

N- and P-Channel 12-V (D-S) MOSFET

PRODUCT SUMMARY									
	V _{DS} (V)	$R_{DS(on)}(\Omega)$	I _D (A)	Q _g (Typ.)					
	12	0.029 at $V_{GS} = 4.5 \text{ V}$	4.5 ^a						
N-Channel		0.034 at $V_{GS} = 2.5 \text{ V}$	4.5 ^a	5.6 nC					
N-Channel		0.044 at V _{GS} = 1.8 V	4.5 ^a	5.6110					
		0.065 at V _{GS} = 1.5 V	4.5 ^a						
	- 12	0.061 at $V_{GS} = -4.5$ V	- 4.5 ^a						
P-Channel		0.081 at $V_{GS} = -2.5 \text{ V}$	- 4.5 ^a	8.2 nC					
		0.115 at $V_{GS} = -1.8 \text{ V}$	- 4.5 ^a	0.2110					
		0.170 at $V_{GS} = -1.5 \text{ V}$	- 4.5 ^a						

FEATURES

- TrenchFET® Power MOSFETs
- Thermally Enhanced PowerPAK® SC-70 Package
 - Small Footprint Area
 - Low On-Resistance
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

COMPLIANT HALOGEN FREE

APPLICATIONS

Load Switch for Portable Devices

PowerPAK SC-70-6 Dual

Ordering Information: SiA517DJ-T1-GE3 (Lead (Pb)-free and Halogen-free)

N-Channel MOSFET P-Channel MOSFET

Parameter		Symbol	N-Channel	P-Channel	Unit	
Drain-Source Voltage		V_{DS}	12	- 12	V	
Gate-Source Voltage		V _{GS}	±	V		
	T _C = 25 °C		4.5 ^a	- 4.5 ^a		
Continuous Drain Current (T ₁ = 150 °C)	T _C = 70 °C	I _D	4.5 ^a	- 4.5 ^a		
Continuous Drain Current (1) = 150 °C)	T _A = 25 °C		4.5 ^{a, b, c}	- 4.3 ^{b, c}	A	
	T _A = 70 °C		4.5 ^{a, b, c}	- 3.8 ^{b, c}		
Pulsed Drain Current	•	I _{DM}	20 - 15			
Source Drain Current Diode Current	T _C = 25 °C	1	4.5 ^a	- 4.5 ^a]	
Source Drain Current Diode Current	T _A = 25 °C	I _S	1.6 ^{b, c}	- 1.6 ^{b, c}		
	T _C = 25 °C		6.5	6.5		
Marrian va Darray Dissipation	T _C = 70 °C		5	5		
Maximum Power Dissipation	T _A = 25 °C	P_{D}	1.9 ^{b, c}	1.9 ^{b, c}	W	
	T _A = 70 °C		1.2 ^{b, c}	1.2 ^{b, c}		
Operating Junction and Storage Temperature Ra	ange	T _J , T _{stg}	- 55 to 150		°C	
Soldering Recommendations (Peak Temperature	e) ^{d, e}		26			

THERMAL RESISTANCE RATINGS									
		N-Ch	annel	P-Ch	annel				
Parameter	Symbol	Тур.	Max.	Тур.	Max.	Unit			
Maximum Junction-to-Ambient ^{b, f}	t ≤ 5 s	R_{thJA}	52	65	52	65	°C/W		
Maximum Junction-to-Case (Drain)	Steady State	R_{thJC}	12.5	16	12.5	16	0/ ٧٧		

- a. Package limited.
- b. Surface mounted on 1" x 1" FR4 board.
- d. See solder profile (<u>www.vishay.com/doc?73257</u>). The PowerPAK SC-70 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.
- e. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components.
- Maximum under steady state conditions is 110 °C/W.

