No-Regret Online Learning Algorithms

Joseph Chuang-Chieh Lin

Department of Computer Science and Information Engineering, Tamkang University

Lecture Notes

27 December 2021 - 11 Jan 2022

Credits for the resource

The slides are based on the lectures of Prof. Luca Trevisan: https://lucatrevisan.github.io/40391/index.html

the lectures of Prof. Shipra Agrawal: https://ieor8100.github.io/mab/

the lectures of Prof. Francesco Orabona: https://parameterfree.com/lecture-notes-on-online-learning/

and also Elad Hazan's textbook: Introduction to Online Convex Optimization, 2nd Edition.

Outline

- Introduction
- Gradient Descent for Online Convex Optimization (GD)
- Multiplicative Weight Update (MWU)
- Follow The Leader (FTL)
- 5 Follow The Regularized Leader (FTRL)
 - MWU Revisited
 - FTRL with 2-norm regularizer
- Multi-Armed Bandit (MAB)
 - Greedy Algorithms
 - Upper Confidence Bound (UCB)
 - Time-Decay ϵ -Greedy

Outline

- Introduction
- Gradient Descent for Online Convex Optimization (GD)
- 3 Multiplicative Weight Update (MWU)
- 4 Follow The Leader (FTL)
- 5 Follow The Regularized Leader (FTRL)
 - MWU Revisited
 - FTRL with 2-norm regularizer
- Multi-Armed Bandit (MAB)
 - Greedy Algorithms
 - Upper Confidence Bound (UCB)
 - Time-Decay ϵ -Greedy

Online Convex Optimization

Goal: Design an algorithm such that

- At discrete time steps t = 1, 2, ..., output $\mathbf{x}_t \in \mathcal{K}$, for each t.
 - \mathcal{K} : a convex set of feasible solutions.
- After x_t is generated, a convex cost function $f_t : \mathcal{K} \mapsto \mathbb{R}$ is revealed.
- Then the algorithm suffers the loss $f_t(\mathbf{x}_t)$.

And we want to minimize the cost.

The difficulty

- The cost functions f_t is unknown before t.
- $f_1, f_2, \ldots, f_t, \ldots$ are not necessarily fixed.
 - Can be generated dynamically by an adversary.

What's the regret?

• The offline optimum: After T steps,

$$\min_{\mathbf{x}\in\mathcal{K}}\sum_{t=1}^{T}f_{t}(\mathbf{x}).$$

• The regret after *T* steps:

$$\mathsf{regret}_{\mathcal{T}} = \sum_{t=1}^{\mathcal{T}} f_t(\mathbf{\textit{x}}_t) - \min_{\mathbf{\textit{x}} \in \mathcal{K}} \sum_{t=1}^{\mathcal{T}} f_t(\mathbf{\textit{x}}).$$

What's the regret?

• The offline optimum: After T steps,

$$\min_{\mathbf{x}\in\mathcal{K}}\sum_{t=1}^{T}f_{t}(\mathbf{x}).$$

• The regret after *T* steps:

$$\operatorname{regret}_{\mathcal{T}} = \sum_{t=1}^{\mathcal{T}} f_t(\mathbf{x}_t) - \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{\mathcal{T}} f_t(\mathbf{x}).$$

• The rescue: regret $T \leq o(T)$.

What's the regret?

• The offline optimum: After T steps,

$$\min_{\mathbf{x}\in\mathcal{K}}\sum_{t=1}^{T}f_{t}(\mathbf{x}).$$

• The regret after *T* steps:

$$\operatorname{regret}_{\mathcal{T}} = \sum_{t=1}^{\mathcal{T}} f_t(\mathbf{x}_t) - \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{\mathcal{T}} f_t(\mathbf{x}).$$

- The rescue: $\operatorname{regret}_{\mathcal{T}} \leq o(\mathcal{T})$. \Rightarrow **No-Regret** in average when $\mathcal{T} \to \infty$.
 - For example, $\operatorname{regret}_T/T = \frac{\sqrt{T}}{T} \to 0$ when $T \to \infty$.

Prerequisites (1/4)

Diameter

Let $\mathcal{K} \subseteq \mathbb{R}^d$ be a bounded convex and closed set in Euclidean space. We denote by D an upper bound on the diameter of \mathcal{K} :

$$\forall x, y \in \mathcal{K}, ||x - y|| \leq D.$$

Convex set

A set K is convex if for any $x, y \in K$, we have

$$\forall \alpha \in [0,1], \alpha \mathbf{x} + (1-\alpha)\mathbf{y} \in \mathcal{K}.$$

Prerequisites (2/4)

Convex function

A function $f: \mathcal{K} \mapsto \mathbb{R}$ is convex if for any $\mathbf{x}, \mathbf{y} \in \mathcal{K}$,

$$\forall \alpha \in [0,1], f((1-\alpha)\mathbf{x} + \alpha\mathbf{y}) \leq (1-\alpha)f(\mathbf{x}) + \alpha f(\mathbf{y}).$$

Equivalently, if f is differentiable (i.e., $\nabla f(\mathbf{x})$ exists for all $\mathbf{x} \in \mathcal{K}$), then f is convex if and only if for all $\mathbf{x}, \mathbf{y} \in \mathcal{K}$,

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}).$$

Prerequisites (3/4)

Projection

The closest point of y in a convex set $\mathcal K$ in terms of norm $||\cdot||$:

$$\Pi_{\mathcal{K}}(\mathbf{y}) := \arg\min_{\mathbf{x} \in \mathcal{K}} ||\mathbf{x} - \mathbf{y}||.$$

Pythagoras Theorem

Let $\mathcal{K} \subseteq \mathbb{R}^d$ be a convex set, $\mathbf{y} \in \mathbb{R}^d$ and $\mathbf{x} = \Pi_{\mathcal{K}}(\mathbf{y})$. Then for any $\mathbf{z} \in \mathcal{K}$, we have

$$||\mathbf{y}-\mathbf{z}|| \geq ||\mathbf{x}-\mathbf{z}||.$$

Prerequisites (4/4)

Minimum vs. zero gradient

$$abla f(\mathbf{x}) = 0 \text{ iff } \mathbf{x} \in \arg\min_{\mathbf{x} \in \mathbb{R}^d} \{f(\mathbf{x})\}.$$

Karush-Kuhn-Tucker (KKT) Theorem

Let $\mathcal{K} \subseteq \mathbb{R}^d$ be a convex set, $\mathbf{x}^* \in \arg\min_{\mathbf{x} \in \mathcal{K}} f(\mathbf{x})$. Then for any $\mathbf{y} \in \mathcal{K}$ we have

$$\nabla f(\mathbf{x}^*)^{\top}(\mathbf{y} - \mathbf{x}^*) \geq 0.$$

Outline

- Introduction
- Gradient Descent for Online Convex Optimization (GD)
- 3 Multiplicative Weight Update (MWU)
- 4 Follow The Leader (FTL)
- 5 Follow The Regularized Leader (FTRL)
 - MWU Revisited
 - FTRL with 2-norm regularizer
- Multi-Armed Bandit (MAB)
 - Greedy Algorithms
 - Upper Confidence Bound (UCB)
 - Time-Decay ϵ -Greedy

Online Gradient Descent (GD)

- **1 Input:** convex set \mathcal{K} , T, $\mathbf{x}_1 \in \mathcal{K}$, step size $\{\eta_t\}$.
- **2** for $t \leftarrow 1$ to T do:
 - Play \mathbf{x}_t and observe cost $f_t(\mathbf{x}_t)$.
 - Opposite and Project:

$$egin{array}{lll} oldsymbol{y}_{t+1} &=& oldsymbol{x}_t - \eta_t
abla f_t(oldsymbol{x}_t) \ oldsymbol{x}_{t+1} &=& \Pi_{\mathcal{K}}(oldsymbol{y}_{t+1}) \end{array}$$

end for

GD for online convex optimization is of no-regret

Theorem A

Online gradient descent with step size $\{\eta_t = \frac{D}{G\sqrt{t}}, t \in [T]\}$ guarantees the following for all $T \ge 1$:

$$\mathsf{regret}_{\mathcal{T}} = \sum_{t=1}^{\mathcal{T}} f_t(\boldsymbol{x}_t) - \min_{\boldsymbol{x}^* \in \mathcal{K}} \sum_{t=1}^{\mathcal{T}} f_t(\boldsymbol{x}^*) \leq \frac{3}{2} \mathit{GD} \sqrt{\mathcal{T}}.$$

- Let $\mathbf{x}^* \in \operatorname{arg\,min}_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^T f_t(\mathbf{x})$.
- Since f_t is convex, we have

$$f_t(\mathbf{x}_t) - f_t(\mathbf{x}^*) \leq (\nabla f_t(\mathbf{x}_t))^{\top} (\mathbf{x}_t - \mathbf{x}^*).$$

ullet By the updating rule for $oldsymbol{x}_{t+1}$ and the Pythagorean theorem, we have

$$||\mathbf{x}_{t+1} - \mathbf{x}^*||^2 = ||\Pi_{\mathcal{K}}(\mathbf{x}_t - \eta_t \nabla f_t(\mathbf{x}_t)) - \mathbf{x}^*||^2 \leq ||\mathbf{x}_t - \eta_t \nabla f_t(\mathbf{x}_t) - \mathbf{x}^*||^2.$$

Proof of Theorem A (2/3)

Hence

$$||\mathbf{x}_{t+1} - \mathbf{x}^*||^2 \le ||\mathbf{x}_t - \mathbf{x}^*||^2 + \eta_t^2 ||\nabla f_t(\mathbf{x}_t)||^2 - 2\eta_t (\nabla f_t(\mathbf{x}_t))^\top (\mathbf{x}_t - \mathbf{x}^*)$$

$$2(\nabla f_t(\mathbf{x}_t))^\top (\mathbf{x}_t - \mathbf{x}^*) \le \frac{||\mathbf{x}_t - \mathbf{x}^*||^2 - ||\mathbf{x}_{t+1} - \mathbf{x}^*||^2}{\eta_t} + \eta_t G^2.$$

• Summing above inequality from t=1 to T and setting $\eta_t=\frac{D}{G\sqrt{t}}$ and $\frac{1}{\eta_0}:=0$ we have :

Proof of Theorem A (3/3)

$$2\left(\sum_{t=1}^{T} f_{t}(\mathbf{x}_{t}) - f_{t}(\mathbf{x}^{*})\right) \leq 2\sum_{t=1}^{T} \nabla f_{t}(\mathbf{x}_{t}))^{\top}(\mathbf{x}_{t} - \mathbf{x}^{*})$$

$$\leq \sum_{t=1}^{T} \frac{||\mathbf{x}_{t} - \mathbf{x}^{*}||^{2} - ||\mathbf{x}_{t+1} - \mathbf{x}^{*}||^{2}}{\eta_{t}} + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\leq \sum_{t=1}^{T} ||\mathbf{x}_{t} - \mathbf{x}^{*}||^{2} \left(\frac{1}{\eta_{t}} - \frac{1}{\eta_{t-1}}\right) + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\leq D^{2} \sum_{t=1}^{T} \left(\frac{1}{\eta_{t}} - \frac{1}{\eta_{t-1}}\right) + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\leq D^{2} \frac{1}{\eta_{T}} + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\leq 3DG\sqrt{T}.$$

The Lower Bound

Theorem B

Let $\mathcal{K} = \{ \boldsymbol{x} \in \mathbb{R}^d : ||\boldsymbol{x}||_{\infty} \leq r \}$ be a convex subset of \mathbb{R}^d . Let A be any algorithm for Online Convex Optimization on \mathcal{K} . Then for any $T \geq 1$, there exists a sequence of vectors $\boldsymbol{g}_1, \dots, \boldsymbol{g}_T$ with $||\boldsymbol{g}_t||_2 \leq L$ and $\boldsymbol{u} \in \mathcal{K}$ such that the regret of A satisfies

$$\mathsf{regret}_{\mathcal{T}}(\boldsymbol{u}) = \sum_{t=1}^{\mathcal{T}} \langle \boldsymbol{g}_t, \boldsymbol{x}_t \rangle - \sum_{t=1}^{\mathcal{T}} \langle \boldsymbol{g}_t, \boldsymbol{u} \rangle \geq \frac{\sqrt{2}LD\sqrt{\mathcal{T}}}{4}.$$

- The diameter D of $\mathcal K$ is at most $\sqrt{\sum_{i=1}^d (2r)^2} \leq 2r\sqrt{d}$.
- $||\mathbf{x}||_{\infty} \le r \Leftrightarrow |\mathbf{x}(i)| \le r$ for each $i \in [n]$.

