대표 프로젝트 요약서 - 01				
프로젝트 개요	주제	마이 닥터 : 인공지능을 활용한 질병 예측 웹 서비스		
	프로젝트 소개	심장마비, 유방암 등의 위험한 질병을 머신러닝 알고리즘을 사용해서 의료 진에게 환자의 건강 확인과 현재 위험성 판단을 도와줍니다. 의사가 처방을 내릴 때 참고자료로 사용하여 환자의 병을 진단하고 객관적 인 데이터를 활용해 오진을 미연에 방지할 수 있도록 도와줍니다. 예방적인 관점에서도 인공지능을 활용하여 위험 요인을 식별하고 개인에게 맞는 예방 전략을 제안할 수 있습니다.		
개발 기술 스택	기술 스택	파이썬 : pandas, numpy, sklearn 서버 : Azure:Paas서비스 web : jsp DB : My SQL		
	담당역할	Azure PaaS 서비스를 사용한 AP 서버와 DB 서버를 구축하고 DB 서버에서 DB 구축 AP에서 web을 배포 및 web 개발		

※ 기본 페이지

- ▶ 메인 화면에서 어떤 질병의 인공지능 분류 그래프를 볼지 선택할 수 있습니다.
- ▶ 질병분류 화면입니다. 진단 결과와 전체 평균 그리고 상관관계를 분석 하여 질병을 확인할 수 있습니다.

※ 다이어그램

상세내용

▶ 간단한 다이어그램입니다. 이 대회에서 제공해 준 애저에 있는 인공지 능 서비스를 사용할 수 없었기에 코랩을 사용하여 인공지능을 학습한 후 DB로 옮겨서 웹으로 보여주도록 하였습니다.

▶ 분류 인공지능

분류 인공지능으로는 로지스틱 회귀 알고리즘을 사용하였습니다. 분류 문제에 로지스틱 알고리즘이 적합해서 다른 알고리즘 보다 정확도가 좋게 나왔기 때문에 로지스틱 회귀 알고리즘을 사용하였습니다.

▶ web

인공지능을 이용하여 뇌졸중, 유방암, 심장마비를 분류하고 그 분류를 바탕으로 애저 DB 서버에 전달한 후 웹으로 출력하여 유저가 사용할 수 있도록 만들었습니다. 그리고 쉽게 볼 수 있고 간단 명료하게 알 수 있도록 하기 위해 불필요한 요소를 많이 삭제하고 그래프를 한눈에 볼 수 있도록 웹을 구성하였습니다.

대표 프로젝트 요약서 - 02				
프로젝트 개요	주제	풍요로운 한국 : KT cloud를 사용한 한국 지역 홍보 서비스		
	프로젝트 소개	많은 사람이 각 지역의 위치, 이름, 그리고 마스코트에 대해 잘 모르는 경우가 많습니다. 이것을 개선하고자, '풍요로운 한국'이라는 프로젝트를 기획하게 되었습니다. 이 프로젝트를 통하여 사람들에게 지역을 홍보 및 마케팅을 할 수 있는 웹 게임 시스탬을 구현했습니다.		
개발 기술 스택	기술 스택	서버 : KTcloud 프론트 디자인 : Figma 백앤드 : Spring boot		
	담당역할	서버 아키텍처 설계 및 프로젝트 기획 프론트 디자인 및 web개발		

※ 기본 페이지

- ▶ 지도를 통하여 지역을 클릭하면 지역의 마스코트와 이름이 보입니다.
- ▶ 마스코트를 클릭하면 카운트가 올라가고 지역별로 순위가 보입니다.

(KTcloud)

※ 다이어그램

상세내용

▶ user 가 접속하면 로드 밸런싱을 통하여 트래픽을 분산해 줍니다.

▶ 매인 콘솔에서 CPU 사용량을 확인하고 이벤트 발생 시 알림을 줍니다.

대표 프로젝트 요약서 - 03					
프로젝트 개요	주제	의성 스마트 쓰레기통 : 더 효율적으로 쓰레기를 비우기 위한 스마트 쓰레 기통			
	프로젝트 소개	의성과 같은 작은 지역은 쓰레기통이 많지 않고 많더라도 쓰레기가 많지 않아 하루에 한 번 쓰레기를 비우는 것은 비효율적이라고 생각하고 이를 해결하기 위하여 만들게 되었습니다.			
개발 기술 스택	기술 스택	하드웨어 : Raspberry Pi, Arduino web : html, css python : Flask, cv2			
	담당역할	파이썬을 사용하여 카메라를 통해 실시간으로 쓰레기통 안을 볼 수 있도록 만든 후 웹과 연결을 진행 하였습니다.			
상세내용		▶ 라즈베리파이 & 웹캠 라즈베리파이를 개발환경으로 실시간으로 쓰레기통을 확인할 수 있는 python 코드를 개발하였습니다, 사용한 기술로는 cv2를 통한 카메라 기능과 웹과 통신을 위한 Flask 가 사용되었습니다. ▶ 아두이노 & 초음파 센서 & 모터 초음파 센서로 손을 인식하면 아두이노에서 모터로 작동 신호를 줘 자동으로 쓰레기통이 열리도록 설계하였습니다. 손을 가져다 대면 쓰레기통이 열리고 그 안으로 쓰레기통에 쓰레기가 얼마 나 찾는지 확인하여 관리실에서 이곳에 쓰레기통이 찾으니 쓰레기통을 비			
기타		우라는 알림을 뜰 수 있도록 만들었습니다. 개발 초기 인공지능을 사용하여 쓰레기를 분류하고 어떤 쓰레기가 많이 찾는지 구분하도록 개발할 계획이었지만 쓰레기통의 크기와 디자인적으로 안에 있는 모든 쓰레기를 확인할 수 없어서 아쉬웠습니다. 쓰레기통의 크기를 키워 다시 적용해 보고 싶습니다.			