PCT

WELTORGANISATION FUR GEISTIGES EIGENTUM International es Buro AFI DUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE

(21) Internationale Patentklassifikation 6: C12N 15/55, 916, 5710, C07K 16/40, G01N 33/50, A61K 38/43, A01K 67/027 (21) Internationales Aktenzeichen: PCT.EP98 05127 (22) Internationales Aktenzeichen: PCT.EP98 05127 (23) Internationales Aktenzeichen: PCT.EP98 05127 (24) Internationales Aktenzeichen: PCT.EP98 05127 (25) Internationales Aktenzeichen: PCT.EP98 05127 (26) Internationales Aktenzeichen: PCT.EP98 05127 (27) Internationales Aktenzeichen: PCT.EP98 05127 (28) Internationales Aktenzeichen: PCT.EP98 05127 (29) Internationales Aktenzeichen: PCT.EP98 05127 (20) Internationales Aktenzeichen: PCT.EP98 05127 (20) Internationales Aktenzeichen: PCT.EP98 05127 (21) Internationales Aktenzeichen: PCT.EP98 05127 (22) Internationales Aktenzeichen: PCT.EP98 05127 (23) Internationales Aktenzeichen: PCT.EP98 05127 (24) Internationales Aktenzeichen: PCT.EP98 05127 (25) Internationales Aktenzeichen: PCT.EP98 05127 (26) Internationales Aktenzeichen: PCT.EP98 05127 (27) Internationales Aktenzeichen: PCT.EP98 05127 (28) Internationales Aktenzeichen: PCT.EP98 05127 (29) Internationales Aktenzeichen: PCT.EP98 05127 (20) Internationales Aktenzeichen: PCT.EP98 05127 (20) Internationales Aktenzeichen: PCT.EP98 05127 (21) Internationales Aktenzeichen: PCT.EP98 05127 (22) Internationales Aktenzeichen: PCT.EP98 05127 (23) Internationales Aktenzeichen: PCT.EP98 05127 (24) Internationales Aktenzeichen: PCT.EP98 05127 (25) Internationales Aktenzeichen: PCT.EP98 05127 (26) Internationales Aktenzeichen: PCT.EP98 05127 (27) Internationales Aktenzeichen: PCT.EP98 05127 (28) Internationales Aktenzeichen: PCT.EP98 05127 (28) Internationales Aktenzeichen: PCT.EP98 05127 (28) Internationales Aktenzeichen: PCT.EP98 05127 (27) Internationales Aktenzeichen: PCT.EP98 05127 (28) IR Internationales Aktenzeichen: PCT.EP98 05127 (28) IR Internationales Aktenzeichen: PCT.EP98 05127 (28) IR Internationales						PATENTY			
(21) Internationales Aktenzeichen: (22) Internationales Aktenzeichen: (22) Internationales Anmeldedatum: (23) Internationales Anmeldedatum: (24) Internationales Anmeldedatum: (25) Internationales Anmeldedatum: (26) Internationales Anmeldedatum: (27) Internationales Anmeldedatum: (28) Internationales Anmeldedatum: (29) Internationales Anmeldedatum: (20) Internationales Anmeldedatum: (21) Internationales Anmeldedatum: (22) Internationales Anmeldedatum: (23) Internationales Anmeldedatum: (24) Internationales Anmeldedatum: (25) Internationales Anmeldedatum: (26) Internationales Anmeldedatum: (27) Internationales Anmeldedatum: (28) Internationales Al. AU. BA. BB. BG. BR. CA. CN. CU. CZ. DE. EE. GE. HR. HU. ID. IL. IS. JP. KP. KR. LC. LK. LR. LT. LV. MG. MK. MN. MN. NO. NZ. PL. P. CU. CZ. DE. EE. GE. HR. HU. ID. IL. IS. JP. KP. KR. LC. LK. LR. LT. LV. MG. MK. MN. MN. NO. NZ. PL. P. CU. CZ. DE. EE. GE. HR. HU. ID. IL. IS. JP. KP. KR. LC. LK. LR. LT. LV. MG. MK. MN. MN. NO. NZ. PL. P. CU. CZ. DE. EE. GE. HR. HU. ID. IL. IS. JP. KP. KR. LC. LK. LR. LT. LV. MG. MK. MN. MN. NO. NZ. PL. P. CU. CZ. DE. EE. GE. HR. HU. ID. IL. IS. JP. KP. KR. LC. LK. LR. LT. LV. MG. MK. MN. MN. NO. NZ. PL. P. CU. CZ. DE. EE. GE. HR. HU. ID. IL. IS. JP. KP. KR. LC. LK. LR. LT. LV. MG. MK. MN. MN. NO. NZ. PL. P. CU. CZ. DE. EE. GE. HR. HU. ID. IL. IS. JP. KP. KR. LC. LK. LR. LT. LV. MG. MK. MN. MN. NO. NZ. PL. P. CU. KT. LV. MG. MK. MN. MN. NO. NZ. PL. P. CU. KT. LV. MG. MK. MN. MN. NO. NZ. PL. P. CU. KT. LV. MG. MK. MR. NN. NO. NZ. PL. P. CU. KT. LV. MG. MK. MR. MN. NN. NO. NZ. PL. P. CU. KT. LV. MG. MK. MN. MN. NO. NZ. PL. P. CU. KT. LV. MG. MK. MN. MN. NO. NZ. PL. P. CU. KT. LV. MG. MK. MR. MR. N. MR. P. CU. KT. LV. MG. MK. MR. MR. NN. ND. P. P. SE. GE. HR. HU. LV. LV. LV. LV. LV. LV. LV. LV. LV. LV		4.1	(11) In	ternationa	le Veröffen	tlichungsnu	ımmer:	WO 99/07	833
(22) Internationales Anmeldedatum: 11. August 1998 (11.08.98) (23) Prioritätsdaten: 197 34 764.9 11. August 1997 (11.08.97) 197 85 501.9 197 85 501.9 15. Oktober 1997 (15.10.97) 15. Oktober 1997 (15.10.97) 16. OREC STOFFEL GMBH (DE DE): Stockheimer Weg 1, D=50829 Köln (DE). (71) Anmelder (für alle Bestimmungsstaaten ausser US): MEMOREC STOFFEL GMBH (DE DE): Stockheimer Weg 1, D=50829 Köln (DE). (72) Erfinder; und (75) Erfinder/Anmelder (nur für US): STOFFEL, Wilhelm (DE DE): Komelimünsterstrasse 14, D=50931 Köln (DE). 170 HUK, Stephan (DE DE): Laboratorium für Molekulare Neurowissenschaften, Institut für Biochemie, Med. Fak., Joseph-Stelzmann-Strasse 52, D=50931 Köln (DE). (74) Anwälte: MEYERS, Hans-Wilhelm usw.: Postfach 10 22 41, D=50462 Köln (DE). (75) Abstract The invention relates to eukaryontic neutral sphingomyclinase (nSMase) and the	C12N 15/55, 9/16, 5/10, C0/K 16/40, G01N 33/50, A61K 38/43, A01K 67/0					n:	18. Febri	iar 1999 (18.0	2.99
(54) Bezeichnung: NEUTRALE SPHINGOMYELINASE (57) Abstract The invention relates to eukaryontic neutral sphingomyelinase (nSMase) and the	(22) Internationales Anmeldedatum: 11. August (30) Prioritätsdaten: 197 34 764.9 11. August 1997 (11. 197 58 501.9 60 078.386 18. Mårz 1998 (18.03) (71) Anmelder (für alle Bestimmungsstaaten ausse OREC STOFFEL GMBH [DE DE]; Stöck D-50829 Köln (DE). (72) Erfinder; und (75) Erfinder/Anmelder (nur fur US): STOF [DE DE]; Komelimünsterstrasse 14, D-50 HOFMANN, Kay [DE DE]; Laboratorium Neurowissenschaften, Institut für Biochem Joseph-Stelzmann-Strasse 52, D-50931 Költ (74) Anwälte: MEYERS, Hans-Wilhelm usw.; Pos	1998 (11.08.9 08.97) E (10.97) E (3.98) U (27 US): MEN (theimer Weg FEL, Wilhel (FS) Köln (DE (FG) Köln (DE (FG) Köln (DE) (FG) Ked, Fai (FG	S) OE DE JS VI- 1. Ver k E). Irre k	CU, C LC, L RO, S ARIPO eurasis TM), o FI, FR (BF, I SN, T	CZ, DE, EE K, LR, LT, GG, SI, SK, D Patent (Gl sches Patent europäische: , GB, GR, I BJ, CF, CG D, TG). ternationale blauf der für Veröffentlie	, GE, HR, ELV, MG, CI, CM, COM, CI, CM, CM, CM, CM, CM, CM, CM, CM, CM, CM	HU, ID, IL MK, MN, PT, UA, U LS, MW, BY, KG, P, BE, CH, AC, NL, PT GA, GN, C cenbericht. n der Ansp	., IS, JP, KP, MX, NO, NZ JS, UZ, VN, SD, SZ, UG, KZ, MD, RU CY, DE, DK T, SE), OAPI F SW, ML, MR,	KR , PL YU, ZW) L, TJ L, ES Patent , NE
		INASE							
	The invention relates to eukaryontic neutral sphingomyelinase (nSMase) and the use thereof. (57) Zusammenfassung Die Erfindung betrifft eukaryontische neutrale Sphingomyelinase (nSMase) und	A		HEK mock-transf.	HEK nSMasc weak	HEK nSMase high	U937 mock-transf.	U937 nSMase	
396 bp —	The invention relates to eukaryontic neutral sphingomyelinase (nSMase) and the use thereof. (57) Zusammenfassung Die Erfindung betrifft eukaryontische neutrale Sphingomyelinase (nSMase) und		р —	HEK mock-transf.	HEK nSMase weak		U937 mock-transf.	U937 nSMase	
	The invention relates to eukaryontic neutral sphingomyelinase (nSMase) and the use thereof. (57) Zusammenfassung Die Erfindung betrifft eukaryontische neutrale Sphingomyelinase (nSMase) und	396 bj	р —	HEK mock-transf.	HEK nSMase weak		U937 mock-transf.	U937 nSMase	
В	The invention relates to eukaryontic neutral sphingomyelinase (nSMase) and the use thereof. (57) Zusammenfassung Die Erfindung betrifft eukaryontische neutrale Sphingomyelinase (nSMase) und	396 bյ B		HEK mock-transf.	HEK nSMasc weak		U937 mock-transf.	U937 nSMase	
	The invention relates to eukaryontic neutral sphingomyelinase (nSMase) and the use thereof. (57) Zusammenfassung Die Erfindung betrifft eukaryontische neutrale Sphingomyelinase (nSMase) und	396 bյ B		HEK mock-transf.	HEK nSMasc weak		U937 mock-transf.	U937 nSMase	

45 kDa -

U.S. Serial No., 109 201,115 Applicant: Myles C. Cabot.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxeniburg	SN	Senegal
ΛU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
ΛZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GII	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungam	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
СН	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugosławien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	ZW	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumānien		
cz	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

WO 99 07855 PCT EP98 05127

Neutrale Sphingomyelinase

Die vorliegende Erfindung betrifft Nukleinsäuren, die für eukaryontische neutrale Sphingomyelinase codieren, und ihre Anwendung.

Sphingomyelin ist eine wesentliche Komponente von Plasmamembranen. Der Abbau des Sphingomyelins gibt eine Vielzahl von Substanzen, die potentielle second messenger Eigenschaften haben, z.E. Ceramid, Sphingosin, Sphingosin-1-phosphat. Es sind zwei sphingomyelinspaltende Enzymaktivitäten bekannt, zum einen die der lysosomalen sauren Sphingomyelinase und zum anderen die der plasmamembran-gebundenen neutralen Sphingomyelinase.

Die bakterielle neutrale Sphingomyelinase ist ein sezerniertes, lösliches Protein.

Durch die vorliegende Erfindung werden erstmals Nukleinsäuren, codierend für eukaryontische neutrale Sphingomyelinase, verfügbar gemacht. Die eukaryontische neutrale Sphingomyelinase (nSMase) ist dadurch charakterisiert, daß sie Sphingomyelin in Ceramid und Phosphocholin spaltet und die Aktivität von der Zugabe von Magnesiumionen abhängig ist. Es handelt sich um ein membrangebundenes Enzym. Die maximale Aktivität wird im neutralen pH-Bereich erzielt.

Figur 1 zeigt die Gensequenz der humanen neutralen Sphingomyelinase.

Figur 2 zeigt die Gensequenz der murinen neutralen Sphingomyelinase.

Figur 3 zeigt die Ergebnisse von Northern- und Westernblots nSMase-überexprimierender Zellinien.

- 2 -

Figur 4 zeigt die Strategie zur Erzeugung von murinen Knockout-Mutanten. Die Buchstaben symbolisieren Restriktionsschnittstellen.

Figur 5 zeigt Konstrukte zur Gewinnung transgener Mausmutanten.

Bevorzugt handelt es sich bei der erfindungsgemäßen Nukleinsäure um eine Nukleinsäure, die für die neutrale Sphingomyelinase eines Säugetiers codiert. In besonders bevorzugter Weise handelt es sich dabei um die humane und murine neutrale Sphingomyelinase. Die entsprechenden Nukleinsäuresequenzen sind als Seq. ID. Nr. 3 und Seq. ID. Nr. 4 offenbart.

Teile der Nukleinsäuresequenzen stimmen mit der EST-Sequenzen AA028477 und AA013912 (murin) und W32352 und AA056024 (human) überein.

Bei Kenntnis der Aminosäure- und Nukleinsäurestruktur der humanen und murinen neutralen Sphingomyelinase kann der Fachmann unter Berücksichtigung der hohen Homologie zwischen der humanen und murinen nSMase die entsprechenden Nukleinsäuren und Proteine aus anderen Eukaryonten leicht auffinden. Dazu kann er zum einen kreuzreagierende Antikörper für eine spezifische affinitätschromatographische Aufreinigung einsetzen, oder er kann auf der Grundlage der Nukleinsäuresequenz Oligonukleotidprimer synthetisieren und die gesuchten Nukleinsäuren mit Hilfe der Polymerasekettenreaktion in einer cDNA-Bank des Eukaryonten amplifizieren. Die entsprechende cDNA-Bank kann durch Isolierung von mRNA aus einer Gewebeprobe und anschließende Reverse-Transkription in an sich bekannter Weise erhalten werden. Aus der Nukleinsäuresequenz kann mit Hilfe des genetischen Codes die Aminosäuresequenz abgeleitet werden. Alternativ ist es hierzu auch möglich, homologe Sequenzen in EST (Expressed Sequence Tags)-Datenbanken zu suchen und zu kombinieren.

