TEMA 1: MULŢIMEA NUMERELOR COMPLEXE

Fie mulțimea $\mathbb{C} = \{(x, y) | x, y \in \mathbb{R}\}$. Vom defini pe \mathbb{C} operațiile:

- de adunare: $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2),$
- de înmulțire: $(x_1, y_1) \cdot (x_2, y_2) = (x_1 \cdot x_2 y_1 \cdot y_2, x_1 \cdot y_2 + x_2 \cdot y_1)$.

Definiție: Mulțimea \mathbb{C} înzestrată cu operațiile de mai sus se numește **mulțimea numerelor complexe.** Un element al acestei mulțimi se numește **număr complex**.

Numerele complexe se notează cu z, u, v, w etc.

Considerăm în \mathbb{C} submulțimea $\mathbb{R} \times \{0\} = \{(x,0) | x \in \mathbb{R}\}$. Atunci este evident izomorfismul $\mathbb{R} \times \{0\} \cong \mathbb{R}$. Putem nota (x,0) = x.

Observăm că $(0,1) \cdot (0,1) = (-1,0) = -1$. Fie numărul complex i = (0,1). Atunci $i^2 = i \cdot i = -1$. De unde $z = (x,y) = (x,0) + (0,y) = (x,0) + (0,1) \cdot (y,0) = x + i \cdot y$. Deci, putem scrie $z = x + i \cdot y$.

Definiție: Expresia $x + i \cdot y$ se numește formă algebrică a numărului complex $(x, y) \in \mathbb{C}$.

Astfel,
$$\mathbb{C} = \{ x + i \cdot y \mid x, y \in \mathbb{R}, i^2 = -1 \}.$$

i - unitate imaginară,

x = Re z - partea reală a numărului complex z,

y = Im z - parte imaginară a numărului complex z,

 $\bar{z} = \overline{x + \iota \cdot y} = x - i \cdot y$ - conjugatul lui z.

Operații cu numere complexe în formă algebrică

Fie $z_1 = x_1 + i \cdot y_1$ și $z_2 = x_2 + i \cdot y_2$

Suma: $z_1 + z_2 = (x_1 + x_2) + i \cdot (y_1 + y_2),$

Diferența: $z_1 - z_2 = (x_1 - x_2) + i \cdot (y_1 - y_2),$

Produsul: $z_1 \cdot z_2 = (x_1 \cdot x_2 - y_1 \cdot y_2) + i \cdot (x_1 \cdot y_2 + x_2 \cdot y_1)$

Câtul: $\frac{z_1}{z_2} = \overline{z_1 \cdot \overline{z_2}}_{z_2 \cdot \overline{z_2}}, (z_2 \neq 0)$

Pentru $z_1, z_2 \in \mathbb{C}$ avem $z_1 = z_2 \Leftrightarrow \begin{cases} \operatorname{Re} z_1 = \operatorname{Re} z_2 \\ \operatorname{Im} z_1 = \operatorname{Im} z_2 \end{cases}$.

Modulul numărului complex $z = x + i \cdot y$: numărul real $|z| = r = \sqrt{x^2 + y^2}$.

Proprietăți:

- 1. $|z| = 0_{\mathbb{R}} \Leftrightarrow z = 0_{\mathbb{C}};$
- 2. $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$, $\forall z_1, z_2 \in \mathbb{C}$;
- 3. $|z_1 + z_2| \le |z_1| + |z_2|, \ \forall z_1, z_2 \in \mathbb{C};$
- 4. pentru $z \in \mathbb{C}$ avem $z \in \mathbb{R} \iff z = \overline{z}$;
- 5. $|z| = |\overline{z}|, \forall z \in \mathbb{C};$
- 6. $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}, \ \forall z_1, z_2 \in \mathbb{C};$
- 7. $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}, \ \forall z_1, z_2 \in \mathbb{C};$
- 8. $\overline{\overline{z}} = z, \forall z \in \mathbb{C};$

9.
$$z \cdot \overline{z} = |z|^2, \forall z \in \mathbb{C};$$

Forma trigonometrică a numerelor complexe

Fie că în plan este fixat un sistem cartezian rectangular de coordonate. Atunci fiecare număr complex $z = a + i \cdot b$ poate fi reprezentat ca un punct cu coordonatele (a,b). Reciproc, oricărui

punct din plan îi corespunde un număr complex, numit *afixul* punctului respectiv. Planul în care sunt reprezentate numerele complexe, se numește *plan complex*, axa Ox - axă reală, Oy - axă imaginară. Numărul z se mai reprezintă printr—un vector cu punctul de aplicație în originea sistemului de coordonate și extremitatea în punctul z = (a,b).

Pentru $z \neq 0$, fie $\varphi \in (-\pi, \pi]$ unghiul format de direcția pozitivă a axei Ox cu raza vectoare a

punctului din plan z = (a,b). Atunci $\cos \varphi = \frac{a}{|z|}$ și $\sin \varphi = \frac{b}{|z|}$. Unghiul φ există și este unic și $z = |z|(\cos \varphi + i \sin \varphi)$.

Definiție. Scrierea $z = |z| (\cos \varphi + i \sin \varphi)$, $\varphi \in (-\pi, \pi]$ este numită *formă trigonometrică* a numărului complex nenul z, iar φ se numește *argument redus* (sau principal) al lui z. Se notează $\varphi = \arg z$.

Putem determina $\arg z$, $z \neq 0$ după una dintre formulele:

$$\arg z = \begin{cases} arctg \frac{y}{x}, \ dac\check{a} \ x > 0 \\ \pi + arctg \frac{y}{x}, \ dac\check{a} \ x < 0, \ y \ge 0; \\ -\pi + arctg \frac{y}{x}, \ dac\check{a} \ x < 0, \ y < 0, \quad \text{sau} \quad \arg z = \begin{cases} \arccos \frac{a}{|z|}, \ b \ge 0 \\ -\arccos \frac{a}{|z|}, \ b < 0. \end{cases} \\ \frac{\pi}{2}, \ dac\check{a} \ x = 0, \ y > 0; \\ -\frac{\pi}{2}, \ dac\check{a} \ x = 0, \ y < 0. \end{cases}$$

Notă: Pentru z = 0 se consideră ca valoarea lui arg z poate fi luată oricare (nu este bine determinată).

În general, există o infinitate de valori θ , astfel încât $z = |z|(\cos \theta + i \sin \theta)$. Evident, $\theta = \arg z + 2\pi k$, $k \in \mathbb{Z}$.

Notăm
$$Arg z = \{ \mathbf{arg} z + 2\pi k \mid k \in \mathbb{Z} \}$$
. Dacă $z = a + ib$, $a \neq 0$, atunci $arctg \frac{b}{a} \in Arg z$.

Notă: În mulțimea \mathbb{C} nu putem vorbi despre numere pozitive și numere negative, de comparare în sens "mai mare" sau "mai mic" folosit în mulțimea numerelor reale.

Dacă
$$z_1 = |z_1|(\cos \varphi_1 + i \sin \varphi_1), \quad z_2 = |z_2|(\cos \varphi_2 + i \sin \varphi_2), \text{ atunci}$$

$$z_1 \cdot z_2 = |z_1| \cdot |z_2|(\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2)),$$

$$\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} (\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2)), \ z_2 \neq 0.$$

Teoremă.
$$Arg(z_1 \cdot z_2) = Arg z_1 + Arg z_2$$
; $Arg\left(\frac{z_1}{z_2}\right) = Arg z_1 - Arg z_2$.

De mai sus rezultă că, dacă $z = |z|(\cos \varphi + i \sin \varphi)$, atunci:

1.
$$\frac{1}{z} = \frac{1}{|z|}(\cos(-\varphi) + i\sin(-\varphi)), \ z \neq 0.$$

2.
$$z^n = |z|^n (\cos(n\varphi) + i\sin(n\varphi)), n \in \mathbb{N}$$
 - formula lui Moivre.

3.
$$\sqrt[n]{z} = \sqrt[n]{|z|} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right), \quad k = \overline{0, n-1}, n \in \mathbb{N}, n \ge 2.$$

EXERCIȚII REZOLVATE

1. **De calculat**: a)
$$(2-i)^3$$
; b) $\frac{-3+i}{(1+2i)(1-i)}$; c) $\left(\frac{\sqrt{3}}{2} - \frac{1}{2}i\right)^{2021}$.

Rezolvare: a) $(2-i)^3 = 8-3\cdot 4\cdot i + 3\cdot 2\cdot i^2 - i^3 = 8-12i-6+i=2-11i$.

b)
$$\frac{-3+i}{(1+2i)(1-i)} = \frac{-3+i}{3+i} = \frac{(-3+i)(3-i)}{(3+i)(3-i)} = \frac{-8+6i}{10} = -\frac{4}{5} + \frac{3}{5}i.$$

c) Avem că
$$\left(\frac{\sqrt{3}}{2} - \frac{1}{2}i\right)^3 = \frac{3\sqrt{3}}{8} - 3 \cdot \frac{3}{4} \cdot \frac{1}{2}i + 3 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{4}i^2 - \frac{1}{8}i^3 = \frac{3\sqrt{3}}{8} - \frac{9}{8}i - \frac{3\sqrt{3}}{8} + \frac{1}{8}i = -i.$$

Deci,
$$\left(\frac{\sqrt{3}}{2} - \frac{1}{2}i\right)^{2021} = \left[\left(\frac{\sqrt{3}}{2} - \frac{1}{2}i\right)^3\right]^{673} \cdot \left(\frac{\sqrt{3}}{2} - \frac{1}{2}i\right)^2 = \left(-i\right)^{673} \cdot \left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = -\frac{\sqrt{3}}{2} - \frac{1}{2}i.$$

2. **De calculat:** a) $\left(\frac{\sqrt{3}}{2} - \frac{1}{2}i\right)^{2021}$; b) $\sqrt[4]{-81}$, folosind forma trigonometrică a numărului complex.

Rezolvare: a) Fie $z = \frac{\sqrt{3}}{2} - \frac{1}{2}i$. Atunci $|z| = \sqrt{\frac{3}{4} + \frac{1}{4}} = 1$; arg $z = -\arccos\frac{\sqrt{3}/2}{1} = -\frac{\pi}{6}$. following formula Moivre, avem:

$$\left(\frac{\sqrt{3}}{2} - \frac{1}{2}i\right)^{2021} = \left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right)^{2021} = \cos\left(-\frac{\pi}{6} \cdot 2021\right) + i\sin\left(-\frac{\pi}{6} \cdot 2021\right) = \cos\left(336\pi + \frac{5\pi}{6}\right) - i\sin\left(336\pi + \frac{5\pi}{6}\right) = -\cos\frac{\pi}{6} - i\sin\frac{\pi}{6} = -\frac{\sqrt{3}}{2} - \frac{1}{2}i.$$

b) Fie
$$z = -81$$
, $|z| = 81$, $\arg z = \arccos\left(\frac{-81}{81}\right) = \arccos(-1) = \pi$.

$$\sqrt[4]{-81} = \sqrt[4]{81} \left(\cos \frac{\pi + 2\pi k}{4} + i \sin \frac{\pi + 2\pi k}{4} \right), \ k = \overline{0,3}.$$

Obținem valorile:

$$z_{0} = 3\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) = \frac{3\sqrt{2}}{2} + i\frac{3\sqrt{2}}{2};$$

$$z_{1} = 3\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right) = -\frac{3\sqrt{2}}{2} + i\frac{3\sqrt{2}}{2};$$

$$z_{2} = 3\left(\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4}\right) = -\frac{3\sqrt{2}}{2} - i\frac{3\sqrt{2}}{2};$$

$$z_{3} = 3\left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right) = \frac{3\sqrt{2}}{2} - i\frac{3\sqrt{2}}{2}.$$

3. Să se scrie sub formă trigonometrică $\left(\frac{1+itg\alpha}{1-itg\alpha}\right)^n$.

$$\begin{aligned} & \textbf{Rezolvare:} \left(\frac{1 + i t g \alpha}{1 - i t g \alpha} \right)^n = \left(\frac{1 + i \frac{\sin \alpha}{\cos \alpha}}{1 - i \frac{\sin \alpha}{\cos \alpha}} \right)^n = \frac{\left(\cos \alpha + i \sin \alpha\right)^n}{\left(\cos \alpha - i \sin \alpha\right)^n} = \frac{\left(\cos \alpha + i \sin \alpha\right)^n}{\left(\cos(-\alpha) + i \sin(-\alpha)\right)^n} = \\ & = \frac{\cos n\alpha + i \sin n\alpha}{\cos(-\alpha n) + i \sin(-n\alpha)} = \cos(2n\alpha) + i \sin(2n\alpha). \end{aligned}$$

4. Să se scrie forma trigonometrică a numărului complex $(1 + \cos \varphi + i \sin \varphi)^n$, $0 \le \varphi \le \pi$.

Rezolvare:
$$1 + \cos \varphi + i \sin \varphi = 2 \cos^2 \frac{\varphi}{2} + 2i \sin \frac{\varphi}{2} \cos \frac{\varphi}{2} = 2 \cos \frac{\varphi}{2} \left(\cos \frac{\varphi}{2} + i \sin \frac{\varphi}{2} \right)$$
. Deoarece $0 \le \frac{\varphi}{2} \le \frac{\pi}{2}$, atunci $2 \cos \frac{\varphi}{2}$ este modulul numărului complex $1 + \cos \varphi + i \sin \varphi$. Prin urmare, $(1 + \cos \varphi + i \sin \varphi)^n = 2^n \cos^n \frac{\varphi}{2} \left(\cos \frac{n\varphi}{2} + i \sin \frac{n\varphi}{2} \right)$.

ELEMENTE DE TOPOLOGIE

Ecuația dreptei ce trece prin două puncte date.

Fie punctele M_1 și M_2 din plan de afixe z_1 și z_2 . Dacă M este un punct arbitrar al dreptei M_1M_2 , iar afixul lui M este z, atunci $\frac{z-z_1}{z_2-z_1}=t\in\mathbb{R}$ și reciproc. Astfel, ecuația canonică a dreptei M_1M_2 în formă complexă este $z=(z_2-z_1)t+z_1$ sau $z=(1-t)z_1+tz_2$, $t\in\mathbb{R}$. **Ecuația segmentului** M_1M_2 este $z=(1-t)z_1+tz_2$, $t\in[0;1]$. Deseori se notează: $[z_1z_2]=\{(1-t)z_1+tz_2\mid t\in[0;1]\}$.

Fie $z_0 \in \mathbb{C}$ fixat, iar r > 0. Vom considera mulțimile:

$$C(z_0, r) = \{z \in \mathbb{C} | |z - z_0| = r\}$$
 - cerc de centru z_0 și rază r ;

$$U(z_0, r) = \{z \in \mathbb{C} | |z - z_0| < r\}$$
 - disc deschis de centru z_0 și rază r ;

$$\overline{U}(z_0, r) = \{z \in \mathbb{C} | |z - z_0| \le r_2 \}$$
 - disc închis de centru z_0 și rază r;

 $U(z_0, r_1, r_2) = \left\{ \mathbb{Z} \in \mathbb{C} \left| r_1 < |z - z_0| < r_2 \right\} - \text{coroană circulară de centru } z_0 \text{ și raze } r_1, \quad r_2 \text{ cu} \right\} - coroană circulară de centru z_0 vi raze vi raze vi reculară de centru z_0 vi raze vi reculară vi raze vi reculară vi reculară vi reculară vi reculară vi reculară vi raze vi reculară vi reculară$

Definiție:

- 1. Fie $z_0 \in \mathbb{C}$. Se numește *vecinătate a lui* z_0 orice mulțime nevidă $V \subset \mathbb{C}$, dacă există r > 0, astfel încât $U(z_0, r) \subseteq V$.
- 2. O mulțime $G \subset \mathbb{C}$ se numește *deschisă*, dacă pentru orice $z_0 \in G$, există r > 0 astfel încât $U(z_0, r) \subseteq G$.
- 3. Mulțimea G se numește *închisă*, dacă mulțimea $\mathbb{C}\backslash G$ este deschisă.
- 4. Mulțimea $K \subset \mathbb{C}$ se numește *compactă*, dacă este închisă și mărginită: $\exists M > 0$ astfel încât $|z| \leq M$, $\forall z \in K$.
- 5. Mulțimea G se numește *domeniu*, dacă este deschisă și orice două puncte din G pot fi unite cu o linie frântă care se conține în D.

SIRURI DE NUMERE COMPLEXE

Definiție. Vom spune că șirul de numere complexe $(z_n)_{n\in N}$ se numește **convergent către numărul complex** w, dacă pentru $\forall \varepsilon > 0 \quad \exists n_{\varepsilon} \in N$, astfel încât $|z_n - w| < \varepsilon$, pentru $\forall n \in N, n \ge n_{\varepsilon}$. Se scrie $\lim_{n \to \infty} z_n = w$.

Teoremă. Fie șirul de numere complexe $(z_n)_{n\in\mathbb{N}}$, $z_n=x_n+iy_n$, x_n , $y_n\in\mathbb{R}$ și w=u+iv. Atunci $\lim_{n\to\infty}z_n=w$, dacă și numai dacă $\lim_{n\to\infty}x_n=u$, $\lim_{n\to\infty}y_n=v$.

