Compact Answers to Temporal Regular Path Queries (Supplementary Material)

ACM Reference Format:

1 INTRODUCTION

This document provides detailed definitions and proofs for the article *Compact answers to Temporal Regular Path Queries*, submitted at CIKM 2023.

2 NOTATION

Let $\langle o_1, o_2, \tau, \delta, b, e \rangle \in \mathcal{U}^{[t,d],b,e}$, and let $t \in \tau$. In the article, we defined the interval δ_t for each t as

$$\delta b_{\delta} + \max(0, b - t)$$
, $e_{\delta_i} - \max(0, t - e) \rfloor_{\delta}$

In this supplementary material, we will use $\delta(t)$ instead of δ_t . This notation will allow us to write $\delta_1(t)$ when several tuples are involved. Note that the time points b and e in this notation are still omitted, for conciseness, because they should be clear from the context.

3 INDUCTIVE REPRESENTATION

Let q be a TRPQ and G a TG.

Then $[\![q]\!]_G$ is the set of anwers to q over G (represented as tuples in \mathcal{U}).

In this section, we provide the full definition of the four inductive representations of $[q]_G$ discussed in the article, in $\mathcal{U}^{[t]}$, $\mathcal{U}^{[d]}$, $\mathcal{U}^{[t,d]}$ and $\mathcal{U}^{[t,d],b,e}$ respectively, and prove that they are correct.

These representations are denoted as $(q)_G^{[t]}$, $(q)_G^{[d]}$, $(q)_G^{[t,d]}$ and $(q)_G^{[t,d],b,e}$ respectively.

3.1 Grammar

For convenience, we reproduce here the syntax of TRPQs (already provided in the article).

Definition 3.1 (TRPQ). A TRPQ is an expression for the symbol path in the following grammar:

$$\begin{aligned} & \mathsf{path} ::= \mathsf{test} \mid \mathsf{axis} \mid (\mathsf{path/path}) \mid (\mathsf{path} + \mathsf{path}) \mid \mathsf{path}[m, n] \mid \mathsf{path}[m, _] \\ & \mathsf{test} ::= \mathit{pred} \mid (?\mathsf{path}) \mid \mathsf{test} \lor \mathsf{test} \mid \mathsf{test} \land \mathsf{test} \mid \neg \mathsf{test} \\ & \mathsf{axis} ::= \mathsf{F} \mid \mathsf{B} \mid \mathsf{T}_{\delta} \end{aligned}$$

with $\delta \in \operatorname{intv}(\mathcal{T})$, $m, n \in \mathbb{N}^+$ and $m \leq n$.

3.2 In \mathcal{U}

For convenience still, we reproduce the full semantics of TRPQs, i.e. the inductive definition of the evaluation $[\![q]\!]_G$ of a query q over a graph G in $\mathcal U$ (already provided in the article).

3.3 In $\mathcal{U}^{[t]}$

3.3.1 Definition.

The full definition of $(q)_G^{[t]}$ is already provided in the article. We only reproduce it here for convenience.

We observe that when q is of the form (path₁ + path₂), (path[m, _]) and (path[m, n]), the definition of $(q)_G^{\lfloor t \rfloor}$ is nearly identical to the one of $[q]_G$. This will also be the case for the three representations below.

3.3.2 Correctness.

We start with a lemma:

LEMMA 3.2. Let $G = \langle N, E, \text{conn}, \mathcal{T}_G, \text{val} \rangle$ be a TPG and let q an expression for the symbol test in the grammar of Definition 3.1.

- each tuples in [[q]]_G is of the form (o₁, o₂, t, 0) for some o₁, o₂ and t,
 each tuples in ([q])_G^[t] is of the form (o₁, o₂, τ, 0) for some o₁, o₂ and τ.

PROOF. Immediate from the definitions of $[q]_G$ and $[q]_G^{[t]}$.

The following result states that the representation $(\![q]\!]_G^{[t]}$ is correct:

PROPOSITION 3.3. Let $G = \langle N, E, \text{conn}, \mathcal{T}_G, \text{val} \rangle$ be a TPG and q a TRPQ. Then the unfolding of $(q)_G^{[t]}$ is $[q]_G$.

Proof.

Let $G = \langle N, E, \text{conn}, \mathcal{T}_G, \text{val} \rangle$ be a TG, and let q be a TRPQ.

We show below that:

- (I) for any $\langle o_1, o_2, t, d \rangle \in [\![q]\!]_G$, there is a $\tau \in \mathsf{intv}(\mathcal{T})$ such that (a) $\langle o_1, o_2, \tau, d \rangle \in (\![q]\!]_G^{[t]}$, and (b) $t \in \tau$,
- (II) for any $\langle o_1, o_2, \tau, d \rangle \in (q)_G^{\lfloor t \rfloor}$ for any $t \in \tau$, $\langle o_1, o_2, t, d \rangle$ is in $[\![q]\!]_G$.

We proceed by induction on the structure of q.

If q is of the form pred, F, B, (test \vee test), (path + path), path [m, n] or path [m, n], then (I) and (II) immediately follow from the definitions of $[\![q]\!]_G$ and $(\![q]\!]_G^{[t]}$. So we focus below on the five remaining cases:

• $q = T_{\delta}$.

From the above definitions, we have:

$$[\![q]\!]_G = \{ \langle o, o, t, d \rangle \mid o \in (N \cup E), t \in \mathcal{T}_G, d \in \delta, t + d \in \mathcal{T}_G \}$$

$$[\![q]\!]_G^{[t]} = \{ \langle o, o, [t_1, t_1], t_2 - t_1 \rangle \mid o \in (N \cup E), t_1 \in \mathcal{T}_G, t_2 \in (\delta + t_1) \cap \mathcal{T}_G \}$$

- For (I), let $\mathbf{v} = \langle o, o, t, t + d \rangle \in [q]_G$.

And let $\mathbf{u} = \langle o, o, [t, t], d \rangle$ in $\mathcal{U}^{[t]}$.

For (Ia) we show that $\mathbf{u} \in (q)_G^{[t]}$. From $\mathbf{v} \in [\![q]\!]_G$, we get $o \in N \cup E$ and $t \in \mathcal{T}_G$.

Besides, because $\mathbf{v} \in [q]_G$ still,

$$t + d \in \mathcal{T}_G \tag{1}$$

and

$$d \in \delta$$
 (2)

$$t + d \in t + \delta \tag{3}$$

So from (1) and (3)

$$t + d \in (\delta + t) \cap \mathcal{T}_G \tag{4}$$

So there is a t_2 (namely t+d) such that $d=t_2-t$ and $t_2\in t+\delta\cap\mathcal{T}_G$.

