Lecture -6 Combination Circuits-2

Prepared By: Asif Mahfuz

Decoder

PARSIONAL PARSIO

- A n-to-2ⁿ decoder takes an n-bit input and produces 2ⁿ outputs.
- The n-bit inputs represent a binary number that determines which of the 2ⁿ outputs is **uniquely true**.
- As the name suggest the job of the decoder is to decode.
- For instance, if you ask the guard of a building, which floor does Mr. Y lives? The guard gives a specific answer based on your question.
- A decoder is commonly used in address decoding.

Decoder Design

- We have now a superficial idea of how a decoder works.
- A 2-to-4 decoder has two inputs namely, S0 and S1 and 4 outputs namely Q0, Q1, Q2 and Q3.
- The 2-to-4 decoder operates according to the following truth table.
- So how is this decoding done?
- Implementing the min-term for a specific combination is the answer.

S1	SO	Q0	Q1	Q2	Q3	S1	S0	Q0	Q1	Q2	Q3
0	0	1	0	0	0	0	0	$\overline{S1}\overline{S0}$	0	0	0
0	1	0	1	0	0	0	1	0	<u>51</u> S0	0	0
1	0	0	0	1	0	1	0	0	0	$S1\overline{S0}$	0
1	1	0	0	0	1	1	1	0	0	0	S1 S0

Decoding Operation

- So how do we implement the decoding function.
- Say we want to decode a combination 1001.
- The min-term of this combination is $A_3\overline{A_2}$ $\overline{A_1}A_0$.
- Now we implement this min-term.
- Now say we want to decode 1011.
- We need to implement the min-term $A_3\overline{A_2}A_1A_0$.

Logical Circuit of 2-to-4 Decoder

- So now that we know how to decode a combination, we can draw the logical circuit of the a 2-to-4 Decoder.
- The truth table of the decoder is as follows.
- From the truth table we can draw the logical circuit.
- As each output is implemented from a min-term, an Active HIGH decoder is also called a min term generator.

S1	SO	Q0	Q1	Q2	Q3
0	0	$\overline{S1}\overline{S0}$	0	0	0
0	1	0	<u>51</u> S0	0	0
1	0	0	0	S1 S0	0
1	1	0	0	0	S1 S0

Design of a 3-to-8 Decoder

• We can design a 3-to-8 decoder following the same procedure.

X	Y	Z	F ₀	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Variation of Decoder

- Till now we have only seen the active-HIGH decoders.
- That is, when a combination is given in the input the corresponding output is HIGH and the other outputs are LOW.
- A very common variation of decoders is the active-LOW decoders.
- This means when a combination is given in the input, the corresponding output is LOW and the other outputs are HIGH.
- The same procedure can be followed to design an active-LOW decoder, with the only difference of using a NAND gate instead of the AND gate for decoding.
- Thus active-LOW decoders are also called Max-Term generators.

S1	SO	Q0	Q1	Q2	Q3
0	0	0	1	1	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

S1	SO	Q0	Q1	Q2	Q3
0	0	(S1+S0)	1	1	1
0	1	1	$(S1+\overline{S0})$	1	1
1	0	1	1	(S1 +S0)	1
1	1	1	1	1	$(\overline{S1} + \overline{S0})$

Application of Decoders

- As we have already studied, one of the application of decoders is addressing or selecting memory locations.
- Another very important use of decoders is to implement functions.
- As active-HIGH decoders are min-term generators and active-LOW decoders are maxterm generators the SOP form and POS form can be easily implemented with decoders.
- The procedure is very simple, if we have the truth-table of the function or can somehow determine the truth-table, function implementation will be very easy.

A	В	F
0	0	0
0	1	1
1	0	1
1	1	0

Application of Decoders

- A full-adder can be very easily implemented with the help of a decoder.
- The truth-table of a full adder is given below:
- The full adder can be implemented as shown in the diagram.

A	В	CIN	C_{out}	Σ
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

• Implement the function $F = \sum (1,3,4,7)$ using a 3-to-8 decoder.

Encoders

- An Encoder is a combinational logic circuit that performs a "reverse" decoder functions.
- As the name suggests its function is to encode an input signal.
- An encoder accepts an active level on one of its input and outputs the coded output for the input.
- Generally an encoder has **2**ⁿ inputs and **n**-outputs.
- There can be a variety of encoders, but we will only keep ourselves to binary encoders.

4-to-2 Encoder Design

- We now have a superficial idea of how the encoder works.
- So now we can form the truth table and finally design the encoder.

I3	I2	I1	10	01	00
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

$$00 = I1 + I3$$

 $01 = I2 + I3$

8-to-3 Encoder Design

• An 8-to-3 encoder can be designed in the same way.

