

PROJECT MINI PORTFOLIO:

MACHINE

BY: ALIF FAUZAN

- Dalam proyek ini, saya membangun dan mengevaluasi beberapa model machine learning untuk klasifikasi dataset Iris.
- Model yang diuji: K-Nearest Neighbors (KNN), Decision Tree, Random Forest, dan XGBoost.
- Tujuan utama: Mencari model terbaik dengan akurasi tertinggi dan generalisasi yang baik.

DATASET: IRIS DATASET (SCIKIT-LEARN)

Fitur:

- Sepal Length (cm)
- Sepal Width (cm)
- Petal Length (cm)
- Petal Width (cm)

- Target:
 - Setosa (0)
 - Versicolor (1)
 - Virginica (2)
- Pembagian Data:
 - 80% untuk training
 - o 20% untuk testing

MODEL YANG DIUJI & HASIL EVALUASI

- 1 K-Nearest Neighbors (KNN)
 - Akurasi: 100% 🗸
 - Confusion Matrix: Tidak ada kesalahan klasifikasi
 - Kelebihan: Sederhana dan akurat untuk dataset kecil
 - Kekurangan: Kurang efisien jika dataset besar
- 2 Decision Tree
 - Akurasi awal: 33.3% X (underfitting)
 - Setelah tuning: 93.3% 🗸
 - Kelebihan: Mudah diinterpretasikan
 - Kekurangan: Cenderung overfitting tanpa tuning

- 3 Random Forest 📤 🔔
 - Akurasi awal: 90%
 - Setelah tuning: 93% 🗸
 - Kelebihan: Stabil & lebih tahan terhadap overfitting
 - Kekurangan: Butuh lebih banyak sumber daya
- 4 XGBoost +
 - Akurasi awal: 100% 🗸
 - Setelah tuning: 100% 🗸
 - Kelebihan: Cepat, efisien, dan kuat dalam menangani dataset besar
 - Kekurangan: Lebih kompleks dibanding model lain

ANALISIS FEATURE IMPORTANCE

Dari model Decision Tree, Random Forest, dan XGBoost:

- Fitur paling berpengaruh:

 Petal Length & Petal Width
- Fitur kurang signifikan: X Sepal
 Width & Sepal Length

Y Kesimpulan & Model Terbaik

- XGBoost & KNN mencapai akurasi 100% → Keduanya adalah model terbaik.
- XGBoost lebih cocok untuk dataset besar, sedangkan KNN lebih baik untuk dataset kecil.
- Random Forest cukup stabil dan bisa jadi alternatif jika XGBoost terlalu kompleks.

• 1 Uji model dengan dataset berbeda untuk melihat apakah tetap akurat. 2 Deploy model ke API/web agar bisa digunakan lebih luas. 3 Gunakan SHAP untuk interpretasi lebih dalam tentang keputusan model.

• Terima kasih!

THANK YOU

