Resumen Cálculo Numérico

basado en el resumen de Fernando Nellmeldín

Cristian Escudero

September 28, 2013

1 Métodos Directos

1.1 Eliminación de Gauss

Los elementos de la matriz $A^{(k+1)}$ se calculan:

$$a_{ij}^{(k+1)} = \begin{cases} a_{ij}^{(k)} & \text{si } i \leq k, \\ a_{ij}^{(k)} - \left(\frac{a_{ik}^{(k)}}{a_{kk}^{(k)}} a_{kj}^{(k)}\right) & \text{si } i \geq k+1, \text{ y } j \geq k+1, \\ 0 & \text{si } i \geq k+1, \text{ y } j \leq k. \end{cases}$$

Si tenemos pivoteo parcial, trabajamos con el vector de permutación:

```
\# Se resuelve en n - 1 pasos
   \quad \quad \text{for } i \, = \, 1 \, : \, n \, - \, 1
        if (parcial)
             # Ponemos la fila con maximo valor
             [tr, p] = max(abs(Ab(idx(i:n), i)));
             p = p + i - 1;
             if (idx(i) != idx(p))
9
                  temp = idx(p);
                  idx(p) = idx(i);
                  idx(i) = temp;
11
12
        end
13
        # ... sigue el metodo...
14
```

Y trabajamos usando el idx(i) en vez de i para los subíndices.

Nota: Si encontramos una columna de ceros, el método no determina una solución única.

1.2 Factorización LU

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 & \cdots & 0 \\ l_{21} & l_{22} & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ l_{n1} & l_{n2} & \cdots & l_{nn} \end{bmatrix} \cdot \begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1n} \\ 0 & u_{22} & \cdots & u_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & u_{nn} \end{bmatrix} = LU$$

Ejemplo 3x3:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \cdot \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} = LU$$

$$= \begin{bmatrix} l_{11} u_{11} & l_{11} u_{12} & l_{11} u_{13} \\ l_{21} u_{11} & l_{21} u_{12} + l_{22} u_{22} & l_{21} u_{13} + l_{22} u_{23} \\ l_{31} u_{11} & l_{31} u_{12} + l_{32} u_{22} & l_{31} u_{13} + l_{32} u_{23} + l_{33} u_{33} \end{bmatrix}$$

1.2.1 Factorización de Cholesky

Nota: En a_{ij}^{upper} : min(i, j) - 1 = i - 1; y en a_{ij}^{lower} : min(i, j) - 1 = j - 1.

$$a_{ij} = \sum_{k=1}^{min(i,j)} l_{ik} u_{kj},$$

$$a_{ij}^{upper} = \sum_{k=1}^{i-1} l_{ik} u_{kj} + l_{ii} u_{ij} \qquad \Rightarrow u_{ij} = \frac{1}{l_{ii}} \left[a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj} \right]$$

$$a_{ij}^{lower} = \sum_{k=1}^{j-1} l_{ik} u_{kj} + u_{jj} l_{ij} \qquad \Rightarrow l_{ij} = \frac{1}{u_{jj}} \left[a_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj} \right]$$
Factorización de **Doolittle** $(l_{ii} = 1)$

$$u_{ij} = a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj}$$
Factorización de **Crout** $(u_{ii} = 1)$

$$l_{ij} = a_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj}$$

2 Métodos Iterativos

Quiero llevar el SEAL a una forma iterativa ($\mathbf{x} = T\mathbf{x} + C$) para poder resolverla:

$$A\mathbf{x} = \mathbf{b}$$

$$A = D - L - U$$

$$(D - L - U)\mathbf{x} = \mathbf{b}$$

$$D\mathbf{x} - (L+U)\mathbf{x} = \mathbf{b}$$

$$D\mathbf{x} = (L+U)\mathbf{x} + \mathbf{b}$$

$$\mathbf{x} = D^{-1}(L+U)\mathbf{x} + D^{-1}\mathbf{b}$$

$$\mathbf{x} = T\mathbf{x} + C$$

Gauss-Seidel:

$$\begin{split} (D-L)\mathbf{x} - U\mathbf{x} &= \mathbf{b} \\ (D-L)\mathbf{x} &= U\mathbf{x} + \mathbf{b} \\ \mathbf{x} &= (D-L)^{-1}U\mathbf{x} + (D-L)^{-1}\mathbf{b} \\ \mathbf{x} &= T\mathbf{x} + C \\ \underline{\mathbf{SOR}} &: \end{split}$$

$$(D - wL)\mathbf{x} = [(1 - w)D + wU]\mathbf{x} + w\mathbf{b}$$

$$\mathbf{x} = (D - wL)^{-1}[(1 - w)D + wU]\mathbf{x} + (D - wL)^{-1}w\mathbf{b}$$

$$\mathbf{x} = T\mathbf{x} + C$$

Nociones básicas de convergencia:

- Si $||T|| < 1 \ \forall || \cdot || \Rightarrow$ convergen todos.
- Si A es e.d.d \Rightarrow converge Jacobi y Gauss-Seidel.
- Si A es d.p \land 0 < w < 2 \Rightarrow SOR converge.
- $\rho(T) < 1 \iff \mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + C$ converge.
- $i a_{ij} \leq 0 \quad \forall i \neq j \land a_{ii} > 0 \quad \forall i$? por **Teorema 7.22**, tenemos que:
 - a. $0 \le \rho(T_q) < \rho(T_i) < 1$. Si converge, G.S. converge más rápido.
 - b. $1 < \rho(T_j) < \rho(T_g)$. Si diverge, G.S. diverge más rápido.
 - c. $\rho(T_j) = \rho(T_g) = 1$. No convergen.

Cotas de error: Por Corolario 7.20, tenemos las siguientes cotas de error:

1.
$$||\mathbf{x} - \mathbf{x}^{(k)}|| \le ||T||^k ||\mathbf{x}^{(0)} - \mathbf{x}||$$
;

2.
$$||\mathbf{x} - \mathbf{x}^{(k)}|| \le \frac{||T||^k}{1 - ||T||} ||\mathbf{x}^{(1)} - \mathbf{x}^{(0)}||$$

2.1 Jacobi

Despejamos x_i del SEAL:

$$a_{11} x_1 + a_{12} x_2 + a_{13} x_3 = b_1 \qquad \Rightarrow \qquad x_1 = \frac{1}{a_{11}} \left[b_1 - (a_{12} x_2 + a_{13} x_3) \right]$$

$$a_{21} x_1 + a_{22} x_2 + a_{23} x_3 = b_2 \qquad \Rightarrow \qquad x_2 = \frac{1}{a_{22}} \left[b_2 - (a_{21} x_1 + a_{23} x_3) \right]$$

$$a_{31} x_1 + a_{32} x_2 + a_{33} x_3 = b_3 \qquad \Rightarrow \qquad x_3 = \frac{1}{a_{33}} \left[b_3 - (a_{31} x_1 + a_{32} x_2) \right]$$

$$x_i^{(k)} = \frac{1}{a_{ii}} \left(b_i - \sum_{\substack{j=1\\i \neq j}}^n a_{ij} x_j^{(k-1)} \right)$$

2.2 Gauss-Seidel

$$x_i^{(k)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k-1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)} \right)$$

2.3 SOR (Succesive Over-Relaxation)

$$x_i^{(k)} = (1 - w) x_i^{(k-1)} + \frac{w}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k-1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)} \right)$$

2.4 Gradiente Conjugado

Elige las direcciones de búsqueda $(\mathbf{v}^{(k)})$ durante el proceso iterativo de modo que los $\mathbf{r}^{(k)}$ sean mutuamente ortogonales.

- 1. Partimos de un $\mathbf{x}^{(0)}$ y usamos la dirección de máximo descenso $\mathbf{r}^{(0)} = \mathbf{b} A\mathbf{x}^0$ como $\mathbf{v}^{(1)}$.
- 2. Calculamos el paso de avance t en la dirección \mathbf{v} y la solución aproximada $\mathbf{x}^{(k)}$ (iniciamos con k=1):

$$t = \frac{\langle \mathbf{r}^{(k-1)}, \mathbf{r}^{(k-1)} \rangle}{\langle \mathbf{v}^{(k)}, A\mathbf{v}^{(k)} \rangle}, \qquad \mathbf{x}^{(k)} = \mathbf{x}^{(k-1)} + t_k \mathbf{v}^{(k)}.$$

