Bab 6 Barisan dan Deret

Barisan Tak Hingga

Definisi

Barisan Tak Hingga adalah fungsi dengan daerah asal bilangan asli(N).

Notasi:
$$f: N \rightarrow R$$

 $n \mapsto f(n) = a_n$

Fungsi tersebut dikenal sebagai *barisan bilangan Real.* Biasa ditulis $\{a_n\}$ atau $\{a_n\}_{n=1}^{\infty}$ dengan a_n adalah suku ke-n.

- Bentuk penulisan dari barisan :
 - 1. bentuk *eksplisit* suku ke-n : $a_n = \frac{1}{n}$
 - 2. ditulis sejumlah berhingga suku awalnya.
 - 3. bentuk rekursif $a_1 = 1, a_{n+1} = \frac{a_n}{1 + a_n}$

Kekonvergenan Barisan

Definisi:

Barisan { a_n } dikatakan **konvergen** ke L ditulis

$$\lim_{n\to\infty}a_n=L$$

Jika $\forall \varepsilon > 0$, \exists bilangan asli $N \ni$

$$n \ge N \Longrightarrow |a_n - L| < \varepsilon$$

Sebaliknya, barisan yang tidak konvergen ke suatu bilangan L yang berhingga, maka barisan dikatakan **divergen** (dalam hal ini mungkin ∞ , $-\infty$ atau berosilasi)

Sifat Barisan Konvergen

- Jika barisan $\{a_n\}$ konvergen ke L dan barisan $\{b_n\}$ konvergen ke M, maka
 - 1.
 - 2.
 - 3.

, untuk M 0

- Barisan $\{a_n\}$ dikatakan
 - a. Monoton naik jika $a_{n+1} > a_n$
 - b. Monoton turun jika $a_{n+1} < a_n$

Periksa kekonvergenan barisan berikut

$$\mathbf{1.}\left\{a_{n}\right\} = \left\{\frac{n}{2n+1}\right\}$$

Jawab:

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{n}{2n+1} = \lim_{n\to\infty} \frac{n(1)}{n\left(2+\frac{1}{n}\right)} = \frac{1}{2}.$$

Karena
$$\lim_{n\to\infty} a_n = \frac{1}{2}$$
, maka $\left\{\frac{n}{2n+1}\right\}$ konvergen ke ½.

Periksa kekonvergenan barisan berikut

2.
$$\{a_n\} = \left\{\frac{n}{\sqrt{n}+3}\right\}$$

Jawab:

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{n}{\sqrt{n+3}} = \lim_{n\to\infty} \frac{\sqrt{n}(\sqrt{n})}{\sqrt{n}\left(1+\frac{3}{\sqrt{n}}\right)} = \lim_{n\to\infty} \frac{\sqrt{n}}{1+\frac{3}{\sqrt{n}}} = \infty.$$

Karena
$$\lim_{n\to\infty} a_n = \infty$$
 , maka $\left\{\frac{n}{\sqrt{n}+3}\right\}$ divergen.

Catatan

Akan dijumpai banyak persoalan konvergensi barisan yang tidak bisa langsung dicari limit tak hingga suku ke – n nya. Untuk itu kita dapat menghitung limit di tak hingga dari fungsi yang sesuai.

Teorema:

Misalkan $y = f(x), x \ge 1$ memenuhi $f(n) = a_n$

Jika
$$\lim_{x\to\infty} f(x) = L$$
, maka $\lim_{n\to\infty} a_n = L$

Fakta ini digunakan sebagai penyederhanaan karena kita dapat memakai kaidah L'Hopital untuk soal peubah kontinu.

Periksa kekonvergenan $\left\{1+\frac{1}{n}\right\}^n$ Jawab:

$$a_{n} = \left(1 + \frac{1}{n}\right)^{n}$$
Ambil $f(x) = \left(1 + \frac{1}{x}\right)^{x}$, sehingga
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^{x} = \exp\left(\lim_{x \to \infty} x \cdot \ln\left(1 + \frac{1}{x}\right)\right) \frac{x}{x}$$

$$= \exp\left(\lim_{x \to \infty} \frac{\ln(1 + (1/x))}{1/x}\right) = \exp\left(\lim_{x \to \infty} \frac{x}{x+1} \cdot \left(-\frac{1}{x^{2}}\right)\right)$$

$$= \exp\left(\lim_{x \to \infty} \frac{x}{x+1}\right) = e^{1} = e$$

Karena $\lim_{x\to\infty} f(x) = \lim_{n\to\infty} a_n = e$, maka dikatakan $\left\{1 + \frac{1}{n}\right\}^n$ konvergen ke e.

Latihan

dari barisan berikut: Periksa kekonvergenan

$$\mathbf{1.} \{a_n\} = \left\{ \frac{4n^2 + 1}{n^2 - 2n + 3} \right\}$$

$$\mathbf{2.} \{a_n\} = \left\{ \frac{3n^2 + 2}{n + 1} \right\}$$

$$\mathbf{2.}\{a_n\} = \left\{\frac{3n^2 + 2}{n+1}\right\}$$

3.
$$\{a_n\} = \left\{\frac{\sqrt{n}}{n+1}\right\}$$
4. $\{a_n\} = \left\{\frac{\pi^n}{4^n}\right\}$

4.
$$\{a_n\} = \left\{\frac{\pi^n}{4^n}\right\}$$

$$5.\left\{a_{n}\right\} = \left\{\frac{\ln(n)}{n}\right\}$$

6.
$$\left\{ \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5} \right\}$$

7.
$$\{a_n\} = \left\{n\sin\frac{\pi}{n}\right\}$$

8.
$$\{a_n\} = \{n^2 - n\}$$

9.
$$\{a_n\} = \left\{ \frac{n^2}{2n+1} \sin \frac{\pi}{n} \right\}$$

10.
$$\{a_n\} = \left\{\frac{e^n + e^{2n}}{2e^{2n}}\right\}$$

Deret Tak Hingga

Bentuk deret tak hingga dinotasikan dengan notasi sigma, sebagai berikut:

$$\sum_{i=1}^{\infty} a_i = a_1 + a_2 + a_3 + \dots + a_n + \dots$$

dengan a_n adalah suku ke-n.

