7.2 – O método Simplex

Nessa parte do curso será dada uma noção básica do método simplex e sua solução.

O método simplex é um algoritmo criado para se obter a solução algebricamente. Um algoritmo é um conjunto de regras que devem ser seguidas passo a passo para se obter, no final, o resultado desejado.

O algoritmo Simplex se enquadra dentro da estrutura apresentada, podendo ser resumido em três passos principais:

- Passo de inicialização: Identificar uma solução básica viável.
- 2. Regra de parada: Para quando não houver nenhuma solução básica melhor.
- 3. Passo iterativo: Mover-se para uma solução básica viável que seja melhor.

7.2.1 – Detalhamento dos passos do método Simplex

Para ilustrar a aplicação do algoritmo Simplex, tomaremos como base o mesmo modelo resolvido pelo método gráfico, ou seja:

$$Max Z = 2x_1 + x_2$$

s.a.

$$-x_{1} + 2x_{2} \leq 04$$

$$3x_{1} + 5x_{2} \leq 15$$

$$2x_{1} - 5x_{2} \leq 06$$

$$x_{1} \geq 0 \quad e \quad x_{2} \geq 0$$

A seguir, é apresentado um conjunto de passos para implementação do algoritmo, tomando como referência o proposto por GOLDBARG e LUNA (2000).

1) Antes de mais nada, é preciso transformar o modelo original para o formato padrão, introduzindo-se variáveis de folga.

$$Max Z = 2x_1 + x_2 + 0x_3 + 0x_4 + 0x_5$$

s.a.

$$-x_1 + 2x_2 + x_3 = 04$$
$$3x_1 + 5x_2 + x_4 = 15$$
$$2x_1 - 5x_2 + x_5 = 06$$

2) A partir do modelo padronizado, é apresentado o seguinte quadro inicial de cálculo, que corresponde ao passo 1 do algoritmo:

			1V	1 B	VB		
			\mathbf{x}_1	\mathbf{X}_{2}	X ₃	X ₄	X ₅
\mathbf{L}_{1}	Z	0	2	1	0	0	0
L_2	X ₃	4	-1	2	1	0	0
L_3	X ₄	15	3	5	0	1	0
L_4	X ₅	6	2	-5	0	0	1

em que *VNB* corresponde às variáveis não básicas, *VB* às variáveis básicas e *z* corresponde à Q(x). De acordo com este quadro, uma solução inicial para o problema seria: $(x_1, x_2, x_3, x_4, x_5) = (0, 0, 4, 15, 6)$.

3) Passo 2 do algoritmo: regra de parada. A atual solução básica viável é ótima se e somente se cada coeficiente da função objetivo for negativo $(z_i - c_j) \le 0$.

Como existe $(z_j - c_j) > 0$, uma variável deve entrar na base. A escolhida é a variável x_1 , pois $(z_1 - c_1) = 2$ é o maior valor entre os $z_j - c_j$.

4) Passo 3 do algoritmo: determinação da variável que sai da base (determinação do pivô). Para isso, deve-se:

Selecionar cada coeficiente na coluna pivô que seja estritamente positivo ($a_{is} > 0$).

Dividir o valor do recurso de cada restrição (valores do vetor *b*) pelo correspondente coeficiente, identificando a equação que tenha a menor destas razões.

A partir dos passos 2 e 3 do algoritmo, tem-se o seguinte quadro:

Pode-se observar pelo quadro anterior que a variável básica a sair é a variável x_5 , pois é a que apresenta a menor razão, ou seja,

$$\min\left(\frac{b_i}{a_{is}}\right), \ para \ a_{is} > 0 \qquad \Longrightarrow \qquad \min\left(\frac{15}{3}, \frac{6}{2}\right) = \frac{6}{2}$$

a variável x_5 deve sair da base. Assim, como indica as setas no quadro, a variável x_1 é aquela que deve entrar na base e a variável x_5 deve ser aquela a sair da base. A linha pivô (Lp) é a linha (L_4) e o número pivô é o número 2.

5) Passo 4 do algoritmo: Operação de cálculo dos valores de solução associados à nova base.

Esta fase corresponde ao denominado pivoteamento, o que resultará na construção de um novo quadro simplex.

As modificações ocorrerão trocando-se a *VB* saindo pela *VNB* entrando. O coeficiente da nova *VB* deve ser mudado para 1, dividindo-se toda a linha pivô (isto é, todos os números nesta linha) pelo número pivô, de modo que:

$$Lp'' = \frac{Lp}{a_{rs}}$$
 Em que:

Lp'' = Nova linha pivô.

Lp = Antiga linha pivô.

 $a_{rs} =$ Número pivô.

