PRUEBA DE PÓKER

Esta prueba consiste en visualizar el número r, con cinco decimales (como si fuera una mano del juego de póker, con 5 cartas), y clasificarlo como: todos diferentes (TD), exactamente un par (1P), dos pares (2P), una tercia (T), una tercia y un par (TP), póker (P) y quintilla (Q). Por ejemplo, si $r_i = 0.69651$ se le clasifica como par, porque hay dos números 6. Ahora bien, consideremos el caso de $r_i = 0.13031$, el cual debe clasificarse como dos pares (dos números 1 y dos números 3). Finalmente, $r_i = 0.98898$ debe clasificarse como una tercia y un par, porque hay tres números 8 y dos números 9. La prueba póker se puede realizar a números r_i con tres, cuatro y cinco decimales. Para r_i con tres decimales sólo hay tres categorías de clasificación: todos diferentes (TD), un par (1P) y una tercia (T). Cuando se consideran r, con cuatro decimales se cuenta con cinco opciones para clasificar los números: todos diferentes (TD), exactamente un par (1P), dos pares (2P), una tercia (T) y póker (P). Las tablas 2.3 a 2.5 presentan la probabilidad esperada para cada una de las categorías de clasificación de esta prueba para conjuntos r, que contienen n números con 3.4 v 5 decimales.

Tabla 2.3 Prueba póker para números con 3 decimales.

Categoría	Probabilidad	E,	
Todos diferentes (TD)	0.72	0.72n	
Exactamente un par (1P)	0.27	0.27n	
Tercia (T)	0.01	0.01 <i>n</i>	

Tabla 2.4 Prueba póker para números con 4 decimales.

Categoría	Probabilidad	E,	
Todos diferentes (TD)	0.5040	0.5040n	
Exactamente 1 par (1P)	0.4320	0.4320n	
2 pares (2P)	0.0270	0.0270n	
Tercia (T)	0.0360	0.0360n	
Póker (P)	0.0010	0.0010n	

Tabla 2.5 Prueba póker para números con 5 decimales.

Categoría	Probabilidad	E,	
Todos diferentes (TD)	0.3024	0.3024n	
Exactamente 1 par (1P)	0.5040	0.5040n	
2 pares (2P)	0.1080	0.1080n	
1 tercia y 1 par (TP)	0.0090	0.0090n	
Tercia (T)	0.0720	0.0720n	
Póker (P)	0.0045	0.0045n	
Quintilla (Q)	0.0001	0.0001 <i>n</i>	

La prueba póker requiere el estadístico de la distribución Chi-cuadrada $\chi^2_{\alpha,6}$ para números con 5 decimales, $\chi^2_{\alpha,4}$ para números con 4 decimales, y $\chi^2_{\alpha,2}$ para números con 3 decimales. $\chi^2_{\alpha,6}$ tiene 6 grados de libertad, debido a que los números se clasifican en 7 categorías o clases: todos diferentes, exactamente un par, dos pares, una tercia y un par, una tercia, póker y quintilla.

El procedimiento de la prueba consiste en:

- a) Determinar la categoría de cada número del conjunto r,
- b) Contabilizar los números r_i de la misma categoría o clase para obtener la frecuencia observada (O_i).
- c) Calcular el estadístico de la prueba χ_0^2 con la ecuación

$$\chi_0^2 = \sum_{i=1}^m \frac{(E_i - O_i)^2}{E_i}$$

donde E_i es la frecuencia esperada de números r_i en cada categoría, y m representa la cantidad de categorías o clases en las que se clasificaron los números r_i , siendo m = 7, m = 5, y m = 3 los números de categorías para la prueba póker con 5, 4 y 3 decimales, respectivamente. Por último:

d) comparar el estadístico de χ_0^2 con $\chi_{\alpha,m-1}^2$.

Si χ_0^2 es menor que $\chi_{\alpha,m-1}^2$, se dice que no se puede rechazar la independencia de los números del conjunto r_i . En caso contrario la independencia de los números del conjunto r_i se rechaza.

Realice la prueba póker, con un nivel de aceptación de 95%, a los siguientes 30 números entre cero y uno, con 5 decimales.

0.06141	0.72484	0.94107	0.56766	0.14411	0.87648
0.81792	0.48999	0.18590	0.06060	0.11223	0.64794
0.52953	0.50502	0.30444	0.70688	0.25357	0.31555
0.04127	0.67347	0.28103	0.99367	0.44598	0.73997
0.27813	0.62182	0.82578	0.85923	0.51483	0.09099

Primero hay que clasificar cada número del conjunto r_i , asignándole las claves que se mencionaron antes. El resultado es el que se muestra en la tabla 2.6:

Tabla 2.6 Clasificación de los números de un conjunto r_i , de acuerdo con la prueba póker.

0.06141	1P	0.72484	1P	0.94107	TD	0.56766	Т	0.14411	TP	0.87648	1P
0.81792	TD	0.48999	Т	0.18590	TD	0.06060	TP	0.11223	2P	0.64794	1P
0.52953	1P	0.50502	2P	0.30444	Т	0.70688	1P	0.25357	1P	0.31555	Т
0.04127	TD	0.67347	1P	0.28103	TD	0.99367	1P	0.44598	1P	0.73997	2P
0.27813	TD	0.62182	1P	0.82578	1P	0.85923	TD	0.51483	TD	0.09099	TP

Para seguir con la prueba se recomienda hacer una tabla como la siguiente:

Tabla 2.7 Cálculos de la prueba póker.

Categorías	0,	Ε,	$\frac{(E_i - O_i)^2}{E_i}$	
Todos diferentes (TD)	8	(0.3024)(30) = 9.072	0.12667	
Exactamente 1 par (1P)	12	(0.5040)(30) = 15.12	0.64380	
2 pares (2P)	3	(0.1080)(30) = 3.24	0.01777	
1 tercia y 1 Par (TP)	3	(0.0090)(30) = 0.27	27.6033	
Tercia (T)	4	(0.0720)(30) = 2.16	1.56740	
Póker (P)	0	(0.0045)(30) = 0.135	0.135	
Quintilla (Q)	0	(0.0001)(30) = 0.003	0.003	

El estadístico
$$\chi_0^2 = \sum_{i=1}^7 \frac{(E_i - O_i)^2}{E_i} = 30.0969$$
 es mayor que el estadístico correspondiente

de la Chi-cuadrada: $\chi^2_{0.05,6}$ = 12.59. En consecuencia, se rechaza que los números del conjunto r_i son independientes.