Signale und Systeme 2

FS 24 Prof. Dr. Heinz Mathis Autoren: Simone Stitz, Laurin Heitzer

Version: 1.0.20240602 https://github.com/P4ntomime/signale-und-systeme-2

Inhaltsverzeichnis

Filte	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1.9 Nomogramme (S. 393)	
1.1	Grundtypen (S. 291)	2	1.10 Tabellen zum Entwurf von LC-Filtern	
	Frequnezgang H(jimg omega) – Übertragungsfunktion H(s)		1.11 Approximation nach Butterworth (S. 303)	
	Approximation im Frequnezbereich		1.12 Approximation nach Tschebyscheff-I	
1.4	Ideales Tiefpassfilter (S. 297)	2	,	
1.5	Amplitudengang mit char. Funktion K(Omega2)	2	1.13 Approximation nach Tschebyscheff-II	
	Approximation mittels kritisch-gedämpfter Filter (S. 299)		1.14 Approximation nach Cauer	•
1.7	Standard-Filtertypen – Überblick	2	1.15 Approximation nach Bessel	٠
1.8	Vorgehen Filter dimensionieren / auslegen	2	1.16 Gegenüberstellung der Filter-Approximationen	•

1 Filter

1.1 Grundtypen (S. 291)

Filter sind mehrheitlich frequnezselektive, lineare Netzwerke, welche gewisse Frequenzbereiche übertragen und andere dämpfen. Die fünf frequnezselektiven Grundtypen sind:

- Tiefpass (TP)
- Bandpass (BP)
- Allpass

- · Hochpass (HP)
- Bandsperre, Notch (BS)

1.2 Frequeezgang $H(j\omega)$ – Übertragungsfunktion H(s) (s. 294)

Für den Frequnezgang $H(j\omega)$ und die Übertragungsfunktion H(s) gelten die folgenden Zu-

$$|H(j\omega)|^2 = H(j\omega) \cdot H^*(j\omega) = H(j\omega) \cdot H(-j\omega) = H(s) \cdot H(-s) \Big|_{s=j\omega}$$

$$H(s) \cdot H(-s) = |H(j\omega)|^2 \Big|_{s=j\omega}$$

Hinweis: $|H(j\omega)|^2$ ist immer eine Funktion in ω^2 , da der Amplitudengang eine gerade Funktion ist!

Da in der Praxis **jeweils nur** H(s) **interessant** ist, muss H(s) aus $|H(j\omega)|^2$ 'isoliert' werden. Dies ist durch den folgenden Zusammenhang möglich.

$$\underbrace{\left[\begin{array}{c} N(s) \\ D(s) \\ H(s) \end{array} \cdot \underbrace{\begin{array}{c} N(-s) \\ D(-s) \\ H(-s) \end{array}} = |H(j\omega)|^2 \Big|_{\omega^2 = -s^2}$$

Hinweis: D(s) muss aus Stabilitätsgründen ein Hurwitz-Polynom sein!

1.3 Approximation im Frequnezbereich

Die wichtigste Aufgabe der Filtertheorie ist die Bestimmung der Übertragungsfunktion, die einen vorgegebenen Frequenzgang gewährleistet. Zuerst soll der Amplitudengang $|H(j\omega)|$ im Frequezzbereich approximiert werden. Der vorgeschriebene Phasengang wird dann allenfalls mit zusätzlichen Allpass-Filtern erreicht.

1.3.1 Toleranzschema (Stempel und Matritze) – Filterspezifikation

Die Anforderungen an ein Filter werden häufig im Toleranzschema beschrieben. Dieses steht jeweils 'auf dem Kopf'.

- Im Durchlassbereich (DB) bestimmt der Stempel die maximal zulässige Dämpfung A_{max}
- Im Sperrbereich (SB) bestimmt die Matritze die minimal nötige **Dämpfung**

$$A_{\mathrm{dB}}(\omega) = 10 \cdot \log \left(\frac{1}{|H(\omega)|^2} \right) = -20 \cdot \log(|H(\omega)|) \quad \Rightarrow \text{D\"{a}mpfung!}$$

1.3.2 Frequenznormierung

Um möglist kompakte Tabellen zu haben, wird auf Frequenzen normiert. Grundsätzlich kann auf eine beliebige Frequenz normiert werden. Allerdings gilt grundsätzlich:

- **HP / TP:** Normierung bezüglich **Grenzfrequenz** des Durchlassbereichs $\omega_r = \omega_D$
- BP / BS: Normierung bezüglich der Mittenfrequenz $\omega_r = \omega_m$

