dr Lidija Stefanović

INTEGRALI: KRIVOLINIJSKI, DVOJNI, TROJNI, POVRŠINSKI

ZA STUDENTE TEHNIČKIH FAKULTETA; II DEO

SKC Niš, 2009.

dr Lidija Stefanović

INTEGRALI: KRIVOLINIJSKI, DVOJNI, TROJNI, POVRŠINSKI

ZA STUDENTE TEHNIČKIH FAKULTETA; II DEO

I izdanje, Niš, 2009.

Recenzenti:

dr Slađana Marinković, docent Elektronskog fakulteta u Nišu, dr Vladimir Pavlović, docent PMFa u Nišu

Izdavač:

Studentski kulturni centar Niš

Za izdavača:

Miroslav Jović, direktor

Urednik:

Aleksandar Blagojević

Tehnička obrada:

dr Lidija Stefanović, dipl. ing. Biljana Đorđević

Štampa:

"Petrograf" Niš

Tiraž:

100 primeraka

ISBN 978–86–7757–154–2

Bilo kakvo umnožavanje ove knjige nije dozvoljeno bez pisanog odobrenja autora.

PREDGOVOR

Ovo je zbirka zadataka koja je prvobitno zamišljena kao sastavni i poslednji deo knjige "Integrali: krivolinijski, dvojni, trojni, površinski za studente tehničkih fakulteta; I deo", autora prof. dr Lidije Stefanović (Studentski kulturni centar Niš, Niš, 2008). Iako sa knjigom čini skoro neraskidivu celinu, oformljena je kao posebna celina zbog obimnosti i značaja prezentovane materije.

Zbirka u potpunosti podržava istoimenu knjigu, kako u pogledu sadržine, tako i u svakom drugom pogledu (navođenje oznaka formula i teorema, pozivanje na primere i napomene, citiranje bibliografskih jedinica i slično). Primedbe iznete u Predgovoru knjige, koje se odnose na prikazivanje prostornih objekata, važe i u ovom slučaju.

Tekst zbirke je urađen pomoću programskog paketa MIKTEX (verzija Amstex 2.0), a slike pomoću programskog paketa Corel Draw (verzija 11). Svi zadaci su testirani pomoću programskog paketa MATHEMATICA (verzija 6.0).

Autor se zahvaljuje asistentu Elektronskog fakulteta u Nišu, mr Marjanu Matejiću, koji je zadatke testirao i formulisao Prilog. Takođe se zahvaljuje recenzentima, doc. dr Slađani Marinković i doc. dr Vladimiru Pavloviću, a posebno prvom od njih, na predanom isčitavanju i ispravljanju materijalnih grešaka u tekstu, kao i na pomoći u izboru zadataka.

Niš, 2009. g. Autor

SADRŽAJ

Krivolinijski integrali po luku (I vrste) 1 Zadaci 1 – 7
Krivolinijski integrali po koordinatama (II vrste)
Zadaci 8 – 18
VIŠESTRUKI INTEGRALI 27
Dvojni integrali 27
Zadaci $19-21$
Trojni integrali 32
Zadaci 22 - 23
Smena promenljivih u dvojnim integralima 35
Zadaci 24 - 37
Smena promenljivih u trojnim integralima 53
Zadaci $38-48$
Green-Riemannova teorema 65
Zadaci $49 - 52$
POVRŠINSKI INTEGRALI 71
Površinski integrali po površi (I vrste) 71
Zadaci 53 – 62
Površinski integrali po koordinatama (II vrste) 85
Zadaci 63 – 67
Veza između površinskih integrala I i II vrste 95
Zadaci 68 – 70
Teorema Ostrogradskog 102
Zadaci 71 – 77

KRIVOLINIJSKI INTEGRALI 1

vi SADRŽAJ

Stokesova teorema 117

Zadaci 78 – 85

Nezavisnost krivolinijskog integrala od puta integracije $$ 126

 $Zadaci\ 86-90$

PRILOG 133

KRIVOLINIJSKI INTEGRALI

Krivolinijski integrali po luku (I vrste)

Ako je

$$L: \quad x = x(t) , \ y = y(t) , \ z = z(t) ; \quad t \in [\alpha, \beta] ,$$

tada je

$$\int_{L} H(x,y,z) d\lambda = \int_{\alpha}^{\beta} H(x(t),y(t),z(t)) \sqrt{{x'}^{2}(t) + {y'}^{2}(t) + {z'}^{2}(t)} dt.$$

 $\boxed{\mathbf{1}.}$ Izračunati dužinu dela krive L_1 , koja je presek površi

$$S_1: (x-y)^2 = 3(x+y)$$
, $S_2: x^2 - y^2 = \frac{9}{8}z^2$,

između tačaka O(0,0,0) i $B(3,0,\sqrt{8})$.

 $Re\check{s}enje.$ Neka je $L=\stackrel{\frown}{OB}$ deo krive L_1 i l dužina za L.

Prvo nalazimo parametarske jednačine krive L. Svaka tačka $X(x,y,z) \in L_1$ pripada istovremeno i površi S_1 i površi S_2 , pa njene koordinate zadovoljavaju sistem jednačina

$$(x-y)^2 = 3(x+y)$$
, $x^2 - y^2 = \frac{9}{8}z^2$.

Smenom

$$u = x - y \ , \ v = x + y$$

u prethodni sistem, dobija se novi sistem

$$u^2 = 3v \ , \ uv = \frac{9}{8} z^2 \ .$$

Stavljajući u = t, iz prethodnog sistema je

$$v = \frac{1}{3} t^2 , z = \frac{2\sqrt{2}}{3\sqrt{3}} t\sqrt{t}$$

i, prema uvedenoj smeni,

$$x = \frac{1}{2}(u+v) = \frac{1}{6}(3t+t^2)$$
, $y = \frac{1}{2}(v-u) = \frac{1}{6}(t^2-3t)$, $z = \frac{2\sqrt{2}}{3\sqrt{3}}t\sqrt{t}$,

pa je

$$X\left(\frac{1}{6}(3t+t^2), \frac{1}{6}(t^2-3t), \frac{2\sqrt{2}}{3\sqrt{3}}t\sqrt{t}\right)$$
.

Za tačku O(0,0,0) je t=u=x-y=0-0=0, a za tačku $B(3,0,\sqrt{8})$ je t=u=x-y=3-0=3. Zato za tačke $X\in L\subset L_1$ važi $t\in [0,3]$ i parametarske jednačine krive L glase

L:
$$x = \frac{1}{6}(3t + t^2)$$
, $y = \frac{1}{6}(t^2 - 3t)$, $z = \frac{2\sqrt{2}}{3\sqrt{3}}t\sqrt{t}$; $t \in [0, 3]$.

Kako je

$$x'(t) = \frac{1}{6}(3+2t) , y'(t) = \frac{1}{6}(2t-3) , z'(t) = \frac{\sqrt{2}}{\sqrt{3}}\sqrt{t} ;$$

$$x'^{2}(t) + y'^{2}(t) + z'^{2}(t) = \frac{1}{18}(2t+3)^{2} ,$$

dužina l krive L je

$$\begin{split} l &= \int_L d\lambda = \int_0^3 \sqrt{{x'}^2(t) + {y'}^2(t) + {z'}^2(t)} \ dt \\ &= \int_0^3 \sqrt{\frac{1}{18}(2t+3)^2} \ dt = \frac{1}{3\sqrt{2}} \int_0^3 (2t+3) \, dt = \frac{1}{3\sqrt{2}} \left(t^2 + 3t\right) \Big|_0^3 = 3\sqrt{2} \ . \end{split}$$

2. Izračunati dužinu dela krive L_1 , koja je presek površi

$$S_1: \quad x^2 = 3y \; , \qquad S_2: \quad 2xy = 9z \; ,$$

između tačaka O(0,0,0) i B(3,3,2).

 $Re\check{s}enje.$ Neka je $L=\stackrel{\frown}{OB}$ deo krive $L_1,$ čiju dužinu l treba izračunati. Stavljajući x=t,iz jednačina površi S_1 i S_2 sledi

$$y = \frac{1}{3} t^2$$
, $z = \frac{2}{27} t^3$.

Za tačku O(0,0,0) je t=x=0, a za tačku B(3,3,2) je t=x=3. Zato su parametarske jednačine krive

L:
$$x = t$$
, $y = \frac{1}{3}t^2$, $z = \frac{2}{27}t^3$; $t \in [0,3]$

ili, što je isto,

$$L: \quad y = \frac{1}{3} x^2 \ , \ z = \frac{2}{27} x^3 \ ; \quad x \in [0,3] \ .$$

Kako je

$$y'(x) = \frac{2}{3}x, \ z'(x) = \frac{2}{9}x^2;$$

$$1 + y'^2(x) + z'^2(x) = 1 + \frac{4}{9}x^2 + \frac{4}{81}x^4 = \frac{1}{81}(2x^2 + 9)^2,$$

dužina l krive L je

$$l = \int_{L} d\lambda = \int_{0}^{3} \sqrt{1 + y'^{2}(x) + z'^{2}(x)} dx$$
$$= \frac{1}{9} \int_{0}^{3} (2x^{2} + 9) dx = \frac{1}{9} \left(2\frac{x^{3}}{3} + 9x \right) \Big|_{0}^{3} = 5.$$

3. Izračunati dužinu krive (astroida)

$$L: \quad x^{2/3} + y^{2/3} = a^{2/3} \ , \ z = 0 \ ,$$

gde je a > 0.

Rešenje. Zamenom y=0 u implicitnu jednačinu krive L sledi $x=\pm a$, pa L seče x-osu u tačkama (a,0,0), (-a,0,0) i analogno, L seče y-osu $(x=0,\,z=0)$ u tačkama (0,a,0), (0,-a,0). Astroida L je prikazana na sledećoj slici. Zbog simetrije u odnosu na x i y-osu, posmatramo samo deo u I kvadrantu xy-ravni (z=0) za koji je $x,y\geq 0$.

Da bismo odredili parametarske jednačine krive L, prelazimo na uopštene polarne koordinate pomoću

$$x = r \cos^3 \varphi$$
, $y = r \sin^3 \varphi$.

Smena je oblika (1.4.6) sa neparnim brojem n=3, pa je $0 \le \varphi \le 2\pi$ maksimalni raspon koordinate φ . Zamenom ovako iskazanih x i y u zadatu implicitnu jednačinu krive, nalazimo $r^{2/3}=a^{2/3}, \ r^2=a^2$ i r=a>0, što ne nameće ograničenja koordinati φ . Zato su parametarske jednačine krive

$$L: \quad x = a\cos^3\varphi, \quad y = a\sin^3\varphi, \quad z = 0; \quad \varphi \in [0, 2\pi].$$

Kako je

$$x'(\varphi) = -3a\cos^2\varphi\sin\varphi , \ y'(\varphi) = 3a\sin^2\varphi\cos\varphi , \ z'(\varphi) = 0 ;$$

$$x'^2(\varphi) + y'^2(\varphi) + z'^2(\varphi) = 9a^2\cos^2\varphi\sin^2\varphi$$

i kako za $x,y\geq 0$ iz uvedene smene sledi $\cos\varphi\geq 0$, $\sin\varphi\geq 0$, to je $\varphi\in [0,\pi/2]$ u I kvadrantu i za dužinu l krive L se dobija

$$\begin{split} l &= \oint_L d\lambda = 4 \int_0^{\pi/2} \sqrt{x'^2(\varphi) + y'^2(\varphi) + z'^2(\varphi)} \ d\varphi \\ &= 4 \int_0^{\pi/2} 3a \left| \cos \varphi \sin \varphi \right| d\varphi = 12a \int_0^{\pi/2} \cos \varphi \sin \varphi \ d\varphi \\ &= 12a \int_0^{\pi/2} \sin \varphi \ d(\sin \varphi) = 12a \frac{\sin^2 \varphi}{2} \Big|_0^{\pi/2} = 6a \ . \end{split}$$

Vrednosti parametra φ za deo krive L u I kvadrantu smo mogli da dobijemo kao u Zadacima 1 i 2, na osnovu graničnih tačaka (a,0,0), (0,a,0) tog dela. Preciznije, za tačku (a,0,0) iz parametarskih jednačina krive L sledi $a=a\cos^3\varphi, 0=a\sin^3\varphi$, tj. $1=\cos^3\varphi, 0=\sin^3\varphi$ i $\cos\varphi=1$, $\sin\varphi=0$, pa ovoj tački odgovara $\varphi=0$. Analogno, za tačku (0,a,0) je $\cos\varphi=0$, $\sin\varphi=1$ i $\varphi=\pi/2$.

4. Izračunati dužinu dela krive L_1 , koja je presek površi

$$S_1: \quad x^{2/3}+y^{2/3}=a^{2/3} \ , \qquad S_2: \quad z=a^{1/3} \big(x^{2/3}+y^{2/3}\big) \ ,$$

za $x, y \ge 0$ i a > 0.

Rešenje. Neka je L deo krive L_1 , čiju dužinu l treba izračunati. Zbog uslova $x,y\geq 0$, iz jednačine površi S_2 sledi $z\geq 0$, pa se kriva L nalazi u I oktantu. Površ S_1 je cilindrična, sa direktrisom u xy-ravni (z=0) i izvodnicama paralelnim z-osi. Direktrisa ima "istu" jednačinu kao S_1 , pa je to astroida iz Zadatka 3. Čitava cilindrična površ, a time i kriva L koja joj pripada, projektuje se na direktrisu (3° iz Napomene 2.3.5). Zato je projekcija L_{xy} krive L na xy-ravan deo astroide u I kvadrantu te ravni.

Prema Zadatku 3, parametarske jednačine projekcije su

$$L_{xy}: \quad x = a\cos^3\varphi \ , \ y = a\sin^3\varphi \ , \ z = 0 \ ; \quad \varphi \in \left[0, \frac{\pi}{2}\right] \ .$$

Tačke sa krive L i njihove projekcije sa krive L_{xy} imaju iste koordinate x i y. Kako kriva L pripada površi S_2 , koordinate njenih tačaka zadovoljavaju jednačinu ove površi. Zamenom x, y iz parametarskih jednačina za L_{xy} u jednačinu za S_2 dobija se

$$z = a^{1/3} (a^{2/3} \cos^2 \varphi + a^{2/3} \sin^2 \varphi) = a$$
,

što je treća koordinata ztačaka sa krive $L,\,\mathrm{pa}$ su parametarske jednačine

$$L: \quad x = a\cos^3\varphi \ , \ y = a\sin^3\varphi \ , \ z = a \ ; \quad \varphi \in \left[0,\frac{\pi}{2}\right] \ .$$

Budući da je z=a konstanta, to je $z'(\varphi)=0$ i dužina

$$l = \frac{3}{2} a$$

se izračunava kao u Zadatku 3.

Prema rezultatu iz Zadatka 3, dužina projekcije L_{xy} je 6a/4=3a/2. Sve tačke sa krive L imaju istu treću koordinatu z=a, što znači da se L nalazi u ravni z=a, koja je paralelna xy-ravni. Zato kriva L i njena projekcija L_{xy} imaju istu dužinu.

5. Izračunati površinu dela cilindrične površi

$$S_3: \quad x^2 + y^2 = a^2$$

koji se nalazi između površi

$$S_1: \quad z = -(x^2 + y^2) , \qquad S_2: \quad z = \sqrt{x^2 + y^2} ,$$

pri čemu je a > 0.

 $Re \check{s}enje.$ Neka je cilindrična površS deo zadate cilindrične površi S_3 , čiju površinu m treba izračunati. Takođe, neka je L direktrisa, a L_1 i L_2 bazisi površi S koji nastaju u preseku S_3 sa S_1 i S_3 sa S_2 redom. Površ S_1 je paraboloid, a S_2 konus sa z-osom kao osovinom.

Površinu m izračunavamo kao zbir

$$m=m_1+m_2\;,$$

gde je m_1 površina onog dela površi S koji se nalazi ispod xy-ravni $(z \le 0)$, a m_2 površina dela iznad xy-ravni $(z \ge 0)$. Kako je bazis L_1 na paraboloidu, a bazis L_2 na konusu, uz oznake

$$S_1: \quad z = f_1(x,y) = -(x^2 + y^2) \le 0, \qquad S_2: \quad z = f_2(x,y) = \sqrt{x^2 + y^2} \ge 0$$

i prema geometrijskom tumačenju krivolinijskog integrala I vrste, dobijamo

$$m_1 = \left| \oint_L f_1(x,y) \, d\lambda \right| = \oint_L \left(x^2 + y^2 \right) \, d\lambda \; , \; m_2 = \oint_L f_2(x,y) \, d\lambda = \oint_L \sqrt{x^2 + y^2} \; d\lambda \; .$$

Direktrisa

$$L: \quad x^2 + y^2 = a^2 \ , \ z = 0$$

je centralna kružnica u xy–ravni (z=0) poluprečnika a. Uvođenjem polarnih koordinata sa

$$x = r\cos\varphi$$
, $y = r\sin\varphi$,

iz jednačine kružnice sledi r=a i njene parametarske jednačine glase

$$L: \quad x = a\cos\varphi \ , \ y = a\sin\varphi \ , \ z = 0 \ ; \quad \varphi \in [0, 2\pi] \ .$$

Određujući

$$\begin{split} x^2(\varphi) + y^2(\varphi) &= a^2 \ ; \\ x'(\varphi) &= -a \sin \varphi \ , \ y'(\varphi) = a \cos \varphi \ , \ z'(\varphi) = 0 \ ; \\ x'^2(\varphi) + y'^2(\varphi) + z'^2(\varphi) &= a^2 \ , \end{split}$$

nalazimo dalje

$$\begin{split} m_1 &= \int_0^{2\pi} \left[x^2(\varphi) + y^2(\varphi) \right] \sqrt{x'^2(\varphi) + y'^2(\varphi) + z'^2(\varphi)} \ d\varphi \\ &= \int_0^{2\pi} a^2 \sqrt{a^2} \ d\varphi = a^3 \varphi \, \Big|_0^{2\pi} = 2a^3 \pi \ , \\ m_2 &= \int_0^{2\pi} \sqrt{x^2(\varphi) + y^2(\varphi)} \sqrt{x'^2(\varphi) + y'^2(\varphi) + z'^2(\varphi)} \ d\varphi \\ &= \int_0^{2\pi} \sqrt{a^2} \sqrt{a^2} \ d\varphi = a^2 \varphi \, \Big|_0^{2\pi} = 2a^2 \pi \ , \end{split}$$

pa je

$$m = 2a^3\pi + 2a^2\pi = 2a^2(a+1)\pi \ .$$

6. Izračunati krivolinijski integral I vrste

$$I = \oint_L |y| \, d\lambda \ ,$$

gde je L kriva (lemniskata)

$$L: (x^2 + y^2)^2 = a^2(x^2 - y^2), z = 0$$

i a > 0.

 $Re\breve{s}enje.$ U implicitnoj jednačini krive L je $\left(x^2+y^2\right)^2\geq 0,$ pa mora da bude i $x^2-y^2\geq 0,$ odakle je redom: $y^2\leq x^2,$ $|y|\leq |x|,$ $-|x|\leq y\leq |x|$ i

$$-x \le y \le x \ , \ x \ge 0 \ ; \ x \le y \le -x \ , \ x \le 0 \ .$$

Dakle, kriva L se nalazi u xy-ravni (z=0) "iznad" prave y=-x i "ispod" prave y=x za $x\geq 0$, a obrnuto za $x\leq 0$. Dalje, za y=0 iz jednačine krive L sledi $x^2\left(x^2-a^2\right)=0$ i $x=0,\ x=\pm a$, pa L seče y-osu u tačkama $(0,0,0),\ (a,0,0),\ (-a,0,0)$. Za x=0 se dobija $y^4=-a^2y^2$ i y=0, pa je (0,0,0) presečna tačka krive L i y-ose. Kriva L je dobro poznata Bernoullieva lemniskata.

Sa slike vidimo da lemniskata L nije zatvorena prosta kriva u smislu Definicije 1.1.9. U stvari, lemniskata se sastoji od dve zatvorene krive L_1 i L_2 sa zajedničkom tačkom (0,0,0). Ova tačka je singularna tačka implicitne jednačine i to $dvostruka\ tačka\ ([2], str. 97)$.

Uvođenjem polarnih koordinata sa

$$x = r\cos\varphi$$
, $y = r\sin\varphi$,

iz jednačine krive L sledi $r^2=a^2\cos 2\varphi$. Kako je $r^2\geq 0$, to mora da bude $\cos 2\varphi\geq 0$, a ovo važi za $2\varphi\in [-\pi/2,\pi/2]\cup [3\pi/2,5\pi/2]$, tj.

$$\varphi \in \left[-\frac{\pi}{4}, \frac{\pi}{4} \right] \cup \left[\frac{3\pi}{4}, \frac{5\pi}{4} \right] ,$$

što je u skladu sa prethodnim zaključkom o položaju krive L u xy–ravni. Zbog a>0, u navedenim segmentima je

$$r = a\sqrt{\cos 2\varphi}$$
,

pa je $L=L_1\cup L_2$, gde L_1 i L_2 imaju parametarske jednačine

$$L_1: \quad x = a\cos\varphi\sqrt{\cos 2\varphi} \; , \; y = a\sin\varphi\sqrt{\cos 2\varphi} \; , \; z = 0 \; ; \quad \varphi \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right] \; ,$$

$$L_2: \quad x = a\cos\varphi\sqrt{\cos 2\varphi} \; , \; y = a\sin\varphi\sqrt{\cos 2\varphi} \; , \; z = 0 \; ; \quad \varphi \in \left[\frac{3\pi}{4}, \frac{5\pi}{4}\right] \; .$$

Objedinjene, ove jednačine se smatraju parametarskim jednačinama krive

$$L: \quad x = a\cos\varphi\sqrt{\cos2\varphi} \ , \ y = a\sin\varphi\sqrt{\cos2\varphi} \ , \ z = 0 \ ; \quad \varphi \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right] \cup \left[\frac{3\pi}{4}, \frac{5\pi}{4}\right] \ .$$

Integral I postaje

$$I=I_1+I_2 ,$$

gde je

$$I_1 = \oint_{L_1} |y| \, d\lambda \; , \; I_2 = \oint_{L_2} |y| \, d\lambda \; .$$

Kako je

8

$$x'^{2}(\varphi) + y'^{2}(\varphi) + z'^{2}(\varphi) = \frac{a^{2}}{\cos 2\varphi} \; ; \; d\lambda = \sqrt{x'^{2}(\varphi) + y'^{2}(\varphi) + z'^{2}(\varphi)} \; d\varphi = \frac{a}{\sqrt{\cos 2\varphi}} \, d\varphi$$

i $|y| = a |\sin \varphi| \sqrt{\cos 2\varphi}$,

$$\sin\varphi \geq 0 \ , \quad \varphi \in \left[0,\frac{\pi}{4}\right] \cup \left[\frac{3\pi}{4},\pi\right] \ ; \qquad \sin\varphi \leq 0 \ , \quad \varphi \in \left[-\frac{\pi}{4},0\right] \cup \left[\pi,\frac{5\pi}{4}\right] \ ,$$

to je

$$I_{1} = \int_{-\pi/4}^{0} -a \sin \varphi \sqrt{\cos 2\varphi} \frac{a}{\sqrt{\cos 2\varphi}} d\varphi + \int_{0}^{\pi/4} a \sin \varphi \sqrt{\cos 2\varphi} \frac{a}{\sqrt{\cos 2\varphi}} d\varphi$$

$$= -a^{2} \int_{-\pi/4}^{0} \sin \varphi d\varphi + a^{2} \int_{0}^{\pi/4} \sin \varphi d\varphi = a^{2} \cos \varphi \Big|_{-\pi/4}^{0} -a^{2} \cos \varphi \Big|_{0}^{\pi/4}$$

$$= (2 - \sqrt{2})a^{2} ,$$

$$I_{2} = \int_{3\pi/4}^{\pi} a \sin \varphi \sqrt{\cos 2\varphi} \frac{a}{\sqrt{\cos 2\varphi}} d\varphi + \int_{\pi}^{5\pi/4} -a \sin \varphi \sqrt{\cos 2\varphi} \frac{a}{\sqrt{\cos 2\varphi}} d\varphi$$

$$= a^{2} \int_{3\pi/4}^{\pi} \sin \varphi d\varphi - a^{2} \int_{\pi}^{5\pi/4} \sin \varphi d\varphi = -a^{2} \cos \varphi \Big|_{3\pi/4}^{\pi} + a^{2} \cos \varphi \Big|_{\pi}^{5\pi/4}$$

$$= (2 - \sqrt{2})a^{2}$$

i konačno

$$I = I_1 + I_2 = 2(2 - \sqrt{2})a^2$$
.

7. Izračunati krivolinijski integral I vrste

$$I = \oint_L \sqrt{x^2 + y^2} \ d\lambda \ ,$$

gde je L kriva

$$L: \quad x^2 + y^2 = ax \ , \ z = 0$$

i a > 0.

Uputstvo. U Primeru 2.3.2 smo već našli parametarske jednačine krive

$$L: \quad x = a\cos^2\varphi \ , \ y = a\cos\varphi\sin\varphi \ , \ z = 0 \ ; \quad \varphi \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

i odredili

$$x^2(\varphi) + y^2(\varphi) = a^2 \cos^2(\varphi) \ ; \ {x'}^2(\varphi) + {y'}^2(\varphi) + {z'}^2(\varphi) = a^2 \ .$$

Zato je

$$I = \int_{-\pi/2}^{\pi/2} a |\cos\varphi| \, a \, d\varphi = a^2 \int_{-\pi/2}^{\pi/2} \cos\varphi \, d\varphi = a^2 \sin\varphi \, \Big|_{-\pi/2}^{\pi/2} = 2a^2 \ .$$

Krivolinijski integrali po koordinatama (II vrste)

Ako je

$$L: \quad x = x(t), \ y = y(t), \ z = z(t); \quad t \in [\alpha, \beta],$$

tada je

$$\int_{L^{+}} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz$$

$$= \int_{\alpha}^{\beta} \left[P(x(t), y(t), z(t)) x'(t) + Q(x(t), y(t), z(t)) y'(t) + R(x(t), y(t), z(t)) z'(t) \right] dt.$$

8. Izračunati potpuni krivolinijski integral II vrste

$$I = \int_{L} x^{3} dx + 3y^{2}z dy - x^{2}y dz ,$$

gde je L deo prave između tačaka A(1,2,3) i B(-1,2,1), orijentisan od tačke A ka tački B.

Rešenje. Neka je L_1 prava koja prolazi kroz tačke A i B. Simetrični oblik jednačine prave kroz dve tačke (x_1, y_1, z_1) i (x_2, y_2, z_2) je ([3], str. 274)

$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1} \ .$$

Stavljajući $(x_1,y_1,z_1)=(1,2,3),\ (x_2,y_2,z_2)=(-1,2,1)$ i označavajući razlomke sa t,dobija se

$$\frac{x-1}{-2} = \frac{y-2}{0} = \frac{z-3}{-2} = t ,$$

odakle slede parametarske jednačine prave

$$L_1: x = 1 - 2t, y = 2, z = 3 - 2t; t \in \mathbb{R}$$
.

Za tačku A je $x=1,\,z=3,$ pa je t=0. Za tačku B je $x=-1,\,z=1,$ pa je t=1. Zato L ima parametarske jednačine

$$L: \quad x = 1 - 2t \; , \; y = 2 \; , \; z = 3 - 2t \; ; \quad t \in [0, 1] \; .$$

S obzirom na orijentaciju od A kaB, parametar t se menja od t=0 do t=1. Nalazeći

$$x'(t) = -2$$
, $y'(t) = 0$, $z'(t) = -2$,

integral I postaje

$$I = \int_0^1 \left[x^3(t)x'(t) + 3y^2(t)z(t)y'(t) - x^2(t)y(t)z'(t) \right] dt$$

=
$$\int_0^1 \left[-2(1-2t)^3 + 4(1-2t)^2 \right] dt = 2\int_0^1 \left(1 - 2t - 4t^2 + 8t^3 \right) dt = \frac{4}{3} .$$

9. Izračunati potpuni krivolinijski integral II vrste

$$I = \int_{L} \frac{-y \, dx + x \, dy}{x^2 + (y - 6)^2} \; ,$$

gde je L deo kružnice

$$L_1: \quad x^2 + y^2 - 12y + 18 = 0 \; , \; z = 0$$

između tačaka A(3,3,0) i B(-3,9,0), orijentisan od tačke B ka tački A.

 $Re \check{s}en je.$ Integral Ije potpuni krivolinijski (2.2.3) sa $R(x,y,z)\equiv 0.$ Kružnica

$$L_1: \quad x^2 + (y-6)^2 = 18 \; , \; z = 0$$

je u xy-ravni (z=0), sa centrom u tački (0,6,0) i poluprečnika $3\sqrt{2}$.

Kako je L_1 "pomerena" kružnica, uvodimo smenu

$$x = r\cos\varphi$$
, $y - 6 = r\sin\varphi$

i dobijamo $r = 3\sqrt{2}$, kao i parametarske jednačine

$$L_1: \quad x = 3\sqrt{2} \cos \varphi \; , \; y = 6 + 3\sqrt{2} \sin \varphi \; , \; z = 0 \; ; \quad \varphi \in [-\pi, \pi] \; .$$

Za tačku A(3,3,0) je

$$3 = 3\sqrt{2}\cos\varphi \ , \ 3 = 6 + 3\sqrt{2}\sin\varphi \ ,$$

odakle je $\cos \varphi = \sqrt{2}/2$, $\sin \varphi = -\sqrt{2}/2$, pa je $\varphi = -\pi/4$. Za tačku B(-3,9,0) je

$$-3 = 3\sqrt{2}\cos\varphi$$
, $9 = 6 + 3\sqrt{2}\sin\varphi$,

odakle je $\cos\varphi=-\sqrt{2}/2,\,\sin\varphi=\sqrt{2}/2$ i $\varphi=3\pi/4.$ Dakle, parametarske jednačine krive L su

$$L: \quad x = 3\sqrt{2}\cos\varphi \ , \ y = 6 + 3\sqrt{2}\sin\varphi \ , \ z = 0 \ ; \quad \varphi \in \left[-\frac{\pi}{4}, \frac{3\pi}{4}\right] \ ,$$

pri čemu se za zadatu orijentaciju parametar φ menja od $\varphi=3\pi/4$ do $\varphi=-\pi/4$

Nalazeći

$$x'(\varphi) = -3\sqrt{2}\sin\varphi$$
, $y'(\varphi) = 3\sqrt{2}\cos\varphi$, $z'(\varphi) = 0$

i sređujući podintegralni izraz, dobija se

$$I = \int_{3\pi/4}^{-\pi/4} \frac{-y(\varphi)x'(\varphi) + x(\varphi)y'(\varphi)}{x^2(\varphi) + [y(\varphi) - 6]^2} d\varphi = \int_{3\pi/4}^{-\pi/4} (1 + \sqrt{2}\sin\varphi) d\varphi = -(2 + \pi) .$$

10. Izračunati potpuni krivolinijski integral II vrste

$$I = \oint_L y \, dx - 2x \, dy \; ,$$

gde je $L = L_1 \cup L_2$, kriva L_1 je deo kružnice

$$L_3: \quad x^2 + y^2 = 2x \; , \; z = 0$$

koji se nalazi van kruga ograničenog kružnicom

$$L_4: \quad x^2 + y^2 = 2y \; , \; z = 0 \; ,$$

a kriva L_2 je deo kružnice L_4 koji je van kruga ograničenog sa L_3 . Posmatrano sa pozitivnog dela z-ose, L je negativno orijentisana.

 $Re\check{s}enje$. Kružnice L_3 i L_4 pripadaju xy-ravni (z=0). Rešavanjem sistema

$$x^2 + y^2 = 2x$$
, $x^2 + y^2 = 2y$

nalazimo njihove presečne tačke $(0,0,0),\ (1,1,0),$ koje leže na pravoj y=x. S obzirom na

$$L_3: (x-1)^2 + y^2 = 1$$
, $L_4: x^2 + (y-1)^2 = 1$,

kružnica L_3 ima centar u tački (1,0,0) na x-osi, a L_4 ima centar u tački (0,1,0) na y-osi.

Obe kružnice imaju centar na nekoj od koordinatnih osa i prolaze kroz koordinatni početak, pa mogu direktno da se uvedu polarne koordinate smenom

$$x = r\cos\varphi$$
, $y = r\sin\varphi$,

posle koje se iz jednačina kružnica dobija $r=2\cos\varphi$ za L_3 i $r=2\sin\varphi$ za L_4 . Kako je L_1 deo kružnice L_3 "ispod", a L_2 deo kružnice L_4 "iznad" prave y=x i kako pravoj y=x odgovara ugao $\varphi=\pi/4$, dobijamo parametarske jednačine

$$L_1: \quad x = 2\cos^2\varphi \ , \ y = 2\cos\varphi\sin\varphi \ , \ z = 0 \ ; \quad \varphi \in \left[-\frac{\pi}{2}, \frac{\pi}{4}\right] \ ,$$

$$L_2: \quad x = 2\cos\varphi\sin\varphi \ , \ y = 2\sin^2\varphi \ , \ z = 0 \ ; \quad \varphi \in \left[\frac{\pi}{4}, \pi\right] \ .$$

Zbog negativne orijentacije krive L, ugao φ se menja od $\varphi=\pi/4$ do $\varphi=-\pi/2$ za krivu L_1 i od $\varphi=\pi$ do $\varphi=\pi/4$ za krivu L_2 .

Kriva $L=L_1\cup L_2$ nema jedinstvenu parametrizaciju. Zato integral I rastavljamo na dva integrala po delovima krive

$$I = I_1 + I_2$$
.

gde je

$$I_1 = \int_{L_1} y \, dx - 2x \, dy \; , \; I_2 = \int_{L_2} y \, dx - 2x \, dy \; .$$

Za krivu L_1 je

$$x'(\varphi) = -4\cos\varphi\sin\varphi$$
, $y'(\varphi) = -2\sin^2\varphi + 2\cos^2\varphi$,

a za krivu L_2 je

$$x'(\varphi) = -2\sin^2\varphi + 2\cos^2\varphi , \ y'(\varphi) = 4\cos\varphi\sin\varphi ,$$

pa sređivanjem podintegralnih izraza sledi

$$I_1 = \int_{\pi/4}^{-\pi/2} \left[y(\varphi) x'(\varphi) - 2x(\varphi) y'(\varphi) \right] d\varphi = -8 \int_{\pi/4}^{-\pi/2} \cos^4 \varphi \, d\varphi ,$$

$$I_2 = -4 \int_{\pi}^{\pi/4} \left(\sin^4 \varphi + 3 \cos^2 \varphi \sin^2 \varphi \right) d\varphi .$$

Sukcesivnom primenom jednakosti

$$\cos^2 \varphi = \frac{1 + \cos 2\varphi}{2}$$
, $\sin^2 \varphi = \frac{1 - \cos 2\varphi}{2}$

transformišemo izraze

$$\cos^{4}\varphi = (\cos^{2}\varphi)^{2} = \left(\frac{1+\cos 2\varphi}{2}\right)^{2} = \frac{1}{4}\left(1+2\cos 2\varphi+\cos^{2}2\varphi\right)$$

$$= \frac{1}{4} + \frac{1}{2}\cos 2\varphi + \frac{1}{4}\frac{1+\cos 4\varphi}{2} = \frac{3}{8} + \frac{1}{2}\cos 2\varphi + \frac{1}{8}\cos 4\varphi ,$$

$$\sin^{4}\varphi = (\sin^{2}\varphi)^{2} = \left(\frac{1-\cos 2\varphi}{2}\right)^{2} = \frac{1}{4}\left(1-2\cos 2\varphi+\cos^{2}2\varphi\right)$$

$$= \frac{3}{8} - \frac{1}{2}\cos 2\varphi + \frac{1}{8}\cos 4\varphi ,$$

$$\cos^{2}\varphi\sin^{2}\varphi = \frac{1+\cos 2\varphi}{2}\frac{1-\cos 2\varphi}{2} = \frac{1}{4}\left(1-\cos^{2}2\varphi\right) = \frac{1}{4}\sin^{2}2\varphi$$

$$= \frac{1}{4}\frac{1-\cos 4\varphi}{2} = \frac{1}{8} - \frac{1}{8}\cos 4\varphi$$

i za integrale $I_1,\,I_2$ dobijamo

$$\begin{split} I_1 &= -8 \int_{\pi/4}^{-\pi/2} \left(\frac{3}{8} + \frac{1}{2} \cos 2\varphi + \frac{1}{8} \cos 4\varphi \right) d\varphi \\ &= -3 \int_{\pi/4}^{-\pi/2} d\varphi - 4 \int_{\pi/4}^{-\pi/2} \cos 2\varphi \, d\varphi - \int_{\pi/4}^{-\pi/2} \cos 4\varphi \, d\varphi \\ &= -3\varphi \Big|_{\pi/4}^{-\pi/2} - 2 \int_{\pi/4}^{-\pi/2} \cos 2\varphi \, d(2\varphi) - \frac{1}{4} \int_{\pi/4}^{-\pi/2} \cos 4\varphi \, d(4\varphi) \\ &= \frac{9}{4} \pi - 2 \sin 2\varphi \Big|_{\pi/4}^{-\pi/2} - \frac{1}{4} \sin 4\varphi \Big|_{\pi/4}^{-\pi/2} = 2 + \frac{9}{4} \pi \;, \\ I_2 &= -4 \int_{\pi}^{\pi/4} \left(\frac{3}{4} - \frac{1}{2} \cos 2\varphi - \frac{1}{4} \cos 4\varphi \right) d\varphi \\ &= -4 \left(\frac{3}{4} \varphi - \frac{1}{4} \sin 2\varphi - \frac{1}{16} \sin 4\varphi \right) \Big|_{\pi}^{\pi/4} = 1 + \frac{9}{4} \pi \;. \end{split}$$

Konačno je

$$I = I_1 + I_2 = 3 + \frac{9}{2}\pi .$$

11. Izračunati potpuni krivolinijski integral II vrste

$$I = \oint_{L} y^{2} dx - x^{2} dy + z^{2} dz ,$$

gde je kriva L presek površi

$$S: \quad x^2 + y + z^2 = 1$$

sa koordinatnim ravnima za $x, y, z \ge 0$. Posmatrano sa pozitivnog dela x-ose, L je pozitivno orijentisana.

Rešenje. Ako jednačinu površi S zapišemo u obliku

$$S: \quad y = -(x^2 + z^2) + 1$$
,

vidimo da je S paraboloid sa y-osom kao osovinom, pomeren "udesno" za 1 duž y-ose. Kako su jednačine y-ose $x=0,\ z=0,$ rešavanjem sistema

$$x^2 + y + z^2 = 1$$
, $x = 0$, $z = 0$,

tj. zamenom $x=0,\,z=0$ u jednačinu $x^2+y+z^2=1$, sledi y=1 i presečna (zajednička) tačka y-ose i paraboloida (0,1,0). Analogno, smenama $y=0,\,z=0$ i $x=0,\,y=0$ u $x^2+y+z^2=1$ slede presečne tačke (1,0,0) i (0,0,1) paraboloida sa x i z-osom redom. Neka su $L_1,\,L_2$ i L_3 presečne krive paraboloida S sa $xy,\,yz$ i zx-koordinatnom ravni redom u I oktantu $(x\geq 0,\,y\geq 0,\,z\geq 0)$. Paraboloid S i zatvorena kriva $L=L_1\cup L_2\cup L_3$ su prikazani na sledećim slikama. Zadata orijentacija krive L se odnosi, u stvari, na

orijentaciju njene projekcije na yz-ravan, a kriva L je orijentisana samo saglasno projekciji (Slika 1.2.9 i komentar uz nju).

Jednačina xy-ravni je z=0, pa se jednačina krive L_1 nalazi zamenom z=0 u jednačinu paraboloida $x^2+y+z^2=1$. Pri tome je $x\geq 0,\,y\geq 0$. Takođe, zamenom x=0 i y=0 u $x^2+y+z^2=1$, slede jednačine krivih L_2 za $y\geq 0,\,z\geq 0$ i L_3 za $x\geq 0,\,z\geq 0$. Dobijaju se implicitne jednačine:

$$L_1: \quad x^2 + y = 1, \ z = 0, \qquad L_2: \quad y + z^2 = 1, \ x = 0, \qquad L_3: \quad x^2 + z^2 = 1, \ y = 0.$$

Eksplicitne jednačine krivih L_1 i L_2 su

$$L_1: y = 1 - x^2, z = 0, L_2: y = 1 - z^2, x = 0,$$

što znači da se radi o delovima parabola u xy i yz-koordinatnoj ravni redom. Kriva L_3 je deo centralne kružnice u zx-ravni. Imajući u vidu poslednju sliku i ograničenja $x \in [0,1]$, $z \in [0,1]$, kao i Napomenu 1.4.3, parametarske jednačine krivih L_1 i L_2 su

$$L_1: \quad y = 1 - x^2 \ , \ z = 0 \ ; \quad x \in [0, 1] \ ,$$

 $L_2: \quad x = 0 \ , \ y = 1 - z^2 \ ; \quad z \in [0, 1] \ ,$

pri čemu je za parametar izabrana Descartesova koordinata x u slučaju L_1 i z u slučaju L_2 . Uvodeći polarne koordinate u zx-ravni sa

$$z = r\cos\varphi \ , \ x = r\sin\varphi$$

i poštujući ograničenje $\varphi\in[0,\pi/2]$ u posmatranoj situaciji, iz jednačine krive L_3 sledi r=1 i njene parametarske jednačine glase

$$L_3: \quad x = \sin \varphi \ , \ y = 0 \ , \ z = \cos \varphi \ ; \quad \varphi \in \left[0, \frac{\pi}{2}\right] \ .$$

Za zadatu orijentaciju krive L, izabrani parametri x, z i φ se menjaju od x=1 do x=0, od z=0 do z=1 i od $\varphi=0$ do $\varphi=\pi/2$.

Za krivu L_1 je

$$y'(x) = -2x$$
, $z'(x) = 0$,

za krivu L_2

$$x'(z) = 0$$
, $y'(z) = -2z$

i za krivu L_3

$$x'(\varphi) = \cos \varphi$$
, $y'(\varphi) = 0$, $z'(\varphi) = -\sin \varphi$.

Zato je

$$\begin{split} I_1 &= \int_{L_1} y^2 \, dx - x^2 \, dy + z^2 \, dz \\ &= \int_{1}^{0} \left(y^2(x) - x^2 \, y'(x) + z^2(x) \, z'(x) \right) \, dx = \int_{1}^{0} \left(1 - 2x^2 + x^4 + 2x^3 \right) \, dx = -\frac{31}{30} \; , \\ I_2 &= \int_{L_2} y^2 \, dx - x^2 \, dy + z^2 \, dz \\ &= \int_{0}^{1} \left(y^2(z) \, x'(z) - x^2(z) \, y'(z) + z^2 \right) \, dz = \int_{0}^{1} z^2 \, dz = \frac{1}{3} \; , \\ I_3 &= \int_{L_3} y^2 \, dx - x^2 \, dy + z^2 \, dz \\ &= \int_{0}^{\pi/2} \left(y^2(\varphi) \, x'(\varphi) - x^2(\varphi) \, y'(\varphi) + z^2(\varphi) \, z'(\varphi) \right) \, d\varphi \\ &= \int_{0}^{\pi/2} - \cos^2 \varphi \sin \varphi \, d\varphi = \int_{0}^{\pi/2} \cos^2 \varphi \, d(\cos \varphi) = \frac{\cos^3 \varphi}{3} \, \Big|_{0}^{\pi/2} = -\frac{1}{3} \end{split}$$

i, s obzirom na $L = L_1 \cup L_2 \cup L_3$,

$$I = I_1 + I_2 + I_3 = -\frac{31}{30}$$

Krivu L_3 smo mogli da parametrizujemo kao i krive L_1 , L_2 , pomoću neke od Descartesovih koordinata x ili z, npr.

$$L_3: \quad x = \sqrt{1 - z^2} \; , \; y = 0 \; ; \quad z \in [0, 1] \; ,$$

pri čemu se parametar z za zadatu orijentaciju menja od z = 1 do z = 0.

Posmatrana u celini, kriva L je prostorna. Sastavljana je od delova L_1 , L_2 , L_3 sa različitom parametrizacijom (4° iz Napomene 2.3.5). Svaki od delova pripada nekoj od koordinatnih ravni i poklapa se sa svojom projekcijom na tu koordinatnu ravan.

