睿尔曼六自由度机械臂 JSON 通信协议 V2.0

睿尔曼智能科技(北京)有限公司

文件修订记录:

版本号	时间	备注
V1.0	2020-5-1	拟制
V1.1	2020-5-10	修订
V1.2	2020-5-15	修订 (通用化修订)
V1.3	2020-5-17	简化部分协议返回值
V1.4	2020-5-20	修改其中部分标点符号
V1.4.1	2020-5-25	修改部分格式
V1.4.2	2020-6-5	修改 WIFI 配置流程
V1.4.3	2020-6-18	修改 arm_all_state 返回
		帧
V1.4.4	2020-6-29	修改通信错误提示
V1.4.5	2020-6-29	添加 IO 部分协议
V1.4.6	2020-7-3	修改部分指令名称
V1.4.7	2020-7-28	加入拖动示教部分
V1.4.8	2020-8-2	加入末端接口部分
V1.5	2021-3-12	加入末端质心、路径点缓
		存等功能
V1.6	2021-5-20	加入 Movej_P 指令、PWM
		设置和一维力设置
V1.7	2021-7-26	增加动力学标定参数下载
		指令
V1.8	2021-8-18	增加控制器和末端接口板
		的 Modbus 协议配置
V1.9	2021-9-26	可显示多个内核的软件版
		本
V2.0	2021-9-27	加入防碰撞等级设置

目录

一、		关节配置	8
	1.1	关节配置命令集	8
		(1)设置关节最大转速	9
		(2)设置关节最大加速度	9
		(3) 设置关节最小限位	9
		(4) 设置关节最大限位	9
		(5) 设置关节使能状态	9
		(6) 设置关节零位	10
		(7) 清除关节错误代码	10
	1.2	关节配置查询集	10
		(1)查询关节最大速度	10
		(2)查询关节最大加速度	10
		(3)查询关节最小限位	10
		(4)查询关节最大限位	11
		(5)查询关节使能状态	11
		(6)查询关节错误代码	11
	1.3	关节配置反馈集	11
		(1)反馈关节最大速度	11
		(2)反馈关节最大加速度	11
		(3)反馈关节最小限位	11
		(4)反馈关节最大限位	12
		(5)反馈关节使能状态	12
		(6) 反馈关节错误代码	12
ニ、		机械臂配置	12
	2.1	机械臂配置-运动参数命令集	12
		(1)设置机械臂末端最大线速度	12
		(2)设置机械臂末端最大线加速度	12
		(3)设置机械臂末端最大角速度	13
		(4)设置机械臂末端最大角加速度	13
		(5)初始化机械臂参数	13
		(6)控制器伺服开合与关闭	13
		(7)设置碰撞防护等级	14
		(8)查询碰撞防护等级	14
		(9)重新设置机械臂 DH 参数	14
		(10)重新设置关节零位补偿角度	14
		(11)重新设置机械臂动力学参数	14
	2.2	机械臂配置-运动参数查询集	15
		(1)查询机械臂末端最大线速度	
		(2) 查询机械臂末端最大线加速度	15
		(3)查询机械臂末端最大角速度	15
		(4)查询机械臂末端最大角加速度	
	2.3	机械臂配置-运动参数反馈集	16

(1)反馈机械臂末端最大线速度	16
(2) 反馈机械臂末端最大线加速度	16
(3) 反馈机械臂末端最大角速度	16
(4) 反馈机械臂末端最大角加速度	16
2.4 机械臂配置-工具坐标系命令集	16
(1)自动计算工具坐标系	16
(2)手动输入工具坐标系	16
(3)切换当前工具坐标系	17
(4)删除工具坐标系	17
(5)设置末端负载及质心	17
(6)设置末端无负载	17
2.5 机械臂配置-工作坐标系命令集	18
(1)自动设置工作坐标系	18
(2)手动输入工作坐标系	18
(3)切换当前工作坐标系	18
(4)删除工作坐标系	19
2.6 机械臂配置-坐标系查询集	19
(1)查询当前工具	19
(2)查询已有所有工具名称	19
(3)查询指定工具信息	19
(4)查询当前工作坐标系	19
(5)查询已有所有工作坐标系名称	20
(6)查询指定工作坐标系	20
2.7 机械臂配置-坐标系返回集	20
(1) 返回当前工具信息	20
(2) 返回所有工具名称	20
(3) 返回指定工具信息	20
(4) 返回当前工作坐标系信息	21
(5) 返回所有工作坐标系名称	21
(6) 返回指定坐标系信息	21
2.8 机械臂配置-状态查询集	21
(1)查询机械臂状态	21
(2)查询关节温度	22
(3)查询关节当前电流	22
(4)查询关节当前电压	22
2.9 机械臂配置-状态反馈帧	22
(1) 反馈机械臂状态	22
(2) 反馈关节温度	23
(3) 反馈关节当前电流	23
(4) 反馈关节当前电压	23
(5) 反馈机械臂系统错误	23
2.10 机械臂配置-初始状态	23
(1)设置初始状态	23
(2)查询初始位置	24

(3)反馈初始位置	24
三、 运动配置	24
3.1 运动配置-轨迹指令类	24
(1)MoveJ: 关节运动	24
(2)MoveL: 直线运动	24
(3)MoveC: 圆弧运动	25
(4)角度透传到 CANFD	25
(5)timer:轨迹等待	25
(6)添加路径点	26
(7)运行路径点	26
(8)删除所有路径点	26
(9)停止运行路径点	27
(10)MoveJ_P:关节空间规划到目标位姿	27
3.2 运动配置-步进指令类	27
(1)关节步进	27
(2)位置步进	28
(3)姿态步进	28
3.3 运动配置-运动指令类	28
(1)轨迹急停	28
(2)轨迹暂停	28
(3)轨迹暂停后恢复	29
(4)清除当前轨迹	29
(5)清除所有轨迹	29
(6)查询当前规划类型	29
3.4 运动配置-示教指令类	29
(1)关节示教	29
(2)位置示教	30
(3)姿态示教	30
(4)示教停止	30
3.5 运动配置-轨迹反馈集	30
(1) 返回当前正在运行的轨迹	31
(2) 当前轨迹结束返回标志	31
四、 系统配置	31
4.1 系统配置-系统查询	31
(1)查询控制器状态	31
4.2 系统配置-系统反馈	31
(1) 反馈控制器状态	31
(2) 开启或关闭系统状态自动回传	32
(3) 系统状态自动回传	32
4.3 系统配置-系统指令	32
(1) 控制机械臂上电、断电	
(2) 读取机械臂电源状态	33
(3) 读取硬件版本号	33
(4) 读取软件版本号	33

	(5) 读取 SD 卡中的 Log 文件	33
	(6) 读取控制器的累计运行时间	34
	(7) 清零控制器的累计运行时间	34
	(8) 读取关节的累计转动角度	34
	(9) 清零关节的累计转动角度	34
	(10) 清除系统错误代码	34
4.4	系统配置-配置通讯内容	35
	(1) 配置 wifi AP 内容	35
	(2) 配置 wifi STA 内容	35
	(3) 配置 USB 内容	35
	(4) 设置网口模式	35
	(5) 通信错误提示	35
4.5	查询机械臂状态信息	36
	(1) 查询机械臂关节角度	36
	(2) 反馈机械臂关节角度	36
	(3) 一次性查询机械臂所有状态信息	36
	(4) 反馈所有状态信息	36
	(5) 查询规划计数	36
	(6) 反馈机械臂轨迹规划计数	37
4.6	控制器 IO 配置及获取	37
	(1)设置数字 IO 输出状态	37
	(2)获取数字 IO 输出状态	37
	(3)获取数字 IO 输入状态	37
	(4)设置模拟 IO 输出状态	38
	(5)获取模拟 IO 输出状态	38
	(6)获取模拟 IO 输入状态	38
	(7)获取所有 IO 输入状态	38
	(8)获取所有 IO 输出状态	38
4.7	末端工具 IO 控制	39
	(1)设置工具端数字 IO 输出状态	39
	(2)获取工具端数字 IO 输出状态	39
	(3)获取工具端数字 IO 输入状态	39
	(4)设置工具端模拟 IO 输出状态	39
	(5)获取工具端模拟 IO 输出状态	40
	(6)获取工具端模拟 IO 输入状态	40
	(7)获取工具端所有 IO 输入状态	40
	(8)获取工具端所有 IO 输出状态	40
	(9)设置工具端电源输出	40
	(10)获取工具端电源输出	41
4.8	末端工具手爪控制(选配)	41
	(1)设置手爪行程	41
	(2)松开手爪	41
	(3)手爪力控夹取	41
	(4)手爪持续力控夹取	41

(5)手爪到达指定位置	42
4.9 末端工具六维力(选配)	42
(1)查询六维力数据	42
(2)六维力数据清零	43
(3)设置六维力重心参数	43
(4)停止标定六维力重心	43
(5)标定六维力数据	44
4.10 拖动示教	44
(1)拖动示教开始	44
(2)拖动示教结束	44
(3)开始复合模式拖动示教	44
(4)轨迹复现开始	45
(5)轨迹复现暂停	45
(6)轨迹复现继续	45
(7)轨迹复现停止	45
(8)运动到轨迹起点	45
(9)力位混合控制	46
(10)结束力位混合控制	46
4.11 五指灵巧手 (选配)	46
(1)设置灵巧手手势	46
(2)设置灵巧手动作序列	46
(3)设置灵巧手各自由度角度	47
(4)设置灵巧手速度	47
(5)设置灵巧手力阈值	47
4.12 移动平台及升降机构(选配)	47
(1)设置移动平台运动	47
(2)设置升降平台高度	48
4.13 末端接口 PWM 设置(选配)	48
(1)设置末端 PWM 输出	48
(2)停止末端 PWM 输出	48
4.14 末端传感器一维力(选配)	48
(1)查询末端一维力数据	49
(2) 清零末端一维力数据	49
4.15 Modbus RTU 配置	
(1)配置通讯端口 Modbus RTU 模式	49
(2)关闭通讯端口 Modbus RTU 模式	50
(3)读线圈	50
(4)读离散量输入	50
(5)读保持寄存器	
(6)读输入寄存器	
(7)写单圈数据	
(8)写单个寄存器	
4.16 系统安装方式及关节版本信息	52
(1)设置安装方式参数	52
7	

	(2)查询关节软件版本号	52
	(3)查询末端接口板软件版本号	52
五、	移动升降机构(选配)	53
	5.1 升降机构控制	53
	(1)速度开环控制	53
	(2)位置闭环控制	
	(3)获取升降机构状态	53
	5.2 车体控制	54
	(1)速度开环控制	54
	(2)站点导航控制	54
	(3)速度导航控制	54
	(4)设置导航模式	54
	(5)查询车体状态	54
	(6)反馈车体状态	55
	(7)控制车体自动充电	55
	(8)设置车体当前站点号	55

睿尔曼六自由度机械臂对外采用统一的 JSON 格式进行数据通信,用户可使用 WIFI (AP 或者 STA)、以太网口通过标准的 TCP/IP 通信协议,按照要求的 JSON 格式发送数据,控制机械臂。

注意: 所有数据必须以发送新行的形式发出, 即指令以"\r\n"的形式结束, 否则机械臂不响应。

一、关节配置

1.1关节配置命令集

对机械臂的关节参数进行设置,如果关节发生错误,则无法修改关节参数,必须先清除关节错误代码。另外设置关节另外之前,必须先将关节掉使能,否则会设置不成功。

注意: 关节所有参数在修改完成后, 会自动保存到关节 Flash, 立即生效, 之

后关节处于掉使能状态,修改完参数后必须发送指令控制关节上使能。

(1)设置关节最大转速

功能描述	设置关节最大转速
参数说明	set_joint_max_speed: 设置关节最大转速指令
多致 奶奶	joint_max_speed:关节序号和最大转速,单位:RPM
命令格式	{s:s, s:[i, i]}
- /51	{"command":"set_joint_max_speed","joint_max_speed":[2, 300000]}
示例	说明:设置关节 2, 最大转速 300RPM, 转速分辨率 0.001RPM
	格式: {s:s, s:b} , true-设置成功, false-设置失败
返回值	{"command":"set_joint_max_speed","joint_max_speed":true}

(2)设置关节最大加速度

功能描述	设置关节最大加速度
参数说明	set_joint_max_acc: 设置关节最大加速度
	joint_max_acc: 关节序号和最大加速度,单位:RPM/s
命令格式	{s:s, s:[i, i]}
示例	{"command":"set_joint_max_acc","joint_max_acc":[2, 30000]}
	说明:设置关节2,最大加速度30RPM/s,加速度分辨率0.001RPM/s
返回值	格式: {s:s, s:b} , true-设置成功, false-设置失败
	{"command":"set_joint_max_acc","joint_max_acc": true }

(3) 设置关节最小限位

(-)	• • •	
功能描述	设置关节最小限位	
参数说明	set_joint_min_pos: 设置关节最小限位	
	joint_min_pos:关节序号和最小限位度数,单位:度	
命令格式	{s:s, s:[i, i]}	
示例	{"command":"set_joint_min_pos","joint_min_pos":[1, -170000]}	
	说明:设置关节1,最小限位度数 -170°,分辨率 0.001°	
返回值	格式: {s:s, s:b} , true-设置成功, false-设置失败	
	{"command":"set_joint_min_pos","joint_min_pos": true }	

(4) 设置关节最大限位

功能描述	设置关节最大限位	
参数说明	set_joint_max_pos: 设置关节最大限位	
	joint_max_pos:关节序号和最大限位度数,单位:度	
命令格式	{s:s, s:[i,i]}	
示例	{"command":"set_joint_max_pos","joint_max_pos":[1, 170000]}	
	说明:设置关节1,最大限位度数 170°,分辨率 0.001°	
返回值	格式: {s:s, s:b} , true-设置成功, false-设置失败	
	{"command":"set_joint_ max _pos","joint_ max _pos":true}	

(5) 设置关节使能状态

功能描述	设置关节使能状态	
参数说明	set_joint_en_state: 设置关节使能状态	
	joint_en_state: 关节序号和使能状态, 1: 上使能 0: 掉使能	
命令格式	{s:s, s:[i, i]}	
示例	{"command":"set_joint_en_state","joint_en_state":[6, 1]}	

	说明:设置关节6上使能
返回值	格式: {s:s, s:b} , true-设置成功, false-设置失败
	{"command":"set_joint_en_state","joint_en_state":true}

(6) 设置关节零位

()	
功能描述	设置关节零位
参数说明	set_joint_zero_pos: 设置关节零位
	joint_zero_pos: 关节序号
命令格式	{s:s, s:i}
示例	{"command":"set_joint_zero_pos","joint_zero_pos":3}
	说明:设置关节3位置为零位
返回值	格式: {s:s, s:b} , true-设置成功, false-设置失败
	{"command":"set_joint_zero_pos","joint_zero_pos":true}

