Versuchsbericht zu

V10: Teilchenidentifikation mit einem ΔE -E-Aufbau

Gruppe Ma-A-06

Chris Lippe (c_lipp02@wwu.de)

Jonathan Sigrist(j_sigrist@wwu.de)

 ${\rm Jannik\ Tim\ Zarnitz}\,({\tt j_zarn02@wwu.de})$

durchgeführt am 02.12.2019

betreut von Jens Lühder

26. Februar 2020

Inhaltsverzeichnis

1	Einl	eitung	1					
2	The	orie	2					
	2.1	Fermigasmodell des Atomkerns	2					
	2.2	Alpha-Zerfall	2					
	2.3	Wechselwirkung von Alpha-Strahlung mit Materie	4					
		2.3.1 Bethe-Bloch-Formel	4					
		2.3.2 Bragg-Peak	7					
	2.4	Halbleiter-Detektoren	8					
		2.4.1 Halbleiter	8					
		2.4.2 Der pn-Übergang	9					
	2.5	Americium-241 als Quelle	10					
3	Versuchsanordnung und -durchführung							
	3.1	Versuchsaufbau und Elektronik	12					
	3.2	Durchführung	14					
4	Datenanalyse							
	4.1	Kalibration des E -Detektors	16					
	4.2	Kalibration des ΔE -Detektors	17					
	4.3	Dickebestimmung des ΔE -Detektors	19					
	4.4	Dickebestimmung der Mylar-Folien	20					
	4.5	Bestimmung des Energieverlusts	22					
5	Sch	lussfolgerung	24					
6	Anhang							
	6.1	Unsicherheiten	25					
	6.2	Diagramme	26					
	6.3	Fit-Parameter	27					
Lit	terati	ur	28					

1 Einleitung

In der Kern- und Teilchenphysik ist es oftmals notwendig Teilchen zu identifizieren. Der im Folgenden vorgestellte ΔE -E-Aufbau bietet die Möglichkeit dies zu tun.

Konkret wird der Energieverlust ΔE von Teilchen in einem dünnen Detektor gemessen, bevor sie ihre Restenergie $E-\Delta E$ in einem zweiten Detektor deponieren. Der Zusammenhang $\Delta E(E)$ ist charakteristisch für eine Teilchensorte und lässt sich von theoretischer Seite mithilfe der Bethe-Bloch-Formel berechnen. Durch Vergleich von Theorie und Experiment lässt sich so hier beispielhaft verifizieren, dass es sich bei ²⁴¹Am tatsächlich um einen Alpha-Strahler handelt.

2 Theorie

Im Folgenden sollen zunächst die theoretischen Grundlagen für die nachfolgenden experimentellen Untersuchungen erörtert werden. Die vorgestellte Theorie basiert auf der ausgehändigten Versuchsanleitung [1].

2.1 Fermigasmodell des Atomkerns

Eine Möglichkeit, einen Atomkern modellhaft zu beschreiben, bildet das Fermigasmodell, benannt nach Enrico Fermi. Der Kern wird dabei als freies Nukleonengas beschrieben. Die Nukleonen wechselwirken untereinander nicht, sondern befinden sich in zwei Potentialtöpfen, einer für die Protonen und einer für die Neutronen. Im Gegensatz zum Vielelektronenproblem in der Atomphysik, handelt es sich bei Neutronen und Protonen um unterscheidbare Teilchenarten, weshalb sie in zwei unterschiedlichen Potentialtöpfen sitzen. In den Potentialtöpfen werden die möglichen Zustände bis zur Fermi-Energie E_F aufgefüllt. Für symmetrische Kerne ist diese:

$$E_F \approx 33 \, \text{MeV}.$$

Da es sich bei Protonen und Neutronen um Fermionen handelt, können die verschiedenen Energieniveaus nur von jeweils zwei Teilchen mit gegensätzlichem Spin besetzt werden. Außerdem ist der Potentialtopf der Protonen nicht so tief wie der der Neutronen, da die Protonen zusätzlich noch der Coulombabstoßung unterliegen. In Abbildung 1 ist das Potentialschema des Fermigasmodels nocheinmal graphisch dargestellt.

2.2 Alpha-Zerfall

Der Alpha (α) -Zerfall wurde erstmals von Ernest Rutherford beobachtet und stellt die Emission eines Heliumkerns dar. Er tritt nur bei relativ schweren Kernen auf. Dies kann man durch die hohe Bindungsenergie von ca. 7 MeV des Heliumkerns begründen. Mit steigender Massenzahl A nimmt die Bindungsenergie pro Nukleon ab, weshalb sich für schwere Kerne im Inneren zwei Protonen und zwei Neutronen als ein Heliumkern

Abbildung 1: Graphische Darstellung der beiden Potentialtöpfe für Neutronen und Protonen im Fermigasmodell. [2]

"abkapseln" können. Dieser Heliumkern ist jedoch nicht frei, sondern im Kernpotential gebunden.

Stellt man sich das Potential wie in Abbildung 1 nach dem Fermigasmodell vor, so befindet sich das α -Teilchen noch im Rechteckpotential des Kerns, jedoch oberhalb der 0 MeV-Linie. Daher ist quantenmechanisch die Wahrscheinlichkeit, mit der das α -Teilchen auf die rechte Seite des Coulombpotentials durchtunnelt ungleich null. Diese Wahrscheinlichkeit bestimmt die Zerfallsdauer und lässt durch den sogenannten Gamow-Faktor näherungsweise berechnen. Das Grundprinzip des Alpha-Zerfalls wird also mit dem Fermigasmodell verständlich. Als allgemeine Zerfallsgleichung lässt er sich schreiben als:

$${}_Z^A X_N \longrightarrow {}_{Z-2}^{A-4} Y_{N-2} + {}_2^4 \mathrm{He}_2$$

Es handelt sich also um einen Zweikörperzerfall. Aus Energie- und Impulserhaltung folgt, dass die Energie der Alpha-Teilchen diskret sein muss. Es kann jedoch mehrere diskrete Energielinien geben, je nachdem ob der Tochterkern nach dem Zerfall in einem angeregten Zustand vorliegt oder nicht.

