Tesina di modelli econometrici

Erik De Luca

14 dicembre 2023

Indice

1	Introduzione	2
	1.1 Il metodo Box-Jenkins	2
	1.2 Importazione dei dati	2
2	Analisi grafica	9
	2.1 Impostazione del campione	3
3	Trasformazione della serie originale in una serie stazionaria	4
	3.1 Differenze logaritmiche	Ę
	3.2 Interpolazione lineare di secondo grado	
	3.3 Break strutturale	
	3.3.1 Stazionarietà dei residui	
4	Analisi delle funzioni di autocorrelazione globale (ACF) e parziale (PACF)	ç
5	Stima del modello	11
6	Scelta e verifica del modello	12
	6.1 Correlazione dei residui	13
7	Utilizzo del modello	14
	7.1 Previsione	14
	7.1.1 Previsione dinamica	
	7.1.2 Previsione statica	
8	Osservazioni finali	17
_	8.1 Tasso di crescita del PIL	

1 Introduzione

1.1 Il metodo Box-Jenkins

Il metodo Box-Jenkins è una procedura, usata nell'analisi delle serie storiche, che ha l'obbiettivo di stimare un modello ARIMA e identificare i suoi parametri p,d,q. I passaggi da seguire sono i seguenti:

- 1. Analisi grafica
- 2. Trasformazione della serie originale in una serie stazionaria
- 3. Analisi delle funzioni di autocorrelazione globale (ACF) e parziale (PACF)
- 4. Stima del modello
- 5. Scelta e verifica del modello
- 6. Utilizzo del modello

1.2 Importazione dei dati

Sono stati selezionati i dati sul sito del OECD, e attraverso una pivot sono state selezionate le serie storiche riguardanti il PIL italiano (GDP - *Gross Domestic Product with outpout approach*) dal 1970 al 2022 su base annuale. Le serie storiche si suddividono in base al metodo di calcolo utilizzato che è segnato da delle sigle:

- V: A prezzi costanti
- C: A prezzi correnti
- X: Convertito in dollari
 - XV: Convertito in dollari con il tasso di cambio costante
 - XC: Convertito in dollari con il tasso di cambio corrente
- OB: Anno di riferimento usato dall'OECD (Anno 2010)
- P: Anno precedente

Quindi la serie storica VXVOB sarà la serie storica valutata a prezzi costanti, convertita in dollari a un tasso di conversione costante e indicizzata secondo l'anno di riferimento del OECD, ovvero il 2010.

