Examen formatif

Note: L'examen formatif est plus long que le sommatif, la raison est de permettre que le formatif soit une préparation complète pour le sommatif.

Exercice 1. On considère le système de coordonnées (ρ, γ) dans le plan défini par

$$x = a\rho \cos \gamma$$
$$y = b\rho \sin \gamma$$

où $\rho \ge 0$, $0 \le \gamma \le 2\pi$, et où a et b sont des constantes positives avec a > b.

- a) Décrire les courbes de coordonnées de ce système de coordonnées.
- b) Ce système forme-t-il un système de coordonnées curvilignes orthogonales?
- c) À l'aide de la matrice Jacobienne, calculer l'élément d'aire dans ces coordonnées.
- d) On considère le cas où les constantes a et b sont données par a=3 et b=2. Trouver les coordonnées (ρ, γ) du point (x, y) = (2, 1).

Exercice 2. Soit

$$f(x, y, z) = e^{i(\cos(xy)+z)},$$

$$x(u, v, w) = \frac{u^2 v}{w},$$

$$y(u, v, w) = \sin(uvw),$$

$$z(u, v, w) = w^3.$$

En utilisant la règle de dérivation en chaîne, calculer $\frac{\partial f}{\partial w}$.

Exercice 3. L'humidité en l'Amérique du Nord est donnée par la fonction

$$H(x,y) = \frac{x^2 + y^2 + 2xy + 40x + 40y + 400}{20000} + \frac{x^2 - 2xy + y^2}{2},$$

où l'axe des y pointe vers le Nord et l'axe des x vers l'Est. Le point (x, y) = (0, 0) correspond à Sherbrooke. Jeanne, une résidente de Sherbrooke, fait de l'arthrite chronique.

- a) Pour Jeanne, aller vers le Nord-Ouest lui permettra-t-il de moins souffrir? O= Papalolae += même 5015
- b) Dans quelle direction doit-elle aller pour réduire sa souffrance le plus rapidement possible?
- c) En quel point l'humidité est-elle minimale? $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = 0$

Exercice 4. Soit
$$z = f(x, y) = 4 - (x^2 + y^2)$$
.

a) Tracer le graphe de cette fonction pour les points (x, y) inclus dans le disque défini par $x^2 + y^2 \le 4$.

- b) À quoi correspondent les courbes de niveau de cette fonction? Ze constante
- c) On considère le volume de la région inclue sous le graphe de cette fonction entre z = 0 et z = 4.
 - i) Écrire sous forme d'intégrale double le volume de cette région (on n'a pas à évaluer cette intégrale ici).
 - ii) Écrire sous forme d'intégrale triple le volume de cette région. Lorsqu'on fait la première intégrale (c.à.d. en z), arrive-t-on à la même expression qu'en i)? On n'a pas à évaluer l'intégrale ici.

Exercice 5. On considère la région volumique contenue dans le cube défini de la façon suivante : x varie de 0 à 1, y varie de 0 à 1 et z varie aussi de 0 à 1. Supposons qu'il y ait une densité de charge électrique dans cette région donnée par $\rho(x, y, z) = z$ (la densité de charge est la charge par unité de volume). Calculer la charge totale contenue dans le cube.

Exercice 6. Que représentent les surfaces de niveau de la fonction f(x, y, z) = 4x - 211y + 909z + 8?

Exercice 7. Tracer le champ de vecteurs suivant dans le plan : $\vec{v}(x, y) = y\vec{t} + x\vec{j}$.

Exercice 8. Soit la courbe définie par la droite reliant les points P_1 : (0,0,1) et P_2 : (1,1,3) dans l'espace.

a) Donner un vecteur tangent à cette courbe.

