2. Perform the following: a. Viewing all databases, Creating a Database, Viewing all Tables in a Database, Creating Tables (With and Without Constraints), Inserting/Updating/Deleting Records in a Table, Saving (Commit) and Undoing (rollback)

Viewing all databases:

SHOW DATABASES;

Creating a Database:

CREATE DATABASE Employees;

Viewing all tables in a Database:

SHOW DATABASES;

USE Employees;

SHOW TABLES;

Creating Tables:

Without Constraints:

```
CREATE TABLE employees (
id INT,
name VARCHAR(100),
position VARCHAR(50),
salary DECIMAL(10, 2));
desc employees;
```


With Constraints (Primary Key, Not Null, Unique):

CREATE TABLE employees1 (
id INT PRIMARY KEY,
name VARCHAR(100) NOT NULL,
email VARCHAR(100) UNIQUE,
salary DECIMAL(10, 2),
hire_date DATE);
desc employees1;

Inserting Records into a Table:

INSERT INTO employees1 (id, name, position, salary, hire_date) VALUES (1, 'John Doe', 'Manager', 65000, '2024-01-15'); Or

INSERT INTO employees1 VALUES (2, 'Jane Smith', 'Engineer', 55000, '2023-11-12');

Select *from employees1;

Updating Records in a Table:

UPDATE employees1 SET salary = 70000 WHERE id = 2; Select *from employees1;

Deleting Records in a Table:

SET SQL_SAFE_UPDATES = 0;

INSERT INTO employees1 VALUES (1, 'Dua', 'Docter', 65000, '2023-11-12');

Select *from employees1;

DELETE FROM employees1 WHERE id = 1;

Saving (Commit):

COMMIT;

Undoing Changes (Rollback):

ROLLBACK;

- 3. Perform the following:
- a. Altering a Table, Dropping/Truncating/Renaming Tables, Backing up / Restoring a Database.

a. Altering a Table:

You can modify a table structure by adding, removing, or changing columns.

Add a new column:

ALTER TABLE employees1 ADD COLUMN phone_number VARCHAR(15); desc employees1;

Modify a column (changing data type):

ALTER TABLE employees1 MODIFY COLUMN salary DECIMAL(12, 2); desc employees1;

Select *from employees1;

• Drop (remove) a column:

ALTER TABLE employees1 DROP COLUMN phone_number; Select *from employees1;

• Rename a column:

ALTER TABLE employees1 CHANGE COLUMN name full_name VARCHAR(100);

Select *from employees1;

b. Dropping/Truncating/Renaming Tables:

• Truncate a table (removes all data but keeps the structure):

TRUNCATE TABLE employees; select *from employees1;

• Rename a table:

RENAME TABLE employees TO staff; SHOW TABLES;

• <u>Drop a table (completely removes it):</u>

DROP TABLE staff; SHOW TABLES;

c. Backing up a Database:

You can back up a MySQL database using the mysqldump utility. mysqldump -u your_username -p your_database_name > backup.sql his will create a backup of the database in a .sql file named backup.sql.

d. Restoring a Database:

To restore a database from a backup file: mysql -u your_username -p your_database_name < backup.sql This will restore the data from backup.sql back into the specified database.

4. For a given set of relation schemes, create tables and perform the following Simple Queries, Simple Queries with Aggregate functions, Queries with Aggregate functions (group by and having clause).

Sample Relation Schemes:

- 1. Employees (employee id, name, department, salary, hire date)
- 2. **Departments** (department id, department name)
- 3. **Projects** (project_id, project_name, department_id)
- 4. Assignments (employee id, project id, hours worked)

Step 1: Create Tables

-- Create Employees Table

CREATE TABLE Employees444 (
employee_id INT PRIMARY KEY,
name VARCHAR(100),
department VARCHAR(50),
salary DECIMAL(10, 2),
hire_date DATE);
Desc Employees444;

-- Create Departments Table

CREATE TABLE Departments (
department_id INT PRIMARY KEY,
department_name VARCHAR(100)
);

-- Create Projects Table

```
CREATE TABLE Projects (
project_id INT PRIMARY KEY,
project_name VARCHAR(100),
department_id INT,
FOREIGN KEY (department_id) REFERENCES
Departments(department_id)
);
Desc Projects;
```

	Field	Туре	Null	Key	Default	Extra
•	project_id	int	NO	PRI	NULL	
	project_name	varchar(100)	YES		NULL	
	department_id	int	YES	MUL	NULL	

