

UNIVERSIDAD DE GUAYAQUIL FACULTAD DE INGENIERÍA INDUSTRIAL DEPARTAMENTO ACADÉMICO DE GRADUACIÓN

TRABAJO DE TITULACIÓN PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO EN TELEINFORMÁTICA

ÁREA TELECOMUNICACIONES

TEMA
"ESTUDIO DE LA CALIDAD DEL SERVICIO DE
REDES MÓVILES EN EL SECTOR DE LA
TRONCAL"

AUTOR
NARVAEZ ORTIZ EDWIN ESTEBAN

DIRECTOR DEL TRABAJO
ING. TELEC VEINTIMILLA ANDRADE JAIRO GEOVANNY, MBA.

2018 GUAYAQUIL – ECUADOR

DECLARACIÓN DE AUTORÍA

"La responsabilidad del contenido de este Trabajo de Titulación, me corresponde exclusivamente; y el patrimonio Intelectual del mismo a la Facultad de Ingeniería Industrial de la Universidad de Guayaquil"

Narváez Ortiz Edwin Esteban 0940609498

AGRADECIMIENTO.

A mis padres por ser los principales promotores de mis sueños, gracias a ellos por cada día confiar y creer en mí y en mis experiencias y poder cumplir una meta más en esta vida.

A mi madre por estar dispuesta a acompañarme cada larga y agotadora noche de estudio, agotadoras noches en las que su compañía era lo mejor para poder seguir luchando y jamás rendirme.

Gracias a la vida por este nuevo triunfo, gracias a todas las personas que me apoyaron y creyeron en mí, es especial a una persona muy importante en mi vida, que me protege y me sonríe desde el cielo.

DEDICATORIA

Este trabajo de titulación se lo dedico a una persona muy importante en mi vida, que es mi Padre, aunque ya no esté en este mundo sé que desde el cielo me guía y me protege para seguir luchando.

A mis hermanos, quienes han estado dándome ánimos, su motivación fue importante para seguir adelante.

A toda mi familia quienes confiaron en mí y me ayudaron en los momentos de mayor dificultad con su motivación.

_

ÍNDICE GENERAL

N°	Descripción	Pág.
	INTRODUCCIÓN	1
	CAPITULO I	
	EL PROBLEMA	
N°	Descripción	Pág.
1.1	Planteamiento del problema	1
1.2	Situación actual	2
1.3	Objetivos de la investigación	3
1.3.1	Objetivo general	3
1.3.2	Objetivo Específico.	4
1.4	Alcance	4
1.5	Justificación	4
	CAPÍTULO II	
	MARCO TEÓRICO	
N°	Descripción	Pág.
2.1	Antecedentes	6
2.2	Marco teórico	7
2.2.1	Historia de la telefonía	7
2.2.2	Generaciones de la telefonía	8
2.2.2.1	Primera generación	8

N°	Descripción	Pág.
2.2.2.2	Segunda generación	S
2.2.2.3	Segunda generación y media	10
2.2.2.4	Tercera generación	11
2.2.2.5	Cuarta generación	11
2.2.3	Fundamentos de un sistema de telefonía celular	12
2.2.4	Elementos de la telefonía móvil	14
2.2.4.1	Celda	14
2.2.4.2	Reúso de frecuencia	14
2.2.4.3	División de celdas	15
2.2.4.4	Transferencia de llamadas (handover)	15
2.2.5	Telefonía móvil en ecuador	16
2.2.6	Redes móviles	21
2.2.6.1	Estructura y componentes	21
2.2.6.2	Evolución de las redes móviles en ecuador	22
2.2.7	Funcionamiento de la red telefonía móvil	23
2.2.7.1	Mala señal telefónica	24
2.2.7.2	Baja cobertura móvil	25
2.2.7.3	Redes y medio ambiente	26
2.2.8	Calidad de servicios	27
2.2.8.1	Factores que afectan la calidad de servicio	28
2.2.8.2	Importancia de medir la calidad de servicio	29
2.2.8.3	Calidad de servicio en zonas urbanas	29
2.2.8.4	Historia de la calidad de servicio en ecuador	30
2.2.8.5	Indicadores de calidad de servicio en ecuador	31
2.2.9	Antenas de telefonía móvil	32

N°	Descripción	Pág.
2.2.9.1	Arquitectura en antenas móviles	333
2.2.10	Efecto doppler	33
2.2.10.1	Función del efecto doppler	34
2.3	Marco conceptual	34
2.3.1	Tipos de antenas móviles	34
2.3.1.1	Antena dipolo	35
2.3.1.2	Antena dipolo multi-elemento	35
2.3.1.3	Antenas yagui	35
2.3.1.4	Antenas panel plano	36
2.3.1.5	Antenas parabólicas	36
2.3.1.6	Antena de ranura	36
2.3.1.7	Antena microstrip	36
2.3.2	Interferencia electromagnética	37
2.3.2.1	Interferencia electromagnética intencionada	37
2.3.2.2	Interferencia electromagnética no intencionada	37
2.3.3	Emisiones de banda	38
2.4	Marco legal	38
2.4.1	Constitución de la república del ecuador	38
2.4.2	Plan nacional del buen vivir	39
2.4.2.1	Ley de medio ambiente	39
2.4.3	Ley orgánica de telecomunicaciones	39
	CAPÍTULO III	
	METODOLOGÍA	
N°	Descripción	Pág.
3.1	Procedimiento metodológico	40

N°	Descripción	Pág.
3.1.1	Investigación de campo	40
3.1.2	Investigación exploratoria	41
3.1.3	Investigación descriptiva	41
3.2	Técnicas para el análisis de los datos	42
3.2.1	Análisis cuantitativo	42
3.2.2	Análisis cualitativo	42
3.3	Población y muestra	42
3.3.1	Población	42
3.3.2	Muestra	43
3.4	Herramientas de recolección de la información	44
3.4.1	Encuestas	44
3.4.2	Señal móvil opensignal	44
3.4.3	Datos estadísticos	45
3.5	Procesamiento de la información	45
3.6	Técnicas de procesamiento y análisis de datos	45
3.7	Análisis e interpretación de resultados	46
3.8	Participación de mercado	46
3.9	Identificación de la calidad del servicio	47
3.9.1	Medidor de calidad móvil claro	47
3.9.2	Medidor de calidad móvil movistar	50
3.9.3	Medidor de calidad móvil CNT	52
3.10	Comportamiento de la señal móvil	54
3.11	Discusión de los resultados	64
3.12	Estudio de comportamiento de absorción, dispersión,	65
3.12.1	Análisis de resultados	66

CAPITULO IV DISEÑO DE LA PROPUESTA

N°	Descripción	Pág
4.1	Propuesta de mejora	68
4.1.1	Desde los suscriptores o clientes	69
4.1.2	Desde el operador	69
4.1.3	Propuesta de optimización	70
4.1.4	Ampliación de cobertura celular	71
4.1.5	Operación de un nodo B	71
4.2	Criterios para implementar nueva estación	71
4.2.1	Modelo de propagación	71
4.3	Conclusiones	75
4.4	Recomendaciones	76
	ANEXO	78
	BIBLIOGRAFÍA	91

ÍNDICE DE TABLAS

N°	Descripcion	Pag.
1	Participación de mercado por operadora	46
2	Líneas activas para el periodo de mayo 2018	47
3	Estadísticas de señal por tecnología de conecel s.a	47
4	Velocidad de señal conecel s.a	48
5	Control de caída de señal conecel s.a	49
6	Estadísticas de señal por tecnología de otecel s.a	50
7	Velocidad de señal otecel s.a	51
8	Control de caída de señal otecel s.a	51
9	Estadísticas de señal por tecnología de cnt ep	52
10	Velocidad de señal cnt ep	53
11	Control de caída de señal cnt ep	54
12	Comparación de caída de señal entre operadoras móviles	54
13	Interferencia en llamadas	55
14	Caídas y pérdidas de señal en llamadas	56
15	Demora en conexión de llamadas salientes	57
16	Frecuencia con la que no puede realizarse una llamada	58
17	Dispositivo que mantiene una buena señal al 100%	59
18	Calidad de la señal la encuentran dentro de su hogar	60
19	Calidad de la señal la encuentran fuera de su hogar	61
20	Frecuencia reinicia su dispositivo móvil	62
21	Plan para mejorar servicio de la calidad de la telefonía móvil	63

ÍNDICE DE FIGURAS

N°	Descripción	Pág.
1	Generación de telefonía móvil	8
2	Elementos de estación base de control	13
3	Elementos de una estación móvil	14
4	Porcentajes de las operadoras año 2010	19
5	Tráfico móvil	28
6	Formula efecto doppler	34
7	Sector del cantón la troncal	41
8	Control estadístico de la señal según tecnología	48
9	Control de caída de señal conecel s.a	49
10	Control estadístico de la señal otecel s.a	50
11	Control de caída de señal o tecel s.a	52
12	Control estadístico de la señal según tecnología cnt	53
13	Resultados comparativos de caída de señal	55
14	Interferencia en llamadas	56
15	Caídas y pérdidas de señal en llamadas	57
16	Demora en conexión de llamadas salientes	58
17	Frecuencia con la que no puede realizarse una llamada	59
18	Dispositivo que mantiene una buena señal al 100%	60
19	Calidad de la señal la encuentran dentro de su hogar	61
20	Calidad de la señal la encuentran fuera de su hogar	62
21	Frecuencia reinicia su dispositivo móvil	63
22	Plan para mejorar servicio de la calidad de la telefonía móvil	64
23	Antenas repetidoras de señal móvil	69
24	Ubicación del agujero de cobertura	70
25	Simulacion radio mobile	74
26	Simulación de antena movil	74
27	Datos obtenidos mediante radio mobile	75

ÍNDICE DE ANEXOS

N°	Descripción	Pág
1	Encuesta	79
2	Muestras de cobertura	81
3	Evaluacion de la señal movil	82
4	Velocidad real de claro	83
5	Evaluación de la señal móvil	84
6	Estadísticas de líneas activas	85

AUTOR: NARVAEZ ORTIZ EDWIN ESTEBAN

TITULO: "ESTUDIO DE LA CALIDAD DEL SERVICIO DE REDES

MOVILES EN EL SECTOR DE LA TRONCAL"

DIRECTOR: ING. TELEC. VEINTIMILLA ANDRADE JAIRO GEOVANNY

MBA.

RESUMEN

Este trabajo de investigación está dedicado a evaluar la calidad del servicio de las operadoras móviles más utilizadas en el sector de la Troncal. tales como (claro, movistar y CNT). Para el diagnóstico de la problemática se utiliza herramientas de análisis de investigación de campo, investigación exploratoria, investigación descriptiva observación directa, técnicas de encuestas, datos que permitan obtener información relevante sobre la situación actual que viven los usuarios de las operadoras de telefonía móvil. Gracias a investigación primaria y secundaria se establece que la población que utiliza servicios móviles en el cantón La Troncal corresponde al 73% de todos los habitantes del lugar, de los cuales la mayor cantidad son usuarios de la operadora Conecel esto se debe a que esta empresa es la única que otorga servicios móviles de tecnología 3G y 4G. Entre los instrumentos de investigación utilizados se encuentra encuestas, aplicación Open Signal, datos estadísticos y aplicación Radio Mobile, mismos que permitieron concluir que los servicios móviles avanzados año a año se vienen incrementando, tal es así que del año 2017 hasta junio del 2018 la participación de mercado es del 89,54% a nivel nacional y con respecto al cantón La Troncal este es de 2,6% en relación a la población que cuenta con líneas móviles activas. En base a todos los datos obtenidos durante la investigación se expuso la propuesta de implementar una antena Repetidora de señal celular alto poder para mejorar la calidad de la señal que se transmite en el sector La Troncal logrando una satisfacción por parte de los usuarios.

PALABRAS CLAVES: Latencia, Tecnología 3G, Señal, Líneas Activas.

AUTHOR: NARVAEZ ORTIZ EDWIN ESTEBAN

TITLE: STUDY OF THE QUALITY OF THE SERVICE OF MOBILE

NETWORKS IN THE SECTOR OF LA TRONCAL

DIRECTOR: TE VEINTIMILLA ANDRADE JAIRO GEOVANNY, MBA.

ABSTRACT

This research work is dedicated to evaluating the service quality of the most used mobile operators in the sector of La Troncal, such as Claro, Movistar and CNT. For the diagnosis of the problem, it has been used analysis tools, for and field research, exploratory research, descriptive research, direct observation, survey techniques, data to obtain relevant information about the current situation experienced by mobile phone operators. Thanks to primary and secondary research it is established that the population that uses mobile services in the canton La Troncal corresponds to 73% of all the inhabitants of the place, of which the largest number are users of Conecel operator, this is because this company is the only one that provides 3G and 4G technology in mobile services. Among the used research instruments are surveys, Open Signal application, statistical data and Radio Mobile application, which allowed to conclud that advanced mobile services are increasing, year after year so that from 2017 to June 2018 the participation of the market was 89.54% nationally and with respect to the canton La Troncal this is 2.6% in relation to the population that has active mobile lines. Based on all the data obtained during the investigation, the proposal to implement a High Power Cellular Repeater Antenna was proposed to improve the quality of the signal transmitted in the La Troncal sector, achieving users' satisfaction.

KEYWORDS: Latency, 3G Technology, Signal, Active Lines.

INTRODUCCIÓN

En la actualidad uno de los servicios imprescindibles de la humanidad es la telecomunicación, ya que sin ella sería imposible y por qué no decir desastroso la continuación de nuestra vida cuotidiana; ya sea en el entorno familiar, laboral, educativo, emocional de negocios etc.

Es por lo que las operadoras que brindan este servicio deben tratar día a día en mejorar su servicio, dar una mejor calidad en señal y cobertura. Por qué en lo que más se han preocupado es en brindar variedad de equipos, pero han descuidado lo principal que es el servicio, para ello deben analizar inicialmente la situación geográfica del sector, lugar, ciudad o Provincia a donde van a realizar las instalaciones y escoger puntos lo más estratégicos posibles para que no afecte con las ordenanzas sectoriales, gubernamentales, ambientales y especialmente de salud de la ciudadanía que puede salir afectada de una manera indirecta.

Claramente podemos deducir que el principal motivo para que exista una pésima señal móvil en la Troncal, es la cobertura, al no llegar ni satisfacer las conexiones móviles, derivando así problemas con el tema de saturación, las antenas en las áreas asignadas de manera incorrecta.

La importancia de una señal eficiente, es de imperiosa necesidad, pero es un tema que las operadoras no lo están considerando ni dando ninguna solución, solo se han limitado a observar y no están invirtiendo en la infraestructura respectiva para solucionar este gran inconveniente.

Pienso que el estado debe tomar acciones en referencia a estos asuntos ya que afectan el bienestar ciudadano, poniendo en vigencia las respectivas leyes gubernamentales y aplicándolas de la manera correcta

También es cierto que uno de las dificultades con las que se topan las operadoras, son las de colocar antenas de transmisión y recepción móvil en ciertos puntos, debido al difícil acceso; y, a las normas que impiden la colocación de antenas; y, estaciones base en ciertos lugares como: son parques y áreas protegidas, lo que dificultan que las operadoras cubran áreas donde la señal casi es nula, en razón de proteger, la salud de la población y el ornato público del lugar.

A pesar que la Organización Mundial de la Salud (OMS) ha manifestado que no existen pruebas científicas que indiquen que las antenas causen efectos degenerativos en la salud de las personas, pero siempre se trata de salvaguardar la integridad de la ciudadanía.

CAPITULO I EL PROBLEMA

1.1 Planteamiento del problema

La telecomunicación es un aspecto primordial en la vida cotidiana, pasando hacer una necesidad del hombre; y al ser una necesidad, el mercado de la telefónica ha encontrado una gran fuente de ingresos, ofreciendo cada vez mejores equipos telefónicos, pero descuidando el servicio y/o señal de cobertura.

Definitivamente mencionado problema en la cobertura telefónica es el resultado de la mala planeación de las diversas empresas telefónicas, posiblemente a la falta de estudios de las diferentes zonas territoriales (costa, sierra, oriente y galápagos) del país, las cuales son muy heterogéneas, por lo cual la estrategia de implementación de antenas será diferente para cada zona.

Ocasionando un gran problema en la homogeneidad de la distribución de la cobertura telefónica, produciendo niveles bajos de señal, cabe mencionar que otro factor influyente en disminución de la señal; se debe al incremento de usuarios, provocando que en determinadas zonas los sistemas celulares se saturen y por ende la señal celular disminuya y las empresas brinden un mal servicio a la comunidad.

Por otro lado, el incremento demográfico de los seres humanos, así como las urbanizaciones como son edificios, casas, etc. y el incremento de vehículos; funcionan como barreras físicas directas o indirectas sobre la recepción de la señal hacia el usuario final

Todos estos efectos y causas han provocado un problema en común que es la pérdida de la cobertura o señal telefónica, ocasionando:

- Pérdidas o caídas en las llamadas dentro del área de cobertura asignada por la operadora.
- Las llamadas establecidas no pueden mantenerse por causas atribuibles a la red de evaluación.
- 3. El tiempo que deben esperar los usuarios a que el sistema responda a las aplicaciones que están solicitando ya sea para la activación de un servicio como mensajería instantánea, internet o también cuando se llama al call center en busca de soporte técnico.

Todos estos inconvenientes ocasionan que la calidad del servicio celular sea ineficiente, desencadenando la inconformidad de los usuarios del sector que pagan por un servicio que en teoría debería de ser de buena calidad.

1.2 Situación actual

En la actualidad el sector telefónico presenta un crecimiento muy acelerado, hoy en día el número de líneas de telefonos móviles activas sobrepasa por mucho al número de líneas de telefonía fija tradicional. Lo que constituye que este negocio se ha vuelto parte de un fenómeno de disputas dentro del sector de telecomunicaciones entre las compañías que lo dominan (Organización para la Cooperación y el Desarrollo Económico, 2011).

Por lo tanto al ser tan competitivo mencionado sector, los usuarios tratan de buscar un mejor servicio con buena calidad y con mayor cobertura que le permitan una buena comunicación a nivel móvil en el sector de la

Troncal, sin embargo, no siempre se obtienen resultados satisfactorios ya que los problemas persisten causando molestias entre los usuarios al momento de utilizar el servicio contratado.

Este problema no es tan común en ciudades grandes como Guayaquil, Quito o Cuenca, las cuales poseen un mayor número de puntos de cobertura que facilitan una excelente calidad de la señal en los dispositivos móviles de las diferentes operadoras, esto debido a que son ciudades de gran influencia en el sector de las telecomunicaciones, así como también por ser sedes de las empresas móviles.

Por otro lado, se tiene al sector de la troncal perteneciente a la provincia del Cañar, que presenta características opuestas a las grandes ciudades en la calidad telefónica, donde las telefonías celulares móviles no están cumpliendo los parámetros de calidad provocando en la red celular existan caídas de llamadas y de los demás tipos de servicios, tiempos largos de espera y bloqueos de llamadas, los mismos que se ven reflejados en incomodidad de los usuarios moradores del sector.