Kekonvergenan suatu deret ditentukan dari barisan jumlah parsialnya.

Barisan Jumlah Parsial

Misalkan S_n menyatakan jumlah parsial ke-n suku dari deret $\sum_{i=1}^{\infty} a_i$, maka

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$
 \vdots
 $S_n = a_1 + a_2 + a_3 + ... + a_n = \sum_{i=1}^{n} a_i$

 $\{S_n\}$, dinamakan barisan jumlah parsial deret $\sum_{i=1}^{n} a_i$. Dari jumlah parsial ini didapat bahwa $S_n - S_{n-1} = a_n$.

Kekonvergenan Deret Tak Hingga

Deret tak hingga $\sum_{n=1}^{\infty} a_n$ *konvergen* dan mempunyai jumlah S jika barisan jumlah parsialnya ($\{S_n\}$) *konvergen* ke S (artinya $\lim_{n\to\infty} S_n = S$), sebaliknya jika $\{S_n\}$ *divergen* maka deret *divergen*.

Deret Geometri

Bentuk umum deret geometri :

$$\sum_{i=1}^{\infty} ar^{i-1} = a + ar + ar^2 + ar^3 + \dots + ar^{i-1}$$

dengan $a \neq 0$.

Jumlah parsial deret ini adalah

$$S_n = \sum_{i=1}^n ar^{i-1} = a + ar + ar^2 + \dots + ar^{n-1}$$
$$rS_n = ar + ar^2 + ar^3 + \dots + ar^n$$

$$(1-r)S_n = a - ar^n$$
Sehingga $S_n = \frac{a - ar^n}{1 - r}$.

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{a - ar^n}{1 - r} = \begin{cases} \frac{a}{1 - r} ; |r| < 1 \\ + \infty ; |r| \ge 1 \end{cases}$$

Jadi, deret geometri konvergen jika |r| < 1

dengan jumlah
$$S = \frac{a}{1-r}$$
 atau $\sum_{i=1}^{\infty} ar^{i-1} = \frac{a}{1-r}$.

Selidiki kekonvergenan deret

1.
$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \dots$$

Jawab:

Kalau kita perhatikan, deret ini adalah deret geometri dengan rasio $\frac{1}{2}$ (r<1).

Sehingga deret ini konvergen dengan jumlah

$$S = \frac{1/2}{1-1/2} = 1.$$

2. Selidi kekonvergenan deret $\sum_{i=1}^{\infty} \frac{1}{i(i+1)}$ (Deret Kolaps)

Jawab:

Kalau kita perhatikan

$$\sum_{i=1}^{\infty} \frac{1}{i(i+1)} = \sum_{i=1}^{\infty} \frac{1}{i} - \frac{1}{i+1}$$

Dari sini kita peroleh bahwa jumlah parsial ke-n-nya

$$S_n =$$

$$dan = 1$$

Karena barisan jumlah parsialnya konvergen ke 1, maka deret di atas juga konvergen dengan jumlah 1.

3.
$$\sum_{i=1}^{\infty} \frac{1}{i}$$
 (Deret Harmonik)

Jawab:

Dari sini kita dapatkan

$$S_n = 1 +$$

$$S_n = 1 +$$

$$\geq 1 +$$

$$= 1 +$$

Sehingga
$$\lim_{n\to\infty} S_n = \infty$$

Jadi deret harmonik adalah deret divergen.

Sifat-sifat deret tak hingga

1. Uji kedivergenan suku ke-*n*

Jika
$$\sum_{n=1}^{\infty} a_n$$
 konvergen maka $\lim_{n\to\infty} a_n = 0$

(jika $\lim_{n\to\infty} a_n \neq 0$ maka deret divergen).

Contoh: Buktikan bahwa $\sum_{n=1}^{\infty} \frac{n^2}{3n^2 + 3n + 4}$ divergen.

Bukti:

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{n^2}{3n^2 + 3n + 4} = \lim_{n\to\infty} \frac{1}{3 + \frac{3}{n} + \frac{4}{n^2}} = \frac{1}{3} \neq 0$$

Karena
$$\lim_{n\to\infty} a_n = \frac{1}{3} \neq 0$$
, maka $\sum_{n=1}^{\infty} \frac{n^2}{3n^2 + 3n + 4}$ divergen.

2. Sifat linear

Jika $\sum a_n \ dan \ \sum b_n$ konvergen dan c konstanta, maka

$$\sum ca_n \ dan \ \sum (a_n \pm b_n) \$$
konvergen, dan

$$(i) \sum ca_n = c \sum a_n$$

$$(ii) \sum a_n \pm b_n = \sum a_n \pm \sum b_n$$

3. Jika $\sum a_n$ divergen dan c konstanta, maka

 $\sum ca_n$ divergen.

Uji Kekonvergenan Deret Positif $\sum a_n$

1. Uji Integral

Misalkan f fungsi kontinu, positif dan monoton turun

pada selang [1,
$$\infty$$
). Andaikan $a_n = f(n), n \in N$

maka

$$\sum_{1}^{\infty} a_n \text{ konvergen } \iff \int_{1}^{\infty} f(x) \ dx \text{ konvergen}$$

1. Selidiki kekonvergenan dari $\sum_{n=1}^{\infty} n e^{-n^2}$

Jawab: ambil
$$f(x) = xe^{-x^2}$$
. f kontinu, positif,

turun di $[1,\infty)$ (buktikan sendiri!), maka

$$\int_{1}^{\infty} x e^{-x^{2}} dx = \lim_{b \to \infty} \int_{1}^{b} x e^{-x^{2}} dx = \frac{1}{2} \lim_{b \to \infty} \int_{1}^{b} e^{-x^{2}} d(x^{2})$$

$$= -\frac{1}{2} \lim_{b \to \infty} e^{-x^{2}} \Big|_{1}^{b} = -\frac{1}{2} \lim_{b \to \infty} \left(\frac{1}{e^{b^{2}}} - \frac{1}{e} \right) = \frac{1}{2e}$$

Karena
$$\int_{1}^{\infty} x e^{-x^2} dx$$
 konvergen, maka $\sum_{n=1}^{\infty} n e^{-n^2}$ konvergen.

