

AD-A073 774

ARIZONA UNIV TUCSON DEPT OF PSYCHOLOGY
THE ROLE OF GLOBAL TOPICS AND SENTENCE TOPICS IN THE CONSTRUCTI--ETC(U)
JUL 79 D E KIERAS

F/G 5/10

UNCLASSIFIED

TR-4

NL

1 OF /
AD
A073774

END
DATE
FILED
10-19
DDC

AD A 073774

LEVEL

(P2)
B.S.

The Role of Global Topics and Sentence Topics in the Construction of Passage Macrostructure

David E. Kieras

Department of Psychology, University of Arizona
Tucson, Arizona 85721

DDC FILE COPY

Technical Report No. 4 July 30, 1979

This research was supported by the Personnel and Training Research Programs, Office of Naval Research, under Contract Number N00014-78-C-0509, Contract Authority Identification Number NR 157-423. Reproduction in whole or in part is permitted for any purpose of the United States Government.

Approved for Public Release; Distribution Unlimited

79 09 13 030

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER Technical Report No. 4	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) The role of global topics and sentence topics in the construction of passage macrostructure		5. TYPE OF REPORT & PERIOD COVERED Technical Report, July 30, 1979
7. AUTHOR(s) 10) David E. Kieras	6. PERFORMING ORG. REPORT NUMBER 15) N00014-78-C-0509	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Department of Psychology University of Arizona Tucson, AZ 85721	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 61153N; RR 042-06 RR 042-06-02; NR 157-423	
11. CONTROLLING OFFICE NAME AND ADDRESS Personnel and Training Research Programs Office of Naval Research (Code 458) Arlington, VA 22217	12. REPORT DATE 30 Jul 1979	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) 12) 36 P	13. NUMBER OF PAGES 34	
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; Distribution unlimited		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 16) RR 042-06 17) RR 042-06-02		
18. SUPPLEMENTARY NOTES 14) TR-4		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Reading, Comprehension, Abstraction		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Two experiments are reported on the nature of global coherence in technical passages. Subjects were asked to state the topic of presented passages in the form of a noun phrase that designated a single object. The first experiment shows that whether the passage is organized around a single major referent has a powerful effect on the difficulty of identifying the topic. The second experiment shows that which referent appears as the surface subject of individual passage sentences is also a powerful determinant of the perceived passage topic.		

411 085

xlt

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

The results are discussed in terms of the reader's constructing a macrostructure for the passage, and selecting the central referent of the macrostructure for the statement of the topic. If the immediate propositional content or the surface structure of a passage does not allow a global topic to be selected, the reader must engage in time-consuming inferential processes to construct a suitable macrostructure for the passage.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

The Role of Global Topics and Sentence Topics
in the Construction of Passage Macrostructure

David E. Kieras
Department of Psychology, University of Arizona
Tucson, Arizona 85721

Technical Report No. 4

July 30, 1979

This research was supported by the Personnel and Training
Research Programs, Office of Naval Research, under Contract
Number N00014-78-C-0509, Contract Authority Identification
Number NR 157-423. Reproduction in whole or in part is
permitted for any purpose of the United States Government.

Approved for Public Release; Distribution Unlimited

Abstract

Two experiments are reported on the nature of global coherence in technical passages. Subjects were asked to state the topic of presented passages in the form of a noun phrase that designated a single object. The first experiment shows that whether the passage is organized around a single major referent has a powerful effect on the difficulty of identifying the topic. The second experiment shows that which referent appears as the surface subject of individual passage sentences is also a powerful determinant of the perceived passage topic. The results are discussed in terms of the reader's constructing a macrostructure for the passage, and selecting the central referent of the macrostructure for the statement of the topic. If the immediate propositional content or the surface structure of a passage does not allow a global topic to be selected, the reader must engage in time-consuming inferential processes to construct a suitable macrostructure for the passage.

)

Acknowledgments

Thanks are due to Susan Bovair, Mark Stempski, and Barbara Moodie for assistance in preparing and conducting the experiments, analyzing the data, and preparing this report.

The Role of Global Topics and Sentence Topics
in the Construction of Passage Macrostructure

David E. Kieras

In their recent work on textual macrostructures, van Dijk and Kintsch (Kintsch & van Dijk, 1978; Kintsch, 1977; van Dijk, 1977a, 1977b) have stated that a well-formed passage must adhere to a rule of global coherence. That is, not only must the passage sentences be locally coherent by means of shared referents, but also they must refer to some global topic of discourse. In the theory of macrostructures advanced by van Dijk and Kintsch, this global topic is represented by a set of macro-propositions which are inferred or selected from the text by means of macro-rules that rely on long-term memory. If the text did not in fact conform very well to this rule of global coherence, the reader would find it difficult to apply the macro-rules to arrive at a single coherent macrostructure.

In the process of constructing the macrostructure for a passage, the reader will be searching for and making use of information that is relevant to the global discourse topic. van Dijk (1979) points out that there would be several levels at which a text would contain information relevant to the global topic. One of these, of course, is that of the discourse as a whole. Another is at the level of individual sentences. Within a single sentence, some of the information is presupposed, or given, while the other information is new (see Clark & Haviland, 1977); so a sentence consists of a topic and a comment. The sentence may be considered as being "about" the topic. Usually, the sentence topic appears as the surface subject noun phrase, although there are other devices, such as stress or cleft constructions, that are also used to differentiate topic from comment.

Normally the topic that the passage is "about" and the topics that the sentences in the passages are "about" are the same. But, according to van Dijk, the sentence level of topic marking by means of topic-comment assignment is strictly local, and so the passage topic determines the sentence topics. However, this analysis does not include how the reader identifies the global passage topic while reading. The sentence topics may in fact serve as a cue to the passage topic. If a

particular topic is repeatedly marked as topical by the passage sentences, it may be perceived as the passage topic as a result. Hence the relation between passage topic and sentence topics is a relatively strong one. Not only should the sentence topics refer to the global topic, but readers expect this to be the case, and so use the sentence-level topic-comment assignment as one source of information about what is the passage topic.

This paper contains two experiments. The first is on the issue of whether the requirement for global coherence has the processing implications implied by macrostructure theory. The second concerns whether sentential topics influence what readers consider to be the global topic. Two side results of the second experiment are evidence for frequency of reference and initial position as being two additional cues to topicality, as suggested by van Dijk's (1979) analysis.

