Topic: Area inside a polar curve

Question: Find the area bounded by the polar curve on the given interval.

$$r = 6\theta$$

$$0 \le \theta \le \pi$$

Answer choices:

 $6\pi^3$ Α

B $6\pi^2$ C $\frac{6}{5}\pi$ D $\frac{6}{5}\pi^3$

Solution: A

The graph of the polar curve looks like this:

Given the interval, the region in question is bounded by the spiral and the \boldsymbol{x} -axis. The area formula is

$$A = \frac{1}{2} \int_{\alpha}^{\beta} r^2 \ d\theta$$

where $\alpha = 0$ and $\beta = \pi$. Therefore, the area bounded by the polar curve is

$$A = \frac{1}{2} \int_0^{\pi} (6\theta)^2 \ d\theta$$

$$A = 18 \int_0^{\pi} \theta^2 \ d\theta$$

$$A = \frac{18}{3}\theta^3 \bigg|_0^{\pi}$$

$$A = \frac{18}{3}\pi^3 - \frac{18}{3}(0)^3$$

$$A = 6\pi^3$$

Topic: Area inside a polar curve

Question: Find the area bounded by the polar curve on the given interval.

$$r = 5 - 5\sin\theta$$

Answer choices:

A 15π

 $\mathsf{B} \qquad \frac{75\pi}{12}$

 $C \qquad \frac{75\pi}{2}$

D $\frac{75}{2}$

Solution: C

The graph of the polar curve looks like this:

The graph of the polar curve is symmetric about the y-axis since $\sin \theta = \sin(\pi - \theta)$. Therefore, the area of the bounded region can be determined by doubling the integral from $\pi/2$ to $3\pi/2$. The area is given by

$$A = 2\left(\frac{1}{2} \int_{\alpha}^{\beta} r^2 \ d\theta\right) = \int_{\alpha}^{\beta} r^2 \ d\theta$$

where $\alpha = \pi/2$ and $\beta = 3\pi/2$.

$$A = \int_{\pi/2}^{3\pi/2} (5 - 5\sin\theta)^2 \ d\theta$$

$$A = \int_{\pi/2}^{3\pi/2} 25 - 50\sin\theta + 25\sin^2\theta \ d\theta$$

$$A = \int_{\pi/2}^{3\pi/2} 25 \left(1 - 2\sin\theta + \sin^2\theta \right) d\theta$$

$$A = 25 \int_{\pi/2}^{3\pi/2} 1 - 2\sin\theta + \sin^2\theta \ d\theta$$

Using the power reduction formula

$$\sin^2\theta = \frac{1}{2} - \frac{1}{2}\cos 2\theta$$

we get

$$A = 25 \int_{\pi/2}^{3\pi/2} 1 - 2\sin\theta + \frac{1}{2} - \frac{1}{2}\cos 2\theta \ d\theta$$

$$A = 25 \int_{\pi/2}^{3\pi/2} \frac{3}{2} - 2\sin\theta - \frac{1}{2}\cos 2\theta \ d\theta$$

$$A = 25 \left(\frac{3}{2} \theta + 2 \cos \theta - \frac{1}{4} \sin 2\theta \right) \Big|_{\pi/2}^{3\pi/2}$$

$$A = 25 \left[\left(\frac{3}{2} \left(\frac{3\pi}{2} \right) + 2\cos\left(\frac{3\pi}{2} \right) - \frac{1}{4}\sin 2\left(\frac{3\pi}{2} \right) \right) - \left(\frac{3}{2} \left(\frac{\pi}{2} \right) + 2\cos\left(\frac{\pi}{2} \right) - \frac{1}{4}\sin 2\left(\frac{\pi}{2} \right) \right) \right]$$

$$A = 25 \left[\left(\frac{9\pi}{4} + 2(0) - \frac{1}{4}(0) \right) - \left(\frac{3\pi}{4} + 2(0) - \frac{1}{4}(0) \right) \right]$$

$$A = 25\left(\frac{9\pi}{4} - \frac{3\pi}{4}\right)$$

Topic: Area inside a polar curve

Question: The x-axis is the line of symmetry for the cardioids $r = 2(1 + \cos \theta)$ and $r = 4(1 + \cos \theta)$. Assume that A_1 is the area of the first cardioid and A_2 is the area of the second cardioid. What is the ratio of A_1 to A_2 ?

Answer choices:

$$A \qquad \frac{1}{2}$$

$$\mathsf{B} \qquad \frac{1}{4}$$

Solution: B

We'll first find the area A_1 of the cardioid $r=2(1+\cos\theta)$ by plugging into the formula for polar area. Because both cardioids are symmetric about the x-axis, we can integrate over the interval $[0,\pi]$ (representing the area above the x-axis), and then multiply the integral formula by 2 to get the full area.

$$A_1 = 2 \times \frac{1}{2} \int_0^{\pi} 4 \left(1 + \cos \theta\right)^2 d\theta$$

$$A_1 = 4 \int_0^{\pi} (1 + \cos \theta)^2 \ d\theta$$

$$A_1 = 4 \int_0^{\pi} 1 + 2\cos\theta + \cos^2\theta \ d\theta$$

$$A_1 = 4 \int_0^{\pi} 1 + 2\cos\theta + \frac{1}{2} + \frac{1}{2}\cos 2\theta \ d\theta$$

$$A_1 = 4 \int_0^{\pi} \frac{3}{2} + 2\cos\theta + \frac{1}{2}\cos 2\theta \ d\theta$$

$$A_1 = 4\left(\frac{3}{2}\theta + 2\sin\theta + \frac{1}{4}\sin 2\theta\right)\Big|_0^{\pi}$$

$$A_1 = 4\left(\frac{3}{2}\pi + 2\sin\pi + \frac{1}{4}\sin 2\pi\right) - 4\left(\frac{3}{2}(0) + 2\sin(0) + \frac{1}{4}\sin 2(0)\right)$$

$$A_1 = 4\left(\frac{3}{2}\pi + 0 + 0\right) - 4(0 + 0 + 0)$$

$$A_1 = 6\pi$$

and

$$A_2 = 2 \times \frac{1}{2} \int_0^{\pi} 16 (1 + \cos \theta)^2 d\theta$$

$$A_2 = 16 \int_0^{\pi} (1 + \cos \theta)^2 \ d\theta$$

$$A_2 = 16 \int_0^{\pi} 1 + 2\cos\theta + \cos^2\theta \ d\theta$$

$$A_2 = 16 \int_0^{\pi} 1 + 2\cos\theta + \frac{1}{2} + \frac{1}{2}\cos 2\theta \ d\theta$$

$$A_2 = 16 \int_0^{\pi} \frac{3}{2} + 2\cos\theta + \frac{1}{2}\cos 2\theta \ d\theta$$

$$A_2 = 16\left(\frac{3}{2}\theta + 2\sin\theta + \frac{1}{4}\sin 2\theta\right)\Big|_0^{\pi}$$

$$A_2 = 16\left(\frac{3}{2}\pi + 2\sin\pi + \frac{1}{4}\sin 2\pi\right) - 4\left(\frac{3}{2}(0) + 2\sin(0) + \frac{1}{4}\sin 2(0)\right)$$

$$A_2 = 16\left(\frac{3}{2}\pi + 0 + 0\right) - 4(0 + 0 + 0)$$

$$A_2 = 24\pi$$

The ratio of the areas is therefore

A_1	6π	1
$\overline{A_2}$	$=\frac{1}{24\pi}$	$=\frac{-}{4}$

