Problemas de transporte, asignación y trasbordo

- Tiene como objetivo encontrar el mejor plan de distribución, generalmente minimizando el coste.
- Un problema está *equilibrado* o balanceado si la oferta es igual a la demanda. En ese caso, en las restricciones se cumplirán las igualdades correspondientes.
- Para aplicar el simplex de transporte necesitamos que el problema esté equilibrado. Si no lo está, añadiremos una demanda ficticia con costes nulos o una oferta ficticia con costes de penalización.
- En una tabla representaremos el coste que supone transportar cada unidad desde i hasta j.

Demandantes Oferentes	Ciudad 1	Ciudad 2	Ciudad 3	Ciudad 4	Oferta kWh (·10 ⁶)
Planta 1	8	6	10	9	35
Planta 2	9	12	13	7	50
Planta 3	14	9	16	5	40
Demanda	45	20	30	30	

Modelo matemático.

x_{ii} representa la energía transportada desde la planta i hasta la ciudad j

• Función a optimizar:

Min w =
$$8x_{11} + 6x_{12} + 10x_{13} + 9x_{14} + 9x_{21} + 12x_{22} + 13x_{23} + 7x_{24} + 14x_{31} + 9x_{32} + 16x_{33} + 5x_{34}$$

Restricciones de demanda

$$X_{11}+X_{21}+X_{31}\geq 45$$

$$X_{12} + X_{22} + X_{32} \ge 20$$

$$X_{13} + X_{23} + X_{33} \ge 30$$

$$X_{14} + X_{24} + X_{34} \ge 30$$

Restricciones de oferta

$$X_{11} + X_{12} + X_{13} + X_{14} \le 35$$

$$X_{21} + X_{22} + X_{23} + X_{24} \le 50$$

$$X_{31} + X_{32} + X_{33} + X_{34} \le 40$$

Las soluciones del problema las representamos en un Cuadro de Transporte:

8	6	10	9
	10	25	
9	12	13	7
45		5	
14	9	16	5
	10		30

2. El método simplex para el transporte

- Para resolver un problema de transporte mediante el simplex, debemos seguir los siguientes pasos:
 - Equilibrar el problema
 - Hallar una solución inicial
 - Realizar las **iteraciones** o pivoteos necesarios hasta llegar a la solución final

Equilibrado del problema

- Un problema está equilibrado si la demanda es igual a la oferta.
- Si en un problema equilibrado todas las variables cumplen todas las restricciones menos una, la restante también se cumple.
- Circuito cerrado. Para que un circuito sea cerrado se debe cumplir que:
 - La trazada sea cerrada
 - Dos celdas consecutivas siempre están en la misma fila o columna
 - Tres celdas consecutivas no pueden estar en la misma fila o columna

Cálculo de una solución inicial

- Existen tres métodos para calcular una solución inicial:
 - **Esquina Noroeste**. Es el más simple, pero proporciona una primera solución no muy buena. No tiene en cuenta los costes.
 - **Mínimo coste**. La aproximación es mejor que en el caso anterior.
 - **Método de Vogel.** Proporciona la mejor solución inicial, aunque es el más tedioso y requiere calcular multas.

• Método:

- Empezando en la celda situada en la esquina superior izquierda escribimos el número menor entre el correspondiente a la fila o a la columna.
- Si hemos empleado el número de la fila, debemos tachar dicha fila y restar dicho número del número correspondiente a la columna, y viceversa.
- Nos volvemos a situar en la esquina superior izquierda y repetimos el procedimiento.
- Al finalizar, el número de celdas rellenadas debe ser igual al numero de filas más el número de columnas menos uno.
- Nota: cuando solo quede una fila/columna podemos escribir directamente los números.

• <u>Método:</u>

- Nos situamos en la celda que tenga el mínimo coste.
- Realizamos el mismo proceso que en el método anterior de escribir el número y tachar la fila o columna correspondiente.
- Volvemos a colocarnos en la celda de mínimo coste y continuamos hasta llegar a la solución.

• <u>Método:</u>

- La multa de cada fila o columna es la diferencia entre los dos menores costes de las celdas de dicha fila/columna.
- Calculamos las multas de cada fila y de cada columna.
- Escogemos la fila o columna de mayor multa.
- Escogemos la columna o fila de menor coste.
- Procedemos como en los casos anteriores.
- Habrá que recalcular las multas después de tachar celdas.

