1 Solution

In the case $B \neq 0$, wave function can be expressed as the coefficients of C_{ji}^{λ} in the tight-binding wave function

$$\psi_{\lambda,\mathbf{k}}(\mathbf{r}) = \sum_{i}^{3} \sum_{i}^{2q} C_{ji}^{\lambda}(\mathbf{k}) \sum_{\alpha}^{N_{\text{UC}}} e^{i\mathbf{k}\cdot(\mathbf{R}_{\alpha}+\mathbf{r}_{i})} \phi_{j}(\mathbf{r} - \mathbf{R}_{\alpha} - \mathbf{r}_{i}).$$
 (1)

where i = 1...2q. We have shown that, under an uniform magnetic field, Bloch bands λ construct Landau levels at small fields and become fractal-structured at strong fields, which is known as the Hofstadter butterfly.

We now consider a new basis consisting of three eigenfunctions of the angular momentum operators L^2 and L_z , for $l=2, m=0, \pm 2$,

$$\left|\tilde{\phi}_{1}\right\rangle = \left|d_{m=0}\right\rangle, \quad \left|\tilde{\phi}_{2}\right\rangle = \left|d_{m=+2}\right\rangle, \quad \left|\tilde{\phi}_{3}\right\rangle = \left|d_{m=-2}\right\rangle.$$
 (2)

The new basis can be obtained from the old one by the transformation

$$W = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & -\frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}. \tag{3}$$

The TB Hamiltonian in new basis reads

$$\tilde{H}^{\text{NN}}(\mathbf{k}) = WH^{NN}(\mathbf{k})W^{\dagger}
= \begin{pmatrix} h_0 & \frac{1}{\sqrt{2}}(h_1 - ih_2) & \frac{1}{\sqrt{2}}(h_1 + ih_2) \\ \frac{1}{\sqrt{2}}(h_1^* + ih_2^*) & \frac{1}{2}(h_{11} + h_{22} + 2\operatorname{Im}\{h_{12}\}) & \frac{1}{2}(h_{11} - h_{22} + 2i\operatorname{Re}\{h_{12}\}) \\ \frac{1}{\sqrt{2}}(h_1^* - ih_2^*) & \frac{1}{2}(h_{11} - h_{22} - 2\operatorname{Im}\{h_{12}\}) & \frac{1}{2}(h_{11} + h_{22} - 2i\operatorname{Re}\{h_{12}\}) \end{pmatrix}.$$
(4)

Ở Hình 1, tại điểm K, dải hoá trị có đóng góp chủ yếu từ hai orbital d_{xy} và $d_{x^2-y^2}$, trong khi dải dẫn chủ yếu đến từ orbital d_{z^2} . Khi có mặt từ trường, vùng Brillouin zone bị thu nhỏ lại 2q lần so với vùng Brillouin gốc, khiến các điểm K và K' co lại và nằm gần điểm Γ . Do đó, trong bài này, chúng tôi chỉ xét phổ Hofstadter butterfly tại điểm Γ .

Ở Hình 2, khi có từ trường, hàm sóng được biểu diễn tại $\Gamma = (0,0)$. Cụ thể, các hình (a), (b), (c) tương ứng với mức 2q (dải hoá trị), trong khi các hình (d), (e), (f) tương ứng với mức 2q + 1 (dải dẫn).

Hình 1: Bandstructure lấy từ bài Liu.

Hình 2: Wavefunctions using NN model.

1.1 Cyclotron frequency

Tại $p=1,\,q=4723,\,$ tần số cyclotron được tính theo công thức

$$\hbar\omega_c = E_{n+1} - E_n
\Rightarrow \omega_c = \frac{E_{n+1} - E_n}{\hbar},$$
(5)

và khối lượng hiệu dụng cyclotrong được tính bằng công thức

$$\omega_c = \frac{eB}{m^*} \Rightarrow m^* = \frac{eB}{\omega_c} = \frac{eB}{\frac{E_{n+1} - E_n}{\hbar}} = \frac{eB\hbar}{E_{n+1} - E_n}$$
 (6)

trong đó n là chỉ số mức Landau. Hàm sóng của 2 mức Landau kế tiếp nhau ở điểm K được thể hiện qua Fig.3. Ở hình 3(a),(b),(c) là hàm sóng ở mức Landau n=1, với dải 2q+4, hình 3(d),(e),(f) là hàm sóng ở mức Landau n=2 với dải 2q+8

Hình 3: Hàm sóng của 2 mức Landau kế tiếp nhau.