Debido a la poca importancia que se le ha dado a este tema en cuestión, nuestra investigación se centra en realizar un estudio con la finalidad de poder determinar los factores causantes de la heterogeneidad en las señales móviles en el sector de la Troncal, con esto podemos brindar un análisis y recomendaciones de las posibles soluciones que se puedan integrar a los diferentes servicios telefónico que brindar cobertura en el sector de la Troncal.

1.3 Objetivos de la investigación

1.3.1 Objetivo general

Evaluar la calidad del servicio de las operadoras móviles más utilizadas en el sector de la Troncal, tales como (claro, movistar y CNT).

1.3.2 Objetivo Específico.

- Investigar estudios previos sobre la calidad de servicio de las operadoras móviles.
- Realizar un análisis de la latencia y estudio del comportamiento de la señal.
- Examinar el funcionamiento y las características de las necesidades del sector de acuerdo a las operadoras móviles.
- 4. Proponer una solución para mejorar el servicio de las operadoras móviles en el sector la troncal.

1.4 Alcance

- Mostrar un estudio de zonas vulnerables a la señal de telefonía móvil en el sector la troncal.
- 2. Dar a conocer el uso de los tipos de redes dentro de la población para elegir un excelente servicio.

1.5 Justificación

Las operadoras móviles del país se desempeñan en un ambiente altamente competitivo donde cada una de ellas busca la mejor manera de mantener comunicados a los usuarios en cualquier lugar y en todo momento.

Sin embargo hay lugares donde existen problemas de cobertura y es necesario realizar un análisis técnico exhaustivo donde se puedan determinar los factores que impiden que la señal celular se emita correctamente, tal es el caso de la Troncal de la Provincia del Cañar, donde

usuarios del servicio de telefonía móvil se encuentran inconformes con la calidad de servicio que están recibiendo, esta es la razón por la que realizan continuos reclamos en busca de una solución a sus problemas de comunicación de telefonía móvil, sin obtener soluciones ni mucho menos algún tipo de respuesta por parte de la empresa telefónica.

Es por ello que la presente investigación "Estudio de la calidad del servicio de redes móviles en el sector de la Troncal" se realizará a partir de los problemas que presenta la telefonía móvil en el Cantón.

Este estudio y análisis permitirá identificar las zonas específicas donde existen pérdidas de la calidad de la señal celular en el Cantón la Troncal, también ayudará a revelar que agentes actúan para que esto ocurra, definiendo que tipos de terminales móviles son los que se ven más afectados en el Cantón la Troncal y con qué frecuencia sucede.

CAPÍTULO II MARCO TEÓRICO

2.1 Antecedentes

Para este trabajo investigativo se tomó en cuenta varios tipos de investigaciones que se han realizado en diferentes Universidades del Ecuador tal es el caso del repositorio de la Universidad de Guayaquil cuya autor(a) es Correa Oyola Andrea Alexandra (2014) con su tema de investigación "Análisis Técnico De La Perdida De Señal De Telefonía Móvil en el Sector De Sauces III De La Ciudad De Guayaquil."

En esta tesis se analizó cuáles son los factores que afectan a los usuarios de una red de telefonía móvil en el lugar de cobertura que provoca la disminución de señal en la ciudadela Sauces III de la ciudad de Guayaquil (Reyes, 2016).

Esta tesis nos sirve de guía para conocer la metodología que se va a utilizar en la investigación, y como se obtuvo buenos resultados podemos deducir que este proyecto será de gran ayuda (Reyes, 2016).

El objetivo principal de esta tesis fue analizar los diversos equipos de encontrar el más adecuado para que ayude a mejorar la calidad de servicio de comunicación sin perdidas de señal (Reyes, 2016).

Se utilizaron diferentes métodos para el análisis de campo a través de diferentes técnicas de entrevistas para conocer los frecuentes problemas que se presentan al comunicarse con otras personas. También se utilizó una investigación descriptiva para poder medir la calidad de la señal de telefonía móvil en diferentes ubicaciones del sector (Reyes, 2016).

En los resultados se obtuvo que un sistema de radio alcance vía microonda que sería eficiente para las comunicaciones, controlando las transmisiones y previniendo los tráficos de datos. Gracias a esto se ha determinado que la antena de telefonía móvil puede mejorar el servicio de calidad de telefonía móvil en sectores donde la señal se interrumpe frecuentemente (Reyes, 2016)

2.2 Marco teórico

2.2.1 Historia de la telefonía

En el año 1973 es el comienzo de la primera forma de comunicarse a distancia con la invención del primer radioteléfono, el creador fue Martin Cooper quien fue considerado como el experto en la tecnología celular es nombrado también como "El padre del teléfono moderno" (Vargas, 2017).

Con el tiempo surgieron nuevas tecnologías celulares, es así que en 1981 aparece un celular originario de los países Nórdicos similar a un AMPS, este fue considerado el primer adelanto de los teléfonos celulares desde su creación. Como consecuencia del incremento en la tecnología móvil, se establecieron leyes, es decir entidades reguladoras quienes instauraron servicios y sistemas de telefonía móvil a nivel comercial (Vargas, 2017).

La telefonía es sin duda un mecanismo único de comunicación, la telefonía ha sufrido cambios significativos de formas de poder comunicarse, la gran demanda ha hecho que existan necesidades. En el siglo XIX fue el comienzo de la telefonía con la invención del primer teléfono, en la actualidad después de 140 años podemos comprobar que la telefonía forma parte del día a día (Cedeño, 2013).

En los últimos años se estableció el teléfono celular como una alternativa de uso una herramienta tradicional para la comunicación, todo

esto llevo a existir problemas en el servicio, al colapsar todo el sistema, como consecuencia se realizaron cambios representativos en cuanto a señal móvil y en particular mejorar el sistema de comunicación de ese entonces (Vargas, 2017).

2.2.2 Generaciones de la telefonía

Las generaciones de teléfono van de la mano con el desarrollo en las tecnologías es así como las redes de comunicaciones se realizan por ondas de radio para permitir la calidad en la emisión y recepción de la señal de telefonía, la evolución como tal de la telefonía está dirigida desde el año 1979, con un gran incremento y mejora en los sistemas para servicios de comunicación.

FIGURA N° 1 GENERACIÓN DE TELEFONÍA MÓVIL

Fuente: Investigación Directa Elaborado por: Narváez Ortiz Edwin

2.2.2.1 Primera generación

La primera generación se establece en sistemas 1G las cuales se consideraban redes analógicas de conmutación en formato full-dúplex y estas se conectaban a la red telefónica pública, pero su finalización se dio en el año 2003, las cuales quedaron muy pocas para dar la cobertura a la telefonía rural de acceso a celulares (Gil, 2017).

En distintas regiones se establecieron sistemas como TMA-450 Y TMA-900, la compañía de telefonía en España (CTNE) estuvieron en servicio TMA-450 a la vez que se adaptó el TMA-900, otro derivado de este

tipo de sistema es el estándar nórdico NMT los cuales fueron introducidos en 1982. Como características de esta primera generación se sitúa móviles de precios muy elevados de gran peso y volumen, los cuales solo podrían ser movilizados en vehículos o en ese entonces embarcaciones (Gil, 2017).

Inicia en la década de los ochenta, la primera generación se caracteriza por utilizar las bandas 450 a 900 MHz con velocidades de conexión de hasta 2.4000 baudios, entre los inconvenientes que presentaba esta generación es la carencia de interconectar suministros

Los sistemas móviles de la primera generación se caracterizaron por trasmisiones de tipo analógico con servicios de voz y niveles de calidad muy baja, que utilizó para su funcionamiento la técnica denominada (FDMA o Acceso Múltiple por División de Frecuencia), lo que limitaban a estos sistemas en relación al número de usuarios a los que podía dar servicio, por lo tanto la seguridad no existía en estos sistemas (Ascencio, 2014).

2.2.2.2 Segunda generación

Se caracteriza principalmente por ser digital, lo que se logró la disminución de tamaño, costo y consumo de potencia en los dispositivos de telefonía móviles, también se transmiten voz y datos digitales de volúmenes bajos. Con los sistemas de telefonía móvil celular 2G se logró aumentar las velocidades de las transmisiones de información, y adicionalmente con los sistemas 2G se logró adelantos significativos en cuanto a seguridad y calidad de voz y roaming, dentro de la tecnología 2G se encuentran los sistemas (TDMA, GSM y CDMA) (Ascencio, 2014).

TDMA: La multiplexación es una técnica que permiten las transmisiones de las señales digitales, cuya idea radica en ocupar un canal de transmisión a partir de distintas fuentes, de esta manera se adquiere un mejor aprovechamiento del medio de transmisión de señal (Ascencio, 2014)

GSM: Es el Sistema global de celulares móviles que en la actualidad son aun utilizados, el desarrollo de esta tecnología es europea de libre y fácil despliegue, GSM se destaca por ser el sistema de identificación basado en tarjetas SIM, fue desarrollado en el año 1982, pero no fue hasta 1992 que las primeras redes europeas de GSM-900 comenzaron su actividad, y en el mismo año fueron introducidos los primeros teléfonos celulares en el mercado con la tecnología SIM, las cuales contienen datos de identificación y suscripción (Becvar, 2015).

CDMA: Es una solución 3G la cual combina diferentes servicios de comunicación inalámbricas CDMA2000 es decir utiliza una cobertura de red con base de la frecuencia 450 MHz, el sistema permite servicios de teléfono fijo que usa tecnología última milla, pero entre sus desventajas se ve afectado al utilizar redes de cobre convencional (Mildred Cajas, 2015).

Se define como método de acceso donde la información se encuentra distribuida en el ancho de banda porque esta se encuentra codificada mediante la técnica de espectro ensanchado, que transmite varias señales de información a múltiples usuarios en un mismo canal en forma simultánea

CDMA emplea tecnología de espectros expandido que consiste en el ensanchamiento de la señal y describe un esquema de codificación, donde cada transmisión se asigna una identificación única la cual el receptor capta la señal las cuales son emitidas en cada uno de los transmisores

2.2.2.3 Segunda generación y media

Al ser GSM una tecnología con velocidades de 9.6 kbps distintas compañías tuvieron la necesidad de satisfacer en gran medida el mercado ofreciendo servicios multimedia, lo que llevo a mejorar la tecnología naciendo así los sistemas GPRS, la cual nació básicamente como una extensión de GSM, los sistemas GRPS trabajan en velocidades desde los 56Kbps hasta las 114Kbps (Vasquez, 2012).

- HSCSD mejora el mecanismo de transmisión de datos.
- GPRS transmisión por paquetes de datos, utilizados en WAP.
- EDGE es una evolución de la tecnología GPRS.

Todos estos sistemas dentro de la generación 2.5G introdujeron paquetes conmutados en los móviles y enlaces de Internet, transmiten a velocidades de 130 Kbit/s. Donde se introdujo sistemas multimedia (MMS) y móvil TV, estas modificaciones se volvieron a desarrollar y se concedieron capacidades 3G con una velocidad que puede llegar a los 384 Kbps, ya adecuada para muchas aplicaciones en la transferencia de datos.

2.2.2.4 Tercera generación

Está basada en estándares de la Unión Internacional de Telecomunicaciones (UIT) consolidado en la IMT-2000. UMTS (Universal Mobile Telecommunications System) constituye una de las piezas de esta familia de estándares IMT-2000. Entre los atributos de UMTS se puede recalcar la conectividad virtual a la red todo el tiempo (CNT, 2014).

Las diferentes formas de facturación, el ancho de banda asimétrico en enlace ascendente y descendente, configuración del servicio de calidad (QoS), integración de la tecnología y estándares de redes fijas y móviles, entorno de servicios personalizados (Ascencio, 2014).

2.2.2.5 Cuarta generación

La comunicación 4G se caracteriza por llevar consigo dos tecnologías complementarias, los sistemas llamados LTE Advanced que se adaptan a cualquier operadora móvil y las WirelessMAN-Advanced, las cuales contribuyen a las soluciones 4G (Vasquez, 2012).

La tecnología 4G está basada completamente en IP, siendo un sistema

de sistemas y una red, logrando después de la convergencia entre las redes alámbricas e inalámbricas, así como computadoras, dispositivos eléctricos y en otras tecnologías de la información, como con otras convergencias para abastecer velocidades de acceso entre 100 Mbps en movimiento a 1 Gbps en reposo (CNT, 2014).

Manteniendo el servicio de calidad (QoS) de alta seguridad que permitirá ofrecer servicios de cualquier índole en cualquier momento y en cualquier lugar con el mínimo precio posible. Actualmente en nuestro país ya existen redes 4G LTE implementadas por las operadoras de Servicio Móvil (CNT, 2014).

WirelessMAN-Advanced: La plataforma WiMAX unió la tecnología celular y banda ancha inalámbrica, es un enfoque dual que incremento la difusión de las plataformas móviles, que abarcan modelos de negocios. El protocolo IEEE 802.16 es una característica de esta tecnología, el alcance de acceso de banda ancha inalámbrica es de 30 millas para las estaciones fijas y entre 3 A 10 millas en estaciones móviles (Vasquez, 2012).

LTE Advanced: Son las siglas de Long Term Evolution, la cual es el sucesor de la tecnología 3G, se basa en WCDMA, HSDPA, HSUPA y HSPA, LTE permitirá las aplicaciones navegar más rápido y las descarga, en EE.UU la compañía Verizon Wireless la cual apoyara la tecnología LTE como también la 4G, de esta forma abandona la redes CDMA

2.2.3 Fundamentos de un sistema de telefonía celular

Para conocer el sistema de telefonía celular, se debe conocer los diferentes elementos del sistema celular, es así como se lo describe a continuación:

MS: La estación móvil (MS), es el elemento principal al ser un

dispositivo móvil que cumplirá la función de estación base celular, en el lugar donde se encuentren y que la señal móvil se gestione.

BS: El sistema de estación base es la que cumple con la comunicación, atiende a varias estaciones móviles gestionando la comunicación con las BSC.

BSC: Se encarga de realizar las funciones de gestión y el mantenimiento de los servicios de telefonía móvil, se dividen en tres métodos de acceso a las celdas, FMA (acceso múltiple por división de frecuencia), TDMA (Acceso múltiple por división de tiempo), CDMA (acceso múltiple por división de códigos) (Moya, 2017).

ELEMENTOS DE ESTACIÓN BASE DE CONTROL TDMA CDMA **FDMA** (Frequency Division Multiple Access) (Time Division (Code Division Multiple Access) Multiple Access) Code 2 3 1 2 3 f2 Spread code 1 Time Time Time

FIGURA N° 2 ELEMENTOS DE ESTACIÓN BASE DE CONTROL

Fuente: (Ascencio, 2014)

Elaborado por: Investigación directa

Esto sucede cuando el usuario se transporta entre celdas colindantes, la función de conmutación de una comunicación entre las estaciones base (handover), permite cambiar el canal ocupado por la estación base anterior (Ascencio, 2014).

Centro de conmutación (MSC): Es similar a una central de la red fija. Permiten la conexión entre otras redes públicas y privadas con la red de comunicaciones móviles, así como la conexión entre estaciones móviles localizadas en distintas áreas geográficas de la red móvil. Estos centros se comportan como los centros de conmutación de cualquier tipo de red (Ascencio, 2014).

BTS

BTS

BTS

AuC

HLR

HLR

VLR

FIGURA N° 3 ELEMENTOS DE UNA ESTACIÓN MÓVIL

Fuente: Arcotel

Elaborado por: Investigación Directa

2.2.4 Elementos de la telefonía móvil

2.2.4.1 Celda

Es un panel en forma de panal de abeja que está ubicada en una zona geográfica de cobertura por una estación base. Idealmente se representa por un hexágono que se une con otros para formar un patrón tipo panal de abeja. Que vendría hacer el patrón de cobertura total. La forma hexagonal fue elegida porque provee una transmisión efectiva al aproximarla en forma circular y permite acoplarse sin dejar espacios vacíos, lo cual hubiera sido posible al optar por un círculo. Una celda se define por su tamaño físico, pero lo más importante es por la cantidad de tráfico y población que existe en ella (Ascencio, 2014).

2.2.4.2 Reúso de frecuencia

El reúso de la frecuencia nos permite que un gran número de usuarios puedan intercambiar un número limitado de vías o canales los cuales se encuentran disponibles en la región. Para lograrlo se asigna dentro del mismo grupo de frecuencia, es decir más de una celda, siempre y cuando se cumpla la condición de la distancia entre cada celda, de no ser realizado la interferencia sería alta. En cada una de las estaciones base será asignado un grupo de canales que son diferentes a comparación de otras, a su vez son elegidas las antenas de estación, logrando un patrón de cobertura en la celda gracias a la ganancia y directividad (Ascencio, 2014).

2.2.4.3 División de celdas

Es utilizada cuando una celda llega a su capacidad máxima de tráfico, es decir, la demanda de canales alcanza un número límite de canales disponibles en dicha celda. Es realizada al formar varias celdas de lo que antes era una sola, para este propósito se realiza una división, se consideran los radios mínimos que puedan manejar los diferentes tamaños de las celdas, estos luego se usan para evitar problemas de sobrecarga en el sistema, debido a que al momento de realizar las trasferencias de llamada se ejecutan de manera frecuente (Ascencio, 2014).

2.2.4.4 Transferencia de llamadas (handover)

Este concepto se determina como el proceso donde se realiza el cambio en estaciones base todo esto con el fin de proporcionar mejores recursos en la comunicación hacia una estación móvil. El Handover se encuentra en función del nivel de potencia de la señal y del (Bit Error Rate), quien va a realizar la función de medir la cual es utilizada para saber la calidad de la llamada (CNT, 2014).

Se utiliza Handover porque lleva a cabo las medidas en la calidad de la llamada es decir cuando el móvil mide los niveles de recepción de las estaciones bases cercanas, después envía esas mediciones a su estación base vecinas y luego envía todos los datos a la estación de control. Luego

de esto se selecciona el canal de voz, pasamos a la verificación y posterior presencia del móvil a quien se ordena el cambio de estación base. Esto ocurre cuando la estación móvil se localiza en los límites de cobertura y se encuentran entre dos sectores de las celdas adyacentes (CNT, 2014).

2.2.5 Telefonía móvil en ecuador

Según CNT (2014) en el documento nos indica "El 3 de abril de 1992 el director del IETEL aprobó el reglamento para la concesión del servicio de telefonía celular. Un año más tarde, 19 de abril de 1993, la superintendencia de telecomunicaciones expidió el reglamento para el servicio de telefonía móvil celular; y el 14 de junio luego del concurso realizado para la consecuencia de las dos bandas de frecuencia en el rango de los 800 MHz, comenzaron las negociaciones con las empresas CONECEL S.A y OTECEL S.A."

