Data Science con R

Instituto de Estadística PUCV - Magister en Estadística

Dae-Jin Lee < dlee@bcamath.org >

Visualización de Datos

Chambers et al. (1983)

"No existe una herramienta estadística tan poderosa como un gráfico bien escogido"

Visualización de datos

- Una de las principales razones por las que los analistas de datos recurren a R es por su gran capacidad gráfica.
- Esta sección proporciona una introducción completa sobre cómo representar datos mediante el sistema de gráficos por defecto de R.
- Las posibilidades gráficas de R son enormes (casi infinitas).
- Muchas librerías disponen de representaciones gráficas muy útiles para la representación de datos y de modelos.
- Veamos a continuación algunos ejemplos.
- Chambers et al. (1983), "there is no statistical tool that is as powerful as a well chosen graph"

Objetivos de este tema

- Conocer las capacidades gráficas básicas de R
- Aprender a personalizar gráficos, y conocer los tipos de gráficos más complejos desde el punto de vista estadístico.
- Trabajar con datos reales y realizar análisis descriptivos y gráficos.
- Realizar gráficos con librerías como ggplot2
- Guardar gráficos en los diferentes formatos para utilizarlos posteriormente en presentaciones, informes etc \dots

Preliminares

• Instalar las siguientes librerías de 'R

```
install.packages("DAAG")
install.packages("calibrate")
install.packages("corrplot")
install.packages("gplots")
install.packages("HSAUR2")
```

Gráficos sencillos

Vamos a comenzar con el conjunto de datos en el data.frame: pressure (ver ?pressure)

```
?pressure
head(pressure)
```

```
##
     temperature pressure
## 1
                    0.0002
## 2
              20
                    0.0012
## 3
                    0.0060
              40
                    0.0300
## 4
              60
## 5
              80
                    0.0900
             100
                    0.2700
## 6
```

Función plot

plot(pressure)

Función text

```
plot(pressure)
text(150, 600,
    "Pressure (mm Hg)\nversus\nTemperature (Celsius)")
```


La opción cex permite aumentar el tamaño de la fuente

```
plot(pressure)
text(150, 600, cex = 2,
     "Pressure (mm Hg)\nversus\nTemperature (Celsius)")
```


La opción log = "y", representa la variable y en escala logarítmica. xlab e ylab permite añadir texto a los ejes y main el título del gráfico.

```
plot(pressure, xlab = "Temperature (deg C)", log = "y",
    ylab = "Pressure (mm of Hg)",
```

pressure data: Vapor Pressure of Mercury

Datos mtcars

?mtcars

```
head(mtcars)
##
                      mpg cyl disp hp drat
                                                wt qsec vs am gear carb
## Mazda RX4
                     21.0
                               160 110 3.90 2.620 16.46
                                                                        4
## Mazda RX4 Wag
                     21.0
                            6
                               160 110 3.90 2.875 17.02
                                                                        4
## Datsun 710
                     22.8
                                   93 3.85 2.320 18.61
                            4
                               108
                                                                        1
## Hornet 4 Drive
                     21.4
                            6
                               258 110 3.08 3.215 19.44
                                                          1
                                                                   3
                                                                        1
## Hornet Sportabout 18.7
                               360 175 3.15 3.440 17.02
                                                                   3
                                                                        2
## Valiant
                     18.1
                               225 105 2.76 3.460 20.22
                                                                        1
names(mtcars)
## [1] "mpg"
               "cyl"
                      "disp" "hp"
                                     "drat" "wt"
                                                   "qsec" "vs"
                                                                  "am"
                                                                         "gear"
## [11] "carb"
```

Scatterplot ó gráfico X-Y

```
attach(mtcars)
plot(wt, mpg);
abline(lm(mpg~wt)); title("Regression of MPG on Weight")
```

Regression of MPG on Weight

Scatterplot matrix (ver?pairs)

Simple Scatterplot Matrix

Diagrama de barras (ver ?barplot)

```
tab <- table(mtcars[,c("cyl")]) # convertir a tabla
barplot(tab)</pre>
```


Piechart o diagrama de tarta (ver ?pie)

pie(tab)

Datos VADeaths

- $\bullet~$ El data.frame VADeaths contiene las tasas de mortalidad por cada 1000 habitantes en Virginia (EEUU) en 1940
- Las tasas de mortalidad se miden cada 1000 habitantes por año. Se encuentran clasificadas por grupo de edad (filas) y grupo de población (columnas).
- Los grupos de edad son: 50-54, 55-59, 60-64, 65-69, 70-74 y los grupos de población: Rural/Male, Rural/Female, Urban/Male and Urban/Female.

