

US012384337B1

(12) United States Patent Verhoff et al.

(54) MILITARY VEHICLE

(71) Applicant: Oshkosh Defense, LLC, Oshkosh, WI (US)

(72) Inventors: Don Verhoff, Oshkosh, WI (US); Gary Schmiedel, Oshkosh, WI (US); Chris Yakes, Oshkosh, WI (US); Rob Messina, Oshkosh, WI (US); Brian Wilkins, Oshkosh, WI (US); Kent Schulte, Oshkosh, WI (US); Daniel R. Seffernick, Oshkosh, WI (US); Joseph Holda, Oshkosh, WI (US); Michael Peotter, Oshkosh, WI (US); David McGraw, Oshkosh, WI (US); Dave Pelko, Oshkosh, WI (US); Jesse Gander, Oshkosh, WI (US); Jesse Gander, Oshkosh, WI (US); Jerry Reineking, Oshkosh, WI (US); Jesse Steinke, Oshkosh, WI (US)

(73) Assignee: Oshkosh Defense, LLC, Oshkosh, WI (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

(21) Appl. No.: 18/732,064

(22) Filed: Jun. 3, 2024

Related U.S. Application Data

- (63) Continuation of application No. 17/718,535, filed on Apr. 12, 2022, now Pat. No. 12,036,966, which is a (Continued)
- (51) **Int. Cl. F41H 5/16** (2006.01) **B60G 17/04** (2006.01)

 (Continued)

(Continued)

(10) Patent No.: US 12,384,337 B1

(45) **Date of Patent:** Aug. 12, 2025

(58) Field of Classification Search

CPC . B60T 7/20; B60T 13/14; B60T 13/16; B60T 13/249; B60T 13/581;

(Continued)

(56) References Cited

U.S. PATENT DOCUMENTS

815,574 A 3/1906 Russell 1,001,863 A 8/1911 Kirkwood (Continued)

FOREIGN PATENT DOCUMENTS

CA 2478228 A1 2/2006 CA 2581525 4/2006 (Continued)

OTHER PUBLICATIONS

How the U.S. military plans to replace the iconic Humvee. Aug. 13, 2021. CNBC. https://www.cnbc.com/2021/08/13/ how-the-US-military-plans-to-replace-the-iconic-humvee.html.

(Continued)

Primary Examiner — Karen Beck (74) Attorney, Agent, or Firm — Foley & Lardner LLP

(57) ABSTRACT

A military vehicle assembly includes a rear module. The rear module includes a rear frame assembly, a bed supported by the rear frame assembly, a rear tractive assembly, a transaxle supported by the rear frame assembly and coupled to the rear tractive assembly, and a rear suspension system including at least one component extending between a housing of the transaxle and the rear tractive assembly. The rear frame assembly has one or more upper interfaces and one or more lower interfaces. The one or more upper interfaces are configured to detachably couple to a rear end of a passenger capsule of a military vehicle. The one or more lower interfaces are configured to detachably coupled to a bottom (Continued)

of the passenger capsule. The transaxle is configured to couple to a prime mover and a front differential of the military vehicle.

20 Claims, 9 Drawing Sheets

Related U.S. Application Data

continuation of application No. 17/398,581, filed on Aug. 10, 2021, now Pat. No. 11,332,104, which is a continuation of application No. 16/529,508, filed on Aug. 1, 2019, now Pat. No. 11,541,851, which is a continuation of application No. 15/599,174, filed on May 18, 2017, now Pat. No. 10,434,995, which is a continuation of application No. 14/724,279, filed on May 28, 2015, now Pat. No. 9,656,640, which is a continuation of application No. 13/841,686, filed on Mar. 15, 2013, now Pat. No. 9,045,014.

(60) Provisional application No. 61/615,812, filed on Mar. 26, 2012.

```
(51) Int. Cl.
      B60K 17/10
                           (2006.01)
      B60T 7/20
                           (2006.01)
      B60T 13/14
                           (2006.01)
      B60T 13/16
                           (2006.01)
      B60T 13/24
                           (2006.01)
      B60T 13/58
                           (2006.01)
      B62D 21/15
                           (2006.01)
      B62D 21/18
                           (2006.01)
      B62D 24/00
                           (2006.01)
      B62D 33/06
                           (2006.01)
      B62D 63/02
                           (2006.01)
      F41H 7/04
                           (2006.01)
      B60T 13/66
                           (2006.01)
(52) U.S. Cl.
```

(58) Field of Classification Search

CPC B60T 13/583; B60T 13/66; B60G 17/04; B60G 2300/07; B62D 21/152; B62D 21/18; B62D 24/00; B62D 33/0617; B62D 63/025; F41H 5/16; F41H 7/044; F41H 7/048; B60K 17/105

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

1,278,460	A	9/1918	Hanger
1,376,467	A	5/1921	Simmon
1,463,569	A	7/1923	Bathrick
1,835,132	A	12/1931	Anania
1,941,582	A	1/1934	Schroeder
2,261,693	A	11/1941	Mathauer
2,628,127	A	2/1953	Palsgrove
2,632,577	A	3/1953	Sacco
2,907,575	A	10/1959	Locker

2,915,334 A 12/1959 Barenyi 2,916,997 A 12/1959 Terrie 2,997,242 A 8/1961 Grosholz 3.010,533 A 11/1961 Ross 3,021,166 A 2/1962 Kempel et al. 3.039,788 A 6/1962 Farago 3,046,045 A Campbell 7/1962 3.083.790 A 4/1963 McAfee et al. 3,131,963 A 5/1964 Schilberg 3,146,839 A 9/1964 Carlson 3,188,966 A 6/1965 Tetlow 3,306,390 A 2/1967 Jamme 3,395,672 A 8/1968 Ruf 3,500,961 A 3/1970 Eberhardt et al. 3,590,948 A 7/1971 Milner, Jr. 3,726,308 A 4/1973 Eberhardt 12/1973 3,778,115 A Ryburn 3,881,767 5/1975 Klees 4,037,664 7/1977 Gibson 4,059,170 A 11/1977 Young 4,072,362 A 2/1978 Van Anrooy 4,084,522 A 4/1978 Younger 4,103,757 8/1978 McVaugh 4.153,262 A 5/1979 Diamond et al. 6/1979 4.157,733 A Ewers et al. 7/1979 4.160,492 A Johnston 4,185,924 A 1/1980 Graham 4,241,803 A 12/1980 Lauber 4,270,771 A 6/1981 Fujii 4,280,393 A 7/1981 Giraud et al. 4,326,445 A 4/1982 Bemiss 4,329,109 A 5/1982 Den Blevker 4.337.830 A 7/1982 Eberhardt 4.369,010 A 1/1983 Ichinose et al. 4,373,600 A 2/1983 Buschbom et al. 4,395,191 7/1983 Kaiser 4,422,685 A 12/1983 Bonfilio et al. 4,456,093 A 6/1984 Finley et al. 4,492,282 A 1/1985 Appelblatt et al. 4.558.758 A 12/1985 Littman et al. 4,563,124 A 1/1986 Eskew 4.586,743 A 5/1986 Edwards et al. 4,587,862 A 5/1986 Hoffman 4,655,307 A 4/1987 Lamoureux 4,659,104 A 4/1987 Tanaka et al. 4,669,744 A 6/1987 Sano et al. 4,696,489 A 9/1987 Fujishiro et al. Appling et al. 4.709.358 A 11/1987 4,733,876 A 3/1988 Heider et al. 4.811,804 A 3/1989 Ewers et al. 5/1989 4.826,141 A Buma et al. 4,834,418 A 5/1989 Buma et al. 4,848,835 A 7/1989 Derees 4,889,395 A 12/1989 Fujita et al. 4,926,954 A 5/1990 Ataka et al. 4,945,780 A 8/1990 Bosma 5,004,156 A 4/1991 Montanier 5,010,971 A 4/1991 Hamada et al. 5,021,917 A 6/1991 Pike et al. 7/1991 5,028,088 A Del Monico et al. 5,040,823 A 8/1991 Lund 5,054,806 A 10/1991 Chester 5,076,597 12/1991 Korekane et al. 5,080,392 A 1/1992 Bazergui 5,111,901 A 5/1992 Bachhuber et al. 5,113,946 A 5/1992 Cooper 5,137,101 A 8/1992 Schaeff 5,137,292 8/1992 Eisen 5,139,104 A 8/1992 Moscicki 5,143,326 A 9/1992 Parks 10/1992 5.158.614 A Takeuchi Underbakke et al. 5,169,197 A 12/1992 5,209,003 A 5/1993 Maxfield et al. 5,211,245 A 5/1993 Relyea et al. 6/1993 Bachhuber et al. 5,217,083 A 5,301,756 A 4/1994 Relyea et al. 5,314,230 A 5/1994 Hutchison et al. 6/1994 5.319.436 A Manns et al.

5,322,321 A

6/1994 Yopp

(56)		Referen	ces Cited	6,561,718 B1		Archer et al.
	U.	S. PATENT	DOCUMENTS	6,619,673 B2 6,623,020 B1	9/2003 9/2003	Eckelberry et al. Satou
				6,658,984 B2	12/2003	
	5,327,989 A		Furuhashi et al.	6,692,366 B1	2/2004	Savant
	5,346,334 A		Einaru et al.	6,695,328 B2 6,695,566 B2	2/2004 2/2004	Rodriguez Navio
	5,368,317 A 5,390,945 A		McCombs et al.	6,702,058 B2		Ishii et al.
	5,438,908 A		Madden, Jr.	6,736,232 B1	5/2004	Bergstrom et al.
	5,467,827 A	11/1995	McLoughlin	6,757,597 B2	6/2004	Yakes et al.
	5,476,202 A			6,764,085 B1 6,769,733 B2	7/2004 8/2004	Anderson Seksaria et al.
	5,487,323 A 5,501,288 A		Madden, Jr.	6,779,806 B1		Breitbach et al.
	5,533,781 A		Williams	D497,849 S	11/2004	
	5,538,185 A	7/1996	Rabitsch et al.	6,820,908 B1		Tousi et al.
	5,538,274 A		Schmitz et al.	6,848,693 B2 6,860,332 B1	2/2005 3/2005	Schneider Archer et al.
	5,549,230 A 5,553,673 A		Palmen Hackman	6,878,481 B2		Bushong et al.
	5,617,696 A			6,882,917 B2	4/2005	Pillar et al.
	5,663,520 A	9/1997	Ladika et al.	6,883,815 B2	4/2005	
	5,670,734 A		Middione et al.	6,885,920 B2 6,899,191 B1		Yakes et al. Lykken
	5,679,918 A 5,687,669 A	10/1997	Korpi et al.	6,909,944 B2		Pillar et al.
	5,716,066 A		Chou et al.	6,922,615 B2	7/2005	Pillar et al.
	5,746,396 A		Thorton-Trump	6,923,453 B2	8/2005	
	5,752,862 A		Mohler et al.	6,925,735 B2 6,959,466 B2	8/2005 11/2005	Hamm et al. Alowonle et al.
	5,785,372 A 5,788,158 A		Glatzmeier et al.	6,976,688 B2	12/2005	Archer et al.
	5,794,966 A		Macleod	6,993,421 B2	1/2006	Pillar et al.
	5,807,056 A		Osborn et al.	7,006,902 B2	2/2006	Archer et al.
	5,820,150 A		Archer et al.	7,024,296 B2 D523,381 S	4/2006 6/2006	Squires et al. Taguchi et al.
	D400,835 S 5,836,657 A		Le Quement et al. Tilley et al.	7,072,745 B2	7/2006	Pillar et al.
	5,839,664 A	11/1998		7,073,620 B2		Braun et al.
	RE36,196 E		Eberhardt	D528,482 S		Hamburger
	5,897,123 A		Cherney et al.	7,107,129 B2 7,114,764 B1	9/2006 10/2006	Rowe et al. Barsoum et al.
	5,899,276 A 5,900,199 A		Relyea et al. Dickson et al.	7,114,704 B1 7,127,331 B2		Pillar et al.
	5,905,199 A 5,905,225 A			D533,485 S	12/2006	Schiavone et al.
	5,909,780 A		De Andrade	7,144,039 B2	12/2006	Kawasaki et al.
	5,915,728 A		Blackburn	D535,589 S 7,162,332 B2		Lau et al. Pillar et al.
	5,915,775 A 5,919,240 A		Martin et al. Ney et al.	7,164,977 B2		Yakes et al.
	5,954,364 A			7,184,662 B2	2/2007	Arbel et al.
	6,009,953 A		Laskaris et al.	7,184,862 B2	2/2007	Pillar et al.
	6,015,155 A		Brookes et al.	7,184,866 B2 7,188,893 B2	3/2007	Squires et al. Akasaka
	6,036,201 A 6,101,794 A		Pond et al. Christopherson et al.	7,195,306 B2	3/2007	Egawa et al.
	6,105,984 A		Schmitz et al.	7,198,130 B2	4/2007	Schimke
	6,109,684 A		Reitnouer	7,198,278 B2	4/2007	Donaldson
	6,131,685 A		Sakamoto et al.	7,207,582 B2 7,213,872 B2	4/2007 5/2007	Siebers et al. Ronacher et al.
	6,149,226 A 6,155,351 A		Hoelzel et al. Breedlove et al.	7,234,534 B2		Froland et al.
	6,178,746 BI			7,240,906 B2	7/2007	
	6,220,532 B1	4/2001	Manon et al.	7,246,835 B1		Colburn et al. Pillar et al.
	6,231,466 B1		Thoma et al.	7,254,468 B2 7,258,194 B2		Braun et al.
	6,270,098 B1 6,270,153 B1		Heyring et al. Toyao et al.	7,267,394 B1		Mouch et al.
	6,289,995 B1			7,270,346 B2		Rowe et al.
	6,311,795 B1		Skotnikov et al.	7,274,976 B2 D552,522 S	9/2007 10/2007	Rowe et al. Sandy et al.
	6,318,742 B2 6,357,769 B1		Franzini Omundson et al.	7,277,782 B2	10/2007	Yakes et al.
	6,364,597 B2		Klinkenberg	7,281,600 B2	10/2007	Chernoff et al.
	6,394,007 B2		Lewis et al.	7,288,920 B2	10/2007	Bushong et al.
	6,394,534 B1			7,302,320 B2 7,306,069 B2	11/2007 12/2007	Nasr et al. Takeshima et al.
	6,398,236 B1 6,398,478 B2		Richardson Smith et al.	D561,665 S	2/2008	Thomas et al.
	6,421,593 B1		Kempen et al.	7,329,161 B2	2/2008	Roering
	6,435,071 B1	8/2002	Campbell	D563,289 S	3/2008	Pfeiffer
	6,435,298 B1		Mizuno et al.	7,357,203 B2 D568,217 S		Morrow et al. Tomatsu et al.
	6,443,687 B1 6,460,907 B2			7,377,549 B2		Hasegawa et al.
	6,503,035 B1			7,379,797 B2		Nasr et al.
	6,516,914 B1	2/2003	Andersen et al.	7,380,800 B2	6/2008	
	6,520,494 B1	2/2003	Andersen et al.	7,392,122 B2		Pillar et al.
	6,527,494 B2 D473,829 S		Hurlburt	7,393,016 B2 7,406,909 B2	7/2008	Mitsui et al. Shah et al.
	6,553,290 B1		Hoyle, Jr. Pillar	7,406,909 B2 7,412,307 B2		Pillar et al.
	D474,430 S		Hill et al.	7,419,021 B2		Morrow et al.
	,	2. 2005		, , ,		