-- Create Assignments Table

```
CREATE TABLE Assignments (
employee_id INT,
project_id INT,
hours_worked INT,
PRIMARY KEY (employee_id, project_id),
FOREIGN KEY (employee_id) REFERENCES Employees(employee_id),
FOREIGN KEY (project_id) REFERENCES Projects(project_id)
);
```


Step 2: Insert Sample Data

-- Insert data into Employees table

INSERT INTO Employees777 (employee_id, name, department, salary, hire_date) VALUES (1, 'Alice', 'IT', 60000, '2021-01-15'),

```
(2, 'Bob', 'HR', 45000, '2020-07-01'),
(3, 'Charlie', 'Finance', 50000, '2019-10-23'),
(4, 'David', 'IT', 55000, '2018-05-16'),
(5, 'Alice', 'IT', 60000, '2021-01-15'),
(6, 'Bob', 'HR', 45000, '2020-07-01'),
(7, 'Charlie', 'Research', 60000, '2019-10-23'),
(8, 'David', 'Accounts', 57000, '2018-05-16'),
(9, 'Alice', 'Accounts', 80000, '2021-01-15'),
(10, 'Bob', 'Research', 55000, '2020-07-01'),
(11, 'Charlie', 'Research', 40000, '2019-10-23'),
(12, 'David', 'Accounts', 35000, '2018-05-16'),
(13, 'Alice', 'Accounts', 20000, '2021-01-15'),
(14, 'Bob', 'Research', 15000, '2020-07-01'),
(15, 'Charlie', 'Research', 70000, '2019-10-23'),
(16, 'David', 'Accounts', 58000, '2018-05-16');
Select *from Employees777;
```

	employee_id	name	department	salary	hire_date
١	1	Alice	IT	60000.00	2021-01-15
	2	Bob	HR	45000.00	2020-07-01
	3	Charlie	Finance	50000.00	2019-10-23
	4	David	IT	55000.00	2018-05-16
	5	Alice	IT	60000.00	2021-01-15
	6	Bob	HR	45000.00	2020-07-01
	7	Charlie	Research	60000.00	2019-10-23
	8	David	Accounts	57000.00	2018-05-16
	9	Alice	Accounts	80000.00	2021-01-15
	10	Bob	Research	55000.00	2020-07-01
	11	Charlie	Research	40000.00	2019-10-23
	12	David	Accounts	35000.00	2018-05-16
	13	Alice	Accounts	20000.00	2021-01-15
	14	Bob	Research	15000.00	2020-07-01
	15	Charlie	Research	70000.00	2019-10-23
	16	David	Accounts	58000.00	2018-05-16
	NULL	NULL	NULL	NULL	NULL

-- Insert data into Departments table

```
INSERT INTO Departments (department_id, department_name) VALUES (1, 'IT'), (2, 'HR'),
```

(3, 'Finance'); Select *from Departments;

-- Insert data into Projects table

INSERT INTO Projects (project_id, project_name, department_id) VALUES

(101, 'Website Upgrade', 1),

(102, 'Employee Training', 2),

(103, 'Budget Analysis', 3);

Select *from Projects;

-- Insert data into Assignments table

INSERT INTO Assignments (employee_id, project_id, hours_worked) VALUES

(1, 101, 35),

(2, 102, 20),

(3, 103, 40),

(4, 101, 45);

Select *from Assignments;

	employee_id	project_id	hours_worked
•	1	101	35
	2	102	20
	3	103	40
	4	101	45
	NULL	NULL	NULL

Step 3: Perform Simple Queries

Get all employees in the IT department:

SELECT * FROM Employees777 WHERE department = 'IT';

	employee_id	name	department	salary	hire_date
١	1	Alice	Π	60000.00	2021-01-15
	4	David	Π	55000.00	2018-05-16
	5	Alice	Π	60000.00	2021-01-15
	NULL	NULL	NULL	NULL	NULL

Get details of employees hired after 2020:

SELECT name, hire_date FROM Employees777 WHERE hire_date > '2020-01-01';

name	hire_date
Alice	2021-01-15
Bob	2020-07-01
Alice	2021-01-15
Bob	2020-07-01
Alice	2021-01-15
Bob	2020-07-01
Alice	2021-01-15
Bob	2020-07-01
	Alice Bob Alice Bob Alice Bob Alice