2. Selidiki kekonvergenan dari $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$

Jawab: ambil
$$f(x) = \frac{1}{x \ln x}$$
, kontinu,positif,turun di[2,\infty]

$$\int_{2}^{\infty} \frac{dx}{x \ln x} = \lim_{b \to \infty} \int_{2}^{b} \frac{dx}{x \ln x} = \lim_{b \to \infty} \int_{2}^{b} \frac{d(\ln x)}{\ln x}$$
$$= \lim_{b \to \infty} \ln(\ln x) = \lim_{b \to \infty} \ln(\ln b) - \ln(\ln 2) = \infty$$

Karena
$$\int_{2}^{\infty} \frac{dx}{x \ln x}$$
 divergen, maka $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ divergen.

Latihan

Selidiki kekonvergenan deret berikut:

1.
$$\sum_{n=3}^{\infty} \frac{1}{(n-2)^2}$$

$$2. \quad \sum_{n=1}^{\infty} \frac{1}{\sqrt{2n+1}}$$

$$3. \sum_{n=2}^{\infty} \frac{1}{n \ln^2 n}$$

4.
$$\sum_{n=1}^{\infty} \frac{1}{4n^2 + 1}$$

5.
$$\sum_{n=1}^{\infty} \frac{1}{(4+3n)^{\frac{3}{2}}}$$

6. Tentukan syarat
$$k$$
 agar deret $\sum_{n=2}^{\infty} \frac{1}{n \ln^k n}, k > 0$ konvergen.

Uji Deret Positif

2. Uji Deret -p

Deret-
$$p$$
 berbentuk $\sum_{n=1}^{\infty} \frac{1}{n^p}$

Deret-
$$p$$
 berbentuk $\sum_{n=1}^{\infty} \frac{1}{n^p}$.

Jika $p < 0 \rightarrow \lim_{n \to \infty} \frac{1}{n^p} = \infty$. Maka deret divergen.

Jika $p \ge 0$, dengan menggunakan uji integral, kita dapatkan

$$\lim_{t \to \infty} \int_{1}^{\infty} \frac{1}{x^{p}} dx = \begin{cases} \lim_{t \to \infty} \ln x \Big|_{1}^{t} = \infty; \ p = 1 \\ \lim_{t \to \infty} \frac{x^{1-p}}{1-p} \Big|_{1}^{t}; \ p \neq 1 = \lim_{t \to \infty} \frac{t^{1-p} - 1}{1-p} = \begin{cases} \frac{-1}{1-p}; \ p > 1 \\ \infty; \ 0 \le p < 1 \end{cases}$$

Sehingga

$$\sum_{p=1}^{\infty} \frac{1}{n^p}$$
 konvergen jika $p>1$ dan divergen jika $p\leq 1$.

Apakah deret berikut konvergen atau divergen?

1.
$$\sum_{n=1}^{\infty} \frac{1}{n^{1,001}}$$

Berdasarkan uji deret-p, deret $\sum_{n=1}^{\infty} \frac{1}{n^{1,001}}$ konvergen karena p=1,001>1

2.
$$\sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{2}}}$$

Berdasarkan uji deret-p, deret $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{2}}}$ divergen karena $p = \frac{1}{2} < 1$

Uji Deret Positif

3. Uji banding biasa

Andaikan
$$\sum_{n=1}^{\infty} a_n$$
 dan $\sum_{n=1}^{\infty} b_n$ deret positif, maka

- 1. Jika $b_n \ge a_n \, \operatorname{dan} \sum_{n=1}^{\infty} b_n \, \operatorname{konvergen}$, maka $\sum_{n=1}^{\infty} a_n \, \operatorname{konvergen}$.
- 2. Jika $b_n \le a_n \operatorname{dan} \sum_{n=1}^{\infty} b_n$ divergen, maka $\sum_{n=1}^{\infty} a_n$ divergen.

1. Selidiki Kekonvergenan deret $\sum_{n=3}^{\infty} \frac{n}{n^2 - 5}$

Jawab:

Bandingkan
$$a_n = \frac{n}{n^2 - 5}$$
 dengan $b_n = \frac{n}{n^2} = \frac{1}{n}$
Perhatikan bahwa $\frac{n}{n^2} < \frac{n}{n^2 - 5}$ atau $\frac{1}{n} < \frac{n}{n^2 - 5}$.

Karena $\sum_{n=1}^{\infty} \frac{1}{n}$ deret divergen(harmonik), maka

$$\sum_{n=3}^{\infty} \frac{n}{n^2 - 5}$$
 juga deret yang divergen.

2. Selidiki kekonvergenan deret $\sum_{n=1}^{\infty} \frac{1}{3n^2 + 5}$

Jawab:

Bandingkan
$$a_n = \frac{1}{3n^2 + 5}$$
 dengan $b_n = \frac{1}{n^2}$

Perhatikan bahwa $\frac{1}{3n^2} = \frac{1}{3} \cdot \frac{1}{n^2} > \frac{1}{n^2 + 5}$

Karena $\sum_{n=1}^{\infty} \frac{1}{n^2}$ konvergen dengan uji deret- p (p =2) maka $\sum_{n=1}^{\infty} \frac{1}{3n^2 + 5}$ konvergen.

