Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I

Wojciech Kotłowski

Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl

pok. 2 (CW) tel. (61)665-2936 konsultacje: wtorek 15:00-16:30 Slajdy dostępne pod adresem: http://www.cs.put.poznan.pl/wkotlowski/

02.12.2012

Spis treści

1 Metoda stochastycznego spadku wzdłuż gradientu

2 Stochastyczny gradient dla regresji liniowej

3 Przykład zastosowania SGD

Spis treści

1 Metoda stochastycznego spadku wzdłuż gradientu

2 Stochastyczny gradient dla regresji liniowe

3 Przykład zastosowania SGD

Metoda spadku wzdłuż gradientu (Cauchy'ego)

Minimalizacja funkcji L(w):

- $oldsymbol{\mathbb{Z}}$ Zaczynamy od wybranego rozwiązania startowego, np. $oldsymbol{w}_0 = oldsymbol{0}.$
- 2 Dla $k = 1, 2, \dots$ aż do zbieżności
 - Wyznaczamy gradient w punkcie w_{k-1} , $\nabla_L(w_{k-1})$.
 - Robimy krok wzdłuż negatywnego gradientu:

$$\boldsymbol{w}_k = \boldsymbol{w}_{k-1} - \alpha_k \nabla_L(\boldsymbol{w}_{k-1}),$$

gdzie α_k jest długością kroku ustaloną np. przez przeszukiwanie liniowe.

Specyficzna postać funkcji celu

W większości problemów uczenia maszynowego funkcja celu ma następującą postać:

$$L(\boldsymbol{w}) = \sum_{i=1}^{n} \ell_i(\boldsymbol{w})$$

Specyficzna postać funkcji celu

W większości problemów uczenia maszynowego funkcja celu ma następującą postać:

$$L(\boldsymbol{w}) = \sum_{i=1}^{n} \ell_i(\boldsymbol{w})$$

 $lue{L}$ jest sumarycznym błędem na zbiorze uczącym.

Specyficzna postać funkcji celu

W większości problemów uczenia maszynowego funkcja celu ma następującą postać:

$$L(\boldsymbol{w}) = \sum_{i=1}^{n} \ell_i(\boldsymbol{w})$$

- *L* jest sumarycznym błędem na zbiorze uczącym.
- ℓ_i to błędy na poszczególnych obserwacjach.

Regresja liniowa – metoda najmniejszych kwadratów

$$L(\boldsymbol{w}) = \sum_{i=1}^{N} \underbrace{(y_i - \boldsymbol{w}^{\top} \boldsymbol{x}_i)^2}_{\ell_i(\boldsymbol{w})}$$

Regresja liniowa – metoda najmniejszych kwadratów

$$L(\boldsymbol{w}) = \sum_{i=1} \underbrace{(y_i - \boldsymbol{w}^\top \boldsymbol{x}_i)^2}_{\ell_i(\boldsymbol{w})}$$

Regresja liniowa – min. wartości bezwzględnych błędów

$$L(\boldsymbol{w}) = \sum_{i=1}^{n} \underbrace{|y_i - \boldsymbol{w}^{\top} \boldsymbol{x}_i|}_{\ell_i(\boldsymbol{w})}$$

Regresja liniowa – metoda najmniejszych kwadratów

$$L(\boldsymbol{w}) = \sum_{i=1} \underbrace{(y_i - \boldsymbol{w}^\top \boldsymbol{x}_i)^2}_{\ell_i(\boldsymbol{w})}$$

Regresja liniowa – min. wartości bezwzględnych błędów

$$L(\boldsymbol{w}) = \sum_{i=1}^{n} \underbrace{|y_i - \boldsymbol{w}^{\top} \boldsymbol{x}_i|}_{\ell_i(\boldsymbol{w})}$$

Klasyfikacja liniowa – regresja logistyczna:

$$L(\boldsymbol{w}) = \sum_{i=1}^{n} \underbrace{\log \left(1 + \exp(-y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i)\right)}_{\ell_i(\boldsymbol{w})}$$

Regresja liniowa – metoda najmniejszych kwadratów

$$L(\boldsymbol{w}) = \sum_{i=1} \underbrace{(y_i - \boldsymbol{w}^{\top} \boldsymbol{x}_i)^2}_{\ell_i(\boldsymbol{w})}$$

Regresja liniowa – min. wartości bezwzględnych błędów

$$L(\boldsymbol{w}) = \sum_{i=1}^{N} \underbrace{|y_i - \boldsymbol{w}^{\top} \boldsymbol{x}_i|}_{\ell_i(\boldsymbol{w})}$$

Klasyfikacja liniowa – regresja logistyczna:

$$L(\boldsymbol{w}) = \sum_{i=1}^{n} \underbrace{\log \left(1 + \exp(-y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i)\right)}_{\ell_i(\boldsymbol{w})}$$

Klasyfikacja liniowa – funkcja zawiasowa:

$$L(\boldsymbol{w}) = \sum_{i=1}^{n} \underbrace{\left(1 - y_{i} \boldsymbol{w}^{\top} \boldsymbol{x}_{i}\right)_{+}}_{\ell_{i}(\boldsymbol{w})}$$

Idea

Zamiast obliczać gradient na całej funkcji L, w danym kroku oblicz gradient tylko na pojedynczym elemencie ℓ_i .