(a)= (+ + (6 = P1 + + UPP)

- b) Supposons que la température dans l'espace soit donnée par la fonction $T(x, y, z) = \cos(x + y + z)$. Calculer la valeur moyenne de la température le long de la courbe entre les points P_1 et P_2 . Rappel : La valeur moyenne d'une fonction f(t) entre t_i et t_f est donnée par $\bar{f} = \frac{1}{t_f t_i} \int_{t_i}^{t_f} f(t) dt$.
- c) Une fourmi volante se déplace le long de la droite entre P_1 et P_2 . Elle transporte un mouche récalcitrante qui ne veut pas la suivre. Pour la forcer à la suivre, elle doit exercer la force suivante pour maintenir sa trajectoire le long de la droite : $\vec{F}(x, y, z) = (\cos(z), \sin(x), y^2)$. Quel travail aura fait la fourmi entre P_1 et P_2 ?

Exercice 9. Soit l'intégrale I suivante qu'on désire évaluer en suivant un chemin entre les points P et Q:

$$I = \int_{P}^{Q} 2xy^{3}z^{4}dx + 3x^{2}y^{2}z^{4}dy + 4x^{2}y^{3}z^{3}dz.$$

La valeur de cette intégrale dépendra-t-elle du chemin suivi entre *P* et *Q*?

Exercice 10. Intégrale de surface et théorème de la divergence.

- a) Évaluer l'intégrale de surface $\int_S \vec{F} \cdot \hat{n} \, dA$ pour $\vec{F} = (4x, 3z, 5y)$, où S est la surface du cône donnée par $z^2 \ge x^2 + y^2$, $0 \le z \le 2$.
- b) Évaluer l'intégrale précédente en faisant appel au théorème de la divergence.

Exercice 11. Soit le champ vectoriel $\vec{F} = (\cos(\pi y), \sin(\pi x), 0)$ et C le chemin défini par les sommets d'un rectangle suivants : (0,1,0), (0,0,1), (1,0,1) et (1,1,0). Le pourtour du rectangle est parcouru dans le sens contraire des aiguilles d'une montre lorsqu'on le regarde de haut.

- a) Évaluer l'intégrale de chemin $\int_C \vec{F} \cdot \mathrm{d}\vec{r}$ directement.
- b) Évaluer l'intégrale de chemin demandée en a) en faisant appel au théorème de Stokes.

Exercice 12. Démontrer que la divergence d'un rotationnel est toujours nulle, c.à.d.

$$\nabla \cdot (\nabla \times \vec{F}) = 0.$$

Quelle propriété sur les dérivées utilise-t-on ici?

Formulaire d'équations

Identités trigonométriques élémentaires

$$\cos^2 A + \sin^2 A = 1$$
 $\cos^2 A = \frac{1 + \cos 2A}{2}$ $\sin^2 A = \frac{1 - \cos 2A}{2}$ $\sin 2A = 2\sin A \cos A$

Produits entre vecteurs

Soient $\vec{a}=a_x\hat{e}_x+a_y\hat{e}_y+a_z\hat{e}_z$ et $\vec{b}=b_x\hat{e}_x+b_y\hat{e}_y+b_z\hat{e}_z$ des vecteurs, alors

$$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z \qquad \vec{a} \times \vec{b} = \det \begin{vmatrix} \hat{e}_x & \hat{e}_y & \hat{e}_z \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

Opérateurs vectoriels

$$\operatorname{grad} f = \vec{\nabla} f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) \qquad \text{D\'eriv\'ee directionnelle} : D_{\hat{u}} f = \vec{\nabla} f \cdot \hat{u}$$

Soit $\vec{F}(x, y, z) = F_1(x, y, z)\hat{e}_x + F_2(x, y, z)\hat{e}_y + F_3(x, y, z)\hat{e}_z$ un champ de vecteurs, alors

$$\operatorname{div} \vec{F} = \vec{\nabla} \cdot \vec{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} \quad \operatorname{rot} \vec{F} = \vec{\nabla} \times \vec{F} = \det \begin{bmatrix} \hat{e}_x & \hat{e}_y & \hat{e}_z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{bmatrix}$$

