

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA Y DISEÑO INDUSTRIAL

Grado en Ingeniería Electrónica Industrial y Automática

TRABAJO FIN DE GRADO

Guiado de un robot móvil basado en ROS y kinect

Autor: Daniel Manzaneque Amo

Cotutor: Miguel Hernando Departamento: Electrónica, Automática e Informática

Industrial

Tutor: Alberto Brunete Departamento: Electrónica, Automática e Informática

Industrial

Madrid, Noviembre 2014

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA Y DISEÑO INDUSTRIAL

Grado en Ingeniería Electrónica y Automática Industrial

TRABAJO FIN DE GRADO

Guiado de un robot móvil basado en ROS y kinect

Firma Autor

Firma Cotutor Firma Tutor

Título: Guiado de un robot móvil basado en ROS y kinect **Autor:** Daniel Manzaneque Amo

Tutor: Alberto Brunete Cotutor: Miguel Hernando

EL TRIBUNAL

Presidente:
Vocal:
Secretario:
Realizado el acto de defensa y lectura del Trabajo Fin de Grado el día de

VOCAL

SECRETARIO PRESIDENTE

Agradecimientos

Agradezco a

Resumen

Realizar la navegación y guiado de un robot móvil surge como herramienta para acceder a lugares donde el ser humano no puede o se encontraría en riesgo, para realizar tareas repetitivas o que conllevasen algún tipo de desgaste.

Un robot autónomo es por tanto una pieza fundamental en tareas de rescate, salvamento, inspección, exploración de entornos peligrosos o inaccesibles, como la exploración en la superficie de otros planetas. Además, las tareas sociales cada vez están tomando más relevancia en nuestro día a día, como la asistencia a humanos en entornos públicos, la interección con el entorno o una navegación más segura, como es el caso de los coches autónomos.

Este proyecto de fin de grado trata sobre el guiado y control de un robot móvil de cuatro ruedas, con un sistema motriz en configuración diferencial, equipado con una serie de sensores que permiten su orientación y posicionado en el entorno así como un sensor capaz de captar este en tres dimensiones y un sensor adicional que lo haría tan solo en dos dimensiones.

Los datos de los sensores sirven tanto para construir mapas en dos dimensiones del entorno del robot como para navegar por él evitando obstáculos de manera dinámica. El robot es capaz de generar mapas de celdas en los que situar tanto los objetos estáticos como los móviles, calcular una trayectoria adecuada y dirigirse hasta un punto indicado evitando obstáculos interpuestos en su camino.

Todo esta información, procesado de datos, cálculo de trayectorias y ejecución de movimientos se realiza en un ordenador de abordo integrado en el propio robot utilizando el software Robot Operating System (conocido en robótica por sus siglas ROS), que nos ofrece una interfaz común para interconectar nuestro robot con los sensores y con los algoritmos de navegación.

El proceso de navegación se realiza de dos formas conjuntamente. Por un lado el robot realiza un mapa global con obstáculos que permanecen inmóviles y calcula la trayectoria más adecuada, es lo que denominamos navegación global. Por otro lado, el robot genera un mapa dinámico a su alrededor e identifica la información de los sensores como obstáculos, a continuación, el robot calcula continuamente una trayectoria que se ajuste todo lo posible a la trayectoria global pero que evite los obstáculos cercanos, es lo que se denomina navegación reactiva o local.

Finalmente, un algoritmo de cálculo de movimientos realiza el control de los mo-

viii RESUMEN

tores para que el robot realice el movimiento adecuado en base a las trayectorias definidas anteriormente. De esta forma el robot puede avanzar, retroceder, darse la vuelta o realizar tareas de recuperación de trayectoria en caso de encontrarse bloqueado en algún punto.

A parte de la navegación autónoma, también dispone de un sitema de telecontrol del robot mediante otro ordenador externo y de un algoritmo de detección frontal de objetos en 3 dimensiones (nubes de puntos) que puedan servirle como guía. De esta forma, el robot es capaz de navegar siguiendo el movimiento de una persona o de un robot que le preceda.

