第1回. 実数の定義と性質 (三宅先生の本, 1.1と 1.4の内容)

岩井雅崇 2021/04/13

1 記法に関して

以下この授業を通してよく使う記号や用語をまとめる. (興味がなければ飛ばして良い)

1.1 よく使う記号

- $\mathbb{N} = \{$ **自然数全体** $\} = \{1, 2, 3, 4, 5, \cdots \}$
- $\mathbb{Z} = \{$ **整数全**体 $\} = \{0, \pm 1, \pm 2, \cdots \}$
- $\mathbb{Q} = \{$ 有理数全体 $\} = \{ \frac{m}{n} \mid m, n \in \mathbb{Z}, n \neq 0 \}$
- ℝ = { 実数全体 }
- $\mathbb{R} \setminus \mathbb{Q} = \{x \in \mathbb{R} \mid x \notin \mathbb{Q}\} = \{$ 無理数全体 $\}$

1.2 区間

- $[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\} \ (a,b \ 共に実数)$
- $[a,b) = \{x \in \mathbb{R} \mid a \le x < b\} \ (a \ \text{は実数}, b \ \text{は実数または} + \infty)^1$
- $(a,b] = \{x \in \mathbb{R} \mid a < x \le b\}$ $(a は実数または <math>-\infty, b$ は実数)
- $(a,b) = \{x \in \mathbb{R} \mid a < x < b\}$ $(a は実数または <math>-\infty$, b は実数または $+\infty$)

特に(a,b) を開区間といい, [a,b] を閉区間という. この記法により, $\mathbb{R}=(-\infty,+\infty)$ である.

例 1. $A = [-1,1], B = [-2,-1), C = [2,+\infty)$ とする. $A \cap B$ は空集合である. A のみ閉区間であり、 開区間はこの中にはない.

1.3 有界集合

定義 2. A を \mathbb{R} の部分集合とする.

- \underline{A} が上に有界であるとは、ある実数 a があって、任意の (すべての) $x \in A$ について $x \le a$ となること、 $(A \subset (-\infty, a]$ に同じ.)
- $\underline{A\ n}$ 下に有界であるとは、ある実数 $a\ n$ があって、任意の $x\in A$ について $a\leq x$ となること. $(A\subset [a,+\infty)$ に同じ.)
- \underline{A} が有界であるとは、上にも下にも有界であること。(ある正の実数 a があって、 $A\subset [-a,a]$ となることと同じ。)

 $^{^{1}+\}infty$ は実数ではないが限りなく大きなものとして扱います.一種の記法です. $-\infty$ も同様に限りなく小さいものとして扱います.

例 3. $A=[-1,1], B=[-2,-1), C=[2,+\infty)$ とする. A,B は有界集合である. C は下に有界であるが、上に有界ではない.

1.4 数列と数列の極限

定義 4. 各自然数 n について、実数 a_n を対応させたものを $\{a_n\}_{n=1}^{\infty}$ と書き、数列と呼ぶ.

- 常に $a_n \in \mathbb{Q}$ であるとき, 有理数列という.
- $\{a_n \mid n \in \mathbb{N}\}$ が有界であるとき, 有界数列という.
- $a_1 \leq a_2 \leq a_3 \leq \cdots$ であるとき、単調増加数列という.
- $a_1 \ge a_2 \ge a_3 \ge \cdots$ であるとき, 単調減少数列という.

例 5. • $a_n = \frac{1}{n}$ からなる数列は有理数列, 有界数列, 単調減少数列である.

- $a_n = n$ からなる数列は有理数列, 単調増加数列である.
- \bullet $a_n=(-1)^n\sqrt{2}$ からなる数列は有界数列である.

定義 $\mathbf{6}$ (数列の極限の感覚的な定義). 数列が $\{a_n\}_{n=1}^{\infty}$ が極限 $\alpha \in \mathbb{R}$ を持つとは, n を大きくしていくと a_n が α に限りなく近づくこと. このとき

$$\lim_{n\to\infty}a_n=\alpha\text{ stat }a_n\xrightarrow[n\to\infty]{}\alpha$$

とかき, $\underline{a_n}$ は $\underline{\alpha}$ に収束する という. a_n が収束しないとき, $\underline{a_n}$ は発散する という. n を大きくしていくと, a_n が限りなく大きくなるとき, $\underline{\lim_{n \to \infty} a_n = +\infty}$ と書く. 限りなく小さくなるとき, $\underline{\lim_{n \to \infty} a_n = -\infty}$ と書く.

これでも良いのだが、万が一のため数列の極限の厳密な定義も書いておく. 2

定義 7 $(\epsilon$ -N 論法を用いた厳密な極限の定義)。 数列が $\{a_n\}_{n=1}^\infty$ が極限 $\alpha \in \mathbb{R}$ を持つとは、任意の正の実数 ϵ について、ある $N \in \mathbb{N}$ があって、N < n ならば $|a_n - \alpha| < \epsilon$ となること.

定理 $\mathbf{8}$ (実数の存在)。 $\mathbb Q$ を有理数の集合とする.このとき $\mathbb Q$ を含む集合 X があって,次を満たす.

- 1. 任意の $x \in X$ に関して、ある有理数列 $\{a_n\}$ があり、 $\lim_{n\to\infty} a_n = x$ となる.
- 2. X 上の数列 $\{a_n\}$ がコーシー列ならば、ある $\alpha \in X$ があり、 $\lim_{n\to\infty} a_n = \alpha$ となる. (コーシー列は収束する.)

 $^{^2}$ この授業では ϵ -N 論法を用いた厳密な証明はしないつもりだが, 念のため定義をします. 詳しいことは追加資料で書きます. 後期の担当の先生によっては ϵ -N 論法や ϵ - δ 論法を使うかもしれないので, 後期で分からなくなった場合, 適宜利用してください.

このX を \mathbb{R} と書き、実数の集合と呼ぶ.

ここで数列 $\{a_n\}$ がコーシー列とは任意の正の実数 ϵ について、ある $N\in\mathbb{N}$ があって、N< m,n ならば $|a_n-a_m|<\epsilon$ となる数列のこととする.

定理 9 (実数の連続性). ℝ上の上に有界な単調増加数列は収束する.

同様に ℝ上の下に有界な単調減少数列は収束する.

例 ${f 10.}\ a_n=rac{1}{n}$ は下に有界な単調減少数列である. よって定理 9 から数列 $\{a_n\}$ は収束する. 実際 $\lim_{n o\infty}a_n=0$ である.

