Tab Caps Lock Caps Lock Caps Lock Caps Lock	V 1 C =	Elgen values of 724 (x) ab x Saddle Point. 24. 4536 24. 4536
Q. 400	$ \begin{vmatrix} 20x_1 + 10x_2 + 4 \\ 10x_1 + 2x_2 - 10 \end{vmatrix} $ $ = \begin{pmatrix} 0 \\ 0 \end{pmatrix} $	-2.4536 Local minima 36 & 16
$\frac{QS}{(i)} = \frac{10}{(i)} = 1$	0.92308 0.8958 0-8894 1.1538 1.20833	5.23077 8 0.9929 0.200225 14 0.23077 8 0.89278 0.020045 30 0.02083 18 0.89278 0.00015 64

a s mars Closed Bonnoled & 12	
175385 (1.6,0.8)	
(i) [0.5 0.5]	
(b) Star Stal is correct and cortona's claim is false.	
$\beta = 1 - 623 \times 10^{-4} $ $\epsilon = 1.623 \times 10^{-4} $ $\epsilon = 1.623 \times 10^{-4} $ $\epsilon = 9.49 \times 10^{-4} $ $\epsilon = 9.49 \times 10^{-4} $ $\epsilon = 9.49 \times 10^{-4} $	
9490804 30808 308072 30807 556	78
a. 2 cii) 56 501 683	
0.2(1) $0.2(1)$ $0.2(1)$ $0.2(1)$ $0.2(1)$	

$$k_{e} = \left[\frac{2n\left(\frac{1.623NE^{2}}{0.5128}\right)}{2n\left(0.975\right)}\right]$$

$$= 319$$

$$k_{0.01} = 410$$

$$k_{0.01} = 501$$

$$k_{0.001} = 683$$

$$k_{0.001} = 683$$

$$k_{0.001} = 833$$

$$k = \sqrt{\frac{0.5}{e_{k}}}$$

$$k = \sqrt{\frac{0.975}{e_{k}}}$$

$$k = \sqrt{\frac{0.975}$$

$$< 0.016 = \frac{0.5}{0.01 \times 1.623 \times 16^{1}}$$
 $\approx 9.49 \times 10^{10}$
 $\approx 9.49 \times 10^{10}$
 $\approx 9.49 \times 10^{10}$

(ii)
$$e_{k} = \frac{0.5}{16}$$
 $16 = \frac{0.5}{e_{k}}$
 $16 = \frac{0.5}{e_{k}}$
 $16 = \frac{0.5}{1.623 \times 10^{-4}} = \frac{3081}{1.623 \times 10^{-4}}$

$$\beta = \frac{G25}{6}$$

$$E = \frac{C0.001}{60.001}$$

$$= \frac{(0.001)}{623+10.007}$$

$$= \frac{1.623\times10^{-7}}{1.623\times10^{-7}}$$

$$= \frac{1.623\times10^{-7}}{1.623\times10^{-7}}$$

$$= \frac{(0.5)}{1.623\times10^{-7}}$$

To And elgenvalues. | 32-A 8 | = (32-A)(20-A) - 64 | 8 20-A | 2 640-52 1+3-64 $=-1^2-521+576=0$ 52±552-4×576 Point is on local minime

$$f(x) = 16x_1^2 + 8x_1x_2 + 10x_2^2 + 12x_1 - 6x_2 + 2$$

$$7f(x) = \begin{bmatrix} 32x_1 + 8x_2 + 12 \\ 8x_1 + 20x_2 - 6 \end{bmatrix}$$

$$= \begin{bmatrix} -16 + 4 + 12 \\ -4 + 10 - 6 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 32x_1 + 8x_2 + 12 \end{bmatrix}$$

$$= \begin{bmatrix} 2 \\ (32x_1 + 8x_2 + 12) \\ 3x_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 3x_1 \end{bmatrix}$$

$$= \begin{bmatrix} 3 \\ (32x_1 + 8x_2 + 12) \\ 3x_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 3x_1 \end{bmatrix}$$

$$= \begin{bmatrix} 3 \\ (32x_1 + 8x_2 + 12) \\ 3x_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 3x_1 \end{bmatrix}$$

$$= \begin{bmatrix} 3 \\ (32x_1 + 8x_2 + 12) \\ 3x_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 3x_1 \end{bmatrix}$$

To find eigen value 5. $\begin{vmatrix}
20-\lambda & 10 \\
0 & 2-\lambda
\end{vmatrix} = (20-\lambda)(2-\lambda) - 100 = 0$ $40 - 22\lambda + \lambda^2 - 100 = 0$ $\lambda^2 - 22\lambda - 60 = 0$ $22 \pm \sqrt{2^2 + 240} = 24.4536$ 2 - 2.4536

Point on local minima is saddle points.

calculations

(b)
$$f(x) = 10x_1^2 + 10x_1x_2 + 4x_1 - 100x_2 + 2$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 20x_1 + 10x_2 + 4 \\ 10x_1 + 2x_2 - 10 \end{bmatrix}$$

$$\nabla f(\overline{\Delta z} = (1.8, -4))$$

$$= \begin{bmatrix} 20 \times 1.8 - 40 + 4 \\ 18 - 8 - 10 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$=\begin{bmatrix} 20 & 10 \\ 10 & 2 \end{bmatrix}$$

Checking Cortona's claim co. A 1s coercive Coerchie lt f (w) -> 0 Let PT= [1-1 0] QT=[0 0-1] g $\alpha^T = [\alpha, \alpha_1, \alpha_3] |_{\alpha_1 \Rightarrow \alpha_2 \Rightarrow \alpha_3 \Rightarrow \alpha}$ on see 1 is not coercive Have don't about the doctrition & the hony Scens Cortona is also right.