En diciembre del 1993 (CONECEL), con la compañía Porta Celular, empieza a trabajar en la banda "A" con equipos Northern telecom, quienes abarcaban 5000 usuarios en Guayaquil Quito, Esmeraldas Cuenca y Manabí. El expresidente Sixto Duran Ballén firmo el contrato que daba derechos de cobertura a CONECEL S.A, y en un inicio se implementó el servicio de telefonía móvil celular con tecnología AMPS, es decir la muy conocida tecnología 1G (CNT, 2014).

Por otra parte la compañía OTECEL S:A con su marca de Celular Power, que posteriormente se llamaría Bellsouth, la cual inicio sus operaciones en enero de 1994 en la banda "B" inicialmente en Quito y posteriormente en Guayaquil, la compañía responsable de la instalación del sistema fue Ericsson para cubrir la parte de estructura de Celular Power

En un principio las compañías reflejaron costos de los teléfonos celulares, los cuales estuvieron entre 350 y 1500 dólares, así también los minutos que se encontraban en 50 dólares los 100 minutos, cobrándose

por igual el minuto a quien llamaban y a quien lo recibía. Para la activación era necesario cancelar además 100 dólares. Con el pasar del tiempo se evoluciono a la tecnología digital TDMA llamada también de segunda generación la cual fue remplazada más tarde por la tecnología 2.5G y las conocidas GSM/GPRS/EDGE y CDMA 2000, en las bandas 850 MHz y 1900 MHz, para 1994 CONECEL con su marca Porta Celular, subió a 33000 y en 1997 dicha cifra se elevó a 50000 líneas activas (CNT, 2014).

En marzo de 1997 Bellsouth Corporación, adquirió el 61% de las acciones de OTECEL Celular Power, la cual contaba con 37.500 usuarios. En el mismo año CONECEL Porta llego a contar con 75.000 líneas activas, consolidándose asi como líder en la telefonía móvil dentro de territorio ecuatoriano con el 65% de participación del mercado frente a las 43.000 líneas activas de OTECEL. Para el año 1998 en julio Bellsouth Corp adquirió una nueva participación de OTECEL y llega a controlar el 89.4% de la empresa telefónica (CNT, 2014).

En marzo del 2000 la empresa Telmex, adquirió el 60% de las acciones de CONECEL Porta, y en septiembre del mismo año paso a depender de la mexicana América Móvil filial de Telmex, para el año 2001 Porta logro cifras de usuarios enormes alrededor de los 405.000 usuarios y se consolido como empresa líder en el sector de las telecomunicaciones móviles. Desde el 2000 hasta el 2011 CONECEL Porta invirtió 6.000 millones de dólares en proyectos de telecomunicaciones (CNT, 2014).

TELECSA S.A empresa que se constituyó en el año 2003, donde los accionistas eran la empresa ANDINATEL S.A y PACIFICTEL S.A, en la fecha 30 de abril 2003 se otorga todos los derechos de la concesión en servicios móviles, con todos esto ingresa al mercado mediante la marca Alegro a finales del 2003, pero su competidor actual CONOCEL, logra ofrecer el servicio a 955 poblaciones, lo que represento el 89,9% en todo el territorio ecuatoriano (CNT, 2014).

Alrededor del mes de octubre en el año 2004, CONECEL Porta se registra con una cantidad promedio de 2´036.017 líneas activas de telefonía móvil con la actual segunda generación tecnológica GSM, por otra parte, OTECEL Bellsouth Corp. se llegó a contabilizar 1´027.069 líneas activas con la tecnología CDMA, mientras que TELECSA Alegro logro contabilizar 69.319 líneas activas (CNT, 2014).

El 14 de octubre de 2004 la multinacional española Telefónica Móviles adquirió el 100% de las acciones de OTECEL Bellsouth por un valor de 833 millones de dólares y la nueva marca empezó a difundirse a partir de abril del 2005. Las cabinas telefónicas celestres de Bellsouth empezaron a cambiarse por la de color verde de la empresa española, aunque en lo relativo a los sistemas, Telefónica Móviles continuo con la tecnología CDMA (CNT, 2014).

El 2008, se suscribió la operadora CONECEL S.A Porta, para la explotación del servicio Móvil, para el 20 de noviembre del mismo año los derechos de la operadora OTECEL S.A. son otorgados a Movistar. Ambas compañías se suscribieron al Estado ecuatoriano, con la representación de SENATEL, con una duración de 15 años, donde CONECEL Porta suscribió un convenio al estado ecuatoriano de entregar 480 millones de dólares por derechos de concesión, mientras su actual competencia OTECEL Movistar debía otorgar 206 millones. Entre los servicios que se promocionaban en ese entonces se refleja imágenes, sonidos, voz, datos o información.

En agosto del 2008 se distribuía de la siguiente forma CONECEL S.A Porta 68% OTECEL S.A Movistar 26% y TELECSA S.A Alegro 6% con el total de 10´481.167 en las tres operadoras. La tarifa en el servicio de voz durante el 2008 se ubicó en 22 centavos de dólar con la consideración de que las tarifas no incluían cargos. GSM fue la tecnología dominante en el país con su cadena de evolución GSM/GPRS/EDGE. La cual domino en las tres operadoras móviles en el país destinando la fase de expansión de UMTS/HSPA en diciembre de 2008 (CNT, 2014).

El 12 de octubre del 2009, con el mandato de la constituyente se implementó que los usuarios de servicios de telecomunicaciones móviles puedan realizar cambios en la red, servicio o empresa operada. El CONATEL aprobó el reglamento logrando hasta el mes de mayo un registro de 115.396 números por todos.

Se oficializo la fusión entre la empresa CNT EP con la móvil TELECSA S.A con el único fin de mejorar y optimizar los recursos, mejorar el posicionamiento de la marca en territorio ecuatoriano, optimizar las inversiones, y desarrollar una planificación e ingeniería integrada, lo cual es la razón de que las telecomunicaciones sean un negocio con economía de escala. Ese mismo año, las distribuciones entre las operadoras fueron las Porta (70.04%) Movistar (27.47%) CNT EP (2.49%) (CNT, 2014).

PORCENTAJES DE LAS OPERADORAS AÑO 2010

70%

PORTA MOVISTAR CNT

FIGURA N° 4

Fuente: (Telecomunicaciones, 2017) Elaborado por: Investigación directa

Continuamente en marzo del 2011 la marca Porta dio el paso a la marca Claro la misma América Móvil en 18 países en donde se encuentra, para el mes de mayo se registraron 15´531.226 líneas activas entre las tres operadoras del servicio de telefonía móvil lo que representaba 106 líneas activas por cada 100 habitantes en el territorio ecuatoriano (CNT, 2014).

En el año 2012 por el mes de junio la SUPERTEL reporto que existían 16'335.780 líneas activas, evidenciando 110 líneas activas por cada 100

habitantes. La participación de Claro es del 69.29%, Movistar el 28.71% y CNT Móvil el 2% con lo que en Ecuador se muestra que cuenta más líneas activas de telefonía móvil que habitantes (CNT, 2014).

El incremento de líneas activas logro aumentar las estaciones base para manejar de mejor forma tráfico de sus abonados. Es por esto que CONECEL Claro, incrementaron 1.037 radiobases de tecnologías UTMS 816 de tecnología GSM 1900 entre los años 2007 y 2012. La operadora OTECEL Movistar aumento en los mismos años 803 radiobases de tecnología UMTS, 541 radiobases GSM 1900, 543 radiobases GSM 850, por otra parte, la recién operadora CNT EP incremento 6 radiobases CDMA en ese mismo periodo (CNT, 2014).

Con la presente tecnología las operadoras no solo aumentaron las radiobases sino también los servicios que ofrecen entre estos servicios los que se beneficiaron serán los clientes prepago y pospago (CNT, 2014).

- Telefónica móvil y video llamada
- Mensajes multimedia MMS
- Mensajes de texto SMS Internacional
- Internet Móvil
- Descargar ringtones e imágenes
- Emoticones
- Paquetes de datos
- Paquetes de datos HSPA+
- Roamming
- Monitoreo en tiempo real mediante geolocalización
- Asistencia SOS

Desde el 2013 al presente Claro incremento 11'822.671 líneas activas (68%) Movistar 5'098.263 líneas (30%) y CNT Móvil 362.560 líneas (2%) con un total de 17'283.494 líneas activas de telefonía móvil. Sin embargo,

se anticipa que, a mediano plazo, ingresen nuevos operadores de tipo Móvil Virtual, como en países vecinos. El Operador Móvil Virtual (OMV) presta servicios de comunicaciones móviles a clientes finales, sin un espectro radioeléctrico propio (CNT, 2014).

2.2.6 Redes móviles

Las redes móviles se establecen como ondas radioeléctricas derivadas de las radiocomunicaciones, se presenta como estaciones fijas relacionadas con estaciones móviles, a su vez se clasifican en función de donde se desplazan los móviles, es aquí donde las comunicaciones con terminales móviles terrestres (Rabanos, 2015).

Los sistemas móviles terrestres permiten el intercambio de información entre móviles a bordo de vehículos o simplemente por personas, funcionan por ubicuidad, versatilidad y flexibilidad. La interfaz se lo puede relacionar por aire o radio la que se comunicará a una estación base cercana o repetidoras, esta última extenderá la cobertura (Rabanos, 2015).

2.2.6.1 Estructura y componentes

Entre las redes de teléfonos móviles se destacan los radioteléfonos, dispositivos móviles y radiotransmisores en vehículos, en la actualidad lo que hoy se conoce como Smartphone, parte de la composición se destaca los siguientes (Murillo, 2012):

- Sistemas de operación sea micrófono, altavoz, teclado, antena, batería, placa de circuitos.
- Radio modem, modulador/demodulador para el transporte de voz y señales eléctricas.
- Radio transmisor y receptor.

Dentro de los dispositivos móviles y redes móviles se conforman de microprocesadores los cuales controlan la señal de la estación base, además de coordinar diferentes funciones (Murillo, 2012).

2.2.6.2 Evolución de las redes móviles en ecuador

La telefonía celular se remota a inicios de la Segunda Guerra Mundial cuando era necesario la comunicación a distancia. La compañía Motorola creo un equipo que permitía el contacto con las tropas vía ondas de radio.

La evolución de las redes móviles se deriva del año 1992, donde se regenera el sector de las telecomunicaciones dejando ver la resolución especial de los servicios básicos a cargo de IETEL en la empresa EMETEL demostrando así un monopolio exclusivo en las redes móviles (Calahorrano, 2013).

Un año más tarda la superintendencia de telecomunicaciones revela un reglamento para el uso de las redes móviles, meses más tarde se añade a este caso las negociaciones con CONECEL S.A y OTECEL S.A donde dividen las bandas de frecuencia en el rango 800 MHz (TELECOMUNICACIONES, 2014).

Finales de 1993 se integra en las redes móviles la tecnología AMPS, más adelante se sustituye por 2G Y 2.5G con las tecnologías GSM/GPRS, una diferencia significativa con otros años es la utilización de bandas 850 MHz y 1900 MHz (CNT, 2014).

Las bases móviles fue otra implementación que llego para mejorar el servicio móvil, donde el sistema de antenas que trabajan en baja potencia manejaba las señales móviles y coordinaban el área geográfica de mayor calidad (CNT, 2014).

2.2.7 Funcionamiento de la red telefonía móvil

Para un mejor servicio de la telefonía móvil se optimiza en ciudades y comunidades, las zonas urbanas donde varían las células y celdas, a consecuencia del aumento de usuarios donde se realizan configuraciones en antenas de estaciones telefónicas centros de células, a diferencia de zonas rurales donde se añade otro tipo de antenas de radio base (Silva, 2017).

El funcionamiento dentro de las áreas urbanas, los elementos de la telefonía se distribuyen en células más pequeñas que en zonas rurales, todo por presentar edificaciones, zonas de construcción que afectan en gran medida la telefonía móvil, parte del funcionamiento de las redes móviles se puede considerar lo siguiente:

- La división de cobertura se lo realiza por células, un diseño parecido a un panal de abeja, donde la señal se cubrirá y alcanzará toda la demanda de la red móvil.
- Las estaciones de radio base se encargan de comunicar por medio de radio señales los dispositivos móviles, a su vez son las zonas conectoras de telefonía móvil y fija.
- En cuanto a dimensiones y alcances de las células, dependerá de factores que interpongan la señal, es así que la potencia, altura, posición e incluso el tipo de antena serán afectados.
- 4. La cobertura y funcionamiento serán dispuestos por la zona geográfica donde las células pueden ser divididas para cubrir de mejor forma la frecuencia en la urbanización.
- 5. El aumento de radio bases en los centros urbanos se realiza por el aumento continuo de teléfonos móviles que a su vez disminuyen la potencia de transmisión hacia dispositivos móviles.

Activamente las estaciones base con los teléfonos móviles participan en el funcionamiento de la red, como consecuencia generan emisiones electromagnéticas, más allá se debe entender los efectos que las emisiones pueden producir sobre el hombre, adicional conocer las medias que existen con respeto a este problema.

2.2.7.1 Mala señal telefónica

En la actualidad la tecnología móvil, ya sean estos dispositivos Smartphone o Tablet, es imposible lograr que se comparen o se relacionen mediante un factor muy importante el cual es su desempeño en diferentes ambientes. Hablando en funciones de la calidad de la señal telefónica, es decir la conexión, donde cada uno de estos dispositivos sufren variaciones, permitiéndonos identificar un dispositivo de calidad en la comunicación con otros usuarios y que se puede establecer en cualquier parte donde se encuentre ubicado, con lo que se llegaría a realizar conversaciones a larga distancia (Reyes, 2016).

El principal motivo que rodea la pésima señal móvil es la cobertura al no llegar, ni satisfacer las conexiones móviles, derivando así problemas con el tema de saturación, antenas en las áreas asignadas. La importancia de una señal eficiente no es un tema que las operadoras se encuentren solucionando, son quienes solo observan y no estarían invirtiendo en la infraestructura (Reyes, 2016).

Otros de los motivos es la dificultad de colocar antenas de transmisión y recepción móvil en puntos de conflicto, difícil acceso. Las normas que impiden la colocación de antenas y estaciones base como son parques y áreas protegidas, dificultan que las operadoras cubran áreas donde la señal casi es nula, entre las razones se encuentran dos principales, la salud de la población y el ornato público (Reyes, 2016).

Para un correcto uso de la cobertura móvil se llegó a ubicar puntos estratégicos donde se va a tener que evaluar las señales móviles, dicha señal se origina de las operadoras locales, que en su gran mayoría deja poco que desear, debido a las falencias que estas sostienen en determinamos puntos del sector. Sea por una señal débil, mala cobertura o cortes intermitentes, los usuarios tendrán siempre su malestar e inconvenientes para establecer comunicación todo esto por la ausencia de un buen servicio en telefonía los cuales ellos considerarían satisfactorio, se plantean interrogantes con el fin de identificar los causantes de la insuficiencia en las señales sobre la telefonía móvil (Reyes, 2016).

La Organización Mundial de la Salud (OMS) ha manifestado que no existen pruebas científicas que indiquen que las antenas causen efectos degenerativos en la salud de las personas (lo cual incluso ha sido recogido por el MTC) y sobre el segundo, el tema va de la mano con la ubicación y estructura en las bases con antenas de transmisión, es decir las edificaciones elementales de fibra o metal (Melly, 2015).

2.2.7.2 Baja cobertura móvil

La gran cantidad de los dispositivos celulares están fabricados de diferentes maneras, dependiendo de las dimensiones, tamaño o modelo en cada uno de ellos tienen sus circuitos integrados distintos. Algunos de los cuales son muy buenos y están hechos con capacidades de lograr usar señales con intensidad baja, pero hay otros que no lo pueden hacer y por esa razón son más vulnerables a la pérdida o degradación de la señal telefónica (Reyes, 2016).

Entre los factores que influyen en la pérdida o degradación de la señal telefónica, ocasionando malestar en muchos usuarios de proveedores de telefonía móvil. Donde existen factores que posibilitan en la afectación a la

señal telefónica móvil, los cuales no permiten que los dispositivos móviles puedan conectarse y que los usuarios no se comuniquen (Reyes, 2016).

2.2.7.3 Redes y medio ambiente

La creación de diferentes tecnologías sean estos nuevas o aplicaciones para las áreas de telecomunicaciones, se refleja inconvenientes en el aspecto ambiental, independientemente de los beneficios que se obtienen en las redes móviles se debe afrontar a la sociedad los efectos que producen los problemas ambientales, donde el medio puede dificultar la mala señal móvil, la necesidad de colocar distribuciones de radio base, redes, tendidos, canalización, centros emisores, hagan posible la recepción de la señal (Ramirez, 2017).

Parte de los convenios de construcción en lugares o puntos clave de cobertura, se debe fomentar ordenanzas, normativas, donde se impone la evaluación del impacto ambiental en nuevas instalaciones de radio base donde se comprobará si existe un leve o total impacto que pueda dificultar la instalación (Ramirez, 2017).

La necesidad de estudiar el impacto ambiental que puede producir inconvenientes en la comunicación del radio base con los móviles, según los estudios de EIA, organización del impacto ambiental, describe principios básicos de combatir efectos, objetivos que debe cubrir, estos son (Ramirez, 2017):

- Determinar los posibles efectos y alteraciones sobre un Proyecto.
- Sobre la salud humana
- Sobre el entorno y la calidad de la vida
- Sobre las demás especies y ecosistemas
- Sobre los recursos naturales
 La EIA realiza una valoración en función de la magnitud y tiempo, la

evaluación se genera en tres situaciones que se exige para formar un proyecto en un entorno ambiental, la cuales se describen a continuación (Ramirez, 2017):

- 1. Estado 0: Condiciones medioambientales actuales: físicas, biológicas, sociales, y económicas.
- 2. Estado futuro sin proyecto: Se extrapolan las condiciones actuales en el tiempo.
- 3. Estado futuro con proyectos:Estado 0 más impacto ambiental.

2.2.8 Calidad de servicios

Un servicio de telecomunicaciones es de calidad cuando satisface las necesidades explicitas e implícitas del usuario del servicio y cumple con los parámetros establecidos en los lineamientos.

La calidad de servicio es un tema que dentro de la región latinoamericana se está manejando de forma integral, además de crear evaluaciones que permitan mejorar entre los ámbitos que se destacan encontramos (GSMA, 2015):

Existen algunos parámetros que determinan la calidad del servicio que en si se refieren al comportamiento de la red una relación entre el tiempo de respuesta de las aplicaciones utilizadas por el cliente.

- Canales de atención al cliente.
- Sistemas de facturación
- Sistemas de tecnologías como voz, datos y SMS

Los cuales permiten satisfacer al cliente, los cuales son cada vez más exigentes debido a la alta demanda de móviles que se encuentran activos,

además la santificación de controlar la telefonía móvil hace que las operadoras se esfuerzan más para mejorar la calidad en los servicios que proveen a los usuarios (GSMA, 2015).

