# Matematikai és számítástudományi ismeretek

# 6. tétel

## 1. ELSŐ RÉSZ

## 1.1. Gráf fogalma és megadásának módjai.

## 1.1.1. A gráf fogalma

A gráf hálós adatszerkezet.

Hálós adatszerkezet: minden adatelemnek tetszőleges számú megelőzője és tetszőleges számú rákövetkezője lehet. Egy elem lehet egy másiknak (beleértve saját magát is) a megelőzője, rákövetkezője, mindkettő vagy egyik sem.

A gráf csúcsok és élek halmaza. Egy él két csúcs közötti kapcsolat. Egy gráfot az határoz meg, hogy mely csúcsai vannak élekkel összekötve.

## 1.1.2. A gráf megadási módjai

## 1. Ábrával



## 2. Az N ponthalmaz (csúcshalmaz) és az A élhalmaz tételes felsorolásával

$$N = \{ x_1, x_2, x_3, x_4, x_5 \}$$

$$A = \{ (x_1, x_2), (x_1, x_3), (x_2, x_3), (x_2, x_4), (x_2, x_5), (x_3, x_4), (x_5, x_4) \}$$

## 3. Szétszórt reprezentáció – Szomszédsági listával (multilistával)

A kezdő csúcspontból listaszerűen felsoroljuk az onnan elérhető csúcspontokat. A listaelem az adatelem értékén kívül egy mutatót tartalmaz, amely a következő listaelem címét tartalmazza.



## **4.** Folytonos reprezentáció – Szomszédsági mátrixszal (csúcsmátrixszal)

Ahol i a sor, j az oszlop, n a csúcsok száma, ekkor a gráfot egy  $n \times n$  -es mátrixszal ábrázoljuk, a sorokat és az oszlopokat a gráf csúcsaival címkézzük.

Egy címkézetlen M mátrix formájú ábrázolás esetén a következő képlettel írhatjuk le a mátrix kitöltésének a módját (E az élek halmaza)

$$C[i,j] = \begin{cases} 1 & \text{ha } (i,j) \in E \\ 0 & \text{ha } (i,j) \notin E \end{cases}$$

|                               | χ,         | $\chi_{2}$ | $x_3$            | χ, | χ,         |
|-------------------------------|------------|------------|------------------|----|------------|
|                               | <b>~</b> 1 |            | 3                | 4  | <b>~</b> 5 |
| $x_1$                         | 0          | 1          | 1                | 0  | 0          |
| $\chi_2$                      | 0          | 0          | 1<br>1<br>0<br>0 | 1  | 1          |
| 2                             |            |            |                  |    |            |
| $x_3$                         | 0          | 0          | 0                | 0  | 1          |
| $\chi_{\scriptscriptstyle A}$ | 0          | 0          | 0                | 0  | 0          |
| 4                             |            |            |                  |    |            |
| $x_5$                         | 0          | 0          | 0                | 1  | 0          |

$$\begin{pmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

## 1.2. Egyszerű, irányított és irányítatlan gráfok.

## 1.2.1. Egyszerű gráf:

Ebben a gráfban bármely két csúcs között legfeljebb egy él lehet (kizárjuk a többszörös éleket) és nem engedünk meg olyan éleket, amelyeknek kezdő- és végpontja azonos (a hurkokat).

## 1.2.2. Irányított gráf:

Ezesetben az éleknek irányuk van.

## 1.2.3. Irányítatlan gráf:

Ezesetben az élekhez nincs irány rendelve, vagyis nem teszünk különbséget az "A-ból B-be", illetve a "B-ből A-ba" menő élek között.

## 1.3. Séta, út, összefüggőség.

#### 1.3.1. Séta:

Sétának nevezzük egy gráf csúcsainak és éleinek olyan sorozatát, melyben minden él végpontja megegyezik a következő él kezdőpontjával – feltéve, hogy létezik következő él. A sétában a csúcsok és az élek tetszés szerint ismétlődhetnek.

## 1.3.2. Út:

Útnak nevezzük a csúcsok és élek olyan sorozatát, amelyben nem ismétlünk sem éleket, sem csúcsokat.

## 1.3.3. Összefüggőség:

Egy gráf összefüggő, ha (élei esetleges irányításáról megfeledkezve) bármely két csúcs között van út.

## 1.4. Nevezetes gráfok: páros gráf, teljes gráf, fa, kör, súlyozott gráf.

## 1.4.1. Páros gráf:

Egy gráf páros, ha nincs benne páratlan hosszúságú kör.

## 1.4.2. Teljes gráf:

Olyan gráf, melynek bármely két csúcsa között van él.

