Processus Aléatoires

Partiel du 2 avril 2007

2 heures, sans documents ni calculette

Les trois exercices sont indépendants.

Barème approximatif. Exercice 1:3 pts, Exercice 2:9 pts, Exercice 3:8 pts

Exercice 1. Soit (U, V) un vecteur gaussien centré de matrice de covariance

$$\begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$$

où $\rho \in]-1,1[.$

- (1) Calculer l'espérance conditionnelle $E[V \mid U]$.
- (2) Expliciter la densité de la loi conditionnelle de V sachant U.

Exercice 2. Sur un espace de probabilité filtré $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n\in\mathbb{N}}, P)$, on considère une sous-martingale $(X_n)_{n\in\mathbb{N}}$ telle que $X_0=0$ et $X_n\geq 0$ pour tout $n\in\mathbb{N}$. On définit par récurrence un processus $(A_n)_{n\in\mathbb{N}}$ en posant $A_0=0$ et pour tout entier $n\geq 0$,

$$A_{n+1} = A_n + E[X_{n+1} - X_n \mid \mathcal{F}_n].$$

- (1) Montrer que le processus $(A_n)_{n\in\mathbb{N}}$ est croissant $(A_{n+1}\geq A_n \text{ p.s., pour tout } n\geq 0)$ et vérifie les deux propriétés :
 - (i) pour tout $n \geq 1$, A_n est \mathcal{F}_{n-1} -mesurable;
 - (ii) le processus $(X_n A_n)_{n \in \mathbb{N}}$ est une martingale.
- (2) Montrer qu'inversement les propriétés (i) et (ii), et la condition initiale $A_0 = 0$, caractérisent la suite $(A_n)_{n \in \mathbb{N}}$ (à un ensemble de probabilité nulle près).
- (3) On fixe a > 0 et on pose $T_a = \inf\{n \ge 0 : A_{n+1} > a\}$. Montrer que T_a est un temps d'arrêt, puis que $E[X_{n \wedge T_a}] \le a$.
- (4) En déduire que X_n converge vers une limite finie, p.s. sur l'ensemble $\{T_a = +\infty\}$. Conclure que si $A_{\infty} = \lim \uparrow A_n$, X_n converge vers une limite finie, p.s. sur l'ensemble $\{A_{\infty} < \infty\}$.
- (5) On suppose que

$$E[\sup_{n\geq 0}|X_{n+1}-X_n|]<\infty.$$

 $Montrer \ que \ sauf \ sur \ un \ ensemble \ de \ probabilit\'e \ nulle, \ les \ trois \ propri\'et\'es \ suivantes \ sont \ \'equivalentes :$

- (i) $X_n(\omega)$ converge vers une limite finie;
- (ii) la suite $(X_n(\omega))_{n\in\mathbb{N}}$ est bornée;
- (iii) $A_{\infty}(\omega) < \infty$.

(On pourra introduire le temps d'arrêt $S_a = \inf\{n \geq 0 : X_n > a\}$ et majorer d'abord $E[A_{n \wedge S_a}]$.)

Exercice 3. Soit ξ_1, ξ_2, \ldots une suite de variables aléatoires indépendantes à valeurs dans \mathbb{N} , de même loi notée γ . On suppose toujours que $\gamma(0) > 0$ et qu'il existe un entier $j \geq 2$ tel que $\gamma(j) > 0$. Soit aussi p un entier positif. On définit par récurrence une suite de variables aléatoires Y_0, Y_1, Y_2, \ldots en posant $Y_0 = p$ et pour tout entier $n \geq 0$,

$$Y_{n+1} = (Y_n + \xi_{n+1} - 1)^+.$$

(1) Montrer que $(Y_n)_{n\in\mathbb{N}}$ est une chaîne de Markov sur \mathbb{N} dont la matrice de transition est caractérisée par :

$$\begin{split} &Q(0,0)=\gamma(0)+\gamma(1),\\ &Q(0,j)=\gamma(j+1)\quad\text{pour tout }j\geq 1,\\ &Q(i,i+j-1)=\gamma(j)\quad\text{pour tous }i\geq 1\text{ et }j\geq 0. \end{split}$$

