In [87]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.neighbors import KNeighborsRegressor from sklearn.metrics import mean_squared_error, accuracy_score, cla In [88]: df = pd.read_csv("AirQualityUCI.csv", sep=";", decimal=",", low_memory df.head() Out[88]: Time CO(GT) PT08.S1(CO) NMHC(GT) C6H6(GT) PT08 Date 10/03/2004 18.00.00 2.6 1360.0 150.0 11.9 **1** 10/03/2004 19.00.00 2.0 1292.0 112.0 9.4 **2** 10/03/2004 20.00.00 2.2 1402.0 0.88 9.0 **3** 10/03/2004 21.00.00 2.2 1376.0 0.08 9.2 **4** 10/03/2004 22.00.00 1.6 1272.0 51.0 6.5 In [89]: df.shape

Out[89]: (9471, 17)

In [90]: df.describe()

Out [90]:

	CO(GT)	PT08.S1(CO)	NMHC(GT)	C6H6(GT)	PT08.S2(NMH
count	9357.000000	9357.000000	9357.000000	9357.000000	9357.0000
mean	-34.207524	1048.990061	-159.090093	1.865683	894.5952
std	77.657170	329.832710	139.789093	41.380206	342.3332
min	-200.000000	-200.000000	-200.000000	-200.000000	-200.0000
25%	0.600000	921.000000	-200.000000	4.000000	711.0000
50%	1.500000	1053.000000	-200.000000	7.900000	895.0000
75%	2.600000	1221.000000	-200.000000	13.600000	1105.0000
max	11.900000	2040.000000	1189.000000	63.700000	2214.0000

In [91]: df = df.replace(-200,np.nan)

In [92]: df.describe()

Out[92]:

	CO(GT)	PT08.S1(CO)	NMHC(GT)	C6H6(GT)	PT08.S2(NMH
coun	t 7674.000000	8991.000000	914.000000	8991.000000	8991.00000
mea	n 2.152750	1099.833166	218.811816	10.083105	939.1533
st	d 1.453252	217.080037	204.459921	7.449820	266.83142
mi	n 0.100000	647.000000	7.000000	0.100000	383.00000
25%	6 1.100000	937.000000	67.000000	4.400000	734.50000
50%	6 1.800000	1063.000000	150.000000	8.200000	909.00000
75%	2.900000	1231.000000	297.000000	14.000000	1116.00000
ma	x 11.900000	2040.000000	1189.000000	63.700000	2214.00000

```
In [93]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9471 entries, 0 to 9470
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype		
0	Date	9357 non-null	object		
1	Time	9357 non-null	object		
2	CO(GT)	7674 non-null	float64		
3	PT08.S1(C0)	8991 non-null	float64		
4	NMHC (GT)	914 non-null	float64		
5	C6H6(GT)	8991 non-null	float64		
6	PT08.S2(NMHC)	8991 non-null	float64		
7	NOx(GT)	7718 non-null	float64		
8	PT08.S3(N0x)	8991 non-null	float64		
9	N02(GT)	7715 non-null	float64		
10	PT08.S4(N02)	8991 non-null	float64		
11	PT08.S5(03)	8991 non-null	float64		
12	T	8991 non-null	float64		
13	RH	8991 non-null	float64		
14	AH	8991 non-null	float64		
15	Unnamed: 15	0 non-null	float64		
16	Unnamed: 16	0 non-null	float64		
dtypes: float64(15), object(2)					

dtypes: float64(15), object(2)

memory usage: 1.2+ MB

