DIALOG(R)File 352:Derwent WPI

(c) 2004 Thomson Derwent. All rts. reserv.

012157304

WPI Acc No: 1998-574216/199849

XRAM Acc No: C98-172236 XRPX Acc No: N98-447388

Organic electroluminescent device - contains organic hole implanting and transporting layer containing tertiary aromatic amine and polycyclic aromatic hydrocarbon

Patent Assignee: XEROX CORP (XERO)

Inventor: HOR A; HU N; ONG B S; POPOVIC Z D; XIE S

Number of Countries: 002 Number of Patents: 002

Patent Family:

Patent No Kind Date Applicat No Kind Date Week

JP 10255985 A 19980925 **JP** 9847122 A 19980227 199849 B US 5989737 A 19991123 US 97807489 A 19970227 200002

Priority Applications (No Type Date): US 97807489 A 19970227

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

JP 10255985 A 10 H05B-033/22 US 5989737 A H05B-033/12

Abstract (Basic): JP 10255985 A

The organic EL device comprises an anode, an organic hole implanting and hole transporting layer, an organic electron implanting and electron transporting layer, and a cathode. The organic hole implanting and transporting layer contains mixture of tertiary aromatic amine and polycyclic aromatic hydrocarbon cpd.

USE - The organic EL device is used as image bar element for the digital copy machines and printers.

ADVANTAGE - The organic EL device, having improved stability in operation and against heat, can be obtd.

Dwg.0/1

Title Terms: ORGANIC; ELECTROLUMINESCENT; DEVICE; CONTAIN; ORGANIC; HOLE:

IMPLANT; TRANSPORT; LAYER; CONTAIN; TERTIARY; AROMATIC; AMINE; AROMATIC;

HYDROCARBON

Index Terms/Additional Words: EL Derwent Class: E19; L03; X26

International Patent Class (Main): H05B-033/12; H05B-033/22 International Patent Class (Additional): C09K-011/06; H05B-033/14

File Segment: CPI; EPI

4、有機電子注入及び電子輸送層5、及び陰極6を順に 含み、前記有機正孔注入及び輸送層4が第3芳香族アミ ン及び多環式芳香族炭化水素化合物の混合物を含有す る、有機エレクトロルミネセント (EL) デバイス。

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平10-255985

(43)公開日 平成10年(1998) 9月25日

(51) Int.Cl. ⁶	識別記号	FΙ		
H 0 5 B 33/22		H05B 3	3/22	D
				В
33/14		33	3/14	Α
// C09K 11/06		C09K 1	1/06	Z
		審查請求	未請求	請求項の数6 OL (全 10 頁)
(21)出願番号	特顧平10-47122	(71)出顧人	5900007	798
			ゼロック	クス コーポレイション
(22)出顧日	平成10年(1998) 2月27日		XER	OX CORPORATION
			アメリカ	カ合衆国 ニューヨーク州 14644
(31)優先権主張番号	807489		ロチン	ェスター ゼロックス スクエア
(32)優先日	1997年 2 月27日]	(番地/	なし)
(33)優先権主張国	米国 (US)	(72)発明者	ショアン	ンシエ
			カナダ	国 エル5エル 5ケー8 オンタ
			リオ州 プ 322	ミシソーガ コロニアル ドライ 20
		(74) (12-10 J		a 中島 淳 (外1名)
		(12)(42)(ЛÆТ	TEM 17 UF141/
				最終頁に続く
(54) 【発明の名称】	有機ELデパイス			
(57)【要約】				
【課題】 熱及び動作	の安定性を高め、EL性能を大幅			Τ.
	トロルミネセンス(EL)デバイ			
スを提供する。	· - · · · · · ·			
	、有機正孔注入及び正孔輸送層			

(2)

【特許請求の範囲】

【請求項1】 陽極、有機正孔注入及び正孔輸送層、有機電子注入及び電子輸送層、及び陰極を順に含み、前記有機正孔注入及び輸送層が第3芳香族アミン及び多環式芳香族炭化水素化合物の混合物を含有する、有機エレクトロルミネセント(EL)デバイス。

【請求項2】 前記有機電子注入及び輸送層又はゾーン が電子輸送成分を含有するルミネセント層からなり、前 記ルミネセント層は蛍光染料によってドープされている、請求項1に記載の有機ELデバイス。

【請求項3】 前記多環式芳香族炭化水素化合物が、

(1) N \vec{J} VV, <math>(2) 1, 4, 5, 12-r

ニルナフタレン、(3) 1, 4, 5, 6, 9, 10-ヘ キサフェニルアントラセン、(4)1,4,5,10-テトラフェニルアントラセン、(5)9,10-ジフェ ニルアントラセン、(6) 1, 2, 3, 4-テトラフェ ニルナフタレン、(7)2,3,6,7-テトラフェニ ルナフタレン、(8) 4, 4-ジフェニルペリレン、 (9) 4, 4-ジフェニルベンゾ [k] ペリレン、(1 0) 3, 4, 9, 10-テトラフェニルペリレン、(1 1) 2, 7-ジフェニルジベンゾ [e, 1] ピレン、 (12) ジベンゾ [e, 1] ピレン、(13) ベンゾ 3, 6, 11-テトラフェニルトリフェニレン、(1 5) ジベンゾ [a, h] アントラセン、(16) 5, 1 0-ジフェニルジベンゾ [a, h] アントラセン、(1 7) ベンゾ [a] ピレン、(18) ナフト [b] ピレ ン、(19) 6, 6, 13, 13-テトラフェニルー 6, 13-ジヒドロペンタセン、(20) 1, 2, 3, 4, 5-ペンタフェニルー1, 3-シクロペンタジエ ン、(21) ヘキサフェニルベンゼン、(22) 9, 9'-スピロビフルオレン、(23)p-キンクフェニ