Demonstrație. Fie $\lim_{n\to\infty} z_n = w$. Atunci $\forall \varepsilon > 0$, $\exists n \ge n_{\varepsilon}$, astfel încât $|z_n - w| < \varepsilon$. Rezultă că

$$\sqrt{\left(x_{n}-u\right)^{2}+\left(y_{n}-v\right)^{2}}<\varepsilon\Longrightarrow\left|x_{n}-u\right|<\varepsilon\text{ si }\left|y_{n}-v\right|<\varepsilon\Longrightarrow\lim_{n\to\infty}x_{n}=u\text{ si }\lim_{n\to\infty}y_{n}=v.$$

Fie
$$\lim_{n\to\infty} x_n = u$$
, $\lim_{n\to\infty} y_n = v$. Rezultă $\left| x_n - u \right| < \frac{\varepsilon}{\sqrt{2}}$, $\left| y_n - v \right| < \frac{\varepsilon}{\sqrt{2}}$, $\forall n \ge n_{\varepsilon}$

$$\Rightarrow \left|z_{n}-w\right| = \sqrt{\left(x_{n}-u\right)^{2}+\left(y_{n}-v\right)^{2}} < \sqrt{\frac{\varepsilon^{2}}{2}+\frac{\varepsilon^{2}}{2}} = \varepsilon \Rightarrow \lim_{n\to\infty} z_{n} = w.$$

Exemple: Determinați $\lim_{n\to\infty} z_n$, unde

1.
$$z_n = \frac{\sin n}{n} + i(n+1)^{\frac{1}{n}}$$
.

Avem că $\lim_{n \to \infty} \frac{\sin n}{n} = 0$; $\lim_{n \to \infty} (n+1)^{\frac{1}{n}} = \lim_{n \to \infty} \sqrt[n]{n+1} = 1$. Deci, $\lim_{n \to \infty} z_n = 0 + i \cdot 1 = i$.

2.
$$z_n = n \cdot \ln\left(1 + \frac{1}{n}\right) + i\frac{(n+1)}{n}$$
. Avem că $\lim_{n \to \infty} n \cdot \ln\left(1 + \frac{1}{n}\right) = \lim_{n \to \infty} \frac{\ln\left(1 + \frac{1}{n}\right)}{\frac{1}{n}} = 1$; $\lim_{n \to \infty} \frac{n+1}{n} = 1$.

Deci, $\lim_{n\to\infty} z_n = 1+i$.

3.
$$z_n = \left(\frac{1}{2} + \frac{i}{2}\right)^n$$
. Avem că $z_n = \frac{1}{\sqrt{2}^n} \left(\cos\left(\frac{\pi}{4} \cdot n\right) + i\sin\left(\frac{\pi}{4} \cdot n\right)\right)$

$$\lim_{n\to\infty}\frac{\cos\left(\frac{\pi}{4}n\right)}{\sqrt{2}^n}=0;\ \lim_{n\to\infty}\frac{\sin\left(\frac{\pi}{4}n\right)}{\sqrt{2}^n}=0\Rightarrow\lim_{n\to\infty}z_n=0.$$

Teoremă. Dacă $\lim_{n\to\infty} z_n = a$, $\lim_{n\to\infty} w_n = b$, atunci:

1.
$$\lim_{n\to\infty} (z_n \pm w_n) = a \pm b,$$

$$2. \quad \lim_{n\to\infty} (z_n \cdot w_n) = a \cdot b,$$

3.
$$\lim_{n\to\infty}\frac{z_n}{w_n}=\frac{a}{b},\ b\neq 0.$$

În mod similar mulțimii \mathbb{R} , prin completarea cu $-\infty$ și $+\infty$, obținem dreapta încheiată $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$, mulțimea \mathbb{C} se completează cu un singur punct-simbol ∞ , obținând planul $\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}$, numit *plan complex extins* sau *planul lui Gauss*. Simbolul ∞ se numește *număr complex impropriu*.

În $\mathbb{C}_{_{\infty}}$ nu se folosesc simbolurile $-\infty$ sau $+\infty$. Operațiile cu simbolul ∞ :

$$\infty + a = a + \infty = \infty, a \in \mathbb{C},$$

$$\infty \cdot a = a \cdot \infty = \infty, \ a \in \mathbb{C}_{\infty} / \{0\},$$

$$\frac{a}{0} = \infty, \ a \in \mathbb{C}_{\infty}/\{0\}; \frac{a}{\infty} = 0, \ a \in \mathbb{C}.$$

Definiție: Prin **vecinătate a lui** ∞ se consideră orice mulțime $V \subset \mathbb{C}_{\infty}$, care conține exteriorul unui disc. Adică V este vecinătate a lui ∞ , dacă $\exists \varepsilon > 0$, astfel încât $\mathbb{C} \setminus U(0,\varepsilon) \subset V$.

Definiție: Dacă pentru $\forall \varepsilon > 0$, $\exists n_{\varepsilon} \in \mathbb{N}$, astfel încât pentru $\forall n > n_{\varepsilon}$, $|z_n| > \varepsilon$, atunci se spune că șirul (z_n) converge la ∞ . Se scrie $\lim_{n \to \infty} z_n = \infty$.

Teoremă. Fie șirul $(z_n)_{n\in\mathbb{N}}$. Atunci $\lim_{n\to\infty}z_n=\infty$, dacă și numai dacă $\lim_{n\to\infty}|z_n|=+\infty$.

TEMA 2: FUNCȚII DE VARIABILĂ COMPLEXĂ

2.1. Limita și continuitatea pentru funcții complexe

Definiție 2. Vom spune că pe mulțimea $D \subseteq \mathbb{C}$ este definită funcția de variabilă complexă w = f(z), dacă fiecărui punct $z \in D$ i se pune în corespondență un punct $w \in \mathbb{C}$ sau o totalitate de puncte $w \in \mathbb{C}$.

În cazul când w este unic, funcția f se numește univocă, iar în cazul unei totalități de puncte w, funcția f se numește multivocă.

Exemple: $f(z) = 3z^2 - iz + 5i - 2$, $g(z) = \text{Re}(z^2) - \overline{z}$, $h(z) = \sqrt{z}$ Funcțiile f, g sunt univoce, iar h este funcție multivocă.

Notă:

- 1. Funcțiile univoce se notează cu $f:D\to\mathbb{C}$, iar funcțiile *multivoce* (mai numite și funcțiil *multiforme*) se notează cu $f:D\to P(\mathbb{C})$, unde $P(\mathbb{C})$ este mulțimea părților mulțimii \mathbb{C} .
- 2. Fie $f: D \to \mathbb{C}$. Atunci f(z) = f(x+yi) = U(x,y) + iV(x,y), cu $U,V:D \subseteq \mathbb{R}^2 \to \mathbb{R}$. Se notează $Re\ f = U$, $Im\ f = V$. Astfel definirea funcției de variabilă complexă este echivalentă cu definirea a două funcții de două variabile reale.

Exemplu.

- 1. Pentru $f(z) = 3z^2 iz + 5i 2$, avem $f(x+yi) = 3(x+yi)^2 - i(x+yi) + 5i - 2 = (3x^2 - 3y^2 + y - 2) + i(6xy - x + 5)$. Atunci, $U(x, y) = 3x^2 - 3y^2 + y - 2$, V(x, y) = 6xy - x + 5.
- 3. Pentru $g(z) = \text{Re}(z^2) \overline{z}$, avem $g(x+iy) = \text{Re}(x^2 y^2 + i2xy) (x yi) = (x^2 y^2 x) + yi$. Re $g = x^2 y^2 x$; Im g = y.

Vom ajusta în continuare definiții cunoscute din cazul real în contextul funcțiilor complexe.

Definiția 2.1. (cu șiruri) Fie $D \subseteq \mathbb{C}$ nevidă și $z_0 \in \mathbb{C}$ un punct de acumulare pentru D. Spunem că funcția $f: D \to \mathbb{C}$ are limită în punctul z_0 egală cu $l \in \mathbb{C}$, dacă pentru orice șir $(z_n)_{n \in \mathbb{N}^*} \subset D, \ z_n \neq z_0$ cu $z_n \to z_0$ avem $f(z_n) \to l$. Se scrie $\lim_{z \to z_0} f(z) = l$.

Dacă ∞ este punct de acumulare pentru D, spunem că funcția f are limită la ∞ egală cu l_{∞} , dacă pentru orice șir de numere complexe $(z_n)_{n\in\mathbb{N}}$ cu $z_n\in D$, $z_n\to\infty$ avem $f(z_n)\to l_{\infty}$. Se scrie $\lim_{z\to\infty} f(z) \stackrel{not}{=} f(\infty) = l_{\infty}$.

Definiția 2.2 (cu vecinătăți) Fie funcția $f:D\to\mathbb{C},\ z_0\in\mathbb{C}$ - punct de acumulare pentru D. Spunem că funcția f are limită în z_0 egală cu l, dacă pentru orice $\varepsilon>0$ există $\delta(\varepsilon)>0$, astfel încât inegalitatea $0<|z-z_0|<\delta$ implică inegalitatea $|f(z)-l|<\varepsilon$.

Teoremă. Fie $f:D\subseteq\mathbb{C}\to\mathbb{C}$, f(z)=f(x+yi)=U(x,y)+iV(x,y), $z_0=x_0+iy_0$ este punct de acumulare pentru D. Atunci $\lim_{z\to z_0}f(z)=a+ib$, dacă și numai dacă $\lim_{(x,y)\to(x_0,y_0)}U(x,y)=a$, $\lim_{(x,y)\to(x_0,y_0)}V(x,y)=b$.

Demonstrație: Fie $z_n \to z_0, z_n \neq z_0, z_n = x_n + iy_n$. Atunci $\lim_{z \to z_0} f(z) = a + ib$ implică

 $f(z_n) \to a + ib \Rightarrow f(z_n) = U(x_n, y_n) + iV(x_n, y_n) \to a + ib$. Din teorema respectivă de la șiruri, avem $U(x_n, y_n) \to a$, $V(x_n, y_n) \to b$, și reciproc.

Proprietăți:

- I. Fie $f,g:D\subseteq\mathbb{C}\to\mathbb{C}$, z_0 punct de acumulare pentru D. Dacă există $\lim_{z\to z_0}f(z)=l_1$, $\lim_{z\to z_0}g(z)=l_2$ cu $l_1,l_2\in\mathbb{C}$, atunci:
- 1. Există $\lim_{z \to z_0} (\alpha f + \beta g)(z) = \alpha \cdot l_1 + \beta \cdot l_2$, oricare ar fi $\alpha, \beta \in \mathbb{C}$;
- 2. Există $\lim_{z \to z_0} (fg)(z) = l_1 \cdot l_2$;
- 3. Dacă $g(z) \neq 0$ într-o vecinătate a lui z_0 și $l_2 \neq 0$, atunci există $\lim_{z \to z_0} \left(\frac{f}{g}\right)(z) = \frac{l_1}{l_2}$.
- II. Dacă $f:D\subseteq\mathbb{C}\to E\subseteq\mathbb{C},\ g:E\to\mathbb{C},\ z_0$ este punct de acumulare pentru D și există $\lim_{z\to z_0}f(z)=l,\ \text{iar }l$ este punct de acumulare pentru $f(D),\ \text{cu}\ f(z)\neq l$ p-e vecinătate a lui z_0 și există $\lim_{w\to l}f(w)=l_1,\ \text{atunci}\ g\circ f:D\to\mathbb{C}$ are limită în z_0 și $\lim_{z\to z_0}(g\circ f)(z)=l_1.$
- **Definiția 2.3.** Fie $f:D\subseteq\mathbb{C}\to\mathbb{C},\ z_0\in D$. Funcția f se numește **continuă în** z_0 dacă pentru orice șir $(z_n)_{n\in\mathbb{N}^*}\in D,\ z_n\to z_0$ avem $f(z_n)\to f(z_0)$.

Teoremă. Fie $f:D\subseteq\mathbb{C}\to\mathbb{C}$, z_0 este punct de acumulare pentru D. Atunci f este continuă în z_0 , dacă și numai dacă există $\lim_{z\to z_0} f(z) = f(z_0)$, adică pentru orice $\varepsilon>0$ există $\delta(\varepsilon)>0$, astfel încât inegalitatea $|z-z_0|<\delta(\varepsilon)$ implică inegalitatea $|f(z)-f(z_0)|<\varepsilon$.

Proprietăți:

- 1. Dacă $f,g:D\to\mathbb{C},\ z_0\in D$ și f,g sunt continue în z_0 , atunci f+g și $f\cdot g$ sunt continue în z_0 . Dacă în plus $g(z_0)\neq 0$, atunci funcția $\frac{f}{g}$ este continuă în z_0 .
- 2. Dacă $f:D\subseteq\mathbb{C}\to E\subseteq\mathbb{C},\ g:E\to\mathbb{C},\ z_0\in D,\ f$ este continuă în z_0 și g continuă în $w_0=f(z_0),$ atunci funcția $g\circ f:D\to\mathbb{C}$ este continuă în z_0 .

Teoremă: Fie $f: D \subseteq \mathbb{C} \to \mathbb{C}$, $f(x+y_i) = U(x,y) + iV(x,y)$, $z_0 = x_0 + iy_0 \in D$. Funcția f este continuă în z_0 dacă și numai dacă U și V sunt continui în (x_0, y_0) .

Funcții complexe elementare

Fie $n \in \mathbb{N}^*$ și $a_0, a_1, ..., a_{n-1}, a_n \in \mathbb{C}, a_n \neq 0$.

Aplicația $P:\mathbb{C}\to\mathbb{C}$ dată de $P(z)=a_nz^n+a_{n-1}z^{n-1}+\ldots+a_1z+a_0$, se numește *funcție polinomială* (de grad n). Avem $\lim P(z) = P(z_0)$, pentru orice $z_0 \in \mathbb{C}$ și $\lim P(z) = \infty$.

Caz particular: funcția putere $f(z) = z^n$.

Fie funcțiile polinomiale $P,Q:\mathbb{C}\to\mathbb{C}$.

Aplicația $R: \mathbb{C} \setminus \{z_1, z_2, ... z_m\} \to \mathbb{C}$, $R(z) = \frac{P(z)}{Q(z)}$, se numește *funcție rațională*, unde P și Qsunt funcții polinomiale, iar $z_1, z_2, ..., z_m$ sunt rădăcinile lui Q, adică $Q(z_k) = 0$, $k \in \{1, ..., m\}$, și $Q(z) \neq 0$ pentru $z \notin \{z_1, z_2, ..., z_m\}$.

Caz particular: $f: C^* \to \mathbb{C}$, $f(z) = \frac{1}{2}(z + \frac{1}{z})$ - funcția Iucovschi.

Prin functie complexă exponentială se întelege funcția $\exp: \mathbb{C} \to \mathbb{C}$, $\exp(x + iy) = e^x(\cos y + i\sin y)$. Se notează prin e^z .

Deci, $e^z = e^{x+yi} = e^x(\cos y + i\sin y)$.

Notă:

- Pentru x = 0: $e^{iy} = \cos y + i \sin y$ formula lui Euler. 1.
- Folosind formula lui Euler avem că $z = |\mathbf{z}|(\cos\varphi + \sin\varphi) = |\mathbf{z}|e^{i\varphi}$, unde $\varphi = \arg z$. 2.

Proprietăți:

- $\exp|_{\mathbb{R}}$ coincide cu funcția exponențială reală, (adică pentru y = 0, $e^z = e^x$). 1.
- 2. **exp** este periodică de perioadă principală $2\pi i$: $e^{z+2\pi i} = e^z$.

Într-adevăr, $e^{z+2\pi i} = e^{x+(y+2\pi)i} = e^x (\cos(y+2\pi)+i\sin(y+2\pi)) = e^x (\cos y+i\sin y) = e^z$. Mai mult $\exp(z+2\pi ki) = \exp z(e^{z+2\pi ki} = e^z), \forall k \in \mathbb{Z}.$

- 3. $\exp(2\pi i) = 1$ $(e^{2\pi i} = 1)$; $\exp(\pi i) = -1$ $(e^{\pi i} = -1)$. $e^{\pi i} + 1 = 0$ - faimoasa identitate a lui Euler.
- 4. $\exp(z_1 + z_2) = \exp z_1 \cdot \exp z_2 e^{z_1 + z_2} = e^{z_1} \cdot e^{z_2}$. 5. $\exp(z_1-z_2) = \exp z_1 : \exp z_2 - e^{z_1-z_2} = \frac{e^{z_1}}{e^{z_2}}$.
- 6. $\lim e^z = e^{z_0}, \ \forall z_0 \in \mathbb{C}$. Întrucât funcția exponențială este periodică, nu există $\lim e^z$.

Exemple

1.
$$e^{2-\frac{\pi}{2}i} = e^2 \left(\cos\left(-\frac{\pi}{2}\right) + i\sin\frac{\pi}{2}\right) = i \cdot e^2;$$

- 2. $e^{5i} = \cos 5 + i \sin 5$.
- 3. De determinat partea reală și cea imaginară a funcției $f(z) = e^{(\bar{z}+3i)^2}$.

Rezolvare. Cum
$$(\overline{z}+3i)^2 = (x+(3-y)i)^2 = x^2-(3-y)^2+2x(3-y)i$$
, avem $e^{(\overline{z}+3i)^2} = e^{x^2-(3-y)^2} \cdot e^{2x(3-y)i} = e^{x^2-(3-y)^2} (\cos(2x(3-y))+i\sin(2x(3-y)))$.

Prin urmare, Re $f = e^{x^2 - (3-y)^2} \cos(6x - 2xy)$ şi Im $f = e^{x^2 - (3-y)^2} \sin(6x - 2xy)$.

