Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Московский государственный технический университет им. Н.Э. Баумана Факультет «Фундаментальные науки»

Лабораторная работа №1 по курсу «Вычислительная физика»

Выполнил: студент группы ФН4-82Б

Хижик А.И.

Проверил: доцент, к.физ.-мат.н.

Хасаншин Р.Х.

Оглавление

1.	Теорет	ическая часть
	1.1.	Моделирование траекторий нейтронов и фотонов
	1.2.	Розыгрыш длины свободного пробега
	1.3.	Розыгрыш типа взаимодействия
	1.4.	Локальная оценка потока
2.	Постан	ювка задачи
3.	Резуль	таты вычислений
4.	Вывол	20

1. Теоретическая часть

1.1. Моделирование траекторий нейтронов и фотонов

Реализация метода Монте-Карло при решении задач переноса излучения сводится к процессу моделированию траекторий частиц в среде, который состоит из следующих основных этапов:

- Розыгрыша параметров источника;
- Розыгрыша длины свободного пробега;
- Розыгрыша типа взаимодействия;
- Розыгрыша параметров частицы после взаимодействия.

Рассмотрим более подробно отдельные этапы моделирования распространения незаряженных частиц.

Розыгрыш параметров источника

Моделирование траектории начинается с определения координат рождения частицы \vec{r}_0 , направления ее движения $\vec{\Omega}_0$ и энергии E_0 . Для нормированной на единицу функции распределения источника

$$\int d\vec{r} \int d\vec{\Omega} \int dE q \left(\vec{r}, E, \vec{\Omega} \right) = 1$$

вероятность появления \vec{r}_0 в элементе объёма $d\vec{r}$:

$$P(\vec{r}_0 \in d\vec{r}) = d\vec{r} \iint q(\vec{r}, E, \vec{\Omega}) dE d\vec{\Omega} = q(\vec{r}) d\bar{r}, \tag{1}$$

а так же условные вероятности попадания $\vec{\Omega}_0$ в $d\vec{\Omega}$

$$P\left(\vec{\Omega}_{0} \in d\vec{\Omega} \,|\, \vec{r_{0}} = \vec{r}\right) = \frac{\int dEq\left(\vec{r}, E, \vec{\Omega}\right)}{\iint q\left(\vec{r}, E, \vec{\Omega}\right) dEd\vec{\Omega}} d\vec{\Omega} = \frac{q\left(\vec{r}, \vec{\Omega}\right)}{q\left(\vec{r}\right)} d\vec{\Omega}$$
(2)

и энергии E_0 в dE

$$P\left(E_{0} \in dE \mid \vec{r}_{0} = \vec{r}, \vec{\Omega}_{0} = \vec{\Omega}\right) = \frac{q\left(\vec{r}, E, \vec{\Omega}\right)}{\int dE q\left(\vec{r}, E, \vec{\Omega}\right)} dE = \frac{q\left(\vec{r}, \vec{\Omega}, E\right)}{q\left(\vec{r}, \vec{\Omega}\right)} dE. \tag{3}$$

Перемножив (1)-(3), получим

$$P\left(\vec{r}_{0} \in d\vec{r}\right)P\left(\vec{\Omega}_{0} \in d\vec{\Omega} \mid \vec{r}_{0} = \vec{r}\right)P\left(E_{0} \in dE \mid \vec{r}_{0} = \vec{r}, \vec{\Omega}_{0} = \vec{\Omega}\right) = q\left(\vec{r}, E, \vec{\Omega}\right)d\vec{r}dEd\vec{\Omega},\tag{4}$$

т.е. выбрав последовательно $\vec{r}_0, E_0, \vec{\Omega}_0$ из распределений

$$p_{\vec{r}_{0}}(\vec{r}) = q(\vec{r}), \quad p_{\vec{\Omega}_{0}}\left(\vec{\Omega} \mid \vec{r}_{0}\right) = \frac{q\left(\vec{r}_{0}, \vec{\Omega}\right)}{q\left(\vec{r}_{0}\right)}, \quad p_{E_{0}}\left(E \mid \vec{r}_{0}, \vec{\Omega}_{0}\right) = \frac{q\left(\vec{r}_{0}, \vec{\Omega}_{0}, E\right)}{q\left(\vec{r}_{0}, \vec{\Omega}_{0}\right)}, \tag{5}$$

найдем совокупность случайных величин $(\vec{r}_0, E_0, \vec{\Omega}_0)$ с распределением $q(\vec{r}, \vec{\Omega}, E)$. Если переменные в функции источника разделяются (независимые)

$$q\left(\vec{r}, E, \vec{\Omega}\right) = q_1\left(\vec{r}\right) q_2(E) q_3\left(\vec{\Omega}\right),$$

то соответствующие случайные величины моделируются независимо друг от друга.

Рассмотрим изотропный источник моноэнергетических частиц, равномерно распределенный по круговой подложке радиусом R, т.е. все переменные разделяются. В данном случае удобно воспользоваться полярной системой координат.