Normierte Grössen

$$S = \frac{S}{\omega_r}$$

$$\Omega = \frac{\omega}{\omega_r}$$

$$\sigma' = \frac{\sigma}{\omega_i}$$

Hinweis: Zur Entnormierung wird jeweils S in der normierter Funktion durch $\frac{s}{\omega}$ er-

1.4 Ideales Tiefpassfilter (S. 297)

Akausale Impulsantwort h(t)

- DB: keine Dämpfung
- SB: kein Ausgangssignal

1.5 Amplitudengang mit char. Funktion $K(\Omega^2)$

Um Wurzelausdrücke zu vermeiden, wird der folgenden Ansatz verwendet

$$|H(j\Omega)|^2 = \frac{1}{1 + K(\Omega^2)}$$

Im Fall des (idealen) Tiefpasses gilt füt die charakteristische Funktion $K(\Omega^2)$

Durchlassbereich (DB)
$$0 \le K(\Omega^2) \ll 1$$
 für $0 \le \Omega < 1$ $\Rightarrow |H(j\Omega)|^2 \approx 1$

Sperrbereich (SB)
$$K(\Omega^2) \gg 1$$
 für $\Omega > 1$ $\Rightarrow |H(j\Omega)|^2 \approx 0$

1.6 Approximation mittels kritisch-gedämpfter Filter (S. 299)

Tiefpassfilter n. Ordnung mit kritischer Dämpfung haben jeweilen einen n-fachen Pol auf der **negativen** σ -Achse.

- · Impuls- und Sprungantwort können nicht oszillieren
- Geringe Flankensteilheit im Übergangsbereich

Die Übertragungsfunktion H(s) ergibt sich als:

$$H(s) = \frac{1}{\left(1 + \frac{s}{\omega_c}\right)^n}$$

- Ordnung des Filters
- 3 dB-Punkt jedes der *n* Teilfilter ω_{c}

Will man bei der Kreisfrequenz ω_D eine Dämpfung von α dB haben, so muss ω_c (der nidentischen Teilfilter) gewählt werden als

$$\omega_c = \frac{\omega_D}{\sqrt{10^{\frac{\alpha}{10} \cdot n} - 1}}$$

1.6.1 Eigenschaten kritisch-gedämpfte Filter

- Alle Pole am gleichen Ort auf negativer σ -Achse \Rightarrow Allpolfilter
- Für $\Omega = 0$ ist für sämtliche n: $|H(0)| = H_{\text{max}} = 1$
- Für $\Omega = 1$ ist für sämtliche n: $|H(j)| = \frac{max}{\sqrt{2}} = \frac{1}{\sqrt{2}} \Rightarrow 3 \text{ dB Dämpfung}$
- Für $\Omega \gg 1$ wird $|H(j\Omega)| \approx \frac{1}{\Omega^n} \implies -n \cdot 20 \, dB/$ Dekade
- Amplitudengang bei $\Omega = 0$ maximal flach, da alle Ableitungen = 0 sind
- Amplitudengang ist streng-monoton fallend → keine Welligkeit
- Pole verschieben sich bei höherer Ordnung in Richtung imaginäre Achse
- Gruppenlaufzeit konstant bis ω_D <u>Amplitudengänge</u>

Pol-Lagen

1.7 Standard-Filtertypen – Überblick

- Butterworth
 - + Kein Rippel im Durchlass- und Sperrbereich
 - + Im Durchlassbereich ist der Amplitudengang maximal flach
 - Überhöhung in der Gruppenlaufzeit der Grenzfrequenz
 - Braucht hohe Ordnung für steilen Übergang von Durchlass- zu Sperrbereich
- - Flachster Übergag von Durchlass- und Sperrbereich von allen Filtern
 - Konstante Gruppenlaufzeit
 - Für steile Filter im Durchlass- und Sperrbereich nicht geeignet
- Tschebyscheff-I
 - + Schon für kleine Ordnungen relativ steil im Übergang von Durchlass- und Sperrbereich
 - Rippel im Durchlassbereich
 - Keine konstante Gruppenlaufzeit

1.8 Vorgehen Filter dimensionieren / auslegen

- 1. Gemäss Anforderungen geeigneten Filtertyp wählen (→ 1.7)
- 2. Toleranzschema gemäss Anforderungen erstellen inkl. Normierung (→ 1.3.1)
- Ordnung des Filters bestimmen (Formel oder Nomogramm $\Rightarrow 1.9$)
- **4.** Übertragungsfunktion bestimmen (→ Tabellen oder Matlab)
- 5. Komponenten mittels Entnormierung bestimmen (Tabellen \Rightarrow 1.10)

1.9 Nomogramme (S. 393)

Nomogramme können verwendet werden, um die Ordnung eines Filters zu bestimmen.

