#### Codificação Aritmética

- Apresenta taxas de compressão melhores que o código de Huffman;
- No código de Huffman um símbolo cuja probabilidade,  $p(s_i)$ , esteja próximo de 1, ou seja,  $\log_2 \frac{1}{p(s_i)}$  está próximo de zero, atribuir um bit é muito penalizador.
  - (notar que no mínimo, o código de Huffman, atribui um bit ao símbolo mais provável !)
- A codificação aritmética trata a mensagem como uma unidade

#### Algoritmo

```
low = 0.0
high = 1.0
range = high - low
While (not end)
    s = read symbol
    high = low + range * highrange(s)
    low = low + range * lowrange(s)
    range = high - low
end
write code; # low <= code < high</pre>
```

| Low = 0.0                    |  |  |
|------------------------------|--|--|
| High = 1.0                   |  |  |
| Range = High - Low           |  |  |
| While (not end)              |  |  |
| s = next symbol              |  |  |
| High = Low + Range x High(s) |  |  |
| Low = Low + Range x Low(s)   |  |  |
| Range = High - Low           |  |  |
| end                          |  |  |
| output code                  |  |  |

| Símbolo | prob. | interval    |
|---------|-------|-------------|
| Α       | 0.60  | 0.00 - 0.60 |
| R       | 0.10  | 0.60 - 0.70 |
| E       | 0.30  | 0.70 - 1.00 |



| Low = 0.0                    |   |  |  |
|------------------------------|---|--|--|
| High = 1.0                   |   |  |  |
| Range = High - Low           |   |  |  |
| While (not end)              |   |  |  |
| s = next symbol              | Α |  |  |
| High = Low + Range x High(s) |   |  |  |
| Low = Low + Range x Low(s)   |   |  |  |
| Range = High - Low           |   |  |  |
| end                          |   |  |  |
| output code                  |   |  |  |

| Símbolo | prob. | interval    |
|---------|-------|-------------|
| Α       | 0.60  | 0.00 - 0.60 |
| R       | 0.10  | 0.60 - 0.70 |
| E       | 0.30  | 0.70 - 1.00 |



| Low = 0.0                    |     |  |  |
|------------------------------|-----|--|--|
| High = 1.0                   |     |  |  |
| Range = High - Low           |     |  |  |
| While (not end)              |     |  |  |
| s = next symbol              | Α   |  |  |
| High = Low + Range x High(s) | 0.6 |  |  |
| Low = Low + Range x Low(s)   | 0.0 |  |  |
| Range = High - Low           | 0.6 |  |  |
| end                          |     |  |  |
| output code                  |     |  |  |

| Símbolo | prob. | interval    |
|---------|-------|-------------|
| Α       | 0.60  | 0.00 - 0.60 |
| R       | 0.10  | 0.60 - 0.70 |
| E       | 0.30  | 0.70 - 1.00 |
|         |       |             |



| Low = 0.0                    |     |   |  |
|------------------------------|-----|---|--|
| High = 1.0                   |     |   |  |
| Range = High - Low           |     |   |  |
| While (not end)              |     |   |  |
| s = next symbol              | Α   | Е |  |
| High = Low + Range x High(s) | 0.6 |   |  |
| Low = Low + Range x Low(s)   | 0.0 |   |  |
| Range = High - Low           | 0.6 |   |  |
| end                          |     |   |  |
| output code                  |     |   |  |

| Símbolo | prob. | interval    |
|---------|-------|-------------|
| Α       | 0.60  | 0.00 - 0.60 |
| R       | 0.10  | 0.60 - 0.70 |
| E       | 0.30  | 0.70 - 1.00 |



| Low = 0.0                    |     |      |  |
|------------------------------|-----|------|--|
| High = 1.0                   |     |      |  |
| Range = High - Low           |     |      |  |
| While (not end)              |     |      |  |
| s = next symbol              | Α   | E    |  |
| High = Low + Range x High(s) | 0.6 | 0.60 |  |
| Low = Low + Range x Low(s)   | 0.0 | 0.42 |  |
| Range = High - Low           | 0.6 | 0.18 |  |
| end                          |     |      |  |
| output code                  |     |      |  |

| 1.0 | _ |     | 1 | 0.6 |   |     | 0.60     |   |
|-----|---|-----|---|-----|---|-----|----------|---|
|     | Ε |     | , |     | Е |     |          | Е |
| 0.7 | R | _ / |   |     | R | _ \ |          | R |
| 0.6 | _ | /   |   |     |   |     |          |   |
|     | Α |     |   |     | Α |     |          | Α |
|     |   |     |   |     |   |     |          |   |
|     |   |     |   |     |   |     | <b>\</b> |   |
| 0.0 |   |     | - | 0.0 |   | _   | 0.42     |   |

| Símbolo | prob. | interval    |
|---------|-------|-------------|
| Α       | 0.60  | 0.00 - 0.60 |
| R       | 0.10  | 0.60 - 0.70 |
| E       | 0.30  | 0.70 - 1.00 |

### Mensagem: "AERA"

| Low = 0.0                    |     |      |   |  |
|------------------------------|-----|------|---|--|
| High = 1.0                   |     |      |   |  |
| Range = High - Low           |     |      |   |  |
| While (not end)              |     |      |   |  |
| s = next symbol              | Α   | Е    | R |  |
| High = Low + Range x High(s) | 0.6 | 0.60 |   |  |
| Low = Low + Range x Low(s)   | 0.0 | 0.42 |   |  |
| Range = High - Low           | 0.6 | 0.18 |   |  |
| end                          |     |      |   |  |
| output code                  |     |      |   |  |

| Е | 0.30 |
|---|------|
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |

Símbolo

prob.

0.60

0.10

interval

0.00 - 0.60 0.60 - 0.70

0.70 - 1.00

| 1.0 |   |     | 0.6 |   |     | 0.60 |   | _        |
|-----|---|-----|-----|---|-----|------|---|----------|
|     | Ε |     |     | Е |     |      | Е |          |
| 0.7 | R | _ / |     | R | _ \ |      | R | <u> </u> |
| 0.6 |   | /   |     |   |     |      |   |          |
|     | Α |     |     | Α |     |      | Α |          |
|     |   |     |     |   |     |      | ^ |          |
|     |   |     |     |   |     |      |   |          |
| 0.0 |   |     | 0.0 |   | _   | 0.42 |   |          |

| Low = 0.0                    |     |      |        |  |
|------------------------------|-----|------|--------|--|
| High = 1.0                   |     |      |        |  |
| Range = High - Low           |     |      |        |  |
| While (not end)              |     |      |        |  |
| s = next symbol              | Α   | Е    | R      |  |
| High = Low + Range x High(s) | 0.6 | 0.60 | 0.5460 |  |
| Low = Low + Range x Low(s)   | 0.0 | 0.42 | 0.5280 |  |
| Range = High - Low           | 0.6 | 0.18 | 0.0018 |  |
| end                          |     |      |        |  |
| output code                  |     |      |        |  |

| Símbolo | prob. | interval    |
|---------|-------|-------------|
| Α       | 0.60  | 0.00 - 0.60 |
| R       | 0.10  | 0.60 - 0.70 |
| E       | 0.30  | 0.70 - 1.00 |



| Low = 0.0                    |     |      |        |   |
|------------------------------|-----|------|--------|---|
| High = 1.0                   |     |      |        |   |
| Range = High - Low           |     |      |        |   |
| While (not end)              |     |      |        |   |
| s = next symbol              | Α   | Е    | R      | Α |
| High = Low + Range x High(s) | 0.6 | 0.60 | 0.5460 |   |
| Low = Low + Range x Low(s)   | 0.0 | 0.42 | 0.5280 |   |
| Range = High - Low           | 0.6 | 0.18 | 0.0018 |   |
| end                          |     |      |        |   |
| output code                  |     |      |        |   |

| Símbolo | prob. | interval    |
|---------|-------|-------------|
| Α       | 0.60  | 0.00 - 0.60 |
| R       | 0.10  | 0.60 - 0.70 |
| E       | 0.30  | 0.70 - 1.00 |



| Low = 0.0                    |     |      |        |        |
|------------------------------|-----|------|--------|--------|
| High = 1.0                   |     |      |        |        |
| Range = High - Low           |     |      |        |        |
| While (not end)              |     |      |        |        |
| s = next symbol              | Α   | E    | R      | Α      |
| High = Low + Range x High(s) | 0.6 | 0.60 | 0.5460 | 0.5388 |
| Low = Low + Range x Low(s)   | 0.0 | 0.42 | 0.5280 | 0.5280 |
| Range = High - Low           | 0.6 | 0.18 | 0.0018 | 0.0108 |
| end                          |     |      |        |        |
| output code                  |     |      |        |        |

| Símbolo | prob. | Interval    |
|---------|-------|-------------|
| Α       | 0.60  | 0.00 - 0.60 |
| R       | 0.10  | 0.60 - 0.70 |
| E       | 0.30  | 0.70 - 1.00 |



Valor entre 0.5280 e 0.5388

$$\begin{aligned} \text{n\'umero d\'ecimal} &= \ldots + c_2 2^2 + c_1 2^1 + c_0 2^0 + c_{-1} 2^{-1} + c_{-2} 2^{-2} + \ldots \\ &= \ldots + c_2 \times 4 + c_1 \times 2 + c_0 + c_{-1} \times 0.5 + c_{-2} \times 0.25 + \ldots \end{aligned}$$

Valor entre 0.5280 e 0.5388

número décimal = ... + 
$$c_2 2^2 + c_1 2^1 + c_0 2^0 + c_{-1} 2^{-1} + c_{-2} 2^{-2} + ...$$
 = ... +  $c_2 \times 4 + c_1 \times 2 + c_0 + c_{-1} \times 0.5 + c_{-2} \times 0.25 + ...$ 

Valor entre 0.5280 e 0.5388

número décimal = ... + 
$$c_2 2^2 + c_1 2^1 + c_0 2^0 + c_{-1} 2^{-1} + c_{-2} 2^{-2} + ...$$
 = ... +  $c_2 \times 4 + c_1 \times 2 + c_0 + c_{-1} \times 0.5 + c_{-2} \times 0.25 + ...$ 

- Dado que o número está entre 0 e 1 só se envia a parte décimal
- 1 = 0.5

Valor entre 0.5280 e 0.5388

número décimal = ... + 
$$c_2 2^2 + c_1 2^1 + c_0 2^0 + c_{-1} 2^{-1} + c_{-2} 2^{-2} + ...$$
 = ... +  $c_2 \times 4 + c_1 \times 2 + c_0 + c_{-1} \times 0.5 + c_{-2} \times 0.25 + ...$ 

