

UE6 – Initiation à la Connaissance du Médicament

Chapitre 6 : Les canaux ioniques

Professeur Christophe RIBUOT

La diversité des cibles

Canaux ioniques:

famille des protéines qui sont responsables des équilibres ioniques transmembranaires.

Perméabilité:

Anionique ou cationique

Sélective ou non

La diversité des cibles

- Les autres protéines transmembranaires : les canaux ioniques
 - médicaments : bloqueurs / ouvreurs
- Canaux **sodiques** (liaison d'anesthésiques locaux),
- Canaux potassiques sensibles à l'ATP (liaison des sulfamides antidiabétiques)
- Canaux calciques (liaison des dihydropyridines)

<u>Pompes</u>: établissent et maintiennent les gradients ioniques

ex: Na⁺/K⁺ ATPase, Ca²⁺ ATPase....

<u>Canaux</u>: permettent le passage d'ions dans le sens du gradient

ex: canaux sodiques, canaux calciques, canaux potassiques...

	canaux	pompes	transporteurs
Sens du flux ionique	- uni-directionnel - dans le sens du gradient	 uni / bi-directionnel, contre un gradient établissent et maintien les gradients ioniques 	- uni / bi-directionnel, - dans le sens / contre gradient nent
Modes de fonction- -nement	 activation par dépolarisation modulation par phosphorylations, messagers et métabolites intracellulaires 		- gradient de l 'un des ions
Capacité de transfert ionique	- élevée	- faible	- faible
Sélectivité ionique	- sélectivité pour un ion donné	- variable selon pompes considérées	- variable selon transporteurs considérés

- Localisation: membrane plasmique
- Rôle: initiation et propagation du PA (phase de dépolarisation)
- Nomenclature:

<u>Clonage</u>

famille de gène

différentes sous-unités α: Na_v1.1 à Na_v1.9 → isoforme

Distribution

SNC: $Na_v 1.1$, $Na_v 1.2$, $Na_v 1.3$, $Na_v 1.6$

muscle squelettique: $Na_v 1.4$ cœur: $Na_v 1.5$

neurones périphériques: Na_v1.1, Na_v1.3, Na_v1.6, Na_v1.7,

Na_v1.8, Na_v1.9.

Mutations

maladies génétiques affectant les muscles striés squelettiques (myopathies), cardiaques (troubles du rythme) ou les neurones (certaines formes d'épilepsie)

- Pharmacologie des Na_v :
- Toxines naturelles : TTX, STX, batrachotoxine

. . .

Tétrodon : Fugu

Gonyaulax catenella

Phyllobates aurotaenia

- Pharmacologie des Na_v :
- Anesthésiques locaux : la lidocaïne (Xylocaïne®)

Cibles et mécanismes d'action

bloqueurs Na_v des neurones périphériques (Na_v 1.7) site de liaison intracellulaire (S6 domaines I, III, IV)

=> accès au site de liaison par le canal ouvert

stabilisent l'état fermé / inactivé

=> retardent le retour à l'état de repos (fermé, activable)

OUVERT

=> diminution de propagation de l'influx nerveux

Faible sélectivité

liaison à d'autres cibles que Na_v

Les canaux potassiques

neurones

- Localisation: membrane plasmique
- Rôle important dans la phase de repolarisation du potentiel d'action

- Nomenclature: cellules du nœud sinusal 0 mV principal régulateur principal ion physiologique du canal: transporté: potassium K+ - voltage v : K_v myocytes plateau de dépolarisation - calcium intracellulaire : K_{Ca} •••• ventriculaires - ATP intracellulaire: KATP - acétylcholine : Kach potentiel de repos

Les canaux potassiques

Structure des sous-unités α des divers types de canaux potassiques

Les canaux potassiques K_{ATP}

Les canaux potassiques K_{ATP}

Principales caractéristiques

MODE D'ACTIVATION	ouverture à faible [ATP] cytosolique fermeture si ✓ [ATP] cytosolique	
SOUS-TYPES	SUR1 / Kir6.2: cellules ß pancréas, neurones SUR2A / Kir6.2: coeur SUR2B / Kir6.1: muscle lisse vasculaire	

