

NDEJJE SENIOR SECONDARY SCHOOL

Uganda Advanced Certificate of Education MARKING GUIDE FOR MOCK SET 4 EXAMINATIONS 2017

PURE MATHEMATICS

Paper 1

SNo.	Working	Marks
1	$ar + ar^2 = 48, \implies ar(1+r) = 48 \rightarrow (1)$ $ar^4 + ar^5 = 1296, \implies ar^4(1+r) = 1296 \rightarrow (2)$ (2) ÷ (1) gives;	B1 –for eqns 1 & 2
	$\frac{ar^{4}(1+r)}{ar(1+r)} = \frac{1296}{48} , \Rightarrow r^{3} = 27, \Rightarrow r = 3$ From (1);	M1 -solving A1 –for r.
	$a = \frac{48}{r(1+r)} = \frac{48}{3(1+3)} = 4$	M1
	$\Rightarrow S_{12} = 4\left(\frac{3^{12} - 1}{3 - 1}\right) = 1062880$	A1
2	$(\cos \theta + i \sin \theta)^{5} = \cos 5\theta + i \sin 5\theta$ $\cos^{5} \theta + 5i \cos^{4} \theta \sin \theta - 10 \cos^{3} \theta \sin^{2} \theta - 10i \cos^{2} \theta \sin^{3} \theta$ $+ 5 \cos \theta \sin^{4} \theta + i \sin^{5} \theta = \cos 5\theta + i \sin 5\theta$ By comparison, $\cos 5\theta = \cos^{5} \theta - 10 \cos^{3} \theta \sin^{2} \theta + 5 \cos \theta \sin^{4} \theta$ $= \cos^{5} \theta - 10 \cos^{3} \theta (1 - \cos^{2} \theta) + 5 \cos \theta (1 - \cos^{2} \theta)^{2}$ $= \cos^{5} \theta - 10 \cos^{3} \theta + 10 \cos^{5} \theta$ $+ 5 \cos \theta (1 - 2 \cos^{2} \theta + \cos^{4} \theta)$ $= -10 \cos^{3} \theta + 11 \cos^{5} \theta + 5 \cos \theta - 10 \cos^{3} \theta + 5 \cos^{5} \theta$ $= 16 \cos^{5} \theta - 20 \cos^{3} \theta + 5 \cos \theta$	M1 - equating M1 - expanding M1 - equating real parts M1 - simplification A1
3	(i). $g(x) = x^2 - 5x - 14 = (x - 7)(x + 2)$ let, $R(x) = 2x + 5$ for, $(x - 7) = 0, x = 7, \implies R(7) = 2(7) + 5 = 19$ (ii). for, $(x + 2) = 0, x = -2, \implies R(-2) = 2(-2) + 5 = 1$	B1 M1 A1 M1 A1

