







# Data Science Academy

# Seja muito bem-vindo(a)!





## Data Science Academy

Machine Learning - Regressão







# Data Science Academy

O que é Regressão?



#### Aprovação de Crédito de um Indivíduo

| Atributo              | Valor                        |  |  |
|-----------------------|------------------------------|--|--|
| Sexo                  | Masculino                    |  |  |
| Idade                 | 34                           |  |  |
| Salário Mensal        | R\$ 18.000,00                |  |  |
| Anos no Emprego Atual | 3                            |  |  |
| Anos de Residência    | 7                            |  |  |
| Saldo Bancário        | R\$ 32.671 <mark>,9</mark> 4 |  |  |

#### Classificação

• Decisão de crédito (Sim/Não)

### Regressão

Quantidade de crédito (dinheiro)



#### Modelos de Regressão





Uma variável independente x, explica a variação em outra variável, que é chamada variável dependente y. Este relacionamento existe em apenas uma direção:

variável independente (x) -> variável dependente (y)



Análise de regressão é uma metodologia estatística que utiliza a relação entre duas ou mais variáveis quantitativas de tal forma que uma variável possa ser predita a partir de outra.



### Tipos de Modelos de Regressão Linear



- 1 Variável Dependente Y
- 1 Variável Independente X
- 1 Variável Dependente Y
- 2 ou + Variáveis Independentes X, X<sub>i</sub>



# A análise de regressão compreende quatro tipos básicos de modelos:

**Linear Simples** 

Não Linear Simples Linear Múltiplo

Não Linear Múltiplo



#### Machine Learning

Regressão Linear Simples Regressão Linear Múltipla Regressão Logística



### Qual o objetivo em se determinar a relação entre duas variáveis?



Prever a população futura de uma cidade simulando a tendência de crescimento da população no passado



### Qual o objetivo em se determinar a relação entre duas variáveis?



Produtividade (Y) de uma área agrícola é alterada quando se aplica certa quantidade (X) de fertilizante sobre a terra















$$\hat{y} = a + bx$$

#### Onde:

 $\hat{y}$  = valor previsto de *y* dado um valor para *x* 

 $\dot{\mathbf{x}}$  = variável independente

a = ponto onde a linha intercepta o eixo y

b = inclinação da linha reta







#### Método dos Mínimos Quadrados

Esse método definirá uma reta que minimizará a soma das distâncias ao quadrado entre os pontos plotados (X, Y) e a reta (que são os valores previstos de X',Y').





Método dos Mínimos Quadrados

- Erro de Estimativa
- Coeficiente de Determinação





#### Método dos Mínimos Quadrados

- Erro de Estimativa
- Coeficiente de Determinação



# Coeficiente de Correlação



Gráfico A (r = 1.0): correlação positiva perfeita entre x = y

Gráfico B (r = -1.0): correlação negativa perfeita entre x e y

Gráfico C (r = 0.6): relação positiva moderada: y tende a aumentar se x aumenta, mas não

necessariamente na mesma taxa observada no Gráfico A

Gráfico D (r = -0.4): relação negativa fraca: o coeficiente de correlação é próximo de zero ou

negativo: y tende a diminuir se x aumenta

Gráfico E (r = 0): Sem relação entre x e y

Os valores de r variam entre -1.0 (uma forte relação negativa) até +1.0, uma forte relação positiva.



## Coeficiente de Correlação

O coeficiente de determinação indica o quanto a reta de regressão explica o ajuste da reta, enquanto que o coeficiente de correlação deve ser usado como uma medida de força da relação entre as variáveis



- Soma Total dos Quadrados (STQ) Mostra a variação em Y em torno da própria média.
- Soma dos Quadrados de Regressão (SQR) Oferece a variação de Y considerando as variáveis X utilizadas no modelo.
- Soma dos Quadrados dos Resíduos (SQU) Variação de Y que não é explicada pelo modelo elaborado.

$$STQ = SQR + SQU$$



# Nossa próxima etapa é compreender o poder explicativo do modelo de regressão

Coeficiente de Ajuste R<sup>2</sup>

$$R^2 = \frac{SQR}{SQR + SQU} = \frac{SQR}{SQT}$$





O coeficiente de ajuste R2 não diz aos analistas se uma determinada variável explicativa é estatisticamente significante e se esta variável é a causa verdadeira da alteração de comportamento da variável dependente.





