УТВЕРЖДЕНЫ

Протокол №4 от 24.11.2021г. Зав. кафедрой высшей математики

Пыжкова О.Н.

ПРАКТИЧЕСКИЕ ЗАДАНИЯ (ЛАиАГ)

Найти произведение матриц $\begin{pmatrix} 3 & 4 & 1 \\ 6 & 2 & 5 \\ 1 & 6 & 2 \end{pmatrix} \begin{pmatrix} 2 \\ 5 \\ 3 \end{pmatrix}$.

Найти произведение матриц AB и BA, если $A = \begin{pmatrix} 3.5 \\ 7.2 \\ 5.8 \end{pmatrix}$, $B = \begin{pmatrix} 4.7.5 \\ 6.8.0 \end{pmatrix}$.

Вычислить определитель $\begin{vmatrix} -1 & 3 & 2 \\ 4 & 0 & 5 \\ 2 & 1 & -2 \end{vmatrix}$.

Вычислить определитель $\Delta = \begin{vmatrix} 3 & 2 - 1 \\ 1 & 5 & 7 \end{vmatrix}$ путем разложения по второму столбцу.

Решить систему линейных уравнений

$$\begin{cases} 3x_1 - 2x_2 + 2x_3 = 5 \\ 2x_1 + 3x_2 - x_3 = 5 \\ x_1 - 2x_2 + x_3 = 0 \end{cases}$$

$$\begin{cases} x + y - z = 0 \\ 3x + 2y + z = 5 \\ 4x - y + 5z = 3 \end{cases}$$

Даны векторы своими координатами $\vec{a} = \{1; -3; 5\}$, $\vec{b} = \{2; 0; -1\}$, $\vec{c} = \{-4; 6; -2\}$. Найти координаты векторов $2\vec{a}$, $-3\vec{b}$, $2\vec{a}-3\vec{b}+\vec{c}$ и проекции $np_{Oy}\vec{a}$, $np_{Ox}\vec{b}$.

Найти координаты и модуль вектора \overrightarrow{AB} , если A(2;4;-3), B(5;0;9)

Даны векторы своими координатами $\vec{a} = \{1; -3; 5\}$, $\vec{b} = \{2; 0; -1\}$, $\vec{c} = \{-4; 6; -2\}$. Найти координаты векторов $2\vec{a}$, $-3\vec{b}$, $2\vec{a}-3\vec{b}+\vec{c}$ и проекции $np_{O_y}\vec{a}$, $np_{O_x}\vec{b}$.

Найти координаты и модуль вектора \overrightarrow{AB} , если A(2;4;-3), B(5;0;9)

Даны векторы $\vec{a}=\left\{-4;2;4\right\}$ и $\vec{b}=\left\{0;-3;4\right\}$. Найти $\vec{a}\cdot\vec{b}$ и косинус угла $\vec{a}\hat{\ }\vec{b}$ между ними.

Даны вершины четырехугольника A(1;4;0), B(-4;1;1), C(-5;-5;3), D(1;-2;2). Доказать, что его диагонали AC и BD перпендикулярны.

Даны координаты вершин треугольника A(1;2;4), B(-3;2;1), C(4;2;0). Найти внутренний угол α при вершине A и внешний угол γ при вершине C.

Найти проекцию вектора $\vec{a} = \{2; -4; 4\}$ на ось l, составляющую с \vec{a} угол $\varphi = \frac{5\pi}{6}$.

Даны векторы $\vec{a} = \{-4; 2; 4\}$ и $\vec{b} = \{0; -3; 4\}$. Найти $\vec{a} \cdot \vec{b}$ и косинус угла $\vec{a} \ \vec{b}$ между ними.

Даны вершины четырехугольника A(1;4;0), B(-4;1;1), C(-5;-5;3), D(1;-2;2). Доказать, что его диагонали AC и BD перпендикулярны.

Даны координаты вершин треугольника $A(1;2;4),\ B(-3;2;1),\ C(4;2;0)$. Найти внутренний угол α при вершине A и внешний угол γ при вершине C.

Найти проекцию вектора $\vec{a} = \{2; -4; 4\}$ на ось l, составляющую с \vec{a} угол $\varphi = \frac{5\pi}{6}$.

Даны векторы $\vec{a}=\left\{1;2;-2\right\},\; \vec{b}=\left\{-5;0;1\right\},\; \vec{c}=3\vec{i}+4\vec{j}$. Найти $np_{\vec{c}}(2\vec{a}-\vec{b}),$ направляющие косинусы вектора \vec{a} .

Даны векторы $\vec{a} = \{4; -5; 3\}$ и $\vec{b} = \{-4; 0; 2\}$. Проверить, что $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$ и найти площадь параллелограмма, построенного на этих векторах.

