pieczęć szkoły	

WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 2022/2023

KURATORIUM OŚWIATY W KATOWICACH W KATOWICACH

MATEMATYKA

Informacje dla ucznia

- 1. Na stronie tytułowej arkusza w wyznaczonym miejscu wpisz swój kod ustalony przez komisję.
- 2. Sprawdź, czy arkusz konkursowy zawiera 12 stron (zadania 1-18).
- 3. Czytaj uważnie wszystkie teksty i zadania.
- **4.** Rozwiązania zapisuj długopisem lub piórem z niebieskim tuszem. Nie używaj korektora.
- **5.** W zadaniach zamkniętych podane są cztery odpowiedzi: A, B, C, D. Wybierz tylko jedną odpowiedź i zaznacz ją znakiem "X" bezpośrednio na arkuszu.
- **6.** Staraj się nie popełniać błędów przy zaznaczaniu odpowiedzi, ale jeśli się pomylisz, błędne zaznaczenie otocz kółkiem **⊗** i zaznacz inną odpowiedź znakiem **"X**".
- 7. W zadaniach od 10. do 14. postaw "X" przy prawidłowym wskazaniu PRAWDY lub FAŁSZU.
- **8.** Rozwiązania zadań otwartych zapisz czytelnie w wyznaczonych miejscach. Pomyłki przekreślaj.
- **9.** Przygotowując odpowiedzi na pytania, możesz skorzystać z miejsc opatrzonych napisem *Brudnopis*. Zapisy w brudnopisie nie będą sprawdzane i oceniane.
- 10. Podczas rozwiązywania zadań nie wolno Ci korzystać z kalkulatora.

KOD UCZNIA

Imię i nazwisko ucznia (wypełnia wojewódzka komisja konkursowa po sprawdzeniu pracy ucznia)

Stopień: trzeci

Czas pracy: 120 minut

WYPEŁNIA KOMISJA KONKURSOWA

Nr zadania	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	Razem
Liczba punktów możliwych do zdobycia	22	1	1	1	1	1	1	1	1	4	4	3	4	3	3	4	2	3	60
Liczba punktów ustalona przez wojewódzką komisję konkursową																			

Liczba punktów umożliwiająca uzyskanie tytułu finalisty: 30. Liczba punktów umożliwiająca uzyskanie tytułu laureata: 54.

Podpisy członków komisji:

- 1. Przewodniczący
- 2. Członek komisji sprawdzający pracę
- 3. Członek komisji weryfikujący pracę

Zadanie 1. (0-22)

Rozwiąż krzyżówkę, której hasłem jest nazwa dziedziny matematyki, którą posługiwał się Mikołaj Kopernik w opisie teorii heliocentrycznej, a obecnie służy np. geodetom. Hasło nie jest oceniane.

- 1. Figura, której jednostką miary jest stopień.
- 2. Odcinek, którego długość jest π razy mniejsza niż obwód koła.
- 3. 0,00001 km (słownie).
- 4. Wyrażenie typu: 7²⁵
- 5. Figura, która jest podstawą stożka.
- 6. Trapez, który przy podstawie ma kąty o równej mierze.
- 7. Wyrażenie algebraiczne, które jest iloczynem liczby i zmiennych.
- 8. Nazwa wyrażenia algebraicznego postaci: $ab+c+a\sqrt{d}$
- 9. Wartość 5 dla uporządkowanych niemalejąco danych: 1, 2, 4, 4, 6, 6, 7, 7.
- 10. Romb, który jest jednocześnie prostokątem.
- 11. Nazwa wyrażenia postaci: $\sqrt{5}$ lub $\sqrt[3]{27}$.

- 12. Mianownik ułamka, rozumianego jako działanie.
- 13. Jednostka powierzchni równa 0,0001 km².
- 14. Odcinek łączący wierzchołek ostrosłupa prawidłowego czworokątnego z punktem przecięcia przekątnych podstawy.
- 15. Dowolny zbiór punktów płaszczyzny (np. siedmiokąt, odcinek).
- 16. Suma liczb przeciwnych (słownie).
- 17. Punkt wspólny wszystkich krawędzi bocznych ostrosłupa.
- 18. Prosta mająca dokładnie jeden punkt wspólny z okręgiem.
- 19. Dzielna w ilorazie zapisanym w postaci ułamka.
- 20. Odcinek, którego długość w kwadracie o boku a wynosi $a\sqrt{2}$.
- 21. Równość dwóch wyrażeń algebraicznych.
- 22. Przy dzieleniu 130 przez 9 jest nia 4.

