Project Roseny Polynome: $x^3+x^2-4x-4=0$ [CV10]

HADAHE ± 1 , ± 2 " $\pm 2DE$ x=-1 je kosen

Delime: $x^3+x^2-4x-4:(x+1)=x^2-4=(x-2)(x+2)$ $-x^3+x^2[-4x-4]$ $x^3+x^2-4x-4=(x+1)(x+2)(x-1)$ Project D₄ + asymptof $x^3+x^2-4x-4=(x+1)(x+2)(x-1)$

f(x)= 1 x2-6x+10 x2-6x+10 >0 D= 36-4-140 CO De=R lim $\int x^2 - 6x + 400 = \lim_{x \to +\infty} \int x^2 \left(1 - \frac{6}{x} + \frac{10}{x^2}\right) =$ 2 lim 1× 1-6+10 = lim x) lim (51-6+10) = x-2+00 2 fcs = V1 2 fcs lim $\frac{f(x)}{x} = \lim_{x \to +\infty} \frac{\int x^2 - 6x + 10}{x} = \lim_{x \to +\infty} \frac{\int x^2 - 6x + 10}{x}$

= J1 = 1 = a ... { bade mil osymbolie, drockmob

7

lim flor $-ax = \lim_{x \to tos} (\sqrt{x^2 - 6x + 40} - x) =$ $= \lim_{x \to tos} (\sqrt{x^2 - 6x + 40} - x) = \lim_{x \to tos} (\sqrt{x^2 - 6x + 4$ = lin _-6x+10 x->+0 \(\sqrt{x^2-6x+10} + \sqrt{x^2} \) \(\sqrt{x} \) \(\sqrt $2 \lim_{x \to +\infty} \frac{x(-6+1)}{x} = \frac{-6+0}{2} =$ f ma v to osympler y=axtb= x-3 b) asympto v - 00 lin 5x'-6x40 = lin 5x'(1-6+10) = x-300 = lin |X/ 51-6+10 = lin (-X) (lin 51-6+10) = +>-0 = top. (VT) = too 2-151=-1=a...f bude mil ognifolie (dovotene b

2

lim $\sqrt{x^2-6x+10}$ -(-x) = lim $\sqrt{x^2-6x+10}$ $-\sqrt{x^2}$ = $\sqrt{x^2-6x+10}$ $-\sqrt{x^2}$ = $\sqrt{x^2-6x+10}$ $+\sqrt{x^2}$ = $\sqrt{x^2-6x+10}$ $+\sqrt{x^2-6x+10}$ $+\sqrt{x^2-6x+1$

3