

دانشگاه اصفهان دانشکده ریاضی و کامپیوتر خوانسار

جبر خطی کاربردی

فهرست مطالب

٣																		•	•																					ہبر	ج	ف	مقده اهدا		1.°)	
٣	•	•		•	•		•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	٥	دی	عد	ی	فط	ر -	<i>ج</i> بر	ی -	عاء	رده	کاربر	5	۰.۳)	
۵																																					ı	L	هر	يسر	تر	ما	نما و	رھ	بردا	٠	١
۵	•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•		ی	يه	ہ پا	ھي₊ ا	عاه	ر ما ا	9 (یف ۱	ع ار تعار ۱۰۱	,	١. ١	١	
۵	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•							ء	Q						
۲ ۱۳	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•					1			1.1				
14	•	•	•				•	•	•	•	•		,	•	•	•		•		•	•				•	•			•	•	•	•		صر	خا								1.1				
۱۷							•							•											•											1	س	اتر	ما	ر نو م	ه د	۵.	١.١				
۱٧						•						•						•				•		•							(ب	یں	اتر	, م	ای	مھ	نُر	ع	انوا	١	۶.	۱.۱				
† † † †	•	•	•					•	•	•	•	•			•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•				i	بارز	مىن	دتر. ۲۰۱		۲. ۱	١	
۲۵																																						ز ن	مات	ک د	ىك	(1	واره	,	٣. ١	١	
٣١	•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	٠,	ص	خاه	- ر	يسر	تر	ما	رورر چند		۴. ۱	١	
۴١																																					ی	ط	خ	ت	.لا	ماد	اه ما	نگا	دست)	۲
44	•	•	•	•				•		•	•				•	•	•			•	•				•	•	•		•	•	•	•	(لمح	خد	ت	لآد	ماد	م	گاه	ىت	دس	حل		1.1		
44	•	•	•	•		•	•	•	•	•	•	•	,	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	ر	سر	کو	ع	ے ہ	بسرٍ	تري	ما	ن	رو ش	,	١.	حل ۱۰۲	,			
31	•	•	•	٠		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	(؞ِسر	ے و	ی '	دوح		U	روس	,	١.	1.1		,	,	
۱ ۱ م	•	•	•	•						•	•	•						•		•	•	•	•			•						•	•	Č	رد(<i>ج</i>							روش تحز		۲.۲ ۳.۲		
۶۲													,		ی	ات	۵.	قد	م	ی	ها	ں،	يىد	تر	ما	ز ،	,1	ده	نفا	سن	١	با	P	L	U	و	L	U	يه	نجز	ڌ	١.	۳.۲	1			
۶٩	•	•				•	•	•	•	•	•	•		•	•	•	L	U	4	زي	ج	۔ ت	از	ده	غاه	ئت	اس	با	ر	طح	خ		ت	دلا	عا	ه ه	نگا	ست	د	حل	•	۲.	٣. ٢	,			
۷۱																												سب	عا،														٣.٢		ب د د	,	
۷٣ ۷۳			•																									•	•														تجز ۴.۲		7.1		
۷۵	•	•	•			•		•	•		•	•						•	•	•	•			•	•	•					ب.	٠,		ین	مع	ی	الى	س چ	يى يە	ما در نجز	ڌ	Ϋ.	4.4	,			
۷٩																																								ی	,ار	., د	ای ب	اها	نضا	è	٣
17																•	•								•					(زي	دار	برد	ی و	باج	فض	از	ں	اص	ر خا	ی	.ر اهر	مثال)	١.٢	u	

مقدمه

۰.۰ مقدمه

جبر خطی عددی شاخهای از ریاضیات کاربردی و محاسباتی است که به مطالعه و توسعه الگوریتمهای عددی برای حل مسائل جبر خطی میپردازد. این درس در بسیاری از حوزههای علمی و مهندسی نقش کلیدی دارد.

۲۰۰ اهداف جبر خطی عددی

- توسعه الگوريتمهاي كارا براي حل دستگاههاي معادلات خطي.
 - تقریب و محاسبه مقادیر و بردارهای ویژه ماتریسها.
 - بررسی پایداری و دقت روشهای عددی در جبر خطی.
- ارائه روشهایی برای تجزیه و تحلیل ماتریسها مانند تجزیه ،UU تجزیه QR و تجزیه
 - كاربرد روشهاي عددي در حل مسائل مهندسي و علمي.

۰.۰ کاربردهای جبر خطی عددی

- مهندسی: تحلیل سازهها، پردازش سیگنال و شبیهسازیهای مهندسی.
- علوم داده و یادگیری ماشین: کاهش ابعاد داده، الگوریتمهای بهینهسازی و تحلیل دادههای بزرگ.
 - گرافیک کامپیوتری: پردازش تصاویر، رندرینگ سهبعدی و فشردهسازی دادهها.
 - اقتصاد و مالی: مدلسازی مالی، بهینهسازی سبد سرمایهگذاری و تحلیل دادههای اقتصادی.
 - فیزیک و شیمی محاسباتی: شبیه سازی دینامیک مولکولی و تحلیل سیستمهای پیچیده.

۴ فهرست مطالب

فصل ١

بردارها و ماتریسها

۱۰۱ تعاریف و مفاهیم پایهای

۱.۱.۱ بردارها

تعریف ۱۰۱۰۱: بردار

یک بردار در فضای \mathbb{R}^n به صورت زیر تعریف می شود:

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

مثال ۱۰۱۰۱:

$$\cdot \mathbb{R}^3$$
 در $\mathbf{v} = \begin{bmatrix} 3 \\ -1 \\ 4 \end{bmatrix}$ در مثال: بردار

تعریف ۲۰۱۰: جمع بردارها

اگر $\mathbf{u},\mathbf{v}\in\mathbb{R}^n$ باشند، جمع آنها به صورت زیر تعریف می شود:

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ \vdots \\ u_n + v_n \end{bmatrix}$$

تعریف ۳.۱.۱: ضرب اسکالر در بردار

برای یک بردار \mathbf{v} و اسکالر \mathbf{c} داریم:

$$c\mathbf{v} = \begin{bmatrix} cv_1 \\ cv_2 \\ \vdots \\ cv_n \end{bmatrix}$$

تعریف ۴.۱.۱: ترکیب خطی بردارها

یک ترکیب خطی از بردارهای $\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_k$ بهصورت زیر تعریف می شود:

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_k\mathbf{v}_k$$

مثال ۲.۱.۱:

فرض كنيد دو بردار زير را داشته باشيم:

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$

اگر ضرایب $c_1 = 2$ و $c_2 = -1$ و $c_2 = -1$ و اگر ضرایب خطی آنها برابر است با:

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 = 2 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + (-1) \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix} + \begin{bmatrix} -4 \\ -5 \\ -6 \end{bmatrix} = \begin{bmatrix} -2 \\ -1 \\ 0 \end{bmatrix}$$

مثال ۳.۱.۱: نوشتن یک بردار به صورت ترکیب خطی چند بردار دیگر

برداری که به صورت ترکیب خطی دو بردار دیگر نوشته می شود: فرض کنیم سه بردار زیر را داشته باشیم:

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 3 \\ 4 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 7 \\ 10 \end{bmatrix}$$

مىخواھىم ضرايبى مانند c_1, c_2 پيدا كنيم كە:

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 = \mathbf{w}$$

با جایگذاری مقدار بردارها، دستگاه معادلات خطی زیر را داریم:

$$c_1(1) + c_2(3) = 7$$

$$c_1(2) + c_2(4) = 10$$

با حل این دستگاه، مقدار $c_1=1$ و $c_2=2$ بهدست میآید، پس بردار \mathbf{w} را میتوان به صورت ترکیب خطی دو بردار دیگر نوشت.

مثال ۴.۱.۱: برداری که به صورت ترکیب خطی دو بردار دیگر نوشته نمی شود

فرض کنیم سه بردار زیر را داشته باشیم:

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

اگر بخواهیم ضرایبی مانند c_1, c_2 پیدا کنیم که:

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 = \mathbf{w}$$

با جایگذاری مقدار بردارها، دستگاه معادلات خطی زیر را داریم:

$$c_1(1) + c_2(2) = 3$$

$$c_1(1) + c_2(2) = 4$$

این دو معادله با هم در تناقضاند (چون سمت چپ دو معادله برابر است اما سمت راست متفاوت)، بنابراین چنین ضرایبی وجود ندارد و بردار \mathbf{w} را نمیتوان به صورت ترکیب خطی دو بردار دیگر نوشت.

تعریف ۵.۱.۱: ضرب داخلی بر دارها

اگر $\mathbf{u},\mathbf{v}\in\mathbb{R}^n$ باشند، ضرب داخلی آنها به صورت زیر است:

$$\mathbf{u} \cdot \mathbf{v} = \sum_{i=1}^{n} u_i v_i$$

مثال ۵.۱.۱:

$$\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} 4 \\ -5 \\ 6 \end{bmatrix} \Rightarrow \mathbf{u} \cdot \mathbf{v} = (1)(4) + (2)(-5) + (3)(6) = 4 - 10 + 18 = 12$$

تعریف ۶.۱.۱: تعمیم ضرب داخلی به بردارهای مختلط

برای دو بردار مختلط $\mathbf{u},\mathbf{v}\in\mathbb{C}^n$ ، ضرب داخلی به صورت زیر تعریف می شود:

$$\mathbf{u} \cdot \mathbf{v} = \sum_{i=1}^{n} u_i \overline{v_i}$$

که در آن $\overline{v_i}$ مزدوج مختلط v_i است.

مثال ۶.۱.۱:

فرض كنيم دو بردار مختلط زير را داشته باشيم:

$$\mathbf{u} = \begin{bmatrix} 1+i \\ 2-i \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} 3-i \\ 1+2i \end{bmatrix}$$

ضرب داخلی آنها برابر است با:

$$\mathbf{u} \cdot \mathbf{v} = (1+i)\overline{(3-i)} + (2-i)\overline{(1+2i)}$$

$$= (1+i)(3+i) + (2-i)(1-2i)$$

$$= (1\cdot3+1\cdot i+i\cdot 3+i\cdot i) + (2\cdot 1+2\cdot (-2i)-i\cdot 1-i\cdot (-2i))$$

$$= (3+i+3i-1) + (2-4i-i+2)$$

$$= (2+4i) + (4-5i) = 6-i$$

نكته:

ضرب داخلی بردارها دارای ویژگیهای مهم زیر است:

ا، خطی بودن در اولین مؤلفه: برای هر بردارهای $\mathbf{u},\mathbf{v},\mathbf{w}\in\mathbb{C}^n$ و ضرایب مختلط lpha,eta داریم:

$$(\alpha \mathbf{u} + \beta \mathbf{v}) \cdot \mathbf{w} = \alpha (\mathbf{u} \cdot \mathbf{w}) + \beta (\mathbf{v} \cdot \mathbf{w})$$

۲. خاصیت مزدوجگیری: برای هر دو بردار $\mathbf{u}, \mathbf{v} \in \mathbb{C}^n$ داریم:

$$\mathbf{u} \cdot \mathbf{v} = \overline{\mathbf{v} \cdot \mathbf{u}}$$

یعنی اگر جای دو بردار را عوض کنیم، مزدوج مختلط نتیجه تغییر میکند.

۳. مثبت معین بودن: برای هر بردار $\mathbf{u} \in \mathbb{C}^n$ داریم:

$$\mathbf{u} \cdot \mathbf{u} \ge 0$$

و برابری زمانی رخ می دهد که $\mathbf{u}=0$ باشد.

۴. نرم بردار: از ضرب داخلی میتوان برای تعریف نرم (یا طول) یک بردار استفاده کرد:

$$\|u\| = \sqrt{u \cdot u}$$

نامساوی شوارتز: برای هر دو بردار $\mathbf{u}, \mathbf{v} \in \mathbb{C}^n$ داریم:

$$|\mathbf{u}\cdot\mathbf{v}|\leq \|\mathbf{u}\|\|\mathbf{v}\|$$

که تعمیم نامساوی کوشی-شوارتز برای بردارهای مختلط است.

۲۰۱۰۱ نُرم بردار

نُرم یک بردار، یک تابع است که مقدار عددی غیرمنفی را به هر بردار نسبت می دهد و نشان دهنده اندازه یا طول آن بردار است. به طور کلی، نُرم یک بردار $\mathbf{v} \in \mathbb{R}^n$ یا $\mathbf{v} \in \mathbb{R}^n$ تابعی است که به صورت زیر تعریف می شود:

$$\|\mathbf{v}\|:\mathbb{R}^n$$
 يُ $\mathbb{C}^n o \mathbb{R}^{\geq 0}$

و باید سه خاصیت اصلی زیر را داشته باشد:

نکته: خواص نُرم بردار

نرم یک بردار باید دارای ویژگیهای مهم زیر باشد:

ا. نامنفی بودن و خاصیت صفر: برای هر بردار $\mathbf{v} \in \mathbb{C}^n$ داریم:

$$\|\mathbf{v}\| \ge 0$$
, $\|\mathbf{v}\| = 0 \iff \mathbf{v} = 0$

۲. همگنی: برای هر عدد مختلط α و بردار $\mathbf{v} \in \mathbb{C}^n$ داریم:

$$\|\alpha \mathbf{v}\| = |\alpha| \|\mathbf{v}\|$$

یعنی ضرب یک بردار در یک عدد مختلط، مقدار نُرم را به اندازه قدرمطلق آن عدد تغییر میدهد. $\mathbf{u}, \mathbf{v} \in \mathbb{C}^n$ داریم:

$$\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$$

این خاصیت بیان میکند که طول مجموع دو بردار از مجموع طولهای آنها بیشتر نیست.

تعریف ۷.۱.۱: نُرم اقلیدسی

نُرم اقلیدسی یک بردار $\mathbf{v}\in\mathbb{C}^n$ که با $\|\mathbf{v}\|$ نمایش داده می شود، به صورت زیر تعریف می شود:

$$\|\mathbf{v}\| = \sqrt{\sum_{i=1}^n |v_i|^2}$$

که در آن $|v_i|$ مقدار قدرمطلق (یا اندازه) مؤلفههای مختلط بردار است. به نرم اقلیدسی نُرم ۲ هم گفته می شود و بیشتر اوقات آن را با نماد $\|\mathbf{v}\|_2$ نیز نشان می دهند.

مثال ۷.۱.۱: محاسبه نُرم ۲ یک بردار دو بعدی مختلط مقدار

فرض کنیم بردار $\mathbf{v} \in \mathbb{C}^2$ به صورت زیر داده شده باشد:

$$\mathbf{v} = \begin{bmatrix} 3 + 4i \\ 1 - i \end{bmatrix}$$

نرم این بردار برابر است با:

$$\|\mathbf{v}\|_{2} = \sqrt{|3+4i|^{2} + |1-i|^{2}}$$

$$= \sqrt{(3^{2}+4^{2}) + (1^{2} + (-1)^{2})}$$

$$= \sqrt{(9+16) + (1+1)}$$

$$= \sqrt{27} = 3\sqrt{3}$$

تعریف ۸.۱.۱: نُرم بینهایت

نرم بینهایت یک بردار $\mathbf{v}\in\mathbb{R}^n$ یا \mathbf{v} که با $\|\mathbf{v}\|_\infty$ نمایش داده میشود، به صورت زیر تعریف میشود:

$$\|\mathbf{v}\|_{\infty} = \max_{1 \le i \le n} |v_i|$$

یعنی بزرگترین مقدار مطلق در بین مؤلفههای بردار را نشان میدهد.

مثال ۸.۱.۱: محاسبه نُرم بینهایت

فرض كنيم بردار زير را داشته باشيم:

$$\mathbf{v} = \begin{bmatrix} -3\\7\\2 \end{bmatrix}$$

در این صورت:

$$\|\mathbf{v}\|_{\infty} = \max\{|-3|, |7|, |2|\} = 7$$

برای بردار مختلط:

$$\mathbf{w} = \begin{bmatrix} 2+i \\ -4-3i \\ 5+2i \end{bmatrix}$$

داريم:

$$\|\mathbf{w}\|_{\infty} = \max\{|2+i|, |-4-3i|, |5+2i|\}$$

$$= \max\{\sqrt{2^2+1^2}, \sqrt{(-4)^2+(-3)^2}, \sqrt{5^2+2^2}\}$$

$$= \max\{\sqrt{5}, \sqrt{25}, \sqrt{29}\} = \sqrt{29}$$

(p-Norm) ای نگرم p-Norm تعریف ۹۰۱۰۱: نگرم

نُرم p-ام یک بردار $\mathbf{v}\in\mathbb{R}^n$ یا \mathbf{v} که با $\|\mathbf{v}\|_p$ نمایش داده میشود، به صورت زیر تعریف میشود:

$$\|\mathbf{v}\|_p = \left(\sum_{i=1}^n |v_i|^p\right)^{\frac{1}{p}}$$

که در آن $p \ge 1$ یک عدد حقیقی است.

تعریف ۱۰.۱۰۱: نُرم ۱ (Manhattan Norm

نُرم ۱ که به نام نُرم مانهتن یا نُرم تاکسیمتری نیز شناخته میشود، بهصورت زیر تعریف میشود:

$$\|\mathbf{v}\|_1 = \sum_{i=1}^n |v_i|$$

یعنی مجموع مقادیر قدرمطلق مؤلفههای بردار را نشان میدهد.

pمثال ۹.۱.۱؛ محاسبه نرم

فرض کنیم بردار $\mathbf{v} \in \mathbb{R}^3$ به صورت زیر داده شده باشد:

$$\mathbf{v} = \begin{bmatrix} 3 \\ -4 \\ 1 \end{bmatrix}$$

نُرم ۲ (نُرم اقلیدسی) برابر است با:

$$\|\mathbf{v}\|_2 = (|3|^2 + |-4|^2 + |1|^2)^{\frac{1}{2}} = (9 + 16 + 1)^{\frac{1}{2}} = \sqrt{26}$$

برای نُرم ۳ داریم:

$$\|\mathbf{v}\|_3 = (|3|^3 + |-4|^3 + |1|^3)^{\frac{1}{3}} = (27 + 64 + 1)^{\frac{1}{3}} = \sqrt[3]{92}$$

مثال ۱۰.۱۰۱: محاسبه نُرم ۱

برای بردار:

$$\mathbf{v} = \begin{bmatrix} 3 \\ -4 \\ 1 \end{bmatrix}$$

داريم:

$$\|\mathbf{v}\|_1 = |3| + |-4| + |1| = 3 + 4 + 1 = 8$$

مثال ۱۱.۱.۱: محاسبه نُرم ۱ بردار مختلط مقدار

فرض کنیم بردار $\mathbf{w} \in \mathbb{C}^3$ به صورت زیر داده شده باشد:

$$\mathbf{w} = \begin{bmatrix} 2+i \\ -3-2i \\ 4i \end{bmatrix}$$

ابتدا قدرمطلق هر مؤلفه را محاسبه مىكنيم:

$$|2+i| = \sqrt{2^2 + 1^2} = \sqrt{5}$$

$$|-3-2i| = \sqrt{(-3)^2 + (-2)^2} = \sqrt{9+4} = \sqrt{13}$$

$$|4i| = \sqrt{(0)^2 + 4^2} = \sqrt{16} = 4$$

بنابراین، مقدار نُرم ۱ این بردار برابر است با:

$$\|\mathbf{w}\|_1 = |2+i| + |-3-2i| + |4i| = \sqrt{5} + \sqrt{13} + 4$$

تعریف ۱۱.۱.۱؛ نرم ضرب داخلی

از ضرب داخلی می توان نُرم یک بردار را محاسبه کرد:

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$$

۳۰۱۰۱ ماتریسها

تعریف ۱۲۰۱۰۱: ماتریس

یک ماتریس $m \times n$ مجموعهای مستطیلی از اعداد است:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

مثال ۱۲۰۱۰۱:

مثال:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

۴.۱.۱ ماتریسهای خاص

تعریف ۱۳.۱.۱: ماتریس مربعی

یک ماتریس مربعی، ماتریسی است که تعداد سطرها و ستونهای آن برابر است:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

مثال:

$$A = \begin{bmatrix} 2 & -1 & 3 \\ 4 & 0 & -2 \\ 1 & 5 & 7 \end{bmatrix}$$

تعریف ۱۴.۱.۱: ماتریس مستطیلی

یک ماتریس مستطیلی دارای تعداد سطر و ستون نامساوی است:

$$B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix}$$

مثال:

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

تعریف ۱۵.۱.۱: ماتریس صفر

ماتریسی که تمام درایههای آن صفر باشند:

$$O = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

تعریف ۱۶.۱.۱: ماتریس همانی

یک ماتریس مربعی که درایههای قطر اصلی آن ۱ و سایر درایهها صفر باشند:

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

تعریف ۱۷.۱.۱: ماتریس قطری

یک ماتریس مربعی که درایههای خارج از قطر اصلی آن صفر هستند:

$$D = \begin{bmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{bmatrix}$$

مثال:

$$D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

تعریف ۱۸.۱.۱: ماتریس بالا مثلثی

یک ماتریس مربعی که درایههای پایینتر از قطر اصلی آن صفر هستند:

$$U = \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

مثال:

$$U = \begin{bmatrix} 2 & -1 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$$

تعریف ۱۹۰۱۰۱: ماتریس پایین مثلثی

یک ماتریس مربعی که درایههای بالاتر از قطر اصلی آن صفر هستند:

$$L = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix}$$

مثال:

$$L = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 3 & 0 \\ 4 & 5 & 6 \end{bmatrix}$$

تعریف ۲۰.۱.۱: ماتریس متقارن

یک ماتریس مربعی که در آن $A^T = A$ باشد:

$$S = \begin{bmatrix} s_{11} & s_{12} & s_{13} \\ s_{12} & s_{22} & s_{23} \\ s_{13} & s_{23} & s_{33} \end{bmatrix}$$

مثال:

$$S = \begin{bmatrix} 2 & -1 & 3 \\ -1 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$$

تعریف ۲۱.۱.۱ جمع ماتریسها

اگر A, B دو ماتریس هماندازه باشند، جمع آنها به صورت زیر تعریف می شود:

$$(A+B)_{ij} = A_{ij} + B_{ij}$$

تعریف ۲۲.۱.۱: ضرب اسکالر در ماتریس

برای یک ماتریس A و اسکالر c داریم:

$$(cA)_{ij} = cA_{ij}$$

تعریف ۲۳.۱.۱ ضرب ماتریسها

اگر A یک ماتریس $m \times p$ و B یک ماتریس $n \times p$ باشد، حاصل ضرب AB یک ماتریس $m \times p$ است که درایههای آن به صورت زیر محاسبه می شود:

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

کد پایتون ۱۰۱۰۱: تعریف بردار و ماتریس در پایتون

در سطر سوم برنامه زیر یک بردار و در سطر پنجم یک ماتریس در محیط پایتون تعریف شدهاند. برای تعریف این دو نیاز به کتابخانه numpy وجود دارد که در سطر اول این کتابخانه وارد و از np به عنوان اختصار آن استفاده شده است.

۵.۱.۱ نُرم ماتریس

نُرم یک ماتریس، تعمیمی از نُرم بردار است که اندازه یا بزرگی یک ماتریس را نشان میدهد. به طور کلی، نُرم ماتریس یک تابع $\|A\|$ است که مقدار عددی غیرمنفی را به هر ماتریس A نسبت میدهد و باید خواص زیر را داشته باشد:

۶.۱.۱ انواع نُرمهای ماتریس

چندین نُرم برای ماتریسها تعریف میشود که بسته به کاربرد مورد استفاده قرار میگیرند:

تعریف ۲۴.۱.۱: نُرم فروبنیوس (Frobenius Norm)

نُرم فروبنیوس، مشابه نُرم اقلیدسی برای بردارها، بهصورت زیر تعریف میشود:

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}$$

مثال: اگر

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

باشد، نُرم فروبنيوس برابر است با:

$$||A||_F = \sqrt{1^2 + 2^2 + 3^2 + 4^2} = \sqrt{1 + 4 + 9 + 16} = \sqrt{30}$$

$(Induced\ Norm)$ تعریف ۲۵.۱.۱: نُرم pام القایی

نُرم pام القایی، برای یک ماتریس A به صورت زیر تعریف میشود:

$$||A||_p = \sup_{\mathbf{v} \neq 0} \frac{||A\mathbf{v}||_p}{||\mathbf{v}||_p}$$

دو حالت خاص آن رایجتر هستند:

نُرم ۱ (نُرم ستونمحور):

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|$$

که بیشترین مجموع ستونهای قدرمطلق را نشان میدهد.

 $^{\circ}$ نُرم ∞ (نُرم سطرمحور):

$$||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|$$

که بیشترین مجموع سطرهای قدرمطلق را نشان میدهد. مثال: برای ماتریس:

$$A = \begin{bmatrix} -2 & 3\\ 4 & -1 \end{bmatrix}$$

نُرم ١ برابر است با:

$$||A||_1 = \max\{|-2|+|4|, |3|+|-1|\} = \max\{6, 4\} = 6$$

و نُرم بينهايت برابر است با:

$$||A||_{\infty} = \max\{|-2|+|3|, |4|+|-1|\} = \max\{5, 5\} = 5$$

تعریف ۲۶.۱.۱: نُرم طیفی (Spectral Norm)

نُرم طیفی ماتریس A که با $\|A\|_2$ نمایش داده میشود، برابر با بزرگترین مقدار ویژه (مقدار تکین) ماتریس است:

$$||A||_2 = \sigma_{\max}(A)$$

که $\sigma_{\max}(A)$ بزرگترین مقدار تکین ماتریس $\sigma_{\max}(A)$

مثال: اگر

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

باشد، مقادیر ویژه آن ± 1 هستند. بنابراین:

 $||A||_2 = \max\{|\lambda_1|, |\lambda_2|\} = \max\{1, 1\} = 1$

کد پایتون ۲۰۱۰۱: محاسبه نُرمهای مختلف یک ماتریس در پایتون

```
import numpy as np
A = np.array([[1, -2, 3],[4, 0, -1],[-2, 1, 5]])
norm_1 = np.linalg.norm(A, 1)
norm_inf = np.linalg.norm(A, np.inf)
norm_fro = np.linalg.norm(A, 'fro')
norm_2 = np.linalg.norm(A, 2)
print(f"Norm 1 (Column Norm): {norm_1}")
print(f"Infinity Norm (Row Norm): {norm_inf}")
print(f"Frobenius Norm: {norm_fro}")
print(f"Spectral Norm (Largest Singular Value): {norm_2}")

Norm 1 (Column Norm): 9.0
Infinity Norm (Row Norm): 8.0
Frobenius Norm: 7.810249675906654
Spectral Norm (Largest Singular Value): 6.40854048954407
```

کد پایتون ۳.۱.۱: محاسبه تقریبی نُرم ۱ یک ماتریس با استفاده از هزار بردار تصادفی غیر صفر

تمرین ۱۰۱۰۱

- برای ماتریسهای صفر و ماتریسهای همانی انواع نُرمهای ماتریسی را بدست آورید. چه نتیجهای میتوان گرفت؟
 - ماتریس زیر را در نظر بگیرید هر یک از نُرمهای ماتریس روی آن را محاسبه کنید.

$$D = \begin{bmatrix} d_1 & 0 & 0 & \dots & 0 \\ 0 & d_2 & 0 & \dots & 0 \\ 0 & 0 & d_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & d_n \end{bmatrix}$$

• ماتریس A و بردار \mathbf{x} به صورت زیر داده شدهاند:

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

حاصل $\|\mathbf{x}\|_2$ و $\|\mathbf{x}\|_2 \cdot \|\mathbf{x}\|_2$ را محاسبه کنید و نشان دهید که نابرابری زیر برقرار است:

$$||A\mathbf{x}||_2 \le ||A||_2 \cdot ||\mathbf{x}||_2$$

تمرین ۲۰۱۰۱

برنامهای به زبان پایتون بنویسید که در آن یک ماتریس به عنوان ورودی گرفته شود و تمامی نُرمهای معرفی شده در قبل را به عنوان خروجی نمایش دهد.

۲.۱ دترمینان

تعریف ۱۰۲۰۱: تعریف دترمینان

دترمینان یک ماتریس مربعی را میتوان به صورت بازگشتی با استفاده از بسط روی یک سطر یا ستون محاسبه کرد. دترمینان ماتریس $A = [a_{ij}]$ مرتبه n به صورت زیر تعریف می شود:

$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} M_{ij}$$

که در آن M_{ij} دترمینان ماتریس حاصل از حذف سطر i و ستون j از M_{ij}

نكته:

- معمولاً انتخاب سطر یا ستونی که بیشترین تعداد صفر دارد محاسبات را سادهتر میکند.

2×2 مثال ۱۰۲۰۱: دترمینان ماتریس

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

دترمینان این ماتریس بهصورت زیر محاسبه میشود:

$$\det(A) = ad - bc$$

مثال عددى:

$$A = \begin{bmatrix} 3 & 5 \\ 2 & 7 \end{bmatrix}$$

$$\det(A) = (3)(7) - (5)(2) = 21 - 10 = 11$$

3×3 مثال ۲۰۲۰۱: دتر مینان ماتریس

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

بسط روى سطر اول:

$$\det(B) = 1 \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - 2 \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 3 \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix}$$
$$= 1(5 \cdot 9 - 6 \cdot 8) - 2(4 \cdot 9 - 6 \cdot 7) + 3(4 \cdot 8 - 5 \cdot 7)$$
$$= 1(45 - 48) - 2(36 - 42) + 3(32 - 35)$$
$$= 1(-3) - 2(-6) + 3(-3) = -3 + 12 - 9 = 0$$

پس این ماتریس دترمینان صفر دارد و وابسته خطی است.

4×4 مثال ۳۰۲۰۱: دترمینان ماتریس

$$C = \begin{bmatrix} 2 & 1 & 3 & 4 \\ 1 & 0 & 2 & 1 \\ 3 & 2 & 1 & 0 \\ 4 & 1 & 0 & 2 \end{bmatrix}$$

بسط روى سطر اول:

$$\det(C) = 2 \begin{vmatrix} 0 & 2 & 1 \\ 2 & 1 & 0 \\ 1 & 0 & 2 \end{vmatrix} - 1 \begin{vmatrix} 1 & 2 & 1 \\ 3 & 1 & 0 \\ 4 & 0 & 2 \end{vmatrix} + 3 \begin{vmatrix} 1 & 0 & 1 \\ 3 & 2 & 0 \\ 4 & 1 & 2 \end{vmatrix} - 4 \begin{vmatrix} 1 & 0 & 2 \\ 3 & 2 & 1 \\ 4 & 1 & 0 \end{vmatrix}$$

با محاسبه ی دترمینان هر کدام از این ماتریسهای 3×3 ، مقدار نهایی به دست می آید:

$$\det(C) = 2(4) - 1(-3) + 3(5) - 4(2) = 8 + 3 + 15 - 8 = 18$$

۱۰۲۰۱ ماتریس نامنفرد

تعریف ۲۰۲۰۱: تعریف ماتریس نامنفرد

یک ماتریس مربعی $A \in \mathbb{R}^{n \times n}$ را **نامنفرد** یا معکوسپذیر گویند، اگر و تنها اگر دترمینان آن مخالف صفر باشد، یعنی:

$$det(A) \neq 0$$

در این حالت، ماتریس A دارای یک ماتریس معکوس A^{-1} است که در رابطه زیر صدق میکند:

$$AA^{-1} = A^{-1}A = I_n$$

که در آن I_n ماتریس همانی مرتبه I_n است.

2×2 مثال ۴۰۲۰۱: ماتریس نامنفرد

ماتریس زیر را در نظر بگیرید:

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$$

ابتدا دترمینان آن را محاسبه میکنیم:

$$\det(A) = (2 \times 4) - (3 \times 1) = 8 - 3 = 5$$

چون $\det(A) \neq 0$ ، این ماتریس نامنفرد است و معکوسپذیر میباشد.

۲۰۱. دترمینان

2×2 مثال ۵۰۲۰۱: ماتریس منفرد

ماتریس زیر را در نظر بگیرید:

$$B = \begin{bmatrix} 2 & 4 \\ 1 & 2 \end{bmatrix}$$

دترمینان این ماتریس برابر است با:

$$\det(B) = (2 \times 2) - (4 \times 1) = 4 - 4 = 0$$

چون $\det(B) = 0$ ، این ماتریس منفرد است و معکوس ندارد.

مثال ۶.۲.۱: ماتریس نامنفرد 8×3

در نظر بگیرید:

$$C = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{bmatrix}$$

دترمینان این ماتریس را به کمک بسط محاسبه میکنیم:

$$\det(C) = 1 \times \begin{vmatrix} 1 & 4 \\ 6 & 0 \end{vmatrix} - 2 \times \begin{vmatrix} 0 & 4 \\ 5 & 0 \end{vmatrix} + 3 \times \begin{vmatrix} 0 & 1 \\ 5 & 6 \end{vmatrix}$$

$$= 1 \times (1 \times 0 - 4 \times 6) - 2 \times (0 \times 0 - 4 \times 5) + 3 \times (0 \times 6 - 1 \times 5)$$

$$= 1 \times (-24) - 2 \times (-20) + 3 \times (-5) = -24 + 40 - 15 = 1$$

چون $\det(C) \neq 0$ ماتریس تامنفرد و معکوسپذیر است.

نكته: خواص دترمينان

ترمینان یک ماتریس دارای ویژگیهای مهمی است که در ادامه به برخی از این خواص اشاره میشود:

۱. دترمینان ماتریس همانی:

 $\det(I_n) = 1$

که در آن I_n ماتریس همانی مرتبه n است.

۲. دترمینان ماتریس ناصفر فقط برای ماتریس نامنفرد:

 $det(A) \neq 0 \Rightarrow A$ معکوس پذیر است.

۳. دترمینان ماتریس منفرد برابر صفر است:

 $det(A) = 0 \implies A$ ماتریس منفرد است و معکوس ندارد.

۴. خاصیت ضرب دترمینان: برای دو ماتریس مربعی هممرتبه A و B داریم: $\det(AB) = \det(A) \det(B)$.

۵. **د**ترمینان ماتریس معکوس: اگر A یک ماتریس نامنفرد باشد، آنگاه:

$$\det(A^{-1}) = \frac{1}{\det(A)}.$$

۶. دترمینان ماتریس بالامثلثی یا پایینمثلثی: اگر A یک ماتریس مثلثی (بالامثلثی یا پایینمثلثی)
 باشد، دترمینان آن برابر است با حاصل ضرب درایه های قطری:

$$\det(A) = a_{11}a_{22}\dots a_{nn}.$$

۷. اثر ضرب یک سطر یا ستون در یک عدد ثابت: اگر تمام درایههای یک سطر یا ستون ماتریس در عدد ثابت c ضرب شوند، دترمینان نیز در همان مقدار ضرب می شود:

$$\det(B) = c \det(A).$$

۸. جابجایی دو سطریا دو ستون: اگر در یک ماتریس دو سطریا دو ستون را با هم جابجا کنیم، دترمینان علامت عوض میکند:

$$\det(A') = -\det(A).$$

 ۹. سطرها یا ستونهای مساوی یا مضرب یکدیگر: اگر دو سطر یا دو ستون یک ماتریس مساوی باشند یا مضرب یکدیگر باشند، آنگاه:

$$\det(A) = 0.$$

۱۰ داریم: A داریم: برای هر ماتریس مربعی A داریم:

$$\det(A^T) = \det(A).$$

کد پایتون ۱.۲۰۱: محاسبه دترمینان یک ماتریس

```
import numpy as np
2 # Define a 5x5 matrix
A = np.array([
    [2, 1, 3, 4, 5],
     [1, 0, 2, 1, 3],
     [3, 2, 1, 0, 4],
     [4, 1, 0, 2, 1],
     [5, 3, 4, 1, 2]
9])
# Compute the determinant
det_A = np.linalg.det(A)
2 # Display the determinant (rounded to 4 decimal places)
print("\nDeterminant of matrix A:")
print(round(det_A, 4))
 Determinant of matrix A:
 -286.0
```

۳.۱ وارون یک ماتریس

تعریف ۱.۳.۱: تعریف وارون یک ماتریس

یک ماتریس مربعی A از ابعاد $n \times n$ را در نظر بگیرید. اگر ماتریس A وارونپذیر (معکوسپذیر) باشد، ماتریس وارون آن، A^{-1} ، به گونهای تعریف می شود که:

$$A \cdot A^{-1} = A^{-1} \cdot A = I_n$$

که در آن $n \times n$ ماتریس همانی $n \times n$ است.

نکته: نحوه محاسبه وارون ماتریسهای ۲ در ۲

محاسبه ی وارون ماتریس $Y \times Y$ با استفاده از ماتریس الحاقی برای ماتریس A به شکل زیر:

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

مراحل محاسبه ی وارون به صورت زیر است: $(\det(A))$ را محاسبه کنید:

$$\det(A) = ad - bc$$

اگر $\det(A) \neq 0$ باشد، ماتریس وارونپذیر است. ۲. ماتریس الحاقی $(\operatorname{adj}(A))$ را محاسبه کنید:

$$adj(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

 $^{\circ}$. ماتریس وارون (A^{-1}) را به دست آورید:

$$A^{-1} = \frac{1}{\det(A)} \cdot \operatorname{adj}(A) = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

نکته: نحوه محاسبه وارون ماتریسهای ۳ در ۳

محاسبه ی وارون ماتریس $T \times T$ با استفاده از ماتریس الحاقی برای ماتریس A به شکل زیر:

$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$

مراحل محاسبه ی وارون به صورت زیر است: $(\det(A))$ را محاسبه کنید:

$$\det(A) = a(ei - fh) - b(di - fg) + c(dh - eg)$$

اگر $\det(A) \neq 0$ باشد، ماتریس وارونپذیر است. ۲. ماتریس کوفاکتور (C) را محاسبه کنید:

$$C = \begin{pmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{pmatrix}$$

که در آن:

$$C_{11} = +(ei - fh), \quad C_{12} = -(di - fg), \quad C_{13} = +(dh - eg),$$

 $C_{21} = -(bi - ch), \quad C_{22} = +(ai - cg), \quad C_{23} = -(ah - bg),$
 $C_{31} = +(bf - ce), \quad C_{32} = -(af - cd), \quad C_{33} = +(ae - bd).$

 α . ماتریس الحاقی (adj(A)) را محاسبه کنید. ماتریس الحاقی، ترانهاده ماتریس کوفاکتور است:

$$\mathbf{adj}(A) = C^T = \begin{pmatrix} C_{11} & C_{21} & C_{31} \\ C_{12} & C_{22} & C_{32} \\ C_{13} & C_{23} & C_{33} \end{pmatrix}$$

۴. ماتریس وارون (A^{-1}) را به دست آورید:

$$A^{-1} = \frac{1}{\det(A)} \cdot \operatorname{adj}(A)$$

مثال ۱۰۳۰۱: مثال برای ماتریس ۲۲۲

ماتریس زیر را در نظر بگیرید:

$$A = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$$

۱. دترمینان:

$$\det(A) = (2)(4) - (3)(1) = 8 - 3 = 5$$

٢. ماتريس الحاقى:

$$adj(A) = \begin{pmatrix} 4 & -3 \\ -1 & 2 \end{pmatrix}$$

۳. ماتریس وارون:

$$A^{-1} = \frac{1}{5} \begin{pmatrix} 4 & -3 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} \frac{4}{5} & -\frac{3}{5} \\ -\frac{1}{5} & \frac{2}{5} \end{pmatrix}$$

مثال ۲۰۳۱: مثال برای وارون ماتریس ۳۲۳

ماتریس زیر را در نظر بگیرید:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{pmatrix}$$

۱. محاسبه ی دترمینان ماتریس $(\det(A))$ دترمینان ماتریس A به صورت زیر محاسبه می شود:

$$\det(A) = 1 \cdot (1 \cdot 0 - 4 \cdot 6) - 2 \cdot (0 \cdot 0 - 4 \cdot 5) + 3 \cdot (0 \cdot 6 - 1 \cdot 5)$$

$$det(A) = 1 \cdot (0 - 24) - 2 \cdot (0 - 20) + 3 \cdot (0 - 5)$$
$$det(A) = -24 + 40 - 15 = 1$$

چون foldangledown(A)=1 ماتریس foldangledown(A)=1 وارونپذیر است. ۲. محاسبه ی ماتریس کوفاکتور foldangledown(A) به صورت زیر محاسبه می شود:

$$C = \begin{pmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{pmatrix}$$

که در آن هر کوفاکتور C_{ij} به صورت زیر محاسبه میشود:

$$C_{ij} = (-1)^{i+j} \cdot \det(M_{ij})$$

که M_{ij} ماتریس کوچکشده ی حذف سطر i و ستون j است. محاسبه ی کوفاکتورها:

$$C_{11} = (-1)^{1+1} \cdot \det \begin{pmatrix} 1 & 4 \\ 6 & 0 \end{pmatrix} = +(0-24) = -24,$$

$$C_{12} = (-1)^{1+2} \cdot \det \begin{pmatrix} 0 & 4 \\ 5 & 0 \end{pmatrix} = -(0-20) = 20,$$

$$C_{13} = (-1)^{1+3} \cdot \det \begin{pmatrix} 0 & 1 \\ 5 & 6 \end{pmatrix} = +(0-5) = -5,$$

$$C_{21} = (-1)^{2+1} \cdot \det \begin{pmatrix} 2 & 3 \\ 6 & 0 \end{pmatrix} = -(0-18) = 18,$$

$$C_{22} = (-1)^{2+2} \cdot \det \begin{pmatrix} 1 & 3 \\ 5 & 0 \end{pmatrix} = +(0-15) = -15,$$

$$C_{23} = (-1)^{2+3} \cdot \det \begin{pmatrix} 1 & 2 \\ 5 & 6 \end{pmatrix} = -(6-10) = 4,$$

$$C_{31} = (-1)^{3+1} \cdot \det \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix} = +(8-3) = 5,$$

$$C_{32} = (-1)^{3+2} \cdot \det \begin{pmatrix} 1 & 3 \\ 0 & 4 \end{pmatrix} = -(4-0) = -4,$$

$$C_{33} = (-1)^{3+3} \cdot \det \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = +(1-0) = 1.$$

$$C = \begin{pmatrix} -24 & 20 & -5\\ 18 & -15 & 4\\ 5 & -4 & 1 \end{pmatrix}$$

 α . محاسبه ی ماتریس الحاقی (adj(A)) ماتریس الحاقی، ترانهاده ی ماتریس کوفاکتور است:

$$adj(A) = C^T = \begin{pmatrix} -24 & 18 & 5\\ 20 & -15 & -4\\ -5 & 4 & 1 \end{pmatrix}$$

 (A^{-1}) محاسبه ی ماتریس وارون (A^{-1}) ماتریس وارون با استفاده از فرمول زیر محاسبه می شود:

$$A^{-1} = \frac{1}{\det(A)} \cdot \operatorname{adj}(A)$$

از آنجایی که $\det(A) = \operatorname{det}(A)$ ، داریم:

$$A^{-1} = \operatorname{adj}(A) = \begin{pmatrix} -24 & 18 & 5\\ 20 & -15 & -4\\ -5 & 4 & 1 \end{pmatrix}$$

نتیجهگیری ماتریس وارون A^{-1} به صورت زیر است:

$$A^{-1} = \begin{pmatrix} -24 & 18 & 5\\ 20 & -15 & -4\\ -5 & 4 & 1 \end{pmatrix}$$

کد پایتون ۱.۳.۱: محاسبه وارون یک ماتریس

```
import numpy as np
3 # Function to calculate the inverse of a matrix
 4 def matrix inverse(matrix):
      Calculate the inverse of a square matrix.
      Parameters:
      matrix (numpy.ndarray): A square matrix (n x n).
Returns:
      numpy.ndarray: The inverse of the input matrix.
      # Check if the matrix is square
      if matrix.shape[0] != matrix.shape[1]:
          raise ValueError("The input matrix must be square (n x n).")
      # Calculate the determinant of the matrix
      det = np.linalg.det(matrix)
          raise ValueError("The matrix is singular (determinant is 0). Inver
      # Calculate the inverse using numpy's built-in function
      inverse = np.linalg.inv(matrix)
      A = np.array([[1, 2, 3],
                    [0, 1, 4],
                    [5, 6, 0]])
      print("Original Matrix A:")
          # Calculate the inverse of matrix A
          A inv = matrix inverse(A)
          print("\nInverse of Matrix A:")
          # Verify the result by multiplying A with its inverse (should yiel
          identity_matrix = np.dot(A, A_inv)
          print("\nVerification (A * A inv):")
          print(identity matrix)
      except ValueError as e:
          print(e)
```

كد پايتون ۲.۳.۱: محاسبه وارون يك ماتريس مختلط

۴.۱ چند ماتریس خاص

تعریف ۱۰۴۰۱:

١. ماتريس مزدوج

(Conjugate Matrix)

اگر $[a_{ij}]$ یک ماتریس مختلط باشد، ماتریس مزدوج آن (که با \overline{A} نشان داده میشود) به صورت زیر تعریف می شود:

$$\overline{A} = [\overline{a_{ij}}]$$

که در آن $\overline{a_{ij}}$ مزدوج مختلط a_{ij} است. به عبارت دیگر، قسمت موهومی هر درایه قرینه می شود. مثال:

$$A = \begin{pmatrix} 1+2i & 3-i \\ 4 & 5i \end{pmatrix}, \quad \overline{A} = \begin{pmatrix} 1-2i & 3+i \\ 4 & -5i \end{pmatrix}$$

تعریف ۲۰۴۰۱:

۲. ماتریس ترانهاده

(Transpose Matrix)

اگر A^T نشان داده می شود) به صورت $m \times n$ باشد، ماتریس ترانهاده آن (که با A^T نشان داده می شود) به صورت زیر تعریف می شود:

$$A^T = [a_{ji}]$$

 $= [a_{ji}]$ یعنی سطرها و ستونهای ماتریس جایگزین میشوند. مثال:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}, \quad A^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$

تعریف ۳.۴.۱:

۳. ماتریس متقارن

(Symmetric Matrix)

یک ماتریس A متقارن است اگر:

$$A = A^T$$

یعنی ماتریس با ترانهاده ی خود برابر باشد. ماتریسهای متقارن فقط می توانند مربعی باشند.

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$$

تعریف ۴.۴.۱:

۴. ماترىس شىه متقارن

(Skew-Symmetric Matrix)

یک ماتریس A شبه متقارن است اگر:

$$A = -A^T$$

 $A = -A^{-}$ یعنی ماتریس با قرینه ی ترانهاده ی خود برابر باشد. درایههای قطر اصلی ماتریسهای شبه متقارن همگی صفر هستند. مثال:

$$A = \begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix}$$

تعریف ۵.۴.۱:

۵. ماتریس هرمیتی

(Hermitian Matrix) یک ماتریس مختلط A هرمیتی است اگر:

$$A = A^H = A^*$$

که در آن A^H ماتریس مزدوج ترانهاده

(Conjugate Transpose)

است. به عبارت دیگر:

$$A^* = A^H = \overline{A^T}$$

یعنی ماتریس با مزدوج ترانهاده ی خود برابر باشد. ماتریسهای هرمیتی فقط میتوانند مربعی باشند. مثال:

$$A = \begin{pmatrix} 1 & 2+i \\ 2-i & 3 \end{pmatrix}$$

تعریف ۶.۴.۱:

۶. ماتریس شبه هرمیتی

(Skew-Hermitian Matrix)

یک ماتریس مختلط A شبه هرمیتی است اگر:

$$A = -A^H$$

که در آن A^H ماتریس مزدوج ترانهاده است. به عبارت دیگر:

$$A^H = \overline{A^T}$$

یعنی ماتریس با قرینه ی مزدوج ترانهاده ی خود برابر باشد. درایه های قطر اصلی ماتریس های شبه هرمیتی همگی موهومی محض هستند (یعنی قسمت حقیقی آنها صفر است).

$$A = \begin{pmatrix} i & 2+i \\ -2+i & 3i \end{pmatrix}$$

نکته: جمعبندی

- - ماتریس مزدوج: مزدوج مختلط هر درایه محاسبه میشود.
 - - ماتریس ترانهاده: سطرها و ستونها جایگزین میشوند.
 - $A = A^T$: ماتریس متقارن م
 - $A = -A^T$: ماتریس شبه متقارن -A
- - ماتریس هرمیتی: $A = A^H$ (ماتریس با مزدوج ترانهاده ی خود برابر است).
- - ماتریس شبه هرمیتی: $A = -A^H$ (ماتریس با قرینهی مزدوج ترانهادهی خود برابر است).

نکته: چند رابطه مهم

- $A^T = A^*$ اگر A یک ماتریس حقیقی باشد آنگاه: $A^T = A^*$
- $(A^*)^* = A, (A^T)^T = A$ داریم: A داریم در به ازای هر ماتریس A
 - ۳. اگر A + B و A + B قابل تعریف باشند آنگاه:

$$(A+B)^T = A^T + B^T,$$
 $(A+B)^* = A^* + B^*,$
 $(AB)^T = B^T A^T,$ $(AB)^* = B^* A^*.$

- $|A| = |A^T|$, $|A^*| = |\bar{A}|$ اگر A یک ماتریس مربعی باشد آنگاه: $|A| = |A^T|$
- $\cdot (A^T)^{-1} = (A^{-1})^T$, $(A^*)^{-1} = (A^{-1})^*$ اگر A یک ماتریس نامنفرد(وارونپذیر) باشد آنگاه: $\cdot (A^T)^{-1} = (A^{-1})^T$
 - $\cdot (cA)^* = \bar{c}A^*$ به ازای هر عدد مختلط c داریم: $\cdot \Delta$
 - A اگر A یک ماتریس هرمیتی باشد آنگاه دترمینان آن یک عدد حقیقی است و

$$|A| = |A^*| = |\bar{A}|$$

۷. اگر A یک ماتریس مربعی دلخواه باشد آنگاه میتوان ماتریسهای H و G را به صورت زیر تعریف کرد

$$G = \frac{1}{2}(A + A^*),$$
 $H = \frac{1}{2i}(A - A^*)$

هر یک از ماتریسهای تعریف شده در قبل هرمیتی هستند و نیز داریم:

$$A = G + iH$$

اگر A یک ماتریس مربعی دلخواه باشد آنگاه میتوان ماتریسهای H و G را به صورت زیر تعریف کرد

$$G = \frac{1}{2}(A + A^*), \qquad H = \frac{1}{2}(A - A^*)$$

که H یک ماتریس شبه هرمیتی و G یک از ماتریس هرمیتی است و نیز داریم:

$$A = G + H$$

مثال ۱.۴.۱:

- ماتریسهای A و B را در نظر بگیرید. نشان دهید $A+A^T$ همواره یک ماتریس متقارن و ماتریس $A-A^T$ همواره یک ماتریس شبه متقارن است.
- ۲. فرض کنید A یک ماتریس دلخواه باشد، هر یک از ماتریسهای A^TA و A^TA متقارن هستند.
- ۳. اگر A یک ماتریس نامنفرد و متقارن باشد آنگاه A^{-1} نیز متقارن است (بدیهی است که نامنفرد نیز هست).

 $AA^{-1} = I \Longrightarrow (A^{-1})^T A^T = I^T \Longrightarrow (A^{-1})^T A = I$

با ضرب طرفین تساوی آخر در A^{-1} نتیجه حاصل میشود.

*

تعریف ۷.۴.۱: ماتریس یکانی (Unitary Matrix)

یک ماتریس مربعی U با ابعاد $n \times n$ را یکانی (Unitary) مینامند اگر معکوس آن برابر با مزدوج هرمیتی آن باشد. به عبارت دیگر، ماتریس U یکانی است اگر:

$$U^{-1} = U^*$$

که در آن U^* نشان دهنده ی مزدوج هرمیتی ماتریس U است (یعنی ترانهاده ی ماتریس U که درایههای آن مزدوج مختلط گرفته شدهاند).

شرط یکانی بودن را میتوان به صورت زیر نیز بیان کرد:

$$U^*U = UU^* = I$$

که در آن I ماتریس یکانی با ابعاد $n \times n$ است.

نکته: برخی از ویژگیهای ماتریس یکانی

- حفظ ضرب داخلی: اگر U یک ماتریس یکانی باشد، برای هر دو بردار x و y، ضرب داخلی $\langle Ux, Uy \rangle = \langle x, y \rangle$
 - حفظ نرم: نرم یک بردار تحت تبدیل یکانی تغییر نمیکند، یعنی ||Ux|| = ||x||
- مقادیر ویژه: مقادیر ویژه یک ماتریس یکانی روی دایرهی واحد در صفحهی مختلط قرار دارند، یعنی قدر مطلق آنها برابر با ۱ است.

تمرین ۱.۴.۱

درستی هر یک از ویژگیهای فوق را با استفاده از مثال بررسی کنید.

مثال ۲۰۴۰۱: ماتریس یکانی

ماتریس زیر را در نظر بگیرید:

$$U = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & i \\ i & 1 \end{bmatrix}$$

برای بررسی یکانی بودن این ماتریس، ابتدا مزدوج هرمیتی آن را محاسبه میکنیم:

$$U^* = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -i \\ -i & 1 \end{bmatrix}$$

سپس حاصل ضرب U^*U را محاسبه می کنیم:

$$\begin{split} U^*U &= \frac{1}{2} \begin{bmatrix} 1 & -i \\ -i & 1 \end{bmatrix} \begin{bmatrix} 1 & i \\ i & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \cdot 1 + (-i) \cdot i & 1 \cdot i + (-i) \cdot 1 \\ -i \cdot 1 + 1 \cdot i & -i \cdot i + 1 \cdot 1 \end{bmatrix} \\ &= \frac{1}{2} \begin{bmatrix} 1 + 1 & i - i \\ -i + i & 1 + 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I \end{split}$$

چون $U^*U=I$ ، ماتریس سیکانی است.

تمرین ۲.۴.۱

نشان دهید اگر ماتریسهای A و B یکانی باشند آنگاه AB نیز یکانی خواهد بود.

تعریف ۸.۴.۱: ماتریس نرمال

ماتریس A را نرمال میگوییم اگر با مزدوج ترانهاده ی خود جا به جا (در ضرب) شود. به عبارت دیگر، ماتریس A نرمال است اگر شرط زیر برقرار باشد:

$$AA^H = A^H A$$

 $A^H = \overline{A^T}$ که در آن A^H مزدوج ترانهاده ماتریس A است (یعنی A^H

نكته:

- ست. $(A = A^H)$ نرمال است.
- ۰۲. هر ماتریس یکانی $(A^{H} = A^{-1})$ نرمال است.

مثال ۳.۴.۱:

۱. ماتریس هرمیتی:

$$A = \begin{pmatrix} 1 & 2+i \\ 2-i & 3 \end{pmatrix}$$

این ماتریس هرمیتی است و بنابراین نرمال است.

۲. ماتریس یکانی:

$$A = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

این ماتریس یکانی است و بنابراین نرمال است.

۳. ماتریس نرمال غیرهرمیتی و غیریکانی:

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

این ماتریس نرمال است، زیرا:

$$AA^H = A^H A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

مثال ۴.۴.۱:

برای بررسی نرمال بودن یک ماتریس A، باید A^H و A^H را محاسبه کرده و بررسی کنیم که آیا با هم برای هستند با خیر.

برابر هستند یا خیر. مثال: ماتریس زیر را در نظر بگیرید:

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

مزدوج ترانهادهی آن (A^H) به صورت زیر است:

$$A^H = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

حال AA^H و A^HA را محاسبه میکنیم:

$$AA^{H} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

$$A^{H}A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

چون $AA^H \neq A^H A$ ، این ماتریس نرمال نیست.

تعریف ۹.۴.۱:

ماتریس A را متعامد (Orthogonal) میگوییم اگر ترانهاده ی آن معادل معکوس آن باشد. به عبارت دیگر، ماتریس A متعامد است اگر شرط زیر برقرار باشد:

$$A^T = A^{-1}$$

يا به طور معادل:

$$A^T A = A A^T = I$$

که در آن I ماتریس همانی است.

نکته: ویژگیهای مهم ماتریسهای متعامد

۱. حفظ ضرب داخلی: ماتریسهای متعامد، ضرب داخلی بردارها را حفظ میکنند. یعنی برای هر دو بردار u و v، داریم:

$$\langle A\mathbf{u}, A\mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle$$

۲. حفظ ضرب داخلی: ماتریسهای متعامد، طول (نرم) بردارها را حفظ میکنند. یعنی برای هر بردار u، داریم:

$$||A\mathbf{u}|| = ||\mathbf{u}||$$

-1 دترمینان ماتریس متعامد: دترمینان یک ماتریس متعامد یا 1 است یا -1

$$\det(A) = \pm 1$$

۴. سطرها و ستونهای متعامد: سطرها و ستونهای یک ماتریس متعامد، بردارهای متعامد (عمود بر هم) و یکه (با طول ۱) هستند.

مثال ۵.۴.۱: مثالهایی از ماتریسهای متعامد

۱. **ماتریس چرخش:** ماتریس چرخش در صفحه ی دو بعدی به زاویه ی θ به صورت زیر است:

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

این ماتریس متعامد است، زیرا:

$$A^{T}A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$$

۲. **ماتریس بازتاب:** ماتریس بازتاب نسبت به محور x به صورت زیر است:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

این ماتریس متعامد است، زیرا:

$$A^T A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$$

بررسی متعامد بودن یک ماتریس

برای بررسی متعامد بودن یک ماتریس A، باید A^TA و AA^T را محاسبه کرده و بررسی کنیم که آیا با ماتریس همانی I برابر هستند یا خیر.

تمرین ۳.۴.۱

ماتریس زیر را در نظر بگیرید:

$$A = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

نشان دهید این ماتریس متعامد است.

تمرین ۴.۴.۱

برنامهای به زبان پایتون بنویسید که در آن یک ماتریس به عنوان ورودی گرفته شود و متعامد بودن یا نبودن آن، نرمال بودن یا نبودن آن، یکانی بودن یا نبودن آن و هرمیتی بودن یا نبودن آن را به عنوان خروجی نمایش دهد.

فصل ۲

دستگاه معادلات خطی

تعریف ۱۰۰.۲: فرم کلی دستگاه معادلات خطی

دستگاههای معادلات خطی مجموعهای از معادلات خطی هستند که به دنبال یافتن مقادیر متغیرهایی هستیم که همزمان همه ی معادلات را برآورده کنند. فرم کلی یک دستگاه معادلات خطی و نمایش ماتریسی آن به شرح زیر است: یک دستگاه معادلات خطی با m معادله و n متغیر به صورت زیر نوشته می شود:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

که در آن:

- متغیرهای مجهول هستند. x_1, x_2, \ldots, x_n
- $oldsymbol{\cdot} (j=1,2,\ldots,n)$ و $i=1,2,\ldots,m$ فستند a_{ij}
 - هستند. (سمت راست معادلات) هستند b_1, b_2, \dots, b_m

تعریف ۲۰۰۰۲: نمایش ماتریسی دستگاه معادلات خطی

دستگاه معادلات خطی فوق را میتوان به صورت ماتریسی زیر نمایش داد:

$$A\mathbf{x} = \mathbf{b}$$

که در آن:

• A ماتریس ضرایب است و به صورت زیر تعریف می شود:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

این ماتریس ابعاد $m \times n$ دارد.

 \mathbf{x} بردار متغیرهای مجهول است و به صورت زیر تعریف می شود:

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

این بردار ابعاد $n \times 1$ دارد.

• b بردار مقادیر معلوم (سمت راست معادلات) است و به صورت زیر تعریف می شود:

$$\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

این بردار ابعاد $m \times 1$ دارد.

مثال ۲.۰۰۲:

دستگاه معادلات خطی زیر را در نظر بگیرید:

$$\begin{cases} 2x_1 + 3x_2 = 5\\ 4x_1 - x_2 = 1 \end{cases}$$

این دستگاه را میتوان به صورت ماتریسی زیر نمایش داد:

$$\begin{pmatrix} 2 & 3 \\ 4 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 5 \\ 1 \end{pmatrix}$$

که در آن:

• ماتریس ضرایب A به صورت زیر است:

$$A = \begin{pmatrix} 2 & 3 \\ 4 & -1 \end{pmatrix}$$

• بردار متغیرهای مجهول x به صورت زیر است:

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

• بردار مقادیر معلوم b به صورت زیر است:

$$\mathbf{b} = \begin{pmatrix} 5 \\ 1 \end{pmatrix}$$

تعریف ۳۰۰۰۲: فرم ماتریس افزوده

فرم ماتریس افزوده برای دستگاه معادلات خطی $\mathbf{a} = \mathbf{b}$ ، ماتریس افزوده به صورت زیر تعریف میشود:

$$[A \mid \mathbf{b}] = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \mid b_1 \\ a_{21} & a_{22} & \dots & a_{2n} \mid b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \mid b_m \end{pmatrix}$$

مثال ۲۰۰۰۲:

برای دستگاه:

$$\begin{cases} 2x + 3y = 5\\ 4x - y = 1 \end{cases}$$

ماتريس افزوده:

$$\left(\begin{array}{cc|c} 2 & 3 & 5 \\ 4 & -1 & 1 \end{array}\right)$$

تعریف ۴۰۰۰۲: انواع دستگاههای معادلات خطی

- ۱. دستگاه مربعی
- (m=n) است n است n برابر با تعداد متغیرها n است m
 - ویژگی:
 - مآتریس ضرایب A مربعی است.
 - اگر $0 \neq 0$ ، جواب منحصر به فرد دارد.
 - مثال:

$$\begin{cases} x + 2y = 3\\ 3x + 4y = 7 \end{cases}$$

- ۲. دستگاه فرومعین
- (m < n) است n است m کمتر از متغیرها n است
 - ویژگی:
 - معمولاً بينهايت جواب دارد.
 - ماتریس ضرایب پهن است.
 - مثال:

$$\begin{cases} x+y+z=1\\ 2x+y-z=3 \end{cases}$$

- ۳. دستگاه فرامعین
- تعریف: تعداد معادلات m بیشتر از متغیرها n است (m>n).
 - ویژگی:
 - معمولاً جواب دقیق ندارد (مگر در موارد خاص).
 - ماتریس ضرایب بلند است.
 - مثال:

$$\begin{cases} x + y = 2 \\ 2x + y = 3 \\ 3x + y = 4 \end{cases}$$

۱.۲ حل دستگاه معادلات خطی

۱.۱.۲ روش ماتریس معکوس

- حل دستگاه معادلات خطی با استفاده از ماتریس وارون
 - شرایط استفاده از این روش:
- دستگاه باید مربعی باشد (تعداد معادلات = تعداد متغیرها).
 - ماتریس ضرایب A باید معکوسپذیر باشد ($\det(A) \neq 0$).

مراحل حل:

۱. نمایش ماتریسی دستگاه:

 $A\mathbf{x} = \mathbf{b}$

- $(n \times n)$ ماتریس ضرایب: A
 - $(n \times 1)$ بردار مجهولات : \mathbf{x} -

 $(n \times 1)$ بردار مقادیر سمت راست (b -

۲. محاسبه ماتریس وارون
$$A^{-1}$$
:
– با استفاده از روشهایی مانند ماتریس الحاقی یا عملیات سطری.
۳. ضرب طرفین در A^{-1} :

$$\mathbf{x} = A^{-1}\mathbf{b}$$

مثال ۱۰۱۰۲:

دستگاه معادلات:

$$\begin{cases} 2x + 3y = 5\\ 4x - y = 1 \end{cases}$$

۱. نمایش ماتریسی:

$$\begin{pmatrix} 2 & 3 \\ 4 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5 \\ 1 \end{pmatrix}$$

: A محاسبه $: A^{-1} =$ دترمینان : A

$$\det(A) = (2)(-1) - (3)(4) = -2 - 12 = -14 \ (\neq 0)$$

- ماتريس الحاقى:

$$adj(A) = \begin{pmatrix} -1 & -3 \\ -4 & 2 \end{pmatrix}$$

- ماتريس وارون:

$$A^{-1} = \frac{1}{-14} \begin{pmatrix} -1 & -3 \\ -4 & 2 \end{pmatrix} = \begin{pmatrix} \frac{1}{14} & \frac{3}{14} \\ \frac{2}{7} & -\frac{1}{7} \end{pmatrix}$$

۳. حل دستگاه:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{1}{14} & \frac{3}{14} \\ \frac{2}{7} & -\frac{1}{7} \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{5}{14} + \frac{3}{14} \\ \frac{10}{7} - \frac{1}{7} \end{pmatrix} = \begin{pmatrix} \frac{8}{14} \\ \frac{9}{7} \end{pmatrix} = \begin{pmatrix} \frac{4}{7} \\ \frac{9}{7} \end{pmatrix}$$

جواب نهایی:

$$x = \frac{4}{7}, \ y = \frac{9}{7}$$

تمرین ۱۰۱۰۲

سوال ١:

دستگاه زیر را با روش ماتریس وارون حل کنید:

$$\begin{cases} 3x - y = 4 \\ 2x + 5y = 1 \end{cases}$$

سوال ۲:

آیا دستگاه زیر با این روش قابل حل است؟ چرا؟

$$\begin{cases} x + 2y = 3\\ 2x + 4y = 6 \end{cases}$$

سوال ۳:

ماتریس وارون A را برای دستگاه زیر محاسبه و جواب را بیابید:

$$\begin{cases} 1x + 0y + 1z = 2\\ 0x + 2y + 0z = 4\\ 1x + 1y + 0z = 3 \end{cases}$$

كد پايتون ١٠١٠٢: حل دستگاه معادلات خطى به روش ماتريس معكوس

```
ı import numpy as np
_{2}A = np.array([[2, 3], [4, -1]])
3 b = np.array([5, 1])
4 try:
     A_inv = np.linalg.inv(A)
     x = np.dot(A inv, b)
     print("Solution using inverse method:", x)
 except np.linalg.LinAlgError:
     print("Matrix is singular!")
```

۲.۱.۲ روش حذفی گاوس

حل دستگاه معادلات خطی با روش حذف گاوس هدف: تبدیل ماتریس افزوده به فرم سطری پلکانی یا کاهشیافته برای یافتن جواب. مراحل روش حذف گاوس:

- $\cdot [A \mid \mathbf{b}]$ ماتریس افزوده $\cdot \mathbf{b}$
- ۲. استفاده از عملیات سطری مقدماتی: جابجایی دو سطر. ضرب یک سطر در عددی ناصفر. جمع مضربی از یک سطر با سطر دیگر.

- ۳. تبدیل به فرم سطری پلکانی.
 - ۴. حل از يايين به بالا.

مثال ۲.۱.۲:

دستگاه مربعی با حواب منحصر بهفرد دستگاه:

$$\begin{cases} x + 2y = 5\\ 3x + 4y = 6 \end{cases}$$

حل: ۱. ماترىس افزوده:

$$\left(\begin{array}{cc|c}1 & 2 & 5\\3 & 4 & 6\end{array}\right)$$

 $:R_2 \leftarrow R_2 - 3R_1$ - عملیات سطری: - ۲

$$\left(\begin{array}{cc|c} 1 & 2 & 5 \\ 0 & -2 & -9 \end{array}\right)$$

$$-2y = -9 \Rightarrow y = \frac{9}{2}$$
 از سطر دوم:

.- حل:
$$-2y=-9\Rightarrow y=\frac{9}{2}:$$
 - از سطر دوم: $x+2(\frac{9}{2})=5\Rightarrow x=-4:$ - از سطر اول:

$$y = \frac{9}{2}$$
 ، $x = -4$ جواب:

مثال ۲.۱.۲:

دستگاه فرومعین با بینهایت جواب دستگاه:

$$\begin{cases} x + y + z = 3 \\ 2x + y - z = 1 \end{cases}$$

حل: ۱. ماتریس افزوده:

$$\left(\begin{array}{ccc|c} 1 & 1 & 1 & 3 \\ 2 & 1 & -1 & 1 \end{array}\right)$$

 $R_2 \leftarrow R_2 - 2R_1 - R_2 \leftarrow R_2 - 2R_1$ عملیات سطری:

$$\left(\begin{array}{ccc|c} 1 & 1 & 1 & 3 \\ 0 & -1 & -3 & -5 \end{array}\right)$$

$$-y - 3z = -5 \Rightarrow y = 5 - 3z$$
 - از سطر دوم:

$$x + (5 - 3z) + z = 3 \Rightarrow x = -2 + 2z$$
 از سطر اول:

جواب عمومي:

$$x = -2 + 2z, \ y = 5 - 3z \quad (z \in \mathbb{R}).$$

مثال ۴.۱.۲:

دستگاه فرامعین بدون جواب دستگاه:

$$\begin{cases} x + y = 2\\ 2x + 2y = 5\\ 3x + 3y = 4 \end{cases}$$

حل:

۱. ماتريس افزوده:

$$\left(\begin{array}{cc|c}
1 & 1 & 2 \\
2 & 2 & 5 \\
3 & 3 & 4
\end{array}\right)$$

 $R_2 \leftarrow R_2 - 2R_1 - R_2 \leftarrow R_2 - 2R_1$ عملیات سطری: ۲

$$\left(\begin{array}{cc|c}
1 & 1 & 2 \\
0 & 0 & 1 \\
3 & 3 & 4
\end{array}\right)$$

– سطر دوم نشان دهنده ی1=0 است.

نتیجه: دستگاه ناسازگار است (جواب ندارد).

مثال ۵.۱.۲:

دستگاه معادلات خطی به صورت:

$$\begin{cases} x_1 + 3x_2 + x_3 + 5x_4 + x_5 = 5\\ x_2 + x_3 + 2x_4 + x_5 = 4\\ 2x_1 + 4x_2 + 7x_4 + x_5 = 3 \end{cases}$$

حل با روش حذف گاوس: مرحله ۱: تشکیل ماتریس افزوده ماتریس افزوده برای این دستگاه به صورت زیر است:

مرحله Y: حذف متغیر x_1 از سطر سوم

برای حذف x_1 از سطر سوم، از سطر اول استفاده میکنیم. عملیات سطری:

$$R_3 \leftarrow R_3 - 2R_1$$

ماتریس جدید:

$$\left[\begin{array}{ccc|ccc|ccc|ccc|ccc|ccc|} 1 & 3 & 1 & 5 & 1 & 5 \\ 0 & 1 & 1 & 2 & 1 & 4 \\ 0 & -2 & -2 & -3 & -1 & -7 \end{array}\right]$$

مرحله x_2 : حذف متغیر x_2 از سطر سوم برای حذف x_2 از سطر سوم، از سطر دوم استفاده میکنیم. عملیات سطری:

$$R_3 \leftarrow R_3 + 2R_2$$

ماتریس جدید:

$$\left[\begin{array}{cccc|cccc} 1 & 3 & 1 & 5 & 1 & 5 \\ 0 & 1 & 1 & 2 & 1 & 4 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{array}\right]$$

مرحله ۴: تحليل دستگاه

دستگاه به فرم سطری پلکانی تبدیل شده است. مشاهده میکنیم که: $x_1 = x_2 + x_3 + x_4 + x_5 + x_6 + x_6$

- متغیرهای آزاد: x_3 و x_3 (ستونهای بدون عدد غیرصفر اصلی).

مرحله ۵: حل دستگاه به صورت پارامتری از سطر سوم شروع میکنیم و به صورت پسگشت حل میکنیم:

١. سطر سوم:

$$x_4 + x_5 = 1 \implies x_4 = 1 - x_5$$

۲. سطر دوم:

$$x_2 + x_3 + 2x_4 + x_5 = 4$$

 x_4 با جایگذاری

 $x_2 + x_3 + 2(1 - x_5) + x_5 = 4 \implies x_2 + x_3 + 2 - x_5 = 4 \implies x_2 + x_3 - x_5 = 2$

بنابراين:

$$x_2 = 2 - x_3 + x_5$$

٣. سطر اول:

$$x_1 + 3x_2 + x_3 + 5x_4 + x_5 = 5$$

 x_4 و x_2 با جایگذاری

$$x_1 + 3(2 - x_3 + x_5) + x_3 + 5(1 - x_5) + x_5 = 5$$

سادەسازى:

$$x_1 + 6 - 3x_3 + 3x_5 + x_3 + 5 - 5x_5 + x_5 = 5 \implies x_1 - 2x_3 - x_5 + 11 = 5$$

نتيجه:

$$x_1 = -6 + 2x_3 + x_5$$

جواب عمومی دستگاه: با توجه به متغیرهای آزاد x_3 و x_5 ، جواب به صورت زیر است:

$$\left\{ egin{array}{ll} x_1 = -6 + 2s + t \ x_2 = 2 - s + t \ x_3 = s & ext{(ils)} \ x_4 = 1 - t \ x_5 = t & ext{(ils)} \ \end{array}
ight.$$

که در آن $s,t\in\mathbb{R}$ پارامترهای دلخواه هستند.

تمرین ۲۰۱۰۲

$$\begin{cases} 2x - y = 3\\ x + 3y = 5 \end{cases}$$

تمرین ۲: حل کنید (در صورت وجود جواب):

$$\begin{cases} x + 2y - z = 1 \\ 2x + 4y - 2z = 2 \\ 3x + 6y - 3z = 3 \end{cases}$$

تمرین ۳: حل کنید:

$$\begin{cases} x + y + z = 6 \\ 2y + 5z = -4 \\ 2x + 5y - z = 27 \end{cases}$$

تمرین ۴: آیا دستگاه زیر جواب دارد؟

$$\begin{cases} x - y + 2z = 1\\ 2x + y - z = 0\\ 3x + 2z = 1 \end{cases}$$

تمرین ۳۰۱۰۲

دستگاه معادلات خطی زیر را به روش حذفی گاوس حل کنید.

$$\begin{cases} 2x_1 + 4x_2 - 2x_3 - 2x_4 = -4\\ x_1 + 2x_2 + 4x_3 - 3x_4 = 5\\ -3x_1 - 3x_2 + 8x_3 - 2x_4 = 7\\ -x_1 + x_2 + 6x_3 - 3x_4 = 7 \end{cases}$$

کد پایتون ۲.۱.۲: حل دستگاه معادلات خطی به روش حذفی گاوس

```
import numpy as np
A = np.array([[2, 4, -2, -2], [1, 2, 4, -3], [-3, -3, 8, -2], [-1,
b = np.array([-4, 5, 7, 7])
x = np.linalg.solve(A, b)
print("Solution using numpy.linalg.solve:", x)
```

تمرین ۴۰۱۰۲

یک دستگاه معادلات خطی شامل چهار معادله و چهار مجهول بسازید که بردار جواب آن به صورت x = [1, -1, 0, 2]

باشد. سپس این دستگاه را با استفاده از برنامههای پایتون داده شده در قبل حل کنید.

۲.۲ روش حذفی گاوس جردن

روش حذف گاوس-جردن یک الگوریتم برای حل دستگاههای معادلات خطی است که ماتریس را به فرم کاهشیافته سطری پلکانی تبدیل میکند. این روش، توسعهیافتهی روش حذف گاوس است و ماتریس را تا حد امکان ساده میکند.

مراحل روش حذف گاوس-جردن:

- $\cdot [A \mid \mathbf{b}]$ تشكيل ماتريس افزوده $\cdot \mathbf{1}$
- ۲. تبدیل به فرم سطری پلکانی (REF) با استفاده از عملیات سطری مقدماتی:
 - ۱. جابجایی دو سطر.
 - ۲. ضرب یک سطر در عددی ناصفر.
 - ۳. جمع مضربی از یک سطر با سطر دیگر.
 - ۳. تبدیل به فرم کاهشیافته :(RREF)
 - ۱. ایجاد ۱ های اصلی (پایهای) در هر سطر.
 - ۲. صفر کردن تمام درایههای بالا و پایین هر ۱ اصلی.
 - ۴. استخراج جواب از ماتریس کاهشیافته.