3. Si $\mathbf{x}^{(k)}$ es la solución de $A\mathbf{x} = \mathbf{b}$ terminamos. Sino calculamos: $\mathbf{r}^{(k)} = \mathbf{b} - t_k A\mathbf{v}^{(k)}$, actualizamos el vector de búsqueda:

$$\mathbf{v}^{(k+1)} = \mathbf{r}^{(k)} + s_k \mathbf{v}^{(k)},$$
 $s_k = \frac{\langle \mathbf{r}^{(k)}, \mathbf{r}^{(k)} \rangle}{\langle \mathbf{r}^{(k-1)}, \mathbf{r}^{(k-1)} \rangle},$

y volvemos al paso 2.

2.4.1 Precondicionadores

Para solventar los casos en el que la matriz A a resolver esté mal condicionada, se propone un *precondionamiento*. Es decir, encontrar una matriz P tal que: $\kappa(P^{-1}A) \approx 1$.

Jacobi. El precondicionamiento más simple es: $P = D_s$, con D_s diagonal de A. Es efectivo si la matriz es diagonal dominante.

Block-Jacobi. Una matriz con bloques de submatrices sobre la diagonal de A.

SOR:
$$P = (D_s + w L_s) D_s^{-1} (D_s + w U_s).$$

Cholesky incompleta. Si A es simétrica, definida positiva, puede descomponerse en: $A = C^T C = C^{*T}C^* + R$, con C^* una descomposición de *Cholesky* restringida a la estructura rala de A. Tomando $P = C^{*T}C^*$, se espera que el κ sea pequeño.

2.4.2 Criterios de Corte

Hay varias formas de decidir cuando detener el proceso iterativo:

- Error absoluto: $||\mathbf{x}^{(k)} \mathbf{x}^{(k-1)}|| \le \text{tolerancia}_1$. La tolerancia₁ depende del significado físico de la variable \mathbf{x} .
- Error relativo $\frac{||\mathbf{x}^{(k)} \mathbf{x}^{(k-1)}||}{||\mathbf{x}^{(k)}||} \le \text{tolerancia}_2$. Aquí se es independiente la tolerancia2 de las unidades.
- Error en la aproximación: $||\mathbf{r}^{(k)}|| \le \text{tolerancia}_3 \cdot ||\mathbf{b}||$. Es independiente de las unidades debido a que se refiere a la norma del vector de términos independientes.

@@TODO: Hay un apéndice en la diapositiva de iterativos. Revisar.

3 Solución de Ecuaciones No Lineales de una Variable

3.1 Método de la Bisección

El m'etodo de la Bisecci\'on procede buscando una raíz propuesta en la mitad del intervalo (a,b), repitiendo iterativamente el proceso.

Es un método lento, de convergencia *lineal*, pero **siempre** *converge*. Es *robusto* (siempre encuentra solución), por lo que por esa razón es usado para iniciar otros métodos más eficientes.

Sea f(x) contínua en [a,b] y $f(a) \cdot f(b) < 0$. Entonces, por el **teorema** del valor medio, $\exists \ a .$

Figure 1: Método de la Bisección, representación gráfica.

3.1.1 Algoritmo

Supongamos $a_1 = a$, $b_1 = b$, i = 1.

- 1. Calculamos el punto medio $p_i = a_i + \frac{b_i a_i}{2} = \frac{a_i + b_i}{2}$.
- 2. Si $f(p_i) = 0 \Rightarrow p_i$, encontramos la raíz, y terminamos.
- 3. Si $f(p_i) \cdot f(a_i) < 0$:
 - Entonces, $b_{i+1} = p_i$, y $a_{i+1} = b_i$.
 - De lo contrario, $a_{i+1} = p_i$, y $b_{i+1} = b_i$.
- 4. Incrementamos i, y volvemos al paso 1.

3.1.2 Criterios de corte

Siendo una tolerancia $\mathcal{E} > 0$:

- Error absoluto: $|p_i p_{i-1}| \leq \mathcal{E}$.
- Error relativo: ^{|p_i-p_{i-1}|}/_{|p_i|} ≤ E.
 Es independiente de las unidades y del significado físico de estas.
- Error en la aproximación: $|f(p)| \leq \mathcal{E}$.