Document Number: 64832 S13-0463-Rev. B, 04-Mar-13 For technical questions, contact:: pmostechsupport@vishay.com

SiA517DJ

Vishay Siliconix

Parameter	Symbol	Test Conditions		Min.	Тур.	Max.	Unit			
Static				l	, ,,	l	<u>I</u>			
		V _{GS} = 0 V, I _D = 250 μA	N-Ch	12						
Drain-Source Breakdown Voltage	V_{DS}	V _{GS} = 0 V, I _D = - 250 μA	P-Ch	- 12			V			
V Tamanaratura Confficient	A) / /T	I _D = 250 μA	N-Ch		12		mV/°C			
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	I _D = - 250 μA	P-Ch		- 3.1					
V Tomporatura Coefficient	A)/ /T	I _D = 250 μA	N-Ch		- 2.5					
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	I _D = - 250 μA	P-Ch		2.4					
Cata Thurshald Valtage	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$	N-Ch	0.4		1	V			
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	P-Ch	- 0.4		- 1	V			
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 8 \text{ V}$	N-Ch			± 100	nA			
date body Leakage	'655		P-Ch			± 100	ПА			
		$V_{DS} = 12 \text{ V}, V_{GS} = 0 \text{ V}$	N-Ch			1				
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = -12 \text{ V}, V_{GS} = 0 \text{ V}$	P-Ch			- 1	μΑ			
2010 Gate Voltage Blain Guirent	יטא	$V_{DS} = 12 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 ^{\circ}\text{C}$	N-Ch			10	μΑ			
		V_{DS} = - 12 V, V_{GS} = 0 V, T_{J} = 55 °C	P-Ch			- 10				
On State Prain Currentb	la,	$V_{DS} \ge 5 \text{ V}, V_{GS} = 4.5 \text{ V}$	N-Ch	15			Δ			
On-State Drain Current ^b	I _{D(on)}	$V_{DS} \le$ - 5 V, $V_{GS} =$ - 4.5 V	P-Ch	- 10			Α			
		$V_{GS} = 4.5 \text{ V}, I_D = 5 \text{ A}$	N-Ch		0.029					
		V _{GS} = - 4.5 V, I _D = - 3.6 A	P-Ch		0.050	0.061				
	R _{DS(on)}	$V_{GS} = 2.5 \text{ V}, I_D = 4.6 \text{ A}$	N-Ch		0.028	0.034				
		$V_{GS} = -2.5 \text{ V}, I_D = -3.2 \text{ A}$	P-Ch		0.066	0.081				
Drain-Source On-State Resistance ^b		$V_{GS} = 1.8 \text{ V}, I_D = 4.1 \text{ A}$	N-Ch		0.032	0.044	Ω			
		V _{GS} = - 1.8 V, I _D = - 1 A	P-Ch		0.093	0.115				
		$V_{GS} = 1.5 \text{ V}, I_D = 2 \text{ A}$	N-Ch		0.042	0.065				
		V _{GS} = - 1.5 V, I _D = - 1 A	P-Ch		0.112	0.170				
		$V_{DS} = 10 \text{ V}, I_{D} = 5 \text{ A}$	N-Ch		21		- S			
Forward Transconductance ^b	9 _{fs}	$V_{DS} = -10 \text{ V}, I_{D} = -3.6 \text{ A}$	P-Ch		11					
Dynamic ^a										
•			N-Ch		500					
Input Capacitance	C _{iss}	N-Channel	P-Ch		590		- pF			
Output Capacitance	C _{oss}	$V_{DS} = 6 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	N-Ch		160					
Output Capacitance	Joss	P-Channel	P-Ch		280					
Reverse Transfer Capacitance	C _{rss}	$V_{DS} = -6 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	N-Ch		100					
,			P-Ch		250					
		$V_{DS} = 6 \text{ V}, V_{GS} = 8 \text{ V}, I_{D} = 6.5 \text{ A}$	N-Ch		9.7	15	- - -			
Total Gate Charge	Q_{g}	$V_{DS} = -6 \text{ V}, V_{GS} = -8 \text{ V}, I_{D} = -4.5 \text{ A}$	P-Ch		13.1	20				
-	9	N-Channel	N-Ch		5.6	8.5				
	Q _{gs}	$V_{DS} = 6 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 6.5 \text{ A}$	P-Ch		8.2	12.5	nC			
Gate-Source Charge			N-Ch P-Ch		0.72 1.2		-			
		P-Channel	N-Ch		0.74					
Gate-Drain Charge	Q_{gd}	$V_{DS} = -6 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -4.3 \text{ A}$	P-Ch		2.8					
0.5.	-		N-Ch	0.7	3.5	7	-			
Gate Resistance	R_g	f = 1 MHz	P-Ch	2	10	20	Ω			

a. Guaranteed by design, not subject to production testing.

b. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2~\%.$

SPECIFICATIONS (T _J = 25 °C, unless otherwise noted)											
Parameter	eter Symbol Test Conditions						Unit				
Dynamic ^a											
Turn-On Delay Time	t _{d(on)}	N-Channel	N-Ch		10	15					
<u> </u>	4(0.1.)	$V_{DD} = 6 \text{ V, R}_{I} = 1.2 \Omega$	P-Ch		30	40					
Rise Time	t _r	$I_D \cong 5.2 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_q = 1 \Omega$	N-Ch		10	15					
		D = 0.1.1, 1 GEN 1, 1 · · · · ·	P-Ch		25	40					
Turn-Off Delay Time	t _{d(off)}	P-Channel	N-Ch P-Ch		22	30					
		$V_{DD} = -6 \text{ V}, R_{L} = 1.6 \Omega$	N-Ch		30 10	45 15					
Fall Time	t _f	$I_D \cong$ - 3.8 A, V_{GEN} = - 4.5 V, R_g = 1 Ω	P-Ch		_	_					
			N-Ch		20 5	30 10	ns				
Turn-On Delay Time	t _{d(on)}	N-Channel	P-Ch		8	15					
		$V_{DD} = 6 \text{ V}, R_{L} = 1.2 \Omega$	N-Ch		10	15					
Rise Time	t _r	$I_D \cong 5.2 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$	P-Ch		12	20					
	t _{d(off)}	-	N-Ch		18	30					
Turn-Off Delay Time		P-Channel $V_{DD} = -6 \text{ V}, R_{L} = 1.6 \Omega$	P-Ch		25	40					
		$I_D \cong -3.8 \text{ A, V}_{GEN} = -10 \text{ V, R}_0 = 1 \Omega$	N-Ch		10	15					
Fall Time	t _f	1D = 0.07, VGEN = 10 V, Ng = 122	P-Ch		18	30					
Drain-Source Body Diode Characteristic	cs										
Continuous Source-Drain Diode Current	I _S	T _C = 25 °C	N-Ch			4.5	A				
Continuous Source-Diam Diode Current	'5	16-23-3	P-Ch			- 4.5					
Pulse Diode Forward Current ^a	I _{SM}		N-Ch			20					
Fulse blode Folward Current	-SIVI		P-Ch			- 10					
Body Diode Voltage	V_{SD}	$I_S = 5.2 \text{ A}, V_{GS} = 0 \text{ V}$	N-Ch		0.85	1.2	V				
Body Blode Voltage	*50	$I_S = -3.4 \text{ A}, V_{GS} = 0 \text{ V}$	P-Ch		- 0.8	- 1.2	, v				
Body Diode Reverse Recovery Time	t _{rr}		N-Ch		20	40	ns				
Body Blode Heverse Hecovery Time	٩r		P-Ch		30	60	110				
Body Diode Reverse Recovery Charge	Q _{rr}	N-Channel $I_F = 5.2 \text{ A}, \text{ dI//dt} = 100 \text{ A/}\mu\text{s}, T_J = 25 °C$	N-Ch		5	10	nC				
200, 2.000 Hoveroo Hoodwary Orlange	∀ rr	1- 0.2 /3, αι//αι = 100 /4/μο, 1j = 20 0	P-Ch		12	24	110				
Reverse Recovery Fall Time	ta	P-Channel	N-Ch		8		ns				
. is is is a final of the first	-а	$I_F = -3.8 \text{ A}, \text{ dI/dt} = -100 \text{ A/}\mu\text{s}, T_J = 25 ^{\circ}\text{C}$	P-Ch		16						
Reverse Recovery Rise Time	t _b		N-Ch		12						
	5		P-Ch		14						

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

a. Guaranteed by design, not subject to production testing.

b. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.

