

8780/8739

SERVICEANLEITUNG SERVICE INSTRUCTIONS INSTRUCTIONS DE SERVICE

REVOX

B739 MICROCOMPUTER CONTROLLED SYNTHESIZER FM TUNER PREAMPLIFIER

STUDER REVOX

B780/B739

SERVICEANLEITUNG
SERVICE INSTRUCTIONS
INSTRUCTIONS DE SERVICE

Subject to change
Prepared and edited by
STUDER REVOX
TECHNICAL DOKUMENTATION
Althardstrasse 10
CH-8105 Regensdorf-Zürich

INHALTSVERZEICHNIS		CONTENTS	REPERTOIRE S	Seite/Pag	
1.	ALLGEMEINES	GENERAL	GENERALITES		
1.1	Indexliste der Bedienungselemente	Index to the operating controls	Liste des organes de commande	1/1	
1.1.1	Tunerteil	Tuner section	Section Tuner	1/1	
1.1.2	Verstärkerteil/Vorverstärkerteil	Amplifier/preamplifier section	Section Amplificateur/Préamplificateur	1/2	
1.2	Anschlussfeld	Connector panel	Panneau de raccordement	1/3	
1.2.1	Anschlussfeld B780	Connector panel B780	Panneau de raccordement du B780	1/3	
1.2.2	Anschlussfeld B739	Connector panel B739	Panneau de raccordement du B739	1/4	
1.2.3	Buchsenbelegungen	Socket layouts	Câblage des prises	1/5	
2.	AUSBAU	DISASSEMBLY	DEMONTAGE	2/1	
2.1	Entfernen des oberen Deckbleches	Removing the top cover plate	Dépose de la plaque supérieure	2/1	
2.2	Entfernen des unteren Deckbleches	Removing the bottom cover plate	Dépose de la plaque du fond	2/1	
2.3	Entfernen der seitlichen Abdeckungen	Removing the side covers	Dépose des plaques latérales	2/2	
2.4	Kühlkörper inkl. Endstufenprints ausbauen (nur B780)	Removing the heat sink incl. power stage PCB (B780 only)	Dépose des radiateurs et des circuits de l'étage de puissance (B780 seulement) 2/2	
2.5	Hintere Abdeckung ausbauen (B739)	Removing the rear cover (B739)	Dépose de la plaque arrière (B739)	2/3	
2.6	Anschlussfeld-Abdeckung ausbauen	Removing the terminal board cover	Dépose de la façade du panneau de		
	(B739)	(B739)	connexion (B739)	2/3	
2.7	Bedienungseinheit ausbauen	Removing the operating panel	Dépose de l'unité de commande	2/3	
2.8	Frontplatte ausbauen	Removing the front panel	Dépose de la plaque frontale	2/4	
2.9	Lampe für die Beleuchtung des Signalstärke-Instruments auswech-	Replacing the illumination lamp of signal strength meter	Remplacement de l'éclairage de l'in- dicateur d'intensité du signal	2/4	
2.10	seln Signalstärke-Instrument auswechseln	Replacing the signal strength meter	Remplacement de l'indicateur d'intensité du signal	2/4	
2.11	Netzschalter ersetzen	Replacing the power switch	Remplacement de l'interrupteur secteur	2/5	
2.12	Netzsicherung auswechseln	Replacing the power line fuse	Remplacement du fusible secteur	2/5	
2.13	Netzteilsicherungen auswechseln	Replacing the power supply fuse	Remplacement des fusibles d'alimentation	2/5	
3.	FUNKTIONSBESCHREIBUNG	DESCRIPTION OF FUNCTIONS	DESCRIPTION DES FONCTIONS	3/1	
3.1 3.1.1	Tunerteil	Tuner section Balance-to-unbalance transformer	Section Tuner	3/1	
	Übertrager (Balun)	(balun)	Translateur (Balun)	3/1	
3.1.2 3.1.3	HF-Eingangsteil 1.166.100	RF-Input section 1.166.100	Etage d'entrée 1.166.100	3/1	
3.1.4	ZF-Verstärker 1.166.120 FM-Demodulator 1.166.130	IF amplifier 1.166.120 FM demodulator 1.166.130	Amplificateur FI 1.166.120	3/2	
3.1.5	Stereo-Decoder 1.166.150	Stereo decoder 1.166.150	Démodulateur FM 1.166.130 Décodeur stéréo 1.166.150	3/ 3 3/ 3	
3.1.6	Frequenzsynthesizer und Lokaloszil- lator	Frequency synthesizer and local oscillator	Synthétiseur de fréquence et oscillateur local	3/4	
3.2	Logik-Teil	Logic section	Section logique	3/7	
3.2.1	Mikroprozessorprint 1.780.260	Microcomputer PCB 1.780.260	Circuit du microprocesseur 1.780 260	3/7	
3.3	Audio-Teil	Audio section	Section audio	3/10	
3.3.1	Meter Circuit and Deemphasis PCB 1.780.155	Meter circuit and de-emphasis PCB 1.780.155	Circuit de désaccentuation et de me- sure 1.780.155	3/1 0	
3.3.2	Audio Connection Unit 1.780.145	Audio connection unit 1.780.145	Unité de connexion audio 1.780.145	3/10	
3.3.3	Preamplifier 1.780.205	Preamplifier 1.780.205	Préamplificateur 1.780.205	3/1 1	
3.3.4	Tone Control PCB 1.780.210	Tone control PCB 1.780.210	Correcteur de tonalité PCB 1.780210	3/12	
3.3.5	Power Amplifier PCB 1.780.105	Power amplifier PCB 1.780.105	Amplificateur de puissance PCB 1.780.105	3/12	
3.3.6	Dolby-Prozessor PCB 1.166.400	Dolby processor PCB 1.166.400	Décodeur Dolby PCB 1.166.400	3/14	
3.4	Netzteil 1.780.110	Power supply 1.780.110	Alimentation 1.780.110	3/14	

4. 4.1 4.2 4.2.1 4.3 4.3.1 4.3.2 4.4	ABGLEICHANLEITUNG Benötigte Messgeräte Allgemeines Kontrolle der Speisespannungen Funktions-Kurztest Tunerteil B780/B739 Verstärkerteil B780 Vorbereitungen für die Abgleichar-	ADJUSTMENT INSTRUCTIONS Required measuring instruments General Checking the supply voltages Brief test for correct functioning Tuner section B780/B739 Amplifier section B780 Preparatory steps for adjustments	PROCEDURE DE REGLAGE Appareils de mesure nécessaires Généralités Contrôle des tensions d'alimentation Contrôle rapide des fonctions Section Tuner B780/B739 Section Amplificateur B780 Préparation aux travaux de réglage	4/1 4/1 4/2 4/3 4/3 4/3 4/4 4/4
4.4.1 4.5	beiten Abgleich der Quarzreferenz des Synthesizers Abgleich des Lokaloszillators und	Calibrating the synthesizer quartz reference Calibrating the local oscillator and	Réglage de la référence à quartz du syn- thétiseur Réglage de l'oscillateur local et du	4/4
4.6	Synthesizers 1.780.151 Abgleich der HF-Kreise	synthesizer 1.780.151 Tuning the RF circuits	synthétiseur 1.780.151	4/5
4.7	Abgleich des ZF-Filters, ZF-Verstär- kers und des Anzeigediskriminators	Adjusting the IF filter, IF amplifier and the display discriminator	Réglage des circuits HF Réglage des filtres FI, de l'amplifica-	4/7
4.8	Abgleich des Stereo-Decoders	Adjusting the stereo decoder	teur FI et du discriminateur Réglage du décodeur stéréo	4/8
4.9	NF-Pegel des Tunersignals einstellen	Adjusting the AF level of the tuner	Réglage de la tension de sortie BF du	4/11
4.10	N/	signal	tuner	4/12
4.10	Verstärkereinstellungen	Amplifier adjustments	Réglage de l'amplificateur	4/13
5.	SCHEMA	SCHEMATICS	SCHEMAS	
6.	ERSATZTEILE-LISTE	PARTS LIST	LISTE DES PIECES DETACHEES	
7.	TECHNISCHE DATEN	TECHNICAL SPECIFICATIONS	CARACTERISTIQUES TECHNIQUES	

Fig. 1.1

1. ALLGEMEINES

1.1 INDEXLISTE DER BEDIENUNGS-ELEMENTE

1.1.1 Tunerteil

- (1) Netzschalter
- (13) Frequenz- und Abstimmanzeige
- (14) Schalter "Nur Stereo-Empfang"
- (15) Automatische Abstimmung oder Eingabe von 25kHz-Schritten
- (16) Schalter für Stummschaltung
- (17) Schalter "letzte Station/neue Eingabe"
- Umschalter "untere oder obere Speichergruppe"/Tipptaste für Null-Eingabe
- (19) Schalter für Mono-Empfang
- (20) Schalter f
 ür reduzierte Übersprechd
 ämpfung
- Schalter für Rauschunterdrückungssystem (Option)
- 22 Stationswahl-Tastenfeld/Zahleneingabetasten 1 9
- (23) Speichereingabetaste

1. GENERAL

1.1 INDEX TO THE OPERATING CONTROLS

1.1.1 Tuner section

- 1) POWER ON STAND BY switch
- (13) Frequency and tuning mode display
- (14) STEREO ONLY switch
- AUTO TUNING or input of 25kHz FREQUENCY STEPS
- (16) MUTING OFF switch
- (17) LAST STATION / NEW ENTRY switch
- (18) Selector button UPPER or LOWER memory group / 0-key of numeric keyboard
- (19) MONO reception switch
- 20 Crosstalk reduction switch (HIGH BLEND)
- 21) NOISE REDUCTION switch (option)
- (22) STATION SELECTOR · KEYBOARD (numeric keys 1 9)
- 23) STORE MEMORY button

1. GENERALITES

1.1 LISTE DES ORGANES DE COMMANDE

1.1.1 Section Tuner

- 1 Interrupteur de mise sous tension
- (13) Affichage de la fréquence et de l'accord
- Commutateur de réception STEREO
 ONLY
- Accord automatique ou composition de la fréquence avec un pas de 25kHz
- (16) Commutateur de mutin
- (17) Touche "dernière station / nouvelle donnée"
- 18 Inverseur de groupes dennémoires / donnée de "0"
- (19) Commutateur de récepton monophonique
- (20) Commutateur d'amortisement de la diaphonie
- Commutateur du réduceur de bruit (en option)
- 22) Clavier de sélection des; **t**ations / donnée de ''1'' à ''9''
- (23) Touche de mise en ménoire des stations

Vorverstärkerausgang (Klinkenbuchse)

24)	Nachentzerrung 75µs	24)	DEEMPHASIS 75µs	24)	Désaccentuation de 75 microsecondes
25)	Ansprechschwelle (schwache Sender werden stummgeschaltet)	25)	THRESHOLD STATION (weak stations are muted)	25)	Seuil d'écoute (les émetteurs faibles sont coupés)
26)	Umschaltschwelle Stereo (schwache Sender werden auf Mono geschaltet)	26	THRESHOLD STEREO (weak stations are switched to mono)	26	Seuil d'écoute stéréo (les émetteurs faibles sont commutés en mono)
27)	Abstimminstrument TUNING	27)	TUNING meter	27)	Indicateur de centrage des stations
28)	Umschalter für die Abstimm-Art	28	CHANGE TUNING MODE	28)	Commutateur du mode d'accord
29	Anzeigeinstrument für die Empfangsstärke	29	SIGNAL STRENGTH meter for FM reception	29	Indicateur d'intensité du signal reçu
30)	Akku-Fach	30)	Battery compartment	30	Compartiment des accumulateurs
(31)	Anzeige Stereo-Empfang (FM-STEREO)	31)	FM STEREO reception indicator	31)	Voyant de réception FM stéréo
1.1.2	Verstärkerteil/Vorverstärkerteil	1.1.2	Amplifier/preamplifier section	1.1.2	Section Amplificateur/Préamplificateur
1	Netzschalter	1	POWER ON · STAND BY switch	1	Interrupteur de mise sous tension
2	Ein-/Ausgangswahltasten	2	Input/output selector keyboard	2	Touches de sélection des entrées
3	Kopfhöheranschluss	3	Head PHONES socket	3	Prise pour casque d'écoute
4	8 Klangregelung	4) (8 Tone control knobs	4)	3)8) Contrôle de la tonalité
5	Überbrückung der Klangregelung	5	Tone control defeat	5	Déconnexion du contrôle de la tonalité
7	Pegelabschwächer –20dB	7	Level attenuator —20dB	7	Atténuateur de volume: -20dB
9	Gehörrichtige Lautstärkenregelung	9	LOUDNESS filter	9	Correction physiologique
10	Schalter für Mono-Wiedergabe	10	Switch for MONO reproduction	10	Commutateur d'écoute monophonique
11)	Filterwahlschalter	11)	FILTER selector switch	11)	Sélecteur de filtres
12	Lautstärke (innen) Balance (aussen)	12	VOLUME (outer) BALANCE (inner) control knobs	12	Volume (intérieur), balance (exterieur)
31)	Anzeigefeld Ausgang (RECORD), Eingang (INPUT)	31)	Display field RECORD (output), INPUT	31)	Affichage des sorties (RECORD), des entrées (INPUT)
32	Lautsprecherausgang A (B739: Vorverstärkerausgang OUTPUT A)	32	Speakers A (B739: preamp OUTPUT A)	32)	Sortie pour haut-parleurs A (B739: sortie A du préamp.)
33	Lautsprecherausgang B (B739: Vorverstärkerausgang OUTPUT B)	33	Speakers B (B739: preamp OUTPUT B)	33	Sortie pour haut-parleurs B (B730: sortie B du préamp.)
34)	Taste für Aufnahme-Ausgang ausschalten	34)	RECORD OUTPUT OFF (disables record output)	34)	Touche d'annulation des sorties d'enregistrement
35)	Taste Aufnahme-Ausgang neu setzen (mit Tasten 2)	35)	RECORD OUTPUT SET (reenables record output in conjunction with button (2))	35)	Touche de programmation des sort ies d'enregistrement (avec touches 2)

Preamplifier output (jack socket)

Sortie du préamplificateur (prise Jack)

Fig. 1.2

1.2 ANSCHLUSSFELD

1.2.1 Anschlussfeld B780

- 1 Plattenspielereingang PHONO
- (2) Hilfs/Reserveeingang AUX
- (3) Tonbandgerät-Eingang TAPE1
- Tonbandgerät-Ausgang TAPE1
- 5 Tonbandgerät-Ein-/Ausgang TAPE2 IN/OUT
- 6 DIN-Buchse PRE OUT/PWR IN (Einschlaufstelle für Filter, Equalizer, etc.)
- (7) Netzanschluss
- (8) Primär-Netzsicherung
- (9) Spannungswähler
- Lautsprecherausgänge (Gruppe A: DIN-Buchsen/Gruppe B: Klemmen)
- (11) Ausgang für Oszilloskop/Input: PWRON von B710 (Option)
- Option, Buchse für Antennenrotorsteuerung
- Antenneneingänge 60 . . . 75 Ohm und 240 . . . 300 Ohm

1.2 CONNECTOR PANEL

1.2.1 Connector panel B780

- 1 Turnable input, PHONO
- 2 Auxiliary input, AUX
- (3) Tape recorder input, TAPE 1
- (4) Tape recorder output, TAPE 1
- Tape recorder input/output TAPE 2 IN/OUT
- 6 DIN socket PRE OUT/PWR IN (Connecting point for filter, equalizer, etc.)
- (7) AC power terminal
- 8 Primary power fuse
- (9) Voltage selector
- Speaker outputs (Group A: DIN sockets, group B: clamp sockets)
- (11) SCOPE output/input: PWR ON of B710 (option)
- 12 Optional socket for antenna rotor control
- (13) Antenna inputs 60 . . . 75 ohms and 240 . . . 300 ohms

1.2 PANNEAU DE RACCORDEMENT

1.2.1 Panneau de raccordement du B780

- 1 Entrée pour table de lecture PHONO
- 2 Entrée de réserve AUX
- (3) Entrée pour magnétophone TAPE 1
- (4) Sortie pour magnétophone TAPE 1
- 5 Entrée/sortie pour magné tophone TAPE 2 IN/OUT
- 6 Prise DIN PRE OUT/PVR IN (mise en circuit de filtres, égaliseur, etc.)
- 7 Prise secteur
- 8 Fusible secteur (primaired u transformateur)
- (9) Sélecteur de tension
- Prises pour haut-parleum (groupe A: prises DIN / groupe B: br nes)
- Sortie pour oscilloscope/ Entrée: PWR ON du B710 (option)
- En option, prise pour con mande de rotor d'antenne
- Raccords d'antenne 60 . . . 75 ohms et 240 . . . 300 ohms

Fig. 1.3

1.2.2 Anschlussfeld B739

- (1)-(9)wie bei B780
- (10) Ausgänge B (XLR-Stecker)
- Umschalter für Ausgangsspannung (Normal = 2V, +6dB = 4V)
- (12) Ausgänge A (Cinch)
- (13) Ausgang für Oszilloskop
- Option, Buchse für Antennenrotorsteuerung
- (15) Antenneneingänge 60 . . . 75 Ohm und 240 . . . 300 Ohm

1.2.2 Connector panel B739

- (1)-(9)Same as B780
- (10) Outputs B (XLR connectors)
- (11) Change-over switch for output voltage (Normal = 2V, +6dB = 4V)
- (12) Outputs A (Cinch)
- (13) Output for oscilloscope
- Optional socket for antenna rotor control
- Antenna inputs 60 . . . 75 ohms and 240 . . . 300 ohms

1.2.2 Panneau de raccordement du B739

- 1)-(9) Comme sur le B780
- 10) Sorties B (prises XLR)
- Commutateur de tension de sortie (Normal = 2V, +6dB = 4V)
- (12) Sortie A (Cinch)
- (13) Sortie pour oscilloscope
- En option, prise pour commande de rotor d'antenne
- Raccords d'antenne 60 . . . 75oh ms et 240 . . . 300 ohms

1.2.3 Buchsenbelegungen

JACK PREAMP OUT

0,85 V/RL min. 47 kOhm (über Regler
VOLUME (12)

JACK PHONES
11,8V/Last 200 . . . 800 Ohm (über Regler VOLUME (12))

1.2.3 Socket layouts

JACK PREAMP OUT

0.85 V/RL min 47 kohms (via VOLUME control (12))

JACK PHONES (via VOLUME control 12) 11.8 V/load 200 . . . 800 ohms

1.2.3 Câblage des prises

JACK PREAMP OUT

0.85 V/R_L min 47 kohms (aux bornes du potentiomètre de volume (12))

JACK PHONES (aux bornes du potentiomètre de volume (12)) 11.8 V/charge 200 . . . 800 ohms

DIN TAPE 2 IN/OUT

IN: 150 mV/50 kOhm OUT: 5,5 mV/R_L 10 kOhm

- 1 Ausgang links
- 2 Masse, Abschirmung
- 3 Eingang links
- 4 Ausgang rechts
- 5 Eingang rechts

DIN TAPE 2 IN/OUT

IN: 150 mV/50 kohms OUT: 5.5 mV/R_L 10 kohms

- 1 Output, left
- 2 Ground, screening
- 3 Input, left
- 4 Output right
- 5 Input, right

DIN TAPE 2 IN/OUT

IN: 150 mV/50 kohms
OUT: 5.5 mV/RL 10 kohms

- 1 Sortie gauche
- 2 Masse, blindage
- 3 Entrée gauche
- 4 Sortie droite
- 5 Entrée droite

DIN PRE OUT/LINE IN

OUT: 0,85 V/RL min. 10 kOhm (über Regler VOLUME (12)

IN: 1 V/50 kOhm

5 4

- 1 PRE links
- 2 Masse, Abschirmung
- 3 LINE links
- 4 PRE rechts
- 5 LINE rechts

DIN PRE OUT/LINE IN

OUT: 0.85 V/RL min 10 kohms (via VOLUME control (12))

IN: 1 V/50 kohms

- 1 PRE, left
- 2 Ground, screening
- 3 LINE, left
- 4 PRE, right
- 5 LINE, right

DIN PREOUT/LINE IN

OUT: 0.85 V/Rt min10 kohms (aux bornes du potentio mètre de volume (12))

IN: 1 V/50 kohms

- 1 PRE gauche
- 2 Masse, blindage
- 3 LINE gauche
- 4 PRE droite
- 5 LINE droite

XLR OUTPUT A
2 V/220 Ohm umschaltbar auf 4V
(+6dB)

- 1 Gehäuse
- 2 Masse (OV)
- 3 Signal

XLR OUTPUT A

2 V/220 ohms, can be switched to 4V (+6dB)

- 1 Boîtier
- 2 Masse (OV)
- 3 Signal

XLR OUTPUT A

2 V/220 ohms, commutable sur 4V (+ 6dB)

- 1 Housing
- 2 Ground (0V)

3 Signal

DIN SCOPE

Oszilloskopausgang: vertikal (Y): 50 mV an 75 Ohm HF ≜ 1V horizontal (X): 75 kHz Hub ≜ 2,8 VSS Buchse nach DIN 41524

- 1 X Achse
- 2 Masse
- 3 Y Achse
- Ferneinschaltung Option

DIN SCOPE

Oscilloscope output: vertical (Y): $50\,\text{mV}$ into $75\,\text{ohms}$ RF $\triangleq 1V$ horizontal (X): 75kHz deviation $\triangleq 2.8\,\text{VSS}$ Socket according to DIN 41524

- 1 Axe X
- 2 Masse
- 3 Axe Y
- 4 Commande d'enclen-
- 5 chement (option)

DIN SCOPE

Sortie pour oscilloscope:

Axe vertical (Y): 50mV à 75ohms HF = 1V Axe horizontal (X): 75kHz d'excursion = 2,8 Vcc

- 1 X-axis
- 2 Ground
- 3 Y-axis
- remote power on (option)

2. AUSBAU

Achtung:

Vor Entfernen der Abdeckbleche ist unbedingt der Netzstecker auszuziehen! Wenn nichts vermerkt ist, gelten die Angaben für B780 und B739.

2.1 Entfernen des oberen Deckbleches

- An der Rückseite 2 Schrauben (A) (Fig. 2.1) lösen.
- Deckblech an der Biegekante zwischen Chassis und Kühlkörper herausziehen und nach hinten ausfahren (B739: Deckblech nach hinten ausfahren).

2. DISASSEMBLY

Caution:

Ensure that the power cord is disconnected before you unfasten the cover plates!
Unless specified to the contrary, the information applies to the B780 and the B739.

2.1 Removing the top cover plate

- Unfasten 2 screws (A) (Fig. 2.1) on the rear.
- Pull out cover plate at bending edge between chassis and heat sink and slide out towards rear (B739: slide cover plate out towards rear).

2. DEMONTAGE

Attention

Il faut retirer la prise du secteur avant de déposer le couvercle de l'appareil. Quand aucune remarque n'est faite, les rubriques suivantes sont valables pour le B780 et le B739.

2.1 Dépose de la plaque supérieure

- Dévissez les 2 vis (fig. 2.1) à l'arrière de l'appareil.
- Soulevez la plaque supérieure par son arrête entre le châssis et les radiateurs, puis tirez-la vers l'arrière (B739: tirez la plaque supérieure vers l'arrière).

Fig. 2.1

2.2 Entfernen des unteren Deckbleches

- An der Unterseite des Gerätes 5 Schrauben (C) (Fig. 2.2) lösen.
- Unteres Deckblech abheben.

2.2 Removing the bottom cover plate

- Remove toe rail (2 screws 📵).
- Unfasten 5 screws (Fig. 2.2) on the underside of the unit.
- Lift off bottom cover plate.

2.2 Dépose de la plaque du fond

- Démontez le bandeau inférieur (2 vis B)
 - Dévissez les 5 vis 🔘 de la face inférieure.
- Oter la plaque du fond.

Fig. 2.2

2.3 Entfernen der seitlichen Abdeckungen

 Auf jeder Seite 2 Schrauben lösen und die seitlichen Abdeckungen entfernen.

Kühlkörper inkl. Endstufenprints

Oberes Deckblech entfernen (siehe 2.1).

Am Kühlkörper 4 Schrauben D lösen

und Kühlkörper mit Endstufenprints nach

ausbauen (nur B780)

unten kippen (Fig. 2.3).

2.3 Removing the side covers

Unfasten 2 screws on each side and remove side covers.

2.3 Dépose des plaques latérales

 Dévissez 2 vis de chaque côté et retirez les plaques latérales.

2.4 Removing the heat sink incl. power stage PCB (B780 only)

Remove the top cover plate (see 2.1).
Unfasten 4 screws on heat sink and tilt heat sink down together with power stage circuit boards (Fig. 2.3).

2.4 Dépose des radiateurs et des circuits de l'étage de puissance (B780 seulement)

Retirez les 4 vis des radiateurs puis faites basculer ceux-ci et les circuits de l'étage de puissance vers le bas (fig. 2.3).

4 poles.

Fig. 2.3

2.4

- Auf jeder Seite je einen 4-poligen CIS-Stecker ausziehen.
- Auf beiden Endstufenprints je 5 Flachstecker ausziehen (Fig. 2.4).
- Die weissen Kabel, welche von der Thermosicherung auf den SPEAKER PROTECTION UNIT Print führen, ausziehen.
- Der Kühlkörper kann nun mit den Endstufenprints weggenommen werden.
- Unplug the 4-pin CIS connector on each
- Unplug 5 flat connectors on each of the power stage circuit boards (Fig. 2.4).
- Unplug the white cables which lead from the fuse to the SPEAKER PROTECTION UNIT circuit board.
- The heat sink can now be removed together with the power stage circuit boards.
- Enlevez, de chaque côté, une prise CIS à
 - Retirez les 5 connecteurs plats de chaque étage de puissance (fig. 2.4).
 - Enlevez les fils blancs qui relient la protection thermique au circuit SPEAKER PROTECTION UNIT.
 - Le radiateur et les circuits de l'étage de puissance peuvent être maintenant déposés

Fig. 2.4

2.5 Hintere Abdeckung ausbauen (B739)

- Zuerst muss das obere Deckblech entfernt werden (siehe 2.1).
- 2 Schrauben lösen und die hintere Abdeckung kann abgenommen werden.

2.6 Anschlussfeld-Abdeckung ausbauen (B739)

 4 Schrauben lösen, die Abdeckung kann abgenommen werden.

2.5 Removing the rear cover (B739)

- The top cover must be removed first (see 2.1).
- Unfasten 2 screws to remove the rear cover.

2.6 Removing the terminal board cover (B739)

Unfasten 4 screws to remove the cover.

2.5 Dépose de la plaque arrière (B739)

- Démontez d'abord la plaque supérieure selon 2.1.
- Dévissez deux vis et la plaque arrière pourra être déposée.

2.6 Dépose de la façade du panneau de con-

Dévissez 4 vis et la façade sera démontée.

2.7 Bedienungseinheit ausbauen

- Oberes und unteres Deckblech ausbauen (siehe Kapitel 2.1 und 2.2).
- Von oben (links und rechts aussen) 2 Befestigungsschrauben lösen.
- Die Bedienungseinheit kann nun nach unten gekippt werden.
- Auf der rechten Seite die 18-polige Stiftleiste und die 4 Flachstecker ausziehen (Fig. 2.5).
- Auf der linken Seite die beiden Befestigungsschrauben des Mikroprozessorprints
 Elösen (Fig. 2.6).
- Sämtliche Steckverbindungen, welche ins Gerät führen, ausziehen.
- Die Bedienungseinheit kann nun entfernt werden.

2.7 Removing the operating panel

- Remove top and bottom cover plates (see 2.1 and 2.2).
- Unfasten 2 screws from the top (on the extreme left and right).
- The operating unit can now be tilted down.
- Unplug the 18-pin multipoint connector and the 4 flat connectors (Fig. 2.5).
- Unfasten the two mounting screws of the microprocessor circuit board (E) on the left-hand side (Fig. 2.6).
- Unplug all connectors that lead to the interior of the unit.
 - The operating unit can now be removed.

Dépose de l'unité de commande

2.7

- Démontez les plaques supérieures et inférieures selon 2.1 et 2.2.
- Dévissez les deux vis de fixation (aux extrémités droite et gauche) par le haut.
- L'unité de commande peut alors être inclinée vers le bas.
- Retirez, sur le côté droit, le connecteur
 18 broches et les 4 connecteurs plats (fig. 2.5).
- Retirez, sur le côté gauche, les 2 vis de fixation du circuit du microprocesseur (fig. 2.6).
- Enlevez les quelques interconnexions restantes.
- L'unité de commande peut maintenant être déposée.

Fig. 2.5

Fig. 2.6

2.8 Frontplatte ausbauen

- Seitliche Abdeckungen entfernen (siehe Kapitel 2,3).
- An den seitlichen Zierleisten je 2 Schrauben lösen und die Zierleisten mit Abdeckklappe entfernen.
- Sämtliche Potentiometerknöpfe abziehen (am Lautstärkenregler-Knopf VOLUME die Befestigungsschraube (Inbus 1,5 mm) lösen)
- Die Frontplatte kann nun abgehoben werden.

2.9 Lampe für die Beleuchtung des Signalstärke-Instruments auswechseln

- Seitliche Abdeckungen entfernen (siehe Kapitel 2.3).
- An den seitlichen Zierleisten je 2 Schrauben lösen und die Zierleisten mit Abdeckklappe entfernen.
- Die Lampe für die Beleuchtung des Signalstärke-Instruments ist nun von oben zugänglich.

2.10 Signalstärke-Instrument auswechseln

- Bedienungseinheit ausbauen (siehe Kapitel 2.7).
- Frontplatte ausbauen (siehe Kapitel 2.8).
- Filtereinheit (inkl. Schalter) ausbauen: die beiden Befestigungsschrauben des Filterschalters lösen und die Einheit vorsichtig aus dem CIS-Stecksockel ziehen (Fig. 2.7).
- Bedienungseinheit auf die Frontseite legen und Mikroprozessorprint ausbauen (2 Schrauben lösen, Fig. 2.6).
- Die beiden Befestigungsklammern (F)
 (Fig. 2.8) des Display-Prints lösen, dadurch kann der Print sachte nach oben aus dem Chassis gezogen werden.

2.8 Removing the front panel

- Remove side covers (see 2.3).
- Unfasten 2 screws on each of the lateral trim strips and remove trim strips together with front flap.
- Pull off all potentiometer knobs (loosen the fixing screw on the VOLUME control knob, 1.5 mm Allen type key).
- The front panel can now be removed.

2.9 Replacing the illumination lamp of signal strength meter

- Remove side covers (see 2.3).
- Unfasten 2 screws on each of the lateral trim strips and remove trim strips together with front flap,
- The illumination lamp is now accessible from the top.

2.10 Replacing the signal strength meter

- Remove operating unit (see 2.7.).
- Remove front panel (see 2.8).
- Remove filter unit (including switch): unfasten the two mounting screws of the filter switch and carefully pull unit from the CIS plug socket (Fig. 2.7).
- Place operating unit on its front and remove micro-processor circuit board (unfasten 2 screws, Fig. 2.6).
- Unfasten both mounting clips (Fig. 2.8) of the display circuit board. The circuit board can now be carefully pulled out of the chassis towards the top.

2.8 Dépose de la plaque frontale

- Démontez les plaques latérales selon 2.3.
- Dévissez 2 vis sur chaque moulure latérale et enlevez celles-ci avec le cache escamotable.
- Retirez les boutons des potentiomètres (utilisez une clé Inbus 1,5 mm pour démonter le bouton du réglage de volume).
- La plaque frontale peut maintenant être déposée.

2.9 Remplacement de l'éclairage de l'indicateur d'intensité du signal

- Démontez les plaques latérales selon 2.3.
- Dévissez 2 vis sur chaque moulure latérale et enlevez celles-ci avec le bandeau escamotable.
- La lampe éclairant l'indicateur d'intensité du signal est maintenant accessible par le haut

2.10 Remplacement de l'indicateur d'intensité du signal

- Déposez l'unité de commande se lon 2.7.
- Déposez la plaque frontale selon 2.8.
- Démontez le circuit des filtres (avec son selecteur): dévissez les 2 vis de fixation du sélecteur de filtres et retirez avec précaution le circuit de son connecteur (fig. 2.7).
- Démontez le circuit du microprocesseur de l'unité de commande (fig. 2.5).
 - Démontez les pinces de fixation (F) du circuit d'affichage qui peut aors être extrait, avec précaution, par le laut.

Fig. 2.7

Fig. 2.8

2.11 Netzschalter ersetzen

- Bedienungseinheit ausbauen (siehe Kapitel 2.7).
- Frontplatte ausbauen (siehe Kapitel 2.8).
- Den Befestigungswinkel rechts neben dem Netzschalter ausbauen.
- Die Blindabdeckung zwischen dem Netzschalter und den Eingangswahltasten herausziehen, der Netzschalter kann nun ausgewechselt werden (Fig. 2.9).

Fig. 2.9

2.12 Netzsicherung auswechseln

- Gerät vom Netz trennen.
- Sicherungsverschluss (8) (s. 1.2.1) durch
 Drehen öffnen (Bajonettverschluss).
- Defekte Sicherung auswechseln.

2.13 Netzteilsicherungen auswechseln

- Gerät vom Netz trennen.
- In der Mitte des unteren Deckblechs die beiden Schrauben der kleinen Abdeckung lösen und diese abheben (Fig. 2.10).
- Defekte Sicherung auswechseln.

Fig. 2.10

2.11 Replacing the power switch

- Remove operating unit (see 2.7).
- Remove front panel (see 2.8).
- Remove mounting bracket next to power switch.
- Pull out blanking cover between power switch and input selector buttons. The power switch can now be replaced (Fig. 2.9).

2.11 Remplacement de l'interrupteur secteur

- Déposez l'unité de commande selon 2.7.
- Déposez la plaque frontale selon 2.8.
- Démontez l'équerre de renforcement située sur la droite de l'interrupteur secteur.
- Retirez l'isolation entre l'interrupteur secteur et le clavier de sélection.
- L'interrupteur secteur peut maintenant être remplacé.

2.12 Replacing the power line fuse.

- Unplug power cord.
- - Replace blown fuse.

2.13 Replacing the power supply fuse

- Unplug power cord.
- Unfasten the two screws of the small cover in the center of the bottom cover plate and remove small cover (Fig. 2.10).
- Replace blown fuse.

2.12 Remplacement du fusible secteur

- Débranchez l'appareil du secteur.
 - Otez, en le faisant pivoter, le capuchon à baïonnette du fusible.
- Remplacez le fusible défectueux.

2.13 Remplacement des fusibles d'alimenta-

- Débranchez l'appareil du secteur.
- Sur le fond de l'apparé I, retirez le petit couvercle central en dévissant les 2 vis selon la fig. 2.10.
- Remplacez le fusible délectueux.

3. FUNKTIONSBESCHREIBUNG

3. DESCRIPTION OF FUNCTIONS

3. DESCRIPTION DES FONCTIONS

3.1 Tunerteil

3.1 Tuner section

3.1 Section Tuner

3.1.1 Übertrager (Balun) (auf Print SPEAKER PROTECTION UNIT 1.780.140)

3.1.1 Balance-to-unbalance transformer (balun)
(Located on PCB SPEAKER PROTECTION UNIT 1.780.140)

3.1.1 Translateur (Balun) (sur le circuit SPEA-KER PROTECTION UNIT 1.780.140)

Das Antennensignal gelangt von den 75 bzw. 300 Ohm-Anschlüssen über einen Symmetrierübertrager (Balun) und ein Bandpassfilter auf das HF-Eingangsteil. The antenna signal is taken from the 75 or 300 ohms terminals via a balance-to-unbalance transformer (balun) and a band-pass filter to the RF input section.

Le signal arrivant sur les prises d'antenne de 75 ou 300 ohms est transmis à l'étage HF au travers d'un translateur symétrique et d'un filtre passe hande

3.1.2 HF-Eingangsteil 1.166.100

3.1.2 RF input section 1.166.100

(Fig. 3.1)

3.1.2 Etage d'entrée HF 1.166.100 (fig. 3.1)

(Fig. 3.1)

Fig. 3.1

Über den Antennenkreis gelangt das Signal auf die erste HF-Verstärkerstufe. Bei grossen Eingangssignalen wird die Verstärkung durch AGC (Automatic Gain Control) geregelt. Danach folgt ein abgestimmtes Zweikreis-Bandpassfilter. Das Signal wird über die zweite HF-Verstärkerstufe und das zweite Bandpassfilter auf die symmetrische Gegentakt-Mischstufe geführt. Die Abstimmspannung (Y-TUNING) für die Kapazitätsdioden der Bandpassfilter wird vom Print Frequency Synthesizer 1.780.151 zugeführt. Das passive ZF-Filter ist durch 8 abstimmbare Kreise aufgebaut. Der erste Teil mit drei Kreisen befindet sich auf dem HF-Eingangsteil, die weiteren fünf Kreise sind auf dem ZF-Verstärkerteil.

Die Auslegung des ZF-Filters gewährt ideale Übertragungseigenschaften dank ausgezeichneter Durchlasskurve.

From the antenna circuit the signal is taken to the first RF amplifier stage. For large input signals, the gain is regulated by an AGC (Automatic Gain Control). This circuit is followed by a double-tuned circuit band-pass filter. The signal is taken via a second RF amplifier stage and a second band-pass filter to the balanced mixer. The tuning voltage (Y-TUNING) for the varactors of the band-pass filters is supplied by the frequency synthesizer board 1.780.151. The passive IF filter consists of 8 tunable circuits. The first section with three circuits is located in the RF input section, the remaining 5 circuits in the IF amplifier section.

The design of the IF filter assures ideal transformation characteristics on account of its excellent pass-band curve.

Par le circuit d'antenne, le signal arrive au premier étage HF. En présence de forts signaux, le gain est régulé par un circuit de CAG (contrôle automatique de gain). La liaison avec le deuxième étage est effectuée par un double filtre de bande accordé. Après le deuxième étage, un second filtre de bande conduitle signal à un mélangeur symétrique. La tension de commande (Y-TUNING) pour les diodes à capacité variable des filtres de bande est délivrée par le circuit du Frequency Synthesizer 1.780.151. Le filtre passif FI se compose de huit circuits accordés séparés: les trois premiers sont montés sur l'étage d'entrée HF et les cinq suivants sur l'amplificateur FI.

Cette disposition du filtre FI procure une qualité de transmission et de sélection optimale grâce à son exceptionnelle courbe de transfert.

3.1.3 ZF-Verstärker 1.166.120

(Fig. 3.2) 3.1

3.1.3 IF amplifier 1.166.120

(Fig. 3.2) 3.1.3 Amplificateur FI 1.166.120

(fig. 3.2)

Fig. 3.2

Das zweite Teil des ZF-Filters mit fünf abstimmbaren Kreisen ist am Eingang des ZF-Verstärkers plaziert. Von diesem Filter gelangt das Signal auf vier integrierte Differentialverstärker.

Nach der ersten ZF-Verstärkerstufe wird einTeil des Signals abgenommen, gleichgerichtet und über einen Verstärker der HF-Vorstufe zugeführt (Verstärkungsregelung AGC). Von den drei weiteren ZF-Stufen werden die Signale ausgekoppelt, gleichgerichtet und über eine Summierstufe (Meter Circuit and Deemphasis 1.780.155) auf das Signalstärke-Anzeigeinstrument (SIGNAL STRENGTH) geführt. Die logarithmische Anzeige ermöglicht das Lesen der Signalstärke von wenigen Mikrovolt bis 100 Millivolt.

Für die Anzeige der Frequenzabweichung des empfangenen Senders gegenüber der digital angezeigten Abstimmfrequenz wird in der vierten ZF-Stufe das Signal ausgekoppelt und dem Frequenzdiskriminator zugeführt. Die Ausgangspannung steuert das Abstimminstrument TUNING.

Die begrenzte ZF-Spannung (Signal Y2-IF) wird dem FM-Demodulator zugeführt.

The second section of the IF filter with its five tunable circuits is located at the input of the IF amplifier. From this filter the signal is taken to four integrated differential amplifiers.