【請求項4】 選択された前記第3芳香族アミンが下の 構造式によって表される請求項1に記載の有機ELデバ イス。

ル、(24) コロネン、(25) ペンタセン、及び(2

6) 5, 14-ジフェニルペンタセンからなる群から選

択される、請求項1に記載の有機ELデバイス。

【化1】

()

式中、 $Ar^1 \sim Ar^4$ はそれぞれ独立してフェニル、ナフチル及び4-ビフェニリルからなる群から選択されるアリールであり、Pはフェニレンであり、nは $1\sim 4$ の整数である。

【請求項5】 前記第3芳香族アミンが、N, N'ージフェニル-N, N'ービス (3-メチルフェニル) - 1, 1'ービフェニル-4, 4'ージアミン、N, N'ージフェニル-N, N'ービス (4-メチルフェニル)

-1, 1'-ピフェニル-4, 4'-ジアミン、N、 N, N', N'-テトラ-p-トリル-1, 1'-ピフ エニルー4, 4'ージアミン、N, N'ージー1ーナフ チル-N, N'-ジフェニル-1, 1'-ビフェニル-4, 4'-ジアミン、N, N'-ジ-2-ナフチル-N, N'-ジフェニル-1, 1'-ビフェニル-4, 4'-ジアミン、N, N'-ジ-1-ナフチル-N, N' - UZ (3 - JF) - 1, 1' - UZニルー4, 4'ージアミン、N, N'ージー1ーナフチ ル-N, N' -ピス (4-メチルフェニル) -1, 1'ーピフェニルー4, 4'ージアミン、N, N'ージー4 ーピフェニリル-N, N'ージフェニル-1, 1'ービ フェニルー4, 4'ージアミン、及びN, N'ージー4 ーピフェニリル-N, N'-ピス(4-メチルフェニ ル) -1, 1'-ピフェニル-4, 4'-ジアミンから なる群から選択される、請求項1に記載の有機ELデバ イス。

【請求項6】 前記第3芳香族アミンが、N, N-ビス - [4'-(N-フェニル-N-m-トリルアミノ)-4-ピフェニリル] アニリン、N, N-ピス- [4'-(N-フェニル-N-m-トリルアミノ) -4-ピフェ ニリル] -m-トルイジン、N, N-ビス- [4'-(N-フェニル-N-m-トリルアミノ) -4-ビフェ ニリル] - p - トルイジン、N、N - ピス - [4'-(N-フェニル-N-p-トリルアミノ) -4-ビフェ ニリル] アニリン、N, N-ビス- [4'-(N-フェ ニル-N-p-トリルアミノ) -4-ビフェニリル] m-トルイジン、N, N-ビス- [4'-(N-フェニ N-N-p-トリルアミノ) -4-ピフェニリル] - pートルイジン、N, N-ビス- [4'-(N-フェニル -N-p-クロロフェニルアミノ) -4-ピフェニリ ル] -m-トルイジン、N, N-ビス- [4'-(N-フェニルーN-m-クロロフェニルアミノ) -4-ビフ ェニリル] -m-トルイジン、N, N-ピス- [4'-ーピフェニリル]ーpートルイジン、N, Nーピスー [4' - (N-7x-1)-N-m-1]-ビフェニリル] -p-クロロアニリン、N, N-ビス - [4'-(N-フェニル-N-p-トリルアミノ)-4-ピフェニリル]-m-クロロアニリン、及びN、N -ビス- [4'-(N-フェニル-N-m-トリルアミ ノ) -4-ピフェニリル] -1-アミノナフタレンから なる群から選択される、請求項1に記載の有機ELデバ イス。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は有機エレクトロルミネセント(EL)デバイスに関し、より詳細には、動作の安定性を高め、性能特性を改良したエネルギー効率の高い有機ELデバイスに関する。有機ELデバイスは、

低駆動電圧における高いルミネセンス、優れたデバイスの安定性及び寿命の延長を提供することができる。本発明のELデバイスは上記の特性を可能にし、TVスクリーン、コンピュータスクリーンなどを含むフラットパネル放射ディスプレイ技術における使用に、そしてデジタルコピー機及びプリンタ用のイメージ(結像)バー構成要素として、これらのELデバイスを選択することができる。

[0002]

