综合流域管理系统设计

Task 1. 建立基于综合流域系统管理数据的实时信息收集平台

基本数据采集分为三个部分:

- 1、上游流域:农田总面积、实时农作物价格、农作物月产量、单位面积肥料用量成本、单位面积水土保持成本、单位面积水土流失量、气候因子¹
- 2、坝区:单位水量价格、水库月径流量、单位铲沙成本、大坝建造成本、年维护成本、泥沙月径流量、气候因子¹
- 3、下游流域:农田总面积、实时农作物价格、农作物月产量、单位面积肥料用量成本、农业灌溉价格、单位面积农业用水量、气候因子¹

信息收集平台界面举例如下:

Source: http://www.yunqishui.com/pages/g/gamePost.shtml?view=true&postId=219&u=99999

Task 2. 研发一套以流域综合管理模型为基础的计算机软件系统 基本模型阐述如下:

- I. 局部动态优化模型:
- 1、上游流域:

$$\max_{\stackrel{\hat{\mu}CH}{\hat{\mu}CH}\hat{\mu}K\pm R\not= \frac{1}{2}} \pm \sum_{t=0}^{T} \bot$$
 上游农田总面积
$$= \int_{t=0}^{T} \bot$$
 上游农田总面积
$$= \frac{1}{2} \times \frac{1}{2} \times$$

Subject to: $\frac{d + E \pm \frac{4}{3} = E}{d + E} = -$ (气候因子)×(最大单位面积水土流失率 – 单位面积水土保护率)

2、坝区:

 $\max_{\stackrel{}{\mu}CDH\stackrel{}{\Pi}\stackrel{}{G}\stackrel{}{\partial} \stackrel{}{\partial} \stackrel{}{d}} x$ $= \int_{t=0}^{T} \begin{bmatrix} (水利资源单位价格×水库月出水量) \\ -(单位清淤价格×单位时间铲沙量) - 年维护成本 \end{bmatrix} dt$ = 大坝建造成本

Subject to: $\frac{a^{x / E \otimes d}}{a^{\# C \otimes \Pi}} = -$ (气候因子)×(泥沙月径流量 - 单位时间铲沙量)

泥沙月径流量 = 上游农业活动月泥沙径流量 + 天然泥沙月径流量

¹气候因子由气候变化引起的温度变化、降雨量变化、蒸发量变化从而导致的河流径流量变化预测得出

3、下游流域:

max 下游净利益 ^{单位时间施肥用量}

$$= \int_{t=0}^{T} 下游农田总面积$$

- ×【农作物单位价格
- ×单位面积月产量(包含:单位时间施肥用量、单位时间灌溉水量)
- 人工施肥价格×单位时间施肥用量
- 单位灌溉价格×单位时间灌溉水量 dt

综合流域动态优化模型: II.

综合社会净利益

max 单位时间水土保持量、上下游单位时间施肥用量、

单位时间铲沙量

= 上游净利益 + 水库净利益 + 下游净利益

Subject to: $\frac{d + k + k}{d + k} = -$ (气候因子) × (最大单位面积水土流失率 – 单位面积水土保护率)

 $\frac{d \, x \, \epsilon \, r \, \delta \, d}{d \, \dot{\mu} \, \dot{\omega} \, \text{时间}} = - \, \left(\text{气候因子} \right) \, \times \, \left(\, \mathcal{R} \, \partial \mathcal{F} \, \right) \, \left(\, \mathcal{R} \, \partial \mathcal{F} \, \partial \mathcal{F} \, \right) \, \left(\, \mathcal{R} \, \partial \mathcal{F} \, \partial \mathcal{F} \, \right) \, \left(\, \mathcal{R} \, \partial \mathcal{F} \, \partial \mathcal{F} \, \partial \mathcal{F} \, \right) \, \left(\, \mathcal{R} \, \partial \mathcal{F} \, \partial \mathcal{F} \, \partial \mathcal{F} \, \partial \mathcal{F} \, \right) \, \left(\, \mathcal{R} \, \partial \mathcal{F} \, \right) \, \left(\, \mathcal{R} \, \partial \mathcal{F} \, \partial \mathcal{F$

泥沙月径流量 = 上游农业活动月泥沙径流量 + 天然泥沙月径流量

模型输入数据由:

- 1、上游流域:农田总面积、实时农作物价格、农作物月产量、单位面积肥料用量成本、单位面积水土保持成本、单位面积水土流失量、气候因子¹
- 2、坝区:单位水量价格、水库月径流量、单位铲沙成本、大坝建造成本、年维护成本、泥沙月径流量、气候因子¹
- 3、下游流域:农田总面积、实时农作物价格、农作物月产量、单位面积肥料用量成本、农业灌溉价格、单位面积农业用水量、气候因子¹

输出数据由:单位时间水土保持量、上下游单位时间施肥用量、单位时间铲沙量以及综合社会净利益组成。²

可参照: Palmieri, A., F. Shah, and A. Dinar (2001), Economics of reservoir sedimentation and sustainable management of dams, J. Environ. Manage.,61(2), 149–163.

Palmieri, A., F. Shah, G. Annandale, and A. Dinar (2003), Reservoir Conservation: The RESCON Approach, Vol. I, 102 pp., The World Bank, Washington, D. C.

该模型可用 matlab, stata 或其余软件完成结果输出

模型输入输出结果界面举例如下:输入:

²参照 Appendix 1

Agriculture Paramet	ers					
- Agricultural Pr	roduction Fun	ction		al	a2	a3
: Up al x	exp (-a2 x ASL)	x F^a3	•	10	0.1	0.6
: Down al x	(U^a2) x (F^a3)	x (I^(1-a2	(-a3))	1	0.3	0.4
- Agriculture Ar	ea: Up 1	Mha	/ Down	1	Mh	a .
- Accumulated So	oil Loss: Ma	x. 400	ton/ha/	Preser	ıt 0	ton/ha
- Effectiveness o	fSC: Structu	res 90	% / I	ractio	es 50	%
- Unit Cost of SC	: Structu	res 40	S/ha / I	ractio	es 10	S/ha
- Agriculture Sec	diment Contril	oution:	60	%		
- Fertilizer Use :	Ma	x. 5	ton/ha/	Curre	nt 1	ton/ha
- Incoming Ferti	lizer Fraction	: Up 3	0 % /	Dow	n 30	%
Hydrology Paramet	ers					
- Res. Lifetime :	Present 2	012 ye	ars / De	sign	2100	years
- Res. Capacity:	Designed 1	000 M	m3 / Pro	esent	1000	Mm3
- Annual Flow:	Mean 1	000 Mi	n3 / st	d.	500	Mm3
- Sediment Inflo	w: Mean	10 Mi	n3 / De	nsity	1.5	ton/m3
- Sediment Trap	Efficiency:	8	0 9	6		
- Water Delivery	Failure Rate	: 10	. ,	6		

输出:

最终形成流域综合管理软件系统,可基于 GIS 对全流域动态优化结果进行展示,效果图举例如下:

