Term 1 Test 2: Topic 0, 11, 1.1 (2016)

Name and chemistry block: _____

There is a total of 45 points in this test. You have 5 minutes of reading time and 50 min to complete this test.

1 Multiple Choice

- [1] 1. How many significant figures are in 0.08050?
 - A. 2
 - B. 4
 - C. 5
 - D. 6
- [1] 2. $(800 \pm 8) (50 \pm 5) = ?$
 - A. 750 ± 3
 - B. 750 ± 13
 - **C.** 750 ± 75
 - D. 750 ± 83
- [1] 3. $(800 \pm 8) \div (50 \pm 5) = ?$
 - A. $16 \pm \frac{8}{5}$
 - B. 16 ± 1.76
 - C. 16 ± 3
 - D. 16 ± 13

- [1] 4. Precision of an experiment may be reduced by:
 - I. repeating the experiment
 - II. using more precise instruments
 - A. I
 - B. II
 - C. I and II
 - D. None of the above
- [1] 5. Systematic errors in an experiment may be reduced by:
 - I. repeating the experiment
 - II. using more precise instruments
 - A. I
 - B. II
 - C. I and II
 - D. None of the above
- [1] 6. Express 3.50 dm³ in cm³.
 - A. $3.50 \times 10^1 \mathrm{cm^3}$
 - B. $3.50 \times 10^{-1} \text{cm}^3$
 - C. $3.50 \times 10^{-3} \text{cm}^3$
 - D. $3.50 \times 10^3 \mathrm{cm}^3$
- [1] 7. Which of the following is considered a mixture?
 - A. 1.00 g of mercury Hg⁰(1)
 - B. 1.00 dm³ carbon dioxide CO_{2(g)}
 - C. $1.00 \text{ mol dm}^{-3} \text{ nitric acid HNO}_{3(aq)}$
 - D. 1.00 mol Ca²⁺SO₄²⁻(s)
- [1] 8. Which of the following is an example of a homogenous mixture?
 - A. ice $H_2O_{(s)}$
 - B. dry ice $CO_{2(s)}$
 - C. blood
 - D. sea water

[1]	9.	A homogenous	mixture can	be separated	by:
-----	----	--------------	-------------	--------------	-----

- A. Filtration
- B. Decantation (carefully pouring off some liquid)
- C. Centrifugation
- D. None of the above

[1] 10. Which of the following describes $CO_{2(g)} \longrightarrow CO_{2(s)}$?

- A. Freezing
- B. Condensation
- C. Sublimation
- D. Deposition

[1] 11. Which of the following have the same chemical properties?

- $I_{17}^{37}X_{(g)}$
- $II_{17}^{35}X_{2(g)}$
- III $_{16}^{35}X_{2(g)}$
- IV ³⁷Cl₂(g)
 - A. I and II
 - B. II and IV
 - C. II and III
 - D. II, III, and IV

[1] 12. Molar mass has a unit of

- l. g
- II. $\frac{g}{mol}$
- III. gmol^{-1}
 - A. I
 - B. I and II
 - C. II and III
 - D. None of the above

- [1] 13. Relative molecular mass has a unit of
 - l. g
 - II. $\frac{g}{mol}$
 - III. $gmol^{-1}$
 - A. I
 - B. I and II
 - C. II and III
 - D. None of the above
- [1] 14. Calculate the number of neutrons in $\frac{1}{4}$ mol of $^{35}\mathrm{Cl}_{2(\mathbf{g})}$.
 - A. $(\frac{35}{4} \cdot 6.02) \times 10^{23}$
 - B. $(\frac{36}{4} \cdot 6.02) \times 10^{23}$
 - C. $(35 \cdot 6.02) \times 10^{23}$
 - D. $(36 \cdot 6.02) \times 10^{23}$
- [1] 15. Which of the following statements are true?
 - I The nucleus occupies a small volume in all atoms
 - II The mass of the atom is concentrated in its nucleus
 - III The nucleus is positively charged
 - A. I and II
 - B. I and III
 - C. II and III
 - D. I, II, and III
- [1] 16. In one $^{37}_{17}\text{CI}^-_{\ \ \ \ \ \ }$ ion, there is a highest number of
 - A. Protons
 - B. Neutrons
 - C. Electrons
 - D. There are same number of protons, neutrons, and electrons.