El robot Pioneer 3 AT es el robot móvil que se ha empleado en este proyecto (Figura 1) y sobre el que se ha trabajado de manera específica para realizar las pruebas reales de este proyecto. A este robot se le incorporan un sensor láser de dos dimensiones (sensor Sick LMS100) y un sensor de tres idmensiones (sensor Kinect). El cómputo de la navegación se realiza en un ordenador compacto incorporado en el robot (ordenador Intel NUC ***).

Figura 1: Esquema del sistema robótico utilizado en el proyecto

Las consignas de navegación se realizan mediante un ordenador externo cualquiera conectado a una red inalámbrica o mediante consignas de voz, en las que se indica al robot las tareas de navegación a realizar (avanzar, girar, seguir a una persona...) o un punto del entorno al que dirigirse.

Todas estas implementaciones están desarrolladas bajo el entorno ROS, lo cual permite añadir funcionalidades de manera más rápida y menos laboriosa, como es el caso del control mediante comandos de voz o la interacción mediante sonidos. Es el caso también del simulador de robótica Gazebo, que se integra como funcionalidad en ROS y que ha servido para testear el sistema y aportar las pruebas teóricas pertinentes para luego aplicarlas en el robot real.

Para concluir, podemos decir que este proyecto se encarga de integrar ROS como sistema en un ordenador de abordo incorporado en el robot que permita conectarse con los sensores y realizar la construcción de mapas y navegación autónoma mediante el cáculo de mapas y trayectorias globales y locales, realizar los movimientos del robot, así como reconocer consignas de voz o de teleoperación.

Palabras clave: palabraclave1, palabraclave2, palabraclave3.

x RESUMEN

Abstract

Achieving navigation and guidance of mobile robot comes up as a tool for rescue purposes in places where humans can't access or that involve a high risk for life. Many of those repetitive and fatigating tasks could be done with a robust and capable mobile robot.

An autonomous robot is, by the way, an essential part in rescue, inspection and exploration tasks developed in dangerous or non-reacheable places, such as the surface of other planets. Moreover, social tasks are taking more and more interest in our nowadays, such as assitance for humans in pubic places, interaction with the environment or a safer navigation in the cities. Autonomous car navigation is a good example of this.

This final degree project is about guidance and control of a four-wheel mobile robot with a skid-steer configuration. It is equipped with a sort of sensors, allowing it to make positioning and orientation in the environment. There is also a main sensor capturing the environment in three dimensions and an additional one doing it in two dimensions.

Sensor data is used to build two dimensional maps of the exploration place as well as to take care of dynamical obstacles. The robot can build maps formed by cells where to incorpore or raytrace static and dynamic obstacles, calculate the proper trajectory plan and head for a destination point avoiding obstacles in its way.

All this information, data processing, trajectory calculation and movement execution is done in an onboard computer inside the robot. It uses the Robot Operating System software (known as ROS), which offers a communicate the robot with sensors and navigation algorithms.

The navigation process is divided in two parts. Firstly, a global obstacle map is done and static objects are addded, then the most suitable trajectory is planned. This is called global navigation. Secondly, a dynamic map is done and sensor data incorpores obstacles near the robot. Immediatly, a possible trajectory is planned following the original trajectory of the global navigation but avoiding the obstacles. This is called reactive or local navigation.

Finally, a movement algorithm does the control over the robot. It calculates movements to make the robot go forward, backward, turn around or make recovery tasks to recover if the robot has lost the trajectory path or it is stucked at any point.

xii ABSTRACT

Apart from autonomous navigation, the robot also has a telecontrol system from an outside computer and an algorithm to detect frontal objects in three dimensions (pointclouds) that can guide the robot. This is how it can navigate following a person when it is walking or another robot in front of it.

Pioneer 3 AT robot is the one used in this project (Figure 2). It is the specific platform and all real tests have been made with it. This robots is equipped with a two dimension laser scanner (Sick LMS100 sensor) and a three dimensional sensor (Kinect sensor). The navigation computation is done in an onboard compact computer (Intel NUC *** computer).

Figure 2: Diagram of the robotic system used for this project

The navigation commands are sent from an outside computer connected to the same wireless network or from voice navigatin commands speaking directly to the robot (go forward, backward, turn right...) or a point in the map to move forward.