【従来の技術】有機ELの研究における最近の進歩により、有機ELデバイスを広範囲の用途に使用できる可能性が高くなっているが、現行の性能特性は改良が必要があり、おそらく本文中に引用される特許出願を除いては、その特性は期待されるものに達しない。また、多数の現行の有機ELデバイスは動作寿命が比較的短い。これらの問題は、デバイス材料の成分の劣化、特に正孔注入及び輸送層の劣化により薄膜として形態的に不安定あることに関連する。このデバイスの劣化により、輝度強度は送られる定電流下で着実に減少し、動作電圧はますます増加する。芳香族第3アミンなどのある種の正孔輸送物質は、正孔の注入及び輸送を容易にすることで既知であり、ELデバイスの性能を改良しうるが、これらの物質のいくつかは薄膜として熱的及び形態的に不安定であるため、デバイスの機能寿命を短くしている。

【0003】本発明の実施の形態では、ある種の多環式 芳香族炭化水素化合物を第3芳香族アミン正孔輸送層に 組み込むことを含む優れたデバイス構造を提供する。こ のデバイス構造設計は、例えば、電荷キャリヤ注入及び 輸送効率の劣化を伴わずに、デバイス動作の安定性を改 良している。

[0004]

【発明が解決しようとする課題】本発明の目的は、熱及び動作の安定性を高めた有機ELデバイスを提供すること、即ちある種の多環式芳香族炭化水素化合物を第3芳香族アミン正孔輸送層に混合することによってEL性能を大幅に改良することにある。

【0005】本発明の別の目的は、正孔注入及び輸送特性を改良した有機ELデバイス、即ち、好ましくは約5重量%のルプレンなどの多環式化合物で正孔輸送層をドープした有機ELデバイスを提供することである。

【0006】本発明の別の目的は、約20V未満の低動作電圧において高いエレクトロルミネセンス効率を示す、改良された有機ELデバイスを提供することである。

【0007】更に、本発明の目的は、例えばガラスなどの支持基板、陽極、芳香族第3アミンと1種以上の多環式芳香族炭化水素化合物を含有する、真空蒸着された有機正孔注入及び輸送ゾーン、好ましくは、キナクリドン又はその誘導体などの蛍光染料でドープされた、例えばトリス(8-ヒドロキシキノリネート)アルミニウムの

電子輸送材料を含有する、真空蒸着された電子注入及び 輸送ゾーン、電子注入及び輸送ゾーンに接触したマグネ シウム、マグネシウム合金又はリチウム合金などの低仕 事関数金属である陰極、からなる有機ELデバイスを提 供することである。

[0008]

【課題を解決するための手段】本発明の実施の形態は、 動作安定性の改良、優れた耐久性、低い動作電圧、及び エネルギー変換効率の改良などの多数の利点を有し、真 空蒸着技術を用いて容易に製造することができる層状の 有機ELデバイスを提供することに関する。実施の形態 において、本発明は、陽極、有機正孔注入及び輸送ソー ン、電子注入及び輸送ゾーン、及び陰極を順に積層した 有機ELデバイスに関し、ここで正孔注入及び輸送ゾー ンは、有効量、例えば約0.1~約50重量%、好まし くは約1~約10重量%の、ある種の多環式芳香族炭化 水素化合物でドープされ、真空蒸着された第3芳香族ア ミン層からなり、電子注入及び輸送ゾーンは、好ましく は、キナクリドン又はその誘導体などの発光染料でドー プされた、例えばトリス(8-ヒドロキシキノリネー ト) アルミニウムの真空蒸着された電子輸送層からな る。正孔注入及び輸送ゾーンのための第3芳香族アミン は、例えばガラス転移温度が約50℃よりも高く、好ま しくは約80℃よりも高い化合物から選択することがで きる。薄膜の正孔輸送第3芳香族アミン層の熱的及び形 態的安定性は、正孔輸送材料の正孔注入及び輸送特性に 悪影響を及ぼさずに、少量の有効量の多環式芳香族炭化 水素化合物を混合することによって著しく改良すること ができる。更に、実施の形態では、本発明の有機ELデ バイスの光放出は、光エミッタとして機能する蛍光染料 でドープした結果、電子輸送層において発生する。

[0009]

【発明の実施の形態】図1にはELデバイスが示されている。このデバイスは、例えばガラスの支持基板2、陽極3、1種以上の多環式芳香族炭化水素化合物を混合した第3芳香族アミン層からなる真空蒸着された有機正孔注入及び輸送層又はゾーン4、電子-正孔の再結合の後に光を放出することができる、好ましくは蛍光材料でドープされ、真空蒸着された電子注入及び輸送層又はゾーン5、及びこれに接触した低仕事関数金属の陰極6を含む有機発光ダイオードを包含する。

【0010】実施の形態において、ゾーン又は層4は、正孔輸送、正孔注入又はこれらの組み合わせとして機能することができ、ゾーン又は層5は、電子輸送、電子注入又はこれらの組み合わせとして機能することができる。より詳細には、このデバイスは2つのゾーン、即ち4の代わりに4a及び4b、そして5の代わりに5a及び5bを含むことができる。ここで、4aは正孔注入層、4bは正孔輸送層、5aは電子輸送層、及び5bは電子注入層である。4a及び4bと5、又は5a及び5

bと4の組み合わせも可能である。

【0011】支持基板の例としては、ポリマー成分、ガラス等、MYLAR(登録商標名)のようなポリエステル、ポリカーボネート、ポリアクリレート、ポリメタクリレート、ポリスルホン、石英などが含まれる。例えば、本質的に機能をもたず、他の層を支持することができるならば、他の基板を選択することもできる。基板の厚みは、例えばデバイスの構造要求に依存して、例えば約25~1,000 μ mをこえるもの、特に約100~約800 μ mとすることができる。

