P. Maurer

ENS Rennes

Recasages: 101, 103, 104.

Référence : Perrin, Algèbre & Serre, Groupes finis.

Théorèmes de Sylow

Version de Wielandt

Lemme 1. Soit p un nombre premier, $r \in \mathbb{N}$ et $m \le n$. On a la congruence :

$$\left(\begin{array}{c} p^r n \\ p^r m \end{array}\right) \equiv \left(\begin{array}{c} n \\ m \end{array}\right) (\operatorname{mod} p)$$

Démonstration. Dans l'anneau $\mathbb{F}_p[X]$, on a les égalités :

$$\sum_{\ell=0}^{p^r n} \binom{p^r n}{\ell} X^{\ell} = (X+1)^{p^r n}$$
$$= (X^{p^r} + 1)^n$$
$$= \sum_{\ell=0}^{n} \binom{n}{\ell} X^{p^r \ell}$$

En identifiant les coefficients des monômes de degré $p^r\ell$, on obtient le résultat souhaité.

Théorème 2. Soit G un groupe fini d'ordre $n = p^{\alpha} m$ avec $p \nmid m$. Alors :

- i. G admet un p-Sylow.
- ii. Les p-Sylow de G sont conjugués entre eux.
- iii. En notant k le nombre de p-Sylow, on a $k \equiv 1[p]$ et k|m.

Démonstration.

i. On considère l'ensemble X des parties de G de cardinal p^{α} et l'ensemble Y des p-Sylows de G.

On fait opérer G sur X par translation à gauche. Soit $E \in X$, et G_E le stabilisateur de E pour cette action. Pour tout $g \in G_E$, on a gE = E donc à $t \in E$ fixé, l'application $\varphi_t : g \in G_E \mapsto gt$ est à valeurs dans E, et elle est injective car si gt = ht, on a $h^{-1}gt = t$ et comme $t \in G$, t est inversible donc h = g. On en déduit que $|G_E| \leq p^{\alpha}$.

Montrons qu'on a de plus $|G_E| = p^{\alpha} \iff E = Sx$ avec $x \in G$ et $S \in Y$, et que dans ce cas, $G_E = S$.

 \Longrightarrow Supposons que G_E ait p^{α} éléments. Comme c'est un sous-groupe de G, c'est donc un p-Sylow, donc $G_E \in Y$. De plus, pour $t \in E$, l'application φ_t définie précédemment est alors une bijection, donc pour tout $g \in G_E$, il existe un unique $h \in G_E$ tel que ht = g: on a donc $G_E \subset G_E t$, et l'inclusion réciproque est claire.

Eciproquement, le stabilisateur de Sx pour $S \in Y$ et $x \in G$ est S, en particulier on a $|G_{S_x}| = p^{\alpha}$.

On considère alors l'équation aux classes :

$$|X| = \sum_{E \in X} \frac{|G|}{|G_E|} = \left(\sum_{\substack{E \in X \\ |G_E| = p^{\alpha}}} \frac{|G|}{|S|} + \sum_{\substack{E \in X \\ |G_E| < p^{\alpha}}} \frac{|G|}{|G_E|} \right) \equiv |Y| m \pmod{p} \quad (\star)$$

Déterminons le cardinal de X directement, via l'utilisation du **Lemme 1** (1):

$$|X| = |\{H \subset G : |H| = p^{\alpha}\}|$$

$$= {\binom{p^{\alpha} m}{p^{\alpha}}}$$

$$\equiv {\binom{m}{1}} \pmod{p}$$

$$\equiv m \pmod{p}$$

Via (\star) , on a donc l'identité $m \equiv |Y| m \pmod{p}$, i.e :

$$p \mid m(|Y|-1)$$

Comme p est premier avec m, il vient que $|Y| \equiv 1 \pmod{p}$, ce qui prouve l'existence d'un p-Sylow (en tant qu'élément de $Y \neq \emptyset$), ainsi que la congruence de iii.

ii. Soit $S \in Y$ et H un p-sous-groupe de G. H opère sur le quotient $G/S = \{gS : g \in G\}$ de S sous G.

On applique la formule des classes, et il vient :

$$|G/S| = \sum_{\text{Orb}(gS)} \frac{|H|}{|\text{Stab}(gS)|}$$

Comme |G/S|=m et $p\nmid m$, il existe $g\in G$ tel que $|\operatorname{Stab}(gS)|=|H|$. On a donc, pour ce g donné, HgS=gS, donc $H\subset gSg^{-1}$. Si H est de plus un p-Sylow, l'égalité des cardinaux donne $H=gSg^{-1}$, i.e les Sylow sont conjugués entre eux.

iii. D'après ce qui précède, G agit transitivement par conjugaison sur l'ensemble des p-Sylow Y, donc l'équation aux classes s'écrit simplement $|Y| = |G|/|\operatorname{Stab}(S)|$ où $S \in Y$. En particulier, |Y| doit diviser |G|, donc puisque $|Y| \equiv 1 \pmod{p}$, |Y| divise m, ce qui conclut la preuve. \square

⁽¹⁾: Il est possible de se passer du **Lemme 1** en appliquant ce qui précède à $\mathbb{Z}/n\mathbb{Z}$ avec $n=p^{\alpha}m$. En effet, le groupe $\mathbb{Z}/n\mathbb{Z}$ admet un unique sous-groupe d'ordre d pour d divisant n, en particulier, il admet un unique p-Sylow, donc on a |Y|=1, donc $|X|\equiv m[p]$ dans $\mathbb{Z}/n\mathbb{Z}$ d'après (\star). On remarque alors que |X| ne dépend que du cardinal du groupe et non pas de sa structure, donc l'égalité $|X|\equiv m[p]$ reste valable dans n'importe quel groupe d'ordre $p^{\alpha}m$.