Der Gamow-Faktor für ein Teilchen der Masse m und Energie E beim Tunneln durch ein Potential V(x) zwischen den Punkten a und b ist gegeben durch:

$$T = \exp\left[-\frac{2}{\hbar} \int_{a}^{b} \sqrt{2m\left(V(x) - E\right)} \,dx\right]$$
(2.1)

2.3 Wechselwirkung von Alpha-Strahlung mit Materie

Schwere geladene Teilchen (d. h. keine Elektronen/Positronen) verlieren beim Durchqueren eines Festkörpers die meiste Energie durch inelastische Kollisionen mit den Elektronen des Festkörpers. Bei sehr schweren Kernbruchstücken ist zudem die Wechselwirkung mit den Kernen des Mediums nicht zu vernachlässigen. Die Kollisionen mit den Elektronen können zudem in weiche und harte unterteilt werden. Bei weichen Kollisionen kommt es nur zur einer Anregung, bei harten gar zu einer Ionisation.

2.3.1 Bethe-Bloch-Formel

Der Energieverlust schwerer geladener Teilchen kann durch die Bethe-Bloch-Formel beschrieben werden. Sie lautet:

$$-\frac{\mathrm{d}E}{\mathrm{d}x} = K\rho \frac{Z}{A} \frac{z^2}{\beta^2} \left[\ln \left(\frac{2m_e \gamma^2 v^2 W_{\text{max}}}{I^2} \right) - 2\beta^2 - \delta - 2\frac{C}{Z} \right]$$
 (2.2)

Dabei ist $K = 2\pi N_A r_e^2 m_e c^2 = 0.1535 \,\mathrm{MeV} \,\mathrm{cm}^2 \,\mathrm{g}^{-1}$. Eine Erklärung aller auftauchenden Größen findet sich in der nachfolgenden Tabelle 1. Außerdem zeigt Abbildung 2 einen beispielhaften Kurvenverlauf der Bethe-Bloch-Formel für Myonen in Kupfer.

Um die einzelnen Terme besser zu verstehen, wird eine sehr verkürzte Herleitung durch klassische Überlegungen vorgestellt. Ein Teichen der Ladung $z \cdot e$, Masse m und Geschwindigkeit v fliege durch ein Medium und dabei an einem atomaren Elektron im Abstand b vorbei. Dieses Elektron sei ferner frei und anfangs in Ruhe. Das eintreffende Teilchen werde außerdem aufgrund seiner viel größeren Masse $(M \gg m_e)$ nicht aus seiner Bahn

Abbildung 2: Beispielhafter Kurvenverlauf der Bethe-Bloch-Formel für Myonen in Kupfer. Der Energieverlust ist auf Energie pro Strecke und Dichte normiert. [3]

gelenkt. Damit kann man nun den Impulsübertrag an das Elektron berechnen:

$$I = \int F \, \mathrm{d}t = e \int E_{\perp} \, \mathrm{d}t = e \int E_{\perp} \frac{\mathrm{d}t}{\mathrm{d}x} \, \mathrm{d}x = e \int E_{\perp} \frac{1}{v} \, \mathrm{d}x = \frac{2ze^2}{bv}$$

Das letzte Integral wurde mit dem Gauß'schen Integralsatz gelöst. Die aufgenommene Energie des Elektrons ist damit gegeben durch:

$$\Delta E(b) = \frac{I^2}{2m_e} = \frac{2z^2e^4}{m_ev^2b^2}$$

Man führt nun die Elektronendichte N_e ein. Dann ist der infinitesimale Energieverlust

eines Teilchens an Elektronen zwischen b und b + db gegeben durch:

$$-dE(b) = \Delta E(b)N_e dV = \frac{4\pi z^2 e^4}{m_e v^2 b}N_e db dx$$

Die Integration über b lässt sich direkt ausführen:

$$-\frac{\mathrm{d}E}{\mathrm{d}x} = \frac{4\pi z^2 e^4}{m_e v^2} N_e \ln\left(\frac{b_{\mathrm{max}}}{b_{\mathrm{min}}}\right)$$

Die Werte von b_{max} und b_{min} lassen sich physikalisch begründen zu:

$$b_{\min} = \frac{ze^2}{\gamma m_e v^2}$$
 und $b_{\max} = \frac{\gamma v}{\bar{\nu}}$

Dabei ist $\bar{\nu}$ die mittlere Frequenz aller gebundenen Zustände. Daraus ergibt sich die klassische Energieverlustformel nach Bohr. Die Bethe-Bloch-Formel folgt mithilfe einiger quantenmechanischen Korrekturen, welche hier nicht im Detail besprochen werden sollen.

Tabelle 1: Auftauchende Größen in der Bethe-Bloch-Formel.

r_e :	klassischer Elektronenradius
m_e :	Elektronenmasse
N_A :	Avogadrokonstante
I:	mittleres Anregungspotential
Z:	Kernladungszahl Absorbermaterial
A:	Massenzahl Absorbermaterial
ρ :	Dichte Absorbermaterial
z:	Ladungszahl des eintreffenden Teilchens
β :	v/c des eintreffenden Teilchens
γ :	$1/\sqrt{1-eta^2}$
δ :	Dichte-Korrekturfaktor
C:	Schalen-Korrekturfaktor
W_{max} :	max. Energietransfer pro einzelner Kollision

Für die Auswertung der Bethe-Bloch-Formel sind zusätzlich folgende Zusammenhänge notwendig:

$$W_{\rm max} \approx 2m_e v^2 \gamma^2 \qquad \text{für } M \gg m_e$$
 (2.3)

Der Dichte-Korrekturfaktor lautet:

$$\delta = \begin{cases}
0 & \text{für } X < X_0 \\
4,6052 \cdot X + C_0 + a(X_1 - X)^m & \text{für } X_0 < X < X_1 \\
4,6052 \cdot X + C_0 & \text{für } X > X_1
\end{cases} \tag{2.4}$$