4	A	
4	Â	
	c	
	a/ \	B1 -vector
		diagram
	о в В Т	
	$OD = DA = \frac{1}{2} \overset{\boldsymbol{a}}{\sim}, \qquad AB = OB - OA = \overset{\boldsymbol{b}}{\sim} - \overset{\boldsymbol{a}}{\sim}$	
	$AC: CB = 3:1.$ $\Rightarrow AC = {3 \over 2}AB = {3 \over 2}\mathbf{b} - {3 \over 2}\mathbf{a}$	B1 –for AC
	$AC: CB = 3: 1, \qquad \Rightarrow AC = \frac{3}{4}AB = \frac{3}{4}\mathbf{b} - \frac{3}{4}\mathbf{a}$ $DT = \mu DC = \mu (DA + AC) = \mu \left[\frac{1}{2}\mathbf{a} + \frac{3}{4}\mathbf{b} - \frac{3}{4}\mathbf{a} \right] = \frac{3}{4}\mu \mathbf{b} - \frac{1}{4}\mu \mathbf{a}$	
	$DT = \mu DC = \mu (DA + AC) = \mu \left \frac{1}{2} \mathbf{a} + \frac{3}{4} \mathbf{b} - \frac{3}{4} \mathbf{a} \right = \frac{3}{4} \mu \mathbf{b} - \frac{1}{4} \mu \mathbf{a}$	B1 –for DT
	$OT = \lambda OB = \lambda \boldsymbol{b}$	
	OT = OD + DT	
	$\lambda \mathbf{b} = \frac{1}{2} \mathbf{a} + \frac{3}{4} \mu \mathbf{b} - \frac{1}{4} \mu \mathbf{a}$	
	Comparing coefficients of \tilde{a} gives:	
	$0 = \frac{1}{2} - \frac{1}{4}\mu, \qquad \Longrightarrow \mu = 2$	
		B1 –for μ
	Comparing coefficients of \mathbf{b} gives:	
	$\lambda = \frac{3}{4}\mu = \frac{3}{4} \times 2 = \frac{3}{2}, \qquad \Longrightarrow OT = \lambda \mathbf{b} = \frac{3}{2} \mathbf{b}$	B1 –for OT
	4' 4 2' ~ 2~	B1 -101 01
5	$\int_{2}^{2} \int_{1}^{2} \int_{1}^{2} \left(1 + \cos 2x\right)$	
	$\int x \cos^2 x dx = \int x \left(\frac{1 + \cos 2x}{2} \right) dx$	
	$= \frac{1}{2} \int x dx + \frac{1}{2} \int x \cos 2x dx$	B1
	Sign Differentiation Integration	B1
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	B1 B1
	$\left \begin{array}{c c} - & \frac{1}{2}\sin 2x \end{array} \right $	
	+ 0 1	B1
	$-\frac{1}{4}\cos 2x$	
	C 1 1 r1 1 1	M1 M1 -
	$\int x \cos^2 x dx = \frac{1}{2}x^2 + \frac{1}{2} \left[\frac{1}{2}x \sin 2x + \frac{1}{4} \cos 2x \right] + c$	substitution
	J 2 212 4 J	&
	1 , 1 , 1	simplification
	$= \frac{1}{2}x^2 + \frac{1}{4}x\sin 2x + \frac{1}{8}\cos 2x + c$	A1 .
	J.	
6	$y = ax^2 + bx + c, \qquad \Longrightarrow \frac{dy}{dx} = 2ax + b$	P1 for du/du
	At point $(2,4)$,	B1 – for dy/dx
1	11c point (2, 1),	

	$y = x + a, \Rightarrow 4 = 2 + a, \Rightarrow a = 2$ gradient, $\frac{dy}{dx} = 2 \times 2 \times 2 + b = 1, \Rightarrow b = -7$ $y = ax^2 + bx + c, \Rightarrow 4 = 2(2)^2 + (-7)(2) + c$ $\Rightarrow 4 = 8 - 14 + c, \Rightarrow c = 10$ $\therefore a = 2, b = -7, c = 10$	M1 –solving A1 –for a A1 –for b A1 –for c
7	Volume = $\pi \int_3^4 y^2 dx = \pi \int_3^4 (x-2)^{-2} dx = \pi \left[\frac{(x-2)^{-1}}{-1} \right]_3^4$ = $\pi \left[\frac{1}{2-x} \right]_3^4 = \pi \left(-\frac{1}{2} + 1 \right) = \frac{1}{2} \pi$ cubic units	M1 M1 M1 M1 A1
8	By cosine rule, $(x + y)^{2} = x^{2} + (x - y)^{2} - 2x(x - y)\cos A$ $x^{2} + 2xy + y^{2} = x^{2} + x^{2} - 2xy + y^{2} - 2x(x - y)\cos A$ $4xy - x^{2} = -2x(x - y)\cos A$ $x - 4y = 2(x - y)\cos A$ $\cos A = \frac{x - 4y}{2(x - y)}$	M1 – substitution M1 M1 – simplification A1
9	At point A, $3(x-11) = x-3, \Rightarrow x = 15$ when, $x = 15, y = 15-11 = 4, \Rightarrow A(15,4)$ At point B, $11-x = x-1, \Rightarrow x = 6$	B1 M1 B1

when, x = 6, y = 6 - 1 = 5, $\Rightarrow B(6,5)$

At point C,

$$3(x-1) = x - 3, \implies x = 0$$
when, $x = 0, y = 0 - 1 = -1, \implies C(0, -1)$

$$centroid = \left(\frac{15 + 6 + 0}{3}, \frac{4 + 5 - 1}{3}\right) = \left(7, \frac{8}{3}\right)$$

M1 A1

(b).