命題 11 (極限の性質). $\lim_{n\to\infty}a_n=\alpha,\ \lim_{n\to\infty}b_n=\beta,\ c\in\mathbb{R}$ とするとき, 以下が成り立つ.

- $\lim_{n\to\infty}(a_n\pm b_n)=\alpha\pm\beta$
- $\lim_{n\to\infty}(ca_n)=c\alpha$
- $\lim_{n\to\infty} (a_n b_n) = \alpha \beta$
- $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\alpha}{\beta} \ (\beta \neq 0 \ \mathcal{O}$ とき.)

1.5 最大・最小・上限・下限

定義 12. A を \mathbb{R} の部分集合とする.

- $\underline{m} \in \underline{A}$ が \underline{A} の最大とは、任意の $a \in A$ について $a \leq m$ となること. このとき $\underline{m} = \max(A)$ と書く.
- $\underline{m \in A}$ が \underline{A} の最小とは、任意の $a \in A$ について $m \leq a$ となること. このとき $\overline{m = \min(A)}$ と書く.
- Aが上に有界であるとき、

 $\sup A = \min\{x \in \mathbb{R} \mid$ 任意の $a \in A$ について $a \leq x$ となる $\}$

 εA の上限とする. A が上に有界でないとき, $\sup A = +\infty$ とする.

A が下に有界であるとき、

 $\inf A = \max\{x \in \mathbb{R} \mid$ 任意の $a \in A$ について $x \leq a$ となる $\}$

 δA の下限とする. A が下に有界でないとき, $\inf A = -\infty$ とする.

注意点として、最大・最小はいつも存在するとは限らないが、上限・下限はいつも存在する. $(\pm\infty$ を含めてですが.)

例 13. A = (0,1] のとき, $\max(A) = \sup(A) = 1$, $\inf(A) = 0$, $\min(A)$ は存在しない.

2 演習問題

演習問題の解答は授業の黒板にあります.

- 1. $A = \{1 \frac{1}{n} \mid n \in \mathbb{N}\}$ とする. A の最大・最小・上限・下限を求めよ. また A が有界であることを示せ.
- 2. $a_1=10, a_{n+1}=10\sqrt{a_n}$ として、数列 $\{a_n\}_{n=1}^\infty$ を定める. 数列 $\{a_n\}_{n=1}^\infty$ は有界な単調増加数列であることを示せ、またこの数列の収束値を求めよ.

第1回追加資料.極限に関する厳密な定義 (三宅先生の本, 1.4 の内容)

岩井雅崇 2021/04/13

3 はじめに

この追加資料は第 2 回の内容を含みます。またかなり難しい部分もあるので理解できなくても構いません。(この内容を飛ばしてもらっても構いません。) 私はこの授業において追加資料の内容 (ϵ - δ 論法等) はほぼ使いません。後期の先生によってはこの回の内容を使う可能性もあるので,その場合にはこの資料を見ていただければ幸いです。

3.1 数列の極限と ϵ -N 論法

定義 $\mathbf{14}$ $(\epsilon$ -N 論法を用いた厳密な極限の定義). 数列が $\{a_n\}_{n=1}^\infty$ が極限 $\alpha \in \mathbb{R}$ を持つとは、任意の正の実数 ϵ について、ある $N \in \mathbb{N}$ があって、 $N \in \mathbb{N}$ があって、 $N \in \mathbb{N}$ ならば $|a_n - \alpha| < \epsilon$ となること、このとき

$$\lim_{n\to\infty}a_n=\alpha$$
 と書く.

例 15. $a_n = \frac{1}{n}$ とする. 数列 $\{a_n\}$ は 0 に収束する.

(証.) 任意の $\epsilon>0$ について $N=[\frac{1}{\epsilon}]+1$ をおくと $\frac{1}{N}=\frac{1}{[\frac{1}{\epsilon}]+1}\leq \frac{1}{\frac{1}{\epsilon}}=\epsilon$ であるため,

$$N < n$$
 ならば $|a_n - 0| = \left| \frac{1}{n} - 0 \right| < \frac{1}{N} \le \epsilon$ となる.

以上より、任意の $\epsilon>0$ について、ある N(具体的には $[\frac{1}{\epsilon}]+1)$ があって、N< n ならば $|a_n-0|<\epsilon$ となるので、数列 $\{a_n\}$ は 0 に収束する.

命題 16. $\lim_{n\to\infty} a_n = \alpha$, $\lim_{n\to\infty} b_n = \beta$ とするとき $\lim_{n\to\infty} (a_n + b_n) = \alpha + \beta$ となる.

(証.) 任意の $\epsilon > 0$ についてある N_1, N_2 があって

$$N_1 < n$$
 ならば $|a_n - lpha| < rac{\epsilon}{2}$

$$N_2 < n$$
 ならば $|b_n - \beta| < \frac{\epsilon}{2}$

となる. 以上より $N = \max(N_1, N_2)$ とおくと N < n ならば

$$|(a_n + b_n) - (\alpha + \beta)| \le |a_n - \alpha| + |b_n - \beta| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

である. 以上より, 任意の $\epsilon>0$ について, ある N (具体的には $\max(N_1,N_2)$) があって, N< n ならば $|(a_n+b_n)-(\alpha+\beta)|<\epsilon$ となるので, 数列 $\{a_n+b_n\}$ は $\alpha+\beta$ に収束する.

授業で紹介した収束の極限の性質の証明は上のようにやれば良い.

命題 17 (極限の一意性). $\lim_{n\to\infty} a_n = \alpha$, $\lim_{n\to\infty} a_n = \beta$ ならば $\alpha = \beta$ である.

(証.) $\alpha \neq \beta$ として矛盾を示す. $\epsilon = \frac{|\alpha - \beta|}{3}$ とおくと, ある N_1, N_2 があって

$$N_1 < n$$
 ならば $|a_n - lpha| < rac{\epsilon}{3}$ かつ $N_2 < n$ ならば $|a_n - eta| < rac{\epsilon}{3}$ となる.

以上より $m = \max(N_1, N_2) + 1$ とおくと $N_1 < m$ かつ $N_2 < m$ より

$$|\alpha - \beta| \le |a_m - \alpha| + |a_m - \beta| < \frac{\epsilon}{3} + \frac{\epsilon}{3} = \frac{2}{3}|\alpha - \beta|$$

である. しかし $|\alpha - \beta| > 0$ より矛盾である

定理 18 (はさみうちの原理.). $a_n \leq b_n \leq c_n$ となる数列 $\{a_n\}$, $\{b_n\}$, $\{c_n\}$ に関して $\lim_{n\to\infty}a_n=\lim_{n\to\infty}c_n=\alpha$ ならば $\lim_{n\to\infty}b_n=\alpha$ である.