• The approach:

For any random variable z with domain V and any function f,

$$\sup_{\mathbf{x}\in V}f(\mathbf{x})\geq E[f(\mathbf{z})].$$

• The approach:

For any random variable ${\it z}$ with domain ${\it V}$ and any function ${\it f}$,

$$\sup_{\mathbf{x}\in V}f(\mathbf{x})\geq E[f(\mathbf{z})].$$

• $\operatorname{regret}_{T} = \max_{\boldsymbol{u} \in \mathcal{K}} \operatorname{regret}_{T}(\boldsymbol{u}).$

• The approach:

For any random variable z with domain $\mathcal V$ and any function f,

$$\sup_{\mathbf{x}\in V}f(\mathbf{x})\geq E[f(\mathbf{z})].$$

- $\operatorname{regret}_{T} = \max_{\boldsymbol{u} \in \mathcal{K}} \operatorname{regret}_{T}(\boldsymbol{u}).$
- Let $\mathbf{v}, \mathbf{w} \in \mathcal{K}$ such that $||\mathbf{v} \mathbf{w}|| = D$.

• The approach:

For any random variable ${\it z}$ with domain ${\it V}$ and any function ${\it f}$,

$$\sup_{\mathbf{x}\in V}f(\mathbf{x})\geq E[f(\mathbf{z})].$$

- $\operatorname{regret}_T = \max_{\boldsymbol{u} \in \mathcal{K}} \operatorname{regret}_T(\boldsymbol{u}).$
- Let $\mathbf{v}, \mathbf{w} \in \mathcal{K}$ such that $||\mathbf{v} \mathbf{w}|| = D$.
- Let $z := \frac{v-w}{||v-w||}$

• The approach:

For any random variable ${\it z}$ with domain ${\it \mathcal{V}}$ and any function ${\it f}$,

$$\sup_{\mathbf{x}\in V}f(\mathbf{x})\geq E[f(\mathbf{z})].$$

- $\operatorname{regret}_{T} = \max_{\boldsymbol{u} \in \mathcal{K}} \operatorname{regret}_{T}(\boldsymbol{u}).$
- Let $\mathbf{v}, \mathbf{w} \in \mathcal{K}$ such that $||\mathbf{v} \mathbf{w}|| = D$.
- Let $z := \frac{v w}{||v w||} \Rightarrow \langle z, v w \rangle = D$.
- Let $\epsilon_1, \epsilon_2, \dots, \epsilon_T$ be i.i.d. random variables such that $\Pr[\epsilon_t = 1] = \Pr[\epsilon_t = -1] = 1/2$ for each t.

• The approach:

For any random variable z with domain $\mathcal V$ and any function f,

$$\sup_{\mathbf{x}\in V}f(\mathbf{x})\geq E[f(\mathbf{z})].$$

- regret $_T = \max_{\boldsymbol{u} \in \mathcal{K}} \operatorname{regret}_T(\boldsymbol{u})$.
- Let $\mathbf{v}, \mathbf{w} \in \mathcal{K}$ such that $||\mathbf{v} \mathbf{w}|| = D$.
- Let $z := \frac{\mathbf{v} \mathbf{w}}{\|\mathbf{v} \mathbf{w}\|} \Rightarrow \langle \mathbf{z}, \mathbf{v} \mathbf{w} \rangle = D$.
- Let $\epsilon_1, \epsilon_2, \dots, \epsilon_T$ be i.i.d. random variables such that $\Pr[\epsilon_t = 1] = \Pr[\epsilon_t = -1] = 1/2$ for each t.
- We choose the losses $\mathbf{g}_t = L\epsilon_t \mathbf{z}$.

• The approach:

For any random variable ${\it z}$ with domain ${\it \mathcal{V}}$ and any function ${\it f}$,

$$\sup_{\mathbf{x}\in V}f(\mathbf{x})\geq E[f(\mathbf{z})].$$

- $\operatorname{regret}_{\mathcal{T}} = \max_{\boldsymbol{u} \in \mathcal{K}} \operatorname{regret}_{\mathcal{T}}(\boldsymbol{u}).$
- Let $\mathbf{v}, \mathbf{w} \in \mathcal{K}$ such that $||\mathbf{v} \mathbf{w}|| = D$.
- Let $z := \frac{\mathbf{v} \mathbf{w}}{\|\mathbf{v} \mathbf{w}\|} \Rightarrow \langle \mathbf{z}, \mathbf{v} \mathbf{w} \rangle = D$.
- Let $\epsilon_1, \epsilon_2, \dots, \epsilon_T$ be i.i.d. random variables such that $\Pr[\epsilon_t = 1] = \Pr[\epsilon_t = -1] = 1/2$ for each t.
- We choose the losses $\mathbf{g}_t = L\epsilon_t \mathbf{z}$.
 - The cost at $t: \langle L\epsilon_t \mathbf{z}, \mathbf{x}_t \rangle$.
 - $||g_t|| = \sqrt{L^2 \epsilon_t^2} \cdot ||\mathbf{z}|| \le L$.

$$\sup_{\boldsymbol{g}_{1},...,\boldsymbol{g}_{T}} \operatorname{regret}_{T} \geq E\left[\sum_{t=1}^{T} L\epsilon_{t}\langle\boldsymbol{z},\boldsymbol{x}_{t}\rangle - \min_{\boldsymbol{u}\in\mathcal{K}}\sum_{t=1}^{T} L\epsilon_{t}\langle\boldsymbol{z},\boldsymbol{u}\rangle\right]$$

$$= E\left[-\min_{\boldsymbol{u}\in\mathcal{K}}\sum_{t=1}^{T} L\epsilon_{t}\langle\boldsymbol{z},\boldsymbol{u}\rangle\right] = E\left[\max_{\boldsymbol{u}\in\mathcal{K}}\sum_{t=1}^{T} L\epsilon_{t}\langle\boldsymbol{z},\boldsymbol{u}\rangle\right]$$

$$\geq E\left[\max_{\boldsymbol{u}\in\{\boldsymbol{v},\boldsymbol{w}\}}\sum_{t=1}^{T} L\epsilon_{t}\langle\boldsymbol{z},\boldsymbol{u}\rangle\right]$$

$$= E\left[\frac{1}{2}\sum_{t=1}^{T} L\epsilon_{t}\langle\boldsymbol{z},\boldsymbol{v}+\boldsymbol{w}\rangle + \frac{1}{2}\left|\sum_{t=1}^{T} L\epsilon_{t}\langle\boldsymbol{z},\boldsymbol{v}-\boldsymbol{w}\rangle\right|\right]$$

$$\geq \frac{L}{2}E\left[\left|\sum_{t=1}^{T} L\epsilon_{t}\langle\boldsymbol{z},\boldsymbol{v}-\boldsymbol{w}\rangle\right|\right] = \frac{LD}{2}E\left[\left|\sum_{t=1}^{T} \epsilon_{t}\right|\right]$$

$$\geq \frac{\sqrt{2}LD\sqrt{T}}{4}. \quad \text{(by Khintchine inequality)}$$

Outline

- Introduction
- Gradient Descent for Online Convex Optimization (GD)
- Multiplicative Weight Update (MWU)
- 4 Follow The Leader (FTL)
- 5 Follow The Regularized Leader (FTRL)
 - MWU Revisited
 - FTRL with 2-norm regularizer
- Multi-Armed Bandit (MAB)
 - Greedy Algorithms
 - Upper Confidence Bound (UCB)
 - Time-Decay ϵ -Greedy

Listen to the experts?

- Let's say we have *n* experts.
- We want to make best use of the advices coming from the experts.

Listen to the experts?

- Let's say we have n experts.
- We want to make best use of the advices coming from the experts.
- The idea: at each time step, decide the probability distribution (i.e., weights) of the experts to follow their advice.
 - $x_t = (x_t(1), x_t(2), \dots, x_t(n))$, where $x_t(i) \in [0, 1]$ and $\sum_i x_t(i) = 1$.

Listen to the experts?

- Let's say we have *n* experts.
- We want to make best use of the advices coming from the experts.
- The idea: at each time step, decide the probability distribution (i.e., weights) of the experts to follow their advice.

•
$$x_t = (x_t(1), x_t(2), \dots, x_t(n))$$
, where $x_t(i) \in [0, 1]$ and $\sum_i x_t(i) = 1$.

- The loss of following expert i at time t: $\ell_t(i)$.
- The expected loss of the algorithm at time t:

$$\langle \mathbf{x}_t, \ell_t \rangle = \sum_{i=1}^n \mathbf{x}_t(i) \ell_t(i).$$

The regret of listening to the experts...

$$\mathsf{regret}_{\mathcal{T}}^* = \sum_{t=1}^{\mathcal{T}} \langle \pmb{x}_t, \pmb{\ell}_t
angle - \min_{\pmb{i}} \sum_{t=1}^{\mathcal{T}} \pmb{\ell}_t(\pmb{i}).$$

- The set of feasible solutions $K = \Delta \subseteq \mathbb{R}^n$, probability distributions over $\{1, \dots, n\}$.
- $f_t(\mathbf{x}) = \sum_i \mathbf{x}(i) \ell_t(i)$: linear function.
- * Assume that $|\ell_t(i)| \leq 1$ for all t and i.

The MWU Algorithm

- The spirit: "Hedge".
- Well-known and frequently rediscovered.

The MWU Algorithm

- The spirit: "Hedge".
- Well-known and frequently rediscovered.

Multiplicative Weight Update (MWU)

- Maintain a vector of weights $\mathbf{w}_t = (\mathbf{w}_t(1), \dots, \mathbf{w}_t(n))$ where $\mathbf{w}_1 := (1, 1, \dots, 1)$.
- Update the weights at time t by
 - $\mathbf{w}_{t}(i) := \mathbf{w}_{t-1}(i) \cdot e^{-\beta \ell_{t-1}(i)}$.
 - $\mathbf{x}_t := \frac{\mathbf{w}_t(i)}{\sum_{i=1}^n \mathbf{w}_t(j)}$.
- β : a parameter which will be optimized later.

The MWU Algorithm

- The spirit: "Hedge".
- Well-known and frequently rediscovered.