4. Funcția logaritm

Fie $z \in \mathbb{C}^*$. Să rezolvăm ecuația $e^w = z$. Fie w = x + yi, $z = |z|e^{i\varphi}$. Obținem $e^{x+iy} = |z|e^{i\varphi}$, de unde $e^x \cdot e^{iy} = |z|e^{i\varphi}$, respectiv $e^x = |z|$ și $y = \varphi + 2\pi k$, $k \in \mathbb{Z}$. Astfel, $w = \ln|z| + i(\varphi + 2\pi k)$, $k \in \mathbb{Z}$.

Fie $P(\mathbb{C})$ mulțimea părților (submulțimilor) lui \mathbb{C} , iar $D \subseteq \mathbb{C}$ o mulțime nevidă.

Definiție: Aplicația $Ln: \mathbb{C}^* \to P(\mathbb{C})$, dată de $Ln(z) = \{\ln|z| + i(\arg z + 2\pi k) | k \in \mathbb{Z}\}$ se numește *funcție logaritmică*. Valorile funcției le vom nota cu Lnz.

Deci,
$$Lnz = \ln|z| + i(\arg z + 2\pi k)$$
, $k \in \mathbb{Z}$ sau $Lnz = \ln|z| + iArgz$.

Aplicația $\ln : \mathbb{C}^* \to \mathbb{C}$ dată de $\ln(z) = \ln|z| + i \arg z$ se numește *ramură principală* a funcției Ln (pentru k=0 sau *logaritm principal*).

Proprietăți:

$$Ln(z_1 \cdot z_2) = Lnz_1 + Lnz_2, \ z_1, z_2 \in \mathbb{C}^*.$$

$$Ln\left(\frac{z_1}{z_2}\right) = Lnz_1 - Lnz_2, \ z_1, z_2 \in \mathbb{C}^*.$$

$$Lnz^n = n \cdot Lnz, \ z \in \mathbb{C}^*, \ n \in \mathbb{N}.$$

$$Lnz^{\frac{1}{n}} = \frac{1}{n}Lnz, \ z \in \mathbb{C}^*, \ n \in N^*.$$

5. Funcția putere cu exponent complex

Fie $\alpha \in \mathbb{C}$. Aplicația $z \in \mathbb{C}^* \to z^{\alpha} \in P(\mathbb{C})$ dată de $\mathbf{z}^{\alpha} = \mathbf{e}^{\alpha \cdot \mathbf{L} \mathbf{n}(\mathbf{z})}$ se numește *funcția putere*.

Funcția putere este univocă.

Exemplu:
$$1^{i} = e^{iLn1} = e^{i2\pi ki} = e^{2\pi k}, \ k \in \mathbb{Z};$$

$$\left(1 - i\sqrt{3}\right)^{i} = e^{iLn(1 - i\sqrt{3})} = e^{i(\ln 2 + (-\frac{\pi}{6} + 2\pi k)i)} = e^{\frac{\pi}{6} + 2\pi k} \left(\cos 2 + i\sin 2\right), \ k \in \mathbb{Z}.$$

Notă: Proprietățile "obișnuite" ale funcției putere din cazul real nu se aplică variantei complexe. Regula $z^{\alpha} \cdot w^{\alpha} = (z \cdot w)^{\alpha}$ nu este valabilă pentru orice $z, w \in \mathbb{C}^*$ și $\alpha \in \mathbb{C}$. De exemplu: $(-1)^i \cdot (-1)^i = 1^i = e^{iLn1} = e^{i2\pi ki} = e^{2\pi k}$, $k \in \mathbb{Z}$. Pe de altă parte,

$$\left(-1\right)^{i} \cdot \left(-1\right)^{i} = e^{iLn(-1)} \cdot e^{iLn(-1)} = e^{i\left(\ln 1 + i\left(\pi + 2\pi k\right)\right)} \cdot e^{i\left(\ln 1 + i\left(\pi + 2\pi n\right)\right)} = e^{-\pi + 2\pi k} \cdot e^{-\pi + 2\pi n} = e^{-2\pi + 2\pi(n+k)}, \ k, n \in \mathbb{Z}.$$

6. Funcțiile trigonometrice

Prin definiție funcțiile sinus, cosinus, tangentă sunt:

$$\sin: \mathbb{C} \to \mathbb{C}, \ \sin(\mathbf{z}) = \frac{e^{i\mathbf{z}} - e^{-i\mathbf{z}}}{2i}, \qquad \cos: \mathbb{C} \to \mathbb{C}, \ \cos(\mathbf{z}) = \frac{e^{i\mathbf{z}} + e^{-i\mathbf{z}}}{2}.$$

$$tg: \mathbb{C} \setminus \left\{ (2k+1) \frac{\pi}{2} / k \in \mathbb{Z} \right\} \to \mathbb{C}, \ tg(\mathbf{z}) = \frac{\sin \mathbf{z}}{\cos \mathbf{z}}, \qquad ctg: \mathbb{C} \setminus \left\{ \pi k \middle| k \in \mathbb{Z} \right\} \to \mathbb{C}, \ ctg(\mathbf{z}) = \frac{\cos \mathbf{z}}{\sin \mathbf{z}}.$$

Proprietăți

- 1. Restricțiile funcțiilor $\sin|_{\mathbb{R}}$ și $\cos|_{\mathbb{R}}$ sunt funcțiile studiate în \mathbb{R} .
- 2. Au loc:

$$\sin^{2} z + \cos^{2} z = 1, \ \forall z \in \mathbb{C}$$

$$\cos(z_{1} \pm z_{2}) = \cos z_{1} \cos z_{2} \mp \sin z_{1} \cdot \sin z_{2}, \ \forall z_{1}, z_{2} \in \mathbb{C},$$

$$\cos(2z) = \cos^{2} z - \sin^{2} z$$

$$\sin(z_{1} \pm z_{2}) = \sin z_{1} \cos z_{2} \pm \sin z_{2} \cos z_{1}, \ \forall z_{1}, z_{2} \in \mathbb{C},$$

$$\sin(2z) = 2 \sin z \cos z.$$

3. Valorile modulului lui $\sin z$ și $\cos z$ pot fi mai mari decât 1.

Exemple

1.
$$\sin(2i) = \frac{e^{-2} - e^2}{2i} = \frac{e^2 - e^{-2}}{2}i (= ish2).$$

2.
$$\cos(\pi + 2i) = \cos \pi \cos 2i - \sin \pi \sin 2i = -\cos 2i = -\frac{e^{-2} + e^2}{2} = -ch2$$
.

3.
$$\left|\sin 2i\right| = \frac{e^2 - e^{-2}}{2} > 1$$
.

7. Funcțiile trigonometrice inverse

Fie $z \in \mathbb{C}$ fixat. Să determinăm $w \in \mathbb{C}$, astfel încât $\sin w = z$. Din definiția sinusului, obținem $\frac{e^{iw} - e^{-iw}}{2i} = z \Leftrightarrow e^{2iw} - 2iz \cdot e^{iw} - 1 = 0$. Dacă notăm $e^{iw} = t$, obținem ecuația de gradul 2: $t^2 - 2iz \ t - 1 = 0$ cu $t = iz + \sqrt{1 - z^2}$ ($\sqrt{1 - z^2}$ este rădăcina pătrată în sens complex, rezultat fiind două valori). Astfel, $e^{iw} = iz + \sqrt{1 - z^2} \Rightarrow iw = Ln\left(iz + \sqrt{1 - z^2}\right) \Rightarrow w = -i Ln\left(iz + \sqrt{1 - z^2}\right)$.

Definiție: Aplicația $\operatorname{Arcsin}: \mathbb{C} \to P(\mathbb{C})$ dată de $\operatorname{Arcsin}(z) = -i \operatorname{Ln}(iz + \sqrt{1-z^2})$ se numește *funcția arcsinus*. Valorile funcției se notează cu $\operatorname{Arcsin} z$.

Exemplu: Arcsin
$$\left(\frac{\pi i}{6}\right) = -iLn\left(-\frac{\pi}{6} \pm \sqrt{1 - \frac{\pi^2}{36}}\right)$$
. Decoarece $-\frac{\pi}{6} - \sqrt{1 - \frac{\pi^2}{36}} < 0$, atunci $\left|-\frac{\pi}{6} - \sqrt{1 - \frac{\pi^2}{36}}\right| = \frac{\pi}{6} + \sqrt{1 - \frac{\pi^2}{36}}$ și $\arg\left(-\frac{\pi}{6} - \sqrt{1 - \frac{\pi^2}{36}}\right) = \pi$. Pentru $-\frac{\pi}{6} + \sqrt{1 - \frac{\pi^2}{36}} > 0$, avem

$$\left| -\frac{\pi}{6} + \sqrt{1 - \frac{\pi^2}{36}} \right| = -\frac{\pi}{6} + \sqrt{1 - \frac{\pi^2}{36}} \quad \text{si} \quad \arg\left(-\frac{\pi}{6} + \sqrt{1 - \frac{\pi^2}{36}} \right) = 0 \text{. Prin urmare,}$$

$$\operatorname{Arcsin}\left(\frac{\pi i}{6}\right) = \begin{cases} -i \left(\ln\left(\frac{\pi}{6} + \sqrt{1 - \frac{\pi^2}{36}}\right) + i(\pi + 2k\pi)\right), k \in \mathbb{Z} \\ -i \left(\ln\left(-\frac{\pi}{6} + \sqrt{1 - \frac{\pi^2}{36}}\right) + i2k\pi\right), k \in \mathbb{Z} \end{cases} = \begin{cases} -i \ln\left(\frac{\pi}{6} + \sqrt{1 - \frac{\pi^2}{36}}\right) + (2k+1)\pi, k \in \mathbb{Z} \\ i \ln\left(-\frac{\pi}{6} + \sqrt{1 - \frac{\pi^2}{36}}\right) + 2k\pi, k \in \mathbb{Z} \end{cases}$$

În mod similar se definesc:

Arccos:
$$\mathbb{C} \to P(\mathbb{C})$$
, Arccos $(z) = -iLn\left(iz + \sqrt{z^2 - 1}\right)$
Arctg: $\mathbb{C} \setminus \{i; -i\} \to P(\mathbb{C})$, Arctg $(z) = \frac{i}{2}Ln\left(\frac{i+z}{i-z}\right)$
Arcctg: $\mathbb{C} \setminus \{i; -i\} \to P(\mathbb{C})$, Arcctg $(z) = \frac{i}{2}Ln\left(\frac{z-i}{z+i}\right)$.

8. Funcțiile hiperbolice

Definiție: Aplicația $sh: \mathbb{C} \to \mathbb{C}$ dată de $sh(z) = \frac{e^z - e^{-z}}{2}$ se numește funcție sinus hiperbolic, $ch: \mathbb{C} \to \mathbb{C}$, $ch(z) = \frac{e^z + e^{-z}}{2}$ se numește cosinus hiperbolic, $th: \mathbb{C} \to \mathbb{C}$, $th(z) = \frac{sh(z)}{ch(z)}$ se numește tangentă hiperbolică, $cth: \mathbb{C} \setminus \left\{ \pi ki \, \big| \, k \in \mathbb{Z} \right\} \to \mathbb{C}$. $cth(z) = \frac{ch(z)}{sh(z)}$ se numește cotangentă hiperbolică.

Proprietăți:

- 1. Sunt functii univoce
- 2. $ch^{2}z sh^{2}z = 1;$ $ch(z_{1} + z_{2}) = chz_{1}chz_{2} + shz_{1}shz_{2},$ $ch(2z) = ch^{2}z + sh^{2}z,$ $sh(z_{1} + z_{2}) = shz_{1}chz_{2} + shz_{2}chz_{1},$ sh(2z) = 2shzchz.

3. Funcțiile shz, chz sunt periodice cu perioada principală $2\pi i$.

Următoarele formule stabilesc relațiile dintre funcțiile trigonometrice și hiperbolice: (iz) = ishz: cos(iz) = chz: ta(iz) = ithz: cta(iz) = -icthz:

$$\sin(iz) = ishz; \cos(iz) = chz; tg(iz) = ithz; ctg(iz) = -icthz;$$

 $sh(iz) = isinz; ch(iz) = \cos z; th(iz) = itgz; cth(iz) = -ictgz.$

TEMA 3: DERIVABILITATEA ȘI DIFERENȚIABILITATEA FUNCȚIILOR COMPLEXE

Fie $D \subseteq C$ o mulțime deschisă și conexă. În cazul când D nu este conexă, se realizează studiul pe fiecare componentă conexă a lui D.

Definiție:

- 1. Fie $f: D \to \mathbb{C}$, $z_0 \in D$. Vom numi *derivata funcției* f în punctul z_0 "numărul" din C_{∞} , notat cu $f'(z_0)$, unde $f'(\mathbf{z_0}) = \lim_{\mathbf{z} \to \mathbf{z_0}} \frac{f(\mathbf{z}) f(\mathbf{z_0})}{\mathbf{z} \mathbf{z_0}}$, atunci când această limită există.
- 2. Dacă $f'(z_0) \in \mathbb{C}$, funcția f se numește *derivabilă* în z_0 .
- 3. Funcția f se numește *olomorfă* pe D, dacă f este derivabilă în orice punct al lui D.
- 4. Funcția f se numește diferențiabilă în z_0 , dacă există $\alpha \in \mathbb{C}$ și $w: D \to \mathbb{C}$, astfel încât $\lim_{z \to z_0} w(z) = w(z_0) = 0 \text{ și } f(z) = f(z_0) + \alpha(z z_0) + w(z)(z z_0), \ \forall z \in D.$

Notă: Diferențiabilitatea funcției presupune aproximarea când este posibil a funcției complexe prin funcții mai simple, anume prin *funcții afine*.

Teoremă: Fie $f:D\subseteq\mathbb{C}\to\mathbb{C},\ z_0\in D$. Funcția f este derivabilă în z_0 dacă și numai dacă f este diferențiabilă în z_0 . Constanta α din definiția diferențiabilitații este $A=f'(z_0)$.

Teoremă: Fie $f:D\subseteq\mathbb{C}\to\mathbb{C}$ derivabilă în $z_0\in D$. Atunci f este continuă în z_0 .

Proprietăti:

- I. Fie $f, g: D \subseteq \mathbb{C} \to \mathbb{C}$, f, g derivabile în z_0 . Atunci
 - 1. f + g este derivabilă în z_0 cu $(f + g)'(z_0) = f'(z_0) + g'(z_0)$;
 - 2. $f \cdot g$ este derivabilă în z_0 și $(f \cdot g)'(z_0) = f'(z_0) \cdot g(z_0) + f(z_0) \cdot g'(z_0)$;
 - 3. În condiția $g(z_0) \neq 0$, $\frac{t}{g}$ este derivabilă în z_0 și

$$\left(\frac{f}{g}\right)'(z_0) = \frac{f'(z_0) \cdot g(z_0) - f(z_0)g'(z_0)}{g^2(z_0)}.$$

- II. Fie $f:D \to E$, $g:E \to \mathbb{C}$, D, $E \subseteq \mathbb{C}$ mulțimi deschise, $z_0 \in D$ și $w_0 = f(z_0)$. Dacă f este derivabilă în z_0 și g este derivabilă în w_0 , atunci $g \circ f$ este derivabilă în z_0 cu $(g \circ f)'(z_0) = g'\big(f(z_0)\big) \cdot f'(z_0)$.
- III. **Teoremă:** (Condițiile Cauchy- Riemann de caracterizare a derivabilității): Fie $f: D \subseteq \mathbb{C} \to \mathbb{C}$, f(x+yi) = U(x,y) + iV(x,y), o funcție complexă și $z_0 \in D$. Funcția f este derivabilă în z_0 dacă și numai dacă funcțiile $U,V:D \subseteq \mathbb{R}^2 \to \mathbb{R}$ sunt diferențiabile

în
$$(x_0, y_0)$$
 și au loc condițiile Cauchy-Riemann:
$$\begin{cases} \frac{\partial U}{\partial x}(x_0, y_0) = \frac{\partial V}{\partial y}(x_0, y_0) \\ \frac{\partial U}{\partial y}(x_0, y_0) = -\frac{\partial V}{\partial x}(x_0, y_0) \end{cases}$$

În acest caz: $f'(\mathbf{z_0}) = \frac{\partial U}{\partial x}(x_0, y_0) + i \frac{\partial V}{\partial x}(x_0, y_0)$ sau $f'(\mathbf{z_0}) = \frac{\partial U}{\partial x}(x_0, y_0) - i \frac{\partial U}{\partial y}(x_0, y_0)$;

$$f'(z_0) = \frac{\partial V}{\partial y}(x_0, y_0) + i \frac{\partial V}{\partial x}(x_0, y_0); \quad f'(z_0) = \frac{\partial V}{\partial y}(x_0, y_0) - i \frac{\partial U}{\partial y}(x_0, y_0).$$

Demonstratie

Exemplu:

1. De cercetat derivabilitatea funcției $f(z) = 3iz^2 + 4z - 5i + 1$.

Determinăm
$$U(x, y) = \text{Re } f$$
; $V(x, y) = \text{Im } f$: $f(x + yi) = 3i(x + yi)^2 + 4(x + yi) - 5i + 1 =$
= $3i(x^2 - y^2 + 2xyi) + 4x + 4yi - 5i + 1 = (-6xy + 4x + 1) + i(3x^2 - 3y^2 + 4y - 5)$.