Idea

Zamiast obliczać gradient na całej funkcji L, w danym kroku oblicz gradient tylko na pojedynczym elemencie ℓ_i .

■ Skąd nazwa "stochastyczny"? Ponieważ oryginalnie wybiera się element ℓ_i losowo. . .

Idea

Zamiast obliczać gradient na całej funkcji L, w danym kroku oblicz gradient tylko na pojedynczym elemencie ℓ_i .

- Skąd nazwa "stochastyczny"? Ponieważ oryginalnie wybiera się element ℓ_i losowo. . .
- ... ale w praktyce zwykle przechodzi się po całym zbiorze danych w losowej kolejności.

Minimalizacja funkcji $L({m w})$:

Minimalizacja funkcji L(w):

 $oldsymbol{1}$ Zaczynamy od wybranego rozwiązania startowego, np. $oldsymbol{w}_0 = oldsymbol{0}.$

Minimalizacja funkcji L(w):

- $oldsymbol{\mathbb{Z}}$ Zaczynamy od wybranego rozwiązania startowego, np. $oldsymbol{w}_0 = oldsymbol{0}$.
- 2 Dla $k = 1, 2, \dots$ aż do zbieżności

Minimalizacja funkcji L(w):

- $oldsymbol{\mathbb{Z}}$ Zaczynamy od wybranego rozwiązania startowego, np. $oldsymbol{w}_0 = oldsymbol{0}.$
- 2 Dla $k = 1, 2, \dots$ aż do zbieżności
 - $\quad \blacksquare \ \, \mathsf{Wylosuj} \,\, i \in \{1, \dots, n\}.$

Minimalizacja funkcji L(w):

- $oldsymbol{\mathbb{Z}}$ Zaczynamy od wybranego rozwiązania startowego, np. $oldsymbol{w}_0 = oldsymbol{0}$.
- 2 Dla $k=1,2,\ldots$ aż do zbieżności
 - Wylosuj $i \in \{1, \ldots, n\}$.
 - Wyznaczamy gradient funkcji ℓ_i w punkcie w_{k-1} , $\nabla_{\ell_i}(w_{k-1})$.

Minimalizacja funkcji L(w):

- $oldsymbol{\mathbb{Z}}$ Zaczynamy od wybranego rozwiązania startowego, np. $oldsymbol{w}_0 = oldsymbol{0}$.
- 2 Dla $k = 1, 2, \dots$ aż do zbieżności
 - Wylosuj $i \in \{1, \ldots, n\}$.
 - Wyznaczamy gradient funkcji ℓ_i w punkcie $oldsymbol{w}_{k-1}$, $abla_{\ell_i}(oldsymbol{w}_{k-1})$.
 - Robimy krok wzdłuż negatywnego gradientu:

$$\boldsymbol{w}_k = \boldsymbol{w}_{k-1} - \alpha_k \nabla_{\ell_i}(\boldsymbol{w}_{k-1}),$$

gdzie α_k jest długością kroku.

 Szybkość: obliczenie gradientu wymaga wzięcia tylko jednej obserwacji.

- Szybkość: obliczenie gradientu wymaga wzięcia tylko jednej obserwacji.
- Skalowalność: cały zbiór danych nie musi nawet znajdować się w pamięci operacyjnej.

- Szybkość: obliczenie gradientu wymaga wzięcia tylko jednej obserwacji.
- Skalowalność: cały zbiór danych nie musi nawet znajdować się w pamięci operacyjnej.
- Prostota: gradient funkcji ℓ_i daje bardzo prosty wzór na modyfikację wag.

- Szybkość: obliczenie gradientu wymaga wzięcia tylko jednej obserwacji.
- Skalowalność: cały zbiór danych nie musi nawet znajdować się w pamięci operacyjnej.
- Prostota: gradient funkcji ℓ_i daje bardzo prosty wzór na modyfikację wag.
- Stochastyczny gradient jest obecnie najbardziej popularną metodą stosowaną w uczeniu maszynowym! (stochastic gradient descent – SGD).