Multiplicative Weight Update (MWU)

- Maintain a vector of weights $\mathbf{w}_t = (\mathbf{w}_t(1), \dots, \mathbf{w}_t(n))$ where $\mathbf{w}_1 := (1, 1, \dots, 1)$.
- Update the weights at time t by
 - $\mathbf{w}_{t}(i) := \mathbf{w}_{t-1}(i) \cdot e^{-\beta \ell_{t-1}(i)}$.
- β : a parameter which will be optimized later.

The weight of expert *i* at time *t*: $e^{-\beta \sum_{k=1}^{t-1} \ell_k(i)}$.

MWU is of no-regret

Theorem 1 (MWU is of no-regret)

Assume that $|\ell_t(i)| \le 1$ for all t and i. For $\beta \in (0,1/2)$, the regret of MWU after T steps is bounded as

$$\operatorname{regret}_{T}^{*} \leq \beta \sum_{t=1}^{T} \sum_{i=1}^{n} x_{t}(i) \ell_{t}^{2}(i) + \frac{\ln n}{\beta} \leq \beta T + \frac{\ln n}{\beta}.$$

In particular, if $T > 4 \ln n$, then

$$\operatorname{regret}_T^* \leq 2\sqrt{T \ln n}$$

by setting
$$\beta = \sqrt{\frac{\ln n}{T}}$$
.

Let
$$W_t := \sum_{i=1}^{n} w_t(i)$$
.

The idea:

- ullet If the algorithm incurs a large loss after T steps, then W_{T+1} is small.
- ullet And, if W_{T+1} is small, then even the best expert performs quite badly.

Let
$$W_t := \sum_{i=1}^{n} w_t(i)$$
.

The idea:

- ullet If the algorithm incurs a large loss after T steps, then W_{T+1} is small.
- ullet And, if W_{T+1} is small, then even the best expert performs quite badly.

Let
$$L^* := \min_i \sum_{t=1}^T \ell_t(i)$$
.

Lemma 1 (W_{T+1} is SMALL $\Rightarrow L^*$ is LARGE)

$$W_{T+1} \geq e^{-\beta L^*}$$
.

Proof.

Let $j = \arg \min L^* = \arg \min_i \sum_{t=1}^{T} \ell_t(i)$.

$$W_{T+1} = \sum_{i=1}^{n} e^{-\beta \sum_{t=1}^{T} \ell_t(i)} \ge e^{-\beta \sum_{t=1}^{T} \ell_t(j)} = e^{-\beta L^*}.$$

Lemma 2 (MWU brings large loss $\Rightarrow W_{T+1}$ is SMALL)

$$W_{T+1} \leq n \prod_{t=1}^{n} (1 - \beta \langle \mathbf{x}_t, \ell_t \rangle + \beta^2 \langle \mathbf{x}_t, \ell_t^2 \rangle),$$

Proof.

$$\frac{W_{t+1}}{W_t} = \sum_{i=1}^{n} \frac{\mathbf{w}_{t+1}(i)}{W_t} = \sum_{i=1}^{n} \frac{\mathbf{w}_{t}(i) \cdot e^{-\beta \ell_{t}(i)}}{W_t}$$

Lemma 2 (MWU brings large loss $\Rightarrow W_{T+1}$ is SMALL)

$$W_{T+1} \leq n \prod_{t=1}^{n} (1 - \beta \langle \mathbf{x}_t, \ell_t \rangle + \beta^2 \langle \mathbf{x}_t, \ell_t^2 \rangle),$$

Proof.

$$\frac{W_{t+1}}{W_t} = \sum_{i=1}^n \frac{\mathbf{w}_{t+1}(i)}{W_t} = \sum_{i=1}^n \frac{\mathbf{w}_t(i) \cdot e^{-\beta \ell_t(i)}}{W_t} = \sum_{i=1}^n \mathbf{x}_t(i) \cdot e^{-\beta \ell_t(i)}$$

$$\leq \sum_{i=1}^n \mathbf{x}_t(i) \cdot (1 - \beta \ell_t(i) + \beta^2 \ell_t^2(i))$$

Lemma 2 (MWU brings large loss $\Rightarrow W_{T+1}$ is SMALL)

$$W_{T+1} \leq n \prod_{t=1}^{n} (1 - \beta \langle \mathbf{x}_t, \ell_t \rangle + \beta^2 \langle \mathbf{x}_t, \ell_t^2 \rangle),$$

Proof.

$$\begin{split} \frac{W_{t+1}}{W_t} &= \sum_{i=1}^n \frac{\mathbf{w}_{t+1}(i)}{W_t} = \sum_{i=1}^n \frac{\mathbf{w}_t(i) \cdot e^{-\beta \ell_t(i)}}{W_t} = \sum_{i=1}^n \mathbf{x}_t(i) \cdot e^{-\beta \ell_t(i)} \\ &\leq \sum_{i=1}^n \mathbf{x}_t(i) \cdot (1 - \beta \ell_t(i) + \beta^2 \ell_t^2(i)) \\ &= 1 - \beta \langle \mathbf{x}_t, \ell_t \rangle + \beta^2 \langle \mathbf{x}_t, \ell_t^2 \rangle \end{split}$$

Lemma 2 (MWU brings large loss $\Rightarrow W_{T+1}$ is SMALL)

$$W_{T+1} \leq n \prod_{t=1}^{n} (1 - \beta \langle \mathbf{x}_{t}, \boldsymbol{\ell}_{t} \rangle + \beta^{2} \langle \mathbf{x}_{t}, \boldsymbol{\ell}_{t}^{2} \rangle),$$

Proof.

$$\begin{split} \frac{W_{t+1}}{W_t} &= \sum_{i=1}^n \frac{\mathbf{w}_{t+1}(i)}{W_t} = \sum_{i=1}^n \frac{\mathbf{w}_{t}(i) \cdot e^{-\beta \ell_t(i)}}{W_t} = \sum_{i=1}^n \mathbf{x}_t(i) \cdot e^{-\beta \ell_t(i)} \\ &\leq \sum_{i=1}^n \mathbf{x}_t(i) \cdot (1 - \beta \ell_t(i) + \beta^2 \ell_t^2(i)) \\ &= 1 - \beta \langle \mathbf{x}_t, \ell_t \rangle + \beta^2 \langle \mathbf{x}_t, \ell_t^2 \rangle \leq e^{-\beta \langle \mathbf{x}_t, \ell_t \rangle + \beta^2 \langle \mathbf{x}_t, \ell_t^2 \rangle}. \end{split}$$

Lemma 2 (MWU brings large loss $\Rightarrow W_{T+1}$ is SMALL)

$$W_{T+1} \leq n \prod_{t=1}^{n} e^{-\beta \langle \mathsf{x}_{t}, \ell_{t} \rangle + \beta^{2} \langle \mathsf{x}_{t}, \ell_{t}^{2} \rangle}.$$

Proof.

$$\begin{split} \frac{W_{t+1}}{W_t} &= \sum_{i=1}^n \frac{\mathbf{w}_{t+1}(i)}{W_t} = \sum_{i=1}^n \frac{\mathbf{w}_t(i) \cdot e^{-\beta \ell_t(i)}}{W_t} = \sum_{i=1}^n \mathbf{x}_t(i) \cdot e^{-\beta \ell_t(i)} \\ &\leq \sum_{i=1}^n \mathbf{x}_t(i) \cdot (1 - \beta \ell_t(i) + \beta^2 \ell_t^2(i)) \\ &= 1 - \beta \langle \mathbf{x}_t, \ell_t \rangle + \beta^2 \langle \mathbf{x}_t, \ell_t^2 \rangle \leq e^{-\beta \langle \mathbf{x}_t, \ell_t \rangle + \beta^2 \langle \mathbf{x}_t, \ell_t^2 \rangle}. \end{split}$$

Hence

$$\ln W_{T+1} \leq \ln n - \left(\sum_{i=1}^{T} \beta \langle \ell_t, \mathbf{x}_t \rangle \right) + \left(\sum_{i=1}^{T} \beta^2 \langle \ell_t^2, \mathbf{x}_t \rangle \right)$$

and In $W_{T+1} \geq -\beta L^*$.

Hence

$$\ln W_{T+1} \leq \ln n - \left(\sum_{i=1}^T \beta \langle \boldsymbol{\ell}_t, \boldsymbol{x}_t \rangle \right) + \left(\sum_{i=1}^T \beta^2 \langle \boldsymbol{\ell}_t^2, \boldsymbol{x}_t \rangle \right)$$

and In $W_{T+1} \ge -\beta L^*$.

Thus,

$$\left(\sum_{t=1}^{T} \langle \boldsymbol{\ell}_t, \boldsymbol{x}_t \rangle \right) - L^* \leq \frac{\ln n}{\beta} + \beta \sum_{t=1}^{T} \langle \boldsymbol{\ell}_t^2, \boldsymbol{x}_t \rangle.$$

30 / 79

Hence

$$\ln W_{T+1} \leq \ln n - \left(\sum_{i=1}^T \beta \langle \boldsymbol{\ell}_t, \boldsymbol{x}_t \rangle \right) + \left(\sum_{i=1}^T \beta^2 \langle \boldsymbol{\ell}_t^2, \boldsymbol{x}_t \rangle \right)$$

and In $W_{T+1} \ge -\beta L^*$.

Thus,

$$\left(\sum_{t=1}^{T} \langle \boldsymbol{\ell}_t, \boldsymbol{x}_t \rangle \right) - L^* \leq \frac{\ln n}{\beta} + \beta \sum_{t=1}^{T} \langle \boldsymbol{\ell}_t^2, \boldsymbol{x}_t \rangle.$$

Take $\beta = \sqrt{\frac{\ln n}{T}}$, we have $\operatorname{regret}_T \leq 2\sqrt{T \ln n}$.

Outline

- Introduction
- Gradient Descent for Online Convex Optimization (GD)
- 3 Multiplicative Weight Update (MWU)
- 4 Follow The Leader (FTL)
- 5 Follow The Regularized Leader (FTRL)
 - MWU Revisited
 - FTRL with 2-norm regularizer
- 🌀 Multi-Armed Bandit (MAB)
 - Greedy Algorithms
 - Upper Confidence Bound (UCB)
 - Time-Decay ϵ -Greedy

• How about just following the one with best performance?

- How about just following the one with best performance?
 - Follow The Leader (FTL) Algorithm.

- How about just following the one with best performance?
 - Follow The Leader (FTL) Algorithm.
- First, we assume to make no assumptions on \mathcal{K} and $\{f_t : L \mapsto \mathbb{R}\}$.
- At time t, we are given previous cost functions f_1, \ldots, f_{t-1} , and then give the solution

$$\mathbf{x}_t := \arg\min_{\mathbf{x} \in \mathcal{K}} \sum_{k=1}^{t-1} f_k(\mathbf{x}).$$

- How about just following the one with best performance?
 - Follow The Leader (FTL) Algorithm.
- First, we assume to make no assumptions on \mathcal{K} and $\{f_t : L \mapsto \mathbb{R}\}$.
- At time t, we are given previous cost functions f_1, \ldots, f_{t-1} , and then give the solution

$$\mathbf{x}_t := \arg\min_{\mathbf{x} \in \mathcal{K}} \sum_{k=1}^{t-1} f_k(\mathbf{x}).$$

That is, the best solution for the previous t-1 steps.

