

Given integers $A_1, A_2, ..., A_{10}$ and $B_1, B_2, ..., B_{10}$, find the smallest positive integer N such that all of the following are true:

- $N + A_1$ is divisible by B_1
- $N + A_2$ is divisible by B_2

...

■ $N + A_{10}$ is divisible by B_{10}

It is guaranteed that the answer does not exceed 100 000 000.

Input

Each of 10 lines contains an integer A_i and B_i separated by a space. (1 \leq A_i , $B_i \leq$ 10 000)

Output

Output the smallest positive integer N such that $N + A_i$ is divisible by B_i for all $i \in \{1, ..., 10\}$.

Example

Input	Output
549 538	527
61 147	
205 244	
1 33	
97 104	
105 316	
297 103	
387 457	
847 458	
91 206	