Standard High school-zzana

Phase difference

This is the angle by which a wave leads or lags behind another wave.

Consider waves represented by the following sketches.

All the waves are not in phase.

- Wave 2 and 3 are said to be completely out of phase.
- Wave 2 leads wave 1 by an angle $\theta = \frac{\pi}{2}$ radians or 90°
- Wave I lags behind wave 2 by I radians or 90°
- The angle I radians or 90° is the Phase difference between the two

waves.

Wave 1 can be represented by $Y = \sin \varphi$, $y = \sin \varphi t$ wave 2 can be represented by $Y = \sin(\varphi t + \frac{\pi}{2})$ wave 3, the equation is $Y = \sin(\varphi t - \frac{\pi}{2})$

Equation of a progressive wave

Consider a waveform below.

Suppose the wave generated travels towards the right, the particle at P a distance x from O will lag behind by a phase angle of $y_1 = asin(wt - \phi)$ From the figure above the Phase angle, $2\pi = \lambda$ and the Phase angle $\phi = \infty$ ران - ر = سد $\phi = \infty - iv$ egn ivs ÷ egn ilis $\Phi = x$ $\Rightarrow \Phi = 2\pi \infty$ substitute * in eqn ii) リ、= asin(wt-到文) But W = 211 = 25 Y, = a sin(- 2 - 2 x)

$$y_1 = a \sin 2\pi \left(\frac{t}{T} - \frac{\infty}{\lambda}\right)^{-\frac{4}{3}}$$

Generally for a wave travelling to the right the equation of a progressive wave is

$$y = a \sin 2\pi \left(\frac{t}{T} - \frac{\infty}{\lambda}\right)$$

Note If the wave is travelling to the left it arrives at p before O. This makes the Vibration at P to lead the Vibration at O and its equation is given by

$$y = a \sin 2\pi \left(\frac{t}{T} + \frac{x}{\lambda}\right)$$

Worked Examples.

1. A displacement of travelling wave in the direction is given by $y = a \sin_2 \pi \left(\frac{t}{0.5} - \frac{x}{0.2} \right) m$ Find the speed of the wave. Given $y = a sin a \Pi \left(\frac{t}{0.5} - \frac{\infty}{0.2} \right) m$ Compare with y = asin 211 (t - 2 $\Rightarrow T = 0.5s, \lambda = 0.2m$ $f = \frac{1}{0.5}$, f = 2HzRemember the unit for the But V = fx V = 2 x 0.2 Y = 0.4 ms

displacement is is metres, so you don't change to any other units .

2. A sound wave propagating in the x-direction is given by
$$y = 0.4 \sin \left[10 \left(200t - \frac{x}{100} \right) \right] m$$
 find the speed of the wave.

Given $y = 0.4 \sin \left[10 \left(200t - \frac{x}{100} \right) \right] m$ Soln.

Compare with $\frac{x}{100} = 0.4 \sin \left(2000t - \frac{10}{100} \right)$
 $y = a \sin \left(\frac{2\pi t}{T} - \frac{2\pi x}{2} \right)$
 $\frac{2\pi}{T} = 2000$
 $\frac{2\pi}{T} = 2000$
 $\frac{2\pi}{T} = \frac{2\pi}{2000}$
 $\frac{2\pi}{T} = \frac{1}{3.14 \times 10^3} = \frac{1}{3.14 \times 10^3$

Also,
$$2\pi = \frac{10}{100}$$

$$\frac{2\pi}{\lambda} = \frac{1}{10}$$

$$\lambda = 10 \times 2\pi$$

$$\lambda = 62.8m$$
From $V = f \lambda$

$$V = 318 \times 62.8$$

$$V = 2.0 \times 10^4 \text{ms}$$

3. The displacement y in meters of a plain progressive wave is given by

Y = a sin 2 T (100t - 10 X)

find the wavelength of the wave and the speed of the

Given
$$y = a\sin 2\pi \left(100t - \frac{10}{17}x\right)$$

Compare with $y = a\sin 2\pi \left(\frac{t}{T} - \frac{10}{2}x\right)$
 $\Rightarrow 100 = 1$
 $T = \frac{1}{100}$
 $\Rightarrow 100 = \frac{1}{T}$
 $\Rightarrow 100 = \frac{1}{T}$

Exercise

1. The displacement of a particle in a progressive wave is

y = 2 sin[2π(0.25x-100t)]

where x and y are in cm and t is in seconds. Calculate

" Wavelength

is velocity of propagation of the

(An.) = 4.0 cm, Y=4 mis) 2. The displacement y given of a

wave travelling in the x-direction

at time t is

 $y = a \sin 2\pi \left(\frac{t}{\sigma_1} - \frac{x}{x \cdot \sigma}\right) meter$

Find is the velocity of the wave

in The period of the wave

3. A plane progressive wave is given by y = asin (100πt - 10πx) where x and y are in millimeters and t is in seconds. calculate the 1) wavelength 11) Velocity of propagation (11) Period T of the wave. 4. The displacement in metres of a plane progressive wave is given by the equation y = 0.5 sin[π(200t-20x)] Find is wavelength ii) Speed of the wave. 10