12. Izračunati potpuni krivolinijski integral II vrste

$$I = \oint_L y^2 dx - x^2 dy + z^2 dz ,$$

gde je kriva L presek površi

$$S: \quad y = 1 - \sqrt{x^2 + z^2}$$

sa koordinatnim ravnima za $x,y,z\geq 0$. Posmatrano sa pozitivnog dela x-ose, L je pozitivno orijentisana.

Uputstvo. Koristeći iste oznake i postupajući kao u Zadatku 11, dobija se

$$\begin{split} L_1: & y = 1 - x \;,\; z = 0 \;; \quad x \in [0,1] \;, \\ L_2: & z = 1 - y \;,\; x = 0 \;; \quad y \in [0,1] \;, \\ L_3: & z = \cos\varphi \;,\; x = \sin\varphi \;,\; y = 0 \;; \quad \varphi \in \left[0,\frac{\pi}{2}\right] \;, \end{split}$$

pri čemu se izabrani parametri menjaju od x=1 do x=0, od y=1 do y=0 i od $\varphi=0$ do $\varphi=\pi/2.$ Dobija se

$$I_1 = -\frac{2}{3}$$
, $I_2 = \frac{1}{3}$, $I_3 = -\frac{1}{3}$; $I = -\frac{2}{3}$.

13. Izračunati potpuni krivolinijski integral II vrste

$$I = \oint_I y \, dx + x^2 \, dy + z \, dz \; ,$$

gde je kriva L presek površi

$$S_1: \quad x^2 + y^2 = 2(x+y) , \qquad S_2: \quad z = \frac{1}{\sqrt{2}} \sqrt{x^2 + y^2} .$$

Posmatrano sa pozitivnog dela z-ose, L je pozitivno orijentisana.

 $Re \check{s}enje.$ Površ S_1 je cilindrična sa direktrisom u xy–ravni (z=0)i izvodnicama paralelnim z–osi. Površ S_2 je konus sa z–osom kao osovinom.

Direktrisa cilindrične površi je istovremeno i projekcija L_{xy} krive L na xy-ravan (3° iz Napomene 2.3.5). Zato je

$$L_{xy}: x^2 + y^2 = 2(x+y), z = 0,$$

što je "pomerena" kružnica

$$L_{xy}: (x-1)^2 + (y-1)^2 = 2$$
,

sa centrom u tački (1,1,0) i poluprečnika $\sqrt{2}$. Uvođenjem smene

$$x - 1 = r\cos\varphi , \ y - 1 = r\sin\varphi ,$$

sledi $r=\sqrt{2}$ i parametarske jednačine glase

$$L_{xy}: x = 1 + \sqrt{2}\cos\varphi, y = 1 + \sqrt{2}\sin\varphi, z = 0; \varphi \in [0, 2\pi].$$

Kriva L pripada konusu S_2 , pa koordinate njenih tačaka zadovoljavaju jednačinu konusa. Takođe, tačke na krivoj L i njihove projekcije na L_{xy} imaju iste koordinate x i y. Zamenom x, y iz parametarskih jednačina projekcije u jednačinu konusa dobijamo i z-koordinatu

$$z = \frac{1}{\sqrt{2}}\sqrt{x^2 + y^2} = \sqrt{2 + \sqrt{2}\left(\cos\varphi + \sin\varphi\right)} \ .$$

Parametarske jednačine krive Lsu

$$L: \quad x=1+\sqrt{2}\,\cos\varphi \ , \ y=1+\sqrt{2}\,\sin\varphi \ , \ z=\sqrt{2+\sqrt{2}\left(\cos\varphi+\sin\varphi\right)} \ ; \quad \varphi\in[0,2\pi] \ .$$

Zadata orijentacija krive L, kao saglasna pozitivnoj orijentaciji njene projekcije L_{xy} , nameće promenu parametra φ od $\varphi = 0$ do $\varphi = 2\pi$.

Nalazeći

$$x'(\varphi) = -\sqrt{2}\sin\varphi \ , \ y'(\varphi) = \sqrt{2}\cos\varphi \ , \ z'(\varphi) = \frac{\sqrt{2}}{2} \frac{\cos\varphi - \sin\varphi}{\sqrt{2 + \sqrt{2}(\cos\varphi + \sin\varphi)}}$$

i sređujući podintegralni izraz, integral ${\cal I}$ postaje

$$\begin{split} I &= \int_0^{2\pi} \left[y(\varphi) x'(\varphi) + x^2(\varphi) y'(\varphi) + z(\varphi) z'(\varphi) \right] d\varphi \\ &= \int_0^{2\pi} \left(\frac{3\sqrt{2}}{2} \cos \varphi - \frac{3\sqrt{2}}{2} \sin \varphi + 4 \cos^2 \varphi - 2 \sin^2 \varphi + 2\sqrt{2} \cos^3 \varphi \right) d\varphi \;. \end{split}$$

Kako je

$$\cos^3 \varphi = (1 - \sin^2 \varphi) \cos \varphi = \cos \varphi - \cos \varphi \sin^2 \varphi$$

i, prema formulama navedenim u Zadatku 10,

$$4\cos^2\varphi - 2\sin^2\varphi = 1 + 3\cos 2\varphi$$

dobija se

$$\begin{split} I &= \int_0^{2\pi} \left(1 + \frac{7\sqrt{2}}{2} \cos \varphi - \frac{3\sqrt{2}}{2} \sin \varphi + 3\cos 2\varphi - 2\sqrt{2} \cos \varphi \sin^2 \varphi \right) d\varphi \\ &= \left(\varphi + \frac{7\sqrt{2}}{2} \sin \varphi + \frac{3\sqrt{2}}{2} \cos \varphi + \frac{3}{2} \sin 2\varphi \right) \Big|_0^{2\pi} - 2\sqrt{2} \int_0^{2\pi} \sin^2 \varphi \, d(\sin \varphi) \\ &= 2\pi - 2\sqrt{2} \, \frac{\sin^3 \varphi}{3} \, \Big|_0^{2\pi} = 2\pi \; . \end{split}$$

14. Izračunati potpuni krivolinijski integral II vrste

$$I = \oint_L y^2 \, dx + z^2 \, dy + x^2 \, dz \; ,$$

gde je kriva L (Vivianieva) presek površi

$$S_1: \quad x^2 + y^2 = ax \;, \qquad S_2: \quad x^2 + y^2 + z^2 = a^2$$

za $z \geq 0$ i a > 0. Posmatrano sa pozitivnog dela $z\text{--}\mathrm{ose},\ L$ je pozitivno orijentisana.

Rešenje. Površi S_1 i S_2 su iste kao u Primeru 2.3.2, pa je na sledećoj slici izdvojen samo onaj deo sa Slike 2.3.4 koji je značajan za ovaj zadatak. Sa L_{xy} je označena projekcija krive L na xy-ravan, koja je istovremeno i direktrisa cilindrične površi S_1 (3° iz Napomene 2.3.5).

Parametarske jednačine projekcije (kriva Liz Primera 2.3.2 i Zadatka 7) smo već odredili

$$L_{xy}: \quad x = a\cos^2\varphi \ , \ y = a\cos\varphi\sin\varphi \ , \ z = 0 \ ; \quad \varphi \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \ .$$

Ovako iskazane $x,\,y$ smenjujemo u jednačinu sfere i dobijamo

$$z^2 = a^2 - a^2 \cos^4 \varphi - a^2 \cos^2 \varphi \sin^2 \varphi = a^2 - a^2 \cos^2 \varphi = a^2 \sin^2 \varphi$$

odakle je $z=a|\sin\varphi|$ zbog uslova $z\geq 0.$ Parametarske jednačine krive L su

$$L: \quad x = a\cos^2\varphi \ , \ y = a\cos\varphi\sin\varphi \ , \ z = a|\sin\varphi| \ ; \quad \varphi \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \ .$$

Za zadatu orijentaciju krive L, tj. orijentaciju projekcije L_{xy} , parametar φ se menja od $\varphi=-\pi/2$ do $\varphi=\pi/2$.

Radi jednostavnosti zapisivanja, potpuni krivolinijski integral II vrste rastavljamo na integrale po koordinatama

$$I = I_1 + I_2 + I_3 \; ,$$

gde je

$$I_1 = \oint_L y^2 dx \ , \ I_2 = \oint_L z^2 dy \ , \ I_3 = \oint_L x^2 dz \ .$$

Kako je

$$x'(\varphi) = -2a\cos\varphi\sin\varphi$$
, $y'(\varphi) = a(\cos^2\varphi - \sin^2\varphi)$,

integrali I_1 , I_2 postaju

$$I_{1} = \int_{-\pi/2}^{\pi/2} y^{2}(\varphi) x'(\varphi) d\varphi = -2a^{3} \int_{-\pi/2}^{\pi/2} \cos^{3} \varphi \sin^{3} \varphi d\varphi ,$$

$$I_{2} = \int_{-\pi/2}^{\pi/2} z^{2}(\varphi) y'(\varphi) d\varphi = a^{3} \int_{-\pi/2}^{\pi/2} (\cos^{2} \varphi \sin^{2} \varphi - \sin^{4} \varphi) d\varphi .$$

Funkcija $\cos^3\varphi\sin^3\varphi$ je neparna, funkcije $\cos^2\varphi\sin^2\varphi$ i $\sin^4\varphi$ su parne, a segment $[-\pi/2,\pi/2]$ je simetričan. Zato je

$$I_1 = 0 ,$$

$$I_2 = 2a^3 \int_0^{\pi/2} \left(\cos^2 \varphi \sin^2 \varphi - \sin^4 \varphi\right) d\varphi .$$

Koristeći formule izvedene u Zadatku 10, za integral I_2 dobijamo

$$I_2 = 2a^3 \int_0^{\pi/2} \left(-\frac{1}{4} + \frac{1}{2} \cos 2\varphi - \frac{1}{4} \cos 4\varphi \right) d\varphi = -\frac{1}{4} a^3 \pi .$$

Iz $z=a|\sin\varphi|,\ \varphi\in[-\pi/2,\pi/2]$ sledi $z=-a\sin\varphi$ ako je $\varphi\in[-\pi/2,0]$ i $z=a\sin\varphi$ ako je $\varphi\in[0,\pi/2]$. Još je

$$z'(\varphi) = -a\cos\varphi \ , \quad \varphi \in \left[-\frac{\pi}{2}, 0\right] \ ; \qquad z'(\varphi) = a\cos\varphi \ , \quad \varphi \in \left[0, \frac{\pi}{2}\right] \ ,$$

pa integral I_3 postaje

$$I_{3} = \int_{-\pi/2}^{0} x^{2}(\varphi) z'(\varphi) d\varphi + \int_{0}^{\pi/2} x^{2}(\varphi) z'(\varphi) d\varphi$$
$$= -a^{3} \int_{-\pi/2}^{0} \cos^{5} \varphi d\varphi + a^{3} \int_{0}^{\pi/2} \cos^{5} \varphi d\varphi = 0.$$

Poslednja jednakost je posledica činjenice da za parnu funkciju $\cos^5 \varphi$ važi

$$\int_{-\pi/2}^0 \cos^5\varphi \, d\varphi = \int_0^{\pi/2} \cos^5\varphi \, d\varphi \ .$$

Konačno je

$$I = I_1 + I_2 + I_3 = -\frac{1}{4} a^3 \pi$$
.

15. Izračunati potpuni krivolinijski integral II vrste

$$I = \oint_L z \, dx + x \, dy + y \, dz \; ,$$

gde je kriva L presek površi

$$S_1: \quad x^2+y^2+z=4 \; , \qquad S_2: \quad x^2+y^2+z^2=4z \; .$$

Posmatrano sa pozitivnog dela z-ose, L je pozitivno orijentisana.

 $Re\check{s}enje$. Površ S_1 je paraboloid

$$S_1: \quad z = -(x^2 + y^2) + 4$$

sa z–osom kao osovinom, koji z–osu seče u tački (0,0,4). Površ S_2 je sfera

$$S_2: \quad x^2 + y^2 + (z-2)^2 = 4$$

sa centrom u tački (0,0,2) i poluprečnika 2.

Kriva L se bijektivno projektuje samo na xy-ravan (1° iz Napomene 2.3.5). Jednačinu projekcije L_{xy} krive L na xy-ravan dobijamo eliminacijom z-koordinate iz jednačina površi S_1 i S_2 (Napomena 2.3.3). Iz jednačine paraboloida je

$$z - 2 = 2 - (x^2 + y^2) ,$$

što zamenom u jednačinu sfere daje

$$-3(x^2+y^2) + (x^2+y^2)^2 = 0$$

i, deobom sa $x^2+y^2\neq 0,$ jednačinu projekcije

$$L_{xy}: x^2 + y^2 = 3, z = 0.$$

Parametarske jednačine kružnice ${\cal L}_{xy}$ su

$$L_{xy}: \quad x = \sqrt{3}\cos\varphi , \ y = \sqrt{3}\sin\varphi , \ z = 0 ; \quad \varphi \in [0, 2\pi] ,$$

gde je $r=\sqrt{3}$ polarni radijus i φ polarni ugao. Povratkom u bilo koju od jednačina sfere ili paraboloida sledi z=1, pa su parametarske jednačine krive

$$L: \quad x = \sqrt{3} \cos \varphi \; , \; y = \sqrt{3} \sin \varphi \; , \; z = 1 \; ; \quad \varphi \in [0, 2\pi] \; ,$$

pri čemu se za zadatu orijentaciju krive L parametar φ menja od $\varphi=0$ do $\varphi=2\pi.$ Kako je

$$x'(\varphi) = -\sqrt{3}\sin\varphi$$
, $y'(\varphi) = \sqrt{3}\cos\varphi$, $z'(\varphi) = 0$,

to je

$$I = \int_0^{2\pi} \left(-\sqrt{3} \sin \varphi + 3 \cos^2 \varphi \right) d\varphi = \int_0^{2\pi} \left(\frac{3}{2} - \sqrt{3} \sin \varphi + \frac{3}{2} \cos 2\varphi \right) d\varphi = 3\pi .$$

16. Izračunati potpuni krivolinijski integral II vrste

$$I = \oint_L z \, dx + x \, dy + y \, dz \; ,$$

gde je kriva L presek površi

$$S: \quad z = x^2 + y^2$$

sa površima

$$S_{1,2}: \quad z = \frac{3}{4} - |y| .$$

Posmatrano sa pozitivnog dela z-ose, L je pozitivno orijentisana.

Rešenje. PovršS je parabolo
id sa z–osom kao osovinom. Iz jednačine
 z=3/4-|y|slede jednačine površi S_1 za
 $y\geq 0$ i S_2 za $y\leq 0,$

$$S_1: \quad z = \frac{3}{4} - y \; , \qquad S_2: \quad z = \frac{3}{4} + y \; ,$$

pa su S_1 i S_2 poluravni (cilindrične površi) paralelne x-osi. Ako su L_1 i L_2 presečne krive poluravni S_1 i S_2 sa paraboloidom S, tada je $L=L_1\cup L_2$ zatvorena kriva. Sa L_{1xy} i L_{2xy} označimo projekcije za L_1 i L_2 na xy-ravan (z=0).

Jednačinu projekcije L_{1xy} krive L_1 na xy-ravan nalazimo eliminacijom z-koordinate iz jednačina površi S i S_1 . Dobija se $3/4-y=x^2+y^2$, tj.

$$L_{1xy}: x^2 + \left(y + \frac{1}{2}\right)^2 = 1, z = 0,$$

pri čemu je $y \geq 0.$ Analogno, iz jednačina površi Si S_2 za $y \leq 0$ sledi jednačina projekcije

$$L_{2xy}: x^2 + \left(y - \frac{1}{2}\right)^2 = 1, z = 0.$$

Dakle, projekcije su delovi "pomerenih" kružnica sa centrima (0, -1/2, 0), (0, 1/2, 0) na yosi i poluprečnika 1. Za y=0 iz jednačina krivih L_{1xy} , L_{2xy} sledi $x^2=3/4$ i $x=\pm\sqrt{3}/2$,
pa se radi o delovima između tačaka $A(-\sqrt{3}/2,0)$, $B(\sqrt{3}/2,0)$. Smenama

$$x = r\cos\varphi$$
 , $y + \frac{1}{2} = r\sin\varphi$; $x = r\cos\varphi$, $y - \frac{1}{2} = r\sin\varphi$

u jednačine krivih L_{1xy} i L_{2xy} redom, dobijaju se njihove parametarske jednačine

$$L_{1xy}: \quad x = \cos \varphi \ , \ y = -\frac{1}{2} + \sin \varphi \ , \ z = 0 \ ; \quad \varphi \in \left[\frac{\pi}{6}, \frac{5\pi}{6}\right] \ ,$$

$$L_{2xy}: \quad x = \cos \varphi \ , \ y = \frac{1}{2} + \sin \varphi \ , \ z = 0 \ ; \quad \varphi \in \left[-\frac{5\pi}{6}, \frac{\pi}{6}\right] \ .$$

Granice parametra φ su određene slično kao u Zadatku 9. U slučaju krive L_{1xy} , za tačku A je $\cos \varphi = -\sqrt{3}/2$, $\sin \varphi = 1/2$ i $\varphi = 5\pi/6$, a za tačku B je $\cos \varphi = \sqrt{3}/2$, $\sin \varphi = 1/2$ i $\varphi = \pi/6$. Analogno, u slučaju krive L_{2xy} , tački A odgovara vrednost $\varphi = -5\pi/6$, a tački B vrednost $\varphi = -\pi/6$. Kako je $L_1 \subset S_1$ i $L_2 \subset S_2$, iz jednačina površi S_1 i S_2 dalje sledi

$$z = \frac{3}{4} - y = \frac{3}{4} - \left(-\frac{1}{2} + \sin\varphi\right) = \frac{5}{4} - \sin\varphi \; , \; z = \frac{3}{4} + y = \frac{3}{4} + \left(\frac{1}{2} + \sin\varphi\right) = \frac{5}{4} + \sin\varphi \; ,$$

pa su parametarske jednačine krivih L_1 i L_2 date sa

$$L_1: \quad x = \cos \varphi \ , \ y = -\frac{1}{2} + \sin \varphi \ , \ z = \frac{5}{4} - \sin \varphi \ ; \quad \varphi \in \left[\frac{\pi}{6}, \frac{5\pi}{6}\right] \ ,$$

$$L_2: \quad x = \cos \varphi \ , \ y = \frac{1}{2} + \sin \varphi \ , \ z = \frac{5}{4} + \sin \varphi \ ; \quad \varphi \in \left[-\frac{5\pi}{6}, \frac{\pi}{6}\right] \ .$$

Kako je $L\subset S$, z-koordinate tačaka krivih L_1 i L_2 mogu da se odrede i iz jednačine paraboloida. Zadatoj orijentaciji krive L, odnosno krivih L_1 i L_2 , odgovara promena parametra φ od $\varphi=\pi/6$ do $\varphi=5\pi/6$ za L_1 i od $\varphi=-5\pi/6$ do $\varphi=\pi/6$ za L_2 .

Izračunavanjem odgovarajućih izvoda i sređivanjem podintegralnih izraza, dobija se

$$I_{1} = \int_{L_{1}} z \, dx + x \, dy + y \, dz = \int_{\pi/6}^{5\pi/6} \left(1 + \frac{1}{2} \cos \varphi - \frac{5}{4} \sin \varphi - \frac{1}{2} \sin 2\varphi \right) d\varphi$$

$$= -\frac{5\sqrt{3}}{4} + \frac{2}{3} \pi ,$$

$$I_{2} = \int_{L_{2}} z \, dx + x \, dy + y \, dz = \int_{-5\pi/6}^{\pi/6} \left(\frac{1}{2} \cos \varphi - \frac{5}{4} \sin \varphi + \cos 2\varphi + \frac{1}{2} \sin 2\varphi \right) d\varphi$$

$$= \frac{1}{2} + \frac{5\sqrt{3}}{4}$$

i, s obzirom na $L = L_1 \cup L_2$,

$$I = I_1 + I_2 = \frac{1}{2} + \frac{2}{3} \pi$$
.

Kriva L se sastoji od delova sa različitom parametrizacijom (4° iz Napomene 2.3.5). Delove L_1 , L_2 nismo projektovali na yz-ravan iz sledećeg razloga. Projekcije krivih L_1 i L_2 na yz-ravan jesu poznate kao direktrise cilindričnih površi S_1 i S_2 (3° iz Napomene 2.3.5),

ali ovo projektovanje nije bijekcija ni za jednu od krivih. Krive L_1 , L_2 se bijektivno projektuju i na zx-ravan (2° iz Napomene 2.3.5). Njihove parametarske jednačine se nalaze slično kao u slučaju projektovanja na xy-ravan, samo unekoliko jednostavnije jer L_1 i L_2 imaju istu projekciju.

17. Izračunati potpuni krivolinijski integral II vrste

$$I = \oint_L 2(2y^2 + x^2) dx + (x+z) dy + y dz ,$$

gde je kriva L presek površi

$$S_1: \quad z = y^2 , \qquad S_2: \quad x^2 + y^2 = 4 - z .$$

Posmatrano sa pozitivnog dela z-ose, L je pozitivno orijentisana.

 $Re \check{s}enje$. Površ S_1 je cilindrična sa direktrisom u yz-ravni i izvodnicama paralelnim x-osi, a S_2 je paraboloid sa z-osom kao osovinom, koji z-osu seče u tački (0,0,4). Direktrisa površi S_1 je parabola.

Kriva L se bijektivno projektuje samo na xy-ravan (1° iz Napomene 2.3.5). Jednačinu projekcije L_{xy} nalazimo eliminacijom z-koordinate iz jednačina površi S_1 i S_2 . Zamenom $z=y^2$ u $x^2+y^2=4-z$ dobija se $x^2+2y^2=4$, što je centralna elipsa

$$L_{xy}: \quad \frac{x^2}{4} + \frac{y^2}{2} = 1$$

sa poluosama 2 i $\sqrt{2}$ pox i y–osi redom. Uvođenjem uopštenih polarnih koordinata sa

$$x = 2r\cos\varphi$$
, $y = \sqrt{2}r\sin\varphi$,

iz implicitne jednačine elipse sledi r=1, kao i parametarske jednačine

$$L_{xy}: \quad x = 2\cos\varphi , \ y = \sqrt{2}\sin\varphi , \ z = 0 ; \quad \varphi \in [0, 2\pi] .$$

Dalje, npr. iz jednačine površi S_1 je $z=y^2=2\sin^2\varphi,$ pa su parametarske jednačine krive

L:
$$x = 2\cos\varphi$$
, $y = \sqrt{2}\sin\varphi$, $z = 2\sin^2\varphi$; $\varphi \in [0, 2\pi]$,

pri čemu se φ menja od $\varphi=0$ do $\varphi=2\pi$ za zadatu orijentaciju krive L. Određivanjem $x'(\varphi), y'(\varphi), z'(\varphi)$ i sređivanjem podintegralnog izraza, dobija se

$$I = \int_0^{2\pi} \left(-16\sin\varphi + 2\sqrt{2}\cos^2\varphi + 6\sqrt{2}\cos\varphi\sin^2\varphi \right) d\varphi = 2\sqrt{2}\pi.$$

18. Izračunati potpuni krivolinijski integral II vrste

$$I = \oint_{L} (y - z) dx + (z - x) dy + (x - y) dz ,$$

gde je kriva L presek površi

$$S_1: y = x \tan \alpha, S_2: x^2 + y^2 + z^2 = a^2$$

i $\alpha \in (0, \pi/2)$ konstantan ugao. Posmatrano sa pozitivnog dela x-ose, L je pozitivno orijentisana.

Rešenje. Površ S_1 je cilindrična sa direktrisom L_1 u xy-ravni (z=0) i izvodnicama paralelnim z-osi, a S_2 je centralna sfera poluprečnika a. Direktrisa L_1 je prava $y=x\tan\alpha$ koja prolazi kroz koordinatni početak, pa je S_1 ravan koja prolazi kroz z-osu i seče sferu S_2 po kružnici L. Koeficijent pravca prave L_1 je $\tan\alpha$, što znači da je α ugao koji L_1 zaklapa sa pozitivnim delom x-ose.

Zadatak rešavamo na dva načina.

Eliminacijom x–koordinate iz jednačina površi $S_1,\,S_2$ i korišćenjem jednakosti

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} ,$$

dobija se jednačina projekcije kružnice L na yz-ravan

$$L_{yz}: \frac{y^2}{a^2 \sin^2 \alpha} + \frac{z^2}{a^2} = 1$$
.

Kako je $\sin \alpha > 0$ za $\alpha \in (0, \pi/2)$, projekcija je centralna elipsa sa poluosama $a \sin \alpha$ i a po y i z-osi redom. Uvođenjem uopštenih polarnih koordinata sa

$$y = a \sin \alpha r \cos \varphi$$
, $z = ar \sin \varphi$,

iz jednačine elipse sledi r=1, pa su parametarske jednačine

$$L_{yz}: y = a \sin \alpha \cos \varphi, z = a \sin \varphi; \varphi \in [0, 2\pi].$$

Povratkom, npr., u jednačinu ravni S_1 sledi izraz za x–koordinatu tačaka kružnice L i njene parametarske jednačine

$$L: \quad x = a\cos\alpha\cos\varphi \; , \; y = a\sin\alpha\cos\varphi \; , \; z = a\sin\varphi \; ; \quad \varphi \in [0,2\pi] \; .$$

Parametar φ se menja od $\varphi = 0$ do $\varphi = 2\pi$ za zadatu orijentaciju krive L. Određivanjem $x'(\varphi), y'(\varphi), z'(\varphi)$ i sređivanjem podintegralnog izraza, dobija se

$$I = \int_0^{2\pi} a^2 (\cos \alpha - \sin \alpha) \, d\varphi = 2a^2 (\cos \alpha - \sin \alpha)\pi .$$

Ako krivu L projektujemo na zx-ravan, slično se nalaze parametarske jednačine

L:
$$x = a \cos \alpha \sin \varphi$$
, $y = a \sin \alpha \sin \varphi$, $z = a \cos \varphi$; $\varphi \in [0, 2\pi]$,

sa promenom parametra φ od $\varphi=2\pi$ do $\varphi=0$ (2° iz Napomene 2.3.5). Projektovanje na xy–ravan nije bijekcija.

Kako je L_{yz} centralna elipsa, prethodni postupak je isto što i nalaženje parametarskih jednačina krive pomoću odgovarajućih uopštenih cilindričnih koordinata (Napomena 2.3.4). U ovom slučaju uopštene cilindrične koordinate se uvode sa

$$x = x$$
, $y = a \sin \alpha r \cos \varphi$, $z = ar \sin \varphi$.

Zamenom u sistem formiran od jednačina površi S_1 i S_2 , dobija se novi sistem

$$x = ar \cos \alpha \cos \varphi$$
, $x^2 + a^2 r^2 (\sin^2 \alpha \cos^2 \varphi + \sin^2 \varphi) = a^2$,

čijim rešavanjem sledi r=1 i $x=a\cos\alpha\cos\varphi$, a zatim i parametarske jednačine za L.

Drugi način rešavanja zadatka je zasnovan na upotrebi sfernih koordinata. Sferne koordinate uvodimo sa

$$x = r \cos \varphi \cos \theta$$
, $y = r \sin \varphi \cos \theta$, $z = r \sin \theta$

i zamenom u jednačine površi S_1 , S_2 dobijamo

$$\tan \varphi = \tan \alpha$$
, $r = a$.

Kako je $0 \le \varphi \le 2\pi$ maksimalni raspon koordinate φ i $\alpha \in (0, \pi/2)$, iz prve jednakosti je $\varphi = \alpha$ ili $\varphi = \alpha + \pi$. Do istog zaključka se dolazi i na osnovu značenja sferne koordinate φ . Dve različite vrednosti za φ nameću deobu krive L na dva dela. Neka je $L = L_2 \cup L_3$, pri čemu $\varphi = \alpha$ odgovara delu L_2 , a $\varphi = \alpha + \pi = \beta$ delu L_3 . S obzirom na značenje sferne

koordinate θ , za oba dela θ uzima vrednosti iz maksimalnog raspona $-\pi/2 \le \theta \le \pi/2$, pa parametarske jednačine krivih $L_2,\,L_3$ glase

$$L_2: \quad x = a\cos\alpha\cos\theta \; , \; y = a\sin\alpha\cos\theta \; , \; z = a\sin\theta \; ; \quad \theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \; ,$$

$$L_3: \quad x = a\cos\beta\cos\theta \; , \; y = a\sin\beta\cos\theta \; , \; z = a\sin\theta \; ; \quad \theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \; .$$

Prema zadatoj orijentaciji krive L, parametar θ se menja od $\theta=-\pi/2$ do $\theta=\pi/2$ za L_2 i od $\theta=\pi/2$ do $\theta=-\pi/2$ za L_3 .

Imajući u vidu

$$\cos \beta = \cos(\alpha + \pi) = -\cos \alpha$$
, $\sin \beta = \sin(\alpha + \pi) = -\sin \alpha$,

iz nađenih parametarskih jednačina sledi

$$x'(\theta) = -a\cos\alpha\sin\theta$$
, $y'(\theta) = -a\sin\alpha\sin\theta$, $z'(\theta) = a\cos\theta$

u slučaju krive L_2 i

$$x'(\theta) = a\cos\alpha\sin\theta$$
, $y'(\theta) = a\sin\alpha\sin\theta$, $z'(\theta) = a\cos\theta$

u slučaju krive L_3 . Zato je, posle sređivanja podintegralnog izraza,

$$\begin{split} I_1 &= \int_{L_2} (y-z) \, dx + (z-x) \, dy + (x-y) \, dz \\ &= \int_{-\pi/2}^{\pi/2} a^2 (\cos \alpha - \sin \alpha) \, d\theta = a^2 (\cos \alpha - \sin \alpha) \pi \; , \\ I_2 &= \int_{L_3} (y-z) \, dx + (z-x) \, dy + (x-y) \, dz \\ &= \int_{\pi/2}^{-\pi/2} -a^2 (\cos \alpha - \sin \alpha) \, d\theta = a^2 (\cos \alpha - \sin \alpha) \pi \end{split}$$

i, zbog $L = L_2 \cup L_3$,

$$I = I_1 + I_2 = 2a^2(\cos\alpha - \sin\alpha)\pi.$$

VIŠESTRUKI INTEGRALI

Dvojni integrali

Ako je

$$D: a \le x \le b, y_1(x) \le y \le y_2(x),$$

tada je

$$\iint_D f(x,y) \, dx dy = \int_a^b dx \int_{y_1(x)}^{y_2(x)} f(x,y) \, dy \ .$$

19. Izračunati površinu manjeg dela kruga u xy-ravni (z=0)

$$D_1: \quad x^2 + y^2 \le 2x \; ,$$

koji odseca prava

$$L_1: y=2-x$$
.

 $\it Re {\it \check{s}enje}.$ Neka je Dmanji od dva kružna odsečka, čiju površinu d treba izračunati i

$$L_2: \quad x^2 + y^2 = 2x \; , \qquad L_3: \quad x = 1 \; .$$

Kriva L_2 je kružnica $(x-1)^2+y^2=1$, a L_3 je prava paralelna y-osi. Zamenom y=0 u jednačinu prave L_1 sledi x=2, pa je (2,0) presečna tačka prave L_1 sa x-osom. Analogno, za x=0 se dobija presečna tačka (0,2) prave L_1 sa y-osom, a za x=1 presečna tačka A(1,1) pravih L_1 i L_3 . Koordinate tačke A zadovoljavaju jednačinu kružnice L_2 , pa je $A \in L_2$, što je prikazano na sledećoj slici.

Prvo nalazimo opis oblasti D. Iz jednačine kružnice L_2 sledi $y=\pm\sqrt{2x-x^2}$ ili $x=1\pm\sqrt{1-y^2}$. Za deo kružnice, koji ulazi u sastav granice oblasti D, važi $y\geq 0$ i $x\geq 1$, pa taj deo L_2 ima eksplicitne jednačine

$$L_2: \quad y = \sqrt{2x - x^2} \;, \qquad L_2: \quad x = 1 + \sqrt{1 - y^2} \;.$$

Uzimajući, npr., promenljivu x u konstantnim, a promenljivu y u funkcionalnim granicama, opis oblasti D je

$$D: 1 \le x \le 2, 2-x \le y \le \sqrt{2x-x^2}.$$

Prelaskom sa dvojnog na dvostruki integral, za površinu d oblasti D se dobija

$$\begin{split} d &= \iint_D dx dy = \int_1^2 dx \int_{2-x}^{\sqrt{2x-x^2}} dy = \int_1^2 \left(\sqrt{2x-x^2} - 2 + x \right) dx \\ &= \int_1^2 \sqrt{2x-x^2} dx - 2x \Big|_1^2 + \frac{x^2}{2} \Big|_1^2 = -\frac{1}{2} + \int_1^2 \sqrt{2x-x^2} dx \\ &= -\frac{1}{2} + \int_1^2 \sqrt{1 - (x-1)^2} dx \; . \end{split}$$

Poslednji određeni integral se rešava smenom

$$x - 1 = \sin t$$

Kako je $\sin t = 0$ i t = 0 za x = 1, $\sin t = 1$ i $t = \pi/2$ za x = 2 i $\cos t \ge 0$ za $t \in [0, \pi/2]$, to je

$$\begin{split} \int_{1}^{2} \sqrt{1 - (x - 1)^{2}} \ dx &= \int_{0}^{\pi/2} |\cos t| \cos t \, dt = \int_{0}^{\pi/2} \cos^{2} t \, dt \\ &= \int_{0}^{\pi/2} \frac{1 + \cos 2t}{2} \, dt = \frac{1}{2} \, t \, \Big|_{0}^{\pi/2} + \frac{1}{4} \sin 2t \, \Big|_{0}^{\pi/2} = \frac{1}{4} \, \pi \; , \end{split}$$

pa je tražena površina

$$d = -\frac{1}{2} + \frac{1}{4}\pi = \frac{1}{4}(\pi - 2) .$$

Ako je y u konstantnim, a x u funkcionalnim granicama, oblast D se opisuje sa

$$D: \quad 2 - y \le x \le 1 + \sqrt{1 - y^2} , \ 0 \le y \le 1 ,$$

pri čemu je x=2-y jednačina prave L_1 . Odgovarajući dvostruki integral se rešava na isti način.

20. Izračunati dvojni integral

$$I = \iint_{D} \left| \sin(x+y) \right| dx dy ,$$

gde je D oblast u xy-ravni (z=0) opisana sa

$$D: 0 \le x \le \pi, 0 \le y \le 2\pi.$$

 $Re \check{s}enje.$ Za tačke $(x,y)\in D$ je $0\leq x+y\leq 3\pi,$ pa za funkciju $\sin(x+y)$ važi

$$\sin(x+y) \ge 0$$
, $x+y \in [0,\pi] \cup [2\pi, 3\pi]$;
 $\sin(x+y) \le 0$, $x+y \in [\pi, 2\pi]$.

Pošto funkcija $\sin(x+y)$ menja znak na oblasti D, zavisno od njenog znaka podintegralna funkcija je $|\sin(x+y)| = \pm \sin(x+y)$. Zato oblast D delimo na podoblasti tako da na svakoj od njih $\sin(x+y)$ ima stalan znak.

Neka je $D=D_1\cup D_2\cup D_3$, gde je D_1 onaj deo oblasti D za koji je $0\leq x+y\leq \pi,\,D_2$ deo za $\pi\leq x+y\leq 2\pi$ i D_3 deo za $2\pi\leq x+y\leq 3\pi$. Delovi D_1 i D_2 imaju zajedničke tačke $(x,y)\in D$ za koje je $x+y=\pi,$ a to su tačke sa prave

$$L_1: \quad y = -x + \pi$$
.

Analogno, zajedničke tačke delova D_2 i D_3 pripadaju pravoj

$$L_2: \quad y = -x + 2\pi \ .$$

Kako je, još, $y \le -x + \pi$ za D_1 , $-x + \pi \le y \le -x + 2\pi$ za D_2 i $y \ge -x + 2\pi$ za D_3 , deo D_1 je ispod prave L_1 , deo D_2 između pravih L_1 i L_2 , a D_3 je iznad prave L_2 .

Prema prethodnom, opisi oblasti $D_1,\,D_2$ i D_3 su:

$$D_1: \quad 0 \le x \le \pi \ , \ 0 \le y \le -x + \pi \ ,$$

$$D_2: 0 \le x \le \pi, -x + \pi \le y \le -x + 2\pi,$$

$$D_3: 0 \le x \le \pi, -x + 2\pi \le y \le 2\pi.$$

Za podintegralnu funkciju važi

$$|\sin(x+y)| = \sin(x+y)$$
, $(x,y) \in D_1 \cup D_3$;
 $|\sin(x+y)| = -\sin(x+y)$, $(x,y) \in D_2$,

pa je

$$I = I_1 + I_2 + I_3$$
,

gde je

$$I_{1} = \iint_{D_{1}} \sin(x+y) dxdy = \int_{0}^{\pi} dx \int_{0}^{-x+\pi} \sin(x+y) dy ,$$

$$I_{2} = \iint_{D_{2}} -\sin(x+y) dxdy = -\int_{0}^{\pi} dx \int_{-x+\pi}^{-x+2\pi} \sin(x+y) dy ,$$

$$I_{3} = \iint_{D_{3}} \sin(x+y) dxdy = \int_{0}^{\pi} dx \int_{-x+2\pi}^{2\pi} \sin(x+y) dy .$$

Kako je

$$\int \sin(x+y) dy = \int \sin(x+y) d(x+y) = -\cos(x+y) ,$$
$$\cos(x+2\pi) = \cos x ,$$

dalje je

$$I_{1} = -\int_{0}^{\pi} \cos(x+y) \Big|_{y=0}^{y=-x+\pi} dx = -\int_{0}^{\pi} (\cos \pi - \cos x) dx$$

$$= \int_{0}^{\pi} (1 + \cos x) dx = (x + \sin x) \Big|_{0}^{\pi} = \pi ,$$

$$I_{2} = \int_{0}^{\pi} \cos(x+y) \Big|_{y=-x+\pi}^{y=-x+2\pi} dx = \int_{0}^{\pi} (\cos 2\pi - \cos \pi) dx = 2 \int_{0}^{\pi} dx = 2\pi ,$$

$$I_{3} = -\int_{0}^{\pi} \cos(x+y) \Big|_{y=-x+2\pi}^{y=2\pi} dx = -\int_{0}^{\pi} [\cos(x+2\pi) - \cos 2\pi] dx$$

$$= \int_{0}^{\pi} (1 - \cos x) dx = (x - \sin x) \Big|_{0}^{\pi} = \pi$$

i konačno

$$I=4\pi$$
 .

21. Izračunati dvostruki integral

$$I = \int_0^a dy \int_0^{a - \sqrt{a^2 - y^2}} \frac{xy \ln(x+a)}{(x-a)^2} dx ,$$

gde je a > 0.

Rešenje. Unutrašnji integral u zadatom dvostrukom integralu se teško rešava, pa prelazimo na odgovarajući dvojni integral.

Neka je D oblast u xy-ravni (z=0) opisana sa

$$D: 0 \le x \le a - \sqrt{a^2 - y^2}, 0 \le y \le a.$$

Tada važi jednakost

$$I = \iint_D \frac{xy \ln(x+a)}{(x-a)^2} \, dx \, dy$$

Iz prethodnog opisa vidimo da je oblast D ograničena y-osom (x = 0), krivom

$$L: \quad x = a - \sqrt{a^2 - y^2} \ ,$$

x-osom (y=0) i pravom y=a. Kako iz $x=a-\sqrt{a^2-y^2}$ sledi $(x-a)^2+y^2=a^2$, kriva L je polukružnica za koju je $x\leq a$.

Oblast D opisujemo drugačije, tako što promenljivu x uzimamo u konstantnim, a promenljivu y u funkcionalnim granicama. Za deo polukružnice L, koji ulazi u sastav granice oblasti D, važi $y \geq 0$, pa taj deo ima jednačinu

$$L: \quad y = \sqrt{2ax - x^2}$$

i opis oblasti D glasi

$$D: \quad 0 \le x \le a , \sqrt{2ax - x^2} \le y \le a .$$

Prema novom opisu, dvojni integral postaje

$$I = \int_0^a dx \int_{\sqrt{2ax - x^2}}^a \frac{xy \ln(x+a)}{(x-a)^2} dy$$
$$= \int_0^a \frac{x \ln(x+a)}{(x-a)^2} \frac{y^2}{2} \Big|_{y=\sqrt{2ax - x^2}}^{y=a} dx = \frac{1}{2} \int_0^a x \ln(x+a) dx.$$

Poslednji određeni integral se rešava metodom parcijalne integracije

$$\int_0^a u \, dv = uv \Big|_0^a - \int_0^a v \, du$$

sa $u = \ln(x+a)$, dv = x dx, odakle je du = dx/(x+a), $v = x^2/2$. Dobija se

$$\begin{split} \int_0^a x \ln(x+a) \, dx &= \frac{x^2}{2} \ln(x+a) \Big|_0^a - \int_0^a \frac{x^2}{2(x+a)} \, dx \\ &= \frac{1}{2} \, a^2 \ln 2a - \frac{1}{2} \int_0^a \frac{(x+a-a)^2}{x+a} \, dx \\ &= \frac{1}{2} \, a^2 \ln 2a - \frac{1}{2} \int_0^a \frac{(x+a)^2 - 2a(x+a) + a^2}{x+a} \, dx \\ &= \frac{1}{2} \, a^2 \ln 2a - \frac{1}{2} \int_0^a \left(x-a + \frac{a^2}{x+a}\right) \, dx \\ &= \frac{1}{2} \, a^2 \ln 2a - \frac{1}{2} \left[\frac{x^2}{2} - ax + a^2 \ln(x+a)\right] \Big|_0^a \\ &= \frac{1}{4} \, a^2 + \frac{1}{2} \, a^2 \ln a = \frac{1}{4} \, a^2 (1+2 \ln a) \end{split}$$

i konačno

$$I = \frac{1}{8} a^2 (1 + 2 \ln a) .$$

Dakle, dvostruki integral koji se teško rešava smo mnogo jednostavnije rešili kao drugi dvostruki integral, sa izmenjenim redosledom integracije. Zahvaljujući dvojnom integralu i njegovoj vezi sa dvostrukim integralima, jedan dvostruki uvek može da se zameni odgovarajućim dvostrukim integralom (integralima) sa promenjenim redosledom integracije (Napomena 3.3.3). Međutim, to ne dovodi uvek i do jednostavnijeg rešavanja, što zavisi od oblika oblasti integracije u dvojnom integralu (Primer 3.3.3).

Trojni integrali

Ako je

$$D: a \le x \le b, y_1(x) \le y \le y_2(x), z_1(x,y) \le z \le z_2(x,y),$$

tada je

$$\iiint_D f(x,y,z) \, dx dy dz = \int_a^b dx \int_{y_1(x)}^{y_2(x)} dy \int_{z_1(x,y)}^{z_2(x,y)} f(x,y,z) \, dz \ .$$

22. Izračunati zapreminu prostorne oblasti ograničene površima

$$S_1: \quad y^2=x \;, \qquad S_2: \quad y^2=4x \;, \qquad S_3: \quad z=0 \;, \qquad S_4: \quad x+z=4$$
 za $y>0.$

 $Re\check{senje}.$ Neka je D prostorna oblast čiju zapreminu d treba izračunati. Površi S_1 i S_2 su cilindrične sa izvodnicama paralelnim z–osi. Direktrise ovih površi su parabole $L_1,$ L_2 u xy–ravni, simetrične u odnosu na x–osu. Površ S_3 je xy–ravan, dok je S_4 ravan paralelna y–osi. Ravan S_4 seče x i z–osu u tačkama $(4,0,0),\ (0,0,4),\ a$ xy–ravan duž prave $L_3.$ Od dve ograničene oblasti između $S_1,\ S_2,\ S_3$ i $S_4,$ oblast D je ona za koju je $y\geq 0.$ Projekcija oblasti D na xy–ravan je ravna oblast D_{xy} između $L_1,\ L_2$ i $L_3.$

S obzirom na uslov $y \ge 0$, delovi parabola $L_1,\,L_2$ koji ograničavaju oblast D_{xy} i prava L_3 iz xy-ravni (z=0) imaju jednačine

$$L_1: y = \sqrt{x}, \quad L_2: y = 2\sqrt{x}, \quad L_3: x = 4,$$

pa je oblast D_{xy} opisana sa

$$D_{xy}: 0 \le x \le 4, \sqrt{x} \le y \le 2\sqrt{x}$$
.

