BE1000 HW1 - Spec Lab Report

Maxx Yung

- 1. The stock solution was prepared at 0.03g/L, while the molecular weight is 332.31g/mol. That means $\frac{0.03g}{332.31g/mol}=0.0000902772 \mathrm{mol}$. Using the formula to calculate molarity, which is $M=\frac{mol}{L}$, we get $\frac{0.0000902772}{1}=0.0000902772$ M. After converting from M to μM , we get $90.2772\mu M$.
- 2. Given final diluted concentrations in μM :
 - 1. 25 $275\mu L$ of stock and $725\mu L$ of water.
 - 2. 20 $220\mu L$ of stock and $780\mu L$ of water.
 - 3. 15 $165\mu L$ of stock and $835\mu L$ of water.
 - 4. 10 $110\mu L$ of stock and $890\mu L$ of water.
 - 5. 5 $55\mu L$ of stock and $945\mu L$ of water.
- 3. For the $10\mu M$ sample, we needed $110\mu L$ of stock and $890\mu L$ of water. Then, for the $1000\mu L$ pipette for water, the number was 089. For the $200\mu L$ pipette for the stock solution, the number was 110.

5. Max absorbance according to our data is: 485.0nm

Absorbance (at 485.0 nm) vs. Concentration

The extinction coefficient is the slope of the line because $A=\epsilon lc$, but l=1, so $\frac{A}{c}=\epsilon$. That means the extinction coefficient is $0.0287mol^{-1}cm^{-1}$.

6.

7. Our unknown sample had an absorbance value of 0.463741054. Based on the standard curve formula, $A=\epsilon lc \to 0.463741054=0.0287\times 1\times c$, so $c=16.158224878=16.16\mu M$