- Dado que o número está entre 0 e 1 só se envia a parte décimal
- **1** = 0.5
- 11 = 0.5 + 0.25 = 0.75

Valor entre 0.5280 e 0.5388

número décimal = ... + 
$$c_2 2^2 + c_1 2^1 + c_0 2^0 + c_{-1} 2^{-1} + c_{-2} 2^{-2} + ...$$
 = ... +  $c_2 \times 4 + c_1 \times 2 + c_0 + c_{-1} \times 0.5 + c_{-2} \times 0.25 + ...$ 

```
1 = 0.5
```

Valor entre 0.5280 e 0.5388

número décimal = ... + 
$$c_2 2^2 + c_1 2^1 + c_0 2^0 + c_{-1} 2^{-1} + c_{-2} 2^{-2} + ...$$
 = ... +  $c_2 \times 4 + c_1 \times 2 + c_0 + c_{-1} \times 0.5 + c_{-2} \times 0.25 + ...$ 

```
    1 = 0.5
    11 = 0.5 + 0.25 = 0.75
    101 = 0.5 + 0.125 = 0.625
    1001 = 0.5 + 0.0625 = 0.5625
```

Valor entre 0.5280 e 0.5388

número décimal = ... + 
$$c_2 2^2 + c_1 2^1 + c_0 2^0 + c_{-1} 2^{-1} + c_{-2} 2^{-2} + ...$$
 = ... +  $c_2 \times 4 + c_1 \times 2 + c_0 + c_{-1} \times 0.5 + c_{-2} \times 0.25 + ...$ 

```
    1 = 0.5
    11 = 0.5 + 0.25 = 0.75
    101 = 0.5 + 0.125 = 0.625
    1001 = 0.5 + 0.0625 = 0.5625
    10001 = 0.5 + 0.03125 = 0.53125
```

Valor entre 0.5280 e 0.5388

número décimal = ... + 
$$c_2 2^2 + c_1 2^1 + c_0 2^0 + c_{-1} 2^{-1} + c_{-2} 2^{-2} + ...$$
 = ... +  $c_2 \times 4 + c_1 \times 2 + c_0 + c_{-1} \times 0.5 + c_{-2} \times 0.25 + ...$ 

Dado que o número está entre 0 e 1 só se envia a parte décimal

```
    1 = 0.5
    11 = 0.5 + 0.25 = 0.75
    101 = 0.5 + 0.125 = 0.625
    1001 = 0.5 + 0.0625 = 0.5625
    10001 = 0.5 + 0.03125 = 0.53125
```

São usados 5 bits para codificar a mensagem.

| read input value                                  |  |  |
|---------------------------------------------------|--|--|
| While (not end)                                   |  |  |
| find symbol s such that: Low(s) < value < High(s) |  |  |
| output symbol s                                   |  |  |
| High = High(s)                                    |  |  |
| Low = Low(s)                                      |  |  |
| Range = High - Low                                |  |  |
| value = ( value - Low ) / Range                   |  |  |
| end                                               |  |  |

| Símbolo | prob. | interval    |
|---------|-------|-------------|
| Α       | 0.60  | 0.00 - 0.60 |
| R       | 0.10  | 0.60 - 0.70 |
| E       | 0.30  | 0.70 - 1.00 |



| read input value                                  | 0.53125 |  |  |
|---------------------------------------------------|---------|--|--|
| While (not end)                                   |         |  |  |
| find symbol s such that: Low(s) < value < High(s) |         |  |  |
| output symbol s                                   |         |  |  |
| High = High(s)                                    |         |  |  |
| Low = Low(s)                                      |         |  |  |
| Range = High - Low                                |         |  |  |
| value = ( value - Low ) / Range                   |         |  |  |
| end                                               |         |  |  |

| Símbolo | prob. | interval    |
|---------|-------|-------------|
| Α       | 0.60  | 0.00 - 0.60 |
| R       | 0.10  | 0.60 - 0.70 |
| E       | 0.30  | 0.70 - 1.00 |

0.53125



| read input value                                  |         |  |  |
|---------------------------------------------------|---------|--|--|
| While (not end)                                   |         |  |  |
| find symbol s such that: Low(s) < value < High(s) |         |  |  |
| output symbol s                                   | Α       |  |  |
| High = High(s)                                    | 0.6     |  |  |
| Low = Low(s)                                      | 0.0     |  |  |
| Range = High - Low                                | 0.6     |  |  |
| value = ( value - Low ) / Range                   | ~ 0.885 |  |  |
| end                                               |         |  |  |

| Símbolo | prob. | interval    |
|---------|-------|-------------|
| Α       | 0.60  | 0.00 - 0.60 |
| R       | 0.10  | 0.60 - 0.70 |
| E       | 0.30  | 0.70 - 1.00 |



| read input value                                  |         |         |  |
|---------------------------------------------------|---------|---------|--|
| While (not end)                                   |         |         |  |
| find symbol s such that: Low(s) < value < High(s) |         |         |  |
| output symbol s                                   | Α       | Е       |  |
| High = High(s)                                    | 0.6     | 1.0     |  |
| Low = Low(s)                                      | 0.0     | 0.7     |  |
| Range = High - Low                                | 0.6     | 0.3     |  |
| value = ( value - Low ) / Range                   | ~ 0.885 | ~ 0.618 |  |
| end                                               |         |         |  |

| Símbolo | prob. | interval    |
|---------|-------|-------------|
| Α       | 0.60  | 0.00 - 0.60 |
| R       | 0.10  | 0.60 - 0.70 |
| E       | 0.30  | 0.70 - 1.00 |



| read input value                                  |         |         |         |  |
|---------------------------------------------------|---------|---------|---------|--|
| While (not end)                                   |         |         |         |  |
| find symbol s such that: Low(s) < value < High(s) |         |         |         |  |
| output symbol s                                   | Α       | Е       | R       |  |
| High = High(s)                                    | 0.6     | 1.0     | 0.7     |  |
| Low = Low(s)                                      | 0.0     | 0.7     | 0.6     |  |
| Range = High - Low                                | 0.6     | 0.3     | 0.1     |  |
| value = ( value - Low ) / Range                   | ~ 0.885 | ~ 0.618 | ~ 0.180 |  |
| end                                               |         |         |         |  |

| Símbolo | prob. | interval    |
|---------|-------|-------------|
| Α       | 0.60  | 0.00 - 0.60 |
| R       | 0.10  | 0.60 - 0.70 |
| E       | 0.30  | 0.70 - 1.00 |



| read input value                                  |         |         |         |         |
|---------------------------------------------------|---------|---------|---------|---------|
| While (not end)                                   |         |         |         |         |
| find symbol s such that: Low(s) < value < High(s) |         |         |         |         |
| output symbol s                                   | Α       | Е       | R       | Α       |
| High = High(s)                                    | 0.6     | 1.0     | 0.7     | 0.6     |
| Low = Low(s)                                      | 0.0     | 0.7     | 0.6     | 0.0     |
| Range = High - Low                                | 0.6     | 0.3     | 0.1     | 0.3     |
| value = ( value - Low ) / Range                   | ~ 0.885 | ~ 0.618 | ~ 0.180 | ~ 0.300 |
| end                                               |         |         |         |         |

| Símbolo | prob. | interval    |
|---------|-------|-------------|
| Α       | 0.60  | 0.00 - 0.60 |
| R       | 0.10  | 0.60 - 0.70 |
| E       | 0.30  | 0.70 - 1.00 |



### Codificação Aritmética

- A compressão é melhor que o código de Huffman;
- No pior caso, o código mais pequeno é no máximo

$$L \le log_2 \frac{1}{range} = log_2 \frac{1}{\prod_i p_i}$$

- Notar que o código de Huffman pode ultrapassar este limite.
- Desvantagens:
  - Precisa de saber à priori as probabilidades de cada símbolo;
  - Necessidade de trabalhar com números com muita precisão;
  - O tempo de compressão/descompressão pode ser elevado, devido à complexidade do cálculo.
- É usado na codificação JPEG.

#### Codificação Aritmética

- Há implementações práticas que escalam os intervalos para trabalhar com inteiros.
- Notar que o valor encontrado no exemplo "1 0 0 0 1 = 0.53125" o primeiro 1 informa que o valor está no intervalo [0, 0.5] o primeiro 0 informa que o valor está no intervalo [0.5, 0.75] etç...

- O algoritmo é o mesmo mas tem um loop tem duas condições antes de ler o próximo símbolo:
  - Condição E1:

Se o intervalo [low high] pertence a [0, 0.5]

- Escalar o intervalo [0, 0.5] para [0, 1.0]
- Envia o bit 0
- Condição E2:

Se o intervalo [low high] pertence a [0.5, 1.0]

- Escalar o intervalo [0.5, 1.0] para [0, 1.0]
- Envia o bit 1

Símboloprob.IntervalA0.600.00 - 0.60R0.100.60 - 0.70E0.300.70 - 1.00

| s = next symbol              | Α   |  |  |  |  |
|------------------------------|-----|--|--|--|--|
| High(s)                      | 0.6 |  |  |  |  |
| Low(s)                       | 0.0 |  |  |  |  |
| High = Low + Range x High(s) |     |  |  |  |  |
| Low = Low + Range x Low(s)   |     |  |  |  |  |
| Range = High - Low           |     |  |  |  |  |
|                              |     |  |  |  |  |
| output                       |     |  |  |  |  |



Símboloprob.IntervalA0.600.00 - 0.60R0.100.60 - 0.70E0.300.70 - 1.00

| s = next symbol              | Α   |  |  |
|------------------------------|-----|--|--|
| High(s)                      | 0.6 |  |  |
| Low(s)                       | 0.0 |  |  |
| High = Low + Range x High(s) | 0.6 |  |  |
| Low = Low + Range x Low(s)   | 0.0 |  |  |
| Range = High - Low           | 0.6 |  |  |
|                              |     |  |  |
| output                       |     |  |  |



Símboloprob.intervalA0.600.00 - 0.60R0.100.60 - 0.70E0.300.70 - 1.00

| s = next symbol              | Α   | E    |  |  |  |  |
|------------------------------|-----|------|--|--|--|--|
| High(s)                      | 0.6 | 1.0  |  |  |  |  |
| Low(s)                       | 0.0 | 0.7  |  |  |  |  |
| High = Low + Range x High(s) | 0.6 | 0.60 |  |  |  |  |
| Low = Low + Range x Low(s)   | 0.0 | 0.42 |  |  |  |  |
| Range = High - Low           | 0.6 | 0.18 |  |  |  |  |
|                              |     |      |  |  |  |  |
| output                       |     |      |  |  |  |  |