Rather than the conventional approach of obtaining recall measures, these experiments used a direct measure of what subjects consider the topic of a passage to be. Namely, the subject simply reported in the form of a "title" noun phrase what the passage was about. This main item measure is a measure of the central, or most relevant, referent in the passage. Other aspects of the passage macrostructure could also be assessed. For example, as pointed out by van Dijk (1979), the passage could be about both a central referent and the major predication of this referent. This suggests that one could assess the main idea as well as the main item. The fact that the major predication are of the major referent implies that statements of the main idea would be about the main item, and thus statements of the major predication would contain the major referent as the surface subject noun phrase. This would occur because in composing a statement of the main idea, the subject would assign topic and comment of this statement on the basis of the perceived passage topic, and thus the global topic would appear as the topic of the statement (cf. Perfetti & Goldman, 1974, 1975). This hypothesized relation was obtained in a study by the author (Kieras, Note 1) in which statements of the main idea in the form of a simple sentence were compared with statements of the main item in the form of a noun phrase. The main ideas tended to contain popular main items as their subject noun phrase. Hence both main ideas and main item judgements can be studied. However, judgements of the main item were

used in these studies because the main referent is a theoretically simple aspect of macrostructure, and because topic-comment assignment operates most naturally at the level of referents, rather than propositions.

The approach used in the experiments is a standard one in psycholinguistic research: To determine whether a proposed linguistic convention is actually assumed or used by readers, performance is compared on materials that either adhere to or violate the convention. The assumption in this approach is that these conventions exist in order to compensate for the limitations of the human information-processing system; for example, global coherence is required because readers can only process and store a limited amount of information while reading a passage; knowing the global topic allows them to restrict their processing to selecting or inferring macropropositions about that single topic, and storing only the most important of those. Surface-level signals such as sentence topic-comment assignment would be used because they can be exploited with only a small amount of processing; if readers had to infer macrostructural content strictly on the basis of the deep content of a passage, they would suffer from the heavy processing load required at that level. Hence, these experiments involved not only measures of what subjects considered to be the passage topic, but also the times required to read the passage and select their response.

EXPERIMENT 1

This experiment was a simple one, intended to show first of all, that violation of the global coherence rule would result in processing difficulties for the reader. Subjects were asked to state a single topic for passages that had either one frequently mentioned referent, or three competing major referents. The effects of this violation of the global coherence convention were expected to show up in the form of less consistency of the judgements of the perceived passage topic, and longer reading and processing times. A second purpose of the experiment was to confirm that the task of judging the main item, or central referent, of the passage was a valid measure of what subjects thought the passage was about. This would be shown if the measure was sensitive to a manipulation that should, according to theory, affect the passage topic. To keep subjects reasonably close to the passage content, they were

urged to use as a "title" something that was actually mentioned in the passage. Previous work had shown that subjects actually interpret this instruction rather liberally; verbatim excerpts from the passage are rare. However, it does have the effect that it was intended to produce, that of reducing the frequency of overly general or inexplicable responses that unconstrained subjects sometimes give.

Method

Materials. Fourteen passages were prepared, each in two versions: a one-topic version, and a three-topic version. The one-topic versions began with a single topic, which was maintained throughout. The corresponding three-topic version began with the same topic, but about a third of the way through made a transition in a single sentence to a second topic, and about two-thirds of the way through, changed to a third topic. Although the three-topic passages are obviously "bad" passages, care was taken to make the transitions between topics locally coherent and reasonably plausible. The passages were composed and justified to occupy about 20 80-character lines. An example is shown in Table 1.

Design. The design was within-subjects and within-passages. Each subject saw one version of each of the fourteen passages. For each subject, the version used of each passage was determined at random, with consecutive pairs of subjects getting alternate versions, so that an even number of subjects would result in each passage appearing equally often in each version. The order of appearance of the passages was randomized for each subject.

Subjects. Thirty students of either sex recruited through campus advertisements from the University of Arizona population served as subjects for \$2.00 each.

Equipment and Procedure. The subjects were run individually or in groups of two using a laboratory computer to prepare the randomized passage set for each subject, display the passages, and record reading times (Kieras, 1979). Each subject sat at a booth containing a Teleray 3811 video terminal with an upper-/lower-case 24 lines by 80 character display driven at 9600 Baud.

Table 1
Example of One- and Three-Topic Versions of a Passage

One-Topic

The photon, the quantum of light and other electromagnetic radiation, is generally assumed to be a massless particle. The photon can carry energy and momentum from place to place, and it is deflected by the gravitational effects of large masses; but in the usual formulations of modern physics is assigned a "rest mass" of zero. This means that a photon cannot be brought to rest, light cannot stand still. If a photon's rest mass were greater than zero, it would be possible, at least in principle, to "catch" a photon and measure its mass. On what basis, then, is it assumed that the rest mass of a photon is zero? One argument is that the theory of magnetism prescribes zero mass for a photon. An equally consistent theory can be construed, however, for a photon of any arbitrary mass. The possibility that the photon has a large mass can readily be excluded; if it did the world would be a profoundly different place. If a photon had only a very small mass, less than that of an electron, but still greater than zero, the universe would differ only slightly from one containing only massless photons, and only by detecting those subtle differences could the photon's rest mass be discovered. Attempts to detect those subtle differences have been performed. None of the experiments have proved the rest mass of a photon to be zero, and indeed, such a proof may be impossible. An experiment that fails to find a photon's mass does not prove the mass is zero; it merely shows that the mass is less than the limit of accuracy of the experiment.

Three-Topic

The photon, the quantum of light and other electromagnetic radiation, is generally assumed to be a massless particle, even though it can carry energy and momentum from place to place and is deflected by the gravitational effects of large masses. The meaning of that assignment is that a photon cannot be brought to rest. Light cannot stand still. If the rest mass of a photon were greater than zero, it would be possible to "catch" a photon and measure its mass. Large numbers of photons are emitted when a star explodes, becoming a supernova. Supernovas are enormously interesting because the remnants and ejecta of such explosions are among the most interesting objects known to astrophysics today. It is believed that supernova explosions give rise to pulsars, black holes, high energy cosmic rays and high velocity "runaway" stars, hurtling through our galaxy at speeds approaching a million miles an hour. Supernovas are often obscured by dust, limiting the number visible to us. The last supernova occurred around 1600. Another important event, that occurred about the same time, was an energy crisis in Britain. The energy crisis was due to a severe wood shortage. In medieval Britain and Europe wood was used not only for construction, but also as a fuel for most domestic and industrial heating. Wood was replaced by coal as a source of fuel. England, in the period between the 17th and 18th centuries, developed the earliest coal burning economy. England was also the first nation to resolve a major energy crisis.

After reading a set of instructions, the subject viewed a passage on the terminal screen, and tapped the space bar when he or she was finished reading, which caused the passage to disappear. The time that the passage was left on the screen was recorded to the nearest second and used as a measure of the time required to read the passage and arrive at a response. Then the subject wrote down his or her response on a notepad, and then tapped the space bar again to view the next passage. The session required about an hour to complete.