17	16	15	I4	13	I2	I1	10	02	01	00
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

Boolean expression:

$$00 = I1 + I3 + I5 + I7$$

 $01 = I2 + I3 + I6 + I7$
 $02 = I4 + I5 + I6 + I7$

Priority Encoders

AND TOPA OF THE PROPERTY OF TH

- We have designed the encoders for an ideal scenario, where only 1 input is active at time.
- However, in real world scenario, this will always not be the case.
- Hence, we need some modifications to be made.
- The solution to this problem is to define priority amongst the inputs.
- The priority circuit will detect the input with highest priority and output that signal only to the binary encoder.
- The encoder will then encode the received input.
- So lets us learn how to design a priority circuit.

Designing the Priority Circuit

- We now know the purpose of the priority circuit.
- So how to design the priority circuit.
- First, we need to know the priority of the inputs. So for our designing example let the priority be, I0>I1>I2>I3>I4>I5>I6>I7.
- Now, we need to have the truth table of the priority circuit.

17	16	I 5	I4	I3	I2	I1	10	Н7	Н6	Н5	H4	Н3	H2	H1	НО
X	X	X	X	X	X	X	1	0	0	0	0	0	0	0	1
X	X	X	X	X	X	1	0	0	0	0	0	0	0	1	0
X	X	X	X	X	1	0	0	0	0	0	0	0	1	0	0
X	X	X	X	1	0	0	0	0	0	0	0	1	0	0	0
X	X	X	1	0	0	0	0	0	0	0	1	0	0	0	0
X	X	1	0	0	0	0	0	0	0	1	0	0	0	0	0
X	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0

Designing the Priority Circuit

I7	16	15	I4	I3	I2	I1	10	Н7	Н6	Н5	H4	Н3	H2	H1	НО
X	X	X	X	X	X	X	1	0	0	0	0	0	0	0	1
X	X	X	X	X	X	1	0	0	0	0	0	0	0	1	0
X	X	X	X	X	1	0	0	0	0	0	0	0	1	0	0
X	X	X	X	1	0	0	0	0	0	0	0	1	0	0	0
X	X	X	1	0	0	0	0	0	0	0	1	0	0	0	0
X	X	1	0	0	0	0	0	0	0	1	0	0	0	0	0
X	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0

Boolean Expression for the priority circuit:

- H0 = I0
- $H1 = I1\overline{I0}$
- $H2 = I2 \overline{I1} \overline{I0}$
- $H3 = I3 \overline{I2} \overline{I1} \overline{I0}$
- $H4 = I4 \overline{I3} \overline{I2} \overline{I1} \overline{I0}$
- $H5 = I5 \overline{I4} \overline{I3} \overline{I2} \overline{I1} \overline{I0}$
- $H6 = I6 \overline{I5} \overline{I4} \overline{I3} \overline{I2} \overline{I1} \overline{I0}$
- H7 = $\overline{1716}$ $\overline{15}$ $\overline{14}$ $\overline{13}$ $\overline{12}$ $\overline{11}$ $\overline{10}$

Now that we have assured the ideal scenario, we can just use the same logic for the encoder design.

- 00 = I1 + I3 + I5 + I7
- 01 = I2 + I3 + I6 + I7
- 02 = I4 + I5 + I6 + I7

Designing the Priority Circuit

Boolean Expression for the priority circuit:

- H0 = I0
- $H1 = I1\overline{I0}$
- $H2 = I2 \overline{I1} \overline{I0}$
- $H3 = I3 \overline{I2} \overline{I1} \overline{I0}$
- $H4 = I4 \overline{I3} \overline{I2} \overline{I1} \overline{I0}$
- $H5 = I5 \overline{I4} \overline{I3} \overline{I2} \overline{I1} \overline{I0}$
- $H6 = I6 \overline{I5} \overline{I4} \overline{I3} \overline{I2} \overline{I1} \overline{I0}$
- H7 = $\overline{1716} \overline{15} \overline{14} \overline{13} \overline{12} \overline{11} \overline{10}$

Boolean Expression for the priority circuit:

- 00 = I1 + I3 + I5 + I7
- 01 = I2 + I3 + I6 + I7
- 02 = I4 + I5 + I6 + I7

Priority Encoders with Irregular Sequence

- Priority sequence of an encoder might not always be with a regular priority sequence such as ascending priority or descending priority.
- The priority for sequence might be irregular.
- An example can be: I0>I1>I5>I6>I7>I3>I2>I4.
- Designing procedure for this will be the same.
- So first we need the truth-table.

