Matematica e BioStatistica con Applicazioni Informatiche Esercitazione in aula del 18 dicembre 2018

Quesito 1. Si considerino le funzioni f(x) = 7x e $g(x) = 4x^3 + 4x$

- 1. Calcolare gli integrali indefiniti $\int f(x)dx \in \int g(x)dx$.
- 2. Determinare l'area della parte di piano compresa tra le funzioni f e g.

Risposta

$$\int f(x)dx = \frac{7x^2}{2} + C, \ \int g(x)dx = \frac{4x^4}{4} + \frac{4x^2}{2} + C.$$

Risposta 1

Il valore dell'area è $\frac{9}{8}$.

Risposta 2

Quesito 2. Si considerino le funzioni $f(x) = x^2$ e $g(x) = -x^3 - x^2$

- 1. Calcolare gli integrali indefiniti $\int f(x)dx \in \int g(x)dx$.
- 2. Determinare l'area della parte di piano compresa tra le due funzioni nell'intervallo [-2,0].

Quesito 3. Si consideri la funzione $v(t) = 3t^2 - t + 1$ che descrive la velocità di un corpo ad ogni istante di tempo t.

- 1. Determinare lo spostamento netto di tale corpo nell'intervallo di tempo [1,6].
- 2. Determinare lo spostamento neto di un corpo la cui velocità è descritta dalla funzione v(t/2).

Quesito 4. Si consideri una funzione f(x) tale che $\int_1^4 f(2x)dx = 6$

- 1. Determinare l'area sottesa dalla funzione f(x) nell'intervallo [2,8].
- 2. Determinare l'area sottesa dalla funzione f(3x) nell'intervallo [6, 24].

Quesito 5. Si consideri la funzione $f(x) = \sqrt[3]{x}$.

- 1. Scrivere l'approssimazione lineare di f(x) in 1.
- 2. Usare il risultato precedente per approssimare i valori di $\sqrt[3]{1.1}$ e $\sqrt[3]{1.2}$.

Risposta

L'approssimazione lineare di f(x) in 1 è data da f'(1)(x-1)+f(1), essendo $f'(x)=\frac{1}{3\sqrt[3]{x^2}}$ si ha $\frac{1}{3}x+\frac{2}{3}$ Risposta 1

$$\sqrt[3]{1.1} \cong 1.0\overline{3} \text{ e } \sqrt[3]{1.2} \cong 1.0\overline{6}$$

Risposta 2

Formulario: se $X \sim B(\mathtt{n},\mathtt{p})$ allora E(X) = np se $X \sim NB(\mathtt{n},\mathtt{p})$ allora E(X) = n(1-p)/p

Si assuma noto il valore delle seguenti funzioni della libreria scipy.stats di Python

 $\mathtt{binom.pmf(k, n, p)} = \Pr \left(X = \mathtt{k} \right) \, \mathrm{dove} \, \, X \sim B(\mathtt{n}, \mathtt{p})$

binom.cdf(k, n, p) = $\Pr(X \leq k)$ dove $X \sim B(n, p)$

bimom.ppf(q, n, p) = k dove k è tale che $\Pr(X \leq k) \cong q \text{ per } X \sim B(n,p)$

nbinom.xxx(k, n, p), è l'analogo per $X \sim NB(n, p)$.

norm.xxx(z), è l'analogo per $Z \sim N(0,1)$.

t.xxx(t, ν), è l'analogo per $T \sim t(\nu)$.