

μScribe

Presented by

Group 10

Abhinav Maurya 10305016

Yogesh Kakde 10305039

Lokesh Rajwani 10305066

Overview

- Problem Statement
- Task Specification
- Project Plan
- Innovation and Challenges
- Completed Tasks
- Test Cases
- Reusability Features
- Future Enhancements
- References

Problem Statement

- To use Firebird V Hexapod to scribe letters and shapes with reasonable legibility
- The program for scribing a letter or shape is preprogrammed into the Hexapod
- The complication lies in the fact that there are 18 motors = 18 Degrees Of Freedom (DOF)!

Task Specification

- To program smooth motion of Hexapod
- To program simple natural movements
 - Rotation by any given angle, movement in any given direction
- To program simple in-place movements
 - Jerking, swaying
- To program elementary scribing movements
 - Drawing stroke, curve
- To translate shapes to a series of strokes that Hexapod can sequentially scribe

Project Plan

Timeline

- 27 Sept 1 Oct: Basic Motion
- 4 Oct 8 Oct: Strokes and Curves
- 11 Oct 15 Oct: Mono-scribing
- 18 Oct 22 Oct: Testing and Documentation

Task Division

- Alphabet Scribing Module
- Number Scribing Module
- Shape Scribing Module

Innovation and Challenges

- 18 Motors = 18 DOF!
- Intolerance to imprecision
- Sensitive to manufacturing asymmetries

Completed Tasks

Task	Timeline	Person
Project Setup and	27 Sept – 1 Oct	AM
understanding Header		
Files for Basic Functions Pastilinear Maties	1.0-4 9.0-4	AM ID XIZ
Rectilinear Motion	4 Oct – 8 Oct	AM, LR, YK
Rotational Motion	11 Oct – 15 Oct	AM, LR, YK
Noise Cancellation	18 Oct – 22 Oct	LR, YK
Hardware Maintenance		
Pen Attachment	18 Oct – 22 Oct	AM, LR
Letter Writing Functions	25 Oct – 29 Oct	LR, YK
Documentation	1 Nov – 5 Nov	AM, LR, YK

111-13

Test Cases (1/2)

- Circle Scribing
- Hexapod was programmed to draw a circle
- Circle was approximated as a series of strokes
- Legible scribing of the shape achieved
- Character Scribing: Hexapod was programmed to draw the letter L

Test Cases (2/2)

- Number Scribing: Hexapod was programmed to draw the number 1
- Successively writing H,E,X with fair precision.
- Scribing is jerky and comes as a series of dots
- Can be improved by adding a robotic pen with a spring for minimizing the effect of motion on the scribing

Reusability Features

- Separation of platform-specific code into hexapod_firebirdv.h
- Ease of portability to future versions of Firebird by separation of hardware specific code involving timers, ports, etc.
- Each atomic step programmed as a separate function
- Modular programming by having platform-dependent and platformindependent header files which enclose functions used by main()

Future Enhancements

- Dynamic specification of message to be scribed
- Application of AI techniques like fuzzy logic, HMM to simplify coding of intelligent behaviour
- Esterel: Developing Esterel coding platform for the Hexapod
- Variety of movement like staircase climbing

References

- Firebird V ATmega2560 Robotic
 Research Platform Hardware Manual.
 IIT Bombay & NEX Robotics Pvt. Ltd.
- Firebird V ATmega2560 Hexapod Robotic Research Platform User Guide. IIT Bombay & NEX Robotics Pvt. Ltd.
- Firebird V ATmega2560 Robotic
 Research Platform Software Manual.
 IIT Bombay & NEX Robotics Pvt. Ltd.

End

- Questions?
- Comments!
- Contact
 - ahmaurya@cse.iitb.ac.in
 - yogesh@cse.iitb.ac.in
 - rajwani@cse.iitb.ac.in