Latihan

Selidiki kekonvergenan deret berikut :

1.
$$\sum_{n=1}^{\infty} \frac{n^2}{n^5 + 5}$$

$$2. \sum_{n=6}^{\infty} \frac{1}{n-5}$$

3.
$$\sum_{n=1}^{\infty} \frac{1}{2^n + 1}$$

$$4. \sum_{n=1}^{\infty} \frac{6 + \cos n}{n^2}$$

5.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{2n-1}}$$

$$6. \sum_{n=1}^{\infty} \frac{\sqrt{n}}{n-1}$$

Uji Deret Positif

4. Uji Banding limit

Andaikan
$$\sum_{n=1}^{\infty} a_n$$
 dan $\sum_{n=1}^{\infty} b_n$ deret positif dan $L = \lim_{n \to \infty} \frac{a_n}{b_n}$

1. Jika
$$0 < L < \infty$$
 maka $\sum_{n=1}^{\infty} a_n$ dan $\sum_{n=1}^{\infty} b_n$ sama-sama

konvergen atau divergen.

2. Jika
$$L = 0$$
 dan $\sum_{n=1}^{\infty} b_n$ konvergen maka

$$\sum_{n=1}^{\infty} a_n$$
 konvergen.

Selidiki kekonvergenan dari deret berikut :

1.
$$\sum_{n=1}^{\infty} \frac{2n+3}{n^3-5n^2+7}$$

Jawab: Gunakan Uji Banding Limit.

Pilih
$$b_n = \frac{1}{n^2}$$
sehingga
$$L = \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{2n + 3/n^3 - 5n^2 + 7}{1/n^2} = \lim_{n \to \infty} \frac{2n^3 + 3n^2}{n^3 - 5n^2 + 7} = 2$$

Karena L=2 dan $\sum b_n = \sum \frac{1}{n^2}$ konvergen dengan uji deret-p, maka $\sum_{n=1}^{\infty} \frac{2n+3}{n^3-5n^2+7}$ konvergen.

2.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2 + 4}}$$

Jawab: Gunakan Uji Banding Limit.

Pilih
$$b_n = \frac{1}{n}$$

sehingga

$$L = \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\sqrt{\sqrt{n^2 + 4}}}{\sqrt{n}} = \lim_{n \to \infty} \sqrt{\frac{n^2}{n^2 + 4}} = 1$$

Karena
$$L=1$$
 dan $\sum_{n=1}^{\infty} \frac{1}{n}$ divergen (deret harmoik), maka $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+4}}$ divergen.

Latihan

Selidiki kekonvergenan dari deret berikut:

1.
$$\sum_{n=1}^{\infty} \frac{n}{n^2 + 2n + 3}$$

4.
$$\sum_{n=1}^{\infty} \frac{3n+1}{n^3-4}$$

$$2. \sum_{n=1}^{\infty} \frac{1}{n\sqrt{n+1}}$$

$$5. \qquad \sum_{n=1}^{\infty} \frac{\ln n}{n^2}$$

3.
$$\sum_{n=1}^{\infty} \frac{\sqrt{2n+3}}{n^2}$$

6.
$$\sum_{n=1}^{\infty} \frac{1}{2^n - 1}$$

Uji Deret Positif

5. Uji Hasil Bagi

Diketahui $\sum_{n=1}^{\infty} a_n$ merupakan suatu deret dengan suku-suku yang positif, dan $\rho = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$

- 1. Jika ρ < 1 maka deret $\sum_{n=1}^{\infty} a_n$ konvergen
- 2. Jika P > 1 maka deret $\sum_{n=1}^{\infty} a_n$ divergen
- 3. Jika ρ = 1 maka tidak dapat diambil kesimpulan.

Selidiki kekonvergenan deret berikut:

1.
$$\sum_{n=1}^{\infty} \frac{3^n}{n!}$$

Jawab: $a_n = \frac{3^n}{n!} \implies a_{n+1} = \frac{3^{n+1}}{(n+1)!}$

sehingga
$$\rho = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{3^{n+1}}{3^n} \frac{(n+1)!}{3^n} = \lim_{n \to \infty} \frac{3^{n+1}n!}{3^n(n+1)!}$$

$$= \lim_{n \to \infty} \frac{3^n \cdot 3}{(n+1)n!} \cdot \frac{n!}{3^n} = \lim_{n \to \infty} \frac{3}{(n+1)} = 0$$

Karena $\rho = 0 < 1$, maka $\sum_{n=1}^{\infty} \frac{3^n}{n!}$ konvergen.

$$\sum_{n=1}^{\infty} \frac{3^n}{n^2}$$

Jawab:

$$a_n = \frac{3^n}{n^2}$$
 dan $a_{n+1} = \frac{3^{n+1}}{(n+1)^2}$

sehingga

$$\rho = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{3^{n+1}/(n+1)^2}{3^n/n^2} = \lim_{n \to \infty} \frac{3^{n+1}n^2}{3^n(n+1)^2} = \lim_{n \to \infty} 3\left(\frac{n}{n+1}\right)^2 = 3$$

Karena
$$\rho = 3$$
 maka $\sum_{n=1}^{\infty} \frac{3^n}{n^2}$ divergen.

Selidiki kekonvergenan dari deret berikut:

$$1. \sum_{n=1}^{\infty} \frac{n^2}{n!}$$

$$2. \sum_{n=1}^{\infty} \frac{n!}{4^n}$$

$$3. \quad \sum_{n=1}^{\infty} \frac{n!}{n^n}$$

$$4. \sum_{n=1}^{\infty} \frac{4^n + n}{n!}$$

5.
$$\sum_{n=1}^{\infty} \frac{5+n}{n!}$$

$$6. \sum_{n=1}^{\infty} \frac{n^3}{(2n)!}$$

$$7.\sum_{n=1}^{\infty}\frac{2^n n!}{n^n}$$

$$8. \sum_{n=1}^{\infty} \frac{n^n}{(2n)!}$$

Uji Deret Positif

6. Uji Akar

Diketahui $\sum_{n=1}^{\infty} a_n$ merupakan suatu deret dengan suku-suku yang positif, misalkan $a = \lim_{n \to \infty} \sqrt[n]{a_n}$

- 1. Jika a <1, maka deret konvergen
- 2. Jika a > 1, maka deret divergen
- 3. Jika a = 1, maka uji tidak memberi kesimpulan.

