## 1 Normal Random Variables

### 1.1 Problem 1

Let X and Y be two normal random variables, with means 0 and 3 , respectively, and variances 1 and 16 , respectively.

We have  $X \sim \mathcal{N}(0, 1^2)$  and  $Y \sim \mathcal{N}(3, 4^2)$ 

- P(X > -1) = P(X < 1) = 0.8413
- $P(X \le -2) = 1 P(X < 2) = 0.023$
- Let  $V = \frac{4-Y}{3}$ . Find the mean and the variance of V

$$E[V] = E\left[\frac{4-Y}{3}\right] = \frac{4}{3} - E\left[\frac{Y}{3}\right] = \frac{1}{3}$$

$$Var(V) = Var(\frac{4-Y}{3}) = Var(\frac{Y}{3}) = \frac{Var(Y)}{9} = \frac{16}{9}$$

• 
$$P(-2 < Y \le 2) = P\left(\frac{-2-3}{\sqrt{16}} < \frac{Y-3}{\sqrt{16}}\right) \le \frac{2-3}{\sqrt{16}} = P(-5/4 < Z \le -1/4) = 0.2957$$

# 2 A Joint PDF Given By a Simple Formula

## 2.1 Problem 2

The random variables X and Y are distributed according to the joint PDF

$$f_{X,Y}(x, y)$$
  $\begin{cases} ax^2, & \text{if } 1 \le x \le 2 \text{ and } 0 \le y \le x, \\ 0, & \text{otherwise} \end{cases}$ 

1. Find the constant a.

$$\int_{1}^{2} \int_{0}^{x} ax^{2} \, dy dx = \frac{15}{4}$$

We have a = 4/15

2. Determine the marginal PDF  $f_Y(y)$ 

(a) if 
$$0 \le y \le 1$$

$$f_Y(y) = \int_0^1 ax^2 dx$$
$$= a\frac{x^3}{3}\Big|_0^1$$
$$= \frac{28}{45}$$

(b) if  $1 < y \le 2$ 

$$f_Y(y) = \int_y^2 ax^3 dx$$
$$= \frac{32 - 4y^3}{45}$$

3. Determine the conditional expectation of  $1/(X^2Y)$ , given that Y = 5/4

$$E\left[\frac{1}{X^2Y} \mid Y = \frac{5}{4}\right] = \int_{-\infty}^{\infty} \frac{1}{x^2y} f_{X \mid Y} \left(x \mid \frac{5}{4}\right) dx$$

$$f_{X|Y}\left(x \mid \frac{5}{4}\right) = \frac{f_{X,Y}(x, 5/4)}{f_Y\left(\frac{5}{4}\right)}$$
  
=  $\frac{64x^2}{129}$ , for  $5/4 \le x \le 2$ 

$$E\left[\frac{1}{X^{2}Y} \mid Y = \frac{5}{4}\right] = \int_{-\infty}^{\infty} \frac{4}{5x^{2}} \cdot \frac{f_{X,Y}(x, 5/4)}{f_{Y}\left(\frac{5}{4}\right)} dx$$
$$= \int_{5/4}^{2} \frac{256}{645} dx$$
$$= \frac{64}{215}$$

## 3 Sophia's Vocation

#### 3.1 Problem 3

Sophia is vacationing in Monte Carlo. On any given night, she takes X dollars to the casino and returns with Y dollars. The random variable X has the PDF shown in the figure. Conditional on X=x, the continuous random variable Y is uniformly distributed between zero and 3x.



