

Mark Scheme (Results)

Summer 2016

Pearson Edexcel International A Level Statistics 3

(WST03/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code WST03_01_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

June 2016 IAL WST03/01 Statistics 3 Mark Scheme

Question Number	Scheme							Marks			
	Salesperson	A	В	C	D	E	F	G	Н		
1. (a)	Rank Distance	7	6	4	1	5	3	2	8	1	
	Rank Commissio	n 8	5	7	3	1	2	6	4		
	or									_	M1
	Salesperson	A	В	<i>C</i>	D	E	F	G	H		
	Rank Distance	2	3	5	8	4	6	7	1		
	Rank Commissio	n 1	4	2	6	8	7	3	5]	
											M1
	$\sum d^2 = 1 + 1 + 9 + $	4 + 16 + 1	+ 16 +	+ 16; =	64					$\sum d^2 = 64$	A1
	5 (5 A)										dM1;
	$r_s = 1 - \frac{6(64)}{8(63)}; = 0$.238095								$\frac{5}{21}$ or awrt 0.238	A1
											[5]
(b)	$H_0: \rho = 0, H_1: \rho$	> 0									B1
	Critical Value $r_s = 0$	0.6429 or	CR:	$r_s \geqslant 0$.6429					Critical value of 0.6429	B1
	Either										
	 Do not reject 	0 -	_	₀)						see notes	M1
	Result is not significant see notes									IVII	
	• $r_s = 0.238$ does not lie in the <u>CR</u>										
	conclude that there is <u>no positive correlation</u> between <u>distance</u> travelled and amount of <u>commission</u> received.										A1
											[4] 9
						Not					
(a)											
	2 nd M1 For an a	ttempt at	d^2 row	for th	eir ran	ks (ma	y be ir	nplied	by \sum	$\int d^2 = 64)$	
	$\int_{1^{\text{st}} A1} \Delta d^2 = 64$ (May be implied by correct answer)										
	_	ent on 1st N						heir \sum	$\int d^2$		
(b)	1 st B1 Both hypotheses stated in terms of ρ or ρ_s .										
(0)	M1 For a correct non-contradictory statement relating their r_s with their c.v. where their c.v. < 1								< 1		
	some of the contract contract contract of the										
	e.g. 'Do not reject H_0 ', 'not significant', 'not in critical region'										
	A1 Dependent on all previous marks in (b) scored. For a contextualised comment which is accepting H which must mention "no positive										
	For a contextualised comment which is accepting H_0 , which must mention " <u>no positive correlation</u> ", " <u>distance</u> " and " <u>commission</u> ". (Use of "association" only is A0.)										
	Follow through their r_s with 0.6429 (provided their r_s < 1)										
	Note Two-tailed test										
	Applying a two-tailed test scores a maximum of B0B1M1A0										
	So Award SC B0B1 for $H_0: \rho = 0$, $H_1: \rho \neq 0$ followed by critical value $r_s = (\pm) 0.7381$							81			
	and allo	w access t	o the l	M1 ma	rk only	7.					