N-CHANNEL TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

N-CHANNEL TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Source-Drain Diode Forward Voltage

On-Resistance vs. Gate-to-Source Voltage

Single Pulse Power (Junction-to-Ambient)

Safe Operating Area, Junction-to-Ambient

N-CHANNEL TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Power Dissipation (W)

^{*} The power dissipation P_D is based on $T_{J(max.)}$ = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

N-CHANNEL TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Case

P-CHANNEL TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

P-CHANNEL TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Soure-Drain Diode Forward Voltage

V_{GS} - Gate-to-Source Voltage (V) On-Resistance vs. Gate-to-Source Voltage

Single Pulse Power, Junction-to-Ambient

On-Resistance vs. Gate-to-Source Voltage

100 Limited by R_{DS(on)} I_D - Drain Current (A) T_A = 25 °C Single Pulse 0.1 **BVDSS** Limited 0.01 **L** 0.1 V_{DS} - Drain-to-Source Voltage (V) * V_{GS} > minimum V_{GS} at which $R_{DS(on)}$ is specified

Safe Operating Area, Junction-to-Ambient

P-CHANNEL TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Power Derating

^{*} The power dissipation P_D is based on $T_{J(max.)}$ = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

P-CHANNEL TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?64832.

PowerPAK® SC70-6L

BACKSIDE VIEW OF SINGLE

BACKSIDE VIEW OF DUAL

- All dimensions are in millimeters
 Package outline exclusive of mold flash and metal burr
 Package outline inclusive of plating

			SINGL	E PAD			DUAL PAD					
DIM	M	ILLIMETER	RS		INCHES		M	ILLIMETER	RS		INCHES	
	Min	Nom	Max	Min	Nom	Max	Min	Nom	Max	Min	Nom	Max
Α	0.675	0.75	0.80	0.027	0.030	0.032	0.675	0.75	0.80	0.027	0.030	0.032
A1	0	-	0.05	0	-	0.002	0	-	0.05	0	-	0.002
b	0.23	0.30	0.38	0.009	0.012	0.015	0.23	0.30	0.38	0.009	0.012	0.015
С	0.15	0.20	0.25	0.006	0.008	0.010	0.15	0.20	0.25	0.006	0.008	0.010
D	1.98	2.05	2.15	0.078	0.081	0.085	1.98	2.05	2.15	0.078	0.081	0.085
D1	0.85	0.95	1.05	0.033	0.037	0.041	0.513	0.613	0.713	0.020	0.024	0.028
D2	0.135	0.235	0.335	0.005	0.009	0.013						
Е	1.98	2.05	2.15	0.078	0.081	0.085	1.98	2.05	2.15	0.078	0.081	0.085
E1	1.40	1.50	1.60	0.055	0.059	0.063	0.85	0.95	1.05	0.033	0.037	0.041
E2	0.345	0.395	0.445	0.014	0.016	0.018						
E3	0.425	0.475	0.525	0.017	0.019	0.021						
е		0.65 BSC			0.026 BSC			0.65 BSC			0.026 BSC	
K		0.275 TYP	1		0.011 TYP		0.275 TYP				0.011 TYP	
K1		0.400 TYP	1		0.016 TYP			0.320 TYP			0.013 TYP	
K2		0.240 TYP	1	0.009 TYP 0.252 TYP				0.010 TYP				
К3		0.225 TYP	1	0.009 TYP								
K4		0.355 TYP	1	0.014 TYP								
L	0.175	0.275	0.375	0.007	0.011	0.015	0.175	0.275	0.375	0.007	0.011	0.015
Т							0.05	0.10	0.15	0.002	0.004	0.006
ECNI- C C	7404 D	. 0 00 1	. 07									

ECN: C-07431 - Rev. C, 06-Aug-07

DWG: 5934

Document Number: 73001 06-Aug-07

RECOMMENDED PAD LAYOUT FOR PowerPAK® SC70-6L Dual

Dimensions in mm (inches)

Return to Index

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vishay:

SIA517DJ-T1-GE3