Théorie des Nombres - TD9 Unités d'un corps de nombres

Exercice 1:

- a) Soit $d \in \mathbb{N}$ sans facteur carré. On pose $K := \mathbb{Q}(\sqrt{-d})$. Montrer (sans utiliser le théorème des unités) que \mathbb{Z}_K^* est égal à
 - $-\mathbb{Z}/4\mathbb{Z}$ si d=1.
 - $-\mathbb{Z}/6\mathbb{Z}$ si d=3.
 - $-\mathbb{Z}/2\mathbb{Z}$ sinon.
- b) Soit K un corps de nombres. Montrer que \mathbb{Z}_K^* est fini si et seulement si $K = \mathbb{Q}$ ou K est un corps quadratique imaginaire.

Solution de l'exercice 1.

a) On sait que l'anneau des entiers de K est $\mathbb{Z}_K = \mathbb{Z}[\sqrt{-d}]$ si $d \equiv 1, 2$ [4], et $\mathbb{Z}_K = \mathbb{Z}\left[\frac{1+\sqrt{-d}}{2}\right]$ si $d \equiv 3$ [4].

On traite d'abord le cas $d \equiv 1, 2$ [4]. Un entier $\alpha = a + b\sqrt{-d}$ (avec $a, b \in \mathbb{Z}$) est une unité si et seulement si sa norme est ± 1 si et seulement si $a^2 + db^2 = \pm 1$ si et seulement si $(a, b) = (\pm 1, 0)$ ou (d = 1 et $(a, b) = (0, \pm 1)$). Par conséquent, on a $\mathbb{Z}_K^* = \{\pm 1\} \cong \mathbb{Z}/2\mathbb{Z}$ si $d \neq 1$ et $\mathbb{Z}_K^* = \{\pm 1, \pm i\} \cong \mathbb{Z}/4\mathbb{Z}$ si d = 1.

Supposons maintenant $d \equiv 3$ [4]. Alors un entier $\alpha = \frac{a+b\sqrt{-d}}{2}$ (avec $a,b \in \mathbb{Z}$) est une unité si et seulement si $a^2 + db^2 = \pm 4$ si et seulement si $(a,b) = (\pm 1,0)$ ou (d=3 et $(a,b) = (\pm 1,\pm 1)$, avec les deux signes \pm indépendants). Donc on a $\mathbb{Z}_K^* = \{\pm 1\} \cong \mathbb{Z}/2$ si $d \neq 3$ et $\mathbb{Z}_K^* = \{\pm 1, \pm j, \pm j^2\} \cong \mathbb{Z}/6\mathbb{Z}$ si d=3 (où j est une racine primitive 3-ième de l'unité).

b) Le théorème des unités assure que le groupe \mathbb{Z}_K^* est le produit d'un groupe abélien fini par un groupe abélien libre de type fini de rang $r = r_1 + r_2 - 1$. Par conséquent, le groupe \mathbb{Z}_K^* est fini si et seulement si r = 0 si et seulement si $(r_1, r_2) = (1, 0)$ ou (0, 1). Or on a $[K : \mathbb{Q}] = r_1 + 2r_2$, donc le cas $(r_1, r_2) = (1, 0)$ correspond exactement à $K = \mathbb{Q}$, et le cas $(r_1, r_2) = (0, 1)$ correspond à un corps quadratique qui admet un plongement complexe, c'est-à-dire un corps quadratique imaginaire.

Exercice 2: Soit p un nombre premier impair. On note $K := \mathbb{Q}(\zeta_p)$ et $L := \mathbb{Q}(\zeta_p + \zeta_p^{-1})$.

