last time:

- given inner prod. spaces (V, < , >), (W, { , }),
 T : V to W defines an adjoint T* : W to V
 characterized by {Tv, w} = <v, T*w>
- if V, W are finite-dim'l then get orthonormal bases for V and W i.e., the basis vectors e_i satisfy <e_i, e_i> = 1 <e i, e i> = 0 if i ≠ i

let M be the matrix of T wrt the orthonormal bases

Q what is the matrix of T*?
[let them cook a bit]

<u>A</u> WLOG can take V = F^n and W = F^m under their dot / skew-dot products and choose the bases to be the std bases

 $F = R: \quad \text{for all v and w, we require} \\ \{Tv, w\} = (Tv)^t w = v^t T^t w \\ < v, T^*w\} = v^t T^*w \\ \text{taking } v = e_j \text{ and } w = e_i \text{ shows} \\ T^t_{\{j, i\}} = T^*_{\{j, i\}} \text{ for all } j, i \\ \text{so } T^* = T^t$

F = C: for all v and w, $\{Tv, w\} = (Tv)^t w^- = v^t T^t w^- \\ < v, T^*w\} = v^t (T^*w)^- = v^t (T^*)^- w^- \\ so T^t_{\{j, i\}} = (T^*)^-_{\{j, i\}} for all j, i \\ so T^* = (T^t)^- [that is:]$

<u>Thm</u>

wrt orthonormal bases for both V and W, T: V to W and T*: W to V have matrices that are mutual conjugate transposes [we may write M* = (M^t)^-]

[works for both R and C: conjugation does nothing in the case of R]

[we deduce:]

Properties of Adjoints

- $(aS + T)^* = a^-S^* + T^*$ [for all a in F and S, T]
- $Id^* = Id$
- $\qquad (\mathsf{T}^*)^* = \mathsf{T}$
- $(S \circ T)^* = T^* \circ S^*$
- T* is invertible iff T is, and in this case,
 (T*)^{-1} = (T^{-1})*

[backing up a bit to §6B–6C, we revisit] Orthogonal Complements

<u>Df</u> given linear U sub V, its orthogonal complement (wrt < , >) is

$$U^{\perp} = \{v \text{ in } V \mid \langle v, u \rangle = 0 \text{ for all } u \text{ in } U\}$$

- by definiteness of <, >, U^{\perp} cap $U = \{0\}$
- [we saw last time:] by Gram–Schmidt, if V is finite-dim'l, then $V = U + U^{\perp}$

if V is finite-dim'l, then we also have:

- $(U_1 + U_2)^{\perp} = [what?] (U_1)^{\perp} cap (U_2)^{\perp}$ [and why?]
- $(U^{\perp})^{\perp} = U$

[notice similarity to properties of adjoints...]

Q how do adjoints interact with complements?

Thm 1) $\operatorname{im}(T)^{\perp} = \ker(T^*)$ and $\ker(T^*)^{\perp} = \operatorname{im}(T)$

2) $\ker(T)^{\perp} = \operatorname{im}(T^*)$ and $\operatorname{im}(T^*)^{\perp} = \ker(T)$

Pf 2) follows from 1) by swapping T and T*

to show $im(T)^{\perp} = ker(T^*)$:

w in ker(T*) iff T*w = $\mathbf{0}$ V

iff $\langle v, T^*w \rangle = 0$ for all v in V

iff $\langle Tv, w \rangle = 0$ for all v in V

iff w in im(T)⊥

taking () $^{\perp}$ of both sides, we get $ker(T^*)^{\perp} = im(T)$

<u>Cor</u> if V, W are finite-dim'l, then direct sums:

 $V = \ker(T) + \operatorname{im}(T^*)$

 $W = im(T) + ker(T^*)$

(Axler §7B) now consider a linear op T : V to V

<u>Df</u> [a linear op] T is self-adjoint iff $T^* = T$, i.e., <Tv', v> = < v', Tv> for all v, v'

if M is the matrix of T wrt an orthonormal basis, then T* = T iff M* = M [where M* denotes the conjugate transpose]

Prop if T is self-adjoint (over either R or C) then every eigenval of T is real [is the converse true? no]

Pf let v be an eigenvec with eigenval
$$λ$$
 [what is $<$ Tv, $v>$? pause]

$$<$$
Tv, v> = $<$ λ v, v> = λ but also $<$ v, Tv> = $<$ v, λ v> = λ ⁻ $<$ v, v>

since $v \neq \mathbf{0}$, we know $\langle v, v \rangle \neq 0$ by definiteness so $\lambda = \lambda^-$

[here is a slightly weaker notion:]

<u>Df</u> a linear op T is normal iff $T^* \circ T = T \circ T^*$, i.e., they commute

[thus, any self-adjoint operator is normal]

Ex let M : F^2 to F^2 be

$$M = 1$$
 -1 so that $M^* = 1$ 1
1 1 -1 1

then
$$M^* \neq M$$
, yet $M^*M = 2$ 0 = MM^* 0 2

<u>Prop</u> T is normal iff $||Tv|| = ||T^*v||$ for all v in V

Pf T is normal iff $T^*T - TT^*$ is zero iff $<(T^*T - TT^*)v$, v> = 0 for all viff $<T^*Tv$, $v> = <TT^*v$, v> for all viff <Tv, $Tv> = <T^*v$, $T^*v>$ for all v

Thm 1) 2) 3)	if T : V to V is normal, then: $ker(T^*) = ker(T)$ $im(T^*) = im(T)$ T - λ is normal for all λ in F
<u>Pf</u>	1) follows from the prop
2) from $im(T^*) = ker(T)^{\perp} = ker(T^*)^{\perp} = im(T)$	
3) from $(T - \lambda)(T - \lambda)^*$ $= (T - \lambda)(T^* - \lambda^-)$ $= TT^* - \lambda^-T - \lambda T^* + \lambda ^2$ $= T^*T - \lambda^-T - \lambda T^* + \lambda ^2$ $= (T^* - \lambda^-)(T - \lambda)$ $= (T - \lambda)^*(T - \lambda)$	

then T is diagonalizable