After the first IF amplifier stage, a portion of the signal is tapped, rectified and input via an amplifier to the preselector (automatic gain control, AGC). In the remaining three IF stages the signals are coupled out, rectified and via a summing stage (meter circuit and deemphasis PCB 1.780.155) taken to the SIGNAL STRENGTH meter. Signal strengths of a few microvolt up to 100 millivolt can be read off the logarithmic scale.

For displaying the frequency deviation of the selected station from the digitally displayed tuning frequency, the signal is coupled out in the fourth IF stage and input to the frequency discriminator. The output voltage controls the TUNING meter.

The limited IF voltage (signal Y2-IF) is input to the FM demodulator.

La deuxième partie du filtre FI, composée de cinq circuits accordés, est placée à l'entrée de l'amplificateur FI qui comprend elle-même quatre amplificateurs différentiels intégrés.

On prélève, à la sortie du premier étage FI, une fraction du signal qui, une fois redressée et amplifiée, est appliquée à l'étage HF (contrôle de gain CAG). On prélève aussi un signal de chacun des trois étages FI suivants. Ces signaux sont redréssés puis envoyés vers l'indicateur d'intensité du signal (SIGNAL STRENGTH) à travers un étage sommateur (Meter Circuit and Deemphasis 1.780.155). L'affichage logarithmique autorise la lecture de signaux d'une force s'étendant de quelques microvolts à 100m V.

Un quatrième étage FI délivre un signal qui, après démodulation dans un discrim inateur de fréquence, commande l'affichage de la déviation de fréquence (TUNING).

La tension FI (Signal Y2-IF), l'imitée, parvient ensuite au démodulateur FM.

3.1.4 FM-Demodulator 1.166.130 (Fig. 3.3) 3.1.4 FM demodulator 1.166.130 (fig. 3.3)

3.1.4 Démodulateur 1.166.130 (fig. 3.3)

Fig. 3.3

Das ZF-Signal (Y2-IF) gelangt auf einen fünften Differentialverstärker und wird in der nachfolgenden Treiberstufe in ein Rechtecksignal umgewandelt. Die Ansteuerung des digitalen FM-Demodulators erfolgt einmal direkt und einmal über eine 68ns-Verzögerungsleitung. Eine Siebschaltung ermittelt aus der Impulsfolge der Demodulatorschaltung (Ex-OR) den Mittelwert als demoduliertes MPX-Signal. Nach der Differentialverstärkerstufe und dem 90kHz-Tiefpassfilter wird das Stereo-MPX-Signal über den Stummschaltkreis (MUTING) auf dem Print Meter Circuit and Deemphasis 1.780.155 zum Stereodecoder geführt.

Parallel zum MPX-Ausgang wird noch das Horizontal-Signal (MPAX) für ein Oszilloskop an die Buchse SCOPE (11) geführt.

The IF signal (Y2-IF) is taken to a fifth differential amplifier and is converted to a square-wave signal in the subsequent driver stage. The digital FM demodulator is alternately controlled directly or via a 68 ns delay line. From the pulse sequence of the demodulator circuit (EX-OR), a filter network determines the mean as a demodulated MPX signal. After the differential amplifier and the 90kHz low-pass filter, the stereo MPX signal is taken via MUTING circuit, located on the meter circuit and de-emphasis board 1.780.155, to the stereo decoder.

In parallel to the MPX output, the horizontal signal (MPAX) is also taken to the SCOPE socket (11) where an oscilloscope can be connected.

Le signal FI (Y2-1F) issu du cinquième amplificateur différentiel est transformé en un signal carré par l'étage d'attaque suivant. Ce signal commande le démodulateur FM digital à commutation, une fois directement et une autre fois après un retard de 68 nanosecondes. Un circuit de filtrage démodule le signal MPX en transformant les impulsions issues du démodulateur (Ex-Or) en un signal de valeur moyenne. Après un amplificateur différentiel et un filtre passebas coupant à 90kHz, le signal MPX stéréo est envoyé au decodeur stéréo viale circuit de silence (MUTING) situé sur le circuit Meter Circuit and Deemphasis 1.780.155.

Le signal pour la voie horizontale de l'oscilloscope est prélevé de la sortie MPX vers la prise SCOPE (11).

3.1.5 Stereo-Decoder 1.166.150

(Fig. 3.4)

3.1.5 Stereo decoder 1.166.150 (fig. 3.4)

3.1.5 Décodeur stéréo 1.166.150 (fig.3.4)

Fig. 3.4

Der Pilotton wird in einem breitbandigen, phasenstabilen 19kHz-Bandfilter aus dem Stereo-MPX-Signal ausgefiltert und der Phasenvergleichsstufe PLL (Phase Locked Loop) zugeführt. Vom 76kHz-Oszillator gelangt das Signal über eine Impulsformerstufe auf einen Frequenzteiler

In a wide-band, phase-stable 19kHz band filter, the pilot tone is filtered out of the stereo MPX signal after which it is taken to the phase comparator PLL (Phase Locked Loop). From the 76 kHz oscillator the signal is taken via a pulse former to the frequency divider (:2). The resulting

Le signal pilote est obtenu en filtrant le signal MPX stéréo avec un filtre large bande, cen tré à 19kHz et stable en phase. On la mène ensuite au comparateur de phase (PLL). Un étage de mise en forme amène le signal de l'Opi llateur 76k Hz à un diviseur de fréquence (:2). La fréquence de

(:2). Die erhaltene Frequenz von 38kHz steuert den MPX-Schaltdemodulator. Über einen zweiten Frequenzteiler (:2) wird das Signal in die Phasenvergleichsstufe zurückgeführt. Stimmen die beiden Signale in Frequenz und Phase nicht überein, so steuert die Fehlerspannung der Phasenvergleichsstufe über das Loop-Filter und den Abstimmkreis den 76kHz-Oszillator nach.

Das von der Stummschaltlogik überwachte MPX-Signal wird auf das 19kHz-Sperrfilter geführt und vom 19kHz-Pilotton befreit. Das Signal wird nun über das 50µs-Deemphasis-Netzwerk in den Hauptkanal und über den 38kHz-Kreis in den Hilfskanal aufgeteilt. Mit dem Schalter HIGH BLEND kann bei schwach empfangenen Stereosendern der Rauschabstand auf Kosten der Übersprechdämpfung verbessert werden, indem das Differenzsignal gegenüber dem Summensignal abgeschwächt wird. Das Summensignal wird immer über Q2 der Matrix (Q1 und Q3) zugeführt.

Das Differenzsignal wird im Schaltdemodulator (IC1) aus dem Hilfskanal gewonnen und ebenfalls der Matrix zugeführt. Damit keine Qualitätsverluste in Stereo gegenüber Mono auftreten, müssen gewisse Frequenzanteile über dem MPX-Signal entfernt werden. Diese Forderung wird erfüllt durch das 90kHz-Tiefpassfilter im FM-Demodulator, das 130kHz-Sperrfilter im Logikteil, die 114kHz-Sperrfilter und 38kHz-Filter im Stereodecoder. Die NF-Signale werden zur Unterdrückung der MPX-Restsignale über 15kHz-Tiefpassfilter geführt.

Nach dem 19kHz-Bandpassfilter am Eingang der Phasenvergleichsstufe (IC4) wird der Pilotton abgezweigt, scharf ausgefiltert, verstärkt (1/2 IC3), gleichgerichtet und einer Schaltstufe zugeführt (Q5). Das Signal P (Pilot) wird in der Stereo-Umschaltlogik (auf Micro Computer PCB 1.780.260) weiterverarbeitet.

3.1.6 Frequenzsynthesizer und Lokaloszillator (Fig. 3.5)

Fig. 3.5

38kHz frequency controls the MPX switching demodulator. The signal is returned to the phase comparator via a second frequency divider (:2). If the frequency and the phase of these two signals do not coincide, the error voltage of the phase comparator follows up the 76kHz oscillator via the loop filter and the tuning circuit.

The MPX signal monitored by the muting circuit is taken to the 19kHz band rejection filter where the 19kHz pilot tone is eliminated. Via the $50\mu s$ de-emphasis network, the signal is now split into the main channel and via the 38kHz circuit into the subsidiary channel. If the stereo reception is weak, the HIGH BLEND switch can be activated to improve the signal-tonoise ratio at the expense of the crosstalk attenuation. This is accomplished by attenuating the differential signal in relation to the aggregate signal. The aggregate signal is always input via Q2 into the matrix (Q1 and Q3).

The differential signal is developed by the switching demodulator (IC1) from the subsidiary channel and also input into the matrix. To ensure that there will be no quality loss in comparison to mono, certain frequency components above the MPX signals must be removed. This is accomplished by the 90kHz low-pass filter in the FM demodulator, the 130kHz band rejection filter in the logic section, the 114kHz band-rejection filter and the 38kHz filter in the stereo decoder. To suppress the residual MPX signals, the AF signals are conducted via 15kHz low-pass filters.

After the 19kHz band-pass filter at the input of the phase comparator (IC4), the pilot tone is branched off, filtered out sharply, amplified (1/2 IC3), rectified, and input to switching stage (Q5). The pilot signal (P) is further processed by the stereo threshold logic (in microcomputer PCB 1.780.260).

3.1.6 Frequency synthesizer and local oscillator (Fig. 3.5)

38kHz obtenue commande le démodulateur MPX à commutation. Un second diviseur de fréquence (:2) produit un signal à 19kHz qui est amené au comparateur de phase. Si les deux signaux d'entrée du PLL ne sont pas exactement en phase, le filtre de boucle envoie une tension d'erreur pour corriger l'oscillateur local 76kHz.

Après le circuit de silence (Muting), le signal MPX est libéré du pilote par un filtre réjecteur de 19kHz, d'où sont extraits, par le réseau de désaccentuation (50µs) le canal principal et par le filtre de 38kHz le canal auxiliaire. En cas de mauvaise réception d'émetteurs stéréo, on peut améliorer le rapport signal/bruit grâce au commutateur HIGH BLEND, mais au prix d'une moins bonne séparation des canaux: le signal de différence est affaibli par rapport au signal somme. Ce dernier est envoyé à la matrice de décodage (Q1 et Q3) par Q2.

Le signal de différence, issu du démodulateur à commutation (IC1), est également envoyé à la matrice de décodage. Pour ne pas perdre de sélectivité en stéréo par rapport à la réception monophonique, le signal MPX doit être libéré de certaines fréquences perturbatrices: 90kHz par un filtre passe-bas sur le démodulateur FM, 130kHz par un réjecteur sur le circuit logique, 114kHz et 38kHz par d'autres réjecteurs sur le décodeur stéréo. Un filtre passe-bas, coupant à 15kHz, amène le signal BF à la sortie en éliminant les résidus du signal MPX.

Après le filtre de bande 19kHz à l'entrée du comparateur de phase (IC4), le signal pilote passe par un filtre très sélectif puis est amplifié par IC3 (1/2), puis redressé et enfin commuté (Q5). Le signal P (pilote) est utilisé dans la commande de la logique de commutation (sur le circuit Microcomputer PCB 1.780,260).

3.1.6 Synthétiseur de fréquence et oscillateur local (Fig. 3.5)

Die Lokaloszillatorspannung wird mit einer PLL-Schaltung (Phase Locked Loop) erzeugt. Das Signal wird über einen programmierbaren Frequenzteiler (IC3 :32/:33) auf den Frequenzsynthesizer IC2 geführt. Im Synthesizermodul (IC2) wird das von IC3 kommende Signal weiterverarbeitet und mit dem Referenzsignal (Quarzreferenz 4MHz) auf Frequenz und Phase verglichen. Das daraus resultierende Fehlersignal wird gefiltert, verstärkt (IC4) und zur Steuerung des Lokaloszillators verwendet.

Der Teilermodus von IC3 wird vom Signal CMOD bestimmt. Dieses Signal wird im sog. SWALLOW COUNTER (Fig. 3.6) erzeugt. Einleitend ist dieses Signal logisch "H" und der Frequenzteiler teilt durch 33. Wenn der Swallow Counter auf Null hinuntergezählt hat, wird dieses Signal "L" und der Frequenzteiler teilt durch 32. Der Swallow Counter zählt danach nicht mehr weiter, bis auch der Program Counter auf Null ist. Sobald dieser auf Null ist, erzeugt er ein Signal, durch welches er sich selbst und den Swallow Counter mit der Information (15-Bit Frequenzcode) neu lädt (CMOD wieder "H").

The local-oscillator voltage is generated by a PLL circuit (Phase Locked Loop). The signal is taken via the programmable frequency divider (IC3:32/:33) to the frequency synthesizer IC2. In the synthesizer module (IC2), the signal arriving from IC3 is further processed and compared with the reference signal (quartz reference 4MHz) in respect to frequency and phase coincidence. The resulting error signal is filtered, amplified in IC4, and used for controlling the local oscillator.

The division ratio of IC3 is determined by the signal CMOD. This signal is generated in the so-called SWALLOW COUNTER (Fig. 3.6). Initially, this signal is logical "H" and the frequency divider operates with the ratio 33. When the swallow counter is decremented to zero, this signal changes to "L" and the frequency divider operates with the ratio 32. The swallow counter stops counting until the program counter is also at zero. As soon as this is the case, the program counter generates a signal through which it reinitializes itself and the swallow counter with the information (15-bit frequency code) and CMOD again changes to "H".

La tension de l'oscillateur local est produite par un PLL (boucle à verrouillage de phase). Le signal est conduit au synthétiseur de fréquence IC2 par un diviseur de fréquence programmable (IC3:32/:33). Le signal venant de IC3 est utilisé dans le module synthétiseur IC2 et comparé en fréquence et en phase à la référence à quartz (4MHz). Le signal d'erreur résultant est filtré, amplifié (IC4) et sert à la commande de l'oscillateur local.

Le mode de division de IC3 est déterminé par le signal CMOD produit par le circuit SWALLOW COUNTER (fig. 3.6). Initialement, ce signal est au niveau logique "H" et le diviseur de fréquence divise par 33. Quand le Swallow Counter a décompté jusqu'à zero, le signal devient "L" et le diviseur de fréquence divise par 32. Le Swallow Counter ne compte alors plus, jusqu'à ce que le Program Counter soit lui aussi à zéro. Dès que cela se produit, ce compteur délivre un ordre et les deux compteurs sont rechargés avec l'information de la fréquence, codée sur 15 bits, le signal CMOD retourne à l'état "H".

Fig. 3.6

Die von der seriellen Schnittstelle des Mikroprozessors kommenden Daten werden in ein 16-Bit Schieberegister eingelesen, wenn das Signal DLEN3 logisch "H" ist. In diesem Zustand wird bei jedem Clock-Impuls die Datenleitung abgefragt. Das Signal DATA beginnt mit einem "LEADING ZERO". Das erste Bit nach dem Leading Zero bestimmt das Teilerverhältnis (:160) für die Referenzfrequenz. Die Quarzfrequenz von 4MHz wird auf die Referenzfrequenz von 25kHz hinuntergeteilt. Die weiteren 15 Bit bestimmen das Teilerverhältnis für den Swallow und Program Counter. Der nach dem 16. Bit folgende Clock-Impuls lädt die Daten zusammen mit dem extern zugeführten Referenzfrequenz-Bit (REFE) in den internen 17-Bit Speicher.

The data arriving from the serial interface of the microprocessor is read into a 16-bit shift register when signal DLEN3 is logical "H". In this condition the data line is scanned for each clock pulse. The DATA signal starts with a LEADING ZERO. The first bit after the leading zero determines the divider ratio (:160) for the reference frequency. The 4MHz quartz frequency is divided down to 25kHz reference frequency. The remaining 15 bits define the division ratio for the swallow counter and the program counter. The clock pulse that follows the 16 bits loads the data together with the externally supplied reference frequency bit (REFE) into the internal 17-bit register.

Les données venant de l'interface série du microprocesseur sont lues dans un registre 16 bits à décalage quand le signal logique DLEN3 est "H". La ligne de données est alors scrutée à chaques impulsions d'horloge. Le signal DATA commence par un "LEADING ZERO". Le premier bit suivant détermine le rapport de division (:160) pour la fréquence de référence: on divise les 4MHz du quartz pour produire une fréquence de référence de 25kHz. Les 15 bits suivants déterminent les rapports de division des compteurs Swallow et Program. L'impulsion d'horloge suivant la séquence de 16 bits charge les données avec un bit de fréquence de référence (REFE). produit extérieurement, dans la mémoire interne 17 bits.

Fig. 3.7

3.2 Logik-Teil

3.2.1 Mikroprozessorprint MICROCOMPU-TER PCB 1.780.260

Die Signale von Station Selector Keyboard 1.780.225, Push Button Board FM-Mode 1.780.220, Input Selector Keyboard 1.780.230, Push Button Board/Output Selection 1.780.240 und von der Receiver-Elektronik (insgesamt 40 Signale) werden über die Data Selectoren (MUX) IC6 bis IC10 auf fünf Ausgänge geführt (siehe Fig. 3.9). IC6 bis IC10 sind C-MOS-IC's. Die Data Selectoren werden mit den Signalen A, B, C vom Mikroprozessor (IC1) gesteuert. Zu den Ausgangssignalen dieser Data Selectoren wird noch das Z-Signal von der Antennenrotorsteuerung hinzugefügt.

3.2 Logic section

3.2.1 MICROCOMPUTER PCB 1.780.260

The signals from the station selector keyboard 1.780.225, push button board FM mode 1.780.220, input selector keyboard 1.780.230, push button / output selection board 1.780.240, and the receiver electronics (in total 40 signals) are taken via data selectors (MUX) IC6 through IC10 to five outputs (see Fig. 3.9). IC6 through IC10 are implemented in CMOS. The data selectors are controlled with the signals A, B, C of the microprocessor (IC1). The Z-signal of the antenna rotor control is also added to the output signals of these data selectors.

3.2 Section logique

3.2.1 Circuit du microprocesseur PCB 1.780.260

Les signaux issus du clavier de sélection des stations 1.780.225, du sélecteur FM-MODE 1.780.220, du sélecteur d'entrées 1.780.230, du sélecteur de sorties 1.780.240 et de l'électronique du récepteur (soit 40 signaux en tout) sont réduits en cinq canaux par les ICs 6 à 10 de sélection de données (MUX, voir fig. 3.9) qui sont des C MOS. Ils sont commandés par les signaux A, B et C du microprocesseur IC1. Aux cinq signaux de sortie ces sélecteurs s'ajoute le signal Z de la commande du rotor d'antenne.

Fig. 3.9

Die Steuerbefehle für die NF-Umschaltung kommen von IC1 Pin 16-19 und 22-25. Über die logischen Zustände dieser Ausgänge gibt die Wahrheitstabelle in Fig. 3.10 Auskunft.

The control commands for the AF change-over arrive from IC1 pins 16-19 and 22-25. The logical conditions of these outputs are listed in the truth table Fig. 3.10.

Les commutations BF sont commandées par les signaux issus des broches 16 à 19 et 22 à 25 de l'IC1. La table de vérité correspondante est représentée fig. 3.10.

SELECTOR		T				IF —			
INPUT	RECORD	8	7	6	5	4	3	2	1
TUNER	TUNER		_		0		-	1	
TUNER	PHONO		-		0	0	-	ļ	-
TUNER	AUX				0		0	ļ	1
TUNER	TAPE 1				0				0
TUNER	TAPE 2				0		ļ	0	
TUNER	OFF				0			0	0

PHONO	TUNER								
PHONO	PHONO			J		0			
PHONO	AUX						0		
PHONO	TAPE 1								0
PHONO	TAPE 2							0	
PHONO	OFF							0	0
			***************************************						12.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
AUX	TUNER	0							
AUX	PHONO	0				0			
AUX	AUX	0					0		
AUX	TAPE 1	0							0
AUX	TAPE 2	0						0	
AUX	OFF	0						0	0

TAPE 1	TUNER		0						
TAPE 1	PHONO		0			0			
TAPE 1	AUX		0				0		
TAPE 1	TAPE 1		0						0
TAPE 1	TAPE 2		0					0	
TAPE 1	OFF		0					0	0
						***************************************			11111111111111111111111111111111111111
TAPE 2	TUNER		***************************************	0					
TAPE 2	PHONO			0		0			
TAPE 2	AUX			0			0		
TAPE 2	TAPE 1			0					0
TAPE 2	TAPE 2			0				0	
TAPE 2	AUX			0				0	0
F: 2.10				1	L		L		

Fig. 3.10

Die Reset-Schaltung steuert den RESET/ RAMPRT-Pin des Mikroprozessors (siehe Fig. 3.11). The reset circuit controls the RESET/RAMPRT pin of the microprocessor (see Fig. 3.11)

Le circuit de Reset commande la broche RESET/RAMPRT du microprocesseur (voir fig. 3.11).

Fig. 3.11

Der interne Stand-By Speicher bleibt auch bei ausgeschaltetem Gerät an der Speisespannung. Wird das Gerät vom Netz getrennt, so wird dieser Speicher von den eingesetzten Akkumulatoren gespeist.

Über sämtliche Steckanschlüsse des Mikroprozessorprints gibt die Anschlusstabelle in Fig. 3.12 Auskunft. The internal stand-by memory is connected with the supply voltage even when the receiver is switched off. When the unit is disconnected from the AC power, the memory is supplied by the built-in batteries.

All connecting points of the microprocessor board are listed in the table Fig. 3.12.

La mémoire interne Stand-By est alimentée même lorsque l'appareil n'est pas sous tension grâce aux accumulateurs placés dans celui-ci.

Le tableau des connexions du circuit du microprocesseur est représenté fig. 3.12.

SIGNALS OF THE MICROCOMPUTER PCB 1.780.260

1	N	D	٠	r	~
ı	IV				

J6 - 3 J7 - 16 J6 - 2 J6 - 9 J6 - 10 J6 - 17 J6 - 16 J7 - 6 J7 - 7 J7 - 8 J7 - 9 J7 - 11 J7 - 12 J7 - 13 J7 - 13 J7 - 14	U < 1V	U > 4V
J6 - 1 J7 - 18 J7 - 17 J6 - 18 J6 - 12 J6 - 13 J6 - 14 J6 - 15 J6 - 15 J6 - 7 J6 - 8 J6 - 7 J6 - 6	DEPRESSED	THE CORRESPONDING KEY RELEASED
J4 - 17	WITH "DUMMY PLUG"	WITH DOLBY PCB INSERTED
J4 18	STATION WITH STEREO PILOT	STATION WITHOUT PILOT
J5 – 14	RF - SIGNAL HIGH (THRESHOLD)	RF - SIGNAL LOW (THRESHOLD
J5 – 13	RF - SIGNAL HIGH (THRESHOLD)	RF - SIGNAL LOW (THRESHOLD
J5 — 12	SYNTHESIZER LOCKED	SYNTHESIZER UNLOCKED
J5 19	OUTPUT STAGE < 90° C	OUTPUT STAGE > 90° C
J5 – 18	ALWAYS HIGH	ALWAYS HIGH
J5 17	$fE < (fS - \Delta f)$ *	$fE > (fS - \Delta f) *$
J5 – 16	fE < (fS + Δ f) *	fE > (fS + △ f) *
J5 – 15	NO DC - VOLTAGE (SPEAKERS)	DC VOLTAGE (SPEAKERS)
	J6 - 1 J7 - 18 J7 - 17 J6 - 18 J6 - 12 J6 - 13 J6 - 14 J6 - 15 J6 - 11 J6 - 8 J6 - 7 J6 - 6 J6 - 5 J4 - 17 J4 - 18 J5 - 14 J5 - 13 J5 - 12 J5 - 19 J5 - 18 J5 - 17 J5 - 16	J6 - 1

Fig.3.12a

OUTPUT

SIGNAL	CONNECTOR	CONTROLS IF LOGIC LOW		CONTROLS IF LOGIC HIGH	
DLEN 3 DLEN 2 DLEN 1 CLCK DATA	J5 - 2 J7 - 1 J7 - 2 J5 - 1 / J7 - 4 J5 - 3 / J7 - 3	CONTROL OF SYNTHESIZER SEE F	IG.3.7		
NF 1 NF 2 NF 3 NF 4 NF 5 NF 6 NF 7 NF 8	J4 — 9 J4 — 8 J4 — 7 J4 — 6 J5 — 7 J5 — 6 J5 — 5 J5 — 4	AF — SWITCHING SEE FIG. 3.10	+0.1V		+4V
PONL / R	J4 - 4 / - 5	POWER STAGE L / R: OFF	+0.4V	POWER STAGE L / R: ON	+4V
ST	J4 — 2	DEMODULATOR FOR STEREO— SUB CHANNEL: OFF	-15V	DEMODULATOR FOR STE- REO SUB CHANNEL: ON	-4V
PH	J4 — 3	PREAMP. RELAY: OFF PHONES / PREAMP. MUTED	-22V	PREAMP. RELAY: ON PHONES / PREAMP. ACTIV	-1.5V
DON	J4 — 1	DOLBY - RELAY: OFF NR - SYSTEM OFF	-22V	DOLBY - RELAY: ON NR - SYSTEM ON	-0.2V
STFI 1/2	J4 — 11 / — 12	HIBL ON (Uc17)	-15V	SEPARATION MAX. (Uc17)	+12V
МС	J4 — 13	SIGNAL AND TUNING METERS NORMAL	-2V	SIGNAL AND TUNING METERS OFF	+3V
75μs	J5 — 9	DEEMPHASIS 50μs	-2V	DEEMPHASIS 75μs	+3 V
25μs	J5 — 10	DEEMPHASIS 50μs	-2V	DEEMPHASIS 25μs (75μs LOW)	+3V
MUT	J5 — 11	AF - SIGNAL FROM TUNER SWITCHED ON	+0.2V	TUNER MUTED	+1 5V
SPA	J4 — 16	SPEAKERS A: ON	+0.3V	SPEAKERS A: OFF	+22V
SPB	J4 — 15	SPEAKERS B: ON	+0.3V	SPEAKERS B: OFF	+22V
ww	J4 — 14	TUNING COMPARATOR ± 25kHz	-1.4V	TUNING COMPARATOR ±75kHz	+22V

APPROXIMATE VALUE

3.3 Audio-Teil

3.3.1 Meter Circuit and Deemphasis PCB 1.780.155

Die Audio-Signale L und R vom Stereo-Decoder werden auf den Entzerr-Verstärker geführt. Auf dem Entzerrverstärker sind die zusätzlichen Deemphasis-Glieder für 75 und 25 µs und die Pegelregler für die NF-Ausgangsspannung. Das an R1/ R39 abgenommene Signal wird in IC1/IC4 um 12dB verstärkt. Diese Signale (LO und RO) werden entweder über den Dolby Prozessor-Print oder über den Dummy-Print auf die Audio Connection Unit 1.780.145 geführt (Signale TULS/ TURS).

3.3.2 Audio Connection Unit 1.780.145

Das Tuner-NF-Signal und die Eingänge PHONO, AUX, TAPE 1+2 sowie die Ausgänge TAPE 1+2 werden über Analog-Schalter (IC2 . . . 5) gemäss den Steuerbefehlen NF1 ... NF 8 vom Mikroprozessorprint zusammengeschaltet. Die beiden daraus resultierenden Signale (ML und MR) werden auf den Vorverstärker 1.780.205 (B739: 1.780, 835) geführt.

3.3 Audio section

3.3.1 Meter circuit and de-emphasis PCB 1.780.155

The audio signals L and R from the stereo decoder are input to the de-emphasizing amplifier. The additional de-emphasis circuits for 75 µs and 25µs, and the gain controls for the AF output voltage are located on this amplifier. The signal picked up at R1/R39 is amplified by 12dB in IC1/IC4. These signals (L0 and R0) are taken to the audio connection unit 1.780.145 either via the dolby processor PCB or the dummy board (signals TULS/-TURS).

3.3.2 Audio connection unit 1,780.145

The tuner AF signal and the inputs PHONO, AUX, TAPE 1+2 as well as the outputs TAPE 1+2 are interconnected by the microprocessor PCB via analog switches (IC2 ... 5) as specified by the control commands NF1 ... NF8. The resulting two signals (ML and MR) are taken to the preamplifier 1.780.205 (B739: 1.780.835).

Section audio 33

3.3.1 Circuit de désaccentuation et de mesure PCB 1.780,155

Les signaux audio G et D, issus du décodeur stéréo, sont conduits à l'amplificateur de correction, lequel contient les réseaux supplémentaires de désaccentuation pour 25 et 75 µs, ainsi que le réglage du niveau de sortie BF. Le signal prélevé en R1/R39 est amplifié de 12dB par IC1/IC4. Ces signaux (LO et RO) sont amenés à l'Audio Connection Unit 1.780.145 (signaux TUES/TURS), soit par le processeur Dolby, soit par un circuit "strap" le remplaçant.

3.3.2 Unité de connexion audio 1.780.145

Le signal BF issu du tuner, les entrées PHONO, AUX, TAPE 1+2 ainsi que lessorties TAPE 1+2 sont commutées analogiquement par les ICs 2 à 5 selon les ordres NF1 ... NF8 donnés par le microprocesseur. Les deux signaux de sortie finaux parviennent au préamplificateur 1.780. 205 (B739: 1.780,835).

Fig. 3.13

3.3.3 Preamplifier 1.780.205

(B739: 1.780.835)

Die NF-Signale vom Audio Connection Unit werden zuerst über einen zuschaltbaren Abschwächer (LEVEL –20dB) geführt. Danach folgt ein zuschaltbares Loudness-Filter, welches lautstärkeabhängig die tiefsten sowie die hohen Frequenzen "gehörrichtig" anhebt. Danach gelangt das Signal an den Lautstärkeregler VOLUME, nach welchem der Umschalter MONO folgt. Vor dem Balanceregler wird das Signal um 14dB verstärkt. Danach gelangt es über den Filter-Print 1.780.215-81 und über den Print Tone Control PCB 1.780.210, welcher jedoch mit dem Schalter TONE DEFEAT überbrückbar ist.

Die Ausgangssignale PREL und PRER, sowie die Eingangssignale für den Kopfhörer-Ausgang PHL und PHR sind über die Einschaltkontakte von Relais K1 geführt.

Das verzögerte Durchschalten der NF-Kanäle bei Einschalten des Gerätes wird vom Signal PH gesteuert.

3.3.3 Preamplifier 1.780,205

(B739: 1.780.835)

The AF signals from the audio connection unit are first taken to an attenuator (LEVEL—20dB) that is brought into the circuit depending on the volume. This attenuator is followed by switch-controlled loudness filters which boost the lowest as well as the high frequencies to compensate the volume. The signal is subsequently taken to the VOLUME control, followed by the MONO change-over switch. The signal is amplified by 14dB before it is taken to the balance control. From there it is taken via filter PCB 1.780,215-81 to the tone control PCB 1.780,210 which can, however, be bypassed with the TONE DEFEAT switch.

The output signals PREL and PRER as well as the input signals for the headphones output PHL and PHR are taken to the making contacts of relays K1.

The delayed through connection of the AF channels when the unit is switched on is controlled by signal PH.

3.3.3 Préamplificateur 1.780.205

(B739: 1.780.835)

Les signaux BF issus de l'unité de connexion audio sont d'abord conduits à un atténuateur commutable (LEVEL —20dB). Un correcteur physiologique, lui aussi commutable, permet une correction physiologique du réglage de la puissance sonore. Le signal passe ensuite par le réglage du volume et l'inverseur mono/stéréo (MONO). Le signal est amplifié de 14dB avant le réglage de balance puis est transmis au circuit des filtres 1,780.215-81 et enfin au correcteur de tonalité PCB 1,780.210. Ce dernier peut être évité grâce au commutateur TONE DEFEAT.

Les signaux de sortie PREL et PRER, ainsi que ceux destinés (PHL et PHR) à la sortie casque, sont présents aux bornes du relais K1.

La commutation retardée des signaux BF, à la mise en service de l'appareil, est commandée par le signal PH.

Fig. 3.14

3.3.4 Tone Control PCB 1.780.210

Zwischen dem Vorverstärker und der Endstufe ist die Tonregelung 1.780.210 eingesetzt. Sie besteht aus zwei aktiven Filterstufen. Die erste (TREBLE) beeinflusst die hohen Frequenzen. Der Regelbereich bei 8kHz beträgt ±8dB. Die gleiche Stufe wirkt auch auf die untersten Frequenzen. Der Regelbereich beträgt bei 120Hz ±8dB. Danach folgt die Filterstufe für den mittleren Frequenzbereich (PRESENCE). Der Regelbereich dieses Filters beträgt ±8dB bei 3kHz.

3.3.4 Tone control PCB 1.780.210

The tone control 1.780.210 is inserted between the preamplifier and the power stage. It consists of two active filter stages. The first (TREBLE) influences the high frequencies. The range of regulation at 8kHz is ±8dB. The same stage also influences the lowest frequencies. The range of regulation at 120Hz is ±8dB. The second filter stage influences the medium frequencies (PRESENCE). The range of regulation for this filter is ±8dB at 3kHz.

3.3.4 Correcteur de tonalité PCB 1.780.210

Le correcteur de tonalité 1.780.210 est situé entre le préamplificateur et l'étage de puissance. Il comprend deux filtres actifs: le premier traîte les fréquences élevées et les basses, son domaine de réglage est de ±8dB à 8kHz et de ±8dB à 120 Hz. Le deuxième filtre agit sur les moyennes fréquences (PRESENCE) et sa plage de réglage est de ±8dB à 3kHz.

Fig. 3.15

3.3.5 Power Amplifier PCB 1.780.105

Die Signale gelangen über den Print Audio Connection Unit, wo sie zuerst auf die Buchse PRE OUT/PWR IN geführt sind, auf die Endstufe. Die Buchse PRE OUT/PWR IN dient zum Einschleifen von Effektgeräten wie z.B. ein Equalizer. Wird diese Buchse verwendet, so ist die Verbindung Vorverstärker-Endstufe von selbst unterbrochen. Ansonsten gelangen die Signale direkt auf die Endstufe. Diese besitzt eine fest eingestellte Verstärkung von 29dB. Eine aufwendige Schutzschaltung verhindert den Betrieb der Endtransistoren ausserhalb des erlaubten Bereiches der Verlustleistungshyperbel. Zusätzliche Schutzschaltungen überwachen die Endstufe:

3.3.5 Power amplifier PCB 1.780.105

The signals reach the power stage via the audio connection unit PCB where they are first taken to the socket PRE OUT/PWR IN. This socket is used for connecting effect devices such as an equalizer. When this socket is used, the connection between the preamplifier and the power stage is automatically opened and the signals no longer reach the power stage. The power stage is designed for a fixed gain of 29dB. A sophisticated guard circuit prevents the tail transistors from operating outside the admissible range of the power dissipation hyperbola. The power stage is monitored by additional guard circuits:

3.3.5 Amplificateur de puissance PCB 1.780.105

Les signaux arrivent de l'unité de connexion audio, où ils sont conduits à l'étage de puissance par la prise PRE OUT/PWR IN. Cette prise permet d'insérer des appareils à effets, comme par ex. un égaliseur, dans le circuit audio. Lorsque cette prise est utilisée, la liaison ampli-préampli est automatiquement interrompue. Le gain de l'amplificateur est fixé à 29dB. Un couteux circuit de protection empêche le fonctionnement des transistors de puissance en denors de leur aire de sécurité. De plus, les circuits suivants contrôlent l'amplificateur:

Temperaturschutz

Bei übermässiger Erwärmung der Endtransistoren (ca. 90°C) lässt die Überwachungs-Logik das Trennrelais abfallen, welches zwischen Endstufe und Vorverstärker geschaltet ist. Bei ca. 80°C zieht das Relais wieder an. Die Signale PONL und PONR schalten die Speisung der Vorstufen zu resp. ab. Die Endstufentransistoren bleiben immer unter Spannung.

Lautsprecherschutz

Tritt am Verstärkerausgang eine für die Lautsprecher gefährliche Gleichspannung auf, so fällt das Trennrelais ebenfalls ab. Die Lautsprechersysteme sind somit gegen Überlast geschützt.

Thermal protection

If the tail transistors overheat (approx. 90°C), the monitor circuit causes a drop-out of the cut-off relay located between the power stage and the preamplifier. The relay picks up again after the temperature has dropped to approximately 80°C. The signals PONL and PONR switch the supply of the preliminary stages on or off. The tail transistors always remain under voltage.

Speaker protection

The cut-off relay drops out if a dangerous DC voltage is present at the speaker output. The speakers are thus protected against electrical overloads.

Protection en température

Lors d'un échauffement excessif des transistors de puissance (env. 90° C), la logique de protection fait déclencher le relais situé entre le préamplificateur et l'amplificateur. Ce relais s'enclenche à nouveau vers 80° C. Les signaux PONL et PONR commutent l'alimentation des étages d'attaque alors que les transistors de puissance restent toujours alimentés.

Protection des haut-parleurs

Si une composante continue, dangereuse pour les haut-parleurs, apparaît à la sortie de l'amplificateur, le relais de séparation déclenche. Les haut-parleurs sont ainsi protégés contre les surcharges.

Fig. 3.16

3.3.6 Dolby Processor PCB 1.166.400

Auf der Dolby-Steckkarte ist je ein Wiedergabeprozessor für den linken und den rechten Kanal vorhanden. Das Umschaltrelais schaltet den Empfangsteil in Abhängigkeit des Schalters NOISE REDUCTION auf Normalbetrieb oder Betrieb mit eingeschalteter Rauschunterdrückung.

Mit den Reglern auf der Steckkarte kann die NF-Ausgangsspannung für beide Kanäle eingestellt werden.

Fig. 3.17

3.4 Netzteil 1.780.110

Wenn das Gerät ans Netz angeschlossen ist, bleibt der Trafo immer unter Spannung. Der Hauptschalter schaltet einen Teil der Sekundärseite des Netztransformators ein.

Der Netzspannungswähler kann auf folgende Netzspannungen geschaltet werden: 100/120/140/200/220/240V AC (Netzsicherung kontrollieren!).

Bei ausgeschaltetem Gerät bleibt die Speisespannung für die Akku's und für das mikroprozessor-interne "Stand-By" RAM aktiv. Wird der Netzstecker ausgezogen, oder fällt das Netz aus, versorgen die eingesetzten Akku's dieses Stand-By RAM.

Der Hauptschalter schaltet die Versorgungsspannungen ±15V und ±22V ein bzw. aus.

Fig. 3.18

3.3.6 Dolby processor PCB 1.166.400

One reproduce processor each for the left-hand and the right-hand channel is located on the dolby board. A change-over relay switches the noise reduction either on or off depending on the setting of the NOISE REDUCTION switch.

The AF output voltage for the two channels can be adjusted with the potentiometers on the circuit board.

3.4

Power supply 1.780.110

When the unit is plugged into an AC outlet, the transformer is always under voltage. The POWER ON switch switches on a section of the secondary side.

The AC voltage selector can be set to the following line voltages: 100/120/140/200/220/240 VAC (match power fuse!).

The supply voltage for the batteries and for the stand-by RAM of the microprocessor is still available even when the unit is switched off. However, if the power cord is disconnected or in the event of a power failure, the stand-by RAM is supplied by the batteries.

The POWER ON switch turns the $\pm 15V$ and $\pm 22V$ supply voltage on or off.

3.3.6 Décodeur Dolby PCB 1.166.400

La carte Dolby comporte deux modules de reproduction pour les canaux gauche et droit. Le relais inverseur commute l'étage récepteur en mode "normal" ou "avec réducteur de bruit" selon la position du commutateur NOISE RE-DUCTION.

Les potentiomètres de la carte permettent d'ajuster la tension de sortie des deux canaux BF

3.4 Alimentation 1.780.110

Après son raccordement au setteur, l'appareil reste sous tension. L'interrupteur secteur est intercalé dans le circuit secondaire du transformateur

Le sélecteur de tension secteur permet les adaptations suivantes: 100/120/140/200/220/240V AC (Contrôler les fusibles secteur!)

La tension d'alimentation de la RAM Stand-By du microprocesseur est toujours présente, grâce aux accumulateurs, l'orsque l'appareil est intentionnellement débranché comme en cas de panne secteur.

Le commutateur principal enclenche et déclenche les tensions d'alimen ${f t}$ ation ${f \pm}15V$, ${f \pm}22V$.

