Методические указания к выполнению расчётно-графической работы по теме

«Линейный оператор, спектральный анализ и евклидово пространство»

Описание работы

Расчетно-графические работы выполняются командами студентов (по 3-4 человека) и заключаются в выполнении заданий, оформлении отчета и его защите (порядок см. ниже). Сформированные команды сами выбирают себе номер от 1 до 8 так, чтобы у каждой команды он был уникальный.

Требования

К выполнению заданий – в работе должны быть:

- 1) поставлены требуемые задачи;
- 2) представлены в логической последовательности основные этапы исследования или решения;
- 3) указаны используемые теоретические положения и методы;
- 4) получены точные численные результаты и построены требуемые графические изображения.

К содержанию отчета — отчет выполняется в электронном виде (текстовый документ или презентация; для презентации в MS Power Point используется шаблон Университета ИТМО: ИСУ → полезные ссылки → корпоративная стилистика → презентации (внизу страницы)). должен содержать:

- 1) титульный лист/слайд (название дисциплины, учебный год, название РГР, ФИ исполнителей, номера групп, ФИ преподавателя, ФИ ментора (если у преподавателя есть ментор), дата, место выполнения);
- 2) условия всех заданий (условие каждого задания перед его решением);
- 3) основные этапы решения (исследования) каждой задачи, его теоретическое обоснование, численные результаты;
- 4) графики или рисунки, иллюстрирующие решение каждой задачи (выполненные в математическом редакторе Desmos: https://www.desmos.com/, Geogebra: https://www.geogebra.org/ или других);
- 5) выводы;
- б) оценочный лист (вклад каждого исполнителя оценивается всей командой по шкале от 0 до 100% баллов).

К оформлению отчета:

- 1) Страницы и слайды следует пронумеровать (на титульной странице/слайде номер не ставится).
- 2) Текст представляется полностью в цифровом виде. Не допускается вставка фото или сканов текста, а также скриншотов электронного текста.
- 3) Все формулы набираются в редакторе формул. Не допускается набор формул текстом (например, $f(x)=3*x^2$), а также вставка фото или сканов формул, однако допускается вставка скриншотов электронных формул (если ни один редактор формул не доступен). Про редакторы формул:
 - а) в MS Office есть встроенный редактор формул;
 - б) в MS Office также есть скачиваемая надстройка MathType для набора формул;
 - в) Google-документы и Open Office имеют встроенные редакторы формул;
 - г) в LaTeX встроен набор формул;
 - д) можно воспользоваться бесплатным сервисом набора формул https://editor.codecogs.com/ и скачать формулу в виде изображения;
 - e) или воспользоваться математическим пакетом (MathCAD, Wolfram Mathematica и др.) или сайтом Wolfram Alpha и сделать оттуда скриншоты формул.

Защита работ

Порядок защиты РГР определяется преподавателем практики.

Задание 1. Линейный оператор и спектральный анализ

A) Дано пространство геометрических векторов \mathbb{R}^3 , его подпространства L_1 и L_2 и линейный оператор $\mathcal{A}\colon \mathbb{R}^3 \to \mathbb{R}^3$.

Проведите исследование:

- 1) Изобразите на графике подпространства L_1 и L_2 .
- 2) Методами векторной алгебры составьте формулу для линейного оператора ${\cal A}$.
- 3) Составьте его матрицу в базисе $\{\vec{l}, \vec{l}, \vec{k}\}$ пространства \mathbb{R}^3 .
- 4) Решите задачу о диагонализации полученной матрицы методом спектрального анализа.
- 5) На построенном ранее графике изобразите базис, в котором матрица линейного оператора *A* имеет диагональный вид. Объясните его смысл.
- **Б)** Дано множество функций L и отображение $\mathcal{A}\colon L\to L$.

Проведите исследование:

- 1) Проверьте, что L является линейным пространством над полем \mathbb{R} .
- 2) Выберите в нём базис.
- 3) Убедитесь, что отображение \mathcal{A} является линейным (оператором).
- 4) Найдите размерности ядра и образа оператора ${\cal A}$.
- 5) Решите задачу о диагонализации матрицы линейного оператора $\mathcal A$ в выбранном базисе методом спектрального анализа:
 - в случае, если $\mathcal A$ имеет скалярный тип, для диагонализации используйте собственный базис.
 - в случае, если \mathcal{A} имеет общий тип, для диагонализации используйте жорданов базис (приведите матрицу в жорданову форму).
- 6) Выберите произвольно (и нетривиально) функцию f(t) как элемент из L. Найдите её образ умножением на матрицу оператора. Проверьте результат непосредственным вычислением образа. Сравните результаты и трудоёмкость.