Contoh

Selidiki kekonvergenan deret

$$1. \sum_{n=1}^{\infty} \left(\frac{2n+2}{n-1} \right)^n$$

Jawab:

$$a_n = \left(\frac{2n+2}{n-1}\right)^n \quad \text{, maka}$$

$$a = \lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \left(\left(\frac{2n+2}{n-1} \right)^n \right)^{1/n} = \lim_{n \to \infty} \frac{2n+2}{n-1} = 2.$$

Karena a=2, maka deret $\sum_{n=1}^{\infty} \left(\frac{2n+2}{n-1}\right)^n$ divergen.

$$2. \sum_{n=1}^{\infty} \left(\frac{n+2}{2n-1} \right)^n$$

Jawab:

$$a_n = \left(\frac{n+2}{2n-1}\right)^n \quad , \text{ maka}$$

$$a = \lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \left(\left(\frac{n+2}{2n-1} \right)^n \right)^{1/n} = \lim_{n \to \infty} \frac{n+2}{2n-1} = \frac{1}{2}.$$

Karena
$$a = \frac{1}{2}$$
, maka deret $\sum_{n=1}^{\infty} \left(\frac{2n+2}{n-1}\right)^n$ konvergen.

Selidiki kekonvergenan dari deret berikut:

$$1. \quad \sum_{n=1}^{\infty} \left(\frac{1}{\ln n} \right)^n$$

$$2. \sum_{n=1}^{\infty} \left(\frac{n}{3n+2} \right)^n$$

$$3. \quad \sum_{n=1}^{\infty} \left(\frac{1}{2} + \frac{1}{n} \right)^n$$

$$4. \sum_{n=1}^{\infty} \left(\frac{3n+2}{2n-1} \right)^n$$

Kesimpulan

Untuk menguji kekonvergenan deret $\sum a_n$ perhatikan a_n ;

- 1. Jika $\lim_{n\to\infty} a_n \neq 0 \Rightarrow \sum a_n$ divergen.
- 2. Jika a_n memuat bentuk $n!, r^n, n^n$, gunakan uji hasil bagi.
- 3. Jika a_n hanya memuat bentuk pangkat n yang konstan, gunakan uji banding limit.
- 4. Usaha terakhir, cobakan uji banding biasa, uji akar, atau uji integral.

Periksa kekonvergenan dari deret berikut :

1.
$$\sum_{n=3}^{\infty} \frac{1}{n^2 - 5}$$

$$5. \sum_{n=1}^{\infty} \frac{3e^n + e^{2n}}{2e^{2n}}$$

$$2. \sum_{n=1}^{\infty} \frac{n}{n^2 + 5}$$

$$6. \sum_{n=2}^{\infty} \frac{\ln n}{\sqrt{n}}$$

$$3. \sum_{n=1}^{\infty} \frac{5^n}{n!}$$

7.
$$\sum_{n=1}^{\infty} \frac{n^n}{n!}$$

$$4. \sum_{n=3}^{\infty} \frac{1}{(n-2)^2}$$

Deret Ganti Tanda dan Kekonvergenan Mutlak

Deret Ganti Tanda

Bentuk umum :
$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + \dots$$
 dengan $a_n > 0$, untuk semua n .

Contoh: deret harmonik berganti tanda,

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

Uji Deret Ganti Tanda

Deret ganti tanda dikatakan konvergen jika

- 1. a_n monoton turun
- $2. \lim_{n \to \infty} a_n = 0$

Pengujian apakah a_n monoton turun dapat dilakukan salah satu dari cara berikut :

1.
$$\frac{a_n}{a_{n+1}}$$
, jika $\frac{a_n}{a_{n+1}} > 1$, maka a_n turun.

2. Tentukan f'(x), jika $f'(x) < 0 \rightarrow a_n$ turun.

Contoh

1. Periksa kekonvergenan deret ganti tanda $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...$

Jawab:

$$a_n = \frac{1}{n}$$
 dan $a_{n+1} = \frac{1}{n+1}$

a. Karena
$$\frac{a_n}{a_{n+1}} = \frac{\frac{1}{n}}{\frac{1}{n+1}} = \frac{n+1}{n} = 1 + \frac{1}{n} > 1$$

maka $a_{n+1} < a_n$ atau a_n turun.

$$b. \lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{1}{n} = 0$$

Karena kedua syarat terpenuhi maka deret tersebut konvergen.

2.
$$1 - \frac{1}{2!} + \frac{1}{3!} - \frac{1}{4!} + \dots$$

Dari soal ini kita punya

$$a_n = \frac{1}{n!}$$
 , dan $a_{n+1} = \frac{1}{(n+1)!}$

a.
$$\frac{a_n}{a_{n+1}} = \frac{\frac{1}{n!}}{\frac{1}{(n+1)!}} = 1 + n > 1$$
 \Rightarrow $a_n > a_{n+1}$ (a_n turun).

$$b. \quad \lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{1}{n!} = 0$$

Karena kedua syarat terpenuhi, maka deret konvergen.

Selidiki kekonvergenan dari deret ganti tanda berikut:

1.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2}{3n+1}$$

4.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{3^n}$$

$$2. \sum_{n=1}^{\infty} (-1)^n \frac{n+3}{n^2+n}$$

5.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n(n+1)}$$

3.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^n}{n!}$$

$$6. \qquad \sum_{n=1}^{\infty} \left(-1\right)^{n+1} \frac{\ln n}{\sqrt{n}}$$

Konvergen Mutlak dan Konvergen Bersyarat

Misalkan $\sum_{n=1}^{\infty} U_n$ deret dengan suku-suku tak nol,

- (i) Jika $\sum_{n=1}^{\infty} |U_n|$ konvergen, maka $\sum_{n=1}^{\infty} U_n$ konvergen mutlak.
- (ii) Jika $\sum_{n=1}^{\infty} |U_n|$ divergen, tapi $\sum_{n=1}^{\infty} U_n$ konvergen, maka

 $\sum_{n=1}^{\infty} U_n$ disebut konvergen bersyarat.

