1

NCERT 11.9.3.Q10

EE23BTECH11224 - Sri Krishna Prabhas Yadla*

Question: Find the sum to indicated number of terms in the geometric progression $x^3, x^5, x^7, ...n$ terms (if $x \neq \pm 1$).

Solution: Let S(n) be the sum of the first n terms in G.P starting from x(0). We have

$$x(n) = x(0) \cdot r^n \tag{1}$$

$$S(n) = \sum_{k=0}^{n-1} x(k)$$
 (2)

$$= x(0)\frac{r^{n} - 1}{r - 1} \text{ (for } r \neq 1)$$
 (3)

Input Parameters	Values
<i>x</i> (0)	x^3
<i>x</i> (1)	x ⁵
x(2)	x^7
Number of terms	n
'	TABLE 0

GIVEN INPUTS

$$x(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} X(z)$$

$$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
 (7)

$$=\sum_{n=0}^{\infty}x(n)z^{-n}$$
 (8)

$$= \sum_{n=0}^{\infty} x(0)r^n z^{-n}$$
 (9)

$$=\frac{x(0)}{1-rz^{-1}}\tag{10}$$

$$=\frac{x^3}{1-x^2z^{-1}}\tag{11}$$

The z transform is defined only when $|x^2z^{-1}| < 1$. So, ROC : $|z| > x^2$.

Hence the common ratio, r, can be calculated by

$$r = \frac{x(1)}{x(0)} = \frac{x^5}{x^3} = x^2 \tag{4}$$

Since $x \neq \pm 1$, $r \neq 1$,

$$S(n) = x(0)\frac{r^n - 1}{r - 1} \tag{5}$$

$$\therefore S(n) = x^3 \frac{x^{2n} - 1}{x^2 - 1} \tag{6}$$