Gradient of AC =
$$\frac{-4-4}{-3-5}$$
 = 1, \implies Gradient of BD = -1

Midpoint of AC,
$$M\left(\frac{-3+5}{2}, \frac{-4+4}{2}\right) = (1,0)$$

B1 –graident AC

The equation of line BD is given by:

$$\frac{y-0}{x-1} = -1, \qquad \Longrightarrow y = -x+1$$

The equation of line BC is given by:

$$\frac{y-4}{x-5} = 2, \qquad \Longrightarrow y = 2x - 6$$

At point B,

$$-x + 1 = 2x - 6, \qquad \Rightarrow x = \frac{7}{3}$$

$$x = \frac{7}{3}, \qquad y = -\frac{7}{3} + 1 = -\frac{4}{3}, \qquad \Rightarrow B\left(\frac{7}{3}, -\frac{4}{3}\right)$$
Midpoint of AC = $\left(\frac{\frac{7}{3} + x}{2}, -\frac{\frac{4}{3} + y}{2}\right) = (1, 0)$

$$\frac{7}{3} + x = 2, \qquad \Rightarrow x = \frac{1}{3}$$

$$-\frac{4}{3} + y = 0, \qquad \Rightarrow y = \frac{4}{3}$$

$$\Rightarrow D\left(\frac{1}{3}, \frac{4}{3}\right)$$

B1

B1 –for D

The coordinates of B and D are $B\left(\frac{7}{3}, -\frac{4}{3}\right)$ and $D\left(\frac{1}{3}, \frac{4}{3}\right)$.

$$AC = OC - OA = {5 \choose 4} - {-3 \choose -4} = {8 \choose 8}$$

		1
	$MB = OB - OM = \frac{1}{3} {7 \choose -4} - {1 \choose 0} = \frac{1}{3} {4 \choose -4}$ $Area = AC MB = \sqrt{8^2 + 8^2} \times \frac{1}{3} \sqrt{4^2 + 4^2} = \frac{64}{3}$	M1
	$=21\frac{1}{3} \text{ sq. units}$	A1
10	$\frac{x^2 + 6}{(x^2 + 4)(x^2 + 9)} \equiv \frac{Ax + B}{(x^2 + 4)} + \frac{Cx + D}{(x^2 + 9)}$ $x^2 + 6 \equiv (Ax + B)(x^2 + 9) + (Cx + D)(x^2 + 4)$ Comparing coefficients of;	M1 M1
	x^0 , $9B + 4D = 6 \rightarrow (1a)$ x^1 , $9A + 4C = 0 \rightarrow (1b)$ x^2 , $B + D = 1 \rightarrow (1c)$ x^3 , $A + C = 0 \rightarrow (1d)$ Equation $(1a) - (1c)$ gives:	M1
	$5B = 2, \qquad \Rightarrow B = \frac{2}{5}$ From equation (1c);	A1
	$D = 1 - B = 1 - \frac{2}{5} = \frac{3}{5}$ Equation (1b) – (1d) gives:	A1
	$5A = 0, \implies A = 0$ From equation (1c); $C = -A = 0$	A1
	$\frac{x^2 + 6}{(x^2 + 4)(x^2 + 9)} \equiv \frac{2}{5(x^2 + 4)} + \frac{3}{5(x^2 + 9)}$ $\int_0^1 \frac{x^2 + 6}{(x^2 + 4)(x^2 + 9)} dx = \frac{2}{5} \int_0^1 \frac{1}{(x^2 + 4)} dx + \frac{3}{5} \int_0^1 \frac{1}{(x^2 + 9)} dx$	B1
	$\int_0^{\infty} \frac{(x^2+4)(x^2+9)}{(x^2+4)(x^2+9)} dx = \frac{1}{5} \int_0^{\infty} \frac{(x^2+4)}{(x^2+4)} dx + \frac{1}{5} \int_0^{\infty} \frac{(x^2+9)}{(x^2+9)} dx$ $= \frac{2}{5} \left[\tan^{-1} \left(\frac{x}{2} \right) \right]_0^1 + \frac{3}{5} \left[\tan^{-1} \left(\frac{x}{3} \right) \right]_0^1$	M1 M1
	$= \frac{2}{5} \left[\frac{1}{2} \tan^{-1} \left(\frac{1}{2} \right) - 0 \right] + \frac{3}{5} \left[\frac{1}{3} \tan^{-1} \left(\frac{1}{3} \right) - 0 \right]$	M1
	$= \frac{1}{5} \tan^{-1} \left(\frac{1}{2}\right) + \frac{1}{5} \tan^{-1} \left(\frac{1}{3}\right) = \frac{1}{5} \left[\tan^{-1} \left(\frac{1}{2}\right) + \tan^{-1} \left(\frac{1}{3}\right)\right]$ $\det, \alpha = \tan^{-1} \left(\frac{1}{2}\right), \Rightarrow \tan \alpha = \frac{1}{2}$	
	let, $\beta = \tan^{-1}\left(\frac{1}{2}\right)$, $\Longrightarrow \tan \beta = \frac{1}{2}$	
	$\tan(\alpha + \beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \tan\beta} = \left(\frac{1}{2} + \frac{1}{3}\right) / \left(1 - \frac{1}{2} \times \frac{1}{3}\right) = \frac{5}{6} \div \frac{5}{6}$ $= 1$ $\Rightarrow (\alpha + \beta) = \tan^{-1} 1 = \frac{\pi}{4}$	M1