- [1] 17. Calculate the moles of Al atoms present in x g of $Al_{(s)}$. The relative atomic mass of aluminium is 27.0 amu, and its atomic number is 13.
 - A. $x \times 13.0$
 - B. $x \div 13.0$
 - C. $x \times 27.0$
 - D. $x \div 27.0$
- [1] 18. 0.500 mol of $Cl_{2(g)}$ has a mass of:
 - A. $\frac{35.0}{2}$
 - B. $\frac{35.5}{2}$
 - C. 35.0
 - D. 35.5
- [1] 19. Which formula can be determined by using only the % mass composition of an unknown compound?
 - I. Molecular formula
 - II. Structural formula
 - III. Empirical formula
 - A. I
 - B. II
 - C. III
 - D. I and III
- [1] 20. Which of the following species has the most electrons?
 - I. 35Cl²⁻
 - II. ³⁷Cl
 - III. $^{35}Cl_2$
 - A. I
 - B. II
 - C. III
 - D. I and II has the same number of electrons

2 Extended responses

	21.	and (dryi	epared $BaCO_{3(s)}$ by adding $BaCl_{2(aq)}$ from a pipette into a solution of Na_2CO_3 and ing. (This is similar to the procedure you used in the preparation of $CaCO_{3(s)}$ in the are three times.	
[1]		(a)	i.	State the name of the CO ₃ ²⁻ ion	
[1]			ii.	Deduce the total number of protons present in one CO_3^{2-} ion.	i
					ii
[2]			iii.	Deduce the total number of electrons present in one CO ₃ ²⁻ ion.	
					iii
[1]			iv.	Calculate the number of electrons present in 1 mol of CO_3^{2-} ion.	
					iv
[2]			v.	State and explain whether $^{12}\text{CO}_3{}^{2-}$ and $^{14}\text{CO}_3{}^{2-}$ will have the same chemical reaction	vity.

[1]		State and explain whether $Na_2CO_{3(aq)}$ is a pure substance, a homogenous mixture, or a heterogenous mix ture.
[2]	ii.	Predict, outlining your reason, what the freezing point of Na ₂ CO _{3(aq)} will likely be.
	(c) Alic	e first centrifuged the sample before using a Buchner funnel to filter the solids.
[1]	i.	State the precaution that must be undertaken when using a centrifuge.
[2]	ii.	Sketch and label a filtration setup using a Buchner funnel.

	(d) For the first experiment, after filtration, Alice obtained 3.234 ± 0.002 g of a wet paste. After drying in the oven the mass decreased to 1.292 ± 0.002 g.
[1]	 i. Calculate the mass of the water lost. Include uncertainties and correct number of significant figures in your answer.
	i
[1]	ii. Deduce the percentage of the wet paste that was water.
	ii
[2]	iii. Calculate the number of moles of $BaCO_{3(s)}$ made. Include uncertainties and correct number of significant figures in your answer.
	iii
[2]	(e) Given the amounts of reagents used, Alice calculated that she should have made 1.500 g of BaCO _{3(s)} . (This is called the <i>theoretical yield</i>) Propose a reason for why her yield is lower than expected, and how this may be improved.

(f) The results of the three syntheses are shown in the Table 1.

Table 1 Results for the synthesis of $BaCO_{3(s)}$

	Filter paper / g (± 0.002)	Dried filter paper with $\mathrm{BaCO}_{\mathrm{3(s)}}$ / g ($\pm0.002\mathrm{)}$	Mass of BaCO _{3(s)} / g
Trial 1	0.507	1.799	1.292
Trial 2	0.500	1.313	0.813
Trial 3	0.451	1.650	1.199

i. Calculate the average amount of $BaCO_{3(s)}$ prepared.
i
ii. Deduce the instrumental uncertainty for the mass of ${\sf BaCO}_3$ prepared.
ii
iii. Calculate the reproducibility uncertainty from the three preparations.
iii
iv. State and explain which of the two uncertainties (from part ii and iii) should be used in reporting the yield of the synthesis.
v. Report, as a final value, the amount of $BaCO_{3(s)}$ prepared by Alice's synthesis.
v