Introduction to Logic

Propositional Logic

Syntax:

You can make well-formed formulas (**wff**) φ from:

$$p$$
, a variable \perp $\varphi \land \varphi$ $\varphi \lor \varphi$ $\varphi \to \varphi$ (φ)

 \land and \lor have precedence over \rightarrow . This means that the formula

$$r \wedge u \rightarrow w$$

is equal to

$$(r \wedge u) \to w$$

From this you can derive:

Connective	Definition
$\neg \varphi$	$\varphi o \perp$
Т	¬
$\neg \varphi$	$\varphi o \perp$
$\varphi \leftrightarrow \psi$	$(\varphi \to \psi) \land (\psi \to \varphi)$

Subformulas:

let φ be a formula. The set of *subformulas* of φ is determined like this:

$$\begin{split} \varphi &= \neg p \wedge q \to p \to s \\ \operatorname{Sub}(\varphi) &= \{\varphi\} \cup \operatorname{Sub}(\neg p) \cup \operatorname{Sub}(p \to s) \\ &= \{\varphi, \neg p \wedge q, \neg p, p, \bot, q, p \to s, s\} \end{split}$$

Truth table:

To check if a formula is true or false, you can use a truth table: $p \lor (q \to p) \to q \to p$

p	q	$q \rightarrow p$	$p \lor (q \to p)$	$\mid p \lor (q \to p) \to q \to p$
0	0	1	1	1
0	1	0	0	1
1	0	1	1	1
1	1	1	1	1

Tautologies:

Symbol	Meaning		
PForm	a set of all formulas		
Γ	a set of some formulas		
F	entails		
$\Gamma otin arphi$	A set of formulas entails one formula for example: $\{(\text{human} \to \text{mortal}), \text{human}\} \models \text{mortal},$ $\Gamma = \{(\text{human} \to \text{mortal}), \text{human}\}$ $\varphi = \text{mortal}$ From Γ you can draw the conclusion that φ is true		

For some random formulas φ and ψ , we can say that:

- satisfiable, φ is satisfiable if there is a way to assign true or false values to each of the variables in φ in such a way that the entire formula becomes true.
- **tautology**, φ is a *tautology* if φ is always true no matter what variables you use.
- **semantically equivalent**, φ and ψ are *semantically equivalent* if every valuation of φ and ψ are the same. This can be written as $\varphi \equiv \psi$, meaning φ is identical to ψ .

Natural deduction:

Symbol	Meaning	
$\Gamma \vdash \varphi$	φ can be derived or proved from the set of premises represented by Γ	

Rules:

$$\frac{\varphi:\Gamma}{\Gamma\vdash\varphi}\;(\text{Assum})\qquad \frac{\Gamma\vdash\bot}{\Gamma\vdash\varphi}\;(\bot E)$$

$$\frac{\Gamma\vdash\varphi\land\psi}{\Gamma\vdash\varphi}\;(\land E_1)\qquad \frac{\Gamma\vdash\varphi\land\psi}{\Gamma\vdash\psi}\;(\land E_2)\qquad \frac{\Gamma\vdash\varphi\quad\Gamma\vdash\psi}{\Gamma\vdash\varphi\land\psi}\;(\land I)$$

$$\frac{\Gamma\vdash\varphi}{\Gamma\vdash\varphi\lor\psi}\;(\lor I_1)\qquad \frac{\Gamma\vdash\psi}{\Gamma\vdash\varphi\lor\psi}\;(\lor I_2)$$

$$\frac{\Gamma\vdash\varphi\lor\psi\quad\Gamma,\varphi\vdash\delta\quad\Gamma,\psi\vdash\delta}{\Gamma\vdash\delta}\;(\lor E)$$

$$\frac{\Gamma,\varphi\vdash\psi}{\Gamma\vdash\varphi\to\psi}\;(\to I)\qquad \frac{\Gamma\vdash\varphi\to\psi\quad\Gamma\vdash\varphi}{\Gamma\vdash\psi}\;(\to E)$$

TODO, rules uit video hier uitleggen/neerzetten