Speech emotion recognition from acoustic and text feature

Bagus Tris Atmaja bagus@jaist.ac.jp

AIS-Lab School of Information Science JAIST

Presented on Indonesian student association at Kanazawa University September 25, 2018

About Me...

- Education:
 - □ B.Eng in Engineering Physics ITS (2009)
 - □ M.Eng in Engineering Physics ITS (2012)
 - □ Research Student at Kumamoto University (2011-2012)
- Experience:
 - Shimizu Seisakusyo, Kameyama-shi, Mie-ken (2012-2014)
 - VibrasticLab, Dept.of Engineering Physics ITS (2014)
 - PhD student at Acoustic Information Science-Lab, JAIST (2017-)
 - □ Instructor at the Carpentries (2017-)
- Research interest:
 - Speech processing
 - □ Noise control
 - □ Machine condition monitoring

 $^{^{0}\}mathsf{This}$ slide .tex source can be download here: github.com/bagustris/beamer-nomi

Research Motivation

- Speech contains a variety informations: linguistics, paralinguistics and nonlinguistics information.
- Ideally, speech should convey the correct message (intelligibility) while sounding like human speech (naturalness) with the right prosody (expressiveness).
- Most speech recognition system are focused on solving the first two issues above.
- We proposed to to recognize expressiveness in speech by using linguistics (text) and paralinguistics (acoustic) features to obtain nonlinguistics (emotion) information.
- Why? Because text features can be extracted from through Automatic Speech Recognition (ASR) or Speech to Text (SST) method (Google Assistant, Siri, Alexa, Cortana, DeepSpeech).

Speech Recognition:

The ability of a machine or program to identify words and phrases in spoken language and convert them to a machine-readable format

(Speech) Emotion Recognition

Speech emotion recognition is to study the formation and change of speakers emotional

Emotion in Category

According to Ekman¹, there are six basic (facial) emotions:

- happy
- surprise
- fear
- disgust
- anger
- sad

Recent research by Jack, R². E et.al. (also supported by J.H Turner) revealed only 4 category of emotion: happy, sad, fear, anger.

¹Ekman, P., Friesen, W. V., Ellsworth, P. "Emotion in the Human Face..". Pergamon (1972).

² Jack, Rachael E., et al. Four not six: Revealing culturally common facial expressions of emotion. Journal of Experimental Psychology: General 145.6 (2016): 708.

Emotion in Dimensional VA(D) Space

Valence: Happy/Unphappy, Arousal: Activity, Dominance: Potency

To determine emotion from speech we extract acoustic features and train them in (deep) learning method.

TEO: The Teager-energy-operator (proposed by Teager, 1990) based on theory that hearing is the process of detecting energy.

How to obtain text feature?

- Given speech spectrograms (time-frequency) as input, RNN train to produce output characters directly.
- The output of the network is a matrix of character probabilities over time
- For each time step, the network outputs one probability for each character in the alphabet (likelihood of that character corresponding to whats being said in the audio at that time).

How to use text feature?

■ New Affective Norms of English Words (ANEW³) contain of 13,915 word with its valence arousal, and dominance value that can be used to predict emotion in text.

Table 6 Correlations between emotional dimensions and semantic variables reported in prior studies [degrees of freedom are based on the numbers of data points reported as N (Overlap)]

Source	Measure	N (Source)	N (Overlap)	Valence	Arousal	Dominance
a	Imageability	5,988	5,125	.161	012	.031
b	Imageability	326	318	037	.099	160
	Concreteness	326	318	.109	244	019
	Context Avail.	326	318	.196	147	.044
с	Concreteness	1,944	1,567	.105	258	.009
d	Imageability	3,394	2,906	.152	045	.006
	Familiarity	3,394	2,906	.206	028	.215
e	AoA ¹	30,121	13,709	233	062	187
	% Known ²	30,121	13,709	.094	.078	.103
f	Sensory Exp.	5,857	5,007	.067	.228	044
g	Body-Object	1,618	1,398	.203	143	.172
h	Familiarity	559	503	.272	193	.329
	Pain	559	503	456	.579	343
	Smell	559	503	.139	.052	043
	Color	559	503	.401	.052	.081

³A. B. Warriner, V. Kuperman, and M. Brysbaert, Norms of valence, arousal, and dominance for 13,915 English lemmas, Behav. Res. Methods, vol. 45, no. 4, pp. 11911207, 2013

How to use text feature? [2]

- Perform ANEW analysis to calculate VAD score from IEMOCAP⁴ dataset.
- To compute total VAD score in each utterances, we currently use mean and median method for each words in utterances that has VAD score in ANEW list.
- Compare result from ANEW analysis with IEMOCAP evaluation.
- Expected result: Score of CCC, CC and RMSE.

⁴C. Busso et al., IEMOCAP: Interactive emotional dyadic motion capture database, Lang. Resour. Eval., vol. 42, no. 4, pp. 335359, 2008.

How to train speech-text feature?

- This network consist of two part, feature extraction part and LSTM-RNN part.
- In this scenario, we extracted all feature from acoustic and text as described in the previous page.
- The extracted features are concatenated to feed 2 layer LSTM and model the contextual information in the label.

How to evaluate the system?

We use the following three different objective function to measure the performance. x is each VAD (valence, arousal, dominance) score from dataset, and y is predicted each VAD score from our algorithm.

■ Concordance Correlation Coefficient (CCC):

$$\rho_c = \frac{2\rho\sigma_x\sigma_y}{\sigma_x^2 + \sigma_y^2 + (\mu_x - \mu_y)^2} \tag{1}$$

Pearson Correlation Coefficient (CC):

$$\rho_{xy} = \frac{cov(x,y)}{\sigma_x \sigma_y} \tag{2}$$

■ Root mean squared error (RMSE):

$$RMSE = \sqrt{\frac{\sum_{n=1}^{N} (x - y)^2}{N}}$$
 (3)

What's the contribution of this research?

- The use of deep learning technique (LSTM-RNN/CNN) for dimensional speech emotional recognition.
- The number of dominant feature extracted from bag-of-acoustic-words (BoAW) and bag-of-text-words (BoTW) that contributes significantly to speech emotion recognition performance by feature selection algorithm.
- A VAD-based text emotion recognition method by (1) ANEW analysis, and (2) machine learning algorithm.
- A method to integrate acoustic and text feature for speech emotion recognition.

Terima Kasih

Current works: Cross-cultural Video/Audio Emotion Recognition

- Task: Given German utterances with its label (Valence, arousal, and liking score) to predict Hungarian utterances emotion score.
- Proposed solution: Using LSTM algorithm to train valence, arousal and liking from German language to predict its dimension in Hungarian from different number of acoustic and visual features.
- Network architecture:

Current works: Cross-cultural Video/Audio Emotion Recognition

Table 1: Parameters in LSTM network

Value		
34		
0.001		
50		
128		
64		
False		
0.2		