1. Determine the joint PDF  $f_{X,Y}(x, y)$ 

if 0 < x < 40 and 0 < y < 3x Based on the above image,  $f_X(x) = ax$  where a is the weight constant.

$$1 = \int_0^{40} ax \, dx = 800a \longrightarrow a = \frac{1}{800}$$

$$f_{X,Y}(x, y) = f_X(x) f_{Y|X}(y|x)$$

$$= \frac{x}{800} \cdot \frac{1}{3x}$$

$$= \frac{1}{2400}$$

if y < 0 or y > 3x

$$f_{X,Y}(x,y) = 0$$
 as  $f_{Y|X}(y|x) = 0$ 

2. On any particular night, Sophia makes a profit Z=YX dollars. Find the probability that Sophia makes a positive profit, that is, find P(Z>0). In order to have positive profit, we need Y>X. For any  $x\in(0,40)$ , we need  $y\in(x,3x)$ . Thus,

$$P(Z>0) = P(Y>X) = \int_0^{40} \int_x^{3x} f_{X,Y}(x,y) \, dy dx = \frac{2}{3}$$

3. Find the PDF of Z As Z = Y - X where Y is uniformly distributed on [0, 3x] given X = x, so Z = Y - x is uniformly distributed on [-x, 2x].

3

$$f_{X,\,Z}(x,\,z) = f_X(x) f_{Z\,|\,X}(z\,|\,x) = \frac{x}{800} \cdot \frac{1}{3x} = \frac{1}{2400}, \text{ for } 0 < x < 40 \text{ and } -x \le z \le 2x$$

if -40 < z < 0

$$f_Z(x) = \int_{-z}^{40} f_{X,Z}(x,z) dx = \frac{40+z}{2400}$$

if 0 < z < 80

$$f_Z(x) = \int_{z/2}^{40} f_{X,Z}(x,z) dx = \frac{80 - z}{4800}$$

if z < -40 or z > 80

$$f_Z(z) = 0$$
 as  $f_{Z|X}(z|x) = 0$ 

4. What is E[Z] Since Z = Y - X, by linearity of expectation, E[Z] = E[Y] - E[X].

Note that E[Y | X = x] = 3x/2 for any  $x \in (0, 40)$ . Using the total expectation theorem,

$$E[Y] = \int_0^{40} E[Y \mid X = x] f_X(x) dx$$
$$= \frac{3}{2} \int_0^{40} x f_X(x) dx$$
$$= \frac{3}{2} E[X]$$

So E[Z] = 1/2E[X].

$$E[Z] = \frac{1}{2} \cdot E[X] = \frac{1}{2} \int_0^{40} x f_X(x) dx$$
$$= \frac{1}{2} \int_0^{40} \frac{x^2}{800} dx$$
$$= \frac{80}{3}$$

### 4 True or False

#### 4.1 Problem 4

Determine whether each of the following statement is true (i.e., always true) or false (i.e., not always true).

1. Let X be a random variable that takes values between 0 and c only, for some  $c \ge 0$ , so that  $P(0 \le X \le c) = 1$ . Then  $Var(X) \le c^2/4$ .

$$Var(X) = E(X^2) - (E(X))^2$$

$$= E(X \cdot X) - (E(X))^2$$

$$\leq E(c \cdot X) - (E(X))^2$$

$$= c \cdot E(X) - (E(X))^2$$

$$= c^2 \cdot \left(\frac{E(X)}{c}\right) - c^2 \left(\frac{E(X)}{c}\right)^2$$

$$= c^2 \alpha (1 - \alpha), \text{ where } \alpha = E(X)/c$$

$$\leq \frac{c^2}{4}$$

2. Let X and Y be continuous random variables. If  $X \sim \mathcal{N}(\mu, \sigma^2)$ , Y = aX + b, and a > 0, then  $Y \sim \mathcal{N}(a\mu + b, a\sigma^2)$ .

