

SECOND SEMESTER 2020-2021 <u>Course Handout (Part-II)</u>

Date: 16.01.2021

In addition to part-I (General Handout for all courses appended to the timetable) this portion gives further specific details regarding the course.

Course No. : BIOT F422

Course Title : Nanobiotechnology Instructors : Suman Kapur

1. Course Description:

Introduction; Nanoscience in Nature; Fundamental science behind nanomaterials; Synthesis and properties of nanomaterials; Tools to study the properties, Size and Shape determinations, Application of nanomaterials in Science, Engineering and biomedical field; Future Trends.

2. Scope & Objectives:

This is a course for the science and engineering students to introduce the concept of Nanobiotechnology at a basic level. It shows that nanomaterials are there in nature in abundance. Proper appreciation and unfolding them can lead to various fruitful application in Sciences, as well as in Engineering and Biomedical fields. The various techniques (conventional and ultra-modern) to synthesize and study nanomaterials are covered. The course ends with the direction towards which the field of Nanobiotechnology is growing at the moment.

3. Text Book:

Nicolini, Claudio, Nanobiotechnology and nanobiosciences -- 2009, World Scientific Pub

4. Reference Books:

RB1. C. M. Niemeyer and Chad A. Mirkin, Nanobiotechnology: concepts, applications and perspectives applications and perspectives, 2004, Wiley India

RB 2. Balaji, Subbiah, Nanobiotechnology, 2010, MJ Publisher India

5. Lecture Plan:

Lect. No.	Learning Objectives	Topics to be covered	Chapter in
			the Text
			Book
1-3	Introduction	What is Nanoscience? Where and how does the	TB Ch 1
		size matter? Moore's Law, Nanoscience in	
		nature	
4-10	Some Basics of Solid	Lattice Structure, Band Diagram, Density of	TB Ch 1 &
	State Physics &	States at various dimensions	3
	Quantum Mechanics		
11-18	Fabrication of	Top-down and bottom up approach	TB Ch 1 &
	Nanoparticles		2
	Quantum wells wires		
	and dots		

		l	
19-28	Characterization and	Scanning Tunneling microscopy, Scanning	TB Ch 2, 3
	analysis	Probe Microscopy, X-ray & Neutron Scattering	& 4
	-	Techniques	
29-34	Properties of different	Thermo-mechanical, Optical, Electrical,	TB Ch 3 &
	nanomaterials	Magnetic Properties	4
35-40	Application of	Molecular Electronics, Nanostructured	Ch 4
	nanoscience in	materials, Polymer nancomposites,	
	various fields	Nanobiology	
40-42	Future Trends	Future Scope of Nanoscience and a step	Research
		forward to a more powerful Nanotechnology	articles

6. Evaluation Scheme:

EC	Evaluation	Duration	Weightage	Date and Time	Nature of
No.	Component				Component
1	Mid Sem Test	90 min.	30%	03/03 3.30 - 5.00PM	Open Book
2	Quiz	Variable	20% (4x5)	In class hours	Open Book
3	Assignments	Variable	15% (3x5)	In class hours	Open Book
4	Comprehensive	2 Hours.	35%	08/05 FN	Open book
	Examination				-

Chamber Consultation Hour: To be announced in the class.

Notices: Notices concerning the course will be put up on the notice board of Department of Biological Sciences

Make-up policy: Make-up decisions will be made on a case-by-case basis and only genuine cases as determined by the instructor and validated by Wardens and/or Medical Officer will be considered. No make-up for Quizzes/Presentations/Assignments.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge BIO F422

