Matrix Multiplication-Driven Repulsive Fields for Manipulator Kinematic Obstacle Avoidance

Jakob Baumgartner¹ and Gregor Klančar²

Abstract— ADD

I. INTRODUCTION

A. Motion Planning

Kinematic redundancy [41], [42] enables a manipulator to follow a predefined task space trajectory using the endeffector (EE), while simultaneously, optimising for an additional task with the remaining movement capacity without impacting the trajectory adherence. This is possible because the robot's degrees of freedom (DOF) go beyond what is required to perform the primary task. Consequently, the robot can adopt different joint configurations optimised according to the secondary task while performing the primary task. Common secondary tasks [43] include avoiding singularities, optimising the manipulability measure, minimising joint torques and avoiding obstacles in the operating space.

The task of finding the joint trajectories of a manipulator is called motion planning [1]. It consists of finding a sequence of joint configurations for a robot so that the robot can move along this path from its initial configuration to the goal configuration without colliding with itself, static obstacles or other agents in the environment. In addition to collision avoidance, motion planning for manipulators can optionally take into account various constraints, such as position, velocity, acceleration or jerk constraints for the joint angle or end effector, precision of the end effector with respect to position and orientation, stability of the manipulator, avoidance of singularities, or any number of other criteria.

There are numerous methods for planning manipulator movements [33], [34], they can rougly be seperated into global and local approaches. Global, sampling-based, methods such as PRM [35], RRT* [36], [38], RRT-Connect [40], Informerd RRT* [39], BIT* [37] and others offer a globally optimal solution based on a global search in configuration space. However, the generated trajectories are not always smooth or optimal, and the performance of the methods may be insufficient for real-time operation.

Local motion planning approaches employ optimization techniques, two common ones are inverse kinematics [11], [20], that is based on finding a least squares solution of the manipulator joint velocities, and quadratic programming (QP) [2], [3], [4], [5]. Both methods are fast, suitable for real-time applications in dynamic environments and provide smooth solutions. However, since they do not plan further than one step ahead, they tend to get stuck in local minima.

Therefore, they are often combined with a higher-level planner, for global static environment based motion path planning, while local optimisation takes dynamic environment changes into account. In the following text we will focus on inverse kinematics based approaches.

B. Kinematic Obstacle Avoidance

Various researchers have adopted different approaches to kinematic avoidance, as detailed in [12], [21].

Colbaugh and Glass (1989) [13], [14] tackled this problem in a two-step process. Initially, they calculated the robot's end-effector trajectory. Subsequently, they used optimization to enhance the robot's dynamic response during trajectory execution and for tasks like obstacle avoidance.

Sciavicco and Siciliano [16], [17], as well as Egeland [18], independently introduced the concept of task-space augmentation, later revisited by Searji [19]. This method involves extending the primary task Jacobian with the secondary task Jacobian into a square matrix, yielding a singular solution.

Maciejewski and Klein (1985) [11], and Nakamura and Hanafusa (1987) [20], presented the concept of task prioritization and a null space for avoidance. In this framework, the secondary task is restricted to velocities that do not directly affect the primary task's movement. Their method calculates avoidance joint velocities based on the minimum distance between a point on the manipulator and an avoidance point, object, or obstacle. Žlajpah [23] improved the concept by proposing a reduced operational space formulation, that reshapes the Jacobain of the avoidance task from three cartesian axis to only the direction of obstacle avoidance. Petrič [24] suggested a way to smoothly transition between avoidance and trajectory following tasks.

C. Artificial Potential Field

These approaches typically do not focus on the environmental context, often representing it as geometric primitives and then calculating the distance between these primitives and the lines describing the manipulator.

Khatib [15] proposes the concept of an Artificial Potential Field. This field consists of a repulsive component that deflects the end effector away from obstacles, depicted as geometric primitives, and an attractive component that draws the manipulator towards its target. In the following years many different modifications and improvement of the original APF idea have been proposed, often focused on removal of local minimas in the potential field. Khim and Khosla [22] suggested the use of harmonic functions to solve the problem of local minima. Pinto et al. [25] proposes to

vary the field based on the distance of robot from obstacles to fill the local minima. Many researchers tried using APF as a heuristic to better guide sampling based approaches [27], [28], [29].

Many of the recent works focus on use of a variation of artificial potential field to plan motion of the manipulator. Xia et al. [31] uses a variation of APF for manipulator motion [31]. Park et al. [61] used a numerical Jacobian in combination with APF for motion planning. Zhang et al. [60] proposes dynamic repulsive field based on direction and speed between point on robot and obstacle, it also suggests decision making force that moves the robot away from certain local minima. Chen et al. proposes an application using APF in joint space and a variable kinematic optimization step [32]. Long [26] suggests creating motion plan of the manipulator using APF, he extends it using RRT to calculate virtual attractive point for the robot to move towards in case of local minima. Zhu et al. [30] proposes use of APF in combination with MPC, to plan in environment with dynamic obstacles.

In dynamic environments, a robot manipulator must swiftly respond to emerging obstacles. Our approach enables the robot to determine safe movement directions and velocities by real-time assessment of nearby space for obstacles.

In 3D graphics, a voxel is like a tiny cube in a grid that makes up the 3D space. We use voxels to represent the workspace of the robot, each voxel has a value that tells us if it's probabilistically empty or occupied. A zero means empty, and a one means definitely something is there, with values in between showing varying levels of certainty.

The occupancy grid of voxels can be set in advance to match the layout of the space. We can also change the values in the voxels if we know where other objects or agents are moving. Besides pre-setting, we can use depth sensors to detect what's around.

Our method calculates repulsive velocities from existing occupancy voxel grid, which are vectors that guide the robot on where to go by pointing away from potential collisions. These vectors gain strength as the robot approaches an obstacle, signaling an urgent need to maneuver to safety. Conversely, when the robot is positioned at an equal distance from obstacles in the vicinity—safely away from all potential collisions—the repulsive velocities weaken because there's no immediate need to move.

Repulsive velocities tell the agent in which direction to move, so that it avoids nearby obstacles. These velocities drop to zero when the agent maintains a minimum safe distance from obstacles, and rise to their highest when it nears an obstacle, facilitating immediate evasive action. As the repulsive field calculation is locally based, it will also go to zero when the agent is surrounded by all directions, equally spaced from all sides. That is, it is in the best local minima away from all the obstacles in its proximity.

