

List Theorem Solving:

A segmentation approach based on length and congruence closure

by Jeroen Kool

Outline

Introduction

2 Key ideas

3 Evaluation and conclusion

Outline

Introduction

Key ideas

Evaluation and conclusion

Introduction

2 Key ideas

3 Evaluation and conclusion

Problem

Introduction

Kev ideas

Evaluation and conclusion

- Lists show up in often in programming
- We want a way to check program correctness
- There are several program verification tools, such as Viper, VeriFast, Iris, and VST that produce side conditions
- Therefore we need a good solver for lists

What did we do?

Introduction

Key ideas

Evaluation and conclusion

We create a system to solve theorems about lists

- Theoretical inference system
- Practical implementation in Coq

Introduction

Key ideas

Evaluation and conclusion

- nil
- singleton
- append
- reverse
- length
- repeat
- take
- drop
- nth
- map
- update
- flip_ends

Example

List with numbers 1 until 4

[1; 2; 3; 4]

Introduction

Key ideas

Evaluation and conclusion

- nil
- singleton
- append
- reverse
- length
- repeat
- take
- drop
- nth
- map
- update
- flip_ends

Example

List with numbers 1 until 4

[1; 2; 3; 4]

Introduction

Key ideas

Evaluation and conclusion

• nil

- singleton
- append
- reverse
- length
- repeat
- take
- drop
- nth
- map
- update
- flip_ends

Introduction

Key ideas

Evaluation and conclusion

- nil
- singleton
- append
- reverselength
- Konoo
- repeat
- take
- drop
- nth
- map
- update
- flip_ends

Example

List containing one element

[[]1]

Introduction

Key ideas

Evaluation and conclusion

- nil
- singleton
- append
- reverse
- length
- repeat
- take
- drop
- nth
- map
- update
- flip_ends

Example

Concatenation of two lists

$$[1;2] ++ [3;4] = [1;2;3;4]$$

Introduction

Key ideas

Evaluation and conclusion

- nil
- singleton
- append
- reverse
- length
- repeat
- take
- drop
- nth
- map
- update
- flip_ends

Example

The reverse of a list

$$rev[1; 2; 3; 4] = [4; 3; 2; 1]$$

Introduction

Key ideas

Evaluation and conclusion

- nil
- singleton
- append
- reverse
- length
- repeat
- take
- drop
- nth
- map
- update
- flip_ends

Example

Length of a list

length
$$[1; 2; 3; 4] = 4$$

Introduction

Key ideas

Evaluation and conclusion

- nil
- singleton
- append
- reverse
- length
- repeat
- take
- drop
- nth
- map
- update
- flip_ends

Example

Give a list with n number of the same elements

repeat
$$42 = [2; 2; 2; 2]$$

Introduction

Key ideas

Evaluation and conclusion

- nil
- singleton
- append
- reverse
- length
- repeat
- take
- drop
- nth
- map
- update
- flip_ends

Example

Take the first n elements of a list

$$\mathtt{take}\; 2\; [1;2;3;4;5] = [1;2]$$

Introduction

Key ideas

Evaluation and conclusion

- nil
- singleton
- append
- reverse
- length
- repeat
- take
- drop
- nth
- map
- update
- flip_ends

Example

Introduction

Key ideas

Evaluation and conclusion

Example

$$I_1 = I_3 \rightarrow$$
 $\operatorname{rev} I_1 ++ \operatorname{rev} I_2 = \operatorname{rev} I_3 ++ \operatorname{rev} I_4 \rightarrow$
 $I_2 = I_4$

Which we can also denote, in Coq's judgment style, as

H1:
$$l_1 = l_3$$

H2: $\text{rev } l_1 ++ \text{ rev } l_2 = \text{ rev } l_3 ++ \text{ rev } l_4$
 $l_2 = l_4$

Example

Introduction

Key ideas

Evaluation and conclusion

Example

$$I_1 = I_3 \rightarrow$$
 $\operatorname{rev} I_1 ++ \operatorname{rev} I_2 = \operatorname{rev} I_3 ++ \operatorname{rev} I_4 \rightarrow$
 $I_2 = I_4$