مثال ۱۰۲۰۲:

دستگاه مربعی با جواب منحصربهفرد دستگاه:

$$\begin{cases} x + 2y = 5\\ 3x + 4y = 6 \end{cases}$$

حل: ۱. ماتریس افزوده:

 $\left[\begin{array}{cc|c} 1 & 2 & 5 \\ 3 & 4 & 6 \end{array}\right]$

 $:R_2 \leftarrow R_2 - 3R_1$ - عملیات سطری: - ۲

 $\left[\begin{array}{cc|c} 1 & 2 & 5 \\ 0 & -2 & -9 \end{array}\right]$

 $: R_2 \leftarrow -\frac{1}{2}R_2 -$

 $\left[\begin{array}{cc|c} 1 & 2 & 5 \\ 0 & 1 & 4.5 \end{array}\right]$

 $:R_1 \leftarrow R_1 - 2R_2$ -

 $\left[\begin{array}{cc|c} 1 & 0 & -4 \\ 0 & 1 & 4.5 \end{array}\right]$

۳. جواب:

 $x = -4, \quad y = 4.5$

مثال ۲.۲.۲:

دستگاه با بینهایت جواب دستگاه:

$$\begin{cases} x + y + z = 3 \\ 2x + y - z = 1 \end{cases}$$

حل: ١. ماتريس افزوده:

$$\left[\begin{array}{ccc|c}
1 & 1 & 1 & 3 \\
2 & 1 & -1 & 1
\end{array}\right]$$

 $:R_2 \leftarrow R_2 - 2R_1$ - عملیات سطری: - ۲

$$\left[\begin{array}{ccc|c} 1 & 1 & 1 & 3 \\ 0 & -1 & -3 & -5 \end{array}\right]$$

 $:R_2 \leftarrow -R_2$ -

$$\left[\begin{array}{ccc|c}1&1&1&3\\0&1&3&5\end{array}\right]$$

 $:R_1 \leftarrow R_1 - R_2$ -

$$\left[\begin{array}{cc|c} 1 & 0 & -2 & -2 \\ 0 & 1 & 3 & 5 \end{array}\right]$$

۳. جواب عمومي:

$$x = -2 + 2z, \quad y = 5 - 3z \quad (z \in \mathbb{R})$$

تمرین ۱۰۲۰۲

۱. دستگاه معادلات زیر را به روش گاوس-جردن حل کنید(در صورت وجود جواب):

$$\begin{cases} 2x - y = 3\\ x + 3y = 5 \end{cases}$$

۲. دستگاه معادلات زیر را به روش گاوس-جردن حل کنید(در صورت وجود جواب):

$$\begin{cases} x + 2y - z = 1 \\ 2x + 4y - 2z = 2 \\ 3x + 6y - 3z = 3 \end{cases}$$

۳. دستگاه معادلات زیر را به روش گاوس-جردن حل کنید(در صورت وجود جواب):

$$\begin{cases} x + y + z = 6 \\ 2y + 5z = -4 \\ 2x + 5y - z = 27 \end{cases}$$

نکته:

تفاوت اصلی بین روش حذف گاوس a و روش حذف گاوس-جردن b در میزان سادهسازی ماتریس و نحوه استخراج جواب است.

نکته: هدف نهایی در روش حذفی گاوس

- ماتریس را به فرم سطری پلکانی ^a تبدیل میکند.
- در REF ، زیر هر عدد اصلی (پایهای) صفر قرار میگیرد.
 - جواب با حل پسگشت b به دست میآید.

نکته: هدف نهایی در روش حذفی گاوس - جردن

- ماتریس را به فرم کاهشیافته سطری پلکانی ^a تبدیل میکند.
- در ،RREF هر عدد اصلی ۱ است و تنها عدد غیرصفر در ستون خود است.
 - جواب مستقيماً از ماتريس خوانده ميشود.

^aReduced Row Echelon Form - RREF

نکته: مراحل اجرای روش حذفی گاوس

- ۱. ماتریس را به فرم REF می آورد.
- ۲. با جایگزینی از سطر آخر به بالا، جواب را محاسبه میکند.

نکته: مراحل اجرای روش حذفی گاوس - جردن

- ۱. ماتریس را به فرم RREF میآورد.
- ٢٠ جواب بدون نياز به محاسبات اضافه، مستقيماً از ماتريس استخراج ميشود.

^aGaussian Elimination

^b Gauss-Jordan Elimination

^aRow Echelon Form - REF

^bBack Substitution

نکته: نمادگذاری ماتریس در REF

$$\begin{bmatrix} 1 & 2 & 3 & 5 \\ 0 & 1 & 4 & 7 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

نیاز به حل معادله ی z=2، سپس جایگزینی در معادلات بالاتر.

نکته: نمادگذاری ماتریس در RREF

$$\begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

z=2 ، y=3 ، x=-1 جواب مستقیماً:

مثال ٣٠٢٠٢: مثال مقايسهاي

دستگاه معادلات:

$$\begin{cases} 2x + y - z = 8 \\ -3x - y + 2z = -11 \\ -2x + y + 2z = -3 \end{cases}$$

حل با حذف گاوس :(REF) ماتریس نهایی:

$$\begin{bmatrix} 2 & 1 & -1 & 8 \\ 0 & 0.5 & 0.5 & 1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

- نیاز به حل پسگشت برای یافتن z، سپس y، و در نهایت x حل با حذف گاوس-جردن :(RREF) ماتریس نهایی:

$$\begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

-z = -1 ، y = 3 ، x = 2 جواب مستقيماً:

تمرین ۲۰۲۰۲

تعداد عملیاتهای حسابی (جمع، تفریق، ضرب و تقسیم) را برای هر یک از روشهای حذفی گاوس و حذفی گاوس و حذفی گاوس و حذفی گاوس جردن محاسبه کنید.

۳.۲ تجزیه LU

LUتعریف ۱۰۳۰۲: تجزیه

تجزیه ${
m LU}$ یعنی تجزیه ی یک ماتریس مربعی ${
m \it A}$ به صورت حاصل ضرب دو ماتریس:

$$A = LU$$

که در آن: L = L: ماتریس مثلثی پایین با درایههای قطر اصلی برابر با ۱ (یا بدون شرط خاص) U = U: ماتریس مثلثی بالا

LUنکته: کاربردهای تجزیه

ا معادلات خطی Ax=b به صورت سریعتر Λ

۲. محاسبهی معکوس ماتریس

۳. محاسبهی دترمینان

مثال ۱.۳.۲:

تجزیه LU برای ماتریس ۲×۲ فرض کن:

$$A = \begin{bmatrix} 2 & 3 \\ 4 & 7 \end{bmatrix}$$

:U ماتریس

$$U = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}$$

:Lماتریس

$$L = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$

پس:

$$A = LU = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}$$

۵۷

مثال ۲.۳.۲:

تجزیه LU برای ماتریس ۳×۳ ساده

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 10 \end{bmatrix}$$

با استفاده از الگوریتم LU (به صورت دستی یا با برنامهنویسی) به دست میآید:

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 7 & 2 & 1 \end{bmatrix}, \quad U = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 1 \end{bmatrix}$$

مثال ۳۰۳۰: حل دستگاه معادلات خطی با استفاده از تجزیه LU

استفاده از LU برای حل دستگاه دستگاه زیر رو با LU حل میکنیم:

$$A = \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix}, \quad b = \begin{bmatrix} 5 \\ 11 \end{bmatrix}$$

گام ۱: تجزیه LU

$$L = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}, \quad U = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$$

Ly = b گام ۲: حل

$$\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 11 \end{bmatrix} \Rightarrow y = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$

Ux = yگام ۳: حل

$$\begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \end{bmatrix} \Rightarrow x = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

تمرین ۱.۳.۲

$$\begin{bmatrix} 3 & 1 \\ 6 & 5 \end{bmatrix}$$

۲. یا استفاده از ،LU دستگاه زیر را حل کن:

$$\begin{bmatrix} 2 & 4 \\ 6 & 10 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 6 \\ 18 \end{bmatrix}$$

۳. تجزیه LU برای ماتریس زیر را انجام بده:

$$\begin{bmatrix} 4 & 3 & 2 \\ 8 & 7 & 5 \\ 2 & 1 & 3 \end{bmatrix}$$

۴. فرض کن LU تجزیه برای ماتریس A انجام شده و:

$$L = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}, \quad U = \begin{bmatrix} 1 & 3 \\ 0 & 2 \end{bmatrix}, \quad b = \begin{bmatrix} 7 \\ 20 \end{bmatrix}$$

با استفاده از ،LU دستگاه Ax = b ,ا حل کنند.

نكته : مراحل گام به گام تجزیه LU روش دولیتل

هدف: تجزیهی یک ماتریس مربعی $A \in \mathbb{R}^{n \times n}$ به:

$$A = LU$$

ے: ماتریس مثلثی پایین با عناصر ۱ روی قطر (یا بدون شرط) L = U: ماتریس مثلثی بالا

- در روش دولیتل قطر اصلی L همگی برابر یک هستند و با اجرای روش حذف گاوسی LU رو میسازیم.

فرض کنیم ماتریس A از مرتبه ۳ باشد:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

و بخواهيم بنويسيم:

$$A = LU = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

LUتجزیه .۳.۲ ۵٩

U محاسبه سطر اول ماتریس

محاسبه سطر اول ماتریس U: چون سطر اول L برابر با [0,0,1] است، پس:

$$U_{1,:} = A_{1,:} = [a_{11}, a_{12}, a_{13}]$$

محاسبهی ستون اول L:

برای سطرهای ۲ و ۳:

$$l_{21} = \frac{a_{21}}{u_{11}}, \quad l_{31} = \frac{a_{31}}{u_{11}}$$

 u_{22},u_{23} محاسبهی

$$U_{2,:} = A_{2,:} - l_{21} \cdot U_{1,:}$$

:امحاسبهی دا

$$l_{32} = \frac{A_{32} - l_{31} \cdot u_{12}}{u_{22}}$$

$$u_{33} = A_{33} - l_{31} \cdot u_{13} - l_{32} \cdot u_{23}$$

خلاصهی کلی فرمولها: برای هر سطر i و ستون j:

:U برای محاسبه ی

$$u_{ij} = a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj}$$

(i > j درمانی که (i > j) برای محاسبه ی

$$l_{ij} = \frac{1}{u_{jj}} \left(a_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj} \right) \tag{1.7}$$

مثال ۴.۳.۲: مثال عددی گامبهگام (ماتریس ۳x۳):

$$A = \begin{bmatrix} 2 & 3 & 1 \\ 4 & 7 & 2 \\ 6 & 18 & -1 \end{bmatrix}$$

گام U: 1 سطر اول

$$u_{11} = 2, \quad u_{12} = 3, \quad u_{13} = 1$$

گام T: L ستون اول

$$l_{21} = \frac{4}{2} = 2, \quad l_{31} = \frac{6}{2} = 3$$

U گام \mathfrak{P} : سطر دوم از

$$u_{22} = 7 - (23) = 1, \quad u_{23} = 2 - (21) = 0$$

گام **۴:** ا

$$l_{32} = \frac{18 - (33)}{1} = \frac{9}{1} = 9$$

 $u_{33}:$ گام ک

$$u_{33} = -1 - (31 + 90) = -4$$

نتيجه نهايي:

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 9 & 1 \end{bmatrix}, \quad U = \begin{bmatrix} 2 & 3 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -4 \end{bmatrix}$$

تمرین ۲۰۳۰۲

ماتریس زیر را به روش LU تجزیه کنید:

$$A = \begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix}$$

تمرین ۳.۳.۲

تجزیه LU ماتریس سهقطری زیر را محاسبه کنید:

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$

LU تجزیه .۳.۲ تجزیه .

تعریف ۲۰۳۰: زیرماتریسهای اصلی

زیرماتریسهای اصلی یک ماتریس مربعی A با ابعاد $n \times n$ ماتریسهای کوچکتری هستند که از حذف برخی سطرها و ستونهای A به دست میآیند، با این شرط که ستونهای حذفشده دقیقاً همان سطرهای حذف شده باشند. این ماتریسها نقش کلیدی در بررسی وجود تجزیه ،LU محاسبه دترمینان و تحلیل پایداری ماتریس دارند.

برآی یک ماتریس A به صورت:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix},$$

زیرماتریس اصلی $k \times k$ (برای $k \le k$) با انتخاب k سطر و ستون اول ساخته می شود. به عبارت دیگر:

$$A_k = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} \end{pmatrix}.$$

مثال ۵.۳.۲: زیرماتریسهای اصلی

برای ماتریس 3×3 برای ماتریس:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix},$$

 $A_1 = \begin{pmatrix} 1 \end{pmatrix} : k = 1 \cdot 1 : k = 2 \cdot 1 : k = 2 \cdot 1 : k = 2 \cdot 1 : k = 3 \cdot 1 : k$

LUنکته: زیرماتریسهای اصلی و تجزیه

 A_k تجزیه LU بدون جایگشت سطرها وجود دارد اگر و تنها اگر دترمینان همه زیرماتریسهای اصلی (برای $(k=1,2,\ldots,n-1)$ غیرصفر باشند.

مثال ۶.۳.۲:

فرض كنيد:

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \implies A_1 = \begin{pmatrix} 0 \end{pmatrix}.$$

چون $\det(A_1) = 0$ بدون جایگشت امکانپذیر نیست.

نكته:

 ${
m LU}$. در تجزیه U در تجزیه ماتریس اصلی برابر است با حاصلضرب عناصر قطر اصلی ماتریس اصلی برابر است با

مثال ٧٠٣٠٢:

در مثالهای قبل دیدیم که اگر

$$A = \begin{bmatrix} 2 & 3 & 1 \\ 4 & 7 & 2 \\ 6 & 18 & -1 \end{bmatrix}$$

آنگاه تجزیه LU به صورت زیر خواهد بود

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 9 & 1 \end{bmatrix}, \quad U = \begin{bmatrix} 2 & 3 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -4 \end{bmatrix}$$

پس با توجه به نکته قبل

$$\det(A) = 2 \times 1 \times (-4) = -8$$

۱.۳.۲ تجزیه LU و PLU با استفاده از ماتریسهای مقدماتی

تعریف ۳.۳.۲: ماتریسهای مقدماتی

ماتریس مقدماتی، ماتریسی است که با اعمال یک عملیات سطری مقدماتی روی ماتریس همانی I به دست میآید. این عملیاتها شامل:

- $(E_{ij}$ مثل مثل دو سطر (مثل E_{ij})،
- $(E_i(k))$ مثرب یک سطر در عددی ناصفر مثل $(E_i(k))$.۲
- $\cdot (E_{ij}(k))$ مثل دیگر مثل به سطر به سطر دیگر مثل $\cdot \Upsilon$

مثال ۸.۳.۲:

برای ایجاد ماتریس مقدماتی $E_{21}(-3)$ که سطر ۲ را با $E_{21}(-3)$ میکند:

$$E_{21}(-3) = \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix}.$$

LUتجزیه.au. تجزیه au

نکته: محاسبه وارون ماتریس مقدماتی

وارون این ماتریس با معکوس کردن علامت k ساخته میشود به عنوان مثال:

$$E_{21}(k) = \begin{pmatrix} 1 & 0 & 0 \\ k & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

آنگاه

$$E_{21}^{-1}(k) = \begin{pmatrix} 1 & 0 & 0 \\ -k & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

زیرا به سادگی دیده می شود که:

$$E_{21}(k) \cdot E_{21}^{-1}(k) = \begin{pmatrix} 1 & 0 & 0 \\ k & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -k & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I$$

درستی این موضوع در حال کلی نیز به سادگی قابل اثبات است.