4. ABGLEICHANLEITUNG

4.1 Benötigte Messgeräte

Eine detaillierte Liste der bei uns erhältlichen Messgeräte und Werkzeuge kann bei REVOX-ELA AG angefordert werden.

Stereo-Mess-Sender: 87 . . . 108MHz und 10,2 . . . 11,2 MHz Fremdspannungsabstand min. 75dB

Stereo-Modulator: Kanaltrennung min. 50dB Fremdspannungsabstand min. 75dB

NF-Generator: klirrarm (k kleiner als 0,05%)

Digitalzähler: für 38 kHz und 11MHz

Oszilloskop: intern und extern triggerbar, Probe 10:1

DC-Transistor- oder Röhrenvoltmeter (VTVM): HF-Tastkopf

Eingangswiderstand 10 MOhm

Universal-Messinstrument: min. 20 000 Ohm/V

Klirrfaktor-Messgerät (oder NF-Millivoltmeter mit geeigneten Filtern)

Zusätzliche Werkzeuge und Hilfsmittel: 1 Koax - Kabel (HF) BNC-DIN 45325

1 Satz Abstimmbesteck

1 Tiefpass-Filter 15kHz (Fig. 4.1)

4. ADJUSTMENT INSTRUCTIONS

4.1 Required measuring instruments

A detailed list of the available measuring instruments and tools can be obtained from REVOX-ELA AG.

Stereo standard-signal generator: 87 . . . 108Mhz and 10.2 . . . 11.2MHz Signal-to-noise ratio at least 75dB

Stereo modulator: Channel separation at least 50dB Signal-to-noise ratio at least 75dB

AF generator: Low-distortion (k < 0.05%)

Digital frequency counter: For 38kHz and 11MHz

Oscilloscope: With internal and external triggering, probe 10:1

DC transistor or vacuum-tube voltmeter (VTVM): RF probe

Input impedance 10 ohms

Multimeter: min. 20 000 ohms/V

Distortion meter (or AF millivoltmeter with suitable filters)

Supplementary tools and aids: 1 Coax cable (RF) BNC-DIN 45325

1 Set alignment tool kit

1 Low-pass filter 15kHz (Fig. 4.1)

4. PROCEDURE DE REGLAGE

4.1 Appareils de mesure nécessaires

Une liste complète des appareils de mesure et outils disponibles chez nous peut être demandée à REVOX-ELA AG.

Générateur HF stéréo: 87 ... 108MHz et 10,2 ... 11,2MHz rapport signal/bruit min. 75dB

Modulateur stéréo: séparation des canaux min, 50dB rapport signal/bruit min, 75dB

Générateur BF: à faible distorsion (THD 0,05!)

Fréquencemètre digital: pour 38kHz et 11MHz

Oscilloscope: avec trigger interne/externe et sonde 10:1

Voltmètre électronique à transistors ou à tubes (VTVM): avec sonde HF. Résistance d'entrée 10 Mohms

Mulitmètre:
Résistance interne 20kohms/V

Distorsiomètre (ou millivoltmètre BF muni de filtres)

Outils supplémentaires et accessoires: Un cable coaxial HF BNC-DIN 45325 Un jeu de tournevis de réglage Un filtre passe-bas 15kHz (fig. 4.1)

Fig. 4.1

4.2 Allgemeines

Die HF-Spannungen in dieser Anleitung sind in EMK (Leerlaufspannung) angegeben. Bei einem Innenwiderstand des Mess-Senders von 60 Ohm, resultiert am Eingangswiderstand des Tuners (60 Ohm-Eingang) ein Eingangssignal von der Hälfte der eingestellten EMK (siehe Fig. 4.2).

4.2 General

The RF voltages in these instructions refer to open-circuit voltage (emf). With a 60 ohms source resistance of the standard-signal generator, the input signal available at the input resistor of the tuner (60 ohms input) is 50% of the selected open-circuit voltage (see fig. 4.2).

4.2 Généralités

Les tension HF sont données en F.e.m. (force électromotrice). A cause de l'impédance interne de 60 ohms du générateur et de l'impedance d'entrée de 60 ohms du tuner, il resulte à l'entrée de celui-ci un signal dont la F.e.m est égale à la moitié de la valeur indiquée au générateur (voir fig. 4.2).

Fig. 4.2

MASSEL

werden.

Bei Mess-Sendern, deren Signalspannungen für den Nenn-Abschlusswiderstand geeicht sind, ist der halbe Wert der angegebenen EMK einzustellen. Die vorherrschende Messfrequenz von 97MHz gilt als Richtwert. Vor dem Abgleich ist zu prüfen, ob diese Frequenz frei von Sendereinfall oder Interferenzen ist.

Ist diese Frequenz nicht frei, so ist die Einstellung leicht zu verändern.

ALLE MESSUNGEN ERFOLGEN GEGEN

Bevor mit dem Abgleich begonnen wird, müssen

die Speisespannungen unbedingt kontrolliert

gonnen werden, wenn der Mess-Sender die sta-

bile Messfrequenz erreicht hat (Thermodrift).

Mit den Abgleicharbeiten kann erst be-

cuit voltage is to be cut in half. The predominant measuring frequency of 97MHz serves as an approximate value. Check whether this frequency is free of transmitter signals or interference before any adjustments are made. If this frequency is not clean, it should

be slightly adjusted.

For standard-signal generators, the signal

voltage of which is calibrated for the nominal

terminating impedance, the specified open-cir-

ALL MEASUREMENTS ARE TAKEN AGAINST GROUND!

It is absolutely essential to check the supply voltages before any adjustments are made.

No adjustments should be made before the standard-signal generator has reached a stable measuring frequency (thermodrift). Lorsque l'on travaille avec des générateurs qui prennent en compte l'impédance de l'appareil sous test, il faut les régler à la moitié de la valeur nominale indiquée. La principale fréquence de mesure est 97MHz. Avant de commencer les réglages, assurez vous que cette fréquence soit bien exempte d'émission ou d'interférence.

Dans le cas contraire, décalez légèrement l'accord.

TOUTES LES MESURES SONT REFEREES EN MASSE!

Avant de commencer les réglages, il est indispensable de contrôler toutes les tensions d'alimentation et de s'assurer que le généra teur HF ne présente plus de dérive thermique.

4.2.1 Kontrolle der Speisespannungen

Gerät einschalten, Netzspannung mit Regeltrafo genau auf Nennspannung einstellen. Stromaufnahme bei 220V: B780 ca. 180 mA, B739 ca. 120 mA. Spannungsmessungen an der Verteilerplatine (Fig. 4.3).

Fig. 4.3

+22V/-22V ±0,8V unstabilisiert +15V/-15V ±0,5V stabilisiert +6V ±0,3V stabilisiert +32V ±0,5V stabilisiert, einstellbar

+5,6V

±0,3V stabilisiert

4.3 **Funktions-Kurztest**

4.3.1 Tunerteil B780/B739

Gerät ans Netz anschliessen und einschalten. Am Antenneneingang 2µV EMK, 15kHz Hub, Frequenz 97MHz, Modulationsfrequenz 1kHz einspeisen und NF-Bezugsmesswert feststellen.

Modulation abschalten und den Fremdspannungsabstand ermitteln; ist dieser grösser als 30dB, am Antenneneingang 2mV EMK, 40kHz Hub, Modulationsfrequenz 1kHz einspeisen und bei Stereobetrieb den NF-Bezugsmesswert feststellen.

Modulation abschalten und Netzspannung auf 200V absenken.

Fremdspannungsabstand ermitteln, Sollwert min. 65dB.

Checking the supply voltages

Switch unit on, adjust line voltage with the aid of regulating transformer exactly to the nominal voltage. Power consumption at 220V: B780 approx. 180mA, B739 approx. 120mA. Voltage measurements at distribution board (Fig. 4.3).

4.2.1 Contrôle des tensions d'alimentation

Reliez l'appareil au secteur et enclenchez-le. Ajustez la tension secteur à sa valeur nominale. Consommation à 220V: B780 ca. 180 mA, B739 ca. 120 mA. Mesure des tensions sur la carte de distribution (fig. 4.3).

+22V/-22V ±0.8V unstabilized +15V/-15V ±0.5V stabilized +6V ±0.3V stabilized +32V ±0.5V stabilized, adjustable

+5.6V ±0.3V stabilized

4.3 Brief test for correct functioning

Tuner section B780/B739

Connect unit to AC power and switch it on. Feed in 2µV emf, 15kHz deviation, frequency 97MHz, modulation frequency 1kHz at the antenna input and check whether measured signal corresponds to reference value.

Switch modulation off and measure signal-to-noise ratio. If the ratio is greater than 30dB, feed in 2mV emf, 40kHz deviation, modulation frequency 1kHz and check in stereo mode whether the measured value corresponds to the reference value.

Switch modulation off and decrease voltage to 200V.

Measure signal-to-noise ratio, desired value at least 65dB.

+22V/-22V ±0,8V non stabilisés +15V/-15V ±0,5V stabilisés +6V ±0.3V stabilisé

+32V ±0,5V stabilisé, réglable +5,6V ±0,3V stabilisé

4.3

4.3.1 Section Tuner B780/B739

Reliez l'appareil au secteur et enclenchez-le. Produire 2µV à la prise d'antenne, à 97MHz. 1kHz de modulation de fréquence et 15kHz d'excursion. Etablir la tension BF de référence.

Contrôle rapide des fonctions

Coupez la modulation et déterminez le rapport signal/bruit. Si celui-ci est supérieur à 30dB, produire 2mV de F.e.m à la prise d'antenne, avec 40kHz d'excursion et 1kHz de modulation de fréquence. Mesurez la valeur de référence de la tension BF en mode stéréo.

Coupez la modulation et réduisez la tension secteur à 200V.

Le rapport signal/bruit doit être alors d'au moins 65dB.

4.3.2 Verstärkerteil B780

Leistungsaufnahme im Leerlauf messen. Ist diese in Ordnung, so wird die Sinusleistung an 4 Ohm mit einem KO bis zur Aussteuerungsgrenze (Klippen) geprüft. Bezugsmesswert feststellen.

Rechteckdurchlass bei 40Hz und 10kHz bei 1/4-Sinusleistung (-6dB) prüfen (Fig. 4.4). Netzspannung auf 200V/100V absenken und Fremdspannungsabstand an TAPE und PHONO-Eingang überprüfen (nach Datenblatt).

4.3.2 Amplifier section B780

Measure the open-circuit power consumption and if in order, check the sine output into 4 Ohm, fully driven (up to the clipping point) with the aid of an oscilloscope. Check whether measured value corresponds to reference value.

Check square-wave pass at 20Hz and 10 kHz with 25% sine output (-6dB, (Fig. 4.4). Decrease AC voltage to 200V/100V and check signal-to-noise ratio at TAPE and PHONO input (according to technical data).

4.3.2 Section Amplificateur B780

Mesurez la consommation à vide. Si celle-ci est normale, on contrôlera la puissance de sortie en mode sinus sous 4 ohms avec un oscilloscope, et ce jusqu'à l'écretage qui déterminera la tension de référence.

Contrôlez la réponse aux signaux carrés à 40Hz et 10kHz, à 1/4 de la puissance nominale sinus (–6dB) selon la fig. 4.4. Abaissez la tension du secteur à 200V/100V et contrôlez le rapport signal/bruit des entrées TAPE et PHONO (selon la feuille de données).

Fig. 4.4

4.4 Vorbereitungen für die Abgleicharbeiten

Zur Vereinfachung des Abgleichvorganges werden folgende Frequenzen eingestellt und gespeichert:

Stationstaste 1	87,50MHz
Stationstaste 2	90,00MHz
Stationstaste 3	97,00MHz
Stationstaste 4	106,00MHz
Stationstaste 5	107,95MHz

Damit alle Abgleichpunkte zugänglich sind, müssen das obere und untere Deckblech entfernt werden (siehe Kapitel 2.1/2.2).

4.4.1 Abgleich der Quarzreferenz des Synthesizers

Dieser Abgleich braucht nur nach dem Ersetzen eines Quarzes oder des Synthesizers durchgeführt zu werden.

- Digitalzähler an IC2 Pin 7 (Synthesizer PCB 1.780.151) anschliessen. Falls IC2 mit dem Typ LN1031 versehen ist, muss für diese Messung ein 1kOhm Widerstand zwischen Pin 7 und 16 geschaltet werden.
- Mit Trimmer C23 eine Anzeige von 4MHz einstellen.

4.4 Preparatory steps for adjustments

The following frequencies are entered and stored in memory in order to simplify the adjustment procedures:

Station key 1	87.50MHz
Station key 2	90.00MHz
Station key 3	97.00MHz
Station key 4	106.00MHz
Station key 5	107.95MHz

To gain access to the various test points it will be necessary to remove the top and the bottom cover plates (refer to 2.1/2.2).

4.4.1 Calibrating the synthesizer quartz reference

This adjustment is only necessary after a crystal or the synthesizer has been replaced.

- Connect digital frequency counter at IC2, pin 7 (synthesizer PCB 1.780.151).
 If IC2 is equipped with LN1031, a 1kohm resistor must be connected between pin 7 and 16 before this measurement is made.
- Adjust trimmer C23 so that a reading of 4MHz is obtained.

I.4 Préparation aux travaux de réglage

Pour simplifier le processus de réglage, mémorisez les fréquences suivantes:

Touche de station 1	87,50MHz
Touche de station 2	90,00MHz
Touche de station 3	97,00MHz
Touche de station 4	106,00MHz
Touche de station 5	106 95MHz

Pour que tous les points de réglage soient accessibles, il faut enlever les plaques inférieure et supérieure (voir chap. 2.1 et 2.2).

4.4.1 Réglage de la référence à quartz du synthétiseur

Ce réglage n'est utile que lorsque l'on a remplacé un quartz ou un synthétiseur.

- Raccordez le fréquencemètre digit al à la broche 7 de IC2 (Synthesizer PCE 1.780. 151). Si IC2 est un LN 1031, i faut, pour cette mesure, connecter ure résistance de 1kohms entre ses broches 7 et 16
- Avec le trimmer C23, régler l'affichage sur 4MHz.

4.5 Abgleich des Lokaloszillators und Synthesizers 1.780.151

- Abschirmdeckel HF-Eingangsteil, Oszillator- und Synthesizerprint abziehen.
- VTVM an den Ausgang von IC4 (Pin 6) anschliessen.
- Gerät einschalten und Stationstaste 1 (87,50MHz) drücken. Mit dem Spulenkern von L3 eine Nachstimmspannung von 4,5V ±0V einstellen (Fig. 4.5).

4.5 Calibrating the local oscillator and synthesizer 1.780.151

- Remove screen covers of RF section, oscillator, and synthesizer board.
- Connect VTVM to the output of IC4 (pin 6).
- Switch unit on and press station 1 (87.50MHz). Adjust for a fine-tuning voltage of 4.5V ±0V with the aid of the trimmer slug of L3 (Fig. 4.5).

4.5 Réglage de l'oscillateur local et du synthétiseur 1.780.151

- Retirez les capots de blindage de l'étage d'entrée HF, de l'oscillateur local et du synthétiseur.
- Reliez le VTVM à la sortie de IC4 (broche 6).
- Enclenchez l'appareil et appuyez sur la touche de station 1 (87,50MHz). Réglez le noyau de L3 pour obtenir une tension d'accord de 4,5V ±0V (fig. 4.5).

Fig. 4.5

- Stationstaste 5 (107,95MHz) drücken.
 Mit Trimmer C15 eine Nachstimmspannung von 24V ±0,2V einstellen.
- Diese Einstellvorgänge wiederholen, bis keine Korrektur mehr notwendig ist. VTVM von Messpunkt IC4 entfernen.
- VTVM mit HF-Tastkopf an Testpunkt TP4 auf dem HF-Eingangsteil 1.166.100 anschliessen. Die HF-Spannungen müssen bei

87,50 (Stationstaste 1) 97,00 (Stationstaste 3) 107,95 (Stationstaste 5) im Bereich von 0,1 ... 0,25V liegen. Mit dem Übertrager L1 kann die Symmetrie nachgeregelt werden.

Nach diesen Abgleicharbeiten müssen die Abschirmdeckel über dem Synthesizer und Lokaloszillator wieder aufgesteckt werden.

- Press station 5 (107.95MHz). Adjust for a fine-tuning voltage of 24V ±0.2V with the aid of trimmer C15.
 - Repeat these calibrating steps until no further corrections are necessary. Disconnect VTVM from test point IC4.
- Connect VTVM with RF probe to TP4 on RF input section 1.166.100. The RF voltages for

station 1 87.50 station 3 97.00 station 5 107.95 must be within 0.1 ... 0.25V. The balance can be readjusted with the transformer L1.

Reinstall the covers above the synthesizer and the local oscillator after these adjustments have been made.

- Appuyez sur la touche de station 5 (107,95MHz) et réglez le trimmer C15 pour obtenir une tension d'accord de 24V ±0,2V.
 - Recommencez ce processus jusqu'à ce qu'aucune correction ne soit nécessaire, puis débranchez le VTVM du point de mesure sur IC4.
 - Reliez le VTVM au point test TP4 de la tête HF sur l'étage d'entrée HF 1.166. 100. Les tensions HF doivent être de l'ordre de 0,1 . . . 0,25V pour:

87,50MHz (touche de station 1)
97,00MHz (touche de station 3)
107,95MHz (touche de station 5)
La symétrie peut être ajustée par le translateur L1.

Après ces réglages, il faut replacer les capots de blindage du synthétiseur et de l'oscillateur.

Fig. 4.6

4.6 Abgleich der HF-Kreise

- Mess-Sender mit Koax-Kabel an Antenneneingang anschliessen; Frequenz 90,00 MHz, 0,2mV EMK.
- VTVM mit HF-Tastkopf am Messpunkt
 TP5 (auf IF Amplifier PCB 1.166.120)
 anschliessen; Messbereich 1V DC.
- Stationstaste 2 drücken (Anzeige TUN-ING = 0). Alle 5 HF-Kreise auf dem HF-Eingangsteil mit den Spulenkernen L1...
 L4 und L6 auf Maximum-Anzeige am VTVM abgleichen. Während diesem Abgleichvorgang muss die Spannung am Antenneneingang immer unter dem Einsatzbereich der AGC (Automatic Gain Control) gehalten werden (ca. 400 ... 600mV).
- Stationstaste 4 (106,00MHz) drücken, den Mess-Sender auf 106,00MHz einstellen (TUNING = 0). Alle 5 HF-Kreise auf dem HF-Eingangsteil mit den Trimmern C3, C12, C17, C26 und C30 auf Maximum-Anzeige am VTVM abgleichen (Spannung am Antenneneingang unter Einsatzpunkt AGC halten).

Diese Abgleichvorgänge sind zu wiederholen, bis keine Verbesserungen mehr erreichbar sind.

4.6 Tuning the RF circuits

ing range 1V DC.

- Connect standard-signal generator with the aid of coax cable to the antenna input. Frequency 90.00MHz, 0.2mV, emf.
 Connect VTVM with RF probe at TP5 (on IF amplifier PCB 1.166.120); measur-
- Press station 2 (TUNING display = 0).
 Adjust all 5 RF circuits on the RF input section for maximum reading on the VTVM with the aid of trimmer slugs L1 ... L4 and L6. The voltage at the antenna input must always be kept below the attack point of the AGC (Automatic Gain Control) when these adjustments are made (approx. 400 ... 600mV).
 - Press station 4 (106.00MHz), set standard-signal generator to 106.00MHz (TUNING = 0). Adjust all 5 RF circuits on the RF input section for maximum reading on the VTVM with the aid of potentiometers C3, C12, C17, C26, and C30 (Keep voltage at antenna input below AGC attack point).

Repeat these adjustment procedures until no further improvement is achievable.

4.6 Réglage des circuits HF

- Raccordez le générateur HF à la prise d'antenne à l'aide du câble coaxial. Fréquence 90,00MHz et 0,2mV de F.e.m.
- Raccordez la sonde HF du VTVM au point de mesure TP5 (sur l'amplificateur FI PCB 1.166.120), échelle de mesure 1V DC.
- Appuyez sur la touche de station 2 (TUNING = 0). Réglez les cinq circuits HF au maximum de déviation du VTVM à l'aide des noyaux L1... L4 et L6. Pendant ce réglage, la tension d'entrée à l'antenne doit être inférieure au seuil d'action de la CAG (env. 400 à 600mV).
 - Appuyez sur la touche de station 4 (106,00MHz). A l'aide des trimmers C3, C12, C17, C26 et C30, réglez les cinq circuits HF au maximum de déviation du VTVM (la tension à l'entrée d'antenne devant toujours être inférieure au seuil d'action de la CAG).

Ces réglages sont à reproduire jusqu'à ce qu'aucune amélioration ne puisse être obtenue.

Fig. 4.7

4.7 Abgleich des ZF-Filters, ZF-Verstärkers und des Anzeigediskriminators

- Abschirmdeckel von ZF-Verstärker und Demodulator/Decoder abziehen.
- Mess-Sender (EMK 0,2mV) mit Koax-Kabel an Antenneneingang anschliessen.
- VTVM mit HF-Tastkopf an Messpunkt TP5 (ZF-Verstärker 1.166.120) anschliessen, Messbereich 1V DC.
- Mess-Sender auf 97,00MHz ±1kHz einstellen. Für die ganze Einstellung in diesem Kapitel muss diese Frequenz stabil gehalten werden. Zur Kontrolle, Digitalzähler an P1 anschliessen und ZF von 11MHz überwachen.
- Stationstaste 3 (97,00MHz) drücken. Die Kreise L3 und L4 auf dem ZF-Verstärker sowie das Achtkreisfilter (FL1, FL2 und L9 auf HF-Eingangsteil und FL2 ... 6 auf dem ZF-Verstärker) auf Maximum-Anzeige am VTVM abgleichen (TP5). Die Spannung am Antenneneingang während dieser Messung unter dem Einsatzpunkt der AGC halten.

Der Abgleichvorgang ist so lange zu wiederholen, bis keine Verbesserungen mehr erreichbar sind.

Taste CHANGE TUNING MODE (28) drücken. Sender-EMK verändern, bis das VTVM auf —4dB ausschlägt (0dB = 775mV).

Mit den Tasten FREQUENCY STEP die Frequenz um ±50kHz verstimmen. Die Abweichung von der Symmetrie darf nicht grösser als 0.2dB sein.

Die Frequenz um ±100kHz verstimmen. Die Abweichung von der Symmetrie darf nicht grösser als 1dB sein.

Achtung

Beim Abgleich darauf achten, dass die Abgleichkerne auf das obere Maximum einjustiert werden (Fig. 4.8).

Fig. 4.8

4.7 Adjusting the IF filter, IF amplifier and the display discriminator

- Remove screening cover of IF amplifier and demodulator/decoder.
- Connect standard-signal generator (emf 0.2mV) to antenna input with the aid of coax cable.
- Connect VTVM with RF probe to TP5 (IF amplifier 1.166.120), measuring range 1V DC.
- Set standard-signal generator to 97.00 MHz ±1kHz. This frequency must be kept stable throughout all the steps of this section. For checking purposes, connect digital frequency counter at P1 and monitor 11MHz IF.
- Press station 3 (97.00MHz). Adjust circuit L3 and L4 on the IF amplifier as well as the 8-circuit (FL1, FL2, and L9 on the RF input section, and FL2... 6 on the IF amplifier) for maximum reading on the VTVM (TP5). The voltage at the antenna input should be kept below the AGC attack point during this measurement.

Repeat these adjustment procedures until no further improvement is achievable.

Press CHANGE TUNING MODE (28). Vary the emf of the standard-signal generator until the VTVM indicates —4dB (0dB = 775mV).

Detune the frequency by ±50kHz with the aid of the FREQUENCY STEP keys. The balance deviation should not exceed 0.2dB.

Detune the frequency by ±100kHz. The balance deviation should not exceed 1dB.

Caution

When making the adjustments ensure that the trimmer slugs are set to the upper maximum (Fig. 4.8).

4.7 Réglage des filtres FI, de l'amplificateur FI et du discriminateur

- Retirez les capots de blindage de l'amplificateur FI et du démodulateur/décodeur.
- Raccordez le générateur HF à la prise d'antenne avec le câble coaxial (F.e.m 0,2V).
- Raccordez la sonde HF du VTVM au point de mesure TP5 (amplificateur FI 1.166.120), gamme de mesure 1V DC.
- Réglez le générateur HF à 97,00MHz, ±1kHz. Cette fréquence doit être maintenue stable pour toutes les manipulations de ce chapître. Contrôlez la fréquence FI de 11MHz en raccordant le fréquencemètre digital à P1.
- Appuyez sur la touche de station 3 (97,00MHz). Réglez les circuits L3 et L4 de l'amplificateur FI ainsi que les huit filtres (FL1, FL2 et L9 sur l'étage d'entrée HF et FL2... 6 sur l'amplificateur FI) au maximum de déviation du VTVM. La tension d'entrée à l'antenne ne doit pas atteindre le seuil d'action de la CAG.

Ces réglages sont à reproduire jusqu'à ce qu'aucune amélioration ne puisse être obtenue.

Appuyez sur la touche CHANGE TUNING MODE (28) Modifiez la F.e.m du générateur HF jusqu'à ce que le VTVM affiche -4dB (OdB = 775mV).

A l'aide des touches FREQUENCY STEP, faites varier l'accord de ±50kHz. Le VTVM ne doit pas indiquer une variation de plus de 0,2dB.

Faites varier l'accord de ±100kHz, l'écart au VTVM doit être inférieur à 1dB.

Attention

Pour ces réglages, les noyaux de réglage d'oivent être initialement en position haute maximale. (Fig. 4.8)

- VTVM mit HF-Tastkopf an Messpunkt TP6 anschliessen. Kreis L2 auf Maximum-Anzeige (ca. 0,7mV) abgleichen.
- Connect VTVM with RF probe at TP6.
 Adjust circuit L2 for maximum reading (approx. 0.7mV).
- Branchez la sonde HF du VTVM au point de mesure TP6. Ajustez le circuit L2 au maximum de déviation du VTVM (env. 0,7V).

- VTVM mit HF-Tastkopf an Messpunkt
 TP7 anschliessen. Kreis L1 auf Maximum-Anzeige (ca. 0,7mV) abgleichen.
- Connect VTVM with RF probe at TP7. Adjust circuit L1 for maximum reading (approx. 0.7mV).
- Branchez la sonde HF du VTVM au point de mesure TP7. Ajustez le circuit L1 au maximum de déviation du VTVM (env. 0,7V).

- VTVM mit HF-Tastkopf an Messpunkt TP8 anschliessen. Kreis L3 (1.166.130) auf Maximum-Anzeige (ca. 0,35V) abgleichen.
- Connect VTVM with RF probe at TP8. Adjust circuit L3 (1.166.130) for maximum reading (approx. 0.35mV).
- Branchez la sonde HF du VTVM au point de mesure TP8. Ajustez le circuit L3 (1.166.130) au maximum de déviation du VTVM (env. 0,35V).

Fig. 4.9

- Diskriminator abgleichen:
- Mess-Sender auf 106,00MHz einstellen.
 Den Receiver mit Taste CHANGE TUNING MODE auf "F"-Betrieb umschaften
 und auf die Frequenz des Mess-Senders
 einstellen. (Anstelle von 106,00MHz
 kann auch eine andere, von keinem Sender oder Störungen belegte Frequenz
 eingestellt werden.)
- Mit einem Digitalzähler wird die genaue Messfrequenz geeicht. An P1 (IF AMPLI-FIER 1.166.120) wird die ZF von 11MHz kontrolliert.
- VTVM an IC6 Pin 3 (Meter Circuit and Deemphasis PCB 1.780.155) anschliessen.

- Adjusting the discriminator:
 - Set standard-signal generator to 106.00 MHz. With CHANGE TUNING MODE set receiver to "F" mode and enter the frequency of the standard-signal generator. (Not only 106.00MHz but any other frequency that is not used by a transmitter and that is free of parasitic noise can be used.)
- Calibrate the measuring frequency with the aid of a digital frequency counter. Check the 11MHz IF at P1 (IF amplifier 1.166.120).
- Connect VTVM at IC6 pin 3 (meter cir-(Meter Circuit and Deemphasis PCB 1,780.155).

- Réglez le discriminateur:
- Réglez le générateur HF sur 106,00MHz. Mettez le récepteur en mode "F" en appuyant sur la touche CHANGE TUNING MODE. Ajustez sa fréquence à celle du générateur. (On peut prendre une autre fréquence à la place de 106,00MHz, pourvu qu'elle soit exempte d'émetteur ou de parasites.)
- Déterminez précisement la fréquence de mesure avec le fréquencemètre digital. Contrôlez la FI de 11MHz sur P1 de l'amplificateur FI 1.166.120.
- Raccordez le VTVM à lab roche 3 de 1C6 cuit and de-emphasis PCB 1.780.155).

- Mit dem Sekundärkern von FL1 (B) (IF-Amplifier 1.166.120) am VTVM OV ±10mV einstellen.
- Den Receiver B780 um 0,075MHz verstimmen (Bsp. 106,075MHz) und mit Trimmpotentiometer R57 (Meter Circuit and Deemphasis PCB 1.780.155) die Steuerspannung auf +600mV einstellen.
- With secondary trimmer slug (B) of FL1 (IF amplifier 1.166.120), adjust for 0V ±10mV reading at VTVM.
- Detune B780 receiver by 0.075MHz (example 106.075MHz) and adjust the control voltage to +600mV with the aid of trimmer potentiometer R57 (meter circuit and de-emphasis PCB 1.780.155).
- Réglez le noyau secondaire de FL1 pour qu'il y ait 0V ±10mV au VTVM.
- Décalez le récepteur B780 de 0,075MHz (par ex. 106,075MHz). Ajustez la tension de commande à +600m avec le trimmer R57 (Meter Circuit and Deemphasis 1,780,155)

Fig. 4.10

- Den Receiver um -0,075MHz verstimmen (Bsp. 105,925MHz). Das Voltmeter muss -600mV ±30mV anzeigen. Sollte die Spannung eine zu grosse Abweichung aufweisen, so kann die Spannung durch Korrigieren der Symmetrie des Primärkreises von FL1 A (IF-Amplifier 1.166. 120) verändert werden. Danach muss der Diskriminator neu abgeglichen werden.
- Center Tuning Meter abgleichen:
 Das Center Tuning Meter sollte nach
 dem Diskriminator-Abgleich Mitte anzeigen. Ist dies nicht der Fall, so kann der
 Zeiger durch Verstellen des Trimmpotentiometers R55 (Meter Circuit and Deemphasis PCB 1.780.155) geeicht werden.
- Eichen des Signalstärke-Instruments:
 Wenn am HF-Eingang 20mV EMK ohne NF-Modulation eingespiesen wird, kann die Meteranzeige auf 80dB/μV eingestellt werden.

- Detune the receiver by -0.075MHz (example: 105.925MHz). The voltage meter should indicate -600mV ±30mV. If the voltage deviation is too large, it can be adjusted be correcting the balance of the primary circuit of FL1 A (IF amplifier 1.166.120). In this case, however, the discriminator must be readjusted
- Calibrating the center tuning meter:
 After the discriminator has been adjusted, the center tuning meter needle should be in the middle. Should this not be the case, the needle can be calibrated by adjusting trimmer potentiometer R55 (meter circuit and de-emphasis PCB 1.780.155).
- Calibrating the signal strength instrument:

The meter reading can be calibrated for 80dB/µV by feeding in 20mV emf without AF modulation at the RF input.

- Décalez le récepteur de -0,075MHz (par ex. 105,925MHz). Le VTVM doit indiquer -600mV ±30mV; si la tension s'écarte trop de cette valeur, on peut la modifier en corrigeant la symétrie du circuit primaire de FL1 A (amplificateur Fl 1.166.120). Ensuile, il faudra encore régler le discriminateur à mouveau.
- Réglage de l'indicateur de centrage (Center Tuning):

Après le réglage du discriminateur, cet indicateur devrait être en position centrale. Si ce n'est pas le cas, on agira sur le trimmer R55 (Meter Ciruit and Deemphasis 1.780.155) pour amener l'aiguille en position centrale.

Calibrage de l'indicateur d'internsité du signal:

Lorsqu'on produit 20mV № F.e.m. à l'entrée HF, on peut calibre il'in dicateur sur 80dB/µV.

4.8 Abgleich des Stereo-Decoders

- Stationstaste 3 (97,00MHz) drücken.
 Mess-Sender auf 97,00MHz (TUNING = 0) EMK = 2mV, Modulation ausgeschaltet, ohne Pilotträger.
- Digitalzähler an Messpunkt TP10 auf Stereo Decoder PCB 1.166.150 anschliessen.
- Abgleich 76kHz-Oszillator:
 Mit Spule L8 eine Z\u00e4hleranzeige von 38 kHz ±50Hz einstellen.
- Abgleich 19kHz-Kreis:
 Drucktaste FM MONO lösen. Am Stereo-Modulator Pilotträger 9% einstellen.
 Osziłloskop mit Probe 10:1 an Messpunkt
 TP11 auf dem Stereo-Decoderprint anschliessen (Messbereich 2V/cm). Mit Spule L9 auf maximale Anzeige am Osziłloskop abgleichen (ca. 10Vpp), die Stereoanzeige leuchtet auf. Der Digitalzähler muss 38kHz ±1Hz anzeigen.

4.8 Adjusting the stereo decoder

- Press station key 3 (97.00MHz). Set standard-signal generator to 97.00MHz (TUNING = 0) emf = 2mV, modulation off, no pilot carrier.
- Connect digital frequency counter at TP10 on stereo decoder PCB 1.166.150.
- Calibrating the 76kHz oscillator:
 With trimmer slug L8 adjust for a frequency counter reading of 38kHz ±50Hz.
 - Tuning the 19kHz circuit:
 Release FM MONO push button. Adjust pilot tone carrier to 9% on stereo modulator. Connect oscilloscope with probe 10:1 at TP11 on stereo decoder PCB (measuring range 2V/cm). With trimmer slug L9 adjust for maximum reading on oscilloscope (approx. 10Vpp), the STE-REO lamp turns on. The digital frequency counter should indicate 38kHz ±1kHz.

4.8 Réglage du décodeur stéréo

- Appuyez sur la touche de station 3 (97,00 MHz). Générateur HF sur 97,00 MHz (TUNING = 0), F.e.m. = 2mV. Modulation déclenchée, pas de porteuse pilote.
- Raccordez le fréquencemètre digital au point de mesure TP10 du décodeur stéréo 1.166.150.
- Réglage de l'oscillateur 76kHz:
 Amenez l'affichage du fréquencemètre à 38kHz ±50Hz en faisant tourner le noyau de L8.
 - Réglage du circuit 19kHz:
 Relâchez la touche FM MONO. Réglez le modulateur stéréo sur 9% de porteuse pilote. Reliez la sonde 10:1 de l'oscilloscope au point de mesure TP11 du circuit du décodeur stéréo. (sensibilité Y = 2V/cm). Réglez la bobine L9 pour produire une trace maximale sur l'oscilloscope (env. 10V c.à.c.), le voyant stéréo s'allume. Le fréquencemètre doit afficher 38kHz ±1Hz.

Fig. 4.11

Abgleich 38kHz-Kreis:

Drucktaste HI BLEND lösen. Mess-Sender mit Modulation 1kHz, Hub 40kHz, ohne Pilotträger nur links moduliert. Oszilloskop mit Probe 10:1 an Messpunkt TP12 auf dem Stereo-Decoderprint anschliessen (10mV AC/cm; 0,1ms/cm; Trigger extern mit Modulationssignal 1kHz). Mit Spule L7 auf Stereo-Decoderprint auf scharfen Hüllkurvenschnittpunkt (am Oszilloskop) abgleichen.

Tuning the 38kHz circuit:

Release HI BLEND push button. Standard-signal generator with 1kHz modulation, deviation 40kHz, no pilot carrier, only left-hand channel modulated. Connect oscilloscope with probe 10:1 to TP12 on stereo decoder circuit board (10mV AC/cm; 0.1 ms/cm, external triggering with 1kHz modulation signal). With trimmer slug L7 on the stereo decoder PCB, adjust for sharp envelope curve intersections (on oscilloscope).

Réglage du circuit 38kHz:

Relâchez la touche HIGH BLEND. Générateur modulant à 1kHz, avec une excursion de 40kHz. Pas de porteuse pilote et seul le canal G est medulé. Raccordez la sonde 10:1 de l'oscilloscope au point de mesure TP12 du décodeur stéréo (10mV AC/cm; 0,1ms/cm et trigger ext. sur la modulation 1kHz). Réglez la bobine L7 pour obtenir le point d'intersection d'enveloppe le plus exact (à l'oscilloscope).

Abgleich 19kHz-Bandfilter,
 Übersprechen:

Mess-Sender mit Modulation 1kHz, Hub 40kHz, mit Pilottonträger, nur Kanal rechts moduliert. 15kHz-Tiefpassfilter an Ausgang TAPE 1 anschliessen. NF-Voltmeter an Tiefpassfilter-Ausgang anschliessen.

- Trimmpotentiometer R17 (Stereo Decoder 1.166.150) im Uhrzeigersinn in den Anschlag drehen.
- 19kHz-Bandfilter L10 und L11 auf Minimum-Anzeige am Voltmeter abgleichen.
 Beide Abgleichkerne ungefähr gleich tief eindrehen
- Mit Trimmpotentiometer R17 auf minimales Übersprechen im linken Kanal abgleichen.
- Abgleich 19kHz-Sperre:
 Mess-Sender mit Modulation 1kHz, Hub
 75kHz mit Pilotträger L=R.
- Voltmeter an Ausgang TAPE 2 anschliessen und auf OdB eichen.
- Modulation ausschalten und mit Spule L2 (Stereo Decoder 1.166.150) auf minimale MPX-Restspannung abgleichen.

 Adjusting the 19kHz band-pass filter, crosstalk:

Standard-signal generator with 1kHz modulation, deviation 40kHz, with pilot tone carrier, only right-hand channel modulated. Connect 15kHz low-pass filter at output TAPE 1. Connect AF voltmeter at low-pass filter output.

- Rotate trimmer potentiometer R17 (stereo decoder 1.166.150) to clockwise limit position.
- Adjust 19kHz band-pass filters L10 and L11 to minimum voltmeter reading. Both trimmer slugs should be turned in by about the same amount.
- Adjust for minimum crosstalk on the left-hand channel with the aid of trimmer potentiometer R17.
- Adjusting the 19kHz band rejection:
 Standard-signal generator with 1kHz modulation, deviation 75kHz, with pilot tone carrier L=R.
- Connect voltmeter at output TAPE 2 and calibrate for OdB,
- Switch modulation off and adjust for minimum MPX residual voltage with the aid of trimmer slug L2 (stereo decoder PCB 1.166.150).

- Réglage du circuit 19kHz, diaphonie: Générateur HF avec 1kHz de modulation, canal droit seulement, excursion de 40kHz avec porteuse pilote. Raccordez le filtre passe-bas coupant à 15kHz à la sortie TAPE 1 et le VTVM à la sortie de ce filtre.
- Tournez le trimmer R17 à fond, dans le sens des aiguilles d'une montre.
- Réglez le filtre de bande L10 et L11 au minimum de déviation du VTVM.
- Ajustez le trimmer R17 au minimum de diaphonie du canal G.
- Réglage du filtre rejecteur 19kHz: Générateur HF modulant à 1kHz, 75kHz d'excursion, porteuse pilote et G=D.
- Raccordez le voltmètre à la sortie TAPE 2 et calibrez à 0dB.
- Déclenchez la modulation et ajustez la bobine L2 du décodeur stéréo 1,1 66,150 pour réduire au maximum les restes du signal MPX.