II. RELATED WORKS

III. REPULSIVE FIELD CALCULATION

This section introduces our novel approach for calculating repulsive fields, a critical component in enabling robots to detect and avoid obstacles in real-time. By leveraging a voxel-based representation of the surrounding space, our method dynamically assesses potential collision threats and calculates directional repulsive velocities. These velocities are essential for guiding the robot away from obstacles, ensuring smooth and safe navigation through complex environments. Our innovative use of kernel convolution methods allows for the precise calculation of avoidance velocities, providing a robust solution for obstacle avoidance that can be integrated seamlessly into robotic control systems. The following subsections delve into the technical details of our approach, including the mapping of Cartesian space to a discrete occupancy grid, kernel selection for optimized field calculation, and the application of tri-linear interpolation for smooth velocity transitions.

A. KERNELS AND THEIR MATRIX APPLICATIONS

The fundamental concept of our directional kernels lies in computing the repulsive field individually for each direction within the Cartesian coordinate system.

Our kernels are designed as three-dimensional matrixes with a primary kernel axis aligned along a specific Cartesian direction, corresponding to the calculated repulsive velocity. The two secondary kernel axes are orthogonal to this primary axis. The distribution of values along the primary axis is inversely symmetric, exhibiting positive values on one side and negative values on the other, with the zero valued cell in the center of the kernel, where jump between max positive and max negative magnitude is. The function of the increase in magnitude along the primary axis of the kernel defines the shape of the repulsive velocity field, determining how the repulsive velocity changes as the agent approaches an obstacle. Moreover, it is essential for the magnitudes at the kernel's periphery to be minimal, promoting a smooth increase in repulsive velocity when approaching the obstacle rather than a sudden spike.

We introduce two distinct distributions for the primary axis weights, although other distributions could also be applicable. The selection of weight distribution is contingent on the desired profile of repulsive velocities within the Artificial Potential Field (APF).

The inaugural proposed function adheres to a mirrored normal or Gaussian distribution, wherein adjusting the standard deviation (σ) modulates the rate at which field values escalate as obstacles are approached.

The terms $\Delta i = c_i - i$, $\Delta j = c_j - j$, and $\Delta k = c_k - k$ denote the displacement count from the matrix's central field, where the field components are calculated, in their respective coordinate directions.

$$w_{\Delta i} = \begin{cases} e^{-\frac{\Delta i^2}{2\sigma^2}} / (\sigma \sqrt{2\pi}) & \text{if } \Delta i > 0\\ 0 & \text{if } \Delta i = 0\\ -e^{-\frac{\Delta i^2}{2\sigma^2}} / (\sigma \sqrt{2\pi}) & \text{if } \Delta i < 0 \end{cases}$$
(1)

Another distribution we used is mirrored linear, where the $\Delta i_{max} = \lfloor \frac{\mathrm{range}}{\Delta \mathrm{R}} \rfloor$ is the rounded down half length of the primary axis kernel.

$$w_{\Delta i} = \begin{cases} \frac{\Delta i_{max} - \Delta i}{\Delta i_{max}} & \text{if } \Delta i > 0\\ 0 & \text{if } \Delta i = 0\\ \frac{\Delta i_{max} + \Delta i}{\Delta i_{max}} & \text{if } \Delta i < 0 \end{cases}$$
 (2)

The length i_{max} of the primary axis is critical, as it dictates the detection range for obstacles. Longer kernels can detect obstacles further away from the robot, essentially extending the 'safety zone' around the robot. If the primary axis is too long, it can lead to extra calculations and may cause the robot to unnecessarily avoid obstacles that aren't in its immediate path, making its movement and path planning less efficient.

If the matrix would be only 1 field width and height the field would work kind of as ray tracing in each of the main cartesian coordinate directions. Since our need is to detect also obstacles that dont align perfectly along the cartesian direction, it is important that our matrixes have width and height. However as we want bigger repulsive field when the obstacle is head on in the direction than when the obstacle is off the cardinal direction, we propose the following multiplicator, to account for the off direction obstacles.

The length $\Delta j_{max} = \lfloor \frac{\text{width}}{2\Delta R} \rfloor$ of the orthogonal axes influences the peripheral detection range for obstacles. Excessively wide kernels may generate repulsive velocities for objects that are not in the path of the robot, whereas too narrow kernels might only detect obstacles aligned directly with the Cartesian direction in the point of interest. When selecting the width and height of the kernel, we must consider the density of the neighboring points of interest on the agent, ensuring that the combination of kernels adequately cover the entire agent's surrounding area.

For point-based agents, such as quadcopters, it is practical to align the dimensions of each matrix—length, width, and height—to be identical. This configuration ensures uniform coverage of the spherical area surrounding the agent and reduces the risk of blind spots that might occur when obstacles are close to the agent but situated between the discrete kernels.

For smooth transitions when approaching the obstacles we propose the following sinus based function for the orthagonal axis distributions. The proposed equation is the same for both of the orthagonal matrix axis.

$$w_{\Delta j} = \begin{cases} \sin(|\Delta j| \pi/(2\Delta j_{max})) & \text{if } \Delta j < 0 \text{ or } \Delta j > 0\\ 1 & \text{if } \Delta j = 0 \end{cases}$$
(3)

Another option is to use linearly falling weights.

$$w_{\Delta j} = \begin{cases} \frac{\Delta j_{max} - \Delta j}{\Delta j_{max}} & \text{if } \Delta j < 0 \text{ or } \Delta j > 0\\ 1 & \text{if } \Delta j = 0 \end{cases}$$
 (4)

Finally we get three matrix kernels, one for each of the three coordinate axis directions by multiplieing weights components for primary and orthagonal axis.

$$w_{\Delta i \Delta j \Delta k} = w_{\Delta i} * w_{\Delta j} * w_{\Delta k} \tag{5}$$

Following the establishment of repulsive kernel weights, kernel multiplication is employed to ascertain the repulsive velocity components within Cartesian space. We select a corresponding segment from the obstacle grid, aligning in size and centered around the point of interest (POI) on the robot, where we want to calculate the repulsive velocities. This results in two identically sized 3D matrices: one serving as a "window" into the obstacle grid (A_d) and the other as the representative kernel (K_d) .