- 3 -

Die erfindungsgemäßen Nukleinsäuren eignen sich zur Expression der eukaryontischen neutralen Sphingomyelinase in pro- oder eukaryontischen Systeme. Darüber hinaus sind sie auch zur Expression der nSMase in vivo im Sinne einer Gentherapie oder insbesondere in Form von Fragmenten auch in komplementärer Struktur als Antisense-Nukleotide zur Verringerung der Expression der nSMase geeignet.

Die erfindungsgemäßen Nukleinsäuren können durch chemische Symthese oder durch Vervielfältigung in gentechnisch veränderten Organismen nach dem Fachmann an sich bekannten Verfahren hergestellt werden.

Gegenstand der Erfindung ist auch die durch die Expression der erfindungsgemäßen Nukleinsäuren erhältliche eukaryontische neutrale Sphingomyelinase.

Die erfindungsgemäße nSMase läßt sich durch Expression in gentechnisch veränderten Organismen herstellen. Insbesondere sind eukaryontische Expressionssysteme geeignet. Entsprechende eukaryontische Expressionssysteme sind dem Fachmann bekannt wie beispielsweise pRc/CMV (Firma Stratagene). Die Aufreinigung aus gentechnisch veränderten Organismen bietet, insbesondere im Falle der Überexpression, ein leichten und direkten Zugang zur erfindungsgemäßen nSMase und erlaubt darüber hinaus die Isolierung in größeren Mengen.

Bevorzugt handelt es sich um die eukaryontische neutrale Sphingomyelinase eines Säugetiers, insbesondere um humane oder murine neutrale Sphingomyelinase. Die Aminosäuresequenzen der humanen und murinen neutralen Sphingomyelinase sind als Seq. ID. Nr. 1 und 2 wiedergegeben.

Die Molekulargewichte der humanen bzw. murinen Sphingomyelinase beträgt 47,6 bzw. 47,5 kDa. Im Gegensatz zu den bakteriellen nSMasen enthalten die erfindungsgemäßen nSMasen von Säugetieren keine Signalsequenz am N-Terminus. Aufgrund der Hydrophobizi-

tätsanalyse kann davon ausgegangen werden, daß zwei benachbarte hydrophobe Membrandomänen am C-Terminus durch acht Aminosäuren getrennt sind. Es scheint sich daher um integrale Membranproteine zu handeln, deren katalytisch aktive Domäne zum Cytosol zeigt, während nur ein geringer Anteil der Enzyme Kontakt zur extrazellulären Umgebung hat. Dies ist im Gegensatz zu den bakteriellen nSMasen, bei denen es sich um sekretierte, lösliche Proteine handelt, ist aber in Übereinstimmung mit bisherigen Untersuchungen zu den Eigenschaften der neutralen Sphingomyelinasen von Säugetieren. Die 1,7 kb mRNA der murinen nSMase wird gemäß Northern Blot Analyse in allen Geweben exprimiert. In Nieren, Hirn, Leber, Herz und Lunge zeigt der Northern Blot ein starkes Signal, während die Expression in der Milz gering zu sein scheint. Diese Messung war nicht in Übereinstimmung mit den gemessenen enzymatischen Aktivitäten der entsprechenden Gewebe. Dies spricht für eine posttranskriptionale Regulation der nSMase.

Das pH-Optimum der erfindungsgemäßen neutralen Sphingomyelinase liegt im Bereich von 6,5 bis 7,5 mit einem K_m -Wert für C18 Sphingomyelin im Bereich von 1,0 bis 1,5 x 10^{-5} M. Die Aktivität ist magnesiumionenabhängig, die Zugabe von EDTA führt zu einer Inhibierung der SMase-Aktivität, kann jedoch durch Zugabe von Mn²+- oder Mg²+-Ionen wiederhergestellt werden. Die Zugabe von 0,3 bis 0,5% Triton X-100 erhöht die Enzymaktivität. Die Aktivität ist unbeeinflußt durch Behandlung mit DTT oder 2-Mercaptoethanol, wohingegen die Zugabe von 20 mM Glutathion zur Inhibierung führte. Die Aktivität der nSMase ist nicht auf Sphingomyelin limitiert, auch das strukturell verwandte Phosphatidylcholin wurde mit etwa 3% Aktivität gespalten.

Weiterhin beansprucht werden Varianten der eukaryontischen neutralen Sphingomyelinase. Unter den Begriff "Varianten" fallen sowohl natürlich vorkommende allelische Variationen der eukaryontischen neutralen Sphingomyelinase sowie durch rekombinante DNA-Technologie (insbesondere durch in vitro Mutagenese mit Hilfe von chemisch synthetisierten Oligonukleotiden) und an-

WO 99 07855 PCT EP98 05127

- 5 -

schließende Expression erzeugte Proteine, die hinsichtlich ihrer biologischen und/oder immunologischen Aktivität der eukaryontischen neutralen Sphingomyelinase entsprechen. Dabei können sowohl Aminosäuren deletiert, eingefügt oder konservativ ausgetauscht werden. Konservativer Austausch bedeutet, daß eine Aminosäure durch eine Aminosäure ersetzt wird, die ähnliche physikalisch-chemische Eigenschaften aufweist.

So sind beispielsweise folgende Aminosäuren austauschbar: Serin für/gegen Alanin, Alanin für/gegen Glycin, Methionin für/gegen Serin, Lysin für/gegen Arginin, Lysin für/gegen Serin.

Insbesondere umfaßt der Begriff Varianten auch N- und/oder Cterminale verkürzte Proteine sowie acetylierte, glykosylierte, amidierte und/oder phosphorylierte Derivate.

Die Aktivität der nSMase scheint zumindest zum Teil im C-terminalen Bereich zu liegen, da das Fragment 1 bis 282 der murinen nSMase bei Expression in HEK293 Zellen keine Erhöhung der Sphingomyelinase-Aktivität zeigte. C-terminale Fragmente der nSMase sind ebenfalls Gegenstand dieser Erfindung. Auch Verbindungen, bei denen nSMase oder seine Varianten mit weiteren Molekülen wie Farbstoffe, Radionukliden oder Affinitätskomponenten gekoppelt sind, stellen erfindungsgemäße Varianten dar.

Beansprucht werden auch Nukleinsäuren, die für eukaryontische neutrale Sphingomyelinase codieren bzw. komplementär zu diesen Nukleinsäuren sind. Bei den Nukleinsäuren kann es sich beispielsweise um DNA, RNA, PNA oder um nukleaseresistenter Analoga handeln. Nukleaseresistente Analoga sind insbesondere solche Verbindungen, in denen die Phosphodiesterbindung durch hydrolysestabile Verbindungen modifiziert sind, beispielsweise Phosphothioate, Methylphosphonate o.ä.

Für Antisensenukleotide sind insbesondere kurze Fragmente der Nukleinsäuren geeignet. Diese sollten aus Gründen der Spezifität bevorzugt mehr als ϵ , noch mehr bevorzugt mehr als δ und am

PCT/EP98/05127

meisten bevorzugt mehr als 12 Nukleotide aufweisen. Aus Gründen der Diffusion und der Kosten haben sie üblicherweise eine Länge von weniger als 30 Nukleotiden, bevorzugt 24 oder weniger und noch mehr bevorzugt 18 oder weniger Nukleotide.

Gegenstand der Erfindung sind auch Derivate von Nukleinsäuren, die für diagnostische oder therapeutische Zwecke mit anderen Molekülen gekoppelt sind, beispielsweise mit Fluoreszenzfarbstoffen, radioaktiven Markern oder Affinitätskomponenten, sowie Fragmente der erfindungsgemäßen Nukleinsäuren und der zu diesen Nukleinsäuren komplementären Nukleinsäuren sowie Varianten der Nukleinsäuren.

Fragmente bezeichnet dabei Nukleinsäuren, die am 5' oder 3' oder an beiden Seiten verkürzt sind. Unter dem Begriff "Varianten" wird verstanden, daß diese Nukleinsäuren unter stringenten Bedingungen mit der erfindungsgemäßen Nukleinsäure bzw. dazu komplementären Nukleinsäuren hybridisieren. Unter dem Begriff "stringente Bedingungen" wird verstanden, daß die Hybridisierung bei Bedingungen durchgeführt wird, bei der die Temperatur noch bis zu 10°C unter der Temperatur liegt (bei sonst identischen Bedingungen), bei der exakt komplementäre Nukleinsäuren gerade noch hybridisieren würden. Wenn beispielsweise eine exakt hybrisierende Nukleinsäure unter gegebenen Bedingungen bis zu einer Temperatur von ca. 55°C hybridisiert, dann sind stringente Bedingungen Temperaturen gleich oder höher 45°C. Bevorzugt ist der Temperaturbereich für stringente Bedingungen von 5°C, noch mehr bevorzugt von 3°C.

Desweiteren betrifft die Erfindung Antikörper, die gegen die erfindungsgemäße nSMase oder die erfindungsgemäßen Nukleinsäuren gerichtet sind. Diese Substanzen eignen sich insbesondere zum Einsatz in der Diagnostik, dem Fachmann an sich bekannten Immunoassays, zur histologischen Untersuchung sowie als Arzneimittel zur Behandlung von Zuständen, die mit einer Überexpression der nSMase verbunden sind. Solche erfindungsgemäßen Antikörper können mit dem Fachmann an sich bekannten Verfahren durch

WO 99 07855

- 7 -

PCT.EP98 0512" .

Immunisierung mit nSMase, erfindungsgemäßen Nukleinsäuren oder Peptid- und Nukleinsäurenfragmenten in Gegenwart von Hilfsreagenzien erhalten werden.

Weiterhin sind Gegenstand der Erfindung Zellinien, die die erfindungsgemäße nSMase überexprimieren. Solche Zellinien sind erhältlich durch Transfektion mit Vektoren, die die erfindungsgemäßen Nukleinsäuren, die für nSMase kodieren, enthalten. Im Falle von eukaryontischen Zellinien kann die Transfektion beispielsweise durch Elektroporation erfolgen. Die Zellinien sind dabei vorzugsweise stabiltransfiziert.

Überexpression bedeutet in diesem Zusammenhang, daß diese Zellinie eine höhere Aktivität der nSMase aufweisen als die Zellinien, die nicht mit den erfindungsgemäßen Nukleinsäuren transfiziert wurden. Geeignete eukaryontische Zellinien sind beispielsweise die Zellinien U937, HEK 293 oder Jurkat.

Die Zellinien zeigten in Experimenten eine spezifische nSMase-Aktivität zwischen 0,3 und 10 μ mol/mg Protein/Stunde.

Figur 3 zeigt die Northern und Western Blot Analyse der nSMase-Expression in transfizierten Zellinien. Teil A zeigt dabei das Ergebnis einer RT-PCR der Gesamtzelle RNA mit Primern, die mit humaner und muriner nSMase cDNA hybridisieren. Teil B zeigt als Kontrolle die T-PCR der Gesamt-RNA mit Primern, die zu humanem ß-Actin cDNA hybridisieren. Teil C zeigt den Westernblot des Plasma Membran Proteinextrakts von verschiedenen HEK 293 Zellinien nach SDS Polyacrylamid-Gelelektrophorese und Hybridisierung mit dem polyklonalen Anti-nSMase-Antikörpern.

Die Zugabe von 0,5 mM Arachidonsäure führte zu einer dreifachen Erhöhung der nSMase-Aktivität in den überexprimierenden HEK-Zellen.

Gegenstand der Erfindung ist weiterhin ein transgenes Säugetier, das eine Überexpression (gain of function) oder eine Gendefi-

zienz bzw. einen Gendefekt (loss of function) für die erfindungsgemäße nSMase aufweist. Bevorzugt handelt es sich bei dem Säugetier um ein Nagetier, insbesondere eine Maus. Diese transgenen Säugetiere sind durch für den Fachmann an sich bekannte Verfahren erhältlich und eignen sich insbesondere zur Funktionsaufklärung der neutralen Sphingomyelinase. Für transgene Säugetiere werden definierte Genkonstrukte durch DNA-Mikroinjektion in den Vorkern (Pronukleus) einer befruchteten Eizelle im Einzellstadium injiziert, um die Expression des zusätzlichen Gens zu erreichen. Durch zielgerichtete Veränderung eines Gens im Genoms von ES-Zellen, die nachfolgend in Blastozysten injiziert werden, wird die Funktion eines Gens ausgeschaltet.

Die Strategie und Konstrukte zur Generierung der Mausmutanten sind in Figur 4 und 5 gezeigt.

Bevorzugt handelt es sich bei den transgenen Tieren um Tiere, bei denen das Gen zeitlich und gewebsspezifisch von außen induzierbar ein- bzw. ausgeschaltet werden kann. Entsprechende transgene Säugetiere eignen sich insbesondere zur Aufklärung der mit der erfindungsgemäßen nSMase im Zusammenhang stehenden Stoffwechsel- und Signaltransduktionswegen, die wiederum diagnostische oder therapeutische Anwendungen eröffnen. Insbesondere eignen sich die transgenen Säugetiere zum Screening von pharmazeutischen Wirkstoffen.

Die erfindungsgemäße eukaryontische neutrale Sphingomyelinase, die erfindungsgemäßen Nukleinsäuren sowie die erfindungsgemäßen Antikörper können in Arzneimitteln und Diagnostikmitteln gegebenenfalls zusammen mit weiteren Hilfsstoffen enthalten sein. Diese Arznei- und Diagnostikmittel eigenen sich zur Diagnose und Behandlung von Erkrankungen, die auf einer Über- oder Unterexpression und/oder einer erhöhten oder verminderten Aktivität der eukaryontischen neutralen Sphingomyelinase und/oder auf Störungen der Zellproliferation, Zelldifferenzierung und/oder Apotose beruhen.

Insbesondere sind dies Erkrankungen, bei denen Entzündungsprozesse, Zellwachstumstörungen und Stoffwechselstörungen eine Rolle spielen. Dies können beispielsweise Krebserkrankungen oder Störungen der Cholesterinhomöostase (Arteriosklerose) sein.

Ein erfindungsgemäßes pharmazeutisches Screening-Verfahren beruht auf der Veränderung der Expression oder Aktivität der erfindungsgemäßen nSMase in nSMase-überexprimierenden Zellinien bei Zugabe von mindestens einer potentiell pharmazeutisch wirksamen Substanz. Die Zellinien eignen sich somit insbesondere zur Entwicklung und Prüfung von pharmazeutischen Leitstrukturen.

Die Erfindung soll durch die folgenden Beispiele weiter erläutert werden.

Beispiel 1

Klonierung der Nukleinsäure

Die erfindungsgemäßen für die neutrale Sphingomyelinase kodierenden Nukleinsäuren wurden in die NotI Schnittstellen der Klonierungsstelle des eukaryontischen Expressionsvektors pRc/CMV (Stratagene) kloniert. Die erhaltenen Sequenzen wurden durch Sequenzierung mit einem Perkin-Elmer DNA-Sequenzer 377A erhalten.

