				_	1
- T					1 1
SN					

PES UNIVERSITY, BANGALORE-85 (Established under Karnataka Act 16 of 2013)

UE17MA251

END SEMESTER ASSESSMENT Dec-2019 B.Tech, IV SEMESTER, LINEAR ALGEBRA

(Common for All Branches)

		E17MA251 Answer All Questions Max Marks: 100	
	: 3 Hrs	2x + 2y - 10 + 2y + 3y - 4y = 3 and $y + y + y = 1$ using	7
•	a)	Solve the system equations $u+2v+2w=10, 2u+3v=4w=3$ using Gaussian elimination.	7
	b)	Factorize either A=LDU or PA=LDU for $A = \begin{bmatrix} 1-2 & 2 \\ 2-4 & 5 \\ -2 & 5-4 \end{bmatrix}$.	
	c)	Find A^{-1} using Gauss-Jordan method where $A = \begin{bmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \end{bmatrix}$.	6
2.	a)	Find the special solutions to $Ax = 0$ where $A = \begin{bmatrix} 0 & 2 & 4 & 6 \\ 0 & 1 & 3 & 2 \\ 0 & 1 & 1 & 4 \end{bmatrix}$. Identify the pivots and the vectors perpendicular to special solutions of $Ax = 0$.	7
	b)	For what value of λ will the vectors $(1, 3, -5)$, $(0, 5, \lambda)$ and $(-2, -1, 0)$ span at we dimensional subspace? For this value of λ , find the basis for $C(A)$ and $N(A^T)$ where A is the matrix with these vectors as columns.	7
	c)	Check whether the set $\{u+v, u+2v+3w, u+v-2w\}$ is linearly independent or not, if the set $\{u, v, w\}$ is linearly independent.	
3.	a)	Determine the Kernel and range of the linear operator $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by the equation $T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+2y-z \\ y+z \\ x+y-2z \end{pmatrix}$. What is the dimension of the null space and column space	
	b)	of the matrix of the transformation T? Find the projection of b onto the column space of $A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ -2 & 4 \end{bmatrix}$, $b = \begin{bmatrix} 1 \\ 2 \\ 7 \end{bmatrix}$. Split b into p+q, with p in the column space and q perpendicular to that space.	7
	c)	Find the best straight line fit (least squares) to the measurements $b = 4$ at $t = -2$, $b = 3$ at $t = -1$, $b = 1$ at $t = 0$, $b = 0$ at $t = 2$.	-
		P.T.O.,	

	a)	Find Eigen vectors and Eigen values of $A = \begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$.	7			
		Find Eigen vectors and Eigen values of $A = \begin{bmatrix} -2 & 1 & 0 \end{bmatrix}$				
-		-2 0 1				
b)	b)	Using Gram-schmidt orthogonalization process find an orthonormal set of vectors q_1, q_2, q_3 for which q_1, q_2 span the column space of $A = \begin{bmatrix} 1 & 1 \\ 2 & -1 \\ -2 & 4 \end{bmatrix}$. Factorize $A = QR$				
	Diagonalize $A = \begin{pmatrix} 2 & 3 \\ 0 & 5 \end{pmatrix}$ and hence prove that $A^k = \begin{pmatrix} 2^k & 5^k - 2^k \\ 0 & 5^k \end{pmatrix}$.					
5. a)	a)	Find the 3×3 matrices A and B for $\delta_1: x^2 + y^2 + 2xz + 4yz + 3z^2$ $\delta_2: x^2 + 2y^2 - 4xz - 4yz + 7z^2$ By Pivots of A and B decide whether they are positive definite or not.				
	b)	Find the SVD of $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$.				