- (2) Montrer que la chaîne est irréductible.
- (3) Dans cette question seulement on suppose que $\gamma(j) = 0$ si $j \ge 3$ (et donc $\gamma(2) > 0$). Montrer que la chaîne admet une mesure réversible que l'on déterminera, et est récurrente si $\gamma(2) < \gamma(0)$.
- (4) On revient au cas général, et on note

$$m = \sum_{k=0}^{\infty} k\gamma(k).$$

On définit Z_n pour tout entier $n \geq 0$ en posant

$$Z_n = p + \sum_{k=1}^{n} (\xi_k - 1)$$
 (en particulier $Z_0 = p$).

Montrer que $Y_n \ge Z_n$ pour tout entier $n \ge 0$, p.s. En déduire que si m > 1 on a $Y_n \longrightarrow +\infty$ quand $n \to \infty$, p.s., et tous les états de la chaîne (Y_n) sont transitoires.

(5) On note $T = \inf\{n \geq 0 : Z_n = 0\}$. Montrer que $Y_n = Z_n$ pour tout $n \leq T$, p.s. En déduire que si $m \leq 1$ tous les états de la chaîne (Y_n) sont récurrents.

Corrigé du partiel du 2 avril 2007.

Exercice 1. (1) D'après le cours, $E[V \mid U]$ est la projection orthogonale de V sur la droite vectorielle engendrée par U. Donc il existe $a \in \mathbb{R}$ tel que $E[V \mid U] = aU$. En écrivant que V - aU est orthogonal à U on a E[(V - aU)U] = 0 d'où $a = \rho$. Donc $E[V \mid U] = \rho U$.

(2) D'après le cours la loi conditionnelle de V sachant U est la loi gaussienne de moyenne ρU et de variance $\sigma^2 = E[(V - \rho U)^2] = 1 - \rho^2$. Donc cette loi conditionnelle est donnée par

$$\nu(u, dv) = \frac{1}{\sqrt{2\pi(1-\rho^2)}} \exp\left(-\frac{(x-\rho u)^2}{2(1-\rho^2)}\right) dv.$$

Exercice 2. (1) Comme $(X_n)_{n\in\mathbb{N}}$ est une sous-martingale on a pour tout entier $n\geq 0$,

$$E[X_{n+1} - X_n \mid \mathcal{F}_n] = E[X_{n+1} \mid \mathcal{F}_n] - X_n \ge 0$$

ce qui montre que $A_{n+1} \geq A_n$ et donc le processus $(A_n)_{n \in \mathbb{N}}$ est croissant. On vérifie la propriété (i) par récurrence. Pour n=1, $A_1=E[X_1\mid \mathcal{F}_0]$ est \mathcal{F}_0 -mesurable. Supposons la propriété vraie jusqu'à l'ordre n. On obtient alors immédiatement que A_{n+1} est \mathcal{F}_n -mesurable puisqu'à la fois A_n et l'espérance conditionnelle $E[X_{n+1}-X_n\mid \mathcal{F}_n]$ le sont.

Il est clair que le processus $(X_n - A_n)_{n \in \mathbb{N}}$ est adapté et que $X_n - A_n$ est intégrable pour tout entier $n \geq 0$. Pour vérifier (ii), on calcule

$$E[X_{n+1} - A_{n+1} \mid \mathcal{F}_n] = X_n + E[X_{n+1} - X_n \mid \mathcal{F}_n] - A_{n+1} = X_n - A_n$$

en utilisant la formule de récurrence pour A_{n+1} en termes de A_n .

(2) Soit $(A'_n)_{n\in\mathbb{N}}$ un autre processus vérifiant les propriétés (i) et (ii), et tel que $A'_0=0$. Alors en écrivant

$$E[X_{n+1} \mid \mathcal{F}_n] - A'_{n+1} = E[X_{n+1} - A'_{n+1} \mid \mathcal{F}_n] = X_n - A'_n$$

on obtient que $A'_{n+1} - A'_n = E[X_{n+1} - X_n \mid \mathcal{F}_n]$ et par récurrence on trouve que $A'_n = A_n$ pour tout n, p.s.