Which we can also denote, in Coq's judgment style, as

H1:
$$I_1 = I_3$$

H2: $\text{rev } I_1 ++ \text{ rev } I_2 = \text{ rev } I_3 ++ \text{ rev } I_4$
 $I_2 = I_4$

Prior work

Introduction

Key ideas

Evaluation and conclusion

	Own work	VST	SMT string theory
nil	×	×	X
append	×	×	×
reverse	×	×	
length	×	×	×
take	×	×	X
drop	×	×	X
nth	×	×	X
repeat	×	×	X
map	×	×	
update	×	X	X

Table: Supported operators of prior work

Outline

Introduction

Key ideas

Evaluation and conclusion

Introduction

2 Key ideas

3 Evaluation and conclusion

Overview of key ideas

IIILIOddctioi

Key ideas

Evaluation and conclusion

- Operation rearrangement
- Reverse list assumptions
- List segmentation
- Take and drop substitution (At the end if time left)

Operation rearrangement

IIILIOddctioi

Key ideas

Evaluation and conclusion

- Defined a (conditional) term rewrite system
- With the rewrite system we aim to place the operators in a certain order.
- Obtain a normal form

$$[\;]>\;++\;>{\tt repeat}>{\tt map}>{\tt rev}>{\tt drop}>{\tt take}>{\tt nth}$$

Introduction

Key ideas

Evaluation and conclusion

We have, for example, the following rules:

$$rev(l_1 ++ l_2) = rev l_2 ++ rev l_1$$

 $rev (repeat n v) = repeat n v$

Example

We want to rewrite the following expression:

$$rev(I ++ (repeat n v)$$

We apply the first rule and get:

$$(rev (repeat n v)) + + rev$$

$$(repeat n v) + + rev n$$

Introduction

Key ideas

Evaluation and conclusion

We have, for example, the following rules:

$$rev(l_1 ++ l_2) = rev l_2 ++ rev l_1$$

 $rev (repeat n v) = repeat n v$

Example

We want to rewrite the following expression:

$$rev(I ++ (repeat n v))$$

We apply the first rule and get:

$$(rev (repeat n v)) + + rev n$$

$$(repeat n v) + + rev I$$

Introduction

Key ideas

Evaluation and conclusion We have, for example, the following rules:

$$rev(l_1 ++ l_2) = rev l_2 ++ rev l_1$$

 $rev (repeat n v) = repeat n v$

Example

We want to rewrite the following expression:

$$rev(I ++ (repeat n v))$$

We apply the first rule and get:

$$(rev (repeat n v)) + + rev I$$

$$(repeat n v) + + rev l$$

Introduction

Key ideas

Evaluation and conclusion

We have, for example, the following rules:

$$rev(l_1 ++ l_2) = rev l_2 ++ rev l_1$$

 $rev (repeat n v) = repeat n v$

Example

We want to rewrite the following expression:

$$rev(I ++ (repeat n v))$$

We apply the first rule and get:

$$(rev (repeat n v)) + + rev I$$

$$(repeat n v) + + rev I$$

Reverse list assumptions

Introduction

Key ideas

Evaluation and conclusion

Lemma

$$\mathit{l}_1 = \mathit{l}_2
ightarrow \mathit{rev} \: \mathit{l}_1 = \mathit{rev} \: \mathit{l}_2$$

We use this often in combination with the following rewrite rule:

$$rev(rev I) = I$$

This allows us to prove

$$\frac{\operatorname{rev} l_1 = \operatorname{rev} l_2}{l_1 = l_2} \Longrightarrow \frac{\operatorname{rev} l_1 = \operatorname{rev} l_2}{\operatorname{rev} (\operatorname{rev} l_1) = \operatorname{rev} (\operatorname{rev} l_2)}$$

Reverse list assumptions

Introduction

Key ideas

Evaluation and conclusion

Lemma

$$\mathit{l}_1 = \mathit{l}_2
ightarrow \mathit{rev} \mathit{l}_1 = \mathit{rev} \mathit{l}_2$$

We use this often in combination with the following rewrite rule:

$$rev(rev I) = I$$

This allows us to prove:

$$\frac{\operatorname{rev} l_1 = \operatorname{rev} l_2}{l_1 = l_2} \qquad \Longrightarrow \qquad \frac{\operatorname{rev} l_1 = \operatorname{rev} l_2}{\operatorname{rev} (\operatorname{rev} l_1) = \operatorname{rev} (\operatorname{rev} l_2)}$$

