Lecture 21, Oct. 28

EA 3 due Fri Nov. 4

WA 3 due Wed Nov. 9

- **21.1 Definition** (Continuity). We say that f(x) is **continuous** at x = a if
 - 1. $\lim_{x\to a} f(x)$ exists
 - $2. \lim_{x\to a} f(x) = f(a)$

Equivalently, we say that f(x) is continuous at x=a if for every $\epsilon>0$ there exists a $\delta>0$ such that if $|x-a|<\delta$, we have $|f(x)-f(a)|<\epsilon$.

If f(x) is not continuous at x = a we say that f is **discontinuous** at x = a. We write

$$D(f) = \{a \in \mathbb{R} \mid f \text{ is discontinuous at } x = a\}$$

- **21.2 Theorem** (Sequential Characterization of Limit). Assume that f(x) is defined on an open interval I containing x = a, Then the following are equivalent:
 - 1. f(x) is continuous at x = a
 - 2. If $\{x_n\}$ with $x_n \to a$, we have $f(x_n) \to f(a)$

Proof. Assume that f(x) is continuous at x=a. Let $\{x_n\}$ be such that $x_n\to a$. Let $\epsilon>0$. Since f(x) is continuous at x=a, there exists a $\delta>0$ such that for all $|x-a|<\delta$ we have $|f(x)-f(a)|<\epsilon$. Since $\{x_n\}$ converges to a, there exists a $N_0>0$ such that for all $n>N_0$ we have $|x_n-a|<\delta$. Then if $n\geq N_0$, we have $|f(x_n)-f(a)|<\epsilon$.

Conversely, for a contraposition, that f(x) is not continuous at x=a. Then there exists an $\epsilon_0>0$ such that for every $\delta>0$ there exists $x_\delta\in(a-\delta,a+\delta)$ with $|f(x_\delta)-f(a)|\geq\epsilon_0$. In particular, there exists a $x_n\in(a-\frac{1}{n},a+\frac{1}{n})$ with $|f(x_n)-f(a)|>\epsilon_0$. Hence $f(x_n)$ does not converge to f(a).

- **21.3 Theorem** (Arithmetic Rules). Assume f(x) and g(x) are continuous at x = a, then
 - 1. (cf)(x) is continuous at x = a for $c \in \mathbb{R}$
 - 2. (f+g)(x) is continuous at x=a
 - 3. (fg)(x) is continuous at x = a
 - 4. (f/g)(x) is continuous at x = a provided that $g(a) \neq 0$.
- **21.4 Question.** Let $f: \mathbb{R} \to \mathbb{R}$, $g: \mathbb{R} \to \mathbb{R}$. Let $h(x) = g \circ f(x) = g(f(x))$. Assume that $\lim_{x \to a} f(x) = L$ and $\lim_{y \to L} g(y) = M$.

Is $\lim_{x\to a} g \circ f(x) = \lim_{x\to a} h(x) = M$?

21.5 Theorem. If f(x) is continuous at x = a, and g(y) is continuous at y = f(a), then $h(x) = g \circ f(x)$ is continuous at x = a.

Proof. Let $x_n \to a$, then $f(x_n) \to f(a)$, hence $g(f(x_n)) \to g(f(a))$

21.6 Example. Show that $\sin x$ is continuous.

Observation:

- 1. $\sin x$ is continuous at x = 0 since $\lim_{x \to 0} \sin x = 0$.
- 2. If we can show that $\lim_{h\to 0} \sin(x_0 + h) = \sin x_0$ then $\sin x$ is continuous at x_0 .

$$\lim_{h \to 0} \sin(x_0 + h) = \lim_{h \to 0} [\sin x_0 \cos h + \sin h \cos x_0]$$
$$= \sin x_0$$

Nature of Discontinuity

21.7 Example.

$$f(x) = \frac{x^2 - 1}{x - 1}$$

f(x) is not continuous at x = 1.

Let

$$g(x) = \begin{cases} f(x) & \text{if } x \neq 1\\ 2 & \text{if } x = 1 \end{cases}$$

21.8 Definition. If $\lim_{x\to a} f(x) = L$ exists but $L \neq f(a)$, then we say that f(x) has a **removable discontinuity** at x = a. Let

$$g(x) = \begin{cases} f(x) & \text{if } x \neq a \\ L & \text{if } x = a \end{cases}$$

21.9 Definition. If $\lim_{x\to a} f(x)$ does not exists, then x=a is called an **essential discontinuity** for f(x).

3 Types of Essential Discontinuities

- 1. Finite jump discontinuity: $\lim_{x\to a^+} f(x) = L$, $\lim_{x\to a^-} f(x) = M$ and $L \neq M$
- 2. Vertical Asymptote: $\lim_{x\to a^{\pm}} f(x) = \pm \infty$
- 3. Oscillatory Discontinuity: $\lim_{x\to 0} \sin(1/x)$