一次使用 Java 进行机器学习的实验尝试

禚文宇

202100800179

日期: November 27, 2022

摘 要

本次实验使用了 3w 数据集,通过 KNN 算法和朴素贝叶斯算法对给定的数据集进行了分类的工作,最终前者的正确率在 k=3 时可以达到 95% 以上,后者的正确率可以达到 99.444%。同时我使用了 Python 为训练后得到的结果进行了可视化处理,获得了一张真实分类与预测分类的对照图,以上代码及运行结果均可在我的gitee 项目和github 项目中找到。

目录

1	数据	3集介绍	2							
2	使用	用的算法介绍								
	2.1	K-最近邻算法 (KNN) 介绍	2							
		2.1.1 具体过程	2							
	2.2	朴素贝叶斯算法介绍	3							
3	实验	文验过程								
	3.1	数据清洗	4							
	3.2	min-max 标准化	4							
	3.3	使用 Java-ML 库中自带的 KNN 算法	6							
	3.4	手写 KNN 算法	6							
		3.4.1 计算欧几里得距离	7							
		3.4.2 寻找前 K 个最近邻居	8							
		3.4.3 找到出现次数最多的标签	9							
	3.5	使用 Java-ML 库中自带的朴素贝叶斯算法	9							
	3.6	分类结果的可视化	0							
参	考文繭	载	1							

1 数据集介绍

本次上机作业使用的是 3w 数据集, 3w 数据集是第一个公开的记录了油井中罕见的不良真实事件的数据集,可以作为基准数据集,用于开发与实际数据固有困难相关的机器学习技术。

关于该数据集背后的理论的更多信息,可在《石油科学与工程杂志》(Journal of Petroleum Science and Engineering)上发表的论文《油井中罕见不良真实事件的现实和公共数据集》[1] 中找到。

对于数据集中的数据,其部分属性信息如下表所示:

属性	含义
P-PDG	永久井下压力表的压力
P-TPT	压力传感器的数据
T-TPT	温度传感器的数据

表 1:数据部分属性信息

2 使用的算法介绍

本次上机实验,我尝试了两个分类算法,分别为 K-最近邻(KNN)算法和朴素贝叶斯算法,下面我将简单介绍这两个算法。

2.1 K-最近邻算法(KNN)介绍

K-最近邻算法(KNN)是一种用于分类和回归的非参数统计方法:

- 1. 在 KNN-分类中, 通过 K 个最近邻居中出现次数最多的分类决定了此对象的分类;
- 2. 在 KNN-回归中,K 的最近邻居的值的平均值将会称为此对象的预测值。

KNN 是一个非常易于理解的机器学习算法,分为计算距离、取 K 个最近邻居、根据邻居分类三个步骤。

2.1.1 具体过程

1. 计算距离: 在 KNN 中,我们通过 Euclid 距离来度量两个对象 $\theta_0 = (x_0, x_1, \dots, x_n)$ 和 $\theta_1 = (y_0, y_1, \dots, y_n)$ 之间的距离,具体定义为

$$dis(\theta_0, \theta_1) = \sum_{i=0}^{n} \sqrt{(x_i - y_i)^2}$$

必须注意到的是,两个对象必须具有相同的数据维度,否则 Euclid 距离将无法计算。

- 2. 取 K 个最近邻居:本步骤非常容易,即按照 Euclid 距离排序后,取前 K 个互异的数据点即可。
- 3. 在根据邻居分类: KNN-分类中,我们只需取出这 K 个最近邻居的标签,找出出现次数最多的标签即为返回值。

2.2 朴素贝叶斯算法介绍

朴素贝叶斯算法是一个基于贝叶斯公式的算法: 设 (Ω, \mathcal{F}, P) 是概率空间, A_1, A_2, \ldots, A_n 是样本空间 Ω 的一个分割,则对任意 $B \in \mathcal{F}$,P(B) > 0,有

$$P(A_k \mid B) = \frac{P(A_k)P(B \mid A_k)}{\sum\limits_{j=1}^{n} P(A_j)P(B \mid A_j)}$$

我们可以这样理解这个公式: 假设某个过程具有 A_1, A_2, \cdots, A_n 这样 n 个可能的前提(原因),而 $P(A_1), P(A_2), \cdots, P(A_n)$ 是人们对这 n 个可能的前提(原因)的可能性大小的一种事前估计,称之为**先验概率**。当这个过程有了一个结果 B 之后,人们会通过条件概率 $P(A_1 \mid B), P(A_2 \mid B), \cdots, P(A_n \mid B)$ 来对这 n 个可能前提的可能性大小做出一个新的认识,因此将这些条件概率 称之为**后验概率**,而贝叶斯公式恰好提供了一种计算后验概率的工具。