Together with the definition of $(q)_G^{[t]}$, this implies $\mathbf{u} \in (q)_G^{[t]}$, which concludes the proof for (Ia). And trivially, $t \in [t, t]$, so (Ib) is verified as well.

- For (II), let $\mathbf{u} = \langle o, o, [t, t], d \rangle \in (q)_G^{[t]}$.

From $\mathbf{u} \in (q)_G^{[t]}G$, we get $o \in N \cup E$ and $t \in \mathcal{T}_G$. So to conclude the proof, it is sufficient to show that (i) $d \in \delta$ and (ii) $t + d \in \mathcal{T}_G$.

Because $\mathbf{u} \in (q)_G^{[t]}G$ still, we have

$$d = t_2 - t \text{ for some } t_2 \in (\delta + t) \cap \mathcal{T}_G$$
 (5)

From (5), we get $t_2 = t + d$.

Therefore from (5) still,

$$t + d \in (\delta + t) \cap \mathcal{T}_G \tag{6}$$

which proves (ii).

And from (6), we also get

$$t+d \in \delta+t$$

$$t+d-t \in (\delta+t)-t$$

$$d \in \delta$$

which proves (i).

• $q = \text{test}_1 \wedge \text{test}_2$.

From the above definitions, we have:

- For (I), let $\mathbf{v} = \langle o, o, t, d \rangle \in [q]_G$.

From Lemma 3.2, d = 0.

And from the definition of $[q]_G$, $\mathbf{v} \in [\text{test}_1]_G \cap [\text{test}_2]_G$.

So by IH, there are intervals τ_1 and τ_2 s.t. $\langle o, o, \tau_i, o \rangle \in (\text{test}_i)_G^{[t]}$ for $i \in \{1, 2\}$ and $t \in \tau_1 \cap \tau_2$.

Together with the definition of $(\!(q)\!)_G^{[t]}$, this proves (I).

- For (II), let $\langle o, o, \tau, d \rangle \in (|q|)_G^{[t]}$. Then from Lemma 3.2, d=0.

And from the definition of $(q)_G^{[t]}$, there are two intervals τ_1 and τ_2 s.t. $\tau = \tau_1 \cap \tau_2$ and $\langle o, o, \tau_i, 0 \rangle \in (\text{test}_i)_G^{[t]}$ for $i \in \{1, 2\}$.

Now take any $t \in \tau$.

Then $t \in \tau_i$ for $i \in \{1, 2\}$.

So by IH, $\langle o, o, t, 0 \rangle \in [[test_i]]_G$ for each $i \in \{1, 2\}$.

Together with the defintiion of $[q]_G$, this proves (II).

• q = (?path).

From the above definitions, we have:

- For (I), let $\langle o, o, t, 0 \rangle \in [q]_G$.

From the definition of $[\![q]\!]_G$, there are o' and d such that $\langle o, o', t, t+d \rangle \in [\![\mathsf{path}]\!]_G$.

So by IH, there is a τ s.t. $t \in \tau$ and $\langle o, o', \tau, d \rangle \in \{\text{path}\}_G^{[t]}$. Therefore $\langle o, o, \tau, 0 \rangle \in \{q\}_G^{[t]}$, from the definition of $\{q\}_G^{[t]}$.

 $- \text{ For (II), let } \langle o, o, \tau, 0 \rangle \in (\![q]\!]_G^{[t]}.$ From the definition of $(\![q]\!]_G^{[t]}$, there are o' and d s.t. $\langle o, o', \tau, d \rangle \in (\![\text{path}]\!]_G^{[t]}.$

Now take any $t \in \tau$.

By IH, $\langle o, o', t, t + d \rangle \in [\![path]\!]_G$.

Therefore $\langle o, o, t, 0 \rangle \in [\![q]\!]_G$, from the definition of $[\![q]\!]_G$.

• $q = \neg \text{test}$.

From the above definitions, we have:

$$\begin{split} & [\![q]\!]_G = (\{\langle o,o\rangle \mid o \in N \cup E\} \times \mathcal{T}_G \times \{0\}) \setminus [\![\mathsf{test}]\!]_G \\ & (\![q]\!]_G^{[t]} = \bigcup_{o \in N \cup E} \left\{ \langle o,o,\tau,0\rangle \mid \tau \in \mathsf{compl}\left(\{\tau' \mid \langle o,o,\tau',0\rangle \in (\![\mathsf{test}]\!]_G^{[t]}\},\mathcal{T}_G\right) \right\} \end{aligned}$$

- For (I), let $\mathbf{v} = \langle o, o, t, 0 \rangle \in [q]_G$.

From the definition of $[q]_G$, $\mathbf{v} \notin [\text{test}]_G$.

So

$$t \notin \{t' \mid \langle o, o, t', 0 \rangle \in [test]_G\}$$
 (7)

Now by IH, together with Lemma 3.2, we get:

$$\langle o, o, t', 0 \rangle \in [[test]]_G \text{ iff } t' \in \tau' \text{ for some } \tau' \text{ s.t. } \langle o, o, \tau', 0 \rangle \in [[test]]_G^{[t]}$$
 (8)

So from (7) and (8):

$$t \notin \left[\begin{array}{c} \left| \{ \tau' \mid \langle o, o, \tau', 0 \rangle \in \{\text{test}\} \right|_{G}^{[t]} \} \end{array} \right]$$

Therefore

$$t \in \mathcal{T}_G \setminus \bigcup \{ \tau' \mid \langle o, o, \tau', 0 \rangle \in \{ \text{test} \}_G^{[t]} \}$$
 (9)

So $t \in \tau$ for some $\tau \in \text{compl}\left(\bigcup \{\tau' \mid \langle o, o, \tau', 0 \rangle \in \{\text{test}\}_G^{[t]}\}, \mathcal{T}_G\right)$.

And $\langle o, o, \tau, 0 \rangle \in (q)_G^{[t]}$, from the definition of $(q)_G^{[t]}$.

- For (II), let $\langle o, o, \tau, 0 \rangle \in (q)_G^{[t]}$.

And take any $t \in \tau$.

From the definition of $(q)_G^{[t]}$:

$$t \in \mathcal{T}_G \setminus \bigcup \{ \tau' \mid \langle o, o, \tau', 0 \rangle \in \{\text{test}\}_G^{[t]} \}$$

Together with (8), this implies

$$\langle o, o, t, 0 \rangle \notin [\![\mathsf{test}]\!]_G$$

Therefore $\langle o, o, t, 0 \rangle \in [\![q]\!]_G$, from the definition of $[\![q]\!]_G$.

• $q = path_1/path_2$.

From the above definitions, we have:

- For (I), let $\mathbf{v} = \langle o_1, o_3, t, d \rangle \in [[q]]_G$.