Instructions. The subjects were told that their response should be like a title, and "should name the thing that ... best represents what the passage was about." It "must name a thing actually mentioned in the passage" rather than be something inferred or deduced. Hence they were "picking out one of the things actually described in the passage and using it as a title." The instructions required that this be a single item, and be expressed as a short phrase, and not as a sentence. They were asked not to waste time during the periods the computer was recording the time. One subject failed to follow the instructions by generating sentence-like responses, and so was replaced.

Results

The responses were scored blind, without knowledge of the experimental condition associated with the individual responses. Hence, any scoring biases or errors would not distort the results. The responses were scored using a simple categorization scheme, in which the responses for each passage were grouped into several categories on the basis of similarity of what they referred to. Then the response categories were labeled in terms of whether they referred to the first, second, or third topics in the three-topic passage versions. Finally, the individual responses were separated by condition for tabulation. The distribution of responses is shown in Table 2. Category 1 corresponds to the first topic in the three topic version, or the single topic of the one-topic version. Categories 2 and 3 refer to the second and third topics of the three-topic versions. Categories 4 through 9 are simply arranged in order of decreasing frequency. Also shown in Table 2 are the reading times, obtained by averaging across passages for each subject to yield a mean reading time for each type of passage for each subject.

Table 2
Distribution of Responses

Version	Category									RT(secs)
	1	2	3	4	5	6	7	8	9	
One-Topic	.73	.02	.00	.13	.06	.02	.01	.01	.01	66
Three-Topic	.21	.21	.03	.28	.12	.06	.03	.02	.02	93

Note. Category 1 is the topic of the one-topic passages, and also the first topic of the three-topic passages. Categories 2 and 3 are the second and third topics of the three-topic passages. The remaining categories are numbered in order of decreasing frequency.

Notice that category 1 is the overwhelming favorite response for the one-topic passages, whereas for the three-topic passages, the responses are much more spread out and less consistent. This was tested statistically by comparing the two distributions with a chi-square test, which yielded a value of 119.28 at 8 degrees of freedom, $p < .001$. Notice also that category 4 was the most popular response to the three-topic passages. These responses, like the other non-mentioned categories, tend to subsume in some way all three explicitly mentioned categories, such as Types of Energy for the passage shown in Table 1. A feature of Table 2 is that responses to three-topic passages tended to name one of the actually mentioned candidate topics less often than in the one-topic passages. That is, responses falling into categories 4 through 9 are more frequent for the three-topic passages than responses falling into categories 2 through 9 for the one-topic passages. This effect was tested by grouping the responses into two categories based on whether or not they were explicitly mentioned in the passage, and comparing the two distributions with a chi-square test. This yielded a chi-square value of 30.99 at 1 degree of freedom, $p < .001$.

Finally, notice that the reading times for the three-topic passages is almost 30 seconds longer than for the one-topic passages ($t(29) = 7.894$, $p < .001$).

Discussion

The results show that the main item statement measure used was indeed sensitive to the linguistic properties of the passage in the desired way. The substantive result was that readers were strongly affected by the violation of the global coherence rule. However, it should be pointed out that in a sense, even the three-topic passages were globally coherent. Subjects were able to come up with single-referent responses the bulk of the time, for example, the category of Types of Energy for the example passage described above. The difference is that they could not simply pick the most frequently mentioned referent, nor could they always pick one of the major referents appearing in the passage. Rather they had to perform extensive memory search and inference processes to arrive at a single global topic, which was often one that was not mentioned in the passage, and so took much longer and were more likely to arrive at idiosyncratic

results. Hence there was slower reading time, less consistency in the responses, and fewer responses that made use of one of the actual topics appearing in the passages.

So the results are best characterized as follows: When there is only a single major referent, the passage macrostructure is built around this referent, and so supplying a statement of the main referent is a matter of simply selecting this central component of the macrostructure. However, when there are several major referents, the macrostructure for these passages consists of several only thinly-connected parts, each built around its own central referent. In order to supply a single referent as the topic, the reader must engage in further macro-level processing to construct a higher-level set of macropropositions that are organized around a single referent and tie together the separate parts of the original macrostructure. This extra processing is time-consuming and subject to the variation in individual readers' knowledge.

EXPERIMENT 2

This experiment followed the same general approach as Experiment 1 with the major difference that the passage microstructure, or individual propositions, was left essentially intact. The manipulation consisted of altering the topic-comment assignment in the individual sentences. The goal was to determine if the topic-comment assignment at the sentence level influenced the perceived topic of the entire passage. The experiment actually consisted of two sub-experiments using different types of passages. One subexperiment used A-B passages, which contained two major referents, A and B, each described in each sentence. The manipulation consisted of making either A or B the subject of all of the sentences. It was expected that the referent marked as topical by the sentence-level topic-comment assignment would be the preferred passage topic, but there would be no difference in processing time, since the reader can construct a macrostructure around either of the major referents with equal ease. The other sub-experiment used A-X passages, in which there were four major referents, A, X, Y, and Z, which differed in how often and how early in the passage they appeared. The passages had item A appearing either as the subject of all of the sentences it was containing in, or as a constituent of the predicate. It was expected that repeatedly marking this major referent as the sentence topic would result in its being a very popular choice for the passage

topic. But, hiding it in the sentence predicate, marking it as comment, would result in fewer choices of it as the passage topic, and would also result in longer processing times for reasons similar to those in the three-topic passages in Experiment 1. That is, such passages would have three different major referents marked as topical by appearing as sentence subjects, and so would require extra macro-level processing to supply a single passage topic. Furthermore, choices of the other referents in the passages should conform to their frequency of mention and their position in the passage (see Kieras, 1978, Note 2, Note 3).

Method

Materials. Two types of passages were prepared, eight of the type labelled A-B, and 10 of the A-X type. In the A-B passages, every sentence contained two major referents, A and B, in such a way that each sentence could be reversed so that either A or B was the surface subject of all sentences, and appeared first in the sentence. The sentences were composed so that this reversal could be done without apparent alterations of the basic sentence content. The passive voice was used only as a last resort for this purpose to avoid monotony in the sentence structure. The passages each contained five sentences and were about eleven 80-character lines in length. An example appears in Table 3.

