2000 NSW Independent Trial Exams .: 3 UNIT	- SOLUTIONS, 2000 Mathematics
81.(a) cos (4-B) = cos Acos B+ sm A sm B	(c) 1 dx
Coo (45-30) = coo 45 coo 30 + sn. 45 sm30	· Mark of the common common (a Tables) The common service of the company of the common service of the commo
$=\frac{1}{\sqrt{2}}\left(\frac{\sqrt{3}}{2}+\frac{1}{2}\right)$	$= \left[\ln \left(x + \sqrt{9 + x^2} \right) \right]^{\frac{1}{2}}$
$\cos 15 = \frac{\sqrt{3}+1}{2\sqrt{2}}$	= lu(4+\9+42) - lu(0+\9+c
	= ln 9 - ln 3 = ln 3
(b) 1r/ < 1	= 1w 3
$\left(\frac{2x}{x+1}\right) < 1$	(d) (i) 6 x 5 P = 86400
either 2x < 1	
	(ii) Ignore the women:
Critical points at x=-1 and	Number of permutations with A; at the ends is 2px 4p4 = 48
$\frac{2x}{x+1} = 1$	at the ends is ap x Ty = 48
$2\alpha - x + 1 \Rightarrow x = 1$	' Plank are at the a a
$2x = x + / \Rightarrow x = /$ $x < -1 \begin{cases} -1 < x < 1 \end{cases} \begin{cases} x > 1 \end{cases}$	
-1 0 1	720
Test x=0: frue : 1< x<1	= 15
or 22 > -1 2+1	
Critical points at X=-1 and	
$\frac{2\kappa}{\kappa+1} = -1$	
$dx = -x - 1 \Rightarrow x = -1$	
$2(-1)$ $\begin{cases} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{cases}$	
Test x=0: frue : x<-1 + x>-1	
bolution is: $-\frac{1}{3} < x < 1$, $x \neq 0$	

(b)
$$\frac{dV}{dt} = 50$$
; $r = 8$

$$V = \frac{4}{3} \pi r^3$$

$$\frac{dV}{dt} = 4\pi r^2 \cdot \frac{dr}{dt}$$

$$\frac{dr}{dt} = \frac{dV_{dt}}{4\pi r^2} = \frac{50}{4\pi r^2}$$

and
$$S = 4\pi r^2$$

$$\frac{dS}{dt} = 8\pi r \cdot \frac{\alpha r}{\alpha t}$$

c) Let
$$\theta = \tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{3}{5}\right)$$

$$tan \theta = tan \left(tan^{-1}\left(\frac{1}{4}\right) + tan^{-1}\left(\frac{3}{5}\right)\right)$$

3 UNIT TRIAL SOLUTIONS, 2 tan tan (4) + tanta (-1- tanta (4) + tanta (-1/4 + 3/5

$$tan \theta = 1$$

$$\frac{1}{1} \cdot \frac{\partial}{\partial x} = \frac{1}{2} \sqrt{4}$$

(d)
$$(x^{1/5} + x^{1/3})^{9} = \sum_{r=0}^{9} (x^{1/5} - x^{1/3})^{9-r} (x^{1/5} - x^{1/5} - x^{1/5})^{9-r} (x^{1/5} - x^{1/5} - x^{1/5})^{9-r} (x^{1/5} - x^{1/5} - x^{1/5})^{9-r} (x^{1/5} - x^{1/5})^{9$$

$$=\sum_{r=0}^{9}\left(\chi^{\frac{27+2r}{15}}\right)$$

This occurs when
$$r = 9$$

$$\Rightarrow \frac{27 + 2x9}{15} = 3$$

The term is
$${}^{9}C_{9}x^{3}$$

Ba(a) LHS = See >c town

(ii)
$$\Gamma = \int_{\overline{\gamma}_0}^{\sqrt{3}} \frac{\sec^2 x \, dx}{\tan x}$$

of
$$u = \tan x$$
, $du = \sec^2 x dx$
of $x = \frac{\pi}{3}$, $u = \tan \frac{\pi}{3} = \sqrt{3}$
 $x = \frac{\pi}{4}$, $u = \tan \frac{\pi}{4} = \frac{1}{3}$

$$I = \int_{\sqrt{5}}^{5} \frac{du}{u}$$

$$= \int_{\sqrt{5}}^{3} u u \int_{\sqrt{5}}^{3} \frac{du}{u} \int_{\sqrt{5}}^{3} \frac{du$$