Даны векторы $\vec{a} = \{2; -4; -5\}$, $\vec{b} = \{-4; 1; 6\}$, $\vec{c} = \{5; -5; -1\}$. Найти смешанные произведения $\vec{a}\vec{b}\vec{c}$, $\vec{a}\vec{c}\vec{b}$, $\vec{c}\vec{a}\vec{b}$.

Проверить компланарность векторов $\vec{a} = \{3; -4; 7\}$, $\vec{b} = \{1; 2; -3\}$, $\vec{c} = \{2; -1; 2\}$.

Доказать, что точки A(1;2;0), B(4;3;4), C(2;-3;-2), D(3;0;1) лежат в одной плоскости.

Найти точку пересечения прямых 3x + 2y = 5 и 2x - 3y = 7.

Найти точку пересечения прямых x - y - 13 = 0 и 2x + 3y = 11

Записать уравнения прямой, проходящей через точку A(1;0) перпендикулярно прямой BC, если B(2;3); C(-3;1).

Найти расстояние между двумя прямыми 2x + y - 2 = 0 и x + 2y - 5 = 0.

Найти расстояние между параллельными прямыми 3x + 4y - 5 = 0 и 3x + 4y + 7 = 0.

Даны координаты точек $A_1(4;2;0)$, $A_2(6;1;1)$, $A_3(4;6;6)$. Найти уравнение плоскости $A_1A_2A_3$ и уравнение прямой A_1A_2 .

Найти уравнение прямой, проходящей через точку M(-1;2) перпендикулярно прямой 12x+5y-10=0

Даны координаты вершин пирамиды $A_1A_2A_3A_4$:

 $A_1(4;5;7); A_2(7;5;3); A_3(9;4;4); A_4(7;9;6)$. Найти длину ребра A_1A_2 и угол между ребрами A_1A_2 и A_1A_4 .

Даны координаты точек $A_1(5;7;8); A_2(9;5;5); A_3(-3;7;1)$. Найти: угол между A_1A_2 и A_1A_3 и уравнение прямой A_1A_2 .

Найти уравнение плоскости, проходящей через три заданные точки:

 $A_1(5;7;8); A_2(9;5;5); A_3(-3;7;1)$.

Даны вершины треугольника ABC: A(2;0), B(4;5), C(6;7). Найти уравнения стороны AC, высоты BK и медианы BM.

Найти расстояние между двумя прямыми 3x + 2y - 6 = 0 и 6x + 4y + 5 = 0.

Даны вершины четырехугольника ABCD: A(-1;3), B(2;1), C(2;5), D(0;4). Докажите, что его диагонали взаимно перпендикулярны.

Найти уравнение прямой, проходящей через точку A(3;4) перпендикулярно прямой y = 5x + 3.

Найти уравнение прямой, проходящей через точку K(1;-4) параллельно прямой AB: A(3;4), B(-1;-4).

Записать уравнение прямой, имеющей угловой коэффициент 2 и проходящей через точку A(-3;5).

Определить вид кривой линии и изобразить ее на чертеже $x^2 - 2x + y^2 - 4y + 1 = 0$.

Записать каноническое уравнение кривой $y^2 + 4y + x^2 = 0$.

Найти координаты центра и радиус окружности $3x^2 + 3y^2 - 4x - 6y - 15 = 0$.

Назвать и построить кривую $x^2 + y^2 - 6x = 0$.

Дана гипербола $\frac{x^2}{16} - \frac{y^2}{9} = 1$. Определить ее полуоси, фокусы, вершины, эксцентриситет, асимптоты.

Даны комплексные числа $z_1=-1\,,\ z_2=\pi\,,\ z_3=-2i\,,\ z_4=3i-3\,,$

$$z_5 = \frac{1+i\sqrt{3}}{2} z_6 = \cos\frac{\pi}{3} - i\sin\frac{\pi}{3}.$$

- **а)** Найти действительную и мнимую части комплексных чисел z_1, \ldots, z_6 ;
- б) записать числа, сопряженные данным;
- **в**) изобразить числа $z_1,...,z_6$ и им сопряженные $\overline{z}_1,...,\overline{z}_6$ соответствующими точками на комплексной плоскости;

г) выполнить действия
$$z_1 - z_4 + z_5 + z_6$$
, $z_1^3 + z_3^3 + (2-i) \cdot z_4$, $\frac{z_3}{z_4}$.

