Diszkrét matematika 2

előadás
Kódelmélet

Mérai László

merai@inf.elte.hu

https://sites.google.com/view/laszlomerai

Komputeralgebra Tanszék

2023 ősz

Forráskódolás

Emlékeztető

Kódolás:
$$\varphi: \mathcal{X} \to \mathcal{Y}^*$$
 injektív függvény. Szavak kódolása betűnként: $\varphi(u_1u_2\dots u_r) = \varphi(u_1)\varphi(u_2)\dots \varphi(u_r)$

Felbontható kódolás: ha egyértelműen dekódolható: $\mathbf{u} \neq \mathbf{v}$, akkor

$$\varphi(u_1)\varphi(u_2)\ldots\varphi(u_r)\neq\varphi(v_1)\varphi(v_2)\ldots\varphi(v_s).$$

Prefix kódolás

Célunk elégséges feltételt adni a felbonthatóságra.

Definíció

Egy $\mathbf{u} = \mathbf{abc}$ szó

- prefixe: a, ab, abc;
- infixe: b, ab, bc: abc;
- szuffixe: c, bc, abc.

Definíció

Egy φ kódolás prefix kód (vagy prefixmentes kód), ha nem léteznek olyan \mathbf{u} , \mathbf{v} különböző kódszavak, hogy \mathbf{u} prefixe \mathbf{v} -nek.

Példa

- ASCII és UTF-8 prefix kódok.
- Morze-kód nem prefix kód:

$$\varphi(e) = \cdot \text{ \'es } \varphi(i) = \cdot \cdot \text{ prefixei a } \varphi(s) = \cdot \cdot \cdot \text{ k\'odsz\'onak}.$$

Prefix kódolás

Prefix kód: nincsenek olyan \mathbf{u} , \mathbf{v} kódszavak, hogy $\mathbf{u} = \mathbf{vc}$ valamely \mathbf{c} szóra.

Tétel

Minden prefix kód felbontható.

Bizonyítás.

- Legyen $\mathbf{v} = v_1 v_2 \dots v_s \in \mathcal{Y}^*$ egy üzenet kódolása. (Azaz létezik olyan \mathbf{u} , hogy $\varphi(\mathbf{u}) = \mathbf{v}$.)
- Vizsgáljuk meg a prefixeit:
 - \bullet v_1
 - \bullet v_1v_2
 - \bullet $v_1v_2v_3$
 -
- Ha találunk egy $v_1v_2 \dots v_i$ szót, ami egy betű kódszava, azt dekódolhatjuk. Mivel a kód prefix, ez nem lehet más betű kódjának prefixe.
- Az eljárást folytathatjuk a $v_{i+1}v_{i+2}...v_s$ kóddal.

Kódfa

Definíció

Egy φ kód kódfája egy olyan fa, melynek csúcsai a kódszavak és azok prefixei és az $y_1y_2 \dots y_s$ és $y_1y_2 \dots y_sy_{s+1}$ csúcsok vannak összekötve.

Állítás: Egy kód prefix, ha csak a levelek a kódszavak.

Példa

A {0,100,101,111} kódszóhalmaz kódfája:

A {00,01,110,111} kódszóhalmaz kódfája:

Prefix kódolás

Prefix kód: nincsenek olyan \mathbf{u} , \mathbf{v} kódszavak, hogy $\mathbf{u} = \mathbf{vc}$ valamely \mathbf{c} szóra.

Példa

- A {0, 100, 101, 111} kód prefix.
- A {100, 10, 11} kód nem prefix: 10, 100 szavak is kódszavak.

Elégséges feltételek a prefix tulajdonságra:

Definíció

Legyen $\mathcal{C} \subset \mathcal{Y}^*$ a kódszavak véges halmaza. Ekkor

- A \mathcal{C} kód egyenletes (blokk kód), ha minden $\mathbf{c} \in \mathcal{C}$ kódszó azonos hosszú.
- A $\mathcal C$ kód vesszős kód, ha van olyan $\mathbf v \in \mathcal Y^*$ nemüres szó ("vessző"), mely szuffixe minden $\mathbf c \in \mathcal C$ kódszónak, de nem valódi prefixe, ill. infixe semelyik kódszónak. (Azaz $\mathbf c = \mathbf u \mathbf v$ valamely $\mathbf u \in \mathcal Y^*$ szóra, de $\mathbf c \neq \mathbf u \mathbf v \mathbf v$ valamely $\mathbf u, \mathbf z \in \mathcal Y^*, \mathbf z \neq \emptyset$.)

Példa

- A {000, 010, 111, 101} kód egyenletes.
- A {0100, 100, 1100} kód vesszős.

Felbontható kód mégegyszer

Tétel (Biz. HF.)

Minden egyenletes ill. vesszős kód prefix.

Példák

Példa

ASCII: egyenletes kód: minden karakter 7 biten kódolt.

UTF-8: prefix kód:

0xxxxxx	ASCII karakterek
110yyyyy 10xxxxxx	
1110zzzz 10xxxxxx 10yyyyyy	nem ASCII karakterek
11110www 10zzzzzz 10xxxxxx 10yyyyyy	

- Ha az első karakter 0 → ASCII karakter
- Ha az első karakter 1 → nem ASCII karakter. Ekkor a kódszó több byte, első blokk 1-ek száma a byte-ok száma, 1-ek után 0, minden további byte 10-val kezdődik.

