A Random Oscillator

Prof. Americo Cunha Jr

Rio de Janeiro State University - UERJ

americo.cunha@uerj.br

www.americocunha.org

Mass-Spring-Damper Oscillator

$$m\ddot{x} + c\dot{x} + kx = 0$$
 $\dot{x}(0) = v_0$ $x(0) = x_0$

Mass-Spring-Damper Oscillator

$$m\ddot{x} + c\dot{x} + kx = 0$$
 $\dot{x}(0) = v_0$ $x(0) = x_0$

What happens if the stiffness k is random ?

Parametric probabilistic approach

Probability space: $(\Omega, \Sigma, \mathcal{P})$

Stiffness k is modeled as a random variable

$$K: \omega \in \Omega \mapsto K(\omega) \in \mathbb{R}$$
.

Displacement x has to be modeled as a random process

$$X_t: (\omega, t) \in \Omega \times \mathcal{T} \mapsto X(\omega, t) \in \mathbb{R},$$

which respect the stochastic equation of motion

$$m\ddot{X}(\omega,t) + c\dot{X}(\omega,t) + K(\omega)X(\omega,t) = 0,$$

$$\dot{X}(\omega,0) = v_0, \quad X(\omega,0) = x_0.$$

Contruction of the probabilistic model

Known theoretical information:

- positive support Supp $p_K \subset (0, +\infty) \Longrightarrow K > 0$ a.s.
- finite variance $\mathbb{E}\left\{K^2\right\}<+\infty$
- known mean $\mathbb{E}\left\{K\right\} = \mu_K$
- inverse finite variance $\mathbb{E}\left\{K^{-2}\right\}<+\infty$

Contruction of the probabilistic model

Known theoretical information:

- positive support Supp $p_{\mathcal{K}} \subset (0, +\infty) \Longrightarrow \mathcal{K} > 0$ a.s
- finite variance $\mathbb{E}\left\{K^2\right\}<+\infty$
- known mean $\mathbb{E}\left\{K\right\} = \mu_K$
- ullet inverse finite variance $\mathbb{E}\left\{\mathcal{K}^{-2}\right\}<+\infty$

$$p_{K}(k) = \mathbb{1}_{(0,+\infty)}(k) \frac{1}{\mu_{K}} \frac{\delta_{K}^{-2\delta_{K}^{-2}}}{\Gamma(\delta_{K}^{-2})} \left(\frac{k}{\mu_{K}}\right)^{\delta_{K}^{-2}-1} \exp\left\{-\frac{k/\mu_{K}}{\delta_{K}^{2}}\right\}$$

Gamma distribution is obtained via MaxEnt Principle.

rand_oscilator.m (1/7)

```
clc
   clear all
   close all
                % initial time of analysis (s)
   t0 = 0.0;
   t1 = 30.0; % final time of analysis (s)
   Ndt = 300:
                % number of time steps
9
                % system mass (kg)
   m = 1.0;
                % damper constant (N.s/m)
   c = 0.1:
   k = 5.0;
                % stiffness constant (N/m)
   x0 = 1.0;
                % initial position (m)
   v0 = 1.0;
                % initial velocity (m/s)
```


rand_oscilator.m (2/7)

```
% define stochastic parameters
rng_stream = RandStream('mt19937ar','Seed',30081984);
RandStream.setGlobalStream(rng_stream);

% number of samples
Ns = 256;
% preallocate memory for displacement and velocity
Qd = zeros(Ndt,Ns);
Qv = zeros(Ndt,Ns);
% stiffness mean (N/m)
mean_k = k;
% stiffness coef. var
coefvar_k = 0.15;
% generate stiffness with Gamma distribution (N/m)
k = gamrnd(1/coefvar_k^2,mean_k*coefvar_k^2,[Ns,1]);
```


