Relations in Discrete Mathematics

FFHS - Fernfachhochschule Schweiz BsC in Cyber Security

2024

Relation

David

1 Cartesian product

The Cartesian product of two sets A and B is the set of all ordered pairs (a,b) where a is an element of A and b is an element of B.

$$A*B = \{(a,b) \mid a \in A \land b \in B\}$$

The Cartesian product of the sets $A = \{1,2\}$ and $B = \{3,4\}$ is: $A*B = \{(1,3),(1,4),(2,3),(2,4)\}$.

2 Relation

A relation R from a set A to a set B is a subset of the Cartesian product $A \ast B$.

$$R \subseteq A * B$$

Let $A=\{1,2\}$ and $B=\{3,4\}$. The relation $R=\{(1,3),(2,4)\}$ is a relation from A to B.

For $(a,b)\in R$, we write aRb, and say that a is in relation R to b.

3 Inverse relation

The inverse relation $R^{\{-1\}}$ of a relation R is the relation that contains the ordered pairs of R in reverse order. $R^{\{-1\}}=\{(b,a)\mid (a,b)\in R\}$

Let
$$R=\{(1,3),(2,4)\}$$
 . The inverse relation $R^{\{-1\}}$ is: $R^{\{-1\}}=\{(3,1),(4,2)\}$.

4 Composition of relations

Given the relation $R \subseteq A*B$ and $S \subseteq B*C$, the composition of $R \circ S$ is the relation from A to C defined by:

$$R\circ S=\{(a,c)\mid \exists b\in B, (a,b)\in R\wedge (b,c)\in S\}$$

5 Representation of relations

Relations can be represented in different ways, one way is by using a directed graph.

 $R = \{(a,1),(b,1),(b,3),(c,2)\} \subseteq A*B \text{ when } A = \{a,b,c\} \text{ and } B = \{1,2,3\}.$ $c \qquad \qquad 2$ $a \qquad \qquad 1$ $b \qquad \qquad 3$ $or \ R^{\{-1\}} = \{(1,a),(1,b),(3,b),(2,c)\}.$ $2 \qquad \qquad c$ $1 \qquad \qquad a$

Relations in Discrete Mathematics

6 Relations $R \subseteq A * A$

Relations that are subsets of the Cartesian product of a set with itself are called relations on the set. They can have the following properties:

Reflexive: $(a,a) \in R \forall a \in A$.

The relation $R = \{(1,1),(2,2)\} \subseteq A*A$ is reflexive.

Transitive: $\forall a,b,c \in A, (a,b) \in R \land (b,c) \in R \Rightarrow (a,c) \in R$.

The relation $R = \{(1,2),(2,3),(1,3)\} \subseteq A*A$ is transitive.

Symmetric: $\forall a,b \in A, (a,b) \in R \Rightarrow (b,a) \in R$.

The relation $R = \{(1,2),(2,1)\} \subseteq A*A$ is symmetric.

Antisymmetric: $\forall a,b \in A, (a,b) \in R \land (b,a) \in R \Rightarrow a=b$. or equivalently: $\forall a,b \in A, (a,b) \in R \land a \neq b \Rightarrow (b,a) \notin R$.

The relation $R = \{(1,2),(2,3),(1,1)\} \subseteq A*A$ is antisymmetric.

Asymmetric: $\forall a,b \in A, (a,b) \in R \Rightarrow (b,a) \notin R$.

The relation $R = \{(1,2),(2,3)\} \subseteq A * A$ is asymmetric.

A relation R on a set A is called an equivalence relation if it is **reflexive**, symmetric, and transitive.

For $(a,b) \in R$, we say that a is **equivalent** to b and write $a \equiv b$.

7 Equivalence classes

Given an equivalence relation R on a set A, the equivalence class of an element $a \in A$ is the set of all elements in A that are equivalent to a.

$$[a]_{R} = \{b \in A \mid a \equiv b\}$$

Given the relation R is an equivalence relation on the set A then the following properties hold:

- 1. The equivalence classes of R form a partition of A.
- 2. A partition of a set A is a collection of nonempty, mutually disjoint subsets of A whose union is A.

8 Order Relations

A relation R on a set A is called a order(relation) if it is reflexive, antisymmetric and transitive. Often denoted by $a \leq b$.

For each order there also exists a strict order. A strict order is the result of removing the reflexive property from the order relation.

8.1 Strict order

A relation R on a set A is called a strict order if it is antisymmetric and transitive and not reflexive.

From each order relation R there exists a strict order relation S such that $aRb \Longleftrightarrow aSb \land a \neq b$. From each strict order a order relation can be derived by adding the reflexive property.

 $A \leq B$ is a order relation on the set A. A < B is a strict order relation on the set A.

9 Comparability

Two elements a and b in a set A are said to be comparable with respect to a relation R if either aRb or bRa.

9.1 Total order

A relation R on a set A is called a total order if it is a order relation and for all $a,b\in A$ either aRb or bRa.

Total means that for any elements a and b in A, they are always related (they can always be compared) with respect to $R \iff aRb \lor bRa$.

9.2 Partial order

A relation R on a set A is called a partial order if it is a order relation and for all $a,b\in A$ if aRb then bRa.

10 closures

Closure of a relation R is the smallest relation that contains R and has a certain property.

10.1 Reflexive closure

The reflexive closure of a relation R on a set A is the smallest relation that contains R and is reflexive.

A relation R is reflexive if for all $a \in A$, $(a,a) \in R$.

The reflexive closure of a relation R is $R \cup \{(a,a) \mid a \in A\}$. Often denoted by $[R]^{\mathrm{refl}}$.

```
Let R = \{(1,2),(2,3)\} \subseteq A*A. The reflexive closure of R is R \cup \{(1,1),(2,2),(3,3)\}.
```

10.2 Transitive closure

The transitive closure of a relation ${\cal R}$ on a set ${\cal A}$ is the smallest relation that contains ${\cal R}$ and is transitive.

Relations in Discrete Mathematics

A relation R is transitive if for all $a,b,c\in A$, $(a,b)\in R\land (b,c)\in R\Rightarrow (a,c)\in R$.

The transitive closure of a relation R is the intersection of all transitive relations that contain R. Often denoted by $\left[R\right]^{\mathrm{trans}}$.

 $\left[R\right]^{\mathrm{trans}} = R \cup \left\{(a,c) \mid \exists b \in A, (a,b) \in R \land (b,c) \in R\right\}$.

Let $R = \{(1,2),(2,3)\} \subseteq A*A$. The transitive closure of R is $R \cup \{(1,3)\}$.

10.3 Symmetric closure

The symmetric closure of a relation ${\cal R}$ on a set ${\cal A}$ is the smallest relation that contains ${\cal R}$ and is symmetric.

A relation R is symmetric if for all $a,b\in A$, $(a,b)\in R\Rightarrow (b,a)\in R$.

The symmetric closure of a relation R is $R \cup \{(b,a) \mid (a,b) \in R\}$. Often denoted by $[R]^{\mathrm{sym}}$.

Let $R=\{(1,2),(2,3)\}\subseteq A*A$. The symmetric closure of R is $R\cup\{(2,1),(3,2)\}$.