**Data Science Academy** 

Avaliando o Modelo de Regressão





## Típicos problemas que podem ser resolvidos com Regressão

- Quantos computadores serão vendidos no próximo mês?
- Quantas pessoas vão acessar nosso web site na próxima semana?
- Qual o salário de uma pessoa de acordo com a performance escolar?
- Qual o total de vendas relacionado ao número de seguidores em redes sociais?



| Número de<br>Funcionários<br>Por Turno | Número de<br>Seguidores nas<br>Redes Sociais | Preço da<br>Matéria-Prima<br>(R\$) | Cotação do<br>Dólar | Total de Vendas<br>(R\$) |
|----------------------------------------|----------------------------------------------|------------------------------------|---------------------|--------------------------|
| 1400                                   | 54000                                        | 5000                               | 3.44                | 1245900                  |
| 1359                                   | 55000                                        | 5400                               | 3.12                | 1302763                  |
| 1402                                   | 55430                                        | 5300                               | 3.50                | 1345119                  |

Atributos ou Features







| Número de<br>Seguidores nas<br>Redes Sociais | Total de Vendas<br>(R\$) |
|----------------------------------------------|--------------------------|
| 54000                                        | 1245900                  |
| 55000                                        | 1302763                  |
| 55430                                        | 1345119                  |







### Machine Learning













#### Machine Learning









Academy

| Total de<br>Vendas (R\$) | Total de<br>Vendas<br>Previsto (R\$) |  |
|--------------------------|--------------------------------------|--|
| 1245900                  | 1278450                              |  |
| 1302763                  | 1302763                              |  |
| 1345119                  | 1320876                              |  |

Atributos ou Features (X)

Variável Resposta Previsão f(x)





| Vi | _ | $f(x_i)$ |  |
|----|---|----------|--|
| J  |   | - ( )    |  |

$$f(x_i) - y_i$$

$$(y_i - f(x_i))^2$$

## Méte (Lea

| f(xi) - yi                                           | Método dos Mínimos<br>Quadrados | Total de<br>Vendas (R\$) | Vendas Previsto (R\$) |
|------------------------------------------------------|---------------------------------|--------------------------|-----------------------|
| $(y_i - f(x_i))^2$                                   | (Least Square Error)            | 1245900                  | 1278450               |
|                                                      |                                 | 1302763                  | 1334789               |
| Mean absolute error (MAE)= $\sum_{i=1}^{n}  f(x) ^2$ | $(x_i) - y_i$                   | 1345119                  | 1320876               |



$$RMSE = \sqrt{\sum_{i=1}^{n} (y_i - f(x_i))^2}$$







- (SST Sum Square Total) Soma Total dos Quadrados (STQ) Mostra a variação em Y em torno da própria média.
- (SSR Sum Square Regression) Soma dos Quadrados de Regressão (SQR) – Oferece a variação de Y considerando as variáveis X utilizadas no modelo.
- (SSE Sum Square Error) Soma dos Quadrados dos Resíduos (SQU) –
   Variação de Y que não é explicada pelo modelo elaborado.

$$SST = SSE + SSR$$















1,000K





$$SST = SSE + SSR$$













# SST = SSE + SSR

Se o SSR é alto e o SSE é baixo, o Modelo de Regressão explica bem a variação nas previsões

Se o SSR é baixo e o SSE é alto, o Modelo de Regressão não explica bem a variação nas previsões

- SSR = medida da variação que pode ser explicada
- SSE = medida da variação que não pode ser explicada
- SST = medida da variação total









# Data Science Academy

Regressão Linear Simples

Regressão Linear Múltipla









# Regressão Linear Simples



| Tamanho<br>(m2) | Preço<br>(R\$) |
|-----------------|----------------|
| 105             | 89.000         |
| 120             | 145.000        |
| 115             | 123.000        |



## Regressão Linear Múltipla

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2$$

| Tamanho<br>(m2) | Idade do<br>Prédio<br>(Anos) | Número<br>Vagas na<br>Garagem | Número<br>de<br>Quartos | Preço<br>(R\$) |
|-----------------|------------------------------|-------------------------------|-------------------------|----------------|
| 105             | 15                           | 2                             | 2                       | 89.000         |
| 120             | 4                            | 3                             | 3                       | 145.000        |
| 115             | 8                            | 2                             | 3                       | 123.000        |



# Regressão Linear Múltipla





# Interpretando Modelos de Regressão Linear Simples e Múltipla



# Interpretando Modelos de Regressão Linear Simples e Múltipla

- Teste F de Significância Global
- Testes de Significância Individuais
- Coeficientes R2 e R2 Ajustado
- Coeficientes



