

Why the Galapagos illustrate DAISIE badly...

Richel J.C. Bilderbeek

DAISIE

ECOLOGY LETTERS

LETTER

Equilibrium and non-equilibrium dynamics simultaneously operate in the Galápagos islands

Luis M. Valente, 1* Albert B. Phillimore² and Rampal S. Etienne³

Island biotas emerge from the interplay between colonisation, speciation and extinction and are often the scene of spectacular adaptive radiations. A common assumption is that insular diversity is at a dynamic equilibrium, but for remote islands, such as Hawaii or Galápagos, this idea

doi: 10.1111/ele.12461

DAISIE

"Here, we develop DAISIE (Dynamic Assembly of Islands through Speciation, Immigration and Extinction), a likelihood-based phylogenetic method that unifies the island biogeography framework of MacArthur & Wilson with the phylogenetic birth-death models popularised by Nee et al."

DAISIE unifies island biogeography with birth-death models

25 species, 8 clades

"According to the most strongly supported DAISIE model, the avifauna of the Galapagos islands does not tend towards a diversity steady state"

My claim

The Galapagos are a bad illustration of DAISIE, because (1) the final result is weak, and (2) the figures oversell the story

The result

Name		Е	Backgro	und		Darwin's finch type			Loglik	BIC	BIC weight
	λ^{c}	μ	<i>K</i> '	γ	λ^a	λ^{c}	μ	<i>K</i> '			
M1	2.55	2.68	-	0.009	1.01	-	-	-	-76.0	186.98	1.81x10 ⁻¹
M2											9.14×10^{-2}
M3											3.03×10^{-3}
M4											2.29×10^{-3}
M5											1.20 x10 ⁻¹
M6											1.15×10^{-3}
M7											3.83 x10 ⁻⁵
M8											5.86 x10 ⁻¹
M1'											2.29×10^{-3}
M2'											1.16×10^{-3}
M3'											3.87×10^{-4}
M4'											1.26×10^{-4}
M5'											1.53×10^{-3}
M6'											1.47 x10 ⁻⁵
M7'											4.88 x10 ⁻⁶
M8'											8.20 x10 ⁻³

M8

M1

M5

...

M2

Other models—

The results without DF

Name		В	BIC weight			
	λ^{c}	μ	K'	γ	λ^{a}	
M1	2.55	2.68	-	0.009	1.01	1.81x10 ⁻¹
M1'	2.56	2.69	∞	0.009	1.01	2.29×10^{-3}

Top results

Name		В	Backgro	ound		Darwin's	BIC weight		
	λ^{c}	μ	K'	γ	λ^{a}	λ^{c}	μ	K'	_
M8	0.20	0.09	-	0.002	0.87	≫ μ <i>K</i> '	8.91	14.99	5.86 x10 ⁻¹
M1	2.55	2.68	-	0.009	1.01	-	-	-	1.81×10^{-1}
M5	0.29	0.38	-	0.004	1.03	6.87	6.51	-	1.20 x10 ⁻¹
M2	0.38	0.55	-	0.004	1.10	2.28	-	-	9.14 x10 ⁻²

Pretty birds, 25 species, 8 clades

25 species, 8 clades

7 clades with 10 species

1 clade with 15 species

7 clades with 10 species 1 clade with 15 species DAISIE unifies island biogeography with birth-death models

My claim

The Galapagos are a bad illustration of DAISIE, because (1) the final result is weak, and (2) the figures oversell the story

(1) there is no unification

Figures, expected

Name		В	ackgro	ound		Darwin's finch type			
	λ^{c}	μ	K'	γ	λ^{a}	λ^{c}	μ	K'	
M8	0.20	0.09	-	0.002	0.87	≫ μ <i>K</i> '	8.91	14.99	

Name		В	ackgro	ound		Darwin's finch type			
	λ^{c}	μ	K'	γ	λ^{a}	λ^{c}	μ	<i>K</i> '	
M8	0.20	0.09	-	0.002	0.87	≫ μ <i>K</i> '	8.91	14.99	

"According to the most strongly supported DAISIE model, the avifauna of the Galapagos islands does not tend towards a diversity steady state"

My claim

The Galapagos are a bad illustration of DAISIE, because (1) the final result is weak, and (2) the figures oversell the story

- (1) there is no unification
- (2) ugly results are omitted

Questions

What do you think?