

MC 34 - MANDOS NEUMÁTICOS E HIDRÁULICOS

Mag. Ing. José Luis Becerra Felipe pcmcjbec@upc.edu.pe

TEMA 3: INSTALACIONES DE AIRE COMPRIMIDO

Objetivo de la sesión

"Que el estudiante sea capaz de diseñar instalaciones de aire comprimido"

Contenido de la sesión

- Tipos de red de aire comprimido
- Elementos de una red de aire comprimido
- Dimensionamiento de una red de aire comprimido

Logro de la sesión:

Al finalizar la clase el estudiante será capaz de identificar los tipos de red de aire comprimido, y calcular el caudal y el diámetro de tubería requeridos.

INSTALACIÓN DE AIRE COMPRIMIDO

TIPOS DE RED DE AIRE COMPRIMIDO

Instalación Abierta

Menor longitud de tuberías.

Instalación Cerrada

- Reparto óptimo de caudales.
- Continuidad del servicio ante averías.
- Reduce las pérdidas de carga.

Elementos de la instalación

- 1. Purga de aire
- 2. Purga Automática
- 3. Unidad de Mantenimiento /acondicionamiento
- 4. Válvula direccional
- 5. Actuador
- 6. Controlador de velocidad

- 1. Tubería principal
- 2. Tubería de distribución (en este caso, circular)
- 3. Tubería de unión (toma de aire en la parte superior)
- 4. Compresor
- 5. Codo de 90°
- 6. Horquilla para montaje en la pared
- 7. Tubo
- 8. Válvula esférica

- 9. Tubo acodado
- 10. Disco de pared
- 11. Empalme con rosca interior
- 12. Filtro
- 13. Lubricador
- 14. Unidad consumidora
- 15. Condensado
- 16. Tubo flexible
- 17. Derivación
- 18. Llave de cierre

DIMENSIONAMIENTO DE LA RED

Pasos para el diseño de una red de aire comprimido

Definir el lugar donde se ubicarán las unidades consumidoras.

Definir la cantidad de unidades consumidoras por tipo y calidad de aire que necesitan.

Listar el consumo de aire por unidad consumidora.

Calcular la resistencia que se opone al caudal de aire.

Elaborar el plano de tuberías, accesorios y racores necesarios.

Determinar el consumo medio de aire.

Determinar la pérdida de presión admisible.

Determinar el diámetro interior de los tubos.

Seleccionar el material de los tubos

DIMENSIONAR LA RED DE AIRE COMPRIMIDO

Se tiene una red neumática con una longitud de 300 m. La presión de aire comprimido se encuentra entre 6 y 7 bar. La pérdida de carga máxima de la red no debe exceder 0,1 bar en el punto más lejano.

Las herramientas utilizadas son las siguientes:

- 2 Taladradora de 1 kW
- 1 Taladradora de 2 kW
- 3 Pistola neumática
- 1 Pistola de chorro de arena
- 1 Lijadora de 1,5 kW
- 2 Destornillador neumático de 0,3 kW
- 5 cilindros neumáticos de avance (maquinaria neumática)
- 5 cilindros neumáticos de diámetro de émbolo de 50 mm, carrera 500 mm y presión de funcionamiento de 6 bar. La duración de la carrera es de 2 segundos y el ciclo de funcionamiento es de 10 segundos.

Item	Cantidad	Denominación	Accesorio
1	20	Válvula esférica	-101-
2	20	Codo	
3	10	Pieza en T	
4	10	Reductor de 2d a d	

O

CONSUMO DE AIRE DE LA RED

- Cantidad de unidades consumidoras y consumo de aire de cada una.
- Duración de la conexión de las unidades consumidoras.
- Factor de simultaneidad (no todos los elementos trabajan al mismo tiempo).
- Pérdidas por desgaste de las unidades consumidoras y por fugas en la red.

Consumo medio de máquinas y herramientas neumáticas

Dispositivo neumático	Consumo (Nitros/s)	Dispositivo neumático	Consumo (Nitros/s)	Dispositivo	Consumo (Nitros/s)
Elevador neumático 0.5-5.0 Ton	20-55	Taladradora 1 kW			36
Taladro	3-22	Taladradora 2 kW	35	Motor neumático 3,5 kW	84
Amoladora	5-824	Lijadora 0,75 kW	17	Martillo cincelador	8
Llave neumática de impacto	8-14	Lijadora 1,5 kW	28	Cilindro de avance	16
Pistola (general)	8	Destornillador neumáti- co 0,3 kW	5	Pistola de inyección	10
Pistola de chorro de arena	20-32	Destornillador percusor	15 a 30	Cortador de roscas	16