data(VADeaths) VADeaths

Rural Male Rural Female Urban Male Urban Female ## 50-54 11.7 8.7 15.4 8.4

```
## 55-59
                              11.7
                                                        13.6
                18.1
                                          24.3
                26.9
                              20.3
                                          37.0
## 60-64
                                                        19.3
## 65-69
                41.0
                              30.9
                                                        35.1
                                          54.6
## 70-74
                66.0
                              54.3
                                          71.1
                                                        50.0
```

• Calcula la media por grupo de edad y la media por grupo de población (**Pista:** puedes usar la función apply)

Función apply

• Resultado

```
apply(VADeaths,1,mean)

## 50-54 55-59 60-64 65-69 70-74

## 11.050 16.925 25.875 40.400 60.350

apply(VADeaths,2,mean)

## Rural Male Rural Female Urban Male Urban Female
## 32.74 25.18 40.48 25.28
```

Data rainforest

```
library(DAAG)
head(rainforest)
##
      dbh wood bark root rootsk branch
                                                 species
                        6
## 27
            NA
                  NA
                             0.3
                                      NA Acacia mabellae
## 61
       23
           353
                      135
                            13.0
                                      35 Acacia mabellae
                  NA
## 62
      20
                                      41 Acacia mabellae
           208
                  NA
```

50 Acacia mabellae

NA Acacia mabellae

NA Acacia mabellae

- Crear una tabla de conteos para cada species y realiza un gráfico descriptivo.
- Resultado:

23

24

5

445

590

14

NA

NA

2

NA

NA

NA

NA

NA

2.4

63

65

80

Diagrama de barras

```
barplot(table(rainforest$species))
```


?subset

• El data.frame Acmena está creado a partir de rainforest mediante la función subset.

```
Acmena <- subset(rainforest, species == "Acmena smithii")
```

- Vamos a realizar un gráfico que relacione la biomasa de la madera (wood) y el diámetro a la altura del pecho (dbh).
- Utiliza también la escala logarítmica.

```
par y mfrow
par(mfrow=c(1,2))
plot(wood~dbh,data=Acmena,pch=19, main="plot of dbh vs wood")
plot(log(wood)~log(dbh),data=Acmena,pch=19,main="log transformation")
```


Histograma

```
hist(Acmena$dbh,col="grey")
```

Histogram of Acmena\$dbh

Más sobre gráficos XY

• Datos mammals

```
library(MASS)
data("mammals")
?mammals
head(mammals)
##
                      body brain
## Arctic fox
                     3.385 44.5
                     0.480 15.5
## Owl monkey
## Mountain beaver
                    1.350 8.1
## Cow
                   465.000 423.0
## Grey wolf
                    36.330 119.5
## Goat
                    27.660 115.0
attach(mammals)
species <- row.names(mammals)</pre>
x <- body
y <- brain
library(calibrate)
# scatterplot
plot(x,y, xlab = "body weight in kgr", ylab = "brain weight in gr",
     main="Body vs Brain weight \n for 62 Species of Land Mammals",xlim=c(0,8500))
textxy(x,y,labs=species,col = "blue",cex=0.85)
```

Body vs Brain weight for 62 Species of Land Mammals

identify

Identificar un punto en el scatterplot

identify(x,y,species)

En escala logarítmica

log Body vs log Brain weight for 62 Species of Land Mammals

Matrices de correlación

- La función corrplot de la librería corrplot permite visualizar una matriz de correlaciones calculada mediante la función cor
- $\bullet~$ Vamos a generar unos datos de manera aleatoria.
- Mediante set.seed(1234) generaremos números aleatorios a partir de la misma semilla.

```
set.seed(1234)
uData <- rnorm(20)
vData <- rnorm(20,mean=5)
wData <- uData + 2*vData + rnorm(20,sd=0.5)
xData <- -2*uData+rnorm(20,sd=0.1)
yData <- 3*vData+rnorm(20,sd=2.5)
d <- data.frame(u=uData,v=vData,w=wData,y=yData)</pre>
```

pairs

```
pairs(d)
```


corrplot

```
corrplot(M, method="circle",type="upper")
```


Datos cualitativos

• El conjunto de datos de R, UCBAdmissionscontiene los datos agregados de los solicitantes a universidad de Berkeley a los seis departamentos más grandes en 1973 clasificados por sexo y admisión.

```
data("UCBAdmissions")
?UCBAdmissions
apply(UCBAdmissions, c(2,1), sum)

## Admit
## Gender Admitted Rejected
## Male 1198 1493
## Female 557 1278
```

```
prop.table(apply(UCBAdmissions, c(2,1), sum))
```

```
##
          Admit
## Gender
            Admitted Rejected
          0.2646929 0.3298719
##
    Male
    Female 0.1230667 0.2823685
ftable(UCBAdmissions)
                                        Ε
##
                  Dept
                             В
                                 C
## Admit
           Gender
## Admitted Male
                       512 353 120 138
                                           22
##
           Female
                       89 17 202 131 94 24
## Rejected Male
                       313 207 205 279 138 351
##
           Female
                       19 8 391 244 299 317
```