Benutzung von Nomogrammen

- **1.** P_1 : Verbindung von A_{max} zu A_{min}
- **2.** P_2 : Verlängerung von P_1 bis zum 'Diagramm-
- 3. P3: Horizontale Linie vom Rand in Diagramm
- **4.** P_4 : Bei $\Omega = \frac{\Omega_S}{\Omega_D} = \frac{\omega_S}{\omega_D} = \frac{f_S}{f_D}$ vertikale Linie
- 5. P_5 : Schnittpunkt: 'hochfahren' zur nächsten Die Übertragungsfunktion H(s) ergibt sich aus Kurve \Rightarrow Ordnung n der Kurve ablesen

1.10 Tabellen zum Entwurf von LC-Filtern (S. 409)

Achtung: Normierung der Widerstände beachten!

1.11 Approximation nach Butterworth (S. 303)

Die charakteristische Funktion wird bei der Butterworth-Approximation als $K(\Omega^2) = (\Omega^2)^n = \Omega^{2n}$ gewählt. Der Amplitudengang $|H(j\Omega)|$ folgt somit

$$\boxed{|H(\mathrm{j}\Omega)| = \frac{1}{\sqrt{1 + \Omega^{2n}}}}$$

1.11.1 Eigenschaften der Butterworth-Approximation (s. 303)

• Durchlassbereich

- Für $\Omega=0$ ist für sämtliche n: $|H(0)|=H_{\max}=1$ Für $\Omega=1$ ist für sämtliche n: $|H(j)|=\frac{H_{\max}}{\sqrt{2}}=\frac{1}{\sqrt{2}} \Rightarrow 3$ dB Dämpfung Amplitudengang bei $\Omega=0$ maximal flach, da alle Ableitungen = 0 sind

- Für $\Omega \gg 1$ wird $|H(j\Omega)| \approx \frac{1}{\Omega^n} \Rightarrow -n \cdot 20 \, dB/$ Dekade

Allgemein

Amplitudengang ist streng-monoton fallend ⇒ keine Welligkeit

1.11.2 Bestimmung von H(s) aus $|H(j\Omega)|$ (s. 304)

$$|H(\mathsf{j}\Omega)|^2 = \frac{1}{1+K(\Omega^2)}\bigg|_{\Omega^2=-S^2} = \frac{1}{1+(-S^2)^n} = H(S)\cdot H(-S) = \frac{1}{D(S)}\cdot \frac{1}{D(-S)}$$

kann der folgende Teil isoliert betrachtet werden (D(S) ist ein Hurwitz-Polynom):

$$D(S) \cdot D(-S) = 1 + (-S^2)^n$$

Mit dem Ansatz

$$D(S) = \prod_{j=1}^{t} (S^2 + a_j \cdot S + b_j) \prod_{j=2t+1}^{n} (S - c_j)$$

durchgeführt.

1.11.3 Bestimmung der Pol-Lage (S. 307)

Der Zusammenhang aus Abschnitt 1.11.2 kann für die Bestimmung der Pole auf Null ge-

$$D(S) \cdot D(-S) = 1 + (-S^2)^n \stackrel{!}{=} 0$$

Durch Auflösen der Gleichung nach S kommen die Pole auf dem Einheitskreis zu liegen.

- Abstand zwischen den Polen: π/n
- Ordnung n gerade: keine reellen Pole
- Ordnung n ungerade: zwei reelle Pole bei ±1
 Für Nennerpolynom D(S) = 1/H(S) müssen nur Pole in der linken Halbebene berücksichtigt werden!

Beispiel: Butterworth 2. Ordnung – H(s) und Pol-Lage bestimmen

Ansatz:
$$H(S) \cdot H(-S) = \frac{1}{D(s)} \cdot \frac{1}{H(s)} = \frac{1}{1 + (-S^2)^n}$$

Für die Ordnung n = 2 ergibt sich das Nennerpolynom zu:

$$D(S) \cdot D(-S) = 1 + S^4 \quad \Leftrightarrow \quad S^4 = -1 \quad \Leftrightarrow \quad e^{j\left(\frac{\pi}{4} + k\frac{\pi}{2}\right)}$$

Aufgelöst nach S liegen die Nullstellen auf dem Einheitskreis mit Abstand $\frac{\pi}{4}$ verteilt.

