Kommunikationstechnik - S4

Raphael Nambiar Version: 25. Mai 2023

OSI-Modell

Dienst

Klassifizierung von Diensten:

Verbindungsorientiert	verbindungslos
Verbindungs-Aufbau nötig	Jederzeit Nachrichten schicken
Ziel muss bereit sein	Ziel muss nicht «bereit» sein

Zuverlässig	Unzuverlässig
Kein Datenverlust	
Sicherung durch	Möglicher Datenverlust
Fehler-Erkennung	Keine Sicherung
-/ Korrektur	
Text-Nachrichten, Backup	Streaming
Dateidienste	Voip

Schicht

Eine Schicht hat die Aufgabe der darüberliegenden Schicht bestimmte Dienste zur Verfügung zu stellen. Die Schichten benötigen kein Wissen über die Realisierung der darunterliegenden Schicht.

Protokoll

Ein Protokoll ist eine Sammlung von Nachrichten, Nachrichtenformaten und Regeln zu deren Austausch. In der Technik ist ein Kommunikationsprotokoll eine Vereinbarung, die festlegt wie eine Datenübertragung zwischen Kommunikationspartnern abläuft.

Übertrangungsmedien

Ausbreitungsgeschwindigkeit

Lichtgeschwindigkeit im Vakuum:

$$c_0 = 299'792'458m/s$$

Ausbreitungsgeschwindigkeit in Medien:

$$c_{Medium}=200'000km/s=\frac{2}{3}c_0$$

Beispiel:

Licht im Glas, Brechnungsindex n=1.5

$$c_{Glas} = \frac{c_0}{n} = 200'000km/s$$

Signaldämpfung

Signaldämpfung bezeichnet die Leistungsabnahme eines Signals.

- Je grösser die Bandbreite (Hz), desto höhere Datenraten (bit/s) übertragen
- Je kleiner die Dämpfung ist, desto grössere Distanzen können erreicht werden
- Senkt man die Bitrate (bei gleicher Dämpfung), können grössere Distanzen erreicht werden

$$dB = 10 \cdot log(\frac{P_1}{P_2})$$

$$dB = 10 \cdot log(\frac{U_1}{U_2})^2$$

Signal-Rausch-Verhältnis (SNR)

Das SNR ist ein Mass für die Qualität eines Signals. Es gibt an, wie stark das Signal im Vergleich zum Rauschen ist.

$$SNR = 10 \cdot log(\frac{P_{Signal}}{P_{Noise}})$$

In dB angegeben.

Signale und Störungen

Mögliche Ursachen der Störungen:

- Übersprechen zwischen den Leitungen
- Rauschen des Empfängers
- Einstreuungen durch andere Geräte / Anlagen (Motoren etc.)

Kabeltypen

- Koaxialkabel → Geeignet für hochfrequente Signale
- Twinaxial-Kabel → Hoher Schutz
- Twisted Pair (TP) → Häufig im Einsatz (Shielded / Unshielded)
- Glasfaser → Hohe Bandbreite, Geringe Dämpfung, Resistent

Schirmeigenschaften

- Drahtgeflecht →niederfrequente Einstreuungen
- Metallisch beschichtete Folien → hochfrequente Störungen

xx/vTP worin TP für Twisted Pair steht:

TP Kabel und Störungen

- TP Kabel sind anfälliger auf Störungen als Koaxialkabel oder Glasfasern
- Störungen werden kapazitiv oder induktiv eingekoppelt z.B. von parallel geführten Leitungen oder Motoren etc.
- Bei Störungen von benachbarten Leitungen spricht man von Übersprechen oder Nebensprechen (crosstalk)

Fausregel:

- Kappazitive Störung → Abschirmung
- \bullet Induktive Störung \rightarrow twisted

Lichtwellenleiter

- Zentrum aus Kernglas mit hoher optischer Dichte (Brechungsindex 1.5)
- Vom Mantelglas umschlossen, geringere optische Dichte (Brechungsindex 1.48)
- Lichtstrahlen breiten sich im Kernglas aus und werden am Mantelglas totalreflektiert

 Die Eigenwellen (Ausbreitungswege der Lichtstrahlen) werden als Moden bezeichnet.

