F - Sum of Digits (hard version)

Description

The only difference between easy and hard versions is constraints of $\it k$.

We define s(x) as the sum of digits of x in decimalism.

Given four integers d,k,L,R, your task is to calculate the number of k-dimension vector a , which satisfies

$$L \leq a_i \leq R, \sum_{i=1}^k s(a_i) \equiv s(\sum_{i=1}^k a_i) \pmod{d}.$$

Input

The input contains four integers d,k,L,R $(1 \leq L \leq R \leq 10^{18}, 2 \leq k \leq 10, 1 \leq d \leq 9)$ in four lines.

Output

Output one integers in one line --- the number of k-dimension vector a module $10^9 + 7$.

Sample

Input		
4		
4		
2		
12		
Output		

Input

1338

5

5

853240332453120 97312749740519040

Output

221778589