Pregunta 1:

Cada (x_k,y_k) es un punto uniformemente escogido en el cuadrado unitario en el primer cuadrante del plano. Por lo tanto, la probabilidad de que dicho punto esté dentro del círculo unitario es $\pi/4$. Por ende, 4m/n converge a π .

Corrí la siguiente simulación un millón de veces (k = 1000000):

$$x_n, y_n \sim Unif(0,1)$$
, $r_n = x_n^2 + y_n^2$, $m_n = \sum_{k=1}^n I(r_k \le 1)$, $z_n = \frac{4m_n}{n}$, $e_n = \left| \frac{z_n - \pi}{\pi} \right|$

(Ver archivo circle.r.)

Obteniendo la siguiente gráfica para z_n :

Y obteniendo la siguiente gráfica para el error relativo e_n :

El menor error relativo es $e_j=4.8\times 10^{-9}\,$ fue obtenido en la iteración $j=668149\,$. El error obtenido en la última iteración fue $e_k=8.7\times 10^{-4}\,$. La naturaleza aleatoria de este experimento hace completamente razonable que el error no decrezca de manera monotónica.

Pregunta 2:

La gráfica de la función f en el intervalo [-0.5, 0.5] es:

Esta gráfica sugiere que x=0 es un cero de la función f. Este hecho puede ser verificado de manera directa:

$$f(0) = cosh(0) + cos(0) - 2 = 1 + 1 - 2 = 0$$

Utilizamos el método de Newton con valor inicial $x_0=1$ para hallar el cero de la función. (Ver archivo newton.r.) Usando tanto la anulación del residual $r_k=f(x_k)$ como la constancia de x_k entre iteraciones como criterios de parada, obtenemos la solución $x_{29}=0.00024295$ tras 29 iteraciones. La coincidencia de ambos criterios de parada no es casualidad. En el método de Newton, tenemos:

$$x_k - x_{k+1} = \frac{f(x_k)}{f'(x_k)} = \frac{r(x_k)}{f'(x_k)}$$

Así, el residual $f(x_k)$ se anula aproximadamente cuando la diferencia x_k-x_{k+1} se anula aproximadamente.

Ahora, nótese que x=0 es un cero múltiple de la función f, porque la derivada f' también se anula en dicho punto:

$$f'(0) = sinh(0) - sin(0) = 0 - 0 = 0$$

Esto nos permite predecir que la convergencia del método de Newton será lineal, lo cual es confirmado por la siguiente tabla de resultados.

k	x_k	e_{k+1}/e_k	e_{k+1}/e_k^2
0	1.000000000	0.7500879	0.7502702
1	0.7501486576	0.7499661	1.0000806
2	0.5626468300	0.7499069	1.3333957
3	0.4219935125	0.7498607	1.7779720
4	0.3164971257	0.7498094	2.3709076
24	0.0010034754	0.6706090	881.7716850
25	0.0007529654	0.6328572	1240.8609328
26	0.0005657172	0.5668300	1756.1612808
27	0.0004259045	0.4344580	2374.6881122
28	0.0003224365	0.0000000^{1}	0.0000000^2
29	0.0002429508	-	-

¹ Error numérico

² Error numérico

Pregunta 3:

Definimos la función $f:R\to R$ dada por $f(r)=Mr-v\left[(1+r)^{n+1}-(1+r)\right]$. Esta función obviamente se anula cuando r=0. Sin embargo, estamos buscando una raíz estrictamente positiva, ya que es lo único que tendría sentido físico como una tasa de interés.

La gráfica de la función f en el intervalo [0,0.08] es:

De lo cual resulta claro que la raíz buscada satisface $r \in [0.04, 0.08]$.

Utilizamos el método de la secante con los valores iniciales $x_0=0.04\,$ y $x_1=0.08\,$ para hallar el cero positivo de esta función. (Ver archivo invest.r.) Usando como criterio de parada que la variación de x_k sea menor que 10^{-10} , obtenemos la solución $x_9=0.0614\,$ en 9 iteraciones.

La siguiente tabla de resultados confirma la convergencia de orden $\phi = \frac{1+\sqrt{5}}{2}$ de la iteración:

k	x_k	$e_{k+1}/e_k^{\ \phi}$	e_{k+1}/e_k^2
0	0.0400000	9.350282	40.60048
1	0.0800000	4.588452	21.02204
2	0.05413151	5.773400	37.86450
3	0.05940067	7.014222	75.29215
4	0.06170411	5.426444	120.00549
5	0.06139149	6.153569	483.40874
6	0.06140235	5.721470	3330.93048
7	0.06140241	166.271846³	2543514.82791
8	0.06140241	0.000000^4	0.000005
9	0.06140241	-	-

³ Error numérico ⁴ Error numérico ⁵ Error numerico