Símboloprob.intervalA0.600.00 - 0.60R0.100.60 - 0.70E0.300.70 - 1.00

| s = next symbol              | Α   | E    | R     |  |  |  |
|------------------------------|-----|------|-------|--|--|--|
| High(s)                      | 0.6 | 1.0  | 0.7   |  |  |  |
| Low(s)                       | 0.0 | 0.7  | 0.6   |  |  |  |
| High = Low + Range x High(s) | 0.6 | 0.60 | 0.546 |  |  |  |
| Low = Low + Range x Low(s)   | 0.0 | 0.42 | 0.528 |  |  |  |
| Range = High - Low           | 0.6 | 0.18 | 0.018 |  |  |  |
|                              |     |      |       |  |  |  |
| output                       |     |      |       |  |  |  |



Símboloprob.intervalA0.600.00 - 0.60R0.100.60 - 0.70E0.300.70 - 1.00

| s = next symbol              | Α   | E    | R     |       |  |  |  |
|------------------------------|-----|------|-------|-------|--|--|--|
| High(s)                      | 0.6 | 1.0  | 0.7   |       |  |  |  |
| Low(s)                       | 0.0 | 0.7  | 0.6   |       |  |  |  |
| High = Low + Range x High(s) | 0.6 | 0.60 | 0.546 | 0.092 |  |  |  |
| Low = Low + Range x Low(s)   | 0.0 | 0.42 | 0.528 | 0.056 |  |  |  |
| Range = High - Low           | 0.6 | 0.18 | 0.018 | 0.036 |  |  |  |
|                              |     |      |       |       |  |  |  |
| output                       |     |      |       | 1     |  |  |  |



Símboloprob.intervalA0.600.00 - 0.60R0.100.60 - 0.70E0.300.70 - 1.00

| s = next symbol              | A I | E F  | 3     |       |       |  |  |
|------------------------------|-----|------|-------|-------|-------|--|--|
| High(s)                      | 0.6 | 1.0  | 0.7   |       |       |  |  |
| Low(s)                       | 0.0 | 0.7  | 0.6   |       |       |  |  |
| High = Low + Range x High(s) | 0.6 | 0.60 | 0.546 | 0.092 | 0.184 |  |  |
| Low = Low + Range x Low(s)   | 0.0 | 0.42 | 0.528 | 0.056 | 0.112 |  |  |
| Range = High - Low           | 0.6 | 0.18 | 0.018 | 0.036 | 0.072 |  |  |
|                              |     |      |       |       |       |  |  |
| output                       |     |      |       | 1     | 0     |  |  |



Símboloprob.intervalA0.600.00 - 0.60R0.100.60 - 0.70E0.300.70 - 1.00

| s = next symbol              | Α   | E I  | 3     |       |       |       |  |  |
|------------------------------|-----|------|-------|-------|-------|-------|--|--|
| High(s)                      | 0.6 | 1.0  | 0.7   |       |       |       |  |  |
| Low(s)                       | 0.0 | 0.7  | 0.6   |       |       |       |  |  |
| High = Low + Range x High(s) | 0.6 | 0.60 | 0.546 | 0.092 | 0.184 | 0.368 |  |  |
| Low = Low + Range x Low(s)   | 0.0 | 0.42 | 0.528 | 0.056 | 0.112 | 0.224 |  |  |
| Range = High - Low           | 0.6 | 0.18 | 0.018 | 0.036 | 0.072 | 0.144 |  |  |
|                              |     |      |       |       |       |       |  |  |
| output                       |     |      |       | 1     | 0     | 0     |  |  |



A 0.60 0.00 - 0.60 R 0.10 0.60 - 0.70 E 0.30 0.70 - 1.00

prob.

interval

Símbolo

| s = next symbol              | Α   | E I  | 3     |       |       |       |       |  |
|------------------------------|-----|------|-------|-------|-------|-------|-------|--|
| High(s)                      | 0.6 | 1.0  | 0.7   |       |       |       |       |  |
| Low(s)                       | 0.0 | 0.7  | 0.6   |       |       |       |       |  |
| High = Low + Range x High(s) | 0.6 | 0.60 | 0.546 | 0.092 | 0.184 | 0.368 | 0.736 |  |
| Low = Low + Range x Low(s)   | 0.0 | 0.42 | 0.528 | 0.056 | 0.112 | 0.224 | 0.448 |  |
| Range = High - Low           | 0.6 | 0.18 | 0.018 | 0.036 | 0.072 | 0.144 | 0.288 |  |
|                              |     |      |       |       |       |       |       |  |
| output                       |     |      |       | 1     | 0     | 0     | 0     |  |



Símboloprob.intervalA0.600.00 - 0.60R0.100.60 - 0.70E0.300.70 - 1.00

| s = next symbol              | Α   | E I  | R     |       |       |       | ,     | Д      |  |
|------------------------------|-----|------|-------|-------|-------|-------|-------|--------|--|
| High(s)                      | 0.6 | 1.0  | 0.7   |       |       |       |       | 0.6    |  |
| Low(s)                       | 0.0 | 0.7  | 0.6   |       |       |       |       | 0.0    |  |
| High = Low + Range x High(s) | 0.6 | 0.60 | 0.546 | 0.092 | 0.184 | 0.368 | 0.736 | 0.6208 |  |
| Low = Low + Range x Low(s)   | 0.0 | 0.42 | 0.528 | 0.056 | 0.112 | 0.224 | 0.448 | 0.4480 |  |
| Range = High - Low           | 0.6 | 0.18 | 0.018 | 0.036 | 0.072 | 0.144 | 0.288 | 0.1728 |  |
|                              |     |      |       |       |       |       |       |        |  |
| output                       |     |      |       | 1     | 0     | 0     | 0     |        |  |



| Simbolo | prob. | interval    |
|---------|-------|-------------|
| Α       | 0.60  | 0.00 - 0.60 |
| R       | 0.10  | 0.60 - 0.70 |
| E       | 0.30  | 0.70 - 1.00 |

| s = next symbol              | Α   | E I  | R     |       |       |       |       | A      |   |
|------------------------------|-----|------|-------|-------|-------|-------|-------|--------|---|
| High(s)                      | 0.6 | 1.0  | 0.7   |       |       |       |       | 0.6    |   |
| Low(s)                       | 0.0 | 0.7  | 0.6   |       |       |       |       | 0.0    |   |
| High = Low + Range x High(s) | 0.6 | 0.60 | 0.546 | 0.092 | 0.184 | 0.368 | 0.736 | 0.6208 |   |
| Low = Low + Range x Low(s)   | 0.0 | 0.42 | 0.528 | 0.056 | 0.112 | 0.224 | 0.448 | 0.4480 |   |
| Range = High - Low           | 0.6 | 0.18 | 0.018 | 0.036 | 0.072 | 0.144 | 0.288 | 0.1728 |   |
|                              |     |      |       |       |       |       |       |        |   |
| output                       |     |      |       | 1     | 0     | 0     | 0     |        | 1 |



Mensagem: "AERA"

Código transmitido: "10001"

- Notar que os reescalamentos não são mais que um "shift" e é transmitido o bit de maior peso que é igual para o High e par o Low
- O último valor informa o receptor que a trama terminou, o valor escolhido é o 0.5

 Símbolo
 interval

 A
 0.00 - 0.60

 R
 0.60 - 0.70

 E
 0.70 - 1.00

#### Descodificação

| output symbol s              |         |  |  |  |  |
|------------------------------|---------|--|--|--|--|
| High(s)                      |         |  |  |  |  |
| Low(s)                       |         |  |  |  |  |
| High = Low + Range x High(s) | 1.0     |  |  |  |  |
| Low = Low + Range x Low(s)   | 0.0     |  |  |  |  |
| Range = High - Low           | 1.0     |  |  |  |  |
| value                        | 0.53125 |  |  |  |  |
| Binary Value                 | 10001   |  |  |  |  |



SímbolointervalA0.000 - 0.360R0.360 - 0.420E0.420 - 1.000

- Descodificação
  - Reproduz o codificador

| output symbol s              |         | Α       |  |  |  |  |
|------------------------------|---------|---------|--|--|--|--|
| High(s)                      |         | 0.6     |  |  |  |  |
| Low(s)                       |         | 0.0     |  |  |  |  |
| High = Low + Range x High(s) | 1.0     | 0.6     |  |  |  |  |
| Low = Low + Range x Low(s)   | 0.0     | 0.0     |  |  |  |  |
| Range = High - Low           | 1.0     | 0.6     |  |  |  |  |
| value                        | 0.53125 | 0.53125 |  |  |  |  |
| Binary Value                 | 10001   | 10001   |  |  |  |  |



# SímbolointervalA0.420 - 0.528R0.528 - 0.546E0.546 - 0.600

- Descodificação
  - Reproduz o codificador

| output symbol s              |         | А       | Е       |  |  |  |
|------------------------------|---------|---------|---------|--|--|--|
| High(s)                      |         | 0.6     | 1.0     |  |  |  |
| Low(s)                       |         | 0.0     | 0.7     |  |  |  |
| High = Low + Range x High(s) | 1.0     | 0.6     | 0.60    |  |  |  |
| Low = Low + Range x Low(s)   | 0.0     | 0.0     | 0.42    |  |  |  |
| Range = High - Low           | 1.0     | 0.6     | 0.18    |  |  |  |
| value                        | 0.53125 | 0.53125 | 0.53125 |  |  |  |
| Binary Value                 | 10001   | 10001   | 10001   |  |  |  |



# SímbolointervalA0.5280 - 0.5388R0.5388 - 0.5406E0.5406 - 0.5460

- Descodificação
  - Reproduz o codificador

| output symbol s              |         | Α       | Е       | R       |  |  |  |
|------------------------------|---------|---------|---------|---------|--|--|--|
| High(s)                      |         | 0.6     | 1.0     | 0.7     |  |  |  |
| Low(s)                       |         | 0.0     | 0.7     | 0.6     |  |  |  |
| High = Low + Range x High(s) | 1.0     | 0.6     | 0.60    | 0.546   |  |  |  |
| Low = Low + Range x Low(s)   | 0.0     | 0.0     | 0.42    | 0.528   |  |  |  |
| Range = High - Low           | 1.0     | 0.6     | 0.18    | 0.018   |  |  |  |
| value                        | 0.53125 | 0.53125 | 0.53125 | 0.53125 |  |  |  |
| Binary Value                 | 10001   | 10001   | 10001   | 10001   |  |  |  |



