

Sep 19, 2024

Plasma/serum sample preparation for untargeted MS-based metabolomic

This protocol is a draft, published without a DOI.

Carole MIGNÉ¹, charlotte JOLY¹, Stéphanie DURAND¹, Estelle Pujos-Guillot²

¹Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France; ²INRAE

MetaboHUB-Clermont PF...

Estelle Pujos-Guillot

INRAE

OPEN ACCESS

External link: https://eng-pfem.isc.inrae.fr/

Protocol Citation: Carole MIGNÉ, charlotte JOLY, Stéphanie DURAND, Estelle Pujos-Guillot 2024. Plasma/serum sample preparation for untargeted MS-based metabolomic. protocols.io https://protocols.io/view/plasma-serum-sample-preparation-for-untargeted-ms-c263yhgn

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: In development We are still developing and optimizing this protocol

Created: October 09, 2023

Last Modified: September 19, 2024

Protocol Integer ID: 89019

Keywords: serum, plasma, preparation, untargeted metabolomic analysis, mass spectrometry

Funders Acknowledgement: Agence Nationale de la Recherche Grant ID: ANR-11-INBS-0010 MetaboHUB

Agence Nationale de la Recherche au titre de France 2030

Grant ID: ANR- 21-ESRE-0035

Abstract

The following protocol describes the preparation of serum and plasma samples for non-targeted analysis by mass spectrometry coupled to liquid or gas chromatography, as proposed by the PFEM (MetaboHUB-Clermont).

Protocol materials

☑ ULC/MS grade methanol Biosolve Catalog #0013684101BS Step 5

MilliQ water In 2 steps

Sample preparation

1 Thaw the samples according to these conditions depending on the analysis to be carried out:

LCMS	GCMS
Room temper ature	4°C overnight

Samples thawing conditions

- 2 Add Δ 100 μL of serum or plasma sample in Eppendorf tubes.
- 3 Prepare blank sample for GCMS analysis : add Δ 100 μL of

 MilliQ water Contributed by users in Eppendorf tube
- 4 Prepare

 2 mL of an internal standard solution [13C1]-L-valine ([M] 0.2 mg/mL) in

 MilliQ water Contributed by users , store at
 -20 °C for GCMS analysis
- 5 Extract protein by adding ice-cold methanol to each sample under the following conditions:
 - ₩ ULC/MS grade methanol Biosolve Catalog #0013684101BS

Matrix	Vol MeOH LCMS	Vol MeOH GCMS
blank	NA	200 μL (plasma) 400 μL (serum)
plasma	200 μL	200 μL
serum	200 μL	400 μL

Methanol volume to be added to extract proteins

6 Mix and placed the samples at \$ -20 °C for \bigcirc 00:30:00 .

30m

7 Centrifuge samples 15493 x g, 4°C, 00:10:00 (Sigma 3-16PK, Fischer Bioblock Scientific).

The supernatant is divided into three aliquots. A intermediate pooled QC sample is prepared by mixing $\frac{10 \, \mu L}{10 \, \mu L}$ from each extracted samples (per day or per batch).

Sample Type	Vol supernatant LCMS (μL)	Vol supernatant Plasma GCMS	Vol supernatant Serum GCMS (μL)	Vol internal standard GCMS (μL)
Pool QC	45	200	NA	NA
Safety	45	200	300	10
Sample	45	200	300	10

Sample Type	Vol supernatant LCMS (µL)	Vol supernatant Plasma GCMS	Vol supernatant Serum GCMS (μL)	Vol internal standard GCMS (μL)
Blank	NA	200 (milliQ water)	300 (milliQ water)	10

Distribution of extracted samples

8 Dry samples completely using a EZ2.3 genevac system (Biopharma Technologies France).

Equipment

new equipment

Genevac EZ-2

EZ-2

https://www.spscientific.com/Products/Centrifugal_Evaporators___Sample_Concentrators/G 2_Series/EZ-2_Series/

The following program is used:

A	LCMS	GCMS
Program	HPLC	HPLC
Final Stage	10 min	50 min
Reduce Odour	Off	Off
Lamp	Off	On (under 30°C)

Drying program used

- 9 Store samples for LCMS analysis at 🔓 -80 °C until further analysis
- 10 Derivatisation for GCMS analysis:
- 10.1 Prepare a fresh methoxylamine solution ([M] 15 mg/mL) in pyridine. The volume of this solution depends on the number of samples to be analysed ($\, \underline{ \hspace{-.4cm} \hspace{-.4cm} \text{ }} \,$ 80 $\,\mu L \,$ for each samples)
- 10.2 Dissolve the dry samples in adding \perp 80 μ L of methoxylamine solution to each vial.

10.3	Vortex vigorously for 1 min and incube at 37 °C for 24:00:00 (in order to inhibit the
	cyclization of reducing sugars and the decarboxylation of α -keto acids).
40.4	
10.4	1h
	Add Δ 80 μL of BSTFA (1%TMCS) in the mixture and derivatize at \$ 70 °C for
	(5) 01:00:00
10.5	Waiting a few minutes and transfer Δ 50 μL of derivatized mixture in a glass vial containing
	Δ 100 μL of heptane prior to injection.
	Store blank and biological samples at 🖁 4 °C until further analysis
10.6	As well as a sample pool is formed from Δ 10 μL of each extracted and derivatized sample
	to monitor the drift of the spectrometer during GCMS analysis.
	Transfer Δ 50 μL of sample pool in a glass vial containing Δ 100 μL of heptane prior to
	injection, repeat this step 8 times (preprocessing analysis)
	Store pool samples at 4 °C until further analysis

Protocol references

CITATION Pereira, H., Martin, JF., Joly, C. et al. (2009). Development and validation of a UPLC/MS method for a nutritional metabolomic study of human plasma. Metabolomics . https://doi.org/10.1007/s11306-009-0188-9

Citations

Pereira, H., Martin, JF., Joly, C. et al. . Development and validation of a UPLC/MS method for a nutritional metabolomic study of human plasma https://doi.org/10.1007/s11306-009-0188-9