【0012】本発明のデバイスにおいて基板と接触する 陽極は、好ましくは約4 e V以上、例えば4~約7 e V の仕事関数を有する金属、合金、導電性化合物又はその 混合物を含むことができる。陽極の具体的な例は、酸化インジウム錫、酸化錫、酸化亜鉛、金、プラチナなどの 正電化注入電極;導電性炭素、及びポリアニリン、ポリピロールなどの π 共役ポリマーを含む。陽極の厚みは約 $10 \text{ nm} \sim 1 \mu \text{ m}$ の範囲が可能であり、好適な範囲は陽極材料の光学定数によって決定する。ある好適な厚みの範囲は、約10~約200 nmである。

【0013】正孔注入及び正孔輸送層又はゾーン4は、正孔輸送芳香族第3アミン化合物を含有する。選択される芳香族第3アミンは、約50℃以上、好ましくは約80℃よりも高いガラス転移温度を有する。例えば、1以上のトリアリールアミン構造単位を含むトリアリールアミン誘導体は、一種の好適な正孔輸送芳香族第3アミンを構成する。芳香族第3アミンの例は、米国特許第4,539,507号に示されるものであり、これは下の構造式によって表される。

[0014] 【化2】

【0015】式中、Ar¹ ~Ar⁴ は、例えば6~約3 0個の炭素原子を有するアリール基であり、フェニル、 トリル、キシリル、ナフチル、4-ピフェニリルなどか らなる群からそれぞれ選択される; Pはアリーレン、特 にフェニレン基; nは1~4の整数である。具体的な例 は、N, N'-ジフェニル-N, N'-ビス(3-メチ ルフェニル) -1, 1'-ピフェニル-4, 4'-ジア ミン、N, N'ージフェニルーN, N'ーピス(4-メ チルフェニル) -1, 1'-ピフェニル-4, 4'-ジ アミン、N, N, N', N'-テトラ-p-トリル-1, 1'-ピフェニル-4, 4'-ジアミン、N, N' ージー1ーナフチル-N, N'ージフェニル-1, 1' -ピフェニル-4, 4'-ジアミン、N. N'-ジ-2 ーナフチル-N, N'-ジフェニル-1, 1'-ピフェ ニルー4, 4'ージアミン、N, N'ージー1ーナフチ ル-N, N' -ピス (3-メチルフェニル) -1, 1'

ーピフェニルー4, 4'ージアミン、N, N'ージー1ーナフチルーN, N'ーピス(4ーメチルフェニル)ー1, 1'ーピフェニルー4, 4'ージアミン、N, N'ージー4ーピフェニリルーN, N'ージフェニルー1, 1'ーピフェニルー4, 4'ージアミン、N, N'ージー4ーピフェニリルーN, N'ーピス(4ーメチルフェニル)-1, 1'ーピフェニルー4, 4'ージアミンなどを含む。

【0016】正孔注入及び正孔輸送層又はゾーンのための正孔輸送アミン化合物の例も、次の構造式によって示されるような多核芳香族アミンの群から選択することができる。

[0017] 【化3】

【0018】式中、 $Ar^5 \sim Ar^9$ は本文中に示されるようなアリール基であり、例えばフェニル、トリル、キシリル、ナフチル、ビフェニリルなどからそれぞれ選択される; A^1 及び A^2 は、約 $12\sim$ 約60個の炭素原子を有するピアリール基、例えばピフェニル、ビトリルなどである。

【0019】正孔輸送成分の具体的な例は、N、N-ビ X - [4' - (N - 7x = N - N - m - F)]-4-ビフェニリル] アニリン; N, N-ビス- [4' - (N-フェニル-N-m-トリルアミノ) -4-ビフ エニリル] -m-トルイジン; N, N-ビス-[4'-(N-フェニル-N-m-トリルアミノ) -4-ピフェ ニリル] -p-トルイジン; N, N-ビス-[4'-(N-フェニル-N-p-トリルアミノ) -4-ビフェ ニリル] アニリン; N, N-ビス-[4'-(N-フェ ニル-N-p-トリルアミノ)-4-ピフェニリル]m-トルイジン; N, N-ビス-[4'-(N-フェニ ートルイジン; N, N-ビス-[4'-(N-フェニル -N-p-クロロフェニルアミノ) -4-ビフェニリ ル] -m-トルイジン; N, N-ビス- [4'- (N-フェニル-N-m-クロロフェニルアミノ) -4-ビフ エニリル] -m-トルイジン; N, N-ビス- [4'-(N-フェニル-N-m-クロロフェニルアミノ) -4 ーピフェニリル] - p - トルイジン; N, N - ピス - $[4'-(N-J_{\perp})-N-m-F_{\parallel})$ ーピフェニリル] -p-クロロアニリン:N, N-ピス - [4'-(N-フェニル-N-p-トリルアミノ)-4-ピフェニリル]-m-クロロアニリン; N, N-ビ X - [4' - (N - 7x - N - N - m - F)]- 4 - ピフェニリル] - 1 - アミノナフタレンなどを含

