

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ N 2, 2001

Электронный журнал, per. N П23275 от 07.03.97

http://www.neva.ru/journal e-mail: diff@osipenko.stu.neva.ru

Групповой анализ дифференциальных уравнений

РЕШЕНИЕ ОДНОЙ ОБРАТНОЙ ЗАДАЧИ ГРУППОВОГО АНАЛИЗА

Р.В.Пелюхов

Российский Государственный Педагогический Университет им. А.И.Герцена Санкт-Петербург

Общим решением в конечном (замкнутом) виде обыкновенного дифференциального уравнения n-го порядка $y^{(n)} = F(x, y, y', \dots, y^{(n-1)})$ называется аналитическое выражение, заданное конечным числом формул, связывающих переменные x, y и n независимых произвольных констант C_i , которое при подстановке в уравнение обращает его в тождество. Такое выражение подразумевает отсутствие бесконечных рядов.

Среди групповых подходов к поиску решений (в замкнутом виде) дифференциальных уравнений различают два основных подхода — классический групповой анализ (предложенный Софусом Ли [1]) основанный на теории непрерывных групп преобразований, и дискретно групповой анализ (предложенный В.Ф.Зайцевым [2]).

Процедура понижения порядка обыкновенных дифференциальных уравнений осуществляется (при использовании аппарата непрерывных групп преобразований) с помощью группы точечных преобразований

$$t = \varphi(x, y, a), \quad u = \psi(x, y, a),$$

которая однозначно определяется своим касательным векторным полем с соответствующим инфинитезимальным (точечным) оператором

$$X = \xi(x, y) \frac{\partial}{\partial x} + \eta(x, y) \frac{\partial}{\partial y}.$$

Таким образом, точечный оператор имеет вполне конкретный вид. Однако, можно отказаться от такого вида и рассмотреть формальный (нелокальный) оператор

$$X = \Phi(x, y, y', \dots) \frac{\partial}{\partial y}.$$

Ясно, что точечные операторы являются частным случаем нелокальных операторов, так как могут быть представлены в виде

$$X = \left[\eta(x,y) - y'\xi(x,y)\right] \frac{\partial}{\partial y}.$$

Теория формальных операторов (впервые предложена В.Ф.Зайцевым [3]), представляющая собой пока еще мало исследованную ветвь направления, может быть эффективно применена к решению дифференциальных уравнений (факторизация уравнения до системы специального вида, где одно из уравнений можно решить). Одна из проблем теории – множественность видов формальных операторов (в классическом групповом анализе, в основном, рассматривались только точечные операторы).

Рассмотрим обыкновенное дифференциальное уравнение 2-го порядка

$$y'' = F(x, y, y')$$

и оператор

$$X = [\xi(x, y) + \eta(x, y)I] \,\partial_y \equiv \hat{\eta}\partial_y,$$

где $I = \int \zeta(x,y) \, dx$ — нелокальная переменная, а интеграл — полный, т.е. $D_x[I] = \zeta(x,y)$. Исследуем, допускается ли такой оператор уравнением 2-го порядка, и какими должны быть функции ξ, η, ζ, F (если оператор допускается).

В этом случае определяющее уравнение имеет вид:

$$(\xi + \eta I)\frac{\partial F}{\partial y} + (\xi_x + y'\xi_y + \eta_x I + y'\eta_y I + \eta\zeta)\frac{\partial F}{\partial y'} = D_x^2[\hat{\eta}]$$

где

$$D_x^2[\hat{\eta}] = (\eta_{xx} + 2y'\eta_{xy} + y''\eta_y + y'^2\eta_{yy})I\xi_{xx} + 2y'\xi_{xy} + y''\xi_y + y'^2\xi_{yy} + 2y'\eta_y\zeta + y'\eta\zeta_y + 2\eta_x\zeta + \eta\zeta_x.$$