Positioning of the agent at the edge of the known voxel grid necessitates a strategic decision regarding the window's boundary elements. These elements, located beyond the matrix's spatial domain, can either be considered vacant—encouraging the robot to explore these new areas—or occupied—thereby deterring the robot from exiting the mapped grid space.

Applying the Hadamard (element-wise) product to the segment of the obstacle grid G_d and the kernel W_d results in a new matrix for each Cartesian direction ($d \in \{x,y,z\}$). By summing over all values in this resultant matrix, we calculate the repulsive velocity component for that specific direction. This process is independently conducted for each Cartesian coordinate, ultimately yielding the comprehensive repulsive velocity vector $\vec{v}_i = [v_{x_i}, v_{y_i}, v_{z_i}]$.

$$v_d = \sum_{i,j,k} (G \odot W)_{ijk} = \sum_i \sum_j \sum_k g_{\Delta i \Delta j \Delta k} \ w_{\Delta i \Delta j \Delta k} \ (6)$$

PLOT: kernel 2D images

B. 3D INTERPOLATION

The occupancy grid's representation of the robot's environment is inherently discrete, possessing finite resolution, in contrast to the continuous nature of Cartesian space. The approximation or rounding necessary to transition from Cartesian coordinates to discrete grid representations may introduce discontinuities in the calculated repulsive field. To counteract this, tri-linear interpolation is utilized, facilitating a smooth transition to a continuous repulsive field value, as illustrated in Fig. 1.

Maintaining a smooth change in velocity contributions to the robot is crucial. However, the discrete nature of our obstacle grid presents a challenge in achieving complete continuity. While enhancing the obstacle grid's resolution could theoretically yield a more continuous behavior, practical limitations arise due to the finite resolution of sensors and the grid representation itself. Moreover, an increase in resolution would inevitably require more memory for storing the occupancy grid and additional computational resources. Thus, to ensure velocity continuity across adjacent cells within the obstacle grid for a point of interest (POI), trilinear interpolation is employed.

We start by scalling the coordinates of POI into the grid koordinate system, by multiplying it by grid resolution (eq. 7).

$$\vec{P} = \vec{p}_{POI} \times \Delta R \tag{7}$$

We get the indexes of the surrounding cells by first scaling the POI position by grid resolution and than rounding the position to the nearest lower and upper integer positions (eq. 8).

$$\vec{P} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \vec{p}_{POI}(1) \end{bmatrix} & \begin{bmatrix} \vec{p}_{POI}(1) \end{bmatrix} \\ \begin{bmatrix} \vec{p}_{POI}(2) \end{bmatrix} & \begin{bmatrix} \vec{p}_{POI}(2) \end{bmatrix} \\ \begin{bmatrix} \vec{p}_{POI}(3) \end{bmatrix} & \begin{bmatrix} \vec{p}_{POI}(3) \end{bmatrix} \end{bmatrix}$$
(8)

Once we got the indexes of the eight surrounding cells of our POI, we use our kernel matrix multiplication method, to calculate the 3x1 repulsive velocity vectors for all the cells (eq. 9).

$$\vec{V}rep_{xyz,ijk} = \text{calc_rep_vel}(X[i], Y[j], Z[k]) \quad \forall i, j, k \in \{1, 2\}$$
(9)

Trilinear interpolation method works on a 3-dimensional regular grid. Before we can start with the interpolation we need to calculate the distance between POI and smaller coordinates of the cells where we calculated the repulsive velocities (eq. 10). The calculated repulsive velocity values are located at the centers of the cells. Therefore, before interpolation, we shift the values of the cells coordinates by half the resolution of the obstacle grid for each direction. That is, the cell coordinates are same as x,y,z, cell index and a half multiplied by grid resolution ΔR .

$$\Delta \vec{P} = \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} = \begin{bmatrix} \frac{(P_x - (X(1) + \frac{1}{2}\Delta R))}{(X(2) - X(1))} \\ \frac{(P_y - (Y(1) + \frac{1}{2}\Delta R))}{(Y(2) - Y(1))} \\ \frac{(P_z - (Z(1) + \frac{1}{2}\Delta R))}{(Z(2) - Z(1))} \end{bmatrix}$$
(10)

The result of the interpolation is agnostic of the order of the operations. We first interpolate along the x-axis, followed by along the y-axis and finally along z-axis.

$$\vec{V}rep_{xyz,jk} = \vec{V}rep_{xyz,0jk}(1 - \Delta x) + \vec{V}rep_{xyz,1jk} \Delta x \quad \forall j,k$$
(11)

equations break column

$$\vec{V}rep_{xyz,k} = \vec{V}rep_{xyz,0k}(1-\Delta y) + \vec{V}rep_{xyz,1k} \Delta y \quad \forall k \in \{1, (12)\}$$

$$\vec{V}rep_{xuz} = \vec{V}rep_{xuz,0}(1 - \Delta z) + \vec{V}rep_{xuz,1} \Delta z$$
 (13)

The end product is a uniformly smooth repulsive velocity field, facilitating continuous transitions across discrete points determined within the obstacle grid.

Fig. 1. Repulsive field generation via convolutional kernels. Left: Original repulsive fields in X (top) and Y (bottom) directions. Right: Corresponding fields using interpolation, showcasing enhanced smoothness.

IV. MANIPULATOR KINEMATICS

A. INVERSE KINEMATIC CONTROL

The desired movement of the end-effector is achieved by using inverse kinematics velocity control scheme with task prioritisation.

$$\dot{\vec{q}} = \mathbf{J}^{+} \xi_{p} \tilde{\mathbf{v}} \mathbf{a} \mathbf{t} + \dot{\vec{q}}_{rep} \tag{14}$$

The damped Moore-Penrose pseudo-inverse, $\mathbf{J}^+ = \mathbf{J}'(\mathbf{J}\mathbf{J}' + \sigma_{ee}\mathbf{I})^{-1}$, is utilized to mitigate singularity issues and improve numerical stability in inverse kinematics computations. ξ_p is the primary task execution slowdown constant. Finally \vec{q}_{rep} are the weighted sum of avoidance joint velocities, each transformed into the null space of primary velocities, as described in the chapter below.

