A simple linear classifier

Topics we'll cover

- 1 Linear decision boundary for binary classification
- 2 A loss function for classification
- 3 The Perceptron algorithm

Linear decision boundary for classification: example

- What is the formula for this boundary?
- What label would we predict for a new point x?

Linear classifiers

Binary classification problem: data $x \in \mathbb{R}^d$ and labels $y \in \{-1, +1\}$

- Linear classifier:
 - Parameters: $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$
 - Decision boundary $w \cdot x + b = 0$
 - On point x, predict label $sign(w \cdot x + b)$
- If the true label on point x is y:
 - Classifier correct if $y(w \cdot x + b) > 0$

A loss function for classification

What is the **loss** of our linear classifier (given by w, b) on a point (x, y)?

One idea for a loss function:

- If $y(w \cdot x + b) > 0$: correct, no loss
- If $y(w \cdot x + b) < 0$: loss = $-y(w \cdot x + b)$

A simple learning algorithm

Fit a linear classifier w, b to the training set using **stochastic gradient descent**.

- Update w, b based on just one data point (x, y) at a time
- If $y(w \cdot x + b) > 0$: zero loss, no update
- If $y(w \cdot x + b) \le 0$: loss is $-y(w \cdot x + b)$

The Perceptron algorithm

- Initialize w = 0 and b = 0
- Keep cycling through the training data (x, y):
 - If $y(w \cdot x + b) \le 0$ (i.e. point misclassified):
 - w = w + yx
 - b = b + y

The Perceptron in action

85 data points, linearly separable.

Perceptron: convergence

If the training data is linearly separable:

- The Perceptron algorithm will find a linear classifier with zero training error
- It will converge within a finite number of steps.

But is there a better, more systematic choice of separator?

Support vector machines I: Maximum-margin linear classifiers

Topics we'll cover

- 1 The margin of a linear classifier
- 2 Maximizing the margin
- 3 A convex optimization problem
- 4 Support vectors

Improving upon the Perceptron

For a linearly separable data set, there are in general many possible separating hyperplanes, and Perceptron is guaranteed to find one of them.

Is there a better, more systematic choice of separator? The one with the most buffer around it, for instance?

The learning problem

Given: training data $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^d \times \{-1, +1\}.$

Find: $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$ such that $y^{(i)}(w \cdot x^{(i)} + b) > 0$ for all i.

By scaling w, b, can equivalently ask for

$$y^{(i)}(w \cdot x^{(i)} + b) \ge 1$$
 for all i

Maximizing the margin

Given: training data $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^d \times \{-1, +1\}.$

Find: $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$ such that

$$y^{(i)}(w \cdot x^{(i)} + b) \ge 1$$
 for all i .

Maximize the **margin** γ .

A formula for the margin

Close-up of a point z on the positive boundary.

A quick calculation shows that $\gamma = 1/\|w\|$.

In short: to maximize the margin, minimize ||w||.

Maximum-margin linear classifier

• Given $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^d \times \{-1, +1\}$

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \|w\|^2$$
 s.t.: $y^{(i)}(w \cdot x^{(i)} + b) \geq 1$ for all $i = 1, 2, \dots, n$

- This is a convex optimization problem:
 - Convex objective function
 - Linear constraints
- This means that:
 - the optimal solution can be found efficiently
 - duality gives us information about the solution

Support vectors

Support vectors: training points right on the margin, i.e. $y^{(i)}(w \cdot x^{(i)} + b) = 1$.

 $w = \sum_{i=1}^{n} \alpha_i y^{(i)} x^{(i)}$ is a function of just the support vectors.

Small example: Iris data set

Fisher's iris data

150 data points from three classes:

- iris setosa
- iris versicolor
- iris virginica

Four measurements: petal width/length, sepal width/length

Small example: Iris data set

Two features: sepal width, petal width.

Two classes: setosa (red circles), versicolor (black triangles)

Support vector machines II: Soft-margin SVM

Topics we'll cover

- 1 Data that isn't linearly separable
- 2 Adding slack variables for each point
- 3 Revised convex optimization problem
- 4 Setting the slack parameter

Recall: maximum-margin linear classifier

Given: $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^d \times \{-1, +1\}.$

Find: the linear separator w that perfectly classifies the data and has maximum margin.

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \|w\|^2$$

s.t.: $y^{(i)}(w \cdot x^{(i)} + b) \ge 1$ for all $i = 1, 2, \dots, n$

Solution $w = \sum_{i=1}^{n} \alpha_i y^{(i)} x^{(i)}$ is a function of just the support vectors.

What if data is not separable?