All those implementations are developed under ROS framework. This is why additional features can be added in a faster and effortless way. That is the case of the robot similator Gazebo, which integrates as an add-on in ROS. Gazebo has been used to perform tests in navigation and to check theorical concepts to lately incorporate them in the real robotic system.

To conclude, it can be said that this project integrates ROS as a robotic system in an onboard computer and connects to sensors to perform tasks such as building maps or navigation from one point to other. The system calculates local and global maps and trajectories, makes movements according to them, as well as recognises voice or teleoperation commands.

 ${\bf Palabra \ Clave 1, \ keyword 2, \ keyword 3.}$

Índice general

\mathbf{A}	grade	ecimientos	V									
\mathbf{R}	esum	nen	vii									
\mathbf{A}	bstra	act	xi									
1	Intr	roducción	1									
	1.1	Robótica	1									
	1.2	Robótica Móvil	2									
	1.3	Motivación del proyecto	3									
2	Est	ado del arte	5									
	2.1	Hardware en robótica móvil	5									
	2.2	Sensores en robótica móvil	9									
		2.2.1 Sensores internos	9									
		2.2.2 Sensores externos										
	2.3	Control en la robótica móvil actual										
		2.3.1 Localización y orientación en un entorno										
	2.4	Aplicaciones actuales de la robótica móvil	12									
3	Alc	Alcance y objetivos del proyecto										
	3.1	Propósito y alcance	13									
	3.2	Objetivos	14									
4	Desarrollo del proyecto											
	4.1	Planteamiento	15									
	4.2	Planificación del proyecto										
	4.3	Tecnologías empleadas en el proyecto										
	4.4	Herramientas utilizadas en el proyecto										
	4.5	Hardware										
		4.5.1 Pioneer 3 AT	15									
		4.5.2 Sensor Kinect	16									
		4.5.3 Láser SICK LMS100										
		4.5.4 Intel NUC ***	19									
5		luitectura	21									
		Arquitectura general	21									
	5.2	Arquitectura del provecto	21									

xvi ÍNDICE GENERAL

6	Ente	orno ROS	23
	6.1	Configuración de ROS	23
	6.2	Configuración de los paquetes ROS	23
	6.3	Control teleoprado	
	6.4	Navegación autónoma	
	6.5	Guiado mediante sensor Kinect	
7	Dise	eño del sistema	25
	7.1	Jerarquización de tareas	25
	7.2	Control de acciones mediante comandos de voz	
	7.3	Ejecución autónoma de los nodos	
8	Imp	lementación del sistema	27
	8.1	Ejecución en el arranque	
	8.2	Nodo de ejecución automática de nodos	
	8.3	Reconocimiento de comandos de voz	
	8.4	Feedback mediante text-to-speech	
	8.5	Nodo de navegación	
	8.6	Nodo de guiado	
	8.7	Nodo de mapeo: slam gmapping	
9	Pru	ebas del sistema	29
•	9.1		
	9.2	Visualización mediante RViz	
	9.3	Pruebas reales	
10		clusion	31
		Conclusión sobre la metodología	
		Conclusión sobre los resultados	
	10.3	Desarrollos futuros	31
11	Ane	exo I: Configuración del sistema	35
	11.1	Configuración del espacio de trabajo	35
		11.1.1 Instalación de las librerías	35
		11.1.2 Gestión de las dependencias	35
	11.2	Configuración del hardware	35
		11.2.1 Calibración de los encoders	35
		11.2.2 Ordenador de abordo	35
		11.2.3 Sensor Kinect	35
		11.2.4 Láser SICK LMS100	35

