Martin Skilleter

Email: martin.skilleter@anu.edu.au

Mobile: +61 457 579 229

Personal website: martinskilleter.github.io

EDUCATION

Bachelor of Philosophy – Science (Honours)

2021

- Australian National University
- Major: Mathematics
- Thesis: Deligne-Lusztig theory and character sheaves
- GPA: 7.00 (out of 7.00)
- Queensland Certificate of Education

2017

- Brisbane Grammar School
- ATAR: 99.90

AWARDS and COMMENDATIONS

Scholarships

(i) National University Scholarship (\$12,500 per annum for 4 years) 2018-2021

- (ii) College of Engineering & Computer Science Research & Development Excellence Scholarship (\$5,000)
- (iii) Bachelor of Mathematical Sciences Relocation Grant (\$1,000)
- (iv) Mathematical Sciences Institute Honours Scholarship (\$5,000) 2021
- Dean's Science Education Commendation Award
 2019 / 2020
- Chancellor's Letter of Commendation 2018 / 2019 / 2020
- Cockle Prize for Dux of Mathematics
 2017
- General Merit Award

PREVIOUS EXPERIENCE and LEADERSHIP ROLES

•	Demonstrator for MATH1005, MATH1013, MATH1014, MATH1115, MATH2322 a	· · · · · · · · · · · · · · · · · · ·	
	Australian National University	2019-2021	

President of ANU Mathematics Society
 2020

• Secretary of Undergraduate Student Research Society (formerly PhB Society)

Summer Research Scholar
 2019 / 2020

First-year Drop-In Mentor
 2019

Sponsorship Officer for ANU Mathematics Society

Peer-Assisted Learning Mentor for MATH1005, MATH1116

Internship – Data Analyst at LGIAsuper
 2018 / 2019

• Internship – Junior Quality Assurance Officer at Fugro Roames Pty Ltd 2015 / 2016

PREVIOUS RESEARCH and SPECIAL TOPICS

Project Title	Description	Supervisor
Crystals: Combinatorial	In this lecture course, we developed the theory of	Dr. Noah White
Algorithms and Tensor	monoidal categories, with a focus on braided and	
Categories	coboundary monoidal categories. We also studied	
	the induced actions by the braid and cactus groups,	
	with a focus towards constructing interesting	
	examples of these actions.	
	To motivate the definition of a crystal, we defined	
	reflection groups and root systems before proving	
	various results, such as the classification of	
	irreducible finite real reflection groups.	
	In the final part of the course, we constructed	
	crystals and used combinatorial algorithms to	
	compute their various properties, with a focus on	
	the crystals of semistandard tableaux for the (GL_n)	
	root datum. More precisely, we studied the RSK	
	algorithm, the Schützenberger involution and the	
	Littlewood-Richardson coefficients.	
Algebraic & Analytic	This reading course was devoted to various topics in	Dr. Amnon Neeman
Number Theory	modern number theory. The first half was devoted to	
	algebraic number theory and various standard	
	results, such as the Kummer-Dedekind theorem,	
	Minkowski's bound and methods of computing the	
	class group. We then spent some time analysing	
	techniques specific to Galois extensions of number	
	fields.	
	For the second half, we transitioned into analytic	
	number theory, proving results such as the prime	
	number theorem and the analytic class number	
	formula. I gave a lecture proving the Chebotarev	
	density theorem, as well as Frobenius' theorem and	
	the Dirichlet density theorem (which can be derived	
	as corollaries).	
Riemann Surfaces	This lecture course developed much of the	Dr. lan Le
	important theory for Riemann surfaces, including	
	the uniformization theorem, the existence of	
	meromorphic functions on any compact Riemann	
	surface, the classification of elliptic curves and	
	more.	

		T .
	As a personal project, I wrote a short paper demonstrating the equivalence of the Čech, de Rham and Dolbeault cohomologies on any complex manifold. I then used this to give an alternate proof of the existence of meromorphic functions on compact Riemann surfaces, different from the one seen in lectures.	
3-Manifolds	This course was a broad survey of many topics in 3-manifold theory, including Heegaard decompositions, surgery, Morse theory and more. It was intended to provide an introduction to many different areas, with the goal that students might have the language to research any interesting topics further.	Dr. Joan Licata
	As a personal project, I gave a talk and wrote a short paper about the construction of Khovanov homology for knots. I also proved that it was invariant under the first and second Reidemeister moves.	
Fourier Analysis on Number Fields	This reading course developed the background necessary to understand Tate's seminal thesis, which used techniques from representation theory to prove the meromorphic continuation of zeta functions on locally compact abelian groups.	Dr. Uri Onn
Foundations of Algebraic Geometry	This reading course followed Ravi Vakil's <i>The Rising Sea: Foundations of Algebraic Geometry</i> to develop the theory of sheaves and schemes. The first half focused on the equivalence between rings and affine schemes, while the second was built around quasicoherent sheaves, line bundles and sheaf cohomology.	Dr. Anand Deopurkar
Vector Bundles and K- Theory	This course developed the theory of vector bundles on a topological space, defining topological K -theory and showing its applications. As a personal project, I constructed an alternate K -theory for analytic objects called C^* -algebras. I also proved the Serre-Swan theorem, which shows that topological K -theory is a special case of operator K -theory of C^* -algebras.	Dr. Vigleik Angeltveit
Computational Algebraic Geometry	This course gave a computational approach to modern algebraic geometry, developing algorithms and showing their applications using the language Macaulay2.	Dr. Martin Helmer

	<u></u>	•
	As a personal project, I studied the invariant theory	
	of finite matrix groups, culminating with the	
	Chevalley-Todd-Shephard Theorem. This theory has	
	direct applications to the representation theory of	
	finite groups of Lie type.	
Perverse Sheaves &	This formal lecture course was divided into two	Dr. Asilata Bapat &
Deligne-Lusztig Theory	sections. In the perverse sheaves component, we	Dr. Uri Onn
	developed the theory of derived categories and t -	
	structures on a triangulated category. We used this	
	to study perverse sheaves and the perverse t-	
	structure induced by a perversity function.	
	The Deligne-Lusztig component was devoted to	
	various classifications for characters on finite	
	reductive groups, including parabolic induction and	
	Deligne-Lusztig induction.	
Applications of Persistent	I used techniques from the field of persistent	Dr. Katharine Turner
Homology to Identifying	homology to develop an algorithm to identify bridges	
Bridges in Graphs	in graphs. This algorithm has applications in	
	identifying diffusers of malicious information	
	through social media.	
Differential Geometry and	I followed the text Calculus on Manifolds by Michael	Dr. Ben Andrews
de Rham Cohomology	Spivak to learn the elementary theory of differential	
	geometry. Ben Andrews provided resources to	
	extend the project into the topics of Riemannian	
	metrics and de Rham Cohomology.	
The Implementation of	I investigated the mathematical theory of inner	Prof. Scott Morrison
Inner Product Spaces in	product spaces and Hilbert spaces in the context of	
Lean	implementing this theory in the interactive theorem	
	proving language Lean. I developed the rudimentary	
	theory, including implementing the axioms of an	
	inner product space, and proceeded to prove results	
	such as the Jordan von Neumann Theorem, the	
	Orthogonal Decomposition Theorem and the Riesz-	
	Representation Theorem.	
	•	