Natürlichen Einheiten

Vierervektoren

- Lorentzinvarianten (z.B.: E, \vec{p} nicht invariant aber z.B. die invariante Masse)

Fehler an der Tafel:

$$A\cdot B=A_\mu B^\mu=A^\mu B_\mu=g_{\mu\nu}A^\mu B^\nu=g^{\mu\nu}A_\mu B_\nu$$
 mit $A^\mu=g^{\mu\nu}A_\nu$

• Teilchenzerfall:

$$N(t)=N(0)\cdot e^{-\lambda\cdot t}$$
 λ : Zerfallskonstante
$$au=1/\lambda \qquad \text{mittlere Lebensdauer}$$
 $t_{1/2}=ln(2)/\lambda \quad \text{Halbwertzeit}$

Wahrscheinlichkeit das Teilchen zu finden (zerfällt):

$$\begin{split} |\Psi(t)|^2 &= |\Psi(0)|^2 \cdot e^{-\Gamma \cdot t} \qquad \tau = 1/\Gamma \\ \Psi(t) &= \Psi(0) \cdot e^{-i E_0 \cdot t} \cdot e^{-\Gamma/2 \cdot t} \end{split}$$

Form der Kurve = ?

58

Zusammenfassung: Einfaches Bild einer Resonanz

(VL2, KW 42):

Wahrscheinlichkeit das Teilchen zu finden (zerfällt):

$$\begin{split} |\Psi(t)|^2 &= |\Psi(0)|^2 \cdot e^{-\Gamma \cdot t} \qquad \tau = 1/\Gamma \\ \Psi(t) &= \Psi(0) \cdot e^{-i E_0 \cdot t} \cdot e^{-\Gamma/2 \cdot t} \end{split}$$

Was ist die Wahrscheinlichkeit, dass das Teilchen die Energie E hat?

→ Fourier Transformierte:

$$\begin{split} f(E) &\sim \int_0^\infty \psi(t) \cdot e^{iEt} dt \\ f(E) &\sim \int_0^\infty \psi(0) \cdot e^{-i[(E_0 - E) - i\Gamma/2]t} dt \\ f(E) &\sim \frac{\Psi(0)}{(E_0 - E) - i\Gamma/2} \qquad f^*(E) f(E) \sim \frac{|\Psi(0)|^2}{(E_0 - E)^2 + (\Gamma/2)^2} \end{split}$$

Normierung so, dass $f^*(E) \cdot f(E)$ = 1 für $E = E_0$

$$|BW(E)|^2 \sim \frac{(\Gamma/2)^2}{(E_0-E)^2-\Gamma^2/4} \qquad \qquad BW(E) \sim \frac{\Gamma/2}{(E_0-E)-i\,\Gamma/2}$$

Breit-Wigner Resonanzkurve (nicht-relativistisch)

= der einfachste Fall, tatsächliche Situation meist komplizierter

Breit-Wigner Amplitude:

$$BW(E) = \frac{\Gamma/2}{(E_0-E)-i\Gamma/2}$$

Beobachtete Intensität: $|BW(E)|^2$

Beobachtete Breite eines Signals:

- → generell auch abhängig von der Auflösung des Detektorsystems
- \leftrightarrow Signal verbreitert sich zusätzlich! (aufgrund der großen $\rho(770)$ -Breite und der guten Auflösung hier irrelevant)

Tafel:
Anmerkung zu: eine Resonanz, zwei Zerfallskanäle

00

60

Kapitel 2 - Massen, Bindung und Stabilität von Kernen

- Stabile Kerne (Tal der Stabilität)
- Isotope, Isobare, Isotone
- Massen
- Bindungsenergien
- Tröpfchen-Modell
 Bethe-Weizsäcker Massenformel
- Ladungsabhängigkeit der Kernkraft (Isopspin)

Eigenschaften der Atomkerne

• Rutherford: α -Streuung an verschiedenen Kernen

$$ightarrow R pprox R_0 \cdot A^{1/3} \,, \qquad R_0 pprox 1.3 fm$$

- $\alpha + ^{14}N \rightarrow ^{17}O + p$
 - → Beobachtung positiv geladener Teilchen mit großer Reichweite
 - ⇒ Proton als Kernbaustein
- Chadwick: Entdeckung des Neutrons

$$\alpha + ^9Be \rightarrow ^{12}C + n$$

- Streuung an verschiedenen Targets, Messung der Rückstossenergie
- ⇒ Atomkerne aufgebaut aus Protonen (m = 938.27 MeV, positiv geladen) und Neutronen (m = 939.57 MeV, elektrisch ungeladen)

Klassifizierung der Atomkerne:

Massenzahl A = # Nukleonen
Ordnungszahl Z = # Protonen
Neutronenzahl N = # Neutronen

Nomenklatur:

$${}_{\mathrm{Z}}^{\mathrm{A}}\mathrm{E}_{\mathrm{N}}$$
 z.B. ${}_{\mathrm{82}}^{208}\mathrm{Pb}$