№ ком.	п.	Условие	
1	A)	\mathcal{A} — оператор проектирования пространства \mathbb{R}^3 на подпространство L_1 параллельно подпространству L_2 , где L_1 определено системой уравнений $x-y+z=0,\ 2x-3y+4z=0,\ L_2$ — уравнением $2x+3y-4z=0.$	
	Б)	L — множество функций вида $y=e^t(a_0+a_1t+a_2t^2)$, где $a_0,a_1,a_2\in\mathbb{R}$, $\mathcal{A}=\mathcal{D}^2-2\mathcal{D}+\mathcal{I}$, где \mathcal{D} — дифференцирование, т.е. $\mathcal{D}\big(y(t)\big)=\frac{dy}{dt}$.	
2	A)	\mathcal{A} – оператор отражения пространства \mathbb{R}^3 в L_1 параллельно L_2 , где L_1 задано уравнением $x=0,L_2$ – уравнениями $2x=y=-z$.	
	Б)	L — множество многочленов $p(x)$ степени не выше 2, $\mathcal{A}\big(p(x)\big) = \int_{-1}^1 K(x;y) \; p(y) \; dy \;, \; \text{где } K(x;y) = y^2 + 2x(y-1) + (1-3y^2)x^2.$	
3	A)	\mathcal{A} — оператор ортогонального отражения пространства \mathbb{R}^3 относительно L_1 , заданного уравнениями $x=2y=z$.	

	Б)	L — множество функций вида $y=e^{-t}(a\cos t+b\sin t)$, где $a,b\in\mathbb{R}$, $\mathcal{A}=(\mathcal{D}+\mathcal{I})^2$, где \mathcal{D} — дифференцирование, т.е. $\mathcal{D}\big(y(t)\big)=\frac{dy}{dt}$.	
4	A)	\mathcal{A} — оператор проектирования пространства \mathbb{R}^3 на подпространство L_1 параллельно подпространству L_2 , где L_1 определено уравнением $x=y,\ L_2$ — системой уравнений $x+y+z=0,\ 2x+y+4z=0.$	
	Б)	L — множество функций вида $f(x)=a\cos x+b\sin x$, где $a,b\in\mathbb{R}$, $\mathcal{A}\big(f(x)\big)=\int_0^\pi K(x;y)f(y)dy$, где $K(x;y)=\sin(x+y)$.	
5	A)	\mathcal{A} – оператор отражения пространства \mathbb{R}^3 в L_1 параллельно L_2 , где L_1 задано уравнением $y=0, L_2$ – уравнениями $-x=2y=3z$.	
	Б)	L — множество функций вида $y=e^t(a_0+a_1t+a_2t^2)$, где $a_0,a_1,a_2\in\mathbb{R}$, $\mathcal{A}=\mathcal{D}^3-2\mathcal{D}^2$, где \mathcal{D} — дифференцирование, т.е. $\mathcal{D}\big(y(t)\big)=\frac{dy}{dt}$.	
6	A)	\mathcal{A} — оператор проектирования пространства \mathbb{R}^3 на подпространство L_1 параллельно подпространству L_2 , где L_1 определено уравнениями $-20x=15y=12z,\ L_2$ — уравнением $2x+3y-z=0$.	
	Б)	L — множество многочленов $p(x)$ степени не выше 2, $\mathcal{A}\big(p(x)\big) = \int_{-1}^1 K(x;y) \; p(y) \; dy \; , \; \text{где } K(x;y) = 3x^2y + 5xy^2.$	
7	A)	\mathcal{A} — оператор проектирования пространства \mathbb{R}^3 на подпространство L_1 параллельно подпространству L_2 , где L_1 определено уравнением $x=0,\ L_2$ — уравнениями $2x=2y=-z$.	
	Б)	L — множество функций вида $y=a\cos 2t+b\sin 2t+c\ t\cos 2t+d\ t\sin 2t$, где $a,b,c,d\in\mathbb{R},\ \mathcal{A}=\mathcal{D}^2+4\mathcal{I},$ где \mathcal{D} — дифференцирование, т.е. $\mathcal{D}\big(y(t)\big)=\frac{dy}{dt}$.	
8	A)	\mathcal{A} — оператор ортогонального отражения пространства \mathbb{R}^3 относительно L_1 , заданного как линейная оболочка векторов $\vec{a}=(1;0;-1)$ и $\vec{b}=(1;1;-2)$.	
	Б)	L — множество функций вида $f(x) = a + b \cos 2x + c \sin 2x$, где $a, b, c \in \mathbb{R}$, $\mathcal{A}(f(x)) = \int_0^\pi K(x; y) f(y) dy$, где $K(x; y) = \cos^2(x - y)$.	

Задание 2. Евклидовы пространства функций

А) Дано пространство многочленов с вещественными коэффициентами, степени не выше третьей, определенных на отрезке [–1; 1].

