ITCS 531: Linear Algebra - Vector spaces over fields

Rob Egrot

What is linear algebra?

- Linear algebra is an abstract approach to thinking about Euclidean space.
- ▶ What is a Euclidean space?
- Examples include the plane in 2 dimensions, and the 3 dimensional grid.
- ► These spaces have an origin (the point at zero), and two, three, or some other number of dimensions.
- ► For each dimension we have an axis, and we can define the position of points by how far along each axis they are.
- ▶ Euclidean space is not curved. So, for example the Euclidean plane is a flat plane in space. It's not curved around the surface of a sphere, or in any other way.

What is linear algebra for?

- ► The axioms of linear algebra allow geometric facts to be proved with very clean arguments.
- By abstracting away from intuitions about physical space we can see the underlying mathematics more clearly.
- Conversely, by taking an abstract approach we can 'see' systems that are not obviously geometric as 'spaces in disguise'.
- We can use geometric reasoning about these 'secret spaces'.

Where is linear algebra used?

Linear algebra is used almost everywhere mathematics is used.

- Physicists need it to understand e.g. quantum systems.
- Statisticians use it, e.g. principal component analysis.
- Pure mathematicians like to reformulate problems as linear algebra problems so they can solve them.
- Computer scientists use linear algebra too, e.g:
 - ► The Google page rank algorithm.
 - Machine learning, e.g. ANN, SVM.
 - 3D graphics.

What will we cover on this course?

- Since this is a short course we will only scratch the surface.
- ▶ We will introduce the basic abstract definitions and try to understand how they relate to the idea of a space.
- We will prove some fundamental results using abstract arguments.
- At the end of the course we will use these abstract results to prove some geometric facts.
- ► The idea is that the rigorous approach taken here will give you the background you need to go deeper.

Complex numbers

- ▶ The complex numbers \mathbb{C} are obtained by adding a root for the equation $x^2 + 1 = 0$ to the real numbers \mathbb{R} .
- This root is a new number called i.
- ▶ It turns out that if we add *i*, then we get roots for every other polynomial equation too.
- So every polynomial over \mathbb{C} factorizes into linear factors (the Fundamental Theorem of Algebra).
- We can define \mathbb{C} as the set of all numbers a+bi where $a,b\in\mathbb{R}$.
- We have

$$(a+bi)\pm(c+di)=(a\pm c)+(b\pm d)i$$

and

$$(a+bi)\times(c+di)=ac-bd+(ad+bc)i.$$

Complex arithmetic

Lemma 1

Let α , β and γ be complex numbers. Then:

- 1. $\alpha + \beta = \beta + \alpha$, and $\alpha\beta = \beta\alpha$ (commutativity).
- 2. $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$, and $\alpha(\beta\gamma) = (\alpha\beta)\gamma$ (associativity).
- 3. $0 + \alpha = \alpha$, and $1\alpha = \alpha$ (identities).
- 4. There is a unique $-\alpha \in \mathbb{C}$ such that $\alpha + (-\alpha) = 0$ (inverse for addition).
- 5. If $\alpha \neq 0$ there is a unique α^{-1} such that $\alpha \alpha^{-1} = 1$ (inverse for multiplication).
- 6. $\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$ (distributivity).

Complex arithmetic - proof

We'll prove part 5. Part 4 is in the notes and the rest are exercises.

- Given $\alpha = a + bi$, suppose (a + bi)(c + di) = 1.
- ▶ Then ac bd + (ad + bc)i = 1.
- So

$$ac - bd = 1,$$
 (†)

and

$$ad = -bc. (\ddagger)$$

- ▶ If b = 0 then $\alpha^{-1} = \frac{1}{a}$, so we assume $b \neq 0$.
- ▶ So we can rewrite (\ddagger) as $c = \frac{-ad}{b}$.
- ▶ Substituting into (†) gives $d = \frac{-b}{a^2 + b^2}$.
- ▶ Substituting this value for *d* into (‡) produces $c = \frac{a}{a^2 + b^2}$.
- ▶ So, we define $\alpha^{-1} = \frac{a-bi}{a^2+b^2}$.

Fields

We can define division for complex numbers:

Definition 2

Let $\alpha, \beta \in \mathbb{C}$, and suppose $\beta \neq 0$. Then $\frac{\alpha}{\beta} = \alpha \beta^{-1}$.

- ▶ A field is a mathematical structure generalizing the arithmetic of real numbers.
- Fields have special elements zero and one, have addition and multiplication operations, and also inverses for non-zero elements.
- ► E.g. C is a field.
- ► Fields behave like real numbers, but with important differences e.g. they can be finite!
- Abstract linear algebra can be done with arbitrary fields, but we will just use \mathbb{R} and \mathbb{C} .