List segmentation

Introduction

Key ideas

Evaluation and conclusion

Main idea is using

Lemma

length
$$\mathit{l}_{1} = \mathsf{length}\,\mathit{l}_{3} \to \mathit{l}_{1}\,\mathit{++}\,\mathit{l}_{2} = \mathit{l}_{3}\,\mathit{++}\,\mathit{l}_{4} \to (\mathit{l}_{1} = \mathit{l}_{3} \land \mathit{l}_{2} = \mathit{l}_{4})$$

We utilize this with

· Asserting hypotheses for the length of lists

$$I_1 = I_2 \rightarrow \text{length } I_1 = \text{length } I_2$$

• Using congruence closure algorithm

Introduction

Key ideas

Evaluation and conclusion

We want to prove the following lemma:

H1:
$$I_1 = I_3$$

H2: $\text{rev } I_1 ++ \text{ rev } I_2 = \text{ rev } I_3 ++ \text{ rev } I_4$
 $I_2 = I_4$

Introduction

Key ideas

Evaluation and conclusion

Example

H1:
$$I_1 = I_3$$

H2: $\text{rev } I_1 ++ \text{rev } I_2 = \text{rev } I_3 ++ \text{rev } I_4$
 $I_2 = I_4$

We first take the reverse of list hypothesis H2. We will omit hypothesis H2, because of space on our slide.

H1:
$$l_1 = l_3$$

H3: $rev(rev l_1 ++ rev l_2) = rev(rev l_3 ++ rev l_4)$
 $l_2 = l_4$

Introduction

Key ideas

Evaluation and conclusion

Example

H1:
$$I_1 = I_3$$

H2: $\text{rev } I_1 ++ \text{ rev } I_2 = \text{ rev } I_3 ++ \text{ rev } I_4$
 $I_2 = I_4$

We first take the reverse of list hypothesis H2. We will omit hypothesis H2, because of space on our slide.

H1:
$$I_1 = I_3$$

H3: $rev(rev I_1 ++ rev I_2) = rev(rev I_3 ++ rev I_4)$
 $I_2 = I_4$

Example

Key ideas

H1:
$$I_1 = I_3$$

H3:
$$rev(rev l_1 ++ rev l_2) = rev(rev l_3 ++ rev l_4)$$

 $l_2 = l_4$

We then will apply operation rearrangement to obtain the normal forms in hypothesis H3. We first rewrite with the rule

$$rev(I ++ I') = rev I' ++ rev I.$$

H1:
$$l_1 = l_3$$

H3: $rev(rev l_2) ++ rev(rev l_1) = rev(rev l_4) ++ rev(rev l_3)$
 $l_2 = l_4$

Kev ideas

Evaluation

conclusion

Example, prove a theorem with the key ideas

Example

H1:
$$I_1 = I_3$$

H3: rev (rev $I_1 ++$ rev I_2) = rev (rev $I_3 ++$ rev I_4)

b = h

We then will apply operation rearrangement to obtain the normal forms in hypothesis H3. We first rewrite with the rule rev(I ++ I') = rev I' ++ rev I.

H1:
$$I_1 = I_3$$
H3: $\operatorname{rev}(\operatorname{rev} I_2) ++ \operatorname{rev}(\operatorname{rev} I_1) = \operatorname{rev}(\operatorname{rev} I_4) ++ \operatorname{rev}(\operatorname{rev} I_3)$

$$I_2 = I_4$$

Introduction

Key ideas

Evaluation and conclusion

Example

H1:
$$I_1 = I_3$$

H3: $\text{rev}(\text{rev } I_2) ++ \text{rev}(\text{rev } I_1) = \text{rev}(\text{rev } I_4) ++ \text{rev}(\text{rev } I_3)$
 $I_2 = I_4$

We then rewrite with the rule

$$rev(rev I) = I$$
.