- How about just following the one with best performance?
 - Follow The Leader (FTL) Algorithm.
- First, we assume to make no assumptions on \mathcal{K} and $\{f_t : L \mapsto \mathbb{R}\}$.
- At time t, we are given previous cost functions f_1, \ldots, f_{t-1} , and then give the solution

$$\mathbf{x}_t := \arg\min_{\mathbf{x} \in \mathcal{K}} \sum_{k=1}^{t-1} f_k(\mathbf{x}).$$

That is, the best solution for the previous t-1 steps.

• It seems reasonable and makes sense, doesn't it?

t: 1
$$\mathbf{x}_t$$
: (0.5, 0.5)
 ℓ_t : (0, 0.5)
 $f_t(\mathbf{x}_t)$: 0.25
 $f_t(\mathbf{x}_t)$: (1, 0)

t: 1 2

$$\mathbf{x}_t$$
: (0.5, 0.5) (1, 0)

 ℓ_t : (0, 0.5) (1, 0)

 $f_t(\mathbf{x}_t)$: 0.25 1

 $\operatorname{arg\,min}_{\mathbf{x}} \sum_{k=1}^t f_k(\mathbf{x})$: (1, 0) (0, 1)

t: 1 2 3
$$\mathbf{x}_{t}: \qquad (0.5, 0.5) \quad (1, 0) \quad (0, 1)$$

$$\ell_{t}: \qquad (0, 0.5) \quad (1, 0) \quad (0, 1)$$

$$f_{t}(\mathbf{x}_{t}): \qquad 0.25 \qquad 1 \qquad 1$$

$$\arg\min_{\mathbf{x}} \sum_{k=1}^{t} f_{k}(\mathbf{x}): \qquad (1, 0) \quad (0, 1) \quad (1, 0)$$

t: 1 2 3 4

$$\mathbf{x}_t$$
: (0.5, 0.5) (1,0) (0,1) (1,0)

 ℓ_t : (0,0.5) (1,0) (0,1) (1,0)

 $f_t(\mathbf{x}_t)$: 0.25 1 1 1

 $\operatorname{arg\,min}_{\mathbf{x}} \sum_{k=1}^t f_k(\mathbf{x})$: (1,0) (0,1) (1,0) (0,1)

t: 1 2 3 4 5

$$\mathbf{x}_t$$
: (0.5, 0.5) (1,0) (0,1) (1,0) (0,1)
 ℓ_t : (0,0.5) (1,0) (0,1) (1,0) (0,1)
 $f_t(\mathbf{x}_t)$: 0.25 1 1 1 1
 $arg \min_{\mathbf{x}} \sum_{k=1}^{t} f_k(\mathbf{x})$: (1,0) (0,1) (1,0) (0,1) (1,0)

optimum loss: $\approx T/2$.

FTL's loss: $\approx T$.

regret: $\approx T/2$ (linear).

Analysis of FTL

Theorem 2 (Analysis of FTL)

For any sequence of cost functions f_1, \dots, f_t and any number of time steps T, the FTL algorithm satisfies

$$\operatorname{regret}_{\mathcal{T}} \leq \sum_{t=1}^{\mathcal{T}} (f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1})).$$

Analysis of FTL

Theorem 2 (Analysis of FTL)

For any sequence of cost functions f_1, \ldots, f_t and any number of time steps T, the FTL algorithm satisfies

$$\mathsf{regret}_{\mathcal{T}} \leq \sum_{t=1}^{\mathcal{T}} (f_t(\mathbf{\textit{x}}_t) - f_t(\mathbf{\textit{x}}_{t+1})).$$

Implication: If $f_t(\cdot)$ is Lipschitz w.r.t. to some distance function $||\cdot||$, then x_t and x_{t+1} are close $\Rightarrow ||f_t(x_t) - f_t(x_{t+1})||$ can't be too large.

Modify FTL: x_t 's shouldn't change too much from step by step.

Recall that

$$\operatorname{regret}_T = \sum_{t=1}^T f_t(\mathbf{x}_t) - \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^T f_t(\mathbf{x})$$

Recall that

$$\mathsf{regret}_{\mathcal{T}} = \sum_{t=1}^{\mathcal{T}} f_t(\boldsymbol{x}_t) - \min_{\boldsymbol{x} \in \mathcal{K}} \sum_{t=1}^{\mathcal{T}} f_t(\boldsymbol{x}) \leq \sum_{t=1}^{\mathcal{T}} (f_t(\boldsymbol{x}_t) - f_t(\boldsymbol{x}_{t+1})).$$

The theorem $\Leftrightarrow \sum_{t=1}^{T} f_t(\mathbf{x}_{t+1}) \leq \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} f_t(\mathbf{x}).$

Recall that

$$\mathsf{regret}_T = \sum_{t=1}^T f_t(\mathbf{x}_t) - \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^T f_t(\mathbf{x}) \leq \sum_{t=1}^T (f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1})).$$

The theorem $\Leftrightarrow \sum_{t=1}^{T} f_t(\mathbf{x}_{t+1}) \leq \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} f_t(\mathbf{x}).$

Prove by induction. T = 1: The definition of x_2 .

Recall that

$$\mathsf{regret}_T = \sum_{t=1}^T f_t(\mathbf{x}_t) - \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^T f_t(\mathbf{x}) \leq \sum_{t=1}^T (f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1})).$$

The theorem $\Leftrightarrow \sum_{t=1}^{T} f_t(\mathbf{x}_{t+1}) \leq \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} f_t(\mathbf{x}).$

Prove by induction. T = 1: The definition of x_2 .

Assume that it holds up to T. Then:

Recall that

$$\operatorname{regret}_T = \sum_{t=1}^T f_t(\mathbf{x}_t) - \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^T f_t(\mathbf{x}) \leq \sum_{t=1}^T (f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1})).$$

The theorem $\Leftrightarrow \sum_{t=1}^{T} f_t(\mathbf{x}_{t+1}) \leq \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} f_t(\mathbf{x}).$

Prove by induction. T=1: The definition of x_2 .

Assume that it holds up to T. Then:

$$\sum_{t=1}^{T+1} f_t(\mathbf{x}_{t+1}) = \sum_{t=1}^{T} f_t(\mathbf{x}_{t+1}) + f_{T+1}(\mathbf{x}_{T+2}) \le \sum_{t=1}^{T+1} f_t(\mathbf{x}_{T+2}) = \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T+1} f_t(\mathbf{x}),$$

Recall that

$$\mathsf{regret}_T = \sum_{t=1}^T f_t(\mathbf{x}_t) - \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^T f_t(\mathbf{x}) \leq \sum_{t=1}^T (f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1})).$$

The theorem $\Leftrightarrow \sum_{t=1}^{T} f_t(\mathbf{x}_{t+1}) \leq \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} f_t(\mathbf{x})$.

Prove by induction. T=1: The definition of x_2 .

Assume that it holds up to T. Then:

$$\sum_{t=1}^{T+1} f_t(\mathbf{x}_{t+1}) = \sum_{t=1}^{T} f_t(\mathbf{x}_{t+1}) + f_{T+1}(\mathbf{x}_{T+2}) \leq \sum_{t=1}^{T+1} f_t(\mathbf{x}_{T+2}) = \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T+1} f_t(\mathbf{x}),$$

where

$$\sum_{t=1}^{T} f_t(\mathbf{x}_{t+1}) \leq \min_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} f_t(\mathbf{x}) \leq \sum_{t=1}^{T} f_t(\mathbf{x}_{T+2}).$$

Outline

- Introduction
- Gradient Descent for Online Convex Optimization (GD)
- 3 Multiplicative Weight Update (MWU)
- 4 Follow The Leader (FTL)
- 5 Follow The Regularized Leader (FTRL)
 - MWU Revisited
 - FTRL with 2-norm regularizer
- 🌀 Multi-Armed Bandit (MAB)
 - Greedy Algorithms
 - Upper Confidence Bound (UCB)
 - Time-Decay ϵ -Greedy

Introducing REGULARIZATION

 You might have already been using regularization for quite a long time.

Introducing REGULARIZATION

Introducing REGULARIZATION

The regularizer

At each step, we compute the solution

$$\mathbf{x}_t := \arg\min_{\mathbf{x} \in \mathcal{K}} \left(\frac{R(\mathbf{x})}{R(\mathbf{x})} + \sum_{k=1}^{t-1} f_k(\mathbf{x}) \right).$$

This is called Follow the Regularized Leader (FTRL). In short,

$$FTRL = FTL + Regularizer.$$

Analysis of FTRL

Theorem 3 (Analysis of FTRL)

For

- every sequence of cost function $\{f_t(\cdot)\}_{t\geq 1}$ and
- every regularizer function $R(\cdot)$,

for every ${\it x}$, the regret with respect to ${\it x}$ after ${\it T}$ steps of the FTRL algorithm is bounded as

$$\operatorname{regret}_{T}(\mathbf{x}) \leq \left(\sum_{t=1}^{T} f_{t}(\mathbf{x}_{t}) - f_{t}(\mathbf{x}_{t+1})\right) + R(\mathbf{x}) - R(\mathbf{x}_{1}),$$

where $\operatorname{regret}_{T}(\mathbf{x}) := \sum_{t=1}^{T} (f_{t}(\mathbf{x}_{t}) - f_{t}(\mathbf{x})).$

• Consider a *mental* experiment:

- Consider a mental experiment:
 - We run the FTL algorithm for T + 1 steps.
 - The sequence of cost functions: R, f_1 , f_2 , ..., f_T .
 - Use x_1 as the first solution.
 - The solutions: \mathbf{x}_1 , \mathbf{x}_1 , \mathbf{x}_2 , ..., \mathbf{x}_T .

- Consider a mental experiment:
 - We run the FTL algorithm for T + 1 steps.
 - The sequence of cost functions: R, f_1 , f_2 , ..., f_T .
 - Use x_1 as the first solution.
 - The solutions: x_1 , x_1 , x_2 , ..., x_T .
- The regret:

$$R(x_1) - R(x) + \sum_{t=1}^{T} (f_t(x_t) - f_t(x))$$

- Consider a mental experiment:
 - We run the FTL algorithm for T + 1 steps.
 - The sequence of cost functions: R, f_1 , f_2 , ..., f_T .
 - Use x_1 as the first solution.
 - The solutions: x_1 , x_1 , x_2 , ..., x_T .
- The regret:

$$R(\mathbf{x}_1) - R(\mathbf{x}) + \sum_{t=1}^{T} (f_t(\mathbf{x}_t) - f_t(\mathbf{x})) \le R(\mathbf{x}_1) - R(\mathbf{x}_1) + \sum_{t=1}^{T} (f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1}))$$

minimizer of $R(\cdot)$

- Consider a mental experiment:
 - We run the FTL algorithm for T + 1 steps.
 - The sequence of cost functions: R, f_1 , f_2 , ..., f_T .
 - Use x_1 as the first solution.
 - The solutions: x_1 , x_1 , x_2 , ..., x_T .
- The regret:

$$R(\mathbf{x}_1) - R(\mathbf{x}) + \sum_{t=1}^{T} (f_t(\mathbf{x}_t) - f_t(\mathbf{x})) \le R(\mathbf{x}_1) - R(\mathbf{x}_1) + \sum_{t=1}^{T} (f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1}))$$

output of FTRL at t+1

Outline

- Introduction
- ② Gradient Descent for Online Convex Optimization (GD)
- 3 Multiplicative Weight Update (MWU)
- 4 Follow The Leader (FTL)
- 5 Follow The Regularized Leader (FTRL)
 - MWU Revisited
 - FTRL with 2-norm regularizer
- Multi-Armed Bandit (MAB)
 - Greedy Algorithms
 - Upper Confidence Bound (UCB)
 - Time-Decay ϵ -Greedy

 We have seen an example that FTL tends to put all probability mass on one expert (it's bad!)

