Are Monoidal Fibrations Instances Of 2-fibrations?

Sina Hazratpour* sinahazratpour@gmail.com

February 08, 2018

Abstract

In these notes I will relate the notion to monoidal fibration introduced in (Shulman 2009) to the notion of 2-fibration in (Hermida 1999), (Bakovic 2012) and (Buckley 2014).

According to (Shulman 2009):

DEFINITION 0.1. Suppose $(\mathcal{X}, \otimes, k)$ and $(\mathcal{C}, \otimes', k')$ are monoidal categories. A **monoidal** fibration is a functor $P \colon \mathcal{X} \to \mathcal{C}$ such that that

- 1. P is a Grothendieck fibration,
- 2. P is a strict monoidal functor, and
- 3. The tensor product \otimes of \mathcal{X} preserves cartesian arrows.

If P is also an opfibration and \otimes preserves operatesian arrows, we say that P is a **monoidal** bifibration.

In a monoidal fibration with cartesian base, each fibre is monoidal and each transition functor f^* is strong monoidal. Shulman calls the monoidal structure on \mathcal{X} the **external** monoidal structure, and the monoidal structures on fibres the **internal** monoidal structures.

Construction 0.2 (fibrewise/internal monoidal structure). Let $P: (\mathcal{X}, \otimes, k) \to (\mathcal{C}, \times, 1)$ be a cloven monoidal fibration, and let $B \in \mathcal{C}$. We define a monoidal structure on the fiber \mathcal{X}_B as follows. The unit object is $k_B = !_B^* k$, and the tensor product is given by

$$X \boxtimes Y = \Delta_B^*(X \otimes Y)$$

where $X, Y \in \mathcal{X}_B$.

^{*}School of Computer Science, University of Birmingham, Birmingham, UK.

EXAMPLE 0.3. A cloven fibration $(\operatorname{cod}, \rho): \mathcal{C}^{[1]} \to \mathcal{C}$ is precisely a category \mathcal{C} with a choice of pullbacks in \mathcal{C} . The fibre over Γ is the slice category \mathcal{C}/Γ , and base change functors are pullback functors. Then fibrewise/internal tensor product in \mathcal{C}/Γ is fibre product (aka pullback): if $p: X \to \Gamma$, and $q: Y \to \Gamma$, then $X \boxtimes Y = X \times_{\Gamma} Y$, and $p \boxtimes q = \Delta^*(p \times q)$ since

$$\begin{array}{ccc} X \times_{\Gamma} Y \longrightarrow X \times Y \\ p \boxtimes q & & & p \times q \\ & & & & \\ \Gamma & \longrightarrow \Gamma \times \Gamma \end{array}$$

We want to relate monoidal fibration structure of P to 2-fibration structure of delooping functor \mathbb{P} of P. First, we recall the definition of strict 2-fibration from (Hermida 1999) and weak 2-fibration from (Bakovic 2012) and (Buckley 2014):

Suppose $\mathbb{P} \colon \mathbb{X} \to \mathbb{C}$ is a 2-functor. Inspired by the case of 1-functors we define 2-cartesian 1-cells as follows.

DEFINITION 0.4. A 1-cell $u: X \to Y$ in \mathbb{X} is **cartesian** with respect to \mathbb{P} whenever for each 0-cell W in \mathbb{X} the following commuting square is a (strict) pullback diagram in 2-category \mathfrak{Cat} .

$$\begin{array}{ccc} \mathbb{X}(W,X) & \xrightarrow{u_*} & \mathbb{X}(W,Y) \\ & \mathbb{P}_{W,X} & & & & \downarrow \mathbb{P}_{W,Y} \\ \mathbb{C}(\mathbb{P}W,\mathbb{P}X) & & & \mathbb{C}(\mathbb{P}W,\mathbb{P}Y) \end{array}$$

REMARK 0.5. By considering object component of pullback diagram above we observe that every 2-cartesian 1-cell is automatically 1-cartesian in the usual sense.

This definition gives us two layers of cartesian properties of 1-cells w.r.t. \mathbb{P} in \mathbb{X} . First of all, u is 1-cartesian as usual. Second, every 2-cell $\alpha \colon v \Rightarrow w \colon W \to Y$ and every 2-cell $\sigma \colon g \Rightarrow h \colon \mathbb{P}W \to \mathbb{P}X$ with $\mathbb{P}(\alpha) = \mathbb{P}(u) \cdot \sigma$ there is a unique lift ϕ of σ such that $u \cdot \phi = \alpha$.

DEFINITION 0.6. A 2-functor $\mathbb{P} \colon \mathbb{X} \to \mathbb{C}$ is a 2-fibration if

- 1. any 1-cell in \mathbb{C} of the form $f: A \to \mathbb{P}X$ has a 2-cartesian lift,
- 2. \mathbb{P} is a local fibration, that is the functor $\mathbb{P}_{X,Y} \colon \mathbb{X}(X,Y) \to \mathbb{C}(\mathbb{P}X,\mathbb{P}Y)$ is a Grothendieck fibration for every pair of objects X, Y in \mathbb{X} , and
- 3. cartesian 2-cells in X are closed under pre-composition and post-composition with arbitrary 1-cells.

Now, suppose $P \colon (\mathcal{X}, \otimes, k) \to (\mathcal{C}, \otimes', k')$ is monoidal fibration. The fact that P is a strict monoidal functor, makes it possible to define a (strict) delooping 2-functor $\mathbb{P} \colon \mathbb{B}\mathcal{X} \to \mathbb{B}\mathcal{C}$ of P. The condition of local fibration of \mathbb{P} corresponds exactly to the fact that P is fibration of categories. The third condition in definition (0.6) says that cartesian morphisms in \mathcal{X} are preserved under tensoring. Now, we want to see what condition in definition (0.6) says. First of all it gives, for every object A of \mathcal{C} , a lift \widetilde{A} in \mathcal{X} such that \widetilde{A} is cartesian, that is given objects X in \mathcal{X} and B in \mathcal{C} with $A \otimes' B = P(X)$, there is a unique object \overline{B} in \mathcal{X} such that $\widetilde{A} \otimes \overline{B} = X$. Moreover, given any morphisms $f \colon X_0 \to X_1$ and a morphism $g \colon B_0 \to B_1$ with $A \otimes' g = P(f)$ there is a unique morphism $\overline{g} \colon \overline{B}_0 \to \overline{B}_1$ such that $\widetilde{A} \otimes \overline{g} = f$.

References

Bakovic, I. (2012), 'Fibrations in tricategories', 93rd Peripatetic Seminar on Sheaves and Logic, University of Cambridge.

Buckley, M. (2014), 'Fibred 2-categories and bicategories', vol. 218, 1034–1074.

Hermida, C. (1999), 'Some properties of fib as a fibred 2-category', vol. 134, 83–109.

Shulman, M. (2009), 'Framed bicategories and monoidal fibrations'.

URL: arXiv:0706.1286