Get all projects associated with the Finance department:

SELECT project_name FROM Projects

WHERE department_id = (SELECT department_id FROM Departments WHERE department_name = 'Finance');

Step 4: Simple Queries with Aggregate Functions

Find the average salary of all employees:

SELECT AVG(salary) AS avg_salary FROM Employees777;

Find the maximum salary in the IT department:

SELECT MAX(salary) AS max_salary FROM Employees777 WHERE department = 'IT';

Find the total hours worked by all employees:

SELECT SUM(hours worked) AS total hours FROM Assignments;

Count the number of employees in each department:

SELECT department, COUNT(*) AS num_employees FROM Employees777 GROUP BY department;

Step 5: Queries with Aggregate Functions (GROUP BY and HAVING Clause)

Find the total hours worked by employees per project:

SELECT project_id, SUM(hours_worked) AS total_hours FROM Assignments GROUP BY project_id;

Find the average salary of employees in each department:

SELECT department, AVG(salary) AS avg_salary FROM Employees777 GROUP BY department;

Find departments where the average salary is greater than 50,000:

SELECT department, AVG(salary) AS avg_salary FROM Employees777 GROUP BY department HAVING AVG(salary) > 50000;

Get the projects with more than 30 total hours worked:

SELECT project_id, SUM(hours_worked) AS total_hours FROM Assignments GROUP BY project_id HAVING SUM(hours_worked) > 30;

5. Execute the fallowing queries

- a. How the resulting salaries if every employee working on the "Research" Departments is given a 10% raise.
- b. Find the sum of the salaries of all employees of the "Accounts" department, as well as the maximum salary, the minimum salary, and the average salary in this department

a. Increase Salaries by 10% for Employees in the "Research" Department

To update the salaries of employees in the "Research" department, you would execute the following query:

UPDATE employees777 SET salary = salary * 1.10 WHERE department = 'Research';

This query multiplies the current salary by 1.10 (which adds a 10% raise) for all employees whose department is "Research".

	employee_id	name	department	salary	hire_date
•	1	Alice	IT	60000.00	2021-01-15
	2	Bob	HR	45000.00	2020-07-01
	3	Charlie	Finance	50000.00	2019-10-23
	4	David	IT	55000.00	2018-05-16
	5	Alice	Π	60000.00	2021-01-15
	6	Bob	HR	45000.00	2020-07-01
	7	Charlie	Research	72600.00	2019-10-23
	8	David	Accounts	57000.00	2018-05-16
	9	Alice	Accounts	80000.00	2021-01-15
	10	Bob	Research	55000.00	2020-07-01
	11	Charlie	Research	40000.00	2019-10-23
	12	David	Accounts	35000.00	2018-05-16
	13	Alice	Accounts	20000.00	2021-01-15
	14	Bob	Research	15000.00	2020-07-01
	15	Charlie	Research	70000.00	2019-10-23
	16	David	Accounts	58000.00	2018-05-16
	HULL	NULL	NULL	NULL	NULL

b. Sum, Max, Min, and Average Salaries in the "Accounts" Department

To calculate the sum, maximum, minimum, and average salaries of employees in the "Accounts" department, you can use the following query:

SELECT

SUM(salary) AS total_salary,
MAX(salary) AS max_salary,
MIN(salary) AS min_salary,
AVG(salary) AS average_salary
FROM employees777
WHERE department = 'Accounts';

This query retrieves the total, maximum, minimum, and average salaries for all employees working in the "Accounts" department.

	total_salary	max_salary	min_salary	average_salary
•	57000.00	57000.00	57000.00	57000.000000

6,7,8,9,10

To execute the queries you've mentioned, we first need to set up the necessary database schema, including tables for employees, departments, and projects. Let's create a simplified version of these tables and then run the queries as specified. Below, I'll outline the steps involved.

Step 1: Create Tables

We will create the following tables:

1. Employees: Contains employee details.

2. Departments: Contains department details.

3. **Projects**: Contains project details.

4. **Employee_Project**: A junction table to represent the many-to-many relationship between employees and projects.

