

6.2 乘法器电路

6.2.1 非线性器件的特性及相乘作用

一、非线性器件相乘作用的一般分析

一个非线性器件,如二极管电路、三极管电路,若加到器件输入端的电压为v,流过器件的电流为i,则伏安特性为

$$i = f(\upsilon) \tag{6.2.1}$$

其中 $\upsilon = V_Q + \upsilon_1 + \upsilon_2$, V_Q 为静态工作点电压

$$\mathbf{\mathcal{U}}_{1} = V_{1m} \cos \omega_{1} t \quad \mathbf{\mathcal{U}}_{2} = V_{2m} \cos \omega_{2} t$$

信息科学与工程学

将伏安特性采用幂级数逼近,即将 i = f(v) 在 $v = V_Q$

处展开为泰勒级数

$$i = f(\upsilon) = a_0 + a_1 \upsilon' + a_2 \upsilon'^2 + a_3 \upsilon'^3 + \dots + a_n \upsilon'^n$$
 (6.2.2)

式中 $\upsilon' = \upsilon_1 + \upsilon_2$, $a_0, a_1, a_2, a_3, \dots a_n$ 可以由下列通式表示

$$a_n = \frac{1}{n!} \frac{d^n f(v)}{dv^n} \bigg|_{v=V_Q} = \frac{f^n(V_Q)}{n!}$$
 (6.2.3)

由于
$$\upsilon'^n = (\upsilon_1 + \upsilon_2)^n = \sum_{m=0}^n \frac{n!}{m!(n-m)!} \upsilon_1^{n-m} \upsilon_2^m$$

故式 (6.2.2) 可以改写为

$$i = f(v) = \sum_{n=0}^{\infty} \sum_{m=0}^{n} \frac{n!}{m!(n-m)!} a_n v_1^{n-m} v_2^m$$
 (6.2.4)

由式 (6.2.4) 知, 当m=1, n=2时, $i = 2a_2 \upsilon_1 \upsilon_2$, 实现了

v₁ 和 v₂ 的相乘运算,可以起到频谱搬移的作用。

若将 υ_1 和 υ_2 的表达式带入到式 (6.2.4) 中,利用三角

函数变换,不难看出,电流;中包含的频率分量为

$$f_{p,q} = \left| \pm p f_1 \pm q f_2 \right| \tag{6.2.5}$$

式中,p和q是包含零在内的正整数。

因此,为了实现理想的相乘运算可以采取如下措施:

- (1) 从器件的特性考虑。必须尽量减少无用的高阶相乘项及其产生的组合频率分量。为此,应选择合适的静态工作点使器件工作在特性接近平方律的区域,或者选用具有平方律特性的非线性器件(如场效应管)等。
- (2) 从电路考虑。可以用多个非线性器件组成平衡电路,用以抵消一部分无用的频率分量;或采用补偿或负反馈技术实现理想的相乘运算。

(3) 从输入信号的大、小考虑。采用大信号使器件工作在开关状态或工作在线性时变状态,以获得优良的频谱搬移特性。

二、线性时变状态

若 v_2 是小信号, v_1 是大信号, 将式 (6.2.4) 改写为

 υ_2 的幂级数,即将式 (6.2.1)

$$i = f(v) = f(V_Q + v_1 + v_2)$$

在 $V_Q + v_1$ 上对 v_2 展开为泰勒级数式,得到

$$i = f(v) = f(V_Q + v_1 + v_2)$$

$$= f(V_Q + \upsilon_1) + f'(V_Q + \upsilon_1)\upsilon_2 + \frac{1}{2!}f''(V_Q + \upsilon_1)\upsilon_2^2 + \cdots$$

式中, $f(V_Q + \nu_1) = \sum_{n=0}^{\infty} a_n \nu_1^n$ 为函数 $i = f(\nu)$ 在 $\nu = V_Q + \nu_1$

处的函数值;

$$f'(V_Q + v_1) = \sum_{n=1}^{\infty} na_n v_1^{n-1}$$
 为函数 $i = f(v)$ 在 $v = V_Q + v_1$

处的一阶导数值;

$$f''(V_Q + \upsilon_1) = \sum_{n=2}^{\infty} \frac{n!}{(n-2)!} a_n \upsilon_1^{n-2}$$
 为函数 $i = f(\upsilon)$ 在 $\upsilon = V_Q + \upsilon_1$

