Design A Lead Screw For Lathe Machine

Presenters:

Ayman Khan (200108149)
Hasin Anjum Junayed (200108138)
Tarek Ahmed (200108144)
Nazmul Ahsan Nahid (200108135)
Ishtiyak Karim Ratul (200108136)

- CHOOSE AND JUSTIFY THE OPTIMAL SOLUTION
- DEVELOPE A PROTOTYPE
- TEST & EVALUATE

$$T_R = \frac{Fd_m}{2} \left(\frac{l + \pi f d_m}{\pi d_m - f l} \right)$$

$$\sigma_x = \frac{6F}{\pi d_r n_t p}$$

$$T_L = \frac{Fd_m}{2} \left(\frac{\pi f d_m - l}{\pi d_m + fl} \right)$$

$$\sigma_{y} = -\frac{4F}{\pi d_{r}^{2}}$$

$$(8-8)$$

$$T_R = \frac{Fd_m}{2} \left(\frac{l + \pi f d_m \sec \alpha}{\pi d_m - f l \sec \alpha} \right)$$

Figure 8-3

- (a) Square thread;
- (b) Acme thread.

$$(8-4)$$

Figure 8-7

(a) Normal thread force is increased because of angle α ; (b) thrust collar has frictional diameter d_c .

(8-7)

 α (\uparrow) <- Friction Induced (\uparrow) $2\alpha = \frac{\text{Thread}}{\text{angle}}$

 $\sigma_B = -\frac{F}{\pi d_m n_t p/2} = -\frac{2F}{\pi d_m n_t p}$

(8-10)

Why square thread should be preferred?

- High Efficiency
- Low Stress developed
- Exert minimum Pressure on nut

Theoretically BEST

Then why industry uses ACME/Trapezoidal threaded screws?

- Easy to Machine
- Cheaper to make
- Wider Area → Stronger → carry more LOADS
- ullet Transmit more TORQUE \longrightarrow resistant to wear

Practically BEST

Why ACME over Trapezoidal?

Priority — Lathe machine — Threading

For Threading:

- Precise movement
- Finer pitch
- Quick Engagement & Disengagement

T(raise) N.m	T(lower) N.m
3.35	-0.75
3.86	-0.24
4.11	0.01
4.37	0.27
5.13	1.03
5.64	1.54
6.92	2.82

T(raise) N.m	T(lower) N.m
3.40	-0.71
3.92	-0.18
4.18	0.08
4.44	0.34
5.23	1.13
5.76	1.66
7.08	2.98

Square

ACME

Example: ((3.35 - 3.4)/3.35) % = 1.5% increase

Properties of Stainless Steel

SS Grade 304

- Sut = 579 MPa
- Sy = 205 MPa
- Low cost

SS Grade 316

- Sut = 621 MPa
- Sy = 291 MPa
- Better corrosion resistance

<u>Fig: Atlas steels reference manual</u> (Section 9: Appendices, page 2)

COLOUR CODE

Stress Analysis for varying Diameter

Major Diameter,d	Efficiency	Torsional Shear Stress (MPa)	Axial Stress (MPa)	Bearing Stress (MPa)	Bending Stress (MPa)	Force, F	
6	60.79%	266.69	509.30	154.83	580.60		
8	52.81%	90.95	226.35	110.59	387.06		
9	49.55%	61.05	166.30	96.77	331.77	5.5 KN (max, 316)	→ Square
10	46.66%	43.43	127.32	86.01	290.30		
13	39.70%	19.63	67.34	64.51	211.13		_
15	36.11%	13.08	48.22	55.29	178.65		• Force
20	29.44%	6.04	25.15	40.74	129.02		Increased
Major Diameter,d	Efficiency	Torsional Shear Stress (MPa)	Axial Stress (MPa)	Bearing Stress (MPa)	Bending Stress (MPa)	Force, F	• Stress
Major Diameter,d	Efficiency 58.09%	Stress (MPa)		_	Stress (MPa)	·	• Stress Decreased
	•	Stress (MPa) 270.17	Stress (MPa)	Stress (MPa) 149.89	Stress (MPa) 562.10		_
6	58.09%	Stress (MPa) 270.17 92.37	Stress (MPa) 493.07	Stress (MPa) 149.89	Stress (MPa) 562.10 374.74		Decreased
6 8	58.09% 50.34%	Stress (MPa) 270.17 92.37 62.07	Stress (MPa) 493.07 219.14	Stress (MPa) 149.89 107.07	Stress (MPa) 562.10 374.74	5.7 KN (max, 316)	Decreased
6 8 9	58.09% 50.34% 47.18%	Stress (MPa) 270.17 92.37 62.07 44.19	Stress (MPa) 493.07 219.14 161.00	Stress (MPa) 149.89 107.07 93.68	Stress (MPa) 562.10 374.74 321.20 281.05	5.7 KN (max, 316)	Decreased
6 8 9 10	58.09% 50.34% 47.18% 44.39%	Stress (MPa) 270.17 92.37 62.07 44.19 20.02	Stress (MPa) 493.07 219.14 161.00 123.27	Stress (MPa) 149.89 107.07 93.68 83.27	Stress (MPa) 562.10 374.74 321.20 281.05 204.40	5.7 KN (max, 316)	Decreased

