Math101 Formulas by Benjamin Støttrup

1 Fractions

Fractions are numbers on the form

$$\frac{a}{b}$$

where a, b are numbers with $b \neq 0$. a is called the *numerator* and *b* is called the denominator. 1.1 Rules

We have that

$$\frac{a}{c} \pm \frac{b}{c} = \frac{a \pm b}{c}, \quad \frac{a}{b} \frac{c}{d} = \frac{ac}{bd}, \quad \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{ad}{bc},$$

$$a\frac{b}{c} = \frac{ab}{c}, \qquad \frac{\frac{a}{b}}{c} = \frac{a}{bc}, \qquad \frac{\frac{a}{b}}{\frac{b}{c}} = \frac{ac}{b}.$$

Common factors can be reduced:

$$\frac{a}{b} = \frac{ab}{bb}$$

2 Powers

Powers are numbers on the form

$$x^a$$

x is the base and a is the exponent.

2.1 Rules

We have that

$$x^{a}x^{b} = x^{a+b}$$
, $\frac{x^{a}}{x^{b}} = x^{a-b}$, $(xy)^{a} = x^{a}y^{a}$,

$$x = x$$

 $\left(\frac{x}{v}\right)^a = \frac{x^a}{v^a}, \quad (x^a)^b = x^{ab}, \qquad x^{-a} = \frac{1}{x^a}.$

3 Roots If
$$x \ge 0$$
 and $n \in \mathbb{Z}_+$ then there exists a

number $\sqrt[4]{x} > 0$ such that

$$(\sqrt[n]{x})^n = x.$$

Note that $\sqrt[n]{x} = x^{\frac{1}{n}}$.

3.1 Rules

We ave that

$$\sqrt[n]{x} = x^{\frac{1}{n}}, \quad \sqrt[n]{x^m} = x^{\frac{m}{n}} = (\sqrt[n]{x})^m,$$

$$\sqrt[n]{xy} = \sqrt[n]{x}\sqrt[n]{\frac{x}{y}}, \qquad \sqrt[n]{\frac{x}{y}}$$

4 Squared Sum

We have that

$$(a-b)^2 = a^2 + b^2 - 2ab$$
$$(a+b)(a-b) = a^2 - b^2.$$

 $(a+b)^2 = a^2 + b^2 + 2ab$

- 1. You can add/subtract with the same number on both sides of an 2. You can multiply/divide with the
- same number (except 0) on both sides of an equation. 5.1 Second Order Equations

Second order equations are on the form

$$ax^2 + bx + c = 0, (1$$

The solutions to (1) are

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

5.2 Factorization

If $ax^2 + bx + c = 0$ has roots r_1 and r_2 then. We have that

$$ax^{2} + bx + c = a(x - r_{1})(x - r_{2}).$$

6 Funktioner

A function $f: X \to Y$ associates to all $x \in X$ exactly one element $f(x) \in Y$.

6.1 Function Composition

If $f: X \to Y$ and $g: Y \to Z$ then the composition $g \circ f: X \to Z$ is defined by $(g \circ f)(x) = g(f(x))$. f is called the inner function, g is called the outer function

6.2 Inverse Functions

Two functions $f: X \to Y$ and $g: Y \to X$ are inverse functions if

$$f(g(y)) = y$$
, and $g(f(x)) = x$

for all x in X and y in Y.

6.3 Polynomials

Equations can be reduced with the fol- A first order polynomial is on the form: We have that

$$f(x) = ax + b.$$

A second order polynomial is on the $f(x) = ax^2 + bx + c.$

$$f(x) = ux + bx + c$$
.

6.4 Logarithms and Exponential Functions The logarithm with base a, $\log_a:]0, \infty[\rightarrow$

R is inverse to the exponential function $f_a(x) = a^x$ $(a > 0, a \ne 1)$. We have that

$$\log_a(a^x) = x$$
 and $a^{\log_a(y)} = y$

 $\log x = \log_{10} x$

and that

 $\ln x = \log_a x$,

$$\log_a(xy) = \log_a(x) + \log_a(y),$$

$$\log_a\left(\frac{x}{y}\right) = \log_a(x) - \log_a(y),$$

$$\log_a(x^r) = r\log_a(x).$$

7 Trigonometric Functions

The trigonometric functions are defined by using the unit circle:

We have that

$\overline{\theta}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	-

and that $tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$.

8 Derivatives

The derivative of f is denoted $f' = \frac{d}{dx}f =$

8.1 Rules

have that
$$\frac{f(x) - f'(x)}{c} = 0$$

We have that

$$(cf)'(x) = cf'(x)$$

$$(f \pm g)'(x) = f'(x) \pm g'(x)$$

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^{2}(x)}$$

$$\frac{d}{dx}f(g(x)) = f'(g(x))g'(x).$$

The last formula is also called the chain

9 Indefinite Integrals

A function f has antiderivative F if

$$F'(x) = f(x).$$

The indefinite integral of *f* is defined as

$$\int f(x) \, dx = F(x) + k,$$

where F is an antiderivative of f and

9.1 General Rules

$$\int cf(x) dx = c \int f(x) dx$$

$$\int f(x) \pm g(x) dx = \int f(x) dx \pm \int g(x) dx.$$

$$\int f(x)g(x) dx = f(x)G(x) - \int f'(x)G(x) dx$$

$$\int f(g(x))g'(x) dx = F(g(x)) + k.$$

The 3rd rule is called *integration by parts* and the last is called integration by substitution.

$\int f(x) dx$ cx + k $\frac{1}{2}x^2 + k$ $\frac{1}{n+1}x^{n+1} + k$ $e^x + k$ $\frac{1}{a}e^{cx} + k$ ln(|x|) + k $x \ln(x) - x + k$ $\sin x + k$ $\cos x$ $\sin x$ $-\cos x + k$ $-\ln(|\cos(x)|) + k$ $\tan x$ 9.3 Integration by substitution

Given an integral on the form

 $\int f(g(x))g'(x)dx$ you can use the method: 1. Let u = g(x).

9.2 Rules

We have that

- 2. Calculate $\frac{du}{dx}$ and solve for dx. 3. Substitute g(x) and dx.
- 4. Calculate the integral wrt. *u*.
- 5. Substitute back.

10 Definite Integrals

The definite integral of *f* in the interval [a, b] is defined as

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a),$$

where F is an antiderivative to f.

10.1 General Rules

$$\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx$$

$$\int_{a}^{b} f(x) \pm g(x) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

$$\int_{a}^{b} f(x)g(x) dx = [f(x)G(x)]_{a}^{b} - \int_{a}^{b} f'(x)G(x) dx$$

$\int_{a}^{b} f(g(x))g'(x) dx = [F(x)]_{\varphi(a)}^{g(b)}.$ 10.2 Integration by substitution

Given an integral on the form $\int_{a}^{b} f(g(x))g'(x) dx$ ou can use the method:

- 1. Let u = g(x).
- 2. Calculate $\frac{du}{dx}$ and solve for dx.
- 3. Substitute g(x), dx and limits.
- 4. Calculate the integral wrt. *u*.