【0020】正孔注入及び輸送層は、芳香族アミン化合

物の他に、正孔輸送層の薄膜形態を安定させる機能を果 たすポリカーボサイクリック芳香族化合物を含むことが 好ましい。ポリカーボサイクリック芳香族化合物の有効 量は様々であり、例えば約0.1~約50重量%、好ま しくは約1~約10重量%である。好適な多環式芳香族 炭化水素化合物の例は、少なくとも2つの芳香環を含 み、約10~約100個の炭素原子を含むものである。 ポリカーボサイクリック芳香族炭化水素化合物の例は、 以下の構造式のような化合物、即ち(1)ルブレン、 (2) 1, 4, 5, 12-テトラフェニルナフタレン、 (3) 1, 4, 5, 6, 9, 10 - ヘキサフェニルアン トラセン、(4) 1, 4, 5, 10-テトラフェニルア ントラセン、(5)9,10-ジフェニルアントラセ ン、(6) 1, 2, 3, 4-テトラフェニルナフタレ ン、(7)2,3,6,7-テトラフェニルナフタレ ン、(8) 4, 4-ジフェニルペリレン、(9) 4, 4 ージフェニルベンゾ [k] ペリレン、(10)3,4, 9,10-テトラフェニルペリレン、(11)2,7-ジフェニルジベンゾ [e, 1] ピレン、(12) ジベン ゾ[e, 1] ピレン、(13) ベンゾ[c] ナフト [2, 1-p] クリセン、(14) 1, 3, 6, 11-テトラフェニルトリフェニレン、(15)ジベンゾ [a, h] アントラセン、(16) 5, 10-ジフェニ ルジベンゾ [a, h] アントラセン、(17) ベンゾ [a] ピレン、(18) ナフト [b] ピレン、(19) 6, 6, 13, 13-テトラフェニル-6, 13-ジヒ ドロペンタセン、(20)1,2,3,4,5-ペンタ フェニルー1、3-シクロペンタジエン、(21)へキ サフェニルベンゼン、(22)9,9'-スピロビフル オレン、(23) p-キンクフェニル、(24) コロネ ン、(25)ペンタセン、又は(26)5,14-ジフ エニルペンタセンなどを含む。これらの化合物は、例え ば1~約8個の炭素原子を有するアルキル基、ハロゲ ン、アルコキシ、アリールオキシ、アミノ、ジアルキル アミノ又はジアリールアミノなどの1つ又はそれより多 くの置換基を有することもできる。

(7) (8) [0022]

【化5】

()

【化4】

[0021]

[0023]

【化6】

【0024】本発明のELデバイスの電子注入及び輸送 層又はゾーンは、多数の電子注入及び輸送化合物から製造することができる。有用な電子輸送化合物の例は、米 国特許第3,172,862号に示されるような、アントラセン、フェナントラセン、ピレン、ペリレンなどの縮合環ルミネセント材料;米国特許第4,356,42 9号及び第5,516,577号に示されるような1,4-ジフェニルブタジエン及びテトラフェニルブタジエンなどのブタジエン、スチルベン;及び米国特許第4,539,507号によって開示されるような光学輝度材料を含む。

【0025】特に好適な電子輸送材料は、開示内容が本文中にすべて援用されて本発明の一部とする米国特許第4,539,507号、第5,151,629号及び第5,150,006号に開示される8-ヒドロキシキノリンの金属キレートである。金属キレート化合物の例は、トリス(8-ヒドロキシキノリネート)アルミニウム(A1Q3)、トリス(8-ヒドロキシキノリネート)ガリウム、ビス(8-ヒドロキシキノリネート) デリウム、ビス(8-ヒドロキシキノリネート) 亜鉛、トリス(5-メチルー8-ヒドロキシキノリネート) 亜鉛、トリス(5-メチルー8-ヒドロキシーノリネート)アルミニウム、ヒス[ベンゾ{f}-8-キノリネート] 亜鉛、ビス(10-ヒドロキシベンゾ[f]・8-キノリネート] 亜鉛、ビス(10-ヒドロキシベンゾ[f]・3-キノリネート) ベリリウム、ビス(10-ヒドロキシベンソ

ノリノーラト) アルミニウム(III) $-\mu$ -オキソービス (2-メチル-8-キノリノーラト) アルミニウム(III) 、ビス (2-メチル-8-キノリノーラト) (フェノーラト) アルミニウム、ビス (2-メチル-8-キノリノーラト) (パラーフェニルフェノーラト) アルミニウム、ビス (2-メチル-8-キノリノーラト) (2-ナフタローラト) アルミニウムなどを含む。

