INTRO TO CS

Problem 1.1:

 $A = \{\{a,f,d,e,b,c\}\}$

In order to find the minimal spanning tree, we must reorder the edges so that their costs are ordered increasingly:

now forming the graph from the edge with the lowest cost first and eliminating the edges that form cycles.

$$E' = \{\}$$

$$A = \{\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}\}\}$$

$$E' = \{\{a,f\}\}$$

$$A = \{\{a,f\}, \{b\}, \{c\}, \{d\}, \{e\}\}\}$$

$$E' = \{\{a,f\}, \{b,c\}\}$$

$$A = \{\{a,f\}, \{b,c\}, \{d\}, \{e\}\}\}$$

$$E' = \{\{a,f\}, \{b,c\}, \{d,e\}\}$$

$$E' = \{\{a,f\}, \{b,c\}, \{d,e\}\}$$

$$A = \{\{a,f\}, \{b,c\}, \{d,e\}\}$$

$$E' = \{\{a,f\}, \{b,c\}, \{d,e\}\}$$

$$E' = \{\{a,f\}, \{b,c\}, \{d,e\}, \{d,f\}\}$$

$$A = \{\{a,f\}, \{b,c\}, \{d,e\}, \{d,f\}\}$$

$$E' = \{\{a,f\}, \{b,c\}, \{d,e\}, \{d,f\}, \{c,f\}\}$$

$$E' = \{\{a,f\}, \{b,c\}, \{d,e\}, \{d,f\}, \{c,f\}\}$$

$$Step 5, C = 15$$

Problem 1.2:

a)

The naive string search algorithm:

comparing the characters one by one

We are looking for FFLFR in FFLFLFRFRFFLFRF

F	F	L	F	L	F	R	F	R	F	F	L	F	R	F
F	F	L	F	R										
	F	F	I	f	r									
		F	f	I	f	r								
			F	F	I	f	r							
				F	f	I	f	r						
					F	F	I	f	r					
						F	f	I	f	r				
							F	F	I	f	r			
	-							F	f	I	f	r		
									F	F	L	F	Т	

-Alignments used : 10 -comparisons done : 22

b) We are looking for F F L F R

F	F	L	F	L	F	R	F	R	F	F	L	F	R	F
f	f	I	f	R										
		F	F	L	F	R								
				f	f	L	F	R						
									F	F	L	F	R	

-Alignments used : 4

-comparisons done: 14

c)

The lookup table:

_	F	F	L	F	R
	0	1	2	3	4
L	0	1	-	3	4
R	0	1	2	3	-
F	-	1	2	1	4
Р	0	1	2	3	4

Problem 1.3:

- a) operations such as + , or = will return an error because the program won't know from where to start reading it.
- b) The dollar operator is right associative and has a level of precedence of 0. the infix notation:
- $(^{\land})$ 2 \$ $(^{*})$ 5 \$ $(^{+})$ 2 3 = $(^{\land})$ 2 \$ $(^{*})$ 5 \$ 5 = $(^{\land})$ 2 \$ 25 =2 $^{\land}$ (25)