朴素贝叶斯分类器的工作原理大致如下:

- 1. 设 $x = \{a_1, a_2, ..., a_m\}$ 为一个待分类项,而每一个 a 为 x 的一个特征属性,类别集合 $C = \{y_1, y_2, ..., y_n\};$
- 2. 计算 $P(y_1 | x)$, $P(y_2 | x)$, ..., $P(y_n | x)$;
- 3. 如果 $P(y_k | x) = \max \{ P(y_1 | x), P(y_2 | x), ..., P(y_n | x) \}$,则 x 属于类别 y_k 。现在的关键在于如何计算第 3 步中的各个条件概率。我们可以这样做:
- (i) 首先找到一个已知分类的集合, 称为训练样本集:
- (ii) 统计得到各类别下各个特征属性的条件概率估计,即: $P(a_1 | y_1), P(a_2 | y_1), \dots, P(a_m | y_1); P(a_1 | y_2), \dots, P(a_m | y_n);$
- (iii) 如果各个特征属性是条件独立的,则根据贝叶斯定理有如下公式:

$$P(y_i \mid x) = \frac{P(x \mid y_i)P(y_i)}{P(x)}$$

因为分母对于所有分类均为常数,于是我们只需将分子最大化即可。又因为各特征属性是 条件独立的,所以得到

$$P(x \mid y_i)P(y_i) = P(y_i) \prod_{j=1}^{m} P(a_j \mid y_i)$$

(iv) 最后我们得到预测类别

$$\hat{y} = \arg\max_{y} \left\{ P(y) \prod_{i=1}^{m} P(a_i \mid y) \right\}$$

当特征离散时,我们还要考虑后验概率等于 0 的情况,因为这样的情况可能会带来较大的偏差。例如,当输入的数据的某个特征出现了一个训练集中从来没有出现过的值,那么此时的条件概率 $P(x_j \mid y_i) = 0$,不管其他特征值在 y_i 中出现过多少次,这个数据点都不可能属于 y_i 。为了避免这种情况,我们需要让概率值"平滑"一些,宁愿让概率值很小也不使这个值为 0。这引出了拉普拉斯平滑(Laplace Smoothing)的估计方法:

$$P_{\lambda}(x \mid c_i) = \frac{|D_{x,c_i}| + \lambda'}{|D_{c_i}| + \lambda' N_{c_i}}$$

其中 N_{c_i} 表示训练集中 c_i 可能的取值数, λ' 通常取 1。

以上是对于特征离散时的讨论,当特征连续时,其条件概率可以通过**特征满足的分布**对应的条件概率函数得到,于是将条件概率函数代入并化简即可,此处不表。

3 实验过程

3.1 数据清洗

对于数据,由于时间戳这一列和大量的空列对我们来说是没有用处的,于是我们首先需要对数据进行清洗。在此,我使用了Python进行数据的清洗,下面的代码利用了Python中的pandas库,对文件进行读取、删除特定列并输出为新的文件。

对于原始数据,我们发现,其中的时间戳是不属于数据的特征的,可以删去;其他的空白列以及表头也是无效的,通过下面的 Python 程序可以全部删去。执行完此程序后,数据清洗完成。

```
1 import pandas as pd
2 import os
4 Path = 'E:/data'
6 def delete(file_path):
      file_list = os.listdir(file_path)
      for i in file_list:
           df = pd.read csv(file path + '/' + i)
           print(file_path + '/' + i)
           df = df.drop(["P-JUS-CKGL"], axis=1)
           df = df.drop(["T-JUS-CKGL"], axis=1)
12
           df = df.drop(["QGL"], axis=1)
           df = df.drop(["timestamp"], axis=1)
           df.to_csv(file_path + '/' + i, encoding="utf_8_sig", index=False,

→ mode='w', header=None)

16
if __name__ == '__main__':
      file = os.listdir(Path)
18
      print(file)
19
       delete(Path)
```