Con ftable podemos presentar la información con mayor claridad

```
ftable(round(prop.table(UCBAdmissions), 3),
    row.vars="Dept", col.vars = c("Gender", "Admit"))
```

##	Gender	Male		Female	
##	Admit	${\tt Admitted}$	Rejected	${\tt Admitted}$	Rejected
## Dept					
## A		0.113	0.069	0.020	0.004
## B		0.078	0.046	0.004	0.002
## C		0.027	0.045	0.045	0.086
## D		0.030	0.062	0.029	0.054
## E		0.012	0.030	0.021	0.066
## F		0.005	0.078	0.005	0.070

Resulta más intereseante mostrar la información por género Gender y Dept combinados (dimensiones 2 y 3 del array). Nótese que las tasas de admisión por male y female son más o menos similares en todos los departamentos, excepto en "A", donde las tasas de las mujeres es mayor.

```
ftable(round(prop.table(UCBAdmissions, c(2,3)), 2),
    row.vars="Dept", col.vars = c("Gender", "Admit"))
```

## ##	Dont	Gender Admit	Male Admitted	Rejected	Female Admitted	Rejected
##	Dept		0.62	0.38	0.82	0.18
##			0.63	0.37	0.68	0.10
##	_		0.37	0.63	0.34	0.66
##	D		0.33	0.67	0.35	0.65
##	E		0.28	0.72	0.24	0.76
##	F		0.06	0.94	0.07	0.93

Datos de admisiones agregados por Sexo/Departamento

1278

Rejected 1493

apply(UCBAdmissions, c(1, 2), sum)

```
apply(UCBAdmissions, c(1, 2), sum)

## Gender
## Admit Male Female
## Admitted 1198 557
```

```
## Gender
## Admit Male Female
## Admitted 1198 557
## Rejected 1493 1278
```

Representación gráfica datos categóricos (spineplot)

```
par(mfrow=c(1,2))
spineplot(margin.table(UCBAdmissions, c(3, 2)),
    main = "Applications at UCB")
spineplot(margin.table(UCBAdmissions, c(3, 1)),
    main = "Admissions at UCB")
```


Paradoja de Simpson

- Estos datos ilustran la denominada paradoja de Simpson.
- Este hecho ha sido analizado como un posible caso de discriminación por sexo en las tasas de admisión en Berkeley.
- De los 2691 hombres que solicitaron se admitidos, 1198 (44.5%) fueron admitidos, comparado con las 1835 mujeres de las cuales tan sólo 557 (30.4%) fueron admitidas.
- Se podría por tanto concluir que los hombres tienes tasas de admisi?n mayores que las mujeres.
- Wikipedia: Gender Bias UC Berkeley.
- Ver animación en link

Datos cuantitativos

• Consideremos los datos del geyse Old Faithful en el parque nacional de Yellowstone, EEUU.

head(faithful)

```
## 1 3.600 79
## 2 1.800 54
## 3 3.333 74
## 4 2.283 62
## 5 4.533 85
## 6 2.883 55
```

plot(faithful)

Histograma (hist)

hist(faithful\$eruptions,50)

Histogram of faithful\$eruptions

Estimación de densidades

• Estimación de densidad construye una estimación dada una distribucion de probabilidad para una muestra dada.

```
library(graphics)
d <- density(faithful$eruptions)</pre>
d
##
## Call:
   density.default(x = faithful$eruptions)
##
## Data: faithful$eruptions (272 obs.); Bandwidth 'bw' = 0.3348
##
##
##
   Min.
          :0.5957
                    Min.
                           :0.0002262
   1st Qu.:1.9728
                    1st Qu.:0.0514171
##
##
   Median :3.3500
                    Median :0.1447010
                           :0.1813462
##
   Mean
          :3.3500
                    Mean
                     3rd Qu.:0.3086071
## 3rd Qu.:4.7272
                           :0.4842095
## Max.
          :6.1043
                    Max.
```

plot(d)

density.default(x = faithful\$eruptions)

