







The Web Conference 2022

## Designing the Topology of Graph Neural Networks: A Novel Feature Fusion Perspective

Lanning Wei<sup>1,2</sup>

Huan Zhao<sup>2</sup>

Zhiqiang He<sup>1,3</sup> hezq@lenovo.com

weilanning18z@ict.ac.cn zhaohuan@4paradigm.com

Institute of Computing Technology, Chinese Academy of Sciences<sup>1</sup> 4Paradigm<sup>2</sup> Lenovo<sup>3</sup>

- Introduction
- Method
- Experiments
- Conclusions and Future work

- Introduction
  - GNN topology
  - Feature fusion perspective of GNN topology
- Method
- Experiments
- Conclusions and Future work

## **GNN** Topology

Different GNNs can be built by designing the aggregation operations and the topology.



<sup>[1]</sup> Representation Learning on Graphs with Jumping Knowledge Networks. ICML 2018

<sup>[2]</sup> Deepgens: Can gens go as deep as enns? ICCV 2019

<sup>[3]</sup> Principal Neighbourhood Aggregation for Graph Nets. NeurIPS 2020

## **GNN** Topology

- Two mainstream GNN topology design manners
  - Stacking AGG (Left): extract higher-level feature / Over-smoothing.
  - Using multiple AGG (Right): adequate and independent feature extraction / costly to obtain the higher-level information.





• Design Target: Can we enjoy the benefits while alleviate the corresponding deficiencies on top of these two topology design manners?

## Feature fusion perspective

- There lacks a systematic approach for the GNN topology design.
- The topology of a neural network can be represented by its "computational graph".
- In GNNs, designing the links is equivalent to selecting the features of different levels.
- Fusion strategy is also indispensable in improving the GNN.



Computational Graph: nodes represent the operations and the directed edges link operations in different layers.

Unify the GNN topology designs with feature selection and fusion strategies.

#### F2GNN Contributions

- Feature fusion framework to unify the GNN topologies.
- Adaptive GNN design to achieve the design target
  - Borrow the power of neural architecture search (NAS)
  - A novel search space for GNN topology design.
  - An improved search algorithm to address the obvious optimization gap induced by the search space.

#### • Experiments

- Conduct extensive experiments on eight real-world datasets, including homophily and heterophily.
- F2GNN can improve the performance while alleviating the deficiencies, especially alleviating the over-smoothing problem.

- Introduction
- Method
  - Feature fusion framework
  - Design adaptive GNNs with this framework
    - The design of the search space
    - The improved differentiable search algorithm
- Experiments
- Conclusions and Future work

#### Feature fusion framework

• The feature selection and fusion strategies lead to the key difference of topology designs in GNNs.

- Feature fusion framework
  - O Pre-processing: 2-layer MLPs
  - SFA Block: Selection + Fusion + Aggregation
  - 5 Post-processing: Selection + Fusion + 2-layer MLPs



### Feature fusion framework

Translating the framework into diverse GNNs.

|                                                   | Vanilla GNNs JK-Net (maxpool) 2-layer PNA             |                                                                            | 2-layer PNA                                                             |
|---------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Topology formulation                              | $\mathbf{H}^{l+1} = f(\mathbf{H}^l)$                  | $\boldsymbol{H}^{output} = max(\boldsymbol{H}^1, \cdots \boldsymbol{H}^L)$ | $\mathbf{H}^{l+1} =   _{i \in M} f_i(\mathbf{H}^l)$                     |
| GNNs<br>and<br>their<br>topology<br>illustrations | Input  AGG $H^1$ AGG $H^2$ AGG $H^3$ AGG $H^4$ output | Input  AGG $H^1$ AGG $H^2$ AGG $H^3$ AGG $H^4$ $\otimes$ output            | Input  MEAN MIN MAX STD  H  MEAN MIN MAX STD  MAX STD  MAX STD  MAX STD |

## Design adaptive GNNs — Search space

- Design GNNs = Topology + Aggregation operations
- Topology: Selection  $\mathcal{O}_S$  + Fusion  $\mathcal{O}_f$
- Aggregation operations
  - Predefined aggregation operations: GraphSAGE (F2SAGE) / GAT(F2GAT)
  - Learnable aggregation operations  $O_a$  (F2GNN)

Table 1: The operations used in our search space.

|                   | Operations                        |
|-------------------|-----------------------------------|
| Selection $O_s$   | ZERO, IDENTITY                    |
| Fusion $O_f$      | SUM, MEAN, MAX, CONCAT, LSTM, ATT |
| Aggregation $O_a$ | GCN, GAT, SAGE, GIN               |