Deci, U(x, y) = -6xy + 4x + 1; $V(x, y) = 3x^2 - 3y^2 + 4y - 5$. Condițiile Cauchy-Riemann:

$$\begin{cases} \frac{\partial U}{\partial x} = \frac{\partial V}{\partial y} \\ \frac{\partial U}{\partial y} = -\frac{\partial V}{\partial x} \end{cases} \Leftrightarrow \begin{cases} -6y + 4 = -6y + 4 \\ -6x = -6x. \end{cases}$$
 Orice pereche $(x, y) \in \mathbb{R}^2$ verifică condițiile Cauchy-

Riemann. Astfel, funcția f este derivabilă în orice punct $z \in \mathbb{C}$, deci, olomorfă pe \mathbb{C} . Avem

$$f'(x+yi) = \frac{\partial U}{\partial x}(x,y) + i\frac{\partial V}{\partial x}(x,y) = -6y + 4 + i6x = i6x + 6i^2y + 4 = 6i(x+iy) + 4 = 6iz + 4.$$

Astfel $f'(z) = (3iz^2 + 4z - 5i + 1)' = 6iz + 4$ - similar cazului real.

2. De cercetat derivabilitatea funcției $f(z) = \overline{z} + \text{Re}(z^2) - 5i$.

Avem $f(x+yi) = x - yi + \text{Re}(x^2 + 2xyi - y^2) - 5i = (x + x^2 - y^2) + i(-y - 5)$. Astfel, $U(x, y) = x + x^2 - y^2$; V(x, y) = -y - 5. Condițiile Cauchy-Riemann:

$$\begin{cases} \frac{\partial U}{\partial x} = \frac{\partial V}{\partial y} \\ \frac{\partial U}{\partial y} = -\frac{\partial V}{\partial x} \end{cases} \Leftrightarrow \begin{cases} 2x+1 = -1 \\ -2y = -0 \end{cases} \Leftrightarrow \begin{cases} x = -1 \\ y = 0 \end{cases}.$$

Deci, f este derivabilă doar în punctul $z = -1 + i \cdot 0 \Leftrightarrow z = -1$ și

$$f'(-1) = \frac{\partial U}{\partial x}(-1;0) + i\frac{\partial V}{\partial x}(-1;0) = -1 + i \cdot 0 = -1.$$

Exemple de funcții olomorfe

- 1. Funcția putere cu exponent natural, $z \in \mathbb{C} \to z^n \in \mathbb{C}$, $n \in \mathbb{N}^*$, este olomorfă pe \mathbb{C} și $(\mathbf{z}^n)' = n\mathbf{z}^{n-1}$, iar $\mathbf{k}' = \mathbf{0}$, unde $k \in \mathbb{C}$.
- 2. Funcția exponențială $\exp: \mathbb{C} \to \mathbb{C}$, $\exp(z) = e^z$, este olomorfă pe \mathbb{C} și $(e^z)' = e^z$.
- 3. Fie $\mathbb{C}\setminus(-\infty;0]=\mathbb{C}\setminus\{z\in\mathbb{C},\operatorname{Re}z\leq0,\operatorname{Im}z=0\}$ și $f_k:\mathbb{C}\setminus(-\infty;0]\to\mathbb{C},$ $f_k(z)=\ln z=\ln |z|+i\arg z+2k\pi i,\ k\in\mathbb{Z}.$ Atunci, pentru orice $k\in\mathbb{Z},$ funcțiile f_k sunt olomorfe și $f_k'(z)=\frac{1}{z}.$
- 4. Funcția putere complexă este olomorfă cu derivata $(\mathbf{z}^{\alpha})' = \alpha \mathbf{z}^{\alpha-1}$, $\forall z \in \mathbb{C} \setminus (-\infty; 0]$.

5. Funcțiile trigonometrice sinus și cosinus sunt olomorfe pe \mathbb{C} și $(\cos z)' = -\sin z$ și $(\sin z)' = \cos z$.

Funcții armonice

Definiție: Funcția $U:D\subseteq\mathbb{R}^2\to\mathbb{R}$, continuă pe D împreună cu derivatele sale până la ordinul 2 inclusiv, se numește *funcție armonică*, dacă verifică ecuația lui Laplace: $\Delta U=0$, unde $\Delta U=\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}$. Expresia ΔU se numește *laplace-ianul funcției u*.

Teoremă: Fie $f: D \to \mathbb{C}$ olomorfă pe domeniul D și f(x+yi) = U(x,y) + iV(x,y). Dacă U și V sunt continui pe D împreună cu derivatele până la ordinul 2 inclusiv, atunci U și V sunt funcții armonice.

Într-adevăr, deoarece funcția este olomorfă, atunci au loc condițiile lui Cauchy-Riemann:

$$\begin{cases} \frac{\partial U}{\partial x} = \frac{\partial V}{\partial y} \\ \frac{\partial U}{\partial y} = -\frac{\partial V}{\partial x} \end{cases}$$
. Atunci,
$$\begin{cases} \frac{\partial^2 U}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial V}{\partial y} \right) = \frac{\partial^2 V}{\partial x \partial y} \\ \frac{\partial^2 U}{\partial y^2} = -\frac{\partial V}{\partial y \partial x} \end{cases}$$
. Conform teoremei lui Shwarz,
$$\frac{\partial^2 V}{\partial x \partial y} = \frac{\partial^2 V}{\partial y \partial x}.$$

Astfel, $\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} = 0$, de unde rezultă că U este funcție armonică. În mod similar se demonstrează că V este armonică.

!!! Reciprocă nu este adevărată: din faptul că U și V sunt două funcții armonice pe $D \in \mathbb{R}^2$, nu rezultă că funcția f(x+iy) = U(x,y) + iV(x,y) este olomorfă.

Teoremă: Fie $U,V:D\subseteq\mathbb{R}^2\to\mathbb{R}$ două funcții armonice. Funcția complexă $f:D\to\mathbb{C}$, f(x+iy)=U(x,y)+iV(x,y) este olomorfă dacă și numai dacă U și V verifică condițiile Cauchy-Riemann.

În acest caz, funcțiile U și V se numesc armonice conjugate.

Notă: Dacă este dată una dintre funcțiile armonice conjugate, atunci cealaltă funcție poate fi determinată cu exactitatea unei constante.

Exemplu: Să se determine funcția olomorfă f(z) = U + iV, dacă $U(x, y) = x^2 - y^2 + 2x$ și f(i) = 2i - 1.

Rezolvare. Metoda 1. Avem $\frac{\partial U}{\partial x} = 2x + 2$. Conform condițiilor Cauchy- Riemann $\frac{\partial U}{\partial x} = \frac{\partial V}{\partial y}$, deci, $\frac{\partial V}{\partial y} = 2x + 2$. Prin urmare, $V(x, y) = \int (2x + 2) dy = 2xy + 2y + C(x)$. Pe de

altă parte $\frac{\partial V}{\partial x} = -\frac{\partial U}{\partial y}$, adică $2y + C'(x) = -(-2y) \Leftrightarrow C'(x) = 0 \Leftrightarrow C(x) = C - \text{constantă}$ reală. Deci, V(x, y) = 2xy + 2y + C.

Obținem $f(x+iy)=x^2-y^2+2x+i(2xy+2y+C)=x^2-y^2+i2xy+2(x+iy)+Ci=(x+iy)^2+2(x+iy)+Ci \Rightarrow f(z)=z^2+2z+iC$. Din condiția f(i)=2i-1 determinăm C: $2i-1=i^2+2i+iC \Leftrightarrow iC=0 \Leftrightarrow C=0$. Prin urmare funcția căutată este $f(z)=z^2+2z$.

TEMA 4: INTEGRALA FUNCȚIILOR COMPLEXE

INTEGRALE PE CONTUR

Fie L o curbă simplă netedă pe porțiuni, definită de ecuațiile parametrice $\begin{cases} x=x(t) \\ y=y(t) \end{cases}$, $t \in [a,b]$, iar f o funcție complexă definită pe L. Fie $\Delta: a=t_0 < t_1 < ... < t_n = b$ o diviziune a segmentului [a,b], care implică o divizare a curbei L prin punctele $z_k = x(t_k) + iy(t_k)$, $\forall k = \overline{0,n-1}$. Notăm $\Delta z_k = z_{k+1} - z_k$. Considerăm sistemul de puncte intermediare $\xi_k = x(\tau_k) + iy(\tau_k)$, unde $\tau_k \in [t_{k-1}, t_k]$, $k = \overline{0,n-1}$. Fie norma diviziunii Δ , $\|\Delta\| = \max_{k=1,n} |t_k - t_{k-1}|$ cu suma Riemann asociată funcției f pe diviziunea Δ și sistemul de puncte intermediare : $\sigma_f \left(\Delta, \xi_k\right) = \sum_{i=1}^n f\left(\xi_k\right) \Delta z_k$.

Definiție: Numărul I se numește *limita sumelor integrale* $\sigma_f(\Delta, \xi_k)$, atunci când $\|\Delta\| \to 0$, dacă $\lim_{\|\Delta\| \to 0} \sigma_f(\Delta, \xi_k) = I$ pentru orice diviziune Δ și orice sistem intermediar de puncte (ξ_k) . Dacă această limită există și este finită, numărul I se notează cu $\int_L f(\mathbf{z}) d\mathbf{z}$ și îl vom numi integrala funcției f pe curba L.

Teoremă: Fie $f: D \subseteq \mathbb{C} \to \mathbb{C}$, f(x+iy) = U(x,y) + iV(x,y) și $L \subset D$ o curbă. Dacă f este integrabilă pe L, atunci: $\int_{L} f(z)dz = \int_{L} U(x,y)dx - V(x,y)dy + i \int_{L} V(x,y)dx + U(x,y)dy$.

Astfel, calcularea integralei unei funcții complexe pe curbă se reduce la calcularea a două integrale curbilinii de speța II.

Demonstrație: Fie f(z) = f(x+iy) = U(x,y) + iV(x,y), $z_k = x(t_k) + y(t_k)$, $k = \overline{0, n-1}$. Fie $\xi_k = \mu_k + i\nu_k$. Atunci

$$\sum_{k=0}^{n-1} f(\xi_k) \Delta z_k = \sum_{k=0}^{n-1} \left(U(\mu_k, \nu_k) \Delta x_k - V(\mu_k, \nu_k) \Delta y_k \right) + \sum_{k=0}^{n-1} \left(V(\mu_k, \nu_k) \Delta x_k + U(\mu_k, \nu_k) \Delta y_k \right).$$

Sumele din partea dreaptă a egalității sunt sumele integrale respective integralelor curbilinii. În condițiile teoremei, aceste integrale curbilinii există și deci, există și $\int_{I} f(z)dz = \int_{I} U(x,y)dx - V(x,y)dy + i \int_{I} V(x,y)dx + U(x,y)dy.$

Notă: În caz particular, $f(z) \equiv 1$,

$$\sum_{k=0}^{n-1} f(\xi_k) \Delta z_k = \sum_{k=0}^{n-1} \Delta z_k = (-z_1 + z_2) + (-z_2 + z_3) + \dots + (-z_{n-1} + z_n) = z_n - z_0.$$
Astfel, $\int_{L} d\mathbf{z} = \mathbf{z_n} - \mathbf{z_0}$, unde $z_n = x(t_n) + iy(t_n)$, $z_0 = x(t_0) + iy(t_0)$.

Proprietăți ale integralelor pe contur

1.
$$\int_{L} (f(z) + g(z))dz = \int_{L} f(z)dz + \int_{L} g(z)dz;$$

2.
$$\int_{I} af(z)dz = a \int_{I} f(z)dz, \quad a \in \mathbb{C};$$

3.
$$\int_{L} f(z)dz = -\int_{L^{-}} f(z)dz$$
, unde L^{-} este curba L , parcursă în sens opus;

4.
$$\int_{L_1 \cup L_2} f(z)dz = \int_{L_1} f(z)dz + \int_{L_2} f(z)dz, \text{ unde } L_1 \text{ si } L_2 \text{ sunt curbe fără puncte interioare}$$

comune:

5.
$$\left| \int_{I} f(z)dz \right| \le M \cdot l$$
, unde l este lungimea curbei L și $|f(z)| \le M$, $z \in L$.

Dacă curba L este o curbă netedă pe porțiuni, definită de ecuații parametrice $\begin{cases} x = x(t) \\ y = y(t) \end{cases}, t \in [a, b] \text{ si } f \text{ o funcție complexă integrabilă pe } L, \text{ atunci}$

$$\int_{L} f(z)dz = \int_{a}^{b} \left[U(x(t), y(t))x'(t) - V(x(t), y(t))y'(t)\right]dt$$

$$+ i \int_{a}^{b} \left[V(x(t), y(t))x'(t) + U(x(t), y(t))y'(t)\right]dt$$

$$\int_{L} f(z)dz = \int_{a}^{b} f(z(t))z'(t)dt$$

sau

$$\int_{A} f(z)dz = \int_{a}^{b} f(z(t))z'(t)dt$$

unde z(t) = x(t) + iy(t) este ecuația complexă parametrică a curbei L.

Exemple:

Să se calculeze $I = \int_{L} (1+i-2\overline{z})dz$, unde L este arcul de parabolă $y = x^2$, ce unește punctele $z_1 = 0$ și $z_2 = 1 + i$.

Rezolvare: $f(z) = 1 + i - 2\overline{z} \Rightarrow f(x + iy) = 1 + i - 2(x - yi) = (1 - 2x) + i(1 + 2y)$. Astfel, U(x, y) = 1 - 2x, $V(x, y) = 1 + 2y \Rightarrow I = \int_{L} (1 - 2x) dx - (1 - 2y) dy + i \int_{L} (1 + 2y) dx + (1 - 2x) dy$.

Deoarece
$$y = x^2 \Rightarrow dy = 2xdx$$
, $0 \le x \le 1 \Rightarrow$

$$I = \int_{0}^{1} (1 - 2x - (1 + 2x^{2}) \cdot 2x) dx + i \int_{0}^{1} (1 + 2x^{2} + (1 - 2x) \cdot 2x) dx =$$

$$I = \int_{0}^{1} (1 - 4x - 4x^{3}) dx + i \int_{0}^{1} (1 + 2x - 2x^{2}) dx = (x - 2x^{2} - x^{4}) \Big|_{0}^{1} + i (x + x^{2} - \frac{2x^{2}}{3}) \Big|_{0}^{1} = -2 + \frac{4}{3}i.$$

Să se calculeze $I = \int_{z}^{z} (z^2 + z \cdot \overline{z}) dz$, unde L este arcul cercului |z| = 1, $0 \le \arg z \le \pi$.

Rezolvare:

Metoda I. Forma complexă a lui z este $z = |z|e^{i\varphi} \Rightarrow z = e^{i\varphi}, \ 0 \le \varphi \le \pi \Rightarrow dz =$ $ie^{i\varphi}d\varphi$. Obținem $I = \int_{C} \left(z^2 + \left|z\right|^2\right) dz = \int_{0}^{\infty} \left(e^{2i\varphi} + 1\right) \cdot ie^{i\varphi}d\varphi =$

$$\begin{split} & = \int\limits_0^\pi \left(i e^{3i\varphi} + i e^{i\varphi} \right) d\varphi = \left(\frac{1}{3} e^{3i\varphi} + e^{i\varphi} \right) \bigg|_0^\pi = \left(\frac{1}{3} e^{3i\pi} + e^{\pi i} \right) - \left(\frac{1}{3} + 1 \right) = -\frac{8}{3}. \\ & \qquad \qquad \mathbf{Metoda} \quad \mathbf{II}. \quad \text{Ecuațiile parametrice ale conturului } \quad L \quad \text{sunt:} \quad \begin{cases} x = \cos t \\ y = \sin t \end{cases}, \ 0 \le t \le \pi, \\ z = \cos t + i \sin t \Rightarrow dz = \left(-\sin t + i \cos t \right) dt \Rightarrow I = \int\limits_0^\pi \left[(\cos t + i \sin t)^2 + 1 \right] (-\sin t + i \cos t) dt = \\ & \qquad \qquad = \int\limits_0^\pi \left(-\cos 2t + i \sin 2t + 1 \right) (-\sin t + i \cos t) dt \\ & \qquad \qquad = \int\limits_0^\pi \left(-\cos 2t \cdot \sin t + i \cos 2t \cos t - i \sin 2t \sin t - \right) \\ & \qquad \qquad \qquad -\sin 2t \cos t - \sin t + i \cos t \right) dt = \\ & \qquad \qquad = \int\limits_0^\pi \left[-\frac{1}{2} (\sin 3t - \sin t) + \frac{1}{2} i (\cos 3t + \cos t) - \frac{1}{2} i (\cos t - \cos 3t) - \frac{1}{2} (\sin 3t + \sin t) - \right. \\ & \qquad \qquad -\sin t + i \cos t \right] dt \\ & \qquad \qquad = \left[-\frac{1}{2} \left(-\frac{1}{3} \cos 3t + \cos t \right) + \frac{1}{2} i \left(\frac{1}{3} \sin 3t + \sin t \right) - \frac{1}{2} i \left(\sin t - \frac{1}{3} \sin 3t \right) - \\ & \qquad \qquad -\frac{1}{2} \left[-\frac{1}{3} \cos 3t - \cos t + \cos t - i \sin t \right] \right]_0^\pi = -\frac{1}{2} \left(\frac{2}{3} - 2 \right) - \frac{1}{2} \left(\frac{2}{3} + 2 \right) - 2 = -\frac{8}{3}. \end{split}$$

Teorema Chauchy. Integrala nedefinită în domeniul complex și formula Newton-Lebniz.

