北斗卫星导航系统 空间信号接口控制文件

公开服务信号 B1I (3.0 版)

中国卫星导航系统管理办公室 2019年2月

目 录

1	声明	•••••		1
2	文件	范畴		1
3	北斗	·系统概	既述	1
	3.1	空间星	星座	1
	3.2	坐标系	系统	2
	3.3	时间系	系统	3
4	信号	规范		3
	4.1	信号约	结构	3
	4.2	信号特	持性	4
		4.2.1	载波频率	4
		4.2.2	调制方式	4
		4.2.3	极化方式	4
		4.2.4	载波相位噪声	4
		4.2.5	用户接收信号电平	4
		4.2.6	信号复用方式	4
		4.2.7	信号带宽	5
		4.2.8	杂散	5
		4.2.9	信号相关性	5
		4.2.10) 星上设备时延差	5
	4.3	测距码	玛特性	5
			I BDS-SIS-IC	TD-B1I-3 0

5	导航	.电文		8
	5.1	导航时	电文概述	8
		5.1.1	导航电文划分	8
		5.1.2	导航电文信息类别及播发特点	9
		5.1.3	导航电文数据码纠错编码方式	. 12
	5.2	D1 导	航电文	. 15
		5.2.1	D1 导航电文上调制的二次编码	. 15
		5.2.2	D1 导航电文帧结构	. 16
		5.2.3	D1 导航电文详细结构编排	. 16
		5.2.4	D1 导航电文内容和算法	. 22
	5.3	D2 导	航电文	. 42
		5.3.1	D2 导航电文帧结构	. 42
		5.3.2	D2 导航电文详细结构编排	. 43
		5.3.3	D2 导航电文内容和算法	. 68
6	缩略	·语		. 79

1 声明

中国卫星导航系统管理办公室负责北斗卫星导航系统空间信号接口控制文件(以下简称 ICD)的编制、修订、发布和维护等工作,并保留本文件的最终解释权。

2 文件范畴

北斗卫星导航系统简称北斗系统,英文缩写为 BDS。北斗系统 分为北斗一号、北斗二号和北斗三号三个建设发展阶段。

本文件是对《北斗卫星导航系统空间信号接口控制文件公开服务信号(2.1版)》的升级,主要定义了北斗卫星导航系统空间星座和用户终端之间公开服务信号 BII 的相关内容。其中,BII 信号在北斗二号和北斗三号的中圆地球轨道(MEO)卫星、倾斜地球同步轨道(IGSO)卫星和地球静止轨道(GEO)卫星上播发,提供公开服务。

注: B2I信号在北斗二号所有卫星上播发,提供公开服务,在北斗三号卫星上将被B2a信号取代。B2I信号相关内容参见《北斗卫星导航系统空间信号接口控制文件公开服务信号(2.1版)》。

3 北斗系统概述

3.1空间星座

北斗二号标称空间星座由 5 颗 GEO 卫星、5 颗 IGSO 卫星和 4 颗 MEO 卫星组成,并视情部署在轨备份卫星。GEO 卫星轨道高度

35786 千米,分别定点于东经 58.75 度、80 度、110.5 度、140 度和 160 度; IGSO 卫星轨道高度 35786 千米,轨道倾角 55 度; MEO 卫星轨道高度 21528 千米,轨道倾角 55 度。

北斗三号标称空间星座由 3 颗 GEO 卫星、3 颗 IGSO 卫星和 24 颗 MEO 卫星组成,并视情部署在轨备份卫星。GEO 卫星轨道高度 35786 千米,分别定点于东经 80 度、110.5 度和 140 度; IGSO 卫星轨道高度 35786 千米,轨道倾角 55 度; MEO 卫星轨道高度 21528 千米,轨道倾角 55 度。

北斗系统空间星座将从北斗二号逐步过渡到北斗三号,在全球范围内提供公开服务。

3.2坐标系统

北斗系统采用北斗坐标系(BeiDou Coordinate System,简称BDCS)。北斗坐标系的定义符合国际地球自转服务组织(IERS)规范,与 2000 中国大地坐标系(CGCS2000)定义一致(具有完全相同的参考椭球参数),具体定义如下:

(1) 原点、轴向及尺度定义

原点位于地球质心;

Z轴指向 IERS 定义的参考极(IRP)方向;

X 轴为 IERS 定义的参考子午面(IRM)与通过原点且同 Z 轴正交的赤道面的交线;

Y轴与Z、X轴构成右手直角坐标系;

长度单位是国际单位制(SI)米。

(2) 参考椭球定义

BDCS 参考椭球的几何中心与地球质心重合,参考椭球的旋转轴与 Z 轴重合。BDCS 参考椭球定义的基本常数见表 3-1。

序号 参 数 定 义 长半轴 a=6378137.0 m 1 $\mu = 3.986004418 \times 10^{14} \text{ m}^3/\text{s}^2$ 地心引力常数(包含大气层) 2 3 扁率 f=1/298.257222101 $\dot{\Omega}_{\rm e} = 7.2921150 \times 10^{-5} \text{ rad/s}$ 4 地球自转角速度

表 3-1 BDCS 参考椭球的基本常数

3.3 时间系统

北斗系统的时间基准为北斗时(BDT)。BDT采用国际单位制(SI) 秒为基本单位连续累计,不闰秒,起始历元为 2006 年 1 月 1 日协调 世界时(UTC)00 时 00 分 00 秒。BDT 通过 UTC(NTSC)与国际 UTC 建立联系,BDT 与国际 UTC 的偏差保持在 50 纳秒以内(模 1 秒)。BDT与 UTC 之间的闰秒信息在导航电文中播报。

4 信号规范

4.1 信号结构

B1I 信号由"测距码+导航电文"调制在载波上构成,其信号表达式如下:

$$S_{BII}^{j}(t) = A_{BII}C_{BII}^{j}(t)D_{BII}^{j}(t)\cos(2\pi f_{1}t + \phi_{BII}^{j})$$

式中,上角标j表示卫星编号; ABII表示 B1I 信号振幅; CBII表示 B1I

信号测距码; D_{BII} 表示调制在 BII 信号测距码上的数据码; f_1 表示 BII 信号载波频率; ϕ_{BII} 表示 BII 信号载波初相。

4.2 信号特性

4.2.1 载波频率

同一颗卫星发射的导航信号的载波频率由共同的基准时钟源产生。BII 信号的标称载波频率为 1561.098MHz。

4.2.2 调制方式

B1I信号采用二进制相移键控(BPSK)调制。

4.2.3 极化方式

卫星发射信号为右旋圆极化 (RHCP)。

4.2.4 载波相位噪声

未调制载波的相位噪声谱密度应满足单边噪声带宽为 10Hz 的三阶锁相环的载波跟踪精度达到 0.1 弧度 (RMS)。

4.2.5 用户接收信号电平

当卫星仰角大于 5 度,在地球表面附近的接收机右旋圆极化天线为 0 dBi 增益(或线性极化天线为 3 dBi 增益)时,卫星发射的 B1I 信号到达接收机天线输出端的最小功率电平为-163 dBW。

4.2.6 信号复用方式

信号复用方式为码分多址(CDMA)。

4.2.7 信号带宽

B1I信号带宽为 4.092 MHz(以 B1I信号载波频率为中心)。

4.2.8 杂散

卫星发射的杂散信号不超过-50dBc。

4.2.9 信号相关性

- (1) B1I、B2I 和 B3I 信号的 3 路测距码相位差(包含发射通道 时延差)随机抖动小于 1 纳秒 (1σ)。
- (2) BII 信号载波与其载波上所调制的测距码间起始相位差随机 抖动小于 3°(1σ)(相对于载波)。

4.2.10 星上设备时延差

星上设备时延是指从卫星的时间基准到发射天线相位中心的时延。B3I 信号的设备时延为基准设备时延,含在导航电文的钟差参数 a_0 中,不确定度小于 0.5 纳秒 (1σ) 。B1I、B2I 信号的设备时延与基准设备时延的差值分别由导航电文中的 T_{GD1} 和 T_{GD2} 表示,其不确定度小于 1 纳秒 (1σ) 。

4.3 测距码特性

B1I信号测距码(以下简称 C_{B1I}码)的码速率为 2.046 Mcps,码 长为 2046。

C_{BII}码由两个线性序列 G1 和 G2 模二加产生平衡 Gold 码后截短最后 1 码片生成。G1 和 G2 序列分别由 11 级线性移位寄存器生成,

其生成多项式分别为:

$$G1(X)=1+X+X^7+X^8+X^9+X^{10}+X^{11}$$

 $G2(X)=1+X+X^2+X^3+X^4+X^5+X^8+X^9+X^{11}$

- G1 和 G2 的初始相位为:
- G1 序列初始相位: 01010101010;
- G2 序列初始相位: 01010101010.

CBII 码发生器如图 4-1 所示。

图 4-1 CBII 码发生器示意图

通过对产生 G2 序列的移位寄存器不同抽头的模二加可以实现 G2 序列相位的不同偏移,与 G1 序列模二加后可生成不同卫星的测距码。G2 序列相位分配如表 4-1 所示。

表 4-1 CBII码的 G2 序列相位分配

编号	卫星类型	测距码编号*	G2 序列相位分配
1	GEO 卫星	1	1⊕3
2	GEO 卫星	2	1 ⊕ 4
3	GEO 卫星	3	1⊕5
4	GEO 卫星	4	1⊕6
5	GEO 卫星	5	1⊕8
6	MEO/IGSO 卫星	6	1⊕9
7	MEO/IGSO 卫星	7	1 ⊕ 10
8	MEO/IGSO 卫星	8	1 ⊕ 11
9	MEO/IGSO 卫星	9	2⊕7
10	MEO/IGSO 卫星	10	3⊕4
11	MEO/IGSO 卫星	11	3⊕5
12	MEO/IGSO 卫星	12	3⊕6
13	MEO/IGSO 卫星	13	3⊕8
14	MEO/IGSO 卫星	14	3⊕9
15	MEO/IGSO 卫星	15	3 ⊕ 10
16	MEO/IGSO 卫星	16	3 ⊕ 11
17	MEO/IGSO 卫星	17	4⊕5
18	MEO/IGSO 卫星	18	4⊕6
19	MEO/IGSO 卫星	19	4⊕8
20	MEO/IGSO 卫星	20	4⊕9
21	MEO/IGSO 卫星	21	4⊕10
22	MEO/IGSO 卫星	22	4⊕11
23	MEO/IGSO 卫星	23	5⊕6
24	MEO/IGSO 卫星	24	5⊕8
25	MEO/IGSO 卫星	25	5⊕9
26	MEO/IGSO 卫星	26	5 ⊕ 10
27	MEO/IGSO 卫星	27	5 ⊕ 11
28	MEO/IGSO 卫星	28	$6 \oplus 8$
29	MEO/IGSO 卫星	29	6⊕9
30	MEO/IGSO 卫星	30	6⊕10
31	MEO/IGSO 卫星	31	6⊕11
32	MEO/IGSO 卫星	32	$8 \oplus 9$
33	MEO/IGSO 卫星	33	8⊕10
34	MEO/IGSO 卫星	34	8⊕11
35	MEO/IGSO 卫星	35	9 ⊕ 10
36	MEO/IGSO 卫星	36	9 ⊕ 11
37	MEO/IGSO 卫星	37	10⊕11
38	MEO/IGSO 卫星	38	$1 \oplus 2 \oplus 7$
39	MEO/IGSO 卫星	39	$1 \oplus 3 \oplus 4$
40	MEO/IGSO 卫星	40	$1 \oplus 3 \oplus 6$
41	MEO/IGSO 卫星	41	$1 \oplus 3 \oplus 8$
42	MEO/IGSO 卫星	42	1 ⊕ 3 ⊕ 10

