Relaciones de orden

Definición. Una relación *R* sobre un conjunto *A* que es reflexiva, antisimétrica y transitiva, es llamada una relación de orden parcial.

Un conjunto A y una relación de orden parcial R, son llamados conjunto parcialmente ordenado o poset (del inglés, partially ordered set). En símbolos escribimos: (A, R).

Dos elementos $a, b \in A$ que están relacionados por una relación de orden parcial, se dice que son comparables. La notación $a \le b$ (es equivalente a $(a, b) \in R$) se usa para indicar que a y b son comparables respecto a una relación de orden parcial.

Definición. Si (A, R) es un *poset* y para todos $a, b \in A$ se tiene que:

 $a \le b$, o bien, $b \le a$ (pero no ambos pues R es antisimétrica)

entonces el conjunto A se dice que es un conjunto totalmente ordenado o linealmente ordenado, y R se dice que es un orden total o un orden lineal.

Ejemplo 1. Sea $A = \{a, b, c\}$ un conjunto y $R = \{(X, Y) : X \subseteq Y\}$ una relación sobre P(A); esta es la relación de contención.

- (a) Demuestre que R es una relación de orden parcial.
- (b) Dibuje el grafo dirigido del poset (A, R).

Reflexividad: Para todo $X \in P(A), X \subseteq X \rightarrow (X, X) \in R$.

Antisimetría: Para todo par $X, Y \in P(A)$, si $X \neq Y$, entonces $X \subseteq Y$, o bien, $Y \subseteq X \rightarrow (X, Y) \in R$, o bien, $(Y, X) \in R$, pero no ambas.

Transitividad: Para cualesquiera tres $X, Y, Z \in P(A)$, si $(X, Y) \in R$ y $(Y, Z) \in R \rightarrow X \subseteq Y \land Y \subseteq Z \rightarrow X \subseteq Z \rightarrow (X, Z) \in R$.

:. La relación R es una relación de orden parcial.

Muchas aristas del digrafo de un *poset* no tienen que mostrarse, ya que es entendido que deben estar presentes dadas las propiedades de la relación.

- Reflexividad → no es necesario mostrar los bucles
- Transitividad \rightarrow no es necesario mostrar las aristas que deben estar presentes, es decir, quitamos toda arista (x, y) para la que exista $z \in A$ tal que $x \le z \& z \le y$.
- Antisimetría → si se dibujan los vértices de «abajo hacia arriba» no es necesario indicar la dirección de las aristas

Luego de «quitar» aquellas aristas innecesarias obtenemos el siguiente diagrama:

! Una relación de orden parcial *introduce* una «jerarquía» en el conjunto.

El diagrama resultante recibe el nombre de diagrama de Hasse.

Ejemplo 2. Sea $A = \{1, 2, 3, 4, 6, 8, 12\}$ un conjunto y $R = \{(a, b) : a \text{ divide a } b\} \subseteq A \times A$ una relación.

- (a) Demuestre que R es una relación de orden parcial. Se deja como ejercicio al lector.
- (b) Dibuje el diagrama de Hasse del *poset* (A, R).

Se suele representar a la relación de divisibilidad como «|».

Elementos maximales y minimales

Los elementos de un conjunto parcialmente ordenado (A, R) que tienen ciertas propiedades relacionadas con su carácter de extremos son importantes en muchas aplicaciones.

Definición. Un elemento $a \in A$ es un maximal si no hay ningún $b \in A$ tal que $a \le b$. Análogamente, un elemento $a \in A$ es un minimal si no hay ningún $b \in A$ tal que $b \le a$.

Los minimales y maximales son los elementos «más altos» y «más bajos» en el diagrama de Hasse.

 \triangle Si el conjunto A es un conjunto finito, entonces **siempre** tiene maximales y/o minimales.

Definición. Un elemento $a \in A$ es el máximo de A si $b \le a$ para todo $b \in A$. Análogamente, un elemento $a \in A$ es el mínimo de A $a \le b$ para todo $b \in A$.

La máximo y mínimo de A (si existen) son únicos.

Ejemplo 3. Para los siguientes diagramas de Hasse de un poset (A, R), identifique:

- (a) Los elementos maximales y minimales
- (b) Los elementos máximo y mínimo (si existen)

- i) Maximales: b, c, d; minimales: a; máximo: no hay; mínimo: a
- ii) Maximales: d, e; minimales: a, b; máximo: no hay; mínimo: no hay
- iii) Maximales: d; minimales: a, b; máximo: d; mínimo: no hay
- iv) Maximales: d; minimales: a; máximo: d; mínimo: a

Cotas superiores e inferiores

A veces podemos encontrar un elemento que es mayor (o menor) [en el sentido del orden parcial R] que todos los elementos de un subconjunto S de un poset (A, R).

Definición. Si $a \in A$ tal que $s \le a$ para todo $s \in S$, entonces se dice que a es una cota superior de S. Análogamente, Si $b \in A$ tal que $b \le s$ para todo $s \in S$, entonces se dice que b es una cota inferior de S.

Eiemplo 4. Determine las cotas inferiores y superiores de los subconjuntos $\{a, b, c\}$, $\{j, h\}$ y $\{a, c, c\}$ d, f} del poset cuyo diagrama de Hasse se muestra en la figura.

! Tenemos, por ejemplo, $(b, d) \in R$ y $(a, d) \in R$ pero $(c, d) \notin R$. Entonces d no es una cota superior de $\{a, b, c\}$.

Las cotas superiores de $\{a, b, c\}$ son: e, f, j, h

Las cotas inferiores de $\{a, b, c\}$ son: a