Formule integrale Chauchy

Definiție. Domeniul $G \subset \mathbb{C}$ se numește **simplex conex**, dacă domeniul mărginit de orice curbă închisă, ce se conține în G, de asemenea se închlude în G.

Domeniile care nu posedă această proprietate se numesc multiconexe.

Exemple:

$$D_1\{z \in \mathbb{C} | |z-a| < r\}$$
 – o mulțime simplu conexă;

$$D_2\{z \in \mathbb{C} | |z-a| > r\}$$
 – o mulțime multiconexă;

$$D_3\{z \in \mathbb{C} | r < |z-a| < R\}$$
 – o mulțime multiconexă.

Teorema integrală Cauchy:

Fie funcția olomorfă $f:D\to\mathbb{C}$, unde $D\subset\mathbb{C}$ este un domeniu simplu conex. Dacă γ este un contur închis și neted pe porțiuni, care se conține în domeniul D, atunci $\oint_{\gamma} f(z)dz = 0$.

Demonstrație. Fie $f(x+iy)=U(x,y)+i\cdot V(x,y)$, unde U și V sunt diferențiabile și au loc condițiile Cauchy-Riemann: $\begin{cases} U_x(x,y)=V_y(x,y)\\ U_y(x,y)=-V_x(x,y) \end{cases}$. Pe de altă parte pentru ca $\oint_Y P(x,y)dx+Q(x,y)dy=0 \text{ este suficient ca } P'y(x,y)=Q'x(x,y) \text{ , unde } P,Q,P'y,Q'x \text{ - continui pe } D.$ Astfel obținem că $\oint_Y Udx-Vdy=0$ și $\oint_Y Vdx+Udy=0$ și teorema este demonstrată.

Teorema lui Cauchy poate fi extinsă și pentru cazul unui domeniu multiconex. Pentru concretitudine, vom considera o funcție $f:D\to\mathbb{C}$ olomorfă, iar D – dublu conex, delimitat de curbele închise γ_1 și γ_2 .

Efectuăm tăietura MN și obținem domeniul simplu conex \overline{D} , care are drept frontieră conturul $\Gamma = \gamma_1 \cup \overline{MN} \cup \gamma_2 \cup \overline{NM}$. Atunci putem aplica teorema Cauchy: $\oint_{\Gamma} f(z)dz = 0$. De unde

$$\oint_{\gamma_1} f(z)dz + \int_{\overline{MN}} f(z)dz + \oint_{\gamma_2^-} f(z)dz + \int_{\overline{NM}} f(z)dz = 0$$

$$\Rightarrow \oint_{\gamma_1} f(z)dz = -\oint_{\gamma_2^-} f(z)dz = \oint_{\gamma_2} f(z)dz.$$

Mai general, dacă D este domeniu delimitat de curbele $\gamma_1, \gamma_2, ..., \gamma_n$, exterioare între ele și interioare unei curbe $L, L \subset D$, iar f este olomorfă în domeniul D, are loc

$$\oint_L f(z)dz = \sum_{k=1}^n \oint_{\gamma_n} f(z)dz.$$

Exemple:

1.
$$I = \oint_L \frac{dz}{(z - z_0)^n}$$
, unde L – contur închis, $n \in \mathbb{Z}$.

Dacă $n \le 0 \Rightarrow I = \oint_L (z - z_0)^m dz$, unde $m = -n \ge 0$ și $f(z) = (z - z_0)^m$ este olomorfă pe $\mathbb{C} \Rightarrow I = 0$. Dacă n > 0 și z_0 nu aparține domeniului D, mărginit de L, atunci I = 0.

Fie n>0 și z_0 aparține domeniului mărginit de L. Considerăm un cerc C cu centrul în z_0 de rază R, încât discul mărginit de cerc se include în D. Ecuația acestui cerc este $z-z_0=\mathrm{Re}^{i\varphi},\ 0\leq\varphi\leq 2\pi.$ Atunci $f(z)=\frac{1}{\left(z-z_0\right)^n}$ este olomorfă în domeniul delimitat de L și de cercul C. Atunci, $\oint f(z)dz = \oint f(z)dz = \oint \frac{1}{R^n e^{ni\varphi}} \cdot Rie^{i\varphi}d\varphi = \frac{i}{R^{n-1}} \int_{-\infty}^{2\pi} e^{i(1-n)\varphi}d\varphi$.

Pentru
$$n=1$$
, $I=\int_0^{2\pi} d\varphi = 2\pi i$.

Pentru
$$n > 1$$
, $I = \frac{i}{R^{n-1}} \cdot \frac{e^{i(1-n)\varphi}}{i(1-n)} \Big|_{0}^{2\pi} = \frac{1}{R(1-n)} \left(e^{2\pi i(1-n)} - 1 \right) = 0.$

2. De calculat integrala $\oint \frac{e^{iz}+1}{z-2}dz$, unde L:|z-i|=1.

Rezolvare: Conturul L reprezintă un cerc cu centrul în $z_0 = i$ cu raza 1. Funcția $f(z) = \frac{e^{iz} + 1}{z - 2}$ este olomorfă în discul $|z - i| \le 1$. Punctul z = 2 este punct singular al funcției, dar nu aparține acestui disc. Astfel, I = 0.

Notă: Din teorema Cauchy rezultă, că dacă f este o funcție olomorfă într-un domeniu D, iar $z_0, z_1 \in D$, atunci $\int\limits_{\gamma} f(z)dz$, γ este un contur care unește punctele z_0, z_1 , nu

depinde de "forma" lui
$$\gamma$$
, doar de z_0 și z_1 .

Într-adevăr, din teorema Cauchy
$$\oint_{y \cup \Gamma^-} f(z)dz = 0$$
,

adică
$$\int_{\gamma} f(z)dz + \int_{\Gamma^{-}} f(z)dz = 0 \Rightarrow \int_{\gamma} f(z)dz = \int_{\Gamma} f(z)dz.$$

Definiție: O funcție $f: D \subset \mathbb{C} \to \mathbb{C}$ admite primitive, dacă există $F: D \to \mathbb{C}$ olomorfă încât F' = f. Funcția F se numește primitivă pentru funcția f.

Propoziție: Fie F și Φ sunt două primitive ale funcției $f: D \subset \mathbb{C} \to \mathbb{C}$. Atunci

- 1. F+C este de asemenea primitivă a lui f, unde este constantă complexă C;
- 2. diferența dintre F și Φ este constantă complexă C.
- 1. Într-adevăr, dacă F este primitivă a lui f, atunci F' = f pe D și $C' = 0 \Rightarrow (F + C)' = f$.
- 2. Considerăm funcția $g(z) = F(z) \Phi(z) = U(x,y) + i \cdot V(x,y) \Rightarrow g'(z) = \frac{\partial U}{\partial x} + i \frac{\partial V}{\partial x} = \frac{\partial V}{\partial y} i \frac{\partial U}{\partial y}$. Dar $g'(z) = F'(z) \Phi'(z) = f(z) f(z) = 0 \Rightarrow \frac{\partial U}{\partial x} = \frac{\partial V}{\partial y} = 0$ și $\frac{\partial V}{\partial x} = -\frac{\partial U}{\partial y} = 0$ în domeniul D. De unde rezultă că U, V sunt constante în domeniul D. Astfel, g(z) = C, $C \in \mathbb{C}$ și $F(z) = \Phi(z) + C$.

Din cele relatate mai sus, dacă F(z) este o primitivă a lui f(z), atunci F(z)+C, unde C este o constantă arbitrară, reprezintă mulțimea tuturor primitivelor funcției f(z). Această mulțime se numește *integrala nedefinită* a funcției f(z) și se notează cu simbolul $\int f(z)dz = F(z) + C$, unde F'(z) = f(z).

Tehnica determinării integralelor nedefinite în analiza complexă, în general, este similară cazului real. Tabelul integralelor principale în ambele cazuri este același (deoarece este același tabelul derivatelor).

De exemplu,

$$1. \quad \int e^z dz = e^z + C;$$

2.
$$\int z^n dz = \frac{z^{n+1}}{n+1} + C(n \neq -1, n \in \mathbb{Z});$$

3.
$$\int \frac{dz}{z} = \ln z + \mathbb{C};$$

4.
$$\int \sin z dz = -\cos z + \mathbb{C} \text{ etc.}$$

Primitiva este o *funcție olomorfă*, fapt care implică condiții anumite asupra domeniului în care sunt juste formulele de sus. De exemplu, formulele 1 și 4 sunt adevărate pe tot planul complex. Formula 2 este adevărată pe întreg planul complex pentru $n \ge 0$, iar printre n < 0 avem o propoziție adevărată pentru orice domeniu ce nu conține z = 0. Identitatea 3 este adevărată în orice domeniu, care nu conține o rază ce pornește din z = 0, de exemplu: $D = \mathbb{C} \setminus \{z = x + yi, \operatorname{Im} z = 0, \operatorname{Re} z \le 0\}$.

Dacă f este olomorfă în domeniul simplex conex D, iar z_0 și $z_1 \in D$, după cum am menționat mai sus nu contează conturul γ , care unește punctele z_0 și z_1 , și se notează $\int_{\gamma} f(z) dz = \int_{z_0}^{z_1} f(z) dz$. Mai mult, dacă F este o primitivă a lui f, atunci

$$\int_{z_0}^{z_1} f(z)dz = F(z_1) - F(z_0) = F(z)|_{z_0}^{z_1}$$

Exemplu:
$$\int_{0}^{\pi/2} e^{zi} dz = \frac{1}{i} e^{zi} \Big|_{0}^{\frac{\pi}{2}} = \frac{1}{i} \left(e^{\frac{\pi}{2}i} - 1 \right) = \frac{1}{i} \left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2} - 1 \right) = \frac{1}{i} (i - 1) = 1 - \frac{1}{i} = 1 + i.$$

Funcția $f(z) = e^{zi}$ este olomorfă pe \mathbb{C} .

Notă. Facă f și g sunt funcții olomorfe în domeniul simplu conex D, iar z_0 și $z_1 \in D$, atunci este adevărată:

$$\int_{z_0}^{z_1} f(z)g'(z)dz = f(z)g(z)|_{z_0}^{z_1} - \int_{z_0}^{z_1} g(z)f'(z)dz.$$

Exemplu:

$$\int_{0}^{\ln 2} z \sin(iz) dz = \begin{vmatrix} f(z) = z & f'(z) = 1 \\ g'(z) = \sin(iz) & g(z) = -\frac{1}{i} \cos(iz) \end{vmatrix} = -\frac{z}{i} \cos(iz) \Big|_{0}^{\ln 2} + \int_{0}^{\ln 2} \frac{1}{i} \cos(iz) dz = -\frac{\ln 2}{i} \cos(i\ln 2) + \frac{1}{i^{2}} \sin(iz) \Big|_{0}^{\ln 2} = i\ln 2\cos(i\ln 2) - \sin(i\ln 2) = i\ln 2\cosh(\ln 2) - i\sinh(\ln 2) = i \left[\ln 2\frac{e^{\ln 2} + e^{-\ln 2}}{2} - \frac{e^{\ln 2} - e^{-\ln 2}}{2} \right] = i \left(\frac{5}{4} \ln 2 - \frac{3}{4} \right)$$

Teoremă: Dacă f este o funcție olomorfă în domeniul simplu conex D, atunci funcția $F(z) = \int_{z_0}^{z} f(\xi) d\xi$, unde z_0 , $z_1 \in D$, este o primitivă a funcției f.

Teoremă: Funcția continuă $f:D\subseteq\mathbb{C}\to\mathbb{C}$ admite primitive dacă și numai dacă $\oint_{\gamma} f(z)dz = 0$ pe orice curbă închisă din D.

Formule integrale Cauchy

Teoremă: Fie $D \subseteq \mathbb{C}$ un domeniu (simplu conex sau multiconex), γ o curbă închisă, parțial netedă ce se conține în D. Fie f o funcție olomorfă pe D și z_0 este din domeniul mărginit de γ .

Atunci $f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z-z_0} dz$, unde integrarea pe conturul γ este în sens pozitiv (când domeniul mărginit de γ rămâne în stânga).

Notă: Calcularea integralei pe un contur închis al unei funcții olomorfe se reduce la calcularea valorii funcției f într-un punct din domeniul mărginit de conturul D.

Exemplu 1: Să se calculeze
$$I = \int_{|z|=2}^{\infty} \frac{ch(z\pi i)dz}{z+4z+3}$$
.

Rezolvare: Soluțiile ecuației $z^2 + 4z + 3 = 0$ sunt -1 și -3. Doar $z_0 = -1$ este situat în interiorul cercului |z| = 2. Atunci $\frac{ch(z\pi i)}{z^2 + 4z + 3} = \frac{\frac{ch(2\pi i)}{z + 3}}{z + 1} = \frac{\frac{ch(2\pi i)}{z + 3}}{z - (-1)}$. Atunci $I = 2\pi i \cdot f(-1)$, unde $f(z) = \frac{ch(z\pi i)}{z + 3}$ este o funcție olomorfă în discul mărginit de |z| = 2. Dar

$$f(-1) = \frac{ch(-\pi i)}{2} = \frac{\cos \pi}{2} = \frac{1}{2}$$
, de unde $I = 2\pi i \cdot \frac{1}{2} = \pi i$.

Exemplu:
$$I = \int_{z}^{z^2 + 3iz + 5} dz$$
, unde 1) $\gamma: |z - 2i| = 1$; 2) $\gamma: |z - 2i| = 3$; 3) $|z - 2i| = 7$.

Rezolvare: 1. Soluțiile ecuației $z^2 - 6z = 0$ sunt $z_1 = 0$, $z_2 = 6$. Niciuna dintre aceste soluții nu aparțin domeniului mărginit de |z - 2i| = 1. Într-adevăr, |0 - 2i| = |2i| = 2 > 1 și $|6 - 2i| = \sqrt{36 + 4} = \sqrt{40} > 1$.

Astfel,
$$f(z) = \frac{e^{2z} + 3iz + 5}{z^2 - 6z}$$
 este olomorfă pe domeniul $|z - 2i| \le 1$ și $\int_{|z - 2i| = 1} f(z) dz = 0$.

2. Punctul z = 0 aparține domeniului |z - 2i| = 3, iar z = 6 nu aparține acestui domeniu. Atunci

$$I = \int_{|z-2i|=3}^{\frac{e^{2z}+3iz+5}{z-6}} dz = 2\pi i \cdot f(0) = 2\pi i \cdot \frac{6}{-6} = -2\pi i,$$

unde $f(z) = \frac{e^{2z} + 3iz + 5}{z - 6}$ este olomorfă în domeniul |z - 2i| < 3.

3. Ambele soluții $z_1 = 0$, $z_2 = 6$ aparțin domeniului |z - 2i| < 7. Considerăm cercurile γ_1 și γ_2 , ce se conțin în domeniul |z - 2i| < 7. În domeniul triplu conex, mărginit de γ_1 , γ_2 și |z - 2i| = 7, funcția de sub semnul integralei este olomorfă.

Astfel,
$$\oint_{|z-2i|=6} \frac{e^{2z}+3iz+5}{z^2-6z} dz = \oint_{\gamma_1} \frac{e^{2z}+3iz+5}{z(z-6)} dz + \oint_{\gamma_2} \frac{e^{2z}+3iz+5}{z(z-6)} dz.$$

Pentru fiecare integrală din partea dreaptă a egalității vom aplica formula integrală Cauchy.

$$\int_{\gamma_{1}}^{2z} \frac{e^{2z} + 3iz + 5}{z - 6} dz = 2\pi i \cdot \left(\frac{e^{2z} + 3iz + 5}{z - 6}\right) \Big|_{z=0} = 2\pi i \cdot \frac{6}{-6} = 2\pi i;$$

$$\int_{\gamma_{1}}^{2z} \frac{e^{2z} + 3iz + 5}{z - 6} dz \int_{\gamma_{2}}^{2z} = 2\pi i \cdot \left(\frac{e^{2z} + 3iz + 5}{z}\right) \Big|_{z=6} = 2\pi i \cdot \frac{e^{1z} + 18i + 5}{6}.$$
Deci,
$$I = -2\pi i + 2\pi i \frac{e^{1z} + 18i + 5}{6} = 2\pi i \left(-1 + \frac{e^{1z} + 18i + 5}{6}\right) = 2\pi i \frac{e^{1z} + 18i - 1}{6} = \frac{\pi i}{3} (e^{1z} + 18i - 1).$$

Exemplu: De calculat $I = \int_{|z+i|=2} \frac{1}{z(z^2+4)} dz$. Soluțiile ecuației $z(z^2+4)=0$ sunt $z_1 = 0$, $z_0 = -2i$, $z_2 = 2i$. Dintre acestea doar $z_1 = 0$ și $z_2 = -2i$ aparțin domeniului |z+i| < 2 (|0+i| = |i| = 1 < 2, |-2i+i| = |-i| = 1 < 2, iar |2i+i| = |3i| = 3 > 2).

Astfel,
$$\frac{1}{z(z^2+4)} = \frac{1}{z(z-2i)(z+2i)}$$
.