Label	Band λ	Label
$\langle 0,0\rangle_{K'}$	2q + 7	$\langle 0,2\rangle_K$
$\langle 0,0\rangle_{K'}$	2q + 8	$\langle 0,2\rangle_K$
$\langle 0,1\rangle_K$	2q + 9	$\langle 0,1\rangle_{K'}$
$\langle 0,1\rangle_K$	2q + 10	$\langle 0,1 \rangle_{K'}$
$\langle 0,0\rangle_{K'}$	2q + 11	$\langle 0,2\rangle_K$
$\langle 0,0\rangle_{K'}$	2q + 12	$\langle 0, 3 \rangle_K$
	$ \begin{array}{c} \langle 0,0\rangle_{K'} \\ \langle 0,0\rangle_{K'} \\ \langle 0,1\rangle_{K} \\ \langle 0,1\rangle_{K} \\ \langle 0,0\rangle_{K'} \end{array} $	$ \begin{array}{c c} \langle 0,0\rangle_{K'} & 2q+7 \\ \langle 0,0\rangle_{K'} & 2q+8 \\ \langle 0,1\rangle_{K} & 2q+9 \\ \langle 0,1\rangle_{K} & 2q+10 \\ \langle 0,0\rangle_{K'} & 2q+11 \\ \end{array} $

Bảng 1: Dán nhãn cho từng band λ .

Từ Eq.(6) ta tính ra được khối lượng hiệu dụng m^*/m_0 và tần số cyclotron, được biểu diễn trong hình.4 và hình.5

Ở hình.4 khối lượng hiệu dụng ở B=40 T đột ngột tăng lên bất thường là do năng lượng ở 2 mức Landau kết tiếp nhau $\Delta E\approxeq 0$ dẫn đến tăng lên đột ngột. Điều này có thể thấy ở hình.5 tần số Cyloctron giảm từ $\approx 3\times 10^{13}$ xuống còn 5×10^{12} Hz

Band λ	Label	
2q - 1	$\langle 2,0\rangle_{K'}$	
2q - 2	$\langle 2,0\rangle_{K'}$	
2q - 3	$\langle 0,0\rangle_{\Gamma}$	
2q - 4	$\langle 0,0 \rangle_{\Gamma}$	
2q - 5	$\langle 0,1\rangle_{\Gamma}$	
2q - 6	$\langle 0,1\rangle_{\Gamma}$	
2q - 7	$\langle 2,1\rangle_{K'}$	
2q - 8	$\langle 2,1\rangle_{K'}$	
2q - 9	$\langle 2,2\rangle_{\Gamma}$	
2q - 10	$\langle 0,2\rangle_{\Gamma}$	
2q - 11	$\langle 0, 3 \rangle_{\Gamma}$	
2q - 12	$\langle 0, 3 \rangle_{\Gamma}$	
2q - 13	$\langle 0,4\rangle_{\Gamma}$	
2q - 14	$\langle 0,4\rangle_{\Gamma}$	
2q - 15	$\langle 2,0\rangle_K$	
2q - 16	$\langle 2,0\rangle_K$	
2q - 17	$\langle 2,2\rangle_{K'}$	
2q - 18	$\langle 2,2\rangle_{K'}$	
2q - 19	$\langle 0, 5 \rangle_{\Gamma}$	
2q - 20	$\langle 0, 5 \rangle_{\Gamma}$	
2q - 21	$\langle 0,6 \rangle_{\Gamma}$	
2q - 22	$\langle 0,6 \rangle_{\Gamma}$	
2q - 23	$\langle 0,7 \rangle_{\Gamma}$	
2q - 24	$\langle 0,7 \rangle_{\Gamma}$	
2q - 25	$\langle 2,3\rangle_{K'}$	
2q - 26	$\langle 2,3\rangle_{K'}$	
2q - 27	$\langle 2,1\rangle_K$	
2q - 28	$\langle 2,1\rangle_K$	
2q - 29	$\langle 0, 8 \rangle_{\Gamma}$	
2q - 30	$\langle 0, 8 \rangle_{\Gamma}$	

Bảng 2: Dán nhãn cho từng band $\lambda.$

$\overline{\text{Band }\lambda}$	Label
2q+1	$\langle 0,0\rangle_{K'}$
2q + 1	$\langle 0,0 \rangle_{K'}$

Bảng 3: Dán nhãn cho từng band $\lambda.$