SC-RR-65-620

SC-RR-65-620 6

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

AEROSPACE NUCLEAR SAFETY

Reproduced From Best Available Copy

ROVER/NERVA DESTRUCT SYSTEM TEST RESULTS ABERDEEN PROVING GROUND - 3 (Final Report)

Lovelace Four-Vation - Decement Library

FEB 22 1966

PRIME CONTRACTOR TO THE
UNITED STATES ATOMIC
ENERGY COMMISSION
ALBUQUERQUE, NEW MEXICO
LIVERMORE, CALIFORNIA

20011009 018

SC-RR-65-620

ROVER/NERVA DESTRUCT SYSTEM TEST RESULTS ABERDEEN PROVING GROUND - 3 (Final Report)

R. E. Berry, 9312 J. P. Martin, 9232 Sandia Laboratory, Albuquerque

Approved by

V. E. Blake / dan Pope.
V. E. Blake, 9310

Alan Prpi A. Y. Pope, 9300

December 1965

ABSTRACT

The ROVER/NERVA Nuclear Propulsion Engine destruct test was performed to determine the distribution, particle size and mass, and particle velocity of the debris. These debris data are the input data for a computer analysis of the safety aspects of using the NERVA reactor for space flight.

Reported in this document are the debris distribution, size, mass, and velocity measured during the destruct test. These data are presented as tables and as graphs.

ACKNOWLEDGMENT

The authors wish to express their appreciation for the contributions of A. Juskiewicz, 3311 and D. R. Parker, 3311 who reported air sampling data; J. Karo, 7226 who provided the photographic coverage; H. J. Plagge, 7325 who reported the firing sequence; R. D. Jones, 7332 who measured the pressures and case breakup; and B. S. Hill, 9312 and H. J. Gay, 9312 who reported the velocity data acquired from the rotating foam velocity devices.

The authors also wish to express their appreciation to all Sandia personnel not specifically mentioned for their help and assistance in the performance of the full-scale test.

Issued by Sandia Corporation, a prime contractor to the United States Atomic Energy Commission

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

Printed in USA. Price \$6.00. Available from the Clearinghouse for Federal Scientific and Technical Information, National Bureau of Standards,
U. S. Department of Commerce, Springfield, Virginia

SUMMARY

In partial fulfillment of its responsibility to the AEC for the safety analyses of nuclear power supplies to be used in space, Sandia Corporation has performed a full-scale destruct test of the ROVER/NERVA space propulsion engine. In the test, a full-scale mock up of the ROVER/NERVA was destroyed by four statically emplaced, 105 mm special explosive charges.

The information and data obtained from the test, requested by the joint AEC/NASA Space Nuclear Propulsion Office, were to establish the spatial distribution of particles, the size distribution as a function of the mass, and velocity. The instrumentation for the full-scale destruct test successfully obtained the desired data. Particle sizes up to 20 microns were obtained by air sampling, but these small particles did not contain uranium. Pressure measurements obtained were 23 psi at 20 feet, 8 psi at 30 feet and 4.2 psi at 40 feet. Graphite debris velocity recorded was 570 fps over 20 feet; however, the debris velocity dropped to 420 fps over 70 feet.

Part of the debris from this test was distributed radially, and the remainder was dispersed in five concentrated jets. The metallic components (skin, reflectors, and control drums) were deployed in a symmetrical radial pattern, and each numbered component moved on a radial line from its location prior to the destruct test. The core and graphite reflector did not follow the radial pattern but flowed within the core cavity and were deployed in four horizontal jets, 90 degrees apart, and in a vertical jet.

Approximate velocities observed at 100 milliseconds after detonation were:

Skin 400 fps

Horizontal Jets 400 fps

Vertical Jet 600 fps

The control drums were not observed until about 400 milliseconds after detonation; at this time, the velocity was about 100 fps.

The graphite core was reduced to a median size of 0.12 inch or 3.0 mm diameter. Within the core material collected, essentially no uranium was detected below 53 microns.

TABLE OF CONTENTS

	Page
ACKNOWLEDGMENT	2
SUMMARY	3
Introduction	9
Purpose of Test	9
Test Participation	10
Test Site	11
Radiation Safety Measures	11
Description of Instrumentation	11
Description of Mockup ROVER/NERVA Space Propulsion Engine	39
Description of Explosive Charges and the Detonator System	43
Arming and Firing System	45
Description of Countdown Procedure	49
Data Collection	50
Test Results	51
Conclusions and Recommendations	86
APPENDIX A - COORDINATED PLAN OF TEST	87
APPENDIX B - PHOTOS OF ROTATING POLYSTYRENE FOAM COLLECTED	PARTICLES 127
APPENDIX C - PHOTOS OF REPRESENTATIVE PARTICLES FROM EACH TY SCREEN SIZE	LER 143
APPENDIX D - RELATED INFORMATION AND PROCEDURES	155
APPENDIX E - TRAJECTORY TABULATIONS	187
APPENDIX F - GAMMA COUNTING DATA	207
LIST OF TABLES	
TABLE	
I. Graphite Debris Sorted as to Size, Weight Percent in Each Size and A Weight Percent	ccumulated 60
II. Shielded Gamma Counting Data Performed on a Multichannel Analyzer	• 64
III. Uranium Content Determined by Fluorimetric Analysis	66
IV. Tabulated Debris Distribution Data	76
V. Debris Distribution (Percent by 30-degree Segments)	84

LIST OF ILLUSTRATIONS

Figur	<u>ce</u>	Page
1.	Test Site	13
2.	Test Site (Closer View)	15
3.	Instrumentation Locations for Sandia Corporation	17
4.	Air Sampling Boxes	18
5.	Air Sampler Locations	18
6.	Midget Impinger in Box and Midget Impinger Box	20
7.	Ampex CP 100 Tape Recorder	20
8.	Susquehanna ST-2 Pressure Transducer	21
9.	Endevco Model 2646 MI Charge Amplifier	21
10.	Ballantine Precision System Calibrator	22
11.	Ampex TC-10 Calibration Unit	22
12.	Tektronix Type 321 Oscilloscope	23
13.	Mounted Pressure Transducer	23
14.	Pressure Transducer Locations	23
15.	Pressure Transducer System Schematic	24
16.	Ampex ORP-60 Photo Resistive Unit	24
17.	Glass Rods with Fuse Clips	25
18.	Schematic of Glass Rod Velocity Measuring System	25
19.	Location of Glass Rods Along Jet Lines	27
20.	Sketch of Glass Rods Positioned Above and Below the Pressure Vessel	27
21.	Glass Rod Velocity Device on Post	28
22.	Glass Rods Positioned Above and Below Pressure Vessel	28
23.	Rotating Disc Foam	29
24.	Rotating Disc Velocity Gage	29
25.	Dual Spark Source For Disc Velocity Gage	29
26.	Rotating Velocity Gage	30
27.	Rotating Drum Foam	30
28.	Dual Spark Source for Drum Velocity Gage	30
29.	Twin Disc Velocity Device	31
30.	Twin Disc Velocity Device Internal Assembly	31
31.	Dual Spark Source for Twin Disc Velocity Device	32
32.	Fixed Foam Plastic	33
33.	System for Remote Control of Catcher Motors	34
34.	Oscillograph Paper Showing the Mark from the Dual Spark Source	35
35.	High Voltage Capacitive Discharge Timing System	35
36.	Ignition Unit Timing System	26

LIST OF ILLUSTRATIONS (cont)

Figui	<u>re</u>	Page
37.	Cameras and Camera Positions	37
38.	Ten-Channel Countdown Generator	38
39.	Firing Control Panel	38
40.	Assembled Mockup Engine on Assembly Stand	39
41.	Assembled and Instrumented Mockup Engine on the Firing Stand	39
42.	Pressure Vessel Dome Before and After Installation of the Polyurethane Foam Plastic Shield	40
43.	Pressure Vessel Nozzle	41
44.	Pressure Vessel Center Section	41
45.	Partially Assembled Mockup Propulsion Engine	42
46.	Assembled Mockup Propulsion Engine Less Nozzle	43
47.	105 mm Projectiles Used to Destroy the Mockup Propulsion Engine	44
48.	SE-1 Detonator Assembly with Adapter	44
49.	TC-2 Power Supply, Field Test X-Unit, and Junction Box	46
50.	Junction Box Schematic	46
51.	Control Panel Schematic	47
52.	Displacement of Leading Edge of the West Jet versus Time	53
53.	Velocity versus Time	53
54.	Deceleration versus Time	54
55.	Single Disc Debris	55
56.	Twin Disc - Front Collector Surface	55
57.	Twin Disc - Back Surface (Front Collector Removed)	56
58.	Drum Debris	56
59.	ROVER/NERVA Full-Scale Destruct Particle Size versus Weight Percent	61
60.	ROVER/NERVA Full-Scale Destruct Particle Size versus Accumulated Weight Percent	62
61.	Log-Probability Curve for Graphite Debris	63
62.	Uranium Content Observed in Graphite Debris	65
63.	Electron Micro-photograph of Graphite Particles Showing Extreme Variation of Size and Shape of Particles Less Than 1 Micron	68
64.	Velocities Observed for Section of Center Section Skin	70
65.	Two-Dimensional Debris Plot	71
66.	Velocities Observed for Horizontal Graphite Jets	72
67.	Velocities Observed for Nozzle Components	73
68.	Velocity for Simulated Control Drums	74
69.	ROVER/NERVA Full-Scale Destruct Time from Detonation versus Typical Measured Velocity	75
70.	Horizontal Graphite Jets	85
71.	Vertical Graphite Jets	85

ROVER/NERVA DESTRUCT SYSTEM TEST RESULTS ABERDEEN PROVING GROUND - 3

Introduction

An acceptable evaluation of the safety criteria must be completed before any nuclear material can be used in an aerospace mission. The safety analysis depends on the method of destruction proposed for the vehicle carrying the nuclear material.

For the ROVER/NERVA propulsion engine, a suitable nonnuclear explosive destruct system has been developed by Aberdeen Proving Ground and Picatinny Arsenal for the postoperational destruct of the reactor, but the character of the resulting debris has not been fully defined. The characterization of debris is the source term for a computer analysis of the safety criteria from which the resulting dispersion, fallout, and the ultimate safety criteria can be established.

To acquire this input information, which includes three dimensional debris distribution, debris size and mass, and debris velocity, a full-scale mockup of the ROVER/NERVA nuclear propulsion engine was destroyed by four statically emplaced 105 mm special explosive charges.

Purpose of Test

The joint AEC/NASA Space Nuclear Propulsion Office (SNPO) requested the following specific data from the explosive destruct of a mockup nuclear propulsion engine:

- 1. Dynamics of Destruct Event
 - a. Velocity of fragments of core, reflector, and pressure vessel as a function of fragment size and time.
 - b. Angular distribution of fragments of core, reflector, and pressure vessel as functions of fragment size and time.
 - c. Reconstruction of geometry of debris pattern of test as function of time on triaxial coordinate system.
 - d. Extrapolation of geometry of "c" above to vacuum destruct condition on triaxial coordinate system.

2. Particle Size Distribution

- a. Qualitative determination of particle size distribution of fuel fragments in sufficient detail to construct distribution curve with good level of confidence.
- b. Fuel samples in metric system at points 30, 20, 10, 5, and 1 mm; 750, 500, 250, 100, 50, 10, and 1 microns.

- c. Fuel classification as to angularity, sphericity, 1/d, surface area, and density (fragment characterization).
- d. Qualitative determination of fragment size distribution of other engine components.
- 3. Mass Density Distribution of Debris
- 4. Two Dimensional Mapping of Debris
- 5. Weight and Size of Components Recovered

These data requirements, combining the collection of fundamental data with the analyses of the fundamental data, establish the entire postoperational destruct pattern.

Requirements 1a, 1b, and 2a above are considered fundamental data and were collected as described later in this report. Requirements 2a, 2b, 2c, 3, 4, and 5 above were fulfilled either by the analyses of data collected as fundamental data or by the examination of the destruct site and the collection of debris from the destruct site.

All of the above items are discussed in this report with the exception of 1c and 1d.

To provide confidence that these data requirements could be met on a full-scale destruct test, a series of 25 development tests were performed prior to the actual full-scale test. These development tests were performed in two main phases; that is, the first 12 tests were performed using a solid graphite block and a single centrally located charge, and the second 12 tests were performed using scale-model ROVER/NERVA test vessels and four explosive charges. These development tests served as a basis for the full-scale test planning and gave a high level of confidence that the required data would be acquired from the full-scale destruct test.

Test Participation

The full-scale destruct systems test was requested by the joint AEC/NASA Space Nuclear Propulsion Office and was scheduled for completion at Aberdeen Proving Ground under the direction of Mortar and Recoilless Rifles Branch of the Artillery Division of Development and Proof Services (D&PS).

At a later date SNPO requested through the AEC, Director of Reactor Development Office, that Sandia Corporation (SC) develop instrumentation to assist in collecting the needed data on the debris after the explosive destruction of the propulsion engine.

The Artillery Branch of Development and Proof Services and the Aerospace Nuclear Safety Department (SC) prepared a joint test plan for instrumentation of the full-scale destruct test (Appendix A), developed the required instrumentation, and, on June 22, 1965, at 1:53 PM local time, performed the destruct systems test of the ROVER/NERVA propulsion engine mockup.

Test Site

The Aberdeen Proving Ground test site, the "Old Bombing Field," was cleared, filled, and graded to a radius of 600 feet around ground zero. Within this graded area, Sandia was assigned the south and west quadrants and Aberdeen Proving Ground the north and east quadrants. Figures 1 and 2 are helicopter views of the test site with the important features labeled. Figure 1 gives a view of the entire test area and labels those features which are prominent enough to allow identification. Figure 2 is a closer view of the test site with labeling on the close-in features and some duplicate labeling to allow orientation between Figures 1 and 2. Figure 3 shows the locations for all Sandia Corporation instrumentation.

Radiation Safety Measures

The core of the mockup ROVER/NERVA propulsion engine was fabricated from depleted uranium to simulate the actual core material. Although this material has a very low radiation hazard, proper safety procedures precluded any detrimental effect to the personnel involved in the test preparation or in data collection after the test.

Included in the Appendix are copies of the Aberdeen Proving Ground's procedures used during the operation.

Description of Instrumentation

The full-scale destruct test was instrumented with equipment and techniques developed during scale-model testing performed before the full-scale test. The instrumentation hardware and physical layout are described in this section of the report.

A. Air Sampling

The purpose of the air sampling program was to collect atmospheric samples in the vicinity of ground zero after the NERVA reactor had been destroyed with 111.17 pounds of DATB explosive. From these samples, the concentration of graphite dust particles in the resulting cloud and the shape and size distribution of the particles that remained airborne were to be determined.

The atmospheric samples were collected by means of midget impingers (Figure 4) suspended from overhead cables. The cables were held about 80 feet above and around ground zero. Three midget impingers were secured to each of eight drop lines from the overhead cables and were located at 30, 50, and 70 feet above the ground. Each line of impingers was 100 feet from ground zero, and the resulting array of 24 samplers formed a cylinder 200 feet in diameter and 70 feet high. This array of samplers allowed 360-degree coverage and would provide a representative sample in a light and variable wind (Figure 5).

Figure 1.

Figure 1. Test Site

Figui

ite (Closer View)

Figure 3. Instrumentation Locations for Sandia Corporation

Figure 4. Air Sampling Boxes

Figure 5. Air Sampler Locations

The individual lines were suspended through pulleys on the overhead cables which permitted the array to be raised and lowered as necessary. Each line was held in place at ground level by means of a 22-foot length of 1-1/4 inch steel pipe. The pipe had a loop welded to one end to which the line was tied; the other end of the pipe was slipped over a 3-foot stake in the ground. The pipe not only held the array line taut, but also prevented fragments from harming the pump motor cords which were threaded through the pipe.

The midget impingers, driven by small 110-volt AC vacuum pumps (Gast miniature pump, 0330-V102A-15), were filled with 10 cc of 1 percent alcohol-water collecting solution. Both pump and impinger were housed in a small wooden box as shown in Figure 6. This sampler is not dependent on wind direction; therefore, no wind orientation device was needed.

B. Pressure Measurement and Photo Resistive Measurement of Case Breakup Time

The blast pressures developed during the destruction of a mockup ROVER reactor were recorded on an Ampex CP 100 Magnetic Tape Recorder (Figure 7). Susquehanna ST-2 pressure transducers were used as the pressure sensors (Figure 8). One thousand feet of Microdot cable connected each transducer to an Endevco Model 2646 MI charge amplifier (Figure 9).

Field calibration of the system was made with a Ballantine Precision Calibrator (Figure 10) which supplied the AC voltage equivalent to the pressures which would be developed by an uncased charge of this size. An Ampex TC-10 calibrator (Figure 11) was used for the initial tape checkout of the center frequency, frequency deviation, and discriminators. A Tektronix Type 321 oscilloscope (Figure 12) was used to monitor the preceding steps.

Laboratory calibration of the system preceded the test. Each transducer was calibrated at 50, 20, and 5 psi. The amplitude and rise time of the calibration pressure pulses were greater than expected during the full-scale test. The transducers were connected to the charge amplifier through 1000 feet of cable, and the voltage generated by the pressure pulse was recorded on a Tektronix 535 oscilloscope. The input to this oscilloscope was modified to have the same impedance as the tape recorder. The amplifier gain control was set and locked at this time, with an output of 1 volt corresponding to the maximum theoretical pressure input value.

Twelve transducers were mounted in the blast area, each 6 feet above ground level. Four transducers were located 20 feet from ground zero (Figure 13 shows a mounted gage): one in a jet, one at 45 degrees between jets, and two at 5 degrees on either side of a second jet. Four more transducers were located 10 feet behind the first four; the remaining four were 10 feet behind them. The pressure transducers were located as in Figure 14; the system schematic is shown in Figure 15. An Ampex ORP-60 Photo Resistive Unit (Figure 16) was to determine time from detonation of the external detonators until break-out of the main case.

Figure 6. Midget Impinger in Box and Midget Impinger Box

Figure 7. Ampex CP 100 Tape Recorder

Figure 8. Susquehanna ST-2 Pressure Transducer

Figure 9. Endevco Model 2646 MI Charge Amplifier

Figure 10. Ballantine Precision System Calibrator

Figure 11. Ampex TC-10 Calibration Unit

Figure 12. Tektronix Type 321 Oscilloscope

Figure 13. Mounted Pressure Transducer

- X DENOTES PRESSURE TRANSDUCER
- O DENOTES PHOTO RESISTIVE UNIT

Figure 14. Pressure Transducer Locations

ONE TYPICAL CHANNEL

Figure 15. Pressure Transducer System Schematic

Figure 16. Ampex ORP-60 Photo Resistive Unit

C. Glass Rod Velocity Measurements

To measure the velocity of the particles resulting from the destruction of the test vessel, conducting glass rods were employed (Figure 17). These rods were constructed of 3/16 x 8-inch glass tubing painted with a conductive paint which provided a path of electrical continuity between each end. Measurements revealed that the resistance of each 8-inch rod was approximately 2 ohms.

Figure 17. Glass Rods with Fuse Clips

Electrical connections were made to the rods through fuse clips. A clip was attached to each end of the rod, and all wiring connections were made to the clip (Figure 17). Figure 18 is a schematic of the glass rod system.

Figure 18. Schematic of Glass Rod Velocity Measuring System

The rods were positioned at various points along the south and west jets (Figure 19) and above and below the test vessel (Figure 20). Some glass rods were mounted on a post (Figure 21), and others were adjacent to the pressure vessel (Figure 22). The rods along the jets were placed on 2 x 4-inch supports which positioned the rods in the path of the jet. To provide a larger target area, the rods along the jets were 24 inches long (three 8-inch rods bonded end to end). Along the west jet a rod was positioned at the surface of the test vessel; others were placed every 10 feet from 10 to 70 feet. Along the south jet a rod was placed on the surface of the test vessel with others at 10, 30, and 50 feet. The rods placed against the skin of the test vessel gave an indication of the time delay from detonation to the breakup of the test vessel case.

The rods above and below the test vessel, as shown in Figure 20, were positioned at the top of the test vessel to measure the velocity of the nozzle and at the bottom of the test vessel to measure the velocity of the dome.

A rod was connected across each input of the circuit shown in Figure 18. When the rod was hit by debris, it shattered and thus removed an electrical short from a particular resistor in the circuit which in turn caused a change in the input voltage to the voltage controlled oscillator. This change in voltage changed the frequency of the output signal of the voltage controlled oscillator which was recorded on magnetic tape. To accommodate the 20 glass rods used for velocity measurement, five separate channels were employed.

Also recorded on the magnetic tape was a timing fiducial signal which indicated the time of detonation of the four charges in the test vessel. From these data and the known distances of separation between rods, an average velocity can be calculated.

D. Rotating Polystyrene Foam Particle Collectors and Velocity Measuring Devices

All particle collectors and velocity measuring devices were moved in by truck and placed on stands by crane.

1. Single Disc Rotating Velocity Measuring Device

This device was designed to serve a dual function: (1) to measure the time of arrival of particles from which the average velocity can be calculated, and (2) to catch and preserve the particles that reach it. This unit consists of a flat disc of 1.9 lbs/ft³ polystyrene foam, 8 inches thick and 15 inches in diameter (Figure 23). The disc is driven at a constant rotational velocity of 1725 rpm by a 3/4 hp 220 volts AC single phase electric motor. The rotating disc and motor are housed in a fabricated aluminum cabinet measuring 26 inches long, 18.5 inches high, and 18 inches wide, the front face of which contains a 4.75 x 1 inch stationary slit which faces the explosion center and allows a debris sample to enter the polystyrene foam disc (Figure 24). A dual spark source, one from a modified transistorized automobile ignition system and one from a high-voltage capacative discharge system (Figure 25) provided a zero time mark on heat sensitive recorder tape attached to the periphery of the disc.

Figure 19. Location of Glass Rods Along Jet Lines

Figure 20. Sketch of Glass Rods Positioned Above and Below the Pressure Vessel

Figure 21. Glass Rod Velocity Device on Post

Figure 22. Glass Rods Positioned Above and Below Pressure Vessel

Figure 23. Rotating Disc Foam

Figure 24. Rotating Disc Velocity Gage

Figure 25. Dual Spark Source For Disc Velocity Gage

A line of particles from the explosive debris cloud is permitted to enter through the stationary slit and embed in the rotating polystyrene foam disc. With the disc velocity known and the angle the particles (debris) make with respect to the zero time mark, Time T was calculable. The distance D was determined by measurement; therefore, the average velocity Va can be determined by the equation: Va = D/T.

2. Rotating Drum Velocity Measuring Device

The rotating drum velocity device was designed to perform the same functions as the disc velocity device described above. Its principle and operation are the same except that the particles enter a 1 x 18-inch slot and strike the drum normal to the drum surface and axis. The drum is polystyrene foam 18 inches long by 21 inches in diameter. Total weight of the rotating drum assembly is approximately 210 pounds. The drum and drive

are housed in an aluminum skin and stringer structure stressed for 20 psi overpressure. Figure 26 shows one of the 10 drum collectors used during the destruct test, Figure 27 shows the collection surface, and Figure 28 shows the components of the dual spark source timing systems.

Figure 26. Rotating Velocity Gage

Figure 27. Rotating Drum Foam

Coil for High-Voltage Capacitive Discharge Timing System

Transistor Ignition Timing System

Figure 28. Dual Spark Source for Drum Velocity Gage

3. Rotating Twin Disc Velocity Measuring Device

The twin disc velocity device (Figure 29) was designed to obtain four information bits: (a) average velocity, calculated by measuring time of arrival of particles, (b) final velocity, calculated by determining the time interval between particle penetration of the front disc and rear disc, (c) initial velocity, calculated by using the average velocity and the final velocity found in (a) and (b); and (d) capture and preservation of the particles.

Figure 29. Twin Disc Velocity Device

As shown in Figure 30, the twin disc velocity device consists of two spoked discs, spaced 8 inches apart on a common driver shaft. Paper is glued over each disc. The rear disc is backed with polystyrene foam which captures and preserves the particles.

Rotating Twin Disc Assembly

Without Paper on Front Surface

With Front Surface Removed

Figure 30_{\bullet} Twin Disc Velocity Device Internal Assembly

Dual spark sources are located inside the housing along the periphery of the disc assembly and are arranged to mark the rotating assembly when energized at the time of detonation (time zero). The disc assembly, motor, and time mark systems are housed in an aluminum skin and stringer structure stressed to withstand 20 psi overpressure. Figure 31 shows the components of the timing system.

Figure 31. Dual Spark Source for Twin Disc Velocity Device

A line of particles from the explosive debris cloud is permitted to enter through a stationary slit on the front cover. The particles pass through the paper on the front and rear discs and then embed in the foam. The time of particle arrival can be calculated by measuring the particle angular displacement with respect to the zero time mark and the rotational speed. The average velocity can be calculated from a knowledge of the time of arrival and the distance the particles traveled from the point of detonation to the sampler.

The final velocity is calculated from the measured displacement of the particle penetration imprint on the front disc paper with respect to the imprint on the rear disc paper, the distance traveled between the two disc papers (8 inches), and the rotational speed.

The initial velocity can be computed using the calculated average velocity and final velocity in the formula:

$$Va = \frac{Vi + Vf}{2}$$

where Va = average velocity

Vi = initial velocity

Vf = final velocity.

Each particle was recovered from the foam and its size and shape correlated with its three velocities.

4. Fixed Foam Particle Collectors

The polystyrene foam plastic placed in front of the rotating foam collectors had a threefold purpose: (a) collect the debris from the destruction of the propulsion engine, (b) act as an energy absorption media to protect the rotating foam collectors from large missiles, and (c) show the relative quantity of debris in the jets and in between jets.

The foam plastics used were: foam tyril 80, styrene-acrylonitrile weighing 0.8 lb/ft³; and styrofoam blocks, FR insulation board weighing 1.9 lb/ft³.

Figure 32 shows the foam plastic on the front of the arrays of rotating foam particle collectors. Stands "A", "B", "C", and "E" used the 0.8 lb/ft 3 material, and stand "D" used the 1.9 lb/ft 3 material.

Figure 32. Fixed Foam Plastic

The polystyrene foam was also used as a shock absorber in the $6 \times 6 \times 4-1/2$ -foot deep hole beneath the mockup propulsion engine (Figure 32). The foam was positioned to absorb the energy from the moving pressure vessel dome and to prevent the dome from digging up earth which would contaminate the graphite samples.

E. Rotating Foam Particle Collector Motor Control and Timing Systems

1. Motor Control System

The full-scale ROVER test was partially instrumented by 30 rotating polystyrene foam particle collectors, each driven by an electric motor. To facilitate the control of these collectors, a system was designed to permit individual control of each motor. The power to each motor was furnished through a motor starting relay controlled from a bombproof central control point. Figure 33 is a schematic of the motor starting system. This system for individual control facilitated the checkout of the collectors by making it possible to operate any number of collectors at a given time.

To keep the run-time of the collectors as short as possible, the motors were started immediately before the test. To avoid the problem of a large transient current, the motor controls were used to start the motors individually, allowing sufficient time between successive motor starts for the transient current to partially dissipate.

Figure 33. System for Remote Control of Catcher Motors

2. Timing Systems for Rotating Polystyrene Foam Particle Collectors

A timing reference point was placed on the rotating drums and discs so the debris velocity could be determined. The fiducial mark was recorded on oscillograph paper which was attached to the rotating devices. Two layers of oscillograph paper were used; each layer was a different type paper. The bottom layer was voltage sensitive and the top layer pressure and temperature sensitive. When an electric arc was passed through the two layers of oscillograph paper, a distinct mark was left. This point was most prominent on the reverse side of the pressure and temperature sensitive paper which was in contact with the voltage sensitive paper. The point was also readily distinguishable on the face of the voltage sensitive paper (Figure 34).

Two separate systems were used to provide the timing fiducial points. Both systems operated on the principle of capacitor discharge through an automobile ignition coil. One system (Figure 35) consisted

of a field test high voltage capacitive discharge system which distributed the energy from the discharge of a 7-microfarad capacitor charged to approximately 2500 volts to 16 separate outputs. The output of the system was the input to the ignition coil which produced an arc from an electrode to the surface of the rotating device. This arc passed through the two layers of oscillograph paper on the surface of the device to provide a distinct record of the position of the drum or disc at the time of firing.

An alternate system was designed to put ten timing marks, 1 millisecond apart, on the rotating discs and drums. This system consisted of a sequence timer and a modified automobile tran-

Figure 34. Oscillograph Paper Showing the Mark from the Dual Spark Source

sistorized ignition system (Figure 36) with an output that was the input to an automobile ignition coil which provided an arc for marking the oscillograph paper on the drums and discs. To allow the marks to be applied during the time the particles were actually arriving, the marks were delayed a calculated time from T_O -- the time of detonation.

Figure 35. High Voltage Capacitive Discharge Timing System

The sequence timer (Figure 36) was actuated by the fire signal at T_o. The fire signal was the input to the one shot which initiated the 1 kc clock. The digital delay counter then counted the clock pulses for the desired delay time. After the delay time had elapsed, the control gate was opened by the control gate flip-flop, and the clock pulses were applied to the level converter which changed the pulses from logic level to pulses of sufficient amplitude to drive the transistorized ignition system. The input to the level converter was also the input to a decade counter which closed the control gate after ten pulses had been applied to the output.

TRANSISTOR IGNITION SYSTEM INVERTER CAPACITOR SCR COIL ► ELECTRODE **POWER** SEQUENCE TIMER ONE 1 KC DELAY CONTROL LEVEL SHOT **CLOCK** COUNTER GATE **CONVERTER** FIRE CONTROL SIGNAL DECADE GATE COUNTER FF

Figure 36. Ignition Unit Timing System

The commercial transistorized ignition system consisted of a transistor inverter, a storage capacitor, and a silicon controlled rectifier (SCR) to discharge the charged capacitor into the coil. The commercial ignition systems were modified so that they could be fired electronically by the sequence timer. The output of the ignition system was the input to a standard 100 to 1 turns ratio automobile ignition coil which stepped up the voltage to approximately 40,000 volts. This voltage was sufficient to cause an arc between the electrode and the surface of the rotating disc or drum.

F. Photographic Instrumentation

The full-scale test was photographically instrumented with 16 cameras. Figure 37 shows the kinds of cameras used, the camera positions in relation to ground zero, and their distances from ground zero.

All of the instrumentation cameras were controlled by a solid-state 10 channel countdown generator (providing millisecond resolution) designed and manufactured by Sandia Corporation (Figure 38).

Before the test, channels 1 and 2 were assigned to trip Dynafax camera shutters and channel 3 to start the Mitchell and K-25 cameras. Channels 4 and 5 were assigned to start the south and west bank of cameras. Channel 6 was assigned to provide the Aberdeen Photo Instrumentation Group with a switch closure.

Channel 10 was used as the *0" time or firing channel. Channels 7, 8, and 9 were not used.

The firing procedure was started at minus 5 minutes. Every minute thereafter was announced on the radio and public address system. At the count of minus 1 minute, the Dynafax cameras were manually switched on and the firing switch was enabled (Figure 39). Minus 10 seconds signaled the start of the count-down generator which performed the events programmed into it and completed the operation.

Figure 37. Cameras and Camera Positions

Figure 38. Ten-Channel Countdown Generator

Figure 39. Firing Control Panel

At "0" time the countdown generator provided a switch closure to the firing unit which dumped 2.5 kilovolts into the detonators to fire the unit. All the times programmed into the countdown generator use this "0" time as a reference for camera starting and shutter openings.

In addition to the 16 cameras used on the ground, a hand-held Mitchell camera was used to photograph the destruct event from a helicopter.

Description of Mockup ROVER/NERVA Space Propulsion Engine

The mockup engine was assembled from reject components, where available, and from simulated components. Small parts were omitted, and only those components were simulated that were expected to have an influence on the debris pattern. The assembled mockup engine was supported on an assembly stand (Figure 40), and the assembled and instrumented mockup engine was placed on a firing stand (Figure 41). The dome of the mockup engine is shown, before and after installation of polyurethane foam plastic, in Figure 42. The foam plastic simulated the shield material normally contained in the dome.

The simulated nozzle used in the assembly is shown in Figure 43 and the center section of the pressure vessel in Figure 44. Figure 45 shows an internal view of the pressure vessel after the simulated reflectors, dome (not visible), and core support plate have been installed.

Figure 40. Assembled Mockup Engine on Assembly Stand

Figure 41. Assembled and Instrumented Mockup Engine on the Firing Stand

A. Before Installation of the Foam Plastic Shield

B. Foam Plastic Shield in Place

Figure 42. Pressure Vessel Dome Before and After Installation of the Polyurethane Foam Plastic Shield

Figure 43. Pressure Vessel Nozzle

Figure 44. Pressure Vessel Center Section

Figure 45. Partially Assembled Mockup Propulsion Engine

The completed assembly, except for the simulated nozzle, is illustrated in Figure 46. These are generalized pictures of components which omit any component classified by reason of shape or size. This generalization, however, does not reduce the effectiveness of the overall description of the space engine mockup.

The locations of the explosive charges used to destroy the mockup are indicated in Figure 46. The explosives as well as detonator system will be described in the next section.

Figure 46. Assembled Mockup Propulsion Engine Less Nozzle

Description of Explosive Charges and the Detonator System

The mockup propulsion engine was destroyed by four special 105 mm projectiles manufactured and supplied by Picatinny Arsenal, Dover, New Jersey; In the normal situation, these projectiles (Figure 47) are launched into the propulsion engine, but in this test the projectiles were statically placed in the reactor core to allow a more highly-controlled destruct test.

Figure 48 shows an SE-1 detonator assembly with adapter used to initiate the explosive charge. The adapter holds the bridge wire and tetryl booster pellet firmly against the RDX booster in the special pro-

jectile. The projectiles were loaded with 94/6 percent DATB/polystyrene

explosive and used PB-RDX boosters. The total explosive weight (four projectiles) was 111.17 pounds. Included in the total weight were 4.84 pounds of booster material. Tetryl SE-1 Booster Adapter Detonator Adapter A B

Figure 48. SE-1 Detonator Assembly with Adapter

Figure 47. 105 mm Projectiles Used to Destroy the Mocke Propulsion Engine

The booster (PB-RDX) was initiated with two pellets of tetryl (1/2 inch diameter by 1/2 inch high cylinder) which were initiated by two exploding bridge wires. The bridge wires were given a high-energy pulse from a field test X-unit.

Although only four explosive charges were used to destroy the mockup propulsion engine, 12 detonators were used in the system. Each explosive charge was fitted with two detonators to give reliability and ensure simultaneous initiation of all four charges.

The remaining four detonators were placed on the external surface of the pressure vessel to allow streak camera coverage of the actual firing times for these detonators. Figure 41 shows the location for the detonators.

Arming and Firing System

Requirements

The arming and firing system must provide maximum safety and must provide precise time of firing as well as simultaneous firing of all detonators. The detonators shall be initiated and fired within 5 microseconds after firing pulse.

The equipment and procedures used to accomplish the above are described in the following paragraphs.

Firing System

The firing system was assembled from the following components:

TC-2 high voltage supply

FTXU - Field Test X-Unit

Junction box

Control panel

Associated cables

The TC-2 high-voltage supply is a dual-voltage device, which receives a 28-volt input from nickel cadmium batteries and transforms the voltage to 2500 volts which are used to charge the capacitor of the FTXU. Interlock relays, set to close at 2400 volts, provide a 28-volt return signal which indicates full voltage available. Figure 49 shows the high-voltage supply.

The FTXU (Figure 49) is a single capacitor device with a dual trigger circuit; either channel will dump full voltage (2500 volts) through the 16 output connectors. The pulse through the 16 output connectors lasts 3-1/2 microseconds (positive phase) and has a rise time such that the total scatter in voltage application to all 16 output connectors does not exceed 60 nanoseconds (6 x 10^{-8} seconds).

The junction box (Figure 49) provides the termination for control cables, power supply, and X-unit. Further, the junction box is provided with a "keyed" shorting switch which positively prevents premature firing at the time of final detonator cable connection. Figure 50 shows a schematic diagram of the junction box circuit.

Figure 49. TC-2 Power Supply, Field Test X-Unit, and Junction Box

Figure 50. Junction Box Schematic

The control panel (Figure 39), located in the bombproof control center, was used to initiate charging and firing of the X-unit. This control panel was also provided with a "keyed" shorting switch which grounds all firing and charging circuits. Figure 51 shows a schematic of the control panel electrical circuit.

One key, which is in the possession of the Arming Officer at all times, provides access to both the junction box and the control panel. Figure 49 shows the firing system components interconnected.

The arming and firing system components in conjunction with the camera control countdown generator provide maximum safety and also ensure that cameras are started at the proper times to give coverage when the countdown generator provides a switch closure for firing the explosive charges. From minus 10 seconds on, all camera activities and firing are controlled by the countdown generator.

Figure 51. Control Panel Schematic

Safety Procedures

The following procedures were observed in order to provide maximum protection against accidental firing:

- 1. The arming and firing crew was never fewer than two people.
- 2. The single junction box and control panel "key" was in the possession of the Arming Officer at all times, and the switches on both control units were in the "shorted" position.
- 3. The atmospheric potential gradient was at all times below the 400 volts maximum.
- 4. The firing system and the detonators were approved high-energy devices, properly certified to be of high quality.

Arming and Firing Procedure

- 1. Prior to the final arming (connecting detonators to the X-units), the following checks were made:
 - a. Control panel key switch "off" and key removed.
 - b. Junction box key switch "off" and key removed.
 - c. Shorting plugs in place on X-unit end of detonator cables.
 - d. No voltage present at X-unit detonator cable connectors (checked with a VOM having 20,000 ohms per volt).
 - e. All interconnector cables in place and firmly attached to the junction box, the TC-2 high voltage supply, and the X-unit.
- 2. Below is the arming procedure followed:
 - a. The shorting plug was removed from a detonator cable. The cable and detonator were tested, with test set T-27, for a cable plus detonator resistance of 0.375 ± 0.005 ohms. (No other meter may be safely used.) Resistance values significantly varying from the above value would indicate a faulty detonator and/or cable. The cable was connected to the X-unit, by means of one of the outer ring connectors. The procedure was repeated for each cable in turn.
 - b. Upon completion of Step a, the key was inserted to turn "on" the junction box. The key was removed. Operation of the relay inside the box was audible to the operator. This step removed the ground connection from the trigger cable and the TC-2 voltage supply cables and connected them to the main cables leading to the control panel.
 - c. Arming was now complete, and the arming party returned to the control point.
- 3. The following fire enabling procedure was used:
 - a. The key was inserted in the control panel key switch and turned "on". Amber pilot lamp indicated power on.
 - b. The "fire enable" switch was in the down (off) position, and the safety cover was closed.

- c. Safety covers were lifted, and the Charge 1 and Charge 2 switches on the control panel were turned to "on". After a short delay, the red pilot lamps over the switches indicated that the TC-2 power supply had charged the X-unit capacitor to within 100 volts of the final charge voltage.
- d. When both Charge 1 and Charge 2 pilot lamps were properly lit, the unit was ready for firing. The "fire enable" switch was set to the "on" position about T-1 minute during the countdown.
- 4. The firing and the follow-up procedures are as follows:
 - a. The actual firing was accomplished by a switch closure in the camera control countdown generator. At the instant this switch closed, 28 volts were applied to both trigger cables leading to the X-unit and to other devices requiring a signal at zero time.
 - b. After the firing, the arming officer turned the control panel key switch to "off", removed the key, and proceeded to ground zero and inserted the key in the junction box key switch and turned it to "off".

Description of Countdown Procedure

The countdown was designed to preclude errors of omission and to give maximum confidence that data would be obtained and that all equipment would be operating satisfactorily at the time of test firing. The sequence of events in the following countdown list ensures the operation of all systems prior to test firing.

Communication check	T-4 hrs
Check generator gas and oil	
Start generator	
Check generator output	
Air sampling checkout and adjustment	
Camera adjustment, loading, and run	
Rotating devices timing check	
Rotating devices run check	
Pressure calibration check	
Clear area and establish road blocks	T-15 min
Head count of personnel and location of personnel	T-10
Timing tone	T-5 min
Timing tone	T-4 min
Timing tone	T-3 min
Timing tone	T-2 min
Timing tone	T-1 min

Firing enabling switch to "on" position

T-1 min

Start catcher motors	T-30 sec
Start catcher timing system	T-30 sec
Timing tone	T-10 sec
Countdown generator* switched on	T-10 sec
Air sampling start	T-10 sec
Pressure recorder run	T-10 sec
Helicopter cameras start	T-10 sec
Continuous timing count on all communication nets and timing tone	From T-10 sec to T-0 sec
Camera start (on timer)	
Mitchells	T-4 sec
Aerial cameras	T-4 sec
Fastax	T-800 to 1000 ms
Dynafax	T-50 ms
Fairchild	T-50 ms
Firing by countdown generator	T-0
High speed cameras stop	T+10 sec
Catcher motors stop	T+30 sec
Catcher timing system stop	T+30 sec
Pressure recorder stop	T+30 sec
Air sampling stop	T+2 min
Other camera stop	T+2 min
Explosive safety and radiation safety area check	T+5 min
Start debris analyses	T+15 min

The countdown list shows the interrelation of the instrumentation system and the firing system, and thus complements the earlier description of the firing procedure.

Data Collection

To preclude any possibility of personnel injury and to ensure that a maximum amount of data are collected, the following re-entry plan was established and followed.

1. Radiation safety and explosive safety teams declared the area safe to enter.

^{*}The countdown generator provides timed sequencing for all instrumentation camera starts and a switch closure for test firing.

- 2. To avoid contamination by foreign materials, battery fallout jars were covered.
- 3. While battery jars were being covered, the instrumentation photographers removed film, and the documentary cameramen photographed the debris.
- 4. The battery jars were removed from the southwest quadrant to allow the removal of Sandia Corporation collection equipment.
- 5. The trucks and crane were moved into the southwest quadrant, and recovery operations began on the rotating foam plastic velocity devices and fixed foam particle collectors.
- 6. Concurrent with Step 5 above was the continued collection of battery jars, the collection of debris from the hard surface pad, and the removal of the Sandia air sampling equipment.
- 7. The pressure recording equipment was removed.

Test Results

All systems installed for data collection were operative and did collect data, with the exception of the camera hand-held in the helicopter.

Each subsystem which either collected data or was associated with data collection will be discussed in order of occurrence or in order of the completion of data reduction.

Firing Countdown

This procedure will be discussed because an approximate 8-second delay occurred between the verbal countdown, used by the airborne and documentary photographers, and the electronic countdown which triggered all instrumentation cameras and the explosive charge.