Zapisujući jednačinu ravni S_4 u obliku

$$S_4: \quad z = -x + 4$$
,

dobijamo i opis oblasti D,

$$D: 0 \le x \le 4, \sqrt{x} \le y \le 2\sqrt{x}, 0 \le z \le -x + 4.$$

Prelaskom sa trojnog na trostruki integral, zapremina d oblasti D postaje

$$d = \iiint_D dx dy dz = \int_0^4 dx \int_{\sqrt{x}}^{2\sqrt{x}} dy \int_0^{-x+4} dz$$

$$= \int_0^4 dx \int_{\sqrt{x}}^{2\sqrt{x}} z \Big|_{z=0}^{z=-x+4} dy = \int_0^4 dx \int_{\sqrt{x}}^{2\sqrt{x}} (-x+4) dy$$

$$= \int_0^4 (-x+4)y \Big|_{y=\sqrt{x}}^{y=2\sqrt{x}} dx = \int_0^4 (-x+4)\sqrt{x} dx.$$

Poslednji određeni integral se rešava smenom

$$x=t^2$$

za koju je $dx=2t\,dt$ i t=0 kad je $x=0,\,t=2$ kad je x=4,pa je dalje

$$d = 2 \int_0^2 (-t^2 + 4) t^2 dt = 2 \left(-\frac{t^5}{5} + 4\frac{t^3}{3} \right) \Big|_0^2 = \frac{2^7}{15} = \frac{128}{15} .$$

Tražena zapremina može da se odredi i na osnovu geometrijskog tumačenja dvojnog integrala

$$d = \iint_{D_{xy}} f(x,y) \, dx dy = \iint_{D_{xy}} (-x+4) \, dx dy = \int_0^4 dx \int_{\sqrt{x}}^{2\sqrt{x}} (-x+4) \, dy \;,$$

gde je z = f(x, y) = -x + 4 jednačina ravni S_4 .

23. Izračunati trojni integral

$$I = \iiint_D y \, dx dy dz \; ,$$

gde je D prostorna oblast ograničena koordinatnim ravnima i površima

$$S_1: x+y=1$$
, $S_2: z=2x^2+y^2+1$.

 $Re \check{s}enje.$ Površ S_1 je cilindrična površ čije su izvodnice paralelne $z{\rm -}{\rm osi},$ a direktrisa je prava

$$L_1: x+y=1, z=0.$$

Dakle, S_1 je ravan paralelna z-osi, a L_1 je presek S_1 sa xy-ravni. Još, L_1 seče x i y-osu u tačkama (1,0,0) i (0,1,0). Površ S_2 je eliptički paraboloid sa z-osom kao osovinom ([4], str. 204–206). Paraboloid seče z-osu u tački (0,0,1), pa za sve tačke $(x,y,z) \in S_2$ važi $z \geq 1$.

Projekcija oblasti D na xy-ravan je

$$D_{xy}: 0 \le x \le 1, 0 \le y \le -x + 1,$$

gde je y=-x+1 jednačina prave L_1 . Imajući u vidu jednačinu površi S_2 , oblast D ima opis

$$D: 0 \le x \le 1, 0 \le y \le -x+1, 0 \le z \le 2x^2 + y^2 + 1.$$

Prevođenjem trojnog na trostruki integral i rešavanjem sledi

$$\begin{split} I &= \int_0^1 dx \int_0^{-x+1} y \, dy \int_0^{2x^2 + y^2 + 1} dz = \int_0^1 dx \int_0^{-x+1} y \left(2x^2 + y^2 + 1\right) dy \\ &= \frac{1}{2} \int_0^1 dx \int_0^{-x+1} \left(2x^2 + y^2 + 1\right) d\left(2x^2 + y^2 + 1\right) \\ &= \frac{1}{2} \int_0^1 \frac{\left(2x^2 + y^2 + 1\right)^2}{2} \Big|_{y=0}^{y=-x+1} dx = \frac{1}{4} \int_0^1 \left[\left(3x^2 - 2x + 2\right)^2 - \left(2x^2 + 1\right)^2 \right] dx \; . \end{split}$$

Sređivanjem podintegralne funkcije, za integral ${\cal I}$ se dobija

$$I = \frac{1}{4} \int_0^1 \left(5x^4 - 12x^3 + 12x^2 - 8x + 3 \right) dx = \frac{1}{4} \left(x^5 - 3x^4 + 4x^3 - 4x^2 + 3x \right) \Big|_0^1 = \frac{1}{4}.$$

Smena promenljivih u dvojnim integralima

Ako je

$$x = x(u, v) , y = y(u, v) ; J = J(u, v) = \begin{vmatrix} x_u & x_v \\ y_u & y_v \end{vmatrix} ,$$

tada je

$$\iint_D f(x,y) \, dx dy = \iint_{D^*} f(x(u,v),y(u,v)) |J(u,v)| \, du dv.$$

Najčešće su polarne i uopštene polarne koordinate $u=r,\,v=\varphi,$ za koje je redom:

$$x = r \cos \varphi$$
, $y = r \sin \varphi$; $J = r$,
 $x = ar \cos \varphi$, $y = br \sin \varphi$; $J = abr$.

24. Izračunati dvojni integral

$$I = \iint_D xy \, dx dy \; ,$$

gde je D oblast u xy-ravni (z=0) ograničena krivama

$$L_1: \quad xy=1 \; , \qquad L_2: \quad xy=2 \; , \qquad L_3: \quad y=x \; , \qquad L_4: \quad y=4x$$

za x > 0.

Rešenje. Krive L_1 , L_2 su hiperbole, a L_3 , L_4 prave. Zbog uslova x>0, iz jednačina krivih sledi y>0, pa je oblast D u I kvadrantu.

Jednačine hiperbola $L_1,\,L_2$ s jedne i pravih $L_3,\,L_4$ s druge strane sugerišu smenu

$$u = xy$$
 , $v = \frac{y}{x}$.

Iz ove smene je

$$x = \sqrt{\frac{u}{v}} \ , \ y = \sqrt{uv} \ ,$$

i jakobijan postaje

$$J = \begin{vmatrix} x_u & x_v \\ y_u & y_v \end{vmatrix} = \begin{vmatrix} \frac{1}{2\sqrt{uv}} & -\frac{1}{2v}\sqrt{\frac{u}{v}} \\ \frac{v}{2\sqrt{uv}} & \frac{1}{2}\sqrt{\frac{u}{v}} \end{vmatrix} = \frac{1}{2v} .$$

Zbog x,y>0 je u,v>0, pa je J neprekidna funkcija i važi J>0. Zato se granica $L=\bigcup_{i=1}^4 L_i$ oblasti D iz xy-ravni preslikava u granicu $L^*=\bigcup_{i=1}^4 L_i^*$ oblasti D^* iz uv-ravni, gde je

$$L_1^*: u=1, L_2^*: u=2, L_3^*: v=1, L_4^*: v=4.$$

Oblast D^{\ast} je pravougaona, sa opisom

$$D^*: 1 \le u \le 2, 1 \le v \le 4.$$

Prelazeći prvo na dvojni integral po novoj oblasti D^* , a zatim na odgovarajući dvostruki integral, sledi

$$I = \frac{1}{2} \iint_{D^*} \frac{u}{v} \, du dv = \frac{1}{2} \int_1^2 u \, du \int_1^4 \frac{1}{v} \, dv$$
$$= \frac{1}{2} \frac{u^2}{2} \Big|_1^2 \ln|v| \Big|_1^4 = \frac{1}{4} (4 - 1)(\ln 4 - \ln 1) = \frac{3}{4} \ln 4 = \frac{3}{4} \ln 2^2 = \frac{3}{2} \ln 2.$$

Zadatak može da se reši i direktno, pomoću promenljivih x,y, ali tada oblast D mora da se deli na $D=\bigcup_{i=1}^3 D_i$, što zahteva dodatna izračunavanja radi opisa oblasti D_i (i=1,2,3), kao i rešavanje većeg broja dvostrukih integrala.

25. Izračunati dvojni integral

$$I = \iint_D \arctan \frac{y}{x} \, dx \, dy \; ,$$

gde je D oblast u xy-ravni (z=0) ograničena krivama

$$L_1: \quad x^2 + y^2 = 1 , \qquad L_2: \quad x^2 + y^2 = 9 ,$$

 $L_3: \quad y = \frac{1}{\sqrt{3}} x , \qquad L_4: \quad y = \sqrt{3} x$

za x > 0.

Rešenje. Krive L_1 , L_2 su kružnice, a L_3 , L_4 prave. Iz jednačina pravih za x>0 sledi y>0, pa je oblast D deo kružnog isečka u I kvadrantu.

Zadatak rešavamo na dva načina.

Jednačine krivih L_i (i=1,2,3,4) sugerišu smenu

$$u = x^2 + y^2$$
, $v = \frac{y}{x}$,

za koju je

$$x = \sqrt{\frac{u}{1 + v^2}}$$
, $y = v\sqrt{\frac{u}{1 + v^2}}$; $J = \frac{1}{2(1 + v^2)} > 0$.

Zbog J>0,granica oblasti D prelazi u granicu oblasti $D^{\ast},$ sastavljenu od

$$L_1^*: u = 1, \qquad L_2^*: u = 9, \qquad L_3^*: v = \frac{1}{\sqrt{3}}, \qquad L_4^*: v = \sqrt{3},$$

a oblast D u pravougaonu oblast

$$D^*: 1 \le u \le 9, \frac{1}{\sqrt{3}} \le v \le \sqrt{3}.$$

Integral I postaje

$$I = \iint_{D^*} \arctan v \, \frac{1}{2(1+v^2)} \, du dv = \frac{1}{2} \int_1^9 du \int_{1/\sqrt{3}}^{\sqrt{3}} \arctan v \, \frac{1}{1+v^2} \, dv$$
$$= 4 \int_{1/\sqrt{3}}^{\sqrt{3}} \arctan v \, d(\arctan v) = 2 \arctan^2 v \Big|_{1/\sqrt{3}}^{\sqrt{3}} = 2 \Big[\Big(\frac{\pi}{3}\Big)^2 - \Big(\frac{\pi}{6}\Big)^2 \Big] = \frac{1}{6} \pi^2 .$$

Zadatak sada rešavamo pomoću polarnih koordinata, tj. pomoću smene

$$x=r\cos\varphi\ ,\ y=r\sin\varphi\ ,$$

za koju je J=r. Oblast D ne sadrži tačku (0,0), kojoj odgovara r=0, pa je J>0. Granica oblasti D prelazi u granicu oblasti D^* . Krive $L_1,\,L_2$ se preslikavaju u

$$L_1^*: \quad r=1 \; , \qquad L_2^*: \quad r=3 \; .$$

Za pravu L_3 je koeficijent pravca $\tan\varphi=y/x=1/\sqrt{3}$ i $\varphi=\pi/6$, a za pravu L_4 je $\tan\varphi=\sqrt{3}$ i $\varphi=\pi/3$, pa je

$$L_3^*: \quad \varphi = \frac{\pi}{6} \ , \qquad L_4^*: \quad \varphi = \frac{\pi}{3}$$

i oblast D prelazi u pravougaonu oblast

$$D^*: 1 \le r \le 3, \frac{\pi}{6} \le \varphi \le \frac{\pi}{3}.$$

Integral I postaje

$$\begin{split} I &= \iint_{D^*} \arctan \frac{r \sin \varphi}{r \cos \varphi} \, r \, dr d\varphi = \iint_{D^*} \arctan(\tan \varphi) r \, dr d\varphi = \iint_{D^*} r \varphi \, dr d\varphi \\ &= \int_{\pi/6}^{\pi/3} \varphi \, d\varphi \int_1^3 r \, dr = \frac{\varphi^2}{2} \left| \frac{\pi/3}{\pi/6} \, \frac{r^2}{2} \, \right|_1^3 = \frac{1}{6} \, \pi^2 \; . \end{split}$$

Radeći sa Descartesovim koordinatama x, y, oblast D bi morala da se deli na $D = \bigcup_{i=1}^3 D_i$, a svaki od unutrašnjih integrala u odgovarajućim dvostrukim integralima da se rešava metodom parcijalne integracije.

26. Izračunati dvojni integral

$$I = \iint_D x^2 z^2 \, dz dx \; ,$$

gde je D oblast u zx-ravni (y=0) ograničena krivama

$$L_1: \quad x^2 + z^2 = 1 \; , \qquad L_2: \quad x^2 + z^2 = 4 \; .$$

 $Re\check{s}enje$. Oblast D je kružni prsten između kružnica L_1 i L_2 .

Zamenjujemo Descartesove $z,\,x$ polarnim $r,\,\varphi$ koordinatama pomoću

$$z=r\cos\varphi\ ,\ x=r\sin\varphi$$

i utvrđujemo J=r>0 jer $(0,0)\notin D.$

Kružnice L_1 , L_2 se preslikavaju u

$$L_1^*: \quad r=1 \; , \qquad L_2^*: \quad r=2 \; ,$$

a oblast D iz zx-ravni u pravouga
onu oblast D^* iz $r\varphi$ -ravni,

$$D^*: 1 \le r \le 2, 0 \le \varphi \le 2\pi.$$

Prelaskom na dvojni integral po oblasti D^* i rešavanjem odgovarajućeg dvostrukog integrala, uz upotrebu formula izvedenih u Zadatku 10, dobija se

$$\begin{split} I &= \iint_{D^*} (r \sin \varphi)^2 (r \cos \varphi)^2 r \, dr d\varphi = \iint_{D^*} r^5 \cos^2 \varphi \sin^2 \varphi \, dr d\varphi \\ &= \int_1^2 r^5 \, dr \int_0^{2\pi} \cos^2 \varphi \sin^2 \varphi \, d\varphi = \frac{r^6}{6} \left|_1^2 \int_0^{2\pi} \left(\frac{1}{8} - \frac{1}{8} \cos 4\varphi\right) d\varphi \right. \\ &= \frac{21}{16} \int_0^{2\pi} (1 - \cos 4\varphi) \, d\varphi = \frac{21}{8} \, \pi \, \, . \end{split}$$

Kružni prsten D je dvostruko povezana oblast (Slika 1.1.1). Da bi se dvojni integral po ovakvoj oblasti rešavao bez smene promenljivih, oblast mora da se deli na više prosto povezanih podoblasti, konkretno na $D=\bigcup_{i=1}^4 D_i$. Smenom promenljivih je dvostruko povezana oblast D transformisana u prosto povezanu D^* . Takođe, smena promenljivih bitno pojednostavljuje rešavanje određenih integrala na koje se dvojni prevodi, u šta čitalac može i sam da se uveri. Slična je situacija i kod dvojnih integrala po višestruko povezanim oblastima.

Primećujemo da se granica $L = L_1 \cup L_2$ oblasti D preslikava u deo $L_1^* \cup L_2^*$, a ne u celu granicu $L = \bigcup_{i=1}^4 L_i^*$ oblasti D^* , gde je

$$L_3^*: \quad \varphi = 0 \; , \qquad L_4^*: \quad \varphi = 2\pi \; .$$

Zato se na prvi pogled čini da uslov $J \neq 0$ kod dvostruko povezanih oblasti ne znači ništa. Međutim, oblast D možemo da tretiramo kao prosto povezanu ako je "rasečemo" duž pozitivnig dela z-ose i taj deo ose joj pridružimo kao delove L_3 , L_4 granice. Tada se L_3 , L_4 preslikavaju u L_3^* , L_4^* , što je omogućeno upravo uslovom $J \neq 0$. Inače, u zadatku smo do opisa oblasti D^* jednostavno došli na osnovu značenja polarnih koordinata, što ćemo i nadalje da radimo bez naglašavanja.

27. Izračunati dvojni integral

$$I = \iint_D \sqrt{a^2 - x^2 - y^2} \ dx dy \ ,$$

gde je D deo xy-ravni (z=0) ograničen lemniskatom

$$L: (x^2 + y^2)^2 = a^2(x^2 - y^2)$$

za $x \ge 0$ i a > 0.

 $Re{\check{s}enje}.$ Lemniskata Lje ista kao u Zadatku 6, pa koristimo već dobijene rezultate. Uvođenjem polarnih koordinata sa

$$x = r \cos \varphi$$
, $y = r \sin \varphi$,

za koje je $J=r\geq 0$, kriva L se preslikava u

$$L^*: r = a\sqrt{\cos 2\varphi}$$
,

a oblast D u oblast

$$D^*: 0 \le r \le a\sqrt{\cos 2\varphi} \ , -\frac{\pi}{4} \le \varphi \le \frac{\pi}{4} \ .$$

Integral I postaje

$$\begin{split} I &= \iint_{D^*} \sqrt{a^2 - r^2} \ r \, dr d\varphi = \int_{-\pi/4}^{\pi/4} d\varphi \int_0^{a\sqrt{\cos 2\varphi}} \sqrt{a^2 - r^2} \ r \, dr \\ &= -\frac{1}{2} \int_{-\pi/4}^{\pi/4} d\varphi \int_0^{a\sqrt{\cos 2\varphi}} \sqrt{a^2 - r^2} \ d \big(a^2 - r^2 \big) \\ &= -\frac{1}{3} \int_{-\pi/4}^{\pi/4} \big(a^2 - r^2 \big) \sqrt{a^2 - r^2} \, \Big|_{r=0}^{r=a\sqrt{\cos 2\varphi}} \, d\varphi \\ &= -\frac{1}{3} \, a^3 \int_{-\pi/4}^{\pi/4} \big(2\sqrt{2} \, \sin^2 \varphi | \sin \varphi | - 1 \big) \, d\varphi \\ &= -\frac{4\sqrt{2}}{3} \, a^3 \int_0^{\pi/4} \sin^3 \varphi \, d\varphi + \frac{1}{3} \, a^3 \int_{-\pi/4}^{\pi/4} d\varphi = \frac{1}{6} \, a^3 \pi - \frac{4\sqrt{2}}{3} \, a^3 \int_0^{\pi/4} \sin^3 \varphi \, d\varphi \; . \end{split}$$

Koristeći jednakost

$$\sin^3 \varphi = (1 - \cos^2 \varphi) \sin \varphi = \sin \varphi - \cos^2 \varphi \sin \varphi ,$$

dalje je

$$I = \frac{1}{6} a^3 \pi + \frac{4\sqrt{2}}{3} a^3 \left(\cos\varphi \Big|_0^{\pi/4} - \int_0^{\pi/4} \cos^2\varphi \, d(\cos\varphi)\right)$$

$$= \frac{1}{6} a^3 \pi + \frac{4\sqrt{2}}{3} a^3 \left(\frac{\sqrt{2}}{2} - 1 - \frac{\cos^3\varphi}{3} \Big|_0^{\pi/4}\right) = \frac{1}{6} a^3 \pi + \frac{4\sqrt{2}}{3} a^3 \left(\frac{\sqrt{2}}{2} - 1 - \frac{\sqrt{2}}{12} + \frac{1}{3}\right)$$

$$= \frac{1}{6} a^3 \pi + \frac{2}{9} (5 - 4\sqrt{2}) a^3 = \left[\frac{1}{6} \pi + \frac{2}{9} (5 - 4\sqrt{2})\right] a^3.$$

28. Izračunati površinu dela xy-ravni (z=0) ograničenog krivama

$$L_1: \quad x^2 + y^2 = a^2 , \qquad L_2: \quad (x^2 + y^2)^2 = 2a^2(x^2 - y^2)$$

|x| > a |x| > 0.

 $Re \check{s}enje$. Neka je D deo xy-ravni čiju površinu d treba izračunati. Kriva L_1 je kružnica, a kriva L_2 lemniskata (Zadatak 6). Kako je $|x| \geq a$, D je van kružnice L_1 i sastoji se od oblasti D_1 za $x \geq a$ i D_2 za $x \leq -a$, tj. $D = D_1 \cup D_2$. Zbog simetrije u odnosu na x i y-osu, posmatramo samo deo D_3 oblasti D_1 u I kvadrantu.

Uvođenjem polarnih koordinata sa

$$x = r\cos\varphi$$
, $y = r\sin\varphi$,

krive $L_1,\,L_2$ se transformišu u

$$L_1^*: \quad r=a \; , \qquad L_2^*: \quad r=\sqrt{2} \, a \sqrt{\cos 2\varphi} \; .$$

Budući da smo se ograničili na I kvadrant za koji je $0 \le \varphi \le \pi/2$, rešavanjem jednačine $a = \sqrt{2} \ a \sqrt{\cos 2\varphi}$ dobija se redom: $\cos 2\varphi = 1/2$, $2\varphi = \pi/3$, $\varphi = \pi/6$, pa se krive L_1^* , L_2^* seku u tački $(r,\varphi) = (a,\pi/6)$. Zato se oblast D_3 preslikava u oblast

$$D_3^*: \quad a \le r \le \sqrt{2} a \sqrt{\cos 2\varphi} \ , \ 0 \le \varphi \le \frac{\pi}{6} \ .$$

Vrednost $\varphi=\pi/6$ smo mogli da nađemo i u xy-ravni. Rešavanjem sistema jednačina $x^2+y^2=a^2, \ (x^2+y^2)^2=2a^2(x^2-y^2)$ uz uslov x,y>0, određuje se presečna tačka $(x,y)=(\sqrt{3}\,a/2,a/2)$ krivih L_1 i L_2 u I kvadrantu, pa je $\tan\varphi=y/x=1/\sqrt{3}$, $\varphi=\arctan 1/\sqrt{3}=\pi/6$.

Tražena površina je sada

$$\begin{split} d &= \iint_D dx dy = 4 \iint_{D_3} dx dy = 4 \iint_{D_3^*} r \, dr d\varphi = 4 \int_0^{\pi/6} d\varphi \int_a^{\sqrt{2} \, a \sqrt{\cos 2\varphi}} r \, dr \\ &= 4 \int_0^{\pi/6} \frac{r^2}{2} \Big|_{r=a}^{r=\sqrt{2} \, a \sqrt{\cos 2\varphi}} d\varphi = 2a^2 \int_0^{\pi/6} (2\cos 2\varphi - 1) \, d\varphi \\ &= 2a^2 (\sin 2\varphi - \varphi) \Big|_0^{\pi/6} = 2a^2 \left(\sin \frac{\pi}{3} - \frac{\pi}{6}\right) = 2a^2 \left(\frac{\sqrt{3}}{2} - \frac{\pi}{6}\right) = \frac{3\sqrt{3} - \pi}{3} \, a^2 \; . \end{split}$$

Primetimo da $(0,0) \notin D$ i da je J = r > 0. Ako je L_3 oznaka x-ose, prethodni uslov garantuje da se granica $\bigcup_{i=1}^3 L_i$ oblasti D_3 preslikava u granicu $\bigcup_{i=1}^3 L_i^*$ oblasti D_3^* , gde je $\varphi = 0$ jednačina za L_3^* .

 $\fbox{\bf 29.}$ Izračunati površinu oblasti Du xy–ravni (z=0)ograničenu zatvorenom krivom

$$L: (x^2 + y^2)^3 = x^4 + y^4; (x, y) \neq (0, 0).$$

Rešenje. Tačka (0,0), koja zadovoljava implicitnu jednačinu, je singularna tačka jednačine i to *izolovana tačka* ([2], str. 96). Uklonjena je iz jednačine uslovom $(x,y) \neq (0,0)$. Implicitna jednačina nema drugih ograničenja, pa je L u svim kvadrantima, što znači da je $(0,0) \in D$, iako $(0,0) \notin L$. Kriva L i oblast D ograničena njome imaju izgled sa sledeće slike, dobijen upotrebom računara (Napomena 3.4.1).

Uvođenjem polarnih koordinata sa

$$x = r\cos\varphi$$
, $y = r\sin\varphi$

i imajući u vidu da je r=0 za tačku $(0,0)\in D,\,J=r\geq 0$, kriva L se preslikava u

$$L^*: \quad r = \sqrt{\cos^4 \varphi + \sin^4 \varphi} \;,$$

a oblast D u

$$D^*: 0 \le r \le \sqrt{\cos^4 \varphi + \sin^4 \varphi}$$
, $0 \le \varphi \le 2\pi$.

Tražena površina je

$$d = \iint_D dx dy = \iint_{D^*} r \, dr d\varphi = \int_0^{2\pi} d\varphi \int_0^{\sqrt{\cos^4 \varphi + \sin^4 \varphi}} r \, dr$$
$$= \frac{1}{2} \int_0^{2\pi} \left(\cos^4 \varphi + \sin^4 \varphi\right) d\varphi = \frac{3}{4} \pi ,$$

pri čemu je poslednji određeni integral rešen pomoću formula iz Zadatka 10.

Da bismo izbegli ponavljanje u kasnijem tekstu, ovde napominjemo da su slike iz Zadataka 31–35, 37 takođe dobijene pomoću računara.

 $\fbox{\bf 30.}$ Izračunati površinu oblasti u xy-ravni (z=0) ograničenu zatvorenom krivom

$$L: \quad \frac{x^2}{a^2} + \frac{y^2}{b^2} = x + y \ ,$$

gde je a, b > 0.

 $Re{\check{s}enje}.$ Neka je Doblast čiju površinu dtreba izračunati. Kriva L sadrži tačku (x,y)=(0,0), pa je $(0,0)\in D.$

Zadatak rešavamo na dva načina.

Transformišemo jednačinu krive L u

$$\frac{x^2 - a^2x}{a^2} + \frac{y^2 - b^2y}{b^2} = 0 , \frac{\left(x - \frac{a^2}{2}\right)^2}{a^2} + \frac{\left(y - \frac{b^2}{2}\right)^2}{b^2} = \frac{1}{4}(a^2 + b^2)$$

i dobijamo

$$L: \quad \frac{\left(x - \frac{a^2}{2}\right)^2}{\left(\frac{a}{2}\sqrt{a^2 + b^2}\right)^2} + \frac{\left(y - \frac{b^2}{2}\right)^2}{\left(\frac{b}{2}\sqrt{a^2 + b^2}\right)^2} = 1.$$

Poslednja jednačina znači da je L "pomerena" elipsa koja prolazi kroz koordinatni početak.

Uvodeći smenu

$$x = \frac{a^2}{2} + \frac{a}{2}\sqrt{a^2 + b^2}r\cos\varphi , \ y = \frac{b^2}{2} + \frac{b}{2}\sqrt{a^2 + b^2}r\sin\varphi ,$$

za koju je

$$J = \begin{vmatrix} x_r & x_\varphi \\ y_r & y_\varphi \end{vmatrix} = \begin{vmatrix} \frac{a}{2}\sqrt{a^2 + b^2}\cos\varphi & -\frac{a}{2}\sqrt{a^2 + b^2}r\sin\varphi \\ \frac{b}{2}\sqrt{a^2 + b^2}\sin\varphi & \frac{b}{2}\sqrt{a^2 + b^2}r\cos\varphi \end{vmatrix} = \frac{1}{4}ab(a^2 + b^2)r \ge 0 ,$$

elipsa L se preslikava u

$$L^*: r=1$$
,

a oblast ${\cal D}$ u pravougaonu oblast

$$D^*: 0 \le r \le 1, 0 \le \varphi \le 2\pi.$$

Površina d se lako izračunava,

$$d = \iint_D dx dy = \frac{1}{4} ab(a^2 + b^2) \iint_{D^*} r \, dr d\varphi = \frac{1}{4} ab(a^2 + b^2) \int_0^{2\pi} d\varphi \int_0^1 r \, dr$$
$$= \frac{1}{4} ab(a^2 + b^2) \pi .$$

Zadatak rešavamo na drugi način. Pretpostavimo da krivu L ne prepoznajemo kao elipsu na osnovu zadate jednačine, pa jednačinu ne dovodimo na uobičajeni oblik. Zadata jednačina sugeriše smenu kojom se sa Descartesovih x,y prelazi na uopštene polarne koordinate r,φ . Kako nam značenje koordinate φ u xy-ravni nije poznato, komplikovanu diskusiju izbegavamo tako što ovu smenu realizujemo kao kompoziciju dve smene (Napomena 1.4.4).

Prva smena je

$$x = au$$
, $y = bv$,

za koju je

$$J(u,v) = \begin{vmatrix} x_u & x_v \\ y_u & y_v \end{vmatrix} = \begin{vmatrix} a & 0 \\ 0 & b \end{vmatrix} = ab > 0$$

i kojom se kriva ${\cal L}$ preslikava u

$$L^*: \quad u^2 + v^2 = au + bv \ .$$

Kriva L^* prolazi kroz koordinatni početak (u,v)=(0,0) i zadovoljava uslov $au+bv\geq 0$, tj. $v\geq -(a/b)u$. Tangentu L_t^* krive L^* kroz tačku (0,0) tražimo u obliku v=ku. Neka je v=ku jednačina bilo koje prave L_1 kroz tačku (0,0). Zamenom v=ku u jednačinu krive L^* sledi

$$(1+k^2)u^2 - (a+bk)u = 0,$$

odakle su $u_1 = 0$, $u_2 = (a + bk)/(1 + k^2)$ prve koordinate presečnih tačaka za L_1 i L^* . Da bi L_1 bila tangenta L_t^* , presečna tačka mora da bude dvostruka (tačka dodira), pa je $u_2 = u_1 = 0$, a + bk = 0 i k = -a/b. Dakle, jednačina tangente je

$$L_t^*: \quad v = -\frac{a}{b} u .$$

Na osnovu dosadašnjeg ispitivanja možemo da skiciramo krivu L^* i oblast D^* ograničenu njome (prva slika), što je dovoljno za dalji rad. Međutim, znamo i više. Kriva L^* je "pomerena" kružnica (druga slika)

$$L^*: \quad \left(u - \frac{a}{2}\right)^2 + \left(v - \frac{b}{2}\right)^2 = \frac{1}{4}\left(a^2 + b^2\right) .$$

Druga smena je

$$u = r \cos \varphi$$
, $v = r \sin \varphi$,

kojom sa promenljivih u,v prelazimo na polarne koordinate r,φ u uv-ravni i za koju je $J(r,\varphi)=r\geq 0.$ Kriva L^* se preslikava u

$$L^{**}: \quad r = a\cos\varphi + b\sin\varphi$$
.

Označavajući sa $\varphi_0 \in [-\pi/2,0]$ ugao između L_t^* i pozitivnog dela u –ose, dobijamo $\tan \varphi_0 = v/u = -a/b$ i

$$\varphi_0 = \arctan\left(-\frac{a}{b}\right) = -\arctan\frac{a}{b}$$
.

Kako je L_t^* tangenta krive L^* koja prolazi kroz (0,0) i φ polarni ugao u uv-ravni, znamo da je $\varphi \in [\varphi_0, \varphi_0 + \pi]$. Još je $(u,v) = (0,0) \in L^*$, tj. $(0,0) \in D^*$, pa se oblast D^* transformiše u

$$D^{**}: 0 \le r \le a \cos \varphi + b \sin \varphi, \ \varphi \in [\varphi_0, \varphi_0 + \pi].$$

Tražena površina je

$$\begin{split} d &= \iint_D dx dy = ab \iint_{D^*} du dv = ab \iint_{D^{**}} r \, dr d\varphi \\ &= ab \int_{\varphi_0}^{\varphi_0 + \pi} d\varphi \int_0^{a \cos \varphi + b \sin \varphi} r \, dr = \frac{1}{2} ab \int_{\varphi_0}^{\varphi_0 + \pi} (a \cos \varphi + b \sin \varphi)^2 \, d\varphi \\ &= \frac{1}{2} a^3 b \int_{\varphi_0}^{\varphi_0 + \pi} \cos^2 \varphi \, d\varphi + a^2 b^2 \int_{\varphi_0}^{\varphi_0 + \pi} \cos \varphi \sin \varphi \, d\varphi + \frac{1}{2} ab^3 \int_{\varphi_0}^{\varphi_0 + \pi} \sin^2 \varphi \, d\varphi \\ &= \frac{1}{4} ab \big(a^2 + b^2\big) \pi \; . \end{split}$$

Pri smeni granica u određenim integralima su korišćene jednakosti navedene u Zadatku 18, kao i

$$\sin(\alpha + 2\pi) = \sin \alpha \quad (\alpha = 2\varphi_0)$$
.

Drugi način rešavanja zadatka potvrđuje zapažanja iz Napomene 1.4.1, čak i u jednostavnijem slučaju kružnice L^* koja prolazi kroz koordinatni početak.

Primetimo i ovde da polarne i uopštene polarne koordinate tačaka nemaju isto značenje, a time ni iste vrednosti u xy-ravni. Uopštena polarna koordinata φ jeste polarni ugao, ali za tačke iz uv, a ne iz xy-ravni i za krivu L uzima vrednosti $\varphi \in [-\arctan(a/b), -\arctan(a/b) + \pi]$. Ako je ψ polarni ugao u xy-ravni, za krivu L je $\psi \in [-\pi/4, 3\pi/4]$, što sledi iz jednačine njene tangente

$$L_t: \quad y = -x \; ,$$

koja se dobija slično kao L_t^* . Opseg ugla ψ je isti za proizvoljne brojeve a,b, dok se opseg koordinate φ menja u zavisnosti od ovih brojeva.

31. Izračunati površinu dela xy-ravni (z=0) ograničenog krivom

$$L: \quad \left(\frac{x}{a} + \frac{y}{b}\right)^4 = 4xy$$
,

gde je a, b > 0.

Rešenje. Neka je D deo xy-ravni čiju površinu d treba izračunati. U jednačini krive L je $(x/a+y/b)^4\geq 0$, pa mora da bude i $xy\geq 0$, tj. $x,y\geq 0$ ili $x,y\leq 0$. Ove nejednakosti važe u I i III kvadrantu i odnose se na dve zatvorene krive L_1 i L_2 , sa zajedničkom tačkom (0,0). Tačka $(0,0)\in L$ je singularna i to dvostruka tačka jednačine. Slično lemniskati (Zadatak 6), L nije zatvorena prosta kriva u smislu Definicije 1.1.9, već je $L=L_1\cup L_2$, a D se sastoji od oblasti D_1 i D_2 , tj. $D=D_1\cup D_2$. Zbog simetrije u odnosu na koordinatni početak (0,0), oblasti D_1 i D_2 imaju jednake površine, pa posmatramo samo krivu L_1 i oblast ograničenu njome D_1 u I kvadrantu. Za D_1 važi $x,y\geq 0$ i $(0,0)\in D_1$.

Uvodimo uopštene polarne koordinate sa

$$x = ar\cos^2\varphi$$
, $y = br\sin^2\varphi$,

što je moguće zbog $x,y\geq 0$. Prethodna smena je oblika (1.4.6) sa parnim brojem n=2, pa je $0\leq \varphi\leq \pi/2$ maksimalni raspon za φ . Zato važi $\cos \varphi\geq 0$, $\sin \varphi\geq 0$ i

$$J = \begin{vmatrix} x_r & x_\varphi \\ y_r & y_\varphi \end{vmatrix} = \begin{vmatrix} a\cos^2\varphi & -2ar\cos\varphi\sin\varphi \\ b\sin^2\varphi & 2br\sin\varphi\cos\varphi \end{vmatrix} = 2abr\cos\varphi\sin\varphi \ge 0 ,$$

pri čemu J može i odmah da se odredi pomoću (3.4.8).

Kriva L_1 se preslikava u krivu

$$L_1^*: \quad r = 2\sqrt{ab}\cos\varphi\sin\varphi$$

koja je definisana za svako $\varphi \in [0, \pi/2]$, a oblast D_1 u

$$D_1^*: 0 \le r \le 2\sqrt{ab}\cos\varphi\sin\varphi, 0 \le \varphi \le \frac{\pi}{2}.$$

Koristeći jednakosti

$$2\cos\varphi\sin\varphi = \sin 2\varphi ,$$

$$\cos^3\varphi\sin^3\varphi = \frac{1}{8}\sin^3 2\varphi = \frac{1}{8}\left(1 - \cos^2 2\varphi\right)\sin 2\varphi = \frac{1}{8}\sin 2\varphi - \frac{1}{8}\cos^2 2\varphi\sin 2\varphi ,$$

za traženu površinu se dobija

$$\begin{split} d &= \iint_D dx dy = 2 \iint_{D_1} dx dy = 4ab \iint_{D_1^*} r \cos \varphi \sin \varphi \, dr d\varphi \\ &= 4ab \int_0^{\pi/2} \cos \varphi \sin \varphi \, d\varphi \int_0^{2\sqrt{ab} \cos \varphi \sin \varphi} r \, dr = 8a^2b^2 \int_0^{\pi/2} \cos^3 \varphi \sin^3 \varphi \, d\varphi \\ &= a^2b^2 \left(-\frac{1}{2} \cos 2\varphi \, \Big|_0^{\pi/2} + \frac{1}{2} \int_0^{\pi/2} \cos^2 2\varphi \, d(\cos 2\varphi) \right) \\ &= \frac{1}{2} \, a^2b^2 \Big(2 + \frac{\cos^3 2\varphi}{3} \, \Big|_0^{\pi/2} \Big) = \frac{2}{3} \, a^2b^2 \; . \end{split}$$

32. Izračunati površinu oblasti u xy-ravni (z=0) ograničene koordinatnim osama i jednom od krivih

$$L_{1,2}: \quad \left(\frac{x}{a} + \frac{y}{b}\right)^4 = x^2 + y^2 \; ; \quad (x,y) \neq (0,0)$$

za $x, y \ge 0$ i a, b > 0.

Rešenje. Neka je D oblast čiju površinu d treba izračunati. Data implicitna jednačina objedinjuje jednačine dveju krivih, koje nemaju zajedničkih tačaka i simetrične su u odnosu na koordinatni početak (0,0). Tačka (0,0), koja zadovoljava implicitnu jednačinu, je singularna i to izolovana tačka jednačine. Odstranjena je uslovom $(x,y) \neq (0,0)$. Zbog $x,y \geq 0$ treba imati u vidu samo krivu koja prolazi kroz I kvadrant, na slici označenu sa L_1 . Dakle, oblast D je ograničena koordinatnim osama i krivom L_1 .

Uvodimo uopštene polarne koordinate sa

$$x = ar\cos^2\varphi$$
, $y = br\sin^2\varphi$,

što je moguće zbog $x,y\geq 0$. Smena je ista kao u Zadatku 31, pa je $\varphi\in [0,\pi/2],$ $\cos\varphi\geq 0,$ $\sin\varphi\geq 0$ i

$$J = 2abr\cos\varphi\sin\varphi \ge 0.$$

Iz jednačine krive L_1 sledi $r^2=a^2\cos^4\varphi+b^2\sin^4\varphi$, pa se L_1 preslikava u krivu

$$L_1^*: \quad r = \sqrt{a^2 \cos^4 \varphi + b^2 \sin^4 \varphi}$$
,

koja je definisana za svako $\varphi \in [0,\pi/2].$ Tački $(0,0) \in D$ odgovara r=0i oblastD prelazi u

$$D^*: 0 \le r \le \sqrt{a^2 \cos^4 \varphi + b^2 \sin^4 \varphi} , 0 \le \varphi \le \frac{\pi}{2} .$$

Tražena površina je

$$\begin{split} d &= \iint_D dx dy = 2ab \iint_{D^*} r \cos \varphi \sin \varphi \, dr d\varphi \\ &= 2ab \int_0^{\pi/2} \cos \varphi \sin \varphi \, d\varphi \int_0^{\sqrt{a^2 \cos^4 \varphi + b^2 \sin^4 \varphi}} r \, dr \\ &= ab \int_0^{\pi/2} \cos \varphi \sin \varphi \left(a^2 \cos^4 \varphi + b^2 \sin^4 \varphi\right) \, d\varphi \\ &= -a^3 b \int_0^{\pi/2} \cos^5 \varphi \, d(\cos \varphi) + ab^3 \int_0^{\pi/2} \sin^5 \varphi \, d(\sin \varphi) \\ &= -a^3 b \frac{\cos^6 \varphi}{6} \left| \frac{\pi/2}{0} + ab^3 \frac{\sin^6 \varphi}{6} \right|_0^{\pi/2} = \frac{1}{6} a^3 b + \frac{1}{6} ab^3 = \frac{1}{6} ab \left(a^2 + b^2\right) \; . \end{split}$$

33. Izračunati površinu oblasti u xy-ravni (z = 0) ograničene x-osom i krivom

$$L_1: \quad \left(\frac{x}{a} + \frac{y}{b}\right)^2 = \frac{x}{a} - \frac{y}{b}$$

za $y \ge 0$ i a, b > 0.

Rešenje. Neka je D oblast čiju površinu d treba izračunati. U jednačini krive L_1 je $(x/a+y/b)^2 \geq 0$, pa mora da bude $x/a-y/b \geq 0$, tj. $y \leq (b/a)x$, odakle je $x \geq 0$ za $y \geq 0$. Kako L_1 seče x-osu (y=0) samo u tačkama (0,0) i (a,0), oblast D se nalazi u I kvadrantu između x-ose i prave x=a, a ispod prave y=(b/a)x. Pozicija oblasti D je prikazana na prvoj od sledećih slika, a tačan izgled na drugoj slici.

Zadatak rešavamo na dva načina.

Uvodimo uopštene polarne koordinate sa

$$x = ar\cos^2\varphi \ , \ y = br\sin^2\varphi \ ,$$

za koje je $\varphi \in [0,\pi/2]$ i

$$J = 2abr\cos\varphi\sin\varphi \ge 0.$$

Kriva L_1 se preslikava u

$$L_1^*$$
: $r = \cos 2\varphi$

i definisana je za cos $2\varphi \geq 0$, tj. $2\varphi \in [-\pi/2,\pi/2]$, odnosno $\varphi \in [-\pi/4,\pi/4]$. S obzirom na maksimalni raspon $[0,\pi/2]$ promenljive φ , treba uzeti deo $\varphi \in [0,\pi/4]$. Oblast D se transformiše u

$$D^*: 0 \le r \le \cos 2\varphi, 0 \le \varphi \le \frac{\pi}{4}.$$

Primenom jednakosti navedene u Zadatku 31, tražena površina postaje

$$d = \iint_D dx dy = 2ab \iint_{D^*} r \cos \varphi \sin \varphi \, d\varphi = 2ab \int_0^{\pi/4} \cos \varphi \sin \varphi \int_0^{\cos 2\varphi} r \, dr$$
$$= \frac{1}{2} ab \int_0^{\pi/4} \sin 2\varphi \cos^2 2\varphi \, d\varphi = -\frac{1}{4} ab \int_0^{\pi/4} \cos^2 2\varphi \, d(\cos 2\varphi) = \frac{1}{12} ab .$$

Elegantniji, ali manje uobičajen način rešavanja zadatka se sastoji u uvođenju smene

$$u=\frac{x}{a}+\frac{y}{b}$$
, $v=\frac{x}{a}-\frac{y}{b}$,

iz koje je

$$x = \frac{a}{2}(u+v) , y = \frac{b}{2}(u-v) ,$$

$$J = \begin{vmatrix} x_u & x_v \\ y_u & y_v \end{vmatrix} = \begin{vmatrix} a/2 & a/2 \\ b/2 & -b/2 \end{vmatrix} = -\frac{1}{2}ab < 0$$

i |J| = ab/2.

Neka je L_2 oznaka x-ose (y=0). Zbog $J\neq 0$, granica $L=L_1\cup L_2$ oblasti D iz xy-ravni se preslikava u granicu $L^*=L_1^*\cup L_2^*$ oblasti D^* iz uv-ravni, gde je

$$L_1^*: \quad v = u^2 \; , \qquad L_2^*: \quad v = u \; .$$

Kriva L_1^* je parabola, a L_2^* je prava. Rešavanjem sistema jednačina $v=u^2,\ v=u,$ dobijaju se presečne tačke ovih krivih (u,v)=(0,0) i (u,v)=(1,1), pa je opis oblasti D^* dat sa

$$D^*: 0 \le u \le 1, \ u^2 \le v \le u.$$

Tražena površina je

$$d = \iint_D dx dy = \frac{1}{2} ab \iint_{D^*} du dv = \frac{1}{2} ab \int_0^1 du \int_{u^2}^u dv = \frac{1}{2} ab \int_0^1 \left(u - u^2 \right) du = \frac{1}{12} ab \ .$$

34. | Izračunati površinu dela xy-ravni (z=0) ograničenog krivom

$$L: \quad \left(\sqrt{|x|} + \sqrt{|y|}\right)^{12} = xy .$$

Rešenje. Neka je D de
oxy–ravni čiju površinu d treba izračunati. Slično kao u Zadatku 31, kriva L je definisana za $x,y\geq 0$ ili $x,y\leq 0$, tj. u I i III kvadrantu. Tačka (0,0) je singularna i to dvostruka tačka jednačine. Važi $L=L_1\cup L_2$ i $D=D_1\cup D_2$. Između L_1 i L_2 , odnosno D_1 i D_2 , postoji simetrija u odnosu na koordinatni početak, pa posmatramo samo D_1 u I kvadrantu za koji je $x, y \ge 0$ i $(0,0) \in D_1$.