3.2 min-max 标准化

在对数据进行清洗后,由于发现数据中存在较大的数据(假定为 $x \ge 10^8$),于是我在此进行了一次标准化,解决了由于数据过大而可能导致的错误。

此处我使用了 Java-ML 库中自带的 NormalizeMidrange 类, 这是一个通过 min-max 标准化来对数据进行标准化的类。

min-max 标准化是将数据做以下运算:

$$x^* = \frac{x - \min}{\max - \min}$$

其中 max 为这组数据的最大值, min 为这组数据的最小值。

timestamp P-PDG	P-TPT	T-TPT	P-MON-C	T-JUS-CK	P-JUS-CKO	T-JUS-CK	QGL	class
16:58.0 2.69E+07	1.79E+07	1.15E+02	4.09E+06	8.55E+01				3
16:59.0 2.69E+07	7 1.79E+07	1.15E+02	4.09E+06	8.55E+01				3
17:00.0 2.69E+07	7 1.79E+07	1.15E+02	4.09E+06	8.55E+01				3
17:01.0 2.69E+07	7 1.79E+07	1.15E+02	4.09E+06	8.55E+01				3
17:02.0 2.69E+07	1.79E+07	1.15E+02	4.08E+06	8.55E+01				3
17:03.0 2.69E+07	1.79E+07	1.15E+02	4.08E+06	8.55E+01				3
17:04.0 2.69E+07	1.79E+07	1.15E+02	4.08E+06	8.55E+01				3
17:05.0 2.69E+07	1.79E+07	1.15E+02	4.08E+06	8.55E+01				3
17:06.0 2.69E+07	7 1.79E+07	1.15E+02	4.08E+06	8.54E+01				3
17:07.0 2.69E+07	7 1.79E+07	1.15E+02	4.08E+06	8.54E+01				3
17:08.0 2.69E+07	1.79E+07	1.15E+02	4.08E+06	8.54E+01				3
17:09.0 2.69E+07	1.79E+07	1.15E+02	4.08E+06	8.54E+01				3
17:10.0 2.69E+07	1.78E+07	1.15E+02	4.08E+06	8.54E+01				3
17:11.0 2.69E+07	1.78E+07	1.15E+02	4.08E+06	8.54E+01				3
17:12.0 2.69E+07	1.78E+07	1.15E+02	4.08E+06	8.54E+01				3
17:13.0 2.69E+07	7 1.78E+07	1.15E+02	4.08E+06	8.54E+01				3
17:14.0 2.69E+07	1.78E+07	1.15E+02	4.08E+06	8.54E+01				3
17:15.0 2.69E+07	1.78E+07	1.15E+02	4.08E+06	8.54E+01				3
17:16.0 2.69E+07	1.78E+07	1.15E+02	4.08E+06	8.54E+01				3
17:17.0 2.69E+07	1.78E+07	1.15E+02	4.08E+06	8.54E+01				3
17:18.0 2.69E+07	1.78E+07	1.15E+02	4.08E+06	8.54E+01				3
17:19.0 2.69E+07	7 1.78E+07	1.15E+02	4.08E+06	8.54E+01				3
17:20.0 2.69E+07	7 1.78E+07	1.15E+02	4.08E+06	8.54E+01				3
17:21.0 2.69E+07	1.78E+07	1.15E+02	4.08E+06	8.54E+01				3
17:22.0 2.69E+07	1.78E+07	1.15E+02	4.08E+06	8.54E+01				3
17:23.0 2.69E+07	1.78E+07	1.15E+02	4.08E+06	8.54E+01				3
17:24.0 2.69E+07	1.78E+07	1.15E+02	4.08E+06	8.54E+01				3
17:25.0 2.69E+07	1.78E+07	1.15E+02	4.08E+06	8.54E+01				3
17:26.0 2.69E+07	7 1.78E+07	1.15E+02	4.08E+06	8.54E+01				3
17:27.0 2.69E+07	1.78E+07	1.15E+02	4.08E+06	8.54E+01				3
17:28.0 2.69E+07	7 1.78E+07	1.15E+02	4.08E+06	8.54E+01				3
17:29.0 2.69E+07	1.78E+07	1.15E+02	4.08E+06	8.54E+01				3
17:30.0 2.69E+07	1.78E+07	1.15E+02	4.08E+06	8.54E+01				3
17:31.0 2.69E+07	1.78E+07	1.15E+02	4.08E+06	8.54E+01				3
17:32.0 2.69E+07		1.15E+02	4.08E+06	8.53E+01				3
17:33.0 2.69E+07								3
17:34.0 2.69E+07	7 1.78E+07	1.15E+02	4.08E+06	8.53E+01				3