```
In [94]: df = df.drop(columns=["Unnamed: 15","Unnamed: 16"])
    df = df.dropna()
    print(df.info())
    print(df.shape)
```

Index: 827 entries, 0 to 1230 Data columns (total 15 columns): Non-Null Count Dtype # Column object 0 Date 827 non-null 1 Time 827 non-null object 2 CO(GT) 827 non-null float64 3 PT08.S1(C0) 827 non-null float64 4 NMHC(GT) 827 non-null float64 5 C6H6(GT) 827 non-null float64 6 PT08.S2(NMHC) 827 non-null float64 7 N0x(GT)827 non-null float64 8 PT08.S3(N0x) 827 non-null float64 9 N02(GT) 827 non-null float64 10 PT08.S4(N02) 827 non-null float64 11 PT08.S5(03) 827 non-null float64 12 Т 827 non-null float64 13 RH 827 non-null float64 14 AH 827 non-null float64 dtypes: float64(13), object(2) memory usage: 103.4+ KB None

<class 'pandas.core.frame.DataFrame'>

In [95]: sns.pairplot(df)
 plt.show()

(827, 15)


```
[[ 3.17348135 111.64814472 288.82446478]
             2.78711689 103.85687253 231.35508484]
          [
             2.80463596 113.43480914 155.66451163]
             3.09676468 109.08900584 383.827672781
          ſ
             3.03214566 112.87501141 335.0666682 ]
             3.23093203 117.55282217 373.72525041]]
In [100... pred_df = pd.DataFrame(predict, columns=['Predicted_CO', 'Predicted
          pred_df.head()
Out [100...
             Predicted_CO Predicted_NO2 Predicted_NMHC
           0
                  3.173481
                                111.648145
                                                 288.824465
           1
                                                 231.355085
                   2.787117
                                103.856873
           2
                  2.804636
                                113.434809
                                                  155.664512
           3
                  2.744741
                                112.419620
                                                  164.052277
                  2.139227
           4
                                 97.800635
                                                  94.988708
In [101... plt.figure(figsize=(18, 5))
          for i, col in enumerate(y.columns):
               plt.subplot(1, 3, i+1)
               plt.scatter(y[col], pred_df.iloc[:, i], alpha=0.5, color="blue"
               plt.plot([y[col].min(), y[col].max()],
                         [y[col].min(), y[col].max()], "r--", linewidth=2)
               plt.xlabel(f"Actual {col}")
               plt.ylabel(f"Predicted {col}")
               plt.title(f"Y vs Predicted - {col}")
          plt.show()
                Y vs Predicted - CO(GT)
                                          Y vs Predicted - NO2(GT)
                                                                   Y vs Predicted - NMHC(GT)
                                  200
                                  175
        Predicted CO(GT)
                                  125
                                                            600
                                  100
In [102... results = {"Pollutant": [], "Model": [], "RMSE": [], "R2": []}
In [103... y_pred_lin = lr.predict(x_test) # predict only on test data
          # Linear Regression metrics
          mse_lin = mean_squared_error(y_test.iloc[:, i], y_pred_lin[:, i])
          rmse_lin = np.sqrt(mse_lin)
          r2_lin = r2_score(y_test.iloc[:, i], y_pred_lin[:, i])
          results["Pollutant"].append(col)
```