## Design adaptive GNNs — Search Algorithm

- Differentiable NAS method is adopted considering the efficiency.
- The optimization gap in feature fusion
  - Mixed selection results

$$\bar{o}^{ij}(\mathbf{x}_i) = \sum_{k=1}^{|O_s|} c_k^{ij} o_k^{ij}(\mathbf{x}_i) = c_1^{ij} \mathbf{0} + c_2^{ij} \mathbf{x}_i = c_2^{ij} \mathbf{x}_i.$$

- ChildNet results:
  - ZERO:  $c_1^{ij}$ **0**  IDENTITY:  $c_2^{ij}$ **x**<sub>i</sub>

The IDENTITY operation has a large influence when ZERO is selected, and the influence will accumulate along with the feature selection operation in the framework.

• Improved search with the usage of temperature

Add a small temperature  $\lambda$  in the softmax.

$$c_k = \frac{\exp(\alpha_k/\lambda)}{\sum_{i=1}^{|O|} \exp(\alpha_i/\lambda)}$$

- Introduction
- Feature fusion Graph Neural Networks
- Experiments
  - Experimental settings
  - Performance comparisons
  - Advantages of the adaptive topology design
  - Ablation study
- Conclusions and Future work

# Experimental settings

- Datasets
  - Five homophily + three Heterophily
- Baselines
  - Stacking baselines
  - Various identity skip-connections
  - Multiple aggregations
  - Graph NAS baselines

| Datasets       | #Nodes | #Edges  | #Features | #Classes | h    |
|----------------|--------|---------|-----------|----------|------|
| Cora [37]      | 2,708  | 5,278   | 1,433     | 7        | 0.81 |
| Computers [32] | 13,381 | 245,778 | 767       | 10       | 0.78 |
| DBLP [2]       | 17,716 | 105,734 | 1,639     | 4        | 0.83 |
| PubMed [37]    | 19,717 | 44,324  | 500       | 3        | 0.80 |
| Physics [38]   | 34,493 | 495,924 | 8,415     | 5        | 0.93 |
| Wisconsin [34] | 251    | 466     | 1,703     | 5        | 0.21 |
| Actor [34]     | 7,600  | 30,019  | 932       | 5        | 0.22 |
| Flickr [52]    | 89,250 | 899,756 | 500       | 7        | 0.32 |

$$h = \frac{|\{(u,v):(u,v)\in\mathcal{E}\wedge y_u=y_v\}|}{|\mathcal{E}|}$$

## Performance comparisons

- Adaptive GNN topologies (ours+Random) have better performance than the human-designed topologies.
- Our methods rank 1<sup>st</sup> compared with all the human-designed topologies and the Random Baselines.