Physical Layer

Arten der Kommunikation (Verkehrsbeziehung)

- Simplex → Ein Kanal, in eine Richtung
- Halbduplex → Ein Kanal, abwechslungsweise in zwei Richtungen
- Vollduplex → Ein Kanal pro Richtung

Arten der Verbindungen (Kopplung)

Punkt - **Punkt** Direkte Verbindung zweier Kommunikationspartner

Shared Medium Mehrere Partner verwenden das gleiche Medium

Leitungscodes

Leitungscodes sollen:

- die physikalisch vorhandene Bandbreite effizient nutzen
- Taktrückgewinnung erlauben, um eine separate Taktleitung einzusparen
- möglichst gleichspannungsfrei sein, um Sender und Empfänger mit Übertragern (Signaltransformatoren, Magnetics) galvanisch trennen zu können.

Beispiele:

- 3-wertiger AMI-Code (Alternate Mark Inversion)
- PAM3 Kanalcodierung

Serielle asynchrone Übertragung

 $LSB = {\sf Least \; Significant \; Bit}, \; MSB = {\sf Most \; Significant \; Bit}$

Wichtig:

Übertragener Wert ablesen: LSB zuerst, MSB zuletzt $1101^{\circ}0100 \rightarrow LSB$ zuerst $\rightarrow 0100^{\circ}1101$

Serielle synchrone Übertragung

Datenübertragungsrate

- Baudrate → Symbole pro Sekunde
- Zeichenrate → Zeichen pro Sekunde

Frequenz

Die Frequenz ist die Anzahl der Schwingungen pro Sekunde. Masseinheit Hertz (Hz)

Bit-Dauer

T[s] = Bit-Dauer, B = Baud

$$T = \frac{1}{B}$$

maximale Symbolrate

Die maximale Symbolrate f_s (Baud) ist gleich der doppelten Bandbreite B (Hz) des Übertragungskanals.

Einheit: Baud (Bd)

Nyquist:

$$f_s = 2 \cdot B$$

Maximal erreichbare Bitrate

R [bit/s] = Bitrate

$$R \leqslant 2B \cdot log_2 M$$
$$log_2(x) = \frac{log_{10}(x)}{log_{10}(2)}$$

Bandbreite

Die Bandbreite hängt von der Übertragungsstrecke und der Stärke des Signals im Vergleich zu den vorhandenen Störungen, ab.

- Eigenschaft des Übertragungskanals und durch das Medium begrenzt
- Masseinheit Hertz (Hz)

Kanalkapazität

Berücksichtigt für einen realen Kanal das Signal-zu-Rausch Leistungverhältnis S/N (Shannon) Einheit Bit/s (bps)

$$C_s = B \cdot log_2(1 + \frac{S}{N})$$

$$log_2(x) = \frac{log_{10}(x)}{log_{10}(2)}$$

Data Link Layer (Sicherungsschicht)

Framing (Asynchron)

- Keine Daten → Nichts wird gesendet
- Zu Beginn eines Frames wird ein Start-Bit gesendet

Framing (Synchron)

- Frames werden ohne Unterbruch gesendet
- Stehen keine Daten an, werden Flags gesendet
- Frames werden durch ein Start- und ein End-Flag begrenzt

Bitstopfen

Wird verwendet, um ein Bitmuster zu garantieren.

- Sender fügt im Datenstrom nach 5 Einsen immer eine 0 ein.
- Empfänger wirft nach 5 Einsen immer ein Bit weg.

${\bf Fehler erkennung}\ /\ {\bf Fehler korrektur}$

- FER (Frame Error Ratio)
- RER (Residual Error Ratio)
- BER (Bit Error Ratio) Anzahl fehlerhafte Bits im Verhältnis zu Gesamtzahl der Bits

Wahl der Framelänge

- ullet Lange Frames o Höhere Nutzdatenrate, Fehleranfällig
- ullet Kurze Frames o Tiefere Nutzdatenrate, Zuverlässig

Datenraten

$$F_R = FrameRate, B = BitRate, F_L = FrameLength$$

 $N = NutzBits, P = Payload$

$$F_R = \frac{B}{8 \cdot (F_L + IFG)}$$
$$N = F_R \cdot P \cdot 8$$

Ethernet 1 (LAN, Grundlagen)

