Interpolation: it is a method used to estimate the value of a function at determined point, while extrapolation compute the value of the function outside the given range.

Many techniques are used to calculate the value of the function at specific point; however, we will talk about only three techniques Newtown General, Newtown Gregory and Lagrange.

Figure1: Interpolation Techniques

1-Newton General Interpolation: is an interpolation technique that used when the step between points is not same.

Divided difference Formula: $\Delta yi = \frac{yi+1-yi}{xi+1-xi}$

Xi	F[xi]	1 st order Differences	^{2st} order Differences
X1	Y1		
		$\Delta 1 = \frac{y2 - y1}{x2 - x1}$	
X2	Y2		$\Delta^2 1 = \frac{\Delta 2 - \Delta 1}{x - x 1}$
		$\Delta 2 = \frac{y3 - y2}{x3 - x2}$	
Х3	Y3		

Newton's General Interpolation Formula

$$Pn(x) = y0 + \frac{\Delta y0 (x - x0)}{h} + \frac{\Delta 2 y0 (x - x0)(x - x1)}{2! h2} + \dots + \frac{\Delta n y0 (x - x0) (x - x1).. (x - x(n - 1))}{n! hn}$$

Residual Error for Newton's General Interpolation: if we stop at (n-1) term before stopping term then the residual error will be (n) term.

2-Newton Gregory Interpolation: is a special case of newton general that used when the step between points is same for all sequence.

Forward Difference Formula: $\Delta yi = \frac{yi+1-yi}{xi+1-xi}$

Xi	F[xi]	1 st Differences	Differences
X1	Y1		
		ΔY ₀ =Y2-Y1	
X2	Y2		$\Delta^2 Y_0 = \Delta Y_1 \Delta Y_0$
		ΔY ₁ =Y3-Y2	
Х3	Y3		

Table2: Forward Difference For

3points

Newton's Gregory Interpolation Formula

Newton's Gregory can also used to compute derivatives

$$\frac{dy}{dx} = \frac{1}{h} \left(\Delta y 0 + \frac{(2\alpha - 1)\Delta^2 y 0}{2!} + \frac{(3\alpha^2 - 6\alpha + 2)\Delta^3 y 0}{3!} \dots \right)$$

In case this derivative is being evaluated at a point on the table

$$\frac{dy}{dx} = \frac{1}{h} \left(\Delta y 0 + \frac{\Delta^2 y 0}{2!} + \frac{2\Delta^3 y 0}{3!} \dots \right)$$

3-Lagrange polynomial: For a given set of (X_i, Y_i) points with no two X_i values equal it used to get function of power (n-1) from n points.

• Lagrange Interpolation Formula

$$Pn(x) = \sum_{i=1}^{n} \{ \left(\prod_{\substack{j=1 \ i \neq i}}^{n} \frac{x - xj}{xi - xj} \right) yi \}$$

 An advantage to Lagrange Interpolation to compute F⁻¹(x) easily by for a few numbers of points