This delay was caused by high noise conditions; the man starting the electronic countdown generator did not hear the verbal countdown being transmitted by radio, which signaled the T-10 second time. This error was in no way detrimental to instrumentation photography but did cause some loss of helicopter and documentary photography.

Aberdeen Proving Ground was successful in obtaining photographic coverage from helicopters. Slower speed cameras were used, thereby providing film coverage of the explosive destruct debris pattern.

Blast Pressures and Photo Resistive Unit

The 12 pressure transducers used during the test produced 11 channels of useable information. The pressures were:

Distance from Ground Zero	In Jet	45° from Jet	±5° Beside Jet				
			5°	+5°			
20 feet	23.0	22.5	23.0	22.8			
30 feet	8.0	7. 5	7.95	7.96			
40 feet	4.2	4.1	4.2	No reading			

All pressure transducers, which were recalibrated after the test, verified that no damage was sustained during the test.

The Photo Resistive Unit response time was too slow to obtain results. The time from detonator fire to case rupture was not measured. Although the calculation of overpressure wave velocity was desired, the lack of zero time mark expected from the photo resistive unit made the determination impossible.

Glass Rod Velocity Data

Glass rods were positioned in four areas to determine the velocity of the dome, nozzle, west jet, and south jet. Due to the RF interference experienced, the average velocities obtained from the glass rod instrumentation data are considered to have a tolerance of ±5 percent. The data obtained at each of these locations follows.

<u>Dome and Nozzle</u> -- Four glass rods were located at various distances from both the nozzle and the dome to provide velocity data. Because of the RF interference generated by the explosion, the average velocity of the dome over its first 3-inch displacement and the nozzle over its first 2.25-inch displacement were the only velocities obtained from the glass rod data.

The data indicated an average velocity of 590 fps for the nozzle and 67.5 fps for the dome over the given distances.

West Jet -- Positioned along the path of the west jet were eight glass rods: seven for velocity measurement and one for detection of case breakup. Data were obtained from seven of the eight positions.

The average velocities measured from ground zero to the distances indicated are given below.

Distance (ft)	Average Velocity (fps)
10	No data
20	570
30	420
40	550
50	507
60	490
70	465

Using the data from the glass rods, a plot of the displacement of the leading edge of the west jet versus time was made as shown in Figure 52. By calculating the slope of this curve at several points, the velocity versus time curve was plotted (Figure 53). This curve shows a linear decrease in velocity over the distance from 20 to 70 feet. Since the velocity versus time curve is linear, the deceleration was constant over the interval of time considered (Figure 54).

The time delay from detonation to case breakup along the west jet was recorded as 0.88 millisecond.

Figure 52. Displacement of Leading Edge of the West Jet versus Time

Figure 53. Velocity versus Time

Figure 54. Deceleration versus Time

South Jet -- Four rods were positioned along the south jet--three for velocity measurement and one to indicate case breakup. Data were obtained from two of the four locations.

Only one velocity measurement of the three planned was recorded. An average velocity of 570 fps was recorded (over a distance of 30 feet from ground zero).

The time delay from detonation to case breakup along the south jet was recorded as 1.6 milliseconds.

Rotating Polystyrene Foam Velocity Devices

These velocity devices successfully obtained the average velocity of particles as a function of particle volume, mass, and shape. Photographs of the particles collected are contained in Appendix B. These photographs show the particle size and shape and are labeled as to their mass and magnification.

Thirty rotating devices were mounted at the test location. Nine rotating devices were destroyed during the test: four rotating drums, two rotating twin discs, and three rotating single discs. This loss is as expected; therefore, these units will not be considered when the percent data recovery is calculated. From the remaining twenty-one units, data were obtained from four rotating single discs, four rotating twin discs, and three rotating drums; data recovery was about 52 percent. Figures 55 through 58 show typical debris impact on single disc, twin disc, and drum velocity devices.

The data from the rotating foam velocity devices are tabulated on pages 57 and 58. The tabulation shows the relationship of velocity as a function of distance, particle mass (size), and the numbers of the photographs which illustrate particle shape.

Using a combination of velocity devices located at the same distance from ground zero gives an indication of the initial velocity.

Distance (ft)	Average Velocity (fps)	Final Velocity (fps)	Initial Velocity (fps)
32.25	472	173	771
52.18	449	184	714

Figure 55. Single Disc Debris

Figure 56. Twin Disc - Front Collector Surface

Figure 57. Twin Disc - Back Surface (Front Collector Removed)

Figure 58. Drum Debris

Velocity and Particle Data from Rotating Foam Velocity Devices

(10)	Remarks					Impact so heavy that analysis of individual particles was not possible.	No zero time mark visible and therefore average velocity could not be determined.	Particle lost.
(9) Photo*	of Particles (No.)	3 2 2 4	5 7 8 8 10	11 12 13 14	15 16			
(8)	Penetration Angle (degrees)	56.3 70.4	29.8 69 36.4		23, 2		22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
(2)	Particle Penetration (in.)	0, 19 0, 56 0, 06 0, 44 0, 44	0, 12 Surface Surface 0, 22 0, 22 0, 81	Surface 0,22 Surface Surface	0.19 Surface		Surface 0, 19 0, 16 0, 16 Surface Surface 0, 06 Surface 0, 16	
(9)	Particle Volume (in ³)	0,0043 0,0038 0,00024 0,0027 0,0064	0, 0011 0, 0002 0, 0008 0, 0008 0, 0014 0, 0268 Broken by Impact	0.0027 0.0014 0.0032 Broken by Impact	0,0060		0,0004 0,0015 0,0004 0,0001 0,0001 0,0005 0,0005 0,0009	
(2)	Particle Mass (grams)	0,1169 0,1135 0,0114 0,0640 0,1965	0, 0252 0, 0035 0, 0158 0, 0166 0, 0322 0, 2946 0, 6316	0.0629 0.0289 0.0873 0.1482 Lost	0, 1687 0, 0108		0,0087 0,0327 0,0083 0,0046 0,0731 0,0130 0,0022 0,0230	
(4)	Final Velocity (fps)						184	
(3)	Average Velocity (fps)	404 408 411 420 420	310 321 340 343 344 363 407	450 452 457 479	523 550	395 413		525
(2)	Distance (ft)	72,7	72. 7	52,2	38.2	72, 7	52, 2	38,4
(1)	Type Unit	Single disc	Single disc	Single disc	Single disc	Twin disc	Twin disc	Twin disc

 * The photographs reflected by these numbers are shown in Appendix B.

Velocity and Particle Data from Rotating Foam Velocity Devices (cont)

(10)	Remarks	No zero time mark visible and therr fore average velocity could not be detern ned.		
(9) Photo	of Particles (No.)		17 18 19 20 21 22 23	24 25 26 27 27
(8)	Penetration Angle (degrees)	16,7	46.5	52.1† 63.4† 51.0†
(2)	Particle Penetration (in,)	Surface Surface O. 19 O. 06 Surface	Surface Surface Surface 0, 62 Surface Surface	0,28 Surface Surface 0,22 0,75 1,31
(9)	Particle Volume (in ³)	0,0005 0,0009 0,0039 0,0018 0,0003	0,0055 0,0069 0,0011 0,0033 0,2051 0,2144	0,0004 0,0015 0,0011 0,0032 0,0923
(2)	Particle Mass (grams)	0,0146 0,0197 0,0526 0,0484 0,0111	0, 181 0, 189 0, 044 0, 098 3, 256 0, 720 3, 071	0,0188 0,0348 0,0113 0,0468 1,0648
(4)	Final Velocity (fps)	173		
(3)	Average Velocity (fps)		347 362 365 369 441 444	382 422 422 430 468
(2)	Distance (ft)	32, 2	72,7	32.2
(1)	Type Unit	Twin disc	Drum	Drum Drum

 † Angles are measured from a plane tangent to the surface of the drum.

Fixed Polystyrene Foam Particle Collectors

These foam blocks fulfilled two of the three purposes previously described. Graphite core debris was collected, and the energy from impacting metal parts was absorbed, but the destructive force of the blast pressure scattered the foam such that relative concentration of debris data was not obtained.

The graphite core debris collected was a representative sample although the quantity was small. The total weight of the sample collected was 14,424.308 grams (31.8 pounds) -- 8706.246 grams (19.2 pounds) of core material and 5718.062 grams (12.6 pounds) of graphite reflector material. More graphite reflector material is contained in the core material sample, but only the top four size ranges allowed physical separation. The graphite reflector sample represents 2.1 percent of the total; the core material sample represents 0.75 percent of the total core material.

These graphite debris samples were removed from the polystyrene foam by dissolving the foam in a solvent and then separating the graphite from the liquid by filtering it through a 400 mesh Tyler screen (opening 37 microns). Those particles which were collected in the 400 mesh screen were then sorted according to size by passing them through standard sieves in a Ro-Tap shaker which agitated the debris for 2 minutes. The data obtained (Table I) includes the screen size, the weight of material on each screen, the weight percent of the total material collected on each screen, and the accumulated weight percent starting from the smallest screen size. These data are plotted on Figures 59, 60, and 61.

The uranium content is necessary for safety analyses. Two techniques provided data on the quantity of uranium present in each size range of collected graphite debris. Table II tabulates the results of shielded gamma counting of a small sample of graphite from each size range. The gamma counting was done on a multichannel analyzer and indicates a trace of uranium between 53 and 74 microns with essentially no indication of uranium below 53 microns. See Appendix F for the raw counting data. The data tabulated in Table II is plotted on Figures 59, 60, and 62.

The same sample of graphite debris that was gamma counted to determine the uranium content was also subjected to chemical analysis to determine the uranium content. The data from the fluorimetric chemical analysis is tabulated in Table III and plotted on Figures 59, 60, and 62.

The two techniques for determining uranium content agree well. Therefore the data are thought to indicate accurately the uranium to be expected in each size range of graphite debris.

A representative sample of the particles collected in the fixed polystyrene foam was photographed to provide information about the size and shape of the particles in each size category. The photographs of the particles are contained in Appendix C where each photograph is identified as to the size of particle and the magnification used for photography.

Air Sampling

On the day of firing, the impingers were filled with filtered collection solution, and their flow rates were adjusted to draw 2.8 liters per minute. At the time of firing, an 8 to 12 mph wind was blowing across the ground zero area from a SSE direction. This wind velocity was at the upper limit of acceptability for atmospheric sampling but did not prohibit the test.

TABLE I

Graphite Debris Sorted as to Size, Weight Percent in Each Size and Accumulated Weight Percent

Screen Size (mm)	Weight (grams)	Weight	Accumulated Weight (%)
26.9	48.778	0.56	100.0
19.0	378.750	4.3	99.4
13.5	618,708	7.2	95.1
9.51	673.144	7. 7	87.9
6.73	891.650	10.2	80.2
4.76	1004.104	11.5	70.0
3.36	1859.359	21.3	58.5
2.38	1008.914	11.6	37.2
1.41	616.708	7.1	25.6
1.00	222.906	2.6	18.5
0.841	95.649	1. 2	15.9
0.595	145.497	1.7	14.7
0.420	191.141	2. 2	13.0
0.354	64.388	0. 7	10.8
0.210	183.533	2. 2	10.1
0.149	126.619	1.4	7.9
0.105	92.128	1.0	6.5
0.074	59.101	0.7	5. 5
0.053	29.730	0.3	4.8
0.037	63.673	0. 7	4.5
Filter Paper	331.766	3.8	3.8

Figure 59. ROVER/NERVA Full-Scale Destruct Particle Size versus Weight Percent

Figure 60. ROVER/NERVA Full-Scale Destruct Particle Size versus Accumulated Weight Percent

Figure 61. Log-Probability Curve for Graphite Debris

TABLE II Shielded Gamma Counting Data Performed on a Multichannel Analyzer

(16)	Screen Size (mm)	26.9	19.0	13,5	9,51	6.73	4, 76	3, 36	2,38	1,41	1,00	0,841	0,595	0,420	0,354	0,210	0,148	0,105	0.074	0.053	0,037	Less than 0,037
(15)	Accumulated Wt Percent based on Gamma Counts	100,69 105,69	99,99 104,99	93° 99 98° 99	84.99 89.49	76.99 81.09	70.79	58,79 62,99	35, 49 38, 39	22,49 24,19	15.29 16.39	12, 79 13, 59	11,79	10,39 10,89	08.89 09.29	08, 39 08, 79	06,39 06,49	03,39 03,49	00,89	00, 19 00, 19	00.10 00.09	00°03
(14)	Wt Percent based on Gamma Counts	00.7	0°90	09.0 09.5	08.0 08.4	06.2 06.6	12.0 12.5	23.3 24.6	13.0 14.2	07.2 07.8	02.5 02.8	01,0 01,1	01.4 01.6	01.5 01.6	00.5	02.0 02.3	03.0	02.5 02.6	00.7	00.09 00.1	00.07	00,03
(13)	(11 - 12) Counts per Sample	15560.1 14633.4	127260.0 125745.0	186849.8 190562.1	166266.6 168286.0	131072.5 131964.2	245001.4 250021.9	492730.1 492730.1	273415.7 284513.7	152573.5 156027.1	51937.1 55949.1	21425,4 21712,3	29244 . 9 32445 . 8	32493.9 32111.7	10688.4 10044.5	44414.9 46250.3	63309.5 61904.0	52973.6 52605.1	13770.5 14952.6	1991.9 2081.1	1528,2	636, 99 0
(12)	Weight Sample each Screen	48,778	378,750 378,750	618, 708 618, 708	673, 144 673, 144	891,650 891,650	1004, 104 1004, 104	1859, 359 1859, 359	1008,914 1008,914	616,708 616,708	222, 906 222, 906	95,649 95,649	145, 497 145, 497	191, 141 191, 141	64,388 64,388	183, 533 183, 533	126,619 126,619	92, 128 92, 128	59, 101 59, 101	29, 730 29, 730	63, 673 63, 673	331, 766 331, 766
(11)	$ \begin{pmatrix} \frac{9}{10} \\ \text{Counts} \\ \text{per} \\ \text{Gram} \\ $	319,0	336,0 332,0	302.0 308.0	247.0 250.0	147.0 148.0	244.0 249.0	265.0 265.0	271.0 282.0	247.4 253.0	233.0 251.0	224.0 227.0	201.0	170.0 168.0	166.0 156.0	242.0 252.0	500.0 488.9	575.0 571.0	233.0 253.0	67.0 70.0	24.0 27.0	1, 92 0
(10)	Wt of Sample Counted Grams	5,536	4. 760 4. 760	6,965 6,965	5,355 5,355	8, 564 8, 564	8,808	7.850 7.850	6,640 6,640	7,360	5, 148 5, 148	4,841 4,841	3,913 3,913	5,541	3,981 3,981	4,412	5,673	4, 193 4, 193	3,233	3,017 3,017	3,002 3,002	0,513 0,513
(6)	Average Gamma Count from Sample	1766 1661	1604 1585	2105 2152	1326 1342	1267 1272	2156 2198	2081 2084	1805 1876	1821 1866	1204 1294	1087	788 874	946 936	664 622	1071	2838 2774	2413 2398	755 820	205 214	75 82	10
(8)	Background Gamma Count	118 76	115 74	115	118 72	119 76	120 76	119 78	119 78	119 78	118 76	119 76	118 78	118 76	120 76	119 78	120 80	119 78	119 76	120 78	120 82	119 86
(2)	(5 x 6) Count for 60 min.	1884	1719 1659	2220 2325	1444 1414	1386 1348	2276 2274	2200 2162	1924 1954	1940 1944	1322 1370	1206 1178	906 952	1064	78 4 698	1190	2958 2854	2532 2476	874 896	325 292	195 164	120 85
(9)	Multiply Average by	ကက	၈၈	നന	82 83	2 2	~ ~	8 8	87 87	8 8	2 2	2 2	0 ·01	69· 63	61 63	62 63	8 8	8 8	2 2		ΗH	ਜ ਜ
(5)	$\begin{pmatrix} 2+3+4 \\ 3 \end{pmatrix}$ Average Count	628 579	573 553	740 775	722 707	693 674	1138 1137	1100	962	970 972	661 685	603 589	453	532 506	392 349	595 596	1479 1427	1266 1238	437	325 292	195 164	120 85
(4)	unts	633 589	576 563	730	720 610	674 634	1147	1102 1071	962 978	951 954	635 666	588 557	445 467	486 445	396 348	592 590	1525 1469	1219 1198	453	324 288	188 160	105
(3)	Gamma Counts Peak Count	651	597 570	777 789	777	707	1164 1220	1136 1096	993 1009	995 991	689	622	460 491	559 543	413	608 613	1526 1525	1331	470 478	338	214 183	135 89
(2)	Gan	601 530	546 525	713 758	670 750	697	1102	1063 1077	930 944	965 970	658 653	598 594	455 471	552 529	368	585 584	1386 1288	1248 1220	388 433	313	184 150	120 87
(1)	Run No.	1	83	ന	4	ល	2	9	∞	0	11	12	10	14	13	15	16	17	18	19	20	21

TABLE III

Uranium Content Determined by Fluorimetric Analysis

Size (mm)	Mg Uranium/gr Sample	Total Grams Collected	Total Mg Uranium	Weight (%)	Accumulated Weight (%)
Less than 0.037	1.07	331.77	354.99	0.90	0.9
0.037	2.14	63.67	136.25	0.34	1.24
0.053	3.98	29.73	118.33	0.30	1.54
0.074	12.98	59.10	767.12	1.94	3.48
0.105	15.26	92.13	1,405.90	3.55	7.03
0.149	14.90	126.62	1,886.64	4.76	11.79
0.210	5. 54	183.53	1,016.76	2.57	14.36
0.354	3.14	64.39	202.18	0.51	14.87
0.420	2.62	191.14	500.79	1.26	16.13
0.595	3.44	145,50	500.52	1.26	17.39
0.841	2.78	95.65	265.91	0.67	18.06
1.00	2.62	222.91	584.02	1.47	19.53
1.41	2.58	616.71	1,591.11	4.02	23.55
2.38	2.64	1008.91	2,663.52	6.72	30, 27
3.36	5.90	1859.36	10,970,22	27.70	5 7. 97
4.76	3.78	1004.10	3,795.50	9.58	67.55
6.73	2.75	891.65	2,452.04	6.19	73.74
9.51	4.40	673.14	2,961.82	7.48	81.22
13.5	6.66	618.71	4,120,61	10.41	91.63
19.0	7. 26	378.75	2,749.72	6.94	98.57
26.9	11.44	48.78	558.04 39,601.99	1.41	99.98

The sample was collected for a 37.5-second period, during which time the cloud was observed to expand to about 125 feet in radius. It was then carried by the wind in a northerly direction. Sample collectors on the north side were enveloped in the cloud for the full 37.5 seconds, but the samplers in the other quadrants sampled the cloud for a proportionally shorter time. The period of time each sampler was exposed to the cloud and the measurement of the size of the cloud as it developed around the samplers will be calculated from the motion picture film made at the time from two different angles.

Air sampling of the airborne graphite cloud gave particles as follows: (1) Nearly 80 percent of the particles were in a size range of 0.5 to 3.5 microns, (2) 19 percent were in the range of 3.5 to 10 microns, and (3) 1 percent were in the range of 10 to 20 microns. The sampling instruments were designed to collect particles in the respirable size range and were not efficient for collecting particles larger than 20 microns. Therefore, the scarcity of larger particles does not imply that there were no airborne particles larger than that size.

Electron micro-photographs (Figure 63) showed the particles to be very irregular in shape which precludes application of an ideal size-weight relationship. Difficulty was also experienced in determining the volume of the aerosol cloud. The 5 jet pattern formed from the disintegration of the pressure vessel produced a cloud which had arms that extended beyond the sample array. Because of these variables, a weight-percent value which represents the amount of the core material in the aerosol was not made.

The uranium which was embedded in the core material was not found in the very fine particles of the atmospheric samples. It was calculated (by using the minimum levels of detectability for the analytical methods for determining uranium and the volume of the cloud which was sampled) that the concentration of airborne uranium was less than 0.0280 mg of uranium per cubic meter. This level is at most 10 percent of the maximum acceptable level for an industrial exposure to this material.

Details about the methods of analysis and a further description of the results of this test are discussed in the report *Evaluation of Microscopic-Sized Graphite Aerosol from a Rover Reactor Destruction Test," D. R. Parker, SC-RR-65-557.

Optical Velocity Data

The velocity and distribution of the mockup engine parts were recorded on photographic film. The cameras were generally located 90 degrees apart to provide trajectory information on each component from two quadrants and thus established the direction of flight. (Those objects which impacted the support posts or the Sandia velocity measuring stands were not tracked as these velocities would not provide a realistic picture of the debris velocity or distribution.) The photographic films had millisecond timing marks on the edges to provide time and distance. After analyzing the film, the data obtained along with camera location data were put into a computer, and the trajectories were calculated for those objects which were identified.

Figure 63. Electron Micro-photograph of Graphite Particles Showing Extreme Variation of Size and Shape of Particles Less Than 1 Micron

The objects which were identifiable and trackable are as follows:

- 1. Skin Sections (1 through 5)
- 2. Graphite Jets (North, South, East, and West)
- 3. Vertical Graphite Jet (with Nozzle), Nozzle Return, and Nozzle Ring Return
- 4. Control Drums (7 and 10)

The skin section data from the trajectory tabulations (Table E-1, Appendix E) are plotted on Figure 64. However, the only velocity considered to be of value is the piece called Skin 1 or that piece which included the reflector segment numbers 7, 8, and 9. All other skin sections were possibly restricted in their flight by an obstruction placed in their flight path. Figure 65 is a two-dimension debris plot which shows the reflector segment numbers and the location of objects which interfere with free flight of the skin sections.

The graphite jet data from the trajectory tabulations (Table E-2, Appendix E) are plotted on Figure 66 and show the effect of impact on the velocity measuring stands placed in the South and West jets. The difference in the velocity drop between the South and West jets is caused by the difference in location of the obstruction--50 feet on the South jet and 70 feet on the West jet. The velocity data from the North and East jets show the effects of aerodynamic deceleration on the graphite debris from the reactor core.

The vertical graphite jet, nozzle return, and nozzle ring return data from the trajectory tabulations (Table E-3, Appendix E) are plotted on Figure 67 and show the vertical graphite jet accelerating and then decelerating. Further, the return of the simulated nozzle and the nozzle mounting ring are plotted.

The control drum data from the trajectory tabulations (Table E-4, Appendix E) are plotted on Figure 68. Six control drums were recovered, but only two of these could be tracked accurately. One control drum hit a velocity measuring device structure, and three control drums were not identifiable as to direction of flight and therefore could not be tracked, even though they were located in the photographic film.

These velocity data, along with the velocity obtained from the glass rod velocity devices and the rotating foam velocity devices, are plotted on Figure 69. The data agree well and show the velocity range in which each device operates to the best advantage.

Two-Dimensional Debris Distribution

All pieces of the mockup space engine located were identified as to location (angle and distance) and were weighed. The recovered pieces are tabulated in Table IV. This table identifies the recovered pieces, gives its weight, and shows the angle and distance from ground zero. The angle is measured clockwise from a line running through ground zero and the center of the hard surface pad. Figure 65 plots the data contained in Table IV and shows the two-dimensional debris locations and the orientation of the hard surface pad with respect to ground zero. Note that the North jet line is the zero degree orientation line.

The center of the plot (ground zero) has been expanded for clarification in Figure 65 and shows the obstructions to debris flight as well as the orientation of engine components prior to the destruct test.

Figure 64. Velocities Observed for Section of Center Section Skin

Figure 65. Two-Dimensional Debris Plot

Figure 67. Velocities Observed for Nozzle Components

Figure 68. Velocity for Simulated Control Drums

Figure 69. ROVER/NERVA Full-Scale Destruct Time from Detonation versus Typical Measured Velocity

TABLE IV

Tabulated Debris Distribution Data
(Prepared by Aberdeen Proving Ground)

Item No.	Nomenclature	Weight (lbs)	*Angle (degrees)	Distance (ft)
1	Reflector	10.75	258 ⁰ 45'	538
2	Reflector	0.94	263 ⁰ 13'	394
3	Reflector	11.47	249 ⁰ 53'	552
4	Outer case	134.47	235 ⁰ 41'	393
5	Support plate flange	0.31	227 ⁰ 05'	357
6	Support plate	0.44	211 ⁰ 53'	298
7	Reflector	1.44	209 ⁰ 08'	291
8	Reflector	11.52	196 ⁰ 23'	346
9	Reflector	7.0	191 ⁰ 41'	338
10	Reflector	28.16	183 ⁰ 52†	454
11	Reflector	57.56	147 ⁰ 40¹	727
12	Reflector	21.09	135 ⁰ 16'	737
13	Reflector	21.52	126 ⁰ 12†	567
14	Reflector	14.63	133 ⁰ 26'	487
15	Support plate	0.36	134 ⁰ 11'	455
16	Support plate	2.38	143 ⁰ 53'	375
17	Outer case	185.0	138 ⁰ 53'	245
18	Control drum	56.78	138 ⁰ 32'	238
19	Not identified		140 ⁰ 08'	256
20	Reflector	1.44	145 ⁰ 05'	298
21	Support plate flange	2.56	140°20'	348
22	Reflector	0.31	132 ⁰ 57'	297
23	Reflector	0.87	133 ⁰ 43'	262
24	Reflector	0.88	127 ⁰ 15'	265
2 5	Projectile	4.0	115 [°] 20'	250
26	Projectile	2.87	114 ⁰ 46'	226
27	Reflector	1.10	109 ⁰ 50'	224
28	Not identified		121°39'	183
2 9	Projectile	2.57	90 ⁰ 16'	345
30	Projectile	2.57	90 ⁰ 50'	343
31	Shield	1.0	88 ⁰ 50'	343
32	Projectile	2.41	89 ⁰ 24'	360
33	Support plate	0.41	85 ⁰ 21'	363
34	Projectile	2.64	83 ⁰ 03'	371
35	Shield	0.38	83 ⁰ 51'	412

TABLE IV (cont)

Item No.	Nomenclature	Weight (lbs)	*Angle (degrees)	Distance (ft)
36	Projectile	2.80	81 ⁰ 18'	419
37	Reflector	12.11	64 [°] 25 '	526
38	Reflector	0.81	54 ⁰ 41'	513
39	Reflector	11.09	42 ⁰ 08'	464
40	Reflector	0.81	43 ⁰ 56'	354
41	Projectile	2.47	47 ⁰ 38'	417
42	Reflector	11.60	30 ⁰ 281	486
43	Reflector	10.47	30 ⁰ 12'	535
44	Reflector	13.93	38 ⁰ 18'	653
45	Outer case	117.52	41 ⁰ 41'	693
46	Reflector	12.12	30 ^o 57'	7 54
47	Reflector	2.19	26 ⁰ 52'	982
48	Reflector	35.54	47 ⁰ 10'	1042
49	Reflector	6.91	33 ⁰ 04'	1193
50	Reflector	30, 29	37 ⁰ 10'	814
51	Reflector	28.17	8 ⁰ 40'	959
52	Reflector	21.64	70451	1109
53	Reflector	5.91	1011'	1061
54	Reflector	1630	0°38'	1141
55	Reflector	13.74	357 ⁰ 09'	1081
56	Reflector	23.61	356 ⁰ 29'	1165
57	Reflector	27.46	355 ⁰ 52'	1010
58	Reflector	20.45	347 ⁰ 37'	1017
59	Reflector	33,64	344 ⁰ 49'	1125
60	Control drum	57.16	344 ⁰ 40'	1194
61	Outer case	200.0	332 ⁰ 49'	1373
62	Reflector	10.78	268 ⁰ 31 ¹	569
63	Reflector	12.97	311 ⁰ 40'	860
64	Reflector	4.17	312 ⁰ 53'	779
65	Not identified		329 ⁰ 26'	950
66	Reflector	20.0	332 ⁰ 39¹	780
67	Reflector	15.15	337 ⁰	633
68	Reflector	11.28	9°30'	964
69	Reflector	12.54	10 ⁰ 42'	971
70	Control drum	5 7. 09	9°07'	1999
71	Control drum	57.17	0 ⁰ 17'	1671
72	Support plate	0.87	272 ⁰ 01'	503
73	Reflector	11. 39	309 ⁰ 04'	654

TABLE IV (cont)

Item No.	Nomenclature	Weight (lbs)	*Angle (degrees)	Distance (ft)
74	Reflector	11.51	310 ⁰ 27'	674
7 5	Reflector	2.06	310 ⁰ 05'	709
76	Reflector	18. 22	307 ⁰ 45¹	813
77	Dome flange	2.85	320 ⁰ 12'	609
78	Reflector	1.06	327 ⁰ 30'	488
7 9	Projectile	2.48	330 ⁰ 28¹	339
80	Reflector	2.50	318 ⁰ 47'	316
81	Reflector	1.88	319 ⁰ 12'	348
82	Aluminum shield	1.47	328 ⁰	154
83	Aluminum shield	1.03	341 ⁰ 08¹	165
84	Aluminum shield	0.89	342 ⁰ 51'	160
85	Aluminum shield	0.40	348 ⁰ 41'	180
86	Aluminum shield	1.64	357 ⁰ 57'	188
87	Dome flange	2.75	357 ⁰ 26'	. 168
88	Aluminum shield	1.35	1 ⁰ 42'	202
89	Not identified		07 ^O 53'	239
90	Aluminum shield	0.45	09 ⁰ 23 [†]	226
91	Not identified		09 ^O 23 [†]	226
92	Nozzle	200.0	16 ⁰ 03'	205
93	Projectile	1.92	27 ⁰ 521	221
94	Projectile	0.52	25 ^O 30¹	192
95	Not identified		15 ⁰ 11'	129
96	Aluminum shield	0.77	23 ^O 02'	106
97	Projectile	0.57	341 ⁰ 06'	66
98	Not identified		338 ⁰ 36¹	84
99	Projectile	0.48	338 ⁰ 02'	92
100	Nozzle flange	46.0	331 ⁰ 57'	102
101	Aluminum shield	0.79	318 ⁰ 54'	133
102	Support plate	3.37	352 ⁰ 29'	146
103	Projectile	3.34	302 ⁰ 19'	99
104	Aluminum shield	2.14	92 ⁰ 50'	103
105	Projectile	0.41	94 ⁰ 50'	104
106	Aluminum shield	1.05	82 ⁰ 22'	137
107	Aluminum shield	1.41	83 ⁰ 00'	135
108	Aluminum shield	1.57	67 ⁰ 51'	118
109	Aluminum shield	1.06	67 ⁰ 51'	118
110	Aluminum shield	1.56	69 ⁰ 52'	136
111	Dome	3.50	68 ⁰ 09'	169

TABLE IV (cont)

Item No.	Nomenclature	Weight (1bs)	*Angle (degrees)	Distance (ft)
112	Aluminum shield	2.94	81 ⁰ 12'	179
113	Aluminum shield	0.19	71 ⁰ 41'	213
114	Projectile	0.38	69 ⁰ 52'	239
115	Reflector	0.5	68 ⁰ 42'	247
116	Support plate flange	2.0	55 ⁰ 14'	276
117	Reflector	0.44	51 ⁰ 18'	242
118	Dome flange	1.44	49 ⁰ 11'	298
119	Support plate	1.17	62 ⁰ 09'	343
120	Projectile	1.82	64 ⁰ 32'	316
121	Reflector	0.56	66 ⁰ 42†	419
122	Reflector	1.19	34 ^o 53¹	355
123	Not identified		43 ⁰ 57'	315
124	Reflector	0.75	44 ⁰ 22'	308
125	Projectile	2.72	24 ⁰ 37'	379
126	Reflector	0. 25	26 ⁰ 30'	299
127	Projectile	2.14	28 ⁰ 50'	297
128	Reflector	0.81	14 ⁰ 24'	327
129	Reflector	0.19	12 ⁰ 10'	314
130	Reflector	0, 13	11 ⁰ 08'	301
131	Support plate	0,13	10 ⁰ 28'	305
132	Support plate	0.81	4 ⁰ 25'	324
133	Not identified		04 ⁰ 13'	321
134	Reflector	0.25	3 ⁰ 27†	320
135	Reflector	0.13	40241	315
136	Aluminum shield	0.81	0 ⁰ 16'	353
137	Reflector	0.56	4 ⁰ 40 ¹	378
138	Projectile	0, 85	5 ⁰ 15'	380
139	Projectile	3.12	2 ⁰ 29'	410
140	Projectile	1.71	13 ⁰ 02'	440
				•

TABLE IV (cont)

Item No.	Nomenclature	Weight (lbs)	*Angle (degrees)	Distance (ft)
141	Projectile	1.19	10121	468
142	Projectile	2.67	0 ⁰ 7'	481
143	Reflector	0.37	359 ⁰ 30'	361
144	Projectile	1.95	357 ⁰ 27'	416
145	Support plate flange	3.74	355 ⁰ 35 ¹	398
146	Projectile	2.55	354 ⁰ 57'	425
147	Projectile	1.23	348 ⁰ 381	469
148	Projectile	0.52	347 ⁰ 161	490
149	Reflector	2.81	344 ⁰ 42¹	554
150	Projectile	2.61	340 [°] 30'	544
151	Support plate	0.06	344 [°] 33'	367
152	Projectile	1.92	346 ⁰ 17'	326
153	Reflector	0.38	347 [°] 21'	319
154	Aluminum shield	3.09	354 ⁰ 241	302
155	Reflector	0.19	356 ⁰ 43'	310
156	Support plate	0.41	1 ⁰ 22'	309
157	Not identified		346 ⁰ 43'	289
158	Aluminum shield	1.03	344 ⁰ 24'	293
159	Reflector	0.25	340 ⁰ 12'	304
160	Support plate	1.11	338 ⁰ 37'	. 312
161	Reflector	0.25	330 ⁰ 09'	288
162	Reflector	0, 25	333 ⁰ 11¹	271
163	Not identified		333 ⁰ 30'	255
164	Projectile	2.04	286 ⁰ 13'	320
165	Support plate flange	2.38	281 ⁰ 26'	364
166	Aluminum shield	1.0	284 ⁰ 07'	396
167	Reflector	19.14	277 ⁰ 26'	395
168	Reflector	1.06	280 ^o 55¹	458
169	Not identified		282 ⁰ 23'	503

TABLE IV (cont)

Item No.	Nomenclature	Weight (lbs)	*Angle (degrees)	Distance (ft)
170	Projectile	2. 39	276 ⁰ 01'	504
171	Support plate	0.49	273 ⁰ 42'	349
172	Projectile	3.04	277 ⁰ 39'	256
173	Support plate	7.60	317 ⁰ 36'	129
174	Support plate	0.25	317 ⁰ 36'	129
17 5	Not identified		317 ⁰ 36'	129
176	Support plate	0.08	317 ⁰ 36'	129
177	Aluminum shield	1.04	319 ⁰ 18'	142
178	Projectile	0.47	319 ⁰ 18'	142
179	Reflector	1.0	308 ⁰ 031	98
180	Reflector	13.10	285 ⁰ 24'	120
181	Reflector	31.84	284°17'	147
182	Projectile	2.48	184 ⁰ 24'	391
183	Projectile	2.58	186 ⁰ 08¹	366
184	Projectile	2.37	181 ⁰ 30'	356
185	Projectile	2.0	175 ⁰ 35'	330
186	Projectile	3.0	172 ⁰ 29'	351
187	Projectile	2,55	180 ⁰ 37'	285
188	Not identified		178 ⁰ 28'	303
189	Reflector	0.25	177 ⁰ 12'	308
190	Support plate	0.49	$172^{\rm O}$	263
191	Support plate	0.54	175 ⁰ 40'	234
192	Not identified		178 ⁰ 18'	232
193	Outer case support	2.81	173 ⁰ 35'	298
194	Not identified		170 ⁰ 48'	311
195	Reflector	0. 25	123 ⁰ 30'	422
196	Reflector	13.80	97 ⁰ 44'	675
197	Projectile	4.14	94 ⁰ 16'	497
198	Reflector	20.70	89 ⁰ 27'	528

TABLE IV (cont)

Item No.	Nomenclature	Weight (1bs)	*Angle (degrees)	Distance (ft)
199	Reflector	0.14	89 ⁰ 41'	311
200	Dome	1.75	39 ⁰ 11'	364
201	Not identified		39 ⁰ 11'	364
202	Not identified		161 ⁰ 26'	184
203	Reflector	0.19	173 ⁰ 33'	223
204	Control drum	57.17	262 ⁰ 10'	1316

^{*}The zero degree line passes through ground zero and the center of the hard surface pad. Angles are measured clockwise.

Weight of Components Assembled into Mockup Propulsion Engine	Pounds
Outer case	950.0
Segments outer reflector	1722.0
Control drums (dummy 12 ea)	687.0
Dome (308 lb/foam)	910.0
Graphite barrel	500,0
Support plate/support ring	472.0
Nozzle	250
Aluminum liner	60
Support wire core (234 ea)	37.44
Aluminum tubes	10.70
Graphite segments	107.65
Graphite filler	15.91
Graphite (half rods)	77.30
Graphite (center rods)	288.50
Graphite rods (loaded)	2165.77
Projectiles	334.25 8588.52

The distribution of debris indicates a radial flight pattern for the metallic fragments of the space engine. Note that the pressure vessel skin, the control drums, and the reflector segments are distributed very symmetrically and, where identification was possible, each fragment remained in the radial arc where it originated.

Even though there were obstructions in segments 1, 2, 5, 10, 11, and 12, the distribution of metallic components within a 600-foot radius is reasonably symmetrical. Outside the 600-foot radius, data were so incomplete that the distribution can only be assumed. Segments 6, 7, and 8 indicate that the distribution remains radial and that a radius of about 1500 feet is needed to obtain a more representative two-dimensional plot. Note in Table V the percent of recovery out to 600 feet and out to 1200 feet.

Although the location of the metallic debris shows a radial pattern, the core and graphite reflector follow a very different debris pattern. The graphite materials along with the projectile debris flow within the core cavity and are propelled into the 4-jet pattern radially and into a vertical column (nozzle vertical in this test). The locations of the four radial jets were located as in Figure 65. The jets were photographed from a helicopter immediately after the destruct test (Figure 70). Figure 71 shows the vertical jet with the nozzle riding the top.

The recovered debris from this test indicate that the average fragment size for each major component is as follows:

Core - 0.12 inch diameter or 3.0 mm

Core Support Plate - 0 - 10 lbs = 1.69 lbs, 10 - 100 lbs = 55.40 lbs

Aluminum Barrel - 0 - 10 lbs = 1.21 lbs

Reflector Segments - 0-10 lbs = 1.45 lbs, 10 - 20 lbs = 13.32 lbs, 20 - 30 lbs = 23.64 lbs, 30 - 40 lbs = 33.16 lbs, 50 - 60 lbs = 57.56 lbs, 60 - 225 lbs = 203.09 lbs

Control Drums - Intact

Center Pressure Vessel Skin - 0 - 10 lbs = 2.81 lbs, 100 - 200 lbs = 139.25 lbs

Pressure Vessel Dome - 0 - 10 lbs = 2.22 lbs, 10 - 20 lbs = 17.96 lbs, 20 - 30 lbs = 20.35 lbs, 30 - 50 lbs = 38.22 lbs, 50 - 110 lbs = 106.53 lbs

Nozzle - Intact

Projectile - 0 - 10 lbs = 2.01 lbs, 10 - 40 lbs = 18.93 lbs

TABLE V

Debris Distribution (Percent by 30-degree Segments)

Shield	Case Ins	r Control Drum Projec Inside 600 Feet Rad	Projectile Feet Radius	Support Plate	Nozzle	Reflector	Aluminum Shield		Outer Control Case Drum Projec Outside 600 Feet Radius	Projectile Radius	Support	Nozzle	1	Seg-zontal ment Graphite Nos. (Jet)
		0	82,8	2.6	0	0	0	0	0	0	0	0	1	J.
	79,1	0	0	13, 5	0	54,8	0	0	0	0	0	0	23	
		0	38,0	0	0	9.6	0		0	0	0	0	က	
		0	66	1.0	0	0	0		0	0	0	0	4	Ь
	0	0	23,7	8, 1	0	30.8	0	49,5	0	0	0	0	5	
16.7		0	49,8	0,3	80.0	91,2	0		100	0	0	0	9	
9.69		0	88, 5	24.1	1.1	100,3	0		100	14,4	0	0	7	J
27,5	0	0	13,7	20.2	18,4	53,8	0	84,2	100	0	0	1,1	œ	
8.3		0	46.6	0.9	0	0	0		0	0	0	0	6	
		0	13.2	3,4	0	0	0		100	0	0	0	10	J
	9.99	100	0	7.9	0	0	0	0	0	0	0	0	11	
		0	0	11.2	0	0	0		0	0	0	0	12	

NOTE: The figures in this table are percentages of the total material expected when assuming radial distribution and assuming total collection inside 600 or outside 600 feet.

* See Figure 65.

Figure 70. Horizontal Graphite Jets

Figure 71. Vertical Graphite Jets

Conclusions and Recommendations

The postoperational destruct test of the ROVER/NERVA mockup space propulsion engine was successful. The data acquired by the instrumentation are a good representation of the destruct event, even though the destruction of instrumentation was far greater than anticipated. The destructive force occurred after data collection and therefore did not wipe out instrumentation but did reduce the quantity of data gathered.

All instrumentation systems functioned satisfactorily, with complete data recovery from pressure instrumentation and partial data recovery from all other systems.

Air sampling and particle collection data are marginal but considered to represent the true particle distribution.

Velocity measurement data are sketchy, but sufficient duplication of systems produced data which gave a representative evaluation of the velocities of reactor components.

Although the destruct test was a success, future tests should produce superior data because the experience and knowledge acquired from this test will promote the development of better instrumentation and a better placement of instruments.

Changes which should be incorporated on future tests to produce more complete and superior data are:

- 1. Suspend the mockup propulsion engine at a greater height above the ground, with the nozzle toward the ground.
- 2. Provide a larger hole below the propulsion engine and line this hole with foam blocks, bonded to each other and to the hole walls.
- 3. Position the fixed foam particle collector on the ground and framed in a more rigid structure (a position possible with the engine nozzle down).
- 4. Position the rotating foam velocity devices on the ground and frame these devices more rigidly to withstand impact and blast overpressure.
- 5. Redesign the timing systems on all rotating devices to allow direct velocity reduction from raw data, and redesign the twin disc for better particle collection and for reduction of particle breakup.
- 6. Use a larger cleared area to give more complete debris distribution data.
- 7. Use more duplication on photographic instrumentation to allow use of both long and short focal length lenses which would provide better debris identification while the debris is in flight.
- 8. Provide more pressure instrumentation, both within the core and at greater distances from ground zero.