$^{\mathrm{C}}$	V	VP	VOB	CXC	VXCOB	VXVOB
$1\ 612\ 751.3$	$1\ 642\ 645.5$	$1\ 594\ 453.2$	$1\ 642\ 645.5$	$2\ 141\ 924.1$	1789368.4	$1\ 822\ 536.4$
$1\ 627\ 405.6$	$1\ 642\ 570.8$	$1\ 612\ 677.9$	$1\ 642\ 570.8$	$2\ 162\ 009.6$	$1\ 805\ 627.5$	$1\ 822\ 453.5$
$1\ 655\ 355.0$	$1\ 655\ 355.0$	$1\ 640\ 071.8$	$1\ 655\ 355.0$	$1\ 836\ 637.7$	$1\ 836\ 637.7$	$1\ 836\ 637.7$
$1\ 695\ 786.8$	$1\ 676\ 766.4$	$1\ 676\ 766.4$	$1\ 676\ 766.4$	$1\ 877\ 071.7$	$1\ 881\ 497.3$	$1\ 860\ 393.9$
1736592.8	$1\ 704\ 732.5$	$1\ 724\ 070.1$	$1\ 704\ 732.5$	$1\ 961\ 796.2$	$1\ 926\ 772.1$	$1\ 891\ 422.7$
$1\ 771\ 391.2$	$1\ 720\ 515.1$	1752670.5	$1\ 720\ 515.1$	$2\ 091\ 932.4$	$1\ 965\ 381.4$	$1\ 908\ 933.7$
1796648.5	$1\ 728\ 828.6$	1779950.5	$1\ 728\ 828.6$	$2\ 011\ 302.2$	1993404.7	$1\ 918\ 157.6$
$1\ 661\ 239.8$	$1\ 573\ 680.2$	$1\ 635\ 413.8$	$1\ 573\ 680.2$	$1\ 897\ 461.6$	$1\ 843\ 167.0$	$1\ 746\ 018.5$
$1\ 822\ 344.5$	$1\ 704\ 512.2$	1799351.2	$1\ 704\ 512.2$	$2\ 155\ 360.3$	$2\ 021\ 914.7$	$1\ 891\ 178.3$
1946479.1	1767997.6	$1\ 890\ 218.7$	1767997.6	$2\ 049\ 737.2$	$2\ 159\ 643.7$	$1\ 961\ 616.1$
	1 612 751.3 1 627 405.6 1 655 355.0 1 695 786.8 1 736 592.8 1 771 391.2 1 796 648.5 1 661 239.8 1 822 344.5	1 612 751.3 1 642 645.5 1 627 405.6 1 642 570.8 1 655 355.0 1 655 355.0 1 695 786.8 1 676 766.4 1 736 592.8 1 704 732.5 1 771 391.2 1 720 515.1 1 796 648.5 1 728 828.6 1 661 239.8 1 573 680.2 1 822 344.5 1 704 512.2	1 612 751.3 1 642 645.5 1 594 453.2 1 627 405.6 1 642 570.8 1 612 677.9 1 655 355.0 1 655 355.0 1 640 071.8 1 695 786.8 1 676 766.4 1 676 766.4 1 736 592.8 1 704 732.5 1 724 070.1 1 771 391.2 1 720 515.1 1 752 670.5 1 796 648.5 1 728 828.6 1 779 950.5 1 661 239.8 1 573 680.2 1 635 413.8 1 822 344.5 1 704 512.2 1 799 351.2	1 612 751.3 1 642 645.5 1 594 453.2 1 642 645.5 1 627 405.6 1 642 570.8 1 612 677.9 1 642 570.8 1 655 355.0 1 655 355.0 1 640 071.8 1 655 355.0 1 695 786.8 1 676 766.4 1 676 766.4 1 676 766.4 1 676 766.4 1 736 592.8 1 704 732.5 1 724 070.1 1 704 732.5 1 771 391.2 1 720 515.1 1 752 670.5 1 720 515.1 1 796 648.5 1 728 828.6 1 779 950.5 1 728 828.6 1 661 239.8 1 573 680.2 1 635 413.8 1 573 680.2 1 822 344.5 1 704 512.2 1 799 351.2 1 704 512.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 612 751.3 1 642 645.5 1 594 453.2 1 642 645.5 2 141 924.1 1 789 368.4 1 627 405.6 1 642 570.8 1 612 677.9 1 642 570.8 2 162 009.6 1 805 627.5 1 655 355.0 1 655 355.0 1 640 071.8 1 655 355.0 1 836 637.7 1 836 637.7 1 836 637.7 1 695 786.8 1 676 766.4 1 676 766.4 1 676 766.4 1 877 071.7 1 881 497.3 1 736 592.8 1 704 732.5 1 724 070.1 1 704 732.5 1 961 796.2 1 926 772.1 1 771 391.2 1 720 515.1 1 752 670.5 1 720 515.1 2 091 932.4 1 965 381.4 1 796 648.5 1 728 828.6 1 779 950.5 1 728 828.6 2 011 302.2 1 993 404.7 1 661 239.8 1 573 680.2 1 635 413.8 1 573 680.2 1 897 461.6 1 843 167.0 1 822 344.5 1 704 512.2 1 799 351.2 1 704 512.2 2 155 360.3 2 021 914.7

I dati sono stati quindi processati e inseriti in *gretl*. Tra le differenti serie storiche disponibili sul PIL italiano è stato quindi deciso di analizzare la serie storica VXVOB, ovvero la serie storica descritta in antecedenza.

Figura 1: Grafico delle serie storiche rappresentanti il PIL italiano

2 Analisi grafica

Una volta selezionata la serie storica d'interesse procedo con l'analisi grafica per osservare il comportamento della serie.

Figura 2: Grafico della serie storica VXVOB

2.1 Impostazione del campione

Divido la serie storica in *training set* e *test set*, così da poter sviluppare il modello sui dati di allenamento e testare le capacità del modello allenato sul sui dati di test dedicati.