Wolna zbieżność: czasem gradient stochastyczny zbiega wolno i wymaga wielu iteracji po zbiorze uczącym.

- Wolna zbieżność: czasem gradient stochastyczny zbiega wolno i wymaga wielu iteracji po zbiorze uczącym.
- Problem z ustaleniem długości kroku α_k : wyznaczenie α_k przez przeszukiwanie liniowe nie przynosi dobrych rezultatów, ponieważ optymalizujemy oryginalnej funkcji L tylko jej jeden składnik ℓ_i .

- Wolna zbieżność: czasem gradient stochastyczny zbiega wolno i wymaga wielu iteracji po zbiorze uczącym.
- Problem z ustaleniem długości kroku α_k : wyznaczenie α_k przez przeszukiwanie liniowe nie przynosi dobrych rezultatów, ponieważ optymalizujemy oryginalnej funkcji L tylko jej jeden składnik ℓ_i .
- Zalety znacznie przewyższają wady!

Zwykle nie losuje się obserwacji, ale przechodzi się po zbiorze danych w losowej kolejności.

- Zwykle nie losuje się obserwacji, ale przechodzi się po zbiorze danych w losowej kolejności.
- Zbieżność wymaga często przejścia parokrotnie po całym zbiorze danych (jednokrotne przejście nazywa się epoką).

- Zwykle nie losuje się obserwacji, ale przechodzi się po zbiorze danych w losowej kolejności.
- Zbieżność wymaga często przejścia parokrotnie po całym zbiorze danych (jednokrotne przejście nazywa się epoką).
- Metody ustalania współczynników długości kroku α_k :

- Zwykle nie losuje się obserwacji, ale przechodzi się po zbiorze danych w losowej kolejności.
- Zbieżność wymaga często przejścia parokrotnie po całym zbiorze danych (jednokrotne przejście nazywa się epoką).
- Metody ustalania współczynników długości kroku α_k :
 - Ustalamy stałą wartość $\alpha_k = \alpha$

- Zwykle nie losuje się obserwacji, ale przechodzi się po zbiorze danych w losowej kolejności.
- Zbieżność wymaga często przejścia parokrotnie po całym zbiorze danych (jednokrotne przejście nazywa się epoką).
- Metody ustalania współczynników długości kroku α_k :
 - Ustalamy stałą wartość $\alpha_k = \alpha$ \Longrightarrow Zwykle tak się robi w praktyce, działa dobrze ale wymaga ustalenia α metodą prób i błędów

Stochastyczny gradient w praktyce

- Zwykle nie losuje się obserwacji, ale przechodzi się po zbiorze danych w losowej kolejności.
- Zbieżność wymaga często przejścia parokrotnie po całym zbiorze danych (jednokrotne przejście nazywa się epoką).
- Metody ustalania współczynników długości kroku α_k :
 - Ustalamy stałą wartość $\alpha_k = \alpha$ \Longrightarrow Zwykle tak się robi w praktyce, działa dobrze ale wymaga ustalenia α metodą prób i błędów
 - lacksquare Bierzemy wartość kroku malejącą jak $\sim \frac{1}{\sqrt{k}}$: $\alpha_k = \alpha/\sqrt{k}$

Stochastyczny gradient w praktyce

- Zwykle nie losuje się obserwacji, ale przechodzi się po zbiorze danych w losowej kolejności.
- Zbieżność wymaga często przejścia parokrotnie po całym zbiorze danych (jednokrotne przejście nazywa się epoką).
- Metody ustalania współczynników długości kroku α_k :
 - Ustalamy stałą wartość $\alpha_k = \alpha$ \Longrightarrow Zwykle tak się robi w praktyce, działa dobrze ale wymaga ustalenia α metodą prób i błędów
 - Bierzemy wartość kroku malejącą jak $\sim \frac{1}{\sqrt{k}}$: $\alpha_k = \alpha/\sqrt{k}$ \Longrightarrow Zapewniona zbieżność, ale czasem może zbiegać zbyt wolno.

Spis treści

1 Metoda stochastycznego spadku wzdłuż gradientu

2 Stochastyczny gradient dla regresji liniowej

3 Przykład zastosowania SGD

■ Funkcja celu:

$$L(oldsymbol{w}) = \sum_{i=1}^n \underbrace{(y_i - oldsymbol{w}^ op oldsymbol{x}_i)^2}_{\ell_i(oldsymbol{w})}$$

Funkcja celu:

$$L(oldsymbol{w}) = \sum_{i=1}^n \underbrace{(y_i - oldsymbol{w}^ op oldsymbol{x}_i)^2}_{\ell_i(oldsymbol{w})}$$