Índice de figuras

1	Esquema del sistema robotico utilizado en el proyecto vii
2	Diagram of the robotic system used for this project xi
2.1	Motor de corriente continua con encoder
2.2	Robot de configuración diferencial Pioneer 3 DX
2.3	Ejemplos de configuración diferencial: Cargador frontal, Robotnik
	Guardian, Pioneer 3 AT
2.4	Configuración síncrona
2.5	Configuración síncrona y rueda omnidireccional
2.6	Robot Uranus con ruedas tipo Mecanum
2.7	Esquema de un encoder absoluto
2.8	Unidad de medida inercial, IMU
2.9	Cámara estereoscópica del robot PR2
2.10	Sensor de 3 dimensiones Kinect para Xbox 360
4.1	Robot Pioneer 3-AT
4.2	Panel de control del robot Pioneer 3-AT
4.3	Sensor Kinect
4.4	Proyección de infrarrojos y obtención de la nube de puntos 18
4.5	Sensor escaner láser Sick LMS100
4.6	Campo de visión del sensor láser Sick LMS100

Índice de tablas

4.1	Especificaciones del robot Pioneer 3 AT							17
4.2	Características del sensor Kinect							19
4.3	Características del sensor láser Sick LMS100							20

XX ÍNDICE DE TABLAS

Capítulo 1

Introducción

Esta primera sección será un apartado previo para poner en contexto al lector sobre la robótica móvil en general y a todo el desarrollo del proyecto "Guiado de un robot móvil basado en ROS y Kinect" en particular.

En esta sección explicaremos qué consiste y cuáles son los principales problemas de la robótica móvil así como las motivaciones para el desarrollo del proyecto.

1.1 Robótica

a historia de la robótica tiene su precursor en la mecánica y los mecanismos desarrollados para imitar el movimiento y funciones de los seres vivos. Los antiguos egipcios ya empleaban mecanismos para mover los brazos de las estatuas y los griegos utilizaban sistemas hidráulicos para adornar sus templos.

Podemos decir que en torno al siglo XVII es cuando se inicia la historia de la robótica actual. En concreto, cuando Jacques de Vaucanson en 1745 inventó el primer telar automático de la historia. También contruyó lo que se denominó como autómatas en la época, con obras como El flautista, El tamborilero o El pato, obra conocida como una de las pioneras en la historia de la robótica.

Más tarde, Joseph Jacquard inventa en 1801 una máquina textil programable mediante tarjetas perforadas refinando la tecnología empleada por Vaucason. Luego, la Revolución Industrial impulsó el desarrollo de máquinas que automatizaban tareas que antes realizaban las personas dando paso a la hisotiria de la automatización industrial.

Antes ya se habían desarrollado algunos mecanismos automáticos como el León mecánico creado por Leonardo Da Vinci en el siglo XVI, que abría su pecho mostrando el escudo del rey Luis XII, o el Hombre de palo, un autómata de madera construido por Juanelo Turriano que andaba y movía la cabeza, ojos, boca y brazos.

La palabra "robot" comenzó a utilizarse en el mundo del teatro y de la ciencia ficción. Una obra checoslovaca publicada en 1917 por Karel Kapek, denominada Rossum's Universal Robots, dio lugar al término robot. La palabra checa "Robota" significa servidumbre o trabajador forzado, y cuando se tradujo al ingles se con-

virtió en el término robot. Como ejemplo de ciencia ficción se podría mencionar al escritor Isaac Asimov por la publicación sobre las tres leyes de la robótica.

Los primeros robots llamados como tal fueron creados en 1958 y eran de tipo teleoperados, con el objetivo de manipular elementos sin riesgo para el operario. Este tipo de robots consisten en un sistema maestro-esclavo en el que los movimientos realizados por el maestro son transmitidos mecánicamente a cierta distancia y repdroducidos por el robot esclavo.

Años más tarde, se comenzó a utilizar la tecnología electrónica y el uso del servocontrol, sustituyendo la transmisión mecánica por otra eléctrica. Ejemplos de estos manipuladores fue el realizado por Ralph Mosher, Handy-Man, consistente en dos brazos mecánicos teleoperados mediante un maestro del tipo denominado exoesqueleto.

La sustitución del operador en este tipo de sistemas por un programa de ordenador que controlase los movimientos del manipulador dio paso al concepto de robot.

1.2 Robótica Móvil

Prácticalmente cualquier robot consta de alguna parte móvil que le permite realizar algún tipo de tarea, sin embargo nos referimos a la «robótica móvil» como el área de la robótica que estudia los robots con capacidad para trasladarse en un ambiene dado.