Al campione sottrarrò gli ultimi 3 anni, sapendo già che nel test avrò valori anomali dovuti alla pandemia. Ovviamente, quando andrò a effettuare le previsioni mi aspetterò che nella previsione verrà commesso un errore significativo.

3 Trasformazione della serie originale in una serie stazionaria

I modelli ARIMA sono utilizzabili su serie storiche stazionarie, per ciò che una serie storica sia stazionaria (in senso debole) deve rispettare le seguenti condizioni:

- 1. $E[Y_t] = \mu \quad \forall t$
- 2. $V[Y_t] = \sigma_V^2 \quad \forall t$
- 3. $Cov[Y_t, Y_{t-K}] = \gamma(K)$

Sviluppo così un modello OLS per valutare la stazionarietà, dove la variabile dipendente è la serie storica, mentre come variabili indipendenti abbiamo la costante e la variabile che indica il tempo. Osservando i valori dei coefficienti, i loro p-value e sopratutto osservando la statistica F (table 1), possiamo affermare che i coefficienti sono significativamente diversi da zero e quindi la serie storica dev'essere trasformata per essere resa stazionaria.

Modello 1: OLS, usando le osservazioni 1970–2022 (T=53) Variabile dipendente: VXVOBConstantpricesconstantex Errori standard HAC, larghezza di banda 2, Kernel di Bartlett

		Coefficient	e Errore	Std. 1	rapport	o t p-va	lue
co	$_{ m nst}$	999703,	55258,0) [18,09	0,00	00
tii	me	21264,3	2145,3	80	9,912	0,00	00
Media var	r. dip	endente	1573840	SQM	var. dij	pendente	353533,2
Somma q	uadr.	residui	8,91e+11	E.S. d	lella reg	gressione	132207,4
R^2			0,862843	R^2 co	rretto		0,860154
F(1,51)			$98,\!24867$	P-valı	$\operatorname{ie}(F)$		1,74e-13
Log-veros	imigl	ianza -	-699,1671	Criter	rio di A	kaike	1402,334
Criterio d	li Sch	warz	$1406,\!275$	Hanna	an–Qui	nn	1403,850
$\hat{ ho}$			0,939042	Durbi	n-Wats	son	0,114795

Tabella 1: Modello OLS per valutare la stazionarietà della serie storica

Visualizzando il grafico dei valori stimati e i valori reali rispetto il tempo (fig. 3) si può osservare che la serie ha un trend positivo, il quale dev'essere rimosso per ottenere la stazionarietà (1° condizione della stazionarietà in senso debole).

Figura 3: Valori stimati tramite OLS e reali

3.1 Differenze logaritmiche

Avendo già visto antecedentemente che le differenze non sarebbero state sufficienti per la stazionarietà applico allora le differenze logaritmiche e ripeto la procedura antecedentemente. Osservando la tabella rappresentante il modello nuovamente stimato sulle differenze logaritmiche (table 2) si può notare che il problema della non stazionarietà ancora sussiste. Lo stesso può essere visto facilmente tramite visualizzazione grafica dei valori effettivi e i valori stimati dal modello (fig. 4).

Modello 2: OLS, usando le osservazioni 1971–2022 (T=52) Variabile dipendente: ld_VXVOBConstant pricesconstante Errori standard HAC, larghezza di banda 2, Kernel di Bartlett

Coefficie	nte Error	e Std.	rapporto t	p-value
const 0.037411	0,0059	1849	6,321	0,0000
time -0.000773	3090 0,0002	245530	-3,149	0,0028
Media var. dipendente	0,016152	SQM v	ar. dipende	ente 0,028366
Somma quadr. residui	0,034035	E.S. $d\epsilon$	ella regression	one 0,026090
R^2	$0,\!170597$	R^2 cor	retto	0,154009
F(1,50)	9,914046	P-value	e(F)	0,002766
Log-verosimiglianza	116,8372	Criteri	o di Akaike	$-229,\!6744$
Criterio di Schwarz	$-225,\!7719$	Hanna	n–Quinn	$-228,\!1783$
$\hat{ ho}$	-0,131286	Durbin	-Watson	2,193470

Tabella 2: Modello OLS per valutare la stazionarietà della differenza logaritmica della serie storica

Figura 4: Valori stimati tramite OLS e reali delle differenze logaritmiche

3.2 Interpolazione lineare di secondo grado

Osservando meglio la serie storica si nota che l'andamento potrebbe essere meglio rappresentato da un polinomio di secondo grado. Creo così una nuova variabile sq_time che non è altro che il tempo al quadrato.