```
results["Model"].append("Linear Regression")
results["RMSE"].append(rmse_lin)
results["R2"].append(r2_lin)
```

Y test vs Predicted CO(GT)

file:///Users/tanmayagarwal/Documents/AQI%20Predictor%20Project/AQI.html

Out[106		Date	Time	CO(GT)	PT08.S1(CO)	NMHC(GT)	C6H6(GT)	PT08
	0	10/03/2004	18.00.00	2.6	1360.0	150.0	11.9	
	1	10/03/2004	19.00.00	2.0	1292.0	112.0	9.4	
	2	10/03/2004	20.00.00	2.2	1402.0	88.0	9.0	
	3	10/03/2004	21.00.00	2.2	1376.0	80.0	9.2	
	4	10/03/2004	22.00.00	1.6	1272.0	51.0	6.5	
In [107	<pre>knn_model = KNeighborsRegressor() knn_model.fit(x_train,y_train) print("Score: ",knn_model.score(x_test,y_test)) y_pred_knn = knn_model.predict(x_test)</pre>							
:	Sco	re : 0.883	225822330	99667				
In [108	<pre>In [108 for i, col in enumerate(y.columns): mse_knn = mean_squared_error(y_test.iloc[:, i], y_pred_knn[:, : rmse_knn = np.sqrt(mse_knn) r2_knn = r2_score(y_test.iloc[:, i], y_pred_knn[:, i]) results["Pollutant"].append(col) results["Model"].append("KNN Regression (k=5)") results["RMSE"].append(rmse_knn) results["R2"].append(r2_knn) results_df = pd.DataFrame(results) print(results_df)</pre>							[:, i
	0 I 1 2	NO2(GT) K	NN Regres	Regress ssion (kassion (kassion (kassion	del RMS ion 88.45199 =5) 0.32489 =5) 13.10162 =5) 73.97290	2 0.816715 7 0.944814 9 0.833054	5 4 4	
In []:	<pre>plt.figure(figsize=(8,5)) for pollutant in y.columns: subset = results_df[results_df["Pollutant"] == pollutant] plt.bar(subset["Model"], subset["RMSE"], label=pollutant) plt.title("RMSE Comparison: Linear vs KNN Regression") plt.ylabel("RMSE") plt.show()</pre>							

RMSE Comparison: Linear vs KNN Regression

CO(GT): Actual vs Predicted


```
In [111... results = []
          for i, col in enumerate(y.columns):
              # Linear Regression
              mse_lin = mean_squared_error(y_test.iloc[:, i], y_pred_lin[:, i
              rmse_lin = np.sqrt(mse_lin)
              r2_lin = r2_score(y_test.iloc[:, i], y_pred_lin[:, i])
              # KNN Regression
              mse_knn = mean_squared_error(y_test.iloc[:, i], y_pred_knn[:, i
              rmse_knn = np.sqrt(mse_knn)
              r2_knn = r2_score(y_test.iloc[:, i], y_pred_knn[:, i])
              results.append({
                  "Pollutant": col,
                  "Linear RMSE": rmse_lin,
                  "Linear R<sup>2</sup>": r2_lin,
                  "KNN RMSE": rmse_knn,
                  "KNN R<sup>2</sup>": r2_knn
              })
              results_df = pd.DataFrame(results)
          print("\n◆ Model Comparison Results:")
```

```
print(results_df)
         Model Comparison Results:
           Pollutant Linear RMSE Linear R<sup>2</sup>
                                                 KNN RMSE
                                                             KNN R^2
         0
              CO(GT)
                         0.291171
                                     0.955677
                                                 0.324897
                                                           0.944814
        1
             N02(GT)
                        11.885894
                                     0.862599
                                                13.101629
                                                           0.833054
            NMHC(GT)
                        88.451992
                                     0.816715
                                                73.972902
                                                           0.871809
In [112... results_df.plot(
              x="Pollutant",
              y=["Linear RMSE", "KNN RMSE"],
              kind="bar",
              figsize=(10, 6)
          )
          plt.title("RMSE Comparison: Linear vs KNN Regression")
          plt.ylabel("RMSE (Lower = Better)")
          plt.xticks(rotation=45)
          plt.show()
```



```
In [113... pollutant = y.columns[0]

plt.figure(figsize=(12,5))
plt.subplot(1, 2, 1)
plt.scatter(y_test.iloc[:,0], y_pred_lin[:,0], alpha=0.6, color='bl
plt.xlabel("Actual")
plt.ylabel("Predicted")
plt.title(f"Linear Regression: {pollutant}")

plt.subplot(1, 2, 2)
plt.scatter(y_test.iloc[:,0], y_pred_knn[:,0], alpha=0.6, color='gr
plt.xlabel("Actual")
plt.ylabel("Predicted")
plt.title(f"KNN Regression: {pollutant}")
```