This is a **False** statement.

$$Var(Y) = Var(aX + b) = a^2 Var(X) = a^2 \sigma^2$$

3. The expected value of a non-negative continuous random variable X, which is defined by

$$E[X] = \int_0^\infty x f_X(x) dx$$
, also satisfies  $E[X] = \int_0^\infty P(X > t) dt$ 

$$E[X] = \int_0^\infty P(X > t) dt$$
$$= \int_0^\infty \int_t^\infty f_X(x) dx dt$$
$$= \int_0^\infty \int_0^x f_X(x) dt dx$$
$$= \int_0^\infty x f_X(x) dx$$

# 5 Bayes' Rule

### 5.1 Problem 5

Let K be a discrete random variable with PMF

$$p_K(k) = \begin{cases} 1/4, & \text{if } k = 1, \\ 1/2, & \text{if } k = 2, \\ 1/4, & \text{if } k = 3, \\ 0, & \text{otherwise} \end{cases}$$

Conditional on K = 1, 2, or 3, random variable Y is exponentially distributed with parameter 1, 1/2, or 1/3, respectively.

Using Bayes' rule, find the conditional PMF  $p_{K|Y}(2|y)$  when  $y \ge 0$ . Applying Bayes's rule, we have

$$p_{K \mid Y}(2 \mid y) = \frac{p_{K}(2) f_{Y \mid K}(y \mid 2)}{f_{Y}(y)}$$

By the total probability theorem,

$$f_Y(y) = \sum_{k=1}^3 p_K(k) f_{Y \mid K}(y \mid k) = \frac{1}{4} e^{-y} + \frac{1}{2} \cdot \frac{1}{2} e^{-y/2} + \frac{1}{4} \cdot \frac{1}{3} e^{-y/3}$$

Thus,

$$p_{K|Y}(2|y) = \frac{e^{-y/2}}{e^{-y} + e^{-y/2} + 1/3e^{-y/3}}$$

# 6 A Joint PDF on a Triangular Region

### 6.1 Problem 6

This figure below describes the joint PDF of the random variables X and Y. These random variables take values in [0,2] and [0,1], respectively. At x=1, the value of the joint PDF is 1/2.



#### 1. Are X and Y independent?

X and Y are not independent. For example, if X<0.5, we can infer that Y<0.5 based on the above figure.

#### 2. Find $f_X(x)$ .

$$f_X(x) = \begin{cases} \int_0^x \frac{1}{2} \, dy & \text{if } 0 \le x \le 1\\ \int_0^{2-x} \frac{3}{2} \, dy & \text{if } 1 < x \le 2\\ 0 & \text{otherwise} \end{cases}$$
$$= \begin{cases} \frac{x}{2} & \text{if } 0 \le x \le 1\\ \frac{6-3x}{2} & \text{if } 1 < x \le 2\\ 0 & \text{otherwise} \end{cases}$$

### 3. Find $f_{Y|X}(y|0.5)$ .

Given that  $X=0.5,\,Y$  is uniformly distributed between 0 and 1/2. Thus,

$$f_{Y \mid X}(y \mid 0.5) = \begin{cases} 2, & \text{if } 0 \le y \le 1/2 \\ 0, & \text{otherwise} \end{cases}$$

4. Find  $f_{X|Y}(x|0.5)$ .

Given that Y = 0.5, the conditional distribution of X is a piece-wise constant,

$$f_{X \mid Y}(x \mid 0.5) = \begin{cases} 1/2, & \text{if } 1/2 \le x \le 1\\ 3/2, & \text{if } 1 < x \le 1.5\\ 0, & \text{otherwise} \end{cases}$$

5. Let R = XY and A be the event that  $\{X < 0.5\}$ . Find  $E[R \mid A]$ .

Under event A, the pair (X,Y) takes values in a triangle region with sides of length 1/2 and area 1/8. The conditional PDF is uniform and this tells us  $f_{X,Y|A}(x,y) = 8$ . Thus,

$$\begin{split} E[R \mid A] &= E[XY \mid A] \\ &= \int_0^{1/2} \int_y^{0.5} xy f_{X,Y \mid A}(x,y) \, dx dy \\ &= \int_0^{1/2} \int_y^{0.5} 8xy \, dx dy \\ &= \frac{1}{16} \end{split}$$