#### Descodificação

|      | Símbolo | interval        |  |  |  |  |
|------|---------|-----------------|--|--|--|--|
| ento | Α       | 0.0560 - 0.0776 |  |  |  |  |
|      | R       | 0.0776 - 0.0812 |  |  |  |  |
|      | E       | 0.0812 - 0.0920 |  |  |  |  |
|      |         |                 |  |  |  |  |

| output symbol s              |         | Α       | Е       | R       |        |  |  |
|------------------------------|---------|---------|---------|---------|--------|--|--|
| High(s)                      |         | 0.6     | 1.0     | 0.7     |        |  |  |
| Low(s)                       |         | 0.0     | 0.7     | 0.6     |        |  |  |
| High = Low + Range x High(s) | 1.0     | 0.6     | 0.60    | 0.546   | 0.092  |  |  |
| Low = Low + Range x Low(s)   | 0.0     | 0.0     | 0.42    | 0.528   | 0.056  |  |  |
| Range = High - Low           | 1.0     | 0.6     | 0.18    | 0.018   | 0.036  |  |  |
| value                        | 0.53125 | 0.53125 | 0.53125 | 0.53125 | 0.0625 |  |  |
| Binary Value                 | 10001   | 10001   | 10001   | 10001   | 0001   |  |  |



# Descodificação

| Símbolo | interval        |
|---------|-----------------|
| Α       | 0.1120 - 0.1552 |
| R       | 0.1552 - 0.1624 |
| E       | 0.1624 - 0.1840 |
|         |                 |

| output symbol s              |         | Α       | E       | R       |        |       |  |  |
|------------------------------|---------|---------|---------|---------|--------|-------|--|--|
| High(s)                      |         | 0.6     | 1.0     | 0.7     |        |       |  |  |
| Low(s)                       |         | 0.0     | 0.7     | 0.6     |        |       |  |  |
| High = Low + Range x High(s) | 1.0     | 0.6     | 0.60    | 0.546   | 0.092  | 0.184 |  |  |
| Low = Low + Range x Low(s)   | 0.0     | 0.0     | 0.42    | 0.528   | 0.056  | 0.112 |  |  |
| Range = High - Low           | 1.0     | 0.6     | 0.18    | 0.018   | 0.036  | 0.072 |  |  |
| value                        | 0.53125 | 0.53125 | 0.53125 | 0.53125 | 0.0625 | 0.125 |  |  |
| Binary Value                 | 10001   | 10001   | 10001   | 10001   | 0001   | 001   |  |  |



# SímbolointervalA0.2240 - 0.3104R0.3104 - 0.3248E0.3248 - 0.3680

#### Descodificação

| output symbol s              |         | Α       | Е       | R       |        |       |       |  |
|------------------------------|---------|---------|---------|---------|--------|-------|-------|--|
| High(s)                      |         | 0.6     | 1.0     | 0.7     |        |       |       |  |
| Low(s)                       |         | 0.0     | 0.7     | 0.6     |        |       |       |  |
| High = Low + Range x High(s) | 1.0     | 0.6     | 0.60    | 0.546   | 0.092  | 0.184 | 0.368 |  |
| Low = Low + Range x Low(s)   | 0.0     | 0.0     | 0.42    | 0.528   | 0.056  | 0.112 | 0.224 |  |
| Range = High - Low           | 1.0     | 0.6     | 0.18    | 0.018   | 0.036  | 0.072 | 0.144 |  |
| value                        | 0.53125 | 0.53125 | 0.53125 | 0.53125 | 0.0625 | 0.125 | 0.25  |  |
| Binary Value                 | 10001   | 10001   | 10001   | 10001   | 0001   | 001   | 01    |  |



|                                        | Simbolo | interval        |
|----------------------------------------|---------|-----------------|
| Codificação Aritmética com Escalamento | Α       | 0.4480 - 0.6208 |
| Louincação Antinetica com Escalamento  | R       | 0.6208 - 0.6496 |
| Descodificação                         | Е       | 0.6496 - 0.7360 |

| output symbol s              |         | Α       | E       | R       |        |       |       |       |  |
|------------------------------|---------|---------|---------|---------|--------|-------|-------|-------|--|
| High(s)                      |         | 0.6     | 1.0     | 0.7     |        |       |       |       |  |
| Low(s)                       |         | 0.0     | 0.7     | 0.6     |        |       |       |       |  |
| High = Low + Range x High(s) | 1.0     | 0.6     | 0.60    | 0.546   | 0.092  | 0.184 | 0.368 | 0.736 |  |
| Low = Low + Range x Low(s)   | 0.0     | 0.0     | 0.42    | 0.528   | 0.056  | 0.112 | 0.224 | 0.448 |  |
| Range = High - Low           | 1.0     | 0.6     | 0.18    | 0.018   | 0.036  | 0.072 | 0.144 | 0.288 |  |
| value                        | 0.53125 | 0.53125 | 0.53125 | 0.53125 | 0.0625 | 0.125 | 0.25  | 0.5   |  |
| Binary Value                 | 10001   | 10001   | 10001   | 10001   | 0001   | 001   | 01    | 1     |  |



#### Descodificação

| ímbolo | interval          |
|--------|-------------------|
|        | 0.44800 - 0.55168 |
|        | 0.55168 - 0.56896 |
|        | 0.56896 - 0.62080 |
|        | ímbolo            |

| output symbol s              |         | Α       | Е       | R       |        |       |       |       | Α      |
|------------------------------|---------|---------|---------|---------|--------|-------|-------|-------|--------|
| High(s)                      |         | 0.6     | 1.0     | 0.7     |        |       |       |       | 0.6    |
| Low(s)                       |         | 0.0     | 0.7     | 0.6     |        |       |       |       | 0.0    |
| High = Low + Range x High(s) | 1.0     | 0.6     | 0.60    | 0.546   | 0.092  | 0.184 | 0.368 | 0.736 | 0.6208 |
| Low = Low + Range x Low(s)   | 0.0     | 0.0     | 0.42    | 0.528   | 0.056  | 0.112 | 0.224 | 0.448 | 0.4480 |
| Range = High - Low           | 1.0     | 0.6     | 0.18    | 0.018   | 0.036  | 0.072 | 0.144 | 0.288 | 0.1728 |
| value                        | 0.53125 | 0.53125 | 0.53125 | 0.53125 | 0.0625 | 0.125 | 0.25  | 0.5   |        |
| Binary Value                 | 10001   | 10001   | 10001   | 10001   | 0001   | 001   | 01    | 1     |        |



#### Descodificação Aritmética décimal

- No caso do intervalo estar dentro de [0.25, 0.75]
- Condição E3:



- Faz-se o escalamento de [0.25 0.75] para [0, 1.0]
- Guarda o registo do escalamento
- Quando o intervalo estiver [0.5 1]
   Transmite-se o 1 seguido de 0
   (o número de vezes que está no registo)
- Se o intervalo estiver [0 0.5]
   Transmite-se o **0** seguido de **1** (o número de vezes que está no registo)

- O procedimento anterior pode ser implementado com valores inteiros, permitindo que o processo de codificação e descodificação sejam mais rápidos.
- Para esta implementação escolhe-se um valor máximo que seja potência de 2 para optimizar os cálculos, assim:
  - o valor mínimo 0 é 000...0
  - o valor máximo 1 é 111...1
  - O valor 0,5 é 100...0
- As equações são muito semelhantes:

$$\begin{array}{rcl} low & = & low + \left \lfloor \frac{(high-low+1) \times cumcount(s-1)}{totalcount} \right \rfloor \\ high & = & low + \left \lfloor \frac{(high-low+1) \times cumcount(s)}{totalcount} \right \rfloor - 1 \end{array}$$

onde  $cumcount(s_i) \ = \ \sum_{i=1}^{N\,sim\,bol\,os} \mathtt{N} \ \text{ocorrencias do simbolo} \ s_i$ 

A escolha do tamanho (nº de bits) para o totalcount, relaciona-se com o menor intervalo que temos de representar:

$$\frac{1}{4}2^m > total count$$

$$m = 2 + \lceil log_2(totalcount) \rceil$$

Processo de codificação:

```
Set low and high

countE3 = 0

While not EOF

Get symbol

Update low and high

While(E1 or E2 or E3)

If E1, Send 1, send countE3 times 0, scale value

If E2, Send 0, send countE3 times 1, scale value

If E3, countE3 = countE3+1, scale value

end

end
```

Send MSB(Low), send countE3 times the complement of MSB(Low), send remaining bits of Low

Assumindo a tabela de occorrências:

|       | Ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 6           | 6        |
| r     | 1           | 7        |
| e     | 3           | 10       |
| total | 10          |          |

- A mensagem a codificar: "AERA"
- Totalcount = 10
- $m = 2 + \lceil log_2(totalcount) \rceil = 6$
- Low = 0 [000000]
- High = 63 [111111]

|       | Ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 6           | 6        |
| r     | 1           | 7        |
| e     | 3           | 10       |
| total | 10          |          |

| s = read symbol                                          |          | Α |  |  |  |  |  |
|----------------------------------------------------------|----------|---|--|--|--|--|--|
| H = L + floor( (H+1-L)*cum_counts(s+1)/total_count ) - 1 | 63       |   |  |  |  |  |  |
|                                                          | [111111] |   |  |  |  |  |  |
| L = L + floor( (H+1-L)*cum_counts(symbol)/total_count )  | 0        |   |  |  |  |  |  |
|                                                          | [000000] |   |  |  |  |  |  |
| Output                                                   |          |   |  |  |  |  |  |
| CountE3                                                  | 0        |   |  |  |  |  |  |
| conditions E1 or E2 or E3                                |          |   |  |  |  |  |  |



|       | Ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 6           | 6        |
| r     | 1           | 7        |
| e     | 3           | 10       |
| total | 10          |          |

| s = read symbol                                          |          | Α        |  |  |  |  |  |
|----------------------------------------------------------|----------|----------|--|--|--|--|--|
| H = L + floor( (H+1-L)*cum_counts(s+1)/total_count ) - 1 | 63       | 37       |  |  |  |  |  |
|                                                          | [111111] | [100101] |  |  |  |  |  |
| L = L + floor( (H+1-L)*cum_counts(symbol)/total_count )  | 0        | 0        |  |  |  |  |  |
|                                                          | [000000] | [000000] |  |  |  |  |  |
| Output                                                   |          |          |  |  |  |  |  |
| CountE3                                                  | 0        | 0        |  |  |  |  |  |
| conditions E1 or E2 or E3                                |          |          |  |  |  |  |  |



|       | Ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 6           | 6        |
| r     | 1           | 7        |
| e     | 3           | 10       |
| total | 10          |          |