43	MEO/IGSO 卫星	43	$1 \oplus 3 \oplus 11$
44	MEO/IGSO 卫星	44	$1 \oplus 4 \oplus 5$
45	MEO/IGSO 卫星	45	$1 \oplus 4 \oplus 9$
46	MEO/IGSO 卫星	46	$1 \oplus 5 \oplus 6$
47	MEO/IGSO 卫星	47	$1 \oplus 5 \oplus 8$
48	MEO/IGSO 卫星	48	$1 \oplus 5 \oplus 10$
49	MEO/IGSO 卫星	49	$1 \oplus 5 \oplus 11$
50	MEO/IGSO 卫星	50	$1 \oplus 6 \oplus 9$
51	MEO/IGSO 卫星	51	$1 \oplus 8 \oplus 9$
52	MEO/IGSO 卫星	52	$1\oplus 9\oplus 10$
53	MEO/IGSO 卫星	53	$1 \oplus 9 \oplus 11$
54	MEO/IGSO 卫星	54	$2 \oplus 3 \oplus 7$
55	MEO/IGSO 卫星	55	$2 \oplus 5 \oplus 7$
56	MEO/IGSO 卫星	56	$2 \oplus 7 \oplus 9$
57	MEO/IGSO 卫星	57	$3 \oplus 4 \oplus 5$
58	MEO/IGSO 卫星	58	$3 \oplus 4 \oplus 9$
59	GEO 卫星	59	$3 \oplus 5 \oplus 6$
60	GEO 卫星	60	$3 \oplus 5 \oplus 8$
61	GEO 卫星	61	3 ⊕ 5 ⊕ 10
62	GEO 卫星	62	$3 \oplus 5 \oplus 11$
63	GEO 卫星	63	3 ⊕ 6 ⊕ 9
*卫星将优先使用 1~37 号测距码,以实现对已有接收机的后向兼容。			

5 导航电文

5.1 导航电文概述

5.1.1 导航电文划分

根据速率和结构不同,导航电文分为 D1 导航电文和 D2 导航电文。D1 导航电文速率为 50 bps,并调制有速率为 1 kbps 的二次编码,内容包含基本导航信息(本卫星基本导航信息、全部卫星历书信息、与其它系统时间同步信息); D2 导航电文速率为 500 bps,内容包含基本导航信息和广域差分信息(北斗系统的差分及完好性信息和格网点电离层信息)。

MEO/IGSO 卫星播发的 B1I 信号采用 D1 导航电文, GEO 卫星播发的 B1I 信号采用 D2 导航电文。

5.1.2 导航电文信息类别及播发特点

导航电文中基本导航信息和广域差分信息的类别及播发特点见表 5-1,其中,电文的格式编排、详细定义及算法说明见后续章节。

表 5-1 D1、D2 导航电文信息类别及播发特点

	电文信息类别	比特数	播发特点	
帧同步码 (Pre)		11		
子巾	贞计数(FraID)	3	每子帧重复一次。	
周月	内秒计数 (SOW)	20		
	整周计数 (WN)	13	<u> </u>	基
	用户距离精度指数(URAI)	4		本
	卫星自主健康标识(SatH1)	1		导验
本卫星	星上设备时延差 (T _{GD1} ,T _{GD2})	20	1 Times	航言息
基基	时钟数据龄期(AODC)	5	D1:在子帧 1、2、3 中播发,30	
本导	钟差参数 (t _{oc} , a ₀ , a ₁ , a ₂)	74		近 有
航	星历数据龄期(AODE)	5		L
信	星历参数(t_{oe},\sqrt{A} , $e,\omega,\Delta n$,			星都
息	M_0 , Ω_0 , $\dot{\Omega}$, i_0 , IDOT, C_{uc} , C_{us} , C_{rc} , C_{rs} , C_{ic} , C_{is})	371	排	番 发
	电离层模型参数 (α _n , β _n , n=0~3)	64		-
页面编号 (Pnum)		7	D1:在第4和第5子帧中播发。 D2:在第5子帧中播发。	

	历书信息扩展标识 (AmEpID)	2	D1:在子帧 4 页面 1~24、子帧 5 页面 1~6 中播发。 D2:在子帧 5 页面 37~60、95~100 中播发。	
历书信	历书参数 (t_{oa},\sqrt{A} , $e,\omega,M_0,$ $\Omega_0,\dot\Omega,\delta_i,a_0,a_1,AmID$)	178	D1:在子帧 4 页面 1~24、子帧 5 页面 1~6 中播发 1~30 号卫星;在子帧 5 页面 11~23 中分时播发 31~63 号卫星,需结合 AmEpID和 AmID识别。 D2:在子帧 5 页面 37~60、95~100中播发 1~30号卫星;在子帧 5 页面 103~115中分时播发 31~63号卫星,需结合 AmEpID和 AmID识别。 更新周期:小于 7 天。	基本导
息	历书周计数(WN _a)	8	D1:在子帧 5 页面 8 中播发。 D2:在子帧 5 页面 36 中播发。 更新周期:小于 7 天。	航信
	卫星健康信息 (Hea _i , i=1~43)	9×43	D1:在子帧 5 页面 7~8 中播发 1~30 号卫星健康信息;在子帧 5 页面 24 中分时播发 31~63 号卫星健康信息,需结合 AmEpID 和 AmID识别。 D2:在子帧 5 页面 35~36 中播发 1~30 号卫星健康信息;在子帧 5 页面 116 中分时播发 31~63 号卫星健康信息,需结合 AmEpID和AmID识别。 更新周期:小于 7 天。	息,所有卫星都播发
与其它系	与 UTC 时间同步参数 (A _{0UTC} , A _{1UTC} , Δt _{LS} , Δt _{LSF} ,WN _{LSF} ,DN)	88		
统时	与 GPS 时间同步参数 (A _{0GPS} , A _{1GPS})	30	D1:在子帧 5 页面 9~10 中播发。 D2:在子帧 5 页面 101~102 中播 发。	
间同	与 Galileo 时间同步参数 (A _{0Gal} , A _{1Gal})	30	更新周期:小于7天。	
步信息	与 GLONASS 时间同步参 数(A _{0GLO} , A _{1GLO})	30		

基本导航信息页面编号 (Pnum1)		4	D2:在子帧 1 全部 10 个页面中播发。	
完好性及差分信息页面编号 (Pnum2)		4	D2:在子帧 2 全部 6 个页面中播发。	
完好性及差分信息健康标识 (SatH2)		2	D2:在子帧 2 全部 6 个页面中播发。 更新周期:3 秒。	
	十系统完好性及差分信息扩 示识(BDEpID)	2	D2:在子帧 4 全部 6 个页面中播发。	完叔
北斗系统完好性及差分信息卫星标识(BDID _i , i=1~63)		1×63	D2:在子帧 2 全部 6 个页面播发 1~30 号卫星;在子帧 4 全部 6 个 页面播发 31~63 号卫星。 更新周期:3 秒。	完好性、差分信息、
区域用户距离精度指数 (RURAI _i , i=1~24)		4×24	D2:在子帧 2、子帧 3 和子帧 4 全部 6 个页面播发。更新周期:18 秒。	
北斗系统差分及差分完好性信息	等效钟差改正数 (Δt _i , i=1~24)	13×24	D2:在子帧 2、子帧 3 和子帧 4 全部 6 个页面播发。 更新周期:18 秒。	格网点电离层信息只由 GEO 卫
至分完好性信息	用户差分距离误差指数 (UDREI _i , i=1~24)	4×24	D2:在子帧 2、子帧 4 全部 6 个页面播发。 更新周期:3 秒。	卫星播发
格网点电离层信息	格网点电离层垂直延迟 (dt)	9×320	D2:在子帧 5页面 1~13,61~73 中播发。	
离层信息	格网点电离层垂直延迟改 正数误差指数(GIVEI)	4×320	更新周期:6分钟。	

5.1.3 导航电文数据码纠错编码方式

导航电文采取 BCH(15,11,1)码加交织方式进行纠错。BCH 码长为 15 比特,信息位为 11 比特,纠错能力为 1 比特,其生成多项式为 $g(X)=1+X+X^4$ 。

导航电文数据码按每 11 比特顺序分组,对需要交织的数据码先进行串/并变换,然后进行 BCH(15,11,1)纠错编码,每两组 BCH 码,按 1 比特顺序进行并/串变换,组成 30 比特码长的交织码,其生成方式见图 5-1。

图 5-1 导航电文纠错编码示意图

BCH(15,11,1)编码框图如图 5-2 所示。其中,4 级移位寄存器的初始状态为全 0,门 1 开,门 2 关,输入 11 比特信息组 X,然后开始移位,信息组一路经或门输出,另一路进入 g(X)除法电路,经 11 次移位后 11 比特信息组全部送入电路,此时移位寄存器内保留的即为校验位,最后门 1 关,门 2 开,再经过 4 次移位,将移位寄存器的校验位全部输出,与原先的 11 比特信息组成一个长为 15 比特 BCH码。门 1 开,门 2 关,送入下一个信息组重复上述过程。

图 5-2 BCH(15,11,1)编码框图

接收机接收到数据码信息后按每 1 比特顺序进行串/并变换,进行 BCH(15,11,1)纠错译码,对交织部分按 11 比特顺序进行并/串变换,组成 22 比特信息码,其生成方式见下图 5-3。