处的二阶导数值;

·· 原科学与工程学

当 v_2 足够小时,可以忽略二次方以上的各高次方项,则上式可简化为

$$i = f(V_Q + \nu_1 + \nu_2) \approx f(V_Q + \nu_1) + f'(V_Q + \nu_1)\nu_2$$
 (6.2.7)

式中 $I_0(\upsilon_1) = f(V_O + \upsilon_1)$ 是 $\upsilon_2 = 0$ 时的电流, 称为时变静

态 ($\upsilon_2 = 0$ 时的工作状态) 电流,与 υ_2 无关,是 υ_1 的非

线性函数。

式 (6.2.7) 可以改写为

$$i \approx I_0(\nu_1) + g(\nu_1)\nu_2$$
 (6.2.8)

上式表明,电流 i 与 v_2 之间的关系是线性的,类似于线性器件,但系数是时变的,所以将这种器件的工作状态 称为线性时变状态。

如当 $v_1 = V_{1m} \cos \omega_1 t$ 时,则 $g(v_1)$ 的傅立叶展开式为

$$g(v_1) = g(V_{1m} \cos \omega_1 t)$$

$$= g_0 + g_{1m} \cos \omega_1 t + g_{2m} \cos 2\omega_1 t + \cdots$$
 (6.2.9)

其中
$$g_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} g(v_1) d\omega_1 t$$
 (6.2.10) (a)

$$g_{nm} = \frac{1}{\pi} \int_{-\pi}^{\pi} g(v_1) \cos n\omega_1 t d\omega_1 t \qquad (n \ge 1)$$

(**6.2.10**) (b)

当 $\upsilon_2 = V_{2m} \cos \omega_2 t$ 时,电流 i 中包含的组合频率分量

的通式为 $|\pm pf_1 \pm f_2|$ 。其中的有用频率分量为 $|\pm f_1 \pm f_2|$

由 $g_{1m}\cos\omega_1t\cdot\upsilon_2$ 项获得。

院

6.2.2 二极管电路

一、单二极管电路

图6.2.1 二极管电路 (a) 原理电路 (b) 伏安特性

单二极管电路如图6.2.1 (a) 所示,二极管的伏安特性如图6.2.1(b)所示。

设 $\upsilon = \upsilon_1 + \upsilon_2$ 当 $\upsilon_1 = V_{1m} \cos \omega_1 t$ $\upsilon_2 = V_{2m} \cos \omega_2 t$ 时,

若 $V_{1m} \gg V_{2m}$, V_{1m} 足够大,二极管将在 υ_1 的控制下轮流工作在导通区和截止区。

当 $v_1 \ge 0$ 时,二极管导通,流过二极管的电流为

$$i = \frac{\upsilon}{R_D + R_L} = \frac{\upsilon_1 + \upsilon_2}{R_D + R_L}$$

当 $v_1 < 0$ 时,二极管截止,则流过二极管的电流为 i = 0

故在心 的整个周期内,流过二极管的电流可以表示为

$$i = \begin{cases} \frac{\upsilon_1 + \upsilon_2}{R_D + R_L}, \stackrel{\text{\psi}}{=} \upsilon_1 \ge 0 \text{ b} \\ 0, \stackrel{\text{\psi}}{=} \upsilon_1 < 0 \text{ b} \end{cases}$$
 (6.2.11)

引入高度为1的单向周期性方波(称为单向开关函数)

 $k_1(\omega_1 t)$ 如图6.2.2 (c) 所示。

$$k_{1}(\omega_{1}t) = \begin{cases} 1, & \exists \upsilon_{1} \geq 0 \text{时} \\ 0, & \exists \upsilon_{1} < 0 \text{时} \end{cases}$$
 (6.2.12)

于是,电流i可表示为

$$i = \frac{\upsilon_{1} + \upsilon_{2}}{R_{D} + R_{L}} k_{1}(\omega_{1}t)$$

$$= \frac{1}{R_{D} + R_{L}} \upsilon_{1} k_{1}(\omega_{1}t) + \frac{1}{R_{D} + R_{L}} k_{1}(\omega_{1}t) \upsilon_{2}$$

$$= I_{0}(t) + g(t)\upsilon_{2}$$
(6.2.13)