CÁLCULO DEL CONSUMO DE AIRE UN CILINDRO NEUMÁTICO

Consumo medio en una carrera doble:

Consumo (Kg) = 2 * Carrera émbolo (mm) * (Consumo específico (kg/mm de carrera)

Consumo
$$(kg) = 2 * 500 mm *? \frac{kg}{mm} de carrera) =? kg$$

Consumo específico de aire de un cilindro neumático (kg/mm)

CÁLCULO DEL CONSUMO DE AIRE UN CILINDRO NEUMÁTICO

Consumo medio en una carrera doble:

Consumo
$$(Kg) = 2 * 500 mm * 0,000016 \frac{kg}{mm} de \ carrera) = 0,016 kg$$

CÁLCULO DEL CONSUMO DE AIRE UN CILINDRO NEUMÁTICO

Caudal volumétrico normalizado en una carrera doble:

$$Q_{\scriptscriptstyle N} = \frac{2*Carrera*Consumo~específico~(Kg \, / \, mm~carrera)}{1,2~Kg \, / \, m^3}$$

$$Q_N = rac{2*500 \ mm * 0,000016 rac{kg}{mm} carrera}{1,2 \ kg/m^3} = 0,013 Nm^3$$

CÁLCULO DEL CONSUMO DE AIRE UN CILINDRO NEUMÁTICO

Caudal necesario en una carrera:

$$Q_{hora} = \frac{0,0065 \, Nm^3}{2 \, segundos} = 0,00325 \frac{Nm^3}{s} = 3600 \, \frac{s}{h} * 0,00325 \, Nm^3 = 11,7 \, Nm^3/h$$

FACTOR DE USO

Cuanto tiempo es utilizado el dispositivo por vez.

Dispositivo neumático de consumo	Factor de uso (duración de la conexión a la red)
Taladradora	30%
Lijadora	40%
Martillo cincelador	30%
Mortero	15%
Moldeadora	20%
Pistola neumática	10%
Máquina para alimentar piezas	80%

FACTOR DE SIMULTANEIDAD

Cuantos equipos consumen aire al mismo tiempo.

N° Dispositivos neumático de consumo	Factor de simultaneidad	Nº Dispositivos neumático de consumo	Factor de simultaneidad	
1 1		9	0,73	
2	0,94	10	0,71	
3	0,89	11	0,69	
4	0,86	12	0,68	
5	0,83	13	0,67	
6	6 0,8		0,66	
7	0,77	15	0,65	
8	0,75	100	0,2	

Consumo de aire de la Instalación

$$Q(l/s) = \sum_{i=1}^{n} (\#unidades \times consumo \ por \ unidad \ (l/s) \times \frac{factor \ uso}{100} \times factor \ simultaneidad)$$

ACTIVIDAD: Calcular el consumo de aire medio para la instalación

ltem	Unidades	Herramienta	Consumo NI/s	Factor de uso	Factor de simultaneidad	Caudal
			•	-	Total	0

Item	#	Herramienta	Consumo	Factor de	Factor de	Caudal
			NI/s	uso	Simultaneidad	I/s
1	2	Taladradora 1kW	18	0,3	0,6	6,48
2	1	Taladradora 2kW	35	0,3	0,6	6,3
3	3	Pistola Neumática	8	0,1	0,6	1,44
4	1	Pistola Chorro de arena	30	0,1	0,6	1,8
5	1	Lijadora 1,5 kW	28	0,4	0,6	6,72
6	2	Destornillador Neumático 0,3 kW	5	0,1	0,6	0,6
		Cilindro Neumático de Avance				
7	5	(maquinaria neumática)	16	0,8	0,6	38,4
8	5	Cilindro Neumático Individual	3,25	0,4	0,6	3,9
Total	20					65,64

Consumo de aire de la Instalación - Corregido

$$Q_{corregido}(l/s) = \left[Q + \left[Q * \frac{\% Reserva}{100}\right] + \left[Q * \frac{\% Reserva}{100} * \frac{\% Fugas}{100}\right]\right] * 2$$

% Reserva

: aire disponible para futuras ampliaciones.

% Fugas

: compensación por posibles fugas en la línea.

Factor 2

: el consumo medio de aire es entre el 20% y 60%

del consumo máximo de aire.