图 5-3 导航电文纠错译码示意图

BCH(15,11,1)译码框图见图 5-4, 其中, 初始时移位寄存器清零, BCH 码组逐位输入到除法电路和 15 级纠错缓存器中, 当 BCH 码的 15 位全部输入后, 纠错信号 ROM 表利用除法电路的 4 级移位寄存器的状态 D3、D2、D1、D0 查表, 得到 15 位纠错信号与 15 级纠错缓存器里的值模二加, 最后输出纠错后的信息码组。纠错信号的 ROM表见表 5-2。

图 5-4 BCH(15,11,1)译码框图

表 5-2 纠错信号的 ROM 表

$D_3D_2D_1D_0$	15 位纠错信号
0000	00000000000000
0001	0000000000001
0010	0000000000010
0011	00000000010000
0100	00000000000100
0101	0000010000000
0110	00000000100000
0111	00001000000000
1000	0000000001000
1001	10000000000000
1010	00000100000000
1011	00000010000000
1100	00000001000000
1101	0100000000000
1110	00010000000000
1111	0010000000000

每两组 BCH(15,11,1)码按比特交错方式组成 30 比特码长的交织码, 30 比特码长的交织码编码结构为:

其中: X_i^j 为信息位, i 表示第 i 组 BCH 码, 其值为 1 或 2; j 表示第 i 组 BCH 码中的第 j 个信息位, 其值为 1~11; P_i^m 为校验位, i 表示第 i 组 BCH 码, 其值为 1 或 2; m 表示第 i 组 BCH 码中的第 m 个校验位, 其值为 1~4。

5.2 D1 导航电文

5.2.1 D1 导航电文上调制的二次编码

D1 导航电文上调制的二次编码是指在速率为 50 bps 的 D1 导航电文上调制一个 Neumann-Hoffman 码(以下简称 NH 码)。该 NH 码周期为 1 个导航信息位的宽度,NH 码 1 比特宽度则与扩频码周期相同。如图 5-5 所示,D1 导航电文中一个信息位宽度为 20 毫秒,扩频码周期为 1 毫秒,因此采用 20 比特的 NH 码(00000100110101001110),码速率为 1 kbps,码宽为 1 毫秒,以模二加形式与扩频码和导航信息码同步调制。

图 5-5 二次编码示意图

5.2.2 D1 导航电文帧结构

D1 导航电文由超帧、主帧和子帧组成。每个超帧为 36000 比特,历时 12 分钟,每个超帧由 24 个主帧组成 (24 个页面);每个主帧为 1500 比特,历时 30 秒,每个主帧由 5 个子帧组成;每个子帧为 300 比特,历时 6 秒,每个子帧由 10 个字组成;每个字为 30 比特,历时 0.6 秒。

每个字由导航电文数据及校验码两部分组成。每个子帧第 1 个字的前 15 比特信息不进行纠错编码,后 11 比特信息采用 BCH(15,11,1)方式进行纠错,信息位共有 26 比特; 其它 9 个字均采用 BCH(15,11,1)加交织方式进行纠错编码,信息位共有 22 比特 (可参考 5.1.3)。

D1 导航电文帧结构如图 5-6 所示。

5.2.3 D1 导航电文详细结构编排

D1 导航电文包含有基本导航信息,包括:本卫星基本导航信息

(包括周内秒计数、整周计数、用户距离精度指数、卫星自主健康标识、电离层延迟模型改正参数、卫星星历参数及数据龄期、卫星钟差参数及数据龄期、星上设备时延差)、全部卫星历书信息及与其它系统时间同步信息(UTC、其它卫星导航系统)。

D1 导航电文主帧结构及信息内容如图 5-7 所示。子帧 1 至子帧 3 播发基本导航信息;子帧 4 和子帧 5 分为 24 个页面,播发全部卫星历书信息及与其它系统时间同步信息。

图 5-7 D1 导航电文主帧结构与信息内容

D1 导航电文各子帧格式的编排见图 5-8~图 5-11。其中,子帧 5页面 11~24 扩展播发历书信息。

图 5-8 D1 导航电文子帧 1 信息格式编排

图 5-9 D1 导航电文子帧 2 信息格式编排

图 5-10 D1 导航电文子帧 3 信息格式编排

图 5-11-1 D1 导航电文子帧 4页面 1~24 和子帧 5页面 1~6 信息格式编排

(注: AmEpID 为 D1 导航电文中的历书信息扩展标识,具体使用方法参见 5.2.4.14 节。)

图 5-11-2 D1 导航电文子帧 5 页面 7 信息格式编排

图 5-11-3 D1 导航电文子帧 5 页面 8 信息格式编排

图 5-11-4 D1 导航电文子帧 5页面 9信息格式编排

图 5-11-5 D1 导航电文子帧 5 页面 10 信息格式编排

图 5-11-6 D1 导航电文子帧 5 页面 11~23 信息格式编排

(注: 当 AmEpID 为"11"时,子帧 5 页面 11~23 用于扩展播发卫星历书;否则,子帧 5 页面 11~23 为预留页面,即从第 51 位开始的信息位为保留位。)

图 5-11-7 D1 导航电文子帧 5 页面 24 信息格式编排

(注: 当 AmEpID 为"11"时,子帧 5 页面 24 用于扩展播发卫星健康信息;否则,子帧 5 页面 24 为预留页面,即从第 51 位开始的信息位为保留位。)

5.2.4 D1 导航电文内容和算法

5.2.4.1 帧同步码 (Pre)

每一子帧的第 1~11 比特为帧同步码 (Pre),由 11 比特修改巴克码组成,其值为"11100010010",第 1 比特上升沿为秒前沿,用于时标同步。

5.2.4.2 子帧计数 (FraID)

每一子帧的第 16~18 比特为子帧计数 (FraID), 共 3 比特, 具体定义 如表 5-3 所示:

编码 001 010 011 111 100 101 110 子帧茅号 1 2 3 4 5 保留 保留

表 5-3 子帧计数编码定义

5.2.4.3 周内秒计数 (SOW)

每一子帧的第 19~26 比特和第 31~42 比特为周内秒计数 (SOW), 共 20 比特, 每周日 BDT 0 点 0 分 0 秒从零开始计数。周内秒计数所对应的秒时刻是指本子帧同步头的第一个脉冲上升沿所对应的时刻。

5.2.4.4 整周计数 (WN)

整周计数(WN)共13比特,为BDT的整周计数,其值范围为0~8191,以BDT2006年1月1日0点0分0秒为起点,从零开始计数。

5.2.4.5 用户距离精度指数(URAI)

用户距离精度(URA)用来描述卫星空间信号精度,单位是米,以用户距离精度指数(URAI)表征,URAI为4比特,范围从0到15,与URA

之间的关系见表 5-4。

编 码	URAI 值	URA 范围(m, lσ)	
0000	0	$0.00 < \text{URA} \le 2.40$	
0001	1	$2.40 < \text{URA} \le 3.40$	
0010	2	$3.40 < \text{URA} \le 4.85$	
0011	3	4.85 < URA ≤ 6.85	
0100	4	6.85 < URA ≤ 9.65	
0101	5	9.65 < URA ≤ 13.65	
0110	6	13.65 < URA ≤ 24.00	
0111	7	24.00 < URA ≤ 48.00	
1000	8	$48.00 < \text{URA} \le 96.00$	
1001	9	96.00 < URA ≤ 192.00	
1010	10	192.00 < URA ≤ 384.00	
1011	11	384.00 < URA ≤ 768.00	
1100	12	768.00 < URA ≤ 1536.00	
1101	13	1536.00 < URA ≤ 3072.00	
1110	14	3072.00 < URA ≤ 6144.00	
1111	15	URA > 6144.00	

表 5-4 URAI 值与 URA 范围对应关系

用户收到任意一个 URAI(用 N 表示),可根据公式计算出相应的 URA 值(用 X 表示),其计算式如下:

当 $0 \le N < 6$ 时, $X = 2^{N/2+1}$;

当 $6 \le N < 15$ 时, $X = 2^{N-2}$;

当 N=15 时,表示卫星轨道机动或者没有精度预报。

如 N=1、3、5 时, X 经四舍五入后分别为 2.8、5.7、11.3。

5.2.4.6 卫星自主健康标识(SatH1)

卫星自主健康标识(SatH1)共1比特,其中"0"表示卫星可用,"1"表

示卫星不可用。

5.2.4.7 电离层延迟改正模型参数 (α_n, β_n)

电离层延迟改正预报模型包括 8 个参数,均为 2 进制补码,共 64 比特。 具体参数定义见表 5-5。

参数	比特数	比例因子(LSB)	单位		
α_0	8*	2-30	S		
α_1	8*	2 ⁻²⁷	$_{ m S}/\pi$		
α_2	8*	2 ⁻²⁴	s/π^2		
α_3	8*	2 ⁻²⁴	s/π^3		
β_0	8*	2 ¹¹	S		
β_1	8*	2^{14}	s/π		
β_2	8*	2^{16}	s/π^2		
β_3	8*	2 ¹⁶	s/π^3		
*为 2 进制补码, 最高有效位 (MSB) 是符号位 (+或 -)。					

表 5-5 电离层延迟改正模型参数

用户利用 8 参数和 Klobuchar 模型可计算 B1I 信号的电离层垂直延迟改正 I'_z(t),单位为秒,具体如下:

$$I_{z}'(t) = \begin{cases} 5 \times 10^{-9} + A_{2}\cos\left[\frac{2\pi (t - 50400)}{A_{4}}\right], |t - 50400| < A_{4}/4\\ 5 \times 10^{-9}, |t - 50400| \ge A_{4}/4 \end{cases}$$

式中:

t是接收机至卫星连线与电离层交点(穿刺点 M)处的地方时(取值范围为 0~86400),单位为秒。其计算公式为:

$$t = (t_E + \lambda_M \times 43200/\pi)$$
[模86400]

其中, t_E 是用户测量时刻的 BDT,取周内秒计数部分。 λ_M 是电离层穿

刺点的地理经度,单位为弧度。

A,为白天电离层延迟余弦曲线的幅度,用α,系数求得:

$$\mathbf{A}_2 = \begin{cases} \sum_{n=0}^3 \alpha_n \left| \frac{\phi_M}{\pi} \right|^n, & \mathbf{A}_2 \ge 0 \\ 0, & \mathbf{A}_2 < 0 \end{cases}$$

Α,为余弦曲线的周期,单位为秒,用β,系数求得:

$$A_4 = \begin{cases} 172800 &, & A_4 \ge 172800 \\ \sum_{n=0}^{3} \beta_n \left| \frac{\phi_M}{\pi} \right|^n, & 172800 > A_4 \ge 72000 \\ 72000 &, & A_4 < 72000 \end{cases}$$