Fom the definition of $[\![q]\!]_G$, there are o_2, d_1 and d_2 such that $\langle o_1, o_2, t, d_1 \rangle \in [\![\mathsf{path}_1]\!]_G$, $\langle o_2, o_3, t + d_1, d_2 \rangle \in [\![\mathsf{path}_2]\!]_G$ and $d = d_1 + d_2$. By IH, because $\langle o_1, o_2, t, d_1 \rangle \in [\![\mathsf{path}_1]\!]_G$, there is a τ_1 such that $t \in \tau_1$ and

$$\langle o_1, o_2, \tau_1, d_1 \rangle \in (\operatorname{path}_1)_G^{[t]} \tag{10}$$

And similarly, because $\langle o_2, o_3, t + d_1, d_2 \rangle \in [[path_2]]_G$, there is a τ_2 such that $t + d_1 \in \tau_2$ and

$$\langle o_2, o_3, \tau_2, d_2 \rangle \in \{ \operatorname{path}_2 \}_G^{[t]}$$
(11)

From $t \in \tau_1$, we get

$$t + d_1 \in \tau_1 + d_1 \tag{12}$$

Together with the fact that $t + d_1 \in \tau_2$, this implies

$$\tau_1 + d_1 \cap \tau_2 \neq \emptyset \tag{13}$$

So from (10), (11), (13) and the definition of $(q)_G^{\lfloor t \rfloor}$,

$$\langle o_1, o_2, ((\tau_1 + d_1) \cap \tau_2) - d_1, d_1 + d_2 \rangle \in \{q\}_G^{[t]}$$

which proves (Ia).

And in order to prove (Ib), we only need to show that

$$t \in ((\tau_1 + d_1) \cap \tau_2) - d_1$$

We know that $t \in \tau_1$, therefore

$$t+d_1\in\tau_1+d_1$$

Together with the fact that $t + d_1 \in \tau_2$, this yields

$$t + d_1 \in (\tau_1 + d_1) \cap \tau_2$$
$$t \in ((\tau_1 + d_1) \cap \tau_2) - d_1$$

– For (II), let $\mathbf{u} = \langle o_1, o_3, \tau, d \rangle \in (q|\mathbf{u}|_G^{[t]})$, and let $t \in \tau$. We show that $\langle o_1, o_3, t, t + d \rangle \in [\![q]\!]_G$. Because $\mathbf{u} \in (q|\mathbf{u}|_G^{[t]})$, from the definition of $(q|\mathbf{u}|_G^{[t]})$, there are τ_1, τ_2, d_1, d_2 and o_2 s.t.:

- (i) $d = d_1 + d_2$

- (ii) $\tau = ((\tau_1 + d_1) \cap \tau_2) d_1$ (iii) $\langle o_1, o_2, \tau_1, d_1 \rangle \in \{\text{path}_1\}_G^{[t]}$ (iv) $\langle o_2, o_3, \tau_2, d_2 \rangle \in \{\text{path}_2\}_G^{[t]}$

Since $t \in \tau$, from (ii), we have

$$t \in ((\tau_1 + d_1 \cap \tau_2) - d_1 \tag{14}$$

$$t + d_1 \in (((\tau_1 + d_1 \cap \tau_2) - d_1) + d_1 \tag{15}$$

$$t + d_1 \in (\tau_1 + d_1) \cap \tau_2 \tag{16}$$

$$t + d_1 \in \tau_1 + d_1 \tag{17}$$

$$t \in \tau_1 \tag{18}$$

From (iii), by IH, for any $t' \in \tau_1$

$$\langle o_1, o_2, t' + d_1 \rangle \in [\![q]\!]_G$$

In particular, from (18)

$$\langle o_1, o_2, t, t + d_1 \rangle \in [q]_G$$
 (19)

And from (iv), by IH, for any $t'' \in \tau_2$

$$\langle o_2, o_3, t^{\prime\prime}, t^{\prime\prime} + d_2 \rangle \in [\![q]\!]_G$$

In particular, from (16)

$$\langle o_2, o_3, t + d_1, (t + d_1) + d_2 \rangle \in [q]_G$$
 (20)

So from (19), (20) and the definition of $[q]_G$

$$\langle o_1, o_3, t, t + d_1 + d_2 \rangle \in [q]_G$$

3.4 In $\mathcal{U}^{[d]}$

3.4.1 Definition.

We start with the case where q is an expression for the symbol test in the grammar of Definition 3.1.

The definitions of $(pred)_G^{[t]}$ and $(\neg test)_G^{[t]}$ are already provided in the article, we reproduce them here for completeness:

Next, we consider the operators $(path_1 + path_2)$, $(path[m, _])$ and (path[m, n]).

For these cases, $(q)_G^{[t,d]}$ is once again defined analogously to $[q]_G$, in terms of temporal join (a.k.a. path₁/path₂) and set union.

We only write the definitions here for the sake of completeness:

$$\begin{split} (\operatorname{path}_1 + \operatorname{path}_2)_G^{[t,d]} &= & (\operatorname{path}_1)_G^{[t,d]} \cup (\operatorname{path}_2)_G^{[t,d]} \\ & [\![\operatorname{path}[m,n]]\!]_G &= & \bigcup\limits_{k=m}^n (\operatorname{path}^k)_G^{[t,d]} \\ & [\![\operatorname{path}[m,_]]\!]_G &= & \bigcup\limits_{k>m} (\operatorname{path}^k)_G^{[t,d]} \end{split}$$

The only remaining operators are temporal join $(path_1/path_2)$ and temporal navigation (T_δ) , already defined in the article. We reproduce here these two definition for convenience:

We also reproduce the alternative characterization of $(T_{\delta})_G^{[d]}$ provided in the article, as a unary operator:

$$(q/\mathsf{T}_{\delta})_G^{[d]} = \{ \langle o_1, o_2, t, (\delta' + \delta) \cap \mathcal{T}_G \rangle \mid \langle o_1, o_2, t, \delta' \rangle \in (q|_G^{[d]}, (t + (\delta' + \delta)) \cap \mathcal{T}_G \neq \emptyset \}$$

3.4.2 Correctness.

The following result states that the representation $(q)_G^{[d]}$ is correct:

PROPOSITION 3.4. Let $G = \langle N, E, \text{conn}, \mathcal{T}_G, \text{val} \rangle$ be a TPG and q a TRPQ. Then the unfolding of $(q)_G^{[d]}$ is $[q]_G$.

Let $G = \langle N, E, \text{conn}, \mathcal{T}_G, \text{val} \rangle$ be a TG, and let q be a TRPQ

We show below that:

- (I) for any $\langle o_1, o_2, t, d \rangle \in [q]_G$, there is a $\delta \in \text{intv}(\mathcal{T})$ such that
 - (a) $\langle o_1, o_2, t, \delta \rangle \in (q)_G^{[d]}$, and (b) $d \in \delta$,
- (II) for any $\langle o_1, o_2, t, \delta \rangle \in (q)_G^{[d]}$ for any $d \in \delta$, $\langle o_1, o_2, t, d \rangle$ is in $\llbracket q \rrbracket_G$.