- We have seen an example that FTL tends to put all probability mass on one expert (it's bad!)
- Idea: penalize over "concentralized" distributions.
 - negative-entropy: a good measure of how centralized a distribution is.

- We have seen an example that FTL tends to put all probability mass on one expert (it's bad!)
- Idea: penalize over "concentralized" distributions.
 - negative-entropy: a good measure of how centralized a distribution is.

$$R(\mathbf{x}) := c \cdot \sum_{i=1}^{n} \mathbf{x}(i) \ln \mathbf{x}(i).$$

- We have seen an example that FTL tends to put all probability mass on one expert (it's bad!)
- Idea: penalize over "concentralized" distributions.
 - negative-entropy: a good measure of how centralized a distribution is.

$$R(\mathbf{x}) := c \cdot \sum_{i=1}^{n} \mathbf{x}(i) \ln \mathbf{x}(i).$$

So our FTRL gives

$$\mathbf{x}_t = \arg\min_{\mathbf{x} \in \Delta} \left(\sum_{k=1}^{t-1} \langle \ell_k, \mathbf{x} \rangle + c \cdot \sum_{i=1}^n \mathbf{x}(i) \ln \mathbf{x}(i) \right).$$

$$\mathbf{x}_t = \arg\min_{\mathbf{x} \in \Delta} \left(\sum_{k=1}^{t-1} \langle \boldsymbol{\ell}_k, \mathbf{x} \rangle + c \cdot \sum_{i=1}^n \mathbf{x}(i) \ln \mathbf{x}(i) \right).$$

- The constraint $\mathbf{x} \in \Delta \Rightarrow \sum_{i} \mathbf{x}_{i} = 1$.
- So we use Lagrange multiplier to solve

$$\mathcal{L} = \left(\sum_{k=1}^{t-1} \langle \ell_k, \mathbf{x} \rangle\right) + c \cdot \left(\sum_{i=1}^n \mathbf{x}(i) \ln \mathbf{x}(i)\right) + \lambda \cdot (\langle \mathbf{x}, \mathbf{1} \rangle - 1).$$

$$\mathbf{x}_t = \arg\min_{\mathbf{x} \in \Delta} \left(\sum_{k=1}^{t-1} \langle \boldsymbol{\ell}_k, \mathbf{x} \rangle + c \cdot \sum_{i=1}^n \mathbf{x}(i) \ln \mathbf{x}(i) \right).$$

- The constraint $\mathbf{x} \in \Delta \Rightarrow \sum_{i} \mathbf{x}_{i} = 1$.
- So we use Lagrange multiplier to solve

$$\mathcal{L} = \left(\sum_{k=1}^{t-1} \langle \ell_k, \mathbf{x} \rangle\right) + c \cdot \left(\sum_{i=1}^n \mathbf{x}(i) \ln \mathbf{x}(i)\right) + \lambda \cdot (\langle \mathbf{x}, \mathbf{1} \rangle - 1).$$

• The partial derivative $\frac{\partial \mathcal{L}}{\partial \mathbf{x}(i)}$:

$$\left(\sum_{k=1}^{t-1} \ell_k(i)\right) + c \cdot (1 + \ln x_i) + \lambda$$

MWU Revisited

Rediscover MWU?

$$\frac{\partial \mathcal{L}}{\partial \mathbf{x}(i)} = 0 \quad \Rightarrow \quad \mathbf{x}(i) = \exp\left(-1 - \frac{\lambda}{c} - \frac{1}{c} \sum_{k=1}^{t-1} \ell_k(i)\right)$$

MWU Revisited

Rediscover MWU?

$$\frac{\partial \mathcal{L}}{\partial \mathbf{x}(i)} = 0 \quad \Rightarrow \quad \mathbf{x}(i) = \exp\left(-1 - \frac{\lambda}{c} - \frac{1}{c} \sum_{k=1}^{t-1} \ell_k(i)\right)$$

Take the value of λ to make the solution a probability distribution. Thus,

Rediscover MWU?

$$\frac{\partial \mathcal{L}}{\partial \mathbf{x}(i)} = 0 \quad \Rightarrow \quad \mathbf{x}(i) = \exp\left(-1 - \frac{\lambda}{c} - \frac{1}{c} \sum_{k=1}^{t-1} \ell_k(i)\right)$$

Take the value of λ to make the solution a probability distribution. Thus,

$$\mathbf{x}(i) = \frac{\exp\left(-\frac{1}{c}\sum_{k=1}^{t-1}\ell_k(i)\right)}{\sum_{j}\exp\left(-\frac{1}{c}\sum_{k=1}^{t-1}\ell_k(j)\right)}.$$

Rediscover MWU?

$$\frac{\partial \mathcal{L}}{\partial \mathbf{x}(i)} = 0 \quad \Rightarrow \quad \mathbf{x}(i) = \exp\left(-1 - \frac{\lambda}{c} - \frac{1}{c} \sum_{k=1}^{t-1} \ell_k(i)\right)$$

Take the value of λ to make the solution a probability distribution. Thus,

$$\mathbf{x}(i) = \frac{\exp\left(-\frac{1}{c}\sum_{k=1}^{t-1}\ell_k(i)\right)}{\sum_{j}\exp\left(-\frac{1}{c}\sum_{k=1}^{t-1}\ell_k(j)\right)}.$$

Exactly the solution of MWU if we take $c = 1/\beta!$

Rediscover MWU?

$$\frac{\partial \mathcal{L}}{\partial \mathbf{x}(i)} = 0 \quad \Rightarrow \quad \mathbf{x}(i) = \exp\left(-1 - \frac{\lambda}{c} - \frac{1}{c} \sum_{k=1}^{t-1} \ell_k(i)\right)$$

Take the value of λ to make the solution a probability distribution. Thus,

$$\mathbf{x}(i) = \frac{\exp\left(-\frac{1}{c}\sum_{k=1}^{t-1}\ell_k(i)\right)}{\sum_{j}\exp\left(-\frac{1}{c}\sum_{k=1}^{t-1}\ell_k(j)\right)}.$$

Exactly the solution of MWU if we take $c = 1/\beta!$

• Now it remains to bound the deviation of each step.

At each step,

$$f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1}) = \langle \boldsymbol{\ell}_t, \mathbf{x}_t - \mathbf{x}_{t+1} \rangle$$

- Let's go back to use the notation of MWU.
 - $\mathbf{w}_1(i) = 1$ (initialization).
 - $\mathbf{w}_{t+1}(i) = \mathbf{w}_t(i) \cdot e^{-\ell_t(i)/c}$.

At each step,

$$f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1}) = \langle \ell_t, \mathbf{x}_t - \mathbf{x}_{t+1} \rangle$$

- Let's go back to use the notation of MWU.
 - $\mathbf{w}_1(i) = 1$ (initialization).
 - $\mathbf{w}_{t+1}(i) = \mathbf{w}_{t}(i) \cdot e^{-\ell_{t}(i)/c}$.
- So, $\mathbf{x}_t = \frac{\mathbf{w}_t(i)}{\sum_j \mathbf{w}_t(j)}$.
- Then,

$$\begin{aligned} \mathbf{x}_{t+1}(i) &= \frac{\mathbf{w}_{t+1}(i)}{\sum_{j} \mathbf{w}_{t+1}(j)} = \frac{\mathbf{w}_{t}(i)e^{-\ell_{t}(i)/c}}{\sum_{j} \mathbf{w}_{t+1}(j)} \ge \frac{\mathbf{w}_{t}(i)e^{-\ell_{t}(i)/c}}{\sum_{j} \mathbf{w}_{t}(j)} \\ &\ge \mathbf{x}_{t}(i) \cdot e^{-1/c} \ge (1 - 1/c)\mathbf{x}_{t}(i). \end{aligned}$$

At each step,

$$f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1}) = \langle \ell_t, \mathbf{x}_t - \mathbf{x}_{t+1} \rangle$$

- Let's go back to use the notation of MWU.
 - $\mathbf{w}_1(i) = 1$ (initialization).
 - $\mathbf{w}_{t+1}(i) = \mathbf{w}_{t}(i) \cdot e^{-\ell_{t}(i)/c}$.
- So, $\mathbf{x}_t = \frac{\mathbf{w}_t(i)}{\sum_j \mathbf{w}_t(j)}$.
- Then,

$$\begin{aligned} \mathbf{x}_{t+1}(i) &= \frac{\mathbf{w}_{t+1}(i)}{\sum_{j} \mathbf{w}_{t+1}(j)} = \frac{\mathbf{w}_{t}(i)e^{-\ell_{t}(i)/c}}{\sum_{j} \mathbf{w}_{t+1}(j)} \ge \frac{\mathbf{w}_{t}(i)e^{-\ell_{t}(i)/c}}{\sum_{j} \mathbf{w}_{t}(j)} \\ &\ge \mathbf{x}_{t}(i) \cdot e^{-1/c} \ge (1 - 1/c)\mathbf{x}_{t}(i). \end{aligned}$$

: weights are non-increasing

At each step,

$$f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1}) = \langle \ell_t, \mathbf{x}_t - \mathbf{x}_{t+1} \rangle$$

- Let's go back to use the notation of MWU.
 - $\mathbf{w}_1(i) = 1$ (initialization).
 - $\mathbf{w}_{t+1}(i) = \mathbf{w}_{t}(i) \cdot e^{-\ell_{t}(i)/c}$.
- So, $\mathbf{x}_t = \frac{\mathbf{w}_t(i)}{\sum_j \mathbf{w}_t(j)}$.
- Then,

$$\begin{aligned} \mathbf{x}_{t+1}(i) &= \frac{\mathbf{w}_{t+1}(i)}{\sum_{j} \mathbf{w}_{t+1}(j)} = \frac{\mathbf{w}_{t}(i)e^{-\ell_{t}(i)/c}}{\sum_{j} \mathbf{w}_{t+1}(j)} \ge \frac{\mathbf{w}_{t}(i)e^{-\ell_{t}(i)/c}}{\sum_{j} \mathbf{w}_{t}(j)} \\ &\ge \mathbf{x}_{t}(i) \cdot e^{-1/c} \ge (1 - 1/c)\mathbf{x}_{t}(i). \end{aligned}$$

assume $0 \le \ell_t(i) \le 1$

At each step,

$$f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1}) = \langle \ell_t, \mathbf{x}_t - \mathbf{x}_{t+1} \rangle \leq \sum_i \ell_t(i) \cdot \frac{1}{c} \mathbf{x}_t(i) \leq \frac{1}{c}.$$