U.S. PATENT DOCUMENTS B4840,198 B2	(56)	Referen	ces Cited	8,424,443			Gonzalez
7,425,89 B2	II C	DATENIT	DOCHMENTS				
7.445,891 B2	0.3.	FAIENI	DOCUMENTS				
7.444.618 B 10.2008 Botton	7.425.891 B2	9/2008	Colburn et al.				
7-441-809 B1 10-2008 Coombs et al. 8,578,33 B2 12-2013 Tunis et al. 7-441-806 B2 11-2008 Offinore et al. 8,596,648 B2 12-2003 Narrow et al. 8,606,273 B2 12-2013 Narrow et al. 8,606,273 B2 12-2013 Narrow et al. 8,606,273 B2 12-2013 Narrow et al. 8,606,278 B2 12-2013 Narrow et al. 8,606,278 B2 12-2014 Narrow et al. 8,606,278 B2 12-2014 Narrow et al. 8,606,278 B2 12-2014 Narrow et al. 8,607,880 B1 3,2014 Narrow et al. 8,704,292 B2 12-2009 Narrow et al. 8,704,292 B2 1,2014 Narrow et al. 8,801,017 B2 2,2014 Narrow et al. 8,901,000							
Table Tabl		10/2008	Borroni-Bird et al.	, ,			
7-471-91 B2 12008 Pillar et al. 8,596,648 B2 122013 Venton-Wallers et al. 7-472-91 B2 12009 Part et al. 8,610.517 B2 122013 Shorfuck, et al. 7-472-91 B2 12009 Part et al. 8,610.517 B2 122013 Shorfuck, et al. 7-50.354 B2 42009 Morrow et al. 86,615.78 B2 12014 Newberry et al. 7-50.354 B2 42009 Morrow et al. 86,657.88 B2 12014 Newberry et al. 86,057.88 B2 12014 Newberry et al. 12015 Newberry et al.	, ,						
7-472,914 B2 1 12009 Anderson et al. 8,601,931 B2 122013 Naroditsky et al. 7-472,919 B2 12009 Part et al. 8,616,167 B2 122013 Sherbeck et al. 1,751,0235 B2 32009 Kobayashi et al. D698,281 B2 12014 Badsucher et al. 7,520,354 B2 42009 Pillar et al. 8,635,76 B2 12014 Badsucher et al. 7,520,354 B2 42009 Pillar et al. 8,635,76 B2 12014 Berman et al. 8,635,76 B2 12014 Berman et al. 9,000,000 Pillar et al. 8,635,76 B2 12014 Berman et al. 9,000,000 Pillar et al. 9,0				, ,			
17-17/2019 182 1/2009 Prat et al.						12/2013	Naroditsky et al.
7.510,235 B2 3/2009 Kobayashi et al. D698,281 B2 1/2014 Badstuchener et al. 7.520,354 B2 4/2009 Pillar et al. 8,653,778 B2 1/2014 Rowberry et al. 7.522,579 B2 4/2009 Pillar et al. B673,786 B2 1/2014 Berman et al. D793,119 S 4/2014 Patro et al. S746,120 S 2014 Patro et al. D793,119 S 4/2014 Patro et al. S746,120 S 2014 Patro et al. D793,120 S 2014 Patro et al. S746,120 S 2014 Patro et						12/2013	Sherbeck et al.
7.523.979 B2 4.2099 Pillar et al. 7.553.69 B2 6.2099 Pillar et al. 7.5753.69 B2 9.2099 Pillar et al. 7.5753.69 B2 9.2099 Pillar et al. 7.593.65 B2 9.2099 Pillar et al. 7.611.53 B2 1112099 Pillar et al. 7.611.53 B2 112099 Delnaey S.764.74 B2 B5 2.2014 Thorseon et al. 7.611.63 B2 112099 Delnaey S.764.74 B2 B5 2.2014 Thorseon et al. 7.618.03 B2 112099 Delnaey S.764.74 B2 B5 2.2014 Venton-Walters et al. 7.618.03 B2 112099 Delnaey S.764.74 B2 B5 2.2014 Venton-Walters et al. 7.618.03 B2 112099 Delnaey S.764.74 B2 B2 2.2014 Venton-Walters et al. 7.618.03 B2 112099 Delnaey S.764.74 B2 B2 2.2014 Venton-Walters et al. 7.618.03 B2 112090 Geffart et al. 8.801.017 B2 82.014 Illis foot et al. 7.618.03 B2 12090 Geffart et al. 8.876.13 B2 112091 Geffart et al. 8.876.13 B2 112014 Illison et al. 7.618.03 B2 2.2010 Valkes et al. 7.695.03 B1 42010 Secret et al. 7.695.03 B1 42010 Secret et al. 7.695.03 B1 42010 Valkes et al. 7.719.60 B2 52010 Rowe et al. 8.905.164 B1 122104 Capouellez et al. 7.719.60 B2 52010 Rowe et al. 8.905.164 B1 12210 Illison et al. 8.905.164 B1 12210 Illison et al. 8.905.89 B2 2.2015 Richmond et al. 7.719.50 B2 52010 Rowe et al. 8.906.08 B2 122015 Richmond et al. 8.906							
1.255.369 B2 6.2099 Pillar et al D702,615 S 4.2014 Platto et al D879,005 S 7.2099 Hass et al 8.714,592 BI 5.2014 Platto et al Pl							
DS97,002 S 7,2009 Jamieson et al. D703,119 S 4,2014 Plate et al. T,591,651 B2 2,0009 Lass et al. S,714,592 B1 5,2014 Thoreson et al. T,611,153 B2 11/2009 Delaney S,764,029 B2 7,2014 Venton-Walters et al. S,704,036 B2 11/2009 Takeshima et al. S,704,036 B2 7,2014 Venton-Walters et al. S,704,036 B2 12/2009 Bowers S,801,017 B2 S,2014 Ellison et al. S,704,036 B2 12/2019 Bowers S,801,017 B2 S,2014 Ellison et al. S,704,036 B2 12/2019 Barbison D,444,76 B3 B4 Ellison et al. S,704,036 B3 Ellison et al. S,704,036 B4 Ellison et al.							
7.594,561 B2 9.2009 Hass et al 8,744,741 B2 6214 Glorazlez 7.611,154 B2 111/2009 Delaney 8,764,029 B2 7/2014 Venton-Walters et al 8,764,741 B2 6214 Glorazlez 7.611,154 B2 111/2009 Delaney 8,764,029 B2 7/2014 Venton-Walters et al							
7-611.153 B2 11/2009 Delaney 87-46,741 B2 62/2014 Gloroxalez						5/2014	Thoreson et al.
Total Color							
7,624,935 B2 12,2009 Bowers San							
7,624,995 B2 12,2000 Barbison D714,476 S 9,2014 Lai							
7,641,268 12,010 Goffirst et al. 8,863,884 12,0204 12,004 12,							
7,681,892 B1 3/2010 Crews et al.						10/2014	Jacob-Lloyd
7,689,332 B1 42010 Sacrek et al. 8,905,164 B1 122014 Sacpuellez et al. 7,695,053 B1 42010 Socrek et al. 8,905,164 B1 122014 Schimbed et al. 7,715,062 B2 5,2010 Rowe et al. 8,943,946 B1 2,2015 Schimbed et al. 8,943,936 B1 2,2015 Schimbed et al. 8,955,859 B1 2,2015 Schimbed et al. 8,955,859 B1 2,2015 Schimbed et al. 8,955,859 B1 2,2015 Schimbed et al. 9,725,933 B2 6,2010 Pillar et al. 9,025,650 B2 2,2015 Schimbed et al. 9,025,650 B2 7,2010 Pillar et al. 8,991,834 B2 3,2015 Schimbed et al. 9,016,703 B2 4,2015 Schimbed et al. 9,045,014 B1 6,2015 Schimbed et al. 9,045,014 B1 6,2015 Schimbed et al. 9,045,014 B1 6,2015 Schimbed et al. 9,156,507 B1 10,2015 Schimbed et al. 9,174,858 B1 1,2010 Schimbed et al. 9,174,858 B1 1,2010 Schimbed et al. 9,174,858 B1 1,2015 Schimbed et al. 9,174,858 B1 1,2015 Schimbed et al. 9,174,858 B1 1,2015 Schimbed et al. 9,221,308 B2 1,2016 Schimbed et al. 9,						11/2014	Ellifson
7,699,338 B2 4/2010 Kurata	7,689,332 B2						
7,711,460 B2 5/2010 Yakes et al. 8,943,946 B1 2,22015 Richmond et al. 7,715,926 B2 5/2010 Rowe et al. 8,944,497 B2 2,2015 Fischer et al. 7,725,225 B2 5/2010 Pillar et al. 8,944,497 B2 2,2015 Fischer et al. 7,725,225 B2 5/2010 Pillar et al. 8,944,497 B2 2,2015 Fischer et al. 8,944,497 B2 2,2015 Fischer et al. 8,944,497 B2 2,2015 Fischer et al. 7,726,429 B2 6/2010 Pillar et al. 8,955,859 B1 2,2015 Fischer et al. 8,951,854 B2 2,2015 Fi	, ,						
7,715,962 B2 5/2010 Rowe et al. 7,725,255 B2 5/2010 Pillar et al. 7,725,255 B2 5/2010 Pillar et al. 8,947,531 B2 2/2015 Richmond et al. 8,947,531 B2 2/2015 Richmond et al. 8,955,859 B1 2/2015 Richmond et al. 8,956,068 B2 2/2013 Lacquemont et al. 7,729,831 B2 6/2010 Pillar et al. 8,956,068 B2 2/2013 Lacquemont et al. 7,736,429 B2 6/2010 Pillar et al. 8,951,840 B2 2/2015 Richmond et al. 8,961,840 B2 2/2015 Lacquemont et al. 7,736,621 B2 7/2010 Improta 8,961,840 B2 2/2015 Richmond et al. 7,737,805 B2 7/2010 Vakuta et al. 8,991,844 B2 3/2015 Richmond et al. 7,737,805 B2 7/2010 Johnson et al. 9,016,703 B2 4/2015 Rowe et al. 9,016,703 B2 4/2015 Rowe et al. 9,045,014 B1 6/2015 Rowe et al. 9,045,014 B1 6/2015 Verhoff et al. 7,739,010 B2 9/2010 Allor et al. 7,739,016 B2 9/2010 Quigley et al. 7,732,618 B2 9/2010 McGuire D749,137 S 9/2015 McMahan et al. 9,027,648 S1 1/2010 Thompson et al. 9,156,507 B1 10/2015 Jamieson 1,234,293 B2 11/2010 Fillar et al. 1,234,293 B2 11/2010 Pillar et al. 1,234,385 B2 11/2010 Pillar et al. 1,234,386 B2 11/2010 Pillar et al. 1,234,766 B2 5/2011 Rowe et al. 1,234,488 B2 11/2015 Pillar et al. 1,234,488 B2 11/2011 Pillar et al. 1,234,488 B2 11/2011 Pillar et al. 1,234,488 B2 11/2011 Pillar et al. 1,234,48							
7,725,225 B2 5/2010 Pillar et al. 8,947,531 B2 2/2015 Fischer et al. Pol71,275,525 S 6/2010 Tezak et al. 8,955,889 B1 2/2015 Ekithmond et al. 7,726,429 B2 6/2010 Struki 8,960,068 B2 2/2015 Jacquemont et al. 7,726,429 B2 6/2010 Struki 1972,555 S 3/2015 Wolff et al. 8,951,834 B2 3/2015 Wolff et al. 7,726,429 B2 6/2010 Pillar et al. 8,961,834 B2 3/2015 Wolff et al. 7,756,621 B2 7/2010 Pillar et al. 8,991,834 B2 3/2015 Wolff et al. 7,770,506 B2 7/2010 Waktut et al. 9,016,703 B2 3/2015 Zuleger et al. 7,770,506 B2 7/2010 Johnson et al. 9,016,703 B2 4/2015 Wowe et al. 7,770,506 B2 7/2010 Johnson et al. 9,016,703 B2 4/2015 Wowe et al. 9,016,703 B2 4/2015 Wowe et al. 9,045,014 B1 6/2015 Hanson et al. 7,780,261 B2 9/2010 Johnson et al. 9,745,745 B1 6/2015 Hanson et al. 7,780,261 B2 9/2010 Quigley et al. 9,745,014 B1 6/2015 Jamieson 19,750,751 B1 10,72015 Reced 19,750,751 B1 10,750,751 B1 10,750,							
Del17,255 S 6/2010 Tezak et al. 8,955,859 BI 2/2015 Richmond et al.							
7,726,429 B2							
Total Tota							
7,756,621 B2 7 72010 Pillar et al. 8,991,834 B2 3/2015 Venton-Walters et al.							
7,757,805 B2 7,72010 Wakuta et al. 9,016,703 B2 3/2015 Rowe et al. 7,770,506 B2 82010 Johnson et al. 9,016,703 B2 4/2015 Rowe et al. 9,016,703 B2 4/2015 Rowe et al. 9,016,703 B2 4/2015 Rowe et al. 9,016,703 B2 4/2016 Rowe et al. 9,016,803 B2 8/2010 Rowe et al. 9,136,507 B1 10/2015 Rowe et al. 10/2	,		1				
7,770,506 B2 8 2010 Johnson et al. 9,016,703 B2 4/2015 Rowe et al.							
De23,100 S							
D623,565 S 9/2010 Cogswell 9,045,014 B1 6/2015 Verhoff et al.							
7,792,618 B2 9/2010 Quigley et al. D739,317 S 9/2015 McMahan et al.		9/2010	Cogswell				
D740,187 S 10/2015 Jamieson							
D627,686 S 11/2010 Thompson et al. 9,156,507 B1 10/2015 Reed							
7,824,293 B2 11/2010 Schimke D742,287 S 11/2015 Hanson et al. 7,835,838 B2 11/2010 Pillar et al. D743,385 S 11/2015 Ma 7,905,534 B2 3/2011 Boczek et al. 9,174,686 B1 11/2015 Oshkosh 7,908,959 B2 3/2011 Pavon 9,221,496 B2 12/2015 Barr et al. 0536,305 S 4/2011 Morrow et al. 9,291,230 B2 2/2016 Giolito 7,931,103 B2 4/2011 Morrow et al. 9,291,230 B2 3/2016 Ellifson et al. 7,934,766 B2 5/2011 Ramimae 9,303,715 B2 4/2016 Oshkosh D642,099 S 7/2011 Nagao et al. 9,327,576 B2 5/2016 Ellifson et al. 8,000,850 B2 8/2011 Nasr et al. 9,328,986 B1 5/2016 Pennau et al. 8,000,850 B2 10/2011							
7,848,857 B2 12/2010 Nasr et al.		11/2010	Schimke				
7,905,540 B2 3/2011 Kiley et al. D745,986 B 12/2015 Gorsten Schuenemann et al.	, ,						
7,908,959 B2 3/2011 Pavon 9,221,496 B2 12/2015 Barr et al.							
D636,305 S				9,221,496	B2		
7,934,766 B2 5/2011 Boczek et al. 7,938,478 B2 5/2011 Kamimae 9,303,715 B2 4/2016 Oshkosh D642,099 S 7/2011 Nagao et al. 7,937,182 B1 8/2011 Cox 9,328,986 B1 5/2016 Ellifson 7,997,182 B1 8/2011 Cox 9,328,986 B1 5/2016 Pennau et al. 8,000,850 B2 8/2011 Nasr et al. 9,329,000 B1 5/2016 Richmond et al. D646,203 S 10/2011 Thompson et al. 9,358,879 B1 6/2016 Bennett D646,607 S 10/2011 Verhee et al. 9,366,507 B1 6/2016 Richmond et al. 8,029,021 B2 10/2011 Leonard et al. D762,148 S 7/2016 Platto et al. 8,033,208 B2 10/2011 Joynt et al. 9,409,471 B2 8/2016 Hoppe et al. D649,909 S 12/2011 Mullen 9,420,203 B2 8/2016 Broggi et al. D649,909 S 12/2011 Mullen D765,566 S 9/2016 Vena et al. 8,095,247 B2 1/2012 Pillar et al. D768,320 S 10/2016 Lai 8,096,225 B1 1/2012 Johnson et al. D769,160 S 10/2016 Platto et al. 8,123,645 B2 2/2012 Schimke D772,768 S 11/2016 Chiang D655,226 S 3/2012 Hanson et al. D774,949 S 11/2016 Betz et al. 8,139,109 B2 3/2012 Schimke D775,021 S 11/2016 Harriton et al. 8,146,477 B2 4/2012 Joynt D775,021 S 12/2016 Harriton et al. D661,231 S 6/2012 Galante et al. D777,220 S 1/2017 Powell 8,205,703 B2 6/2012 Halliday D775,615 S 1/2017 Powell 8,205,703 B2 6/2012 Linsmeier et al. D782,711 S 3/2017 Dunshee et al. 8,333,390 B2 12/2013 Altenhof et al. D782,711 S 3/2017 Dunshee et al. 8,347,775 B2 1/2013 Altenhof et al. D782,711 S 3/2017 Dunshee et al. 8,413,567 B2 4/2013 Luther et al. 9,650,005 B2 5/2017 Patelczyk et al. 8,413,567 B2 4/2013 Luther et al. 9,650,005 B2 5/2017 Verhoff et al.							
7,938,478 B2 5/2011 Kamimae 9,303,715 B2 4/2016 Oshkosh D642,099 S 7/2011 Nagao et al. 9,327,576 B2 5/2016 Ellifson 7,997,182 B1 8/2011 Cox 9,328,986 B1 5/2016 Pennau et al. 8,000,850 B2 8/2011 Thompson et al. 9,329,000 B1 5/2016 Richmond et al. D646,203 S 10/2011 Thompson et al. 9,358,879 B1 6/2016 Richmond et al. 8,029,021 B2 10/2011 Verhee et al. 9,366,507 B1 6/2016 Richmond et al. D762,148 S 7/2016 Platto et al. 8,033,208 B2 10/2011 Joynt et al. D762,148 S 7/2016 Platto et al. D649,908 S 12/2011 Mullen 9,420,203 B2 8/2016 Hoppe et al. D649,909 S 12/2011 Mullen D765,566 S 9/2016 Vena et al. 8,095,247 B2 1/2012 Johnson et al. D769,160 S 10/2016 Platto et al. 8,123,645 B2 2/2012 Schimke D772,768 S 11/2016 Platto et al. 8,123,645 B2 2/2012 Schimke D772,768 S 11/2016 Detz et al. 8,139,109 B2 3/2012 Schmiedel et al. D776,903 S 11/2016 Detz et al. 8,146,477 B2 4/2012 Joynt D75,021 S 12/2016 Harriton et al. 8,146,478 B2 4/2012 Joynt D776,003 S 1/2017 Lee et al. D762,855 S 7/2012 Van Braeckel D778,217 S 1/2017 Powell 8,205,703 B2 6/2012 Halliday D775,615 S 1/2017 Hanson et al. D762,865 S 7/2012 Van Braeckel D778,217 S 2/2017 Ito et al. B,333,3390 B2 12/2012 Linsmeier et al. D784,219 S 4/2017 Jung 8,376,077 B2 2/2013 Altenhof et al. D784,219 S 4/2017 Jung 8,376,077 B2 3/2013 Schreiner et al. D784,219 S 4/2017 Jung 8,376,077 B2 3/2013 Schreiner et al. 9,650,005 B2 5/2017 McCabe et al. 8,413,567 B2 4/2013 Luther et al.							
D642,099 S 7/2011 Nagao et al. 9,327,576 B2 5/2016 Ellifson 7,997,182 B1 8/2011 Cox 9,328,986 B1 5/2016 Pennau et al. 8,000,850 B2 8/2011 Thompson et al. 9,329,000 B1 5/2016 Bennett D646,203 S 10/2011 Thompson et al. 9,358,879 B1 6/2016 Bennett D646,607 S 10/2011 Verhee et al. 9,366,507 B1 6/2016 Richmond et al. 8,029,021 B2 10/2011 Leonard et al. D762,148 S 7/2016 Platto et al. 9,409,471 B2 8/2016 Hoppe et al. Program et al. Pro							
7,997,182 B1 8/2011 Cox 9,328,986 B1 5/2016 Pennau et al. 8,000,850 B2 8/2011 Nasr et al. 9,329,000 B1 5/2016 Richmond et al. D646,203 S 10/2011 Thompson et al. 9,358,879 B1 6/2016 Bennett B.,029,021 B2 10/2011 Leonard et al. D762,148 S 7/2016 Platto et al. B.,033,208 B2 10/2011 Joynt et al. D762,148 S 7/2016 Platto et al. D762,148 S 7/2016 Platto et al. D649,908 S 12/2011 Mullen 9,420,203 B2 8/2016 Hoppe et al. D649,909 S 12/2011 Mullen D765,566 S 9/2016 Vena et al. D768,320 S 10/2016 Lai B.,095,247 B2 1/2012 Pillar et al. D768,320 S 10/2016 Lai B.,095,247 B2 1/2012 Schimke D772,768 S 11/2016 Chiang D655,226 S 3/2012 Hanson et al. D769,160 S 10/2016 Betz et al. B.,139,109 B2 3/2012 Schimedel et al. D774,994 S 12/2016 Harriton et al. B.,146,477 B2 4/2012 Joynt D775,021 S 12/2016 Harriton et al. B.,146,478 B2 4/2012 Joynt D775,021 S 12/2016 Harriton et al. B.,146,478 B2 4/2012 Joynt D775,021 S 12/2016 Harriton et al. B.,146,478 B2 4/2012 Joynt D775,021 S 1/2017 Lee et al. D776,003 S 1/2017 Hanson et al. B.,205,703 B2 6/2012 Halliday D777,615 S 1/2017 Hanson et al. D778,217 S 2/2017 Hanson et al. B.,333,390 B2 12/2012 Linsmeier et al. D782,711 S 3/2017 Hanson et al. B.,347,775 B2 1/2012 Altenhof et al. D782,711 S 3/2017 Dunshee et al. B.,347,775 B2 1/2013 Altenhof et al. D782,711 S 3/2017 Dunshee et al. B.,347,775 B2 1/2013 Altenhof et al. D782,711 S 3/2017 Dunshee et al. B.,347,775 B2 1/2013 Altenhof et al. D782,711 S 3/2017 Dunshee et al. B.,347,775 B2 1/2013 Altenhof et al. D782,711 S 3/2017 Dunshee et al. B.,440,2,878 B2 3/2013 Schreiner et al. B.,650,005 B2 5/2017 Patelczyk et al. B.,443,567 B2 4/2013 Luther et al. B.,650,005 B2 5/2017 Verhoff et al.							
8,000,850 B2 8/2011 Nasr et al. 9,329,000 B1 5/2016 Richmond et al. D646,203 S 10/2011 Thompson et al. 9,358,879 B1 6/2016 Richmond et al. 8,029,021 B2 10/2011 Leonard et al. D762,148 S 7/2016 Platto et al. 8,033,208 B2 10/2011 Joynt et al. 9,409,471 B2 8/2016 Hoppe et al. D649,908 12/2011 Mullen 9,420,203 B2 8/2016 Hoppe et al. 8,095,247 B2 1/2012 Pillar et al. D765,566 S 9/2016 Vena et al. 8,095,247 B2 1/2012 Pillar et al. D769,160 S 10/2016 Lai 8,123,645 B2 2/2012 Schimke D772,768 S 11/2016 Chiang 9,109 B2 3/2012 Hanson et al. D774,994 S 12/2016 Betz et al. 8,146,477 B2 3/2012 Joynt </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
D646,607 S 10/2011 Verhee et al. 9,366,507 B1 6/2016 Richmond et al.							
8,029,021 B2 10/2011 Leonard et al. 8,033,208 B2 10/2011 Joynt et al. 9,409,471 B2 8/2016 Hoppe et al. 9,409,471 B2 8/2016 Broggi et al. D649,908 S 12/2011 Mullen 9,420,203 B2 8/2016 Broggi et al. D649,909 S 12/2011 Mullen D765,566 S 9/2016 Vena et al. 8,095,247 B2 1/2012 Pillar et al. B,096,225 B1 1/2012 Johnson et al. B,123,645 B2 2/2012 Schimke D772,768 S 11/2016 Chiang D655,226 S 3/2012 Hanson et al. B,139,109 B2 3/2012 Schmiedel et al. B,146,477 B2 4/2012 Joynt D775,021 S 12/2016 Hoppe et al. B,146,478 B2 4/2012 Joynt D775,021 S 12/2016 Hoppe et al. D774,994 S 12/2016 Chiang D774,994 S 12/2016 Hoppe et al. D775,021 S 12/2016 Hoppe et al. D769,160 S 10/2016 Lai D772,768 S 11/2016 Chiang D772,768 S 11/2016 Chiang D774,994 S 12/2016 Harriton et al. D774,994 S 12/2016 Harriton et al. D775,021 S 12/2016 Harriton et al. D775,021 S 12/2016 Harriton et al. D775,03 B2 6/2012 Galante et al. D777,200 S 1/2017 Powell B,205,703 B2 6/2012 Halliday D777,615 S 1/2017 Hanson et al. D778,217 S 2/2017 Ito et al. B,333,390 B2 12/2012 Linsmeier et al. D782,711 S 3/2017 Dunshee et al. D784,219 S 4/2017 Jung B,376,077 B2 2/2013 Venton-Walters D787,993 S 5/2017 McCabe et al. B,413,567 B2 4/2013 Luther et al. 9,656,640 B1 5/2017 Verhoff et al.	D646,203 S	10/2011	Thompson et al.				
8,033,208 B2 10/2011 Joynt et al. 9,409,471 B2 8/2016 Broggi et al. D649,908 S 12/2011 Mullen D765,566 S 9/2016 Vena et al. Broggi et al. D769,247 B2 1/2012 Pillar et al. D768,320 S 10/2016 Lai D768,320 S 10/2016 Platto et al. D769,665 S 10/2016 Platto et al. D769,225 B1 1/2012 Johnson et al. D769,160 S 10/2016 Platto et al. D772,768 S 11/2016 Chiang D655,226 S 3/2012 Banson et al. D772,768 S 11/2016 Chiang D655,226 S 3/2012 Banson et al. D772,768 S 11/2016 Betz et al. Bright Banson et a							
D649,908 S 12/2011 Mullen 9,420,203 B2 8/2016 Broggi et al.							
D649,909 S 12/2011 Mullen D765,566 S 9/2016 Vena et al.							
8,095,247 B2 1/2012 Pillar et al. D768,320 S 10/2016 Lai 8,096,225 B1 1/2012 Johnson et al. D769,160 S 10/2016 Platto et al. 8,123,645 B2 2/2012 Schimke D772,768 S 11/2016 Chiang D655,226 S 3/2012 Hanson et al. 9,492,695 B2 11/2016 Betz et al. 8,139,109 B2 3/2012 Schmiedel et al. D774,994 S 12/2016 Alemany et al. 8,146,477 B2 4/2012 Joynt D775,021 S 12/2016 Harriton et al. D776,003 S 1/2017 Lee et al. 8,146,478 B2 4/2012 Joynt D661,231 S 6/2012 Galante et al. D777,220 S 1/2017 Powell 8,205,703 B2 6/2012 Halliday D777,615 S 1/2017 Hanson et al. D777,615 S 1/2017 Hanson et al. D662,865 S 7/2012 Van Braeckel D778,217 S 2/2017 Ito et al. D782,711 S 3/2017 Dunshee et al. 8,333,390 B2 12/2012 Linsmeier et al. D784,219 S 4/2017 Jung 8,347,775 B2 1/2013 Altenhof et al. D787,993 S 5/2017 McCabe et al. 8,376,077 B2 2/2013 Venton-Walters D787,993 S 5/2017 Patelczyk et al. 8,413,567 B2 4/2013 Luther et al. 9,656,640 B1 5/2017 Verhoff et al.							
8,123,645 B2 2/2012 Schimke D772,768 S 11/2016 Chiang D655,226 S 3/2012 Hanson et al. 9,492,695 B2 11/2016 Betz et al. D774,994 S 12/2016 Alemany et al. D774,994 S 12/2016 Harriton et al. D775,021 S 12/2016 Harriton et al. D775,021 S 12/2016 Harriton et al. D776,003 S 1/2017 Lee et al. D776,003 S 1/2017 Lee et al. D776,003 S 1/2017 Powell S,205,703 B2 6/2012 Galante et al. D777,615 S 1/2017 Powell S,205,703 B2 6/2012 Halliday D777,615 S 1/2017 Hanson et al. D662,865 S 7/2012 Van Braeckel D778,217 S 2/2017 Ito et al. S,333,390 B2 12/2012 Linsmeier et al. D782,711 S 3/2017 Dunshee et al. S,347,775 B2 1/2013 Altenhof et al. D784,219 S 4/2017 Jung S,376,077 B2 2/2013 Venton-Walters D787,993 S 5/2017 McCabe et al. S,413,567 B2 4/2013 Luther et al. 9,656,640 B1 5/2017 Verhoff et al.		1/2012	Pillar et al.				
D655,226 S 3/2012 Hanson et al. 9,492,695 B2 11/2016 Betz et al.							
8,139,109 B2 3/2012 Schmiedel et al. 8,146,477 B2 4/2012 Joynt D775,021 S 12/2016 Harriton et al. 8,146,478 B2 4/2012 Joynt D775,021 S 12/2016 Harriton et al. 8,146,478 B2 4/2012 Joynt et al. D661,231 S 6/2012 Galante et al. D777,220 S 1/2017 Lee et al. D777,220 S 1/2017 Powell 8,205,703 B2 6/2012 Halliday D777,615 S 1/2017 Hanson et al. D662,865 S 7/2012 Van Braeckel D778,217 S 2/2017 Ito et al. 8,333,390 B2 12/2012 Linsmeier et al. 8,333,390 B2 12/2012 Linsmeier et al. 8,347,775 B2 1/2013 Altenhof et al. B784,219 S 4/2017 Jung 8,376,077 B2 2/2013 Venton-Walters D787,993 S 5/2017 McCabe et al. 8,402,878 B2 3/2013 Schreiner et al. 9,650,005 B2 5/2017 Patelczyk et al. 8,413,567 B2 4/2013 Luther et al. 9,656,640 B1 5/2017 Verhoff et al.							
8,146,477 B2 4/2012 Joynt D775,021 S 12/2016 Harriton et al. 8,146,478 B2 4/2012 Joynt D776,003 S 1/2017 Lee et al. D661,231 S 6/2012 Galante et al. D662,865 S 7/2012 Van Braeckel D777,615 S 1/2017 Hanson et al. D662,865 S 7/2012 Van Braeckel D778,217 S 2/2017 Ito et al. 8,333,390 B2 12/2012 Linsmeier et al. D782,711 S 3/2017 Dunshee et al. D784,219 S 4/2017 Jung 8,376,077 B2 2/2013 Venton-Walters D787,993 S 5/2017 McCabe et al. 8,413,567 B2 4/2013 Luther et al. 9,656,640 B1 5/2017 Verhoff et al.	D655,226 S 8 130 100 B2						
8,146,478 B2 4/2012 Joynt et al. D776,003 S 1/2017 Lee et al. D661,231 S 6/2012 Galante et al. D777,220 S 1/2017 Powell 8,205,703 B2 6/2012 Halliday D777,615 S 1/2017 Hanson et al. D662,865 S 7/2012 Van Braeckel D778,217 S 2/2017 Ito et al. 8,333,390 B2 12/2012 Linsmeier et al. D782,711 S 3/2017 Dunshee et al. 8,347,775 B2 1/2013 Altenhof et al. D784,219 S 4/2017 Jung 8,376,077 B2 2/2013 Venton-Walters D787,993 S 5/2017 McCabe et al. 8,402,878 B2 3/2013 Schreiner et al. 9,650,005 B2 5/2017 Patelczyk et al. 8,413,567 B2 4/2013 Luther et al. 9,656,640 B1 5/2017 Verhoff et al.				D775,021	S	12/2016	Harriton et al.
D661,231 S 6/2012 Galante et al. D777,220 S 1/2017 Powell 8,205,703 B2 6/2012 Halliday D777,615 S 1/2017 Hanson et al. D662,865 S 7/2012 Van Braeckel D778,217 S 2/2017 Ito et al. 8,333,390 B2 12/2012 Linsmeier et al. D782,711 S 3/2017 Dunshee et al. 8,347,775 B2 1/2013 Altenhof et al. D784,219 S 4/2017 Jung 8,376,077 B2 2/2013 Venton-Walters D787,993 S 5/2017 McCabe et al. 8,402,878 B2 3/2013 Schreiner et al. 9,650,005 B2 5/2017 Patelczyk et al. 8,413,567 B2 4/2013 Luther et al. 9,656,640 B1 5/2017 Verhoff et al.				,			
D662,865 S 7/2012 Van Braeckel D778,217 S 2/2017 Ito et al. 8,333,390 B2 12/2012 Linsmeier et al. D782,711 S 3/2017 Dunshee et al. 8,347,775 B2 1/2013 Altenhof et al. D784,219 S 4/2017 Jung 8,376,077 B2 2/2013 Venton-Walters D787,993 S 5/2017 McCabe et al. 8,402,878 B2 3/2013 Schreiner et al. 9,650,005 B2 5/2017 Patelczyk et al. 8,413,567 B2 4/2013 Luther et al. 9,656,640 B1 5/2017 Verhoff et al.	D661,231 S	6/2012	Galante et al.	,			
8,333,390 B2 12/2012 Linsmeier et al. D782,711 S 3/2017 Dunshee et al. 8,347,775 B2 1/2013 Altenhof et al. D784,219 S 4/2017 Jung 8,376,077 B2 2/2013 Venton-Walters D787,993 S 5/2017 McCabe et al. 8,402,878 B2 3/2013 Schreiner et al. 9,650,005 B2 5/2017 Patelczyk et al. 8,413,567 B2 4/2013 Luther et al. 9,656,640 B1 5/2017 Verhoff et al.							
8,347,775 B2 1/2013 Altenhof et al. D784,219 S 4/2017 Jung 8,376,077 B2 2/2013 Venton-Walters D787,993 S 5/2017 McCabe et al. 8,402,878 B2 3/2013 Schreiner et al. 9,650,005 B2 5/2017 Patelczyk et al. 8,413,567 B2 4/2013 Luther et al. 9,656,640 B1 5/2017 Verhoff et al.							
8,376,077 B2 2/2013 Venton-Walters D787,993 S 5/2017 McCabe et al. 8,402,878 B2 3/2013 Schreiner et al. 9,650,005 B2 5/2017 Patelczyk et al. 8,413,567 B2 4/2013 Luther et al. 9,656,640 B1 5/2017 Verhoff et al.							
8,402,878 B2 3/2013 Schreiner et al. 9,650,005 B2 5/2017 Patelczyk et al. 8,413,567 B2 4/2013 Luther et al. 9,656,640 B1 5/2017 Verhoff et al.							
8,413,567 B2 4/2013 Luther et al. 9,656,640 B1 5/2017 Verhoff et al.							
8,413,568 B2 4/2013 Kosheleff D789,840 S 6/2017 Curic et al.						5/2017	Verhoff et al.
	8,413,568 B2	4/2013	Kosheleff	D789,840	S	6/2017	Curic et al.