(証.) 任意の $\epsilon > 0$ についてある N_1, N_2 があって

$$N_1 < n$$
 ならば $|a_n - \alpha| < \epsilon$ かつ $N_2 < n$ ならば $|c_n - \alpha| < \epsilon$ となる.

以上より $N = \max(N_1, N_2)$ とおくと N < n ならば $a_n - \alpha \leq b_n - \alpha \leq c_n - \alpha$ であるので

$$|b_n - \alpha| \le \max(|a_n - \alpha|, |c_n - \alpha|) < \epsilon$$

である. 以上より, 任意の $\epsilon>0$ について, ある N (具体的には $\max(N_1,N_2)$) があって, N< n ならば $|b_n-\alpha|<\epsilon$ となるので, 数列 $\{b_n\}$ は α に収束する.

授業でちょっとだけ触れたコーシー列や実数の構成に関しても触れておきます.

定義 19 (コーシー列). 数列 $\underbrace{\{a_n\}}$ がコーシー列とは、任意の $\epsilon>0$ について、ある $N\in\mathbb{N}$ があって、N< m,n ならば $|a_n-a_m|<\epsilon$ となること、

命題 **20** (収束するならばコーシー列). $\lim_{n\to\infty}a_n=\alpha$ ならば $\{a_n\}$ はコーシー列.

(証.) 任意の $\epsilon > 0$ についてある N があって

$$N < n$$
 ならば $|a_n - \alpha| < \frac{\epsilon}{2}$

となる. 以上より N < n, m ならば

$$|a_n - a_m| \le |a_n - \alpha| + |a_m - \alpha| < \epsilon$$

となるので、数列 $\{a_n\}$ はコーシー列である.

例 21. 逆に「コーシー列は収束するのか?」と思うがこれはどの世界で数列を考えているかによる. 有理数列 a_n がコーシー列であっても, 数列 $\{a_n\}$ が有理数には収束しないこともあります.

例として数列 $\{a_n\}$ を

$$a_n = \sqrt{2}$$
 の小数第 n 位まで

とおく. 具体的には

$$a_1 = 1.4, a_2 = 1.41, a_3 = 1.414, a_4 = 1.4142, \cdots$$

である. このとき a_n は有理数列でありコーシー列だが a_n は $\sqrt{2}$ に収束するため, $\underline{a_n}$ は有理数には収束しない. (もちろん実数には収束してます)

よって有理数の世界だけ考えても解析をするには少々不便である.(極限操作をするから.) したがってどんなコーシー列でも収束し、有理数を含む最小の世界があれば良いと思われる. その思いからできたのが実数である.

定理 **22** (実数の存在)。 $\mathbb Q$ を有理数の集合とする. このとき $\mathbb Q$ を含む集合 X があって, 次を満たす.

- 1. 任意の $x \in X$ に関して、ある有理数列 $\{a_n\}$ があり、 $\lim_{n\to\infty} a_n = x$ となる.
- 2. X 上の数列 $\{a_n\}$ がコーシー列ならば、ある $\alpha \in X$ があり、 $\lim_{n\to\infty} a_n = \alpha$ となる. (コーシー列は収束する.)

 \mathbb{Z} このX を \mathbb{R} と書き、実数の集合と呼ぶ.

3

定理 23 (実数の連続性). 上に有界な単調増加数列 $\{a_n\}$ は収束する.

(証.) a_n がコーシー列であることを示す. $\{a_n\}$ は上に有界なので, $a_n < 0$ として良い. もしコーシー列でないとすると, ある $\epsilon > 0$ があり, 任意の N について N < n < m となる n, m があって $|a_n - a_m| \ge \epsilon$ となる.

そこで新たに数列 $\{b_l\}$ を次のように定義する.まず $1 < n_1 < m_1$ となる n_1, m_1 があって $|a_{n_1} - a_{m_1}| \ge \epsilon$ である.よって, $b_1 = a_{n_1}, b_2 = a_{m_1}$ とおく.次に $k_2 = m_1 + 1$ とおくと, $k_2 < n_2 < m_2$ となる n_2, m_2 があって $|a_{n_2} - a_{m_2}| \ge \epsilon$ である.よって, $b_3 = a_{n_2}, b_4 = a_{m_2}$ とおく.これを繰り返し行うことで帰納的に数列 $\{b_l\}$ を定める.

構成方法から $\{b_l\}$ は単調増加で, $b_l<0$ である。 さらに任意の自然数 l について, $b_{2l}-b_{2l-1} \ge \epsilon$ かつ $b_{2l+1}-b_{2l}\ge 0$ である。以上より任意の自然数 l について

$$b_{2l} = (b_{2l} - b_{2l-1}) + (b_{2l-1} - b_{2l-2}) + \dots + (b_2 - b_1) + b_1 \ge b_1 + l\epsilon$$

である. $b_{2l}<0$ のため, 任意の自然数 l について $b_1+l\epsilon<0$ である. しかし, $\epsilon>0$ であったため, これは矛盾である.

 $^{^3}$ この証明は集合と位相という数学科の 2 年くらいで学ぶ内容です. 証明は難しいです.

4 関数の極限

定義 **24** $(\epsilon$ - δ 論法を用いた厳密な極限の定義). f(x) を x=a の周りで定義された関数とする. $\underline{f(x)}$ が x=a で $\alpha \in \mathbb{R}$ に収束するとは任意の正の実数 ϵ について、ある正の実数 δ があって、 $|x-a|<\delta$ ならば $|f(x)-\alpha|<\epsilon$ となること.このとき

$$\lim_{x \to a} f(x) = \alpha$$
 と書く.

例 25. $f(x) = x^2$ は x = 0 で 0 に収束する.

(証.) 任意の $\epsilon > 0$ について $\delta = \sqrt{\epsilon}$ をおくと $|x - 0| < \delta$ ならば

$$|f(x) - 0| = |x^2| < \delta^2 = \epsilon$$
 となる.

以上より、任意の $\epsilon>0$ について、ある δ (具体的には $\sqrt{\epsilon}$) があって、 $|x-0|<\delta$ ならば $|f(x)-0|<\epsilon$ となるので、関数 $f(x)=x^2$ は x=0 で 0 に収束する.