We run the inverse kinematics algorithm once for every time step, until we reach the desired cost function or reach the selected time limit.

B. END-EFFECTOR VELOCITY

Prioritizing control over the end-effector's (EE) translational velocity is essential for a consistent and stable target approach. The commonly used method, where trans- $\vec{V}rep_{xyz,jk} = \vec{V}rep_{xyz,0jk}(1-\Delta x) + \vec{V}rep_{xyz,1jk} \Delta x \quad \forall j,k \in \mathbb{N}$ lational velocity is proportional to squared distance, leads to impractically high initial velocities, which can prevent obstacle avoidance and real-world execution, followed by disproportionately slow velocities when nearing the goal $\vec{V}rep_{xyz,k} = \vec{V}rep_{xyz,0k}(1-\Delta y) + \vec{V}rep_{xyz,1k} \Delta y \quad \forall \, k \in \{1,2\}$ he trajectory, with controlled deceleration near the goal. This is achieved by first calculating the unit vector towards the target for direction, then modulating its magnitude using a sigmoid function, specifically the arctangent function (eq. 15).

$$\vec{v} = \frac{\vec{x}_{EE} - \vec{x}_g}{||\vec{x}_{EE} - \vec{x}_g||} \times \frac{\arctan(k_{sigm} ||\vec{x}_{EE} - \vec{x}_g||)}{pi/2}$$
 (15)

In Eq. 15, \vec{v} specifies the end-effector's (EE) translational velocity directed towards the target, integrating both its direction and magnitude. Here, \vec{x}_{EE} represents the EE's current position, and $\vec{x}g$ is the target position, both in Cartesian coordinates. The calculation $\frac{\vec{x}EE-\vec{x}g}{|\vec{x}EE-\vec{x}g||}$ generates a unit vector pointing towards the target, ensuring targeted movement. The velocity's modulation by the arctangent sigmoid function curtails overshooting by moderating speed in proximity to the target and saturating velocity at a predefined upper limit when distant. The parameter k_{sigm} in the arctangent function adjusts the curve's steepness, affecting how quickly the end-effector decelerates near the target. A higher k_{sigm} maintains speed until closer to the target for a sharp deceleration, while a lower value starts slowing down earlier for a gradual approach.

The current orientation of the end-effector (EE) and its goal orientation are encoded through rotation matrices, \mathbf{cR} for the current state and \mathbf{gR} for the goal state. The necessary rotational adjustment is identified through the relative rotation matrix \mathbf{dR} , generated by multiplying \mathbf{gR} with the transpose of \mathbf{cR} and then normalizing the outcome (eq. 16). This process ensures \mathbf{dR} accurately represents rotational differences, without the effect of any scaling factors.

$$\mathbf{dR} = \frac{\mathbf{gR} \cdot \mathbf{cR}^T}{||\mathbf{gR} \cdot \mathbf{cR}^T||} \tag{16}$$

To enhance computational efficiency and prevent gimbal lock, the approach transitions from matrix to quaternion representations for precise and efficient rotational velocity adjustments, essential for achieving the target orientation of the EE.

The relative rotation matrix is converted into a quaternion, which is subsequently logarithmically transformed. The resulting quaternion's components, excluding the real part, constitute the rotational error vector $\vec{\omega}$.

$$d\mathbf{R} \mapsto d\mathbf{Q} = a + b\,\vec{i} + c\,\vec{j} + d\,\vec{k} \tag{17}$$

$$dQl = 2 \cdot \log(dQ) = a_{log} + b_{log} \vec{i} + c_{log} \vec{j} + d_{log} \vec{k} \quad (18)$$

There needs to be an explanation why log, cite: DMP Quaternions article Žlajpah, Ude

$$\vec{\omega} = \begin{bmatrix} b_{log} \\ c_{log} \\ d_{log} \end{bmatrix} \tag{19}$$

To get the full velocity of the end effector (EE), $\tilde{\rm v}_{\rm att}$, we combines translational and rotational velocities, which we scale using proportional gains k_v and k_ω .

$$\tilde{\mathbf{v}}_{\rm att} = \begin{bmatrix} k_v * \vec{v} \\ k_\omega * \vec{\omega} \end{bmatrix} \tag{20}$$

Utilizing the mapping into the null space of the primary velocity, it becomes evident that at high velocities of the primary task, there may be an insufficient number of degrees of freedom remaining to safely navigate around obstacles. Consequently, the secondary task, which is aimed at obstacle avoidance, lacks the requisite capability and freedom to operate effectively.

To mitigate the dominance of the primary task over the secondary task, a mechanism for the deceleration of the primary task's execution has been implemented. This strategy effectively decreases the velocity of the manipulator towards its primary objective, thereby allocating additional maneuverability for secondary tasks.

$$\xi_p = \frac{1}{1 + \kappa_{\text{sec}}||v_{\text{Rmax}}||} \tag{21}$$

The deceleration factor (eq. 21) is determined by the constant $\kappa_{\rm sec}$ and the magnitude of the maximum repulsive velocity vectors, which is contingent upon the robot's minimal distance from an obstacle $v_{\rm Rmax}$. According to the equation, a small $v_{\rm Rmax}$ diminishes the deceleration effect, permitting the uninterrupted execution of the primary task. Conversely, large $v_{\rm Rmax}$ enhances the deceleration by reducing the ξ_p factor, thereby affording the secondary task increased opportunity for obstacles avoidance motion.

C. AVOIDANCE VELOCITIES

To enable the avoidance of obstacles by the manipulator within its operating environment, the manipulator is uniformly coated with virtual detection points (POIs). The density of these virtual points is dependent upon the dimensions of matrices. Given a matrix width w perpendicular to the primary direction, it is advantageous for these points to be spaced at intervals of $\Delta = \frac{w}{3}$. This spacing ensures partial overlap between matrices, thereby achieving a uniform distribution of POIs across the entirety of the robot.