(7) 清除关节错误代码

功能描述	清除关节错误代码
参数说明	set_joint_clear_err: 清除关节错误代码
	joint_clear_err: 关节序号
命令格式	{s:s, s:i}
示例	{"command":"set_joint_clear_err","joint_clear_err":2}
	说明: 清除关节 2 错误代码
返回值	格式: {s:s, s:b} , true-设置成功, false-设置失败
	{"command":"set_joint_clear_err","joint_clear_err":true}

1.2关节配置查询集

(1)查询关节最大速度

功能描述	查询关节最大速度
参数说明	get_joint_max_speed: 查询关节最大速度
命令格式	{s:s}
示例	{"command":"get_joint_max_speed"}
	说明: 查询关节最大速度
返回值	见表 1.3-(1)

(2)查询关节最大加速度

功能描述	查询关节最大加速度
参数说明	get_joint_max_acc: 查询关节最大加速度
命令格式	{s:s}
示例	{"command":"get_joint_max_acc"}
	说明: 查询关节最大加速度
返回值	见表 1.3-(2)

(3)查询关节最小限位

功能描述	查询关节最小限位
参数说明	get_joint_min_pos: 查询关节最小限位
命令格式	{s:s}
示例	{"command":"get_joint_min_pos"}
	说明: 查询关节最小限位

返回值	见表 1.3-(3)
-----	------------

(4)查询关节最大限位

功能描述	查询关节最大限位
参数说明	get_joint_max_pos: 查询关节最大限位
命令格式	{s:s}
示例	{"command":"get_joint_max_pos"}
	说明: 查询关节最大限位
返回值	见表 1.3-(4)

(5)查询关节使能状态

功能描述	查询关节使能状态
参数说明	get_joint_en_state: 查询关节使能状态
命令格式	{s:s}
示例	{"command":"get_joint_en_state"}
	说明: 查询关节使能状态
返回值	见表 1.3-(5)

(6)查询关节错误代码

功能描述	查询关节错误代码
参数说明	get_joint_err_flag: 查询关节错误代码
命令格式	{s:s}
示例	{"command":"get_joint_err_flag"}
	说明: 查询关节错误代码
返回值	见表 1.3-(6)

1.3关节配置反馈集

(1)反馈关节最大速度

功能描述	反馈所有关节最大速度
参数说明	joint_max_speed: 反馈关节最大速度
命令格式	{s:s,s:[i,i,i,i,i]}
示例	{"state":"joint_max_speed", "joint_speed":[30, 30, 30, 30, 30, 30]}
	说明:依次反馈 6 个关节最大转速均为 0.03RPM,单位 RPM,分辨
	率: 0.001RPM

(2)反馈关节最大加速度

功能描述	反馈关节最大加速度
参数说明	joint_max_acc: 反馈关节最大加速度
命令格式	{s:s,s:[i,i,i,i,i]}
示例	{"state":"joint_max_acc", "joint_acc":[500, 500, 500, 500, 500, 500]}
	说明: 依次反馈 6 个关节最大加速度均为 0.5RPM/s, 单位 RPM/s, 分
	辨率: 0.001RPM/s

(3)反馈关节最小限位

功能描述	反馈关节最小限位
参数说明	joint_min_pos: 反馈关节最小限位
命令格式	{s:s,s:[i,i,i,i,i,i]}

示例	{"state":"joint_min_pos", "min_pos":[-170000, -110000, -170000, -
	110000, -170000, -110000]}
	说明: 反馈关节最小限位, 关节 1,3,5 最小位置-170°, 关节 2,4,6 最小
	位置-110°, 单位: 度, 分辨率: 0.001°

(4)反馈关节最大限位

` /	
功能描述	反馈关节最大限位
参数说明	joint_max_pos: 反馈关节最大限位
命令格式	{s:s,s:[i,i,i,i,i,i]}
示例	{"state":"joint_max_pos","max_pos":[170000,110000,170000,110000,
	170000,110000]}
	说明: 反馈关节最大限位, 关节 1,3,5 最大位置 170°, 关节 2,4,6 最大
	位置 110°, 单位: 度,分辨率: 0.001°

(5)反馈关节使能状态

功能描述	反馈关节使能状态
参数说明	joint_en_state: 反馈关节使能状态
命令格式	{s:s,s:[i,i,i,i,i]}
示例	{"state":"joint_en_state", "en_state":[1,1, 1,1,1,0]}
	说明: 反馈 6 个关节使能状态, 1-上使能状态, 0-掉使能状态

(6) 反馈关节错误代码

功能描述	反馈关节错误代码
参数说明	joint_err_flag: 反馈关节错误代码
命令格式	{s:s,s:[i,i,i,i,i,i]}
示例	{"state":"joint_err_flag", "err_flag":[0, 0, 0, 0, 0, 1]}
	说明: 反馈6个关节错误代码, 错误代码为整型

二、机械臂配置

2.1 机械臂配置-运动参数命令集

机械臂末端参数设置完毕后,会自动保存到控制器 Flash,断电之后仍会保存。

(1)设置机械臂末端最大线速度

(1) ~ 1	
功能描述	设置机械臂末端最大线速度
参数说明	set_arm_max_line_speed: 设置机械臂末端最大线速度
	arm_line_speed: 目标线速度 单位: m/s
命令格式	{s:s,s:i}
示例	{"command":"set_arm_max_line_speed","arm_line_speed":500}
	说明:设置机械臂末端最大线速度 0.5m/s,分辨率 0.001m/s
返回值	格式: {s:s, s:b} , true-设置成功, false-设置失败
	{"command":"set_arm_max_line_speed","arm_line_speed":true}

(2)设置机械臂末端最大线加速度

功能描述	设置机械臂末端最大线加速度
参数说明	set_arm_max_line_acc: 设置机械臂末端最大线加速度
	arm_line_acc: 目标线加速度 单位: m/s²

命令格式	{s:s,s:i}
示例	{"command":"set_arm_max_line_acc","arm_line_acc":2000}
	说明:设置机械臂末端最大线加速度2m/s²,,分辨率0.001m/s²
返回值	格式: {s:s, s:b} , true-设置成功, false-设置失败
	{"command":"set_arm_max_line_acc","arm_line_acc":true}

(3)设置机械臂末端最大角速度

功能描述	设置机械臂末端最大角速度
参数说明	set_arm_max_angular_speed: 设置机械臂末端最大角速度
	arm_angular_speed: 目标角速度 单位: rad/s
命令格式	{s:s,s:i}
示例	{"command":"set_arm_max_angular_speed","arm_angular_speed":200}
	说明:设置机械臂末端最大角速度 0.2rad/s,分辨率 0.001rad/s
返回值	格式: {s:s, s:b} , true-设置成功, false-设置失败
	{"command":"set_arm_max_angular_speed","arm_angular_speed":200}

(4)设置机械臂末端最大角加速度

功能描述	设置机械臂末端最大角加速度
参数说明	set_arm_max_angular_acc: 设置机械臂末端最大角加速度
	arm_angular_acc: 目标角加速度 单位: rad/s²
命令格式	{s:s,s:i}
示例	{"command":"set_arm_max_angular_acc","arm_angular_acc":4000}
	说明:设置机械臂末端最大角加速度 4 rad/s²,分辨率 0.001rad/s²
返回值	格式: {s:s, s:b} , true-设置成功, false-设置失败
	{"command":"set_arm_max_angular_acc","arm_angular_acc":true}

(5)初始化机械臂参数

功能描述	初始化机械臂末端参数
参数说明	set_arm_init: 初始化机械臂末端参数
命令格式	{s:s}
示例	{"command":"set_arm_init"}
	说明:初始化机械臂参数,机械臂的末端参数回复到默认值。其中
	末端线速度: 0.1m/s 末端线加速度: 0.5m/ s²
	末端角速度: 0.2rad/s 末端角加速度: 1 rad/ s²
返回值	格式: {s:s, s:b} , true-设置成功, false-设置失败
	{"command":"set_arm_init", "arm_init":true}

(6)控制器伺服开合与关闭

功能描述	控制器伺服开合与关闭
参数说明	set_arm_servo: 设置控制器伺服开合与关闭
	arm_servo: 开合状态 1-打开, 0-关闭
命令格式	{s:s,s:i}
示例	{"command":"set_arm_servo", "arm_servo":1}
	说明:控制器上电默认周期查询机械臂状态,为减小 CANFD 总线负
	载,需要关闭伺服查询时,操作该指令。
返回值	格式: {s:s, s:b} , true-设置成功, false-设置失败
	{"command":"set_arm_servo", "arm_servo":true}

(7)设置碰撞防护等级

功能描述	设置机械臂碰撞防护等级
参数说明	set_collision_stage: 设置机械臂碰撞防护等级
	collision_stage: 等级, 范围: 0~8
命令格式	{s:s,s:i}
示例	{"command":"set_collision_stage", "collision_stage":1}
	说明:设置机械臂碰撞防护等级,等级越高,检测越灵敏
返回值	格式: {s:s, s:b} , true-设置成功, false-设置失败
	{"command":"set_collision_stage","collision_stage":true}

(8)查询碰撞防护等级

功能描述	设置机械臂碰撞防护等级
参数说明	get_collision_stage: 设置机械臂碰撞防护等级
	collision_stage: 等级, 范围: 0~8
命令格式	{s:s}
示例	{"command":"get_collision_stage"}
	说明:设置机械臂碰撞防护等级,等级越高,检测越灵敏
返回值	格式: {s:s, s:i}
	{"state":"get_collision_stage","collision_stage":5}

(9)重新设置机械臂 DH 参数

(-)	· / /-
功能描述	重新设置机械臂 DH 参数
参数说明	set_DH_data:设置机械臂 DH 参数
命令格式	{s:s,s:[i, i, i, i, i}
示例	{"command":"set_DH_data", "data":[2405, 2560, 2100, 1440, 0]}
	说明:设置机械臂 DH 参数,精度: 0.1mm,上述指令内容如下:
	lsb: 240.5mm
	lse: 256mm
	lew: 210mm
	lwt: 144mm
	d3: 0mm
返回值	格式: {s:s, s:b} , true-设置成功, false-设置失败
	{"command":"set_DH_data ", "set_state":true}

(10)重新设置关节零位补偿角度

()- , - ,	• • • • • • • • • •
功能描述	重新设置关节零位补偿角度, 用于校正绝对定位精度
参数说明	set_joint_zero_offset
命令格式	{s:s,s:[i, i, i, i, i, i]}
示例	{"command":"set_joint_zero_offset", "offset":[1000, -2000, 3000, -
	4000, 5000, -6000]}
	说明:设置关节零位偏移,精度: 0.001°
	关节 1~6 的零位补偿角度: 1°, -2°, 3°, -4°, 5°, -6°
返回值	格式: {s:s, s:b} , true-设置成功, false-设置失败
	{"command":"set_joint_zero_offset", "set_state":true}

(11)重新设置机械臂动力学参数

功能描述	重新设置机械臂动力学参数
------	--------------

参数说明	set_arm_dynamic_parm
命令格式	{s:s,s:[i, i, i, i, i, i, i, i, i, i, i]}
示例	{"command":"set_arm_dynamic_parm", "parm":[1000, -2000, 3000, -
	4000, 5000, -6000, 1000, -2000, 3000, -4000, 5000, -6000]}
	说明:设置机械臂动力学参数,精度:0.001
返回值	格式: {s:s, s:b} , true-设置成功, false-设置失败
	{"command":"set_arm_dynamic_parm", "set_state":true}

2.2 机械臂配置-运动参数查询集

(1)查询机械臂末端最大线速度

	•
功能描述	查询机械臂末端最大线速度
参数说明	get_arm_max_line_speed: 查询机械臂末端最大线速度
命令格式	{s:s}
示例	{"command":"get_arm_max_line_speed"}
	说明: 查询机械臂末端最大线速度
返回值	见表 2.3-(1)

(2) 查询机械臂末端最大线加速度

()	• • • • •
功能描述	查询机械臂末端最大线加速度
参数说明	get_arm_max_line_acc: 查询机械臂末端最大线加速度
命令格式	{s:s}
示例	{"command":"get_arm_max_line_acc"}
	说明:查询机械臂末端最大线加速度
返回值	见表 2.3-(2)

(3)查询机械臂末端最大角速度

功能描述	查询机械臂末端最大角速度
参数说明	get_arm_max_angular_speed: 查询机械臂末端最大角速度
命令格式	{s:s}
示例	{"command":"get_arm_max_angular_speed"}
	说明:查询机械臂末端最大角速度
返回值	见表 2.3-(3)

(4)查询机械臂末端最大角加速度

功能描述	查询机械臂末端最大角加速度
参数说明	get_arm_max_angular_acc: 查询机械臂末端最大角加速度
命令格式	{s:s}
示例	{"command":"get_arm_max_angular_acc"}
	说明: 查询机械臂末端最大线角加速度
返回值	见表 2.3-(4)

2.3 机械臂配置-运动参数反馈集

(1)反馈机械臂末端最大线速度

功能描述	反馈机械臂末端最大线速度
参数说明	arm_max_line_speed: 反馈机械臂末端最大线速度
命令格式	{s:s,s:i}
示例	{"state":"arm_max_line_speed", "arm_line_speed":500
	说明: 反馈机械臂末端最大线速度,0.5m/s, 分辨率: 0.001m/s

(2) 反馈机械臂末端最大线加速度

(=) /22:21 1 111111	144-25 C 1 1 0/2C
功能描述	反馈机械臂末端最大线加速度
参数说明	arm_max_line_acc: 反馈机械臂末端最大线加速度
命令格式	{s:s,s:i}
示例	{"state":"arm_max_line_acc", "arm_line_acc":200
	说明:反馈机械臂末端最大线加速度, 0.2m/s², 分辨率: 0.001 m/s²

(3) 反馈机械臂末端最大角速度

功能描述	反馈机械臂末端最大角速度
参数说明	arm_max_angular_speed: 反馈机械臂末端最大角速度
命令格式	{s:s,s:i}
示例	{"state":"arm_max_angular_speed", "arm_angular_speed":1000}
	说明: 反馈机械臂末端最大角速度, 1rad/s, 分辨率: 0.001rad/s

(4) 反馈机械臂末端最大角加速度

功能描述	反馈机械臂末端最大角加速度
参数说明	arm_max_angular_acc: 反馈机械臂末端最大角加速度
命令格式	{s:s,s:i}
示例	{"state":"arm_max_angular_acc", "arm_angular_acc":10000}
	说明: 反馈机械臂末端最大角加速度, 10 rad/s², 分辨率: 0.001 rad/s²