Hierbei ist $X=\log_{10}(\beta\gamma)$. Für Silizium sind $I=173\,\mathrm{eV},\ C_0=-4.44,\ a=0.1492,$ $m=3.25,\ X_1=2.87$ und $X_0=0.2014$ [3]. Der Schalen-Korrekturfaktor lautet:

$$C(I, \eta = \beta \gamma) = (0.422377 \,\eta^{-2} + 0.0304043 \,\eta^{-4} - 0.00038106 \,\eta^{-6}) \cdot 10^{-6} \,I^{2}$$

$$+ (3.850190 \,\eta^{-2} - 0.1667989 \,\eta^{-4} + 0.00157955 \,\eta^{-6}) \cdot 10^{-9} \,I^{3}$$

$$(2.5)$$

Ferner gilt

$$\gamma = 1 + \frac{E_{\text{kin}}}{mc^2} \quad \text{und} \quad \beta = \sqrt{1 - \frac{1}{\gamma^2}}.$$
(2.6)

2.3.2 Bragg-Peak

Trifft ein geladenes Teilchen aus einem Kernprozess auf Materie, so wird dieser Prozess in der Bethe-Bloch-Formel zunächst durch den Bereich zwischen dem Anderson-Ziegler-Peak und der minimalen Ionisation beschrieben. Die Energie des Teilchens nimmt ab und in Folge dessen erhöht sich der Energieverlust. Da Abbildung 2 eine logarithmische Darstellung ist, wächst der Energieverlust exponentiell mit der zurückgelegten Strecke an. Hat das Teilchen beinahe seine gesamte Energie verloren, nimmt der Energieverlust schnell ab, was in Abbildung 2 durch den Lindhard-Scharff-Bereich deutlich wird. Die resultierende Bragg-Kurve ist so durch den langgezogenen niedrigen Energieverlust und den Bragg-Peak charakterisiert. Die Kurvenform ist stark von Ladung, Masse und Energie des eintreffenden Teilchens, sowie der Dichte und Ladung des Absorbermaterials abhängig. In Abbildung 3 ist beispielhaft die Bragg-Kurve von α -Teilchen in Luft gezeigt.

Abbildung 3: Bragg-Peak von Alpha-Teilchen in Luft.[4]

2.4 Halbleiter-Detektoren

Ein Halbleiter-Detektor funktioniert ähnlich zu einer Gas-Ionisationskammer. Im Gegensatz dazu werden jedoch nicht die Ionisationen eines Gases gemessen, sondern die erzeugten Elektron-Loch-Paare in der Sperrschicht einer Halbleiter-Diode. Die zum Hervorrufen einer Reaktion notwendige Energie ist bei einem Halbleiter-Detektor um eine Größenordnung kleiner, was zu mehr freien Ladungen und einer kleineren statistischen Schwankung führt. Zum besseren Verständnis von Halbleiter-Detektoren werden im Folgenden einige Grundlagen zu Halbleitern und pn-Übergängen vorgestellt.

2.4.1 Halbleiter

Im Gegensatz zu Leitern zeichnen sich Halbleiter dadurch aus, dass sie eine Bandlücke zwischen Valenz- und Leitungsband besitzen. Diese Bandlücke ist bei Raumtemperatur ($T=300\,\mathrm{K}$) gerade klein genug (\sim eV, abhängig vom Halbleitermaterial und der

Temperatur), um Elektronen durch thermische Anregung des Materials vom Valenz- ins Leitungsband zu heben. Im Vergleich zu Halbleitern ist die Bandlücke bei Isolatoren wiederum um ein Vielfaches größer. In den folgenden Experimenten wird mit Silizium ein elementarer Halbleiter der vierten Hauptgruppe des Periodensystems betrachtet. Andere Halbleiter wie Galliumarsenid sind beispielsweise aus Elementen der dritten und fünften Hauptgruppe zusammengesetzt.

Bei Raumtemperatur ist der spezifische Widerstand eines Halbleiters groß, da sich nach dem Bändermodell nur wenige Ladungsträger im Leitungsband befinden. Durch das Einbringen von Elementen der fünften Hauptgruppe (Donatoren) in das (Halbleiter-) Kristallgitter kommt eine sogenannte n-Dotierung zustande. Dabei besitzt das eingebrachte Element ein negativ geladenes Elektron zu viel in der äußeren Schale, um sich optimal in das Kristallgitter einfügen zu können. Dies führt dazu, dass dieses Elektron nicht fest an den Atomrumpf gebunden ist und durch thermische Anregung leicht ins Leitungsband befördert werden kann. Somit sinkt der spezifische Widerstand und die Leitfähigkeit steigt. Ebenso kann mit Elementen der dritten Hauptgruppe (Akzeptoren) eine sogenannte p-Dotierung erreicht werden. Dadurch kommt es zu fehlenden Elektronen im (Halbleiter-) Kristallgitter, sodass mit einer geringen thermischen Anregung ein Elektron von einem benachbarten Atom an diese Fehlstelle springen kann. Nun liegt die Fehlstelle aber am Nachbar-Atom vor, zu der wiederum ein Elektron eines anderen Atoms springen kann. Es handelt sich also um ein "bewegliches Loch", was einem Ladungstransport ("Löcherbewegung") gleichkommt. Daher sinkt der spezifische Widerstand und die Leitfähigkeit steigt.

2.4.2 Der pn-Übergang

Für den Übergang zum Halbleiter-Detektor ist der sogenannte pn-Übergang entscheidend. Bei Verwendung als elektrisches Bauteil wird er dabei auch als Diode bezeichnet. Kommen ein p- und ein n-dotierter Halbleiter in Kontakt sorgen die unterschiedlichen Konzentrationen von Elektronen und Löchern dafür, dass die Majoritätsladungsträger in die jeweils anders dotierte Halbleiterschicht diffundieren und dort rekombinieren. Die Atomrümpfe bleiben hingegen an ihren Positionen, wodurch sich im n-dotierten Bereich eine positive Raumladung und im p-dotierten Bereich eine negative Raumladung ergibt.

Dieses Potentialgefälle erzeugt im Inneren der Diode eine sogenannte Raumladungszone, welche einer weiteren Diffusion von Majoritätsladungstägern offensichtlich entgegen wirkt.