命題 26. $\lim_{x\to a} f(x) = \alpha$, $\lim_{x\to a} g(x) = \beta$ とするとき $\lim_{x\to a} (f(x) + g(x)) = \alpha + \beta$ となる.

(証.) 任意の $\epsilon > 0$ についてある $\delta_1, \delta_2 > 0$ があって

$$|x-a|<\delta_1$$
ならば $|f(x)-lpha|<rac{\epsilon}{2}$ かつ $|x-a|<\delta_2$ ならば $|g(x)-eta|<rac{\epsilon}{2}$ となる.

以上より $\delta = \min(\delta_1, \delta_2)$ とおくと, $|x - a| < \delta$ ならば

$$|(f(x) + g(x)) - (\alpha + \beta)| \le |f(x) - \alpha| + |g(x) - \beta| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

である. 以上より, 任意の $\epsilon > 0$ について, ある δ (具体的には $\min(\delta_1, \delta_2)$) があって, $|x - a| < \delta$ ならば $|(f(x) + g(x)) - (\alpha + \beta)| < \epsilon$ となるので, $\lim_{x \to a} (f(x) + g(x)) = \alpha + \beta$ となる.

授業で紹介した収束の極限の性質の証明は上のようにやれば良い.

5 最後に

少々書きすぎてしまったが、この内容は理解する必要はないです。この内容が必要になることはあまりないと思います。 4

⁴まあ一種の無駄知識と思っていただければ幸いです. 私はこの内容が一番面白いですが...

第2回. 連続関数 (三宅先生の本, 1.2の内容)

岩井雅崇 2021/04/20

6 関数の定義と性質

定義 27. A を $\mathbb R$ の部分集合とする. 任意の $x\in A$ について, 実数 f(x) がただ一つ定まるとき, f(x) を A 上の関数といい

$$f: A \rightarrow \mathbb{R}$$
 と書く. $x \longmapsto f(x)$

以下 $f(A) = \{f(x) \mid x \in A\}$ とする. 数列のときと同様に、関数に関しても有界などが定義できる.

- \underline{f} が有界関数であるとは, f(A) が有開集合であること. つまりある M>0 があって, 任意の $x\in A$ について $|f(x)|\leq M$ であること.
- $\max_{x \in A} (f(x)) = \max(f(A)) \delta f(x)$ の A での最大値という.
- $\min_{x \in A} (f(x)) = \min(f(A)) \delta f(x)$ の A での最小値という.
- $\sup_{x \in A} (f(x)) = \sup(f(A)) \, \delta f(x) \, \mathcal{O} \, A \, \mathcal{C}$ の上限という.
- $\inf_{x \in A}(f(x)) = \inf(f(A))$ をf(x) の A での下限という.

例 28.

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \longmapsto +x^2$$

はℝ上の関数ではない. f(2) がただ一つに定まらないからである.

例 29.

$$\begin{array}{cccc} f: & \mathbb{R} & \to & \mathbb{R} \\ & x & \longmapsto & x^2 \end{array}$$

は \mathbb{R} 上の関数. $\max_{x\in\mathbb{R}}(f(x))$ は存在しない. $\sup_{x\in\mathbb{R}}(f(x))=+\infty, \min_{x\in\mathbb{R}}(f(x))=\inf_{x\in\mathbb{R}}(f(x))=0$ である. 有界関数ではない.

例 30.

$$\begin{array}{cccc} f: & [-1,1] & \to & \mathbb{R} \\ & x & \longmapsto & x^2 \end{array}$$

は [-1,1] 上の関数. $\max_{x\in[-1,1]}(f(x))=\sup_{x\in[-1,1]}(f(x))=1,$ $\min_{x\in[-1,1]}(f(x))=\inf_{x\in[-1,1]}(f(x))=0$ である. 有界関数である.

7 関数の極限と連続性

定義 **31** (関数の極限). $a \in \mathbb{R}$ とし f(x) を a の周りで定義された関数とする. $x \to a$ のとき, $\underline{f(x)}$ が $\alpha \in \mathbb{R}$ に収束するとは $x \neq \alpha$ を満たしながら x を a に近づけるとき, f(x) が限りなく α に近づくこと. このとき

$$\lim_{x \to a} f(x) = \alpha$$
 または $f(x) \xrightarrow[x \to a]{} \alpha$ と書く.

数列のときと同様にして, $\lim_{x\to a} f(x) = +\infty$ や $\lim_{x\to a} f(x) = -\infty$ も定める. ⁵

定義 **32** (関数の極限). $a \in \mathbb{R}$ とし f(x) を a の周りで定義された関数とする. $\underline{\alpha} \in \mathbb{R}$ が f(x) の点 a のおける右極限とは, x を a の右側から a に近づけるとき, f(x) が限りなく α に近づくこと. このとき

$$\lim_{x \to a+0} f(x) = \alpha$$
と書く.

同様にaの左側から近づけた極限を左極限といい、

$$\lim_{x \to a-0} f(x) = \alpha$$
と書く.

例 33.

$$f: [-1,1] \to \mathbb{R}$$
$$x \longmapsto x^2$$

について, $\lim_{x\to 0} f(x) = 0$.

例 34.

$$f: (-\infty,0) \cup (0,+\infty) \to \mathbb{R}$$

$$x \longmapsto \frac{1}{x}$$

について, $\lim_{x\to 0+0} f(x) = +\infty$ であり $\lim_{x\to 0-0} f(x) = -\infty$ である.

命題 35 (極限の性質). $\lim_{x\to a}f(x)=\alpha,\,\lim_{x\to a}g(x)=\beta,\,c\in\mathbb{R}$ とするとき, 以下が成り立つ.

- $\lim_{x\to a} (f(x) \pm g(x)) = \alpha \pm \beta$
- $\lim_{x\to a} (cf(x)) = c\alpha$
- $\lim_{x\to a} (f(x)g(x)) = \alpha\beta$
- $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{\alpha}{\beta} \ (\beta \neq 0 \ \mathcal{O}$ とき.)

 $[\]overline{}^{5}$ 関数の極限に関しても ϵ - δ 論法を用いて厳密に定義できる. 追加資料で詳しく説明した.

 $^{^{6}}$ $\lim_{x\to 0-0} f(x)$ を $\lim_{x\to -0} f(x)$ とも書きます. +のときも同じです.

