Possibili circuiti per misura i-V

Curva i-V diodo raddrizzatore (1N4007, polarizzazione diretta)

- Variare V del generatore
- Fissare limite corrente (300 mA)
- Suggerito generatore 0-6 V (più precisione)

Curva i-V diodo zener (BZX85C5V1, polarizzazione inversa)

- Fissare V_{GEN} = 10 V
- Variare i con R (scatola decade) NB R = $5 \text{ k}\Omega$ darà circa 1 mA $100 \Omega \rightarrow 50 \text{ mA}$
- Fissare limite corrente (150 mA)

In entrambi i casi, per eliminare contributo dalle resistenze dei contatti, collegare voltmetro direttamente ai capi del diodo. Resistenza contatto (breadboard) può essere quantificato con misura dedicata.

Note misure con Ponte di Graetz (con e senza Zener)

- NB: non possiamo misurare simultaneamente con l'oscilloscopio V_C o V_{OUT} rispetto a massa e anche la tensione in ingresso al ponte (7.5 V RMS) (creerebbe corto circuito sul diodo con cerchio verde)
- Idealmente V_{OUT} quasi costante (nessun segnale nel limite $R_L \rightarrow \infty$)
- Trigger: usare «LINE» per fare trigger sulla tensione di alimentazione a 50 Hz (sincronizzato con VIN del trasformatore)

Note misure con Ponte di Graetz (con e senza Zener): Acquisizioni forma d'onda / misure DMM suggerite

- V_C e V_{OUT} con oscilloscopio (accoppiamento DC)
- → Utile per valori assoluti di V_{MAX} e/o V_{MIN}
- V_C e V_{OUT} con oscilloscopio (accoppiamento AC)
- → Utile per ingrandire la variazione V_{MAX} V_{MIN} (V_{RIPPLE})
- Utile misurare VOUT con DMM voltmetro (misura DC volt)
- → Misurare media di V_{OUT} con buona precisione, estrarre R_{OUT}