(56)		Refer	ences Cited		10,759,251 B1 D898,244 S	9/2020	Zuleger Badstuebner et al.
	U.	.S. PATEN	T DOCUMENT	S	D898,632 S	10/2020	Gander
	D790,409 S	6/201	7 Baste		D899,979 S D900,690 S	11/2020	Hamilton et al. Lovati
	9,688,112 B	2 6/201	7 Venton-Walters	et al.	D902,096 S D902,807 S	11/2020 11/2020	Gander et al.
	D791,987 S 9,707,869 B		7 Lin 7 Messina et al.		D902,809 S		Hunwick
	D794,853 S	8/201	7 Lai		D904,227 S D904,240 S	12/2020	Bracy Heilaneh et al.
	9,738,186 B D796,715 S		7 Krueger et al. 7 Lin		D906,902 S	1/2021	Duncan et al.
	D797,332 S	9/201	7 Lin		D908,935 S D909,639 S	1/2021 2/2021	
	D797,603 S D802,491 S		7 Noone et al. 7 Mainville		D909,641 S	2/2021	Chen
	D804,065 S	11/201			D909,644 S D909,934 S	2/2021 2/2021	Chen Gander et al.
	9,809,080 B 9,829,282 B	1 11/201	7 Ellifson et al.7 Richmond et al		D910,502 S	2/2021	Duncan et al.
	D804,372 S D805,965 S		7 Kozub 7 Davis		10,906,396 B1 D911,883 S	2/2021 3/2021	Schimke et al. Bae
	D805,968 S	12/201	7 Piscitelli et al.		D914,562 S	3/2021	Kirkman et al.
	D813,757 S D813,758 S		8 Kozub 8 Gonzales		D915,252 S 10,978,039 B2		Duncan et al. Seffernick et al.
	D815,736 S		8 Mainville		10,981,538 B2	4/2021	Archer et al.
	D818,885 S D820,179 S		8 Seo 8 Kladde		10,987,829 B2 D919,527 S		Datema et al. Bender et al.
	D823,182 S		8 Yates		D922,916 S	6/2021	Koo
	D823,183 S D824,294 S		8 Yates 8 Ge et al.		D924,740 S D925,416 S		Zhao et al. Duncan et al.
	0,023,243 B		8 Hines et al.		D925,421 S		Mallicote et al.
	0,030,737 B D824,806 S		8 Dillman et al. 8 Knox		D926,093 S D926,642 S		McMath Duncan et al.
	D824,811 S	8/201	8 Mainville		D928,672 S	8/2021	Gander et al.
	D824,814 S D827,410 S		8 Heyde 8 Earley		D929,913 S D930,862 S		Gander Gander et al.
	D828,258 S	9/201	8 Zipfel		D932,397 S	10/2021	Kaneko et al.
	D830,242 S D837,106 S		8 Zipfel 9 Yang		D933,545 S D933,547 S		Piaskowski et al. Hamilton et al.
	D837,702 S	1/201	9 Gander et al.		D934,306 S		Boone et al.
1	D839,164 S 0,184,553 B		9 Zipfel 9 Kwiatkowski et	· a1	D934,745 S D934,766 S		Kentley-Klay et al. Duncan et al.
	D842,183 S	3/201	9 Jackson et al.	. ат.	D935,962 S	11/2021	Grand
	D843,281 S D849,283 S		9 Gander et al. 9 Lin		D935,965 S D935,966 S	11/2021 11/2021	
	D850,676 S	6/201	9 Lin		D936,529 S	11/2021	Tang et al.
	D853,285 S D853,293 S		9 Yang 9 Heroux et al.		11,173,959 B2 11,181,345 B2		Chalifour Krueger et al.
	D856,860 S	8/201	9 Gander		D939,393 S	12/2021	Jevremovic
	0,369,860 B 0,392,056 B		9 Ellifson et al. 9 Perron et al.		D940,605 S D940,607 S	1/2022 1/2022	Sheffield et al. Park et al.
	D859,226 S	9/201	9 Grooms		D941,195 S		Koo et al.
1	D860,887 S 0,421,332 B		9 Gander et al.9 Venton-Walters	et al	D942,340 S D944,136 S		Hallgren De Leon
	D862,752 S		9 Lai	et ar.	D945,335 S	3/2022	Duncan et al.
	D863,144 S D864,031 S		9 Gander 9 Gander et al.		11,260,835 B2 11,273,804 B2	3/2022	Verhoff et al. Verhoff et al.
	D864,802 S	10/201	9 Davis et al.		11,273,805 B2 D952,536 S		Verhoff et al. Finney et al.
	0,434,995 B 0,435,026 B		9 Verhoff et al. 9 Shively et al.		11,332,104 B2	5/2022	Verhoff et al.
	D865,601 S	11/201	9 Goodrich et al.		D955,946 S 11,364,882 B2		Kirkman et al. Verhoff et al.
	D867,951 S D869,332 S		9 Izard 9 Gander et al.		D960,059 S	8/2022	Mallicote et al.
	D871,283 S	12/201	9 Gander et al.		D961,478 S D966,161 S	8/2022 10/2022	Hoste et al. Ruiz et al.
	0,495,419 B 0,609,874 B		9 Krueger et al. 0 Shumaker		D980,145 S	3/2023	Schwartz et al.
1	0,611,203 B	1 4/202	0 Rositch et al.		D1,000,652 S D1,004,510 S	10/2023 11/2023	Wu Bryant et al.
	.0,611,204 B 0,619,696 B		0 Zhang et al. 0 Dillman et al.		D1,010,520 S	1/2024	Bjerke
	0,632,805 B		0 Rositch et al.		D1,016,683 S D1,020,557 S	3/2024 4/2024	Heilaneh et al.
	D883,876 S D885,281 S		0 Beasley et al. 0 Duncan et al.		D1,020,560 S	4/2024	
	D887,050 S	6/202	0 Lin		D1,022,063 S D1,025,848 S	4/2024 5/2024	Ye Piaskowski et al.
	D888,629 S D891,331 S		0 Gander et al. 0 Dickman et al.		D1,025,848 S D1,027,731 S	5/2024	
	D892,002 S	8/202	0 Gander		D1,029,703 S	6/2024	Powell et al.
	D893,066 S D894,063 S		0 Lin 0 Dionisopoulos e	et al.	D1,029,705 S D1,030,557 S		Gound Willing et al.
	D894,442 S	8/202	0 Lin		D1,031,105 S	6/2024	Wu
	0,752,075 B D897,010 S		0 Shukla et al. 0 Momokawa		D1,032,414 S D1,033,282 S		Ecuyer et al. Kim et al.
	2007,010 0	J, 202	o momorava		21,000,202 0	202 T	