- a) Montrer que K est une extension quadratique de L, et que K est totalement imaginaire (i.e. $r_1 = 0$).
- b) Montrer que L est totalement réel (i.e. $r_2 = 0$).
- c) Calculer les rangs de \mathbb{Z}_L^* et \mathbb{Z}_K^* .
- d) On définit $\phi: \mathbb{Z}_K^* \to K^*$ par $\phi(a) := a/\overline{a}$, où $\overline{(.)}$ désigne la conjugaison complexe.
 - i) Montrer que ϕ est à valeurs dans le groupe des racines de l'unité de K, noté $\mu(K)$, et que c'est un morphisme de groupes.
 - ii) On note $\varphi: \mathbb{Z}_K^* \to \mu(K)/\mu(K)^2$ le morphisme induit par ϕ . Montrer que $\operatorname{Ker}(\varphi) = \mu(K).\mathbb{Z}_L^*$.
 - iii) En déduire que l'indice de $\mu(K).\mathbb{Z}_L^*$ dans \mathbb{Z}_K^* vaut 1 ou 2.
- e) On veut montrer que $\mathbb{Z}_K^* = (\zeta_p).\mathbb{Z}_L^*$. On raisonne par l'absurde et on suppose $(\zeta_p).\mathbb{Z}_L^* \subsetneq \mathbb{Z}_K^*$.
 - i) Montrer que φ est surjective.
 - ii) Montrer qu'il existe $u \in \mathbb{Z}_K^*$ et $m \in \mathbb{Z}$ tels que $\overline{u} = -\zeta_p^m u$.

- iii) En décomposant u dans la base $(1, \zeta_p, \ldots, \zeta_p^{p-2})$, montrer que $2u \in \mathfrak{p}$, où \mathfrak{p} est l'idéal premier $(1 \zeta_p)$ de \mathbb{Z}_K .
- iv) Conclure.
- f) En déduire que pour p = 5, $\mathbb{Z}_K^* = \left\{ \pm \zeta_5^k \left(\frac{1+\sqrt{5}}{2} \right)^n ; 0 \le k \le 4, n \in \mathbb{Z} \right\}$.

Solution de l'exercice 2.