定義 36 (連続の定義). $a \in \mathbb{R}$ とし f(x) を a の周りで定義された関数とする. f(x) が x = a で連続とは、

$$\lim_{x \to a} f(x) = f(a) \ \text{Lt32}.$$

f(x) を区間 I 上の関数とする. $\underline{f(x)}$ が I 上で連続とは、任意の $a \in I$ に関して f(x) が a で連続となること.

例 37. みんながよく知っている関数は (だいたい) 連続関数. つまり $x^2, \sin x, \cos x, e^x$ などは連続関数である.

例 38. [-1,1] 上の関数 f(x) を以下で定める.

$$f(x) = \begin{cases} \sin\frac{1}{x} & (x \neq 0) \\ 0 & (x = 0) \end{cases}$$

このとき, f(x) は x=0 で連続ではない.

命題 **39.** f(x), g(x) 共に x=a で連続ならば, $f(x)\pm g(x), cf(x), f(x)g(x), <math>\frac{f(x)}{g(x)}$ (ただし $g(a)\neq 0$) などは x=a で連続.

定理 **40.** y = f(x) が x = a で連続であり, z = g(y) が y = f(a) で連続ならば, z = g(f(x)) は x = a で連続.

8 連続関数に関する定理

定理 41 (最大最小の存在定理). f(x) が閉区間 [a,b] 上で連続ならば, f(x) は [a,b] 上で最大値, 最小値を持つ.

例 42.

$$f: [-1,1] \to \mathbb{R}$$
$$x \longmapsto x^2$$

は [-1,1] 上の連続関数. 最大値は 1, 最小値は 0.

例 43.

$$f: (-1,1) \rightarrow \mathbb{R}$$
 $x \longmapsto x^2$

は (-1,1) 上の連続関数. しかし、最大値は存在しない.

例 44. [-1,1] 上の関数 f(x) を以下で定める.

$$f(x) = \begin{cases} \frac{1}{x} & (x \neq 0) \\ 0 & (x = 0) \end{cases}$$

このとき, f(x) は x = 0 で連続ではない. 最大値は存在しない.

定理 **45** (中間値の定理). f(x) を閉区間 [a,b] 上の連続関数とする. f(a) < f(b) ならば、任意の $\alpha \in [f(a),f(b)]$ について、ある $c \in [a,b]$ があって $f(c) = \alpha$ となる.

9 逆関数

定義 46 (単調増加・単調減少). f(x) を区間 I 上の関数とする. x < y ならば f(x) < f(y) であるとき, f は I 上で単調増加という. (単調減少に関しても同様に定める.)

命題 47 (単調増加の判定法). f(x) を [a,b] 上で連続, (a,b) 上で微分可能な関数とする. (a,b) 上 f'(x)>0 ならば f(x) は [a,b] 上で単調増加である. (単調減少に関しても同様.)

7

定義 48 (逆関数). f(x) を区間 I 上の関数とし,g(x) を区間 J 上の関数とする. f(I)=J, g(J)=I であり,y=f(x) であることが x=g(y) であることと同値であるとき,g を f の逆関数といい, $g=f^{-1}$ と書く.このとき

$$f^{-1}(f(x)) = x$$
 かつ, $f(f^{-1}(y)) = y$ である.

例 49.

$$f: [0, +\infty) \to \mathbb{R} \qquad g: [0, +\infty) \to \mathbb{R}$$
$$x \longmapsto x^2 \qquad y \longmapsto \sqrt{y}$$

とすると $f^{-1} = g$ である.

定理 $\mathbf{50}$ (逆関数定理). f(x) を閉区間 [a,b] 上の連続な単調増加関数とする. このとき [f(a),f(b)] 上連続な f の逆関数が存在する.

10 演習問題

演習問題の解答は授業の黒板にあります.

⁷微分可能に関しては第3回授業で、この命題の証明は第4回の授業で行います。

1. [-1,1] 上の関数 f(x) を以下で定める.

$$f(x) = \begin{cases} x \sin \frac{1}{x} & (x \neq 0) \\ 0 & (x = 0) \end{cases}$$

f(x) は [-1,1] 上で連続であることを示せ.

2. 厚さが均一なお好み焼きは、包丁を真っ直ぐに一回入れることで二等分にできることを示せ. (ただし具材等に関して細かいことは考えないでよく、ある種の連続性を仮定して良い.)

第3回. 微分法と初等関数の性質 (三宅先生の本, 1.3と 2.1 の内容)

岩井雅崇 2021/04/27

11 微分法

定義 51. f(x) を点 a を含む開区間上の関数とする. f(x) が x=a で微分可能とは

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
 が存在すること.

この値を f'(a) と書く. f'(a) は $\frac{df}{dx}|_{x=a}$ や $\frac{df(a)}{dx}$ とも書く. $\underline{f(x)} \text{ が } I \text{ 上で微分可能}$ とは,任意の $a \in I$ に関して f(x) が x=a で微分可能であること.このとき

$$f': I \rightarrow \mathbb{R}$$
 $x \longmapsto f'(x)$

をf(x) の導関数という. f'(x) は $\frac{df}{dx}$ とも書く.

例 **52.** みんながよく知っている関数は (だいたい) 微分可能関数. つまり $x^2, \sin x, \cos x, e^x$ などは 微分可能な関数である.

例 53. 微分可能な関数 f(x) について、点 (a,f(a)) での接線の方程式は y-f(a)=f'(a)(x-a) である.

定理 54. f(x) が x=a で微分可能ならば x=a で連続である.

命題 55 (微分の性質). f,g を区間 I 上の微分可能な関数とするとき,以下が成り立つ. (c は定数.)

- $(f \pm g)' = f' \pm g'$
- (cf)' = cf'
- $\bullet (fg)' = f'g + fg'$
- $\left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2} \; (g'(x) \neq 0 \;$ なる点において.)

定理 **56** (合成関数の微分法). y = f(x) が x = a で微分可能であり, z = g(y) が y = f(a) で微分可能であるとき, z = g(f(x)) は x = a で微分可能であり,

$$\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$$
 である.

より詳しく書くと,

$$\left. \frac{dz}{dx} \right|_{x=a} = \frac{dz}{dy} \Big|_{y=f(a)} \frac{dy}{dx} \Big|_{x=a}$$
 である.