Partiremos de una solución inicial:

35	8		6		10		9
10	9	20	12	20	13		7
10		20		20			
	14		9	1.0	16	20	5
				10		30	

<u>VB</u>		<u>VNB</u>
$c_{11}=0=u_1+v_1-8$	u ₁ =0	$c_{12} = u_1 + v_2 - 6 = 5$
$c_{21}=0=u_2+v_1-9$	u ₂ =1	$c_{13} = u_1 + v_3 - 10 = 2$
$c_{22}=0=u_2+v_2-12$	u ₃ =4	$c_{14} = u_1 + v_4 - 9 = -8$
$c_{23}=0=u_2+v_3-13$	v ₁ =8 v ₂ =11	$c_{24} = u_2 + v_4 - 7 = -5$
$c_{33}=0=u_3+v_3-16$	v ₃ =12	$c_{31} = u_3 + v_1 - 14 = -2$
$c_{34} = 0 = u_3 + v_4 - 5$	v ₄ =1	$c_{32} = u_3 + v_2 - 9 = 6$

Como estamos minimizando, la condición de parada es que $c_{ij} \le 0$

- Entra la VNB más positiva (c₃₂). Para hallar la nueva iteración seguiremos los siguientes pasos:
 - Hacemos un circuito cerrado con la variable que entra
 - Nombramos alternativamente par e impar a las celdas
 - Tomamos como valor de λ el de la celda impar más pequeña, en este caso λ =10
 - Sumamos λ a las celdas pares y restamos λ de las impares

10	1	30 20	Р
20	-10	20	+10
10	Р	10	
10	+10	10	-10

En caso de existir dos celdas de valor mínimo, una de ellas conservará el valor cero

35	8		6		10		9
33							
10	9	10	12	30	13		7
10		10		30			
	14	10	9		16	30	5
		10				30	

<u>VB</u>		<u>VNB</u>
$c_{11}=0=u_1+v_1-8$	u ₁ =0	$c_{12} = u_1 + v_2 - 6 = 5$
$c_{21}=0=u_2+v_1-9$	u ₂ =1	$c_{13} = u_1 + v_3 - 10 = 2$
$c_{22}=0=u_2+v_2-12$	$u_3 = -2$	$c_{14} = u_1 + v_4 - 9 = -2$
$c_{23} = 0 = u_2 + v_3 - 13$	v ₁ =8 v ₂ =11	$c_{24} = u_2 + v_4 - 7 = 1$
$c_{32}=0=u_3+v_2-9$	v ₃ =12	$c_{31} = u_3 + v_1 - 14 = -8$
$c_{34} = 0 = u_3 + v_4 - 5$	v ₄ =7	$c_{33} = u_3 + v_3 - 16 = -6$

Entra la variable c₁₂

25	ı	10	Р
35	-10	10	+10
20	Р	10	I
10	+10	10	-10

25	8	10	6		10		9
20	9		12	0	13		7
20				30			
	14	10	9		16	20	5
		10				30	

<u>VB</u>		<u>VNB</u>
$c_{11}=0=u_1+v_1-8$	u ₁ =0	$c_{13} = u_1 + v_3 - 10 = 2$
$c_{12}=0=u_1+v_2-6$	u ₂ =1	$c_{14} = u_1 + v_4 - 9 = -7$
$c_{21}=0=u_2+v_1-9$	u ₃ =3	$c_{22} = u_2 + v_2 - 12 = -5$
$c_{23}=0=u_2+v_3-13$	v ₁ =8 v ₂ =6	$c_{24} = u_2 + v_4 - 7 = -4$
$c_{32}=0=u_3+v_2-9$	$v_3 = 12$	$c_{31} = u_3 + v_1 - 14 = -3$
$c_{34} = 0 = u_3 + v_4 - 5$	v ₄ =2	$c_{33} = u_3 + v_3 - 16 = -1$
34 5 4 5	4 –	33 33 13 1

Entra la variable c₁₃

En este caso las celdas escogidas para el circuito cerrado no son contiguas. El circuito será un rectángulo:

2/5		10	25	Р
4 5	-25		25	+25
45	Р		5	1
20	+25		30	-25

• Con lo que ya tenemos:

	8	10	6	25	10		9
45	9		12	5	13		7
	14	10	9		16	30	5

Donde:

<u>VB</u>		<u>VNB</u>
$c_{12}=0=u_1+v_2-6$	$u_1 = 0$	$c_{11} = u_1 + v_1 - 8 = -2$
$c_{13} = 0 = u_2 + v_1 - 10$	$u_2 = 3$	$c_{14} = u_1 + v_4 - 9 = -7$
$c_{21}=0=u_2+v_1-9$	$u_3 = 3$	$c_{22}=u_2+v_2-12=-3$
$c_{23} = 0 = u_2 + v_3 - 13$	v ₁ =6 v ₂ =6	$c_{24} = u_2 + v_4 - 7 = -2$
$c_{32} = 0 = u_3 + v_2 - 9$	v ₃ =10	$c_{31} = u_3 + v_1 - 14 = -5$
$c_{34} = 0 = u_3 + v_4 - 5$	v ₄ =2	$c_{33} = u_3 + v_3 - 16 = -3$

Dado que todas las c_{ij}≤ 0 hemos llegado a la solución óptima

• En este tipo de problemas cada trabajo se asocia por completo a una máquina. La variable x_{ij} toma los valores 1 si se asigna la máquina i al trabajo j y 0, en caso contrario.

	Trabajo 1	Trabajo 2	Trabajo 3	Trabajo 4
Máquina 1	14	5	8	7
Máquina 2	2	12	6	5
Máquina 3	7	8	3	9
Máquina 4	2	4	6	10

Modelo matemático

• Función a optimizar:

Min w =
$$14x_{11} + 5x_{12} + 8x_{13} + 7x_{14} + 2x_{21} + 12x_{22} + 6x_{23} + 5x_{24} + 7x_{31} + 8x_{32} + 3x_{33} + 9x_{34} + 2x_{41} + 4x_{42} + 6x_{43} + 10x_{44}$$

Restricciones de la máquina:

$$X_{11} + X_{12} + X_{13} + X_{14} = 1$$

$$x_{21} + x_{22} + x_{23} + x_{24} = 1$$

$$x_{31} + x_{32} + x_{33} + x_{34} = 1$$

$$X_{41} + X_{42} + X_{43} + X_{44} = 1$$

Restricciones del trabajo:

$$X_{11} + X_{21} + X_{31} + X_{41} = 1$$

$$x_{12} + x_{22} + x_{32} + x_{42} = 1$$

$$x_{13} + x_{23} + x_{33} + x_{43} = 1$$

$$X_{14} + X_{24} + X_{34} + X_{44} = 1$$

- Método Húngaro.
 - En una matriz de costes hallamos el mínimo de cada fila
 - Se resta el mínimo de cada fila.
 - Repetimos el procedimiento para las columnas

14	5	8	7	5
2	12	6	5	2
7	8	3	9	3
2	4	6	10	2

9	0	3	2
0	10	4	3
4	5	0	6
0	2	4	8

9	0	3	0
0	10	4	1
4	5	0	4
0	2	4	6

- Ahora debemos cubrir todos los ceros con el mínimo número "m" posible de líneas.
 - Si n=dimensión de la matriz, se termina el algoritmo
 - Si n<dimensión, necesitaremos un paso adicional
 - En este caso n=3<4

- Al menor de los números no cubiertos lo denominamos k (k=1).
- Restamos k de los números no cubiertos y lo sumamos a los que estén cubiertos por dos líneas, y repito el paso anterior.
- Como n=4=dimensión de la matriz finaliza el algoritmo.
- Ahora escojo 4 ceros de manera que tenga un cero por fila y columna. Dichas celdas corresponden a las x_{ij} de valor unitario.

$$x_{12} = x_{24} = x_{33} = x_{41} = 1$$

• En los problemas de trasbordo las unidades pueden pasar por lugares intermedios antes de llegar a su destino.

Destino Origen	Memphis	Denver	NY	Chicago	LA	Boston
Memphis	0	1	8	13	25	28
Denver	-	0	15	12	26	25
NY	-	-	0	6	16	17
Chicago	-	-	6	0	14	16
LA	-	-	-	-	0	-
Boston	-	-	-	-	-	0

- Memphis y Denver son ciudades origen.
- LA y Boston son ciudades destino.
- NY y Chicago son ciudades de trasbordo: son tanto origen como destino.
- Como la oferta es superior a la demanda incluimos un demandante ficticio con costes nulos.
- La máxima cantidad que puede pasar (entrar o salir) por cada punto de trasbordo es igual a la suma de las ofertas.

Destino Origen	NY		Chicago		LA		Boston		Ciudad Ficticia	
Momphis		8		13		25		28		0
Memphis	130								20	
Denver		15		12		26		25		0
							130		70	
NY		0		6		16		17		0
INT	220				130					
Chicago		6		0		14		16		0
Chicago			350		0					