			\mathbf{x}_1	\mathbf{x}_2	x ₃	X ₄	X ₅
$\mathbf{L_1}$	Z	0	2	1	0	0	0
	\mathbf{x}_3			2		0	0
L_3	X ₄	15	3	5	0	1	0
$\mathbf{L_4}$	X ₅	3	1	-5/2	0	0	1/2

 $Lp'' = \frac{Lp}{2}$

Para eliminar a nova variável básica das outras equações, todas as linhas (inclusive a função objetivo), exceto a linha pivô, são modificadas para o novo quadro simplex usando a seguinte fórmula:

$$L_i'' = L_i - a_i L p''$$

Em que:

 L_i'' = Novas linhas das i-ésimas equações, exceto a da linha pivô;

 $L_{i}=$ Antigas linhas das i-ésimas equações, exceto a da linha pivô;

 $a_i = \text{Cada}$ coeficiente na linha pivô correspondente ao coeficiente da i-ésima equação.

A partir desta modificação, chega-se ao seguinte cálculo:

			\mathbf{x}_1	\mathbf{X}_2	X ₃	$\mathbf{X_4}$	X ₅	
_	Z			6				$ L_1 - 2L_4$
L ₂	X ₃	7	0	-1/2	1	0	1/2	$L_2 + L_4$
L_3	X ₄	6	0	25/2	0	1	-3/2	$\int L_3 - 3L_4$
L_4	x ₁	3	1	-5/2	0	0	1/2	

Nesse momento volta-se ao Passo 2 do algoritmo, A atual solução básica viável é ótima se e somente se cada coeficiente da função objetivo for negativo $(z_i - c_i) \le 0$.

Como existe $z_j - c_j > 0$, uma variável deve entrar na base. A escolhida é a variável x_2 , pois $z_2 - c_2 = 6$ é o maior valor entre os $z_j - c_j$.

Repete-se assim um novo passo iterativo, até se chegar à solução ótima.

Pode-se observar pelo quadro anterior que a variável básica a sair é a variável x_4 , pois é a que apresenta a menor razão, ou seja,

$$\min\left(\frac{b_i}{a_{is}}\right), \ para \ a_{is} > 0 \qquad \Longrightarrow \qquad \min\left(\frac{6}{25/2}\right) = \frac{12}{25}$$

a variável x_4 deve sair da base. Assim, como indica as setas no quadro, a variável x_2 é aquela que deve entrar na base e a variável x_4 deve ser aquela a sair da base. A linha pivô (Lp) é a linha (L_3) e o número pivô é o número 25/2.

5) Passo 4 do algoritmo: operação de cálculo dos valores de solução associados à nova base. O coeficiente da nova *VB* deve ser mudado para 1, dividindo-se toda a linha pivô (isto é, todos os números nesta linha) pelo número pivô, de modo que:

			\mathbf{x}_1	\mathbf{x}_2	X ₃	\mathbf{x}_4	X ₅
$\mathbf{L_1}$	Z	-6	0	6	0	0	-1
$\mathbf{L_2}$	X ₃	7	0	-1/2	1	0	1/2
L_3	x ₂	12/25	0	1	0	2/25	-3/25
L_4	x ₁	3	1	-5/2	0	0	1/2

$$Lp'' = \frac{Lp}{\left(25/2\right)}$$

Para eliminar a nova variável básica das outras equações, todas as linhas (inclusive a função objetivo), exceto a linha pivô, são modificadas para o novo quadro simplex usando a seguinte fórmula:

$$L_i'' = L_i - a_i L p''$$

			\mathbf{x}_1	\mathbf{x}_2	X ₃	X ₄	X ₅	
\mathbf{L}_1	Z	-222/25	0	0	0	-12/25	-7/25	L_1-6L_3
								$L_2 + \frac{1}{2}L_3$
L_3	\mathbf{X}_2	12/25	0	1	0	2/25	-3/25	
L_4	x ₁	21/5	1	0	0	5/25	5/25	$L_4 + \frac{5}{2}L_3$

Nesse momento, volta-se ao passo dois do algoritmo, ou seja, a regra de parada. A atual solução básica viável é ótima, pois cada coeficiente da função objetivo é negativo, ou seja, $(z_i - c_i) \le 0$.

Como não existe $z_j - c_j > 0$, o problema está resolvido, obtendo-se os seguintes valores:

$$z = 222/25 = 8,88;$$

$$x_1 = 21/5 = 4,20;$$

$$x_2 = 12/25 = 0.48;$$

$$x_3 = 181/25 = 7,24.$$

Teoremas fundamentais do método simplex

TEOREMA I:

"O conjunto de todas as soluções compatíveis do modelo de programação linear é um conjunto convexo C."

TEOREMA II:

"Toda solução compatível básica do sistema Ax = b é um ponto extremo do conjunto das soluções compatíveis, isto é, do conjunto convexo C do teorema I.

TEOREMA III:

"Se a função objetivo possui um máximo (mínimo) finito, então, pelo menos uma solução ótima é um ponto extremo do conjunto convexo C do teorema I"

"Se a função objetivo assume o máximo (mínimo) em mais de um ponto extremo, então ela forma o mesmo valor para qualquer combinação convexa desses pontos extremos."

FIM DO CAPITULO III c