Im thermodynamischen Gleichgewicht halten sich diese beiden Prozesse die Waage. Das heißt, die Summe des Diffusionsstroms und des entgegengesetzten, durch die Raumladungszone erzeugten Driftstroms ist gleich null. Dies führt auf eine lineare Differentialgleichung erster Ordnung, deren Lösung die bekannte Kennlinie einer Diode ist:

$$I = I_0 \cdot \left[\exp\left(\frac{e U}{n k_{\rm B} T}\right) - 1 \right] \tag{2.7}$$

Dabei ist $k_{\rm B}$ die Boltzmannkonstante, T die Temperatur in K, I_0 der Sättigungsstrom, abhängig von Materialparametern und der Temperatur, sowie n der Idealitätsfaktor mit $1 \le n < 2$. Er beschreibt die Ausdehnung der Raumladungszone. Bei kleiner Ausdehnung ist n = 1 eine gute Näherung.

Liegt der n-Bereich auf positivem Potential (U < 0) wird die Diffusionsspannung $-U_{\rm Diff}$ verstärkt: Man gerät in den Sperrbereich. Bei sehr hoher Sperrspannungen wird der Stromfluss alleine durch den Driftstrom der Minoritätsladungen bestimmt ($I \approx I_0$). Bei Polung der Diode in Flussrichtung (U > 0) wird die Diffusionsspannung abgebaut und der Stromfluss wächst exponentiell. Bei einer realen Diode müssen außerdem noch Korrekturen durch auftretende Leistungsverluste vorgenommen werden. Diese werden beschrieben durch einen Parallel-/Shuntwiderstand $R_{\rm sh}$ und einen Serienwiderstand $R_{\rm s}$:

$$I = I_0 \cdot \left[\exp\left(\frac{e\left(U - I R_{\rm s}\right)}{n k_{\rm B} T}\right) - 1 \right] + \frac{\left(U - I R_{\rm s}\right)}{R_{\rm sh}}$$

$$(2.8)$$

2.5 Americium-241 als Quelle

Die im Experiment verwendete Quelle ist 241 Am. Aufgrund der Lebensdauer von 432,2 Jahren kann es nicht mehr aus der Natur gewonnen werden, sondern muss synthetisiert werden. Durch Emission eines α -Teilchens zerfällt es in 237 Np (Neptunium). Außerdem besteht die Möglichkeit einer spontanen Kernspaltung, jedoch ist die Wahrscheinlichkeit so gering, dass sie hier vernachlässigt werden kann.

Nach dem Zerfall liegt das entstehende 237 Np nur selten im Grundzustand vor. Mit einer Wahrscheinlichkeit von ca. $(84,45\pm0,10)\,\%$ zerfällt das Americium in den zweiten angeregten Zustand von Neptunium. Die aus der Energie- und Impulserhaltung bei einem Zweikörperzerfall resultierende Energie für die Alpha-Teilchen ist damit:

$$E_{\alpha} = (5485, 56 \pm 0, 12) \text{ keV}.$$

3 Versuchsanordnung und -durchführung

3.1 Versuchsaufbau und Elektronik

Der Aufbau dieses Versuchs ist in Abbildung 4 schematisch dargestellt und besteht aus einer Vakuumkammer, zwei Detektoren, drei Mylar-Folien, einer Strahlungsquelle, der signalverarbeitenden Elektronik sowie einem Computer. Die Strahlungsquelle ist Americium-241, welches nahezu ausschließlich unter Emission von α -Strahlung in angeregte Kernzustände von Neptunium-237 zerfällt. Im Innern der Vakuumkammer ist die Strahlungsquelle auf einen Folienhalter gerichtet, in welchem drei unterschiedlich dicke Mylar-Folien eingesetzt sind. Durch die Drehung der Folien lässt sich deren effektive Dicke verändern, sodass die Energie der hindurchgehenden α -Teilchen variiert wird und kontinuierliche α -Energien entstehen. Hinter dem Folienhalter sind nacheinander die zwei Detektoren positioniert. Bei den beiden Halbleiterdetektoren handelt es sich um Si-Oberflächensperrschicht-Detektoren. Dabei ist der von einem einfallenden α -Teilchen zuerst getroffene Detektor ungefähr 7 µm dick und wird als ΔE -Detektor bezeichnet. Der dem ΔE -Detektor nachstehende sogenannte E-Detektor ist circa 200 µm dick. An den ΔE -Detektor wird eine Spannung von 3V und an den E-Detektor eine Hochspannung (Abkürzung: HV) von 250 V angelegt. Die Folien und der ΔE -Detektor sind aus dem α -Strahlengang entfernbar. Beide Detektoren sind jeweils an Vorverstärker mit der Modellbezeichnung "Canberra 970" angeschlossen, welche über externe Spannungsquellen versorgt werden. Die zwei Vorverstärker sind jeweils mit einem Hauptverstärker verbunden. Wobei einer dieser beiden Hauptverstärker vom Typ "Canberra 2022" und der andere vom Typ "Ortec 575" ist. Die von den zwei Hauptverstärkern ausgehenden unipolaren Signale werden von einem CAMAC ADC (engl. analog-to-digital converter) mit der Modellbezeichnung "LeCroy 2259B" ausgelesen. Der CAMAC ADC ist über eine CAMAC-Karte mit dem Computer verbunden, welcher über eine entsprechende Datenaufnahme-Software verfügt. Zusätzlich wird das Signal des dem E-Detektor zuzuordnenden Vorverstärkers an einen Diskriminator vom Typ "Ortec 584" weitergeleitet. Dieser gibt das Signal erst ab einer bestimmten Signalhöhe weiter, sodass das Hintergrundrauschen herausgefiltert wird.

Abbildung 4: In dieser Abbildung ist der schematische Aufbau dieses Versuchs in Form eines Blockschaltbilds dargestellt. Die Abbildung wurde der Versuchsanleitung[1] entnommen und anschließend bearbeitet.

