Random Variable Cheat Sheet

Advanced Statistics

$$\begin{split} E[X] &= \mu_X = \sum_{i=1}^n p(x_i) \cdot x_i \\ E[f(x)] &= \sum_{i=1}^n p(x_i) \cdot f(x_i) \\ Var[X] &= E[(X - \mu_X)^2] = E[X^2] - (\mu_X)^2 = \sigma_x^2 = \sum_{i=1}^n p(x_i) \cdot (x_i - \mu_X)^2 \end{split}$$

Continuous Random Variables

 $\rho(X)$ = "the probability density of X" (for continuous random variables) F(X) = "the cumulative distribution of X" $F[x] = P(X \le x)$

Sum of Random Variables

$$\begin{split} E[X+Y] &= E[X] + E[Y] \text{ (expected values add)} \\ \text{when X and Y are independent: } Var[X+Y] &= Var[X] + Var[Y] \\ \text{more generally: } Var[X+Y] &= Var[X] + Var[Y] + 2 \cdot Cov[X,Y] \\ Corr[X,Y] &= \frac{Cov[X,Y]}{\sigma_x \cdot \sigma_y} \end{split}$$

Linear Transformations of Random Variables:

If
$$Y = aX + b$$
 then $E[Y] = aE[X] + b$ and $Var[Y] = a^2Var[X]$

Binomial Random Variables

 $X \sim binomial(n, p)$

X is the number of successes in n independent trials each with p probability of success

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

$$E[X] = np$$

$$Var[X] = np(1-p)$$

Uniform Random Variables

$$X \sim unif(a,b)$$

X is a randomly selected value from the interval (a,b) where all values have the same probability density.

$$\rho[x] = \frac{1}{b-a}$$

$$E[X] = \frac{a+b}{2}$$

$$Var[X] = \frac{(b-a)^2}{12}$$

Normal Random Variables

 $X \sim N(\mu, \sigma^2)$, where μ is the mean and σ is the standard deviation

$$\rho(x) = \sqrt{\frac{1}{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

Central Limit Theorem

The probability distribution of means or sums of a large number of independent draws from ANY distribution (with a finite expected value) can be approximated by a normal distribution. Outcomes that are affected by a large number of individually small, mostly independent, factors tend to be roughly normally distributed.

Z-Scores

The Z-score of an observation is the number of standard deviations it falls above or below the mean. We compute the Z-score for an observation x that follows a distribution with mean μ and standard deviation σ using

$$Z = \frac{x - \mu}{\sigma}$$

$$Z \sim N(0,1)$$

$$\rho(z) = \sqrt{\frac{1}{2\pi}} e^{\frac{-z^2}{2}}$$

 $F(z) = \dots$ look on a standard normal table!

Exponential Random Variables

 $X \sim exp(\lambda)$ where λ is the rate at which events occur in a process in which events occur continuously and independently.

$$\rho(X) = \lambda e^{-\lambda x}$$

$$F(x) = 1 - e^{-\lambda x}$$

$$E[X] = \frac{1}{\lambda}$$

$$Var[X] = \frac{1}{\lambda^2}$$