Question Number	Scheme					Ma	ırks	
2. (a)	-	H_0 : There is no association between centre and result (independent) H_1 : There is an association between centre and result (dependent) hypotheses					B1	
	Expd	A	В	C	Total	Some attempt at (Row Total)(Column Total)		
	Pass	92.482	100.970	83.546	(277)	(Grand Total)	M1	
	Fail	114.517	125.029	103.453	. (343)	Can be implied by		
	Total	(207)	(226)	(187)	(620)	at least one correct E_i to 1d.p.	<u> </u>	
	All expected frequencies are correct to awrt/trunc. 2dp.						A1	
						At least 2 correct terms for		
	Observe	Expecte	ed $\frac{(O-E)}{E}$	$\frac{E)^2}{}$	$\frac{O^2}{E}$	$\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$ or correct	dM1	
	99	92.48	0.459	6 105	.9796	expressions with their E_i .	dM1	
	110	100.97	0.807	5 119	0.8375	Accept 2 sf accuracy		
	68	83.55	2.894	1 55.	.3441	for the dM1 mark.		
	108	114.52	0.371	2 101	.8512	At least 5 correct $(O - F)^2 \qquad O^2$		
	116	125.03	0.652	1 107	7.6221	$\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$ terms to either	A1	
	119	103.45			5.8873	2 dp or better.		
		Tota	als 7.52	62	7.522	Allow truncation.		
	$X^2 = \sum_{i=1}^{n} x_i^2$	$\frac{(O-E)^2}{E}$ or	$r \sum \frac{O^2}{F}$ -	- 620 ;= av	vrt 7.52	For applying either $\sum \frac{(O-E)^2}{E} \text{ or } \sum \frac{O^2}{E} - 620$	dM1	
		L	— <i>L</i>			$X^2 = 7.519087$ awrt <u>7.52</u>	A1	
	v = (2 - 1)	(3-1)=2				v = 2 (can be implied)	B1	
	$\chi_2^2(0.05)$	$=5.991 \Rightarrow C$	$CR: X^2 \geqslant 5$.991		<u>5.991</u>	B1	
	[in the CR	/significant/l	Reject H ₀]					
	conclude t		n associatio	n between	driving tes	t <u>centre</u> and <u>result</u> . (or they are <u>not</u>	A1	
(b)	Test centr	e <i>C</i>					B1	[10]
	Observed	and expected				ntre C than for any other test centre/	dB1	
	Centre Co		ost to the te	st statistic/	Pass rate a	at C is lower than the pass rate at the	dD1	[2]
	other cent	ies.						12
					Note			
(a)	1 st B1		•			' and "result" at least once. nnection" is B0.		
	2 nd dM1		-			ms or correct expressions with their E_i		
	2 nd A1	-				ter. Allow truncated answers. (May be	implied	d).
	3 rd dM1	Dependent		2				
		For applyin	g either \sum	$\sum_{E} \frac{(O-E)^2}{E}$	or $\sum_{i=1}^{\infty}$	$\frac{O^2}{E} - 620$		
	Note 2 nd B1					ncies stated scores special case M0A0M critical value of 5.991	1A1M	1A1
	4 th A1			_	•	ct contextualised conclusion which is re	jecting	H_0 .
		Must menti	on "centre"	and "resul	t"oe			Ĭ
	If hypotheses are the wrong way round, then A0 here. Contradictory statements score A0. E.g. "significant, do not reject H ₀ ".							
			-		_	gnificant, do not reject H ₀ ". be but not "correlation".		
		Condone I	ciationship	oi conne	cuon nere	out not conclation.		

Question Number	Scheme	Mark	S
3. (a)	 Any two reasons from sample will be taken from the same office or other offices not considered. same day or other days not considered. around the same time of arrival or first 50 employees These employees may have the same views (e.g. positive attitude to work). 	B1, B1	[2]
(b)	Generate a <u>numbered list(oe)</u> of all employees sorted by office location.	B1	
	Use <u>random numbers</u> to select/take a (simple) <u>random sample</u> of	B1	
	51 employees from Bristol, 26 employees from Dudley, 73 employees from Glasgow.	B1cao	
(c)	 Any one of advantage of stratified sampling, e.g. A stratified sample is <u>not biased</u> as the members are chosen randomly. You <u>can estimate</u> the <u>sampling errors</u> for a stratified sample A stratified sample gives <u>more accurate estimates</u> as it is a random process. 	В1	[3]
			[1]
	Notes		6
(a)	B1B0 for one suitable reason		
	B1B1 for two suitable reasons		
(b)	1 st B1 for a suitable numbered/labelled list for each region 2 nd B1 for use of random numbers/sample to select employees 3 rd B1 for 51 with Bristol, 26 with Dudley and 73 with Glasgow		
(c)	Note Allow 'it' for stratified sample B0 for "a stratified sample can reflect the population structure." B0 for "estimates obtained from each of the strata."		