Der Diskriminator ist an einen Timer mit der Modellbezeichnung "CAEN N93B" angeschlossen, welcher das Eingangssignal in ein Rechtecksignal umwandelt. Letzteres dient als Gate für den nachstehenden CAMAC ADC und gibt den Zeitraum an, bei dem dieser Signale aufnehmen kann. Auf diese Weise werden nur koinzidente Ereignisse aufgenommen.

3.2 Durchführung

Zunächst wird der E-Detektor kalibriert. Dazu wird der ΔE -Detektor und der Folienhalter samt Mylar-Folien aus dem α -Strahlengang entfernt. Anschließend soll das vom E-Detektor gemessene α -Energiespektrum von ²⁴¹Am aufgenommen werden. Diese Kalibrierungsmessung wird solange durchgeführt, bis eine adäquate Anzahl von Ereignissen registriert worden ist.

Im zweiten Teilexperiment soll die Kalibrierung und die Dickebestimmung des ΔE -Detektors stattfinden. Dafür wird der ΔE -Detektor wieder in den α -Strahlengang eingesetzt. Danach werden die von beiden Detektoren gemessenen α -Energiespektren mit einer adäquaten Anzahl von Ereignissen aufgenommen.

Nun soll mit Hilfe des E-Detektors die Dicke von einer, zwei und drei Mylar-Folien bestimmt werden. Im Zuge dessen wird der ΔE -Detektor erneut aus dem α -Strahlengang entfernt und zuerst der Folienhalter mit einer Mylar-Folie eingesetzt, sodass sich die Folie zwischen der Strahlungsquelle und dem E-Detektor befindet. Dabei ist die Längsseite der Folie senkrecht zum α -Strahlengang auszurichten, was einem Winkel von 0° entspricht. Anschließend wird das vom E-Detektor gemessene α -Energiespektrum aufgenommen. Diese Messung soll mit zwei und mit drei Folien wiederholt werden.

Im letzten Teilexperiment wird der Energieverlust im ΔE -Detektor bei verschiedenen α -Energien bestimmt. Dazu wird der ΔE -Detektor wieder in den α -Strahlengang eingesetzt. Unter Verwendung des CAMAC-Messsystems sollen nun koinzidente Ereignisse gemessen werden. Dies bedeutet, dass nur dann ein Messwert aufgenommen wird, wenn in beiden Detektoren zur gleichen Zeit ein Ereignis stattfindet. Hierbei ist anzumerken, dass die von den Detektoren ausgehenden Signale nicht wirklich koinzident sind. Aufgrund der hohen

Geschwindigkeit eines einfallenden α -Teilchens und des geringen Abstands zwischen dem ΔE -Detektor und dem E-Detektor entsteht jedoch eine scheinbare Koinzidenz. Zunächst wird der Folienhalter samt Mylar-Folien aus dem α -Strahlengang entfernt und das Energiespektrum mit Hilfe beider Detektoren aufgenommen. Für jede der drei Mylar-Folien wird der Folienhalter mit der entsprechenden Folie in den α -Strahlengang gebracht und der Winkel zwischen der Längsseite einer Folie und dem α -Strahlengang in 15°-Schritten von 0° bis 60° variiert. Bei jedem dieser 15°-Schritte wird unter Verwendung beider Detektoren das Energiespektrum mit einer adäquaten Anzahl von Ereignissen aufgenommen. Anzumerken ist, dass vor allem bei niedrigen Zählraten die Messzeit ausreichend groß gewählt werden sollte, um genügend Datenpunkte sammeln zu können.

4 Datenanalyse

Dieser Abschnitt umfasst die Auswertung der aufgenommenen Daten. Im Folgenden werden die Unsicherheiten sämtlicher Messdaten, Messwerte und Messergebnisse nach GUM[1] bestimmt. Für weitere Angaben wird an dieser Stelle auf den Anhang in Abschnitt 6 verwiesen.

4.1 Kalibration des *E*-Detektors

In Abb. 5 ist das im Zuge der Kalibrationsmessung des E-Detektors entstandene und mit diesem aufgenommene α -Energiespektrum zu sehen. Dabei sind die Kanäle K des CAMAC

Abbildung 5: Die Abbildung zeigt das bei der Kalibrationsmessung des E-Detektors entstandene und mit diesem aufgenommene α -Energiespektrum. Hierbei werden die Energien auf der x-Achse dieses Diagramms als Kanäle K ausgedrückt.

ADC proportional zu den gemessenen Energien der α -Teilchen. Die Unsicherheit jedes Kanals K ist auf das Fehlerintervall $\pm 0,5$ zurückzuführen. Weil die Unsicherheit $\sigma(N)$ der Counts N auf einer Poisson-Verteilung beruht, gilt $\sigma(N) = \sqrt{N}$. Im α -Energiespektrum

in Abbildung 5 sind zwei deutliche Peaks zu erkennen. Der rechte Peak stammt von α -Teilchen mit den Energien (5442,86 ± 0,12) keV (13,2%) und (5485,56 ± 0,12) keV (84,5%). Die Energien sind in der Messung nicht von einander zu unterscheiden und im Folgenden wird aufgrund der höheren Wahrscheinlichkeit stets $E_0 = (5485,56 \pm 0,12)$ keV referenziert. Der linke Peak stammt von Streuprozessen am ΔE -Detektor und ist für die weitere Analyse nicht weiter von Bedeutung. Da lediglich der rechte Peak für die Kalibration des E-Detektors relevant ist, wird eine gaußsche Anpassungskurve mit der Gestalt

$$f(x) = A \cdot \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) + B \tag{4.1}$$

an diesen Peak gefittet. Dabei werden nur die Messwerte berücksichtigt, welche sich im α -Energiespektrum rechts von der orangefarbenen, gepunkteten, vertikalen Linie befinden. Die sich ergebene gaußsche Anpassungskurve und die dazugehörigen Werte der für die Kalibration des E-Detektors notwendigen Fit-Parameter sind im α -Energiespektrum in Abbildung 5 zu sehen. Nun kann man dem Mittelwert μ die Energie E_0 zuordnen, wobei die Breite σ der Gauß-Kurve die Detektorgenauigkeit angibt. Nimmt man an, dass der Kanal K=0 der Energie E=0 keV entspricht und der Detektor ein lineares Spektrum aufnimmt, so lässt sich die Relation

$$E(K) = 32,68 \,\text{keV} \cdot K \tag{4.2}$$

zwischen Kanalnummer und gemessener Energie herstellen.