APPENDIX A

COORDINATED PLAN OF TEST
FOR
AN ENGINEER DESIGN TEST
OF
A DESTRUCT SYSTEM FOR A SIMULATED
FULL SCALE NERVA REACTOR

ABERDEEN PROVING GROUND ABERDEEN PROVING GROUND, MARYLAND

COORDINATED PLAN OF TEST
FOR
AN ENGINEER LESIGN TEST
OF
A DESTRUCT SYSTEM FOR A SIMULATED
FULL SCALE NERVA REACTOR

RDT&E PROJECT NO. N/A

USATECOM PROJECT NO. 5-5-8410-02

Prepared by: George F. Lefevre (APG)
Lt. Boyd McNaughton (APG)
Mr. R. Berry (Sandia)

FOR THE COMMANDER:

J. A. TOLEN
Assistant Deputy Director
for Engineering Testing
Development and Proof Services

AMERICA OF COMMENTER

PART I - ARG

		Page
6.2 6.3 7.1 7.2 7.3 9.	Introduction Fackground Objectives Responsibilities Description Test Material Test Procedure General Measurement of Fragment Velocity Fragment Recovery, Air Sampling and Analysis Test Support Requirements Test Site Cameras Other Data Reduction Reports Coordination	1122333346667788
	PART II - SANDIA CORPORATION	
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.9	Introduction Field Test Requirements. Air Sampling Pressure Measurements. Photo Resistive Measurement of Detonator Fire and Case Breakup Fixed Foam Particle Collectors Rotating Foam Particle Collectors. Photographic Coverage. Electrical Power Requirements. General Test Configuration Event Timing and Firing. OGeneral Requirements Post Test Requirements	10 11 12 12 12 13 13 14 14 15 15
	APPENDICES	
I. II. IV.	Test Directive	I-1 II-1 III-1 IV-1

PART I - APG-DEPG

1. INTRODUCTION

The Space Nuclear Propulsion Office of AEC-NASA, in connection with its development of a nuclear engine for space application, has generated a need for data on the performance of an explosive destruct safety system. The feasibility of an explosive destruct system was established in an experiment conducted in March 1963. However, additional data are now needed to provide a complete description of the explosive destruct functioning evnironment in terms of fragment size, velocity and direction.

2. BACKGROUND

The participation of APG in the ROVER flight safety program commenced in March 1961 with the objective of developing a means of destroying a nuclear rocket engine. Two proposals were submitted by APG. The first suggested the firing of a penetrating projectile to explode within the reactor. The second proposal was to accomplish destruction using a multiple shaped charge arrangement. This second method was proven unfeasible. The role of APG was then limited to studies of the penetrating explosive-projectile type of destruct.

The feasibility tests were phased as follows:

- a. Graphite penetration studies.
- b. Projectile design studies.
- c. Full scale destruct test.

Several scale model tests and two full scale model tests were conducted. The feasibility of this destruct system was confirmed.

Following the explosive destruct feasibility experiments, Picatinny Arsenal was selected as the design agency to evolve an optimized destruct projectile and associated hardware. Picatinny Arsenal models are being supplied for the current test.

In this period since March 1963, APG has been authorized to study test techniques to improve data acquisition on future destruct experiments. Among the techniques examined have been graphite fragment recovery, and classification, graphite fragment velocity measurement and graphite fragment aerodynamics.

Sandia Corp. has also been authorized to study explosive destruct test techniques and has conducted a number of experiments with scale model devices. The testing skill available at Sandia and APC, has led SNPO to decide on a joint participation by both APC and Sandia in the forthcoming full-scale destruct experiment. Each will conduct

independent evaluations and submit their findings in separate reports to MASA.

The test technique studies have shown that a full scale destruct experiment is feasible with an excellent chance of measuring the desired information. The full scale reactor model will be placed in a vertical position with the base about 5-feet above the ground.

Functioning of the four destruct projectiles will result in nearly horizontal projection of the graphite fragments. The fragments will expend most of their energy to the atmosphere and come to rest on a large smooth surface.

The test technique studies and the previous full scale reactor shot have shown that about one-half of the reactor graphite fragments into particles that will become airborne. This makes air sampling a necessity in the forthcoming test, and methods have been investigated to accomplish this.

3. OBJECTIVE

To determine the destructive effects of four (4) 105mm special projectiles on a pilot model rocket engine device.

To determine fragment size and weight distribution, velocity, and direction resulting from the destruct.

To determine the graphite content of the smoke cloud generated during the destruct.

4. RESPONSIBILITIES

The Mortar and Recoilless Rifle Branch, Artillery Division, shall have overall responsibility of the test program, and shall write the final technical report.

High speed photography (Benson Lehner, Festax, Smear and Mitchell cameras) will be the responsibility of Photographic Engineering Section.

The Geodetic Measurement and Observation Section shall be responsible for the emplacement and operation of the Akeley Theodolites.

The Technical Photographic Laboratory shall be responsible for documentary films and still photographs of the program.

Analytical Laboratory shall be responsible for reducing film data and submitting a report on fragment velocity and distribution.

Materials Evaluation Laboratory is responsible for determining size, weight, density and uranium content of recovered particles from

the cloud and ground. They shall also perform microscopic examinations of a sample of particles and determine the amount of urunium recovered and/or lost.

Candia shall conduct an independent evaluation of the destruct and submit their findings in a separate report. AFG will provide test support as requested in Candia's attached test outline and as amended by the coordination review.

5. DESCRIPTION TEST MATERIAL

The NERVA reactor is a nuclear engine that can fit inside a pressure vessel which has an inside diameter of approximately 50-inches and is approximately 92-inches long (measured from nozzle flange to inside of dome). The reactor generally consists of a shield, flow screen, the outer reflector, and the core assembly which is composed of the core proper and the inner reflector.

The individual components of the test item received at AFG were not the same as the actual reactor, however, they were similiar. These components were modified and assembled to simulate the nuclear reactor as close as possible. The assembled test items total weight is approximately 8400 lbs. The optimized destruct system inside the test item consists of four (4) 105mm special projectiles furnished by Picatinny Arsenal. The projectiles are positioned equidistant from the core center at 90 degree intervals. Static detonation of these projectiles will be accomplished through an electrical network also provided by Picatinny Arsenal.

6. TEST PROCEDURE

6.1 GENERAL

The test shall be conducted in a cleared and level area whose diameter is approximately 500 feet. The test item will be mounted with its longitudinal axis perpendicular to the ground. The nozzle' (base) shall be 5-feet above ground level. Static detonation of the four (4) 105mm special destruct projectiles within the core shall be triggered electrically and accompanied with a count down. Sufficient instrumentation will be used to meet the test objectives.

6.2 FRAGMENT VELOCITY MEASURIMENTS

Four (4) special velocity targets will be fabricated. They shall be 8-feet high and 2-feet wide. The targets shall be vertically positioned on a 25' diameter circle from ground zero. The center of the targets shall be facing and at the same height above the ground as the center of the test item. One target shall be placed on the West Jet line and the other targets spaced 2-feet apart going from West to South Jet line.

A maximum of three (3) 16mm Fastax cameras will be used for target coverage. Two (2) 16mm Fastax cameras will supplement two (2) of the Mitchell cameras for velocity measurements.

6.3 FRAGMENTS AND AIR SAMPLING

6.3.1 Fragment Recovery

To aid the discussion of the methods of fragment recovery which will be used, three (3) general fragment size categories have been established.

- a. Large fragments (generally larger than 1000 microns mean spherical diameter) whose trajectory will not be strongly affected by a moderate (5 to 10 mph) wind.
- b. Intermediate fragments (roughly between 1000 and 50 microns mean spherical diameter) whose trajectory will be strongly affected by a moderate wind but which will fall to the ground in less than 300 feet.
- c. Small fragments (less than 50 microns mean spherical diameter) which will be picked up by a moderate wind and carried for a distance greater than 300 feet.

The fragments in category a will be few in number so that a large sample must be obtained to achieve a reasonable statistical accuracy. To this end, all fragments which fall within a quadrant whose vertex is at the point of detonation will be collected. This quadrant will be paved for a distance of 300 feet from its vertex and will be divided into 25- foot by 25-foot squares. The fragments within each square will be picked up with a vacuum cleaner and identified by the square's location. The ground for a distance of 100 feet beyond the paved surface will be cleared and rolled flat. The fragments falling in this area will be picked up individually and identified by their distance and azimuth from the point of detonation.

The fragments in category b will be collected in 5-inch diameter battery jars placed on a 25-foot by 25-foot grid extending for a distance of 300 feet in all directions from the point of detonation. This will result in approximately 500 samples with a sampling ratio of approximately 8000 to 1. The exact dividing point between categories a and b will be determined during fragment analysis by examining the location distribution for the effects of wind on the trajectories of the particles.

The fragments in category c will be sampled by a vertical curtain of air samplers spaced 25-feet apart. This curtain will be 100 feet high, 300 feet in arc length and 300 feet downwind from ground zero. To insure that the fragment cloud passes through this curtain, a criterian for the shot is that a steady 7.5 ± 2.5 mph wind is blowing

in a direction of * 45° degrees from magnetic north. A total of 48 impinger and 20 filterpaper type air samples will be used in the curtain. The sampling ratio will be equal to the ratio at the rate of flow of air through a 25 by 25 foot square to that through the air samplers. Since the sampling methods used for category b and c fragments compliment rather than duplicate each other, no dividing line will be established during fragment analysis.

6.3.2 Fragment Analysis

The fragment samples collected from the shot will be analyzed to obtain the following information:

a. Size distribution:

All fragments which will not pass through a standard No. 270 screen (53 micron opening) will be classified into approximately nineteen size groups with a Tyler Ro-Tap sieve shaker. The U.S. Standard square-root of the sieve series will be utilized.

All fragments which will pass through a No. 270 screen and larger than 0.5 micron mean spherical diameter will be sized with a Model B Industrial Coulter counter. The Coulter counter classifies particles by volume rather than by the particle's ability to fit through a square hole of known dimensions. To determine the relationship between these two methods of sizing a sample of the smallest five size classes obtained by sieving will also be sized on the Coulter counter. To establish the relationship between Coulter counter and microscope sizing, several samples will be sized with both the Coulter counter and with a calibrated microscope.

b. Weight Distribution:

A fragment weight distribution within a given size class will be determined for several selected samples. This will allow converting the fragment size distribution to a fragment weight distribution. Of course, the average particle weight of each size class can also be determined from these measurements.

c. Fragment Volume:

The average individual fragment volume for each size class will also be determined for several selected samples. This will allow a calculation of fragment density and the construction of a fragment volume distribution.

d. Uranium Content:

The uranium content of the material in each of the size classes will be determined by gamma analysis. This will allow the con-

struction of a manium distribution curve as yielding an indication of the cleanliness of the samples.

e. Microscopic Phandnation:

The fragments in each size class will be examined visually with the aid of a microscope. Notes will be made concerning the general shape and surface texture. An effort will be made to quantitatively estimate the number of loose beads, both whole and broken. The dirt content of the smaller samples will also be estimated. Selected samples will be photographed.

After analysis, all or at least a representative portion of each sample will be saved for future reference.

All instruments used during analysis will be calibrated in accordance with D&PS calibration procedures. However, no attempt will be made to calibrate the sieves except to compare similar sieves from the two sets which will be used.

7. TEST SUPPORT REQUIREMENTS

7.1 TEST SITE (See attachment 1 & 2 Appendix IV)

Located at the Old Bombing Field area near the forty-foot (40') Drop Tower. An area whose diameter is approximately 300-feet will be surfaced with a black asphalt compound. The surface will be painted white and grided with 25-ft squares. The test item will be positioned at a point on the outer periphery of this surfaced area. The adjacent area for an overall diameter of approximately 600-feet will be cleared, smoothed, rolled and oiled. It also will be sectioned into 25-ft square grids. Reference stations will be established at the test site for camera orientation.

The test item shall be supported in a vertical position by a metal frame. Its base shall be approximately five (5) feet above ground level. Immediately below the base shall be a pit approximately $5' \times 5' \times 4'$ with energy absorbing material to capture the flying particles.

7.2 CAMERAS

- a. A minimum of four (4) Mitchell cameras placed at 90° intervals around the device on a radius of approximately 500 to 600 feet.
- b. A minimum of two (2) Fastax (16mm) cameras for overall coverage.
- c. Two (2) Benson-Lehner cameras mounted in a helicopter for filming of jets and cloud formation.

d. Two (2) Akeley photo-theodolites positioned to measure cloud size and movement through the air samplers.

- e. One (1) 35mm Gmear camera to record detonator functioning for simultaniety.
- f. One (1) each 16mm motion picture camera on the ground and in an aircraft (if available) for documentary purposes.
- $\ensuremath{g_{\bullet}}$. Additional cameras will be used as required for complete coverage.

7.3 OTHER

7.3.1 Meteorological

Ground meteorological data will be recorded at the test site.

7.3.2 Restraints

- a. Black top recovery surface must be clean and dry prior to firing.
 - b. All personnel shall be under adequate cover for the firing.
 - c. Winds shall be from the Southwest and shall be 5 to 10 mph.
 - d. Shot will not be fired during inclement weather.
- e. Prior to entry by other personnel after firing, the Madiation Safety Team shall enter the area and establish its safety with respect to radiation hazards.
- f. The general level of illumination should be as high as possible, indicating a bright sunny day. Overcast or rain will seriously degrade photographic results because of the nature of the photographic subject.

8. DATA REDUCTION

Photographic coverage will be reviewed by the Analytical Laboratory in an effort to obtain a particle velocity pattern. Its correlation of particle size with velocity and distance will be evaluated. Cloud size and movement will also be determined. The volume of suspended particles in the smoke cloud will be estimated using this data and cloud sampling data.

The Materials Evaluation Laboratory will analyze the results of their recovery program to determine the particle size and distribution from the destruct. Uranium content shall be a major safety factor of consideration.

Each DCPS organization engaged in data analysis shall submit their findings, in report form to the Mortar and Recoilless Rifle Branch, for inclusion in the final report.

9. REPORTS

APG and Sandia will each submit separate test reports of their findings.

Test reports will be sent to SNPO, ATTN: Mr. H. Smith for distribution.

10. COORDINATION

The following coordination will be effected in the coordinated test effort: (References are to Sandia Test Plan)

- a. APG will furnish Sandia four wooden poles, eight 18" eye bolts and sixteen 3-hole cable clamps as per Figure 1. Poles installed, at points 11 and 15 will be positioned at a greater distance than 130' from ground zero to clear black top sampling pad.
- b. Pressure data will be recorded by Sandia. APG will furnish and install posts as per Figure 2.
- c. W. R. detonators with a 5 micro-sec simultaniety will be furnished by Sandia.
- d. The fixed Yoam box at the West Jet position will be eliminated (Fig. 3). The remaining box may be a free standing item instead of rigidly mounted to posts, and will be furnished by APG.
- e. Platform B (Fig. 5) will be moved from West Jet position to South Jet position at a distance of 50-ft from ground zero.
- f. Platforms and Foam Holders (Fig. 6, 7, 8 and 9) will be furnished and installed by APG.
- g. APG will furnish sand and fill bags which Sandia will supply for use to protect cables and cameras.
- h. APG will provide a floor and 3' high railing all around on the 40' drop tower for Sandia camera position.
- i. The 2x4 posts 16' above ground (Fig. 10) are deleted. The surface area will be grided in 25-ft squares. From 25-ft to 100-ft from ground zero along the North Jet line, grid markings 10-ft long and spaced 5-ft apart will be added for photographic purposes.

j. APG will furnish Sandia seven (7) 30 kw - 3 \emptyset generators for their power requirements.

- k. Identification by markings of the individual parts of the test item will be made by ArG. Assembly of the test item will be documented photographically.
- 1. Sandia will furnish a man and materials for making the foam for particle catchers and the test model dome.
- m. ARG will furnish office space for Sandia in Bldg 400, an overnight equipment storage-workshop van at the test site, and an additional workshop area in a building near the test site.
- n. Sandia equipment will be flown (C54 or C47) into APG. Provisions will be made by APG for off loading and storing equipment near the test site.
- o. APG will issue non-escort passes to Sandia personnel for security access to and from the test site. Sandia will furnish APG a complete list of personnel involved.
- p. A review meeting of Project ROVER for this full-scale shot with all interested parties is scheduled at APG for 21 May 1965 in Conference Room B-1.

PART II - SANDIA CORPORATION

1. INTRODUCTION

Prior to the use of nuclear power supply unterials in space these materials, their intended use, and the design safety criteria must be analyzed and approved for flight testing. The radiological hazard must be reduced to a level which can be tolerated during a launch pad failure, launch abort, short lived orbit or re-entry from orbit. These conditions can only be assured by the proper analysis and adequate dispersion of the radioactive material by burnup (micron particles) or other techniques. The dispersion technique used must be shown to distribute the materials either (1) above the earth for such a period of time that a minimum hazard exists, or (2) the radioactive material must be dispersed over the surface of the earth to such an extent that an acceptable level of contamination is attained.

Burnup during re-entry is one method of reducing the radioactive material to micron size and thereby promoting suspension in the atmosphere. However, when the test device becomes very large and the materials of construction are quite resistant to re-entry heat, then other measures must be taken to reduce the test device to particle sizes which will burn up or be dispersed in the upper atmosphere.

The ROVER (NERVA) propulsion reactor is a test device in the category of being large and constructed of heat resistant materials. A suitable destruct system has been developed for the post-operational destruction of the reactor, but a suitable safety analysis has not been completed. This analysis is necessary before flight testing can proceed.

To complete the safety analysis of the ROVER (NERVA) flight system, the following data is required.

- a. Dynamics of Destruct Event
- (1) Velocity of fragments of core, reflector, and pressure vessel as a function of fragment size and time.
- (2) Angular distribution of fragments of core, reflector, and pressure vessel as functions of fragment size and time.
- (3) Reconstruction of geometry of debris pattern of test as function of time on triaxial coordinate system.
- (4) Extrapolation of geometry of (3) above to vacuum destruct condition on triaxal coordinate system.
 - b. Particle Size Distribution

- (1) Quantitative determination of particle size distribution of fuel fragments in sufficient detail to construct distribution curve with good level of confidence.
- (2) Sampling fuel in metric system at points 30, 20, 10, 5, and 1 mm; 750, 500, 250, 100, 50, 10, and 1 micron.
- (3) Classifying fuels as to angularity, sphericity, 1/d, surface area, and density (fragment characterization).
- (4) Qualitative determination of fragment size distribution of other engine components.
 - c. Mass Density Distribution of Debris
 - d. Two Dimensional Mapping of Debris
 - e. Weight and Size of Components Recovered

These data requirements are a combination of the collection of fundamental data and the analyses of the fundamental data to establish the entire post-operational destruct pattern. Sandia will instrument to acquire and analyze the fundamental data described above.

2. FIELD TEST REQUIREMENTS

The required fundamental data will be obtained by the use of the following instrumentation systems:

- a. Air sampling of the airborne cloud.
- b. Pressure measurements.
- $\ensuremath{\text{c.}}$ Photo resistive measurement of detonator fire and case breakup.
 - d. Fixed foam particle collectors.
 - e. Rotating foam particle collectors.
 - f. Photographic coverage.
 - g. Electric power requirements.

Each of the above will be discussed with respect to the coverage intended and the needed field construction support required.

In addition, to the above mentioned instrumentation systems the general test configuration 2.8, event firing and event timing 2.9 will be discussed.

Finally, the general requirements 2.10 will be discussed.

2.1 AIR SAMPLING

The air sampling array encircles the test vessel to prevent data loss even if a wind direction other than the normal is present. However, to be assured of air sampling success Sandia requests that the firing will occur only when the wind velocity is between 5 and 10 mph.

The latter requirement for specified limits on wind velocities makes it very desirable to have a small weather station located near the firing site. Sandia requests that a field weather station be available at the firing site.

Air sampling will be done at a 100-foot radius around ground zero. This net will consist of 24 air sampling devices suspended from a 1/2-inch diameter steel cable stretched between four poles. Figure 1 shows the air sampling array. Sandia requests that Aberdeen provide the materials and installations as indicated on Figure 1.

The installation shown in Figure 1 will be supplemented by Sandia furnished materials, such as pulleys at the 16 numbered locations.

The pulleys will be attached to the 1/2" steel cable and hemp rope will be used to raise and lower the air sampling devices.

2.2 PRESSURE MEASUREMENT

Pressure values will be obtained along a jet at 45° between jets and at 5° on either side of a jet. The only installation necessary for the installation of pressure transducers will be posts as shown in Figure 2.

2.3 PHOTO RESISTIVE MEASUREMENT OF DETONATOR FIRE & CASE BREAKUP

These two areas of instrumentation will be discussed together as they will be recorded on a single tape recorder.

The photo resistive measurement is a very small photo cell which will look at the flash from the externally mounted detonators (bridge wires) and the flash when the case ruptures. Each flash will be recorded as a voltage pulse on the tape recorder. The zero time and case break-up time will be used to calculate the velocity of the pressure wave.

2.4 FIXED FOAM PARTICLE COLLECTORS

These particle collection devices are located at 40-feet from ground zero and are intended to show the relative lack of debris in their particular locations. Figure 3 shows the location of the two fixed foam particle collectors and the structure needed for mounting.

Figure 4 shows the box construction needed to support the foam plastic. Sandia requests that Aberdeen provide both the materials and fabrication for the support structure and the boxes.

2.5 ROTATING FOAM PARTICLE COLLECTORS

Rotating foam particle collection devices are located as shown in Figure 5. The catchers, which are directly in line with the east and west jets, are mounted on a platform as shown in Figure 6. The other catchers are mounted on a platform as shown in Figure 7.

Figures θ and 9 show the plywood boxes needed to support the foam plastic in front of the catchers.

These arrays of catchers will give velocity of particles as they arrive and the foam protection in front of the catchers will indicate the concentration of debris.

Sandia requests that Aberdeen fabricate the platforms shown in Figures 6 and 7, install them as shown in Figure 5, and fabricate the boxes shown in Figures θ and 9.

2.6 PHOTOGRAPHIC COVERAGE

The photographic coverage for this destruct test will remain somewhat flexible and will be finalized at the actual time of camera placement. The camera sites shown will be the general location.

Figure 10 shows this general location for the cameras. The notes on this general layout are requests for the necessary site construction.

Sandia will supply the photographers and photographic equipment such as cable, timers, cameras, and tripods that will be necessary for the intended coverage.

Information requested is an early, detailed plan for the actual timing and firing of the event. Attached to this plan is a preliminary countdown procedure which gives timing requirements which will be necessary for proper operation of Sandia equipment.

2.7 ELECTRICAL POWER REQUIREMENTS

The power requirements for each area of instrumentation are shown in Figure 11 with the approximate location desired for the power generators. Adequate protection should be provided for these generators.

Sandia requests that Aberdeen supply and protect the electrical generators as shown in Figure 11. Further, the availability of power cables, their length, and the number of outlets should be furnished to Sandia in order that any remaining cable necessary can be acquired.

2.8 GENERAL TEST CONFIGURATION

This discussion will be split into two sections, (a) the field operation, and (b) the test hardware.

(a) Field Operation

The test vessel will be supported such that the geometric center of the core is 9.0 feet above the ground level.

The explosive charges will be fired from the test vessel end adjacent to the ground.

The support structure will be a frangible structure such that little or no radial containment is offered and minimum containment is offered in a longitudinal direction.

The test vessel will be placed in position on its stand and the explosive charges aligned with the 45° lines, measured from a line passing through ground zero and the center of the hard surface collection area. This line will be used as datum orientation and will be called "North Jet".

(b) Test Hardware

Mach individual part of the test hardware will be weighed prior to assembly and each individual part will be identified by metal stamping, where possible, in a sufficient number of places to assure identification of broken pieces after test firing.

Further, the outside of the pressure vessel will be marked to identify the location of the explosive charges and the location of the numbered reflector segments and drums.

Generally speaking, all test hardware should resemble the actual propulsion reactor as closely as possible.

2.9 EVENT TIMING & FIRING

The event timing is very important and must be precise to assure photographic coverage. It will be necessary to have millisecond timing from at least 70 milliseconds prior to firing set pulse. Further, the total time from firing set pulse to detonator firing should not be greater than 5 microseconds. All four charges should fire within the 5 microseconds.

These requirements make it necessary to provide signals with millisecond accuracy from the firing point to the instrumentation points.

Further, Candia recommends that detonator cables from detonator to ficing set be no longer than 40 feet.

2.10 GENERAL REQUIREMENTS

In addition to the specific materials, construction, and communications requested, there are other requirements which will be discussed.

The photography personnel will need a dark room for loading and removing film from the cameras.

Also, to assure good film coverage, a small quantity of pretest film will be exposed. This fill will be Anacochrome in 100' x 16 mm, 100' x 35 mm rolls, and black and white in a 9" width. It is desired to obtain 24-hour service for processing. The facility may be local or commercial. Sandia reque ts assistance from Aberdeen in establishing accessibility to a facility.

Space on the helicopters is requested for overall photographic coverage of the event.

Sandia requests that the following materials and support be available for site use:

1000 linear feet of 2" x 4" lumber

500 linear feet of 4" x 4" lumber

50 4' x 8' sheets of 3/4" plywood

l crane for installing equipment on the platforms

1 Cherry Picker (70' to 75' reach)

4 construction type personnel for general carpentry work, with normal tools

10 20-foot lengths of 1-1/2" galvanized steel pipe

Sand and equipment for filling sand bags. Estimated quantity of sand is about 150 cubic yards.

3. POST TEST REQUIREMENTS

The area will be declared safe to enter by both the Explosives Safety Officer and the Radiation Safety Team prior to any other personnel entry.

After the area has been declared safe to enter, the collection of samples will proceed. Sandia requests that no object be moved or removed

until the complete debuis area is mapped and all materials located to the satisfaction of both Aberdeen and Sandia.

The particle collection devices and the particles from the collection areas will be removed and packaged to assure the greatest collection of particles and debris.

After the small particle collection is complete, the entire test area will be mapped identifying the location, size, and weight of each item of debris.

APPENDIX I

References

Feasibility Test of a Weapon Launched Destruct System for a Nuclear Rocket Engine. Report No. DPS-1060.

APPENDIX II - Test Directive

CHEST COMPANY

SPACE NUCLEAR PROPULSION OFFICE

CLEVELAND EXTENSION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
21000 BROOKPARK ROAD, CLEVELAND 35, OHIO

In reply refer to: TSB:HPS

May 4, 1965

Commanding Officer
U.S. Army
Test & Evaluation Command
Aberdeen Proving Ground, Maryland

Attention: AMSTE-NB

Ref.(a): SNPO-C TWX dated April 7, 1965 to H.A. Bechtol, DePS

Dear Sir:

It is requested that a destruct test of a simulated full scale NERVA reactor be conducted on or about June 15, 1965, as provided for by SNPO-C DPR SNC-7. This test is necessary for the development of a destruct model needed by the NERVA Program, and to provide basic countermeasure safety information applicable to nuclear rocket propulsion systems.

The test should be instrumented to allow for the measurement of particle size and weight distribution, velocity, and direction resulting from the destruct event. The test planning should allow for continued assistance to the Atomic Energy Commission's contractor, The Sandia Corporation, to insure their useful participation in the test.

The planning should be consistent with agreements resulting from the meetings held at APG on March 5, March 23, April 6, and April 29, and with the Sandia Corporation in Albuquerque, N.M., on March 30. The explosive loaded projectiles for the test are to be supplied by the Ammunition Engineering Directorate, Picatinny Arsenal. The firing sequence and mechanism should be subject to the joint concurrence of Aberdeen Proving Ground D&PS, Picatinny Arsenal AED, and Sandia Corporation.

May 4, 1965

The test plan for the test should be submitted to SNPO-C in sufficient time to allow for a review prior to the test date.

The data reduction, analysis, and final test report should be completed and submitted to SNPO-C by August 12, 1965.

Very truly yours,

L. C. Corrington Assistant Chief for Technical Operations

HPS:lm cc: H.A. Bechtol, APG R. Holwager, APG

APPENDIX III

COUNTDOWN PROCEDURE

A systems check will be performed at T-24 hours using the following procedure.

Communication check Check generator gas & oil Start generator Check generator output Air sampling checkout and adjustment Camera adjustment and loading and run Rotating devices timing check Rotating devices run check Pressure calibration check	T-4 hrs.
Clear area and establish road blocks	T-15 min.
Head count all personnel and location of personnel	T-10 min.
Timing tone (all communication nets) (accurate to 1 MS)	T-5 min.
Timing tone	T-4 min.
Timing tone	T-3 min.
Timing tone	T-2 min.
Timing tone (1 MS accuracy)	T-1 min.
Start catcher motors	T-30 sec.
Start catcher timing system	T-30 sec.
Timing tone	T-10 sec.
Air sampling start	T-10 sec.
Press recorder run	T-10 sec.
Helicopter cameras start	T-10 sec.
Continuous timing count on all communication nets and timing tone	From T-10 sec. To T-0 sec.

Countdown Procedure

Camera start (on timer)

Millican's Aerial cameras	T-4 sec. T-4 sec.
Fastax	T-300 to
Dynafax Hycam	T-50 ms T-50 ms
Firing tone	T-0
High speed cameras stop	T+10 sec.
Stop catcher motors	T+30 sec.
Stop catcher timing system	T+30 sec.
Press recorder stop	T+30 sec.
Air sampling stop	T+2 min.
Other camera stop	T+2 min.
Explosive safety & radiation safety area check	T+5 min.
Start debris analyses	T+10 min.

APPENDIX IV

Attachements & Figures

IV - 1

ATTACHMENT NO. 1

SCALE 1": 100'

IV - 2

Scale 1"= 100'

ATTACHMENT NO. 2

AIR SAMPLING

SANDIA WILL ATTACH PULLEYS AT POINTS NUMBERED 1 THRU 16 PRIOR TO THE ACTUAL STRETCHING OF THE CABLE FROM POLE TO POLE

FIGURE 1

PRESSURE MEASUREMENT

AT EACH NUMBERED LOCATION SET 1 2X4 POST WITH 6 FEET ABOVE GROUND.

FIXED FOAM INSTALLATION

SET THREE POSTS 8" TO 10" DIA. AT 15.7' ABOVE GROUND AT TWO LOCATIONS-POSTS TO HAVE SHELF AS SHOWN BELOW

USE 3/4" PLYWOOD FOR CONSTRUCTION OF BOX

FIGURE 4

2 REQUIRED

ROTATING FOAM PARTICLE COLLECTOR INSTALLATION

PLATFORM FOR CATCHERS AT POINTS A AND B

IV - 3

FOAM HOLDERS - PLATFORMS A & B

3/4" PLYWOOD BOX

IV - 10 FIGURE 8

2 REQUIRED

FOAM HOLDERS - PLATFORMS C, D, AND E

IV - 11

FIGURE 9

PROVIDE SAND FOR FILLING SAND BAGS TO BE USED FOR CABLE AND CAMERA PROTECTION.

DISTANCE MARKERS WILL BE PLACED ALONG 8 EQUALLY SPACED LINES ORIGINATING AT GROUND ZERO. DISTANCE WILL BE MARKED AT 20 FOOT INTERVALS FOR 200 FEE. AND THEN AT 50 FOOT INTERVALS TO 500 FEET.

IV - 12 FIGURE 10

ELECTRICAL POWER LOCATIONS

DROP TOWER

1 EA - 30KW GENERATOR
220 YOLT SINGLE PHASE

NORTH JET

0

1 EA- 30KW GENERATOR 220 VOLT SINGLE PHASE LOCATED AT 50 FEET KAPP AND 200 FEET EAST OF TERMS.

GROUND ZERO -

O

0

1 EA- 20KW GENERATOR 110 VCL SINGLE PHASE LOCATED AT 50 FEET SOUTH AND 200 FEET EAST OF GROUND ZERO.

œ

80

3 EA - 30KW GENERATORS 220 VOLT SINGLE PHASE LOCATED AT 50 FEET WEST AND 200 FEET SOUTH OF GROUND ZERO 3 EA - 30KW GENERATORS 220 VOLT SINGLE PHASE LOCATED 50 FEET EAST AND 200 FEET SOUTH OF GROUND ZERO

IV - 13 FIGURE 11

APPENDIX B

PHOTOS OF ROTATING POLYSTYRENE COLLECTED PARTICLES

The photos in this appendix are illustrations of the particles collected in the velocity devices. The illustrations are identified by number which refers to the tabulation on pages 57 and 58, where the velocity and mass for each particle are tabulated.

Photograph Number 2 Magnification 10X

Photograph Number 1 Magnification 10X

Photograph Number 4 Magnification 4X

Photograph Number 3 Magnification 10X

Photograph Number 6 Magnification 10X

Photograph Number 5 Magnification 10X

Photograph Number 8 Magnification 10X

Photograph Number 7 Magnification 10X

Photograph Number 10 Magnification 4X

Photograph Number 9 Magnification 4X

Photograph Number 12 Magnification 10X

Photograph Number 11 Magnification 10X

Photograph Number 14 Magnification 10X

Photograph Number 13 Magnification 10X

Photograph Number 16 Magnification 10X

Photograph Number 15 Magnification 4X

Photograph Number 18 Magnification 4X

Photograph Number 17 Magnification 4X

Photograph Number 20 Magnification 10X

Photograph Number 19 Magnification 10X

Photograph Number 22 Magnification 4X

Photograph Number 21 Magnification 4X

Photograph Number 24 Magnification 10X

Photograph Number 23 Magnification 4X

Photograph Number 26 Magnification 10X

Photograph Number 25 Magnification 10X

Photograph Number 28 Magnification 4X

Photograph Number 27 Magnification 4X

APPENDIX C

PHOTOS OF REPRESENTATIVE PARTICLES FROM EACH TYLER SCREEN SIZE

The illustrations in this appendix are representative of the particles collected on a specific screen size. The illustrations are arranged from the minimum size screen to the maximum size screen used to grade the graphite debris collected during the destruct test.

Particle Size: 19 mm Magnification: 4X

Particle Size: 26.9 mm Magnification: 4X

Particle Size: 9,51 mm Magnification: 4X

Particle Size: 13,5 mm Magnification: 4X

Particle Size: 4,76 mm Magnification: 4X

Particle Size: 6,73 mm Magnification: 4X

Particle Size: 2,38 mm Magnification: 4X

Particle Size: 3,36 mm Magnification: 4X

Particle Size: 1,00 mm Magnification: 4X

Particle Size: 1,41 mm Magnification: 4X

Particle Size: 0.595 mm Magnification: 4X

Particle Size: 0,841 mm Magnification: 4X

Particle Size: 0,354 mm Magnification: 63X

Particle Size: 0,420 mm Magnification: 63X

Particle Size: 0,149 mm Magnification: 63X

Particle Size: 0,210 mm Magnification: 63X

Particle Size: 0,074 mm Magnification: 63X

Particle Size: 0,105 mm Magnification: 63X

Particle Size: 0,037 mm Magnification: 63X

Particle Size: 0,053 mm Magnification: 63X

APPENDIX D

RELATED INFORMATION AND PROCEDURES

- 1. Memo, to Commanding General, AOD&P from Steeger, D. E., Picatinny, subject: "Projectiles for NERVA Test." dated July 8, 1965.
- 2. Rad Safe Procedures for NERVA Shot (APG #3), Aberdeen Proving Ground.
- 3. Standing Operating Procedure for Static Detonation of High Explosives for Test Purposes, U.S. Army D&PS, AMR 097.100, Aberdeen Proving Ground, Maryland, September 10, 1959.
- Standing Operating Procedure--Static Deontation of High Explosives for Test Purposes, U.S. Army D&PS, AMR 097.100, Supplement No. 4, Aberdeen Proving Ground, Maryland, dated October 25, 1962.
- 5. Standing Operating Procedure--Evaluation of Fragments Obtained from the Experimental Destruction of a Simulated Atomic Reactor, U.S. Army D&PS, Procedure No. 097.265, Aberdeen Proving Ground, May 5, 1965.
- 6. D38: Its Properties and Its Controls, U.S. Army D&PS, Aberdeen Proving Ground, Maryland.
- 7. Standing Operation Procedure--Firing of Weapons Within D&PS (Ground to Ground and Ground to Air), U.S. Army D&PS, AMR 097.67, Aberdeen Proving Ground, Maryland, dated January 9, 1963.

UNITED STATES ARMY PICATINNY ARSENAL Mr. Adelman/hek/4953 DOVER, NEW JERSEY, 07801

JUL 8 85 .11 00 AM

_DR4

SUBJECT: Projectiles for NERVA Test

TO: Commanding General
U. S. Army Ordnance Development & Proof Services
ATTN: STEAP_DS_TA (Mr. Howager)
Aberdeen Proving Ground, Maryland 21005

The subject projectiles were loaded with 94/6 DATB/polystyrene and PB_RDX boosters. Weights were as follows:

Projectile No.	Empty Weight (1b)	Loaded Weight (1b)	Weight of HE* (1b)
1	55.76	83.57	27.81
2	55.91	83.84	27.93
3	55.90	83.68	27.78
4	55.61	63. 26	27.65

*Includes 1.21 1b PB_RDX booster

FOR THE COMMANDER:

D. E. SEEGER Chief, Explosives Application Section

Copy furnished:

/Mr. R. E. Berry, Dept 9312

P.O.Box 5800, Sandia Base
Albuquerque, N.M. 87115

ABERDEEN PROVING GROUNDS

Rad Safe Procedures for NERVA Shot (APG #3)*

1. SOP's

AMR 097.100, Suppl. No. 4 will be used in the field. DP 097.265 will be used in the lab.

2. Radiation Protection Officers

John Feroli in the field. Robert Huddleston in the lab.

3. Order of Reentry

Will be controlled by test director. In general it will be as shown below. Some personnel will serve in more than one group.

First Group

At T / 15 min. entry will be made by personnel to cover battery jars; and by cameramen to remove film. This group will be kept to a minimum.

Second Group

Documentary photographers will take pictures in areas where battery jars have been covered.

Third Group

Following the covering of battery jars and removal of film, fragment recovery personnel will commence operations. Battery jars and cameras will be removed as appropriate.

4. Protective Clothing

First and Second Groups

Respirators, foot coverings, gloves (cotton OK), surgical caps, and coveralls over own clothing as desired. Openings of foot coverings and coveralls sealed with tape.

Third Group and Clean-up Personnel

Same as above except all personal clothing (except shoes and socks) will be removed, and personnel will be given a choice of one or two sets of coveralls, the choice being governed by desire for personal warmth. Provisions will be made for showers, at a location near test site, before going home. Also washing facilities will be available.

^{*}From meeting of Messrs Feroli, Huddleston, Thune, Swindell, Holwager, Dutschke, Webster, T. Lyon and Lt. McNaughton, 8 June 1965.

5. Dosimetry and Monitoring Equipment at Test Site

Film badges (covered with Saran wrap) - all personnel engaged in reentry.

Hand-carried air monitor to be used by one man who will monitor air in vicinity of personnel cleaning hard-topped area.

One continuous-reading air monitor placed at the nearest location that unprotected personnel will be permitted after the shot (about 600 ft away).

No protective equipment, film badges, etc. for observers.

6. Cameras

Each camera will be covered with plastic except for opening for lenses and cord. Upon removal of film, plastic will be replaced. Later, cameras will be removed and exposed camera sections will be cleaned with dry paint brush and wipe tests performed on representative cameras. Cameras will be held at suitable location until cleared by results of wipe tests.

7. Observers

Observers will be located at C-Tower area. A wind direction indicator will be located at C-Tower. Following shot, in the event that wind shifts in a way to carry cloud to observers, observers will enter buildings and remain within building for a suitable period of time. Observers are not expected to return to test site. Personnel monitoring (GM meter) will be available.

8. Downrange Areas

Poverty Island. Personnel at Poverty Island will be alerted to the fact that they must take cover for $1\frac{1}{2}$ hours on day of shot. As soon as information is known on shot time they will take cover from T-15 min to T \neq 75 min. A choice will be given them to stay indoors and close windows, or evacuate area.

Romney Creek. No problem - no test activities scheduled.

Game Warden's House. No concern - at a considerable distance from shot and occupants are employed elsewhere during day.

Ammunition Magazines. No concern - far from shot and not in direct downwind direction.

Old Baltimore Road. No concern because of the combination of distance and direction from shot.

9. Downrange Monitoring

Three air monitoring stations will be set up in a line perpendicular to the expected direction of dust cloud and as far apart as possible, two at Poverty Island and one in Romney Creek area.

10. Clean Up

Once all fragments have been recovered for purposes of data analysis, all obvious shot residue will be cleaned up. This is not expected to start until some day following the shot. Residue mixed with dirt from the ground will be shovelled into barrels, whose covers will be taped, and sent to Edgewood Arsenal. The exact method of collecting residue will be decided after the shot. It is expected, however, to consist of scraping a thin layer from the ground, perhaps with shovels. It is not expected that this scraping will go beyond the area of 100'-radius which has been covered with oil or calcium chloride.

11. Rad Safe Orientations

A short orientation will be given by J. Feroli to representative personnel at Poverty Island and to test personnel, as well as to anyone else as appropriate.

12. Personnel Monitoring

A GM meter will be used to monitor personnel before removal of protective clothing, and afterwards.

13. Vehicles

Vehicles with possible contamination will be monitored. If required, decontamination will be initiated in the form of washdown with hose (any location OK) or brushing.

14. Instrumentation and Equipment that May be Contaminated

Instrumentation and equipment that has a possibility of being contaminated should be covered with plastic during shot if feasible. Following shot items will not be removed from Bombing Field area until either (a) items are brushed and checked out with wipe tests or (b) items are completely covered for shipping elsewhere.

John A. FEROLI

Radiation Protection Officer

COPY

ABERDEEN PROVING GROUND

DEVELOPMENT AND PROOF SERVICES

AMR 097.100 Vol 5, Book 320

ADMINISTRATIVE MANUAL

10 September 1959

SUBJECT: Standing Operating Procedure for Static Detonation of High Explosives for Test Purposes

RESCISSION: AMR 097.100 dated 6 February 1956 and all supplements and addenda thereto. For underwater detonation see Supplement No. 1 to this SOP.

- 1. PURPOSE: To establish safe operating procedures and assign responsibility for operations pertaining to static detonation of high explosive items employing electric initiation. Operations not adequately covered by this procedure must be included in an approved supplement to this SOP.
- 2. APPLICABILITY: This procedure applies to tests which require static detonation of high explosives such as bare charges, fillers in projectiles, and similar items where the initiating device is installed at the test site immediately prior to detonation. Assembly, disassembly and machining operations necessary to prepare an item for static detonation will be accomplished at Building M700A in accordance with applicable operating procedures. The only operation permitted at the test site is installation of the initiating device.