Considerăm cercurile γ_1 și γ_2 , ce se conțin în domeniul |z+i| < 2. În domeniul triplu conex, mărginit de γ_1 , γ_2 și |z+i| = 2, funcția de sub semnul integralei este olomorfă. Atunci,

$$\int_{|z+i|=2} \frac{1}{z(z^2+4)} dz = \oint_{\gamma_1} \frac{\frac{1}{z^2+4}}{z} dz + \int_{\gamma_2} \frac{\frac{1}{z(z-2i)}}{z+2i} dz = 2\pi i \left(\frac{1}{z^2+4}\right) \Big|_{z=0} + 2\pi i \cdot \left(\frac{1}{z(z-2i)}\right) \Big|_{z=-2i} = 2\pi i \left(\frac{1}{4} + \frac{1}{-2i \cdot (-4i)}\right) = 2\pi i \left(\frac{1}{4} - \frac{1}{8}\right) = -\frac{\pi i}{4}.$$

Teoremă: Fie $D \subseteq \mathbb{C}$ un domeniu, $\gamma \subset D$ un contur închis, f o funcție olomorfă pe domeniul D. Atunci, oricare ar fi z_0 interior domeniului mărginit de γ , f admite derivate de orice ordin în z_0 și are $\log f^{(n)}(\mathbf{z_0}) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(\mathbf{z})}{(\mathbf{z} - \mathbf{z_0})^{n+1}} d\mathbf{z}$.

Exemplu: De calculat $I = \int_{|z|=1}^{\infty} \frac{1}{z^2} \sin \frac{\pi}{z+3} dz$.

Rezolvare: Funcția $f(z) = \sin \frac{\pi}{z+3}$ este olomorfă în domeniul $|z| \le 1$ (z = -3 nu aparține domeniului dat).

Astfel,
$$I = \int_{|z|=1}^{\infty} \frac{\sin \frac{\pi}{z+3}}{(z-0)^{1+1}} dz = \frac{2\pi i}{1!} f'(0).$$
 Determinăm

$$f'(z) = \cos\frac{\pi}{z+3} \cdot \left(\frac{\pi}{z+3}\right)' = -\frac{\pi}{(z+3)^2} \cdot \cos\frac{\pi}{z+3}$$

$$f'(0) = -\frac{\pi}{9} \cdot \cos\frac{\pi}{3} = -\frac{\pi}{18} \Rightarrow I = 2\pi i \cdot \left(-\frac{\pi}{18}\right) = -\frac{\pi}{18} = -\frac{\pi^2 i}{9}.$$
§i

Teorema (lui Morera). Fie $f:D\subset\mathbb{C}\to\mathbb{C}$ o funcție continuă, iar D un domeniu deschis. Dacă $\int_{\gamma} f(z)dz = 0$ pe orice curbă parțial netedă γ închisă din domeniul D, atunci f este olomorfă pe D.

Teorema (lui Liouville). Dacă $f: \mathbb{C} \to \mathbb{C}$ o funcție olomorfă și mărginită, atunci funcția f este constantă.

TEMA 5: SERII COMPLEXE

SERII DE NUMERE COMPLEXE. SERII DE PUTERI

Definiție. Fie (z_n) un șir de numere complexe și $s_n = z_1 + z_2 + ... + z_n = \sum_{k=0}^n z_k$, $n \ge 0$. Perechea $(a_n), (s_n)$ se numește *serie de numere complexe* cu termenul general a_n . Se notează $\sum_{n>0} z_n$, $\sum_{n=0}^{\infty} z_n$ sau $\sum_{n=0}^{\infty} z_n$ sau $z_0 + z_1 + z_2 + ... + z_n + ...$

Elementul a_n se numește **termen de rang** n, iar s_n suma parțială a seriei.

Definiție. Seria $\sum_{n>0} z_n$ se numește *convergentă* dacă șirul sumelor parțiale $(s_n)_{n\geq 0}$ este convergent, în caz contrar seria este divergentă. În caz de convergență, limita S a șirului $(s_n)_{n\geq 0}$ se numește suma seriei $\sum_{n\geq 0} z_n$. Se scrie $\sum_{n\geq 0} z_n = S$.

Definiție. Se numește **rest de ordinul** n al seriei $\sum_{n\geq 0} z_n$, diferența $R_n = S - S_n = z_{n+1} + z_{n+2} + ... = \sum_{k\geq n+1} z_k$.

Lemă. Dacă $\sum z_n$ este convergentă, atunci $\lim_{n\to\infty} R_n = 0$.

Teoremă. Seria $\sum z_n = \sum (x_n + iy_n), x_n, y_n \in \mathbb{R}$, este convergentă dacă și numai dacă sunt convergente seriile reale $\sum_{n=0}^{\infty} x_n$ și $\sum_{n=0}^{\infty} y_n$.

Consecință. Dacă $\sum z_n$ este convergentă, atunci $\lim_{n\to\infty} z_n = 0$.

Ca și în cazul seriilor de numere reale este justă

Teorema. Dacă seria $\sum_{n=0}^{\infty} |z_n|$ este convergentă, atunci este convergentă și seria $\sum z_n$.

Definiție. Seria de numere complexe $\sum z_n$ se numește **absolut convergentă**, dacă seria $\sum |z_n|$ este convergentă.

Sunt aplicabile criteriile de convergență din cazul seriilor reale.

Criteriul D'Alembert (a raportului). Fie seria $\sum z_n$. Dacă există $\lim_{n\to\infty} \left| \frac{z_{n+1}}{z_n} \right| = l$, atunci seria este convergentă pentru l < 1 și este divergentă pentru l > 1.

Criteriul radical Cauchy. Fie seria $\sum z_n$. Dacă există $\lim_{n\to\infty} \sqrt[n]{|z_n|} = l$, atunci seria este convergentă pentru l < 1 și este divergentă pentru l > 1.

Exemplu 1. Fie $\sum_{n=1}^{\infty} \frac{n(2+i)^n}{3^n}$. Aplicăm criteriul radical: $\lim_{n\to\infty} \sqrt[n]{\frac{n(2+i)^n}{3^n}} = \lim_{n\to\infty} \sqrt[n]{\frac{n\cdot\sqrt{5}^n}{3^n}} = \frac{\sqrt{5}}{3} < 1$, deci seria este convergentă.

Exemplu 2. Fie $\sum_{n=1}^{\infty} \frac{i^n}{(3+2i)^{2n}}$. Putem utiliza ambele criterii. Aplicăm criteriul D'Alembert

$$\lim_{n \to \infty} \left| \frac{i^{n+1}}{(3+2i)^{2n+2}} \cdot \frac{(3+2i)^{2n}}{i^n} \right| = \left| \frac{i}{(3+2i)^2} \right| = \frac{1}{13} < 1. \text{ Deci, seria este convergentă.}$$

Definiție. O serie de puteri este o sumă de forma $c_0 + c_1 z + c_2 z^2 + ... + c_n z^n + ... = \sum_{n=0}^{\infty} c_n z^n$, unde $c_n \in \mathbb{C}$.

Ne interesează determinarea mulțimii valorilor lui *z* pentru care vom obține serii de numere complexe convergente.

Teorema lui Abel. Dacă seria $\sum_{n=0}^{\infty} c_n z^n$ este convergentă pentru careva $z=z_0$, atunci ea va fi absolut convergentă pentru orice z, încât $|z|<|z_0|$, (adică în discul cu centrul în origine și rază $|z_0|$, numit disc de convergență). Dacă seria $\sum_{n=0}^{\infty} c_n z^n$ este divergentă pentru $z=z_1$, atunci ea este divergentă și pentru orice z, încât $|z|>|z_1|$.

Vom demonstra prima afirmație a teoremei.

Fie $r_0 = |z_0|$, r = |z|. Deoarece $\sum c_n z_0^n$ este convergentă, există $N \in \mathbb{N}$, astfel încât $|c_n| r_0^n < 1$ pentru orice n > N. Adică $|c_n| < \frac{1}{r_0^n}$.

Considerăm seria $\sum_{n=0}^{\infty} |c_n| r^n$. Pentru n > N, $|c_n| r^n < \left(\frac{r}{r_0}\right)^n$. Deoarece $|z| < |z_0| \Rightarrow \frac{r}{r_0} < 1$, iar seria

 $\sum_{n=0}^{\infty} \left(\frac{r}{r_0}\right)^n$ este o serie geometrică convergentă, obținem că seria $\sum_{n\geq N} |c_n| r^n$ este convergentă, de

unde rezultă convergența seriei $\sum_{n\geq N} |c_n| r^n = \sum_{n\geq 0} |c_n z^n|$ și respectiv absolut convergentă seriei $\sum_{n\geq 0} c_n z^n$.

Teorema (a razei de convergență). Pentru seria de puteri $\sum_{n=0}^{\infty} c_n z^n$ există și este unic numărul real $R \ge 0$ astfel încât:

- 1. Dacă R=0, seria este convergentă doar pentru $z_0=0$.
- 2. Dacă $R \in (0, \infty)$, seria converge absolut în domeniul |z| < R și diverge pe |z| > R; pe cercul |z| = R convergența se cercetează separat.

3. Dacă $R = \infty$, atunci seria converge pe toate compactele din \mathbb{C} .

Definiție: Se numește **rază de convergență** a seriei numărul $R \ge 0$ din teorema de mai sus.

Formulele de calcul a razei de convergență: $R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|c_n|}}$, $R = \lim_{n \to \infty} \frac{|c_n|}{|c_{n+1}|}$, în cazul când \exists aceste limite.

Exemplu: Pentru seria geometrică $\sum_{n\geq 0} z^n$, $S_n = 1 + z + z^2 + \dots + z^n = \frac{1-z^n}{1-z}$, iar șirul (S_n) este convergent pentru |z| < 1, iar $\lim_{n\to\infty} S_n = \frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$.

Exemplu: Fie $\sum_{n=0}^{\infty} (1+i)^{2n} \cdot z^n$. De determinat domeniul de convergență a seriei.

Avem că $c_n = (1+i)^{2n}$, $R = \lim_{n \to \infty} \frac{1}{n\sqrt{|1+i|^{2n}}} = \frac{1}{|1+i|^2} = \frac{1}{2}$. Astfel, seria este convergentă în discul $|z| < \frac{1}{2}$ și este divergentă pentru $|z| > \frac{1}{2}$.

 $|z| < \frac{1}{2}$ și este divergenta pentru $|z| > \frac{1}{2}$.

Cercetăm convergența seriei pe cercul $|z| = \frac{1}{2}$. $z = \frac{1}{2}(\cos \varphi + i \sin \varphi)$,

 $\varphi \in \left(-\pi; \pi\right] \Rightarrow z^n = \frac{1}{2^n} \left(\cos n\varphi + i\sin n\varphi\right). \text{ Obținem } \left(1+i\right)^{2n} = \left(2i\right)^n = 2^n \cdot i^n = 2^n \left(\cos \frac{\pi}{2} n + i\sin \frac{\pi}{2} n\right),$ iar

 $\sum_{n=0}^{\infty} (1+i)^{2n} \cdot z^n = \sum_{n=0}^{\infty} \left(\cos \left(\varphi + \frac{\pi}{2} n \right) + i \sin \left(\varphi + \frac{\pi}{2} \right) n \right) = \sum_{n=0}^{\infty} \cos \left(\varphi + \frac{\pi}{2} \right) n + i \sum_{n=0}^{\infty} \sin \left(\varphi + \frac{\pi}{2} \right) n.$

Este evident, că $\lim_{n\to\infty}\cos\left(\varphi+\frac{\pi}{2}\right)n$ și $\lim_{n\to\infty}\sin\left(\varphi+\frac{\pi}{2}\right)n$ nu \exists , astfel mulțimea de convergență este $|z|<\frac{1}{2}$.

Teoremă: Dacă R > 0 este raza de convergență pentru seria de puteri $\sum_{n \ge 0} c_n z^n$, atunci funcția $S(z) = \sum_{n=0}^{\infty} c_n z^4$ este olomorfă pe domeniul |z| < R.

Mai general, o serie de puteri are forma $\sum_{n=0}^{\infty} c_n \left(z-z_0\right)^n$, unde $c_n, z_0 \in \mathbb{C}$. Discul de convergență în cazul dat este $|z-z_0| < R$.

SERII TAYLOR

Fie seria $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ convergentă în domeniul $|z-z_0| < R$. Atunci suma acestei serii este o funcție f(z) alomorfă în acest domeniu $\sum_{n=0}^{\infty} c_n (z-z_0)^n = f(z)$.

Definiție: O funcție $f: D \subset \mathbb{C} \to \mathbb{C}$ (unde D este domeniu) se numește **analitică pe domeniul** D, dacă pentru orice $z_0 \in D$ există un disc $|z-z_0| < r$ și $(a_n)_{n \ge 0} \subset \mathbb{C}$, astfel încât $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ pentru orice z din discul $|z-z_0| < r$.

Consecință: Orice funcție analitică este olomorfă. Are loc și afirmația reciprocă, adică o funcție olomorfă pe un disc este suma unei serii de puteri.

Teoremă: Dacă $f:D\to\mathbb{C}$ este o funcție olomorfă pe domeniul conex D, atunci f este analitică pe D. Anume pentru orice $z_0\in D$ există R>0, astfel încât pentru orice z, încât $|z-z_0|< R$, are loc:

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

Seria $\sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z-z_0)^n$ se numește serie Taylor a funcției f.

În cazul complex funcțiile derivabile și cele analitice coincid.

Pentru
$$z_0 = 0$$
 obținem $f(\mathbf{z}) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} \mathbf{z}^n$, $|\mathbf{z}| < R$.

În mod analog cazului funcției de variabilă reală au loc descompunerile funcțiilor e^z , $\cos z$, shz, chz, $\ln(i+z)$, $(i+z)^{\alpha}$ în vecinătatea lui $z_0 = 0$.

1.
$$f: \mathbb{C} \to \mathbb{C}, f(z) = e^z, e^z = \sum_{n=0}^{\infty} \frac{1}{n!} z^n, \forall z \in \mathbb{C} \text{ (raza de convergență } R = +\infty)$$

2.
$$f: \mathbb{C}\setminus (-\infty; -1] \to \mathbb{C}, f(z) = \ln(1+z), \quad \ln(1+z) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} z^n, |z| < 1.$$

3.
$$f, g: \mathbb{C} \to \mathbb{C}, f(z) = \sin z, \quad g(z) = \cos z,$$

$$\sin z = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!} z^{2n+1}, \ \forall z \in \mathbb{C}; \quad \cos z = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n)!} z^{2n}, \ \forall z \in \mathbb{C}.$$

4.
$$f: \mathbb{C}\setminus\{1\} \to \mathbb{C}, f(z) = \frac{1}{1-z}, \qquad \frac{1}{1-z} = \sum_{n=0}^{\infty} z^n, |z| < 1.$$

5.
$$f: \mathbb{C}\setminus\{-1\} \to \mathbb{C}, f(z) = \frac{1}{1+z'}$$
 $\frac{1}{1+z} = \sum_{n=0}^{\infty} (-1)^n z^n, |z| < 1.$

6.
$$f, g: \mathbb{C} \to \mathbb{C}, f(z) = shz, g(z) = chz,$$

$$shz = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!}, \forall z \in \mathbb{C}, \qquad chz = \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!}, \forall z \in \mathbb{C}.$$

Exemple:

1. Să se dezvolte în serie Taylor funcția $f(z) = \frac{1}{3-2z}$: a) în vecinătatea lui $z_0 = 0$ (după puterile lui z); b) în vecinătatea lui $z_0 = -1$ (după puterile lui z+1).

Rezolvare:

a)
$$\frac{1}{3-2z} = \frac{1}{3} \cdot \frac{1}{1-\frac{2z}{3}} = \frac{1}{3} \cdot \sum_{n=0}^{\infty} \left(\frac{2z}{3}\right)^n = \sum_{n=0}^{\infty} \frac{2^n}{3^{n+1}} z^n \text{ pentru } \left|\frac{2z}{3}\right| < 1 \Leftrightarrow |z| < \frac{3}{2}.$$

$$\mathbf{b})\,\frac{1}{3-2(z+1-1)} = \frac{1}{5-2(z+1)} = \frac{1}{5} \cdot \frac{1}{1-\frac{2(z+1)}{5}} = \frac{1}{5} \cdot \sum_{n=0}^{\infty} \left(\frac{2(z+1)}{5}\right)^n = \sum_{n=0}^{\infty} \frac{2^n}{5^{n+1}} (z+1)^n,$$

pentru
$$\left| \frac{2(z+1)}{5} \right| < 1 \Leftrightarrow \left| z+1 \right| < \frac{5}{2}$$
.

2. Să se dezvolte în seria Taylor funcția $f(z) = \ln(2 + z - z^2)$ în vecinătatea lui $z_0 = 0$ (după puterile lui z).

Rezolvare: Decoarece
$$2 + z - z^2 = (2 - z)(1 + z) \Rightarrow f(z) = \ln(2 - z) + \ln(1 + z)$$
.