2.4 机械臂配置-工具坐标系命令集

(1)自动计算工具坐标系

功能描述	自动计算工具坐标系 (六点法): 机械臂只能存储 10 个工具坐标系,
	若超过10个,则新建立工具不成功。
参数说明	set_auto_tool_frame: 自动计算工具坐标系
	tool_name:工具坐标系名称,不能超过10个字符
	point_num: 1~6 为标定参考点,7 为自动计算生成工具
命令格式	{s:s,s:s,s:i}
示例	{"command":"set_auto_tool_frame","tool_name":"tool2_frame",
	"point_num":6 }
	说明: 自动计算工具坐标系, 名称 tool2_frame, 标定当前位置为参考
	点 6
返回值	格式: {s:s, s:b} , true-设置成功, false-设置失败
	{"command":"set_auto_tool_frame","auto_tool_frame":true}

(2)手动输入工具坐标系

功能描述	手动输入工具坐标系: 机	械臂只能存储 10 个工具坐标系,	若超过 10
------	--------------	-------------------	--------

	个,则新建立工具不成功。
参数说明	set_manual_tool_frame: 手动输入工具坐标系参数
	tool_name:工具坐标系名称 ,不能超过 10 个字符
	tool_pose: 工具相对机械臂末端法兰中心位姿
命令格式	{s:s,s:s,s:[i,i,i,i,i,i]}
示例	{"command":"set_manual_tool_frame", "tool_name":"tool2_frame",
	"tool_pose":[100000, 200000, 30000, 400, 500, 600]}
	说明:手动输入工具坐标系,名称 tool2_frame,
	工具位置: x: 0.1m, y:0.2m, z: 0.03m, 位置精度: 0.001mm
	工具姿态: rx: 0.4rad, ry: 0.5rad, rz: 0.6rad, 姿态精度: 0.001rad
返回值	格式: {s:s,s:b} , true-设置成功, false-设置失败
	{"command":"set_manual_tool_frame", "manual_tool_frame":true}

(3)切换当前工具坐标系

()	• • •
功能描述	切换当前工具坐标系
参数说明	set_change_tool_frame: 切换当前工具作坐标系
	tool_name: 工具坐标系名称
命令格式	{s:s,s:s}
示例	{"command":"set_change_tool_frame", "tool_name":"tool2_frame"}
	说明:切换当前工具坐标系,名称 tool2_frame
返回值	格式: {s:s,s:b} , true-设置成功, false-设置失败
	{"command":"set_change_tool_frame", "change_tool_name":true}

(4)删除工具坐标系

	•
功能描述	删除工具坐标系
参数说明	set_delete_tool_frame: 删除工具坐标系
	tool_name: 工具坐标系名称
命令格式	{s:s,s:s}
示例	{"command":"set_delete_tool_frame", "tool_name":"tool2_frame"}
	说明: 删除工具坐标系, 名称 tool2_frame
返回值	格式: {s:s,s:b} , true-设置成功, false-设置失败
	{"command":"set_delete_tool_frame", "delete_tool_name":true}

(5)设置末端负载及质心

6) X = 1-14 X 44-6 X	
功能描述	配置末端负载
参数说明	set_payload:
命令格式	{s:s,s:i, s:{i,i,i}}
示例	{"command":"set_payload", "payload": 5000, "position":[1000, 2000,
	3000]}
	说明:末端负载 5000g,质心位置: x-1mm, y-2mm, z-3mm
	payload:单位: g, 最高不超过 5000g;
	position: 质心位置,单位: mm, 精度 0.001mm
	备注: 机械臂上电初始化后, 默认无负载
返回值	格式: {s:s,s:b} , true-设置成功, false-设置失败
	{"command":"set_payload", "set_state":true}

(6)设置末端无负载

功能描述	配置末端负载
参数说明	set_none_payload:
命令格式	{s:s}
示例	{"command":"set_none_payload"}
	说明:设置机械臂末端无负载
返回值	格式: {s:s,s:b} , true-设置成功, false-设置失败
	{"command":"set_none_payload", "set_state":true}

2.5 机械臂配置-工作坐标系命令集

(1)自动设置工作坐标系

	· · · · · ·
功能描述	设置工作坐标系: 机械臂只能存储 10 个工作坐标系, 若超过 10 个, 则新建
	立坐标系不成功。
参数说明	set_work_frame: 设置工作坐标系
	frame_name: 工作坐标系名称,不能超过 10 个字符
	point_num:参考点 1~3 代表工作坐标系原点、X 轴一点和 Y 轴上一点,
	4 代表根据前三个标定点计算工作坐标系。
命令格式	{s:s,s:s,s:i}
示例	{"command":"set_auto_work_frame","frame_name":"work2_frame",
	"point_num":3}
	说明:设置工作坐标系,名称 work2_frame,将当前位置标定为点3
返回值	格式: {s:s,s:b} , true-设置成功, false-设置失败
	{"command":"set_auto_work_frame","auto_work_frame":true}

(2)手动输入工作坐标系

() .	• • •
功能描述	手动输入工作坐标系: 机械臂只能存储 10 个工作坐标系, 若超过 10
	个,则新建立坐标系不成功。
参数说明	set_manual_work_frame: 手动输入工作坐标系
	frame_name:工作坐标系名称,不能超过10个字符
	frame_pose: 工作位置
命令格式	{s:s,s:s,s:[i,i,i,i,i,i]}
示例	{"command":"set_manual_work_frame","frame_name":"work2_frame",
	"frame_pose":[100000, 200000, 30000, 400, 500, 600]}
	说明:手动输入工作坐标系,名称 work2_frame,
	坐标系位置: x: 0.1m, y:0.2m, z: 0.03m, 位置精度: 0.001mm
	坐标系姿态: rx: 0.4rad, ry: 0.5rad, rz: 0.6rad, 姿态精度: 0.001rad
返回值	格式: {s:s,s:b} , true-设置成功, false-设置失败
	{"command":"set_manual_work_frame", "manual_work_frame":true}

(3)切换当前工作坐标系

功能描述	切换当前工作坐标系
参数说明	set_change_work_frame: 切换当前工作坐标系
	frame_name: 工具坐标系名称
命令格式	{s:s,s:s}
示例	{"command":"set_change_work_frame","frame_name":"work2_frame"}
	说明:切换当前工作坐标系,名称 work2_frame

返回值	格式: {s:s,s:b} , true-	设置成功, false-设置失败	
	{"command":"set change	ge work frame", "change work frame":true}	

(4)删除工作坐标系

功能描述	删除工作坐标系
参数说明	set_delete_work_frame: 删除工作坐标系
	frame_name: 工作坐标系名称
命令格式	{s:s,s:s}
示例	{"command":"set_delete_work_frame","frame_name":"work2_frame"}
	说明:删除工作坐标系,名称 work2_frame
返回值	格式: {s:s,s:b}, true-设置成功, false-设置失败
	{"command":"set_delete_work_frame","delete_work_frame":true }

2.6 机械臂配置-坐标系查询集

(1)查询当前工具

()	
功能描述	查询当前工具
参数说明	get_current_tool_frame: 查询当前工具
命令格式	{s:s}
示例	{"command":"get_current_tool_frame"}
	说明:查询当前工具
返回值	见表 2.7-(1)

(2)查询已有所有工具名称

功能描述	查询已有所有工具名称
参数说明	get_total_tool_frame: 查询所有工具名称
命令格式	{s:s}
示例	{"command":"get_total_tool_frame"}
	说明:查询所有工具名称
返回值	见表 2.7-(2)

(3)查询指定工具信息

功能描述	查询指定工具信息
参数说明	get_tool_frame: 查询指定工具信息
	tool_name: 工具名称
命令格式	{s:s, s:s}
示例	{"command":"get_tool_frame", "tool_name":"tool"}
	说明:查询指定工具信息,工具名称:tool
返回值	见表 2.7-(3)

(4)查询当前工作坐标系

功能描述	查询当前工作坐标系
参数说明	get_current_work_frame: 查询当前工作坐标系
命令格式	{s:s}
示例	{"command":"get_current_work_frame"}

	说明:查询当前工作坐标系
返回值	见表 2.7-(4)

(5)查询已有所有工作坐标系名称

<u> </u>	
功能描述	查询已有所有工作坐标系名称
参数说明	get_total_work_frame: 查询所有工作坐标系名称
命令格式	{s:s}
示例	{"command":"get_total_work_frame"}
	说明:查询所有工作坐标系名称
返回值	见表 2.7-(5)

(6)查询指定工作坐标系

功能描述	查询指定工作坐标系
参数说明	get_work_frame: 查询指定工作坐标系
	frame_name: 坐标系名称
命令格式	{s:s,s:s}
示例	{"command":"get_work_frame", "frame_name":"work1"}
	说明:查询指定工作坐标系,坐标系名称:workl
返回值	见表 2.7-(6)

2.7 机械臂配置-坐标系返回集

(1) 返回当前工具信息

功能描述	返回当前工具信息
参数说明	current_tool_frame: 返回当前工具信息
命令格式	{s:s,s:s,s:[i,i,i,i,i]}
示例	{"state":"current_tool_frame", "tool_name":"tool2_frame",
	"pose":[100000, 200000, 30000, 400, 500, 600]}
	说明:返回当前工具信息,工具名称:tool2_frame
	工具位置: x: 0.1m, y:0.2m, z: 0.03m, 位置精度: 0.001mm
	工具姿态: rx: 0.4rad, ry: 0.5rad, rz: 0.6rad, 姿态精度: 0.001rad

(2) 返回所有工具名称

功能描述	返回所有工具名称, NULL 为空
参数说明	total_tool_frame: 返回所有工具名称
命令格式	{s:s,s:s,s:[s,s,,s]}
示例	{"state":"total_tool_frame","tool_names":["base_tool1",
	"base_tool2","NULL"]}
	说明:返回所有工具名称,共10个,工具名称:base_tool1,base_tool2,
	其中"NULL"为空坐标系,未建立

(3) 返回指定工具信息

功能描述	返回指定工具信息
参数说明	given_tool_frame: 返回指定工具信息
命令格式	{s:s,s:s,s:[i,i,i,i,i,i]}

示例	{"state":"given_tool_frame",	"tool_name":"tool2_frame",
	"pose":[100000, 200000, 30000, 400, 500), 600]}
	说明:返回指定工具信息,工具名称: t	ool2_frame,
	工具位置: x: 0.1m, y:0.2m, z: 0.03i	n, 位置精度: 0.001mm
	工具姿态: rx: 0.4rad, ry: 0.5rad, rz:	0.6rad, 姿态精度: 0.001rad

(4) 返回当前工作坐标系信息

功能描述	返回当前工作坐标系信息
参数说明	current_work_frame: 返回当前工作坐标系信息
命令格式	{s:s,s:s,s:[i,i,i,i,i]}
示例	{"state":"current_work_frame",
	"frame_name":"work2_frame","pose":[100000, 200000, 30000, 400,
	500, 600]}
	说明:返回当前工作坐标系信息,坐标系名称:work2_frame,
	坐标系位置: x: 0.1m, y:0.2m, z: 0.03m, 位置精度: 0.001mm
	坐标系姿态: rx: 0.4rad, ry: 0.5rad, rz: 0.6rad, 姿态精度: 0.001rad

(5) 返回所有工作坐标系名称

功能描述	返回所有工作坐标系名称,总共 10 个, NULL 为空, 表示未建立
参数说明	total_work_frame: 返回所有工作坐标系名称
命令格式	{s:s,s:s,s:[s,s,,s]}
示例	{"state":"total_work_frame","frame_names":["work1",
	"work2","NULL"]}
	说明:返回所有工作坐标系名称,坐标系名称:work1,work2,

(6) 返回指定坐标系信息

功能描述	返回指定坐标系信息
参数说明	given_work_frame: 返回指定坐标系信息
命令格式	{s:s,s:s,s:[i,i,i,i,i]}
示例	{"state":"given_work_frame","frame_name":"work2_frame",
	"pose":[100000, 200000, 30000, 400, 500, 600]}
	说明:返回指定坐标系信息,坐标系名称:work2_frame,
	坐标系位置: x: 0.1m, y:0.2m, z: 0.03m, 位置精度: 0.001mm
	坐标系姿态: rx: 0.4rad, ry: 0.5rad, rz: 0.6rad, 姿态精度: 0.001rad

2.8 机械臂配置-状态查询集

(1)查询机械臂状态

功能描述	查询机械臂状态
参数说明	get_current_arm_state: 查询机械臂状态
命令格式	{s:s}
示例	{"command":"get_current_arm_state"}
	说明: 查询机械臂状态
返回值	见表 2.9-(1)

(2)查询关节温度

功能描述	查询关节温度
参数说明	get_current_joint_temperature: 查询关节温度
命令格式	{s:s}
示例	{"command":"get_current_joint_temperature"}
	说明: 查询关节温度
返回值	见表 2.9-(2)

(3)查询关节当前电流

() =	
功能描述	查询关节当前电流
参数说明	get_current_joint_current: 查询关节当前电流
命令格式	{s:s}
示例	{"command":"get_current_joint_current"}
	说明: 查询关节当前电流
返回值	见表 2.9-(3)

(4)查询关节当前电压

功能描述	查询关节当前电压
参数说明	get_current_joint_voltage: 查询关节当前电压
命令格式	{s:s}
示例	{"command":"get_current_joint_voltage"}
	说明:查询关节当前电压
返回值	见表 2.9-(4)

2.9 机械臂配置-状态反馈帧

(1) 反馈机械臂状态

功能描述	反馈机械臂状态:包括关节角度、末端位姿、机械臂错误代码、控制	
	器错误代码	
参数说明	current_arm_state: 反馈机械臂状态	
	joint: 关节角度	
	pose: 末端位姿	
	arm_err: 机械臂错误代码	
	sys_err: 控制器错误代码	
命令格式	{s:s,s:{s:[i,i,i,i,i],s:[i,i,i,i,i],s:i,s:i}}	
示例	{"state":"current_arm_state",	
	"arm_state": {"joint":[100,200,300,400,500,600], "pose":[100000,	
	200000, 30000, 400, 500, 600], "arm_err":0, "sys_err":0}}	
	说明: 反馈机械臂状态,	
	关节 1~6 角度依次为: 0.1°, 0.2°, 0.3°。0.4°, 0.5°, 0.6°, 精度: 0.001°	
	位置: x: 0.1m, y:0.2m, z: 0.03m, 位置精度: 0.001mm	
	姿态: rx: 0.4rad, ry: 0.5rad, rz: 0.6rsd, 姿态精度: 0.001rad	
	机械臂错误代码,指机械臂运行规划中的软件错误: 0	