3. RESPONSIBILITY:

- a. Each individual assigned to the operation is individually responsible for personal, compliance with applicable provisions of this procedure.
- b. The unit or section chief of each supporting organization is responsible that each employee furnished the Project Engineer has been adequately trained in his duties and that prior to the test has been thoroughly briefed as to his duties and responsibilities and the hazards involved.
- c. The Project Engineer is responsible for overall supervision of the test and for application and enforcement of the SOP.

4. LIMITS:

- a. Personnel: Operating personnel are restricted to the number required to conduct the test in a safe and efficient manner. Transient personnel are restricted to those having an official interest in the test. At no time will the total number of personnel present exceed the capacity of the bombproof or shelter.
- b. Explosives: The amount of explosives permitted at the test site is restricted to the amount required to conduct the test safely and efficiently. Explosives quantities at the detonation site will not exceed the number of components required to make up one static charge.

ANIR 097.100

10 September 1959

5. RESTRICTIONS AND PRECAUTIONS:

- a. Smoking or the use of flame and spark producing devices is restricted to properly posted buildings or areas approved in writing by Director, Development and Proof Services.
- b. Initiating devices will be stored apart from all other explosives unless they are integral parts of the items involved. As separate items they will be retained in metal or metal lined containers until just prior to assembly to the test items.
- c. Handling and emplacement of explosive test items, including their priming and detonation, will be accomplished only by Explosives Operators or individuals who have successfully completed an accepted course of instruction in this type operation, and whose names are included on a list of authorized personnel, submitted and approved by the operating agency and retained on file in Range Control Section, Range Service Branch. (Where hereafter used, the term Explosives Operator is intended to include not only those bearing this title, but also those individuals who have successfully completed the required course and are authorized to perform in this capacity).
- d. No electrical firing circuit will be established within one quarter (1/4) mile of a radio transmitter or within one (1) mile of a radar unit unless operation of the latter units has definitely been suspended for duration of the static test.
- e. The handle of the blasting machine, or the one key thereto, will be retained in the personal possession of the individual assigned to accomplish the explosive portion of the mission.

6. PROTECTIVE EQUIPMENT:

- a. All operating personnel will wear safety toe shoes while performing their duties (non-conductive soles in the field, conductive sole when on conductive floors, mats and runners).
- b. The Explosives Operator, in addition to the shoes, will wear safety glasses or an approved type face shield during the priming operation.
- 7. STRATOSPHERE CHAMBER: This procedure applies to static tests of bare charges within the Stratosphere Chamber, with the following limits established for the weight of any explosives to be detonated at any one time. Weights in excess of those listed must have prior approval of Range Service Branch -

Sea Level - 30,000 $\frac{1}{2}$ lbs. 30,000 to 60,000 altitude - $2\frac{1}{2}$ lbs. 60,000 ft. altitude and above - 3 lbs.

The above values apply only when the charge is centrally located within the chamber. Any change to this condition must be covered by an approved supplement to this SOP.

AMR 097.100

10 September 1959

- 8. OPERATIONAL EQUIPMENT AND MATERIALS: The following equipment and materials are deemed necessary for safe and efficient operation and will be employed during the subject operation:
- a. DuPont Voltohmeter: To be used in testing firing wires for determination of continuity, resistance, and the presence of extraneous currents.
- b. Firing wire, twisted pairs, no smaller than 20 gauge, will be employed to establish the firing circuit. In exceptional cases, when twisted pairs are not adaptable to the particular test involved or are not available for use within a reasonable period of time, single strand wire in pairs may be employed providing prior approval is obtained thru the Safety Office, D&PS from Director of Safety.
- c. Grounding Rod: A copper grounding rod, 5/8" in diameter, will be driven adjacent to the firing point as means of grounding the firing wires as required at various steps in the operation. The rod will be driven to such a depth as to offer a resistance no greater than 25 ohms.
- d. Blasting Machine: A blasting machine of adequate type and voltage to initiate the detonation.
- e. Initiating Devices: Only the following initiators are acceptable under the provisions of this SOP:
 - (1) #6 Blasting Cap
 - (2) #8 Blasting Cap
- (3) Special Army Electric Blasting Cap, Type II, PETN (Engineers Special).
 - (4) M36 and M36Al Detonators.
- f. Two fire extinguishers, water type, will be available for combating incipient fires which may occur as a result of the test. In established static detonation areas, selected and approved by Range Control Section, Range Service Branch, the fire extinguishers will be placed, housed, and maintained by the APG Fire Department. In other areas, as for particular tests or to meet special requirements, fire extinguishers will be furnished for each mission by the units authorized to accomplish the mission. The foreman or worker in charge of such operation is responsible for reporting to Chief, Fire Department, at conclusion of each day's mission, the need for replenishment or replacement of any extinguisher which may have been depleted or made inoperative during the day's operation.
- g. A special carrying box, metal or metal lined, will be used for transportation and temporary storage of initiators at the test site.

AMR 097.100

10 September 1959

9. PROCEDURE:

- a. Drive the grounding rod immediately adjacent to the firing shelter and check for resistance.
- b. Twist the power ends of the firing wires together and attach to the grounding rod so as to make a clean and secure contact. Extend the wires to the point of detonation, attach to the DuPont-Voltohmeter and check for the presence of extraneous currents. If extraneous currents are encountered, no further steps will be taken until their source has been corrected or eliminated.
- c. Obtain one test item from the storage site or carrier and emplace in position.
- d. All personnel except the Explosives Operator will retire to cover in the bombproof or firing shelter.
- e. The Explosives Operator will obtain an initiating device (blasting cap or detonator), attach it to the firing wires and then insert the device into the test item. The device will be kept shorted until the moment of connecting it to the firing wires.
- f. The Explosives Operator will then retire to cover, disconnect the firing wires from the grounding rod and attach them to the DuPont Voltohmeter to determine continuity of the circuit.
- g. If continuity is not determined, the Explosives Operator will disconnect the voltohmeter, again short and ground the firing circuit to the grounding rod, and check the wires and connections to determine and correct the cause of failure.
- h. When continuity has been established, the Project Engineer will obtain clearance from the appropriate Control Tower to conduct the test.
- i. The Explosives Operator will then attach the firing wires to the blasting machine and, upon signal from the Project Engineer, detonate the charge.
- j. All personnel will remain under cover until danger from fragments is over.
- 10. MISFIRES: In event of a misfire, the Explosives Operator will make several attempts to fire the charge. If the charge still fails to detonate, the firing wires will be disconnected from the blasting machine, shorted and grounded, and a waiting period of thirty minutes under cover observed by all personnel. At conclusion of the waiting period, the Explosives Operator, alone, will leave shelter to determine and correct the cause of failure. All other personnel will remain under cover until the cause of failure has been corrected and the charge detonated.

AMR 097.100

10 September 1959

- 11. ELECTRICAL STORMS: Preparation for static detonation involving electrical firing circuits will not be made during the presence or approach of an electrical storm. Upon approach of a storm, the handling of munitions or explosives and the placement or check of firing circuits will be discontinued and personnel will remain under cover. However, in such cases where preparations have been completed prior to an electrical storm approaching the area, the detonation may be accomplished providing there is no misfire.
- 12. A copy of this SOP and applicable changes or supplements thereto will be posted at the firing point throughout the operation.

APPROVED:

ROBERT U. WALNES

Major, Ord Corps Executive Officer

RECOMMENDING APPROVAL:

E. L. BUDNICK

Chief Range Service Branch

J. A. TOLEN

Acting Deputy Director for Supporting Services

H. A. NOBLE

Deputy Director for Engineering Testing

WILLIAM C. KLEIN, JR

Lt. Col, Ord Corps

Acting Director, Dev & Proof Services

Jud X. Slartman for PAUL V. KING

Director of Safety

ABERDEEN PROVING GROUND

Development and Proof Services

ADMINISTRATIVE MANUAL

Supplement No. 4 AMR 097.100 Vol 5, Book 320 25 October 1962

STANDING OPERATING PROCEDURE STATIC DETONATION OF HIGH EXPLOSIVES FOR TEST PURPOSES

RESCISSION: AMR 097.100, (Supplement No. 4, dated 31 July 1961)

REFERENCES: Not Applicable

- 1. PURPOSE: To extend coverage of the basic SOP to include static detonation of ammunition containing D-38 (including depleted uranium, tuballoy or U238) and to further example the static detonation of shaped charges against tuballoy plate. All provisions of the basic SOP apply except where specifically exempted or modified by this supplement.
- 2. APPLICABILITY: This supplement covers all calibers of ammunition and all standard shaped charges when employed against tuballoy plate.
- 3. RESPONSIBILITY: In addition to those responsibilities cited in the basic procedure, the following will also apply. The D&PS Radiological Safety Officer, or his designated representative, will:
- a. Instruct all personnel connected with the test of the radiation hazards involved and precautions to be observed.
- b. Issue and collect all film badges and dosimeters daily, maintaining a current log of all personnel exposures.
- c. Ensure that ultra-filter respirators are available to personnel actively working within the area and are worn by them when required by conditions existing at the time of their engagement in the operation.
- d. Ensure that all personnel entering the impact area wear protective coveralls, gloves, and boots, and that these garments are not removed from the area except when:
- (1) Monitoring has definitely revealed that they are free of contamination or
- (2) They are being transported in suitable closed containers to Edgewood Arsenal for decontamination or disposal.

25 October 1962

- e. Be responsible for maintaining an up-to-date log of the location and quantity of D-38 within the test area for purposes of later removal or destruction.
- f. Monitor all personnel and equipment prior to their vacating the test area, or any other area where there is reason to believe D-38 has been deposited, except when the Radiological Safety Committee, after review of the log, has determined that the contamination is negligible. Monitoring may be discontinued when records indicate that such a condition exists.
- g. Institute decontamination procedures and supervise collection of all surface radioactive material for delivery to Edgewood Arsenal for disposal. Also to supervise scraping of any surface area containing uncollectable radioactive material and to arrange for the covering of this material with earth, posting the area and logging its location. This work must be accomplished and approval of the Radiological Safety Committee obtained prior to opening the area to general access, to ensure that no contamination may be carried or spread from the area.
- 4. LOCATION OF OPERATIONS: All D&PS test areas may be considered as suitable for the test of D-38 ammunition providing all provisions of this procedure are observed. However, selection of test areas should be restricted as far as possible and limited to those receptive to monitoring and bulldozing should such requirements arise. Normally tests will be conducted on the contaminated area of the New Bombing Field except where test requirements make it impractical or uneconomical to do so, and after command approval has been obtained. The new Bombing Field, until otherwise indicated by the Radiological Safety Committee, will be considered mildly contaminated but presenting no health hazard. The area will be kept posted and identified as containing depleted uranium and personnel entering the area will wear approved foot coverings.
 - 5. PERSONNEL LIMITS: Same as in basic SOP.
 - 6. MATERIAL LIMITS: Same as in basic SOP.

7. SAFETY REQUIREMENTS:

a. Physical examinations will be given as prescribed by APG AMR 3-385-8, to personnel expected to be assigned to regular duty in radiation exposure areas. The decision as to whether or not a physical examination is required will be made by the D&PS Radiological Safety Officer after consultation with the chairman of the Radiological Safety Committee and Post Surgeon.

25 October 1962

- b. Eating, drinking and smoking are prohibited within the test areas. Furthermore, neither food nor tobacco will be carried into these areas.
- c. Storage areas containing 5 millicuries or more of D-38 will be conspicuously posted with applicable radiation symbols.
- d. Personnel shelters should be located upwind from the detonation site.
- e. At discretion of the Radiological Officer the detonation site and immediate area will be watered down prior to the detonation so as to reduce dust clouds as much as possible.
- f. Following a detonation, personnel will not enter the area until after a waiting period of at least fifteen (15) minutes or until the dust has settled, whichever period is greater. Monitoring of the air will be accomplished before entry to ensure that such entry is safe.
- g. Upon completion of a program, the D&PS Radiological Safety Officer, based on accrued data, will request a judgement from the Radiological Safety Committee as to the subsequent control required in the test area and the decontamination procedures to be employed prior to returning the area to normal usage.
- h. Personnel will not physically handle any D-38 projectiles or fragments of tuballoy for more than six (6) hours in any seven-day period without prior approval of the D&PS Radiological Safety Officer.
- i. Washing facilities will be provided and, prior to eating, drinking or smoking, personnel will remove protective clothing and thoroughly wash face and hands.

8. PERSONNEL PROTECTIVE CLOTHING:

- a. Foot coverings, of rubber or plastic, will be worn by all personnel entering an area where D-38 ammunition has been detonated, except when the Radiological Safety Committee has previously determined that the amount of contamination is so negligible that their use is not necessary.
- b. Gloves, rubber or leather, will be worn by all personnel handling known or suspected sources of radiation (projectiles, fragments, or recovery media).
- c. Respirators with ultra-type filters will be kept available and donned immediately by personnel whenever a dust cloud resulting from a detonation may be blown in their direction. Respirators will be removed at the discretion of the Radiological Safety Officer.

25,0ctober 1962

- 9. TOOLS: Not applicable.
- 10. PROTECTIVE EQUIPMENT: All personnel expected to handle or to come into contact with any projectiles or plate targets, as outlined in Paragraph 1 above, or fragments thereof, will wear film badges. Pocket dosimeters will also be carried at discretion of the D&PS Radiological Safety Officer.
 - 11. OPERATING EQUIPMENT: Same as in basic SOP.
 - 12. PROCEDURE: Same as in basic SOP.
 - 13. MISFIRES: Same as in basic SOP.
 - 14. ELECTRICAL STORMS: Same as in basic SOP.
- 15. A copy of this supplement and one of the basic procedure must be posted at each test site during actual operations.

25 October 1962

RECOMMENDING APPROVAL:

APPROVED:

WILLIAM V. WARREN
Chairman, Radiological
Safety Committee

C. L. SIMPSON Colonel, Ord Corps Executive Officer

E J Buduck

E. L. BUDNICK

Chief, Range Service Branch

H. A. NOBLE

Ass't Dep Dir f/Engineering Testing

J. A. HOLLIN

Actg Dep Dir I/Supporting Services

EUGENE C. BARBERO

Colonel, Ord Corps Director, D&PS

H. P. THUNE

Director of Safety

U. S. ARMY DEVELOPMENT AND PROOF SERVICES ABERDEEN PROVING GROUND MARYLAND

D&PS PROCEDURE NO. 097.265

5 May 1965

STANDING OPERATING PROCEDURE EVALUATION OF FRAGMENTS OBTAINED FROM THE EXPERIMENTAL DESTRUCTION OF A SIMULATED ATOMIC REACTOR

RESCISSION: None

REFERENCES: APGR 385-8

- 1. PURPOSE: To establish safe procedures to be followed when handling depleted or natural uranium fragments obtained as a result of the experimental destruction of a simulated atomic reactor.
- 2. APPLICABILITY: The provisions of this procedure pertain to all personnel handling radioactive material obtained as a result of the experimental destruction of a simulated atomic reactor.

3. RESPONSIBILITY:

- a. All operating personnel will be responsible for conforming to the provisions of this SOP and the regulations established by the AEC and local authorities for the safe use of ionizing radiation.
- b. The appropriate Area Radiation Protection Officer is responsible for the safety of operating personnel and instructing them as to the hazards involved. He or his designated representative will be present during all operations in a Radiation Area.
- 4. LOCATION OF OPERATIONS: All laboratory operations involving radioactive materials will be carried out in Building 362 or at another site having the prior approval of the Radiation Protection Officer.
- 5. PERSONNEL LIMITS: The number of personnel in the operations area will not exceed that necessary to accomplish the mission safely and efficiently.
- 6. MATERIAL LIMITS: 100 Kg depleted or natural uranium fuel rods or the equivalent quantity of fuel rod fragments.

7. SAFETY REQUIREMENTS:

a. Radiation Signs

DP 097.265 5 May 1965

(1) The perimeter of any area in which a person could receive a radiation dose in excess of 2 mrem in one hour or 60 mrem in five consecutive days will be posted with a "Radiation Area" sign.

- (2) Any area in which the concentration of uranium in the air may exceed lxl0⁻¹¹ microcuries per milliliter will be posted with a standard "Airborne Radioactivity Area" sign.
- (3) The entrances to all areas containing an amount of uranium greater than 500 microcuries shall be posted with standard "Radioactive Material" signs.

b. Dosimetry

Film badges and direct reading pocket dosimeters will be worn by all personnel in a Radiation Area. A daily record of all pocket dosimeter readings will be kept.

c. Physical examinations as prescribed by APGR 385-8 will be given to all personnel expected to be assigned to regular duty in a Radiation Area.

d. Surveys

- (1) Sufficient radiological surveys will be made of the operations area to insure that all Radiation Areas are properly marked.
- (2) Periodic smear surveys of the operations area will be made to detect any radiological contamination as required by the RPO.
- (3) Periodic air samples will be taken in the operations area to determine the concentration of airborne radioactive materials, as required by the RPO.
- e. No individual will be allowed to receive a radiation dose greater than 100 mrem/wk with no daily dose being in excess of 50 mrem.
- f. No smoking or partaking of liquids or food will be permitted in the operations area or in any area suspected of contamination.
- g. Washing facilities will be provided for personnel. Prior to eating, drinking, or smoking, each person will remove his protective clothing and thoroughly wash his face and hands.
- h. Protective coverings will be used on laboratory work surfaces whenever possible.

8. PERSONNEL PROTECTIVE CLOTHING:

- a. Disposable gloves will be worn by all personnel when handling known or suspected sources of radiation.
- b. Coveralls or laboratory coats will be worn by all personnel in the operations area.
- c. Foot or shoe coverings of rubber or plastic will be worn by all personnel in the operations area unless it has been previously determined that the amount of contamination is so negligible that their use is not necessary.
- d. Respirators with ultra-type filters will be worn by all personnel in the operations area whenever there is the possibility of airborne contamination.
 - 9. TOOLS: N/A
 - 10. PROTECTIVE EQUIPMENT: N/A
 - 11. OPERATING EQUIPMENT:
 - a. Film badges
 - b. Direct reading dosimeters
 - c. High and low intensity survey meters
 - d. Polyethylene film and bags
 - 12. PROCEDURE: N/A
- 13. ELECTRICAL STORMS: Operations will be halted during electrical storms if the operations site is in the field.

14. DISPOSAL OF CONTAMINATED WASTES:

- a. Solid contaminated wastes will be stored in suitably marked sealed waste containers and disposed of in accordance with the provisions of APGR 385-8.
- b. All liquids suspected of contamination will be stored in a suitably marked sealed container. Prior to its disposition, any liquid so obtained will be analyzed to determine its uranium content. If the concentration of uranium is less than 2×10^{-5} microcuries/ml, the liquid will be disposed of as if it were not contaminated. If the concentration is greater than 2×10^{-5} microcuries/ml it will be disposed of in accordance with the provisions of APGR 385-8.

DP 097.265

5 May 1965

15. A copy of this SOP will be posted at the site of operations.

SUBMITTED BY:

R. L. HUDDLESTON

Chief, Materials Evaluation Sect.

RECOMMENDING APPROVAL:

adielian VI Was WILLIAM V. WARREN

Chairman, Radiological

Safety Committee

Chief, Range Engineering Branch

APPROVED:

EUGENE C. BARBERO Colonel, Ord Corps

Director, D&PS

H. P. THUNE

Director of Safety

DEVELOPMENT AND PROOF SERVICES ABERDEEN PROVING GROUND, MARYLAND

D-38: ITS PROPERTIES AND ITS CONTROLS

Terminology - D-38, as the Army chooses to call it, is a uranium by-product of the atomic energy industry. It is more commonly referred to in the technical literature as depleted uranium, but it is sometimes called by its old code name of tuballoy or depleted tuballoy. It is often simply designated U-238 since it consists of over 99.7% of the U-238 isotope.

Uses - The greatest usage of D-38 is in connection with applications that require an extremely high-density material. Thus D-38 may be used in projectiles to influence ballistic characteristics. D-38 has a density of 18.7 grams/cm3 as compared to 11.3 grams/cm3 for lead. For most applications, tungsten - 19.3 grams/cm3 - would serve just as well but the price of tungsten is prohibitive. D-38 may also be used to simulate enriched uranium (over 0.7% U-235) or plutonium.

Processing Methods - Refined natural uranium consists of three isotopes in the following proportions: 99.3% U-238, 0.7% U-235 and a trace of U-234. The refined natural uranium undergoes a series of processes wherein most of the U-235, which is the valuable isotope that can sustain a chain reaction, is progressively separated from the U-238. The remaining by-product, depleted of most of its U-235, is D-38; it contains only 0.2 to 0.3% U-235 and for practical purposes may be considered all U-238. Often, in order to add strength and corrosion resistance, the D-38 is alloyed with molybdenum up to about 10%, as it is in the Davy Crockett 20-mm spotter.

Radioactivity - Both U-235 and U-238, and so therefore D-38, are radioactive; that is, they emit radiation spontaneously and continuously. However, uranium isotopes are only mildly radioactive being some of the least radioactive of all radioactive isotopes on the basis of weight. D-38 emits alpha, beta and gamma radiations. Painting the D-38 is sufficient to suppress all of the alpha radiation; a metal jacket, e.g., copper, over the D-38 is enough to suppress both beta and alpha. Though certain restrictions are imposed because of the radioactivity, and cartons containing D-38 must be marked with radiation symbols, the radiation hazard from D-38 is considered minimal. Greater details on the radioactivity of D-38 are contained in Appendix A.

Contamination Potential - Contamination as used in the radiological sense has a somewhat different meaning than it does in the ordinary sense. It means any detectable amount of radioactivity above that of the background (cosmic rays, radioactive minerals, etc.). Though a laboratory or an area may be considered radioactively contaminated, it may not present any health hazard whatsoever. For example, any detectable amount of D-38 that is deposited on a D&PS range may result in the range being considered contaminated but

not a health hazard. This type of contamination is of concern only in that it should not be tracked around the Proving Ground into areas where it might ultimately find its way into laboratories where very low level radiation measurements may be undertaken. So far, no tracking of uranium out of a range has been detected.

Toxicity - D-38 is chemically toxic to the human body if taken internally in suffficient quantity. It will act much like lead which is capable of causing lead poisoning. Precautions to avoid inhaling or ingesting dust from D-38 are primarily aimed at protecting against the toxicity of uranium rather than its radioactivity.

Pyrophoric Properties - Slivers, dust or chips of D-38 can readily be ignited. Thus, precautions against uranium's pyrophoric properties must be taken during any machining operations. Some installations actually burn machine chips under controlled conditions to forestall any possibility of their igniting under unfavorable conditions. Alloying the D-38 with molybdenum will not permit a reduction in the precautions necessary to guard against the pyrophoric tendencies of fine particles. Slugs of D-38, however, are not considered a pyrophoric problem in that D-38 is very difficult to ignite in this form.

Regulations - Because D-38 is radioactive its handling automatically falls under the jurisdiction of the APG Radiological Safety Committee (on which D&PS has two members), the Army Surgeon General and the Atomic Energy Commission. With all of these regulatory agencies there are bound to be regulations. The D&PS Radiological Safety Officer is responsible for knowing these regulations and must be contacted whenever a program is going to involve D-38. He is permitted a certain amount of flexibility in rendering judgments in radio-logical matters. There is also a requirement that no operation with D-38 will be undertaken without an SOP. The three SOP's on D-38 that D&PS has in effect should cover most operations; these are: AMR 097.67, Suppl. No. 3 "SOP - Firing of Weapons Within D&PS (Ground to Ground and Ground to Air"), AMR 097.23, Suppl. No. 4, "SOP For Field Recovery of Test Ammunition", and AMR 097.100, Suppl. No. 4, "SOP - Static Detonation of High Explosives for Test Purposes". The project engineer should follow the applicable SOP.

The regulations and AMR's reflect an extremely cautious attitude. They try, in essence, to accomplish the following:

- a. Minimize Inhalation of D-38 Dust This is principally for toxic reasons. Thus, respirators must be available and a 15-minute waiting period is currently required before entry into a test area is permitted following a detonation. Regulations concede that a small amount of inhaled dust is permissible (reference Appendix A).
- b. Minimize Ingestion of D-38 Dust This, too, is principally for toxic reasons. Thus, smoking and eating are prohibited and gloves are worn to keep any D-38 from rubbing off on hands that may later be used

for eating. Government regulations permit the ingestion of probably more D-38 than anyone in D&PS could reasonably ever expect to ingest (reference Appendix A).

- c. Prevent the Spread of Contamination Monitoring of clothing, equipment and range areas is required to determine if any D-38 is being inadvertently carried out, or has the possibility of being carried out, of the range area. Experience has shown that the potential for spreading D-38 contamination is not very great and that such monitoring will usually produce negative results, but it should be performed nevertheless. The D&PS Radiological Safety Officer is familiar with the means for handling and disposing of contaminated clothing and test materials, for example, celotex. In the event that contamination should someday become a problem, ranges for firing projectiles containing D-38 are limited to as few as is practical and economical, and an inventory is maintained of the amount of D-38 deposited in each range. Significant contamination of a range may require bulldozing or posting of signs, but usually leaching of the dense uranium into the soil will dissipate the contamination over a period of time. The SOP's make provision for returning ranges to normal usage, that is, no foot coverings, monitoring, film badges, etc., required.
- d. Provide Assurance of Insignificant Radiation Exposure Film badges, which provide an official record of radiation exposure (or lack of exposure) of individuals, are normally issued to personnel handling D-38. Because of the low level of radiation from D-38, it is extremely unlikely that the film badges will register any radiation exposure whatsoever. The radiation from the D-38 is also responsible for limiting the time personnel may hold D-38 in their hands to 6 hours per week. This is sufficient time to cause no operational inconveniences in D&PS. The 6-hour limitation is conservatively based upon permissible exposure to each bare hand per week from uanlloyed natural uranium (reference Appendix A).

Modultoring Techniques - A Geiger-Mueller counter, sometimes called a GM mater or a Geiger counter, is usually used for monitoring D-38. It is a very sensitive instrument as can be ascertained by the considerable reading it will register when placed next to a slug of D-38 or a watch with luminous hands. When the metal shield of the probe of the GM meter is turned aside to expose the Geiger tube, the meter registers both gamma and beta. With the shield in place in front of the tube, only gamma is registered. Monitoring should be performed with the shield open and the probe held close to the object that is being monitored. A significant jump in intensity will indicate contamination. Contamination can then easily be pinpointed and the radioactive material collected for disposal in accordance with instructions from the Radiological Safety Officer.

Summary: D-38 is chemically toxic, as are most heavy metals, and mildly radioactive. Because of these two properties D&PS is obligated to abide by certain regulations. These regulations should, however, present no more than minor inconveniences to D&PS operations. Considering the form

in which D-38 will be employed in D&PS there is no hazard to personnel except where there is the most flagrant and irresponsible disregard for reason.

JOHN A. FEROLI

Special Assistant to Deputy Director f/Engr Testing

5 February 1963

APPENDIX A

Selected Data Pertaining to the

Radioactivity of D-38

The table below shows how extremely low are the radioactivity ratings of U-238 and U-235 on the basis of weight in comparison to other well-known radioisotopes:

Radioisotope	Specific Activity in Microcuries/Gram	
บ-238	0.34	
U- 235	2.1	
Radium - 226	1.0 x 10 ⁶	
Cobalt - 60	1.1 x 10 ⁹	

Though very weak in the above comparison, D-38 (99.7 \ddagger % U-238) is definitely radioactive and, together with its daughter products, emits the following radiations:

Radiation from D-38	Range in Air	Can be Stopped by
Gamma rays	Hundreds of feeta	An inch or two of steel
Beta particles	Up to 20 feet	Thin sheet of metal
Alpha particles	About 1 inch	Skin or sheet of paper

The range and penetrating ability of gamma rays are dependent upon their energy levels. Since practically all of the gamma emissions from D-38 have low energies, the figures given here may, for all practical purposes, be considered adequate. However, there are in the atomic field other radioisotopes which emit high-energy gamma rays. In such cases the proper notations would be "several miles" and "many inches of steel."

The radiations from a slug of D-38 are so complex as to almost defy analysis. Part of this complexity is due to such things as bremsstrahlung, photoelectric effect, and self absorption; and part is due to the formation of radioactive decay products - daughters - each of which (by the time the D-38 becomes part of a finished product and equilibrium has been reached) decays atom for atom with the parent isotope. Though theoretically the refining and separation processes separate the U-238 from all its daughters, radioactive decay starts the daughters forming again immediately. This situation is depicted below:

Progeny	Radioisotope	Type Emissions	Half Life
Parent	u- 238	Alpha, Gamma ^b	4.5 x 10 ⁹ years
Daughter	Thorium - 2314	Beta, Gamma	24 days
Daughter	Protactinium - 234	Beta, Gamma	1.2 minutes
Daughter	Uranium - 234	(see below)	2.5 x 10 ⁵ years

bThis gamma is of very low energy and occurs only one-fifth as often as the alpha.

Because of the long half life of U-234 and the small amount of this isotope that will be built up, the process may be considered ended here. (This is not the case with uranium mining operations, however, because the uranium in the earth has been decaying since the beginning of the universe, and a string of twelve daughter products has had time to develop, the most hazardous being radium with its high-energy gamma emissions and radon which is a radioactive gas.)

Maximum permissible concentration (MPC's) of U-238 for continuous occupational exposure have been established by the National Committee on Radiation Protection. The limiting amounts for 168 hours per week of exposure are:

^cThese figures are actually based upon chemical toxicity, which is the limiting criterion for U-238, rather than radioactivity.

In terms of the maximum weight of U-238 that an employee is permitted to take internally each week, this amounts to:

Permissible ingestion of U-238 - 323 grains (21 grams) per week

Permissible inhalation of U-238 - 0.2 grains per week

Investigators have determined that a slug of unalloyed natural uranium emits 239 millireps/hour of beta radiation at its surface. In this case a rep may be considered about the same as a rem; therefore, natural uranium will produce a dose of slightly over 250 millirems/hour when the beta is combined with the gamma. Regulations permit exposure of 75,000 millirems per year to hands and feet. Based upon these values, it was determined that the permissible time that D-38 may be held in the hands is about 6 hours per week on the average.

Development and Proof Services

-Supplement No. 3 AMR 097.67 Vol 5, Book 320 9 January 1963

ADMINISTRATIVE MANUAL

STANDING OPERATING PROCEDURE FIRING OF WEAPONS WITHIN D&PS (GROUND TO GROUND & GROUND TO AIR)

RECISSIONS: AMR 097.67 (Supplement No. 3, dated 12 June 1961 and all changes thereto.

REFERENCES: AMR 3-385-8

- 1. PURPOSE: To extend coverage of the basic SOP to include firing of projectiles containing D-38 (including depleted uranium, tuballoy, or U-238) and the firing of high explosives against depleted uranium targets.
- 2. APPLICABILITY: This supplement covers all calibers of ammunition and includes both inert and live-loaded projectiles. All provisions of the basic procedure apply except where specifically exempted or modified by this supplement.
- 3. <u>RESPONSIBILITY</u>: In addition to those responsibilities cited in the basic procedure, the following will also apply. The D&PS Radiological Safety Officer, or his designated representative, will:
- a. Instruct all personnel connected with the test of the radiation hazards involved and the precautions to be observed.
- b. Issue and collect all film badges and dosimeters daily, maintaining a current log of all personnel exposures.
- c. Ensure that ultra-filter respirators are available to personnel actively working within the area and are worn by them when required by conditions existing at the time of their engagement in the operation.
- d. Ensure that all personnel entering the impact area wear protective coveralls, gloves and boots, and that these garments are not removed from the area except when:
- (1) Monitoring has definitely revealed that they are free of contamination or
- (2) They are being transported in suitable closed containers to Edgewood Arsenal for decontamination or disposal (AMR 3-385-8).
- e. Be responsible for the area location of all impacts and maintaining an up-to-date log of the location and quantity of D-38 within the impact area for purposes of later removal or destruction.
- f. Monitor all personnel and equipment prior to their vacating the impact area, or any other area where there is reason to believe D-38 has been

Supplement No. 3 AMR 097.67

9 January 1963

deposited, except when the Radiological Safety Committee, after review of the log, has determined that the contamination is negligible. Monitoring may be discontinued when records indicate that such a condition exists.

- g. Institute decontamination procedures and supervise collection of all surface radioactive material for delivery to Edgewood Arsenal for disposal in accordance with AMR 3-385-8. Also to supervise scraping of any surface area containing uncollectable radioactive material and to arrange for the covering of this material with earth, posting the area and logging its location. This work must be accomplished and approval of the Radiological Safety Committee obtained prior to opening the area to general access, to ensure that no contamination may be carried or spread from the area.
- 4. LOCATION OF OPERATIONS: All D&PS impact areas may be considered as suitable for the impacting of D-38 projectiles providing all provisions of this procedure are observed. However, selection of impact area should be restricted as far as possible and limited to those receptive to monitoring and bulldozing should such requirements arise. Normally, the firings will be conducted so as to impact the projectiles on the contaminated area of the New Bombing Field except where test requirements make it impractical or uneconomical to do so, and after command approval has been obtained. A portion of the New Bombing Field has been recorded as containing buried D-38 deposited during test operations. If the D-38 were exposed, the area would be considered mildly contaminated but presenting no health hazard. Whenever recovery operations or shell detonations have the potential of causing a substantial disturbance of the soil sufficient to penetrate the overburden, monitoring will be conducted as deemed appropriate by the Radiological Safety Officer.
 - 5. PERSONNEL LIMITS: Same as in basic procedure.
 - 6. MATERIAL LIMITS: Same as in basic procedure.
 - 7. SAFETY REQUIREMENTS:
- a. Physical examinations will be given, as prescribed by APG AMR 3-385-8, to personnel expected to be assigned to regular duty in radiation exposure areas. The decision as to whether or not a physical examination is required will be made by the D&PS Radiological Safety Officer after consultation with the chairman of the Radiological Safety Committee and Post Surgeon.
- b. Fating, drinking and smoking are prohibited at the firing site and within the impact areas. Furthermore, neither food nor tobacco will be carried into these areas.
- c. Storage areas containing 5 millicuries or more of D-38 will be conspicuously posted with applicable radiation symbols.
- d. Firing will not be conducted when the wind direction is such that a dust cloud resulting from a detonation can be expected to be blown toward personnel.

Supplement No. 3 AMR 097.67

- e. Following a detonation, either over or upon an impact area, personnel will not enter the area until after a waiting period of at least fifteen (15) minutes or until the dust has settled, whichever period is greater. Monitoring of the air will be accomplished before entry to ensure that such entry is safe.
- f. Upon completion of a program, the D&PS Radiological Safety Officer, based on accrued data, will request a judgement from the Radiological Safety Committee as to the subsequent control required in the impact area and the decontamination procedures to be employed prior to returning the area to normal usage. Plate, plate butts and immediate surrounding area will be decontaminated at completion of each test and restored to service in their former condition.
- g. Personnel will not physically handle any D-38 projectiles or fragments of tuballoy for more than six (6) hours in any seven-day period without prior approval of the D&PS Radiological Safety Officer.
- h. All personnel at the firing site must be under adequate cover when a round is fired as prescribed in the basic SOP. Cover must also provide shelter from any radioactive contamination as may be received from airborne particles of D-38 resulting from malfunction of the weapon or ammunition at the time of firing.
- i. The line of fire will be established so as to reduce as far as possible any danger of contamination of personnel or facilities from an airburst occurring at any point along the trajectory. No D-38 projectile will be fired on a line that might result in a water impact.
- j. A layer of absorbent material will be spread at the base of the plate butt, at the discretion of the Radiological Safety Officer. Air samples will be taken during firing. Approval of the Radiological Safety Officer will be required before resuming normal test operations in the affected area.
- k. Washing facilities will be provided for personnel and, prior to eating, drinking or smoking, each person will remove protective clothing and thoroughly wash his face and hands.

8. PERSONNEL PROTECTIVE CLOTHING:

All operational personnel required to work on or near the plate and butts during conduct of the test will wear respirators, coveralls and rubber boots. Personnel so protected may perform their assigned duties after each round fired upon obtaining routine clearance from Range Control Tower. The waiting period prescribed in paragraph 7 f above need not be observed in this operation when personnel are protected as prescribed.

- b. Foot coverings, of rubber or plastic, will be worn by all personnel entering an area where D-38 projectiles have impacted, except when the Radiological Safety Committee has previously determined that the amount of contamination is so negligible that their use is not necessary.
- c. Gloves, rubber or leather, will be worn by all personnel handling known or suspected sources of radiation (projectiles, fragments, or recovery media).

Supplement No. 3
AMR 097.67

9 January 1963

- d. Respirators with ultra-type filters will be kept available and downed immediately by personnel upon escurrence of a premature or whenever a dust cloud resulting from detonation of a projectile may be blown in their direction. Respirators will be removed at discretion of the Radiological Safety Officer.
 - 9. TOOLS: Not Applicable.
- 10. PROTECTIVE EQUIPMENT: All personnel expected to handle or come into contact with any projectiles or plate targets as outlined in Paragraph No. 1 above, or fragments thereof, will wear film badges. Focket dosimeters will also be carried at discretion of the D&PS Radiological Safety Officer.
 - 11. OPERATING EQUIPMENT: Not Applicable.
 - 12. PROCEDURE: Not Applicable.
 - 13. ELECTRICAL STORMS: Not Applicable.
- 14. A copy of the basic SOP and one of this supplement must be posted at each test site during actual operations.

9 January 1963

Supplement No. 3 AMR 097.67

Shallf. Cal.

