Dataset: Iris Flower dataset

Note: Only two species of flower are displayed

In favor of null: $log_e(BF_{01}) = -10.31$, sampling = independent multinomial, a = 1.00

Fuel efficiency by type of car transmission

t(18.33) = -3.77, p = 0.001, g = -1.38, $Cl_{95\%}$ [-2.17, -0.51], n = 32

Transmission (0 = automatic, 1 = manual)

In favor of null: $log_e(BF_{01}) = -4.46$, $r_{Cauchy} = 0.71$

AIC = 166, BIC = 173, log-likelihood = -78

 \mathbf{X} = correlation non–significant at p < 0.05 Adjustment (p–value): None

 \mathbf{X} = correlation non–significant at p < 0.05 Adjustment (p–value): None

 \mathbf{X} = correlation non–significant at p < 0.01Adjustment (p–value): None

Fuel economy data

 $t(14) = 1.47, p = 0.163, g = 0.36, \text{Cl}_{99\%}$ [-0.33, 1.10], n = 15

Source: EPA dataset on http://fueleconomy.gov

In favor of null: $log_e(BF_{01}) = 0.44$, $r_{Cauchy} = 0.71$

t(59) = 19.05, p = < 0.001, g = 2.43, Cl_{95%} [1.96, 2.99], n = 6012.5 10.0 median = 19.25 7.5 count 5.0 2.5 0.0 10 20 30 **Tooth length**

In favor of null: $log_e(BF_{01}) = -54.54$, $r_{Cauchy} = 0.71$

Note: Iris dataset by Fisher.

In favor of null: $log_e(BF_{01}) = -186.14$, $r_{Cauchy} = 0.80$

$$\chi^2(2) = 21.34, p = < 0.001, V_{Cramer} = 0.82, Cl_{95\%} [0.46, 0.62], n = 32$$

Engine 0 = V-shaped 1 = straight

In favor of null: $log_e(BF_{01}) = -10.31$, sampling = independent multinomial, a = 1.00

In favor of null: $log_e(BF_{01}) = -4.34$, $r_{Cauchy} = 0.71$

F(1.65,27.97) = 4.06, p = 0.035, n = 22

Pairwise comparisons: Yuen's trimmed means test; Adjustment (p-value): Holm

 $n_{\min} = 11$

nmedian = 17

 $n_{\text{max}} = 20$

Pearson

1.0

0.5

0.0

-0.5

-1.0

X = correlation non-significant at p < 0.05Adjustment (p-value): None

Adjustment (p-value): None

X = correlation non-significant at p < 0.05Adjustment (p-value): None

Adjustment (p-value): Holm

Adjustment (p-value): Holm

cylinder count: 4

cylinder count: 6

In favor of null: $log_e(BF_{01}) = -6.20$, $r_{Cauchy} = 0.71$

In favor of null: $log_e(BF_{01}) = -0.23$, $r_{Cauchy} = 0.71$

cylinder count: 8

0) = -5.01,
$$p$$
 = 0.001, g = -1.38, $Cl_{95\%}$ [-2.49, -0.64], n = 11

In favor of null: $log_e(BF_{01}) = -4.24$, $r_{Cauchy} = 0.71$

am: 0 am: 1 2) = 7.68, p = 0.021, V_{Cramer} = 0.45, $\text{Cl}_{95\%}$ [0.05, 0.77] $\chi \hat{p}$ (2) = 4.77, p = 0.092, V_{Cramer} = 0.43, $\text{Cl}_{95\%}$ [0.05, 0.72], n = 0.092, N_{Cramer} = 0.43, N_{Cramer} = 0.45, N_{Cramer} = 0.45, 16% 15% 21% 23% 62% 63%

Sex: Male

Sex: Female