| s = read symbol                                          |          | А        | E        |  |  |  |  |  |
|----------------------------------------------------------|----------|----------|----------|--|--|--|--|--|
| H = L + floor( (H+1-L)*cum_counts(s+1)/total_count ) - 1 | 63       | 37       | 37       |  |  |  |  |  |
|                                                          | [111111] | [100101] | [100101] |  |  |  |  |  |
| L = L + floor( (H+1-L)*cum_counts(symbol)/total_count )  | 0        | 0        | 26       |  |  |  |  |  |
|                                                          | [000000] | [000000] | [011010] |  |  |  |  |  |
| Output                                                   |          |          |          |  |  |  |  |  |
| CountE3                                                  | 0        | 0        | 0        |  |  |  |  |  |
| conditions E1 or E2 or E3                                |          |          | E3       |  |  |  |  |  |



|       | Ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 6           | 6        |
| r     | 1           | 7        |
| e     | 3           | 10       |
| total | 10          |          |

| s = read symbol                                          |          | Α        | Е        |          |  |  |  |  |
|----------------------------------------------------------|----------|----------|----------|----------|--|--|--|--|
| H = L + floor( (H+1-L)*cum_counts(s+1)/total_count ) - 1 | 63       | 37       | 37       | 43       |  |  |  |  |
|                                                          | [111111] | [100101] | [100101] | [101011] |  |  |  |  |
| L = L + floor( (H+1-L)*cum_counts(symbol)/total_count )  | 0        | 0        | 26       | 20       |  |  |  |  |
|                                                          | [000000] | [000000] | [011010] | [010100] |  |  |  |  |
| Output                                                   |          |          |          |          |  |  |  |  |
| CountE3                                                  | 0        | 0        | 0        | 1        |  |  |  |  |
| conditions E1 or E2 or E3                                |          |          | E3       | E3       |  |  |  |  |



|       | Ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 6           | 6        |
| r     | 1           | 7        |
| e     | 3           | 10       |
| total | 10          |          |

| s = read symbol                                          |          | Α        | E        |          |          |  |  |  |  |
|----------------------------------------------------------|----------|----------|----------|----------|----------|--|--|--|--|
| H = L + floor( (H+1-L)*cum_counts(s+1)/total_count ) - 1 | 63       | 37       | 37       | 43       | 55       |  |  |  |  |
|                                                          | [111111] | [100101] | [100101] | [101011] | [110111] |  |  |  |  |
| L = L + floor( (H+1-L)*cum_counts(symbol)/total_count )  | 0        | 0        | 26       | 20       | 8        |  |  |  |  |
|                                                          | [000000] | [000000] | [011010] | [010100] | [000100] |  |  |  |  |
| Output                                                   |          |          |          |          |          |  |  |  |  |
| CountE3                                                  | 0        | 0        | 0        | 1        | 2        |  |  |  |  |
| conditions E1 or E2 or E3                                |          |          | E3       | E3       |          |  |  |  |  |



| Ocorrencias cumcou  | nt |
|---------------------|----|
| Ocorrencias cumicou |    |
|                     | 0  |
| a 6                 | 6  |
| r 1                 | 7  |
| e 3                 | 10 |
| total 10            |    |

| s = read symbol                                          |          | Α        | E        |          |          | R        |  |  |  |
|----------------------------------------------------------|----------|----------|----------|----------|----------|----------|--|--|--|
| H = L + floor( (H+1-L)*cum_counts(s+1)/total_count ) - 1 | 63       | 37       | 37       | 43       | 55       | 40       |  |  |  |
|                                                          | [111111] | [100101] | [100101] | [101011] | [110111] | [101000] |  |  |  |
| L = L + floor( (H+1-L)*cum_counts(symbol)/total_count )  | 0        | 0        | 26       | 20       | 8        | 36       |  |  |  |
|                                                          | [000000] | [000000] | [011010] | [010100] | [000100] | [100100] |  |  |  |
| Output                                                   |          |          |          |          |          |          |  |  |  |
| CountE3                                                  | 0        | 0        | 0        | 1        | 2        | 2        |  |  |  |
| conditions E1 or E2 or E3                                |          |          | E3       | E3       |          | E2       |  |  |  |



|   |      | Ocorrencias | cumcount |
|---|------|-------------|----------|
|   |      |             | 0        |
| á | 9    | 6           | 6        |
| r | -    | 1           | 7        |
| e | 9    | 3           | 10       |
| t | otal | 10          |          |

| s = read symbol                                          |          | Α        | E        |          |          | R        |          |  |  |  |
|----------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|--|--|--|
| $H = L + floor((H+1-L)*cum_counts(s+1)/total_count) - 1$ | 63       | 37       | 37       | 43       | 55       | 40       | 17       |  |  |  |
|                                                          | [111111] | [100101] | [100101] | [101011] | [110111] | [101000] | [010001] |  |  |  |
| L = L + floor( (H+1-L)*cum_counts(symbol)/total_count )  | 0        | 0        | 26       | 20       | 8        | 36       | 8        |  |  |  |
|                                                          | [000000] | [000000] | [011010] | [010100] | [000100] | [100100] | [000100] |  |  |  |
| Output                                                   |          |          |          |          |          |          | 100      |  |  |  |
| CountE3                                                  | 0        | 0        | 0        | 1        | 2        | 2        | 0        |  |  |  |
| conditions E1 or E2 or E3                                |          |          | E3       | E3       |          | E2       | E1       |  |  |  |



|       | Ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 6           | 6        |
| r     | 1           | 7        |
| e     | 3           | 10       |
| total | 10          |          |

| s = read symbol                                          |          | Α        | E        |          |          | R        |          |          |  |  |
|----------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|
| H = L + floor( (H+1-L)*cum_counts(s+1)/total_count ) - 1 | 63       | 37       | 37       | 43       | 55       | 40       | 17       | 35       |  |  |
|                                                          | [111111] | [100101] | [100101] | [101011] | [110111] | [101000] | [010001] | [100011] |  |  |
| L = L + floor( (H+1-L)*cum_counts(symbol)/total_count )  | 0        | 0        | 26       | 20       | 8        | 36       | 8        | 16       |  |  |
|                                                          | [000000] | [000000] | [011010] | [010100] | [000100] | [100100] | [000100] | [010000] |  |  |
| Output                                                   |          |          |          |          |          |          | 100      | 0        |  |  |
| CountE3                                                  | 0        | 0        | 0        | 1        | 2        | 2        | 0        | 0        |  |  |
| conditions E1 or E2 or E3                                |          |          | E3       | E3       |          | E2       | E1       | E3       |  |  |



|       | Ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 6           | 6        |
| r     | 1           | 7        |
| e     | 3           | 10       |
| total | 10          |          |

| s = read symbol                                          |          | Α        | Е        |          |          | R        |          |          |          |  |  |
|----------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|
| $H = L + floor((H+1-L)*cum_counts(s+1)/total_count) - 1$ | 63       | 37       | 37       | 43       | 55       | 40       | 17       | 35       | 39       |  |  |
|                                                          | [111111] | [100101] | [100101] | [101011] | [110111] | [101000] | [010001] | [100011] | [100111] |  |  |
| L = L + floor( (H+1-L)*cum_counts(symbol)/total_count )  | 0        | 0        | 26       | 20       | 8        | 36       | 8        | 16       | 0        |  |  |
|                                                          | [000000] | [000000] | [011010] | [010100] | [000100] | [100100] | [000100] | [010000] | [000000] |  |  |
| Output                                                   |          |          |          |          |          |          | 100      | 0        |          |  |  |
| CountE3                                                  | 0        | 0        | 0        | 1        | 2        | 2        | 0        | 0        | 1        |  |  |
| conditions E1 or E2 or E3                                |          |          | E3       | E3       |          | E2       | E1       | E3       |          |  |  |



|       | Ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 6           | 6        |
| r     | 1           | 7        |
| e     | 3           | 10       |
| total | 10          |          |

| s = read symbol                                          |          | Α        | E        |          |          | R        |          |          |          | Α        |  |
|----------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|
| H = L + floor( (H+1-L)*cum_counts(s+1)/total_count ) - 1 | 63       | 37       | 37       | 43       | 55       | 40       | 17       | 35       | 39       | 23       |  |
|                                                          | [111111] | [100101] | [100101] | [101011] | [110111] | [101000] | [010001] | [100011] | [100111] | [010111] |  |
| L = L + floor( (H+1-L)*cum_counts(symbol)/total_count )  | 0        | 0        | 26       | 20       | 8        | 36       | 8        | 16       | 0        | 0        |  |
|                                                          | [000000] | [000000] | [011010] | [010100] | [000100] | [100100] | [000100] | [010000] | [000000] | [000000] |  |
| Output                                                   |          |          |          |          |          |          | 100      | 0        |          |          |  |
| CountE3                                                  | 0        | 0        | 0        | 1        | 2        | 2        | 0        | 0        | 1        | 1        |  |
| conditions E1 or E2 or E3                                |          |          | E3       | E3       |          | E2       | E1       | E3       |          | E1       |  |



|       | Ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| а     | 6           | 6        |
| r     | 1           | 7        |
| e     | 3           | 10       |
| total | 10          |          |

| s = read symbol                                          |          | Α        | E        |          |          | R        |          |          |          | Α        |          | end    |
|----------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--------|
| $H = L + floor((H+1-L)*cum_counts(s+1)/total_count) - 1$ | 63       | 37       | 37       | 43       | 55       | 40       | 17       | 35       | 39       | 23       | 47       |        |
|                                                          | [111111] | [100101] | [100101] | [101011] | [110111] | [101000] | [010001] | [100011] | [100111] | [010111] | [101111] |        |
| L = L + floor( (H+1-L)*cum_counts(symbol)/total_count )  | 0        | 0        | 26       | 20       | 8        | 36       | 8        | 16       | 0        | 0        | 0        |        |
|                                                          | [000000] | [000000] | [011010] | [010100] | [000100] | [100100] | [000100] | [010000] | [000000] | [000000] | [000000] |        |
| Output                                                   |          |          |          |          |          |          | 100      | 0        |          |          | 01       | 000000 |
| CountE3                                                  | 0        | 0        | 0        | 1        | 2        | 2        | 0        | 0        | 1        | 1        | 0        |        |
| conditions E1 or E2 or E3                                |          |          | E3       | E3       |          | E2       | E1       | E3       |          | E1       |          |        |



```
Set low and high
read m bits to tag
k = 0
While k < Nsimbolos
   k=k+1
   decode symbol
   Update low and high
   While(E1 or E2 or E3)
      If E1,
         scale low and high (2x)
         scale tag and add next bit
      If E2,
        scale low and high (2(x-2^{m-1}))
        scale tag and add next bit
      If E3
       scale low and high (2(x-2^{m-2}))
       scale tag and add next bit
```