Vector spaces over fields

Definition 3

For a field \mathbb{F} , a vector space over \mathbb{F} is a set V with operations $+: V \times V \to V$ and $\cdot: \mathbb{F} \times V \to V$ satisfying:

- 1. u + v = v + u for all $u, v \in V$.
- 2. u + (v + w) = (u + v) + w for all $u, v, w \in V$.
- 3. (ab)v = a(bv) for all $a, b \in \mathbb{F}$ and for all $v \in V$.
- 4. There is a special element $0 \in V$ such that 0 + v = v for all $v \in V$.
- 5. For all $v \in V$ there is $w \in V$ such that v + w = 0.
- 6. 1v = v for all $v \in V$ (i.e. scalar multiplication by 1 does not change v).
- 7. a(u+v)=au+av for all $a\in\mathbb{F}$ and for all $u,v\in V$.
- 8. (a+b)v = av + bv for all $a, b \in \mathbb{F}$ and for all $v \in V$.

Real and complex vector spaces

- + is known as vector addition.
- is known as scalar multiplication.
- ▶ When $\mathbb{F} = \mathbb{R}$ we say V is a *real vector space*.
- ▶ When $\mathbb{F} = \mathbb{C}$ we say V is a *complex vector space*.
- ▶ We refer to elements of *V* as *vectors*, or *points*.

Examples of vector spaces

- Any field as a vector space over itself. E.g. $\mathbb R$ is a real vector space.
- $ightharpoonup \mathbb{R} imes \mathbb{R}$, i.e. the Euclidean plane, is a real vector space.
- ▶ For any $n \in \mathbb{N} \setminus \{0\}$, \mathbb{F}^n is a vector space over \mathbb{F}
 - Define $(x_1, ..., x_n) + (y_1, ..., y_n) = (x_1 + y_1, ..., x_n + y_n)$, and $a(x_1, ..., x_n) = (ax_1, ..., ax_n)$.
- ▶ Let $\mathbb{R}[x]$ be the set of all polynomials with the variable x. So

$$\mathbb{R}[x] = \{a_0 + a_1 x + \ldots + a_n x^n : n \in \mathbb{N} \text{ and } a_i \in \mathbb{R} \text{ for all } i\}.$$

Then $\mathbb{R}[x]$ is a vector space over \mathbb{R} .

Properties of vector spaces

Proposition 4

Let V be a vector space over \mathbb{F} . Then:

- 1. The additive identity 0 is unique.
- 2. The additive inverse of v is unique for all $v \in V$ (we call it -v).
- 3. 0v = 0 for all $v \in V$.
- 4. -1v = -v for all $v \in V$.

Properties of vector spaces - proof

- 1. Suppose 0 and 0' are both additive identities for V. Then 0=0+0'=0'.
- 2. Suppose v + u = 0 and v + u' = 0. Then (v + u) + u' = u', and so (v + u') + u = u', which means u = u'.
- 3. 0v = (0+0)v = 0v + 0v, so 0v + (-0v) = (-0v) + 0v + 0v, and so 0 = 0v.
- 4. Exercise 1.3.

Subspaces

Definition 5

Let V be a vector space over \mathbb{F} . Then a subset U of V is a subspace of V if it has the following properties:

- 1. $0 \in U$.
- 2. $u + v \in U$ for all $u, v \in U$ (closure under vector addition).
- 3. $au \in U$ for all $a \in \mathbb{F}$ and for all $u \in U$ (closure under scalar multiplication).

Another view of subspaces

Lemma 6

If V is a vector space over \mathbb{F} then $U \subseteq V$ is a subspace of V if and only if it is also a vector space over \mathbb{F} with the addition and scalar multiplication inherited from V.

- ▶ If *U* is a vector space with the inherited operations then it must be closed under the inherited operations and contain 0.
- Conversely, if U satisfies the conditions of definition 5 then it automatically satisfies all conditions of definition 3 except (5).
- ▶ To see that (5) also holds in U note that, by proposition 4(4), given $u \in U$ we have -u = -1u, which is in U by definition 5(3).

Sums of subspaces

Definition 7

Given subspaces U_1, \ldots, U_n of V, the sum $U_1 + \ldots + U_n$ is the smallest subspace of V containing $\bigcup_{i=1}^n U_i$.

Lemma 8

If U_1, \ldots, U_n are subspaces of V, then

$$U_1 + \ldots + U_n = \{u_1 + \ldots + u_n : u_i \in U_i \text{ for all } i \in \{1, \ldots, n\}\}.$$

- $\begin{cases} u_1 + \ldots + u_n : u_i \in U_i \text{ for all } i \in \{1, \ldots, n\} \} \text{ contains } \\ \bigcup_{i=1}^n U_i \text{ because } u_i = 0 + \ldots + 0 + u_i + 0 + \ldots + 0 \text{ for all } \\ u_i \in U_i. \end{cases}$
- It is a subspace by the definition of a vector space.
- ▶ It must be the smallest subspace containing $\bigcup_{i=1}^{n} U_i$, because any such subspace must be closed under vector addition.

Direct sums

Definition 9

If U_1, \ldots, U_n are subspaces of V, then the sum $U_1 + \ldots + U_n$ is a direct sum if, for all $u \in U_1 + \ldots + U_n$, there is exactly one choice of $\{u_1, \ldots, u_n\}$ such that $u_i \in U_i$ for all i and $u = u_1 + \ldots + u_n$. In this case we write $U_1 \oplus \ldots \oplus U_n$.