1800 1200 **TRÁFICO** MÓVIL, 1000 **AMÉRICA** 800 **LATINA** 600 (MENSUAL **PETA BYTES)** 400 200 datos 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2010 Fuente: (GSMA, 2015)

FIGURA N° 5 TRÁFICO MÓVIL

Fuente: (GSMA, 2015)
Elaborado por: Ericsson Mobility Report 2014

2.2.8.1 Factores que afectan la calidad de servicio

Las inversiones más fuertes que las operadoras se basan son la infraestructura, radio bases que ayudan a mejorar la cobertura y la capacidad de prestación, pero de solo eso no depende la calidad, sino implica otros factores para desempeño de las redes móviles, estos son (GSMA, 2015):

- Numero de Usuario en cada celda
- Desplazamiento de dispositivos móviles
- En cada celda los usuarios varían dependiendo de la hora
- El consumo de cada celda es variante

- Las condiciones climáticas
- Obstáculos entre los terminales y antenas móviles
- Distancias entre terminal y antena móvil
- El uso de bloqueadores móviles y amplificadores

2.2.8.2 Importancia de medir la calidad de servicio

Las mediciones de la calidad son realizadas por agentes que regulan y definen parámetros que mejoraran la calidad de servicio, estos son muy importantes para la competencia entre operadoras. La medición se da de forma efectiva la cual contiene aspectos clave de calidad (GSMA, 2015):

- Considerar una combinación entre mediciones estadísticas las cuales generan un planteamiento de prueba a terceros esto es realizado por las operadoras.
- Realizar pruebas o métodos de automatización que permiten acciones en la respuesta de latencia y comportamiento de la señal mediante absorción, dispersión, difracción, refracción.
- 3. Realizar pruebas o evaluaciones extremo a extremo entre terminales y antenas móviles.
- 4. Aplicar muestras en las llamadas y transferencia de sms en las áreas donde encontramos obstáculos (edificaciones, puentes, arboles etc.).
- 5. Contemplar periodos de prueba de al menos 24 horas para comprobar el tipo de señal y su calidad.

2.2.8.3 Calidad de servicio en zonas urbanas

Las poblaciones donde se encuentra la mayor cantidad de incidencias que requieren mayores recursos en las redes móviles. Las instalaciones en

zonas urbanas son más dificultosas instalar radio base, antenas o algún otro componente de la infraestructura de red (GSMA, 2015).

Los elementos claves para la instalación y mejora de las redes son las siguientes:

- Remoción de barreras municipales: Los permisos para la instalación de infraestructura móvil puede ser dificultoso puesto que se debe valorar las técnicas y estándares internacionales para evitar inconvenientes y demoras.
- 2. Uso de edificios y espacios públicos: Las instituciones reguladoras podrán otorgar los permisos para las estaciones de radio base y antenas en edificios, áreas verdes, parques u otros espacios públicos donde va a permitir las instalaciones.
- Compartición de infraestructura: Los acuerdos permiten que las operadoras móviles compartan edificios o incluso antenas para evitar duplicaciones y recursos innecesarios.
- 4. La calidad del servicio en las telecomunicaciones depende mucho de los objetivos que se colocaron para generar un servicio de alta eficiencia, en Ecuador en los últimos años el Gobierno por medio del Consejo Nacional de Telecomunicaciones (CONATEL) se analizó la calidad de servicios en las operadoras de telefonía móvil, desde el 1 de julio del año 2017 rigen parámetros que ponen en protección los derechos de usuarios móviles en Ecuador (Telecomunicaciones, 2017).

2.2.8.4 Historia de la calidad de servicio en ecuador

En el país la calidad de servicio surge por el aumento continuo de líneas activas, solo hasta el 2015 se registró un total de 18.909.511, por tal

razón el CONATEL modifico dentro de la calidad de servicio móvil parámetros que priorizan la comunicación en el país a usuarios ecuatorianos (Telecomunicaciones, 2017).

Dentro de los parámetros que deben seguir las operadoras móviles para brindar sus servicios a los usuarios de líneas activas se encuentran los siguientes (Telecomunicaciones, 2017):

- Tiempo promedio de espera en una llamada.
- Porcentaje de llamadas calidad.
- Calidad en la conversación.
- Tiempo promedio de entrega de mensajes.
- Porcentaje de la potencia en zonas urbanas.
- Porcentaje de potencia en zonas de medio ambiente.

El Ministerio de Telecomunicaciones afirma que CONATEL trata de cumplir con las diferentes regulaciones que desde enero del 2014 se afianzaron en mejorar la calidad de servicio, regulando a las operadoras móviles. Estos nuevos parámetros para medir, modificar valores en objetivos que involucra la calidad de servicio (Telecomunicaciones, 2017).

2.2.8.5 Indicadores de calidad de servicio en ecuador

La SUPERTEL elaboro indicadores de calidad, mediante porcentaje de llamadas, tiempo promedio de llamadas, porcentaje de llamadas caídas, todo esto repartido en diferentes zonas para evaluar y comparar las deficiencias y sean las operadoras móviles los que resuelvan de manera independiente los objetivos de cobertura, a continuación, se detallan las zonas (Telecomunicaciones, 2017):

- Zona 1: Provincias De Esmeraldas Y Santo Domingo De Los Tsáchilas.
- Zona 2: Provincias De Carchi, Imbabura Y Pichincha Excepto Quito.

- Zona 3: Cantón Quito.
- Zona 4: Provincias De Sucumbíos Y Orellana.
- Zona 5: Provincias De Cotopaxi, Bolívar, Tungurahua Y Chimborazo.
- Zona 6: Provincias De Santa Elena, Los Ríos, El Oro Y Guayas.
- Zona 7: Cantón Guayaquil.
- Zona 8: Provincias De Cañar, Loja Y Azuay.
- Zona 9: Provincias De Morona Santiago Y Zamora Chinchipe.
- Zona 10: Provincia De Galápagos.
- Zona 11: Provincia De Manabí.
- Zona 12: Provincias De Napo Y Pastaza.

2.2.9 Antenas de telefonía móvil

Las telecomunicaciones en especiales las antenas móviles son dispositivos de comunicación electrónica, las cuales permiten transmitir a los terminales y conectarse con los móviles es decir que permitan completar la interconexión entre la emisión y recepción en la señal que se refleja en forma de ondas electromagnéticas provenientes de las guías de ondas, llevando la información que se desee transmitir (Herrarte, 2013).

Por tal razón en la actualidad se presentan diferentes antenas que posibilitan la comunicación para fines específicos con respecto a aplicación, utilización y distancia lo cual se requiere para enviar y recibir la información según la tecnología empleada. En el caso de las antenas se utilizan sistema de radiofrecuencia lo cuales no son idénticos a un sistema WIFI, pero que en ambos casos la función de antenas sea la misma (Herrarte, 2013).

El estudio de antenas permite diseñar el tipo de antena, el sistema que se requiera según la tecnología, recepción de las señales donde se estudia la compatibilidad electromagnética, identificación y reducción de la interferencia que estas puedan entregar y recibir (Herrarte, 2013).

2.2.9.1 Arquitectura en antenas móviles

La arquitectura de una antena móviles está compuesta con un material conductor donde se introduce una señal la cual será radiada, particularmente las antenas deben acentuar un solo aspecto de dirección la razón es porque solo se necesita direccionar a un solo lugar eliminando el resto (Herrarte, 2013).

Se puede mencionar que las antenas son catalizadores de medios de comunicaciones, trabajando con la emisión y recepción la cual convierte energía electromagnética en una potencia electromagnética radiada, se diferencia una antena de otra dependiendo el tipo de potencia alcanzada (Herrarte, 2013).

Las principales funciones que se genera en las antenas podemos mencionar las siguientes (Herrarte, 2013):

- Recepción de ondas de radio en una frecuencia determinada.
- Receptar la polarización de las estaciones dentro de una región.
- Captura de señales móviles indeseables.
- La transmisión de menor potencia fuera de región.
- Transmisión de ondas de radio pertenecientes a la misma banda.

2.2.10 Efecto doppler

El efecto Doppler son variaciones de la señal en el momento de transmitir básicamente consiste en la variación que realiza con respecto a longitud de onda de algún tipo de onda emitida por un objeto el cual se encuentra en movimiento (Reyes, 2016).

Es un movimiento relativo descrito por Christian Doppler, quien descubrió una variación en la frecuencia de sonido evidenciando un cambio de frecuencia y velocidades en el caso del aire, la fórmula para calcular el efecto Doppler va desde la frecuencia, periodo, ondas emitidas, con todo esto determinamos el efecto Doppler (Londoño, 2016).

FIGURA N° 6 FORMULA EFECTO DOPPLER

$$f_{ob} = \left(1 + \frac{v_f}{c_s}\right) f_o$$

Fuente: (Reyes, 2016)

Elaborado por: Investigación directa

2.2.10.1 Función del efecto doppler

La función del fenómeno físico conocido como efecto Doppler que realiza una transformación de la frecuencia de una onda, la cual se expone a un sonido mientras que ese sonido se propaga o se mueve. Además de relacionarlo con el sonido también el efecto Doppler se lo puede encontrar en otras ondas, la diferencia está en que las personas podemos observarlo solo en ondas de sonido (Reyes, 2016).

2.3 Marco conceptual

La relación de la señal móvil con algunas características, elementos y funciones complementan la relación de la telefonía móvil como parámetros de un estudio de relevancia para mostrar la calidad de servicios en las operadoras móviles dentro del cantón La Troncal, iniciando las diferencias que existen y como las operadoras invierten en mejoras tecnológicas.

2.3.1 Tipos de antenas móviles

Una antena móvil trabaja en función a la transmisión radiar y la

recepción de ondas electromagnéticas, existen diferentes tipos de antenas y cada uno con características diferentes en potencia, recepción. Además, el tipo de antena que se utiliza puede componerse como omnidireccional, bidireccional o unidireccional (Herrarte, 2013).

Omnidireccionales: Esta funciona con un rango de cobertura de 360°, cubren grandes distancias y son ideales para la telefonía móvil y de radio transmisión.

Unidireccional: Ideales para conectarse punto a punto, son aplicadas en edificios o clientes que desean utilizar una transmisión directa.

2.3.1.1 Antena dipolo

Esta antena se compone por un patrón de radiación, al principio el patrón muestra que este tipo de antena es mejor en transmisiones al igual que recibirlas, además de caracterizarse en poseer sensibilidad a cualquier movimiento que este apartado de la posición, se puede mover hasta 45 grados de la verticalidad (Herrarte, 2013).

2.3.1.2 Antena dipolo multi-elemento

Las antenas dipolo de multi-elemento cuenta con varias características, como ejemplo un patrón de elevación además de azimut elementos similares a de la antena dipolo simple. La diferencia entre esta antena y su antecesora es la direccionalidad, incremento de la ganancia, todo esto debido al incremento de elementos para su construcción (Herrarte, 2013).

2.3.1.3 Antenas yagui

Esta antena se compone de elementos ya sean en paralelo, coplanarios, directivos, de acción y reflectivos. De forma general trabaja

independiente cada arreglo esto hace que solo uno pueda transmitir, en cuanto a los elementos directores se van a localizar en el campo eléctrico, la acción de los activos radia el campo mientras los reflectivos dirigen.

2.3.1.4 Antenas panel plano

Como su nombre lo indica son Atenas planas de forma cuadrada llamadas también antenas patch o parche, este tipo de antena es direccional único, lo que la hace potencialmente efectiva para una sola dirección, en cuanto a su composición existen varios modelos de diferentes ganancias (Herrarte, 2013).

2.3.1.5 Antenas parabólicas

Las antenas parabólicas son idénticas a las antenas múltiples al usar características que ayudaran a maximizar la ganancia y el direccionamiento, como característica principal de estas antenas es que utilizan un plato reflector para el enfoque de ondas además de capturar energía radiada.

Concentra la potencia que llega a la antena para así ser enfocada en una dirección, para ser utilizada en satélite, los servicios de televisión, telefonía o redes privadas, al poseer una ganancia estimada entre 12-25 dBi así como directividad alta (Herrarte, 2013).

2.3.1.6 Antena de ranura

Las antenas de ranura cuentan con amplias cualidades en radiaciones similares a antenas dipolos, en cuanto a su construcción es evidente su nombre al ser solo una ranura estresa en un plano, entre las desventajas de esta antena las encontramos en la ganancia, además de no contar con alta direccionalidad (Herrarte, 2013).

2.3.1.7 Antena microstrip

Las altas funcionalidades de esta antena permiten emular otras

antenas, todo esto debido a que su diseño esta realizado como una pista en circuito, las dimensiones pueden ser desde livianas de pequeño tamaño hasta grandes, en cuanto a sus desventajas podemos relucir las limitaciones de frecuencia de operación (Herrarte, 2013).

2.3.2 Interferencia electromagnética

Es el fenómeno causado por un campo eléctrico o magnético, ocasionado por una señal radiada en el espacio, las cuales ocasionarían problemas en el funcionamiento algunas de los servicios que pueden ser afectados tenemos la navegación por radio o servicios de seguridad (Herrarte, 2013).

En cuanto a los servicios de radiocomunicaciones estos incluyen emisoras comerciales de AM/FM, servicios de telefonía móvil, radar, control de tráfico aéreo etc (Herrarte, 2013).

2.3.2.1 Interferencia electromagnética intencionada

Son las interferencias que se producen por una señal originada intencionalmente para causar un mal funcionamiento en la señal, estas afectaciones van dirigida al sistema electrónica provocando mala comunicación, envió de información, perdidas, seguridad, para todo esto las operadoras deben estar consciente de las amenazas que pueden ocasionar y tomar medidas para mejorar estas falencias (Herrarte, 2013).

2.3.2.2 Interferencia electromagnética no intencionada

Se define como señales de interferencia que no son causadas para irrumpir pero que afectan al sistema electrónico, estas señales como las telecomunicaciones pueden interferir involuntariamente, además existen interferencias radiadas las cuales interfieren mediante radiación electromagnética como ejemplo principal las redes eléctricas.

2.3.3 Emisiones de banda

Las emisiones de banda llamadas también banda estresa es la que encontramos como una fracción pequeña del espectro radioeléctrico, generalmente estos valores son expresados en (v/m). Estas señales se las identifica como ondas sinusoidales y se las reconoce al ser continua o de intermitencia (Herrarte, 2013).

2.4 Marco legal

En los últimos años se ha realizado cambios en las leyes en cuanto a las telecomunicaciones, cambios que las operadoras móviles debieron realizar, entre las organizaciones públicas encargadas de gestionar las telecomunicaciones en especial el telefónico móvil en Ecuador es: Ministerio de telecomunicaciones y sociedad de la información, la Agencia de regulación y control de las telecomunicaciones (ARCOTEL).

Para la realización de este proyecto se llevó un análisis de los principales documentos legales que sostienen el uso de las telecomunicaciones y en especial la telefonía móvil, por esta razón se realizara un análisis de la Constitución de la República del Ecuador, Plan Nacional del Buen Vivir, Ley de Medio Ambiente, Ley Orgánica de Telecomunicaciones.

2.4.1 Constitución de la república del ecuador

La Constitución de Ecuador en los cambios realizados en el año sostiene que, basándose en las similitudes del Plan Buen Vivir, donde se afirma que las telecomunicaciones y en el espectro radioeléctrico en los artículos 261 se afirma que las competencias del espectro serán única y exclusivamente del Estado Ecuatoriano. En el artículo 313 nos indica que el Estado tiene el derecho de administrar además de regular los sectores

estratégicos de conformidad con lo establecido en principios de sostenibilidad ambiental, prevención, para la telecomunicación donde incluye el espectro radioeléctrico.

2.4.2 Plan nacional del buen vivir

El PNBV indica que se debe realizar la prestación de servicios de la telecomunicaciones y tecnologías de información, además de la radiodifusión, espectro radioeléctrico, acceso universal toda la información se refuerza en el objetivo 10 en las secciones 10.9 a; b, en el objetivo 11 la sección 11.3 c (Telecomunicaciones, 2017).

2.4.2.1 Ley de medio ambiente

Según la Ley de Gestión Ambiental en la Constitución de la República del Ecuador donde se establece en el capítulo II de Biodiversidad y Recursos Naturales, el artículo 395.- Se reconoce los principios ambientales como garantizar el desarrollo ambiental equilibrado y de diversidad cultural donde la capacidad de regeneración natural de los ecosistemas, donde se asegura las necesidades de generación futuras (Ambiental, 2016).

2.4.3 Ley orgánica de telecomunicaciones

Es la encargada del régimen de telecomunicaciones y espectro radioeléctrico todos conformados como sectores estratégicos, la Ley Orgánica de Telecomunicaciones regula, administra y gestión en toda la región geográfica del país cumpliendo la normativa legal del Ecuador. Las actividades que las operadoras móviles realizan en Ecuador están gestionadas por el Ministerio de Telecomunicaciones quienes inspeccionan y dan permisos para instalación, donde se establece el uso del espectro radioeléctrico (Telecomunicaciones, 2017)

CAPÍTULO III METODOLOGÍA

3.1 Procedimiento metodológico

En la realización de este proyecto se utilizarán metodologías diferentes para realizar una investigación de campo para gestionar el estudio en el sector la Troncal de la provincia del Cañar, donde se debe encontrar posibles riesgos de afectación en la señal móvil en las principales operadoras del país.

Para tal motivo se utiliza un método cuali-cuantitativo del que se recogerá información con técnicas de encuestas, para la población del sector la Troncal, para ser analizado con el fin de demostrar que existe un problema y las posibles soluciones que se recomendará.

Además, se utilizará herramientas de análisis de investigación de campo, investigación exploratoria, investigación descriptiva observación directa, técnicas de encuestas para el problema de degradación en la telefonía móvil en el sector, con esto se ayudará a los usuarios de las operadoras para sentirse conformes con la mejor señal de la telefonía móvil.

3.1.1 Investigación de campo

Para iniciar con este estudio se recopilará información de campo, muestras de la población del uso de la telefonía móvil, calidad de la señal y servicio, en el sector de la Troncal, aparte con las encuestas que faciliten una investigación de campo optima donde los usuarios podrán mostrar sus molestias en las señales móvil.

La calidad será un punto importante que, en la investigación de los servicios y cobertura de señal de diferentes zonas en la Troncal, repartidas en zonas como norte, sur, centro, esta investigación reflejara resultados reales donde se mostrara donde existen mayores problemas de cobertura y analizaremos las afectaciones que interfieren en la calidad.

Parque de atracciones Parque de atracciones

FIGURA N° 7
SECTOR DEL CANTÓN LA TRONCAL

Fuente: (Maps, 2018)

Elaborado por: Investigación directa

3.1.2 Investigación exploratoria

En la investigación exploratoria se recopilan datos para encontrar los factores que afectan la señal móvil en las diferentes zonas de la Troncal, demostrando las afectaciones de pérdida o degradación en los móviles, la cobertura y calidad en el servicio son parte de esta información que luego de ser valorada y analizada podremos tener clara la situación y se procederá con las posibles ideas para solucionar las deficiencias, problema que afectan a el Cantón la Troncal.