Даны комплексные числа $z_1=-1,\ z_2=\pi,\ z_3=-2i,\ z_4=3i-3,\ z_5=\frac{1+i\sqrt{3}}{2},$

$$z_6 = \cos\frac{\pi}{3} - i\sin\frac{\pi}{3}.$$

- **а)** Найти модули и аргументы комплексных чисел $z_1,...,z_6;$
- б) записать эти числа в тригонометрической и показательной формах;

в) выполнить действия
$$z_4 \cdot z_5$$
, $\frac{z_6}{z_4}$, z_5^{14} , $\sqrt{z_3}$, $\sqrt[4]{z_5^{12}}$

Числа z_1 и z_2 представить в тригонометрической форме и выполнить указанные над ними действия:

$$z_1 \cdot z_2$$
, $\frac{{z_1}^2}{z_2}$, если $z_1 = 2\sqrt{3} - 2i$, $z_2 = 3 - 3\sqrt{3}i$.

 $z_1^2 \cdot \overline{z}_2$, $\frac{\overline{z}_2}{z_1}$, если $z_1 = -\sqrt{2} + \sqrt{2}i$, $z_2 = \sqrt{8} - \sqrt{8}i$.

Показать, что в линейном пространстве квадратных матриц 2-го порядка элементы $\overline{e}_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \overline{e}_2 = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}, \overline{e}_3 = \begin{pmatrix} 0 & 0 \\ 3 & 0 \end{pmatrix}, \overline{e}_4 = \begin{pmatrix} 0 & 0 \\ 0 & 4 \end{pmatrix}$ образуют базис, и найти в указанном

базисе координаты элемента $\stackrel{-}{a} = \begin{pmatrix} 3 & 8 \\ -6 & 4 \end{pmatrix}$. Чему равна размерность данного линейного пространства?

Показать, что многочлены $\overline{e_1} = x^2 + x + 1$, $\overline{e_2} = x^2 + 2x + 4$, $\overline{e_3} = x^2 + 3x + 9$ образуют базис в пространстве многочленов степени не выше 2. Определить координаты многочлена $x^2 + 4x + 16$ и произвольного квадратного трехчлена $ax^2 + bx + c$ в указанном базисе.

Показать, что в линейном пространстве нечетных многочленов степени не выше 5 многочлены $\overline{e_1} = x^5 - x^3$, $\overline{e_2} = x^3 - 2x$, $\overline{e_3} = x^5 - 3x$ образуют базис, и найти в этом базисе координаты многочлена $2x^5 - 2x^3 - 3x$.

Являются ли линейно независимыми:

а) векторы
$$\overline{x_1} = (1; 1; 2; -1), \overline{x_2} = (3; 5; 0; 5), \overline{x_3} = (0; 0; 1; -1), \overline{x_4} = (0; 5; 6; -1)$$
 в \mathbb{R}^4 ;

б) матрицы
$$\overline{e_1} = \begin{pmatrix} 4 & -2 \\ -5 & 4 \end{pmatrix}, \overline{e_2} = \begin{pmatrix} 2 & -2 \\ 2 & -2 \end{pmatrix}, \overline{e_3} = \begin{pmatrix} -1 & 0 \\ 1 & -2 \end{pmatrix}, \overline{e_4} = \begin{pmatrix} 3 & -2 \\ -4 & 1 \end{pmatrix};$$

в) многочлены $\overline{e_1} = x + 3x^2 - x^3$, $\overline{e_2} = 2x^3 + x - 2$, $\overline{e_3} = 3 + x - x^2$, $\overline{e_4} = x + 2x^2 + x^3$? Найти координаты:

a) вектора
$$y = (5; 10; 8; 7) \in \mathbb{R}^4$$
 в базисе $x_1 = (0; 1; 3; -1)$,

$$\overline{x_2} = (-2; 1; 0; 2), \overline{x_3} = (3; 1; -1; 0), \overline{x_4} = (0; 1; 2; 1);$$

б) матрицы
$$\overline{a} = \begin{pmatrix} 7 & 0 \\ -7 & 5 \end{pmatrix}$$
 в базисе $\overline{e_1} = \begin{pmatrix} 4 & -2 \\ -5 & 4 \end{pmatrix}, \overline{e_2} = \begin{pmatrix} 2 & -2 \\ 2 & -2 \end{pmatrix},$

$$\overline{e_3} = \begin{pmatrix} -1 & 0 \\ 1 & -2 \end{pmatrix}, \overline{e_4} = \begin{pmatrix} 3 & -2 \\ -4 & 1 \end{pmatrix};$$

в) многочлена $\overline{y} = 13 - 2x - 8x^2 - 9x^3$ в базисе $\overline{e_1} = x + 3x^2 - x^3$, $\overline{e_2} = 2x^3 + x - 2$, $\overline{e_3} = 3 + x - x^2$, $\overline{e_4} = x + 2x^2 + x^3$.

Найти матрицы перехода от базиса $\{x^2; x; 1\}$ к базису $\{(x+1)^2; x+1; 1\}$ и от базиса $\{(x+1)^2; x+1; 1\}$ к базису $\{x^2; x; 1\}$.