	控制器错误代码,	指控制器运行过程中的硬件错误:	0
--	----------	-----------------	---

(2) 反馈关节温度

功能描述	反馈关节温度
参数说明	current_joint_temperature: 反馈关节温度 单位: ℃
命令格式	{s:s,s:[i,i,i,i,i]}
示例	{"state":"current_joint_temperature", "joint_temperature":[27500,
	28000, 26800, 26800, 28900, 30100]}
	说明: 反馈关节温度, 关节温度[27.5, 28.0, 26.8, 26.8, 28.9, 30.1], 单
	位: ℃, 精度: 0.001℃

(3) 反馈关节当前电流

() , = 21. = 1	
功能描述	反馈关节当前电流
参数说明	current_joint_current: 反馈关节当前电流 单位: mA, 精度: 0.001mA
命令格式	{s:s,s:[i,i,i,i,i,i]}
示例	{"state":"current_joint_current", "joint_current":[65,-200, 170, 200, -
	300, 168]}
	说明:反馈关节当前电流,关节 1~6 电流依次为: 0.065mA,-0.2mA,
	0.17mA, 0.2mA, -0.3mA, 0.168mA

(4) 反馈关节当前电压

<u> </u>	
功能描述	反馈关节当前电压
参数说明	current_joint_voltage: 反馈关节当前电压 单位: V, 精度: 0.001V
命令格式	{s:s, s:[i,i,i,i,i,i]}
示例	{"state":"current_joint_voltage", "joint_voltage":[27500, 28000,
	26800, 26800, 28900, 30100]}
	说明: 反馈关节当前电压,关节 1~6 电压依次为 27.5V, 28.0V, 26.8V,
	26.8V, 28.9V, 30.1V

(5) 反馈机械臂系统错误

功能描述	反馈机械臂系统错误
参数说明	current_arm_err: 反馈系统错误
命令格式	{s:s,s:i}
示例	{"state":"current_arm_err", "arm_err":8}
	说明: 反馈系统错误, 系统错误代码 8

2.10 机械臂配置-初始状态

(1)设置初始状态

功能描述	设置初始状态
参数说明	set_init_pose: 设置初始状态
	init_pose: 初始状态位置, 精度 0.001°
命令格式	{s:s,s:[i, i, i, i, i, i]}
示例	{"command":"set_init_pose", "init_pose":[10000, 0, 20000, 30000, 0,
	20000]}
	说明:设置初始状态,初始状态位置[10°,0°,20°,30°,0°,20°]
返回值	格式: {s:s,s:b}, true-设置成功, false-设置失败
	{"command":"set_init_pose", "init_pose":true}

(2)查询初始位置

功能描述	查询初始位置
参数说明	get_init_pose: 查询初始位置
命令格式	{s:s}
示例	{"command":"get_init_pose"}
	说明: 查询初始位置
返回值	见下表(3)

(3)反馈初始位置

() >	
功能描述	反馈初始位置
参数说明	init_pose: 反馈初始位置
	init_pose: 精度 0.001°
命令格式	{s:s,s:[i,i,i,i,i,i]}
示例	{"state":"init_pose", "init_pose":[10000, 0, 20000, 30000, 0, 20000]}
	说明: 反馈初始位置, 初始状态位置[10°,0°,20°,30°,0°,20°]

三、运动配置

3.1 运动配置-轨迹指令类

(1)MoveJ: 关节运动

功能描述	MoveJ: 关节运动
参数说明	movej: 关节运动
	joint: 目标关节角度, 精度 0.001°
	v: 速度百分比例系数, 0~100
	r: 交融半径, 精度 0.001m, 暂不支持交融, 默认 0
命令格式	{s:s ,s:[i,i,i,i,i],s:i,s:i}
示例	{"command":"movej", "joint":[10100, 200, 20300, 30400, 500, 20600],
	"v":50, "r":0}
	说明:关节运动,关节角度[10.1°, 0.2°, 20.3°, 30.4°, 0.5°, 20.6°],速度
	系数 50%, 交融半径: 0
返回值	格式: {s:s,s:b}, true-到达目标位置, false-规划失败
	{"state":"current_trajectory_state", "trajectory_state":true}

(2)MoveL: 直线运动

功能描述	MoveL: 直线运动
参数说明	movel: 直线运动
	pose: 目标位姿, 位置精度: 0.001mm, 姿态精度: 0.001rad
	v: 速度百分比例系数, 0~100
	r: 交融半径, 精度 0.001m, 暂不支持交融, 默认 0
命令格式	{s:s,s:[i,i,i,i,i],s:i,s:i}
示例	{"command":"movel", "pose":[100000, 200000, 30000, 400, 500, 600],
	"v":50, "r":0}
	说明: 直线运动,
	目标位置: x: 0.1m, y:0.2m, z: 0.03m

	目标姿态: rx:0.4rad, ry:0.5rad, rz:0.6rad 速度系数 50%, 不交融
返回值	格式: {s:s,s:b}, true-到达目标位置, false-规划失败
	{"state":"current_trajectory_state", "trajectory_state":true}
备注:	MOVL 指令也适用于目标位置不变,姿态变化

(3)MoveC: 圆弧运动

(3)MoveC: 1	
功能描述	MoveC: 圆弧运动
参数说明	movec: 圆弧运动
	pose: 位姿
	pose_via: 中间点位姿, 位置精度 0.001mm, 姿态精度 0.001rad
	pose_to: 目标位姿, 位置精度 0.001mm, 姿态精度 0.001rad
	v: 速度百分比例系数, 0~100
	r: 交融半径, 暂不支持轨迹交融, 默认 0
	loop: 循环圈数, 默认 0
命令格式	{s:s, s:{s:[i,i,i,i,i], s:[i,i,i,i,i]},s:i,s:i}
示例	{"command":"movec", "pose":{"pose_via": [100000, 200000, 30000,
	400, 500, 600], "pose_to":[200000, 300000, 30000, 400, 500, 600]},
	"v":50, "r":0, "loop":0}
	说明:圆弧运动,
	中间点位置: x: 0.1m, y:0.2m, z: 0.03m
	中间点姿态: rx:0.4rad, ry:0.5rad, rz:0.6rad
	终点位置: x: 0.2m, y:0.3m, z: 0.03m
	终点姿态: rx:0.4rad, ry:0.5rad, rz:0.6rad
	速度系数 50%,
	不交融
	不循环
返回值	格式: {s:s,s:b}, true-到达目标位置, false-规划失败
	{"state":"current_trajectory_state", "trajectory_state":true}

(4)角度透传到 CANFD

(-)////	(1)///2011/12	
功能描述	movej_canfd: 角度通过 CANFD 透传给机械臂,不需控制器规划	
参数说明	movej_canfd: 角度透传到 CANFD, 若指令正确, 机械臂立即执行	
	joint: 关节角度, 精度 0.001°	
命令格式	{s:s, s:[i,i,i,i,i]}	
示例	{"command":"movej_canfd", "joint":[1000, 0, 20000, 30000, 0,	
	20000]}	
	说明: 角度透传到 CANFD, 目标关节角度: [1°,0°,20°,30°,0,20°]	
返回值	格式: {s:s,s:b}, false-设置失败;	
	{"state":"current_trajectory_state", "trajectory_state": false }	
	若透传成功,返回当前各关节角度,见4.5-(2)	

(5)timer: 轨迹等待

功能描述	timer: 轨迹运行过程中等待一定时间
参数说明	timer: 轨迹等待指令

	wait_time: 等待时间, 单位: ms
命令格式	{s:s, s:i]}
示例	{"command":"timer", "wait_time":1000}
	说明: 机械臂在此处等待 1000ms
返回值	格式: {s:s,s:b}, true-设置成功, false-设置失败
	{"state":"timer", " wait_time":true}

(6)添加路径点

功能描述	add_waypoint
参数说明	add_waypoint:添加路径点,路径点添加后,会添加到控制器缓存,控
	制器最多可缓存5000个路径点,等待路径点执行指令后,方可依次执
	行。
命令格式	{s:s, s:[i,i,i,i,i]}
示例	{"command":"add_waypoint", "joint":[1000, 2000, 3000, 4000, 5000,
	6000]}
	说明:
	joint:6 个关节的角度,单位:度。精度: 0.001°,目标关节角度: [1°,
	2°, 3°, 4°, 5°, 6°]
返回值	格式: {s:s,s:b}, true-设置成功, false-设置失败
	{" command ":"add_waypoint", "waypoint_state": true } 设置成功
	{" command ":"add_waypoint", "waypoint_state": false } 设置失败

(7)运行路径点

功能描述	start_waypoint
参数说明	start waypoint: 开始运行路径点
	frequency:路径点运行频率,最高支持 200Hz,最低 50Hz
	注意: 开始运行轨迹点时, 当前关节角度与第一个路径点的角度差不
	超过 3°, 否则会报错, 该项设置是为了保证运行时机械臂出现非预期
	路径。
命令格式	{s:s, s:i }
示例	{"command":"start_waypoint", "frequency":200}
	说明:
返回值	格式: {s:s,s:b}, true-设置成功 false-设置失败
	{"command":"start_waypoint", "waypoint_state":true} 开始运行轨迹
	{"command":"start_waypoint", "waypoint_state":false} 开始失败
	{"state":"current_trajectory_state", "trajectory_state":true} 所有轨迹
	点运行成功
	{"state":"current_trajectory_state", "trajectory_state":false } 路径点运
	行失败

(8)删除所有路径点

功能描述	clear_waypoint
参数说明	clear_waypoint: 路径点
命令格式	{s:s}
示例	{"command":"clear_waypoint"}
	说明:

返回值	格式: {s:s,s:b},	true-设置成功	false-设置失败	
	{"command":"clear	waypoint", "wayp	ooint state":true}	清除成功

(9)停止运行路径点

功能描述	stop_waypoint
参数说明	stop_waypoint: 停止运行路径点
命令格式	{s:s}
示例	{"command":"stop_waypoint"}
	说明:
返回值	格式: {s:s,s:b}, true-设置成功 false-设置失败
	{"command":"stop_waypoint", "waypoint_state":true} 开始运行轨迹
	{"command":"stop_waypoint", "waypoint_state":false} 开始失败

(10)MoveJ_P: 关节空间规划到目标位姿

功能描述	MoveJ_P: 关节空间规划到目标位姿		
参数说明	movej_p: 关节空间规划到目标位姿		
	pose: 目标位姿, 位置精度: 0.001mm, 姿态精度: 0.001rad		
	v: 速度百分比例系数, 0~100		
	r: 交融半径, 精度 0.001m, 暂不支持交融, 默认 0		
命令格式	{s:s,s:[i,i,i,i,i],s:i,s:i}		
示例	{"command":"movej_p", "pose":[100000, 200000, 30000, 400, 500,		
	600], "v":50, "r":0}		
	说明: 直线运动,		
	目标位置: x: 0.1m, y:0.2m, z: 0.03m		
	目标姿态: rx:0.4rad, ry:0.5rad, rz:0.6rad		
	速度系数 50%,		
	不交融		
返回值	格式: {s:s,s:b}, true-到达目标位置, false-规划失败		
	{"state":"current_trajectory_state", "trajectory_state":true}		
备注:	目标位姿必须是机械臂末端法兰中心基于基坐标系的位姿, 用户在		
	使用该指令前务必确保,否则目标位姿会出错!		

3.2 运动配置-步进指令类

(1)关节步进

功能描述	关节步进
参数说明	set_joint_step: 关节步进
	joint_step: (1) 步进关节号; (2) 关节步进角度 , 单位: °, 精度:
	0.001°
	v: 速度百分比例系数, 0~100
命令格式	{s:s,s:[i,i]}
示例	{"command":"set_joint_step", "joint_step":[1, -10000], "v":30}
	说明:关节步进,关节1反方向步进10度,速度系数30%
返回值	格式: {s:s,s:b}, true-到达目标位置, false-规划失败

{"state":"current_trajectory_state", "trajectory_state":true}

(2)位置步进

功能描述	位置步进
参数说明	set_pos_step: 位置步进
	step_type: 步进类型, x_step 为 X 轴方向, y_step 为 Y 轴方向,
	z_step 为 Z 轴方向。
	step: 步进距离 单位: m, 精度: 0.001mm, 即 0.000001m
	v: 速度系数
命令格式	{s:s,s:s,s:i,s:i}
示例	{"command":"set_pos_step", "step_type":"x_step", "step":-50000,
	"v":30}
	说明:位置步进, x 轴负方向步进 0.5m, 速度 30%
返回值	格式: {s:s,s:b}, true-到达目标位置, false-规划失败
	{"state":"current_trajectory_state", "trajectory_state":true}

(3)姿态步进

功能描述	姿态步进
参数说明	set_ort_step: 姿态步进
	step_type: 步进方向, rx_step:绕 X 轴旋转, ry_step: 绕 Y 旋转,
	rz_step: 绕 Z 轴旋转
	step: 步进弧度, 单位: rad, 精度 0.001rad
	v: 速度系数
命令格式	{s:s,s:s,s:i,s:i}
示例	{"command":"set_ort_step", "step_type":"rx_step", "step":-500,
	"v":30}
	说明:姿态步进, x 轴负方向旋转 0.5rad,速度 30%
返回值	格式: {s:s,s:b}, true-到达目标位置, false-规划失败
	{"state":"current_trajectory_state", "trajectory_state":true}

3.3 运动配置-运动指令类

(1)轨迹急停

()	
功能描述	轨迹急停
参数说明	set_arm_stop: 轨迹急停,关节最快速度停止,轨迹不可恢复
命令格式	{s:s}
示例	{"command":"set_arm_stop"}
	说明: 轨迹急停
返回值	格式: {s:s,s:b}, true-设置成功, false-设置失败
	{"command":"set_arm_stop", "arm_stop":true}

(2)轨迹暂停

功能描述	轨迹暂停
参数说明	set_arm_pause: 轨迹暂停,停在轨迹上, 轨迹可恢复
命令格式	{s:s}

示例	{"command":"set_arm_pause"}
	说明: 轨迹暂停
返回值	格式: {s:s,s:b}, true-设置成功, false-设置失败
	{"command":"set arm pause", "arm pause":true}

(3)轨迹暂停后恢复

(c) 10 C H (1) L 10 C	~
功能描述	轨迹暂停后恢复
参数说明	set_arm_continue: 轨迹暂停后恢复
命令格式	{s:s}
示例	{"command":"set_arm_continue"}
	说明: 轨迹暂停后恢复
返回值	格式: {s:s,s:b}, true-设置成功, false-设置失败
	{"command":"set_arm_continue", "arm_continue":true}