### Teste F de Significância Global

O modelo é útil para prever o preço?

| Estatística de re<br>R múltiplo<br>R-Quadrado<br>R-quadrado ajustado<br>Erro padrão<br>Observações | 0,66<br>0,44<br>0,41<br>132352,0<br>40 |             | "Há evidência<br>está relaciona | is de que <u>pel</u><br>ada com o pr | le significância glob<br>o menos uma variá<br>eço?"<br>0,05, há evidência: | ivel no modelo |
|----------------------------------------------------------------------------------------------------|----------------------------------------|-------------|---------------------------------|--------------------------------------|----------------------------------------------------------------------------|----------------|
| ANOVA                                                                                              | gl                                     | SQ          | MQ                              | F                                    | F de significação                                                          | Valor-p do     |
| Regressão                                                                                          | 2                                      | 5,135E+11   | 2,567E+11                       | 1,466E+01                            | 0,000                                                                      |                |
| Residuo                                                                                            | 37                                     | 6,481E+11   | 1,752E+10                       |                                      |                                                                            |                |
| Total                                                                                              | 39                                     | 1,162E+12   |                                 |                                      |                                                                            |                |
|                                                                                                    | Coeficientes                           | Erro padrão | Stat t                          | valor-P                              | 95% inferiores                                                             | 95% superiores |
| Interseção                                                                                         | 440107,0                               | 182742,3    | 2,408                           | 0,021                                | 69836,0                                                                    | 810378,1       |
| tamanho                                                                                            | 6772,1                                 | 1555,7      | 4,353                           | 0,000                                | 3620,0                                                                     | 9924,2         |
| idade do prédio                                                                                    | -19129,7                               | 8372,9      | -2,285                          | 0,028                                | -36094,8                                                                   | -2164,5        |

Machine Learning

### Testes de Significância Individuais

Quais variáveis estão relacionadas com o preço?

| R múltiplo          | 0,66     |
|---------------------|----------|
| R-Quadrado          | 0,44     |
| R-quadrado ajustado | 0,41     |
| Erro padrão         | 132352,0 |
| Observações         | 40       |

| A. |  |  |  |
|----|--|--|--|
|    |  |  |  |
|    |  |  |  |

| -0.00-06-06 | gl | 5Q          | MQ        | F         | F de significação |
|-------------|----|-------------|-----------|-----------|-------------------|
| Regressão   | 3  | 2 5,135E+11 | 2,567E+11 | 1,466E+01 | 0,000             |
| Residuo     | 3  | 7 6,481E+11 | 1,752E+10 |           |                   |
| Total       | 3  | 9 1,162E+17 | 2         |           |                   |

| Interseção      | Coeficientes I | Erro padrão | Stat t | valor-P | 95% inferiores | 95% superiores<br>810378,1 |
|-----------------|----------------|-------------|--------|---------|----------------|----------------------------|
|                 | 440107,0       | 182742,3    | 2,408  | 0,021   | 69836,0        |                            |
| tamanho         | 6772,1         | 1555,7      | 4,353  | 0,000   | 3620,0         | 9924,2                     |
| idade do prédio | -19129,7       | 8372,9      | -2,285 | 0,028   | -36094,8       | -2164,5                    |

Há evidências estatísticas de relação de tamanho e idade com preço, pois valores-p<0,05.

0.000



#### Coeficientes R2 e R2 Ajustado

Residuo

Total

Qual percentual de variabilidade é explicado pelas variáveis usadas no modelo?



39 1,162E+12

|                 | Coeficientes E | Coeficientes Erro padrão S |        |       | 95% inferiores | 95% superiores |  |
|-----------------|----------------|----------------------------|--------|-------|----------------|----------------|--|
| Interseção      | 440107,0       | 182742,3                   | 2,408  | 0,021 | 69836,0        | 810378,1       |  |
| tamanho         | 6772,1         | 1555,7                     | 4,353  | 0,000 | 3620,0         | 9924,2         |  |
| idade do prédio | -19129,7       | 8372,9                     | -2,285 | 0,028 | -36094,8       | -2164,5        |  |

6.481E+11 1.752E+10

### Machine Learning

#### Coeficientes

Valores que compõe a equação.