BRUDNOPIS

W zadaniach od 2. do 9. tylko jedna odpowiedź jest poprawna.

Zadanie 2. (0-1)

Jeden dm³ drewna waży 1,2 kg. Sześcian o krawędzi 2 cm wykonany z tego samego drewna waży

- A. 1,2 g
- B. 2,4 g
- C. 4,8 g
- D. 9,6 g

Zadanie 3. (0-1)

Objętość prostopadłościanu o wymiarach: $a = 2\sqrt[3]{135}$ cm, $b = 3\sqrt[3]{40}$ cm i $c = 6\sqrt[3]{5}$ cm, jest równa

- A. 9400 cm³
- B. 941
- C. 108 ml
- D. 1.081

Zadanie 4. (0-1)

Wielokrotnością liczby 396 jest liczba

- **A.** $2 \cdot 3^2 \cdot 11$
- **B.** $2 \cdot 3 \cdot 11^2$
- **C.** $2^3 \cdot 3^2 \cdot 11$
- **D.** $2^4 \cdot 3 \cdot 11$

Zadanie 5. (0-1)

Na trasie o długości 120 km samochód spalił 7,5 litrów benzyny. Ile litrów benzyny spali ten samochód na trasie 100 km?

- **A.** 6
- **B.** 6,25
- **C.** 7
- **D.** 7,15

Zadanie 6. (0-1)

Dana jest liczba postaci $x = 6k^2 + 12k^4 + 18k^6 + 24k^8$, gdzie k jest liczbą naturalną, dodatnią. Podzielności przez 2 <u>nie dowodzi</u> zapis tej liczby w postaci

A.
$$x = 2k^2(3+6k^2+9k^4+12k^6)$$

B.
$$x = 2 \cdot 3 \cdot k^2 \left(1 + 2k^2 + 3k^4 + 4k^6 \right)$$

C.
$$x = 2 \cdot 3 \cdot (k^2 + 2k^4 + 3k^6 + 4k^8)$$

D.
$$x = 3k(2k+4k^3+6k^5+8k^7)$$

Zadanie 7. (0-1)

Opakowanie czekoladek o masie 500 g kosztowało 20 zł. W nowej dostawie pojawiły się opakowania czekoladek o masie 360 g w cenie 18 zł za jedno. Cena kilograma czekoladek

A. zmniejszyła się o 4 zł.

B. zwiększyła się o 10 zł.

C. zwiększyła się o 20%.

D. nie zmieniła się.

Zadanie 8. (0-1)

Wyrażenie $2x^4 + W + 25$ można przedstawić jako kwadrat sumy, gdy

A.
$$W = 5x$$

B.
$$W = 10x^2$$

C.
$$W = 10\sqrt{2}x^2$$

D.
$$W = 5\sqrt{2}x^2$$

Zadanie 9. (0-1)

Przekątna *BD* ma długość 6 i dzieli czworokąt *ABCD* na dwa trójkąty prostokątne, jak przedstawia rysunek. Kąt *BAD* ma miarę 60°, a kąt *DBC* miarę 45°. Pole tego czworokąta wynosi

A.
$$9 + 6\sqrt{2}$$

B.
$$6+6\sqrt{2}$$

C.
$$9+6\sqrt{3}$$

D.
$$6+9\sqrt{3}$$

W zadaniach od 10. do 14. oceń, czy podane zdania są prawdziwe, czy falszywe. Zaznacz właściwą odpowiedź.

Zadanie 10. (0-4)

I.	Istnieją dokładnie 3 liczby naturalne spełniające warunek: $\sqrt{60} < x < \sqrt{130}$	□ PRAWDA	□ FAŁSZ
II.	Istnieje dokładnie jedna liczba pierwsza spełniająca warunek: $\sqrt{105} < x < \sqrt{130}$	□ PRAWDA	□ FAŁSZ
III.	$\frac{1}{\sqrt{130} - \sqrt{105}} = \frac{\sqrt{130} - \sqrt{105}}{25}$	□ PRAWDA	□ FAŁSZ
IV.	$\frac{\sqrt{130} \cdot \sqrt{60}}{\sqrt{105}} = \frac{2\sqrt{130}}{\sqrt{7}}$	□ PRAWDA	□ FAŁSZ

Zadanie 11. (0-4)

Dany jest trójkąt ABC, w którym $|AC| = |BC| = 5\sqrt{3}$ oraz $|AB| = 6\sqrt{3}$.