Stress Analysis for varying Pitch

Pltch, p	Efficiency	Torsional Shear Stress (MPa)	Axial Stress (MPa)	Bearing Stress (MPa)	Bending Stress (MPa)	Force, F	
1	34.54%	43.78	166.30	206.43	663.54		
2	52.81%	90.95	226.35	110.59	387.06		
3	63.98%	194.59	325.95	79.40	309.65	5.6 KN (max, 316)	→ Square
4	71.39%	454.17	509.30	64.51	290.30		•
5	76.53%	1255.32	905.41	56.30	309.65		
6	80.16%	4853.93	2037.18	51.61	387.06		• Force
7	82.68%	43920.37	8148.73	49.15	663.54		Increased
							• Stress
Pltch, p	Efficiency	Torsional Shear Stress (MPa)	Axial Stress (MPa)	Bearing Stress (MPa)	Bending Stress (MPa)	Force, F	• Stress Decreased
Pltch, p	Efficiency 32.74%					Force, F	StressDecreased
Pltch, p 1		Stress (MPa)	Stress (MPa)	Stress (MPa)	Stress (MPa)	Force, F	_
Pltch, p 1 2 3	32.74%	Stress (MPa) 44.73	Stress (MPa) 161.00	Stress (MPa) 199.86	Stress (MPa) 642.40	Force, F 5.8 KN (max, 316)	_
Pltch, p 1 2 3 4	32.74% 50.34%	Stress (MPa) 44.73 92.37	Stress (MPa) 161.00 219.14	Stress (MPa) 199.86 107.07	Stress (MPa) 642.40 374.74		Decreased
1 2 3	32.74% 50.34% 61.21%	Stress (MPa) 44.73 92.37 196.92 458.52	Stress (MPa) 161.00 219.14 315.57	Stress (MPa) 199.86 107.07 76.87	Stress (MPa) 642.40 374.74 299.79		Decreased
1 2 3 4	32.74% 50.34% 61.21% 68.46%	Stress (MPa) 44.73 92.37 196.92 458.52	Stress (MPa) 161.00 219.14 315.57 493.07	Stress (MPa) 199.86 107.07 76.87 62.46	Stress (MPa) 642.40 374.74 299.79 281.05		Decreased

Stress Analysis for varying Diameter

Major Diameter,d	Efficiency	Torsional Shear Stress (MPa)	Axial Stress (MPa)	Bearing Stress (MPa)	Bending Stress (MPa)	Force, F	
6	57.91%	270.42	491.94	149.55	, ,		
8	50.17%	92.47	218.64	106.82	373.88		
9	47.02%	62.14	160.63	93.47	320.47	5.7 KN (max, 316)	→ ACME
10	44.23%	44.25	122.99	83.08	280.41		
13	37.55%	20.05	65.05	62.31	203.93		
15	34.11%	13.37	46.57	53.41	172.56		
20	27.74%	6.19	24.29	39.36	124.63		Stress
Major Diameter,d	Efficiency	Torsional Shear Stress (MPa)	Axial Stress (MPa)	Bearing Stress (MPa)	Bending Stress (MPa)	Force, F	INCREASED
6	58.09%	270.17	493.07	149.89	562.10		
8	50.34%	92.37	219.14	107.07	374.74		Trape
9	47.18%	62.07	161.00	93.68	321.20	5.7 KN (max, 316)	\rightarrow

123.27

65.20

46.68

24.35

83.27

62.46

53.53

39.45

281.05

204.40

172.96

124.91

44.19

20.02

13.35

6.18

10

13

15

20

44.39%

37.69%

34.24%

27.85%

zoidal

Stress Analysis for varying Pitch

	Force, F	Bending Stress (MPa)	Bearing Stress (MPa)	Axial Stress (MPa)	Torsional Shear Stress (MPa)	Efficiency	Pltch, p
		642.40	199.86	161.00	44.73	32.74%	1
		374.74	107.07	219.14	92.37	50.34%	2
→ ACME	5.8 KN (max, 316)	299.79	76.87	315.57	196.92	61.21%	3
		281.05	62.46	493.07	458.52	68.46%	4
		299.79	54.51	876.58	1265.26	73.51%	5
Stress		374.74	49.96	1972.29	4886.65	77.08%	6
DECREASI		642.40	47.59	7889.18	44181.31	79.57%	7

ECREASED (not torsional)

Trape

								1.
	Pltch, p	Efficiency	Torsional Shear Stress (MPa)	Axial Stress (MPa)	Bearing Stress (MPa)	Bending Stress (MPa)	Force, F	(1
	1	32.69%	44.80	160.63	199.40	640.93		
	2	50.29%	92.47	218.64	106.82	373.88		
	3	61.16%	197.09	314.84	76.69	299.10	5.8 KN (max, 316)	_
ı	4	68.41%	458.83	491.94	62.31	280.41		
	5	73.47%	1265.97	874.56	54.38	299.10		
	6	77.05%	4889.02	1967.77	49.85	373.88		
	7	79.54%	44200.19	7871.07	47.48	640.93		

This is interesting!

Diameter (same)	Pltch (change)	Bending Stress (%, decrease)	Diameter (change)	Pltch (same)	Bending Stress (%, decrease)
8	2 to 3	20%	8 to 9	2	14%
8	3 to 4	6%	9 to 10	2	12%
9	2 to 3	22%	8 to 9	3	16%
9	3 to 4	10%	9 to 10	3	14%

Changing PITCH creates more impact on STRESS

ALTERNATIVE DESIGNS (SS GRADE 316)

• d = 10 mm

• p = 2 mm

Trapezoidal
Thread Rendered

Force: 2000N

Material: <u>SS 316L</u>

Bending Stress
analysis on ACME
threaded lead screw
using Fusion 360

(accuracy of solution)

Mesh Refinement

Force: 2000N Material: SS 316L Solution Step: 10

As the MESH is close enough, safe to assume OKAY.

Simulated on Fusion 360

THANK YOU