Uvodimo uopštene polarne koordinate sa

$$x = r\cos^4\varphi \ , \ y = r\sin^4\varphi \ ,$$

za koje je $\varphi \in [0,\pi/2],\, \cos \varphi \geq 0,\, \sin \varphi \geq 0$ i

$$J = \begin{vmatrix} x_r & x_\varphi \\ y_r & y_\varphi \end{vmatrix} = \begin{vmatrix} \cos^4 \varphi & -4r\cos^3 \varphi \sin \varphi \\ \sin^4 \varphi & 4r\sin^3 \varphi \cos \varphi \end{vmatrix} = 4r\cos^3 \varphi \sin^3 \varphi \ge 0.$$

Prethodna smena odgovara uslovu $x,y\geq 0$. Za uvedenu smenu je $\left(\sqrt{x}+\sqrt{y}\right)^{12}=r^6=r^2\cos^4\varphi\sin^4\varphi$, pa kriva L_1 prelazi u

$$L_1^*: \quad r = \cos \varphi \sin \varphi$$

i oblast D_1^* ima opis

$$D_1^*: 0 \le r \le \cos \varphi \sin \varphi, 0 \le \varphi \le \frac{\pi}{2}.$$

Slično kao u Zadatku 31 nalazimo

$$\cos^5 \varphi \sin^5 \varphi = \frac{1}{32} \left(\sin 2\varphi - 2\cos^2 2\varphi \sin 2\varphi + \cos^4 2\varphi \sin 2\varphi \right)$$

i za površinu d dela xy-ravni D dobijamo

$$\begin{split} d &= \iint_D dx dy = 2 \iint_{D_1} dx dy = 8 \iint_{D_1^*} r \cos^3 \varphi \sin^3 \varphi \, d\varphi \\ &= 8 \int_0^{\pi/2} \cos^3 \varphi \sin^3 \varphi \, d\varphi \int_0^{\cos \varphi \sin \varphi} r \, dr = 4 \int_0^{\pi/2} \cos^5 \varphi \sin^5 \varphi \, d\varphi \\ &= \frac{1}{8} \Big(-\frac{1}{2} \cos 2\varphi \, \Big|_0^{\pi/2} + \int_0^{\pi/2} \cos^2 2\varphi \, d(\cos 2\varphi) - \frac{1}{2} \int_0^{\pi/2} \cos^4 2\varphi \, d(\cos 2\varphi) \Big) = \frac{1}{15} \ . \end{split}$$

35. Izračunati dvojni integral

$$I = \iint_D \sqrt{\sqrt{-x} + \sqrt{y}} \ dxdy \ ,$$

gde je D oblast u xy-ravni (z=0) ograničena koordinatnim osama i krivom

$$L: \quad \sqrt{-x} + \sqrt{y} = 1$$
.

 $Re \check{s}enje.$ Kriva Lje definisana za $x \leq 0, \, y \geq 0,$ pa se oblastDnalazi u II kvadrantu.

Smenom Descartesovih koordinata uopštenim polarnim koordinatama pomoću

$$x = -r\cos^4\varphi$$
, $y = r\sin^4\varphi$,

dobijamo $\varphi \in [0, \pi/2]$, $\cos \varphi \ge 0$, $\sin \varphi \ge 0$,

$$J = \begin{vmatrix} x_r & x_\varphi \\ y_r & y_\varphi \end{vmatrix} = \begin{vmatrix} -\cos^4\varphi & 4r\cos^3\varphi\sin\varphi \\ \sin^4\varphi & 4r\sin^3\varphi\cos\varphi \end{vmatrix} = -4r\cos^3\varphi\sin^3\varphi \le 0$$

i $|J|=4r\cos^3\varphi\sin^3\varphi$. Smena odgovara uslovu $x\leq 0,\,y\geq 0$. Za uvedenu smenu je $\sqrt{-x}+\sqrt{y}=\sqrt{r}=1,$ pa kriva L prelazi u

$$L^*: r=1$$

i oblast D^{\ast} ima opis

$$D^*: 0 \le r \le 1, 0 \le \varphi \le \frac{\pi}{2}.$$

Postupajući kao u Zadatku 31, izračunavamo integral

$$I = 4 \iint_{D^*} \sqrt[4]{r} \, r \cos^3 \varphi \sin^3 \varphi \, dr d\varphi = 4 \int_0^1 r^{5/4} \, dr \int_0^{\pi/2} \cos^3 \varphi \sin^3 \varphi \, d\varphi$$
$$= \frac{16}{9} \int_0^{\pi/2} \cos^3 \varphi \sin^3 \varphi \, d\varphi = \frac{4}{27} .$$

36. Izračunati površinu oblasti u xy-ravni (z = 0) ograničene zatvorenom krivom ($petlja\ Descartesovog\ lista$)

$$L: \quad x^3 + y^3 = 3axy \; ; \quad x, y \ge 0 \; ,$$

gde je a > 0.

Rešenje. Neka je D oblast čiju površinu d treba izračunati. Važi $(0,0) \in L$ i $(0,0) \in D$. Kriva L je deo (petlja) dobro poznatog $Descartesovog\ lista$

$$L_1: \quad x^3 + y^3 = 3axy \ .$$

Descartesov list L_1 je simetričan u odnosu na pravu y=x, kosa asimptota mu je prava y=-x-a i ima izgled sa sledeće slike.

Uvodimo uopštene polarne koordinate sa

$$x = r\cos^{2/3}\varphi$$
, $y = r\sin^{2/3}\varphi$.

Smena je oblika (1.4.6) sa racionalnim brojem n=2/3. Kako je $\cos^2\varphi \ge 0$, $\sin^2\varphi \ge 0$ za svako $\varphi \in [0,2\pi]$, ova smena može da se uvede samo za $x,y\ge 0$ i ponaša se kao (1.4.6) sa parnim brojem n=2. Zato je $0\le \varphi \le \pi/2$ maksimalni raspon koordinate φ i važi $\cos\varphi\ge 0$, $\sin\varphi\ge 0$. Prema (3.4.8), dalje je

$$J = \frac{2}{3} r \cos^{-1/3} \varphi \sin^{-1/3} \varphi \ge 0 .$$

Vrednost J=0 se dobija za r=0 i $\varphi\neq 0, \ \varphi\neq \pi/2$. Za $\varphi=0$ ili $\varphi=\pi/2$ i istovremeno r=0 jakobijan je neodređen, dok za $\varphi=0$ ili $\varphi=\pi/2$ i $r\neq 0$ nije definisan.

Kriva L se preslikava u

$$L^*: r = 3a\cos^{2/3}\varphi\sin^{2/3}\varphi$$

i definisana je za svako $\varphi \in [0,\pi/2],$ a oblastDu

$$D^*: \quad 0 \leq r \leq 3a \cos^{2/3} \varphi \sin^{2/3} \varphi \;,\; 0 \leq \varphi \leq \frac{\pi}{2} \;.$$

Tačke $(r,0), (r,\pi/2)$ za $r \neq 0$, u kojima jakobijan nije definisan, nas ne interesuju jer nisu iz oblasti D^* . Tačke $(r,0), (r,\pi/2)$ za r=0 pripadaju granici oblasti D^* i u njima jakobijan može neprekidno da se produži tako da je $J(0,0)=J(0,\pi/2)=0$. Zato (3.4.5), (3.4.6) važi i u ovom slučaju ([1], str. 272–273), pa je površina

$$\begin{split} d &= \iint_D dx dy = \frac{2}{3} \iint_{D^*} r \cos^{-1/3} \varphi \sin^{-1/3} \varphi \, dr d\varphi \\ &= \frac{2}{3} \int_0^{\pi/2} \cos^{-1/3} \varphi \sin^{-1/3} \varphi \, d\varphi \int_0^{3a \cos^{2/3} \varphi \sin^{2/3} \varphi} r \, dr \\ &= 3a^2 \int_0^{\pi/2} \cos \varphi \sin \varphi \, d\varphi = \frac{3}{2} \, a^2 \; . \end{split}$$

Interesantno je da je površina dela xy-ravni između Descartesovog lista i njegove asimptote jednaka nađenoj površini $3a^2/2$ dela ograničenog petljom ([7], str. 104).

37. Izračunati dvojni integral

$$I = \iint_D x^2 y^2 \sqrt{1 - x^3 - y^3} \, dx dy \; ,$$

gde je D oblast u xy-ravni (z=0) ograničena koordinatnim osama i krivom

$$L: \quad x^3 + y^3 = 1 \ .$$

 $Re \check{s}enje.$ Kriva Lseče x-osu (y=0)u tački (1,0),ay-osu (x=0)u tački (0,1)i ima izgled sa sledeće slike. Oblast Dje u I kvadrantu.

Uvodeći istu smenu i koristeći rezultate iz Zadatka 36, dobijamo

$$D^*: 0 \le r \le 1, 0 \le \varphi \le \frac{\pi}{2}$$

i dalje

$$I = \frac{2}{3} \iint_{D^*} r^4 \cos^{4/3} \varphi \sin^{4/3} \varphi \sqrt{1 - r^3} r \cos^{-1/3} \varphi \sin^{-1/3} \varphi dr d\varphi$$
$$= \frac{2}{3} \int_0^1 r^5 \sqrt{1 - r^3} dr \int_0^{\pi/2} \cos \varphi \sin \varphi d\varphi = \frac{1}{3} \int_0^1 r^5 \sqrt{1 - r^3} dr.$$

Poslednji određeni integral se rešava smenom

$$1 - r^3 = t^2 .$$

za koju je $r^3=1-t^2$, $-3r^2\,dr=2t\,dt$ i $r^5\,dr=r^3r^2\,dr=-(2/3)t\big(1-t^2\big)\,dt$. Još je t=1 za r=0 i t=0 za r=1, pa je

$$I = -\frac{2}{9} \int_{1}^{0} t^{2} (1 - t^{2}) dt = \frac{4}{135} .$$

Zadatak može da se reši i pomoću Descartesovih koordinata. Kako je

$$\begin{split} L: \quad y &= \sqrt[3]{1-x^3} \;, \\ D: \quad 0 &\le x \le 1 \;,\; 0 \le y \le \sqrt[3]{1-x^3} \;, \end{split}$$

to je

$$\begin{split} I &= \int_0^1 dx \int_0^{\sqrt[3]{1-x^3}} x^2 y^2 \sqrt{1-x^3-y^3} \ dy = \int_0^1 x^2 dx \int_0^{\sqrt[3]{1-x^3}} y^2 \sqrt{1-x^3-y^3} \ dy \\ &= -\frac{1}{3} \int_0^1 x^2 dx \int_0^{\sqrt[3]{1-x^3}} \sqrt{1-x^3-y^3} \ d(1-x^3-y^3) \\ &= -\frac{2}{9} \int_0^1 x^2 (1-x^3-y^3)^{3/2} \Big|_{y=0}^{y=\sqrt[3]{1-x^3}} dx = \frac{2}{9} \int_0^1 x^2 (1-x^3)^{3/2} dx \\ &= -\frac{2}{27} \int_0^1 (1-x^3)^{3/2} \ d(1-x^3) = -\frac{4}{135} (1-x^3)^{5/2} \Big|_0^1 = \frac{4}{135} \ . \end{split}$$

Smena promenljivih u trojnim integralima

Ako je

$$x = x(u, v, w) , y = y(u, v, w) , z = z(u, v, w) ;$$

$$J = J(u, v, w) = \begin{vmatrix} x_u & x_v & x_w \\ y_u & y_v & y_w \\ z_u & z_v & z_w \end{vmatrix} ,$$

tada je

$$\iiint_D f(x, y, z) dx dy dz$$

$$= \iiint_{D^*} f(x(u, v, w), y(u, v, w), z(u, v, w)) |J(u, v, w)| du dv dw.$$

Najčešće su cilindrične i uopštene cilindrične koordinate $u=r,\ v=\varphi,$ w=z, sferne i uopštene sferne koordinate $u=r,\ v=\varphi,$ $w=\theta,$ za koje je redom:

$$\begin{split} x &= r\cos\varphi \;,\; y = r\sin\varphi \;,\; z = z \;;\; J = r \;,\\ x &= ar\cos\varphi \;,\; y = br\sin\varphi \;,\; z = z \;;\; J = abr \;,\\ x &= r\cos\varphi\cos\theta \;,\; y = r\sin\varphi\cos\theta \;,\; z = r\sin\theta \;;\; J = r^2\cos\theta \;,\\ x &= ar\cos\varphi\cos\theta \;,\; y = br\sin\varphi\cos\theta \;,\; z = cr\sin\theta \;;\; J = abcr^2\cos\theta \;. \end{split}$$

38. Izračunati trojni integral

$$I = \iiint_D xyz \, dxdydz \; ,$$

gde je D prostorna oblast ograničena površima

$$S_1: \quad xy=1 \; , \qquad S_2: \quad xy=9 \; , \qquad S_3: \quad y=x \; , \qquad S_4: \quad y=2x \; ,$$
 $S_5: \quad 2z=x^2+y^2 \; , \qquad S_6: \quad 4z=x^2+y^2$

za x, y > 0 i b > a > 0.

 $Re\check{s}enje.$ Površi $S_i~(i=1,2,3,4)$ su cilindrične sa izvodnicama paralelnim z–osi, a $S_5,$ S_6 su paraboloidi sa z–osom kao osovinom. Zbog x,y>0, iz jednačina površi $S_5,$ S_6 slediz>0, pa je Du I oktantu.

Jednačine površi S_i (i = 1, 2, ..., 6) sugerišu smenu

$$u = xy \; , \; v = \frac{y}{x} \; , \; w = \frac{x^2 + y^2}{z} \; ,$$

iz koje je

$$\begin{aligned} x &= \sqrt{\frac{u}{v}} \ , \ y &= \sqrt{uv} \ , \ z &= \frac{u \left(1 + v^2 \right)}{vw} \ , \\ J &= \begin{vmatrix} x_u & x_v & x_w \\ y_u & y_v & y_w \\ z_u & z_v & z_w \end{vmatrix} = \begin{vmatrix} \frac{1}{2\sqrt{uv}} & -\frac{1}{2v}\sqrt{\frac{u}{v}} & 0 \\ \frac{v}{2\sqrt{uv}} & \frac{1}{2}\sqrt{\frac{u}{v}} & 0 \\ \frac{1+v^2}{vw} & \frac{u \left(v^2 - 1 \right)}{v^2w} & -\frac{u \left(1 + v^2 \right)}{vw^2} \end{vmatrix} \\ &= -\frac{u \left(1 + v^2 \right)}{vw^2} \begin{vmatrix} \frac{1}{2\sqrt{uv}} & -\frac{1}{2v}\sqrt{\frac{u}{v}} \\ \frac{v}{2\sqrt{uv}} & \frac{1}{2}\sqrt{\frac{u}{v}} \end{vmatrix} = -\frac{u \left(1 + v^2 \right)}{2v^2w^2} \ . \end{aligned}$$

Kako je x, y, z > 0, to je u, v, w > 0, pa je J neprekidna funkcija i važi

$$|J| = \frac{u(1+v^2)}{2v^2w^2} > 0$$
.

Zato se granica $S=\bigcup_{i=1}^6 S_i$ oblasti D iz xyz–sistema preslikava u granicu $S^*=\bigcup_{i=1}^6 S_i^*$ oblasti D^* iz uvw–sistema, gde je

Oblast D^* je oblast kvadra, sa opisom

$$D^*: 1 \le u \le 9, 1 \le v \le 2, 2 \le w \le 4.$$

Prelazeći prvo na trojni integral po novoj oblasti D^* , a zatim na odgovarajući trostruki integral, sledi

$$\begin{split} I &= \frac{1}{2} \iiint_{D^*} \frac{u^2 \left(1 + v^2\right)}{v w} \, \frac{u \left(1 + v^2\right)}{v^2 w^2} \, du dv dw = \frac{1}{2} \iiint_{D^*} u^3 \, \frac{\left(1 + v^2\right)^2}{v^3} \, \frac{1}{w^3} \, du dv dw \\ &= \frac{1}{2} \int_1^9 u^3 \, du \int_1^2 \frac{\left(1 + v^2\right)^2}{v^3} \, dv \int_2^4 \, \frac{1}{w^3} \, dw \\ &= \frac{1}{2} \frac{u^4}{4} \Big|_1^9 \left(-\frac{1}{2w^2}\right) \Big|_2^4 \left(-\frac{1}{2v^2} + 2 \ln|v| + \frac{v^2}{2}\right) \Big|_1^2 = \frac{615}{64} (15 + 16 \ln 2) \; . \end{split}$$

39. Izračunati trojni integral

$$I = \iiint_D z \, dx dy dz \; ,$$

gde je D prostorna oblast ograničena površima

$$S_1: \quad z^2 = \frac{c^2}{a^2} (x^2 + y^2) , \qquad S_2: \quad z = c$$

i a, c > 0.

 $Re\check{s}enje$. Površ S_1 je konusna sa z-osom kao osovinom i sastoji se od konusa

$$S_3: \quad z = \frac{c}{a}\sqrt{x^2 + y^2} \;, \qquad S_4: \quad z = -\frac{c}{a}\sqrt{x^2 + y^2} \;,$$

dok je S_2 ravan paralelna xy-ravni. Zbog c>0, ravan S_2 je iznad xy-ravni, pa je oblast D ograničena sa S_2 i S_3 . Neka je L presečna kriva površi S_2 i S_3 , a L_{xy} njena projekcija na xy-ravan. Eliminacijom z iz jednačina površi S_2 , S_3 nalazimo jednačinu projekcije

$$L_{xy}: x^2 + y^2 = a^2, z = 0.$$

Projekcija oblasti D na xy-ravan je oblast D_{xy} ograničena sa L_{xy} .

Descartesove koordinate zamenjujemo cilindričnim koordinatama pomoću

$$x = r \cos \varphi$$
, $y = r \sin \varphi$, $z = z$.

Jakobijan za ove koordinate je $J = r \ge 0$.

Površi $S_2,\,S_3$ i kružnica L_{xy} se preslikavaju u

$$S_2^*: \quad z=c \; , \qquad S_3^*: \quad z=\frac{c}{a} \, r \; ; \qquad L_{xy}^*: \quad r=a \; , \; z=0 \; .$$

Imajući u vidu značenje cilindričnih koordinata i Napomenu 3.4.3, za L_{xy} važi $\varphi \in [0, 2\pi]$, pa oblast D_{xy} prelazi u

$$D_{xy}^*: 0 \le r \le a, 0 \le \varphi \le 2\pi,$$

a oblast D u

$$D^*: 0 \le r \le a , 0 \le \varphi \le 2\pi , \frac{c}{a} r \le z \le c .$$

Integral I postaje

$$I = \iiint_{D^*} zr \, dr d\varphi dz = \int_0^{2\pi} d\varphi \int_0^a r \, dr \int_{(c/a)r}^c z \, dz$$
$$= 2\pi \int_0^a \frac{1}{2} r \left(c^2 - \frac{c^2}{a^2} r^2\right) dr = \pi \left(c^2 \frac{r^2}{2} - \frac{c^2}{a^2} \frac{r^4}{4}\right) \Big|_0^a = \frac{1}{4} a^2 c^2 \pi.$$

40. Izračunati zapreminu prostorne oblasti ograničene površima

$$S_1: \quad x^2 + y^2 = az$$
, $S_2: \quad x^2 + y^2 + z^2 = a^2$

za $z \ge 0$ i a > 0.

 $Re \check{s}enje.$ Neka je Doblast čiju zapreminu d treba izračunati. Površ S_1 je paraboloid sa z–osom kao osovinom, a S_2 je centralna sfera poluprečnika a. Zbog uslova $z \geq 0$, oblast D je iznad xy–ravni i predstavlja manju od dve oblasti koje S_1 i S_2 ograničavaju. Neka je L presečna kriva za S_1 i S_2 , a L_{xy} njena projekcija na xy–ravan. Smenjujući $z=\left(x^2+y^2\right)/a$ iz jednačine paraboloida u jednačinu sfere sledi $\left(x^2+y^2\right)^2+a^2\left(x^2+y^2\right)-a^4=0.$ Za $t=x^2+y^2\geq 0$ poslednja jednačina je kvadratna $t^2+a^2t-a^4=0$ i ima rešenje $t=a^2(\sqrt{5}-1)/2.$ Zato je projekcija L_{xy} kružnica

$$L_{xy}: \quad x^2 + y^2 = \frac{\sqrt{5} - 1}{2} a^2 \ , \ z = 0 \ .$$

Kružnica L_{xy} je granica projekcije D_{xy} oblasti D na xy-ravan.

Uvođenjem cilindričnih koordinata sa

$$x = r\cos\varphi$$
, $y = r\sin\varphi$, $z = z$,

za koje je $J=r\geq 0$, površi $S_1,\,S_2$ i kriva L_{xy} se preslikavaju u

$$S_1^*: \quad z = \frac{1}{a} \, r^2 \; , \qquad S_2^*: \quad z = \sqrt{a^2 - r^2} \; ; \qquad L_{xy}^*: \quad r = a \sqrt{\frac{\sqrt{5} - 1}{2}} \; , \; z = 0 \; .$$

Kako za L_{xy} važi $\varphi \in [0, 2\pi], D_{xy}$ se preslikava u

$$D_{xy}^*: 0 \le r \le A, 0 \le \varphi \le 2\pi,$$

a oblast D u

$$D^*: 0 \le r \le A, 0 \le \varphi \le 2\pi, \frac{1}{a}r^2 \le z \le \sqrt{a^2 - r^2},$$

gde je

$$A = a\sqrt{\frac{\sqrt{5} - 1}{2}} \ .$$

Za zapreminu se dobija

$$\begin{split} d &= \iiint_D dx dy dz = \iiint_{D^*} r \, dr d\varphi dz = \int_0^{2\pi} d\varphi \int_0^A r \, dr \int_{r^2/a}^{\sqrt{a^2 - r^2}} dz \\ &= 2\pi \int_0^A r \left(\sqrt{a^2 - r^2} - \frac{1}{a} \, r^2 \right) dr \\ &= -\pi \int_0^A \sqrt{a^2 - r^2} \, d(a^2 - r^2) - \frac{2\pi}{a} \int_0^A r^3 \, dr \\ &= -\frac{2}{3} \, \pi (a^2 - r^2) \sqrt{a^2 - r^2} \, \Big|_0^A - \frac{\pi}{2a} \, r^4 \, \Big|_0^A \\ &= \left[-\frac{2}{3} \left(a^2 - A^2 \right) \sqrt{a^2 - A^2} + \frac{2}{3} \, a^3 - \frac{1}{2} \, \frac{A^4}{a} \right] \pi = \frac{1}{12} \left(3\sqrt{5} - 8\sqrt{9 - 4\sqrt{5}} - 1 \right) a^3 \pi \; . \end{split}$$

Uočavajući da je

$$\sqrt{9 - 4\sqrt{5}} = \sqrt{(\sqrt{5} - 2)^2} = \sqrt{5} - 2 ,$$

poslednji rezultat se svodi na

$$d = \frac{5}{12}(3 - \sqrt{5})a^3\pi \ .$$

41. Izračunati zapreminu prostorne oblasti ograničene površima

$$S_1: \quad x^2+y^2=2-z \ , \qquad S_2: \quad x^2+y^2=z \ .$$

Rešenje. Neka je D oblast čiju zapreminu d treba izračunati. Površi S_1 i S_2 su paraboloidi sa z-osom kao osovinom. Paraboloid S_1 seče z-osu u tački (0,0,2). Eliminacijom z iz jednačina za S_1 , S_2 sledi jednačina projekcije L_{xy} presečne krive L,

$$L_{xy}: x^2 + y^2 = 1, z = 0.$$

Kružnica L_{xy} je granica projekcije D_{xy} oblasti D na xy-ravan.

Uvođenjem cilindričnih koordinata sa

$$x = r\cos\varphi$$
, $y = r\sin\varphi$, $z = z$,

dobija se $J=r\geq 0$ i

$$\begin{split} S_1^*: \quad z &= 2 - r^2 \ , \qquad S_2^*: \quad z = r^2 \ ; \\ L_{xy}^*: \quad r &= 1 \ , \ z = 0 \ , \qquad D_{xy}^*: \quad 0 \leq r \leq 1 \ , \ 0 \leq \varphi \leq 2\pi \ ; \\ D^*: \quad 0 \leq r \leq 1 \ , \ 0 \leq \varphi \leq 2\pi \ , \ r^2 \leq z \leq 2 - r^2 \ . \end{split}$$

Zapremina je

$$d = \iiint_D dx dy dz = \iiint_{D^*} r \, dr d\varphi dz = \int_0^{2\pi} d\varphi \int_0^1 r \, dr \int_{r^2}^{2-r^2} dz$$
$$= 4\pi \int_0^1 r (1 - r^2) \, dr = \pi .$$

42. Izračunati zapreminu prostorne oblasti ograničene površima

$$S_1: \quad z = x^2 + y^2 , \qquad S_2: \quad z = x + y .$$

 $Re \check{s}enje.$ Neka je Doblast čiju zapreminu dtreba izračunati. Površ S_1 je paraboloid sa z-osom kao osovinom, a S_2 je ravan koja prolazi kroz koordinatni početak (0,0,0). Ravan S_2 seče yz-ravan (x=0)duž prave z=y, zx-ravan (y=0)duž prave x=z, a paraboloid S_1 duž krive L. Eliminacijom koordinate z iz jednačina za S_1 i S_2 sledi $x^2+y^2=x+y,$ što je jednačina projekcije L_{xy} krive L na xy-ravan. Ovu jednačinu transformišemo i dobijamo

$$L_{xy}: \quad \left(x-\frac{1}{2}\right)^2 + \left(y-\frac{1}{2}\right)^2 = \frac{1}{2}, \ z=0,$$

odakle vidimo da je L_{xy} "pomerena" kružnica sa centrom u tački (1/2, 1/2, 0) i poluprečnika $1/\sqrt{2}$. Projekcija oblasti D na xy-ravan je oblast D_{xy} ograničena sa L_{xy} .

Uvođenjem smene

$$x = \frac{1}{2} + r\cos\varphi \; , \; y = \frac{1}{2} + r\sin\varphi \; , \; z = z \; ,$$

za koju je $J=r\geq 0,$ površi $S_1,\,S_2$ i kriva L_{xy} prelaze u

$$S_1^*: \quad z = \frac{1}{2} + r(\cos\varphi + \sin\varphi) + r^2 , \qquad S_2^*: \quad z = 1 + r(\cos\varphi + \sin\varphi) ;$$

 $L_{xy}^*: \quad r = \frac{\sqrt{2}}{2} , \ z = 0 .$

Kriva L_{xy}^* je definisana za svako $\varphi \in [0,2\pi],$ pa se oblast D_{xy} preslikava u

$$D_{xy}^*: 0 \le r \le \frac{\sqrt{2}}{2}, 0 \le \varphi \le 2\pi,$$

a oblast D u

$$D^*: 0 \le r \le \frac{\sqrt{2}}{2}, 0 \le \varphi \le 2\pi, z_1(r,\varphi) \le z \le z_2(r,\varphi),$$

gde je

$$z_1(r,\varphi) = \frac{1}{2} + r(\cos\varphi + \sin\varphi) + r^2$$
, $z_2(r,\varphi) = 1 + r(\cos\varphi + \sin\varphi)$.

Tražena zapremina je

$$\begin{split} d &= \iiint_D dx dy dz = \iiint_{D^*} r \, dr d\varphi dz = \int_0^{2\pi} \, d\varphi \int_0^{\sqrt{2}/2} r \, dr \int_{z_1(r,\varphi)}^{z_2(r,\varphi)} dz \\ &= \int_0^{2\pi} d\varphi \int_0^{\sqrt{2}/2} r \left(\frac{1}{2} - r^2\right) dr = \frac{1}{8} \pi \; . \end{split}$$

Uvedena smena je prostorni analogon smene (1.4.20) u $xy\!-\!$ koordinatnoj ravni jer predstavlja kompoziciju smena

$$x = u + \frac{1}{2} \ , \ y = v + \frac{1}{2} \ , \ z = w \ ;$$

$$u = r \cos \varphi \ , \ v = r \sin \varphi \ , \ w = w \ ,$$

pri čemu je prva smena translacija xyz–sistema u uvw–sistem, a drugom se uvode cilindrične koordinate u uvw–sistemu.

43. Izračunati zapreminu prostorne oblasti ograničene površima

$$S_1: \quad z = 3y^2 , \qquad S_2: \quad z = 4 - (x^2 + y^2) .$$

 $Re \check{s}enje$. Neka je D oblast čiju zapreminu d treba izračunati. Površ S_1 je cilindrična sa izvodnicama paralelnim x-osi i direktrisom koja je parabola u yz-ravni. Površ S_2 je paraboloid sa z-osom kao osovinom, koji z-osu seče u tački (0,0,4). Eliminacijom z iz jednačina površi S_1 i S_2 sledi jednačina projekcije L_{xy} presečne krive L (slika iz Zadatka 17),

$$L_{xy}: \quad \frac{x^2}{4} + y^2 = 1 \; , \; z = 0 \; .$$

Oblast D_{xy} , ograničena elipsom L_{xy} , je projekcija oblasti D na xy-ravan. Uvodimo uopštene cilindrične koordinate sa

$$x = 2r\cos\varphi$$
, $y = r\sin\varphi$, $z = z$

i dobijamo $J = 2r \ge 0$,

$$S_1^*: \quad z = 3r^2 \sin^2 \varphi \; , \qquad S_2^*: \quad z = 4 - r^2 \big(4 \cos^2 \varphi + \sin^2 \varphi \big) \; ; \qquad L_{xy}^*: \quad r = 1 \; , \; z = 0 \; .$$

Kriva L_{xy}^* je definisana za svako $\varphi \in [0, 2\pi]$, pa je

$$\begin{split} D_{xy}^*: & \quad 0 \le r \le 1 \;,\; 0 \le \varphi \le 2\pi \;, \\ D^*: & \quad 0 \le r \le 1 \;,\; 0 \le \varphi \le 2\pi \;,\; z_1(r,\varphi) \le z \le z_2(r,\varphi) \;, \end{split}$$

gde je

$$z_1(r,\varphi) = 3r^2 \sin^2 \varphi$$
, $z_2(r,\varphi) = 4 - r^2 (4\cos^2 \varphi + \sin^2 \varphi)$.

Zapremina je

$$d = \iiint_D dx dy dz = 2 \iiint_{D^*} r \, dr d\varphi dz = 2 \int_0^{2\pi} d\varphi \int_0^1 r \, dr \int_{z_1(r,\varphi)}^{z_2(r,\varphi)} dz$$
$$= 2 \int_0^{2\pi} d\varphi \int_0^1 4r (1 - r^2) \, dr = 16\pi \int_0^1 r (1 - r^2) \, dr = 4\pi .$$

44. Izračunati zapreminu prostorne oblasti ograničene površima

$$S_1: \quad x^2 + y^2 + z^2 = a^2 , \qquad S_2: \quad z = \sqrt{3(x^2 + y^2)} ,$$

gde je a > 0.

Rešenje. Neka je D oblast čiju zapreminu d treba izračunati. Površ S_1 je centralna sfera, a S_2 je konus sa z-osom kao osovinom, koji je iznad xy-ravni zbog $z \geq 0$. Projekcija presečne krive L površi S_1 i S_2 na xy-ravan je kružnica

$$L_{xy}: \quad x^2 + y^2 = \frac{a^2}{4} \ , \ z = 0 \ ,$$

a projekcija oblasti D je krug D_{xy} ograničen sa L_{xy} .

Zadatak rešavamo na dva načina.

Zamenom Descartesovih cilindričnim koordinatama pomoću

$$x = r \cos \varphi$$
, $y = r \sin \varphi$, $z = z$,

sledi $J=r\geq 0$ i

$$\begin{split} S_1^*: \quad z &= \sqrt{a^2 - r^2} \;, \qquad S_2^*: \quad z &= \sqrt{3} \, r \;; \\ L_{xy}^*: \quad r &= \frac{a}{2} \;, \; z &= 0 \;, \qquad D_{xy}^*: \quad 0 \leq r \leq \frac{a}{2} \;, \; 0 \leq \varphi \leq 2\pi \;; \\ D^*: \quad 0 \leq r \leq \frac{a}{2} \;, \; 0 \leq \varphi \leq 2\pi \;, \; \sqrt{3} \, r \leq z \leq \sqrt{a^2 - r^2} \;. \end{split}$$

Slično kao u Zadatku 40, za zapreminu se dobija

$$\begin{split} d &= \iiint_D dx dy dz = \iiint_{D^*} r \, dr d\varphi dz = \int_0^{2\pi} d\varphi \int_0^{a/2} r \, dr \int_{\sqrt{3} \, r}^{\sqrt{a^2 - r^2}} dz \\ &= 2\pi \int_0^{a/2} r \left(\sqrt{a^2 - r^2} - \sqrt{3} \, r \right) dr = \frac{2 - \sqrt{3}}{3} \, a^3 \pi \ . \end{split}$$

Drugi način se sastoji u upotrebi sfernih koordinata. Descartesove koordinate zamenjujemo sfernim pomoću

$$x = r \cos \varphi \cos \theta$$
, $y = r \sin \varphi \cos \theta$, $z = r \sin \theta$.

Jakobijan za ove koordinate je $J = r^2 \cos \theta \ge 0$.

Iz jednačine površi S_1 je r=a. Iz jednačine površi S_2 je $r\sin\theta=\sqrt{3}\,r\cos\theta$, $\tan\theta=\sin\theta/\cos\theta=\sqrt{3}$ i $\theta=\pi/3$. Zato se S_1 , S_2 preslikavaju u

$$S_1^*: \quad r = a \; , \qquad S_2^*: \quad \theta = \frac{\pi}{3} \; .$$

Imajući u vidu značenje sfernih koordinata i Napomenu 3.4.3, za L_{xy} i D_{xy} je $\varphi \in [0, 2\pi]$. Još, tački $(0,0,0) \in D$ odgovara r=0, pa se oblast D se preslikava u

$$D^*: \quad 0 \leq r \leq a \ , \ 0 \leq \varphi \leq 2\pi \ , \ \frac{\pi}{3} \leq \theta \leq \frac{\pi}{2} \ .$$

Tražena zapremina je

$$d = \iiint_D dx dy dz = \iiint_{D^*} r^2 \cos \theta \, dr d\varphi d\theta = \int_0^{2\pi} d\varphi \int_0^a r^2 \, dr \int_{\pi/3}^{\pi/2} \cos \theta \, d\theta$$
$$= 2\pi \frac{r^3}{3} \Big|_0^a \sin \theta \Big|_{\pi/3}^{\pi/2} = 2\pi \frac{a^3}{3} \left(1 - \frac{\sqrt{3}}{2} \right) = \frac{2 - \sqrt{3}}{3} \, a^3 \pi .$$

Rešavanje zadatka pomoću sfernih koordinata je jednostavnije jer su konusi i sfere koordinatne površi u sfernom koordinatnom sistemu, dok za cilindrični koordinatni sistem to nisu karakteristične površi.

45. Izračunati zapreminu prostorne oblasti ograničene površima

$$S_1: \quad x^2+y^2+z^2=a^2 \; , \qquad S_2: \quad x^2+y^2+z^2=b^2 \; ,$$
 $S_3: \quad y=-\sqrt{x^2+z^2} \; ,$

gde je b > a > 0.

Rešenje. Neka je D oblast čiju zapreminu d treba izračunati. Površi S_1 i S_2 su centralne sfere, a S_3 je konus sa y-osom kao osovinom, za koji je $y \leq 0$.

Descartesove koordinate zamenjujemo sfernim pomoću

$$z = r \cos \varphi \cos \theta$$
, $x = r \sin \varphi \cos \theta$, $y = r \sin \theta$,

gde je r dužina potega tačke (x,y,z), φ ugao između potega projekcije (x,0,z) na zx-ravan i pozitivnog dela z-ose, a θ ugao između potega tačke (x,y,z) i zx-ravni. Jakobijan za ovako uvedene sferne koordinate je

$$J = \begin{vmatrix} z_r & z_\varphi & z_\theta \\ x_r & x_\varphi & x_\theta \\ y_r & y_\varphi & y_\theta \end{vmatrix} = r^2 \cos \theta \ge 0 .$$

Površi $S_i\ (i=1,2,3)$ se preslikavaju u

$$S_1^*: \quad r=a \; , \qquad S_2^*: \quad r=b \; , \qquad S_3^*: \quad \theta=-\frac{\pi}{4} \; .$$

S obzirom na izneto značenje sfernih koordinata, oblast D se preslikava u

$$D^*: a \le r \le b, 0 \le \varphi \le 2\pi, -\frac{\pi}{2} \le \theta \le -\frac{\pi}{4}.$$

Tražena zapremina je

$$d = \iiint_D dx dy dz = \iiint_{D^*} r^2 \cos \theta \, dr d\varphi d\theta = \int_0^{2\pi} d\varphi \int_a^b r^2 \, dr \int_{-\pi/2}^{-\pi/4} \cos \theta \, d\theta$$
$$= 2\pi \frac{r^3}{3} \Big|_a^b \sin \theta \Big|_{-\pi/2}^{-\pi/4} = \frac{2 - \sqrt{2}}{3} \left(b^3 - a^3 \right) \pi .$$

46. Izračunati zapreminu prostorne oblasti ograničene zatvorenom površi

$$S: (x^2 + y^2 + z^2)^2 = az(x^2 + y^2)$$
,

gde je a > 0.

Rešenje. Neka je D oblast čiju zapreminu d treba izračunati. Iz jednačine površi S sledi $z \geq 0$ i $(0,0,0) \in S$, što znači da se D nalazi iznad xy-ravni, tj. u I, II, III, IV oktantu, kao i da je $(0,0,0) \in D$.

Za sferne koordinate, uvedene sa

$$x = r \cos \varphi \cos \theta$$
, $y = r \sin \varphi \cos \theta$, $z = r \sin \theta$.

u navedenim oktantima važi $\varphi \in [0, 2\pi]$ i $\theta \in [0, \pi/2]$. Do istog zaključka se dolazi i diskusijom uslova $z = r \sin \theta \ge 0$, tj. $\sin \theta \ge 0$. Jakobijan je $J = r^2 \cos \theta \ge 0$.

PovršS se preslikava u površ

$$S^*: \quad r = a\sin\theta\cos^2\theta$$

koja je definisana za svako $\theta \in [0,\pi/2]$. Takođe, u jednačini površi S^* ne figuriše koordinata φ , pa je S^* definisana i za svako $\varphi \in [0,2\pi]$. Još, tački $(0,0,0) \in D$ odgovara r=0. Oblast D se preslikava u

$$D^*: 0 \le r \le a \sin \theta \cos^2 \theta$$
, $0 \le \varphi \le 2\pi$, $0 \le \theta \le \frac{\pi}{2}$.

Zapremina je

$$d = \iiint_D dx dy dz = \iiint_{D^*} r^2 \cos \theta \, dr d\varphi d\theta = \int_0^{2\pi} d\varphi \int_0^{\pi/2} \cos \theta \, d\theta \int_0^{a \sin \theta \cos^2 \theta} r^2 \, dr$$

$$= \frac{2}{3} a^3 \pi \int_0^{\pi/2} \sin^3 \theta \cos^7 \theta \, d\theta = -\frac{2}{3} a^3 \pi \int_0^{\pi/2} (1 - \cos^2 \theta) \cos^7 \theta \, d(\cos \theta)$$

$$= -\frac{2}{3} a^3 \pi \left(-\frac{1}{40} \right) = \frac{1}{60} a^3 \pi .$$

47. Izračunati zapreminu prostorne oblasti ograničene zatvorenom površi

S:
$$(x^2 + y^2 + z^2)^2 = a^2(x^2 + y^2)$$
,

gde je a > 0.

Rešenje. Neka je D oblast čiju zapreminu d treba izračunati. Jednačina površi S ne nameće nikakva ograničenja, pa se S, a time i D, nalazi u svim oktantima. Još je $(0,0,0) \in S$, tj. $(0,0,0) \in D$.

Prelaskom na sferne koordinate pomoću

$$x = r \cos \varphi \cos \theta$$
, $y = r \sin \varphi \cos \theta$, $z = r \sin \theta$,

površS se preslikava u površ

$$S^*: r = a\cos\theta$$

koja je definisana za svako $\theta \in [-\pi/2,\pi/2]$ i svako $\varphi \in [0,2\pi]$. Kako je $(0,0,0) \in D$, oblast D se transformiše u

$$D^*: \quad 0 \le r \le a \cos \theta \ , \ 0 \le \varphi \le 2\pi \ , \ -\frac{\pi}{2} \le \theta \le \frac{\pi}{2} \ .$$

S obzirom na $J=r^2\cos\theta\geq 0$ i jednakost navedenu u Zadatku 10, zapremina je

$$d = \iiint_D dx dy dz = \iiint_{D^*} r^2 \cos \theta \, dr d\varphi d\theta = \int_0^{2\pi} d\varphi \int_{-\pi/2}^{\pi/2} \cos \theta \, d\theta \int_0^{a \cos \theta} r^2 \, dr$$
$$= \frac{2}{3} \pi \int_{-\pi/2}^{\pi/2} a^3 \cos^4 \theta \, d\theta = \frac{4}{3} a^3 \pi \int_0^{\pi/2} \cos^4 \theta \, d\theta = \frac{1}{4} a^3 \pi^2 .$$

48. Izračunati zapreminu elipsoidne oblasti ograničene elipsoidom

S:
$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} + \frac{(z-z_0)^2}{c^2} = 1$$
,

gde je a, b, c > 0.

 $Re\check{s}enje$. Neka je D elipsoidna oblast i d njena zapremina. Zapremina d ne zavisi od položaja oblasti D, već samo od njenog oblika, uslovljenog poluosama a, b, c. Zato oblast D ima istu zapreminu kao i oblast D_1 , ograničena centralnim elipsoidom (Slika 1.4.33)

$$S_1: \quad \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \ .$$

Umesto smene

$$x = x_0 + r\cos\varphi\cos\theta$$
, $y = y_0 + r\sin\varphi\cos\theta$, $z = z_0 + r\sin\theta$

uvodimo uopštene sferne koordinate pomoću jednostavnije smene

$$x = ar\cos\varphi\cos\theta$$
, $y = br\sin\varphi\cos\theta$, $z = cr\sin\theta$.

Za centralni elipsoid S_1 uvedene koordinate φ i θ imaju maksimalni raspon $\varphi \in [0, 2\pi]$, $\theta \in [-\pi/2, \pi/2]$ i važi $J = abcr^2 \cos \theta \ge 0$. Takođe je $(0, 0, 0) \in D_1$.

Elipsoid S_1 se preslikava u

$$S_1^*: r=1$$
,

a oblast D_1 u

$$D_1^*: 0 \le r \le 1, 0 \le \varphi \le 2\pi, -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}.$$

Tražena zapremina je

$$\begin{split} d &= \iiint_{D_1} dx dy dz = \iiint_{D_1^*} abcr^2 \cos\theta \, dr d\varphi d\theta \\ &= abc \int_0^{2\pi} d\varphi \int_0^1 r^2 \, dr \int_{-\pi/2}^{\pi/2} \cos\theta \, d\theta = \frac{4}{3} \, abc\pi \ , \end{split}$$

što je dobro poznati obrazac iz ranijih kurseva matematike.

Green-Riemannova teorema

Ako je D prosto povezana ravna oblast i L njena kontura, tada je

$$\oint_{L^+} P(x,y) \, dx + Q(x,y) \, dy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy .$$

49. Izračunati potpuni krivolinijski integral II vrste

$$I = \int_{L} \left(e^x \arctan y + 2y \right) dx + \left(\frac{e^x}{1 + y^2} - 1 \right) dy ,$$

gde je L deo negativno orijentisane kružnice

$$L_1: \quad x^2 + y^2 = y \ , \ z = 0$$

 $za x \ge 0.$

Rešenje. Kako je

$$L_1: \quad x^2 + \left(y - \frac{1}{2}\right)^2 = \frac{1}{4} ,$$

kružnica L_1 ima centar na y-osi u tački (0,1/2) i poluprečnik 1/2. Zbog uslova $x \ge 0$, deo L kružnice L_1 je polukružnica u I kvadrantu. Polukružnica L zadržava orijentaciju celine L_1 , što naglašavamo oznakom L^- . Posmatramo suprotno orijentisanu polukružnicu L^+ . Ako je L_2 deo y-ose između tačaka (0,0) i (0,1), orijentisan od tačke (0,1) ka tački (0,0), kriva

$$L_3 = L^+ \cup L_2$$

je pozitivno orijentisana kontura. Oblast D u xy-ravni, ograničena sa L_3 , je prosto povezana.