The non-separable case

Idea: allow each data point $x^{(i)}$ some **slack** ξ_i .

$$\min_{\substack{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n \\ \text{s.t.: } y^{(i)}(w \cdot x^{(i)} + b) \geq 1 - \xi_i \\ \xi \geq 0}} \|w\|^2 + C \sum_{i=1}^n \xi_i$$

Wine data set

Here C = 1.0

The tradeoff between margin and slack

$$\min_{\substack{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n \\ \text{s.t.: } y^{(i)}(w \cdot x^{(i)} + b) \ge 1 - \xi_i \\ \xi \ge 0}} \|w\|^2 + C \sum_{i=1}^n \xi_i$$

Back to Iris

C = 1

Sentiment data

Sentences from reviews on Amazon, Yelp, IMDB, each labeled as positive or negative.

- Needless to say, I wasted my money.
- He was very impressed when going from the original battery to the extended battery.
- I have to jiggle the plug to get it to line up right to get decent volume.
- Will order from them again!

Data details:

- Bag-of-words representation using a vocabulary of size 4500
- 2500 training sentences, 500 test sentences

What C to use?

C	training error (%)	test error (%)	# support vectors
0.01	23.72	28.4	2294
0.1	7.88	18.4	1766
1	1.12	16.8	1306
10	0.16	19.4	1105
100	0.08	19.4	1035
1000	0.08	19.4	950

Cross-validation

Results of 5-fold cross-validation:

Chose C = 0.32. Test error: 15.6%

Duality

Topics we'll cover

- 1 Dual form of the Perceptron
- 2 Dual form of the support vector machine

Dual form of the Perceptron solution

Given a training set of points $\{(x^{(i)}, y^{(i)}) : i = 1 \dots n\}$:

Perceptron algorithm

- Initialize w = 0 and b = 0
- While some training point (x, y) is misclassified:
 - w = w + yx
 - b = b + y

The final answer is of the form:

$$w = \sum_{i} \alpha_{i} y^{(i)} x^{(i)},$$

where $\alpha_i = \#$ of times an update occurred on point *i*.

Can equivalently represent w by $\alpha = (\alpha_1, \dots, \alpha_n)$.

Dual form of the Perceptron algorithm

Perceptron algorithm: primal form

- Initialize w = 0 and b = 0
- While some training point $(x^{(i)}, y^{(i)})$ is misclassified:
 - $w = w + y^{(i)}x^{(i)}$
 - $b = b + y^{(i)}$

Perceptron algorithm: dual form

- Initialize $\alpha = 0$ and b = 0
- While some training point $(x^{(i)}, y^{(i)})$ is misclassified:
 - $\alpha_i = \alpha_i + 1$
 - $b = b + y^{(i)}$

Answer: $w = \sum_{i} \alpha_{i} y^{(i)} x^{(i)}$

Hard-margin SVM

• Given $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^d \times \{-1, +1\}$

(PRIMAL)
$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \|w\|^2$$

s.t.: $y^{(i)}(w \cdot x^{(i)} + b) \ge 1$ for all $i = 1, 2, ..., n$

- This is a convex optimization problem:
 - Convex objective function
 - Linear constraints
- As such, it has a dual maximization problem.
- The **primal** and **dual** problems have the same optimum value.

The dual program

(PRIMAL)
$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \|w\|^2$$

s.t.: $y^{(i)}(w \cdot x^{(i)} + b) \ge 1$ for all $i = 1, 2, ..., n$

(DUAL)
$$\max_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y^{(i)} y^{(j)} (x^{(i)} \cdot x^{(j)})$$
s.t.:
$$\sum_{i=1}^n \alpha_i y^{(i)} = 0$$

$$\alpha \ge 0$$

Complementary slackness: At optimality, $w = \sum_{i=1}^{n} \alpha_i y^{(i)} x^{(i)}$ and

$$\alpha_i > 0 \Rightarrow y^{(i)}(w \cdot x^{(i)} + b) = 1$$

Points $x^{(i)}$ with $\alpha_i > 0$ are **support vectors**.

Dual of soft-margin SVM

$$(PRIMAL) \min_{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n} ||w||^2 + C \sum_{i=1}^n \xi_i$$
s.t.: $y^{(i)}(w \cdot x^{(i)} + b) \ge 1 - \xi_i$ for all $i = 1, 2, \dots, n$

$$\xi \ge 0$$

(DUAL)
$$\max_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y^{(i)} y^{(j)} (x^{(i)} \cdot x^{(j)})$$
s.t.:
$$\sum_{i=1}^n \alpha_i y^{(i)} = 0$$

$$0 \le \alpha_i \le C$$

At optimality,
$$w = \sum_i \alpha_i y^{(i)} x^{(i)}$$
, with
$$0 < \alpha_i < C \quad \Rightarrow \quad y^{(i)} (w \cdot x^{(i)} + b) = 1$$

$$\alpha_i = C \quad \Rightarrow \quad y^{(i)} (w \cdot x^{(i)} + b) = 1 - \xi_i$$

Multiclass linear prediction

Topics we'll cover

- 1 Multiclass logistic regression
- 2 Multiclass Perceptron
- **3** Multiclass support vector machines

Multiclass classification

Of the classification methods we have studied so far, which seem inherently binary?