Question Number	Scheme	Marks
4. (a)	$\mathbf{H}_0: \mathbf{m}_C = \mathbf{m}_A \qquad \mathbf{H}_1: \mathbf{m}_C > \mathbf{m}_A$	B1
	s.e. = $\sqrt{\frac{5.9^2}{60} + \frac{5.2^2}{50}}$ { = 1.058757133}	M1
	$z = \frac{61.2 - 59.1}{1.0587}$; = 1.983457711 awrt ± 1.98	dM1; A1
	One tailed c.v. $Z = 1.6449$ or CR: $Z \ge 1.6449$ or p-value = awrt $0.024 < 0.05$ [in the CR/significant/Reject H_0 /"0.024" < 0.05]	B1
	Conclude that the <u>mean time</u> taken by <u>children</u> to complete a <u>task is greater</u> than that of <u>adults</u> .	A1
(b)	\overline{X}_C and \overline{X}_A are both approximately <u>normally</u> distributed.	[6] B1 [1]
(c)	Have assumed $s^2 \simeq \sigma^2$ / variance of sample \simeq variance of population	B1 [1] 8
	Notes	8
(a)	1 st B1 If μ_1, μ_2 used then it must be clear which refers to children/adults.	
	Note Also allow $H_0: m_C - m_A = 0$ $H_1: m_C - m_A > 0$	
	1 st M1 s.e. = $\sqrt{\frac{5.9^2}{60} + \frac{5.2^2}{50}}$. (may be implied by s.e. = awrt 1.06)	
	Condone minor slips e.g. $\sqrt{\frac{5.9^2}{50} + \frac{5.2^2}{60}}$	
	2^{nd} dM1 Dependent on 1^{st} M1. (Allow \pm) Follow through their s.e. if 1^{st} M1 mark has been awarded.	
	2 nd B1 For 1.6449 (compatible with sign of their test statistic) or correct probabilities comparison. (Condone: "0.976" > 0.95)	lity
	2 nd A1 Dependent on both method marks being scored and for rejecting H ₀	
	For a correct conclusion in context which is based on their z-value and the	heir critical
	value, where $ c.v. > 1$	
	Contradictory statements score final A0. E.g. "significant, do not reject	H_0 ."
(a)	Alternative method for 2 nd "M1A1B1" marks: Let $D = \overline{x}_C - \overline{x}_A$	
	dM1: dependent on the 1st M1 for	
	$1.6449 = \frac{D-0}{1.0587} \frac{D}{\text{their "1.0587"}} = 1.6449/1.645/1.64/1.65$	
	$S_0 = 1.741$ Al: $D = \text{awrt } 1.74$	
	B1: 1.6449	
(b)	Allow in words e.g "sample means are normally distributed"	
(c)	Allow $s = \sigma$ but watch out for $s_C = s_A$ or $\sigma_C = \sigma_A$ which score B0	

Question Number				Scheme		Mar	ks	
5.	H_0 : Continuous uniform distribution $\begin{bmatrix} 0,360 \end{bmatrix}$ is a suitable model (for direction of flight). H_1 : Continuous uniform distribution $\begin{bmatrix} 0,360 \end{bmatrix}$ is not a suitable model (for direction of flight).							
	0 ≤ 72 ≤	ion of flight $\leq x < 72$ $\leq x < 140$ $\leq x < 190$	E	xpected 90 85 62.5	Some attempt at $\frac{\text{(Class Width)} \cdot 450}{360}$ Can be implied by at least one correct E_i	M1		
				87.5 125	All expected frequencies are correct.	A1		
	Observed	Expected	$\frac{(O-E)^2}{E}$		At least 3 correct terms for $(O - E)^2 = O^2$			
	78 69 51	90 85 62.5	1.6 3.012 2.116	67.6 56.011 41.616	$\frac{(O-E)^2}{E} \text{ or } \frac{O^2}{E} \text{ or correct}$ expressions with their E_i . Accept 2 sf accuracy	dM1		
	108 144	87.5 125 Totals	4.803 2.888 14.42	133.302 165.888 464.42				
	$v = 5 - 1 = 4$ $\chi_4^2(0.01) = 1$ [in the CR/sig	$\frac{-E)^2}{E} \text{or} X$ $3.277 \Rightarrow \text{CR}$ gnificant/Rej guniform dist direction of	$\sum \frac{O^2}{E} - 45$ A: $X^2 \ge 13.3$ ect H_0] tribution is \underline{n}	0 ;= awrt 14.4	For applying either $\sum \frac{(O-E)^2}{E} \text{ or } \sum \frac{O^2}{E} - 450$ $\text{awrt } \underline{14.4}$ $v = 4 \text{ (can be implied)}$ $\underline{13.277}$ A correct conclusion in context which is based on their X ² -value and their χ^2 -critical value.	ddM1 A1 B1 B1 A1 ft	[9]	
				Not	tas		[9] 9	
	3 rd M1 Dep 3 rd A1ft De For	pendent on a a comment i	oth previous I Il previous I n context, fo	llow through the		ect."		

