

Chapter 3: ANN

Iris 2 outputs

- Cho dữ liệu Iris.xls.
- Xây dựng model để dự đoán: petallength và loại iris từ những thuộc tính còn lại.

```
In [1]: import pandas as pd
    from sklearn.datasets import load_iris
    from tensorflow.keras.layers import Dense
    from tensorflow.keras import Input, Model
    import tensorflow as tf
```

```
In [2]: data = pd.read_excel("Iris.xls")
```

In [3]: data

Out[3]:

	sepallength	sepalwidth	petallength	petalwidth	iris
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 5 columns

```
In [4]: iris_class = {'Iris-setosa':0, 'Iris-versicolor':1, 'Iris-virginica':2}
    data['species_num'] = [iris_class[i] for i in data.iris]
    data.head()
```

Out[4]:

	sepallength	sepalwidth	petallength	petalwidth	iris	species_num
0	5.1	3.5	1.4	0.2	Iris-setosa	0
1	4.9	3.0	1.4	0.2	Iris-setosa	0
2	4.7	3.2	1.3	0.2	Iris-setosa	0
3	4.6	3.1	1.5	0.2	Iris-setosa	0
4	5.0	3.6	1.4	0.2	Iris-setosa	0

```
In [5]: df_train = data.sample(frac=0.7, random_state=0)
    df_valid = data.drop(df_train.index)
```

```
In [6]: X_train = df_train.drop(['petallength', 'iris', 'species_num'], axis=1)
    X_valid = df_valid.drop(['petallength', 'iris', 'species_num'], axis=1)
    y_train = df_train['petallength']
    y_valid = df_valid['petallength']
    z_train = df_train['species_num']
    z_valid = df_valid['species_num']
```

Build model

In [15]: model.summary()

Model: "model"

Layer (type)	Output Shape	Param #	Connected to		
input (InputLayer)	[(None, 3)]	0			
16 (Dense)	(None, 16)	64	input[0][0]		
32 (Dense)	(None, 32)	544	16[0][0]		
cont_out (Dense)	(None, 1)	33	32[0][0]		
 cat_out (Dense)	(None, 3)	99	32[0][0]		
=======================================					

Total params: 740 Trainable params: 740 Non-trainable params: 0

```
In [16]: history = model.fit(X train, {'cont out': y train, 'cat out': z train},
                       validation data=(X valid,
                                    {'cont out': y valid, 'cat out': z valid}),
                       epochs=100,
                       batch size=32)
       Epoch 1/100
       _loss: 3.3610 - cat_out_loss: 1.1280 - val_loss: 4.1535 - val_cont_out_loss:
       3.0099 - val cat out loss: 1.1436
       Epoch 2/100
       4/4 [============== ] - 0s 7ms/step - loss: 4.2589 - cont out
       loss: 3.1443 - cat out loss: 1.1146 - val loss: 3.9303 - val cont out loss:
       2.7945 - val cat out loss: 1.1359
       Epoch 3/100
       loss: 2.9303 - cat out loss: 1.1001 - val loss: 3.7071 - val cont out loss:
       2.5783 - val cat out loss: 1.1288
       Epoch 4/100
       loss: 2.7150 - cat_out_loss: 1.0894 - val_loss: 3.4854 - val_cont_out_loss:
       2.3622 - val cat out loss: 1.1232
       Epoch 5/100
       4/4 [============ ] - 0s 7ms/step - loss: 3.5870 - cont out
       loss: 2.5063 - cat out loss: 1.0807 - val loss: 3.2764 - val cont out loss:
             1 1 1
In [17]: history df = pd.DataFrame(history.history)
       history df
```

Out[17]:

	loss	cont_out_loss	cat_out_loss	val_loss	val_cont_out_loss	val_cat_out_loss
0	4.489001	3.360959	1.128042	4.153503	3.009895	1.143608
1	4.258904	3.144342	1.114562	3.930336	2.794450	1.135886
2	4.030402	2.930259	1.100144	3.707051	2.578289	1.128762
3	3.804382	2.714979	1.089403	3.485424	2.362179	1.123246
4	3.586967	2.506258	1.080709	3.276372	2.156590	1.119782
95	0.700567	0.251115	0.449452	0.716027	0.290470	0.425557
96	0.693234	0.248688	0.444546	0.697762	0.278180	0.419582
97	0.685174	0.245842	0.439332	0.704523	0.287018	0.417505
98	0.678408	0.243723	0.434685	0.707225	0.291880	0.415345
99	0.680372	0.248832	0.431540	0.703991	0.290933	0.413058

100 rows × 6 columns

```
history_df.loc[:, ['loss', 'cont_out_loss', 'cat_out_loss']].plot()
In [18]:
         print("Minimum loss: {}".format(history df['loss'].min()))
         Minimum loss: 0.6784082055091858
In [19]: | y_z_hat_valid = model.predict(X_valid)
In [20]: y z hat valid[0][0:5]
Out[20]: array([[1.4705153],
                [1.5446855],
                [1.6561188],
                [1.3450912],
                [1.5139712]], dtype=float32)
In [21]: | y_z_hat_valid[1][0:5]
Out[21]: array([[0.9320144 , 0.05727227, 0.01071325],
                [0.8696561, 0.10754735, 0.02279657],
                [0.9532271, 0.04063237, 0.00614048],
                [0.9624346, 0.03227636, 0.00528897],
                [0.9459632 , 0.04537204, 0.00866475]], dtype=float32)
In [34]: | y_z_hat_valid[1][-5:]
Out[34]: array([[0.01911662, 0.28818014, 0.6927032],
                [0.02964595, 0.38770163, 0.58265233],
                [0.00542115, 0.24090001, 0.7536788],
                [0.01607166, 0.3245532, 0.6593752],
                [0.00514989, 0.25002003, 0.74483
                                                   ]], dtype=float32)
In [29]: import numpy as np
In [30]: # tìm index của giá trị p lớn nhất của mỗi mẫu => loại hoa
         index array = np.argmax(y z hat valid[1], axis=-1)
In [31]: | index array[:5]
Out[31]: array([0, 0, 0, 0, 0], dtype=int64)
In [33]: index array[-5:]
Out[33]: array([2, 2, 2, 2], dtype=int64)
```

```
In [27]: y_valid[:5]
Out[27]: 0
                1.4
                1.5
         14
                1.2
         19
                1.5
                1.5
         21
         Name: petallength, dtype: float64
In [26]: z_valid[:5]
Out[26]: 0
                0
                0
         14
                0
         19
                0
         21
                0
         Name: species_num, dtype: int64
In [35]: z_valid[-5:]
                 2
Out[35]: 136
                 2
         138
         140
                 2
                 2
         142
         145
                 2
         Name: species_num, dtype: int64
 In [ ]:
```