(4)清除当前轨迹

<u> </u>	
功能描述	清除当前轨迹,必须在暂停后使用!
参数说明	set_delete_current_trajectory: 清除当前轨迹
命令格式	{s:s}
示例	{"command":"set_delete_current_trajectory"}
	说明: 清除当前轨迹
返回值	格式: {s:s,s:b}, true-设置成功, false-设置失败
	{"command":"set_arm_delete_current_trajectory","delete_current_trajectory
	":true}

(5)清除所有轨迹

功能描述	清除所有轨迹,必须在暂停后使用!
参数说明	set_arm_delete_trajectory: 清除所有轨迹
命令格式	{s:s}
示例	{"command":"set_arm_delete_trajectory"}
	说明: 清除所有轨迹
返回值	格式: {s:s,s:b}, true-设置成功, false-设置失败
	{"command":"set_arm_delete_trajectory","arm_delete_trajectory
	":true}

(6)查询当前规划类型

()	()-	
功能描述	查询当前规划类型	
参数说明	get_arm_current_trajectory: 查询当前轨迹	
命令格式	{s:s}	
示例	{"command":"get_arm_current_trajectory"}	
	说明: 查询当前轨迹	
返回值	见表 3.5-(1)	

3.4 运动配置-示教指令类

(1)关节示教

-	()		
	功能描述	关节示教	

参数说明	set_joint_teach: 关节示教
	teach_joint: 关节序号
	direction:方向, "pos":正方向, "neg": 反方向
	v: 速度系数
命令格式	{s:s,s:i ,s:s,s:i}
示例	{"command":"set_joint_teach","teach_joint":1,"direction":"pos","v":50}
	说明:关节1示教,正方向,速度50%
返回值	格式: {s:s,s:b}, true-设置成功, false-设置失败
	{"command":" set_joint_teach","joint_teach":true}

(2)位置示教

(=) == == 1	
功能描述	位置示教
参数说明	set_pos_teach: 位置示教
	teach_type: 坐标轴, "x", "y", "z"
	direction:方向, "pos":正方向, "neg": 反方向
	v: 速度系数
命令格式	{s:s,s:s,s:s,s:i}
示例	{"command":"set_pos_teach", "teach_type":"x", "direction":"neg",
	"v":50}
	说明:位置示教, x 轴负方向,速度 50%
返回值	格式: {s:s,s:b}, true-设置成功, false-设置失败
	{"command":"set_pos_teach","pos_teach":true}

(3)姿态示教

(6) 2 10 1 20	
功能描述	姿态示教
参数说明	set_ort_teach: 姿态示教
	teach_type: 旋转所绕坐标轴, "rx", "ry", "rz"
	direction:方向,"pos":正方向,"neg":反方向
	v: 速度系数
命令格式	{s:s,s:s,s:s,s:i}
示例	{"command":"set_ort_teach", "teach_type":"rx", "direction":"neg",
	"v":50}
	说明:姿态示教,rx轴负方向,速度50%
返回值	格式: {s:s,s:b}, true-设置成功, false-设置失败
	{"command":"set_ort_teach","ort_teach":true}

(4)示教停止

功能描述	示教停止
参数说明	set_stop_teach: 示教停止
命令格式	{s:s}
示例	{"command":"set_stop_teach"}
	说明: 示教停止
返回值	格式: {s:s,s:b}, true-设置成功, false-设置失败
	{"command":"set_stop_teach","stop_teach":true}

3.5 运动配置-轨迹反馈集

(1) 返回当前正在运行的轨迹

功能描述	返回当前正在运行的轨迹
参数说明	arm_current_trajectory: 返回当前正在运行的轨迹
命令格式	{s:s, s:s, s:[i,i,i,i,i]}
	{"state":"arm_current_trajectory", "type":"movj", "data":[0, 0, 0, 0, 0,
	0]}
	说明: 当前正在运行关节规划,数组内为当前关节角度,精度 0.001°
	{"state":"arm_current_trajectory", "type":"movl", "data":[0, 0, 0, 0, 0,
	0]}
	说明: 当前正在运行直线规划, 数组内为当前末端位姿, 位置精度:
二個	0.001mm, 姿态精度: 0.001rad
示例	{"state":"arm_current_trajectory", "type":"movc", "data":[0, 0, 0, 0, 0,
	0]}
	说明: 当前正在运行圆弧规划, 数组内为当前末端位姿, 位置精度:
	0.001mm, 姿态精度: 0.001rad
	{"state":"arm_current_trajectory", "type":"none", "data":[0, 0, 0, 0, 0,
	0]}
	说明: 当前无规划,数组内为当前关节角度,精度 0.001°

(2) 当前轨迹结束返回标志

功能描述	当前轨迹结束返回标志
参数说明	current_trajectory_state: 当前轨迹结束返回标志
命令格式	{s:s,s:b}
示例	{"state":"current_trajectory_state", "trajectory_state":true}
	说明: 当前轨迹到达目标

四、系统配置

4.1 系统配置-系统查询

(1)查询控制器状态

功能描述	查询控制器状态
参数说明	get_controller_state: 查询控制器状态
命令格式	{s:s}
示例	{"command":"get_controller_state"}
112.154	说明: 查询控制器状态
返回值	见表 4.2-(1)

4.2 系统配置-系统反馈

(1) 反馈控制器状态

功能描述	反馈控制器状态
参数说明	controller_state: 反馈控制器状态
命令格式	{s:s,s:i,s:i,s:i }

示例	{"state":"controller_state","voltage":24000,"current":15000,
	"temperature":42000, "err_flag":0}
	说明: 反馈控制器状态,电压: 24v, 电流: 1.5A,温度: 42℃, 控制器错
	误标志 0, 电压、电流和温度的精度均为 0.001

(2) 开启或关闭系统状态自动回传

功能描述	开启或关闭系统状态自动回传
参数说明	set_system_state_servo: 系统状态伺服
命令格式	{s:s,s:i} 1—开启自动回传,0——关闭自动回传
示例	{"command":"set_system_state_servo","servo_state":1}
	说明:自动回传开始后,以50Hz的频率回传系统状态
返回值	{"command":"set_system_state_servo","servo_state":true} 设置成功
	{"command":"set_system_state_servo","servo_state":false} 设置失
	败

(3) 系统状态自动回传

(3) 水河水心日	
功能描述	系统状态自动回传
参数说明	system_state_servo: 系统状态伺服
	time_cnt:系统时间戳计数,每20ms加1
	joint: 关节角度, 精度 0.001°
	pose: 前3个元素, 位置, 精度0.001mm; 后3个元素, 欧拉角姿态,
	精度 0.001 弧度
	sys_err: 系统错误代码
	DI:控制器端 3 个数字 IO 通道输入状态, 1-高, 0-低
命令格式	{s:s,s:b}
示例	{"state":" system_state_servo", time_cnt:100,
	"joint":{1000,2000,3000,4000,5000,6000}, "pos":{1000,2000,3000, 0,
	3140, 3140}, "DI":[1,1,1], "sys_err":0 }
	说明:自动回传开始后,以100Hz的频率回传系统状态
	时间戳计数: 100
	关节角度: 关节 1—1°, 关节 2—2°, 关节 3—3°, 关节 4—4°, 关节 5—
	5°, 关节6—6°
	末端位姿: 位置: x-1mm, y-2mm, z-3mm; 欧拉角: rx-0, ry-3.14, rz-
	3.14
	系统错误代码: 0-正常

4.3 系统配置-系统指令

(1) 控制机械臂上电、断电

功能描述	控制机械臂上电、断电
参数说明	set_arm_power: 控制机械臂上电、断电
	arm_power: 上电状态 1-上电 0-断电
命令格式	{s:s,s:i}
示例	{"command":"set_arm_power", "arm_power":1}
	说明: 控制机械臂上电
返回值	格式: {s:s,s:b}, true-设置成功, false-设置失败

{"command":"set_arm_power", "arm_power":true}

(2) 读取机械臂电源状态

功能描述	读取机械臂电源状态
参数说明	get_arm_power_state: 读取机械臂电源状态
命令格式	{s:s}
示例	{"command":"get_arm_power_state"}
	说明: 读取机械臂电源状态
返回值	格式: {s:s,s:i}, 1-上电状态, 0 断电状态
	{"state":"arm_power_state", "power_state":1}

(3) 读取硬件版本号

功能描述	读取机械臂硬件版本
参数说明	get_arm_hardware_version: 读取机械臂硬件版本号
命令格式	{s:s,s:i}
示例	{"command":"get_arm_hardware_version"}
	说明: 读取机械臂硬件版本号
返回值	格式: {s:s,s:s},
	{"state":" arm_hardware_version ", "version":"RM-65 V1.0"}

(4) 读取软件版本号

功能描述	读取机械臂软件版本	
参数说明	get_arm_software_version: 读取机械臂软件版本	
命令格式	{s:s }	
示例	{"command":"get_arm_software_version"} 说明: 读取机械臂软件版本	
返回值	Rd: (s:s,s:i,s:i,s:i,s:i), true-设置成功, false-设置失败 {"state":"arm_software_version","Plan_version":7013129, "Ctrl_version":7013129, "Real-time_Kernal1":7013129, "Real-time_Kernal2":7013129} 7013129: 转换成 uint32_t 类型的 16 进制数据, 0x6B0309 6B-代表 RM65-B 型号 6D-代表 RM65-ZF 型号 6F-代表 RM65-SF 型号 0309-代表软件版本号为 V3.9	

(5) 读取 SD 卡中的 Log 文件

功能描述	读取控制器 SD 卡中的 Log 文件,该指令下发后,若设置成功,则返
	回成功指令,用户将 USB 线连接控制器 USB 更新接口和电脑 USB 接
	口, 重启控制器电源, 即可在"我的电脑"中操作 SD 卡。
参数说明	get_log_file: 读取 Log 文件
命令格式	{s:s}
示例	{"command":"get_log_file"}
	说明: 读取 log 文件
返回值	格式: {s:s,s:b},
	{"command":"get_log_file", "set_state":true}
	true-设置成功, 重启系统, false-设置失败

(6) 读取控制器的累计运行时间

功能描述	读取控制器自出厂以来,累计的运行时间
参数说明	get_system_runtime: 读取控制器累计的运行时间
命令格式	{s:s}
示例	{"command":"get_system_runtime"}
	说明: 读取系统运行时间
返回值	格式: {s:s, s:i, s:i, s:i},
	{"command":"get_system_runtime", "day":0, "hour":0, "min":0,
	"sec":0}若系统正常,则返回运行时间
	{"command":"get_system_runtime", "sys_state":"sd_card_err "}若系统
	有问题,则返回错误提示

(7) 清零控制器的累计运行时间

功能描述	清零控制器自出厂以来,累计的运行时间
参数说明	clear_system_runtime: 清零控制器累计的运行时间
命令格式	{s:s}
示例	{"command":"clear_system_runtime"}
	说明: 清零系统运行时间
返回值	格式: {s:s, s:b}
	{"command":"clear_system_runtime", "clear_state":true}
	true-清除成功, false-清除失败

(8) 读取关节的累计转动角度

功能描述	读取各关节自出厂以来,累计的转动角度
参数说明	get_joint_odom: 读取各关节的累计转动角度
命令格式	{s:s}
示例	{"command":"get_joint_odom"}
	说明: 读取关节的累计转动角度
返回值	格式: {s:s, s:[i, i, i, i, i, i, i]}
	{"command":"get_joint_odom", "odom":[1000, 2000, 3000, 4000, 5000,
	6000]},若指令正确,返回各关节累计的转动角度;
	{"command":" get_joint_odom", "sys_state":"sd_card_err "}若系统有
	问题,则返回错误提示

(9) 清零关节的累计转动角度

功能描述	清零各关节自出厂以来,累计的转动角度
参数说明	clear_joint_odom: 清零关节累计转动的角度
命令格式	{s:s}
示例	{"command":"clear_joint_odom"}
	说明: 清零关节累计转动的角度
返回值	格式: {s:s, s:b}
	{"command":"clear_joint_odom", "clear_state":true}
	true-清除成功,false-清除失败

(10) 清除系统错误代码

功能描述	清除系统错误代码
参数说明	clear_system_err: 清除系统错误代码

命令格式	{s:s}
示例	{"command":"clear_system_err"}
	说明:清除系统错误代码
返回值	格式: {s:s, s:b}
	{"command":"clear_system_err", "clear_state":true}
	true-清除成功,false-清除失败

4.4 系统配置-配置通讯内容

(1) 配置 wifi AP 内容

()	· • —
功能描述	配置 wifi AP 内容,无返回,设置后成功后蜂鸣器响,重启控制器进入
	WIFI AP 模式。
参数说明	set_wifi_ap: 配置 wifi AP 内容
命令格式	{s:s,s:s,s:s}
示例	{"command":"set_wifi_ap","wifi_name":"robot",
	"password":"12345678"}
	说明: 配置 wifi AP 内容, wifi 名称: robot, 连接密码: 12345678

(2) 配置 wifi STA 内容

功能描述	配置 wifi STA 内容,无返回,设置后成功后蜂鸣器响,重启控制器进
	入 WIFI STA 模式。
参数说明	set_wifi_sta: 配置 wifi STA 内容
命令格式	{s:s,s:s,s:s}
示例	{"command":"set_wifi_sta","router_name":"robot",
	"password":"12345678"}
	说明: 配置 wifi STA 内容, 目标路由器名称: robot, 路由器密码:
	12345678, 密码的长度不能少于8位

(3) 配置 USB 内容

功能描述	配置 UART-USB 波特率,无返回,设置后通过 USB 对外通信	
参数说明	set_usb: 配置 USB 比特率, 最高 115200	
命令格式	{s:s,s:i}	
示例	{"command":"set_usb", "baudrate":115200}	
	说明: 配置 USB 波特率为 115200	

(4) 设置网口模式

功能描述	设置网口模式,无返回值,设置后通过网口对外通信
参数说明	set_ethernet: 设置网口模式
命令格式	{s:s}
示例	{"command":"set_ethernet"}
	说明:设置网口模式

(5) 通信错误提示

功能描述	当用户使用错误的端口与机械臂通	信时,控制器返回错误提示,提醒
	用户正确的端口。	
参数说明	无	
命令格式	{s:s}	
示例	{"comm_state":"use_Ethernet"}	提示用户使用网口进行通信

{"comm_state":"use_USB"}	提示用户使用 USB 进行通信
{"comm_state":"use_WIFI"}	提示用户使用 WIFI 进行通信