During kinematic optimization, repulsive velocities for each point are computed following the methodology described in the previous section (sect. III). This is achieved by mapping each point into the task space, where the calculation of repulsive velocity is performed. The cartesian mapping for each point comprises a kinematic transformation from the robot's base to the beginning of the segment where the point is located, followed by an additional mapping to the specific point on the segment (eq. 22). For each point, three components of cartesian velocity are obtained.

$$\mathbf{T}_{0 \to POI} = \mathbf{T}_{0 \to 1} \cdot \mathbf{T}_{1 \to 2} \cdot \dots \cdot \mathbf{T}_{(i-1) \to i} \cdot \mathbf{T}_{i \to POI}$$
 (22)

Upon obtaining the repulsive velocity for each point, the second norm of each velocity is calculated. For a number of K points where the avoidance velocities are greatest, indicative of closest proximity to an obstacle, the resulting joint velocities that facilitate obstacle avoidance are computed using inverse kinematic equations for the selected points on the manipulator and transformed into the null-space velocities of the primary task.

$$\mathbf{J}_{d_i}^+ = \mathbf{N} \mathbf{J}_{d_i}' (\mathbf{J}_{d_i} \mathbf{N} \mathbf{J}_{d_i}' + \sigma_{rep} \mathbf{I})^{-1}, \quad \text{for } i = 1, 2, \dots, K;$$
(23)

We calculate the translational velocity Jacobian for each of the K selected points on the robot. Since our interest lies exclusively in the velocity component that directs us away from obstacles, we consequently narrow our operational space to a single dimension. Consequently, the Jacobian, correlating joint space velocities q with the directional velocity d_i , is represented as $J_{d_i} = \vec{n}_i^T \mathbf{J}_i$. The normal vector, signifying the desired avoidance velocity, is essentially the unit velocity vector, derived from our matrices as $\vec{n}_i = \frac{\vec{v}_{poii}}{||\vec{v}_{poii}||}$. This approach streamlines computational processes by avoiding the necessity for complex matrix inversions, transforming the Jacobian from a matrix to a vector of dimensions $1 \times n$, where n signifies the count of joints preceding the POI, thus facilitating more straightforward calculations of repulsive velocities.

$$\dot{q}_{rep} = k_r \sum_{i=1}^{K} \alpha_i J_{d_i}^+ \left(v_i - J_{d_i} J^+ \xi_p \vec{v}_{att} \right)$$
 (24)

The overall avoidance joint velocities are obtained through a weighted sum of the avoidance joint velocities for the selected K nearest points, taking into account the influence of the primary task of manipulator EE movement on the joint velocities.

V. SIMULATION RESULTS

A. Repulsive Field Visualization

We introduce the resultant repulsive field on a twodimensional map. While analogous principles apply to threedimensional spaces, visualization of more dimensions is complex. Utilizing our repulsive potential field velocity calculation method, points were sampled across the entire obstacle map as depicted in Figure 2. The prescribed algorithm was executed at each sampled point to derive the repulsive fields along the X and Y axes, which were subsequently visualized as a composite vector field.

B. Manipulator Examples

add the limits of joint positions

The operation of the potential field is demonstrated on two different manipulator cases. The resolution of our voxel grid for obstacles is R = 10cm. The use of interpolation allows us to have a relatively coarse voxel grid, which reduces the memory demand of the space grid and accelerates the computation. We selected K = 7 Points of Interest (POI) to observe the distance from obstacles and are uniformly distributed them along the segments and joints, starting from the second joint of the robot to the tip of the manipulator. This distribution begins from the second joint because it is from this point onwards that the manipulator has the capability to avoid obstacles. Points of Interest (POIs) are indicated by dots on the manipulator in the graphs. Near obstacles, vectors emanate from these points, depicting the calculated repulsive velocities at the locations. Throughout the simulation, Euler integration of the calculated joint velocities is performed with a step size of $T_{step} = 0.1$ s.

Fig. 2. Visualization of the potential field calculated for the entire map using the proposed approach. Top: Obstacle distribution via a 2D heatmap. Center: Induced repulsive fields along X (left) and Y (right) axes. Bottom: Composite vector field showcasing the resultant repulsive velocities for obstacle avoidance.

In the first case (Fig. 3, 4), the manipulator safely 'curls' or selects a path to a point located on the other side of a column, avoiding the obstacle with the potential field calculated by the proposed method. The constants chosen for the primary task are $k_v=5$ and $k_w=1.5$, for the avoidance task $k_r=20$. The weighting constants for the individual POIs are $\alpha=\left[\frac{3}{9},\frac{2}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9},\frac{1}{9}\right]$, where the biggest weight belongs to the point on the manipulator which is closest to the obstacle and so on. As the most direct path for the end-effector to the target passes straight through the column, an approach that would result in a collision, we implement a reduction of the primary speed in the vicinity of the obstacle, setting $\xi_p=1$. The simulation is performed for 50 steps.

Fig. 3. Sequential keyframes demonstrating the manipulator's path planning and column obstacle avoidance strategy.

Fig. 4. Visualization of the manipulator's path around the column obstacle: (a) Primary Task errors and percentage of the primary speed after applying slowdown, (b) Joint Velocities $\dot{\theta}$, (c) Joint Positions θ , and (d) Norms of Repulsive Velocities v_{rep} .

In the second scenario (Fig. 5, 6), our robot operates within a dynamic environment. The proposed method for calculating repulsive velocities proves to be a suitable choice when a local optimization approach is needed to accommodate dynamic changes. In this scenario, a ball moves consistently from the left to the right side of the graph (i.e., along the y-axis from 0.4 at the initial moment to 1.4 in the final step of the simulation), as governed by the equation $y_{\rm ball}=0.4+(1.4-0.4) imes rac{N_{
m step}}{75}, ext{ with } x_{
m ball}=1.25 ext{ and } z_{
m ball}=0.7.$ The primary task is now to maintain the robot's end-effector (EE) at a fixed point, disregarding EE orientation to enhance obstacle avoidance capability. This increases maneuverability, thereby eliminating the need for primary speed task slowdown ($\xi_p = 0$). Constants selected for the primary task are $k_v = 2$ and $k_w = 0$, and for the avoidance task $k_r=3$. Weighting constants for the individual POIs are $\alpha=\frac{[\frac{1}{5},\frac{1}{5},\frac{1}{5},\frac{1}{5},\frac{1}{5},\frac{1}{5},\frac{1}{5}]}{10}$. The simulation is performed for 75 steps.

describe weights and distributions used in the kernels sigmoid weights

Fig. 5. Dynamic obstacle avoidance scenario: Sequential keyframes illustrating the robot's maneuvering in response to a progressively moving ball from left to right across the workspace.