(56)	Referen	ces Cited		5/0201727		9/2006	
TIO	DATENT	DOCLIN (ENTE		5/0244225 5/0249325			Power et al. Braun et al.
0.8.	PATENT	DOCUMENTS		5/0273566			Hepner et al.
D1,034,320 S	7/2024	Tsuchida et al.		//0088469			Schmiedel et al.
D1,034,325 S		Kaban et al.	2007	//0102963	A1	5/2007	Frederick et al.
D1,034,347 S		Moffett		/0120334			Holbrook
D1,034,839 S	7/2024			//0145816		6/2007	
D1,036,321 S		Duncan et al.		7/0158920 7/0186762			Delaney Dehart et al.
D1,037,088 S		Demkiw et al.		7/0180702		10/2007	
D1,037,960 S D1,039,432 S	8/2024 8/2024	Badstuebner et al.		7/0246902			Trudeau et al.
D1,039,433 S		Badstuebner et al.		7/0288131	A1	12/2007	Yakes et al.
D1,040,056 S		George		7/0291130		12/2007	Broggi et al.
D1,040,057 S		George		8/0017426			Walters et al.
D1,040,691 S		Armigliato et al.		3/0017434 3/0034953			Harper et al. Barbe et al.
D1,040,870 S	9/2024 9/2024	Armigliato et al.		8/0041048			Kanenobu et al.
D1,042,226 S D1,042,229 S		Kuhlmann		3/0053739			Chernoff et al.
D1,042,249 S	9/2024		2008	3/0059014	A1		Nasr et al.
D1,042,251 S		Willing et al.		3/0065285			Yakes et al.
D1,043,472 S	9/2024			3/0066613			Mills et al.
D1,044,612 S	10/2024			3/0071438 3/0099213			Nasr et al. Morrow et al.
D1,049,949 S D1,049,958 S	11/2024	Montoya Bueloni et al.		8/0150350			Morrow et al.
D1,049,938 S D1,055,788 S		Young et al.		3/0252025		10/2008	
D1.059.229 S		Kobayashi	2008	3/0284118			Venton-Walters et al.
D1,061,966 S	2/2025			3/0315629			Abe et al.
D1,063,727 S	2/2025			0/0001761			Yasuhara et al. Linsmeier
D1,063,728 S	2/2025			0/0033044 0/0061702		3/2009	
D1,063,733 S	2/2025 8/2001	Willing et al.		0/0079839			Fischer et al.
2001/0015559 A1 2002/0103580 A1		Yakes et al.		0/0088283			Schimke
2002/0103360 A1 2002/0119364 A1		Bushong et al.	2009	0/0127010	A1	5/2009	Morrow et al.
2002/0129696 A1		Pek et al.		/0174158			Anderson et al.
2002/0130771 A1		Osborne et al.		0/0194347			Morrow et al.
2002/0153183 A1		Puterbaugh et al.		0/0227410 0/0322123			Zhao et al. Tanaka et al.
2002/0190516 A1		Henksmeier et al. Hamilton et al.		0/0019538			Kiley et al.
2003/0001346 A1 2003/0155164 A1		Mantini et al.		0/0026046			Mendoza et al.
2003/0158638 A1		Yakes et al.		0/0032932			Hastings
2003/0205422 A1		Morrow et al.)/0116569			Morrow et al.
2003/0230863 A1	12/2003			0/0123324			Shoup et al.
2004/0069553 A1		Ohashi et al.		0/0163330 0/0187864			Halliday Tsuchida
2004/0074686 A1 2004/0113377 A1	4/2004 6/2004	Abend et al.		0/0218667			Naroditsky et al.
2004/0113377 A1 2004/0130168 A1		O'Connell		/0264636			Fausch et al.
2004/0133332 A1		Yakes et al.		0/0301668			Yakes et al.
2004/0145344 A1		Bushong et al.		0/0307328			Hoadley et al.
2004/0149500 A1		Chernoff et al.		0/0307329 0/0319525		12/2010	Kaswen et al.
2004/0245039 A1 2004/0256024 A1		Braun et al.		/0045930			Schimke
2005/0001400 A1		Schlachter Archer et al.		/0068606			Klimek et al.
2005/0034911 A1		Darby		/0079134		4/2011	Jacquemont et al.
2005/0062239 A1	3/2005	Shore		/0079978			Schreiner et al.
2005/0093265 A1		Niaura et al.		/0114409 /0120791			Venton-Walters Greenwood et al.
2005/0099885 A1		Tamminga Ishii et al.		/0169240			Schreiner et al.
2005/0109553 A1 2005/0110229 A1		Kimura et al.		/0266838			Leopold
2005/0113988 A1		Nasr et al.		/0291444		12/2011	
2005/0119806 A1	6/2005	Nasr et al.		/0314999			Luther et al.
2005/0132873 A1		Diaz Supisiche et al.		2/0049470 2/0049570		3/2012	Rositch et al.
2005/0161891 A1		Trudeau et al.		2/0049370			Reed et al.
2005/0191542 A1 2005/0196269 A1		Bushong et al. Racer et al.		2/0097019			Sherbeck et al.
2005/0190209 A1 2005/0209747 A1		Yakes et al.		2/0098172		4/2012	Trinh et al.
2005/0284682 A1		Hass et al.		2/0098215			Rositch et al.
2006/0021541 A1		Siebers et al.		2/0111180			Johnson et al.
2006/0021764 A1		Archer et al.		2/0143430			Broggi et al. Naroditsky et al.
2006/0048986 A1		Bracciano Marross et el		2/0174767 2/0181100			Halliday
2006/0065451 A1 2006/0065453 A1		Morrow et al. Morrow et al.		2/0186428			Peer et al.
2006/0003433 A1 2006/0070776 A1		Morrow et al.		2/0192706			Gonzalez
2006/0070788 A1		Schimke		2/0193940			Tunis et al.
2006/0071466 A1		Rowe et al.		3/0009423			Yamamoto et al.
2006/0082079 A1		Eichhorn et al.		3/0014635			Kosheleff
2006/0116032 A1		Roering		3/0093154			Cordier et al.
2006/0192354 A1 2006/0192361 A1		Van Cayzeele Anderson et al.		3/0153314 3/0205984			Niedzwiecki Henker et al.
2000/0192301 AI	0/2000	Anderson et al.	2013	0203984	AI	0/2013	HORKEL Et al.

