QUESTION (HD 2101) (1) Let *D* be a domain. How to show that $D[X^{2}, X^{3}] \cong D[Y, Z]/(Y^{2} - Z^{3})$?

(2) Let $R = Z_{(p)} + (X;Y)Q[[X,Y]]$ and M = (X,Y)Q[[X,Y]]. Why is $R[1/p] = Q[[X,Y]] = R_M$?

ANSWER: There are two answers to each of (1) and (2). One based on a suggestion by Shiqi Xing of Sichuan Normal University, Chengdu, China and the other as a comment on these questions by Tiberiu Dumitrescu of Universitatea Bucuresti, Romania.

Xings Answer: Let $\phi: D[Y,Z] \to D[X^2,X^3]$ defined by $\phi(Y)=X^3$ and $\phi(Z)=X^2$. Then ϕ is onto. Indeed $\ker \phi \supseteq (Y^2-Z^3)$. We need to show that every element g=g(Y,Z) in $\ker \phi$ is divisible by (Y^2-Z^3) . For this we first note that g(0,0)=(0). That is there is no nonzero constant term. Express g as a polynomial in Y as: $g=f_n(Z)Y^n+f_{n-1}(Z)Y^{n-1}+...+f_0(Z)$. Suppose that g is not divisible by (Y^2-Z^3) . Then, $g=q(Y,Z)(Y^2-Z^3)+f(Y,Z)$ and degree of f is less than 2. Hence $\partial f=1$ or 0 in Y. So $f=f_1(Z)Y+f_0(Z)$. Because g(Y,Z)=(0) on setting $Y=X^3$ and $Z=X^2$, we have $f_1(X^2)X^3+f_0(X^2)=(0)$. But this forces $f_1(X^2)X^3=0=f_0(X^2)$, because one is of odd degree and the other of even. Of course as $X^3\neq 0$ we have $f_1(X^2)=(0)$. Whence $f_1(Z)=(0)$ and $f_0(Z)=0$. Forcing f(Y,Z)=0. But then $g=q(Y,Z)(Y^2-Z^3)\in (Y^2-Z^3)$.

(2). Note that $\cap p^n R = \cap (p^n Z_{(p)} + (X;Y)Q[[X;Y]]) \supseteq M = (X;Y)Q[[X;Y]]$ and there is no prime between $\cap p^n R$ and M = (X;Y)Q[[X;Y]] because $\cap p^n Z_{(p)} = (0)$ and indeed there is no prime between pR and M Thus $M = \cap p^n R$. But as M misses powers of p we have $R_M = R[1/p] = Q + M = Q + (X,Y)[[X,Y]] = Q[[X,Y]]$.