Economics 142 Spring 2019

Today's agenda

- 1. quick overview of class
 - course requirements: problem sets; midterm; course project
 - course content
- 2. quick refresher on some basic stats
- 3. confidence intervals; minimum sample sizes
- 4. prep. for PS#1

Refresher on statistics (Appendix B, C of Wooldridge)

 $Y_1, Y_2, ... Y_n$ random sample from a pop, mean μ , variance σ^2

 $\overline{Y}_n = n^{-1} \sum_{i=1}^n Y_i$ is the sample mean; a "statistic" (a function of the sample that has no unknown parameters)

$$s_n^2 = (n-1)^{-1} \sum_{i=1}^n (Y_i - \overline{Y}_n)^2$$
 is the sample variance (note $n-1$)

 $E[\overline{Y}_n] = \mu$: the sample mean is "unbiased" for the pop. mean

$$Var[\overline{Y}_n] = Var[\sum_{i=1}^n (Y_i/n)] = \sigma^2/n.$$

 $E[s_n^2] = \sigma^2$: the "d.f. corrected" sample var is unbiased for σ^2

convergence in probability: $Z_1, Z_2, ...$ is a sequence of r.v.'s converges in probability to b if for any $\varepsilon > 0$:

$$\lim_{n\to\infty} P(|Z_n - b| < \varepsilon) = 1$$

Write as $plim Z_n = b$.

Three famous results: Markov inequality; Chebyshev inequality; WLLN

1. Markov: if X is r.v., with P(X > 0) = 1 then for any t > 0:

$$P(X \ge t) \le \frac{E[X]}{t}.$$

Proof: $E[X] = \int_0^\infty x f(x) dx = \int_0^t x f(x) dx + \int_t^\infty x f(x) dx$

$$\Rightarrow E[X] \ge \int_t^\infty x f(x) dx \ge t \int_t^\infty f(x) dx = t P(X \ge t).$$

Chebychev: If X is a random variable s.t. Var[X] exists, then for any t>0:

$$P(|X - E[X]| \ge t) \le \frac{Var[X]}{t^2}.$$

Proof: consider r.v. $Y = (X - E[X])^2$. Note E[Y] = Var[X]. Using Markov $P(Y \ge \tau) \le \frac{E[Y]}{\tau}$.

So, letting $\tau = t^2$,

$$P(Y \ge t^2) = P(|X - E[X]| \ge t) \le \frac{E[Y]}{t^2} = \frac{Var[X]}{t^2}$$

WLLN. Suppose that $Y_1, Y_2, ... Y_n$ is a random sample from a pop with mean μ , variance σ^2 (both finite). Then $plim \overline{Y}_n = \mu$.

Proof. Pick $\varepsilon > 0$. Applying Chebychev to \overline{Y}_n :

$$P(|\overline{Y}_n - \mu| \ge \varepsilon) \le \frac{Var[\overline{Y}_n]}{\varepsilon^2} = \frac{\sigma^2}{n\varepsilon^2}$$

$$\Rightarrow P(|\overline{Y}_n - \mu| < \varepsilon) \ge 1 - \frac{\sigma^2}{n\varepsilon^2}$$

So

$$\lim_{n\to\infty} P(|\overline{Y}_n - \mu| < \varepsilon) = 1.$$

WLLN says that the distribution of the sample mean "collapses" to the point μ as the sample size gets bigger, (i.e., $plim(\overline{Y}_n - \mu) = 0$).

WLLN says $plim(\overline{Y}_n-\mu)=0$. The Central Limit Theorem (CLT) says that the distribution of \overline{Y}_n collapses to a normal at the rate $n^{1/2}$: if we consider the "scaled" r.v. $\sqrt{n}(\overline{Y}_n-\mu)/\sigma$, this has a normal distribution N(0,1) as $n\to\infty$. A key idea of statistics is that for a given n we can step back from the limit and still be "approximately" OK.

