

Grundzüge der Theoretischen Informatik, WS 21/22: Musterlösung zum 6. Übungsblatt

Julian Dörfler

In den folgenden Lösungen werden wir der Übersicht halber, gegeben eine Gödelisierung g eines WHILE-Programms, nicht mehr zwischen g und dem Programm P mit göd(P) = g unterscheiden. Wenn wir also beispielsweise schreiben

Wir führen g auf n aus.

meinen wir damit

Wir nutzen das universelle WHILE-Programm um, gegeben g, P auf n auszuführen.

Aufgabe A6.1 (Abzählbarkeit) (3 Punkte)

Welche der folgenden Mengen sind abzählbar? Beweisen Sie Ihre Antworten kurz.

- (a) $A = \Sigma^*$, wobei Σ ein beliebiges endliches Alphabet ist.
- (b) Die Menge B der Folgen $f: \mathbb{N} \to \mathbb{N}$ mit endlichem Träger, d.h. es existiert ein $n_0 \in \mathbb{N}$, sodass f(n) = 0 für alle $n \ge n_0$ gilt.
- (c) Die Menge C aller monoton steigenden Folgen $f: \mathbb{N} \to \mathbb{N}$.

Lösung A6.1 (Abzählbarkeit)

(a) $A = \bigcup_{i \in \mathbb{N}} \Sigma^n$ ist als abzählbare Vereinigung endlicher Mengen abzählbar.

Alternativer Beweis: Wir verwenden Teilaufgabe (b) und erinnern uns, dass jedes Wort $a \in A$ als Funktion $a : \{1, ..., |a|\} \rightarrow \{0, 1\}$ definiert ist. Diese können wir auf beliebige Eingaben aus \mathbb{N} erweitern indem wir

$$a'(i) := \begin{cases} a(i) & \text{wenn } 1 \le i \le |a| \\ 2 & \text{wenn } i = |a| + 1 \\ 0 & \text{sonst} \end{cases}$$

definieren. a' hat einen endlichen Träger, also $a' \in B$. Für a' = b' ist gibt es nur ein i, sodass a'(i) = b'(i) = 2. Daher ist |a| = |b| und somit direkt a = b. Somit können wir A injektiv auf B abbilden und aus der Abzählbarkeit von B folgt die Abzählbarkeit von A.

(b) Wir bilden Elemente $f \in B$ auf Stacks ab. Sei also $n_0 \in \mathbb{N}$ minimal mit f(n) = 0 für alle $n \geq n_0$. Dann bilden wir f auf den Stack ab, der genau die Elemente $f(0), f(1), \ldots, f(n_0 - 1)$ enthält und von dort gemäß unserer Implementierung der Stacks auf \mathbb{N} . Beide Abbildungen sind injektiv, also ist B abzählbar.

(c) C ist nicht abzählbar. Beweis durch Widerspruch: Sei $g: \mathbb{N} \to C$ eine Surjektion. Wir definieren $U(i) := 1 + \sum_{j=0}^{i} g(j)(j)$. Nun ist U eine monoton steigende Folge, da

$$U(i) = 1 + \sum_{j=0}^{i} g(j)(j) \le 1 + \sum_{j=0}^{i+1} g(j)(j) = U(i+1)$$
.

Nun exisiert durch die Surjektivität von g ein $x \in \mathbb{N}$ mit g(x) = U. Nun gilt:

$$g(x)(x) = U(x) = 1 + \sum_{j=0}^{x} g(j)(j) > g(x)(x)$$

was ein Widerspruch ist. Also existiert keine Surjektion $g: \mathbb{N} \to C$ womit C nicht abzählbar ist.

Aufgabe A6.2 (Spezielles Halteproblem) (2 Punkte)

Hier zeigen wir, dass das spezielle Halteproblem tatsächlich ein Spezialfall des allgemeinen Halteproblems ist.

Zeigen Sie dazu, dass $H_0 \leq H$ indem Sie eine totale Funktion $f : \mathbb{N} \to \mathbb{N}$ angeben, die alle folgenden Eigenschaften erfüllt:

- (a) f ist WHILE-berechenbar.
- (b) Wenn $g \in H_0$ ist, dann gilt $f(g) \in H$.
- (c) Wenn $g \notin H_0$ ist, dann gilt $f(g) \notin H$.

Hinweis: Vergessen Sie nicht, diese Eigenschaften auch zu beweisen.