- a) On note $u := \zeta_p + \zeta_p^{-1}$. On a $u = \frac{\zeta_p^2 + 1}{\zeta_p}$, donc $\zeta_p^2 u\zeta_p + 1 = 0$. Donc ζ_p est racine du polynôme $X^2 uX + 1 \in L[X]$, donc l'extension K/L est de degré au plus 2. Or $L \neq K$ puisque L est un sous-corps de $\mathbb R$ alors que $\zeta_p \in K$ n'est pas un nombre réel, donc K/L est bien une extension quadratique.
 - L'extension K/\mathbb{Q} est galoisienne de degré p-1. Les conjugués de ζ_p sont exactement les ζ_p^i , avec $1 \leq i \leq p-1$. Donc aucun conjugué de ζ_p n'est un réel, donc $r_1=0$. Donc K est un corps totalement imaginaire.
- b) Les conjugués de $u=\zeta_p+\zeta_p^{-1}$ sont obtenus via les conjugués de ζ_p . Les conjugués de u sont les $\zeta_p^i+\zeta_p^{-i}$, avec $1\leq i\leq \frac{p-1}{2}$. Or pour chaque i, on a $\zeta_p^i+\zeta_p^{-i}=\zeta_p^i+\overline{\zeta_p^i}\in\mathbb{R}$, donc tous les conjugués de u sont réels, donc $r_2=0$, i.e. L est un corps totalement réel.
- c) Le théorème des unités assure que le rang de \mathbb{Z}_L^* vaut $r_1 + r_2 1 = \frac{p-1}{2} + 0 1 = \frac{p-3}{2}$. De même, le rang de \mathbb{Z}_K^* vaut $r_1 + r_2 1 = 0 + \frac{p-1}{2} 1 = \frac{p-3}{2}$. En particulier, les rangs de \mathbb{Z}_L^* et \mathbb{Z}_K^* sont égaux, donc \mathbb{Z}_L^* est un sous-groupe d'indice fini de \mathbb{Z}_K^* .
- d) i) Tout d'abord, il est clair que ϕ est à valeurs dans \mathbb{Z}_K^* . Soit $\sigma \in \operatorname{Gal}(K|\mathbb{Q})$. Alors pour $a \in \mathbb{Z}_K^*$, on a $\sigma(\phi(a)) = \frac{\sigma(a)}{\sigma(\overline{a})}$. Or le groupe $\operatorname{Gal}(K|\mathbb{Q})$ est abélien, donc σ commute à la conjugaison complexe, donc $\sigma(\phi(a)) = \sigma(a)/\overline{\sigma(a)}$. En particulier, le nombre complexe $\sigma(\phi(a))$ est de module 1. Donc tous les conjugués de $\phi(a)$ sont de module 1. Donc l'entier $\phi(a)$ est une racine de l'unité (voir exercice 7 de la feuille 6). Donc ϕ est à valeurs dans $\mu(K)$. Il est évident que ϕ est un morphisme de groupes.
 - ii) Remarquons d'abord que $\mu(K) = \{\pm \zeta_p^k, 0 \le k \le p-1\}$, et que $\mu(K)^2 = \{\zeta_p^k, 0 \le k \le p-1\}$. Soit $a \in \mathbb{Z}_K^*$. On a $a \in \operatorname{Ker}(\varphi)$ si et seulement si $a/\overline{a} \in \mu(K)^2$ si et seulement si il existe $k \in \mathbb{Z}$ tel que $a/\overline{a} = \zeta_p^{2k}$ si et seulement si il existe $k \in \mathbb{Z}$ tel que $a\zeta_p^{-k} = \overline{a\zeta_p^{-k}}$ si et seulement si il existe $k \in \mathbb{Z}$ tel que $a\zeta_p^{-k} \in \mathbb{Z}_K^* \cap \mathbb{R} = \mathbb{Z}_L^*$ si et seulement si $a \in \mu(K).\mathbb{Z}_L^*$. D'où l'égalité $\mathbb{Z}_K^* = \mu(K)\mathbb{Z}_L^*$.
 - iii) Par théorème de factorisation, le morphisme φ induit un morphisme injectif $\overline{\varphi}: \mathbb{Z}_K^*/\mathrm{Ker}(\varphi) \to \mu(K)/\mu(K)^2$, d'où un morphisme injectif $\overline{\varphi}: \mathbb{Z}_K^*/\mu(K).\mathbb{Z}_L^* \to \mathbb{Z}/2\mathbb{Z}$. Donc le cardinal du groupe $\mathbb{Z}_K^*/\mu(K).\mathbb{Z}_L^*$ vaut au plus 2, donc l'indice de $\mu(K).\mathbb{Z}_L^*$ dans \mathbb{Z}_K^* vaut 1 ou 2.
- e) i) Par hypothèse, l'indice de $\operatorname{Ker}(\varphi)$ dans \mathbb{Z}_K^* vaut 2, donc φ n'est pas le morphisme nul. Or un morphisme non nul à valeur dans $\mathbb{Z}/2\mathbb{Z}$ est surjectif, donc φ est surjectif.
 - ii) Par la question précédente, il existe $u \in \mathbb{Z}_K^*$ tel que $\varphi(u) \neq 1$. Donc $\phi(u) \in \mu(K) \setminus \mu(K)^2$, i.e. il existe $m \in \mathbb{Z}$ tel que $\phi(u) = -\zeta_p^m$. D'où le résultat.
 - iii) Il existe des entiers a_0, \ldots, a_{p-2} tels que $u = a_0 + a_1 \zeta_p + \cdots + a_{p-2} \zeta_p^{p-2}$ (on rappelle que $\mathbb{Z}_K = \mathbb{Z}[\zeta_p]$, voir exercice 11 de la feuille 6). Alors modulo \mathfrak{p} , on trouve $u \equiv a_0 + \cdots + a_{p-2}$ et $\overline{u} \equiv a_0 + \cdots + a_{p-2}$. Or l'égalité $\overline{u} = -\zeta_p^m u$ se réduit modulo \mathfrak{p} en $\overline{u} \equiv -u$. Donc finalement, on a $u \equiv -u$ modulo \mathfrak{p} , i.e. $2u \in \mathfrak{p}$.
 - iv) L'entier u est une unité, donc $u \notin \mathfrak{p}$ (sinon $\mathfrak{p} = \mathbb{Z}_K$). Si $2 \in \mathfrak{p}$, alors la norme de 2 est divisible par la norme de $1 \zeta_p$, qui vaut p. Donc p divise 2, ce qui n'est pas. Donc $2 \notin \mathfrak{p}$. Mais \mathfrak{p} est un idéal premier (car $\mathbb{Z}_K/\mathfrak{p} = \mathbb{Z}[1 \zeta_p]/(p, 1 \zeta_p) \cong \mathbb{Z}/p\mathbb{Z}$), donc les conditions $2 \notin \mathfrak{p}$, $u \notin \mathfrak{p}$ et $2u \in \mathfrak{p}$ sont contradictoires. Donc finalement on a bien $Z_K^* = \mu(K)\mathbb{Z}_L^*$.
- f) Pour p = 5, on a $L = \mathbb{Q}(\sqrt{5})$ car $\zeta_5 + \zeta_5^{-1}$ est racine du polynôme $X^2 + X 1$, de discriminant $\Delta = 5$. Or on sait que $Z_L = \mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$, et il suffit de déterminer une unité fondamentale de cet