The A-X passages were somewhat more complicated, containing five sentences that mentioned a total of four main referents, each of which could appear in either the subject position or the predicate of the relevant sentences. In the first version, labelled A-X, three of the sentences had A as the surface subject, with two additional sentences which mentioned only the other referents. The first sentence had the form A-X, with A as the surface subject, and the referent X in the predicate. The five sentences of the entire passage thus had the forms A-X, X-Y, A-Y, Y-Z, and A-Z. The referent A appears three times, Y three times, X twice, and Z twice, while A appears as a subject in the first, third, and fifth sentences, X is the subject of the second sentence, Y is the subject of the fourth, and Z appears not at all as a subject. In the second version, labelled X-A, the sentences with A as a subject were reversed, producing passages with sentences of the form X-A, X-Y, Y-A, Y-Z, and Z-A. Note that the second and fourth sentences are not changed. In this version, A appears the same three times, but

Table 3
An A-B Passage and the Corresponding B-A Passage

Antigens are small areas with a specific and characteristic structure that are found on the surface of cells, like red blood cells. Antigens are found in large numbers on red blood cells, and each organism has its own unique pattern on every cell of its body. Antigens are under genetic control and so the pattern on red blood cells, the blood type, does not normally change in an individual because of environmental influences. Antigens are recognized by the body as either belonging to itself or as foreign so that during transfusions red blood cells of the wrong blood type will be tagged and destroyed. Antigens vary in the strength of the response that they provoke in a body to which they are foreign and so, while red blood cells of the wrong ABO type can kill the recipient, the wrong Kell type, for example, may have no bad effect at all.

Red blood cells, like other cells, have small areas on their surface called antigens that have a specific and characteristic structure. Red blood cells have large numbers of antigens and each organism has its own unique pattern on every cell of its body. Red blood cells have a blood type, the pattern of antigens, that, because the pattern is genetically controlled, does not normally change in an individual because of environmental influences. Red blood cells of the wrong blood type will be tagged and destroyed during transfusions because the body can recognize which antigens belong to itself and which are foreign. Red blood cells of the wrong ABO type can kill the recipient, while the wrong Kell type, for example, may have no bad effect at all because antigens vary in the strength of the response that they provoke in a body they are foreign to.

never as a sentence subject. X appears twice as a subject in the first two sentences. Y appears later as a subject twice, and Z once at the end. These passages were carefully prepared so as to be reasonably readable in both versions, and were of the same length as the A-B passages. An example appears in Table 4, in which A is computers, X is microelectronics, Y is integrated circuits, and Z is random-access memories.

Subjects. Twenty-four students of either sex recruited via campus newspaper ads from the University of Arizona student population served as subjects. They were paid \$2.00 for participating.

Design. The design was within-subjects and within-passages. Each subject read and responded to one version of each of the 18 passages. The version seen by each subject was determined at random, subject to the constraint that consecutive pairs of subjects would get alternate versions of each passage, so that an even number of subjects would result in each version being presented equally often.

Equipment and Procedure. The experiment was performed using the laboratory computer described in Experiment 1, with the addition that it was also used to record the subjects' statements of the passage topics.

The subject was first instructed in how to type on the terminal, using the backspace key for error correction. A short session of typing practice was then performed. Then the subjects read a set of instructions for the experiment, and after being checked for understanding of the instructions, began the experiment. Each passage appeared on the screen. After reading it, the subject tapped the space bar on the terminal, which erased the passage. The time the passage was left on the screen (the reading time) was recorded to the nearest second. Then the subject typed in his or her statement of the topic of the passage. Subjects who did not want to type wrote their responses on a notepad. The computer recorded the time spent entering the response (the typing time). After completing the response, the subject tapped the space bar again to proceed to the next passage.

Instructions. The subjects were told that their response should be like a title, and "should name the thing that ... best represents what the passage was about." It "must name a thing actually mentioned in the passage" rather than be something inferred or deduced. Hence they were

Table 4
An A-X Passage and the Corresponding X-A Passage

Computers have undergone dramatic changes since the first electronic one, ENIAC, was built in 1945, with much of the change being due to rapid advances in microelectronics. Microelectronics have advanced largely because of the development of the integrated circuit from the transistor. Computers of today use integrated circuits for almost all their functions and as a result are faster, cheaper and more reliable. Integrated circuits, which contain tens of thousands of elements on a pure silicon wafer, typically less than a quarter of an inch square, are used in random-access memories. Computers now frequently use random-access memories because they offer the same access time to any storage location, while in the future magnetic bubble and charge-coupled devices will be used more often as their technology also improves.

Microelectronics have advanced rapidly causing many of the dramatic changes that computers have undergone since the first electronic one, ENIAC, was built in 1945. Microelectronics have advanced largely because of the development of the integrated circuit from the transistor. Integrated circuits are used by today's computers for almost all their functions which are, as a result, faster, cheaper and more reliable. Integrated circuits which contain tens of thousands of elements on a pure silicon wafer, typically less than a quarter of an inch square, are used in random-access memories. Random-access memories offer the same access time to any storage location and so now they are frequently used by computers while in the future magnetic bubble and charge-coupled devices will be used more often as their technology also improves.

"picking out one of the things actually described in the passage and using it as a title." The instructions required that this be a single item, and be expressed as a short phrase, and not as a sentence. They were asked not to waste time during the periods the computer was recording the time. One subject failed to conform to the instructions, producing responses that were sentences rather than phrases, and so was replaced.

Results

The main item responses were scored for their similarity to each of the major referents in the original passages. The scoring was blind with regard to the version of the passage that produced the individual responses. Hence any scoring biases would not distort the results. The degree of similarity of the item named in the response to the referent was rated as being at one of three mutually exclusive levels: same referent, a shared concept, simply related, or unrelated. The same referent category was the strictest and least ambiguous, in that the response was judged to refer to the same thing as the candidate topic in the passage. Only the scores under this strict criterion are reported here.

The reading times for each subject were collapsed within passage types and versions, yielding for each subject four data points, a mean reading time for each of the A-B, B-A, A-X, and X-A passage types. The typing times were found not to vary with any experimental conditions and so will not be reported.

The proportion of responses that referred to each of the major referents is shown in Table 5 along with the mean reading times for passages of each type. For the A-B versus B-A passage comparison, the table shows that A is chosen more often if it appears as surface subjects than if it appears in predicates, and the same is true of B. This difference was tested by a chi-square test for identical distributions of choices in the two conditions, which yielded a value of 17.68 at 2 degrees of freedom, $p < .001$. Notice that there is an overall preference for A; this will be discussed below. Finally, the reading times for A-B passages do not differ from those for B-A passages ($t(21) = .29$, $p > .1$).

