Trabajo Práctico Práctico 1 – Memoria compartida

Arellano E. Nahuel nahuel.arellano@gmail.com

- 1. Para el siguiente programa concurrente suponga:
 - Que las instrucciones del siguiente código no son atómicas (la ejecución puede ser interrumpida).
 - Todas las variables están inicializadas en 0 antes de empezar.

Indique cual/es de las siguientes opciones son verdaderas:

- a) En algún caso el valor de x al terminar el programa es 188.
- b) En algún caso el valor de x al terminar el programa es 95.
- c) En algún caso el valor de x al terminar el programa es 942.

P1::		P2::		P3::
If $(x = 0)$ then		If $(x > 0)$ then		x:= (x*8) /P31 + x*2 /P32;
y:= 4*23;	/P11	x = x + 1;	/P21	
x = y + 2;	/P12			

Realizando las ejecuciones en el siguiente orden se obtiene:

P31, P21, P11, P12, P32 = 188 P31, P32, P11, P12, P21 = 95 P11, P12, P31, P21, P32 = 942

Por lo tanto podemos afirmar que todas las opciones son correctas.

- 2. Suponga ahora, el mismo ejercicio anterior pero las instrucciones son atómicas. Indique cual/es de las siguientes opciones son verdaderas
- a) El valor de x al terminar el programa es 20.
- b) El valor de x al terminar el programa es 94.
- c) Es posible calcular todos los resultados posibles para las variables x e y.
- a) Es falso el mínimo valor que se puede obtener es: 94
- b) Es verdadero el programa puede terminar con x valor 94 si se ejecuta en el siguiente orden: P2, P3, P1 = 94
- c) Es verdadero, porque son instrucciones atómicas, intercambiando las instrucciones se podrá obtener todos los resultados posibles para las variables x e y.

3. A partir del código multiplicacion.c, pruebe ejecutar el algoritmo con diferente cantidad de hilos (2, 4, y 8) para tamaños de matriz de 32 x 32, y 64 x 64 posiciones. Complete la tabla con los tiempos de ejecución obtenidos.

Cantidad de hilos/ Tamaño de la matriz	32 X 32	64 X 64	
2	0.002026	0.008364	
4	0.002402	0.009060	
8	0.002997	0.009829	

4. Implemente una versión secuencial del algoritmo y realice el cálculo de speedup y eficiencia. Tenga en cuenta que la versión secuencial no debe ser el algoritmo paralelo con un solo hilo dado que la existencia de hilos agrega overhead en el procesamiento y se debe utilizar la mejor versión secuencial para calcular correctamente la performance del algoritmo.

Se realizaron los calculos de Speedup y Eficiencia

Tiempo versión secuencial 32x32: 0.001728 Tiempo versión secuencial 64x64: 0.003981

Speedup = Tiempo Secuencial / Tiempo Paralelo

Eficiencia = Speedup / procesadores

Cantidad de hilos	32 X 32			64 X 64		
	Tiempo	Speedup	Eficiencia	Tiempo	Speedup	Eficiencia
2	0.002026	0.85	0.43	0.008364	0.48	0.24
4	0.002402	0.72	0.18	0.009060	0.44	0.11
8	0.002997	0.58	0.07	0.009829	0.41	0.05