Übungsblatt 11 Ana

Computational and Data Science FS2025

Mathematik 2

Lernziele:

- Sie kennen die Begriffe Kurve, Spur, Geschwindigkeits-/Tangentenvektor, Beschleunigungsvektor, Tangenteneinheitsvektor, Hauptnormalenvektor, Binormalenvektor, Parametrisierung, Bogenlänge, Vektorfeld, Kurven-/Linienintegral und deren wichtigste Eigenschaften.
- Sie können die Spur einer parametrisierten Kurve in 2D skizzieren.
- > Sie können ein Vektorfeld in 2D skizzieren.
- Sie können die Bogenlänge einer Kurve berechnen.
- Sie können Linienintegrale berechnen.

1. Aussagen über parametrisierte Kurven

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Eine parametrisierte Kurve kann durch $\vec{\gamma} : \mathbb{R} \to \mathbb{R}^n$ dargestellt		
werden.		
b) Eine parametrisierte Kurve ist stets injektiv.		
c) Eine parametrisierte Kurve ist für $n \ge 2$ niemals surjektiv.		
d) Haben zwei parametrisierte Kurven dieselbe Spur, dann haben		
sie auch dieselbe Geschwindigkeit.		
e) Haben zwei parametrisierte Kurven dieselbe Spur, dann haben		
sie auch denselben Tangenteneinheitsvektor.		

2. Spur von parametrisierten Kurven

Skizzieren Sie jeweils die Spur der Kurve für einen geeigneten Bereich von $t \in \mathbb{R}$.

a)
$$\vec{\gamma}(t) = \begin{pmatrix} 1+2t \\ 3-t \end{pmatrix}$$

b)
$$\vec{\gamma}(t) = \begin{pmatrix} t \\ \sin t \end{pmatrix}$$

c)
$$\vec{\gamma}(t) = \begin{pmatrix} \sin t \\ t \end{pmatrix}$$

$$d) \vec{\gamma}(t) = \begin{pmatrix} 2\cos t \\ 2\sin t \end{pmatrix}$$

e)
$$\vec{\gamma}(t) = \begin{pmatrix} \cosh t \\ \sinh t \end{pmatrix}$$

a)
$$\vec{\gamma}(t) = \begin{pmatrix} 1+2t \\ 3-t \end{pmatrix}$$
 b) $\vec{\gamma}(t) = \begin{pmatrix} t \\ \sin t \end{pmatrix}$ c) $\vec{\gamma}(t) = \begin{pmatrix} \sin t \\ t \end{pmatrix}$ d) $\vec{\gamma}(t) = \begin{pmatrix} 2\cos t \\ 2\sin t \end{pmatrix}$ e) $\vec{\gamma}(t) = \begin{pmatrix} \cosh t \\ \sinh t \end{pmatrix}$ f) $\vec{\gamma}(t) = \begin{pmatrix} 2-\frac{t}{2\pi}\cos t \\ 2-\frac{t}{2\pi}\sin t \end{pmatrix}$

g) Plotten Sie die Spur der Kurven aus a) – f) mit Python/Numpy.

3. Geschwindigkeits- und Tangenteneinheitsvektor

Berechnen Sie jeweils den Tangenteneinheitsvektor und skizzieren Sie diesen entlang der Spur.

a)
$$\vec{\gamma}(t) = {2t-3 \choose 2-t}$$

b)
$$\vec{\gamma}(t) = \begin{pmatrix} 3\cos t - 3\\ 3\sin t + 1 \end{pmatrix}$$

1

b)
$$\vec{\gamma}(t) = \begin{pmatrix} 3\cos t - 3\\ 3\sin t + 1 \end{pmatrix}$$
 c) $\vec{\gamma}(t) = \begin{pmatrix} 3\cos t + 2\\ 2\sin t + 1 \end{pmatrix}$

4. Geschwindigkeits- und Beschleunigungsvektor

Differenzieren Sie die gegebenen Kurven zweimal nach t, um den Geschwindigkeitsund Beschleunigungsvektor zu bestimmen.

a)
$$\vec{a}(t) = \begin{pmatrix} \sin(2t) \\ e^t \\ \cos(2t) \end{pmatrix}$$
 b) $\vec{a}(t) = \begin{pmatrix} e^{-t} \cos t \\ e^{-t} \sin t \\ t \end{pmatrix}$

b)
$$\vec{a}(t) = \begin{pmatrix} e^{-t} \cos t \\ e^{-t} \sin t \\ t \end{pmatrix}$$