We proceed once again by induction on the structure of q.

If q is of the form pred, F, B, (test \vee test), (test \wedge test), \neg test, (path + path), path[m, n] or path[m, n], then (I) and (II) immediately follow from the definitions of $[\![q]\!]_G$ and $(\![q]\!]_G^{[\![d]\!]}$.

If q is of the form (?path), then the proof is nearly identical to one already provided for $\{(?path)\}_G^{[t]}$. So we focus below on the two remaining cases:

• $q = T_{\delta}$.

From the above definitions, we have:

- For (I), let $\mathbf{v} = \langle o, o, t, d \rangle \in [[q]]_G$.

And let $\mathbf{u} = \langle o, o, t, ((\delta + t) \cap \mathcal{T}_G) - t \rangle$ in $\mathcal{U}^{[d]}$. For (Ia) we show that $\mathbf{u} \in [q]_G^{[d]}$. From $\mathbf{v} \in [q]_G$, we get $o \in N \cup E$ and $t \in \mathcal{T}_G$.

Besides, because $\mathbf{v} \in [\![q]\!]_G$ still,

$$t + d \in \mathcal{T}_G \tag{21}$$

and

$$d \in \delta$$
 (22)

$$t + d \in t + \delta \tag{23}$$

So from (21) and (23)

$$t + d \in (\delta + t) \cap \mathcal{T}_G \tag{24}$$

$$(\delta + t) \cap \mathcal{T}_G \neq \emptyset \tag{25}$$

Together with the definition of $(q)_G^{[d]}$, this implies $\mathbf{u} \in (q)_G^{[d]}$, which concludes the proof for (Ia). Finally, from (24), we get

$$t + d - t \in ((\delta + t) \cap \mathcal{T}_G) - t \tag{26}$$

$$d \in ((\delta + t) \cap \mathcal{T}_G) - t \tag{27}$$

which proves (Ib).

- For (II), let $\mathbf{u} = \langle o, o, t, ((\delta + t) \cap \mathcal{T}_G) - t \rangle \in (q)_G^{[d]}$, and let $d \in ((\delta + t) \cap \mathcal{T}_G) - t$.

From $\mathbf{u} \in (q)_G^{[d]}G$, we get $o \in N \cup E$ and $t \in \mathcal{T}_G$. So to conclude the proof, it is sufficient to show that (i) $d \in \delta$ and (ii) $t + d \in \mathcal{T}_G$. By assumption, we have

$$d \in ((\delta + t) \cap \mathcal{T}_G) - t \tag{28}$$

$$d+t \in (\delta+t) \cap \mathcal{T}_G \tag{29}$$

$$d+t\in\mathcal{T}_G\tag{30}$$

which proves (ii).

And from (29), we also get

$$d+t \in \delta + t$$
$$d+t-t \in (\delta + t) - t$$
$$d \in \delta$$

which proves (i).

• $q = path_1/path_2$.

From the above definitions, we have:

- For (I), let $\mathbf{v} = \langle o_1, o_3, t, d \rangle \in [\![q]\!]_G$.

Fom the definition of $[q]_G$, there are o_2 , d_1 and d_2 such that $\langle o_1, o_2, t, d_1 \rangle \in [[path_1]]_G$, $\langle o_2, o_3, t + d_1, d_2 \rangle \in [[path_2]]_G$ and $d = d_1 + d_2$. By IH, because $\langle o_1,o_2,t,d_1\rangle\in[\![\operatorname{path}_1]\!]_G$, there is a δ_1 such that $d_1\in\delta_1$ and

$$\langle o_1, o_2, t, \delta_1 \rangle \in \{\operatorname{path}_1\}_G^{[d]}$$
 (31)

And similarly, because $\langle o_2, o_3, t + d_1, d_2 \rangle \in [\![path_2]\!]_G$, there is a δ_2 such that $d_2 \in \delta_2$ and

$$\langle o_2, o_3, t + d_1, \delta_2 \rangle \in \{ \operatorname{path}_2 \}_G^{[d]}$$
(32)

Next, since $d \in \delta_1$

$$t + d_1 \in t + \delta_1 \tag{33}$$

So from (31), (32), (33) and the definition of $\{q_i\}_{G}^{[d]}$ (replacing t_1 with t and t_2 with $t + d_1$), we get

$$\langle o_1, o_2, t, \delta_2 + (t + d_1) - t \rangle \in (q)_G^{[d]}$$

which proves (Ia).

And in order to prove (Ib), we only need to show that $d \in \delta_2 + (t + d_1) - t$, or in other words that

$$d \in \delta_2 + d_1$$

We know that

$$d_2 \in \delta_2 \tag{34}$$

$$d_2 + d_1 \in \delta_2 + d_1 \tag{35}$$

Together with the fact that $d = d_1 + d_2$, this concludes the proof for (Ib).

- For (II), let $\mathbf{u} = \langle o_1, o_3, t_1, \delta \rangle \in (q)_G^{[d]}$, and let $d \in \delta$.

Because $\mathbf{u} \in (q)_G^{[d]}$, from the definition of $(q)_G^{[d]}$, there are δ_1, δ_2, t_2 and o_2 s.t.:

- (ii) $t_2 \in t_1 + \delta_1$
- (iii) $\langle o_1, o_2, t_1, \delta_1 \rangle \in \{ path_1 \}_G^{[d]}$

(iv) $\langle o_2, o_3, t_2, \delta_2 \rangle \in \{ \text{path}_2 \}_G^{[d]}$ From (i) and (ii), we get

$$\delta = \delta_2 + (t_1 + \delta_1) - t_1$$
$$= \delta_2 + \delta_1$$

Together with $d \in \delta$, this implies that there are $d_1 \in \delta_1$ and $d_2 \in \delta_2$ such that $d = d_1 + d_2$. Next, because $d_1 \in \delta_1$, from (iii), by IH

$$\langle o_1, o_2, t_1, t_1 + d_1 \rangle \in [\![q]\!]_G$$
 (36)

And similarly, because $d_2 \in \delta_2$, from (iv)

$$\langle o_2, o_3, t_2, t_2 + d_2 \rangle \in [q]_G$$
 (37)

So from (36), (37) and the definition of $[\![q]\!]_G$

$$\langle o_1, o_3, t_1, d_1 + d_2 \rangle \in [q]_G$$
 (38)

Together with the fact that $d = d_1 + d_2$, this concludes the proof for (II).

3.5 In $\mathcal{U}^{[t,d]}$

3.5.1 Definition.

We start with the case where q is an expression for the symbol test in the grammar of Definition 3.1.