Eigenschaften der Atomkerne

Atomare Masseneinheit (Konvention)

1 amu (1u) =
$$1/12 \cdot m(^{12}C)$$
-atom
= $931,49 \text{ MeV} = 1,6602 \cdot 10^{-27} \text{kg}$

- verschiedene Arten von Atomkernen durch Kombination einer bestimmten Zahl von Protonen und Neutronen \rightarrow Nuklide
 - Isotope: gleiches Z, unterschiedliches N

 \leftrightarrow Z, bzw. die Anzahl der e^- bestimmt die chemischen Eigenschaften

Isotone: gleiches N, unterschiedliches Z

• Isobare: gleiches A

Frage:

Sind Kerne mit einer beliebigen Anzahl von Protonen und Neutronen möglich ??

Experimentelle Beobachtung:

Nein! ⇒ Tal der Stabilität

62

⇒ Tal der Stabilität

nur Kerne mit bestimmten Neutron/Protonverhältnis sind stabil

$$rac{N}{Z}pprox 1.0-1.5$$

Warum?

64

Existenz stabiler Kerne in einem schmalen N/Z-Bereich

- Existenz stabiler Kerne
 - ⇒ neben Coulomb-Abstoßung zwischen den Protonen auch eine anziehende Wechselwirkung zwischen Nukleonen
 - ⇒ Starke Wechselwirkung!
- Stabilität der Kerne:
 - → bestimmt durch Wechselspiel von
 - abstoßender Coulombkraft zwischen der Protonen (langreichweitig $\sim Z(Z-1)$)
 - anziehender starker Wechselwirkung zwischen Nukleonen $\sim A \sim A$: Woher weiss man das?
 - \leftrightarrow Kerne mit hohem Z werden instabil, da Coulombabstoßung $\sim Z(Z-1) pprox Z^2$ ansteigt
 - → Sollte es dann aber nicht Kerne mit sehr vielen Neutronen aber wenig Protonen geben?

Existenz stabiler Kerne in einem schmalen N/Z-Bereich

- Warum existieren nicht Kerne mit vielen Neutronen und nur wenigen Protonen?
 - ⇔ Pauli-Prinzip

Protonen und Neutronen sind Fermionen mit s=1/2 (unterschiedliche Ladung)

Stark vereinfachtes quantenmechanisches Bild

2p, 6n: $^8{
m He}$ würde über ${
m n} o {
m pe}^- ar{
u}_{
m e}$ zerfallen \leftrightarrow p-Niveaus energetisch bevorzugt

Was würde generell passieren, wenn es kein Pauli-Blocking gäbe? (Pauli-Prinzip: Zwei nicht unterscheidbare Fermionen dürfen nicht im gleichen Zustand sein)

Existenz stabiler Kerne in einem schmalen N/Z-Bereich

- Warum existieren nicht Kerne mit vielen Neutronen und nur wenigen Protonen?
 - ⇔ Pauli-Prinzip

Protonen und Neutronen sind Fermionen mit s=1/2 (unterschiedliche Ladung)

66

Stark vereinfachtes quantenmechanisches Bild

2p, 6n: $^8{\rm He}$ würde über ${\rm n}\to {\rm pe}^-\bar\nu_{\rm e}$ zerfallen \leftrightarrow p-Niveaus energetisch bevorzugt

Bereits besetzte p-Niveaus blockieren den n-Zerfall im Kern (Pauli-Blocking)

⇒ Nur aus diesem Grund gibt es überhaupt Kerne!

Ohne Coulomb-Abstoßung: Kerne mit $N={\it Z}$ am stabilsten!

Compensation der Coulomb-Abstoßung in schweren stabilen Kernen

⇔ Mehr Neutronen als Protonen!

Nuklidkarte

Nuklidkarte - Ausschnitt

V

Nuklidkarte

Halbwertzeit des metastabilen Isomerenzustand in $^{109}{\rm Ag} \to$ geht durch γ in Grundzustand über (88 keV), (Konversions e^-)

- \leftarrow stabil
- \leftarrow Häufigkeit des Isotops in %
- \leftarrow Einfangs-WQ für (n, γ) -Reaktion
- $(\rightarrow$ angeregter (isomerer) Zustand + Grundzustand des 110 Ag)

Na 22 2.603 a β^+ 0.5;1.8 γ 1275 $\sigma_{n,p}$ 28000 $\sigma_{n,\alpha}$ 260

- \leftarrow Halbwertzeit $t_{1/2}$
- $\leftarrow \beta$ -Energien von 0,5, 1,8 MeV
- $\leftarrow \gamma$ -Energie von 1275 keV
- $\leftarrow \text{Einfangs-WQs f\"{u}r } (n,p)\text{-} \text{ bzw.} \\ (n,\alpha)\text{-die Reaktion}$

70

Beispiel - Zerfallsschema