上述两式中的 ♠ 是电离层穿刺点的地理纬度,单位为弧度。

电离层穿刺点的地理纬度 ϕ_M 、地理经度 λ_M 计算公式为:

$$\varphi_{\rm M} = arcsin \big(sin \varphi_{\rm u} \cdot cos \psi + cos \varphi_{\rm u} \cdot sin \psi \cdot cos A \big)$$

$$\lambda_{M} = \lambda_{u} + \arcsin\left(\frac{\sin\psi \cdot \sin A}{\cos\phi_{M}}\right)$$

上述式中, ϕ_u 为用户地理纬度, λ_u 为用户地理经度,单位均为弧度;A为卫星方位角,单位为弧度; ψ 为用户和穿刺点的地心张角,单位为弧度,其计算公式为:

$$\psi = \frac{\pi}{2} - E - \arcsin\left(\frac{R}{R+h} \cdot \cos E\right)$$

其中,R为地球半径,取值6378千米;E为卫星高度角,单位为弧度;h为电离层单层高度,取值375千米。

通过公式
$$I_{BII}(t) = \frac{1}{\sqrt{1 - \left(\frac{R}{R + h} \cdot \cos E\right)^2}} \cdot I_z'(t)$$
, 可将 $I_z'(t)$ 转化为 B1I 信号

传播路径上的电离层延迟 IBII(t),单位为秒。

对于 B1I 和 B3I 双频用户,采用 B1I/B3I 双频消电离层组合伪距公式来修正电离层延迟效应,具体计算方法如下:

$$PR = \frac{PR_{_{B3I}} - k_{_{1,3}}(f) \cdot PR_{_{B1I}}}{1 - k_{_{1,3}}(f)} + \frac{C \cdot k_{_{1,3}}(f) \cdot T_{_{GD1}}}{1 - k_{_{1,3}}(f)}$$

式中:

PR: 经过电离层修正后的伪距;

PR_{BII}: B1I 信号的观测伪距(经卫星钟差修正但未经 T_{GD1} 修正);

PR_{B3I}: B3I 信号的观测伪距;

T_{GDI}: B1I 信号的星上设备时延差;

C: 光速, 值为 2.99792458×10⁸ m/s。

5.2.4.8 时钟数据龄期(AODC)

时钟数据龄期(AODC)共 5 比特,是钟差参数的外推时间间隔,即本时段钟差参数参考时刻与计算钟差参数所作测量的最后观测时刻之差,在BDT整点更新,具体定义如下。

表 5-6 时钟数据龄期值定义

AODC 值	定 义
< 25	单位为1小时,其值为卫星钟差参数数据龄期的小时数
25	表示卫星钟差参数数据龄期为2天
26	表示卫星钟差参数数据龄期为3天
27	表示卫星钟差参数数据龄期为4天
28	表示卫星钟差参数数据龄期为5天
29	表示卫星钟差参数数据龄期为6天
30	表示卫星钟差参数数据龄期为7天
31	表示卫星钟差参数数据龄期大于7天

5.2.4.9 钟差参数 (t_{oc}, a₀, a₁, a₂)

钟差参数包括 t_{oc}, a₀, a₁和 a₂, 共占用 74 比特。t_{oc}是本时段钟差参数参 考时间,单位为秒,有效范围是 0~604792。其它 3 个参数为 2 进制补码。

正常情况下,钟差参数的更新周期为 1 小时,且在 BDT 整点更新,t_{oc} 值取整点时刻。t_{oc} 值在周内单调递增,当任意一钟差参数变化时,t_{oc} 也将变化。

因异常原因发生新的导航电文注入时,钟差参数可能在非整点时刻更新,此时 t_{oc} 值会发生变化而不再取整点时刻。当 t_{oc} 值已经不是整点时刻(即最近有过一次非整点更新)时,如果钟差参数再次发生非整点更新,那么 t_{oc} 值也会再次发生变化,确保 t_{oc} 值与更新之前的播发值不同。

无论是正常更新还是非整点更新, 钟差参数的更新始终从某一超帧的 起始时刻开始。

钟差参数的定义见表 5-7。

比例因子(LSB) 单位 参数 比特数 有效范围 2^{3} 17 604792 t_{oc} 2^{-33} 24* a_0 2^{-50} 22* S/S a_1 2^{-66} 11* s/s^2 a_2

表 5-7 钟差参数说明

用户可通过下式计算出信号发射时刻的 BDT:

*为 2 进制补码, 最高有效位 (MSB) 是符号位 (+或 -)。

 $t = t_{\rm sv} - \Delta t_{\rm sv}$

式中:

t为信号发射时刻的 BDT,单位为秒;

tsv为信号发射时刻的卫星测距码相位时间,单位为秒;

Δt_{sv}为卫星测距码相位时间偏移,单位为秒,由下式给出:

$$\Delta t_{sv} = a_0 + a_1(t - t_{oc}) + a_2(t - t_{oc})^2 + \Delta t_r$$

式中, t 可忽略精度, 用 t_{sv} 替代。

Δt_r是相对论校正项,单位为秒,其值为:

$$\Delta t_r = F \cdot e \cdot \sqrt{A} \cdot \sin E_k$$

其中,

e 为卫星轨道偏心率,由本卫星星历参数得到;

 \sqrt{A} 为卫星轨道长半轴的开方,由本卫星星历参数得到;

E, 为卫星轨道偏近点角,由本卫星星历参数计算得到;

$$F = -2\mu^{1/2}/C^2$$
;

 μ =3.986004418×10¹⁴ m³/s² 为地心引力常数;

C=2.99792458×10⁸ m/s 为光速。

5.2.4.10 星上设备时延差(T_{GD1},T_{GD2})

星上设备时延差(T_{GD1},T_{GD2})各10比特,为2进制补码,最高位为符号位,"0"表示为正、"1"表示为负,比例因子0.1,单位为纳秒。

对使用 B1I 信号的单频用户,需使用下式进行修正:

$$(\Delta t_{sv})_{B1I} = \Delta t_{sv} - T_{GD1}$$

对使用 B2I 信号的单频用户,需使用下式进行修正:

$$(\Delta t_{sv})_{B2I} = \Delta t_{sv} - T_{GD2}$$

其中, Δt_{sv} 为卫星测距码相位时间偏移, 具体计算方法见 5.2.4.9 节。

5.2.4.11 星历数据龄期(AODE)

星历数据龄期(AODE)共 5 比特,是星历参数的外推时间间隔,即本时段星历参数参考时刻与计算星历参数所作测量的最后观测时刻之差,在BDT整点更新,具体定义如下。

AODE 值	定 义	
< 25	单位为1小时,其值为星历数据龄期的小时数	
25	表示星历数据龄期为2天	
26	表示星历数据龄期为 3 天	
27	表示星历数据龄期为 4 天	
28	表示星历数据龄期为5天	
29	表示星历数据龄期为 6 天	
30	表示星历数据龄期为7天	
31	表示星历数据龄期大于7天	

表 5-8 星历数据龄期值定义

5.2.4.12 星历参数(t_{oe} , \sqrt{A} , e, ω , Δn , M_0 , Ω_0 , $\dot{\Omega}$, i_0 , IDOT, C_{uc} , C_{us} , C_{rc} , C_{rs} , C_{ic} , C_{is})

星历参数描述了在一定拟合间隔下得出的卫星轨道。它包括 15 个轨道 参数、1 个星历参考时间。

正常情况下,星历参数的更新周期为 1 小时,且在 BDT 整点更新,t_{oe} 值取整点时刻。t_{oe} 值在周内单调递增,当任意一星历参数变化时,t_{oe} 也将变化。若 t_{oe} 变化,t_{oc} 也会变化。

因异常原因发生新的导航电文注入时,星历参数可能在非整点时刻更新,此时 toe 值会发生变化而不再取整点时刻。当 toe 值已经不是整点时刻(即最近有过一次非整点更新)时,如果星历参数再次发生非整点更新,那么toe 值也会再次发生变化,确保 toe 值与更新之前的播发值不同。

无论是正常更新还是非整点更新,星历参数的更新始终从某一超帧的 起始时刻开始。

星历参数定义见表 5-9。

表 5-9 星历参数定义

参 数	定 义
t _{oe}	星历参考时间
\sqrt{A}	长半轴的平方根
e	偏心率
ω	近地点幅角
Δn	卫星平均运动速率与计算值之差
M_0	参考时间的平近点角
Ω_0	按参考时间计算的升交点经度
$\dot{\Omega}$	升交点赤经变化率
i_0	参考时间的轨道倾角
IDOT	轨道倾角变化率
C_{uc}	纬度幅角的余弦调和改正项的振幅
C_{us}	纬度幅角的正弦调和改正项的振幅
C_{rc}	轨道半径的余弦调和改正项的振幅
C_{rs}	轨道半径的正弦调和改正项的振幅
C _{ic}	轨道倾角的余弦调和改正项的振幅
C_{is}	轨道倾角的正弦调和改正项的振幅

星历参数说明见表 5-10。

表 5-10 星历参数说明

参数	比特数	比例因子(LSB)	有效范围	单位
t_{oe}	17	23	604792	s
\sqrt{A}	32	2 ⁻¹⁹	8192	m ^{1/2}
e	32	2 ⁻³³	0.5	_
ω	32*	2 ⁻³¹	±1	π
Δn	16 [*]	2 ⁻⁴³	±3.73×10 ⁻⁹	π/s
\mathbf{M}_0	32*	2 ⁻³¹	±1	π
Ω_0	32*	2 ⁻³¹	±1	π
$\dot{\Omega}$	24*	2 ⁻⁴³	±9.54×10 ⁻⁷	π/s
i_0	32*	2 ⁻³¹	±1	π
IDOT	14*	2 ⁻⁴³	±9.31×10 ⁻¹⁰	π/s
C_{uc}	18*	2 ⁻³¹	±6.10×10 ⁻⁵	rad
C _{us}	18*	2 ⁻³¹	±6.10×10 ⁻⁵	rad
C_{rc}	18*	2-6	±2048	m
C_{rs}	18*	2-6	±2048	m
C_{ic}	18*	2 ⁻³¹	±6.10×10 ⁻⁵	rad
Cis	18*	2 ⁻³¹	±6.10×10 ⁻⁵	rad
*为2进制补码	码, 最高有效位	(MSB) 是符号位(+ 或 -)。	