Los robots móviles son aquellos que tienen la capacidad de desplazarse utilzando algún sistema locomoción como pueden ser ruedas, patas, girar sobre sí mismos... Estos robots se diferencian respecto a los robots fijos que permanecen anclados a una superficie, como un brazo robótico industrial. Tampoco debe confundirse con los robots destinados a desplazarse por otros medios como agua o aire, ya que estaríamos entrando en el área de la robótica acuática/submarina o robótica aérea respectivamente. Podemos decir por tanto que la robótica móvil se refiere a robots que se mueven en el entorno terrestre.

Las aplicaciones dentro de la robótica móvil pueden ser múltiples: exploración de entornos peligrosos, exploración espacial o minera, misiones e búsqueda y rescate de personas, telepresencia, autmatización de procesos, transporte autónomo, vigilancia, inspección y reconocimeinto del terreno o utilizados como plataformas móviles que incorporan otros sistemas robóticos como podrían ser un brazo manipulador.

La robótica móvil surgió como manera extender el campo de la robótica hacia robots que anclados a un punto fijo. La capacidad de estos robots para desevolverse en entornos diferentes ofrecía la posibilidad de abrir nuevas lineas de investigación y automatizar tareas que estaban asociadas con la navegación y localización.

Los primeros pasos dentro de la robótica móvil eran motivados por la idea de introducir la mayor autonomía posible a los robots, tanto en terminos de suministro

de energía como en computación para realizar las tareas de planificación, percepción v control.

REFERENCIAS A LIBROS

1.3 Motivación del proyecto

Dotar a un robot de la capacidad de navegar autónomamente puede ser una alternativa imprescindible en el caso de que se necesite explorar un entorno que no sea fácilmente accesible para el ser humano o que conlleve cierto riesgo.

Cualquier proyecto que desarrolle la automatización de un proceso es ya una motivación, puesto que se va a diseñar una máquina que sea capaz de realizar una tarea que antes solo podía realizarse por un ser humano. Además, dichas tareas realizadas por un robot pueden realizase, en principio, con una mayor precisión y con mayor repetibilidad debido a que se elimina el factor del cansancio.

Este proyecto también viene motivado por la integración de ROS dentro de una plataforma móvil. Con esta plataforma de desarrollo software podemos explorar un concepto diferente de programación en robótica, que ofrece características como:

- Abstraerse de la programación a bajo nivel.
- Reutilizar software ya desarrollado (nodos).
- Interfaz de comunicación común.
- Escalabilidad del sistema.
- Simulación mediante Gazebo.
- Visualización gráfica de la información aportada por sensores.
- Transformación entre los diferentes sistemas de coordenadas.

Utilizar sensor de bajo coste Kinect es otra de las motivaciones de este proyecto debido a que este sensor de bajo coste permite obtener información en tres dimensiones del entorno, pudiensose realizar una navegación basada solamente en este sensor además de reconocer objetos por su forma y realizar el guiado del robot detectando objetos.

De las aplicaciones que más han servido como motivación para el desarrollo de este proyecto ha sido la automatización de las tareas de conducción de automóviles, un sector que se encuentra en auge y que comienza a dar sus primeros pasos en el mundo real **REFERENCIA A NOTICIA**.

También los robots de exploracion espacial de la NASA **referencia a NASA**, en especial a su último rover en Marte, Curiosity **referencia noticia**, que permite explorar el entorno árido de la superficie marciana con un alto grado de autonomía en las labores de inspección y análisis de elementos.

Capítulo 2

Estado del arte

La robótica móvil vive actualmente un momento de gran desarrollo para multitud de aplicaciones en entornos diversos, desde espacios abiertos con orografía accidentada y condiciones climáticas adversas **proyecto robot catastrofes** **proyecto DARPA big dog**, entornos controlados y espacios interiores conocidos como la automatización de tareas de almacenaje de productos **referencia robots amazon**, hasta orientación y exploración de espacios interiores desconocidos **robot creacion de mapas de edificios**.

De la misma forma, el interés en robots que sea capaces de reproducir las capacidades de un ser humano e incluso que pueda dar asistencia ya sea en entornos conocidos o no abre un área de posibilidades en las que los robots móviles cobran importancia.

