QF632-2025-W4

Number of participants: 43

dataset—predicting house prices
1. (continuous) versus predicting
"high" vs. "low" price (binary).
Which statement is most accurate?

Consider two tasks on the same

13 correct answers out of 31 respondents

The binary classification task is always easier 15 votes 48% because it only requires two output labels. The regression task can leverage all continuous 13 votes 42% variation and thus often yields richer evaluation insights. Converting regression to classification never changes the 2 votes relative model ranking by performance. Classification evaluation metrics (e.g.precision/recall) are directly 1 vote comparable to regression metrics

(e.g.MAE).

×

Which of these algorithm-metric pairings is mismatched for its task type?

18 correct answers out of 27 respondents

In using a linear regression model for binary classification via

3. thresholding at $\tau=0.5$, the resulting decision boundary is the set of points satisfying

2 correct answers out of 26 respondents

Suppose you fit a linear regression on binary labels 0,1 and observe 4. very large magnitude predictions (e.g.\ -10 or +15). This most

directly indicates:

27 correct answers out of 29 respondents

For a random variable $y\sim$

Bernoulli(p) with PMF $P(y \mid p) = p^y (1-p)^{1-y}, \quad y \in \{0,1\}$, what is $\mathbb{E}[y]$?

14 correct answers out of 25 respondents

6. At which value of z does this predict P(y=1)=0.5?

23 correct answers out of 27 respondents

Why do we take the logarithm of 7. the likelihood when fitting logistic regression?

21 correct answers out of 29 respondents

Which of the following is true about the binary cross-entropy loss

8. $J(\beta) = -\ell(\beta)$ in logistic regression?

13 correct answers

out of 25 respondents

If missing an actual event (a false negative) is twice as costly as 9. raising a false alarm (a false positive), which metric should you prioritize improving?

21 correct answers out of 30 respondents

Which metric measures the 10. proportion of actual positives that are correctly identified?

7 correct answers out of 28 respondents

Which metric measures the 11. proportion of predicted positives that are actually correct?

23 correct answers out of 27 respondents

In a dataset with severe class imbalance (very few positives), which metric is least informative by itself?

12 correct answers out of 24 respondents

