Probabilidade (PPGECD00000001)

Programa de Pós-Graduação em Estatística e Ciência de Dados (PGECD)

Sessão 1

Raydonal Ospina

Departamento de Estatística Universidade Federal da Bahia Salvador/BA

Revisão de teoria de conjuntos

Um *conjunto* representa uma coleção de objetos geralmente representado pelas letras maiúsculas, *A*, *B*, etc.

Exemplo 1

O conjunto cujos elementos são as vogais a, e, i, o e u, i.e.

$$A = \{a, e, i, o, u\}.$$

O conjunto de dias da semana

 $A = \{$ segunda, terça, quarta, quinta, sesta, sábado, domingo $\}$.

- O conjunto de números inteiros. $A = \mathbb{Z} = \{1, 2, ...\}$.
- O conjunto de números reais. $A = \mathbb{R}$.
- ▶ O conjunto de soluções da equação quadrática $x^2 x 2 = 0$, $A = \{-1, 2\}$.
- Se A e B são conjuntos e todo elemento x pertencente a A também pertence a B então o conjunto A é dito um subconjunto do conjunto B denotado por $A \subseteq B$. Esta definição inclui o caso em que A e B possuem os mesmos elementos, isto é, são o mesmo conjunto (A = B).
- ullet O conjunto que contem todos os conjuntos considerados é denominado de *universo* Ω .

Operações entre conjuntos

Se A e B são eventos, as operações de união, interseção, diferença e complemento entre conjuntos (operações que geram novos conjuntos) são denotadas respectivamente por $A \cup B$, $A \cap B$, $A \setminus B$ e A^{\complement} . As anteriores operações indicam:

- ▶ $A \cup B = \{\omega : \omega \in A \text{ ou } \omega \in B\}$ é um evento que acontece, se e somente se, A ou B acontecem.
- ▶ $A \cap B = \{\omega : \omega \in A \text{ e } \omega \in B\}$ é um evento que acontece, se e somente se, $A \in B$ acontecem.
- ightharpoonup A B é o evento que acontece, se e somente se, A acontece, mas B não acontece.
- ▶ $A^{\mathbb{C}} = \{\omega \in \Omega : \omega \notin A\}$ é o evento que acontece, se e somente se, A não acontece.
- ▶ Dois conjuntos A e B, são ditos disjuntos (ou excludentes) se: $A \cap B = \emptyset$
- ▶ Uma família de conjuntos é dita disjunta dois a dois ou mutuamente disjunta se dados dois conjuntos quaisquer da família, eles são disjuntos. Mais formalmente falando, seja A_{λ} , uma família de conjuntos disjuntos indexados pelo índice $\lambda \in \Lambda$ então:

$$A_i \cap A_j = \emptyset, \ \forall i, j \in \Lambda, \ i \neq j$$

Note que $\bigcap_{\lambda \in \Lambda} A_{\lambda} = \emptyset$, não implica que a família seja disjunta dois a dois. Um contra-exemplo seria: $\{\{1,2\},\{2,3\},\{3,1\}\}$.

Figura: Operações básicas entre conjuntos.

Outras operações entre conjuntos

- $ightharpoonup A \cap A = A$.
- $ightharpoonup A \cup A = A$.
- $ightharpoonup A \cap \emptyset = \emptyset.$
- $ightharpoonup A \cup \emptyset = A$. Elemento neutro da união.
- $ightharpoonup A \cap \Omega = A$. Elemento neutro da interseção.
- $ightharpoonup A \cup \Omega = \Omega.$
- ▶ $A \cap B = B \cap A$. Propriedade comutativa da interseção.
- ▶ $A \cup B = B \cup A$. Propriedade comutativa da união.
- $\blacktriangleright \left(A^{\complement}\right)^{\complement} = A$. Propriedade de involução.
- ▶ $(A \cap B) \cap C = A \cap (B \cap C)$. Propriedade associativa da interseção.
- ▶ $(A \cup B) \cup C = A \cup (B \cup C)$. Propriedade associativa da união.
- ▶ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. Propriedade distributiva da interseção.
- ▶ $A^{\complement} \cup B^{\complement} = (A \cap B)^{\complement}$. Lei de De Morgan
- ▶ $A^{\complement} \cap B^{\complement} = (A \cup B)^{\complement}$. Lei de De Morgan
- ▶ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$. Propriedade distributiva da união

Leis de De Morgan para sequências.

Sejam A_1, A_2, \ldots uma sequência de eventos (família de conjuntos) de Ω .

- 1. $\cup_{i=1}^{\infty} A_i$ é o evento que ocorre quando pelo menos um dos eventos A_i , $i=1,2,\ldots$ ocorre.
- 2. $\bigcap_{i=1}^{\infty} A_i$ é o evento que ocorre quando todos os eventos A_i , $i=1,2,\ldots$ ocorrem.