В силу симметрии, плотность вероятности вылета частиц из источника на расстоянии ρ от центра в интервале $d\rho$ будет пропорциональна площади кольца $f(\rho)d\rho\approx 2\pi\rho d\rho$,

$$f(\rho) = \frac{2\pi\rho}{\int_0^R 2\pi\rho d\rho} = \frac{2\rho}{R^2}.$$

Следовательно, функция распределения

$$F(\rho) = \int_0^{\rho} f(\rho') d\rho' = \frac{\int_0^{\rho} 2\rho' d\rho'}{R^2} = \frac{\rho^2}{R^2} = \gamma.$$

Применяя метод обратных функций, получаем $F(\rho)=\gamma$ и $\rho=R\sqrt{\gamma}$. Точка вылета частицы для данного ρ равновероятно распределена на промежутке $(0,2\pi)$ по азимутальному углу ψ , поэтому $f(\psi)=\frac{1}{2\pi}$ и $F(\psi)=\int_0^\psi f\left(\psi'\right)d\psi'=\frac{\psi}{2\pi}=\gamma$ откуда получаем $\psi=2\pi\gamma$.

Разыграем направление вылета для изотропного источника $f\left(\vec{\Omega}_0\right)d\vec{\Omega}_0=\frac{d\vec{\Omega}_0}{4\pi}=\frac{d\cos\theta_0}{2}\frac{d\psi_0}{2\pi}$, т.е. величины $\cos\theta_0$ и ψ_0 распределены независимо и равномерно в интервалах (-1,+1) и $(0,2\pi)$ соответственно. Применяя метод обратных функций, получаем

$$F(\cos \theta_0) = \int_{-1}^{\cos \theta_0} f(t)dt = \frac{1}{2} \int_{-1}^{\cos \theta_0} dt = \frac{\cos \theta_0 + 1}{2} = \gamma, \quad \cos \theta_0 = 2\gamma - 1.$$

Вследствие азимутальной симметрии угол ψ_0 можно разыгрывать по формуле $\psi_0 = 2\pi\gamma$, но на практике экономичнее разыгрывать значения косинуса и синуса этого угла, потому что именно они используются для дальнейших расчётов. С помощью метода исключения косинусы и синусы моделируются как координаты единичного изотропного вектора на плоскости по схеме:

- 1. $a = 1 2\gamma_1$, $b = 1 2\gamma_2$;
- 2. $d = a^2 + b^2$, если d > 1, то возвращаемся к пункту 1, иначе на 3;
- 3. $\cos \psi_0 = \frac{a}{\sqrt{d}}$, $\sin \psi_0 = \frac{b}{\sqrt{d}}$.

В рассмотренном примере все распределения имеют простой вид, что редко встречается на практике, поэтому выбор оптимальных алгоритмов обычно представляет собой не простою задачу.

1.2. Розыгрыш длины свободного пробега

Розыгрыш длины свободного пробега вдоль заданного направления $\vec{\Omega}$ является следующим шагом после выбора параметров источника. Для однородной изотропной среды розыгрыш производим

методом обратной функции. Плотность распределения случайной величины L определяется транспортным ядром интегрального уравнения переноса. Поэтому плотность и функцию распределения длины свободного пробега в направлении $\vec{\Omega}$ можно записать в виде

$$f_L(t) = \Sigma[\vec{r}(t), E] \exp[-\tau(t, E)],$$

$$F_L(t) = 1 - \exp[-\tau(t, E)], \quad t > 0,$$

где
$$\vec{r}(t) = \vec{r}' + t \vec{\Omega}$$
; $\tau(t, E) = \int_0^t \Sigma \left[\vec{r}(t'), E \right] dt'$.

Получим случайную величину L для незаряженной частицы в однородной бесконечной среде, плотность распределения которой равна

$$f_L(x) = \begin{cases} \Sigma(E) \exp[-\Sigma(E)x], & x \ge 0, \\ 0, & x < 0. \end{cases}$$

Для этого решаем уравнение

$$\int_0^L f_L(x)dx = 1 - \exp[-\Sigma(E)L] = \gamma,$$

отсюда

$$L=-rac{1}{\Sigma(E)}\ln(1-\gamma)$$
 или $L=-rac{1}{\Sigma(E)}\ln\gamma,$

так как случайные величины γ и $1-\gamma$ статистически эквивалентны, то получаем выражение для розыгрыша длины свободного пробега в однородной среде

$$L = -\ln \frac{\gamma}{\Sigma(E)}.$$

1.3. Розыгрыш типа взаимодействия

Следующий шаг заключается в розыгрыше типа взаимодействия. Пусть полное поперечное сечение для i-го атома

$$\sigma_i = \sum_{k=1}^m \sigma_{ik},$$

где σ_{ik} — парциальное сечение для k-го типа взаимодействия с i-атомом. Введя дискретную случайную величину η , принимающую значения от 1 до m с вероятностью $p_k = \frac{\sigma_{ik}}{\sigma_i}$, т.е. имеющую распределение вида $\eta = \begin{pmatrix} 1 & 2 & \dots & m \\ p_1 & p_2 & \dots & p_m \end{pmatrix}$. Разыгрываем значения η и определяем тип взаимодействия на i-м атоме, по следующей схеме:

- 1. если $\gamma \leq \frac{\sigma_{i1}}{\sigma_i}$, то произошло взаимодействие 1-го типа с атомом k-го типа;
- 2. если $\gamma > \frac{\sigma_{i1}}{\sigma_i}$, то проверяется выполнение следующего неравенства

$$\frac{\sum_{k=1}^{l} \sigma_{ik}}{\sigma_i} < \gamma \le \frac{\sum_{k=1}^{l+1} \sigma_{ik}}{\sigma_i}, \quad \eta = l+1.$$

Если последнее неравенство выполняется при некотором l, то полагают, что произошло взаи-

модействие (l+1)-го типа.

Далее мы будем рассматривать задачу переноса фотонов с учетом следующих типов взаимодействий: рассматривается комптоновское рассеяние, фотоэффект, образование электронно-позитронной пары, когерентное рассеяние и образование фотонейтронов. В таком случае полное сечение взаимодействия фотонов есть сумма сечений упомянутых выше процессов

$$\Sigma = \sigma_K + \sigma_\Phi + \sigma_n + \sigma_{el} + \sigma_{\gamma,n},$$

Параметры после столкновения включают энергию и направление движения рассеянной первичной частицы, а также тип, число, энергию и направление движения любых вторичных частиц, родившихся при взаимодействии. Эти параметры определяются с помощью ядра столкновений и предполагают использование данных по дифференциальным поперечным сечениям, причём более подробных, чем при выборе типа взаимодействия.

Если произошёл фотоэффект, и нас не интересует история фотоэлектрона, то мы переходим к следующему фотону из заданной статистики. Если же произошло комптоновское рассеяние, то мы вынуждены рассматривать историю рассеянного фотона, предварительно определив энергию фотона и направление его движения. При комптоновском рассеянии, фотон с первоначальной энергией E' в результате взаимодействия с электроном передаёт ему часть энергии и изменяет направление своего движения. Поскольку скорость атомных электронов очень мала по сравнению со скоростью света, то можно считать электрон свободным и покоящимся.

Энергия рассеянного фотона и угол рассеяния связаны формулой $E = \frac{E'}{1+E'(1-\cos\theta)/mc^2}$. Введя обозначения $\alpha = \frac{E}{m_0c^2}$ и $\alpha' = \frac{E'}{m_0c^2}$, получим выражение энергии рассеянного фотона в единицах энергии массы покоя электрона $\alpha = \frac{\alpha'}{1+\alpha'(1-\cos\theta)}$.

Рассмотрим выбор энергии и направления движения фотона после комптоновского рассеяния. Из приведённого выше выражения следует, что потеря энергии и косинус угла рассеяния жёстко связаны между собой, достаточно разыграть одну из этих величин. Приведем один из возможных алгоритмов, основанный на методе исключения. Плотность распределения энергии после рассеяния α пропорциональна функции

$$f(x, \alpha') \sim p(x, \alpha') = \frac{x}{\alpha'} + \frac{\alpha'}{x} + \left(\frac{1}{\alpha'} - \frac{1}{x}\right) \left(2 + \frac{1}{\alpha'} - \frac{1}{x}\right),$$

при $\frac{\alpha'}{1+2\alpha'} < x < \alpha'$.

Следовательно, справедливо соотношение

$$p(x, \alpha') \le 1 + 2\alpha' + \frac{1}{1 + 2\alpha'}$$

Величину α определяем с помощью метода исключения:

- а. выберем два значения $\gamma_1,\ \gamma_2$ случайной величины γ равномерно распределённой на интервале (0,1);
- **b.** вычислим $x = \frac{\alpha'(1+2\alpha'\gamma_1)}{1+2\alpha'}$, и отсюда находим $p\left(x,\alpha'\right)$
- **с.** если при этом $\gamma_2\left(1+2\alpha'+\frac{1}{1+2\alpha'}\right) < p(x,\alpha')$, то $\alpha=x$, иначе снова выполняется п. а) и т. д.

После определения энергии, определяют направление движения после взаимодействия. Азимутальный угол рассеяния выбирается из равномерного распределения по схеме приведённой выше, а косинус угла рассеяния рассчитывается по формуле $\mu_s = \cos \theta_s = 1 - 1/\alpha + 1/\alpha'$.

В декартовой системе координат новое направление движения задаётся тремя направляющими косинусами

$$\vec{\Omega} = \vec{i}\cos x + \vec{j}\cos y + \vec{k}\cos z$$
 или $\vec{\Omega} = \vec{i}\omega_1 + \vec{j}\omega_2 + \vec{k}\omega_3$.