APPROVED:

for C. L. SIMPSON

Colonel, Ord Corps

Executive Officer

SUBMITTED BY:

Chief, Artillery Division

RECOMMENDING APPROVAL:

WILLIAM V. WARREN

Chairman,

Radiological Safety Committee

1. 1. In the growing

Induck

Chief, Range Service Branch

R. P. WHIP

Actg Dep Dir 1/Supporting Services

ROBERT AMUEL
Lt Col. Ord Corps
Deputy Director f/Engineering Testing

EUGENE C. BARBERO Colonel, Ord Corps

Director, IAPS

H. P. THUNE

Director of Safety

185-186

APPENDIX E

Trajectory Tabulations

NOTES:

FR = Arbitrary sequence number

TIME = Elapsed time from zero time

X = X-component of position

Y = Y-component of position

ALT = Mean-sea-level altitude

VAX = X-component of velocity with respect to origin

VAY = Y-component of velocity with respect to origin

VZ = Z-component of velocity with respect to origin

VA = Total velocity with respect to origin

M = Mach number

Q = Dynamic pressure

T.A. = Angle between vertical velocity vector and total velocity vector VA

WX = X-component of wind velocity

WY = Y-component of wind velocity

 S_{\bullet} S_{\bullet} = Speed of sound

RHO = Air density

PA = Ambient pressure

TABLE E-1

ATA SL	A SUMMARY TEST	TEST SKIN	+		d ()	OPTICL D	DATA	ã	RUN NO 1	SNO	UNSMOOTHED TRAJECTORY	TRAJECT	, Y a			
LANE	DATA	FRAME NO.	-00000	86668	UNIT	UNIT DATA	FRAME	CZ	40000-79999	6666						
œ	Σ	>	>	ALT.	× 4 >	\ \ \	^	>	Σ	c	T.A.	×	3	٥. ۶	OH &	A G
1000	0.030		-	N			i					0.0	0	1116,44 0		26'62
200	0.040		4	100	-192	373	. 26	430 g	.3851	219,89	12.437	c. c	0.0		.0765	26,62
5000	n.05n		90	4	-202	393	62		0,4056	243.96	12.396	c . c	•			26.62
0004	0.060		20	ŝ	-202	394	00		.4065	245.07	12. KB3	u . c	٠,			26,62
2000	0.070		90	9	-190	371	80		.3804	214,53	10.924	c.	٠.			29.91
9000	0.080		30	7	-182	354		405	.3627	195,19	10.880	0.0	0.0			20.01
7000	060.0		33	7	-171	333			0.3412	172,56	11.010	6.0	0.1	_		29.01
8000	n.10n		3.7	œ	-166	323				163,86	12.051	c. c	0.1	_		29,91
6000	0.110		0.4	6	-163	317			327	158.53	12.38K	0.0	0.1	_		29,91
0 0 0 0 1	0.120		43	10	-16R	327		375 (335	167.06	11.134	0.0	0.1			29.91
0011	0.130		46	10	-173	336		_	0.3443	175.74	10.245	٥.	0,1			29,91
0.12	0.140		5.0	1	-176	343		_	1,3516	183,31	10.473	0.0	0.1			29,91
0113	0.150		5.3	12	-171	334			0.3424	173.80	10.050	0.0	0,1			29,91
9100	0.160		r.	13	-162	316	76	363 0	.3256	157,12	71.002	0.0	0.1	_		29,91
6100	0.170		99	M C 9 -1	-162	315			0.3246	156.19	11.000	0.0		-		29,91
0016	n.18n		65	4.6	-158	308		356	.319n	150.84	13.646	c. c	0.1	c		20,91
10017	n.19r		99	15	-164	320		369	.3307	152,06	12.825	0.0	0.1			20.01
10018	200		2	16	-171	333			0.3427	174.04	11.762	1.1	0.1	0		29.90
91001	0.210		7.2	16	-170	331			•	169.92	10.12A	1.0	0.1			29,90
0 2 0 0 1	0.222		75	17	-16B	326			0.3333	164.61	9.381	1.0	0,1			29.90
1000	0.230		6.2	17	-15B	308			0.3156	~	10.277	.1		Œ.		29,90
20001	0.240		α. V.	19	-150	310			0.3184		11.223	1.1		a a	4	29.90
10023	0.250		r r	19	-163	318		_	•	159.82	12.701	1.0		5,38	4	29.90
4000	0.260		8C 87	2.0	-165	322		٥.	0.3333	164.66	13.442	0.1		37	4	29.90
10025	0.270		91	21	-162	315		c	0.3311	162.42	16.738	0.1		5,37	4	29,90
92001	0.280		95	22	+153	298		^	0.3152	147.26	17.827	0.1		5,37	4	06.60
10027	n.29n		16	23	-148	288		33B	0.302R	135.86	16,403	0.1		6,34	4	29.90
10028	0.300		109	40	-146	283		۲.	0.2957	129.59	15,210	1.0		98.36	4	20.00
60001	0.310		103	25	-147	286	7.5	320	. 2947	128.67	10.48A	0.1		6,36	4	29,90
40030	n.32n	-54	105	26	-148	287		331	. 2964	130.20	12.810	4.0	0.5	16.35	4	29.89
40031	0.330		300	96									٥.	1116,35 0	.0764	59.89
65000	0 440															

DATAS	SUMMARY TEST SKIN	TEST S	X I V	~				DATA	ã.	PIN NO 1	SNI	UNSMOOTHED TRAJECTORY	TRAJECT	RY.			
PLANE	DATA	FRAME	. ON	-00000	39999	UNIT	DATA	FRAME	NO.	40/000-79999	666						
22 14.	H H	×		>	ALT.	×××	VAY	۸ ۲	۸ ۷	Σ	c	T.A.	×		8.8	OH &	ď
40001	0.120		20	-23	10								c. c	0.1 1	1116,41	0.0765	29,91
40002			-31	40-	10	IC.	-121	81		190	M)	22.410	D. C		116,41	•	29,91
40003			.33	-25	11	-157	-138	75	222	0.1992	58.83	4	o .			920	29.91
40004			.34	-27	12	-166	-132	76		202	65.09	19.749	c. c		116.40	276	29.91
40005			.36	128	12	-170	-130	7.8		P. 2038	61.60	10.070	0.0		116.40	07	29,91
40006			38	66-	13	-174	-117	8		1.2018	69.37	21.419	0.0		116.40	976	29.91
40017			.39	-30	14	-167	-116	8.		0.1972	57.62	22.544	Ü. C		4	076	29,91
40018			.41	-31	15	-161	-127	72		.1946	56.10	19.308	0.1		m	0.7	29.91
40004			42	-33	16	-154	-128	7.0		.1899	53.47	19.341	0.1		S	0,7764	29,90
40010			44	-34	16	140	-132	65		0.1867	51,64	18.194	0.1		6.3	7	29.90
40011			-45	-35	17	-145	-126	67	203 0	1,1817	48.03	19.220	0.1		116,3	0.1764	29,96
40012			.47	-37	18	-145	-128	69		1.1845	50.43	19.700	0.1		116.	0	29.90
40013			8.4.9	80 E	1,8	-146	-129	67		0.1847	50.58	α	1.1		116,3	07	29.90
40014			.50	68-	19	-146	-135	72		89	52.0R	19.861	1.1		7	0.0764	29.90
40015			.51	-41	20	-145	-134	73	211 0	0.1688	52.R3	20.176	0.1			0.0764	29.90
40016			.53	-42	21	-141	-128	69		0.1818	48.9B	19.041	7.1		-	0.0764	29.90
40017			.54	-4.5	21	-145	1113	99		1777	46.78	19.360	1.1	0.2	116	0.9764	29,90
40018			.55	144	22	-143	-112	64		1,1727	44.19	19.541	0.1	0.5	w	.07	29.9
40019			.57	-45	22	-138	-125	65	195	1749	45,34	19.36R	0.1	2.0	1116.36	•	29,96
40020			.58	-47	25	-143	-121	99		0.1785	47,19	19,447	0.1	0	ø	9/0.	29.90
40021			1.4.1	4 20	4.0	-130	-123	99		0.1765	46.14	19,558	0.1	6.3	1116.36	26.	50.0
40022		•	-61	-49	25	-147	-115	63		0.1764	46.11	18.577	0.1	6.0	9		29.9
40073		•	69.	-50	33	-140	-118	6 N		.178	47.41	17.561	6.1		S.	70.	29.8
40074			-64	-51	26	-151	-116	27		•	46.96	16.759	0.1	0	8.	. 0 .	29.8
40075			- 44	-53	96	-153	-119	52	201	11797	47.84	15.086	1.1		•	0.0764	29.8
40076			19.	124	2.7	-142	-121	51		۲.	44.37	. 23	0.1	٠	9		200
40027			69-	-55	27	-130	-119	5.8		0.1664	41.01	. 22	£.	0.5		0.0764	29,8
40078			-70	156	2.00	-124	-122	54		۲.	39.51	17	0.1	•	9	. 0.	6
40029			-71	-57	56	-130	-117	62		n.166n	40.81	4.0	c	2.0	9	0.	29.8
40030			-72	900	60	-146	-107	61		0.1707	43,16	α	٥.1		1116,34	10.	6
40031			74	160	3.0	-13A	-110	47	۲.	0.1637	39.69	14.81		0	•	0.4	
40032			-76	-60	3.0	-125	-116	49	177 (•	37,37	14,16	0.1		ė	0.1764	6
40033			-76	-62	3.0	-137	-112	47	Ν.	164	œ	4	0.1	2 0	s.	970.	
40024			-77	-63	3.1	-148	-114	5.0	۲.	.173	44.48	15.1	c.	•	ø.	0.0764	29.8
40035			F 8.3	144	32	-157	-106	24	197	0.1768	ĸ	15.861	£.	٥, ٥	1116,33	0.0764	•

DATA SUMMARY TEST SKIN 2 (Cont.)

V d	68.	68'	9.80	98.	68.	88.	98.	88.	98.	88.	88.	88.	88.	88.	88.	29.88	98.6	98.	98.6
	3764 29	764 29														0.0764 29			
_	53 0.0	53 0.0	12 0 0	0.0 25	12 0.0	12 0.0	12 0.0	52 0.0	11 0,0	11 0 0	11 0.0	11 0,0	11 0.0	11 0,0	0.0 18		30 0.0		
S.S.	1116,3	1116.3	1116.3	1116.3	1116.3	1116.3	1116.3	1116.3	1116.3	1116.3	1116.3	1116.3	1116.3	1116.3	1116,3	1116.3	1116.	1116.	1116.
*	0.2		0.0	0	0.2	0.5	0.5	0.5	٥.	0,3	0 3	0.3	0 3	0	0,3	0.3	0.3	0.3	0,3
×	0.1	0.1	0.1	0.1	0.1	0.1		0.1	0.1	0	0.1	.1	0.1	1.0	0.1	.1	0.1	0.1	0.1
7.A.	13.652	13,253	15,055	15,614	13,432	13,669	12.024	9.897	10.444	7.935	13.851	17.541	16.856	16.142	11.239	10.744	11.581	11.984	
0	38.13	30,31	31,55	36.45	46.48	44,63	40.10	35.44	29.20	29.25	28.73	32.86	36.15	36.17	33.84	30.39	29.49	26.49	
¥	0.1604	0.1430	0.1460	0.1569	0.1772	0.1736	0.1645	0.1547	0.1404	0.1405	0.1393	0.1489	0.1562	0.1563	0.1512	0.1432	0.1411	0.1337	
۸ ۷	179	160	163	175	198	194	184	173	157	157	155	166	174	174	169	160	158	149	
21	4	37	4	47	47	4	38	30	28	22	37	50	51	49	33	30	32	31	
VAY	-104	-103	-102	-105	-109	-124	-116	-108	- 97	-87	66-	96-	-104	66-	-100	-97	-86	-76	
× × ×	-139	-116	-120	-132	-159	-142	-137	-132	-120	-120	-114	-124	-131	-135	-132	-124	-128	-125	
ALT	32	32	33	33	4.5	34	35	35	35	36	36	36	37	37	38	3.8	38	39	39
>	-65	-66	-67	-68	169	-70	-71	-73	-74	-75	-76	-7.7	-78	-78	00,	081	1.82	S. 8.	1,23
×	183	182	- B3	184	-86	+87	190	06-	-92	- 63	46.	-95	* 96	198	661	1100	1102	-103	1104
TIME	0.470	0.480	0.490	0.500	0.510	0.520	0.530	0.540	0.550	0.560	0.570	0.580	0.590	0.600	0.610	0.620	0.630	0.64	0.650
œ	9100	7500	0038	6200	0040	0041	0042	0043	0044	0045	0046	0047	0048	0049	0000	0051	0.052	0053	0.054

TABLE E-1 (Cont.)

DATA S	UMMARY	DATA SUMMARY TEST SKIN	ю				DATA	œ	RUN NO 1	SNO	UNSMOOTHED TRAJECTORY	TRAJECTA	≻			
PLANE	DATA	FRAME NO.	-00000	39999	TIND	DATA	FRAME	NO.	NO. 40000-79999	6666						
œ	TIME	×	>	ALT,	×××	٧٨٧	۲۸	V	· · · <u>x</u>	c	T.A.	×	7	S.S.	RHO	¥ d
40001	0.130		140	12								0.0		1116,41		29,91
40002	0.140	01-	-43	12	-142	-271	78	316	0.2829	118,63	14.231	0.0	1.0	1116,40	0.0764	29,91
40003	0.150		-46	ار ا	-139	-258		305	0.2734	110.82	16.065	0.0		1116.40	0.0764	29,91
40004	0.160		- 48	4	-145	-263		313	0.2800	116,25	16.422	0.0		1116.40	0.0764	29.91
40005	0.170		-51	5	-137	-261	81	305	0.2736	110.92	15.390	0.0		1116,39	0.0764	29,91
40006	0.180		-54	16	-12A	-263		304	0.2727	110.25	16.197	0.1		1116,39	0.0764	29,90
40007	0.190		-56	16	-113	-258			0.2674	105.98	19,084	0.1		1116,39	0.0764	29.90
40008	n.20n		-59	18	-116	-237			0.2517	93.87	10.060	0.1		1116,38		29.90
000	0.210		-61	19	+133	-232			0.2556	96.81	20.382	0.1		1116,38		29.90
40010	0.220		-63	19	-147	-223		200	0.2511	93.44	17.911	0.1		1116,38		29.90
40011	0.230		-65	20	-138	-231		281	0.2518	93.93	16.639	0.1		1116,37		29,90
40012	0.240		-68	21	-128	-245		785	0.2553	96.60	16.087	0.1		1116,37		29.90
411013	0.250		-70	25	-117	-233		271	0.242B	87,36	15,582	1.0		1116.37		29.90
40014	0.260		-73	23	-106	-231		266	0.2379	83,87	16.656	1.1		1116,36		29.90
40015	0.270		-75	23	-117	-225			0.2370	83,24	16.944	0.1		1116,36	0.0764	29.90
40016	0.280		-77	24	-113	-236			0.2446	88.63	16.353	£.		1116,36		29,90
40017	0.290		-79	25	-117	-240			0.2479	91.04	15.325	٥.		1116,35		29.89
40018	0.300		182	56	-116	-228			0.2371	83.28	15.004	0.1		1116.35		29.89
40019	0.310		4 00 -	56	-114	-219			0.2302	78.52	16.154	1.1		1116,35		29.89
40020	0.320		186	27	-115	-223		262	0.2346	81.53	16.634	0.1		1116,35		29.89
40021	0.330		0C C.	28	-111	-229		267	0.2388	84,46	17.471	1.1		1116,34		29.89
40072	0.340		-91	56	-113	-231		272	0.2435	87.84	18.767	0.1		1116,34	0.07	29.89
40023	0.350		-93	3.0	-110	-227		267	n.2388	84.47	18.894	0.1		1116,34	0.07	29.89
40074	0.360		- 65	3.1	-113	-228	81	267	0.2393	84.80	17.453	1.0		1116,33	0.076	29.89
40025	0.370		-98	31					-			0.1	0.2	1116,33	0.0764	29,89

DATA	SUMMARY	TEST SKIN	4		nP	TICI.	DATA	RUN NO 1	IJ	NSMOOTHED	TRAJECTORY		
PLAKE	DATA	FRAME NO.	, ,,,,,,,,	39999	UNIT	DATA	FRAM	F NO. 40000-7	9999				
FR	TIME		Y	ALT:	VAX	VAY	٧٧	VA M	Q	T.A.	WX WY		
400n1 400n2	0,27		4.4 4.5	25 26	91	102	60	150 0.1344	26.75	23.764	n.1 0.	.2 1116,35 0,0764 29. .2 1116,35 0,0764 29.	89
10003	n.29		46 47	27	117	131	19	177 0.1584	37.16	6,125	n.1 0.	2 1116,35 0,0764 29, 2 1116,35 0,0764 29,	
400n4 400n5	0.31		47	27 26	116	130 118	16 53	175 0.1564 167 0.1497	36,26 33,19	5,105 18,471	n.1 0.	2 1116,35 0,0764 29,	,89
40006	0.32	n 44	49	27	93	104	82	162 P.1451	31.18	30.570	n.1 0.	2 1116,35 0.0764 29. 2 1116,34 0.0764 29.	, A 9
400n7 400n8	n,33 n,34	0 46	50 51	29 30	7 A 9 3	88 104	108 80	160 0.1430 161 0.1438	30.98 30.65	42,40° 30.082	0.1 0.	2 1116.34 0,0764 29,	, 89
40009	0.35		5.5 5.4	30	83	93 82	62	139 8.1244	22.91	26.415	n.1 0.	2 1116,33 0,0764 29, 2 1116,33 0,0764 29,	, 89
40010	n.36		54	31 32	73 73	81	78 79	135 0.1208 135 0.1208	21.62 21.60	35,263 36,093	n.1 0.	2 1116.33 0.0764 29.	. 89
40012	n,38		55 56	33 33	7.3	82 95	66 46	128 0.115n 135 0.121n	19,60	31.138 20.087	n.1 0,	,2 1116,32 0.0764 29. ,2 1116,32 0.0764 29.	
40014		n 51	5/	33	83	93	36	130 0.1161	19.96	15.915	0.1 0.	,2 1116.32 0.0764 29,	. 89
40015	n.41		5d 50	34 34	7 n 5 g	79 66	47 64	116 0.1036 109 0.0978	15.89 14.17	24,173		2 1116.32 0.0764 29. 2 1116.32 0.0764 29.	
40017	0.43	n 53	59	35	49	54	73	103 0.0926	12.70	45.215	0.1 0.	2 1116.32 0.0764 29.	. 88
40018	n.44 n.45		5.9 6.0	36 36	65 85	. 95	68 61	119 0.1067 142 0.1271	16.87 23.93	34.682 25.569		3 1116,31 0,0764 29, 3 1116,31 0,0764 29,	
40020	0.46	n 55	62	37	95	106	56	153 0.1368	27.71	21.624	0.1 0.	3 1116.31 0.0764 29. 3 1116.31 0.0764 29.	. 88
40021	0.47	0 57	6.3 6.3	38 38	9,2 8.n	103	55 55	148 0.1329 132 0.1184	26.16 20.76	21.658 24.622	0.1 0.	.3 1116.30 0.0764 29.	. 88
40023	0.49		64 65	39 39	70	88 87	53 52	130 0.1163	2n.n4 19,40	24.856 23.852	n.1 0.	3 1116.3n 0.0764 29. 3 1116.30 0.0764 29.	88.
40025	n.51	0 59	66	40	7 A 7 7	86	51	128 8.1145 126 0.1128	18.83	24,041	n.1 0.	4 1116,3n 0,0764 29,	.88
40026	n.52 r.53		67 68	40 41	76 75	86 84	51 51	126 P.1125	18.76	24,ñ18 24,ñ82	n.1 0.	,3 1116,3n 0,0764 29. ,3 1116,29 0,0764 29.	
40028	n.54	n 61,	69	41	7.3	8.2	51	121 0.1083	17.37	24.751	n.1 0.	3 1116,29 0.0764 29.	. 88
40029	n.55		71) 70	42 42	69 64	78 72	51 52	116 0.104n 110 0.0984	16,nn 14,33	26.157 28.378	0.1 0.	.3 1116.29 0.0764 29. .3 1116.29 0.0764 29.	. 88
40031	0.57	0 63	71	43	5 a	64	54	102 0.0913	12,34	32.127	n.1 0.	3 1116,29 0.0764 29. 3 1116,28 0.0764 29.	.88
40032	n.58		72 72	43	54 54	60 60	55 53	97 0.0873 97 0.0865	11.29 11.88	34,ñ81 33,416	n.1 0.	3 1116.28 0.0764 29.	.87
40034	n.60	0 65	7.5 7.5	44	57 66	64 74	5 n 4 3	99 0.0889 108 0.0964	11.70	30.262	n.1 0.	3 1116.28 0.0764 29. 3 1116.28 0.0764 29.	. 87
40036	n.62	n 66	74	45	69	77	40	111 0.0991	13,77	23.649 21.268	0.1 0.	3 1116,28 0,0764 29,	.87
40037	n.63		75 76	46 46	69 66	77 74	40	111 0.0991 107 0.0962	14.54	21.132	0.2 0.	3 1116.28 0.0764 29. 3 1116.27 0.0764 29.	. 87
40039	n.65	n 68	76	46	62	69	50	105 0.0943	13.18	28.336	0.2 0.	3 1116.27 0.0764 29.	.87
40040	n.66		7.7 7.8	47 48	59 55	66 61	53 53	103 0.0926 98 0.0876	12.69	30.884 32.866		3 1116.27 0.0764 29. 3 1116.27 0.0764 29.	
40042	n.68		78 79	48 49	49	54 46	5 ŋ 4 4	88 0.0791 75 0.0673	9.26	34.370 35.555	0.2 0.	3 1116.27 0.0764 29. 3 1116.24 0.0764 29.	87
40044	0.70	0 71	79	49	3.0	33	39	75 0.0673 59 0.1528	6.71	41.215	n.2 0.	3 1116,26 0.0764 29.	.87
40045 40046	0.71		8 D 8 D	49 50	24 25	27 27	35 33	50 0.0450 50 0.0443	3, n 0 2, 91	44.571 42.111	n.2 0.	3 1116.26 0.0764 29. 4 1116.26 0.0764 29.	, 87 . 87
40047	0.73	0 71	8.0	50	31	35	33	57 0.0509	3.84	34.949	0.2 0.	4 1116,26 0.0764 29.	.87
40048	n.74 n.75		81 81	50 51	47 53	53 59	33 32	78 0.0698 85 0.0763	7.20 8.63	24,832 21.916	n.2 0.	4 1116.26 0.0764 29. 4 1116.26 0.0764 29.	.87
40050 40051	0.76 n.77		88 88	51 51	52 46	58 51	31 31	84 0.0756 75 0.0673	P, 45	21.765	n.2 0.	.4 1116.25 0.0764 29. .4 1116.25 0.0764 29.	
40052	n.78	n 74	8.5	52	3.0	33	33	55 n.n494	6.71 3.64	36.241	0.2 0.	4 1116.25 0.0764 29.	.87
40053	n.79		R.5 R.5	52 52	23 20	25 23	33 31	47 0.0422 43 0.0389	2.64	44.02R 45.704		,4 1116.25 0,7764 29. ,4 1116.25 0,7764 29.	
40055	0.81	0 74	A.3	5.5	23	26	58	44 0.0396	2.32	38.771	0.2 0.	4 1116.25 0.0764 29.	
40056 40057	n.82		84 84	53 53	3n 35	34 39	23 17	51 0.8452 55 0.8495	3.n3 3.63	26,667 18,371	0.2 0.	,4 1116.25 0,0764 29, ,4 1116.25 0,0764 29,	, A6
40058	n.84		85 85	53 53	3g 3g	42	14	59 0.0524 59 0.0531	4.17	13,993	n.2 0.	,4 1116,25 0,0764 29, ,4 1116,25 0,0764 29,	.86
400 40	n.86	n 76	85	5.5	37	42	14	58 0.0516	3,94	14,285	0.2 0.	,4 1116,25 D.O764 29.	.86
40041	n.87		8.5 8.5	54 54	34	38 38	15 16	54 0,0482 53 0,0473	3,45 3,31	16.311 17.349		.4 1116.24 0.0764 29, .4 1116.24 0.1764 29,	
40043	n.89	n 77	8.7	5 4	33	36	18	52 0.0468	3.24	20,560	0.2 0.	4 1116.24 0.0764 29.	.86
40044 40045			A / R 7	54 54	32	35 34	23 35	53 0.0471 58 0.0518	3,99 3,98	25.843 37.475	n.2 0.	4 1116,24 0.0764 29, 4 1116,24 0.0764 29,	.86
40066			88	55 55	3 n	33	41	60 0.0539	4.30	42.458	0.2 0.	.4 1116.24 0.0764 29. .4 1116.24 0.0764 29.	. 96
40067 40068	n.94	n 79	88 88	56	2 A 2 7	32 30	39 31	58 0.0519 51 0.0456	3.98 3.97	42.654 37.212	0.2 0.	.4 1116.24 0.0764 29.	.86
40069	1.95	n 79	89 89	56 56	26 24	28 27	16	41 0.0372 36 0.0324	2.64		r.2 0.	.4 1116.24 0.0764 29. .4 1116.24 0.0764 29.	.86
40071	r.97	n 79	89	56	23	25	- 6	34 0.0309	1 - 41	-9,413	n.2 0.	.4 1 1 16,24 0.0764 29.	.86
40072 40073			9.9 0.0	56 56	21 20	24 22	-5 ?	32 P.N288 29 P.N264	1 • 23 1 • n3		n.2 0.	.4 1116.24 0.0764 29. .4 1116.24 0.0764 29.	.86
40074	1.00	n 8g	9.0	56	17	19	1.7	30 0.0272	1.10	34.532	0.2 0.	4 1116,24 0,0764 29.	.86
4nn75 4nn76			91	56 56	15 15	17 17	23 24	32 0.0288 33 0.030n	1 - 22		n.2 0.	.4 1116.24 0.0764 29. .4 1116.23 0.0763 29.	.86
4 m n 7 7 4 n n 7 8			9 ŋ 9 L	57 57	17	19 22	22 17	34 0.0306	1 + 38	41.581	0.2 0.	,4 1116,23 0.1763 29, ,4 1116,23 0.1763 29,	.86
40079	1.95	n 81	91	57	20	24	15	35 0.031g 36 0.0323	1 • 42	28.936 24.685	0.2 0.	4 1116.23 0.0763 29.	.86
400P0 400P1			91	57 57	24 26	26 29	14 14	38 0.0343 41 0.0370	1.74	21.588 19.648		.4 1116.23 0.0763 29. .4 1116.23 0.0763 29.	
46682	1.08	0 82	. 65	57	29	33	14	46 0.0414	-2.54	18-073	n.2 t.	.4	.86
411123 411124			92	57 58	32 33	35 37	14 14	5n n.0445 52 n.n465	2.94 3.20		0.2 0.	.4 1116,23 0,0763 29, .4 1116,23 0,0763 29,	.86
40005	1.11	n 8.3	9.5	58	34	38	14	53 A.0471	3.28	15.259	0.2 0.	.4 1116.23 0.0763 29.	.86
411126 411127	1.13	n 83	9.3	58 58	33 35	37 39	14 16	52 N.N465 55 N.N491	3,20 3,56		0.2 0.	.4 1116.23 0.0763 29. .4 1116.23 0.0763 29.	.86
40088 40089	1.14	n 84	94	58 58	35 34	39 38	1.6	55 0.0492	3.58	16.779	n.2 0.	4 1116,23 0,0763 29, 4 1116,23 0,0763 29,	.86
40090	1.16	n 84	95	58	31	34	12	52 0.0465 46 0.0417	3.20 2.57	5.360	0.2 0.	.4 1116,23 0.0763 29.	.86
40051 40052			95 95	58 58	25 22	27 24	+17 +25	41 0.0363 41 0.0367	1,95	-24.436 -37.287		.4 1116.23 0.1763 29. .4 1116.23 0.1763 29.	
46693	1.19	0 85	95	58	22	24	=20	3A 0.9342	1.73	-32.109	n.2 0.	4 1116,23 0,0763 29,	.86
40094	1.21	n 86	96 96	58 58	24 32	27 35	-3 4n	36 0.0324 62 0.0555	1.55	-4,456 40.161	n.2 0.	,4 1116,23 0,7763 29, ,4 1116,23 0,7763 29,	,86
40096	1.22	n 86	96 97	58 59	35	39 39	61	80 0.072n	7 - 67	49.545	0.2 0.	,4 1116,23 N,N763 29,	, 86
40097 40098	1.24	9 87	97	60	35	36	67 56	85 በ.0762 74 በ.0660	8.59 6.45	49,439	n.2 0.	,4 1116,22 0,0763 29, ,4 1116,22 0,0763 29,	.86
40099 40100			98	60 60	26 2n	52 59	30	49 0.0442 31 0.0277	2.89 1.14		n.2 0.	4 1116,22 0,0763 29, 4 1116,22 0,0763 29,	.86
			• • •	170		1. 2	-		1 4 1 4				•

DATA SUMMARY TEST SKIN 4 (Cont.)

	SUMMARY										
FR 401n1 401n2	1.27n 1.28n	X 87 87	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ALT. 61	17	18 19	V 7 - 4 - 7	VA M 25 0.0225 26 0.0233	0 T.A. 1.75 -9.224 1.41 -15.915	n.2	WY 5.5, RHO. PA 0.4 1116.22 0.0763 29.86 0.4 1116.22 0.0763 29.86
401n3 401n4	1.290 1.30n	88 88	98	60 60	17 20 29	22	-1 15	30 0.0271 46 0.0414	0,81 -15,915 1,89 -1,911 2,54 18,885	n.2	0.4 1116,22 0.0763 29,86 0.4 1116,22 0.0763 29,86
401n5 401n6	1.31n 1.32n	88 89	99	60 61	32 32	36 35	20 21	52 0.0468 52 0.0467	3.24 22.ñ8n 3.22 23.807	n.2	0.4 1116.22 0.0763 29.86 0.4 1116.22 0.0763 29.86
401n7 401n8	1.33n 1.34n	89 89	100	61	2g 16	31 17	19	46 0.0409 28 0.0255	2.47 24.669 0.96 34.588	0.2	0.4 1116,22 0,0763 29,86 0.4 1116,22 0,0763 29,86
40109 40110	1.35n 1.36n	89 89	100	61	11	12	15 11	21 0.0192 19 0.0174	0.55 42.968 0.45 34.895	n.2	0,4 1116,22 0,0763 29,86 0,4 1116,21 0,0763 29,86
40111	1.37n 1.38n	89 9n	100 101	61	17 27	18 31	6	25 0.0227 41 0.0369	0.77 12.621 2.01 -2.610	0.2	0.4 1116.21 0.0763 29.86 0.4 1116.21 0.0763 29.86
40113	1,39n 1,40n	9n 9n	101 101	61	4 n 45	44 51	+14 +19	61 0.0545 70 0.0630	4.40 -13.319 5.88 -15.473	n.2	0.4 1116.21 0.0763 29.86 0.4 1116.21 0.0763 29.86
40115	1.410	91 91	102	61 61	44 35	49 39	≈15 -3	67 0.0602 53 0.0475	5.37 -12.959 3.34 -3.730	0.2	0.4 1116.22 0.0763 29.86 0.4 1116.22 0.0763 29.86
40117	1.430	92 92	103	61 61	1 A 1 1	20 12	21 31	34 0.0304 35 0.0315	1:37 38:314 1:47 63:089	n.2	0.4 1116,22 0.0763 29,86 0.4 1116,22 0.0763 29,86
40119	1.45n 1.460	92 92	1 n 3 1 n 3	62	8 11	12	33 26	35 0.0317 31 0.0279	1:49 69:306 1:15 58:113	0.2	0.4 1116,21 0.0763 29.86 0.4 1116,21 0.0763 29.86
40122	1.470	92	1 n 3 1 n 3	62	1.8 2.n	20	11.	29 0.0260 31 0.0275	1.00 22.778	0.2	0.4 1116.21 0.0763 29.86 0.4 1116.21 0.0763 29.85
40123	1.490	92 93	1 n 4	62	22 24	25	-3	34 0.0301	1.34 0.070 1.56 -3.977	0.2	0.4 1116,21 0.0763 29.86 0.4 1116,21 0.0763 29.86
48125 48126	1.51n 1.52n	93 93	1 n 4 1 n 5	62 62	26 3n	29 33	-3 -10	39 0.0346 45 0.0406	1.77 -4.952 2.44 -12.448	0.2	0.4 1116.21 0.0763 29.86 0.4 1116.21 0.0763 29.86
40127 40128	1.53n 1.54n	94 94	1 n 5 1 n 5	62	31 29	34 32	-11 -7	47 0.0425 44 0.0395	2:68 -13:600 2:31 -8:907	0.2	0.4 1116.21 0.0763 29.86 0.4 1116.21 0.0763 29.86
40129	1.55n 1.56n	94	106	62	25 14	27 15	3 24	37 0.0331 32 0.0285	1.63 4.34n 1.21 49.209	0.2	0.4 1116,21 0.0763 29.86 0.4 1116,21 0.0763 29.86
40131	1.57n 1.58n	95	106	62 63	1 n 12	11 13	32 31	36 0.0321 36 0.0319	1.52 65.062 1.51 61.072	n.2	0.4 1116.21 0.0763 29.86 0.4 1116.21 0.0763 29.85
40133	1,59n 1,60n	95 95	1 n 6 1 n 6	63 63	1 A 3 6	20 40	-6	34 0.0304 55 0.0489	1.37 36.999 3.53 -6.191	0.2	0.4 1116,21 0.0763 29,85 0.4 1116,21 0.0763 29,85
40135 40136	1.61n 1.62n	95 96	1 N 7 1 N 8	63	44	49 48	•17 •20	67 0.0605 67 0.0599	5.41 -14.739 5.31 -16.984	0.2	0,4 1116,21 0,0763 29,85 0,4 1116,21 0,0763 29,85
40137 40138	1.63n 1.640	96 97	108	62	33 16	37 18	≠13 2	51 0.0460 25 0.0221	3.13 -14.199 0.72 5.367	0.2	0.4 1116,21 0.0763 29.85 0.4 1116,21 0.0763 29.85
40139	1.65n 1.65n	97 97	108	62 63	6	7 - 4	10 18	14 0.0122	0.22 46.758 0.41 71.582	n.2	0.4 1116,21 0,0763 29,85 0.4 1116,21 0,0763 29,85
40141	1.67n 1.68n	97 96	1n8 1n8	63 63	-14	-16	25	33 0.0294	1.28 50.052	0.2	0.4 1116,21 0.0763 29.85 0.4 1116,21 0.0763 29.85
40143	1.69n 1.70n										
40145 40146	1.71n 1.72n										
40147	1.73n 1.74n	97 97	1 n 9 1 n 9	63 63	S u	22	-1	29 0.4262	1.02 -1.138	0.2	0,4 1116,21 0,0763 29,85 0,4 1116,21 0,0763 29,85
40149 40150	1.75n 1.76n	97 98	109	63 63	2n 2n	22	-0	30 0.0267 30 0.0272	1.05 -0.921 1.09 -0.712	n.2	0,4 1116,21 0,0763 29,85 0,4 1116,21 0,0763 29,85
40151 40152	1.770 1.780	98 98	110	63	21 21	23 23	- n	31 0.0276 31 0.0281	1.13 -0.509 1.17 -0.313	0.2	0.4 1116.21 0.0763 29.85 0.4 1116.21 0.0763 29.85
40153 40154	1.790	98 99	110	63 63	21	24	-0	32 0.0286 32 0.0290	1.21 -0.122 1.25 0.062	0.2	0.4 1116,21 0,0763 29,85 0.4 1116,21 0,0763 29,85
40155 40156	1.81n 1.82n	99 99	111	63 63	22	24 25	n	33 0.0295 33 0.030n	1.29 0.240 1.33 0.414	0.2	0.4 1116,21 0,0763 29,85 0.4 1116,21 0,0763 29,85
40157 40158	1.83n 1.84n	99	111	63 63	23	25 26		34 0.0304 36 0.0318	1.37 0.582 1.50 2.614	n.2	n.4 1116,21 0,0763 29,85 n.4 1116,21 0,0763 29,85
40159	1.85n 1.86n	100	112	63 63	24	27	2	36 0.0326 37 0.0329	1.58 3.419 1.60 3.040	0.2	0,4 1116,21 0,0763 29,85 0,4 1116,21 0,0763 29,85
40161	1.87m 1.88m	100	112	63 63	24	27 26	1 -1	36 0.0325 35 0.0316	1.56 1.485 1.48 -1.260	0.2	0.4 1116,21 0.0763 29,85 0.4 1116,21 0.0763 29,85
40163	1.89n 1.90n	101	113	63 63	24	26 26	-1 -2	35 0.0317 35 0.0317	1.48 -2.132 1.48 -3.005	0.2	0.4 1116.21 0.0763 29.85 0.4 1116.21 0.0763 29.85
40165	1.910	101	113	63 63	24	26 26	-2 -3	35 0.0317 35 0.0318	1.49 -3.877 1.49 -4.748	0.2	0.4 1116.21 0.0763 29.85 0.4 1116.21 0.0763 29.85
40167	1.93n 1.94n	102	114 114	63 63	23 23	26 26	-5 -6	35 0.0318 36 0.0319	1.49 -8.417 1.50 -10.224	n.2	0.4 1116.21 0.0763 29.85 0.4 1116.21 0.0763 29.85
40179 40170	1.95n 1.96n	102	114 115	63 63	23	26 26	-6 -5	36 0.0319 36 0.0320	1.51 -10.090 1.52 -8.095	n.2	0.4 1116.21 0.0763 29.85 0.4 1116.21 0.0763 29.85
40171	1.97n 1.98n	103	115 115	63 63	24 24	27 27	-3 -2	36 0.0322 36 0.0323	1.53 -4.484 1.54 -3.789	n.2	0,4 1116,21 0,0763 29,85 0,4 1116,21 0,0763 29,85
40173	1.99n 2.000	103	116 116	63 63	24	27 27	-5	36 0,0324 36 0,0325	1.55 -3.098 1.56 -2.412	0.2	0.4 1116,21 0.0763 29,85 0.4 1116,21 0.0763 29,85
40175 40176	2.010 2.020	104	116 116	63 63	26 27	29 31	-0 1	4n n.0355 41 n.n368	1.86 -0.387 2.01 0.703	0.2	0.4 1116.21 0.0763 29.85 0.4 1116.21 0.0763 29.85
40177 40178	2.03n 2.04n	104	117 117	63 63	27 25	30 28	1	40 0.0363 38 0.0338	1.95 1.039 1.69 0.627	n.2	0,4 1116,21 0,0763 29,85 0,4 1116,21 0,0763 29,85
40179 40190	2.05n 2.06n	105	117	63 63	22 21	25 23	- n	33 0.0296 31 0.0282	1.30 -0.731 1.18 -0.806	0.2	0.4 1116,21 0,0763 29,85 0,4 1116,21 0,0763 29,85
401P1 401P2	2.070 2.080	105	118	63 63	2n	22 21	- n - n	30 0.0268 28 0.0254	1.06 -0.888	0.2	0.4 1116.21 0.0763 29.85 0.4 1116.21 0.0763 29.85
40183 40184	2.09n 2.10r	105	118	63 63	1 R	20 16	-1 -1	27 0.0239	0.85 -1.082 0.54 -2.022	0.2	0.4 1116,21 0,0763 29,85 0.4 1116,21 0,0763 29,85
40185	2.11n 2.12n	106	119 119	63 63	12	14	-1 -1	18 0.0164 18 0.0160	0.40 -2.682 0.38 -2.589	n.2	0.4 1116.21 0.0763 29.85 0.4 1116.21 0.0763 29.85
40187 40188	2.13n 2.14n	106	119	63 63	13	15 18	- i - n	20 0.0179	0.47 -1.741 0.71 -0.639	n.2	0.4 1116,21 0,0763 29,85 0.4 1116,21 0,0763 29,85
401F9	2.15n 2.16n	106 196	119	63 63	17	19	- o - o	25 0.0224 25 0.0228	0.74 -0.386 0.77 -0.143	n.2	0.4 1116,21 0,0763 29,85 0,4 1116,21 0,0763 29,85
40191 40192	2.17n 2.18n	107	120	63 63	17 18	19 20	0	26 9.0233 27 0.0245	1.80 1.09n 1.89 1.679	n.2	0.4 1116.21 0.0763 29.85 0.4 1116.21 0.0763 29.85
40193	2.190 2.20n	107	120 120	63 63	19	21 21	1	28 0.0252 29 0.0256	0.94 1.030 0.97 1.156	n.2	0.4 1116,21 0.0763 29,85 0.4 1116,21 0.0763 29,85
40195 40196	2.21n 2.22n	107 108	120	63 63	19	21	1 0	28 0.0255	0.96 1.064 0.92 0.757	0.2	0.4 1116,21 0.0763 29.85 0.4 1116,21 0.0763 29.85
40197 40198	2.23n 2.24n	108 108	121	63 63	19	21 21	0	28 0.025n 28 0.0252	0.93 0.772 0.94 0.787	0.2	0.4 1116.21 0.0763 29.85 0.4 1116.21 0.0763 29.85
40199 40200	2.25n 2.26n	108 108	121	63 63	10	21	0	28 0.0253 28 0.0254	0.94 0.802 0.95 0.817	0.2	0.4 1116,21 0.0763 29.85 0.4 1116,21 0.0763 29.85
402n1 402n2	2.27n 2.28n	108	122	63 63	10	21 21	- 0 - 1	20 0.0256 29 0.0258	0.97 -0.931 0.98 -1.603	n.2	0.4 1116,21 0.0763 29.85 0.4 1116,21 0.0763 29.85
402n3 402n4	2.29n 2.30n	109	122	63 63	19	21	-1 0	29 0.0259	0.99 -1.125 0.99 0.504	n.2	0,4 1116,21 0,0763 29,85 0,4 1116,21 0,0763 29,85 0,4 1116,21 0,0763 29,85
40205 40206	2.318 2.32n	109	123	63 63	19	21 21	2	29 0.0258	0.99 3.200	0.2	0,4 1116,21 0,0763 29,85
402n7 402n8	2.33n 2.34n	110	123	63 63	10	21	3	29 N. n26n 29 N. n26n	0.99 4.169 1.00 5.125	0.2	0,4 1116,21 0,0763 29,85 0,4 1116,21 0,0763 29,85 0,4 1116 21 0,0763 29,85
40219 40210	2,35n 2,36n	110	123	63 63	19	55	4	29 0.0261	1.ñn 6.ñ76 1.n1 7.ñ21	n.2	0,4 1116,21 0,0763 29,85 0,4 1116,21 0,0763 29,85
40211 40212	2.37n 2.38n	110	124	63 63	10	25	5	29 0.0263	1.02 7.961 1.03 8.895	0.2	0,4 1116,21 0,0763 29,85 0,4 1116,21 0,0763 29,85
40213	2.39n 2.40n	111	124	63 63	2n 2n	55 55	6	30 0.0265 30 0.0266 30 0.0267	1.04 9.821 1.05 10.741	0.2	0,4 1116,21 0,0763 29,85 0,4 1116,21 0,0763 29,85
40215	2,41n	111	125	63	. ()	. 6	6	00 0,020)	1,86 11,452	n.2	0,4 1116,21 0,0763 29,85 0,4 1116,21 0,0763 29,85

TABLE E-1 (Cont.)