| Aggregation | Topology            | Cora        | DBLP        | PubMed      | Computers   | Physics     | Actor       | Wisconsin    | Flickr      | Avg. Rank<br>(Group) | Avg. Ran<br>(All) |
|-------------|---------------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|-------------|----------------------|-------------------|
|             | Stacking (L2)       | 86.09(0.50) | 83.58(0.33) | 88.96(0.29) | 91.14(0.30) | 96.42(0.11) | 34.78(1.10) | 79.61(5.56)  | 51.21(0.71) | 6.63                 | 15.00             |
|             | Stacking (L4)       | 85.68(0.61) | 83.83(0.32) | 88.23(0.28) | 90.52(0.42) | 95.97(0.14) | 34.61(1.08) | 60.39(10.77) | 53.07(0.50) | 8.25                 | 17.00             |
|             | RES (L4)            | 85.66(0.52) | 83.39(0.30) | 88.99(0.25) | 91.51(0.18) | 96.31(0.17) | 35.16(0.94) | 76.47(5.26)  | 53.72(0.27) | 5.25                 | 13.13             |
|             | DENSE (L4)          | 86.68(0.59) | 83.30(0.73) | 89.42(0.27) | 90.74(0.51) | 96.48(0.14) | 34.78(0.60) | 77.06(6.01)  | 53.17(0.19) | 4.50                 | 12.75             |
| SAGE        | JK (L4)             | 86.47(0.60) | 83.94(0.62) | 89.21(0.29) | 91.21(0.30) | 96.56(0.05) | 36.53(0.92) | 81.96(4.71)  | 52.41(0.33) | 4.75                 | 10.38             |
| SAGE        | GNNII (L4)          | 85.83(0.42) | 84.46(0.45) | 89.21(0.24) | 91.38(0.27) | 96.45(0.15) | 35.70(1.11) | 81.57(4.13)  | 52.24(0.29) | 4.50                 | 11.50             |
|             | PNA (L2)            | 84.29(0.67) | 82.76(0.42) | 89.25(0.26) | 90.67(0.42) | 96.32(0.10) | 33.89(2.68) | 75.29(6.46)  | 52.09(0.73) | 8.88                 | 17.75             |
|             | MixHop (L2)         | 84.81(0.95) | 82.65(0.65) | 89.25(0.28) | 88.56(1.61) | 96.11(0.17) | 35.19(0.62) | 81.57(2.51)  | 51.75(0.59) | 6.75                 | 17.75             |
|             | Random              | 86.75(0.29) | 83 60(0.29) | 89.21(0.04) | 91.30(0.19) | 96.46(0.03) | 36.30(0.58) | 85.10(5.63)  | 54.10(0.15) | 3.50                 | 8.75              |
|             | F <sup>2</sup> SAGE | 87.72(0.26) | 84.81(0.06) | 89.73(0.26) | 91.81(0.26) | 96.72(0.01) | 36.61(1.00) | 85.88(1.92)  | 53.66(0.16) | 2.00                 | 4.38              |
|             | Stacking (L2)       | 85.92(0.72) | 84.34(0.26) | 87.56(0.23) | 91.49(0.21) | 95.76(0.16) | 29.28(1.02) | 53.73(7.24)  | 53.83(0.28) | 5.25                 | 14.25             |
|             | Stacking (L4)       | 86.16(0.55) | 84.29(0.41) | 85.73(0.34) | 89.08(0.43) | 93.47(3.93) | 26.45(1.00) | 45.29(5.65)  | 50.34(2.68) | 8.25                 | 19.88             |
|             | RES (L4)            | 84.66(0.92) | 84.11(0.34) | 87.56(0.44) | 90.84(0.49) | 95.67(0.28) | 28.98(0.36) | 48.82(3.77)  | 53.63(0.24) | 7.50                 | 18.50             |
|             | DENSE (L4)          | 85.31(0.86) | 83.43(0.37) | 88.67(0.19) | 91.30(0.37) | 96.16(0.06) | 31.78(1.03) | 53.33(7.73)  | 53.61(0.26) | 6.25                 | 16.38             |
| GAT         | JK (L4)             | 86.55(0.46) | 83.73(0.35) | 89.71(0.16) | 91.80(0.23) | 96.80(0.09) | 35.43(0.88) | 84.51(5.58)  | 53.02(0.29) | 3.88                 | 8.75              |
| GAI         | GNNII (L4)          | 85.40(1.06) | 83.83(0.33) | 88.44(0.25) | 91.91(0.11) | 96.14(0.15) | 30.29(0.78) | 55.29(6.25)  | 53.03(0.29) | 5.38                 | 15.00             |
|             | PNA (L2)            | 85.06(0.72) | 83.46(0.47) | 87.18(0.30) | 90.84(0.24) | 95.85(0.18) | 28.56(0.82) | 49.22(5.91)  | 54.02(0.33) | 7.38                 | 18.25             |
|             | MixHop (L2)         | 85.38(1.04) | 82.50(0.34) | 88.91(0.19) | 91.27(0.37) | 96.46(0.21) | 35.70(0.90) | 81.57(4.40)  | 53.67(0.30) | 5.13                 | 13.25             |
|             | Random              | 85 73(0 06) | 83 60(0 19) | 88 86(0 18) | 91 76(0 14) | 96 84(0 09) | 36 07(0 83) | 86 08(4 15)  | 52 43(0 29) | 4 38                 | 10 38             |
|             | F <sup>2</sup> GAT  | 88.31(0.12) | 84.76(0.04) | 90.38(0.14) | 92.04(0.17) | 97.10(0.03) | 36.65(1.13) | 87.06(4.13)  | 53.45(0.19) | 1.63                 | 3.13              |
|             | SNAG (L4)           | 84.99(1.04) | 84.29(0.15) | 87.93(0.16) | 85.98(0.72) | 96.18(0.11) | 28.13(0.74) | 43.92(4.65)  | 53.50(0.31) | 4.00                 | 18.63             |
| Learnable   | SANE (L4)           | 86.40(0.38) | 84.58(0.13) | 89.34(0.31) | 91.02(0.21) | 96.80(0.06) | 36.77(1.15) | 86.47(3.09)  | 53.92(0.14) | 2.63                 | 6.38              |
| Learnable   | Random              | 86.99(0.60) | 84.62(0.15) | 89.37(0.26) | 91.03(0.20) | 96.72(0.04) | 36.29(1.52) | 85.49(4.31)  | 54.33(0.11) | 2.25                 | 6.13              |
|             | F <sup>2</sup> GNN  | 87.42(0.42) | 84.95(0.15) | 89.79(0.20) | 91.42(0.26) | 96.92(0.06) | 37.08(1.00) | 88.24(3.72)  | 53.96(0.20) | 1.13                 | 2.75              |

#### Searched Architectures





- Data-specific GNN topologies are obtained.
- The initial feature is selected in most GNNs.
- We can benefit from the multiple aggregation design manner.
- On the heterophily dataset Actor, we obtained an MLP network, which shows that the graph structure is not always useful for the final performance.