Avem $ln(1+z) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} z^n$ pentru |z| < 1. Obţinem

$$\ln(2-z) = \ln\left(2\left(1-\frac{z}{2}\right)\right) = \ln 2 + \ln\left(1+\left(-\frac{z}{2}\right)\right) = \ln 2 + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \left(-\frac{z}{2}\right)^n = \ln 2 + \sum_{n=1}^{\infty} \frac{(-1)^{n-1} \cdot (-1)^n}{2^n n} z^n = \ln 2 - \sum_{n=1}^{\infty} \frac{1}{2^n n} z^n$$
pentru z astfel încât $\left|-\frac{z}{2}\right| < 1 \Leftrightarrow |z| < 2$.

$$\hat{\ln} \quad \text{final,} \quad f(z) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} z^n + \ln 2 - \sum_{n=1}^{\infty} \frac{1}{2^n n} z^n = \ln 2 + \sum_{n=1}^{\infty} \left[\frac{(-1)^{n-1}}{n} - \frac{1}{2^n n} \right] z^n \quad \text{pentru}$$

$$\begin{cases} |z| < 1 \\ |z| < 2 \end{cases} \Leftrightarrow |z| < 1.$$

3. Să se dezvolte]n serie Taylor $f(z) = e^z$ în vecinătatea lui z = i (după puterile lui z - i).

Rezolvare: $f(z) = e^{z-i+i} = e^i \cdot e^{z-i} = e^i \cdot \sum_{n=0}^{\infty} \frac{1}{n!} (z-i)^n = (\cos 1 + i \sin 1) \cdot \sum_{n=0}^{\infty} \frac{1}{n!} (z-i)^n$, adevărată în discul |z-i| < R, $R = +\infty$.

4. Să se dezvolte în serie Taylor funcția $f(z) = \cos^2 \frac{iz}{2}$ în vecinătatea lui $z_0 = 0$ (după puterile lui z).

Rezolvare:

$$f(z) = \cos^2 \frac{iz}{2} = \frac{1}{2} \left(1 + \cos\left(2\frac{iz}{2}\right) \right) = \frac{1}{2} \left(1 + \cos iz \right) = \frac{1}{2} \left(1 + chz \right) = \frac{1}{2} + \frac{1}{2}chz = \frac{1}{2} + \frac{1}{2}\sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!}, \ \forall z \in \mathbb{C}.$$

5. $f(z) = \frac{z+1}{z^2+4z-5}$ după puterile lui z.

Rezolvare: $f(z) = \frac{z+1}{z^2 + 4z - 5} = \frac{z+1}{(z-1)(z+5)}$. Determinăm $A, B \in \mathbb{R}$, astfel încât $\frac{z+1}{(z-1)(z+5)} = \frac{A}{z-1} + \frac{B}{z+5}$.

Avem
$$f(z) = \frac{A(z+5) + B(z-1)}{(z-1)(z+5)} = \frac{(A+B)z + (5A-B)}{(z-1)(z+5)}$$
. Avem $\begin{cases} A+B=1 \\ 5A-B=1 \end{cases} \Leftrightarrow \begin{cases} A = \frac{1}{3} \\ B = \frac{2}{3} \end{cases}$. Deci,

$$f(z) = \frac{1}{3} \cdot \frac{1}{z-1} + \frac{2}{3} \cdot \frac{1}{z+5} = -\frac{1}{3} \cdot \frac{1}{1-z} + \frac{2}{15} \cdot \frac{1}{1+\frac{z}{5}} = -\frac{1}{3} \cdot \sum_{n=0}^{\infty} z^n + \frac{2}{15} \cdot \sum_{n=0}^{\infty} (-1)^n \frac{1}{5^n} z^n = \sum_{n=0}^{\infty} \left(-\frac{1}{3} + \frac{2}{3 \cdot 5^{n+1}} \right) z^n,$$

adevărată pentru z astfel încât $\begin{cases} |z| < 1 \\ \left| \frac{z}{5} \right| < 1 \end{cases} \Leftrightarrow \begin{cases} |z| < 1 \\ |z| < 5 \end{cases} \Leftrightarrow |z| < 1.$

SERII LAURENT

Dezvoltarea în serie Taylor a unei funcții alomorfe într-un disc poate fi generalizată, considerând o funcție olomorfă într-o coroană circulară, se obține o dezvoltare a funcției într-o serie numită serie Laurent. În acest caz seria Taylor este un caz particular al seriei Laurent.

Definiție: Se numește serie Laurent într-o vecinătate punctată a lui z_0 $(0 < |z - z_0 < R|)$ expresia $\sum_{n=-\infty}^{\infty} c_n (z - z_0)^n$, $c_n \in \mathbb{C}$. Se mai scrie

$$\sum_{n=-\infty}^{\infty} c_n (z-z_0)^n = \sum_{n=1}^{\infty} \frac{c_{-n}}{(z-z_0)^n} + \sum_{n=0}^{\infty} c_n (z-z_0)^n.$$

Seria $\sum_{n=1}^{\infty} \frac{c_{-n}}{(z-z_0)^n}$ se numește partea principală a seriei Laurent, iar seria

 $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ se numește parte regulată a seriei Laurent.

Fie că seria $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ este convergentă în discul $|z-z_0| < R$ și fie că seria $\sum_{n=1}^{\infty} c_{-n} \left(\frac{1}{z-z_0}\right)^n$ este convergentă în domeniul $\left|\frac{1}{z-z_0}\right| < \frac{1}{r} \Leftrightarrow |z-z_0| > r$. Pentru r < R seria Laurent $\sum_{n=-\infty}^{\infty} c_n (z-z_0)^n$ are domeniul de convergență coroana circulară $r < |z-z_0| < R$. Dacă suma seriei $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ este funcția $f_1(z)$, iar suma seriei $\sum_{n=1}^{\infty} \frac{c_n}{(z-z_0)^n}$ este funcția $f_2(z)$, atunci funcțiile $f_1(z)$ și $f_2(z)$ sunt funcții analitice. Deci, suma seriei Laurent este funcția $f(z) = f_1(z) + f_2(z)$, analitică în coroana $r < |z-z_0| < R$.

Teoremă: Dacă f este o funcție olomorfă în coroana circulară $r; |z-z_0| < R$, atunci f se poate dezvolta în serie Laurent după puterile lui $z-z_0$: $f(z) = \sum_{n=-\infty}^{\infty} c_n (z-z_0)^n$, unde $c_n = \frac{1}{2\pi i} \int_{|z_0| = \rho} \frac{f(z)}{\left(z-z_0\right)^{n+1}} dz$, iar $r < \rho < R$.

Exemple:

1. Dezvoltați în serie Laurent funcția $f(z) = \frac{1}{z-2}$ în domeniile indicate: a) |z| < 2, b) |z| > 2, c) |z-1| > 1.

Rezolvare: Avem $\frac{1}{1-w} = \sum_{n=0}^{\infty} w^n$, |w| < 1.

a) Cum
$$|z| < 2 \Rightarrow \left| \frac{z}{2} \right| < 1$$
. Atunci $f(z) = -\frac{1}{2} \cdot \frac{1}{1 - \frac{z}{2}} = -\frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{z}{2} \right)^n = -\sum_{n=0}^{\infty} \frac{z^n}{2^{n+1}}$.

b) Cum
$$|z| > 2 \Rightarrow \left| \frac{2}{z} \right| < 1$$
. Atunci $f(z) = \frac{1}{z - 2} = \frac{1}{z} \cdot \frac{1}{1 - \frac{2}{z}} = \frac{1}{z} \cdot \sum_{n=0}^{\infty} \left(\frac{2}{z} \right)^n = \sum_{n=0}^{\infty} \frac{2^n}{z^{n+1}}$.

c) Cum
$$|z-1| > 1 \Rightarrow \left| \frac{1}{|z-1|} < 1$$
. "Transformăm" funcția evidențiind expresia $z-1$:
$$f(z) = \frac{1}{|z-1|+1-2|} = \frac{1}{|(z-1)-1|} = \frac{1}{|z-1|} \cdot \frac{1}{|1-\frac{1}{|z-1|}|} = \frac{1}{|z-1|} \cdot \sum_{n=0}^{\infty} \left(\frac{1}{|z-1|} \right)^n = \sum_{n=0}^{\infty} \frac{1}{|(z-1)^n|}.$$

2. Dezvoltați în serie Laurent funcția $f(z) = \frac{1}{z^2 - 2z - 3}$ în domeniul a) |z| < 1, b) 1 < |z| < 3.

Avem:
$$f(z) = \frac{1}{(z+1)(z-3)} = \frac{1}{4} \left(\frac{1}{z-3} - \frac{1}{z+1} \right) = \frac{1}{4} \cdot \frac{1}{z-3} - \frac{1}{4} \cdot \frac{1}{z+1}.$$

a) Avem, $|z| < 1 \Rightarrow |z| < 3 \Rightarrow \left| \frac{z}{3} \right| < 1$. At unci $f(z) = \frac{1}{4} \cdot \left(-\frac{1}{3} \right) \cdot \frac{1}{1 - \frac{z}{3}} - \frac{1}{4} \cdot \frac{1}{1 + z} = -\frac{1}{12}$.

$$\sum\nolimits_{n=0}^{\infty} \frac{z^n}{3^n} - \frac{1}{4} \cdot \sum\nolimits_{0}^{\infty} (-1)^n z^n = \\ = \sum\nolimits_{n=0}^{\infty} \left[-\frac{1}{4} \cdot \frac{1}{3^{n+1}} - \frac{1}{4} \cdot (-1)^n \right] z^n.$$

b) Cum
$$1 < |z| < 3 \Leftrightarrow \begin{cases} |z| > 1 \\ |z| < 3 \end{cases} \Leftrightarrow \begin{cases} \left|\frac{1}{z}\right| < 1 \\ \left|\frac{z}{3}\right| < 1 \end{cases}$$

Obţinem
$$f(z) = \frac{1}{4} \cdot \left(-\frac{1}{3}\right) \cdot \frac{1}{1 - \frac{z}{3}} - \frac{1}{4} \cdot \frac{1}{z} \cdot \frac{1}{1 + \frac{1}{z}} = -\frac{1}{12} \sum_{n=0}^{\infty} \frac{z^n}{3^n} - \frac{1}{4} \sum_{n=0}^{\infty} (-1)^n \frac{1}{z^n + 1}.$$

3. Dezvoltați în serie Laurent funcția $f(z) = \sin(2z - 1)$ după puterile lui z.

$$f(z) = \cos 1 \sin 2z - \sin 1 \cos 2z = \cos 1 \sum_{n=0}^{\infty} (-1)^n \frac{(2z)^{2n+1}}{(2n+1)!} - \sin 1 \sum_{n=0}^{\infty} (-1)^n \frac{(2z)^{2n}}{(2n)!} =$$

$$= \cos 1 \sum_{n=0}^{\infty} \frac{(-1)^n \cdot 2^{2n+1}}{(2n+1)!} z^{2n+1} - \sin 1 \sum_{n=0}^{\infty} \frac{(-1)^n 2^{2n}}{(2n)!} z^{2n}.$$

TEMA: PUNCTE SINGULARE IZOLATE

Definiție: Se numește **zerou** al funcției f orice $z_0 \in \mathbb{C}$, astfel încât $f(z_0) = 0$.

Fie că funcția olomorfă f se dezvoltă în seria Taylor în vecinătatea lui z_0 și $f(z) = c_k (z - z_0)^k + c_{n+1} (z - z_0)^{n+1} + ... = \sum_{n=k}^{+\infty} c_n (z - z_0)^n$, $c_n \neq 0$, atunci z_0 se numește **zerou de multiplicitatea** k. Dacă k = 1, atunci z_0 se numește **zerou simplu**.

Deoarece $c_n = \frac{f^{(n)}(z_0)}{n!}$, pentru $n \ge 0$, atunci z_0 este zerou de multiplicitatea lui k al funcției f dacă $f(z_0) = f'(z_0) = f^{(k-1)}(z_0) = 0$, iar $f^{(k)}(z_0) \ne 0$.

Exemplu:

- 1. $f(z)=1-e^z$. Deoarece $f(2\pi ni)=1-e^{2\pi ni}=1-e^0=0$ și $f'(2\pi ni)=e^{2\pi ni}=1$ $\Rightarrow z_n=2\pi ni$, $e, n \in \mathbb{Z}$ sunt zerouri simpli ale funcției.
- 2. Pentru funcția $f(z) = \sin z z$ punctul z = 0 este zerou de multiplicitatea lui k = 3. Întradevăr, f(0) = 0, $f'(0) = \cos z 1$, f'(0) = 0, $f''(z) = -\sin z$, f''(0) = 0, $f'''(z) = -\cos z$, $f'''(0) = -1 \neq 0$. Altă metodă de determinare a multiplicității lui z = 0, prin dezvoltarea în seria Taylor a funcției

$$f(z) = \sin z - z = \left(z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots + \frac{(-1)^{n-1}}{(2n-1)!}z^{2n-1} + \dots\right) - z = z^3 \left(-\frac{1}{3!} + \frac{z^2}{5!} - \frac{z^4}{7!} + \dots\right).$$

Definiție: Se numește **punct singular izolat** pentru funcția f un punct $z_0 \in D$, astfel încât $f: D \setminus \{z_0\} \to \mathbb{C}$ este olomorfă.

Notă: Dacă z_0 este punct singular izolat pentru funcția olomorfă f, atunci funcția f admite dezvoltarea în serie Laurent pe discul punctat $0 < |z - z_0| < R$:

$$f(z) = \sum_{n=1}^{\infty} \frac{c_{-n}}{(z - z_0)} + \sum_{n=0}^{\infty} c_n (z - z_0)^n.$$

Vom distinge **trei tipuri de singularități** în funcție de "forma" părții principale. **Definiție:**

- 1. Punctul z_0 se numește **punct singular aparent**, dacă seria Laurent a funcției f nu conține partea principală $(c_n = 0, \forall n \ge 1), f(z) = \sum_{n=0}^{\infty} c_n (z z_0)^n$.
- 2. Punctul z_0 se numește pol de ordinul m, dacă partea principală a dezvoltării în serie Laurent conține un număr finit de termeni $f(z) = \sum_{n=1}^{m} \frac{c_{-n}}{(z-z_0)^n} + \sum_{n=0}^{\infty} c_n (z-z_0)^n$, $c_{-m} \neq 0$.

Dacă m=1, $z=z_0$ se numește **pol simplu**.

3. Punctul z_0 se numește **punct singular esențial**, dacă partea principală a dezvoltării în serie Laurent conține **o infinitate de termeni** (mulțimea coeficienților nenuli din partea principală este infinită).

Exemplu:

1. $f(z) = \frac{\sin z}{z}$, $z \in \mathbb{C}^*$ este funcție olomorfă.

$$f(z) = \frac{1}{z} \cdot \sum_{n=1}^{\infty} \frac{(-1)^{n-1} \cdot z^{2n-1}}{(2n-1)!} = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{z^{2n-2}}{(2n-1)!} = \frac{1}{1!} - \frac{z^2}{3!} + \frac{z^4}{5!} - \frac{z^6}{7!} - \dots, \quad z = 0 \text{ este punct singular aparent.}$$

2. $f(z) = \frac{e^z - 1}{z^3}$, $z \in \mathbb{C}^*$, este funcție olomorfă.

$$f(z) = \frac{1}{z^3} \sum_{n=0}^{\infty} \frac{z^n}{n!} = \sum_{n=0}^{\infty} \frac{z^{n-3}}{n!} = \frac{1}{0! z^3} + \frac{1}{1! z^2} + \frac{1}{2! z} + \sum_{n=0}^{\infty} \frac{z^n}{(n+3)!}, \quad z = 0 \text{ este pol de ordinul } 3.$$

3. $f(z) = \cos \frac{1}{z}$, $z \in \mathbb{C} \setminus \{0\}$, este funcție olomorfă cu singularitate în z = 0. $\cos \frac{1}{z} = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n)!} \cdot \frac{1}{z^{2n}}$, de unde rezultă că z = 0 este punct singular esențial.

Fie $f: \setminus \{z_0\} \to C$, $z_0 \in D$ olomorfă. Vom caracteriza singularitățile izolate cu ajutorul limitei funcției z_0 .

Teoremă (de caracterizare a singularității aparente). Următoarele afirmații sunt echivalente:

1. Punctul z_0 este singular aparent;

- 2. $\exists \lim_{z \to z_0} f(z) \in \mathbb{C}$
- 3. f este mărginită într-o vecinătate a lui z_0 .

Teoremă (de caracterizare a polilor). Punctul z_0 este pol pentru funcția f dacă și numai dacă $\exists \lim_{z \to z_0} f(z) = \infty$.

Teoremă (de caracterizare a singularității esențiale). Punctul z_0 este punct singular esențial dacă și numai dacă nu există $\lim_{z \to z_0} f(z)$ în \mathbb{C}_{∞} .

Comportamentul funcției la ∞

Vecinătate a punctului infinit depărtat $z = \infty$ este orice mulțime |z| > R.

Definiție: Punctul infinit depărtat $z = \infty$ se numește **punct izolat** pentru funcția f, dacă există o vecinătate a lui $z = \infty$, care nu conține alte puncte izolate.

Cu substituția $w = \frac{1}{z}$ obținem o transformare a vecinătății lui $z = \infty$ într-o vecinătate a lui $w_0 = 0$. Astfel, studierea comportamentului lui f în $z = \infty$ se reduce la studierea comportamentului lui $g(w) = f\left(\frac{1}{w}\right)$ în $w_0 = 0$.

Fie că g este olomorfă într-un domeniu 0 < |w| < r și $g(w) = \sum_{n=1}^{\infty} \frac{c_{-n}}{w^n} + \sum_{n=0}^{\infty} c_n w^n$ dezvoltarea în serie Laurent a funcției g. Atunci $f(z) = \sum_{n=0}^{\infty} \frac{c_n}{z^n} + \sum_{n=1}^{\infty} c_{-n} z^n$.