 Precisa da informação de quantos simbolos foram transmitidos e da tabela com ocorrências.

|       | Ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 6           | 6        |
| r     | 1           | 7        |
| e     | 3           | 10       |
| total | 10          |          |

| tag                                                        |          |  |  |  |  |  |
|------------------------------------------------------------|----------|--|--|--|--|--|
|                                                            |          |  |  |  |  |  |
| decode tag = floor( [(t+1-L)*total_counts - 1]/[H+1-L]     |          |  |  |  |  |  |
| output                                                     |          |  |  |  |  |  |
| $H = L + floor( (H+1-L)*cum_counts(s+1)/total_count ) - 1$ | 63       |  |  |  |  |  |
|                                                            | [111111] |  |  |  |  |  |
| L = L + floor( (H+1-L)*cum_counts(symbol)/total_count )    | 0        |  |  |  |  |  |
|                                                            | [000000] |  |  |  |  |  |
| conditions E1 or E2 or E3                                  |          |  |  |  |  |  |



|       | Ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 6           | 6        |
| r     | 1           | 7        |
| e     | 3           | 10       |
| total | 10          |          |

| tag                                                        |          | 33       |  |  |  |  |  |
|------------------------------------------------------------|----------|----------|--|--|--|--|--|
|                                                            |          | [100001] |  |  |  |  |  |
| decode tag = floor( [(t+1-L)*total_counts - 1]/[H+1-L]     |          |          |  |  |  |  |  |
| output                                                     |          |          |  |  |  |  |  |
| $H = L + floor( (H+1-L)*cum_counts(s+1)/total_count ) - 1$ | 63       |          |  |  |  |  |  |
|                                                            | [111111] |          |  |  |  |  |  |
| L = L + floor( (H+1-L)*cum_counts(symbol)/total_count )    | 0        |          |  |  |  |  |  |
|                                                            | [000000] |          |  |  |  |  |  |
| conditions E1 or E2 or E3                                  |          |          |  |  |  |  |  |



|       | Ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 6           | 6        |
| r     | 1           | 7        |
| e     | 3           | 10       |
| total | 10          |          |

| tag                                                        |          | 33       |  |  |  |  |  |
|------------------------------------------------------------|----------|----------|--|--|--|--|--|
|                                                            |          | [100001] |  |  |  |  |  |
| decode tag = floor( [(t+1-L)*total_counts - 1]/[H+1-L]     |          | 5        |  |  |  |  |  |
| output                                                     |          | Α        |  |  |  |  |  |
| $H = L + floor( (H+1-L)*cum_counts(s+1)/total_count ) - 1$ | 63       | 37       |  |  |  |  |  |
|                                                            | [111111] | [100101] |  |  |  |  |  |
| L = L + floor( (H+1-L)*cum_counts(symbol)/total_count )    | 0        | 0        |  |  |  |  |  |
|                                                            | [000000] | [000000] |  |  |  |  |  |
| conditions E1 or E2 or E3                                  |          |          |  |  |  |  |  |



Código "100001<mark>0</mark>00000"

|       | Ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 6           | 6        |
| r     | 1           | 7        |
| e     | 3           | 10       |
| total | 10          |          |

| tag                                                      |          | 33       | 33       |  |  |  |  |
|----------------------------------------------------------|----------|----------|----------|--|--|--|--|
|                                                          |          | [100001] | [100001] |  |  |  |  |
| decode tag = floor( [(t+1-L)*total_counts - 1]/[H+1-L]   |          | 5        | 8        |  |  |  |  |
| output                                                   |          | Α        | E        |  |  |  |  |
| H = L + floor( (H+1-L)*cum_counts(s+1)/total_count ) - 1 | 63       | 37       | 37       |  |  |  |  |
|                                                          | [111111] | [100101] | [100101] |  |  |  |  |
| L = L + floor( (H+1-L)*cum_counts(symbol)/total_count )  | 0        | 0        | 26       |  |  |  |  |
|                                                          | [000000] | [000000] | [011010] |  |  |  |  |
| conditions E1 or E2 or E3                                |          |          | E3       |  |  |  |  |



|       | Ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| а     | 6           | 6        |
| r     | 1           | 7        |
| e     | 3           | 10       |
| total | 10          |          |

| tag                                                      |          | 33       | 33       | 34       |  |  |  |  |
|----------------------------------------------------------|----------|----------|----------|----------|--|--|--|--|
|                                                          |          | [100001] | [100001] | [100010] |  |  |  |  |
| decode tag = floor( [(t+1-L)*total_counts - 1]/[H+1-L]   |          | 5        | 8        |          |  |  |  |  |
| output                                                   |          | Α        | E        |          |  |  |  |  |
| H = L + floor( (H+1-L)*cum_counts(s+1)/total_count ) - 1 | 63       | 37       | 37       | 43       |  |  |  |  |
|                                                          | [111111] | [100101] | [100101] | [101011] |  |  |  |  |
| L = L + floor( (H+1-L)*cum_counts(symbol)/total_count )  | 0        | 0        | 26       | 20       |  |  |  |  |
|                                                          | [000000] | [000000] | [011010] | [010100] |  |  |  |  |
| conditions E1 or E2 or E3                                |          |          | E3       | E3       |  |  |  |  |



|       | Ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| а     | 6           | 6        |
| r     | 1           | 7        |
| e     | 3           | 10       |
| total | 10          |          |

| tag                                                      |          | 33       | 33       | 34       | 36       |  |  |  |
|----------------------------------------------------------|----------|----------|----------|----------|----------|--|--|--|
|                                                          |          | [100001] | [100001] | [100010] | [100100] |  |  |  |
| decode tag = floor( [(t+1-L)*total_counts - 1]/[H+1-L]   |          | 5        | 8        |          |          |  |  |  |
| output                                                   |          | Α        | E        |          |          |  |  |  |
| H = L + floor( (H+1-L)*cum_counts(s+1)/total_count ) - 1 | 63       | 37       | 37       | 43       | 55       |  |  |  |
|                                                          | [111111] | [100101] | [100101] | [101011] | [110111] |  |  |  |
| L = L + floor( (H+1-L)*cum_counts(symbol)/total_count )  | 0        | 0        | 26       | 20       | 8        |  |  |  |
|                                                          | [000000] | [000000] | [011010] | [010100] | [000100] |  |  |  |
| conditions E1 or E2 or E3                                |          |          | E3       | E3       |          |  |  |  |



|       | Ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 6           | 6        |
| r     | 1           | 7        |
| e     | 3           | 10       |
| total | 10          |          |

| tag                                                      |          | 33       | 33       | 34       | 36       | 36       |  |  |  |
|----------------------------------------------------------|----------|----------|----------|----------|----------|----------|--|--|--|
|                                                          |          | [100001] | [100001] | [100010] | [100100] | [100100] |  |  |  |
| decode tag = floor( [(t+1-L)*total_counts - 1]/[H+1-L]   |          | 5        | 8        |          |          | 6        |  |  |  |
| output                                                   |          | Α        | E        |          |          | R        |  |  |  |
| H = L + floor( (H+1-L)*cum_counts(s+1)/total_count ) - 1 | 63       | 37       | 37       | 43       | 55       | 40       |  |  |  |
|                                                          | [111111] | [100101] | [100101] | [101011] | [110111] | [101000] |  |  |  |
| L = L + floor( (H+1-L)*cum_counts(symbol)/total_count )  | 0        | 0        | 26       | 20       | 8        | 36       |  |  |  |
|                                                          | [000000] | [000000] | [011010] | [010100] | [000100] | [100100] |  |  |  |
| conditions E1 or E2 or E3                                |          |          | E3       | E3       |          | E2       |  |  |  |



|       | Ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| а     | 6           | 6        |
| r     | 1           | 7        |
| e     | 3           | 10       |
| total | 10          |          |

| tag                                                      |          | 33       | 33       | 34       | 36       | 36       | 8        |  |  |
|----------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|--|--|
|                                                          |          | [100001] | [100001] | [100010] | [100100] | [100100] | [001000] |  |  |
| decode tag = floor( [(t+1-L)*total_counts - 1]/[H+1-L]   |          | 5        | 8        |          |          | 6        |          |  |  |
| output                                                   |          | Α        | Е        |          |          | R        |          |  |  |
| H = L + floor( (H+1-L)*cum_counts(s+1)/total_count ) - 1 | 63       | 37       | 37       | 43       | 55       | 40       | 17       |  |  |
|                                                          | [111111] | [100101] | [100101] | [101011] | [110111] | [101000] | [010001] |  |  |
| L = L + floor( (H+1-L)*cum_counts(symbol)/total_count )  | 0        | 0        | 26       | 20       | 8        | 36       | 8        |  |  |
|                                                          | [000000] | [000000] | [011010] | [010100] | [000100] | [100100] | [000100] |  |  |
| conditions E1 or E2 or E3                                |          |          | E3       | E3       |          | E2       | E1       |  |  |



|       | Ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 6           | 6        |
| r     | 1           | 7        |
| e     | 3           | 10       |
| total | 10          |          |

| tag                                                      |          | 33       | 33       | 34       | 36       | 36       | 8        | 16       |  |  |
|----------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|
|                                                          |          | [100001] | [100001] | [100010] | [100100] | [100100] | [001000] | [010000] |  |  |
| decode tag = floor( [(t+1-L)*total_counts - 1]/[H+1-L]   |          | 5        | 8        |          |          | 6        |          |          |  |  |
| output                                                   |          | Α        | Е        |          |          | R        |          |          |  |  |
| H = L + floor( (H+1-L)*cum_counts(s+1)/total_count ) - 1 | 63       | 37       | 37       | 43       | 55       | 40       | 17       | 35       |  |  |
|                                                          | [111111] | [100101] | [100101] | [101011] | [110111] | [101000] | [010001] | [100011] |  |  |
| L = L + floor( (H+1-L)*cum_counts(symbol)/total_count )  | 0        | 0        | 26       | 20       | 8        | 36       | 8        | 16       |  |  |
|                                                          | [000000] | [000000] | [011010] | [010100] | [000100] | [100100] | [000100] | [010000] |  |  |
| conditions E1 or E2 or E3                                |          |          | E3       | E3       |          | E2       | E1       | E3       |  |  |