## Advantages of the adaptive topology design

#### Alleviating the over-smoothing problem

- Over-smoothing: In deep GNNs, the node representations become indistinguishable and easily get performance drop.
- Using different levels of features can alleviate this problem.
- F2SAGE achieves the SOTA performance and higher MAD values by utilizing features in each block adaptively.



# Advantages of the adaptive topology design

Flexibility in obtaining the higher-level features.

- With 4(8) aggregations, PNA obtains the features in level 1(2), while F2SAGE obtains the features in level 2 (5).
- Our method achieves higher performance than PNA with 35% and and 15% fewer parameters on the GraphSAGE and GAT, respectively.



## Ablation study

- Designing the fusion strategy is significant.
- The optimization gap has a large influence on the feature selection, and it can be addressed with  $\lambda$ .
- The increasing number of SFA blocks do not bring about the performance drop due to the adaptive utilization of different levels of features.

| Method                     | Cora        | PubMed      | Physics     |
|----------------------------|-------------|-------------|-------------|
| F <sup>2</sup> SAGE-SUM    | 84.73(0.63) | 89.39(0.21) | 96.44(0.01) |
| F <sup>2</sup> SAGE-MEAN   | 84.30(0.61) | 89.58(0.22) | 96.42(0.03) |
| F <sup>2</sup> SAGE-CONCAT | 86.07(0.45) | 89.31(0.19) | 96.69(0.01) |
| F <sup>2</sup> SAGE        | 87.72(0.26) | 89.73(0.26) | 96.72(0.01) |

| Temperature $\lambda$ | F <sup>2</sup> SA | AGE      | F <sup>2</sup> AGG |          |  |
|-----------------------|-------------------|----------|--------------------|----------|--|
| remperature n         | Supernet          | Childnet | Supernet           | Childnet |  |
| 1                     | 80.33             | 6.68     | 86.83              | 85.71    |  |
| 0.1                   | 73.65             | 10.96    | 84.23              | 83.86    |  |
| 0.01                  | 70.13             | 70.13    | 84.60              | 84.60    |  |
| 0.001                 | 80.15             | 80.15    | 86.83              | 86.83    |  |



### Revisiting AutoGraph challenge at KDD Cup 2020

- 15 node classification datasets in diverse domains.
- F2GCN reaches 97.3% performance with 45.1% parameter size compared with the best solution.

| Dataset | Phase    | Domain   | #Node | #Edge  | #Feature | #Class |
|---------|----------|----------|-------|--------|----------|--------|
| a       | Public   | Citation | 2.7K  | 5.3K   | 1.4K     | 7      |
| b       | Public   | Citation | 3.3K  | 4.6K   | 3.7K     | 6      |
| c       | Public   | Social   | 10K   | 733K   | 0.6K     | 41     |
| d       | Public   | News     | 10K   | 2,917K | 0.3K     | 20     |
| e       | Public   | Finance  | 7.5K  | 7.8K   | 0        | 3      |
| f       | Feedback | Sales    | 10K   | 194K   | 0.7K     | 10     |
| g       | Feedback | Citation | 10K   | 41K    | 8K       | 5      |
| h       | Feedback | Medicine | 10K   | 2,461K | 0.3K     | 23     |
| i       | Feedback | Finance  | 15K   | 16K    | 0        | 3      |
| j       | Feedback | Medicine | 11K   | 22K    | 0        | 9      |
| k       | Private  | Sales    | 8K    | 119K   | 0.7K     | 8      |
| 1       | Private  | Citation | 10K   | 40K    | 7K       | 15     |
| m       | Private  | News     | 10K   | 1,425K | 0.3K     | 8      |
| n       | Private  | Finance  | 14K   | 22K    | 0        | 10     |
| О       | Private  | Social   | 12K   | 19K    | 0        | 19     |