Pengujian Kekonvergenan Mutlak

Karena $\sum_{n=1}^{\infty} |U_n|$ semua sukunya positif, maka gunakan

Uji deret positif.

Langkah pengujian:

Contoh

Selidiki, apakah deret konvergen mutlak, bersyarat atau

divergen.

1.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^n}{n!}$$

Jawab:

Dari soal diatas kita punya $U_n = (-1)^{n+1} \frac{2^n}{n!}$, dan $|U_n| = \frac{2^n}{(n)!}$ Sehingga dengan uji hasil bagi,

$$\rho = \lim_{n \to \infty} \frac{|U_{n+1}|}{|U_n|} = \lim_{n \to \infty} \frac{2^{n+1}}{(n+1)!} \frac{n!}{2^n} = \lim_{n \to \infty} \frac{2}{n+1} = 0$$

Menurut uji hasilbagi, $\sum_{n=1}^{\infty} |U_n|$ konvergen, maka $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^n}{n!}$ konvergen mutlak.

2.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt{n}}$$

Jawab:

$$\sum_{n=1}^{\infty} |U_n| = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$
 divergen dengan uji deret- p .

Selanjutnya uji $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt{n}}$ dengan uji DGT

(i)
$$\frac{a_n}{a_{n+1}} = \frac{1/\sqrt{n}}{1/\sqrt{n+1}} = \frac{\sqrt{n+1}}{\sqrt{n}} = \sqrt{\frac{n+1}{n}} = 1 + \sqrt{\frac{1}{n}} > 1 \longrightarrow a_n \text{ turun.}$$

(ii)
$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0$$

dari (i) dan (ii) DGT konvergen atau $\sum_{n=1}^{\infty} U_n$ konvergen. Karena $\sum_{n=1}^{\infty} |U_n|$ divergen, tapi $\sum_{n=1}^{\infty} U_n$ konvergen, maka $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt{n}}$ konvergen bersyarat.

Selidiki apakah deret berikut konvergen mutlak, konvergen bersyarat atau divergen:

1.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{3n+2}$$

5.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n(n+1)}$$

$$2. \sum_{n=1}^{\infty} \frac{\left(-4\right)^n}{n^2}$$

6.
$$\sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{n \ln n}$$

3.
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{n}{5^n}\right)$$

7.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n\sqrt{n+1}}$$

$$4.\sum_{n=1}^{\infty} \frac{(-1)^n e^n}{n}$$

$$8. \sum_{n=2}^{\infty} (-1)^n \frac{\ln n}{\sqrt{n}}$$

Deret Pangkat / Deret Kuasa

Bentuk Umum deret kuasa:

1. Deret kuasa dalam x (pusat x = 0)

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$$

2. Deret kuasa dalam (x-b) (pusat x = b)

$$\sum_{n=0}^{\infty} a_n (x-b)^n = a_0 + a_1 (x-b) + a_2 (x-b)^2 + a_3 (x-b)^3 + \dots$$

Selanjutnya kita akan mencari himpunan konvergenan(HK). Yaitu himpunan semua bilangan real x sehingga deret kuasa konvergen.

Himpunan Kekonvergenan (HK)

Misalkan
$$\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} U_n$$
 dan $\rho = \lim_{n \to \infty} \frac{|U_{n+1}|}{|U_n|}$

- 1. Jika ho < 1, maka deret konvergen mutlak.
- 2. Jika $\rho > 1$, maka deret divergen
- 3. Jika ho=1 , tidak dapat diambil kesimpulan sebelumnya.

Soal

Tentukan Himpunan kekonvergenan dari

$$1. \qquad \sum_{n=0}^{\infty} \frac{x^n}{(n+1)2^n}$$

4.
$$\sum_{n=0}^{\infty} \frac{(x+1)^{n+1}}{2^n}$$

$$2. \qquad \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

$$3. \qquad \sum_{n=0}^{\infty} x^n n!$$

Jawab :
$$1. \sum_{n=0}^{\infty} \frac{x^n}{(n+1)2^n}$$

Kita akan gunakan Uji Hasil bagi Mutlak, untuk menyelidiki kekonvergenan mutlak.

$$\rho = \lim_{n \to \infty} \frac{|U_{n+1}|}{|U_n|} = \lim_{n \to \infty} \left| \frac{x^{n+1}}{2^{n+1}(n+2)} : \frac{x^n}{(n+1)2^n} \right| = \lim_{n \to \infty} \left| \frac{x}{2} \frac{(n+1)}{(n+2)} \right| = \left| \frac{x}{2} \right|$$

Deret tersebut konvergen mutlak apabila $\rho < 1$, yaitu

$$\left| \frac{x}{2} \right| < 1 \Leftrightarrow -2 < x < 2$$

 $\left|\frac{x}{2}\right| < 1 \Leftrightarrow -2 < x < 2$ Kemudian akan kita cek untuk titik ujung intervalnya yaitu

$$x = 2 \, dan \, x = -2$$
.

Untuk
$$x = 2 \rightarrow \sum_{n=1}^{\infty} \frac{2^n}{(n+1)2^n} = \sum_{n=1}^{\infty} \frac{1}{(n+1)}$$

deret ini divergen dengan uji banding limit, maka $2 \notin HK$

Untuk
$$x = -2 \rightarrow \sum_{n=1}^{\infty} \frac{(-2)^n}{(n+1)2^n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{(n+1)}$$

Ini Deret Ganti Tanda, maka diuji dengan uji Deret Ganti Tanda:

(i)
$$\frac{a_n}{a_{n+1}} = \frac{1/n+1}{1/n+2} = \frac{n+2}{n+1} = 1 + \frac{1}{n+1} > 1 \rightarrow a_n$$
 monoton turun

(ii)
$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{1}{n+1} = 0$$

Dari (i) dan (ii) disimpulkan Deret Ganti Tanda konvergen, $\rightarrow -2 \in HK$ Sehingga selang kekonvergenannya adalah [-2,2).