U.S. PATENT DOCUMENTS 20130241737 A1 92013 Diamba et al. 20130241737 A1 92013 Diamba et al. 20130241737 A1 92013 Dilificon 20130241737 A1 19203 Rechell et al. 201301503737 A1 112203 Rechell et al. 20140051374 A1 20204 Rechell et al. 20140051374 A1 20204 Rechell et al. 20140051374 A1 20204 Rechell et al. 20140051374 A1 20205 Rechell et al. 20140051	(56)	References Cited	2020/0290237 A1 9/2020 Steffens et al.
2013(241975 Al 92013 Dilifson 2020(346587 Al 11/2020 Rocholl et al 2013(241975 Al 92013 Ellifson 2020(346587 Al 11/2020 Rocholl et al 2013(261978 Al 92013 Ellifson et al 2020(346587 Al 11/2020 Rocholl et al 2020(34687 Al 11/2020 Rocholl et al 2020(346789 Al 11/2020 Rocholl et al 2020(34687 Al 11/2020 Roch	U.S.	PATENT DOCUMENTS	
2013/029175 Al 9/2013 Ellifson 2020/0346855 Al 11/2020 Rocholl et al.	2013/0241237 A1	9/2013 Dziuba et al.	
2013/0267478 Al 10/2013 Johnson et al. 2020/0346866 Al 11/2020 Rocholl et al.		9/2013 Ellifson	
2013/03/1259 Al 17/2013 Venton-Waltens et al. 2020/03/4769 Al 17/2013 Color			
2014-0013325 Al 22014 Naio et al 2020-0039150 Al 122005 Buege et al 2014-0013160 Al 32014 Harmon et al 2020-0039170 Al 122005 Buege et al 2014-0013160 Al 32014 Harmon et al 2021-0013161 Al 2021-102161 Al 2021-10216 Al			2020/0346862 A1 11/2020 Rocholl et al.
20140015104 A1 2014 Harmon et al. 2020/0399107 A1 22203 Buege et al.			
20140151140 Al 52014 Rowe et al. 202110031611 Al 22021 Yakes et al.			2020/0399107 A1 12/2020 Buege et al.
2014/02/1972 Al 2014 Oshin et al 2021/09/1976 Al 2/2021 Messina et al 2021/09/1976 Al 2021 Al 2021 Distance et al 2021/09/1976 Al 2021 Lisanceire et al 2021/09/1976 Al 2021 Lisanceire et al 2021/09/1976 Al 2021 Distance et al 2022/09/1978 Al 2021 Distance et al 2022/0	2014/0131969 A1	5/2014 Rowe et al.	
2014/025174 Al 9.2014 Dillana et al. 2021/0107361 Al 472021 Linsmoier et al.			
2014/0205293 A1 92014 Macloin et al. 2021/0213642 A1 72021 Datema et al.			2021/0107361 A1 4/2021 Linsmeier et al.
2014/02/9353 Al 9.2014 Zuleger et al. 2021/02/23/34 Al 7.2021 Saffernick et al. 2014/02/3555 Al 1.7015 Ellifson et al. 2021/02/23/55 Al 7.2012 Saffernick et al. 2015/02/23/55 Al 7.2012 Schemick et al. 2015/03/23/55 Al 7.2015 Suleger et al. 2021/03/03/55 Al 7.2015 Suleger et al. 2021/03/03/55 Al 7.2015 Verhoff et al. 2015/03/23/34 6.2022 Verhoff et al. 2015/03/23/34 Al 7.2022 Verhoff et al. 2015/03/23/34 Al 7.2022 Verhoff et al. 2015/03/23/34 Al 6.2022 Verhoff et al. 2015/03/23/34 Al 6.2016 Verhoff et al. 2016/03/23/34 Al 6.2016 Pernor et al. 2016/03/23/34 Al 6.2016 Ellifson et al. 2016/03/23/34 Al 6.2016 Ellifson et al. 2016/03/23/34 Al 2016/			
2014/02/2555 Al 7/2014 Venfon-Walters et al. 2021/02/2553 PA 7/2012 Schwartz et al. 2014/03/2555 Al 7/2014 Schwartz et al. 2014/03/2555 Al 7/2014 Schwartz et al. 2014/03/2555 Al 7/2015 Schwartz et al. 2015/03/2555 Al 7/2015 Schwartz et al. 2016/03/2555			
2015/09109 A1		10/2014 Venton-Walters et al.	
2015/019/06 Al 7/2015 Zuleger et al. 2022/01/6921 Al 6/2022 Verhoff et al. 2015/019/133 Al 6/2022 Verhoff et al. 2015/019/133 Al 6/2022 Verhoff et al. 2015/02/1348 Al 6/2022 Verhoff et al. 2015/02/1348 Al 6/2022 Verhoff et al. 2015/03/1348 Al 6/2022 Verhoff et al. 2015/03/1348 Al 6/2022 Verhoff et al. 2016/03/134 Al 6/2022 Verhoff et al. 2016/03/134 Al 6/2012 Verhoff et al. 2016/03/134 Al 6/2012 Verhoff et al. 2016/03/134 Al 6/2016 Berran et al. 2016/03/1341 Al 5/2016 Berran et al. CA 2809527 Al 7/2013 2016/03/1353 Al 7/2016 Dillman et al. CA 2809527 Al 7/2013 2016/03/1341 Al 10/2016 Archer et al. CN 2013/1806 Yel/2009 2016/03/1341 Al 10/2016 Archer et al. DE 3/6 20 603 Al 11/1965 2016/03/13413 Al 10/2016 Archer et al. DE 3/6 20 603 Al 1/1987 2016/03/13413 Al 2/2016 Despres-Nadeau et al. DE 10/20/8 602/340 Al 6/2010 2016/03/75805 Al 2/2016 Verhoff et al. DE 10/20/8 602/340 Al 6/2010 2016/03/75805 Al 2/2016 Verhoff et al. DE 10/20/8 602/340 Al 6/2012 Verhoff et al. DE 10/20/8 602/340 Al 6/2012 Al 6/2			
2015/01/7129 At J 7.2015 Vention-Walters et al. 2022/01/94334 At J 2022/01/94334 At J 2020/01/94334 At J 2020/01/94344 At			2022/0176921 A1 6/2022 Verhoff et al.
2015/030954 Al 10.2015 Agnew Al 2016 Matsuurs et al. FOREIGN PATENT DOCUMENTS		7/2015 Venton-Walters et al.	
1000009691 A 1 10/2015 Missuura et al. 2016/00047631 A 1 2/2016 Perron et al. 2/2016 2/2009 2/2016/0304031 A 1 2/2016 Dillman et al. CA			2022/0194554 A1 0/2022 Vernon et al.
2016/0044751 Al 2/2016 Betrz et al. CA 2724324 11/2009 2016/014775 Al 6/2016 Betrz et al. CA 2852786 Al 11/2013 2016/00287360 Al 9/2016 Mackenzie et al. CN 2014/63718 U 5/2010 2016/0303401 Al 10/2016 Archer et al. DE 11 86 334 11/2015 2016/030347137 Al 12/2016 Perron et al. DE 10 2008 062 340 Al 11/987 2016/030347137 Al 12/2016 Perron et al. DE 10 2008 062 340 Al 11/987 2016/03034732 Al 12/2016 Perron et al. DE 10 2008 062 340 Al 11/987 2016/03034824 Al 2/2017 Melone et al. EP 0 685 382 Al 12/1995 2017/0303796 Al 5/2017 Perron et al. EP 1 229 636 A2 8/2002 2017/0325076 Al 9/2017 Verboff et al. EP 1 371 391 Bl 12/2009 2017/0259666 Al 9/2017 Verboff et al. EP 2 413 089 A2 2/2012 2017/0259360 Al 10/2017 Verboff et al. EP 2 413 089 A2 2/2012 2017/0259360 Al 10/2017 Verboff et al. EP 2 413 089 A2 2/2012 2017/0259360 Al 10/2017 Verboff et al. EP 2 413 089 A2 2/2012 2017/0259360 Al 10/2017 Verboff et al. EP 2 413 089 A2 2/2012 2017/0259360 Al 10/2017 Verboff et al. EP 2 413 089 A2 2/2012 2017/0259360 Al 10/2017 Verboff et al. EP 2 413 089 A2 2/2012 2017/0259360 Al 10/2017 Verboff et al. EP 2 413 089 A2 2/2012 2017/035040 Al 10/2017 Verboff et al. EP 2 413 089 A2 2/2012 2017/035040 Al 10/2017 Verboff et al. EP 2 413 089 A2 2/2012 2017/031905 Al 10/2017 Verboff et al. EP 2 413 089 A2 2/2012 2017/031905 Al 10/2017 Verboff et al. EP 2 413 089 A2 2/2012 2017/031905 Al 10/2017 Verboff et al. EP 2 413 089 A2 2/2012 2017/031905 Al 10/2017 Verboff et al. EP 2 413 089 A2 2/2012 2017/031901 Al Al 1/2018 Balken GB 2 400 589 A 1/2005 2017/03191 Al Al 1/2018 Balken GB 2 400 589 A 1/2005 2017/03191 Al Al 1/2018 Perron et al. GB 2 400 589 A 1/2005 2018/03193 Al 1/2018 Derron et al. P 2005-007999 5/			FOREIGN PATENT DOCUMENTS
2016/014747			G.) 0F0 400 4 44/0000
2016/02/888 A			
2016/0304051	2016/0167475 A1		CA 2852786 A1 11/2013
2016/034951 Al 10/2016 Archer et al. DE 11.8 6, 334 17.965			
2016/03/432 Al 12/2016 Derron et al. DE 0.008 062 340 1/1987			
2016/0375805 Al 12/2016 Nerneger et al. DE 10 2008 052 072 B4 4 2/2011 Algorithms Performent al. EP 0.685 382 Al 12/1995 2017/0137076 Al 5/2017 Performent al. EP 0.685 382 Al 12/1995 2017/0137076 Al 5/2017 Verhoff et al. EP 1.633 619 B1 6/2004 2017/0259666 Al 9/2017 Verhoff et al. EP 1.633 619 B1 12/2009 2017/0267052 Al 9/2017 Verhoff et al. EP 1.633 619 B1 12/2009 2017/0267052 Al 9/2017 Verhor-Walters et al. EP 2.413 089 A2 2/2012 2/2012 2017/0297807 Al 10/2017 Hao et al. EP 2.413 089 A2 2/2012 2/2012 2017/0297805 Al 10/2017 Hao et al. ER 1471914 A 3/1967 2017/0297805 Al 10/2017 Hao et al. GB 2.168 015 A0 6/1986 2017/0357800 Al 12/2017 Sakene GB 2.400 589 A 2/2005 2017/0361491 Al 12/2017 Datema et al. GB 2.400 589 A 2/2005 2017/0361491 Al 12/2017 Datema et al. GB 2.400 589 A 2/2005 2017/0361492 Al 12/2017 Datema et al. GB 2.405 590 A 3/2005 2018/036746 Al 3/2018 Ellifson et al. JP 4230421 B2 8/1992 2018/0162704 Al 6/2018 Hao et al. JP 4230421 B2 8/1992 2018/0162704 Al 6/2018 Hao et al. JP 2005-212698 A 8/2005 2018/03635104 Al 11/2018 Datema et al. JP 2005-212698 A 8/2005 2018/0335104 Al 11/2018 Datema et al. JP 2005-212698 A 8/2005 2018/03635104 Al 11/2018 Datema et al. JP 2005-212698 A 8/2005 2018/03635104 Al 11/2018 Datema et al. JP 2005-212698 A 8/2005 2018/03635104 Al 11/2018 Datema et al. JP 2005-212698 A 8/2005 2018/03635104 Al 11/2018 Datema et al. JP 2005-212698 A 8/2005 2018/03635104 Al 11/2018 Datema et al. JP 2005-212698 A 8/2005 2018/03635104 Al 11/2018 Datema et al. JP 2005-212698 A 8/2005 2018/03635104 Al 11/2018 Datema et al. JP 2005-212698 A 8/2005 2018/03635104 Al 11/2018 Datema et al. JP 2005-212698 A 8/2005 2018/036557 A 5/2012 2019/0363257 Al 11/2019 Datema			DE 36 20 603 A1 1/1987
2017/0028844 Al 2/2017 Melone et al. EP 0.685 882 Al 2/1905			
2017/0253221 A1 9/2017 Verhoff et al. EP 1 673 619 B1 6/2004	2017/0028844 A1	2/2017 Melone et al.	
2017/0259666 A1 9/2017 Weber et al. EP 1 371 391 B1 12/2009 2017/0257052 A1 9/2017 Zuleger et al. EP 2 413 089 A2 2/2012 2017/02582670 A1 10/2017 Venton-Walters et al. FR 1471914 A 3/1967 2017/0291805 A1 10/2017 Hao et al. FR 2380176 A1 9/1978 2017/0297425 A1 10/2017 Hao et al. GB 2 168 015 A0 6/1986 2017/0297425 A1 10/2017 Welder et al. GB 2 365 829 9/2004 2017/0359054 A1 11/2017 Bakken GB 2 400 589 A 2/2005 2017/0361491 A1 12/2017 Datema et al. GB 2 400 589 A 2/2005 2017/0361491 A1 12/2017 Datema et al. GB 2 400 589 A 2/2005 2018/0366746 A1 3/2018 Ellison et al. HK 1088583 10/2007 2018/0365746 A1 3/2018 Ellison et al. JP 4230421 B2 8/1992 2018/0322481 A1 8/2018 Sakada et al. JP 2005-207995 A 1/2005 2018/035843 A1 11/2018 Daileson et al. JP 2005-207995 A 1/2005 2018/0358104 A1 11/2018 Dailman et al. JP 2005-207995 A 1/2005 2019/0106803 A1 4/2019 Perron et al. JP 2006-206463 A 3/2006 2019/0108875 A1 4/2019 Perron et al. WO WO-01/76912 A1 10/2001 2019/013875 A1 6/2019 Smith JP 2006-206463 A 3/2006 2019/013875 A1 4/2019 Perron et al. WO WO-01/76912 A1 10/2001 2019/013875 A1 11/2019 Smith et al. WO WO-01/76912 A1 10/2001 2019/013875 A1 4/2019 Smith et al. WO WO-01/76912 A1 10/2001 2019/013875 A1 11/2019 Smith et al. WO WO-01/76912 A1 10/2001 2019/0138738 A1 11/2019 Smith et al. WO WO-01/76912 A1 10/2001 2019/034475 A1 11/2019 Elforn et al. WO WO-01/76912 A1 10/2001 2019/034475 A1 11/2019 Elforn et al. WO WO-01/76912 A1 10/2001 2019/0351883 A1 11/2019 Smith et al. WO WO-01/76912 A1 10/2001 2019/0367646 A1 3/2020 Wildingrobe et al. WO WO-01/76912 A1 10/2001 2019/0367674 A1 2020 2018/036764 A1 3/200 3/2008/036764 A1 2019/03351883 A1 11/2019 Elforn et al. WO WO-01/76912 A1 10/2007 2019/			
2017/0267052 A1 9/2017 Zuleger et al. EP 2 413 089 A2 2/2012			
2017/0291805			EP 2 413 089 A2 2/2012
2017/0291805 Al 10/2017 Hao et al. GB 2 168 015 A0 6/1986			
2017/0328054 Al 11/2017 Bakken GB 2 400 588 A 1/2005	2017/0291805 A1		
2017/0355400 A1 12/2017 Weston GB 2 400 589 A 2/2005		10/2017 Wildgrube et al.	
2017/0361491 A1 12/2017 Datema et al. GB 2 400 590 A 3/2005			
2018/001839 Al			GB 2 400 590 A 3/2005
2018/0056746 Al 3/2018 Ellifson et al. JP 4230421 B2 8/1992			
2018/0222481 A1 8/2018 Okada et al. 2018/0222484 A1 8/2018 Shively et al. 2018/0326843 A1 11/2018 Danielson et al. 2018/0335104 A1 11/2018 Dillman et al. 2019/0339407 A1 2/2019 Smith 2019/0106083 A1 4/2019 Archer et al. 2019/016875 A1 4/2019 Perron et al. 2019/0145465 A1 5/2019 Olason WO WO-01/76912 A1 10/2001 2019/0145465 A1 5/2019 Olason WO WO-01/76912 A1 10/2001 2019/0185301 A1 6/2019 Mith et al. 2019/0232321 A1 10/2019 Schwartz et al. 2019/0337348 A1 11/2019 Schwartz et al. 2019/0337348 A1 11/2019 Datema et al. 2019/0344838 A1 11/2019 Datema et al. 2019/0344838 A1 11/2019 Datema et al. 2019/0344838 A1 11/2019 Verhoff et al. 2019/0355339 A1 11/2019 Verhoff et al. 2020/00223277 A1 7/2020 Woith et al. 2020/00223277 A1 7/2020 Zhang et al. 2020/0223277 A1 7/2020 Zhang et al. 2020/0223279 A1 7/2020 Zhang et al. 2020/0223279 A1 7/2020 Zhang et al. 2		3/2018 Ellifson et al.	
2018/0222484 A1 8/2018 Shively et al. JP 2005-007995 A 1/2005			
2018/0326843 A1			
2019/0039407 Al 2/2019 Smith JP 2012-096557 A 5/2012	2018/0326843 A1	11/2018 Danielson et al.	JP 2005-212698 A 8/2005
2019/0106083 A1 4/2019 Archer et al. WO WO-91/08939 A1 6/1991 2019/0145465 A1 5/2019 Olason WO WO-01/76912 A1 10/2001 2019/0185077 A1 6/2019 Smith et al. WO WO-03/049987 A2 6/2003 2019/0185301 A1 6/2019 Hao et al. WO WO-2007/140179 A2 12/2007 2019/0352321 A1 10/2019 Dillman et al. WO WO-2015/061840 A1 5/2015 2019/0337348 A1 11/2019 Schwartz et al. OTHER PUBLICATIONS 2019/0337350 A1 11/2019 Ellifson et al. Oshkosh Defense Highlights Advanced Technology Capabilities At 2019/0344475 A1 11/2019 Perron et al. Modern Day Marine 2022. May 10, 2022. Oshkosh Defense. 2019/0351883 A1 11/2019 Perron et al. https://oshkoshdefense.com/oshkosh-defense-highlights-advanced-technology-capabilities-at-modern-day-marine-2022/. 2019/0355339 A1 11/2019 Seffernick et al. 2020/0062071 A1 2/2020 Zuleger et al. US Army Contradictions Muddy Humvee-Replacement Plan. Mar. 2020/002423276 A1 7/2020 Wildgrube et al. 2019/03/US-armys-contradictory-statements-leave-jltv-plan-unclear/2020/0223277 A1 7/2020 Zhang et al. U.S. Appl. No. 10/171,075, filed Jun. 13, 2002, Archer et al. 2020/0232533 A1 7/2020 Dillman et al. U.S. Appl. No. 14/532,679, filed Nov. 4, 2014, Oshkosh Corpora-			
2019/0145465			
2019/0185077 A1 6/2019 Smith et al. WO WO-2007/140179 A2 12/2007 2019/0276102 A1 9/2019 Hao et al. WO WO-2015/061840 A1 5/2015 2019/0316650 A1 10/2019 Dillman et al. 2019/0322321 A1 10/2019 Schwartz et al. OTHER PUBLICATIONS 2019/0337348 A1 11/2019 Ellifson et al. Oshkosh Defense Highlights Advanced Technology Capabilities At 2019/0344475 A1 11/2019 Ellifson et al. Modern Day Marine 2022. May 10, 2022. Oshkosh Defense. 2019/0344438 A1 11/2019 Perron et al. Modern Day Marine 2022. May 10, 2022. Oshkosh Defense. 2019/0351883 A1 11/2019 Verhoff et al. 2019/0351883 A1 11/2019 Verhoff et al. 2019/0355339 A1 11/2019 Seffernick et al. US Army Contradictions Muddy Humvee-Replacement Plan. Mar. 2020/0062071 A1 2/2020 Zuleger et al. 2020/0023276 A1 7/2020 Rositch et al. 2020/0223276 A1 7/2020 Rositch et al. 2020/0223273 A1 7/2020 Zhang et al. US. Appl. No. 10/171,075, filed Jun. 13, 2002, Archer et al. 2020/0232533 A1 7/2020 Dillman et al. U.S. Appl. No. 14/532,679, filed Nov. 4, 2014, Oshkosh Corpora-			
2019/03165301 A1 6/2019 Hao et al. 2019/0316650 A1 10/2019 Dillman et al. 2019/032321 A1 10/2019 Schwartz et al. 3019/0337348 A1 11/2019 Schwartz et al. 3019/0337350 A1 11/2019 Ellifson et al. 3019/0344475 A1 11/2019 Datema et al. 3019/0351883 A1 11/2019 Verhoff et al. 2019/0355339 A1 11/2019 Verhoff et al. 3019/0355339 A1 11/2019 Seffernick et al. 3020/0062071 A1 2/2020 Zuleger et al. 3020/00232576 A1 7/2020 Rositch et al. 2020/0223276 A1 7/2020 Zhang et al. 3020/00232533 A1 7/2020 Zihang et al. 3020/00232533 A1 7/2020			
2019/0316650			
2019/0322321 A1 10/2019 Schwartz et al. OTHER PUBLICATIONS 2019/0337348 A1 11/2019 Oshkosh 2019/0347350 A1 11/2019 Ellifson et al. Oshkosh Defense Highlights Advanced Technology Capabilities At 2019/0344475 A1 11/2019 Datema et al. Modern Day Marine 2022. May 10, 2022. Oshkosh Defense. 2019/0351883 A1 11/2019 Perron et al. https://oshkoshdefense.com/oshkosh-defense-highlights-advanced-technology-capabilities-at-modern-day-marine-2022/. 2019/0355339 A1 11/2019 Seffernick et al. US Army Contradictions Muddy Humvee-Replacement Plan. Mar. 2020/0094671 A1 2/2020 Zuleger et al. 21, 2019. Defense One. https://www.defenseone.com/business/ 2020/0223276 A1 7/2020 Rositch et al. 2019/03/US-armys-contradictory-statements-leave-jltv-plan-unclear/ 2020/0223277 A1 7/2020 Zhang et al. U.S. Appl. No. 10/171,075, filed Jun. 13, 2002, Archer et al. 2020/0232533 A1 7/2020 Dillman et al. U.S. Appl. No. 14/532,679, filed Nov. 4, 2014, Oshkosh Corpora-			
2019/0337350 A1 11/2019 Ellifson et al. Oshkosh Defense Highlights Advanced Technology Capabilities At 2019/0344475 A1 11/2019 Datema et al. Modern Day Marine 2022. May 10, 2022. Oshkosh Defense. 2019/0344838 A1 11/2019 Perron et al. https://oshkoshdefense.com/oshkosh-defense-highlights-advanced-bighlights		10/2019 Schwartz et al.	OTHER PUBLICATIONS
2019/0344475 A1 11/2019 Datema et al. Modern Day Marine 2022. May 10, 2022. Oshkosh Defense. 2019/0344838 A1 11/2019 Perron et al. https://oshkoshdefense.com/oshkosh-defense-highlights-advanced-technology-capabilities-at-modern-day-marine-2022/. 2019/0355137 A1 11/2019 Hao et al. US Army Contradictions Muddy Humwee-Replacement Plan. Mar. 2020/0062071 A1 2/2020 Zuleger et al. 21, 2019. Defense One. https://www.defenseone.com/business/ 2020/0023276 A1 7/2020 Rositch et al. 2019/03/US-armys-contradictory-statements-leave-jltv-plan-unclear/ 2020/0223277 A1 7/2020 Rositch et al. 155707/. 2020/0232533 A1 7/2020 Zhang et al. U.S. Appl. No. 10/171,075, filed Jun. 13, 2002, Archer et al. 2020/0232533 A1 7/2020 Dillman et al. U.S. Appl. No. 14/532,679, filed Nov. 4, 2014, Oshkosh Corpora-			Ochkach Defense Highlights Advanged Technology Capabilities At
2019/0344838 A1 11/2019 Perron et al. https://oshkoshdefense.com/oshkosh-defense-highlights-advanced- 2019/0351883 A1 11/2019 Verhoff et al. https://oshkoshdefense.com/oshkosh-defense-highlights-advanced- 2019/0352157 A1 11/2019 Hao et al. technology-capabilities-at-modern-day-marine-2022/. 2019/0355339 A1 11/2019 Seffernick et al. US Army Contradictions Muddy Humvee-Replacement Plan. Mar. 2020/0062071 A1 2/2020 Zuleger et al. 21, 2019. Defense One. https://www.defenseone.com/business/ 2020/0223276 A1 7/2020 Rositch et al. 2019/03/US-armys-contradictory-statements-leave-jltv-plan-unclear/ 2020/0223277 A1 7/2020 Rositch et al. 155707/. 2020/0232533 A1 7/2020 Dillman et al. U.S. Appl. No. 10/171,075, filed Jun. 13, 2002, Archer et al. 2020/0232533 A1 7/2020 Dillman et al. U.S. Appl. No. 14/532,679, filed Nov. 4, 2014, Oshkosh Corpora-			
2019/0351883 A1 11/2019 Vernoir et al. 2019/0352157 A1 11/2019 Hao et al. 2019/0355339 A1 11/2019 Seffernick et al. 2020/0062071 A1 2/2020 Zuleger et al. 2020/0094671 A1 3/2020 Wildgrube et al. 2020/0223276 A1 7/2020 Rositch et al. 2020/0223277 A1 7/2020 Rositch et al. 2020/0223253 A1 7/2020 Dillman et al. 2020/023253 A1 7/2020 Dillman et al.	2019/0344838 A1	11/2019 Perron et al.	
2019/0355339 A1 11/2019 Seffernick et al. US Army Contradictions Muddy Humvee-Replacement Plan. Mar. 2020/0062071 A1 2/2020 Zuleger et al. 21, 2019. Defense One. https://www.defenseone.com/business/ 2020/0094671 A1 3/2020 Wildgrube et al. 2019/03/US-armys-contradictory-statements-leave-jltv-plan-unclear/ 2020/0223276 A1 7/2020 Rositch et al. 155707/. 2020/0223277 A1 7/2020 Zhang et al. U.S. Appl. No. 10/171,075, filed Jun. 13, 2002, Archer et al. 2020/0232533 A1 7/2020 Dillman et al. U.S. Appl. No. 14/532,679, filed Nov. 4, 2014, Oshkosh Corpora-			
2020/0094671 A1 3/2020 Wildgrube et al. 2019/03/US-armys-contradictory-statements-leave-jltv-plan-unclear/ 2020/0223276 A1 7/2020 Rositch et al. 155707/. 2020/0223277 A1 7/2020 Zhang et al. U.S. Appl. No. 10/171,075, filed Jun. 13, 2002, Archer et al. 2020/0232533 A1 7/2020 Dillman et al. U.S. Appl. No. 14/532,679, filed Nov. 4, 2014, Oshkosh Corpora-			
2020/0223276 A1 7/2020 Rositch et al. 155707/. 2020/0223277 A1 7/2020 Zhang et al. U.S. Appl. No. 10/171,075, filed Jun. 13, 2002, Archer et al. 2020/0232533 A1 7/2020 Dillman et al. U.S. Appl. No. 14/532,679, filed Nov. 4, 2014, Oshkosh Corpora-			•
2020/0223277 A1 7/2020 Zhang et al. U.S. Appl. No. 10/171,075, filed Jun. 13, 2002, Archer et al. 2020/0232533 A1 7/2020 Dillman et al. U.S. Appl. No. 14/532,679, filed Nov. 4, 2014, Oshkosh Corpora-			• • • • • • • • • • • • • • • • • • • •
2020/0232533 A1 7/2020 Dillman et al. U.S. Appl. No. 14/532,679, filed Nov. 4, 2014, Oshkosh Corpora-			
2020/0254840 A1 8/2020 Rositch et al. tion.			11 1
	2020/0254840 A1	8/2020 Kosiich et al.	цоп.

