Arquitecturas CNNs

<u>bibliografía</u>
Andrew NG (Deep Learning)

							Inception-v3 Network In Network ●		● Inception-ResNets ● Inception-v4		
99 2000 2001 -5	2002	2003 2004	4 2005	2006 2007	2008	2009 2010 2	2012 2013 AlexNet	VGG Inception-v1	16 2017 2018 2 Xception ResNeXts		
Model	Size (MB)	Top-1 Accuracy	Top-5 Accuracy	Parameters	Depth	Time (ms) per inference step (CPU)	Time (ms) per inference step (GPU)				
Xception	88	79.0%	94.5%	22.9M	81	109.4	8.1	keras app			
VGG16	528	71.3%	90.1%	138.4M	16	69.5	4.2				
VGG19	549	71.3%	90.0%	143.7M	19	84.8	4.4				
ResNet50	98	74.9%	92.1%	25.6M	107	58.2	4.6				
ResNet50V2	98	76.0%	93.0%	25.6M	103	45.6	4.4				
ResNet101	171	76.4%	92.8%	44.7M	209	89.6	5.2				
ResNet101V2	171	77.2%	93.8%	44.7M	205	72.7	5.4				
ResNet152	232	76.6%	93.1%	60.4M	311	127.4	6.5				

ResNet152 232 76.6% 93.1% 60.4M 311 127.4 6.5 ResNet152V2 107.5 232 78.0% 94.2% 60.4M 307 6.6 InceptionV3 92 77.9% 93.7% 23.9M 189 42.2 6.9

LeNet-5 (1998)

Stacking:

- Conv
- Activation
- Pooling
- Dense

AlexNet (2012) - Ver ejemplo en github 1-CNN-Teoria

- Relu
- Dropout

VGG-16 (2014)

Deeper network

	100.000000	ConvNet Co	onfiguration								
A	A-LRN	В	С	D	E						
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight						
layers	layers	layers	layers	layers	layers						
input (224 × 224 RGB image)											
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64						
CT COLO	LRN	conv3-64	conv3-64	conv3-64	conv3-64						
maxpool											
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128						
		conv3-128	conv3-128	conv3-128	conv3-128						
maxpool											
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256						
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256						
			conv1-256	conv3-256	conv3-256						
			2		conv3-256						
maxpool											
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512						
• 1 1			conv1-512	conv3-512	conv3-512						
					conv3-512						
			pool								
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512						
			conv1-512	conv3-512	conv3-512						
					conv3-512						
maxpool											
FC-4096											
FC-4096											
FC-1000											
soft-max											

Resnet-50 (2015)

Popularised skip connections (they weren't the first to use skip connections).

Deeper CNNs (up to 152 layers)

Batch normalization

Residual block

$$\underline{z^{[l+1]}} = W^{[l+1]} \ \underline{a^{[l]}} + b^{[l+1]} \quad \underline{a^{[l+1]}} = g(\underline{z^{[l+1]}})$$

$$z^{[l+2]} = W^{[l+2]}a^{[l+1]} + b^{[l+2]}$$

$$a^{[l+2]} = g(z^{[l+2]})$$

Andrew Ng

Residual Network

ResNet

Inception-V3 (2015)

The problem of computational cost

MobileNet / EfficientNet (Groups) Ver video

Aumento la cantidad de canales de entrada

Aumento la cantidad de features (cantidad de filtros)

Dividimos en 2 la cantidad de canales y la cantidad de filtros

Cada filtro se calcula de manera independiente

La otra mitad

Depthwise convolutions

Problema: no hay flujo entre canales

Depthwise + pointwise (1x1 conv) = Depthwise separable

Depthwise Separable Speedup

