Faster than Hermitian time-evolution by Carl M Bender

Ana Fabela Hinojosa

Supervisors: Jesper Levinsen Meera Parish

Outline

٠								luction							
۱	ln	м	н	r	$\overline{}$	-	4	п	i.	~	н	ı,	$\overline{}$	n	i
	ш	ш	ы	ш	u	ľ		u	ľ	u	L.	к	u	ш	ı

Time evolution

Brachistochrone problem

Conclusion

Appendix

Contents

Introduction

Time evolution

Brachistochrone problem

Conclusion

Appendix

Hilbert spaces

A Hilbert space is a vector space that can be infinite dimensional.

Vector spaces are equipped with an inner product.

Inner product:

Define a distance function.

Fig.3: Hilbert space stuff

Hamiltonians as Observables

Fig.1: The set of all possible Hamiltonians.

- 1. Observables are **self-adjoint** operators $\{\hat{O}, \hat{H}, ...\}$
- 2. Real energy spectrum with defined lowest energy
- 3. A state ψ of the quantum system is a unit vector of \hat{H}
- 4. Expectation values of observables are given by the inner-product.
- 5. Unitarity

Hamiltonians as Observables

Fig.1: The set of all possible Hamiltonians.

- 1. Observables are **self-adjoint** operators $\{\hat{O}, \hat{H}, ...\}$
- 2. Real energy spectrum with defined lowest energy
- 3. A state ψ of the quantum system is a unit vector of \hat{H}
- 4. Expectation values of observables are given by the inner-product.
- 5. Unitarity

Hamiltonians as Observables

Fig.1: The set of all possible Hamiltonians.

- 1. Observables are self-adjoint operators $\{\hat{O}, \hat{H}, ...\}$
- 2. Real energy spectrum with defined lowest energy
- 3. A state ψ of the quantum system is a unit vector of \hat{H}
- 4. Expectation values of observables are given by the inner-product.
- 5. Unitarity

CPT - symmetry in short

Hilbert space $\rightarrow \hat{H} = \hat{H}^{\mathcal{CPT}}$

 $\mathcal{C} \to \mathrm{charge} \ \mathrm{conjugation},$

 $\mathcal{P} \to \mathrm{spatial} \ \mathrm{inversion},$

 $\mathcal{T} \to \mathrm{complex}$ conjugation and time reversal.

Inner product: $(\vec{u}, \vec{v}) = \mathcal{CPT}(\vec{u}) \cdot \vec{v}$,

If the eigenfunctions of a \mathcal{PT} -symmetric Hamiltonian are **not** also eigenfunctions of the \mathcal{PT} operator we say the Hamiltonian possesess **broken** \mathcal{PT} -symmetry.

CPT - symmetry in short

Hilbert space $\rightarrow \hat{H} = \hat{H}^{\mathcal{CPT}}$

 $\mathcal{C} \to \text{charge conjugation},$

 $\mathcal{P} \to \mathrm{spatial} \ \mathrm{inversion},$

 $\mathcal{T} \to \mathrm{complex}$ conjugation and time reversal.

Inner product: $(\vec{u}, \vec{v}) = \mathcal{CPT}(\vec{u}) \cdot \vec{v}$,

If the eigenfunctions of a \mathcal{PT} -symmetric Hamiltonian are **not** also eigenfunctions of the \mathcal{PT} operator we say the Hamiltonian possesess **broken** \mathcal{PT} -symmetry.

Interesting physical phenomena occurs in the broken symmetry region

Contents

Introduction

Time evolution

Brachistochrone problem

Conclusion

Appendix

$$\vec{\psi}_{\it i}
ightarrow \vec{\psi}_{\it f}$$

$$\vec{\psi_i} \stackrel{\vec{\psi_f}}{\hookrightarrow} \vec{\psi_f} = \hat{U} \vec{\psi_i}$$

$$\vec{\psi_i} \stackrel{\vec{\psi_f}}{\hookrightarrow} \vec{\psi_f} = \hat{U} \vec{\psi_i}$$

1. Hermitian quantum mechanics:

$$\hat{U}=e^{-i\hat{H}t/\hbar},$$
 where $t>0.$

$$\vec{\psi_i} \stackrel{\vec{\psi_f}}{\hookrightarrow} \vec{\psi_f} = \hat{U}\vec{\psi_i}$$

1. Hermitian quantum mechanics:

$$\hat{U}=e^{-i\hat{H}t/\hbar},$$
 where $t>0.$

2. CPT quantum mechanics: ?

$$\vec{\psi_i} \stackrel{\vec{\psi_f}}{\hookrightarrow} \vec{\psi_f} = \hat{U}\vec{\psi_i}$$

1. Hermitian quantum mechanics:

$$\hat{U}=e^{-i\hat{H}t/\hbar},$$
 where $t>0.$

2. CPT quantum mechanics: ?

Contents

Introduction

Time evolution

Brachistochrone problem

Conclusion

Appendix

βράχιστος χρόνος brákhistos khrónos: "shortest time"

Fig.2: A particle travels from left to right in time t, Can we make this trip nearly instantaneous?