Rechte Halbebene Linke Halbebene

$$\begin{array}{ll} P_1 = \frac{1}{\sqrt{2}} + \mathrm{j} \frac{1}{\sqrt{2}} & P_2 = -\frac{1}{\sqrt{2}} + \mathrm{j} \frac{1}{\sqrt{2}} \\ P_4 = \frac{1}{\sqrt{2}} - \mathrm{j} \frac{1}{\sqrt{2}} & P_3 = -\frac{1}{\sqrt{2}} - \mathrm{j} \frac{1}{\sqrt{2}} \end{array}$$

 \Rightarrow Für die Übertragungsfunktion H(s) sind nur die Nullstellen in der linken Halbebene relevant!

$$H(s) = \frac{1}{D(s)} = \frac{1}{(S - P_2) \cdot (S - P_3)} = \frac{1}{S^2 + \sqrt{2}S + 1}$$

Alternativ kann die Übertragungsfunktion H(S) auch mittels folgendem Ansatz für D(S)und anschliessendem Koeffizientenvergleich von $D(S) \cdot D(-S)$ bestimmt werden.

Ansatz:
$$D(S) = S^2 + a_1 S + b_1$$

Koeffizientenvergleich:
$$D(S) \cdot D(-S) = S^4 + (2b_1 - a_1^2)S + b_1^2 \stackrel{!}{=} S^4 + 1$$

⇒
$$a_1 = \sqrt{2} \text{ und } b_1 = 1$$
 ⇒ $S^2 + \sqrt{2}S + 1$ ⇒ $H(s) = \frac{1}{D(s)} = \frac{1}{S^2 + \sqrt{2}S + 1}$

1.11.4 Bestimmung der Filterordnung (S. 308)

Aus dem Toleranzschema lassen sich für die 'Ecken' die folgenden beiden Bedingungen aufstellen:

$$A(\Omega_D) = 10 \cdot \log_{10}(1 + \Omega_D^{2n}) = A_{\text{max}}$$

$$A(\Omega_S) = 10 \cdot \log_{10}(1 + \Omega_S^{2n}) = A_{\min}$$

Mittels Umformungen und aufgelöst nach n ergibt sich die Filter-Ordnung als

[.] bedeutet 'aufrunden auf ganze Zahl'

$$n = \left\lceil \frac{\log_{10} \left(\frac{10^{A \min/10} - 1}{10^{A \max/10} - 1} \right)}{2 \cdot \log_{10} \left(\frac{\Omega_{S}}{\Omega_{D}} \right)} \right\rceil$$

 \rightarrow Alternativ kann die Ordnung n auch mit dem Nomogramm bestimmt werden

1.12 Approximation nach Tschebyscheff-I

Die charakteristische Funktion wird bei der Tschebyscheff-I als

$$K(\Omega^2) = e^2 \cdot C_n^2(\Omega)$$
 gewählt.

Der Amplitudengang $|H(j\Omega)|$ folgt somit der Gleichung

$$|H(\mathrm{j}\Omega)| = \frac{1}{\sqrt{1 + e^2 \cdot C_n^2(\Omega)}}$$

Rippelfaktor (Konstante) $C_n(\Omega)$ Tschebyscheff-Polynom erster

Art der Ornung n

Das Tschebyscheff-Polynom $C_n(\Omega)$ ist im Durchlassbereich und im Sperrbereich unterschiedlich definiert!

Duchlassbereich ($|\Omega| \le 1$)

$$C_n(\Omega) = \cos(n \cdot \arccos(\Omega))$$

Sperrbereich
$$(|\Omega| \ge 1)$$

$$C_n(\Omega) = \cosh(n \cdot \operatorname{arccosh}(\Omega))$$

wird das Produkt $D(S) \cdot D(-S)$ bestimmt. Anschliessend wird ein Koeffizientenvergleich Für die Ordnung $n \ge 2$ lässt sich das Tschebyscheff-Polynom $C_n(\Omega)$ mittels Rekursionsformel berechnen

$$C_n(\Omega) = 2 \Omega C_{n-1}(\Omega) - C_{n-2}(\Omega)$$

$$C_0(\Omega) = 1 \qquad C_1(\Omega)$$

Zwischen dem Rippelfaktor e und der maximalen Dämpfung A_{max} gilt der Zusammenhang:

$$A_{\text{max}} = 10 \cdot \log_{10}(1 + e^2) \quad \Leftrightarrow \quad e = \sqrt{10^{\frac{A_{\text{max}}}{10}} - 1}$$

1.12.1 Eigenschaften der Tschebyscheff-I-Approximation

Im Durchlassbereich schwankt das Tschebyscheff-Polynom in den Grenzen ±1. Im **Sperrbereich** nimmt C_n monoton mit Ω zu.