【0026】別の種の好適な電子注入及び輸送化合物 は、金属チオキシノイド化合物である。有用な金属チオ キシノイド化合物の例は、ビス(8-キノリンチオーラ ト) 亜鉛、ビス(8-キノリンチオーラト) カドミウ ム、トリス(8-キノリンチオーラト)ガリウム、トリ ス(8-キノリンチオーラト)インジウム、ビス(5-メチルキノリンチオーラト) 亜鉛、トリス (5-メチル キノリンチオーラト) ガリウム、トリス (5-メチルキ ノリンチオーラト) インジウム、ビス (5-メチルキノ リンチオーラト)カドミウム、ビス(3-メチルキノリ ンチオーラト)カドミウム、ビス(5-メチルキノリン チオーラト) 亜鉛、ビス [ベンゾ { f } -8-キノリン チオーラト] 亜鉛、ビス[3-メチルベンゾ { f } -8 ーキノリンチオーラト] 亜鉛、ビス [3, 7-ジメチル ベンゾ (f) -8-キノリンチオーラト] 亜鉛などを含 む。

【0027】本発明の有機ELデバイスにおいて、光放 出は電子輸送層において主に制御され、この電子輸送層 は、電子注入及び輸送ゾーンにおいて電子-正孔の再結 合が生じた後に光を放出する機能を果たすドープされた 蛍光染料を含有することが好ましい。蛍光染料は、電子 注入及び輸送ゾーン中に、0.01~約10重量%、好 ましくは約0.5~約5重量%の有効量で存在する。有 用な蛍光材料は母材である電子輸送材料に適合でき、母 材と安定な均一相を容易に形成することができるものを 含む。蛍光染料の例は、米国特許第4,769,292 号に開示されるようなもの、7-ジエチルアミノー4-メチルクマリン、4,6-ジメチル-7-エチルアミノ クマリン、4-メチルウンベリフェロンなどのクマリン 染料;4-(ジシアノメチレン)-2-メチル-6-(p-ジメチルアミノスチリル)-4H-ピランなどの 蛍光4-ジシアノメチレン-4H-ピラン;シアニン 類、メロシアニン類、複合シアニン類及びメロシアニン 類、オキソナール類、ヘキシオキソノール類、スチリル 類、メロスチリル類、ストレプトシアニン類などのポリ メチン染料;オキソベンズアントラセン染料;[9-(o-カルボキシフェニル)-6-(ジエチルアミノ) - 3 H - キサンテン - 3 - イリデン] ジエチルアンモニ ウム、スルホローダミンBなどのローダミン染料を含む キサンテン染料;及びルプレン、コロネンなどの芳香族 縮合環蛍光染料を含む。

1)

【0028】本発明の有機ELデバイスに特に好適な種の蛍光材料は、キナクリドン染料である。選択可能なキ

【0029】本発明の実施の形態では、正孔注入及び輸送ゾーン4及び電子注入及び輸送ゾーン5を含む有機ルミネセント中間物の全体の厚みは、電極を横切って印加される比較的低い電圧下での有効な光放出に適合した電流密度を維持できるように約1μm未満に制限されることが好ましい。正孔注入及び輸送ゾーンの好適な厚みは約50~約2,000Å、好ましくは約400~約1,000Åの範囲である。同様に、電子注入及び輸送ゾーンの厚みは約50~約2,000Å、好ましくは約400~約1,000Åの範囲でありうる。

【0030】陰極6は、高又は低仕事関数金属を含むあらゆる好適な金属を含有することができる。低仕事関数金属(約4eV以下、例えば2~約4)と、第2の金属との組み合わせから得られる陰極は、デバイス性能及び安定性を改良するなどの利点を更に提供する。第2の金属に対する低仕事関数金属の好適な割合は約0.1~約99.9重量%の範囲である。低仕事関数金属の例としては、アルカリ性金属、第2A族又はアルカリ性土類金属、希土類金属及びアクチニド系金属を含む第111族金属が含まれる。リチウム、マグネシウム及びカルシウムは特に好適である。

【0031】陰極6の厚みは、例えば約10~約5,000Åにわたる。米国特許第4,885,211号のMg:Ag陰極は、1つの好適な陰極構造を構成している。別の好適な陰極構造は米国特許第5,429,884号に述べられており、この特許において、陰極はアルミニウム及びインジウムなどの他の高仕事関数金属とのリチウム合金から形成される。

【0032】本発明の有機ELデバイスの陽極3及び陰極6は共に、あらゆる簡便な形をとることができる。薄い導電性の陰極層を、例えば透明又はほぼ透明のガラス板又はプラスチック膜である光透過性基板の上に被覆することができる。ELデバイスは、ガラス板に被覆された酸化錫又は酸化インジウム錫から形成される光透過性陽極3を含むことができる。また、例えば約200人以下、より詳細には約100~約200人の、非常に薄い

光透過性の、金、パラジウムなどの金属陽極を使用することもできる。更に、ポリアニリン、ポリピロールなど、透明又は半透明で導電性炭素又は共役ポリマーの非常に薄い層を陽極として使用することができる。あらゆる光透過性重合膜を基板として用いることができる。更に、陽極3及び陰極6の好適な形は米国特許第4,885,211号に示されている。

[0033]