Определяющая система имеет вид:

$$I: \quad \eta \frac{\partial F}{\partial y} + (\eta_{x} + y'\eta_{y}) \frac{\partial F}{\partial y'} - \eta_{xx} - 2y'\eta_{xy} - F\eta_{y} - {y'}^{2}\eta_{yy} = 0,$$
(1)

$$I^{0}: \quad \xi \frac{\partial F}{\partial y} + (\xi_{x} + y'\xi_{y} + \eta\zeta) \frac{\partial F}{\partial y'} - F\xi_{y} - \xi_{xx} - 2y'\xi_{xy} - {y'}^{2}\xi_{yy} - 2\eta_{x}\zeta - 2y'\eta_{y}\zeta - \eta\zeta_{x} - y'\eta\zeta_{y} = 0.$$
(2)

Первое уравнение системы рассматриваем как уравнение в частных производных относительно функции F, решая которое, получаем:

$$F = \eta \left\{ \Phi(x, u) + \int \left[\frac{\eta_{xx}}{\eta^2} + \frac{2\eta_{xy}}{\eta} \left(u + \int \frac{\eta_x}{\eta^2} dy \right) + \eta_{yy} \left(u + \int \frac{\eta_x}{\eta^2} dy \right)^2 \right] dy \right\}$$

где $u = \eta^{-1}y' - J$, $\Phi(x, u)$ – произвольная функция двух переменных x, u,

$$J = \int \frac{\eta_x}{\eta^2} \, dy.$$

Так как все интегралы в записи функции F частные, u под знаками таких интегралов – константа. После преобразований получаем

$$F = \eta \Phi(x, u) + \frac{\eta_y}{\eta} y'^2 + 2 \frac{\eta_x}{\eta} y' + H(x, y),$$

где $H(x,y) = \eta J_x - 2\eta_x J$. Подставляем найденную функцию F и её частные производные по y,y' во второе уравнение системы получаем:

$$\xi \left[\eta_y \Phi - \frac{\eta_y}{\eta} \frac{\partial \Phi}{\partial u} y' - \frac{\eta_x}{\eta} \frac{\partial \Phi}{\partial u} + y'^2 \frac{\eta \eta_{yy} - \eta_y^2}{\eta^2} + 2y' \frac{\eta \eta_{xy} - \eta_x \eta_y}{\eta^2} + \frac{\partial H}{\partial y} \right] +$$

$$+ \xi_x \left[\frac{\partial \Phi}{\partial u} + 2 \frac{\eta_y}{\eta} y' + 2 \frac{\eta_x}{\eta} \right] + \xi_y \left[\frac{\partial \Phi}{\partial u} y' - \eta \Phi + \frac{\eta_y}{\eta} y'^2 - H \right] +$$

$$+ \eta \zeta \frac{\partial \Phi}{\partial y} - \xi_{xx} - 2y' \xi_{xy} - y'^2 \xi_{yy} - \eta \zeta_x - y' \eta \zeta_y = 0.$$

Это уравнение можно расшеплять по $\frac{\partial \Phi}{\partial u}y'$, $\frac{\partial \Phi}{\partial u}$, Φ , y'^2 , y', y'^0 , если функция Φ – «общего» вида , т.е. y'^2 , y' не входят в неё явно (в противном случае отсутствовали бы выражения вида $\frac{\partial \Phi}{\partial u}y'$, $\frac{\partial \Phi}{\partial u}$, Φ , и такое расщепление было бы невозможно) или по y'^2 , y', y'^0 и другим натуральным степеням y' (если они присутствуют) – в случае явной зависимости функции Φ

от натуральных степеней y'. В первом случае получаем систему:

$$\begin{bmatrix} \frac{\partial \Phi}{\partial u} y' \end{bmatrix} : \qquad -\frac{\eta_y}{\eta} \xi + \xi_y = 0,
\begin{bmatrix} \frac{\partial \Phi}{\partial u} \end{bmatrix} : \qquad -\frac{\eta_x}{\eta} \xi + \xi_x + \eta \zeta = 0,
[\Phi] : \qquad \xi \eta_y - \xi_y \eta = 0,
\begin{bmatrix} y'^2 \end{bmatrix} : \qquad \frac{\eta \eta_{yy} - \eta_y^2}{\eta^2} \xi + \frac{\eta_y}{\eta} \xi_y - \xi_{yy} = 0,
[y'] : \qquad 2 \frac{\eta \eta_{xy} - \eta_x \eta_y}{\eta^2} \xi + 2 \frac{\eta_y}{\eta} \xi_x - 2 \xi_{xy} - \eta \zeta_y = 0,
\begin{bmatrix} y'^0 \end{bmatrix} : \qquad \frac{\partial H}{\partial y} \xi + 2 \frac{\eta_x}{\eta} \xi_x - \xi_{xx} - H \xi_y - \eta \zeta_x = 0.$$

