Parameter control in the presence of uncertainties

Victor Trappler

Supervisors: Elise Arnaud, Laurent Debreu, Arthur Vidard

March 9, 2018

AIRSEA (Inria)- LJK

Introduction

Bottom friction

- The friction of the ocean bed has an influence on the water circulation
- Depends on the type and/or characteristic length of the asperities
- Subgrid phenomenon

Outline

Introduction

Deterministic problem

Dealing with uncertainties

Robust minimization

Conclusion

Deterministic problem

Computer code: the Shallow Water Equations

Input

- **K**: Bottom friction (spatially distributed)
- X_e: Environmental variables (fixed and known)

Output

• $W(K) = \{W_i^n(K)\}_{i,n}$, where $W_i^n(K) = [h_i^n(K) \quad q_i^n(K)]^T$ for $0 \le i \le N_x$ and $0 \le n \le N_t$

Computer code: the Shallow Water Equations

Input

- **K**: Bottom friction (spatially distributed)
- X_e: Environmental variables (fixed and known)

Output

• $W(K) = \{W_i^n(K)\}_{i,n}$, where $W_i^n(K) = [h_i^n(K) \quad q_i^n(K)]^T$ for $0 \le i \le N_x$ and $0 \le n \le N_t$

Data assimilation framework: Twin experiments

$$K_{\mathrm{ref}}$$
 and \mathcal{H} observation operator We have $Y = \mathcal{H}W(K_{\mathrm{ref}}) = \{h_i^n(K_{\mathrm{ref}})\}_{i,n}$
$$j(K) = \frac{1}{2}\|\mathcal{H}W(K) - Y\|^2$$

Data assimilation framework: Twin experiments

$$\mathcal{K}_{\mathrm{ref}}$$
 and \mathcal{H} observation operator
$$\text{We have } Y = \mathcal{H}W(\mathcal{K}_{\mathrm{ref}}) = \{h_i^n(\mathcal{K}_{\mathrm{ref}})\}_{i,n}$$

$$j(\mathcal{K}) = \frac{1}{2}\|\mathcal{H}W(\mathcal{K}) - Y\|^2$$

$$\arg\min_{\mathcal{K} \in \mathcal{K}} j(\mathcal{K})?$$

Dealing with uncertainties

Introducing the uncertainties

Instead of considering x_e fixed, we consider that X_e is a random variable, and the output of the model depends on its realization.

Introducing the uncertainties

Instead of considering x_e fixed, we consider that X_e is a random variable, and the output of the model depends on its realization.

The cost function as a random variable

• Output of the computer code (x_e is an input):

$$W(K)$$
 becomes $W(x_e, K)$

• The (deterministic) quadratic error is now

$$j(\mathbf{x}_{\mathsf{e}}, K) = \frac{1}{2} \|\mathcal{H}W(\mathbf{x}_{\mathsf{e}}, K) - Y\|^{2}$$

What to do with $j(\mathbf{X}_e, K)$ (random variable) ?

Variational approach or Bayesian approach?

- Variational: Minimize a function of j(X_e, K),
 e.g. Minimize E[j(X_e, K)|K].
 - → Precise objective
- Bayesian: $e^{-j(\mathbf{x}_e,K)} \propto p(Y|K,\mathbf{X}_e)$ under Gaussian assumptions.

Find posterior distribution p(K|Y) using inference and find Bayesian estimator and/or MAP

 \longrightarrow More general method

But

- Dependent on the efficiency of the statistical estimators
- Knowledge of X_e ? Assumptions on error?

Robust minimization

Different Notions of robustness

- Global Optimum: $\min j(x_e, K) \longrightarrow EGO$
- Worst case: $\min_K \max_{\mathbf{x}_e} j(\mathbf{x}_e, K) \longrightarrow \text{Explorative EGO}$
- M-robustness: $\min_{K} \mathbb{E}[j(\mathbf{X}_{e}, K)|K] \longrightarrow \text{iterated LHS}$
- V-robustness: $\min_{K} \mathbb{V}\mathrm{ar}\left[j(\textbf{\textit{X}}_{\mathrm{e}},K)|K\right] \longrightarrow \mathrm{gradient\text{-}descent}$ with PCE
- ρ -robustness: min $\rho(j(\mathbf{X}_e, K))$ \longrightarrow gradient-descent with PCE
- ullet Multiobjective: choice within Pareto frontier $\longrightarrow 1 L/2 L$ kriging

An illustration

$$(x_e, K) \mapsto f(x_e, K) = \tilde{f}(x_e + K)$$

 $X_e \sim \mathcal{N}(0, s^2)$ truncated on $[-3; 3]$. Plot of $f(0, \cdot) = \tilde{f}(\cdot)$

Different approaches for the minimization of f

An illustration

$$(x_e, K) \mapsto f(x_e, K) = \tilde{f}(x_e + K)$$

 $X_e \sim \mathcal{N}(0, s^2)$ truncated on $[-3; 3]$. Plot of $\max_{x_e} \{f(x_e, \cdot)\}$

Different approaches for the minimization of f

An illustration

$$(x_e, K) \mapsto f(x_e, K) = \tilde{f}(x_e + K)$$

 $X_e \sim \mathcal{N}(0, s^2)$ truncated on $[-3; 3]$. Plot of $\mathbb{E}_{x_e}[f(x_e, \cdot)]$

Different approaches for the minimization of f

Why surrogates?

- Computer model: expensive to run
- ullet dim ${\mathcal K}$, dim ${\mathbb X}$ can be very large
- Convenient way to introduce uncertainties upon x_e directly in the model

Why surrogates?

- Computer model: expensive to run
- ullet dim ${\mathcal K}$, dim ${\mathbb X}$ can be very large
- ullet Convenient way to introduce uncertainties upon ${\it x}_{\rm e}$ directly in the model

Using surrogates for optimization: adaptative sampling

Based on kriging model \longrightarrow mean and variance How to choose a new point to evaluate ? Criterion $\kappa(\mathbf{x}) \longrightarrow$ "potential" of the point

$$\mathbf{x}_{\mathrm{new}} = \operatorname{arg\,max} \kappa(\mathbf{x})$$

Conclusion

Conclusion

Wrapping up

- Variational and bayesian approaches for this inverse problem results in different methods
- In both case, these strategies rely heavily on surrogate models
 Kriging, Polynomial chaos

Perspective and future work

- Bayesian formulation ?
- ullet Cost of computer evaluations o limit the total number of runs
- \bullet Dimensionality of the input space \to reduction of the input space ?
- ullet How to deal with uncontrollable errors o errors between model and reality ?