Laplacien:
$$\nabla^2 f = \vec{\nabla} \cdot \vec{\nabla} f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$
 $\nabla^2 \vec{F} = (\nabla^2 F_1, \nabla^2 F_2, \nabla^2 F_3)$

$$\vec{\nabla} \times \left(\vec{\nabla} f\right) = 0, \qquad \vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{A}\right) = 0, \qquad \vec{\nabla} \times \left(\vec{\nabla} \times \vec{A}\right) = \vec{\nabla} \left(\vec{\nabla} \cdot \vec{A}\right) - \nabla^2 \vec{A}$$

Formules utiles pour l'intégration - Jacobien

Si
$$x = x(u, v, w)$$
, $y = y(u, v, w)$ et $z = z(u, v, w)$, alors

$$dV = d^{3}\vec{r} = dxdydz = \left| \frac{\partial(x, y, z)}{\partial(u, v, w)} \right| dudvdw, \qquad \left| \frac{\partial(x, y, z)}{\partial(u, v, w)} \right| = det \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{bmatrix}$$

Intégrale de surface (ou de flux)

$$\Phi = \int_{S} \vec{F} \cdot \hat{n} \, dA = \int_{S} \vec{F} \cdot \vec{N} \, du \, dv$$

$$\vec{N} = \vec{r}_{u} \times \vec{r}_{v}$$

$$\oint_{S} \vec{F} \cdot \hat{n} \, dA = \int_{V} \vec{\nabla} \cdot \vec{F} \, dV \quad \text{(Théorème de la divergence)}$$

Intégrale de chemin

$$W = \int_{C} \vec{F} \cdot d\vec{r} = \int_{C} \left(\vec{F} \cdot \frac{d\vec{r}}{dt} \right) dt$$

$$\oint_{C} \vec{F} \cdot d\vec{r} = \int_{S} (\vec{\nabla} \times \vec{F}) \cdot \hat{n} \, dA \quad \text{(Th\'eor\`eme de Stokes)}$$

De polaires à cartésiennes

$$x = r \cos \theta$$
$$y = r \sin \theta$$
$$\hat{e}_x = \cos \theta \hat{e}_r - \sin \theta \hat{e}_\theta$$
$$\hat{e}_y = \sin \theta \hat{e}_r + \cos \theta \hat{e}_\theta$$

De cartésiennes à polaires

$$r = \sqrt{x^2 + y^2}$$

$$\theta = \arctan \frac{y}{x}$$

$$\hat{e}_r = \cos \theta \, \hat{e}_x + \sin \theta \, \hat{e}_y$$

$$\hat{e}_\theta = -\sin \theta \, \hat{e}_x + \cos \theta \, \hat{e}_y$$

Élément différentiel de surface : $dxdy = rdrd\theta$ Élément différentiel de ligne : $d\vec{r} = [dx, dy]$

De cylindriques à cartésiennes

$$x = \rho \cos \phi$$

$$y = \rho \sin \phi$$

$$z = z$$

$$\hat{e}_x = \cos \phi \hat{e}_\rho - \sin \phi \hat{e}_\phi$$

$$\hat{e}_y = \sin \phi \hat{e}_\rho + \cos \phi \hat{e}_\phi$$

$$\hat{e}_z = \hat{e}_z$$

De cartésiennes à cylindriques

$$\rho = \sqrt{x^2 + y^2}$$

$$\phi = \arctan \frac{y}{x}$$

$$z = z$$

$$\hat{e}_{\rho} = \cos \phi \hat{e}_x + \sin \phi \hat{e}_y$$

$$\hat{e}_{\phi} = -\sin \phi \hat{e}_x + \cos \phi \hat{e}_y$$

$$\hat{e}_z = \hat{e}_z$$

 $dxdydz = \rho d\rho d\phi dz$

Élément différentiel de surface du cylindre : $dA = \rho d\phi dz$ Élément différentiel de surface sur un plan xy : $dA = \rho d\rho d\phi$