3.

$$\left(\bigcup_{i=1}^{\infty} A_i\right)^{\complement} = \bigcap_{i=1}^{\infty} A_i^{\complement}$$

Esta propriedade estabelece que o evento de que nenhum dos A_i 's aconteçam é igual ao complementar do evento de que pelo menos um dos A_i 's aconteça.

4.

$$\left(\bigcap_{i=1}^{\infty}A_{i}\right)^{\complement}=\bigcup_{i=1}^{\infty}A_{i}^{\complement}$$

A propriedade expressa que o complementar do evento de que todos os A_i's aconteçam é exatamente o evento de que pelo menos um deles não aconteça.

Exercício 1

Verificar a validade das anteriores igualdades.

Definição 1 (Função)

Sejam A e B dois conjuntos. Se a cada elemento de um conjunto A esta associado exatamente um único elemento do conjunto B, então se diz que tal correspondência é uma função de A em B a qual é denotada por f e se escreve como

$$f: A \rightarrow B$$
.

O conjunto A se chama o domínio da função e o conjunto B é o codomínio ou contradomínio de f.

 Se a ∈ A, então o elemento de B que corresponde a este a, se chama a imagem de a e é denotada por f(a). Se f é uma função de A em B e b ∈ B então se define a imagem recíproca de B como o conjunto de todos os elementos do conjunto A que tem a b como a sua imagem, isto quer dizer:

$$f^{-1}(b) := \{a \in A : f(a) = b\}.$$

2. Se C é um subconjunto de B, então o conjunto de elementos de A cujas imagens são elementos de C, é chamado de *imagem recíproca de C por f* e a denotamos por $f^{-1}(C)$. Isto é:

$$f^{-1}(C) := \{ a \in A : f(a) \in C \}.$$

 Se D é um subconjunto de A, então um subconjunto de B cujos elementos são as imagens dos elementos de D por meio da função f se chama de imagem direta de D e é denotada por f(D), em que

$$f(D) := \{b \in B : b = f(a) \text{ para algum } a \in D\} = \{f(a) : a \in D\}.$$

Raydonal Ospina (UFBA) Probabilidade 7/9

Cardinalidade

- Um subconjunto importante dos números naturais é o conjunto de índices I_n = {p ∈ N, 1 ≤ p ≤ n} para algum n ∈ N.
- 2. Logo, todo conjunto I_n é finito.
- Seja A um conjunto não vazio. Se existe n ∈ N e uma função injetiva g : A → I_n diremos que A é finito, caso contrário, A é infinito.
- 4. O menor número n que verifica esta propriedade é dito número de elementos de A. Escrevemos |A| = n. Diremos também que o conjunto vazio é finito e que seu número de elementos é 0.
- 5. Uma função de bijeção entre dois conjuntos finitos ocorre somente quando eles possuem a mesma quantidade de elementos, aí dizemos que eles possuem a mesma cardinalidade. (De forma geral, se existe uma bijeção entre dois conjuntos, eles possuem a mesma cardinalidade, podendo eles serem infinitos).

Exemplo 2

Caso exista uma bijeção entre A e $I_5=\{\omega_1,\omega_2,\omega_3,\omega_4,\omega_5\}$, então A possui 5 elementos. Resulta trivial demonstrar que esta função es bijetiva: $f:\{\omega_1,\omega_2,\omega_3,\omega_4,\omega_5\}\mapsto 1,2,3,4,5:$

$$f(x) = \begin{cases} 1, & \text{se } x = \omega_1 \\ 2, & \text{se } x = \omega_2 \\ 3, & \text{se } x = \omega_3 \\ 4, & \text{se } x = \omega_4 \\ 5, & \text{se } x = \omega_5 \end{cases}$$

Definição 2 (Produto cartesiano)

O produto cartesiano entre dois conjuntos A e B (denotado por $A \times B$) é um novo conjunto em que seus elementos são pares ordenados (a,b), em que $a \in A$ e $b \in B$. Simbolicamente, temos que

$$A \times B = \{(a, b) : a \in A \ e \ b \in B\}.$$

e em geral os conjuntos produto $A \times B$ e $B \times A$ são distintos uma vez que o par (a, b) é distinto do par (b, a).

Exemplo 3

O produto cartesiano $\mathbb{R} \times \mathbb{R}$ é o conjunto de todos os pares de números reais (x, y) e o denotamos por \mathbb{R}^2 . De forma análoga são construídos os conjuntos \mathbb{R}^3 , \mathbb{R}^4 , ... \mathbb{R}^k , ...

Se a cardinalidade do conjunto |A|=n e a cardinalidade do conjunto |B|=m, então a cardinalidade de $|A\times B|=nm$. Este resultado é conhecido como *princípio da multiplicação*. Em geral, a cardinalidade do produto cartesiano de n conjuntos é

$$|(A_1 \times A_2 \times \cdots \times A_n)| = |A_1| \cdot |A_2| \cdot \cdots \cdot |A_n|.$$

Exemplo 4

Seja $A = \{0, 1\}$. o conjunto $\underbrace{A \times A \times \cdots \times A}_{n}$ tem 2^{n} elementos.