用户机根据接收到的星历参数可以计算卫星在 BDCS 坐标系中的坐标。算法见表 5-11。

表 5-11 星历参数用户算法

计算公式	描 述	
$\mu = 3.986004418 \times 10^{14} \text{ m}^3/\text{s}^2$	BDCS 坐标系下的地心引力常数	
$\dot{\Omega}_{\rm e} = 7.2921150 \times 10^{-5} \text{ rad/s}$	BDCS 坐标系下的地球自转角速度	
$\pi = 3.1415926535898$	圆周率	
$A = \left(\sqrt{A}\right)^2$	计算长半轴	
$n_0 = \sqrt{\frac{\mu}{A^3}}$	计算卫星平均角速度	
$t_k = t - t_{oe}^*$	计算观测历元到参考历元的时间差	
$n = n_0 + \Delta n$	改正平均角速度	
$\mathbf{M}_{k} = \mathbf{M}_{0} + \mathbf{nt}_{k}$	计算平近点角	
$M_k = E_k - esinE_k$	迭代计算偏近点角	
$\begin{cases} \sin v_k = \frac{\sqrt{1 - e^2} \sin E_k}{1 - e \cos E_k} \\ \cos v_k = \frac{\cos E_k - e}{1 - e \cos E_k} \end{cases}$	计算真近点角	
$\phi_k = v_k + \omega$	计算纬度幅角	
$\begin{cases} \delta u_k = C_{us} sin(2\phi_k) + C_{uc} cos(2\phi_k) \\ \delta r_k = C_{rs} sin(2\phi_k) + C_{rc} cos(2\phi_k) \\ \delta i_k = C_{is} sin(2\phi_k) + C_{ic} cos(2\phi_k) \end{cases}$	纬度幅角改正项 径向改正项 轨道倾角改正项	
$u_k = \phi_k + \delta u_k$	计算改正后的纬度幅角	
$r_{k} = A(1 - e\cos E_{k}) + \delta r_{k}$	计算改正后的径向	
$i_k = i_0 + IDOT \cdot t_k + \delta i_k$	计算改正后的轨道倾角	
$\begin{cases} x_k = r_k \cos u_k \\ y_k = r_k \sin u_k \end{cases}$	计算卫星在轨道平面内的坐标	

$\Omega_{k} = \Omega_{0} + (\dot{\Omega} - \dot{\Omega}_{e})t_{k} - \dot{\Omega}_{e}t_{oe}$	计算历元升交点经度(地固系)
$\begin{cases} X_k = x_k \cos \Omega_k - y_k \cos i_k \sin \Omega_k \\ Y_k = x_k \sin \Omega_k + y_k \cos i_k \cos \Omega_k \\ Z_k = y_k \sin i_k \end{cases}$	计算 MEO/IGSO 卫星在 BDCS 坐标系中的坐标
$\Omega_{k} = \Omega_{0} + \dot{\Omega}t_{k} - \dot{\Omega}_{e}t_{oe}$	计算历元升交点经度(惯性系)
$\begin{cases} X_{GK} = x_k \cos \Omega_k - y_k \cos i_k \sin \Omega_k \\ Y_{GK} = x_k \sin \Omega_k + y_k \cos i_k \cos \Omega_k \\ Z_{GK} = y_k \sin i_k \end{cases}$	计算 GEO 卫星在自定义坐标系中的坐标
$\begin{bmatrix} X_k \\ Y_k \\ Z_k \end{bmatrix} = R_Z(\dot{\Omega}_e t_k) R_X (-5^\circ) \begin{bmatrix} X_{GK} \\ Y_{GK} \\ Z_{GK} \end{bmatrix}$ 其中:	计算 GEO 卫星在 BDCS 坐标系中的坐标
$R_{X}(\varphi) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & +\cos\varphi & +\sin\varphi \\ 0 & -\sin\varphi & +\cos\varphi \end{pmatrix};$	
$R_{z}(\varphi) = \begin{pmatrix} +\cos\varphi & +\sin\varphi & 0 \\ -\sin\varphi & +\cos\varphi & 0 \\ 0 & 0 & 1 \end{pmatrix}$	

*t 是信号发射时刻的 BDT。 t_k 是 t 和 t_{oe} 之间的总时间差,必须考虑周变换的开始或结束,即: 如果 t_k 大于 302400,将 t_k 减去 604800;如果 t_k 小于-302400,则将 t_k 加上 604800。

5.2.4.13 页面编号 (Pnum)

子帧 4 和子帧 5 的第 44~50 比特为页面编号 (Pnum),用于标识子帧的页面编号,共7比特。子帧 4 和子帧 5 的信息都分 24 个页面分时播发,其中子帧 4 的第 1~24 页面编排卫星号为 1~24 的历书信息,子帧 5 的第 1~6页面编排卫星号为 25~30 的历书信息,页面编号与卫星编号一一对应。此外,子帧 5 的第 11~23 页面可通过分时播发方式,播发卫星号为 31~43、44~56、57~63 的历书信息。

5.2.4.14 历书信息扩展标识(AmEpID)

历书信息扩展标识(AmEpID)为 2 比特,用于标识子帧 5 的页面 11~24 是否扩展播发 31~63 号卫星历书和卫星健康信息。当 AmEpID 为"11"时,表示子帧 5 的页面 11~23 可扩展播发 31~63 号卫星历书,子帧 5 的页面 24 可扩展播发 31~63 号卫星健康信息;当 AmEpID 不为"11"时,表示子帧 5 的页面 11~24 为预留页面,不进行扩展播发。

5.2.4.15 历书参数(t_{oa} , \sqrt{A} , e, ω , M_0 , Ω_0 , $\dot{\Omega}$, δ_i , a_0 , a_1 , AmID)

历书参数更新周期小于7天。

历书参数定义、说明、用户算法见表 5-12~5-15。

表 5-12 历书参数定义

参 数	定 义
t _{oa}	历书参考时间
\sqrt{A}	长半轴的平方根
e	偏心率
ω	近地点幅角
M_0	参考时间的平近点角
Ω_0	按参考时间计算的升交点经度
$\dot{\Omega}$	升交点赤经变化率
δ_{i}	参考时间的轨道参考倾角的改正量
a_0	卫星钟差
a_1	卫星钟速
AmID	分时播发识别标识

参数 AmID 为 2 比特,用于识别子帧 5 的页面 11~24 分时播发的卫星 历书和卫星健康信息,其值在参数 AmEpID 为"11"时有效。

针对分时播发的卫星历书,用户应先使用 AmEpID 判断卫星历书是否扩展播发,再结合 AmID 识别相应的卫星历书。具体分时播发方式见表5-13。

AmEpID	AmID	页面编号 Pnum	历书对应的卫星编号
	01	11~23	31~43
	10	11~23	44~56
11 11	11~17	57~63	
	11	18~23	保留
	00	11~23	保留

表 5-13 历书参数分时播发方式

表 5-14	历‡	徐	数	说	昍
1X J-1T	<i>1/</i> J	<i>3</i>	ᄶ	ッし	~ J

参数	比特数	比例因子	有效范围	单位	
t _{oa}	8	2 ¹²	602112	S	
\sqrt{A}	24	2-11	8192	$m^{1/2}$	
e	17	2 ⁻²¹	0.0625	_	
ω	24*	2-23	±1	π	
\mathbf{M}_0	24*	2 ⁻²³	±1	π	
Ω_0	24*	2 ⁻²³	±1	π	
$\dot{\Omega}$	17*	2 ⁻³⁸	_	π/s	
δ_{i}	16*	2 ⁻¹⁹	_	π	
a_0	11*	2 ⁻²⁰	_	S	
a_1	11*	2 ⁻³⁸	_	s/s	
*为 2 讲制补码, 最高有效位 (MSR) 是符号位 (+成-)					

^{*}为2进制补码,最高有效位(MSB)是符号位(+或-)。

表 5-15 历书参数用户算法

计算公式	描 述
μ =3.986004418×10 ¹⁴ m ³ /s ²	BDCS 坐标系下的地心引力常数
$\dot{\Omega}_{\rm e} = 7.2921150 \times 10^{-5} \text{ rad/s}$	BDCS 坐标系下的地球自转角速度
$A = (\sqrt{A})^2$	计算长半轴
$n_0 = \sqrt{\frac{\mu}{A^3}}$	计算卫星平均角速度
$t_{k} = t - t_{oa}^{*}$	计算观测历元到参考历元的时间差
$\mathbf{M}_{k} = \mathbf{M}_{0} + \mathbf{n}_{0} \mathbf{t}_{k}$	计算平近点角
$\mathbf{M}_{k} = \mathbf{E}_{k} - \mathbf{e} \sin \mathbf{E}_{k}$	迭代计算偏近点角
$\begin{cases} \sin v_k = \frac{\sqrt{1 - e^2} \sin E_k}{1 - e \cos E_k} \\ \cos v_k = \frac{\cos E_k - e}{1 - e \cos E_k} \end{cases}$	计算真近点角
$\phi_k = v_k + \omega$	计算纬度幅角
$r_k = A(1 - e\cos E_k)$	计算径向
$\begin{cases} x_k = r_k \cos \phi_k \\ y_k = r_k \sin \phi_k \end{cases}$	计算卫星在轨道平面内的坐标
$\Omega_{k} = \Omega_{0} + (\dot{\Omega} - \dot{\Omega}_{e})t_{k} - \dot{\Omega}_{e}t_{oa}$	改正升交点经度
$i = i_0 + \delta_i^{**}$	参考时间的轨道倾角
$\begin{cases} X_k = x_k \cos \Omega_k - y_k \cos i \sin \Omega_k \\ Y_k = x_k \sin \Omega_k + y_k \cos i \cos \Omega_k \\ Z_k = y_k \sin i \end{cases}$	计算 GEO/MEO/IGSO 卫星在 BDCS 坐标系中的坐标

*t 是信号发射时刻的 BDT。 t_k 是 t 和 t_{oe} 之间的总时间差,必须考虑周变换的开始或结束,即: 如果 t_k 大于 302400,将 t_k 减去 604800; 如果 t_k 小于-302400,则将 t_k 加上 604800。

**对于 MEO/IGSO 卫星, $i_{_0}=0.30\pi$; 对于 GEO 卫星, $i_{_0}=0.00$ 。

历书时间计算:

$$t = t_{sv} - \Delta t_{sv}$$

其中:

t 为信号发射时刻的 BDT, 单位为秒;

tsv 为信号发射时刻的卫星测距码相位时间,单位为秒;

Δt_{sv}为卫星测距码相位时间偏移,单位为秒,由下式给出:

$$\Delta t_{sv} = a_0 + a_1(t - t_{oa})$$

上式中 t 可忽略精度,用 t_{sv} 替代;历书基准时间 t_{oa} 是以历书周计数 (WN_a) 的起始时刻为基准的。

5.2.4.16 历书周计数 (WNa)

历书周计数 (WN_a) 为 BDT 整周计数 (WN) 模 256, 为 8 比特,取 值范围为 0~255。

5.2.4.17 卫星健康信息(Hea_i, i=1~43)