Table 5
Distribution of Main Item Responses

Version	A	B	other	RT(secs)
A-B	.86	.10	.04	45.6
B-A	.58	.32	.10	46.7

Version	A	X	Y	Z	other	RT(secs)
A-X	.77	.09	.01	.02	.11	46.4
X-A	.48	.19	.12	.03	.21	54.9

For the A-X versus X-A passage comparison, it can be seen from Table 5 that the referent A was the most popular choice overall, but was chosen substantially more often when it appeared as the surface subject of its sentences than when it appeared only in a predicate. The next most popular choice was the referent X, which appeared as a surface subject near the beginning, especially in the X-A version. Also in the X-A version, the referent Y appeared twice as a surface subject, and so was chosen fairly often relative to Z. The reliability of this pattern of differences was tested by comparing the distribution of choices produced by the A-X and the X-A passages with a chi-square test; it yielded a value of 23.65 at 4 degrees of freedom, $p < .001$. Finally, the reading times for the X-A versions were larger than those of the A-X version ($t(21) = 3.40$, $p < .01$).

Discussion

The predicted results were obtained in both passage types. In the A-B vs. B-A comparison, readers favored a given major referent more when that referent appeared as the surface subject of the passage sentences. Also as predicted, there was no reading time difference between the two versions, since the passage was well topicalized in either case; either referent could become the central referent in the passage macrostructure.

A problem with the A-B passage results is that one of the referents, the one labelled A, was generally preferred to the other referent. This is an artifact of the passage composition process and has been considered in detail for passages of this type in Kieras (Note 3). Suffice it to say here that during composing the passages, the A topic was normally worked out first, and then a B topic chosen to fit together with the A topic in the desired way. There is a tendency for the A topics to thus be conceptually superordinate in some way to the B topics. For example, the B topics tend to be examples or elaborative details of the A topics. As described in Kieras (Note 3), it is possible to reduce such preference artifacts by very careful passage construction and selection. However, the constraints on selection of passage topics imposed by the topic-comment reversability required for these experiments are so severe that it was necessary to allow this nuisance variable to be uncontrolled in order to be able to construct

passages in a reasonable amount of time.

In the A-X vs. X-A comparison, the predicted effects were obtained. The overall frequencies of choice of the passage referents corresponded to the degree of topic-comment marking, the frequency of mention, and the closeness to the initial portion of the passage (see Kieras, 1978, Note 2, Note 3). There is probably also a topic preference effect like that for the A-B passages that accounts for some of the popularity of topic A even in the X-A version. However, the strongest effect was that if one of the most frequent referents appeared in the first sentence as the sentence topic and reappeared thereafter, it was very strongly perceived as the passage topic. If this was not the case, the reader had to perform more extensive processing in order to select a response. As in Experiment 1, this additional processing took more time and resulted in less consistency between subjects.

GENERAL DISCUSSION

The first experiment demonstrates that in a theory of comprehension, global coherence must refer not just to the availability of a macrostructure, but also to its ease of construction. A reader can, if pressed, come up with a global topic for even a very "bad" passage; however, global coherence in this situation is very difficult to perceive. While there are many different possible contributors to global coherence, the experiment shows the value of the presence of a unique major referent. If the passage is organized around a single main referent, it is easy for the reader to construct a macrostructure organized around this main referent, and then select this main referent as the passage topic. If not, the reader must work harder to form the macrostructure, and must make more use of his or her general knowledge. The product of the reader's time-consuming effort is again a single referent that can be stated as the topic, but it is likely to be more removed from the passage's explicit content, and more idiosyncratic.

While the passage topic may determine the sentence topics in the sense of generative linguistic theory or in discourse production, in comprehension, the reader must infer the discourse topic on the basis of what he or she encounters in the passage. While there are many possible topic-marking devices (see van Dijk, 1979; Clements, 1979), the second

experiment shows that the topic-comment assignment at the level of individual sentences can be an important influence on the reader's perception of the passage topic. If the sentence marking does not establish a single satisfactory passage topic, the reader must work harder to infer it on the basis of the semantic content of the passage, unaided by this simple surface structure cue.

Hence the macrostructure-building processes can be viewed as being based primarily on semantic content, but heavily guided by the surface form of the passage and passage sentences. In addition to sentence topic-comment assignment, other superficial features of the passage, such as what appears first (Kieras, 1978, Note 2, Note 3) and the other staging and signalling devices described by Clements (1979) and van Dijk(1979) would also play a role. Future work in this main item and main idea paradigm should uncover some of the detailed mechanisms and rules used by the macrostructure-building process.

Reference Notes

1. Kieras, D. E. The relation of topics and themes in naturally occurring technical paragraphs. Technical Report, University of Arizona, January, 1979.
2. Kieras, D. E. How readers identify topics in technical prose. Presented at the Psychonomic Society Meetings, San Antonio, November, 1978.
3. Kieras, D. E. Initial mention as a cue to the main idea and main item of a passage. Technical Report, University of Arizona, July, 1979.

References

Clark, H. H., & Haviland, S. E. Comprehension and the given-new contract. In R. O. Freedle (Ed.) Discourse processes: Advances in research and theory, Vol. 1. Norwood, New Jersey: Ablex Publishing Corporation, 1977.

Clements, P. The effects of staging on recall from prose. In R. O. Freedle (Ed.), New directions in discourse processing. Norwood, New Jersey: Ablex Publishing Corporation, 1979.

Kieras, D. E. Good and bad structure in simple paragraphs: Effects on apparent theme, reading time, and recall. Journal of Verbal Learning and Verbal Behavior, 1978, 17, 13-28.

Kieras, D. E. Doing it the vendor's way: Running multiple subjects in reading experiments using Data General's Diskette Operating System. Behavior Research Methods and Instrumentation, 1979, 11, 221-224.

Kintsch, W. On recalling stories. In M. Just & P. Carpenter (Eds.), Cognitive processes in comprehension. Hillsdale, N. J.: Lawrence Erlbaum Associates, 1977.

Kintsch, W., & van Dijk, T. A. Toward a model of discourse comprehension and production. Psychological Review, 1978, 85, 363-394.

Perfetti, C. A., & Goldman, S. R. Thematization and sentence retrieval. Journal of Verbal Learning and Verbal Behavior, 1974, 13, 70-79.

Perfetti, C. A., & Goldman, S. R. Discourse functions of thematization and topicalization. Journal of Psycholinguistic Research, 1975, 4, 257-271.

van Dijk, T. A. Text and context. London: Longman, 1977. (a)

van Dijk, T. A. Semantic macro-structures and knowledge frames in discourse comprehension. In M. Just & P. Carpenter (Eds.), Cognitive processes in comprehension. Hillsdale, N. J.: Lawrence Erlbaum Associates, 1977. (b)

van Dijk, T. A. Relevance assignment in discourse comprehension. Discourse Processes, 1979, 2, 113-126.