【実施例】

実施例 I

以下の方法で有機ELを製造した。

- 1. 厚み500Åの酸化インジウム錫(ITO)で被覆したガラス(厚み約1mm)を商用洗剤で洗浄し、脱イオン水ですすぎ、オープン内で60℃で1時間乾燥させた。使用の直前に、UVオゾンでガラスを0. 5時間処理した。
- 2. このITO基板を真空蒸着室に配置した。約 5×1 0^{-6} Torr未満の圧力下で、正孔輸送化合物である N, N'ージー1ーナフチルーN, N'ージフェニルー1, 1'ーピフェニルー4, 4'ージアミン、及びルブレンを電気加熱した2つのタンタルボートから同時に蒸発させ、ITOガラスの上に厚さ60nmの層を蒸着した。インフィコン(Inficon)モデルIC/5 コントローラによって、正孔輸送化合物及びルブレンの蒸着速度を 0.6nm/秒及び0.03nm/秒にそれぞれ制御した。
- 3. 電子輸送化合物であるトリス(8-ヒドロキシキノリネート)アルミニウムと、蛍光染料であるN, N'-ジメチル-2, 9-ジメチルキナクリドンを、電気加熱した2つのタンタルボートから0.6 nm/秒及び0.09 nm/秒の蒸着速度で同時にそれぞれ蒸発させることによって、60 nmの電子注入及び輸送層を正孔注入及び輸送層2の上に蒸着した。
- 4. 一方がMg、他方がAgを含み、個々に制御された2つのタンタルボートから同時に蒸発させることによって、100nmのマグネシウムと銀の合金を1nm/秒の全体的な蒸着速度で電子注入及び輸送層3の上に蒸着した。典型的な組成は、Mg対Agの原子比が9:1であった。最後に、反応しやすいMgを周囲の湿気から保護する目的で、200nmの銀の層をMg:Ag陰極の上に被覆した。

【0034】上記のように製造したデバイスを、窒素ガスで連続的にパージした乾燥室内に保管した。直流の測定において電流ー電圧特性及び光の出力を測定することによって、デバイスの性能を評価した。キースリー(Keithley)モデル238高電流源測定装置(High Current Source Measure Unit)を用いて電流ー電圧特性を決定した。ITO電極は常に電源の正端子に接続していた。同時に、シリコン光ダイオードによってデバイスからの光の出力をモニタした。

【0035】動作において、正のバイアス電圧をITO電極に印加したところ、製造されたデバイスはピーク発光が550nmである黄色がかった緑色光を放出した。このデバイスから記録した発光スペクトルは、N,N'ージメチルー2,9ージメチルキナクリドンのエレクトロルミネセントスペクトルと同一であり、これは、本発明のELデバイスの光が電子注入及び輸送層に存在するキナクリドン蛍光染料から放出されたことを示している。

【0036】このデバイスの動作安定性を、25mA/ cm^2 の定電流密度下でテストした。初期の光強度は 1,000cd/ m^2 であり、これは実質的な用途における所望の光強度を上回っている。光強度は時間の経過に伴ってゆっくりと減少し、1,500時間の連続動作後に光強度の50%減少を記録した。

【0037】 比較例1

N, N' - ジ - 1 - ナフチル - N, N' - ジフェニル - 1, 1' - ピフェニル - 4, 4' - ジアミンの正孔輸送 層をルブレンなしで付着したことを除いて、制御された <math>ELデバイスを実施例 I と同じ方法で製造した。

【0038】正のバイアス電圧をITO電極に印加したところ、このデバイスはピーク発光が550nmである黄色がかった緑色光を放出した。このデバイスから記録した発光スペクトルは、N,N'ージメチルー2,9ージメチルキナクリドンのエレクトロルミネセントスペクトルと同一であり、これは、本発明のELデバイスの光が電子輸送層にドープされたキナクリドン蛍光染料から放出されたことを示している。このデバイスの動作安定性を、25mA/cm²の定電流密度下でテストした。初期の光強度は1,000cd/m²であった。光強度は、200時間連続動作させただけで初期の光強度の50%に減少した。この結果から、安定化していない正孔輸送層を有するELデバイスの動作安定性がより劣っていたことがわかった。

【0039】比較例2

実施例 I で説明した手順を変更して、制御されたELデバイスを構成した。ステップ 2 において、ルブレンの代わりにN, N'ージメチルー2, 9ージメチルキナクリドンを用いて正孔輸送層を形成した。キナクリドン染料のドープ剤を用いずに、トリス(8-ヒドロキシキノリネート)アルミニウムから電子輸送層を形成した。

【0040】正のバイアス電圧をITO電極に印加したところ、このデバイスはピーク発光が525nmである緑色光を放出した。このデバイスから記録した発光スペクトルは、トリス(8-ヒドロキシキノリネート)アルミニウムのエレクトロルミネセントスペクトルと同一であり、これは、正孔輸送層に存在するキナクリドン蛍光染料から光が放出されなかったことを示している。このデバイスの動作安定性を、12.5mA/cm²の定電流密度下でテストした。初期の光強度は185cd/m

² であった。光強度は、600時間の連続動作後に初期の光強度の50%に減少した。この実施例は、キナクリドン蛍光染料が正孔輸送層中の発光ドープ剤として好適ではないことを示している。

【0041】 比較例3

N, N' ージメチルー 2, 9 ージメチルキナクリドンを 用いることなくトリス(8 ーヒドロキシキノリネート) アルミニウム層を蒸着したことを除いて、有機E L デバイスを実施例 I に従って構成した。

