Prima parte del Compito di MDAL

8 settembre 2017

Cognome e nome:
Numero di matricola:
IMPORTANTE: Non si possono consultare libri e appunti. Non si possono usare calcolatrici, computer o altri dispositivi elettronici. Non si può scrivere con il lapis.
Esercizio 1. Si consideri \mathbb{R}^4 con il prodotto scalare standard. Siano $v_1 = (4, -1, 2, -2), v_2 = (1, 0, 1, 1)$ vettori di \mathbb{R}^4 (scritti in riga per motivi di spazio).
1. (Punti 1) Trovare una base di $(Span\ (v_1,v_2))^{\perp}$.
2. (Punti 1) Trovare una base ortogonale di $Span(v_1, v_2)$.
Esercizio 2. In una classe di 16 studenti vi sono 4 file di banchi con 4 banchi per fila.
1. (Punti 1) Quanti modi vi sono di disporre gli studenti nei banchi?
2. (Punti 1) Quanti modi vi sono di disporre gli studenti supponendo che vi siano 4 ragazze e 12 ragazzi e che le ragazze non possano stare tutte nella stessa fila?
Esercizio 3. Sia n un numero naturale e consideriamo la congruenza $xy \equiv 1 \pmod{n}$.
1. (Punti 1) Quante sono le soluzioni (x, y) modulo n per $n = 97$?

2. (Punti 1) Quante sono le soluzioni (x, y) modulo n per n = 100?

Esercizio 4. (Punti 2) Consideriamo polinomi a coefficienti razionali. Per quali valori di n il polinomio $x^2 - 1$ divide $x^n - 1$?

Esercizio 5. (Punti 2) Sia $F: \mathbb{R}^3 \to \mathbb{R}^3$ un'applicazione lineare tale che $F((2,3,1))=(6,9,3), \ F((1,1,0))=(-2,-2,0), \ F((0,1,-1))=(0,-3,3).$ Trovare la matrice di F rispetto alla base (2,3,1), (1,1,0), (0,1,-1) in partenza e in arrivo.

Esercizio 6. Sia $T: \mathbb{R}^3 \to \mathbb{R}^3$ la rotazione di $\frac{\pi}{6}$ in senso antiorario intorno alla retta Span((0,0,1)) (lascia dunque fissi i punti di tale retta).

- 1. (Punti 1) Scrivere la matrice di T rispetto alla base standard.
- 2. (Punti 1) Quali sono gli autovalori di T? Scrivere qui...