Navy

1 Dr. Ed Aiken
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Robert Breaux
Code N-71
NAVTRAEEQUIPCEN
Orlando, FL 32813

1 MR. MAURICE CALLAHAN
Pers 23a
Bureau of Naval Personnel
Washington, DC 20370

1 Dr. Richard Elster
Department of Administrative Sciences
Naval Postgraduate School
Monterey, CA 93940

1 DR. PAT FEDERICO
NAVY PERSONNEL R&D CENTER
SAN DIEGO, CA 92152

1 CDR John Ferguson, MSC, USN
Naval Medical R&D Command (Code 44)
National Naval Medical Center
Bethesda, MD 20014

1 Dr. John Ford
Navy Personnel R&D Center
San Diego, CA 92152

1 LT Steven D. Harris, MSC, USN
Code 6021
Naval Air Development Center
Warminster, Pennsylvania 18974

1 Dr. Norman J. Kerr
Chief of Naval Technical Training
Naval Air Station Memphis (75)
Millington, TN 38054

1 CHAIRMAN, LEADERSHIP & LAW DEPT.
DIV. OF PROFESSIONAL DEVELOPMENT
U.S. NAVAL ACADEMY
ANNAPOLIS, MD 21402

Navy

1 Dr. William L. Maloy
Principal Civilian Advisor for
Education and Training
Naval Training Command, Code 00A
Pensacola, FL 32508

1 CAPT Richard L. Martin
USS Francis Marion (LPA-249)
FPO New York, NY 09501

2 Dr. James McGrath
Navy Personnel R&D Center
Code 306
San Diego, CA 92152

1 DR. WILLIAM MONTAGUE
LRDC
UNIVERSITY OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA 15213

1 Naval Medical R&D Command
Code 44
National Naval Medical Center
Bethesda, MD 20014

1 Library
Navy Personnel R&D Center
San Diego, CA 92152

6 Commanding Officer
Naval Research Laboratory
Code 2627
Washington, DC 20390

1 JOHN OLSEN
CHIEF OF NAVAL EDUCATION &
TRAINING SUPPORT
PENSACOLA, FL 32509

1 Psychologist
ONR Branch Office
495 Summer Street
Boston, MA 02210

1 Psychologist
ONR Branch Office
536 S. Clark Street
Chicago, IL 60605

Navy

1 Office of Naval Research
Code 200
Arlington, VA 22217

1 Office of Naval Research
Code 437
800 N. Quincy Street
Arlington, VA 22217

5 Personnel & Training Research Programs
(Code 458)
Office of Naval Research
Arlington, VA 22217

1 Psychologist
OFFICE OF NAVAL RESEARCH BRANCH
223 OLD MARYLEBONE ROAD
LONDON, NW, 15TH ENGLAND

1 Psychologist
ONR Branch Office
1030 East Green Street
Pasadena, CA 91101

1 Scientific Director
Office of Naval Research
Scientific Liaison Group/Tokyo
American Embassy
APO San Francisco, CA 96503

1 Office of the Chief of Naval Operations
Research, Development, and Studies Branch
(OP-102)
Washington, DC 20350

1 Scientific Advisor to the Chief of
Naval Personnel (Pers-Or)
Naval Bureau of Personnel
Room 4410, Arlington Annex
Washington, DC 20370

1 LT Frank C. Petho, MSC, USN (Ph.D)
Code L51
Naval Aerospace Medical Research Laboratory
Pensacola, FL 32508

Navy

1 DR. RICHARD A. POLLAK
ACADEMIC COMPUTING CENTER
U.S. NAVAL ACADEMY
ANNAPOLIS, MD 21402

1 Roger W. Remington, Ph.D
Code L52
NAMRL
Pensacola, FL 32508

1 Mr. Arnold Rubenstein
Naval Personnel Support Technology
Naval Material Command (08T244)
Room 1044, Crystal Plaza #5
2221 Jefferson Davis Highway
Arlington, VA 20360

1 Dr. Worth Scanland
Chief of Naval Education and Training
Code N-5
NAS, Pensacola, FL 32508

1 A. A. SJOHOLM
TECH. SUPPORT, CODE 201
NAVY PERSONNEL R&D CENTER
SAN DIEGO, CA 92152

1 Mr. Robert Smith
Office of Chief of Naval Operations
OP-987E
Washington, DC 20350

1 Dr. Alfred F. Smode
Training Analysis & Evaluation Group
(TAEG)
Dept. of the Navy
Orlando, FL 32813

1 Dr. Richard Sorensen
Navy Personnel R&D Center
San Diego, CA 92152

1 CDR Charles J. Theisen, JR. MSC, USN
Head Human Factors Engineering Div.
Naval Air Development Center
Warminster, PA 18974

Navy

1 W. Gary Thomson
Naval Ocean Systems Center
Code 7132
San Diego, CA 92152

Army

1 Technical Director
U. S. Army Research Institute for the
Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 HQ USAREUE & 7th Army
ODCSOPS
USAAREUE Director of GED
APO New York 09403

1 LCOL Gary Bloedorn
Training Effectiveness Analysis Division
US Army TRADOC Systems Analysis Activity
White Sands Missile Range, NM 88002

1 DR. RALPH DUSEK
U.S. ARMY RESEARCH INSTITUTE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333

1 Dr. Ed Johnson
Army Research Institute
5001 Eisenhower Blvd.
Alexandria, VA 22333

1 Dr. Michael Kaplan
U.S. ARMY RESEARCH INSTITUTE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333

1 Dr. Milton S. Katz
Individual Training & Skill
Evaluation Technical Area
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Beatrice J. Farr
Army Research Institute (PERI-OK)
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Harold F. O'Neil, Jr.
ATTN: PERI-OK
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333

Army

- 1 Dr. Robert Sasmor
U. S. Army Research Institute for the
Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333
- 1 Director, Training Development
U.S. Army Administration Center
ATTN: Dr. Sherrill
Ft. Benjamin Harrison, IN 46218
- 1 Dr. Joseph Ward
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Air Force

- 1 DR. G. A. ECKSTRAND
AFHRL/AS
WRIGHT-PATTERSON AFB, OH 45433
- 1 Dr. Genevieve Haddad
Program Manager
Life Sciences Directorate
AFOSR
Bolling AFB, DC 20332
- 1 CDR. MERCER
CNET LIAISON OFFICER
AFHRL/FLYING TRAINING DIV.
WILLIAMS AFB, AZ 85224
- 1 Research Branch
AFMPC/DPMYP
Randolph AFB, TX 78148
- 1 Dr. Marty Rockway (AFHRL/TT)
Lowry AFB
Colorado 80230
- 1 Jack A. Thorpe, Capt, USAF
Program Manager
Life Sciences Directorate
AFOSR
Bolling AFB, DC 20332
- 1 Brian K. Waters, LCOL, USAF
Air University
Maxwell AFB
Montgomery, AL 36112