Question Number	Scheme		Marks			
6. (a)	$W = 3X - 4Y$, $X \sim N(21, 2^2)$, $Y \sim N(8.5, S^2)$; X, Y	are independent.				
	$\{E(W) = 3E(X) - 4E(Y) = 3(21) - 4(8.5)\} \Rightarrow E(W) = 2$	9 $E(W) = 29$ (seen or implied)	B1			
	Var(W) = 9 Var(X) + 16 Var(Y)	$3^2 \operatorname{Var}(X) + 4^2 \operatorname{Var}(Y)$	M1			
	$\left\{ \operatorname{Var}(W) = 9(4) + 16(\sigma^2) \right\} \Rightarrow \operatorname{Var}(W) = 36 + 16\sigma^2$	$Var(W) = 36 + 16\sigma^2$	A1			
	{So $W \sim N(29, 36 + 16s^2)$ }					
	$\Delta \Delta = 19$	their mean and their standard deviation rms of σ^2 and setting equal to k , $ k > 1$	M1			
		±1.2816 or awrt ±1.2816	B1			
		Correct equation . See notes	A1			
	$\sigma^2 = \frac{\left(\frac{15}{1.2816}\right)^2 - 36}{16} \Rightarrow \sigma = \dots$	Squaring and rearranging leading to $\sigma =$	dM1			
	$\sigma = 2.51230 = 2.51 (2 dp)$ (= 2.51655 from using 1	.28) awrt <u>2.51</u> or awrt <u>2.52</u> (only)	A1			
	1		[8]			
(b)	$B = 2X + \sum_{i=1}^{3} A_i$, $A \sim N(28, 5^2)$; X, A_1, A_2 and A_3 a	are independent.				
		Either $E(B) = 2E(X) + 3E(A)$				
	E(B) = 2E(X) + 3E(A); = 2(21) + 3(28) = 126	or $Var(B) = 2^2 Var(X) + 3Var(A)$	M1			
	-	At least one of	A1			
	$Var(B) = 2^2 Var(X) + 3Var(A); = 4(4) + 3(5^2) = 91$ $E(B) = 126$ or $Var(B) = 91$					
	(G. P. N(12(, 01))	Both $E(B) = 126$ and $Var(B) = 91$	A1			
	$\{\text{So } B \sim \text{N}(126, 91)\}$					
	$\left\{ P(B \leqslant 145 \mid B > 120) \right\} = \frac{P(120 < B \leqslant 145)}{P(B > 120)} =$	A correct conditional probability ratio	M1			
	120 - 126 145 - 126	Attempt to standardise both				
	$z_1 = \frac{120 - 126}{\sqrt{91}} = -0.62897$, $z_2 = \frac{145 - 126}{\sqrt{91}} = 1.9917$	120 and 145 using their $E(B)$	M1			
	421	and their var(B)				
	$= \frac{0.7357 - (1 - 0.9767)}{0.7357} $ (o.e.)	Correct method for finding <i>either</i> the numerator or the denominator.	dM1			
	= 0.968329	awrt <u>0.968</u>	A1			
	(Calculator gives 0.968449)		[7]			
	Note	es	15			
(a)						
	2 nd M1 Allow $\frac{\pm \text{ their } E(3X - 4Y)}{\sqrt{\text{their } Var(3X - 4Y)}} = k$, where $ k $	~ 1				
	2 nd B1 For either -1.2816 or 1.2816					
	2^{nd} A1 E.g. Allow $\frac{44-29}{\sqrt{36+16\sigma^2}} = [1.28, 1.29]$, must be compatible signs					
	3 rd M1 Dependent on the 2 nd M1 mark being awarded. 3 rd A1 Dependent on previous A1					
	2^{nd} M1 Condone P(120 < B < 145) but P(121 < B < 145)					