图 1: 进行清洗之前的数据

15700000	10300000	1900000	76	0
15700000	10300000	1900000	76	0
15700000	10300000	1900000	76	0
15700000	10300000	1900000	76	0
15700000	10300000	1900000	76	0
15700000	10300000	1900000	76	0
15700000	10300000	1900000	76	0
15700000	10300000	1900000	76	0
15700000	10300000	1900000	76	0
15700000	10300000	1900000	76	0
15700000	10300000	1900000	76	0
15700000	10300000	1900000	76	0
15700000	10300000	1900000	76	0
15700000	10300000	1900000	76	0
15700000	10300000	1930000	75.9	0
15700000	10300000	2230000	75.6	106
15700000	10300000	2420000	75.5	106
15700000	10300000	2540000	75.5	106
15700000	10300000	2650000	75.7	106
15700000	10300000	2740000	75.9	106
15700000	10300000	2810000	76	106
15700000	10300000	2880000	76.1	106
15700000	10300000	2940000	76.2	106
15700000	10300000	2990000	76.3	106
15700000	10300000	3040000	76.3	106
15700000	10300000	3090000	76.4	106
15700000	10300000	3140000	76.4	106
15700000	10300000	3180000	76.4	106
15700000	10300000	3220000	76.4	106
15700000	10300000	3250000	76.4	106
15700000	10300000	3290000	76.5	106
15700000	10300000	3320000	76.5	106
15700000	10300000	3350000	76.5	106
15700000	10300000	3380000	76.5	106
15700000	10300000	3410000	76.5	106
15700000	10300000	3440000	76.5	106
15700000	10300000	3460000	76.5	106
15700000	10300000	3490000	76.5	106

图 2: 进行清洗之后的数据

5

NormalizeMidrange 类有一个构造函数 NormalizeMidrange(x, y),表示标准化后数据将位于 [2x-y,y] 的区间中。

NormalizeMidrange 类可以直接将 Java-ML 库中的 Dataset 类进行正则化,例如:

这表示通过 nmr 的标准化后,我们将数据集中的所有数据都放缩到了 [0,2] 这一区间。

3.3 使用 Java-ML 库中自带的 KNN 算法

在 Java-ML 库中,其提供了 KNearestNeighbors 和 KDTreeKNN 两个实现 KNN 的类,不同处在于第一个是比较暴力的基于原理实现,在数据量较大时时间消耗较高,而第二个是基于 KD-Tree 的优化,在数据量较大时能较好地保证时间的消耗。

调用这两个类进行分类的过程是类似的,下面以 KNearestNeighbors 为例:

- 1. 首先新建对象 KNearestNeighbors knn = new KNearestNeighbors(k);,这里调用了含 参构造函数 KNearestNeighbors(int k),其中的 k 对应着 KNN 中的超参数 k;
- 2. 接着向对象中传入训练集 knn. buildClassifier(train),此处的数据集 train 被要求必须为 Dataset 类型,这是 Java-ML 库中为数据集定义的类型;
- 3. 对于测试集 test 中的每一行数据,我们可以通过一个 for-in 循环遍历,之后对每行数据 进行分类并得到预测值:

```
for(Instance inst: test)
{
    Object classified = knn.classify(inst);
    if(classified.equals(inst.classValue())
        //correct, do sth
}
```

向 classify 函数中传入一条数据后,其会对数据进行分类,并返回一个 Object 类型的对象表示分类结果。如果分类结果与真实结果(即 inst.classValue())一致,表示分类正确,否则为分类错误。

3.4 手写 KNN 算法

在本项目的仓库中,我是用的是自己基于原理手写的 KNN 算法,其大概分为如下几个部分:

3.4.1 计算欧几里得距离

在这个函数中,首先需要比较数据 x 和数据 y 的维数是否相同(即 x.noAttributes() != y.noAttributes() 是否成立),如果维数不相同的话,计算其 Euclid 距离是没有意义的,此时直接抛出一个运行错误,如果维数相同,便可以继续计算他们之间的 Euclid 距离。

3.4.2 寻找前 K 个最近邻居

```
private Set < Instance > kNearest (Instance inst)
2 {
           Set<Instance> ExpectedInstance = new HashSet<>();
           HashMap<Double, Instance> dis = new HashMap<>();
           for(Instance Candidate: d)
                   double dist = GetEuclidDistance(Candidate, inst);
                   dis.put(dist, Candidate);
           TreeMap<Double, Instance> SortedDis = new TreeMap<>();
           SortedDis.putAll(dis);
12
           int count = 0;
           for(Map.Entry<Double, Instance> e: SortedDis.entrySet())
                   if(!ExpectedInstance.contains(e.getValue()))
15
                            ExpectedInstance.add(e.getValue());
                            count++;
                            if(count == k)
19
                                    break;
20
                   }
21
           }
22
           return ExpectedInstance;
```