Marines

1 H. William Greenup
Education Advisor (E031)
Education Center, MCDEC
Quantico, VA 22134

1 Director, Office of Manpower Utilization
HQ, Marine Corps (MPU)
BCB, Bldg. 2009
Quantico, VA 22134

1 DR. A.L. SLAFKOSKY
SCIENTIFIC ADVISOR (CODE RD-1)
HQ, U.S. MARINE CORPS
WASHINGTON, DC 20380

CoastGuard

1 Mr. Richard Lanterman
PSYCHOLOGICAL RESEARCH (G-P-1/62)
U.S. COAST GUARD HQ
WASHINGTON, DC 20590

Other DoD	Civil Govt
1 Dr. Stephen Andriole ADVANCED RESEARCH PROJECTS AGENCY 1400 WILSON BLVD. ARLINGTON, VA 22209	1 Dr. Susan Chipman Basic Skills Program National Institute of Education 1200 19th Street NW Washington, DC 20208
12 Defense Documentation Center Cameron Station, Bldg. 5 Alexandria, VA 22314 Attn: TC	1 Dr. Richards J. Heuer ORPA/AMERS Washington, DC 20505
1 Dr. Dexter Fletcher ADVANCED RESEARCH PROJECTS AGENCY 1400 WILSON BLVD. ARLINGTON, VA 22209	1 Dr. Joseph I. Lipson Division of Science Education Room W-638 National Science Foundation Washington, DC 20550
1 Military Assistant for Training and Personnel Technology Office of the Under Secretary of Defense for Research & Engineering Room 3D129, The Pentagon Washington, DC 20301	1 Dr. Joseph Markowitz Office of Research and Development Central Intelligence Agency Washington, DC 20205
	1 Dr. John Mays National Institute of Education 1200 19th Street NW Washington, DC 20208
	1 William J. McLaurin Rm. 301, Internal Revenue Service 2221 Jefferson Davis Highway Arlington, VA 22202
	1 Dr. Arthur Melmed National Institute of Education 1200 19th Street NW Washington, DC 20208
	1 Dr. Andrew R. Molnar Science Education Dev. and Research National Science Foundation Washington, DC 20550
	1 Dr. Jeffrey Schiller National Institute of Education 1200 19th St. NW Washington, DC 20208

Civil Govt

1 Dr. H. Wallace Sinaiko
Program Director
Manpower Research and Advisory Services
Smithsonian Institution
801 North Pitt Street
Alexandria, VA 22314

1 Dr. Thomas G. Sticht
Basic Skills Program
National Institute of Education
1200 19th Street NW
Washington, DC 20208

1 Dr. Frank Withrow
U. S. Office of Education
400 6th Street SW
Washington, DC 20202

1 Dr. Joseph L. Young, Director
Memory & Cognitive Processes
National Science Foundation
Washington, DC 20550

Non Govt

1 Dr. Earl A. Alluisi
HQ, AFHRL (AFSC)
Brooks AFB, TX 78235

1 Dr. John R. Anderson
Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213

1 DR. MICHAEL ATWOOD
SCIENCE APPLICATIONS INSTITUTE
40 DENVER TECH. CENTER WEST
7935 E. PRENTICE AVENUE
ENGLEWOOD, CO 80110

1 1 psychological research unit
Dept. of Defense (Army Office)
Campbell Park Offices
Canberra ACT 2600, Australia

1 Dr. Alan Baddeley
Medical Research Council
Applied Psychology Unit
15 Chaucer Road
Cambridge CB2 2EF
ENGLAND

1 Dr. Patricia Baggett
Department of Psychology
University of Denver
University Park
Denver, CO 80208

1 Mr Avron Barr
Department of Computer Science
Stanford University
Stanford, CA 94305

1 Dr. Nicholas A. Bond
Dept. of Psychology
Sacramento State College
600 Jay Street
Sacramento, CA 95819

1 Dr. Lyle Bourne
Department of Psychology
University of Colorado
Boulder, CO 80302

Non Govt

1 Dr. Kenneth Bowles
Institute for Information Sciences
University of California at San Diego
La Jolla, CA 92037

1 Dr. John S. Brown
XEROX Palo Alto Research Center
3333 Coyote Road
Palo Alto, CA 94304

1 Dr. Bruce Buchanan
Department of Computer Science
Stanford University
Stanford, CA 94305

1 DR. C. VICTOR BUNDERSON
WICAT INC.
UNIVERSITY PLAZA, SUITE 10
1160 SO. STATE ST.
OREM, UT 84057

1 Dr. John B. Carroll
Psychometric Lab
Univ. of No. Carolina
Davie Hall 013A
Chapel Hill, NC 27514

1 Charles Myers Library
Livingstone House
Livingstone Road
Stratford
London E15 2LJ
ENGLAND

1 Dr. William Chase
Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213

1 Dr. Micheline Chi
Learning R & D Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213

1 Dr. William Clancey
Department of Computer Science
Stanford University
Stanford, CA 94305

Non Govt

1 Dr. Allan M. Collins
Bolt Beranek & Newman, Inc.
50 Moulton Street
Cambridge, Ma 02138

1 Dr. Meredith Crawford
Department of Engineering Administration
George Washington University
Suite 805
2101 L Street N. W.
Washington, DC 20037