How fact

βράχιστος χρόνος brákhistos khrónos: "shortest time"

How fast can we evolve?

Fig.2: A particle travels from left to right in time t, Can we make this trip nearly instantaneous?

Fig.2: A particle travels from left to right in time t, Can we make this trip nearly instantaneous?

1. We want the shortest time step possible

Fig.2: A particle travels from left to right in time t, Can we make this trip nearly instantaneous?

- 1. We want the shortest time step possible
- 2. Complex non-Hermitian Hamiltonians: time-optimal evolution

Fig.2: A particle travels from left to right in time t, Can we make this trip nearly instantaneous?

- 1. We want the shortest time step possible
- 2. Complex non-Hermitian Hamiltonians: time-optimal evolution
- 3. Uncertainty principle violation?

The Maths

$$ec{\psi_i} = egin{pmatrix} 1 \ 0 \end{pmatrix}, \quad ec{\psi_f} = egin{pmatrix} a \ b \end{pmatrix}, \quad |a|^2 + |b|^2 = 1,$$

Hermitian case (not CPT-symmetric)

$$\hat{H} = \begin{pmatrix} s & re^{-i\theta} \\ re^{i\theta} & u \end{pmatrix}, \quad \{r, s, \theta, u\} \in \mathbb{R},$$

Energy constraint

$$\omega^2 = (s - u)^2 + 4r^2,$$

Time evolution

$$\vec{\psi_f} = \begin{pmatrix} a \\ b \end{pmatrix} = \mathrm{e}^{\frac{-i(s+u)t}{2\hbar}} \begin{pmatrix} \cos(\frac{\omega t}{2\hbar}) - i\frac{s-u}{\omega}\sin(\frac{\omega t}{2\hbar}) \\ -i\frac{2r}{\omega}\mathrm{e}^{i\theta}\sin(\frac{\omega t}{2\hbar}) \end{pmatrix}.$$

The Maths

$$ec{\psi_i} = egin{pmatrix} 1 \ 0 \end{pmatrix}, \quad ec{\psi_f} = egin{pmatrix} a \ b \end{pmatrix}, \quad |a|^2 + |b|^2 = 1,$$

CPT-symmetric case

$$ilde{H} = egin{pmatrix} r e^{i heta} & s \ s & r e^{-i heta} \end{pmatrix}, \quad \{r, s, heta\} \in \mathbb{R},$$

Energy constraint

$$\omega^2 = 4s^2 - 4r^2\sin^2\theta > 0,$$

Time evolution

$$\vec{\psi_f} = \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} = \frac{e^{\frac{-itr\cos\theta}{\hbar}}}{\cos\alpha} \begin{pmatrix} \cos(\frac{\omega t}{2\hbar} - \alpha) \\ -i\frac{2r}{\omega}e^{i\theta}\sin(\frac{\omega t}{2\hbar}) \end{pmatrix}.$$

Rabi frequency

The frequency of fluctuations in the populations of two atomic energy levels.

It is proportional to the strength of the **coupling** between the light's and the atomic transition's frequencies.

The geometry of the Hilbert space

Contents

Introduction

Time evolution

Brachistochrone problem

Conclusion

Appendix

Conclusion

References

C. M. Bender.

Faster than hermitian time evolution.

Symmetry, Integrability and Geometry: Methods and Applications (2007).

DOI: 10.3842/sigma.2007.126.

J. J. Sakurai.

Modern Quantum Mechanics (Revised Edition).

Addison Wesley, 1st ed. edition (1993).

H. Cartarius.

Quantum systems with balanced gain and loss, signatures of branch points, and dissociation effects.

PhD thesis (2014).

Contents

Introduction

Time evolution

Brachistochrone problem

Conclusion

Appendix

Broken and unbroken CPT-symmetry

Quantum systems with gain and loss

Constructing the C operator

The maths in-depth

More CPT quantum theory

- Balanced open systems
 Imaginary potential contributions → source and drain terms.
- 2. Possible experimental ideas

 Embedding the non-Hermitian CPT symmetric system into a larger structure described by a Hermitian Hamiltonian.