	$\int_0^1 \frac{x^2 + 6}{(x^2 + 4)(x^2 + 9)} dx = \frac{1}{5} \left[\tan^{-1} \left(\frac{1}{2} \right) + \tan^{-1} \left(\frac{1}{3} \right) \right] = \frac{1}{5} (\alpha + \beta)$ $= \frac{1}{5} \times \frac{\pi}{4} = \frac{\pi}{20}$	B1
11	(a). Let, $f(x) = e^{-x} \sin x$, $\Rightarrow f(0) = e^{0} \sin 0 = 0$ $f'(x) = e^{-x} \cos x - e^{-x} \sin x = e^{-x} (\cos x - \sin x),$ $\Rightarrow f'(0) = 1$ $f''(x) = e^{-x} (-\sin x - \cos x) - e^{-x} (\cos x - \sin x)$ $= -2e^{-x} \cos x, \Rightarrow f''(0) = -2$ $f'''(x) = 2e^{-x} \sin x + 2e^{-x} \cos x = 2e^{-x} (\sin x + \cos x),$ $\Rightarrow f'''(0) = 2$ By Maclaurin's theorem, $f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \cdots$ $= 0 + x \times 1 + \frac{x^2}{2!} \times (-2) + \frac{x^3}{3!} \times 2 + \cdots$ $\therefore e^x \sin x = x - x^2 + \frac{1}{3}x^3 + \cdots$ For the hence part, $e^{-\frac{\pi}{3}} \sin \frac{\pi}{3} = \frac{\pi}{3} - \left(\frac{\pi}{3}\right)^2 + \frac{2}{3}\left(\frac{\pi}{3}\right)^3 \approx 0.3334 \text{ (4 s. f)}$ (b). $y = x^3 + 8$ when, $y = 0$, $0 = x^3 + 8$, $x = -2$, $\Rightarrow A(-2, 0)$ when, $x = 0$, $y = 0 + 8 = 8$, $\Rightarrow B(0, 8)$ The equation of line AB is given by: $\frac{y - 8}{x - 0} = \frac{0 - 8}{2 - 0}, \Rightarrow y = 4x + 8$ When the line AB meets the curve, $4x + 8 = x^3 + 8, \Rightarrow x(4 - x^2) = 0$ $x = 0$, or, $x = \pm 2$ when, $x = 2$, $y = 8 + 8 = 16$, $\Rightarrow C(2, 16)$ (ii).	B1 B1 M1 A1 M1 A1 B1 -for A & B