其中 $I_o(t)$ 、g(t) 的波形如图6.2.2 (a)、(b)所示。

图6.2.2 单二极管电路的图解分析

信息科学与工程学院

因此,可将二极管等效为受 $v_1(t)$ 控制的开关,按角

频率 ω_1 作周期性的启闭,闭合时的导通电阻为 R_D

如图6.2.3所示。

图6.2.3 二极管开关等效电路

单向开关函数 $k_1(\omega_1 t)$ 的傅立叶级数展开式为

$$k_{1}(\omega_{1}t) = \frac{1}{2} + \frac{2}{\pi}\cos\omega_{1}t - \frac{2}{3\pi}\cos3\omega_{1}t + \dots$$

$$= \frac{1}{2} + \sum_{n=1}^{\infty} (-1)^{n-1} \frac{2}{(2n-1)\pi}\cos(2n-1)\omega_{1}t$$
(6.2.14)

代入式 (6.2.13) 中,可得电流 i 中包含的频率分量为

$$2n\omega_1 \cdot (2n-1)\omega_1 \pm \omega_2 \cdot \omega_1 \cdot \omega_2$$
 , 其中有用成分为

$$i_{\text{fill}} = \frac{2}{\pi} \frac{1}{R_D + R_I} \upsilon_2 \cos \omega_1 t$$
 (6.2.15)

电路可以实现频谱搬移的功能。

二、双二极管平衡开关电路

图6.2.4 (a) 所示中。若二极管 D_1 , D_2 的伏安特性均可用自原点转折的两段折线逼近,且导通区折线的斜率均为 $g_D = 1/R_D$ 。

 T_{r_1} 和 T_{r_2} 为带有中心抽头的宽频带变压器

(如传输线变压器),其初、次级绕组的匝数比分别为1:2和2:1。相应的等效电路如<u>图6.2.4</u> (b)_所示。

图6.2.4双二极管平衡开关电路

当 $\upsilon_1 = V_{1m} \cos \omega_1 t$ 、 $\upsilon_2 = V_{2m} \cos \omega_2 t$ 时,若 $V_{1m} \gg V_{2m}$, V_{1m}

足够大,二极管将在 υ_1 的控制下轮流工作在导通区和截止区。

当 $\upsilon_1 \ge 0$ 时,二极管D₁导通,

D₂截止,流过二极管D₁的电流为

$$i_1 = \frac{1}{R_D + 2R_L} \upsilon = \frac{1}{R_D + 2R_L} (\upsilon_1 + \upsilon_2)$$

流过二极管 D_2 的电流为 $i_2=0$

流过负载的总电流为

$$i_L = i_1 - i_2 = \frac{1}{R_D + 2R_L} (\nu_1 + \nu_2)$$

当 $\upsilon_1 < 0$ 时,二极管 D_1 截止,

D2导通,则流过二极管D1

的电流为 $i_1 = 0$

流过二极管D2的电流为

$$i_2 = \frac{1}{R_D + 2R_L} (-\nu_1 + \nu_2)$$

流过负载的总电流为

$$i_L = i_1 - i_2 = \frac{1}{R_D + 2R_L} (\nu_1 - \nu_2)$$

信息科学与工程学

在 υ 的整个周期内,流过负载的总电流可以表示为

$$i_{L} = \begin{cases} \frac{1}{R_{D} + 2R_{L}} (\upsilon_{1} + \upsilon_{2}), & \stackrel{\text{\pmathered}}{=} \upsilon_{1} \geq 0$$
时
$$\frac{1}{R_{D} + 2R_{L}} (\upsilon_{1} - \upsilon_{2}), & \stackrel{\text{\pmathered}}{=} \upsilon_{1} < 0$$
时

利用单向开关函数 $k_1(\omega_1 t)$, 可以将上式表示为

$$i_{L} = \frac{1}{R_{D} + 2R_{L}} (\upsilon_{1} + \upsilon_{2}) k_{1}(\omega_{1}t) + \frac{1}{R_{D} + 2R_{L}} (\upsilon_{1} - \upsilon_{2}) k_{1}(\omega_{1}t - \pi)$$

$$= \frac{1}{R_{D} + 2R_{L}} \upsilon_{1} + \frac{1}{R_{D} + 2R_{L}} \upsilon_{2} k_{2}(\omega_{1}t)$$
(6.2.16)

程

式中, $k_2(\omega_1 t)$ 称为双向开关函数(高度为1的双向周期性方波),如图 6.2.5所示。

双向开关函数的傅 立叶展开式为:

图6.2.5 开关函数 $k_1(\omega_1 t)$ 与 $k_2(\omega_1 t)$ 的关系

$$k_{2}(\omega_{1}t) = \frac{4}{\pi}\cos\omega_{1}t - \frac{4}{3\pi}\cos3\omega_{1}t + \dots$$

$$= \sum_{n=1}^{\infty} (-1)^{n-1} \frac{4}{(2n-1)\pi}\cos(2n-1)\omega_{1}t$$
(6.2.17)

$$i_L = \frac{1}{R_D + 2R_L} \upsilon_1 + \frac{1}{R_D + 2R_L} \upsilon_2 k_2(\omega_1 t)$$

将式 (6.2.17) 代入 (6.2.16) 式中可知, 电流 i_L

中包含的频率分量为 ω_1 , $(2n-1)\omega_1 \pm \omega_2$, 且输出电流的

幅度是单二极管电路输出电流幅度的两倍。

$$i_{\text{fiff}} = \frac{1}{R_D + 2R_I} \frac{4}{\pi} \upsilon_2 \cos(\omega_1 t)$$
 (6.2.18)

显然电路也可以实现频谱搬移的功能。

三、二极管环形电路

二极管环形电路如图6.2.6 (a) 所示。

当 $\upsilon_1 = V_{1m} \cos \omega_1 t$ $\upsilon_2 = V_{2m} \cos \omega_2 t$ 时,若 $V_{1m} \gg V_{2m}$

 V_{1m} 足够大,二极管 D_1 、 D_2 、 D_3 、 D_4 将在 O_1 的控制下轮流

工作在导通和截止区域。

在理想情况下,完全它们互不影响, 22 二 二 公管环形电路 是由两个平衡电路路组成。

图6.2.6

信息科学与工程

쨦

当 v_1 为正半周时, D_1 、 D_2 导通, D_3 、 D_4 截止,等效电

路如图6.2.6 (b)

所示; D₁、D₂组

成一个平衡电路。

(b)

信息科学与工程

院

当 υ_1 为负半周时, D_1 、 D_2 截止, D_3 、 D_4 导通,等

效电路如图

6.2.6 (c) 所示;

D₃、D₄组成一

个平衡电路。

图6.2.6 二极管环形电路

因此,二极管环形电路又称为二极管双平衡电路。可以证明,流过负载的电流可以表示为

$$i_L = \frac{2\upsilon_2}{R_D + 2R_I} k_2(\omega_1 t)$$
 (6.2.19)

显然, i_L 中包含的频率分量为 $(2n-1)\omega_1 \pm \omega_2$, (n=0,1,2,...) 若 ω_1 较高,则 $3\omega_1 \pm \omega_2$ 、 $5\omega_1 \pm \omega_2$, ...,

等组合频率分量很容易滤除,故环形电路的性能更接近理想相乘器,这是频谱线性搬移电路要解决的核心问题。

$$i_{\text{fiff}} = \frac{2}{R_D + 2R_L} \frac{4}{\pi} v_2 \cos(\omega_1 t)$$
 (6.2.20)

6.2.3、三极管电路及差分对电路

一、晶体三极管电路

晶体三极管电路如

图6.2.7所示,若忽略

输出电压 v_{CE} 的反

作用,晶体三极管 的转移特性为

图6.2.7 晶体三极管电路

$$i_C = f(\upsilon_{BE}, \upsilon_{CE}) \approx f(\upsilon_{BE})$$

式中
$$\upsilon_{BE} = V_Q + \upsilon_1 + \upsilon_2 = V_{BB}(t) + \upsilon_2$$

信息科学与工程以

设图中参考信号 $\upsilon_1 = V_{1m} \cos \omega_1 t$, 输入信号

 $\upsilon_2 = V_{2m} \cos \omega_2 t$,且 $V_{1m} \gg V_{2m}$ 、 V_{1m} 足够大、 V_{2m} 很小。

此时转移特性可以表示为

$$i_C = f(\nu_{BE}) = f(V_Q + \nu_1 + \nu_2) = f(V_{BB}(t) + \nu_2)$$
 (6.2.21)

