HOW ТО заботать зачёт по матанализу 2

Интегралы

Пусть f(x) собственно интегрируема на любом [a,b](b>a). Тогда

$$\int_{a}^{+\infty} f(x)dx = \lim_{b \to +\infty} \int_{a}^{b} f(x)dx$$

Если f(x) не ограничена в окрестности точки b и собственно интегрируема на $[a,b-\varepsilon](\varepsilon>0)$, то

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0} \int_{a}^{b-\varepsilon} f(x)dx$$

$$\int_{a}^{+\infty} f(x)dx$$
 сходится, если $\int_{a}^{+\infty} |f(x)|dx$ сходится.

Признаки сравнения

1 признак сравнения

Если:

1.
$$|f(x)| \le F(x)$$

2.
$$\int_a^{+\infty} F(x)dx$$
 сходится

Тогда $\int_{a}^{+\infty} f(x)dx$ сходится абсолютно.

2 признак сравнения

Пусть $\psi(x) > 0, \phi(x) = O^*(\psi(x))$ при $x \to +\infty$.

$$\phi(x) = O^*(\psi(x)) \Leftrightarrow \lim_{x \to +\infty} \frac{\phi(x)}{\psi(x)} = c \neq 0$$

1

Тогда $\int_a^{+\infty} \psi(x) dx$ и $\int_a^{+\infty} \phi(x) dx$ сходятся и расходятся одновременно.

3 признак сравнения

• Если
$$f(x) = O^*\left(\frac{1}{x^p}\right)$$
 при $x \to +\infty$ то

1. $p > 1 \Rightarrow$ сходится;

2. $p \le 1 \Rightarrow$ расходится.

• Если
$$f(x) = O^*\left(\frac{1}{(x-b)^p}\right)$$
 при $x \to b+0$, то $\int_b^a f(x)dx$:

1. при $p \ge 1$ расходится;

2. при p < 1 сходится.

Ряды

Признаки сходимости

Д'Аламбера

Если с некоторого момента $\frac{a_{n+1}}{a_n} \le q < 1$, то сходится. Если $\frac{a_{n+1}}{a_n} \ge q > 1$, то расходится. При q=1 непонятно.

Коши

$$\lim_{n \to \infty} \sqrt[n]{a^n} = q.$$

- $q < 1 \Rightarrow$ сходится.
- $q > 1 \Rightarrow$ расходится.

Признак сравнения для знакопостоянных рядов

$$\forall n > N : b_n \ge a_n$$
 и $\sum_{n=1}^{\infty} b_n$ сходится $\Rightarrow \sum_{n=1}^{\infty} a_n$ сходится.

$$\sum_{n=1}^{\infty} \frac{1}{n^k}:$$

- 1. сходится при k > 1
- 2. расходится при $k \leq 1$

Признак Лейбница для знакочередующихся рядов

Если ряд знакочередующийся и $\lim_{n\to +\infty} |a_n| = 0$ и $|a_n|$ убывают монотонно, то ряд $\sum_{n=1}^{\infty} a_n$ сходится.

Признаки равномерной сходимости

Признак Вейерштрасса

Если существует a_n — числовая последовательность такая, что $|f_n(x)| \le a_n \quad \forall n \in \mathbb{N} \forall x \in X$ и $\sum_{n=1}^{\infty}$ сходится. Тогда $\sum_{n=1}^{\infty} f_n(x) dx$ равномерно сходится на X.

Признак Дирихле

Если $\sum_{n=1}^{\infty} a_n(x)$ ограничена в совокупности на X и $b_n(x)$ монотонна $\forall x \in X$ и равномерно схо-

дится к 0, то $\sum_{n=1}^{\infty} a_n(x)b_n(x)$ равномерно сходится на X.

Признак Абеля

Пусть $\sum_{n=1}^{\infty} a_n(x)$ равномерно сходится на X и $|b_n(x)|$ ограничена в совокупности и $b_n(x)$ монотонна по n.

Тогда $\sum_{n=1}^{\infty} a_n(x)b_n(x)$ сходится равномерно на X.

Функциональные последовательности

Пусть $f(x) = \lim_{n \to +\infty} f_n(x)$. Последовательность $\{f_n(x)\}$ равномерно сходится на множестве E к $f(x) \Leftrightarrow \lim_{n \to +\infty} \sup_{x \in E} |f_n(x) - f(x)| = 0$,