#### 1.4.3. Fa:

Olyan gráf, mely összefüggő és körnélküli. A fa csúcsainak száma=élek száma+1

#### 1.4.4. Kör:

Körnek nevezzük azt az utat, amelynek kezdő- és végpontja azonos.

## 1.4.5. Súlyozott gráf:

Súlyozott gráf esetében egy w súlyfüggvény is rendelhető az élekhez.

## 2. MÁSODIK RÉSZ

## 2.1. Generatív nyelvtanok, nyelvosztályok, a Chomsky-hierarchia.

## 2.1.1. Generatív nyelvtanok:

 $G = (N, \Sigma, S, P)$ , ahol N a nemterminális ábécé,  $\Sigma$  terminális ábécé, S kezdőszimbólum, P helyettesítési szabályok. L(G) a G által generált nyelv (szavak halmaza).

Tehát a generatív grammatika alkotóelemei:

- Nemterminális ábécé segédszimbólumok a generálás során
- Terminális ábécé a generálandó nyelv ábécéje
- Kezdő nemterminális kezdőszimbólum
- Helyettesítési szabályok a generálás során mely szavak helyettesíthetők mely más szavakkal

Példa:  $N = \{S\}, \ \Sigma = \{a, b\}, \ S \in N, \ P = \{S \rightarrow \lambda \mid S \rightarrow aSb\}$  ( $\lambda$  az üres szó)

#### 2.1.2. Nyelvosztályok:

A különböző nyelvtanokat bizonyos formai tulajdonságok alapján osztályokba soroljuk. Az osztályozás alapját a helyettesítési szabályok alakjára vonatkozó megszorítások képezik abban a hierarchiában, amelyet az elmélet egyik megalapozója, Noam Chomsky vezetett be. Ő alkotta meg

azt a 4 nyelvosztályt, amelyeket a mai napig a grammatikák és nyelvek kategorizálására használunk.

- **0.** típusú nyelvtanok rekurzívan felsorolható nyelvtanok:
  - $\alpha \to \beta$ , ahol  $\alpha$  és  $\beta$  nemterminálisokból és terminálisokból álló szavak, és  $\alpha$  tartalmaz legalább egy nemterminális szimbólumot.
- 1. típusú nyelvtanok környezetfüggő nyelvtanok:

 $\alpha$  A  $\beta$   $\rightarrow$   $\alpha$   $\gamma$   $\beta$  vagy S  $\rightarrow$   $\lambda$ , ahol A nemterminális,  $\gamma$  egy nemterminálisokból és terminálisokból álló akár üres szó,  $\alpha$  és  $\beta$  nemterminálisokból és terminálisokból álló szavak

- 2. típusú nyelvtanok környezetfüggetlen nyelvtanok:
  - $A \to \alpha$ , ahol A nemterminális,  $\alpha$  egy nemterminálisokból és terminálisokból álló, akár üres, szó.
- 3. típusú nyelvtanok reguláris/szabályos nyelvtanok:

 $A \rightarrow aB \mid a \mid \lambda$ , ahol A, B nemterminálisok, a terminális

## 2.1.3. Chomsky-hierarchia:

$$L(REG) \subset L(CF) \subset L(CS) \subset L(REC) \subset L(RE)$$

ahol REG = reguláris, CF = környezetfüggetlen (context-free), CS = környezetfüggő (context-sensitive), RE = rekurzívan felsorolható (recursively enumerable).



Reguláris nyelvtan:

$$A \rightarrow aB \mid a \mid \lambda$$
,  $A, B \in N$ ,  $a \in \Sigma$ 

Környezetfüggetlen nyelvtan:

$$A \to \alpha \ (A \to b lpha rmi), \qquad A \in N, \ \alpha \in (N \cup \Sigma)^*$$

Környezetfüggő nyelvtan:

$$\alpha A \beta \rightarrow \alpha \gamma \beta$$
,  $|\alpha A \beta| \leq |\alpha \gamma \beta|$ 

Rekurzív nyelv:

Egy L nyelv rekurzív, ha van olyan Turing gép, ami minden bemeneten megáll, a  $w \in L$  szavakon elfogadó állapotban áll meg, a  $w \notin L$  szavakon pedig nem elfogadó állapotban áll meg. (T Turing gép eldönti L-et)

Rekurzívan felsorolható nyelv:

Egy L nyelv rekurzívan felsorolható, ha van olyan Turing gép, ami minden  $w \in L$  szü bemeneten elfogadó állapotban áll meg. A  $w \notin L$  szavakon vagy nem elfogadó állapotban áll meg, vagy egyáltalán nem áll meg. (T Turing gép elfogadja L-et)

## 2.2. Véges automaták, lineáris idejű felismerés, veremautomaták.

## 2.2.1. Véges automaták:

## Determinisztikus véges automata

$$M = (Q, \Sigma, q_0, A, \delta)$$

ahol Q= véges állapothalmaz,  $\Sigma=$  véges bemeneti ábécé,  $q_0\in Q=$  kezdőállapot,  $A\subseteq Q=$  vég/elfogadási állapotok,  $\delta:Q\times \Sigma=$  állapotátmenet függvény.