Sa I^+ , I_2 , I_3 označimo krivolinijske integrale duž L^+ , L_2 i L_3 redom, koji imaju isti podintegralni izraz kao integral I. Tada je $I=-I^+$, $I_3=I^++I_2=-I+I_2$ i

$$I=I_2-I_3.$$

Prvo izračunavamo integral I_3 primenom Green-Riemannove teoreme. Stavljajući

$$P(x,y) = e^x \arctan y + 2y$$
, $Q(x,y) = \frac{e^x}{1 + y^2} - 1$,

dobijamo

$$\frac{\partial P}{\partial y} = \frac{e^x}{1+y^2} + 2 \; , \; \frac{\partial Q}{\partial x} = \frac{e^x}{1+y^2} \; , \label{eq:deltaP}$$

pa su funkcije P(x,y), Q(x,y), $\partial P/\partial y$, $\partial Q/\partial x$ neprekidne u celoj xy-ravni, a time i u oblasti D. Uslovi Green–Riemannove teoreme su ispunjeni, pa važi

$$I_{3} = \oint_{L_{3}^{+}} P(x, y) dx + Q(x, y) dy = \oint_{L_{3}^{+}} \left(e^{x} \arctan y + 2y\right) dx + \left(\frac{e^{x}}{1 + y^{2}} - 1\right) dy$$
$$= \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy = -2 \iint_{D} dx dy = -2d = -\frac{1}{4}\pi,$$

gde je $d=R^2\pi/2=\pi/8$ površina polukruga D poluprečnika R=1/2 (Primer 3.5.1). Izračunavamo sada integral I_2 . Kako je

$$L_2: \quad x = x(y) = 0 \; , \; z = 0 \; ; \quad y \in [0,1] \; ,$$

pri čemu se za uvedenu orijentaciju parametar menja od y=1 do y=0, to je $e^x=1,$ dx=0 i

$$I_2 = \int_{L_2} \left(e^x \arctan y + 2y \right) dx + \left(\frac{e^x}{1 + y^2} - 1 \right) dy$$
$$= \int_1^0 \left(\frac{1}{1 + y^2} - 1 \right) dy = \left(\arctan y - y \right) \Big|_1^0 = -\frac{1}{4} \pi + 1 \ .$$

Konačno je

$$I = I_2 - I_3 = -\frac{1}{4}\pi + 1 + \frac{1}{4}\pi = 1$$
.

Za razliku od rešavanja pomoću Green–Riemannove teoreme, direktno rešavanje integrala I kao krivolinijskog je izuzetno teško. Primena Green–Riemannove teoreme je olakšana time što je kriva L mogla da se dopuni do zatvorene krive L_3 delom L_2 y–ose (Napomena 3.5.1).

50. Izračunati potpuni krivolinijski integral II vrste

$$I = \oint_L \frac{-y\,dx + x\,dy}{x^2 + y^2} \ ,$$

gde je L pozitivno orijentisana spoljna kontura dvostruko povezane oblasti u xy-ravni (z=0), čija je unutrašnja kontura

$$L_1: \quad x^2 + y^2 = 1 \ , \ z = 0 \ .$$

 $\it Re \check{\it senje}.$ Dvostruko povezanu oblast označimo saDi njenu unutrašnju konturu L_1 orijentišimo negativno.

Funkcije

$$P(x,y) = -\frac{y}{x^2 + y^2} \; , \; Q(x,y) = \frac{x}{x^2 + y^2} \; ; \; \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} = \frac{y^2 - x^2}{\left(x^2 + y^2\right)^2}$$

su neprekidne u oblasti D jer $(0,0) \notin D$. Zato može da se primeni Teorema 3.5.2 i sledi

$$\oint_{L^+} \frac{-y\,dx+x\,dy}{x^2+y^2} + \oint_{L^-_1} \frac{-y\,dx+x\,dy}{x^2+y^2} = \iint_D \Bigl(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\Bigr)\,dxdy = 0 \ ,$$

odakle je

$$I = \oint_{L^+} \frac{-y\,dx + x\,dy}{x^2 + y^2} = -\oint_{L^-_1} \frac{-y\,dx + x\,dy}{x^2 + y^2} = \oint_{L^+_1} \frac{-y\,dx + x\,dy}{x^2 + y^2} \ .$$

Parametarske jednačine kružnice L_1 su

$$L_1: \quad x = \cos \varphi \ , \ y = \sin \varphi \ , \ z = 0 \ ; \quad \varphi \in [0, 2\pi] \ ,$$

pa je

$$I = \oint_{L_1^+} \frac{-y \, dx + x \, dy}{x^2 + y^2} = \int_0^{2\pi} d\varphi = 2\pi \ .$$

Pošto je kontura L proizvoljna, krivolinijski integral ima istu vrednost $I=2\pi$ duž svake konture (zatvorena kriva) u xy-ravni za koju je $(0,0)\in \operatorname{int} L$. Ukoliko $(0,0)\notin L\cup \operatorname{int} L$, prema Green-Riemannovoj teoremi je I=0. Dakle, I ne zavisi od oblika konture L, već samo od njenog položaja u koordinatnoj ravni, tj. od navedenog uslova.

51. Izračunati površinu oblasti u xy-ravni (z=0) ograničene zatvorenom krivom

L:
$$x = \frac{3t}{1+t^3}$$
, $y = \frac{3t^2}{1+t^3}$, $z = 0$; $t \in [0, +\infty)$.

 $Re\check{s}enje$. Neka je D oblast čiju površinu d treba izračunati. Kriva L je petlja Descartesovog lista (slika iz Zadatka 36 za a=1). Oblast D je prosto povezana.

Kako je L zadata parametarski, površinu d nalazimo posredstvom Green–Riemannove teoreme (Napomena 3.5.2). Od jednakosti (3.5.5)–(3.5.8) najpogodnija je (3.5.8) zbog y/x=t, tj.

$$d = \frac{1}{2} \oint_{L^+} x^2 d\left(\frac{y}{x}\right) .$$

Pozitivnoj orijentaciji krive L odgovara promena parametra od t=0 do $t=+\infty$, što se lako proverava kretanjem po krivoj za konkretan izbor vrednosti parametra, npr. t=0, t=1, t=2. Zato je dalje

$$d = \frac{1}{2} \int_0^{+\infty} \frac{9t^2}{\left(1 + t^3\right)^2} dt = \frac{3}{2} \int_0^{+\infty} \frac{1}{\left(1 + t^3\right)^2} d\left(1 + t^3\right) = -\frac{3}{2} \frac{1}{1 + t^3} \Big|_0^{+\infty} = \frac{3}{2} ,$$

uz napomenu da je određeni integral, koji smo upravo rešili, nesvojstven ([4], str. 269–270).

Da je petlja Descartesovog lista zadata implicitno i da smo parametrizaciju vršili pomoću uopštenih polarnih koordinata $r,\, \varphi$ (Zadatak 36), dobili bismo

$$L: \quad x = 3a\cos^{4/3}\varphi\sin^{2/3}\varphi \; , \; y = 3a\cos^{2/3}\varphi\sin^{4/3}\varphi \; , \; z = 0 \; ; \quad \varphi \in \left[0, \frac{\pi}{2}\right] \; ,$$

odakle je očigledno da parametri t i φ nisu isti. Rešavanje zadatka pomoću bilo koje od formula (3.5.5)–(3.5.8) je značajno teže sa parametrom φ zbog neophodnosti sređivanja odgovarajućih podintegralnih izraza. Takođe, rešavanje pomoću dvojnog integrala (Zadatak 36) je prostije nego pomoću krivolinijskog sa parametrom φ (Napomena 3.5.2).

52. Izračunati površinu dela xy-ravni (z=0) ograničenog krivom

$$L: (x^2+y^2)^2 = ax(x^2-3y^2), z=0,$$

gde je a > 0.

Rešenje. Neka je D de
oxy–ravni čiju površinu d treba izračunati. U jednačini krive
 L je $\left(x^2+y^2\right)^2\geq 0$, pa mora da bude i $x\left(x^2-3y^2\right)=x(x-\sqrt{3}\,y)(x+\sqrt{3}\,y)\geq 0$. Nešto dužom diskusijom se utvrđuje da poslednja nejednakost važi u slučajevima

$$x \geq 0 \; , \; -\frac{1}{\sqrt{3}} \, x \leq y \leq \frac{1}{\sqrt{3}} \, x \; ; \; x \leq 0 \; , \; y \geq -\frac{1}{\sqrt{3}} \, x \; ; \; x \leq 0 \; , \; y < \frac{1}{\sqrt{3}} \, x \; .$$

Slično lemniskati (Zadatak 6), navedeni slučajevi se odnose na tri zatvorene krive L_1 , L_2 i L_3 , sa zajedničkom tačkom $(0,0) \in L$, koja je singularna i to trostruka tačka jednačine

([2], str. 98). Dakle, L nije zatvorena prosta kriva u smislu Definicije 1.1.9, već je $L = L_1 \cup L_2 \cup L_3$. Oblasti D_i ograničene sa L_i (i = 1, 2, 3) imaju jednake površine, pa posmatramo samo krivu L_1 i oblast D_1 , znajući da je $(0,0) \in D_1$.

Površinu dnalazimo pomoću jednakosti (3.5.5), koja je posledica Green–Riemannove teoreme,

$$d = \frac{3}{2} \oint_{L_1^+} x \, dy - y \, dx \; .$$

Uvodimo polarne koordinate sa

$$x = r\cos\varphi$$
, $y = r\sin\varphi$.

Za pravu $y=(-1/\sqrt{3})x$ je $\tan\varphi=-1/\sqrt{3}$ i $\varphi=-\pi/6$, a za pravu $y=(1/\sqrt{3})x$ je $\tan\varphi=1/\sqrt{3}$ i $\varphi=\pi/6$. Takođe, iz jednačine krive L sledi

$$\begin{split} r &= a \cos \varphi \left(\cos^2 \varphi - 3 \sin^2 \varphi\right) = a \cos \varphi \left(\cos^2 \varphi - \sin^2 \varphi - 2 \sin^2 \varphi\right) \\ &= a \cos \varphi \left(\cos 2\varphi - 2 \sin^2 \varphi\right) = a (\cos \varphi \cos 2\varphi - 2 \cos \varphi \sin \varphi \sin \varphi) \\ &= a (\cos \varphi \cos 2\varphi - \sin \varphi \sin 2\varphi) = a \cos 3\varphi \;, \end{split}$$

gde je upotrebljena adiciona formula

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \quad (\alpha = \varphi, \beta = 2\varphi).$$

Zato su parametarske jednačine krive L_1 date sa

$$L_1: \quad x = a\cos\varphi\cos3\varphi \; , \; y = a\sin\varphi\cos3\varphi \; , \; z = 0 \; ; \quad \varphi \in \left[-\frac{\pi}{6}, \frac{\pi}{6}\right] \; .$$

Za pozitivnu orijentaciju krive L_1 parametar se kreće od $\varphi=-\pi/6$ do $\varphi=\pi/6$. Kako je

$$x'(\varphi) = -a(\sin\varphi\cos3\varphi + 3\cos\varphi\sin3\varphi) ,$$

$$y'(\varphi) = a(\cos\varphi\cos3\varphi - 3\sin\varphi\sin3\varphi) ,$$

posle sređivanja je

$$x \, dy - y \, dx = a^2 \cos^2 3\varphi \, d\varphi$$

i za površinu se dobija

$$d = \frac{3}{2} a^2 \int_{-\pi/6}^{\pi/6} \cos^2 3\varphi \, d\varphi = 3a^2 \int_0^{\pi/6} \cos^2 3\varphi \, d\varphi = 3a^2 \int_0^{\pi/6} \frac{1 + \cos 6\varphi}{2} \, d\varphi = \frac{1}{4} a^2 \pi .$$

Zadatak se rešava lakše pomoću dvojnog integrala (Napomena 3.5.2) jer nalaženje izvoda $x'(\varphi), y'(\varphi)$ i sređivanje izraza $x\,dy-y\,dx$ nije potrebno. Tačnije, kriva L_1 i oblast D_1 se preslikavaju u

$$L_1^*: \quad r = a\cos 3\varphi \ ,$$

$$D^*: \quad 0 \le r \le a\cos 3\varphi \ , \ -\frac{\pi}{6} \le \varphi \le \frac{\pi}{6}$$

i odmah se dobija

$$d = 3 \iint_{D_1} dx dy = 3 \iint_{D_1^*} r \, dr d\varphi = 3 \int_{-\pi/6}^{\pi/6} d\varphi \int_0^{a \cos 3\varphi} r \, dr = \frac{3}{2} \, a^2 \int_{-\pi/6}^{\pi/6} \cos^2 3\varphi \, d\varphi \ .$$

Primetimo da smo položaj krive L mogli jednostavnije da utvrdimo diskutujući njenu jednačinu u polarnim koordinatama

$$r = a\cos 3\varphi$$
.

Za $\varphi \in [0,2\pi]$ je $3\varphi \in [0,6\pi]$, pa iz uslova $\cos 3\varphi \geq 0$ sledi $3\varphi \in [-\pi/2+2k\pi,\pi/2+2k\pi]$ (k=0,1,2) i $\varphi \in [-\pi/6+2k\pi/3,\pi/6+2k\pi/3]$, tj.

$$\varphi \in \left[-\frac{\pi}{6}, \frac{\pi}{6}\right] \cup \left[\frac{\pi}{2}, \frac{5\pi}{6}\right] \cup \left[\frac{7\pi}{6}, \frac{3\pi}{2}\right] \,.$$

POVRŠINSKI INTEGRALI

Površinski integrali po površi (I vrste)

Ako je

$$S: \quad z = z(x,y) ; \quad (x,y) \in D_{xy} ,$$

$$p = \frac{\partial z}{\partial x} , \quad q = \frac{\partial z}{\partial y} ,$$

tada je

$$\iint_S H(x,y,z) d\sigma = \iint_{D_{xy}} H(x,y,z(x,y)) \sqrt{1+p^2+q^2} dxdy.$$

53. Izračunati površinu površi

$$S: \quad x = u\cos v \;, \; y = u\sin v \;, \; z = v \;; \quad (u,v) \in D_{uv} \;,$$

gde je

$$D_{uv}: 0 \le u \le a, 0 \le v \le 2\pi$$
.

Rešenje. Neka je s površina površi S.

Iz zadatih parametarskih jednačina površi ${\cal S}$ nalazimo

$$\begin{split} x_u &= \cos v \;,\; x_v = -u \sin v \;,\; y_u = \sin v \;,\; y_v = u \cos v \;,\; z_u = 0 \;,\; z_v = 1 \;;\\ E &= x_u^2 + y_u^2 + z_u^2 = 1 \;,\; G = x_v^2 + y_v^2 + z_v^2 = 1 + u^2 \;,\; F = x_u x_v + y_u y_v + z_u z_v = 0 \;. \end{split}$$

Zato je

$$s = \iint_{S} d\sigma = \iint_{D_{uv}} \sqrt{EG - F^{2}} \ dudv = \iint_{D_{uv}} \sqrt{1 + u^{2}} \ dudv$$
$$= \int_{0}^{a} \sqrt{1 + u^{2}} \ du \int_{0}^{2\pi} dv = 2\pi \int_{0}^{a} \sqrt{1 + u^{2}} \ du \ .$$

Dobijeni određeni integral se rešava hiperboličkom smenom

$$u = \sinh t = \frac{e^t - e^{-t}}{2} \ .$$

Za u=0 je t=0, a za u=a je $t=A=\arcsin a=\ln \left(a+\sqrt{1+a^2}\right)$. Koristeći osobine hiperboličkih funkcija ([3], str. 299–300, [4], str. 27, 209), dalje je

$$s = 2\pi \int_0^A \sqrt{1 + \sinh^2 t} \cosh t \, dt = 2\pi \int_0^A \cosh^2 t \, dt = 2\pi \int_0^A \frac{1 + \cosh 2t}{2} \, dt$$
$$= \pi \left(t + \frac{1}{2} \sinh 2t \right) \Big|_0^A = \pi (A + \sinh A \cosh A) = \pi (A + a \cosh A) .$$

Zamenom $t=A=\ln \left(a+\sqrt{1+a^2}\right)$ u definicioni izraz za coshti sređivanjem sledi

$$\cosh A = \frac{e^A + e^{-A}}{2} = \frac{a^2 + a\sqrt{1 + a^2} + 1}{a + \sqrt{1 + a^2}} = \frac{a\left(a + \sqrt{1 + a^2}\right)}{a + \sqrt{1 + a^2}} + \frac{1}{a + \sqrt{1 + a^2}}$$
$$= a + \left(-a + \sqrt{1 + a^2}\right) = \sqrt{1 + a^2} ,$$

pa je konačno

$$s = \pi \Big[a \sqrt{1+a^2} + \ln \big(a + \sqrt{1+a^2} \, \big) \Big] \ . \label{eq:spectrum}$$

54. Izračunati površinu dela ravni

$$S_1: \quad x + 2y + 3z = 6$$

 $za x, y, z \geq 0.$

Rešenje. Neka je S deo ravni S_1 u I oktantu, čiju površinu s treba izračunati. Ravan S_1 seče x, y i z-osu redom u tačkama (6,0,0), (0,3,0), (0,0,2), a xy-ravan duž prave

$$L: \quad y = -\frac{1}{2} x + 3 \; , \; z = 0 \; .$$

Površ S se bijektivno projektuje na sve tri koordinatne ravni (2° iz Napomene 4.3.2). Projektujemo je, npr., na xy-ravan (z = 0). Projekcija je oblast D_{xy} ograničena x-osom, y-osom i pravom L, tj.

$$D_{xy}: 0 \le x \le 6, \ 0 \le y \le -\frac{1}{2}x + 3.$$

S obzirom na $S\subset S_1$ i projektovanje na xy-ravan, iz jednačine ravni S_1 iskazujemo jednačinu njenog dela S u obliku

$$S: \quad z = z(x,y) = -\frac{1}{3}x - \frac{2}{3}y + 2; \quad (x,y) \in D_{xy}.$$

Kako je

$$p = \frac{\partial z}{\partial x} = -\frac{1}{3} \ , \ q = \frac{\partial z}{\partial y} = -\frac{2}{3} \ ; \ 1 + p^2 + q^2 = \frac{14}{9} \ ,$$

to je

$$s = \iint_S d\sigma = \iint_{D_{xy}} \sqrt{1+p^2+q^2} \ dx dy = \frac{\sqrt{14}}{3} \iint_{D_{xy}} dx dy \ .$$

Prema opisu oblasti D_{xy} , dalje je

$$s = \frac{\sqrt{14}}{3} \int_0^6 dx \int_0^{-x/2+3} dy = \frac{\sqrt{14}}{3} \int_0^6 \left(-\frac{x}{2} + 3\right) dx = 3\sqrt{14} .$$

Zadatak se rešava na isti način ako se S projektuje na yz ili zx-ravan.

55. Izračunati površinu zatvorene površi $S = S_1 \cup S_2$, gde je S_1 manji deo sfere

$$S_3: \quad x^2 + y^2 + z^2 = 3a^2$$

koji iseca paraboloid

$$S_4: \quad x^2 + y^2 = 2az \ ,$$

a S_2 deo paraboloida S_4 koji je unutar sfere S_3 za a>0.

Rešenje. Neka je s_1 površina za S_1 , a s_2 površina za S_2 . Sfera S_3 je centralna, a paraboloid S_4 ima z-osu za osovinu. Površi S_3 i S_4 se seku duž krive L, a njihovi delovi S_1 i S_2 su iznad xy-ravni ($z \ge 0$).

Površi S_1 i S_2 se bijektivno projektuju samo na xy-ravan (z=0) u istu oblast D_{xy} . Da bismo odredili ovu oblast, određujemo projekciju L_{xy} krive L. Smenjujući $x^2+y^2=2az$ u $x^2+y^2+z^2=3a^2$ sledi $z^2+2az-3a^2=0$, odakle je $z_1=a>0$, $z_2=-3a<0$ i sve tačke krive L imaju istu treću koordinatu z=a. Za z=a jednačine površi S_3 i S_4 postaju $x^2+y^2=2a^2$, pa je L_{xy} kružnica

$$L_{xy}: \quad x^2 + y^2 = 2a^2 \; , \; z = 0 \; .$$

Zato je projekcija krug

$$D_{xy}: \quad x^2 + y^2 \le 2a^2 \ .$$

Za površi $S_1\subset S_3$ i $S_2\subset S_4$ je $z\geq 0$ i projektovanje se vrši na xy-ravan, pa jednačine ovih površi zapisujemo u obliku

$$S_1: \quad z = z_1(x,y) = \sqrt{3a^2 - x^2 - y^2} \; ; \quad (x,y) \in D_{xy} \; ,$$

 $S_2: \quad z = z_2(x,y) = \frac{1}{2a} (x^2 + y^2) \; ; \quad (x,y) \in D_{xy} \; .$

Kako je

$$\begin{split} p_1 &= \frac{\partial z_1}{\partial x} = -\frac{x}{\sqrt{3a^2 - x^2 - y^2}} \;,\; q_1 = \frac{\partial z_1}{\partial y} = -\frac{y}{\sqrt{3a^2 - x^2 - y^2}} \;; \\ p_2 &= \frac{\partial z_2}{\partial x} = \frac{x}{a} \;,\; q_2 = \frac{\partial z_2}{\partial y} = \frac{y}{a} \;; \\ 1 + p_1^2 + q_1^2 &= \frac{3a^2}{3a^2 - x^2 - y^2} \;,\; 1 + p_2^2 + q_2^2 = \frac{a^2 + x^2 + y^2}{a^2} \;, \end{split}$$

to je

$$\begin{split} s_1 &= \iint_{S_1} d\sigma = \iint_{D_{xy}} \sqrt{1 + p_1^2 + q_1^2} \ dx dy = \sqrt{3} \, a \iint_{D_{xy}} \frac{dx dy}{\sqrt{3a^2 - x^2 - y^2}} \ , \\ s_2 &= \iint_{S_2} d\sigma = \iint_{D_{xy}} \sqrt{1 + p_2^2 + q_2^2} \ dx dy = \frac{1}{a} \iint_{D_{xy}} \sqrt{a^2 + x^2 + y^2} \ dx dy \ . \end{split}$$

Uvođenjem polarnih koordinata sa

$$x = r\cos\varphi$$
, $y = r\sin\varphi$,

za koje je |J|=r, oblast D_{xy} se preslikava u

$$D_{xy}^*:\quad 0\leq r\leq \sqrt{2}\,a\ ,\ 0\leq \varphi\leq 2\pi$$

i sledi

$$\begin{split} s_1 &= \sqrt{3} \, a \iint_{D_{xy}^*} \frac{r}{\sqrt{3a^2 - r^2}} \, dr d\varphi = \sqrt{3} \, a \int_0^{2\pi} \, d\varphi \int_0^{\sqrt{2} \, a} \frac{r}{\sqrt{3a^2 - r^2}} \, dr \\ &= -\sqrt{3} \, a\pi \int_0^{\sqrt{2} \, a} \frac{1}{\sqrt{3a^2 - r^2}} \, d \big(3a^2 - r^2 \big) = 2\sqrt{3} (\sqrt{3} - 1) a^2 \pi \ , \\ s_2 &= \frac{1}{a} \iint_{D_{xy}^*} r \sqrt{a^2 + r^2} \, dr d\varphi = \frac{1}{a} \int_0^{2\pi} d\varphi \int_0^{\sqrt{2} \, a} r \sqrt{a^2 + r^2} \, dr \\ &= \frac{1}{a} \pi \int_0^{\sqrt{2} \, a} \sqrt{a^2 + r^2} \, d \big(a^2 + r^2 \big) = \frac{2}{3} (3\sqrt{3} - 1) a^2 \pi \ , \end{split}$$

odakle je, zbog $S = S_1 \cup S_2$,

$$s = s_1 + s_2 = \frac{16}{3} a^2 \pi .$$

Do projekcije L_{xy} može da se dođe na standardan način, eliminacijom z iz jednačina površi S_3 i S_4 . Zamenom $z=\left(x^2+y^2\right)/2a$ iz jednačine za S_4 u jednačinu za S_3 sledi

$$L_{xy}: (x^2+y^2)(x^2+y^2+4a^2) = 12a^4, z=0.$$

Krivu L_{xy} prepoznajemo zahvaljujući polarnim koordinatama r, φ za koje je iz prethodne jednačine $r^4+4a^2r^2-12a^4=0$, što je bikvadratna jednačina po r. Smenom $t=r^2>0$ ova jednačina postaje $t^2+4a^2t-12a^4=0$ i ima rešenja $t_1=2a^2>0$ i $t_2=-6a^2<0$, pa je $r^2=t_1=2a^2$ i $r=\sqrt{2}\,a$. Dakle, L_{xy} je centralna kružnica poluprečnika $r=\sqrt{2}\,a$.

Primećujemo da se površ S sastoji od delova S_1 i S_2 sa različitom parametrizacijom (4° iz Napomene 4.3.2), pri čemu se delovi bijektivno projektuju samo na xy-ravan (1° iz Napomene 4.3.2). Povoljna situacija je u tome što se oba dela projektuju u istu oblast.

56. Izračunati površinski integral I vrste

$$I = \iint_S y(x+z^2) d\sigma ,$$

gde je S deo konusa

$$S_1: \quad z = -\sqrt{x^2 + y^2}$$

koji iseca cilindrična površ

$$S_2: \quad x^2 + y^2 = 2y$$
.

Rešenje. Konus S_1 ima z-osu za osovinu i nalazi se ispod xy-ravni ($z \le 0$). Izvodnice cilindrične površi S_2 su paralelne z-osi, a direktrisa je kružnica L u xy-ravni sa centrom u tački (0,1,0) poluprečnika 1.

PovršS se bijektivno projektuje na $xy\!-\!\mathrm{ravan}\ (z=0)$ u oblast ograničenu sa L,tj. u krug

$$D_{xy}: \quad x^2 + y^2 \le 2y$$

i kao deo konusa S_1 ima jednačinu

$$S: \quad z = z(x,y) = -\sqrt{x^2 + y^2} \; ; \quad (x,y) \in D_{xy} \; .$$

Određujući

$$p = \frac{\partial z}{\partial x} = -\frac{x}{\sqrt{x^2 + y^2}}, \ q = \frac{\partial z}{\partial y} = -\frac{y}{\sqrt{x^2 + y^2}}; \ 1 + p^2 + q^2 = 2,$$

integral I postaje

$$I = \iint_{D_{xy}} y \left[x + z^2(x,y) \right] \sqrt{1 + p^2 + q^2} \ dx dy = \sqrt{2} \iint_{D_{xy}} y \left(x + x^2 + y^2 \right) dx dy \ .$$

Uvođenjem polarnih koordinata r, φ u xy-ravni, krug D_{xy} prelazi u oblast

$$D_{xy}^*: 0 \le r \le 2\sin\varphi, 0 \le \varphi \le \pi,$$

pa je dalje

$$\begin{split} I &= \sqrt{2} \iint_{D_{xy}^*} r^2 \sin \varphi \big(r \cos \varphi + r^2 \big) \; dr d\varphi \\ &= \sqrt{2} \int_0^\pi d\varphi \int_0^{2 \sin \varphi} \big(r^3 \cos \varphi \sin \varphi + r^4 \sin \varphi \big) \; dr \\ &= \sqrt{2} \int_0^\pi \Big(4 \cos \varphi \sin^5 \varphi + \frac{32}{5} \sin^6 \varphi \Big) \; d\varphi \\ &= 4\sqrt{2} \int_0^\pi \sin^5 \varphi \, d(\sin \varphi) + \frac{32\sqrt{2}}{5} \int_0^\pi \sin^6 \varphi \, d\varphi = \frac{32\sqrt{2}}{5} \int_0^\pi \sin^6 \varphi \, d\varphi \; . \end{split}$$

Postupajući kao u Zadatku 10, nalazimo

$$\sin^{6} \varphi = \frac{5}{16} - \frac{3}{8} \cos 2\varphi - \frac{1}{8} \cos^{3} 2\varphi + \frac{3}{16} \cos 4\varphi$$

i dobijamo

$$\begin{split} I &= \frac{32\sqrt{2}}{5} \left[\frac{5}{16} \int_0^\pi d\varphi - \frac{3}{8} \int_0^\pi \cos 2\varphi \, d\varphi - \frac{1}{8} \int_0^\pi \cos^3 2\varphi \, d\varphi + \frac{3}{16} \int_0^\pi \cos 4\varphi \, d\varphi \right] \\ &= \frac{32\sqrt{2}}{5} \left[\frac{5}{16} \pi - \frac{1}{16} \int_0^\pi \left(1 - \sin^2 2\varphi \right) \, d(\sin 2\varphi) \right] = \frac{32\sqrt{2}}{5} \, \frac{5}{16} \, \pi = 2\sqrt{2} \, \pi \; . \end{split}$$

Osim na xy–ravan, površS se bijektivno projektuje i na zx–ravan u oblast

$$D_{zx}: -2 \le z \le 0, -\frac{z}{2}\sqrt{4-z^2} \le x \le \frac{z}{2}\sqrt{4-z^2}.$$

Međutim, odgovarajući dvojni integral po oblasti D_{zx} se znatno teže rešava, pa u opštem slučaju nije svejedno koje se bijektivno projektovanje koristi za prelazak sa površinskog na dvojni integral (2° iz Napomene 4.3.2).

57. Izračunati površinski integral I vrste

$$I = \iint_{S} (y + z + \sqrt{a^2 - x^2}) d\sigma ,$$

gde je

$$S: \quad x^2 + y^2 = a^2$$

cilindrična površ za $0 \le z \le c$ i a, c > 0.

 $Re \check{s}en je$. Izvodnice cilindrične površi S su paralelne z-osi, a direktrisa je centralna kružnica u xy-ravni poluprečnika a.

Projektovanje površi S na bilo koju od koordinatnih ravni nije bijekcija (3° iz Napomene 4.3.2). Pri tome za projektovanje na yz ili zx-ravan postoje po dva bijektivna dela površi S, dok za projektovanje na xy-ravan površ S nema bijektivnih delova. Površ S projektujemo, npr., na zx-ravan (y=0) i u tom cilju je posmatramo kao $S=S_1\cup S_2$, gde je S_1 deo za $y\geq 0$, a S_2 deo za $y\leq 0$. Oba dela se bijektivno projektuju na istu pravougaonu oblast

$$D_{zx}: 0 \le z \le c, -a \le x \le a.$$

Budući da delove $S_1, S_2 \subset S$ projektujemo na zx-ravan, njihove jednačine zapisujemo u obliku

$$S_1: \quad y = y_1(z, x) = \sqrt{a^2 - x^2} \; ; \quad (z, x) \in D_{zx} \; ,$$

 $S_2: \quad y = y_2(z, x) = -\sqrt{a^2 - x^2} \; ; \quad (z, x) \in D_{zx} \; .$

Za površi S_1 , S_2 je

$$\begin{split} p_1 &= \frac{\partial y_1}{\partial z} = 0 \ , \ q_1 = \frac{\partial y_1}{\partial x} = -\frac{x}{\sqrt{a^2 - x^2}} \ ; \\ p_2 &= \frac{\partial y_2}{\partial z} = 0 \ , \ q_2 = \frac{\partial y_2}{\partial x} = \frac{x}{\sqrt{a^2 - x^2}} \ ; \\ 1 + p_1^2 + q_1^2 = 1 + p_2^2 + q_2^2 = \frac{a^2}{a^2 - x^2} \ , \end{split}$$

pa je

$$\begin{split} I_1 &= \iint_{D_{zx}} \left[y_1(z,x) + z + \sqrt{a^2 - x^2} \, \right] \sqrt{1 + p_1^2 + q_1^2} \, \, dz dx \\ &= a \iint_{D_{zx}} \left(z + 2\sqrt{a^2 - x^2} \, \right) \frac{1}{\sqrt{a^2 - x^2}} \, dz dx = a \iint_{D_{zx}} \left(\frac{z}{\sqrt{a^2 - x^2}} + 2 \right) dz dx \; , \\ I_2 &= \iint_{D_{zx}} \left[y_2(z,x) + z + \sqrt{a^2 - x^2} \, \right] \sqrt{1 + p_2^2 + q_2^2} \, dz dx = a \iint_{D_{zx}} \frac{z}{\sqrt{a^2 - x^2}} \, dz dx \; . \end{split}$$

Prema opisu oblasti D_{zx} , dalje je

$$I_{1} = a \int_{-a}^{a} dx \int_{0}^{c} \left(\frac{z}{\sqrt{a^{2} - x^{2}}} + 2\right) dz = 4a^{2}c + ac^{2} \int_{0}^{a} \frac{1}{\sqrt{a^{2} - x^{2}}} dx$$

$$= 4a^{2}c + ac^{2} \int_{0}^{a} \frac{1}{\sqrt{1 - \left(\frac{x}{a}\right)^{2}}} d\left(\frac{x}{a}\right) = 4a^{2}c + ac^{2} \arcsin \frac{x}{a} \Big|_{0}^{a} = 4a^{2}c + \frac{1}{2} ac^{2}\pi ,$$

$$I_{2} = a \int_{-a}^{a} dx \int_{0}^{c} \frac{z}{\sqrt{a^{2} - x^{2}}} dz = ac^{2} \int_{0}^{a} \frac{1}{\sqrt{a^{2} - x^{2}}} dx = \frac{1}{2} ac^{2}\pi ,$$

i, zbog $S = S_1 \cup S_2$,

$$I = I_1 + I_2 = 4a^2c + ac^2\pi = ac(4a + c\pi)$$
.

Zadatak se slično rešava projektovanjem S na yz-ravan.

58. Izračunati površinski integral I vrste

$$I = \iint_S \left(x^2 + y^2 + z^2\right) d\sigma ,$$

gde je

$$S: \quad x^2 + y^2 + z^2 = 1$$
.

 $Re \check{s}enje.$ PovršSje centralna sfera poluprečnika 1. Neka je S_1 deo sfere S za $z \geq 0,$ a S_2 deo za $z \leq 0.$

Kako je S zatvorena površ, nijedno od projektovanja na koordinatne ravni nije bijekcija (3° iz Napomene 4.3.2). Zato S posmatramo kao $S = S_1 \cup S_2$, pri čemu se delovi S_1 , S_2 bijektivno projektuju na xy-ravan (z = 0) u krug

$$D_{xy}: \quad x^2 + y^2 \le 1$$

i imaju jednačine

$$S_1: \quad z = z_1(x,y) = \sqrt{1 - x^2 - y^2}; \quad (x,y) \in D_{xy},$$

 $S_2: \quad z = z_2(x,y) = -\sqrt{1 - x^2 - y^2}; \quad (x,y) \in D_{xy}.$

Određujući $p_i=\partial z_i/\partial x,\,q_i=\partial z_i/\partial y\,\,(i=1,2),$ nalazimo

$$1 + p_i^2 + q_i^2 = \frac{1}{1 - x^2 - y^2} ,$$

pa je

$$I_i = \iint_{S_i} (x^2 + y^2 + z^2) d\sigma = \iint_{D_{xy}} \frac{dxdy}{\sqrt{1 - x^2 - y^2}}.$$

Uvođenjem polarnih koordinata $r,\,\varphi$ u xy–ravni, oblast D_{xy} prelazi u

$$D_{xy}^*: 0 \le r \le 1, 0 \le \varphi \le 2\pi$$

i sledi

$$I_i = \iint_{D_{\sigma r}^*} \frac{r}{\sqrt{1-r^2}} \, dr d\varphi = \int_0^{2\pi} d\varphi \int_0^1 \frac{r}{\sqrt{1-r^2}} \, dr = -\pi \int_0^1 \frac{1}{\sqrt{1-r^2}} \, d \left(1-r^2\right) = 2\pi \ ,$$

dakle

$$I = I_1 + I_2 = 4\pi$$
.

Slično je i rešavanje zadatka projektovanjem S na ostale koordinatne ravni.

Zadatak može da se reši i jednostavnije. Kako je podintegralna funkcija $x^2+y^2+z^2$ definisana na S, to mora da važi

$$x^2 + y^2 + z^2 = 1$$
,

pa je

$$I = \iint_{S} d\sigma = s ,$$

gde je s površina sfere S. Primenom dobro poznate formule

$$s = 4R^2\pi$$

za određivanje površine sfere poluprečnika R, u konkretnom slučaju R=1 sledi rezultatat.

59. Izračunati površinski integral I vrste

$$I = \iint_S x \, d\sigma \; ,$$

gde je S deo cilindrične površi

$$S_1: \quad u = x^2 + 1$$

između površi

$$S_2: y=2, S_3: y=3, S_4: y=x^2+z^2$$

za $x \ge 0$.

Rešenje. Cilindrična površ ima za direktrisu parabolu L u xy-ravni i izvodnice paralelne z-osi (prva slika). Površi S_2 , S_3 su ravni paralelne zx-ravni i za $x \geq 0$ na S_1 isecaju "beskonačnu traku", osenčenu na prvoj slici. Površ S_4 je paraboloid sa y-osom

kao osovinom, koji tu traku seče duž krivih L_1 , L_2 i sa nje iseca konačni deo S (druga slika).

Pošto je S deo cilindrične površi čije su izvodnice paralelne z-osi, S mora da se projektuje na yz ili zx-ravan iz razloga navedenog u Zadatku 57. Oba projektovanja su bijekcije (2° iz Napomene 4.3.2). Neka je D_{yz} projekcija površi S na yz-ravan (x=0). Eliminacijom x iz jednačina površi S_1 i S_4 dobijaju se jednačine projekcija L_{1yz} , L_{2yz} krivih L_1 i L_2 .

$$L_{1yz}: \quad z = -1 \; , \; x = 0 \; , \quad L_{2yz}: \quad z = 1 \; , \; x = 0 \; .$$

Takođe, tačke sa površi S i njihove projekcije iz D_{yz} imaju istu y-koordinatu, pa je $2 \le y \le 3$ i opis projekcije D_{yz} glasi

$$D_{uz}: 2 \le y \le 3, -1 \le z \le 1.$$

Kako je $S\subset S_1$ za $x\geq 0$ i kako se projektovanje vrši na yz–ravan, jednačinu površi S zapisujemo u obliku

$$S: \quad x = x(y, z) = \sqrt{y - 1} \; ; \quad (y, z) \in D_{yz} \; .$$

Nalazeći

$$p = \frac{\partial x}{\partial y} = \frac{1}{2\sqrt{y-1}} \ , \ q = \frac{\partial x}{\partial z} = 0 \ ; \ 1 + p^2 + q^2 = \frac{4y-3}{4(y-1)} \ ,$$

dobijamo

$$\begin{split} I &= \iint_{D_{yz}} x(y,z) \sqrt{1+p^2+q^2} \ dydz = \frac{1}{2} \iint_{D_{yz}} \sqrt{4y-3} \ dydz \\ &= \frac{1}{2} \int_{2}^{3} \sqrt{4y-3} \ dy \int_{-1}^{1} dz = \int_{2}^{3} \sqrt{4y-3} \ dy \ . \end{split}$$

Poslednji određeni integral se rešava smenom

$$4y - 3 = t^2 ,$$

za koju je $t=\sqrt{5}$ kad je $y=2,\,t=3$ kad je y=3 i $dy=t\,dt/2$, pa je

$$I = \frac{1}{2} \int_{\sqrt{5}}^{3} t^2 dt = \frac{27 - 5\sqrt{5}}{6} .$$

U slučaju projektovanja površi S na zx-ravan za projekciju se dobija

$$D_{zx}: -1 \le z \le 1 , 1 \le x \le \sqrt{2} ,$$

pri čemu se granice promenljive x određuju iz jednačine površi S_1 za y=2 i y=3, a granice za z eliminacijom y iz jednačina površi S_1 i S_4 . Odgovarajući dvojni integral po oblasti D_{zx} se takođe jednostavno rešava.

60. Izračunati površinski integral I vrste

$$I = \iint_{S} (1 + x^2 + y^2)^{3/2} d\sigma ,$$

gde je S deo površi

$$S_1: \quad z = \frac{x^2}{2} - \frac{y^2}{2}$$

koji iseca cilindrična površ

$$S_2: (x^2+y^2)^2 = a^2(x^2-y^2)$$

za $x \ge 0$ i a > 0.

Rešenje. Površ S_1 je hiperbolički paraboloid ([4], str. 205–206). Izvodnice cilindrične površi S_2 su paralelne z-osi, a direktrisa L je deo lemniskate (Zadatak 6) za $x \ge 0$.

Projektovanje površi S na xy–ravan je bijekcija. Pri tome je projekcija D_{xy} ograničena sa L, a S ima jednačinu

$$S: \quad z = z(x,y) = \frac{x^2}{2} - \frac{y^2}{2} ; \quad (x,y) \in D_{xy} .$$

Određujući

$$p = \frac{\partial z}{\partial x} = x \ , \ q = \frac{\partial z}{\partial y} = -y \ ; \ 1 + p^2 + q^2 = 1 + x^2 + y^2 \ ,$$

integral I postaje

$$I = \iint_{D_{xy}} (1 + x^2 + y^2)^{3/2} \sqrt{1 + p^2 + q^2} \, dx dy = \iint_{D_{xy}} (1 + x^2 + y^2)^2 \, dx dy .$$

Uvodeći polarne koordinate $r,\,\varphi$ u xy–ravni i koristeći zaključke iz Zadatka 6, oblast D_{xy} se preslikava u

$$D_{xy}^*: \quad 0 \le r \le a\sqrt{\cos 2\varphi} \ , \ -\frac{\pi}{4} \le \varphi \le \frac{\pi}{4}$$

i za integral I se dobija

$$\begin{split} I &= \iint_{D_{xy}^*} r \big(1 + r^2\big)^2 \, dr d\varphi = \int_{-\pi/4}^{\pi/4} d\varphi \int_0^{a\sqrt{\cos 2\varphi}} r \big(1 + r^2\big)^2 \, dr \\ &= \frac{1}{2} \int_{-\pi/4}^{\pi/4} d\varphi \int_0^{a\sqrt{\cos 2\varphi}} \big(1 + r^2\big)^2 \, d \big(1 + r^2\big) \\ &= \frac{1}{3} \int_0^{\pi/4} \big(a^6 \cos^3 2\varphi + 3a^2 \cos 2\varphi + 3a^4 \cos^2 2\varphi\big) \, d\varphi \\ &= \frac{1}{6} a^6 \int_0^{\pi/4} \big(1 - \sin^2 2\varphi\big) \, d(\sin 2\varphi) + \frac{1}{2} a^2 \sin 2\varphi \, \Big|_0^{\pi/4} + \frac{1}{2} a^4 \int_0^{\pi/4} \big(1 + \cos 4\varphi\big) \, d\varphi \\ &= \frac{1}{9} a^6 + \frac{1}{2} a^2 + \frac{1}{8} a^4 \pi = \frac{1}{72} a^2 \big(8a^4 + 9a^2 \pi + 36\big) \; . \end{split}$$

PovršSse bijektivno projektuje i na yz-ravan, ali je projekciju teško prepoznati i opisati (2° iz Napomene 4.3.2).

61. Izračunati površinski integral I vrste

$$I = \iint_S (x^2 + y^2) z \, d\sigma ,$$

gde je S deo sfere

$$S_1: \quad x^2 + y^2 + z^2 = 4$$

koji odseca konus

$$S_2: \quad z = 2\sqrt{3} - \sqrt{3(x^2 + y^2)} \ .$$

 $Re \breve{s}enje.$ Površ S_1 je centralna sfera poluprečnika 2, a S_2 je konus sa z–osom kao osovinom, koji z–osu seče u tački $(0,0,2\sqrt{3}).$ Površi S_1 i S_2 seku xy–ravan (z=0) po istoj kružnici

$$L_1: \quad x^2+y^2=4 \; , \; z=0 \; ,$$

pa je L_1 jedna presečna kriva za S_1 i S_2 . Ako je L_2 druga presečna kriva, površ S je sferni prsten između krivih L_1 i L_2 .