Fig. 6. Performance in a dynamic obstacle avoidance scenario: (a) Primary Task error (b) Joint Velocities $\dot{\theta}$, (c) Joint Positions θ , and (d) Norms of Repulsive Velocities v_{rep} .

VI. CONCLUSION

ADD

REFERENCES

- [1] IDEAS Lab, "Motion and Path Planning," presented at Purdue University, 2023. [Online]. Available: https://ideas.cs.purdue.edu/research/robotics/planning/. Accessed on: Jan. 9, 2024
- [2] E. A. Basso and K. Y. Pettersen, "Task-Priority Control of Redundant Robotic Systems using Control Lyapunov and Control Barrier Function based Quadratic Programs," in IFAC-PapersOnLine, vol. 53, no. 2, pp. 9037–9044, 2020. doi: 10.1016/j.ifacol.2020.12.2024.
- [3] H. Toshani and M. Farrokhi, "Real-time inverse kinematics of redundant manipulators using neural networks and quadratic programming: A Lyapunov-based approach," Robotics and Autonomous Systems, vol. 62, no. 6, pp. 766–781, Jun. 2014. doi: 10.1016/j.robot.2014.02.005.
- [4] J. Haviland and P. Corke, "NEO: A Novel Expeditious Optimisation Algorithm for Reactive Motion Control of Manipulators," IEEE Robot. Autom. Lett., vol. 6, no. 2, Art. no. 2, Apr. 2021, doi: 10.1109/LRA.2021.3056060.
- [5] Y. Zhang, S. S. Ge, and T. H. Lee, "A Unified Quadratic-Programming-Based Dynamical System Approach to Joint Torque Optimization of Physically Constrained Redundant Manipulators," IEEE Trans. Syst.,

- Man, Cybern. B, vol. 34, no. 5, pp. 2126–2132, Oct. 2004. doi: 10.1109/TSMCB.2004.830347.
- [6] J. Nakanishi, R. Cory, M. Mistry, J. Peters, and S. Schaal, "Comparative experiments on task space control with redundancy resolution," in Proc. 2005 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Edmonton, Alta., Canada, 2005, pp. 3901–3908. doi: 10.1109/IROS.2005.1545203.
- [7] M. H. Raibert and J. J. Craig, "Hybrid Position/Force Control of Manipulators," Journal of Dynamic Systems, Measurement, and Control, vol. 103, no. 2, pp. 126–133, Jun. 1981. doi: 10.1115/1.3139652.
- [8] T. Yoshikawa, "Dynamic hybrid position/force control of robot manipulators—Description of hand constraints and calculation of joint driving force," IEEE J. Robot. Automat., vol. 3, no. 5, pp. 386–392, Oct. 1987. doi: 10.1109/JRA.1987.1087120.
- [9] O. Khatib, "A unified approach for motion and force control of robot manipulators: The operational space formulation," IEEE J. Robot. Automat., vol. 3, no. 1, pp. 43–53, Feb. 1987. doi: 10.1109/JRA.1987.1087068.
- [10] N. Hogan, "Impedance Control: An Approach to Manipulation," in Proc. 1984 American Control Conf., San Diego, CA, USA, Jul. 1984, pp. 304–313. doi: 10.23919/ACC.1984.4788393.
- [11] A. A. Maciejewski and C. A. Klein, "Obstacle Avoidance for Kinematically Redundant Manipulators in Dynamically Varying Environments," The International Journal of Robotics Research, vol. 4, no. 3, pp. 109–117, Sep. 1985. doi: 10.1177/027836498500400308.
- [12] L. Lajpah and T. Petri, "Obstacle Avoidance for Redundant Manipulators as Control Problem," in Serial and Parallel Robot Manipulators Kinematics, Dynamics, Control and Optimization, S. Kucuk, Ed. InTech, 2012. doi: 10.5772/32651.
- [13] R. Colbaugh and K. Glass, "Cartesian control of redundant robots," J. Robotic Syst., vol. 6, no. 4, pp. 427–459, Aug. 1989. doi: 10.1002/rob.4620060409.
- [14] K. Glass, R. Colbaugh, D. Lim, and H. Seraji, "Real-time collision avoidance for redundant manipulators," IEEE Trans. Robot. Automat., vol. 11, no. 3, pp. 448–457, Jun. 1995. doi: 10.1109/70.388789.
- [15] O. Khatib, "Real-time obstacle avoidance for manipulators and mobile robots," in 1985 IEEE International Conference on Robotics