例 57. $z=\cos\left(x^2\right)$ を普通に微分すると、 $\frac{dz}{dx}=-2x\sin\left(x^2\right)$. 一方 $y=x^2,z=\cos y$ とすると $\frac{dy}{dx}=2x,\frac{dz}{dy}=-\sin(y)$ より、

$$\frac{dz}{dy}\frac{dy}{dx} = (-\sin(x^2))2x = -2x\sin(x^2)$$
 である.

定理 58 (合成関数の微分法)。関数 f(x) は区間 I で微分可能かつ単調増加であるとする. 任意の $x\in I$ で $f'(x)\neq 0$ であると仮定する. このとき逆関数 $f^{-1}(y)$ は $f^{-1}(I)$ 上で微分可能であり

$$\frac{dx}{dy} = \left(\frac{dy}{dx}\right)^{-1} = \frac{1}{\left(\frac{dy}{dx}\right)}$$
 である.

同じことだが,

$$rac{df^{-1}}{dy} = \left(rac{df}{dx}
ight)^{-1} = rac{1}{\left(rac{df}{dx}
ight)}$$
 である.

12 初等関数の性質

12.1 三角関数

命題 59 (三角関数の微分).

- $(\sin x)' = \cos x$
- $\bullet \ (\cos x)' = -\sin x$
- $(\tan x)' = \frac{1}{(\cos x)^2}$

12.2 逆三角関数

 $\sin x$ は $[-\frac{\pi}{2},\frac{\pi}{2}]$ 上で単調増加, $\cos x$ は $[0,\pi]$ 上で単調増加, $\tan x$ は $[-\frac{\pi}{2},\frac{\pi}{2}]$ 上で単調増加であるのでそれぞれ微分可能な逆関数が存在する.

定義 60 (逆三角関数).

$$\operatorname{Sin}^{-1}: [-1,1] \rightarrow \mathbb{R}$$

を \sin の逆関数とする. これを $\underline{P-クサイン}$ と呼ぶ. $\mathrm{Sin}^{-1}([-1,1])=[-\frac{\pi}{2},\frac{\pi}{2}]$ である.

•

$$\text{Cos}^{-1}: [-1,1] \rightarrow \mathbb{R}$$

$$y \longmapsto \text{Cos}^{-1}y$$

を \cos の逆関数とする. これをアークコサインと呼ぶ. $\cos^{-1}([-1,1]) = [0,\pi]$ である.

•

$$\operatorname{Tan}^{-1}: \mathbb{R} \to \mathbb{R}$$
 $y \longmapsto \operatorname{Tan}^{-1}y$

を \tan の逆関数とする. これを $\underline{P-D}$ クンジェントと呼ぶ. $\mathrm{Tan}^{-1}(\mathbb{R})=(-\frac{\pi}{2},\frac{\pi}{2})$ である.

例 61. $\operatorname{Sin}^{-1}(\frac{1}{2}) = \frac{\pi}{6}, \operatorname{Cos}^{-1}(\frac{1}{2}) = \frac{\pi}{3}, \operatorname{Tan}^{-1}(1) = \frac{\pi}{4}$ である.

命題 62 (逆三角関数の微分).

- $(\sin^{-1} y)' = \frac{1}{\sqrt{1-y^2}}$
- $(\cos^{-1}y)' = -\frac{1}{\sqrt{1-y^2}}$
- $(\operatorname{Tan}^{-1} y)' = \frac{1}{1+y^2}$

12.3 指数関数

定理 $\mathbf{63}$ (ネピアの定数). $\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n$ は収束する. この値を e と書きネピアの定数という.

定義 64 (指数関数·対数関数).

• a > 0 かつ $a \neq 1$ なる実数 a について, 関数

$$a^x: \mathbb{R} \to (0, +\infty)$$
 $x \longmapsto a^x$

を指数関数と呼ぶ. a = e のとき, e^x を $\exp x$ ともかく.

• a > 0 かつ $a \neq 1$ なる実数 a について, 指数関数 a^x の逆関数

$$\log_a y: (0, +\infty) \to \mathbb{R}$$
$$y \longmapsto \log_a y$$

を対数関数と呼ぶ. a = e のとき, $\log y$ と書く.

命題 65 (指数関数・対数関数の微分).

- $\lim_{x\to 0} \frac{\log(1+x)}{x} = 1$, $\lim_{x\to 0} \frac{e^x 1}{x} = 1$.
- $(a^x)' = (\log a)a^x$. 特に $(e^x)' = e^x$.
- $(\log_a y)' = \frac{1}{(\log a)y}$. 特に $(\log y)' = \frac{1}{y}$.

12.4 双曲線関数

定義 66 (双曲線関数).

•

$$\sinh x = \frac{e^x - e^{-x}}{2}$$

とし、これを $\underline{N1$ パボリックサイン</u>と呼ぶ.

•

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

とし、これをハイパボリックコサインと呼ぶ.

•

$$\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

とし, これをハイパボリックタンジェントと呼ぶ.

命題 67 (双曲線関数の微分).

- $\bullet (\cosh x)^2 (\sinh x)^2 = 1$
- $(\sinh x)' = \cosh x$
- $(\cosh x)' = \sinh x$
- $(\tanh x)' = \frac{1}{(\cosh x)^2}$

13 演習問題

演習問題の解答は授業の黒板にあります.

- 1. $\operatorname{Sin}^{-1}(-\frac{\sqrt{3}}{2}), \operatorname{Cos}^{-1}(-\frac{\sqrt{3}}{2}), \operatorname{Tan}^{-1}(-\frac{\sqrt{3}}{3})$ の値を求めよ.
- 2. $f(x) = \log(\log(x))$ とする. f'(x) を求めよ.

第4回. 平均値の定理と関数の極限値計算 (三宅先生の本, 2.2の内容)

岩井雅崇 2021/05/11

14 関数の極値

定義 68 (極値). f(x) を区間 I 上の関数とする.

- $\underline{f(x)}$ が $c \in I$ で極大であるとは、c を含む開区間 J があって、 $x \in J$ かつ $x \neq c$ ならば $\underline{f(x)} < \underline{f(c)}$ となること、このとき、 $\underline{f(x)}$ は \underline{c} で極大であるといい、 $\underline{f(c)}$ の値を極大値 という。
- $\underline{f(x)}$ が $c \in I$ で極小であるとは, c を含む開区間 J があって, $x \in J$ かつ $x \neq c$ ならば $\underline{f(x)} > f(c)$ となること. このとき, $\underline{f(x)}$ は c で極小であるといい, $\underline{f(c)}$ の値を極小値という.
- 極大値, 極小値の二つ合わせて極値という.