DATA SL	UMMARY	TEST SKI	ī.		140	PTICL D	ATA	ă.	UN NO 3	NO.	UNSMOOTHED 1	TRAJECT	78.			
PLANE 1	DATA	FRAME NO	00000	- 39999	UNIT	DATA	FRAME	N N	40000-79	6600						
OK .	E I	×	>	ALT	× 4 >	V A Y	21	۸ ۷	Σ	O	T.A.	×	>	8.8	RHO	A 0
10004	0.000	8 F	00	10 O	271	0	46	α	257	n,	0,62	c c		1116.42	0.0765	29.91
000	7	M		10	. 0		91	4	272	10.0	7.33	· c	•	116.4	0765	6
000	1.2	**		₩.	0		78	10	.270	6.0	5.05	c .	•	116.4	.0764	0.
000	13	4		2,5	\sim 1		87	٠. ا	.260	9:60	7,33	0.0	•	116.4	0764	0.0
000	4 n	4 4		. 4	0.70	0 6	ac a ⊷ a	000	.2527	4.00	16.490	c c	•	116.4	1764	o o
		1 4		- +	· r		6 6	c r	257	e c	4 2 2			116.4	0764	0
000	17	ī.		15			77	0	258	20	5.36			116.3	.0764	6
100	.18	ΓC		16	vc.	0-	82	-	.251	. t	6.85	1.0	•	116,3	.0764	6.6
0.0	.19	ru i		17	~	0	100 100	ς α	252	7.	7.01	€.	•	116.3	1764	6
001	20	ir.		40	× 1	0	8	00	240	ご	7.17	* !	•	116.3	1764	0
6 6	22.	· ·		ON 0	S 5	0 0	00 v	0 0	241	e S	0.0	•; c (-	9 4	.0764	0.0
	22.	C 4		· c	4 4) C	C a	= 0	000		. u	ri •	•	0 4 4 4	107.	. 0
3 6	3 4	C v C		, c	. 4	0 0	0 4	סיס	200	• o			•	446	4970	. 0
0	25	^		25.	100	0	73	1 10	235					116.3	0764	6
001	.26	7		25		0-	99	C 90	.232		4.74			116.3	.0764	6.6
0.01	.27	7		23	MO:	0-	8.1	25	. 225	5.5	.63	0.1	•	6,3	.0764	6.6
000	.28	7		4.	4	0-	17	2	. 225		û6·		•	116.3	.0764	6
000	53	α :		5.5	4 4	0	74	4 1	.227	r.	6.85	-	•	9	.0764	ec (
0.0	.50	ac c		ر د ر	4 1	0 0	0 '	r e	200	M: 1	7.03	F .	•	0,011	40/0	
		r: o		0.0	െ) C	- c) C	2 4 6			F .	•	7 7 7	70/04	
\ 0	0 M	c c		000	\sim) (ω α C • C	. κ	210	, r	. a	- - - -	•	3 10	0764	
200	34	6		æ	· M	00	57	. d	. 15	י ער	3.76	· -		116.3	.0764	
200	. 35	0		20	M.	0-	5.8	4 3	.217		× 83		•	116.3	.0764	9.
000	. 36	0		50	M,	0	62	4	,216	9.5	OK.	1.0	•	116.3	.0764	9.6
000	.37	4.0		3.0	Λ.	0 '	71	ď	. 213	7 . 3	7.32	1.1	•	116.3	.0764	6
r. 1	٠ د د	C (. i	T T	0 0	9 0	α .	.203	ii.	6.78	- ·	*	116.0	49/0	0.0
· ·	2.4			0 6) C	7.0	50	2 0		. Y		•	0 40	10764	. 0
0.0	4.			32	\sim	-	2	٠ ٨	208		. 20	· C	•	116,3	. 1764	6
0.0	4.	an.		33	\sim	0-	9	0	207	3.7	C.	F.	•	16.3	.0764	9.8
200	. 43	11		3.4	-1	0	63	ď	204	2.0	.12	0.1	•	116,3	,0764	8.
0	44	कर्त कर्म		4 %	A.,	0-	4.	7	.198	#: ac	.13	٠ ۲	•	116,3	. n764	60.
r. 00	54.5	कुम्मी । क्रमा		35	T.	0-	r.	0	196	7.1	4 . 40	÷:	•	6.3	.0764	6.0
r. 1	64.	-		33	•	0 0	ن ب	ر د	96	4	. 97	c	•	116.5	49/0	or e
	4.	N. C		200		0 0	ι п 4. 4	C I			. 43	- ·	•	110.0	40/0	, o
2 6	, 4			27	- C) (1 4	~ N	1,7		4.7	H *	•	0 0 T	1764	. 0
. 6	. 50			. 60	. c.	0	2	. 4	0	. 4	r ar			. W	0764	. 60
000	.53	×.		3.8	C	0	65	0	6	. vc	Ý	c		116.3	. 1764	8.6
004	. 52	¥.		39	σ	0-	50	7.0	1.85	9	. 67	c.		1.6.3	.0764	8 6
0	. 53	*		4 0								F.	•	116.3	.0764	8

DATA	DATA SUMMARY TEST	TEST NORTH	JET		a C	OPTICL E	DATA	ã	RUN NO 1	NO.	UNSMOOTHED TRAJECTORY	TRAJECT	2R∀			
PLANE	DATA	FRAME NO.	-06000	86668	UNIT	UNIT DATA	FRAME	C	40000-79999	6666						
Œ L	TIME	×	>	ALT	× A ×	∀ ∀ ∀	2 /	>	Σ	e	. 4	× 3	7	s, s	2	4
40001			25											116.4	•	
40002	0.070	C	31	~	C I	471	72	477	. 4270	270.38	8.464	· ·	0.0	1116.44	076	29.9
40003			35	m	C	404	41	α α	. 3837	00	A.220	c.	0.0	16.4	.076	
40004			89 190	€0	-	397	29	_	.3594	191.54	8.447	6.0	0.0	4.9	.076	
40005			43	4	U .	376	57	-	3407	172.14	٧.	c.	0.0	4.0	.076	
40016			47	5	-	364	63	360 0	.3307	162,17	.75	c.	0.0	•	•	
40007			0,4	ī	E	366	25	c.	.3314	162.80	A . 0 . K	c .	0.0	4.9	.076	
40008			5.3	9	C.	361	₹.	4	.3274	158.94	R.520	c c	0.0	9	.076	
4000			ec n	•	-	373	50	~	.3370	168,34	7.461	c.	0	4.9	.076	
40010			41	7	C	358	5.4	0	.3239	155,51	A.584	0.0	0.0	116.4	.076	
40011			4	7	C I	347	69	*	.3164	148.40	11,086	0.0	0.1	-	,076	
40012			8.8	80	i.	361	72	ď	.3299	161,31	31	c.	0.1	4.9	970.	
40013			7.1	٥	C	377	63	0	. 3424	173.An	49	c. c	1.0	-	.976	
40014			75	10	C.	361	4 6	4	. 3263	157.83	7.279	0.0	0.1	16.4	.176	
40015					c t	348	38	-	.3139	146.07	.00	0.0	0.1	16	. n76	
40016					C I	337	3.8	0	.3034	136.49	٠. د	0.0	0,1	9	.076	
40017			αc		C 1	329	45	C .	.2973	131.64	.76	0.0	0,1	9	.076	
40018			6 x	, ;	C.	355	37	_	.3197	151,50	4.017	0.0	0.1	-	.076	
40019			92		C 1	360	36	2	.3241	155.76	Α.	c.	0.1	4.9	. 176	
40020			90		C	350	4 6	м.	.3158	147.8R	7.531	c .	0.1	9	0,076	
40021			100	12	C 	356	3,8	α.	.3204	152.15	K. 4 4 W	0.0	0.1	16.4	0.076	
40025			103	13	(C)	356	8	7	.3196	151.46	4.446	C . C	0,1	-	0.07	29.93
40023			107	13	C.	348	ır.	34A P	.3119	144.21	0.812	0.0	0,1	•	.07	29,91
40004			110	13	C.	366	138	¥	.3280	159.45	α α α α	0.0	0.1	9	, A7	29.93
40025			113	13	C.	361	23	٠.	.3244	155.96	ŝ.	c. c	0.1	9	, û 7	
40026			118	4 4	C:	349	10	0	.3130	145,20	1.660	c. •	0,1	1116.40	9 /	
40027			121	13	C	325	۸.	2	0.2913	125,80	0.354	ر. د	0.1	16.4	.076	
40028			124	13	C.	294	-27	295	.2646	103.77	30		0.1	-	٠١٦,	
40029			121	13	C.	282	o	α	. 2525	94.51	-1.754	0.0	0.1	-	, n 7	29.91
40030			130	13	C.	298	-10	298 ==	.266	105,41	00.	د د	0.1	4	c.	29,93
40071			133	13								6.0	0.1	4	٠.7	29,91

TABLE E-2 (Cont.)

A	FRAME NO.	-00000	39999	UNIT	DATA	FRAME	c Z	40000-79999	6666						
Æ	×	>	ALT	× × >	VAV	2 ^	>	Σ	o	T.A.	× 3	3	8.8	S HO	₹
.100		-39	ď								0.0	0.0	-	3,0765	20.02
.110	0	-44	4	C F	-412	=10	412	0.3688	201.67	-1.441	E.		116,43	0,0765	26.62
•		-48	ß								0.0			1,0765	20,02
.130															
•															
•															
		04-	8								0.0		116,44	3,0765	26.62
		163	8	-	-240	41	243	0.2177	70.29	9.702	c.		4	1,0765	29,92
		163	4	C	-241	2	242	0.2171	60.09	4.074	C .		116.44	1,0765	29,92
•		167	8	L	-235	52	237	0,2119	66.61	•	C .		116.44	3,0765	29.92
		-70	4	C	-221	19	222	0.1988	50.00	4.854	C .		116,43	3.0765	29.92
		72	4	C	-182	12	α. γ	0.1633	39.56	3.823	c.		116,43	3,0765	26,65
•		-74	4	C L	-127	£25	129	A.1158	9.88	-9.577	c.		116,43	3,0765	20,02
•		-75	4	C	-117	6-	118	0.1054	6.47	-4.4.P	C.		116,44	3,0765	29,92
		-75	M	c †	-125	0	125	0.1116	8.46	0.177	c .		116,44	3,0765	20,92
		-77	5	C	-149	59	151	0.1357	27.30	10.097	C. C		116,43	3,0765	29,92
•		-79	4	C	-161	5.4	170	0,1518	4.19	18.450	C .	-	116,44	3,0765	20,02
		-80	30	C	-122	39	ر د د	0.1146	9.48	17.402	C		116,43	3,0765	29,92
•	c	7 8 1	9	-	-07	36	104	0.0927	2,75	20.554	c.	0.0	116,43	0.0765	26.62
•		- A 2	9	C	- 86	7	æ	0.0770	8,80	-0.809	n. c		5,43	3,0765	20.62
•		5 d -	9	C	-106	4	40.6	0.094R	3.33	-2.061	c.		116,43	3.0765	20.62
		ا 4 مر	'n	c.	-145	17	146	0.1307	25,33	6.735	c .		6,43	3,0765	20.62
0.320		-86	9	0	-161	40	46.8	0.1509	3.75	16.835	C . C		6.43	3,0765	20.05
•		-87	9	C:	-174	69	187	0.1678	1,76	21.745	C.		6.43	3,0765	29.91
•		÷α.	7	C	-163	51	171	0.1534	34,88	17.476	0.0		6,42	3,0765	20,91
•		-01	œ	C E	-176	51	1.00 E	0.1641	39,91	16.263	0.0		6.42	3,0765	29.91
•		-05	œ	c.	-183	0	Ω ∞ ∞	0.1638	39,80	2.942	0.0		5.42	3,0765	29.91
•		- 65	0	C I	-171	-	171	6,1531	34,76	. 25	0.0		6.42	3,0765	20,91
•		-04	7	C	-175	4	175	0.1564	36.26	•	c. c		5.42	3,0765	29.91
•		-07	œ	C.	-155	47	162	۲.	31,22	×	C .		6.47	0.0765	29,91

TABLE E-2 (Cont.)

DATA	DATA SUMMARY TEST	TEST EAST	JET		(40	OPTICL	DATA	OC.	RUN NO 1	SNO	UNSMOOTHED TRAJECTORY	TRAJEČTO	κ			
PLANE	DATA	FRAME NO.	-00000	39999	LIVI	UNIT DATA	FRAME		NO. 40000-79999	6666						
œ	-	>	>	ALT.	× 4 >	\ \ \	٧2	V	- x	0	۲. ۸	X 3	≯	8.8	RHO	¥ d
40001	c		c	~								0.0	0.0	_	.0765	26.62
40002	0.100		0	100	383	0-	13	384	0.3437	175,12	1.96R	0.0	0.0	1116,44	0.0765	20.62
40003	С.	4	C	2	373	0-	46	376	0.3367	168,14	7.077	c .		4	.0765	20.62
40004	· C	4	c	4	373	0	52		0.3371	168,49	7.972	c .	_	٠.	. 1765	20.62
40005	C	ıc	0	4	382	0 -	49		0.3445	176.01	7.276	۲.		_	.0765	26.62
40006	-	ιc	0	4	377	0-	36		0.3390	170,41	5.466	0.0		•	. 11765	20.02
40007	-	ī.	C	S	364	0-	35	IC.	0.3271	158.64	5.471	0.0	0.0	_	.0765	26.62
40008	C	¢	æ	rc	352	0-	39		0.3172	149,20	6.287	c •	0.0	. 9	.0765	26.62
40009	-	¢	0	9	348	0-	43		0.3141	146.29	7.062	0.0	0.0	4.	.0765	26,62
40010	-	æ	0.	9	340	0-	4		0.3071	139.80	6.946	0.0	6.0	16.4		29,91
40011	C.	7		7	331	0-	50		0.3001	133.54	8.540	0.0	0.0	6.43	0.0765	29,91
40012	c	7	c	7	332	0-	4		0.3001	133.53	A . 216	0.0	0.0	4.9	0.0765	29,91
40013	· C	7	c	œ	341	0-	4 6		0.3078	140.47	7.671	0.0	0,1	5	0.0765	29,91
40014	_	αc	Û	œ	350	0-	43		0.3158	147.90	7.069	c.	1.0	4	0.0765	29,91
40015	_	Œ	c	œ	342	0	28			140.40	4.614	0.0	1.0	4	0.0765	29.91
40016	_	σc	0	0	324	0 1	50		0.2912	125.73	5.051	0.0		5	0.0765	29,91
40017	•	6	0	o	294	0	19		0.2639	103.24	3.727	c. c	•	4	0.0765	29,91
40018	_	6	C	0	286	0-	1.6		0.2570	97.90	3.197	0.0	0.1	5.47	0,0765	29,
40019	C	c	0	0	276	0	24		0.2483	91.44	5.034	0.0	1.0	4	0.0765	29.91
40020	_	4.0	C	0	287	0	33		0.2584	99.01	6.586	0.0	0.1	4	0.0765	29,91
40021	C	0	0	10	303	0-	45		0.2744	111,61	8.457	c. c	1.0	#	0.1765	29,91
40022	c	0	c	1.0	308	0-	4	_	0.2784	114.93	7.792	c .		5,41	0.0765	29,91
40023	C	*	Ċ	11	310	0-	30	312	0.8793	115.66	5.450	0.0	0.1	6.41	0.1765	29.91
40074	-	11	C	11	303	0	21	304	0.2720	109.67		0.0	0.1	4.4	0.0765	29,91
40025	_	11	c	-1	486	0-	16	285	0.2551	96.44	3.220	0.0	0,1	6.41	0.0764	29,91
40026	-	*	c	11	261	0-	21	262	0.2346	81.58	4.704	o. o	0,1	116.41	0.0764	29,91
40077	_	5	Ċ.	11	745	0	19	246	0.2199	71.71	4.430	c .	٠	6.41	0.1764	29,91
40078	_	7	C	12	22 B	0-	15	520	0.2050	62,30	3,735	C . C	0.1	5,41	0.0764	29,91
40029	<u> </u>	- 2	c	12	23.1	0-	Ţ	231	ď	63,35	7.467	c .	0,1	6.41	0.0764	50
40030	_	7.	c	12	220	0-	œ	220	0	57.66	1.974	0.0	0,1	è.	176	29.91
40031	<u> </u>	13	С	12	50 k	0-	15	206	÷.	50.56	4.230	c.	0.1	1116.40	0.0764	29,91
40022	_	£.	C	4								0.0	0.1	1116.40	0.0764	29,91

TABLE E-2 (Cont.)

DATA SL	SUMMARY	TEST WEST	T JET		0	OPTICL I	DATA	H.	RUN NO 1	ח	UNSMOOTHED TRAJECTORY	TRAJECT	λ c			
PLANE	DATA	FRAME NO.	-00000	39999	UNIT	DATA	FRAME	0	40000-79999	6666						
ď	T WE		>	ALT.	× 4 ×	V A V	٧2	×	¥	G	7.A.	×	3	5.5	A M	¥ d
40001	0.090	-34		m								0.0	0.0	1116,44	0.0765	29.92
40002	0.100			4 ,	-374	0 1	53	378 0	.3384	169 . R1	ec (0.0	0.0	1116.44	0.0765	29.92
40004	120		D C	e in	1360		6 %	374	43354	100.30	107.0			1116.43	0.0765	29.92
40005	0.130			ī	-376	0	36		3404	171.82	•	0.0	0.0	1116,43	0.0765	26.62
4000	1.140			•	-384	0-	55		0.3476	179.19	œ	0.0	0.0	1116.43	0.0765	29,91
40007	0.150			vo r	-379	ç			. 3429	174.37	ac e	6.6		1116,43	6970.0	20.02
000				~ a	200	9 6	L IL		440.0	100	E G			4116	0.0765	20.01
1004	180			000	0 M	9 9	, 4 c =		3093	44.84	· 40		1 - 0	1116.42	0.0765	29,91
40011	0.190			0	-250	0	5		.2256	75.43) Man	0.0	0.1	1116.42	0.0765	29,91
40012	0.200		·	•	-15A	0-	10		.1422	20.07		0.0	0.1	1116.42	0.0765	29,91
40013	0.210		0-	•	+103	0-	M		. 0925	12,68	9-1	0.0	0.1	1116.42	0.0765	29,91
40014	0.220		6-	0.	-127	P	۸.		.1142	19.32	0	0.0		1116.42	0.0765	80
40015	0.230		0-	о	-166	P (₩.		1489	32.86	۰.	0.0		1116.42	0.0765	29.91
40010	2.0		'	o - 0	1213	p •	•		1908	23.09	- 1	0.0		1110.42	0100	vc
45017	0.250		0 0	> 0	000	P 9	O P		2170	07.90			7 .	1110.42	0.0707	20.02
0 0 0				• 0	1001	9 6	۰ ،		1876	50.67	- 0			4116 69	0.076.5	Š
1000	0.280			• 0	1 8 2	9	4		1634	30.84	7			1116.42	0.0765	29.01
4004	0.290		0-	. 0	-180	9	. 40		1614	38.62	1.818		1	1116,42	0.0765	29,91
40022	0.300		-	6	- 1 RO	P	-		.1689	42,31	-	0.0	0.1	1116.42	0.0765	5
40073	0.310			•	-186	e-	#14		0.1669	41,32	7	c.	0.1	1116,42	0.0765	29,91
40004	0.320			0	-169	0-	*23		.1531	34.73		0.0	4.0	1116,42	0.0765	29,91
40005	0.330		0-	ac c	1160	P	15 S		1440	31.13	eç ı			1116.42	0.0769	20.91
40076	340			0 000	136		61.0		1231	22.47	7.06	c •		1116.42	0.0/65	20.02
/ 4004	0.650		P	eo od	9 4	9 9	¢ a		1337	40.49	2.75	5 6	1 -	1110.46	0.0765	20.01
000	370			9 00	.167	9	-22		1500	33.75	7.62		1.0	1116.42	0.0765	29.91
0 1 0 0	0.380			000	1164	9	.24		1486	32.76	. B.		1.0	1116.42	0,0765	29,91
40031	0.390		G-	7	-145	0-	*25		1317	25.71	0	0.	0,1	1116,42	0,0765	29.91
40032	0.400			7	113A	0-	• 20		1.1253	23.97	¥,	0.0	0,1	1116,42	0.0765	29,91
40033	0.410			7	-126	0-	ó.		.1131	18.97	7	0.0	0.0	1116.42	0,0765	29,91
4004	0.420				80.	0	0		.1239	22.77	, 1	c .		1116,42	0.0765	16.62
4 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.430		0		4 4	0 0	P .		0.1258	23.48	-1.044	e c		1110.42	0.070	20.02
400.00	4.4			. ^	126	9 6	1		1125	18.77				1116.42	0.0765	29.91
000	0.460			. ~	100	0	* * *		1.0971	13.09	9		0.0	1116.49	0.0765	29.01
40019	0.470			7	-103	0-	T		.0923	12,62	-0.46	c .	0.0	1116,42	0.0765	29,91
40040	0.480			7	-115	0-	~ 1		1.1026	15,61	0.3883	0.0	0.0	1116.42	0.0765	29.91
40041	0.490		0	_ 1	9110	P 6	# 15		0.1072	17.03	-7.198	c (1116.42	0.0765	16.62
40042				- 4	2 4	9 6	2 2 4		1007	17 887	-11.401			1110.46	0.0765	20.01
44004	•			•			2 - 1			18.04	4 2 0			4446 63	0.00	20.00
4004			0	••	-111	9			1060	14.74	-0.024	0.0	0.0	1116.43	0.0765	29,91
40046	0.540		·	•	-102	0-	-		0.0914	12.38	0	0.0	0.0	1116.43	0.0765	29.01
40047	0.550		0-	•	400	9	7		.0822	10.03	-0.467	٥.٢	0.0	1116,43	0.0765	29.91
40048	0.560		0-	0 4	4 60	P	T' 1		0734	7.91	0	ပ ပ ပ	0.0	1116,43	0.0765	29.91
4004	0.576			0 4	472	2 9			8400.	0.7	-	E (1110.40	0 0 0 0	20.02
40030			5 6	c v	6 4	9 9	4 1		7100.0		5.327				0.0765	20.02
1000	200			•	9	-	. α		. 0536	20.0				1116.43	0.0765	20.01
40053	0.610		0-	•	157	0	. . 0		0.0515	3.93	5.599		0.0	1116.43	0.0765	29.91
4004	0.620		0-	•	0	0-	•		0.0531	4.18	-	0.0	0.0	111	0.0765	29,91
40085			0-	9	-77	0-	#		0,0687	6.9	80.	0.0	0.0	111	0.0765	
40056	0.640		ē	9								0.0	0.0	111	0.1765	29,91

TABLE E-3

DATA S	UMMARY	DATA SUMMARY TEST VERT	JET			נו	DATA	æ	RUN NO 1	N	UNSMOOTHED TRAJECTORY	TRAJECT	۲RY			
PLANE	DATA	FRAME NO.	-00000	39999	UNIT	DATA	FRAME	NO.	NO. 4000-79999	0666						
OZ EAL	F E	×	>	ALT.	× A X	٧٨٧	21	×	2	c	A.	3	>	8,5	012	4
40001	0.040	•	0 -	27								c. 4	0.2	1116,35	0.0764	29,89
40012	0.050		C	32	4	32			0.4697	326,79	86.473	0.1		1116,33	0.0764	29,89
40003	090.0		c	37	F.13	1 4		588 D	0.5271	411.49	A8.161			1116,31		29,88
C	0.079	c-	c	4	-1.7	←			5493	446.69	88.446	c.	0 .3	1116.28	0.0764	29,87
40015	0.080	-	c	5.0	1,0	1			0.5602	464.63	89.667	C.	0.4	1116,24	0.0764	29,87
0	0.091	0	C	56	Μ,	-3			1.547B	444,22	89.57K	ر ر	0.4	1116,23	0,0763	29,86
40007	0.10		C	52	ī	-5			1.5389	429.71	A0. 54R	۲,		1116.21	0.0763	29,85
40008	0.110	c.	C	69	i,	4		598 n	0.5354	474.07	89.363	۲.		1116.19	0,0763	
40009	0.120	C	C	74	-12	-5			0.5315	417.86	88.720	۷.		1116,16	0,0763	
40010	0.130		U	80	-7	٣			. 5253	408.11	89.263	0.3		1116,14		29,84
40041	0.140		Ċ.	86	CC #	0.			.5245	406.71	8 B 2 K	10°C		1116,12		
40012	0.150		0	92	1	9			9.5215	402.14	89.073	ю. С		1116.10		
40013	0.160		Û	96	-7	0			9.5104	384.04	89.335	ю. С		1116,07		
40014	0.17		C	104	C.	1			0.5000	370.77	88.081	0.0	0.7	1116.05	0,0762	29,81
40015	0.180		0	109	α.	4-		552 0	1.4950	361.98	88.12B	4.0	л О	1116.03	0,0762	29,81
40016	191			114	-10	<u>ر:</u> ا		553 0	495g	363.03	ת כה. מפ	4.		1116,01		29,80
40017	0.201	-	c	120	-15	۲-	557	557 n	1667	367.75	88,464	4.0		1115,99	0,0762	29,79
40018	0.21		0	126	-7	-3			0.4930	358,77	89.176	4.0		1115,97		29,79
40019	0.226	F 6	0	131	M .	۸:	534	534 0	0.4785	337.90	89.415	4.0		1115,95	0.0762	29,78
40070	0.23	-	С	136								4.0		1115.93	0.0762	

TABLE E-3 (Cont.)

DATA FR	FRAME NO.	-00006	39999	TIMO	DATA	FRAME	° C	40000-79999	6666					_	
ME	×	>	ALT,	×××	V A Y	۸2	V	x	o	7.4.	3	3	es.	S. C.	4
16.150	33	113	471	ć		,		,				4.5	1115.78	0.0761	29.74
170	N 0	7 7 7	170	2 1	0 -	001	0 0	0.1100	10.00	156.707			1117.70	0.0761	20.74
180	0.00	113	171			00		0.0804	0.83	1007		2	1115.79	0.0761	29.74
190	32	113	170	c	N	66*		0.0848	10.60	-89.047		1.2	1115,80	0,0761	29.74
. 20n	35	112	169	- 7	-22	-106		1.0974	13.99	-77.646		1,2	1115,80	0,0761	29.74
210	32	4 -	168	F .	-37	-117		0.1102	17.92	-71.729		1.2	1115,81	0.0761	29,74
.220	35	112	167	412	- 42	-122		0.1160	19.85	-70.126		1.2	1115.81	0.0761	29,74
.230	ر ا	111	165	111	-37	-120		0.1131	18.86	-72,40R		1.2	1115,82	0.0761	29.75
6.240	32	111	164	•	-21	-113		A.1028	15.59	-79.19A		1.2	1115,87	0.0761	29,75
.250	32	111	163	M	10	# 95		0.0854	10.80	-83.752		1,2	1115.82	0.0761	29,75
.260	8	111	162	7	22	888		0.0820	9.02	-73,381		1,1	1115,83	0.0761	29,75
6.270	35	112	161	0	33	*87		0.0834	10,27	-68,321		1,1	1115,83	0,0761	29.75
6,280	32	112	161	0	33	* 65		0.0878	11.37	-69.933		7.	1415.83	0.0761	29.75
16.200	32	112	140	· a	27	-102		0.0050	4.40	-74.483)	1115 84	0.0761	20.75
900	3.5	112	100	ca	2	1 T		1040	4	75.84			1115 A4	0.0761	20.00
410	0 M	M + 4	157	c a	8	4 +		HOUT O	44 44	176 400			1115 88	0 0761	200
425	2 2	44.0	40.	c	o o	7 - 4 -		2001.0					4447	244	2000
10.00	9 6	0 P T T	170	æ c	0 0	0 1		2000	20.01				1117.07	0 0 7 4 4	27.40
	9 6	014	7 4	x c	200	\ O T		0.0995		173.105			11.7.00	10/010	200
	9 10	* * * * * * * * * * * * * * * * * * *	4 4 1 4	nc «		0 0		4 6 6 6 6	10.51	71,531		1 .	1117.00	10.00	200
.00.	S. 1	4 1 4	150	oc o	S	T 0		0.0778	20.0	-69.70R		7 .	1117,00	0.0761	20,70
1000	910	dr 14	2 1 2	oc 1	0 0	10 to	00 d	0.0740	6.0	-69.074		1 .	1115.00	10/01	24.70
57.0	891	511	152	7	S	10		9.0758	8.47	-72.420		-	1115.67	0.0761	29.76
380	33	115	151	×c	50	187		0.0803	9.52	-76.399		+	1115.87	0,0761	29,76
6.390	33	115	150	r	18	*87		0.0801	9.47	-78.115		1,1	1115.87	0.0761	29.76
400	33	115	149	4	15	ũ6 ≡		0.0817	0.85	-80.365		1,1	1115,88	0.0761	29.76
16.410	33	115	148	M	11	a 9 5		0.0855	10.77	-83.037		1,0	1115,88	0.0761	29.76
.420	33	115	147	^	^	-102		0.0913	12,30	-85.864		1.0	1115,88	0.0761	29.76
430	33	115	146	-	+	-117		0.1049	16.24	-89.367		1.0	1115.89	0.0762	29,77
16,440	33	115	145		9-	-125		0.1118	18.44			1.0	1115.89	0.0762	29.77
450	M (M	115	143	. 6	9	-125		0.1120	18.80	- 07			1115.90	0.0762	29.77
460) Mi	1.	142	ī	ç	-117	117	0.1052	16.44	0			1115.00	0.0762	20.77
470	100	115	141		ın	-104		0.0930	12.76	8			1115.91	0.0762	29.77
480	P.	115	140	M	1.4	0		0.0822	0.07	- 62			1115.01	0.0762	20.77
400	100	115	130	4	7	8.		0.076R	2.70				1115 92	0.0762	20.77
.501	100	116	139	4	16	484		0.0760	47.	-78			1115.92	0.0762	29.77
510	M	116	13.8	4	5	0		0.0822	0	0			1115 02	0.0762	20.77
520	2.2	116	137	Υ.	-	-106		1000	13.41	d			1115 92	0.0762	20.78
5.40	P 2	4	4 4 6	c	0	+		1004	14.10				1115 0	0.0762	20.7
240	, P	4.	4 4		۰	1 6							0 4 4 4	2470	200
	9 6	7 4 4	- M - M - T			1 6		00000							
	0 !	077	10	s 1	9 6	107		0060.0						201000	
0 10	90	01	136	κ, .	7	× ×		. 0880	11.68		T	0.0	1112.	0.0762	24.78
0/6.	6 t	117	101	4				9.00.0	20.12	E (e .	0	1117.7	20/0.0	27.62
500	9 1	11/	001	4	0 1	10.		5670.0		6	d	2 0	1112.7	70/0.0	9 / 9
29.0	٠ ۲	11/	130	4	4 (/ U a		10.0787	4		4.	0	1112 7	29/11.0	29.78
009	34	117	129	۸	0.	06*		0.080.0	0.67		4 .	0	1115.96	0.1762	29.78
610	34	117	128	-	7	96*	96	0.0858	10.86	-89	4.	0	1115.96	0.0762	29.79
.620	34	117	127	٠,	9 .	86	œ	0.0880.0	11.42		4 . C	6.0	1115.96	0.0762	29.79
.630	4	117	126	•	·	000		0000	,			•		010	200
					-	001-	100	6690	11:49	-86.254	ď.	A * 0	1112.7	20/0.0	

4 (•	9.84	-							6	85	68	85	. 85	.85	98	98	.86	96	90			9	.87	.87	. 87	29.87		2	87	.87	.87	8	20.00	8	88	.88	88	9.88	. 38	20.08		8	89	. 89	.89	.89	80	68.	
	3 29	N	0			200		0		3 29	3 29	3 29	3 29	3 29		3 29,8													200								4 29.8											50	4 29	
A HO	0.076	0.076	0.076	74.0	0.076	9400	0.076	0.076	0.076	0.076	0.076	0.176	0.076	0.076	0.076	0.076	0.076	0.076	0.076	0.076	0.076	0.076	0.076	0.076	0.076	0.076	0.076	0.0	0.074	0.076	0.076	0.076	0.076	0.0764	0.076	0.076	0.076	0.076	0,076	0.076	0.076	0.076	0.076	0.076	0.076	0.076	0.076	0.0764	0.076	
,	ø	æ	•			. a	α	•	0	0	<u> </u>	5	=	I	1116.21	*	2	٥.	N 1	2 1	9	. 4	16.24	16.25	16.25	6.23	2		2.	2	8	16.28	8	9 9 9	100	8	60	5	Ę,	÷.	20.0	10 to	6.43	16.34	16.34	7	6.35	6.33	6.35	
	10	-	-			n 16		100	10		-	MC.	10	•	**	45	4	•	•	0.4		4 4 4	0.4 11	0.4 11	•	≠4 •	-	n .	200	0.3 11	0,3 11	0,3 11	21.		2.0	0.3 11	0.3 11	0,3 11	0.3 11	0,2 11	11 2 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	. ~	0,2 11	0,2 11	0,2 11	•		0,2 111	
×	۵.	0				2 6							٥.	٥.		٥. د	2.2	2	~	٠,	~ .			٥.	٠.	2.5	٥,	N C	٠ د د	٠,		1.1	F	r! +		1 5	1.1	1.1	1.1	£. C		r: +			Ŧ.	-	1.1	1.1	1.1	•
۲.	75.665	73.461	70 404	0 7 7 9 7	11.04	72.404	70.00	1 T T T T T T T T T T T T T T T T T T T	1 T T T T T T T T T T T T T T T T T T T	43.868	41.800	50.464	56.774	50.050	-46.482	46.530	50.584	58.589	66.880	72.087	76.400		61.442	61.150	63.217	67.661	72.57	75.657	74.050	69.158	67.362	66.392	66.245	1 C C C C C C C C C C C C C C C C C C C	45.991	66.893	70.338	78.564	82.664	83.179	80.042	170.07	70.00	65.105	57.874	48.545	41.826	35,530	-29.703	
0	1.27 -	3.04	4 6 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	200	60		2 6	4 M	. A	5.17	5.17	5.35	5.56 -	5.99 -	5,88 -	5.19 -	4.43	4.13	4.26	4 37	000.4		4.86	4.05	- 88 - Z	1.68		2001	2.69	3.96 -	3.58 -	3,58	13,31	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.21	3.67 -	- 79.5	- 92.2	3.16	40.0	/ 2 7	900	. 40	8.12	7.90 -	8.96 -	- 65.0	- 84.5	
																																																~	~	•
Σ	0.0873	0000	004	4000	9000	000000	2000	0.000	1000	NO.00	0.1011									0.0982	986000	4000	1010	0.1002	0.0974	0.0933	0.0888	0.0006	400000		0.0946		•	2000			•	0.0925	•	0.0942	7967		0.1114	0.1117	0.1104		1131	0.1179	0.1240	4
Α >	07	7	0	2 6	207	104	7 4	107	0 0	- - - -	M	144	114	114	116	11.6	113	110	100				143		109			6	c a	103	106	107	107	106	4 0 0	105	105	103	104	105	10 P	4.00	124			123	126	132	33	
2 /	#94	001-	M C		200	\$ C		0	0	100	0	66	405	888	484	* 8.4	*87	46*	-100	104	100	1 0	0	# 68 #	464	96*	8 95	3	40	497	€ 6 B	# 03	60 F	6	0 0	*97	66	-101	-103	404	907-	1 1 C	-117	-113	-105	264	#84	*16	694	
> 1 < >	2	000	2	7 2	9 6	2 4	4 14		4	4	51	20	9	71	77	76	69	55	4 4	35	0 4	0 4	25	52	47	33	53	2 0	2 0	3 10	39	4	4 4	4 4 D M	. 4 	40	34	20	13	2	9 2	0 T	4	20	63	7.8	06	103	115	
× × ×	7	α				0 (> 0	*	- 0	· •	i.	* *	17	2	0	6	20	16	42	0	0	= •	† LC	- 12	MS WH	9.1	α	,	c r	, C	कूर करा	12	٠, ۱	- 0	\ C	. -	T U	œ	4	MC ·	r (•		4	₩.	22	56	30	10	
ALT:	16	75	4	. 1	2 6	7 ;	1 0	9	9	2,4	90	6.00	49	63	6.2	62	61	9	59	100 I	2,	o ur	, R	53	55	51	50	4 4 • a	4 4	4	45	4	A .	7 -	1 4	6	33	37	36	5	M) N	9 0	E	30	50	28	27	90	25	2
	132	133	24	9 M C	133	4.4	101		1 tr	7 7 7	136	137	137	138	138	139	1.40	141	141	142	4 4	 	143	144	144	145	145	1.4 7.4 7.1	146	146	146	147	147	14 4 25 00	. 4 . 4	149	149	149	150	150	150	(L)	151	151	152	152	153	154	155	
>																																																		
×	80	ď.	2 4	9 0	1 0	90 6	A 6	4 6) M	. 6	, O	39	4	4	40	40	40	4	4	- 1 •	1 4	4	4	41	42	5.	4 4	t 4	4	4	4	6. 6	4 4 7. W	2 4 0 14	. 4 . w	4	43	4.	4.3	4. 4 W 1	5 4 5 4	4	43	44	4	44	44	45	
E I	150	140	- E	- C	001.	- 6	240	220	240	7.240	250	260	270	280	290	.300	.310	.32n	.330	.340	065.	440	000	390	400	410	.420	D 9 9	. 4 4 7 0	46	470	.480	7 4 9 7	. 50		530			.560	.57	580		6.0	.620	,631	.641				
-	17	17	1	1 ,	À	, r	1	1 -		1 7	17	1	17.	17.	17.	-	17.	=	₩	*	17	⊣ •	1	1 4	-	4	7	-1	- F	1,	17	17	7		1 1	1 +	17.	Ŧ	**	17.	• •	ri v		1 -1	1	1,	17	17.		
œ	10	10	1 M	-	# W	20101	0 P	. 00	0		-	12	17	414	40115	116	117	118	1119	120	127	775	4	125	126	40127	178) + 	12	133	4.4	4.15	9 7 7	4014	62.10	40140	40141	40142	143	40144	4 4 7	40147	148	149	150	1,61	40152	153	,

TABLE E-3 (Cont.)

							TABL	Е Е-	3 (Cont.)				
DATA SL	JMMARY	TEST RING	1				DATA	R	UN NO 1	u	VSMOOTHED	TRAJECTORY	
PLANE D		FRAME NO.	00000-	30000	HNIT	DATA			40008-79		101,001.11.0		
FERRE I	7818	TRAME NO.	00000-	09797	Q () I	DAIR	FNAME	NU.	40000-74	,4,4			
FR	TIME	X	Υ	ALT.	VAX	VAY	V 2	V A	м	0	T.A.	WX WY	9.S. RHO PA 9 1115,96 0.0762 29.78
400n1 400n2	8.800	⇒36	67 67	128	• 5	13	#83		0.0754		-80.298	n.4 0.	9 1115,96 0,0762 29,79
400n3 400n4	8,820		67 67	127 126	₽ 2	12 11	=81 =79		0.0735		-81.314 -82.132	n.4 0.	9 1115,96 0.0762 29,79 9 1115,97 0.0762 29,79
400n5 400n6	8.84n 8.85n		67 67	125 124	2	10	≈77 ≈74		0,0699	7,22	-82.626 -82.209	n.4 0.	9 1115,97 0.0762 29.79 9 1115,97 0.0762 29.79
400 0 7	8.86n 8.87n	-36	68 68	123	В	7	₽72	7.3	0.0653	6.30	-81.525	0.4 0.	9 1115,98 0.0762 29.79 9 1115,98 0.0762 29.79
40008 40009	8.880	×36	68	123	9 8	6	•72 •74	75	0.0655	6.69	-82,420	n.4 0.	9 1115,98 0,0762 29,79
40010	8.89n 8.90n		68 68	121 121	6 6	6	∍78 •80		0.0706 0.0723	7.37	-83.652 -84.228	n 4 0.	9 1115,98 0,0762 29.79 9 1115,99 0,0762 29.79
40012 40013	8,910		68 68	120 119	5	5 5	≠82 +83		0.07 3 7		-84,981 -85.898	0.4 0.	8 1115,99 0.0762 29.79 8 1115,99 0.0762 29.79
40014	8.93n 8.940		68 68	118 117	2	4	≠85 ⊭86		0.0765		-87.179 -87.981		8 1116.00 0.0762 29.80 8 1116.00 0.0762 29.80
40016	8.95n 8.960	-36	68 68	116 115	- n	3	₽87 ₽88	87	0.0781	9.12	-88,157 -87,331	ò.4 0,	A 1116.00 0.0762 29.80 A 1116.01 0.0762 29.80
40018	8,970	-36	68	115	- 4	5	#8 8	88	0.0793	9.28	-85.815	0,4 0,	R 1116,01 0.0762 29.80
40019	8.990	-36	68 68	114	-11 -13	6	#92 #94	95	8.0833 8.0850	10,68	-82.586 -81.090	n.4 0.	8 1116.01 0.0762 29.80 8 1116.02 0.0762 29.80
40021 40022	9.000 9.01n	=36 =36	68 68	112 111	-12 -5	7	#93 #89		0.084n 0.0803		-81.787 -84.39n		9 1116.02 0.0762 29.80 8 1116.02 0.0762 29.80
40023	9.020		68 69	110 109	5 16	. 7	±84 =77		n.0753 n.0710		-84.ñ67 -77.046	0.4 0.	8 1116.03 0.0762 29.80 8 1116.03 0.0762 29.80
40025	9.04n 9.05n	-36	69	108	22	9 8	#73 #71	77	0.0688 0.0674	6.98	-72.301 -71.826	0.4 0.	8 1116.03 0.0762 29.81 8 1116.04 0.0762 29.81
40027	9.060	-35	69	107	17	7	#72	74	0.0666	6,55	-75.898	0.4 0.	8 1116.04 0.0762 29.81 8 1116.04 0.0762 29.81
40028	9.080	-35	69	106	7	4	•75 •75	76	0.0673 0.0677	6.77	-83.625 -86.325	n.3 0.	7 1116,04 0.0762 29.81
40030 40031	9.090		69 69	1 n 5 1 n 4	-2	4 5	#77 #80		0.0691 0.0717		-87.061 -86.155	n.3 0.	7 1116,05 0,0762 29,81 7 1116,05 0,0762 29,81
40032	9.110	-35	69 69	103	-3 -5	7 8	≈83 ≈88	83	0.0745 0.0791	8,19	-84,731 -83,885	0.3 0.	7 1116.05 0.0762 29.81 7 1116.06 0.0762 29.81
40034	9.130	-35	69	101	-7	7	•91 •91	91	0.0817	9.87	-83.878 -84.543	n.3 0.	7 1116,06 0,0762 29.81 7 1116,06 0,0763 29.81
40036	9.150	-35	69	100	₹ A	-1	#89	89	0.0802	9,50	-85,465	0.3 0.	7 1116,07 0,0763 29,82
40037 40038	9.16n 9.17n	-35	69 69	99 98	-7 -7	-4 -4	≠83 ≠80	80	0.0746 0.072n	7.65	-84.669 -84.268	0.3 0.	7 1116,07 0.0763 29.82 7 1116,07 0.0763 29.82
40039 40040	9.18n 9.19n	-36	69 69	97 96	#7 #6	-2 3	≈78 ∗76	78	0.070n 0.0685	7.24	-84.987 -85.108	0.3 0.	7 1116.08 0.0763 29.82 7 1116.08 0.0763 29.82
40041	9.200		69 69	96 95	-4	8	■77 ■77	77	0.0693 0.0690	7.10	-84.729	0.3 0.	7 1116,08 0,0763 29,82 7 1116,09 0,0763 29,82
40043	9.220 9.230	-36 -36	69 70	94 93	±1 •∩	9	#78 #80	78	0.0701	7.25	-83.061	0.3 0.3	7 1116,09 0,0763 29.82 7 1116,09 0,0763 29.82
40045	9,240	⇒36	70	92	=1	13	■83	84	0.0723	8,38	-82.684 -81.284	n.3 0.1	7 1116,09 0,0763 29,82
40046 40047	9.25n 9.26n	-36 -36	70 70	92 91	≥3 =4	13 12	•88 •90		0.0797 0.0816		-81.076 -81.792	0.3 0.0	6 1116,10 0.0763 29,82 6 1116,10 0.0763 29,82
40048 40049	9,27n 9,28n	=36 =36	70 70	90 89	- 4 - 4	10 4	+90 +89		0.0816 0.0797		-83.406 -86.633	0.3 0.4	6 1116,11 0.0763 29,83 6 1116,11 0.0763 29,83
40050	9.29n 9.30n	-36 -36	71 70	88 87	-2 -0	1 2	●86 ■84	86	0.077n	8.77	-88.209 -88.908	n.3 0.4	6 1116,11 0.0763 29.83 6 1116,12 0.0763 29.83
40052	9.31n 9.32n	-36	79 70	86 86	= n = 1	4 8	=82 =81	82	0.0735	7.99	-87.551 -84.225	0.3	6 1116,12 0,0763 29,83 6 1116,12 0,0763 29,83
40054	9.330	-36	70	85	- 4	9	■81	81	0.073n	7.88	-82.711	n.3 0.	6 1116,12 0,0763 29,83
40055	9.34n 9.35n	-36	71 71	84 83	-11 -13	7	≠82 ≖83	84	0.0748 0.0757	8 . 47	-80.542 -79.731	0.3 0.	6 1116,13 0,0763 29,83 6 1116,13 0,0763 29,83
40057 40058	9,36n _9,37n	-36	7 <u>1</u> 71	82 81	*13 *10	5 4	#84 #84		0.0762		-80.767 -82.690		6 1116,13 0,0763 29,83 6 1116,14 0,0763 29,83
40059 40060	9,38n 9,39n		71 71	81 80	≠5 ▼1	5	#82		0.0745 0.0736		-85.349 -85.747	n.3 0.	6 1116.14 0.0763 29.84 6 1116.14 0.0763 29.84
40061	9.400	-36	71 71	79 78	2	8	.81 .81	82	0.0731 0.0730	7.89	-84.364 -83.170	0.3 0.	6 1116.15 0.0763 29.84 6 1116.15 0.0763 29.84
40063	9.42n 9.43n	-36	71 71	77 77	2	1 0 1 0	•81 •82	82	0.0733	7.95	-82,938 -83,281	0.3 0.	5 1116,15 0.0763 29,84
40065	9.440	= 36	71	76	1	9	*82	82	0.0736	8.07	-83.994	n.2 0.	5 1116,16 0,0763 29.84 5 1116,16 0,0763 29.84
40066 40067	9.45n 9.46n	-36	71 71	75 74	- 2 0	6 5	*83 *84		0.0747 0.0758	8,49	-85.871 -86.543	0.2 0.5	5 1116,16 0.0763 29,84 5 1116,17 0.0763 29,84
40068 40069	9.47n 9.48n	-36	71. 72	73 72	-5 -9	4	#86 #88		0.0771		-85.606 -83.337	0.2 0.	5 1116,17 0,0763 29,84 5 1116,17 0,0763 29,84
40070	9.490 9.500		72 72	71 71	711	6	#88 #87	89	0.0798		-R1.65R		5 1116,18 0.0763 29.85
40072	9.510	-37	72 72	70 69	*8 *2	8	•85 •80	85	0.0765	8 - 66	-82.245	0.2 0.	5 1116,18 0.0763 29,85
40074	9.530	-37	72	68	0	9	∗ 77	78	0.0697	7.20	-83.540 -83.708	0.2 0.	5 1116,19 0,0763 29.85 5 1116,19 0.0763 29.85
40075	9.54n 9.55n	-37	72 72	67 67	• 1	8	•77 •78	79	0.0693 0.0705	7.36	-83.707 -84.659	0.2 0.	5 1116,19 0,0763 29,85 5 1116,19 0,0763 29,85
40077 40078	9.56n 9.57n	-37	72 72	66 65	≠5 *8	7	#81 #84		0.0732 0.0755		-83.769 -82.942		5 1116,2n 0.0763 29,85 5 1116,2n 0.0763 29,85
40079 40080	9.58n 9.59n		72 72	64 63	-1n	5	■85 ■85	86	0.0767	8.70	-82.765 -82.764	0.2 0.	5 1116,20 0.0763 29.85 4 1116,21 0.0763 29.85
400A1 400A2	9.600	-37	72 72	62 62	=9 =6	5 7	#83 #88	84	0.0752	8.36	-83.005 -82.929	0.2 0.	4 1116,21 0,0763 29.85 4 1116,21 0,0763 29.86
40083	9.620	-37	73 73	61	=6	12	≖ 78	8.0	0.0713	7.53	-80.207	0.2 0.	4 1116,22 0,0763 29,86
40084	9.64	-37	73	60 59	=6 =6	15 15	€79 €80	82	0.0717 0.073n	7,90	-78.696 -78.363	0.2 0.	4 1116,22 0,0763 29.86 4 1116,22 0,0763 29.86
40086 40087	9.65n 9.66n	-38	73 73	58 58	≖6 ≉6	14 12	≈82 ∞84		0.0751 0.0765	8.66	-79.259 -81.107	0.2 0.	4 1116,23 0,0763 29,86 4 1116,23 0,0763 29,86
400F8 400F9	9.67n 9.68n		73 73	57 56	*5	10	≈86 ≈86	86	0.0774 0.0776	8.87	-82.134 -82.914	0.2	4 1116,23 0,0763 29,86 4 1116,24 0,0764 29,86
40090	9.691	~38	73 74	55 54	# 6 # 5	8 7	●85 ●84	86	0.0769 0.0755	8.76	-83.444 -84.013	0.2 0.4	4 1116,24 0.0764 29.86 4 1116,24 0.0764 29.86
40092	9.710	≖38	74	53	~ 5	6	■83	84	0.0748	8,29	-84.741	0.2	4 1116,25 0,0764 29,86
40093	9.720	-38	74 74	53 52	≠6 =8	5	±83 ±84		0.0748 0.0754	8.41	-84.722 -83.637	0,2	4 1116,25 0,0764 29,87 4 1116,25 0.0764 29,87
40095 40096	9.740	-38 -38	74 74	51 50	-11 -16	5 5	#85 #86		0.0765 0.078n	8 . A 7 9 . N 1	-81.725 -79.ñ39		4 1116,26 0,0764 29.87 4 1116,26 0,0764 29.87
40097 40098	9.761	-38	74 74	49 48	-17 -16	6 7	*86 •86	88	0.0787 0.0786	9.18	-77.978 -78.381	n.2 0.3	3 1116,26 0,0764 29,87 3 1116,26 0,0764 29,87
40099 401n0	9.781	-39	74 74	47 47	-12	11 15	₹86	87	0.078n	9.02	-79.505	n.2 0.3	3 1116,27 0,0764 29,87
40101	9.80n 9.81n	-39	74	46	0	20	#85 #85	88	0.0773	9 . 11	-79.658 -76.786	0.2 0.	3 1116,27 0,0764 29,87 3 1116,27 0,0764 29,87
401n2 401n3	9.820	-39	75 75	45	-1	22 21	•85 •85	87	0.0789 0.0783	9.07	-75.473 -76. <u>0</u> 89	n.1 0.	3 1116,28 0,0764 29,87 3 1116,29 0,0764 29,87
401n4 401n5	9.83n 9.84n	-39	75 75	43 42	≖5 ≖7	17 11	•84 •82	86	0.0769 0.0744	8.76	-78.053 -81.239	0.1 0.	3 1116,28 0,0764 29,88 3 1116,29 0,0764 29,88
401n6 401n7	9.851 9.861	-39	75 75	41 41	*8 *9	8	#81 #81	82	n.n735 0.0733	8.00	-82.003 -81.905	0.1 0.3	3 1116,29 0,0764 29,88 3 1116,29 0,0764 29,88
401n8 401n9	9,87n 9,88n	-39	75 75	40	-1 n	7	=81	82	0.0737	8 . ñ 4	-81.337	0.1	3 1116.30 0,0764 29.88
40110	9,890	-39	76	38	-12	8 B	=81 =81	82	0.0733	8.00	-79.705 -79.058	0.1 0.3	3 1116,30 0,0764 29,88 3 1116,30 0,0764 29,88
40111	9.900	-4 0	76 76	37	-13 -10	11	#82 #86	87	0.075n 0.0779	9.00	-79.355 -80.186	0.1 0.	3 1116,31 0,0764 29,88 3 1116,31 0,0764 29,88
40113	9.92n 9.93n	- 4 n	76 76	36 35	**6 **3	14 16	∍91 ∍ 94	92	0.0823 0.0855	10.63	-80.559 -80.150	n.1 0.7	3 1116.31 0.0764 29.88 2 1116.32 0.0764 29.88
40115	9.940 9.95n		76 76	34 33	-1	18 20	9 7	99	0.0888	11.69	-79.476 -78.638	0.1	2 1116,32 0,0764 29,89 2 1116,32 0,0764 29,89
40117	9.961	-40	77	32		-							2 1116,33 0,0764 29,89