- Nearest neighbor?
- Generative models?
- Linear classifiers?

The main idea

Remember Gaussian generative models...

From binary to multiclass logistic regression

Binary logistic regression: for $\mathcal{X} = \mathbb{R}^d$, classifier given by $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$:

$$\Pr(y=1|x) = \frac{e^{w \cdot x + b}}{1 + e^{w \cdot x + b}}$$

Labels $\mathcal{Y} = \{1, 2, ..., k\}$: specify a classifier by $w_1, ..., w_k \in \mathbb{R}^d$ and $b_1, ..., b_k \in \mathbb{R}$:

$$\Pr(y = j | x) \propto e^{w_j \cdot x + b_j}$$

What is the fully normalized form of the probability?

Given a point x, which label to predict?

Multiclass logistic regression

- Label space: $\mathcal{Y} = \{1, 2, ..., k\}$
- Parametrized classifier: $w_1, \ldots, w_k \in \mathbb{R}^d$, $b_1, \ldots, b_k \in \mathbb{R}$:

$$\Pr(y=j|x) = \frac{e^{w_j \cdot x + b_j}}{e^{w_1 \cdot x + b_1} + \dots + e^{w_k \cdot x + b_k}}$$

- **Prediction**: given a point x, predict label arg $\max_{j} (w_j \cdot x + b_j)$.
- **Learning**: Given: $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})$. Find: $w_1, \dots, w_k \in \mathbb{R}^d$ and b_1, \dots, b_k that maximize the likelihood

$$\prod_{i=1}^n \Pr(y^{(i)}|x^{(i)})$$

Taking negative log gives a convex minimization problem.

Multiclass Perceptron

Setting: $\mathcal{X} = \mathbb{R}^d$ and $\mathcal{Y} = \{1, 2, \dots, k\}$

Model: $w_1, \ldots, w_k \in \mathbb{R}^d$ and $b_1, \ldots, b_k \in \mathbb{R}$

Prediction: On instance x, predict label arg $\max_{j} (w_j \cdot x + b_j)$

Learning. Given training set $(x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)})$:

- Initialize $w_1 = \cdots = w_k = 0$ and $b_1 = \cdots = b_k = 0$
- Repeat while some training point (x, y) is misclassified:

for correct label
$$y$$
: $w_y = w_y + x$ $b_y = b_y + 1$ for predicted label \widehat{y} : $w_{\widehat{v}} = w_{\widehat{v}} - x$

predicted label y.
$$w_{\widehat{y}} = w_{\widehat{y}} - x$$
 $b_{\widehat{v}} = b_{\widehat{v}} - 1$

Multiclass Perceptron: example

Multiclass SVM

Model: $w_1, \ldots, w_k \in \mathbb{R}^d$ and $b_1, \ldots, b_k \in \mathbb{R}$

Prediction: On instance x, predict label arg $\max_i (w_i \cdot x + b_i)$

Learning. Given training set $(x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)})$:

$$\min_{w_1, \dots, w_k \in \mathbb{R}^d, b_1, \dots, b_k \in \mathbb{R}, \xi \in \mathbb{R}^n} \sum_{j=1}^k ||w_j||^2 + C \sum_{i=1}^n \xi_i$$

$$w_{y^{(i)}} \cdot x^{(i)} + b_{y^{(i)}} - w_y \cdot x^{(i)} - b_y \ge 1 - \xi_i \quad \text{for all } i \text{ and all } y \ne y^{(i)}$$

$$\xi \ge 0$$

Multiclass SVM example: iris

Multiclass SVM

Given training set $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})$:

$$\min_{w_1, ..., w_k \in \mathbb{R}^d, b_1, ..., b_k \in \mathbb{R}, \xi \in \mathbb{R}^n} \sum_{j=1}^k \|w_j\|^2 + C \sum_{i=1}^n \xi_i$$

$$w_{y^{(i)}} \cdot x^{(i)} + b_{y^{(i)}} - w_y \cdot x^{(i)} - b_y \ge 1 - \xi_i \quad \text{for all } i \text{ and all } y \ne y^{(i)}$$

$$\xi \ge 0$$

Once again, a convex optimization problem.

Question: how many variables and constraints do we have?