卫星健康信息为9比特,第9位为卫星钟健康信息,第8位为BII信号健康状况,第7位为B2I信号健康状况,第6位为B3I信号健康状况,第2位为信息健康状况,其定义见表5-16。

次 5-10 卫星 健康 旧心足久			
信息位	信息编码	健康状况标识	
第9位	0	卫星钟可用	
(MSB)	1	*	
第8位	0	B1I信号正常	
另 O IV	1	B1I信号不正常**	
第7位	0	B2I信号正常	
₩	1	B2I信号不正常**	

表 5-16 卫星健康信息定义

第6位	0	B3I信号正常
为 O 位	1	B3I信号不正常**
第 5 2 公	0	保留
第 5~3 位	1	保留
第 2 位	0	导航信息可用
第2位	1	导航信息不可用(龄期超限)
第1位	0	保留
(LSB)	1	保留

^{*}后8位均为"0"表示卫星钟不可用,后8位均为"1"表示卫星故障或永久关闭,后8位为其它值时,保留。

Hea_i (i=1~30) 分别对应卫星编号为 1~30 的卫星健康信息。通过分时播发,Hea_i (i=31~43) 分别对应卫星编号为 31~43、44~56、57~63 的卫星健康信息。

用户应先使用 AmEpID 判断卫星健康信息是否扩展播发,当 AmEpID 为"11"时,再结合 AmID 识别分时播发的卫星健康信息。具体分时播发方式见表 5-17。

AmEpID	AmID	Hea _i	Hea _i 对应的卫星编号
	01	: 21 42	31~43
	10	i=31~43	44~56
11		i=31~37	57~63
	11	i=38~43	保留
	00	i=31~43	保留

表 5-17 Hea; (i=31~43)分时播发方式

5.2.4.18 与 UTC 时间同步参数($A_{0UTC}, A_{1UTC}, \Delta t_{LS}, WN_{LSF}, DN, \Delta t_{LSF}$)

此参数反映了BDT与UTC之间的关系。各参数的说明见表 5-18。

^{**}信号不正常指信号功率比额定值低 10 dB 及以上。

参数	比特数	比例因子	有效范围	单位
$A_{0\mathrm{UTC}}$	32*	2 ⁻³⁰	_	S
A _{1UTC}	24*	2 ⁻⁵⁰		s/s
Δt_{LS}	8*	1	_	S
WN _{LSF}	8	1	_	week
DN	8	1	6	day
$\Delta t_{ m LSF}$	8*	1	_	S
*为 2 讲制补码. 最高有效位 (MSR) 是符号位 (+ 或 -)				

表 5-18 与 UTC 时间同步参数说明

刀 2 进制补码,取尚有效位(MSB)定符亏位(+或

A_{OUTC}: BDT 相对于 UTC 的钟差;

A_{IUTC}: BDT 相对于 UTC 的钟速;

Δtrs: 新的闰秒生效前 BDT 相对于 UTC 的累积闰秒改正数;

WN_{ISE}: 新的闰秒生效的周计数,占8比特,为DN对应的整周计数模 256。WN_{LSF}在模 256 之前和 WN 之差的绝对值不超过 127。

DN: 新的闰秒生效的周内日计数;

 Δt_{LSF} : 新的闰秒生效后 BDT 相对于 UTC 的累积闰秒改正数。

由 BDT 推算 UTC 的方法:

系统向用户广播UTC参数及新的闰秒生效的周计数WN_{ISE}和新的闰秒 生效的周内日计数 DN,使用户可以获得误差不大于1微秒的 UTC 时间。

考虑到闰秒生效时间和用户当前系统时间之间的关系,如果是当前, BDT与 UTC 之间存在下面 3 种转换关系。

1) 当指示闰秒生效的周计数 WN_{ISE}和周内天计数 DN 还没到来时,而 且用户当前时刻 t_E 处在 DN+2/3 之前,则 UTC 与 BDT 之间的变换关 系为:

$$t_{\text{UTC}} = (t_{\text{E}} - \Delta t_{\text{UTC}})$$
[模 86400], 秒

式中:

$$\Delta t_{\rm UTC} = \Delta t_{\rm LS} + A_{\rm 0UTC} + A_{\rm 1UTC} \times t_{\rm E}$$
, \gg

其中, t_E指用户计算的 BDT, 取周内秒计数部分。

2) 若用户当前的系统时刻 t_E处在指示闰秒生效的周计数 WN_{LSF}和周内 天计数 DN+2/3 到 DN+5/4 之间,则 UTC 与 BDT 之间的变换关系为:

$$t_{UTC} = W[/(86400 + \Delta t_{LSF} - \Delta t_{LS})],$$
 秒

式中:

W =
$$(t_E - \Delta t_{UTC} - 43200)$$
[\notin 86400] + 43200, \not $\Delta t_{UTC} = \Delta t_{LS} + A_{0UTC} + A_{1UTC} \times t_E$, \not

3) 当指示闰秒生效的周计数 WN_{LSF} 和周内天计数 DN 已经过去,且用户当前的系统时刻 t_E 处在 DN+5/4 之后,则 UTC 与 BDT 之间的变换关系为:

$$t_{UTC} = (t_E - \Delta t_{UTC})$$
[模 86400],秒

式中:

式中各参数的定义与1)的情况相同。

5.2.4.19 与 GPS 时间同步参数 (A_{0GPS}, A_{1GPS})

BDT与 GPS 系统时间之间的同步参数说明见表 5-19, 电文中相应的内容暂未播发。

表 5-19 与 GPS 时间同步参数说明

参数	比特数	比例因子	单位	
A_{0GPS}	14*	0.1	ns	
A_{1GPS}	16*	0.1	ns/s	
*为 2 进制补码, 最高有效位 (MSB) 是符号位 (+或 -)。				

A_{0GPS}: BDT 相对于 GPS 系统时间的钟差。

A_{IGPS}: BDT 相对于 GPS 系统时间的钟速。

BDT与 GPS 系统时间之间的换算公式:

$$t_{GPS} = t_E - \Delta t_{GPS}$$

其中, $\Delta t_{GPS} = A_{0GPS} + A_{1GPS} \times t_E$, t_E 指用户计算的 BDT,取周内秒计数部分。

5.2.4.20 与 Galileo 时间同步参数 (A_{0Gal}, A_{1Gal})

BDT与 Galileo 系统时间之间的同步参数说明见表 5-20, 电文中相应的内容暂未播发。

表 5-20 与 Galileo 时间同步参数说明

参数	比特数	比例因子	单位	
A_{0Gal}	14*	0.1	ns	
A_{1Gal}	16*	0.1	ns/s	
*为 2 进制补码, 最高有效位 (MSB) 是符号位 (+或 -)。				

A_{0Gal}: BDT 相对于 Galileo 系统时间的钟差。

A_{1Gal}: BDT 相对于 Galileo 系统时间的钟速。

BDT与 Galileo 系统时间之间的换算公式:

$$t_{Gal} = t_E - \Delta t_{Gal}$$

其中, $\Delta t_{Gal} = A_{0Gal} + A_{1Gal} \times t_E$, t_E 指用户计算的 BDT,取周内秒计数部

分。

5.2.4.21 与 GLONASS 时间同步参数 (A_{0GLO}, A_{1GLO})

BDT与GLONASS系统时间之间的同步参数说明见表 5-21。电文相应的内容暂未播发。

 参数
 比特数
 比例因子
 单位

 A_{0GLO}
 14*
 0.1
 ns

 A_{1GLO}
 16*
 0.1
 ns/s

 *为 2 进制补码,最高有效位(MSB)是符号位(+或-)。

表 5-21 与 GLONASS 时间同步参数说明

A_{0GLO}: BDT 相对于 GLONASS 系统时间的钟差。

A_{IGIO}: BDT 相对于 GLONASS 系统时间的钟速。

BDT 与 GLONASS 系统时间之间的换算公式:

$$t_{\rm GLO} = t_{\rm E} - \Delta t_{\rm GLO}$$

其中, $\Delta t_{GLO} = A_{0GLO} + A_{1GLO} \times t_E$, t_E 指用户计算的 BDT,取周内秒计数部分。

5.3 D2 导航电文

5.3.1 D2 导航电文帧结构

D2 导航电文由超帧、主帧和子帧组成。每个超帧为 180000 比特, 历时 6分钟, 每个超帧由 120 个主帧组成, 每个主帧为 1500 比特, 历时 3秒, 每个主帧由 5个子帧组成, 每个子帧为 300 比特, 历时 0.6 秒, 每个子帧由 10个字组成, 每个字为 30 比特, 历时 0.06 秒。

每个字由导航电文数据及校验码两部分组成。每个子帧第 1 个字的前

15 比特信息不进行纠错编码,后 11 比特信息采用 BCH(15,11,1)方式进行纠错,信息位共有 26 比特;其它 9 个字均采用 BCH(15,11,1)加交织方式进行纠错编码,信息位共有 22 比特。

详细帧结构如图 5-12 所示。

图 5-12 D2 导航电文帧结构

5.3.2 D2 导航电文详细结构编排

D2 导航电文包括:本卫星基本导航信息,全部卫星历书信息,与其它系统时间同步信息,北斗系统完好性及差分信息,格网点电离层信息。

主帧结构及信息内容如图 5-13 所示。子帧 1 播发基本导航信息,由 10 个页面分时发送,子帧 2~4 信息由 6 个页面分时发送,子帧 5 中信息由 120 个页面分时发送。

图 5-13 D2 导航电文信息内容

D2 导航电文各子帧格式编排如图 5-14~5-18 所示。其中,子帧 4 页面 1~6 扩展播发北斗系统完好性及差分信息,子帧 5 页面 103~116 扩展播发卫星历书信息;子帧 1 的页面 1~10 的低 150 比特信息、子帧 5 的页面 14~34、页面 74~94、页面 117~120 为预留信息。

图 5-14-1 D2 导航电文子帧 1 高 150 比特页面 1 信息格式编排

图 5-14-2 D2 导航电文子帧 1 高 150 比特页面 2 信息格式编排

图 5-14-3 D2 导航电文子帧 1 高 150 比特页面 3 信息格式编排

图 5-14-4 D2 导航电文子帧 1 高 150 比特页面 4 信息格式编排

图 5-14-5 D2 导航电文子帧 1 高 150 比特页面 5 信息格式编排

图 5-14-6 D2 导航电文子帧 1 高 150 比特页面 6 信息格式编排

图 5-14-7 D2 导航电文子帧 1 高 150 比特页面 7 信息格式编排

图 5-14-8 D2 导航电文子帧 1 高 150 比特页面 8 信息格式编排

图 5-14-9 D2 导航电文子帧 1 高 150 比特页面 9 信息格式编排

图 5-14-10 D2 导航电文子帧 1 高 150 比特页面 10 信息格式编排

图 5-15 D2 导航电文子帧 2 信息格式编排

图 5-16 D2 导航电文子帧 3 信息格式编排

图 5-17 D2 导航电文子帧 4 信息格式编排

(注: 当 BDEpID 为"11"时,子帧 4 全部 6 个页面用于扩展播发北斗系统完好性及差分信息;否则,从第 171 位开始的信息位为保留位。)