4.2 Kalibration des ΔE -Detektors

Bei der Kalibration des ΔE -Detektors wird auf ähnliche Art und Weise wie in Abschnitt 4.1 vorgegangen. Die Abbildungen 6 zeigen die mit dem E- und dem ΔE -Detektor aufgenommenen α -Energiespektren, welche im Zuge der Kalibrationsmessung des ΔE -Detektors entstanden sind.

In beiden α -Energiespektren lässt sich jeweils ein Peak erkennen. An die von beiden orangefarbenen, gepunkteten, vertikalen Linien eingegrenzten Messwerte kann man

Abbildung 6: Die Abbildung zeigt das im Zuge der Kalibrationsmessung des ΔE -Detektors aufgenommene α -Energiespektrum. Hierbei werden die Energien auf der x-Achse dieses Diagramms als Kanäle K ausgedrückt. Links das aufgenommene Spektrum des E-Detektors. Rechts das aufgenommene Spektrum des ΔE -Detektors.

nun mit Hilfe der Gleichung (4.1) eine gaußsche Anpassungskurve fitten. Die gaußschen Anpassungskurven und die dazugehörigen Werte der für die Kalibration des ΔE -Detektors notwendigen Fit-Parameter sind in den Abbildungen angegeben. Beim Passieren des ΔE -Detektors erleiden die α -Teilchen einen Energieverlust, welcher der Position μ des Peaks im α -Energiespektrum des ΔE -Detektors entspricht. Der Wert für diesen Energieverlust lässt sich über die Differenz zwischen den Positionen der Peaks im E-Detektor Abb. 6a und Abb. 5 sowie unter Verwendung der Kalibrationskurve für den E-Detektor berechnen. Erneut wird angenommen, dass man dem Kanal K=0 die Energie E=0 keV zuordnen kann und der Detektor ein lineares Spektrum aufnimmt, sodass sich für den ΔE -Detektor die Kalibrationsgerade

$$\Delta E(K) = 14,54 \,\text{keV} \cdot K \tag{4.3}$$

ergibt. Aufgrund der geringen Unsicherheiten von Mittelwert μ , Kanalbreite und Energie E_0 gegenüber der Detektorgenauigkeit, wird hier keine Unsicherheit angegeben.

4.3 Dickebestimmung des ΔE -Detektors

Im Folgenden soll die Dicke des ΔE -Detektors ermittelt werden. Dazu werden zunächst die aus dem Anhang der Versuchsanleitung[1] entnommenen Werte für den Energieverlust von α -Teilchen in Silizium gemäß der Vorschrift

$$\frac{\mathrm{d}E}{\mathrm{d}x} = \left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)_{\mathrm{Elektron}} + \left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)_{\mathrm{Kern}} \tag{4.4}$$

addiert. Dabei ist der Energieverlust durch Kernwechselwirkung bedeutend kleiner als der durch Elektronenwechselwirkung, da es sich bei α -Teilchen um leichte Kerne mit einer geringen Ordnungszahl handelt. Trägt man die im Zuge dessen erhaltenen Werte für den Energieverlust gegen die Energie E des α -Teilchens auf, ergibt sich das in Abbildung 7 zu sehende Diagramm. Mithilfe eines kubischen Spline-Algorithmus¹ wird nun eine

Abbildung 7: Das in dieser Abbildung dargestellte Diagramm veranschaulicht den Energieverlust $\frac{\mathrm{d}E}{\mathrm{d}x}$ von α -Teilchen in Silizium als Funktion der Energie E des α -Teilchens. Hierbei ist ein Energiebereich von 3200 keV bis 6800 keV zu sehen.

¹Hierbei wird in python die Funktion scipy.interpolate.interp1d mit dem Parameter kind="cubic" genutzt.

Interpolation der Tabellenwert vorgenommen. Die dadurch zustande kommende Kurve ist ebenfalls im Diagramm in Abbildung 7 dargestellt. Über numerische Integration des Ausdrucks

$$\Delta E = \int_{0}^{d} \frac{dE}{dx} dx \approx \sum_{i} \frac{dE}{dx} \cdot \delta x \tag{4.5}$$

lässt sich die Dicke d des ΔE -Detektors bestimmen. Dabei wird schrittweise der Energieverlust d $E_i = \frac{\mathrm{d}E}{\mathrm{d}x} \left(E_i \right) \cdot \delta x$ berechnet, wobei hier $\delta x = 1 \cdot 10^{-4} \, \mathrm{\mu m} = \mathrm{const.}$. Es wird so lange integriert, bis die Energie des Teilchens die gemessene Energie aus Abb. 6a unterschritten hat. Die zurückgelegte Strecke ist dann $\bar{x} = N \cdot \delta x$, wobei N die Anzahl an benötigten Integrationsschritten ist. Die Unsicherheit gibt sich aus Formel (12) der interpolierten Datenpunkte. Man erhält für die Dicke des ΔE -Detektors einen Wert von $d = (8.52 \pm 0.77) \, \mathrm{\mu m}$.

4.4 Dickebestimmung der Mylar-Folien

Um die Dicken der Mylar-Folien zu bestimmen, werden zunächst die Restenergien der Teilchen nach Passieren der Folien bestimmt. Dazu wird der ΔE - Detektor aus dem Strahlengang gedreht und das Energiespektrum der transmittierten Teilchen aufgenommen. Als Referenz wird hier die Kalibrationsmessung ohne Folie verwendet. In Abb. 8 sind die vier Messungen normiert nebeneinander eingezeichnet. Alle konkreten Fitparameter der Doppelgaußkurven sind in Tabelle 3 angegeben. Im Diagramm ist ein einzelner stark abweichender Datenpunkt bei 4000 keV auffällig, welcher auf statistische Schwankungen zurückzuführen ist.