H1:
$$l_1 = l_3$$

H3: $l_2 ++ l_1 = l_4 ++ l_3$
 $l_2 = l_4$

Introduction

Key ideas

Evaluation and conclusion

Example

H1:
$$I_1 = I_3$$

H3: $rev(rev I_2) ++ rev(rev I_1) = rev(rev I_4) ++ rev(rev I_3)$
 $I_2 = I_4$

We then rewrite with the rule

$$rev(rev I) = I$$
.

H1:
$$l_1 = l_3$$

H3: $l_2 ++ l_1 = l_4 ++ l_3$
 $l_2 = l_4$

Introduction

Key ideas

Evaluation and conclusion

Example

H1:
$$l_1 = l_3$$

H3: $l_2 ++ l_1 = l_4 ++ l_3$
 $l_2 = l_4$

To be able to apply the segmentation idea, we first have to obtain information about the length of the lists from hypothesis H1.

H4: length
$$l_1$$
 = length l_3
H1: $l_1 = l_3$
H3: $l_2 ++ l_1 = l_4 ++ l_3$
 $l_2 = l_4$

Example, prove a theorem with the key ideas

Introduction

Key ideas

Evaluation and conclusion

Example

H1:
$$l_1 = l_3$$

H3: $l_2 ++ l_1 = l_4 ++ l_3$
 $l_2 = l_4$

To be able to apply the segmentation idea, we first have to obtain information about the length of the lists from hypothesis H1.

Example

H4: length
$$l_1$$
 = length l_3
H1: $l_1 = l_3$
H3: $l_2 ++ l_1 = l_4 ++ l_3$
 $l_2 = l_4$

Example, prove a theorem with the key ideas

Introduction

Key ideas

Evaluation and conclusion

Example

H4: length
$$I_1$$
 = length I_3
H1: $I_1 = I_3$
H3: $I_2 ++ I_1 = I_4 ++ I_3$
 $I_2 = I_4$

We now use our idea of segmentation:

length
$$l_1 = \text{length } l_3 \rightarrow l_1 + + l_2 = l_3 + + l_4 \rightarrow (l_1 = l_3 \land l_2 = l_4)$$

With this idea we see that from the hypotheses follows that $l_2 = l_4$.

Outline

Introduction

Key ideas

Evaluation and conclusion

Introduction

2 Key ideas

3 Evaluation and conclusion

Benchmarks

Key ideas

Evaluation and conclusion

We obtained three sorts of benchmarks

- Own creations (23)
- Coq's standard library and Iris extended standard library (10)
- VST (18)

A total of 51 benchmarks.

Results

Key ideas

Evaluation and conclusion

	# of solved benchmarks
Own work	50
VST	37
SMT String Theory	21

Table: Number of solved benchmarks

Own work	60.10 sec
VST	1.02 sec

Table: Average time to solve one of the 37 overlapping lemmas

Conclusion

Key ideas

Evaluation and conclusion

- Developed a solver with a wide solvability which is slow
- Provided a formal (inference) system that can be used to implement solvers for list theorems

Question?

Take and drop substitution

$$I = take nI ++ drop nI$$

Lemma

We can chose new variables It and Id, then the following will always hold:

$$I = It ++ Id \rightarrow$$

length $It = \min(n, \text{length } I) \rightarrow$
length $Id = \text{length } I - n \rightarrow$
 $It = \text{take } n \mid \land \mid Id = \text{drop } n \mid$

The goal is to substitute all occurrences of take and drop.

Example, take and drop substitution

Example

$$\frac{\text{H1: length } l_1 = n}{\text{drop } n \left(l_1 + + l_2 \right) = l_2}$$

Example, take and drop substitution

Example

H1: length
$$l_1 = n$$

drop $n(l_1 ++ l_2) = l_2$

We apply substitution

Example

H4:
$$l_1 ++ l_2 = lt ++ ld$$

H3: length $lt = n$
H2: length $ld =$ length $(l_1 ++ l_2) - n$

$$\frac{\text{H1: length } l_1 = n}{ld = l_2}$$

Example, take and drop substitution

Example

H4:
$$l_1 ++ l_2 = lt ++ ld$$

H3: length $lt = n$
H2: length $ld =$ length $(l_1 ++ l_2) - n$

$$\frac{\text{H1: length } l_1 = n}{ld = l_2}$$

We can now apply segmentation, because length $I_1 = \text{length } It$ and conclude the proof.

Question?