Beispiel 2

Klonierung der RNA

Die Gesamt-RNA wurde nach bekannten Methoden aus verschiedenen Organen von acht drei Wochen alten CD1 Mäusen isoliert und Poly(A')-RNA wurde durch Affinitätsreinigung an Oligo(dT)cellulose (Boehringer Mannheim Deutschland) gemäß Standardmethoden isoliert.

- 10 -

Beispiel 3

Überexprimierende Zellinien

U937 Zellen wuchsen in RPMI 1640 Medium mit 10% fötalem Kälberserum, 1 μ g/ml Penicillin/Streptomycin und 0,03% Glutamin bei 37°C und 5% CO₂. 5x10⁶-Zellen wurden mit 1 μ g linearisierter Plasmid-DNA, die für die erfindungsgemäße nSMase kodierte durch Elektroporation mit einem "gene pulser" (Firma Bio-Rad) transfiziert. Die Selektion stabiler Klone erfolgte unter 1 mg/ml Geneticin (G418, Life Technologies, Gaithersburg, MD).

Die aus den Zellinien aufgereinigte nSMase zeigte eine spezifische Aktivität zwischen 0,3 und 10 μ mol/mg Protein/Stunde. Das pH-Optimum lag bei 6,5 und 7,5. Der K_M-Wert für C18 Sphingomyelin betrug 1,0 bis 1,5 x 10⁻⁵ M. Die Aktivität war von der Anwesenheit von Magnesiumionen abhängig; die Zugabe von EDTA inhibierte die Aktivität.

Beispiel 4

Messung der nSMase-Aktivität

Die enzymatische Aktivität wurde in Zellen und Mäusegewebe untersucht. Die Zellen wurden zweimal mit eiskaltem PBS gewaschen und bei 1.000 g sedimentiert. Das Pellet wurde in Lysepuffer resuspendiert und die Zellen wurden durch wiederholtes Einfrieren und Auftauen zerstört. Nach Zentrifugation für 2 min bei 2.500 g gefolgt von einer Extraktion mit Lysepuffer mit 0,2% Triton X-100. Anschließend erfolgt eine Zentrifugation für 15 min bei 100.000 g.

Gewebe von drei Wochen alten Mäusen wurde in kaltem Lysepuffer homogenisiert. Die zu untersuchende Menge- an Protein oder homogenisiertem Gewebe wurde mit 10 nm (80.000 dpm) [N- 14 CH₃]-Sphingomyelin für 30 min bei 37° in einem Gesamtvolumen von 200 μ l inkubiert. Dann wurden 100 μ l Wasser zugesetzt und unreagiertes Substrat durch Extraktion mit Chloroform-Methanol (2:1, v/v) entfernt. Die Radioaktivität der wäßrigen Phase, die

- 11 -

das enzymatisch freigesetzte Phosphocholin enthielt, wurde in einem Sintillationszähler gemessen.

Beispiel 5

Polyklonale Antikörper

Kaninchen wurden mit dem synthetischen Peptide CDPHSDKPFSDHE (entsprechend den Aminosäuren 261 bis 273 der murinen nSMase) gekoppelt an Keyhole-Limpit-Hemocyanin immunisiert. Das polyklonale Antikörperserum wurde durch Chromatographie an Hydroxyapatit und Affinitätschromatographie an einer Säule, an der das oben genannte synthetische Peptide gebunden war, gereinigt.

Patentansprüche

- Nukleinsäure kodierend für eukaryontische neutrale Sphingomyelinase.
- Nukleinsäure gemäß Anspruch 1, dadurch gekennzeichnet, daß es sie für die neutrale Sphingomyelinase eines Säugetiers, insbesondere für humane oder murine neutrale Sphingomyelinase kodiert.
- 3. Nukleinsäure gemäß mindestens einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, daß die neutrale Sphingomyelinase Sphingomyelin in Ceramid und Phosphocholin spaltet und ihre Aktivität von der Zugabe von Magnesiumionen abhängig ist.
- 4. Nukleinsäure gemäß mindestens einem der Ansprüche 1 bis 3 mit der Sequenz gemäß Seq. ID. Nr. 3 oder Seq. ID. Nr. 4.
- 5. Nukleinsäure gemäß mindestens einem der Ansprüche 1 bis 4 dadurch gekennzeichnet, daß es sich um DNA, RNA, PNA oder nukleaseresistente Analoga handelt.
 - 6. Nukleinsäure gemäß mindestens einem der Ansprüche 1 bis 5 dadurch gekennzeichnet, daß es sich um mRNA, cDNA oder genomische DNA handelt.
 - 7. Nukleinsäure dadurch gekennzeichnet, daß sie komplementär zur Nukleinsäure gemäß mindestens einem der Ansprüche 1 bis 6 ist.
 - 8. Eukaryontische neutrale Sphingomyelinase erhältlich durch Expression der Nukleinsäure gemäß Anspruch 1 bis 6, insbesondere mit der Sequenz gemäß Seq. ID. Nr. 1 oder Seq. ID. Nr. 2.

- 9. Antikörper, dadurch gekennzeichnet, daß sie gegen eukaryontische neutrale Sphingomyelinase gemäß Anspruch 8 oder eine Nukleinsäure gemäß mindestens einem der Ansprüche 1 bis 7 gerichtet sind.
- 10. Zellinie, dadurch gekennzeichnet, daß sie neutrale Sphingomyelinase gemäß Anspruch & überexprimiert.
- 11. Zellinie gemäß Anspruch 10 dadurch gekennzeichnet, daß es sich um eine eukaryontische neutrale Sphingomyelinase exprimierende Zellinie handelt, die auf den Zellinien U937, HEK 293 oder Jurkat beruht.
- 12. Transgenes Säugetier mit Überexpression (gain of function) oder Gendefizienz oder Gendefekt (loss of function) für eukaryontische neutrale Sphingomyelinase.
- 13. Transgenes Säugetier gemäß Anspruch 12 dadurch gekennzeichnet, daß es ein Nagetier ist.
- 14. Arzneimittel enthaltend eukaryontische neutrale Sphingomyelinase gemäß Anspruch 8, eine Nukleinsäure gemäß mindestens einem der Ansprüche 1 bis 7 und/oder einen Antikörper gemäß Anspruch 9 zusammen mit weiteren Hilfsstoffen.
- 15. Diagnostikmittel enthaltend eukaryontische neutrale Sphingomyelinase gemäß Anspruch 8, eine Nukleinsäure gemäß mindestens einem der Ansprüche 1 bis 7 und/oder einen Antikörper gemäß Anspruch 9 zusammen mit weiteren Hilfsstoffen.
- 16. Verwendung der Arzneimittel gemäß Anspruch 14 oder der Diagnostikmittel gemäß Anspruch 15 zur Diagnose und Behandlung von Erkrankungen, die auf einer Über- oder Unterexpression und/oder einer erhöhten oder verminderten Aktivität der eukaryontischen neutralen Sphingomyelinase und/oder

auf Störungen der Zellproliferation, Zelldifferenzierung und/oder Apotose beruhen.

- 17. Verwendung gemäß Anspruch 15, dadurch gekennzeichnet, daß es sich bei den Erkrankungen um Entzüngsdungsprozesse, Zellwachstumstörungen, Krebs und/oder Stoffwelchselstörungen wie Störungen der Cholesterinhomöostase (Arteriosklerose) handelt.
- 18. Verfahren zum Screening von Wirkstoffen dadurch gekennzeichnet, daß die Veränderung der Expression oder Aktivität der eukaryontischen neutralen Sphingomyelinase in Zellinien gemäß Anspruch 10 bei Zugabe von mindestens einer möglichen pharmazeutisch wirksamen Substanz gemessen wird.
- 19. Verwendung der Zellinie gemäß Anspruch 10 zur Entwicklung und Prüfung von pharmazeutischen Leitstrukturen.
- 20. Verfahren zur Herstellung der eukaryontischen neutralen Sphingomyelinase gemäß Anspruch 8 durch chemische Peptidsynthese oder durch Expression in gentechnisch veränderten Organismen, insbesondere in eukaryontischen Expressionssystemen.
- 21. Verfahren zur Herstellung einer Nukleinsäure gemäß mindestens einem der Ansprüche 1 bis 7 durch chemische Synthese oder durch Vervielfältigung in gentechnisch veränderten Organismen.
- 22. Nukleinsäuren gemäß Anspruch 5, dadurch gekennzeichnet, daß es sich um das Gen für eukaryontische neutrale Sphingomyelinase handelt und neben codierenden Bereich (Exons) nicht codierende Bereiche (Introns) aufweist, insbesondere ein Gen mit der Sequenz gemäß Seq. ID. Nr. 5 und Seq. ID. Nr. 6.

- 23. Varianten der eukaryontischen neutralen Sphingomyelinase gemäß Anspruch 8.
- 24. Nukleinsäure gemäß mindestens einem der Ansprüche 1 bis 7 oder 22, dadurch gekennzeichnet, daß es sich um Derivate, Fragmente oder Varianten der Nukleinsäuren handelt.

human neutral Sphingomyelinase (NSM) Gene Sequence

-	ACCGCGGCCGTCGCTGGAGAGTTCGAGCCGCCTAGCGCCCCTGGAGCTCCCCAACCATGA	60
1	rggcgccggcagcgacctctcaagctcggcggatcgcgggacctcgaggggttggtact	E
	AGCCCAACTTCTCCCTGCGACTGCGGATCTTCAACCTCAACTGCTGGTGAGTGCGTCTGC	120
	TCGGGTTGAAGAGGGACGCTGACGCCTAGAAGTTGGAGTTGACGACCACTCACGCAGACG	120
	GGAGTGCGGTCTGGGGGCCACCTTCCGTTCGCACCCATGCAGCCTTCCTCCCCCTATCCC	100
	CCTCACGCCAGACCCCGGTGGAAGGCAAGGGTGGGTACGTCGGAAGGAGGGGGATAGGG	180
	GCCCACGATCTCAGGGTGTAGGGAAAACCCGAACCTCCAAAGTCCACATCTGGCCCCAG	240
	CGGGGTGCTAGAGTCCCACATCCCTTTTGGGCTTGGAGGTTTCAGGTGTAGACCGGGGTC	240
	CGCCGGTGGTCCCAGCAGTCGCCTCCCCTGCCCGCTCTTCCTTAGGGGCATTCC	200
	GCGGCCACCAGGGTCGTCAGCGGAGGGGGACGAGGAGGAGGAGAATCCCCGTAAGG	300
	GTACTTGAGCAAGCACCGGGCCGACCGCATGAGGCGCCTGGGAGACTTTCTGAACCAGGA	260
	CATGAACTCGTTCGTGGCCCGGCTGGCGTACTCCGCGGACCCTCTGAAAGACTTGGTCCT	
	GAGCTTCGACCTGGCTTTGCTGGAGGAGGTGAGATTGTGCAGCACGGTGCGGAACCCAGG	I
	CTCGAAGCTGGACCGAAACGACCTCCTCCACTCTAACACGTCGTGCCACGCCTTGGGTCC	420
	CTGGGAGGAGGACAGCCGTCCCACTGGGGAAAGACCAAGCAGGCATCCTCACCGCTTC	
	GACCCTCCTCCCTGTCTGGCAGGGTGACCCCTTTCTGGTTCGTCCGTAGGAGTGGCGAAG	480
	CCTCAGGTGTGGAGTGAGCAGGACTTCCAGTACCTGAGACAGAAGCTGTCACCTACCT	
	GGAGTCCACACCTCACTCGTCCTGAAGGTCATGGACTCTTCGACAGTGGATGGA	540
	GONG TO CHONCO CONCERN CONTROL OF THE	E
	CCAGCTGCACACCACTTCCGGAGGTGAGAAGCCCACTGGCCTGAAGCCTGTTGTCATCCC	600
	GGTCGACGTGTGAAGGCCTCCACTCTTCGGGTGACCGGACTTCGGACAACAGTAGGG	
	AGGAGGCTCTTGGCCCTGCCAGCCCTTCCCTATCCTGCCTG	660
	TCCTCCGAGAACCGGGACGGTCGGGAAGGGATAGGACGGAC	
	GCCTCCTCTCCCTCTGGATGTGAGAGGAGGAGGAGGGTGAACCAAGAAGGTCCTATGACT	720
•	CGGAGGAGAGGGAGACCTACACTCTCTCCTCTTCCCACTTGGTTCTTCCAGGATACTGA	
	TCAGCCCATTCAGCTTGTTTTCTGGCTGCUCTATACTCCTCCAAAGGCCGTCGCCTTG	780
	AGTCGGGTAAAGTCGAAACAAAAGACCGACGGGATATGAGGAGGTTTCCGGCAGCGGAAC	
	GTTCTAGGGCTAGTCCCAGCAGTAGAAAAAGAAAAAATAGCTGATCAGAGCTGGAAGAC	840
	CAAGATCCCGATCAGGGTCGTCATCTTTTTTTTTTTTTT	
1	AAGGGAGGGAAGAAGGCTGGGTGTCTCCCCTGTTTTTCTGGTTATTAAGCAGGGCTTG	900
	TTCCCTCCCCTTCTTCCGACCCACAGAGAGGGACAAAAAGACCAATAATTCGTCCCGAAC	
	Figur 1-1	