- Let's go back to use the notation of MWU.
 - $\mathbf{w}_1(i) = 1$ (initialization).
 - $\mathbf{w}_{t+1}(i) = \mathbf{w}_{t}(i) \cdot e^{-\ell_{t}(i)/c}$.
- So, $\mathbf{x}_t = \frac{\mathbf{w}_t(i)}{\sum_j \mathbf{w}_t(j)}$.
- Then,

$$\begin{aligned} \mathbf{x}_{t+1}(i) &= \frac{\mathbf{w}_{t+1}(i)}{\sum_{j} \mathbf{w}_{t+1}(j)} = \frac{\mathbf{w}_{t}(i)e^{-\ell_{t}(i)/c}}{\sum_{j} \mathbf{w}_{t+1}(j)} \ge \frac{\mathbf{w}_{t}(i)e^{-\ell_{t}(i)/c}}{\sum_{j} \mathbf{w}_{t}(j)} \\ &\ge \mathbf{x}_{t}(i) \cdot e^{-1/c} \ge (1 - 1/c)\mathbf{x}_{t}(i). \end{aligned}$$

• By Theorem 3, for any x,

$$\operatorname{regret}_{T}(\boldsymbol{x}) \leq \sum_{t=1}^{T} \left(f_{t}(\boldsymbol{x}_{t}) - f_{t}(\boldsymbol{x}_{t+1}) \right) + R(\boldsymbol{x}) - R(\boldsymbol{x}_{1}) \leq \frac{T}{c} + c \ln n.$$

• By Theorem 3, for any x,

$$\operatorname{regret}_{T}(\boldsymbol{x}) \leq \sum_{t=1}^{T} \left(f_{t}(\boldsymbol{x}_{t}) - f_{t}(\boldsymbol{x}_{t+1}) \right) + R(\boldsymbol{x}) - R(\boldsymbol{x}_{1}) \leq \frac{T}{c} + c \ln n.$$

: max entropy for uniform distribution

• By Theorem 3, for any x,

$$\operatorname{regret}_{T}(\boldsymbol{x}) \leq \sum_{t=1}^{T} \left(f_{t}(\boldsymbol{x}_{t}) - f_{t}(\boldsymbol{x}_{t+1}) \right) + R(\boldsymbol{x}) - R(\boldsymbol{x}_{1}) \leq \frac{T}{c} + c \ln n.$$

Again, we have $\operatorname{regret}_T \leq 2\sqrt{T \ln n}$ by choosing $c = \sqrt{\frac{T}{\ln n}}$.

• By Theorem 3, for any x,

$$\operatorname{regret}_{T}(\boldsymbol{x}) \leq \sum_{t=1}^{T} \left(f_{t}(\boldsymbol{x}_{t}) - f_{t}(\boldsymbol{x}_{t+1}) \right) + R(\boldsymbol{x}) - R(\boldsymbol{x}_{1}) \leq \frac{T}{c} + c \ln n.$$

Again, we have $\operatorname{regret}_T \leq 2\sqrt{T \ln n}$ by choosing $c = \sqrt{\frac{T}{\ln n}}$.

• Note the slight difference b/w regret and regret*.

Outline

- Introduction
- Gradient Descent for Online Convex Optimization (GD)
- 3 Multiplicative Weight Update (MWU)
- 4 Follow The Leader (FTL)
- 5 Follow The Regularized Leader (FTRL)
 - MWU Revisited
 - FTRL with 2-norm regularizer
- Multi-Armed Bandit (MAB)
 - Greedy Algorithms
 - Upper Confidence Bound (UCB)
 - Time-Decay ϵ -Greedy

L2 Regularization

- Let's try to apply the FTRL to the case that the regularizer is of L2 norm!
- Consider also linear cost functions but $\mathcal{K} = \mathbb{R}^n$ first.
- What kind of problem we might encounter?

L2 Regularization

- Let's try to apply the FTRL to the case that the regularizer is of L2 norm!
- Consider also linear cost functions but $\mathcal{K} = \mathbb{R}^n$ first.
- What kind of problem we might encounter?
- The offline optimum could be $-\infty$.
- FTL will also tend to find a solution of "big" size, too.

L2 Regularization

- Let's try to apply the FTRL to the case that the regularizer is of L2 norm!
- Consider also linear cost functions but $\mathcal{K} = \mathbb{R}^n$ first.
- What kind of problem we might encounter?
- The offline optimum could be $-\infty$.
- FTL will also tend to find a solution of "big" size, too.
- To fight this tendency, it makes sense to use a regularizer which penalizes the size of a solution.

$$R(\mathbf{x}) := c||\mathbf{x}||^2.$$

The regularizer of 2-norm tells us...

- $x_1 = 0$.
- $\mathbf{x}_{t+1} = \arg\min_{\mathbf{x} \in \mathbb{R}^n} c||\mathbf{x}||^2 + \sum_{k=1}^t \langle \ell_k, \mathbf{x} \rangle$.
- Compute the gradient:

$$2c\mathbf{x} + \sum_{k=1}^{t} \ell_k = 0$$

$$\Rightarrow \mathbf{x} = -\frac{1}{2c} \sum_{k=1}^{t} \ell_k.$$

Hence,
$$\mathbf{x}_1 = \mathbf{0}, \mathbf{x}_{t+1} = \mathbf{x}_t - \frac{1}{2c} \ell_t$$
.

The regularizer of 2-norm tells us...

- $x_1 = 0$.
- $\mathbf{x}_{t+1} = \arg\min_{\mathbf{x} \in \mathbb{R}^n} c||\mathbf{x}||^2 + \sum_{k=1}^t \langle \ell_k, \mathbf{x} \rangle$. convex
- Compute the gradient:

$$2c\mathbf{x} + \sum_{k=1}^{t} \ell_k = 0$$

$$\Rightarrow \mathbf{x} = -\frac{1}{2c} \sum_{k=1}^{t} \ell_k.$$

Hence, $extbf{\emph{x}}_1 = extbf{\emph{0}}, extbf{\emph{x}}_{t+1} = extbf{\emph{x}}_t - frac{1}{2c} \ell_t.$

The regularizer of 2-norm tells us...

- $x_1 = 0$.
- $\mathbf{x}_{t+1} = \arg\min_{\mathbf{x} \in \mathbb{R}^n} c||\mathbf{x}||^2 + \sum_{k=1}^t \langle \ell_k, \mathbf{x} \rangle$.
- Compute the gradient:

$$2c\mathbf{x} + \sum_{k=1}^{t} \ell_k = 0$$

$$\Rightarrow \mathbf{x} = -\frac{1}{2c} \sum_{k=1}^{t} \ell_k.$$

Hence, $\mathbf{x}_1 = \mathbf{0}, \mathbf{x}_{t+1} = \mathbf{x}_t - \frac{1}{2c} \ell_t$.

The regularizer of 2-norm tells us...

- $x_1 = 0$.
- $\mathbf{x}_{t+1} = \operatorname{arg\,min}_{\mathbf{x} \in \mathbb{R}^n} c||\mathbf{x}||^2 + \sum_{k=1}^t \langle \boldsymbol{\ell}_k, \mathbf{x} \rangle$.
- Compute the gradient:

$$2c\mathbf{x} + \sum_{k=1}^{t} \ell_k = 0$$

$$\Rightarrow \mathbf{x} = -\frac{1}{2c} \sum_{k=1}^{t} \ell_k.$$

Hence, $\mathbf{x}_1 = \mathbf{0}, \mathbf{x}_{t+1} = \mathbf{x}_t - \frac{1}{2c} \ell_t$.

 \rightarrow penalize the experts that performed badly in the past!

The regret of FTRL with 2-norm regularization

First, we have

$$f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1}) = \langle \ell_t, \mathbf{x}_t - \mathbf{x}_{t+1} \rangle = \left\langle \ell_t, \frac{1}{2c} \ell_t \right\rangle = \frac{1}{2c} ||\ell_t||^2.$$

• So, with respect to a solution x,

regret_T(
$$\mathbf{x}$$
) $\leq R(\mathbf{x}) - R(\mathbf{x}_1) + \sum_{t=1}^{T} f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1})$

$$= c||\mathbf{x}||^2 + \frac{1}{2c} \sum_{t=1}^{T} ||\ell_t||^2.$$

• Suppose that $||\ell_t|| \le L$ for each t and $||\mathbf{x}|| \le D$. Then by optimizing $c = \sqrt{\frac{T}{2D^2L^2}}$, we have

$$\operatorname{regret}_{T}(\mathbf{x}) \leq DL\sqrt{2T}$$
.

Dealing with constraints

- Let's deal with the constraint that K is an arbitrary convex set instead of \mathbb{R}^n .
- Using the same regularizer, we have our FTRL which gives

$$\begin{split} & \mathbf{x}_1 = \arg\min_{\mathbf{x} \in \mathcal{K}} c||\mathbf{x}||^2, \\ & \mathbf{x}_{t+1} = \arg\min_{\mathbf{x} \in \mathcal{K}} c||\mathbf{x}||^2 + \sum_{k=1}^t \langle \ell_t, \mathbf{x} \rangle. \end{split}$$

Dealing with constraints

- Let's deal with the constraint that K is an arbitrary convex set instead of \mathbb{R}^n .
- Using the same regularizer, we have our FTRL which gives

$$\begin{split} & \mathbf{\textit{x}}_1 = \arg\min_{\mathbf{\textit{x}} \in \mathcal{K}} c ||\mathbf{\textit{x}}||^2, \\ & \mathbf{\textit{x}}_{t+1} = \arg\min_{\mathbf{\textit{x}} \in \mathcal{K}} c ||\mathbf{\textit{x}}||^2 + \sum_{k=1}^t \langle \ell_t, \mathbf{\textit{x}} \rangle. \end{split}$$

• The idea: First solve the unconstrained optimization and then project the solution on *K*.

Unconstrained optimization + projection

$$\begin{aligned} & \mathbf{y}_{t+1} = \arg\min_{\mathbf{y} \in \mathbb{R}^n} c||\mathbf{y}||^2 + \sum_{k=1}^t \langle \ell_t, \mathbf{y} \rangle. \\ & \mathbf{x}_{t+1}' = \Pi_{\mathcal{K}}(\mathbf{y}_{t+1}) = \arg\min_{\mathbf{x} \in \mathcal{K}} ||\mathbf{x} - \mathbf{y}_{t+1}||. \end{aligned}$$

Unconstrained optimization + projection

$$\begin{aligned} & \boldsymbol{y}_{t+1} = \arg\min_{\boldsymbol{y} \in \mathbb{R}^n} c||\boldsymbol{y}||^2 + \sum_{k=1}^t \langle \boldsymbol{\ell}_t, \boldsymbol{y} \rangle. \\ & \boldsymbol{x}_{t+1}' = \Pi_{\mathcal{K}}(\boldsymbol{y}_{t+1}) = \arg\min_{\boldsymbol{x} \in \mathcal{K}} ||\boldsymbol{x} - \boldsymbol{y}_{t+1}||. \end{aligned}$$

• Claim: $x'_{t+1} = x_{t+1}$.