Формулы перехода от $\vec{\Omega}'$ к $\vec{\Omega}$ выглядят следующим образом:

$$\omega_{3} = \omega_{3}' \mu_{s} + \sqrt{(1 - \mu_{s}^{2}) \left[1 - (\omega_{3}')^{2}\right]} \cos \psi_{s};$$

$$\omega_{2} = \frac{\omega_{2}' (\mu_{s} - \omega_{3}' \omega_{3}) + \omega_{1}' \sin \psi \sqrt{(1 - \mu_{s}^{2}) \left[1 - (\omega_{3}')^{2}\right]}}{1 - (\omega_{3}')^{2}};$$

$$\omega_{1} = \frac{\omega_{1}' (\mu_{s} - \omega_{3}' \omega_{3}) - \omega_{2}' \sin \psi \sqrt{(1 - \mu_{s}^{2}) \left[1 - (\omega_{3}')^{2}\right]}}{1 - (\omega_{3}')^{2}}.$$

Разыгрывая длину свободного пробега после первого столкновения

$$L_2 = -\frac{\ln \xi}{\Sigma(E_2)}$$

находим точку $\vec{r}_2 = \vec{r}_1 + L_2 \vec{\Omega}_2$

Координаты точки (n+1)-го взаимодействия находятся в декартовой системе координат по формулам:

$$x_{n+1} = x_n + L_{n+1}\omega_{1,n};$$

 $y_{n+1} = y_n + L_{n+1}\omega_{2,n};$
 $z_{n+1} = z_n + L_{n+1}\omega_{3,n}.$

Зная энергию рассеянного фотона можно вычислить сечение его последующего взаимодействия с веществом (полное или комптоновского взаимодействия).

В процессе комптоновского взаимодействия фотоны рассеиваются под всевозможными углами $(0 \le \theta_s \le \pi)$, и дифференциальное угловое сечение рассеяния (т.е. отнесённое к единице телесного угла) при этом, рассчитывается на основании квантовой электродинамики и выражается формулой Клейна-Нишины-Тамма:

$$\sigma_C(\alpha', \theta_s) = \frac{Zr_e^2}{2} \left[1 + \alpha'(1 - \mu_s) \right]^{-2} \left[1 + \mu_s^2 + \frac{(\alpha')^2 (1 - \mu_s)^2}{1 + \alpha'(1 - \mu_s)} \right], \tag{6}$$

где Z – атомный номер материала среды; r_e – классический радиус электрона.

Для фотонов высоких энергий наблюдается преимущественное рассеяние вперед, а с уменьшением энергии дифференциальное сечение имеет все более плавную угловую зависимость, и в пределе при $\alpha' \to 0$ из выражения (6) получаем классическую формулу Томсона (см²/ср):

$$\sigma_s(\theta_s) = Zr_e^2 \left(1 + \cos^2 \theta_s\right)/2.$$

Интегрирование формулу (6) по телесному углу даёт выражение (согласно теории Клейна-Нишины-Тамма) для полного сечение комптоновского взаимодействия фотонов со свободными электронами имеет вид

$$\sigma_C(\alpha') = 2\pi Z r_e^2 \left\{ \frac{1+\alpha'}{\alpha'^2} \left[\frac{2(1+\alpha')}{1+2\alpha'} - \frac{\ln(1+2\alpha')}{\alpha'} \right] + \frac{\ln(1+2\alpha')}{2\alpha'} - \frac{1+3\alpha'}{(1+2\alpha')^2} \right\}.$$
 (7)

1.4. Локальная оценка потока

Оценки функционалов в методе Монте-Карло

Рассмотрим, какие случайные величины (оценки) следует ввести в шестимерном фазовом пространстве траекторий Γ , чтобы их математические ожидания равнялись конкретному функционалу.

Пусть необходимо рассчитать линейный функционал

$$I_g = (\psi, g) = \iint_{\Gamma} \psi\left(\vec{r}, \vec{E}\right) g\left(\vec{r}, \vec{E}\right) d\vec{r} d\vec{E}, \tag{8}$$

где $g\left(\vec{r},\vec{E}\right)$ – функция отклика детектора, $\psi\left(\vec{r},\vec{E}\right)$ – плотность столкновений, удовлетворяющая интегральному уравнению

$$\psi\left(\vec{r},\vec{E}\right) = q_1\left(\vec{r},\vec{E}\right) + \iint K\left(\vec{r}',\vec{E}';\vec{r},\vec{E}\right)\psi\left(\vec{r}',\vec{E}'\right)d\vec{r}'d\vec{E}'.$$

Далее предполагается, что любая траектория в рассматриваемых процессах случайного блуждания с вероятностью единица заканчивается после конечного числа соударений.

Построим процесс случайных блужданий (цепь Маркова) с параметрами $p_1(x)$, p(x',x), p(x), удовлетворяющий следующим условиям

$$p_1(x) \neq 0$$
, при $q_1(x) \neq 0$; $p(x',x) \neq 0$, при $K(x',x) \neq 0$; $p(x) \neq 0$, при $g(x) \neq 0$.

Таким образом, траектории должны начинаться в тех точках, где $q_1(x) \neq 0$, а при переходе $x' \to x$ попадать в те точки где $K(x',x) \neq 0$.

