Data: 06 iulie 2022 Timp de lucru: 2h 30m

Punctaj total: 90p + 10p oficiu **Nume:** _____

Examen Analiză complexă¹

Subjecte:

1. (a) (5 p) Determinați soluțiile $z \in \mathbb{C}$ ale ecuației $z^2 + 2z + i = 0$.

(b) (5 p) Considerăm $f: \mathbb{C} \to \mathbb{C}$ definită prin

$$f(x+iy) = (x^2 + x - y^2 - y) + i(x+y+2xy),$$

pentru orice $x, y \in \mathbb{R}$. Este f olomorfă pe \mathbb{C} ? Justificați răspunsul!

(c) (5 p) Dați exemplu de o funcție olomorfă f cu pol de ordin 3 în punctul i și $\operatorname{res}(f,i) \neq 0$.

(d) (5 p) Reprezentați geometric imaginea prin funcția $f(z) = e^z$ a mulțimii

$$\Omega = \{ z \in \mathbb{C} \mid \operatorname{Re}(z) > 0, \operatorname{Im}(z) > 0 \}.$$

(e) (5 p) Demonstrați că funcția $\cosh(z) = \frac{1}{2}(e^z + e^{-z})$ este mărginită pe orice dreaptă verticală.

(f) (5 p) Considerăm o funcție olomorfă neconstantă $f: \mathbb{C} \to \mathbb{C}$. Un număr $\omega \in \mathbb{C} \setminus \{0\}$ se numește perioadă a lui f dacă $f(z + \omega) = f(z)$, pentru orice $z \in \mathbb{C}$. Demonstrați că orice mulțime mărginită de perioade ale lui f este finită.

2. (a) (10 p) Determinați seria Laurent (centrată în 0) asociată funcției $f(z) = \frac{1}{z^2(z-1)(z-2)}$ în coroana circulară $\mathcal{A} = \{2 < |z| < \infty\}$.

(b) (10 p) Determinați câte dintre rădăcinile ecuației $z^4+6z+3=0$ se află în coroana circulară $\mathcal{A}=\{1<|z|<2\}.$

3. (a) (10 p) Considerăm funcția olomorfă

$$f(z) = \frac{e^{i az}}{z^4 + 5z^2 + 4}.$$

Determinați polii lui f și calculați reziduurile lui f în polii care se află în semiplanul superior.

(b) (10 p) Calculați

$$\int_0^\infty \frac{\cos(ax)}{x^4 + 5x^2 + 4} dx,$$

folosind funcția olomorfă f definită la punctul (a) și conturul de integrare din desenul de mai jos:

¹Subiectele continuă pe verso!

- 4. (10 p) Descrieți cum putem construi o aplicație conformă și bijectivă între semi-banda verticală $\mathscr{B} = \{z \in \mathbb{C} \mid 0 < \operatorname{Re}(z) < 1 \text{ și } \operatorname{Im}(z) > 0\}$ și semiplanul superior $\mathbb{H} = \{z \in \mathbb{C} \mid \operatorname{Im}(z) > 0\}$.
- 5. (10 p) Demonstrați că dacă funcția olomorfă $f:\mathbb{C}\to\mathbb{C}$ are proprietatea că pentru orice $z_n\to\infty$, avem $f(z_n)\to\infty$, atunci f este polinomială.