anneau. On vérifie que $\frac{1+\sqrt{5}}{2}$ est une unité fondamentale de \mathbb{Z}_L , donc les questions précédentes assurent que

$$\mathbb{Z}_K^* = \left\{ \pm \zeta_5^k \left(\frac{1 + \sqrt{5}}{2} \right)^n ; 0 \le k \le 4, n \in \mathbb{Z} \right\}.$$

Exercice 3 : Soit K/\mathbb{Q} un corps cubique (de degré 3) de discriminant négatif.

- a) Montrer que $r_1 = r_2 = 1$. Dans toute la suite, on considère K comme un sous-corps de \mathbb{R} via son unique plongement réel.
- b) Soit $\epsilon > 1$ une unité fondamentale de \mathbb{Z}_K . Montrer que ϵ est de norme 1.
- c) On pose $u := \sqrt{\epsilon}$. Montrer que les conjugués de ϵ sont de la forme ϵ , $u^{-1}e^{i\theta}$, $u^{-1}e^{-i\theta}$.
- d) Montrer que le discriminant d_{ϵ} de la base $(1, \epsilon, \epsilon^2)$ vaut $d_{\epsilon} = -4\sin^2(\theta)(u^3 + u^{-3} 2\cos(\theta))^2$.
- e) On pose $y := \cos(\theta)$ et $a := u^3 + u^{-3}$.
 - i) Montrer que a > 2.
 - ii) On note y_0 la racine négative du polynôme $4y^2-ay-2$. Montrer que $|d_{\epsilon}| \leq 4(1-y_0^2)(a-2y_0)^2$.
 - iii) Montrer que $y_0 < -\frac{1}{2u^3}$. En déduire que $u^{-6} 4y_0^2 4y_0^4 < 0$.
 - iv) Montrer que $|d_{\epsilon}| < 4\epsilon^3 + 24$. [Indication : on pourra utiliser successivement les deux égalités $ay_0 = 4y_0^2 - 2$ et $a^2y_0^2 = 16y_0^4 - 16y_0^2 + 4$, puis appliquer la question e) iii).]
- f) En déduire que $|D_K| < 4\epsilon^3 + 24$.
- g) Montrer que pour toute unité $\eta > 1$ dans \mathbb{Z}_K^* , si $4\eta^{\frac{3}{2}} + 24 < |D_K|$, alors η est une unité fondamentale.
- h) Applications:
 - i) Si $K = \mathbb{Q}(\sqrt[3]{2})$, calculer D_K et montrer que $\sqrt[3]{2} 1$ est une unité fondamentale (on admet que $\mathbb{Z}_K = \mathbb{Z}[\sqrt[3]{2}]$: cf feuille de TD8, exercice 11).
 - ii) Si $K = \mathbb{Q}(\alpha)$, où α est la racine réelle de $X^3 + 2X + 1$, calculer D_K et montrer que $\frac{-1}{\alpha}$ est une unité fondamentale.
 - iii) Si $K = \mathbb{Q}(\alpha)$, où α est la racine réelle de $X^3 + 10X + 1$, calculer D_K et montrer que $\frac{-1}{\alpha}$ est une unité fondamentale.