- 4.9 NF-Pegel des Tunersignals einstellen
- 4.9 Adjusting the AF level of the tuner signal
- Réglage de la tension de sortie BF du tuner

Fig. 4.12

- Mess-Sender auf eine EMK von 2mV, 75kHz Hub bei 400Hz ohne Pilotträger einstellen.
- Mit den Trimmpotentiometern R1 (linker Kanal) und R39 (rechter Kanal) auf Meter Circuit and Deemphasis PCB 1.780.155 den linken Kanal LO und den rechten Kanal RO auf je 1,16V einstellen.
- Set standard-signal generator to an emf of 2mV, 75kHz deviation at 400Hz without pilot tone carrier.
- Adjust left-hand channel LO and righthand channel RO to 1.16mV each with the aid of trimmer potentiometers R1 (LH channel) and R39 (RH channel) on meter circuit and de-emphasis PCB 1.780.155.
- Générateur HF produisant une F.e.m. de 2mV, avec 75kHz d'excursion sans porteuse pilote.
- Ajustez les tensions de sortie des canaux droit R0 et gauche L0 avec les trimmers R39 et R1 du circuit 1.780.155 (Meter Circuit and Deemphasis).

4.10 Verstärkereinstellungen

Ruhestromeinstellung f ür beide Endstufen:

Die Ruhestromeinstellung erfolgt im kalten Zustand des Verstärkers. R12 (auf Power Amplifier PCB 1.780.105) wird so eingestellt, dass an den Emitterwiderständen R14 und R27 ein Spannungsabfall von 6mV entsteht.

4.10 Amplifier adjustments

Adjusting the closed-circuit current for both power stages

The adjustment of the closed-circuit current is made when the amplifier is cold. R12 (on power amplifier PCB 1.780.105) is to be adjusted in such a manner that a voltage drop of 6mV occurs at the emitter resistors R14 and R27.

4.10 Réglage de l'amplificateur

Réglage du courant de repos:

Ce réglage doit être effectué avec l'amplificateur "froid". On règle R12 (sur l'amplificateur de puissance 1.780.105) de façon à ce qu'il y ait une chûte de tension de 6mV aux bornes des résistances d'émetteur R14 et R27.

CONTENTS

DESCRIPTION	SCHEMATIC NO.	SECTION / PAGE
FUNCTION DIAGRAM B780		5/03
POWER SUPPLY UNIT	1.780.110	5/04
- POWER SUPPLY PCB	1.166.210-81	5/04
- POWER DISTRIBUTION PCB	1.780.190	5/04
- MAINS TRANSFORMER	1.780.120	5/05
THRESHOLD CONTROL BOARD	1.780.235	5/06
STATION SELECTION KEYBOARD	1.780.225	5/07
PUSH BUTTON BOARD / FM MODE	1.780.220	5/08
PUSH BUTTON BOARD / OUTPUT SELECTION	1.780.240	5/09
INPUT SELECTION KEYBOARD	1.780.230	5/09
MICROCOMPUTER PCB	1.780.260	5/10
FREQUENCY SYNTHESIZER PCB	1.780.151-81	5/12
METER CIRCUIT AND DEEMPHASIS PCB	1.780.155	5/14
DISPLAY PCB	1.780.245	5/16
ANTENNA INPUT UNIT:		
(LOCATED ON SPEAKER PROTECTION UNIT)	1.780.140-81	
RF FRONT END PCB	1.166.100	5/18
IF AMPLIFIER PCB	1.166.120	5/20
FM DEMODULATOR PCB	1.166.130	5/22
STEREO DECODER PCB	1.166.150	5/24
AUDIO CONNECTION UNIT	1.780.145	5/26
PREAMPLIFIER PCB	1.780:205	5/28
- FILTER PCB	1.780.215-81	5/29
TONE CONTROL PCB	1.780.210	5/32
POWER AMPLIFIER PCB	1.780.105	5/34
SPEAKER PROTECTION UNIT	1.780.140—81	5/36
DOLBY PROCESSOR PCB	1.166.400	5/38
- DUMMY PLUG	1.166.090	5/38
ANTENNA CONTROL INTERFACE PCB	1.780.400	5/40
POWER-ON REMOTE CONTROL PCB	1.780.430	5/42
WIRE HARNESS / FRONT	1,780.170	5/43
WIRE HARNESS / REAR	1.780.166	5/44
FUNCTION DIAGRAM B739		5/47
POWER SUPPLY UNIT	1.166.200	5/48
- POWER SUPPLY PCB	1.166.210-81	5/48
- POWER DISTRIBUTION PCB	1.166.206-81	5/48
- MAINS TRANSFORMER	1.166.201	5/49
PREAMPLIFIER PCB	1.780.835	5/50
- FILTER PCB	1.780.215-81	5/51
LINE AMPLIFIER AND CONNECTION UNIT	1.780.840	5/54
WIRE HARNESS / REAR	1,780.820	5/56
VOCABULARY OF ABBREVIATIONS		5/58
BLOCK DIAGRAM		inside back cover

POWER SUPPLY UNIT 1.780.110

1.166.210 - 81

IND	POS NO		PART NO	VALUE	SPECIF	CATIONS	EQUIVAL	.ENT	MFR
	C 1	59.2	5.3472	4700 pF	E	4	16 V		
			5.4222	2 200 µ F		4	25 V		
	C 3	٧	+ <i>u</i>	4		4	u		
	C 4	59.2	5.6471	470 p.F		,	63 V		
1,4	c 5	59.3	2.3103	0.01 pF	CE	R	40 V		
	C 6	59.2	2.5470	47 MF	Ε	L	25 V		
	C 7	59.3	1.110#	0.1,4	P	E	100 V		
6			0.6339	3.3 MF	T	4	35 V		
			0.6100	10 uF		•	•		
	C 10	59.2	2.6220	22µF	E	7	40V		
	C 11	59.3	1.1104	0.1 pF	ρ	E	100 V		
5	D 1	70.0	1.0235	BR. Rect.	880 C	3700/	2200	S.	SI
			11.0223	, "	8 250 C	800		S/	GI
1	D 3	-							
			11.0223	., 4	11	"		,	
	D 5	50.0	4.0125	1N 44 #8	Si Diode	100	V , 10	00 - A	GI
	D 6	4	u 4	- 4	4	7		()	
	D 7	u	4 4	14	9	4		•	
	D 8	4	tı q	"	11	U		il .	
	D 9	"	и 4		1	4		4	
	D 10	"	4 4	11	,	"		11	
	D 11	50.0	9.1108	7 5.6	Zenerdi	ode	5.6V	0.4W 5%	
	D 12	50.0	4.0125	174448	Si Diod	e 100	V 1	100 mA	
	IC 1	50.0	15.0253	78 M 15 UC	+15 Vol	tage f	Regulat	for	F, T
		-	05.0252	79 M 15AVC	- 15		"		-
3	+	+	10.0101	78 L 06 ACS		,	"		TI
	1								
	1-								
IND	I DA	TE	NAME	1					
0	1			EL = El	ectrolytic		SI =	Siemens	
0				CER = C	eramic		GI = 0	General Ins	fr.
6	3.6	.30	Rom.	PE = Pa	lyester			Fairchild	
(3)	3.1		Há. /	TA = 50	lid Tantale	(194	77 -	Texax Inst	r.
0		7.7	Bal. /10	1					
_		DER	Power		T	T		0-81 PAGE	,

IND	POS NO		PART NO	VALUE	SP	ECIFIC	ATIONS/EQUIVALENT	 MFF
	Q1	50.0	3.0436	BC 107 B	NPN	s;		
	Q 2	50.0	3.0312	BC178B	NAN S	,`		
	Q3	50.0	3.0436	BC107B	MAN	;		
	Q #	50.0	3.0491	BC 5 46	MPMS	;		_
	Q 5	50.0	3.0492	BC 446	PIPS			
	Q 6	50.0	3.0493	BD 561	NPN	s;		
	a 7		3.0445	BD 177	NAN	si		
	R 1	57. 4	1.4102	112	5	%		
2,3	R 2		_		4			_
		57.4	1.4103	10 k D	-1			 _
	R 4	57. #	1.4129	1.2 12	•			
	R 5	57.4	1.4129	1.2 12	-1			
	R 6	57.4	1.4129	1.2 Ω				
	R 7	57.4	1.4821	820-2	11			
	R 8	57.4	11.4561	560 A	"			
	R 9	57.3	9.8451	8450 A				
	RAD	57.3	9.1432	14.3 kg	1%	M	F	
	R 11	57.4	11.4102	1 10	5 %			
	R 12	57.4	1.4103	10 ks	*1			
	R 13	57.4	1.4103	10 k s	u			
	R 14	57.4	11.4102	1 1 2				
	R 15	57. 4	11.4339	3.3 1	(f			
	R 16	57.4	1.4561	560 s	4			
	R 17	57.4	11.4102	1 ks				_
	R 18	57.4	11.4561	560 A	u			
	R 19	57.4	1.4562	5.6 k A	-1			
	R 20	57.4	11.4102	1 kA				 _
	R 21	58.0	02.4471	470 1	CF	Pota	ontiometer	
					l			 _
IND	DA	TE	NAME					 _
4				CF *	Carbon	F;	/m	
3				_				
2				_				
1								
6	3.6	.80	Rom. /1/	2				

1.780.190

F1: 200mAT F2,3: 800mAT F4: 2AT F5...8: 3,15AT

J1: 2 x 54.01.0289 8 POLE 1 x 54.01.0216 6 POLE J2: 54.01.0216 6 POLE

Ю	POS NO		VALUE	SPECIFICATIONS/EQUIVALENT	MFR
	7/	54.01.0214	6 POLE	CIS	
		54.01.0304			
-	PI	54.02.0320	2,8×0,8		-
	P2	54.02.0320	2,8× 9,8		
+	RI	1.480.235.03	10/12	PCF LIN. 20%	57
	R2	1.780.235.03	1042	PCF LIN. 20%	57
	R3	57.11.4272		5%	
	RY	57.11.4102	1ks	5%	
	R5	57.11.4471	4702	5%	
	R6	57.11.4562	5,662	5%	
	RY	J.11.4102	142		
	RS		4700	5%	
		17.11.4471	4700	5%	
		17.11.4471	4702	1%	
		57.11,4471	4701	5%	
	51	1.780.235-02	PUSH ?	PUTTON SWITCH	57
	2/53	1,780.235-0	y PUSH	BUTTON SWITCH	57
	-/				
_					_
-					
-				 	_
-					
-					
-					-
_					-
-					
_					-
_		L			
ND	DA	TE NAME	57-57	TINEO	
3				OT'M. CARRON FILM	
			Par P	VI II. CANGON FICH	
2			-		
0	17 -	40 10-			
\cup	17.5			1/30-00-1	
	STUD	FR TURESHO	D CONTR	OL BOARD 1.780.235 PA	GE 1 OP

25,11.80

REVO-00110 / Druck 5

1.780.220

J1: 54.01.0244 7 POLE R1...5: 57.11.4471 470 5% S1...5: 1.780.220-01 PUSHBUTTON

INPUT SELECTION KEYBOARD 1.780.230

B780/B739

NOI POS NO		ART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
71	54.0	1.0214	6 POLE	as	-
RI	57.14	1.4471	470r	5%	
R2	57.11	. 4471	4700	5%	
R3	17.1	1.4471	4902	5%	
RY	9.1	11.4471	470a	5%	-
SIm	14 1	780.240.	OI PUST	RUTTON SWITCH	57
ND DA	TE	NAME	57:57	405R	
③ ②			-		
0	579	ha	-		
0///	DER	70	- /	SELECTION 1.780. 240 PA	GE/ OF/

J1: 54.01.0218 7 POLE R1: 57.11.4471 470 5%

1.780.230

MICROCOMPUTER PCB 1.780.260

ND	POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
	CI	59.99.0205	68 nF	-20+80% 100V CER	
	(2-3	59.32.3103	10 nF	-20+100 % 40V CER	
	C4	59:30.3330	33 µF	-20 +50 % 10V TA	
	CS	59.32.3103	10 nF	-20 +100°/0 40V CER	
	16	59.30.7220	22 MF	-20+50°/0 25 V TA	
1	C8-9	59.32.3103	10 nF	-20+100% 40 V CER	
	C10	59.30.6109	I µF	-20 +50% 35 V TA	
	C11-15	59.32.3103	10 nF	-20 +100% un V CER	
1	C17-18	59.32 3103	10 nF	-20+100% 40Y CER	
1	C20	59.32.3103	10 nf	-20+16070 40 V CER	
	C21	59.99.0205	68 NF	-20 + 80 °10 100V CER	
	DI	50.04.0122	IN 4001	5]	
	D2-3	50.04.0125	1 N 4448	2.1	
	D4	50.04.1103	₹ 7.5 V	± 5 °/0 0.4 W	
	D5	50.04.0125	1 N 4448	\$ 7	
	D6	50.04.1107	₹ 3.3 V	± 5 °/0 0.4 W	
	D7-11	50.04.0125	FN 4448	3]	
	101	1.780.260.01		STUDER 3C	
	JC2	50.06.0000	74 LS 00		
	1.63	50.05.0127	74 06	TTL	_
	104	50.06.0259	74 LS 259		
	165	50.07.0014	MC14584	CM01 40014 8PC	L.
	306-10	50.07.0512	MC14512	4512 BPC	_
	31	54.01.0307	10 poles	C12	
	0.2	54.01.0289	8 poles	11	
	73	54.01.0304	13 poles	ч	
	74	54.01.0296	18 poles	Tg.	1
	ე5	54.01.0297	19 poles	ij	_
	26-7	54.01.0296	18 poles	Ь	

NO	DATE	NAME	
(4)			
3			
2	10.3 80	Rom	
0	19.12.79	11/2	
O	29.8.79	A.Dunner L2	
5	TUDER	MICROCOMPUTE	P 1.780.260 00 PAGE 1 OF

ID POS NO	PART NO	VALUE	SPE	CIFICATIONS/EQ	UIVALEN	T 1	MFR
LI	62.01.0115	0.85 ka	±20%	Wide-band-ind	luctor	80-220MH	
L2-L3	62.01.0126	1.5 MH	±10°/0				
6/	50.03.0436	BC 237B	npn		ВС	5478	
6.2	50.03.0332	BC 560B	pnp	Pro7 = 500 m	w,		
63-4	50.03.0436	BC 237B	רקה		80	547 B	
2.5	50.03.0318	BC 252 B	pnp		80	308 B	
0.6	50.03.0350	MPF 4342	N-Fet		21	12 F/-18	
27	50.03.0318	8C 252 B	pno		90	308 B	
3.0	50.03.0436	BC 237 B	npn		ВС	547 B	
69-10	50.03.G318	BC 252 B	pnp		βC	308 B	
911,913	50.03.0436	BC 237B	npn		BC	5478	
212	50,03.0318	BC 2528	pno		90	308 8	
RI	57.11.4122	1.2 kg	± 5 °/0	0.25 W	CSCH		
6.5	57.11.4472	4.7 k.G	и	и	10		
23	57.11.4222	2.2 kΩ					
R4-5	57.11.4332	3.3 kΩ	"	- 11	"		
₹6-=	52. 11. 4102	l ka		"	п		
₹ 8	57.11 4122	1.2 k2			74		
२०	57.11.4 22	1.2 ×Ω			- "		
610-18	5= 11.4332	3.3 ks			14		
E 19 - 25	53.11.4:22	1.2 kΩ		н	ti		
4.2	53,11,4472	n' 3 FU	11		4		
6.55	59.11 4332	3.3 kΩ	Pr .		"		
R23-27	57 11 4103	10 ka			4		
R 23-29	57 11.4332	3.3 kQ	11	- 4	- 11		
R 30	57.11.4222	2.2 4.0	11				
₹3: - 32	5=.11.482(82 2	- 0		- 11		
9.33	57 11.4332	3.3 kΩ		1-	"1		_
R3= -36	59.11.4104	100 kg	1		14		
₹33	57 11 4157	1.5 k.C			-11		
NDI DA	TE NAME	1					
④							
3							
2 103	80 Rose.						
0 19.1	2.79 He						

NDI POS I	10	PART NO	VALUE	SPECII	FICATIONS/E	QUIVALENT	MFF
R 3	£ 5	7.11.4103	10 kΩ	± 5 °/o	0.25 W	CSCH	
R3	9 5	7.11.4101	100 1	P.	ts.		
R4	5	7.11.4221	220 A	,,	10	£1	
P. 4	1 5	7.11.4103	10 k1	1-		ní	
R 4	2 5	7. 11. 4122	1.2 kg	1.		п	
R 4.	5	7. 11 . 4221	220 Ω		Įs.	n	
R 4	4 5	7.11.4163	10 kg			- 0	
R4	5 5	7.11.4101	100 Ω	- 11		н	
2 4	6 5	7.11.4223	22 41	11		n	
6 4	7 5	7.11.4472	4.716			t ₁	
R 4	8 5	7.11.4104	100 ks		- 11	t ₁	
R 4	9 5	7.11.4103	10 KS			**	
२ 5	0 5	7.11.4104	100 ks		.,	"	
₹ 5	1 5	7.11.4103	10 ks		12	"	
₹ 5	2 5	7 11.4222	2.2 k	"	£ª	41	
2.5	3 5	= . ! ! . 4332	3.3 %	·		*1	
R 5	4 5	7.11.4472	4.7 k	2 "	n	3	
२ऽ	5 5	3 . 11 . 4 1 0 2	1 k.	P .		"	
२ इ	6 5	= 11.4332	3.3 k	3 -			
R57	-60 5	7.11.4152	1.5 k.			7	
96	! 5	7.11.5222	2.2 k	11		- 11	
90	2 5	2.11.4124	180 k	я			
R63	-64 5	7.11.4223	22 k.	2 1-	11	-1	
96	5 5	7.11.4273	27 k	- "	"	*1	
266	-70 5	2,11,4:04	100 k	2 4	17	t*	
2 831	- 7 5	7.11.4273	27 %	1 "	11	n .	
Į R	3 5	7.11.4104	100 k	+	- 11		
2	5 44	= . / 1 . 4333	33 t	P ''	- 4	19	
R 75		7 11.4332	3.31			t.	
1 RT	09 5	7.11.4223	22 k	4 "		Ji .	
IND	DATE	NAME					
(4)							
3	1						
1	3.80	Rom					
101-19	.12.79	the					

STUDER HICROCOMPUTER

IDI POS NO	1 6	PART NO	VALUE	SPECIFIC	CATIONS/EQUI	VALENT	MFR
ΥI		. 01 . 0550		C _L = 30	oF.		
21-5		0.014.57		8 4 10 4 10	resistor	network	
1							
_							
+	1						
+	+						
+	+						
+	+						 -
	 						 -
							 -
	-						
	-						 -
1							
_							
+	+						
+	+						 T-
+	+						 -
+							 -
	+		-				 ├
+-	+						 -
							 -
							 -
							 -
		1					
	ATE	NAME]					
(4)							
3							
2 10.	3.80	Rom.					
1 19.	12.79	We					
0 29	7 7 9	A. Dünner L2					

.= 80 260.00 PAGE 3 OF 4

STUDER MICROCOMPUTER

720 260 (0 PAGE 2 OF 4

FREQUENCY SYNTHESIZER PCB 1.780.151-81

IND	POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
	C1	59.25.3221	220UF	-10% 16V EL	
	CZ	59.32.4102	InF	20% 40V CER	
	C3	59.34. 2390	39pF	5% 40V N150 CER	
	C4	59.34.0399	3,9pF	0,5pF 40N P100 CER	
		59.32,4102	INT	20% 40V CER	
	C6	59.32.4102	1nF	20% 401 CER	
		59.32.3103	10nF	80% 40V CER	
		59.32.4102	INF	20% 40V CER	
2	C9	59.34. 1829	8,2 pF	5% 40V NPO CER	
	C10	59.32.4102	INF	20% 40V CER	
	C11	59.32.4102	INF	20% 40% CER	
	C12	59.32.4102		20% 40V CER	
	C13	59.32.4102	1nF	20% 40V CER	
	C14	59.30.6109	1 pt	20% 35V TA	
	C15	59.18.0015		TRI CER	17
	C16	59.32.3103	10AF	80% 40% CER	
	C17	59.34.0229	2,2pF	GIPF 404 PLOD CER	
2	CIA	59.34.1180	18pF	5% 40V NISO CER	
	C19	59.34.2141	180pF	5% 40V N 150 CER	
	C20	59.31.6104	OIMF	10% 100V MPE	
	C21	59.34.4680		5% 40V 11750 CER	
	C22	59.34. 2220		5% 43V NISO CER	
	623	59.12.0108		TRI FOIL	PH
	C24	59.34.4151	TOOF	5% 401 NATO CER	
	C25	59.34.4151	דטובאי		
	C26			5% 401 N750 CER	
L		59.32.4102	INF	20% 40V CER	
		59.32.4102	INF	20% 401 CER	
		59.32.3103		20% 40Y CER	
	630	59.32.3103	100=	20% 401 CER	

IND	DATE	NAME		
①			CER: CERAMIC	PH: PHILIPS
3	22.9.21	Pon.	MPE: MET. POLYETTER	ST: STETTNER
0	22.7.81	ion.	TRI: TRIMMER	
0	20.5.32	, 20	EL: ELECTROLYTIC	
10	24.11.79	tu	TA: TANTALUM	
9	STUDER	54.77	E03E0	1.720.15181 PAGE 1 OF 5

PART NO 59.32.3103 59.32.4102	IONF		
		80% 40V CER	
	INF	20% 40V CER	
59.34.4151	150pF	5% 401 NTTO CER	T
59.32.2222	2,2nF	10% 40V CER	
		80% 40V CER	
	10nF	10% 40V CER	
	12nF	10% 100V MPE	
59.31.6224	0,22 MF	10% 100V MPE	
59.31.6105	1 MF	10% 100V MPE	
59.32.3103	10n7	80% 40V CER	1_
59.32,3103			_
59.30.6478	0,47MF	20% 35V TA	
	10nF	80% 40V CER	
			+-
50.04.0126	BB 204R	TUNING DIODE	5
50.04.0122	144001	50V 1A	-
50.05.0266	11 A X4611	VOLT. DEG.	F
	CAA 1053	SYNTH. MODUL CHOS	P
50. 13.0104	SAA 1059	TWO MODULUS PRESCALER ECL	P
50.09.0103			NS
54.01.0217	9 pole	CIS	
			+_
			157
			5
1.166.110.01	OSC COI	<u>/Ł</u>	14/
TE NAME	+		
7.		, , , ,	
	59.31.6105 59.32.3103 59.32.3103 59.37.3403 59.30.6478 59.30.3479 59.32.3103 50.04.0126 50.04.0122 50.05.0266 50.13.0101 50.13.0104 50.09.0103 54.01.0217 1.166.410.01 TE NAME	59.32.3103	59.32.3103

NDI POS NO I	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
14	62.02.4101	100MH	10%	
15	62.02.4101	1 south	10%	
16	62.02.4101		10%	
14	62.02.4101		10%	
P1	04 54.02.0320	2,8×0,8		
1 21	50.03, 0.514	BF356	NPN SI	P
22	50.03.03M	17853	DUAL GATE MOSTET	RCH
93	50.03.0489	MP53640	PNPS1	14
94	50. 03. 0508	MPS2369	NPN SI	M
25	50.03.0318	BC 178B	PNP SI	
26	50.03.0318	BC178B	PNP SI	
R1	57.11.4102	162	5%	
R2	57.11.4102	142	5%	
R3	57.11.4153	15ks	5%	
R4	57.11.4822	8,262	5%	
R5	57.11.4241		5%	
R6	57.11.4220	22.2	5%	
RY	57.11.4154	150ks	5%	
RS	57.11.4473		5%	
R9	57.11.4154	15062	5%	
R10	57.11.4224		5%	
R11	57.11.4221		5%	
.212	57.11 4153		5%	
R13	57.02.5220		10%	
R14	57.39.4221			
215	57.39 5231			
R.16	57.11.447	2 4,742	5%	

(4) DATE	NAME	P: PHILIPS		
3 22. 9. 81		RCA: RADIO COR	O AM	
@	For.	M MOTOROLA		
1 525.30	1 here			
0 24.11.79	pa			
STUDER	SYNTA	EVIZER	1.780 151-	8/ PAGE 3 OF 5

DI POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
RIY	57.02.4106	10H2	5%	
R18	57 11. 4102	142	5%	
R19	57.11.4332	3,362	5%	
R20	57.11.4332	3,3ks	5%	
R21	57.11.4101	1002	5%	
R22	57.11.4123	1242	5%	
R23	57.M. 4103	10ks	5%	
R24	57.11.4472	4,762	5%	
R25	57.11.4102	162	5%	
R26	57.11.4123	1262	5%	
R27	57.11.4103	1062	5%	
R28	57.11.4 101	1002	5%	
229	57.11.4189	1,82	5%	
R30	57.11.4822	8,242	5%	
R31	57.11.4222	8,2452	1%	
R32	57.11.4472	4,762	5%	
R33	57.11.4472	4,762	5%	
R34	57.11.4472	4,762	5%	
R35	57.11.4472	4,762	5%	
R36	57 11. 4474	47062		
R34	57.11.4822	8,262	5%	
R38	57.11.4472	4,762	5%	
R39	57.11.4102	160	5%	
R40	57.11.4102	142	5%	
R41	57.11.4392	3,942	5%	
R42	57.11.4105	1452	5%	
R43	57.11.4105	1192	5%	
244	57.11.4105	1112	5%	
1 R45	57.11.4102	1 62	5%	
R46	57.11.4474	LIDER	5%	
INDI DA	TE NAME	1		

IND	DATE	NAME			
4					
3	22. 9. 81	1.40			
2	22. 7 81	Don.			
1	30.5.80	1 :5711			
ō	27.11.49	ra		 	
9	STUDER	(4177)	19ER	1.780 1=1-81	PAGE 4 OF 5

NDI POS NO	PA	RT NO	VALUE	SPECIF	ICATIONS/EQUIVALENT	MFR
R47	9.11.	4472	4,742	5%		
RYP	57.11.	4472	4,762			
R49	57.11.	4103	1042	5%		
	57.11.		4,760	5%		
R51	57.11.	4473		5%		
R52	57.11.		220	5%		
				L		
Y1	89.01	0550	4MHz	=50pp/1 1	10 60° Rg = 100s	n G=3907
	L					
_						
_						
1						
				İ		
				ļ		
4.			ļ			
			ļ			
				ļ		
-+ -				 		
			ļ- -			
			·	-		
				 		
			<u> </u>			
(4) DA	15	NAME	-			
3 22.9	81	Rem	1			
③ <i>22.9</i> ②	61	Rom.				
0 .						
	179/	ta				
J-7.7	.//		1ES13EK		1.780.151-8	

STUDER SYNTHENIZER

1.780, 151-81 PAGE 2 OF 5

METER CIRCUIT AND DEEMPHASIS PCB 1.780.155

NDI POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
	59.30.4479	4.7 MF	-20% 16V TA	
C2	59.11.4472	4700 pt	2,5% 160V PC	
C3,C4	59.32.3103	10 hF	80% HOV CER	
C5	59.34.1100	10pF	5% 40V CER	
C6	59.32.3103	IONF	80% YOU CER	
C7	59.30.6478	0,47,45	-20% 35V TA	
CP	59.32.3103	IONF	80% 40V CER	
69	59.11.6152	1500 pt	5% 1601 PC	
610	59.30.6109	1 jut	-20% 35V TA	
C11	59.34.1689	6,8pF	5% 40V CER	
C12	59.34.4680	68pF	5% 40V CER	
C13	59.30.6109	1 MF	-20% 35V TA	
C14	59.32,3103	ONF	80% 40V CER	
C15	59.32.3103	lont	80% 40V CER	
C16	59.32.3103	10nF	80% 40V CER	
C17	59.32.3103	10nF	80% 40V CER	
CIA	59.22.4101		-10% 161 EL	
C19	59.30.4339	3.3 MF	-20% 16V TA	
C20	59.30.4339	3,3 p.F.	-20% 16V TA	
C21	59.30.4479	4,7 pt	-20% 16V TA	
C22	59.11.4472	4700 pt	2,5% 1601 PC	
C23	59.30.6478	0.47 MF	-20% 35V TA	
C24	59.11.6152	1500 pt	5% 160V PC	
C25	59.30.6109		-20% 35V TA	
C26	59.34.1689	6,8pF	5% 40V CER	
C24	59.34.4680		5% 40V CER	
C28	59.30.6109	1 I JUF	-20% 35V TA	
C29	59.30.6109		-20% 35V TA	
C30	59.31. 6105		10% 160V MPE	
C31	59.31. 6105	1 LEF	10% 160V MPE	
	ATE NAME	<u> </u>		
④		TA = TAN	TALUH CCARRONATE	

NO	DATE	NAME		
(4)			TA = TANTALUM	
3			PC = POLYCARBONATE	
2			CER = CERATIC	
1	10.3.80	8,-1	EL = ELECTROLYTIC	
0	15.4.49	na	MPE = MET. POLYESTER	
5	TUDER	METER CI	RCUIT AND DEEMPHASIS 1.40. 155	PAGE OF 5

D	POS NO	P	ART NO	VALUE	SPECIFICATIONS/EQUIVALENT MFR
	C32	59.34	4.4680	68pF	5% 40V CER
	C33	59.1.	2. 2223	22nF	5% 100V MPE
	C34	59.1.	2.2563	56nF	5% 100V MPE
_			1.6332	3.3nF	5% 400V PC
	C36	59.3	2.3103	10n7	80% 40V CER
	C37	59.3	2.3103	IONF	80% 40V CER
_	2426	50.0	4.0125	114448	FU GIA ANY
-	TC1	50.0	5.0254	L/7301AP	OP. AMP. NS/T.
_	-		5.0257	LM301AA	
_			5.0245	RC455PF	
				LM301AP	OP. AMP. WS/TI
			9.0103		FET OP. AMP. NS
			5.0245		
_	71	54.0	1.0294	16 POLE	as
-	72	54.0	1.0219	15 POLE	as
_	11	62.0	02.3223	22 mH	5%
_	Q1 0	5 50.	03.0438		NPN SI
_	26	50.0	23.0439	BC109C	NPN SI
	Q7	SP 50	03.0318	BC178B	
_	9,,,0	241 50	0.03.0438	3C108B	NPNSI
_	RI	58.0	02.5473	4762	PCF 20%
	R2	57.1	1.4153	15K-2	5%
_	R3		1.4102	1162	5%
_	R4	57.3	9.2212	22,162	1% MF
N		ATE	NAME	+	Warnest Cons
<u>@</u>				CER : CER	_
3					POLYETTER TI: TEXAS INTR.
<u>2</u>					CARRONATE CON CF: CARRON FILIT
0	12.3.		jeng	51: 5121	
C	15.4	19	ra	PCF: POT	M, CARBON FILM HF: METAL FILM

NDI POS NO I	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
	57. 39. 5361	5,36k	1% HF	
R6	57.11.4153	15k2	5%	
RY	58.02.5473	4762	20% PCF	
RS	57.11.4472	4.762	5%	
Rg	57.11.4472	4.762	5%	
R10	57.11.4335	3,3112	5%	
RH	57.11.4102	162	5%	
RIZ	57.11.4102	142	5%	
R13.	57.39.1692	16,9ks	1% MF	
R14	57.39.3322	33,242	1% MF	
R15	57.11.4823	8262	5%	
	57.11.4105	1112	5%	
R17	57.11.4103	1062	5%	
	57.39.6981	6,9842	1% MF	
R19		1142	5%	
R20		142	5%	
R21		4702	5%	
R22	57.11.4103	1062	5%	
R23	57.11.4152	1,562	5%	
R24	57.11.4393	39k2	5%	
R25		4.762	5%	
R26	57.11.4153	15/12	5%	
224	57.11.4102	142	5%	
RZF	5.11.4472	4.762	5%	
	57.11. 4223	2262	5%	
R30	57.11.4335	3,3/12	5%	
R31		2242	5%	
R32	57.11.4221	2200	5%	
1 R33	57.11.4123	12/2	5%	
1 R34		12/2	5%	
IND DA	ATE NAME	1	•	
(4)			TAL FILM	
3		PCF: POT	"M. CALADU FILM	
2		7		
10.3	1.49 /2	7		

O PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
	12ke	5%	
5 57.11.4123	12 12	5%	
		1% HF	
	4762	20% PCF	
	Kles	5%	
1 57.11.4102			
57.39.2212	22,142	1% MF	
3 57.39.5361	5,36ks	1% MF	
6 57.11.4153	1540	5%	
5 57.11.4823	8242	5%	
6 57.11.4105	1142	-7-	
7 57.11.4103	700		
9 57.39.6981			
9 57.11. 4105			
57.11.4102		7	
9/ // //00	1142	-/	
	11/2	5%	
4 57.11.4333			
			_
0 57.11.4220	220s		
1 57.11.4472			
2 57.11.4472			
	2,242	1%	
4 7.11.4222	2,242	17%	
DATE NAME	1		
	_ ///		
	- PCF! P	UI 17. CARROW HILLY	
2 62 //	-		
	-		
	5 9.11.4123 6 9.11.4123 7 9.39.1692 9 9.39.3322 9 9.02.5473 0 5.11.4102 2 5.39.52012 3 5.39.5361 0 5.11.4105 5 5.11.4105 6 5.11.4105 9 5.11.4105	5 57 11. 4123 12 ke 6 57 11. 4123 12 ke 6 57 11. 4123 12 ke 7 57. 39. 39. 2322 33.24 s 9 57. 39. 33.22 33.24 s 9 57. 02. 5473 15 kn 1 57 11. 4102 14 s 2 57. 39. 5361 2 72, 14 n 3 57. 39. 5361 2 72, 14 n 5 57. 11. 4103 15 kn 5 57. 11. 4103 16 ke 6 57. 11. 4105 17 te 7 57. 11. 4105 17 te 9 57. 11. 4105 17 ta 10 57. 11. 4103 33 33 ka 10 57. 11. 4333 33 ka 10 57. 11. 4333 33 ka 10 57. 11. 4333 33 ka 11 57. 11. 4333 33 ka 12 57. 12 57. 14. 4472 47 ta 13 57. 14. 4472 47 ta 14 57. 11. 4472 47 ta 15 57. 11. 4472 47 ta 16 57. 11. 4472 47 ta 16 57. 11. 4472 47 ta 17 57. 11. 4472 47 ta 18 57. 11. 4	5 57.11.4123 12.k2 5% 6 57.11.4123 12.k2 5% 6 57.11.4123 12.k2 5% 6 57.39.1692 16.942 19% HF 9 57.39.3322 33.242 19% HF 9 57.51.4153 1542 20% PEF 10 57.11.4153 1542 5% 11 57.11.4102 142 5% 12 57.39.5361 53.662 19% HF 14 57.11.4103 1542 5% 15 57.11.4103 1542 5% 16 57.11.4103 1542 5% 17 57.11.4103 1542 5% 18 57.11.4103 1542 5% 19 57.11.4105 1172 5% 10 57.11.4105 1172 5% 10 57.11.4105 1172 5% 10 57.11.4105 1172 5% 10 57.11.4105 1172 5% 11 57.11.4105 1172 5% 11 57.11.4105 1172 5% 12 57.11.4333 3342 5% 13 57.11.4333 3342 5% 15 57.02.5473 4742 20% PEF 16 57.11.4333 3342 5% 17 57.11.4334 33042 5% 18 57.11.4334 33042 5% 19 57.11.4334 33042 5% 10 57.11.4334 33042 5% 10 57.11.4334 33042 5% 10 57.11.4334 33042 5% 10 57.11.4334 33042 5% 10 57.11.4324 5% 10 57.11.4324 5% 10 57.11.4324 5% 10 57.11.4324 5% 10 57.11.4324 5% 10 57.11.4324 5% 10 57.11.4324 5% 10 57.11.4324 5% 10 57.11.4324 5% 10 57.11.4324 5% 10 57.11.4324 5% 10 57.11.4324 5% 10 57.11.4324 5% 10 57.11.4324 5% 10 57.11.4324 5% 10 57.11.4324 5% 10 5

NDI I	POS NO	PAF	RT NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
		57.11.	1682	6,86x	5%	
T	266	57.11.	4222	2,240	1%	
		57.11.		6,862	5%	
-	R68			2,260	1%	
 ₹-	269		4334	33062	593	
1	070	7.11.		10ks	5%	
1	271	9.11.	4473	4762	1%	
Ť	272	17.11.	4223	2242	19/3	
-+	073			1122	5%	
	R74	57.11.		1542	5%	
	RZE	57.11.		162	5%	
- 1	R7%	57.11.		1560	5%	
-	1.70		4102	14n	5%	
\rightarrow	RTS			1,560	5%	
1	R79		3091		1% MF	
Ť			.6191		1% MF	
	R81		6810	6812	19/3/7=	
	R22		6210	68152	1% 14-	
	R83	57.11.	4103	10ks	5%	
$\overline{}$	R84	7 1	4183	1862	5%	
-	RPF		1622	16,240	1% 4=	
	286	7.11.	4103	1062	5%	
T	R87	57.11.		1860	5%	
				T		
IND	DAT	re	NAME			
(4)				_	TAL FILM	
3				PCF: P	OT'H. CARON FILM	
2				_		
	10.38		1 Rom.	4		
0	15.4	79 1				
-	TUD	ED A	KTEP /	19/11/5 44/0	DEEMPHASIS 1.780.155 PAG	SE SOFS

DISPLAY PCB 1.780.245

ND	POS NO	P	ART NO	VALUE	SPECI	FICATIONS/EQUIVALENT	MFR
			32.3103		+80% 40	OV CERC	
			0.6109	1 MF	20% 3	SV TA	
	21 2	3 50.0	4. 0122	1N4001	50V 1A		ANY
			04.0125	14444	DV 91.	9	ANY
-	021	29 7	3.04.0122	5082-71	731 7-SEGI	HENT LED DISPLAY	HP
					LED REL		H
_	TC1 ;	C2 50	0.13.0103	SAA 1060	LED INTER	FACE CIRCUIT	P
_	RI	57.11	4390	39.0	5% 0.2	25W CF	
			4222	2,2k2	//		
Ri	.R5	R35 5	7.11.4331	3300	"		
_	P26	57.	11 4151	1500	"		
2	P37.R3	8 57	11.4104	100 KS	*		
	71	54.0	1.0306	8-POLE	as		
_	72		1.0244	7-POLE	CKS		
_	HEI	1.780	. 245,04		SIGNAL H	ETER	57
_	B1			15V-1W	2321		0
-							
-	-	-		-			
L							
-				-			
INC	_	TE	NAME	1000-00-0	25.00	HP = HENLET AAC	****
(4)				CER-CER		M = MONSANTO	.,,,,,,
3		30	-57	4	-	P = PHILIPS	
	15.10		Kom.	1/A=/or	ntalum	ST = STUDBE	
_	18.6		He for	-		D= QRAH	
C	15.5	19	DISPLA	1		1.780, 245	PAGE OF

RF FRONT END PCB 1.166.100

IND POS N	O PART NO	VALUE	SPECIFIC	CATIONS/EQ	UIVALENT	MFR
	59.32.3103	0.01 pF	20%	CER		
	59.32.4471	470 pF	11	"		
C 3	59.18.0106	13 pF	variable	u		
C 4	59.32.4471	470pF	20%	.,		
C 5	59.32.3103	0.01 pF	n	,		
C 6	59.99.0182	1000 pF	r.	,		
C 7	59.99.0182	1000 pF	4	4		
C 8	59.32.3103	0.01 pF	.,	•		
C 9	59.99.0182	1000pF	.*	*		
C 10	59. 32. 3103	0.01 pF	4	*		
CA	1 59. 99. 0182	1000 pF	.,	"		
C1	2 59.18.0106	13pF	variable	17		
C 1	3 59.32.3103	0.01 uF	20%	٧		
C1	4 59. 32.3103	0.01 p.F	.,	-		
C 1	5 59.32.4471	470 pF	1.			
CA	6 59.30.4339	3.3 pF	u	TA	16 V	
C1	7 59.18.0106	13pF	variable.	CER		-
61	8 59.32.4471	470 pF	20%	CER		
C 1	9 59.99.0182	1000pF				-
C 2	.0 " " "			.,		
C 2	1 11 11	"	"	.,		
C 2	.2 " " "	"	٠.			
C 2	3 59.32.3103	0.01 pF	· ·			
C :	24 59.99.0182	1000pF		,		
C 2	.5 " " "	.,	u	"		
C :	26 59.18.0106	13pF	variable			
C	27 59. 32.3103	0.01 µ F	20%	,		
C 2	28 59. 32.4471	470pF	11	u		
c:	29 59.30.4339	3.3 µF		TA	16 V	
C	3059.18.0106	13pF	variable	CER		