In questo caso si può vedere come l' R^2 sia decisamente elevato (table 3). Decido così di applicare le differenze seconde alla serie storica. In questo caso si può osservare (table 4) che il test F viene accettato, ovvero i coefficienti del modello sono significativamente uguali a 0, questo vuole dire che la media è costante nel tempo (1° condizione di stazionarietà in senso debole).

Modello 3: OLS, usando le osservazioni 1970–2022 (T=53) Variabile dipendente: VXVOBConstantpricesconstantex Errori standard HAC, larghezza di banda 2, Kernel di Bartlett

	Coefficiente	Errore	Std.	rapporto t	p-va	alue
const	721297,	27731,	1	26,01	0,00	000
$_{ m time}$	51635,9	2620,	60	19,70	0,00	000
$\operatorname{sq_time}$	$-562,\!436$	45,8	8207	$-12,\!27$	0,00	000
Media var. dipe	endente 15	573840	SQM	var. dipend	dente	353533,2
Somma quadr.	residui 1,5	8e + 11	E.S. d	lella regress	sione	56175,60
R^2	0,9	975723	R^2 co	rretto		0,974752
F(2,50)	58	6,2993	P-valı	$\operatorname{ie}(F)$		1,96e-35
Log-verosimiglia	anza -65	3,2802	Criter	rio di Akaik	æ	$1312,\!560$
Criterio di Schw	varz 13	18,471	Hanna	an–Quinn		1314,833
$\hat{ ho}$	0,0	383302	Durbi	n-Watson		0,614344

Tabella 3: Modello OLS per valutare la stazionarietà utilizzando un polinomio di secondo frado

Figura 5: Valori stimati tramite OLS e reali del polinomio di secondo grado

Modello 4: OLS, usando le osservazioni 1972–2022 (T=51) Variabile dipendente: d_d_VXVOBConstant Errori standard HAC, larghezza di banda 2, Kernel di Bartlett

Coef	ficiente Errore	e Std. rapporto t	t p-value
$ \begin{array}{cc} \text{const} & -175 \\ \text{time} & 10 \end{array} $,	$ \begin{array}{ccc} ,5 & -0,1715 \\ ,475 & 0,2108 \end{array} $	0,8646 $0,8339$
Media var. dipenden	te 1079,204	SQM var. diper	ndente 64000,47
Somma quadr. resid	ui $2,05e+11$	E.S. della regres	ssione 64632,42
R^2	0,000551	R^2 corretto	-0,019846
F(1,49)	0,044454	P-value (F)	0,833886
Log-verosimiglianza	-636,2458	Criterio di Akai	ke 1276,492
Criterio di Schwarz	$1280,\!355$	Hannan-Quinn	1277,968
$\hat{ ho}$	-0,503467	Durbin-Watson	2,945218

Tabella 4: Modello OLS per valutare la stazionarietà delle differenze seconde

Osservando il grafico dei residui (fig. 7) si può notare la presenza di omoschedasticità, ciò viene confermato anche dal test di White. Questo dimostra che la serie è omogenea e la seconda condizione di stazionarietà in senso debole viene rispettata. Infatti il test di White per l'eteroschedasticità (con ipotesi nulla: eteroschedasticità non presente) presenta un p-value=p-valu

Figura 6: Valori stimati tramite OLS e reali delle differenze seconde

Figura 7: Grafico dei residui del modello OLS

3.3 Break strutturale

Una approssimazione più adeguata può essere quella di individuare un *break strutturale*, ovvero se c'è stata o se ci sono stati degli eventi o altri fenomeni che hanno cambiato il comportamento della serie storica.

Provo allora a effettuare un test del rapporto di verosimiglianza di Quandt per break strutturale in un punto sconosciuto del campione, escludendo il 15 percento iniziale e finale ottengo che il massimo test di Wald (472,101) corrisponde all'osservazione 2003 (fig. 8) p-value asintotico = 4,34226e-105 [χ^2_2 = 472,101].