4.5 查询机械臂状态信息

(1) 查询机械臂关节角度

功能描述	查询机械臂关节角度
参数说明	get_joint_degree: 获取机械臂角度信息
命令格式	{s:s}
示例	{"command":"get_joint_degree"}
	说明: 查询机械臂关节角度
返回值	如下表 4.5- (2) 所示

(2) 反馈机械臂关节角度

功能描述	反馈机械臂关节角度
参数说明	joint_degree: 机械臂关节角度
命令格式	{s:s, s:[i,i,i,i,i,i]}
示例	{"command":"get_joint_degree"}
	{"state":"joint_degree","joint":[10,20,30,40,50,60] }
	关节精度: 0.001°

(3) 一次性查询机械臂所有状态信息

功能描述	一次性查询机械臂所有信息
参数说明	get_arm_all_state: 获取机械臂所有信息
命令格式	{s:s}
示例	{"command":"get_arm_all_state"}
	说明: 查询所有状态信息
返回值	如下表 4.5- (4) 所示

(4) 反馈所有状态信息

功能描述	反馈机械臂所有信息
参数说明	all_state: 机械臂所有信息
命令格式	{s:s, s:{ s:[i,i,i,i,i], s:[i,i,i,i,i], s:[i,i,i,i,i], s:[i,i,i,i,i], s:[i,i,i,i,i], s:i, s:i}}
示例	{"command":"get_arm_all_state"}
	{"state":"arm_all_state","all_state":{"temperature" :
	[21,22,24,25,26,27],"current":[11,12,13,14,15,16],"voltage":[31,32,33,34,35,36],
	"err_flag":[1,2,3,4,5,6], "en_flag":[1,1,1,1,1,1],"sys_err":0}}
	温度精度: 0.001℃
	电流精度: 0.001mA
	电压精度: 0.001V
	"err_flag":关节错误代码
	"sys_err":机械臂错误代码

(5) 查询规划计数

功能描述	查询轨迹规划计数
参数说明	get_arm_plan_num: 获取机械臂轨迹规划计数
命令格式	{s:s}
示例	{"command":"get arm plan num"}

	说明: 查询机械臂轨迹规划计数
返回值	如下表 4.5- (6) 所示

(6) 反馈机械臂轨迹规划计数

功能描述	反馈机械臂轨迹规划计数	
参数说明	plan_num: 机械臂轨迹规计数	
命令格式	{s:s, s:i }	
示例	{"command":"get_arm_plan_num"}	
	{"state":"arm_plan_num", "plan_num":1:}	
	规划完成第一段轨迹	

4.6 控制器 IO 配置及获取

机械臂具有 IO 端口,数量和分类如下所示:

	· · ·
数字输出: DO	4 路, 可配置为 0~12V
数字输入: DI	3 路, 可配置为 0~12V
模拟输出: AO	4 路, 输出电压 0~10V
模拟输入: AI	4 路, 输入电压 0~10V

(1)设置数字 IO 输出状态

功能描述	设置数字 IO 输出	
参数说明	set_DO_state: 设置数字 IO 输出	
命令格式	{s:s, s:i, s:i}	
示例	{"command":"set_DO_state","IO_Num":1, "state":1}	
	说明: "IO_Num": IO 端口号, 范围: 1~4	
	"state":IO 状态,1-输出高,0-输出低	
返回值	{"command":"set_DO_state", "state":true} 配置成功	
	{"command":"set_DO_state", "state":false} 配置失败	

(2)获取数字 IO 输出状态

功能描述	获取数字 IO 输出状态	
参数说明	get_DO_state: 获取数字 IO 输出	
命令格式	{s:s, s:i }	
示例	{"command":"get_DO_state", "IO_Num" :1 }	
	说明: "IO_Num": IO 端口号, 范围: 1~4	
返回值	{"state":"DO_state","IO_Num":1, "IO_state":1}	
	"state":IO 状态,1-输出高,0-输出低	

(3)获取数字 IO 输入状态

功能描述	获取数字 IO 输入	
参数说明	get_DI_state: 获取数字 IO 输入状态	
命令格式	{s:s, s:i }	
示例	{"command":"get_DI_state", "IO_Num" :1}	
	说明: "IO_Num": IO 端口号, 范围: 1~3	
返回值	{"state":"DI_state", "IO_Num" :1, "IO_state":1}	
	"state":IO 状态, 1-输入高, 0-输入低	

(4)设置模拟 IO 输出状态

功能描述	设置模拟 IO 输出	
参数说明	set_AO_state:设置模拟IO输出	
命令格式	{s:s, s:i, s:i}	
示例	{"command":"set_AO_state", "IO_Num":1, "voltage":1000}	
	说明: "IO_Num": IO 端口号, 范围: 1~4	
	"voltage":IO 输出电压,分辨率 0.001V,范围: 0~10000,代表输出电	
	压 0v~10v	
返回值	{"command":"set_AO_state", "state":true} 配置成功	
	{"command":"set_AO_state", "state":false} 配置失败	

(5)获取模拟 IO 输出状态

功能描述	获取模拟 IO 输出	
参数说明	get_AO_state: 获取模拟 IO 输出	
命令格式	{s:s, s:i}	
示例	{"command":"get_AO_state","IO_Num":1}	
	说明: "IO_Num": IO 端口号, 范围: 1~4	
返回值	{"state":"AO_state", "IO_Num":1, "voltage":1000}	
	"voltage":IO 输出电压,分辨率 0.001V, 范围: 0~10000, 代表输出电	
	压 0v~10v	

(6)获取模拟 IO 输入状态

功能描述	获取模拟 IO 输入	
参数说明	get_AI_state: 获取模拟 IO 输入状态	
命令格式	{s:s, s:i, s:i}	
示例	{"command":"get_AI_state","IO_Num":1}	
	说明: "IO_Num": IO 端口号, 范围: 1~4	
返回值	{"state":"AI_state","IO_Num":1, "voltage":1000}	
	"voltage":IO 输入电压,分辨率 0.001V, 范围: 0~10000, 代表输入电	
	压 0v~10v	

(7)获取所有 IO 输入状态

功能描述	获取所有 IO 输入	
参数说明	get_IO_input: 获取所有 IO 输入状态	
命令格式	{s:s }	
示例	{"command":"get_IO_input"}	
返回值	{"state":"IO_input_state","DI":[1,1,1], "AI":[1000, 2000, 3000]}	
	"DI":数字输入状态, 1-高, 0-低	
	"AI":模拟输入电压, 精度 0.001V, 如: 1000, 代表 1V	

(8)获取所有 IO 输出状态

功能描述	获取所有 IO 输出	
参数说明	get_IO_output: 获取所有 IO 输出状态	
命令格式	{s:s }	
示例	{"command":"get_IO_output" }	
返回值	{"state":"IO_output_state","DO":[1,1,1,1],"AO":[1000, 2000, 3000]}	
	"DI":数字输出状态,1-高,0-低	

4.7 末端工具 IO 控制

机械臂末端工具端具有 IO 端口, 数量和分类如下所示:

电源输出	1 路, 可配置为 0V/5V/12V/24V
数字输出: DO	2路,参考电平与电源输出一致
数字输入: DI	2路,参考电平与电源输出一致
模拟输出: AO	1 路, 输出电压 0~10V
模拟输入: AI	1 路, 输入电压 0~10V
通讯接口	1 路, 可配置为 RS485/RS232/CAN

(1)设置工具端数字 IO 输出状态

功能描述	设置工具端数字 IO 输出
参数说明	set_tool_DO_state: 设置数字 IO 输出
命令格式	{s:s, s:i, s:i}
示例	{"command":"set_tool_DO_state","IO_Num":1, "state":1}
	说明: "IO_Num": IO 端口号, 范围: 1~2
	"state":IO 状态, 1-输出高, 0-输出低
返回值	{"command":"set_tool_DO_state", "state":true} 配置成功
	{"command":"set_tool_DO_state", "state":false} 配置失败

(2)获取工具端数字 IO 输出状态

功能描述	获取数字 IO 输出状态
参数说明	get_tool_DO_state: 获取数字 IO 输出
命令格式	{s:s, s:i }
示例	{"command":"get_tool_DO_state","IO_Num":1}
	说明: "IO_Num": IO 端口号, 范围: 1~2
返回值	{"state":"tool_DO_state","IO_Num" :1, "IO_state":1}
	"state":IO 状态,1-输出高,0-输出低

(3)获取工具端数字 IO 输入状态

功能描述	获取数字 IO 输入
参数说明	get_tool_DI_state: 获取数字 IO 输入状态
命令格式	{s:s, s:i }
示例	{"command":"get_tool_DI_state","IO_Num":1}
	说明: "IO_Num": IO 端口号, 范围: 1~3
返回值	{"state":"tool_DI_state","IO_Num":1, "IO_state":1}
	"state":IO 状态,1-输入高,0-输入低

(4)设置工具端模拟 IO 输出状态

功能描述	设置模拟 IO 输出
参数说明	set_tool_AO_state: 设置模拟 IO 输出
命令格式	{s:s, s:i}
示例	{"command":"set_tool_AO_state", "voltage":1000}
	说明: "voltage":IO 输出电压,分辨率 0.001V,范围: 0~10000,代表
	输出电压 0v~10v
返回值	{"command":"set_tool_AO_state", "state":true} 配置成功

(5)获取工具端模拟 IO 输出状态

功能描述	获取模拟 IO 输出
参数说明	get_tool_AO_state: 获取模拟 IO 输出
命令格式	{s:s}
示例	{"command":"get_tool_AO_state"}
	说明:
返回值	{"state":"tool_AO_state", "voltage":1000}
	"voltage":IO 输出电压,分辨率 0.001V, 范围: 0~10000, 代表输出电
	压 0v~10v

(6)获取工具端模拟 IO 输入状态

功能描述	获取模拟 IO 输入
参数说明	get_tool_AI_state: 获取模拟 IO 输入状态
命令格式	{s:s}
示例	{"command":"get_tool_AI_state"}
	说明:
返回值	{"state":"tool_AI_state", "voltage":1000}
	"voltage":IO 输入电压,分辨率 0.001V, 范围: 0~10000, 代表输入电
	压 0v~10v

(7)获取工具端所有 IO 输入状态

功能描述	获取所有 IO 输入
参数说明	get_tool_IO_input: 获取所有 IO 输入状态
命令格式	{s:s}
示例	{"command":"get_tool_IO_input"}
返回值	{"state":"tool_IO_input_state","DI":[1,1], "AI":2000}
	"DI":数字输入状态, 1-高, 0-低
	"AI":模拟输入电压, 精度 0.001V, 如: 1000, 代表 1V

(8)获取工具端所有 IO 输出状态

功能描述	获取所有 IO 输出
参数说明	get_tool_IO_output: 获取所有 IO 输出状态
命令格式	{s:s}
示例	{"command":"get_tool_IO_output"}
返回值	{"state":"tool_IO_output_state","DO":[1,1],"AO":2000}
	"DI":数字输出状态,1-高,0-低
	"AI":模拟输出电压,精度 0.001V, 如: 1000, 代表 1V

(9)设置工具端电源输出

功能描述	设置电源输出
参数说明	set_tool_voltage: 设置电源输出
命令格式	{s:s, s:i }
示例	{"command":"set_tool_voltage", "voltage_type":1}
说明:	"voltage_type": 电源输出类型, 范围: 0~3
	0-0V, 1-5V, 2-12V, 3-24V
返回值	{"command":"set_tool_voltage", "state":true} 配置成功

|--|

(10)获取工具端电源输出

功能描述	获取电源输出类型
参数说明	get_tool_voltage: 获取电源输出
命令格式	{s:s}
示例	{"command":"get_tool_voltage"}
返回值	{"state":"tool_voltage_state", "voltage_type":1}
	"voltage_type": 电源输出类型, 范围: 0~3
	0-0V, 1-5V, 2-12V, 3-24V

4.8 末端工具—手爪控制(选配)

睿尔曼 RM-65 机械臂末端配备了因时机器人公司的 EG2-4C2 手爪, 为了便于用户操作手爪, 机械臂控制器对用户开放了手爪的控制协议, 如下所示:

(1)设置手爪行程

	<u> </u>
功能描述	设置手爪行程,即手爪开口的最大值和最小值,设置成功后会自动保
	存, 手爪断电不丢失
参数说明	set_gripper_route: 设置手爪行程
命令格式	{s:s, s:i, s:i}
示例	{"command":"set_gripper_route", "min":70, "max":500 }
说明	"min":手爪开口最小值,范围: 0~1000, 无单位量纲
	"max":手爪开口最大值,范围: 0~1000, 无单位量纲
返回值	{"command":"set_gripper_route", "state":true} 配置成功
	{"command":" set_gripper_route", "state":false} 配置失败

(2)松开手爪

<u> </u>	
功能描述	松开手爪,即手爪以指定的速度运动到开口最大处
参数说明	set_gripper_release:设置手爪松开
命令格式	{s:s, s:i }
示例	{"command":"set_gripper_release", "speed":500 }
说明	"speed":手爪松开速度,范围 1~1000,无单位量纲
返回值	{"command":"set_gripper", "state":true} 手爪松开成功
	{"command":"set_gripper", "state":false} 手爪松开失败

(3)手爪力控夹取

功能描述	手爪力控夹取,手爪以设定的速度和力夹取,当夹持力超过设定的力
	阈值后, 停止夹取
参数说明	set_gripper_pick: 设置手爪力矩夹取
命令格式	{s:s, s:i, s:i }
示例	{"command":"set_gripper_pick", "speed":500, "force":200}
说明	"speed":手爪夹取速度,范围 1~1000,无单位量纲
	"force":力控阈值,范围: 50~1000, 无单位量纲
返回值	{"command":"set_gripper", "state":true} 手爪夹取成功
	{"command":"set_gripper", "state":false} 手爪夹取失败

(4)手爪持续力控夹取

功能描述	手爪力控夹取,手爪以设定的速度和力夹取,当夹持力超过设定的力
	阈值后,停止夹取;当夹持力再次小于力矩阈值时,手爪再次夹取,
	直至夹持力超过力控阈值。
参数说明	set_gripper_pick_on:设置手爪力控夹取
命令格式	{s:s, s:i, s:i }
示例	{"command":"set_gripper_pick_on", "speed":500, "force":200}
说明	"speed":手爪夹取速度,范围 1~1000, 无单位量纲
	"force":力控阈值,范围: 50~1000, 无单位量纲
返回值	{"command":"set_gripper", "state":true} 手爪夹取成功
	{"command":"set_gripper", "state":false} 手爪夹取失败