NDIP	OS NO	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
-		62.02.4101	100 pt		
1		1.012.152		IF COIL	57
1					
F	1-8	54.02.0320	2.8 x 0.8	male connector	
T					
1	21	50.03.0311	17853	Dual Gate Mos Fet	ST
1	2 2	n b #	- 11	te fo se so	
(3	и. и и		U y a 4	
1	2 4	50,03.0327	MPS 6544	MAN	M
- 4	25	to to 41	- "	"	"
	R1	57.41.4473	47 k.ss	5%	
1	92	t, 11 4	''	TI.	
\perp	R3		"	4	
\perp	R4	57.41.4224	220 k.4	U .	
\perp	R 5	57.41.4153	15 K D	1/	
	R6	57.41.4472	4.7 k2	U	
	R 7	57.41.4154	150 2	п .	
	R 8	57. 41.4271	270 A	*	
	Rg	57.41.4154	150 2	12	
	R10	57. 41.4103	10 ks	19	
\rightarrow		57.11.4104	100 ks	10%	
_	R 12	57.02.5220	22 1	н	
-	· `	57. 41 . 4221	220 1	5 %	-+-
-+		57.11.4224	220 k-2	10 %	
-		57.41.4103	10 kJ2	5%	
\rightarrow		757.11.4104	10012	10%	-
\rightarrow		9 11 11	4	,,	
\rightarrow		1 4 7	+	- 01	
_		57.41.4473	47 k 1	5 /0	
$\overline{}$	DA	TE NAME	+	ST= STUD	ER
<u> </u>				M = MOTO	
<u> </u>	2. (70 1	-1	7-1, 2 70, 010	
$\overline{}$	21.6.		4		

IND	DATE	NAME					
•			CER =				
3			TA =	Solia	To	ntalum	
2	21.6.78	Rom.					
0		Row. //					
0	6. 10.77	Bal. The					
9	TUDER	RF Fro			PL	1.166.100	PAGE 1 OF 4

	X 21 37. T	7.7-13	7/ 12	 _			
IND	DATE	NAME					
4						ST = ST	UDER
3						M = M	OTOROLA
	21.6. 78	12000.					
1	16.6.78	20m. 1					
0	6.10.77	Bal. 9 M		 			
OD.	TUDER	RF From	t End	PL.	1.166	.100	PAGE 3 OF 4

INDI	POS NO	P	ART NO	VALUE	SPECI	FICATIONS	/EQUIVALENT		MFR
_		59.32	. 4471	470 pF	20%0	CER			
_			.0182	1000pF	"	•			
	C 33	59.99	.0182	11	"	"			
			.3103	0.01 uF	и	u/			
	C 35	59.99	.0182	1000 pf	"	"			
	C 36	e	"		"	-			
	C 37	59.32	. 3 1 0 3	F سر 0.01	(r	"			
	C 38	59.99	1.0182	1000pF	U	•			
	C 39	59.3	4.1100	10 pF	5%	•			
	C 40	59.9	.0182	1000 pF	20%	•			
	C 41	59.3	4.2151	150pF	2%	et	N 150		_
	C 42	59.3	4.2151	u	**	"			
	C 43	59.3	4.1120	12pF	5%0	4	NPO		
	C 44	59.3	1.1120	"	11	.,	*		
	C 45	59.3	2.3103	0.01 pf	20 %	υ			
	D 1., 17	50.0	4.0126	88 204 red				only	51
	J 1	54.0	1.0288	5 po 1					
2	FL1	1.16	6.512	Type 2.4.6	IF Fil	ter			ST
2	FL 2	1.16	6.513	Туре 3					"
-	1 1	1 16	6.100.01		ANTENNI	4 COIL			57
	4 2		6.100.02		RF COIL	1			u
	L 3		6.100.03		RF COIL	2			11
	L 4	_	6.100.02		RF COIL	1			"
_	4 5		2.4101	100 µ H					
	46	+	6.100.03		RF COIL	2			ST
	L 7		2.4101	100 p. H					
IND	1 0	ATE	NAME	1					

ND	POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
T	R22	57. 41. 4224	220 k-R	5 %	
1	R 23	57.41.4153	15 ks	υ	
1	R 24	57.41.4154	150 kg	,	
1	R 25	57.41.4154	150 KSL	v	
1	R 26	57.41.4271	270 2	b.	
7	R 27	57.41.4103	10 KD	u .	
1	R 28	57.11.4104	100 km	10%	
1	R 29	57.02.5220	22 A	10%	
7	R 30	57.41.4221	2201	5%	
1	R 31	57.11.4224	220 kA	10%	
-		57.41.4103	10 k D	5 %	
1	R33/34	57.11.4104	100 ks	10%	
1	R 35/R36	11 "1 "1	et	4	
1	R 37	e 11 4	"	4	
	R38	57.41.4123	12 ks	5%	
	R 39	57.41.4473	47 k 12	4	
	R 40	57.41.4154	150 k D	a	
	R 41	57.41.4823	82 ks	U	
	R 42	57.41.4473	47 42	•	
	R 43	57.41.4221	220 1	•	
	R 44	" " "	h	*	
	R 45	" , "	*	•	
	R 46	57.41.4101	100 A		
	R 47	0 11 11	"	•	
	R 48	57.41.4470	47 A	*	
	R 49	11 A 4	t _t	4	
	R 50	57.41.4273	27 k.A.	47	
	R 51	(r 9 4	11	4	
_					
ND	I DA	TE NAME	1		
<u></u>			T		

IND	DATE	NAME				
4						
3						
2	21.6.78	Rom.				
1	16.6.78	Rom. \$				
0	6.10.77	Bal. /ID				
g	TUDER	RF Fro	nt End	PL	1.166.100	PAGE 4 OF 4

IF AMPLIFIER PCB 1.166.120

ETUDER IF-STAN

NDI	POS NO	P	ART NO	VALUE	SPECI	FICATIONS	/EQUIVAL	ENT	MFR
-			. 2470	47pF	20%	CER			
7			. 3 103	0.01 uF	1/	"			
7	C 3		и	11	"	"/			
1			. 2181	180 p F	5%	CER	N 150	2	
			2.3103		20%	CER			
			. 2470	47 pF	ч	1/			
			2.3103	0.01 IIF	11	v/			
	C 8	59.34	. 2181	.180 pF	5%	CER	N 150	2	_
	C 9	59.32	2.3103	0.01 mf	20%	CER			
	C 10	59.32	2.2332	3300pF	10%	"			
	C 11	59.3	2.3103	0.01 MF	20 %	υ			_
	C 12	9 0	"	t1	4	•			_
	C 13	59. 3	4.2470	47 pF	11				
	C 14	59.3	2.3103	0.01 uF	et				┞
	C 15	4* 50	7	ч	и	″			↓_
	C. 16	59.3	4.2181	180pF	5%		NAS	50	1_
	C. 17	53.3	2.3103	0.01 MF	20%	CER			-
	C 18	59.3	4.2470	47 pF	lr .	//			
	C 19	₹ . 3	2.3103	0.01 uF	"	,			-
	C 20	59.3	4.2181	180pF	5%		NA5		-
	C 21	59.3	0.4339	3.3 × F			16 V		+
	C 22	59.3	2.3103	0.01,1F	20%	CER			-
									1
	216	50.0	4.0953	AA 116	Ge-Di				AN
	D 7	50.0	4.0.125	11 44 48	Si- Di	ocle			A.V
									+-
1.2	FL 1	1.16	6.520-81	Type 10	IF - Fi				ST
1	FL 2	1.16	6.518	" 8		,			
1	FL 3	1.16	6.517	7	"	•			"
1	27 4	1.16	6.512	2,4,6	"	"			
INE	1 0	ATE	NAME						
4					Ceramic			ST= STU	DE
	124	5.82	Row.	TA ,	solid To	· · · talo·	~1		
2	19.	7. 79	Rom.	1					
lŌ	2/.	5. 78	Rom !						

INDI	POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
-		1.166.515	Type 5	IF-Filter	ST
-		1.166.512	Type 2, 4, 6	<i>"</i>	"
-			1		
	TC 14	50.05.0101	CA 3053	Diff. Amp	RCA
	J1	50.01.0218	7,001		57
	P14	54.02.0320	2.8 × 0,8	male	ST
	Q1	50.03.0327	MPS 65 44		M
	Q 2	50.03.0318	BC178 B		AM
	Q3	50.03.0438	8C108 B		
	Q4	11 4	"		
			-		
	13.1	57.41.4273	27 ks2	5%	
	R 2		470 A		
		57,41.4221	220-2	"	
	1	57.41.4472	4700 1	" "	
		57.41.4473	3300 A		
_	-	57.41.4332	220 1		
-	R 7	57.41.4221	1500 12	*	
		57.41.7732	1/300 32	7	
		57.41.4101	100 2	"	
-	-	37.41.4104	700 32	· ·	
<u> </u>	-	57.41.4102	1 ks2	,	
-	+	57.41.4271	270 1	1/	
\vdash	+	57.41.4473	47 ka	li li	
	+	57.41.4152	1500 12	u u	
	_	57.41.4102	1 10	"	
INE		ATE NAME	1		
4				ST = ST	
3	24.2	5. 82 Pm.		RCA = R	
2	19.	7. 79 Pom.		M = M	otorola
1) 21.	6.78 Rom. 1			
	5.1	0 77 Sul. /-			

PL 1.460.420 00 PAGE 1 OF 3

IND	POS NO		PART NO	VALUE	SI	ECIFI	CATIONS/EQUIVALENT	MF
	R 17	57. 4	1.4271	270 A	5%			
	R18	57.4	1.4473	47 k.s.	v			
	R 19	57. 4	1.4333	33 k.Ω	-			
	R 20	. "	п	11	ø			
	R 21	57.4	1.4152	1500 D				
	R 22	57.4	1.4473	47 k.a				
	R 23	ef 4		"	"			
	R 24	57.4	1.4102	1 ks	4			
	R 25	57.4	1.4153	15 ks	n			
	R 26	57.4	1.4472	4,7 4.12				
	R 27	57.4	1.4271	270 A				
	R 28	57.4	1.4472	4700 12	"			
	R 29	57.4	1.4103	10 652	11			
	R 30	57.4	1.4104	100 k A	ir.			
	2 31	57.4	1.4152	1.5 k s				
	R 32	57.4	1.4273	27 kA	"			
Г	R 33	57.4	1.4473	47 k.Q	#			
	R 34	57.4	1.4223	22 4.0	"			
	R 35	57.4	1.4472	4.7 kA	v			
	R 36	57.4	1.4102	1 ks	"			
	4-4	1.72	6.740.01		IF-Tr	2057	former	57
								\perp
								T
IND	I DA	TE	NAME	1				
4							ST = STUDE	R
3	24 5.	82	Your.					
2	-19.	7. 73	Rom					
0	21.0	. 78	Rom. 1					
10	5.1	2. 77	Sal. 12					

B780/B739

FM DEMODULATOR PCB 1.166.130

POS NO	PART NO	VALUE	SPECIFICAT	IONS	EQUIVALENT	MFR
61	59 30 6109	1 uF	35K	TA		
6 2	59.30, 4339	33 4F	16 V	779		
6 3	59 30 6101	1 UF	351			-
6 4	59 34.2220	22 pF	5%	CER		
(5	59 32 3/03	10000 pF	1	CER		
66	5 9. 32.3103	10'000 PF		CER		
C 7	59.34.547/	410 pF	5%	CFR		
61	59.30 6109	1 4F	.75			
-	59 34 2220	22 pF	T%	CFR		
C 10	59 34. 2470	47 pF	r's/.	CFR		
4	59.34.2470	47 pt	5%	CER		1
(1)	59. 32.2222	2200 pt		CER		
(13	59.32.3103	10'000'DF	-	CER		
(14	59.34.2121	ASD DE	5%	CFR		
	59. 72. 3103	10000 pF		CFR		
C 15	59 34 4820	82 pF	5%	CER		
		330 pF	59/0	CFR		
<u> </u>	59 34 4331	10'000 pF		CER		\top
C/K	59.32.3103 59.32.3103	10'010 01		CER		
	59.32.3103	10'orbpt		CER		
_ (90	59. 32. 3/03	10'000pt	-	CER		
<u> </u>		42 E	5% NI			
- 22	_59.34.2470_	10'000 pE		CEL		1
-4_23	59.32.3/03	10'000 pE	-	CER		
	59.32.3103	10 000 pl	-	YOY EL	1	+-
	59 25. 5220	22. 1		CER		_
L 26	59 32 3/03	PE		GER		+-
2t_	59.32.3/03	10,000				14
IC1	50.99.0108			INORE	ECECION	Reci
162	50.05.0101	CA3053	DIFF. AMP		-	RC
IC 3	50.05.0101	CA3053	DIFF. AMP		-	RC.
71	54.01.0212	7 Pol.				\top
71	62. 02. 4101	100 uH				+
	62.02.4101					
12	1.166.120-0		IF-TRANSF	DAMER		
01	50 030437	BC 108B	VPN)			VI.
Q 1	10.03.0422			ETAL		
0 3	50.03.0434			00		AAU
9 4	50 03.0439	RC 109C	YEN A	ASTIC E	007.	
0 5	50.03.0429					
						-
R 1	57. 41. 4104	100 KG	2 5% 0,25	W		
2	57 41 4472	47 KS		W	-	+
74: TA	WTALUM		H: HOTOLOGA RCA			
CEP: C	ENAMIC		KLA	9		
30 6	ETAL FILM			8 2	.5. 80 Am	
75.7					10.77 Kg	انتاه
				IND	DATE	NAME
	JDER #					PAG
			ILATOR		66. 130	/ of

			***********	501111/41 5117	wee
OS NO	PART NO	VALUE	SPECIFICATIONS	EQUIVALENT	MFR
2 3	57.41.4473	41 152	7		
2 4		7	-		
5	57 41 4182	18 KS	+	-	
6	57 41 4104	100 KG	-		
	57 41 4822 57 41 4471	410 8			
2 9	57 41 4471 57 41 4562	56 19	1		
2 10	57. 41 4472	4.7 18			
2 11	57 41. 4221	220 52			
12	57 41 4103	10 KQ			
13	SF 41 4104	100 KS	1		-
/4	SF H1 4560	56 KQ	75% 925W		
15	57 41 4121	120 52	-		-
2 16	57. 41. 4562	56 KQ 120 S2	+	 	-
2 17	5F 41 4121 5F 41 4391	390 P	 		
2 18	57 41 4391 57 41 4182	18 19	1		
	57 41. 4472	47 152	1		
e 21	57. 41.4472	4.7452			
2 22	SF 41. 4821	820 52			
2 23	57.41.4821	8200			
24	SE 41 4103	10 KG	/	-	
25	5× 39 1002	10 19	10/2 0,25W MF		
26	57.39.1002	1012	1% 0,25W HF		
2 27	57 41 4121	120 52	7	-	-
228	57 HI. 4222	22 10	+	+	-
29	57 41. 4472.	47 KD 47 SP	+	-	1
30	57 41 4470	270 8	+		
2 32	57 41 4822	8,2 KS2	75% 0,25W	1	
P 23	57. 41. HIO2	1 1892	700,000		
R 34	5F 41 4472	4.7 19			
e 35	51 41. 43.92	39 152			
R 36	58 44 4102	1 18			-
8 77	57 41 4471	470 52			
8 38	5F. 41. 4272	2,7 10	2		
	CV 42 4204	20.00		+	+
1-6	_54.02 0320	2,8×0,8		1	
					-
					+
	L	I		<u>'</u>	
			3		
			0	1 5 5 7	
			3	1.5.80 Km.	with
			IND		AME
					PAGE
	JDER #H	- DE40040			2 of 2

STEREO DECODER PCB 1.166.150

POS NO	PART NO	VALUE	SPECIFICAT	IONS	EQUIVAL	ENT MFR
6.01	59.11.6102	1000 eF	5%	31		
		2700 pF	5%	PC		
6 02	59 11 6272 53 11 4473	47.000 pF	25%	P/-		
(03		47.000 pr	5%	Pr		
404	53 11 6472	4700 pF	35Y			
C 05	59 30.6100	10 yF		CE	0	
606	59 34 5391	390 pF	5%	PL	-	
601	59. 11. 63.32	<500 nF	5%			
1.08	59 11 4103	10'000 PF	2,5%	PC.		
109	59. 22 4221	220' pF	161			
610	59.32.3103	10000 PF		CE		
(11	59 30, 4100	10 4 F	16 V			
1/2	59.30.6100	390 pF	35V			
1 13	59.34.5391	390' pF	5%			
6.14	59 11.63.32	3300 pF	5%	- 7		
(15	59 11 6102	1000 pF	5%			
6 16	59. 30. 6478	0.47 45	35v	TE		
(1)	53 11.6472	4700 pF	5%	PL	:	
(12	59 30 4100	10 HF	16 V	T	9	
(19	59 11.6102	1000 pF	5%	P)		
(20	59.11.6272	2700 pF	5%	21		
1 21	59 11 4/03	10'000 p.F.	25%	P		
	59 20 4160	10 pr	161		A	
-C 22-	59 32 3103	10'000 pf		Œ		
		0.47 WF	35			
<u> </u>	59.30.6477		(6)			
C 25	59.30.4100	10 /	- 702			
L26_	59 30 6472	0,42 LF		VI		
-627	59.30.6478	947 MT				
- 22_	59 34 2101	100 pE		D C		
629	59 11. 6102	1000 pF		P		_
	59 31.6105	1 LE	10%	MA		
C31	59 32 2681	680 pF	10%	4		
1.24	59.31 6224	0,22 LE	10%	HPE		
(33	59 11 4472	4700 pF	2,5%			
C 24	53. 11.6102	1000 pF	5%	- 80		
(35	59 30. 4100	10 It	161			
C 36	59 30 6472	Q47 1F	354			
(37	59 11 4103	10000 05	2.5%		~	
C 38	59.11.4/03	10'10 pF	2.5%	2	6	
		1	7			
001	50.04 0126	28 2041	TUNING DI			51
D 02	50 04 408	5,6V	5,61 05M	A		
0 03	50.04.0125	IN 4448				104
IG 01	50.05.0122	ML 1496 G	Hod.190			M
70' 01	50.06.0113	SN7415113	Dual JK-F	pF10		4/17
51:81	EMENS PG 1	DEYCHELDIN	E		12.2.80	jan .
17 110	TOROXA TA:	CERAMIC		2	15.12.78	Non.
7.1.1	EL .	ELECTROLYNIC		-8	15.12.78	inlitin
		: METALIFED		IND	DATE	NAME
						PAG
	JDER c+				166. 150	

STU	DER	STE	REO DE	CODER	1.	166. 150	00/03
POS NO	PART	NO.	VALUE	SPECIFICAT	ions	EQUIVA	LENT MFR
				1			1
IC 03	_50.05.0		TB9231	Dual Op. Am	D . S	476957, 1	HIF
IC 04	_50.05.4	122	ML 1496 G				- //
701	54.01.0	2219	15 %				
						-	
L 01	1.166			15km-19			
1 02	1 166 1			19kHz Trup 154Hz LP1			
1 04	1.166			154m LP1			
1 05	62 01		2mH	5%			
1 06	1. 166 1			156/2 LPZ			
1 07	1.166.1			386/12 601	Tail		-
1 08	1.166.1			194 th Amp	1. 600	/	
1 09	1.166. 1	55.00		- ZJEIZ AMP	- (,	
4 11	1.166	151.00		719611 Fill	ercor	/	
112	5402	0320	2,8 - 0,8				
		44	1000	-		+	-
Q CL	50.03	0439 .0439	BC 1090				1
0 02		.0439	BC 1096				TAV
3 01		0438	AC 108B	THEN			
0 05	10.03.		X1028				
			1.75				
ROL	57.39.		H.75 K		ME		
-R 02	51.11.						
-R 23	57 11		4.75 K		MF		
R 05	9.39	4751	4754				
R 04	57. 11	4222	122 A	5%			
-R Ot	<u>57. 11.</u>		2,7 A				
PN	57.11		470 5		111	-	
P 19	57. 39 57. 11		1.5 A				
-R_10_ B_11	57.39	1871	1.82	1%	M		
R 12	Q.39	1821	1,82 6	1%	Щ		
E 13	57. 35		1.5				
R 14		2001	21			F	
R 15		4751	4.75		/1/		
B 16		2.5471	470 9		HATER	CF	
K 18		9.8451	8450	2 1%	M	F	
-2 19	57.3	9.3241	3.32	K 10/0		F	
R 20	57. 1	1.4682	6,8	K 5%			
		T	1	MF: HETAL FILM			
A A	ES			CF: CHARDN FIC	7 9	12.2.80	/A
7.76	YAS INT	,			- 8	15,12.18	Com.
					IND	DATE	NAME
-		+			IND	DATE	
ST	JDER	۔۔	EREO DE		1,	166.150	00 PAGE

R 21)	VALUE	SPEC	IFICATIONS		EQUIVALEN	MFR
	57.39.47	51	4.75 K	1%	M	=		Ī
R 22	57. 18. 110		10 K	7				
R 23	57 11 410	2.1	100 52					+
R 24	57.11 44		470 0					+-
25	9.11.4		4702 4.7 K			_		+
R 23	51. 11. H		10 K	1		_		
R 18	57. 11. 41		1 K	1				
1 29	9.11.4		14	1				
R 30	_57. 11. H		3,3.K	 		-		+
L-31_	51.11.		1 K	 		-		+
1 33	57. 11. 5 57. 11. 5		3,3 K	1		_		+
R 24	57. 11.		22 K	1				
1 25	57 11 4		470 K					-
R 36	5/ 11 4		100 K		0/			-
P 37	57.11. h		220 K	- 	10			+-
1_38_	57. 11. 4		4.7 K			-		+
R 29	57.11.5		100 K	1-				
1.41	57 11.		10 K	11				
8 44	57. 11.		100 K					
2 1/4	57.11		47 K	1.				-
2 34	7.11.		474					+-
1 15	57. 11.		220.52					+
1 1/K	57. H.		270_S2 470_K					+
1 12	57.11		100 K	1				
8 49	57. 11.		H.7 K					
R 50	57. 11.		10 K	-				-
P.F.L	57.11.		100 K	-			ļ	+
_R_52	7.11.	4104	1004				 	+
				-				_
	-							
							-	+-
	-			-				+-
	-							+
-								
				-				
	-			-				-
	-			-				
	1					0_ _		
4. 1	ETALFILM					11	2. 2. 80 Rg	-
) /5	12. 78 /4	
					IN	- 1	all medical control	<i>Liolis</i> .
					- IN	U	DATE	PAGI

IND	POS NO	PART NO	VALUE	SPECI	FICATIONS	EQUIVALENT		MFR
	_	59 34.4221	220 pF	20%	400 V	CER		_
П	C 5	59 32 3103	10 nF	80%	40 V	CER		
	C 6	59.34.4221	220 pF	20%	400 V	CER		
	C 7	59.32.3103	10 uF	80%	40 V	CER		
	C8,9	59.34.4221	220 pF	20%	400 V	CER		
	C10	59.32.3103	10 nF	80 %	40 V	CER		
-	C 11	59.34.4221	220 pF	20%	400V	CER		
_	C 12	59.32.3103	10 .F	80%	40 V	CER		
\vdash	C 13	59.31.1105	1 µF	20%	100V	MPETP		
\vdash	C 14	59.32.3103	10 nF	80%	40 V	CER		
	C 15	59.31.1105	1 pF	20%	100V	MPETP		
Г	C 16,17		220 pF	20%	400V	CER		
	C18.21		1 µF	20%	100V	MPETP		
	C 22,23	59.32.4101	100 pF	20%	400V	CER		
Г	.C 24	59.32.3103	10 nF	80%	40 V	CER		
Г	C 25	59.30-6339	عر 3,3 F	20%	35V	TA		
Г	C2629	59.32.4102	1 nF	20%	50V	CER		_
Г	C 30, 31		10 µF	20%	25V	TA		
Г	C 32	59.30.6333	3,3 µF	20%	35V	TA		
Г	C 33	59 32 2221	2 20 µF	-10%	6,3V	EL		
Г	C 34	53 34 4101	100 pF	5%	50 V	CER		
Г	C 35, 36	59.30.7100	10 µF	20%	25V	TA		
Г	C 37	59.22.4101	100 µF	- 10%	16V	EL	_	
Г	C 38	59.22.4102	1000 µF	- 10%	16V	EL		
	C39	59.12.4183	18 nf	5%	100 V	MPETP		
	C 40	59.11 3682	6,8 nF		1/			
Г	C 41	59.22.2221	£ مر 220	-10%	6,3V			_
Г	C 42	59.34.4101	100 pF	5%	50 V	CER		
	C 43,44	59.12.2224	0,22 pF	5%	100 V	MPETP		
Г	C 45.46	59.31.1105	1 NF	20%	100 V	MPETP		

B780/B739

_				
IND	DATE	NAME	1	
(4)			CER : Ceramic	
3			MPETP: Metallized Pol	yester
2	16.1.90	Но	TA : Tontalum	
1	14.12.79	in.	EL : Electrolytic	:
0	31.5.79	Ha		
5	STUDER	AUDIO CO	NNECTION UNIT	1.780.145.00 PAGE 1 OF 4

NO	POS NO	P.	ART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
	47.48	59.3	0.7100	10 µ F	20% 25V CER	
1	C 49	59.1	12.4183	18 nF	5% 100V MPETP	
	C 50		11.3682	6,8 nF	ıı .	
1	C 51,52		32.3103	10 nF	80% 40V CER	
-	C 53,54	53 ′	12.2224	F سر 0,22	5% 100V MPETP	-
+	D112	50.	04.0125	1 N 4448	100 mA , 75 V	
2						-
\dashv	IC1	50.	05.0244	TOA 1034NB	Low noise opamp NE 55 34 AN	Philip
	IC2	50.	11.0101	TDA 1028	low noise opamp, analog switch	t t
-	IC3	50.	11.0102	TDA 1029	u	"
-	IC4	50.	11.0101	TDA 1028	Įt.	10
	IC5		11 0102	TDA 10 23	ıı	11
	IC6	50.	05.0244	TDA 1034 NB	lownoise opemp NE 5534AN	
	TC 7	50	05.0245	RC 4552 P	dual opomp IRC 4558 DN	
	IC8	50.	05 0266	UATRMGC	voltage regulator 0,5A	Fairch
H	J 1	54	01 0212	g pole	CIS	AMP
Н	J 2		01 0247		"	P
	J 3, 4		02 0321	5 pole	Stereo DIN Hab 55H	Hirsch,
-	Q1,2	C0	03 0436	BC 237 B	45 V 300 - A NPN / BC 107 B	-
	0 /2	3.				
	R1	57	11.4102	1 KS	5% 0,25W CF	-
L	R 2	57.	11.4105	1 MS?	u	-
_	R 3	57.	11.4102	1 4 52	u	+-
L	R4	+	11.4105		и	+
_	R 5,6	57.	11.4224		at .	+-
	R 7,8	57.	11.4102	1 K Q	eP	

NDI POS NO	PART NO	VALUE	SPI	ECIFICATIONS/	EQUIVALENT	MF
R9	57 11 4105	1 MΩ	5%	0,25 W	CF	
R 10, 11		1kΩ		li.		
R 12,13	57.11.4105	1 HΩ		(f		
R 14,15	57.11.4102	1 KS		(f		
R 16	57.11.4105	1 HQ		и		
R 17, 18		1 KQ		ę¢		
R19 22	57.11.4221	220 ♀		ef		
R23 , 24	57.11.4102	1 KQ		и		
R25, 26	57.11.4104	100 K R		(f		
R27, 24	57.11.4102	1 KQ		44		
R 29, 30	57.11.4563	56 K Q		¢#		
R 31, 37	57.11.4223	22 kQ		ge .		
R33 3	57.11.4563	56 K SZ		tr		
R 37	57.11.4104	100 k S		ıı		
2 R 38	57.11.4331	330 ♀		fs		
R 39, 46	57.11.4223	22 kQ		te		
R 41	57.11.4104	100 KS		ęs		
R 42	57.11.4123	12 KQ		ч		
R 43	57.11 4101	100 ♀		1e		
R 44	57.11.4154	150 KQ		н		
R 45	57.11.4222	2,2 κΩ		-1		
R 46, 4	57.11.4183	18 kQ		tı		
R48	57.11.4222	2,2 kΩ		u		
R 4 9	57.39.1822	18,2ks	1%	0,25W	MF	
R 50	57.39.5361	5,36 K S		t1		
R51 5	4 57.11.4473	47 KS	5%	0,25W	CF	
@ R 55	57.11.4272	2,7 K S		ti.		
R56,5	7 57.11.4473	47 ks2		"		
2 R 58	57.11.4272	2,7 KS		ţ#		
253.	2 57.11.4473	47kS		(1		
INDI D	ATE NAME	1				
4		MF : Meto	lfilm			
3						
2 15.1	. 90 Ho					
1 14.12	73 R-					
0 31 5	79 He					

ID	POS NO	P	ART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
	R 63		11.4123	12 kQ	5% 0,25W CF	
	R64	57.1	11.4101	100 Q	te	
	R65		11.4154	150 ks	tap	
2	RLL		14.4331	330 €		
	R 67,68	57.	11.4152	1,5 kS	er .	
	51	55.0	1.0306		Mabsa 2 H-UU Hirschman	
						1
_						
_						
_						
	T					
-						
_						
-	-	-				
H		 				
┝	-	1				
-	 	 				
-	1			-		
-	+	+				
┝	-	+		-		
-		1		-		
-	+	+		+		
H	+	+		+	· · · · · · · · · · · · · · · · · · ·	
-	+	+		+		
_		ATE I			1	
4		A1E	NAME	+		
0	-			-		
(2)		1 21	Ha	-		
0		1.60	174	-		
	31. 5	- 79	He	-		
-						// //
	STU	DER	AUDIO I	CONNECTIO	24 UNIT 1 780 145 00	PAGE 4 OF 4

STUDER AUDIO CONNECTION UNIT 1.780.145 00 PAGE 2 OF 4

PREAMPLIFIER PCB 1.780.205

ND	POS NO	P	PART NO	VALUE	SPECIF	CATIONS	S/EQUIVALENT	MFR
1	C1	59.	32 3103	10 nF	80%	50 V	CER	
7	C 2,3	59.	32.4102	1 nF	20%	50 V	CER	
	C4C6	59	30.4220	عر 22 F	20%	16 V	TA	
\neg	C7.8	59	32.3103	10 nF	80%	50 V	CER	
	C 9	59.	32.2681	680 pF	10%	50 V	CER	
1	C 10	59.	31.6474	0.47 uF	10%	100 V	MPETP	
	C -11	59.	11.6222	2,2 nF		u		
1	C 12,13	59.	31.6474	0.47 pt		И		
	C74	53.	32.2681	680 p F	10%		CER	
	C-15	51.	11.6222	2,2 nF	10%		MPETP	
1	C 16	53.	31 6474	0,47,0F		"		
	C 77	59.	30.6109	1 pF	20%	35 V	TA	
	C 18	59.	32.2681	680 pF	10%	50 V	CER	
	C 19	59.	22.5470	47 pF	-10%	25 V	EL	
	C 20	53.	34.2220	22 pF	5%	50V	CER	
	C 21	59.	30.4220	22 µF	20%	16 V		
	C 22	59.	30.6109	1 pF	20%	35V	TA	
	C 23	59.	32.2681	680 pF		50 V		
	C 24	59.	22.5470	47 MF	-10%	25V		
	C 25	59	30.4220	22 pF		16 V	TA	
	C 26	59.	34.2220	22 pF	5%	50V	CER	
	075	50.	04 0125	1 N4448	100 -A	75	V	
-	37,2	54.	01.0241	4 pole	CIS			AM.
	J 3	54.	01.0288	5 pole	"			u
	J 4	54	.01 0241	4 pole	U			,,
	35	54.	01 0217	g pole				
	76	54	.01.0296	18 pole	lı			"
	J 7	54	.01.0217	9 pale	li .			
INC		TE	NAME	1				
④	-			CER :				
3	-				Tantolum			
2					Metallized		ter	
0	5.3.	80	Por.	EL	Electrolyt	· c		
10	136	7.9	He	1				

MFR	SPECIFICATIONS/EQUIVALENT	VALUE	PART NO	POS NO	D P
AMP	CIS	7 pole	54.01.0218		
	3 pole Jack 6,3 mm		54.02.0104	J 9 5	Τ.
					1
National	E 1354 6500 T	24V; 1,2KQ	56.04.0141	K1 5	1
	NPN / BC107	BC237 B	50.03.0436	01 5	(
L	NPN / BD 139	2 56 496-0	50.03 0478	Q 2 5	
		BC560C	50.03.0496	Q3 5	
	" NPN 1 BC 107 B	BC550C	50.03.0497	Q4,5 5	6
ļ	" PNP/BC 179B	BC 560C	50-03.0496	06 5	
	" NPN BC 107 B	BC 550C	50.03.0497	Q7,8 5	(
-					1
<u> </u>	5% 0,5W CF	470 S	57.43.4471	R1,2 5	F
-	5% 0,25W CF	100 ℃	57.11.4101	R3 5	
-	li .	56 kQ	57.11.4563	R4 S	
-	1% 0,25W MF	2,61 kQ	57-39.2611	R 5 S	
	p	20,5 ks?	57.33 2052	R 6,7 S	
-	5% 0,25W CF	1,5kg	57.11.4152	88	
-	11	56 k S	57 11 4563	R 9 5	
	8	1,5 KQ	57.11.4152	R 10 S	
_	u	1 KΩ	57 11.4102	R 1112 4	
1_	ęł	56 kQ	57.11.4563	R 13 5	
<u> </u>	tr .	8,2 KQ	57.11.4822	R14 5	
↓	ıf	220 KQ	57.11.4224	R 15	
 	er	15 KS	57.11.4153	R 16 .	
↓	n .	220 KQ	57.11.4224	R 17	
↓		1,5 KQ	57.11.4152	R 18	
-	er	2,7kQ	57.11.4272	R 13	
-		2,2 kQ	57-11.4222	R 20	
	at .	47 Ω	57.11.4470	R 21 .	
			E NAME	DATE	IND
	- •	CF : C			4
	el fel m	HF : 1			3
-		1			2
		1		5.3.80	
			79 He	13 6.7	0
2 of 3	1.780.205 00 PAGE	IPLIFIER	ER PREAM	STUDE	9

	POS NO		PART NO	VALUE	SPI	ECIFICATIONS/E	QUIVALENT	MFR
7	R 2 2		11.4101	100 ℃	5%	0,25W	CF	
1	R 23	57.	11.4563	56 KS		и		
7	R 24	57	39.2611	2,61 K S	1%	0,25 W	MF.	
1	R 25	57.	11.4562	5,6 KQ	5%	0,25W	CF	
7	R 2 6	57.	11 4563	56 kQ		1f		
	R 27,28	57.	11.4332	3.3 KD		ef		
٦	R29	57 .	11.4562	5,6 KQ		ı		
	R 30	57.	11 4701	100 2		ıř		
	R31	57.	11.4224	220 KSP		**		
	R 32	57.	11.4153	15 kΩ		м		
	R 33	57.	11.4224	220 KΩ		br .		
	R 34	57	11.4153	15 KS		ø		
	235		11.4822	8,2 K S		¥		
	R3638	57.	11.4222	2,2 KQ		ęr .		
T	R39	57.	11.4331	330 9		er		
	2 40	57.	11.4563	56 KΩ		ţı.		
_	R 41	57.	11.4822	8,2 kQ		ef		
_	R 42	57.	11.4152	1,5 kΩ		ır		
_	R 43	57.	11.4272	2,7 kΩ		ţı.		
	R 44		11.4101	100 Q		ч		
	R 45	57.	11.4222	2,2 KS		et		
_	R 46	57.	11.4470	47 2		e		
_	51 4	1.78	0.205.01					
_								
_								
_								
_								
_								
_								
INC) DA	TE	NAME	i				
4								
3				1				
2				1				
	5.3.8	0	Rom	1				
$\stackrel{\sim}{\sim}$		6.79	Ha	1				

FILTER PCB 1.780.215.-81

FILTER PCB 1.780.215 - 81

IND POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIV	ALENT	MER
2 (1,62	59.12.2154	0,15 pF	5%, 100 V,	MPETP	
C 3	59.11.6102	1,0 nF	5%, 400 V,	PC	
C4	59.34.5471	470 pF	5%, 50 V,	CER	
C 5	59.34.2270	27 p F	5%, 50 V,	CER	
C 6, C7	59.30.6109	1 pF	20%, 35V,	TA	
C 8	59.34.2330	33 p F	5%, 50V,	CER	
C 9	59.30.3330	33 µF		TA	
2 (10, C+1	59.12.2154	0,15 pF	5% , 100 V ,	MPETP	T
C 12	59.30.6109	1 MF	20%, 35 V,	TA	
C 13	59.34.5471	470 pF	5%, 50V,	CER	
C14	59.34.2270	27 pF	5%, 50V,	CER	-
C15	53.30.6109	1 pF	20%. 35V,	TA	1
C16	59.32.3103	10 nF	80%, 40V,	CER	
C 17	59.34.2330	33 pF		CER	
C 18	59.11.6102	1,0 nF	5%, 400V.	PC	
C 19	59.30.3330	33 µF	20%, 10 V,	TA	
1 620,21	59.32.2681	680 pF	10%, 50V.	CER	
01 04	50.04.0125	18444	100 m A , 75 V ,		
1 01	50.03.0496	BC 560 C	Low noise 454 PNP		1
1 Q 2	50 03.0497	BC 550C	lownoise 45V NPN	•	
1 Q 3	50.03.0496	BC 560C			
1 Q 4	50.03.0497	BC 550C			
1 Q5, Q6	50.03.049	BC 560 C			
					1
R 1	57.38.1053	105 ks	1% 0,25 W MF		1
R 2	57.39.2802	28 k St	И		1
R 3	57.11.4103	10 K S	5% 0,25 W CF		
R 4	57 11.4105	1 MS	И		
R 5	57.11.4153	15 KS	ll .		
ID) DAT	E NAME	1			

(4)	DATE	NAME		1		
				MPETP	:	Metallized Polyester CF · Corbonfilm
3				PC	:	Polycarbonote
	26.8.80	K	81	CER	:	Ceramic
0	10.7.80	Rom		TA	:	Tantalum
0	29.5.79	He		MF	:	Metalfilm
9	TUDER	FIL 7	E	र		1. 780 . 215.81 PAGE 1 OF 2

ND PO	NO	PART NO	VALUE	s	PECIFICATIONS/	EQUIVALENT	MFR
R	6	57.11.4470	47 Q	5%	0,25W	CF	
R	7	57.11.4473	47KQ				
R	8	57.39.2802	28 KΩ	1%	0,25W	MF	
R	9	57.11.4105	1 M N	5%	0,25W	CF	
R	10	57 11.4102	1 ΚΩ		ti.		
R	11	57.11.4563	56 kΩ		4		
	12	57.11.4701	100 S		4		
R	13	57.11.4105	1 MΩ		"		
R	14	57.39.1053	105 KΩ	1%	0, 25 W	MF	
R15	R16	57 39.2802	28 K Sl		ır		
R	17	57 11.4473	47 KΩ	5%	0, 25 W	CF	
R-	18	57.11-4105	1 M S		lt.		
R	19	57.11.4153	15 KΩ		ď		
R:	20	57.11.4470	47 S		d		
R	21	57 11.4103	10 K S		41		
R	22	57.11.4102	1 K S		t,		
R:	3	57.11.4563	56 KΩ		ч		
R:	24	57 77.4101	100 🔉		a		
	_						
5	1	1.011.307.00					
	_						
-	\dashv						
-	-						
	4						
+-	-						
+-	\dashv						
	4						
	_						
	_						