Create Departments Table

```
CREATE TABLE Departments (
DeptID INT PRIMARY KEY,
DeptName VARCHAR(50)
);
desc Departments;
```


-Create Employees Table

```
CREATE TABLE Employees (
EmpID INT PRIMARY KEY,
EmpName VARCHAR(50),
Salary DECIMAL(10, 2),
DeptID INT, DOB DATE,
```

FOREIGN KEY (DeptID) REFERENCES Departments(DeptID)); Desc Employees;

-- Create Projects Table

```
CREATE TABLE Projects (
ProjectID INT PRIMARY KEY,
ProjectName VARCHAR(50)
);
desc Projects;
```


-- Create Employee_Project Table

```
CREATE TABLE Employee_Project (
EmpID INT,
ProjectID INT,
PRIMARY KEY (EmpID, ProjectID),
FOREIGN KEY (EmpID) REFERENCES Employees(EmpID),
FOREIGN KEY (ProjectID) REFERENCES Projects(ProjectID)
);
desc Employee Project;
```


Step 2: Insert Sample Data

-- Insert Departments

```
INSERT INTO Departments (DeptID, DeptName) VALUES (1, 'Research'), (2, 'Accounts'), (3, 'HR'), (4, 'IT'), (5, 'Sales'); Select *from Departments;
```


-- Insert Employees

```
INSERT INTO Employees (EmplD, EmpName, Salary, DeptID, DOB) VALUES
```

```
(1, 'Alice', 50000, 1, '1990-01-12'), (2, 'Bob', 60000, 2, '1999-02-23'), (3, 'Charlie', 55000, 2, '1990-03-20'), (4, 'David', 45000, 3, '1999-04-15'), (5, 'Eve', 40000, 1, '1990-05-16'), (6, 'Frank', 70000, 5, '1999-06-17'), (7, 'Grace', 80000, 1, '1998-07-18'), (8, 'Heidi', 65000, 2, '1997-08-19'), (9, 'Ivan', 30000, 4, '2000-09-23'), (10, 'Judy', 90000, 5, '2001-08-2'), (11, 'Judy', 90000, 5, '2005-09-3'), (12, 'Judy', 100000, 5, '2004-10-4'), (13, 'Judy', 200000, 5, '2003-11-5'),
```

(14, 'Judy', 300000, 5. '2002-12-6'); Select *from Employees;

	_				
	EmpID	EmpName	Salary	DeptID	DOB
•	1	Alice	50000.00	1	1990-01-12
	2	Bob	60000.00	2	1999-02-23
	3	Charlie	55000.00	2	1990-03-20
	4	David	45000.00	3	1999-04-15
	5	Eve	40000.00	1	1990-05-16
	6	Frank	70000.00	5	1999-06-17
	7	Grace	80000.00	1	1998-07-18
	8	Heidi	65000.00	2	1997-08-19
	9	Ivan	30000.00	4	2000-09-23
	10	Judy	90000.00	5	2001-08-02
	11	Judy	90000.00	5	2005-09-03
	12	Judy	100000.00	5	2004-10-04
	13	Judy	200000.00	5	2003-11-05
	14	Judy	300000.00	5	2002-12-06
	NULL	NULL	NULL	NULL	HULL

-- Insert Projects

INSERT INTO Projects (ProjectID, ProjectName) VALUES

- (1, 'Project A'),
- (2, 'Project B'),
- (3, 'Project C');

Select *from Projects;

-- Insert Employee_Project

INSERT INTO Employee_Project (EmpID, ProjectID) VALUES

- (1, 1),
- (1, 2),
- (2, 1),
- (3, 1),
- (4, 2),

```
(5, 3),(6, 2),(7, 3),(8, 1);Select *from Employee_Project;
```

	EmpID	ProjectID
•	1	1
	2	1
	3	1
	8	1
	1	2
	4	2
	6	2
	5	3
	7	3
	NULL	NULL

Step 3: Execute the Queries

- 6. Execute the fallowing queries
- a. Retrieve the name of each employee Controlled by department number 5 (use

EXISTS operator).

b. Retrieve the name of each dept and number of employees working in each department which has at least 2 employees.

a.

```
SELECT e.EmpName
FROM employees e
WHERE EXISTS (
SELECT 1
FROM departments d
WHERE d.DeptID = e.DeptID
AND d.DeptID = 5
);
```

	EmpName
•	Frank
	Judy

b.

SELECT d.DeptName, COUNT(e.EmpID) AS employee_count FROM departments d JOIN employees e ON d.DeptID = e.DeptID GROUP BY d.DeptName HAVING COUNT(e.EmpID) >= 2;

	DeptName	employee_count
١	Research	3
	Accounts	3
	Sales	6