Teoría de la Computación Licenciatura en Informática con Orientación en Desarrollo de Software Universidad Nacional de Quilmes

Práctica 5 Turing-reducibilidad — Complejidad descriptiva

Turing-reducibilidad

Ejercicio 1. Demostrar que la relación de Turing-reducibilidad es:

- 1. Reflexiva: $A \leq_T A$ para todo lenguaje $A \subseteq \Sigma^*$.
- 2. Transitiva: si $A \leq_T B$ y $B \leq_T C$ entonces $A \leq_T C$.

Ejercicio 2. Considerar los siguientes lenguajes:

```
\mathsf{HALT} = \{ \langle M, w \rangle \mid M \text{ es una máquina de Turing tal que } M(w) \text{ termina} \} \mathsf{DIV} = \{ \langle M \rangle \mid M \text{ es una máquina de Turing tal que } M(w) \text{ se cuelga para toda palabra } w \in \Sigma^* \}
```

Demostrar que HALT \leq_T DIV y que DIV \leq_T HALT.

Ejercicio 3. Sea $D \subseteq \Sigma^*$ un lenguaje decidible. Demostrar que para cualquier lenguaje $A \subseteq \Sigma^*$ vale que $A \leq_T D$ si y solamente si A es decidible.

Ejercicio 4. Demostrar que:

- 1. Existen lenguajes $A, B \subseteq \Sigma^*$ tales que $A \leq_T B$ y B es semi-decidible pero A no es semi-decidible.
- 2. Existen lenguajes $A, B \subseteq \Sigma^*$ tales que A y B son semi-decidibles pero no vale que $A \leq_T B$.

Ejercicio 5. Demostrar que la noción de reducibilidad funcional es más fuerte que la noción de Turing-reducibilidad, es decir, que $A \leq_m B$ implica $A \leq_T B$. ¿Vale la implicación recíproca?

Complejidad descriptiva

Recordar que notamos d(x) a la descripción minimal de una palabra $x \in \{0,1\}^*$ y K(x) = |d(x)| a su complejidad descriptiva.

Ejercicio 6. Demostrar que, si $f: \Sigma^* \to \Sigma^*$ es una función computable, existe una constante $c \in \mathbb{N}$ tal que para toda palabra $x \in \{0,1\}^*$ vale $K(f(x)) \leq K(x) + c$.

Ejercicio 7. Demostrar que existe una constante $c \in \mathbb{N}$ tal que para toda palabra $x \in \{0,1\}^*$ vale $K(x) \leq K(d(x)) + c$. Concluir que para toda palabra $x \in \{0,1\}^*$ se tiene que d(x) es c-incompresible.