利用式 (6.2.7) 、 (6.2.8) 可得

(在 $V_o + v_1$ 上对 v_2 展开为泰勒级数式,得到)

$$i_C \approx I_C(t) + g(t)\nu_2 \tag{6.2.22}$$

式中, $I_C(t) = f[V_{BB}(t)]$ 为时变工作点处的电流,随 υ_1 周期性的变化。

$$g(t) = f'[V_{BB}(t)] = \frac{di}{dv_{BE}}\bigg|_{v_{BE} = V_{BB}(t)}$$

为晶体管的时变跨导,也随 υ_1 周期性的变化。

它们的傅立叶级数展开式分别为

$$I_C(t) = I_0 + I_{1m} \cos \omega_1 t + I_{2m} \cos 2\omega_1 t + \cdots$$
 (6.2.23)

$$g(t) = g_0 + g_{1m} \cos \omega_1 t + g_{2m} \cos 2\omega_1 t + \cdots$$
 (6.2.24)

$$i_C \approx I_C(t) + g(t)v_2$$

电流 i_C 中包含的频率分量为 $n\omega_1$ 和 $n\omega_1 \pm \omega_2$ ($n = 0, 1, 2, \cdots$)

用滤波器选出所需频率分量,就可以完成频谱线性搬移功能。同时,完成频谱搬移功能的有用项是

$$i_{C \neq \mathbb{H}} = g_{1m} \upsilon_2 \cos \omega_1 t \tag{6.2.25}$$

即 g(t) 中的基波分量与 v_2 的相乘项。

显然,频谱搬移效率或灵敏度与基波分量振幅 g_{1m} 有关。

10 点科学与工程

二、场效应管电路

结型场效应管电路如图6.2.9所示,图(a)为实用电路,(b)为原理电路。

场效应管的转移特 性可以近似表示为

$$i_D = I_{DSS} (1 - \frac{\upsilon_{GS}}{V_{GS(off)}})^2$$

为结型场效应管的夹断电压。

图6.2.9 结型场效应管电路

(b) 原理电路

(6.2.26)

· 点科学与工程

由图(b)知,

$$\upsilon_{GS} = V_{GSQ} + \upsilon_1 + \upsilon_2$$

其中:

 V_{GSQ} 为静态工作点电压,

$$\upsilon_1 = V_{1m} \cos \omega_1 t$$

为参考信号,

$$v_2 = V_{2m} \cos \omega_2 t$$

为输入信号。

图6.2.9 结型场效应管电路

(b) 原理电路

显然, i_D 中包含的频率分量只有 ω_1 , $2\omega_1$, $\omega_1 \pm \omega_2$, ω_2 , $2\omega_2$

比晶体三极管频谱搬移电路的频率分量少的多。

三、差分对电路

差分对频谱搬移电路如图6.2.11所示。

图 (a) 中, T_3 管的集电极电流 i_3 作为差分对管 T_1 、 T_2

的电流源,且 $\upsilon_2 = \upsilon_{BE3} + i_3 R_e - V_{EE}$

图6.2.11 差分对频谱搬移电路及其电流传输特性

若忽略 T_3 管的发射结电压 v_{BE3} ,可以得到

$$i_3 = \frac{\upsilon_2}{R_a} + \frac{V_{EE}}{R_a} = A + B\upsilon_2$$
 (6.2.31)

其中 $A = \frac{V_{EE}}{R_e}$ 为 T_3 管的静态工作点电流, $B = \frac{1}{R_e}$

差分对电路的差模输出电流为

$$i_L = i_1 - i_2 = i_3 th(\frac{\upsilon_1}{2V_T}) = (\frac{V_{EE}}{R_e} + \frac{\upsilon_2}{R_e})th(\frac{\upsilon_1}{2V_T})$$
 (6.2.32)

显然,差分对电路的差模输出电流 i_L 与 υ_1 的关系为非

线性的双曲正切函数[$th(\frac{v_1}{2V_T})$]关系,曲线如图<u>6.2.11(b)</u>

所示。

由双曲正切函数的特性知:

(1) 当
$$\frac{V_{1m}}{V_T}$$
<1时,即输入电压 v_1 较小时, $th(\frac{v_1}{2V_T}) \approx \frac{v_1}{2V_T}$

电路工作在线性放大区,如<u>图4.2.12</u>中输出曲线1所示, 此时

$$i_L = i_3 th(\frac{\upsilon_1}{2V_T}) \approx (\frac{V_{EE}}{R_e} + \frac{\upsilon_2}{R_e}) \frac{\upsilon_1}{2V_T}$$
 (6.2.33)