Jednačinu krive L_2 nalazimo slično kao u Zadatku 55. Zamenom $x^2+y^2=4-z^2$ iz jednačine za S_1 u jednačinu za S_2 i kvadriranjem sledi $z^2-\sqrt{3}\,z=0$, odakle je $z_1=0$ i $z_2=\sqrt{3}$. Za $z_1=0$ je već određena presečna kriva L_1 . Za $z_2=\sqrt{3}$ jednačine površi S_1 i S_2 postaju $x^2+y^2=1$, pa je L_2 kružnica

$$L_2: \quad x^2 + y^2 = 1 \ , \ z = \sqrt{3} \ .$$

Kružnica L_1 i njena projekcija na $xy{\operatorname{\!--ravan}}$ se poklapaju, dok je projekcija kružnice L_2 data sa

$$L_{2xy}: \quad x^2 + y^2 = 1 \ , \ z = 0 \ .$$

Zato se S bijektivno projektuje na kružni prsten D_{xy} , koji je dvostruko povezana oblast sa spoljnom konturom L_1 i unutrašnjom L_{2xy} . Ostala projektovanja nisu bijekcije (1° iz Napomene 4.3.2). S obzirom na to što je površ $S \subset S_1$ iznad xy-ravni ($z \geq 0$), njena jednačina je

$$S: \quad z = z(x,y) = \sqrt{4 - x^2 - y^2} \; ; \quad (x,y) \in D_{xy} \; .$$

Kako je

$$\begin{split} p &= \frac{\partial z}{\partial x} = -\frac{x}{\sqrt{4 - x^2 - y^2}} \ , \ q &= \frac{\partial z}{\partial y} = -\frac{y}{\sqrt{4 - x^2 - y^2}} \ ; \\ 1 + p^2 + q^2 &= \frac{4}{4 - x^2 - y^2} \ , \end{split}$$

to je

$$I = \iint_{D_{xy}} (x^2 + y^2) z(x, y) \sqrt{1 + p^2 + q^2} \ dxdy = 2 \iint_{D_{xy}} (x^2 + y^2) \ dxdy \ .$$

Uvodeći polarne koordinate r, φ u xy-ravni, D_{xy} se preslikava u

$$D_{xy}^*: 1 \le r \le 2, \ 0 \le \varphi \le 2\pi$$

i sledi

$$I = 2 \iint_{D_{xy}^*} r^3 \, dr d\varphi = 2 \int_1^2 r^3 \, dr \int_0^{2\pi} d\varphi = 15\pi \ .$$

Sferni prsten S je primer dvostrane površi za koju je u Definiciji 1.1.19 $D_{uv}=D_{xy}$ dvostruko povezana oblast. Zato površS ima dve granične konture L_1 i L_2 .

62. Izračunati površinski integral I vrste

$$I = \iint_{S} \frac{1}{\sqrt{3y^2 + 5z^2 + 1}} \, d\sigma \; ,$$

gde je S deo površi

$$S_1: \quad \frac{x^2}{4} + y^2 - z^2 = 1$$

između xy-koordinatne ravni i ravni

$$S_2: \quad z=2\sqrt{2} \ .$$

Rešenje. Površ S_1 je jednograni hiperboloid ([4], str. 202–203), a S_2 je ravan paralelna xy-ravni. Površ S_1 seče xy-ravan (z=0) duž elipse

$$L_1: \quad \frac{x^2}{4} + y^2 = 1 \; , \; z = 0 \; ,$$

a ravan S_2 duž krive

$$L_2: \quad \frac{x^2}{4} + y^2 = 9 \; , \; z = 2\sqrt{2} \; .$$

Elipsa L_1 se poklapa sa svojom projekcijom na xy-ravan. Zbog paralelnosti S_2 sa xy-ravni, kriva L_2 i njena projekcija L_{2xy} su takođe elipse, tj.

$$L_{2xy}: \quad \frac{x^2}{36} + \frac{y^2}{9} = 1 \; , \; z = 0 \; .$$

Projektovanje površi S na xy-ravan je bijektivno, dok ostala projektovanja to nisu (1° iz Napomene 4.3.2). Projekcija D_{xy} površi S je dvostruko povezana oblast sa spoljnom konturom L_{2xy} i unutrašnjom L_1 . Za površ $S \subset S_1$ je $z \ge 0$, pa je

$$S: \quad z = z(x,y) = \frac{1}{2}\sqrt{x^2 + 4y^2 - 4} \; ; \quad (x,y) \in D_{xy} \; .$$

Kako je

$$3y^{2} + 5z^{2}(x, y) + 1 = 3y^{2} + \frac{5}{4}(x^{2} + 4y^{2} - 4) + 1 = \frac{1}{4}(5x^{2} + 32y^{2} - 16);$$

$$p = \frac{\partial z}{\partial x} = \frac{1}{2} \frac{x}{\sqrt{x^{2} + 4y^{2} - 4}}, \quad q = \frac{\partial z}{\partial y} = \frac{2y}{\sqrt{x^{2} + 4y^{2} - 4}};$$

$$1 + p^{2} + q^{2} = \frac{5x^{2} + 32y^{2} - 16}{4(x^{2} + 4y^{2} - 4)},$$

to je

$$I = \iint_{D_{xy}} \frac{1}{\sqrt{3y^2 + 5z^2(x,y) + 1}} \sqrt{1 + p^2 + q^2} \ dxdy = \iint_{D_{xy}} \frac{dxdy}{\sqrt{x^2 + 4y^2 - 4}} \ .$$

Uvodeći uopštene polarne koordinate sa

$$x = 2r\cos\varphi$$
, $y = r\sin\varphi$,

za koje je |J|=2r, oblast D_{xy} se preslikava u

$$D_{xy}^*: 1 \le r \le 3, \ 0 \le \varphi \le 2\pi,$$

a integral I postaje

$$I = \iint_{D_{max}^*} \frac{2r}{\sqrt{4r^2 - 4}} \, dr d\varphi = \int_0^{2\pi} d\varphi \int_1^3 \frac{r}{\sqrt{r^2 - 1}} \, dr = 2\pi \int_1^3 \frac{r}{\sqrt{r^2 - 1}} \, dr = 4\sqrt{2} \, \pi \ .$$

Komentar iz Zadatka 61 važi i u ovom slučaju.

Površinski integrali po koordinatama (II vrste)

Ako je

$$S: \quad z = z(x,y) ; \quad (x,y) \in D_{xy} ,$$

tada je

$$\iint_{S^+} R(x,y,z) \, dx dy = \iint_{D_{xy}} R\big(x,y,z(x,y)\big) \, dx dy \ .$$

63. | Izračunati potpuni površinski integral II vrste

$$I = \iint_S y \, dy dz + x \, dz dx + z \, dx dy ,$$

gde je S ograničeni deo ravni

$$S_1: x-y+z=1$$

koji isecaju koordinatne ravni. Integracija se vrši po strani površi S vidljivoj sa pozitivnog dela z-ose.

Rešenje. Ravan S_1 je zadata u segmentnom obliku (Primer 3.3.2) iz kog se očitavaju njene presečne tačke (1,0,0), (0,-1,0), (0,0,1) sa koordinatnim osama. Zato je deo S u IV oktantu, za koji je $x,z\geq 0,\ y\leq 0$. Na stranu površi S po kojoj se vrši integracija je postavljen normalni vektor (prva slika). Projekcije $D_{yz},\ D_{zx},\ D_{xy}$ dela S redom na yz,zx i xy-ravan su prikazane na ostalim slikama.

Potpuni površinski integral I rastavljamo na tri površinska integrala po koordinatama

$$I = I_1 + I_2 + I_3$$
,

gde je

$$I_1 = \iint_S y \, dy dz$$
, $I_2 = \iint_S x \, dz dx$, $I_3 = \iint_S z \, dx dy$.

Svaki od ovih integrala rešavamo zasebno.

Integral I_1 je površinski po koordinatama y, z, pa S treba projektovati na yz-ravan. Ovo projektovanje je bijekcija. Ravan S_1 seče yz-ravan (x=0) duž prave

$$L_1: \quad z=y+1 \; , \; x=0 \; .$$

Zato se S projektuje na

$$D_{yz}: -1 \le y \le 0 , \ 0 \le z \le y+1 .$$

S obzirom na prethodno projektovanje, jednačinu površi S zapisujemo u obliku

$$S: \quad x = x(y, z) = y - z + 1 \; ; \quad (y, z) \in D_{yz} \; .$$

Integracija se vrši po strani koja se vidi sa pozitivnog dela x-ose, pa je to pozitivno orijentisana strana S^+ u odnosu na bijekciju $D_{yz} \leftrightarrow S$.

Integral I_1 postaje dvojni

$$I_1 = \iint_{S^+} y \, dy dz = \iint_{D_{uz}} y \, dy dz$$

i, prema opisu oblasti D_{yz} , važi

$$I_1 = \int_{-1}^{0} y \, dy \int_{0}^{y+1} dz = \int_{-1}^{0} y(y+1) \, dy = -\frac{1}{6}$$
.

Integral I_2 je površinski po koordinatama z, x, pa S projektujemo na zx-ravan, pri čemu je projektovanje bijekcija. Ravan S_1 seče zx-ravan (y=0) duž prave

$$L_2: \quad z = -x + 1 \ , \ y = 0 \ .$$

Zato je projekcija površi S na zx-ravan oblast

$$D_{zx}: 0 \le z \le -x+1, 0 \le x \le 1,$$

a odgovarajući oblik jednačine površi S je

$$S: y = y(z,x) = x + z - 1; (z,x) \in D_{zx}.$$

Integracija se vrši po strani koja se vidi sa negativnog dela y-ose, pa je to negativno orijentisana strana S^- u odnosu na bijekciju $D_{zx} \leftrightarrow S$.

Integral I_2 postaje dvojni

$$I_2 = \iint_{S^-} x \, dz dx = -\iint_{D_{zx}} x \, dz dx$$

i, prema opisu oblasti D_{zx} , sledi

$$I_2 = -\int_0^1 x \, dx \int_0^{-x+1} dz = -\int_0^1 x(-x+1) \, dx = -\frac{1}{6}$$
.

Integral I_3 je po koordinatama x, y, pa S treba projektovati na xy-ravan. I ovo projektovanje je bijekcija. Kako S_1 seče xy-ravan (z=0) duž prave

$$L_3: y=x-1, z=0,$$

projekcija površi S na xy-ravan je

$$D_{xy}: 0 \le x \le 1, x-1 \le y \le 0.$$

Odgovarajući oblik jednačine površi S je

$$S: \quad z = z(x,y) = -x + y + 1 \; ; \quad (x,y) \in D_{xy} \; .$$

Integracija se vrši po pozitivno orijentisanoj strani S^+ u odnosu na bijekciju $D_{xy} \leftrightarrow S$. Integral I_3 prelazi u dvojni

$$I_3 = \iint_{S^+} z \, dx dy = \iint_{D_{xy}} z(x, y) \, dx dy = \iint_{D_{xy}} (-x + y + 1) \, dx dy$$
.

Prema opisu oblasti D_{xy} , dalje je

$$I_3 = \int_0^1 dx \int_{x-1}^0 (-x+y+1) \, dy = \frac{1}{2} \int_0^1 (x-1)^2 \, dx = \frac{1}{6} \, .$$

Konačno je

$$I = I_1 + I_2 + I_3 = -\frac{1}{6} - \frac{1}{6} + \frac{1}{6} = -\frac{1}{6}$$
.

64. Izračunati potpuni površinski integral II vrste

$$I = \iint_{S} x^{2} dydz + y dzdx + z^{2} dxdy ,$$

gde je

$$S: \quad z^2 = x^2 + y^2$$

konus za $0 \le z \le c$. Integracija se vrši po strani površi S koja se vidi sa negativnog dela z-ose.

Rešenje. Konus S ima z-osu za osovinu i nalazi se iznad xy-ravni $(z \ge 0)$. Neka je $S = S_1 \cup S_2$, gde je S_1 deo za $x \ge 0$, a S_2 deo za $x \le 0$ (prva slika). Takođe, neka je $S = S_3 \cup S_4$, gde je S_3 deo za $y \ge 0$, a S_4 deo za $y \le 0$ (druga slika). Na strane delova koje odgovaraju strani integracije površi S su postavljeni normalni vektori. Ostale slike prikazuju projekcije D_{yz} , D_{zx} , D_{xy} površi S na yz, zx i xy-ravan redom.

Potpuni površinski integral I rastavljamo na površinske integrale po koordinatama

$$I_1 = \iint_S x^2 \, dy dz$$
, $I_2 = \iint_S y \, dz dx$, $I_3 = \iint_S z^2 \, dx dy$

i svaki od njih rešavamo zasebno.

Integral I_1 je po koordinatama y, z, pa S treba projektovati na yz-ravan. Kako ovo projektovanje nije bijekcija, S rastavljamo na bijektivne delove S_1 i S_2 . Površ S seče yz-ravan (x=0) po krivoj

$$L_1: \quad z = |y| \ , \ x = 0 \ .$$

Za z=c iz z=|y| je |y|=c i $y=\pm c$. Zato se S_1 i S_2 projektuju na yz-ravan u oblast

$$D_{yz}: -c \le y \le c, |y| \le z \le c.$$

S obzirom na prethodno projektovanje, jednačine površi S_1 i S_2 zapisujemo u obliku

$$S_1: \quad x = x_1(y, z) = \sqrt{z^2 - y^2} \; ; \quad (y, z) \in D_{yz} \; ,$$

 $S_2: \quad x = x_2(y, z) = -\sqrt{z^2 - y^2} \; ; \quad (y, z) \in D_{yz} \; .$

Integracija se vrši po strani površi S_1 koja se vidi sa pozitivnog dela x-ose, pa je to pozitivno orijentisana strana S_1^+ u odnosu na bijekciju $D_{yz} \leftrightarrow S_1$. Takođe, strana površi S_2 po kojoj se vrši integracija se vidi sa negativnog dela x-ose, pa se radi o negativno orijentisanoj strani S_2^- u odnosu na bijekciju $D_{yz} \leftrightarrow S_2$.

Integral I_1 postaje

$$I_{1} = \iint_{S_{1}^{+}} x^{2} dydz + \iint_{S_{2}^{-}} x^{2} dydz = \iint_{D_{yz}} x_{1}^{2}(y, z) dydz - \iint_{D_{yz}} x_{2}^{2}(y, z) dydz$$
$$= \iint_{D_{yz}} (z^{2} - y^{2}) dydz - \iint_{D_{yz}} (z^{2} - y^{2}) dydz = 0.$$

Integral I_2 je po koordinatama z, x, pa S projektujemo na zx-ravan. Ni ovo projektovanje nije bijekcija, ali su S_3 i S_4 bijektivni delovi. Analogno prethodnom slučaju, površ S seče zx-ravan (y=0) po krivoj

$$L_2: \quad z = |x|, \ y = 0,$$

odakle je $x=\pm c$ za z=c. Dakle, projekcije površi S_3 i S_4 na zx-ravan su ista oblast

$$D_{zx}: |x| \le z \le c, -c \le x \le c,$$

a jednačine ovih površi u odgovarajućem obliku su

$$S_3: y = y_3(z, x) = \sqrt{z^2 - x^2}; (z, x) \in D_{zx},$$

 $S_4: y = y_4(z, x) = -\sqrt{z^2 - x^2}; (z, x) \in D_{zx}.$

Integracija se vrši po pozitivno orijentisanoj strani S_3^+ površi S_3 u odnosu na bijekciju $D_{zx} \leftrightarrow S_3$ jer se ona vidi sa pozitivnog dela y-ose i po negativno orijentisanoj strani S_4^- površi S_4 u odnosu na bijekciju $D_{zx} \leftrightarrow S_4$ jer se ta strana vidi sa negativnog dela y-ose. Integral I_2 postaje

$$\begin{split} I_2 &= \iint_{S_3^+} y \, dz dx + \iint_{S_4^-} y \, dz dx = \iint_{D_{zx}} y_3(z,x) \, dz dx - \iint_{D_{zx}} y_4(z,x) \, dz dx \\ &= \iint_{D_{zx}} \sqrt{z^2 - x^2} \, dz dx - \iint_{D_{zx}} -\sqrt{z^2 - x^2} \, dz dx = 2 \iint_{D_{zx}} \sqrt{z^2 - x^2} \, dz dx \;. \end{split}$$

Radi jednostavnijeg rešavanja dobijenog dvojnog integrala, a imajući u vidu da je z = |x| = x za $x \in [0, c]$ i z = |x| = -x za $x \in [-c, 0]$, oblast D_{zx} opisujemo drugačije sa

$$D_{zx}: 0 \le z \le c, -z \le x \le z.$$

Zato je

$$I_2 = 2 \int_0^c dz \int_{-z}^z \sqrt{z^2 - x^2} dx = 4 \int_0^c dz \int_0^z \sqrt{z^2 - x^2} dx$$

pri čemu je iskorišćena parnost funkcije $\sqrt{z^2-x^2}$ pox. Unutrašnji integral se rešava smenom

$$x = z \sin t$$
.

za koju je t=0kad je x=0i $t=\pi/2$ kad je x=z. Dobija se

$$I_2 = 4 \int_0^c dz \int_0^{\pi/2} |z \cos t| z \cos t \, dt = 4 \int_0^c z^2 \, dz \int_0^{\pi/2} \cos^2 t \, dt = \frac{1}{3} c^3 \pi .$$

Integral I_3 je po koordinatama x, y, pa S projektujemo na xy-ravan. Ovo projektovanje jeste bijekcija. Ravan z=c je paralelna xy-ravni i seče S po kružnici

$$L: \quad x^2 + y^2 = c^2 \; , \; z = c \; ,$$

čija je projekcija na xy-ravan

$$L_{xy}: \quad x^2 + y^2 = c^2 \; , \; z = 0 \; ,$$

pa je projekcija površi S krug

$$D_{xy}: \quad x^2 + y^2 \le c^2 \ .$$

Odgovarajući oblik jednačine površi S glasi

$$S: \quad z = z(x,y) = \sqrt{x^2 + y^2} \; ; \quad (x,y) \in D_{xy} \; .$$

Integracija se vrši po negativno orijentisanoj strani S^- površi S u odnosu na bijekciju $D_{xy} \leftrightarrow S$.

Integral I_3 postaje dvojni

$$I_3 = \iint_{S^-} z^2 dx dy = -\iint_{D_{xy}} z^2(x, y) dx dy = -\iint_{D_{xy}} (x^2 + y^2) dx dy.$$

Uvodeći polarne koordinate r, φ u xy-ravni, oblast D_{xy} se preslikava u

$$D_{xy}^*: 0 \le r \le c, 0 \le \varphi \le 2\pi$$

i dobija se

$$I_3 = - \iint_{D_{xy}^*} r^3 \, dr d\varphi = - \int_0^{2\pi} d\varphi \int_0^c r^3 \, dr = -\frac{1}{2} \, c^4 \pi \ .$$

Konačno je

$$I = I_1 + I_2 + I_3 = \frac{1}{3}c^3\pi - \frac{1}{2}c^4\pi = \frac{1}{6}(2 - 3c)c^3\pi$$
.

65. | Izračunati potpuni površinski integral II vrste

$$I = \iint_{S} x \, dy dz + y \, dz dx + R(x, y, z) \, dx dy ,$$

gde je

$$S: \quad x^2 + y^2 = a^2$$

cilindrična površ za $0 \le z \le c$ i a > 0, a R(x, y, z) je proizvoljna funkcija neprekidna na S. Integracija se vrši po "unutrašnjoj" strani površi S.

Rešenje. PovršSnije zatvorena, pa termin "unutrašnja" strana nije adekvatan i treba ga prihvatiti intuitivno. Bolji opis strane integracije ne može da se da jerSne može bijektivno da se projektuje ni na jednu koordinatnu ravan. Neka su $S_i \ (i=1,2,3,4)$ delovi površiSredom za: $x\geq 0,\, x\leq 0,\, y\geq 0,\, y\leq 0.$ Na strane delova koje odgovaraju strani integracije površi S su postavljeni normalni vektori.

Delovi S_1 , S_2 se bijektivno projektuju na yz-ravan (x=0), a delovi S_3 , S_4 na zx-ravan (y=0). Projekcije su pravougaone oblasti

$$D_{yz}: -a \le y \le a$$
, $0 \le z \le c$, $D_{zx}: 0 \le z \le c$, $-a \le x \le a$,

a potrebne jednačine ovih delova su

$$S_{1,2}: \quad x = x_{1,2}(y,z) = \pm \sqrt{a^2 - y^2} \; ; \quad (y,z) \in D_{yz} \; ,$$

 $S_{3,4}: \quad y = y_{3,4}(z,x) = \pm \sqrt{a^2 - x^2} \; ; \quad (z,x) \in D_{zx} \; .$

Orijentacije strana integracije su S_1^- , S_2^+ u odnosu na $D_{yz} \leftrightarrow S_1$, $D_{yz} \leftrightarrow S_2$ i S_3^- , S_4^+ u odnosu na $D_{zx} \leftrightarrow S_3$, $D_{zx} \leftrightarrow S_4$.

Za integral po koordinatama y, z se dobija

$$\begin{split} I_1 &= \iint_{S_1^-} x \, dy dz + \iint_{S_2^+} x \, dy dz = - \iint_{D_{yz}} x_1(y,z) \, dy dz + \iint_{D_{yz}} x_2(y,z) \, dy dz \\ &= -2 \iint_{D_{yz}} \sqrt{a^2 - y^2} \, dy dz = -2 \int_{-a}^a \sqrt{a^2 - y^2} \, dy \int_0^c dz \\ &= -4c \int_0^a \sqrt{a^2 - y^2} \, dy = -4a^2 c \int_0^{\pi/2} \cos^2 t \, dt = -a^2 c \pi \;, \end{split}$$

pri čemu je korišćena smena $y=a\sin t.$

Integral po koordinatama z, x se rešava slično kao I_1 i dobija se

$$I_{2} = \iint_{S_{3}^{-}} y \, dz dx + \iint_{S_{4}^{+}} y \, dz dx = -\iint_{D_{zx}} y_{3}(z, x) \, dz dx + \iint_{D_{zx}} y_{4}(z, x) \, dz dx$$
$$= -2 \iint_{D_{zx}} \sqrt{a^{2} - x^{2}} \, dz dx = -a^{2} c\pi .$$

PovršSima izvodnice paralelne z-osi, pa je bilo koji površinski integral po koordinatama $x,\,y$ jednak nuli (osobina (4.2.4)), tj.

$$I_3 = \iint_S R(x, y, z) dxdy = 0.$$

Vrednost integrala I je

$$I = I_1 + I_2 + I_3 = -a^2 c\pi - a^2 c\pi + 0 = -2a^2 c\pi .$$

66. | Izračunati potpuni površinski integral II vrste

$$I = \iint_S \frac{x \, dy dz + y \, dz dx + z \, dx dy}{\sqrt{x^2 + y^2 + z^2}} ,$$

gde je

$$S: \quad x^2 + y^2 + z^2 = a^2$$

i a > 0. Integracija se vrši po spoljnoj strani površi S.

Rešenje. PovršSje centralna sfera poluprečnika a. Sfera je zatvorena površ, pa ne može bijektivno da se projektuje ni na jednu od koordinatnih ravni. Neka su S_i $(i=1,2,\ldots,6)$ delovi sfere S redom za: $x\geq 0,\, x\leq 0,\, y\geq 0,\, y\leq 0,\, z\geq 0,\, z\leq 0.$ Na strane delova koje odgovaraju spoljnoj strani sfere su postavljeni normalni vektori.

Delovi S_1 , S_2 se bijektivno projektuju na yz-ravan (x=0), delovi S_3 , S_4 na zx-ravan (y=0) i S_5 , S_6 na xy-ravan (z=0). Projekcije su krugovi

$$D_{yz}: y^2 + z^2 \le a^2$$
, $D_{zx}: z^2 + x^2 \le a^2$, $D_{xy}: x^2 + y^2 \le a^2$.

Jednačine delova su

$$S_{1,2}: \quad x = x_{1,2}(y,z) = \pm \sqrt{a^2 - y^2 - z^2} \; ; \quad (y,z) \in D_{yz} \; ,$$

$$S_{3,4}: \quad y = y_{3,4}(z,x) = \pm \sqrt{a^2 - x^2 - z^2} \; ; \quad (z,x) \in D_{zx} \; ,$$

$$S_{5,6}: \quad z = z_{5,6}(x,y) = \pm \sqrt{a^2 - x^2 - y^2} \; ; \quad (x,y) \in D_{xy} \; .$$

Orijentacije strana integracije u odnosu na odgovarajuća projektovanja su: $S_1^+, S_2^-, S_3^+, S_4^-, S_5^+, S_6^-$.

Površinski integrali po koordinatama sada postaju dvojni

$$\begin{split} I_1 &= \iint_{S_1^+} \frac{x \, dy dz}{\sqrt{x^2 + y^2 + z^2}} + \iint_{S_2^-} \frac{x \, dy dz}{\sqrt{x^2 + y^2 + z^2}} \\ &= \iint_{D_{yz}} \frac{x_1(y,z) \, dy dz}{\sqrt{x_1^2(y,z) + y^2 + z^2}} - \iint_{D_{yz}} \frac{x_2(y,z) \, dy dz}{\sqrt{x_2^2(y,z) + y^2 + z^2}} \\ &= \frac{1}{a} \iint_{D_{yz}} \sqrt{a^2 - y^2 - z^2} \, dy dz - \frac{1}{a} \iint_{D_{yz}} -\sqrt{a^2 - y^2 - z^2} \, dy dz \\ &= \frac{2}{a} \iint_{D_{yz}} \sqrt{a^2 - y^2 - z^2} \, dy dz \end{split}$$

i analogno

$$\begin{split} I_2 &= \iint_{S_3^+} \frac{y \, dz dx}{\sqrt{x^2 + y^2 + z^2}} + \iint_{S_4^-} \frac{y \, dz dx}{\sqrt{x^2 + y^2 + z^2}} = \frac{2}{a} \iint_{D_{zx}} \sqrt{a^2 - x^2 - z^2} \, dz dx \;, \\ I_3 &= \iint_{S_5^+} \frac{z \, dx dy}{\sqrt{x^2 + y^2 + z^2}} + \iint_{S_6^-} \frac{z \, dx dy}{\sqrt{x^2 + y^2 + z^2}} = \frac{2}{a} \iint_{D_{xy}} \sqrt{a^2 - x^2 - y^2} \, dx dy \;. \end{split}$$

Imajući u vidu opise oblasti integracije i podintegralne funkcije u dobijenim dvojnim integralima, lako se uočava da je

$$I_1 = I_2 = I_3$$
.

Zato je dovoljno izračunati samo jedan od njih, npr. I_1 . Uvodeći polarne koordinate sa

$$y = r \cos \varphi$$
, $z = r \sin \varphi$,

oblast D_{yz} prelazi u

$$D_{uz}^*: 0 \le r \le a, 0 \le \varphi \le 2\pi$$

i sledi

$$I_1 = \frac{2}{a} \iint_{D_{a,a}^*} r \sqrt{a^2 - r^2} \, dr d\varphi = \frac{2}{a} \int_0^{2\pi} d\varphi \int_0^a r \sqrt{a^2 - r^2} \, dr = \frac{4}{3} a^2 \pi .$$

Integral I je zbir integrala po koordinatama

$$I = I_1 + I_2 + I_3 = 3I_1 = 4a^2\pi$$
.

67. Izračunati potpuni površinski integral II vrste

$$I = \iint_S xy \, dydz + yz \, dzdx + xz \, dxdy \; ,$$

gde je $S=S_1\cup S_2\cup S_3\cup S_4$ tetraedar sastavljen od delova S_i (i=1,2,3) koordinatnih ravni koje iseca ravan

$$S_5: x+y+z=1$$

za $x, y, z \ge 0$ i ograničenog dela S_4 ravni S_5 između koordinatnih ravni. Integracija se vrši po spoljnoj strani tetraedra S.

 $Re\check{s}enje$. Prema tekstu zadatka, tetraedar S se nalazi u I oktantu. Neka su S_i (i=1,2,3) delovi yz, zx i xy-koordinatne ravni redom. Na strane delova, koje odgovaraju spoljnoj strani tetraedra, postavljeni su normalni vektori. Ravan S_5 seče koordinatne ose u tačkama (1,0,0), (0,1,0), (0,0,1), a koordinatne ravni duž pravih

$$L_1: \quad z = -y + 1 \; , \; x = 0 \; , \quad L_2: \quad x = -z + 1 \; , \; y = 0 \; , \quad L_3: \quad y = -x + 1 \; , \; z = 0 \; .$$

Potpuni površinski integral I rastavljamo na integrale po koordinatama

$$I_1 = \iint_S xy \, dydz$$
, $I_2 = \iint_S yz \, dzdx$, $I_3 = \iint_S xz \, dxdy$.

Kako se površ S sastoji od delova S_i (i = 1, 2, 3, 4) sa različitom parametrizacijom, svaki od prethodnih integrala rastavljamo na integrale po delovima i dobijamo

$$I_1 = \sum_{i=1}^4 I_{1i} , I_2 = \sum_{i=1}^4 I_{2i} , I_3 = \sum_{i=1}^4 I_{3i} ,$$

gde je

$$I_{1i} = \iint_{S_i} xy \, dy dz \; , \; I_{2i} = \iint_{S_i} yz \, dz dx \; , \; I_{3i} = \iint_{S_i} xz \, dx dy \; .$$

Površ S_1 može da se tretira dvojako, kao cilindrična površ sa direktrisom na z-osi i izvodnicama paralelnim y-osi ili kao cilindrična površ sa direktrisom na y-osi i izvodnicama paralelnim z-osi. Zato su površinski integrali po koordinatama z, x, odnosno x, y, po površi S_1 i sa proizvoljnom podintegralnom funkcijom jednaki nuli (osobina (4.2.4)). Konkretno, važi

$$I_{21} = I_{31} = 0$$
.

Analognim razmatranjem u slučaju površi S_2 i S_3 se zaključuje

$$I_{12} = I_{32} = 0$$
, $I_{13} = I_{23} = 0$.

Površi S_i (i=1,2,3) se poklapaju sa svojim projekcijama na odgovarajuće koordinatne ravni. Opis projekcija ne navodimo jer iz jednačina ovih površi

$$S_1: \quad x=0 \; , \quad S_2: \quad y=0 \; , \quad S_3: \quad z=0$$

neposredno sledi

$$I_{11} = I_{22} = I_{33} = 0$$
.

Ostaje još da se izračunaju integrali I_{14} , I_{24} i I_{34} po površi S_4 . Površ S_4 se bijektivno projektuje na sve koordinatne ravni. Opis njenih projekcija glasi

$$D_{yz}: \quad 0 \le y \le 1 \ , \ 0 \le z \le -y + 1 \ ,$$

$$D_{zx}: \quad 0 \le z \le 1 \ , \ 0 \le x \le -z + 1 \ ,$$

$$D_{xy}: \quad 0 \le x \le 1 \ , \ 0 \le y \le -x + 1 \ ,$$

a potrebni oblici njene jednačine su

$$\begin{split} S_4: \quad & x = x(y,z) = 1 - y - z \ ; \quad (y,z) \in D_{yz} \ , \\ S_4: \quad & y = y(z,x) = 1 - x - z \ ; \quad (z,x) \in D_{zx} \ , \\ S_4: \quad & z = z(x,y) = 1 - x - y \ ; \quad (x,y) \in D_{xy} \ . \end{split}$$

Spoljnoj strani tetraedra odgovara strana površi S_4 koja se vidi sa pozitivnih delova svih koordinatnih osa, pa je to pozitivno orijentisana strana S_4^+ u odnosu na svaku od bijekcija $D_{yz} \leftrightarrow S_4, \ D_{zx} \leftrightarrow S_4, \ D_{xy} \leftrightarrow S_4.$

Za integrale se dobija

$$I_1 = I_{14} = \iint_{S_4^+} xy \, dy dz = \iint_{D_{yz}} x(y, z)y \, dy dz = \iint_{D_{yz}} (1 - y - z)y \, dy dz$$
$$= \int_0^1 y \, dy \int_0^{-y+1} (1 - y - z) \, dz = \frac{1}{24}$$

i analogno

$$\begin{split} I_2 &= I_{24} = \iint_{S_4^+} yz \, dz dx = \iint_{D_{zx}} y(z,x)z \, dz dx = \iint_{D_{zx}} (1-x-z)z \, dz dx = \frac{1}{24} \ , \\ I_3 &= I_{34} = \iint_{S_4^+} xz \, dx dy = \iint_{D_{xy}} xz(x,y) \, dx dy = \iint_{D_{xy}} x(1-x-y) \, dx dy = \frac{1}{24} \ . \end{split}$$

Dakle, integral I je

$$I = I_1 + I_2 + I_3 = \frac{3}{24} = \frac{1}{8}$$
.

Veza između površinskih integrala I i II vrste

Ako su α , β , γ uglovi između normalnog vektora na stranu integracije površi i pozitivnih delova x, y i z-koordinatne ose redom, tada je

$$\iint_{S} P(x, y, z) dydz + Q(x, y, z) dzdx + R(x, y, z) dxdy$$
$$= \iint_{S} \left[P(x, y, z) \cos \alpha + Q(x, y, z) \cos \beta + R(x, y, z) \cos \gamma \right] d\sigma.$$

68. Izračunati potpuni površinski integral II vrste

$$I = \iint_S x \, dy dz + x \, dz dx + (1+z) \, dx dy ,$$

gde je

$$S: \quad z = 2 - (x^2 + y^2)$$

paraboloid za $-2 \le z \le 2$. Integracija se vrši po strani površi S koja se vidi sa pozitivnog dela z-ose.

Rešenje. Paraboloid S ima z-osu kao osovinu i nalazi se iznad ravni z=-2 ($z\geq -2$). Na stranu površi S po kojoj se vrši integracija je postavljen normalni vektor (prva slika). Na ostalim slikama su prikazane projekcije $D_{yz},\,D_{xz},\,D_{xy}$ površi S na $yz,\,zx$ i xy-ravan redom. Neka su S_i (i=1,2,3,4) delovi paraboloida S redom za: $x\geq 0,\,x\leq 0,\,y\geq 0,\,y\leq 0$.

Zadatak rešavamo na dva načina, direktno i prelaskom na površinski integral I vrste.

Direktno rešavanje je postupak koji smo dosada primenjivali, a sastoji se u rešavanju pojedinačnih površinskih integrala po koordinatama

$$I_1 = \iint_S x \, dy dz$$
, $I_2 = \iint_S x \, dz dx$, $I_3 = \iint_S (1+z) \, dx dy$.

Delovi S_1 i S_2 se bijektivno projektuju na yz–ravan u oblast $D_{yz}.$ Kako Sseče yz–ravan (x=0) po paraboli

$$L_1: \quad z=2-y^2 \ , \ x=0 \ ,$$

za z=-2 je $y^2=4$ i $y=\pm 2,$ pa je

$$D_{yz}: -2 \le y \le 2, -2 \le z \le 2 - y^2$$
.

Odgovarajući oblik jednačina je

$$S_{1,2}: \quad x = x_{1,2}(y,z) = \pm \sqrt{2 - y^2 - z} \; ; \quad (y,z) \in D_{yz} \; ,$$

a integracija se vrši po stranama $S_1^+,\,S_2^-$ u odnosu na $D_{yz}\leftrightarrow S_1,\,D_{yz}\leftrightarrow S_2$. Integral I_1 postaje dvojni

$$\begin{split} I_1 &= \iint_{S_1^+} x \, dy dz + \iint_{S_2^-} x \, dy dz \\ &= \iint_{D_{yz}} x_1(y,z) \, dy dz - \iint_{D_{yz}} x_2(y,z) \, dy dz = 2 \iint_{D_{yz}} \sqrt{2 - y^2 - z} \, dy dz \; . \end{split}$$

Prema opisu oblasti D_{yz} , dalje je

$$I_{1} = 2 \int_{-2}^{2} dy \int_{-2}^{2-y^{2}} \sqrt{2 - y^{2} - z} \, dz = -2 \int_{-2}^{2} dy \int_{-2}^{2-y^{2}} \sqrt{2 - y^{2} - z} \, d(2 - y^{2} - z)$$

$$= -\frac{4}{3} \int_{-2}^{2} (2 - y^{2} - z)^{3/2} \Big|_{z=-2}^{z=2-y^{2}} dy = \frac{8}{3} \int_{0}^{2} (4 - y^{2})^{3/2} \, dy = \frac{128}{3} \int_{0}^{\pi/2} \cos^{4} t \, dt$$

$$= \frac{128}{3} \int_{0}^{\pi/2} \left(\frac{3}{8} + \frac{1}{2} \cos 2t + \frac{1}{8} \cos 4t\right) dt = 8\pi .$$

Pri rešavanju određenih integrala je korišćena smena $y=2\sin t$, kao i formula izvedena u Zadatku 10.

Delovi S_3 i S_4 se bijektivno projektuju na zx–ravan u oblast $D_{zx}.$ Kako Sseče zx–ravan (y=0) po paraboli

$$L_2: \quad z = 2 - x^2 \; , \; y = 0 \; ,$$

za z=-2 je $x=\pm 2$, pa je

$$D_{zx}: -2 \le z \le 2 - x^2, -2 \le x \le 2.$$

Odgovarajući oblik jednačina je

$$S_{3,4}: \quad y = y_{3,4}(z,x) = \pm \sqrt{2 - x^2 - z} \; ; \quad (z,x) \in D_{zx} \; ,$$

a integracija se vrši po stranama S_3^+ , S_4^- u odnosu na $D_{zx}\leftrightarrow S_3$, $D_{zx}\leftrightarrow S_4$. Za integral I_2 se dobija

$$I_2 = \iint_{S_2^+} x \, dz dx + \iint_{S_4^-} x \, dz dx = \iint_{D_{ZX}} x \, dz dx - \iint_{D_{ZX}} x \, dz dx = 0$$
.

PovršSse bijektivno projektuje na xy–ravan u oblast $D_{xy}.$ Ravan z=-2je paralelna xy–ravni i sečeSpo kružnici

$$L: \quad x^2 + y^2 = 4 \; , \; z = -2 \; ,$$

čija je projekcija na xy–ravan

$$L_{xy}: x^2 + y^2 = 4, z = 0,$$

pa je oblast D_{xy} krug

$$D_{xy}: x^2 + y^2 < 4$$
.

Jednačina površi S u potrebnom obliku je

$$S: z = z(x,y) = 2 - (x^2 + y^2); (x,y) \in D_{xy}.$$

Integracija se vrši po strani S^+ u odnosu na $D_{xy} \leftrightarrow S$.

Za integral I_3 se dobija

$$I_3 = \iint_{S^+} (1+z) \, dx dy = \iint_{D_{xy}} \left[1 + z(x,y) \right] \, dx dy = \iint_{D_{xy}} \left(3 - x^2 - y^2 \right) \, dx dy \ .$$

Uvođenjem polarnih koordinata r, φ u xy-ravni, D_{xy} prelazi u

$$D_{xy}^*: 0 \le r \le 2, 0 \le \varphi \le 2\pi$$

i sledi

$$I_3 = \iint_{D_{xy}^*} r \big(3 - r^2 \big) \; dr d\varphi = \int_0^{2\pi} d\varphi \int_0^2 r \big(3 - r^2 \big) \; dr = 4\pi \; .$$

Dakle, integral I ima vrednost

$$I = I_1 + I_2 + I_3 = 8\pi + 0 + 4\pi = 12\pi$$
.

Drugi način rešavanja je zasnovan na vezi između površinskih integrala I i II vrste. Već smo utvrdili da je projektovanje na xy-ravan jedina bijekcija $D_{xy} \leftrightarrow S$. Takođe,

odredili smo projekciju D_{xy} i jednačinu površi S smo zapisali u odgovarajućem obliku. Normalni vektor na stranu integracije zaklapa oštar ugao γ sa pozitivnim delom z-ose, pa je $\cos \gamma > 0$ i važi

$$\cos \alpha = \frac{-p}{\sqrt{1+p^2+q^2}} , \cos \beta = \frac{-q}{\sqrt{1+p^2+q^2}} , \cos \gamma = \frac{1}{\sqrt{1+p^2+q^2}}$$

Za posmatrani oblik jednačine površi je

$$p = \frac{\partial z}{\partial x} = -2x \; , \; q = \frac{\partial z}{\partial y} = -2y \; .$$

Integral I postaje površinski I vrste, a zatim i dvojni

$$\begin{split} I &= \iint_S \left[x \cos \alpha + x \cos \beta + (1+z) \cos \gamma \right] \, d\sigma \\ &= \iint_{D_{xy}} \left[-px - qx + 1 + z(x,y) \right] \, dx dy = \iint_{D_{xy}} \left(x^2 - y^2 + 2xy + 3 \right) \, dx dy \; . \end{split}$$

Dvojni integral se rešava uvođenjem polarnih koordinata i korišćenjem već dobijenog opisa oblasti D_{xy}^* i sledi

$$\begin{split} I &= \iint_{D_{xy}^*} \left[r^3 (\cos 2\varphi + \sin 2\varphi) + 3r \right] dr d\varphi = \int_0^{2\pi} d\varphi \int_0^2 \left[r^3 (\cos 2\varphi + \sin 2\varphi) + 3r \right] dr d\varphi \\ &= \int_0^{2\pi} \left[4 (\cos 2\varphi + \sin 2\varphi) + 6 \right] d\varphi = 12\pi \ . \end{split}$$

Vidimo da se zadatak mnogo jednostavnije rešava prelaskom na površinski integral I vrste jer je dovoljno projektovati površ samo na jednu koordinatnu ravan (Napomena 4.4.1). Ovde je to xy-ravan u odnosu na koju je projektovanje bijekcija (1° iz Napomene 4.3.2).

Analogno važi i za Zadatke 63–66, s tim što u Zadacima 65 i 66 površ ipak mora da se deli na bijektivne delove (3° iz Napomene 4.3.2), ali samo u odnosu na jedno od projektovanja.

99

69. Izračunati potpuni površinski integral II vrste

$$I = \iint_S x \, dy dz + y \, dz dx + z \, dx dy \; ,$$

gde je $S = S_1 \cup S_2$ zatvorena površ, S_1 je manji deo sfere

$$S_3: \quad x^2 + y^2 + z^2 = 4$$

koji iseca konus

$$S_4: \quad y = \sqrt{x^2 + z^2} \ ,$$

a S_2 deo konusa S_4 koji je unutar sfere S_3 . Integracija se vrši po spoljnoj strani površi S.

 $Re\check{s}enje$. Sfera S_3 je centralna poluprečnika 2, a konus S_4 ima y-osu za osovinu. Na strane površi S_1 i S_2 , po kojima se vrši integracija, postavljeni su normalni vektori.

Površi S_1 i S_2 se bijektivno projektuju jedino na zx-ravan (y=0). Projekciju L_{zx} presečne krive površi S_3 i S_4 nalazimo slično kao u Zadatku 55 i dobijamo

$$L_{zx}: x^2 + z^2 = 2, y = 0,$$

pa je zajednička projekcija za S_1 i S_2 krug u $zx{\rm -ravni}$

$$D_{zx}: \quad x^2 + z^2 \le 2 \ .$$

Kako je $y \ge 0$ za površ S, odgovarajuće jednačine za S_1 i S_2 su

$$S_1: y = y_1(z, x) = \sqrt{4 - x^2 - z^2}; (z, x) \in D_{zx},$$

 $S_2: y = y_2(z, x) = \sqrt{x^2 + z^2}; (z, x) \in D_{zx}.$

Normalni vektor na površ S_1 zaklapa oštar uga
o $\beta_1,$ a normalni vektor na S_2 tup uga
o β_2 sa pozitivnim delom y–ose. Zato je
 $\cos\beta_1>0,$ $\cos\beta_2<0$ i važi

$$\cos \alpha_1 = \frac{-q_1}{\sqrt{1 + p_1^2 + q_1^2}} , \cos \beta_1 = \frac{1}{\sqrt{1 + p_1^2 + q_1^2}} , \cos \gamma_1 = \frac{-p_1}{\sqrt{1 + p_1^2 + q_1^2}} ;$$

$$\cos \alpha_2 = \frac{q_2}{\sqrt{1 + p_2^2 + q_2^2}} , \cos \beta_2 = \frac{-1}{\sqrt{1 + p_2^2 + q_2^2}} , \cos \gamma_2 = \frac{p_2}{\sqrt{1 + p_2^2 + q_2^2}} .$$

Određujemo

$$p_{1} = \frac{\partial y_{1}}{\partial z} = \frac{-z}{\sqrt{4 - x^{2} - z^{2}}} , q_{1} = \frac{\partial y_{1}}{\partial x} = \frac{-x}{\sqrt{4 - x^{2} - z^{2}}} ;$$
$$p_{2} = \frac{\partial y_{2}}{\partial z} = \frac{z}{\sqrt{x^{2} + z^{2}}} , q_{2} = \frac{\partial y_{2}}{\partial x} = \frac{x}{\sqrt{x^{2} + z^{2}}}$$

i izračunavamo

$$\begin{split} I_1 &= \iint_{S_1} x \, dy dz + y \, dz dx + z \, dx dy = \iint_{S_1} \left(x \cos \alpha_1 + y \cos \beta_1 + z \cos \gamma_1 \right) d\sigma \\ &= \iint_{D_{zx}} \left[-q_1 x + y_1(z,x) - p_1 z \right] \, dz dx = \iint_{D_{zx}} \frac{4}{\sqrt{4 - x^2 - z^2}} \, dz dx \;, \\ I_2 &= \iint_{S_2} x \, dy dz + y \, dz dx + z \, dx dy = \iint_{S_2} \left(x \cos \alpha_2 + y \cos \beta_2 + z \cos \gamma_2 \right) d\sigma \\ &= \iint_{D_{zx}} \left[q_2 x - y_2(z,x) + p_2 z \right] \, dz dx = 0 \;. \end{split}$$

Uvodeći polarne koordinate r, φ u zx-ravni sledi

$$D_{zx}^*: 0 \le r \le \sqrt{2}, 0 \le \varphi \le 2\pi$$

i za integral I_1 se dobija

$$I_1 = 4 \iint_{D_{\tau,r}^*} \frac{r}{\sqrt{4-r^2}} \, dr d\varphi = 4 \int_0^{2\pi} d\varphi \int_0^{\sqrt{2}} \frac{r}{\sqrt{4-r^2}} \, dr = 8(2-\sqrt{2})\pi \ .$$

Zbog $S = S_1 \cup S_2$, integral I je

$$I = I_1 + I_2 = 8(2 - \sqrt{2})\pi$$
.