Дана матрица $T=\begin{pmatrix}3&-2\\1&2\end{pmatrix}$ перехода от базиса $\{\overline{e_1};\overline{e_2}\}$ к базису $\{\overline{e_1'};\overline{e_2'}\}$. Найти

координаты вектора $\overline{a} = 4\overline{e_1'} + \overline{e_2'}$ в базисе $\{\overline{e_1}; \overline{e_2}\}$ и координаты вектора $\overline{b} = 5\overline{e_1} + 7\overline{e_2}$ в базисе $\{\overline{e_1'}; \overline{e_2'}\}$.

Доказать линейность оператора $f(x) = (x_1 - x_2; x_1 + 2x_2 - x_3; 3x_1 + x_3)$, где $x = (x_1; x_2; x_3)^T$; записать матрицу этого оператора.

Пусть $\overline{x} = (x_1; x_2; x_3)^T$, $f(\overline{x}) = (2x_1; x_2 + 5x_3; -x_1)$, $g(\overline{x}) = (x_1 - x_2; x_2 + x_3; 0)$. Найти матрицы операторов f и g, а также матрицы и явный вид операторов 2f + 3g.

Даны два базиса $\{\overline{e_1};\overline{e_2}\}$ и $\{e_1';e_2'\}$ линейного пространства и матрица

 $A_f = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$ линейного оператора в базисе $\{\overline{e_1}; \overline{e_2}\}$. Найти матрицу этого оператора в базисе $\{e_1'; e_2'\}$, если $\overline{e_1'} = \overline{e_1} + \overline{e_2}$, $\overline{e_2'} = \overline{e_1} - \overline{e_2}$.

Какие из векторов
$$\overline{x_1} = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$$
, $\overline{x_2} = \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$, $\overline{x_3} = \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix}$, $\overline{x_4} = \begin{pmatrix} 5 \\ 5 \\ 5 \end{pmatrix}$ являются

собственными векторами линейного оператора f с матрицей $A = \begin{pmatrix} 0 & 0 & 3 \\ 3 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix}$?

Найти собственные значения и собственные векторы линейного оператора f, имеющего в некотором базисе матрицу:

a)
$$A = \begin{pmatrix} 1 & 4 \\ 9 & 1 \end{pmatrix};$$

6)
$$A = \begin{pmatrix} 2 & 4 \\ -1 & -3 \end{pmatrix};$$

B)
$$A = \begin{pmatrix} 3 & 2 \\ 6 & 2 \end{pmatrix};$$

$$\mathbf{r}) \ A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{0)} \ A = \begin{pmatrix} 0 & 1 & 2 \\ 4 & 0 & 1 \\ 3 & -1 & 1 \end{pmatrix}$$

a)
$$A = \begin{pmatrix} 1 & 4 \\ 9 & 1 \end{pmatrix};$$
 6) $A = \begin{pmatrix} 2 & 4 \\ -1 & -3 \end{pmatrix};$ B) $A = \begin{pmatrix} 3 & 2 \\ 6 & 2 \end{pmatrix};$ F) $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix};$ 6) $A = \begin{pmatrix} 0 & 1 & 2 \\ 4 & 0 & 1 \\ 3 & -1 & 1 \end{pmatrix};$ 6) $A = \begin{pmatrix} 4 & -1 & -2 \\ 2 & 1 & -2 \\ 1 & -1 & 1 \end{pmatrix};$

В базисе $\{\overline{e_1}; \overline{e_2}\}$ линейный оператор f задается матрицей $A_f = \begin{pmatrix} 0 & 2 \\ 3 & 1 \end{pmatrix}$. Найти

базис, в котором матрица оператора f примет диагональный вид.

Привести к каноническому виду уравнения линий второго порядка:

a)
$$9x^2 - 4xy + 6y^2 + 16x - 8y - 2 = 0$$
;

a)
$$9x^2 - 4xy + 6y^2 + 16x - 8y - 2 = 0$$
; 6) $x^2 - 2xy + y^2 - 10x - 6y + 25 = 0$;

B)
$$5x^2 + 12xy - 22x - 12y - 19 = 0$$
;

B)
$$5x^2 + 12xy - 22x - 12y - 19 = 0;$$
 r) $4x^2 - 4xy + y^2 - 6x + 3y - 4 = 0;$

Установить с помощью критерия Сильвестра, является ли данная квадратичная форма знакоопределенной:

a)
$$4x^2 + 2xy + 3y^2$$
;

6)
$$-x^2 + 2xy - 2y^2$$
;

6)
$$-16x^2 + 24xy - 9y^2$$
;

2)
$$2x^2 + 9y^2 + 19z^2 + 8xy + 4xz$$
;

Лектор

Чайковский М.В.