Определение. Марковский процесс, процесс без последствий, — случайный процесс, эволюция которого после любого заданного момента времени t не зависит от эволюции предшествующей t, при условии, что значение процесса в этот момент фиксировано (короче: «будущее» и «прошлое» процесса не зависят друг от друга при известном «настоящем»)

Определение. Марковская цепъ - марковский процесс, с конечным или счётным множеством состояний.

Оценка по столкновениям

Такая оценка рассчитывается во всех точках траектории $\alpha = (x_1, \dots, x_k)$ и имеет вид

$$\eta(\alpha) = \sum_{m=1}^{k} W_m(\alpha)g(x_m),\tag{9}$$

где W_m – вес частицы при m-м столкновении, определяется из выражения

$$W_m(\alpha) = \frac{q_1(x_1)}{p_1(x_1)} W(x_1, x_2) \dots W(x_{m-1}, x_m), \tag{10}$$

где
$$W(x',x)=\left\{ egin{array}{ll} K(x',x)/p(x',x), & p(x',x)
eq 0 \ , \\ 0, & p(x',x)=0 \ . \end{array}
ight.$$
 В теории метода Монте-Карло доказано, что $M\eta(\alpha)$ — математическое ожидание случайной

В теории метода Монте-Карло доказано, что $M\eta(\alpha)$ – математическое ожидание случайной величины $\eta(\alpha)$ является несмещённой оценкой функционала $I_q=(\psi,g)$.

Определение. *Несмещённая оценка* – статистическая оценка, математическое ожидание которой совпадает с оцениваемой величиной.

Определение. Если при расчёте по методу Монте-Карло точно моделируются реальные вероятностные законы, то такой способ расчёта называется аналоговым.

При аналоговом моделировании траектории частиц и при отсутствии деления в реакциях взаимодействия, учитывая, что $p_1(x) = q_1(x)$; p(x',x) = K(x',x); $p(x) = \Sigma_a(x)/\Sigma(x)$, выражение для случайной величины $\eta(\alpha)$ принимает следующий вид

$$\eta(\alpha) = \sum_{m=1}^{k} g(x_m). \tag{11}$$

Если, например, необходимо определить число реакций с сечением $\Sigma_i(x)$ в некотором объёме V, тогда функция отклика детектора

$$g(x) = v_V(x) \frac{\Sigma_i(x)}{\Sigma(x)},$$

где $v_V(x)$ – индикаторная функция объёма V, которая имеет вид

$$v_V(x) = \begin{cases} 1, & x \in V; \\ 0, & x \notin V. \end{cases}$$

Следовательно, выражение для оценки $\eta(\alpha)$ принимает вид

$$\eta(\alpha) = \sum_{m=1}^{k} \frac{\Sigma_i(x_m)}{\Sigma(x_m)} v_V(x_m). \tag{12}$$

Локальная оценка потока

Рассмотренная выше оценка $\eta(\alpha)$ даёт средние значения для функций $\psi(\vec{r}, E)$, $\varphi(\vec{r}, E)$ и функционалов от них по всей области регистрации частиц. Если градиент поля излучения достаточно велик, то чтобы уменьшить погрешность, связанную с усреднением, размеры области приходится

уменьшать. Действительно детектор малых размеров практически не возмущает поле излучения, но обладает малой эффективностью, поэтому уменьшается вероятность попадания частицы в данную область, следовательно, увеличивается статистическая погрешность оценки. В таких случаях часто прибегают к локальным оценкам, позволяющим стягивать область детектирования в точку.

Рассмотрим, для простоты, распространение частиц в среде без размножения и поглощения, так как эти реакции учитываются с помощью весовых множителей. Пусть требуется оценить плотность потока частиц в точке фазового пространства $x^* = \{\vec{r}^*, E^*, \vec{\Omega}^*\}$. Подставим эту точку в уравнение для плотности столкновений, приравняв для упрощения выражения $q_1(x^*) = 0$:

$$\psi(x^*) = \int K(x', x^*) \psi(x') dx'. \tag{13}$$

Поделив обе части выражения (13) на $\Sigma_s(x^*)$, получим

$$\varphi(x^*) = \int \frac{K(x', x^*)}{\sum_{s} (x^*)} \psi(x') dx'. \tag{14}$$

Формально функция $\varphi(x^*)$ представлена в виде функционала от плотности столкновений $\psi(x')$ с функцией отклика детектора, равной $g(x',x^*)=\frac{K(x',x^*)}{\sum_s(x^*)}$ Для расчёта $\varphi(x^*)$ выберем оценку по столкновениям (9) и получим что математическое ожидание случайной величины

$$\eta_1(\alpha) = \sum_{m=1}^k \frac{W_m(\alpha)}{\sum_s(x^*)} K(x_m, x^*)$$
 (15)

равно плотности потока рассеянного излучения в точке x^* . Величину W_m -часто называют весом m-го рассеяния. Она представляет собой условную вероятность «выживания» частицы испытавшей рассеяния в точках (x_1,\ldots,x_m) . Определение плотности потока нерассеянного излучения в точке x^* , т.е. величины $q_1(x^*)/\sum_s(x^*)$, как правило, не представляет особого труда и вычисляется аналитически с использованием выражения для источника первых столкновений $q_1(\vec{r}^*,\vec{E}) = \int d\vec{r}' q\left(\vec{r}',\vec{E}\right) \cdot T\left(\vec{r}',\vec{r}^* \mid \vec{E}\right)$.