Slično kao u Zadatku 55, površ S se sastoji od delova S_1 , S_2 sa različitom parametrizacijom (4° iz Napomene 4.3.2), koji se projektuju na istu koordinatnu ravan. Kada bi se Zadatak 67 rešavao prelaskom na površinski integral I vrste, delovi S_i (i=1,2,3) bi morali da se projektuju na različite koordinatne ravni.

70. Izračunati potpuni površinski integral II vrste

$$I = \iint_{S} (y-z) \, dy dz + (z-x) \, dz dx + (x-y) \, dx dy ,$$

gde je S deo sfere

$$S_1: \quad x^2 + y^2 + z^2 = 4ax$$

koji iseca cilindrična površ

$$S_2: \quad x^2 + y^2 = 2ax$$

za $z \ge 0$ i a > 0. Integracija se vrši po strani površi S koja se vidi sa pozitivnog dela z-ose.

 $Re \check{s}enje.$ Neka je L presečna kriva površi S_1 i $S_2,$ a L_{xy} njena projekcija na xy–ravan. Iz jednačina

$$S_1: (x-2a)^2 + y^2 + z^2 = 4a^2$$
, $S_2: (x-a)^2 + y^2 = a^2$

se vidi da sfera S_1 ima centar u tački (2a,0,0) i poluprečnik 2a, a cilindrična površ S_2 za direktrisu ima kružnicu L_{xy} sa centrom u tački (a,0,0) i poluprečnika a. Na stranu integracije je postavljen normalni vektor.

Površ S se bijektivno projektuje na xy-ravan (z=0) u krug D_{xy} ograničen sa L_{xy} ,

$$D_{xy}: \quad x^2 + y^2 \le 2ax \ .$$

Zbog $z \geq 0,$ odgovarajuća jednačina površiSglasi

$$S: \quad z = z(x, y) = \sqrt{4ax - x^2 - y^2} \; ; \quad (x, y) \in D_{xy} \; .$$

Normalni vektor na površS zaklapa oštar uga
o γ sa pozitivni delomz--ose,pa je
 $\cos\gamma>0$ i sledi

$$\cos \alpha = \frac{-p}{\sqrt{1 + p^2 + q^2}} , \cos \beta = \frac{-q}{\sqrt{1 + p^2 + q^2}} , \cos \gamma = \frac{1}{\sqrt{1 + p^2 + q^2}} .$$

Određujući

$$p = \frac{\partial z}{\partial x} = \frac{2a-x}{\sqrt{4ax-x^2-y^2}} \ , \ q = \frac{\partial z}{\partial y} = \frac{-y}{\sqrt{4ax-x^2-y^2}} \ ,$$

integral I prevodimo u površinski I vrste, a zatim u dvojni

$$\begin{split} I &= \iint_{S} \left[(y-z) \cos \alpha + (z-x) \cos \beta + (x-y) \cos \gamma \right] \, d\sigma \\ &= \iint_{D_{xy}} \left[-p \big(y - z(x,y) \big) - q \big(z(x,y) - x \big) + (x-y) \big] \, dx dy \\ &= 2a \iint_{D_{xy}} \left(1 - \frac{y}{\sqrt{4ax - x^2 - y^2}} \right) \, dx dy \\ &= 2a \iint_{D_{xy}} dx dy - 2a \iint_{D_{xy}} \frac{y}{\sqrt{4ax - x^2 - y^2}} \, dx dy \\ &= 2a^3 \pi - 2a \iint_{D_{xy}} \frac{y}{\sqrt{4ax - x^2 - y^2}} \, dx dy \;, \end{split}$$

pri čemu je iskorišćena činjenica da je jedan od dvojnih integrala jednak površini kruga poluprečnika a (Primer 3.5.1). Ako oblast D_{xy} opišemo na način

$$D_{xy}: 0 \le x \le 2a, -\sqrt{2ax-x^2} \le y \le \sqrt{2ax-x^2},$$

poslednji dvojni integral je

$$\iint_{D_{xy}} \frac{y}{\sqrt{4ax - x^2 - y^2}} \, dx dy = \int_0^{2a} dx \int_{-\sqrt{2ax - x^2}}^{\sqrt{2ax - x^2}} \frac{y}{\sqrt{4ax - x^2 - y^2}} \, dy = 0$$

zbog neparnosti podintegralne funkcije poyi simetričnosti granica unutrašnjeg integrala. Dakle, rezultat je

$$I=2a^3\pi$$
.

Slično kao u Zadatku 56, osim na $xy\!-\!\mathrm{ravan},$ površS se bijektivno projektuje i na $yz\!-\!\mathrm{ravan}$ u oblast

$$D_{yz}: -\frac{z}{2a}\sqrt{4a^2-z^2} \le y \le \frac{z}{2a}\sqrt{4a^2-z^2}, \ 0 \le z \le 2a$$

ali ovo projektovanje nije pogodno za rešavanje odgovarajućeg dvojnog integrala po oblasti D_{yz} (2° iz Napomene 4.3.2).

Teorema Ostrogradskog

Ako je ${\cal D}$ prosto povezana prostorna oblast i ${\cal S}$ njena granična površ, tada je

$$\iint_{S^{+}} P(x, y, z) \, dy dz + Q(x, y, z) \, dz dx + R(x, y, z) \, dx dy$$
$$= \iiint_{D} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz .$$

71. Izračunati potpuni površinski integral II vrste

$$I = \iint_{S} (5x + y^{2} - z^{3}) dydz + z^{2} dzdx + (y - z) dxdy,$$

gde je

$$S: \quad \frac{(x-a)^2}{a^2} + \frac{y^2}{b^2} = 1$$

cilindrična površ između ravni

$$S_1: \quad z=-x \;, \quad S_2: \quad z=x$$

i a, b > 0. Integracija se vrši po "spoljnoj" strani površi S.

 $Re \check{s}enje.$ Direktrisa cilindrične površi je elipsa Lsa centrom u tački (a,0,0)i poluosama ai b. Neka je S_3 deo površi Sza $y\geq 0$ i S_4 deo za $y\leq 0.$ Takođe, neka su S_5 i S_6 delovi ravni S_1 i S_2 redom, koji su unutar cilindrične površi. Na strane integracije su postavljeni normalni vektori.

Zadatak rešavamo na dva načina, prelaskom na površinski integral I vrste i primenom Teoreme Ostrogradskog.

Delovi $S_3,\,S_4$ se bijektivno projektuju na zx–ravan(y=0)u oblast

$$D_{zx}: -x \le z \le x , \ 0 \le x \le 2a ,$$

a njihove jednačine su

$$S_{3,4}: \quad y = y_{3,4}(z,x) = \pm \frac{b}{a} \sqrt{2ax - x^2} \; ; \quad (z,x) \in D_{zx} \; .$$

Normalni vektor na S_3 zaklapa oštar ugao β_3 , a normalni vektor na S_4 tup ugao β_4 sa pozitivnim delom y—ose. Zato je

$$\cos \alpha_3 = \frac{-q_3}{\sqrt{1 + p_3^2 + q_3^2}} , \cos \beta_3 = \frac{1}{\sqrt{1 + p_3^2 + q_3^2}} , \cos \gamma_3 = \frac{-p_3}{\sqrt{1 + p_3^2 + q_3^2}} ;$$

$$\cos \alpha_4 = \frac{q_4}{\sqrt{1 + p_4^2 + q_4^2}} , \cos \beta_4 = \frac{-1}{\sqrt{1 + p_4^2 + q_4^2}} , \cos \gamma_4 = \frac{p_4}{\sqrt{1 + p_4^2 + q_4^2}} .$$

Kako je

$$p_{3} = \frac{\partial y_{3}}{\partial z} = 0 , q_{3} = \frac{\partial y_{3}}{\partial x} = \frac{b}{a} \frac{a - x}{\sqrt{2ax - x^{2}}} ;$$

$$p_{4} = \frac{\partial y_{4}}{\partial z} = 0 , q_{4} = \frac{\partial y_{4}}{\partial x} = -\frac{b}{a} \frac{a - x}{\sqrt{2ax - x^{2}}} ,$$

to je

$$\begin{split} I_3 &= \iint_{S_3} \left(5x + y^2 - z^3\right) \, dy dz + z^2 \, dz dx + (y - z) \, dx dy \\ &= \iint_{S_3} \left[\left(5x + y^2 - z^3\right) \cos \alpha_3 + z^2 \cos \beta_3 + (y - z) \cos \gamma_3 \right] \, d\sigma \\ &= \iint_{D_{zx}} \left[-q_3 \left(5x + y_3^2 (z, x) - z^3\right) + z^2 - p_3 \left(y_3 (z, x) - z\right) \right] \, dz dx \\ &= \iint_{D_{zx}} \left[-q_3 \left(5x + y_3^2 (z, x) - z^3\right) + z^2 \right] \, dz dx \, , \\ I_4 &= \iint_{S_4} \left(5x + y^2 - z^3\right) \, dy dz + z^2 \, dz dx + (y - z) \, dx dy \\ &= \iint_{S_4} \left[\left(5x + y^2 - z^3\right) \cos \alpha_4 + z^2 \cos \beta_4 + (y - z) \cos \gamma_4 \right] \, d\sigma \\ &= \iint_{D_{zx}} \left[q_4 \left(5x + y_4^2 (z, x) - z^3\right) - z^2 + p_4 \left(y_4 (z, x) - z\right) \right] \, dz dx \\ &= \iint_{D_{zx}} \left[q_4 \left(5x + y_4^2 (z, x) - z^3\right) - z^2 \right] \, dz dx \, . \end{split}$$

Imajući u vidu $S = S_3 \cup S_4$, kao i $y_4(z,x) = -y_3(z,x), q_4 = -q_3$, sabiranjem sledi

$$I = I_3 + I_4 = 2 \iint_{D_{zx}} -q_3 (5x + y_3^2(z, x) - z^3) dz dx$$
$$= 2 \frac{b}{a} \iint_{D_{zx}} \frac{x - a}{\sqrt{2ax - x^2}} \left[5x + \frac{b^2}{a^2} (2ax - x^2) - z^3 \right] dz dx = 2 \frac{b}{a} (J_1 + J_2) ,$$

gde je

$$J_1 = \iint_{D_{zx}} \frac{x-a}{\sqrt{2ax-x^2}} \left[5x + \frac{b^2}{a^2} \left(2ax - x^2 \right) \right] dz dx ,$$

$$J_2 = -\iint_{D_{zx}} \frac{x-a}{\sqrt{2ax-x^2}} z^3 dz dx .$$

Rešavamo dvojni integral J_1 i dobijamo

$$J_1 = \int_0^{2a} \frac{x-a}{\sqrt{2ax-x^2}} \left[5x + \frac{b^2}{a^2} (2ax-x^2) \right] dx \int_{-x}^x dz$$

$$= 2 \int_0^{2a} \frac{x(x-a)}{\sqrt{2ax-x^2}} \left[5x + \frac{b^2}{a^2} (2ax-x^2) \right] dx$$

$$= 10 \int_0^{2a} \frac{x^2(x-a)}{\sqrt{2ax-x^2}} dx + 2 \frac{b^2}{a^2} \int_0^{2a} x(x-a) \sqrt{2ax-x^2} dx .$$

U oba određena integrala uvodimo smenu

$$x = a + a\sin t .$$

za koju je $t=-\pi/2$ kad je x=0 i $t=\pi/2$ kad je x=2a. Još je $2ax-x^2=a^2\cos^2 t,$ $dx=a\cos t\,dt,$ pa je

$$J_1 = 40a^3 \int_0^{\pi/2} \sin^2 t \, dt + 4a^2 b^2 \int_0^{\pi/2} \cos^2 t \sin^2 t \, dt$$
$$= 10a^3 \pi + \frac{1}{4} a^2 b^2 \pi = \frac{1}{4} a^2 (40a + b^2) \pi .$$

Zbog neparnosti podintegralne funkcije z^3 u unutrašnjem integralu, dvojni integral J_2 je

$$J_2 = -\int_0^{2a} \frac{x-a}{\sqrt{2ax-x^2}} dx \int_{-x}^x z^3 dz = 0.$$

Tražena vrednost integrala I je

$$I = 2\frac{b}{a}J_1 = \frac{1}{2}ab(40a + b^2)\pi$$
.

Površ S smo rastavljali na delove S_3 , S_4 jer se ona u celini ne projektuje bijektivno ni na jednu od koordinatnih ravni (3° iz Napomene 4.3.2). Prednost je što se S_3 , S_4 projektuju na zx-ravan u istu oblast. Delovi površi S za $x \leq a$ i $x \geq a$ se bijektivno projektuju na yz-ravan, ali u različite oblasti, komplikovanijeg opisa od D_{zx} , čime se umnogome komplikuje i rešavanje integrala.

Zadatak rešavamo na drugi način. Površ $S_7 = S \cup S_5 \cup S_6$ je zatvorena i ograničava prostornu oblast D. Inače, S_7 je cilindar sa bazisima S_5 , S_6 i omotačem S (Napomena 3.1.1). Integracija se vrši po onim stranama površi S, S_5 , S_6 koje odgovaraju spoljnoj strani površi S_7 .

U integralu I je

$$P(x, y, z) = 5x + y^2 - z^3$$
, $Q(x, y, z) = z^2$, $R(x, y, z) = y - z$,

pa je

$$\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = 5 + 0 - 1 = 4.$$

Funkcije $P(x,y,z),\ Q(x,y,z),\ R(x,y,z),\ \partial P/\partial x,\ \partial Q/\partial y,\ \partial R/\partial z$ su neprekidne u oblasti D. Uslovi Teoreme Ostrogradskog su ispunjeni i njenom primenom sledi

$$I_7 = \iint_{S_7} (5x + y^2 - z^3) \, dy dz + z^2 \, dz dx + (y - z) \, dx dy = 4 \iiint_D dx dy dz \, .$$

Koristeći jednakost (3.3.21), dalje je

$$I_7 = 4 \iint_{D_{xy}} dx dy \int_{-x}^{x} dz = 8 \iint_{D_{xy}} x dx dy$$
,

gde je D_{xy} projekcija oblasti D na xy-ravan (z=0). Kako je D_{xy} ograničena elipsom L, to je

$$D_{xy}: \frac{(x-a)^2}{a^2} + \frac{y^2}{b^2} \le 1$$
.

Uvodeći smenu

$$x = a + ar\cos\varphi$$
, $y = br\sin\varphi$,

za koju je |J| = abr, oblast D_{xy} se preslikava u

$$D_{xy}^*: 0 \le r \le 1, 0 \le \varphi \le 2\pi.$$

Zato je

$$I_7 = 8 \iint_{D_{xy}^*} abr(a + ar\cos\varphi) \, dr d\varphi = 8a^2b \int_0^1 r \, dr \int_0^{2\pi} (1 + r\cos\varphi) \, d\varphi = 8a^2b\pi .$$

Površi S_5 i S_6 se bijektivno projektuju na xy-ravan u oblast D_{xy} i imaju jednačine

$$S_{5,6}: \quad z = z_{5,6}(x,y) = \mp x \; , \quad (x,y) \in D_{xy} \; .$$

Normalan vektor na S_5 zaklapa tup uga
o $\gamma_5,$ a normalan vektor na S_6 oštar uga
o γ_6 sa pozitivnim delom z–ose i važi

$$\cos \alpha_5 = \frac{p_5}{\sqrt{1 + p_5^2 + q_5^2}} , \cos \beta_5 = \frac{q_5}{\sqrt{1 + p_5^2 + q_5^2}} , \cos \gamma_5 = \frac{-1}{\sqrt{1 + p_5^2 + q_5^2}} ;$$

$$\cos \alpha_6 = \frac{-p_6}{\sqrt{1 + p_6^2 + q_6^2}} , \cos \beta_6 = \frac{-q_6}{\sqrt{1 + p_6^2 + q_6^2}} , \cos \gamma_6 = \frac{1}{\sqrt{1 + p_6^2 + q_6^2}} .$$

Kako je

$$p_5 = \frac{\partial z_5}{\partial x} = -1 \; , \; q_5 = \frac{\partial z_5}{\partial y} = 0 \; ; \; p_6 = \frac{\partial z_6}{\partial x} = 1 \; , \; q_6 = \frac{\partial z_6}{\partial y} = 0 \; ,$$

to je

$$I_{5} = \iint_{S_{5}} (5x + y^{2} - z^{3}) dydz + z^{2} dzdx + (y - z) dxdy$$

$$= \iint_{S_{5}} \left[(5x + y^{2} - z^{3}) \cos \alpha_{5} + z^{2} \cos \beta_{5} + (y - z) \cos \gamma_{5} \right] d\sigma$$

$$= \iint_{D_{xy}} \left[p_{5} (5x + y^{2} - z_{5}^{3}(x, y)) + q_{5} z_{5}^{2}(x, y) - (y - z_{5}(x, y)) \right] dxdy$$

$$= -\iint_{D_{xy}} (x^{3} + y^{2} + 6x + y) dxdy ,$$

$$I_{6} = \iint_{S_{6}} (5x + y^{2} - z^{3}) dydz + z^{2} dzdx + (y - z) dxdy$$

$$= \iint_{S_{6}} \left[(5x + y^{2} - z^{3}) \cos \alpha_{6} + z^{2} \cos \beta_{6} + (y - z) \cos \gamma_{6} \right] d\sigma$$

$$= \iint_{D_{xy}} \left[-p_{6} (5x + y^{2} - z_{6}^{3}(x, y)) - q_{6} z_{6}^{2}(x, y) + (y - z_{6}(x, y)) \right] dxdy$$

$$= \iint_{D_{xy}} \left[x^{3} - y^{2} - 6x + y \right] dxdy$$

i sabiranjem

$$I_{5} + I_{6} = -2 \iint_{D_{xy}} (y^{2} + 6x) dxdy = -2ab \iint_{D_{xy}^{*}} r(b^{2}r^{2} \sin^{2}\varphi + 6a + 6ar\cos\varphi) drd\varphi$$
$$= -2ab \int_{0}^{2\pi} d\varphi \int_{0}^{1} (b^{2}r^{3} \sin^{2}\varphi + 6ar + 6ar^{2}\cos\varphi) dr$$
$$= -2ab \int_{0}^{2\pi} \left(\frac{1}{4}b^{2} \sin^{2}\varphi + 3a + 2a\cos\varphi\right) d\varphi = -\frac{1}{2}ab(24a + b^{2})\pi.$$

Zbog $S_7 = S \cup S_5 \cup S_6$ važi

$$I = I_7 - (I_5 + I_6) = 8a^2b\pi + \frac{1}{2}ab(24a + b^2)\pi = \frac{1}{2}ab(40a + b^2)\pi.$$

Na sličan način, "zatvaranjem" otvorene površi integracije i primenom Teoreme Ostrogradskog, mogu da se reše i Zadaci 64, 65, 68, s tim što se zatvaranje u njima vrši delovima ravni koje su paralelne xy–koordinatnoj ravni, pa je rešavanje jednostavnije nego u ovom zadatku (2° iz Napomene 4.6.1). Isto tako, zbog pomenute paralelnosti, Zadaci 64, 65, 68 se jednostavnije rešavaju pomoću Teoreme Ostrogradskog nego prelaskom na površinski integral I vrste. U ovom zadatku nema značajne razlike između ta dva načina.

72. Izračunati potpuni površinski integral II vrste

$$I = \iint_{S} \frac{x^3}{a^2} \, dy dz + \frac{y^3}{b^2} \, dz dx + \frac{z^3}{c^2} \, dx dy \; ,$$

gde je

$$S: \quad \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

i a, b, c > 0. Integracija se vrši po spoljnoj strani površi S.

 $Re \check{s}enje.$ PovršS je centralni elipsoid sa poluosama $a,\ b,\ c$ (Slika 1.4.33). Neka je D prostorna oblast ograničena sa S.

U integralu I je

$$P(x,y,z) = \frac{x^3}{a^2}$$
, $Q(x,y,z) = \frac{y^3}{b^2}$, $R(x,y,z) = \frac{z^3}{c^2}$,

pa je

$$\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = 3\Big(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}\Big) \; .$$

Uslovi Teoreme Ostrogradskog su ispunjeni i važi

$$I = 3 \iiint_{D} \left(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}} \right) dx dy dz$$

Uvođenjem uopštenih sfernih koordinata sa

$$x = ar \cos \varphi \cos \theta$$
, $y = br \sin \varphi \cos \theta$, $z = cr \sin \theta$,

za koje je $|J| = abcr^2 \cos \theta$, oblast D prelazi u

$$D^*: 0 \le r \le 1, 0 \le \varphi \le 2\pi, -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$$

i integral I postaje

$$I = 3abc \iiint_{D^*} r^4 \cos \theta \, dr d\varphi d\theta = 3abc \int_0^{2\pi} d\varphi \int_0^1 r^4 \, dr \int_{-\pi/2}^{\pi/2} \cos \theta \, d\theta = \frac{12}{5} \, abc\pi .$$

Ako bi se integral I rešavao prelaskom na površinski I vrste, elipsoid S bi morao da se deli na dva dela, pa bi taj način rešavanja bio komplikovaniji (1° iz Napomene 4.6.1).

Primetimo da Zadatak 66, u kome je površ integracije S takođe zatvorena (sfera), ne može da se reši pomoću Teoreme Ostrogradskog. Uzrok je u tome što funkcije P(x,y,z), Q(x,y,z), R(x,y,z), $\partial P/\partial x$, $\partial Q/\partial y$, $\partial R/\partial z$, kao i cela podintegralna funkcija odgovarajućeg trojnog integrala nisu definisane u tački (0,0,0), koja pripada prostornoj oblasti ograničenoj sa S.

73. Izračunati potpuni površinski integral II vrste

$$I = \iint_{S} x \, dy dz + 2y \, dz dx + z \, dx dy \; ,$$

gde je S zatvorena povr \check{s} sastavljena od delova paraboloida

$$S_1: 2y-1=2(x^2+z^2), S_2: 4-y=x^2+z^2$$

koji su unutar cilindrične površi

$$S_3: \quad x^2 + z^2 = 1$$

i dela površi S_3 između S_1 i S_2 . Integracija se vrši po spoljnoj strani površi S.

 $Re\check{senje}$. Paraboloidi S_1 , S_2 imaju y—osu za osovinu, a cilindrična površ S_3 ima izvodnice paralelne y—osi i kružnicu u zx—ravni za direktrisu. Radi jednostavnosti, delove ovih površi, koji formiraju površ S, označimo isto sa S_1 , S_2 , S_3 . Površ S je cilindar sa bazisima S_1 , S_2 i omotačem S_3 . Na strane delova koje odgovaraju spoljnoj strani cilindra su postavljeni normalni vektori. Neka je D prostorna oblast ograničena sa S.

U integralu I je

$$P(x, y, z) = x$$
, $Q(x, y, z) = 2y$, $R(x, y, z) = z$,

pa je

$$\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = 4.$$

Uslovi Teoreme Ostrogradskog su ispunjeni i važi

$$I = 4 \iiint_D dx dy dz .$$

Projekcija oblasti D na zx-ravan (y = 0) je krug

$$D_{zx}: \quad x^2 + z^2 \le 1 \ .$$

Uvođenjem cilindričnih koordinata sa

$$z = r\cos\varphi$$
, $x = r\sin\varphi$, $y = y$,

za koje je |J|=r, oblast D_{zx} i površi $S_1,\,S_2$ se preslikavaju u

$$\begin{split} &D_{zx}^*: \quad 0 \leq r \leq 1 \ , \ 0 \leq \varphi \leq 2\pi \ , \\ &S_1^*: \quad y = r^2 + \frac{1}{2} \ , \quad S_2^*: \quad y = 4 - r^2 \ , \end{split}$$

pa se oblast D preslikava u

$$D^*: 0 \le r \le 1, 0 \le \varphi \le 2\pi, r^2 + \frac{1}{2} \le y \le 4 - r^2$$

i trojni integral postaje

$$I = 4 \iiint_{D_*} r \, dr d\varphi dy = 4 \int_0^1 r \, dr \int_0^{2\pi} d\varphi \int_{r^2 + 1/2}^{4 - r^2} dy = 4\pi \int_0^1 (7r - 4r^3) \, dr = 10\pi.$$

Površ S se sastoji od delova sa različitom parametrizacijom, pa bi izračunavanje integrala I prelaskom na površinski I vrste zahtevalo rešavanje bar četiri površinska umesto jednog trojnog integrala. Preciznije, delove S_1 i S_2 treba projektovati na zx-ravan, a deo S_3 na xy ili yz-ravan, s tim što S_3 mora da se deli na dva bijektivna dela (3°, 4° iz Napomene 4.3.2). Prednost Teoreme Ostrogradskog je u ovom slučaju očigledna (1° iz Napomene 4.6.1).

Slična je situacija i u Zadacima 67, 69.

74. Izračunati potpuni površinski integral II vrste

$$I = \iint_{S} bx^{2} dydz + ay^{2} dzdx + abz^{2} dxdy ,$$

gde je S zatvorena površ sastavljena od delova površi

$$S_1: \quad \left(\frac{x}{a}+z\right)^2+\left(\frac{y}{b}+z\right)^2=\left(\frac{x}{a}+\frac{y}{b}+z\right)^2, \quad S_2: \quad \frac{x}{a}+\frac{y}{b}+z=1$$

i a, b > 0. Integracija se vrši po spoljnoj strani površi S.

Rešenje. Za

$$P(x, y, z) = bx^{2}$$
, $Q(x, y, z) = ay^{2}$, $R(x, y, z) = abz^{2}$

jе

$$\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = 2(bx + ay + abz)$$

i primenom Teoreme Ostrogradskog sledi

$$I = 2 \iiint_D (bx + ay + abz) dxdydz = 2ab \iiint_D \left(\frac{x}{a} + \frac{y}{b} + z\right) dxdydz,$$

gde je D prostorna oblast ograničena sa S.

Uvodimo smenu

$$u = \frac{x}{a} + z$$
, $v = \frac{y}{b} + z$, $w = \frac{x}{a} + \frac{y}{b} + z$,

iz koje je

$$x = a(w - v)$$
, $y = b(w - u)$, $z = u + v - w$.

Slično kao u Zadatku 38 određujemo |J(u,v,w)|=ab. Površi S_1 i S_2 se transformišu u

$$S_1^*: u^2 + v^2 = w^2, S_2^*: w = 1.$$

U uvw—sistemu je S_1^* konus, S_2^* ravan paralelna uv—ravni, a D^* oblast ograničena sa S_1^* i S_2^* . Za sve tačke iz D^* važi $w\geq 0$. Uvodimo cilindrične koordinate sa

$$u = r \cos \varphi$$
, $v = r \sin \varphi$, $w = w$

i dobijamo $|J(r,\varphi,w)|=r$ i

$$S_1^{**}: \quad w=r \; , \quad S_2^{**}: \quad w=1 \; .$$

Projekcija oblasti D^* na uv–ravan je krug $u^2+v^2\leq 1$, pa je nova oblast D^{**} opisana sa

$$D^{**}: 0 \le r \le 1, 0 \le \varphi \le 2\pi, r \le w \le 1.$$

Za integral I se dobija

$$\begin{split} I &= 2a^2b^2 \iiint_{D^*} w \, du dv dw = 2a^2b^2 \iiint_{D^{**}} rw \, dr d\varphi dw \\ &= 2a^2b^2 \int_0^{2\pi} d\varphi \int_0^1 r \, dr \int_r^1 w \, dw = 2a^2b^2\pi \int_0^1 r \left(1 - r^2\right) dr = \frac{1}{2} \, a^2b^2\pi \ . \end{split}$$

Da bi se integral I rešavao kao površinski, mora da se rastavi na integrale po površima S_1 i S_2 . Integral po površi S_2 se lako rešava jer je S_2 ravan. Međutim, za rešavanje integrala po površi S_1 je potrebno prethodno izvršiti adekvatnu parametrizaciju površi, uključujući i nalaženje njene oblasti definisanosti, što nije jednostavno s obzirom na neprepoznatljivost površi u xyz-sistemu. Ako se tome pridoda i rešavanje samog površinskog integrala, ovaj postupak je toliko komplikovan da je neupotrebljiv.

75. Izračunati potpuni površinski integral II vrste

$$I = \iint_{S} (x - z^{2}) dydz + (y + x^{2}) dzdx - (z + y^{2}) dxdy,$$

gde je S zatvorena površ

S:
$$(x^2 + y^2 + z^2)^2 = a^2(x^2 + y^2 - z^2)$$

i a > 0. Integracija se vrši po spoljnoj strani površi S.

Rešenje. Kako je

$$P(x, y, z) = x - z^2$$
, $Q(x, y, z) = y + x^2$, $R(x, y, z) = -(z + y^2)$,

to je

$$\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = 1$$

i prema Teoremi Ostrogradskog

$$I = \iiint_D dx dy dz ,$$

gde je D prostorna oblast ograničena sa S.

Uvođenjem sfernih koordinata $r,\, \varphi,\, \theta,\,$ za koje je $|J|=r^2\cos\theta,\,$ površS se preslikava u

$$S^*: r = a\sqrt{\cos 2\theta}$$
.

Površ S^* je definisana za $\theta\in[-\pi/4,\pi/4]$ i $\varphi\in[0,2\pi].$ Kako je tačka $(0,0,0)\in S,$ tj. $(0,0,0)\in D,$ oblastD prelazi u

$$D^*: \quad 0 \leq r \leq a \sqrt{\cos 2\theta} \ , \ 0 \leq \varphi \leq 2\pi \ , \ -\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4} \ .$$

Za integral I se dobija

$$\begin{split} I &= \iiint_{D^*} r^2 \cos \theta \, dr d\varphi d\theta = \int_0^{2\pi} d\varphi \int_{-\pi/4}^{\pi/4} \cos \theta \, d\theta \int_0^{a\sqrt{\cos 2\theta}} r^2 \, dr \\ &= \frac{4}{3} a^3 \pi \int_0^{\pi/4} \cos \theta \cos 2\theta \sqrt{\cos 2\theta} \, d\theta = \frac{4}{3} a^3 \pi \int_0^{\pi/4} \cos \theta \left(1 - 2\sin^2\theta\right) \sqrt{1 - 2\sin^2\theta} \, d\theta \; . \end{split}$$

Poslednji određeni integral se rešava smenom

$$\sqrt{2}\sin\theta = \sin t$$
,

za koju je t=0 kad je $\theta=0$ i $t=\pi/2$ kad je $\theta=\pi/4$. Još je $1-2\sin^2\theta=\cos^2t$ i $\sqrt{2}\cos\theta\,d\theta=\cos t\,dt$. Korišćenjem rezultata iz Zadatka 10, konačno je

$$I = \frac{4}{3\sqrt{2}} a^3 \pi \int_0^{\pi/2} \cos^4 t \, dt = \frac{1}{4\sqrt{2}} a^3 \pi^2 \ .$$

Komentar iz Zadatka 74 važi i u ovom slučaju.

76. | Izračunati potpuni površinski integral II vrste

$$I = \iint_{S} \frac{x \, dy dz + y \, dz dx + z \, dx dy}{\left(x^{2} + y^{2} + z^{2}\right)^{3/2}} ,$$

gde je S zatvorena površ koja je spoljna granica dvostruko povezane prostorne oblasti, čija je unutrašnja granica sfera

$$S_1: \quad x^2 + y^2 + z^2 = 1 \ .$$

Integracija se vrši po spoljnoj strani površi S.

 $Re \check{s}enje.$ Neka je D prostorna oblast ograničena sa Si $S_1.$ Za stranu integracije sfere S_1 biramo njenu unutrašnju stranu. Na strane integracije površi Si S_1 su postavljeni normalni vektori.

U integralu I je

$$\begin{split} P(x,y,z) &= \frac{x}{\left(x^2 + y^2 + z^2\right)^{3/2}} \ , \ Q(x,y,z) = \frac{y}{\left(x^2 + y^2 + z^2\right)^{3/2}} \ , \\ R(x,y,z) &= \frac{z}{\left(x^2 + y^2 + z^2\right)^{3/2}} \ , \end{split}$$

pa je

$$\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = \frac{\left(-2x^2 + y^2 + z^2\right) + \left(x^2 - 2y^2 + z^2\right) + \left(x^2 + y^2 - 2z^2\right)}{x^2 + y^2 + z^2} = 0 \ .$$

Kako $(0,0,0) \notin D$, funkcije P(x,y,z), Q(x,y,z), R(x,y,z), $\partial P/\partial x$, $\partial Q/\partial y$, $\partial R/\partial z$ su neprekidne u oblasti D. Uslovi Teoreme 4.6.2 su ispunjeni i sledi

$$\begin{split} &\iint_{S^+} \frac{x\,dydz + y\,dzdx + z\,dxdy}{\left(x^2 + y^2 + z^2\right)^{3/2}} + \iint_{S_1^-} \frac{x\,dydz + y\,dzdx + z\,dxdy}{\left(x^2 + y^2 + z^2\right)^{3/2}} \\ &= \iiint_{D} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\right)dxdydz = 0 \ . \end{split}$$

Izostavljajući podintegralni izraz, odavde je

$$I = \iint_{S^+} = -\iint_{S_1^-} = \iint_{S_1^+}$$

pri čemu su sa S^+ i S_1^+ označene spoljne strane površi S i S_1 , a sa S_1^- unutrašnja strana površi S_1 .

Neka je $S_1=S_2\cup S_3$, gde je S_2 deo za $z\geq 0$, a S_3 deo za $z\leq 0$. Oba dela se projektuju na xy-ravan (z=0) u istu oblast

$$D_{xy}: x^2 + y^2 < 1$$

i imaju jednačine

$$S_{2,3}: \quad z = z_{2,3}(x,y) = \pm \sqrt{1 - x^2 - y^2} \ .$$

Normalni vektor na S_2 zaklapa oštar uga
o $\gamma_2,$ a normalni vektor na S_3 tup uga
o γ_3 sa pozitivnim delom z—ose, pa je

$$\cos \alpha_2 = \frac{-p_2}{\sqrt{1 + p_2^2 + q_2^2}} , \cos \beta_2 = \frac{-q_2}{\sqrt{1 + p_2^2 + q_2^2}} , \cos \gamma_2 = \frac{1}{\sqrt{1 + p_2^2 + q_2^2}} ;$$

$$\cos \alpha_3 = \frac{p_3}{\sqrt{1 + p_3^2 + q_3^2}} , \cos \beta_3 = \frac{q_3}{\sqrt{1 + p_3^2 + q_3^2}} , \cos \gamma_3 = \frac{-1}{\sqrt{1 + p_3^2 + q_3^2}} .$$

Još je

$$p_{2} = \frac{\partial z_{2}}{\partial x} = \frac{-x}{\sqrt{1 - x^{2} - y^{2}}} , q_{2} = \frac{\partial z_{2}}{\partial y} = \frac{-y}{\sqrt{1 - x^{2} - y^{2}}} ;$$
$$p_{3} = \frac{\partial z_{3}}{\partial x} = \frac{x}{\sqrt{1 - x^{2} - y^{2}}} , q_{3} = \frac{\partial z_{3}}{\partial y} = \frac{y}{\sqrt{1 - x^{2} - y^{2}}}$$

i važi

$$I = \iint_{S_2} \frac{x \cos \alpha_2 + y \cos \beta_2 + z \cos \gamma_2}{\left(x^2 + y^2 + z^2\right)^{3/2}} d\sigma + \iint_{S_3} \frac{x \cos \alpha_3 + y \cos \beta_3 + z \cos \gamma_3}{\left(x^2 + y^2 + z^2\right)^{3/2}} d\sigma$$

$$= \iint_{D_{xy}} \frac{-xp_2 - yq_2 + z_2(x,y)}{\left(x^2 + y^2 + z_2^2(x,y)\right)^{3/2}} dxdy + \iint_{D_{xy}} \frac{xp_3 + yq_3 - z_3(x,y)}{\left(x^2 + y^2 + z_3^2(x,y)\right)^{3/2}} dxdy$$

$$= 2 \iint_{D_{xy}} \frac{dxdy}{\sqrt{1 - x^2 - y^2}}.$$

Uvođenjem polarnih koordinata u xy-ravni sledi

$$D_{xy}^*: \quad 0 \le r \le 1 \ , \ 0 \le \varphi \le 2\pi$$

i za integral I se dobija

$$I = 2 \int_0^{2\pi} d\varphi \int_0^1 \frac{r}{\sqrt{1 - r^2}} dr = 4\pi$$
.

Pošto je površS proizvoljna, površinski integral ima istu vrednost $I=4\pi$ po svakoj zatvorenoj površi za koju je $(0,0,0)\in \operatorname{int} S$. Ukoliko $(0,0,0)\notin S\cup \operatorname{int} S$, prema Teoremi Ostrogradskog je I=0. Dakle, I ne zavisi od oblika površi S, već samo od njenog položaja u prostoru, tj. od navedenog uslova.

77. Izračunati potpuni površinski integral II vrste

$$I = \iint_{S} \frac{(y+z) \, dy dz + (z-x) \, dz dx - (x+y) \, dx dy}{x^2 + y^2 + z^2} ,$$

gde je S zatvorena površ koja je spoljna granica dvostruko povezane prostorne oblasti, čija je unutrašnja granica zatvorena površ S_1 . Površ S_1 je sastavljena od delova ravni

$$S_2: z = -1, S_3: z = 1$$

koji su unutar cilindrične površi

$$S_4: \quad x^2 + y^2 = 1$$

i dela površi S_4 između ravni S_2 i S_3 . Integracija se vrši po spoljnoj strani površi S.

Rešenje. Ravni S_2 , S_3 su paralelne xy-ravni, a cilindrična površ S_4 ima izvodnice paralelne z-osi i kružnicu u xy-ravni za direktrisu. Radi jednostavnosti, delove ovih površi, koji ulaze u sastav površi S_1 , označimo isto sa S_2 , S_3 , S_4 . Dakle, S_1 je cilindar sa bazisima S_2 , S_3 i omotačem S_4 . Za stranu integracije biramo unutrašnju stranu cilindra. Normalni vektori su postavljeni na strane integracije površi S i S_1 . Neka je D prostorna oblast ograničena sa S i S_1 .

U integralu I je

$$P(x,y,z) = \frac{y+z}{x^2+y^2+z^2} \ , \ Q(x,y,z) = \frac{z-x}{x^2+y^2+z^2} \ , \ R(x,y,z) = \frac{-(x+y)}{x^2+y^2+z^2} \ ,$$

pa je

$$\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = \frac{-2x(y+z) - 2y(z-x) + 2z(x+y)}{(x^2 + y^2 + z^2)^2} = 0.$$

Kako $(0,0,0) \notin D$, funkcije P(x,y,z), Q(x,y,z), R(x,y,z), $\partial P/\partial x$, $\partial Q/\partial y$, $\partial R/\partial z$ su neprekidne u oblasti D. Uslovi Teoreme 4.6.2 su ispunjeni i sledi

$$\begin{split} &\iint_{S^+} \frac{\left(y+z\right) dy dz + \left(z-x\right) dz dx - \left(x+y\right) dx dy}{x^2 + y^2 + z^2} \\ &+ \iint_{S_1^-} \frac{\left(y+z\right) dy dz + \left(z-x\right) dz dx - \left(x+y\right) dx dy}{x^2 + y^2 + z^2} \\ &= \iiint_{D} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\right) dx dy dz = 0 \ . \end{split}$$

Izostavljajući podintegralni izraz, odavde je

$$I = \iint_{S^+} = -\iint_{S_1^-} = \iint_{S_1^+} ,$$

pri čemu su sa S^+ i S_1^+ označene spoljne strane površi S i S_1 , a sa S_1^- unutrašnja strana površi S_1 .

Neka je $S_4=S_5\cup S_6$, gde je S_5 deo za $x\geq 0$, a S_6 deo za $x\leq 0$. Tada je $S_1=S_2\cup S_3\cup S_5\cup S_6$ i

$$I = I_2 + I_3 + I_5 + I_6$$
.

Integrali I_2 , I_3 , I_5 , I_6 su površinski po površima S_2 , S_3 , S_5 , S_6 redom sa podintegralnim izrazom kao u integralu I.

Površi S_2 , S_3 se bijektivno projektuju na xy-ravan (z=0) u istu oblast

$$D_{xy}: x^2 + y^2 \le 1$$

i imaju jednačine

$$S_{2,3}: \quad z=z_{2,3}(x,y)=\mp 1.$$

Jedinični normalni vektori na strane površi $S_2,\,S_3,$ koje odgovaraju spoljnoj strani površi $S_1,$ su jedinični vektori sa z–ose

$$\mp \vec{k} = (0, 0, \mp 1)$$
.

Zato je

$$\cos \alpha_2 = 0$$
, $\cos \beta_2 = 0$, $\cos \gamma_2 = -1$; $\cos \alpha_3 = 0$, $\cos \beta_3 = 0$, $\cos \gamma_3 = 1$

i, zbog $z_2^2 = z_3^2 = 1$, važi

$$I_{2} + I_{3} = \iint_{S_{2}} \frac{(y+z)\cos\alpha_{2} + (z-x)\cos\beta_{2} - (x+y)\cos\gamma_{2}}{x^{2} + y^{2} + z^{2}} d\sigma$$

$$+ \iint_{S_{3}} \frac{(y+z)\cos\alpha_{3} + (z-x)\cos\beta_{3} - (x+y)\cos\gamma_{3}}{x^{2} + y^{2} + z^{2}} d\sigma$$

$$= \iint_{D_{xy}} \frac{x+y}{x^{2} + y^{2} + z^{2}_{2}} dxdy - \iint_{D_{xy}} \frac{x+y}{x^{2} + y^{2} + z^{2}_{3}} dxdy = 0.$$

Površi S_5 , S_6 se bijektivno projektuju na yz-ravan (x=0) u istu oblast

$$D_{yz}: -1 \le y \le 1, -1 \le z \le 1$$

i imaju jednačine

$$S_{5,6}: \quad x = x_{5,6}(y,z) = \pm \sqrt{1-y^2} \ .$$

Normalni vektor na S_5 zaklapa oštar uga
o α_5 , a normalni vektor na S_6 tup uga
o α_6 sa pozitivnim delom x—ose, pa je

$$\cos \alpha_5 = \frac{1}{\sqrt{1 + p_5^2 + q_5^2}} , \cos \beta_5 = \frac{-p_5}{\sqrt{1 + p_5^2 + q_5^2}} , \cos \gamma_5 = \frac{-q_5}{\sqrt{1 + p_5^2 + q_5^2}} ;$$

$$\cos \alpha_6 = \frac{-1}{\sqrt{1 + p_6^2 + q_6^2}} , \cos \beta_6 = \frac{p_6}{\sqrt{1 + p_6^2 + q_6^2}} , \cos \gamma_6 = \frac{q_6}{\sqrt{1 + p_6^2 + q_6^2}} .$$

Još je

$$p_5 = \frac{\partial x_5}{\partial y} = \frac{-y}{\sqrt{1-y^2}} \; , \; q_5 = \frac{\partial x_5}{\partial z} = 0 \; ; \; p_6 = \frac{\partial x_6}{\partial y} = \frac{y}{\sqrt{1-y^2}} \; , \; q_6 = \frac{\partial x_6}{\partial z} = 0$$

i važi

$$I_{5} + I_{6} = \iint_{S_{5}} \frac{(y+z)\cos\alpha_{5} + (z-x)\cos\beta_{5} - (x+y)\cos\gamma_{5}}{x^{2} + y^{2} + z^{2}} d\sigma$$

$$+ \iint_{S_{6}} \frac{(y+z)\cos\alpha_{6} + (z-x)\cos\beta_{6} - (x+y)\cos\gamma_{6}}{x^{2} + y^{2} + z^{2}} d\sigma$$

$$= \iint_{D_{yz}} \frac{y+z - (z-x_{5})p_{5} + (x_{5} + y)q_{5}}{x_{5}^{2} + y^{2} + z^{2}} dydz$$

$$+ \iint_{D_{yz}} \frac{-(y+z) + (z-x_{6})p_{6} - (x_{6} + y)q_{6}}{x_{6}^{2} + y^{2} + z^{2}} dydz$$

$$= 2 \iint_{D_{yz}} \frac{yz}{(1+z^{2})\sqrt{1-y^{2}}} dydz = 2 \int_{-1}^{1} \frac{y}{\sqrt{1-y^{2}}} dy \int_{-1}^{1} \frac{z}{1+z^{2}} = 0 ,$$

pri čemu je

$$\int_{-1}^{1} \frac{y}{\sqrt{1-y^2}} \, dy = 0 \,\, , \,\, \int_{-1}^{1} \frac{z}{1+z^2} = 0$$

zbog neparnosti podintegralnih funkcija i simetričnih segmenata integracije. Pošto je površS proizvoljna, površinski integral ima istu vrednost

$$I = I_2 + I_3 + I_5 + I_6 = 0$$

po svakoj zatvorenoj površi za koju je $(0,0,0) \in \text{int } S$. Ukoliko $(0,0,0) \notin S \cup \text{int } S$, prema Teoremi Ostrogradskog je takođe I=0. Za razliku od Zadatka 76, u ovom slučaju I ne zavisi ni od oblika površi S, ni od njenog položaja u prostoru.