Jawab :
$$2.\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Gunanakan Uji Hasil bagi Mutlak;

$$\rho = \lim_{n \to \infty} \frac{|U_{n+1}|}{|U_n|} = \lim_{n \to \infty} \left| \frac{x^{n+1}}{(n+1)!} : \frac{x^n}{n!} \right| = \lim_{n \to \infty} \left| \frac{x}{(n+1)} \right| = |x| \lim_{n \to \infty} \frac{1}{n+1} = 0$$

Karena ρ = 0 < 1, maka deret selalu konvergen untuk semua nilai x.

Jadi selang kekonvergenannya adalah $(-\infty,\infty)=R$.

Jawab:
$$3.\sum_{n=0}^{\infty} x^n n!$$

Gunakan Uji Hasil bagi Mutlak;

$$\rho = \lim_{n \to \infty} \frac{|U_{n+1}|}{|U_n|} = \lim_{n \to \infty} \left| \frac{x^{n+1}(n+1)!}{x^n n!} \right| = \lim_{n \to \infty} \left| (n+1)x \right| = |x| \lim_{n \to \infty} (n+1)$$
$$= \begin{cases} 0, & \text{jika } x = 0 \\ \infty, & \text{jika } x \neq 0 \end{cases}$$

Jadi deret tersebut konvergen hanya untuk x = 0. Sehingga HK= $\{0\}$.

Jawab:
$$4. \sum_{n=0}^{\infty} \frac{(x+1)^{n+1}}{2^n}$$

Gunakan uji hasil bagi mutlak;

$$\rho = \lim_{n \to \infty} \frac{|U_{n+1}|}{|U_n|} = \lim_{n \to \infty} \left| \frac{(x+1)^{n+2}}{2^{n+1}} \cdot \frac{2^n}{(x+1)^{n+1}} \right| = \lim_{n \to \infty} \left| \frac{(x+1)}{2} \right| = \left| \frac{x+1}{2} \right|$$

* Deret konvergen jika $\left| \frac{x+1}{2} \right| < 1 \Leftrightarrow -2 < x+1 < 2 \Leftrightarrow -3 < x < 1$

* Uji
$$x=-3$$
 $\rightarrow \sum_{n=0}^{\infty} \frac{(-2)^{n+1}}{2^n} = \sum_{n=0}^{\infty} \frac{(-1)^{n+1} 2^{n+1}}{2^n} = \sum_{n=0}^{\infty} (-1)^{n+1} .2$

Ini DGT, $\lim_{n\to\infty} a_n = 2 \neq 0$ jadi DGT divergen.

* Untuk $x = 1 \rightarrow \sum_{n=0}^{\infty} \frac{(2)^{n+1}}{2^n} = \sum_{n=0}^{\infty} 2$. Deret ini divergen dengan uji

kedivergenan suku ke-n. Jadi HK = (-3,1).

Teorema 1

Himpunan kekonvergenan deret kuasa $\sum_{n=0}^{\infty} a_n x^n$ berbentuk selang yang berupa salah satu dari ketiga jenis berikut:

- 1. satu titik x = 0 (jari-jari ; r = 0)
- 2. selang (-c, c), mungkin ditambah salah satu atau kedua titik ujungnya. (jari-jari ; r = c)
- 3. seluruh himpunan bilangan real (jari-jari ; $r = \infty$)

Teorema 2

Himpunan kekonvergenan deret kuasa $\sum a_n(x-b)^n$

$$\sum_{n=0}^{\infty} a_n (x-b)^n$$

berbentuk selang yang berupa salah satu dari ketiga jenis berikut:

- 1. satu titik x = b (jari-jari; r = 0)
- 2. selang (b-c, c+b), mungkin ditambah salah satu atau kedua titik ujungnya (jari-jari; r = c)
- 3. seluruh himpunan bilangan real (jari-jari; $r = \infty$)

Dari contoh sebelumnya;

- 1. HK=[-2,2); r=2; pusat x=0
- 2. HK=R; $r = \infty$; pusat x = 0
- 3. $HK = \{0\}$; r = 0; pusat x = 0
- 4. HK=(-3,1); r=2; pusat x=-1

Tentukan selang kekonvergenan deret pangkat berikut:

$$1.\sum_{n=0}^{\infty} \frac{(x-1)^n}{(n+1)^2}$$

$$2.\sum_{n=0}^{\infty} \frac{(x+2)^n}{(n+1)3^n}$$

$$3.\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n \, 2^n}$$

$$4.\sum_{n=0}^{\infty} \frac{(x-1)^{2n}}{4^n}$$

$$5.\sum_{n=1}^{\infty} \frac{(-2)^n (2x+1)^n}{n^2}$$

$$5.\sum_{n=1}^{\infty} \frac{(-2)^n (2x+1)^n}{n^2} \qquad 6.\sum_{n=1}^{\infty} (-1)^{n+1} \frac{(x-2)^n}{(n+1)}$$

7.
$$(x+2) + \frac{(x+2)^2}{2!} + \frac{(x+2)^3}{3!} + \dots$$

8.
$$\frac{(x+2)\ln 1}{3} + \frac{(x+2)^2 \ln 2}{2.9} + \frac{(x+2)^3 \ln 3}{3.27} + \dots$$

Operasi pada Deret Kuasa

$$Misal S(x) = \sum_{n=0}^{\infty} a_n x^n$$

maka

(i)
$$S'(x) = \sum_{n=0}^{\infty} D_x [a_n x^n] = D_x (a_0 + a_1 x + a_2 x^2 + a_3 x^3 + ...)$$

$$= \sum_{n=1}^{\infty} a_n n x^{n-1}$$

(ii)
$$\int_0^x S(t) dt = \sum_{n=0}^\infty \int_0^x a_n t^n dt = \sum_{n=0}^\infty \frac{a_n}{n+1} x^{n+1}$$

(i) Perhatikan, $\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots$ merupakan deret geometri dengan a = 1; r = x, maka