Los avances tanto el las características hardaware como software son notables aunque estas suelen variar dependiendo de la aplicación a la que un robot esté destinado. En este capítulo trata de hacer un resumen del estadoactual de la robótica móvil.

2.1 Hardware en robótica móvil

Como hemos indicado previamente, la configuración hardware de un robot móvil varía dependiendo de la aplicación a la que vaya destinado. Es cierto que lo ideal para un robot sería disponer de una configuración hardware común que fuera polivalente en los diferentes terrenos y situaciones, sin embargo, debido a la variedad de aplicaciones y dado que un robot suele destinarse a tareas específicas, la elección del hardware que mejor se adapta es una tendencia común en robótica.

Para seleccionar el hardaware debemos valorar el tipo de actuador que se requiere, entendiéndose por actuador al dispositivo que genera el movimiento de los elementos que hacen que el robot móvil se desplace. En robótica móvil suelen utilizarse los actuadores de tipo eleéctrico, ya que ofrecen unas prestaciones de potencia, controlabilidad y coste adecuados. Además, ofrecen la posibilidad de que la alimentación esté integrada en el robot, haciéndolo independiente de una fuente de energía accesoria.

Los actuadores eléctricos son, por tanto, los más utilizados. En concreto, los motores de corriente continua (Figura 2.1) ofrecen un fácil control y fácil acoplamiento a un encoder. Los encoder son sensores de posición que perminten conocer el giro de un eje de rotación. Estos sensores son muy importantes en robótica móvil, ya que a partir de la información que arrojan el robot tiene consciencia de su posición relativa, en el caso de los encoders incrementales, o su posición absoluta, en el caso de los encoders absolutos. **referencia a la sección de sesnsores**.

Figura 2.1: Motor de corriente continua con encoder

Existen otros tipos de actuadores eléctricos que se utilizan en robótica, como puede ser el caso de los motores paso a paso, sin embargo su baja velocidad de giro no los hacen adecuados para robots móviles.

La disposición de los actuadores determina la configuración del robot. Centrándonos en robots que se desplazan mediante ruedas y descartando a los robots con patas, podemos distinguir las siguientes configuraciones: Ackerman, triciclo clásico, tracción diferencial, skid-steer, síncrona y omnidireccional.

IMAGEN de las configuraciones LIBRO

a. Configuración Ackerman

Consta de cuatro ruedas. Las ruedas motrices son las traseras o las delanteras, y éstas últimas se encargan además de la dirección. Permite un desplazamiento a altas velocidades y la posibilidad de realizar giros con estabilidad. Esta configuración es la que se utiliza en la industria del automóvil.

b. Triciclo clásico

Consta de tres ruedas. Las ruedas motrices pueden ser las dos ruedas traseras o solo la delantera, que se encarga de la dirección. Este es el caso de los triciclos y de algunas bicicletas. Esta configuración ofrece alto grado de maniobrabilidad penalizando la estabilidad del conjunto y realizar giros den 90°.

c. Configuración diferencial

Consta de dos ruedas colocadas en el eje perpendicular a la dirección de desplazamiento del robot. Cada rueda es controlada por un motor, de tal forma que la diferencia de velocidad giro de una rueda respecto a otra determina el giro, avance o retroceso del robot. Los robots que presentan esta configuración suelen utilizar una tercera rueda que gira libremente que sirver como apoyo (rueda loca). Es la configuración típica de las sillas de ruedas y su característica principal es que permite realizar giros completos sobre sí mismo.

Figura 2.2: Robot de configuración diferencial Pioneer 3 DX

d. Skid steer

Consta de cuatro ruedas, todas ellas motrices, y su principio de funcionamiento es el mismo que el utilizado en la configuración diferencial. Esta configuración presenta las ventajas de la configuración diferencial, pudiendo realizar giros sobre el eje del robot, pero presenta la desventaja de que las ruedas deben deslizarse lateralmente, por tanto existe un rozamiento que varía en función de la inclinación el tipo de terreno que dificulta realizar un modelo cinemático.

Proporciona mucha tracción y estabilidad y suele encontrarse en aplicaciones relacionadas con la exploración, vehículos obra o vehículos todo terreno (Figura 2.3).