 $\{Z_n\}$, a sequence of r.v.'s, converges in distribution to a r.v. Z with c.d.f. F(x) if

$$\lim_{n\to\infty} P(Z_n \le x) = F(x).$$

CLT: Let $Y_1, Y_2, ... Y_n$ be a random sample from a population with mean μ , variance σ^2 . Then the "scaled" r.v. $\sqrt{n}(\overline{Y}_n - \mu)/\sigma$ converges in distribution to N(0,1). That is, for any fixed x:

$$\lim_{n\to\infty} P(\frac{\sqrt{n}(\overline{Y}_n - \mu)}{\sigma} \le x) = \Phi(x),$$

where $\Phi()$ is the standard normal c.d.f. This is often written as

$$\sqrt{n}(\overline{Y}_n - \mu)/\sigma \approx N(0, 1)$$

 $\Rightarrow \overline{Y}_n \approx N(\mu, \sigma^2/n)$

$$\overline{Y}_n \approx N(\mu, \sigma^2/n)$$

In fact, CLT remains true if, instead of scaling by σ , we scale by s_n (the *estimate* of σ):

$$\sqrt{n}(\overline{Y}_n - \mu)/s_n \approx N(0, 1).$$

$$\Rightarrow \overline{Y}_n \approx N(\mu, s_n^2/n)$$

The quantity s_n^2/n is often called the "estimated sampling variance" of the mean, and s_n/\sqrt{n} is often called the "estimated sampling error".

Sampling from a normal distribution.

CLT says that the sample mean is "asymptotically normal", regardless of the underlying distribution that the Y's are drawn from (as long as μ and σ^2 are finite). Suppose that each Y_i is a draw from $N(\mu, \sigma^2)$. In this case,

$$\overline{Y}_n = \sum_{i=1}^n (Y_i/n).$$

Now, we know that if X and Z are independently distributed $X \sim N(\mu_x, \sigma_x^2)$ and $Z \sim N(\mu_z, \sigma_z^2)$ then

$$aX + bZ \sim N(a\mu_x + b\mu_z, a^2\sigma_x^2 + b^2\sigma_z^2)$$

Extending this result $\overline{Y}_n \sim N(\mu, \sigma^2/n)$ or $\sqrt{n}(\overline{Y}_n - \mu)/\sigma \sim N(0, 1)$. In this case, the distribution of \overline{Y}_n is exact.

Aside on sampling from a normal distribution, continued....

Also, the distribution when we use s_n instead of σ (which is unknown) to scale is known to be a so-called "t-distribution":

$$\sqrt{n}(\overline{Y}_n - \mu)/s_n \sim t_{n-1}$$

where t_{n-1} is the t-distribution with n-1 degrees of freedom. For large n the t is very close to the standard normal. For smaller n the t distribution has fatter tails.

Confidence intervals.

Suppose $Z \sim N(0,1)$. Then we know Z is symmetrically distributed around 0 with a "bell curve" distribution. Define $z_p > 0$ as the real number such that $\Phi(z_p) = 1 - p$ (for p < .5). This is the point such that $P(Z \geq z_p) = p$. We ask: what is the symmetric interval (around 0) such that a standard normal falls in the interval with probability $1-\alpha$? This is the interval $(-z_{\alpha/2}, z_{\alpha/2})$. Why? Because the probability of falling above $z_{\alpha/2}$ is $\alpha/2$, and by symmetry the probability of falling below $-z_{\alpha/2}$ is also $\alpha/2$. So the probability of being outside the interval is α .

For $Z \sim N(0,1)$ $P(-z_{\alpha/2} \leq Z \leq z_{\alpha/2}) = 1-\alpha$. Suppose we have obtained a random sample of some Y's and formed the estimated mean and standard deviation. By the CLT $\sqrt{n}(\overline{Y}_n - \mu)/s_n \approx N(0,1)$, so (approximately):

$$P(-z_{\alpha/2} \le \sqrt{n}(\overline{Y}_n - \mu)/s_n \le z_{\alpha/2}) = 1 - \alpha$$

$$\Rightarrow P(-\frac{s_n z_{\alpha/2}}{\sqrt{n}} \le \overline{Y}_n - \mu \le \frac{s_n z_{\alpha/2}}{\sqrt{n}}) = 1 - \alpha$$

$$\Rightarrow P(-\overline{Y}_n - \frac{s_n z_{\alpha/2}}{\sqrt{n}} \le -\mu \le -\overline{Y}_n + \frac{s_n z_{\alpha/2}}{\sqrt{n}}) = 1 - \alpha$$

$$\Rightarrow P(\overline{Y}_n - \frac{s_n z_{\alpha/2}}{\sqrt{n}} \le \mu \le \overline{Y}_n + \frac{s_n z_{\alpha/2}}{\sqrt{n}}) = 1 - \alpha$$

$$P(\overline{Y}_n - \frac{s_n z_{\alpha/2}}{\sqrt{n}} \le \mu \le \overline{Y}_n + \frac{s_n z_{\alpha/2}}{\sqrt{n}}) = 1 - \alpha$$

This is interpreted as: if we kept repeating a sample of size n, $1-\alpha$ percent of the time the interval $\overline{Y}_n \pm \frac{s_n z_{\alpha/2}}{\sqrt{n}}$ would "capture" (or cover) the true mean μ . This is called the $(1-\alpha)$ "confidence interval".