Question Number	Scheme	Mark	S
7. (a)	$\left\{ \hat{m} = \overline{x} = \frac{1152}{8} \Rightarrow \right\} \ \overline{x} = 144 \text{ (grams)}$	B1	
	$\left\{ \hat{m} = \overline{x} = \frac{1152}{8} \Rightarrow \right\} \ \overline{x} = 144 \text{ (grams)} $ $\left\{ \hat{\sigma}^2 = \right\} \ s^2 = \frac{167218 - 8(144)^2}{8 - 1} = 190 \text{ (grams)}^2 $ $\frac{144}{8 - 1}$	B1 M1 A1	
(b)	Contains an <u>unknown parameter</u> / <u>population parameter</u> / $\underline{\mu}$	B1	[4] [1]
(c)	$Y = \frac{1}{8} \left(\sum_{i=1}^{8} X_i^2 - 8\bar{X}^2 \right) = \frac{7}{8} S^2$		[-]
	$\left\{ E(Y) = E\left(\frac{7}{8}S^2\right) = \frac{7}{8}E(S^2) \Rightarrow \right\} E(Y) = \frac{7}{8}S^2$	M1 A1	
			[2]
(d)	bias(Y) = $\frac{7}{8}s^2 - s^2$; = $-\frac{1}{8}s^2$	M1 A1	
			[2] 9
	Notes		
(a)	2^{nd} B1 For 167218 or $143^2 + 131^2 + 165^2 + 122^2 + 137^2 + 155^2 + 148^2 + 151^2$ (may	y be impli	ied)
	M1 For use of $\frac{\Sigma x^2 - 8(\Sigma x')}{8 - 1}$ or $\frac{8}{7} \left(\frac{\Sigma x^2}{8} - (\bar{x}')^2\right)$ where $\Sigma x^2 \neq 20736$		
(c)	M1 For $k\sigma^2$, where $0 < k < 2, k \neq 1$		
(d)	M1 For their $\pm (E(Y) - S^2)$, where their $E(Y) + S^2$.		

Question Number	Scheme	Marks
8.	Let $X =$ score on a die, $X \sim \text{Bin}\left(30, \frac{1}{6}\right)$, $E(X) = 5$, $Var(X) = \frac{25}{6}$	
(a)	$[\overline{X} \sim] N\left(5, \frac{1}{12}\right)$	B1dB1B1
(b)	CR: $\frac{\overline{X} - 5}{\sqrt{\frac{1}{12}}} \le -1.96$ or $\frac{\overline{X} - 5}{\sqrt{\frac{1}{12}}} \ge 1.96$ 1.96 or -1.96	[3] M1
(0)	$\sqrt{\frac{1}{12}}$ $\sqrt{\frac{1}{12}}$ 1.96 or -1.96	B1
	CR: $\bar{X} \le 4.434196$ or $\bar{X} \ge 5.565803$	A1 A1
		[4] 7
	Notes	
(a)	1st B1 Normal or N	
	2 nd B1 dependent on 1 st B1 for mean of 5	
	$3^{\text{rd}} B1 \text{Var}(\bar{X}) = \frac{1}{12} \text{ oe}$	
(b)	M1 for an attempt to standardise using their $E(\overline{X})$ and their $Var(\overline{X})$ and setting $\leq -z$ or	$\geq z (z > 1)$
	1 st A1 for at least one of either $\overline{X} \le \text{awrt } 4.43$ or $\overline{X} \ge \text{awrt } 5.57 \text{ or } \overline{X} \ge \text{trunc. } 5.56$	
	2^{nd} A1 both $\overline{X} \leqslant \text{awrt } 4.43$ and either $\overline{X} \geqslant \text{awrt } 5.57 \text{ or } \overline{X} \geqslant \text{trunc } 5.56$	