ND DATE	NAME	
4		
3		
@ 26.8.80	Har 81	
10.7.80	Por.	
0 29.5.79	He	
STUDER	FILTER	1.780.215.81 PAGE 2

TONE CONTROL PCB 1.780.210

ND	POS NO		ART NO	VALUE	SPE	CIFICATION	S/EQUIVAL	ENT	MFR
	C1, C2	59	32 3103	10 nF	80%	40 V	CER		
	C3, C4	59.	12.2154	0,15 mF	5%	100 V	MPETP		
	CS	59.	12.4472	4,7 nF		11			
	C6	59.	12.2123	12 nF		и			
	C7, C8		12.2154	0,15 ps		п			
	C9	59.	12.4472	4,7 nF		- 0			
	C10	53	12.4103	10 nF		и			
	C11	59	12.2123	12 nF		"			
	C 12	59.	12.4103	10 nF		н			
	C 13	59.	30.6478	0,47 pF	20%	16V	TA		
	C14	59.	30.4220	22 µF		ir			
	C 15	59.	30 6478	0,47 pr		0			
	C16	5 9	30.4220	عبر 22 بر F		ıt			
	C 17	53	30.6478	0,47 pF					
	C 18	59.	30.4220	F سر 22		•			
	C 19	59.	30 6478	0,47 uF		"			
	C 20	59.	30.4220	22 µF		le .			
	C 21 C24	59.	34.2470	47 pF	5%	50V	CER		
	C25	59.	32.3103	10 nF	80%	40 V	CER		
2)									
(2)	C28,29	59.	34-4151	150 pF					
	D1. 08	50.	04 0125	1 N 4448	100 m	4 75 V			
	Q1, Q2	50	03.0497	BC 550 C	low nois		NPN	/ BC 1078	
	Q3., Q10	50	03.0496	BC 560 C	le	25 V	PNP	/ BC179 B	
	Q11. 016	50.	03.0497	BC 550C					
									-
	R1	57	11.4822	8,2 KS		0,25 W	CF		
	R 2, R3	1.78	0.210.0	2 2x 47 kΩ		tiometer			
	R4	57	11.4822	8,2 KS	5%	0,25W	CF		
	R.S	57	11.4152	1,5 KQ					
INE	DA DA	TE	NAME	1					
(4)				MPETP .		Polyeste.	•		
3				CER :					
2	17.3.	80	Resu	-1	Tantelun				
0	12 40	79	10	CF:	Carbon Film	,			
0	-9.5	. 79	Ha					. 00 PAGE 1	

POS NO I	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MF
	1.780.210.03	2 × 10 kg	Potentiometer lin	
R8	57.39.5231	5,23 k St	1% 0,25W MF	
R9,10	57.11.4682	6,8 kΩ	5% 0,25W CF	
R 11	57.39.4531	4,53 KQ	1% 0,25W MF	
R+2,13	1.780.210.01	2 × 4,7 KQ	Potentiometer lin	
R14,15	57.11.4822	8,2 KS?	5% 0,25W CF	
R 16	57.11.4152	1,5 K S	п	
R 17	57.11.4682	6,8 KS2	II .	
R 18	57-39-5231	5,23 KQ	1% 0,25 W MF	
R 19	57-39-4531	4,53 KS	y	
R 20	57.11.4682	6,8 kQ	5% 0,25W CF	
R 21,22	57-11-4103	10 kΩ	u	
R 23	57.11.4182	1,8 ks	te.	
R 24	57.11.4470	47 S	u	
R 25	57.11.4105	1 MR	(¢	
R 26	57-11.4182	1,8 kΩ	и	
R 27	57.11.4470	47 8	ď	
R 28,30	57.11.4103	10 kΩ	(f	
R31,32	57.11.4470	47 52	и	
R 33	57.11.4183	18 KQ	u	
R 34	57-11.4563	56 kS	и	
R 35	57.11.4105	1 MS	u	
R 36	57.11.4182	1,8 kΩ	u .	
R 37,38	57.11.4470	47 52	И	
R 39	57.11.4183	18 KS	, R	
R 40	57.11.4563	26 kg	и	
R 41	57.11.4105	1 MQ	п	
R 42	57.11.4182	1,8 KD	и	
R 43	57.11.4105	1 MS	tr	
R 44. 46	57 11.4101	100 ₪	u	
DI DA	TE NAME	1		

NDI POS NO	P	ART NO	I VA	LUE	SI	ECIFICATION	S/EQUIVALENT	 MFR
R 47		1.4470	4	7 Ω	5%	0,25W	CF	
R 48	57.	11.4101	1	00 S		ıı		
R 49. 51	57	11.4470	1	17 Ω		ч		
R 52	57.	11.4183	1	18 kQ		u		
R 53	57.	11.4563	5	6 KS		u		
R54,55	57.	11.4470		47 Q		ıt		
R56	57.	11.4183	-	18 KQ		п		
R57	57.	11.4563	3	16 KQ		и		
			1					
H								
\vdash								
	-		+					
\vdash	-			-				
	-							
	-		-					
 	 		_					
\vdash	 		+-					
\vdash			+-					
			+					 _
-			+-					 _
	-		+-					 _
			+-					 -
(4)	TE	NAME	+-					
3			-					
	ab	Rom	\dashv					
2 13.3		/4m	-					
0 29 5	0.79	Ha	_					

② 17.3.80 Rm. ① 22.10.79 Ho ○ 29.5.79

STUDER TONE CONTROL

1.780.210.00 PAGE 2 OF 3

POWER AMPLIFIER PCB 1.780.105

MOI	POS NO I	PA	RT NO	VALUE	SPE	CIFICATION	NS/EQUIVALENT	MFR
	C 1		5.6472	4,7 nF	-10%	63V	EL	
1	6 2		1.1224	0,22 pF	20%	100V	METP	
	C 3	5.9 9	9.0453	0,1 pF	10%	250 V	MP	
1	C 4		1.1224	0,22 NF	20%	100 V	MPETP	
-	C 5		2 2 4 7 2	4,7 nF	10%	50 V	CER	
_	Cl		4.4221	220 pF	5%	50 V	CE R	
1	C 7	53.2	2. 5220	22 pF	20%	25V	EL	
_	C 8		22.2221	220 pF	-10%	6,3V	EL	
	C 9	53.3	2.0222	2,2 nF	20%	200V	CER	
0	C 10	53.3	31.1224	F مر 22 ,0	20%	100 V	MPETP	
	C 12	59 . :	34.4151	150 pF	5%	50 V	CER	
	C 13	59	34.4271	270 pF		n		
	C 14	5.2	12 0561	560 p F	20%	500 V	CER	
_	C 15	5 3	31.0334	عر 33 pF	20%	63 V	MPETP	
	C 16	53.	34.4271	270 pF	5%	50 V	CER	
	C 17	59.	30.6339	3,3 pF	20%	35 V	TA	
3	C 18	59.5	22.5220	F مر 22	20%	25V	ΈL	
	C 19	53.	35 6472	47 nF	-10%	63V	EL	
	C 20	59.	31.1224	0,22,0F	20%	100 V	MPETP	
_	C 21	59.	34.2330	4,7 nF	10%	50 V	CER	
	C 22	59	31.1224	ع _{لر} 0,22	20%	110V	MPETP	
	C 2 3	59.	32.2472	4.7 nF	10%	50 V	CER	
	C 2 4	52.	34.4151	150 pF	5%	50 V	CER	
	6:3	52	3 4. 4224	220 pF		,		
1	C 26							
Г	01.02	50	04.0125	1 N 44 48	100	A 75	V	
Г	D3	50	04.1119	82 X 15 V	151	. 5% 4	400 mW	
5		=0	31 0235	8 80 C 3700	sc v	, 3,7 A	<u> </u>	
Г	05 €	50.	04.0105	114004	2001	V 1A		
Г	07	50	04 1119	B 2 X 15 V	15 V	, 5%	400 m W	
IN	DI D	ATE	NAME	1				

n	POS NO	p	ART NO	VALUE	SPE	CIFICATIONS/	QUIVALENT	MFR
				1N4448	100mA			
			035.50	LF 357 P	slew role	min : 31	OV/us	161.0-0
1			21.0241		CIS			AMP
1			01.0243	3 pole	te			-
-	J 5		01.0241	40018	.,			"
1								
+	L1	1 06	2 . 614 . 00	2.2 4. 1/				
+								
1	91	50	03.0318	BC 308 B	300 - A	24V PA	P / BC 1788	
1	Q 2		03.0501	2N6476			P /25B 703A	
-	Q 3	-	03.0343	2 N 6 0 3 1		PN		М
-	3 4		03 0485	MPS A 92		PN	P	M
-	5 5,6	-	03 0484	MPS A 42		NP	N	M
-	Q 7		03.0492	BC 256 B		PN	P 186 266 B	
-	Q 8	-	03 0478	250 456 - 0		NP	v / 80 135	
-	Q 9		03.0424	MPS A 42		NP	N	М
-	Q 10	+	03.0491	BC 174B		NP	N 1 BC 190 B	
-	@ 11		03.0342	21.5631		NP	N	М
-	0 12	+	03.0484	MPS A42		NP	N	М
_	@ 12		03.0485	MPS A92		PN	P	Mî
_	3 14		23.0491	BC 174B		NP	N / BC 190 B	
_	2 15	-	03.0436	BC 237 B		NP	N / BC 107 B	
_	3 16	+	03.0503	213474		NP	N /250 743 A	RCA
_	Q 17, 18		03.0485	MPS A 92		PN	Ρ	М
-		+						
_	R1	57	43 4472	4, 7 4	5%	0,5 W	CF	
_	R 2	+	11.4822	8,2 KS2	5%	0,25 W	CF	
4	R 3	.r =	11 4363	56 kΩ		,		_
_	24		11 4561	560 ℃		4		
	3.5	5.7	11 4121	120 52		£F		
NI	DĮ D	ATE	NAME	1				
3	3.5.	50	μο	M : Mod	orola			
6	2 %	10	Rem.	CF : Carl	onf.lm			
	2.7.		Su					
8								
C	5 6	73	Ha					
	STU	DER	FOWER	AME', F	IER	1.780	0.105.00 PAGE	2 of -

NO	POS NO		PART NO	VALUE	SPI	ECIFICATIONS	/EQUIVALENT	MF
	P. E	57.	42 4272	2,7 kS?	5%	0,5 W	CF	
	R 7	57	11 4222	2,2 K S	5%	0,25W	CF	
	R 8	57.	11.4223	22 KS		a a		
	R S	5 7	11.4103	10 kΩ		11		
	F 11;	57.	11.4473	47 150				
	P. 11	57.	11 4333	33 k Q		n		
	R 12	52.	02 4102	1 KS2	20%	0,1 W	CF	
	P 12	57.	99.0185	10 \(\sigma \)	10%	5 W	wR	
	R 14	57.	99.0192	0,22 🔉		,		
	R 15	57.	42.4330	33 Ω	5%	0,3 W	C F	
	F 16	57.	11.4102	1 KS	5%	0,25W	CF	
	R 17	57	11 4222	2,2 KS?		н		
	R 12	57	11.4682	6,8kQ		~		
	R 18	£ 7	11.4821	820 52		"		
	R 20	57.	11.4223	22 KQ				
	R 21	57.	11.4102	1 KQ		4-		
	₹ ₹ 2		11.4272	2,7452				
	R 2 3	57.	<1.4333	33 k S		tr .		
	R 24	3.3	11.4561	560 छ		le		
	R 2 5	57	99.0184	339	10%	5W	WR	
	R 7 6	57.	11.4153	15 45	5%	0.25 W	CF	
	R 2 7	57.	99.0192	0,22 52	10%	5W	WR	
	R 2 2	57	11 4102	142	5%	025W	CF	
	R29,30	57	11.4272	2,7 €		н		
	R31,32	57.	11.4104	100 62				
	R3334	53	11.4223	22 kΩ		r		
	R 35	5 7	11 4333	33 K &				
	R 36	57	11.4103	16 kg		-		
L	R 37	57	43.4472	4745	5%	0,5 W	CF	
L	555	57	11.4822	8,2 4 9	5%	0,25W	CF	
INC			NAME	L				
3		30	iio	WR. W.	re Woon	d		
0	2. 7		700					
0	2. 7. 8	1	Su.					
(8)	_							
0	5 6	71	μe					
1	STUD	ER	POWER	VHOF1E1	[R	1.78	2.125.01 PA	GE 3 OF

ND	POS NO		PART NO	VALUE	SPE	CIFICATIONS/	EQUIVALENT	MFF
4	R 39	57.	11.4563	56 KS	5%	0,25W	CF	
	R40	5 7	11 4561	560 Q		ıı		
	R 41	57	11.4121	120 Q		и		
	R 42	57.	43.4272	2,7 kΩ	5%	0,5 W	CF	
	R 43	57	11.4222	2,2 KQ	5%	0,25W	CF	
	R 44	5 7	11.4103	10 KQ		lr .		
	R 4547	57	11 4223	22 KQ		li .		
	R 48	s 7 .	11.4103	10 KQ		и		
Ĵ	RAGEC	54.	44. 4!	1008				
3	251,52	57.	11. 4220	22 12		11		
								_
_								
_								_
				tt				
-								_
-								
_								
				 				
				 				
-								
-	-			 				
_	-							
-				L1				
S	G. F. St		NAME	 				
			Ho	1				
	2.7.20		Pour -	-				
_	2. 7. 30		Si.					
<u>8</u>		2.0	1,					
\cup	5 -		He					
	מטדכ	ER	POWER	AMPLIF	$F \gtrsim$	10 303	. 105,00 PA	CE 1 OE 4

STUDER POWER AME, FIER

1.780.105.00 PAGE 1 OF 4

SPEARER PROTECTION UNIT 1.780.140-81

ND	POS NO	F	PART NO	VALUE	SPEC	IFICATIONS/	EQUIVALENT	MFR
			32.3103	10 nF	80%	40V	CER	
			30.7100	10 "F	20%	25V	TA	
	C 7	59.	34.2270.	27 pF	5%	N150 50	V CER	
	C8.9	59.	39.0189	13 pF	± 0.25pF	N150 50	VCER	
	C70,11	59.	32.3103	10 nF	80%	400	CER	
	D1. 8	50	04 0125	1 N 44 48	100 mA	, 75V		-
_	IC 1	50.	05.0245	RC 4558 P	Dual op	amp. /R	C 4558 DN	-
_	31	54	01.0312	19 pole				АМР
_	K1,2	56	01.0120	220V /4A	24 V R	lais	AZ 731-14-2	Zettle
	P1. 6	54	02.0320	2.8 , 0,8				AMP
	P7, 8	54	02 0328	2,8 x 0,8 mm				AMP
_	L1	1.16	6.197.0	c	Bolur	1		
		61.16	6.195.0	1	Coil			1
	42,3	61.	.02.0113		Core	of Coil		
		(61.	02.0114		Coilfo	r m		
_	R1	57	11.4393	33 kΩ	5%	0,25 W	CF	
Г	R2		11 4154			Ц		
	R 3	57.	11.4103	10 KQ		et.		
	RHIE	57	11.4154	150 K S		11		
Г	R 4. 7	57	11.4333	33 kΩ		41		
Г	R : 9	57	. 11. 4154	150 KS2		Į)		
	R -10		11.4393			р		
	R 11		11.4154			e		
		75	NAME	1				

	K 11 3 +	77.4734	73 V K 3[
IND	DATE	NAME	
4			CER · Ceramic
(4) (3)			TA · Tantolum
2			CF : Carbonfilm
0	9.1.82	Tom. 81	
0	30 5. 79	He	
5	STUDER	CONNEC	TIONUNIT LEFT 1.780.140.81 PAGE 1 0F 2

POS NO	PA	ART NO	VALUE	SP	ECIFICATIONS	/EQUIVALENT	MFR
R 12		1.4183	18 KR	5%	0,25W	CF	
R13,14	57.4	3.4471	470 52	5%	0,5W	CF	
R15	57.11.	4103	10KD	5%	0,25	CF	
R16	57.11	. 4472	10 KΩ 4.7 KΩ	5%	0,25	CF	
	<u></u>						
1							
1							
D DA	TE	NAME					
9							
0							
2)	-						
0 9.1		Row. 81					
30.5	. 79	Ha					
STUD	DER	CONNECT	INDUUNI	T LEI	FT 1.78	0.140.81	AGE 2 OF 2

RIGHT SPEAKERS LEFT

DOLBY PROCESSOR PCB 1.166.400 / DUMMY PLUG 1.166.090

ND	POS NO		PAR	r NO	VALUE		SPE	IFICATIO	NS/EQUIVA	LENT	 MFR
	_		3 2.	3103	0.01 MF	20%		CER			
				4100	10 µ F			TA	16 V		
				3103	0.01 µF	20%	,	CER			
_				4100	10 MF			TA	16 V		
_	c 5	u	"	и	4			u	a		
	C 6	59.	25.	3221	220 µF			EL	16 V		
	C 7	_		7273	0.027 F	1%	,	PS			
	C 8	_		7562	5600pF	¥		v			
_	C g			7472	4700 pF	11		ν			
				3221	220 x F			EL	16 V		
		_		7273	0.027 nF	1%		PS			
	C 12	59.	12.	7562	5600 pF	4		"			
	C 13	59.	12.	7472	4700 pF	II		,			
	C 14	53.	30.	4100	10 µF			EL	16 V		
	C 15	ŀ	u	п	u			"	•		
Т	C 16	tr	44	ч	4			ч	u		
	C 17	59.	32.	3103	0.01 uF	20 '	%	CER			
	C 18	10	u	4	ч	u		v			
	C 19	59.	30.	4100	10 µ F			EL	16 V		
	C 20		ч	и	¥			"	"		_
	C 21	59.	12.	4473	عبر 0.047 F	5	%	MPE			_
	C 22	59.	31.	6104	عبر 0.1	10	%	,			 _
	C 23	59.	31.	6334	0.33 pr	"		4			 _
	C 24	59.	12	4473	0.047 nF	5	10	"			_
	C 25	59.	31.	6104	0.1 µ F	10	%	,			_
_				6334	0.33 pF	11		U			
	D1	50.	04	0125	1N 44 48	51-	Di	ode	100 mA	50 V	 An
	D 2	tr.	"	V	4		"		1/	"	 -
	D 3	11	-11	u	u	L	l/		11	•	
INC	1 D/	ATE	1	NAME							
(4)			I		CER =						
(3)					TA =				~		
② ①			I		EL =						
1				/	ps =						
O		10.7	ZR	al. /12	MPE =	Met	all,	zecl .	Polyest	er	

STUDER Dolby - Processor

ND	POS NO	PART NO	VALU	JE	SPI	CIFIC	ATIONS/EQUIVALENT	r	MFR
		50.05.02	5 RC 45	58	Dual Op	A-	م		R, TI
		50.05.02		58	Dolby Pr	oces	sor		57
	IC 3	0 7 7	, ,						
	K 1	56.04.01	21 PZ 4		Relay :	24 V	, 0.03 A		Irr
	R 1	57.41.43		k-12					
	R 2	58.02.51	02 1	kΩ	Pot'me	ter	±20%		
	R 3	57. 41.43	92 3.9	kΩ	5 %				\perp
1	R 4	57.41.41	02 1	k s2	v				
	R 5	57.41.44	73 47	k-2	U				
	R 6	In 16 8	,		0				
1	R 7	57.41.41		ks.					
	R 8	58.02.51	02 1	ks2	Pot'me	ter	± 20 %		
	R 9	57.41.41	81 18	200	v				
	R10	", "		11	"				
	R 11	57.39.33	21 3.3	2 k Q					
	R 12	57.41.44	73 47	7 62	5%				
	R 13	57.39.33	21 3.3	2 k.e	1 %				
	R 14	57.41.44	73 4	7 ks2	5 %				
	R 15	57.41.41	02 1	k-r	5%				
	R 16	57.39.20	03 20	o ks	1 %				
	R 17	57.41.41	02	1 k A	5 %				
Г	R 18	Te p		ly .	4				
Г	R 19	57.39.20	03 20	o ks	1%				
	R 20	57.41.41	02	1 k si	5%				
2	R 21		-						
Г	R 22	57.41.42	74 27	OKA	10				
2	R 23	1							
Г	R 24	57.41.42	74 27	wk n	"				
Г									
{1N	DI D	ATE NA	ME						
4							R = Ray	theor	າ
(3							TI = Tex		
		1.80 Ho.					ST - ST	·UDE	R
Q	_	4.78 Rom.	61						
Tõ	17.	10. 77 Bal.	1100						

1.166.090

PL 1.166.400.00 PAGE 1 OF 2

ANTENNA CONTROL INTERFACE PCB 1.780.400

7			ART NO	VALUE	2 Sec	11100111		UIVALE		MFR
-	CI	54.	32.3103	10 nF	-20 +	100 %	4	00	CER	
	2-9	59.	99.0205	68 nF	-20 +	80 °10	10) () (i	11	
\neg	C10	59.	32.3103	10 nF	-20 +	100 %	L	10 V	9	
T	CII	59	30.6109	IMF	-20 +	50°/0		35 V.	TA	_
	C 12	59.	32.3103	10nF	-20 +	100 %:		40 V	CER	
. 1	DI - 2	50.	04.0125	! N 4448						L_
Т	JC1	50.	13.0103	C 401 A 42						<u> </u>
1	302	50	07.0512	MC14512	CMOS			/4	512 BPC	F
\Box	01	54.	01.0308	II poles	C15					
	J2.	54.	. 61 . 0236	12 "	C] \$					_
	QI	50	.03.0315	8160-16	POP					_
,	R1-2	57	11.4103	10 KR	± 5 º/o	٥.	25 W	CSC	H	
	R3	57.	.11.4104	100 kΩ	b		Į+	n		
	R4	5 7	11,4473	47 K.D.	и		(1	H		1
	R S	57	. 11.4164	100 KD	п		te	t,		1
П	₹6-7	57	. 11 . 4473	47452	h		н	lq.		
П	RP	5 7	.11.4104	100ka			11	**		1
П	29	57	.11.4103	10ks	п		"	h		_
П	RIO	57	.11.4473	47k2	11		ir .	11		_
П	RII	57	.11.4104	10012	ч		4			_
П	812	57	.11.4103	10 ks	4		+2	"		_
П	RIS	57	, 11, 4473	4762	11		į÷	,		
	R14	57	. 11 . 4104	(00kΩ	h		11	,		_
	RIS	5 7	.11.4103	IOKSL	п		n	,		
	RIG	57	.11.4473	47ks	11		н			_
	R17	5 7	.11.4104	100kD	11				•	_
	RIE	5 7	.11.4103	10 kΩ	"		0		,	_
	P 19	5 7	.11.4473	47kΩ	n		п		1	1
	R 20	5 7	.11.4104	100FU			11		1	1
	R 21-22	5 7	. 11.4103	10/1	11		1)		ı	
IND	DATE		NAME	1						
④										

	K 21-24 3	7.11.4103	10412	 			L	_
IND	DATE	NAME						_
(d)								
3								
2								
0	4.7.80	Rom						
0	4.9.79	A. Dünner LZ						_
•	STUDER	ANTENNA	CONTROL	1.780	. 400.00	PAGE	OF	2

N PC	OS NO I	P	ART NO	1	VAL	UE 1		SPE	CIFIC	ATIONS	EQL	JIVALE	NT		ME	R
+	23	5 7	.11.43.	3 2	3.	3 K &		± 5°/,		0.25	W	(\$0	н			
1	224	57	11.48	2 9	8.	2 2										_
+-	e]C		03.01					J(- 50 0	ket					L	
1	r]C2	53.	. 03. 01	6 8	16	1.									_	
1	11-5														L	_
T															_	_
I															_	_
				\perp											_	_
															L	
I															_	_
				\perp							_				-	_
															-	_
				_											-	
\perp				4											-	_
\perp							L				_				-	_
1				_											╀	_
1				-							_				+	_
-				-											+	_
\perp				_			-								+	_
\perp				_			-				_				╀	
1				-											+-	
4				-			├								+-	_
4				_											+-	_
+				-			-								+-	_
+															+	_
+		-					-								+	_
4		-		-			-								+	_
+				-			-		_						+	_
4		-		-			-								+	-
		L					1									-
(a) (3) (2)	DA	TE	NAME	\dashv												_
9																
<u></u>				-												
2	/ 2															
쒸	4.7.		A Dunner													
\cup				_							-				2 -	_
S	TUE	DER	ANT	ENA	/A -	CONT	reo L	-		1.78	0.	400	. 00	PAGE	۷ 0۱	F

POWER-ON REMOTE CONTROL PCB 1.780.430

NO!	POS NO	F	ART NO	VALUE	SPECIFI	CATIONS/EQUIVALENT	MFR
1	D1, D2	5 0	.04.0125	1 N 4448	50 V.	50 mA	
4				-			
4	71,72	5 4	.01.0216	CIS - 6 poles			
1	ķΙ	5 6	.01.0113	275 A	180 sz.	8-15 V. / AZ	732 Zettle
1							
4							
+	-						
+							
+							
+							
+							
1							
1							
\Box							
1							
4							
4							
4				-			
-				-			
+				-			
\dashv				-			
+				-			
+		-					
+		-					
7		 					
7							
ND	DA	TE	NAME	+			
(1)				-			
3				-			
@				-			
0	1/1 ~	7. 80	A. Dünner	-			
\cup	14.	r. 80				1.780.430	PAGE OF

WIRE HARNESS / FRONT 1.780.170

a	PLUGGED MICROCON 1.780.260	APUTER PC	В
PIN	SIGNAL	COLOR	то
1	LSNE	brn	c13
2	CHTM	red	f3
3	STME	bru	f1
4	_	-	-
5	STLY	blu	d5
6	MOFF	vio	d6
7	MONO	gry	d7
8	HIBL	yel	·d1
9	TSPA	blu	k2
10	TSPB	vio	k1
11	NR	gru	d2
12	PHO	red	j6
13	AUX	org	j4
14	TA1	yel	j3
15	TA2	grn	j2
16	RECSET	gry	k5
17	RECOFF	wht	k6
18	TU	bru	j7

b	PLUGGED TO MICROCOMPUTER PCB 1.780.260 J7				
PIN	SIGNAL	COLOR	то		
1	DLEN2	wht	e1		
2	DLEN1	gry	e2		
3	DATA	yel	e3		
4	CLCK	brn	e4		
5	-	-	-		
6	KS1	brn	c3		
7	KS2	red	c8		
8	KS3	org	c9		
9	KS4	yel	c10		
10	KS5	grn	c11		
11	KS6	blu	c2		
12	KS7	vio	c7		
13	KS8	gry	c5		
14	KS9	wht	c4		
15	KSO	blk	c12		
16	T75 µ s	org	f4		
17	UP	org	c15		
18	DOWN	yel	c14		

С	PLUGGED TO STATION SELECTION KEY BOARD 1.780.225 J1			
PIN	SIGNAL	COLOR	то	
1	ov	blk	g4	
2	KS6	blu	b11	
3	KS1	brn	b6	
4	KS9	wht	b14	
5	KS8	gry	ь13	
6	-	-	-	
7	KS7	vio	b12	
8	KS2	red	ь7	
9	KS3	org	b8	
10	KS4	yel	b9	
11	KS5	grn	ь10	
12	KS0	blk	ь15	
13	LSNE	brn	a1	
14	DOWN	yel	ь18	
15	UP	org	b17	

d	PLUGGED PUSHBUT FM MODE 1.780.220	TON BOAR	D/		е	PLUGGED DISPLAY 1.780.245	PCB
PIN	SIGNAL	COLOR	TO		PIN	SIGNAL	COLOR
1	HIBL	yel	a8]	1	DLEN2	wht
2	NR	grn	a11		2	DLEN1	gry
3	_	_	-		3	DATA	yel
4	ov	blk	g5		4	CLCK	brn
5	STLY	blu	a5		5	_	-
6	MOFF	vio	а6		6	_	_
7	MONO	gry	a7		7	GND	blk
				•			

	f	PLUGGED TO THRESHOLD CONTROL BOARD 1.780.235 J2		
F	PIN	SIGNAL	COLOR	TO
	1	STME	brn	a3
	2	-	-	-
	3	CHTM	red	a2
1	4	T75µs	org	b16

то

b1 b2 b3 b4 -

g	PLUGGED TO MICROCOMPUTER PCB 1.780.260 J2			
PIN	SIGNAL	COLOR	то	
1	ov	blk	k3	
2	OV	blk	j1	
3	-UBAT	blk	h1	
4	OV	blk	c1	
5	OV	bik	d4	
6	_	-	-	
7	-	-	-	
8	+UBAT	wht	h2	

h	PLUGGED AKKUMU		
PIN	SIGNAL	COLOR	то
1 2	-UBAT +UBAT	blk wht	g3 g8

WIRE HARNESS / REAR 1.780.166

Α	PLUGGED TO PREAMPLIFIER PCB 1.780.205 J6				
PIN	SIGNAL	COLOR	то		
1	OV	bik	W3		
2	PH	gry	S3		
3	-22V	grn	W10		
4	PHL	unc	L10		
5	PHGND	screen	L11		
6	PHR	unc	L14		
7	PHGND	screen	L13		
8	PRER	unc	H6		
9	PREL	red	H8		
10	PREGND	screen	H5		
11	ov	blk	W9		
12	ov	screen	G13		
13	MR	unc	G14		
14	ML	red	G15		
15	ov	blk	W9		
16	-15V	blu	W8		
17	-	-	-		
18	+15V	red	W2		

В	PLUGGED STANDBY	TO POWER	ON/
PIN	SIGNAL	COLOR	то
1	_	vio	12
2	l –	vio	15
3	_	org	16
4	-	org	1

C	PLUGGED TO FM DEMODULATOR PCB 1.166.130 J1				
PIN	SIGNAL	COLOR	то		
1	+15V	red	W2		
2	_	-	-		
3	+32V	vio	W11		
4	MPAX	yel	L4		
5	MPX	wht	P2		
6	ov	blk	P3		
7	-15V	blu	W8		

D	PLUGGED TO STEREO DECODER PCB 1.166.150 J1				
PIN	SIGNAL	COLOR	TO		
1	Р	grn	S18		
2	-15V	blu	W8		
3	+15V	red	W2		
4	+32V	vio	W11		
5	R	red	P16		
6	L	unc	P15		
7	ov	screen	P14		
8	-	_	-		
9	MPXM	gry	P12		
10	ST	yel	S2		
11	-	-	-		
12	STFI 2	grn	S12		
13	STFI 1	grn	S11		
14	+6V	org	W1		
15	MPX	wht	P1		

Ε	PLUGGED TO IF AMPLIFIER PCB 1.166.120 J1			
PIN	SIGNAL	COLOR	то	
1	AGC	brn	МЗ	
2	Т	wht	Q12	
3	+32V	vio	W11	
4	+15V	red	W2	
5	-	-	-	
6	SS	gry	Q15	
7	-15V	blu	W8	

F	PLUGGED TO POWER AMPLIFIER PCB RIGHT 1.780.105 J5		
PIN	SIGNAL	COLOR	TO
1	PONR	grn	S5
2	_	-	-
3	PWRR	unc	H1
4	GNDR	screen	H2

G	PLUGGED TO AUDIO CONNECTION UNIT 1.780.145 J2				
PIN	SIGNAL	SIGNAL COLOR TO			
1	NF1	brn	S9		
2	NF2	red	S8		
3	NF3	org	S7		
4	NF4	yel	S6		
5	NF5	grn	R7		
6	NF6	blu	R6		
7	NF7	vio	R5		
8	NF8	gry	R4		
9	OV	blk	K10		
10	-	_	-		
11	TURS	red	K6		
12	TULS	brn	K11		
13	OV	screen	A12		
14	MR	unc	A13		
15	ML	red	A14		
16	+32V	vio	W11		
17	-15V	blu	W8		
18	+15V	red	W2		

Н	PLUGGED TO AUDIO CONNECTION UNIT 1.780.145 J1			
PIN	SIGNAL	COLOR	TO	
1	PWRR	unc	F3	
2	GNDR	screen	F4	
3	PWRL	unc	N2	
4	GNDL	screen	N1	
5	PREGND	screen	A10	
6	PRER	unc	A8	
7	-	_	-	
8	PREL	red	A9	
9	PHGND	bik	L12	

1	PLUGGED TO POWER DISTRIBUTION PCB 1.780.190 J2			
PIN	SIGNAL	COLOR	то	
1		org	B4	
2		vio	B1	
2	_	-	-	
4	_	-	-	
5		vio	B2	
6		org	В3	

K	SOLDRED TO CHASSIS CONNECTOR (DOLBY PROC PCB 1.166.400)				
PIN	SIGNAL	COLOR	то		
1	NOD	wht	S17		
2	DON	bik	S1		
3	DDE	blu	R18		
4	_	-	-		
5	RO	org	P6		
6	TURS	redi	G11		
7	ov	yel	W5		
8	-	-	-		
9	-22V	grn	W10		
10	ov	bik	G9		
10	ov	bik	P9		
11	TULS	brn	G12		
12	LO	grn	P5		
13	-	-	-		
14	+15V	red	W2		

L	PLUGGED TO SPEAKER PROTECTION UNIT 1.780.140 J1			
PIN	SIGNAL	COLOR	то	
1	_	_	-	
2	MPY	grn	Q14	
3	-	-	-	
4	MPAX	yel	C4	
5	-	-	-	
6	-15V	blu	W8	
7	DC	wht	R15	
8	+15V	red	W2	
9	ov	blk	W3	
10	PHL	unc	A4	
11	PHGND	screen	A5	
12	PHGND	blk	H9	
13	PHGND	blk	A7	
14	PHR	unc	A6	
15	H	gry	R19	
16	-	-	-	
17	+22V	brn	W6	
18	SPA	org	\$16	
19	SPB	red	S15	

M	PLUGGED TO RF FRONT END PCB 1.166.100 J1				
PIN	SIGNAL	COLOR	то		
1	+15V	red	W2		
2	-	-	-		
3	AGC	brn	E1		
4	-15V	blu	W8		
5	+32V	vio	W11		

N	PLUGGED TO POWER AMPLIFIER PCB LEFT 1.780.105 J1			
PIN	SIGNAL	COLOR	TO	
1	GNDL	screen	H4	
2	PWRL	unc	НЗ	
3	-	-	-	
	PONL	vio	S4	

0	PLUGGED TO FREQUENCY SYNTHESIEZER PCB 1.780.151 J1			
PIN	SIGNAL	COLOR	то	
1	-15V	blu	w8	
2	CLCK	brn	R1	
3	DLEN 3	gry	R2	
4	DATA	yel	R3	
5	+32V	vio	W11	
6	-	-	-	
7	LOC	grn	R12	
8	+6V	org	W1	
9	+15V	red	W2	

P	PLUGGED TO METER CIRCUIT AND DEEMPHASIS PCB 1.780.155 J1			
PIN	SIGNAL	COLOR	TO	
1	MPX	wht	D15	
2	MPX	wht	C5	
3	ov	blk	C6	
4	25 µ s	gry	R10	
5	LO	grn	K12	
6	RO	org	K5	
7	75µs	wht	R9	
8	-	-	-	
9	ov	blk	K10	
10	+15V	red	W2	
11	-15V	blu	W8	
12	MPXM	gry	D9	
13	MUT	vio	R11	
14	OV	screen	D7	
15	L	unc	D6	
16	R	red	D5	

Q	PLUGGED TO METER CIRCUIT AND DEEMPHASIS PCB 1.780.155 J2			
PIN	SIGNAL	COLOR	то	
1	THSTA	grn	R14	
2	PSTA	blk	V2	
3	THSTE	blu	R13	
4	PSTE	wht	V6	
5	FH	yel	R16	
6	FL	red	R17	
7	MC	brn	S13	
8	ww	org	S14	
9	_	-	-	
10	OV	yel	W5	
11	TM	yel	V1	
12	T	wht	E2	
13	SM	blk	U2	
14	MPY	grn	L2	
15	SS	gry	E6	

R		PLUGGED TO MICROCOMPUTER PCB 1.780.260 J5				
PIN	1 8	SIGNAL COLOR TO				
1	1	CLCK	brn	02		
2	1	DLEN 3	gry	03		
3	1	DATA	yel	04		
4		NF 8	gry	G8		
5		NF 7	vio	G7		
6	1	NF 6	blu	G6		
7		NF 5	grn	G5		
8		_	-	-		
9		7 5µs	wht	P7		
10		25 µ s	gry	P4		
11		MUT	vio	P13		
12		LOC	grn	07		
13		THSTE	blu	Q 3		
14	1	THSTA	grn	Q1		
15		DC	wht	L7		
16		FH	yel	Q5		
17		FL	red	Q6		
18		DDE	blu	K3		
19		Н	gry	L15		

S	PLUGGED TO MICROCOMPUTER PCB 1.780.260 J4				
PIN	SIGNAL	COLOR	то		
1	DON	blk	K2		
2	ST	yel	D10		
3	PH	gry	A2		
4	PONL	vio	N4		
5	PONR	grn	F1		
6	NF 4	yel	G4		
7	NF 3	org	G3		
8	NF 2	red	G2		
9	NF 1	brn	G1		
10	_	-	-		
11	STFI 1	grn	D13		
12	STFI 2	grn	D12		
13	MC	brn	0.7		
14	ww	org	Q8		
15	SPB	red	L19		
16	SPA	org	L18		
17	NOD	wht	K1		
18	Р	grn	D1		
		-			

T		MICROCOMPUTER PCB 1.780.260 J1							
PIN	SIGNAL	SIGNAL COLOR							
1	ov	blk	W~3						
2	19V~	gry	W~1						
3	19V~	gry	W~1						
4	-	-	-						
5	+22V	brn	W6						
6	+6V	org	W1						
7	+15V	red	W2						
8	ov	yel	W5						
9	-15V	blu	W8						
10	+6,2V	gry	W4						

U	DISPLAY	PLUGGED TO DISPLAY PCB 1.780.245 J1						
PIN	SIGNAL	SIGNAL COLOR TO						
1	-15V	blu	w8					
2	SM	blk	Q13					
2	ov	wht	W7					
4	+6V	org	W1					
5	ov	blk	W3					
6	-	-	-					
7	11V~	grn	W~2					
8	11V~	grn	W~2					

٧	THRESHO	LD BOARD	
PIN	SIGNAL	COLOR	то
1	TM	yel	Q11
2	PSTA	bik	Q2
3	+15V	red	W2
4	OV	wht	W7
5		-	-
6	PSTE	wht	Q4
	1 2 3 4 5	V THRESHO CONTROL 1.780.235 PIN SIGNAL 1 TM	1 TM yel 2 PSTA blk 3 +15V red 4 OV wht 5

W	SOLDRED 1.780.190	TO POWER	DISTRIBUTION PCB
PIN	SIGNAL	COLOR	то
~1	19V~	gry	T2, T3
~2	11V~	grn	U7, U8
~3	ov	blk	T1
1	+6V	org	D14, O8, T6, U4
2	+15V	red	A18, C1, D3, E4, G18, K14, L8, M1, O9, P10, T7, V3
3	ov	blk	A1, L9, U5
4	+6,2V	gry	T10
5	ov	yel	K7, Q10, T8
6	+22V	brn	L17, T5
7	ov	wht	U3, V4
8	-15V	blu	A16, C7, D2, E7, G17, L6, M4, O1, P11, T9, U1
9	ov	blk	A11, A15
10	-22V	grn	A3, K9
11	+32V	vio	C3, D4, E3, G16, M5, O5