17	I6	I 5	I4	I3	I2	I1	10	Н7	Н6	Н5	H4	Н3	H2	H1	НО
X	X	X	X	X	X	X	1	0	0	0	0	0	0	0	1
X	X	X	X	X	X	1	0	0	0	0	0	0	0	1	0
0	0	0	X	0	1	0	0	0	0	0	0	0	1	0	0
0	0	0	X	1	X	0	0	0	0	0	0	1	0	0	0
0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0
X	X	1	X	X	X	0	0	0	0	1	0	0	0	0	0
X	1	0	X	X	X	0	0	0	1	0	0	0	0	0	0
1	0	0	X	X	X	0	0	1	0	0	0	0	0	0	0

Priority Encoders with Irregular Sequence

Boolean Expression for the priority circuit:

- H0 = I0
- $H1 = I1\overline{I0}$
- $H2 = I2 \overline{I5} \overline{I6} \overline{I7} \overline{I3} \overline{I1} \overline{I0}$
- $H3 = I3 \overline{I7} \overline{I6} \overline{I5} \overline{I1} \overline{I0}$
- $H4 = I4 \overline{I2} \overline{I3} \overline{I7} \overline{I6} \overline{I5} \overline{I1} \overline{I0}$
- $H5 = I5 \overline{I1} \overline{I0}$
- $H6 = I6 \overline{I5} \overline{I1} \overline{I0}$
- $H7 = \overline{171615} \overline{15110}$

Boolean Expression for the priority circuit:

- 00 = I1 + I3 + I5 + I7
- 01 = I2 + I3 + I6 + I7
- 02 = I4 + I5 + I6 + I7

Multiplexers (MUX)

- In old days, multiple devices could be connected to a single device with the help of a switch.
- For example, multiple sources of input could be used as an input to a single home theater.
- The device that acts as switch is known as the multiplexer.
- What we see in the picture is a 4-to-1MUX.
- A 4-to-1 MUX has 2 selector pins.
- Therefore a 2ⁿ-to-1 MUX will have n selector pins.
- As for our example we can see:
 - When selector pins are **00** the MP3 will be selected.
 - When the selector pins are **01** the laptop will be selected.
 - When the selector pin are 10 the digital satellite is selected and so on.

Designing a Multiplexers (MUX)

PARSONS TOOL OF THE PARSON

- So how is a MUX designed?
- MUX is a digital combinational circuit.
- Thus we need to first find its truth table.
- Let us for example take a 2-to-1 MUX.
- A 2-to-1 MUX will be 2 inputs to select from using a 1 selector pin.

S	D1	D0	Q
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

•
$$Q = \overline{S} \overline{D1}D0 + \overline{S}D1D0 + SD1\overline{D0} + SD1D0$$

4-to-1

MUX

S0

•
$$Q = \overline{S}D0 + SD1$$

Designing a Multiplexers (MUX)

THE THE PARTY OF T

- Let us now design a 4-to-1 MUX.
- Since there are 6 inputs in total the truth table will become very big with 64 combinations.
- We can have the truth table, then find the min terms as our previous example, but this will surely become very tedious.
- So we can probably find a trick if we look at Boolean expression of our last design

$$Q = \overline{S}D0 + SD1$$

• Seeing this equation we can find a shortcut to write the equation for 4-to-1 MUX as:

$$Q = \overline{S1S0}D0 + \overline{S1}S0D1 + S1\overline{S0}D2 + S1S2D3$$

 After finding the Boolean expression we can draw the logical circuit of the 4-to-1 MUX

Enable Input

- Many devices have an extra input known as the "enable" input.
- This is used to activate or deactivate a device.
- Enables are especially useful in combining smaller MUXs to make larger MUXs.
- So how does the truth table vary with inclusion go enable.
- When enable is 0, the output is 0 irrespective of all other inputs.
- And when enable is 1, the MUX operates as specified earlier.

En	S	D1	D0	Q
0	X	X	X	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

Modularity

- It is not always possible to get a MUX with the exact number of required inputs.
- Say we need to connect 6 devices and we have only access to 4-to-1 MUXs.
- In such cases we can use smaller MUXs and combine them make larger MUXs.
- So as an example we will see how to use 4-to-1 MUX to make 8-to-1 MUX.

- MUX can also be used to implement Boolean functions.
- A n-variable function can be implemented using a 2ⁿ-to-1 MUX (very easy).
- However, we can also implement a (n+1) variable function with 2^n -to-1 MUX (advanced).
- Let us see how we can implement the function $F(A, B, C) = \sum (1,3,5,6)$ using an 8-to-1 MUX.