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} ; |x| < 1$$

(ii)
$$\frac{1}{(1-x)^2} = D_x \left(\frac{1}{1-x}\right) = \frac{1}{(1-x)^2} = \sum_{n=1}^{\infty} n \, x^{n-1}$$

(iii)
$$\int_{0}^{x} \frac{1}{1-t} dt = \int_{0}^{x} 1+t+t^{2}+t^{3}+\dots dt$$

$$-\ln(1-x) = t + \frac{1}{2}t^2 + \frac{1}{3}t^3 + \frac{1}{4}t^4 + \dots \Big|_0^x = x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \frac{1}{4}x^4 + \dots$$

$$\ln(1-x) = -x - \frac{1}{2}x^2 - \frac{1}{3}x^3 - \frac{1}{4}x^4 + \dots$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \dots$$

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n} x^n ; |x| < 1$$

(iv)Perhatikan
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Deret ini konvergen untuk setiap x bilangan real.

Misal
$$S(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

$$S'(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

$$S(x) = S'(x) \Rightarrow S(x) = e^x$$

Jadi

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

Tuliskan fungsi berikut dalam bentuk deret pangkat

1.
$$f(x) = \frac{1}{1+x}$$

2.
$$f(x) = \frac{1}{(1+x)^2}$$

3.
$$f(x) = \frac{x^2}{1+x}$$

4.
$$f(x) = \frac{1}{1+x^2}$$

5.
$$f(x) = tan^{-1}(x)$$

$$6. f(x) = \ln\left(\frac{1-x}{1+x}\right)$$

7.
$$f(x) = \frac{1}{(2+3x)}$$

$$8. f(x) = e^x + e^{-x}$$

9.
$$f(x) = e^{3x}$$

Deret Taylor dan Deret Maclurin

Misalkan f(x) dapat diturunkan hingga n kali pada x = b,

Maka f(x) dapat dinyatakan sebagai deret kuasa dalam (x-b):

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(b)}{n!} (x - b)^n$$

$$f(x) = f(b) + \frac{f'(b)(x-b)}{1!} + \frac{f''(b)(x-b)^2}{2!} + \dots$$

Deret di atas disebut <u>Deret Taylor</u> dengan pusat x = b.

Bila b = 0, diperoleh Deret Mac Laurin, yaitu

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} (x)^n = f(0) + f'(0)x + \frac{f''(0)}{2!} x^2 + \dots$$

Contoh

1. Tentukan deret Taylor untuk $f(x) = \frac{1}{x+2}$ dengan pusat x=1

Jawab:
$$f(1) = \frac{1}{3}$$

$$f'(x) = \frac{-1}{(x+2)^2} \to f'(1) = \frac{-1}{3^2}$$

$$f''(x) = \frac{2}{(x+2)^3} \to f''(1) = \frac{2}{3^3}$$

$$f'''(x) = \frac{-6}{(x+2)^4} \to f'''(1) = \frac{-6}{3^4}$$

Sehingga

$$f(x) = f(1) + \frac{f'(1)}{1!}(x-1) + \frac{f''(1)}{2!}(x-1)^2 + \frac{f'''(1)}{3!}(x-1)^3 + \dots$$

$$f(x) = \frac{1}{3} - \frac{1}{3^2 1!} (x - 1) + \frac{2}{3^3 2!} (x - 1)^2 - \frac{6}{3^4 3!} (x - 1)^3 + \dots$$
$$= \sum_{n=0}^{\infty} (-1)^n \frac{1}{3^{n+1}} (x - 1)^n$$

2. Tentukan deret MacLaurin untuk $f(x) = \sin x$

$$f(x) = \sin x \qquad \Rightarrow f(0) = 0$$

$$f'(x) = \cos x \qquad \Rightarrow f'(0) = 1$$

$$f''(x) = -\sin x \qquad \Rightarrow f''(0) = 0$$

$$f'''(x) = -\cos x \qquad \Rightarrow f'''(0) = -1$$

$$f^{(1)}(x) = \sin x \qquad \Rightarrow f^{(2)}(0) = 0$$

Sehingga,

$$f(x) = \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

3. Tentukan deret Taylor dari $f(x) = e^x$ dengan pusat x = 1.

$$f(x) = e^{x} \qquad \Rightarrow f(1) = e^{1}$$

$$f'(x) = e^{x} \qquad \Rightarrow f'(1) = e^{1}$$

$$f''(x) = e^{x} \qquad \Rightarrow f''(1) = e^{1}$$

$$f'''(x) = e^{x} \qquad \Rightarrow f'''(1) = e^{1}$$

$$f'''(x) = e^{x} \qquad \Rightarrow f'''(1) = e^{1}$$

$$f'''(x) = e^{x} \qquad \Rightarrow f'''(1) = e^{1}$$

Sehingga,

$$f(x) = e^{x} = e + e(x-1) + e\frac{(x-1)^{2}}{2!} + e\frac{(x-1)^{3}}{3!} + e\frac{(x-1)^{4}}{4!} + \dots$$
$$= \sum_{n=0}^{\infty} \frac{e(x-1)^{n}}{n!}$$

Atau, kita dapat menggunakan operasi deret,

$$e^{x} = e^{x-1+1}$$

$$= e \cdot e^{x-1}$$

$$= e^{\sum_{n=0}^{\infty} \frac{(x-1)^{n}}{n!}}$$

$$= \sum_{n=0}^{\infty} \frac{e(x-1)^{n}}{n!}$$

1. Perderetkan f(x) berikut dalam deret Maclaurin

$$a. f(x) = \cos x$$

$$c. f(x) = tan x$$

b.
$$f(x) = \ln(3+2x)$$

$$d. f(x) = \frac{1}{x+1}$$

2. Perderetkan f(x) berikut dalam deret taylor dengan pusat x = a

a.
$$f(x) = e^x$$
, $a = 2$

$$c. f(x) = \frac{1}{x}, a = 3$$

$$b.f(x) = \frac{1}{x+5}, a=1$$