Figura 8: Grafico del test di Wald per un break strutturale

Costruisco così una variabile dummy per gli anni antecedenti al 2003, la variabile è stata chiamata noEuro in quanto il fenomeno più plausibile per quella data potrebbe essere stato l'adozione Nell'euro

(sotto forma di denaro contante) dell'anno precedente. Oltretutto si vuole vedere non solo il cambio di intercetta ma anche il cambio della pendenza dopo il break quindi si aggiungerà il prodotto della variabile time e della variabile noEuro.

Modello 4: OLS, usando le osservazioni 1970–2022 (T=53) Variabile dipendente: VXVOBConstantpricesconstantex Errori standard HAC, larghezza di banda 2, Kernel di Bartlett

	Coefficier	nte	Errore Std.	rapporto \boldsymbol{t}	p-value
const	2,07353	e+006	100762,	20,58	0,0000
noEuro	-1,24167	e + 006	101568,	$-12,\!22$	0,0000
noEuroTime 3	2210,3		$520,\!497$	61,88	0,0000
EuroTime –	4104,90		$2296,\!05$	-1,788	0,0800
Media var. dipen	dente	1573840	SQM var.	dipendente	353533,2
Somma quadr. re	esidui 7	92e + 10	E.S. della i	regressione	40195,98
R^2	0	,987819	R^2 corrette)	0,987073
F(3,49)	1	651,864	P-value (F)		3,36e-49
Log-verosimiglian	nza -6	35,0049	Criterio di	Akaike	1278,010
Criterio di Schwa	rz 1	285,891	Hannan-Q	uinn	1281,041
$\hat{ ho}$	0	,387913	Durbin-Wa	atson	1,188868

Figura 9: Grafico del modello che considera il break strutturale

Il modello ARIMA quindi verrà sviluppato sui residui del modello OLS, ovvero andremo a stimare gli errori del modello OLS in modo da aumentare la capacità predittiva. Ovviamente il problema rimane sempre della stazionarietà, dobbiamo quindi dimostrare che i residui del modello stimato rispettino le 3 condizioni per la stazionarietà in senso debole.

3.3.1 Stazionarietà dei residui

Applico il TESTUHAT di gretl per verificare se i residui si distribuiscono normalmente (fig. 10). Questo test non è strettamente necessario in quanto è richiesta la stazionarietà in media e in varianza, quindi senza l'ipotesi di assegnare una distribuzione. In ogni caso, il test per l'ipotesi nulla di distribuzione normale: $\chi^2_2 = 5,011$ con p-value = 0,08 viene accettato a un livello di significatività $\alpha = 0,05$. Oltretutto la media della distribuzione è approssimativamente a zero, questo mi permetterà di non includere nel modello ARIMA la stima di una costante.

Applicando il test di White per l'eteroschedasticità con ipotesi nulla: eteroschedasticità non presente, otteniamo una statistica test LM=20,5014 con $p-value=P(\chi_5^2>20,5)=0,0010$. Quindi non viene rispettata la stazionarietà in varianza. In questo caso quindi sarebbe più adeguato usare un modello GARCH dove prende in considerazione una varianza eterogenea nella serie storica.

Figura 10: Istogramma dei residui

4 Analisi delle funzioni di autocorrelazione globale (ACF) e parziale (PACF)

Osservando il grafico del autocorrelazione globale (ACF) e quella parziale (PACF) (fig. 11) dei residui del modello OLS ci si accorge come l'ACF e la PACF hanno il primo ritardo significativamente differente a 0.

Figura 11: Correlogramma dei residui

Effettuando anche l'ARIMA lag selection posso vedere p e q che minimizzano l'AIC, il BIC e l'HQC. Secondo il criterio BIC e HQC sarei portato a scegliere un modello ARIMA(0,0,1) mentre secondo il criterio AIC un ARIMA(2,0,2).