Note that for $\alpha=$ 0.05, $z_{\alpha/2}=z_{.025}=$ 1.96 \approx 2. So we can say that

$$P(\overline{Y}_n - 2\frac{s_n}{\sqrt{n}} \le \mu \le \overline{Y}_n + 2\frac{s_n}{\sqrt{n}}) \approx 0.95$$

The term $\frac{s_n}{\sqrt{n}}$ is the "estimated sampling error" of \overline{Y}_n . So if we repeated sampling, 95% of the time the $\overline{Y}_n \pm 2\frac{s_n}{\sqrt{n}}$ confidence interval would contain the true mean.

Using these ideas.

Suppose we have to draw a sample of a binary random variable (e.g., the fraction of people who vote Democrat; or the fraction of mortgages in a "mortgage-backed security" portfolio that were improperly underwritten). Let p represent the true probability of the event of interest being "true": so Y_i is a Bernoulli r.v. with mean p and variance p(1-p). For a sample of size n we estimate the mean of the Y's, which is the fraction of "1's" we get. For simplicity call this \overline{p}_n . Note that $E[\overline{p}_n] = p$. Also, in this case our estimate of the variance term is

$$s_n^2 = \frac{1}{n-1} \sum_i (Y_i - \overline{p}_n)^2 = \frac{1}{n-1} \sum_i (Y_i^2 - 2\overline{p}_n Y_i + \overline{p}_n^2) = \frac{n}{n-1} \overline{p}_n (1 - \overline{p}_n).$$

In the Bernoulli case, people often divide the sum by n so the estimate is $s_n = \sqrt{p_n(1-p_n)}$.

How big a sample do we need?

"Margin of Error" — one way people decide the sample size is to set a "margin of error" with a given level of confidence. The margin of error is 1/2 of the width of a $(1-\alpha)$ confidence interval. For a 95% confidence interval (the "industry standard"), $z_{\alpha/2}=1.96$. Thus the width of half of the CI is

$$m = \frac{s_n z_{\alpha/2}}{\sqrt{n}}.$$

Now we don't know p so we don't know s_n : but a "worst case" is $p_n = 0.5$ which implies that $s_n = \sqrt{0.5(1-0.5)} = 0.5$. So the "worst case" for m with a sample size of n is

$$m = \frac{0.5z_{\alpha/2}}{\sqrt{n}}.$$

If we choose a margin of error m, we need a sample size of

$$n = \left(\frac{z_{\alpha/2}}{2m}\right)^2$$

A standard setting is m= 0.05, which with a 95% confidence needs $n\approx$ 400. Note that if we use a 95% confidence level then $z_{\alpha/2}\simeq$ 2 and

$$n \simeq \left(\frac{1}{m}\right)^2$$

"Minimum Detectable Effect" – another way to choose a sample size is to ask what deviation from a given value would you like to be able to "reliably detect". If the default "null hypothesis" is $p=p^0$, we might want to be able to say that if we obtain a point estimate of $p_n=p'$ then it will be "significantly different from p^0 . Assuming a null of $p=p^0$, we would "reject the null" with an estimate of p' at the α level of significance (under a 2-tailed test) if

$$\frac{p'-p^0}{s_n/\sqrt{n}} > z_{\alpha/2}.$$

Again, using $s_n = 0.5$ as the "worst case" scenario, the sample size we need satisfies:

$$\sqrt{n} > \frac{z_{\alpha/2}}{2(p'-p^0)}.$$

For $\alpha = 0.05$, $z_{\alpha/2} = 1.96$, and we need (approximately):

$$n > \frac{1}{(p'-p^0)^2}.$$

If for example you want $p'-p^0=0.05$, you'll need n=400. Notice that this is the same thing as having a 0.05 margin of error.