Für die Analyse sind nur die Positionen der größeren Peaks wichtig. Diese gehören zur 5485 keV α -Strahlung der Probe. Der Detektor hat eine begrenzte Messgenauigkeit welche sich durch die Breite der Peaks widerspiegelt. Um diese zu beachten, wird die Unsicherheit der Position E_1 mit der Breite σ_1 nach Formel (11) kombiniert.

Die Bestimmung der Foliendicke kann nach (4.5) durchgeführt werden. Dazu wird zunächst der Energieverlust $\frac{dE}{dr}$ von α -Teilchen in Mylar aus der Anleitung interpoliert.

Abbildung 8: Energiespektren nach Passieren der einzelnen Folien. Die Zählrate ist normiert, um die Folien besser zu vergleichen. Es werden nur die Datenpunkte im Bereich um den Energiepeak ungleich Null angezeigt. Über die Daten ist ein Doppelgauß gelegt, welcher die Parameter in Tabelle 3 annimmt und mit einer Unsicherheit $\pm 3\sigma$ eingezeichnet ist.

Für ein eintreffendes Teilchen mit 5485 keV kann nun numerisch Integriert werden. Die ermittelten Energien und Dicken der Folien sind in Tabelle 2 zusammengefasst.

Tabelle 2: Energien der Teilchen nach Passieren der Folien und die errechneten Dicken dieser.

	Energie E_1	Dicke x
1. Folie 2. Folie	$(4508 \pm 93) \text{ keV}$ $(3370 \pm 115) \text{ keV}$ $(2022 \pm 121) \text{ keV}$	$(8.2 \pm 0.7) \mu \text{m}$ $(16.4 \pm 0.7) \mu \text{m}$ $(24.0 \pm 0.6) \mu \text{m}$

Aus den bestimmten Dicken kann man schließen, dass die Folien entweder Vielfache von 8 µm dick sind und im Falle der 1. und 2. Folie um ca. 13° gedreht sind oder keine gleichmäßige Dicke aufweisen. Diese Angaben sind allerdings nicht zu überprüfen und sind als Spekulationen zu betrachten. Um die Unsicherheit zu verringern, muss die Detektorgenauigkeit erhöht werden. Dies kann zum Beispiel über eine Faltung mit der Detektorverteilung einer wohlbekannten Kalibrationsmessung erzielt werden.

4.5 Bestimmung des Energieverlusts

Um die Teilchenidentifikation durchzuführen, werden alle aufgenommenen Messungen aufaddiert und in ein Diagramm geschrieben. Dabei ist die Energie des Teilchens die Summe von gemessener Restenergie im E-Detektor und deponierter Energie im ΔE -Detektor. Die Messdaten, sowie theoretisch errechnete Kurven für Protonen, Deuteronen, Tritonen, Helium-3-Kerne, α -Teilchen und Lithium-Kerne sind in Abb. 9 dargestellt. Bei manchen Einstellungen der Folien wurden keine Daten gemessen und sind somit nicht im Diagramm zu erkennen.

Abbildung 9: Energieverlust ΔE von Teilchen der Energie E. Zusätzlich sind die theoretisch erwarteten Kurven für sechs Teilchensorten eingezeichnet.

Man kann erkennen, dass die theoretische Kurve für α -Teilchen durch die beiden hellsten Punkte sowie durch einen weiteren Häufungspunkt bei $E=5100\,\mathrm{keV}$ verläuft. Allerdings liegen die beiden Punkte bei $E=3000\,\mathrm{keV}$ und $E=3400\,\mathrm{keV}$ nicht auf der theoretischen Kurve. Auch Helium-3 könnte im weitergehenden Zusammenhang ein Kandidat der verwendeten Teilchenart sein, da dessen Kurve ebenfalls in dem Gebiet der Messung liegt.

Um die theoretischen Kurven zu berechnen, ist die Bethe Bloch Formel nach (2.2) für Silizium implementiert worden. Nun kann nach Formel (4.5) eine schrittweise Integration

durch den Detektor durchgeführt werden. Die Abbruchbedingung ist diesmal die Dicke des Detektors $d=8,5257\,\mu\text{m}$, welche aus Abschnitt 4.3 bekannt ist.

Um zu entscheiden, ob nun α -Teilchen oder Helium-3 Kerne vorliegen, wird der gesamte Datensatz auf $\Delta \cdot \beta^2$ projiziert und als Histogramm dargestellt. Dabei wird in β die Masse M des Teilchens benötigt und man muss für jedes zu überprüfende Teilchen eine eigene Verteilung erstellen. Auch hier wird wieder ein theoretischer Kurvenverlauf benötigt. Der Mittelwert der Kurve kann mit $E=5485\,\mathrm{keV}$ und dem Energieverlust ΔE , welcher durch der oben genannten Integration bekannt ist, bestimmt werden. Die Breite der Gaußkurve wird hier als konstant angesehen und entsprechend der Detektorgenauigkeit gewählt. In Abb. 10 sind die beiden Verteilungen für α -Teilchen und Helium-3 Kerne eingezeichnet. Andere Teilchenarten sind in Abb. 13 gegeben.

Abbildung 10: $\Delta E \beta^2$ Verteilungen für α -Teilchen und Helium-3 Kerne. Eingezeichnet sind die gemessenen Werte, sowie die theoretisch zu erwartenden Verteilungen.

Man kann erkennen, dass die theoretische Verteilung der α -Teilchen am besten auf den gemessenen Daten liegt.

5 Schlussfolgerung

Mit dem ΔE -E-Aufbau konnte bestätigt werden, dass es sich bei den abgestrahlten Teilchen des Americium-241 um α -Teilchen handelt. Hierbei ist anzumerken, dass in Abbildung 9 zwei Messungen nicht auf der theoretischen Kurve für α -Teilchen liegen. Allerdings passt auch keine andere der untersuchten Teilchenarten auf die gemessenen Daten. Der Vergleich von $\Delta E \beta^2$ -Statistiken in Abbildung 10 stützt diesen Zusammenhang.