Первое уравнение системы совпадает с третьим, и является обыкновенным однородным линейным дифференциальным уравнением первого порядка относительно функции ξ (или относительно функции η), решая которое, находим $\xi = c(x)\eta$, где c(x) произвольная функция переменного x. Подставляя найденную функцию ξ во второе уравнение системы, получаем $\eta \equiv 0$ или $\zeta = -c'(x)$, т.е. оказывается, что функция ζ зависит только от x. В обоих случаях оператор $X = \hat{\eta} \partial_y$ является точечным, а предполагалось, что он нелокальный!

Обратимся теперь к случаю явной зависимости функции Φ от натуральных степеней y'. Такая зависимость будет, например, если Φ — полином степени n>1 по переменной u (ведь $u=\eta^{-1}y'-J$)

$$\Phi = \sum_{i=0}^{n} \varphi_i(x) u^i.$$

Удобно записать эту функцию и её частную производную $\frac{\partial \Phi}{\partial u}$ в виде полиномов по степеням y':

$$\Phi = \sum_{i=0}^{n} \left[\sum_{k=0}^{i} (-1)^{k+i} C_{n-k}^{i-k} \varphi_{n-k} J^{i-k} \right] \left(\frac{y'}{\eta} \right)^{n-i},
\frac{\partial \Phi}{\partial u} = \sum_{i=0}^{n-1} \left[\sum_{k=0}^{i} (-1)^{k+i} C_{n-k-1}^{i-k} (n-k) \varphi_{n-k} J^{i-k} \right] \left(\frac{y'}{\eta} \right)^{n-i-1}.$$

Первые два уравнения системы имеют вид:

$$[y'^n] : (n-1)\frac{\varphi_n}{\eta^n} (\xi \eta_y - \xi_y \eta) = 0,$$

$$[y'^{n-1}] : [n(n-2)\varphi_n J + (2-n)\varphi_{n-1}] \left[\frac{\xi_y}{\eta^{n-2}} - \frac{\xi \eta_y}{\eta^{n-1}} \right] + \frac{n\varphi_n}{\eta^n} \left(-\xi \eta_x + \xi_x \eta + \zeta \eta^2 \right) = 0.$$

Из первого уравнения получаем $\xi = c(x)\eta$ (т.к. $\varphi_n \neq 0$ и $n \neq 1$). Подставляя найденную функцию ξ во второе уравнение системы, получаем $\eta \equiv 0$ или $\zeta = -c'(x)$, т.е. функция ζ зависит только от x. Заметим, что эти уравнения будут иметь такой вид, если $n \geqslant 4$ (действительно, если $n \leqslant 3$, то во второе уравнение добавятся слагаемые: $\xi_y \eta_y / \eta$, $-\xi_{yy}$, и такие случаи нужно рассматривать отдельно).

Опуская соответствующие системы и сопутствующие выкладки, при n=3 опять получаем $\zeta=-c'(x)$, а при n=2,1 функция ζ будет зависеть от переменной y (однако, вопрос о характере зависимости остаётся открытым). Итак, при $n\geqslant 3$ получаем тот же результат, что и в случае произвольной функции Φ .