3.1.3 Investigación descriptiva

Para realizar el proceso de medir la calidad en la señal móvil se utiliza

la investigación descriptiva, en diferentes zonas del sector la Troncal, para cubrir de mejor forma la investigación descriptiva, además se analiza mediante una aplicación móvil el comportamiento de la señal y las afectaciones que poseen, con el fin de buscar una solución. (Herrarte, 2013).

3.2 Técnicas para el análisis de los datos

3.2.1 Análisis cuantitativo

Para el análisis cuantitativo la información obtenida mediante la investigación se la procesara en valores, formulas, que ayudaran a comprender con mayor precisión los problemas de perdida de señal y baja cobertura móvil que enfrentan la población del sector la Troncal.

3.2.2 Análisis cualitativo

Este proceso es el análisis de la información obtenida, los datos serán interpretados para luego ser procesados y con esto describir con detalle los problemas que existen, con lo que serán entendidos de mejor manera. (Herrarte, 2013).

3.3 Población y muestra

3.3.1 Población

Nuestro universo de estudio son los habitantes del Cantón La troncal, Provincia del Cañar.

Para este estudio se consideró como población objetivo a las personas del Cantón La Troncal, que poseen líneas activas con una operadora móvil.

3.3.2 Muestra

La muestra de estudio proviene de un muestreo probabilístico aleatorio sistemático.

Es importante indicar que para determinar el tamaño de la población se consideró los datos estadísticos del Instituto Nacional de Estadísticas y Censos (INEC, 2010), donde indica que la población del Cantón La Troncal es de aproximadamente 54389 individuos, sin embargo esa no es nuestra población de estudio, ya que nosotros estamos analizando los habitantes del cantón que cuentan con telefonía móvil, razón por la que gracias a la información del Plan de Desarrollo y Ordenamiento Territorial Cantón la Troncal, se pudo conocer que el 73% de la población cuenta con el servicio de telefonía por lo que el tamaño de la población corresponde a 39704 individuos.

Para el establecimiento de tamaño de muestra se utilizó la siguiente formula:

$$n = \frac{Npq}{\frac{(N-1)E^2}{Z^2} + pq}$$

- n = tamaño de la muestra
- PQ = constante de la varianza poblacional (0.25)
- N = tamaño de la población
- E = error admisible 5% = 0.05
- K = coeficiente de corrección del error (2)

$$n = \frac{39704 (0,5 \times 0,5)}{(39704 - 1) 0,05^{2} + (0,5 \times 0,5) (2)^{2}}$$
$$n = \frac{9926}{24,82 + 0,25}$$

$$n = \frac{9926}{25,07} = 395,93 \cong 396$$
 ; $n = 395,93 \cong 396$

Por lo tanto, el tamaño de la muestra a analizar que son de 396 individuos.

3.4 Herramientas de recolección de la información

En la recolección de datos se utilizarán técnicas que nos ayudaran a la investigación, las técnicas como encuestas que son dirigidas a los pobladores del sector la Troncal, para conocer de primera mano las deficiencias que existen en la señal móvil de las tres operadoras que trabajan en Ecuador, aparte se trabajara con una aplicación Android llamada Opensignal, la que ayudara a este proyecto.

Para un mejor entendimiento se describirá cada una de las herramientas que servirán para la investigación, para así ayudarnos a conocer el problema: (Arq. Henry Lazo Alvarado, Arq. Wilson Barriga V., Econ. María Lazo A., Arq. Yolanda Chumbi N., 2015)

3.4.1 Encuestas

Se utilizarán encuestas para realizar una investigación de campo, la que nos ayudará a obtener datos precisos del problema que afecta la comunicación móvil y que ocasiona malestar en la población del sector la Troncal, esta encuesta esta dirigirá a esos usuarios que poseen dispositivos móviles de diferentes operadoras.

3.4.2 Señal móvil OpenSignal

Se utilizará la aplicación Opensignal que nos permite el acceso a mapas de cobertura a nivel mundial, por lo que es la herramienta más indicada para evaluar la cobertura de señal wifi y de redes móviles (2G, 3G y 4G), además nos otorga datos casi precisos de la medida de velocidades de conexión de datos.

3.4.3 Datos estadísticos

Se utilizará datos estadísticos de la Agencia de Regularización y control de telecomunicaciones de mayo del 2018, para determinar información la cantidad de líneas activas en La troncal, para con ello realizar un análisis más detallado.

3.5 Procesamiento de la información

Una vez obtenidos los datos, se comienza a procesar, analizar e interpretar los mismos, se cuadrará resultados para la elaboración de cuadros y gráficos estadísticos que permitan una alta comprensión y sustentación.

Microsoft Word: Este programa servirá para redactar documentos de presentación de informe final.

Excel: El programa permitirá registrar datos y elaborar cuadros y gráficos estadísticos.

3.6 Técnicas de procesamiento y análisis de datos

Para las técnicas de procesamiento y análisis de datos es muy importante la planificación y selección de la información derivada del procesamiento de datos.

En el procesamiento de datos se realiza la revisión crítica de la información, para identificar y eliminar datos contradictorios e incompletos.

Para la interpretación de datos se realiza una revisión minuciosa de los resultados estadísticos, para de esta forma descartar las tendencias de acuerdo con las hipótesis.

3.7 Análisis e interpretación de resultados

Una vez aplicadas las técnicas de recolección de datos se procedió a tabular los resultados obtenidos originando de esta manera una secuencia de resultados. Se realizó análisis de datos de cada operadora móvil.

La interpretación se la efectuó luego del respectivo análisis de resultados obtenidos.

A continuación, se describen los resultados de los datos estadísticos, aplicación Opensignal y encuestas que es lo fundamental para el desarrollo de la siguiente investigación.

3.8 Participación de mercado

En el mes de mayo del 2018 se tiene un 89,54% líneas activas a nivel nacional de todo el mercado del SMA, de donde se tiene que CONECEL cuenta con un 53,17%, seguido por OTECEL con el 30,32% y CNT EP con el 16,51%, lo que constituye un significativo incremento en la participación del mercado de SMA en comparación con períodos anteriores.

TABLA N° 1
PARTICIPACIÓN DE MERCADO POR OPERADORA

	Mayo 2018						
	Telefonía	Telefonía e internet	Internet	Datos	Total	Porcentaje Participació n de mercado	
Conec el S.A.	3.034.821	4.580.487	312.726	108.816	8.036.850	53,17%	
Otecel S.A.	1.491.349	2.850.874	44.967	194.860	4.582.050	30,32%	
Cnt EP	1.258.473	1.126.989	22.482	87.653	2.495.597	16,51%	

Fuente: (ARCOTEL, 2018)

Elaborado por: Investigación directa

TABLA N° 2 LÍNEAS ACTIVAS PARA EL PERIODO DE MAYO 2018

MAYO 2018	
Total nacional de líneas activas	15.114.497
Población nacional	16.879.657
Densidad nacional de líneas activas	90%

Fuente: (ARCOTEL, 2018)

Elaborado por: Investigación directa

Una vez analizado la participación de mercado a nivel nacional, se procede al análisis puntual en el Cantón la Troncal en donde se tiene que 39703 individuos cuentan con líneas móviles, lo que significa que existe una participación de mercado del 2,63%.

3.9 Identificación de la calidad del servicio

3.9.1 Medidor de calidad móvil claro

Mediante el uso de la aplicación de Opensignal se determinó la siguiente información:

TABLA N° 3
ESTADÍSTICAS DE SEÑAL POR TECNOLOGÍA DE CONECEL S.A

Lugar/ Tecnología	2G	3G	4G
Norte	0,00%	72,80%	27%
Sur	0,00%	85,10%	15%
Este	0,00%	68,60%	31%
Oeste	0,00%	68,60%	31%
Centro	0,00%	65,60%	34%

Fuente: Opensignal

Elaborado por: Narváez Ortiz Edwin

FIGURA N° 8

CONTROL ESTADÍSTICO DE LA SEÑAL SEGÚN TECNOLOGÍA PARA

CONECEL S.A.

Fuente: Encuestas a los usuarios Elaborado por: Narváez Ortiz Edwin

Según información obtenida mediante la aplicación Opensignal se tiene que en la operadora Conecel (CLARO), se encuentra ampliando servicios móviles con tecnología 4G, mientras que la tecnología 3G está decayendo, sin embargo, en la zona sur del Cantón, es mayoritaria la tecnología 3G con un 85,10% esto puede ser resultado de la ubicación geográfica y porque es un área rural.

TABLA N°4
VELOCIDAD DE SEÑAL CONECEL S.A

	Latencia (ms)	Bajada	Subida
Norte	27	47,80 Mbps	15,86Mbps
Sur	390	214 Kbps	0 Kbps
Este	33	40,3 Mbps	91 Kbps
Oeste	98	1,08 Mbps	0 Kbps
Centro	28	28,15 Mbps	13,78 Mbps

Fuente: Opensignal

Elaborado por: Narváez Ortiz Edwin

De acuerdo al registro de datos de velocidad de la cobertura Conecel se encuentra que en la zona sur y Oeste del Cantón existe un retardo dentro de la red lo que influye de manera directa en la bajada y subida de velocidad, ya que hay demora en la transmision y propagacion de paquetes dentro de la red. Sin embargo se puede evidencia que en el Norte no existe altos niveles de latencia.

TABLA N°5
CONTROL DE CAÍDA DE SEÑAL CONECEL S.A

Lugar	Caída de Señal (dBm)
Norte	-90
Sur	-104
Este	-81
Oeste	-87
Centro	-102

Fuente: Encuesta a los usuarios Elaborado por: Narváez Ortiz Edwin

FIGURA N°9
CONTROL DE CAÍDA DE SEÑAL CONECEL S.A

Fuente: Encuesta a los usuarios Elaborado por: Narváez Ortiz Edwin

Es evidente que la caída de señal dentro del Cantón la troncal para la operadora Conecel, se da con mayor frecuencia en la parte Sur y Centro. En el Sur la caída de señal se debe a la ubicación geográfica y en el centro se debe al elevado nivel demográfico.

.

3.9.2 Medidor de calidad móvil movistar

TABLA N°6
ESTADÍSTICAS DE SEÑAL POR TECNOLOGÍA DE OTECEL S.A

Lugar/ Tecnología	2G	3G	4G
Norte	0,00%	100%	0 %
Sur	0,00%	100%	0 %
Este	0,00%	100%	0 %
Oeste	0,00%	100%	0 %
Centro	0,00%	100%	0 %

Fuente: Opensignal

Elaborado por: Narváez Ortiz Edwin

FIGURA N°10
CONTROL ESTADÍSTICO DE LA SEÑAL SEGÚN TECNOLOGÍA
OTECEL S.A

Fuente: Encuesta a los usuarios Elaborado por: Narváez Ortiz Edwin

Según información obtenida mediante la aplicación Opensignal la operadora Otecel (MOVISTAR), posee servicios móviles con tecnología 3G en un 100% en todos los lugares monitoreados. La tecnología 2G y 4G es nula para esta operadora.

TABLA N°7
VELOCIDAD DE SEÑAL OTECEL S.A

Lugar	Lugar Caida de señal (dBm)
Norte	-65
Sur	-77
Este	65
Oeste	-83
Centro	-69

Fuente: Opensignal

Elaborado por: Narváez Ortiz Edwin

De acuerdo a los datos de velocidad de la cobertura Otecel que se obtuvo con la aplicación Opensignal se encontro que en la zona Sur y Centro del Cantón, existe un retardo dentro de la red lo que influye de manera directa en la bajada y subida de velocidad, ya que hay demora en la transmision y propagacion de paquetes dentro de la red. Sin embargo se puede evidenciar que en la zona Oeste hay bajos niveles de latencia.

TABLA N°8
CONTROL DE CAÍDA DE SEÑAL OTECEL S.A.

	Latencia (ms)	Bajada	Subida
Norte	99	812 kbps	740 kbps
Sur	390	214 kbps	0 kbps
Este	72	1,25 Mbps	717 kbps
oeste	70	1,41 Mbps	0 kbps
Centro	202	749 kbps	532 kbps

Fuente: Opensignal

Elaborado por: Narváez Ortiz Edwin

FIGURA N°11
CONTROL DE CAÍDA DE SEÑAL O TECEL S.A

Fuente: Encuesta a los usuarios Elaborado por: Narváez Ortiz Edwin

Es evidente que la caída de señal dentro del Cantón La Troncal para la operadora Otecel, se da con mayor frecuencia en la parte Sur y Oeste, esto puede ser resultado de la ubicación geográfica.

3.9.3 Medidor de calidad móvil CNT

TABLA N°9
ESTADÍSTICAS DE SEÑAL POR TECNOLOGÍA DE CNT EP

	2G	3G	4G	Sin Señal
Norte	0,00%	67,3%	0 %	33%
Sur	0,00%	56,4%	0 %	43%
Este	0,00%	60,5%	0 %	40%
Oeste	0,00%	39,3%	0 %	61%
Centro	0,00%	12,8%	0 %	87%

Fuente: Opensignal

Elaborado por: Narváez Ortiz Edwin

FIGURA N°12 CONTROL ESTADÍSTICO DE LA SEÑAL SEGÚN TECNOLOGÍA CNT EP

Fuente: Encuesta a los usuarios Elaborado por: Narváez Ortiz Edwin

Según información obtenida mediante la aplicación Opensignal la operadora CNT EP, posee servicios móviles de la tecnología 3G, con un nivel de 67,3% en la zona Norte y una baja señal en el área Oeste y Centro.

TABLA N°10 VELOCIDAD DE SEÑAL CNT EP

	Latencia (ms)	Bajada	Subida
Norte	108	1,53 Mbps	760 kbps
Sur	281	299 Kbps	3 Kbps
Este	203	845 kbps	0 Kbps
Oeste	70	1,41 Mbps	0 Kbps
Centro	102	326 kbps	104 kbps

Fuente: Opensignal

Elaborado por: Narváez Ortiz Edwin

De acuerdo a los datos de velocidad de la cobertura CNT EP, que se obtuvo con la aplicación Opensignal, se encontro que en la zona Sur y Este del Cantón, existe un retardo dentro de la red lo que influye de manera directa en la bajada y subida de velocidad, ya que hay demora en la transmision y propagacion de paquetes dentro de la red. Sin embargo se puede evidenciar que en la zona Oeste hay bajos niveles de latencia.

TABLA N°11
CONTROL DE CAÍDA DE SEÑAL CNT EP

Lugar	Caída de Señal (dBm)
Norte	-69
Sur	-77
Este	-67
Oeste	-83
Centro	-65

Fuente: Opensignal

Elaborado por: Narváez Ortiz Edwin

Es evidente que la caída de señal dentro del Cantón La Troncal para la operadora CNT EP, se da con mayor frecuencia en la parte Sur y Oeste, esto puede ser resultado de la ubicación geográfica

3.10 Comportamiento de la señal móvil

TABLA N°12
COMPARACIÓN DE CAÍDA DE SEÑAL ENTRE OPERADORAS
MÓVILES

Lugar	Caída de Señal (dBm)			
	CNT EP	OTECEL	CONECEL	
Norte	-69	-65	-90	
Sur	-77	-77	-104	
Este	-67	-65	-81	
Oeste	-83	-83	-87	
Centro	-65	-69	-102	

Fuente: Opensignal

Elaborado por: Narváez Ortiz Edwin

FIGURA N°13 RESULTADOS COMPARATIVOS DE CAÍDA DE SEÑAL

Fuente: Opensignal

Elaborado por: Narváez Ortiz Edwin

Una vez realizado un análisis comparativo podemos determinar que el lugar donde existen mayores problemas con la caída de la señal es el de la zona sur del Cantón La troncal y pertenece a la operadora Conecel (Claro). Realizando el análisis por operadora se tiene que para CNT EP y OTECEL la caída de la señal es en la zona Oeste, para Conecel es en la parte Sur y Centro.

A continuación, se describen los resultados de la encuesta:

Pregunta 1.- ¿En el instante que se encuentra haciendo una llamada, con qué frecuencia tiene interferencia?

TABLA N°13
INTERFERENCIA EN LLAMADAS

Opciones	Frecuencia	Porcentaje
Nunca	27	7%
Casi Nunca	81	21%
A veces	127	32%
Frecuentemente	132	33%
Siempre	29	7%
Total	396	100%

Fuente: Encuesta a los usuarios Elaborado por: Narváez Ortiz Edwin

FIGURA N°14
INTERFERENCIA EN LLAMADAS

Fuente: Encuesta a los usuarios Elaborado por: Narváez Ortiz Edwin

De acuerdo a los resultados obtenidos se tiene que el 33% de encuestados manifiestan que frecuentemente han tenido problemas de interferencia al momento de hacer llamadas.

Pregunta 2.- ¿En el instante que se encuentra en una llamada entrante, con qué frecuencia tiene caídas o pérdida de señal?

TABLA N°14
CAÍDAS Y PÉRDIDAS DE SEÑAL EN LLAMADAS

Opciones	Frecuencia	Porcentaje
Nunca	38	10%
Casi Nunca	158	40%
A veces	111	28%
Frecuentemente	72	18%
Siempre	17	4%
Total	396	100%

Fuente: Encuesta a los usuarios Elaborado por: Narváez Ortiz Edwin

FIGURA N°15 CAÍDAS Y PÉRDIDAS DE SEÑAL EN LLAMADAS

Según resultados de las encuestas se encuentra un 40% de encuestado casi nunca han tenido caídas y perdidas de señal en llamadas entrantes.

Pregunta 3.- ¿Cuándo va a efectuar una llamada saliente, demora en hacer conexión?

TABLA N°15
DEMORA EN CONEXIÓN DE LLAMADAS SALIENTES

Opciones	Frecuencia	Porcentaje
Nunca	75	19%
Casi Nunca	93	24%
A veces	119	30%
Frecuentemente	88	22%
Siempre	21	5%
Total	396	100%

FIGURA N°16 DEMORA EN CONEXIÓN DE LLAMADAS SALIENTES

Fuente: Investigación Directa Elaborado por: Narváez Ortiz Edwin

Según resultados de las encuestas el 30% de encuestados a veces han tenido demora en hacer conexión al momento de realizar una llamada saliente.

Pregunta 4.- ¿A menudo con qué frecuencia usted no puede realizar una llamada?

TABLA N°16
FRECUENCIA CON LA QUE NO PUEDE REALIZARSE UNA LLAMADA

Opciones	Frecuencia	Porcentaje
Nunca	91	23%
Casi Nunca	169	43%
A veces	87	22%
Frecuentemente	32	8%
Siempre	17	4%
Total	396	100%

FIGURA N°17
FRECUENCIA CON LA QUE NO PUEDE REALIZARSE UNA LLAMADA

De acuerdo a los resultados arrojados por las encuestas el 43% de personas con líneas móviles activas casi nunca han tenido problemas al momento de hacer llamadas telefónicas.

Pregunta 5.- ¿Con que frecuencia su dispositivo mantiene una buena señal al 100%?

