

미디어기술콘텐츠학과 강호철

■개념

- 참조영상에서 템플릿영상과의 매칭 위치 탐색
- 입력영상에서 작은 크기의 부분 영상 위치 검색
- 템플릿: 찾고자 하는 대상이 되는 작은 크기의 영상

■ OpenCV 함수

cv2.matchTemplate(image, templ, method[,result]) → result

method

TemplateMatchModes 열거형 상수	설명
TM_SQDIFF	제곱차 매칭 방법
	$R(x,y) = \sum_{x',y'} (T(x',y') - I(x+x',y+y'))^2$
TM_SQDIFF_NORMED	정규화된 제곱차 매칭 방법
	$R(x,y) = \frac{\sum_{x',y'} (T(x',y') - I(x+x',y+y'))^2}{\sqrt{\sum_{x',y'} T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}$
TM_CCORR	상관관계 매칭 방법
	$R(x,y) = \sum_{x',y'} T(x',y') \cdot I(x+x',y+y')$
TM_CCORR_NORMED	정규화된 상관관계 매칭 방법
	$R(x,y) = \frac{\sum_{x',y'} T(x',y') \cdot I(x+x',y+y')}{\sqrt{\sum_{x',y'} T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}$

- OpenCV 함수
 - cv2.matchTemplate(image, templ, method[,result]) → result

method

TemplateMatchModes 열거형 상수	설명
TM_CCOEFF	상관계수 매칭 방법
	$R(x,y) = \sum_{x',y'} T'(x',y') \cdot I'(x+x',y+y')$
	$T'(x', y') = T(x', y') - 1/(w \cdot h) \cdot \sum_{x', y'} T'(x'', y'')$
	$I'(x+x',y+y') = I(x+x',y+y') - 1/(w \cdot h) \cdot \sum_{x',y'} I(x+x'',y+y'')$
TM_CCOEFF_NORMED	정규화된 상관계수 매칭 방법
	$R(x,y) = \frac{\sum_{x',y'} T'(x',y') \cdot I'(x+x',y+y')}{\sqrt{\sum_{x',y'} T'(x',y')^2 \cdot \sum_{x',y'} I'(x+x',y+y')^2}}$

Method

■ 특징

- TM_SQDIFF는 제곱차(squared difference) 매칭 방법을 의미함
- 이 경우 두 영상이 완벽하게 일치하면 0이 되고 서로 유사하지 않으면 0보다 큰 양수를 갖음
- TM_CCORR은 상관관계(correlation) 매칭 방법을 의미함
- 이 경우 두 영상이 유사하면 큰 양수가 나오고 유사하지 않으면 작은 값이 나옴
- TM_CCOEFF는 상관계수(correlation coefficient) 매칭 방법을 의미함
- 이는 비교할 두 영상을 미리 평균 밝기로 보정한 후 상관관계 매칭을 수행하는 방식임
- TM_CCOEFF 방법은 두 비교 영상이 유사하면 큰 양수가 나옴
- 유사하지 않으면 0에 가까운 양수 또는 음수가 나오게 됨
- TM_SQDIFF, TM_CCORR, TM_CCOEFF 방법에 대해 각각 영상의 밝기 차이 영향을 줄여 주는 정규화 수식이 추가된 TM_SQDIFF_NORMED, TM_CCORR_NORMED, TM_CCOEFF_NORMED 방법도 제공함
- TM_CCORR_NORMED 방법은 매칭 결과값이 0에서 1 사이의 실수로 나타남
- TM_CCOEFF_NORMED 방법은 매칭 결과 값이 -1에서 1 사이의 실수로 나타남
- 두 방법 모두 결과값이 1에 가까울수록 매칭이 잘 되었음을 의미함

■ 실습

화이트 보드

영상처리 프로그래밍 기초

- Python으로 배우는 OpenCV 프로그래밍
 - 김동근 지음
 - 가메출판사, 2018
- OpenCV4 로 배우는 컴퓨터 비전과 머신러닝
 - 황선규 지음
 - 길벗, 2019