Solution de l'exercice 3.

- a) Un théorème du cours assure que le signe du discriminant est donné par $(-1)^{r_2}$, donc r_2 doit être impair. Or $r_1 + 2r_2 = 3$, donc nécessairement $r_2 = 1$ et donc $r_1 = 1$.
 - Dans toute la suite, on verra donc K comme un sous-corps de $\mathbb R$ via son unique plongement réel.
- b) On note $\sigma: K \to \mathbb{C}$ un plongement complexe de K. Alors les conjugués de ϵ sont $\epsilon, \sigma(\epsilon), \sigma(\epsilon)$, où $\overline{(.)}$ désigne la conjugaison complexe. Donc en particulier on a $N_{K/\mathbb{Q}}(\epsilon) = \epsilon \sigma(\epsilon) \overline{\sigma(\epsilon)} = \epsilon |\sigma(\epsilon)|^2 > 0$. Or ϵ est une unité, donc sa norme vaut ± 1 , donc puisqu'elle est positive, elle vaut 1.
- c) Il existe $\rho > 0$ et $\theta \in \mathbb{R}$ tels que $\sigma(\epsilon) = \rho e^{i\theta}$. Alors la question précédente assure que $1 = N_{K/\mathbb{Q}}(\epsilon) = \epsilon |\sigma(\epsilon)|^2 = u^2 \rho^2$. Donc $\rho = u^{-1}$, donc les conjugués de ϵ sont bien ϵ , $u^{-1}e^{i\theta}$ et $u^{-1}e^{-i\theta}$.
- d) Le discriminant d_{ϵ} vaut

$$d_{\epsilon} = \left((\epsilon - \sigma(\epsilon))(\epsilon - \overline{\sigma(\epsilon)})(\sigma(\epsilon) - \overline{\sigma(\epsilon)}) \right)^{2},$$

donc on a

$$d_{\epsilon} = \left((u^2 - u^{-1}e^{i\theta})(u^2 - u^{-1}e^{-i\theta})(2iu^{-1}\sin(\theta)) \right)^2 = -4\sin^2(\theta) \left(u^3 + u^{-3} - 2\cos(\theta) \right)^2,$$

d'où le résultat.