WO 99 07855 PCT EP98 05127

2 / 12

	D / IL OTOTOCOTOCTTOCOUGAGATGCTAGGATGAGGCAATGATTCCCTTAGGGCTCT GAGG	
1661	GAGAGGGAGGAAGAGGGGGGTGTAGGATCCTACTGGTTACTAAGGGAATCCCGAGACTCC	1920
1621	AAGGCAACACAATGGTACCCAAGAACTGNTACGTCAGCCAGCAGGAGGTGAAGCCATTTC	Е VIII
1921	TTCCGTTGTGTTACCATGGGTTCTTGACNATGCAGTCGGTCGTCCTCGACTTCGGTAAAG	1980
1981	CCTTTGGTGTCCGCATTGACTACGTGCTTTACAAGGTCAGGGTCCTCCCTTCAACATGCT	2040
	GGAAACCACAGGGGTAACTGATGCAGGAAATGTTCCAGTCCGAGGAGGGAAGTTGTACGA	
2041	TTCATATGCTGTGTCTCTTTGTCTACTAACCTGTGTAGATCCTTTGCTCAGNTAGTCTAG AAGTATACGACACAGAGACAGATGATTGGACACATCTAGGAAACGAGTCAATCAGATC	2100
2101	TOTTGGACCACTGATGGGTGGAAAGUGGGGTAAGCGGGGAAGAGGC	
	AGAACCTGGTGACTACCCACCTTTCACCCCATGGGCCCTTGGACCAAGAGACCCTTCTCCG	2160
1161		2220
	CGAGTATATATTCGAAGAGAAAA CCGCGAATGAAAAAGACCCAAAAGACCCAAAATGTA CTCCTGTAAGAGTTTTGAAACCACTACAGGGTTTGAACAGGGGCACCCCCTCTC	
2021	GAGGACATTCTCAAAACTTTGSTGATGTCTGAAAACTGGGGANTGTCCCCGTGGGGGGGAGAG	2280
	TTGATCATGAAGCCCTGATGGCTACTCTGTTTGTGAGGCACAGCCCCCCACAGCAGAACC	ΕIX
2281	AACTAGTACTTCGGGACTACCGATGAGACAAACACTCCGTGTCGGGGGGGTGTCGTCTTGG	2340
2341	CCAGCTCTACCCACGGTGAGTCACCCCCACCCTTTCCTTGGCCCTTGCCCCGCTTGAAGC	
	GGTCGAGATGGGTCCCACTCAGTGGGGGTGGGAAAGGAACCGGGGAACGGGGCGAACTTCG	2400
2401		2460
	TCGGGAAGGTGAGAACTGAGAGAGGGGGGGGGGGGGGGG	
2461	AGAGGTCGCCGTTGATGTGTGTGCTAAAGGAGGCCTGGACGAGCTGGGTCTGGGCATGG TCTCCAGCGGCAACTACACACGATTTCCTCCGGACCTGCCTCGACCCAGACCCGTACC	2520
	CTCAGGCTCGCTGGTGGGCCACCTTCGCTAGCTATGTGATTGGCCTGGGGCTGCTTCTCC	
2521		2580
2501	TGGCACTGTGTGTGTGCGGCGGCTGGAGGAGGGGGCGGGGAAGCTGCCATACTGCTCT	ΕX
2581	ACCGTGACGACACACAGGACCGCCGACCTCCTCCCCGGCCCCTTCGACGGTATGACGAGA	2640
2641	GGACCCCAGTGTAGGGCTGGTGGTGGGCAGGTGCATTCTACCTCTTCCACGTACAGG	2700
	CCTGGGGGTCACATCCCGACCACGACACCCGTCCACGTAAGATGGAGAAGGTGCATGTCC	
2701	AGGTCAATGGCTTATATAGGGCCCAGGCTJAGCTCCAGCATGTGCTAGGAAGGGCAAGGG TCCAGTTACCGGATTATATCCCGGGGTCGGACTCGAGGTCGTACACGATCCTTCCCGTTCCC	760
	AGGCCCAGGATCTGGGCCCAGAGCCTCAGCCAGCCTACTCCTGGGGCAGCAGGAGGGGGG	
	TEEGGSTEETAGAEEEGGGTETEGGASTEGGSG-TGASAACCCCGTCGTCCTCCCCC	. b 2 C
	- ACAGAACTAMAGAACAATAMAGCTIGSCCCM Ilbur - 1-2	

Figur 1-3

The A section was a section of the section of

Mouse Neutral Sphingomyelinase (nSMase) gene sequence

		THGAIRICTGTTAGCTCCAGNCCGGTNGGTCGCCGTNCTAGNCRNATCTNTATAGCTCTTC
	:	1
		ANCTHNGACAATCGAGGTCNGGCCANCCAGCGGCANGATCNGNNTAGANATATCGAGAAG
	63	GTTGCGAGCNCAATTNRNTCTCAATAAANGGATNCANCCCTATGACAGAACGTGGACCCC
		CAACGCTCGNGTTAANNNAGAGTTATTTNCCTANGTNGGGATACTGTCTTGCACCTGGGG
	121	CGCCCGCCANCNCANGNGANACCGCGGCATGGGNCTGAGGTGCNCANGGTGTCTGGGGCG
		GCGG3CGGTNGNGTNCHCTNTGGCGCCGTACCCNGACTCCACGNGTNCCACAGACCCCGC
		AGGGTTACCTCAGCGATGGTCTTTGACACCTGAAAGCTGGAGCTTTTGAANAGCCCCAI
	181	240
		TOCCCAATGGAGTCGCTACCAGAAACTGTGGACTTTCGACCTCGAAAACTTNTCGGGGTN
	241	CACCTTCAGCTTCAGGGGGGGTCNGGCGCCAACCGCACGTGANATGCTGGGGGGCTTCCA
		GTGGAAGTCGAAGTCCCCGCCGAGNCCGCCGTTGGCGTGCACTNTACGACCCCCGAAGCT
	301	CTTGGGCCGGCACGGNTGCTGGGTGGCCATGGAARRNACAGNACAGAGCCCGGNACACAA
		GAACCCGGCCGTGCCNACGACCCACCGGTACCTTINNTGTCNTGTCTCGGGCCNTGTGTT
	361	ATANTGCGAGTCGCCANGGNAACCGCGTGGCTCCTCCCCGAACGCCCNCAAGGGGCGGGA
		TATNACGCTCAGCGGTNCCTTTGGCGCACCGAGGAGGGGCTTGCGGGGNGTTCCCCGCCCT
	421	CCTGAGTGAGTTCNTGGGCGGGGCCTCNCATCAACTTCAAGCCTGTTGCTGGTGGAAGCC
		GGACTCACTCAAGNACCCGCCCCGGAGNGTAGTTGAAGTTCGGACAACGACCACCTTCGG
ΕI	403	GAGCCGGGAACAAGGGAACCTGTAGGCCGCGGTGCGGATAACCCACCGAAGGACCTA
L I	461	540
		CTCGGCCCTTGTTCCCTCGTTGGACATCCGGCGCCACGCCTATTGGGTGGCTTCCTGGAT
	541	AGAATCTGGAACAGTCCACCCGAGATTCCTTCCAGGACTGCCGGCGGACTCTCGCATTCA
		TCTTAGACCTTGTCAGGTGGGCTCTAAGGAAGGTCCTGACGGCCGCCTGAGAGCGTAAGT
	601	GCCCGGGATTTGCAGCCGACCTTCTTTCCGGGTGGAATGACGGCCTTTGTCCCAGTAACG
		CGGGCCCTAAACGTCGGCTGGAAGAAAGGCCCACCTTACTGCCGGAAACAGGGTCATTGC
	661	CAGGAGTCNNCCCCACCCCCAACCAGCTCGCGTTCCTGGGTCGGGGCAGCGCAGGATAGG
		GTCCTCAGNNGGGGTGGGGGTTGGTCGAGCGCAAGGACCCAGCCCCGTCGCGTCCTATCC Start
	721	GCAATAAGCCTGTGCGCGCAATCCGCCTCGCCGCCCTTGCTCCGAAGCACTCCAGCCATG
		CGTTATTCGGACACGCGCGTTAGGCGGAGCGGGGGAACGAGGCTTCGTGAGGTCGG <u>TAC</u>
	781	AAGCTCAACTTTTCTCTACGGCTGAGAGTTTTCAATCTCAACTGCTGgtaagtaagtgct
		TTCGAGTTGAAAAGAGATGCCGACTCTCAAAAGTTAGAGTTGACGACCattcattcacga

		cccaggcgtgggCTGCAGCCTCGGAGCCACCTTCCAGTCCCCTCTCGCACATGCCTAGGA	900
	841	gggtccgcacccGACGTCGGAGCCTCGGTGGAAGGTCAGGGGAGAGCGTGTACGGATCCT	
	901	AGGAAGCAGGTCTTCTTCAGCCGAGCTAGACCCTGTCCTTCCCGAACCACCAAAGTCCAC	960
	901	TCCTTCGTCCAGAAGAAGTCGGCTCGATCTGGGACAGGAAGGGCTTGGTGGTTTCAGGTG	
	061	ATCGCCTAAAGACCAGAGCTTGGGTGGTTGCAGCAATCACCAAAGTCCCTATCATCCAAA	1020
	961	TAGCGGATTTCTGGTCTCGAACCCAACGTCGTTAGTGGTTTCAGGGATAGTAGGTTT	
	1021	GCTGAGGTGATGACAGCAGTAATCGTCCCAAACCTGGCCCATGTCTTTCCTTTTAAATGA	1080
	1021	CGACTCCACTACTGTCGTCATTAGCAGGGTTTGGACCGGGTACAGAAAGGAAAATTTACT	
	1001	TTTACTTTTATTTTATGTACATTTGGTGTTTTTGCCTGTATGTA	1140
	1001	ANATGANATAAAATACATGTANACCACAAAACGGACATACATACAGACACACTTCCACG	
	11.11	CAGATTCTCTGGAACTGGAGTTACAGACAGTTGTAAGCTGTCATGTGCTTGCT	1200
		GTCTAAGAGACCTTGACCTCAATGTCTGTCAACATTCGACAGTACACGAACGA	
		GAACTGCTGACCCATCTCTTCTGCCCCCTGCGTCCTCCACCCCTTTTAGGGACATCCCCT	1260
		CTTGACGACTGGGTAGAGAGACGGGGGACGCAGGAGGTGGGGAAAATCCCTGTAGGGGA	
	1261	ACCTGAGCAAACATAGGGCGGACCGCATGAAGCGCTTGGGAGACTTTCTGAACTTGGAAA	1320
77 XX	1201	TGGACTCGTTTGTATCCCGCCTGGCGTACTTCGCGAACCCTCTGAAAGACTTGAACCTTT	
EII		ACTTTGATCTGGCTCTCCTGGAGGAGGTGAGGTTGTAGGGCAGGCTAGGTTGGAGGAGGG	1380
	1321	TGAAACTAGACCGAGAGGACCTCCTCCACTCCAACATCCCGTCCGATCCAACCTCCTCCC	
		CAGCAGGCGGCAGGCAGGAAAACTTGTTCTGTCTTGGGATGAAATCCCAAGCAA	1440
	1387	GTCGTCCGCCGTCCGCCGTCCTTTTGAACAAGACAGAACCCTACTTTAGGGTTCGTT	
	3443	GTATCCTCACCTTCTTCCTCCAGGTGTGGAGTGAGCAGGACTTCCCAGTACCTAAGGCAA	1500
ΕII		CATAGGAGTGGAAGAAGGAGGTCCACACCTCACTCGTCCTGAAGGGTCATGGATTCCGTT	
EII	_	AGGCTATCGCTCACCTATCCAGATGCACCACTACTTCAGAAGGTGAAAAGCCTGTGTTCTC	1560
	1501	TCCGATAGCGAGTGGATAGGTCTACGTGTGATGAAGTCTTCCACTTTTCGGACACAAGAG	
	1563	AGCCTGTTCTCAGACGAGGAAGCTCTCCAACATTCTTGCTTG	1620
	1201	TCGGACAAGAGTCTGCTCCTTCGAGAGGTTGTAAGAACGAAC	
			1680
	1621	TCTGGGTGTGAGAAGAGCAGGCCGTCACCTCATCTTGCAAGGGCTGCTGTCTTAGGCTT	1000
	1621	AGACCCACACTCTTCTCGTCCGGCAGTGGGAGTAGAACGTTCCCGACGACAGAATCCGAA	
		AGACCCACACTCTTCTCGTCCGGCAGTGGGAGTAGAACGTTCCCGACGACAGAATCCGAA TGTTCTGGGGTTGATCTTAGCAGTAGAGCTGGGAGACCGCGGAGGGGAAGAGGGCTGGCT	
		AGACCCACACTCTTCTCGTCCGGCAGTGGGAGTAGAACGTTCCCGACGACAGAATCCGAA	. 1740

	1741	GGGTACTCCCCTCCTTGCTCTTCTGGTTATTAAGCAAGAGTTGGTTTTCAGCGGGATGA	T
ЕΙ		CCCATGAGGGGAGGAACGAGAAGACCAATAATTCGTTCTCAACCAAAAGTCGCCCTACT	+ 1800 A
		AGGCAGTGGCCTCTGTGTGTTCTCCAAACACCCCAATCCAGGAAATCTTCCAGCATGTCT	A
		TCCGTCACCGGAGACACAAGAGGTTTGTGGGTTAGGTCCTTTAGAAGGTCGTACAGAT	r + 1860
	1861	CAGTCTGAATGGTTACCCCTACATGGTAAGGATCTCTTCCCTATCCTTGCTAACACAGAC	:
		GTCAGACTTACCAATGGGGATGTACCATTCCTAGAGAAGGGATAGGAACGATTGTGTCTC	1920
	, 47,	TGGACGCAGCCTTCCTGGGGGCCTTGGCAGGAGGGTGTCAGTACCCTGAGTTTTTGTCTTC	:
		ACCTGOGTCGGAAGGACCCCGGAACCGTCCTCCCACAGTCATGGGACTCAAAACAGAAG	1980
	1981	TCTTGCCTGCAGTTCCATCATGGAGACTGGTTCTGTGGGAAAGTCTGTGGGGGCTGCTGGTG	:
ΕV		AGANCGGACGTCAAGGTAGTACCTCTGACCAAGACACCCCTTCAGACACCCCGACGACCAC	
•, •		CTCCGTCTAAGTGGACTGGTGCTCAATGCCTACGTGACTCATGTGAGTGGGGCTAGCCAG	
		GAGGCAGATTCACCTGACCACGAGTTACGGATGCACTGAGTACACTCACCCCGATCGGTC	2100
	2101	GCTTAGGCAGTGGGTCAAGCAGCCCAATGCTATGGTGGAGAAGAGACGCCACTAGTTAGT	22.60
		CGAATCCGTCACCCAGTTCGTCGGGTTACGATACCACCTCTTCTCTGCGGTGATCAATCA	2160
	2161	TCTGCTGCCTGGGGATAAGGCATGGGATCAGAAGCTAGCATTGGGCAAGGTTCACCCATT	2220
		AGACGACGGACCCCTATTCCGTACCCTAGTCTTCGATCGTAACCCCGTTCCAAGTGGGTAA	2220
	2221	CCCTGTCACACTCTGCCATGTGACAGATGACAAGCTTGATTCAGACAGCCTTCTCTTTGA	2280
		GGGACAGTGTGAGACGGTACACTGTCTACTGTTCGAACTAAGTCTGTCGGAAGAGAAACT	2200
	2281	TTTCACCTATTCCACTTTAGCTACATGCTGAGTACAGCCGACAGAAGGACATCTACTTTG	2240
E VI		AAAGTGGATAAGGTGAAATCGATGTACGACTCATGTCGGCTGTCTTCCTGTAGATGAAAC	2340
		CACACCGTGTGGCCCAAGCTTGGGAACTGGCCCAGTTCATCCAGTGTGTGAGCCTGGGCT	
		GTGTGGCACACCGGGTTCGAACCCTTGACCGGGTCAAGTAGGTCACACACTCGGACCCGA	2400
	2401	TGATGGGGGCTGTGGGGTGGGGACGGGGTTGAGGGATGNGNAANTTATCCTTGAAGAGGG	
		ACTACCCCGACACCCCACCCCTGCCCCAACTCCCTACNCNTTNAATAGGAACTTCTCCC	2460
	2461	CACATAATAAGGGAAGAATTTCCTCCTTGCCGCTCTTCCCCCAACTCAGCCACACATCCA	2520
E VI		GTGTATTATTCCCTTCTTAAAGGAGGAACGGCGAGAAGGGGGGTTGAGTCGGTGTGTAGGT	4J2V
	2521	AGAATGCAGATGTGGTTCTATTGTGTGGAGACCTCAATATGCACCCCAAAGACCTGGGCT	2500
		TCTTACGTCTACACCAAGATAACACACCTCTGGAGTTATACGTGGGGTTTCTGGACCCGA	2000

