App Controlled Car

The Three Commas:
Bret Pontillo, Vansh Patel, Alec Taren

Problem Statement

- Constructing and controlling a car via an iPhone application.
- Learn to control hardware via wireless module.
- Develop our mobile development skills.
- Our team would need to learn how to design a user friendly interface.
- A project sponsor would approve this project, as there is a market of potential customers with an iphone.

Solution

- A car controlled by a user with an iPhone application, with a easy to use interface.
- The car can be controlled when it can connect to the same wifi network as the user's iphone.
- It will be able to traverse a flat surface, and will have leds to simulate car lights.
- The car will have four wheels, with batteries powering everything on the car.

Specifications - The Car:

- Will be at least 2 wheel drive.
- The car will weigh less than 3 pounds.
- Top speed will reach up to 5 mph.
- The car will have a battery life of at least 2 hours.
- The car will have at least two LEDs.

Specifications - The Software:

- Will be able to maneuver the car in any direction on a 2D plane.
- Will control the car via an iPhone interface.
- Will remotely turn the car on and off.

Block Diagram

Software Diagram using TouchOSC

Technical Details

- Circuit Board Design
 - The PCB board design will allow all the other components to come together.
- Mechanical Assembly
 - Assembly will require soldering the LEDs onto the PCB board.
 - Making sure all the components can communicate.
- iPhone Application
 - Utilize TouchOSC Development Environment

Technical Details - Entire System

- The car will consist of:
 - o a chassis that will contain a PCB board with connections to Arduino UNO microcontroller
 - Adafruit Huzzah ESP 8266
 - o LEDs
 - This will all be powered by batteries.
- The software will use the TouchOSC Application for iPhones.
 - This uses sliders as the graphic user interface.
 - The GUI is mapped to the values that will utilize MIDI protocol.
 - Messages will be sent in UDP packets to the ESP 8266 module.
 - The app will control the direction and velocity of the car.

Schedule

Manpower

- Circuit Board Design Lead Alec
 - PCB board design
 - Circuit Specification Requirements
- Mechanical Configuration Lead Vansh
 - Parts Assembly
 - Solder PCB
 - Assist Bret with iPhone control development
- iPhone Control Development Lead Bret
 - GUI Design
 - Communicate to car via wireless network
 - Control hardware remotely

Cost Estimate (based on 90 hours of work)

BILL OF MATERIALS	INDIVIDUAL COST	<u>AMOUNT</u>	FINAL COST
CAR CHASSIS	\$20.00	1	\$20.00
ADAFRUIT HUZZAH ESP 8266	\$9.95	1	\$9.95
ARDUINO UNO	\$24.95	1	\$24.95
BATTERIES	\$0.50	4	\$2.00
LED'S	\$0.25	4	\$1.00
TouchOSC Environment	\$5.00	1	\$5.00
PCB	\$75	1	\$75.00
EMPLOYEE COST (Including Overhead)	\$160.00	3	\$43,200.00
		PROJECT COST	\$43,337.90

References - Alec Taren

EDUCATION

The Pennsylvania State University, University Park, PA - May 2016 Bachelor of Science in Electrical Engineering

EXPERIENCE

Pennsy Supply, Subsidiary of Oldcastle Mechanical Engineering Internship Pittston, PA May 2015-August 2015

- Assisted operating and repairing large scale machinery.
- Put together databases of equipment and preventative maintenance schedules.
- Assisted quality control test asphalt and stone product.
- Worked with project managers on putting together bids for state jobs

SKILLS

Programming: C++, MATLAB, Multisim, Labview, Microsoft Excel

References - Vansh Patel

EDUCATION

The Pennsylvania State University, University Park, PA - May 2016 Bachelor of Science in Electrical Engineering:

EXPERIENCE

Syska Hennessy Group, NY, NY - June 2015 - Aug. 2015 *ENGINEER INTERN*

- Worked closely with project manager on large scale projects such as: Healthcare Facilities, Airports, Gov't Offices and Corporate Headquarters
- Utilized AutoCAD to draw out layouts according to local codes, industry standards and guidelines
- Designed control systems, I/O points list and develop sequence of operations

SKILLS: MATLAB, AUTOCAD, LabVIEW, MICROSOFT SUITE, REVIT, ADS

References - Bret Pontillo

EDUCATION

The Pennsylvania State University, University Park, PA - May 2016 Bachelor of Science in Electrical Engineering: Minor in Mathematics

EXPERIENCE

AIG, Livingston, NJ - June 2015 - Aug. 2015

Technology Summer Analyst

- Developed knowledge of cyber security within the AIG Technology Risk Office.
- Streamlined the global recertification of distribution lists, to reduce the risk of phishing emails, by developing a project timeframe and documentation
- Devised a three-piece plan to reduce future risk and increase project efficiency.

Telemetrics Inc., Mahwah, NJ - June 2014 - Aug. 2014

Engineering Intern

- Tested and developed new software for use with robotic camera controls
- Gained exposure to a variety of departments including engineering, manufacturing, testing, international relations, supply chain management

SKILLS

Programming: Certified LabVIEW Associate Developer, C++, C, MATLAB, ABEL, Verilog, MIPS, Assembly Language, Multisim, Ultiboard