block name 1

1. Statistical models & Statistics

introduction

block name 3

Statistical model

Let:

 $\cdot \Omega$ set

 $\cdot\,\mathcal{A}$ sigma-algebra over Ω

$$\cdot \mathcal{P} \subset \mathcal{F}(\Omega, [0, 1])$$

Then, $(\Omega, \mathcal{A}, \mathcal{P})$ is a statistical model if:

$$\cdot \forall P \in \mathcal{P}$$
:

 (Ω, \mathcal{A}, P) probability space

Parametrization

Let:

 $\cdot (\Omega, \mathcal{A}, \mathcal{P})$ statistical model

$$\cdot \, \Theta \subset \mathbb{R}^d$$

Then, $(\Omega, \mathcal{A}, \mathcal{P})$ is parametrized by Θ if:

$$\cdot \mathcal{P} = \{P_{\theta}\}_{\theta \in \Theta}$$

We denote:

 $\cdot (\Omega, \mathcal{A}, \mathcal{P}) : (\Omega, \mathcal{A}, \{P_{\theta}\}_{\theta \in \Theta}) \text{ d-D statistical model}$

Likelihood function

Let:

$$\cdot (\Omega, \mathcal{A}, \{P_{\theta}\}_{\theta \in \Theta})$$
 d-D statistical model

We name likelihood function of $(\Omega, \mathcal{A}, \mathcal{P})$ to:

$$\begin{array}{cccc} L6: & \Omega \times \Theta & \longrightarrow & [0,1] \\ & (x,\theta) & \longmapsto & P_{\theta}(x) \end{array}$$

Exponential model

Let:

- $\cdot (\Omega, \mathcal{A}, \{P_{\theta}\}_{\theta \in \Theta})$ d-D statistical model
- · L likelihood function of $(\Omega, \mathcal{A}, \mathcal{P})$

Then, $(\Omega, \mathcal{A}, \mathcal{P})$ is exponential if:

$$\cdot \exists \{f_i\}_{i=0}^r \subset \mathcal{F}(\Omega,\mathbb{R}) :$$

$$\forall i \in [0, r]_{\mathbb{N}}$$
:

 f_i measurable

$$\cdot \exists \{\phi_i\}_{i=0}^r \subset \mathcal{F}(\Theta, \mathbb{R}) :$$

$$\forall x \in \Omega$$
:

$$\forall \theta \in \Theta$$
:

$$L(x,\theta) = \exp(\sum_{i=1}^{r} f_i(x)\phi_i(\theta) + f(x) + \phi(\theta))$$

block name 5

Statistic

Let:

 $\cdot (\Omega, \mathcal{A}, \{P_{\theta}\}_{\theta \in \Theta})$ d-D statistical model

$$f: (\Omega, \mathcal{A}) \to (\mathbb{R}^m, \mathbb{B}(\mathbb{R}^m))$$

Then, f is a statistic if:

 $\cdot f$ measurable

Sufficiency

Let:

 $\cdot (\Omega, \mathcal{A}, \{P_{\theta}\}_{\theta \in \Theta})$ d-D statistical model

 $\cdot (M, \Sigma)$ measurable space

 $\cdot\: X\: :\: M \to \Omega$ random variable

 $T: \Omega \to \mathbb{R}^m$ statistic

Then, T is sufficient if:

$$\cdot \forall \theta_1, \theta_2 \in \Theta$$
:

 $\forall x \in M$:

 $\forall t \in \mathbb{R}^m$:

$$P_{\theta_1}(X=x\mid T{\circ}X=t)=P_{\theta_2}(X=x\mid T{\circ}X=t)$$