Tugas Mandiri - 5

Pengantar Sistem Digital Semester Ganjil 2022/2023

Petunjuk pengerjaan:

- Kerjakan dengan tulisan tangan atau diketik.
- Tuliskan Nama, Kelas, dan NPM pada setiap lembar jawaban.
- Tuliskan penjelasan dari cara mendapatkan jawaban tersebut.
- Apabila ditulis tangan, hasil pekerjaan di scan / foto dan dimasukan ke dalam satu file berformat .pdf.
- Format nama file (tanpa tanda kurung): [KodeAsdos]_TM5_[Nama]_[NPM].pdf
 dan [KodeAsdos]_TM5_[Nama]_[NPM].circ (dikumpulkan 2 file).
- Tugas mandiri dikumpulkan Senin, 7 November 2022 pukul 17.00 pada slot yang sudah disediakan di SCELE.
- Jika mengumpulkan telat di atas 10 menit dan sebelum pukul 23:59 pada hari yang sama, akan dikenakan penalti sebesar 50 poin. Terlebih dari waktu tersebut, tugas mandiri tidak akan dinilai
- (15 Poin) Ubah bilangan di bawah ini ke dalam bentuk biner yang ditentukan!
 Gunakan bit minimum sebanyak 2 n . (contoh: hasil operasi menghasilkan 5 bit biner, ubah menjadi 8 bit)
 - a. -379₁₀ ke Sign Magnitude

$$-379_{10} = -2000 0001 0111 1011_{2}$$

$$= 1000 0001 0111 1011_{2}$$

b. -643₈ ke 1s Complement

$$-643_{8} = -0000 0001 1010 0011_{2}$$
= |||| |||0 0|01 ||00 ||5

c. -67C₁₆ ke 1s Complement

d. -1112₈ ke 2s Complement

$$-1112_{8} = -0000 0010 000 1010_{2}$$
$$= 1111 ||01 ||011 0|0|_{15}$$
$$= ||11| ||01 ||011 0|10_{25}$$

e. -521, ke 2s Complement

$$-521_{7} = -(5\times7^{2} + 5\times7 + 1) = -260_{10}$$

$$= -0000 0001 0000 0000_{2}$$

$$= |||| |||0 |||| ||0||_{15}$$

$$= |||| ||10 |||| ||100_{25}$$

- 2. (20 Poin) Lakukan operasi berikut ini dan ubah hasilnya ke dalam bentuk biner yang diminta! **Gunakan bit minimum sebanyak 2 n . (contoh: hasil operasi menghasilkan 5 bit biner, ubah menjadi 8 bit)**
 - a. $10001_{2s} + 1001_{1s}$ ke Sign Magnitude

$$|000|_{25} = -(01110 + 1)_{2} = -01111_{2} \rightarrow -01111_{2} \rightarrow -01101_{2} + -0001 0101_{2} = |001 0101_{2}|_{5M}$$

b. $11001101_{2s} - 37_8$ ke 1s Complement

$$37_{8} = 0001 \quad 1111_{2}$$

$$-0011 \quad 0010$$

$$-0001 \quad 1111_{2}$$

$$-0101 \quad 0001_{2} + 010 \quad 1110_{18} = 1010 \quad 1111_{28}$$

c. 10101_{SM} - $1C_{16}$ ke 1s Complement

$$\begin{array}{rcl}
|0|0|_{SM} &= & -0|0|_{2} \\
& 1c_{16} &= & 0001 & 1100_{2} \\
-0000 & 0101 \\
& -0001 & 1100 \\
& -0010 & 0001_{2} &= & 1101 & 1110_{15}
\end{array}$$

d. $11001101_{1s} + 11001_2$ ke 2s Complement

e. $41_7 - 304_5$ ke 2s Complement

$$4I_{7} = 4 \times 7 + 1 = 29_{10} = 11101_{2}$$

$$304_{5} = 3 \times 5^{2} + 4 = 79_{10} = 1001111_{2}$$

$$\frac{1001111_{1101}}{110010_{2}} = 11001110_{25}$$

3. (25 Poin) Buatlah sebuah sirkuit yang dapat melakukan operasi penambahan dan pengurangan terhadap 2 buah 4-bit 2s complement (-8 s/d 7) dan ubahlah hasil dari operasi tersebut ke Sign Magnitude. **Untuk mengerjakan soal ini, kalian dipersilahkan untuk menggunakan seluruh gate yang dipelajari (Tanpa menggunakan gate Adder dan Subtractor)**.

Berikan screenshot circuit yang telah dibuat serta kumpulkan file .circ nya

Main Circuit:

4-Bit Adder Cum Subtractor:

2s Complement to Sign and Magnitude:

Full Adder:

Half Adder:

4. (15 Poin) Jelaskan beberapa hal berikut!

a. Apa itu Synchronous Sequential Circuit dan Asynchronous Sequential Circuit? Sebutkan juga perbedaannya!

Synchronous Sequential Circuit

Sequential circuit yang pengamatan input dan perubahan state nya dipengaruhi oleh sebuah clock.

Asynchronous Sequential Circuit

Sequential circuit yang tidak memiliki sebuah clock atau clock hanya dianggap sebagai input yang lain.

Synchronous Sequential Circuit	Asynchronous Sequential Circuit
Terdapat clock pada rangkaian yang menentukan state berubah	Tidak terdapat clock pada rangkaian
State berubah menjadi next state ketika clock aktif	State berubah menjadi next state ketika menerima input (instan)
Mudah untuk di design	Sulit untuk di desain
Kecepatan rangkaian bergantung pada delay clock	Kecepatan rangkaian bergantung pada input diterima

b. Apa perbedaan Latch dan Flip-Flop?

Latch	Flip Flop
Dibangun menggunakan gerbang logika	Dibangun menggunakan Latches
Memeriksa input secara terus menerus dan mengubah output secara bersamaan	Memeriksa input secara terus menerus dan mengubah output dengan cara yang sesuai hanya dengan clock signal
Bergantung kepada input dan dapat meneruskan data selama keadaan saklar masih hidup	Bergantung kepada clock signal dan output tidak akan berubah sampai input dari clock signal berubah
Hanya bekerja pada binary input	Bekerja dengan binary input serta clock signal
Asynchronous	Synchronous
Tidak punya clock signal	Punya clock signal

5. (25 Poin) Perhatikan Sequential Circuit berikut!

Jika kedua Flip-Flop pada circuit menggunakan **negative edge-triggered** dan nilai awal Q(t) adalah 0, lengkapilah waveform di bawah untuk membentuk timing diagram dari circuit!

Dari circuit tersebut kita memperoleh persamaan:

$$D(t) = A(t) + B(t)'$$

$$S(t+1) = R(t+1)' = ((Q_D(t)' \oplus A) (Q_D(t)' \oplus B)')' = (Q_D(t)' \oplus A)' + (Q_D(t)' \oplus B)$$

$$R(t + 1) = (Q_D(t)' \oplus A) (Q_D(t)' \oplus B)'$$

$$Y(t) = Q_D(t) \oplus Q_{SR}(t)$$

$$Z = Q_D(t)' Q_{SR}(t)'$$