Notă:

- 1. Dacă w = 0 este punct aparent pentru g, atunci $z = \infty$ se numește punct aparent pentru funcția f, iar $f(z) = \sum_{n=0}^{\infty} \frac{c_n}{z^n}$. Atunci $\lim_{z \to \infty} f(z) = c_0$.
- 2. Dacă w = 0 este pol de ordinul m pentru funcția f, iar $f(z) = \sum_{n=0}^{\infty} \frac{c_n}{z^n} + \sum_{n=1}^{m} c_{-m} z^n$. Atunci $\lim_{z \to \infty} f(z) = \infty$.
- 3. Dacă w = 0 este punct esențial pentru funcția g, atunci $z = \infty$ se numește punct esențial pentru funcția f, iar $f(z) = \sum_{n=0}^{\infty} \frac{c_n}{z^n} + \sum_{n=0}^{\infty} c_{-n} z^n$.

REZIDUUL FUNCTIEI. APLICATII

Definiție: Fie $f: D \setminus \{z_0\} \to \mathbb{C}$ olomorfă, unde D este domeniu deschis și $z_0 \in D$, cu dezvoltarea în serie Laurent $f(z) = \ldots + \frac{c_{-1}}{z - z_0} + c_0 + c_1(z - z_0) + c_2(z - z_0)^2 + \ldots$ Se numește reziduul funcției f în z_0 coeficientul c_{-1} din această dezvoltare. Se notează $\underset{z=z_0}{Rez} f(z)$. Deci, $\underset{z=z_0}{Rez} f(z) = c_{-1}$.

Exemplu: Funcția $f(z) = \frac{e^z}{z^3}$ este olomorfă pe $\mathbb{C} \setminus \{0\}$. Punctul z = 0 este punct singular izolat și $f(z) = \frac{1}{0!z^3} + \frac{1}{1!z^2} + \frac{1}{2!z} + \frac{1}{3!} + \frac{z}{4!} + \dots$, iar $\underset{z=0}{Rez} f(z) = \frac{1}{2}$.

Calcularea reziduurilor:

- 1. Dacă z_0 este **punct singular aparent**, atunci $c_{-1} = 0$ și , $\underset{z=0}{Rez} f(z) = 0$
 - 2. a) Fie că z_0 este **pol de ordinul** m și $f(z) = \sum_{n=1}^{m} \frac{c_{-n}}{(z-z_0)^n} + \sum_{n=0}^{\infty} c_n (z-z_0)^n$. Atunci

$$\left(z-z_{0}\right)^{m} \cdot f(z) = c_{-m} + c_{-m+1}\left(z-z_{0}\right) + \ldots + c_{-1}\left(z-z_{0}\right)^{m-1} + \sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n+m}.$$

Derivând ambele părți de m-1 ori și trecând la limită, obținem

$$c_{-1} = \underset{z=z_0}{\operatorname{Rez}} f(z) = \frac{1}{(m-1)!} \lim_{z \to z_0} [f(z)(z-z_0)^m]^{(m-1)}.$$

b) Dacă m=1, adică z_0 este **pol simplu**, atunci $\underset{z=z_0}{\text{Rez}} f(z) = \underset{z \to z_0}{\text{lim}} (f(z)(z-z_0))$.

Notă: Dacă $f(\mathbf{z}) = \frac{\varphi(\mathbf{z})}{g(\mathbf{z})}$, unde $\varphi, g: D \subseteq \mathbb{C} \to \mathbb{C}$ olomorfe, $z_0 \in D$ astfel încât $\varphi(\mathbf{z_0}) \neq 0$

$$\mathbf{0}, g(\mathbf{z_0}) = \mathbf{0}, g'(\mathbf{z_0}) \neq \mathbf{0}$$
 (z_0 este pol simplu), atunci $\underset{\mathbf{z}=\mathbf{z_0}}{\operatorname{Rez}} f(\mathbf{z}) = \frac{\varphi(\mathbf{z_0})}{g'(\mathbf{z_0})}$.

3. Dacă $\mathbf{z_0}$ este **punct** esențial pentru funcția f, reziduu poate fi determinat, utilizând dezvoltarea Laurent pe un disc punctat în z_0 .

Exemple:

a)
$$f(z) = \frac{\sin(z^2)}{z^3 - \frac{\pi}{4}z^2}$$
. Puncte singulare sunt $z = 0$ și $z = \frac{\pi}{4}$.

Avem că $\lim_{z\to 0} f(z) = \frac{\sin(z^2)}{z^2(z-\frac{\pi}{z})} = -\frac{4}{\pi} \Rightarrow z = 0$ este punct aparent și $\underset{z=0}{\operatorname{Rez}} f(z) = 0$.

Punctul
$$z = \frac{\pi}{4}$$
 este pol simplu rezultă $\underset{z = \frac{\pi}{4}}{Rez} f(z) = \lim_{z \to \frac{\pi}{4}} \left(\frac{\sin(z^2)}{z^2(z - \frac{\pi}{4})} \cdot \left(z - \frac{\pi}{4}\right) \right) = \frac{16}{\pi^2} \cdot \sin\left(\frac{\pi^2}{16}\right).$

b)
$$f(z) = \frac{e^z}{(z+1)^3(z-2)}$$

Punctele singulare sunt z = -1 și z = 2.

Punctul
$$z = 2$$
 este pol simplu, de unde $\underset{z=2}{Rez} f(z) = \lim_{z \to 2} \left(\frac{e^z}{(z+1)^3 (z-2)} \cdot (z-2) \right) = \frac{e^z}{27}$.

Punctul z = -1 este pol de ordinul m = 3. Deci, $\underset{z=-1}{Rez} f(z) = \frac{1}{2!} \lim_{z \to -1} \left(\frac{e^z}{z-2} \right)''$. Dar $\left(\frac{e^z}{z-2} \right)'' = \frac{e^z(z^2 - 6z + 10)}{(z-2)^3}$ și $\underset{z=-1}{Rez} f(z) = \frac{17}{54e}$.

c) $f(z) = z \cos \frac{1}{2}$. Punct singular este z = 0 - punct esențial și

$$f(z) = z \sum_{n=0}^{\infty} (-1)^n \cdot \frac{1}{(2n)!z^{2n}} = z \left(1 - \frac{1}{2!z^2} + \frac{1}{4!z^n} - \frac{1}{6!z^6} + \dots \right) = z - \frac{1}{2!z} + \frac{1}{4!z^3} - \dots$$

TEOREMA DE BAZĂ A REZIDUURILOR

Fie $f: D \setminus \{z_1...z_n\} \to \mathbb{C}$, olomorfă și $z_1, z_2..., z_n \in D$, iar L un contur închis parțial neted, ce se conține în D și punctele $z_1, z_2,...z_n$ aparțin domeniului mărginit de L. Atunci $\oint_L f(z)dz = 2\pi i \sum_{k=1}^n \underset{z=z_k}{\text{Rez}} f(z)$, unde L este parcurs în sens pozitiv.

Exemple:

1.
$$\oint_{|z|=1} \frac{e^z}{z^3} dz = 2\pi i \mathop{Rezf}_{z=0}(z).$$

Punctul z = 0 este pol de ordinul 3 al funcției $f(z) = \frac{e^z}{z^3} \Rightarrow \underset{z=0}{Rez} f(z) = \frac{1}{2!} \lim_{z \to 0} (e^z)'' = \frac{1}{2}$. Astfel, $I = 2\pi i \frac{1}{2} = \pi i$.

2.
$$\oint_{|z|=4} \frac{e^{z-1}}{z^{2}+z} dz = 2\pi i \left(\underset{z=0}{Rez} f(z) - \underset{z=-1}{Rez} f(z) \right).$$

Deoarece $\lim_{z\to 0} \frac{e^{z}-1}{z(z+1)} = 1 \Rightarrow \underset{z=0}{Rez} f(z) = 0$ (z=0 este punct aparent).

Punctul z = -1 este pol simplu rezultă $\underset{z=-1}{Rez} f(z) = \lim_{z \to -1} \left(\frac{e^z - 1}{z(z+1)} \cdot (z+1) \right) = 1 - \frac{1}{e}$.

Obţinem
$$I = 2\pi i \left(1 - \frac{1}{e}\right)$$
.

3.
$$\oint_{|z|=2} tgzdz = \oint_{|z|=2} \frac{\sin z}{\cos z} dz = 2\pi i \left(\underset{z=\frac{\pi}{2}}{\operatorname{Rez}} f(z) + \operatorname{Rez} f(z) \right).$$

$$\underset{z=\frac{\pi}{2}}{Rez}f(z) = \lim_{z \to \frac{\pi}{2}} \frac{\sin z}{(\cos z)'} = -1; \quad \underset{z=-\frac{\pi}{2}}{Rez}f(z) = \lim_{z \to -\frac{\pi}{2}} \frac{\sin z}{(\cos z)'} = -1.$$

Obţinem
$$I = 2\pi i (-2) = -4\pi i$$
.

4.
$$\oint_{|z|=2} \frac{1}{z-1} \sin \frac{1}{z} dz = 2\pi i \left(\underset{z=1}{Rez} f(z) + \underset{z=0}{Rez} f(z) \right).$$

Punctul z=1 este pol simplu, de unde $\underset{z=1}{Rez} f(z) = \lim_{z \to 1} \sin \frac{1}{z} = \sin 1$.

Punctul z = 0 este punct esențial. Avem

$$\frac{1}{z-1} \cdot \sin \frac{1}{z} = -\left(1+z+z^2+z^3+z^4+\ldots\right) \cdot \left(\frac{1}{z} - \frac{1}{3!z^3} + \frac{1}{5!z^5} - \ldots\right) = \frac{1}{2}\left(-1 + \frac{1}{3!} - \frac{1}{5!} + \frac{1}{7!} - \ldots\right) + \ldots$$

Deci, $\underset{z=0}{\text{Rez}} f(z) = -\sin 1$. Deci, $I = 2\pi i (\sin 1 - \sin 1) = 0$.

CALCULAREA UNOR INTEGRALE REALE FOLOSIND TEOREMA REZIDUURILOR

1. Integrala de forma $\int_0^{2\pi} R(\sin x, \cos x) dx$, unde R este o funcție rațională. Această integrală se reduce la integrala unei funcții complexe cu schimbul de variabilă

$$z = e^{ix} \Rightarrow dz = ie^{ix}dx \Rightarrow dx = \frac{dz}{iz},$$

$$\cos x = \frac{e^{ix} + e^{-ix}}{2} = \frac{1}{2}\left(z + \frac{1}{z}\right), \sin x = \frac{e^{ix} - e^{-ix}}{2i} = \frac{1}{2i}\left(z - \frac{1}{z}\right).$$

Când x parcurge intervalul $[0;2\pi]$, variabila complexă z parcurge în sens pozitiv cercul |z|=1 cu ecuația în formă exponențială $z=e^{ix}$.

$$\int_0^{2\pi} R(\sin x, \cos x) dx = \frac{1}{i} \oint_{|z|=1} R\left(\frac{1}{2i}\left(z - \frac{1}{z}\right), \frac{1}{2}\left(z + \frac{1}{z}\right)\right) \frac{dz}{z}.$$

Exemplu:

$$\int_{0}^{2\pi} \frac{dx}{4 - \cos x} = \frac{1}{i} \oint_{|z|=1} \frac{1}{4 - \frac{1}{2} \left(z + \frac{1}{z}\right)} \frac{dz}{z} = \frac{2}{i} \oint_{|z|=1} \frac{1}{8z - z^{2} - 1} dz = -\frac{2}{i} \oint_{|z|=1} \frac{1}{z^{2} - 8z + 1} dz.$$
 Determinăm punctele

singulare: $z^2 - 8z + 1 = 0 \Leftrightarrow \begin{bmatrix} z_1 = 4 - \sqrt{15} \\ z = 4 + \sqrt{15} \end{bmatrix}$ - poli simpli. Doar $z = 4 - \sqrt{15}$ aparțin discului |z| < 1.

Atunci
$$I = -\frac{2}{i} \cdot 2\pi i \cdot R_e z f(z) = -4\pi \lim_{z \to 4 - \sqrt{15}} \frac{1}{(z^2 - 8z + 1)'} = -4\pi \lim_{z \to 4 - \sqrt{15}} \frac{1}{2z - 8} = -4\pi \frac{1}{-2\sqrt{15}} = \frac{2\pi}{\sqrt{15}}$$

2. $\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} dx$, unde grad $Q(x) \ge gradP(x) + 2$, $Q(x) \ne 0 \ \forall x \in \mathbb{R}$. Integrala improprie este convergentă. Atunci

$$\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} dx = 2\pi i \sum_{\text{Im} z_{k>0}} Rezf(z),$$

unde z_k sunt singularități ale funcției $R(z) = \frac{P(x)}{O(x)}$, aflate în semiplanul superior.

Exemple:

a)
$$\int_{-\infty}^{\infty} \frac{x^2}{x^4 + 1} dx. \text{ Fie } f(z) = \frac{z^2}{z^4 + 1}. \text{ Punctele singulare sunt } z = \sqrt[4]{-1}. \text{ Avem că}$$

$$\sqrt[4]{-1} = \left\{ -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i; \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i; \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i; \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i \right\}. \text{ Selectăm punctele singulare, pentru}$$

$$\text{care } \text{Im } z_k > 0, \text{ adică } z_1 = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i; \quad z_2 = -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i. \text{ Atunci } I = 2\pi i \left(\frac{Rez}{z = z_1} f(z) + \frac{Rez}{z = z_2} f(z) \right). \text{ Avem } \frac{Rez}{z = z_1} f(z) = \lim_{z \to z_1} \frac{z^2}{(z^4 + 1)'} = \lim_{z \to z_1} \frac{1}{4z} = \frac{1}{4\left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right)};$$

$$Rezf(z) = \lim_{z \to z_2} \frac{z^2}{(z^4 + 1)'} = \lim_{z \to z_2} \frac{1}{4z} = \frac{1}{4\left(-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right)}.$$

$$I = 2\pi i \left(\frac{1}{4\left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right)} + \frac{1}{4\left(-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right)} \right) = 2\pi i \cdot \frac{1}{4} \frac{2 \cdot \frac{1}{\sqrt{2}}i}{-1} = \frac{\pi}{\sqrt{2}} = \frac{\pi\sqrt{2}}{2}.$$

b)
$$\int_0^\infty \frac{dx}{(x^2+1)^2}.$$

Funcția
$$f(x) = \frac{1}{(x^2 + 1)^2}$$
 este pară pe $(-\infty, +\infty)$ reiese $I =$

$$\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{(x^2+1)^2} dx = \pi i \sum_{\text{Im} z_k > 0} Rezf(z), \text{ unde } f(z) = \frac{1}{\left(z^2+1\right)^2}.$$

Punctele singulare ale funcției f sunt $z_1 = i$ și $z_1 = -i$, $\text{Im } z_1 > 0$. Atunci $I = \pi i \underset{z=i}{Rez} f(z)$.

Punctul z = i este pol de ordinul 2 și $f(z) = \frac{1}{(z - i)^2 (z + i)^2} Rez_{z=i} f(z) = \frac{1}{1!} \lim_{z \to i} \left(\frac{1}{(z - i)^2 (z + i)^2} (z - i)^2 (z -$

$$(i)^2$$
) $= \lim_{z \to i} \frac{-2}{(z+i)^3} = \frac{-2}{8i^3} = \frac{1}{4i}$. Obținem $I = \pi i \frac{1}{4i} = \frac{\pi}{4}$.

3. a)
$$\int_{-\infty}^{\infty} f(x)e^{iax}dx = 2\pi i \sum_{\substack{\text{Im} z_k > 0 \\ z = z_k}} \text{Rez}_{z=z_k}(f(z)e^{iaz}), \text{ unde } a > 0 \quad f(x) = \frac{P(x)}{Q(x)},$$

 $(grad \ Q \ge 1 + grad \ P \ \text{si} \ Q(x) \ne 0 \forall x \in R)$

b)
$$\int_{-\infty}^{\infty} f(x)\cos(ax)dx = Re\left[\int_{-\infty}^{+\infty} f(x)e^{iax}dx\right],$$

c)
$$\int_{-\infty}^{\infty} f(x)\sin(ax)dx = Im\left[\int_{-\infty}^{+\infty} f(x)e^{iax}dx\right]$$

Exemplu:

$$\int_{-\infty}^{\infty} \frac{\sin x}{x^2 - 2x + 2} dx = \operatorname{Im} \left[\int_{-\infty}^{+\infty} \frac{1}{x^2 - 2x + 2} e^{ix} dx \right].$$

Avem că $\int_{-\infty}^{\infty} \frac{1}{x^2 - 2x + 2} e^{ix} dx = 2\pi i \sum_{\text{Im} z_k > 0} Rez f(z)$, $f(z) = \frac{1}{z^2 - 2z + 2} e^{iz}$. Punctele singulare ale funcției sunt $z_1 = 1 + i$ și $z_2 = 1 - i$ și $\text{Im} z_1 > 0$, $\text{Im} z_2 < 0$. Punctul z_1 este pol simplu $\sin R_e z f(z) = \lim_{z \to z_1} \frac{e^{iz}}{(z^2 - 2z + 2)'} = \lim_{z \to z_1} \frac{e^{iz}}{2z - 2} = \frac{e^{i(1+i)}}{2i}$. Atunci $I = 2\pi i \frac{e^{i-1}}{2i} = \frac{\pi}{e} (\cos 1 + i \sin 1)$.