Lösung A6.2 (Spezielles Halteproblem) Wir definieren f wie folgt:

$$f(g) = \langle g, g \rangle$$

Wir weisen nun die Eigenschaften formal nach:

- (a) f ist WHILE-berechenbar, da die Paarfunktion WHILE-berechenbar ist.
- (b) Sei $g \in H_0$. Dann hält g auf Eingabe g, also ist $\langle g, g \rangle \in H$.
- (c) Sei $g \notin H_0$. Dann hält g auf Eingabe g nicht, also ist $\langle g, g \rangle \notin H$.

Aufgabe A6.3 (RE) (4 Punkte)

Sei $L = \{i \mid i \in \mathbb{N} \text{ und } \text{g\"od}^{-1}(i) \text{ h\"alt bei Eingabe } 0\}.$

(a) Zeigen Sie $L \in RE$

(b) Zeigen Sie $\overline{L} \notin \mathsf{RE}$

Lösung A6.3 (RE)

(a) Das folgende WHILE-Programm P berechnet χ'_L :

Gegeben g, simuliere g auf Eingabe 0. Falls diese Simulation hält, gib 1 aus.

Sei $g \in L$. Dann hält g bei Eingabe 0. Somit produziert P bei Eingabe g die Ausgabe 1.

Sei $g \notin L$. Dann hält g bei Eingabe 0 nicht. Somit divergiert P bei Eingabe g.

(b) Wir zeigen dazu $\overline{H_0} \leq \overline{L}$. Da $\overline{H_0} \notin \mathsf{RE}$ folgt daraus dann $\overline{L} \notin \mathsf{RE}$. Gegeben g, geben wir die Gödelisierung des folgenden Programms P_g aus:

Gegeben m, simuliere g auf g.

Diese Reduktionsfunktion ist offensichtlich WHILE-berechenbar.

Sei nun $g \in \overline{H_0}$. Dann hält g nicht bei Eingabe g. In diesem Fall hält P_g bei keiner Eingabe, insbesondere nicht bei 0, also $g\ddot{o}d(P_g) \in \overline{L}$.

Sei nun $g \notin \overline{H_0}$. Dann hält g auf Eingabe g. Daher hält P_g auf jeder Eingabe, also insbesondere bei Eingabe 0, also $g\ddot{o}d(P_g) \notin \overline{L}$.

Aufgabe A6.4 (Rekursive Aufzählbarkeit) (4 Punkte)

Zeigen Sie, dass folgende Aussagen über Mengen $A \subseteq \mathbb{N}$ äquivalent sind:

- (RE-A) A ist rekursiv aufzählbar.
- (RE-B) Es gibt ein WHILE-Programm P mit $A = \text{dom}(\varphi_P)$.
- (RE-C) Es gibt ein WHILE-Programm P mit $A = \operatorname{im}(\varphi_P)$.
- (RE-D) Es gibt ein FOR-Programm P mit $A = \operatorname{im}(\varphi_P)$ oder $A = \emptyset$.

Zur Erinnerung: Für eine partielle Funktion $f: \mathbb{N} \to \mathbb{N}$ definieren wir

$$dom(f) = \{x \in \mathbb{N} \mid f(x) \text{ ist definiert}\} \text{ und}$$
$$im(f) = \{f(x) \mid x \in \mathbb{N} \text{ und } f(x) \text{ ist definiert}\}.$$

Lösung A6.4 (Rekursive Aufzählbarkeit)

 $RE-A \Rightarrow RE-B$: Es sei P ein WHILE-Programm mit $\varphi_P(n) = 1$ für $n \in A$ und $\varphi_P(n) = 0$ oder undefiniert sonst. Dann ist folgende Funktion f ebenfalls WHILE-berechenbar:

$$f(n)$$
 $\begin{cases} = 1 & \text{falls } \varphi_P(n) = 1 \text{ und} \\ \text{undef.} & \text{sonst.} \end{cases}$

Die Funktion f lässt sich etwa durch folgendes WHILE-Programm berechnen:

- 1: P
- 2: **while** $x_0 = 0$ **do**
- 3: do nothing
- 4: **od**

Es ist $dom(f) = \{n \mid \varphi_P(n) = 1\} = A$.