输出电流中包含的频率分量为 ω_1 、 $\omega_1 \pm \omega_2$,电路能够完成频谱搬移功能。

图6.2.12 差分对电路的图解分析

(2) 若输入信号 v_1 很大,一般应满足 $\frac{V_{1m}}{V_T} > 4$ 的条件,

双曲正切函数可以近似为双向开关函数,如<u>图6.2.12</u>中 输出曲线2所示,即

$$th(\frac{\upsilon_1}{2V_T}) \approx k_2(\omega_1 t)$$

差模输出电流为

$$i_L = i_3 t h(\frac{\upsilon_1}{2V_T}) \approx (\frac{V_{EE}}{R_e} + \frac{\upsilon_2}{R_e}) k_2(\omega_1 t)$$
 (6.2.34)

电路工作在开关状态,输出电流中包含的频率分量为

$$(2n-1)\omega_1$$
、 $(2n-1)\omega_1 \pm \omega_2$ 能够实现频谱搬移功能。

(3) 若输入电压 υ_1 的大小介于上述(1)、(2)两

种情况之间,当 $v_1(t) = V_{1m} \cos \omega_1 t$, $x_1 = \frac{V_{1m}}{V_T}$

则双曲正切函数的傅立叶级数展开为

$$th(\frac{\nu_1}{2V_T}) = th(\frac{x_1}{2}\cos\omega_1 t) = \sum_{n=1}^{\infty} 2\beta_{2n-1}(x_1)\cos(2n-1)\omega_1 t$$

于是得到输出电流为

$$i_{L} = i_{3}th(\frac{\upsilon_{1}}{2V_{T}}) = (\frac{V_{EE}}{R_{e}} + \frac{\upsilon_{2}}{R_{e}})\sum_{n=1}^{\infty} 2\beta_{2n-1}(x_{1})\cos(2n-1)\omega_{1}t$$
(6.2.35)

电路工作在线性时变状态,输出电流中包含的频率分

量为 $(2n-1)\omega_1$ 、 $(2n-1)\omega_1 \pm \omega_2$,同样能够实现频谱搬移功能。

見科学与 エ

程

6.2.4 集成模拟乘法器

一、双差分对相乘器电路(吉尔伯特乘法器单元)

由图6.2.14知,差分 对T1、T2的差模输出 电流为

$$i_1 - i_2 = i_5 th(\frac{D_1}{2V_T})$$

差分对T₃、T₄的差模 输出电流为

$$i_4 - i_3 = i_6 th(\frac{D_1}{2V_T})$$

图6.2.14 吉尔伯特乘法器单元

故双差分对模拟相乘器的差 值输出电流为

$$i = (i_1 - i_2) - (i_4 - i_3)$$
$$= (i_5 - i_6)th(\frac{\upsilon_1}{2V_T})$$

其中,晶体管T5和T6差分 对管的差模输出电流值为

$$i_5 - i_6 = I_0 th(\frac{\upsilon_2}{2V_T})$$

图6.2.14 吉尔伯特乘法器单元

因而双差分对相乘器电路的输出电流为

$$i = (i_5 - i_6)th(\frac{\upsilon_1}{2V_T}) = I_0 th(\frac{\upsilon_2}{2V_T})th(\frac{\upsilon_1}{2V_T})$$
 (6.2.37)

显然,该电路不能实现两个电压 υ_1 、 υ_2 的相乘运算,仅提供了两个非线性函数(双曲正切)相乘的特征。但由双曲正切函数的特性知:

(1) 当 $|v_1| \le 26 \text{mV}$, $|v_2| \le 26 \text{mV}$ 时,式(6.2.37)可以

近似为
$$i = I_0 th(\frac{\upsilon_2}{2V_T}) th(\frac{\upsilon_1}{2V_T}) \approx I_0 \frac{\upsilon_1 \upsilon_2}{4V_T^2}$$
 (6.2.38)

实现了两个电压 v_1, v_2 的相乘运算。

(2) 当 $|\nu_2| \le 26 \text{mV}$, ν_1 为任意值时,式(6.2.37)可以 近似为

$$i = I_0 th(\frac{\upsilon_2}{2V_T}) th(\frac{\upsilon_1}{2V_T}) \approx \frac{I_0}{2V_T} th(\frac{\upsilon_1}{2V_T}) \upsilon_2$$
 (6.2.39)