3.1.3 Cota de error

Del **Teorema 2.1**, supongamos que $f \in C[a, b] \land f(a) \cdot f(b) < 0$, entonces el método genera una sucesión $\{p_n\}_{n=1}^{\infty}$ que aproxima a un cero de p de f, tal que:

$$|p_n - p| \le \frac{b-a}{2^n}$$
, con $n \ge 1$.

Otra cota de error fácilmente calculable (p72), es:

$$|p_n - p| < \frac{1}{2}|a_n - b_n|.$$

3.2 Iteración de Punto Fijo

Figure 2: Iteración de Punto Fijo, convergencia por |g'(x)| < 1 (izquierda), divergencia por g'(x) < -1 (medio), y por |g'(x)| > 1 (derecha).

3.2.1 Algoritmo

- 1. Se escoge una aproximación inicial p_0 .
- 2. Se genera la sucesión $\{p_n\}_{n=1}^{\infty}$, con $p_n = g(p_{n-1})$.
- 3. Si la sucesión converge en p y si g es continua, entonces:

$$p = \lim_{n \to \infty} p_n = \lim_{n \to \infty} g(p_{n-1}) = g(\lim_{n \to \infty} p_{n-1}) = g(p),$$

y obtenemos una solución con p = g(p).

3.2.2 Cotas de error

Están dadas por el **Corolario 2.4**. Las cotas de error que supone utilizar p_n para aproximar p están dadas por:

$$|p_n - p| \le k^n \max\{p_0 - a, b - p_0\},\$$

y por:

$$|p_n - p| \le \frac{k^n}{1 - k} |p_1 - p_0|, \quad \forall n \ge 1.$$

3.3 Método de Newton-Raphson

Sea $f \in C^2[a,b]$, el método construye una sucesión $\{p_n\}$ con la siguiente fórmula de recurrencia:

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}, \quad n \ge 1.$$

Convergencia: está dada por el teorema 2.5.

3.3.1 Cota de error (diapositiva):

$$e_{n+1} = |p_{n+1} - p| \approx e_n^2 \frac{f''(p)}{2f'(p)} = Ce_n^2.$$

Nota: Ver además Teorema 2.8. De el concluímos que otra cota de error es (cumplidas las hipótesis):

$$|p_{n+1} - p| < \frac{M}{2} |p_n - p|^2.$$

3.3.2 M.N.R. con raíces múltiples (p84):

$$g(x) = x - \frac{f(x)f'(x)}{[f'(x)]^2 - f(x)f''(x)}.$$

3.4 Método de la Secante

Para solventar el problema del *método de Newton* de desconocer la derivada de la función, se utiliza este método. La fórmula de recurrencia, basada en la definición de derivada, está dada por:

$$p_{n+1} = p_n - \frac{p_n - p_{n-1}}{f(p_n) - f(p_{n-1})} f(p_n).$$

Figure 3: Método de Newton-Raphson (izquierda), método de la Secante (derecha).

La **convergencia** es superlineal: $e_{n+1} = C e_n^{1.618...}$.

Requiere además dos estimaciones iniciales p_0 y p_1 .

3.5 Método de la Falsa Posición

Similar al *método de la secante*, pero en cada iteración toma -para trazar la secante- los dos últimos puntos que acotan la raíz buscada (como el *método bisección*).

Para determinar el punto que uso, evalúo:

$$f(p_n) \cdot f(p_{n-1}) < 0,$$

Si es **verdadero**, uso p_{n-2} , sino p_{n-1} , para seleccionar el intervalo con p_n .

CheatSheet

1. Operaciones en Matriz:

- $(E_i) \leftrightarrow E_j$.
- $(\lambda E_i) \to E_i$.
- $(E_i + \lambda E_j) \to E_i$.

2. Afirmaciones equivalentes (6.16):

- $A\mathbf{x} = \mathbf{0} \iff \mathbf{x} = \mathbf{0}$.
- $A\mathbf{x} = \mathbf{b}$ tiene solución única.
- $\exists A^{-1}(A \text{ es no } singular).$
- $\det A \neq 0$.
- Se puede gaussear.

3. Factorización LU:

 \exists si gausseamos sin intercambio de renglones.