# Descodificação Aritmética - inteira

#### Código "100001000000"

|       | Ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 6           | 6        |
| r     | 1           | 7        |
| e     | 3           | 10       |
| total | 10          |          |

| tag                                                      |          | 33       | 33       | 34       | 36       | 36       | 8        | 16       | 0        |  |
|----------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|
|                                                          |          | [100001] | [100001] | [100010] | [100100] | [100100] | [001000] | [010000] | [000000] |  |
| decode tag = floor( [(t+1-L)*total_counts - 1]/[H+1-L]   |          | 5        | 8        |          |          | 6        |          |          |          |  |
| output                                                   |          | Α        | Е        |          |          | R        |          |          |          |  |
| H = L + floor( (H+1-L)*cum_counts(s+1)/total_count ) - 1 | 63       | 37       | 37       | 43       | 55       | 40       | 17       | 35       | 39       |  |
|                                                          | [111111] | [100101] | [100101] | [101011] | [110111] | [101000] | [010001] | [100011] | [100111] |  |
| L = L + floor( (H+1-L)*cum_counts(symbol)/total_count )  | 0        | 0        | 26       | 20       | 8        | 36       | 8        | 16       | 0        |  |
|                                                          | [000000] | [000000] | [011010] | [010100] | [000100] | [100100] | [000100] | [010000] | [000000] |  |
| conditions E1 or E2 or E3                                |          |          | E3       | E3       |          | E2       | E1       | E3       |          |  |



## Descodificação Aritmética - inteira

### Código "100001000000"

|       | Ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 6           | 6        |
| r     | 1           | 7        |
| e     | 3           | 10       |
| total | 10          |          |

| tag                                                      |          | 33       | 33       | 34       | 36       | 36       | 8        | 16       | 0        | 0        |  |
|----------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|
|                                                          |          | [100001] | [100001] | [100010] | [100100] | [100100] | [001000] | [010000] | [000000] | [000000] |  |
| decode tag = floor( [(t+1-L)*total_counts - 1]/[H+1-L]   |          | 5        | 8        |          |          | 6        |          |          |          | 0        |  |
| output                                                   |          | Α        | Е        |          |          | R        |          |          |          | Α        |  |
| H = L + floor( (H+1-L)*cum_counts(s+1)/total_count ) - 1 | 63       | 37       | 37       | 43       | 55       | 40       | 17       | 35       | 39       | 23       |  |
|                                                          | [111111] | [100101] | [100101] | [101011] | [110111] | [101000] | [010001] | [100011] | [100111] | [010111] |  |
| L = L + floor( (H+1-L)*cum_counts(symbol)/total_count )  | 0        | 0        | 26       | 20       | 8        | 36       | 8        | 16       | 0        | 0        |  |
|                                                          | [000000] | [000000] | [011010] | [010100] | [000100] | [100100] | [000100] | [010000] | [000000] | [000000] |  |
| conditions E1 or E2 or E3                                |          |          | E3       | E3       |          | E2       | E1       | E3       |          | E1       |  |



## Descodificação Aritmética - inteira

### Código "100001000000"

|       | Ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| а     | 6           | 6        |
| r     | 1           | 7        |
| e     | 3           | 10       |
| total | 10          |          |

| tag                                                      |          | 33       | 33       | 34       | 36       | 36       | 8        | 16       | 0        | 0        | 0        |
|----------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                                                          |          | [100001] | [100001] | [100010] | [100100] | [100100] | [001000] | [010000] | [000000] | [000000] | [000000] |
| decode tag = floor( [(t+1-L)*total_counts - 1]/[H+1-L]   |          | 5        | 8        |          |          | 6        |          |          |          | 0        |          |
| output                                                   |          | Α        | E        |          |          | R        |          |          |          | Α        |          |
| H = L + floor( (H+1-L)*cum_counts(s+1)/total_count ) - 1 | 63       | 37       | 37       | 43       | 55       | 40       | 17       | 35       | 39       | 23       | 47       |
|                                                          | [111111] | [100101] | [100101] | [101011] | [110111] | [101000] | [010001] | [100011] | [100111] | [010111] | [101111] |
| L = L + floor( (H+1-L)*cum_counts(symbol)/total_count )  | 0        | 0        | 26       | 20       | 8        | 36       | 8        | 16       | 0        | 0        | 0        |
|                                                          | [000000] | [000000] | [011010] | [010100] | [000100] | [100100] | [000100] | [010000] | [000000] | [000000] | [000000] |
| conditions E1 or E2 or E3                                |          |          | E3       | E3       |          | E2       | E1       | E3       |          | E1       |          |



| Símbolo | prob. | range       |
|---------|-------|-------------|
| Α       | 0.80  | 0.00 - 0.80 |
| R       | 0.02  | 0.80 - 0.82 |
| Ε       | 0.18  | 0.82 - 1.00 |

O mesmo exemplo mas com probabilidades diferentes

|   |           | low    | high   | range  |  |
|---|-----------|--------|--------|--------|--|
|   |           | 0.0000 | 1.0000 | 1.0000 |  |
| Α | 0.00-0.80 | 0.0000 | 0.8000 | 0.8000 |  |
| E |           |        |        |        |  |
| R |           |        |        |        |  |
| A |           |        |        |        |  |

| Simbolo | prob. | range       |
|---------|-------|-------------|
| Α       | 0.80  | 0.00 - 0.80 |
| R       | 0.02  | 0.80 - 0.82 |
| Ε       | 0.18  | 0.82 - 1.00 |



| Símbolo | prob.       | range       |
|---------|-------------|-------------|
| Α       | 0.80        | 0.00 - 0.80 |
| R       | 0.02        | 0.80 - 0.82 |
| E       | <b>Λ1</b> 2 | 0.82 - 1.00 |

|           | 0.0000 | 1.0000 | 1.0000 |
|-----------|--------|--------|--------|
| 0.00-0.80 | 0.0000 | 0.8000 | 0.8000 |
| 0.82-1.00 | 0.6560 | 0.8000 | 0.1440 |

low

high

range

A E R

Α



|                                |   |           | low    | high   | range  |
|--------------------------------|---|-----------|--------|--------|--------|
|                                |   |           | 0.0000 | 1.0000 | 1.0000 |
|                                |   | 0.00-0.80 | 0.0000 | 0.8000 | 0.8000 |
| Codificação Aritmética décimal | Е | 0.82-1.00 | 0.6560 | 0.8000 | 0.1440 |
| Símbolo prob. range            |   |           | 0.3120 | 0.6000 | 0.2880 |

| Símbolo | prob.        | range       |  |
|---------|--------------|-------------|--|
| Α       | 0.80         | 0.00 - 0.80 |  |
| R       | 0.02         | 0.80 - 0.82 |  |
| F       | <b>0 1</b> 2 | 0.82 - 1.00 |  |



|                                |             |                                       |           | low    | high    | range  |
|--------------------------------|-------------|---------------------------------------|-----------|--------|---------|--------|
|                                |             |                                       |           | 0.0000 | 1.0000  | 1.0000 |
| C = 4:t:                       |             | Α                                     | 0.00-0.80 | 0.0000 | 0.8000  | 0.8000 |
| Codificação Aritmética décimal |             | Е                                     | 0.82-1.00 | 0.6560 | 0.8000  | 0.1440 |
| o/ I I                         |             |                                       |           | 0.3120 | 0.6000  | 0.2880 |
| Símbolo                        | prob. range | R                                     | 0.8-0.82  | 0.5424 | 0.54816 |        |
| Α                              | 0.80        | Α                                     |           |        |         |        |
| R                              | 0.02        | , , , , , , , , , , , , , , , , , , , |           |        |         |        |
| Е                              | 0.18        |                                       |           |        |         |        |



|                                |                  |   |           | low    | high    | range  |
|--------------------------------|------------------|---|-----------|--------|---------|--------|
|                                |                  |   |           | 0.0000 | 1.0000  | 1.0000 |
| C = -1:C:                      |                  | Α | 0.00-0.80 | 0.0000 | 0.8000  | 0.8000 |
| Codificação Aritmética décimal |                  | Ε | 0.82-1.00 | 0.6560 | 0.8000  | 0.1440 |
| -/                             |                  |   |           | 0.3120 | 0.6000  | 0.2880 |
| Símbolo                        | prob. range      | R | 0.8-0.82  | 0.5424 | 0.54816 |        |
| Α                              | 0.80 0.00 - 0.80 |   |           | 0.0848 | 0.09632 |        |
| R                              | 0.02             | ۸ |           |        |         |        |
| E                              | 0.18             | Α |           |        |         |        |



|                                |   |           | low    | high    | range  |
|--------------------------------|---|-----------|--------|---------|--------|
|                                |   |           | 0.0000 | 1.0000  | 1.0000 |
| C I:C: ~ A :: /:: I/ : I       | Α | 0.00-0.80 | 0.0000 | 0.8000  | 0.8000 |
| Codificação Aritmética décimal | Е | 0.82-1.00 | 0.6560 | 0.8000  | 0.1440 |
|                                |   |           | 0.3120 | 0.6000  | 0.2880 |
| Símbolo prob. range            | R | 0.8-0.82  | 0.5424 | 0.54816 |        |
| A 0.80 0.00 - 0.80             |   |           | 0.0848 | 0.09632 |        |
| R 0.02 0.80 - 0.82             |   |           | 0.1696 | 0.19264 |        |
| E 0.18 0.82 - 1.00             | Α |           |        |         |        |





Α





0,00

0,00







Code: 1 1 0 0 0 1 1 = 0,7734375



Code: 1 1 0 0 0 1 1 = 0,7734375



■ Code: 1 0 0 0 1 1 = 0,546875



■ Code: 1 0 0 0 1 1 = 0,546875



■ Code: 0 0 0 1 1 = 0,09375



• Code:  $\times$   $\times$  0 0 1 1 = 0,1875



■ Code: XXXXX 0 1 1 = 0,375



Code: XXXXXX 1 1 = 0,75



■ Code: **XXXXXX** 1 = 0,5



### Codificação Aritmética - inteira

- Assumindo a tabela de occorrências:
- A sequência a codificar: "aera..."

| m = 2 + | $\lceil log_2(tota) \rceil$ | lcount   = | = 8 |
|---------|-----------------------------|------------|-----|
|---------|-----------------------------|------------|-----|

- Low = 0 [00000000]
- High = 255 [11111111]

|       | ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 40          | 40       |
| r     | 1           | 41       |
| e     | 9           | 50       |
| total | 50          |          |

Codificar "a"

$$\begin{array}{rcl} low & = & 0 + \left\lfloor \frac{256 \times 0}{50} \right\rfloor = 0 \ (00000000) \\ high & = & 0 + \left\lfloor \frac{256 \times 40}{50} \right\rfloor - 1 = 203 \ (11001011) \end{array}$$

|       | ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | C        |
| a     | 40          | 40       |
| r     | 1           | 41       |
| е     | 9           | 50       |
| total | 50          |          |