[0]

Given, FCX) = (PTX)2+(2TX)2, P, 9, x & IR3 P = 0, 2 = 0, P+2 = 0 Sid! FRER WHAT 1/17/12=1 1 + (a) = 0 Cortona: f is coercive. checking claim by Sin, 3. Take any \$\infty about 100 and component you will get It with 115Ell, you will get a vector with until norm take P= [P1 P2 P3] & 2= [2, 92 93] · 8 2 = [24 ×2 ×3] Note assume [2] ZO $Z \begin{bmatrix} P_1 & P_2 & P_3 \\ Q_1 & Q_2 & Q_3 \end{bmatrix} \xrightarrow{\mathcal{H}} \begin{bmatrix} \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} \end{bmatrix} \xrightarrow{\mathcal{H}} \begin{bmatrix} \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} \end{bmatrix} \xrightarrow{\mathcal{H}} \begin{bmatrix} \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} \end{bmatrix} \xrightarrow{\mathcal{H}} \begin{bmatrix} \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} \end{bmatrix} \xrightarrow{\mathcal{H}} \begin{bmatrix} \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} \end{bmatrix} \xrightarrow{\mathcal{H}} \begin{bmatrix} \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} \end{bmatrix} \xrightarrow{\mathcal{H}} \begin{bmatrix} \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} \end{bmatrix} \xrightarrow{\mathcal{H}} \begin{bmatrix} \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} \end{bmatrix} \xrightarrow{\mathcal{H}} \begin{bmatrix} \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} \end{bmatrix} \xrightarrow{\mathcal{H}} \begin{bmatrix} \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} \end{bmatrix} \xrightarrow{\mathcal{H}} \begin{bmatrix} \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} \end{bmatrix} \xrightarrow{\mathcal{H}} \begin{bmatrix} \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} \end{bmatrix} \xrightarrow{\mathcal{H}} \begin{bmatrix} \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} \end{bmatrix} \xrightarrow{\mathcal{H}} \begin{bmatrix} \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} \end{bmatrix} \xrightarrow{\mathcal{H}} \begin{bmatrix} \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} \end{bmatrix} \xrightarrow{\mathcal{H}} \begin{bmatrix} \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} \end{bmatrix} \xrightarrow{\mathcal{H}} \begin{bmatrix} \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} \end{bmatrix} \xrightarrow{\mathcal{H}} \begin{bmatrix} \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} \end{bmatrix} \xrightarrow{\mathcal{H}} \begin{bmatrix} \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} \end{bmatrix} \xrightarrow{\mathcal{H}} \begin{bmatrix} \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} \end{bmatrix} \xrightarrow{\mathcal{H}} \begin{bmatrix} \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} \end{bmatrix} \xrightarrow{\mathcal{H}} \begin{bmatrix} \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} \end{bmatrix} \xrightarrow{\mathcal{H}} \begin{bmatrix} \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} \end{bmatrix} \xrightarrow{\mathcal{H}} \begin{bmatrix} \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} \end{bmatrix} \xrightarrow{\mathcal{H}} \begin{bmatrix} \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} \end{bmatrix} \xrightarrow{\mathcal{H}} \begin{bmatrix} \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} \end{bmatrix} \xrightarrow{\mathcal{H}} \begin{bmatrix} \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} \end{bmatrix} \xrightarrow{\mathcal{H}} \begin{bmatrix} \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} \end{bmatrix} \xrightarrow{\mathcal{H}} \begin{bmatrix} \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} \end{bmatrix} \xrightarrow{\mathcal{H}} \begin{bmatrix} \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} \end{bmatrix} \xrightarrow{\mathcal{H}} \begin{bmatrix} \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} \end{bmatrix} \xrightarrow{\mathcal{H}} \begin{bmatrix} \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} \end{bmatrix} \xrightarrow{\mathcal{H}} \begin{bmatrix} \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} \end{bmatrix} \xrightarrow{\mathcal{H}} \begin{bmatrix} \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} \end{bmatrix} \xrightarrow{\mathcal{H}} \begin{bmatrix} \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} \end{bmatrix} \xrightarrow{\mathcal{H}} \begin{bmatrix} \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} & \mathcal{H} \\ \mathcal{H} & \mathcal{H} & \mathcal{H} &$ find might solution. We need 3 equations to We can And multiple, is substyling f(x)=0 & dilde each component by NIXII to get a vector x with mit notes pro

MI DILAL SES PRO

11 All = Ja+c+26 $||A||_{L}^{2} = 1 - 2a + 2b$ $||A||_{L}^{2} = 1 - 2a + 2b$ To maximize 11A11/2, aci-a)-b=0 0200 b20.8 01202+1-20+2000 8240-2+2-40 Arake a (1-a) = B 11 All = 2 1=2a +2a(1-a). =1-2a +2a=2a2 2 a + 1-2 a + 2 (a) 40-2+2-40 Of florer Hating (-4a=0=) a=0 One on Bounded X = [0.5 0.5 χ = \int_{0}^{0}

This is the equation of a titled ellipse $\frac{1}{2}$ $\frac{1$

 $\hat{a} = \hat{z} = (\alpha_1, \alpha_2) \in \mathbb{R}^2$; $q \alpha_1^2 + 16 \alpha_1 \alpha_2 + 21 \alpha_2^2 \leq 163$. (D Gilven, a is closed since the importing points is indice the set. Testing if a is bounded $\frac{1}{16x_1 + 42x_2}$ $\frac{1}{16x_1 + 42x_2}$ => x*z(0) at (0,0), the function value is zero its minutes where with the where with the where with the where with the whom since there exist to where we will be the control of the get bigger vellues.