Problem 2.3 (Midterm 1 Fall 2019). Assume that $f: \mathbb{R}^n \to \mathbb{R}^n$ is locally Lipschitz and satisfies

$$|f(x)| \le K|x| + B$$
, $x \in \mathbb{R}^n, K \ge 0, B \ge 0$.

Show that the solution of $\dot{x} = f(x)$, $x(0) = x_0$ exists for all time $-\infty < t < \infty$ and moreover

$$|x(t)| \le x_0 e^{K|t|} + \frac{B}{K} \left(e^{K|t|} - 1 \right).$$

You need only show this inequality for $0 \le t < \infty$.

Assume we have our solution X(E) for 05 t 5 T. Revisting,

Then

$$|x(t)| = |x_0 + \int_0^t f(x(s)) ds|$$

$$\leq |x_0| + \int_0^t |f(x(s))| ds$$

$$\leq |x_0| + \int_0^t |f(x(s))| + |g| ds$$

Now apply Gronvall's to get

Thus x(t) is tropped in a compact set, meaning : t can be extended to all of $0 \le t \le \infty$.