rand_oscilator.m (3/7)

```
% init. cond. and interval of analysis
    IC = [x0 v0]; tspam = linspace(t0,t1,Ndt);
    % Monte Carlo method
    for n=1:Ns
6
        % system of equations
        dvdt = 0(t,v)[0 1; -k(n) -c]*v;
9
        % ODE solver Runge-Kutta45
        [t,v] = ode45(dydt,tspam,IC);
        % time series of system displacement (m)
14
        Qd(:,n) = y(:,1);
        % time series of system velocity (m/s)
16
        Qv(:,n) = v(:,2);
    end
```


rand_oscilator.m (4/7)

```
% sample mean
    Od smean = mean(Od'):
    Qv_smean = mean(Qv');
    % temporal mean
    Qd_tmean = mean(Qd);
    Qv_{tmean} = mean(Qv);
8
    % std. dev.
    Qd_std = std(Qd');
    Qv \text{ std} = \text{std}(Qv'):
    % confidence band
14
    Pc = 95:
    r_plus = 0.5*(100 + Pc); r_minus = 0.5*(100 - Pc);
16
    Qd_upp = prctile(Qd',r_plus);
    Qv_upp = prctile(Qv',r_plus);
    Qd_low = prctile(Qd',r_minus);
18
19
    Qv_low = prctile(Qv',r_minus);
```


rand_oscilator.m (5/7)

```
% histogram of temporal mean
Nbins = round(sqrt(Ns));
[Qd_bins,Qd_freq] = randvar_pdf(Qd_tmean,Nbins);
[Qv_bins,Qv_freq] = randvar_pdf(Qv_tmean,Nbins);

% kernel density estimator for temporal mean
[Qd_ksd,Qd_supp] = ksdensity(Qd_tmean);
[Qv_ksd,Qv_supp] = ksdensity(Qv_tmean);
```


rand_oscilator.m (6/7)

```
figure(1)
    fh1 = plot(t,Qd_smean,'b','linewidth',3); hold on
    fh2 = plot(t,Qd_std,'r','linewidth',3);
    fh3 = fill([t' fliplr(t')],[Qd_upp fliplr(Qd_low)],'v');
    uistack(fh3, 'top');
    uistack(fh2, 'top');
    uistack(fh1, 'top');
    legend('envelope','std','mean')
    hold off
    figure(2)
    fh1 = plot(t,Qv_smean, 'b', 'linewidth',3); hold on
    fh2 = plot(t,Qv_std,'r','linewidth',3);
    fh3 = fill([t' fliplr(t')],[Qv_upp fliplr(Qv_low)],'v');
14
15
    uistack(fh3.'top'):
16
    uistack(fh2, 'top');
    uistack(fh1, 'top');
    legend('envelope','std','mean')
18
19
    hold off
```


rand_oscilator.m (7/7)

```
figure(3)
bar(Qd_bins,Qd_freq,1.0);
hold on
plot(Qd_supp,Qd_ksd,'r','linewidth',3)
hold off

figure(4)
bar(Qv_bins,Qv_freq,1.0);
hold on
plot(Qv_supp,Qv_ksd,'r','linewidth',3)
hold off
```


Random oscillator response

References

A. Cunha Jr, Modeling and quantification of physical systems uncertainties in a probabilistic framework, In:

S. Ekwaro-Osire; A. C. Gonçalves; F. M. Alemayehu (Org.), Probabilistic Prognostics and Health Management of Energy Systems, Springer, 2017. http://dx.doi.org/10.1007/978-3-319-55852-3_8

E. T. Jaynes, Probability Theory: The Logic of Science, Cambridge University Press, 2003.

R. C. Smith, Uncertainty Quantification: Theory, Implementation, and Applications, SIAM, 2013.

T. J. Sulivan, Introduction to Uncertainty Quantification, Springer, 2015.

C. Soize Uncertainty Quantification: An Accelerated Course with Advanced Applications in Computational Engineering, Springer, 2017.

R. Ghanem, D. Higdon and H. Owhadi (Editors) Handbook of Uncertainty Quantification, Springer, 2017.

How to cite this material?

A. Cunha Jr, *A Random Oscillator*, Rio de Janeiro State University – UERJ, 2021.

These class notes may be shared under the terms of Creative Commons BY-NC-ND 4.0 license, for educational purposes only.