(56) References Cited

OTHER PUBLICATIONS

U.S. Appl. No. 29/680,745, filed Feb. 19, 2019, Oshkosh Corporation.

U.S. Appl. No. 29/683,330, filed Mar. 12, 2019, Oshkosh Corporation.

U.S. Appl. No. 29/683,333, filed Mar. 12, 2019, Oshkosh Corporation.

U.S. Appl. No. 29/700,665, filed Aug. 5, 2019, Oshkosh Corporation.

U.S. Appl. No. 29/706,533, filed Sep. 20, 2019, Oshkosh Corporation.

 $U.S.\ Appl.\ No.\ 29/706,547,\ filed\ Sep.\ 20,\ 2019,\ Oshkosh\ Corporation.$

"Military Troop Transport Truck." Sep. 14, 2012. Deviant Art. https://www.deviantart.com/shitalloverhumanity/art/Military-Troop-Transport-Truck-327166456.

"New Oshkosh JL TV Next to an Old Humvee." May 2, 2017. Reddil. https://www.reddil.com/r/MilitaryPorn/comments/8jflee/new_oshkoshjltv_next_to_an_old_humvee_hmmwv_may/.

"Troop Transport Truck Tutorial." Jun. 13, 2009. Dave Taylor Miniatures. http://davetaylorminiatures.blogspot.com/2009/06/troop-transport-truck-tutorial-part-one.html.

1953-56 Ford F100 Pickup 3 Inch Wider Right Rear Fenders. 1956. eBay. https://www.ebay.com/p/710218145.

2019 Nissan NV1500 Čargo Čonsumer Reviews, Kelley Blue Book, Apr. 14, 2021, 12 pages, https://www.kbb.com/nissan/nv1500-cargo/2019/consumer-reviews/.

Feeburg, Elisabet. "Mine-Resistant, Ambush-Protected All-Terrain Vehicle", 2009. Britannica, https://www.britannica.com/technology/armoured-vehicle/Wheeled-armoured-vehicles.

Grille Designs, Questel, orbit.com, Retrieved Apr. 14, 2021, 26 pages.

https://www.army-technology.com/news/newslenco-bear-troop-transport-armoured-vehicle/"Lenco Completes Blast Test for BEAR Troop Transport Armoured Vehicle." Aug. 16, 2013. Army Technology.

Huddleston, Scott. "Fortified Tactical Vehicle Offered to Replace Military Humvee." Jan. 4, 2014. My San Antonio. https://www.mysanantonio.com/news/local/military/article/Fortified-tactical-vehicle-offered-to-replace-5109387.php#photo-5673528.

Iriarte, Mariana. "Power Distribution from the Ground Up." Nov. 9, 2016. Military Embedded Systems. https://militaryembedded.com/comms/communications/power-distribution-the-ground-up.

MD Juan CFA005 Front Fender for 52-75 Jeep. 1975. Quadratec. https://quadratec.com/p/md-juan/front-fender-cj5-cj6-m38a1.

Miller, Stephen W., "The MRAP Story: Learning from History", Asian Military Review, Oct. 30, 2018, 9 pages.

Rear Fender Fiberglass Pick Up Truck 1947-1963. 1963. Walck's 4 Wheel Drive. https://walcks4wd,com/Rear-Fender-Fiberglass-Pick-Up-Truck-1947-1963_p_1780.html.

Vehicle fenders. (Design—Questel) orbit.com. [Online PDF complication of references selected by examiner] 34 pgs. Print Dates Range Apr. 14, 2022—Nov. 8, 2019 [Retrieved Nov. 18, 2022].

Vehicle Headlights. (Design—?Questel) orbit.com. [online PDF] 38 pgs. Print Dates Range Mar. 19, 2021—May 23, 2019 [Retrieved Apr. 23, 2021].

Vehicle Hood (Design -Questel) orbit.com. [Online PDF compilation of references selected by examiner] 42 pgs. Print Dates Range Mar. 24, 2021—Jul. 22, 2020 [Retrieved Dec. 13, 2021].

Jen Judson, "Oshkosh unveils hybrid electric Joint Light Tactical Vehicle". Jan. 25, 2022. Defense News. https://www.defensenews.com/land/2022/01/25/oshkosh-unveils-hybrid-electric-joint-light-tactical-vehicle/.

Staff Sgt. Tawny Kruse, "A vehicle of the future lowa training center receives new tactical vehicles". May 7, 2023. DVIDS. https://www.dvidshub.neUnews/ 448328/vehicle-future-iowa-training-center-receives-new-tactical-vehicles.

Todd South, "The newly fielded Joint Light Tactical Vehicle was briefly deemed 'not operationally suitable". Feb. 22, 2019. Army Times. https://www.armytimes.com/news/your-army/2019/02/22/the-newly-fielded-joint-light-tactical-vehicle-is-not-operationally-suitable/.

Aug. 12, 2025

1000-300 800 400 900 450 -700 -700 FIG. 3 6Ŏ0 6Ŏ0

FIG. 12

MILITARY VEHICLE

CROSS-REFERENCE TO RELATED PATENT APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 17/718,535, filed Apr. 12, 2022, which is a continuation of U.S. patent application Ser. No. 17/398,581, filed Aug. 10, 2021, which is a continuation of U.S. patent application Ser. No. 16/529,508, filed Aug. 1, 2019, which is a continuation of U.S. patent application Ser. No. 15/599, 174, filed May 18, 2017, which is a continuation of U.S. patent application Ser. No. 14/724,279, filed May 28, 2015, which is a continuation of U.S. patent application Ser. No. 13/841,686, filed Mar. 15, 2013, which claims the benefit of U.S. Provisional Patent Application No. 61/615,812, filed Mar. 26, 2012, all of which are incorporated herein by reference in their entireties.

BACKGROUND

The present application relates to vehicles. In particular, the present application relates to the structural frame assembly of a military vehicle.

A military vehicle may be used in a variety of applications 25 and conditions. These vehicles generally include a number of vehicle systems or components (e.g., a cab or body, a drive train, etc.). The military vehicle may also include various features and systems as needed for the specific application of the vehicle (e.g., a hatch, a gun ring, an 30 antenna, etc.). Proper functioning and arrangement of the vehicle systems or components is important for the proper functioning of the vehicle.

Traditional military vehicles include a cab assembly coupled to a pair of frame rails that extend along the length of the vehicle. The drive train, engine, and other components of the vehicle are coupled to the frame rails. Such vehicles may be transported by securing lifting slings to the frame rails and applying a lifting force (e.g., with a crane, with a helicopter, etc.). As the frame rails are the primary structure of the vehicle, a lifting force applied to a rear portion and a front portion elevate the vehicle from a ground surface. In such a configuration, the components of the vehicle must be coupled to the structural frame rails thereby requiring sequential assembly.

SUMMARY

One embodiment relates to a military vehicle assembly. The military vehicle assembly includes a rear module. The 50 rear module includes a rear frame assembly, a bed supported by the rear frame assembly, a rear tractive assembly, a transaxle supported by the rear frame assembly and coupled to the rear tractive assembly, and a rear suspension system including at least one component extending between a 55 housing of the transaxle and the rear tractive assembly. The rear frame assembly has one or more upper interfaces and one or more lower interfaces. The one or more upper interfaces are configured to detachably couple to a rear end of a passenger capsule of a military vehicle. The one or more 60 lower interfaces are configured to detachably coupled to a bottom of the passenger capsule. The transaxle is configured to couple to a prime mover and a front differential of the military vehicle.

Another embodiment relates to a military vehicle assem- 65 bly. The military vehicle assembly includes a rear module. The rear module includes a rear frame assembly, a rear

2

tractive assembly, a transaxle supported by the rear frame assembly and coupled to the rear tractive assembly, and a rear suspension system including at least one component extending between a housing of the transaxle and the rear tractive assembly. The rear frame assembly has one or more upper interfaces and one or more lower interfaces. The one or more upper interfaces are configured to detachably couple to a rear end of a passenger capsule of a military vehicle. The one or more lower interfaces are configured to detachably coupled to a bottom of the passenger capsule. The transaxle is configured to couple to a prime mover and a front differential of the military vehicle.

Still another embodiment relates to a military vehicle assembly. The military vehicle assembly includes a rear module and a suspension control system. The rear module includes a rear frame assembly, a rear tractive assembly, a transaxle supported by the rear frame assembly, and a rear suspension system. The rear frame assembly has one or more upper interfaces and one or more lower interfaces. The one or more upper interfaces are configured to detachably 20 couple to a rear end of a passenger capsule of a military vehicle. The one or more lower interfaces are configured to detachably coupled to a bottom of the passenger capsule. The transaxle is coupled to the rear tractive assembly. The transaxle is configured to couple to a prime mover and a front differential of the military vehicle. The rear suspension system includes a pair of gas springs and a pair of hydraulic dampers. The pair of hydraulic dampers are cross-plumbed to provide a hydraulic body roll control function. The suspension control system is configured to monitor a ride height of the military vehicle and control the pair of gas springs to adjust the ride height as load is added to or removed from the military vehicle.

The invention is capable of other embodiments and of being carried out in various ways. Alternative exemplary embodiments relate to other features and combinations of features as may be recited in the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure will become more fully understood from the following detailed description, taken in conjunction with the accompanying figures, wherein like reference numerals refer to like elements, in which:

FIGS. **1-2** are a perspective views of a vehicle, according ⁴⁵ to an exemplary embodiment.

FIG. 3 is a schematic side view of the vehicle of FIG. 1, according to an exemplary embodiment.

FIGS. **4-6** are perspective views of a vehicle having a passenger capsule, a front module, and a rear module, according to an exemplary embodiment.

FIGS. **7-9** are perspective views of a vehicle having a passenger capsule, a front module, and a rear module, according to an alternative embodiment.

FIG. 10A is a schematic sectional view of a vehicle having at least a portion of a suspension system coupled to a transaxle, according to an exemplary embodiment, and FIG. 10B is schematic sectional view of a vehicle having a passenger capsule, according to an exemplary embodiment.

FIG. 11 is schematic view of a braking system for a vehicle, according to an exemplary embodiment.

FIG. 12 is schematic view of a vehicle control system, according to an exemplary embodiment.

DETAILED DESCRIPTION

Before turning to the figures, which illustrate the exemplary embodiments in detail, it should be understood that the

present application is not limited to the details or methodology set forth in the description or illustrated in the figures. It should also be understood that the terminology is for the purpose of description only and should not be regarded as limiting.