- e) i) On remarque que $0 < \left(u^{\frac{3}{2}} u^{-\frac{3}{2}}\right)^2 = u^3 + u^{-3} 2 = a 2$, d'où a > 2.
 - ii) On a $d_{\epsilon} = -4(1-y^2)(a-2y)^2$. On définit donc la fonction $f(y) := -4(1-y^2)(a-2y)^2$. C'est un polynôme, et on a $f'(y) = -8(a-2y)(4y^2-ay-2)$. Donc f'(y) = 0 si et seulement si $y = \frac{a}{2}$ ou $y = y_0$ ou $y = -\frac{1}{2y_0}$. En étudiant le tableau de variations de f, on note que la fonction f est négative sur l'intervalle [-1,1] et qu'elle atteint son minimum sur cet intervalle en $y = y_0$ (il est clair que $-1 \le y_0 \le 0$ car en y = -1, le polynôme de degré 2 dont y_0 est racine prend une valeur positive : voir question e) i)). Par conséquent, puisque le cosinus prend ses valeurs dans [-1,1], on en déduit que $|d_{\epsilon}| \le |f(y_0)|$, d'où le résultat.
 - iii) Il suffit de vérifier que $4(-\frac{1}{2u^3})^2 a(-\frac{1}{2u^3}) 2 < 0$, ce qui revient à montrer que u > 1, ce qui est vrai par définition de u (puisque $\epsilon = u^2 > 1$). On a donc $y_0 < -\frac{1}{2u^3}$, donc en élevant au carré, on a $u^{-6} 4y_0^2 < 0$, donc a fortiori $u^{-6} 4y_0^2 4y_0^4 < 0$.
 - iv) On a montré (voir e) ii)) que $|d_{\epsilon}| \le 4(1-y_0^2)(a-2y_0)^2$. Or on a $4(1-y_0^2)(a-2y_0)^2 = 4(1-y_0^2)(a^2-4ay_0+4y_0^2) = 4(1-y_0^2)(a^2-16y_0^2+8+4y_0^2) = 4(1-y_0^2)(a^2+8-12y_0^2)$. Or

$$4(1-y_0^2)(a^2+8-12y_0^2) = 4(a^2+8-10y_0^2-a^2y_0^2+2y_0^4),$$

donc en utilisant $a^2y_0^2 = 16y_0^4 - 16y_0^2 + 4$, on obtient

$$4(1-y_0^2)(a-2y_0)^2 = 4(a^2+4-4y_0^2-4y_0^4) = 4(u^6+6+u^{-6}-4y_0^2-4y_0^4).$$

Or la question e) iii) assure que $u^{-6} - 4y_0^2 - 4y_0^4 < 0$, donc les calculs précédents assurent que

$$|d_{\epsilon}| < 4(u^6 + 6) = 4\epsilon^3 + 24$$
.

- f) On sait que $f^2D_K = d_{\epsilon}$, où f est l'indice de $\mathbb{Z}[\epsilon]$ dans \mathbb{Z}_K , donc en particulier $|D_K| \leq |d_{\epsilon}|$, d'où le résultat.
- g) Puisque ϵ est l'unité fondamentale et puisque $\eta > 1$, il existe $n \geq 1$ tel que $\eta = \epsilon^n$. Alors l'hypothèse $4\eta^{\frac{3}{2}} + 24 < |D_K|$ implique que $4\epsilon^{\frac{3n}{2}} + 24 < |D_K|$. Or la question f) assure que $|D_K| < 4\epsilon^3 + 24$. Donc on en déduit que $\epsilon^{\frac{3n}{2}} < \epsilon^3$, donc $\frac{3n}{2} < 3$, donc n = 1, donc $\eta = \epsilon$.
- h) i) On sait que $D_K = -27.2^2 = -108$ (voir feuille de TD8, exercice 11 par exemple). On considère $\eta := 1 + \sqrt[3]{2} + \sqrt[3]{4} \in \mathbb{Z}_K$. Alors $\eta = \frac{1}{\sqrt[3]{2}-1}$. Le polynôme minimal de $\sqrt[3]{2}-1$ est $(X+1)^3-2=X^3+3X^2+3X-1$, donc $\sqrt[3]{2}-1$ est une unité, donc η est une unité et $\eta > 1$.

On applique alors le critère de la question g) pour montrer que η est une unité fondamentale. On a $\eta \approx 3,847 < 4$ et donc $4\eta^{\frac{3}{2}} + 24 < 4.8 + 24 = 56 < 108 = |D_K|$. Donc la question g) assure que η est une unité fondamentale, donc $\sqrt[3]{2} - 1$ aussi.