Histograma y Densidad

```
hist(faithful\$eruptions,freq=FALSE, col = "lightblue", xlim = c(1,6))
lines(d, col = "red", lwd = 2)
```

Histogram of faithful\$eruptions

Histograma bivariante

```
library(gplots)
h2 <- hist2d(faithful, nbins=30,xlab="Duration in minutes",ylab="Waiting")</pre>
```



```
##
## Call: hist2d(x = faithful, nbins = 30, xlab = "Duration in minutes",
## ylab = "Waiting")
##
## Number of data points: 272
## Number of grid bins: 30 x 30
## X range: ( 1.6 , 5.1 )
## Y range: ( 43 , 96 )
```

```
class(h2)
## [1] "hist2d"
names(h2)
## [1] "counts" "x.breaks" "y.breaks" "x" "y" "nobs"
## [7] "call"
```

Estimación de densidades bivariantes (kde2d)

```
Dens2d<-kde2d(faithful\$eruptions,faithful\$waiting)
image(Dens2d,xlab="eruptions",ylab="waiting")
contour(Dens2d,add=TRUE,col="black",lwd=2,nlevels=5)
```


persp

persp(Dens2d,phi=30,theta=20,d=5,xlab="eruptions",ylab="waiting",zlab="",shade=.2,col="lightblue",expand=.85,ticktype = "detaile

Datos de Forbes 2000: Ranking de las empresas líderes en 2004

• La lista Forbes 2000 para el año 2004 recogida por la revista Forbes. Esta lista está disponible originalmente en www.forbes.com

```
library("HSAUR2")
data("Forbes2000")
dim(Forbes2000)

## [1] 2000 8
names(Forbes2000)

## [1] "rank" "name" "country" "category" "sales"

## [6] "profits" "assets" "marketvalue"
```

```
library(knitr)
kable(head(Forbes2000))
```

rank	name	country	category	sales	profits	assets	marketvalue
1	Citigroup	United States	Banking	94.71	17.85	1264.03	255.30
2	General Electric	United States	Conglomerates	134.19	15.59	626.93	328.54
3	American Intl Group	United States	Insurance	76.66	6.46	647.66	194.87
4	ExxonMobil	United States	Oil & gas operations	222.88	20.96	166.99	277.02
5	BP	United Kingdom	Oil & gas operations	232.57	10.27	177.57	173.54
6	Bank of America	United States	Banking	49.01	10.81	736.45	117.55

Los datos consisten en 2000 observaciones sobre las 8 variables siguientes.

- rank: el ranking de la empresa.
- name: el nombre de la empresa.
- country: un factor que determina el país en el que está situada la empresa.
- category: un factor que describe los productos que produce la empresa.
- sales: el importe de las ventas de la empresa en miles de millones de dólares.
- profits: los beneficios de la empresa en miles de millones de dólares.
- assets: los activos de la empresa en miles de millones de dólares.
- marketvalue: el valor de mercado de la empresa en miles de millones de dólares.

```
str(Forbes2000)
 ## 'data.frame':
                                         2000 obs. of 8 variables:
 ##
        $ rank
                         : int 1 2 3 4 5 6 7 8 9 10 ...
 ##
        $ name
                                                 "Citigroup" "General Electric" "American Intl Group" "ExxonMobil" ...
                                  : Factor w/ 61 levels "Africa", "Australia", ...: 60 60 60 60 56 60 56 28 60 60 ...
        $ country
 ##
        $ category : Factor w/ 27 levels "Aerospace & defense",..: 2 6 16 19 19 2 2 8 9 20 ...
                                   : num 94.7 134.2 76.7 222.9 232.6 ...
 ## $ sales
 ##
        $ profits
                                   : num 17.85 15.59 6.46 20.96 10.27 ...
 ##
        $ assets
                                   : num 1264 627 648 167 178 ...
        $ marketvalue: num 255 329 195 277 174 ...
        • ¿Cuántos países diferentes están en el ranking del año 2000?
 nlevels(Forbes2000[,"country"])
 ## [1] 61
        • Cuáles son éstos países?
levels(Forbes2000[,"country"])
     [1] "Africa"
                                                  "Australia"
     [3] "Australia/ United Kingdom"
[5] "Bahamas"
[7] "Bermuda"
[9] "Canada"
                                                  "Austria"
"Belgium"
"Brazil"
## [9] "Canada"
## [11] "Chile"
## [15] "Czech Republic"
## [15] "Frinland"
## [17] "France/ United Kingdom"
## [19] "Greece"
## [21] "Hungary"
## [28] "Indonesia"
## [29] "Jordan"
## [29] "Jordan"
## [31] "Korea"
## [33] "Luxembourg"
## [35] "Mexico"
## [37] "Netherlands/ United Kingdom"
## [39] "Norvay"
                                                  "Cayman Islands"
"China"
                                                  "Denmark"
"France"
                                                  "Germany"
"Hong Kong/China"
"India"
                                                  "Ireland"
                                                  "Israel"
"Japan"
"Kong/China"
                                                  "Liberia"
"Malaysia"
"Netherlands
## [37] "Netherlands/ United Kingdom" "New Zealand" ## [39] "Norway" "Pakistan" ## [41] "Panama/ United Kingdom" "Peru" "Poland" ## [43] "Philippines" "Poland" "Russia" ## [47] "Singapore" "South Africa" "Spain" ## [49] "South Korea" "Spain" "Spain" ## [51] "Sweden" "Switzerland" "Tailand" "Thailand" "United Kingdom "## [55] "Turkey" "United Kingdom Netherlands" ## [59] "United Kingdom/ South Africa" "United Kingdom Netherlands" ## [59] "United Kingdom/ South Africa" "United States" ## [61] "Venezuela"
                                                  "New Zealand"
        • Cuáles en el top 20?
 top20 <- droplevels(subset(Forbes2000,rank<=20))</pre>
 levels(top20[,"country"])
```

