Complex Variables Qualifying Exam Fall 1996 Bennett and Burckel

Let $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}$ and for open $U\subset\mathbb{C},$ let H(U) denote the set of holomorphic functions on U.

Do all 8 questions.

- **1.** Let $z_0 \in U$ open and f holomorphic on U. Let $r = \sup\{\rho : |z z_0| < \rho \Rightarrow z \in U\}$. Show that $f(z) = \sum_{n=0}^{\infty} a_n (z z_0)^n$ for some choice of coefficients a_n , where the series converges in $\{z : |z z_0| < r\}$.
- **2.** Let f be holomorphic in $\mathbb{D}\setminus\{0\}$ and $\int_{\mathbb{D}\setminus\{0\}}|f|^2d\lambda_2<\infty$ where λ_2 denotes Lebesgue measure on $\mathbb{R}^2\cong\mathbb{C}$. Show that f extends to be holomorphic on \mathbb{D} .
- **3.** Show that if U is an open subset of \mathbb{C} , $g:U\to\mathbb{C}$ is continuous and e^g is holomorphic, then g is holomorphic. (<u>Hint</u>: It suffices to treat the case U as a disk).
- **4.** The function f is entire, f' has no zeros, and $\lim_{|z|\to\infty}|f(z)|=\infty$. Show that for some $a,b\in\mathbb{C},\ f(z)=az+b$ for all z.
- **5.** Evaluate $\int_{-\infty}^{\infty} \frac{\cos(2x)}{x^2 + 1} dx$.
- **6.** Construct an entire function f whose only zeros are simple zeros at the Gaussian integers $\{a+bi:a,b\in\mathbb{Z}\}$.

- 7. The functions $B_n(z) = \prod_{k=1}^n \frac{z \frac{1}{k}}{1 \frac{z}{k}} = \prod_{k=1}^n \frac{1 kz}{z k}$ are called <u>Blaschke products</u>.
 - a) Show $|B_n(z)| \le 1$ for $z \in \mathbb{D}$.
 - b) Suppose $1 \leq n_1 < n_2 < \dots$ If $\lim_{j \to \infty} B_{n_j}(z) = f(z)$ exists for each $z \in \mathbb{D}$, what can you say about the limit function f(z)?
 - c) Show $\lim_{n\to\infty} B_n(z)$ exists for all $z\in\mathbb{D}$. (<u>Hint</u>: Use (a) and (b).)
- **8.** Find a conformal mapping from \mathbb{D} onto $\mathbb{D} \cap \{Im(z) > 0\}$.