| Estatística de re   | ararcão      |             |           |           |                   |                |
|---------------------|--------------|-------------|-----------|-----------|-------------------|----------------|
| R múltiplo          | 0,66         |             |           |           |                   |                |
| R-Quadrado          | 0,44         |             |           |           |                   |                |
| R-quadrado ajustado | 0,41         |             |           |           |                   |                |
| Erro padrão         | 132352,0     |             |           |           |                   |                |
| Observações         | 40           |             |           |           |                   |                |
| ANOVA               |              |             |           |           |                   |                |
|                     | gl           | 5Q          | MQ        | F         | F de significação |                |
| Regressão           | 2            | 5,135E+11   | 2,567E+11 | 1,466E+01 | 0,000             |                |
| Resíduo             | 37           | 6,481E+11   | 1,752E+10 |           |                   |                |
| Total               | 39           | 1,162E+12   |           |           |                   |                |
|                     | Coeficientes | Erro padrão | Stat t    | valor-P   | 95% inferiores    | 95% superiores |
| Interseção          | 440107,0     | 182742,3    | 2,408     | 0,021     | 69836,0           | 810378,1       |
| tamanho             | 6772,1       | 1555,7      | 4,353     | 0,000     | 3620,0            | 9924,2         |
| idade do prédio     | -19129.7     | 8372,9      | -2,285    | 0,028     | -36094.8          | -2164.5        |

$$\hat{y} = 440107 + 6772$$
, 1-tamanho - 19129, 7-idade

#### Regras Gerais

Modelo é útil para prever o preço, se o valor-p do teste F é menor que 0,05. O R2 indica quanto da variabilidade de y é explicado pelas variáveis preditoras. Pode ser necessário incluir mais variáveis no modelo para aumentar este coeficiente.

Há evidências de que uma variável está relacionada com o valor previsto, se o valor-p for menor que 0,05.

O objetivo da regressão é encontrar os coeficientes que permitem construir a equação de regressão e fazer as previsões.

#### Regras Gerais

Modelo é útil para prever o preço, se o valor-p do teste F é menor que 0,05. O R2 indica quanto da variabilidade de y é explicado pelas variáveis preditoras. Pode ser necessário incluir mais variáveis no modelo para aumentar este coeficiente.

Há evidências de que uma variável está relacionada com o valor previsto, se o valor-p for menor que 0,05.

O objetivo da regressão é encontrar os coeficientes que permitem construir a equação de regressão e fazer as previsões.







# Data Science Academy

# Interpretando o Valor-p



Data Science é uma área multidisciplinar, que emprega conceitos de diversas áreas diferentes.

Data Science e Estatística NÃO são a mesma coisa, mas a Estatística fornece ferramentas importantes principalmente para interpretabilidade dos modelos de Machine Learning.



O **valor-p** é amplamente usado para interpretar modelos de regressão ou mesmo quando empregamos análise estatística aos dados.







#### Machine Learning



Ponto de Vista em Data Science



#### Interpretando o Valor-p

Os conceitos de valor-p e nível de significância são aspectos importantes dos testes de hipóteses e métodos estatísticos, como regressão. No entanto, eles podem ser um pouco difíceis de entender, especialmente para iniciantes, e uma boa compreensão desses conceitos pode ajudar bastante no entendimento do aprendizado de máquina.



Interpretando o Valor-p

Vamos imaginar o seguinte exemplo.

Considere dois grupos dentro de uma determinada população: um grupo de controle e um grupo experimental. O grupo experimental é uma amostra aleatória retirada da população sobre a qual um experimento será realizado e, em seguida, será comparada com o grupo de controle. A diferença nos grupos é definida em termos de uma estatística de teste, como o teste t de Student (por exemplo, uma empresa deseja saber se seu produto é comprado mais por homens ou mulheres).



#### Interpretando o Valor-p

Precisamos definir dois termos adicionais: uma hipótese nula significa que não há diferença entre os dois grupos, enquanto a hipótese alternativa significa que há uma diferença estatisticamente significativa entre os dois grupos.



#### Interpretando o Valor-p

Assumiremos que a hipótese nula é verdadeira, ou seja, não há diferença entre dois grupos. Em seguida, o experimento é realizado no grupo experimental. Em seguida, é verificado se há algum efeito significativo no grupo ou não.



#### Interpretando o Valor-p

Agora vamos considerar a importância do valor-p. Precisamos calcular a probabilidade de que o efeito no grupo seja atribuído ao acaso. Se você repetir o experimento repetidamente no mesmo tamanho de amostra para o grupo experimental, qual porcentagem de tempo você vê uma diferença no grupo experimental por acaso?



