1 CLAIM LISTING 2 3 1. (Previously Presented) A method of designing a logic circuit to provide a predetermined 4 logical operation, the method including the steps of: 5 (a) defining a logic synthesis block comprising a single dynamic logic circuit: 6 (b) performing logic synthesis for the predetermined logical operation to produce an 7 intermediate circuit, the logic synthesis being performed utilizing a synthesis library constrained to the logic synthesis block; 9 eliminating unused devices in the intermediate circuit to produce a final circuit; (c) 10 and 11 (d) sizing the devices in the final circuit. 12 13 2. (Currently Amended) The method of Claim 1 wherein the step of defining the logic 14 synthesis block includes selecting the largest practical dynamic AND/OR circuit for the 15 integrated circuit fabrication technology in which the logic circuit is to be implemented. 16 17 3. (Original) The method of Claim 2 wherein the logic synthesis block comprises a four 18 high and four wide dynamic AND/OR circuit. 19 20 4. (Original) The method of Claim 1 wherein the step of performing logic synthesis 21 includes leaving the size of the devices in the logic synthesis block substantially 22 unconstrained.

23

1	5.	Original) The method of Claim 1 wherein the step of eliminating unused devices from	
2		he intermediate circuit includes detecting devices having a state that remains constant a	ıs
3		he intermediate circuit operates to provide the predetermined logical operation.	
4			
5	6.	Original) The method of Claim 1 wherein the step of sizing the devices in the final	
6		ircuit includes analyzing the final circuit to determine the characteristics of each device	;
7		n the final circuit necessary in order to consistently provide the predetermined logical	
8		peration and meet drive requirements.	
9			
10	7.	Original) The method of Claim 1 wherein the logic synthesis block uses a single	
11		ctivation/reset clock signal.	
12			
13	8-12	Canceled	
14			
15	13.	Currently Amended) In a circuit design method utilizing a logic synthesis tool and	
16		redefined logic circuit library to provide a logic implementation for a predetermined	
17		ogical operation, the improvement comprising:	
18		a) defining a logic synthesis block comprising a single dynamic logic circuit; [[and]]]
19		in performing logic synthesis for the predetermined logical operation to produce	
20		an intermediate circuit, constraining the logic synthesis tool to the logic synthesis	s
21		block;	
22		eliminating unused devices in the intermediate circuit to produce a final circuit;	
23		<u>and</u>	

1		(d) sizing the devices in the final circuit.
2		
3	14.	Canceled
4		
5	15.	(Original) The method of Claim 13 wherein the step of defining the logic synthesis block
6		includes selecting the largest practical dynamic AND/OR circuit for the circuit
7		fabrication technology in which the circuit design is to be implemented.
8		
9	16.	(Original) The method of Claim 13 wherein the logic synthesis block comprises a four
.0		high and four wide dynamic AND/OR circuit.
1		
2	17.	(Original) The method of Claim 13 further including the step of leaving the device size
.3		in the logic synthesis block substantially unconstrained for the logic synthesis tool.
4		
5	18.	(Original) The method of Claim 13 wherein the logic synthesis block uses a single
6		activation/reset clock input.