		GCTGCTGARAGAGTGGACAGGCTCCATGATGCTTTCGTTGAGACTGAGGACTTTA	
	2561	CGACGGACGACTTTCTCACCTGTCCCGAGGTACTACGAAAGCAACTCTGACTCCTGAAAT	
	2641	AGGTGAGAGACTGTTTCCCACCAACTCCACACTTGTTCCAGTCTTCCTGTCTCTTAGCAT	2700
		TCCACTCTCTGACAAAGGGTGGTTGAGGTGTGAACAAGGTCAGAAGGACAGAGAATCGTA	
	2701	CCTAGCCACCTGTTTCCCTAGGGCTCTGATGATGGCTGTACCATGGTACCCAAGAACTGC	
r 1.		GGATCGGTGGACAAAGGGATCCCGAGACTACTACCGACATGGTACCATGGGTTCTTGACG	2700
ΕV	111		
	2761	TACGTCAGCCAGCAGGACCTGGGACCGTTTCCGTCTGGTATCCGGATTGATT	2820
		ATGCAGTCGGTCGTCCTGGACCCTGGCAAAGGCAGACCATAGGCCTAACTAA	
	2021	TACAAGGTCAGGCTCTTATTCCCGGTGTGCCTTCTCCAGTATCTTCCTTC	
	7651	ATGTTCCAGTCCGAGAATAAGGGCCACACGGAAGAGGTCATAGAAGGAAG	2880
		AGCCCACGCTTTAGTTCAGCTACAGTCTTGGGCCACTGATGGCTAAAGAATAGAATCCTG	
	2881		2940
		${\tt TCGGGTGCGAAATCAAGTCGATGTCAGAACCCGGTGACTACCGATTTCTTATCTTAGGAC}$	
	2041	${\tt TCGGCTGGTTCTCTGGGAGAATTTAAGCTTCTCCATGTTCTTGCTCTTCCTAGGCAGTCT}$	
	2941	AGCCGACCAAGAGACCCTCTTAAATTCGAAGAGGTACAAGAACGAGAAGGATCCGTCAGA	3000
		CTGAGTTCCACGTCTGCTGTGAGACTCTGAAAACCACTACAGGCTGTGACCCTCACAGTG	
	3001		3060
e ix	ζ.	GACTCAAGGTGCAGACGACACTCTGAGACTTTTGGTGATGTCCGACACTGGGAGTGTCAC	
		ACAAGCCCTTCTCTGATCACGAGGCCCTCATGGCTACTTTGTATGTGAAGCACAGCCCCC	
	3061		3120
		TGTTCGGGAAGAGACTAGTGCTCCGGGAGTACCGATGAAACATACACTTCGTGTCGGGGG	
	21.71	$\tt CTCAGGAAGACCCCTGTACTGCCTGTGGTAAGCAGCATTTCCTTTGCCCCCTCTACTTA$	
	3121		3180
		GAGTCCTTCTGGGGACATGACGGACACCATTCGTCGTAAAGGAAACGGGGGAGATGAAAT	
	3181	AGGCAGCCCGCCTCCATCCTGACCCTCCCCTGCTCTACGTTCTCTTTTTCCAGGCCC	2240
		TCCGTCGGGGGGGGGGGACGAGAGAGAGAAAAAGGTCCGGG	3240
		ACTGGAAAGGTCCGATTTGATCAGCGTGCTAAGGGAGGCCAGGACAGAGCTGGGGCTAGG	
	3241		3300
ΞX		TGACCTTTCCAGGCTAAACTAGTCGCACGATTCCCTCCGGTCCTGTCTCGACCCCGATCC	3300
<i>-</i> /\	2201	CATAGCTAAAGCTCGCTGGTGGGCTGCATTCTCTGGCTATGTGATCGTTTGGGGGGCTGTC	
	3301	GTATCGATTTCGAGCGACCACCCGACGTAAGAGACCGATACACTAGCAAACCCCCGACAG	3360
		CCTTCTGGTGTTGCTGTGTCCTGGCTGCAGGAAGAGGGCCAGGGAAGTGGCCATCAT	
	3361		3420
		GGAAGACCACAACGACACAGGACCGACGTCCTCTTCTCCGGTCCCTTCACCGGTAGTA	
		Figur 2-4	

~ 4 ~ .	CCTCTGCATACCCAGTGTGGTTGGTGGTAGCAGTGCAGT	
J 12	GGAGACGTATGGGTCACACCAGACCACGACCATCGTCCACGTCAGATGGAGAAGGTGT	3480
348	GCAGGAGGCCAAGGGCTTATGTCGGGCCCAGGCTGAGATGCTGCACGTTCTGACAAGGGA	
	CGTCCTCCGGTTCCCGAATACAGCCCGGGTCCGACTCTACGACGTGCAAGACTGTTCCCT	3540
3541	AACGGAGACCCAGGACCGAGGCTCAGAGCCTCACCTAGCCTACTGCTTGCAGCAGGAGGG	;
	TTGCCTCTGGGTCCTGGCTCCGAGTCTCGGAGTGGATGACGAACGTCGTCCTCCC	3600
3601	GGACAGAGC <u>TTA</u> AGAGCTTAACAATAAAACTTGCTTGACACACTCTAGTGGCTCTACCTT	255-
	CCTGTCT:G <u>AAT</u> TCTCGAATTGTTATTTTGAACGAACTGTGTGAGATCACCGAGATGGAA	
3661	GTTCCTTGCAGAGGCATGATGGGAACTGAAGGTCAGTGGCCTTGTCACTGTGTGGCTTTA	3720
	CAAGGAACGTCTCCGTACTACCCTTGACTTCCAGTCACCGGAACAGTGACACCACCGAAAT	3720
3721	GAGGGTTGGCTCTCACTTGCCTTTTTTGCACACTCCCGTCTCCTGCCAGCACAGAGCAT	320.
	CTCJCW/CCGGAGAGTGAACGAAAAAACGTGTGAGGAGAGAGAGGACGGTCGTCTCGTA	3780
3781	AAACCCTGTTCATGGTCATAATCCTTTTATTGTAAACAACGAAGCCTCTGACTAAGCAGT	
	TTTGGGACAAGTACCAGTATTAGGAAAATAACATTTGTTGCTTCGGAGACTGATTCGTCA	3840
3041	CCAGATGGCGGAGGTACAGCCCTTGTGATGGTGTCTTGCTTACGGGGCAGGGAGGCAGCT	
5041	GGTCTACCGCCTCCATGTCGGGAACACTACCACAGAACGAATGCCCCGTCCCTCCGTCGA	3900
3901	AACCATCATCTTCTAGCCCTGGGCTCCCATCTATGCAGGCATCTCTCTGAGCCTCCGTTC	3060
	TTGGTAGTAGAAGATCGGGACCCGAGGGTAGATACGTCCGTAGAGAGACTCGGAGGCAAG	3960
3961	CTCCTGGAATTGGNTCAGAGCAATCCCGCTTGGTTCACCAAACCAGCTTCCTTA	4020
	GAGGACCTTAACCNAGTCTCGTTAGGGCGAACCAAGTGGTTGGAGGTTTGTCGAAGGAAT	4020
4021	AGGACCTGGTTTCTCAAAANGGNAAGGTNCGGGCCTCCGGTCTTCAATANGTTTTCCTAA	1000
	TCCTGGACCAAAGAGTTTTNCCNTTCCANGCCCGGAGGCCAGAAGTTATNCAAAAGGATT	4080
4081	AAAGGGANGAATGAAAANCCTTAAGNNCCAACAAGGGGAACCCTTGGNCCCAAAAGGGGA	43.40
	TTTCCCTHCTTACTTTNGGAATTCNNGGTTGTTCCCCTTGGGAACCNGGGTTTTCCCCT	4140
4141	CCTGGGTGGTTTCCCNTTGGGGCCAAANTTATCCCAAAGGGGTCCAATTGAAGGGTTAAC	4300
	GGACCCACCAAAGGGNAACCCCGGTTTNAATAGGGTTTCCCCAGGTTAACTTCCCAATTG	4200
4201	CCCCCAAAAANNACCCNTTTCCCCCGGGAATTTCCAAAGGTTTNCCCCCCCCGGGAAAANC	1366
	GGGGTTTTTMTGGGNAAAGGGGGGGCTTANAGGTTTCCAAANGGGGGGGGCCTTTTNG	4260

Figur 2-5

PCT/EP98/05127 ...

9 / 12

4261	TCCCTTGGGGNNCCNAANCCNTGGCCCGGNCTTGGCTTTTCCCCCTTTCCCAAGNATTTC	4320
4321	AAANNTTCCCTNGGAAANCCCCTTGNTTGGNAAAACCNAATNANGAACCANGCCAANNNT	4380
4381	TGCCAANAAACCNTTTGGGCAAAGGGGGNAAATTCANCAANGGGGNAATTGGGGAAACCC	4440
4441	NTGGGTTTNCCCAAAGGGCCCNAANANT	

Figur 2-6

DOATTD! .-- '--- --

Figur 3

mnSMase "konventional" Knock Out

Figur 4

Konstrukte zur Generierung transgener Mausmutanten

Ub	iquitinpro	motor	n	SMase	IRES	lacZ	P	olyA
poly	A rtTA	CMV		CMV-1	nSMase	IRES	GFP	polyA

Ubiquitinpromotor: Regulationssequent des Ubiquitin-Gens, das

eine ubiquitare Transkription steuert.

nSMase:

neutrale Sphingomyelinase

lacZ:

lacZ, Gen kodiert für die ß-Galaktosidase

polyA:

Erkennungssignal für die Termination der

Transkription und Polyadenylierung

CMV:

Cytomegalovirus-Promotor des Cytomegalovirus-Gens, das eine ubiquitāre Transkription

steuert.

rtTA:

reverser Transaktivator, bindet an den Minimalpromotor und steuert dadurch die Transkription. Die Bindungseigenschaften des Transaktivators werden durch Tetrazylkin beeinflußt. Zugabe von Tetrazyklin läßt den Transaktivator an den Minimalpromotor binden und startet die Transkription, Wegnahme von Tetrazyklin verhindert die Bindung des Transaktivators an den Minimalpromotor und verhindert die Transkription.

CMV-1:

Minimalpromotor, Bindung des Transaktivators

startet die Transkription.

IRES:

internal ribosomal entry sequence, virales Initiationssignal für die Translation.

Figur 5

SEQUENZPROTOKOLL

(1) ALLG	EMEINE ANGABEN:
(;)	ANMELDER:
(1)	(A) NAME: Memorec Stoffel GmbH
	(B) STRASSE: Stoeckheimer Weg 1
	(C) ORT: Koeln
	(E) LAND: Deutschland
	(F) POSTLEITZAHL: 50829
(ii)	BEZEICHNUNG DER ERFINDUNG: Neutrale Sphingomyelinase
(iii)	ANZAHL DER SEQUENZEN: 6
(iv)	COMPUTER-LESBARE FASSUNG:
	(A) DATENTRÄGER: Floppy disk
	(B) COMPUTER: IBM PC compatible
	(C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
	(D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPA)
(2) 7000	DEN ZU CEO ID NO. 1.
	BEN ZU SEQ ID NO: 1: SEQUENZKENNZEICHEN:
(1)	(A) LÄNGE: 423 Aminosäuren
	(B) ART: Aminosaure
	(C) STRANGFORM: nicht bekannt
	(D) TOPOLOGIE: nicht bekannt
	(-,
(ii)	ART DES MOLEKÜLS: Peptid
(xi)	SEQUENZBESCHREIBUNG: SEQ ID NO: 1:
Met	: Lys Leu Asn Phe Ser Leu Arg Leu Arg Ile Phe Asn Leu Asn Cys
1	5 10 15
	
Trp	Gly Ile Pro Tyr Leu Ser Lys His Arg Ala Asp Arg Met Arg Arg 20 25 30
Leu	Gly Asp Phe Leu Asn Gln Glu Ser Phe Asp Leu Ala Leu Leu Glu

1 / 11

Glu Val Trp Ser Glu Gln Asp Phe Gln Tyr Leu Arg Gln Lys Leu Ser

55

40

45

60

35

50

WO 99 07855 PCT/EP98 05127 ...