| Dataset | GCN(L2) | GCN(L4) | F <sup>2</sup> GCN(L4) | 1st solution |
|---------|---------|---------|------------------------|--------------|
| a       | 85.7    | 84.4    | 84.4 (95.4)            | 88.5 (100)   |
| b       | 71.4    | 70.5    | 71.3 (94.8)            | 75.2 (100)   |
| c       | 86.5    | 82.3    | 92.8 (98.4)            | 94.3 (100)   |
| d       | 93.7    | 93.6    | 93.9 (97.3)            | 96.5 (100)   |
| e       | 59.6    | 87.5    | 88.4 (99.7)            | 88.7 (100)   |
| f       | 86.6    | 87.6    | 92.1 (99.2)            | 92.8 (100)   |
| g       | 94.7    | 93.4    | 95.3 (100)             | 95.3 (100)   |
| h       | 90.4    | 90.3    | 90.1 (96.4)            | 93.5 (100)   |
| i       | 88.2    | 87.6    | 88.3 (99.9)            | 88.4 (100)   |
| j       | 90.7    | 83.6    | 95.3 (99.4)            | 95.9 (100)   |
| k       | 93.5    | 93.2    | 93.4 (97.9)            | 95.5 (100)   |
| 1       | 90.9    | 89.1    | 92.9 (97.9)            | 94.9 (100)   |
| m       | 85.5    | 86.1    | 86.1 (87.8)            | 98.1 (100)   |
| n       | 85.6    | 95.2    | 96.7 (97.7)            | 99.0 (100)   |
| 0       | 49.6    | 71.8    | 88.8 (97.6)            | 91.0 (100)   |
| Avg     |         |         | - (97.3)               | - (100)      |
| 1 4 4   |         |         | CONT                   | E'CON        |

Table 4: Accuracy comparison of GCN baselines, F<sup>2</sup>GCN and industrial best solution (%). L2, L4 means 2 and 4 layers for the GNN architecture. Numbers in parentheses are relative accuracy w.r.t 1st solution. We regard 1st solution as 100%. Last line is the average percentage.

(a) Dataset statistics

(b) Performance comparisons.

| Dataset | GCN(L2) | F2GCN(L4)     | 1st solution |
|---------|---------|---------------|--------------|
| a       | 0.023   | 0.908 (75.7)  | 1.199 (100)  |
| b       | 0.059   | 0.700 (44.2)  | 1.583 (100)  |
| c       | 0.011   | 1.598 (98.0)  | 1.631 (100)  |
| d       | 0.006   | 0.042 (3.20)  | 1.296 (100)  |
| e       | 0.121   | 0.354 (31.8)  | 1.114 (100)  |
| f       | 0.013   | 0.039 (2.30)  | 1.688 (100)  |
| g       | 0.134   | 0.313 (13.1)  | 2.389 (100)  |
| h       | 0.006   | 0.271 (20.9)  | 1.294 (100)  |
| i       | 0.241   | 2.269 (113.0) | 2.013 (100)  |
| j       | 0.171   | 0.834 (60.6)  | 1.376 (100)  |
| k       | 0.012   | 1.478 (108.0) | 1.395 (100)  |
| 1       | 0.108   | 0.614 (25.6)  | 2.395 (100)  |
| m       | 0.005   | 0.010 (0.80)  | 1.278 (100)  |
| n       | 0.218   | 0.488 (27.8)  | 1.756 (100)  |
| - 0     | 0.102   | 0.822 (52.5)  | 1.565 (100)  |
| Avg     |         | - (45.1)      | - (100)      |

Table 5: Number of parameters of baseline, 1st solution and F<sup>2</sup>GCN (Unit: Millions). Numbers in parentheses are relative # parameters w.r.t 1st solution. We regard 1st solution as 100%. Last line is the average percentage.

(c) Parameter size comparisons.

- Introduction
- Method
- Experiments
- Conclusions and Future work

#### Conclusion and Future work

- We provide a novel feature fusion perspective in designing the GNN topology.
- A novel framework is designed to unify the existing topology designs with feature selection and fusion strategies, and a NAS method is developed to obtained the adaptive topology design.
- The experimental results demonstrate the effectiveness and versatility of the proposed F2GNN.
- Future work: we will investigate the influence of different candidate operations and algorithms, and explore F2GNN in the OGB datasets.

#### Code

- Code: https://github.com/AutoML-Research/F2GNN
- More related methods: https://github.com/AutoML-Research
  - Search to aggregate neighborhood for graph neural network (ICDE 2021)
  - Pooling Architecture Search for Graph Classification. (CIKM 2021)
  - Bridging the Gap of AutoGraph between Academia and Industry: Analysing AutoGraph Challenge at KDD Cup 2020.





Paper link



Code link

AutoML Research Group

# Thank you! Q&A

Contact: Lanning Wei, weilanning18z@ict.ac.cn