Ядро $K(x_m, x^*)$ содержит δ -функцию, для устранения которой достаточно проинтегрировать (14) по некоторой области направлений $\Delta \vec{\Omega}_i^*$. Для локальной оценки плотности потока рассеянных фотонов (без учета когерентного рассеяния), движущихся в интервале $\Delta \vec{\Omega}_i^*$ с энергией в интервале ΔE_i^* , в точке \vec{r}^* окончательное выражение имеет вид

$$\eta_{1}(\alpha) = \sum_{m=1}^{k} W_{m}(\alpha) \frac{\exp\left[-\tau\left(\vec{r}_{m}, \vec{r}^{*}, E_{m}^{*}\right)\right]}{\left(\vec{r}_{m} - \vec{r}^{*}\right)^{2}} \frac{\sigma_{C}\left(\vec{r}_{m}, E_{m} \to E_{m}^{*}, \left(\vec{\Omega}_{m} \cdot \vec{\Omega}_{m}^{*}\right)\right)}{\sigma_{C}\left(\vec{r}_{m}, E_{m}\right)} \Delta\left(E_{m}^{*}, \Delta E_{i}^{*}\right) \Delta\left(\vec{\Omega}_{m}^{*}, \Delta \vec{\Omega}_{i}^{*}\right),$$

$$(16)$$

где $\tau\left(\vec{r}_{m},\vec{r}^{*},E_{m}^{*}\right)=\int^{\vec{r}_{m}\to\vec{r}^{*}}\Sigma\left(\vec{r}''\left(t,E_{m}^{*}\right)\right)dt$ – оптическое расстояние между точками \vec{r}_{m} и \vec{r}^{*} для частицы с энергией E_{m}^{*} ;

$$\Delta(x, \Delta x) = \begin{cases} 1, & x \in \Delta x; \\ 0, & x \notin \Delta x; \end{cases}$$

 $\sigma_{C}\left(\vec{r}_{m}, E_{m} \to E_{m}^{*}, \left(\vec{\Omega}_{m} \cdot \vec{\Omega}_{m}^{*}\right)\right), \, \sigma_{C}\left(\vec{r}_{m}, E_{m}\right)$ — дифференциальное угловое сечение рассеяния и интегральное (полное) сечения комптоновского рассеяния.

Выражение (16) представляет собой локальную оценку плотности потока частиц. Если точка \vec{r}^* не принадлежит области переноса излучения, то такая оценка имеет конечную дисперсию. В общем случае ее дисперсия расходится из-за множителя $1/\left(\vec{r}_m - \vec{r}^*\right)^2$. Это не является препятствием для ее использования в методе Монте-Карло, поскольку существования математического ожидания обеспечивает действие закона больших чисел. Сходимость среднего арифметического $\bar{\eta}_N$ (N – число историй) имеет порядок $N^{-1/3}$, а не $N^{-1/2}$, как это имеет место при конечной дисперсии. Иногда возможно появление выбросов в результатах расчётов, связанных с близостью некоторых точек столкновения к точке детектирования \vec{r}^* .

Математическое ожидание случайной величины $\eta_1(\alpha)$ равно плотности потока рассеянного излучения в точке x^*

$$M\eta_1(\alpha) = \frac{1}{N} \sum_{l=1}^N \eta_l(\alpha_l) = \varphi(x^*), \tag{17}$$

где N — статистика (число усредняемых траекторий).

Локальная оценка не позволяет рассчитывать угловую плотность потока в точке \vec{r}^* непосредственно в заданном направлении $\vec{\Omega}^*$. Этого недостатка лишена двойная локальная оценка, функцию отклика детектора для которой берут в виде

$$g_1\left(x',x^*\right) = \left(\int K\left(x',x''\right)K\left(x'',x^*\right) dx''\right) / \sum_s x^*. \tag{18}$$

Поясним смысл этой оценки. Если при локальной оценке производится, по существу, суммирование в точке детектирования виртуальных вкладов нерассеяного излучения непосредственно от точек столкновения, то при двойной локальной оценке суммируются виртуальные вклады в точке детектирования через промежуточную точку рассеяния.