Reserva: 30% Fugas: 10%

$$Q_{corregido} = 65,64 * (1+0,3+0,3*0,1) * 2 = 174,6 \frac{l}{s}$$

Cálculo del diámetro interior de la tubería

$$d = \sqrt[5]{1,6 \times 10^3 \times Q^{1,85}(m^3/_S) \times \frac{Longitud\ tubo\ (m)}{P\'{e}rdida\ de\ presi\'{o}n\ (Pa) \times Presi\'{o}n\ de\ Trabajo(Pa)}}$$

$$d = \sqrt[5]{1,6 \times 10^3 \times 0,175^{1,85} (m^3/s) \times \frac{300(m)}{10000 (Pa) \times 700000 (Pa)}} = 77mm$$

Cálculo de pérdidas de carga por accesorios

	Longitudes equivalentes en metros									
Denominación	Accesorio	Diámetro interior del tubo en mm.								
		9	12	14	18	23	40	50	80	100
Válvula esférica	-101-	0,2	0,2	0,2	0,3	0,3	0,5	0,6	1	1,3
Codo	7	0,6	0,7	1	1,3	1,5	2,5	3,5	4,5	6,5
Pieza en T	7	0,7	0,85	1	1,5	2	3	4	7	10
Reductor de 2d a d		0,3	0,4	0,5	0,5	0,6	0,9	1	2	2,5

Item	Cantidad	Denominación	Accesorio	Tubería diámetro interior 100 mm	Longitud equivalente (m) accesorios Taller
1	20	Válvula esférica	-101-	1,3	26
2	20	Codo		6,5	130
3	10	Pieza en T		10	100
4	10	Reductor de 2d a d		2,5	25
Longitud	equivalente to	tal Accesorios Taller, en metro	S		281

Cálculo del diámetro interior de la tubería

$$d = \int_{0}^{5} 1,6 \times 10^{3} \times Q^{1,85}(m^{3}/s) \times \frac{Longitud\ tubo\ (m)}{P\'{e}rdida\ de\ presi\'{o}n\ (Pa) \times Presi\'{o}n\ de\ Trabajo(Pa)}$$

$$d = \sqrt[5]{1,6 \times 10^3 \times 0,175^{1,85} (m^3/s) \times \frac{581(m)}{10000 (Pa) \times 700000 (Pa)}} = 88mm$$

Función de los tanques acumuladores

- Rendimiento energético de la estación de compresores, reduciendo los arranques innecesarios de otros equipos, así como el número de ciclos carga-descarga del compresor.
- Calidad del aire comprimido, eliminando parte del condensado contenido en el aire, reduciendo carga al secador.
- Reducción de las fluctuaciones de presión en el sistema.
- Cubrir picos de demanda repentinos por periodos de tiempo reducido, (este rubro, representa el 1% de las aplicaciones de los tanques).

Cálculo del tanque acumulador

$$V = \frac{V_1 \times (D_f - D_f^2) \times T_0}{Z \times D_p \times T_1}$$

V : Volumen del acumulador (m³)

V₁: Capacidad del compresor (m³/h)

V₂: Consumo de la planta (m³/h)

D_f: Factor de carga V2/V1

Z : # de ciclos de carga descarga permitidos por hora para el compresor.

D_p: Diferencial de presión del compresor (bar)

T₀: Temperatura de aire comprimido (°K)

T₁: Temperatura ambiente (°K)

Para la instalación diseñada considerar que se ha seleccionado un compresor de 130 HP y 12m³/min y el número de ciclos de carga descarga permitidos para el compresor son 36 por hora. Considerar la temperatura de aire comprimido en 40°C y la temperatura ambiente en 18°C.

$$V = \frac{720 \times (0,87 - 0,87^2) \times 313}{36 \times 1 \times 291} = 2,43m^3$$

Herramienta para cálculos

https://compressor.atlascopco.com/#/app/home

Dimensiones

- Diámetro interno de tubería :100mm
- Compresor: 130 HP; 12 m3/h
- Secador de aire : 12 m3/h
- Tanque: 2.43 m3

Conclusiones

- Existen tres tipos de redes de aire comprimido: abierta, cerrada y mixta.
- Los elementos de una red neumática se instalarán de acuerdo a la necesidad de la herramienta a utilizar.
- Para hallar el diámetro de la tubería de una red de aire comprimido es necesario hallar el caudal utilizado y la caída de presión admisible.
- El tanque de almacenamiento se diseña para soportar los picos de consumo de la red.

LOGRO CONSEGUIDO

- Puedes identificar los tipos de redes de aire comprimido existentes.
- Puedes determinar el caudal de aire y el diámetro de tubería requeridos para una red de aire comprimido.

GRACIAS