定理 **69.** f(x) を [a,b] 上で連続, (a,b) 上で微分可能な関数とする. f(x) が $c \in (a,b)$ で極値を持てば, f'(c) = 0 である.

15 平均値の定理とその応用

定理 70. f(x), g(x) を [a, b] 上で連続, (a, b) 上で微分可能な関数とする.

- (ロルの定理) f(a) = f(b) ならば, f'(c) = 0 となる $c \in (a,b)$ がある.
- (平均値の定理)

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

となる $c \in (a,b)$ が存在する.

• (コーシーの平均値の定理) $g(a) \neq g(b)$ かつ任意の $x \in (a,b)$ について $g'(x) \neq 0$ ならば

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

となる $c \in (a,b)$ が存在する.

定理 71. f(x) を [a,b] 上で連続, (a,b) 上で微分可能な関数とする.

- 任意の $x \in (a,b)$ について f'(x) = 0 ならば f は [a,b] 上で定数関数.
- 任意の $x \in (a,b)$ について f'(x) > 0 ならば f は [a,b] 上で単調増加関数.

例 72. $(\sin x)' = \cos x$ より $, \sin x$ は $[-\frac{\pi}{2}, \frac{\pi}{2}]$ 上単調増加.

定理 73 (ロピタルの定理). f(x),g(x) を点 a の近くで定義された微分可能な関数とする. $\lim_{x\to a}f(x)=\lim_{x\to a}g(x)=0$ かつ $\lim_{x\to a}rac{f'(x)}{g'(x)}$ が存在するならば, $\lim_{x\to a}rac{f(x)}{g(x)}$ も存在して

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

例 74.

$$\lim_{x \to 0} \frac{e^{2x} - \cos x}{x}$$
 を求めよ.

(答.) $\lim_{x\to 0} e^{2x} - \cos x = 1 - 1 = 0$ かつ $\lim_{x\to 0} x = 0$ であり

$$\lim_{x \to 0} \frac{(e^{2x} - \cos x)'}{(x)'} = \lim_{x \to 0} \frac{2e^{2x} - \sin x}{1} = 2$$

であるため、ロピタルの定理から

$$\lim_{x \to 0} \frac{e^{2x} - \cos x}{x} = \lim_{x \to 0} \frac{(e^{2x} - \cos x)'}{(x)'} = 2$$

16 演習問題

演習問題の解答は授業の黒板にあります.

1.

$$\lim_{x\to 0} \frac{x-\sin x}{x^3}$$
 を求めよ.

第5回. 高次導関数とテイラーの定理 (三宅先生の本, 2.3 と 2.4 の内容)

岩井雅崇 2021/05/18

17 高次導関数

定義 75 (高次導関数の定義). f(x) を区間 I 上の微分可能な関数とする. f'(x) が I 上で微分可能であるとき, f は 2 回微分可能であるといい,

$$f''(x) = (f'(x))'$$

としてこれを2次の導関数と呼ぶ. f''(x) は $f^{(2)}(x)$ とも書く.

同様に $f^{(n-1)}(x)$ が微分可能であるとき, \underline{f} は n 回微分可能であるといい, \underline{n} 次導関数 $f^{(n)}(x)$ を $(f^{(n-1)}(x))'$ として定める. $f^{(n)}(x)$ は $\frac{d^n f}{dx^n}$ とも書く.

例 76. • $f(x) = e^x$ とすると, $f^{(n)}(x) = e^x$ である.

• $f(x) = \sin x$ とすると,

$$f^{(n)}(x) = \begin{cases} (-1)^m \sin x & (n=2m) \\ (-1)^m \cos x & (n=2m+1) \end{cases}$$
 である.

定義 77 (C^n 級関数). f(x) を区間 I 上の関数とする.

- f(x) が n 回微分可能であり, $f^{(n)}(x)$ が連続であるとき, f は C^n 級関数であるという.
- 任意の $n \in \mathbb{N}$ について f が C^n 級であるとき, f を C^∞ 級関数であるという.

例 78. みんながよく知っている関数は (だいたい $)C^{\infty}$ 級関数. つまり $x^2,\sin x,\cos x,e^x$ などは C^{∞} 級関数である.

18 テイラーの定理とその応用

定理 79 (テイラーの定理 1). f(x) が開区間 I 上の C^2 級関数とする. a < b なる $a,b \in I$ について

$$f(b) = f(a) + f'(a)(b - a) + \frac{f''(c)}{2}(b - a)^2$$

となる $c \in (a,b)$ が存在する.

例 80. $f(x) = e^x$ とし a = 0 かつ b を正の実数とする. このときある $c \in (0,b)$ があって

$$e^{b} = f(0) + f'(0)b + \frac{f''(c)}{2}b^{2} = 1 + b + \frac{e^{c}}{2}b^{2}$$

となる. $e^c \ge 1$ であるため,

$$e^b \ge 1 + b + \frac{1}{2}b^2$$
 となる.

定理 81 (極値判定法). f(x) が点 a の周りで定義された C^2 級関数とする.

- f'(a) = 0 かつ f''(a) > 0 なら f(x) は x = a で極小.
- f'(a) = 0 かつ f''(a) < 0 なら f(x) は x = a で極大.

定理 82 (テイラーの定理 2). f(x) が開区間 I 上の C^n 級関数とする. a < b なる $a,b \in I$ について

$$f(b) = f(a) + f'(a)(b-a) + \frac{f''(a)}{2!}(b-a)^2 + \dots + \frac{f^{(n-1)}(a)}{(n-1)!}(b-a)^{n-1} + \frac{f^{(n)}(c)}{n!}(b-a)^n$$

となる $c \in (a,b)$ が存在する.

例 83. $f(x) = e^x$ とし a = 0 かつ b を正の実数とする. このときある $c \in (0,b)$ があって

$$e^{b} = f(0) + f'(0)b + \frac{f''(0)}{2!}b^{2} + \dots + \frac{f^{(n-1)}(0)}{(n-1)!}b^{n-1} + \frac{f^{(n)}(c)}{n!}b^{n}$$
$$= 1 + b + \frac{1}{2!}b^{2} + \frac{1}{3!}b^{3} + \dots + \frac{1}{(n-1)!}b^{n-1} + \frac{e^{c}}{n!}b^{n}$$

となる. $e^c \ge 1$ であるため,

$$e^b \ge 1 + b + \frac{1}{2!}b^2 + \frac{1}{3!}b^3 + \dots + \frac{1}{(n-1)!}b^{n-1} + \frac{1}{n!}b^n$$
 となる.