- Durchlassbereich
 - Für $\Omega = 0$ ist für **un**gerade n: $|H(0)| = H_{\text{max}} = 1$
 - Für $\Omega = 0$ ist für gerade n: $|H(0)| = \frac{1}{\sqrt{1+e^2}}$
 - Für $\Omega = 1$ ist für sämtliche $n: |H(j)| = \frac{1}{\sqrt{1+e^2}} \Rightarrow$ nicht 3 dB Dämpfung Aus der Anzahl Extremalstellen und Endpunkte des Amplitudengangs im **Durchlassbereich** $(0 \le \Omega \le 1)$ lässt sich die **Ordnung** *n* bestimmen.
 - Ordnung = Summe aller Extremalstellen plus beide Endpunkte minus 1
- - Für $\Omega \gg 1$ wird $|H(j\Omega)| \approx \frac{1}{e \cdot C_n(\Omega)} \Rightarrow -n \cdot 20$ dB/ Dekade bzw. $-n \cdot 6.02 \, dB / Oktave$

- Fixe Ordnung n: Je grösser der Rippelfaktor e, desto steiler der Abfall in den Sperrbereich
- Fixer Rippelfaktor e: Je grösser die Ordnung n, desto steiler der Abfall in den Sperrbereich

1.12.2 Pol-Lagen

- Die Pole liegen auf einer Ellipse
- Allpolfilter
- Je n\u00e4her die Pole an der j\u00fc-Achse liegen, desto mehr Rippel gibt es im Phasengang

1.12.3 Filterordnung

$$n = \left[\frac{\arccos\left(\sqrt{\frac{10^{A_{\min/10}} - 1}{10^{A_{\max/10}} - 1}}\right)}{\arccos\left(\frac{\Omega_{S}}{\Omega_{D}}\right)} \right]$$

→ Nomgramme!

1.13 Approximation nach Tschebyscheff-II

 $\Omega \rightarrow$

Die charakteristische Funktion wird bei der Tschebyscheff-II-Approximation als $K(\Omega^2)=e^2\cdot C_n^2(\Omega)$ gewählt.

Der Amplitudengang $|H(j\Omega)|$ folgt somit der Gleichung

$$|H(\mathrm{j}\Omega)| = \frac{1}{\sqrt{1 + \frac{1}{e^2 C_n^2 \left(\frac{1}{\Omega}\right)}}}$$

e **Rippelfaktor** (Konstante) $C_n(\Omega)$ Tschebyscheff-Polynom erster Art der Ornung n

1.13.1 Pol-Lagen

- Kein Allpolfilter
 - ${\sf -}$ Gerade Ordnung $n{:}~n$ Pole und n Nullstellen
 - Ungerade Ordnung n: n Pole und n − 1 Nullstellen

1.13.2 Filterordnung

Die Filterordnung berechnet sich identisch wie bei der Tschebyscheff-I-Approximation!

 \Rightarrow Gleiches Nomogramm wie für Tschebyscheff-I

1.14 Approximation nach Cauer

1.15 Approximation nach Bessel

1.16 Gegenüberstellung der Filter-Approximationen

	Krit. Gedämpft	Butterworth	Tschebyscheff 1	Tschebyscheff 2	Cauer	Bessel
Allpolfilter	ja	ja	ja	nein	nein	ja
Pol-Lage	reelle Achse <0	Halbkreis LHE	Ellipse LHE	LHE	LHE	exzentr. Kreis
NS-Lage	-	-	-	jω-Achse	jω-Achse	-
DB	streng monoton	streng monoton steilstmöglich	streng monoton	wellig konst. Rippel	wellig	streng monoton
SB	streng monoton	streng monoton	streng monoton	wellig konst. Rippel	wellig	streng monoton
Phasengang	sehr gut	mittel	schlecht	schlecht	wild	bestmöglich

1.16.1 Frequenzgänge / Lage der Pol- und Nullstellen