Stimato usando AS 197 (MV esatta) Dependent variable residui, T = 53Criteria for ARMA(p, q) specifications

p, q	AIC	BIC	HQC
0, 0	NA	NA	NA
0, 1	1157,5990	1161,4231	1159,0553
0, 2	1155,3390	1161,0750*	1157,5233*
0, 3	1157,2960	1164,9441	1160,2085
1, 0	1160,0683	1163,8923	1161,5245
1, 1	1155,3648	1161,1008	1157,5491
1, 2	1157,2273	1164,8754	1160,1397
1, 3	1156,0883	1165,6485	1159,7289
2, 0	1155,5939	1161,3300	1157,7782
2, 1	1157,1706	1164,8187	1160,0830
2, 2	1154,2089*	1163,7691	1157,8495
2, 3	1155,0351	1166,5072	1159,4037
3, 0	1157,5788	1165,2269	1160,4912
3, 1	1158,9699	1168,5300	1162,6105
3, 2	1155,9412	1167,4133	1160,3098
3, 3	1156,9530	1170,3371	1162,0498
,	'*' indicates	best, per crit	,

^{&#}x27;*' indicates best, per criterion 'NA' indicates that a specification could not be estimated Log-likelihood ('loglik') is provided for reference

5 Stima del modello

Basandomi sul BIC e sul HQC scelgo il modello con parametri p=0 e q=1. Una volta stimato il modello faccio anche i test sulla normalità dei residui e sull'eteroschedasticità. I residui, si può affermare che si distribuiscono significativamente normali mentre i come ci si aspettare i residui del modello ARIMA presenteranno eteroschedasticità.

Modello 5: ARMA, usando le osservazioni 1970–2019 (T=50) Variabile dipendente: residui Errori standard basati sull'Hessiana

Coefficiente Errore Std. z p-value θ_1 0,687412 0,0812679 8,459 0,0000

Media var. dipendente	-372,0088	SQM var. dipendente	32910,65
Media innovazioni	70,77498	SQM innovazioni	24603,77
R^2	$0,\!457771$	R^2 corretto	$0,\!457771$
Log-verosimiglianza	-576,7995	Criterio di Akaike	1157,599
Criterio di Schwarz	1161,423	Hannan-Quinn	1159,055

			Reale	Immaginario	Modulo	Frequenza
MA						
	Radice	1	-1,4547	0,0000	1,4547	0,5000

Test per la normalità dei residui -

Ipotesi nulla: L'errore è distribuito normalmente

Statistica test: $\chi^2(2) = 0.7876$

con p-value = 0.674489

Test per ARCH di ordine 1 -

Ipotesi nulla: non sono presenti effetti ARCH

Statistica test: LM = 5,29325

con p-value = $P(\chi^2(1) > 5,29325) = 0,0214082$

6 Scelta e verifica del modello

Provo a stimare un modello ARIMA(2,0,2) secondo il criterio dell'informazione di Akaike. Anche in questo caso i residui si distribuiscono come una normale e c'è presenza di eteroschedasticità. Tutti le stime dei coefficienti sono significative e diverse da zero, questo mi porta a omettere l'eventuale rimozione di ritardi.

Modello 6: ARMA, usando le osservazioni 1970–2019 (T=50) Variabile dipendente: residui Errori standard basati sull'Hessiana

	Coefficiente	Errore Std.	z	p-value	
ϕ_1	1,35328	0,163383	8,283	0,0000	
ϕ_2	-0,500847	$0,\!161630$	-3,099	0,0019	
$ heta_1$	$-0,\!578136$	0,313355	-1,845	0,0650	
$ heta_2$	-0,421863	$0,\!210846$	-2,001	0,0454	

Media var. dipendente	-372,0088	SQM var. dipendente	$32910,\!65$
Media innovazioni	$2611,\!327$	SQM innovazioni	$21883,\!82$
R^2	0,557286	R^2 corretto	$0,\!528413$
Log-verosimiglianza	$-572,\!1045$	Criterio di Akaike	1154,209
Criterio di Schwarz	1163,769	Hannan-Quinn	1157,849

			Reale	Immaginario	Modulo	Frequenza
AR						
	Radice	1	1,3510	-0,4140	1,4130	-0,0473
	Radice	2	1,3510	0,4140	1,4130	0,0473
MA						
	Radice	1	1,0000	0,0000	1,0000	0,0000
	Radice	2	-2,3704	0,0000	2,3704	0,5000

Test per la normalità dei residui -

Ipotesi nulla: L'errore è distribuito normalmente

Statistica test: $\chi^{2}(2) = 2,32769$

 $\mathrm{con}\ \mathrm{p\text{-}value} = 0.312284$

Test per ARCH di ordine 1 -

Ipotesi nulla: non sono presenti effetti ARCH

Statistica test: LM = 5,52901

con p-value = $P(\chi^2(1) > 5,52901) = 0,0187037$

Figura 12: Valori effettivi e stimati dal modello ARIMA(2,0,2)

6.1 Correlazione dei residui

Oltre all'ipotesi di normailtà dei residui, bisogna anche controllare che essi siano incorrelati. Osservo così il correlogramma dei residui (fig. 13) e posso affermare che i residui sono significativamente incorrelati.

