1. Implementación de una función lógica: Diseñar un circuito combinacional que implemente la función lógica F(A, B, C) = A'B + AC.

2. Simplificación de una expresión lógica: Simplificar la expresión lógica F(A,B,C,D) = ABC + AB'D + ACD' utilizando álgebra de Boole y mapas de Karnaugh.

ABC + AB'D + ACD'

A(B+B')D'+ ABC+ ACD'

AC+ABD+ ACD'

C+ABD

AB	00	01	11	10
00	X	0	0	0
01	0	0	0	0
11	0	0	1	0
10	0	1	0	1

Resultado

$$F = A \overline{B} C \overline{D} + A \overline{B} \overline{C} D + A B C D$$

3. Multiplexor: Diseñar un circuito combinacional que implemente un multiplexor 4:1 utilizando compuertas lógicas.

4. Comparador de números de 2 bits: Diseñar un circuito combinacional que compare dos números de 2 bits A y B, y produzca una salida de 1 si A > B, 0 si A = B, y -1 si A < B.

Α	В	A=B	A>B	A <b< th=""><th>F</th></b<>	F
0	0	1	0	0	A'B'
0	1	0	0	1	A'B
1	0	0	1	0	AB'
1	1	1	0	0	AB

5. Codificador: Diseñar un circuito combinacional que implemente un codificador 4:2 utilizando compuertas lógicas.

Α	В	С	D	S1	S2	F
1	0	0	0	0	0	AB'C'D'
0	1	0	0	0	1	A'BC'D'
0	0	1	0	1	0	A'B'CD'
0	0	0	1	1	1	A'B'C'D