Figura 2.3: Ejemplos de configuración diferencial: Cargador frontal, Robotnik Guardian, Pioneer 3 AT

Este sistema es el que se utiliza también en los tanques de guerra, aunque en vez de neumáticos se utilizan orugas, denominado configuración por deslizamiento de cintas **Referencia**.

e. Configuración síncrona

Conformado por tres o más ruedas acopladas mecánicamente y dotadas de tracción, este sistema permite que todas las ruedas roten en la misma dirección y giren a la misma velocidad (Figura 2.4). Es utilizada ampliamente en robótica para robots móviles de interior, aunque está siendo desplazada por la configuración omnidireccional.

Figura 2.4: Configuración síncrona

f. Configuración omnidireccional

Consta de 3 ruedas cada una con un motor independiente, que permiten el desplazamiento en cualquier direción (Figura 2.5). Las ruedas omnidireccionaes constan de una serie de rodillos con el eje de rotación perpendicular a la direccioón de avance.

Figura 2.5: Configuración síncrona y rueda omnidireccional

Esta configuración diferencial empieza a utilizarse en sistemas de 4 ruedas con las demonminadas "Mecanum Wheels" **REFERENCIAAA**, que son ruedas similares a las omnidireccionales pero con los rodillos colocados en cierto ángulo (Figura 2.6). La combinación de los giros de cada una permiten al robot moverse en cualquier dirección.

Figura 2.6: Robot Uranus con ruedas tipo Mecanum

2.2 Sensores en robótica móvil

Para que un robot pueda realizar tareas con una determinada precisión y velocidad debe conocer el entorno del sistema en el que se quiera actuar así como el estado del robot en ese sistema.

Existen dos tipos de sensores, los sensores internos, que aportan información sobre la posición orientación del robot, y los externos, que aportan información del entorno alrededor del robot.

2.2.1 Sensores internos

Dentro de los sensores internos, los sensores de posción primordiales son los encoders, tanto los de tipo incremental como los de tipo absoluto (Figura 2.7). Su funcionamiento se basa en un foto-emisor y un foto-receptor que detectanel paso o no de luz a través de un disco con ciertas marcas acoplado al eje de giro del actuador.

Figura 2.7: Esquema de un encoder absoluto

Los sensores de velocidad son similares a los encoders pero miden la velocidad de giro del eje del actuador. La tacogeneratriz proporciona una tensión proporcional a la velocidad de giro.

Los sensores acelerómetros o inclinómetros, permiten conocer la inclinación del robot en cada uno de sus ejes, así como las aceleraciones producidas por su propio desplazamiento.

Existen otros sensores más sofisticados como las Unidades de medida inercial (IMU) (Figura 2.8). Son dispositivos que combinan las medidas de un giróscopo y varios acelerómetros para determinar la posición relativa (x, y, z) y la orientación

(roll, pitch, yaw), velocidad y aceleración respecto a un sistema de referencia.

Figura 2.8: Unidad de medida inercial, IMU

Debido a que la aceleración se ha de integrar dos veces para obtener la posición, el error crece de forma cuadrática. Luego para largos periodos de operación las unidades IMU se deben de resetear con otros sensores tipo GPS.

2.2.2 Sensores externos

Los sensores externos son aquellos que nos aportan información sobre el estado del robot respecto al entorno o que nos da información sobre lo que ocurre alrededor de este.

Los sensores de presencia, como son los sensores de tipo inductivo, capacitivo, óptico o mecánico. Sea cual sea la naturaleza del sensor, su función es la de detectar presencia. Un ejemplo de aplicación a un robot móvil sería una serie de sensores de presencia mecánicos, denominados "fin de carrera", colocados en la parte delantera, de modo que al tocar algún obstáculo se tuviera conciencia de la presencia de un obstáculo.

Sensores de posicionamiento global GPS (Global Positioning System) que permiten determinar la posición de un objeto en todo el mundo, normalmente con una precisión de metros. El GPS funciona con una red de satélites con trayectorias sincronizadas que cobren toda la superficie de la tierra. El GPS lanza señales a los satélites y calculando el tiempoq ue tarda éstos en responder, se obtiene la posición por trianguación.