Zusätzlich zum qualitativen Ergebnis des Experimentes wurden die Dicken des Detektors auf $(8,52\pm0,77)\,\mu\mathrm{m}$ und die Dicken der drei Folien auf $(8,2\pm0,7)\,\mu\mathrm{m}$, $(16,4\pm0,7)\,\mu\mathrm{m}$ und $(24,0\pm0,6)\,\mu\mathrm{m}$ bestimmt. Da die durchlaufende Strecke der α -Teilchen durch die Folien mit dem Winkel zunimmt, konnten bei manchen Einstellungen keine Teilchen mehr registriert werden. In diesem Fall wurde das Teilchen gestoppt und die gesamte Energie in den Mylar-Folien oder dem ΔE -Detektor deponiert.

Die Unsicherheiten folgen vor Allem aus der systematischen Detektorgenauigkeit der Siliziumdetektoren und der statistischen Datenverteilung. Für eine bessere Systematik kann das aufgenommene Spektrum mit einer weiteren Kalibrationsmessung bei einer einzelnen, wohlbekannten Energie gefaltet werden. Durch längere Messzeiten können statistische Fehlerquellen verringert werden.

6 Anhang

6.1 Unsicherheiten

Jegliche Unsicherheiten werden nach GUM[5] bestimmt und berechnet. Die Gleichungen dazu finden sich in Abb. 11 und Abb. 12. Für die Unsicherheitsrechnungen wurde die Python Bibliothek uncertainties herangezogen, welche den Richtlinien des GUM folgt.

Zur Erstellung von Anpassungskurven wird das Python-Paket scipy.odr verwendet, welches unter anderem die Methoden scipy.odr.Model(), scipy.odr.RealData() und scipy.odr.ODR() zur Verfügung stellt. Dabei wird auf die sogenannte orthogonale lineare Regression (engl. Orthogonal Distance Regression (Abkürzung: ODR)) zurückgegriffen, welche auf der Methode der kleinsten Quadrate basiert und einen modifizierten Levenberg-Marquardt-Algorithmus darstellt. Für die Parameter von Anpassungskurven und deren Unsicherheiten werden die x- und y-Unsicherheiten der anzunähernden Werte berücksichtigt und entsprechend gewichtet. Bei digitalen Messungen wird eine Rechteckverteilung mit $\sigma_X = \frac{\delta X}{2\sqrt{3}}$ und bei analogem Ablesen eine Dreieckverteilung mit $\sigma_X = \frac{\delta X}{2\sqrt{6}}$ angenommen. Die konkreten Werte der jeweiligen Fehlerintervalle δX werden in den entsprechenden Abschnitten angemerkt.

Die jeweiligen δX sind im konkreten Abschnitt zu finden.

$$x = \sum_{i=1}^{N} x_i; \quad \sigma_x = \sqrt{\sum_{i=1}^{N} \sigma_{x_i}^2}$$

Abbildung 11: Formel für kombinierte Unsicherheiten des selben Typs nach GUM.

$$f = f(x_1, \dots, x_N); \quad \sigma_f = \sqrt{\sum_{i=1}^N \left(\frac{\partial f}{\partial x_i} \sigma_{x_i}\right)^2}$$

Abbildung 12: Formel für sich fortpflanzende Unsicherheiten nach GUM.

6.2 Diagramme

Abbildung 13: $\Delta E \beta^2$ Verteilungen für vermutete Teilchenarten. Eingezeichnet sind die gemessenen Werte, sowie die theoretisch zu erwartenden Verteilungen. α -Teilchen geben die Messergebnisse am besten wieder.

6.3 Fit-Parameter

Tabelle 3: Fit-Parameter für die normierte Doppelgaussfunktion $n(E) = A_1 \cdot \exp\left\{-\frac{(E-E_1)^2}{2\sigma_1^2}\right\} + A_2 \cdot \exp\left\{-\frac{(E-E_2)^2}{2\sigma_2^2}\right\} + A_0 \text{ der Dickebestimmung.}$

	ohne	1. Folie	2. Folie	3. Folie
A_1	0.95 ± 0.04	$0,903 \pm 0,035$	$0,870 \pm 0,032$	0.941 ± 0.026
E_1	$(5485 \pm 4) \mathrm{keV}$	$(4508 \pm 4) \mathrm{keV}$	$(3370 \pm 4) \mathrm{keV}$	$(2022 \pm 4) \mathrm{keV}$
σ_1	$(67.2 \pm 2.6) \mathrm{keV}$	$(92.9 \pm 2.8) \mathrm{keV}$	$(114.6 \pm 3.2) \mathrm{keV}$	$(121,3 \pm 3,0) \mathrm{keV}$
A_2	$0,298 \pm 0,014$	0.320 ± 0.017	$0,412 \pm 0,020$	$0,541 \pm 0,020$
E_2	$(5139 \pm 8) \mathrm{keV}$	$(4077 \pm 8) \mathrm{keV}$	$(2878 \pm 6) \mathrm{keV}$	$(1594 \pm 6) \mathrm{keV}$
σ_2	$(135 \pm 6) \mathrm{keV}$	$(141 \pm 7) \mathrm{keV}$	$(134 \pm 6) \mathrm{keV}$	$(124 \pm 5) \mathrm{keV}$
A_0	$0,00199 \pm 0,00028$	$0,0022 \pm 0,0004$	$0,0013 \pm 0,0004$	$0,00033 \pm 0,00031$

Literatur

- [1] Autor unbekannt. "Teilchenidentifikation mit einem ΔE -E-Aufbau". Versuchsanleitung, ausgehändigt an der WWU Münster.
- [2] C. Weinheimer A. Andronic. "Skript zur Vorlesung Kern- und Teilchenphysik I". Abbildung 2.14.
- [3] Autor unbekannt. "Physics Letters B: Review of Particle Physics".
- [4] Autor unbekannt. "Flugzeitspektrometer Versuch 12: Flugzeit- und Energiemessung an Spaltfragmenten des Californium-252". Abbildung 11, Universität Münster.
- [5] Joint Committee for Guides in Metrology. Evaluation of measurement data Guide to the expression of uncertainty in measurement. Sep. 2008.