Национальный исследовательский университет ИТМО Факультет программной инженерии и компьютерной техники Направление программная инженерия Образовательная программа системное и прикладное программное обеспечение

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 3

курса «Основы профессиональной деятельности»

по теме: «Выполнение циклических программ» Вариант № 9019

Выполнил студент:

Шубин Егор Вячеславович

группа: Р3109

Преподаватель:

Лектор: Клименков С. В.,

Практик: Ткешелашвили Н. М.

Содержание

Лабораторная работа № 3. Выполнение циклических программ
1. Задание варианта № 9019
2. Выполнение задания
1. Текст исходной программы:
2. Описание программы:
3. Получение новых чисел
4. Таблица трассировки:
3. Вывод

Лабораторная работа № 3 Выполнение циклических программ

1. Задание варианта № 9019

Лабораторная работа №3

По выданному преподавателем варианту восстановить текст заданного варианта программы, определить предназначение и составить описание программы, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы.

Ход работы, содержание отчета и контрольные вопросы описаны в методических указания:

Введі	9019		
298:	02A9	2A6:	829A
299:	0200	2A7:	CEFA
29A:	E000	2A8:	0100
29B:	E000	2A9:	F400
290:	+ 0200	2AA:	039B
29D:	EEFD	2AB:	028A
29E:	AF03	I	
29F:	EEFA		
2A0:	AEF7	I	
2A1:	EEF7	I	
2A2:	AAF6	l	
2A3:	F302	I	
2A4:	4EF6	1	
2A5:	EEF5	İ	

Рис. 1.1: Задание

2. Выполнение задания

2. 1. Текст исходной программы:

Адрес	Код	Мнемоника	Комментарии			
	команды					
298	02A9	FirstIndex	Адрес первого элемента			
299	0200	LastIndex	Адрес текущего элемента			
29A	E000	ArrayLen	Кол-во элементов массива			
29B	E000	Result	Результат вычислений			
29C	0200	CLA	Очистить аккумулятор			
29D	EEFD	ST IP-2	Прямая относительная выгрузка AC -> 29B			
29E	AF03	LD #03	Прямая загрузка $0003 ext{ -> AC}$			
29F	EEFA	ST IP-5	Прямая относительная выгрузка $AC -> 29A$			
2A0	AEF7	LD IP-8	Прямая относительная загрузка $\mathrm{MEM}(298) -> \mathrm{AC}$			
2A1	EEF7	ST IP-8	Прямая относительная выгрузка $AC -> 299$			
2A2	AAF6	LD (IP-9)+	Косвенная автоинкрементная загрузка MEM(299)+1 -> AC			
2A3	F302	BPL IP+2+1	Если (N==0) IP+3 -> IP			
2A4	4EF6	ADD IP-9	Прямое относительное сложение $AC+MEM(29B)$ -> AC			
2A5	EEF5	ST IP-10	Прямая относительная выгрузка AC -> 29B			
2A6	829A	LOOP 29A	MEM(29A)-1 -> 29A (M<0): IP+1 -> IP			
2A7	CEFA	JUMP IP -5	Прямой относительный IP-5 -> IP			
2A8	0100	HLT	Остановка программы			
2A9	F400	Array[0]	Элемент массива			
2AA	039B	Array[1]	Элемент массива			
2AB	028A	Array[2]	Элемент массива			

Таблица 1.1: Текст исходной программы

2. 2. Описание программы:

- Предназначение программы: Перебор элементов массива и нахождение суммы отрицательных элементов.
- Область представления программы: FirstIndex, LastIndex - 11 разрядные Array[0], Array[1], Array[2], ... Array[ArrayLen], ArrayLen, Result - 15 разрядные, знаковые
- Область допустимых значений программы: $FirstIndex \in [0; 298 ArrayLen] \lor [2A9; 7FF]$

 $LastIndex \in [FirstIndex; FirstIndex + ArrayLen - 1]$

 $ArrayLen \in [1, 2^7 - 1]$

 $Result \in [-2^{15}; 0]$

 $Array[0], Array[1], Array[2], ... Array[ArrayLen] \in [-2^{15}; 2^{15}-1]$

2. 3. Получение новых чисел

FirstIndex = 100

ArrayLen = 4

Array = [-5, 16, 0, -182]

R = -187 = FF45

2. 4. Таблица трассировки:

Адр	Знач	IP	CR	AR	DR	SP	BR	AC	NZVC	Адр	Знач
XXX	XXXX	XXX	XXXX	XXX	XXXX	XXX	XXXX	XXXX	XXXX	XXX	XXXX
29C	0200	29D	0200	29C	0200	000	029C	0000	0100		
29D	EEFD	29E	EEFD	29B	0000	000	FFFD	0000	0100	29B	0000
29E	AF04	29F	AF04	29E	0004	000	0004	0004	0000		
29F	EEFA	2A0	EEFA	29A	0004	000	FFFA	0004	0000	29A	0004
2A0	AEF7	2A1	AEF7	298	0064	000	FFF7	0064	0000		
2A1	EEF7	2A2	EEF7	299	0064	000	FFF7	0064	0000	299	0064
2A2	AAF6	2A3	AAF6	064	FFFB	000	FFF6	FFFB	1000	299	0065
2A3	F302	2A4	F302	2A3	F302	000	02A3	FFFB	1000		
2A4	4EF6	2A5	4EF6	29B	0000	000	FFF6	FFFB	1000		
2A5	EEF5	2A6	EEF5	29B	FFFB	000	FFF5	FFFB	1000	29B	FFFB
2A6	829A	2A7	829A	29A	0003	000	0002	FFFB	1000	29A	0003
2A7	CEFA	2A2	CEFA	2A7	02A2	000	FFFA	FFFB	1000		
2A2	AAF6	2A3	AAF6	065	0010	000	FFF6	0010	0000	299	0066
2A3	F302	2A6	F302	2A3	F302	000	0002	0010	0000		
2A6	829A	2A7	829A	29A	0002	000	0001	0010	0000	29A	0002
2A7	CEFA	2A2	CEFA	2A7	02A2	000	FFFA	0010	0000		
2A2	AAF6	2A3	AAF6	066	0000	000	FFF6	0000	0100	299	0067
2A3	F302	2A6	F302	2A3	F302	000	0002	0000	0100		
2A6	829A	2A7	829A	29A	0001	000	0000	0000	0100	29A	0001
2A7	CEFA	2A2	CEFA	2A7	02A2	000	FFFA	0000	0100		
2A2	AAF6	2A3	AAF6	067	FF4A	000	FFF6	FF4A	1000	299	0068
2A3	F302	2A4	F302	2A3	F302	000	02A3	FF4A	1000		
2A4	4EF6	2A5	4EF6	29B	FFFB	000	FFF6	FF45	1001		
2A5	EEF5	2A6	EEF5	29B	FF45	000	FFF5	FF45	1001	29B	FF45
2A6	829A	2A8	829A	29A	0000	000	FFFF	FF45	1001	29A	0000
2A8	0100	2A9	0100	2A8	0100	000	02A8	FF45	1001		

Таблица 1.2: Трассировка программы

3. Вывод

Во время выполнения данной лабораторной работы я научился работать с циклами и ветвлениями в БЭВМ. Разобрался, как использовать разные режимы адресаций в программе. Увидел, как можно работать с массивами в БЭВМ