(3) Pour tout $n \ge 0$, on a

$$\{T_a = n\} = \{A_1 \le a, A_2 \le a, \dots, A_n \le a, A_{n+1} > a\} \in \mathcal{F}_n$$

puisque A_{n+1} et a fortiori A_1, \ldots, A_n sont \mathcal{F}_n -mesurables. Donc T_a est un temps d'arrêt. D'après le cours, $(X_{n \wedge T_a} - A_{n \wedge T_a})_{n \in \mathbb{N}}$ est une martingale, qui est nulle en n = 0, et on a donc

$$E[X_{n \wedge T_a}] = E[A_{n \wedge T_a}] \le a$$

puisque par construction $A_k \leq a$ pour tout $k \geq 0$ tel que $k \leq T_a$.

(4) La sous-martingale positive $(X_{n \wedge T_a})_{n \in \mathbb{N}}$ est bornée dans L^1 d'après la question précédente, donc converge p.s. vers une limite finie d'après le cours. Sur l'ensemble $\{T_a = +\infty\}$ on a $X_{n \wedge T_a} = X_n$ pour tout n, et on obtient ainsi que X_n converge p.s. vers une limite finie sur cet ensemble. On peut appliquer ce qui précède avec a = p pour tout entier p > 0, et on obtient que sur l'ensemble

$${A_{\infty} < \infty} = \bigcup_{p=1}^{\infty} {T_p = +\infty}$$

 X_n converge p.s. vers une limite finie.

(5) L'implication (i) \Rightarrow (ii) est évidente, et (iii) \Rightarrow (i) découle de la question précédente. Il reste donc à montrer (ii) \Rightarrow (iii). Il est facile de vérifier que S_a est un temps d'arrêt et, puisque $(X_n - A_n)_{n \in \mathbb{N}}$ est une martingale, on a pour tout entier n,

$$E[X_{S_a \wedge n} - A_{S_a \wedge n}] = 0$$

et donc $E[A_{S_a \wedge n}] = E[X_{S_a \wedge n}]$. On a ensuite

$$E[X_{S_a \wedge n}] \le a + E[\sup_{n > 0} |X_{n+1} - X_n|]$$

puisque pour $k < S_a, X_k \le a$, et par ailleurs $X_{S_a} = X_{S_a-1} + (X_{S_a} - X_{S_a-1})$ sur l'ensemble $\{S_a < \infty\}$. Grâce à l'hypothèse de l'énoncé, il existe une constante $C < \infty$ telle que $E[A_{S_a \wedge n}] = E[X_{S_a \wedge n}] \le a + C$ pour tout entier $n \ge 0$. En passant à la limite croissante on trouve que $E[A_{S_a}] \le a + C < \infty$. Cela montre que sur l'ensemble $\{S_a = \infty\}$ on a p.s. $A_\infty < \infty$. Finalement, on voit que sur l'ensemble

$$\{\sup_{n\in\mathbb{N}} X_n < \infty\} = \bigcup_{n=1}^{\infty} \{S_p = +\infty\}$$

on a p.s. $A_{\infty} < \infty$. Cela donne l'implication (ii) \Rightarrow (iii).

Exercice 3. (1) Il suffit de calculer, pour tous $x_0, x_1, \ldots, x_n \in \mathbb{N}$ tels que $P[Y_0 = x_0, Y_1 = x_1, \ldots, Y_n = x_n] > 0$, et pour tout $y \in \mathbb{N}$,