Referring to FIGS. 1-3, a military vehicle 1000 includes a hull and frame assembly 100, an armor assembly 200, an engine 300, a transmission 400, a transaxle 450, wheel and tire assemblies 600, a braking system 700, a fuel system 800, and a suspension system 460 coupling the hull and frame 10 assembly 100 to the wheel and tire assemblies 600. According to an exemplary embodiment, the military vehicle 1000 includes a power generation system 900. As shown in FIG. 1, the military vehicle 1000 also includes a trailer 1100. Hull and Frame Assembly

Referring to FIG. 2, the hull and frame assembly 100 includes a passenger capsule, shown as passenger capsule 110, a front module, shown as front module 120, and a rear module, shown as rear module 130. According to an exemplary embodiment, the front module 120 and the rear module 20 130 are coupled to the passenger capsule 110 with a plurality of interfaces. As shown in FIG. 2, the front module 120 includes a front axle having wheel and tire assemblies 600.

According to an exemplary embodiment, the rear module 130 includes a body assembly, shown as bed 132. As shown 25 in FIG. 2, front module 120 also includes a body panel, shown as hood 122. In some embodiments, the hood 122 partially surrounds the engine of military vehicle 1000. The hood 122 is constructed of a composite material (e.g., carbon fiber, fiberglass, a combination of fiberglass and carbon fiber, 30 etc.) and sculpted to maximize vision and clear under-hood components. According to an alternative embodiment, the hood 122 is manufactured from another material (e.g., steel, aluminum, etc.). The front portion of hood 122 mounts to a lower cooling package frame, and the upper mount rests on 35 the windshield wiper cowl. This mounting configuration reduces the number and weight of components needed to mount the hood 122. The Oshkosh Corporation® logo is mounted to a frame structure, which is itself mounted directly to the cooling package. The hood 122 includes 40 bumperettes 123 that provide mounting locations for antennas (e.g., a forward-facing IED jammer, a communications whip antenna, etc.). In one embodiment, the bumperettes 123 and front of the hood 122 may be reinforced (e.g., with structural fibers, structural frame members, etc.) to become 45 structural members intended to prevent damage to the tire assemblies 600. In an alternative embodiment, the bumperettes 123 may be crushable members or "break away" members that disengage upon impact to prevent interference between the bumperettes 123 and tire assemblies 600 in the 50 event of a front impact.

Referring next to the exemplary embodiment shown in FIGS. 4-9, the military vehicle 1000 includes passenger capsule 110, front module 120, and rear module 130. As shown in FIGS. 4 and 7, passenger capsule 110 includes a 55 structural shell 112 that forms a monocoque hull structure. Monocoque refers to a form of vehicle construction in which the vehicle body and chassis form a single unit. The structural shell 112 is configured to provide a structural load path between front module 120 and rear module 130 of military 60 vehicle 1000 (e.g., during driving, a lifting operation, during a blast event, etc.). According to an exemplary embodiment, the structural shell 112 includes a plurality of integrated armor mounting points configured to engage a supplemental armor kit (e.g., a "B-Kit," etc.). The structural shell 112 is rigidly connected to the rest of the powertrain, drivetrain, suspension, and major systems such that they all absorb blast

4

energy during a blast event, according to an exemplary embodiment. According to an exemplary embodiment, the structural shell 112 is large enough to contain four-passengers in a standard two-by-two seating arrangement and four doors 104 are rotatably mounted to the structural shell 112. According to the alternative embodiment shown in FIGS. 7-9, two doors 104 are coupled to structural shell 112. Front module 120 and rear module 130 are configured to engage a passenger capsule having either two doors or four doors, according to an exemplary embodiment. As shown in FIGS. 6 and 9, the structural shell 112 includes a first end 114 and a second end 116.

According to an exemplary embodiment, front module 120 includes a subframe having a first longitudinal frame member 124 and a second longitudinal frame member 126. As shown in FIGS. 4-9, an underbody support structure 128 is coupled to the first longitudinal frame member 124 and the second longitudinal frame member 126. According to an exemplary embodiment, the first longitudinal frame member 124 and the second longitudinal frame member 126 extend within a common plane (e.g., a plane parallel to a ground surface). The underbody support structure 128 is coupled to the first end 114 of structural shell 112 and includes a plurality of apertures 129 that form tie down points. In some embodiments, an engine for the military vehicle 1000 is coupled to the first longitudinal frame member 124 and the second longitudinal frame member 126. In other embodiments, the front module 120 includes a front axle assembly coupled to the first longitudinal frame member 124 and the second longitudinal frame member 126.

As shown in FIGS. 4 and 6, rear module 130 includes a subframe having a first longitudinal frame member 134 and a second longitudinal frame member 136. As shown in FIGS. 4-9, an underbody support structure 138 is coupled to the first longitudinal frame member 134 and the second longitudinal frame member 136. According to an exemplary embodiment, the first longitudinal frame member 134 and the second longitudinal frame member 136 extend within a common plane (e.g., a plane parallel to a ground surface). The underbody support structure 138 is coupled to the second end 116 of structural shell 112, the first longitudinal frame member 134, and the second longitudinal frame member 136. According to an exemplary embodiment, the first longitudinal frame member 134 and the second longitudinal frame member 136 include a plurality of apertures 139 that form tie down points. In some embodiments, a transaxle 450 or a differential for the military vehicle 1000 is coupled to at least one of the first longitudinal frame member 134 and the second longitudinal frame member 136. In other embodiments, the rear module 130 includes a rear axle assembly coupled to the first longitudinal frame member 134 and the second longitudinal frame member

The subframes of the front module 120 and the rear module 130 may be manufactured from High Strength Steels (HSS), high strength aluminum, or another suitable material. According to an exemplary embodiment, the subframes feature a tabbed, laser cut, bent and welded design. In other embodiments, the subframes may be manufactured from tubular members to form a space frame. The subframe may also include forged, rather than fabricated or cast frame sections to mitigate the stress, strains, and impact loading imparted during operation of military vehicle 1000. Aluminum castings may be used for various cross member components where the loading is compatible with material properties. Low cost aluminum extrusions may be used to tie and box structures together.

The structural shell 112 and the subframes of the front module 120 and the rear module 130 are integrated into the hull and frame assembly 100 to efficiently carry chassis loading imparted during operation of the military vehicle 1000, during a lift event, during a blast event, or under still 5 other conditions. During a blast event, conventional frame rails can capture the blast force transferring it into the vehicle. Military vehicle 1000 replaces conventional frame rails and instead includes passenger capsule 110, front module 120, and rear module 130. The passenger capsule 10 110, front module 120, and rear module 130 provides a vent for the blast gases (e.g., traveling upward after the tire triggers an IED) thereby reducing the blast force on the structural shell 112 and the occupants within passenger capsule 110. Traditional frame rails may also directly impact 15 (i.e. contact, engage, hit, etc.) the floor of traditional military vehicles. Military vehicle 1000 that includes passenger capsule 110, front module 120, and rear module 130 does not include traditional frame rails extending along the vehicle's length thereby eliminating the ability for such frame rails to 20 impact the floor of the passenger compartment. Military vehicle 1000 that includes a passenger capsule 110, front module 120, and rear module 130 also has an improved strength-to-weight performance, abuse tolerance, and lifecycle durability.

According to an exemplary embodiment, the doors 104 incorporate a combat lock mechanism. In some embodiments, the combat lock mechanism is controlled through the same handle that operates the automotive door latch system, allowing a passenger to release the combat locks and automotive latches in a single motion for quick egress. The doors 104 also interface with an interlocking door frame 109 defined within structural shell 112 adjacent to the latch, which helps to keep the doors 104 closed and in place during a blast even. Such an arrangement also distributes blast 35 forces between a front and a rear door mounting and latching mechanism thereby improving door functionality after a blast event.

Lift Structure

According to an exemplary embodiment, the military 40 vehicle 1000 may be transported from one location to another in an elevated position with respect to a ground surface (e.g., during a helicopter lift operation, for loading onto or off a ship, etc.). As shown in FIGS. 4-9, military vehicle 1000 includes a lift structure 140 coupled to the front 45 module 120. According to an exemplary embodiment, the lift structure includes a first protrusion 144 extending from the first longitudinal frame member 124, a second protrusion 146 coupled to the second longitudinal frame member 126, and a lateral frame member 148 extending between the first 50 protrusion 144 and the second protrusion 146. As shown in FIGS. 4-9, the first protrusion 144 and the second protrusion 146 extend along an axis that is generally orthogonal (e.g., within 20 degrees of an orthogonal line) to a common plane within which the first longitudinal frame member 134 and 55 the second longitudinal frame member 126 extend. As shown in FIGS. 5-6 and 8-9, the first protrusion 144 defines a first aperture 145, and the second protrusion 146 defines a second aperture 147. The first aperture 145 and the second aperture 147 define a pair of front lift points. An operator 60 may engage the front lift points with a sling, cable, or other device to elevate military vehicle 1000 from a ground surface (e.g., for transport).

According to an exemplary embodiment, the hood 122 defines an outer surface (e.g., the surface exposed to a 65 surrounding environment) and an inner surface (e.g., the surface facing the first longitudinal frame member 124 and

6

the second longitudinal frame member 126). It should be understood that the outer surface is separated from the inner surface by a thickness of the hood 122. As shown schematically in FIGS. 4, 6-7, and 9, first protrusion 144 and second protrusion 146 extend through a first opening and a second opening defined within the hood 122. According to an exemplary embodiment, the pair of front lift points is positioned along the outer surface of the hood 122 (e.g., to provide preferred sling angles, to facilitate operator access, etc.).

According to an exemplary embodiment, the first longitudinal frame member 124 and the second longitudinal frame member 126 are coupled to the first end 114 of the structural shell 112 with a plurality of interfaces. Such interfaces may include, by way of example, a plurality of fasteners (e.g., bolts, rivets, etc.) extending through corresponding pads coupled to the front module 120 and the structural shell 112. According to an exemplary embodiment, a lifting force applied to the pair of front lift points is transmitted into the structural shell of the passenger capsule to lift the vehicle.

In some embodiments, the military vehicle 1000 includes breakaway sections designed to absorb blast energy and separate from the remaining components of military vehicle 1000. The blast energy is partially converted into kinetic energy as the breakaway sections travel from the remainder of military vehicle 1000 thereby reducing the total energy transferred to the passengers of military vehicle 1000. According to an exemplary embodiment, at least one of the front module 120 and the rear module 130 are breakaway sections. Such a military vehicle 1000 includes a plurality of interfaces coupling the front module 120 and the rear module 130 to passenger capsule 110 that are designed to strategically fail during a blast event. By way of example, at least one of the plurality of interfaces may include a bolted connection having a specified number of bolts that are sized and positioned (e.g., five 0.5 inch bolts arranged in a pentagon, etc.) to fail as an impulse force is imparted on front module 120 or rear module 130 during a blast event. In other embodiments, other components of the military vehicle 1000 (e.g., wheel, tire, engine, etc.) are breakaway

Referring again to the exemplary embodiment shown in FIGS. 4-6, the military vehicle 1000 may be lifted by a pair of apertures defined within a pair of protrusions 115. The apertures define a pair of rear lift points for military vehicle 1000. As shown in FIG. 5, the pair of protrusions 115 extend from opposing lateral sides of the structural shell 112. It should be understood that a lifting force applied directly to the pair of protrusions 115 may, along with the lifting force applied to lift structure 140, elevate the military vehicle 1000 from a ground surface. The structural shell 112 carries the loading imparted by the lifting forces applied to the lift structure 140 (e.g., through the plurality of interfaces) and the pair of protrusions 115 to elevate the military vehicle 1000 from the ground surface without damaging the passenger capsule 110, the front module 120, or the rear module **130**.

Armor Assembly

Referring next to the exemplary embodiment shown in FIG. 10B, the armor assembly 200 includes fabricated subassemblies (roof, floor, sidewalls, etc.) that are bolted together. The armor assembly 200 may be manufactured from steel or another material. The armor assembly 200 provides a robust and consistent level of protection by using overlaps to provide further protection at the door interfaces, component integration seams, and panel joints.

In another embodiment, the armor assembly 200 further includes a 360-degree modular protection system that uses high hard steel, commercially available aluminum alloys, ceramic-based SMART armor, and two levels of underbody mine/improved explosive device ("IED") protection. The 5 modular protection system provides protection against kinetic energy projectiles and fragmentation produced by IEDs and overhead artillery fire. The modular protection system includes two levels of underbody protection. The two levels of underbody protection may be made of an aluminum alloy configured to provide an optimum combination of yield strength and material elongation. Each protection level uses an optimized thickness of this aluminum alloy to defeat underbody mine and IED threats.

Referring now to FIG. 10B, the armor assembly 200 also 15 includes a passenger capsule assembly 202. The passenger capsule assembly 202 includes a V-shaped belly deflector 203, a wheel deflector, a floating floor, footpads 206 and energy absorbing seats 207. The V-shaped belly deflector 203 is integrated into the sidewall. The V-shaped belly 20 deflector 203 is configured to mitigate and spread blast forces along a belly. In addition, the wheel deflector mitigates and spreads blast forces. The "floating" floor utilizes isolators and standoffs to decouple forces experienced in a blast event from traveling on a direct load path to the 25 passenger's lower limbs. The floating floor mounts to passenger capsule assembly 202 isolating the passenger's feet from direct contact with the blast forces on the belly. Moreover, footpads protect the passenger's feet. The energy absorbing seats 207 reduce shock forces to the occupants' hips and spine through a shock/spring attenuating system. The modular approach of the passenger capsule assembly 202 provides increased protection with the application of perimeter, roof and underbody add on panels. The components of the passenger capsule assembly 202 mitigate and 35 attenuate blast effects, allow for upgrades, and facilitate maintenance and replacements.

The passenger capsule assembly 202 further includes a structural tunnel 210. For load purposes, the structural tunnel 210 replaces a frame or rail. The structural tunnel 210 40 has an arcuately shaped cross section and is positioned between the energy absorbing seats 207. The configuration of the structural tunnel 210 increases the distance between the ground and the passenger compartment of passenger capsule assembly 202. Therefore, the structural tunnel 210 45 provides greater blast protection from IEDs located on the ground because the IED has to travel a greater distance in order to penetrate the structural tunnel 210. Engine

The engine 300 is a commercially available internal 50 combustion engine modified for use on military vehicle 1000. The engine 300 includes a Variable Geometry Turbocharger (VGT) configured to reduce turbo lag and improve efficiency throughout the engine 300's operating range by varying compressor housing geometry to match airflow. The 55 VGT also acts as an integrated exhaust brake system to increase engine braking capability. The VGT improves fuel efficiency at low and high speeds and reduces turbo lag for a quicker powertrain response.

The engine 300 includes a glow plug module configured 60 to improve the engine 300 cold start performance. In some embodiments, no ether starting aid or arctic heater is required. The glow plug module creates a significant system cost and weight reduction.

In addition, engine 300 includes a custom oil sump pickup 65 and windage tray, which ensures constant oil supply to engine components. The integration of a front engine mount

8

into a front differential gear box eliminates extra brackets, reduces weight, and improves packaging. Engine 300 may drive an alternator/generator, a hydraulic pump, a fan, an air compressor and/or an air conditioning pump. Engine 300 includes a top-mounted alternator/generator mount in an upper section of the engine compartment that allows for easy access to maintain the alternator/generator and forward compatibility to upgrade to a higher-power export power system. A cooling package assembly is provided to counteract extreme environmental conditions and load cases.

According to an exemplary embodiment, the military vehicle 1000 also includes a front engine accessory drive (FEAD) that mounts engine accessories and transfers power from a front crankshaft dampener/pulley to the accessory components through a multiple belt drive system. According to an exemplary embodiment, the FEAD drives a fan, an alternator, an air conditioning pump, an air compressor, and a hydraulic pump. There are three individual belt groups driving these accessories to balance the operational loads on the belt as well as driving them at the required speeds. A top-mounted alternator provides increased access for service and upgradeability when switching to the export power kit (e.g., an alternator, a generator, etc.). The alternator is mounted to the front sub frame via tuned isolators, and driven through a constant velocity (CV) shaft coupled to a primary plate of the FEAD. This is driven on a primary belt loop, which is the most inboard belt to the crank dampener. No other components are driven on this loop. A secondary belt loop drives the hydraulic pump and drive through pulley. This loop has one dynamic tensioner and is the furthest outboard belt on the crankshaft dampener pulley. This belt loop drives power to a tertiary belt loop through the drive through pulley. The tertiary belt loop drives the air conditioning pump, air compressor, and fan clutch. There is a single dynamic tensioner on this loop, which is the furthest outboard loop of the system.

Transmission, Transfer Case, Differentials

Military vehicle 1000 includes a commercially available transmission 400. Transmission 400 also includes a torque converter configured to improve efficiency and decrease heat loads. Lower transmission gear ratios combined with a low range of an integrated rear differential/transfer case provide optimal speed for slower speeds, while higher transmission gear ratios deliver convoy-speed fuel economy and speed on grade. In addition, a partial throttle shift performance may be refined and optimized in order to match the power outputs of the engine 300 and to ensure the availability of full power with minimal delay from operator input. This feature makes the military vehicle 1000 respond more like a high performance pickup truck than a heavy-duty armored military vehicle.

