Abstand Tacho/Sensor

Benötigt Hardware:

- * MasterBrick
- * Distanz Sensor
- * Speaker

Benötigt Funktionen:

- * Bedingungen
- * timePassed

Schritt 01:

- * Nutze die "timePassed" Funktion, um den Speaker nach 1000 Millisekunden piepen zu lassen
- * Hinweis: der Piepton sollte nicht länger als die gewarteten 1000 Millisekunden dauern

Schritt 02:

- * Ersetze die 1000 Millisekunden durch den Distanzwert
- * Teile die länge des Pieptons durch die hälfte des Distanzwertes

Zusatz 01 (Anzeige auf Display):

- * Schließe das Segmentdisplay an
- * Gebe den distanzwert / 10 mit "cm" aus
- * Hinweis: CM wird nicht richtig dargestellt, da "M" auf dem Segmentdisplay nicht möglich ist

Zusatz 02 (Anzeige auf Display):

- * Schließe das Segmentdisplay an
- * Gebe "PLAY" aus Bei > 250 mm
- * Gebe "CLOSE" aus Bei > 150 mm
- * Gebe "STOP" aus Bei > 50 mm

Lärmampel

Benötigt Hardware:

- * MasterBrick
- * 16IO
- * Sound Intensity

Benötigt Funktionen:

- * Bedingungen
- * timePassed
- * Sleep

Schritt 01:

- * Nutze die "timePassed" Funktion, um ein angeschlossenes LEDs nach 1000 Millisekunden blinken zu lassen
- * Hinweis: LEDs sind durchnummeriert einschalten mit 1 bis 16
- * Hinweis: LEDs abschalten ist von -1 bis -16
- * Hinweis: Nach einschalten einer LED sollte sleep() angewendet werden um kurz zu warten bis sie wieder aus gehen soll

Schritt 02:

- * Sage welche LEDs wann an und aus gehen time passed kann angepasst werden
- * LED 1 wenn Lautstärke > 250
- * LED 2 wenn Lautstärke > 500
- * LED 3 wenn Lautstärke > 1000

Zusatz 01 (dynamische Berechnung):

- * Definiere maximale Lautstärke als variable z.B. maxVolume
- * Tausche die fest geschriebenen Werte aus Schritt 02 (250, 500, 100) gegen aus
 - * LED 1 wenn Lautstärke > (maxVolume / 4)
 - * LED 2 wenn Lautstärke > (maxVolume / 3)
 - * LED 3 wenn Lautstärke > (maxVolume / 2)

Zusatz 02 (Einstellen per Drehkopf):

- * Schließe den Rotary Sensor an
- * Setze maxVolume aus Zusatz 02 auf (wert von Rotary * 100)

Zusatz 03 (Anzeige auf Display):

- * Schließe das Segmentdiplay an
- * Zeige Lautstärke / 10 mit "dB" oder Lautstärke % an

Led Lautstärke anzeigen (Equalizer)

Benötigt Hardware:

- * MasterBrick
- * 16IO
- * Sound Intensity

Benötigt Funktionen:

- * Bedingungen
- * Loops/Schleifen
- * timePassed
- * Sleep

Schritt 01:

- * Nutze die "timePassed" Funktion, um ein angeschlossenes LEDs nach 1000 Millisekunden blinken zu lassen
- * Hinweis: LEDs sind durchnummeriert einschalten mit 1 bis 16
- * Hinweis: LEDs abschalten ist von -1 bis -16
- * Hinweis: Nach einschalten einer LED sollte sleep() angewendet werden um kurz zu warten bis sie wieder aus gehen soll

Schritt 02:

- * Setze timePassed auf 10 Millisekunden
- * Berechne wieviele LEDs an geschaltet werden
 - * **ledAnzahl** = aktuelle Lautstärke / (LautstärkeMax / 16 maxLEDs)
- * Schreibe ein Loop, der die LEDs einschaltet
 - * for (int led = 1; led < ledAnzahl; led++)
- * Schreibe ein weiteren Loop, der die LEDs abschaltet
 - * for (int led = ledAnzahl; ledAnzahl < 16; led++)

Zusatz 01 (Anzeige auf Display):

- * Schließe das Segmentdiplay an
- * Zeige Lautstärke / 10 mit "dB" oder ledAnzahl oder Lautstärke % an

Zusatz 02 (Anzeige auf Display):

- * Schließe das Rotary Sensor an
- * Verändere die Sensibilität z.B. ledMax = 16 RotaryWert

Polizei Sirene

Benötigt Hardware:

- * MasterBrick
- * Dual Button
- * Speaker

Benötigt Funktionen:

* Loop

Schritt 01:

- * Schreibe am ende der "main" (Start Funktion) eine neue "loop" Funktion
- * loop("Police LED", run -> { //yourCode } * Schreibe in der neuen "loop" Funktion weiter
- * Schalte ein LED am DualButton ein
- * Nutze die "sleep" Funktion, um das Programm vor der nächsten Aktion zu pausieren
- * Schalte das LED am DualButton aus
- * Schalte nun abwechselnd LEDs an und aus

Schritt 02:

- * Sende zum Speaker Piep Töne gleichzeitig zu den LEDs
- * Wechsle die Frequenz von den Piep Tönen je nach dem welche LED gerade an ist

Mini Music Player

Benötigt Hardware:

- * MasterBrick
- * Dual Button
- * Rotary
- * Computer

Benötigt Funktionen:

* Bedingungen

Schritt 01:

* Suche im Internet nach eine Ton oder Musik Datei. Bitte nur "wav" Dateien keine "mp3".

Schritt 02:

* Schreibe eine Bedingung, dass die Musik abspielt, wenn ein DualButton gedrückt ist
* Siehe virtuellen Sensor "LocalAudio"

Schritt 03:

* Schreibe eine Bedingung, dass die Musik stoppt, wenn der zweite DualButton gedrückt ist

Schritt 04:

* Schreibe eine Bedingung, die bei einem Rotary event die Lautstärke regelt.

Zusatz:

* Nutze die "loop" Funktion, um die DualButton LED blinken zu lassen während die Musik spielt