

Energy Conversion I

alexis.martin@ensea.fr Desk D216

Layout

- Non isolated choppers
- Switch mode power supplies
- Power components
- Sinusoidal absorption

Boost

Flyback

Reminder: Power in AC

$$V_{RMS} = \sqrt{\frac{1}{T} \int_0^T v^2(t) dt}$$

- Real power: $P = \langle p(t) \rangle = \langle v(t).i(t) \rangle = V_{RMS}.I_{RMS}.\cos(\varphi_1)$
- Reactive power: $Q = V_{RMS} \cdot I_{RMS} \cdot sin(\varphi_1)$
- Apparent power: $S = V_{RMS}$. I_{RMS}

• Power factor:
$$pf = \frac{P}{S}$$

• Total harmonic distortion:
$$THD = \frac{\sqrt{\sum_{n=2}^{\infty} I_{n RMS}^2}}{I_{1 RMS}}$$

Boost

Flyback

$$L = 10H \rightarrow pf = 0,9$$
 $THD = 0,48$

$$L = 10nH \rightarrow pf = 0,5$$
 $THD = 1,5$

Boost

Flyback

Example of converter

European standard: 61000-3-2

Limits for harmonics currents emission (class C ≈ lightning)

Tableau 2 - Limites pour les appareils de classe C

Rang harmonique	Courant harmonique maximal exprime en pourcentage du courant fondamental d'entrée des luminaires %
3	30 O
5	10
7	7
9	5
11 ån §39 (harmoniques impairs seulement)	3

Cest le facteur de puissance du circuit

Boost

Flyback

Boost

Flyback

Example of converter

Power factor correction

Boost for PFC

Boost Structure PWM control Hysteresis control

Flyback

Example of converter

Structure

Boost Structure PWM control Hysteresis control

Flyback

Example of converter

Structure

$$v_r = V\sqrt{2}\sin(\theta)$$
$$\theta = 2\pi f_{BF}t$$

Goal:

• $I_{in} = I.\sqrt{2}\sin(\theta)$

• 2 frequencies: f_{LF} (50Hz for grid) and f_{HF} (few 10 kHz for switching)

•
$$v_e = |v_r|$$
 and $v_e = (1 - \alpha)v_S$ $\rightarrow V_S > v_{r max}$

- Two control strategies :
 - Fixed switching frequency -> PWM
 - Free switching frequency -> hysteresis control

Structure PWM control Hysteresis control

Flyback

Example of converter

PWM control

- With PWM control, the switching frequency is fixed, the duty cycle is used to control the current
- For low frequency, the boost is a continuous voltage amplifier controlled with the duty cycle α
- Continuous conduction of diodes in the rectifier:

$$v_e = |v_r| = V\sqrt{2}.|\sin(\theta)|$$

Boost

Structure

PWM control

Hysteresis control

Flyback

Example of converter

PWM control

•
$$v_L = v_e - v_T = V\sqrt{2}.|\sin(\theta)| - (1-\alpha)V_S = L\frac{di_L}{dt}$$

- We want $I_{in} = I.\sqrt{2}\sin(\theta)$
 - $\rightarrow i_L = I.\sqrt{2}.|\sin(\theta)|$
- For $0 < \theta < \pi$:

$$> 1 - \alpha = \frac{V\sqrt{2}}{V_S} \cdot \sin(\theta) - \frac{L.2\pi f_{LF} \cdot I\sqrt{2}}{V_S} \cos(\theta)$$

$$\geq \alpha = 1 - \frac{V\sqrt{2}}{V_S} \cdot \left(\sin(\theta) - \frac{2\pi L f_{LF}P}{V^2}\cos(\theta)\right)$$

Boost

Structure

PWM control

Hysteresis control

Flyback

Example of converter

PWM control

$$> \alpha = 1 - \frac{V\sqrt{2}}{V_S} \cdot \left(\sin(\theta) - \frac{2\pi L f_{LF} \cdot P}{V^2} \cos(\theta) \right)$$

Structure
PWM control
Hysteresis control

Flyback

Example of converter

Condition: voltage control « slow » (few Hz) to ensure sinusoidal current

Filter the output voltage for measurement (sample at 2f_{BF}, band-stop filter, high output capacitor)