0	0	0 1	F 0	$ \begin{array}{ccc} 0 & \longrightarrow & D0 \\ 1 & \longrightarrow & D1 \\ 0 & \longrightarrow & D2 \end{array} $
0 0	0 1 1	1 0 1	1 0 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1 1	0	0	0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1 1	1	0	1 0	1 1

- Now let us implement the same function using a 4-to-1 MUX.
- First, we need to construct the truth table.
- Then we need to select the variables of the function we want to use as selector pin.
- Let us take A and C as selector pin.
- The remaining variable of B will be used in a different way.

A	В	С	F	
0	0	0	0	→ D0
0	0	1	1	D1
0	1	0	0	4-to-1
0	1	1	1	D2 MUX
1	0	0	0	→ D3
1	0	1	1	S1 S0
1	1	0	1	
1	1	1	0	ÀĊ

D3

- Now we will construct a special table for variable B from the truth-table.
- First, we need to find the min-terms for which B is 0. The min-terms are 0,1,4 and 5.
- Then, we need to find the min-terms for which B is 1. The min-terms are 2,3,6 and 7.
- Now list the input of the 4-to-1 MUX. The inputs are D0, D1, D2 and D3.
- Now create a table as shown

Minterms	Α	В	С	F					
0	0	0	0	0					
1	0	0	1	1		D0	D1	D2]
2	0	1	0	0	B	0	1	4	
3	0	1	1	1					
4	1	0	0	0	В	2	3	6	
5	1	0	1	1					
6	1	1	0	1					
7	1	1	1	0					

A PARTICIPATION OF THE PARTICI

- Now circle all the min-terms for which the function is 1.
- Now if two min-terms in a column is not circled, we apply a 0 for the input.
- Now if two min-terms in a column are circled, we apply 1 for the input.
- If there is one circle in a column, and the circle is the row of \overline{B} , we apply \overline{B} for the input. And if the only circle is in the row of B, we apply B for the input.

D0

0

 $\bar{\mathbf{B}}$

D1

D2

D3

5

	D0	D1	D2	D3
$\overline{\mathbf{B}}$	0	1	4	(2)
В	2	3	6	7

• Implement the following function with an 8-to-1 MUX with B,C and D as selector pins.

$$F(A, B, C, D) = \sum (0, 1, 3, 4, 8, 9, 15)$$

Minterms	Α	В	С	D	F	
0	0	0	0	0	1	
1	0	0	0	1	1	
2	0	0	1	0	0	
3	0	0	1	1	1	
4	0	1	0	0	1	
5	0	1	0	1	0	
6	0	1	1	0	0	
7	0	1	1	1	0	
8	1	0	0	0	1	
9	1	0	0	1	1	
10	1	0	1	0	0	
11	1	0	1	1	0	
12	1	1	0	0	0	
13	1	1	0	1	0	
14	1	1	1	0	0	
(15)	1	1	1	1	1	

	D0	D1	D2	D3	D4	D5	D6	D7
Ā	0	(<u>-</u>)	2	3	4	5	6	7
Α	8	9	10	11	12	13	14	15
	1	1	0	Ā	Ā	0	0	A

	D0	D1	D2	D3	D4	D5	D6	D7
Ā	0	(L)	2	3	4	5	6	7
Α	8	9	10	11	12	13	14	15
	1	1	0	Ā	Ā	0	0	A

Demultiplexer (DEMUX)

ANGLADES

- A demultiplexer is a combinational circuit.
- It just reverses the operation of a multiplexer.
- It basically takes digital information from one line and distribute it to a given number of output lines.
- For this reason, the demultiplexer is also know as a data distributor.
- A 1-to-2ⁿ DEMUX has n selector pins.
- The selector pin are used to select the output lines where the data is to be distributed.
- The figure shows a 1-to-4 demultiplexer.

Demultiplexer Design

- How to design a 1-to-4 demultiplexer.
- First, according to our understanding of the operation we make the truth-table.
- The from the truth table we will form the Boolean expressions.
- And from the Boolean expression we will draw the logic circuit.

DIN	S1	SO	D0	D1	D2	D3
DIN	0	0	DIN	0	0	0
DIN	0	1	0	DIN	0	0
DIN	1	0	0	0	DIN	0
DIN	1	1	0	0	0	DIN

- $D0 = \overline{S1}.\overline{S0}.D_{IN}$
- $D1 = \overline{S1}.S0.D_{IN}$
- $D2 = S1.\overline{S0}.D_{IN}$
- $D3 = S1.S2.D_{IN}$

References

1. Thomas L. Floyd, "Digital Fundamentals" 11th edition, Prentice Hall – Pearson Education.

Thank You