Proof of the claim: $\mathbf{x}'_{t+1} = \mathbf{x}_{t+1}$

- ullet First, we already have that $oldsymbol{y}_{t+1} = -rac{1}{2c} \sum_{k=1}^t \ell_t.$
- Then,

$$\begin{aligned} \mathbf{x}_{t+1}' &= & \arg\min_{\mathbf{x} \in \mathcal{K}} ||\mathbf{x} - \mathbf{y}_{t+1}|| = \arg\min_{\mathbf{x} \in \mathcal{K}} ||\mathbf{x} - \mathbf{y}_{t+1}||^2 \\ &= & \arg\min_{\mathbf{x} \in \mathcal{K}} ||\mathbf{x}||^2 - 2\langle \mathbf{x}, \mathbf{y}_{t+1} \rangle + ||\mathbf{y}_{t+1}||^2 \end{aligned}$$

Proof of the claim: $\mathbf{x}'_{t+1} = \mathbf{x}_{t+1}$

- ullet First, we already have that $oldsymbol{y}_{t+1} = -rac{1}{2c} \sum_{k=1}^t \ell_t.$
- Then,

$$\begin{aligned} \mathbf{x}_{t+1}' &= & \arg\min_{\mathbf{x} \in \mathcal{K}} ||\mathbf{x} - \mathbf{y}_{t+1}|| = \arg\min_{\mathbf{x} \in \mathcal{K}} ||\mathbf{x} - \mathbf{y}_{t+1}||^2 \\ &= & \arg\min_{\mathbf{x} \in \mathcal{K}} ||\mathbf{x}||^2 - 2\langle \mathbf{x}, \mathbf{y}_{t+1} \rangle + ||\mathbf{y}_{t+1}||^2 \\ &= & \arg\min_{\mathbf{x} \in \mathcal{K}} ||\mathbf{x}||^2 - 2\langle \mathbf{x}, \mathbf{y}_{t+1} \rangle \\ &= & \arg\min_{\mathbf{x} \in \mathcal{K}} ||\mathbf{x}||^2 - 2\langle \mathbf{x}, -\frac{1}{2c} \sum_{k=1}^t \ell_t \rangle \\ &= & \arg\min_{\mathbf{x} \in \mathcal{K}} c||\mathbf{x}||^2 + \left\langle \mathbf{x}, \sum_{k=1}^t \ell_t \right\rangle \\ &= & \mathbf{x}_{t+1}. \end{aligned}$$

To bound the regret

$$f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1}) = \langle \ell_t, \mathbf{x}_t - \mathbf{x}_{t+1} \rangle \le ||\ell_t|| \cdot ||\mathbf{x}_t - \mathbf{x}_{t+1}||$$

To bound the regret

$$f_t(\mathbf{x}_t) - f_t(\mathbf{x}_{t+1}) = \langle \ell_t, \mathbf{x}_t - \mathbf{x}_{t+1} \rangle \le ||\ell_t|| \cdot ||\mathbf{x}_t - \mathbf{x}_{t+1}|| \le ||\ell_t|| \cdot ||\mathbf{y}_t - \mathbf{y}_{t+1}||.$$

To bound the regret

$$egin{aligned} f_t(oldsymbol{x}_t) - f_t(oldsymbol{x}_{t+1}) &= \langle \ell_t, oldsymbol{x}_t - oldsymbol{x}_{t+1}
angle &\leq ||\ell_t|| \cdot ||oldsymbol{x}_t - oldsymbol{x}_{t+1}|| \ &\leq ||\ell_t|| \cdot ||oldsymbol{y}_t - oldsymbol{y}_{t+1}|| \ &\leq rac{1}{2c} ||\ell_t||^2. \end{aligned}$$

So, assume $\max_{\mathbf{x} \in \mathcal{K}} ||\mathbf{x}|| \leq D$ and $||\ell_t|| \leq L$ for all t, we have

regret_T
$$\leq c||\mathbf{x}^*||^2 - c||\mathbf{x}_1||^2 + \frac{1}{2c}\sum_{t=1}^{T}||\ell_t||^2$$

 $\leq cD^2 + \frac{1}{2c}TL^2$

To bound the regret

$$egin{array}{lll} f_t(oldsymbol{x}_t) - f_t(oldsymbol{x}_{t+1}) & \leq & ||oldsymbol{\ell}_t|| \cdot ||oldsymbol{x}_t - oldsymbol{x}_{t+1}|| \ & \leq & ||oldsymbol{\ell}_t|| \cdot ||oldsymbol{y}_t - oldsymbol{y}_{t+1}|| \ & \leq & rac{1}{2c} ||oldsymbol{\ell}_t||^2. \end{array}$$

So, assume $\max_{\mathbf{x} \in \mathcal{K}} ||\mathbf{x}|| \leq D$ and $||\ell_t|| \leq L$ for all t, we have

regret_T
$$\leq c||\mathbf{x}^*||^2 - c||\mathbf{x}_1||^2 + \frac{1}{2c}\sum_{t=1}^{I}||\ell_t||^2$$

 $\leq cD^2 + \frac{1}{2c}TL^2 \leq DL\sqrt{2T}.$

Outline

- Introduction
- ② Gradient Descent for Online Convex Optimization (GD)
- 3 Multiplicative Weight Update (MWU)
- 4 Follow The Leader (FTL)
- 5 Follow The Regularized Leader (FTRL)
 - MWU Revisited
 - FTRL with 2-norm regularizer
- Multi-Armed Bandit (MAB)
 - Greedy Algorithms
 - Upper Confidence Bound (UCB)
 - Time-Decay ϵ -Greedy

Multi-Armed Bandit

Fig.: Image credit: Microsoft Research

The setting

- We can see N arms as N experts.
- Arms give are independent.
- We can only pull an arm and observe the reward of it.
 - It's NOT possible to observe the reward of pulling the other arms...
- Each arm i has its own reward $r_i \in [0, 1]$.

The setting

- We can see N arms as N experts.
- Arms give are independent.
- We can only pull an arm and observe the reward of it.
 - It's NOT possible to observe the reward of pulling the other arms...
- Each arm i has its own reward $r_i \in [0, 1]$.
 - μ_i : the mean of reward of arm i
 - $\hat{\mu}_i$: the empirical mean of reward of arm i
 - μ^* : the mean of reward of the BEST arm.
 - $\Delta_i : \mu^* \mu_i$.
 - Index of the best arm: $I^* := \arg\max_{i \in \{1,...,N\}} \mu_i$.
 - The associated highest expected reward: $\mu^* = \mu_{I^*}$.

Let I_t be the arm played by the algorithm at time t. The regret of the algorithm in T rounds is

$$\operatorname{regret}_{T} = \sum_{t=1}^{T} (\mu^{*} - \mu_{I_{t}})$$

Let I_t be the arm played by the algorithm at time t. The regret of the algorithm in \mathcal{T} rounds is

$$\text{regret}_{T} = \sum_{t=1}^{T} (\mu^* - \mu_{I_t}) = \sum_{i=1}^{N} \sum_{t:I_t=i} (\mu^* - \mu_i)$$

Let I_t be the arm played by the algorithm at time t. The regret of the algorithm in T rounds is

$$\operatorname{regret}_{T} = \sum_{t=1}^{T} (\mu^{*} - \mu_{I_{t}}) = \sum_{i=1}^{N} \sum_{t:I_{t}=i} (\mu^{*} - \mu_{i})$$
$$= \sum_{i=1}^{N} n_{i,T} \Delta_{i}$$

Let I_t be the arm played by the algorithm at time t. The regret of the algorithm in T rounds is

$$\operatorname{regret}_{T} = \sum_{t=1}^{T} (\mu^{*} - \mu_{I_{t}}) = \sum_{i=1}^{N} \sum_{t:I_{t}=i} (\mu^{*} - \mu_{i})$$

$$= \sum_{i=1}^{N} n_{i,T} \Delta_{i}$$

$$= \sum_{i:\mu_{i} < \mu^{*}} n_{i,T} \Delta_{i}.$$

Outline

- Introduction
- ② Gradient Descent for Online Convex Optimization (GD)
- Multiplicative Weight Update (MWU)
- 4 Follow The Leader (FTL)
- 5 Follow The Regularized Leader (FTRL)
 - MWU Revisited
 - FTRL with 2-norm regularizer
- Multi-Armed Bandit (MAB)
 - Greedy Algorithms
 - Upper Confidence Bound (UCB)
 - Time-Decay ϵ -Greedy

Greedy Algorithms

A Naïve Greedy Algorithm

- For $t \le cN$, select a random arm with probability 1/N and pull it.
- ② For t > cN, pull the arm $I_t := \arg \max_{i=1,...,N} \hat{\mu}_{i,t}$.
 - Here c is a constant.

A Naïve Greedy Algorithm

- **①** For $t \le cN$, select a random arm with probability 1/N and pull it.
- ② For t > cN, pull the arm $I_t := \arg \max_{i=1,...,N} \hat{\mu}_{i,t}$.
 - Here c is a constant.
 - This algorithm is of linear regret, hence is not a no-regret algorithm.

A Naïve Greedy Algorithm

- For $t \le cN$, select a random arm with probability 1/N and pull it.
- ② For t > cN, pull the arm $I_t := \arg \max_{i=1,...,N} \hat{\mu}_{i,t}$.
 - Here c is a constant.
 - This algorithm is of linear regret, hence is not a no-regret algorithm.
 - For example,
 - Arm 1: 0/1 reward with mean 3/4.
 - Arm 2: Fixed reward of 1/4.
 - After cN=2c steps, with constant probability, we have $\hat{\mu}_{1,cN}<\hat{\mu}_{2,cN}$.

A Naïve Greedy Algorithm

- For $t \leq cN$, select a random arm with probability 1/N and pull it.
- ② For t > cN, pull the arm $I_t := \arg \max_{i=1,...,N} \hat{\mu}_{i,t}$.
 - Here c is a constant.
 - This algorithm is of linear regret, hence is not a no-regret algorithm.
 - For example,
 - Arm 1: 0/1 reward with mean 3/4.
 - Arm 2: Fixed reward of 1/4.
 - After cN=2c steps, with constant probability, we have $\hat{\mu}_{1,cN}<\hat{\mu}_{2,cN}.$
 - If this is the case, the algorithm will keep pulling arm 2 and will never change!

ϵ -Greedy Algorithm

- With probability 1ϵ , pull arm $I_t := \arg\max_{i=1,...,N} \hat{\mu}_{i,t}$.
- With probability ϵ , select an arm uniformly at random (i.e., each with probability 1/N).

ϵ -Greedy Algorithm

- With probability 1ϵ , pull arm $I_t := \arg\max_{i=1,...,N} \hat{\mu}_{i,t}$.
- With probability ϵ , select an arm uniformly at random (i.e., each with probability 1/N).
- It looks good.

ϵ-Greedy Algorithm

- With probability 1ϵ , pull arm $I_t := \arg\max_{i=1,\dots,N} \hat{\mu}_{i,t}$.
- With probability ϵ , select an arm uniformly at random (i.e., each with probability 1/N).
- It looks good.
- Unfortunately, this algorithm still incurs linear regret.

ϵ-Greedy Algorithm

ϵ -Greedy Algorithm

- With probability 1ϵ , pull arm $I_t := \arg \max_{i=1,...,N} \hat{\mu}_{i,t}$.
- With probability ϵ , select an arm uniformly at random (i.e., each with probability 1/N).
- It looks good.
- Unfortunately, this algorithm still incurs linear regret.
- Indeed,
 - Each arm is pulled in average $\epsilon T/N$ times.

ϵ -Greedy Algorithm

- With probability 1ϵ , pull arm $I_t := \arg \max_{i=1,...,N} \hat{\mu}_{i,t}$.
- With probability ϵ , select an arm uniformly at random (i.e., each with probability 1/N).
- It looks good.
- Unfortunately, this algorithm still incurs linear regret.
- Indeed.
 - Each arm is pulled in average $\epsilon T/N$ times.
 - Hence the (expected) regret will be at least $\frac{\epsilon T}{N} \sum_{i:n < n^*} \Delta_i$.