Проведите исследование:

- 1) Проверьте, что система векторов $B = \{1, t, t^2, t^3\}$ является базисом этого пространства. Ортогонализируйте систему (построенный ортогональный базис обозначьте B_H).
- 2) Выпишите первые четыре (при n=0,1,2,3) многочлена Лежандра: $L_n(t)=\frac{1}{2^n n!} \; \frac{d^n}{dt^n} ((t^2-1)^n), \; \text{где} \; \frac{d^n}{dt^n} \big(y(t)\big) \text{производная } n\text{-ого порядка функции } y(t).$
- 3) Найдите координаты полученных многочленов $L_n(t)$ в базисе B_H . Сделайте вывод об ортогональности системы векторов $L_n(t)$.
- 4) Разложите многочлен $P_3(t)$, данный в вашем варианте, по системе векторов $L_n(t)$.
- **Б)** Дано пространство R функций, непрерывных (или имеющих конечный разрыв) на отрезке $[-\pi;\pi]$, со скалярным произведением $(f,g)=\int_{-\pi}^{\pi}f(t)g(t)dt$ и длиной вектора $\|f\|=\sqrt{(f,f)}$. Тригонометрические многочлены $P_n(t)=\frac{a_0}{2}+a_1\cos t+b_1\sin t+\cdots+a_n\cos(nt)+b_n\sin(nt)$, где a_k,b_k вещественные коэффициенты, образуют подпространство P пространства R. Требуется найти многочлен $P_n(t)$ в пространстве P, минимально отличающийся от функции f(t) вектора пространства R.

Vказание. Требуется решить задачу о перпендикуляре: расстояние от f(t) до $P_n(t)$ будет наименьшим, если это длина перпендикуляра $h=f(t)-P_n(t)$, опущенного из точки f(t) на подпространство P . В этом случае, $P_n(t)$ будет ортогональной проекцией вектора f(t) на P . Таким образом, требуется найти координаты вектора $P_n(t)$ (коэффициенты многочлена) в заданном базисе P . Если выбран ортонормированный базис, то эти координаты суть проекции вектора f(t) на векторы данного базиса.

Проведите исследование:

- 1) Проверьте, что система функций $\{1,\cos t,\sin t,...\cos nt,\sin nt\}$ является ортогональным базисом подпространства P. Нормируйте систему.
- 2) Найдите проекции вектора f(t) (см. варианты) на векторы полученного ортонормированного базиса.
 - (На вектор $\{1\}$ найдите проекцию отдельно, а проекции на векторы вида $\{\cos(nt)\}$ и $\{\sin(nt)\}$ запишите формулами в зависимости от n. Воспользуйтесь свойствами интегралов от четных и нечетных функций на симметричном промежутке.)
- 3) Запишите минимально отстоящий многочлен $P_n(t)$ с найденными коэффициентами (тригонометрический многочлен Фурье для данной функции).
- 4) Изобразите графики (например, в Desmos) функции f(t) и многочлена Фурье различных порядков n (можно положить n=5;10;15).
- 5) Сделайте вывод о поведении многочлена при росте его порядка.

№ ком.	A)	Б)
1	$P_3(t) = t^3 - 2t^2 + t + 1$	f(t) = 2t

2	$P_3(t) = 2t^3 - t^2 + t + 2$	f(t) = -3t
3	$P_3(t) = t^3 + t^2 + 4t - 3$	f(t) = t + 1
4	$P_3(t) = 2t^3 + 3t + 1$	f(t) = 4t
5	$P_3(t) = t^3 + t^2 + 1$	f(t) = -t + 1
6	$P_3(t) = t^3 - 3t^2 + t$	$f(t) = \operatorname{sign} t$
7	$P_3(t) = t^3 + 2t^2 - 2t + 1$	f(t) = 0.5t
8	$P_3(t) = -t^3 + t^2 - t + 1$	$f(t) = -\operatorname{sign} t$

Задание 3. Приведение уравнения поверхности 2-го порядка к каноническому виду

Дано уравнение поверхности 2-го порядка:

№ команды:

1.
$$2x^2 - 6xy + 2y^2 + z^2 - 25 = 0$$

2.
$$2x^2 + 4y^2 + 2z^2 + 2xz - 12 = 0$$

3.
$$x^2 + 4xy + y^2 - 2z^2 - 12 = 0$$

4.
$$2x^2 - 3y^2 + 2z^2 + 2xz - 12 = 0$$

5.
$$x^2 + 4xz + 5y^2 + z^2 = 0$$

6.
$$2x^2 + 2y^2 + 2yz + 2z^2 - 1 = 0$$

7.
$$3x^2 - 2yz = 0$$

8.
$$2x^2 - 2y^2 - 2yz - 2z^2 - 12 = 0$$

План:

- 1) С помощью теории квадратичных форм приведите к каноническому виду данное уравнение.
- 2) Изобразите график уравнения в исходной системе координат. Какую поверхность оно задаёт? Укажите на графике оси исходной и приведённой систем координат.