<u>ل</u>ا ا

- (i) Parabola is locus of points equidistant from focus, S, and director, y=-a. PS = PM
- ii) Tangent at P: $y = px ap^2$ At x = 0, $y = -ap^2$ $D(0, -ap^2)$

ii)
$$d_{sp} = ap^2 - a = a(p^2 + 1)$$

 $d_{sp} = a - -ap^2 = a(1+p^2)$

so SPMD is a rhombus

(c)
$$S(n): \sum_{r=1}^{n} \frac{1}{(4r-3)(4r+1)} = n$$

$$S(1): LHS = \frac{1}{(4-3)(4+1)} = \frac{1}{5}$$

Assume n=k:

Le.
$$S(k)$$
: $\sum_{r=1}^{k} \frac{1}{(4k-3)(4k+1)} = k$

Prove n = k+11.2. $S(k+1): \sum_{r=1}^{k+1} \frac{1}{(4r-3)(4r+1)} = \frac{k+1}{4k+5}$

LHS=
$$k + 1$$

 $4k+1 (4k+1)(4k+5)$

$$= k(4k+5) + 1$$

$$(4k+1)(4k+5)$$

$$= 4k^2 + 5k + 1$$

$$(4k+1)(4k+5)$$

$$= \frac{(4k+1)(k+1)}{(4k+1)(4k+5)}$$

$$= k+1 = RHS$$

$$4k+5$$

if S(k) to stone, then S(k+1) to t But S(l) to stone, so S(2) to stone, whence S(3) to stone and so on for all positive integer values of n.

	3 UNIT TRIAL SOLUTIONS,
$44.6)$ $A(0.4)$ $B(x_2,y_2)$ $4k:l=-3:1$	(d) Sem of roots 10-6
$\chi = R\chi_1 + l\chi, \Rightarrow -6 = -3\chi_1 + 1\times0$ $R+\ell$	Inoduct of 10015 to C
	(i) Assume the roots are & at
$12 = -3x^2 = 3x^2 = -4$	then 0x+ x+2n =-6
$y = ky_1 + ky_1 \Rightarrow 1 = -3y_1 + 1 \times 4$ $k+e = -3+1$	⇒ d = -n-3
R+E -3+1	But $\alpha \times (\alpha + 2n) = C$
$-2 = -3y_2 + y_1 = y_2 = 2$	(-n-3)x(-n-3+2n)=c
	$-n^2+9=c$
· · · · · · · · · · · · · · · · · · ·	20 n² = 9-c
(b)(i) A sm (0-x)=Asmocoxa-Acososma	(ii) Suce the roots are opposite in sign, the product must be nega
-'. Acos α = 4 Asm α = 3	sign, the product must be nega
A sm & = 3	,
whence $\alpha = \tan^{-1}(^{3}4) + A = 5$.; c <0
. 4 sm θ - 3 cosθ = 5 sm (θ - α)	but c= 9-n2 (above)
where a = +an (3/4)	9-n2 co
(ũ) 55m (θ-d) =1	n² > 9
Su (0-x) = 1/5	× n<-3, n>3
0 - « = 11°32', 108°28'	
$-' \cdot \Theta = 11^{\circ}32' + 36^{\circ}52' = 48^{\circ}24'$	
and $\theta = 168^{\circ}28' + 36^{\circ}51' = 205^{\circ}20'$	
5) Landing avea = 3000 x 2000	
Area where hoop older not protrude	
= 2800 x .1800	
P(wm, prize) = 2800 x 1800	
3000 K 2000	
= 0.84	
•	

= 8cos 12 - 8cos 2 + L-1

3 UNIT TRIAL SOLUTIONS, 2000 $\frac{16.6}{3}$ $\frac{\ddot{x}=0}{3}$ $\frac{\ddot{y}=-10}{3}$ μ $\nu^2 = 28 + 24x - 4x^2$ $\dot{x} = V\cos\alpha$ $\dot{y} = -10t + Varia$ 102 14 + 12x - 2x x= Vtcora; y= -52+Vtama+600 Also 504 km/hr = 140 m/s $\dot{x} = 70\sqrt{3}$ $\dot{y} = -10t + 70$ $x = 70\sqrt{3}$ t $y = -5t^2 + 70t + 600$ (w) a = -4(x-3) $= -2^{2}(x-3)$ $\therefore n = 2$ Period, $T = 2\pi$ (i) $y = 0 \Rightarrow -5t^2 + 70t + 600 = 0$ $-5(t^2-14t-120)=0$ -5(t-20)(t+6) = 0=) t=20 seconds (ii) $y=0 \Rightarrow -10+70 = 0$ At t=7, y=-5x72+70x7+600 iii) At t=20, x=70/3 x 20 = 2424.87 = 2.425 kilometres 1) (i) 02 = 28+24x-4x2 4v=0 => 28 +24n-4n2=0 $4(7+6x-x^{2})=0$ $-4(x^2-6x-7)=0$ -4(x-7)(x+1)=0x=-1 and x=7 Oscillates between x=-1, x=7 (i) modpout of motion to x=3 - amplitude or 4m