Topologien

- Alle Stationen: sind passiv angeschlossen, horchen Leitung permanent ab, werden aktiv, wenn sie etwas senden wollen
- Taktrückgewinnung erlauben, um eine separate Taktleitung einzusparen
- Empfänger erkennt anhand einer Adresse, ob die Daten für ihn relevant sind

Linie -

- Punkt-zu-Punkt Verbindungen zwischen benachbarten Knoten
- Alle Stationen müssen: Daten empfangen, Daten regenerieren, falls nötig weiterleiten
- Der Ausfall einer Station führt zur Segmentierung des LAN in zwei Teile

- Benötigt Verfahren zur Verhinderung von endlosem Kreisverkehr"
- Gewisse Redundanz: beim Ausfall einer Station kann immer noch jede Station erreicht werden

Vermascht

- Weitere Erhöhung der Redundanz:
- Ausfall einer oder eventuell auch mehrerer Stationen oder Verbindungen kann toleriert werden
- Zusätzliche Kosten und Aufwand, um mehrfache Lieferung von Daten zuverhindern

- Jede Station an zentralen Verteiler (Switch/Bridge) angeschlossen
- Verteiler entkoppelt Knoten elektrisch und macht LAN weniger störungsanfällig
- Verteiler sendet Daten, die er von einerStation erhält, an die anderen Knoten weiter

- Hierarchische Erweiterung der Sterntopologie
- Intelligenten Switches ermöglichen einen Grossteil der Kommunikation "lokal"
- Dadurch Verringerung der Last für die einzelnen Switches

Übertragungsarten

Multicast

- Genau ein, klar spezifizierter Empfänger
- Frame trägt die Adresse dieses Empfängers
- Analogie: Briefpost

Gruppe von Empfängern

Adresse der Gruppe

• Analogie: Mailing-Liste

• Frame trägt die Multicast-

- · An alle Knoten im LAN gerich-
- Frame trägt die Broadcast-Adresse des LAN
- Analogie: Radio-Sendestation

10 Mbit/s (10BASE-T) Manchester Codierung

1 = locally administrated address

Universally/Locally Bit (U/L):

• Erlaubt die Taktrückgewinnung auf einfache Weise: weil Bei jedem Bit gibt es einen Signalwechsel

erstes gesendetes Bit

Individual / Group (I/G)

Universally / Locally (U/L)

- Bandbreite von 10 MHz benötigt (also das doppelte des theoretischen Minimums)
- 1 positive Flanke, 0 negative Flanke

04 - 0A - E0 - 13 - 14 - 26

1 = group address z.B. Broadcast FF-FF-FF-FF-FF

0 = universally administrated address (Normalfall)

MAC Adressen

Adressierung in LANs, bestehen aus 6 Bytes

Registrierung bei IEEE

- 3-Byte "OUI" identifiziert Hersteller
- 3-Byte Laufnummer durch Hersteller verwaltet

Zwei Bits klassifizieren die MAC Adresse:

100 Mbit/s (100BASE-TX) NRZI-Codierung

- NRZI-Codierung (Non Return to Zero Inverted), kombiniert mit MLT-3 (MLT-3 = Multi-Level Transmit) 125 MBaud \rightarrow 1 Symbol entspricht 8 ns
- 4B/5B Code Leitungscodierung
- 4 Bits des MII (Zeichen) werden mit einem 5 Bit-Zeichen (Code Group) auf der Leitung codiert

011001010010001000110

Ethernet – Frame Format

- Length/Type (2 Bytes):
 - Fall 1: L\u00e4nge von DATA ohne PAD (≤ 1500)
 - Fall 2: Typ von DATA = Protokoll der nächsten Schicht (≥ 1536))
 - Beispiel: 0x0800 für IP
- Data / Padding (46 1500 Bytes):
 - Enthält die eigentlichen Datenbytes (Nutzinformation)
 - Bei weniger als 46 Bytes Nutzdaten wird mit Padding (PAD) Bytes aufgefüllt
- Frame Check Sequence, FCS (4 Bytes):
 - · IEEE CRC-32 Algorithmus
- Interframe Gap, IFG (12 Bytes):
 - "Zwangspause" zwischen aufeinanderfolgenden Frames
 - · Ist NICHT Teil des Ethernet Frames

Ethernet 2 (Ethernet Systeme)

Virtuelle LANs