(5)手爪到达指定位置

() .	
功能描述	手爪到达指定位置,当当前开口小于指定开口时,手爪以指定速度松
	开到指定开口位置;当当前开口大于指定开口时,手爪以指定速度和
	力矩闭合往指定开口处闭合,当夹持力超过力矩阈值或者达到指定位
	置后, 手爪停止。
参数说明	set_gripper_position: 设置手爪达到指定位置
命令格式	{s:s, s:i}
示例	{"command":"set_gripper_position", "position":500}
说明	"position": 手爪开口位置, 范围: 1~1000, 无单位量纲
返回值	{"command":"set_gripper", "state":true} 手爪到位成功
	{"command":"set_gripper", "state":false} 手爪到位失败

4.9 末端工具—六维力(选配)

睿尔曼 RM-65F 机械臂末端配备集成式六维力传感器,无需外部走线,用户可直接通过协议对六维力进行操作,获取六维力数据。

如下图所示, 正上方为六维力的 Z 轴, 航插反方向为六维力的 Y 轴, 坐标系符合右手定则。机械臂位于零位姿态时, 基坐标系与六维力的坐标系方向一致。

另外, 六维力额定力 200N, 额定力矩 8Nm, 过载水平 300%FS, 工作温度 $5\sim80^{\circ}$, 准度 0.5%FS。使用过程中注意使用要求, 防止损坏六维力传感器。

(1)查询六维力数据

功能描述	查询当前六维力传感器得到的力和力矩信息: Fx, Fy, Fz, Mx, My, Mz
参数说明	get_force_data: 获取力传感器信息, 若要周期获取力数据, 周期不能
	小于 50ms
命令格式	{s:s}
示例	{"command":"get_force_data"}
说明	无
返回值	{"command":"get_force_data", "force_data":[1000, 2000, 3000, 400,
	500, 600]}
	数据精度: 0.001
	force_data 依次为 Fx=1N, Fy=2N, Fz=3N, Mx=0.4Nm, My=0.5Nm,
	Mz=0.6Nm

(2)六维力数据清零

功能描述	将六维力数据清零
参数说明	clear_force_data: 六维力数据
命令格式	{s:s}
示例	{"command":"clear_force_data" }
说明	无
返回值	{"command":"clear_force_data", "clear_state":true} 清空成功
	{"command":"clear_force_data", "clear_state":false} 清空失败

(3)设置六维力重心参数

功能描述	设置六维力重心参数,六维力重新安装后,必须重新计算六维力所受
74 NG 4M ~	到的初始力和重心。分别在不同姿态下,获取六维力的数据,用于计
	算重心位置。该指令下发后, 机械臂以 20%的速度运动到各标定点,
	该过程不可中断,中断后必须重新标定。
	重要说明: 必须保证在机械臂静止状态下标定。
	位置 1 关节角度: {0,0,0,0,0,0}
	位置 2 关节角度: {0,0,90,0,90,0}
	位置 3 关节角度: {0,0,0,0,90,0}
	位置 4 关节角度: {0,0,0,0,90,-90}
参数说明	set_force_sensor: 设置力传感器指定位置时的数值
命令格式	{s:s}
示例	{"command":"set_force_sensor"}
说明	
返回值	{"command":"set_force_sensor", "set_state":true} 配置成功
	{"command":"set_force_sensor", "set_state":false} 配置失败

(4)停止标定六维力重心

()	
功能描述	在标定六维力过程中,如果发生意外,发送该指令,停止机械臂运动,
	退出标定流程
参数说明	stop_set_force_sensor: 停止计算力传感器重心位置
命令格式	{s:s}
示例	{"command":"stop_set_force_sensor"}
说明	

返回值	{"command":"stop_set_force_sensor", "stop_state":true}	计算成功
	{"command":"stop_set_force_sensor", "stop_state":false}	计算失败

(5)标定六维力数据

功能描述	六维力在长时间使用后,数据会发生漂移,为了保证使用的精度,标
	定六维力在零位时的数据。
	备注:该指令必须在所有关节角度为0时操作,否则会发生标定错误。
参数说明	mark_force_sensor: 标定感器零位数据
命令格式	{s:s}
示例	{"command":"mark_force_sensor"}
说明	
返回值	{"command":"mark_force_sensor", "mark_state":true} 标定成功
	{"command":"mark_force_sensor", "mark_state":false} 标定失败

4.10 拖动示教

睿尔曼机械臂在拖动示教过程中,可记录拖动的轨迹点,并根据用户的指令对轨迹进行复现.

(1)拖动示教开始

功能描述	拖动示教开始
参数说明	start_drag_teach: 拖动示教开始,
	trajectory_record:拖动示教时记录轨迹, 0-不记录, 1-记录轨迹
命令格式	{s:s, s:i }
示例	{"command":"start_drag_teach", "trajectory_record":1}
	说明: 开始拖动示教, 同时记录轨迹
返回值	格式: {s:s,s:b}, true-设置成功, false-设置失败
	{"command":"start_drag_teach","drag_teach":true}

(2)拖动示教结束

功能描述	拖动示教结束
参数说明	stop_drag_teach: 拖动示教结束
命令格式	{s:s}
示例	{"command":"stop_drag_teach"}
	说明: 拖动示教停止
返回值	格式: {s:s,s:b}, true-设置成功, false-设置失败
	{"command":"stop_drag_teach","drag_teach":true}

(3)开始复合模式拖动示教

功能描述	开始复合模式拖动示教
参数说明	start_multi_drag_teach: 开始复合模式拖动示教
命令格式	{s:s, s:i}
	{"command":"start_multi_drag_teach", "mode":0}
	说明:
示例	mode:拖动示教模式
	0-电流环模式,1-使用末端六维力,只动位置,2-使用末端六维力,只
	动姿态, 3-使用末端六维力, 位置和姿态同时动

返回值	{"command":"start_multi_drag_teach", "set_state":true}	设置成功
巡 口值	{"command":"start_multi_drag_teach", "set_state":false}	设置失败

(4)轨迹复现开始

()	
功能描述	复现拖动示教中的轨迹:
	备注:必须在拖动示教结束后才能使用,同时保证机械臂位于拖动示
	教的起点位置
参数说明	run_drag_trajectory: 轨迹复现开始
命令格式	{s:s}
示例	{"command":"run_drag_trajectory"}
说明	
返回值	{"command":"run_drag_trajectory", "run_state":true} 复现成功
	{"command":"run_drag_trajectory", "run_state":false} 复现失败

(5)轨迹复现暂停

功能描述	轨迹复现过程中暂停
参数说明	pause_drag_trajectory: 轨迹复现暂停
命令格式	{s:s}
示例	{"command":"pause_drag_trajectory"}
说明	
返回值	{"command":"pause_drag_trajectory", " pause_state":true}暂停成功
	{"command":"pasuse_drag_trajectory", "pause_state":false}暂停失败

(6)轨迹复现继续

(0) 10 000000	Y
功能描述	轨迹复现过程中暂停后继续
	备注:轨迹继续时,必须保证机械臂位于暂停时的位置,否则会报错,
	用户只能从开始位置重新复现轨迹。
参数说明	continue_drag_trajectory: 轨迹复现继续
命令格式	{s:s}
示例	{"command":"continue _drag_trajectory"}
说明	
返回值	{"command":" continue_drag_trajectory ", "continue_state":true}继续
	成功
	{"command":"continue_drag_trajectory", "continue_state":false} 继续
	失败

(7)轨迹复现停止

功能描述	轨迹复现停止
参数说明	stop_drag_trajectory: 轨迹复现继续
命令格式	{s:s}
示例	{"command":"stop _drag_trajectory "}
说明	
返回值	{"command":"stop_drag_trajectory ", "stop_state":true}停止成功
	{"command":"stop_drag_trajectory", "stop_state":false}停止失败

(8)运动到轨迹起点

功能描述	轨迹复现前,必须控制机械臂运动到轨迹起点,如果设置正确,机械
	臂将以20%的速度运动到轨迹起点

参数说明	drag_trajectory_origin: 轨迹复现起点
命令格式	{s:s}
示例	{"command":"drag_trajectory_origin"}
说明	
返回值	{"state":"current_trajectory_state", "trajectory_state":true} 运动成功
	{"state":"current_trajectory_state", "trajectory_state":false } 运动失败

(9)力位混合控制

功能描述	在笛卡尔空间轨迹规划时,使用该功能可保证机械臂末端接触力恒定
参数说明	set_force_posiiton:设置力位混合控制模式
命令格式	{s:s, s:i, s:i}
示例	{"command":"set_force_postion", "mode":1, "force_level":1}
说明	Mode: 1-基坐标系 Z 轴力控; 2-作用面法线力控; 3-作用面径向力控
	force_level: 力控等级,等级越高,力越小
返回值	{"command":"set_force_postion", "set_state":true} 设置成功
	{"command":"set_force_postion", "set_state":false} 设置失败

(10)结束力位混合控制

功能描述	退出力位混合控制模式
参数说明	stop_force_posiiton:结束力位混合控制模式
命令格式	{s:s}
示例	{"command":"stop_force_postion"}
说明	
返回值	{"state":" stop_force_postion", "stop_state":true} 结束成功
	{"state":" stop_force_postion", "stop_state":false} 结束失败

4.11 五指灵巧手(选配)

睿尔曼机械臂末端配置因时的五指灵巧手, 可通过协议对灵巧手进行设置。

(1)设置灵巧手手势

(I) (A I / V V V	3 22
功能描述	设置灵巧手手势
参数说明	set_hand_posture: 设置手势
	posture_num:预先保存在灵巧手内的手势序号,范围: 1~40
命令格式	$\{s:s, s:i\}$
示例	{"command":"set_hand_posture", "posture_num":1}
说明	设置灵巧手执行1号手势
返回值	{"command":"set_hand_posture", "set_state":true}设置成功
	{" command ":"set_hand_posture", "set_state":false}设置失败

(2)设置灵巧手动作序列

<u> </u>	
功能描述	设置灵巧手动作序列
参数说明	set_hand_seq: 设置手势
	seq_num:预先保存在灵巧手内的序列序号,范围: 1~40
命令格式	{s:s, s:i}
示例	{"command":"set_hand_seq", "seq_num":1}
说明	设置灵巧手执行1号动作序列

返回值	{"command":"set_hand_seq", "set_state":true}设置成功
	{"command":"set_hand_seq", "set_state":false}设置失败

(3)设置灵巧手各自由度角度

(-) 1/2 - 7 - 1	7-12-112
功能描述	设置灵巧手角度,灵巧手有6个自由度,从1~6分别为小拇指,无名
	指,中指,食指,大拇指弯曲,大拇指旋转
参数说明	set_hand_angle: 设置手指角度
	hand_angle:手指角度数组,范围: 0~1000.另外,-1 代表该自由度不执
	行任何操作, 保持当前状态
命令格式	{s:s, s:[i,i,i,i,i]}
示例	{"command":"set_hand_angle", "hand_angle":[-1, 100, 200, 300, 400,
	500]}
说明	设置灵巧手各手指动作
返回值	{"command":"set_hand_angle", "set_state":true}设置成功
	{"command":"set_hand_angle", "set_state":false}设置失败

(4)设置灵巧手速度

功能描述	设置灵巧手关节速度
参数说明	set_hand_speed: 设置手指角度
	hand_speed:手指速度, 范围: 1~1000
命令格式	{s:s, s:i }
示例	{"command":"set_hand_speed ", "hand_speed":500}
说明	设置灵巧手各手指动作速度
返回值	{"command":"set_hand_speed", "set_state":true}设置成功
	{"command":"set_hand_speed", "set_state":false}设置失败

(5)设置灵巧手力阈值

功能描述	设置灵巧手关节力阈值
参数说明	set_hand_force: 设置手指力阈值
	hand_force:手指力, 范围: 1~1000
命令格式	{s:s, s:i }
示例	{"command":"set_hand_force", "hand_force":500}
说明	设置灵巧手各手指动作琳阈值
返回值	{"command":"set_hand_force", "set_state":true}设置成功
	{"command":"set_hand_force", "set_state":false}设置失败

4.12 移动平台及升降机构 (选配)

睿尔曼机械臂可集成一坤电气 C100 工业版移动平台,并且自主研发升降机构。

(1)设置移动平台运动

功能描述	设置移动平台运动
参数说明	speed: 线速度, 前进为+, 后退为-, 精度 0.1m/s, 最大速度 1.5m/s
	angular:角速度,左转为+,右转为-,精度 0.1rad/s,最大速度 2.0rad/s
命令格式	{s:s, s:i, s:i}
示例	{"command":"set_vehicle", "speed":12, "angular":15}
说明	设置线速度 1.2m/s, 角速度 1.5rad/s

返回值	{"command":"set_vehicle", "set_state":true}设置成功
	{"command":"set_vehicle", "set_state":false}设置失败

(2)设置升降平台高度

功能描述	设置升降平台高度
参数说明	height: 设置高度, 单位 mm
	speed: 导轨运行速度百分比, 1~100
命令格式	{s:s, s:i, s:i}
示例	{"command":"set_lift ", "height":100, "speed":50}
说明	设置高度 100mm, 升降速度 50%
返回值	{"command":"set_lift", "set_state":true}设置成功
	{"command":"set_lift", "set_state":false}设置失败

4.13 末端接口 PWM 设置(选配)

睿尔曼机械臂末端接口板的数字输出 2 通道可复用为 PWM 输出,输出高电平与当前末端输出电压一致。

(1)设置末端 PWM 输出

功能描述	设置末端 PWM 输出
参数说明	set_PWM: 设置末端 PWM 输出
命令格式	{s:s, s:i, s:i }
示例	{"command":"set_PWM", "PWM_Frq":10000, "PWM_Dpulse":50}
说明	PWM_Frq: PWM 输出频率,范围: 100~10000Hz
	PWM_Dpulse: PWM 输出占空比, 范围: 0~100, 精度不超过 1%
返回值	{" command ":"set_PWM", "set_state":true}设置成功
	{" command ":"set_PWM", "set_state":false} 设置失败

(2)停止末端 PWM 输出

(=) (4 — ×1= 114 ± 111	- 144 = 1
功能描述	停止末端 PWM 输出
参数说明	stop_PWM:停止末端 PWM 输出
命令格式	{s:s}
示例	{"command":"stop_PWM"}
说明	无
返回值	{" command ":"stop_PWM", "set_state":true}设置成功
	{" command ":"stop_PWM", "set_state":false}设置失败

4.14 末端传感器一维力(选配)