#### Codificar "e"

$$low = 0 + \left\lfloor \frac{204 \times 41}{50} \right\rfloor = 167 (10100111)$$

$$high = 0 + \left\lfloor \frac{204 \times 50}{50} \right\rfloor - 1 = 203 (11001011)$$

|       | ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 40          | 40       |
| r     | 1           | 41       |
| e     | 9           | 50       |
| total | 50          |          |
|       |             |          |



#### Condição E2 - escalar

$$low = 2 \times (low - 128) = 78 \ (01001110)$$
  
 $high = 2 \times (high - 128) + 1 = 151 \ (10010111)$ 

|       | ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 40          | 40       |
| r     | 1           | 41       |
| e     | 9           | 50       |
| total | 50          |          |



Condição E3 - escalar

$$low = 2 \times (low - 64) = 28 (00011100)$$
  
 $high = 2 \times (high - 64) + 1 = 175 (10101111)$   
 $count E3 = count E3 + 1$ 

|       | ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 40          | 40       |
| r     | 1           | 41       |
| e     | 9           | 50       |
| total | 50          |          |
|       |             |          |



1

#### Codificar "r"

$$\begin{array}{lcl} low & = & 28 + \left \lfloor \frac{148 \times 40}{50} \right \rfloor = 146 \ (10010010) \\ \\ high & = & 28 + \left \lfloor \frac{148 \times 41}{50} \right \rfloor - 1 = 148 \ (10010100) \end{array}$$

|       | ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 40          | 40       |
| r     | 1           | 41       |
| e     | 9           | 50       |
| total | 50          |          |
|       |             |          |



1

#### Condição E2 -escalar

$$low = 2 \times (low - 128) = 36 (00100100)$$
  
 $high = 2 \times (high - 128) + 1 = 41 (00101001)$ 

| ocorrencias | cumcount |
|-------------|----------|
|             | 0        |
| 40          | 40       |
| 1           | 41       |
| 9           | 50       |
| 50          |          |
|             | 40<br>1  |



#### Condição E1 -escalar

$$\begin{array}{lcl} low & = & 2\times(low-128) = 72\ (01001000) \\ high & = & 2\times(high-128) + 1 = 83\ (01010011) \end{array}$$

|       | ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 40          | 40       |
| r     | 1           | 41       |
| e     | 9           | 50       |
| total | 50          |          |



#### Condição E1 -escalar

$$\begin{array}{lcl} low & = & 2 \times (low - 128) = 144 \ (10010000) \\ high & = & 2 \times (high - 128) + 1 = 167 \ (10100111) \end{array}$$

|       | ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 40          | 40       |
| r     | 1           | 41       |
| e     | 9           | 50       |
| total | 50          |          |



#### Condição E2 -escalar

$$low = 2 \times (low - 128) = 32 (00100000)$$
  
 $high = 2 \times (high - 128) + 1 = 79 (01001111)$ 

|       | ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 40          | 40       |
| r     | 1           | 41       |
| e     | 9           | 50       |
| total | 50          |          |



#### Condição E1 -escalar

$$low = 2 \times (low - 128) = 64 \ (01000000)$$
  
 $high = 2 \times (high - 128) + 1 = 159 \ (10011111)$ 

|       | ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 40          | 40       |
| r     | 1           | 41       |
| e     | 9           | 50       |
| total | 50          |          |



## Codificação Aritmética décimal

#### Condição E3 -escalar

$$low = 2 \times (low - 64) = 0 (00000000)$$
  
 $high = 2 \times (high - 64) + 1 = 191 (10111111)$   
 $count E3 = count E3 + 1$ 

|       | ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 40          | 40       |
| r     | 1           | 41       |
| е     | 9           | 50       |
| total | 50          |          |



## Codificação Aritmética décimal

Codifica "a"

$$low = 0 + \left\lfloor \frac{192 \times 0}{50} \right\rfloor = 0 \ (00000000)$$

$$high = 0 + \left\lfloor \frac{192 \times 40}{50} \right\rfloor - 1 = 152 \ (10011000)$$

|       | ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 40          | 40       |
| r     | 1           | 41       |
| e     | 9           | 50       |
| total | 50          |          |



#### Codificação Aritmética décimal

- Terminou a mensagem
- Envia o low (00000000)
- Como o countE3 = 1
- O codigo fica 1 1 0 0 0 1 0 010000000

|       | ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 40          | 40       |
| r     | 1           | 41       |
| e     | 9           | 50       |
| total | 50          |          |



- 110001001000000
- Lê m bits

|       | ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 40          | 40       |
| r     | 1           | 41       |
| e     | 9           | 50       |
| total | 50          |          |

- 110001001000000
- Tag = (1 1 0 0 0 1 0 0) = 196
- low = 0
- high = 255

$$\left\lfloor \frac{(tag - low + 1) \times totalcount}{(high - low + 1)} \right\rfloor = \left\lfloor \frac{197 \times 50}{255 - 0 + 1} \right\rfloor = 38 \quad = \text{"a"}$$

- Update low = 0 and high = 203
- Nenhuma condição é verificada

- 1100010010000000
- low = 0
- high = 203
- Tag = (1 1 0 0 0 1 0 0) = 196

|       | ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 40          | 40       |
| r     | 1           | 41       |
| e     | 9           | 50       |
| total | 50          |          |

$$\left\lfloor \frac{(tag - low + 1) \times totalcount}{(high - low + 1)} \right\rfloor = \left\lfloor \frac{197 \times 50}{203 - 0 + 1} \right\rfloor = 48 = \text{"e"}$$

- Update low = 167 and high = 203
- Condição E2

- 11000100100000000
- low = 0
- high = 203
- Tag = (1 1 0 0 0 1 0 0) = 196

|       | ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | C        |
| a     | 40          | 40       |
| r     | 1           | 41       |
| e     | 9           | 50       |
| total | 50          |          |

$$\left\lfloor \frac{(tag - low + 1) \times totalcount}{(high - low + 1)} \right\rfloor = \left\lfloor \frac{197 \times 50}{203 - 0 + 1} \right\rfloor = 48 = \text{"e"}$$

- Update low = 167 and high = 203
- Condição E2: scale low = 78 scale high = 151 read next bit scale tag and add bit= 137 (10001001)
- Condição E3:

- 1100010010000000
- low = 78
- high = 151
- Tag = 137 (10001001)
- Condição E3: scale low = 28

scale high = 175
read next bit

scale tag = 146 (10010010)

Nenhuma condição é verificada... decode simbol

|       | ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 40          | 40       |
| r     | 1           | 41       |
| е     | 9           | 50       |
| total | 50          |          |

- 110001001000000
- low = 28
- high = 175
- Tag = 146 (10010010)
- Condição E3: scale low = 28

scale high = 175 read next bit

scale tag and add bit= 146 (10010010)

Nenhuma condição é verificada... decode simbol

| ocorrencias | cumcount     |
|-------------|--------------|
|             | 0            |
| 40          | 40           |
| 1           | 41           |
| 9           | 50           |
| 50          |              |
|             | 40<br>1<br>9 |

- **110001001000000**
- low = 28
- high = 175
- Tag = 146 (10010010)

|       | ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 40          | 40       |
| r     | 1           | 41       |
| e     | 9           | 50       |
| total | 50          |          |

$$\left\lfloor \frac{(tag-low+1)\times total count}{(high-low+1)} \right\rfloor = \left\lfloor \frac{(146-28+1)\times 50}{175-28+1} \right\rfloor = 40 = \text{"r"}$$

- Update low = 146
- Update high = 148
- Condição E2:

- 110001001000000
- low = 28
- high = 175
- Tag = 146 (10010010)

|       | ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 40          | 40       |
| r     | 1           | 41       |
| e     | 9           | 50       |
| total | 50          |          |

$$\left\lfloor \frac{(tag - low + 1) \times total count}{(high - low + 1)} \right\rfloor = \left\lfloor \frac{(146 - 28 + 1) \times 50}{175 - 28 + 1} \right\rfloor = 40 = \text{"r"}$$

- Update low = 146
- Update high = 148
- Condição E2: scale low = 36
   scale high = 41
   read next bit
   scale tag and add bit= (00100100) = 36
- Condição E1:

- 1100010010000000
- low = 36
- high = 41
- Tag = 36 (00100100)

|       | ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 40          | 40       |
| r     | 1           | 41       |
| e     | 9           | 50       |
| total | 50          |          |

| Condição E1: scale low = 72            |
|----------------------------------------|
| scale high = 83                        |
| read next bit                          |
| scale tag and add bit= (01001000) = 72 |
|                                        |

Condição E1:

- 1100010010000000
- low = 72
- high = 83
- Tag = 72 (01001000)

|       | ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 40          | 40       |
| r     | 1           | 41       |
| e     | 9           | 50       |
| total | 50          |          |

| Condição E1: scale low = 144                           |
|--------------------------------------------------------|
| scale high = 167                                       |
| read next bit                                          |
| scale tag and add bit= (1001000 <mark>0</mark> ) = 144 |

Condição E2:

- 1100010010000000
- low = 144
- high = 167
- Tag = 144 (10010000)

|       | ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 40          | 40       |
| r     | 1           | 41       |
| e     | 9           | 50       |
| total | 50          |          |

| Condição E2: scale low = 32                           |
|-------------------------------------------------------|
| scale high = 79                                       |
| read next bit                                         |
| scale tag and add bit= (0010000 <mark>0</mark> ) = 32 |

Condição E1:

- 1100010010000000
- low = 32
- high = 79
- Tag = 32 (00100000)

|       | ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 40          | 40       |
| r     | 1           | 41       |
| e     | 9           | 50       |
| total | 50          |          |

| Condição E1: scale low = 64                           |
|-------------------------------------------------------|
| scale high = 159                                      |
| read next bit                                         |
| scale tag and add bit= (0100000 <mark>0</mark> ) = 64 |

Nenhuma condição é verificada... decode simbol

- 1100010010000000
- low = 64
- high = 159
- Tag = 64 (0100000)

|       | ocorrencias | cumcount |
|-------|-------------|----------|
|       |             | 0        |
| a     | 40          | 40       |
| r     | 1           | 41       |
| e     | 9           | 50       |
| total | 50          |          |

$$\left\lfloor \frac{(tag - low + 1) \times totalcount}{(high - low + 1)} \right\rfloor = \left\lfloor \frac{(64 - 64 + 1) \times 50}{159 - 64 + 1} \right\rfloor = 0 \quad = \text{``a''}$$

- Foi o último simbolo!
- Mensagem "aera"