4. Resolver LU:

$$A\mathbf{x} = \mathbf{b} \to A = LU \to LU\mathbf{x} = \mathbf{b}$$

 $\to U\mathbf{x} = \mathbf{y} \to L\mathbf{y} = \mathbf{b}$

5. Eliminación de Gauss:

$$a_{ij}^{(k+1)} = \left\{ \begin{array}{ll} a_{ij}^{(k)} & \text{si } i \leq k, \\ 0 & \text{si } i \geq k+1, \, j \leq k, \end{array} \right.$$

En otro caso, $a_{ij}^{(k)} - \left(\frac{a_{ik}^{(k)}}{a_{kk}^{(k)}}a_{kj}^{(k)}\right)$

6. Estrategias de pivoteo:

- Simple: buscar $a_{nk}^{(k)} \neq 0$.
- Parcial: buscar $a_{pk}^{(k)}$ con máximo abs.
- Parcial Escalado: buscar el pivote más grande en relación con su fila.

7. Estrictamente Diagonal Dominante:

$$|a_{ii}| > \sum_{j=1, i \neq j}^{n} |a_{ij}|, \quad \forall i \in [1, n].$$

8. Definida Positiva: Si es simétrica, y:

$$\mathbf{x}^T A \mathbf{x} > 0 \quad \forall \mathbf{x} \neq \mathbf{0}.$$

9. **Sea** A **e.d.d:**

- Es no singular.
- Tiene solución única.
- No se necesitan intercambio de renglones (tiene factorización LU).

10. Sea A definida positiva:

- A es no singular.
- $a_{ii} > 0 \quad \forall i$.
- $(a_{ij})^2 < a_{ii}a_{jj} \quad \forall i \neq j.$
- $\bullet \max_{1 \le i, j \le n} |a_{ij}| \le \max_{1 \le i \le n} |a_{ii}|.$
- $\lambda_i > 0 \quad \forall i$.
- Podemos gaussear sin intercambio de renglones (tiene factorización LU) y los pivotes son positivos.
- Y, ¿es simétrica? $\iff \det(A_k) > 0 \ \forall k$.
- Y, A es matriz \mathbb{R} ? \Rightarrow tiene factorización **única** $A = CC^T$, y $A = LDL^T$ con A con A in A

11. Norma vectorial:

- $||\mathbf{x}|| > 0$.
- $||\mathbf{x}|| = 0 \iff \mathbf{x} = \mathbf{0}.$
- $||\alpha \mathbf{x}|| = |\alpha| \cdot ||\mathbf{x}||$.
- $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||$.
- Euclidea: $||\mathbf{x}||_2 = (\sum x_i^2)^{1/2}$.
- Infinito: $||\mathbf{x}||_{\infty} = \max\{|x_i|\}.$
- **L1**: $||\mathbf{x}||_1 = \sum |x_i|$.

12. Norma matricial:

- Ídem norma vectorial pero con matrices.
- $||A|| = \max ||A\mathbf{x}|| \text{ con } ||\mathbf{x}|| = 1.$
- $\bullet ||A\mathbf{z}|| \le ||A|| \cdot ||\mathbf{z}||.$
- $||AB|| \le ||A|| \cdot ||B||$.
- λA es matriz **cuadrada**? $\Rightarrow ||A||_{\infty} = \max \{ \sum |a_{ij}| \}.$
- 13. Eigenvalue (λ): $(A \lambda I) = 0$.
- 14. Radio espectral: $\rho(A) = \max |\lambda_i|$.

15. Número de Condición:

- $\kappa(A) = ||A|| \cdot ||A^{-1}|| = \frac{\lambda_{\max}}{\lambda_{\min}}.$
- Si $\kappa \approx 1 \Rightarrow$ bien condicionada.
- Si $\kappa >> 1 \Rightarrow$ mal condicionada.

16. Afirmaciones equivalentes (7.17):

- A es una matriz convergente.
- $\lim_{n\to\infty} ||A^{(n)}|| = 0 \quad \forall ||\cdot||.$
- $\lim_{n\to\infty} A^{(n)}\mathbf{x} = \mathbf{0} \quad \forall \mathbf{x}.$
- $\rho(A) < 1$.