مثال ٩٠٣٠٢: وارون ماتريس مقدماتي

اگر $I_{3\times3}$ در $I_{3\times3}$ ، آنگاه:

$$E_{21}(2) = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad E_{21}^{-1}(2) = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

مثال ۱۰.۳.۲: وارون ماتریس مقدماتی

اگر $R_3 \leftarrow R_3 - 4R_2$ آنگاه:

$$E = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -4 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad E^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 4 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

تمرین ۴.۳.۲

 $:(I_{3\times3}$ در $R_1\leftarrow R_1+5R_3$ وارون ماتریس زیر را بیابید (حاصل از

$$E = \begin{pmatrix} 1 & 0 & 5 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

تمرین ۵.۳.۲

اگر E^{-1} با عملیات $R_2 \leftarrow R_2 - 3R_4$ در $I_{4\times 4}$ ساخته شود،

تعریف ۴.۳.۲: ماتریس جایگشت

اگر جای دو سطر از ماتریس همانی I را عوض کنیم، ماتریس حاصل یک ماتریس جایگشت خواهد بود. معمولا ماتریسهای جایگشت را با نماد P نشان می دهند.

^aPermutation Matrix

نکته: وارون یک ماتریس جایگشت

وارون هر ماتریس جایگشت خودش است.

مثال ۱۱.۳.۲: ماتریس جایگشت

 $:I_{3 imes 3}$ جابجایی سطرهای ۱ و ۲ در

$$P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

نكته:

ماتریسهای جایگشت متقارن و متعامد هستند، بنابراین:

$$P^{-1} = P^T = P$$

به عبارت دیگر یعنی وارون ماتریس جایگشت خود ماتریس است.

مثال ۱۲.۳.۲: وارون ماتریس جایگشت

برای ماتریس P بالا:

$$P \cdot P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I$$

 $P^{-1} = P$ پس

LUتجزیه.au.۲ تجزیه.

مثال ۱۳.۳.۲: وارون ماتریس جایگشت

 $:I_{4\times4}$ جابجایی سطرهای ۲ و ۳ در

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad P^{-1} = P$$

نکته : تجزیه LU با استفاده از ماتریسهای مقدماتی

تجزیه LU یک ماتریس A به صورت LU یک ماتریس

۱. اتریس پایین مثلثی با قطر اصلی ۱ (حاصل ضرب معکوس ماتریسهای مقدماتی) L

 $(A \, \text{ old} \, \mathbb{Z})$ ماتریس بالامثلثی (فرم سطری پلکانی $U \, \cdot \mathbb{Y}$

مراحل انجام:

۱. حذف گاوسی روی A با عملیات سطری مقدماتی انجام میشود.

.۲ هر عملیات سطری معادل ضرب A در ماتریس مقدماتی E_k است.

ته میشود: U به U به U ماتریس U از معکوس ماتریسهای مقدماتی ساخته میشود: U

$$L = E_1^{-1} E_2^{-1} \dots E_k^{-1}.$$

مثال ۱۴.۳.۲: تجزیه LU با استفاده از ماتریسهای مقدماتی

ماتریس *A*:

$$A = \begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix}$$

مرحله 1: ایجاد U با عملیات سطری

 $(E_{21}(-2)$ عملیات: $(R_2 \leftarrow R_2 - 2R_1)$ عملیات: عملیات: اختریس مقدماتی

$$E_{21}(-2) = \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}, \quad U = E_{21}(-2) \cdot A = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}.$$

مرحله Υ : محاسبه L از معکوس ماتریس مقدماتی

 $:E_{21}(-2)$ معکوس

$$E_{21}^{-1}(-2) = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} = L.$$

نتايج:

$$A = LU = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}.$$

LUنکته: شرایط وجود تجزیه

بدون جایگشت سطرها: همه زیرماتریسهای اصلی A باید غیرصفر باشند. با جایگشت سطرها: اگر نیاز به جابجایی سطرها باشد، از تجزیه PA = LU استفاده می شود.

مثال ۱۵.۳.۲: مثال با جایگشت سطرها (PLU)

$$:A=egin{pmatrix} 0&1\\1&1 \end{pmatrix}$$
 اگر $PA=egin{pmatrix} 1&1\\0&1 \end{pmatrix}$ دنیاز به جابجایی سطرها دارد: $PA=LU$ سپس

مثال ۱۶.۳.۲: تجزیه LU (بدون جایگشت سطرها)

ماتریس زیر را با روش LU تجزیه کنید:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 1 & 5 & 3 \end{pmatrix}$$

مراحل حل: U حذف گاوسی برای ساخت U:

 $R_2 \leftarrow R_2 - 2R_1 : Y$ سطر

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 1 \\
1 & 5 & 3
\end{pmatrix}$$

 $R_3 \leftarrow R_3 - R_1$:۳ سطر 2 3

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 3 & 0 \end{pmatrix}$$

 $R_3 \leftarrow R_3 - 3R_2$:۳ سطر

$$U = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & -3 \end{pmatrix}$$

۲. ساخت ماتریس ۲

ضرایب حذف شده در مراحل بالا را در L قرار دهید:

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 3 & 1 \end{pmatrix}$$

۳. نتایج:

$$A = LU = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & -3 \end{pmatrix}$$

مثال ۱۷.۳.۲: تجزیه PLU (با جایگشت سطرها)

ماتریس زیر را با روش PLU تجزیه کنید (نیاز به جایگشت سطرها دارد):

$$A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & 4 \end{pmatrix}$$

مراحل حل:

۱. جایگشت سطرها برای جلوگیری از صفر در پایوت:

 $:R_2$ و R_1

$$PA = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 2 & 3 & 4 \end{pmatrix}, \quad P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

۲. حذف گاوسی روی PA:

 $R_3 \leftarrow R_3 - 2R_1$:۳ سطر

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & -1 & -2 \end{pmatrix}$$

 $R_3 \leftarrow R_3 + R_2$:۳ سطر

$$U = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

:L ساخت ماتریس :L

- ضرایب حذف:

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & -1 & 1 \end{pmatrix}$$

۴. نتایج:

$$PA = LU \implies \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

LUتجزیه.au. تجزیه au

تمرین ۶.۳.۲

ماتریس زیر را با روش LU تجزیه کنید:

$$B = \begin{pmatrix} 2 & 4 & 2 \\ 1 & 5 & 2 \\ 4 & -1 & 9 \end{pmatrix}$$

تمرین ۷.۳.۲

آیا ماتریس زیر نیاز به تجزیه PLU دارد؟ چرا؟

$$C = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 2 & 3 \\ 1 & 3 & 4 \end{pmatrix}$$

کد پایتون ۱.۳.۲:

```
import numpy as np
from scipy.linalg import lu
A = np.array([[1, 2, 3], [2, 5, 7], [1, 5, 3]])
P, L, U = lu(A)
print("L:\n", L)
print("U:\n", U)
```

۲.۳.۲ حل دستگاه معادلات خطی با استفاده از تجزیه LU

LUنکته : حل دستگاه معادلات خطی با استفاده از تجزیه

تجزیه LU یک روش کارآمد برای حل دستگاههای خطی $d\mathbf{x} = \mathbf{b}$ است. این روش شامل دو مرحله اصلی است:

- (بالامثلثي) U و U (پایین مثلثی) رو الامثلثی) و U (بالامثلثی) و U (بالامثلثی) و تبدیل می شود.
 - ۲. حل دو سیستم مثلثی
 - را برای یافتن y حل میکنیم (حل رو به جلو). Ly = b ابتدا
 - را برای یافتن x حل میکنیم (حل رو به عقب). Ux = y سپس ۲

مثال ۱۸.۳.۲: حل دستگاه معادلات خطی با استفاده از تجزیه LU

$$\begin{cases} 2x_1 + x_2 + x_3 = 5\\ 4x_1 + 3x_2 + x_3 = 11\\ 6x_1 + 5x_2 + 2x_3 = 19 \end{cases}$$

ماتریس A و بردار b:

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 4 & 3 & 1 \\ 6 & 5 & 2 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 5 \\ 11 \\ 19 \end{pmatrix}$$

A = LU مرحله ۱: تجزیه

$$U = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$
$$L = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}$$

')

(حل رو به جلو) $L\mathbf{y} = \mathbf{b}$ مرحله ۲: حل

$$\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 5 \\ 11 \\ 19 \end{pmatrix}$$

 $3y_1 + 2y_2 + y_3 = 19 \implies y_3 = 2 - 2y_1 + y_2 = 11 \implies y_2 = 1 - y_1 = 5 - y_2$ بردار پ

$$\mathbf{y} = \begin{pmatrix} 5 \\ 1 \\ 2 \end{pmatrix}$$

(حل رو به عقب $U\mathbf{x} = \mathbf{y}$ حل رو به عقب مرحله

$$\begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 5 \\ 1 \\ 2 \end{pmatrix}$$

 $2x_1 + x_2 + x_3 = 5 \implies x_1 = 0 - x_2 - x_3 = 1 \implies x_2 = 3 - x_3 = 2 -$ جواب نهایی:

$$\mathbf{x} = \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix}$$

LU۰۳. تجزیه، U۰۲

تمرین ۸.۳.۲

دستگاه زیر را با تجزیه LU حل کنید:

$$\begin{cases} x_1 + 2x_2 = 7\\ 3x_1 + 4x_2 = 17 \end{cases}$$

سبه وارون و دترمینان ماتریس ${ m LU}$ برای محاسبه وارون و دترمینان ماتریس

نکته : کاربرد تجزیه LU برای محاسبه وارون ماتریس

- (بالامثلثی) U و U (بالامثلثی) و U و U (بالامثلثی) این مثلثی با قطر اصلی U و U (بالامثلثی) تبدیل میکنیم.
- n را حل میکنیم. این کار به حل A^{-1} ، دستگاه AX = I را حل میکنیم. این کار به حل AX = I دستگاه معادلات خطی زیر می انجامد:

$$A\mathbf{x}_1 = \mathbf{e}_1, \quad A\mathbf{x}_2 = \mathbf{e}_2, \quad \dots, \quad A\mathbf{x}_n = \mathbf{e}_n$$

که در آن \mathbf{e}_i بردار ستونی iام ماتریس همانی I است.

۳۰. استفاده از L و U: هر دستگاه را با دو مرحله حل می کنیم:

 $L\mathbf{y}_i = \mathbf{e}_i$ حل رو به جلو: -

 $U\mathbf{x}_i = \mathbf{y}_i$ حل رو به عقب -

مثال ۱۹.۳.۲: کاربرد تجزیه LU برای محاسبه وارون ماتریس

برای ماتریس:

$$A = \begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix}, \quad L = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}, \quad U = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$$

 $:A^{-1}$ حل

$$A\mathbf{x}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 حل .۱

$$L\mathbf{y}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \implies \mathbf{y}_1 = \begin{pmatrix} 1 \\ -2 \end{pmatrix} -$$

$$U\mathbf{x}_1 = \begin{pmatrix} 1 \\ -2 \end{pmatrix} \implies \mathbf{x}_1 = \begin{pmatrix} 1.5 \\ -2 \end{pmatrix} -$$

$$A\mathbf{x}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 حل ۲

$$L\mathbf{y}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \implies \mathbf{y}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} -$$

$$U\mathbf{x}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \implies \mathbf{x}_2 = \begin{pmatrix} -0.5 \\ 1 \end{pmatrix}$$
 -

 $:A^{-1}$ وارون $:A^{-1}$

$$A^{-1} = \begin{pmatrix} 1.5 & -0.5 \\ -2 & 1 \end{pmatrix}.$$

نکته : کاربر د تجزیه LU بر ای محاسبه دتر مینان ماتریس

A = LU با استفاده از تجزیه

رابطه دترمینان:

$$\det(A) = \det(L) \cdot \det(U)$$

 $\det(L) = 1$:ست: ۱ است با قطر اصلی ا

بالامثلثی است، پس دترمینان آن حاصلضرب عناصر قطر اصلی است: U

$$\det(A) = \prod_{i=1}^{n} u_{ii}$$

مثال \circ ۰۳۰۲: کاربرد تجزیه LU برای محاسبه دترمینان ماتریس

$$\det(A) = \det(U) = 2 \times 1 = 2$$

تمرین ۹.۳.۲

دترمینان و وارون ماتریس زیر را با استفاده از تجزیه LU بدست آورید.

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 4 & 3 & 1 \\ 6 & 5 & 2 \end{pmatrix}$$

۴.۲ تجزیه چالسکی ماتریسها

۱.۴.۲ ماتریسهای معین مثبت

تعریف ۱.۴.۲: ماتریس معین مثبت

یک ماتریس متقارن $\mathbf{x} \in \mathbb{R}^n$ را معین مثبت a مینامیم اگر برای هر بردار غیرصفر $\mathbf{x} \in \mathbb{R}^n$ شرط زیر برقرار باشد:

$$\mathbf{x}^T A \mathbf{x} > 0$$

به عبارت دیگر:

- $A = A^T$) باید متقارن باشد A = A
- برای همه $\mathbf{x} \neq \mathbf{0}$ مثبت باشد. $\mathbf{x}^T A \mathbf{x}$ مثبت باشد.

^aPositive Definite Matrix

تعریف ۲.۴.۲: ماتریس نیمه معین مثبت

 $\mathbf{x} \in \mathbb{R}^n$ یک ماتریس متقارن $A \in \mathbb{R}^{n \times n}$ را نیمه معین مثبت $A \in \mathbb{R}^n$ مینامیم اگر برای هر بردار غیرصفر شرط زیر برقرار باشد:

$$\mathbf{x}^T A \mathbf{x} \ge 0$$

به عبارت دیگر:

- $A = A^T$ باید متقارن باشد A = A۰۱.
- برای همه $\mathbf{x} \neq \mathbf{0}$ نامنفی باشد. $\mathbf{x} \neq \mathbf{0}$ نامنفی باشد.

^aPositive Semi-Definite Matrix

تعریف ۳.۴.۲: ماتریس معین منفی

یک ماتریس متقارن $A \in \mathbb{R}^n$ را معین منفی a مینامیم اگر برای هر بردار غیرصفر $A \in \mathbb{R}^{n \times n}$ شرط زیر برقرار باشد:

$$\mathbf{x}^T A \mathbf{x} < 0$$

به عبارت دیگر:

- $A = A^T$ باید متقارن باشد A = A۰۱.
- رای همه $\mathbf{x} \neq \mathbf{0}$ منفی باشد. $\mathbf{x}^T A \mathbf{x}$ برای همه $\mathbf{x} \neq \mathbf{0}$ منفی باشد.

^aNegative Definite Matrix

تعریف ۴.۴.۲: ماتریس نیمه معین منفی

 $\mathbf{x} \in \mathbb{R}^n$ یک ماتریس متقارن $A \in \mathbb{R}^{n \times n}$ را نیمه معین منفی مینامیم اگر برای هر بردار غیرصفر شرط زیر برقرار باشد:

$$\mathbf{x}^T A \mathbf{x} \le 0$$

به عبارت دیگر:

- $A = A^T$ باید متقارن باشد A = A۰۱.
- برای همه $\mathbf{x} \neq \mathbf{0}$ نامثبت باشد. $\mathbf{x}^T A \mathbf{x}$ نامثبت باشد.