STUDER REVOX B739 SECTION 5/48

POWER SUPPLY UNIT 1.166.200

1.166.210 - 81

IND	POS NO	P	ART NO	VALUE	SPECIFI		/EQUIVALE	ENT	MFR
_			7.3472	4700 pF	£	4	16 V		
	C 2	59. 25	5.4222	2 200 uF	,	•	25 V		
	C 3	v t		4		•	. ,		
	C 4	59. 2	5.6471	470 u F		,	63 V		
4,1	C 5	59.3	2.3103	0.01 pF	CE	R	40 V		
	C 6	59.2.	2.5470	47 MF	E	L	25 V		
	C 7	59 . 3-	1.110#	0.1,45	P	E	100 V		
6	C 8	59.3	0.6333	3.3 MF		4	35 V		
	C 9	59.3	0.6100	10 µF		*			
	C 10	59.2	2.6220	عبر22 F	E	4	40V		
	C 11	59.3	1.1104	0.1 pF	ρ	E	100 V		
5	D 1	70.0	1.0235	BR. Rect.	880 C		2200		SI
	D 2	70.0	1.0123	"	8 250 C	800		s;	GI
1	D 3	-							
	D 4	70.0	1.0223	. 4		u		•	
	D 5	50.0	4.0125	1N 44 48	Si Diode		V , 10	0 - A	GI
	D 6	4 4	. 4	-1	4	7		4	
	D 7	11	4 4	NF.	4	*		•	
	D 8	ч	11 4	η	-11	u		''	
	D 9	19	и ч	٠	7	4		u .	
	D 10	"	u H	"	u	"		"	
	D 11	50.0	4.1108	7 5.6	Zenerdi			0.4W	5%
	D 12	50.0	4.0125	1N 4448	Si Diod	e 100	0 V 1	00 mA	
	IC 1	50.0	5.0253	78 M 15 UC	+15 Vol	tage 1	Regulat	or	F, 7
	IC 2	50.0	5.0252	79 M 15AVC	- 15	1	"		-
3	Ic 3	50.1	0.0101	78 L 06 ACS	+6.2	,	- 11		TI
IND) Di	ATE	NAME						
0					lectrolytic		SI = S		-
O					eramic		GI = 0		
©	3.	6 80	Rom.	PE = P	lyester		F=		
(3)	3.	1.80	Há. /	TA = Se	lid Tontal	1117	TI.	Terar	Instr.
\sim			Bal. /1/4						

(D)	POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
	Q1	50.03.0436	BC 107 B	NPH Si	
	Q 2	50.03.0312	BC178B	NPM S.	
	Q 3	50.03.0436	BC107B	NPN Si	
	Q #	50.03.0491	BC 5 46	MPM Si	
	a 5	50.03.0492	BC 446	PIIP Si	
	Q6	50.03.0493	BD 561	NPN S;	
	a 7	50.03.0445	BD 177	NPH Si	
	R 1	57. 41. 41 02	14.02	5 %	
2.3	R 2	_		4	
,-		57.41.4103	10 k D	4	
	-	57. 41.4129		e	
	+	57.41.4129		d	
_	_	57.41.4129		c#	
_	-	57.41.4821	820-2	· ·	
	R 8	57.41.4561	560 A	· ·	
_	R9	57.39.8451		19. 11F	
_	-	57.39.1432			
_	+	57.44.4102	1 12	5 %	
_	-	57.41.4103	10 kA	ч	
_	-	57.41.4103		ts.	
-		57.41.4102			
_		57. 41. 4339		ti	
-		57.41.4561		4	
-	_	57.41.4102			
┝	_	57.41.4561	_	ď	
H	+	57.41.4562		-1	
┝	+	57.44.4102	-	10	
\vdash	+	58.02.4471		CF Potentiometer	
┝	1 4	38.02.77	7,0		
LINI		ATE I NAME		1	
4	_	NAME.	CF >	Carbon Film	
3			-		
0					
0	_		1		
12		0.80 Rom.	1		
۴				PL 1.166,210-81	2
1 9	STU	DER Powe	r Supply	PL 1.166,210-81	PAGE 4 OF

1.166.206-81

F1: 200mAT F2,3: 800mAT

F4: 2AT

J1: 2 x 54.01.0289 8 POLE 1 x 54.01.0216 6 POLE

2: 54.01.0216 6 POLE

PREAMPLIFIER PCB 1.780.835

ND	POS NO		PART NO	VALUE	SPECII	FICATIONS	S/EQUIVALENT	MFR
_	C1	59	32 3103	10 nF	80%	50 V	CER	
	C 2.3	59	32.4102	1 nF	20%	50 V	CER	
	C4C6	59	30.4220	عر 22 F	20%	16 V	TA	
	C7, 8	5 9	32.3103	10 nF	80%	50 V	CER	
	C 9		32.2681	680 pF	10%	50 V	CER	
1	C 10	59.	31.6474	0,47,uF	10%	100 V	MPETP	
	C 11	59.	11.6222	2,2 nF		#		
1	C 12,13	59.	31.6474	0.47 uF		н		
	C14	59.	32.2681	680 pF	10%	50 V	CER	
	C15	59.	11.6222	2,2 nF	10%	100V	MPETP	
1	C 16	53.	31 6474	0,47,4F		n		
	C 17	53.	30.6109	1 u F	20%	3 <i>5</i> V	TA	
	C18	59.	32.2681	680 pF	10%	50 V	CER	
	C 19	59.	22.5470	47 NF	-10%	25 V	EL	
	C20	59.	34.2220	22 pF	5%	50 V	CER	
	C 21	59.	30.4220	22 µF	20%	16 V	TA	
	C 22	59.	30.6709	1 pF	20%	35 V	TA	
	C 23	59.	32.2621	680 pF	10%	50 V	CER	
	C 24	59.	22.5470	47 MF	-10%	25V	EL	
	C 25	59.	30.4220	22 pF	20%	16 V	TA	
	C 26	59	34.2220	22 pF	5%	SOV	CER	
_	015	50.	04 0125	1 N4448	100 mA	751	/	-
_	31,2	54	01.0241	4 pole	CIS			AMA
_	J3		01.0288	5 pole	11			u
_	174	54	.01.0241	4 pole	ıı			
	75	54	.01 0217	9 pole	u			
_	76	-	.01.0296	18 pole	"			"
	J 7	54	01.0217	9 pole	g g			· ·
INE	N DA	TE	NAME	1				
4				CER :	Ceromic			
3				TA :	Tantolum			
2				MPETP :	Metallized	Polyes1	ler	
0	5.3.	80	Rose.	EL	Electroly+	· c		
0	1		1,,	1				

NO POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
□ 8	54 01.0218	7 pole	CIS	AMP
J3	54.02.0104		3 pole Jack 6,3 mm	
			•	
K 1	56.04.0141	24V; 1,2KQ	AE 1354 6500 T	Nationa
01	50.03.0436	BC 237 B	NPN / BC107	
Q 2	50.03 0478	2 50 496-0		
Q 3	50.03.0436	BC560C	low noise PNP / BC 179 B	
Q4,5	50.03.0497	BC 550C	" NPN 1 BC 107 B	
0.6	50.03.0496	BC 560C		
Q7,8	50.03.0437	BC 550C	" NPN BC 107 B	
R1,2	missing			
R3	57.11.4101	100 ℃	5% 0,25W CF	
R 4	57.11.4563	56 kQ	ti.	
R 5	57 39 2611	2,61 ks		
R 6,7	57.33 2052	20,5 KS?		-
R 8	57 11.4152	1,5ks	5% 0,25W CF	
R 9	57 11 4563	56 kΩ	"	
R 10	57.11.4152	1,5 KQ	п	-
R 17,12	57 11.4102	1 KQ	te .	-
R 13	57.11.4563	56 kQ		-
R 14	57.11.4822	8,2 KD	(r	
R 15	57.11.4224	220 KQ	ef	-
R 16	57.11.4153	15 KS?		
R 17	57.11.4224	220 KQ		_
R 18	57.11.4152	1,5 KQ		+
R 13	57.11.4272	2,7kQ		-
R 20	57.11.4222	2,2 kQ	tr .	
R 21	57.11.4470	47 S	et	
-	TE NAME	+		
(4)		4 -	arbonfilm	
3		HF : P	1ctalfel m	
2		-		
1 5.3.8		-		
0 13 6				
STUD	DER PREAM	1PLIFIER	1.780.835 PAGE	2 of 3

NO POS NO		PART NO	VALUE	SPECIFIC	CATIONS/E	QUIVALENT		MFR
R 2 2	57.	11.4101	100 ℃	5%	0,25W	CF		
R 23	57.	11.4563	56 KQ		и			
R 24	57	39.2611	2,61 K SQ	1%	0,25W	MF		
R 25	57.	11.4562	5,6 KQ	5% 0	25W	CF		
R 2 6	57.	11 4563	56 KQ		t!			
R 27,28	57.	11.4332	3.3 KS		ef			
R29	53.	11.4562	5,6 KQ		e			
R 30	57.	11 4701	100 &		t _c			
R 31	57.	11.4224	220 KS		e*			
R 32	57.	11.4153	15 kΩ		if			
R 33	57.	11.4224	220 KΩ		er			
R 34	57.	11.4753	15 KS		er			
R 35	57	11.4822	8,2 KS?		v			
R3638	57.	11.4222	2,2 KQ		(f			
R33	57.	11.4331	330 ₪		it			
R 40	57.	11.4563	56 KQ		(1			
R 41	57.	11.4822	8,2 k S		थ			
R 42	57.	11.4152	1,5 ks?		ď			
R 43	57.	11.4272	2,7 KS2		H			
R 44	57.	11.4101	100 S		ч			
R 45	57.	11.4222	2,2 KR		а			
R 46	57.	11.4470	47 2		et			
51 4	1.78	0.205.01						
ND DA	TE	NAME						
ND DA								
3								
0 5,3.80		Rom						
0 13.6	. 79	He						
STUD	ED	DPEAM	PLIFIER	1	1780.	^2 -	PAGE 3	

STUDER PREAMPLIFIER

1.780.835 PAGE 1 OF 3

FILTER PCB 1.780. 215-81

IND	POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
2	C1,C2	59.12.2154	0,15 pF	5% , 100 V , MPET	P
	C3	59.11.6102	1,0 nF	5%, 400 V, PC	
	C 4	59.34.5471	470 pF	5%, 50 V, CER	
	C 5	59.34.2270	27 p F	5%, 50 V, CER	
	C6,C7	59.30.6109	1 pF	20%, 35V, TA	
	C8	59.34.2330	33 p F	5%, 50V, CER	
	C 3	59.30.3330	33 µF	20%, 10 V, TA	
2	C10, CM	59.12.2154	0,15 MF	5% , 100 V , MPET !)
	C12	58.30.6109	1 MF	20%, 35 V, TA	
	C 13	59.34.5471	470 pF	5% , 50 V , CER	
	C14	59.34.2270	27 pF	5%, 50V, CER	
	C15	53.30.6109	1µF	20%, 35V, TA	
	C16	59.32.3103	10 nF	80%, 40V, CER	
	C 17	59.34.2330	33 pF	5%, 50V, CER	
	C 18	59.11.6102	1,0 nF	5%. 400V. PC	
	C 19	59.30.3330	33 µF	20%, 10 V, TA	
1	C 20,21	59.32.2681	680 pF	10%, 50V. CER	
	D1 D4	50.04.0125	11448	100 m A , 75 V ,	
1.	Q 1	50.03.0496	BC 560 C	Low noise 454 PNP	
4	Q 2	50.03.0497	BC 550C	low noise 45V NPN	-
4	Q 3	50.03.0496	BC 560C		
1	Q 4	50.03.0497	BC 550C		
1	Q5,Q6	50.03.049	BC 560 C		
	R1	57.39.1053	105 kΩ	1% 0,25 W MF	
	R 2	57.39.2802	28 K S	и	
	R 3	57.11.4103	10 K Ω	5% 0,25 W CF	
	R4	57 11.4105	1 M S	ч	
	R 5	57.11.4153	15 K S	и	

IND	DATE	NAME	l			
(d)			MPETP	: Metallized Pa	lyester C	F: Corbonfilm
3			PC	: Polycarbono	te	
	26.8.80	He 81	CER	· Ceramic		
0	10.7.80	Rose	TA	: Tantalum		
0	29.5.79	He	MF	: Metalfilm		
9	STUDER	FILTE	र		1.780.21	5.81 PAGE 1 OF 2

0 (PART NO	VAL	UE	SF	PECIFICATIONS	/EQUIVALENT	MFR
57	.11.44	70 4	72	5%	0,25W	CF	
57	.11.44	73 4	7 K S		4		
57	.39.28	2 28	PKQ	1%	0,25W	MF	
57	. 11 . 41	05 1	MS	5%	0,25W	CF	
57	. 11 . 410	2 1	KΩ		l+		
1 57	.11.45	3 56	kΩ		u		
2 57	.11.47	1 100	Ω		4		
3 57	.11.41	5 1	MΩ		"		
4 57	.39.105	3 105	KΩ	1%	0, 25 W	MF	
16 57	. 33 - 280	2 28	KS		ч		
7 57	.11.44	13 4	7 κΩ	5%	0,25 W	CF	
P 57	. 11 - 41 (5 1	MΩ		(C		
5 7	.11.415	3 15	κΩ		¢f.		
57	.11.44	0 4	7 2		el		
1 57	11.410	3 10	kΩ		ч		
2 57	.71.410	2 -	ıκΩ		()		
3 57	.11.456	3 56	KΩ		и		
4 57	.77.410	1 100	Ω		п		
1.0	11.307.	00					
	57 57 57 57 57 57 6 7 57 8 4 57 57 8 7 57 57 57 57 57 57 57 57 57 57 57 57 5	57.71.44; 57.71.44; 57.71.476 75.71.476 75.71.476 75.71.476 75.71.476 75.71.476 75.71.476 75.71.476 75.71.476 75.71.476 75.71.476 75.71.476	57.11.4470 4 57.11.4473 4 57.33.2802 21 57.11.4105 1 57.11.4105 1 57.11.4105 1 67.33.1053 1053 67.33.1053 1053 67.37.11.4105 1 67.57.11.4105 1 67.57.11.4105 1 67.57.11.4105 1 67.57.11.4105 1 67.57.11.4105 1 67.57.11.4105 1 67.57.11.4105 1 67.57.11.4105 1 67.57.11.4105 1 67.57.11.4105 1 67.57.11.4103 1 67.57.11.4103 1 67.57.11.4103 1 67.57.11.4103 1 67.57.11.4103 1 67.57.11.4103 1 67.57.11.4103 1 67.57.11.4100 1	57.41.4470 47Ω 57.41.4470 47Ω 57.41.4473 47ΚΩ 57.39.2802 28ΚΩ 57.41.4105 1 ΚΩ 4 57.41.4101 100 Ω 3 57.41.4105 1 ΜΩ 4 57.39.1053 105 ΚΩ 4 57.39.1053 105 ΚΩ 6 57.41.4105 1 ΜΩ 6 57.39.1053 105 ΚΩ 6 57.11.4105 1 ΜΩ 7 57.41.4105 1 ΜΩ 8 57.39.1053 105 ΚΩ 8 57.11.4105 1 ΜΩ 9 57.11.4105 1 ΜΩ 9 57.11.4105 1 ΜΩ 1 57.11.4105 1 ΜΩ 1 57.11.4105 1 ΜΩ 1 57.11.4103 15 ΚΩ 1 57.11.4103 10 ΚΩ 1 57.11.4103 10 ΚΩ 1 57.11.4103 10 ΚΩ 1 57.11.4104 10 Ω	57.41.4470 47Ω 5% 57.41.4470 47Ω 5% 57.41.4473 47KΩ 57.33.2802 28KΩ 1% 57.41.4405 1KΩ 4 57.41.4401 100 Ω 3 57.41.4401 100 Ω 3 57.41.4405 1MΩ 4 57.33.2802 28KΩ 7 57.41.4405 1MΩ 4 57.33.2802 28KΩ 7 57.41.4405 1MΩ 57.57.35.2802 28KΩ 7 57.41.4405 1MΩ 57.57.41.4405 1MΩ 57.57.41.4405 1MΩ 57.57.41.4405 1MΩ 57.57.41.4405 1MΩ 57.57.41.4405 1MΩ 57.71.4400 47Ω 57.71.4400 1MΩ 57.71.4400 1MΩ	57.11.4470	57.11.4470

IND	DATE	NAME	
4			
3			
2	26, 8.80	Has 81	
0	10.7.80	Fran.	
0	29.5.73	He	
9	STUDER	FILTER	1.780.215,81 PAGE 2 OF 2

FILTER PCB 1.780.215-81

B739

LINE AMPLIFIER AND CONNECTION UNIT 1.780.840

NDI POS NO I	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
C1	59.22.2221	220 pF	-20,+50% EL 6,3 V	
C 2,3	59.32.3103	10 nF	-10, +10% CER 50 V	
C4,5	59.34.4331	3 30 pF	5% CER SOV	
C6,7	59 30 6339	3,3 µF	20% TA 35 V	
C 8	59 34 4151	150 pF	5% CER SOV	
Cg	59.34 4560	56 pF	tr	
C 10	59.34.4151	150 pF		
C 11	59.31.1224	0,22 pF	20% MPETP 100V	
C 12, 13	51.32.3103		-10, +80% CER 50V	
C1416	59.34.4560	56 pF	5% CER SOV	
C 17	59.34.4151	150 pF	te	
C18,19	59.32.3103			
C 20	59.22 2221	F بر 220	- 20, +50% EL 6,3V	
C 21	59.32.3103	10 mF	-10, +80% CER SOV	
C 22, 23	59.34.4560	56 pF	5% CER 50V	
C 24, 25	53.34.4151		и -	
C 26. C25	59.32.3103	10 nF	-10, +80% CER SOV	
C 30	59.31.1224	0,22 pF	20% M	
C 31,32	59 22 2221		-20, +50% EL 6,3V	
C 33,34	59 32 3103		-10, +80% CER SOV	
C 35,36	59.11.5102		5% MPETP 100V	
C37	59.99.0183		5% CER 50V	
C 38	59.34.2270		v	
C 39	59 91 0189		u u	
C 40	59.34.4151	150 pF	le .	
01,2	50.04.0125	11/4448	100 - A 75 V	
L_L		<u> </u>		
IND DA	TE NAME		Electrolytic	

IND	DATE	NAME	
1			EL : Electrolytic
3			MPETP : Metallized Polyester
2			CER : Ceromic
0			TA : Tantolum
0	7 3.80	He	
5	TUDER	LINE NUR	TIER AND CONNECTION WIT 1 780 840 00 PAGE 1 OF 4

ND I	POS NO		PART NO	VALUE	SPE	CIFICATI	ONS/EQUI	VALENT	MFR
1	C 1,2	50	09.0103	LF 356 N	BIFET	-			Not-one
T	J 1(A)	54	.01.0213	12 pole	CIS				AMP
	J 2(B)	5 4	.01.0308	11 pole	CIS				AMP
1	<1,K2	56	.04.0142	24 V	Relais	01	IRON,	NATIONAL	
1	P1,P2	54	. 02 . 03 28	2, 8 x 0, 8					AMF
+	L1	1.16	6.137.00		Balun				
		1.16	6.135.01		Coil				
1	12,3	61	. 02. 0113		Core of	Coil			
1		61	.02.0114		Coilfor	<u> </u>			-
_	R 1	57	.11.4333	33 K	5%	CF	0,254	/	
\perp	R 2	57	.11.4101	100		4			
_	R 3	57	.11.4182	1,8 K		н			-
_	RH		.11.4222			•			-
1	RS.	5 7	.11.4104	100 K		.,			-
_	R6		.11.4104						-
_	R7	5 }	.11.4104	100 k		п			-
	R 8	57	. 11 . 4104	100 K		p			_
	R a	5 7	.11.4222	2,2 K		**			
	R 10	5 7	.11.4392	3,9 K		*			
_	R 11	5	1.11.4222	2, 2 K		p.			-
	R12	5	.11.4560						
_	R 13	5	.11.4100	10		(r			1
	R14	5	.17.4101	100		r			-
_	215	5	1.11.4101	100					-
	R16	5	1.11.4101	100					-
	R17	5	1.11.4101			-			_
	R18	5	1.11.4333	33 K					
IND	DA	TE	NAME						
(4)				CF : Ca	. bon f. 1 -	•			
3									

NDI POS NO I	PART NO	VALUE	SPE	CIFICATION	S/EQUIVALENT	MFR
R 19	57.11.4222	2,2 K	5%	CF	0,25 W	
R 20	57 11 4561	540		tr		
R21	57.11.4333	33 K		t.		
R22	57.11.4222	2, 2 K		er .		
R23	57.11.4561	560		lt .		
R24	57.11.4333	33 K		13		
R25	57.11.4333	33 K		ęf		
R 2 6	57.11.4153	15 K		"		
R 2 7	57.11.4333	33 k		į t		
R 28	57.11.4352	3,8 k		(f		
R29	57.11.4333	33 k		Į1		
R 30	57.11.4153	15 K		£4		
R31	57.11.4333	33 K		ţ¢		
R32	57.39.2001	2,0 K	1%	MF	0,25W	
R 3 3	57.11.4560	56	5%	CF	0,25W	
R34	57 . 11 . 4100	10		.,		
. K 32	57.11.4701	100		pt		
R36	57.11.4182	1,8K		fs.		
R37	57.11.4222	2,2 K		et		
R 38	57.11.4561	560				
R 39	57.11.433	33 K		tr		
R 40	57.11.422	2,2 K		μ		
R 41	57.11.456	560		t#		
242	57.11.433	3 3 K		1/		
R43	57.11.418	1,8K		ıt		
R 44	57.11.410	100		ţ¢.		
245	57.11.418	1,8K		18		
246	57.11.470	1 100		78		
R 47	57.39.200	2,0 K	1%	MF	0,25W	
R 48	57.11.456	56	5%	CF	0,25W	
IND DA	TE NAME					
4		MF : Meta	offil m			
3		1				
2						

ND I	POS NO	F	PART NO	VALUE	SPE	CIFICATION	IS/EQUIVALENT	MFR
T	R 49	5 7	11.4100	10	5%	CF	0,25W	
T	R 50	57	11.4222	2, 2 K		1*		
T	R51	5 7	11.4560	56		r		
7	R 52	57	.17.4100	10		**		
	R 53	57	. 17 . 4221	220		fr		
	R54	5 7	. 11 . 4471	470		11		
	RSS	57	. 11 . 4471	470		if		
	R 5 6	57	11.4227	220		н		
	R57	57	. 17 . 44 71	470		u		
	R58	57	.11.4471	470		t*		
	R59	57	.11.4153	15 K		н		
	R60	57	11.4753	15 K				
	R61	57	. 11 . 4153	15 K		н		
	R 62	5 7	. 11 . 4153	15 K		le .		
	Q 1	50	. 03 . 04 17	BC 550 C	BC SSOC	: High	gain npm	Molorale
	Q 2	50	. 03.0496	BC 560C	V	€0 : 45	v	Telefon
	Q 3	50	. 03.0497	BC 550C	10	. 100	-A	
	Q4	50	. 03 . 04 97	BC 550C	P	0 62.	5-W	
	Q5	50	. 03 . 0496	BC 560C				
	Q6	50	. 03 . 0497	BC 550C	BC 560	C: High	gain pap	11
	Q7	50	. 03 - 0497	BCS5OC			-	
	Q8	50	. 03 - 0496	BC560C				
	29	50	. 03 . 0496	BC 560C				
	Q 10	50	. 03 - 0497	BC 550C				
	Q 11	50	. 03 . 0496	BC560C				
	Q 12	50	.03.0496	BC 560C				
	Q13	50	. 03 . 0497	BC 550C				
	Q14	50	. 03.0497	BC 550C				
IND	DAT	E	NAME					
4								
3								
2								
1								
0	7 3	80	He	1				

STUDER LINE AMPLIFACE AND CONNECTION UNIT 1.780.840.00 PAGE 3 OF 4

STUDER LINE AMPLIFIES AND CONNECTION UND 1.780 840.00 PAGE 2 OF 4

WIRE HARNESS / REAR 1.780.820

	Α	PLUGGED TO PREAMPLIFIER PCB 1.780.835 J6					
I	PIN	SIGNAL	COLOR	то			
Ì	1	OV ·	blk	w3			
ĺ	2	PH	gry	S3			
I	3	-22V	grn	W10			
١	4	PHL	unc	X4			
1	5	PHGND	screen	X5			
	6	PHR	unc	X7			
ı	7	PHGND	screen	X6			
I	8	PRER	unc	Н6			
	9	PREL	red	Н8			
į	10	PREGND	screen	H5			
	11	ov	blk	W9			
	12	ov	screen	G13			
	13	MR	unc	G14			
	14	ML	red	G15			
	15	ov	blk	W9			
	16	-15V	blu	W8			
	17	-	_	-			
	18	+15V	red	W2			

В	PLUGGED TO POWER ON/ STANDBY SWITCH				
PIN	SIGNAL	COLOR	то		
1	_	vio	12		
2	-	vio	15		
2	_	org	16		
4	-	org	11		

B739

C	PLUGGED TO FM DEMODULATOR PCB 1.166.130 J1					
PIN	SIGNAL	COLOR	то			
1	+15V	red	W2			
2	_	-	-			
2	+32V	vio	W11			
4	MPAX	yel	L1			
5	MPX	wht	P2			
6	ov	blk	P3			
7	-15V	blu	W8			

D	PLUGGED TO STEREO DECODER PCB 1.166.150 J1					
PIN	SIGNAL	COLOR	то			
1	Р	grn	S18			
2	-15V	blu	W8			
3	+15V	red	W2			
4	+32V	vio	W11			
5	R	red	P16			
6	L	unc	P15			
7	ov	screen	P14			
8	_	_	-			
9	MPXM	gry	P12			
10	ST	yel	S2			
11	_	-	-			
12	STFI 2	grn	S12			
13	STFI 1	grn	S11			
14	+6V	org	W1			
15	MPX	wht	P1			

SECTION 5/56

Ε	PLUGGED TO IF AMPLIFIER PCB 1.166.120 J1					
PIN	SIGNAL	COLOR	то			
1	AGC	brn	M3			
2	Т	wht	Q12			
3	+32V	vio	W11			
4	+15V	red	W2			
5	-	-	-			
6	SS	gry	Q15			
7	-15V	blu	W8			

G	PLUGGED TO AUDIO CONNECTION UNIT 1.780.145 J2					
PIN	SIGNAL	COLOR	то			
1	NF1	brn	S9			
2	NF2	red	S8			
3	NF3	org	S7			
4	NF4	yel	S6			
5	NF5	grn	R7			
6	NF6	blu	R6			
7	NF7	vio	R5			
8	NF8	gry	R4			
9	ov	blk	K10			
10	i –	· -	-			
11	TURS	red	K6			
12	TULS	brn	K11			
13	ov	screen	A12			
14	MR	unc	A13			
15	ML	red	A14			
16	+32V	vio	W11			
17	-15V	blu	W8			
18	+15V	red	W2			

Н	PLUGGED TO AUDIO CONNECTION UNIT 1.780.145 J1			
PIN	SIGNAL COLOR TO			
1	PWRR	unc	X12	
2	GNDR	screen	X11	
3	PWRL	unc	X1	
4	GNDL	screen	X2	
5	PREGND	screen	A10	
6	PRER	unc	A8	
7	-	-	-	
8	PREL	red	A9	
9	-	-	-	

	PLUGGED TO POWER DISTRIBUTION PCB 1.166.206 - 81 J2			
PIN	SIGNAL	COLOR	то	
1		org	B4	
2		vio	B1	
3	-	-	-	
4	-	-	-	
5		vio	B2	
6		org	В3	

K	SOLDRED TO CHASSIS CONNECTOR (DOLBY PROC PCB 1.166.400)			
PIN	SIGNAL	COLOR	то	
1	NOD	wht	S17	
2	DON	blk	S1	
3	DDE	blu	R18	
4	-	-	-	
5	RO	org	P6	
6	TURS	red	G11	
7	ov	yel	W5	
8	l –	_	-	
9	-22V	grn -	W10	
10	ov	blk	G9	
10	ov	bik	P9	
11	TULS	brn	G12	
12	LO	grn	P5	
13	-	-	-	
14	+15V	red	W2	

L	PLUGGED TO LINE AMPLIFIER AND CONNECTION UNIT 1.780.840 J2			
PIN	SIGNAL	COLOR	TO	
1	MPAX	yel	C4	
2	MPY	grn	014	
3	_	_	-	
4	SPB	red	S15	
5	-	_	-	
6	SPB	org	S16	
7	-	-	-	
8	-15V	blu	W8	
9	+22V	brn	W6	
10	+15V	red	W2	
11	-22V	grn	W10	

M	PLUGGED TO RF FRONT END PCB 1.166.100 J1			
PIN	SIGNAL	COLOR	то	
1	+15V	red	W2	
2	_	_	-	
2	AGC	brn	E1	
4	-15V	blu	W8	
5	+32V	vio	W11	

0	PLUGGED TO FREQUENCY SYNTHESIEZER PCB 1.780.151 J1					
PIN	SIGNAL	SIGNAL COLOR TO				
1	-15V	blu	w8			
2	CLCK	brn	R1			
-3	DLEN 3	gry	R2			
4	DATA	yel	R3			
5	+32V	vio	W11			
6	-	-	-			
7	LOC	grn	E.3			
8	+6V	org	177			
9	+15V	red	√√2			

3			P	PLUGGED TO METER CIRCUIT AND DEEMPHASIS PCB 1.780.155 J1		
	то		PIN	SIGNAL	COLOR	TO
	w8		1	MPX	wht	D15
	R1		2	MPX	wht	C5
	R2		3	ov	bik	C6
	R3		4	25µs	gry	R10
	W11		5	LO	grn	K12
	_	1	6	RO	org	K5
	E.3		7	75µs	wht	R9
	177		8	_	-	-
	W2		9	ov	bik	K10
_		1	10	+15V	red	W2
			11	-15V	blu	W8
			12	MPXM	gry	D9
			13	MUT	vio	R11
			14	ov	screen	D7
			15	L	unc	D6
			16	R	red	D5

Q	PLUGGED TO METER CIRCUIT AND DEEMPHASIS PCB 1.780.155 J2			
PIN	SIGNAL	COLOR	то	
1	THSTA	grn	R14	
2	PSTA	blk	V2	
3	THSTE	blu	R13	
4	PSTE	wht	V6	
5	FH	yel	R16	
6	FL	red	R17	
7	MC	brn	S13	
8	ww	org	S14	
9	-	-	-	
10	OV	yel	W5	
11	TM	yel	V1	
12	T	wht	E2	
13	SM	blk	U2	
14	MPY	grn	L2	
15	SS	gry	E6	

R	PLUGGED TO MICROCOMPUTER PCB 1.780.260 J5				
PIN	SIGNAL	COLOR	то		
1	CLCK	brn	02		
2	DLEN 3	gry	03		
3	DATA	yel	04		
4	NF8	gry	G8		
5	NF 7	vio	G7		
6	NF 6	blu	G6		
7	NF 5	grn	G5		
8	-	_	_		
9	75µs	wht	P7		
10	25µs	gry	P4		
11	MUT	vio	P13		
12	LOC	grn	07		
13	THSTE	blu	Q3		
14	THSTA	grn	Q1		
15	-	_	-		
16	FH	yel	Q5		
17	FL	red	Q6		
18	DDE	blu	K3		
19	OV	wht	W7		

S	PLUGGED TO MICROCOMPUTER PCB 1.780.260 J4			
PIN	SIGNAL	COLOR	то	
1	DON	blk	K2	
2	ST	yel	D10	
3	PH	gry	A2	
4	_	_	-	
5	_	_	-	
6	NF 4	yel	G4	
7	NF3	org	G3	
8	NF 2	red	G2	
9	NF 1	brn	G1	
10	-	-	-	
11	STFI 1	grn	D13	
12	STFI 2	grn	D12	
13	MC	brn	Q7	
14	ww	org	Q8	
15	SPB	red	L4	
16	SPA	org	L6	
17	NOD	wht	K1	
18	P	grn	D1	

T	PLUGGED TO MICROCOMPUTER PCB 1.780.260 J1						
PIN	SIGNAL	SIGNAL COLOR TO					
1	OV	blk	w~3				
2	19V~	gry	W~1				
3	19V~	gry	W~1				
4	-	-	-				
5	+22V	brn	W6				
6	+6V	org	W1				
7	+15V	red	W2				
8	ov	yel	W5				
9	-15V	blu	W8				
10	+6,2V	gry	W4				

U	PLUGGED TO DISPLAY PCB 1.780.245 J1			
PIN	SIGNAL	COLOR	то	
1	-15V	blu	w8	
2	SM	blk	Q13	
3	ov	wht	W7	
4	+6V	org	W1	
5	ov	bik	W3	
6	-	_	-	
7	11V~	grn	W~2	
8	11V~	grn	W~2	

٧	PLUGGED TO THRESHOLD CONTROL BOARD 1.780.235 J1		
PIN	SIGNAL	COLOR	то
1	TM	yel	Q11
2	PSTA	blk	Q2
3	+15V	red	W2
4	ov	wht	W7
5	-	-	-
6	PSTE	wht	Q4

W	SOLDRED TO POWER DISTRIBUTION PCB . 1.166.206 - 81			
PIN	SIGNAL	COLOR	то	
~1	19V~	gry	T2, T3	
~2	11V~	grn	U7, U8	
~3	ov	blk	T1	
1	+6V	org	D14, O8, T6, U4	
2	+15V	red	A18, C1, D3, E4, G18, K14,L10, M1, O9, P10, T7,	
3	ov	blk	A1, U5	
4	+6,2V	gry	T10	
5	ov	yel	K7, Q10, T8	
6	+22V	brn	L9, T5	
7	ov	wht	U3, V4, R19	
8	-15V	blu	A16, C7, D2, E7, G17, L8, M4, O1, P11, T9, U1	
9	OV	blk	A11, A15, X3, X9, X10	
10	-22V	grn	A3, K9 L11	
11	+32V	vio	C3, D4, E3, G16, M5, O5	

X	PLUGGED TO LINE AMPLIFIER AND CONNECTION UNIT 1.780.840 J1		
PIN	SIGNAL	COLOR	TO
1	PWRL	unc	НЗ
2	GNDL	screen	H4
3	0V	bik	W9
4	PHL	unc	A4
5	PHGND	screen	A5
6	PHGND	screen	A7
7	PHR	unc	A6
8	-	_	-
9	ov	blk	W9
10	0V	blk	W9
11	GNDR	screen	H2
12	PWRR	unc	H1

B739

VOCABULARY OF ABBREVIATIONS

	A DITABLE TO EVED	PHO	PUSH BUTTON PHONO
Α	3-BIT MULTIPLEXER	PHR	PHONE RIGHT (OUTPUT SPEAKER PROTECTION UNIT)
AGC	AUTOMATIC GAIN CONTROL (GAIN CONTROL VOLTAGE)	PONL	POWER ON LEFT
AUX	PUSH BUTTON AUXILIARY	PONR	POWER ON RIGHT
В	3 - BIT MULTIPLEXER	PREL	PREAMPLIFIER OUTPUT LEFT
С	3 - BIT MULTIPLEXER	PRER	PREAMPLIFIER OUTPUT RIGHT
CHTM	PUSH BUTTON CHANGE TUNING MODE	PSTA	POTENTIOMETER THRESHOLD STATION
CLCK	CLOCK SA 1060/ SA 1056	PSTE	POTENTIOMETER THRESHOLD STEREO
DATA	DATA SIGNAL	PWRL	POWER LEFT (AUDIO SIGNAL INPUT POWER AMPLIFIER)
DC	DC AT POWER AMPLIFIER OUTPUT	PWRR	POWER RIGHT (AUDIO SIGNAL INPUT POWER AMPLIFIER)
DDE	DOLBY DEEMPHASIS	R	RIGHT OUTPUT (AUDIO SIGNAL STEREO DECODER)
DLEN 13	DATA LINE ENABLE 13	RECOFF	PUSH BUTTON RECORD OUTPUT / OFF
DON	DOLBY DECODER ON	RECSET	PUSH BUTTON RECORD OUTPUT / SET
DOWN	PUSH BUTTON AUTO TUNING / FREQUENCY STEP DOWN	RIN	RIGHT INPUT (AUDIO SIGNAL TONE CONTROL)
FH	SIGNAL FREQUENCY HIGH	RO	RIGHT OUTPUT (AUDIO SIGNAL METER AND DEEMPHASIS PCB)
FL	SIGNAL FREQUENCY LOW	ROUT	RIGHT OUTPUT (AUDIO SIGNAL TONE CONTOL)
FPL	FRONT PANEL LEFT (PREAMPLIFIER OUTPUT)	SM	SIGNAL METER (SIGNAL VOLTAGE)
FPR	FRONT PANEL RIGHT (PREAMPLIFIER OUTPUT)	SPA	CONTROL SIGNAL OF SPEAKER-RELAY A
GL	GROUND LEFT (TONE CONTROL)	SPB	CONTROL SIGNAL OF SPEAKER-RELAY B
GNDL	GROUND LEFT (POWER AMPLIFIER)	SS	SIGNAL STRENGTH (SIGNAL VOLTAGE)
GNDR	GROUND RIGHT (POWER AMPLIFIER)	ST	STEREO DECODER ON
GR	GROUND RIGHT (TONE CONTROL)	STFI 1	STEREO FILTER 1 ON
Н	OVERHEAT	STFI 2	STEREO FILTER 2 ON
HIBL	PUSH BUTTON HIGH BLEND	STLY	PUSH BUTTON STEREO ONLY
HI-IMP.	HIGH IMPEDANCE	STME	PUSH BUTTON STORE MEMORY
KS 09	KEYBOARD 09	T	DISCRIMINATOR VOLTAGE
L	LEFT OUTPUT (AUDIO SIGNAL STEREO DECODER)	TA 1	PUSH BUTTON TAPE 1
LIN	LEFT INPUT (AUDIO SIGNAL TONE CONTROL)	TA 2	PUSH BUTTON TAPE 2
LO	LEFT OUTPUT (AUDIO SIGNAL METER AND DEEMPHASIS PCB)	THSTA	THRESHOLD STATION
LOC	SYNTHESIZER LOCK IN	THSTE	THRESHOLD STEREO
LOUT	LEFT OUTPUT (AUDIO SIGNAL TONE CONTROL)	TM	TUNING METER
LSNE	PUSH BUTTON LAST STATION / NEW ENTRY	TSPA	PUSH BUTTON SPEAKER A ON
MC	METER CONTROL	TSPB	PUSH BUTTON SPEAKER B ON
ML	MONITOR LEFT (AUDIO SIGNAL OUTPUT AUDIO CONNECTION UNIT)	TU	PUSH BUTTON TUNER
MOFF	PUSH BUTTON MUTING OFF	TULS	TUNER LEFT SINGLE (AUDIO SIGNAL OUTPUT DOLBY PROCESSOR PCB)
MONO	PUSH BUTTON FM MONO	TURS	TUNER RIGHT SINGLE (AUDIO SIGNAL OUTPUT DOLBY PROCESSOR PCB)
MPAX	MULTIPATH X-OUTPUT	T 75 µS	PUSH BUTTON DEEMPHASIS 75 µS
MPXM	MULTIPLEX MUTING	UP	PUSH BUTTON AUTO TUNING / FREQUENCY STEP UP
MPX	MULTIPLEX SIGNAL	ww	COMPERATOR WINDOW WIDE
MPY	MULTIPATH Y-OUTPUT	Y-OSC 1	LOCAL OSCILLATOR VOLTAGE 1
MR	MONITOR RIGHT (AUDIO SIGNAL OUTPUT AUDIO CONNECTION UNIT)	Y-OSC 2	LOCAL OSCILLATOR VOLTAGE 2
MUT	CONTROL SIGNAL MUTING	Y-TUNING	TUNING VOLTAGE
NF 18	AF-SWITCH CONTROL SIGNAL 18	Y 1 - IF	INTERMEDIATE FREQUENCY 1
NOD	NO DOLBY	Y 2 - IF	INTERMEDIATE FREQUENCY 2
NR	PUSH BUTTON NOISE REDUCTION	Z	ROTOR CONTROL (OUTPUT SIGNAL)
OUTL	OUTPUT LEFT (POWER AMPLIFIER)	25 μS	DEEMPHASIS 25 μS ON
OUTR	OUTPUT RIGHT (POWER AMPLIFIER)	75 µS	DEEMPHASIS 75 μS ON
P	PILOT RESENT	- UBAT	- BATTERY VOLTAGE
PH	PHONES ON	+ UBAT	+ BATTERY VOLTAGE
PHGND	PHONE GROUND		
PHL	PHONE LEFT (OUTPUT SPEAKER PROTECTION UNIT)		