定理 84 (有限テイラー展開). f(x) が開区間 I 上の C^n 級関数とする. $a \in I$ を固定する. 任意の $x \in I$ について, ある $\theta \in (0,1)$ があって

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \cdots$$

$$\cdots + \frac{f^{(n-1)}(a)}{(n-1)!}(x - a)^{n-1} + \frac{f^{(n)}(a + \theta(x - a))}{n!}(x - a)^n$$

$$= \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!}(x - a)^k + \frac{f^{(n)}(a + \theta(x - a))}{n!}(x - a)^n$$

となる.右辺を x=a における 有限テーラー展開と呼び, $R_n=rac{f^{(n)}(a+ heta(x-a))}{n!}(x-a)^n$ を

剰余項と呼ぶ. 特に a=0 のとき, 有限マクローリン展開と呼ぶ.

19 演習問題

演習問題の解答は授業の黒板にあります.

1. 任意の $x \in \mathbb{R}$ についてある $\theta \in (0,1)$ があって

$$\sin x = 1 - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + \frac{(-1)^{n-1}x^{2n-1}}{(2n-1)!} + \frac{(-1)^n x^{2n} \sin(\theta x)}{2n!}$$

となることを示せ.

第6回. 漸近展開とべき級数展開 (三宅先生の本, 2.4 の内容)

岩井雅崇 2021/05/25

20 漸近展開とべき級数展開

定理 85 (有限テイラー展開). f(x) が開区間 I 上の C^n 級関数とする. $a \in I$ を固定する. 任意の $x \in I$ について, ある $\theta \in (0,1)$ があって

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \cdots$$

$$\cdots + \frac{f^{(n-1)}(a)}{(n-1)!}(x - a)^{n-1} + \frac{f^{(n)}(a + \theta(x - a))}{n!}(x - a)^n$$

$$= \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!}(x - a)^k + \frac{f^{(n)}(a + \theta(x - a))}{n!}(x - a)^n$$

となる.右辺を x=a における 有限テーラー展開と呼び, $R_n=\frac{f^{(n)}(a+\theta(x-a))}{n!}(x-a)^n$ を剰余項と呼ぶ.特に a=0 のとき,有限マクローリン展開と呼ぶ.

定義 86 (ランダウの記号). a を実数または $\pm\infty$ とし, f(x) と g(x) を a の周りで定義された関数とする. $\lim_{x\to a} \frac{f(x)}{g(x)}=0$ であるとき

$$f(x) = o(g(x)) (x \rightarrow a)$$
 と書く.

例 87. • $x^5 = o(x^3)$ $(x \to 0)$

- $\sin x = x + o(x^2) \ (x \to 0)$
- 任意の正の実数 α について, $\log x = o(x^{\alpha}) \ (x \to +\infty)$ であり, $x = o(e^{\alpha x}) \ (x \to +\infty)$ である.

命題 88 (ランダウの記号の性質). $m, n \in \mathbb{N}$ とする.

- $x^m o(x^n) = o(x^{m+n}) (x \rightarrow 0)$
- $o(x^m)o(x^n) = o(x^{m+n}) (x \to 0)$
- $m \le n \text{ tsid } o(x^m) + o(x^n) = o(x^m) \ (x \to 0)$

定理 89 (漸近展開). f(x) を a を含む開区間上の C^n 級関数ならば

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + o((x - a)^n) \quad (x \to a)$$

となる. 特に a=0 の場合は下のようになる.

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + o(x^n) \quad (x \to 0)$$

例 90.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + o(x^{n}) \quad (x \to 0)$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots + \frac{(-1)^{n-1}x^{2n-1}}{(2n-1)!} + o(x^{2n-1}) \quad (x \to 0)$$

定理 $\mathbf{91}$ (べき級数展開). f(x) を a を含む開区間上の C^{∞} 級関数とする. テイラーの定理

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(n)}(a+\theta(x-a))}{n!} (x-a)^n$$

において、剰余項 $R_n(x)=\frac{f^{(n)}(a+\theta(x-a))}{n!}(x-a)^n$ とする. $b\in I$ において $\lim_{n\to\infty}|R_n(b)|=0$ となるならば、

$$f(b) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (b-a)^k$$
 となる.

例 92. $f(x) = e^x$ とし, a = 0 かつ $b \in \mathbb{R}$ とする. このとき剰余項は

$$R_n(b) = \frac{e^{b\theta}b^n}{n!}$$

である. $\lim_{n\to\infty} |R_n(b)| = 0$ であるので、べき級数展開ができ、

$$e^{b} = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} b^{k} = 1 + b + \frac{b^{2}}{2!} + \frac{b^{3}}{3!} + \frac{b^{4}}{4!} + \cdots$$

例 93. $f(x) = \sin x$ とし, a = 0 かつ $b \in \mathbb{R}$ とする. このとき剰余項は

$$R_{2n}(b) = \frac{(-1)^n b^{2n} \sin(b\theta)}{(2n)!}$$

である. $\lim_{n\to\infty} |R_n(b)| = 0$ であるので、べき級数展開ができ、

$$\sin b = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} b^k = b - \frac{b^3}{3!} + \frac{b^5}{5!} - \frac{b^7}{7!} + \cdots$$

21 初等関数の漸近展開

初等関数の a=0 の周りでの漸近展開の具体例を紹介する.8

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + o(x^{n}) \quad (x \to 0)$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots + \frac{(-1)^{n-1}x^{2n-1}}{(2n-1)!} + o(x^{2n-1}) \quad (x \to 0)$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \dots + \frac{(-1)^{n}x^{2n}}{(2n)!} + o(x^{2n}) \quad (x \to 0)$$

$$\log(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \dots + \frac{(-1)^{n-1}x^{n}}{n} + o(x^{n}) \quad (x \to 0)$$

$$\sinh x = x + \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots + \frac{x^{2n-1}}{(2n-1)!} + o(x^{2n-1}) \quad (x \to 0)$$

22 演習問題

演習問題の解答は授業の黒板にあります.

1.

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^n + o(x^n) \ (x \to 0)$$

となることを示せ.

 $^{^8}$ なんでもかんでも綺麗に漸近展開できるとは限らない. 例えば $\tan x$ などの漸近展開の一般項は非常に難しい.