The transmission 400 includes a driver selectable range selection. The transaxle 450 contains a differential lock that is air actuated and controlled by switches on driver's control panel. Indicator switches provide shift position feedback and add to the diagnostic capabilities of the vehicle. Internal mechanical disconnects within the transaxle 450 allow the vehicle to be either flat towed or front/rear lift and towed without removing the drive shafts. Mechanical air solenoid over-rides are easily accessible at the rear of the vehicle. Once actuated, no further vehicle preparation is needed. After the recovery operation is complete, the drive train is re-engaged by returning the air solenoid mechanical over-rides to the original positions.

The transaxle **450** is designed to reduce the weight of the military vehicle **1000**. The weight of the transaxle **450** was minimized by integrating the transfercase and rear differen-

tial into a single unit, selecting an optimized gear configuration, and utilizing high strength structural aluminum housings. By integrating the transfercase and rear differential into transaxle 450 thereby forming a singular unit, the connecting drive shaft and end yokes traditionally utilized between 5 to connect them has been eliminated. Further, since the transfercase and rear carrier have a common oil sump and lubrication system, the oil volume is minimized and a single service point is used. The gear configuration selected minimizes overall dimensions and mass providing a power dense design. The housings are cast from high strength structural aluminum alloys and are designed to support both the internal drive train loads as well as structural loads from the suspension system 460 and frame, eliminating the traditional cross member for added weight savings. According to the 15 exemplary embodiment shown in FIG. 10A, at least a portion of the suspension system 460 (e.g., the upper control arm 462, the lower control arm 464, both the upper and lower control arms 462, 464, a portion of the spring 466, damper 468, etc.) is coupled to the transaxle 450. Such 20 coupling facilitates assembly of military vehicle 1000 (e.g., allowing for independent assembly of the rear axle) and reduces the weight of military vehicle 1000. The front axle gearbox also utilizes weight optimized gearing, aluminum housings, and acts as a structural component supporting 25 internal drive train, structural, and engine loads as well. The integrated transfercase allows for a modular axle design, which provides axles that may be assembled and then mounted to the military vehicle 1000 as a single unit. An integral neutral and front axle disconnect allows the military 30 vehicle 1000 to be flat towed or front/rear lift and towed with minimal preparation. Further, the integrated design of the transaxle 450 reduces the overall weight of the military vehicle 1000. The transaxle 450 further includes a disconnect capability that allows the front tire assemblies 600 to 35 turn without rotating the entire transaxle 450. Housings of the front and rear gearbox assembly are integrated structural components machined, for example, from high strength aluminum castings. Both front and rear gearbox housings provide stiffness and support for rear module 130 and the 40 components of the suspension system 460. Suspension

The military vehicle 1000 includes a suspension system 460. The suspension system 460 includes high-pressure nitrogen gas springs 466 calibrated to operate in tandem 45 with standard low-risk hydraulic shock absorbers 468, according to an exemplary embodiment. In one embodiment, the gas springs 466 include a rugged steel housing with aluminum end mounts and a steel rod. The gas springs 466 incorporate internal sensors to monitor a ride height of 50 the military vehicle 1000 and provide feedback for a High Pressure Gas (HPG) suspension control system. The gas springs 466 and HPG suspension control system are completely sealed and require no nitrogen replenishment for general operation.

The HPG suspension control system adjusts the suspension ride height when load is added to or removed from the military vehicle 1000. The control system includes a high pressure, hydraulically-actuated gas diaphragm pump, a series of solenoid operated nitrogen gas distribution valves, 60 a central nitrogen reservoir, a check valve arrangement and a multiplexed, integrated control and diagnostics system.

The HPG suspension control system shuttles nitrogen between each individual gas spring and the central reservoir when the operator alters ride height. The HPG suspension 65 control system targets both the proper suspension height, as well as the proper gas spring pressure to prevent "cross10

jacking" of the suspension and ensure a nearly equal distribution of the load from side to side. The gas diaphragm pump compresses nitrogen gas. The gas diaphragm pump uses a lightweight aluminum housing and standard hydraulic spool valve, unlike more common larger iron cast industrial stationary systems not suitable for mobile applications.

The suspension system 460 includes shock absorbers 468. In addition to their typical damping function, the shock absorbers 468 have a unique cross-plumbed feature configured to provide auxiliary body roll control without the weight impact of a traditional anti-sway bar arrangement. The shock absorbers 468 may include an equal area damper, a position dependent damper, and/or a load dependent damper. Brakes

The braking system 700 includes a brake rotor and a brake caliper. There is a rotor and caliper on each wheel end of the military vehicle 1000, according to an exemplary embodiment. According to an exemplary embodiment, the brake system includes an air over hydraulic arrangement. As the operator presses the brake pedal, and thereby operates a treadle valve, the air system portion of the brakes is activated and applies air pressure to the hydraulic intensifiers. According to an exemplary embodiment, military vehicle 1000 includes four hydraulic intensifiers, one on each brake caliper. The intensifier is actuated by the air system of military vehicle 1000 and converts air pressure from onboard military vehicle 1000 into hydraulic pressure for the caliper of each wheel. The brake calipers are fully-integrated units configured to provide both service brake functionality and parking brake functionality.

To reduce overall system cost and weight while increasing stopping capability and parking abilities, the brake calipers may incorporate a Spring Applied, Hydraulic Released (SAHR) parking function. The parking brake functionality of the caliper is created using the same frictional surface as the service brake, however the mechanism that creates the force is different. The calipers include springs that apply clamping force to the brake rotor to hold the military vehicle 1000 stationary (e.g. parking). In order to release the parking brakes, the braking system 700 applies a hydraulic force to compress the springs, which releases the clamping force. The hydraulic force to release the parking brakes comes through a secondary hydraulic circuit from the service brake hydraulic supply, and a switch on the dash actuates that force, similar to airbrake systems.

Referring specifically to the exemplary embodiment shown in FIG. 11, braking system 700 is shown schematically to include a motor 710 having a motor inlet 712. The motor 710 is an air motor configured to be driven by an air system of military vehicle 1000, according to an exemplary embodiment. The motor 710 may be coupled to the air system of military vehicle 1000 with a line 714. As shown in FIG. 11, braking system 700 includes a pump 720 that includes a pump inlet 722, a pump outlet 724, and a pump input shaft 726. The pump input shaft 726 is rotatably coupled to the motor 710 (e.g., an output shaft of the motor 710).

As shown in FIG. 11, braking system 700 includes a plurality of actuators 730 coupled to the pump outlet 724. According to an exemplary embodiment, the actuators 730 includes a housing 732 that defines an inner volume and a piston 734 slidably coupled to the housing 732 and separating the inner volume into a first chamber and a second chamber. The plurality of actuators 730 each include a resilient member (e.g., spring, air chamber, etc.), shown as resilient member 736 coupled to the housing and configured

to generate a biasing force (e.g., due to compression of the resilient member 736, etc.). According to an exemplary embodiment, the plurality of actuators 730 each also include a rod 738 extending through an end of the housing 732. The rod 738 is coupled at a first end to piston 734 and coupled 5 at a second end to a brake that engages a braking member (e.g., disk, drum, etc.), shown as braking member 740. As shown in FIG. 11, the rod is configured to apply the biasing force to the braking member 740 that is coupled to wheel and tire assemblies 600 thereby inhibiting movement of the 10 military vehicle 1000.

According to an exemplary embodiment, a control is actuated by the operator, which opens a valve to provide air along the line 714. Pressurized air (e.g., from the air system of military vehicle 1000, etc.) drives motor 710, which engages pump 720 to flow a working fluid (e.g., hydraulic fluid) a through line 750 that couples the pump outlet 724 to the plurality of actuators 730. According to an exemplary embodiment, the pump 720 is a hydraulic pump and the actuator 730 is a hydraulic cylinder. Engagement of the 20 pump 720 provides fluid flow through line 750 and into at least one of the first chamber and the second chamber of the plurality of actuators 730 to overcome the biasing force of resilient member 736 with a release force. The release force is related to the pressure of the fluid provided by pump 720 25 monitoring and status. For example, the control system 1200 and the area of the piston 734. Overcoming the biasing force releases the brake thereby allowing movement of military vehicle 1000.

As shown in FIG. 11, braking system 700 includes a valve, shown as directional control valve 760, positioned 30 along the line 750. According to an exemplary embodiment, directional control valve 760 includes a valve body 770. The valve body 770 defines a first port 772, a second port 774, and a reservoir port 776, according to an exemplary embodiment. When valve gate 762 is in the first position (e.g., 35 pressurized air is not applied to air pilot 766) valve gate 762 places first port 772 in fluid communication with reservoir port 776. A reservoir 780 is coupled to the reservoir port 776 with a line 752. The reservoir 780 is also coupled to the pump inlet 722 with a line 754. It should be understood that 40 the fluid may be forced into reservoir 780 from any number of a plurality of actuators 730 by resilient member 736 (e.g., when pump 720 is no longer engaged).

According to an exemplary embodiment, the directional control valve 760 selectively couples the plurality of actua- 45 tors 730 to the pump outlet 724 or reservoir 780. The directional control valve 760 includes a valve gate 762 that is moveable between a first position and a second position. According to an exemplary embodiment, the valve gate 762 is at least one of a spool and a poppet. The valve gate 762 50 is biased into a first position by a valve resilient member 764. According to an exemplary embodiment, the directional control valve 760 also includes an air pilot 766 positioned at a pilot end of the valve gate 762. The air pilot 766 is coupled to line 714 with a pilot line 756. Pressurized air is applied 55 to line 714 drives motor 710 and is transmitted to air pilot 766 to overcome the biasing force of valve resilient member 764 and slide valve gate 762 into a second position. In the second position, valve gate 762 places first port 772 in fluid communication with 774 thereby allowing pressurized fluid 60 from pump 720 to flow into actuators 730 to overcome the biasing force of resilient member 736 and allow uninhibited movement of military vehicle 1000. Control System

Referring to FIG. 12, the systems of the military vehicle 65 1000 are controlled and monitored by a control system 1200. The control system 1200 integrates and consolidates infor-

mation from various vehicle subsystems and displays this information through a user interface 1201 so the operator/ crew can monitor component effectiveness and control the overall system. For example, the subsystems of the military vehicle 1000 that can be controlled or monitored by the control system 1200 are the engine 300, the transmission 400, the transaxle 450, the suspension system 460, the wheels and tire assemblies 600, the braking system 700, the fuel system 800, the power generation system 900, and a trailer 1100. However, the control system 1200 is not limited to controlling or monitoring the subsystems mentioned above. A distributed control architecture of the military vehicle 1000 enables the control system 1200 process.

12

In one embodiment, the control system 1200 provides control for terrain and load settings. For example, the control system 1200 can automatically set driveline locks based on the terrain setting, and can adjust tire pressures to optimal pressures based on speed and load. The control system 1200 can also provide the status for the subsystems of the military vehicle 1000 through the user interface 1201. In another example, the control system 1200 can also control the suspension system 460 to allow the operator to select appropriate ride height.

The control system 1200 may also provide in-depth may indicate on-board power, output power details, energy status, generator status, battery health, and circuit protection. This allows the crew to conduct automated checks on the subsystems without manually taking levels or leaving the safety of the military vehicle 1000.

The control system 1200 may also diagnose problems with the subsystems and provide a first level of troubleshooting. Thus, troubleshooting can be initiated without the crew having to connect external tools or leave the safety of the military vehicle 1000.

The construction and arrangements of the vehicle, as shown in the various exemplary embodiments, are illustrative only. Although only a few embodiments have been described in detail in this disclosure, many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter described herein. Some elements shown as integrally formed may be constructed of multiple parts or elements, the position of elements may be reversed or otherwise varied, and the nature or number of discrete elements or positions may be altered or varied. The order or sequence of any process, logical algorithm, or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes, and omissions may also be made in the design, operating conditions and arrangement of the various exemplary embodiments without departing from the scope of the present invention.

The invention claimed is:

- 1. A military vehicle assembly comprising:
- a rear module including:
 - a rear frame assembly having one or more upper interfaces and one or more lower interfaces, the one or more upper interfaces configured to detachably couple to a rear end of a passenger capsule of a military vehicle, the one or more lower interfaces configured to detachably coupled to a bottom of the passenger capsule;
 - a bed supported by the rear frame assembly;
 - a rear tractive assembly;

- a transaxle supported by the rear frame assembly, the transaxle coupled to the rear tractive assembly, the transaxle configured to couple to a prime mover and a front differential of the military vehicle; and
- a rear suspension system including at least one com- 5 ponent extending between a housing of the transaxle and the rear tractive assembly.
- 2. The military vehicle assembly of claim 1, wherein the rear suspension system includes a first spring, a second spring, a first damper, and a second damper, and wherein the at least one component includes at least one of (a) the first spring and the second spring or (b) the first damper and the
- 3. The military vehicle assembly of claim 2, wherein the $_{15}$ at least one component includes the first spring and the second spring.
- 4. The military vehicle assembly of claim 2, wherein the at least one component includes the first damper and the second damper.
- 5. The military vehicle assembly of claim 2, wherein the at least one component includes the first spring, the second spring, the first damper, and the second damper.
- 6. The military vehicle assembly of claim 2, wherein the first spring and the second spring are high-pressure nitrogen springs, and wherein the first damper and the second damper are hydraulic dampers.
- 7. The military vehicle assembly of claim 1, wherein the rear suspension system includes a pair of gas springs, further comprising a suspension control system configured to:

control the pair of gas springs to adjust the ride height as load is added to or removed from the military vehicle.

- 8. The military vehicle assembly of claim 7, wherein the pair of gas springs are high-pressure nitrogen springs.
- rear suspension system includes a pair of hydraulic dampers,
- 10. The military vehicle assembly of claim 1, wherein the $_{40}$ transaxle includes an internal mechanical disconnect that facilitates decoupling the transaxle from the front differen-
- 11. The military vehicle assembly of claim 10, further engaging the internal mechanical disconnect.
- 12. The military vehicle assembly of claim 1, wherein the transaxle includes a transfercase component and a rear differential component at least partially contained within the housing.
 - a front frame assembly having one or more upper interthe bottom of the passenger capsule;
 - a front tractive assembly; the prime mover; and

the front differential coupled to the front tractive assem-

- 14. The military vehicle assembly of claim 13, wherein the front module and the rear module are couplable to different variants of the passenger capsule to provide different variants of the military vehicle.
- 15. The military vehicle assembly of claim 14, wherein the different variants of the passenger capsule include a first variant defining four door openings and a second variant defining two door openings.
- 16. The military vehicle assembly of claim 13, wherein the prime mover includes an engine.
 - 17. A military vehicle assembly comprising: a rear module including:
 - a rear frame assembly having one or more upper interfaces and one or more lower interfaces, the one or more upper interfaces configured to detachably couple to a rear end of a passenger capsule of a military vehicle, the one or more lower interfaces configured to detachably coupled to a bottom of the passenger capsule;
 - a rear tractive assembly;
 - a transaxle supported by the rear frame assembly, the transaxle coupled to the rear tractive assembly, the transaxle configured to couple to a prime mover and a front differential of the military vehicle; and
 - a rear suspension system including at least one component extending between a housing of the transaxle and the rear tractive assembly.
- 18. The military vehicle assembly of claim 17, wherein the rear suspension system includes a pair of gas springs and a pair of hydraulic dampers.
 - 19. A military vehicle assembly comprising:
 - a rear module including:
 - a rear frame assembly having one or more upper interfaces and one or more lower interfaces, the one or more upper interfaces configured to detachably couple to a rear end of a passenger capsule of a military vehicle, the one or more lower interfaces configured to detachably coupled to a bottom of the passenger capsule;
 - a rear tractive assembly;
 - a transaxle supported by the rear frame assembly, the transaxle coupled to the rear tractive assembly, the transaxle configured to couple to a prime mover and a front differential of the military vehicle; and
 - a rear suspension system including a pair of gas springs and a pair of hydraulic dampers, wherein the pair of hydraulic dampers are cross-plumbed to provide a hydraulic body roll control function; and
 - a suspension control system configured to: monitor a ride height of the military vehicle; and control the pair of gas springs to adjust the ride height as load is added to or removed from the military

vehicle. 20. The military vehicle assembly of claim 19, wherein at least one of (a) the pair of gas springs or (b) the pair of hydraulic dampers extend between a housing of the

transaxle and the rear tractive assembly.

14

monitor a ride height of the military vehicle; and

- 9. The military vehicle assembly of claim 1, wherein the wherein the pair of hydraulic dampers are cross-plumbed to provide a hydraulic body roll control function.
- comprising an actuator configured to facilitate manually 45
- 13. The military vehicle assembly of claim 1, further comprising a front module including:
 - faces and one or more lower interfaces, the one or more upper interfaces configured to detachably couple to a 55 front end of the passenger capsule, the one or more lower interfaces configured to detachably coupled to