Рассмотрим теперь эту задачу для уравнения

$$y'' = F(x, y).$$

В этом случае определяющее уравнение имеет вид

$$(\xi + \eta I)\frac{\partial F}{\partial y} = D_x^2 \left[\hat{\eta}\right],$$

определяющая система имеет вид:

$$\left[y^{\prime 2}I\right] \qquad : \qquad \qquad \eta_{yy} = 0, \tag{3}$$

$$[y'I] : \eta_{xy} = 0, (4)$$

$$\left[y^{\prime 2}\right] \qquad : \qquad \qquad \xi_{yy} = 0, \tag{6}$$

$$[y']$$
 : $-2\xi_{xy} - 2\eta_y \zeta - \eta \zeta_y = 0,$ (7)

$$\left[y^{\prime 0}\right] \qquad : \qquad \xi \frac{\partial F}{\partial y} - \xi_{xx} - F\xi_y - 2\eta_x \zeta - \eta \zeta_x = 0. \tag{8}$$

Из уравнений (3),(4),(6) находим

$$\xi = g(x)y + f(x), \quad \eta = ay + b(x),$$

где g(x), f(x), b(x) – произвольные функции переменного x, a – константа. Используя это, из уравнения (5) находим

$$F = A(x)y + B(x),$$

где A(x) = au(x), B(x) = b(x)u(x) - b''(x)/a, u(x) – произвольная функция. Далее, из уравнения (7) находим

$$\zeta = \frac{F_1(x)y^2 + F_2(x)y + F_3(x)}{[ay + b(x)]^2},\tag{9}$$

где $F_1(x) = -ag'(x), F_2(x) = -2b(x)g'(x), F_3(x)$ – произвольная функция. Наконец, из уравнения (8) получаем

$$\zeta = \frac{q(y) + \Phi_1(x)y^2 + \Phi_2(x)y + \Phi_3(x)}{[ay + b(x)]^2},\tag{10}$$

где $\Phi_1(x) = -ag'(x)$,

$$\Phi_1(x) = -\int [g''(x)b(x) + as(x)] dx, \quad \Phi_3(x) = -\int s(x)b(x) dx,$$

 $s(x) = -f(x)A(x) + g(x)B(x) + f''(x), \quad q(y)$ — произвольная функция переменного y. Видно, что $F_1(x) = \Phi_1(x)$; пусть $q(y) \equiv 0, \quad F_2(x) = \Phi_2(x), \quad F_3(x) = \Phi_3(x)$ (при этих условиях функция ζ будет иметь вид (9)). Заметим, что можно было решать только уравнение (7), затем подставить найденную функцию ζ в уравнение (8), которое расщепляется по степеням переменной y. Тогда получается система из пяти уравнений, решая которую, придем к условиям $F_2(x) = \Phi_2(x), F_3(x) = \Phi_3(x)$ (но этот подход более трудоемкий).

При a=0 функции $F,\ \zeta$ будут иметь более простой вид

$$F = \frac{b''(x)}{b(x)}y + l(x), \quad \zeta = \tilde{F}_2(x)y + \tilde{F}_3(x)$$

с условиями

$$q(y) \equiv 0, \quad \tilde{F}_2(x) = \tilde{\Phi}_2(x), \quad F_3(x) = \Phi_3(x),$$

где

$$\tilde{F}_{2}(x) = -\frac{2g'(x)}{b(x)},
\tilde{F}_{3}(x) = \frac{F_{3}(x)}{b^{2}(x)},
\tilde{\Phi}_{2}(x) = -\frac{1}{b^{2}(x)} \int g''(x)b(x)dx,
\tilde{\Phi}_{3}(x) = -\frac{1}{b^{2}(x)} \int s(x)b(x)dx,$$

 $F_3(x), \ \Phi_3(x)$ – прежние, l(x) – произвольная функция переменного x.

Заключение: Обыкновенное дифференциальное уравнение

$$y'' = F(x, y, y')$$

допускает нелокальный оператор

$$X = \hat{\eta} \partial_y,$$

если

$$F = \eta \Phi(x, u) + \frac{\eta_y}{\eta} y'^2 + 2 \frac{\eta_x}{\eta} y' + H(x, y),$$