TABLE E-4

DATA	SUMMARY T	EST DRUM	7		OP.	TICL	DATA		RUN NO 1	U	NSMOOTHED	TRAJECTORY			
PLANE	DATA F	RAME NO.	00000-	39999	UNIT	DATA	FRAM	E NO	40000-	79999					
FR	TIME	×	Y	ALT.	VAX	VAY	٧z	V A	н	0	T.A.	WX W	Y 5.S.	RHO	PA
40011	0.255	0	100	7								0.0 0	.0 1116,42	0.0765	29,91
40002	0.265	1	104	7	2	460	×47	462	0.4139	253.95	-5,831		.0 1116,42		
40003	0.275	1	109	6	2	398	2	398	0.3562	188,16	0.360		.0 1116.43		
40004	0.285	1	112	7	2	380	-9	380	0.3407	172.10	-1.386		,0 1116,42		
40005	0.295	ī	115	7	2	361	21	362	0.3243	155.89	3.275		.0 1116,42		
40006	0.305	1	119	6	2	381	2.3	382	0.3420	173,43	3.500		.0 1116,43		
400ñ7	0.315	1	123	7	2	391	38	393	0.3518	183.55	5.478		.1 1116,42		
400n8	0.325	1	127	8	2	395	15	395	0.3541	185.90	2.14R		.1 1116,42		
40009	0.335	1	131	8								0.0	.1 1116.42	0.0765	29.91

DATA SI	SUMMARY TEST	ST DRUM	10		PAO	OPTICL	DATA	ā.	RUN NO 1	Š	UNSMOOTHED TRAJECTORY	TRAJECTO	<u>×</u>			
PLANE	DATA FRA	FRAME NO.	-00000	39999	LIND	DATA	FRAME	.0N	40000-79999	666						
œ		*	>	ALT,	X A V	VAY	۸۷	٧ ٨	x	o	T.A.	×	7		RHO	4
40004	7.380	- 5. C. T.	7-	Q Q	100	4.	40	4		18.40				1116.38	0.0764	20.00
40003		100	-7	0	00+	-12	38	00	.0887	11.93	22.704	! - !			0.0764	29,90
40004		4 T T	۲- ۵	400	C 00	7:	4 n	4 6	0.0845	10,58	28.448	H .	1,0	1:	0.0764	29,98
4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		1 1 0 10 0 10	0 10	20	, v	17	2 2		. 0000	12,55	32.847	r -	5 0	1 1 1	0.0764	20.00
40007		-56	ec i	21	+85	-12	53		0.0894	11,85	30,885	11.0	0.1	1116,37	0.0764	29.90
4 G G G G G		-57	oc o	2 2	4 .	2:	7 4		0.0863	11,03	28,893	£, 6	0.0	111	0.1764	29.90
40010		159	င္ဆ	, v	- 0 c α	-12	5 45		. 0925	12.69	29.879	d = 0		111	0.0764	29.90
40011		19-	æ	23	-100	-15	10		1020	15,70	16.566	. 0	2.0	111	0.0764	29,90
40012		-61	ac c	4.6	-116	-16	25		1.1075	17,14	12.174	0.1	6.0	1116.36	0.0764	29.90
40013		0 Y) (5 4	101	112	4 T		. 1007	12.63	31.00.4	c c	200	111	0.0764	29.90
40015	n.52n	40.	6	52	+71	-10	9		.0837	10,38	40.190		. 0	111	0.0764	29.89
40016	1.530	165	က္	25	6 r	110	4 C		0.0730	7,90	31.870	1.0	0.0	1116,35	20	29.89
4001/		r 4	2 0	0 0	, , , ,	110	6 4		1270.	10.26	27.040	-! + - 0 - 0		1 -	0.0764	20.89
40019	0,561	-67	6.	9.0	0	-13	56		. 0968	13.00	31.243		0	17	0.0764	29,89
40020	0.570	-68	O I	27	-100	-14	50		1.1044	16,15	30.082	1.0	0.2	1116,35	0.0764	29,89
40071	n 58n	691	0 0	9 9	0C :	4 4	51	112	1001	14.85	27.323	# ·	0	1116,34	2:	29,89
A 0 0 0 4	0.00	-/0	-1 -	10 C		2 - 1	7 4 7	000	0060.	21	04.40			1110	20	20.89
4004	0.610	.71	7 7	0	*77	*11	37	2 40	0.0769	8.76	25.437			1116	6	29.80
40025	0.620	-12	-	6	* 65	-13	4	105	1.0941	13.12	27.564	+ + + + + + + + + + + + + + + + + + +	. 0	1116	0.0764	29.89
40076	0.630	-73	01-	30	1108	-15	58	124	11106	18.14	28.172	e :	0	1116.	6	29.89
40004 80004	. 0 4 0	27.		5 5	-100	113	7.4	4 0	1117	12.44	27.155	r! +	, ,	1110.	0.070	20.89
40000	. 660	176	-	1 ed 0 M0	9	-10	9	71	0.00	6.04	10 mm			1116	6	20.89
40030	0.670	-77	7	31	+65	0	4	67	0.0598	5.30	10.652	; e	6.0	1116	0	29,89
40031	n.68n	177	11:	31	1.73	1,	56		0.0739	8.10	18.352	1.0	0.0	1116.	6	29,89
40032	0.00	-7.8		3 5	P 1	-12	00 G		0.0822	10.02	24.447	7 ∫ 1	0	1116.	0.0764	29,89
40004	0.710) C	7 7	0 K	\ M	1 1	1 L		0000	14.00	78.634	ri e	, 0	1116	10	20.89
40035	0.720	181	11:	33	-100	114	25		1017	15,33	27.386	. e	0	1116	0	29,89
40036	n.73n	185	-11	34	-107	-15	40	118	.1059	16.60	24.251	0.1	0,2	1116.	6	29,89
40037	740	100 d	+1 C	10 F	104	-15	40 B		.1005	14.95	19.874	e .			0.0764	29,88
0000	0.760	1 10 00	7	nu r	961	-13	2 0		1080	11.82	70.420			1116.	0.0764	29.88
40040	0.770	-86	-12	35	664	-14	36		1.0954	13,47	19.992		.0	1116,	0.0764	29,88
40041	0.780	-87	1.12	35	60.0	-13	4 4 70 4		0.0933	12,89	25.322		0		010	29,88
40042	0.800	0 00	1 2 2	9 0	177	-11	21.0		7900.	8.60	C 0 1 . 4 C				6	29.88
4004	n.81n	• R9	1.2	37	■74	-10	56		0.0713	7.53	19.061	0.1			0.0764	29,68
74004	0.00	6	2 F	37	8 0	115	30		0.0793	6.37	10.070	F. 6	0		07	29,88
40040	0.00.0	. 6	0 10	27	K 0	112	0 K0		7,067	11.75	20.260	- 	9 K9			20.88
40048	0.850	50	. *S	90	8	+12	37		0.0872	11.27	22.621	; - ;	0.0		17	29.88
4004	0.860	46-	*1.3	38	# 93 93	-15	4		.0856	10.85	29.001	1.	0.3	-	0	29,88
0.004	0.870	- 0 - 0 - 0 - 0	113	0 0 10 P	÷ 0	117	9 6		0.0844	10,95	29.171		M F		50	29,88
10004	000		? ₩.	0	C 00	175	D 6			10.07	100	ri +			200	20.00
40033	0.900	-97	1.0	40	66.	113	9		0.00	10.67	15.082		.0		6	29.88
40024	0.910	60	-13	40	. B	-12	27		0.0816	9.86	17.207		0.3		0	29,88
400%	0.920	66	414	4	* 85	-12	28		9080.0	9.63	18.210	1.0	0.3		0,0764	29,88
40010	0.03	0.0	4 4	4 4	6C C	-12	9 6	60,00	0.0855	10.82	22.157		000		0.0764	29.86
4000	0.00	10	4	4.2	0	4 -	4	107	4000	13.85	04 . AC	7		1116.20	0.0764	20.88
40059	0.960	-103	4	42	:			3		1	100	1.0	0.0	1116,29	0.0764	29.88

APPENDIX F
GAMMA COUNTING DATA

Run 1 Screen Size 26.9 mm, Sample Weight 5.5360 grams (20 min. live time, 0-2 Mev. F. s. 0.71 gm/cm² absorber on face of crystal, sample on absorber)

001 00001	000 00000	003 00004	004 00011	005 00001	006 00132	007 18319	008 28703	009 67925	010 48410
011 68361	012 51751	013 17968	014 10344	015 07364	016 06639	017 06367	018 06166	019 06560	020 07669
021 07759	022 06265	023 04146	024 03216	025 02717	026 02529	027 02364	028 02246	029 02039	030 01814
031 01591	032 01562	033 01413	034 01356	035 01243	036 01184	037 01144	038 01034	039 00957	040 00935
041 00848	042 00865	24800 840	044 00826	045 00717	046 00721	047 00643	048 00670	29900 640	050 00651
051 00611	052 00571	053 00574	054 00561	055 00524	056 00485	057 00514	058 00476	059 00433	060 00448
061 00396	062 00441	063 00394	064 00355	065 00356	066 00354	96200 290	068 00338	069 00353	070 00346
071 00332	072 00388	073 00424	074 00491	075 00528	076 00601	077 00651	078 00633	00900 620	080 00603
081 00451	082 00347	083 00291	084 00234	085 00193	086 00177	087 00195	088 00198	089 00207	090 00194
091 00211	092 00214	093 00202	094 00231	095 00263	096 00327	097 00411	098 00489	069 00530	100 0019
101 00589	102 00642	103 00534	104 00480	105 00339	106 00285	107 00173	108 00120	1000 601	110 00093
111 00075	112 00063	113 00055	114 00046	115 00052	116 00066	117 00059	118 00052	119 00049	120 00058
121 00058	122 00060	123 00045	124 00045	125 00043	126 00035	127 00047	128 00042	129 00045	130 00051
131 00042	132 00028	133 00026	134 00039	135 00035	136 00045	137 00045	138 00040	139 00041	140 00036
141 00048	142 00041	143 00036	144 00034	145 00053	146 00036	147 00046	148 00026	149 00031	150 00026
151 00032	152 00032	153 00029	154 00042	155 00026	156 00032	157 00028	158 00013	159 00024	160 00021
161 00013	162 00021	163 00016	164 00019	165 00015	166 00021	167 00021	168 00012	169 00024	170 00021
171 00014	172 00028	173 00015	174 00021	175 00023	176 00021	177 00016	178 00016	179 00019	180 00024
181 00023	182 00018	183 00019	184 00020	185 00021	186 00015	187 00013	188 00016	189 00009	190 00010
191 00016	192 00008	193 00010	194 00007	195 00005	196 00007	197 00003	198 00005	60000 661	000 000

Run 2 Screen Size 19,0 mm, Sample Weight 4,7604 grams (20 min, live time)

0000 100	000 00000	003 00001	004 00003	005 00001	26000, 900	007 15863	008 24674	009 58860	010 41051
011 59436	012 43683	013 14935	014 08813	015 06098	016 05619	017 05473	018 05310	019 05767	020 06466
021 06634	022 05271	023 03632	024 02732	025 02391	026 02183	027 01990	028 01876	029 01780	030 01586
031 01403	032 01357	033 01152	034 01191	035 01030	036 01009	037 00919	038 00872	039 00847	040 00812
041 00787	042 00751	043 00674	044 00671	045 00635	20900 940	047 00602	048 00590	049 00572	050 00548
051 00521	052 00472	053 00498	054 00458	055 00435	056 00429	057 00390	058 00428	059 00410	060 00358
061 00339	062 00349	063 00295	064 00288	065 00286	066 00298	067 00293	068 00316	069 00326	070 00314
071 00312	072 00335	073 00410	074 00417	075 00455	076 00531	077 00546	078 00597	92500 620	080 00489
081 00377	082 00321	083 00242	084 00212	085 00194	086 00152	087 00175	088 00157	089 00157	19100 060
091 00170	092 00163	093 00195	094 00195	095 00233	096 00270	097 00342	968 00398	90500 660	100 00525
101 00570	102 00563	103 00478	104 00372	105 00270	106 00173	107 00130	108 00100	109 00086	110 00065
111 00065	112 00058	113,00050	114 00041	115 00035	116 00049	117 00053	118 00055	94000 611	120 00041
121 00042	122 00047	123 00039	124 00042	125 00032	126 00035	127 00038	128 00036	129,00030	130 00028
131 00026	132 00028	133 00026	134 00034	135 00040	136 00028	137 00031	138 00031	139 00037	140 00043
141 00042	142 00035	143 00038	144 00035	145 00030	146 00035	147 00034	148 00027	149 00027	150 00027
151 00024	152 00023	153 00026	154 00030	155 00024	156 00032	157 00017	158 00014	159 00024	160 00017
161 00018	162 00023	163 00012	164 00016	165 00018	166 000022	167 00015	168 00018	169 00019	170 00019
171 00020	172 00025	173 00022	174 00022	175 00027	176 00014	177 00018	178 00014	179 00020	180 00021
181 00020	182 00026	183 00016	184 00020	185 00018	186 00014	187 00012	188 00014	189 00012	190 00006
191 00009	192 00012	193 00009	194 00006	195 00010	196 00002	197 00008	198 00006	199 00004	0000 000

Run 3 Screen Size 13.5 mm, Sample Size 6.9650 grams (20 min. live time)

1 010 56206	3 020 08846	6 030 02148	2 040 01041	3 050 00701	02400 090 2	8 070 00399	0 080 00631	1 090 00230	8 100 00758	7 110 00071	2 120 00055	9 130 00046	7 140 00037	9 150 00033	91000 091 0	9 170 00025	8 180 00023	41000 061 9	0000 000
009 78431	019 07793	029 02446	039 01152	049 00703	059 00517	069 00388	020 00130	089 00221	80900 660	109 00087	119 00072	129 00039	139 00047	149 00029	159 00020	169 00029	179 00028	189 00006	ACCOC DOL
008 32814	018 07157	028 02656	038 01168	69200 840	058 00608	068 00387	078 00777	088 00208	098 00612	108 00120	118 00057	128 00037	138 00052	148 00034	158 00029	168 00019	178 00025	188 00016	198 00008
007 20562	017 07169	027 02784	037 01255	047 00802	057 00567	062 00330	077 00713	087 00198	40500 260	107 00176	117 00056	127 00026	137 00036	147 00042	157 00034	167 00027	177 00020	187 00014	197 00004
006 00159	00220 910	026 02904	036 01332	046 00809	056 00553	990 990	076 00728	086 00231	096 00359	106 00264	116 00069	126 00058	136 00029	146 00038	156 00024	166 00018	176 00029	186 00021	196 00006
005 00003	015 08491	025 03162	035 01466	045 00854	055 00598	065 00352	14900 520	085 00217	095 00336	105 00400	115 00059	125 00050	135 00041	145 00032	155 00028	165 00025	175 00026	185 00025	195 00007
004 00001	014 11932	024 03679	034 01518	044 00887	054 00639	00†00 †90	04 00260	084 00282	094 00334	104 00549	114 00056	124 00057	134 00039	144 00027	154 00033	164 00022	174 00030	184 00028	194 00011
003 00002	013 21312	023 04808	033 01595	043 00924	053 00633	063 00454	073 00567	083 00320	093 00217	103 00634	113 00061	123 00042	133 00043	143 00043	153 00038	163 00022	173 00029	183 00025	193 00011
000 00000	012 60618	022 07071	032 01859	042 00987	052 00691	062 00441	072 00461	085 00430	092 00232	102 00777	112 00075	122 00066	132 00034	142 00041	152 00044	162 00021	172 00021	182 00030	192 00015
001 00004	011 80468	021 08988	031 01987	041 01004	051 00715	92400 190	071 00465	081 00501	091 00214	101 00789	111 00072	121 00057	131 00049	141 00045	151 00021	161 00026	171 00024	181 00025	161 00010

Run 4 Screen Size 9,51 mm, Sample Weight 5,3549 grams (30 min, live time)

010 55352	020 08819	030 02174	040 01057	050 00715	060 00518	070 00418	080 00041	090 00220	100 00723	100 00101	120 00066	130 00038	140 00040	150 00050	160 00029	170 00031	180 00024	190 0001	0000 000
49008 600	69520 610	029 02436	039 01113	049 00758	059 00552	20†00 690	022 00230	089 00220	68900 660	109 00089	119 00064	129 00045	139 00061	149 00044	159 00023	169 00029	179 00024	189 00011	199 00012
008 34174	018 07108	028 02623	038 01172	048 00755	058 00557	668 00366	078 00720	088 00204	098 00548	108 00122	118 00055	128 00038	138 00064	148 00048	158 00028	168 00020	178 00032	188 00025	198 00008
007 21502	017 07125	027 02597	037 01243	047 00784	057 00581	98500 290	77700 770	087 00197	097 00429	107 00185	117 00064	127 00056	137 00049	147 00036	157 00043	167 00031	177 00028	187 00017	197 00007
29100 900	016 07550	026 02833	036 01315	046 00842	056 00597	00400 990	02900 920	086 00247	966 00398	106 00254	116 00078	126 00043	136 00051	146 00046	156 00035	166 00025	176 00027	186 00011	196 00009
0000 500	015 08150	025 03224	035 01368	045 00828	055 00584	065 00432	075 00624	085 00225	095 00319	105 00392	115 00067	125 00064	135 00046	145 00044	155 00026	165 00026	175 00027	185 00012	195 00010
9000 700	014 11437	024 03677	034 01588	044 00885	054 00649	064 00426	91900 740	084 00277	094 00257	104 00510	114 00076	124 00058	134 00045	144 00053	154 00038	164 00024	174 00025	184 00029	194 00010
003 00003	013 19988	023 04730	033 01678	043 00943	053 00637	063 00437	073 00485	083 00334	093 00239	103,00610	113 00076	123 00046	133 00056	143 00054	153 00039	163 00023	173 00036	183 00039	193 00011
000 00000	012 58444	022 07089	032 01785	042 01009	052 00674	062 00468	072 00467	082 00405	092 00261	102 00762	112 00069	122 00074	132 00051	142 00055	152 00035	162 00028	172 00032	182 00028	192 00008
001 00000	011 79384	021 08851	031 01837	041 01005	051 00739	061 00470	071 00425	081 00533	091 00237	101 00750	111 00076	121 00068	131 00045	141 00057	151 00027	161 00020	171 00030	181 00024	191 00017

Run 5 Screen Size 6,73 mm, Sample Weight 8,5643 grams (30 min, live time)

1 7,	52	ŗ	† ,	'n	2:	Ħ	71	0	Q	ထွ	ω	#.	9	2:	7.	7.	0.	0	d	
010 54984	020 08435	030 01871	040 00934	050 00665	24400 090	070 00421	980 00494	090 00209	100 00696	110 00058	120 00058	130 00034	140 00036	150 00037	160 00034	170 00024	180 00020	190 00010	000 000	
										11										
96452 600	07580	96610	01030	51900 6th	059 00470	92500 690	079 00595	78100 680	099 00692	109 00077	119 00052	129 00041	139 00054	149 00055	159 00017	169 00026	71000 641	189 00011	11000 661	
600	019	029	039	640	059	690	620	680	660	109	119	129	139	149	159	169	179	189	199	
008 38239	018 06668	028 02282	038 01049	00710	16400	068 00395	078 00705	088 00216	098 00627	108 00082	118 00055	128 00049	138 00044	148 00059	158 00033	168 00031	178 00020	188 00012	198 00011	
900	018	028	038	048	058	990	078	088	960	108	118	128	138	148	158	168	178	188	198	
007 22810	017 06433	027 02410	01173	94200 240	76700 250	29800 290	47900 770	087 00214	91500 260	107 00112	117 00051	127 00034	137 00039	147 00049	00032	167 00030	91000 221	187 00023	197 00004	
200	017 (027 (037 (047	057 (290	0.42	087) 260	107 (117 (127 (137	147 (157 (167	177 (187 (197 (
0931	7010	2554	1194	2890	0523	0391	2020	0100	0423	0163	6700	2400	4400	0030	9600	0022	0021	9100	8000	
006 00931	01020 910	026 02554	036 01194	046 00687	056 00523	066 00391	076 00707	086 00190	096 00423	106 00163	116 00049	126 00042	136 00044	146 00030	156 00036	166 00022	176 00021	186 00016	196 00008	
2002	07322	02695	01239	92200	90546	9379	2690	2218	00374	0220	2075	2052	2048	2045	00031	00050	0021	00011	2000	
005 00002	015 0	025 0	032 0	045 0	055 0	065 00379	075 00697	085 00218	095 0	105 00220	115 00075	125 00052	135 00048	145 00045	155 0	165 0	175 00021	185 0	195 00007	
1000	09524	03102	01340	00728	02500	375	652	00220	298	319	4700	054	054	00045	00028	033	013	022	1100	
000 700	014 0	024 03	034 01	044 00	054 00	064 00375	074 00652	084 00	094 00298	104 00319	114 00074	124 00054	134 00054	144 OC	154 00	164 00033	174 00013	184 00022	194 00011	
100		920	384			127	519		251	471	1 90	245	245			215	325	227		
003 00001	013 15161	023 03920	033 01384	043 00863	053 00591	063 00427	073 00519	083 00275	093 00251	103 00471	113 00064	123 00045	133 00042	143 00041	153 00020	163 00015	173 00025	183 00027	193 00005	
											_									
002 00001	012 42599	022 05514	032 01535	042 00940	052 00585	062 00412	072 00485	082 00314	092 00248	102 00560	112 00070	122 00065	132 00051	142 00048	152 00031	162 00015	172 00024	182 00022	192 00006	
001 00001	76740	. 07768	. 01606	. 01002	. 00620	061 00437	. 00362	. 00376	. 00207	. 00634	. 00062	. 00058	131 00048	000040	151 00037	161 00026	. 00033	181 00013	191 00009	
001	011	021	031	041	051	061	170	081	160	101	111	121	131	141	151	161	171	181	191	

Run 7 Screen Size 4,76 mm, Sample Weight 8,8076 grams (30 min, live time)

001 00002	002 00002	003 00001	90000 700	005 00001	926 009	007 35023	008 58275	009 27134	010 94427
011 34702	012 79186	013 28234	014 17059	015 12853	016 12462	90711 710	018 11755	019 12987	020 14569
021 13476	022 09755	023 06662	024 05485	025 04916	056 04540	027 04353	028 04089	029 03565	030 03271
031 02835	032 02680	033 02576	034 02279	035 02207	036 02095	037 01968	038 01881	039 01775	040 01662
041 01497	042 01541	043 01384	044 01397	045 01330	046 01257	047 01210	17110 840	049 01153	050 01126
051 01050	052 01016	053 00973	29600 750	055 00904	026 00870	057 00838	058 00823	059 00815	060 00742
16900 190	062 00670	963 00636	064 00682	065 00601	066 00629	14900 290	068 00620	14900 690	070 00732
071 00714	072 00805	073 00959	074 01102	075 01164	076 01147	077 01137	078 01131	11010 620	080 00758
081 00611	082 00501	083 00404	084 00366	085 00371	086 00357	087 00335	088 00324	089 00348	090 00343
091 00397	092 00392	093 00495	29500 760	095 00638	096 00843	097 01004	098 01162	099 01148	100 01220
101 01043	102 00889	103 00679	104 00421	105 00363	106:00235	107 00156	108 00137	109 00119	110 00114
111 00108	112 00090	113 00094	114 00098	115 00091	116:00106	117 00102	118 00093	119 00082	120 00093
121 00083	122 00068	123 00083	124 00069	125 00069	126 00055	127 00059	128 00047	129 00048	130 00073
131 00067	132 00057	133 00067	134 00077	135 00060	136 00073	137 00058	138 00059	139 00075	140 00073
141 00066	142 00070	143 00079	144 00054	145 00067	146 00060	147 00062	148 00052	149 00044	150 00047
151 00047	152 00045	153 00041	154 00028	155 00039	156 00034	157 00047	158 00029	159 00037	160 00032
161 00049	162 00030	163 00035	164 00037	165 00028	166 00036	167 00050	168 00039	169 00048	170 00057
171 00041	172 00040	173 00034	174 00029	175 00043	176 00040	177 00036	178 00033	179 00031	180 00037
181 00036	182 00028	183 00028	184 00022	185 00018	186 00025	187 00017	188 00014	189 00007	190 00019
191 00011	192 00008	193 00009	194 00011	195 00011	196 00007	11000 261	198 00011	199 00012	000 000

Run 6 Screen Size 3, 36 mm, Sample Weight 7, 8504 grams (30 min, live time)

009 15537 010 86083	019 12138 020 13552	029 03424 030 03001	039 01528 040 01477	049 01078 050 00988	059 00736 060 00684	069 00624 070 00641	079 00878 080 00733	089 00332 090 00347	12010 001 96010 660	109 00111 110 00122	119 00076 120 00091	129 00056 130 00056	139 00064 140 00071	149 00056 150 00049	159 00023 160 00026	169 00039 170 00043	179 00038 180 00036	189 00006 190 00018	50000 000 80000 00L
008 53311	018 10755	028 03748	038 01688	048 01142	058 00787	069 00630	078 01073	946 00346	098 01077	108 00108	118 00074	128 00070	138 00065	148 00039	158 00036	168 00054	178 00036	188 00016	00000
007 31563	017 10612	027 04047	037 01768	047 01099	057 00798	11900 290	077 01102	087 00318	10600 260	107 00163	117 00079	127 00051	137 00060	147 00058	157 00035	167 00037	177 00030	187 00023	10000
006 00405	06111 910	026 04121	036 01944	046 01165	056 00812	066 00615	076 01136	086 00315	90800 960	106 00200	116 00075	126 00063	136 00062	146 00051	156 00039	166 00041	176 00025	186 00014	
005 00003	015 11767	025 04567	035 02109	045 01214	055 00852	065 00564	075 01063	085 00340	095 00591	105 00273	115 00089	125 00062	135 00064	145 00054	155 00042	165 00043	175 00039	185 00021	
9000 700	014 15514	024 05049	034 02159	044 01291	054 00903	064 00573	074 01023	084 00327	64500 460	104 00446	114 00087	124 00070	134 00055	144 00068	154 00038	164 00030	174 00034	184 00028	
9000 500	013 25895	023 06251	033 02316	043 01437	053 00926	063 00580	073 00833	083 00354	093 00455	103 00622	113 00095	123 00054	133 00046	143 00062	153 00028	163 00034	173 00038	183 00025	,
0000 00000	012 72113	022 08933	032 02567	042 01408	052 00986	062 00627	072 00764	082 00454	092 00402	102 00841	112 00087	122 00076	132 00053	142 00067	152 00049	162 00025	172 00032	182 00042	
10000 100	011 22784	021 12285	031 02724	041 01453	051 00999	061 00681	96900 120	081 00583	091 00366	101 00986	111 00104	121 00078	131 00062	141 00068	151 00047	161 00025	171 00035	181 00032	

Run 8 Screen Size 2.38 mm, Sample Weight 6.6391 grams (30 min. live time)

000 00001	002 00001	003 00000	t0000 t00	0000 500	006 00303	007 29050	9208 4800	909 05905	010 76896
011 09904	012 64767	013 23200	014 13848	015 10757	01660.910	017 09280	018 09531	89901 610	020 12051
021111 120	022 07765	023 05468	024 04478	025 03994	026 03666	027 03504	028 03274	029 03016	030 02638
031 02353	032 02214	033 02134	034 01977	035 01780	036,01694	037 01643	038 01522	039 01373	040 01345
041 01312	042 01286	043 01210	19110 440	045 01058	046:01043	047 01063	048 01025	049 00943	67600 050
051 00901	052 00898	053 00857	054 00773	055 00748	056 00710	057 00715	058 00726	059 00631	069 0090
061 00605	062 00554	063 00557	064 00524	065 00491	066 00524	067 00523	068 00537	069 00529	070 00572
071 00618	072 00669	073 00777	074 00873	075 00930	076 00993	077 00962	078 00915	07700 670	91900 080
081 00476	082 00413	083 00354	084 00294	085 00310	086 00296	087 00287	088 00295	089 00278	090 00325
091 00322	092 00347	093 00388	26400 460	095 00565	096:00721	94800 260	11 600 860	60010 660	100 00978
101 00854	102 00755	103 00546	104 00379	105 00259	106 00169	107 00105	108 00109	109 00113	110 00094
111 00109	112 00086	113 00075	114 00070	115 00079	116 00065	117 00088	118 00082	119 00095	120 00063
121 00075	122 00062	123 00060	124 00071	125 00066	126 00068	127 00054	128 00056	129 00053	130 00035
131 00057	132 00048	133 00060	134 00050	135 00052	136 00072	137 00065	138 00057	139 00079	140 00067
141 00053	142 00061	143 00051	144 00065	145 00065	146 00047	147 00057	148 00064	149 00052	150 00040
151 00047	152 00043	153 00041	154 00041	155 00035	156 00029	157 00031	158 00029	159 00036	160 00021
161 00033	162 00033	163 00032	164 00037	165 00029	166 00037	167 00033	168 00032	169 00037	170 00035
171 00041	172 00042	173 00035	174 00023	175 00038	176 00036	177 00049	178 00029	179 00035	180 00029
181 00030	182 00031	183 00023	184 00026	185 00018	186:00023	187 00015	188 00015	189 00012	190 00013
191 00013	192 00009	193 00008	194 00013	195 00015	01000 961	197 00003	198 00005	199 00008	20000 000

Run 9 Screen Size 1,41 mm, Sample Weight 7,3596 grams (30 min, live time)

000 00000	005 00000	003 00005	000 700	005 00002	006 00275	007 27770	4989 46364	009 02384	010 74775
011 06515	012 62478	013 22237	014 13344	015 10339	016 09713	95060 210	018 09319	019 10471	020 11711
021 10776	022 07621	023 05350	024 04327	025 03826	026 03610	027 03419	028 03276	029 02892	030 02616
031 02399	032 02157	033 02089	034 01888	035 01775	036 01632	037 01546	038 01483	039 01394	040 01387
041 01235	042 01217	043 01172	044 01113	045 01152	046 01037	047 01013	ħ2600 8ħ0	049 00985	050 00861
051 00889	052 00834	053 00860	96200 750	055 00754	056 00683	95900 250	058 00642	h#900 650	000 090
061 00599	062 00541	64500 890	064 00548	065 00520	95400 990	16400 290	068 00533	24500 690	070 00549
071 00608	072 00666	073 00757	79800 740	075 00965	076 00995	077 00951	078 00913	079 00757	080 00591
081 00438	082 00378	083 00299	084 00286	085 00269	086 00279	087 00270	088 00308	089 00266	090 00321
091 00322	092 00347	093 00381	19400 h60	095 00592	096 00722	097 00841	02600 860	099 00991	100 00954
101 00842	102 00643	103 00508	104 00341	105 00228	106 00168	107 00115	108 00085	16000 601	110 00093
111 00080	112 00100	113 00070	114 00085	115 00081	116 00080	117 00072	118 00088	119 00080	120 00072
121 00061	122 00054	123 00068	124 00055	125 00073	126 00049	127 00049	128 00052	129 00055	130 00038
131 00046	132 00060	133 00050	134 00057	135 00058	136 00068	137 00054	138 00071	139 00067	140 00046
141 00054	142 00055	143 00063	144 00040	145 00048	146 00053	147 00049	148 00034	149 00058	150 00038
151 00047	152 00050	153 00046	154 00047	155 00028	156 00031	157 00031	158 00031	159 00036	160 00028
161 00034	162 00028	163 00022	164 00027	165 00039	166 00035	167 00030	168 00032	169 00034	170 00027
171 00029	172 00040	173 00041	174 00035	175 00031	176 00025	177 00036	178 00041	179 00026	180 00029
181 00034	182 00030	183 00032	184 00018	185 00015	186 00020	187 00015	188 00012	189 00011	190 00015
191 00007	192 00014	193 00007	194 00006	195 00010	196 00014	197 00007	198 00010	199 00009	000 00001

Run 11 Screen Size 1,00 mm, Sample Weight 5,1477 grams (30 min, live time)

010 52005	020 07902	030 01823	040 00938	050 00653	75400 090	070 00382	090 00460	090 00224	100 00736	110 00074	120 00059	130 00038	74000 041	150 00031	160 00025	170 00029	180 00028	91000 061	90000 0000
00869 600	019 07095	029 01993	039 00993	049 00668	059 00457	069 00343	079 00526	080 00180	099 00653	109 00076	119 00070	129 00049	139 00034	149 00039	159 00024	169 00023	179 00026	189 00008	199 00007
008 37318	018 06378	028 02160	038 01031	64900 840	058 00477	068 00342	078 00635	088 00205	998 00605	108 00098	118 00057	128 00035	138 00058	148 00051	158 00027	168 00023	178 00024	188 00021	198 00009
007 21793	017 06081	027 02362	037 01089	047 00652	16400 250	98800 290	68900 220	087 00197	097 00532	107 00098	117 00059	127 00050	137 00046	147 00044	157 00024	167 00021	177 00019	187 00021	197 00011
006 01405	016 06756	026 02397	036 01221	64/200; 940	62400 950	22500 990	076 00658	086 00177	096 00433	106 00148	116 00052	126 00041	136 00047	146 00041	156 00022	166 00026	176 00023	186 00017	91000 961
005 00003	015 06943	025 02606	035 01194	045 00768	055 00522	065 00371	075 00616	085 00209	94600 560	105 00207	115 00072	125 00047	135 00037	145 00041	155 00031	165 00026	175 00021	185 00023	195 00009
004 00003	014 09014	024 02953	034 01330	044 00784	054 00568	064 00399	90900 †20	084 00218	094 00282	104 00333	114 00070	124 00045	134 00041	144 00046	154 00035	164 00026	174 00024	184 00019	194 00007
003 00000	013 14174	023 03604	033 01376	043 00803	053 00585	063 00382	073 00510	083 00267	093 00267	103 00463	113 00062	123 00047	133 00038	143 00047	153 00026	163 00021	173 00026	183 00018	193 00008
000 00000	012 38281	022 05111	032 01432	042 00877	052 00597	062 00390	072 00448	082 00314	092 00243	102 00559	112 00064	122 00043	132 00044	142 00051	152 00031	162 00021	172 00027	182 00029	192 00013
001 00002	011 72944	021 07328	031 01561	041 00835	051 00605	061 00404	071 00448	081 00388	091 00225	101 00666	111 00062	121 00057	131 00042	141 00041	151 00036	161 00025	171 00023	181 00020	191 00011

Run 12 Screen Size 0,841 mm, Sample Weight 4,8409 grams (30 min, live time)

							•												
010 47094	020 07168	030 01663	040 00892	050 00580	98600 090	070 00374	080 00360	090 00176	100 001	110 00064	120 00052	130 00045	140 00047	150 00022	160 00026	170 00026	180 00024	190 00014	000 0000
009: 64432	019 06348	029 01814	039 00880	049,00597	96800 650	19800 690	079,00468	089 00201	76500 660	109 00065	119 00069	129 00045	139 00043	149 00034	159 00026	169 00024	179 00023	189 00021	199 00008
008 32846	018 05770	028 02056	038 00964	048 00599	058 00425	068 00316	078 00576	088 00169	098 00584	108 00085	118 00060	128 00056	138 00044	148 00042	158 00029	168 00024	178 00022	188 00017	198 00010
007 19950	017 05649	027 02069	037 01039	65900 240	057 00450	067 00334	077 00588	087 00202	097 00517	107 00087	117 00066	127 00045	137 00051	147 00036	157 00021	167 00025	177 00026	187 00013	197 00003
69200 900	016 05948	026 02267	036 01007	046 00662	056 00463	066 00324	076 00622	62100 980	27 00 960	106 00134	116 00050	126 00044	136 00045	146 00037	156 00032	166 00031	176 00018	186 00010	11000 961
005 00001	015 06430	025 02356	035 01041	045 00681	055 00481	065 00336	075 00598	085 00176	095 00344	105 00162	115 00054	125 00053	135 00038	145 00034	155 00027	165 00026	175 00033	185 00017	195 00012
60000 700	014 08303	024 02615	034 01188	26900 770	054 00515	064 00337	074 00500	084 00202	094 00288	104 00264	114 00060	124 00044	134 00051	144 00030	154 00032	164 00022	174 00022	184 00033	194 00014
003 00001	013 12781	023 03266	033 01295	043 00749	053 00510	063 00343	073 00505	083 00220	093 00235	103 00359	113 00065	123 00060	133 00044	143 00048	153 00025	163 00027	173 00025	183 00029	193 00010
002 00001	012 35377	022 04688	032 01287	042 00764	052 00553	062 00393	072 00410	082 00268	092 00209	102 00485	112 00061	122 00061	132 00047	142 00052	152 00031	162 00031	172 00025	182 00016	192 00008
001 00003	011 66192	021 06606	031 01511	041 00736	051 00573	061 00384	071 00364	081 00355	091 00184	101 00557	111 00057	121 00059	131 00033	141 00047	151 00032	161 00023	171 00022	181 00022	191 00007

