

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/53
Paper 5 Mechanics	2 (M2)		May/June 2017
			1 hour 15 minutes
Candidates answer	on the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

Where a numerical value for the acceleration due to gravity is needed, use 10 m s^{-2} .

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50.

BLANK PAGE

	ction when the						
						•••••	
	•••••						
•••••				,	••••••		•••••
	•••••						•••••
•••••	,		,	,	•••••	•••••	•••••
						•••••	
	•••••	•••••	•••••	•••••			
						•••••	• • • • • •
•••••	•••••				•••••	•••••	•••••
						•••••	
	•••••					•••••	• • • • • •
	•••••						
•••••	•		•••••		•••••	••••••	
	•••••	•••••	•••••	•••••			
							•••••
	•••••	,			•••••	•••••	•••••
						•••••	· • • • • • •
		••••					

One end of a light inextensible string is attached to a fixed point A. The other end of the string is attached to a particle P of mass $m \log m$ kg which hangs vertically below A. The particle is also attached to one end of a light elastic string of natural length 0.25 m. The other end of this string is attached to a point B which is 0.6 m from P and on the same horizontal level as P. Equilibrium is maintained by a horizontal force of magnitude 7 N applied to P (see Fig. 1).

(i)	Calculate the modulus of elasticity of the elastic string.	[2]

Fig. 2

P is released from rest by removing the 7 N force. In its subsequent motion P first comes to instantaneous rest at a point where BP = 0.3 m and the elastic string makes an angle of 30° with the horizontal (see Fig. 2).

(ii)	Find the value of m . [4]

3

An object is made from a uniform solid hemisphere of radius $0.56 \,\mathrm{m}$ and centre O by removing a hemisphere of radius $0.28 \,\mathrm{m}$ and centre O. The diagram shows a cross-section through O of the object.

Calculate the distance of the centre of mass of the object from O .	[4]
[The volume of a hemisphere is $\frac{2}{3}\pi r^3$.]	
	•••••

The object has weight 24 N. A uniform hemisphere H of radius 0.28 m is placed in the hollow part of the object to create a non-uniform hemisphere with centre O. The centre of mass of the non-uniform hemisphere is 0.15 m from O.

Calculate the weight of H .	[3]

4

p	rticle is projected from a point O on horizontal ground. The initial components of the velocity of article are $10 \mathrm{ms^{-1}}$ horizontally and $15 \mathrm{ms^{-1}}$ vertically. At time t s after projection, the horizontal vertically upwards displacements of the particle from O are x m and y m respectively.
)	Express x and y in terms of t , and hence find the equation of the trajectory of the particle. [4]
•	
•	
•	
•	
•	
•	
•	

The horizontal ground is at the top of a vertical cliff. The point O is at a distance d m from the edge of the cliff. The particle is projected towards the edge of the cliff and does not strike the ground before it passes over the edge of the cliff.

(ii)	Show that d is less than 30.	[2]
(iii)	Find the value of x when the particle is 14 m below the level of O .	[2]
(111)	This the value of a when the particle is 1 vin selow the level of 6.	[-]

A uniform semicircular lamina of radius 0.7 m and weight 14 N has diameter AB. The lamina is in a vertical plane with A freely pivoted at a fixed point. The straight edge AB rests against a small smooth peg P above the level of A. The angle between AB and the horizontal is 30° and AP = 0.9 m (see diagram).

(i)	Show that the magnitude of the force exerted by the peg on the lamina is 7.12 N, correct to 3 significant figures. [4]

	angle w													[3]
		•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••
			•••••	•••••	••••••	•••••	•••••	•••••		•••••	•••••	•••••	•••••	•••••
		•••••	•••••		•••••					•••••				
			•••••							•••••	•••••	•••••		
												•••••		
••••••	••••••	••••••	•••••	••••••	••••••	•••••	••••••	••••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
•••••			•••••	•••••	••••••	•••••	•••••	•••••	••••••	•••••	• • • • • • • •	• • • • • • • • •	•••••	•••••
•••••		•••••	•••••		•••••	•••••	••••••	•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••		•••••	• • • • • • • • •	• • • • • • • • •	•••••	•••••
•••••		•••••	•••••		•••••	•••••	•••••	•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	
			•••••		•••••	•••••	•••••	•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••
			•••••											
												••••		
											• • • • • • • • • • • • • • • • • • • •			
••••••	••••••	•••••	•••••	••••••	••••••	•••••	••••••	•••••	••••••	•••••	•	• • • • • • • • •	•••••	•••••
• • • • • • • • • • • • • • • • • • • •		••••••	•••••	•••••	•••••	•••••	••••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	••••••	•••••
• • • • • • • • • • • • • • • • • • • •	······································	•••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • •	• • • • • • • • •	•••••	•••••
			•••••	••••••	••••••		•••••	•••••		•••••	•••••	•••••	•••••	

6

mod mov	article P of mass 0.15 kg is attached to one end of a light elastic string of natural length 0.4 m and ulus of elasticity 12 N. The other end of the string is attached to a fixed point A . The particle P es in a horizontal circle which has its centre vertically below A , with the string inclined at θ° to vertical and $AP = 0.5$ m.
(i)	Find the angular speed of P and the value of θ . [5]

energy of P.			[4
	 •••••	•••••	•••••
	 •••••	•••••	•••••
	 		•••••

- A particle *P* of mass 0.5 kg is at rest at a point *O* on a rough horizontal surface. At time t = 0, where t is in seconds, a horizontal force acting in a fixed direction is applied to *P*. At time t s the magnitude of the force is $0.6t^2$ N and the velocity of *P* away from *O* is v m s⁻¹. It is given that *P* remains at rest at *O* until t = 0.5.
 - (i) Calculate the coefficient of friction between P and the surface, and show that $\frac{dv}{dt} = 1.2t^2 - 0.3$ for t > 0.5. [3] (ii) Express v in terms of t for t > 0.5. [3]

		• • • • • • • • • • • • • • • • • • • •
		•••••
(***)		507
(111)	Find the displacement of P from O when $t = 1.2$.	[3]
		• • • • • • • • • • • • • • • • • • • •
		••••••
		,

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.