Problem Set 5 - pre-REU 2025

Problem set on Invariant Theory

Problems marked with L are problems on linear algebra.

- 1. Show that the following sets of matrices form a group under matrix multiplication. In each case, justify why the matrices are indeed invertible.
 - (a) The set of $n \times n$ matrices with determinant one.
 - (b) The set of $n \times n$ matrices M satisfying $MM^{\mathsf{T}} = I_n$.
 - (c) The set of $2n \times 2n$ matrices M satisfying $M\Omega M^{\mathsf{T}} = \Omega$, where Ω is the $2n \times 2n$ block matrix given as $\Omega = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$.
- 2. Let R be a ring (such as the ring of polynomials). Let $f: R \to R$ be a function satisfying
 - f(1) = 1,
 - f(x+y) = f(x) + f(y) for all $x, y \in R$,
 - f(xy) = f(x)f(y) for all $x, y \in R$.

Let S be the set of fixed points of R, i.e., $S := \{r \in R : f(r) = r\}$. Show that S is closed under addition, multiplication, and contains 1.

3. From class, we know that any element of the orthogonal group looks like

$$M = \begin{bmatrix} \cos(\theta) & -\varepsilon \sin(\theta) \\ \sin(\theta) & \varepsilon \cos(\theta) \end{bmatrix}$$

for some $\theta \in \mathbb{R}$ and some $\varepsilon \in \{1, -1\}$. Using this description, check that for the action of $G = \mathcal{O}_2(\mathbb{R})$ on $R = \mathbb{R}[x, y]$, we have $x^2 + y^2 \in R^G$. (As before, the action is via $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto M \begin{bmatrix} x \\ y \end{bmatrix}$.)

4. Let $G = GL_2(\mathbb{R})$ act on $R = \mathbb{R}[X_{2\times m}]$ in the usual way. Show that $R^G = \mathbb{R}$, i.e., the only invariant polynomials are the constants.

 $\mathit{Hint:}$ Think about what the matrix $\left(\begin{smallmatrix}2&0\\0&2\end{smallmatrix}\right)$ does.

Start out with m = 1 or 2 to get an idea.

- ^L5. Let A, B be $n \times n$ matrices such that $\exists P \in GL_n(\mathbb{R})$ with $PAP^{-1} = B$. Show that A and B have the same characteristic polynomial, i.e., show that $\det(A \lambda I) = \det(B \lambda I)$.
- 5.5. Recall that for the action of $G = GL_n(\mathbb{R})$ on $R = \mathbb{R}[X_{n \times n}]$ given by conjugation, R^G is generated by the coefficients of the characteristic polynomial. Interpret the previous problem in this context.
- ^L6. Let A be an $n \times m$ matrix with columns $\mathbf{a}_1, \dots, \mathbf{a}_m \in \mathbb{R}^n$. Show that the (i, j)th entry of $A^{\mathsf{T}}A$ is $\mathbf{a}_i \cdot \mathbf{a}_j$.
- 6.5. Recall that for the action of $G = \mathcal{O}_n(\mathbb{R})$ on $R = \mathbb{R}[X_{n \times m}]$ given by left multiplication, R^G is generated by the entries of $X^{\mathsf{T}}X$. Using the previous problem, how does this description of R^G fit in with our geometrical definition of $\mathcal{O}_n(\mathbb{R})$?

1

7. Consider the action of $G = \mathrm{SL}_2(\mathbb{R})$ on $R = \mathbb{R}[X_{2\times 2}]$ by left multiplication. For ease of notation, assume that the variables are denoted and arranged as

$$\begin{bmatrix} x_1 & x_2 \\ y_1 & y_2 \end{bmatrix}.$$

Show that $x_1y_2 - x_2y_1 \in \mathbb{R}^G$. More generally, show that if SL_2 is acting on the polynomial with variables

$$\begin{bmatrix} x_1 & x_2 & \cdots & x_m \\ y_1 & y_2 & \cdots & x_m \end{bmatrix},$$

then $x_i y_j - x_j y_i \in R^G$ for all $1 \le i < j \le m$.

Hint for the last part: If A and B are matrices of compatible sizes, think about how the columns of AB look. In particular, the i-th column of AB is the product of A and the i-th column of B.

7.5. Generalise the previous to $\mathrm{SL}_n(\mathbb{R})$ acting on $\mathbb{R}[X_{n\times m}]$.