Normal vector, $\mathbf{n} = \begin{pmatrix} 4 \\ -1 \\ 1 \end{pmatrix}$	B1
Position vector, $\mathbf{a} = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$	B1
r. n = n. a	
$(x) (\tilde{4}) (1)$	
$ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} 4 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} $	B1
4x - y + z = 4 + 2 + 2	M1
4x - y + z = 8	A1
13 (i).	
From, $x = \frac{1+t}{1-t}$, $x - tx = 1+t$, $\Rightarrow t = \frac{x-1}{x+1}$	B1 –for t
$t^2 = \frac{x^2 - 2x + 1}{x^2 + 2x + 1}$	
N 2N 1	
$y = \frac{2t^2}{1-t} = \frac{2\left(\frac{x-1}{x+1}\right)^2}{\left(1-\frac{x-1}{x+1}\right)} = \frac{2\left(\frac{x-1}{x+1}\right)^2}{\left(\frac{2}{x+1}\right)} = \frac{(x-1)^2}{(x+1)}$	M1 -
$1-t$ $\left(1-\frac{x-1}{x+1}\right)$ $\left(\frac{2}{x+1}\right)$ $(x+1)$	substitution
$\Rightarrow y = \frac{(x-1)^2}{(x+1)}$	A1
(**)	
(ii). $dy (x+1) \times 2(x+1) (x+1)^2$	
$\frac{dy}{dx} = \frac{(x+1) \times 2(x-1) - (x-1)^2}{(x+1)^2}$	M1
For turning points, $\frac{dy}{dx} = 0$	1111
$\frac{2(x+1)(x-1)-(x-1)^2}{(x+1)^2}=0$	
(x-1)[2(x+1)-(x-1)]=0	
(x-1)(x+3) = 0	
$x = 1$, or, $x = -3$ $(1-1)^2$	A1
when, $x = 1$, $y = \frac{(1-1)^2}{(1+1)} = 0$	
when, $x = -3$, $y = \frac{(-3-1)^2}{(-3+1)} = -8$	
The turning points are: $(1,0)$ and $(-3,-8)$.	B1 –turning points
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	points
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
(iii).	
$y = \frac{(x-1)^2}{(x+1)} = \frac{x^2 - 2x + 1}{x+1}$	

1	By synthetic me	thod			
	by synthetic me	1	-2 -1 -3	1	
	x = -1	-		3	
		1	-3	4	
	$y = x - 3 + \frac{1}{2}$	$\frac{4}{+1}$, $\Rightarrow y =$		ting asympto	te B1 –slanting
	Vertical asymp				asymptote
	vertical asymp	as $y \to \infty$, ($(x+1) \rightarrow 0$		usy improve
	=	$\Rightarrow x = -1$ is the	• •	e	B1 –vertical
	Intercepts				asymptote
	_	(x	$\frac{(x-1)^2}{(x+1)}$		
		$y = \frac{1}{(x^2 + x^2)^2}$	$\overline{(x+1)}$		
		when, $x =$	= 0, y = 1		
	when,	y=0, $(x$	$(-1)^2 = 0,$ =	$\Rightarrow x = 1$	
	_	are (0, 1) and (1,			B1 -
	(iv). The Critical values include: $x = -1$, $x = 1$.				intercepts
	Region where the curve lies:				1
		x < -1	$\begin{array}{c c} -1 < x < 1 \\ + \end{array}$	x > 1	
	$(x-1)^2$	+		+	B1
	(x+1)	_	+	+	1
	y	_	+	+	
	Sketch of the co	HTVΔ			
	Sketch of the c	urve			
		y-axis			
		· ↑			
		x = -1	$(x-1)^2$	= x - 3	
		x = -1	$y = \frac{(x-1)^2}{x+1}$		
		\	Į.i.		
1		; N	<i>!:</i> '		

(a). $6 \sin x - 3 \cos x \equiv R \sin(x - \alpha) = R \sin x \cos \alpha + R \cos x \sin \alpha$ By comparison, $R \cos \alpha = 6 \rightarrow (1a), \quad R \sin \alpha = 3 \rightarrow (1b)$