#### Interpretando o Valor-p

O valor-p é usado para avaliar d<mark>e fato a fo</mark>rça d<mark>as hipóte</mark>ses nula e alternativa.

Os valores-p são números decimais entre 0 e 1, que servem como referência probabilística para pesar a hipótese.



#### Interpretando o Valor-p

Às vezes, o valor-p também é expresso como uma porcentagem.

Um valor-p maior que 0,05 significa que, em mais de 1/20 das vezes, o experimento não mostra diferença entre os dois grupos. O valor 0,05 é normalmente usado como referência e é conhecido como nível de significância (α).



#### Interpretando o Valor-p

Em um problema de regressão, você deseja que o valor-p seja muito menor que 0,05 para a variável ser considerada uma variável significativa.

Normalmente, um pequeno valor-p (<0,05) sugere que a hipótese nula deve ser rejeitada, enquanto um grande valor-p (> 0,05) indica que a hipótese nula deve não deve ser rejeitada devido à falta de evidências contra ela.

Valores iguais ou próximos a 0,05 sugerem que o Cientista de Dados deve tomar a decisão por si mesmo!



### Interpretando o Valor-p

Agora, vamos considerar o uso de valores-p em Ciência de Dados.



Interpretando o Valor-p

Usando o conjunto de dados de casas em Boston, ajustamos um modelo linear simples usando a variável preditora RM e a variável de resposta "y".

#### OLS Regression Results

| Dep. Vari | able:    |      |       | ta    | rget     | R-squ         | ared:       |         | 0.484     |
|-----------|----------|------|-------|-------|----------|---------------|-------------|---------|-----------|
| Model:    |          |      |       |       | OLS      | 200-000-00    | R-squared:  |         | 0.483     |
| Method:   |          |      | Leas  | t Squ | ares     | 100 mm 700 mm | tistic:     |         | 471.8     |
| Date:     |          | Sa   | t, 28 | 1     |          |               | (F-statisti | c):     | 2.49e-74  |
| Time:     |          |      |       |       | 5:23     |               | ikelihood:  |         | -1673.1   |
| No. Obser | vatione. |      |       | 17.5  | 506      | AIC:          | zaczinoou.  |         | 3350.     |
| Df Residu |          |      |       |       | 504      | BIC:          |             |         | 3359.     |
| Df Model: |          |      |       |       | 304      | DIC:          |             |         | 3333.     |
|           |          |      |       |       | Lance de |               |             |         |           |
| Covarianc | e Type:  |      |       | nonro | bust     |               |             |         |           |
|           |          | coef | std   | err   |          | t             | P> t        | [0.025  | 0.975]    |
| const     | -34.     | 6706 | 2     | .650  | -13      | .084          | 0.000       | -39.877 | -29.465   |
| RM        | 9.       | 1021 | 0     | .419  | 21       | .722          | 0.000       | 8.279   | 9.925     |
| Omnibus:  |          |      |       | 102   | .585     | Durbi         | n-Watson:   |         | 0.684     |
| Prob(Omni | bus):    |      |       | 0     | .000     | Jargu         | e-Bera (JB) | :       | 612.449   |
| Skew:     |          |      |       | 0     | .726     | Prob(         |             |         | 1.02e-133 |
| Kurtosis: |          |      |       | 8     | .190     | Cond.         | 2.00        |         | 58.4      |
|           |          |      |       |       |          |               |             |         |           |



#### Interpretando o Valor-p

Um pequeno valor-p indica que é improvável observar uma associação tão substancial entre o preditor e a resposta devido ao acaso, na ausência de qualquer associação real entre o preditor e a resposta.



#### Interpretando o Valor-p

Consequentemente, se vemos um pequeno valor-p podemos deduzir que há uma associação entre o preditor e a resposta. Isso significa que rejeitamos a hipótese nula, ou seja, afirmamos que existe um relacionamento entre as duas variáveis se o valor-p for pequeno o suficiente.



#### Interpretando o Valor-p

Consequentemente, se vemos um pequeno valor-p podemos deduzir que há uma associação entre o preditor e a resposta. Isso significa que rejeitamos a hipótese nula, ou seja, afirmamos que existe um relacionamento entre as duas variáveis se o valor-p for pequeno o suficiente.

