Coordinates of Incentre of a triangle

Created by Mr. Francis Hung on 20230530. Last upated: 31/05/2023

Let $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$ be the coordinates of the vertices

of $\triangle ABC$. BC = a, CA = b, AB = c. Let I be the incentre.

Let the radius of the inscribed circle be r. The inscribed circle touches $\triangle ABC$ at P, Q and R. Join AI and produce it to cut BC at D. Denote the areas by S.

$$IP \perp BC$$
, $IQ \perp AC$, $IR \perp AB$ (tangent \perp radii)

$$IP = IO = IR = r$$

$$S_{\Delta IBC} + S_{\Delta ICA} + S_{\Delta IAB} = S_{\Delta ABC}$$

$$\frac{1}{2}ar + \frac{1}{2}br + \frac{1}{2}cr = \sqrt{s(s-a)(s-b)(s-c)}$$
 Heron's formula, where $s = \frac{1}{2}(a+b+c)$

$$sr = \sqrt{s(s-a)(s-b)(s-c)}$$

$$r = \sqrt{\frac{(s-a)(s-b)(s-c)}{s}}$$
, where $s = \frac{1}{2}(a+b+c)$

Let $\angle BAD = \angle CAD = \theta$ (AD is the \angle bisector of $\angle BAC$)

Let
$$\angle ADC = \alpha$$
, $\angle ADB = 180^{\circ} - \alpha$ (adj. \angle s on st. line)

Apply sine rule on $\triangle ABD$ and $\triangle ACD$ respectively.

$$\frac{BD}{\sin \theta} = \frac{c}{\sin \left(180^{\circ} - \alpha\right)} \quad \cdots \quad (1), \quad \frac{DC}{\sin \theta} = \frac{b}{\sin \alpha} \quad \cdots \quad (2)$$

Using the fact that $\sin(180^{\circ} - \alpha) = \sin \alpha$ and $(1) \div (2)$, we have

$$\frac{BD}{DC} = \frac{c}{b} \Rightarrow BD : DC = c : b$$

By section formula,
$$D = \left(\frac{bx_2 + cx_3}{b+c}, \frac{by_2 + cy_3}{b+c}\right)$$

A, I, D are collinear. Let AI : ID = m : 1 - m. Then by section formula again,

$$I = \left((1-m)x_1 + \frac{m(bx_2 + cx_3)}{b+c}, (1-m)y_1 + \frac{m(by_2 + cy_3)}{b+c} \right)$$

$$= \left((1-m)x_1 + \frac{mbx_2}{b+c} + \frac{mcx_3}{b+c}, (1-m)y_1 + \frac{mby_2}{b+c} + \frac{mcy_3}{b+c} \right)$$

Replace a by b, b by c and c by a, x_1 by x_2 , x_2 by x_3 , x_3 by x_1 , y_1 by y_2 , y_2 by y_3 , the coordinates should be the same.

$$I = \left((1-n)x_2 + \frac{ncx_3}{c+a} + \frac{nax_1}{c+a}, (1-n)y_2 + \frac{ncy_3}{c+a} + \frac{nay_1}{c+a} \right) \text{ for some } 0 < n < 1$$

Compare coefficients of
$$x_1$$
: $1-m = \frac{na}{c+a} \cdot \cdots \cdot (3)$

Compare coefficients of
$$x_2$$
: $1 - n = \frac{mb}{b+c}$ (4)

Compare coefficients of x₃:
$$\frac{mc}{b+c} = \frac{nc}{c+a} \Rightarrow \frac{m}{b+c} = \frac{n}{c+a} \cdot \dots \cdot (5)$$

Sub. (5) into (3):
$$1-m = \frac{ma}{b+c} \implies b+c-(b+c)m = ma \implies m = \frac{b+c}{a+b+c}$$

$$I = \left(\left(1 - \frac{b+c}{a+b+c} \right) x_1 + \frac{b+c}{a+b+c} \cdot \frac{bx_2}{b+c} + \frac{b+c}{a+b+c} \cdot \frac{cx_3}{b+c}, \left(1 - \frac{b+c}{a+b+c} \cdot \right) y_1 + \frac{b+c}{a+b+c} \cdot \frac{by_2}{b+c} + \frac{b+c}{a+b+c} \cdot \frac{cy_3}{b+c} \right)$$

$$\left(ax_1 + bx_2 + cx_2, ay_1 + by_2 + cy_3 \right)$$

$$= \left(\frac{ax_1 + bx_2 + cx_3}{a + b + c}, \frac{ay_1 + by_2 + cy_3}{a + b + c}\right)$$