$(1b) \div (1a) \text{ gives:}$ $\frac{R \sin \alpha}{R \cos \alpha} = \frac{3}{6} , \qquad \Rightarrow \tan \alpha = 0.5, \qquad \Rightarrow \alpha = 26.57^{\circ}$	B1 –for α
$R = \sqrt{3^2 + 6^2} = \sqrt{45}$	B1 –for R
$\Rightarrow 6 \sin x - 3 \cos x \equiv \sqrt{45} \sin(x - 26.57^{\circ})$	
Maximum value:	
$\{6\sin x - 3\cos x\}_{max} = \sqrt{45} \times 1 = \sqrt{45} \approx 6.708$	B1
(b).	
$L.H.S = \frac{\cos 11^{\circ} + \sin 11^{\circ}}{\cos 11^{\circ} - \sin 11^{\circ}} = \frac{1 + \tan 11^{\circ}}{1 - \tan 11^{\circ}} = \frac{\tan 45^{\circ} + \tan 11^{\circ}}{\tan 45^{\circ} - \tan 11^{\circ}}$	
$= \tan(45 + 11)^{\circ} = \tan 56^{\circ}$	
(c).	
$L.H.S = \sin B + \sin C - \sin A$	
$= \left[2\sin\left(\frac{B+C}{2}\right)\cos\left(\frac{B-C}{2}\right)\right] - 2\sin\left(\frac{A}{2}\right)\cos\left(\frac{A}{2}\right)$	B1
For angles of a triangle, A, B, C,	
$\sin\left(\frac{B+C}{2}\right) = \sin\left(90 - \frac{A}{2}\right) = \cos\left(\frac{A}{2}\right)$	B1
$\cos\left(\frac{B+C}{2}\right) = \cos\left(90 - \frac{A}{2}\right) = \sin\left(\frac{A}{2}\right)$	B1
$\Rightarrow L.H.S = \left[2\cos\left(\frac{A}{2}\right)\cos\left(\frac{B-C}{2}\right)\right] - 2\sin\left(\frac{A}{2}\right)\cos\left(\frac{A}{2}\right)$	
$= 2\cos\left(\frac{A}{2}\right)\left[\cos\left(\frac{B-C}{2}\right) - \sin\left(\frac{A}{2}\right)\right]$	B1
$= 2\cos\left(\frac{A}{2}\right)\left[\cos\left(\frac{B-C}{2}\right) - \cos\left(\frac{B+C}{2}\right)\right]$	
	B1
$= 2\cos\left(\frac{A}{2}\right)\left[-2\sin\left(\frac{B}{2}\right)\sin\left(-\frac{C}{2}\right)\right]$	
$= 4\cos\left(\frac{A}{2}\right)\sin\left(\frac{B}{2}\right)\sin\left(\frac{C}{2}\right)$	B1
45 (2)	
15 (a). $(7+2i)$	
$(2+5i)^2 + 5\frac{(7+2i)}{3-4i} - i(4-6i)$	B1
$= 4 + 20i - 25 + \frac{(35 + 10i)(3 + 4i)}{9 + 16} - 4i - 6$	
$= 4 + 20i - 25 + \frac{9 + 16}{105 + 140i + 20i} - 4i - 6$	B1
$= 16i - 27 + \frac{105 + 140i + 30i - 40}{25}$	B1
(400i - 675) + (65 + 170i)	DI
$=\frac{(400i-675)+(65+170i)}{25}$	B1
$=\frac{570i-610}{25}=\frac{114i}{5}-\frac{122}{5}=22.8i-24.4$	D 4
25 5 5 (b).	B1
$z-1 (x-1)+yi \{(x-1)+yi\} \times \{x-(y-1)i\}$	
$\frac{z-1}{z-i} = \frac{(x-1)+yi}{x+(y-1)i} = \frac{\{(x-1)+yi\} \times \{x-(y-1)i\}}{\{x+(y-1)i\} \times \{x-(y-1)i\}}$	B1

