CS 162 Programming languages

Lecture 3: λ-calculus II

Yu Feng Winter 2020

Design a programming language

- Syntax: what do programs look like?
 - Grammar: what programs are we allowed to write?
- Semantics: what do programs mean?
 - Operational semantics: how do programs execute step-by-step?

Syntax: what λ -calculus look like

$$e := x$$

$$| \x \rightarrow e$$

$$| e_1 e_2$$

$$\xspace \xspace \xsp$$

fun
$$x \rightarrow e$$
 (OCaml)

- Programs are expressions e (also called λ -terms) of one of three kinds:
 - Variable x, y, z
 - Abstraction (i.e. nameless function definition)
 - \x → e
 - x is the formal parameter, e is the function body
 - Application (i.e. function call)
 - e₁ e₂
 - e₁ is the function, e₂ is the argument

Semantics: what λ -calculus mean

- How do I execute a λ -term?
- "Execute": rewrite step-by-step following simple rules, until no more rules apply

$$e ::= x$$

$$| \x \rightarrow e$$

$$| e_1 e_2$$

Similar to simplifying (x+1) * (2x -2) using middle-school algebra

What are the rewrite rules for λ -calculus?

Rewrite rules of λ -calculus

• α-renaming renaming formals

• β-reduction _____function call

Let us take a detour and talk about scope

Semantics: variable scope

The part of a program where a variable is visible

In the expression $\xspace x \to e$

- x is the newly introduced variable
- e is the scope of x
- any occurrence of x in $\x \rightarrow e$ is bound (by the binder $\x)$

An occurrence of x in e is free if it's not bound by an enclosing abstraction

Semantics: free variables

An variable x is free in e if there exists a free occurrence of x in e

We use "FV" to represent the set of all free variables in a term:

$$FV(x) = x$$

$$FV(x y) = \{x, y\}$$

$$FV(x y) = \{x, y\}$$

$$FV(x y) = \{x, y\}$$

$$FV(y \to x y) = \{x\}$$

$$FV(e_1 e_2) = FV(e_1) + FV(e_2)$$

$$FV((x y) = \{x, y\}$$

$$FV((x y) \to x y) = \{x\}$$

If e has no free variables it is said to be closed, or combinators

Semantics: β-Reduction

$$β$$
-Reduction: (\x \rightarrow e₁) e₂ =_β e₁[x := e₂]

where $e_1[x := e_2]$ means " e_1 with all **free occurrences** of x replaced with e_2 " In other words, If you see an *abstraction* applied to an *argument*, take the *body* of the abstraction and replace all free occurrences of the *formal* by that *argument*

$$(\x \to x) \text{ apple } =_{\beta}$$
 $(\x \to (\y \to y)) \text{ apple } =_{\beta} ???$

```
y[x := e] = y -- assuming x \neq y

(e1 \ e2)[x := e] = (e1[x := e]) (e2[x := e])

(x \rightarrow e1)[x := e] = x \rightarrow e1

(y \rightarrow e1)[x := e]

y \rightarrow e1[x := e]
```

Operational semantics of β-Reduction

Semantics: \alpha-renaming

$$\xspace x \to e =_{\alpha} \yspace y \to e[x := y]$$

- Rename a formal parameter and replace all its occurrences in the body
- $\x -> e \alpha$ -equivalent to $\y -> e[x := y]$

$$\xspace \xspace \xsp$$

$$(\langle x - \rangle \langle y \rightarrow y) \ y =_{\alpha} (\langle x \rightarrow \langle z \rightarrow z) \ z)$$

$$\x \to \y \to \x y =_{\alpha} \apple \to \apple \to \apple orange$$

Semantics: evaluation

A λ -term e evaluates to e' if there is a sequence of steps

where each =? is either = β or = α

$$(\x \to x)$$
 apple $=\beta$ apple
 $(\f \to f (\x \to x)) (\x \to x) =_? ???$
 $(\x \to x) (\x \to x) =_? ???$

What about the others?

- Assignment
- Booleans, integers, characters, strings, ...
- Conditionals
- Loops
- Functions
- Recursion
- References / pointers
- Objects and classes
- Inheritance

λ-calculus:Booleans

- How do we encode Boolean values (TRUE and FALSE) as functions?
- What do we do with Boolean?
- Make a binary choice
 - if b then e1 else e2

Booleans: API

We need to define three functions

- let TRUE = ???
- let FALSE = ???
- let ITE = $\b \times y \rightarrow ???$ -- if b then x else y

such that

- ITETRUE apple banana = apple
- ITE FALSE apple banana = banana

Booleans: implementation

Boolean implementation

- let TRUE = $\xspace x y \rightarrow x$ -- Returns its first argument
- let FALSE = $\xspace x y \rightarrow y$ -- Returns its second argument
- let ITE = \b x y → b x y -- Applies condition to branches

Why they are correct?

Booleans: examples

eval ite_true:

```
ITE TRUE e_1 e_2
= (\b \times y \to b \times y) TRUE e_1 e_2 -- expand def ITE
=\beta (\x y \to TRUE \times y) e_1 e_2 -- beta-step
=\beta (\y \to TRUE e_1 y) e_2 -- beta-step
=\beta (\x y \to x) e_1 e_2 -- beta-step
=\beta (\y \to e_1) e_2 -- beta-step
=\beta e_1
```

Other boolean API:

```
let NOT = \begin{subarray}{l} \rightarrow \begin{sub
```

λ-calculus:Numbers

• Church numerals: a number N is encoded as a combinator that calls a function on an argument N times

let ONE =
$$\frac{1}{3}$$
 f x

let TWO =
$$\fi x \rightarrow f(fx)$$

let THREE =
$$\f x \rightarrow f (f (f x))$$

let FOUR =
$$\fi \times \rightarrow f(f(f(x)))$$

let FIVE =
$$\f x \rightarrow f (f (f (f (x))))$$

let SIX =
$$\f x \rightarrow f (f (f (f (f (f x)))))$$

let ZERO = $\frac{1}{3}$ x \rightarrow x

λ-calculus:Numbers API

- Numbers API
 - let INC = (\n f x -> f (n f x))
 -- Call `f` on `x` one more time than `n` does
 - let ADD = \n m -> n INC m. -- Call `f` on `x` exactly `n + m` times

```
eval inc_zero :

INC ZERO

= (\ln f \times -> f (\ln f \times)) ZERO

ADD ONE ZERO = ONE

= \beta \setminus f \times -> f (ZERO f \times)

= \lambda f \times -> f
```

TODOs by next lecture

- Install OCaml on your laptop
- Come to the discussion session if you have questions
- Check out the research seminars in CS: https://github.com/fredfeng/CS595N