FACULTAT DE MATEMÀTIQUES I ESTADÍSTICA, UPC

Estructures algebraiques, Grau de Matemàtiques

Curs 2013-2014, examen final, 10 de gener de 2014

1. [x punts] Qüestions breus:

- (a) Feu una llista completa (i sense repeticions) de tots els grups abelians d'ordre 500.
- (b) Demostreu que no hi ha grups simples d'ordre 2014.
- (c) Demostreu que si $f: G_1 \to G_2$ és un homomorfisme de grups injectiu, aleshores x i f(x) tenen el mateix ordre.
- (d) Sigui k un cos i V un k[X]-mòdul amb $\dim_k(V) < \infty$. Demostreu que V és de torsió.

2. [x punts]

3. [x punts]

Considereu l'aplicació \mathbb{Q} -lineal $\mathbb{Q}^3 \to \mathbb{Q}^3$, $v \mapsto Av$ (pensant els vectors com a columnes), donada per la matriu

$$A = \left(\begin{array}{rrr} 2 & 0 & -1 \\ -1 & 1 & 2 \\ 0 & 0 & 2 \end{array}\right).$$

- (a) El \mathbb{Q} -espai vectorial \mathbb{Q}^3 esdevé de manera natural un $\mathbb{Q}[X]$ -mòdul usant la matriu A. Expliqueu en detall com són les operacions d'aquest mòdul (diguem-ne M). Mostreu dos vectors $u, v \in M$ que siguin \mathbb{Q} -linealment independents però $\mathbb{Q}[X]$ -linealment dependents.
- (b) Calculeu els divisors elementals de M (us han de donar 1, 1, $(x-1)(x-2)^2$), i classifiqueu aquest $\mathbb{Q}[X]$ -mòdul.
- (c) De l'apartat anterior es veu clarament que M és generat per un sol element. Calculeu un vector v que generi $M = \mathbb{Q}^3$ com a $\mathbb{Q}[X]$ -mòdul.
- (d) Calculeu la forma de Jordan i una base de Jordan per a la matriu A.

4. [x punts] Considereu l'arrel sisena primitiva de la unitat

$$\zeta = \frac{1}{2} + \frac{\sqrt{3}}{2}i$$

i recordeu que satisfà $\zeta^2 - \zeta + 1 = 0$. Considereu l'anell $\mathbb{Z}[\zeta]$, format pels nombres complexos de la forma $a + b\zeta$ amb $a, b \in \mathbb{Z}$.

- (a) Demostreu que l'anell $\mathbb{Z}[\zeta]$ és un domini euclidià, on la norma euclidiana és el quadrat del mòdul com a nombre complex.
- (b) Calculeu quines són les unitats de l'anell, observant que han de ser complexos de mòdul 1.
- (c) Calculeu $mcd(2 + 5\zeta, 1 + 2\zeta)$.
- (d) Resoleu la congruència

$$x \equiv 1 \mod 2 + 5\zeta$$
$$x \equiv \zeta \mod 1 + 2\zeta$$
.