	1
$= \frac{(x-1)x - (x-1)(y-1)i + xyi + y(y-1)}{x^2 + (y-1)^2}$ $= \frac{x^2 - x - (xy - x - y + 1)i + xyi + y^2 - y}{x^2 + (y-1)^2}$ $= \frac{(x^2 + y^2 - x - y) - (-x - y + 1)i}{x^2 + (y-1)^2}$ $= \frac{(x^2 + y^2 - x - y)}{x^2 + (y-1)^2}$ $= \frac{(x^2 + y^2 - x - y)}{x^2 + (y-1)^2}$ $= \frac{(-x - y + 1)}{x^2 + (y-1)^2}$	B1
$Arg\left(\frac{z-1}{z-i}\right) = \tan^{-1}\left(\frac{\text{imaginary part}}{\text{real part}}\right) = \frac{\pi}{3}$ $\tan^{-1}\left(\frac{x+y-1}{x^2+y^2-x-y}\right) = \frac{\pi}{3}$ $\frac{x+y-1}{x^2+y^2-x-y} = \tan\frac{\pi}{3} = \sqrt{3}$	M1
$x+y-1=\sqrt{3}(x^2+y^2-x-y)$ $x^2\sqrt{3}+y^2\sqrt{3}-x\big(1+\sqrt{3}\big)-y\big(1+\sqrt{3}\big)+1=0$ The locus is a circle. By comparison with the general equation: $x^2+y^2+2gx+2fy+c=0$	A1
$2g = -\left(\frac{1+\sqrt{3}}{\sqrt{3}}\right) = -\left(\frac{3+\sqrt{3}}{3}\right), \qquad \Rightarrow g = -\left(\frac{3+\sqrt{3}}{6}\right)$ $f = g = -\left(\frac{3+\sqrt{3}}{6}\right) \approx -0.7887, \qquad c = \frac{1}{\sqrt{3}}$	B1
centre = $(-g, -f) = \left(\frac{3+\sqrt{3}}{6}, \frac{3+\sqrt{3}}{6}\right)$ radius = $\sqrt{g^2 + f^2 - c} = \sqrt{\left(\frac{3+\sqrt{3}}{6}\right)^2 + \left(\frac{3+\sqrt{3}}{6}\right)^2 - \frac{1}{\sqrt{3}}}$ = 0.8165 units	M1 A1
16 (a).	
$x^{2} \frac{dy}{dx} = x^{2} + xy + y^{2}$ but, $y = ux$, $\Rightarrow \frac{dy}{dx} = \left(u + x \frac{du}{dx}\right)$	B1
Substituting for y and $\frac{dy}{dx}$ gives: $x^{2} \left(u + x \frac{du}{dx} \right) = x^{2} + ux^{2} + u^{2}x^{2}$	M1
$ux^2 + x^3 \frac{du}{dx} = (1 + u + u^2)x^2$	

$$u + x \frac{du}{dx} = 1 + u + u^2$$

$$x \frac{du}{dx} = 1 + u^2$$

$$\int \frac{du}{1 + u^2} = \int \frac{1}{x} dx$$

$$\tan^{-1} u = \ln x + c$$

$$\tan^{-1} \left(\frac{y}{x}\right) = \ln x + c$$
(b). Let h be the depth of the opening below the surface of the liquid at any time, t . Let h_0 be the initial depth of the opening below the surface of the liquid when the tank is full.

$$\frac{dh}{dt} \propto \sqrt{h}$$

$$\frac{dh}{dt} = -kh^{\frac{1}{2}}$$

$$\int h^{\frac{1}{2}} dh = -\int k dt$$

$$2\sqrt{h} = -kt + c$$
When $t = 0$, $h = h_0$

$$2\sqrt{h} = -kt + 2\sqrt{h_0}$$
When $t = 1$, $h = h_0 - 20$

$$2\sqrt{h_0 - 20} = -k + 2\sqrt{h_0}$$

$$-k = 2\sqrt{h_0 - 20} - 2\sqrt{h_0}$$

$$-k = 2\sqrt{h_0 - 20} - 2\sqrt{h_0}$$

$$2\sqrt{h} = 2t(\sqrt{h_0 - 20} - \sqrt{h_0}) + 2\sqrt{h_0}$$
When $t = 2$, $h = h_0 - 20 - 19 = h_0 - 39$

$$2\sqrt{h_0 - 39} = 4(\sqrt{h_0 - 20} - \sqrt{h_0}) + 2\sqrt{h_0}$$
M1
$$h_0 - 39 = 4(h_0 - 20) - 4\sqrt{h_0^2 - 20h_0} + h_0$$

$$4\sqrt{h_0^2 - 20h_0} = 4h_0 - 41$$

$$16h_0^2 - 320h_0 = 16h_0^2 - 328h_0 + 1681$$

$$8h_0 = 1681$$

$$h_0 = 210.125 \text{ cm}$$
A1

END