IEOR 4102, HMWK 1, Professor Sigman

- 1. An asset price starts off initially at price \$7.00 at the end of a day (day 0), and at the end of each consecutive day, independent of the past, the price goes up by one dollar (with probability p = 0.6) or down by one dollar (with probability q = 0.4).
 - (a) What is the probability that the stock will reach \$10.00 before going down to 0?
 - (b) What is the probability that the stock will reach \$10.00 before going down to a low of \$2.00?
 - (c) What is the probability that the stock will (as time goes on) become infinitely valuable without ever hitting 0?
 - (d) (Continuation:) Answer (a)– (c) in the case when the two probabilities 0.6 and 0.4 are reversed.
 - (e) (Continuation:) Answer (a)– (c) in the case when p=q=0.5.
- 2. An insurance risk business has a reserve of money (in units of millions of dollars). Initially, it has 1 unit. Every day, it earns 1 unit (interest), but also (each day) there is a chance that a claim will come in, independent of past days, of size 2 units with probability 0.45 (with probability 0.55 no such claim comes in).
 - (a) What is the probability that the risk business will get ruined (run out of money)?
 - (b) What is the smallest value i (units) the business would need to have started with to ensure that the probability of ruin is less than 1/2?
- 3. A jumping bean moves on the integers according to a simple random walk taking one step per unit time. R_n = the position at time $n \ge 0$. Assume that p = 0.35; the probability that a step takes the bean forward (to the right), and q = 1 p = 0.65 is the probability that a step takes the bean backward (to the left). It starts off initially at position $R_0 = 4$.
 - (a) Does this random walk have positive drift or negative drift?
 - (b) What is the probability that the bean will go down to 0 before ever reaching \$5?
 - (c) What is the probability that the bean will go below 0 before ever reaching \$5?
 - (d) What is the probability that the bean will never reach as high as 6.00?
- 4. As a more realistic model for asset pricing, suppose that the price of an asset moves (day by day) as

$$X_n = 8 \times 2^{R_n}, \ n > 0,$$

where $R_0 = 0$, and $R_n = \sum_{k=1}^n \Delta_k$, $k \ge 1$, is a simple symmetric random walk; $P(\Delta = 1) = 1/2 = P(\Delta = -1)$.

- (a) What is the probability that the asset price reaches a high of 32 before a low of 1/2?
- (b) What is the probability that the asset price will ever reach as high as 2^{500} ?

- 5. Simulating simple random walks: For each of p=.4 and p=.55 and p=0.5: Simulate (using MATLAB or PYTHON) the simple random walks starting from $R_0=0$ out to n=1000 steps to:
 - (a) Compute R_n/n to see if it is close to $E(\Delta) = 2p 1$, as it should be by the Strong Law Of Large Numbers.
 - (b) Estimate the probability that the random walk will ever reach as high as a = 100 by time n = 1000. If we define

$$M_n = \max_{0 \le k \le n} R_k,$$

the maximum of the random walk during the first n time units (steps), then we want to estimate $P(M_n \ge 100)$, for n = 1000.

Here is the pseudo-code:

- 1 With $R_0 = 0$, start simulating the random walk sequentially via $R_{k+1} = R_k + \Delta_{k+1}$.
- 2 If (before or at time n = 1000) $R_k = 100$, then stop and output I = 1.
- 3 If $R_k < 100$, $0 \le k \le n = 1000$, then stop and output I = 0
- 4 Repeat (1–3) above (independently) m=5,000 times to obtain 5000 independent copies of I, denoted by I_1, \ldots, I_{5000} .
- 5 Use estimate

$$P(M_n \ge 100) \approx \frac{1}{m} \sum_{i=1}^{m} I_i.$$