- $RE-B \Rightarrow RE-C$: Sei P ein WHILE-Programm mit $A = \text{dom}(\varphi_P)$. Betrachte folgendes WHILE-Programm Q:
 - 1: $y := x_0$
 - 2: *P*
 - $3: x_0 := y$

Nun hält Q genau dann, wenn P auf Eingabe n hält. In diesem Fall ist $\varphi_Q(n) = n$. Also ist $\operatorname{im}(\varphi_Q) = \{n \mid \varphi_P(n) \text{ ist definiert}\} = A$.

- $RE-C \Rightarrow RE-D$: Ist A leer, dann ist nichts zu zeigen. Sei also $A \neq \emptyset$ und $a \in A$ ein beliebiges Element von A. Sei P ein WHILE-Programm mit $\operatorname{im}(\varphi_P) = A$. Dann ist folgende Funktion f FOR-berechenbar:
 - $f(\langle x,t\rangle) = \begin{cases} n & \text{falls } P \text{ auf } x \text{ in h\"ochstens } t \text{ Schritten mit } \varphi_P(x) = n \text{ h\"alt und} \\ a & \text{sonst.} \end{cases}$

Nun ist $\operatorname{im}(f) \subseteq \operatorname{im}(\varphi_P) = A$. Es bleibt $\operatorname{im}(f) \supseteq A$ zu zeigen. Sei also $n \in A$. Dann gibt es ein x mit $\varphi_P(x) = n$. Damit existiert ein t, so dass P auf Eingabe x innerhalb von t Schritten hält, woraus $f(\langle x, t \rangle) = n$, also $n \in \operatorname{im}(f)$ folgt.

 $RE\text{-}D\Rightarrow RE\text{-}A\colon$ Im Fall $A=\emptyset$ ist Atrivial rekursiv aufzählbar durch das Programm 1: $x_0:=0$

Für $A \neq \emptyset$ sei P ein FOR-Programm mit $\operatorname{im}(\varphi_P) = A$. Dann ist folgendes Programm Q ein WHILE-Programm mit $\varphi_Q(n) = 1$ für $n \in A$ und $\varphi_Q(n) = 0$ oder undefiniert sonst:

Bei Eingabe m: Zähle einen Zähler z von 0 aus hoch und führe nacheinander P mit Eingabe z aus. Falls P hierbei jemals m ausgibt, dann terminiere mit Ausgabe 1.

Wenn $m \in \operatorname{im}(\varphi_P)$, dann gibt es eine Eingabe z mit $\varphi_P(z) = m$ und Q auf Eingabe m terminiert nach der z-ten Simulation von P mit Ausgabe 1, da jede Simulation von P terminiert, da P ein FOR-Programm ist. Wenn $m \notin \operatorname{im}(\varphi_P)$, dann gibt es keine Eingabe z mit $\varphi_P(z) = m$, Q wird also auf Eingabe m kontinuierlich z hochzählen und niemals terminieren.

Aufgabe A6.5 (Diagonales Denken) (3 Punkte)

Betrachten Sie die folgende Aussage:

Dieser Satz ist falsch.

Machen Sie sich intuitiv klar, warum diese Aussage weder wahr noch falsch sein kann.

(a) Sei P die folgende Menge

$$P = \{M \mid M \notin M\}.$$

Zeigen Sie, dass P nicht wohldefiniert ist¹.

(b) Sei F eine Menge von Funktionen von $\mathbb N$ nach $\mathbb N$ und $g:F\to\mathbb N$ eine Bijektion. Wir definieren

$$U: \mathbb{N} \to F$$
, $U(n)(x) := g^{-1}(n)(x)$.

Konstruieren Sie (mithilfe von U) eine Funktion $p:\mathbb{N}\to\mathbb{N}$ die nicht in F enthalten ist.

Lösung A6.5 (Diagonales Denken)

Wenn der Satz falsch ist, ist er wahr, und wenn er wahr ist, dann ist er falsch.

- (a) P ist nicht wohldefiniert, da $P \in P \Leftrightarrow P \not\in P.$
- (b) Wir definieren p(n) := U(n)(n) + 1. Angenommen $p \in F$:

$$U(g(p))(g(p)) = g^{-1}(g(p))(g(p)) = p(g(p)) = U(g(p))(g(p)) + 1,$$

womit die Annahme zu einem Widerspruch geführt wurde. Es folgt also, dass $p \notin F$.

¹Es ist also zu zeigen, dass P nicht existieren kann.