- and Automation Proceedings, Mar. 1985, pp. 500–505. doi: 10.1109/ROBOT.1985.1087247.
- [16] L. Sciavicco and B. Siciliano, "A solution algorithm to the inverse kinematic problem for redundant manipulators," IEEE J. Robot. Automat., vol. 4, no. 4, pp. 403–410, Aug. 1988. doi: 10.1109/56.804.
- [17] L. Sciavicco and B. Siciliano, "Solving the Inverse Kinematic Problem for Robotic Manipulators," in RoManSy 6, A. Morecki, G. Bianchi, and K. Kedzior, Eds., Boston, MA: Springer US, 1987, pp. 107–114. doi: 10.1007/978-1-4684-6915-8_9.
- [18] O. Egeland, "Task-space tracking with redundant manipulators," IEEE J. Robot. Automat., vol. 3, no. 5, pp. 471–475, Oct. 1987. doi: 10.1109/JRA.1987.1087118.
- [19] H. Seraji, "Configuration control of redundant manipulators: theory and implementation," IEEE Trans. Robot. Automat., vol. 5, no. 4, pp. 472–490, Aug. 1989. doi: 10.1109/70.88062.
- [20] Y. Nakamura, H. Hanafusa, and T. Yoshikawa, "Task-Priority Based Redundancy Control of Robot Manipulators," The International Journal of Robotics Research, vol. 6, no. 2, pp. 3–15, Jun. 1987. doi: 10.1177/027836498700600201.
- [21] B. Siciliano and O. Khatib, Eds., Springer Handbook of Robotics. in Springer Handbooks. Cham: Springer International Publishing, 2016. doi: 10.1007/978-3-319-32552-1.
- [22] J.-O. Kim and P. Khosla, "Real-Time Obstacle Avoidance Using Harmonic Potential Functions," 1992. doi: 10.1109/70.143352.
- [23] L. Zlajpah and B. Nemec, "Kinematic control algorithms for on-line obstacle avoidance for redundant manipulators," in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, 2002, pp. 1898–1903. doi: 10.1109/IRDS.2002.1044033.
- [24] T. Petrič and L. Žlajpah, "Smooth continuous transition between tasks on a kinematic control level: Obstacle avoidance as a control problem," Robotics and Autonomous Systems, vol. 61, no. 9, Art. no. 9, Sep. 2013. doi: 10.1016/j.robot.2013.04.019.
- [25] M. F. Pinto, T. R. F. Mendonça, L. R. Olivi, E. B. Costa, and A. L. M. Marcato, "Modified approach using variable charges to solve inherent limitations of potential fields method," in Proc. 2014 11th IEEE/IAS International Conference on Industry Applications, Dec. 2014, pp. 1–6. doi: 10.1109/INDUSCON.2014.7059414.

- [26] Z. Long, "Virtual target point-based obstacle-avoidance method for manipulator systems in a cluttered environment," Engineering Optimization, vol. 52, no. 11, Art. no. 11, Nov. 2020. doi: 10.1080/0305215X.2019.1681986.
- [27] A. H. Qureshi and Y. Ayaz, "Potential Functions based Sampling Heuristic For Optimal Path Planning," Auton Robot, vol. 40, no. 6, Art. no. 6, Aug. 2016. doi: 10.1007/s10514-015-9518-0.
- [28] A. H. Qureshi et al., "Adaptive Potential guided directional-RRT*," in Proc. 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), Shenzhen, China, Dec. 2013, pp. 1887–1892. doi: 10.1109/ROBIO.2013.6739744.
- [29] J. Yi, Q. Yuan, R. Sun, and H. Bai, "Path planning of a manipulator based on an improved P_RRT* algorithm," Complex Intell. Syst., vol. 8, no. 3, pp. 2227–2245, Jun. 2022. doi: 10.1007/s40747-021-00628-y.
- [30] T. Zhu, J. Mao, L. Han, C. Zhang, and J. Yang, "Real-Time Dynamic Obstacle Avoidance for Robot Manipulators Based on Cascaded Nonlinear MPC With Artificial Potential Field," IEEE Trans. Ind. Electron., pp. 1–11, 2023. doi: 10.1109/TIE.2023.3306405.
- [31] X. Xia et al., "Path Planning for Obstacle Avoidance of Robot Arm Based on Improved Potential Field Method," Sensors, vol. 23, no. 7, Art. no. 7, Apr. 2023. doi: 10.3390/s23073754.
- [32] Y. Chen, L. Chen, J. Ding, and Y. Liu, "Research on Real-Time Obstacle Avoidance Motion Planning of Industrial Robotic Arm Based on Artificial Potential Field Method in Joint Space," Applied Sciences, vol. 13, no. 12, p. 6973, Jan. 2023. doi: 10.3390/app13126973.
- [33] S. M. LaValle, Planning Algorithms. Cambridge: Cambridge University Press, 2006.
- [34] M. G. Tamizi, M. Yaghoubi, and H. Najjaran, "A review of recent trend in motion planning of industrial robots," Int J Intell Robot Appl, vol. 7, no. 2, Art. no. 2, Jun. 2023. doi: 10.1007/s41315-023-00274-2.
- [35] P. Švestka and M. H. Overmars, "Motion planning for carlike robots using a probabilistic learning approach," The International Journal of Robotics Research, vol. 16, no. 2, pp. 119–143, 1997.
- [36] S. LaValle, "Rapidly-exploring random trees: A new tool for path planning," Research Report 9811, 1998.
- [37] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, "Batch Informed Trees (BIT*): Sampling-based Optimal Planning via

- the Heuristically Guided Search of Implicit Random Geometric Graphs," in Proc. of the 2015 IEEE International Conference on Robotics and Automation (ICRA), May 2015, pp. 3067–3074. doi: 10.1109/ICRA.2015.7139620.
- [38] S. Karaman and E. Frazzoli, "Incremental sampling-based algorithms for optimal motion planning," in Proc. Robotics: Science and Systems (RSS), 2010.
- [39] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, "Informed RRT*: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic," in Proc. of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, Sep. 2014, pp. 2997–3004. doi: 10.1109/IROS.2014.6942976.
- [40] J. J. Kuffner and S. M. LaValle, "RRT-connect: An efficient approach to single-query path planning," in Proceedings of the 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), Apr. 2000, pp. 995–1001 vol.2. doi: 10.1109/ROBOT.2000.844730.
- [41] B. Siciliano, "Kinematic control of redundant robot manipulators: A tutorial," J. Intell. Robot. Syst., vol. 3, no. 3, Art. no. 3, 1990, doi: 10.1007/BF00126069.
- [42] B. Siciliano and O. Khatib, Eds., Springer Handbook of Robotics, in Springer Handbooks. Cham: Springer International Publishing, 2016. doi: 10.1007/978-3-319-32552-1.
- [43] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robot. Model. Plan. Control, 2010, pp. 161–189. [Online]. Available: http://link.springer.com/10.1007/978-1-84628-642-1_4
- [44] Y. Dai, C. Xiang, Y. Zhang, Y. Jiang, W. Qu, and Q. Zhang, "A Review of Spatial Robotic Arm Trajectory Planning," Aerospace, vol. 9, p. 361, Jul. 2022, doi: 10.3390/aerospace9070361.
- [45] S. Gottschalk, M. C. Lin, and D. Manocha, "OBBTree: a hierarchical structure for rapid interference detection," in Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, ACM, Aug. 1996, pp. 171–180. doi: 10.1145/237170.237244.
- [46] G. van den Bergen, "Efficient Collision Detection of Complex Deformable Models using AABB Trees," Journal of Graphics Tools, vol. 2, no. 4, pp. 1–13, 1997. doi: 10.1080/10867651.1997.10487480.