De sphériques à cartésiennes

$$x = r \sin \theta \cos \phi$$

$$y = r \sin \theta \sin \phi$$

$$z = r \cos \theta$$

$$\hat{e}_x = \sin \theta \cos \phi \hat{e}_r + \cos \theta \cos \phi \hat{e}_\theta - \sin \phi \hat{e}_\phi$$

$$\hat{e}_y = \sin \theta \sin \phi \hat{e}_r + \cos \theta \sin \phi \hat{e}_\theta + \cos \phi \hat{e}_\phi$$

$$\hat{e}_z = \cos \theta \hat{e}_r - \sin \theta \hat{e}_\theta$$

De cartésiennes à sphériques

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$\theta = \arctan \frac{\sqrt{x^2 + y^2}}{z}$$

$$\phi = \arctan \frac{y}{x}$$

 $\hat{e}_r = \sin\theta\cos\phi\hat{e}_x + \sin\theta\sin\phi\hat{e}_y + \cos\theta\hat{e}_z$ $\hat{e}_\theta = \cos\theta\cos\phi\hat{e}_x + \cos\theta\sin\phi\hat{e}_y - \sin\theta\hat{e}_z$ $\hat{e}_\phi = -\sin\phi\hat{e}_x + \cos\phi\hat{e}_y$

 $\mathrm{d}x\mathrm{d}y\mathrm{d}z = r^2 \sin\theta \,\mathrm{d}r\mathrm{d}\theta \,\mathrm{d}\phi$

Élément différentiel de surface : $dA = r^2 \sin\theta d\theta d\phi$

Differentiation

$$(cu)' = cu' \qquad (c \text{ constant})$$

$$(u + v)' = u' + v'$$

$$(uv)' = u'v + v'u$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$$

$$\frac{du}{dx} = \frac{du}{dy} \cdot \frac{dy}{dx}$$

$$(Chain rule)$$

$$\int uv' dx = uv - \int u'$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$

$$\int x^n dx = \frac{1}{n+1} + c$$

$$\int x^n dx = -\cos x + c$$

$$(x^n)' = nx^{n-1}$$

$$(e^x)' = e^x$$

$$(a^x)' = a^x \ln a$$

$$(\sin x)' = \cos x$$

$$(\cos x)' = -\sin x$$

$$(\tan x)' = \sec^2 x$$

$$(\cot x)' = -\csc^2 x$$

$$(\sinh x)' = \cosh x$$

$$(\cosh x)' = \sinh x$$

$$(\ln x)' = \frac{1}{x}$$

$$(\log_a x)' = \frac{\log_a e}{x}$$

$$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$$

$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$

$$(\arctan x)' = \frac{1}{1+x^2}$$

$$(\operatorname{arccot} x)' = -\frac{1}{1+x^2}$$

Integration

$$\int uv' dx = uv - \int u'v dx$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + c \qquad (n \neq -1)$$

$$\int \frac{1}{x} dx = \ln|x| + c$$

$$\int \int \frac{1}{x} dx = \frac{1}{a} e^{ax} + c$$

$$\int \sin x dx = -\cos x + c$$

$$\int \cos x dx = \sin x + c$$

$$\int \cot x dx = \ln|\sin x| + c$$

$$\int \sec x dx = \ln|\sec x + \tan x| + c$$

$$\int \csc x dx = \ln|\csc x - \cot x| + c$$

$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + c$$

$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \arcsin \frac{x}{a} + c$$

$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \arcsin \frac{x}{a} + c$$

$$\int \sin^2 x dx = \frac{1}{2}x - \frac{1}{4}\sin 2x + c$$

$$\int \cot^2 x dx = \tan x - x + c$$

$$\int \cot^2 x dx = -\cot x - x + c$$

$$\int \ln x dx = x \ln x - x + c$$

$$\int e^{ax} \sin bx dx$$

$$= \frac{e^{ax}}{a^2 + b^2} (a \cos bx + b \sin bx) + c$$