Boost

Structure

PWM control

Hysteresis control

Flyback

Example of converter

PWM control: components sizing

Semi-conductors

$$< i_D > = \frac{P}{V_S}$$
 $< i_T > = < i_L > - < i_D > = \frac{P}{V_S} \left(\frac{4}{\pi} \frac{V_S}{V\sqrt{2}} - 1 \right)$
 $I_{TRMS} = \frac{P}{V} \sqrt{1 - \frac{8.V\sqrt{2}}{3\pi V_S}} I_{DRMS} = \frac{P}{V} \sqrt{\frac{8.V\sqrt{2}}{3\pi V_S}}$

Output capacitor

$$\Delta V_{SBF} = \frac{P}{2\pi f_{BF}CV_S}$$
 $I_{CRMS} = \frac{P}{V_S} \sqrt{\frac{16.V_S}{3\pi V \sqrt{2}} - 1}$

Input inductor: limit the current ripple due to switching BUT small voltage drop

$$\Delta i_{HF} = \frac{V_S}{4Lf_{HF}}$$
 $\frac{V}{2\pi I f_{BF}} \gg L > \frac{V_S}{4f_{HF}\Delta i_{HF}}$ $I_{LRMS} = \frac{P}{V}$

$$I_{LRMS} = \frac{P}{V}$$

Boost Structure PWM control Hysteresis control

Flyback

Example of converter

Hysteresis control

PWM control: need a current regulator to follow a sinus input

- Complicated to design the regulator
- Hysteresis control

Boost

Structure PWM control

Hysteresis control

Flyback

Example of converter

Hysteresis control

•
$$I_{L max} = \frac{V_e}{L} t_{ON} = 2I_{L BF} = 2I\sqrt{2}|\sin(\theta)|$$

• $t_{ON} = \frac{2LI}{V} = \frac{2LP}{V^2} = cst$

•
$$t_{OFF} = t_{ON} \frac{1-\alpha}{\alpha} = t_{ON} \frac{V_e}{V_S - V_e}$$

 $> f_{HF} = \frac{1}{t_{ON} + t_{OFF}} = \frac{1}{t_{ON}} (1 - \frac{V\sqrt{2}}{V_S} |\sin(\theta)|)$

•
$$f_{HF \ min} = \frac{1}{t_{ON}}$$

• $f_{HF \ max} = \frac{1}{1} (1 - \frac{V\sqrt{2}}{100})$

Boost
Structure
PWM control
Hysteresis control

Flyback

Example of converter

Hysteresis control

Example: LED driver

Boost
Structure
PWM control
Hysteresis control

Flyback

Boost
Structure
PWM control
Hysteresis control

Flyback

Example of converter

Example: LED driver

Flyback for PFC

Boost

Flyback Structure

Example of RT7306 Control

Example of converter

Structure

Boost

Flyback Structure

Example of RT7306

Control

Boost

Flyback

Structure

Example of RT7306

Control

Boost

Flyback

Structure

Example of RT7306

Control

$$IL_{PK} = \frac{V_{IN}}{L_{m}} \times t_{ON}$$

$$I_{L_PK} = \frac{V_{IN_PK} \times |sin(\theta)| \times t_{ON}}{L_m}$$

Boost

Flyback

Structure Example of RT7306

Control

Example of a full converter

Boost

Flyback

Example: EVL400W-80PL

The architecture is based on a two-stage approach: a front-end PFC pre-regulator based on a CCM (Continuous Conduction Mode) boost PFC controller using the L4985A, and a downstream LLC resonant half-bridge converter, designed around the L6699.

- Universal input mains voltage range: from 90 Vac to 264 Vac frequency from 45 to 65 Hz
- Output voltage: 12 V at 33 A continuous operation
- Overall efficiency at full load: > 89%, according to ENERGY STAR® 6.1 limit for computer and compliant with 80Plus PLATINUM level
- Average efficiency: > 89%, according to European CoC ver. 5 Tier 2 for external power supplies
- Efficiency at 250 mW > 50%, compliant to EuP lot 6 Tier 2 limit for household and office equipment
- No load mains consumption: < 150 mW at 230 Vac, below European CoC ver. 5 Tier 2 limit for external power supplies
- Mains harmonics: meets EN-61000-3-2 Class-D and JEITA-MITI Class-D
- EMI: according to EN55022 Class-B
- Safety: meets EN60950 standards
- RoHS compliant

ENSEA

Beyond Engineering

Example: EVL400W-80PL

