- 1. (a) The random variable X has a Normal distribution with mean 3 and variance 16. Find P(X > 2).
 - (b) The random variable Y has a Normal distribution with mean 2 and variance 1. X and Y are independent. Find the distribution of W = X3Y, and find P(W > 0).
 - (c) The independent random variables Y_1 , Y_2 and Y_3 have the same distribution as Y, and the random variable V is defined as $XY_1Y_2Y_3$. Find P(V > 0).
 - (d) The independent random variables X_1, X_2, \dots, X_n have the same distribution as X. Write down in terms of n the distribution of the mean

$$\bar{X} = \frac{X_1 + X_2 + X_3 + \ldots + X_n}{n}$$

and find the least value of n such that $P(\bar{X} > 0) > 0.9995$.

- 2. Let X and Y be independent standard Normal random variables and let $\Theta(.)$ denote the cumulative distribution function of a standard Normal random variable.
 - (a) Find P(3X > 4Y + 2), and write down $P(X \le x, Y \le x)$ in terms of $\Theta(x)$.
 - (b) Let W = max(X, Y).
 - (i) Explain why the cumulative distribution function of W is given by

$$F_W(w) = [\Theta(x)]^2$$

where $-infty \le w \le infty$.

- (ii) Find Q1 and Q3, the lower and upper quartiles of W.
- (c) A random sample of 100 observations of W is taken. Write down the distribution of the number N of observations in the sample which lie outside the interval (Q1, Q3). Use a suitable approximation to calculate $P(N \ge 58)$.
- 3. Let X and Y be independent standard Normal random variables and let $\Theta(.)$ denote the cumulative distribution function of the standard Normal random variable.
 - (a) Write down the distribution of 4X3Y and hence find P(4X > 3Y + 2).
 - (b) Let W = max(X, Y).
 - (a) Write down $P(X \leq x, Y \leq x)$ in terms of $\Theta(x)$ and hence explain why the cumulative distribution function of W is given by

$$F_W(w) = [\Theta(x)]^2$$

where -infty < w < infty.

- (b) Find Q1 and Q3, the lower and upper quartiles of W.
- (c) A random sample of 400 observations of W is taken. Write down the distribution of the number K of observations in the sample that lie within the interval (Q1, Q3). Use a suitable approximation to calculate $P(K \leq 210)$.