机器学习的数学笔记

目录

N	otation	ii
1	逻辑回归	1
	1.1 二项逻辑回归模型	1

Notation

This section provides a concise reference describing notation used throughout this document. If you are unfamiliar with any of the corresponding mathematical concepts, ? describe most of these ideas in chapters 2–4.

Numbers and Arrays

a A scalar (integer or rea	a	Α	scalar	(integer	or	real)
----------------------------	---	---	--------	----------	----	------	---

- I_n Identity matrix with n rows and n columns
- $oldsymbol{I}$ Identity matrix with dimensionality implied by context
- $\boldsymbol{e}^{(i)}$ Standard basis vector $[0,\dots,0,1,0,\dots,0]$ with a 1 at position i
- $\begin{array}{ll} \operatorname{diag}(\boldsymbol{a}) & \text{A square, diagonal matrix with diagonal entries given} \\ & \text{by } \boldsymbol{a} \end{array}$
 - a A scalar random variable
 - a A vector-valued random variable
 - A A matrix-valued random variable

Sets and Graphs

\mathbb{A}	A	set

 \mathbb{R} The set of real numbers

 $\{0,1\}$ The set containing 0 and 1

 $\{0,1,\dots,n\}$. The set of all integers between 0 and n

[a, b] The real interval including a and b

(a, b] The real interval excluding a but including b

 $\mathbb{A}\backslash\mathbb{B}$ Set subtraction, i.e., the set containing the elements of

 \mathbb{A} that are not in \mathbb{B}

 \mathcal{G} A graph

 $Pa_{\mathcal{G}}(\mathbf{x}_i)$ The parents of \mathbf{x}_i in \mathcal{G}

Indexing

 a_i Element i of vector \boldsymbol{a} , with indexing starting at 1

 a_{-i} All elements of vector \boldsymbol{a} except for element i

 $A_{i,j}$ Element i,j of matrix \boldsymbol{A}

 $A_{i,:}$ Row i of matrix A

 $\mathbf{A}_{::i}$ Column i of matrix \mathbf{A}

 $A_{i,j,k}$ Element (i,j,k) of a 3-D tensor **A**

 $\mathbf{A}_{:::,i}$ 2-D slice of a 3-D tensor

 \mathbf{a}_i Element i of the random vector \mathbf{a}

Linear Algebra Operations

 \boldsymbol{A}^{\top} Transpose of matrix \boldsymbol{A}

 A^+ Moore-Penrose pseudoinverse of A

 $m{A}\odot m{B}$ Element-wise (Hadamard) product of $m{A}$ and $m{B}$

 $det(\mathbf{A})$ Determinant of \mathbf{A}

Calculus

7	Calculus				
$\frac{dy}{dx}$	Derivative of y with respect to x				
$rac{\partial y}{\partial x}$	Partial derivative of y with respect to x				
$ abla_{m{x}} y$	Gradient of y with respect to \boldsymbol{x}				
$\nabla_{\boldsymbol{X}} y$	Matrix derivatives of y with respect to \boldsymbol{X}				
$ abla_{\mathbf{X}}y$	Tensor containing derivatives of y with respect to ${\bf X}$				
$rac{\partial f}{\partial oldsymbol{x}}$	Jacobian matrix $\boldsymbol{J} \in \mathbb{R}^{m \times n}$ of $f: \mathbb{R}^n \to \mathbb{R}^m$				
$\nabla_{\boldsymbol{x}}^2 f(\boldsymbol{x})$ or $\boldsymbol{H}(f)(\boldsymbol{x})$	The Hessian matrix of f at input point \boldsymbol{x}				
$\int f(m{x}) dm{x}$	Definite integral over the entire domain of \boldsymbol{x}				
$\int_{\mathbb{S}} f(oldsymbol{x}) doldsymbol{x}$	Definite integral with respect to \boldsymbol{x} over the set $\mathbb S$				
Probability and Information Theory					
$\mathrm{a}\bot\mathrm{b}$	The random variables a and b are independent				
$a \bot b \mid c$	They are conditionally independent given c				
P(a)	A probability distribution over a discrete variable				
$p(\mathbf{a})$	A probability distribution over a continuous variable, or over a variable whose type has not been specified				
$a \sim P$	Random variable a has distribution P				
$\mathbb{E}_{\mathbf{x} \sim P}[f(x)]$ or $\mathbb{E}f(x)$	Expectation of $f(x)$ with respect to $P(x)$				
Var(f(x))	Variance of $f(x)$ under $P(x)$				
Cov(f(x), g(x))	Covariance of $f(x)$ and $g(x)$ under $P(x)$				
$H(\mathbf{x})$	Shannon entropy of the random variable x				
$D_{\mathrm{KL}}(P\ Q)$	Kullback-Leibler divergence of P and Q				
$\mathcal{N}(m{x};m{\mu},m{\Sigma})$	Gaussian distribution over \boldsymbol{x} with mean $\boldsymbol{\mu}$ and covariance $\boldsymbol{\Sigma}$				

Functions

 $f: \mathbb{A} \to \mathbb{B}$ The function f with domain A and range B

 $f \circ g$ Composition of the functions f and g

 $f(x; \theta)$ A function of x parametrized by θ . (Sometimes we write f(x) and omit the argument θ to lighten notation)

 $\log x$ Natural logarithm of x

$$\sigma(x)$$
 Logistic sigmoid, $\frac{1}{1 + \exp(-x)}$

 $\zeta(x)$ Softplus, $\log(1 + \exp(x))$

 $||\boldsymbol{x}||_p$ L^p norm of \boldsymbol{x}

 $||\boldsymbol{x}||$ L^2 norm of \boldsymbol{x}

 x^+ Positive part of x, i.e., max(0, x)

 $\mathbf{1}_{\text{condition}}$ is 1 if the condition is true, 0 otherwise

Sometimes we use a function f whose argument is a scalar but apply it to a vector, matrix, or tensor: $f(\boldsymbol{x})$, $f(\boldsymbol{X})$, or $f(\boldsymbol{X})$. This denotes the application of f to the array element-wise. For example, if $\mathbf{C} = \sigma(\boldsymbol{X})$, then $C_{i,j,k} = \sigma(X_{i,j,k})$ for all valid values of i, j and k.

Datasets and Distributions

 p_{data} The data generating distribution

 \hat{p}_{data} The empirical distribution defined by the training set

 \mathbb{X} A set of training examples

 $x^{(i)}$ The *i*-th example (input) from a dataset

 $y^{(i)}$ or $y^{(i)}$ The target associated with $x^{(i)}$ for supervised learning

 $m{X}$ The $m \times n$ matrix with input example $m{x}^{(i)}$ in row $m{X}_{i,:}$

Chapter 1

逻辑回归

1.1 二项逻辑回归模型

Definition 1.1.1. 二项逻辑回归模型是如下的条件概率分布

$$a+b=c$$

$$b+c=d$$
(1.1)

equation 1.1

We include this section as an example of some LATEX commands and the macros we created for the book.

Citations that support a sentence without actually being used in the sentence should appear at the end of the sentence using citep:

One of the simplest and most common kinds of parameter norm penalty is the squared L^2 parameter norm penalty commonly known as **weight decay**. In other academic communities, L^2 regularization is also known as **ridge** regression or **Tikhonov regularization**.

Acknowledgments

We thank Catherine Olsson and Úlfar Erlingsson for proof reading and review of this manuscript.