As a consequence of Lemma 3.2, $(q)_G^{[t,d]}$ can be trivially defined out of $(q)_G^{[t]}$ by replacing the distance 0 with the interval [0,0], i.e.

$$(\texttt{test})_G^{[t,d]} = \{\langle o, o, \tau, [0,0] \rangle \mid \{\langle o, o, \tau, 0 \rangle \in (\texttt{test})_G^{[t]} \}$$

Next, if q is of the form $(path_1 + path_2)$, $(path[m, _])$ or (path[m, n]), then the definition of $(q)_G^{[t,d]}$ is once again nearly identical to the one of $[q]_G$:

$$\begin{split} (\operatorname{path}_1 + \operatorname{path}_2)_G^{[t,d]} &= & (\operatorname{path}_1)_G^{[t,d]} \cup (\operatorname{path}_2)_G^{[t,d]} \\ & [\![\operatorname{path}[m,n]]\!]_G &= & \bigcup\limits_{k=m}^n (\operatorname{path}^k)_G^{[t,d]} \\ & [\![\operatorname{path}[m,_]]\!]_G &= & \bigcup\limits_{k\geq m} (\operatorname{path}^k)_G^{[t,d]} \\ & & \geq m \end{split}$$

The only remaining operators are temporal join (path₁/path₂) and temporal navigation (T_{δ}), already defined in the article, and reproduced here for convenience:

where $\mathbf{u}_1 \mathbf{\overline{\bowtie}} \mathbf{u}_2$ is defined as follows.

Let $\mathbf{u}_1 = \langle o_1, o_2, \tau_1, \delta_1 \rangle$ and $\mathbf{u}_2 = \langle o_3, o_4, \tau_2, \delta_2 \rangle$.

Define τ_2' as

$$\tau_2' = (\tau_1 + \delta_1) \cap \tau_2$$

If $o_2 \neq o_3$ or $tau_2' = \emptyset$, then $\mathbf{u}_1 \mathbf{u}_2 = \emptyset$. Otherwise, let:

$$\tau = (\tau_2' \ominus \delta_1) \cap \tau_1$$

$$b = b_{\tau_2'} - b_{\delta_1}$$

$$e = e_{\tau_2'} - e_{\delta_1}$$

And for every $t \in \tau$, let

$$\delta(t) = \delta_1 \lfloor b_{\delta_1} + \max(0, b - t), e_{\delta_1} - \max(0, t - e) \rfloor_{\delta_1}$$

Then

$$\mathbf{u}_1 \,\overline{\bowtie}\, \mathbf{u}_2 = \{\langle o_1, o_4, [t, t], \delta(t) + \delta_2 \rangle \mid t \in \tau\}$$

3.5.2 Correctness.

We start with a lemma

Lemma 3.5. Let $\alpha, \beta \in \text{intv}(\mathcal{T})$. Then

$$\beta \ominus \alpha = \{t \mid (t + \alpha) \cap \beta \neq \emptyset\}$$

Next, if $\mathbf{u} = \langle o_1, o_2, \tau, \delta \rangle \in \mathcal{U}^{[t,d]}$, we call temporal relation induced by \mathbf{u} the set $\{(t, t+d) \mid t \in \tau, d \in \delta\}$. We also define the binary operator \bowtie : $(\mathcal{T} \times \mathcal{T}) \times (\mathcal{T} \times \mathcal{T}) \to (\mathcal{T} \times \mathcal{T})$ as in the article, i.e.

$$R_1 \bowtie R_2 = \{t_1, t_3 \mid (t_1, t_2) \in R_1 \text{ and } (t_2, t_3) \in R_2 \text{ for some } t_2\}$$

We can now formulate the following lemma:

LEMMA 3.6. Let $\mathbf{u}_1 = \langle o_1, o_2, \tau_1, \delta_1 \rangle$ and $\mathbf{u}_2 = \langle o_3, o_4, \tau_2, \delta_2 \rangle$ be two tuples in $\mathcal{U}^{[t,d]}$ such that $o_2 = o_3$. And for $i \in \{1,2\}$, let R_i denote the temporal relation induced by \mathbf{u}_i . Then

$$R_1 \bowtie R_2 = \bigcup_{\langle o_1, o_2, \tau, \delta \rangle \in \mathbf{u}_1 \overline{\bowtie} \mathbf{u}_2} \{ (t, t+d) \mid t \in \tau, d \in \delta \}$$

The following result states that the representation $(q)_C^{[t,d]}$ is correct:

PROPOSITION 3.7. Let $G = \langle N, E, \text{conn}, \mathcal{T}_G, \text{val} \rangle$ be a TPG and q a TRPQ. Then the unfolding of $\|q\|_G^{[t,d]}$ is $\|q\|_G$.

Proof.

Let $G = \langle N, E, \text{conn}, \mathcal{T}_G, \text{val} \rangle$ be a TG, and let q be a TRPQ.

We show below that:

- (I) for any $\langle o_1, o_2, t, d \rangle \in [\![q]\!]_G$, there are $\tau, \delta \in \mathsf{intv}(\mathcal{T})$ such that (a) $\langle o_1, o_2, \tau, \delta \rangle \in (\![q]\!]_G^{[t,d]}$, (b) $t \in \tau$, and

 - (c) $d \in \delta$.
- (II) for any $\langle o_1, o_2, \tau, \delta \rangle \in (q)_G^{[t,d]}$ for any $(t, d) \in \tau \times \delta$, $\langle o_1, o_2, t, d \rangle$ is in $[q]_G$.

We proceed once again by induction on the structure of q.

If q is of the form pred, F, B, (test \vee test), (path + path), path [m, n] or path [m, n], then (I) and (II) immediately follow from the definitions of $[q]_G$ and $[q]_G^{[t,d]}$.

If q is of the form test \land test, \neg test or (?path), then the proof is nearly identical to the one already provided for $(q)_G^{\lfloor t \rfloor}$. So we focus below on the two remaining cases:

• $q = path_1/path_2$.

From the above definitions, we have:

- For (I), let $\mathbf{v} = \langle o_1, o_3, t, d \rangle \in [\![q]\!]_G$.

Fom the definition of $[q]_G$, there are o_2 , d_1 and d_2 such that $\langle o_1, o_2, t, d_1 \rangle \in [\operatorname{path}_1]_G$, $\langle o_2, o_3, t + d_1, d_2 \rangle \in [\operatorname{path}_2]_G$ and $d = d_1 + d_2$. By IH, because $\langle o_1, o_2, t, d_1 \rangle \in [[path_1]]_G$, there are τ_1 and δ_1 such that $t \in \tau_1, d_1 \in \delta_1$ and

$$\langle o_1, o_2, \tau_1, \delta_1 \rangle \in \{\operatorname{path}_1\}_G^{[t,d]}$$
(39)

Let R_1 be the temporal relation induced by this tuple $\langle o_1, o_2, \tau_1, \delta_1 \rangle$.