Csatornakódolás

Csatornakódolás

Hiba faiták

- karakter módosulás
- karakterek törlése
- karakterbeszúrás

Lehetséges módszerek

- hibajelzés
- hibajavítás

Példák kódokra

- Kódismétlés: 0 → 000, 1 → 111
 Képes egy hibát javítani, két hibát jelezni
- ISBN (könyvek és egyéb kiadványok egyedi azonosítója).

Az első típus (10 számjegyű, 2007-ig).

Ha I_1, I_2, \dots, I_{10} az ISBN, akkor ez helyes, ha

$$1 \cdot I_1 + 2 \cdot I_2 + \cdots + 10 \cdot I_{10} \equiv 0 \mod 11$$
.

Példa ISBN 0-246-024682

- $1 \cdot 0 + 2 \cdot 2 + 3 \cdot 4 + 4 \cdot 6 + 5 \cdot 0 + 6 \cdot 2 + 7 \cdot 4 + 8 \cdot 6 + 9 \cdot 8 + 10 \cdot 0 = 220 \equiv 0 \mod 11$ Képes egy hibát ill. két szomszédos számjegy felcserélését jelezni.
- Paritásbit Legyen $\mathbf{u} \in \{0,1\}^k$. $\mathbf{u} \mapsto (u_1,\ldots,u_k,u_1+u_2+\cdots+u_k \bmod 2)$. Képes egy hibát jelezni.

Kódszavak, Hamming-távolság

Mostantól karakter módosulás típusú hibákra fókuszálunk!

Definíció

Legyen Σ egy véges halmaz (ábécé) és tekintsük az n hosszú szavak halmazát Σ^n . Ekkor a $\mathcal{C} \subset \Sigma^n$ részhalmaz egy kód, elemei a kódszavak.

Tipikusan $\Sigma = \mathbb{F}_2$ vagy általában \mathbb{F}_{2^k} .

Definíció

Legyen $\mathbf{u}, \mathbf{v} \in \Sigma^n$ két szó. A szavak Hamming-távolsága: $d(\mathbf{u}, \mathbf{v}) = \#\{i : u_i \neq v_i\}.$

Példa

- d(000, 111) = 3, d(012, 210) = 2
- \bullet d(0000,0001) = 1, d(0000,0009) = 1, d(1234,0123) = 4
- általában: $0 \le d(\mathbf{u}, \mathbf{v}) \le n$

Hamming távolság

Hamming-távolság:

Legyen $\mathbf{u}, \mathbf{v} \in \Sigma^n$ két szó. A szavak Hamming-távolsága: $d(\mathbf{u}, \mathbf{v}) = \#\{i : u_i \neq v_i\}$.

A Hamming-távolság d valóban egy távolság-függvény:

Tétel

Legyen $d: \Sigma^n \times \Sigma^n \to \{0, 1, 2 \dots\}$ a Hamming-távolság. Ekkor

- \bullet $d(\mathbf{u}, \mathbf{v}) = 0 \iff \mathbf{u} = \mathbf{v}.$
- $d(\mathbf{u}, \mathbf{v}) = d(\mathbf{v}, \mathbf{u}).$
- $d(\mathbf{u}, \mathbf{v}) \le d(\mathbf{u}, \mathbf{c}) + d(\mathbf{c}, \mathbf{v})$ (háromszög egyenlőtlenség).

Hamming távolság

Tétel:

- \bullet $d(\mathbf{u}, \mathbf{v}) = 0 \iff \mathbf{u} = \mathbf{v}.$
- \bullet $d(\mathbf{u}, \mathbf{v}) = d(\mathbf{v}, \mathbf{u}).$
- $d(\mathbf{u}, \mathbf{v}) \le d(\mathbf{u}, \mathbf{c}) + d(\mathbf{c}, \mathbf{v})$ (háromszög egyenlőtlenség).

Bizonyítás.

Az első két tulajdonság közvetlenül adódik a definícióból.

Háromszög egyenlőtlenség: a bizonyítás koordinátánként.

Terjesszük ki a d függvényt a koordinátákra: $u, v \in \Sigma$ esetén d(u, v) = 0 ha u = v és d(u, v) = 1 ha $u \neq v$.

Ekkor $d(\mathbf{u}, \mathbf{v}) = \sum_{i} d(u_i, v_i)$. Adott *i*-re,

- ha $u_i = v_i$, akkor $0 = d(u_i, v_i) \le d(u_i, c_i) + d(c_i, v_i)$;
- ha $u_i \neq v_i$, akkor $c_i \neq u_i$ vagy $c_i \neq v_i$. Így $d(u_i, c_i) + d(c_i, v_i) \geq 1 = d(u_i, v_i)$.

Kódtávolság

Definíció

Egy \mathcal{C} kód kódtávolsága a kódszavak közti minimális távolság: $d(\mathcal{C}) = \min\{d(\mathbf{u}, \mathbf{v}) : \mathbf{u}, \mathbf{v} \in \mathcal{C}, \mathbf{u} \neq \mathbf{v}\}.$

Példa

- Az ismétlő kód (0 \mapsto 000, 1 \mapsto 111) távolsága d = 3.
- Paritásbit ($\mathbf{u} \mapsto (u_1, \dots, u_k, u_1 + u_2 + \dots + u_k \mod 2)$) távolsága d = 2.

Tétel (Biz.: HF)

Egy \mathcal{C} kód $d = d(\mathcal{C})$ kódtávolsággal:

- d-1 hibát tud jelezni;
- $t = \lfloor (d-1)/2 \rfloor$ hibát tud javítani.