Pro Thr Tyr Pro Ala Ala His His Phe Arg Ser Gly Ile Ile Gly Ser 70 75 Gly Leu Cys Val Phe Ser Lys His Pro Ile Gln Glu Leu Thr Gln His 85 90 Ile Tyr Thr Leu Asn Gly Tyr Pro Tyr Met Ile His His Gly Asp Trp 100 105 110 Phe Ser Gly Lys Ala Val Gly Leu Leu Val Leu His Leu Ser Gly Met 115 120 Val Leu Asn Ala Tyr Val Thr His Leu His Ala Glu Tyr Asn Arg Gln 130 135 Lys Asp Ile Tyr Leu Ala His Arg Val Ala Gln Ala Trp Glu Leu Ala 145 150 155 Gln Phe Ile His His Thr Ser Lys Lys Ala Asp Val Val Leu Leu Cys 165 170 175 Gly Asp Leu Asn Met His Pro Glu Asp Leu Gly Cys Cys Leu Leu Lys 180 185 Glu Trp Thr Gly Leu His Asp Ala Tyr Leu Glu Thr Arg Asp Phe Lys 195 200 205 Gly Ser Glu Glu Gly Asn Thr Met Val Pro Lys Asn Cys Tyr Val Ser 210 215 Gln Gln Glu Leu Lys Pro Phe Pro Phe Gly Val Arg Ile Asp Tyr Val 230 235 Leu Tyr Lys Ala Val Ser Gly Phe Tyr Ile Ser Cys Lys Ser Phe Glu 245 250 Thr Thr Thr Gly Phe Asp Pro His Ser Gly Thr Pro Leu Ser Asp His 260 265 270 Glu Ala Leu Met Ala Thr Leu Phe Val Arg His Ser Pro Pro Gln Gln 280 285 Asn Pro Ser Ser Thr His Gly Pro Ala Glu Arg Ser Pro Leu Met Cys 290 295 300

WO 99/07855 PCT/EP98/05127 ==

Val Leu Lys Glu Ala Trp Thr Glu Leu Gly Leu Gly Met Ala Gln Ala 305 310 315 320

Arg Trp Trp Ala Thr Phe Ala Ser Tyr Val Ile Gly Leu Gly Leu Leu 325 330 335

Leu Leu Ala Leu Leu Cys Val Leu Ala Ala Gly Gly Gly Ala Gly Glu 340 345 350

Ala Ala Ile Leu Leu Trp Thr Pro Ser Val Gly Leu Val Leu Trp Ala 355 360 365

Gly Ala Phe Tyr Leu Phe His Val Gln Glu Val Asn Gly Leu Tyr Arg 370 375 380

Ala Gln Ala Glu Leu Gln His Val Leu Gly Arg Ala Arg Glu Ala Gln 385 390 395 400

Asp Leu Gly Pro Glu Pro Gln Pro Ala Leu Leu Gly Gln Gln Glu
405 410 415

Gly Asp Arg Thr Lys Glu Gln 420

(2) ANGABEN ZU SEQ ID NO: 2:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 419 Aminosäuren
 - (B) ART: Aminosäure
 - (C) STRANGFORM: nicht bekannt
 - (D) TOPOLOGIE: nicht bekannt
- (ii) ART DES MOLEKÜLS: Peptid
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:

Met Lys Leu Asn Phe Ser Leu Arg Leu Arg Val Phe Asn Leu Asn Cys

1 10 15

Trp Asp Ile Pro Tyr Leu Ser Lys His Arg Ala Asp Arg Met Lys Arg
20 25 30

Leu Gly Asp Phe Leu Asn Leu Glu Asn Phe Asp Leu Ala Leu Leu Glu 35 40 45

WO 99.07855 PCT EP98 05127 ...

Glu	Val	. Trp	Ser	Glu	Gln	Asp 55	Phe	e Gln	Туг	: Leu	Arg 60	Gln	Arg	, Lei	ı Ser
Leu 65	. Thr	Tyr	Pro	asp	Ala 70	Hıs	Tyr	- Phe	Arg	Ser 75	Gly	Met	Ile	Gly	Ser 80
Gly	Leu	Cys	Val	Phe 85	Ser	Lys	His	Pro	Ile 90	Gln	Glu	Ile	Phe	Gln 95	His
Val	Tyr	Ser	Leu 100		Gly	Tyr	Pro	Tyr 105	Met	Phe	His	His	Gly 110	Asp	Trp
Phe	Cys	Gly 115	Lys	Ser	Val	Gly	Leu 120		Val	Leu	Arg	Leu 125	Ser	Gly	Leu
Val	Leu 130	Asn	Ala	Tyr	Val	Thr 135	His	Leu	His	Ala	Glu 140	Tyr	Ser	Arg	Gln
Lys 145	Asp	Ile	Tyr	Phe	Ala 150	His	Arg	Val	Ala	Gln 155	Ala	Trp	Glu	Leu	Ala 160
Gln	Phe	Ile	His	His 165	Thr	Ser	Lys	Asn	Ala 170	Asp	Val	Val	Leu	Leu 175	Cys
Gly	Asp	Leu	Asn 180	Met	His	Pro	Lys	Asp 185	Leu	Gly	Cys	Cys	Leu 190	Leu	Lys
Glu	Trp	Thr 195	Gly	Leu	His	qaA	Ala 200	Phe	Val	Glu	Thr	Glu 205	Asp	Phe	Lys
Gly	Ser 210	Asp	Asp	Gly		Thr 215	Met	Val	Pro	Lys	Asn 220	Cys	Tyr	Val	Ser
Gln 225	Gln	Asp	Leu	Gly	Pro 230	Phe	Pro	Ser	Gly	Ile 235	Arg	Ile	Asp	Tyr	Val 240
Leu	Tyr	Lys	Ala	Val 245	Ser	Glu	Phe		Val 250	Cys	Cys	Glu		Leu 255	Lys
Thr	Thr		Gl; 260	Cys	Asp	Prc	Hıs	Ser 265	Asp	Lys	Pro		Ser 270	Asp	His
Glu	Ala	Leu 275	Met	Ala	Thr		Tyr	Val	Lys	His	Ser	Pro	Pro	Gln	Glu

Asp	Pro 290	Cys	Thr	Ala	Cys	Gly 295	Pro	Leu	Glu	Arg	Ser 300	Asp	Leu	Ile	Ser
Val 305	Leu	Arg	Glu	Ala	Arg 310	Thr	Glu	Leu	Gly	Leu 315	Gly	Ile	Ala	Lys	Ala 320
Arg	Trp	Trp	Ala	Ala 325	Phe	Ser	Gly	Tyr	Val 330	Ile	Val	Trp	Gly	Leu 335	Ser
Leu	Leu	Val	Leu 340	Leu	Cys	Val	Leu	Ala 345	Ala	Gly	Glu	Glu	Ala 350	Arg	Glu
Val	Ala	Ile 355	Ile	Leu	Cys	Ile	Pro 360	Ser	Val	Gly	Leu	Val 365	Leu	Val	Ala
Gly	Ala 370	Val	Tyr	Leu	Phe	His 375	Lys	Gln	Glu	Ala	Lys 380	Gly	Leu	C'ns	Arg
Ala 385	Gln	Ala	Glu	Met	Leu 390	His	Val	Leu	Thr	Arg 395	Glu	Thr	Glu	Thr	Gln 400
Asp	Arg	Gly	Ser	Glu 405	Pro	His	Leu	Ala	Tyr 410	Cys	Leu	Gln	Gln	Glu 415	Gly
Asp	Arg	Ala													

(2) ANGABEN ZU SEQ ID NO: 3:

- - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 1662 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: nicht bekannt
 - (D) TOPOLOGIE: nicht bekannt
 - (ii) ART DES MOLEKÜLS: cDNA
 - (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3:

GCGGCCGCGA	CCGCCGGGGA	CGAGCTTGGA	GGAAAAGGAA	CCGGGAGCCG	CCCACCCGGG	60
GGCGCTCTCC	GGACCCCCAG	GGTCCTAGCG	CGCGGCCCTT	ACCGAGCCTG	GGCGCCCGGA	120
TTTCGGSAGC	GGATCGCCTT	TCCGGGTTGG	CGGCCCGCCT	GATTGGGAAC	AGCCGGCCGG	180

- , . . .

WO 99 07855 PCT/EP98 05127 ...

TTGCCGGGGG	AACGCGGGAG	TOGGGCCCGA	CCTGAGCCAC	GCGGGCTTG	TGCCCACCTG	240
TGCGCGCCGC	CTGCGAAGAA	. GGAACGGTCT	AGGGAGAAGG	CGCCGCCGG	CGCCCCCGTC	300
CCCACCGCGG	CCGTCGCTGG	AGAGTTCGAG	CCGCCTAGCG	CCCCTGGAG	TCCCCAACCA	360
TGAAGCTCAA	CTTCTCCCTG	CGACTGCGGA	TOTTCAACCT	CAACTGCTGC	GGCATTCCGT	420
ACTTGAGCAA	GCACCGGGCC	GACCGCATGA	GGCGCCTGGG	AGACTTTCTC	AACCAGGAGA	480
GCTTCGACCT	GGCTTTGCTG	GAGGAGGTGT	GGAGTGAGCA	GGACTTCCAG	TACCTGAGAC	540
AGAAGCTGTC	ACCTACCTAC	CCAGCTGCAC	ACCACTTCCG	GAGCGGAATC	ATTGGCAGTG	600
GCCTCTGTGT	CTTCTCCAAA	CATCCAATCC	AGGAGCTTAC	CCAGCACATC	TACACTCTCA	660
ATGGCTACCC	CTACATGATC	CATCATGGTG	ACTGGTTCAG	TGGGAAGGCT	GTGGGGCTGC	720
TGGTGCTCCA	TCTAAGTGGC	ATGGTGCTCA	ACGCCTATGT	GACCCATCTC	CATGCCGAAT	780
ACAATCGACA	GAAGGACATC	TACCTAGCAC	ATCGTGTGGC	CCAAGCTTGG	GAATTGGCCC	840
AGTTCATCCA	CCACACATCC	AAGAAGGCAG	ACGTGGTTCT	GTTGTGTGGA	GACCTCAACA	900
TGCACCCAGA	AGACCTGGGC	TGCTGCCTGC	TGAAGGAGTG	GACAGGGCTT	CATGATGCCT	960
ATCTTGAAAC	TCGGGACTTC	AAGGGCTCTG	AGGAAGGCAA	CACAATGGTA	CCCAAGAACT	1020
GCTACGTCAG	CCAGCAGGAG	CTGAAGCCAT	TTCCCTTTGG	TGTCCGCATT	GACTACGTGC	1080
TTTACAAGGC	AGTTTCTGGG	TTTTACATCT	CCTGTAAGAG	TTTTGAAACC	ACTACAGGCT	1140
TTGACCCTCA	CAGTGGCACC	CCCCTCTCTG	ATCATGAAGC	CCTGATGGCT	ACTCTGTTTG	1200
IGAGGCACAG	CCCCCCACAG	CAGAACCCCA	GCTCTACCCA	CGGACCAGCA	GAGAGGTCGC	1260
CGTTGATGTG	TGTGCTAAAG	GAGGCCTGGA	CGGAGCTGGG	TCTGGGCATG	GCTCAGGCTC	1320
SCTGGTGGGC	CACCTTCGCT	AGCTATGTGA	TTGGCCTGGG	GCTGCTTCTC	CTGGCACTGC	1380
IGIGTGTCCT	GGCGGCTGGA	GGAGGGGCCG	GGGAAGCTGC	CATACTGCTC	TGGACCCCCA	1440
GTGTAGGGCT	GGTGCTGTGG	GCAGGTGCAT	TCTACCTCTT	CCACGTACAG	GAGGTCAATG	1500

(2) ANGABEN ZU SEQ ID NO: 4:

(i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 1627 Basenpaare
- (B) ART: Nucleotid
- (C) STRANGFORM: nicht bekannt
- (D) TOPOLOGIE: nicht bekannt

(ii) ART DES MOLEKÜLS: cDNA

(xi) SEQUENZBESCHREIBUNG: SEO ID NO: 4:

GTGCTGGTGG AAGCCGAGCC GGGAACAAGG GAGGAACCTG TAGGCCGCGG TGCGAGAACC 60 CACCGAAGAC CTAAGAATCT GGAACAGTCC ACCCGAGATT CCTTCCAGGA CTGCCGGCGG 120 CTCGCGCACC AGCCCGGGAT TTGCAGCCGA CCTTCTTTCC GGGTGGAAGG ACGCCTTTG 180 TCCCAGTAAC GCAGGAGTCG CCCCCCACCC CCAACCAGCT CGCGTTCCTG GGTCGGGGCA 240 GCGCAGGACA GGGCAATAAG CCTGTGCGCG CAATCCGCCT CGCCGCCCTT GCTCCGAAGC 300 ACTCCAGCCA TGAAGCTCAA CTTTTCTCTA CGGCTGAGAG TTTTCAATCT CAACTGCTGG 360 GACATCCCCT ACCTGAGCAA ACATAGGGCG GACCGCATGA AGCGCTTGGG AGACTTTCTG 420 AACTTGGAAA ACTTTGATCT GGCTCTCCTG GAGGAGGTGT GGAGTGAGCA GGACTTCCAG 480 TACCTAAGGC AAAGGCTATC GCTCACCTAT CCAGATGCAC ACTACTTCAG AAGCGGGATG 540 ATAGGCAGTG GCCTCTGTGT GTTCTCCAAA CACCCAATCC AGGAAATCTT CCAGCATGTC 600 TACAGTCTGA ATGGTTACCC CTACATGTTC CATCATGGAG ACTGGTTCTG TGGGAAGTCT 660 GTGGGGCTGC TGGTGCTCCG TCTAAGTGGA CTGGTGCTCA ATGCCTACGT GACTCATCTA 720 CATGCTGAGT ACAGCCGACA GAAGGACATC TACTTTGCAC ACCGTGTGGC CCAAGCTTGG 780

7 / 1

PCT EP98.05127 ... WO 99.07855

GAACTGGCCC	AGTTCATCCA	CCACACATCC	AAGAATGCAG	ATGTGGTTCT	ATTGTGTGGA	84(
GACCTCAATA	TGCACCCCAA	AGACCTGGGC	TGCTGCCTGC	TGAAAGAGTG	GACAGGGCTC	900
CATGATGCTT	TCGTTGAGAC	TGAGGACTTT	AAGGGCTCTG	ATGATGGCTG	TACCATGGTA	960
CCCAAGAACT	GCTACGTCAG	CCAGCAGGAC	CTGGGACCGT	TTCCGTCTGG	TATCCGGATT	1020
GATTACGTGC	TTTACAAGGC	AGTCTCTGAG	TTCCACGTCT	GCTGTGAGAC	TCTGAAAACC	1080
ACTACAGGCT	GTGACCCTCA	CAGTGACAAG	CCCTTCTCTG	ATCACGAGGC	CCTCATGGCT	1140
ACTTTGTATG	TGAAGCACAG	CCCCCTCAG	GAAGACCCCT	GTACTGCCTG	TGGCCCACTG	1200
GAAAGGTCCG	ATTTGATCAG	CGTGCTAAGG	GAGGCCAGGA	CAGAGCTGGG	GCTAGGCATA	1260
GCTAAAGCTC	GCTGGTGGGC	TGCATTCTCT	GGCTATGTGA	TCGTTTGGGG	GCTGTCCCTT	1320
CTGGTGTTGC	TGTGTGTCCT	GGCTGCAGGA	GAAGAGGCCA	GGGAAGTGGC	CATCATCCTC	1380
TGCATACCCA	GTGTGGGTCT	GGTGCTGGTA	GCAGGTGCAG	TCTACCTCTT	CCACAAGCAG	1440
GAGGCCAAGG	GCTTATGTCG	GGCCCAGGCT	GAGATGCTGC	ACGTTCTGAC	AAGGGAAACG	1500
GAGACCCAGG	ACCGAGGCTC	AGAGCCTCAC	CTAGCCTACT	GCTTGCAGCA	GGAGGGGGAC	1560
AGAGCTTAAG	AGCTTAACAA	TAAAACTTGC	TTGACACACA	AAAAAAAAA	AAAAAAAA	1620
AAAAAA						1627

