçu par les ménages et $w^E = w^M - s$ le salaire payé par les entreprises.] (2 points)

3/ Analysez graphiquement l'impact de cette subvention sur le bien-être (sur le surplus) des différents acteurs de l'économie. Cette subvention est-elle efficace? (2 points)

4/ Afin de réduire ses dépenses sociales, le gouvernment décide de remplacer la subvention par la mise en place d'un salaire minimum \bar{w} , qui est fixé tel que $\bar{w} = w^M$ afin que les ménages ne souffrent pas de baisse de leur rémunération. Quel est l'impact de cette politique? Est-elle efficace? (2 points)

5/ Dans quelles conditions est-ce qu'un salaire minimum est désirable? Expliquez. (2 points)

C/ La tragédie des communs (9 points)

Des pays décident chacun de la quantité d'une activité polluante qu'ils effectuent. Chaque pays $i \in \{1, ..., n\}$ décide de sa propre quantité k_i d'activité. On note K la quantité totale d'activité:

$$K = \sum_{i=1}^{n} k_i.$$

La planète peut soutenir un total d'activité maximum représenté par *L*.

Chaque pays tire un bénéfice privé lié à son activité qu'on suppose donné par $ln(k_i)$. Par ailleurs, chaque pays est sensible a la qualité environnementale globale, ce qu'on mesure par un bénéfice supposé donné par ln(L - K). (Si $K \ge L$ ce bénéfice est $-\infty$, ce qui signifie fin de la planète.)

Le bénéfice total du pays *i* est donc

$$\Pi_i(k_1,\ldots,k_n) = \ln(k_i) + \ln(L-K)$$

On commence par analyser la situation à deux pays, n = 2.

1/ En fonction de la quantité $0 < k_i < L$ choisie par le pays i, montrer que la quantité optimale $R_i(k_i)$ choisie par l'autre pays $j \neq i$ vaut

$$R_j(k_i) = \frac{L - k_i}{2}$$

(1.5pt)

2/ Montrer qu'il existe un équilibre de Nash unique $(\tilde{k}_1, \tilde{k}_2)$ dans lequel K < L, et que $\tilde{k}_1 = \tilde{k}_2 = \frac{L}{3}$. (1.5 points)

3/ Quelles sont les productions \bar{k}_1 , \bar{k}_2 qui maximisent la somme des gains des deux pays? L'équilibre de Nash de la question 2 est-il efficient ? (1.5 points)

On passe maintenant à l'étude de n pays.

- 4/ Donner un équilibre de Nash dans lequel K < L, on notera par \tilde{k}_i la quantité produite par la firme i à cet équilibre de Nash. (1.5 points)
- 5/ Quelle est la quantité \bar{k} telle que le maximum des bénéfices de tous les pays est atteint lorsque chaque pays produit \bar{k} ? (1.5 points)
- 6/ Dans quelle mesure peut-on dire que l'augmentation du nombre de pays améliore ou empire la situation liée aux activités polluantes ? On pourra par exemple regarder comment la différence "bénéfice prive d'un pays à l'équilibre de Nash" "bénéfice d'un pays à l'optimum social" évolue en fonction de n. Qu'arrive-t-il à la planète lorsque $n \to \infty$? (1.5 points)