Since $t \in \tau_1$ and $d_1 \in \delta_1$, we have

$$(t, t+d_1) \in R_1 \tag{40}$$

Similarly, because $\langle o_2, o_3, t + d_1, d_2 \rangle \in [\![path_2]\!]_G$, there are τ_2 and δ_2 such that $t + d_1 \in \tau_2$, $d_2 \in \delta_2$ and

$$\langle o_2, o_3, \tau_2, \delta_2 \rangle \in \{ \operatorname{path}_2 \}_G^{[t,d]}$$

$$\tag{41}$$

Let R_2 be the temporal relation induced by this tuple $\langle o_2, o_3, \tau_2, \delta_2 \rangle$.

Since $t + d_1 \in \tau_2$ and $d_2 \in \delta_2$, we have

$$(t+d_1, t+d_1+d_2) \in R_2 \tag{42}$$

So from (40), (42) and Lemma 3.6, there are τ and δ such that $\langle o_1, o_3, \tau, \delta \rangle \in u_1 \bowtie u_2, t \in \tau$ and $d_1 + d_2 = d \in \delta$, which concludes the proof for (I).

- For (II), let $\mathbf{u} = \langle o_1, o_3, t_1, \delta \rangle \in (q)_G^{[t,d]}$, and let $(t, d) \in \tau \times \delta$.

Because $\mathbf{u} \in (q)_G^{[t,d]}$, from the definition of $(q)_G^{[t,d]}$, there are \mathbf{u}_1 and \mathbf{u}_2 s.t.:

- (i) $\mathbf{u} \in \mathbf{u}_1 \mathbf{\overline{\bowtie}} \mathbf{u}_2$
- (ii) $\mathbf{u} \in \mathbf{u}_1 \bowtie \mathbf{u}_2$ (ii) $\mathbf{u}_1 \in \{\mathsf{path}_1\}_G^{[t,d]}$
- (iii) $\mathbf{u}_2 \in \{\mathsf{path}_2\}_G^{[t,d]}$

Let R_i be the temporal relation induced by u_i for $i \in \{1, 2\}$.

From (i), and Lemma 3.6,

$$(t, t+d) \in R_1 \bowtie R_2 \tag{43}$$

Now let $\mathbf{u}_1 = \langle o_1, o_2, \tau_1, \delta_1 \rangle$ and $\mathbf{u}_2 = \langle o_2, o_3, \tau_2, \delta_2 \rangle$ for some $o_2, \tau_1, \tau_2, \delta_1$ and δ_2 .

From (43) and the definition of \bowtie , there must be d_1 and d_2 s.t. $d = d_1 + d_2$, $t \in \tau_1, d_1 \in \delta_1, t + d_1 \in \tau_2$ and $d_2 \in \delta_2$.

So from (ii), and (iii), by IH

$$\langle o_1, o_2, t, d_1 \rangle \in \llbracket \mathsf{path}_1 \rrbracket_G \tag{44}$$

$$\langle o_2, o_3, t + d_1, d_2 \rangle \in \llbracket \mathsf{path}_2 \rrbracket_G \tag{45}$$

So from (44), (45) and the definition of $[\![q]\!]_G$

$$\langle o_1, o_3, t, d_1 + d_2 \rangle \in [\![q]\!]_G$$

which concludes the proof for (II).

3.6 In $\mathcal{U}^{[t,d],b,e}$

3.6.1 Definition.

If q is an expression for the symbol test in the grammar of Definition ??, then the definition of $(q)_G^{[t,d],b,e}$ is nearly identical to the one of $(q)_G^{[t,d]}$, extending each tuple $\{\langle o, o, \tau, [0,0] \rangle \text{ with } b_\tau \text{ and } e_\tau, \text{ i.e.}$

$$(\text{test})_G^{[t,d],b,e} = \{\langle o, o, \tau, [0,0], b_\tau, e_\tau \rangle \mid \{\langle o, o, \tau, [0,0] \rangle \in (\text{test})_G^{[t,d]}\}$$

Next, if q is of the form (path₁ + path₂), (path[m, _]) or (path[m, n]), then the definition of $(q)_G^{[t,d]}$ is once again nearly identical to the one of $[q]_G$:

$$\begin{aligned} (\operatorname{path}_1 + \operatorname{path}_2)_G^{[t,d],b,e} &= & (\operatorname{path}_1)_G^{[t,d],b,e} \cup (\operatorname{path}_2)_G^{[t,d],b,e} \\ & & [\operatorname{path}[m,n]]_G &= & \bigcup\limits_{k=m}^n (\operatorname{path}^k)_G^{[t,d],b,e} \\ & & [\operatorname{path}[m,_]]_G &= & \bigcup\limits_{k\geq m} (\operatorname{path}^k)_G^{[t,d],b,e} \end{aligned}$$

So the only remaining operator are temporal join ($path_1/path_2$) and temporal navigation (T_δ), already defined in the article. We reproduce here these two definition for convenience:

where $\mathbf{u}_1 \sim \mathbf{u}_2$ and $\mathbf{u}_1 \mathbf{u}_2$ are defined by:

$$\begin{aligned} \langle o_1, o_2, \tau_1, \delta_1, b_1, e_1 \rangle &\sim & \langle o_3, o_4, \tau_2, \delta_2, e_2, b_2 \rangle & \text{iff} & o_2 = o_3 \\ \\ \langle o_1, o_3, \tau_1, \delta_1, b_1, e_1 \rangle & \overline{\bowtie} & \langle o_3, o_4, \tau_2, \delta_2, e_2, b_2 \rangle &= & \langle o_1, o_4, \tau, \delta_1 + \delta_2, b, e \rangle \\ & & \text{with} \\ \\ \tau &= & (((\tau_1 + \delta_1) \cap \tau_2) \ominus \delta_1) \cap \tau_1 \\ b &= & \max(b_1, b_2 - b_{\delta_1}) \\ e &= & \min(e_1, e_2 - e_{\delta_1}) \end{aligned}$$

3.6.2 Correctness. Similarly to what we did above for $\mathcal{U}^{[t,d]}$, if $\mathbf{u} = \langle o_1, o_2, tau, \delta, b, e \rangle \in \mathcal{U}^{[t,d],b,e}$, we call temporal relation induced by \mathbf{u} the set $\{(t,t+d) \mid t \in \tau, d \in \delta(t)\}$.