【0042】正のバイアス電圧をITO電極に印加したところ、このデバイスはピーク発光が550nmである黄色がかった緑色光を放出した。このデバイスから記録した発光スペクトルはルブレンのエレクトロルミネセントスペクトルと同一であり、これは、本発明のELデバイスの光が正孔輸送層にドープされたルブレン蛍光染料から放出されたことを示している。このデバイスの動作安定性を、 $25mA/cm^2$ の定電流密度下でテストした。初期の光強度は $1,000cd/m^2$ であり、これは実質的な用途における所望の光強度を上回っている。光強度は時間の経過に伴ってゆっくりと減少し、130時間連続動作させただけで光強度の50%減少を記録した。

【0043】<u>実施例II</u>

N, N'ージメチルー2, 9ージメチルキナクリドンの 代わりにN, N'ージメチルキナクリドンを蛍光染料と して用いたことを除いて、有機ELデバイスを実施例 I に従って製造した。

1,200時間の連続動作後に光強度の50%減少を記録した。

【0045】実施例III

ルブレンの代わりに 1 , 2 , 3 , 4 - テトラフェニルナフタレンを用いたことを除いて、有機 E L デバイスを実施例 I の手順に従って構成した。

【0046】正のバイアス電圧をITO電極に印加したところ、このデバイスはピーク発光が540nmである緑色光を放出した。このデバイスから記録した発光スペクトルはN,N'ージメチルキナクリドンのエレクトロルミネセントスペクトルと同一であり、これは、電子輸送層にドープされたキナクリドン蛍光染料から光が放出されたことを示している。このデバイスの動作安定性

を、 $25 \,\mathrm{mA/cm^2}$ の定電流密度下でテストした。初期の光強度は $850 \,\mathrm{cd/m^2}$ であり、これは実質的な用途における所望の光強度を十分に上回っている。光強度は時間の経過に伴ってゆっくりと減少し、 $950 \,\mathrm{時間}$ の連続動作後に光強度 $050 \,\mathrm{km}$ を記録した。

【0047】 実施例IV

ルプレン及びトリス(8ーヒドロキシキノリネート)アルミニウムの代わりに 1, 2, 3, 4-テトラフェニルナフタレン及びピス(8ーキノリンチオーラト)亜鉛をそれぞれ用いたことを除いて、有機ELデバイスを実施例 Iの手順に従って構成した。

【0048】正のバイアス電圧をITO電極に印加したところ、このデバイスはピーク発光が550nmである黄色がかった緑色光を放出した。このデバイスから記録した発光スペクトルは、N,N' $-ジメチル-2,9-ジメチルキナクリドンのエレクトロルミネセントスペクトルと同一であり、これは、電子輸送層にドープされたキナクリドン蛍光染料から光が放出されたことを示している。このデバイスの動作安定性を、<math>25mA/cm^2$ の定電流密度下でテストした。初期の光強度は $950cd/m^2$ であり、これは実質的な用途における所望の光強度を十分に上回っている。光強度は時間の経過に伴ってゆっくりと減少し、850時間の連続動作後に光強度の50%減少を記録した。

【0049】実施例V

N, N' - ジ-1 - ナフチル-N, N' - ジフェニル-1, 1' - ピフェニル-4, 4' - ジアミンの代わりに <math>N, N' - ピス-[4' - (N-フェニル-N-m-トリルアミノ) - 4 - ピフェニリル] アニリンを正孔輸送 成分として用いたことを除いて、有機ELデバイスを実施例 <math>I の手順に従って構成した。

【0050】正のバイアス電圧をITO電極に印加したところ、このデバイスはピーク発光が540 nmである緑色光を放出した。このデバイスから記録した発光スペクトルはN, N' ージメチルキナクリドンのエレクトロルミネセントスペクトルと同一であり、これは、電子輸送層にドープされたキナクリドン蛍光染料から光が放出されたことを示している。このデバイスの動作安定性を、25 mA/ c m 2 の定電流密度下でテストした。初期の光強度は1, 150 c d/ m 2 であり、これは実質的な用途における所望の光強度を上回っている。光強度は時間の経過に伴ってゆっくりと減少し、950 時間の

【図面の簡単な説明】

【図1】本発明のELデバイスの一実施の形態を示す断面図である。

連続動作後に光強度の50%減少を記録した。

【符号の説明】

- 2 支持基板
- 3 陽極
- 4 正孔注入及び正孔輸送層

5 電子注入及び電子輸送層

6 陰極

【図1】

フロントページの続き

(72)発明者 ナン-シン フー

カナダ国 エル6エイチ 6ビー4 オン タリオ州オークヴィル ファーンリー ク レセント 159

(72)発明者 ゾラン ディー. ポポヴィック

カナダ国 エル5エル 2ゼット8 オン タリオ州ミシソーガ ソーミル ヴァレイ ドライブ 3349 (72)発明者 アーーミー ホー

カナダ国 エル5エル 5ビー1 オンタ リオ州 ミシソーガ マルカスター ロー ド 3407

(72)発明者 ベン エス. オン

カナダ国 エル5エル 4プイ9 オンタ リオ州 ミシソーガ ハーベイ クレセン ト 2947