"Netherlands/ United Kingdom"

"Japan"

"United Kingdom"

[1] "France"

[3] "Netherlands"

[5] "Switzerland"

[7] "United States"

As a simple summary statistic, the frequencies of the levels of such a factor variable can be found from

table(top20[,"country"])

```
##
##
                         France
                                                        Japan
##
                              2
                                                            1
##
                    Netherlands Netherlands/ United Kingdom
##
                              1
                                                            1
##
                    Switzerland
                                              United Kingdom
##
                              1
##
                 United States
##
                             11
```

Which type of companies?

levels(Forbes2000[,"category"])

```
"Banking"
##
    [1] "Aerospace & defense"
##
    [3] "Business services & supplies"
                                            "Capital goods"
   [5] "Chemicals"
##
                                            "Conglomerates"
   [7] "Construction"
                                            "Consumer durables"
##
##
   [9] "Diversified financials"
                                            "Drugs & biotechnology"
## [11] "Food drink & tobacco"
                                            "Food markets"
## [13] "Health care equipment & services"
                                           "Hotels restaurants & leisure"
## [15] "Household & personal products"
                                            "Insurance"
## [17] "Materials"
                                            "Media"
## [19] "Oil & gas operations"
                                            "Retailing"
## [21] "Semiconductors"
                                            "Software & services"
## [23] "Technology hardware & equipment"
                                           "Telecommunications services"
## [25] "Trading companies"
                                            "Transportation"
## [27] "Utilities"
```

How many of each category?

table(Forbes2000[,"category"])

```
Aerospace & defense
                                                                  Banking
##
##
##
##
##
##
##
                                                           313
Capital goods
       Business services & supplies
                            Chemicals
             Diversified financials
                Food drink & tobacco
      Household & personal products
                                                                Insurance
                                                                       112
                            Materials
                Oil & gas operations
                                                                Retailing
    Technology hardware & equipment
                                            Telecommunications services
                   Trading companies
                           Utilities
```

A simple summary statistics such as the mean, median, quantiles and range can be found from continuous variables such as sales

```
summary(Forbes2000[,"sales"])
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.010 2.018 4.365 9.697 9.548 256.300
```

Histogramas y boxplots

```
par(mfrow=c(1,2))
hist(Forbes2000$marketvalue, col="lightgrey",main="Histogram of market value")
boxplot(Forbes2000$marketvalue, col="lightgrey",main="Boxplot of market value")
```

Histogram of market value

Boxplot of market value

Forbes2000\$marketvalue

Histogram of log(market value)

Boxplot of log(market value)

log(Forbes2000\$marketvalue)

ggplot2

- Toma como referencia una metodología de visualización de datos llamada The Grammar of Graphics, (Wilkinson, 2005).
- · La idea es describir los mapeos visuales para poder armar visualizaciones complejas sin preocuparnos por la parte dificil.

link

- Gramática consistente basada en grammar of graphics (Wilkinson, 2005)
- Librería muy flexible
- Mantenimiento muy activo de la librería
- Gran lista de distribución y con mucha participación
- Es posible crear gráficos visualmente atractivos y elegantes
- Simple gestión de leyendas

link