睿尔曼机械臂末端接口板集成了一维力传感器,可获取 Z 方向的力,量程 200N,准度 0.5%FS。

(1)查询末端一维力数据

<u>(=) = 1 </u>	
功能描述	查询末端一维力数据
参数说明	get_Fz: 获取末端一维力数据
命令格式	{s:s}
示例	{"command":"get_Fz"}
说明	备注: 第一帧指令下发后, 开始更新一维力数据, 此时返回的数据有
	滞后性;请从第二帧的数据开始使用。
	若周期查询 Fz 数据,频率不能高于 40Hz
返回值	{" command ":"get_Fz", "Fz":12000} 若成功,返回数据
	精度: 0.001N, 示例返回 Fz 为 12N
	{" command ":"get_Fz", "set_state":false} 若失败,返回该指令

(2) 清零末端一维力数据

功能描述	清零末端一维力数据
参数说明	clear_Fz:清空一维力数据后,后续所有获取到的数据都是基于当前的
	偏置。
命令格式	{s:s}
示例	{"command":"clear_Fz"}
说明	无
返回值	{" command ":"clear_Fz", "set_state":true}设置成功
	{" command ":"clear_Fz", "set_state":false}设置失败

4.15 Modbus RTU 配置

睿尔曼机械臂在控制器的 26 芯航插和末端接口板 9 芯航插处,各有 1 路 RS485 通讯接口,这两个 RS485 端口可通过 JSON 协议配置为标准的 Modbus RTU模式。然后通过 JOSN 协议对端口连接的外设进行读写操作。

(1)配置通讯端口 Modbus RTU 模式

()	
功能描述	配置通讯端口 Modbus RTU 模式,机械臂启动后,要对通讯端口进行
	任何操作,必须先启动该指令,否则会返回报错信息
参数说明	set modbus mode: 配置端口 Modbus RTU 模式

命令格式	{s:s, s:i, s:i, s:i}
示例	{"command":"set_modbus_mode", "port":0, "baudrate":115200,
	"timeout":1}
说明	port:通讯端口, 0-控制器 RS485 端口, 1-末端接口板 RS485 接口
	baudrate: 波特率,支持 9600,115200,460800 三种常见波特率
	timeout:超时时间,单位秒。对 Modbus 设备所有的读写指令,在规定
	的超时时间内未返回响应数据,则返回超时报错提醒。超时时间不能
	为 0, 若设置为 0, 则机械臂按 1 进行配置。
	其他配置默认为:数据位-8,停止位-1,奇偶校验-无,
返回值	{"command":"set_modbus_mode", "set_state":true} 设置成功
	{"command":"set_modbus_mode", "set_state":false} 设置失败

(2)关闭通讯端口 Modbus RTU 模式

功能描述	关闭通讯端口 Modbus RTU 模式	
参数说明	close_modbus_mode: 关闭端口 Modbus RTU 模式	
命令格式	{s:s}	
示例	{"command":"close_modbus_mode", "port":0}	
说明	关闭后,该端口将不会响应任何读写指令的操作	
	port:通讯端口, 0-控制器 RS485 端口, 1-末端接口板 RS485 接口	
返回值	{"command":"close_modbus_mode", "set_state":true} 设置成功	
	{"command":"close_modbus_mode", "set_state":false} 设置失败	

(3)读线圈

功能描述	读线圈
参数说明	read_coils: 读线圈
命令格式	{s:s, s:i, s:i, s:i, s:i}
示例	{"command":"read_coils", "port":0, "address":10, "num":2, "device":2}
说明	port:通讯端口, 0-控制器 RS485 端口, 1-末端接口板 RS485 接口
	address: 线圈起始地址
	num: 要读的线圈的数量, 该指令最多一次性支持读 8 个线圈数据,
	即返回的数据不会一个字节
	device: 外设设备地址
返回值	{"state":"coils_data", "data":8} 读取成功,返回线圈状态,
	数据类型: int8
	{"state":"coils_data", "read_state":false} 读取失败,超时时间内未获
	取到数据

(4)读离散量输入

<u>``</u>	
功能描述	读离散量输入
参数说明	read_input_status: 读离散量输入
命令格式	{s:s, s:i, s:i, s:i, s:i}
示例	{"command":"read_input_status", "port":0, "address":10, "num":2,
	"device":2}
说明	port:通讯端口, 0-控制器 RS485 端口, 1-末端接口板 RS485 接口
	address:数据起始地址
	num: 要读的数据的数量,该指令最多一次性支持读8个离散量数

	据,即返回的数据不会一个字节	
	device: 外设设备地址	
返回值	{"state":"input_status", "data":8}	读取成功, 返回离散量,
	数据类型: int8	
	{"state":"input_status", "read_state":false}	读取失败, 超时时间内未
	获取到数据	

(5)读保持寄存器

1 44 14 15	14 Jet 11 Jet 4 mt
功能描述	读保持寄存器
参数说明	read_holding_registers: 读保存寄存器
命令格式	{s:s, s:i, s:i, s:i }
示例	{"command":"read_holding_registers", "port":0, "address":10,
	"device":2}
说明	port:通讯端口, 0-控制器 RS485 端口, 1-末端接口板 RS485 接口
	address:数据起始地址,该指令每次只能读1个寄存器,即2个字
	节的数据,不可一次性读取多个寄存器数据
	device: 外设设备地址
返回值	{"state":"holding_registers", "data":8} 读取成功, 返回寄存器数据,
	数据类型: int16
	{"state":"holding_registers", "read_state":false} 读取失败,超时时间
	内未获取到数据

(6)读输入寄存器

(0) (2) (0) (0) (0)	
功能描述	读输入寄存器
参数说明	read_input_registers: 读输入寄存器
命令格式	{s:s, s:i, s:i, s:i}
示例	{"command":"read_input_registers", "port":0, "address":10, "device":2}
说明	port:通讯端口, 0-控制器 RS485 端口, 1-末端接口板 RS485 接口 address:数据起始地址,该指令每次只能读 1 个寄存器,即 2 个字节的数据,不可一次性读取多个寄存器数据 device:外设设备地址
返回值	{"state":"input_registers", "data":8} 读取成功,返回寄存器数据,数据类型: int16 {"state":"input_registers", "read_state":false} 读取失败,超时时间内未获取到数据

(7)写单圈数据

() • • • • • • • • • • • • • • • • • •	
功能描述	写单圈数据
参数说明	write_single_coil: 写单圈数据
命令格式	{s:s, s:i, s:i, s:i, s:i}
示例	{"command":"write_single_coil", "port":0, "address":10, "data":1000,
	"device":2}
说明	port:通讯端口, 0-控制器 RS485 端口, 1-末端接口板 RS485 接口
	address: 线圈起始地址
	data: 要写入线圈的数据,数据类型: int16
	device: 外设设备地址

返回值	{"command":"write_single_coil", "write_state":true}	写操作成功
	{"command":"write_single_coil", "write_state":false}	写操作失败,
	超时时间内未获取到数据,或者指令内容错误	

(8)写单个寄存器

功能描述	写单个寄存器数据
参数说明	write_single_register: 写单个寄存器
命令格式	{s:s, s:i, s:i, s:i, s:i}
示例	1. {"command":"write_single_register", "port":0, "address":10,
	"data":1000, "device":2}
说明	port:通讯端口, 0-控制器 RS485 端口, 1-末端接口板 RS485 接口
	address: 寄存器起始地址
	data: 要写入寄存器的数据,数据类型: int16
	device: 外设设备地址
返回值	{"command":"write_single_register", "write_state":true} 写操作成功
	{"command":"write_single_register", "write_state":false} 写操作失败,
	超时时间内未获取到数据,或者指令内容错误

4.16 系统安装方式及关节版本信息

睿尔曼机械臂可支持不同形式的安装方式,但是安装方式不同,机器人的动力学模型参数和坐标系的方向也有所差别。

(1)设置安装方式参数

功能描述	设置安装方向参数
参数说明	set_install_pose: 设置机械臂基座安装方式
命令格式	{s:s, s:[i,i]}
示例	{"command":"set_install_pose", "pose":[0,3141]}
说明	Pose:基座相对水平面的旋转角和俯仰角, 精度: 0.001 弧度, 如上所
	示, 即为旋转角为 0, 俯仰角为 3.141 弧度
返回值	{"command":"set_install_pose", "set_state":true} 设置成功
	{"command":"set_install_pose", "set_state":false} 设置失败

(2)查询关节软件版本号

功能描述	查询关节软件版本号	
参数说明	get_joint_software_version:获取关节软件版本号	
命令格式	{s:s}	
示例	{"command":"get_joint_software_version"}	
说明	无	
	{s:s,s:[i,i,i,i,i,i]}	
	{"state":"joint_software_version",	
返回值	"version":[531,531,531,531,531]}	
	531 为 uint16 类型,转化为 16 进制为: 0x0213,则当前关节的版本	
	号为 2.13	

(3)查询末端接口板软件版本号

功能描述	查询末端接口板软件版本号
参数说明	get_tool_software_version:获取末端接口板软件版本号

命令格式	{s:s}
示例	{"command":"get_tool_software_version"}
说明	无
返回值	{s:s,s:i}
	{"state":"tool_software_version", "version":531}
	531 为 uint16 类型, 转化为 16 进制为: 0x0213, 则当前末端接口板
	的版本号为 2.13

五、移动升降机构(选配)

5.1 升降机构控制

(1)速度开环控制

功能描述	升降机构速度开环控制
参数说明	set_lift_speed: 设置升降机构速度
命令格式	{s:s, s:i}
	{"command":"set_lift_speed
	", "speed":50}
 示例	说明: speed-速度百分比, -100~100。
71.194	Speed < 0:升降机构向下运动
	Speed > 0:升降机构向上运动
	Speed = 0: 升降机构停止运动
	{"command":"set_lift_speed", "set_state":true} 设置成功
返回值	{"command":"set_lift_speed", "set_state":false} 设置失败

(2)位置闭环控制

功能描述	升降机构位置闭环控制
参数说明	set_lift_height: 设置升降机构高度
命令格式	{s:s, s:i}
示例	{"command":"set_lift_height", "height":1000, "speed":50}
	说明: height-目标高度, 单位 mm, 范围: 0~2600
	speed-速度百分比, 1~100
返回值	{"state":"current_trajectory_state", "trajectory_state":true} 成功到位
	{"state":"current_trajectory_state", "trajectory_state":false} 失败

(3)获取升降机构状态

功能描述	获取升降机构状态
参数说明	get_lift_state: 获取升降机构状态
命令格式	{s:s}
示例	{"command":"get_lift_state"}
返回值	{"state":"lift_state", "height":1000, "current":500, "err_flag":0} 成功
	到位
	Height: 当前升降机构高度, 单位: mm, 精度: 1mm, 范围: 0~2300
	Current:当前升降驱动电流,单位: mA, 精度: 1mA

Err_flag:	升降驱动错误代码,	错误代码类型参考关节错误代码

5.2 车体控制

(1)速度开环控制

(1)~~~~			
功能描述	车体速度开环控制——仅限于非磁条导航模式操作		
参数说明	set_car_move: 车体速度开环控制		
命令格式	{s:s, s:i, s:i}		
	{"command":"set_car_move", "linear_speed":50, "angular_speed":50 }		
	说明:		
 示例	linear_speed:车体线速度百分比,范围-100~100, >0 前进, <0 后退		
71. 1941	angular_speed: 车体旋转速度百分比, 范围-100~100, >0 逆时针旋		
	转, <0 顺时针旋转		
	备注: 升降重心较高,建议用户速度的绝对值在20左右		
返回值	{"command":"set_car_move", "set_state":true} 设置成功		
	{"command":"set_car_move", "set_state":false} 设置失败		

(2)站点导航控制

功能描述	车体站点导航控制——仅限于磁条导航弄湿
参数说明	set_car_station:设置车体运动目标站点
命令格式	{s:s, s:i}
示例	{"command":"set_car_station", "station":1, "speed":50}
	说明: station-目标站点序号, 范围由用户设置
	speed-速度百分比, 1~100
返回值	{"state":"car_navigation", "navigation_state":true} 设置成功
	{"state":"car_navigation", "navigation_state":false} 设置失败

(3)速度导航控制

功能描述	速度导航控制——磁条导航模式
参数说明	set_car_navigation_speed:设置车体磁条导航速度
命令格式	{s:s, s:i}
示例	{"command":"set_car_navigation_speed", "speed":50}
	说明: speed:导航速度, -100~100, >0 前进, <0 后退,0-导航停止
返回值	{"state":"car_navigation", "navigation_state":true} 设置成功
	{"state":"car_navigation", " navigation_state":false} 设置失败

(4)设置导航模式

功能描述	设置导航模式
参数说明	set_car_navigation_mode:设置车体导航方式
命令格式	{s:s, s:i}
示例	{"command":"set_car_navigation_mode", "mode":0}
	说明: mode: 导航方式, 0-磁条导航, 1-开环控制模式
返回值	{"state":"car_navigation", "navigation_state":true} 设置成功
	{"state":"car_navigation", " navigation_state":false} 设置失败

(5)查询车体状态

功能描述	查询车体状态
------	--------

参数说明	get_car_state:获取车体状态
命令格式	{s:s}
示例	{"command":"get_car_state"} 说明: 获取车体状态
返回值	如下 (7) 所示

(6)反馈车体状态

(0)/2013(11 1210	
功能描述	反馈车体状态
参数说明	car_state:车体状态
命令格式	{s:s, s:i, s:i, s:i, s:i, s:i}
	{"state":"car_state", "battery_volume":30, "voltage":24120,
	"current":6000, "car_err":0, "car_state":1, "station_num":1}
	说明: 车体状态
	battery_volume: 电池容量, 0~100
示例	voltage: 电池电压, 精度 0.001V, 示例中为 24.12V
	current: 电池电压, 精度 0.001A, >0 放电, <0 充电, 示例为 6A
	car_err: 车体运行错误代码, 0-正常
	car_state:车体目前运行状态, 0-空闲, 1-运动, 2-充电
	station_num:当前站点序号

(7)控制车体自动充电

功能描述	控制车体自动充电,备注: 若车体正在充电,必须解除自动充电模式才
	会对指令响应
参数说明	set_car_charge
命令格式	{s:s}
示例	{"command":"set_car_charge", "charge_state":1}
参数说明	0-解决自动充电模式,1-开始自动充电
返回值	{"state":"car_navigation", "navigation_state":true} 设置成功
	{"state":"car_navigation", "navigation_state":false} 设置失败

(8)设置车体当前站点号

(O) (NE - 1 11 - 11 11 11 11 11 11 11 11 11 11		
功能描述	车体重新上电后, 必须将车体方向朝向磁条前方, 并设置当前所处的	
	站点序号。	
参数说明	set_car_station_num	
命令格式	{s:s, s:i}	
示例	{"command":"set_car_station_num", "station_num":1}	
返回值	{"state":"car_navigation", "navigation_state":true} 设置成功	
	{"state":"car_navigation", "navigation_state":false} 设置失败	