Конспект к экзамену по матану

Владимир Латыпов

 $donrumata 03 @\,gmail.com$

Содержание

1	Теория меры	3
2	Многообразия	3
3	Ряды Фурье и приближение функций	3
	3.1 Проаранства Лебега	3
	3.2 Гильбертовы пространства	3

1 Теория меры

2 Многообразия

3 Ряды Фурье и приближение функций

3.1 Проаранства Лебега

Определение 3.1.1: Програнство Лебега $L_p(E,\mu), p\in [1,\infty]$ — множество функций п. в. $_{\mu}E\to\overline{\mathbb{R}}$ или $\overline{\mathbb{C}}$, для которых

$$\begin{cases} \left\|f\right\|_p = \left(\int_E |f|^p d\mu\right)^{1/p} < \infty & p \in [1, \infty) \\ \left\|f\right\|_\infty = \operatorname{ess\ sup}_E^{\text{\tiny II.\ B}_\mu} |f| < \infty & p = \infty \end{cases}$$

Определение 3.1.2: Пространство L_p (обозначается без указания множества и меры) — множество 2π -периодических функций п. в. $\mathbb{R} \to \overline{\mathbb{R}}$ или $\overline{\mathbb{C}}$, для которых $\|f\| = \|f\|_{L_p([-\pi,\pi],\mu_1)} < \infty$.

Теорема 1: Полнота

3.2 Гильбертовы пространства

Определение 3.2.1: Гильбертово пространство — *полное* линейное пространство со скалярным произведением и нормой, им порождённой.

Пример: Пространство $L_2(E,\mu)$ со скалярным произведением:

$$\langle f, g \rangle = \int_E f \overline{g} \, \mathrm{d}\mu$$

(суммируемость $f\overline{g}$ — за счёт неравенства Гёлдера для p=q=2)

Полнота доказана в Теореме 3.1.1

Частные случаи:

- \cdot ℓ_2^m Евклидово пространство
- \cdot ℓ_2 последовательности

 \cdot $\ell_2(\mathbb{Z})$ — двусторонние последовательности

Лемма 3.2.1: Сходящийся в $\mathcal H$ ряд можно скалярно умножать на вектор почленно

Теорема 2 (Критерий сходимости ортогонального ряда): Сходимость ряда в $\mathcal H$ равносильна сходимости $\sum \|x\|^2$, причём

$$\left\| \sum_{i=1}^{\infty} x \right\|^2 = \sum_{i=1}^{\infty} \|x\|^2$$

Следствие 2.1: Перестановка сходящейся в ${\mathcal H}$ последовательности тоже сходится и имеет тот же предел

Теорема 3 (Вычисление коэфициентов ортогонального ряда): Если $\{e_k\}_{k=1}^\infty$ — ОС, а $\sum_{i=1}^\infty c_k e_k o x$, то коэфициенты однозначно вычислаются по формуле

$$c_k = \frac{\langle x, e_k \rangle}{\left\| e_k \right\|^2}$$

Теорема 4 (Свойства частичных сумм Фурье):

- 1. S_n ортогональная проекция x на $\mathcal{L}(\{e_k\})$
- 2. S_n элемент наилучшего приближения к x из $\mathcal{L}(\{e_k\})$, причём равенство достигается только при $y=S_n$
- $|S_n| \le ||x||$

Следствие 4.1 (Неравенство Бесселя): Сумма квадратов норм Ряда Фурье x не больше $\|x\|^2$.

Теорема 5 (Рисс, Фишер):

- 1. Ряд Фурье вектора x сходится
- 2. Сумма ряда Фурье ортогональная проекция x на $\mathcal{L}(\{e_k\})$
- 3. Сходится именно к $x \iff$ выполняется *уравнение замкнутости* (то есть в нер-ве Бесселя достигается равенство).

Определение 3.2.2: Базис: любой вектор раскладывается по этой системе

Определение 3.2.3: Полная система: не существует отличного от нуля вектора, ортогонального всем вектора (то есть нельзя добавить ещё однин вектор, чтобы осталвалась ОС)

Определение 3.2.4: Замкнутая система: для любого вектора выполнено *уравнение замкнутости*

Теорема 6 (Харакетеристика базиса): Утверждения эквивалентны для ОС $\{e_k\}_{k=1}^{\infty}$:

- 1. $\{e_k\}_{k=1}^{\infty}$ базис
- 2. $\forall x, y$ выполнено обобщённое уравнение замкнутости:

$$\langle x, y \rangle = \sum_{i=0}^{\infty} c_k(x) \overline{c_k(y)} \|e_k\|^2$$

- 3. $\{e_k\}$ полная система
- 4. $\{e_k\}$ замкнутая система
- 5. $\mathcal{L}(\{e_k\})$ плотна в \mathcal{H}

Теорема 7 (Грамм, Шмидт): систему можно ортонормировать, не изменяя линейную оболочку никакого префикса, притом единственным с точностью до коэфициентов ± 1 образом

Пример (Ортогональные базисы многочленов) : Весовая функция ightarrow вводим скалярное произведение

Теорема 8 (Существование элемента наилучшего приближения):