Rôle des K_{ATP} (SUR1 / Kir6.2) dans la régulation de la sécrétion d'insuline par les cellules β des îlots de Langerhans du pancréas

Les canaux potassiques K_{ATP}

DAONIL® HÉMI-DAONIL® glibenclamide

 Classe pharmacothérapeutique : sulfamide hypoglycémiant, antidiabétique oral ... Le glibenclamide, sulfonylurée de seconde génération ... semble diminuer la glycémie ... par stimulation de la libération d'insuline par le pancréas...

- Localisation: membrane plasmique
- Rôle: influx de calcium du milieu extracellulaire vers le cytosol, suite à dépolarisation de la membrane
 - ⇒ assure <u>couplage excitation</u> (signal électrique) / <u>réponse cellulaire</u>
 - contraction muscles lisses
 - contraction muscle cardiaque
 - sécrétion de médiateurs
- Nomenclature:

Clonage

différentes sous-unités α1

Ca_v 1.1. à Ca_v 1.4.: canaux L

 $Ca_v 2.1.$: canaux P/Q

Ca_v 2.2.: canaux N

Ca_v 2.3.: canaux R

Ca_v 3.1. à Ca_v 3.3.: canaux T

Ca_vx.y famille de gène isoforme

Mutations

maladies génétiques affectant les muscles striés squelettiques, la vision...

```
\label{eq:localisation} \begin{split} & \text{Type} \\ & \text{Type} \\ & \text{Ca}_{\text{v}} \text{ 1.1.: muscle squelettique} \\ & \text{Ca}_{\text{v}} \text{ 1.2.: muscle cardiaque, muscle lisse, neurones SNC} \\ & \text{Ca}_{\text{v}} \text{ 1.3.: muscle cardiaque, muscle lisse, neurones SNC} \\ & \text{cellules endocrines} \\ & \text{Ca}_{\text{v}} \text{ 1.4.: rétine} \\ & \text{Ca}_{\text{v}} \text{ 2.x.: neurones SNC, SNP (terminaisons, corps cellulaires)} \end{split}
```

Ca_v 3.x.: largement distribués (SNC, SNP, muscle cardiaque)

Canaux calciques Ca_v1.2 de type L et contraction cardiaque

=> rôle dans couplage excitation / contraction cardiaque

et aussi rôle dans les résistances vasculaires périphériques

Pharmacologie: mécanismes d'action des bloqueurs des canaux calciques de type L (Ca_v1.2.)

- √ les bloqueurs n'ont pas la même affinité pour les différents états des canaux
- √ liaison de forte affinité aux conformations ouvertes activées ou inactivées
- √ comportement différent selon les bloqueurs :

- Vérapamil,Isoptine® :
- Inhibiteur
 calcique sélectif
 à effets
 cardiaques :

Angor, troubles du rythme

Nifédipine

Adalate ®:

Inhibiteur calcique sélectif à effets vasculaires :

HTA

Mentions légales

L'ensemble de ce document relève des législations française et internationale sur le droit d'auteur et la propriété intellectuelle. Tous les droits de reproduction de tout ou partie sont réservés pour les textes ainsi que pour l'ensemble des documents iconographiques, photographiques, vidéos et sonores.

Ce document est interdit à la vente ou à la location. Sa diffusion, duplication, mise à disposition du public (sous quelque forme ou support que ce soit), mise en réseau, partielles ou totales, sont strictement réservées à l'Université Grenoble Alpes (UGA).

L'utilisation de ce document est strictement réservée à l'usage privé des étudiants inscrits en Première Année Commune aux Etudes de Santé (PACES) à l'Université Grenoble Alpes, et non destinée à une utilisation collective, gratuite ou payante.