5. Ableitungen von Skalar- und Vektorprodukten

Gegeben seien die folgenden parameterabhängigen Vektoren:

$$\vec{a}(t) = \begin{pmatrix} t \\ t^2 \\ t^3 \end{pmatrix}, \vec{b}(t) = \begin{pmatrix} 2\cos t \\ 2\sin t \\ t^2 \end{pmatrix}, \vec{c}(t) = \begin{pmatrix} e^{-t} \\ e^{-t} \\ t \end{pmatrix}.$$

Bestimmen Sie die 1. Ableitung der folgenden Skalar- und Vektorprodukte mit Hilfe der entsprechenden Produktregel:

a)
$$\langle \vec{a}, \vec{b} \rangle$$

b)
$$\langle \vec{b}, \vec{c} \rangle$$

c)
$$\vec{a} \times \vec{b}$$
 d) $\vec{a} \times \vec{c}$

d)
$$\vec{a} \times \vec{c}$$

6. Bogenlänge

Berechnen Sie die Bogenlänge der folgenden Funktionen.

a)
$$\gamma:[0,a] \to \mathbb{R}^3, \gamma(t) = t \begin{pmatrix} \cos t \\ \sin t \\ 1 \end{pmatrix}$$
.

a)
$$\gamma: [0, a] \to \mathbb{R}^3, \gamma(t) = t \begin{pmatrix} \cos t \\ \sin t \\ 1 \end{pmatrix}$$
. b) $\gamma: [0, 4\pi] \to \mathbb{R}^3, \gamma(t) = \begin{pmatrix} -t \cos t + \sin t \\ \cos t + t \sin t \\ \frac{t^2}{4} \end{pmatrix}$

7. Vektorfelder

Skizzieren Sie jeweils die gegebenen Vektorfelder. a) $\vec{v}(x,y) = \begin{pmatrix} 0.5 \\ 0.25 \end{pmatrix}$ b) $\vec{v}(x,y) = \frac{1}{\sqrt{x^2+y^2}} \begin{pmatrix} x \\ y \end{pmatrix}$ c) $\vec{v}(x,y) = \frac{1}{\sqrt{x^2+y^2}} \begin{pmatrix} y \\ -x \end{pmatrix}$ d) $\vec{v}(x,y) = \frac{1}{\sqrt{x^2+y^2}} \begin{pmatrix} y \\ x \end{pmatrix}$

a)
$$\vec{v}(x,y) = {0,5 \choose 0,25}$$

b)
$$\vec{v}(x,y) = \frac{1}{\sqrt{x^2 + y^2}} \binom{x}{y}$$

c)
$$\vec{v}(x, y) = \frac{1}{\sqrt{x^2 + y^2}} {y \choose -x}$$

d)
$$\vec{v}(x, y) = \frac{1}{\sqrt{x^2 + y^2}} {y \choose x}$$

e) Plotten Sie das Vektorfeld aus a) – d) mit Python/Numpy.

8. Kurvenintegrale

Bestimmen Sie die folgenden skalaren bzw. vektoriellen Kurvenintegrale:

a)
$$\vec{\gamma}$$
: $[0,2\pi] \to \mathbb{R}^3$, $\vec{\gamma}(t) = \begin{pmatrix} \cos t \\ \sin t \\ t \end{pmatrix}$, $f(x,y,z) = x^2 + yz$.

b)
$$\vec{\gamma}$$
 ist die Verbindungsstrecke von $(0;0)$ nach $(1;1)$ und $\vec{v}(x,y) = \binom{2y}{e^x}$.

9. Kurvenintegrale II

Gegeben seien die Vektorfelder $\vec{v}: \mathbb{R}^2 \to \mathbb{R}^2$ und $\vec{w}: \mathbb{R}^2 \to \mathbb{R}^2$ durch

$$\vec{v}(x,y) = \begin{pmatrix} x^2 - y \\ x + y^2 \end{pmatrix}$$
 und $\vec{w}(x,y) = \begin{pmatrix} x + y^2 \\ 2xy \end{pmatrix}$.

Berechnen Sie sowohl für \vec{v} als auch für \vec{w} jeweils das Kurvenintegral von A=(0;1)nach B = (1; 2)

- a) längs der Verbindungsgeraden
- b) längs des Streckenzugs bestehend aus den Strecken von A nach (1; 1) und von (1; 1) nach B,

2

c) längs der Parabel $y = x^2 + 1$.