причём

$$\Phi(x, u) = \varphi_2(x)u^2 + \varphi_1(x)u + \varphi_0(x).$$

Если функция Φ – полином (по переменной u) степени $n \geqslant 3$ или функция общего вида, то оператор будет локальным и такой результат не подходит по условию задачи. Если функция F зависит только от переменных x,y, то функции $\xi,~\eta,F$ зависят от переменной y линейно, а ζ – дробнорациональная функция, числитель и знаменатель которой суть полиномы второй степени по переменной у. Заметим, можно получить нетривиальный результат (имеется ввиду, что переменная I не является локальной т.е. функция ζ зависит от переменной y), если повысить порядок уравнения на единицу или брать функцию ζ в виде $\zeta = \zeta(x, y, y')$. В первом случае алгоритм решения такой же как и для уравнения y'' = F(x, y, y') (решаем первое уравнение исходной системы как уравнение в частных производных относительно функции F, затем подставляем функцию F во второе уравнение системы, которое расщепляем и находим функцию ζ . Расщепление возможно будет другим в силу того, что функция F будет иметь вид, отличный от получаемого выше и находим функцию ζ), во втором случае нужно знать частное решении исходного уравнения y'' = F(x, y, y')(тогда можно решать второе уравнение исходной системы как уравнение в частных производных относительно функции ζ). Этот результат не является следствием изложенных выше выкладок, а требует индивидуального рассмотрения.

Также отметим, что для обыкновенного дифференциального уравнения n-го порядка

$$y^{(n)} = F(x, y, y', \dots, y^{(n-1)}), \quad \frac{\partial F}{\partial x} \neq 0, \quad \frac{\partial F}{\partial y^j} \neq 0, \quad j = 0 \div (n-1) \quad (11)$$

и оператора произвольного вида

$$X = \Phi(I) \frac{\partial}{\partial y} \quad , \tag{12}$$

где $I = \int \zeta(x,y,y',\ldots,y^{(n)},\ldots)dx,\; \zeta:R^\infty\to R,$ функция бесконечного числа переменных $x,y,y',\ldots,y^{(n)},\ldots$ справедливы следующие утверждения:

- 1.1 ОДУ (11) не допускает нелокального оператора (12), если функция Ф линейно независима с функциями $\Phi_k = \frac{d^k \Phi}{dI^k}$ и $\frac{d^k \Phi}{dI^k} \neq 0$ для всякого натурального k.
- 1.2 ОДУ (11) не допускает нелокального оператора (12), если функция Ф линейно независима с функциями $\Phi_k = \frac{d^k \Phi}{dI^k}$ и $\frac{d^k \Phi}{dI^k} = 0$ для некоторого натурального k.

Замечание: Из условия утверждения следует, что $\Phi(I) = A_0 + A_1 I + \dots + A_{k-1} I^{k-1}$ ($A_{k-1} \neq 0$). Утверждение верно, если A_i , $i = 0 \div k - 1$ константы! Случай, когда $A_l = A_l(x, y, y', \dots, y^{(n-1)})$, $i = 0 \div k - 1$ требует отдельного рассмотрения.

2.1 Если функции Φ и Φ_I' функционально зависимы (т.е. $\Phi_I' = \Psi(\Phi)$), то для уравнения первого порядка y' = F(x,y) оператор $X = \Phi(I)\partial_y$ является экспоненциальным нелокальным оператором и имеет вид

$$X = \exp\left(\int F_y \, dx\right) \partial_y.$$

2.2 Если функции Φ , Φ'_I , Φ''_I функционально зависимы, то уравнение второго порядка y'' = F(x,y,y') допускает нелокальный оператор вида

$$X = \frac{1}{2} \{ \exp[k(c_1 + I)] - p^2 \exp[-k(c_1 + I)] \} \partial_y,$$

где $k = \pm \sqrt{b}$, c_1 – константа, а p, b – функции переменных x, y, y', ..., $y^{(n)}$, ... (в общем случае).

Список литературы

- [1] Ибрагимов Н.Х. Азбука группового анализа. М.: Знание, сер. "Математика и кибернетика", №8, 1989.
- [2] Ибрагимов Н.Х. Опыт группового анализа. М.: Знание, сер. "Математика и кибернетика", №7, 1991.
- [3] Зайцев В.Ф. Дискретно-групповые методы теории дифференциальных уравнений, ч.1. Л.: ЛГУ, деп. В ВИНИТИ №5739–82 Деп от 22.11.82.
- [4] Zaitsev V.F. Universal description of symmetries on a basis of the formal operators // Math. Research, vol. 7. "Theory and practice of differential equations" St.Petersburg: SPbSTU, 2000.