- [47] G. Chen, D. Liu, Y. Wang, Q. Jia, and X. Zhang, "Path planning method with obstacle avoidance for manipulators in dynamic environment," International Journal of Advanced Robotic Systems, vol. 15, no. 6, Art. no. 1729881418820223, Nov. 2018, doi: 10.1177/1729881418820223.
- [48] D. Puiu and F. Moldoveanu, "Real-time collision avoidance for redundant manipulators," in Proc. of the 2011 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara, Romania, 2011, pp. 403–408, doi: 10.1109/SACI.2011.5873037.
- [49] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto, "Voxblox: Incremental 3D Euclidean Signed Distance Fields for onboard MAV planning," in Proc. of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Sep. 2017, pp. 1366–1373. doi: 10.1109/IROS.2017.8202315.
- [50] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Burgard, "OctoMap: A Probabilistic, Flexible, and Compact 3D Map Representation for Robotic Systems," [Details of publication, e.g., in Proc. of the Conference/Journal Name, Year, pp. Page numbers]. [DOI or URL if available].
- [51] F. Gao, W. Wu, W. Gao, and S. Shen, "Flying on point clouds: Online trajectory generation and autonomous navigation for quadrotors in cluttered environments," Journal of Field Robotics, vol. 36, no. 4, pp. 710–733, 2019, doi: 10.1002/rob.21842.
- [52] A. Elfes, "Using occupancy grids for mobile robot perception and navigation," Computer, vol. 22, no. 6, pp. 46–57, Jun. 1989, doi: 10.1109/2.30720.
- [53] L. Han, F. Gao, B. Zhou, and S. Shen, "FIESTA: Fast Incremental Euclidean Distance Fields for Online Motion Planning of Aerial Robots," arXiv, Jul. 26, 2019. Accessed: Jan. 11, 2024. [Online]. Available: http://arxiv.org/abs/1903.02144
- [54] Y. Xu, X. Tong, and U. Stilla, "Voxel-based representation of 3D point clouds: Methods, applications, and its potential use in the construction industry," Automation in Construction, vol. 126, p. 103675, Jun. 2021, doi: 10.1016/j.autcon.2021.103675.
- [55] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger, "Real-time 3D reconstruction at scale using voxel hashing," ACM Trans. Graph.,

- vol. 32, no. 6, pp. 1-11, Nov. 2013, doi: 10.1145/2508363.2508374.
- [56] I. Dryanovski, W. Morris, and J. Xiao, "Multi-volume occupancy grids: An efficient probabilistic 3D mapping model for micro aerial vehicles," in Proc. of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Oct. 2010, pp. 1553–1559. doi: 10.1109/IROS.2010.5652494.
- [57] S. Thrun, Probabilistic robotics, vol. 45, 2002. Accessed: Jun. 14, 2023. [Online]. Available: https://dl.acm.org/doi/10.1145/504729.504754
- [58] B. Lau, C. Sprunk, and W. Burgard, "Improved updating of Euclidean distance maps and Voronoi diagrams," in Proc. of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Oct. 2010, pp. 281–286. doi: 10.1109/IROS.2010.5650794.
- [59] L. Luo et al., "Collision-Free Path-Planning for Six-DOF Serial Harvesting Robot Based on Energy Optimal and Artificial Potential Field," Complexity, vol. 2018, pp. 1–12, Nov. 2018, doi: 10.1155/2018/3563846.
- [60] W. Zhang, H. Cheng, L. Hao, X. Li, M. Liu, and X. Gao, "An obstacle avoidance algorithm for robot manipulators based on decision-making force," Robotics and Computer-Integrated Manufacturing, vol. 71, p. 102114, Oct. 2021, doi: 10.1016/j.rcim.2020.102114.
- [61] S.-O. Park, M. C. Lee, and J. Kim, "Trajectory Planning with Collision Avoidance for Redundant Robots Using Jacobian and Artificial Potential Field-based Real-time Inverse Kinematics," Int. J. Control Autom. Syst., vol. 18, no. 8, Art. no. 8, Aug. 2020, doi: 10.1007/s12555-019-0076-7.
- [62] D. Han, H. Nie, J. Chen, and M. Chen, "Dynamic obstacle avoidance for manipulators using distance calculation and discrete detection," Robotics and Computer-Integrated Manufacturing, vol. 49, pp. 98–104, Feb. 2018, doi: 10.1016/j.rcim.2017.05.013.
- [63] G. Rong and T.-S. Tan, "Jump flooding in GPU with applications to Voronoi diagram and distance transform," in Proceedings of the 2006 Symposium on Interactive 3D Graphics and Games - SI3D '06, Redwood City, California, 2006, p. 109. doi: 10.1145/1111411.1111431.
- [64] R. Szeliski, "Computer Vision: Algorithms and Applications, 2nd Edition," Springer, 2021.
- [65] A. Rosenfeld and J. L. Pfaltz, "Distance functions on digital pic-

- tures," Pattern Recognition, vol. 1, no. 1, pp. 33–61, Jul. 1968, doi: 10.1016/0031-3203(68)90013-7.
- [66] P. F. Felzenszwalb and D. P. Huttenlocher, "Distance Transforms of Sampled Functions," Theory of Comput., vol. 8, no. 1, pp. 415–428, 2012, doi: 10.4086/toc.2012.v008a019.
- [67] X. Zhou, Z. Wang, H. Ye, C. Xu, and F. Gao, "EGO-Planner: An ESDF-Free Gradient-Based Local Planner for Quadrotors," IEEE Robot. Autom. Lett., vol. 6, no. 2, pp. 478–485, Apr. 2021, doi: 10.1109/LRA.2020.3047728.
- [68] I. Dryanovski, W. Morris, and J. Xiao, "Multi-volume occupancy grids: An efficient probabilistic 3D mapping model for micro aerial vehicles," in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei: IEEE, Oct. 2010, pp. 1553–1559, doi: 10.1109/IROS.2010.5652494.