1 Dr. Ruth Day
Center for Advanced Study
in Behavioral Sciences
202 Junipero Serra Blvd.
Stanford, CA 94305

1 Dr. Hubert Dreyfus
Department of Philosophy
University of California
Berkeley, CA 94720

1 MAJOR I. N. EVONIC
CANADIAN FORCES PERS. APPLIED RESEARCH
1107 AVENUE ROAD
TORONTO, ONTARIO, CANADA

1 Dr. Ed Feigenbaum
Department of Computer Science
Stanford University
Stanford, CA 94305

1 Mr. Wallace Feurzeig
Bolt Beranek & Newman, Inc.
50 Moulton St.
Cambridge, MA 02138

1 Dr. Victor Fields
Dept. of Psychology
Montgomery College
Rockville, MD 20850

1 Dr. Edwin A. Fleishman
Advanced Research Resources Organ.
Suite 900
4330 East West Highway
Washington, DC 20014

Non Govt

1 Dr. John R. Frederiksen
 Bolt Beranek & Newman
 50 Moulton Street
 Cambridge, MA 02138

1 Dr. Alinda Friedman
 Department of Psychology
 University of Alberta
 Edmonton, Alberta
 CANADA T6G 2J9

1 Dr. Vernon S. Gerlach
 College of Education
 145 Payne Bldg. B
 Arizona State University
 Tempe, AZ 85281

1 DR. ROBERT GLASER
 LRDC
 UNIVERSITY OF PITTSBURGH
 3939 O'HARA STREET
 PITTSBURGH, PA 15213

1 Dr. Ira Goldstein
 XEROX Palo Alto Research Center
 3333 Coyote Road
 Palo Alto, CA 94304

1 DR. JAMES G. GREENO
 LRDC
 UNIVERSITY OF PITTSBURGH
 3939 O'HARA STREET
 PITTSBURGH, PA 15213

1 Dr. Ron Hambleton
 School of Education
 University of Massachusetts
 Amherst, MA 01002

1 Dr. Barbara Hayes-Roth
 The Rand Corporation
 1700 Main Street
 Santa Monica, CA 90406

1 Dr. Frederick Hayes-Roth
 The Rand Corporation
 1700 Main Street
 Santa Monica, CA 90406

Non Govt

1 Library
 HumRRO/Western Division
 27857 Berwick Drive
 Carmel, CA 93921

1 Dr. Earl Hunt
 Dept. of Psychology
 University of Washington
 Seattle, WA 98105

1 DR. LAWRENCE B. JOHNSON
 LAWRENCE JOHNSON & ASSOC., INC.
 SUITE 502
 2001 S STREET NW
 WASHINGTON, DC 20009

1 Dr. Arnold F. Kanarick
 Honeywell, Inc.
 2600 Ridgeway Pkwy
 Minneapolis, MN 55413

1 Dr. Walter Kintsch
 Department of Psychology
 University of Colorado
 Boulder, CO 80302

1 Dr. Stephen Kosslyn
 Harvard University
 Department of Psychology
 33 Kirkland Street
 Cambridge, MA 02138

1 Mr. Marlin Kroger
 1117 Via Coleta
 Palos Verdes Estates, CA 90274

1 LCOL. C.R.J. LAFLEUR
 PERSONNEL APPLIED RESEARCH
 NATIONAL DEFENSE HQS
 101 COLONEL BY DRIVE
 OTTAWA, CANADA K1A 0K2

1 Dr. Jill Larkin
 Department of Psychology
 Carnegie Mellon University
 Pittsburgh, PA 15213

Non Govt

1 Dr. Alan Lesgold
Learning R&D Center
University of Pittsburgh
Pittsburgh, PA 15260

1 Dr. Robert A. Levit
Manager, Behavioral Sciences
The BDM Corporation
7915 Jones Branch Drive
McClean, VA 22101

1 Dr. Robert Linn
College of Education
University of Illinois
Urbana, IL 61801

1 Dr. Mark Miller
Systems and Information Sciences Laborat
Central Research Laboratories
TEXAS INSTRUMENTS, INC.
Mail Station 5
Post Office Box 5936
Dallas, TX 75222

1 Dr. Richard B. Millward
Dept. of Psychology
Hunter Lab.
Brown University
Providence, RI 82912

1 Dr. Allen Munro
Univ. of So. California
Behavioral Technology Labs
3717 South Hope Street
Los Angeles, CA 90007

1 Dr. Donald A Norman
Dept. of Psychology C-009
Univ. of California, San Diego
La Jolla, CA 92093

1 Dr. Seymour A. Papert
Massachusetts Institute of Technology
Artificial Intelligence Lab
545 Technology Square
Cambridge, MA 02139

Non Govt

1 MR. LUIGI PETRULLO
2431 N. EDGEWOOD STREET
ARLINGTON, VA 22207

1 DR. PETER POLSON
DEPT. OF PSYCHOLOGY
UNIVERSITY OF COLORADO
BOULDER, CO 80302

1 DR. DIANE M. RAMSEY-KLEE
R-K RESEARCH & SYSTEM DESIGN
3947 RIDGEMONT DRIVE
MALIBU, CA 90265

1 Dr. Peter B. Read
Social Science Research Council
605 Third Avenue
New York, NY 10016

1 Dr. Fred Reif
SESAME
c/o Physics Department
University of California
Berkely, CA 94720

1 Dr. Andrew M. Rose
American Institutes for Research
1055 Thomas Jefferson St. NW
Washington, DC 20007

1 Dr. Ernst Z. Rothkopf
Dell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974

1 Dr. David Rumelhart
Center for Human Information Processing
Univ. of California, San Diego
La Jolla, CA 92093

1 PROF. FUMIKO SAMEJIMA
DEPT. OF PSYCHOLOGY
UNIVERSITY OF TENNESSEE
KNOXVILLE, TN 37916

1 DR. WALTER SCHNEIDER
DEPT. OF PSYCHOLOGY
UNIVERSITY OF ILLINOIS
CHAMPAIGN, IL 61820

Non Govt

1 Dr. Allen Schoenfeld
Department of Mathematics
Hamilton College
Clinton, NY 13323

1 Dr. Robert Smith
Department of Computer Science
Rutgers University
New Brunswick, NJ 08903

1 Dr. Richard Snow
School of Education
Stanford University
Stanford, CA 94305

1 Dr. Robert Sternberg
Dept. of Psychology
Yale University
Box 11A, Yale Station
New Haven, CT 06520

1 DR. ALBERT STEVENS
BOLT BERANEK & NEWMAN, INC.
50 MOULTON STREET
CAMBRIDGE, MA 02138

1 DR. PATRICK SUPPES
INSTITUTE FOR MATHEMATICAL STUDIES IN
THE SOCIAL SCIENCES
STANFORD UNIVERSITY
STANFORD, CA 94305

1 Dr. Kikumi Tatsuoka
Computer Based Education Research
Laboratory
252 Engineering Research Laboratory
University of Illinois
Urbana, IL 61801

1 Dr. Maurice Tatsuoka
Department of Educational Psychology
University of Illinois
Champaign, IL 61801

1 Dr. John Thomas
IBM Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

Non Govt

1 DR. PERRY THORNDYKE
THE RAND CORPORATION
1700 MAIN STREET
SANTA MONICA, CA 90406

1 Dr. Douglas Towne
Univ. of So. California
Behavioral Technology Labs
3717 South Hope Street
Los Angeles, CA 90007

1 Dr. J. Uhlauer
Perceptronics, Inc.
6271 Variel Avenue
Woodland Hills, CA 91364

1 Dr. Benton J. Underwood
Dept. of Psychology
Northwestern University
Evanston, IL 60201

1 Dr. Phyllis Weaver
Graduate School of Education
Harvard University
200 Larsen Hall, Appian Way
Cambridge, MA 02138

1 Dr. David J. Weiss
N660 Elliott Hall
University of Minnesota
75 E. River Road
Minneapolis, MN 55455

1 DR. SUSAN E. WHITELY
PSYCHOLOGY DEPARTMENT
UNIVERSITY OF KANSAS
LAWRENCE, KANSAS 66044

1 Dr. Karl Zinn
Center for research on Learning
and Teaching
University of Michigan
Ann Arbor, MI 48104