- ii) Au vu du polynôme minimal, α est une unité, et $-1 < \alpha < 0$. Donc $\eta := \frac{-1}{\alpha}$ est une unité > 1. On a disc $(1, \alpha, \alpha^2) = -59$ sans facteur carré, donc $\mathbb{Z}_K = \mathbb{Z}[\alpha]$ et $D_K = -59$. Un calcul approché donne $\eta \approx 2,205 < 4$, donc $4\eta^{\frac{3}{2}} + 24 < 4.8 + 24 = 56 < 59 = |D_K|$, donc la question g) assure que η est une unité fondamentale.
- iii) Au vu du polynôme minimal, α est une unité, et $-1 < \alpha < 0$. Donc $\eta := \frac{-1}{\alpha}$ est une unité > 1. On a disc $(1, \alpha, \alpha^2) = -4027$ et 4027 est un nombre premier, donc $\mathbb{Z}_K = \mathbb{Z}[\alpha]$ et $D_K = -4027$. Un calcul approché donne $\eta \approx 10,01 < 16$, donc $4\eta^{\frac{3}{2}} + 24 < 4.64 + 24 = 280 < 4027 = |D_K|$, donc la question g) assure que η est une unité fondamentale.

Exercice 4: On pourra utiliser les résultats de l'exercice 3.

a) Soit α un entier algébrique, de polynôme minimal $P \in \mathbb{Z}[X]$. Soit $r \in \mathbb{Z}$ tel que $P(r) = \pm 1$. Montrer que $\alpha - r$ est une unité de $\mathbb{Z}_{\mathbb{Q}(\alpha)}$.

- b) Montrer que $\frac{1}{2-\sqrt[3]{7}}$ est une unité fondamentale dans $K=\mathbb{Q}(\sqrt[3]{7})$.
- c) On note β la racine réelle de X^3+X-3 . Montrer que $\frac{1}{\beta-1}$ est une unité fondamentale de $\mathbb{Q}(\beta)$.

Solution de l'exercice 4.

- a) On définit le polynôme $Q(X) := P(X+r) \in \mathbb{Z}[X]$. Alors $Q(\alpha-r) = P(\alpha) = 0$, donc Q est un polynôme annulateur unitaire de $\alpha-r$ à coefficients entiers. En écrivant $P(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_0$, on voit que le coefficient constant de Q vaut exactement $P(r) = \pm 1$, donc $\alpha-r$ est un entier de norme ± 1 , donc c'est une unité.
- b) On applique la question précédente à $\alpha := \sqrt[3]{7}$, $P(X) = X^3 7$ et r = 2. Puisque P(2) = 1, $\sqrt[3]{7} 2$ est une unité de \mathbb{Z}_K , donc $\eta := \frac{1}{2 \sqrt[3]{7}}$ est une unité de K. Or $D_K = -27.7^2 = -1323$ (voir feuille de TD8, exercice 11) et $\eta \approx 11,48 < 16$, donc $4\eta^{\frac{3}{2}} + 24 < 280 < 1323 = |D_K|$. Donc la question g) de l'exercice 3 assure que η est une unité fondamentale de K.
- c) On a disc($\mathbb{Z}[\alpha]$) = -247 = -13.19 sans facteur carré, donc $\mathbb{Z}_K = \mathbb{Z}[\alpha]$ et $D_K = -247$. Puisque le polynôme $X^3 + X 3$ évalué en 1 vaut -1, la question a) assure que $\beta 1$ est une unité de \mathbb{Z}_K . Donc $\eta := \frac{1}{\beta 1}$ est une unité de \mathbb{Z}_K . Un calcul approché assure que $1 < \eta < 10$, donc $4\eta^{\frac{3}{2}} + 24 < 40\sqrt{10} + 24 < 40.4 + 24 = 184 < 247 = |D_K|$. Donc la question g) de l'exercice 3 assure que η est une unité fondamentale de K.