テトリスの研究

千葉龍朗

芝浦工業大学 数理科学研究会

令和元年5月19日

はじめに

テトリスは, 日本で 1985 年に GB 版が出て以来, 多くの人気を博している. また, テトリスの遊び方も進化し, 相手に勝つには様々な戦術で対抗する必要がある. その戦術を機械に解かせてみたいと思い, 本研究を始めた. まずは理論からかためていく. また, 今回は Nintendo Switch でできる「テトリス 99」のルールに沿って研究する.

目的

テトリスを数学的に表し、落ちてくるミノを自動で積む機械を作る.

テトリスのルール

4つの正方形をくっつけてできる塊をテトリミノや, 単にミノとよぶ. ミノには以下の7種類がある.

Figure: 1

これらのミノを 20×10 のフィールド上に積み重ねてゆく.

テトリスのルール

基本的なルールは省略する. 注意する点は落ちてくるミノの位置である(動画).

これらのルールを踏まえ,次のように考えた.

n を自然数, a=0,1,2,3 として, $(F_{n-1},(m_n)_a,p_n)$ が以下の条件を満たすとき, $(F_{n-1},(m_n)_a,p_n)$ をテトリス空間と呼ぶ. ここで, 考察を簡単にするために行列の左下を (1,1) 成分, 右上を (24,10) 成分とする.

- F_n は 24 × 10 行列で,各成分は 0 か 1 の集合である. ただし, F₀ は成分がすべて 0 の行列.
- **②** $(m_n)_a$ は 4×4 行列で, 各成分は 0 か 1 である. m_n は 7 つのミノの形, a は右回転する回数を表す.
- p_n は 24×10 行列で, 各成分は 0 か 1 である. p_n は次のようにして決定される.

 F_n において, (i, j) 成分を $(F_n)_{i,j}$ とかく. $(F_n)_{i,j} = 0$, $(F_n)_{i+1,j} = 1$ または $(F_n)_{0,j} = 0$ を満たす (i+1,j) 成分を考える. この成分が一つでも含み, かつ (F_n) の成分が 0 である 4 つの成分の部分に $(m_n)_a$ の 1 の部分のみを置く. こうして置かれる $(m_n)_a$ の部分の成分を 1, それ以外を 0 とし, それを p_n とする.

Figure: 2

Figure: 3

Figure: 4

Figure: 5

Figure: 6

Figure: 7

Figure: 8

この空間において, F_n は n 番目のミノが落ちてきたときのフィールドの 状態, m_n は各ミノ, つまり $m_n = s, z, j, l, i, t, o$ であるので, $(m_n)_a$ の数は 28 である. ただし, 回転した後の形を区別しない場合は s, z, i = 2, j, l, t = 4, o = 1 より 19 である.

 F_n を 24×10 行列にした理由は, 図 1 のような積み方を考慮したからである. 目に見える範囲ではフィールド上には 20 行まで詰めるが, 真ん中に積まなければ理論上はどんな高さにも積める. だが, そのような範囲まで考えてもあまり意味はないので, 少し増やして 24 行にした.

この空間には不十分な点がある. それは, 空洞に対してもミノを置けるという点である.

Figure:

今後すること

先述した問題点を解決し、そのうえでパーフェクトやTスピンなどについて考えていく。

参考文献

なし!