We can now formulate a lemma analogous to Lemma 3.6:

LEMMA 3.8. Let $\mathbf{u}_1, \mathbf{u}_2 \in \mathcal{U}^{[t,d],b,e}$, and for $i \in \{1,2\}$, let R_i denote the temporal relation induced by \mathbf{u}_i . If $\mathbf{u}_1 \sim \mathbf{u}_2$ and $\mathbf{u}_1 \bowtie \mathbf{u}_2 = \langle o_1, o_3, \tau, \delta, b, e \rangle$, then

$$R_1\bowtie R_2=\{(t,t+d)\mid t\in\tau,d\in\delta(t)\}$$

PROOF. Let $\mathbf{u}_1 = \langle o_1, o_2, \tau_1, \delta_1 \rangle$ and $\mathbf{u}_2 = \langle o_2, o_3, \tau_2, \delta_2 \rangle$. As explained in Section 2, for $i \in \{1, 2\}$ and $t \in \tau_i$, we use $\delta_i(t)$ for the interval

$$\delta_i \lfloor b_{\delta_i} + \max(0, b_i - t), e_{\delta_i} - \max(0, t - e_i) \rfloor_{\delta_i}$$

We need to prove that (i) $\tau = \text{dom}(R_1 \bowtie R_2)$ and that (ii) for each $t \in \tau$,

$$t + \delta(t) = \{t' \mid (t, t') \in R_1 \bowtie R_2\}$$

The proof or (i) is nearly identical to the one provided above for Lemma 3.6.

For (ii), let $t \in \tau$. We use

- *a* for the least value s.t. $(t, a) \in \text{range}(R_1) \cap \text{dom}(R_2)$, and
- a' for the least value s.t. $(a, a') \in R_2$

Then a' is also the least value s.t. $(t, a') \in R_1 \bowtie R_2$.

Analogously, we use z for the greatest value s.t. $(t, z) \in \text{range}(R_1) \cap \text{dom}(R_2)$, and z' for the greatest value s.t. $(z, z') \in R_2$. Then z' is also the greatest value s.t. $(t, z') \in R_1 \bowtie R_2$.

From Lemma ??:

- $\{t\} \times (t + [a, z]) \subseteq R_1$, and
- $[a,b] \times [a',z'] \subseteq R_2$

Therefore $[a', z'] = \{c \mid (t, c) \in R_1 \bowtie R_2\}.$

To conclude the proof, we show that $t + \delta_t = [a, z]$.

We only prove that $t + b_{\delta_t} = a$ (the proof that $t + e_{\delta_t} = z$ is symmetric).

Following the definition of b, we consider 2 cases:

- (1) $b_1 < b_2 b_{\delta_1}$
- (2) $b_1 \geq b_2 b_{\delta_1}$

For Case (1), we get

$$b_1 < b_2 - b_{\delta_1} \tag{46}$$

$$\max(b_1, b_2 - b_{\delta_1}) = b_2 - b_{\delta_1} \tag{47}$$

$$b = b_2 - b_{\delta_1}$$
 from the definition of b (48)

And in Case (1) still, we get:

$$b_1 < b_2 - b_{\delta_1} \tag{49}$$

$$0 < b_2 - b_{\delta_1} - b_1 \tag{50}$$

$$\max(0, b_2 - b_{\delta_1} - b_1) = b_2 - b_{\delta_1} - b_1 \tag{51}$$

Next, we consider two subcases:

- (i) $t < b_2 b_{\delta_1}$
- (ii) $t \geq b_2 b_{\delta_1}$

In Case (i), we get

$$t < b_2 - b_{\delta_1} \tag{52}$$

$$0 < b_2 - b_{\delta_1} - t \tag{53}$$

$$\max(0, b_2 - b_{\delta_1} - t) = b_2 - b_{\delta_1} - t \tag{54}$$

Now from the definition of δ_t ,

$$b_{\delta_t} = b_{\delta_1} + b_{\delta_2} + \max(0, b - t) \tag{55}$$

$$= b_{\delta_1} + b_{\delta_2} + \max(0, b_2 - b_{\delta_1} - t)$$
 from (48)

$$= b_{\delta_1} + b_{\delta_2} + b_2 - b_{\delta_1} - t$$
 from (54)

$$= b_{\delta_2} + b_2 - t \tag{58}$$

$$b_{\delta_t} + t = b_{\delta_2} + b_2 - t + t \tag{59}$$

$$= b_{\delta_2} + b_2 \tag{60}$$

Next, from the definition of a'

$$a' = b_{\delta_2(a)} + a \tag{61}$$

$$= b_{\delta_2} + \max(0, b_2 - a) + a \tag{62}$$

And, from the definition of *a*

$$a = b_{\delta_1(t)} + t \tag{63}$$

$$= b_{\delta_1} + \max(0, b_1 - t) + t \tag{64}$$

Then we have two further subcases:

(I)
$$t \ge b_1$$
, or

(II)
$$t < b_1$$

In case (I):

$$t \ge b_1 \tag{65}$$

$$0 \ge b_1 - t \tag{66}$$

$$\max(0, b_1 - t) = 0 \tag{67}$$

$$a = b_{\delta_1} + t \qquad \text{from (64)}$$

$$\max(0, b_2 - a) = \max(0, b_2 - b_{\delta_1} - t)$$
(69)

$$= b_2 - b_{\delta_1} - t$$
 from (54)

$$= b_2 - a$$
 from (68) (71)

In case (II):

$$t < b_1 \tag{72}$$

$$0 < b_1 - t \tag{73}$$

$$\max(0, b_1 - t) = b_1 - t \tag{74}$$

$$a = b_{\delta_1} + b_1 - t + t$$
 from (64) (75)

$$= b_{\delta_1} + b_1 \tag{76}$$

$$\max(0, b_2 - a) = \max(0, b_2 - b_{\delta_1} - b_1) \tag{77}$$

$$= b_2 - b_{\delta_1} - b_1$$
 from (51)

$$= b_2 - a$$
 from (76)

(80)

So in both cases (I) and (II), we get

$$\max(0, b_2 - a) = b_2 - a$$

Thefore from (62)

$$a' = b_{\delta_2} + b_2 - a + a \tag{81}$$

$$= b_{\delta_2} + b_2 \tag{82}$$

$$= t + b_{\delta_t}$$
 from (60)

which concludes the proof for Case (1)- (i).

