•	M_2 is sized such that $(W/L)_2=\frac12(W/L)_1$, making its channel charge equal to half of M_1 's When ϕ goes low, M_1 turns off and half of its channel charge is injected onto the capacitor M_2 's gate voltage, $\overline{\phi}$, is complementary to that of M_1 , and slightly delayed When $\overline{\phi}$ goes high, M_2 's channel charge is drawn from the capacitor, removing the charge injection error voltage Note that this technique requires of fast-transitioning clock signals	
•	A fully differential structure offers the possibility of processing charge injection as a common-mode signal If V_{in+} and V_{in-} are close to ground, the channel charge of both switches is given approximately by $Q_{ch+} \approx Q_{ch-} \approx \mu C_{ox} \frac{W}{L} (V_{DD} - V_{th})$ The differential output voltage is thus given approximately by $V_{od} = V_{out+} - V_{out-} \\ \approx V_{in+} - V_{in-} + Q_{ch+}/C_h - Q_{ch-}/C_h \\ \approx V_{in+} - V_{in-}$	
B(However, for large differential signals the channel charges will exhibit significant mismatch due to the dependence of Q_{ch} of source potential(s) Ottom-plate sampling Bottom-plate sampling is a technique employed to ensure that the error caused by charge injection is signal-independent, of nonlinear error into an offset (this is preferable) In this configuration, ϕ_1 goes low before ϕ_2 so that the charge injection onto C is constant, due to the connection to ground. This ensures that the voltage error is an offset, rather than nonlinear distortion	onve
CI	When ϕ_2 goes low, its channel charge flows toward the low impedance of the source V_{in} instead of the capacitor (because at that time)	
•	The transistor stops conducting when $V_{gs}=V_g-V_{in}=V_{th}$, corresponding to a gate voltage of $V_g=V_{in}+V_{th}$ Thus, an error voltage develops on C_h given by $\Delta V=\frac{C_{ov}}{C_h+C_{ov}}(V_{in}+V_{th})$ As the clock transition time approaches zero, very little of the feedthrough current is compensated by the drain current and majority goes through the coupling capacitance In this case, the error voltage due to feedthrough is given approximately by	the
•	Here we see an advantage to slowing down the clock transition speed, particularly for small input signals and if $V_{DD}\gg V_t$. However, slowing down the fall time of the clock may conflict with the goal of minimizing charge injection through the use of switches, as this technique relies on the channel charge splitting evenly between source and drain) $ \text{Smaller switches and larger values of } C_h \text{ reduce the magnitude of clock feedthrough errors, though this comes at the expense speed} $	dun
•	During the hold period T_h , charge is removed from the capacitor via the reverse-bias leakage current of the drain-bulk junct resulting in a voltage error given by $\Delta V_{leak} = \frac{I_{leak}T_h}{C_h}$ This source of error increases with T_h , and is exacerbated at high temperatures due to the temperature dependence of I_{leak} doubles with every $10^{\circ}C$ increase in temperature) As with other sources of error, the effect of leakage current is reduced by an increase in C_h (though leakage errors are typically in the source of error, the effect of leakage current is reduced by an increase in C_h (though leakage errors are typically in the source of error increase).	$_{ik}$ (w
•	Immary MOS operational amplifiers are attractive due to their high input impedance and low input current noise, but they suffer from $1/f$ noise and input voltage offset Autozeroing (AZ) is one means of alleviating these sources of error, trading a decrease in input offset and $1/f$ noise for an white noise spectral density in the Nyquist band AZ can be incorporated into a number of switched-capacitor gain and filter structures, improving precision while taking advatte properties of switched-capacitor structures (i.e. device matching and reduced amplifier loading)	incre
	Discrete-time analog circuit architectures employ CMOS switches which, in addition to thermal noise, exhibit errors due to cinjection, clock feedthrough, and leakage All four types of error are minimized by the use of larger sampling capacitors, indicating a tradeoff between speed and precipitations.	