Интеграл в выражении (18) берется по лучу $\vec{r}''(t) = \vec{r}^* - \vec{\Omega}^* t$, t > 0. Его можно оценить по одному случайному узлу $\vec{\rho}''$, который можно положить равным $\vec{\rho}'' = \vec{r}^* - \vec{\Omega}^* L^*$, где L^* случайная длина свободного пробега из \vec{r}^* в направлении обратном $\vec{\Omega}^*$. Математическое ожидание случайной величины

$$\eta_2(\alpha) = \sum_{m=1}^k W_m(\alpha) g_1(x_m, x^*)$$
(19)

равно $M[\eta_2(\alpha)] = \varphi(x^*) - \varphi_1(x^*) - \varphi_0(x^*)$, где $\varphi_0(x^*)$, $\varphi_1(x^*)$ – плотность потока нерассеянного и однократно рассеянного излучения соответственно.

Методы получения случайных чисел с заданным распределением

Получения случайных чисел с заданным распределением называют *розыгрышем* значений случайной величины.

Пусть случайная величина ξ , определена в интервале (a, b) и имеет плотность распределения f(x). Выборкой из плотности f(x) называется такая последовательность чисел $\{t_i\}$, $(-\infty < t_i < +\infty)$, что:

1.
$$p(a < t_i \le b) = \int_a^b f(x) dx, (-\infty \le a < b \le +\infty);$$

2.
$$p(a < t_{i_1}, \dots, t_{i_n} \le b) = \left[\int_a^b f(x) dx\right]^n$$
, при условии, что все i_1, \dots, i_n различны.

Наиболее распространённый способ получения таких последовательностей является использо-

вание последовательности чисел $\{\gamma_i\}$ представляющих собой выборочные значения случайной величины γ равномерно распределённой на отрезке [0,1]. Такие числа представляют собой выборку из плотности распределения $f(x) = \left\{ \begin{array}{ll} 1, & x \in [0,1]; \\ 0, & x \notin [0,1]. \end{array} \right.$

Метод обратных функций

Пусть случайная величина ξ , определена в интервале (a, b) и имеет плотность распределения f(x) > 0, F(x) — функция распределения.

Докажем, что выборочное значение t случайной величины ξ , можно найти из уравнения

$$F(t) = \int_{a}^{t} f(x) \, dx = \gamma \text{ или } t = F^{-1}(\gamma), \tag{20}$$

где F^{-1} – обратная функция.

Функция F(x) строго возрастает в интервале (a, b) от F(a) = 0 до F(b) = 1, поэтому уравнение (20) имеет единственный корень при каждом γ . При этом справедливо равенство вероятностей

$$P\{x < t < x + dx\} = P\{F(x) < \gamma < F(x + dx)\},\$$

так как случайная величина γ равномерно распределена в интервале (0,1), то вероятность того, что ее значение окажется внутри интервала (F(x), F(x+dx)), равна длине этого интервала

$$P\{x < t < x + dx\} = F(x + dx) - F(x) = f(x)dx.$$

Следовательно, выборочное значение t случайной величины ξ , имеет плотность распределения f(x). Что и требовалось доказать.

Если $\{\gamma_i\}$ последовательность независимых чисел равномерно распределённых на промежутке (0,1), то числа $t_i = F^{-1}(\gamma_i)$, $i \in \mathbb{N}$ представляют собой выборку из плотности распределения f(x) для $\xi = F^{-1}(\gamma)$.

В более общем случае, когда плотность распределения удовлетворяет условию $f(x) \ge 0$ в интервале (a, b), то решением уравнения (20) является $t = \sup x$, при $F(x) < \gamma$.

Замечание. Разыгрывание значений непрерывных случайных величин методом обратных функций требует существования аналитического решения уравнения (20) относительно t.

Рассмотрим дискретную случайную величину ξ , принимающую значения x_i с вероятностями p_i . Выбор значения величины ξ определим как и ранее $t = \sup x_i$, при $F(x_i) < \gamma$.

Значению γ , удовлетворяющему неравенству $\sum\limits_{i=0}^{j}p_i<\gamma\leq\sum\limits_{i=1}^{j+1}p_i,\;p_0=0,$ соответствует значение $\xi=x_{j+1},\;j\in\mathbb{N}$

Действительно, если обозначить интервал между $F(x_j)$ и $F(x_{j+1})$ через Δ_{j+1} , тогда $p(\xi = x_{j+1}) = p(\gamma \in \Delta_{j+1})$.

Метод равновероятных интервалов (табличный метод)

Табличный метод основан на замене моделируемой случайной величины ξ дискретной случайной величиной ξ_1 , принимающей с равной вероятностью значения $x_i,\ i=\overline{1,n}$. До начала основного

расчёта составляется таблица из N равновероятных значений x_i случайной величины ξ_1 , функция распределения которой аппроксимирует функцию распределения случайной величины ξ . Для этого решается уравнение

 $F(x_i) = \int_{-\infty}^{x_i} f(x) dx = \frac{2i-1}{2N}, \quad i = \overline{1, n},$

и строится таблица значений i и соответствующих значений x_i . После этого для определения выборочного значения случайной величины ξ_1 достаточно получить случайное число i принимающее с равной вероятностью значения от 1 до N, и выбрать из таблицы x_i .