## Példa:



 $M=(\{q_0,q_1,q_2\}, \{a,b\}, q_0, \{q_2\}, \delta)$ , ahol  $\delta$  a következő:

$$\delta(q_0, a) = q_1$$

$$\delta(q_1, a) = q_2$$

$$\delta(q_2, a) = q_2$$

$$\delta(q_0, b) = q_0$$

$$\delta(q_1, b) = q_0$$

$$\delta(q_2, b) = q_0$$

## Nemdeterminisztikus véges automata

$$M=(Q,\Sigma,q_0,A,\delta)$$

ahol Q= véges állapothalmaz,  $\Sigma=$  véges bemeneti ábécé,  $q_0\in Q=$  kezdőállapot,  $A\subseteq Q=$  vég/elfogadási állapotok,  $\delta:Q\times(\Sigma\cup\{\lambda\})\to 2^Q=$  állapotátmenet függvény.

## Példa:



Több lehetőség ugyanarra a bemenetre és megjelenik az üresszó átmenet

 $M=(\,\{q_1,q_2,q_3,q_4\},\;\{0,1\},\;q_1,\;\{q_4\},\;\delta\,),\;\;\text{ ahol }\delta$ a következő:

|       | 0     | 1          | 2     |
|-------|-------|------------|-------|
| $q_1$ | $q_1$ | $q_1, q_2$ |       |
| $q_2$ | $q_3$ |            | $q_3$ |
| $q_3$ |       | $q_4$      |       |
| $q_4$ | $q_4$ | $q_4$      |       |

## Determinisztikus véges automata vs Nemdeterminisztikus véges automata



## 2.2.2. Lineáris idejű felismerés:

A reguláris nyelvek esetén a szóprobléma nagyon hatékonyan megoldható. Ha megszerkesztünk egy az adott nyelvet elfogadó determinisztikus véges automatát, akkor annak segítségével a szót betűnkként elolvasva végig követve az automata futását (legkésőbb) a szó végére érve megkapjuk a választ a kérdésre: ha végállapotba jutottunk a szó végén, akkor a szó benne van az adott reguláris nyelvben; ha nem végállapotba jutottunk, vagy (parciális automata esetén) időközben elakadtunk a feldolgozással, akkor a keresett szó nincs a nyelvben.

Tehát a probléma valós időben megoldható, ahány betűből áll az input szó, annyi lépés után tudjuk a választ.

## 2.2.3. Veremautomaták:

#### Definíció:

$$M = (Q, T, \Gamma, q_0, Z_0, \delta, F)$$

ahol Q = állapothalmaz, T = bemeneti ábécé,  $\Gamma$  = veremábécé,  $q_0 \in Q$  = kezdőállapot,  $Z_0 \in \Gamma$  = kezdeti veremtartalom,  $\delta$  = állapotátmenet reláció,  $F \subseteq Q$  = végállapotok halmaza.

#### Példa:



| Move number | State | Input | Stack symbol | Move(s)          |
|-------------|-------|-------|--------------|------------------|
| 1           | $q_0$ | a     | $Z_0$        | $(q_0, aZ_0)$    |
| 2           | $q_0$ | b     | $Z_0$        | $(q_0, bZ_0)$    |
| 3           | $q_0$ | a     | а            | $(q_0, aa)$      |
| 4           | $q_0$ | b     | a            | $(q_0, ba)$      |
| 5           | $q_0$ | а     | b            | $(q_0, ab)$      |
| 6           | $q_0$ | b     | b            | $(q_0, bb)$      |
| 7           | $q_0$ | c     | $Z_0$        | $(q_1, Z_0)$     |
| 8           | $q_0$ | C     | a            | $(q_1, a)$       |
| 9           | $q_0$ | c     | b            | $(q_1, b)$       |
| 10          | $q_1$ | a     | a            | $(q_1, \Lambda)$ |
| 11          | $q_1$ | b     | b            | $(q_1, \Lambda)$ |
| 12          | $q_1$ | Λ     | $Z_0$        | $(q_2, Z_0)$     |
| (           | none  |       |              |                  |