No caso de um grande valor-p ded<mark>uzimos que não há uma associação entre o preditor e a resposta!</mark>



#### Interpretando o Valor-p

O valor-p representa a chance ou a probabilidade do efeito (ou da diferença) observada entre as variáveis ser devido ao **acaso**, e não aos fatores que estão sendo estudados.

| 0          |                                                     | 1            |
|------------|-----------------------------------------------------|--------------|
| Impossível |                                                     | luta certeza |
| '          |                                                     |              |
| p = 0.001  | Muito imprová <mark>ve</mark> l ser devido ao acaso | 1 em 1000    |
| p = 0.05   | Bastante improvável ser devido ao acaso             | 1 em 20      |
| p = 0.5    | Bastante provável ser devido ao acaso               | 1 em 2       |
| p = 0.75   | Muito provavelmente é devido ao acaso               | 3 em 4       |







### Data Science Academy

O Que é Regularização?



O modelo de regressão utiliza as variáveis explanatórias para explicar a variabilidade da variável resposta!

Mas o que acontece quando o número de variáveis explanatórias é muito grande?

A técnica de mínimos quadrados, nesta situação, pode não permitir previsões com precisão e nem permitir uma interpretação ideal para o modelo.





Isso significa que muitas variáveis seriam ajustadas e o modelo ficaria super estimado, com uma variância infinita, sendo inviável o método dos mínimos quadrados.



Temos basicamente 3 métodos que nos auxiliam quando o número de variáveis é muito grande ou até mesmo maior que o número de observações:

Seleção de um subconjunto de coeficientes

Reduzir a dimensão

Reduzir o valor dos coeficientes (Regularização)





Uma regressão com diversos coeficientes torna o modelo como um todo muito mais complexo e pode não ter características de interpretabilidade.



## Shirinkage Methods (Métodos de Encolhimento)

Ridge Regression

LASSO Regression

(Least Absolute Shrinkage and Selection Operator)



### Ridge Regression

A Ridge Regression é um método de regularização do modelo que tem como principal objetivo suavizar atributos que sejam relacionados uns aos outros e que aumentam o ruído no modelo (multicolinearidade).



### **Machine Learning**

### **LASSO** Regression

(Least Absolute Shrinkage and Selection Operator)

O LASSO tem o mesmo mecanismo de penalização dos coeficientes com um alto grau de correlação entre si, mas que usa o mecanismo de penalizar os coeficientes de acordo com o seu valor absoluto.













# Data Science Academy

## Regressão Logística



A regressão logística é uma técnica estatística que tem como objetivo modelar, a partir de um conjunto de observações, a relação "logística" entre uma variável resposta e uma série de variáveis explicativas numéricas (contínuas, discretas) e/ou categóricas.





A regressão logística é amplamente usada em ciências médicas e sociais, e tem outras denominações, como modelo logístico, modelo logit e classificador de máxima entropia.



### Na Regressão Logística, a variável resposta é binária:

- 1 → acontecimento de interesse (sucesso)
- 0 → acontecimento complementar (insucesso)

$$g(x) = \ln\left(\frac{\pi(x)}{1 - \pi(x)}\right)$$

$$g(x) = \ln\left(\frac{\frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}}{1 - \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}}\right) = \ln\left(\frac{\frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}}{\frac{1}{1 + e^{\beta_0 + \beta_1 x}}}\right)$$

Transformação logit

$$g(x) = \ln(e^{\beta_0 + \beta_1 x}) = \beta_0 + \beta_1 x$$

$$\uparrow$$
Logaritmo



Regressão Logística é útil para modelar a probabilidade de um evento ocorrer como função de outros fatores. É um modelo linear generalizado que usa como função de ligação a função logit.



A regressão logística é utilizada em áreas tais como:



- Em <u>medicina</u>, permite por exemplo determinar os fatores que caracterizam um grupo de indivíduos doentes em relação a indivíduos saudáveis.
- Na área de <u>seguros</u>, permite encontrar frações de clientes que sejam sensíveis a determinada política securitária em relação a um dado risco particular.
- Em instituições financeiras, pode detectar os grupos de risco para a subscrição de um crédito.
- Em <u>econometria</u>, permite explicar uma variável discreta, como por exemplo as intenções de voto em atos eleitorais.





### **Data Science Academy**

Regressão Vantagens e Desvantagens







- Simple Linear Regression
- Multiple Linear Regression
- Ridge Regression
- Lasso Regression
- Logistic Regression
- Polynomial Regression
- Stepwise Regression
- Elastic Net Regression



### Machine Learning











































### Importantes Desvantagens:

- Apenas consideram relacionamento linear
- Toma como base a média da variável dependente
- Sensível a Outliers