(2) ANGABEN ZU SEQ ID NO: 5:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 4464 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: nicht bekannt
 - (D) TOPOLOGIE: nicht bekannt
- (ii) ART DES MOLEKÜLS: Genom-DNA
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 5:

CGACCAGCAT	TTGTTCTCTA	TGCCCCCATC	CAGCCCTAGG	ACAGAACGTG	GACCCCCGCC	120
CGCCAGCGCA	GGCGACACCG	CGGCAGGGG	CTGAGGTGCG	CACGGCGTCT	GGGGCGAGGG	180
GTTACCTCAG	CGATGGTCTT	TGACACCTGA	AAGCTGGAGC	TTTTGAAGAG	CCCCACCACC	240
TTCAGCTTCA	GGGGCGGCTC	GGGCGGCAAC	CGCACGTGAC	ATGCTGGGGG	CTTCGACTTG	300
GGCCGGCACG	GCTGCTGGGT	GGCCATGGCA	GGGACAGCAG	AGAGCCCGGA	ACACAAATAG	360
TGCGAGTCGC	CAGGGCAACC	GCGTGGCTCC	TCCCCGAACG	CCCGCAAGGG	GCGGGACCTG	420
AGTGAGTTCG	TGGGCGGGGC	CTCGCATCAA	CTTCAAGCCT	GTTGCTGGTG	GAAGCCGAGC	480
CGGGAACAAG	GGAGGAACCT	GTAGGCCGCG	GTGCGGATAA	CCCACCGAAG	GACCTAAGAA	540
TCTGGAACAG	TCCACCCGAG	ATTCCTTCCA	GGACTGCCGG	CGGACTCTCG	CATTCAGCCC	600
GGGATTTGCA	GCCGACCTTC	TTTCCGGGTG	GAATGACGGC	CTTTGTCCCA	GTAACGCAGG	660
AGTAGCCCCC	CACCCCCAAC	CAGCTCGCGT	TCCTGGGTCG	GGGCAGCGCA	GGATAGGGCA	720
ATAAGCCTGT	GCGCGCAATC	CGCCTCGCCG	CCCTTGCTCC	GAAGCACTCC	AGCCATGAAG	780
CTCAACTTTT	CTCTACGGCT	GAGAGTTTTC	AATCTCAACT	GCTGGTAAGT	AAGTGCTCCC	840
AGGCGTGGGC	TGCAGCCTCG	GAGCCACCTT	CCAGTCCCCT	CTCGCACATG	CCTAGGAAGG	900
AAGCAGGTCT	TCTTCAGCCG	AGCTAGACCC	TGTCCTTCCC	GAACCACCAA	AGTCCACATC	960
GCCTAAAGAC	CAGAGCTTGG	GTGGTTGCAG	CAATCACCAA	AGTCCCTATC	ATCCAAAGCT	1020
GAGGTGATGA	CAGCAGTAAT	CGTCCCAAAC	CTGGCCCATG	TCTTTCCTTT	TAAATGATTT	1080
ACTTTTATTT	TATGTACATT	TGGTGTTTTG	CCTGTATGTA	TGTCTGTGTG	AAGGTGCCAG	1140
ATTCTCTGGA	ACTGGAGTTA	CAGACAGTTG	TAAGCTGTCA	TGTGCTTGCT	GGAAATTGAA	1200
CTGCTGACCC	ATCTCTTCTG	CCCCCTGCGT	CCTCCACCCC	TTTTAGGGAC	ATCCCCTACC	1260
TGAGCAAACA	TAGGGCGGAC	CGCATGAAGC	GCTTGGGAGA	CTTTCTGAAC	TTGGAAAACT	1320
TTGATCTGGC	TCTCCTGGAG	GAGGTGAGGT	TGTAGGGCAG	CCTACCTTCC	AGGAGGGCAG	1200

WO 99 07855 PCT EP98 05127

CAGGCGGCAG GCGGCGGCA	G GAAAACTTG:	TCTGTCTTGC	GATGAAATCO	CAAGCAAGTA	1440
TCCTCACCTT CTTCCTCCA	G GTGTGGAGT0	G AGCAGGACTI	CCAGTACCTA	A AGGCAAAGGC	1500
TATCGCTCAC CTATCCAGA	T GCACACTACT	TCAGAAGGTG	AAAAGCCTGI	GTTCTCAGCC	1560
TGTTCTCAGA CGAGGAAGC	r ctccaacati	CTTGCTTGCA	CCCTCGATCT	TCTTCCTCTG	1620
GGTGTGAGAA GAGCAGGCCC	G TCACCCTCAT	CTTGCAAGGG	CTGCTGTCTT	AGGCTTTGTT	1680
CTGGGGTTGA TCTTAGCAG	r agagetggga	GACCGCGGAG	GGGAAGAGGG	CTGGCTGGGT	1740
ACTOCCOTOC TTGCTCTTCT	GGTTATTAAG	CAAGAGTTGG	TTTTCAGCGG	GATGATAGGC	1800
AGTGGCCTCT GTGTGTTCTC	CAAACACCCA	ATCCAGGAAA	TCTTCCAGCA	TGTCTACAGT	1860
CTGAATGGTT ACCCCTACAT	GGTAAGGATC	TCTTCCCTAT	CCTTGCTAAC	ACAGACTGGA	1920
CGCAGCCTTC CTGGGGCCTT	GGCAGGAGGG	TGTCAGTACC	CTGAGTTTTT	GTCTTCTCTT	1980
GCCTGCAGTT CCATCATGGA	GACTGGTTCT	GTGGGAAGTC	TGTGGGGCTG	CTGGTGCTCC	2040
GTCTAAGTGG ACTGGTGCTC	AATGCCTACG	TGACTCATGT	GAGTGGGGCT	AGCCAGGCTT	2100
AGGCAGTGGG TCAAGCAGCC	CAATGCTATG	GTGGAGAAGA	GACGCCACTA	GTTAGTTCTG	2160
CTGCCTGGGG ATAAGGCATG	GGATCAGAAG	CTAGCATTGG	GCAAGGTTCA	CCCATTCCCT	2220
GTCACACTCT GCCATGTGAC	AGATGACAAG	CTTGATTCAG	ACAGCCTTCT	CTTTGATTTC	2280
ACCTATTCCA CTTTAGCTAC	ATGCTGAGTA	CAGCCGACAG	AAGGACATCT	ACTTTGCACA	2340
CCGTGTGGCC CAAGCTTGGG	AACTGGCCCA	GTTCATCCAG	TGTGTGAGCC	TGGGCTTGAT	2400
GGGGGCTGTG GGGTGGGGAC	GGGGTTGAGG	GATGNGNAAN	TTATCCTTGA	AGAGGGCACA	2460
TAATAAGGGA AGAATTTCCT	CCTTGCCGCT	CTTCCCCCAA	CTCAGCCACA	CATCCAAGAA	2520
TGCAGATGIG GTTCTATTGT	GTGGAGACCT	CAATATGCAC	CCCAAAGACC	TGGGCTGCTG	2580
CCTGCTGAAA GAGTGGACAG	GGCTCCATGA	TGCTTTCGTT	GAGACTGAGG	ACTTTAAGGT	2640
GAGAGACTGT TTCCCACCAA	CTCCACACTT	GTTCCAGTCT	TCCTGTCTCT	TAGCATCCTA	2700

GCCACCIC	311	TCCCTAGGGC	ICIGALGALG	GCIGIACCAI	GGIACCCAAG	AACIGCIACG	2/60
TCAGCCAC	GCA	GGACCTGGGA	CCGTTTCCGT	CTGGTATCCG	GATTGATTAC	GTGCTTTACA	2820
AGGTCAGO	GCT	CTTATTCCCG	GTGTGCCTTC	TCCAGTATCT	TCCTTCCTCT	GTCACTAGCC	2880
CACGCTTI	TAG	TTCAGCTACA	GTCTTGGGCC	ACTGATGGCT	AAAGAATAGA	ATCCTGTCGG	2940
CTGGTTCT	TCT	GGGAGAATTT	AAGCTTCTCC	ATGTTCTTGC	TCTTCCTAGG	CAGTCTCTGA	3000
GTTCCACC	STC	TGCTGTGAGA	CTCTGAAAAC	CACTACAGGC	TGTGACCCTC	ACAGTGACAA	3060
GCCCTTCI	CT	GATCACGAGG	CCCTCATGGC	TACTTTGTAT	GTGAAGCACA	GCCCCCTCA	3120
GGAAGACC	CCC	TGTACTGCCT	GTGGTAAGCA	GCATTTCCTT	TGCCCCCTCT	ACTTTAAGGC	3180
AGCCCCGC	CT	CCATCCTGAC	CCTCCCCTGC	TCTACGTTCT	CTCTTTTTCC	AGGCCCACTG	3240
GAAAGGTO	CCG	ATTTGATCAG	CGTGCTAAGG	GAGGCCAGGA	CAGAGCTGGG	GCTAGGCATA	3300
GCTAAAGC	CTC	GCTGGTGGGC	TGCATTCTCT	GGCTATGTGA	TCGTTTGGGG	GCTGTCCCTT	3360
CTGGTGTI	GC	TGTGTGTCCT	GGCTGCAGGA	GAAGAGGCCA	GGGAAGTGGC	CATCATCCTC	3420
TGCATACC	CCA	GTGTGGGTCT	GGTGCTGGTA	GCAGGTGCAG	TCTACCTCTT	CCACAAGCAG	3480
GAGGCCAA	\GG	GCTTATGTCG	GGCCCAGGCT	GAGATGCTGC	ACGTTCTGAC	AAGGGAAACG	3540
GAGACCCA	AGG	ACCGAGGCTC	AGAGCCTCAC	CTAGCCTACT	GCTTGCAGCA	GGAGGGGGAC	3600
AGAGCTTA	\AG	AGCTTAACAA	TAAAACTTGC	TTGACACACT	CTAGTGGCTC	TACCTTGTTC	3660
CTTGCAGA	\GG	CATGATGGGA	ACTGAAGGTC	AGTGGCCTTG	TCACTGTGTG	GCTTTAGAGC	3720
GTTGGCCT	CT	CACTTGCCTT	TTTTGCACAC	TCCCGTCTCC	TGCCAGCACA	GAGCATAAAC	3780
CCTGTTC	ATG	GTCATAATCC	TTTTATTGTA	AACAACGAAG	CCTCTGACTA	AGCAGTCCAG	3840
ATGGCGGA	AGG	TACAGCCCTT	GTGATGGTGT	CTTGCTTACG	GGGCAGGGAG	GCAGCTAACC	3900
ATCATCT	rct	AGCCCTGGGC	TCCCATCTAT	GCAGGCATCT	CTCTGAGCCT	CCGTTCCTCC	3960
TGGAATTO	GGN	TCAGAGCAAT	CCCGCTTGGT	TCACCAACCT	CCAAACAGCT	TCCTTAAGGA	4020

WO 99 07855 PCT EP98 05127 L

CCIGGTTTCT	CAAAANGGNA	AGGTNCGGGC	CTCCGGTCTT	CAATANGTTT	TCCTAAAAAG	4080
GGANGAATGA	AAANCCTTAA	GINICCAACAA	GGGGAACCCT	TGGNCCCAAA	AGGGGACCTG	4140
GGTGGTTTCC	CNTTGGGGCC	AAANTTATCC	CAAAGGGGTC	CAATTGAAGG	GTTAACCCCC	4200
CAAAAAMNAC	CCNTTTCCCC	CGGAATTTCC	AAAGGTTTNC	ccccccggc	AAAANCTCCC	4260
TTGGGGINGC	NAANICHTGG	CCCGGNCTTG	GCTTTTCCCC	CTTTCCCAAG	NATTTCAAAN	4320
NTTCCCTNGG	AAANGCCCTT	GNTTGGNAAA	ACCNAATNAN	GAACCANGCC	AANINTTGCC	4380
AANAAACCNT	TTGGGCAAAG	GGGGNAAATT	CANCAANGGG	GNAATTGGGG	AAACCCNTGG	4440
GTTTNCCCAA	AGGGCCCHAA	NANT				4464

(2, ANGABEN DU SEQ ID NO: 6:

(i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 2852 Basenpaare
- (B) ART: Nucleotid
- (C) STRANGFORM: nicht bekannt
- (D) TOPOLOGIE: nicht bekannt

(ii) ART DES MOLEKÜLS: Genom-DNA

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6:

ACCGCGGCCG	TCGCTGGAGA	GTTCGAGCCG	CCTAGCGCCC	CTGGAGCTCC	CCAACCATGA	60
AGCCCAACTT	CTCCCTGCGA	CTGCGGATCT	TCAACCTCAA	CTGCTGGTGA	GTGCGTCTGC	120
GGAGTGCGGT	CTGGGGGCCA	CCTTCCGTTC	GCACCCATGC	AGCCTTCCTC	CCCCTATCCC	180
GCCCCACGAT	CTCAGGGTGT	AGGGAAAACC	CGAACCTCCA	AAGTCCACAT	CTGGCCCCAG	240
CGCCGGTGGT	CCCAGCAGTC	GCCTCCCCTG	CCCCGCTCTT	CCCTTCCTTA	GGGGCATTCC	300
GTACTTGAGC	AAGCACCGGG	CCGACCGCAT	GAGGCGCCTG	GGAGACTTTC	TGAACCAGGA	360
GAGCTTCGAC	CTGGCTTTGC	TGGAGGAGGT	GAGATTGTGC	AGCACGGTGC	GGAACCCAGG	420
CTGGGAGGAG	GGACAGACCG	TCCCACTGGG	GAAAGACCAA	GCAGGCATCC	TCACCGCTTC	480