实现了线性时变工作状态。

(3) 当
$$|\upsilon_2| \le 26 \text{mV}$$
, $|\upsilon_1| \ge 260 \text{mV}$ 时, $th(\frac{\upsilon_1}{2V_T}) \approx k_2(\omega_1 t)$ 输出电流可表示为

$$i = I_0 t h(\frac{\upsilon_2}{2V_T}) t h(\frac{\upsilon_1}{2V_T}) \approx \frac{I_0}{2V_T} \upsilon_2 k_2(\omega_1 t)$$
 (6.2.40)

实现了开关工作。

二、MC1496/1596 集成模拟相乘器

根据双差分对模拟相乘器基本原理制成的单片集成模拟相乘器 MC1496/1596 的内部电路如<u>图</u>6.2.15 (a) 所示,引脚排列如图 (b)所示,电路内部结构与图 6.2.14 基本类似。

信息科学与工程学

院

图6.2.15 单片集成模拟相乘器 MC1496/1596 的内部电路及其引脚排列

44

科

R_v 的作用是扩大输入电压 v_2 的动态范围,其基本原理

如下:

电路满足深度负反馈 的条件,于是

$$\upsilon_2 = \upsilon_{BE5} + i_e R_v - \upsilon_{BE6}$$

其中
$$\upsilon_{BE5} - \upsilon_{BE6} = V_T \ln i_5/i_6$$

*U*2 动态范围的扩展 图6.2.16

所以,上式可以简化为 $\upsilon_2 \approx i_e R_v$

$i_5 - i_6 = 2i_e \approx \frac{2v_2}{R_v}$

双差分对模拟相乘器的差值输出电流为

$$i = (i_5 - i_6)th(\frac{\upsilon_1}{2V_T}) \approx \frac{2\upsilon_2}{R_y}th(\frac{\upsilon_1}{2V_T})$$
 (6.2.41)

此时心,允许的最大动态范围为(求证过程忽略)

$$-(\frac{1}{4}I_0R_y + V_T) \le \upsilon_2 \le (\frac{1}{4}I_0R_y + V_T)$$
(6.2.42)

三、MC1595 集成模拟相乘器

作为通用的模拟相乘器,还需将 υ_{\parallel} 的动态范围进行扩展。

MC1595 (或BG314) 就是在MC1496的基础上增加了 ν_1 动态范围扩展电路,使之成为具有四象限相乘功能的通用集成器件,如图6.2.17所示。图 (a) 为MC1595的内部电路,(b)为相应的外接电路。

信息科学与工程

麽

图6.2.17 集成模拟乘法器MC1595(BG314)的内部电路及相应的外接电路

程

v₁动态范围的扩展原理。为分析方便,将 $T_7 \sim T_{10}$ 管组成的补偿电路简化为图4.2.18所

示的形式。

由图知:

R、为深度负反馈电阻,所以

$$i_9 - i_{10} \approx \frac{2\nu_1}{R_x}$$

v₁的动态范围为

$$-(\frac{1}{4}I_0R_x + V_T) \le v_1 \le (\frac{1}{4}I_0R_x + V_T)$$

程

当三极管T7~T10的

 β 值足够大时,

$$i_7 \approx i_9 \cdot i_8 \approx i_{10} \cdot I_k \approx I_0'$$

又由于

$$\upsilon_{BE7} - \upsilon_1' - \upsilon_{BE8} = 0$$

所以:

$$\upsilon_{BE7} - \upsilon_{BE8} = \upsilon_1'$$

图6.2.18 U_1 动态范围的扩展

$\vec{n} \quad i_7 - i_8 = i_9 - i_{10} = I_k th(\frac{\upsilon_{BE7} - \upsilon_{BE8}}{2V_T}) = I_0' th(\frac{\upsilon_1'}{2V_T})$

于是得到

$$v_1' = 2V_T arcth \frac{i_9 - i_{10}}{I_0'} = 2V_T arcth \frac{2v_1}{I_0'R_x}$$

 υ_1' 即为图6.2.15中的输入电压 υ_1

将上式代入式 (6.2.41) 中得到

$$i = \frac{4\nu_1 \nu_2}{I_0' R_x R_y} = A_M \nu_1 \nu_2$$
 (6.2.44)

式中
$$A_M = \frac{4}{I_0'R_xR_y}$$
 为乘法器的乘法系数。

作业

6.8 6.9 6.12 6.14 6.23

预习: 6.3