Ingeniería Mecánica: Mecánica de los Fluidos

Apellido, Nombre (Legajo):

Fecha:

1. Se utiliza un cojinete hidrodinámico como el de la figura 1 para soportar un eje en rotación a una velocidad angular ω . El aceite empleado tiene una viscosidad que varía con linealmente con la temperatura $\mu(T) = \mu_0 + c_{\mu}(T - T_0)$. El área mojada del eje es un cilindro de radio R y longitud L. Como el cojinete funciona a régimen, puede suponer que la película de aceite tiene un espesor constante e.

Por otra parte, la potencia disipada por efecto viscoso es igual al calor transferido por convección desde el aceite a la caja del cojinete. Dicho calor puede calcularse por la ley de Newton.

$$Q = h_c A(T - T_{caja})$$

Donde h_c es el coeficiente pelicular de convección, que puede extraerse de tablas. Considerando que la temperatura T_{caja} es igual a T_0 , determine la temperatura de trabajo del aceite como función de los parámetros del problema:

$$T = T(\omega, R, L, e, \mu_0, c_\mu, T_0, h_c)$$

Figure 1: Cojinete hidrodinámico trabajando a régimen (esquema adaptado: Dudley 1962)

2. Dos tubos de altura H, diámetro interno d_i se encuentran conectados a un tanque pequeño. Los tubos y el tanque contienen agua. El sistema se encuentra unido a una plataforma, como se muestra en la figura 2. A qué velocidad angular ω debe girar la plataforma, de manera que la configuración de estado permanente del agua haga que ésta alcance la parte superior del tubo exterior? No tenga en cuenta los efectos de capilaridad. Exprese la solución en términos de las siquientes variables:

H d_i D h

Figure 2: Tubo en U descentrado

Ingeniería Mecánica: Mecánica de los Fluidos

Apellido, Nombre (Legajo):

Fecha:

3. En la figura 3 se observa un aspersor de un solo brazo visto en planta. El mismo rota respecto del punto O a velocidad constante ω . El flujo de agua Q ingresa desde un caño vertical a través de O. El torque resistente que se produce en el cojinete es $-T_O$. ¿Cual es la expresión que define la velocidad de rotación ω ?. En caso de que el aspersor tuviese cuatro brazos separados entre sí a 90° , ¿cual es la expresión de la velocidad?, ¿y si existiesen infinitos brazos aspersores?

Figure 3: Aspersor de un brazo