Structures de données TD - 1

- 1. Bibliothèque pour manipuler les matrices (à deux dimensions).
 - (a) Écrivez la structure de donnée pour stocker une matrice de N lignes et M colonnes.
 - (b) Écrivez la fonction pour allouer une matrice de N lignes et M colonnes.
 - (c) Écrivez la fonction pour libérer une matrice.
 - (d) Écrivez les fonctions pour lire et écrire dans la matrice.
 - (e) Écrivez la fonction pour calculer la somme des éléments d'une matrice.
 - (f) Écrivez la fonction pour calculer le produit matriciel entre deux matrices. Pour rappel, la multiplication entre deux matrices $\mathbf{A} \in \mathcal{M}_{M,N}$ et $\mathbf{B} \in \mathcal{M}_{N,P}$ s'écrit :

$$c_{i,j} = \sum_{k=1}^{N} a_{i,k} \times b_{k,j} \tag{1}$$

avec $c_{i,j}$ la *i*-ème ligne et *j*-ème colonne de la matrice $\mathbf{C} \in \mathcal{M}_{M,P}$.

2. File (FIFO) à buffer circulaire

Un buffer circulaire (Figure 1) est une structure de données utilisant un buffer de taille fixe et dont le début et la fin sont considérés comme connectés.

Figure 1 – Buffer circulaire vide

- (a) Écrivez la structure de donnée pour gérer une file (FIFO) dans un buffer circulaire.
- (b) Écrivez la fonction d'insertion d'un éléments dans la file.
- (c) Écrivez la fonction de suppression d'un éléments dans la file.
- 3. Recherche des k plus petits éléments. Nous considérons T un tableau non trié de n entiers.
 - (a) Écrivez un algorithme qui calcule les k plus petits éléments en procédant par recherches successives.
 - (b) Écrivez un algorithme qui calcule les k plus petits éléments en triant le tableau au préalable (la fonction de tri par ordre croissant est donnée tri(T); son coût est : n log(n))
 - (c) Comparez le temps mis par chacun des algorithmes pour k = 1..n.

4. Compléter le tableau en indiquant la complexité dans le pire cas pour chaque opération et chaque structure de donnée. L'ensemble des données noté S admet un ordre total, et x désigne un élément.

	liste	liste	liste	liste	tableau	tableau
	non triée	triée	non triée	triée	dynamique	dynamique
	simplement	simplement	doublement	doublement	non triée	triée
	chaînée	chaînée	chaînée	chaînée		
Rechercher(x,S)						
Insérer(x,S)						
Supprimer(x,S)						
ValeurSuivante(x,S)						
ValeurPrécédente(x,S)						
Minimum(S)						
Maximum(S)						

Remarques : Rechercher(x,S) renvoie la position de x dans S s'il est présent (et sinon NULL), les opérations Supprimer(x,S), ValeurSuivante(x,S), ValeurPrécédente(x,S) supposent que l'on connaît déjà la position de x dans S (appel à Rechercher(x,S) déjà fait).