TABLA N°17
DISPOSITIVO QUE MANTIENE UNA BUENA SEÑAL AL 100%

Opciones	Frecuencia	Porcentaje
Nunca	53	14%
Casi Nunca	96	24%
A veces	175	44%
Frecuentemente	52	13%
Siempre	20	5%
Total	396	100%

FIGURA N°18
DISPOSITIVO QUE MANTIENE UNA BUENA SEÑAL AL 100%

De acuerdo a los resultados obtenidos se tiene que el 44% de encuestados manifiestan que a veces han tenido una buena señala al 100%

Pregunta 6.- ¿La pérdida de la calidad de la señal la encuentran dentro de su hogar?

TABLA N°18

CALIDAD DE LA SEÑAL LA ENCUENTRAN DENTRO DE SU HOGAR

Opciones	Frecuencia	Porcentaje
Nunca	34	9%
Casi Nunca	76	19%
A veces	161	41%
Frecuentemente	99	25%
Siempre	26	6%
Total	396	100%

FIGURA N°19 CALIDAD DE LA SEÑAL LA ENCUENTRAN DENTRO DE SU HOGAR

De acuerdo a los resultados obtenidos se tiene que el 41% de encuestados manifiesta que raras veces la pérdida de la calidad de la señal se encuentra dentro de su hogar.

Pregunta 7.- ¿La pérdida de la calidad de la señal la encuentran fuera de su hogar?

TABLA N°19
CALIDAD DE LA SEÑAL LA ENCUENTRAN FUERA DE SU HOGAR

Opciones	Frecuencia	Porcentaje
Nunca	21	5%
Casi Nunca	102	26%
A veces	184	47%
Frecuentemente	57	14%
Siempre	32	8%
Total	396	100%

FIGURA N°20 CALIDAD DE LA SEÑAL LA ENCUENTRAN FUERA DE SU HOGAR

De acuerdo a los resultados obtenidos se tiene que el 47% de encuestados manifiestan que raras veces la pérdida de la calidad de la señal se encuentra fuera de su hogar.

Pregunta 8.- ¿Con que frecuencia reinicia su dispositivo móvil para encontrar señal y volverse a enganchar a la red?

TABLA N°20 FRECUENCIA REINICIA SU DISPOSITIVO MÓVIL

Opciones	Frecuencia	Porcentaje
Nunca	37	9%
Casi Nunca	182	46%
A veces	99	25%
Frecuentemente	53	14%
Siempre	25	6%
Total	396	100%

FIGURA N°21 FRECUENCIA REINICIA SU DISPOSITIVO MÓVIL

De acuerdo a los resultados obtenidos se tiene que el 46% de encuestados manifiestan que casi nunca han tenido que reiniciar sus dispositivos para encontrar señal.

Pregunta 9.- ¿Desearía usted que se lleve a cabo un plan para mejorar servicio de la calidad de la telefonía móvil en el sector la troncal?

TABLA N°21
PLAN PARA MEJORAR SERVICIO DE LA CALIDAD DE LA
TELEFONÍA MÓVIL

Opciones	Frecuencia	Porcentaje
Si	259	65%
No	137	35%
Total	396	100%

FIGURA N°22
PLAN PARA MEJORAR SERVICIO DE LA CALIDAD DE LA
TELEFONÍA MÓVIL

Según resultados de las encuestas se encuentra un 65% de encuestados de sean la implementación de un plan que permita la mejora de la calidad de servicios móviles del Cantón.

3.11 Discusión de los resultados

La población que utiliza servicios móviles en el cantón corresponde al 73% de todos los habitantes del lugar, de los cuales la mayor cantidad son usuarios de la operadora Conecel esto se debe a que esta empresa es la única que otorga servicios móviles de tecnología 3G y 4G.

En esta investigación se pudo afirmar que en el cantón La troncal existe un retardo en la señal de la red móvil, y eso sin considerar la operadora. Las Operadoras que prestan servicios de telefonía móvil en este lugar son Conecel, Otecel y Cnt EP, de las cuales evidentemente la que tiene mayor auge es Conecel, misma que considerando la ubicación presenta caída de la señal.

De acuerdo a los resultados se puede manifestar que este problema de la calidad de la señal se da ocasionalmente, sin embargo, esto depende de manera directa de ubicación geográfica, tamaño demográfico y aspectos ambientales que de cualquier manera influyan en las pérdidas o caídas de señal.

3.12 Estudio de comportamiento de absorción, dispersión, difracción y refracción

En base al análisis de resultados de latencia, se procede a la elaboración del estudio cualitativo de absorción, dispersión, difracción y refracción.

Durante el levantamiento de información se evidencio que existe desviación en la dirección de la señal que se transmite desde la antena a los diferentes equipos móviles, a lo que se conoce como refracción.

La difracción encontrada en el lugar depende del comportamiento de la señal alrededor de objetos, como en este estudio se evidencia que el cambio de dirección se incrementa según el grosor y la geometría de los objetos que obstaculizan el viaje de la señal.

La dispersión de la señal que se presenta en el sector se debe a que esta viaja en diferentes partes del espacio y choca sobre superficies u objetos rugosos, ásperos por lo que la onda se dispersa a distintas direcciones.

La absorción de la señal permite la atenuación de la señal y esta se relaciona directamente con fenómenos climáticos tales como: lluvia, roció llovizna, y por la cantidad de oxígeno y vapor de agua, en el sector no existe mayor influencia de estas variaciones climáticas pero al ocasionarse cambios en la dirección se vuelve inestable la señal y no se desarrolla atenuación de la misma.

Los mecanismos de propagación son muy relevantes ya que mediante ellos se establece las diferentes trayectorias para una adecuada propagación de señal caso contrario la señal tendría varias interferencias y caídas de cobertura.

3.12.1 Análisis de resultados

En el transcurso del desarrollo de este proyecto se evaluó, que es muy importante para la población del Cantón La Troncal, enfocarse en los servicios de cobertura, tecnología con estándares de calidad que son los parámetros fundamentales para una adecuada accesibilidad a la telefonía móvil.

El principal objetivo de este proyecto es el de otorgar una alternativa de fácil alcance, rápida y sencilla a toda la población del Cantón la Troncal, con la finalidad de atender todas las exigencias y problemáticas referente a los servicios de telefonía móvil de los sectores urbanos y rurales del lugar.

Las propuestas para disminuir la problemática de caída de señal móvil del cantón son las siguientes:

Llegar a un consenso con los habitantes del sector, en donde se comunique la posibilidad de alcance de señal de cada operadora móvil en base a la zona, como por ejemplo en la zona Sur del Cantón la Operadora con menos caída de señal es CNT EP, seguida de Otecel y finalmente de Conecel. Sin embargo, en la parte norte y céntrica la que mayor alcance tiene es Conecel, esto no solo se debe a la rapidez del servicio sino a que es la única operadora con tecnología 3G y 4G, mientras que Otecel y CNT EP solo maneja tecnología 3G.

Implementar murales informativos por parte de cada Operadora considerando la accesibilidad del servicio que se posee en cada zona, para de esa manera no exhibir a una sola Operadora como la más apta para brindar este tipo de servicio, sino llegar a un acuerdo en donde cada Operadora preste su servicio en la zona con mayor alcance de su red según la posición de sus antenas hasta que los directivos de las Operadoras decidan la implementación de nuevas antenas para de esa manera asegurar un servicio sin interferencias ni caídas de señal.

Informar a la población de manera clara, precisa, sencilla con un lenguaje entendible en que se diferencia los servicios de tecnología 3G y 4G, además de la explicación a detalle de cómo funcionan y el alcance de su cobertura en el sector, para que al momento que el cliente va a adquirir una línea móvil en el decida cuál sería tecnología más viable y la operadora donde contratara estos servicios en base a su ubicación y requerimiento.

CAPITULO IV DISEÑO DE LA PROPUESTA

4.1 Propuesta de mejora

En base al análisis realizado en la fase anterior, se procedió a la generación y selección de la mejor propuesta que dé solución al problema, buscando de esa manera mejorar la calidad del servicio de red móvil.

A partir de la información levantada durante el desarrollo de este proyecto se ha conseguido un diagnóstico lo que ha permitido el diseñó de propuesta de una solución.

La solución propuesta es direccionada de forma fundamental para las zonas rurales y de menor alcance de señal. Con el fin de minimizar la problemática de este estudio, se propone una solución tecnológica, basada en la implementación de Antena Repetidora De Señal Celular Alto Poder por parte de las distintas operadoras que prestan servicios móviles en el Cantón La Troncal.

Este equipo actúa de forma compleja debido a que se encuentra compuesta por Antena direccional externa, Antena de redispersión interna y Amplificador de señal.

La complejidad de sus componentes permite que esta antena recepte la mejor señal y la transmita a su unidad amplificadora donde esta es amplificada y retransmitida localmente, y de esta manera consiguiendo un fortalecimiento de la señal, aumento de alcance de la señal y disminución de la problemática de caída de señal.

FIGURA N°23 ANTENAS REPETIDORAS DE SEÑAL MÓVIL

Fuente: Antenas Elaborado por: Investigación directa

Entre las ventajas que posee este tipo de antenas repetidoras de señal se encuentra:

- Empleo de equipos de bajo costo.
- Instalación sencilla aprovechando antenas existentes.
- Acceso a Internet a través de celulares con óptima señal.

Existen dos puntos de vista para mejorar u optimizar la red:

4.1.1 Desde los suscriptores o clientes

Se realizan pruebas para detectar vulnerabilidades y realizar cambios diversos para eliminarlos. También puede considerarse los reclamos por parte de los usuarios y verificarla respectiva zona aplicar cambios correspondientes.

4.1.2 Desde el operador

Frecuentemente el operador realiza cambios en los parámetros de la red por darse cuenta de que así va a funcionar mejor. También pueden realizarse cambios para que los recursos sean administrados mejor. (Telecomunicaciones, 2017).

4.1.3 Propuesta de optimización

Se describió la cobertura en el sector La Troncal midiendo los parámetros del área de cobertura, nivel de potencia y nivel de solapamiento detectando una vulnerabilidad crítica, siendo este un área con ausencia de cobertura o "agujero de cobertura ubicado en el distrito de José Leonardo Ortiz, es decir, la existencia de una porción del área que se espera está cubierta por completo en la cual los niveles de potencia están por debajo de la expectativa del operador.

Monumento a La La Troncal
Caña - La Troncal
Raque de atracciones

FIGURA N°24
UBICACIÓN DEL AGUJERO DE COBERTURA

Fuente: Google maps Elaborado por: Investigación directa

Para resolver el agujero de cobertura podemos considerar dos opciones, diferenciadas entre sí por la dificultad de aplicación, el tiempo que tomaría llevarse a cabo y el costo de implementación a largo plazo.

La primera solución consiste en un cambio en los parámetros de radio de la celda activa más cercana al área en cuestión.

Los parámetros que pueden modificarse son el (azimuth,) o ángulo de la inclinación y la potencia de trasmisión. Es decir, si existe una celda activa con una orientación cercana a la zona que necesita ser optimizada, esta orientación (azimuth) puede modificarse de igual forma con la inclinación

para poder extender la cubertura hasta dicha zona, siempre y cuando, el nuevo valor de azimuth ubique a la celda activa sobre el área en cuestión sin perjudicar el área donde previa donde irradiaba. Para desarrollar a detalle esta opción de optimización debe tenerse en cuenta los criterios a continuación descritos.

4.1.4 Ampliación de cobertura celular

Para la ampliación de cobertura celular se debe tener en cuenta algunos criterios principales como:

4.1.5 Operación de un nodo B

El nodo B es un elemento que compone la red de acceso en una red de telefonía móvil. Tiene como objetivo principal proporcionar acceso simultáneo a los equipos móviles por medio de la interfaz de radio.

4.2 Criterios para implementar nueva estación

4.2.1 Modelo de propagación

Es el método de cálculo que se emplea para estimar la propagación de las ondas electromagnéticas por el espacio.

Se debe decir que modelo se desea emplea en cada caso en función al entorno en el cual se realiza el despliegue de red, la tecnología empleada, las bandas de frecuencia y la información cartográfica disponible para modelar el terreno. Los métodos de propagación más usados son los siguientes:

 Rec. 526 IUT-R: Método determinístico basado en difracción. Valido para frecuencias mayores a 30MHz. Empleado en todos los servicios radioeléctricos en entornos rurales y mixtos.

- Línea de vista: Método de cálculo que proporciona predicción del nivel de señal únicamente en condiciones de despegamiento del trayecto aplicado la atenuación por espacio libre.
- 3. Rec. 1546 UIT-R: Método empírico para la gama de frecuencias de 30 MHz a 1 GHz. Valido en entornos rurales para cualquier servicio radioeléctrico, pero especialmente recomendado para radiodifusión sonora y audiovisual cuando no se dispone de cartografía precisa o a distancias superiores a los100km.
- Okumura-Hata: Método empírico valido en la gama de 150 MHz a 2GHz. Recomendado para servicio móviles y de acceso de banda ancha en entornos rurales y urbanos.
- Okumura-Hata Modulado: Método hibrido valido en la gama de 150
 MHz a 2 GHz. Basado en el método de Okumura-Hata, realiza una corrección en función de las pérdidas de difracción.
- COST 231: Método determinístico valido en la gama de frecuencias de 800 MHz a 2 GHz. Recomendado para entornos urbanos en servicio móvil y acceso de banda ancha.
- Standford University Interim: Método empírico valido para froncias menores a 11GHz. Recomendado para servicios móviles de acceso de banda ancha (especialmente WIMAX).
- Rec. 1812 UIT-R: Método determinístico valido en frecuencias de 30 MHZ a 3 GHz. Empleado en entornos rurales y mixtos para todos los servicios radioeléctricos y en especial radiodifusión.
- Rec. 452 UIT-R: Método de cálculo determinístico valido en la gama de frecuencias de 700 MHz a 50 GHz. Especialmente recomendado

para el cálculde interferencias en radio enlaces del servicio fijo.

10. Rec. 530 UIT-R: Método de cálculo determinístico valido para frecuencias mayores de 30 MHz. Incorpora el análisis de variabilidad de radioenlace digitales del servicio fijo

Algunos puntos importantes sobre mejoramiento de la calidad de la señal

- Se mantenga en constante mantenimiento la estación celular para evitar deficiente funcionamiento y perturbar futuros trabajos en la estación.
- Constantes estudios de campo para mantener la cobertura actualizada acorde a las necesidades de la zona urbana.
- Monitorear el desempeño de la nueva estación para detectar posibles fallos de configuración.
- Analizar el desempeño de la nueva estación desempeño por un periodo mínimo de seis meses antes de incluirla en nuevo proceso de optimización.
- Ejercer mayor control y supervisión al realizar trabajos de campo y al ejecutar modificaciones en la red de acceso, debido a que dichas modificaciones pueden tomar largo tiempo y pueden no llegarse a cabo correctamente.
- Realizar estudios de cobertura comparativos (benchmarking) con otros operadores para poder analizar y determinar posibles debilidades además de las fortalezas de la red móvil. Esto permitirá mejorar la competencia y la calidad del servicio del servicio móvil.

7. Ejercer mayor control y supervisión al realizar trabajos de campo y al ejecutar modificaciones en la red de acceso, debido a que dichas modificaciones pueden tomar largo tiempo y pueden no llegarse a cabo correctamente.

FIGURA N°25
SIMULACION RADIO MOBILE

Fuente: Radio móbile

Elaborado por: Investigación directa

Sin embargo se ha realizado una simulación para demostrar que la propuesta tiene fundamento y que puede llegar a solucionar la problemática.

La simulación ha considerado puntos de la zona central y zona sur, denominándolos como nodo base y nodo 2 respectivamente.

FIGURA N°26 SIMULACIÓN DE ANTENA MOVIL

Fuente: I Radio móbile

Elaborado por: Investigación Directa

Transmitter Receiver NODO 2 NODO BASE NET METAL 5+ANTENA RD5G3I ▼ NET METAL 5+ANTENA RD5G3I ▼ Tx system name Rx system name Required E Field 31,14 dBm -63,96 dBµV/m 1,3 W 1 dB Tx power Line loss 27,8 dBd Antenna gain 30 dBi 25,8 dBi 23,7 dBd + EIRP=395,32 W ERP=241,05 W Antenna gain Line loss Radiated power 0,0001µV -187 dBm . + Antenna height (m) 11 + Antenna height (m) Frequency (MHz) Maximum 5875 Minimum 5150 Red NODO BASE- NODO2 Ŧ

FIGURA N°27

Datos Obtenidos Mediante Radio Mobile

Fuente: Radio móbile

Elaborado por: Investigación directa

La datos arrojados mediante el simulador es un Azimuth 338,36°, ángulo de elevación de 2,930°, la distancia entre punto es de 10,67km de la cual hasta los 10,34km existe una señal clara. Además indica que los sistemas a emplearse son una Antena RD5G30 un sistema inalámbrico para ambientes externos denominado Net Metal 5 y la Antena se colocara a una altura de 11 metros.

4.3 Conclusiones

En el Cantón la troncal se brinda servicios de telefonía móvil avanzada por parte de operadoras Conecel, Otecel y CNT EP, de las cuales la Operadora Conecel (Claro) es la única que proporciona servicios 3G y 4G, mientras las otras prestan servicios de tecnología 3G. El servicio 3G presenta caída de señal en la zona Sur y Oeste del cantón, por lo que se asume que el principal factor de este inconveniente es la ubicación geográfica y a que son áreas rurales.

Los servicios móviles avanzados año a año se vienen incrementando, tal es así que del año 2017 hasta junio del 2018 la participación de mercado

es del 89,54% a nivel nacional y con respecto al cantón La troncal este es de 2,6% en relación a la población que cuenta con líneas móviles activas. La operadora Conecel cuenta con una participación del 53%, Otecel con un 30% y CNT EP con un 17%.

Los niveles de latencia de la Operadora Conecel son bajos, aunque en la zona Sur se tiene un elevado retardo de la señal, mientras que para Otecel y CNT EP los niveles de latencia son altos en diferentes ubicaciones. En la actualidad alrededor del 73 % de la población que aproximadamente serian 39703 personas utilizan servicios móviles.

Finalmente se concluyó que una de la alternativa para dar solución a la problemática del sector es la implementación de antenas repetidoras de señal móvil, mismas que permiten la recepción de la mejor señal del lugar, luego la traslada al amplificador donde amplifica y finalmente la retrasmite y de esa manera se logra el fortalecimiento de la señal.

4.4 Recomendaciones

Recomiendo realizar monitoreos de manera constante con el fin de verificar la calidad de señal en relación con la ubicación geográfica, ya que debido al crecimiento poblacional y a las variaciones que se dan en otros factores las caídas de señal pueden incrementarse o mitigarse, siempre y cuando se consideren procedimientos adecuados.

Implementar un sistema de seguimiento y control mensual de la calidad de señal de las diferentes zonas del Cantón, con la finalidad de registrar latencia, caída de señal, velocidad y en el caso de implementar estas antenas realizar un análisis comparativo y conocer el porcentaje de mejora en relación con la calidad.

