Digital Logic Design Assignment 10 - EC2016-17

Priyansh Agrahari

January 4, 2021

1 Question

Assume that all the digital gates in the circuit shown in the figure are ideal, the resistor $R=10~k\Omega$ and the supply voltage is 5 V. The D flip-flops D_1 , D_2 , D_3 , D_4 and D_5 are initialized with logic values 0, 1, 0, 1 and 0, respectively. The clock has a 30% duty cycle.

Figure 1: Question figure

The average power dissipated (in mW) in the resistor R is ______

2 Solution

Let the output waveform be represented by Y. Then, we can infer from the question figure that

$$Y = Q_3 + Q_5 \tag{1}$$

2.1 Truth Table

Clk	${f Q}_1$	${f Q}_2$	${f Q}_3$	${f Q}_4$	${f Q}_5$	$\mathbf{Y} = \mathbf{Q}_3 + \mathbf{Q}_5$
0	0	1	0	1	0	0
1	0	0	1	0	1	1
2	1	0	0	1	0	0
3	0	1	0	0	1	1
4	1	0	1	0	0	1
5	0	1	0	1	0	0

Table 1: Truth Table for the Circuit Diagram given in the Question Figure

Now, using the truth table, we can make the timing diagram as given on the next page.

2.2 Timing Diagram

Figure 2: Timing Diagram for the Circuit Diagram given in the Question Figure

Here, the time 0 to 5 represent five time periods of the clock. From the timing diagram for Y, we can see that out the output voltage is non-zero for 3 time periods.

We can thus calculate the average power over time using the general formula:

$$Average\ power\ dissipated = P_{avg} = \frac{1}{T} \int_0^T VI\ dt \tag{2}$$

In the current context, we are calculating the average over 5 time periods. Hence, the equation now becomes:

$$P_{avg} = \frac{1}{5T} \int_0^{5T} VI \, dt \tag{3}$$

writing I in terms of V (5V) and R (10 $k\Omega$), we get:

$$P_{avg} = \frac{1}{5T} \frac{V^2}{R} \int_0^{5T} dt$$
 (4)

placing the value of integral, we get:

$$P_{avg} = \frac{1}{5T} \frac{V^2}{R} 3T \tag{5}$$

finally, placing the values of V and R, we get:

$$P_{avg} = \frac{3}{5} \frac{5^2}{10000} \tag{6}$$

$$P_{avg} = 1.5 \ mW \tag{7}$$