■ Pochodne funkcji $\ell_i(w)$:

$$\frac{\partial \ell_i(\boldsymbol{w})}{\partial w_i} = -2(y_i - \boldsymbol{w}^{\top} \boldsymbol{x}_i) x_{ij}$$

Funkcja celu:

$$L(oldsymbol{w}) = \sum_{i=1}^n \underbrace{(y_i - oldsymbol{w}^ op oldsymbol{x}_i)^2}_{\ell_i(oldsymbol{w})}$$

■ Pochodne funkcji $\ell_i(w)$:

$$\frac{\partial \ell_i(\boldsymbol{w})}{\partial w_j} = -2(y_i - \boldsymbol{w}^\top \boldsymbol{x}_i) x_{ij}$$

■ Gradient funkcji $\ell_i(\boldsymbol{w})$:

$$\nabla_{\ell_i}(\boldsymbol{w}) = -2(y_i - \boldsymbol{w}^\top \boldsymbol{x}_i) \boldsymbol{x}_i$$

SGD dla regresji liniowej LS

- 1 Zaczynamy od $w_0 = 0$.
- 2 Dla $k=1,2,\ldots$ aż do zbieżności
 - Wylosuj $i \in \{1, \dots, n\}$.
 - Wyznaczamy gradient ℓ_i w punkcie \boldsymbol{w}_{k-1} , $-2(y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i) \boldsymbol{x}_i$.
 - Robimy krok wzdłuż negatywnego gradientu:

$$\boldsymbol{w}_k = \boldsymbol{w}_{k-1} + 2\alpha_k(y_i - \boldsymbol{w}^{\top}\boldsymbol{x}_i)\boldsymbol{x}_i$$

SGD dla regresji liniowej LS

- \mathbf{II} Zaczynamy od $\boldsymbol{w}_0 = \mathbf{0}$.
- 2 Dla $k=1,2,\ldots$ aż do zbieżności
 - Wylosuj $i \in \{1, \dots, n\}$.
 - Wyznaczamy gradient ℓ_i w punkcie \boldsymbol{w}_{k-1} , $-2(y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i) \boldsymbol{x}_i$.
 - Robimy krok wzdłuż negatywnego gradientu:

$$\boldsymbol{w}_k = \boldsymbol{w}_{k-1} + 2\alpha_k(y_i - \boldsymbol{w}^{\top}\boldsymbol{x}_i)\boldsymbol{x}_i$$

■ Krok w kierunku wektora x_i , z długością kroku równą $2\alpha_k(y_i - \boldsymbol{w}^{\top} \boldsymbol{x}_i)$.

SGD dla regresji liniowej LS

- \blacksquare Zaczynamy od $w_0 = 0$.
- 2 Dla $k=1,2,\ldots$ aż do zbieżności
 - Wylosuj $i \in \{1, \dots, n\}$.
 - Wyznaczamy gradient ℓ_i w punkcie \boldsymbol{w}_{k-1} , $-2(y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i) \boldsymbol{x}_i$.
 - Robimy krok wzdłuż negatywnego gradientu:

$$\boldsymbol{w}_k = \boldsymbol{w}_{k-1} + 2\alpha_k(y_i - \boldsymbol{w}^{\top}\boldsymbol{x}_i)\boldsymbol{x}_i$$

- Krok w kierunku wektora x_i , z długością kroku równą $2\alpha_k(y_i \boldsymbol{w}^{\top} \boldsymbol{x}_i)$.
- Długość kroku proporcjonalna do "przeszacowania predykcji".

Spis treści

1 Metoda stochastycznego spadku wzdłuż gradientu

2 Stochastyczny gradient dla regresji liniowej

3 Przykład zastosowania SGD

Przykład: szacowanie czasu pracy programistów

X	Y
Rozmiar programu	Oszacowany czas
186	130
699	650
132	99
272	150
291	128
331	302
199	95
1890	945
788	368
1601	961

Przykład: szacowanie czasu pracy programistów

v

X	Y
Rozmiar programu	Oszacowany czas
186	130
699	650
132	99
272	150
291	128
331	302
199	95
1890	945
788	368
1601	961

 \mathbf{v}

Przykład: szacowanie czasu pracy programistów

Rozmiar programu	Oszacowany czas
186	130
699	650
132	99
272	150
291	128
331	302
199	95

X

- **Z**aczynamy z rozwiązaniem $w = (w_0, w_1) = 0$.
- Krok: $\alpha_k = 0.5/\sqrt{k}$.
- Jednostki zostały zamienione na 1000min i 1000 lini kodu, aby uniknąć dużych liczb.

(ujednolicenie skali jest istotne dla zbiezności metody!)

iteracja 1

iteracja 4

iteracja 15

iteracja 35

iteracja 40

iteracja 45

Koniec na dzisiaj :)