Introducir en la malla curricular cátedras de diagnóstico de alteraciones de calidad de señales móviles, para de esa manera poder

buscar alternativas adicionales a las conocidas, de cómo tratar este tipo de problemáticas, y así ayudar a la ciudadanía.

Establecer conexiones de la universidad con las operadoras móviles con la finalidad de exponer propuestas de solución a problemáticas de esta índole y de esa manera convenir nexos para participación estudiantil.

ANEXOS

ANEXOS N°1 ENCUESTA

En esta encuesta nos ayudara a evaluar la satisfacción de los usuarios con respecto:

"ESTUDIO DE LA CALIDAD DEL SERVICIO DE REDES MOVILES EN EL SECTOR DE LA TRONCAL"

1. ¿En el instante que se encuentra haciendo una llamada, con qué frecuencia tiene interferencia?

Nunca	Casi Nunca	A Veces	Frecuentemente	Siempre

2. ¿En el instante que se encuentra en una llamada entrante, con qué frecuencia tiene caídas o perdida de señal?

Nunca	Casi Nunca	A Veces	Frecuentemente	Siempre

3. ¿Cuándo va a efectuar una llamada saliente, demora en hacer conexión?

Nunca	Casi Nunca	A Veces	Frecuentemente	Siempre

4. ¿A menudo con qué frecuencia usted no puede realizar una llamada?

Nunca	Casi Nunca	A Veces	Frecuentemente	Siempre

5.	¿Con que	frecuencia	su	dispositivo	mantiene	una	buena	señal	al
	100%?								

Nunca	Casi Nunca	A Veces	Frecuentemente	Siempre

6. ¿La pérdida de la calidad de la señal la encuentran dentro de su hogar?

Nunca	Casi Nunca	A Veces	Frecuentemente	Siempre

7. ¿La pérdida de la calidad de la señal la encuentran fuera de su hogar?

Nunca	Casi Nunca	A Veces	Frecuentemente	Siempre

8. ¿Con que frecuencia reinicia su dispositivo móvil para encontrar señal y volverse a enganchar a la red?

Nunca	Casi Nunca	A Veces	Frecuentemente	Siempre

9. ¿Desearía usted que se lleve a cabo un plan para mejorar servicio de la calidad de la telefonía móvil en el sector La Troncal?

Nunca	Casi Nunca	A Veces	Frecuentemente	Siempre

ANEXOS N° 1
MUESTRAS DE COBERTURA

Fuente: Aplicación OpenSignal Elaborado por: Investigación Directa

ANEXOS N° 2 EVALUACION DE LA SEÑAL MOVIL

Fuente: Aplicación OpenSignal Elaborado por: Investigación Directa

ANEXOS N° 3 VELOCIDAD REAL DE CLARO

Fuente: Aplicación OpenSignal Elaborado por: Investigación Directa

ANEXOS N° 4 EVALUACION DE LA SEÑAL MOVIL

Fuente: Aplicación OpenSignal Elaborado por: Investigación Directa

ANEXOS N° 5
ESTADÍSTICAS DE LÍNEAS ACTIVAS

	88,97%	88,38%	va .						
511 517 543 540 542 542 543 549 549		86	87,48%	810'28	%66'58	%16,28	84,70%		Sa
13.904.911 13.912.617 13.913.913.913 13.912.619 13.912.619 14.005.449 14.012.619 14.019.619	13.904.911	13.888.225	13.871.559	13.854.913	13.838.287	13.821.681	13.805.095		ontrol
12.370.678 12.496.611 12.538.249 12.778.577 12.630.782 13.654.600 13.638.487 13.772.170	12.370.678	12.274.935	12.135.012	12.055.574	11.899.377	11.790.957	11.692.248	INTERNET	on y Cc scomur
9,436 9,522 10.117 10.117 10.117 10.191 10.520 10.520 10.520	9.436	8.992	9.125	8.800	8.800	8.646	7.769		gencia d Regulacio e las Telo e las Telo ore
38.31 38.31 5 5 5 6.21 346.21 0 0 0 0 346.70 346.70 346.70 346.70 346.70	338.31	326.73 3	322.13	325.54	325.54	321.62	316.19	ONIA	Vos AR
	\vdash	\vdash	3.262.702	3.257.699	3.176.502	3.173.204	3.211.922	OTECEL	inistratīv ión: Jun e: Mayo
157 121 138 138 138 138 138 138 139 139 139 139 139 139 139 139 139 139	557	112	99					DATO8	os adm iblicaci de cort
83.538 83.899 89.538 99.609 112.303 116.358 133.398	277	75.0	2.6	٥	٥	0	٥	INTERN	egistra i de pu
3.322.699 3.322.314 3.443.147 3.443.147 3.546.383 3.546.385 3.546.29 3.752.209 3.780.102	2.699	2.617	0.036	7.699	6.502	3.204	1.922	I ELEPUNIA E IN I EINE I	iivas rente: R Fechā
3.38 3.30 3.38 3.44 3.44 3.45 3.75 3.75 3.75 3.75 3.75 3.75 3.75	3.25	3.23	3.26	3.25	3.17	3.17	3.21	TELEFON	ZADO eas Act FL
8.757.321 8.815.709 8.815.709 8.819.559 9.085.049 9.291.268 9.413.020 9.514.599	8.692.970	8.631.581	8.541.054	8.463.534	8.388.534	8.287.484	8.156.359	CONECE	los y Lin
45,708 52,492 57,889 63,042 78,136 90,019 93,446	202	276	912	944	_			DATOS	Abonad
45.7.1 57.1.7.7.7.7.8.90.0	45.	38	30.	26.		J		INIERNEI	SERVIC dad de
8.647.262 8.757.720 8.826.573 8.908.122 9.006.913 9.201.249 9.319.574 9.415.117	17.262	33.305	10.142	36.590	38.534	37,484	6.359	TELEFONIA E INTERNET	Densi
8.77 8.82 8.90 9.00 9.10 9.10 9.10 9.10 9.10 9.10	8.64	8.59	8.51	8.43	8.38	8.28	8.15	IELEPUNIA	
Jun 2009 Jul 2009 Ago 2009 Sep 2009 Oct 2009 Nov 2009 Ene 2010 Feb 2010	Jun 2009	May 2009	Abr 2009	Mar 2009	Feb 2009	Ene 2009	2008		
8.647.262 45,708 8.692.970 3.25.699 77.257 3.329.96 338.31 8.704.823 52.492 8.737.321 3.304.12 81.521 3.385.733 343.63 8.757.720 57.989 8.815.709 3.382.314 83.538 3.466.213 346.21 8.805.523 63.042 8.889.565 3.443.147 89.538 3.532.685 346.21 8.908.122 71.437 8.979.559 3.449.283 95.613 3.594.896 346.70 9.006.913 78.136 9.085.049 3.546.385 95.613 3.5645.94 346.70 9.201.249 90.019 9.413.020 3.752.209 116.358 3.868.567 346.70 9.415.117 99.482 9.514.599 3.752.209 116.358 3.904.390 42.66	8.647.262 45.708 8.692.970 3.552.699 77.257 3.329.956 338.31	8.593.305 38.276 8.631.581 3.232.617 75.012 3.307.629 3.26.73	8.510.142 30.912 8.541.054 3.260.036 2.666 3.262.702 3.22.13	8.436.590 26.944 8.463.534 3.257.699 0 3.257.699 325.54 1	8.388.534 0 8.388.534 3.176.502 0 3.176.502 325.54 1	8.287.484 0 8.287.484 3.173.204 0 3.173.204 321.62	8.156.359 0 8.156.359 3.211.922 0 3.211.922 316.19	TELEFONIA IN INTERNA INTERNA INTERNA DATOS CONECE TELEFON ILLEFUNA ET DATOS OTECEL TELEFONIAL INTERNAL ET OATOS	SERVICIO MOVIL AVANZADO Densidad de Abonados y Líneas Activas Pregulación y Control de las Telecomunicaciones Fuente: Registros administrativos ARCOTEL Fecha de publicación: Junio de 2018 Fecha de corte: Mayo 2018

					Г																
816'66	100,66%	101,49%	102,03%	102,77%	103,47%	104,22%	104,95%	104,39%	105,32%	106,09%	106,55%	106,70%	107,33%	107,69%	377,778	%10'801	%86'20T	%10'80I	107,76%	307,51%	356,701
14.071.624	14.088.216	14.104.828	14.121.460	14.138.111	14.154.782	14.171.472	14.188.182	14,483,499	14.506.852	14.530.242	14.553.670	14.577.136	14.600.640	14.624.181	14.647.761	14.671.378	14.695.034	14.718.728	14,742,459	14.765.927	14.789.734
14.059.363	14.180.956	14.315.292	14.408.060	14.529.836	14.645.796	14.769.456	14.891.181	15.118.831	15.279.037	15.414.679	15.507.340	15.553.320	15.670.691	15.748.728	15.786.384	15.846.883	15.868.012	15.897.430	15.886.233	15.874.558	15.966.052
10.729	10.914	12.092	10.596	12.427	13.127	13.999	15.479	16.794	20.319	21.969	22.642	22.574	22.754	22.415	22.965	25.361	31.887	36.933	40.861	47.585	53.664
344.94	316.40 5	327.62 6	307.28 8	307.98 8	305.82	302.18	304.84	316.93 6	319.88	319.20	309.15 6	306.06	312.57	307.30 9	309.53 9	293.11 3	277.53	274.40	244.17	33	268.02
3.984.045	4.039.162	4.069.975	4.083.531	4.108.651	4.154.773	4.194.580	4.221.593	4.314.599	4.395.998	4,457,956	4,468.931	4,436,954	4.476.084	4.513.966	4,496,949	4.521.758	4.501.472	4.485.371	4.472.281	4.513.874	4.558.396
136.106	142.185	145.394	150.702	154.966	161.232	170.595	176.462	181.646	191,672	194.750	189.019	189.406	186.042	188.610	192.523	193.066	194.247	196.094	193.246	190.976	192.485
3.847.939	3.896.977	3.924.581	3.932.829	3.953.685	3.993.541	4.023.985	4.045.131	4.132.953	4.204.326	4.263.206	4.279.912	4.247.548	4.290.042	4.325.356	4.304.426	4.328.692	4.307.225	4.289.277	4.279.035	4.322.898	4.365.9111
9.719.643	9.814.475	9.905.599	10.006.645	10.100.770	10.172.071	10.258.688	10.349.269	10.470.502	10.542.836	10.615.546	10.706.611	10.787.725	10.859.278	10.905.038	10.956.931	11.006.651	11.057.121	11.100.717	11.128.914	11.057.316	11.085.968
110.299	114.909	118.077	120.641	123.139	126.674	128.781	134.912	139.661	141.668	142.708	149.547	157.972	167.725	265.723	276.709	279.783	287.390	301.341	298.783	303.282	298.162
9.609.344	9.699.566	9.787.522	9.886.004	9.977.631	10.045.397	10.129.907	10.214.357	10.330.841	10.401.168	10.472.838	10.557.064	10.629.753	10.691.553	10.639.315	10.680.222	10.726.868	10.769.731	10.799.376	10.830.131	10.754.034	10.787.806
Abr 2010	Mayo 2010	Jun 2010	Jul 2010	Ago.2010	Sep. 2010	Oct 2010	Nov 2010	Dic 2010	Ene 2011	Feb 2011	Mar 2011	Abr 2011	Mayo 2011	Jun 2011	Jul 2011	Ago.2011	Sep. 2011	Oct 2011	2011	Dk 2011	Ene 2012

9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
108,49%	108,82%	109,23%	109,79%	109,95%	110,04%	110,21%	110,49%	111,80%	112,59%	110,09%	110,91%	111,53%	111,67%	112,08%	109,23%	109,54%	109,87%	110,16%	110,40%	110,79%	110,84%
14,813,584	14.837.474	14.861.387	14,885,350	14,909,347	14,933,391	14.957.476	14.981.574	15.005.727	15.029.934	15.520.973	15,542,121	15,563,269	15,584,417	15.605.565	15.626.713	15,647,861	15,669,009	15.690.157	15.711.305	15,732,453	15.753.601
16.071,687	16,146,158	16,232,506	16,342,688	16.393,215	16.432.588	16,484,544	16,552,738	16,776,649	16,922,001	17.086.863	17.237.823	17.357.175	17,402,572	17,490,994	17.069.159	17,140,834	17.215.044	17.283.494	17.345.429	17.429.706	17.462.039
59,321	60,974	62,905	66,930	989'69	76.233	79,358	83,226	86,551	890'06	91,980	93,857	92,066	103,348	103,348	103,348	103,348	103,348	103,348	103,348	103,348	103,348
279.14	268.40	293.93	292.20	280.03	271.76	259.63	251.63 5	246.61 8	237.00	217.29	255.19	257.34	259.21	259.21	259.21	259.21	259.21	259.21	259.21	259.21	259.21
4,616,860	4.668.221	4,685,518	4.738.277	4.750.412	4.731.263	4.737.880	4.755.565	4.910.577	4,958,450	5.019.686	5.033.644	5.051,199	5.033,297	5.043,646	5.059.197	5.078.250	5.092.038	5.098,263	5.096.066	5.098,702	5,090,492
186.897	177.893	173,987	175.059	171,142	171,451	171.308	172,475	170,404	180.669	180.894	181,942	181.754	185.084	189.070	189,299	191,104	191,635	188.733	186.923	185,552	182,447
4,429,963	4,490,328	4.511.531	4,563,218	4.579.270	4,559,812	4,566,572	4,583,090	4.740.173	4,777,781	4.838.792	4.851.702	4,869,445	4.848.213	4.854.576	4.869.898	4.887.146	4,900.403	4,909,530	4,909,143	4,913,150	4,908,045
11,116,364	11.148,559	11.190,152	11.245.278	11.293,134	11.353,323	11.407.676	11,462,312	11.532,903	11.636.478	11,757,906	11.855,128	11.956.563	12.006.715	12.084.788	11.647.402	11.700.024	11.760.446	11.822.671	11.886.803	11.968,444	12,008,987
292,572	293,081	292,685	297.237	299,668	302,942	314,718	321,148	334,198	345,995	357,249	363.059	378,229	390,467	415,516	439.855	455,753	471.344	460,330	475.061	485,898	498,333
10.823.792	10.855.478	10.897.467	10.948.041	10,993,466	11.050.381	11.092.958	11,141,164	11,198,705	11.290.483	11,400,657	11,492,069	11,578,334	11,616,248	11,669,272	11.207.547	11.244.271	11.289.102	11.362.341	11,411,742	11,482,546	11.510.654
Feb 2012	Mar 2012	Abr 2012	Mayo 2012	Jun 2012	Jul 2012	Ago. 2012	Sep. 2012	Oct 2012	Nov 2012	Dic 2012	Ene 2013	Feb 2013	Mar 2013	Abr 2013	Mayo 2013	Jun 2013	Jul 2013	Ago 2013	Sep. 2013	Oct 2013	Nov 2013

							113,29%	113,319	112,89%	112,769	112,669	109,849	107,559	104,899	101,069	%59'66	%06'26	%66′96	93,47%	92,37%	%66'06
111,20%	113,12%	113,28%	113,40%	113,43%	113,35%	113,56%	15,922,167	15.943.227	15,964,287	15,985,347	16,006,406	16.027.466	16.048.414	16,069,362	16,090,311	16,111,259	16,132,207	16,153,155	16,174,103	16,195,051	16.216.000
15.774.749	15,795,809	15,816,869	15.837.928	15,858,988	15,880,048	15,901,108	18,038,456	18,065,986	18,021,312	18,025,031	18,033,231	17,604,557	17,260,792	16.854,517	16,260,539	16.054.363	15,793,210	15,666,883	15,117,396	14,959,698	14,755,468
17.541.754	17.868.886	17.917.782	17.960.662	17,988,379	17.999.848	18.057.049	635,920	650.682	693.821	717,630	766.910	776.892	888,777	945,867	1.032,323	1.072.376	1,116,461	1,183,839	942,469	929.628	1.019.403
92	69	15	82	91	82	22	775.72	27.695	27.405	29,094	37.097	49.848	59,446	60.535	29,090	60.110	61.224	58.728	56.767	57.357	59.023
103,348	140,959	139,661	139,638	138,216	144.438	145,587	110,706	119,569	145.844	172.919	203.675	231,766	262,575	290,266	325.043	350,084	376.844	406.022	430,584	443,986	464.350
259.21	417.24	426.50	450.83	456.27	461.46	480.76	378.06	383.08	400.35	395,33	405.31	373.60 4	444.55	472.91	526.04	539.97	556.08	596.25	332.27	335.20 4	373,12 5
5,148,308	5.246.719	5.243,581	5.224.894	5.212.879	5,188,521	5.204.947	5.156.532	5,148,748	5.047.263	5.025.967	4.995.937	5.055.645	5.041.544	5.038.636	4,723,385	4.688.985	4.569.272	4.560.326	4.555.302	4.551.976	4,463,361
167	989	052	571	757	033	417	129.299	133,934	135,303	144,065	148.238	152,762	155.878	170.712	172,342	176.368	179,367	181.827	184.626	187.506	190.708
185,167	188.686	192,052	189,571	190,757	190.033	189,417	63.719	60.834	57,984	54.377	51,608	49.259	46.726	44.324	42,174	40,109	38,337	37,480	36,990	36.789	36,542
1,141	3.033	.529	,323	:122	3,488	5.015.530	1,293,980	1,338,919	1.326.021	1,373,696	1,368,681	1,451,696	1.553,353	1,532,477	1.533,156	1,544,968	1.584,696	1.577,480	1,676,662	1.913,740	1,689,767
4,963,141	5.058.033	5.051.529	5.035.323	5.022.122	4,998,488	5.015	3.669.53	3,615,06	3.527.95	3,453,82	3,427,41	3,401.92	3.285.58	3,291,12	2.975.71	2.927.54	2,766.87	2,763,53	2,657.02	2,413,94	2,546,34
12,030,886	12.063.960	12,108,040	12,145,293	12.181.007	12.205.423	12,225,752	12.246.004	12,266,556	12.280.228	12.281,434	12.270.384	11.772.020	11.330.471	10.870.014	10.504.831	10.293.002	10.107.477	9,922,718	9,619,625	9,448,094	9,272,704
689	575	963	099	111	500	378	166.497	168.144	163.977	165,322	166,686	164.262	165.377	161,636	164.061	154.724	157.006	150.834	146.700	123,468	170.353
515,689	526,575	549,963	536,660	543.777	544.005	557,378	382.987	383,743	378.753	378.181	374.131	368.800	374.942	376.289	371.060	369.830	367.215	368.807	362.706	364.081	366.894
5.197	7.385	8.077	8.633	7,230	1,418	8.374	2,565,589	2,629,358	2,634,993	2,742,260	2,696,313	2,782,707	2,787,666	2,735,337	2,847,289	2,844,974	2,784,813	2,937,976	2,597,147	2,823,869	2,882,422
11.515.197	11,537,385	11,558.077	11,608,633	11,637,230	11,661,418	11.668.374	9.130.931	9.085,311	9.102.505	8.995.671	9.033.254	8,456,251	8,002,486	7,596,752	7.122.421	6.923,474	6.798.443	6,465,101	6.513.072	6.136.676	5.853.035
Dic 2013	Ene 2014	Feb 2014	Mar 2014	Abr 2014	Mayo 2014	Jun 2014	Jul 2014	Ago 2014	Sep 2014	Oct 2014	Nov 2014	Dic 2014	Ene 2015	Feb 2015	Mar 2015	Abr 2015	May 2015	Jun 2015	Jul 2015	Ago 2015	Sep 2015

