

Reaction Class-Based CHON Combustion Mechanism Development

Mark E. Fuller¹, K. Alexander Heufer¹

¹Physico-Chemical Fundamentals of Combustion RWTH Aachen University

Introduction

- Interactions of NO_x (NO and NO_2) with the combustion process are increasingly relevant in engines with exhaust gas recirculation (EGR) and/or alkyl nitrate cetane enhancers
- ► Low-temperature combustion reactions with nitrogen are not well-studied and may have significant effects
- \blacktriangleright Sustainable fuels, produced from bio-based carbon feedstocks, CO_2 , and renewable electricity, contain additional functional groups whose reactions with NO_x are not well-characterized

Model Development

- ▶ Pentane isomer mechanism (CHO) of Bugler $et\ al.$ utilized as C_0 - C_5 base mechanism
- ► A sample citation[1]

Modeling results

Rapid Compression Machine (RCM)

PCFC RCM Facility

Characteristic RCM ignition experiments

- ► Ignition delay time (IDT) measurements 2 to 200 ms
- ► Variable compression ratio 9 32
- End-of-compression pressure up to 100 bar, peak 1000 bar allowed

Work-in-progress

Ab initio calculations

REFERENCES

[1] M. E. Fuller DOI: 10.1016/j.enconman.2014.08.015.