- So direct sum is a sum where there is no redundancy.
- Every element in a direct sum is formed in exactly one way using the subspaces that make up the sum.

Direct sums - expressing zero

Lemma 10

If U_1, \ldots, U_n are subspaces of V, then $U_1 + \ldots + U_n$ is a direct sum if and only if there is exactly one choice of $\{u_1, \ldots, u_n\}$ such that $u_i \in U_i$ for all i and $0 = u_1 + \ldots + u_n$.

Proof.

- If $U = U_1 + ... + U_n$ is a direct sum, then by definition there is only one way to express 0 (i.e. 0 = 0 + ... + 0).
- Conversely, suppose there is only one way to express 0.
- Let $u \in U$, and suppose $u = u_1 + \ldots + u_n = u'_1 + \ldots + u'_n$. Then

$$0 = u_1 + \ldots + u_n - (u'_1 + \ldots + u'_n) = (u_1 - u'_1) + \ldots + (u_n - u'_n).$$

So $(u_i - u_i') = 0$ for all i, as there is only one way to express 0.

▶ Thus $u_i = u'_i$ for all i.

Direct sums - two subspaces

Lemma 11

Let U and W be subspaces of V. Then U+W is a direct sum if and only if $U\cap W=\{0\}$.

- If there is $v \in U \cap W$ then v = 0 + v and v = v + 0, so U + W is not a direct sum.
- ► Conversely, suppose $U \cap W = \{0\}$ and that v = u + w and v = u' + w'.
- ▶ Then u u' = w' w, and so u u' and w' w are both in $U \cap W$, and thus are both 0.
- ▶ This implies u = u' and w = w', so U + W is a direct sum.

Direct sums - Example

- ▶ Let $V = \mathbb{R}^3$, let $U_1 = \{(2x, 0, z) : x, z \in \mathbb{R}\}$, let $U_2 = \{(0, y, 0) : y \in \mathbb{R}\}$, and let $U_3 = \{(0, z, z) : z \in \mathbb{R}\}$.
- ▶ Then $\mathbb{R}^3 = U_1 + U_2 + U_3$, because given $(a, b, c) \in \mathbb{R}^3$ we have

$$(a,b,c) = (2(\frac{a}{2}),0,0) + (0,b-c,0) + (0,c,c).$$

ightharpoonup However, $U_1 + U_2 + U_3$ is not a direct sum as

$$(0,0,0) = (0,0,1) + (0,1,0) + (0,-1,-1).$$

- I.e., 0 is not uniquely expressible.
- ▶ However, $U_i \cap U_j = \{0\}$ for all $i \neq j$, which indicates that lemma 11 only applies to binary sums.

Span

Definition 12

Given a vector space V over \mathbb{F} , and vectors $v_1, \ldots v_n \in V$, we say the *span* of (v_1, \ldots, v_n) is the smallest subspace of V containing $\{v_1, \ldots, v_n\}$.

By convention we define span() = $\{0\}$. If span(v_1, \ldots, v_n) = V we say (v_1, \ldots, v_n) spans V.

Span

Lemma 13

If V is vector space over \mathbb{F} , and $v_1, \ldots v_n \in V$, then

$$\mathrm{span}(v_1,\ldots v_n)=\{a_1v_1+\ldots+a_nv_n:a_i\in\mathbb{F}\ \text{for all}\ i\}.$$

- ▶ Let $U = \{a_1v_1 + \ldots + a_nv_n : a_i \in \mathbb{F} \text{ for all } i\}.$
- ▶ Then clearly $U \subseteq \operatorname{span}(v_1, \dots v_n)$, as $\operatorname{span}(v_1, \dots v_n)$ is closed under vector addition and scalar multiplication.
- ► Moreover, *U* is closed under vector addition and scalar multiplication, so *U* is a subspace of *V*.
- ▶ Since $\{v_1, \ldots, v_n\} \subseteq U$, it follows from the definition that $\operatorname{span}(v_1, \ldots v_n) \subseteq U$.
- ▶ Thus $U = \operatorname{span}(v_1, \dots v_n)$ as required.

Linear independence

Definition 14

Let V be vector space over \mathbb{F} , and let $v_1, \ldots v_n \in V$. Then (v_1, \ldots, v_n) is *linearly independent* if whenever $a_1v_1 + \ldots + a_nv_n = 0$ we have $a_1 = \ldots = a_n = 0$. If (v_1, \ldots, v_n) is not linearly independent then we say it is *linearly dependent*.

Examples

- 1. The vectors (1,0,0), (0,1,0) and (0,0,1) are linearly independent and span \mathbb{R}^3 and \mathbb{C}^3 .
- 2. The span of a single vector v is $\{av : a \in \mathbb{F}\}$. Single vectors are always linearly independent.
- 3. The vectors (2,3,1), (1,-1,2) and (7,3,c) are linearly independent so long as $c \neq 8$.
- 4. Every list of vectors containing 0 is linearly dependent.