在这个函数中,我通过一个 Set 来保证取出的 k 个数据都是互异的,通过 TreeMap 和 HashMap 的配合达到为所有数据点以距离升序的要求排序的目的。最后通过一个 for-in 循环,取出距离 测试数据最近的 k 个数据并放入集合 ExpectedInstance 中并作为这个函数的返回值。

3.4.3 找到出现次数最多的标签

```
public Object classify(Instance inst)
2 {
           if(d == null)
                   throw new RuntimeException("Training dataset is null");
           Set<Instance> NearNeighbors = kNearest(inst);
           Object[] ExpectedClass = new Object[k];
           int index = 0;
           for(Instance i: NearNeighbors)
                   ExpectedClass[index++] = i.classValue();
           HashMap<Object, Integer> map = new HashMap<>();
           for(Object i: ExpectedClass)
12
                   if(map.containsKey(i))
                   {
14
                            int tmp = map.get(i);
15
                            map.put(i, tmp + 1);
16
                   }
                   else
                            map.put(i, 1);
19
20
           Collection<Integer> count = map.values();
           int Maxcount = Collections.max(count);
22
           for(Map.Entry<Object, Integer> e: map.entrySet())
23
                   if(Maxcount == e.getValue())
24
                            return e.getKey();
           return null;
27 }
```

在这个函数中,首先需要判断训练集 a 是否为空,如果训练集为空的话对测试数据分类是没有意义的,于是直接抛出一个运行错误;如果不为空时,首先会通过调用 kNearest 函数找到距离测试数据最近的前 k 个数据,再将它们的分类标签记录在数组 ExpectedClass 中。下面通过一个 HashMap 和 Collection 找到了这些分类标签中出现次数最多的一个标签,并返回其标签值。

3.5 使用 Java-ML 库中自带的朴素贝叶斯算法

朴素贝叶斯算法的代码与"使用 Java-ML 库中自带的 KNN 算法"部分基本一致,不同的是在新建对象时:NaiveBayesClassifier nbc = new NaiveBayesClassifier(true, true, false); 其中调用了一个构造函数 NaiveBayesClassifier(bool lap, bool log, bool sparse),第一个参数 lap 表示是否使用拉普拉斯平滑,第二个参数 log 表示是否使用对数以防止因为计算 机精度的原因而将结果近似为 0,第三个参数 sparse 表示数据集是否为稀疏的。 此处我将 lap 和 log 设为 true,而将 sparse 设为 false。

3.6 分类结果的可视化

首先,在两个算法的测试代码中,我均加入了文件输出,将真实标签输出至 Real_Ans.csv中,预测标签输出至 Predicted_Ans.csv中:

```
FileWriter fw = new FileWriter("./Real Ans.csv");
fw.write("Real_index,Real_class\n");
3 for(int i = 0;i < sigma;i++)</pre>
      Instance inst = test.instance(ind[i]):
      fw.write(i + "," + inst.classValue() + "\n");
7 }
8 fw.close();
9 fw = new FileWriter("./Predicted_Ans.csv");
fw.write("Predicted index,Predicted class\n");
for(int i = 0;i < sigma;i++)</pre>
12 {
      Instance inst = test.instance(ind[i]);
13
      fw.write(i + "," + knn.classify(inst) + "\n");
15 }
16 fw.close();
```

之后,我使用了 Python 进行了可视化:

```
import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv('./Real_Ans.csv')

df1 = pd.read_csv('./Predicted_Ans.csv')

plt.scatter(df['Real_index'], df['Real_class'], 15, 'red')

plt.scatter(df1['Predicted_index'], df1['Predicted_class'], 15, 'black')
```

其中调用了 pandas 库进行数据的读入,调用 pyplot 库画出一个散点图,横轴为测试点的数据编号,纵轴为测试点的标签值。其中可视化程序会将真实标签对应的点标为红色,预测标签对应的点标为黑色。如果预测结果与实际结果一致,则红色点与黑色点应当重合,由于黑色点是在红色点之后被画出的,重合时应当显示为黑色;而当预测结果与实际结果不一致时,两种颜色的点不会重合,此时在同一个 x 坐标下应当看到一个黑色的点和一个红色的点,分别表示预测错误的结果和实际的结果。

参考文献

[1] Ricardo Emanuel Vaz Vargas et al. "A realistic and public dataset with rare undesirable real events in oil wells". In: *Journal of Petroleum Science and Engineering* 181 (2019), p. 106223. ISSN: 0920-4105. DOI: https://doi.org/10.1016/j.petrol.2019.106223. URL: http://www.sciencedirect.com/science/article/pii/S0920410519306357.