

KARATINA UNIVERSITY UNIVERSITY SPECIAL/ SUPPLEMENTARY EXAMINATIONS

2024/2025 ACADEMIC YEAR

THIRD YEAR **FIRST** SEMESTER EXAMINATION

FOR THE DEGREE OF:

BACHELOR OF EDUCATION (E101)

COURSE CODE: MAT 313

COURSE TITLE: GROUP THEORY

DATE: TIME:

INSTRUCTIONS TO CANDIDATES

• SEE INSIDE

<u>INSTRUCTIONS:</u> Answer question <u>ONE</u> in <u>SECTION A</u> and any other <u>TWO</u> in <u>SECTION B</u>

SECTION A

QUESTION ONE: (30 MARKS)

- a) Let $S = \{f_1, f_2, f_3, f_4\}$ where $f_i : \mathbb{R}^* \to \mathbb{R}^*$ define by $f_1(x) = x$, $f_2(x) = \frac{1}{x}$, $f_3(x) = -x$, $f_4(x) = -\frac{1}{x}$. Let o denote composition of mappings.
 - (i) Construct the Cayley table for S under *o*. (3 Marks)
 - (ii) Is *o* a commutative operation? Explain (3 Marks)
- b) Find the order of (123)(45) in S_5 . (2 Marks)
- c) Let G be S_3 and $H = \{1, (1,2)\}$. Is H a normal subgroup of G. (2 Marks)
- d) Let S be the set $S = \{(a, b): a, b \in \mathbb{R}\}$. Define * on S by (a, b) * (c, d) = (ac, ad + b), for all $a, b, c, d \in \mathbb{R}$. Determine whether * a commutative operation is. (2 Marks)
- e) i) Define the center of a group. (2 Marks)
 - ii) Hence find the center of the quaternion group. (1 Mark)
- f) Define Homomorphism (2 Marks)
- g) Let F be the additive group of all functions mapping \mathbb{R} into \mathbb{R} , let \mathbb{R} be the additive group of real numbers and let c be any real number. Let $\emptyset_c : F \to \mathbb{R}$ be defined by $\emptyset_c(f) = f(c)$ for $f \in F$.
 - (i) Find $\emptyset_3(2x^3 2x^2 + 1)$ (1 Mark)
 - (ii) Show that \emptyset_c is a homomorphism. (2 Marks)
 - (h) Let S be a non-empty set and * be an operation on the set S. State two conditions that * should satisfy to be a binary operation on the set S. (2 Marks)
 - (i) Find the cyclic subgroup of the quaternion group generated by . (2 Marks)
 - (j) Determine if the permutation (123)(45678) is even or odd (2 Marks)
 - (k) Determine whether subtraction is a binary operation on \mathbb{Z}^+ . (2 Marks)
 - (l) Find gcd of 168 and 198 by the Euclidean algorithm. (3 Marks)

SECTION B

QUESTION TWO (20 MARKS)

a) Define * be on \mathbb{R} by a*b=2a+2b+ab+2. Determine the identity element for * (2 Marks)

b) Find the gcd of 1547 and 3059 and hence express the gcd in the form

 $1547m + 3059n = gcd \tag{8 Marks}$

- c) Proof all the group axioms for the Abelian group $(\mathbb{Z}, +)$ (5 Marks)
- d) List the elements of $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$. Hence show that $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$ has seven subgroups of order 2. (5 Marks)

QUESTION THREE (20 MARKS)

- a) Find the order of the factor group $(\mathbb{Z}_{12} \times \mathbb{Z}_{18})/((4,3))$. (2 Marks)
- b) Let $G = \mathbb{R}^2$ (operation vector addition), let $H = \mathbb{R}$ (operation addition) and define $\psi \colon \mathbb{R}^2 \to \mathbb{R}$ by $\psi(x,y) = x$. Thus ψ is projection onto the x-axis
 - (i) Show that ψ is a homomorphism (3 Marks)
 - (ii) Find $\ker \psi$ (2 Marks)
- c) Let $\delta = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 1 & 5 \end{bmatrix}$ and $\tau = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 4 & 5 & 2 \end{bmatrix}$
 - (i) Express δ and τ in disjoint cycle form (2 Marks)
 - (ii) Find . (1 Mark)
 - (iii) Find δ^2 . (1 Mark)
 - (iv) Find δ^4 . (1 Mark)
 - (v) Find δ^{11} . (1 Mark)
 - (vi) Find τ^{-1} (1 Mark)
- d) Define * on \mathbb{Z} by a*b=a+b-ab.* is a binary operation \mathbb{Z} with identity element 0. If $a \in \mathbb{Z}$, what is the inverse of a? (3 Marks)
- e) The collection of all the even permutations in S_n is a subgroup called the alternating group denoted by A_n of order $\frac{n!}{2}$. List the elements of A_3 (3 Marks)

QUESTION FOUR (20 MARKS)

- a) List and describe all the subgroups of $\langle \mathbb{Z}_{30}, + \rangle$ (16 Marks)
- b) Let G be a group. Show that the left cancellation laws hold, i.e. a*b=a*c implies b=c for all $a,b,c\in G$. (2 Marks)
- c) The ring $R = \{0, 2, 4, 6, 8\}$ under addition and multiplication modulo 10 has a unity. Find it. (2 Marks)

QUESTION FIVE (20 MARKS)

- a) Consider the various symmetry transformations of a rectangle that form the symmetry group of a rectangle.
 - (i) With the help of a diagram, compute and list all the elements in the symmetry group of rectangle. (4 Marks)
 - (ii) Construct the Cayley table for the symmetry group. (3 Marks)
 - (iii) List all non-trivial subgroup of this symmetry group. (3 Marks)
 - (iv) Determine if this is an abelian group. (1 Mark)
 - (v) What is the order of the non-identity elements in this group? (1 Mark)
 - (vi) The symmetry group of a rectangle is also referred to as? (1 Mark)
- b) Let S be the set $S = \{(a, b): a, b \in \mathbb{R}\}$. Define * on S by (a, b)*(c, d) = (ac, a + bd), for all $a, b, c, d \in \mathbb{R}$. Determine whether * is a binary operation. (3 Marks)
- c) Let $= \left\{ \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} : \lambda_1, \lambda_2 \in \mathbb{R} \right\}$, the set of all 2×2 diagonal matrices. Let * be matrix multiplication. Is * a commutative operation on S? (4 Marks)