Figura 13: Correllogramma dei residui del modello ARIMA

7 Utilizzo del modello

Il modello ARIMA stimato è stato usato sui residui del modello OLS, provo ora quindi a unire il tutto e stimare con gli stessi parametri la variabile VXVOB inserendo però, nel modello ARIMA, anche i regressori del modello OLS. Il modello stimato ha un \hat{R}^2 molto elevato, questo dovuto alla natura degli ARIMA che tende a fare *overfitting*. I residui si distribuiscono normalmente, inoltre c'è da evidenziare che in questo caso si può accettare l'omoschedasticità.

Modello 7: ARMAX, usando le osservazioni 1970–2018 (T=49) Variabile dipendente: VXVOBConstant
pricesconstantex Errori standard basati sull'Hessiana

	Coefficiente			Errore Std. z		p-value
const	2,15815e+006			3408,29	633,2	0,0000
ϕ_1	1,29	9750		0,17666	3 7,345	0,0000
ϕ_2	-0.55	52174		0,177261 $-3,115$		0,0018
$ heta_1$	-0,61	15495		$0,\!22539$	8 -2,731	0,0063
$ heta_2$	-0.38	34505		0,21925	7 -1,754	0,0795
noEuro	-1,32	2047e + 00)6	5988,34	-220,5	0,0000
noEuroTime	32104,0			$339,\!674$	$94,\!51$	0,0000
EuroTime	-6310,59)		$135,\!821$	$-46,\!46$	0,0000
Media var. dip	endente	15489	909	SQM var.	dipendente	355595,9
Media innovazioni		$-1253,\!164$		SQM innovazioni		20938,12
R^2		0,996549		R^2 corretto		0,996056
Log-verosimiglianza		$-558,\!8296$		Criterio di Akaike		1135,659
Criterio di Sch	warz	1152,6	686	Hannan-C	Quinn	1142,119
		Reale	Imn	naginario	Modulo Fre	equenza

			Reale	ımmagınarıo	Modulo	Frequenza
AR						
	Radice	1	1,1749	-0,6562	1,3457	-0,0811
	Radice	2	1,1749	0,6562	1,3457	0,0811
MA						
	Radice	1	1,0000	0,0000	1,0000	0,0000
	Radice	2	-2,6007	0,0000	2,6007	0,5000
				·		

Test per la normalità dei residui –

Ipotesi nulla: L'errore è distribuito normalmente

Statistica test: $\chi^{2}(2) = 3,02699$

 $con\ p\text{-value}=0,\!220139$

Test per ARCH di ordine 1 -

Ipotesi nulla: non sono presenti effetti ARCH

Statistica test: LM = 2,90228

con p-value = $P(\chi^2(1) > 2,90228) = 0,0884542$

7.1 Previsione

7.1.1 Previsione dinamica

Viene anche fatta la previsione, in quanto al campione erano stati sotratti gli ultimi 4 anni per testare il modello. C'è da sottolineare che purtroppo le stime non sono state soddisfacenti a causa di effetti esogeni al modello come la pandemia.

La previsione è stata fatta in modo dinamico, ovvero la previsione è fatta sempre e solo all'anno T+1 ottenendo così $\hat{Y}_{T+1|T}=E[Y_{T+1}|T]$. Inoltre l'intervallo di confidenza è stato ristretto a al 68%.

