

Cálculo Diferencial e Integral I

1º Teste (Versão B)

10 de Novembro de 2012, 9 horas

LEE, LEGI, LEIC (Taguspark), LERC

Apresente todos os cálculos e justificações relevantes

1. Considere os seguintes subconjuntos de \mathbb{R} :

$$A = \left\{ x \in \mathbb{R} : x^2 \ge \frac{2x+1}{3} \right\}, \qquad B = \left\{ x \in \mathbb{R} : |x| = 2 |x-1| \right\}, \qquad C = (A \cup B) \cap \left[-\pi, \frac{2}{3} \right].$$

a) Identifique os conjuntos A e B e mostre que

$$A \cup B = \left] -\infty, -\frac{1}{3} \right] \cup \left\{ \frac{2}{3} \right\} \cup \left[1, +\infty \right[.$$

- b) Determine, se existirem em \mathbb{R} , o supremo, o ínfimo, o máximo e o mínimo de C e de $C \setminus \mathbb{Q}$.
- c) Decida, justificando, se são verdadeiras ou falsas as seguintes afirmações:
 - (i) Toda a sucessão de termos em C tem um sublimite.
 - (ii) Se (u_n) é uma sucessão de termos em C então $\lim \frac{u_n}{n} = 0$.
- **2.** Considere a sucessão (a_n) definida por

$$\begin{cases} b_1 = \frac{5}{2}, \\ b_{n+1} = 4\left(1 - \frac{1}{b_n}\right) &, \text{ se } n \ge 1. \end{cases}$$

- a) Use indução matemática para mostrar que os termos da sucessão verificam $2 < b_n < 3$, para todo o $n \in \mathbb{N}$.
- b) Mostre que (b_n) é uma sucessão decrescente.
- c) Justifique que (b_n) é convergente e calcule o limite.
- 3. Calcule (em R) ou mostre que não existem os seguintes limites de sucessões:

$$\lim \frac{n!(3n+2)}{(n+1)!-n!}, \qquad \lim \frac{n^2+(-1)^n n+3}{3-2n^2}, \qquad \lim \sqrt[n]{\frac{1+e^n}{n+4}}, \qquad \lim \frac{\cos(n!)+1}{n^2+5}.$$

4. Considere a função $g: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ tal que

$$g(x) = \begin{cases} 1 - e^{\frac{\pi}{2} + x}, & \text{se } x < -\frac{\pi}{2}, \\ x \operatorname{sen} x, & \text{se } -\frac{\pi}{2} \le x < 0, \\ \operatorname{arctg}(1 - x), & \text{se } x > 0. \end{cases}$$

- a) Calcule, se existirem em $\overline{\mathbb{R}}$, $\lim_{x\to-\infty} g(x)$ e $\lim_{x\to+\infty} g(x)$.
- b) Calcule, se existirem em $\overline{\mathbb{R}}$,

$$\lim_{x \to -\frac{\pi}{2}^{-}} g(x), \qquad \lim_{x \to -\frac{\pi}{2}^{+}} g(x), \qquad \lim_{x \to 0^{-}} g(x), \qquad \lim_{x \to 0^{+}} g(x)$$

- c) Será g prolongável por continuidade ao ponto x=0? Justifique.
- d) Indique o contradomínio de g.
- **5.** Seja g uma função real, definida e contínua no intervalo [0,2]. Seja (β_n) a sucessão de termo geral $\beta_n = \frac{n+1}{n}$ e suponha que

$$\forall n \in \mathbb{N}$$
 $g(\beta_n)g(\beta_{n+1}) < 0.$

Mostre que g(1) = 0.