Метод исключения

Метод исключения, так же как и метод равновероятных интервалов, свободен от недостатков метода обратных функций, связанных с необходимостью получения аналитического решения. Метод исключения, так же как и метод равновероятных интервалов, свободен от недостатков метода обратных функций, связанных с необходимостью получения аналитического решения. Кроме того, он не требует и предварительного расчёта таблиц.

Рассмотрим ограниченную на отрезке [a,b] плотность распределения f(x). Пусть $M=\sup f(x)$ и $f_1(x)=f(x)/M$, так что $0\leq f_1(x)\leq 1$. Используя пару равномерно распределённых на отрезке [0,1] независимых случайных чисел (γ_1,γ_2) , найдем координаты случайной точки $Q=\{a+\gamma_1(b-a),\gamma_2\}$, лежащей в прямоугольнике с основанием (b-a) и высотой 1. Если эта точка окажется под кривой $f_1(x)$, т. е. если $\gamma_2< f_1[a+(b-a)\gamma_1]$, то $t=a+(b-a)\gamma_1$, принимается в качестве значения случайной величины с плотностью распределения f(x). В противном случае пара (γ_1,γ_2) отбрасывается, выбирается следующая пара (γ_3,γ_4) и все повторяется. Вычисленные по такому алгоритму значения t распределены с условной плотностью вероятности $f(t\mid \gamma_2< f_1(t))=\int_0^{f_1(t)}g(t\mid \gamma_2)d\gamma_2\cdot\left[\int_a^b\left(\int_0^{f_1(t)}g(t\mid \gamma_2)d\gamma_2\right)dt\right]^{-1}$. Учитывая, что совместная плотность распределения $g(t,\gamma_2)$ имеет вид

$$g(t, \gamma_2) = \begin{cases} 1/(b-a), & t \in [a, b], \quad \gamma_2 \in [0, 1] \\ 0, & t \notin [a, b], \quad \gamma_2 \notin [0, 1] \end{cases}$$

Условная плотность распределения $g(t\mid \gamma_2)$ совпадает с выражением для $g(t,\gamma_2)$, поэтому окончательно получаем

$$f(t \mid \gamma_2 < f_1(t)) = \frac{1}{b-a} \int_0^{f_1(t)} d\gamma_2 \cdot \left[\frac{1}{b-a} \int_a^b dt \left(\int_0^{f_1(t)} d\gamma_2 \right) \right]^{-1} = f_1(t) \left[\int_a^b f_1(t) dt \right]^{-1} = f(t)$$

что и требовалось доказать.

2. Постановка задачи

Плоский изотропный источник γ -квантов с энергиями $E_0=2.5$ МэВ в виде прямоугольника накрыт алюминиевым цилиндром. Геометрические центры основания цилиндра и прямоугольника совпадают. Радиус цилиндра $R_{\rm цил}=30$ см, высота цилиндра $H_{\rm цил}=20$ см. Стороны прямоугольника равны соответственно a=40 см, b=15 см.

- Построить точки рождения частиц и нарисовать «ёжика» каждая игла, которого представляет собой отрезок соединяющий точку рождения γ -кванта с точкой его первого взаимодействия.
- Методом локальной оценки потока вычислить распределения плотности потока рассеянных квантов вдоль оси симметрии задачи, образующей цилиндра и вдоль диаметров верхнего основания параллельных сторонам прямоугольника a и b.

Рис. 1

3. Результаты вычислений

Рис. 2. а) Точки рождения γ -квантов, b) «Ёжик», N=200

Рис. 3. а) Точки рождения γ -квантов, b) «Ёжик», N=500

b)

Рис. 4. Распределения плотности потока рассеянных квантов при детекторах, расположенных вдоль направляющей, N=10000

Рис. 5. Распределения плотности потока рассеянных квантов при детекторах, расположенных вдоль радиуса, параллельного стороне a прямоугольника, N=10000

Рис. 6. Распределения плотности потока рассеянных квантов при детекторах, расположенных вдоль радиуса, параллельного стороне b прямоугольника, N=10000

Рис. 7. Распределения плотности потока рассеянных квантов при детекторах, расположенных вдоль оси цилиндра, N=10000

Рис. 8. Распределения плотности потока рассеянных квантов при детекторах, расположенных вдоль направляющей, N=50000

Рис. 9. Распределения плотности потока рассеянных квантов при детекторах, расположенных вдоль радиуса, параллельного стороне a прямоугольника, N=50000

Рис. 10. Распределения плотности потока рассеянных квантов при детекторах, расположенных вдоль радиуса, параллельного стороне b прямоугольника, N=50000

Рис. 11. Распределения плотности потока рассеянных квантов при детекторах, расположенных вдоль оси цилиндра, N=50000

4. Вывод

Методом Монте-Карло получены распределения плотности потоков рассеянных квантов при различных расположениях детекторов и различных количествах γ -квантов N. Наибольшая плотность потока наблюдается на детекторе с координатами $\left(0,0,\frac{20}{3}\right)$, наименьшая — на детекторах, расположенных вблизи верхнего основания цилиндра.