Lecture 7 HASH FUNCTIONS

R. Rhouma

UTAS Sultanate of Oman September 2022

CSSY2201: Introduction to Cryptography

Plan

Hash functions

Secure hash Algorithm : SHA

Hash functions

- Hash function accepts variable-length input and outputs a digest or hash of fixed length
- h = H(M)
- Its main purpose is integrity checking
- A cryptographic hash function is an algorithm that is mathematically difficult to:
 - Find an entry that gives a well-specified digest (Property : one-way function)
 - find two entries that give the same digest (Property : Collision-free)

Cryptographic Hash function h=H(M)

the output of a hash function from a message is named digest

- The digest of the message is its fingerprint
- Much smaller than original post
- easy to calculate
- cannot find message from digest
- Changing the message automatically changes the digest

- Verify message integrity
 - Ensure received data is exactly as sent
 - Ensure sender identity is valid
- Example 1 : Encrypt the message and its digest with a symmetric cryptosystem

- Example 2: Encrypt only the message digest
- it reduces the complexity of calculation if confidentiality is not requested

- Example 3: A shared secret is hashed
- No need for encryption

Example 4: A shared secret combined with confidentiality

Other Uses of Hash Functions

- Used to create password files
 - When a user types a password, the hash of the password is compared to the saved hash for verification
 - This approach is used by the majority of operating systems
- used to detect intrusions and viruses
 - save the H(f) of each file to disk
 - the antivirus can later check if the file has been altered or not by recalculating its digest H(f)
 - An intruder will try to change F without changing H(f): very difficult!
- can be used to build PRNG pseudo-random sequence generators
 - generate keystreams, secret keys

Requirements of a hash function

- Variable length entry
- Fixed length output
- Efficiency: given x, it is easy to generate the digest H(x) in s/w or h/w
- One-way function (Pre-image resistant) : For a given digest h, it is impossible to find y such that H(y) = h
- No broad sense collision (Second pre-image resistant : weak collision resistant) : For any given x, it is impossible to find $y \neq x$ such that H(y) = H(x)
- No collision in the strict sense (collision resistant : Strong collision resistant) : it is impossible to find a pair (x, y) such that H(x) = H(y)
- Random criterion: The output of H must be random according to the standard tests (NIST: 16 tests of the random criterion)

Requirements of a hash function

	Preimage Resistant	Second Preimage Resistant	Collision Resistant
Hash + digital signature	yes	yes	yes*
Intrusion detection and virus detection		yes	
Hash + symmetric encryption			
One-way password file	yes		
MAC	yes	yes	yes*

^{*} Resistance required if attacker is able to mount a chosen message attack

Birthday Paradox

- In a class, what is the probability that 2 students celebrate their birthdays on the same day?
- With 365 days a year, about thirty students in the class, we say to ourselves that it must be weak...
- We will calculate the probability that, in a group of k people, these people all have a different birthday:
 - If there are 2 people, the first can have a birthday anytime, the second any other day. we therefore have : $p_2 = \frac{364}{365} = 1 \frac{1}{365}$
 - if mnt we have k people : $p_3 = (1 \frac{1}{365})(1 \frac{2}{365})$
 - in a group of k people, $p_k = (1 \frac{1}{365})(1 \frac{2}{365})\dots(1 \frac{k-1}{365})$

Student Numbers	Prob. that their anniv. dont match
1	1
2	0.99
5	0.97
10	0.88
20	0.58
22	0.52
23	0.49
30	0.29
50	0.03

⇒ It therefore only takes 23 people for there to be more than one chance in 2 (chance > 0.5) to 2 people to have their birthday on the same day.

Attacks based on the Birthday Paradox

- In an attack that looks for collisions, the adversary wants to find 2 messages that give the same digest.
- In a class of 23 students the probability of finding 2 students with the same birthday is > 0.5
- If the digest is encoded on b bits, there are 2^b possible hashes.
- if we take k different msgs, the probability of finding 2 msgs with the same digest is :

$$p = 1 - (1 - \frac{1}{2^b})(1 - \frac{2}{2^b})\dots(1 - \frac{k-1}{2^b})$$

- for $p \ge \frac{1}{2}$, it suffices that $\overline{p} = (1 \frac{1}{2^b})(1 \frac{2}{2^b})\dots(1 \frac{k-1}{2^b}) \le \frac{1}{2}$
- we have $(1 \frac{j}{2b}) \sim e^{(-\frac{j}{2b})}$
- we then have $(1 \frac{1}{2^b})(1 \frac{2}{2^b})\dots(1 \frac{k-1}{2^b}) \sim e^{(-\frac{k(k-1)}{2^{b+1}})}$
- it is therefore necessary that $e^{\left(-\frac{k(k-1)}{2^{b+1}}\right)} \le \frac{1}{2}$

Digest Size	Total nb of trials to find a collision 20 302		
8			
16			
32	77169		
64	2 x 10 ¹⁰		
128	9 x 10 ¹⁹		
160	8 x 10 ²⁵		
256	3 x 10 ⁴⁰		

General structure of a hash function

IV = Initial value

 CV_i = chaining variable

 $Y_i = i$ th input block

f = compression algorithm

L = number of input blocks

i = length of hash code

= length of input block

Secure Hash Algorithm (SHA)

- SHA was designed by "National Institute of Standards and Technology (NIST)" and published as "federal information processing standard" (FIPS 180) in 1993
- was revised in 1995 as SHA-1
- Based on MD4 hash function
- Produces a 160-bit size digest
- In 2002 NIST produced a revised version of the standard to define 3 more SHAs with lengths 256, 384, and 512 Known as SHA-2

Comparaison of SHA versions

	SHA-1	SHA-224	SHA-256	SHA-384	SHA-512
Message Digest Size	160	224	256	384	512
Message Size	< 2 ⁶⁴	< 2 ⁶⁴	< 2 ⁶⁴	< 2128	< 2128
Block Size	512	512	512	1024	1024
Word Size	32	32	32	64	64
Number of Steps	80	64	64	80	80

SHA-512

SHA-512: Processing of a 1024-Bit block

SHA-512 : buffers update

SHA-512 : Processing of the message M_i

