Disclaimer

Ég missti af fyrirlestrunum svo þetta er kannski ekki allt eins.

Mengi

Mengi eru "óröðuð söfn" af "hlutum" (kallaðir stök) hvort sem það eru tölur, strengir, önnur mengi eða í raun hvað sem er. Gagnlegt getur verið að hugsa um mengi sem lista ef þau eru ekki óendanleg. T.d. listi af öllum nöfnum á Íslandi eða eih.

Algeng mengi

 $\mathbb{N} = \{0, 1, 2, 3, \dots\},$ mengið af öllum náttúrulegu tölunum.

 $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$, mengið af öllum heiltölunum.

 $\digamma^+ = \{1, 2, 3, \dots\}$ mengið af öllum jákvæðu heiltölunum.

 $\mathbb{Q}=\left\{ \frac{p}{q}|p\in\mathbb{Z},q\in\mathbb{Z},\text{ og }q\neq0\right\} \text{, mengið af öllum ræðu tölunum}.$

 \mathbb{R} , mengið af öllum rauntölunum.

Stak

Ef a er stak í mengi A þá ritum við:

$$a \in A$$

Ef a er ekki stak í A þá ritum við:

$$a \notin A$$

Tómamengið

Tómamengið er mengið með engum stökum, táknað $\{\}$ eða \emptyset . Takið eftir því að $\emptyset \neq \{\emptyset\}$.

Vennmyndir

Venn myndir eru myndræn leið til þess að tákna mengi. Þar er U "universal set" sem inniheldur alla hluti í samhenginu teiknað sem rétthyrningur. Mengi eru svo teiknuð inn U, vanalega sem hringir.

Dæmi um Vennmynd

Hlutmengi

Mengi A er hlutmengi í B, og B er superset af A, ef og aðeins ef öll stök í A eru líka stök í B. Við táknum $A \subseteq B$ til að tákna að A sé hlutmengi í B. Líka er hægt að nota $B \supseteq A$ til að tákna að B sé superset af A. $A \subseteq B \equiv B \supseteq A$ (Táknar það sama).

Sammengi

Sammengi A og B er notað til að tákna þau stök sem eru í A eða B, táknað

 $A \cup B$

Sniðmengi

Snipmengi A og B er notað til að tákna þau stök sem eru í A og B, táknað

 $A \cap B$

Takið eftir að \cap er svipað og \wedge

```
% shapes
\left(0,0\right) = \left(1\right) \left(0,1\right)
\def\secondcircle{(1,0) circle (1) (1,1)}
\left(-2,-2\right) rectangle (3,2)
\begin{tikzpicture}[fill=gray]
    % fill
    \begin{scope}
        \clip \firstcircle;
        \fill \secondcircle;
    \end{scope}
    \begin{scope}
        \clip \secondcircle;
        \fill \firstcircle;
    \end{scope}
    % outline
    \draw \firstcircle node [text=black,above] {$A$};
    \draw \secondcircle node [text=black,above] {$B$};
    \draw \bound node [text=black,above] {$U$};
\end{tikzpicture}
\end{document}
![[Mengjamyndir.png]]
Öll mengi hafa a.m.k tvö hlutmengi: Fyrir öll mengi S:
 (i) \emptyset \subseteq S
 (ii) S \subseteq S
Tómamengið og megið sjálft eru hlutmengi í hverju mengi.
Dæmi um hlutmengi:
Aer hlutmengi í B
\begin{document}
\begin{tikzpicture}[fill=gray]
% outline
\draw (1/2,0) circle (1) (1/2,1) node [text=black,above] {$A$}
      (1/2,0) circle (1/2) (1/2,1/2) node [text=black,above] {$B$}
      (-2,-2) rectangle (3,2) node [text=black,above] {$U$};
\end{tikzpicture}
\end{document}
```

\begin{document}

Jöfn mengi

Tvo mengi eru jöfn ef og aðeins ef þau hafa sömu stök. Því, ef A og B eru mengi, þá eru A og B jöfn ef og aðeins ef $\forall x(x \in A \leftrightarrow x \in B)$. Við skrifum A = B ef A og B eru jöfn mengi.

Ef
$$(A \subseteq B) \land (B \subseteq A)$$
 Þá er $A = B$.

Stærð mengis

Fjöldi staka í mengi S er táknað: |S|. Ef |S| er jákvæð heiltala er S sagt vera endanlegt mengi annars er það óendanlegt.

Dæmi: $|\emptyset| = 0$. $A = \{1, 2, 3, 4, 5\}$, |A| = 5.

Veldismengi (Power set)

Veldismengi mengis S er mengi allra hlutmengja S, táknað $\mathcal{P}(S)$. Ef mengi S hefur n stök, svo |S| = n þá er $|\mathcal{P}(S)| = 2^n$.

Faldmengi (Cartesian product)

Látum A og B vera mengi. Faldmengið af A og B, táknað $A \times B$, er mengi allra raðaðra para (a,b), þar sem $a \in A$ og $b \in B$. Pannig:

$$A \times B = \{(a, b) | a \in A \land b \in B\}$$

Mikilvægt $A \times B \neq B \times A$

Dæmi um faldmengi:

Látum $A = \{0, 1, 2\}$ og $B = \{0, 1\}$.

Pá er
$$A \times B = \{(0,0), (0,1), (1,0), (1,1), (2,0), (2,1)\}$$

Teikna má faldmengi í hnitakerfi