Previsione dinamica Per intervalli di confidenza al 68%, z(0.16) = 0.99

Figura 14: Valori effettivi e stimati del modello finale

Anno	VXVOB	Previsione
2020	1,74602e+006	1,84983e+006
2021	1,89118e+006	1,82464e+006
2022	1.96162e+006	1.80927e + 006

Statistiche della previsione usando 4 osservazioni

Errore medio	37287
Radice dell'errore quadratico medio	99465
Errore assoluto medio	89191
Errore percentuale medio	1,7789
Errore percentuale assoluto medio	4,7516
U2 di Theil	0,81532
Proporzione del bias, UM	0,14053
Proporzione della regressione, UR	0,23964
Proporzione del disturbo, UD	0,61983

Figura 15: Previsione dinamica

7.1.2 Previsione statica

Previsione statica

Anno	VXVOB	Previsione
2019	1,91816e+006	1,88409e+006
2020	1,74602e+006	1,87306e+006
2021	1,89118e+006	1,73623e+006
2022	1,96162e+006	1,90640e+006

Statistiche della previsione usando 4 osservazioni

Errore medio	29297
Radice dell'errore quadratico medio	1,0531e+005
Errore assoluto medio	92819
Errore percentuale medio	1,377
Errore percentuale assoluto medio	5,0151
U2 di Theil	0,89553
Proporzione del bias, UM	0,077396
Proporzione della regressione, UR	0,33517
Proporzione del disturbo, UD	0,58743

8 Osservazioni finali

L'analisi della serie storica è stata soggetta a diverse questioni. Il primo in particolare è stato il trend non lineare della serie storica che non ha permesso di applicare la classica differenziazione prima, al contempo applicare una differenziazione seconda sarebbe risulta poco probabilistica per la natura della serie storica, ovvero il PIL italiano, in quanto avrebbe predetto che il futuro sarebbe stato una diminuzione del PIL quadratica, in quanto il massimo assoluto era stato già raggiunto e la serie storica è convessa. Per questa motivazione è sembrato opportuno effettuare un break temporale che ha rilevato un comportamento della serie storica nell'anno 2003. Purtroppo anche da esso non sono emersi elementi positivi in quanto il trend della serie storica successivamente al break risulta negativo, anche se non molto marcato. Da notare che la serie storica è a prezzi costanti e oltretutto è stata convertita in dollari con un tasso di cambio costante che ha influenzato molto l'analisi.

8.1 Tasso di crescita del PIL

Infine, viene dedicata una breve sezione sull'andamento del tasso di crescita (percentuale) del PIL italiano. Modificata la variabile VXVOB, è stato stimato un modello con la variabile time, in modo da visualizzare il trend lineare del tasso di crescita del PIL italiano. Come si può notare dal modello, β_0 , ovvero il valore quando time = 0, è 4,05 ovvero alla prima data, 1971, il tasso di crescita del PIL era del 4,05% annuo. Il β_1 però è negativo, questo vuol dire che ogni hanno il tasso di crescita del PIL diminuisce, in media, di 0,09. Arrivando fino, negli ultimi anni, a un tasso di crescita negativo (fig. 16). Ovvero, il PIL italiano a prezzi costanti e convertito con un tasso costante in dollari basato sull'anno 2010 (OECD based) sta decrescendo, e non solo il PIL, anche il suo trend.

Modello 8: OLS, usando le osservazioni 1971–2018 (T=48) Variabile dipendente: percVXVOB Errori standard HAC, larghezza di banda 2, Kernel di Bartlett

Errore Std

rapporto t

n_v2 lue

Coefficiente

	Coemciei	166	Entore	ou.	rapporto	t p-val	lue
const $4,05587$			$0,\!537798$		$7,\!542$	0,000	00
time	-0,09108	91	0,02037	62	-4,470	0,000)1
var. dip	endente	1,	733101	SQN	I var. dipe	ndente	2,304194
Somma quadr. residui		17	173,1036 H		E.S. della regressione		1,939877
		0,	,306303	R^2 (corretto		$0,\!291222$
)		19	9,98426	P-va	alue(F)		0,000051
osimigl	ianza	-98	8,89359	Crit	erio di Aka	$_{ m ike}$	201,7872
di Sch	warz	20	$05,\!5296$	Han	nan-Quinn	1	203,2014
		0,	,012563	Dur	bin-Watson	n	1,940452
	time var. dip quadr.) cosimigl	const $4,05587$ time $-0,09108$ var. dipendente quadr. residui	time -0,0910891 var. dipendente 1, quadr. residui 1' 0, 0 19 cosimiglianza -96 o di Schwarz 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Figura 16: Tasso di crescita del PIL