$$P[Y_{n+1} = y \mid Y_0 = x_0, Y_1 = x_1, \dots, Y_n = x_n]$$

$$= P[(x_n + \xi_{n+1} - 1)^+ = y \mid Y_0 = x_0, Y_1 = x_1, \dots, Y_n = x_n]$$

$$= P[(x_n + \xi_{n+1} - 1)^+ = y]$$

$$= Q(x_n, y)$$

- où Q est comme dans l'énoncé. Dans la deuxième égalité on utilise le fait que ξ_{n+1} est (par construction) indépendante de (Y_0, Y_1, \dots, Y_n) et dans la troisième on utilise l'hypothèse que ξ_{n+1} a pour loi γ .
- (2) Puisque $\gamma(0) > 0$ on a $Q(i, i 1) = \gamma(0) > 0$ pour tout entier $i \ge 1$. Par ailleurs il existe un entier $j \ge 2$ tel que $\gamma(j) > 0$ et donc si $\ell = j 1$, on a $Q(i, i + \ell) = \gamma(j 1) > 0$. Soient alors i et j deux entiers positifs. En choisissant un entier p assez grand pour que $i + p\ell > j$, on a

$$U(i,j) \ge Q(i,i+\ell)Q(i+\ell,i+2\ell)\cdots Q(i+(p-1)\ell,i+p\ell)Q(i+p\ell,i+p\ell-1)\cdots Q(j+1,j) > 0.$$

(3) Dans ce cas, on a Q(i,j)=0 dès que $|j-i|\geq 2$. Pour vérifier qu'une mesure μ est réversible il suffit de voir que, pour tout entier $i\geq 0$, on a $\mu(i)Q(i,i+1)=\mu(i+1)Q(i+1,i)$, ce qui équivaut à $\gamma(2)\mu(i)=\gamma(0)\mu(i+1)$. Il en découle que la mesure μ définie par

$$\mu(i) = \left(\frac{\gamma(2)}{\gamma(0)}\right)^i$$

est réversible donc invariante. Si $\gamma(2) < \gamma(0)$, cette mesure est finie, et un résultat du cours assure que la chaîne est alors récurrente.

(4) D'abord $Y_0 = Z_0 = p$. On vérifie ensuite par récurrence que $Y_n \ge Z_n$ pour tout entier n. Si la propriété est vraie à l'ordre n,

$$Y_{n+1} = (Y_n + \xi_{n+1} - 1)^+ \ge Y_n + \xi_{n+1} - 1 \ge Z_n + \xi_{n+1} - 1 = Z_{n+1}.$$

Si m > 1 la loi forte des grands nombres assure que Z_n converge vers $+\infty$ p.s. et donc la même propriété vaut pour Y_n . La chaîne Y_n ne passe alors p.s. qu'un nombre fini de fois en p, et l'état p est transitoire. Comme la chaîne est irréductible tous les états sont transitoires.

(5) Par construction, $Z_n > 0$ pour tout $n \ge 0$ tel que n < T (noter que la marche aléatoire Z_n ne peut décroître que par sauts de taille -1, donc ne peut devenir strictement négative sans passer par 0). On montre alors par récurrence que $Y_n = Z_n$ pour tout $n \le T$. En effet, si cette propriété est vraie à l'ordre n-1, et si $n \le T$, on a

$$Y_n = (Y_{n-1} + \xi_n - 1)^+ = (Z_{n-1} + \xi_n - 1)^+ = Z_{n-1} + \xi_n - 1 = Z_n,$$

puisque $Z_{n-1} + \xi_n - 1 \ge 0$ lorsque $Z_{n-1} > 0$ (ce qui est le cas si $n \le T$).

Lorsque m < 1, la loi forte des grands nombres assure que Z_n converge vers $-\infty$ et donc il est clair que $T < \infty$ p.s. Lorsque m = 1, le cours montre que la marche aléatoire Z_n est récurrente irréductible (noter que la loi des sauts de cette marche aléatoire charge -1) et on a aussi $T < \infty$ p.s. [Alternativement on peut observer que dans le cas m = 1, $(Z_{n \wedge T})$ est une martingale positive qui doit converger vers une limite finie, ce qui assure que $T < \infty$ p.s.]. Dans les deux cas, on a donc $T < \infty$ p.s. D'après le début de la question, la chaîne (Y_n) partant de p visite 0 p.s. Cet argument est valable pour n'importe quelle valeur de $p \ge 0$. En appliquant la propriété de Markov simple à l'instant 1, on voit aussi que la chaîne partant de 0 y revient p.s. Donc 0 est récurrent et puisque la chaîne est irréductible tous les états sont récurrents.