I.	Pole trójkąta <i>ABC</i> jest równe 36 cm ² .	□ PRAWDA	□ FAŁSZ
II.	Jeżeli E jest środkiem boku AB , to obwód trójkąta AEC jest równy $16\sqrt{3}$ cm.	□ PRAWDA	□ FAŁSZ
III.	Trójkąt ABC ma oś symetrii.	□ PRAWDA	□ FAŁSZ
IV.	Jeżeli <i>E</i> jest środkiem boku <i>AB</i> , to jedna z wysokości trójkąta <i>AEC</i> ma długość 2,4 cm.	□ PRAWDA	□ FAŁSZ

Zadanie 12. (0-3)

Z sześcianu złożonego z 27 sześcianów jednostkowych wyjęto jeden z widocznych sześcianów jednostkowych.

I.	Jest możliwe, że pole powierzchni otrzymanej bryły nie zmieniło się.	□ PRAWDA	□ FAŁSZ
II.	Jest możliwe, że pole powierzchni otrzymanej bryły zwiększyło się.	□ PRAWDA	□ FAŁSZ
III.	Jest możliwe, że pole powierzchni otrzymanej bryły zmniejszyło się.	□ PRAWDA	□ FAŁSZ

	nnie 13. (0-4) v jest kwadrat o boku dłuższym niż ś	5 cm.	
I.	Pole kwadratu o boku o 5 cm krótszym jest o 25 cm ² mniejsze od pola danego kwadratu.	□ PRAWDA	□ FAŁSZ
II.	Kwadrat o boku dwukrotnie dłuższym ma pole cztery razy większe od pola danego kwadratu.	□ PRAWDA	□ FAŁSZ
Ш	Pole prostokata, którego jeden bok jest dwa razy dłuższy, a drugi dwa razy krótszy od boków danego kwadratu, jest równe polu danego kwadratu.	□ PRAWDA	□ FAŁSZ
IV.	Obwód prostokąta, którego jeden bok jest dwa razy dłuższy, a drugi dwa razy krótszy od boku danego kwadratu, jest równy obwodowi danego kwadratu.	□ PRAWDA	□ FAŁSZ
Syml	nnie 14. (0-3) bol \overline{abcd} oznacza liczbę czter $\overline{d} = 1000a + 100b + 10c + d$.	ocyfrową taka	ą, że <i>a</i> ≠ (
I.	Istnieje taka liczba <i>abcd</i> , która jest podzielna przez 3, a iloczyn cyfr jest równy 5.	□ PRAWDA	□ FAŁSZ
II.	Liczby \overline{bd} i \overline{ac} są liczbami dwucyfrowymi, takimi że: $a < b < c < d$. Największa różnica $\overline{bd} - \overline{ac}$ wynosi 61.	□ PRAWDA	□ FAŁSZ
III.	Istnieje 60 liczb czterocyfrowych	□ PRAWDA	□ FAŁSZ

gdzie $a \neq 0$ i $d \neq 0$.

Zadanie 15. (0-3) BRUDNOPIS

W trapezie równoramiennym przekątne przecinają się pod kątem prostym. Podstawy trapezu mają odpowiednio długość $20\sqrt{2}$ i 10. Oblicz pole tego trapezu.

Strona 8 z 12

Zadanie 16. (0-4)

Dany jest prostopadłościan, którego wszystkie krawędzie mają długości wyrażone liczbami naturalnymi. Jedna ze ścian bocznych ma pole równe 6, a pole podstawy wynosi 18. Znajdź wszystkie możliwe prostopadłościany spełniające powyższe warunki i oblicz ich objętości.

Zadanie 17. (0-2)

Ołówek kosztował x zł, a długopis był od niego dwa razy droższy. Po zmianie cen długopis staniał o 14%, a ołówek zdrożał o 48%. Zapisz wyrażenia algebraiczne przedstawiające koszt zakupu dwóch długopisów i jednego ołówka przed zmianą cen i po zmianie cen. Porównując te wyrażenia odpowiedz na pytanie, kiedy dwa długopisy i jeden ołówek kosztowały mniej, przed czy po zmianie cen.

BRUDNOPIS

Zadanie 18. (0-3)

W urnie są kule białe i czerwone. Prawdopodobieństwo wylosowania białej kuli wynosi 0,25. Gdy do tej urny dołożymy dziewięć kul białych, to prawdopodobieństwo wylosowania białej kuli wzrośnie o 0,27. Oblicz, ile białych i ile czerwonych kul jest w tej urnie po dodaniu kul białych.

BRUDNOPIS