图 5-18-1 D2 导航电文子帧 5 页面 1 信息格式编排

图 5-18-2 D2 导航电文子帧 5页面 61 信息格式编排

图 5-18-3 D2 导航电文子帧 5页面 2信息格式编排

图 5-18-4 D2 导航电文子帧 5页面 62 信息格式编排

图 5-18-5 D2 导航电文子帧 5页面 3信息格式编排

图 5-18-6 D2 导航电文子帧 5页面 63 信息格式编排

图 5-18-7 D2 导航电文子帧 5页面 4信息格式编排

图 5-18-8 D2 导航电文子帧 5页面 64 信息格式编排

图 5-18-9 D2 导航电文子帧 5页面 5信息格式编排

图 5-18-10 D2 导航电文子帧 5页面 65 信息格式编排

图 5-18-11 D2 导航电文子帧 5页面 6信息格式编排

图 5-18-12 D2 导航电文子帧 5页面 66 信息格式编排

图 5-18-13 D2 导航电文子帧 5页面 7信息格式编排

图 5-18-14 D2 导航电文子帧 5页面 67 信息格式编排

图 5-18-15 D2 导航电文子帧 5页面 8信息格式编排

图 5-18-16 D2 导航电文子帧 5页面 68 信息格式编排

图 5-18-17 D2 导航电文子帧 5页面 9信息格式编排

图 5-18-18 D2 导航电文子帧 5页面 69 信息格式编排

图 5-18-19 D2 导航电文子帧 5页面 10 信息格式编排

图 5-18-20 D2 导航电文子帧 5页面 70信息格式编排

图 5-18-21 D2 导航电文子帧 5页面 11信息格式编排

图 5-18-22 D2 导航电文子帧 5页面 71 信息格式编排

图 5-18-23 D2 导航电文子帧 5页面 12 信息格式编排

图 5-18-24 D2 导航电文子帧 5页面 72 信息格式编排

图 5-18-25 D2 导航电文子帧 5页面 13 信息格式编排

图 5-18-26 D2 导航电文子帧 5页面 73 信息格式编排

图 5-18-27 D2 导航电文子帧 5页面 35 信息格式编排

图 5-18-28 D2 导航电文子帧 5页面 36 信息格式编排

图 5-18-29 D2 导航电文子帧 5 页面 37~60、页面 95~100 信息格式编排

(注: AmEpID 为 D2 导航电文中的历书信息扩展标识,具体使用方法参见 5.3.3.1 节。)

图 5-18-30 D2 导航电文子帧 5页面 101 信息格式编排

图 5-18-31 D2 导航电文子帧 5页面 102 信息格式编排

图 5-18-32 D2 导航电文子帧 5页面 103~115 信息格式编排

(注: 当 AmEpID 为"11"时,子帧 5 页面 103~115 用于扩展播发卫星历书;否则,子帧 5 页面 103~115 为预留页面,即从第 51 位 开始的信息位为保留位。)

图 5-18-33 D2 导航电文子帧 5页面 116 信息格式编排

(注: 当 AmEpID 为"11"时,子帧 5 页面 116 用于扩展播发卫星健康信息;否则,子帧 5 页面 116 为预留页面,即从第 51 位开始的信息位为保留位。)

图 5-18-34 D2 导航电文子帧 5 预留页面 14~34、页面 74~94、页面 117~120 信息格式编排

5.3.3 D2 导航电文内容和算法

D2 导航电文包含基本导航信息和广域差分信息。

5.3.3.1 基本导航信息

D2 导航电文中包含所有基本导航信息,内容如下:

本卫星基本导航信息:

- 帧同步码 (Pre)
- 子帧计数 (FraID)
- 周内秒计数(SOW)
- 整周计数(WN)
- 用户距离精度指数(URAI)
- 卫星自主健康标识(SatH1)
- 电离层延迟改正模型参数(α_n, β_n, n=0~3)
- 星上设备时延差(T_{GD1},T_{GD2})
- 时钟数据龄期(AODC)
- 钟差参数 (t_{oc}, a₀, a₁, a₂)
- 星历数据龄期(AODE)
- 星历参数(t_{oe} , \sqrt{A} , e, ω , Δn , M_0 , Ω_0 , $\dot{\Omega}$, i_0 , IDOT, C_{uc} , C_{us} , C_{rc} , C_{rs} , C_{ic} , C_{is})

页面编号 (Pnum)

历书信息:

● 历书信息扩展标识(AmEpID)

- 历书参数 $(t_{0a}, \sqrt{A}, e, \omega, M_0, \Omega_0, \dot{\Omega}, \delta_i, a_0, a_1, AmID)$
- 历书周计数 (WN_a)
- 卫星健康信息 (Hea_i, i=1~43)

与其它系统时间同步信息:

- 与 UTC 时间同步参数(A_{0UTC}, A_{1UTC}, Δt_{LS}, WN_{LSF}, DN, Δt_{LSF})
- 与 GPS 时间同步参数(A_{0GPS}, A_{1GPS})
- 与 Galileo 时间同步参数 (A_{0Gal}, A_{1Gal})
- 与 GLONASS 时间同步参数 (A_{0GLO}, A_{1GLO})

除了页面编号(Pnum)、周内秒计数(SOW)、历书信息扩展标识(AmEpID)、分时播发识别标识(AmID)与D1导航电文中有区别外,其它基本导航信息与D1导航电文中含义相同。在此只给出D2导航电文中Pnum、SOW、AmEpID和AmID的含义。

(1) 页面编号 (Pnum)

D2 导航电文中,子帧 5 信息分 120 个页面播发,由页面编号(Pnum)标识。

(2) 周内秒计数(SOW)

D2 导航电文中,每一子帧的第 19~26 位和第 31~42 位为周内秒计数 SOW,共 20 比特,每周日 BDT 0 点 0 分 0 秒从零开始计数。

对于 D2 导航电文,周内秒计数所对应的秒时刻是指当前主帧中子帧 1 同步头的第一个脉冲上升沿所对应的时刻。

(3) 历书信息扩展标识(AmEpID)

D2 导航电文中, 历书信息扩展标识(AmEpID)为 2 比特, 用于标识

子帧 5 的页面 103~116 是否扩展播发 31~63 号卫星历书和卫星健康信息。 当 AmEpID 为"11"时,表示子帧 5 的页面 103~115 可扩展播发 31~63 号卫星历书,子帧 5 的页面 116 可扩展播发 31~63 号卫星健康信息; 当 AmEpID 不为"11"时,表示子帧 5 的页面 103~116 为预留页面,不进行扩展播发。

(4) 分时播发识别标识(AmID)

D2 导航电文中,参数 AmID 为 2 比特,用于识别分时播发的卫星历书和卫星健康信息,其值在参数 AmEpID 为 "11"时有效。用户应先使用 AmEpID 判断卫星历书和卫星健康信息是否扩展播发,再结合 AmID 识别相应的的卫星历书和卫星健康信息。

D2 导航电文中,卫星历书的具体分时播发方式见表 5-22,卫星健康信息的分时播发方式与 D1 导航电文相同,可参见表 5-17。

AmEpID	AmID	页面编号 Pnum	历书对应的卫星编号			
	01	103~115	31~43			
	10	103~115	44~56			
11	11	103~109	57~63			
	11	110~115	保留			
	00	103~115	保留			

表 5-22 历书参数分时播发方式

5.3.3.2 基本导航信息页面编号(Pnum1)

子帧 1 第 43~46 比特为基本导航信息页面编号 (Pnum1), 共 4 比特, 在子帧 1 的 1~10 页面中播发, 用于标识本卫星基本导航信息的页面编号。

5.3.3.3 完好性及差分信息页面编号(Pnum2)

子帧 2 第 44~47 比特为完好性及差分信息页面编号 (Pnum2), 共 4 比

特,在子帧2的1~6页面中播发,用于标识完好性及差分信息的页面编号。

5.3.3.4 完好性及差分信息健康标识(SatH2)

完好性及差分信息健康标识(SatH2)为 2 比特,高位标识卫星接收上行注入的区域用户距离精度(RURA)、用户差分距离误差(UDRE)及等效钟差改正数(Δt)信息校验是否正确,低位标识卫星接收上行注入的格网点电离层信息校验是否正确,具体定义见表 5-23。

信息位	信息编码	SatH2 信息含义					
高位	0	RURA、UDRE 及 Δt 信息校验正确					
(MSB)	1	RURA、UDRE 及 Δt 信息存在错误					
低位 (LSB)	0	格网点电离层信息校验正确					
	1	格网点电离层信息存在错误					

表 5-23 完好性及差分信息健康标识含义

5.3.3.5 北斗系统完好性及差分信息扩展标识(BDEpID)

北斗系统完好性及差分信息扩展标识(BDEpID)为2比特,用于标识 D2 导航电文子帧4全部6个页面是否扩展播发北斗系统完好性及差分信息。

当 BDEpID 为"11"时,表示子帧 4 全部 6 个页面可扩展播发北斗系统完好性及差分信息卫星标识(BDID_i, i=31~63)、区域用户距离精度指数(RURAI)、等效钟差改正数(Δt)、用户差分距离误差指数(UDREI);当BDEpID 不为"11"时,表示子帧 4 全部 6 个页面未播发北斗系统完好性及差分信息,相关信息位为保留位。

5.3.3.6 北斗系统完好性及差分信息卫星标识(BDID_i)

北斗系统完好性及差分信息卫星标识(BDID_i, i=1~63)为 63 比特, 用来标识系统是否播发该卫星的完好性及差分信息。每个比特位标识一颗 卫星,当取值为"1"时,表示播发该卫星的完好性及差分信息,当取值为"0" 时,表示没有播发该卫星的完好性及差分信息。

1~30 号卫星的完好性及差分信息卫星标识在子帧 2 中播发。31~63 号卫星的完好性及差分信息卫星标识在子帧 4 中扩展播发。

卫星完好性及差分信息的播发顺序为以完好性及差分信息卫星标识所对应的卫星编号从小到大排列。

5.3.3.7 北斗系统区域用户距离精度指数(RURAI)