Stokesova teorema

Ako je S prostorna površ i L njena saglasno orijentisana kontura, tada je

$$\oint_{L} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz$$

$$= \iint_{S} \begin{vmatrix} \cos \alpha & \cos \beta & \cos \gamma \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ P(x, y, z) & Q(x, y, z) & R(x, y, z) \end{vmatrix} d\sigma .$$

78. Izračunati potpuni krivolinijski integral II vrste

$$I = \oint_L y \, dx + x^2 \, dy + z \, dz \; ,$$

gde je kriva L presek površi

$$S_1: \quad x^2+y^2=2(x+y) \;, \quad S_2: \quad z=x^2+y^2 \;.$$

Posmatrano sa pozitivnog dela z-ose, L je pozitivno orijentisana.

 $Re\check{s}enje$. Površ S_1 je cilindrična sa izvodnicama paralelnim z-osi, a S_2 je paraboloid sa z-osom kao osovinom. Direktrisa površi S_1 je istovremeno projekcija krive L na xy-ravan

$$L_{xy}: (x-1)^2 + (y-1)^2 = 2, z = 0.$$

Slika za ovaj zadatak bi bila ista kao slika iz Zadatka 13 ako bi se umesto konusa uzeo paraboloid. Neka je S deo paraboloida S_2 ograničen sa L. Za zadatu orijentaciju krive L saglasno je orijentisana strana površi S koja se vidi sa pozitivnog dela z-ose (Slika 1.2.25 i komentar uz nju).

U integralu I je

$$P(x, y, z) = y$$
, $Q(x, y, z) = x^2$, $R(x, y, z) = z$,

pa je

$$\begin{vmatrix} \cos \alpha & \cos \beta & \cos \gamma \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ y & x^2 & z \end{vmatrix} = (2x - 1)\cos \gamma .$$

Funkcije P(x, y, z), Q(x, y, z), R(x, y, z) i njihovi odgovarajući parcijalni izvodi su neprekidni na površi S. Uslovi Stokesove teoreme su ispunjeni i njenom primenom sledi

$$I = \iint_{S} (2x - 1) \cos \gamma \, d\sigma .$$

Površ S se bijektivno projektuje na xy-ravan (z=0) u krug D_{xy} ograničen sa L_{xy} (1° iz Napomene 4.3.2), a jednačina površi S je

$$S: \quad z = z(x,y) = x^2 + y^2 \; ; \quad (x,y) \in D_{xy} \; .$$

Normalni vektor na stranu integracije površi S zaklapa oštar ugao γ sa pozitivnim delom $z\text{--}\mathrm{ose.}$ Zato je

$$\cos \gamma = \frac{1}{\sqrt{1 + p^2 + q^2}}$$

i integral I postaje dvojni

$$I = \iint_{D_{xy}} (2x - 1) \, dx dy \ .$$

Pomoću smene

$$x = 1 + r\cos\varphi$$
, $y = 1 + r\sin\varphi$,

za koju je |J| = r, oblast D_{xy} se preslikava u

$$D_{xy}^*: 0 \le r \le \sqrt{2}, 0 \le \varphi \le 2\pi,$$

pa je dalje

$$I = \iint_{D_{xy}^*} r(2r\cos\varphi + 1) dr d\varphi = \int_0^{2\pi} d\varphi \int_0^{\sqrt{2}} (2r^2\cos\varphi + r) dr$$
$$= \int_0^{2\pi} \left(\frac{4\sqrt{2}}{3}\cos\varphi + 1\right) d\varphi = 2\pi .$$

Koliko je direktno rešavanje krivolinijskog integrala teže, ostavljamo čitaocu da se sam uveri.

79. Izračunati potpuni krivolinijski integral II vrste

$$I = \oint_L (y+z) \, dx + (z-x) \, dy + (x+y) \, dz \; ,$$

gde je kriva L presek površi

$$S_1: \quad x^2+y^2+z^2=4x \; , \quad S_2: \quad x^2+y^2=2x$$

za $z \ge 0$. Posmatrano sa pozitivnog dela z-ose, L je pozitivno orijentisana.

 $Re\check{s}enje$. Površi $S_1,\,S_2,\,$ kriva $L,\,$ deo S sfere S_1 koji je ograničen sa L i odgovarajuća slika su isti kao u Zadatku 70 za a=1. Zadatoj orijentaciji krive L odgovara (saglasno je orijentisana) strana površi S koja se vidi sa pozitivnog dela z-ose. To je strana na koju je postavljen normalni vektor u Zadatku 70.

U integralu I je

$$P(x, y, z) = y + z$$
, $Q(x, y, z) = z - x$, $R(x, y, z) = x + y$,

pa je

$$\begin{vmatrix} \cos \alpha & \cos \beta & \cos \gamma \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ y + z & z - x & x + y \end{vmatrix} = -2\cos \gamma \ .$$

Uslovi Stokesove teoreme su ispunjeni i sledi

$$I = -2 \iint_S \cos \gamma \, d\sigma \ .$$

Koristeći činjenicu da se površ S bijektivno projektuje na xy-ravan u krug D_{xy} , kao i ostale rezultate iz Zadatka 70, za integral I se dobija

$$I = -2 \iint_{D_{xy}} dx dy = -2d = -2\pi ,$$

gde je $d=R^2\pi=\pi$ površina kruga D_{xy} poluprečnika R=1.

80. Izračunati potpuni krivolinijski integral II vrste

$$I = \oint_L y^2 \, dx - x^2 \, dy + z^2 \, dz \; ,$$

gde je kriva L presek površi

$$S: \quad x^2 + y + z^2 = 1$$

sa koordinatnim ravnima za $x,y,z\geq 0$. Posmatrano sa pozitivnog dela x-ose, L je pozitivno orijentisana.

 $Re\check{s}enje.$ Isti integral je već rešen direktno u Zadatku 11. Sada ga rešavamo primenom Stokesove teoreme. Radi jednostavnosti, za deo površi S u I oktantu, koji je ograničen sa L, koristimo istu oznaku S. Zadatoj orijentaciji krive L odgovara strana površi S koja se vidi sa pozitivnih delova svih koordinatnih osa.

U integralu I je

$$P(x, y, z) = y^2$$
, $Q(x, y, z) = -x^2$, $R(x, y, z) = z^2$,

pa je

$$\begin{vmatrix} \cos \alpha & \cos \beta & \cos \gamma \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ y^2 & -x^2 & z^2 \end{vmatrix} = -2(x+y)\cos \gamma \ .$$

Uslovi Stokesove teoreme su ispunjeni i sledi

$$I = -2 \iint_S (x+y) \cos \gamma \, d\sigma .$$

PovršSse bijektivno projektuje na sve koordinatne ravni (2° iz Napomene 4.3.2). Biramo, npr., xy–ravan (z=0). Koristeći rezultate iz Zadatka 11, utvrđujemo da je projekcija oblast

$$D_{xy}: 0 \le x \le 1, 0 \le y \le 1 - x^2.$$

Normalni vektor na stranu integracije površi S zaklapa oštar ugao γ sa pozitivnim delom z-ose i integral I postaje

$$I = -2 \iint_{D_{xy}} (x+y) \, dx dy = -2 \int_0^1 dx \int_0^{1-x^2} (x+y) \, dy$$
$$= -2 \int_0^1 \left(\frac{1}{2} + x - x^2 - x^3 + \frac{1}{2} x^4\right) dx = -\frac{31}{30} .$$

Na osnovu Zadatka 11 vidimo da je direktno rešavanje krivolinijskog integrala teže jer zahteva deobu krive L na tri dela.

81. Izračunati potpuni krivolinijski integral II vrste

$$I = \oint_{L} (y - z) dx + (z - x) dy + (x - y) dz ,$$

gde je kriva L presek površi

$$S_1: \quad \frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{x}{a} + \frac{y}{b} \;, \quad S_2: \quad \frac{x}{a} + \frac{z}{c} = 1$$

za a,b,c>0. Posmatrano sa pozitivnog dela z-ose, L je negativno orijentisana.

 $Re \check{s}enje$. Površ S_1 je cilindrična sa izvodnicama paralelnim z-osi, a S_2 je ravan paralelna y-osi. Direktrisa površi S_1 je i projekcija krive L na xy-ravan (3° iz Napomene 2.3.5), a to je elipsa

$$L_{xy}: \frac{\left(x-\frac{a}{2}\right)^2}{\left(\frac{a}{\sqrt{2}}\right)^2} + \frac{\left(y-\frac{b}{2}\right)^2}{\left(\frac{b}{\sqrt{2}}\right)^2} = 1.$$

Neka je S deo ravni S_2 ograničen sa L. Zadatoj orijentaciji krive L odgovara strana površi S koja se vidi sa negativnog dela z-ose. Na ovu stranu je postavljen normalni vektor.

Kako je

$$P(x, y, z) = y - z$$
, $Q(x, y, z) = z - x$, $R(x, y, z) = x - y$,

to je

$$\begin{vmatrix} \cos \alpha & \cos \beta & \cos \gamma \\ \partial / \partial x & \partial / \partial y & \partial / \partial z \\ y - z & z - x & x - y \end{vmatrix} = -2(\cos \alpha + \cos \beta + \cos \gamma)$$

i primenom Stokesove teoreme sledi

$$I = -2 \iint_{S} (\cos \alpha + \cos \beta + \cos \gamma) d\sigma.$$

Površ S se bijektivno projektuje na xy-ravan (z=0) u oblast D_{xy} ograničenu sa L_{xy} (Napomena 4.3.1), a njena jednačina je

$$S: \quad z = z(x,y) = c - \frac{c}{a} x \; ; \quad (x,y) \in D_{xy} \; .$$

Normalni vektor na stranu integracije zaklapa tup uga
o γ sa pozitivnim delom z--ose,pa ie

$$\cos\alpha = \frac{p}{\sqrt{1+p^2+q^2}} \ , \ \cos\beta = \frac{q}{\sqrt{1+p^2+q^2}} = 0 \ , \ \cos\gamma = \frac{-1}{\sqrt{1+p^2+q^2}} \ ,$$

gde je

$$p = \frac{\partial z}{\partial x} = -\frac{c}{a}$$
, $q = \frac{\partial z}{\partial y} = 0$.

Integral I prelazi u dvojni

$$I = -2 \iint_{D_{xy}} (p+q-1) \, dx dy = 2 \frac{a+c}{a} \iint_{D_{xy}} dx dy .$$

Uvodeći smenu

$$x = \frac{a}{2} + \frac{a}{\sqrt{2}} r \cos \varphi , \ y = \frac{b}{2} + \frac{b}{\sqrt{2}} r \sin \varphi ,$$

za koju je |J| = abr/2, oblast D_{xy} se transformiše u

$$D_{xy}^*: 0 \le r \le 1, 0 \le \varphi \le 2\pi$$

i dobija se

$$I=2\frac{a+c}{a}\iint_{D^*_{xy}}\frac{ab}{2}\,r\,drd\varphi=(a+c)b\int_0^1r\,dr\int_0^{2\pi}d\varphi=(a+c)b\pi\ .$$

82. Izračunati potpuni krivolinijski integral II vrste

$$I = \oint_L y^2 \, dx + z^2 \, dy + z^2 \, dz \; ,$$

gde je kriva L presek površi

$$S_1: \quad z = x^2 + y^2 \; , \quad S_2: \quad z = 2y \; .$$

Posmatrano sa pozitivnog dela z-ose, L je negativno orijentisana.

Rešenje. Površ S_1 je paraboloid sa z-osom kao osovinom, a S_2 je ravan koja prolazi kroz x-osu i seče yz-ravan duž prave $z=2y,\ x=0$. Ako je S deo ravni S_2 ograničen sa L, orijentaciji krive L odgovara strana površi S na koju je postavljen normalni vektor.

Nalazimo

$$\begin{vmatrix} \cos \alpha & \cos \beta & \cos \gamma \\ \partial / \partial x & \partial / \partial y & \partial / \partial z \\ y^2 & z^2 & z^2 \end{vmatrix} = -2(z\cos \alpha + y\cos \gamma)$$

i dobijamo

$$I = -2 \iint_{S} (z \cos \alpha + y \cos \gamma) d\sigma.$$

Eliminacijom ziz jednačina površi S_1 i S_2 sledi jednačina projekcije krive Lna xy-ravan

$$L_{xy}: x^2 + (y-1)^2 = 1, z = 0,$$

pa se S projektuje na krug D_{xy} ograničen sa L_{xy} . Jednačina površi S je

$$S: \quad z = z(x, y) = 2y \; ; \quad (x, y) \in D_{xy} \; .$$

Normalni vektor na stranu integracije zaklapa tup uga
o γ sa pozitivnim delom z–ose. Kako je
 $p=\partial z/\partial x=0,$ dalje je

$$I = -2 \iint_{D_{xy}} (2yp - y) \, dx dy = 2 \iint_{D_{xy}} y \, dx dy .$$

Smenom

$$x = r\cos\varphi \ , \ y = 1 + r\sin\varphi \ ,$$

za koju je $|J|=r,\,D_{xy}$ prelazi u

$$D_{xy}^*: 0 \le r \le 1, -\pi \le \varphi \le \pi$$

i dobija se

$$I = 2 \int_0^1 r \, dr \int_{-\pi}^{\pi} (1 + r \sin \varphi) \, d\varphi = 4\pi \int_0^1 r \, dr = 2\pi \ .$$

Za površ S može da se uzme i deo paraboloida S_1 koji je ograničen sa L, ali je tada odgovarajući dvojni integral nešto teži za rešavanje. Važi i generalno. Najjednostavniji za rešavanje su dvojni integrali koji se dobijaju izborom dela ravni za površ integracije.

Takođe, površ S se bijektivno projektuje i na zx-ravan (2° iz Napomene 4.3.2), bilo da je S deo paraboloida S_1 ili deo ravni S_2 . Projekcija je oblast elipse, pa se i u ovom slučaju dvojni integral teže rešava.

83. Izračunati potpuni krivolinijski integral II vrste

$$I = \oint_L z \, dx + x \, dy + y \, dz \; ,$$

gde je kriva L presek površi

$$S_1: \quad x^2 + y^2 + z^2 = 3a^2, \quad S_2: \quad x^2 + y^2 = 2az$$

za a > 0. Posmatrano sa pozitivnog dela z-ose, L je pozitivno orijentisana.

Rešenje. Sfera S_1 i paraboloid S_2 su isti, samo drugačije označeni sa S_3 , S_4 , kao u Zadatku 55. U istom zadatku je utvrđeno da sve tačke krive L imaju istu treću koordinatu z=a, što znači da L istovremeno pripada i ravni

$$S: \quad z=a$$
.

U skladu sa zaključkom iz Zadatka 82, za površS biramo deo ravni S_3 ograničen sa L. Orijentaciji krive L odgovara strana površi S koja se vidi sa pozitivnog dela z-ose.

Prema Zadatku 55, površSse projektuje na xy–ravan u krug D_{xy} poluprečnika $\sqrt{2}\,a.$ Još, za Svaži

$$p = q = 0$$
; $\cos \alpha = \cos \beta = 0$, $\cos \gamma = 1$,

pa se primenom Stokesove teoreme dobija

$$I = \iint_S (\cos \alpha + \cos \beta + \cos \gamma) d\sigma = \iint_{D_{xy}} dx dy = (\sqrt{2}a)^2 \pi = 2a^2 \pi.$$

84. | Izračunati potpuni krivolinijski integral II vrste

$$I = \oint_L y \, dx + z \, dy + x \, dz \; ,$$

gde je kriva L presek površi

$$S_1: \quad x^2 + y^2 + z^2 = a^2 , \quad S_2: \quad x + y + z = 0$$

za a > 0. Posmatrano sa pozitivnog dela z-ose, L je negativno orijentisana.

 $Re\check{s}enje$. Površ S_1 je centralna sfera poluprečnika a, dok je S_2 ravan koja prolazi kroz koordinatni početak (0,0,0). Ravan S_2 seče sferu S_1 po kružnici L poluprečnika a. Ako je S deo ravni S_2 ograničen sa L, tada je S krug istog poluprečnika. Orijentaciji krive L

odgovara strana kruga Skoja se vidi sa negativnog dela $z ext{-}{\rm ose}.$ Normalan vektor na ovu stranu je označen sa $\vec{n}.$

Primenom Stokesove teoreme sledi

$$I = -\iint_{S} (\cos \alpha + \cos \beta + \cos \gamma) d\sigma.$$

Opšti oblik jednačine ravni je ([3], str. 268)

$$Ax + By + Cz + D = 0 ,$$

gde su $A,\,B,\,C$ koordinate vektora \vec{n}_1 normalnog na ravan. U slučaju ravni S_2 , tj. dela ravni S, je A=B=C=1 i važi $\vec{n}_1=(1,1,1),\, |\vec{n}_1|=\sqrt{3}.$ Ako su $\alpha_1,\,\beta_1,\,\gamma_1$ uglovi koje \vec{n}_1 zaklapa s pozitivnim delovima koordinatnih osa, tada je

$$\cos \alpha_1 = \frac{1}{\sqrt{3}} , \cos \beta_1 = \frac{1}{\sqrt{3}} , \cos \gamma_1 = \frac{1}{\sqrt{3}} .$$

Kako je $\cos \gamma_1 > 0$, γ_1 je oštar ugao. S druge strane, vektor \vec{n} zaklapa tup ugao γ sa pozitivnim delom z-ose i takođe je normalan na S. Dakle, \vec{n} i \vec{n}_1 su vektori suprotnog smera, pa je

$$\vec{n} = (-1, -1, -1)$$
, $|\vec{n}| = \sqrt{3}$; $\cos \alpha = \cos \beta = \cos \gamma = -\frac{1}{\sqrt{3}}$.

Zato je

$$I = \frac{3}{\sqrt{3}} \iint_S d\sigma = \sqrt{3}\,s = \sqrt{3}\,a^2\pi\ , \label{eq:I}$$

gde je $s=R^2\pi=a^2\pi$ površina kruga S poluprečnika R=a.

Projekcija kružnice L na bilo koju od koordinatnih ravni je elipsa. Kako ose ovih elipsi nisu paralelne koordinatnim osama, njihova parametrizacija je naporna jer zahteva prethodnu rotaciju koordinatnog sistema ([5], str. 96). Zato se integral I teško rešava direktno kao krivolinijski. Iz istog razloga je i projekciju kruga S na neku od koordinatnih ravni teško opisati, zbog čega odgovarajući površinski integral i nismo rešavali prelaskom na dvojni.

Površinski integral iz Zadatka 83 može analogno da se reši, bez prelaska na dvojni integral. Međutim, u ovom slučaju nema razlike između površinskog i dvojnog integrala,

$$\iint_{S} d\sigma = \iint_{D_{xy}} dx dy ,$$

jer su krugovi Si ${\cal D}_{xy}$ istog poluprečnika, pa su njihove površine jednake.

85. Izračunati potpuni krivolinijski integral II vrste

$$I = \oint_{I} (y^{2} - z^{2}) dx + (z^{2} - x^{2}) dy + (x^{2} - y^{2}) dz ,$$

gde je kriva L presek površi

$$S_1: \quad x^2 + y^2 + z^2 = a^2 , \quad S_2: \quad x + y + z = \frac{3}{2} a$$

za a > 0. Posmatrano sa pozitivnog dela z-ose, L je pozitivno orijentisana.

 $Re \check{s}enje.$ Ako je S deo ravni S_2 ograničen sa L, tada je S krug. Orijentaciji krive L odgovara strana kruga S na koju je postavljen normalni vektor.

Analogno kao u Zadatku 84, utvrđujemo da je

$$\cos \alpha = \cos \beta = \cos \gamma = \frac{1}{\sqrt{3}} ,$$

pa primenom Stokesove teoreme sledi

$$\begin{split} I &= -2 \iint_S \left[(y+z) \cos \alpha + (x+z) \cos \beta + (x+y) \cos \gamma \right] \, d\sigma \\ &= -\frac{2}{\sqrt{3}} \iint_S (2x+2y+2z) \, d\sigma = -\frac{4}{\sqrt{3}} \iint_S (x+y+z) \, d\sigma \ . \end{split}$$

Kako je podintegralna funkcija x+y+z definisana na $S\subset S_2$, to mora da važi

$$x + y + z = \frac{3}{2} a ,$$

pa je dalje

$$I = -2\sqrt{3} a \iint_S d\sigma = -2\sqrt{3} as ,$$

gde je s površina kruga S.

Poluprečnik R kruga S nam nije poznat. Da bismo odredili R, prethodno uočavamo sledeće činjenice. Prvo, normala na ravan S_2 , koja prolazi kroz koordinatni početak

(0,0,0), istovremeno prolazi i kroz centar kruga S. Drugo, normalno rastojanje proizvoljne tačke (x_0,y_0,z_0) od ravni Ax + By + Cz + D = 0 je ([3], str. 271)

$$\rho = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}} \ .$$

U slučaju ravni S_2 je $A=B=C=1,\,D=-3a/2,$ pa je normalno rastojanje tačke (0,0,0) od S_2

$$\rho = \frac{\left| -\frac{3}{2} \, a \right|}{\sqrt{3}} = \frac{\sqrt{3}}{2} \, a \ .$$

Treće, kružnica L pripada centralnoj sferi S_1 poluprečnika a. Zato je rastojanje tačke (0,0,0) od svih tačaka sa L isto i iznosi a. Konačno, iz pravouglog trougla, čija su temena koordinatni početak (0,0,0), centar kruga S i bilo koja tačka kružnice L, sledi

$$\rho^2 + R^2 = a^2 \ , \ R^2 = a^2 - \rho^2 = a^2 - \frac{3}{4} \, a^2 = \frac{1}{4} \, a^2 \ , \ s = R^2 \pi = \frac{1}{4} \, a^2 \pi \ .$$

Vrednost integrala I je

$$I = -\frac{\sqrt{3}}{2} a^3 \pi \ .$$

Nezavisnost krivolinijskog integrala od puta integracije

Ako je u prosto povezanoj prostornoj oblasti

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \ , \ \frac{\partial P}{\partial z} = \frac{\partial R}{\partial x} \ , \ \frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y} \ ,$$

tada je

$$u(x,y,z) = \int_{x_0}^x P(x,y,z) dx + \int_{y_0}^y Q(x_0,y,z) dy + \int_{z_0}^z R(x_0,y_0,z) dz + c ,$$

$$c = u(x_0,y_0,z_0) ;$$

$$\int_{\widehat{AB}} P(x, y, z) \, dx + Q(x, y, z) \, dy + R(x, y, z) \, dz = u(B) - u(A) .$$

86. Neka je D proizvoljna prosto povezana zatvorena oblast u xy-ravni (z=0), takva da $(0,0) \notin D$ i $A(1,1), B(2,2) \in D$. Takođe, neka je

$$I = \int_{L} \frac{(x - y) dx + (x + y) dy}{(x^{2} + y^{2})^{\lambda}}$$

potpuni krivolinijski integral II vrste, u kome je $L=\stackrel{\frown}{AB}\subset D$ proizvoljna kriva i $\lambda\in\mathbb{R}$ konstanta.

- (1°) Odrediti λ tako da integral I ne zavisi od puta integracije L.
- (2°) Izračunati integral I za nađenu vrednost λ .

Rešenje. (1°) Kako je

$$P(x,y) = \frac{x-y}{(x^2+y^2)^{\lambda}}, \ Q(x,y) = \frac{x+y}{(x^2+y^2)^{\lambda}},$$

to je

$$\frac{\partial P}{\partial y} = \frac{-x^2 - y^2 - 2\lambda xy + 2\lambda y^2}{\left(x^2 + y^2\right)^{\lambda + 1}} \ , \ \frac{\partial Q}{\partial x} = \frac{x^2 + y^2 - 2\lambda xy - 2\lambda x^2}{\left(x^2 + y^2\right)^{\lambda + 1}} \ .$$

Funkcije $P(x,y),\,Q(x,y),\,\partial P/\partial y,\,\partial Q/\partial x$ su neprekidne u oblasti D za svako $\lambda\in\mathbb{R}$ zbog $(0,0)\notin D$, pa je

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

dovoljan uslov za nezavisnost krivolinijskog integrala ${\cal I}$ od puta integracije. Iz poslednje jednakosti sledi

$$(1-\lambda)(x^2+y^2)=0,$$

odakle je

$$\lambda = 1$$
.

 (2°) Prvo određujemo potencijal u(x,y) prema formuli

$$u(x,y) = \int_{x_0}^x P(x,y) \, dx + \int_{y_0}^y Q(x_0,y) \, dy + c \; ,$$

birajući konkretnu tačku $(x_0, y_0) = (0, 1) \in D$.

Za $\lambda = 1$ je

$$P(x,y) = \frac{x-y}{x^2 + y^2}$$
, $Q(x,y) = \frac{x+y}{x^2 + y^2}$,

pa je Q(0,y)=1/y i

$$\begin{split} u(x,y) &= \int_0^x \frac{x-y}{x^2+y^2} \, dx + \int_1^y \frac{1}{y} \, dy + c = \int_0^x \frac{x \, dx}{x^2+y^2} - y \int_0^x \frac{dx}{x^2+y^2} + \ln|y| + c \\ &= \frac{1}{2} \ln(x^2+y^2) \, \Big|_{x=0}^{x=x} - \arctan \frac{x}{y} \, \Big|_{x=0}^{x=x} + \ln|y| + c = \frac{1}{2} \ln(x^2+y^2) - \arctan \frac{x}{y} + c \; , \end{split}$$

gde je $c = u(x_0, y_0) = u(0, 1)$.

Izračunavanjem

$$u(A) = u(1,1) = \frac{1}{2} \ln 2 - \arctan 1 + c$$
, $u(B) = u(2,2) = \frac{3}{2} \ln 2 - \arctan 1 + c$,

za integral ${\cal I}$ se dobija

$$I = u(B) - u(A) = \frac{3}{2} \ln 2 - \frac{1}{2} \ln 2 = \ln 2$$
.

87. Neka je

$$I = \int_{L} f(x+y) \left[\left(1 + 3x^{2} + y^{2} \right) dx + \left(1 + x^{2} + 3y^{2} \right) dy \right]$$

potpuni krivolinijski integral II vrste, u kome je L proizvoljna kriva iz xyravni (z = 0) i f(t) realna diferencijabilna funkcija takva da je f(1) = 4.

- (1°) Odrediti f(t) tako da integral I ne zavisi od puta integracije L.
- (2°) Odrediti potencijal u(x,y) ako je u(0,0) = 0. Zatim izračunati integral I ako je $L = \stackrel{\frown}{AB}$ za A(-1,-1), B(1,1).

Rešenje. (1°) Za

$$P(x,y) = f(x+y)(1+3x^2+y^2)$$
, $Q(x,y) = f(x+y)(1+x^2+3y^2)$

nalazimo

$$\frac{\partial P}{\partial y} = f'(x+y) \left(1 + 3x^2 + y^2 \right) + 2y f(x+y) \; , \; \frac{\partial Q}{\partial x} = f'(x+y) \left(1 + x^2 + 3y^2 \right) + 2x f(x+y)$$

i izjednačavanjem parcijalnih izvoda

$$f'(x+y)(1+3x^2+y^2) + 2yf(x+y) = f'(x+y)(1+x^2+3y^2) + 2xf(x+y).$$

Sređivanjem poslednje jednakosti sledi

$$(x+y)f'(x+y) - f(x+y) = 0$$

i, smenom t = x + y,

$$tf'(t) - f(t) = 0$$
, $\frac{f'(t)}{f(t)} = \frac{1}{t}$.

Integracijom dobijene jednakosti nalazimo $\ln |f| = \ln |t| + k_1$ i f(t) = kt, gde je $k = \pm \exp(k_1)$ proizvoljna integraciona konstanta. S obzirom na f(1) = k i uslov f(1) = 4 je k = 4, pa je

$$f(t) = 4t .$$

Zbog neprekidnosti funkcija $f(t)=4t,\,f'(t)=4$ za svako $t\in\mathbb{R}$ i neprekidnosti funkcije t=t(x,y)=x+y za svako $(x,y)\in\mathbb{R}^2$, neprekidne su i funkcije $P(x,y),\,Q(x,y),\,\partial P/\partial y,\,\partial Q/\partial x$ za svako $(x,y)\in\mathbb{R}^2$. Zato za oblast D, u kojoj integral I ne zavisi od puta integracije, može da se uzme bilo koja prosto povezana zatvorena oblast u xy-ravni.

$$(2^\circ)$$
 Za $f(t)=4t$ je $f(x+y)=4(x+y)$ i

$$P(x,y) = 4(x+y)(1+3x^2+y^2)$$
, $Q(x,y) = 4(x+y)(1+x^2+3y^2)$.

Birajući $(x_0, y_0) = (0, 0)$, za potencijal se dobija

$$u(x,y) = \int_0^x P(x,y) dx + \int_0^y Q(0,y) dy + c$$

$$= 4 \int_0^x (x+y) (1+3x^2+y^2) dx + 4 \int_0^y y (1+3y^2) dy + c$$

$$= 4xy + 4xy^3 + 2x^2 + 2x^2y^2 + 4x^3y + 3x^4 + 2y^2 + 3y^4 + c$$

$$= (x+y)^2 (3x^2 + 3y^2 - 2xy + 2) + c,$$

gde je c = u(0,0). S obzirom na u(0,0) = 0, sledi c = 0 i

$$u(x,y) = (x+y)^{2} (3x^{2} + 3y^{2} - 2xy + 2) .$$

Kako je

$$u(A) = u(-1, -1) = 24$$
, $u(B) = u(1, 1) = 24$,

to je

$$I = u(B) - u(A) = 0.$$

88. Izračunati potpuni krivolinijski integral II vrste

$$I = \oint_L \frac{-y \, dx + x \, dy}{x^2 + y^2} \;,$$

gde je L proizvoljna pozitivno orijentisana kontura u xy-ravni (z=0).

 $Re \check{s}enje.$ Neka je D prosto povezana zatvorena oblast u xy–ravni, ograničena sa Li takva da $(0,0) \notin D.$ Tada su funkcije

$$P(x,y) = -\frac{y}{x^2 + y^2}$$
, $Q(x,y) = \frac{x}{x^2 + y^2}$, $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$

neprekidne u oblasti D, pa krivolinijski integral

$$I_1 = \int_{\widehat{AB}} \frac{-y \, dx + x \, dy}{x^2 + y^2}$$

ne zavisi od puta integracije $\stackrel{\frown}{AB} \subset D$. Kako je L kontura (zatvorena kriva), prema Teoremi 4.8.1 sledi

$$I=0$$
.

Pretpostavimo sada da je $(0,0) \in D$. Funkcije P(x,y), Q(x,y), $\partial P/\partial y$, $\partial Q/\partial x$ su prekidne u tački (0,0), pa ne može da se govori o nezavisnosti krivolinijskog integrala I_1 od puta integracije. Zato pribegavamo drugačijem rešavanju. Oko tačke (0,0) opisujemo proizvoljnu konturu $L_1 \subset D$, takvu da je $L_1 \cap L = \emptyset$. Tada je L spoljna, a L_1 unutrašnja kontura dvostruko povezane oblasti D_1 . Kako $(0,0) \notin D_1$, može da se primeni postupak i iskoristi zaključak iz Zadatka 50, prema kome je

$$I=2\pi$$
 .

S obzirom na Teoremu 4.8.1 i $I \neq 0$ u slučaju $(0,0) \in D$, integral I_1 zavisi od puta integracije. Do istog zaključka se dolazi i bez Teoreme 4.8.1. Ako je $L = A\overset{\curvearrowright}{X_1}B \cup B\overset{\curvearrowright}{X_2}A$, označavajući $L_1 = A\overset{\curvearrowright}{X_1}B$, $L_2 = A\overset{\curvearrowright}{X_2}B$ i izostavljajući podintegralni izraz, sledi

$$I = \int_{A\overset{\curvearrowright}{X_1}B} + \int_{B\overset{\curvearrowright}{X_2}A} = \int_{L_1} - \int_{L_2} = 2\pi \ , \ \int_{L_1} = 2\pi + \int_{L_2} \ ,$$

pa je u opštem slučaju

$$\int_{L_1} \neq \int_{L_2} .$$

89. Neka je D proizvoljna prosto povezana zatvorena prostorna oblast, takva da je z>0 za sve tačke $(x,y,z)\in D$. Izračunati potpuni krivolinijski integral II vrste

$$I = \int_{L} \frac{x \, dx + y \, dy + z \, dz}{\sqrt{x^2 + y^2 + z^2}} \; ,$$

gde je $L = \stackrel{\frown}{AB} \subset D$ proizvoljna kriva, $A \in S_1, B \in S_2$,

$$S_1: \quad x^2 + y^2 + z^2 = a^2, \qquad S_2: \quad x^2 + y^2 + z^2 = b^2$$

i a, b > 0.

Rešenje. Imajući u vidu da $(0,0,0) \notin D$, funkcije

$$P(x,y,z) = \frac{x}{\sqrt{x^2 + y^2 + z^2}} \ , \ Q(x,y,z) = \frac{y}{\sqrt{x^2 + y^2 + z^2}} \ , \ R(x,y,z) = \frac{z}{\sqrt{x^2 + y^2 + z^2}}$$

i njihovi odgovarajući parcijalni izvodi zadovoljavaju uslove Teoreme 4.8.3, pa u oblasti D postoji potencijal u(x,y,z) i određuje se prema formuli

$$u(x,y,z) = \int_{x_0}^x P(x,y,z) \, dx + \int_{y_0}^y Q(x_0,y,z) \, dy + \int_{z_0}^z R(x_0,y_0,z) \, dz + c \ .$$

Za $(x_0, y_0, z_0) = (0, 0, 1)$ se dobija

$$\begin{split} u(x,y,z) &= \int_0^x P(x,y,z) \, dx + \int_0^y Q(0,y,z) \, dy + \int_1^z R(0,0,z) \, dz + c \\ &= \int_0^x \frac{x}{\sqrt{x^2 + y^2 + z^2}} \, dx + \int_0^y \frac{y}{\sqrt{y^2 + z^2}} \, dy + \int_1^z \, dz + c \\ &= \sqrt{x^2 + y^2 + z^2} + c_1 \ , \end{split}$$

gde je $c = u(x_0, y_0, z_0) = u(0, 0, 1)$ i $c_1 = c - 1$. Kako je $A(x_1, y_1, z_1) \in S_1$, $B(x_2, y_2, z_2) \in S_2$, važi

$$x_1^2 + y_1^2 + z_1^2 = a^2$$
, $x_2^2 + y_2^2 + z_2^2 = b^2$,

pa je

$$I = u(B) - U(A) = \sqrt{x_2^2 + y_2^2 + z_2^2} + c_1 - \sqrt{x_1^2 + y_1^2 + z_1^2} - c_1 = b - a .$$

90. Izračunati potpuni krivolinijski integral II vrste

$$I = \oint_L f(x^2 + y^2 + z^2)(x \, dx + y \, dy + z \, dz) ,$$

gde je L proizvoljna kontura i f(t) neprekidna realna funkcija sa neprekidnim izvodom f'(t) za svako $t \in \mathbb{R}$.

Rešenje. Kako je

$$P(x,y,z) = xf(x^2 + y^2 + z^2) , Q(x,y,z) = yf(x^2 + y^2 + z^2) , R(x,y,z) = zf(x^2 + y^2 + z^2) ,$$

to je

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} = 2xyf'(x^2 + y^2 + z^2) , \quad \frac{\partial P}{\partial z} = \frac{\partial R}{\partial x} = 2xzf'(x^2 + y^2 + z^2) ,$$

$$\frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y} = 2yzf'(x^2 + y^2 + z^2) .$$

Funkcije f(t), f'(t) i $t=t(x,y,z)=x^2+y^2+z^2$ su neprekidne, pa su neprekidne funkcije P(x,y,z), Q(x,y,z), R(x,y,z), kao i njihovi navedeni izvodi za svako $(x,y,z)\in\mathbb{R}^3$. Ako je D prosto povezana oblast, integral

$$\int_{\widehat{AB}} f(x^2 + y^2 + z^2) (x \, dx + y \, dy + z \, dz)$$

ne zavisi od puta integracije $\stackrel{\frown}{AB}\subset D$ prema Teoremi 4.8.3. Budući da je L zatvorena kriva, prema Teoremi 4.8.1 tada je i

$$I=0$$
 .

PRILOG

Česta je pojava određenih integrala oblika

$$I = \int_0^{\pi/2} \sin^m \varphi \cos^n \varphi \, d\varphi \;,$$

gde je $m, n = 0, 1, 2, 3, \ldots$. Takvi su, npr., integrali u Zadacima 31 i 34, koje smo rešavali transformacijom podintegralne funkcije. U slučaju velikih brojeva m, n, ovakav način rešavanja je izuzetno naporan. Rešavanje je neuporedivo jednostavnije pomoću beta i gama funkcije ([1], str. 404–414), pri čemu $m, n \geq 0$ mogu da budu proizvoljni realni brojevi.

Beta funkcija ili Eulerov integral drugog reda je određeni integral

$$B(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx ,$$

gde su p,q>0realni brojevi. Ako su $p,\,q$ prirodni brojevi, za beta funkciju važi

$$B(p,q) = \frac{(p-1)! (q-1)!}{(p+q-1)!}.$$

Gama funkcija ili *Eulerov integral prvog reda* je nesvojstveni integral

$$\Gamma(p) = \int_0^{+\infty} x^{p-1} e^{-x} dx ,$$

gde je p > 0 realan broj. Za gama funkciju važi:

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} \ , \ \Gamma(1) = 1 \ , \ \Gamma(p+1) = p \Gamma(p)$$

i, ako je p prirodan broj,

$$\Gamma(p) = (p-1)!.$$

134 PRILOG

Veza između beta i gama funkcije iskazana je jednakošću

$$B(p,q) = \frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)}.$$

Rešavanje integrala I upotrebom beta i gama funkcije ilustrujemo sa tri primera.

Primer 1. Uvođenjem smena $t=\sin\varphi$ i $x=t^2$ redom, integral iz Zadatka 34,

$$I = \int_0^{\pi/2} \sin^5 \varphi \cos^5 \varphi \, d\varphi \;,$$

postaje

$$I = \int_0^{\pi/2} \sin^5 \varphi \cos^4 \varphi \, d(\sin \varphi) = \int_0^{\pi/2} \sin^5 \varphi \left(1 - \sin^2 \varphi\right)^2 d(\sin \varphi)$$
$$= \int_0^1 t^5 \left(1 - t^2\right)^2 dt = \frac{1}{2} \int_0^1 x^2 (1 - x)^2 \, dx$$
$$= \frac{1}{2} \int_0^1 x^{3-1} (1 - x)^{3-1} \, dx = \frac{1}{2} \operatorname{B}(3, 3) = \frac{1}{2} \frac{2! \, 2!}{5!} = \frac{1}{60} .$$

Umesto smene $t=\sin\varphi$ može da se koristi smena $t=\cos\varphi$. Ove dve smene su ravnopravne.

Primer 2. Uvođenjem smena $t = \sin \varphi$ i $x = t^2$ redom, integral

$$I = \int_0^{\pi/2} \sin^4 \varphi \cos^4 \varphi \, d\varphi$$

postaje

$$I = \int_0^{\pi/2} \sin^4 \varphi \cos^3 \varphi \, d(\sin \varphi) = \int_0^{\pi/2} \sin^4 \varphi \left(1 - \sin^2 \varphi\right)^{3/2} \, d(\sin \varphi)$$

$$= \int_0^1 t^4 \left(1 - t^2\right)^{3/2} \, dt = \frac{1}{2} \int_0^1 x^{3/2} (1 - x)^{3/2} \, dx$$

$$= \frac{1}{2} \int_0^1 x^{5/2 - 1} (1 - x)^{5/2 - 1} \, dx = \frac{1}{2} \operatorname{B}\left(\frac{5}{2}, \frac{5}{2}\right) = \frac{1}{2} \frac{\Gamma\left(\frac{5}{2}\right) \Gamma\left(\frac{5}{2}\right)}{\Gamma(5)} .$$

PRILOG 135

Sukcesivnom primenom osobine $\Gamma(p+1)=p\,\Gamma(p)$ izračunavamo

$$\begin{split} \Gamma\Bigl(\frac{5}{2}\Bigr) &= \Gamma\Bigl(\frac{3}{2}+1\Bigr) = \frac{3}{2}\,\Gamma\Bigl(\frac{3}{2}\Bigr) \\ &= \frac{3}{2}\,\Gamma\Bigl(\frac{1}{2}+1\Bigr) = \frac{3}{2}\,\frac{1}{2}\,\Gamma\Bigl(\frac{1}{2}\Bigr) = \frac{3}{4}\sqrt{\pi} \ , \end{split}$$

pa je

$$I = \frac{1}{2} \frac{\left(\frac{3}{4}\sqrt{\pi}\right)^2}{4!} = \frac{3}{256} \pi .$$

Primer 3. Uvođenjem smena $t = \cos \varphi$ i $x = t^2$ redom, za integral

$$I = \int_0^{\pi/2} \sin^6 \varphi \, d\varphi$$

se dobija

$$\begin{split} I &= -\int_0^{\pi/2} \sin^5 \varphi \, d(\cos \varphi) = -\int_0^{\pi/2} \left(1 - \cos^2 \varphi\right)^{5/2} \, d(\cos \varphi) \\ &= -\int_1^0 \left(1 - t^2\right)^{5/2} \, dt = \frac{1}{2} \int_0^1 x^{-1/2} (1 - x)^{5/2} \, dx \\ &= \frac{1}{2} \int_0^1 x^{1/2 - 1} (1 - x)^{7/2 - 1} \, dx = \frac{1}{2} \operatorname{B}\left(\frac{1}{2}, \frac{7}{2}\right) = \frac{1}{2} \frac{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{7}{2}\right)}{\Gamma(4)} \; . \end{split}$$

Kako je

$$\Gamma\left(\frac{7}{2}\right) = \frac{5}{2} \frac{3}{2} \frac{1}{2} \sqrt{\pi} = \frac{15}{8} \sqrt{\pi} ,$$

to je

$$I = \frac{5}{32} \pi .$$

CIP – Каталогизација у публикацији Народна библиотека Србије, Београд

517.3 (075.8)

СТЕФАНОВИЋ, Лидија

Integrali: krivolinijski, dvojni, trojni, površinski, Deo II: za studente tehničkih Fakulteta / Lidija Stefanović. – 1. izd. – Niš: Studentski kulturni centar, 2009 (Niš: Petrograf). – VI, 135 str.: graf. prikazi; 25 cm

Tiraž 100

ISBN 978-86-7757-154-2

a) Интеграли COBISS.SR-ID 154627340