^aNegative Semi-Definite Matrix

نکته: یک شرط معادل برای تشخیص معین مثبت بودن یک ماتریس

یک ماتریس متقارن A معین مثبت است اگر و تنها اگر همه زیرماتریسهای اصلی a دترمینان مثبت داشته باشند. شرایط معادل دیگری نیز هست بعدا گفته خواهد شد.

^aPrincipal Minors

مثال ١٠٤٠٢: ماتريس معين مثبت

ماتریس زیر معین مثبت است:

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

بررسي شرايط:

- ۱. ماتریس متقارن است.
 - ۲. ضرب درجه دوم:

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \neq \mathbf{0}$$
 برای

$$\mathbf{x}^T A \mathbf{x} = 2x_1^2 - 2x_1 x_2 + 2x_2^2 = (x_1 - x_2)^2 + x_1^2 + x_2^2 > 0.$$

مثال ۲.۴.۲: ماتریس معین مثبت

ماتریس زیر معین مثبت است:

$$B = \begin{pmatrix} 4 & 1 & 0 \\ 1 & 5 & 2 \\ 0 & 2 & 6 \end{pmatrix}$$

بررسی شرایط:

۱. ماتریس متقارن است.

۲. دترمینان زیرماتریسهای اصلی:

$$\det(B_1) = 4 > 0$$

$$\det(B_2) = \det\begin{pmatrix} 4 & 1 \\ 1 & 5 \end{pmatrix} = 19 > 0 -$$

$$\det(B_3) = \det(B) = 84 > 0$$

۲.۴.۲ تجزیه چالسکی

تعریف ۵.۴.۲: تجزیه چالسکی

تجزیه چالسکی a یک روش ریاضی است که برای تجزیه یک ماتریس معین مثبت به یک ضرب ماتریس مثلثی پایین و همچنین ترانهاده آن استفاده می شود. اگر A یک ماتریس معین مثبت $n \times n$ باشد، می توان آن را به صورت زیر تجزیه کرد:

$$A = LL^T$$

که در آن:

- L یک ماتریس مثلثی پایین است و تمامی عناصر بالای قطر آن صفر است.
 - ست. L^T وترانهاده ماتریس L^T

^aCholesky Decomposition

نکته: شرایط برای تجزیه چالسکی

برای اینکه یک ماتریس A تجزیه چالسکی داشته باشد، باید ماتریس A معین مثبت باشد یعنی:

- $A = A^T$:متقارن باشد.
- ۲۰. برای هر بردار غیر صفر x، باید $x^T A x > 0$ برقرار باشد.

نكته: مراحل تجزيه چالسكى

برای محاسبه تجزیه چالسکی، معمولاً از روش زیر استفاده میشود:

• ماتریس A را به صورت زیر در نظر بگیرید:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

• 2 عناصر ماتریس L را به صورت زیر محاسبه کنید:

$$L_{ij} = \begin{cases} \sqrt{A_{ii} - \sum_{k=1}^{j-1} L_{ik}^2} & \text{if } i = j \\ \frac{1}{L_{jj}} \left(A_{ij} - \sum_{k=1}^{j-1} L_{ik} L_{jk} \right) & \text{if } i > j \\ 0 & \text{if } i < j \end{cases}$$

مثال ۳.۴.۲: تجزیه چالسکی

ماتریس زیر را در نظر بگیرید:

$$A = \begin{bmatrix} 4 & 2 \\ 2 & 3 \end{bmatrix}$$

تجزیه چالسکی:

$$L_{11} = \sqrt{4} = 2$$

$$L_{21} = \frac{1}{L_{11}}(2) = 1$$

$$L_{22} = \sqrt{3 - 1^2} = \sqrt{2}$$

بنابراین، ماتریس L به صورت زیر است:

$$L = \begin{bmatrix} 2 & 0 \\ 1 & \sqrt{2} \end{bmatrix}$$

و داريم:

$$A = LL^T = \begin{bmatrix} 2 & 0 \\ 1 & \sqrt{2} \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & \sqrt{2} \end{bmatrix} = \begin{bmatrix} 4 & 2 \\ 2 & 3 \end{bmatrix}$$

مثال ۴.۴.۲: تجزیه چالسکی

ماتریس زیر را در نظر بگیرید:

$$B = \begin{bmatrix} 25 & 15 & 5 \\ 15 & 18 & 0 \\ 5 & 0 & 4 \end{bmatrix}$$

تجزیه چالسکی:

$$L_{11} = \sqrt{25} = 5$$

$$L_{21} = \frac{15}{5} = 3$$

$$L_{31} = \frac{5}{5} = 1$$

 $:L_{22}$ حالا براى

$$L_{22} = \sqrt{18 - 3^2} = \sqrt{9} = 3$$

 $:L_{32}$ برای

$$L_{32} = \frac{0 - (3)(1)}{3} = 0$$

 $:L_{33}$ برای

$$L_{33} = \sqrt{4 - 1^2} = \sqrt{3}$$

بنابراین، ماتریس L به صورت زیر است:

$$L = \begin{bmatrix} 5 & 0 & 0 \\ 3 & 3 & 0 \\ 1 & 0 & \sqrt{3} \end{bmatrix}$$

تمرین ۱.۴.۲

۱. ماتریس زیر را تجزیه چالسکی کنید:

$$C = \begin{bmatrix} 9 & 6 & 3 \\ 6 & 8 & 4 \\ 3 & 4 & 5 \end{bmatrix}$$

۲. ماتریس زیر را تجزیه چالسکی کنید:

$$D = \begin{bmatrix} 16 & 8 & 4 \\ 8 & 10 & 6 \\ 4 & 6 & 12 \end{bmatrix}$$

مثال ۵.۴.۲: حل دستگاه معادلات خطى با استفاده از تجزیه چولسكى

دستگاه معادلات زیر را در نظر بگیرید:

$$\begin{cases} 4x_1 + 12x_2 - 16x_3 = 12\\ 12x_1 + 37x_2 - 43x_3 = 35\\ -16x_1 - 43x_2 + 98x_3 = -58 \end{cases}$$

که به صورت ماتریسی میتوان نوشت:

 $A\mathbf{x} = \mathbf{b}$

کړ:

$$A = \begin{bmatrix} 4 & 12 & -16 \\ 12 & 37 & -43 \\ -16 & -43 & 98 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 12 \\ 35 \\ -58 \end{bmatrix}$$

مرحله اول: تجزیه چولسکی

چون A ماتریسی متقارن و مثبت معین است، میتوان آن را به صورت $A = LL^T$ تجزیه کرد که L ماتریسی مثلثی پایین است:

$$L = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix}$$

با محاسبات، داریم:

$$L = \begin{bmatrix} 2 & 0 & 0 \\ 6 & 1 & 0 \\ -8 & 5 & 3 \end{bmatrix}$$

مرحله دوم: حل دستگاه

ابتدا دستگاه زیر را حل میکنیم:

 $L\mathbf{y} = \mathbf{b}$

که به صورت زیر نوشته می شود:

$$\begin{bmatrix} 2 & 0 & 0 \\ 6 & 1 & 0 \\ -8 & 5 & 3 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 12 \\ 35 \\ -58 \end{bmatrix}$$

با حل این دستگاه (روش پیشرو):

$$2y_1 = 12 \implies y_1 = 6,$$

 $6y_1 + y_2 = 35 \implies 6(6) + y_2 = 35 \implies y_2 = -1,$

$$-8y_1 + 5y_2 + 3y_3 = -58 \quad \Rightarrow \quad -8(6) + 5(-1) + 3y_3 = -58 \quad \Rightarrow \quad 3y_3 = -5 \quad \Rightarrow \quad y_3 = -\frac{5}{3}.$$

سپس دستگاه زیر را حل میکنیم:

$$L^T \mathbf{x} = \mathbf{y}$$

که معادلهی زیر را میدهد:

$$\begin{bmatrix} 2 & 6 & -8 \\ 0 & 1 & 5 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 \\ -1 \\ -\frac{5}{3} \end{bmatrix}$$

با حل این دستگاه (روش یسرو):

$$3x_3 = -\frac{5}{3} \quad \Rightarrow \quad x_3 = -\frac{5}{9},$$

$$x_2 + 5x_3 = -1 \quad \Rightarrow \quad x_2 + 5\left(-\frac{5}{9}\right) = -1 \quad \Rightarrow \quad x_2 = \frac{14}{9},$$

$$2x_1 + 6x_2 - 8x_3 = 6 \quad \Rightarrow \quad 2x_1 + 6\left(\frac{14}{9}\right) - 8\left(-\frac{5}{9}\right) = 6 \quad \Rightarrow \quad 2x_1 + \frac{84}{9} + \frac{40}{9} = 6 \quad \Rightarrow$$

$$2x_1 + \frac{124}{9} = 6 \quad \Rightarrow \quad 2x_1 = 6 - \frac{124}{9} = -\frac{70}{9} \quad \Rightarrow \quad x_1 = -\frac{35}{9}.$$

در نتیجه، جواب دستگاه برابر است با:

$$\mathbf{x} = \begin{bmatrix} -\frac{35}{9} \\ \frac{14}{9} \\ -\frac{5}{9} \end{bmatrix}$$

فصل ۳

فضاهای برداری

تعریف ۱۰۰.۳: گروه جابجایی یا گروه آبلی

گروه آبلی (یا گروه جابجایی) یک ساختار جبری (G,*) است که در آن:

یک مجموعه است. $G \bullet$

 $(a*b \in G \; \forall a,b \in G \;)$ است (یعنی عمل دوتایی روی $G \;$ است $(a*b \in G \; \forall a,b \in G \;)$

این عمل باید خواص زیر را داشته باشد:

۱. بسته بودن:

 $\forall a, b \in G, \quad a * b \in G$

۲. شرط شرکتپذیری:

 $\forall a, b, c \in G, \quad (a * b) * c = a * (b * c)$

٣. وجود عضو هماني:

 $\exists e \in G \quad \mathbf{4} \quad \forall a \in G, \quad e * a = a * e = a$

۴. وجود معكوس:

 $\forall a \in G, \quad \exists a' \in G \quad$ چنان که a*a'=a'*a=e

۵. جابجایی:

 $\forall a,b \in G, \quad a*b = b*a$

اگر فقط ویژگیهای ۱ تا ۴ برقرار باشد، (G,*) را گروه مینامند. اگر ویژگی ۵ نیز برقرار باشد، آن را گروه آبلی میگویند.

مثال ۱۰۰.۳: مثالهای از گروه

- اعداد صحیح با عمل جمع $(\mathbb{Z},+)$
- ($\mathbb{R},+$): اعداد حقیقی با عمل جمع
- اعداد حقیقی ناصفر با ضرب. ($\mathbb{R} \setminus \{0\}, \times$) •

مثال ۲۰۰.۳: مثالهایی که گروه نیستند

- اعداد گنگ با عمل جمع: $(\mathbb{Q}^c,+)$
- .اعداد گنگ با عمل ضرب) اعداد گنگ با

تعریف ۲۰۰۰۳: میدان

میدان مجموعه ای F به همراه دو عمل جمع (+) و ضرب (\times) است، به طوری که خواص زیر برقرار باشند:

- (F,+) یک گروه آبلی (گروه جابجایی) است.
 - يک گروه آبلي است. $(F \setminus \{0\}, \times)$
 - ضرب نسبت به جمع توزیعپذیر است:

$$a \times (b+c) = (a \times b) + (a \times c), \quad \forall a, b, c \in F$$

مثالها:

- مجموعه اعداد حقیقی $\mathbb R$
- مجموعه اعداد مختلط ©
 - مجموعه اعداد گویا Q

تعریف ۳۰۰۰۳: فضای برداری

فضای برداری (یا فضای خطی) بر روی یک میدان F، مجموعهای V است که دارای دو عمل جمع بردارها و ضرب اسکالر است، به طوری که:

- (V,+) یک گروه آبلی است.
- عمل ضرب اسکالر $F \times V \to V$ تعریف شده است و خواص زیر را دارا میباشد:

$$u \in V$$
 و $\alpha, \beta \in F$ و $\alpha, \beta \in F$

$$(\alpha\beta)u = \alpha(\beta u)$$

$$:u,v\in V$$
 و $\alpha\in F$ برای همهی $-$

$$\alpha(u+v) = \alpha u + \alpha v$$

$$u \in V$$
 و $\alpha, \beta \in F$ و برای همه

$$(\alpha + \beta)u = \alpha u + \beta u$$

$$u \in V$$
 و هر $1 \in F$ عنصر واحد

$$1u = u$$

مثالها:

- \mathbb{R}^n با جمع برداری معمولی و ضرب اسکالر حقیقی.
 - فضای ماتریسهای $m \times n$ بر روی \mathbb{R} یا \mathbb{C} .
- مجموعه تمام توابع از \mathbb{R} به \mathbb{R} با جمع و ضرب اسكالر نقطهاي.

۱.۳ مثالهای خاص از فضای برداری

مثال ۱۰۱۰۳: فضاى توابع پيوسته

مجموعه ی $C([a,b],\mathbb{R})$ از تمام توابع پیوسته از بازه ی بسته [a,b] به \mathbb{R} ، یک فضای برداری روی میدان \mathbb{R} است.

عمليات:

• جمع دو تابع f و g به صورت نقطهای:

$$(f+g)(x) = f(x) + g(x)$$

• ضرب یک اسکالر $\alpha \in \mathbb{R}$ در تابع f به صورت:

$$(\alpha f)(x) = \alpha(f(x))$$

ویژگی: تمام خواص فضای برداری (بسته بودن، جابجایی، توزیعپذیری و …) برقرار است.

مثال ۲.۱.۳: فضاى چندجملهاىها

مجموعهی $P_n(\mathbb{R})$ شامل همهی چندجملهایهای با درجه حداکثر n بر روی \mathbb{R} یک فضای برداری روی \mathbb{R} است. شکل کلی اعضای این فضا:

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \quad \& \quad a_i \in \mathbb{R}$$

عمليات:

- جمع چندجملهایها: جمع ضرایب همدرجه،
- ضرب اسکالر در چندجملهای: ضرب همهی ضرایب در اسکالر.

مثال: اگر

$$p(x) = 1 + 2x + 3x^2$$
 $q(x) = 4x + 5x^2$

آنگاه:

$$(p+q)(x) = (1) + (2+4)x + (3+5)x^2 = 1 + 6x + 8x^2$$

و برای اسکالر $\alpha=2$ داریم:

$$(2p)(x) = 2(1 + 2x + 3x^2) = 2 + 4x + 6x^2$$

تمرین ۱۰۱۰۳

بررسی کنید کدام یک از مجموعههای زیر یک فضای برداری است:

$$S = \{A \in M_{2 \times 2} \mid A$$
نامنفرد است $\}$. ۱

$$S = \{(x,y) \in \mathbb{R}^2 \mid ax + by = 0\} \quad . \Upsilon$$

$$S = \{(x,y) \in \mathbb{R}^2 \mid ax + by = k, \ k \neq 0\} \quad \textbf{.} \Upsilon$$

$$S = \left\{ \begin{bmatrix} 2 & a_{12} \\ 0 & a_{22} \end{bmatrix} \in M_{2 \times 2} \mid a_{12}, a_{22} \in \mathbb{R} \right\}$$
 .