Upper Confidence Bound (UCB)

Outline

- Introduction
- ② Gradient Descent for Online Convex Optimization (GD)
- 3 Multiplicative Weight Update (MWU)
- 4 Follow The Leader (FTL)
- 5 Follow The Regularized Leader (FTRL)
 - MWU Revisited
 - FTRL with 2-norm regularizer
- Multi-Armed Bandit (MAB)
 - Greedy Algorithms
 - Upper Confidence Bound (UCB)
 - Time-Decay ϵ -Greedy

The upper confidence bound algorithm (UCB)

- At each time step (round), we simply pull the arm with the highest "empirical reward estimate + high-confidence interval size".
- The empirical reward estimate of arm i at time t:

$$\hat{\mu}_{i,t} = \frac{\sum_{s=1}^{t} I_{s,i} \cdot r_s}{n_{i,t}}.$$

 $n_{i,t}$: the number of times arm i is played.

 $I_{s,i}$: 1 if the choice of arm is i at time s and 0 otherwise.

• Reward estimate + confidence interval:

$$\mathsf{UCB}_{i,t} := \hat{\mu}_{i,t} + \sqrt{\frac{\ln t}{n_{i,t}}}.$$

Algorithm UCB

UCB Algorithm

N arms, T rounds such that $T \geq N$.

- For t = 1, ..., N, play arm t.
- ② For $t = N + 1, \dots, T$, play arm

$$A_t = \operatorname{arg\,max}_{i \in \{1, \dots, N\}} \mathsf{UCB}_{i, t-1}.$$

Upper Confidence Bound (UCB)

Algorithm UCB

Upper Confidence Bound (UCB)

Algorithm UCB (after more time steps...)

From the Chernoff bound (proof skipped)

For each arm i at time t, we have

$$|\hat{\mu}_{i,t} - \mu_i| < \sqrt{\frac{\ln t}{n_{i,t}}}$$

with probability $> 1 - 2/t^2$.

Immediately, we know that

- with prob. $\geq 1-2/t^2$, $\mathsf{UCB}_{i,t}:=\hat{\mu}_{i,t}+\sqrt{\frac{\ln t}{n_{i,t}}}>\mu_i$.
- with prob. $\geq 1 2/t^2$, $\hat{\mu}_{i,t} < \mu_i + \frac{\Delta_i}{2}$ when $n_{i,t} \geq \frac{4 \ln t}{\Lambda_i^2}$.

4 D F 4 M F 4 B F 4 B F B

From the Chernoff bound (proof skipped)

For each arm i at time t, we have

$$|\hat{\mu}_{i,t} - \mu_i| < \sqrt{\frac{\ln t}{n_{i,t}}}$$

with probability $> 1 - 2/t^2$.

To understand why, please take my Randomized Algorithms course. :) Immediately, we know that

- with prob. $\geq 1-2/t^2$, $\mathsf{UCB}_{i,t}:=\hat{\mu}_{i,t}+\sqrt{\frac{\ln t}{n_{i,t}}}>\mu_i$.
- with prob. $\geq 1-2/t^2$, $\hat{\mu}_{i,t} < \mu_i + \frac{\Delta_i}{2}$ when $n_{i,t} \geq \frac{4 \ln t}{\Delta_i^2}$.

Upper Confidence Bound (UCB)

Appendix: Tail probability by the Chernoff/Hoeffding bound

The Chernoff/Hoeffding bound

For independent and identically distributed (i.i.d.) samples $x_1, \ldots, x_n \in [0, 1]$ with $\mathbb{E}[x_i] = \mu$, we have

$$\Pr\left[\left|\frac{\sum_{i=1}^{n} x_i}{n} - \mu\right| \ge \delta\right] \le 2e^{-2n\delta^2}.$$

Very unlikely to play a suboptimal arm

Lemma 3

At any time step t, if a suboptimal arm i (i.e., $\mu_i < \mu^*$) has been played for $n_{i,t} \geq \frac{4 \ln t}{\Delta_i^2}$ times, then $\mathsf{UCB}_{i,t} < \mathsf{UCB}_{I^*,t}$ with probability $\geq 1 - 4/t^2$. Therefore, for any t,

$$\Pr\left[I_{t+1,i}=1\,\middle|\,n_{i,t}\geq\frac{4\ln t}{\Delta_i^2}\right]\leq\frac{4}{t^2}.$$

Proof of Lemma 3

With probability $< 2/t^2 + 2/t^2$ (union bound) that

$$\begin{aligned} \mathsf{UCB}_{i,t} &= \hat{\mu}_{i,t} + \sqrt{\frac{\ln t}{n_{i,t}}} &\leq & \hat{\mu}_{i,t} + \frac{\Delta_i}{2} \\ &< & \left(\mu_i + \frac{\Delta_i}{2}\right) + \frac{\Delta_i}{2} \\ &= & \mu^* < \mathsf{UCB}_{i^*,t} \end{aligned}$$

does NOT hold.

Upper Confidence Bound (UCB)

Playing suboptimal arms for very limited number of times

Lemma 4

For any arm i with $\mu_i < \mu^*$,

$$\mathbb{E}[n_{i,T}] \leq \frac{4 \ln T}{\Delta_i^2} + 8.$$

$$\mathbb{E}[n_{i,T}] = 1 + \mathbb{E}\left[\sum_{t=N}^{T} \mathbb{1}\left\{I_{t+1,i} = 1\right\}\right]$$

$$= 1 + \mathbb{E}\left[\sum_{t=N}^{T} \mathbb{1}\left\{I_{t+1,i} = 1, n_{i,t} < \frac{4\ln t}{\Delta_i^2}\right\}\right]$$

$$+ \mathbb{E}\left[\sum_{t=N}^{T} \mathbb{1}\left\{I_{t+1,i} = 1, n_{i,t} \ge \frac{4\ln t}{\Delta_i^2}\right\}\right]$$

Proof of Lemma 4 (contd.)

$$\begin{split} \mathbb{E}[n_{i,T}] & \leq & \frac{4 \ln T}{\Delta_i^2} + \mathbb{E}\left[\sum_{t=N}^T \mathbb{1}\left\{I_{t+1,i} = 1, n_{i,t} \geq \frac{4 \ln t}{\Delta_i^2}\right\}\right] \\ & = & \frac{4 \ln T}{\Delta_i^2} + \sum_{t=N}^T \Pr\left[I_{t+1,i} = 1, n_{i,t} \geq \frac{4 \ln t}{\Delta_i^2}\right] \\ & = & \frac{4 \ln T}{\Delta_i^2} + \sum_{t=N}^T \Pr\left[I_{t+1,i} = 1 \left| n_{i,t} \geq \frac{4 \ln t}{\Delta_i^2}\right] \cdot \Pr\left[n_{i,t} \geq \frac{4 \ln t}{\Delta_i^2}\right] \\ & \leq & \frac{4 \ln T}{\Delta_i^2} + \sum_{t=N}^T \frac{4}{t^2} \\ & \leq & \frac{4 \ln T}{\Delta_i^2} + 8. \end{split}$$

Upper Confidence Bound (UCB)

The regret bound for the UCB algorithm

Theorem 4

For all $T \geq N$, the (expected) regret by the UCB algorithm in round T is

$$\mathbb{E}[\mathsf{regret}_{\mathcal{T}}] \leq 5\sqrt{NT \ln T} + 8N.$$

Proof of Theorem 4

- Divide the arms into two groups:
 - Group ONE (G_1) : "almost optimal arms" with $\Delta_i < \sqrt{\frac{N}{T} \ln T}$.
 - ② Group TWO (G_2): "bad" arms with $\Delta_i \geq \sqrt{\frac{N}{T} \ln T}$.

$$\sum_{i \in G_1} n_{i,T} \Delta_i \leq \left(\sqrt{\frac{N}{T} \ln T}\right) \sum_{i \in G_1} n_{i,T} \leq T \cdot \sqrt{\frac{N}{T} \ln T} = \sqrt{NT \ln T}.$$

By Lemma 4,

$$\sum_{i \in G_2} \mathbb{E}[n_{i,T}] \Delta_i \le \sum_{i \in G_2} \frac{4 \ln T}{\Delta_i} + 8 \Delta_i \le \sum_{i \in G_2} 4 \sqrt{\frac{T \ln T}{N}} + 8$$

$$\le 4 \sqrt{NT \ln T} + 8N.$$

Outline

- Introduction
- ② Gradient Descent for Online Convex Optimization (GD)
- 3 Multiplicative Weight Update (MWU)
- 4 Follow The Leader (FTL)
- 5 Follow The Regularized Leader (FTRL)
 - MWU Revisited
 - FTRL with 2-norm regularizer
- Multi-Armed Bandit (MAB)
 - Greedy Algorithms
 - Upper Confidence Bound (UCB)
 - Time-Decay ϵ -Greedy

Time Decaying ϵ -Greedy Algorithm

What if the horizon T is known in advance when we run ϵ -Greedy?

Time-Decaying ϵ -Greedy Algorithm

For all t = 1, 2, ..., N, set $\epsilon := N^{1/3}/T^{1/3}$:

- With probability 1ϵ , pull arm $I_t := \arg \max_{i=1,...,N} \hat{\mu}_{i,t}$.
- With probability ϵ , select an arm uniformly at random (i.e., each with probability 1/N).

Time-Decay ϵ -Greedy

Time Decaying ϵ -Greedy Algorithm

What if the horizon T is known in advance when we run ϵ -Greedy?

Time-Decaying ϵ -Greedy Algorithm

For all t = 1, 2, ..., N, set $\epsilon := N^{1/3}/T^{1/3}$:

- With probability 1ϵ , pull arm $I_t := \arg \max_{i=1,...,N} \hat{\mu}_{i,t}$.
- With probability ϵ , select an arm uniformly at random (i.e., each with probability 1/N).

Claim

Time-Decaying ϵ -Greedy Algorithm gets roughly $O(N^{1/3}T^{2/3})$ regret.

Sketch of proving the claim

- The expected regret $E[R(T)] = \sum_{t=1}^{T} E[\mu^* \mu_{T_t}].$
- Using the greedy choice that $\hat{\mu}_{I_*} \geq \hat{\mu}_{I^*}$, we have

$$\begin{split} \mathsf{E}[R(T)] & \leq & \sum_{t=1}^T (1-\epsilon) \mathsf{E}[\left(\mu_{I^*} - \hat{\mu}_{I^*} + \hat{\mu}_{I_t} - \mu_{I_t}\right) \mid \mathsf{greedy choice of} \ I_t] + \epsilon T \\ & \leq & \sum_{t=1}^T \left(\sqrt{\frac{\ln T}{n_{I^*,t}}} + \sqrt{\frac{\ln T}{n_{I_t,t}}}\right) + \frac{1}{T} \cdot 1 \cdot T + \epsilon T \quad \mathsf{(Chernoff)} \\ & \approx \leq & \sum_{t=1}^T \left(\sqrt{\frac{\ln T}{\epsilon t/N}} + \sqrt{\frac{\ln T}{\epsilon t/N}}\right) + \epsilon T + 1 \\ & \leq & \sqrt{\frac{N}{\epsilon}} \sqrt{T \log T} + \epsilon T + 1 = O(N^{1/3} T^{2/3} \sqrt{\log T}). \end{split}$$

Thank you.