北斗系统卫星信号完好性即区域用户距离精度(RURA),用来描述卫星伪距误差,单位是米,以区域用户距离精度指数(RURAI)表征。RURAI 占 4 比特,取值范围为 0~15,更新周期为 18 秒。每一个 RURAI 对应一颗卫星,B1I 信号上播发的 RURAI 代表 B1I 信号的完好性。RURAI 与 RURAI 的对应关系见表 5-24。

 RURAI 値
 RURA (m, 99.9%)

 0
 0.75

 1
 1.0

 2
 1.25

 3
 1.75

 4
 2.25

表 5-24 RURAI 定义表

5	3.0
6	3.75
7	4.5
8	5.25
9	6.0
10	7.5
11	15.0
12	50.0
13	150.0
14	300.0
15	> 300.0

区域用户距离精度指数 (RURAI) 在子帧 2、子帧 3 和子帧 4 全部 6 个页面中播发。其中,子帧 4 的 6 个页面为扩展播发。

5.3.3.8 北斗系统差分及差分完好性信息

5.3.3.8.1 等效钟差改正数 (Δt)

北斗系统差分信息以等效钟差改正数 (Δt)表示,每颗卫星占 13 比特, 比例因子为 0.1,单位为米,用 2 进制补码表示,最高位为符号位。更新周期为 18 秒。

每一个等效钟差改正数(Δt)对应一颗卫星,BII 信号上播发的 Δt 代表 BII 信号的差分信息。当值为-4096 时,表示不可用。等效钟差改正数(Δt) 用于对卫星钟差和星历的残余误差的进一步修正,用户将 Δt 加到对该卫星的观测伪距上,以改正上述残余误差对伪距测量的影响。

等效钟差改正数(Δt)在子帧 2、子帧 3 和子帧 4 全部 6 个页面中播发。

其中, 子帧 4 的 6 个页面为扩展播发。

5.3.3.8.2 用户差分距离误差指数(UDREI)

北斗系统差分完好性即用户差分距离误差(UDRE),用来描述等效钟差改正误差,单位是米,以用户差分距离误差指数(UDREI)表征。UDREI占4比特,范围为0~15,更新周期为3秒。

每一个 UDREI 对应一颗卫星,BII 信号上播发的 UDREI 代表 BII 信号的差分完好性。UDREI 与 UDRE 的对应关系见表 5-25。

UDREI 编码	UDRE (m, 99.9%)
0	1.0
1	1.5
2	2.0
3	3.0
4	4.0
5	5.0
6	6.0
7	8.0
8	10.0
9	15.0
10	20.0
11	50.0
12	100.0
13	150.0
14	未被监测
15	不可用

表 5-25 UDREI 定义表

用户差分距离误差指数(UDREI)在子帧 2、子帧 4 全部 6 个页面中播发。其中,子帧 4 的 6 个页面为扩展播发。

5.3.3.9 格网点电离层信息 (Ion)

每个格网点电离层信息(Ion)包括格网点垂直延迟(dt)和误差指数(GIVEI),共占用13比特。信息排列及定义如下。

参数 dτ GIVEI 比特数 9 4

表 5-26 Ion 信息定义表

电离层格网覆盖范围为东经 70~145 度, 北纬 7.5~55 度, 按经纬度 5×2.5 度进行划分, 形成 320 个格网点。其中, 编号为 1~160 的格网点(IGP)的具体定义见表 5-27-1。页面 1~13 按表 5-27-1 的格网点号播发格网点电离层修正信息。

经度 135 | 140 120 | 125 纬度 135 | 145 132 | 142

表 5-27-1 IGP 编号表

当 IGP 编号小于或等于 160 时所对应的经纬度为:

$$L = 70 + INT((IGP-1)/10) \times 5$$

$$B = 5 + (IGP - INT((IGP - 1)/10) \times 10) \times 5$$

其中 INT(*)表示向下取整。

编号为 161~320 的格网点(IGP)的具体定义见表 5-27-2。页面 60~73 按表 5-27-2 的格网点号播发格网点电离层修正信息。

经度 纬度	70	75	80	85	90	95	100	105	110	115	120	125	130	135	140	145
52.5	170	180	190	200	210	220	230	240	250	260	270	280	290	300	310	320
47.5	169	179	189	199	209	219	229	239	249	259	269	279	289	299	309	319
42.5	168	178	188	198	208	218	228	238	248	258	268	278	288	298	308	318
37.5	167	177	187	197	207	217	227	237	247	257	267	277	287	297	307	317
32.5	166	176	186	196	206	216	226	236	246	256	266	276	286	296	306	316
27.5	165	175	185	195	205	215	225	235	245	255	265	275	285	295	305	315
22.5	164	174	184	194	204	214	224	234	244	254	264	274	284	294	304	314
17.5	163	173	183	193	203	213	223	233	243	253	263	273	283	293	303	313
12.5	162	172	182	192	202	212	222	232	242	252	262	272	282	292	302	312
7.5	161	171	181	191	201	211	221	231	241	251	261	271	281	291	301	311

表 5-27-2 IGP 编号表

当 IGP 号大于 160 时所对应的经纬度为:

$$L = 70 + INT((IGP-161)/10) \times 5$$

$$B = 2.5 + (IGP - 160 - INT((IGP - 161)/10) \times 10) \times 5$$

其中 INT(*)表示向下取整。

5.3.3.9.1 格网点电离层垂直延迟参数(dt)

 $d\tau_i$ 为第 i 格网点 B1I 信号的电离层垂直延迟,用距离表示,比例因子为 0.125,单位为米,范围为 $0{\sim}63.625$ 米。当状态为"1111111110"(= 63.750 米)时,表示 IGP 未被监测;当状态为"111111111"(= 63.875 米)时,表示"不可用"。

用户需将格网点电离层改正数内插得到观测卫星穿刺点处的电离层改正数,以修正观测伪距。电离层参考高度为 375 千米。

5.3.3.9.2 格网点电离层垂直延迟改正数误差指数(GIVEI)

格网点电离层垂直延迟改正数误差(GIVE)用来描述格网点电离层延迟改正的精度,以格网点电离层垂直延迟改正数误差指数(GIVEI)表征。GIVEI与GIVE的关系见表 5-28。

我 3-28 OIVEI 是又很						
GIVEI 编码	GIVE (m, 99.9%)					
0	0.3					
1	0.6					
2	0.9					
3	1.2					
4	1.5					
5	1.8					
6	2.1					
7	2.4					
8	2.7					
9	3.0					
10	3.6					
11	4.5					
12	6.0					
13	9.0					
14	15.0					
15	45.0					

表 5-28 GIVEI 定义表

5.3.3.9.3 用户端格网点电离层延迟修正算法建议

根据 dt_i 值和 GIVEI, 用户可选用穿刺点周围相邻或相近的有效格网点数据,自行设计模型,内插观测卫星穿刺点处的电离层改正数。指导性拟合算法如下:

图 5-19 用户穿刺点与格网点示意图

图 5-19 给出了用户穿刺点与所在格网点的示意图,其中 IPP 是用户接收机与某一颗卫星连线对应电离层穿刺点所在的地理位置,用地理经纬度 (ϕ_p,λ_p) 表示。周围 4 个格网点的位置分别用 $(\phi_i,\lambda_i,i=1\sim4)$ 表示,格网点播发的垂直电离层延迟用 $VTEC_i(i=1\sim4)$ 表示。穿刺点与四个格网点的距离权值分别用 $\omega_i(i=1\sim4)$ 表示。

用户穿刺点所在周围格网至少有 3 个格网点标识为有效时,可根据这些有效格网点上播发的垂直电离层延迟采用双线性内插法计算穿刺点处的电离层延迟。

$$Ionodelay_{p} = \frac{\sum_{i=1}^{4} \omega_{i} \cdot VTEC_{i}}{\sum_{i=1}^{4} \omega_{i}}$$

定义
$$x_p = \frac{\lambda_p - \lambda_1}{\lambda_2 - \lambda_1}$$
, $y_p = \frac{\phi_p - \phi_1}{\phi_4 - \phi_1}$, 则权值分别为:

$$\omega_1 = (1 - x_p) \cdot (1 - y_p)$$
, $\omega_2 = x_p \cdot (1 - y_p)$, $\omega_3 = x_p \cdot y_p$, $\omega_4 = (1 - x_p) \cdot y_p$

若该观测历元某一个格网标识为无效,则其对应的权值为0。

6 缩略语

AODC 时钟数据龄期(Age of Data, Clock)

AODE 星历数据龄期(Age of Data, Ephemeris)

BDCS 北斗坐标系(BeiDou Coordinate System)

BDS 北斗卫星导航系统(BeiDou Navigation Satellite System)

bps 比特/秒 (bits per second)

BPSK 二进制相移键控(Binary Phase Shift Keying)

CDMA 码分多址 (Code Division Multiple Access)

CGCS2000 2000 中国大地坐标系(China Geodetic Coordinate System 2000)

GEO 地球静止轨道(Geostationary Earth Orbit)

GIVE 格网点电离层垂直延迟改正数误差(Grid point Ionospheric

Vertical delay Error)

GIVEI 格网点电离层垂直延迟改正数误差指数(Grid point Ionospheric

Vertical delay Error Index)

GLONASS 全球导航卫星系统(Global Navigation Satellite System)

GPS 全球定位系统(Global Positioning System)

ICD 接口控制文件(Interface Control Document)

IERS 国际地球自转参考系服务 (International Earth Rotation and

Reference Systems Service)

IGP 电离层格网点(Ionospheric Grid Point)

IGSO 倾斜地球同步轨道 (Inclined GeoSynchronous Orbit)

IPP 电离层穿刺点(Ionospheric Pierce Point)

IRM IERS 参考子午面(IERS Reference Meridian)

IRP IERS 参考极(IERS Reference Pole)

LSB 最低有效位(Least Significant Bit)

Mcps 百万码片/秒 (Mega chips per second)

MEO 中圆地球轨道(Medium Earth Orbit)

MSB 最高有效位 (Most Significant Bit)

NTSC 中国科学院国家授时中心(National Time Service Center)

RHCP 右旋圆极化(Right-Hand Circular Polarization)

RURA 区域用户距离精度(Regional User Range Accuracy)

RURAI 区域用户距离精度指数(Regional User Range Accuracy Index)

SOW 周内秒计数(Seconds of Week)

UDRE 用户差分距离误差(User Differential Range Error)

UDREI 用户差分距离误差指数(User Differential Range Error Index)

URA 用户距离精度(User Range Accuracy)

URAI 用户距离精度指数(User Range Accuracy Index)

UTC 协调世界时 (Universal Time Coordinated)

WN 整周计数 (Week Number)