INDEX	QTY	ORDER NUMBER	ARTICLE NUMBER	PART NAME
01	1	76075	1.780.290.00	Bedienungsplatte
				Operating panel
				Plaque de commande
02	1	76004	1.780.010.05	Drehknopf mit Befestigungsschraube
				Knob with fixing screw
				Bouton avec vis de fixation
dazu	1	73437	21.59.5352	Gewindestift M3x4
o above				Threaded pin M3x4
avec				Cheville filetée M3x4
03	1	76001	1.780.010.01	Drehknopf mit Steckbefestigung
				Knob with fixing clamp
				Bouton avec vis de fixation
04	1	76002	1.780.010.02	Drehscheibe (Balanceregler)
				Rotating disk (balance control)
				Disque de balance
05 4	4	74513	1.177.100.10	Drehknopf
			Knob	
				Bouton
06	1	76066	1.780.250.00	Batteriefach
				Battery compartment
				Casier à piles
07	1	76073	1.780.281.00	Abschlussleiste kompl.
				Cover strip
				Cornière
dazu	2	74049	1.010.003.21	Schraube M4x6
to above				Screw M4x6
avec				Vis M4x6
08	1	74112	1.068.711.00	Fussleiste vorn
				Toe rail
				Pieds frontal
dazu	2	70067	21.26.0457	Schraube M4x12
to above				Screw M4x12
avec	1			Vis M4x12

B780/B739

INDEX	QTY	ORDER NUMBER	ARTICLE NUMBER	PART NAME
09	1	76037	1.780.195.00	Doppel - Potentiometer
				Twin potentiometer
				Potentiomètre double
10	1	74274	1.011.307.00	Drehschalter 4 - Kontakt
				Rotary switch 4 pins
				Sélecteur rotatif 4 contacts
11	1	76053	1.780.230.00	Tastenprint (rechts,Eingangswahl)
				Push button p.c. board (right,input selection)
				Plaquette des touches (droite,sélecteur d'entée)
				bestehend aus / comprising / y compris
	1	74265	1.011.201.30	Tastensatz "1" bis "5"
				Set of buttons "1" to "5"
				Jeu des touches "1" à "5"
	1	74225	1.011.205.06	Drucktastengehäuse (5 Tasten)
				Push button housing (5 bottons)
				Boîtier des touches (5 touches)
		7422"	1.011.205.05	Isolierstreifen
				Insulating strip
				Bande isolante
	5	74226	1.011.205.02	Schnappfederstreifen (5 Tasten)
				Snap spring strip (5 buttons)
				Bande de ressort à déclic
	5	74232	1.011.220.01	Zylinderstift
				Cylinder pin
				Cheville
	5	74233	1.011.220.02	Zwischenlage Gummi
				Intermediate layer (rubber)
				Entretoise
12	1	76040	1.780.205.01	Vierer Tastenschalter S1 - 4
				Push button unit S1 - 4
				Clavier à 4 touches S1 - 4
dazu	4	72105	1.166.090.09	Taste
to above				Button
avec				Touche

INDEX	QTY	ORDER NUMBER	ARTICLE NUMBER	PART NAME
13	1	76044	1.780.210.02	Bass Regler R2
				Potentiometer "Bass" R2
				Potentiomètre "Bass" R2
14	1	76045	1.780.210.03	Presence Regler R6
				Potentiometer "Presence" R6
				Potentiomètre "Presence" R6
15	1	76043	1.780.210.01	Treble Regler R12
				Potentiometer "Treble" R12
				Potentiomètre "Treble" R12
16	1	76018	1.780.090.25	Ausgleichsstück
				Dummy plate
				Cale
17	1	74273	1.011.231.00	Netzschalter
				Power switch
				Interrupteur secteur
			·	bestehend aus / comprising / y compris
	1	74272	1.011.230.10	Drucktaste
				Push button
				Touche
18	1	74510	1.177.100.06	Seitenteil rechts
				Side part right
				Côté droit
dazu	2	73416	21.26.0454	Schraube M4x6
o above				Screw M4x6
avec				Vis M4x6
19	1	72103	1.166.010.09	Seitenabdeckung
				Side panel
				Partie latérale
dazu	2	73701	1.010.001.21	Schraube M4x10
o above				Screw M4x10
avec				Vis M4x10
20	1		1.780.100.03	Kühlkörper
				Heat sink
				Radiateur

INDEX	QTY	ORDER NUMBER	ARTICLE NUMBER	PART NAME
dazu	6	70067	21.26.0457	Schraube M4x12
to above				Screw M4x12
avec				Vis M4x12
21	2	76022	1.780.105.00	Endstufen-Print kompl.
				Power amplifier p.c. board compl.
				Etage de puissance
22	1	76072	1.780.275.00	Deckb1ech
				Cover plate
				Plaque de recouvrement
dazu	2	70067	21.26.0457	Schraube M4x12
to above				Screw M4x12
avec				Vis M4x12
23	11	76059	1.789.240.01	Vierer Tastenschalter S1 - 4
				Push button unit S1 - 4
				Clavier à 4 touches S1 - 4
dazu	3	76008	1.780.090.04	Knopf (hinter Abdeckklappe,grau)
to above				Knob (behind front flap,grey)
avec				Bouton derrière le cache (gris)
	1	76017	1.780.090.23	Knopf (hinter Abdeckklappe,rot)
				Knob (behind front flap,red)
				Bouton derrière le cache (rouge)
24	11		1.780.200.00	Bedienungschassis (ohne Elemente)
				Control chassis (without controls)
				Châssis de commande (sans éléments)
dazu	4	73417	21.26.0455	Schraube M4x8
to above				Screw M4x8
avec				Vis M4x8
25	1	76005	1.780.090.01	Fenster
				Window
				Fenêtre
				bestehend aus / comprising / y compris
	11	76006	1.780.090.02	Rotfilter lang
	· <u></u>			Red abstracting filter,long
				Filtre rouge,grand

INDEX	QTY	ORDER NUMBER	ARTICLE NUMBER	PART NAME
	1	76007	1.780.090.03	Rotfilter,kurz
				Red abstracting filter,short
				Filtre rouge,petit
	1	76065	1.780.245.00	Anzeigeeinheit
				Display unit
				Unité d'affichage
26	1	76065	1.780.245.05	Signal Instrument
				Instrument SIGNAL STRENGTH
				Instrument SIGNAL STRENGTH
27	1	76009	1.780.090.05	Abstimm-Instrument
				Tuning meter
				Instrument "TUNING"
28	1	76056	1.780.235.02	Schalter TUNING MODE
				Push button TUNING MODE
				Touche TUNING MODE
29	2	76057	1.780.235.03	Regler - STEREO / STATION
				Potentiometer STEREO / STATION
				Potentiomètre STEREO / STATION
30	1	76055	1.780.235.01	DOPPEL-Schalter DEEMPHASIS / MEMORY
				Push button unit 2 DEEMPHASIS / MEMORY
				Clavier à 2 touches DEEMPHASIS / MEMORY
dazu	1	76008	1.780.090.04	Knopf (hinter Abdeckklappe,grau)
to above				Knob (behind front flap,grey)
avec				Bouton derrière le cache (gris)
	2	76017	1.780.090.23	Knopf (hinter Abdeckklappe,rot)
				Knob (behind front flap,red)
				Bouton derriére le cache (rouge)
31	11	76052	1.780.225.00	Tastenprint kompl. (Senderwahl)
				Push button p.c.board compl.(station selection)
				Plaquette des touches compl.(sélecteur de station)
				bestehend aus / comprising / y compris
	9	74264	1.011.201.29	Drucktasten (Senderwahl)
				Push buttons (station selection)
				Touches (sélecteur de station)

INDEX	QTY	ORDER NUMBER	ARTICLE NUMBER	PART NAME
	1	74263	1.011.201.27	UPPER/LOWER - Taste
				UPPER/LOWER button
				Touche UPPER/LOWER
	1	74267	1.011.201.32	LAST STATION / NEW ENTRY - Taste
				LAST STATION / NEW ENTRY - button
				Touche LAST STATION / NEW ENTRY
	2	74266	1.011.201.31	AUTO TUNING - Taste
				AUTO TUNING button
				Touche AUTO TUNING
	2	74225	1.011.205.06	Drucktastengehäuse (5 Tasten)
				Push button housing (5 buttons)
				Boîtier des touches (5 touches)
	1	74253	1.011.203.04	Drucktastengehäuse (3 Tasten)
				Push button housing (3 buttons)
				Boîtier des touches (3 touches)
2	2	74226	1.011.205.02	Schnappfederstreifen (5 Tasten)
				Snap spring strip (5 buttons)
				Bande de ressort à déclic (5 touches)
	2	74227	1.011.205.05	Isolierstreifen
				Insulating strip
				Bande isolante
	1	74254	1.011.203.02	Schnappfederstreifen (3 Tasten)
				Snap spring strip (3 buttons)
				Bande de ressort à déclic (3 touches)
	1	74255	1.011.203.03	Isolierstreifen
				Insulating strip
				Bande isolante
	13	74232	1.011.220.01	Zylinderstift
				Cylinder pin
				Cheville
	13	74233	1.011.220.02	Zwischenlage Gummi
				Intermediate layer (rubber)
				Entretoise

INDEX	QTY	ORDER NUMBER	ARTICLE NUMBER	PART NAME
32	1	72103	1.166.010.09	Seitenabdeckung
				Side panel
				Paroi
dazu	2	73701	1.010.001.21	Schraube M4x10
to above				Screw M4x10
avec				Vis M4x10
33	1	74509	1.177.100.05	Seitenteil, links
				Side part,left
				Côté gauche
34	1	76051	1,780.220.01	Fünfer Tastenschalter FM-Empfänger
				Push button unit 5 "FM-MODE"
				Clavier à 5 toucges "FM-MODE"
				bestehend aus / comprising / y compris
	5	72105	1.166.090.09	Taste (Knopf)
				Button (knob)
				Touche (bouton)
35	1	76074	1.780.285.00	Boden kompl.
				Bottom compl.
				Fond compl.
36	2	72101	1.166.010.07	Drehknopf
				Knob
				Bouton
37	1	76071	1.780.270.00	Abdeckplatte kompl.
				Front flap compl.
				Clapet compl.
38	1		1.780.265.00	Jackbuchse kompl.
				Jack receptacle compl.
				Prise Jack compl.
				B739: gleich wie B780 jedoch:
				B739: like B780 except
				B739: comme B780 éxcepté

INDEX	QTY	ORDER NUMBER	ARTICLE NUMBER	PART NAME
	1	76079	1.780.835.00	Vorverstärkerprint kompl.
				Preamplifier p.c. board compl.
				Plaquette préamplificateur compl.
20	1	76077	1.780.710.01	Obere Rückwand
				Upper rear cover
				Paroi arrière
dazu	1	76082	1.780.845.00	Rückwand (Steckerfeld)
o above				Rear cover (connector panel)
avec				Paroi arrière (panneau de raccordement)
35	1	76083	1.780.850.00	Boden kompl.
				Bottom compl.
				Fond compl.
37	1	76084	1.780.855.00	Abdeckklappe kompl.
				Front flap compl.
				Clapet compl.

7. **TECHNISCHE DATEN**

Tunerteil B780/B739 7.1

Empfangsbereich:

87,50 ... 107,975MHz, durchstimmbar über quarzgenauen Frequenzsynthesizer

- direkte Frequenzeingabe über Keyboard im 25kHz-Kanalraster
- b) Aufwärts- und Abwärts-Schritte im 25 kHz-Kanalraster
- automatischer Suchlauf (Aufwärts und c) Abwärts) im 50kHz-Kanalraster

Sendervorwahl:

18 Stationen im 25kHz-Kanalraster, guarzgenau programmierbar

Genauigkeit der Quarzreferenz:

± 0,0025%

Anzeigen:

für Frequenz: 5stellig für TUNING MODE: 2stellig

Messinstrumente:

für Signalstärke:

 $\log_{\mu} 0 \dots 100 dB_{\mu} V (0 dB_{\mu} V \triangleq 1 \mu V / 75)$ Ohm)

log. 10 ... 110dBf (0dBf ≜ 10 -15 Watt)

für Abstimmung:

lin. 20kHz/mm

Grenzempfindlichkeit:

0,7µV, am 75-Ohm-Eingang für einen Signal-/ Rauschabstand von 26dB bezogen auf 40kHz Hub, gemessen am Ausgang TAPE OUT 1

Empfindlichkeit:

Mono: 2µV; Stereo: 20µV am 75 Ohm-Eingang für einen Signal-/Rauschabstand von 46dB bezogen auf 40kHz Hub, gemessen am Ausgang TAPE OUT 1

Spiegelfrequenzdämpfung:

106dB; Af= 2x fZF (22MHz)

Zwischenfrequenzdämpfung:

110dB; fZF (11MHz)

Nebenwellendämpfung:

106dB; $\Delta f = fZF/2$ (5,5MHz)

Übernahmeverhältnis:

0,8dB, gemessen mit 40kHz Hub, 30dB Signal-/ Rauschabstand und 1mV/75 Ohm

Trennschärfe:

80dB, Nutzsignal 100µV an 75 Ohm, Störsignal 1mV an 75 Ohm moduliert mit 40kHz Hub Δf= 300kHz

7. **TECHNICAL DATA**

Tuner section B780/B739 7.1

Tuning range:

87.50 ... 107.975MHz, accurately tunable with quartz-controlled frequency synthesizer

- Direct frequency selection via keyboard with 25kHz channel spacing
- b) Incremental/decremental tuning in 25
- Automatic scanning (up and down) with c) 50kHz channel spacing

Station preselection:

18 stations, 25kHz channel spacing, accurately programmable with quartz-controlled frequency synthesizer

Accuracy of quartz reference:

±0.0025%

Displays:

For frequency: 5 positions For TUNING MODE: 2 positions

Tuning meters:

For signal strength:

log. 0 . . . 100 dB μ V (0dB μ V \triangleq 1 μ V/75 ohms)

log. 10 . . . 110 dBf (0dBf = 10-15 Watt) For tuning:

lin. 20kHz/mm

Absolute sensitivity:

 $0.7\mu V$ at 75 ohms input for a signal-to-noise ratio of 26dB relative to 40kHz deviation, measured at output TAPE OUT 1

Sensitivity:

Mono: 2µV; stereo: 20µV at 75 ohms input for a signal-to-noise ratio of 46dB relative to 40kHz deviation, measured at output TAPE OUT 1

Image rejection:

106dB; $\Delta f = 2x f_{1}F (22MHz)$

IF rejection:

110dB; fif (11MHz)

Spurious response rejection:

106dB; $\Delta f = f_1 F / 2$ (5.5MHz)

Capture ratio:

0.8dB, measured with 40kHz deviation, 30dB signal-to-noise ratio and 1mV/75 ohms

Selectivity:

80dB, useful signal 100µV into 75 ohms, noise signal 1mV into 75 ohms, modulated with 40kHz deviation ∆f=300kHz

7. CHARACTERISTIQUES TECHNIQUES

7.1 Section Tuner

Gamme de fréquence:

87,50 ... 107,975MHz, accord par synthétiseur de fréquence à quartz

- a) donnée directe de la fréquence au clavier, par pas de 25kHz
- b) défilement des fréquences, dans un sens ou dans l'autre, par pas de 25kHz
- recherche automatique (dans un sens ou c) dans l'autre) par pas de 50Hz

Préselection:

18 stations programmables par pas de 25kHz définis par quartz

Précision de la base de temps à quartz:

±0,0025%

Affichages:

pour la fréquence: 5 digits pour le mode d'accord: 2 digits

Instruments de mesure:

Intensité du signal:

log. 0 ... $100dB_{\mu}V$ $(0dB_{\mu}V \triangleq 1_{\mu}V/75$ ohms)

log. 10 ... 110dBf (0dBf = 10-15 watts)Centrage d'accord:

lin, 20kHz/mm

Sensibilité limite:

0,7µV, mesurée à l'entrée 75 ohms pour un rapport signal/bruit de 26dB avec une excursion de 40kHz et à la sortie TAPE OUT 1

Sensibilité:

Mono: 2μV, Stéréo 20μV, mesurée à l'entrée 75 ohms pour un rapport signal/bruit de 46dB avec une excursion de 40kHz et à la sortie TAPE OUT 1

Réjection image:

106dB, $\Delta f = 2x fZF (22MHz)$

Réjection de la fréquence intermédiaire:

110dB, fZF (11MHz)

Affaiblissement d'intermodulation:

106dB, $\Delta f = f Z F / 2 (5,5 MHz)$

Rapport de caputre:

0.8dB, mesuré avec une excursion de 40kHz, un rapport signal/bruit de 30dB pour 1mV/75 ohms

Sélectivité:

80dB, signal utile 100μV/75 ohms, signal perturbateur 1mV/75 ohms modulé avec 40kHz d'excursion (∆f= 300 kHz)

AM-Unterdrückung:

70dB, bezogen auf 75kHz Hub, 30% AM-Modulation, Frequenz 400Hz und 1mV/75 Ohm Antennenspannung

Frequenzgang:

30 Hz ... 15kHz ± 1dB, gemessen mit 40kHz Hub und 1mV/75 Ohm Antennenspannung

Deemphasis:

umschaltbar 50-75µs, mit eingebautem Rauschunterdrückungssystem (Option) 25-50-75µs

NF-Verzerrungen:

> 0,075%, gemessen mit 40kHz Hub 1kHz, Mono und Stereo L= R, 1mV/75 Ohm

Fremdspannungsabstand:

75dB, 30 Hz ... 15kHz linear, gemessen bei 1mV/75 Ohm bezogen auf 75kHz Hub

Stereo-Übersprechdämpfung:

42dB, gemessen bei 1kHz, 40kHz Hub und 1mV/75 Ohm. Mit eingeschalteter Taste HIGH BLEND: Geräuschabstandsverbesserung 10dB bei 50μ V/75 Ohm (DIN 45405): 7dB

Pilotton- und Hilfsträgerdämpfung:

70dB, (inkl. Oberwellen) 15kHz ... 300 kHz linear, bezogen auf 75kHz Hub gemessen mit 1mV/75 Ohm

Umschaltschwelle STATION:

2 ... 20μV an 75 Ohm, einstellbar mit Regler THRESHOLD STATION

Umschaltschwelle STEREO:

 $5 \dots 500 \mu V$ an 75 Ohm, einstellbar mit Regler THRESHOLD STEREO

Antenneneingänge:

60 . . . 75 Ohm, koaxial, nach DIN 45325 240 . . . 300 Ohm, symmetrisch, nach DIN 45316

Oszilloskopausgang: (Analyse von Mehrwegeempfangsstörungen mit einem Oszilloskop) vertikal (Y): 50mV an 75 0hm HF ≜ 1V horizontal (X): 75kHz Hub ≜ 2,8V_{SS} Buchse nach DIN 41524

NF-Ausgangswerte Tuner:

75kHz Hub/400Hz ergibt 0,7V am Ausgang TAPE 1

15kHz Hub/400Hz ergibt 70Watt/8 Ohm am Ausgang SPEAKERS A oder B (nur B780)

Optionen:

Antennenrotorsteuerung REVOX: nachrüstbar, Best.Nr. 34260

Dolby* Decode Unit: Einbau ohne Abgleicharbeiten.

AM-rejection:

70dB relative to 75kHz deviation, 30% AM modulation, frequency 400Hz and 1mV/75 ohms antenna voltage

Frequency response:

 $30Hz \dots 15kHz \pm 1dB$, measured with 40kHz deviation and 1mV/75 ohms antenna voltage

De-emphasis:

Can be changed over between 50-75 μ s. Built in (optional) noise reduction system 25-50-75 μ s

AF distortion:

< 0.075%, measured with 40kHz deviation, mono and stereo L = R, 1mV/75 ohms

Signal-to-noise ratio, unweighted:

75dB, 30Hz . . . 15kHz linear, measured with 1mV/75 ohms relative to 75kHz deviation

Stereo crosstalk attenuation:

42dB, measured at 1kHz, 40kHz deviation and 1mV/75 ohms. With HIGH BLEND switched on: 10dB SN ratio improvement with 50μ V/75 ohms (DIN 45405): 7dB

Pilot tone and subcarrier attenuation:

70dB (including harmonics) $15kHz \dots 300kHz$ linear, relative to 75kHz deviation measured with 1mV/75 ohms

Station threshold:

 $2 \dots 20 \mu V$ into 75 ohms, adjustable with THRESHOLD STATION

Stereo threshold:

 $5 \dots 500 \mu V$ into 75 ohms, adjustable with THRESHOLD STEREO

Antenna inputs:

 $60\ \dots\ 75$ ohms, coaxial, conforming to DIN 45325

 $240\,\ldots\,300$ ohms, balanced, conforming to DIN 45316

Oscilloscope output: (For analyzing multipath radio interference with an oscilloscope) Vertical (Y): 50mV into 75 ohms RF $\triangleq 1V$ Horizontal (X): 75kHz deviation $\triangleq 2.8V_{SS}$ Socket conforming to DIN 41524

AF output value tuner:

 $75 \mathrm{kHz}$ deviation/400Hz produces 0.7V at output TAPE 1

15kHz deviation/400Hz produces 70W/8 ohms at output SPEAKERS A or B (only B780)

Options:

Antenna rotor control REVOX; retrofittable. Part No. 34260

Dolby* Decode Unit: installation does not require adjustments.

Réjection de la modulation d'amplitude:

70dB, correspondant à 75kHz d'excursion, 30% de modulation d'amplitude à 400Hz et 1mV/75 ohms à l'antenne

Bande passante:

30Hz ... 15kHz, se rapportant à un signal d'antenne de 1mV/75 ohms modulé avec une excursion de 40kHz

Désaccentuation:

commutable 50-75 μ s, avec le réducteur de bruit (option) 25-50-75 μ s

Distortion BF:

0,075% à 1mV/75 ohms, 1kHz avec 40kHz d'excursion, mono et stéréo G = D

Recul du bruit de fond:

75dB, de 30Hz à 15kHz linéaire, à 1mV/75 ohms avec 75kHz d'excursion

Amortissement de la diaphonie stéréo:

42dB, mesurée à 1kHz, avec 1mV/75 ohms à l'antenne et 40kHz d'excursion. Avec la touche HIGH BLEND enfoncée, amélioration du rapport signal/bruit de 10dB, à 50μ V/75 ohms (DIN 45405)

Réjection du signal pilote et de la sous-porteuse:

70dB (avec toutes les harmoniques) de 15Hz à 300kHz linéaire, avec une excursion de 75kHz et 1mV/75 ohms

Seuil de commutation STATION:

 $2\,\ldots\,20\mu V$ à 75 ohms, réglable avec le potentiomètre THRESHOLD STATION

Seuil de commutation STEREO:

5 ... 500µV à 75 ohms, réglable avec le potentiomètre THRESHOLD STEREO

Entrées d'antenne:

60 . . . 75 ohms, coaxiale d'après DIN 45325 240 . . . 300 ohms, symétrique d'après DIN 45316

Sortie oscilloscope: (Analyse des perturbations dués aux ondes réfléchies avec un oscilloscope) vertical (Y): 50mV/75 ohms HF ≜1V horizontal (X): 75kHz d'excursion ≜2,8 V_{CC}

Valeurs de sortie BF du tuner:

une excursion de 75kHz, à 400Hz produit 0,7V à la sortie TAPE 1

une excursion de 15kHz, à 400Hz produit 70 watts/8 ohms à la sortie SPEAKERS A ou B (B780 seulement)

Options:

Commande de rotor d'antenne REVOX, numéro de commande 34260

Dolby* Decode Unit: montage sans réglage

7,2 Verstärkerteil B780

Musikleistung:

140Watt pro Kanal (4 Ohm), beide Kanäle gleichzeitig ausgesteuert

Ausgangsleistung: (nach DIN 45500)

110Watt pro Kanal (4 Ohm) beide Kanäle gleichzeitig ausgesteuert

80Watt pro Kanal (8 Ohm) beide Kanäle gleichzeitig ausgesteuert

Harmonische Verzerrrungen: (1kHz) kleiner als 0,03% bei 70Watt (8 Ohm)

Frequenzgang:

+0/-0,7dB, 20Hz ... 20kHz

Dämpfungsfaktor:

grösser als 100 bei 1kHz (8 Ohm)

Eingänge:

(Empfindlichkeit für 70Watt (8 Ohm/Impedanz)

AUX, TAPE 1+2 150mV/50kOhm 3mV/47kOhm, 220 pF

PHONO PWR IN

1V/50kOhm

Übersteuerungssicherheit:

PHONO, AUX, TAPE 1+2: besser als 30 dB

Ausgänge:

DIN-Anschluss TAPE 2 OUT:

5,5mV/RL 10kOhm

SPEAKERS A, B: 23,7V (8 Ohm)

TAPE 1 (Cinch): 135mV/RL min. 47kOhm

PRE OUT (DIN-Anschluss):

0,85V/R1 min. 10kOhm

PRE AMP OUT (Jack): 0,85V/RL min. 47kOhm

Fremdspannungsabstand:

(Effektivwert, unbewertet, 20Hz ... 20kHz, be-

zogen auf 70Watt 8 Ohm)

AUX, TAPE 1, 2: grösser als 90dB

PHONO: grösser als 73dB, bezogen auf 5mV 1kHz) Eingänge mit 1kOhm abgeschlossen

Übersprechdämpfung Stereo: (bei 1kHz)

alle Eingänge grösser als 70dB

Phono-Entzerrung: (nach IEC 98, MOD 4 1976)

± 0,5dB, 20Hz ... 20kHz

Klangregler:

BASS ±8dB bei 120Hz

TREBLE

±8dB bei 8kHz

PRESENCE ±8dB bei 3kHz

Filter:

LOW 18Hz, -3dB (12dB/Oktave)

HIGH 8kHz, -3dB (12dB/Oktave)

Loudness:

(Volume 40dB unter max. Aussteuerung) 100Hz +5dB; 10kHz + 6dB

7.2 **Amplifier section B780**

Music power:

140W per channel (4 ohms), both channels simultaneously driven

Output power: (according to DIN 45500)

110W per channel (4 ohms) both channels simultaneously driven

80W per channel (8 ohms) both channels simultaneously driven

Harmonic distortion: (1kHz)

less than 0.03% at 70W (8 ohms)

Frequency response:

+0/-0.7dB, 20Hz . . . 20kHz

Damping coefficient:

Greater than 100 at 1 kHz (8 ohms)

Inputs:

(sensitivity for 70W (8 ohms)/impedance) AUX, TAPE 1+2 150mV/50 kohms

PHONO **PWRIN**

3mV/47kohms, 220pF 1V/50kohms

Input overload margin:

PHONO, AUX, TAPE 1+2: greater than 30dB

Outputs:

DIN terminal TAPE 2 OUT:

5.5mV/RL 10kohms

SPEAKERS A+B: 23.7V (8 ohms)

TAPE 1 (Cinch): 135mV/RL min. 47kohms PRE OUT (DIN terminal): 0.85 V/RL min.

10kohms via volume control

PRE AMP OUT (Jack):

0.85V/RL min. 47 kohms

Signal-to-noise ratio: (RMS value, unweighted, 20Hz . . . 20kHz, relative to 70W, 8 ohms)

AUX, TAPE 1+2: greater than 90dB

PHONO: greater than 73dB, relative to 5mV

(1kHz) inputs terminated with 1kohm

Crosstalk attenuation, stereo: (at 1kHz)

All inputs greater than 70dB

Phono equalization: (conforming to IEC98,

MOD 4 1976)

±0.5dB, 20Hz . . . 20kHz

Tone controls:

BASS

±8dB at 120Hz ±8dB at 8kHz

TREBLE PRESENCE

±8dB at 3kHz

Filters:

LOW 18Hz, -3dB (12dB/octave)

HIGH 8kHz, -3dB (12dB/octave)

Loudness:

(Volume 40dB below maximum level)

100Hz +5dB; 10kHz +6dB

7.2 Section Amplificateur B780

Puissance musicale:

140 watts par canal (4 ohms), les deux canaux en service simultanément

Puissance de sortie: (d'après DIN 45500)

110 watts par canal (4 ohms), les deux canaux en service simultanément

80 watts par canal (8 ohms), les deux canaux en service simultanément

Distorsion harmonique: (1kHz)

inférieure à 0,03% à 70 watts sous 8 ohms

Réponse en fréquence:

+0/-0,7dB, de 20Hz à 20kHz

Facteur d'amortissement:

supérieur à 100 à 1kHz, sous 8 ohms

Entrées:

(sensibilité pour 70 watts/8 ohms) AUX, TAPE 1+2 150mV/50kohms

PHONO 3mV/47kohms, 220pF

PWR IN

1V/50kohms

Sécurité de saturation:

PHONO, AUX, TAPE 1+2: meilleure que 30dB

Sorties:

Prises DIN TAPE 2/OUT:

5.5 mV/RL = 10 kohms

SPEAKERS A. B: 23.7V (8 ohms)

TAPE 1 (Cinch): 135mV/RL min. 47kohms

PRE OUT (DIN): 0,85 V/RL min. 10kohms

PRE AMP OUT (Jack):

0,85 V/R₁ min. 47kohms

Recul du bruit de fond:

(Valeur effective, non pondérée, se rapportant à 70 watts sous 8 ohms, de 20Hz à 20kHz)

AUX, TAPE 1,2: supérieur à 90dB

PHONO: supérieur à 73dB, par rapport à 5mV (1kHz), les entrées étant chargées avec 1kohm

Amortissement de la diaphonie stéréo: (1kHz) supérieur à 70dB sur toutes les entrées

Correction phono: (d'après IEC 98, MOD 4 1976)

±0,5dB, de 20Hz à 20kHz

Correcteur de tonalité:

BASS PRESENCE

±8dB à 120Hz TREBLE ±8dB à 8kHz

Filtres:

LOW 18Hz, -3dB (12dB/octave)

HIGH 8kHz, -3dB (12dB/octave)

Loudness:

(Volume à -40dB et modulation maximale) 100Hz +5dB, 10kHz +6dB

±8dB à 3kHz

Stromversorgung:

100, 120, 140; 200, 220, 240V AC ±10% umschaltbar mit Spannungswähler (siehe Netzsicherung)

Netzfrequenz: 50 ... 60 Hz Leistungsaufnahme: 550W max.

Netzsicherung:

100 . . . 140V : T 5A 200 . . . 240V : T 2,5A

Memory-Stromversorgung bei Netzausfall:

durch drei NiCd-Akkumulatoren IEC KR 15/51, einsetzbar in Fach unter der Frontklappe

Bestückung:

122 Transistoren, 99 Dioden, 19 Abstimm-Doppeldioden, 46IC, 1 Mikrokomputer 4K x 8Bit, 5 Brückengleichrichter, 9 Sieben-Segment-Anzeigen

Gewicht: (Masse)

ca. 17kg

Abmessungen: (BxHxT) 452 x 151 x 420mm

7.3 Vorverstärkerteil B739

Eingänge: Empfindlichkeit für 2V AUX, TAPE 1+2 150mV/50kOhm PHONO 3mV/47kOhm, 220pF

LINE IN

1V/50kOhm

17,30001111

Übersteuerungssicherheit:

PHONO, AUX, TAPE 1+2: besser als 30dB

Ausgänge:

OUTPUT A,B:

2V/4V/RL min. 1kOhm (schaltbar) TAPE 1 (Cinch): 135mV/RL min. 47kOhm DIN-Anschluss TAPE 2 OUT:

5,5mV/RL 10kOhm PRE OUT (DIN-Anschluss):

0,85V/R_L min. 10kOhm über Volumenregler

PRE AMP OUT (Jack):

0,85V/RL min, 47kOhm über Volumen-

PHONES: 4V/R; 220 Ohm

Harmonische Verzerrungen: (1kHz)

kleiner als 0,02% bei 2V

Frequenzgang:

+0/-0,7dB, 20Hz ... 20kHz

Fremdspannungsabstand:

(Effektivwert, unbewertet, 20Hz \dots 20kHz, bezogen auf 2V)

AUX, TAPE 1+2: grösser als 90dB

PHONO: grösser als 73dB, bezogen auf 5mV (1kHz) Eingänge mit 1kOhm abgeschlossen

Power requirements:

100, 120, 140; 200, 220, 240 VAC ±10%, selectable on voltage selector (see power fuse)
Power line frequency: 50 . . . 60Hz
Power consumption: max. 50W

Power fuse:

100 . . . 150V: T 5A 200 . . . 240V: T 2.5A

Emergency power for memory:

Three NiCd batteries IEC KR 15/51, mounted in a compartment below the hinged front flap

Electronic components:

122 transistors, 99 diodes, 19 tuning twin-diodes, 46lCs, 1 microcomputer 4K x 8Bit, 5 bridge-connected recitifiers, 9 7-segment displays LEDs

Weight:

Approx. 17 kg

Dimensions: (WxHxD) 452 x 151 x 420mm

7.3 Preamplifier section B739

Inputs: Sensitivity for 2V

AUX, TAPE 1+2 150mV/50 kohms

PHONO

3mV/47kohms, 220pF

LINE IN 1V/50kohms

Input overload margin:

PHONO, AUX, TAPE 1+2: greater than 30dB

Outputs:

OUTPUT A. B:

2V/4V/RL min. 1kohm (switchable) TAPE 1 (Cinch): 135mV/RL min. 47kohms

DIN terminal TAPE 2 OUT: 5.5mV/Ri 10kohms

PRE OUT (DIN terminal):

0.85 V/RL min. 10 kohms

PRE AMP OUT (Jack):

0.85V/RL min. 47 kohms

PHONES: 4V/R; 220 ohms

Distortion harmonique: (1kHz)

inférieure à 0,02% à 2V

Réponse en fréquence:

+0/-0.7dB, de 20Hz à 20kHz

Recul du bruit de fond:

(Valeur effective, non pondérée, 20Hz...20kHz, rapportée à 2V)

AUX, TAPE 1,2: supérieur à 90dB

PHONO: supérieur à 73dB, rapporté à 5mV

(1kHz), entrées chargées 1kohm

Alimentation:

100, 120, 140; 200, 220, 240V AC ±10%, commutable par sélecteur de tension (attention au fusible secteur!)

fusible secteur!)

fréquence secteur: 50 ... 60Hz consommation: 550 watts au maximum

Fusible secteur:

100 . . . 140V : 5 AT 200 . . . 240V : 2,5 AT

Alimentation auxiliaire des mémoires:

par trois accumulateurs IEC KR 15/51, au NiCd, placés dans le tiroir situé sous le volet frontal

Composants:

122 transistors, 99 diodes, 19 diodes varicap doubles, 46 CI, 1 microprocesseur 4K x 8Bit, 5 ponts redresseurs et 9 afficheurs 7 segments

Poids: (Masse) environ 17 kg

Dimensions: (LxHxP) 452 x 151 x 420mm

7.3 Section Préamplificateur B739

Entrées: Sensibilité pour 2V en sortie AUX, TAPE 1+2 150mV/50kohms PHONO 3mV/47kohms, 220pF

LINE IN

1V/50kohms

Sécurité de saturation:

PHONO, AUX, TAPE 1+2: meilleure que 30dB

Sorties:

OUTPUT A, B:

2V/4V/R_L min. 1kohm, commutable TAPE 1 (Cinch): 135mV/R_L min. 47kohms Prises DIN TAPE 2/OUT:

5,5mV/RL 10kohms

PRE OUT (DIN): 0,85 V/R_L min. 10kohms aux bornes du potentiomètre de volume

PRE AMP OUT (Jack):

0,85 V/R_L min. 47kohms, aux bornes du potentiomètre de volume PHONES: 4V/R_i 220 ohms

Harmonic distortion: (1kHz)

Less than 0.02% at 2V

Frequency response:

+0/-0.7dB, 20Hz . . . 20kHz

Signal-to-noise ratio: (RMS value, unweighted, 20Hz...20kHz, relative to 2V)

AUX, TAPE 1+2: greater than 90dB

PHONO: greater than 73dB, relative to 5mV

(1kHz), inputs terminated with 1kohm

Übersprechdämpfung Stereo: (bei 1kHz)

alle Eingänge grösser als 70dB

Phono-Entzerrung: (nach IEC 98, MOD 4 1976)

±0,5dB, 20Hz . . . 20kHz

Klangregler:

BASS ±8dB bei 120Hz
TREBLE ±8dB bei 8kHz
PRESENCE ±8dB bei 3kHz

Filter:

LOW 18Hz, -3dB (12dB/Oktave) HIGH 8kHz, -3dB (12dB/Oktave)

Loudness

(Volume 40dB unter max. Aussteuerung)

100Hz + 5dB; 10kHz +6dB

Stromversorgung:

100, 120, 140; 200, 220, 240V AC ± 10% umschaltbar mit Spannungswähler (siehe Netzsiche-

rung)

Netzfrequenz 50 ... 60 Hz Leistungsaufnahme max. 50W

Netzsicherung:

100 . . . 140V : T 630mA 200 . . . 240V : T 315mA

Memory-Stromversorgung bei Netzausfall:

durch drei NiCd-Akkumulatoren IEC KR 15/51, einsetzbar in Fach unter der Frontklappe

Bestückung:

100 Transistoren, 77 Dioden, 19 Abstimm-Doppeldioden, 45 IC, 1 Mikrokomputer 4K x 8Bit, 3 Brückengleichrichter, 9 Sieben-Segment-Anzeigen

Gewicht: (Masse)

ca. 13kg

Crosstalk attenuation, stereo: (at 1kHz)

All inputs greater than 70dB

Phono equalization: (according to IEC98, MOD

4 1976)

±0.5dB, 20Hz . . . 20kHz

Tone controls:

BASS ±8dB at 120Hz
TREBLE ±8dB at 8kHz
PRESENCE ±8dB at 3kHz

Filters:

LOW 18Hz, -3dB (12dB/octave) HIGH 8kHz, -3dB (12dB/octave)

Loudness

(Volume 40dB below maximum level)

100Hz +5dB; 10kHz +6dB

Power requirements:

100, 120, 140; 200, 220, 240 VAC ±10%, selectable at voltage selector (see power fuse) Power line frequency: 50 . . . 60Hz

Power consumption: max. 50W

Power fuse:

100 . . . 140V: T 630mA 200 . . . 240V: T 315mA

Emergency power for memory:

Three NiCd batteries IEC KR 15/51, mounted in compartment below hinged front flap

Electronic components:

100 Transistors 77 diodes, 19 tuning twindiodes, 45 ICs, 1 microcomputer 4K \times 8Bit, 3 bridge-connected rectifiers, 9 7-segment dis-

play LEDs

Weight:

Approx. 13 kg

Amortissement de la diaphonie stéréo: (1kHz)

supérieur à 70dB sur toutes les entrées

Correction phono: (selon IEC 98, MOD 4 1976)

±0,5dB, de 20Hz à 20kHz

Correcteur de tonalité:

BASS ±8dB à 120Hz
TREBLE ±8dB à 8kHz
PRESENCE ±8dB à 3kHz

Filtres:

LOW 18Hz, -3dB (12dB/octave) HIGH 8kHz, -3dB (12dB/octave)

Loudness:

(Volume à -40dB et modulation maximale) 100Hz +5dB, 10kHz +6dB

Alimentation:

100, 120, 140; 200, 220, 240V AC \pm 10%, commutable par sélecteur de tension (attention au

fusible secteur!)

fréquence secteur: 50 ... 60Hz consommation maximale 50 watts

Fusible secteur:

100 . . . 140V: 630 mAT 200 . . . 240V: 315 mAT

Alimentation auxiliaire des mémoires en cas de panne de courant:

par 3 accumulateurs NiCD IEC KR 15/51 placés dans le tiroir sous le volet frontal

Composants:

100 transistors, 77 diodes, 19 diodes varicap doubles, 45 CI, 1 microprocesseur 4K \times 8Bit, 3 ponts redresseurs et 9 afficheurs à 7 segments

Poids: (Masse) environ 17 kg

7.4 Abmessungen: (BxHxT) 452 x 151 x 350mm

7.4 Dimensions: (WxHxD) 452 x 151 x 350mm

7.4 Dimensions: (LxHxP) 452 x 151 x 350mm

Fig. 7.1

STUDER REVOX

BLOCK DIAGRAM B780