We continue with Case (1)- (ii). From Case (ii):

$$t \ge b_2 - b_{\delta_1} \tag{84}$$

$$0 \ge b_2 - b_{\delta_1} - t \tag{85}$$

$$\max(0, b_2 - b_{\delta_1} - t) = 0 \tag{86}$$

Now from the definition of δ_t :

$$b_{\delta_t} = b_{\delta_1} + b_{\delta_2} + \max(0, b - t)$$
 (87)

$$= b_{\delta_1} + b_{\delta_2} + \max(0, b_2 - b_1 - t)$$
 from (48)

$$= b_{\delta_1} + b_{\delta_2}$$
 from (86)

$$b_{\delta_t} + t = b_{\delta_1} + b_{\delta_2} + t \tag{90}$$

Next, from Case (1) and Case (ii), by transitivity, we get

$$b_1 \le t \tag{91}$$

$$\max(0, b_1 - t) = 0 (92)$$

And from the definition of a

$$a = b_{\delta_1(t)} + t \tag{93}$$

$$= b_{\delta_1} + \max(0, b_1 - t) + t \tag{94}$$

$$= b_{\delta_1} + t \qquad \text{from (92)}$$

$$\geq b_{\delta_1} + b_2 - b_{\delta_1}$$
 from Case (ii) (96)

$$\geq b_2$$
 (97)

$$0 \ge b_2 - a \tag{98}$$

$$\max(0, b_2 - a) = 0 \tag{99}$$

Therefore from (62) and (99)

$$a' = b_{\delta_2} + a \tag{100}$$

$$= b_{\delta_2} + b_{\delta_1} + t$$
 from (95)

$$= b_{\delta_t} + t \qquad \text{from (60)}$$

which concludes the proof for Case (1)- (ii).

We continute with Case (2).

In this case, we get

$$b_1 \ge b_2 - b_{\delta_1} \tag{103}$$

$$\max(b_1, b_2 - b_{\delta_1}) = b_1 \tag{104}$$

$$b = b_1$$
 from the definition of b (105)

And from Case (2) still, we derive

$$b_1 \ge b_2 - b_{\delta_1} \tag{106}$$

$$0 \ge b_2 - b_{\delta_1} - b_1 \tag{107}$$

$$\max(0, -b_{\delta_1} - b_1) = 0 \tag{108}$$

As well as

$$b_1 \ge b_2 - b_{\delta_1} \tag{109}$$

$$b_1 + b_{\delta_1} \ge b_2 \tag{110}$$

Next, we distinguish two subcases, namely

- (a) $t < b_1$ and
- (b) $t \ge b_1$

We start with Case (a).

In this case,

$$t < b_1 \tag{111}$$

$$0 < b_1 - t \tag{112}$$

$$\max(0, b_1 - t) = b_1 - t \tag{113}$$

And from the definition of δ_t :

$$b_{\delta_t} = b_{\delta_1} + b_{\delta_2} + \max(0, b - t) \tag{114}$$

$$= b_{\delta_1} + b_{\delta_2} + \max(0, b_1 - t)$$
 from (105)

$$= b_{\delta_1} + b_{\delta_2} + b_1 - t$$
 from (113)

$$b_{\delta_t} + t = b_{\delta_1} + b_{\delta_2} + b_1 - t + t \tag{117}$$

$$= b_{\delta_1} + b_{\delta_2} + b_1 \tag{118}$$

Next, from the definition of *a*

$$a = b_{\delta_1(t)} + t \tag{119}$$

$$= \max(0, b_1 - t) + b_{\delta_1} + t \tag{120}$$

$$= b_1 - t + b_{\delta_1} + t$$
 from (113)

$$= b_1 + b_{\delta_1} \tag{122}$$

So from (110) (123)

$$a \ge b_2 \tag{124}$$

$$0 \ge b_2 - a \tag{125}$$

$$\max(0, b_2 - a) = 0 \tag{126}$$

$$b_{\delta_2} + \max(0, b_2 - a) = b_{\delta_2}$$
 (127)

$$b_{\delta_2(a)} = b_{\delta_2} \tag{128}$$

$$b_{\delta_2(a)} + a = b_{\delta_2} + a \tag{129}$$

$$a' = b_{\delta_2} + a$$
 from the defintiion of a' (130)

$$a' = b_{\delta_2} + b_1 + b_{\delta_1}$$
 from (122)

$$a' = b_{\delta_t} + t \qquad \text{from (118)}$$

which concludes the proof for Case (2)- (a).

We end with Case (2)- (b). In this case,

$$t \ge b_1 \tag{133}$$

$$0 \ge b_1 - t \tag{134}$$

$$\max(0, b_1 - t) = 0 \tag{135}$$

And from the definition of δ_t :

$$b_{\delta_t} = b_{\delta_1} + b_{\delta_2} + \max(0, b - t)$$
 (136)

$$= b_{\delta_1} + b_{\delta_2} + \max(0, b_1 - t)$$
 from (105)

$$= b_{\delta_1} + b_{\delta_2}$$
 from (135)

$$b_{\delta_t} + t = b_{\delta_1} + b_{\delta_2} + t \tag{139}$$

Next, from the definition of a

$$a = b_{\delta_1(t)} + t \tag{140}$$

$$= \max(0, b_1 - t) + b_{\delta_1} + t \tag{141}$$

$$= b_{\delta_1} + t \qquad \text{from (135)}$$

Now from Case (b)

which concludes the proof for Case (2)- (b).

The following result states that the representation $(q)_G^{[t,d],b,e}$ is correct:

PROPOSITION 3.9. Let $G = \langle N, E, \text{conn}, \mathcal{T}_G, \text{val} \rangle$ be a TPG and q a TRPQ. Then the unfolding of $(q)_G^{[t,d],b,e}$ is $[q]_G$.

PROOF. Let $G = \langle N, E, \text{conn}, \mathcal{T}_G, \text{val} \rangle$ be a TG, and let q be a TRPQ.

To prove the result, it is sufficient to show that:

- (I) for any $\langle o_1, o_2, t, d \rangle \in [\![q]\!]_G$, there are $\tau, \delta \in \mathsf{intv}(\mathcal{T})$ and $b, e \in \mathcal{T}$ such that
 - (a) $\langle o_1, o_2, \tau, \delta, b, e \rangle \in (q)_G^{[t,d],b,e}$,
- (c) $d \in \delta(t)$ (where $\delta(t)$ is defined in terms of t, δ, b and e, as explained above). (II) for any $\langle o_1, o_2, \tau, \delta, b, e \rangle \in (q_l)_G^{[t,d],b,e}$ for any $t \in \tau$ and $d \in \delta(t)$, $\langle o_1, o_2, t, d \rangle$ is in $[\![q]\!]_G$.

Again, the proof is by induction on the structure of *q*.

If q is of the form pred, F, B, (test \vee test), (path + path), path [m, n] or path [m, n], then (I) and (II) immediately follow from the definitions of $[q]_G$ and $(q)_G^{[t,d],b,e}$.

If q is of the form test \land test, \neg test or (?path), then the proof is nearly identical to the one already provided for $(q)_G^{[t]}$.

And if q is of the form T_{δ} or $path_1/path_2$, then the proof is nearly identical to the one already provided for $(q)_G^{[t,d]}$, using Lemma 3.8 instead of 3.6.