Run 10 Screen Size 0.595 mm, Sample Weight 3,9131 grams (30 min, live time)

010 34682	020 05569	030 01201	040 00628	050 00477	060 00334	070 00287	080 00329	090 00145	100 00467	19000 011	120 00038	130 00040	140 00044	150 00027	160 00019	170 00017	180 00017	190 00014	000 00005
21264 600	019 04819	029 01388	039 00720	08400 640	059 00329	29200 690	69800 620	689 00175	16400 660	109 00058	07000 611	129 00032	139 00038	149 00035	159 00018	169 00022	179 00019	189 00012	90000 661
008 23123	018 04307	028 01468	038 00739	048 00486	058 00362	068 00287	078 00445	088 00166	098 00471	108 00074	118 00050	128 00032	138 00036	148 00032	158 00021	168 00022	178 00019	188 00006	198 00008
007 14227	017 04267	027 01527	037 00748	047 00503	057 00348	067 00254	0400 220	087 00159	097 00392	107 00057	117 00060	127 00028	137 00038	147 00033	157 00025	91000 291	177 00021	187 00015	197 00010
006 00163	016 04577	026 01648	036 00790	046 00551	056 00332	066 00250	076 00455	086 00155	096 00326	106 00107	116 00054	126 00034	136 00036	146 00028	156 00017	166 00031	176 00016	186 00014	196 00008
0000 500	015 04775	025 01749	035 00876	045 00510	055 00393	065 00253	075 00455	085 00154	095 00279	105 00130	115 00057	125 00040	135 00043	145 00034	155 00016	165 00020	175 00024	185 00016	195 00012
004 00015	014 06201	024 02034	034 00930	044 00512	054 00382	064 00282	074 00414	94100 480	094 00257	104 00153	114 00043	124 00030	134 00035	144 00032	154 00026	164 00021	174 00019	184 00019	194 00007
003 00005	013 10140	023 02439	033 00957	043 00545	053 00442	063 00275	073 00412	083 00183	093 00188	103 00262	113 00053	123 00050	133 00037	143 00038	153 00024	163 00019	173 00018	183 00015	193 00007
002 00002	012 28256	022 03522	032 01024	042 00596	052 00472	062 00306	072 00314	082 00225	092 00196	102 00329	112 00056	122 00043	132 00039	142 00031	152 00022	162 00021	172 00012	182 00014	192 00013
001 00002	011 49629	021 05048	031 01145	041 00608	051 00492	061 00343	071 00320	081 00252	091 00141	101 00399	111 00052	121 00058	131 00042	141 00034	151 00027	161 00021	171 00019	181 00017	191 00009

Run 14 Screen Size 0,420 mm, Sample Weight 5,5414 grams (30 min, live time)

000 00000	0000 00000	003 00012	20000 700	002 00001	74E00 900	007 17590	008 29572	009 60125	010 43383
011 60022	012 31463	013 11465	014 07316	015 05648	016 05585	017 05032	018 05295	019 06084	020 06610
021 05810	022 04134	023 02927	024 02362	025 02095	026 02018	027 01901	028 01761	029 01643	030 01420
031 01283	032 01187	033 01136	034 01052	035 01012	036 00975	037 00886	038 00877	039 00837	040 00747
041 00664	042 00660	043 00701	044 00653	045 00572	046 00620	047 00560	048 00585	049 00580	050 00542
051 00491	052 00481	053 00484	054 00451	055 00438	94400 950	057 00430	058 00402	059 00377	060 00359
061 00355	062 00332	063 00332	064 00322	065 00318	9060 9908	067 00265	068 00299	069 00289	070 00326
071 00367	072 00441	073 00447	074 00458	075 00525	076 00552	077 00559	078 00486	84400 620	080 00378
081 00275	082 00220	083 00197	084 00175	085 00161	086 00209	087 00212	088 00190	72100 680	090 00178
091 00192	092 00207	093 00227	094 00288	095 00335	096 00431	91500 260	098 00523	099 00529	100 00543
101 00445	102 00386	103 00303	104 00212	105 00137	106 00113	107 00081	108 00076	109 00083	110 00058
111 00067	112 00066	113 00051	114 00066	115 00049	116 00053	117 00057	118 00062	119 00065	120 00053
121 00044	122 00043	123 00046	124 00044	125 00045	126 00050	127 00044	128 00036	129 00046	130 00035
131 00034	132 00043	133 00033	134 00042	135 00054	136 00050	137 00044	138 00050	139 00059	140 00050
141 00046	142 00028	143 00032	144 00045	145 00041	146 00031	147 00022	148 00036	149 00022	150 00028
151 00028	152 00030	153 00025	154 00023	155 00032	156 00035	157 00016	158 00020	159 00029	160 00017
161 00021	162 00018	163 00027	164 00017	165 00021	166 00024	167 00018	168 00036	169 00028	170 00015
171 00037	172 00018	173 00026	174 00024	175 00012	176 00021	177 00028	178 00030	179 00020	180 00032
181 00023	182 00013	183 00012	184 00013	185 00019	186 00016	187 00012	188 00012	189 00009	190 00006
191 00008	192 00014	193 00006	194 00007	195 00011	196 00008	197 00011	198 00008	199 00009	000 00001

Run 13 Screen Size 0,354 mm, Sample Weight 3,9813 grams (30 min, live time)

10000 100	000 00000	003 00005	40000 400	005 00005	24500 900	007 12530	008 20137	009 40027	010 28485
011 39490	012 20406	013 07417	014 04844	015 03805	016 03571	017 03348	018 03532	019 03942	020 04330
021 03843	022 02834	023 01972	024 01628	025 01421	026 01393	027 01258	028 01247	029 01128	030 00992
031 00866	032 00869	033 00811	034 00793	035 00752	039 00990	037 00648	038 00611	039 00586	040 00539
041 00554	042 00473	043 00509	044 00436	045 00403	24400 940	047 00384	048 00457	049 00397	050 00398
051 00364	052 00367	053 00380	054 00336	055 00304	056 00277	057 00294	058 00286	059 00257	060 00255
061 00255	062 00212	063 00233	064 00224	065 00209	066 00220	067 00227	068 00228	92200 690	070 00228
071 00242	072 00319	048 00340	074 00368	075 00413	96800 940	077 00377	078 00317	079 00303	080 00272
081 00211	082 00135	083 00166	084 00132	085 00139	086 00147	087 00134	088 00137	71100 680	090 00129
091 00141	092 00155	093 00160	094 00201	095 00208	096 00280	097 00334	098 00364	099 00348	100 00364
101 00306	102 00247	103 00188	104 00174	105 00111	106 00102	107 00059	108 00073	109 00057	110 00048
111 00057	112 00063	113 00041	114 00036	115 00048	116 00048	117 00043	118 00038	119 00034	120 00036
121 00035	122 00039	123 00032	124 00035	125 00044	126 00040	127 00030	128 00035	129 00039	130 00030
131 00026	132 00038	133 00037	134 00038	135 00033	136 00044	137 00037	138 00039	139 00045	140 00038
141 00036	142 00049	143 00032	144 00032	145 00036	146 00013	147 00028	148 00020	149 00023	150 00023
151 00028	152 00021	153 00032	154 00019	155 00020	156 00020	157 00018	158 00017	159 00014	160 00020
161 00018	162 00017	163 00012	164 00014	165 00013	166 00020	167 00017	168 00012	169 00018	170 00016
171 00021	172 00017	173 00016	174 00019	175 00016	176 00020	177 00016	178 00015	179 00023	180 00017
181 00016	182 00012	183 00016	184 00016	185 00011	186 00018	187 00010	188 00013	189 00008	190 00006
191 00006	192 00005	193 00005	194 00008	195 00014	196 00014	90000 261	198 00003	91000 661	000 00005

Run 15 Screen Size 0, 210 mm, Sample Weight 4, 4119 grams (30 min, live time)

36 005 00004 006 00328 007 18476 008 30344 009 62888 010 44980	09 015 06135 016 05934 017 05409 018 05694 019 06480 020 07122	58 025 02350 026 02190 027 02085 028 01896 029 01741 030 01676	82 035 01031 036 01039 037 00988 038 00903 039 00884 040 00829	28 045 00708 046 00654 047 00620 048 00590 049 00574 050 00606	29 055 00478 056 00479 057 00422 058 00436 059 00411 060 00401	48 065 00343 066 00341 067 00297 068 00363 069 00322 070 00343	74 075 00585 076 00608 077 00592 078 00503 079 00433 080 00352	96 085 00176 086 00182 087 00173 088 00199 089 00216 090 00198	03 095 00361 096 00434 097 00474 098 00584 099 00613 100 00590	14 105 00128 106 00116 107 00094 108 00066 109 00072 110 00070	57 115 00053 116 00067 117 00052 118 00056 119 00051 120 00047	53 125 00036 126 00050 127 00044 128 00033 129 00042 130 00048	41 135 00045 136 00033 137 00052 138 00051 139 00038 140 00047	39 145 00027 146 00038 147 00030 148 00038 149 00031 150 00033	25 155 00023 156 00022 157 00029 158 00022 159 00022 160 00020	22 165 00020 166 00021 167 00030 168 00023 169 00022 170 00032	15 175 00019 176 00017 177 00024 178 00029 179 00021 180 00024	185 00017 186 00016
92481 200	017 05409	027 02085	037 00988	047 00620	057 00422	067 00297	077 00592	087 00173	₄ 2 ₄ 00 260	107 00094	117 00052	127 00044	137 00052	147 00030	157 00029	167 00030	177 00024	187 00013
006 00328	016 05934	026 02190	036 01039	046 00654	62400 950	066 00341	076 00608	086 00182	096 00434	91100 901	116 00067	126 00050	136 00033	146 00038	156 00022	166 00021	176 00017	186 00016
005 00004	015 06135	025 02350	035 01031	045 00708	055 00478	065 00343	075 00585	085 00176	095 00361	105 00128	115 00053	125 00036	135 00045	145 00027	155 00023	165 00020	175 00019	185 00017
98000 700	014 08009	024 02658	034 01182	044 00728	054 00529	064 00348	074 00574	084 00196	094 00303	104 00214	114 00057	124 00053	134 00041	144 00039	154 00025	164 00022	174 00015	184 00010
13	2385	3114	033 01196	96900 840	053 00504	063 00341	073 00458	083 00213	093 00243	103 00307	113 00057	123 00045	133 00049	143 00036	153 00021	163 00017	173 00013	183 00016
003 00013	013 12385	023 03114	033	043	053	063	073	083	093	103	113	123	133	143	153	163	173	183
002 00000 003 000	012 34721 013 12	022 04379 023 0	032 01382 033	042 00742 043	052 00520 053	062 00347 063	072 00420 073	082 00251 083	092 00223 093	102 00415 103	112 00053 113	122 00048 123	132 00043 133	142 00038 143	152 00025 153	162 00030 163	172 00024 173	182 00016 183

Run 16 Screen Size 0,149, Sample Weight 5,6727 grams (30 min, live time)

000 00000	002 00002	003 00003	004 00003	005 00002	94400 900	06704 700	008 69531	94524 600	010 17580
011 69405	012 04257	013 39960	014 24014	015 17869	016 17182	17191 710	60491 810	019 18109	020 19781
021 18284	022 13572	023 09891	024 08193	025 07329	026: 06676	027 06294	028 05980	029 05445	030 04971
031 04505	032 04017	033 03876	034 03615	035 03347	036 03268	037 02973	038 02724	039 02555	040 05420
041 02242	042 02193	043 02020	044 02028	045 01910	046,01855	047 01774	048 01679	049 01629	050 01495
051 01527	052 01461	053 01328	054 01396	055 01290	056,01228	057 01098	92010 850	059 01042	00010 090
18600 190	062 00933	063 00920	29800 490	065 00848	066 00838	92800 290	09800 890	069 00850	070 00920
041 00990	072 01080	073 01246	074 01386	075 01526	076, 01525	077 01450	078 01401	079 01083	080 00984
981 00674	082 00543	083 00523	084 00425	085 00472	086: 00451	24400 280	088 00441	089 00422	061/00 060
091 00505	092 00539	093 00632	094 00824	066 00630	096 01081	097 01288	098 01525	69410 660	100 01499
101 01337	10110 201	103 00780	104 00515	105 00380	106 00237	107 00181	108 00167	100 00151	110 00127
21100 111	112 00125	113 00111	114 00113	115 00098	116:00122	117 00121	10100 811	119 00099	120 00101
121 00082	122 00093	123 00106	124 00090	125 00090	126 00081	127 00054	128 00052	129 00059	130 00069
131 00064	132 00060	133 00078	134 00093	135 00076	136 00065	137 00076	138 00085	139 00087	140 00069
141 00086	142 00074	143 00076	144 00076	145 00068	146 00073	147 00072	148 00062	149 00061	150 00061
151 00061	152 00059	153 00045	154 00063	155 00050	156 00043	157 00042	158 00047	159 00035	160 00030
161 00032	162 00039	163 00048	164 00061	165 00049	166 00045	167 00054	168 00051	169 00047	170 00056
171 00043	172 00043	173 00047	174 00036	175 00064	176,00051	177 00040	178 00050	179 00037	180 00042
181 00037	182 00028	183 00031	184 00024	185 00022	186 00019	187 00019	188 00015	189 00008	190 00012
191 00017	192 00010	193 00013	194 00008	195 00006	196 00008	197 00013	198 00002	199 00007	1 0000 000

Run 17 Screen Size 0,105 mm, Sample Weight 4,1929 grams (30 min, live time)

N	000 00000	9000 500	004 00005	005 00003	006 00458	007 39588	908 65946	009 39421	010 04869
011 48971	012 89008	013 33457	014 20602	015 15896	016 14868	017 13982	018 14023	019 15372	020 17151
021 15511	022 11408	023 08145	024 06764	025 05938	026 05692	027 05249	028 04949	029 04428	030 03907
031 03698	032 03432	033 03204	034 03014	035 02708	036 02574	037 02375	038 02219	039 02109	040 02030
041 01897	042 01839	043 01701	044 01614	045 01571	046 01479	047 01405	048 01387	049 01386	050 01313
051 01213	052 01268	053 01164	054 01143	055 01023	056 01019	69600 250	058 00969	059 00838	60800 090
061 00852	062 00790	94/00 890	98200 790	64200 590	066 00725	26900 290	068 00735	82900 690	070 00781
071 00856	072 00921	073 01066	074 01129	075 01248	076 01331	077 01219	078 01222	079 00952	080 00771
081 00608	082 00493	083 00425	084 00425	085 00376	086 00381	082 00380	088 00377	089 00379	090 00402
061 00440	092 00423	093 00516	h4900 460	095 00820	12600 960	097 01085	098 01220	099 01297	100 01198
101 01102	102 00937	103 00660	104 00490	105 00295	106 00205	107 00163	108 00135	109 00129	110 00120
111 00102	112 00105	113 00107	114 00104	115 00089	116 00114	117 00124	118 00087	119 00096	120 00102
121 00085	122 00100	123 00071	124 00074	125 00066	126 00066	127 00071	128 00062	129 00072	130 00076
131 00068	132 00077	133 00085	134 00063	135 00064	136 00076	137 00054	138 00080	139 00072	140 00086
141 00075	142 00045	143 00076	144 00073	145 00074	146 00043	147 00053	148 00068	149 00063	150 00077
151 00068	152 00054	153 00058	154 00041	155 00048	156 00043	157 00034	158 00033	159 00034	160 00026
161 00026	162 00032	163 00038	164 00038	165 00030	166 00039	167 00039	168 00041	169 00035	170 00049
171 00044	172 00045	173 00036	174 00035	175 00036	176 00039	177 00054	178 00048	179 00032	180 00026
181 00041	182 00035	183 00039	184 00027	185 00019	186 00022	91000 281	188 00015	189 00012	190 00010
191 00008	192 00010	193 00006	194 00010	195 00014	196 00007	11000 261	198 00007	199 00008	000 00005

Run 18 Screen Size 0,074 mm, Sample Weight 3,2328 grams (30 min, live time)

0000 100	002 00001	003 00023	14000 400	005 00002	000 00180	007 14245	008 21879	009 48029	010 33064
91424 110	012 28428	013 09875	014 06095	015 04499	016 04491	01140 710	018 04075	019 04657	020 05250
021 05061	022 03605	023 02439	024 01929	025 01671	026 01657	027 01562	028 01447	029 01247	030 01122
031 01082	032 00924	033 00890	034 00877	035 00806	036 00751	037 00728	038 00696	039 00674	9†900 0†0
041 00574	042 00572	043 00531	044 00557	045 00477	71500 940	95400 240	22,000 840	049 00453	050 00440
051 00454	052 00458	053 00378	054 00405	055 00377	056 00384	057 00344	058 00368	059 00326	060 00316
061 00302	062 00281	063 00281	064 00246	065 00242	066 00262	067 00256	068 00238	069 00232	070 00290
071 00296	072 00327	073 00349	0400 7400	075 00388	02400 920	077 00453	078 00382	079 00361	080 00341
081 00227	082 00235	083 00173	09100 480	085 00145	086 00159	087 00135	088 00144	94100 680	69100 060
091 00165	092 00149	093 00175	094 00239	095 00223	096 00269	097 00373	90†00 860	099 00433	100 00478
101 00432	102 00340	103 00294	104 00215	105 00162	106 00102	107 00077	108 00073	99000 601	110 00064
111 00054	112 00050	113,00064	114 00053	115 00046	116 00043	117 00052	118 00040	119 00043	120 00044
121 00039	122 00039	123 00048	124 00045	125 00035	126 00041	127 00032	128 00032	129 00024	130 00033
131 00023	132 00044	133 00043	134 00039	135 00038	136 p0032	137 00044	138 00043	139 00038	140 00046
141 00037	142 00043	143 00037	144 00036	145 00033	146 00025	147 00029	148 00033	149 00054	150 00027
151 00028	152 00030	153 00029	154 00026	155 00024	156 00020	157 00027	158 00029	159 00017	160 00027
161 00017	162 00028	163 00019	164 00025	165 00020	166 00023	167 00020	168 00028	169 00024	170 00027
171 00017	172 00019	173 00017	174 00016	175 00023	176 00021	177 00017	178 00016	179 00020	180 00016
181 00021	182 00019	183 00027	184 00017	185 00011	186 00011	187 00009	188 00008	189 00015	190 00009
191 00009	192 00012	193 00004	194 00004	195 00008	196 00012	01000 261	198 00005	199 00012	000 00001

Run 19 Screen Size 0,053 mm, Sample Weight 3,0172 grams (60 min, live time)

010 201 6	02 © 3053	030 00722	040 00445	050 00418	060 00284	070 00271	080 00211	090 00144	100 00288	110 00065	120 00065	130 00036	140 00059	150 00031	160 00033	170 00027	180 00027	190 00019	000 000
009 27979	019 02728	029 00848	039 00507	049 00371	059 00274	069 00225	079 00245	089 00157	00800 660	1000 601	119 00069	129 00058	139 00046	149 000 641	159 00032	169 00039	179 00030	189 00016	199 00012
008 16543	018 02411	028 00915	038 00472	048 00392	058 00292	068 00215	078 00324	088 00139	098 00287	108 00081	118 00069	128 00052	138 00065	148 00026	158 00026	168 00034	178 00034	188 00015	91000 861
007 10043	017 02130	027 00931	037 00494	047 00413	057 00322	067 00222	077 00314	087 00150	097 00283	107 00100	117 00065	127 00050	137 00067	147 00043	157 00033	167 00036	177 00020	187 00025	197 00014
006 00852	016 02453	026 01078	036 00571	046 00413	056 00308	066 00217	076 00324	086 00152	096 00264	106 00081	116 00062	126 00049	136 00062	94000 941	156 00033	166 00034	176 00026	186 00021	196 00013
0000 500	015 02502	025 01123	035 00522	045 00450	055 00332	065 00243	075 00338	085 00152	095 00232	105 00127	115 00069	125 00040	135 00047	145 00050	155 00025	165 00032	175 00015	185 00019	195 00015
004 00013	014 02883	024 01173	034 00618	044 00459	054 00327	064 00253	074 00313	084 00136	094 00182	104 00130	114 00067	124 00047	134 00065	144 00052	154 00035	164 00032	174 00038	184 00011	194 00013
003 00007	013 04377	023 01397	033 00637	043 00452	053 00331	063 00275	073 00284	083 00151	093 00181	103 00175	113 00077	123 00056	133 00052	143 00051	153 00031	163 00033	173 00030	183 00029	193 00011
002 00000	012 11234	022 01903	032 00647	042 00451	052 00405	062 00590	072 00268	082 00185	092 00158	102 00222	112 00076	122 00068	132 00065	142 00070	152 00030	162 00027	172 00031	182 00022	192 00013
0000 100	011 26449	021 02703	031 00691	041 00420	051 00390	061 00274	071 00264	081 00207	091 00143	101 00227	111 00068	121 00069	131 00048	141 00046	151 00048	161 00039	171 00025	181 00028	191 00017

Run 20 Screen Size 0,037 mm, Sample Weight 3,0020 grams (60 min, live time)

414 010 08844	393 020 01524	00529 030 00491	00332 040 00323	00297 050 00337	203 060 00196	165 070 00176	151 080 00133	130 090 00124	166 100 00175	078 110 00060	059 120 00053	044 130 00047	055 140 00057	034 150 00033	00025 160 00036	00032 170 00023	022 180 00011	000016 190 00020	00010 000 00002
009 13414	019 01393	059 00	039 00	00 640	059 00203	069 00165	079 00151	089.00130	99100 660	109 00078	119 00059	129 00044	139 00055	149 00034	159 00	169 00	179 00022	189 00	199 00
008 07440	018 01217	028 00503	038 00316	048 00330	058 00207	068 00183	078 00169	088 00121	098 00160	108 00073	118 00065	128 00052	138 00062	148 00037	158 00029	168 00022	178 00013	188 00011	198 00023
007 05376	017 01205	027 00532	037 00341	047 00290	057 00247	99100 290	077 00188	90100 280	097 00183	1000 201	64000 211	127 00057	137 00054	147 00040	157 00035	167 00027	177 00020	187 00011	197 00020
006 00279	016 01205	026 00616	036 00366	046 00306	056 00253	066 00177	076 00188	086 00116	096 00150	106 00072	116 00063	126 00051	136 00059	146 00040	156 00029	166 00025	176 00017	186 00017	196 00022
005 00002	015 01294	025 00665	035 00392	045 00303	055 00224	065 00185	075 00214	085 00117	095 00155	105 00088	115 00060	125 00055	135 00054	145 00046	155 00026	165 00022	175 00021	185 00016	195 00009
t0000 t000	014 01471	024 00724	034 00395	044 00261	054 00248	96100 490	074 00184	084 00100	094 00117	104 00100	114 00068	124 00053	134 00056	144 00047	154 00028	164 00020	174 00031	184 00014	194 00018
2000 500	013 02012	023 00810	033 00415	043 00328	053 00291	29100 890	073 00209	083 00129	093 00127	103 00095	113 00050	123 00059	133 00060	143 00041	153 00025	163 00034	173 00011	183 00029	193 00009
000 00000	012 04995	022 01026	032 00399	042 00327	052 00315	062 00218	072 00181	082 00135	092 00115	102 00134	112 00066	122 00047	132 00064	142 00037	152 00028	162 00023	172 00022	182 00012	192 00018
0000 100	011 11635	021 01450	031 00420	041 00333	051 00285	061 00202	071 00164	081 00144	16000 160	101 00158	111 00065	121 00052	131 00055	141 00047	151 00036	161 00029	171 00013	181 00022	191 00023

Run 21 Screen Size < 0,037 mm, Sample Weight 0,5128 gram (60 min, live time)

00000 100	000 00001	003 00003	00000 700	005 00001	006 00245	007 02145	008 01855	009 02238	010 01485
011 00979	012 00618	013 00531	014 00568	015 00550	016 00522	017 00533	018 00453	019 00532	020 00552
021 00561	022 00529	023 00502	024 00510	025 00432	94400 920	027 00391	028 00395	029 00332	030 00357
031 00337	032 00276	033 00300	034 00298	035 00298	036 00297	037 00277	038 00282	039 00236	040 00256
041 00227	042 00261	043 00248	044 00254	045 00246	046 00263	047 00224	048 00238	049 00245	050 00258
051 00240	052 00251	053 00192	054 00500	055 00200	056 00207	057 00185	058 00214	059 00168	090 090
061 00176	062 00165	99100 890	064 00143	065 00134	066 00143	067 00123	068 00135	81100 690	070 00121
071 00116	072 00091	073 00124	91100 #20	075 00120	076 00135	077 00105	078 00114	81100 620	66000 080
081 00091	082 00118	11100 880	26000 †80	085 00104	086 00105	087 00108	66000 880	90100 680	96000 060
00100 160	092 00074	93 00065	28000 760	68000 560	08000 960	62000 260	098 00082	660 660	100 00081
101 00075	102 00062	103 00064	104 00084	105 00071	106 00067	107 00063	108 00059	109 00068	110 00059
111 00059	112 00055	113 00062	114 00050	115 00058	116 00047	117 00053	118 00054	119 00052	120 00055
121 00051	122 00045	123 00059	124 00050	125 00044	126 00038	127 00046	128 00043	129 00042	130 00052
131 00045	132 00044	133 00059	134 00060	135 00057	136 00047	137 00050	138 00057	139 00056	140 00059
141 00040	142 00058	143 00057	144 00040	145 00040	146 00030	147 00028	148 00032	149 00029	150 00023
151 00040	152 00030	153 00025	154 00023	155 00040	156 00024	157 00032	158 00025	159 00012	160 00032
161 00020	162 00022	163 00017	164 00037	165 00030	61000 991	167 00026	168 00022	169 00021	170 00023
171 00021	172 00023	173 00016	174 00018	175 00022	176 00018	177 00020	178 00018	179 00020	180 00018
181 00022	182 00017	183 00014	184 00028	185 00011	186 00014	187 00016	188 00011	189 00017	11000 061
191 00013	192 00017	193 00019	194 00021	195 00019	196 00018	197 00013	198 00022	91000 661	10000 000

010 22335	020 03519	030 00828	040 00465	050 00382	060 00216	070 00202	080 00234	090 00112	100 00289	110 00046	120 00037	130 00042	140 00039	150 00022	160 00023	170 00020	180 00010	190 00010	00000 000
009 30121	019 03267	029 00907	039 00510	049 00372	059 00259	28100 690	079 00233	089 00134	00800 660	109 00047	119 00034	129 00036	139 00035	149 00022	159 00014	169 00023	179 00024	189 00011	199 00007
008 15144	018 02822	028 01032	038 00495	048 00362	058 00263	068 00188	078 00265	088 00104	098 00296	108 00055	118 00052	128 00036	138 00029	148 00028	158 00011	168 00017	178 00013	188 00009	198 00012
69160 200	017 02722	027 01133	037 00551	047 00365	057 00236	067 00206	077 00289	11100 780	097 00282	107 00055	117 00038	127 00034	137 00034	61000 241	157 00018	167 00021	177 00014	187 00011	197 00008
74500 900	016 02798	026 01167	036 00592	046 00392	056 00285	066 00184	076 00338	086 00119	096 00239	106 00062	116 00030	126 00022	136 00037	146 00028	156 00018	166 00013	176 00023	186 00011	196 00009
0000 00000	015 03100	025 01184	035 00589	045 00364	055 00283	065 00194	075 00314	085 00110	095 00208	105 00073	115 00049	125 00019	135 00033	145 00028	155 00024	165 00014	175 00015	185 00013	195 00014
0004 00001	014 03814	024 01417	034 00604	044 00393	054 00256	064 00185	074 00317	084 00133	094 00174	104 00113	114 00033	124 00035	134 00034	144 00030	154 00025	164 00017	174 00016	184 00013	194 00006
003 00001	013 06179	023 01603	033 00672	043 00438	053 00286	063 00182	073 00276	083 00124	99100 660	103 00166	113 00038	123 00023	133 00034	143 00023	153 00015	163 00017	173 00023	183 00004	193 00005
0005 00000	012 16276	022 02201	032 00747	042 00424	052 00341	062 00238	072 00228	082 00138	092 00125	102 00224	112 00052	122 00032	132 00030	142 00050	152 00016	162 00015	172 00016	182,00016	192 00011
0000 100	011 31012	021 03120	031 00778	041 00448	051 00354	061 00221	071 00200	081 00178	061 00130	101 00236	111 00042	121 00043	131 00031	141 00037	151 00027	161 00013	171 00019	181 00008	191 00007

010 01267 99610 600 059 00170 21100 620 40100 680 109 00062 67000 611 17400 610 76000 660 008 01726 058 00170 90100 890 89000 860 118 00038 018 00468 078 00101 088 00092 108 00071 038 (Background 60 min, live time, 0 - 2 Mev, full scale (10 kev/ch) 89700 210 06100 250 01100 290 50100 220 11100 780 £9000 26c 107 00059 117 00063 127 00056 177 00020 187 00020 007 02035 61000 961 006 00243 176 00014 186 00022 9†000 00000 500 175 00019 015 00473 035 00295 245 00249 055 00213 565 00133 95 00074 125 00044 71100 570 085 00101 105 00067 115 00051 025 (114 00048 974 00109 **760** 000 00050 014 00502 104 00077 133 00043 143 00047 173 00019 183 00019 193 00019 003 00003 123 00046 153 00028 163 00023 013 00480 053 00199 083 00109 093 00083 103 00076 043 00234 963 00134 073 00097 113 00051 202 00000 000 100

DISTRIBUTION:

USAEC

Asst. General Manager for Reactors Washington, D.C. 20545 Attn: J. A. Swartout

USAEC, DSNS

Washington, D.C. 20545

Attn: H. B. Finger, Director (1)

G. P. Dix, Chief, Safety Branch, SEPO (1)

W. A. Yingling, SNPO (1)

C. P. McCallum, Safety Branch, SEPO (1)

R. T. Carpenter, Chief, Isotopic Power System Branch, SEPO (1)

C. E. Johnson, Chief, Reactor Power Systems Branch, SEPO (1)

USAEC

Division of Reactor Development & Technology Washington, D.C. 20545 Attn: J. A. Lieberman

USAEC

Office of the Assistant General Council for Patents Washington, D. C. 20545 Attn: Roland A. Anderson

USAEC

Division of Isotope Development Washington, D. C. 20545 Attn: A. Berman (1) W. K. Kern (1)

USAEC

Division of Military Application Washington, D. C. 20545 Attn: Brig. General D. L. Crowson, USAF

USAEC

Division of Biology and Medicine
Washington, D.C. 20545
Attn: H. D. Bruner, Asst. Director
Medical and Health Research (1)
Dr. Roger McClellan (1)
J. Z. Holland, Chief, Fallout Studies Br. (1)

USAEC

Reactor Division of Safety Standards Washington, D. C. 20545 Attn: J. J. Dinunno, Asst. Director

USAEC

Director of Regulation Washington, D.C. 20545 Attn: H. L. Price

USAEC

DSNS, Space Nuclear Prop. Office Washington, D. C. 20545 Attn: R. S. Decker, Jr., Chief, Safety Branch (3) USAEC

Division of Technical Information Headquarters Library, G-017 Washington, D. C. 20545 (3)

Space Nuclear Propulsion Office Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attn: L. Nichols

USAEC New York Operations Office 376 Hudson Street New York, New York 10014

Attn: A. L. Rizzo, Health & Safety Lab. (1)

J. Harley, Health & Safety Laboratory (1)

G. Silverman (1) W. Sullivan (1)

USAEC Albuquerque Operations Office P.O. Box 5400

Albuquerque, New Mexico 87115 Attn: S. A. Upson, Director, Research and Classification Div. (1)

USAEC Canoga Park Area Office P.O. Box 591 Canoga Park, California Attn: J. V. Levy, Area Manager (1) C. A. Malmstrom (1)

USAEC

San Francisco Operations Office 2111 Bancroft Way Berkeley, California 94704 Attn: Technical Services Division

USAEC

Chicago Operations Office 9800 South Cass Avenue Argonne, Illinois 60439 Attn: Chief, Office Services Branch

U.S. Atomic Energy Commission
Oak Ridge Operations Office
Mail and Document Accountability Sect.
P.O. Box E
Oak Ridge, Tennessee 37831
Attn: Director, Research and Development Div.

Headquarters
Air Force Systems Command (SCIZN)
Washington, D. C. 20331
Attn: Nuclear Safety Branch

Director Nuclear Safety (AFINS) Chief, Reactor & Advanced Systems Div. Kirtland Air Force Base, New Mexico Attn: Col. D. C. Jameson (AFINS-R)

DISTRIBUTION (cont):

Deputy, the Inspector General, USAF Director Nuclear Safety Kirtland Air Force Base, New Mexico Attn: Col. George Ogburn (AFINSR)

Director Air Force Weapons Laboratory Kirtland Air Force Base Albuquerque, New Mexico Attn: WLIL

For: Lt. Col. M. N. Nold (WLRB) (1) Lt. Col. H. L. Harris (WLAS) (1)

Space Systems Division Air Force Unit Post Office Los Angeles, California 90045 Attn: Technical Library

Air University Library
Maxwell Air Force Base, Alabama
Attn: Elizabeth C. Perkins, AUL3T-7143

Armed Forces Radiobiology Research Ins. Defense Atomic Support Agency Washington, D. C. 20014 Attn: Library

Atomics International P.O. Box 309 Canoga Park, California 91304 Attn: R. L. Detterman

Atomics International
Div. North American Aviation, Inc.
1629 K Street, NW
Washington, D. C.
Attn: Miles Huntsinger, Washington Representative

Battelle Memorial Institute 505 King Avenue Columbus, Ohio 43201 Attn: Dr. H. W. Russell

Battelle Memorial Institute Pacific Northwest Laboratory P.O. Box 999 Richland, Washington 99352 Attn: Dr. Roy Thompson

Brookhaven National Laboratory Technical Information Division Upton, Long Island, New York 11973 Attn: Research Library

The Boeing Company
P.O. Box 3707
Seattle, Washington 98124
Attn: Maynard D. Pearson, Aero-Space Division

Chief, Defense Atomic Support Agency P.O. Box 2610 Washington, D.C. 20301 Attn: Document Library Branch

Douglas Aircraft Company, Inc. Missile and Space Systems Division 3000 Ocean Park Boulevard Santa Monica, California Attn: Sid Gromich, Advanced Space Technology

Edgerton, Germeshausen and Grier, Inc. P.O. Box 98 Goleta, California

E. I. du Pont de Nemours and Company Savannah River Laboratory Aiken, South Carolina 29802 Attn: W. B. Scott, Document Div.

General Atomic Division General Dynamics Corporation P.O. Box 608 San Diego, California 92112 Attn: Library

General Electric Company
570 Lexington Avenue
New York, New York 10022
Attn: Richard W. Porter, Consultant
Aerospace Science and Technology

General Electric Company
Valley Forge Space Technology Center
Philadelphia, Pennsylvania
Attn: Carl Gamertsfelder, Advanced Requirements
Planning Department

General Electric Company Valley Forge Space Technology Center Philadelphia, Pennsylvania Attn: S. M. Scala

Hittman Associates P.O. Box 2685 4715 East Wabash Avenue Baltimore, Maryland

P.O. Box 504
Sunnyvale, California
Attn: H. H. Greenfield, Manager
Nuclear Power Development (1)
Dr. R. C. Lee (1)
Harold F. Plank (1)

Lockheed Missiles and Space Co.

Los Alamos Scientific Laboratory P.O. Box 1663 Los Alamos, New Mexico 87544 Attn: Report Librarian (2) Dr. L. D. P. King (1) Dr. Wright Langham (1)

DISTRIBUTION (cont):

Lovelace Foundation for Medical Education and Research 5200 Gibson Blvd., SE Albuquerque, New Mexico Attn: Dr. Clayton S. White, Director of Research

Martin Company Nuclear Division Middle River, Maryland 21203 Attn: D. G. Harvey (1) W. A. Hagis (1)

Minnesota Mining and Manufacturing Co. P.O. Box 6505 St. Paul, Minnesota Attn: H. C. Zeman, Security Department

Minnesota Mining and Manufacturing Co.
425-13th Street, NW
Washington, D. C.
Attn: Reynolds Marchant, Government Liaison
SNAP and Nuclear

Monsanto Research Corporation Mound Laboratory P.O. Box 32 Miamisburg, Ohio 45352 Attn: G. R. Grove

NASA Langley Research Center Langley Station Hampton, Virginia 23365 Attn: Librarian

NASA
Goddard Space Flight Center
Glenn Dale Road
Greenbelt, Maryland 20771
Attn: Charles Baxter, Nimbus Project (1)
A. W. Fihelly, Nimbus Project (1)

NASA Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attn: George Mandel

NASA George C. Marshall Space Flight Center Huntsville, Alabama 35812 Attn: W. Y. Jordan

NASA Ames Research Center Moffet Field, California Attn: Glenn Goodwin

NASA Headquarters 1512 H Street, NW Washington, D. C. 20545 Attn: Thomas B. Kerr NASA
Manned Spacecraft Center
Houston, Texas 77058
Attn: Chief, Technical Information Division

NASA Scientific and Tech. Info. Facility P.O. Box 5700 Bethesda, Maryland 20014 Attn: NASA Representative, S-AK/DL (2)

Nuclear Utility Services, Inc. 1730 M Street, NW Washington, D.C. 20036 Attn: Morton S. Goldman, Manager Environmental Safeguards

Phillips Petroleum Company NRTS Technical Library P.O. Box 2067 Idaho Falls, Idaho 83401

Radio Corporation of America Astroelectronics Division Princeton, New Jersey

Director, USAF Project RAND Via Air Force Liaison Office The Rand Corporation 1700 Main Street Santa Monica, California 90406 Attn: Library

TRW Systems P.O. Box 287 Redondo Beach, California Attn: Dr. Donald Jortner

U.S. Naval Radiological Defense Lab. Commanding Officer and Director San Francisco, California 94135 Attn: Dr. P. E. Zigman

Union Carbide Research Institute P.O. Box 278 Tarrytown, New York Attn: Joseph Agresta, Space Sciences Group

Union Carbide Corporation Nuclear Division P.O. Box X Oak Ridge, Tennessee 37831 Attn: E. Lamb, Isotope Dev. Ctr.

University of California Lawrence Radiation Laboratory P.O. Box 808 Livermore, California 94551 Attn: Technical Information Division

DISTRIBUTION (cont):

Westinghouse Electric Company Astronuclear Laboratory P.O. Box 10864 Pittsburgh 30, Pennsylvania Attn: Joanne M. Bridges

Supervisor, Flight Safety Analysis Group

Aeronautical Systems Division Wright-Patterson Air Force Base, Ohio 45433 Attn: Augustus Daniels, SEPRR

Division of Technical Information Ext. USAEC P.O. Box 62 Oak Ridge, Tennessee 37831 (50)

Clearinghouse for Federal Scientific and Technical Information 5285 Port Royal Road Springfield, Virginia 22151 (75)

Aerojet-General Corp.
P.O. Box 296
Azusa, California 91703
Attn: M. T. Grenier, Corporate Librarian

Westinghouse Electric Co. Astronuclear Laboratory P.O. Box 10864 Pittsburgh 30, Pennsylvania Attn: H. P. Smith

Space Nuclear Propulsion Office Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attn: P. M. Ordin

U.S. Naval Radiological Laboratory San Francisco, California 94135 Attn: J. D. Connor, Code 935

Aberdeen Proving Ground Aberdeen, Maryland Attn: H. Bechtol

Picatinny Arsenal Dover, New Jersey Attn: P. Sadlon

Watervliet Arsenal Watervliet, New York Attn: A. Muzicka

Los Alamos Scientific Lab. P. O. Box 1663 Los Alamos, New Mexico 87544 Attn: E. E. Campbell S. P. Schwartz, 1 R. W. Henderson, 1000 H. J. Bolles, 1111 C. C. Thacker, 1113 B. A. Ball, 1113 J. H. Findlay, 1400 S. A. Moore, 1540 E. H. Draper, 2000 A. Juskiewicz, 3311 D. R. Parker, 3311 R. J. Hansen, 4200 R. S. Claassen, 5100 J. R. Banister, 5120 T. B. Cook, 5200 J. D. Shreve, 5234 C. Winter, 5630 W. T. Moffat, 7220 H. E. Viney, 7250 L. E. Lamkin, 7300 G. H. Roth, 7320 H. J. Plagge, 7325 R. D. Jones, 7332 G. A. Fowler, 9000

D. B. Shuster, 9200
A. E. Bentz, 9232 (1), Attn: J. P. Martin, 9232 (1)
A. Y. Pope, 9300
V. E. Blake, 9310

A. Y. Pope, 9300
V. E. Blake, 9310
H. E. Hansen, 9311 (3)
A. J. Clark, Jr., 9312 (1)
Attn: R. E. Berry, 9312 (3)
B. S. Hill, 9312 (1)
H. J. Gay, 9312 (1)
J. W. McKiernan, 9319 (2)

R. C. Maydew, 9320 H. R. Vaughn, 9321 W. H. Curry, 9322 E. C. Rightley, 9323 W. R. Barton, 9324

W. R. Barton, 9324S. McAlees, 9325K. J. Touryan, 9326W. N. Caudle, 9327 (1)

Attn: J. Colp, 9327 (1) J. L. Tischhauser, 9420

B. S. Biggs, 8000B. R. Allen, 3421M. G. Randle, 3428-1

W. F. Carstens, 3410 Attn: T. B. Heaphy 34

Attn: T. B. Heaphy, 3411 (1) R. S. Gillespie, 3413 (2)

W. A. Jamieson, 8232 R. C. Smelich, 3415-3 (10)