88,48%	86,87%	85,14%	84,87%	85,31%	85,81%	86,73%	86,84%	88,64%	89,63%	90,65%	90,15%	90,22%	89,31%	89,83%	89,87%	90,45%	90,24%	90,93%	%95'06	89,94%	90,29%
16.236. 948	16.257. 896	16.278. 844	16.299.	16.320.	16.341.	16.362.	16,382, 963	16.403. 786	16.424.	16.445.	16.466.	16.487.	16.507. 906	16.528. 730	16.549.	16.549.	16.590.	16.611.	16.632.	16.652.	16.673.
14,366,993	14,122,460	13,859,020	13,833,961	13,922,619	14.022,669	14,191,494	14.227.037	14,540,064	14,721,505	14,908,215	14,844,649	14.874.375	14,742,423	14.848.134	14.873.226	14,969,481	14,971,067	15,104,467	15.061,858	14,976,771	15,055,210
1.050.069	1.031.219	1,065,703	1.095.492	1,134,222	1,174,947	1,215,638	1.245,153	1,282,926	1,328,207	1,372,087	1.380,723	1,381,589	1,465,436	1.541.219	1.606.657	1.633,862	1.655,131	1,721,409	1,723,483	1.676.146	1,829,157
58.913	26.847	59.322	57.904	56,435	55,456	54.867	53,810	53,989	52,804	52,007	50.967	49.171	48.901	49.001	45.849	46.950	46.913	46.015	45.614	44.644	44.604
479.357	490,886	513,689	528,446	545,912	561,229	670.017	682,759	697.115	708,830	727.553	732,971	736,560	765.880	793,919	822.375	843,496	859,675	883,450	888,179	896,969	941.012
388.00	387.37	359.44	371.84	390.87	417.07	349.27 6	367.02 8	389.96 4	424.81	450.76	454.30	453.06	507.67	555.79 8	595.88	600.83	606.48	649.74	648.61	648.14	757.09 8
4.232.428	4,303,330	4,134,698	4.200.524	4,188,097	4,182,766	4.211.949	4,151,791	4,392,705	4,499,825	4.633.731	4.548.495	4,563,659	4,499.011	4.580.092	4,525,750	4,578,932	4.545.105	4.603.330	4.537.153	4,479.049	4,474,456
192,936	210.371	179.684	192.044	182,954	178.012	181.577	182,150	182,921	184,191	186.401	188,904	190,268	192,274	193,245	193,308	195,167	197,905	198,905	197,576	204.042	203.029
36,370	18,758	51.147	33,538	38,472	40.659	38,912	44.018	46,057	44,993	42,592	39,310	36,225	33,368	28,538	26,237	24,571	22,865	21.178	22.387	18,226	16.819
1.700.177	1,688,727	1,761,936	1,723,292	1,871,657	1.909.079	1.902.519	1,847,327	1,704,905	1,739,019	1.800.921	1.929.000	1,939,569	2,374,651	2,463,919	2,337,319	2,242,092	2,306,161	2,341,274	2,384,417	2,532,986	2,724,227
2,302,94	2,385,47	2.141.93	2.251.65	2,095.01	2,055.01	2,088,94	2,078,29	2,458,82 2	2,531.62	2,603.81	2.391.28	2,397,59	1,898,71 8	1,894,39	1,968,88	2,117,10 2	2.018.17	2.041.97	1.932.77	1,723,79	1.530.38
9.084,496	8,787,911	8.658.619	8.537.945	8,600,300	8,664,956	8.763.907	8,830,093	8,864,433	8.893.473	8.902.397	8.915.431	8,929,127	8,777,976	8,726,823	8,740,819	8,756,687	8,770,831	8.779.728	8.801.222	8.821.576	8.751.597
120.951	202,276	141.977	140.002	131,726	136.753	129.724	128,052	128,549	127.571	224,954	235.692	256,381	148,654	245.917	238,177	131,655	127.616	127.099	125,964	128.203	109.815
365,976	363,407	349.853	350.837	345.274	338.606	331.834	316,194	182,461	226.705	361.190	284,586	310.178	233,719	306.652	359.855	464.541	438.741	448,390	486.896	318.690	294,371
2,892,366	2,912,238	2.957.321	2,994,685	3.022.660	3.086.078	3,141,517	3,259,392	3,562,230	3,005,745	3,523,382	3,755.088	4,104,348	4,205,044	4,132,455	4,361,110	3,509,757	4.082.575	4,143,732	4,145,014	4,440,228	4.561.122
5,705,203	5,309,990	5.209.468	5.052.421	5.100.640	5.103.519	5,160,832	5,126,455	4,991,193	5,533,452	4,792,871	4.640.065	4.258.220	4,190,559	4,041,799	3,781,677	4.650.734	4,121,899	4.060.507	4.043,348	3.934.455	3,786,289
Oct 2015	Nov 2015	2015	Ene 2016	Feb 2016	Mar 2016	Abr 2016	May 2016	Jun 2016	Jul 2016	Ago2016	Sep2016	Oct2016	Nov2016	2016	Ene 2017	Feb 2017	Mar 2017	Abr 2017	May 2017	Jun 2017	Jul 2017

Ago 2017	3.698,251	4,573,083	282,999	127,700	8,682,033	1.504.07 8	2,760,298	16.837	204,589	4,485,802	793.70 6	958,188	43,441	1,882,162	15,049,997	16.694. 228	90,15%
Sep 2017	3,689,519	4,544,379	270.813	106,842	8,611,553	1,477,38	2,804,418	14,295	205,222	4,501,316	828.07	967,050	42,166	1.924.352	15.037.221	16.714. 915	89,96%
Oct 2017	3,609,681	4,501,285	300,189	110,392	8,521,547	1,452,68	2,777,904	13,626	195,715	4,439,926	871.61 9	987,067	39,964	1,985,926	14.947.399	16.735. 603	89,31%
Nov 2017	3,395,818	4,550,500	365.671	109,077	8,421,066	1,458,71	2,800,780	13,530	194,491	4,467,518	910.97	1,008,229	20.846	2,027,409	14.915.993	16.756. 290	89,02%
2017	2.951.275	4,571,929	329,984	107.075	7,960,263	1,485.79	2,849,177	13,906	200.142	4,549,024	1.012.	1.011.198	30.885	2,142,117	14,651,404	16.776.	87,33%
Ene 2018	3,352,155	4,206,007	310.691	107.177	7,976,030	1,471,40	2,822,286	14,273	205.723	4,513,686	1.065.	1.059,323	23,402	2,236,840	14,726,556	16.797. 513	87,67%
Feb 2018	3,144,374	4,412,099	325.672	106,977	7,989,122	1,476,91	2,811,185	39,329	188,248	4,515,681	1,107. 916	1,078,345	22.827	2,297,296	14.802.099	16.818. 049	88,01%
Mar 2018	3,210,669	4,368,283	313,183	108,240	8,000,375	1,464,49	2,823,037	42,392	185,134	4,515,054	1.163. 917	1,103,255	22,872	2,378,275	14.893.704	16.838. 585	88,45%
Abr 2018	2.948.793	4,674,509	283,510	109.893	8.016.705	1,483,43	2,839,480	42.056	186.336	4,551,309	1.217.	1.116.087	22.564	2,443,847	15,011,861	16.859.	89,04%
May 2018	3.034.821	4,580,487	312.726	108.816	8.036.850	.491.349	2,850,874	44,967	194.860	4,582,050	1.258.	1,126,989	22,482	2,495,597	15,114,497	16.879.	89,54%
Nota 1:	Se tienen TELEFON TELEFON V el servic INTERNE: DATOS	Se tienen en cuenta las siguiente definiciones: TELEFONIA - Linea del SMA mediante la cua TELEFONIA E INTERNET Línea del SMA m	as siguiente del SMA m tNET Líne o a Interne I SMA med MA median	e definicion ediante la c sa del SMA t liante la cui	Se tienen en cuenta las siguiente definiciones: TELEFONIA Línea del SMA mediante la cual se provee únicamente el servicio de telefonía (voz) para la comunicación co TELEFONIA Línea del SMA mediante la cual se provee el servicio de telefonía (voz) para la comunicación c « el servicio de acceso a Internet. INTERNET Línea del SMA mediante la cual se provee únicamente el acceso a Internet Móvil en cualquier equipo terminal DATOS Línea del SMA mediante la cual se realiza intercambio de datos sin contemplar acceso a Internet o telefonía.	e únicamer cual se pro únicamente rrcambio de	nte el servici wee el servi e el acceso a e datos sin c	io de telefo cio de telef a Internet A contemplar	nía (voz) p ionía (voz) Aóvil en cu acceso <u>a</u> l	ara la comu para la com alquier equi	inicación (iunicación po termina efonía.	con cualquier I con cualquie I	abonado o r abonado	cliente del serv o cliente del ser	Se tienen en cuenta las siguiente definiciones: TELEFONIA Línea del SMA mediante la cual se provee únicamente el servicio de telefonía (voz) para la comunicación con cualquier abonado o cliente del servicio de telefonía fija o móvil avanzado. TELEFONIA Línea del SMA mediante la cual se provee el servicio de telefonía (voz) para la comunicación con cualquier abonado o cliente del servicio de telefonía fija o móvil avanzado « servicio de acceso a lnternet. NTERNET Línea del SMA mediante la cual se provee únicamente el acceso a Internet Móvil en cualquier equipo terminal DATOS Línea del SMA mediante la cual se realiza intercambio de datos sin contemplar acceso a Internet o telefonía.	o móvil av a o móvil a	anzado. vanzado.
Nota 2:	En líneas o	de Telefonía	están con	tabilizadas	En líneas de Telefonía están contabilizadas las líneas de Terminales de Uso Público	: Terminale	es de Uso Pu	íblico.									
Nota 3:	Se actuali: Nro. GNR	Se actualizó el número de Líneas Activas de la CNT Nro. GNRI-GREG-09-00383-2016 de 02 de Marzo o	o de Línea: 00383-201	s Activas de 6 de 02 de		en el mes d 116.	e Enero de	2016 debic	do a una co	orreción ing	resada pc	EP en el mes de Enero de 2016 debido a una correción ingresada por la Prestadora mediante oficio le 2016.	ra median	te oficio			
Nota 4:	Se actuali: activas, ni	Se actualizó el número de Líneas Activas <u>activas,</u> ni la participación de mercado®	o de Línea: ción de me	s Activas Pı ercadoll.	repago y Pos	tpago de C	ONECEL de	l mes de N	larzo de 20	016 debido	a una cor.	reción ingres:	ada por la	Prestadora. No	Se actualizó el número de Líneas Activas Prepago y Postpago de CONECEL del mes de Marzo de 2016 debido a una correción ingresada por la Prestadora. No se alteró el número total de líneas activas, ni la participación de mercado®.	total de l	ineas
Nota 5:	Datos actı	ualizados de	l mes de C	Octubre 201	Datos actualizados del mes de Octubre 2016, solventadas inconsistencias en formularios	das inconsis	stencias en	formulario	Š								
Nota 6:	La informa	ación de OT	ECEL S.A. p	ara el mes	La información de OTECEL S.A. para el mes de junio de 2017 se actualizó con la enviada por el operador	2017 se ac	tualizó con	la enviada	por el ope	rador							
Nota 7:	La inform:	ación de OT	ECEL S.A. p	ara el mes	La información de OTECEL S.A. para el mes de octubre de 2017 se actualizó con la enviada por el operador	de 2017 se	actualizó co	on la envia	da por el c	operador							
Nota 8:	La inform	ación de OT	ECEL S.A. F	oara el mes	La información de OTECEL S.A. para el mes de noviembre de 2017 se actualizó con la enviada por el operador	re de 2017	se actualiz	ó con la en	wiada por	el operador							
Nota 9:	La informi	ación de OT	ECEL S.A. F	oara el mes	La información de OTECEL S.A. para el mes de abril de 2018 se actualizó con la corrección enviada por el operador	2018 se act	tualizó con l	a correcció	ón enviada	por el oper	rador						

BIBLIOGRAFÍA

- Ambiental, I. D. (2016). Sitio Web. Misterio del ambiente. www.ambiente.gob.ec: http://www.ambiente.gob.ec/wpcontent/uploads/downloads/2012/09/c onstitucion_de_bolsillo_final.pdf
- **Arcotel.** (mayo de 2018). Informe. Registros administrativos arcotel. líneas activas por servicio: http://www.arcotel.gob.ec/estadisticas-2/
- Arq. Henry lazo alvarado, arq. .Informe.Wilson barriga v., econ. María lazo a., arq. Yolanda chumbi n. (octubre de 2015). Plan de desarrollo y ordenamiento territorial de la troncal. http://app.sni.gob.ec/sni-link/sni/portal_sni/data_sigad_plus/sigadplusdiagnostico/0360016660 001_diagnostico_27-10-2015_17-18-45.pdf
- Ascencio, t. (23 de junio de 2014). Tesis http://tesis.pucp.edu.pe/repositorio/bitstream/handle/123456789/594 1/kristiam_torres_desarrollo_de_un_dispositivo_jammer_para_el_blo queo_de_se%c3%91al_gsm.pdf?sequence=1&isallowed=y
- **Becvar, z. (2015).** Entrevista. Innovative methodology for promising vet areas. Improvet, 11-12. Obtenido de improvet.cvut.cz.
- Calahorrano, m. J. (febrero de 2013). Trabajo de Titulacion. Dspace ups. dspace.ups.edu.ec:
 https://dspace.ups.edu.ec/bitstream/123456789/4170/1/ups-qt03536.pdf
- Cedeño, e. (28 de mayo de 2013). Sitio web . Digibis. www.digibis.com:

- http://www.digibis.com/digibib.demo/es/catalogo_imagenes/grupo.cmd?path=1000080
- Cnt. (12 de enero de 2014). Informe Cnt.corporativo.cnt.gob.ec: http://corporativo.cnt.gob.ec/wp-content/uploads/2014/07/libro-cnt-web.pdf
- **Correa, a. (2014).** Trabajo de titulacionAnálisis técnico de la pérdida de señal de. Tesis de Grado. Univerisidad de guayaquil, guayaquil.
- Gil, j. (2017). Sitio web. Evolución de las comunicaciones moviles. Telecos.cat, https://www.interempresas.net/electronica/articulos/197260-evolucion-de-las-comunicaciones-moviles-(3-parte).html
- **Gsma.** (2015). Gsma. Informe www.gsma.com: https://www.gsma.com/latinamerica/wp-content/uploads/2015/02/calidad-servicios-moviles-latam-2015.pdf
- Herrarte, m. (junio de 2013). Tesis. Biblioteca universidad san carlos de guatemala. biblioteca.usac.edu.gt: http://biblioteca.usac.edu.gt/tesis/08/08_0344_eo.pdf
 Inec, e. T. (2010). Fascículo provincial cañar. inec: http://www.ecuadorencifras.gob.ec/wp-content/descargas/manu-lateral/resultados-provinciales/canar.pdf
- **Londoño, y. (2016).** Tesis. Repositorio universidad pedagogica nacional. http://repositorio.pedagogica.edu.co/bitstream/handle/20.500.12209/ 2028/te-19240.pdf?sequence=1&isallowed=y
- Maps, g. (2018). Sitio web. Google maps.

 https://www.google.com/maps/place/la+troncal/@-2.4378888,-

- 79.338236,9598a,35y,270h/data=!3m1!1e3!4m5!3m4!1s0x91cd557c 75d29e59:0xcc4c00d51a88a93e!8m2!3d-2.4204637!4d-79.3437394
- **Melly, f. (2015).** Trabajo de titulación .Porque tenemos tan mala señal telefonica (y que podemos hacer al respecto). Perusmart, 1. http://www.perusmart.com/por-que-tenemos-tan-mala-senal-telefonica-y-que-podemos-hacer-al-respecto/
- **Mildred cajas.** (Julio de 2015). Tesis. Repositorio universidad de las fuerzas armadas espe. repositorio.espe.edu.ec: http://repositorio.espe.edu.ec/jspui/handle/21000/10096
- Moya, j. H. (2017). Informe Telecomunicaciones. Tecnologías, redes y servicios. 2ª edición actualizada. Madrid: ra-ma. https://books.google.com.ec/books?id=cra-dwaaqbaj&pg=pt374&lpg=pt374&dq=base+de+estacion+de+control+bsc&source=bl&ots=k8flbzlmrw&sig=n1freqgac6brdmp8fjyghy12qcu &hl=es&sa=x&ved=0ahukewiok5y8_stbahul21mkhvpkcfw4fbdoaqgq mae#v=onepage&q=bsc&f=false
- Murillo, j. (mayo de 2012). Informe. Exa by teleinformatica. www.exabyteleinformatica.com: https://www.exabyteinformatica.com/uoc/informatica/tecnologia_y_de sarrollo_en_dispositivos_moviles/tecnologia_y_desarrollo_en_dispositivos_moviles_(modulo_2).pdf
- Rabanos, j. (2015). Informe Comunicaciones moviles. Madrid: centro de estudios ramon areces. S.a.
- Ramirez, r. (2017). Sitio web. Gestión de proyectos de instalaciones de telecomunicaciones. Madrid: parainfo.

- Reyes, j. (20 de julio de 2016). Tesis. Repositorio universidad de guayaquil.
 repositorio.ug.edu.ec:http://repositorio.ug.edu.ec/bitstream/redug/205
 67/1/jairo-correcci%c3%93n.pdf
- Silva, c. (junio de 2017). Tesis. Escuela politecnica nacional. bibdigital.epn.edu.ec: http://bibdigital.epn.edu.ec/bitstream/15000/17386/1/cd-7886.pdf
- Telecomunicaciones, (2017).Informe. m. D. Ministerio de la sociedad informacion. telecomunicaciones V de de www.telecomunicaciones.gob.ec: https://www.telecomunicaciones.gob.ec/parametros-de-calidad-masestrictos-para-la-telefonia-movil-seran-controlados-desde-el-primerode-julio/
- Vargas, b. (31 de mayo de 2017). Tesis. Repositorio universidad de guayaquil. Obtenido de repositorio.ug.edu.ec: http://repositorio.ug.edu.ec/bitstream/redug/27295/1/tesis%20vargas%20ordoñez%20%20byron.pdf
- Vasquez, v. R. (2012). Informe. Desarrollo de las tecnologías de cuarta generación en las comunicaciones móviles 4g. Cientifica, 85-96. www.redicces.org.sv.