CCTCAGGTGT	GGAGTGAGCA	GGACTTCCAG	TACCTGAGAC	AGAAGCTGTC	ACCTACCTAC	540
CCAGCTGCAC	ACCACTTCCG	GAGGTGAGAA	GCCCACTGGC	CTGAAGCCTG	TTGTCATCCC	600
AGGAGGCTCT	TGGCCCTGCC	AGCCCTTCCC	TATCCTGCCT	GCACTCTCCA	GTCTCCTCCA	660
GCCTCCTCTC	CCTCTGGATG	TGAGAGAAGG	AGAAGGGTGA	ACCAAGAAGG	TCCTATGACT	720
TCAGCCCATT	TCAGCTTTGT	TTTCTGGCTG	CCCTATACTC	CTCCAAAGGC	CGTCGCCTTG	780
GTTCTAGGGC	TAGTCCCAGC	AGTAGAAAAA	GAAAAAATA	GCTGATCAGA	GCTGGAAGAC	840
AAGGGAGGG	AAGAAGGCTG	GGTGTCTCTC	CCTGTTTTTC	TGGTTATTAA	GCAGGGCTTG	900
GCTTTCAGCG	GAATCATTGG	CAGTGGCCTC	TGTGTCTTCT	CCAAACATCC	AATCCAGGAG	960
CTTACCCAGC	ACATCTACAC	TCTCAATGGC	TACCCCTACA	TGGTAAGGCA	GACCTTTGAC	1020
CTCTTCCACC	TCCCTTCCCC	ACCTCCAGTA	ATACAAGGTA	GAGGAGGCAG	CCCTCTGAGA	1080
GCTGCAGGGG	ATGGGCAGAA	AGATGGTGGC	GGTGCCCTGA	GTTTCTATCT	CCTCCTGCCT	1140
GCAGATCCAT	CATGGTGACT	GGTTCAGTGG	GAAGGCTGTG	GGGCTGCTGG	TGCTCCATCT	1200
AAGTGGCATG	GTGCTCAACG	CCTATGTGAC	CCATGTGAGT	GAAGCTGGCA	GTGCCTAGGG	1260
CTGGGACATO	CAGCCCAGTC	CTGGGACAGA	GAGATGGTAC	TTCTCTAGCT	CTCATACCTG	1320
GGGATGAGGI	GTGGGGGCAA	GATCTTATAA	GGAAGCAATG	GGCAAGGCTT	ATCCATTGTA	1380
TACCAAACAC	CATGCCAAGT	GACAGACACA	GGCTTGATTC	AGACATACCC	CTGGGACCCT	1440
CAGTCTTATO	TGCTGTGATC	TCATCCATCT	TGCTCAGCTC	CATGCCGAAT	ACAATCGACA	1500
GAAGGACATO	TACCTAGCAC	ATCGTGTGGC	CCAAGCTTGG	GAATTGGCCC	AGTTCATCCA	1560
GTGTGTGAG	CTGGGCTTGA	AATGGGAAGT	GGGATGGGAC	CCAGGGGCTG	AGGGTGAACA	1620
AGGCCCCAG	CATGGGGAAG	AGCTGGTGAT	GGAAGAACTC	CCGCCTCACC	AACCTGGTTC	1680
CCCCAGCCA	C ACATCCAAGA	AGGCAGACGT	GGTTCTGTTG	TGTGGAGACC	TCAACATGCA	1740
CCCAGAAGA	C TGGGCTGCTG	CCTGCTGAAG	GAGTGGACAG	GGCTTCATGA	TGCCTATCTT	1800

WO 99 07855 PCT EP98 05127 .

GAAACTCGGG	ACTTCAAGGT	GAGGACTTGC	CTGTTACTTC	CCCACCTATA	TCCCCAGCTT	1860
стетесетее	TTCTCCCCCA	CATCCTAGCA	TGAGCCAATG	ATTCCCTTAG	GGCTCTGAGG	1920
AAGGCAACAC	AATGGTACCC	AAGAACTGNT	ACGTCAGCCA	GCAGGAGCTG	AAGCCATTTC	1980
CCTTTGGTGT	CCGCATTGAC	TACGTGCTTT	ACAAGGTCAG	GCTCCTCCCT	TCAACATGCT	2040
TTCATATGCT	GTGTCTCTTT	GTCTACTAAC	CTGTGTAGAT	CCTTTGCTCA	GNTAGTCTAG	2100
TCTTGGACCA	CTGATGGGTG	GAAAGTGGGG	TAGCCGGGAG	CTGGTTCTCT	GGGAAGAGGC	2160
CCTCATATAT	AAGCTTCTCT	NTGGCCCTTA	CTTTTCCTAG	GCAGTTTCTG	GGTTTTACAT	2220
CTCCTGTAAG	AGTTTTGAAA	CCACTACAGG	CTTTGACCCT	NACAGGGGCA	CCCCCCTCTC	2280
TTGATCATGA	AGCCCTGATG	GCTACTCTGT	TTGTGAGGCA	CAGCCCCCCA	CAGCAGAACC	2340
CCAGCTCTAC	CCACGGTGAG	TCACCCCCAC	CCTTTCCTTG	GCCCTTGCCC	CGCTTGAAGC	2400
AGCCCTTCCA	CTCTTGACTC	TCTCCTGCCC	CACTGCCCTG	CTCTGTTGTA	GGACCAGCAG	2460
AGAGGTCGCC	GTTGATGTGT	GTGCTAAAGG	AGGCCTGGAC	GGAGCTGGGT	CTGGGCATGG	2520
CTCAGGCTCG	CTGGTGGGCC	ACCTTCGCTA	GCTATGTGAT	TGGCCTGGGG	CTGCTTCTCC	2580
TGGCACTGCT	GTGTGTCCTG	GCGGCTGGAG	GAGGGGCCGG	GGAAGCTGCC	ATACTGCTCT	2640
GGACCCCCAG	TGTAGGGCTG	GTGCTGTGGG	CAGGTGCATT	CTACCTCTTC	CACGTACAGG	2700
AGGTCAATGG	CTTATATAGG	GCCCAGGCTG	AGCTCCAGCA	TGTGCTAGGA	AGGGCAAGGG	2760
AGGCCCAGGA	TCTGGGCCCA	GAGCCTCAGC	CAGCCCTACT	CCTGGGGCAG	CAGGAGGGG	2820
ACAGAACTAA	AGAACAATAA	AGCTTGGCCC	AA			2852

onal Application No PCT/EP 98/05127

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/55 C12N9/16 A01K67/027 A61K38/43

C12N5/10

C07K16/40

G01N33/50

According to international Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N C07K A61K A01K G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
CHATTERJEE S. & GHOSH N.: "Neutral sphingomyelinase from human urine" J. BIOL. CHEM., vol. 264, no. 21, 25 July 1989, pages	1-3.5-7, 9,21,24
see the whole document	4.8, 10-20, 22,23
WO 98 28445 A (CHATTERJEE SUBROTO ;UNIV JOHNS HOPKINS (US)) 2 July 1998	1-3,5-7, 9,14-19, 21,24
see abstract see figures 1,2 see claims 1-30	
-/	
	CHATTERJEE S. & GHOSH N.: "Neutral sphingomyelinase from human urine" J. BIOL. CHEM., vol. 264, no. 21, 25 July 1989, pages 12554-12561, XP002087487 see the whole document WO 98 28445 A (CHATTERJEE SUBROTO ;UNIV JOHNS HOPKINS (US)) 2 July 1998 see abstract see figures 1,2 see claims 1-30

X Further documents are listed in the continuation of box C	X Patent family members are listed in annex
 Special categories of cited documents: "A" document defining the general state of the lart which is not considered to be of particular relevance. "E" earlier document but published on or after the international filing date. "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified). "O" document referring to an oral disclosure, use, exhibition or other means. "P" document published prior to the international filing date but later than the priority date claimed. 	T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention. "X" document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone. "Y" document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such document, is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "3" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
11 December 1998	29/12/1998
Name and mailing address of the ISA	Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Galli, I

	1 0 1 / Er	98/0512/
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
aregory	Citation of document, with indication where appropriate of the relevant passages	Relevant to blaim No i
A	KOSTELLOW A ET AL: "REDUCTION IN EXTRACELLULAR MG2+ INDUCES SPHINGOMYELINASE, ELEVATES CERAMIDE AND RELEASES NF-KB IN AORTIC SMOOTH MUSCLE CELLS" FASEB JOURNAL, vol. 10, no. 6, 30 April 1996, page A1253 XP000644454 see abstract	3
A	CAI Z. ET AL.: "Alteration of the sphingomyelin/ceramide pathway is associated with resistance of the human breast carcinoma MCF7 cells to Tumor Necrosis Factor alpha-mediated cytotoxicity." J. BIOL. CHEM vol. 272, no. 11, 14 March 1997, XP002087488 see abstract	14-17
A	DATABASE GENBANK Accession No. AA412649, 18 May 1997 HILLIER ET AL.: "H. sapiens cDNA clone IMAGE 730457 - EST." XP002087490 compare with amino acids 247-394 in sequence ID 1	1-24
P,X	TOMIUK S. ET AL.: "Cloned mammalian neutral sphingomyelinase: functions in sphyngolipid signaling?" PRC. NATL. ACAD. SCI. USA. vol. 95. no. 7. 31 March 1998. pages 3638-3643. XP002087489 see the whole document	1-11. 20-24

International application No.

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This inte	mational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
` (Observation: Although the claim(s) 16 and 17 relate(s) to a method for treatment of the human or animal body, the search was carried out and was based on the cited effects of the compound/composition.
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet) emational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Rema	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

nformation on patent family members

Patent document ated in search report	Fublication date	Patent family member(s)	Publication date	
w0 9828445 A	02-07-1998	AU 5809398 A	17-07-1998	

INTERNATIONALER RECHERCHENBERICHT

Jonales Aktenzeichen PCT/EP 98/05127

a. Klassifizierung des anmeldungsgegenstandes IPK 6 C12N15/55 C12N9/16

A61K38/43

C12N5/10 A01K67/027

C07K16/40

G01N33/50

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprufstoff (Klassifikationssystem und Klassifikationssymbole)

C12N C07K A61K AOIK GOIN

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiele fallen

Wahrend der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank) und evtl. verwendete Suchbegriffe)

Kategorie :	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr Anspruch Nr
X	CHATTERJEE S. & GHOSH N.: "Neutral sphingomyelinase from human urine" J. BIOL. CHEM., Bd. 264, Nr. 21, 25. Juli 1989, Seiten 12554-12561, XP002087487 siehe das ganze Dokument	1-3,5-7, 9.21,24
4	STETTE das garize bolidinent	4,8, 10-20. 22,23
Р,Х	WO 98 28445 A (CHATTERJEE SUBROTO ;UNIV JOHNS HOPKINS (US)) 2. Juli 1998	1-3,5-7, 9,14-19, 21,24
	siehe Zusammenfassung siehe Abbildungen 1.2 siehe Ansprüche 1-30	
	-/	

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

Besondere Kategorien von angegebenen Veroffentlichungen

- Veröffentlichung, die den allgemeinen Stand, der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden "ysoll oder die aus einem anderen besonderen Grund angegeben ist (wie
- "O" Veröffentlichung, die sich auf eine mundliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Priontatsdatum veröffentlicht worden ist
- Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritatsdatum veröffentlicht worden ist und mit der Anmeldung nicht kölligiert, sondern nur zum Verstandnis des der Erlindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- Veröffentlichung von besonderer Bedeutung, die beansprüchte Erfindung kann allein aufgrund dieser Veröffentlichung, nicht als neu oder auf erfindenscher Tätigkeit beruhend betrachtet werden
- Veröffentlichung von besonderer Bedeutung, die beanspruchte Efindung kann nicht als auf erfindenscher Tätigkeit berühend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategone in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Absendedatum des internationalen Recherchenberichts

Datum des Abschlüsses der internationalen Recherche

29/12/1998

Bevoilmachtigter Bediensteter

11. Dezember 1998

Name und Postanschrift der Internationalen Recherchenbehorde Europaisches Patentamt, P.B. 5818 Patentlaan 2

NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040. Tx. 31 651 epo ni, Fax: (+31-70) 340-3016

Galli, I

INTERNATIONALER RECHERCHENBERICHT

Inte onales Aktenzeichen
PCT/EP 98/05127

	PCT/E	P 98/05127
C (Fortsetz	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	
Kategore	Bezeichnung der Veröffent ichung, soweit erfordertich unter Angabe der in Betracht kommenden Teile	Betr Anspruch Nr
Α	KOSTELLOW A ET AL: "REDUCTION IN	3
А	EXTRACELLULAR MG2+ INDUCES SPHINGOMYELINASE. ELEVATES CERAMIDE AND RELEASES NF-KB IN AORTIC SMOOTH MUSCLE CELLS" FASEB JOURNAL, Bd. 10, Nr. 6, 30. April 1996, Seite Al253 XP000644454 siehe Zusammenfassung	
A	CAI Z. ET AL.: "Alteration of the sphingomyelin/ceramide pathway is associated with resistance of the human breast carcinoma MCF7 cells to Tumor Necrosis Factor alpha-mediated cytotoxicity." J. BIOL. CHEM Bd. 272. Nr. 11. 14. März 1997. XP002087488 siehe Zusammenfassung	14-17
A	DATABASE GENBANK Accession No. AA412649, 18. Mai 1997 HILLIER ET AL.: "H. sapiens cDNA clone IMAGE 730457 - EST." XP002087490 Vergleiche mit Aminosäuren 247-394 in Seq. ID 1	1-24
P,X	TOMIUK S. ET AL.: "Cloned mammalian neutral sphingomyelinase: functions in sphyngolipid signaling?" PRC. NATL. ACAD. SCI. USA. Bd. 95. Nr. 7. 31. März 1998. Seiten 3638-3643. XP002087489 siehe das ganze Dokument	1-11, 20-24

...ernationales Aktenzeichen

INTERNATIONALER RECHERCHENBERICHT

Feld I Bernerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 1 auf Blatt 1
Gemaß Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:
Ansprüche Nr. weil Sie sich auf Gegenstande beziehen, zu deren Recherche die Behorde nicht verpflichtet ist, namlich
Bemerkung: Obwohl der(die) Anspruch(üche) 16 und 17
sigh auf oin Vorfahren zur Rehandlung des menschlichen/tierischen
v more hazieht(en) wurde die Recherche durchgefullt und grundete stell
auf die angeführten Wirkungen der Verbindung/Zusammensetzung.
2. Ansprüche Nr.
Ansprüche Nr. weil sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, namlich
3. Ansprüche Nr.
nemed distribution of grant and a grant an
Feld II. Semerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 2 auf Blatt 1)
Feig it Benierkungen der mangemen Emmenmenken der Emmennig (* 5 der 5
Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthalt:
The state of the s
Da der Anmelder alle erforderlichen zusatzlichen Recherchengebuhren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchierbaren Anspruche der internationalen Anmeldung.
2. Da für alle recherchierbaren Anspruche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine
zusatzliche Recherchengebuhr gerechtfertigt hatte, hat die internationale Recherchenbehörde nicht zur Zuhang owo-
Gebuhr aufgefordert.
3. Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebuhren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht nur auf die Ansprüche der internationalen Anmeldung, für die Gebühren entrichtet worden
sind, namich auf die Anspruche Nr.
The state of the s
Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recherchenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen er-
faßt:
Bemerkungen hinsichtlich eines Widerspruchs Die zusatzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt.
Die Zahlung zusätzlicher Gebühren erfolgte ohne Widerspruch.

INTERNATIONALER RECHERCHENBERICHT

Angaben zu veröffent inungen. De zur seiten Parentiam seigenören

m Recherchenbericht ar geführtes Patentdokum		Datum der Veröffentlichung		gliedier) der atenflamilie	Satum der Veröffentlichung
W0 9828445	A	02-07-1998	AU	5809398 A	17-07-1998