Los sensores GPS se utilizan en robots móviles que operan en el exterior y suen combinarse con otros sensores que ofrezcan una mayor precisión.

Los sensores de distancia son aquellos que nos dan una referencia de la longitud que existe a los objetos cercanos. Es el caso de los sensores e ultrasonidos, donde un emisor emite una onda ultrasónica y cuando es reflejada por un objeto se puede determinar la distancia a la que se encuentra midiendo el tiempo que tarda el sonido en ir y volver. Los sensores de distancia también pueden ser infrarrojos, funcionando de la misma manera.

Existen sensores de distancia que utilizan tecnología láser para determinar la longitud de un punto a otro, se denominan Scanners láser. Estos sensores emiten rayos láser en un plano de 2 dimensiones y en un rango determinado, y midiendo el tiempo de vuelo del haz láser son capaces de obtener una medida muy precisa de la distancia.

Existen otro tipo de sensores de distancia que permiten obtener distancias a puntos de manera tridimensional. Algunos utilizan un sistema de doble cámara conocidos como cámara estereoscópica (Figura 2.9). Estos sesnores son capaces de obtener imágenes 3D con la información de dos imágenes tomadas a cierta distancia una de otra. Es el sensor más parecido a la visión humana.

Figura 2.9: Cámara estereoscópica del robot PR2

Otros sensores de distancia en 3 dimensiones, son los sensores de tipo Infrarrojo **BUSCAR NOMBRE CORRECTO SENSORES 3D BOSCH**, como es el sensor Kinect, que ha se ha vuelto muy popular debido a su bajo coste y su buena respuesta.

Kinect es un dispositivo derrollado por PrimeSense**refenrecia** y distribuido por Microsoft para la vieoconsola Xbox 360 (Figura 4.4).

Inicialmente permitía controlar e interactuar con la consola XBOX sin necesidad de tener contacto físico con un controlador. Este sensor permite reconocer gestos, comandos de voz, objetos e imágenes; esto hace que tenga mucho interés en el mundo de la robótica.

Figura 2.10: Sensor de 3 dimensiones Kinect para Xbox 360

Para captar el entorno en 3 dimensiones, Kinect incluye una cámara de vídeo RGB, un emisor de haz infrarrojo y una cámara infrarroja.

2.3 Control en la robótica móvil actual

El control del movimento en los robots móviles con ruedas puede describirse, de manera general, en cuatro tareas fundamentales: localización y orientación, planificación de trayectoria, seguimiento de la misma y evasión de los obstáculos.

2.3.1 Localización y orientación en un entorno

Normalmente, uno de los mayores problemas que conciernen a la navegación de robots móviles consiste en la determinación de su localización respecto a un mapa en función de la información captada por los sensores.. No basta con situar una referencia global, si no que es imprescindible conocer la posición relativa respecto a los posibles obstáculos, tanto móviles como estáticos, de su entorno. Para esta tarea existen diferentes opciiones, como utilizar mapas introducidos en el robot, o bien elaborar un mapa de manera simultánea al movimiento del robot por un lugar, como si se tratase de un robot de exploración. Es lo que se conocde como SLAM (Simultaneous Localization and Mapping)**refenrecia**.

Uno de las motivaciones para el uso de esta técnica es la construcción de mapas desde el punto de vista del robot, así como el ruido que se genera en los sensores de posición internos del robot que miden la odometría. Sin embargo, esta técnica en ocasiones puede producir efectos no deseados, como incorrecciones en el mapa debido a su alto coste computacional o variaciones debidas a objetos que se mueven en torno al robot.

Pueden distenguirse tres tipos de mapas: geomñetrico, topológico y semántico. El nivel geométrico es el más utilizado y consiste en un mapa métrico donde se representan los segmentos bñasicos de un entorno, o un mapa discretizado, donde se efectua la descomposición de los elementos en celdillas. En el nivel topológico, se representaran nodos y coneciones entre ellos, y el nivel semñantico es cuando se elimina la información geométrica.

2.4 Aplicaciones actuales de la robótica móvil

vhbjklmnvhjbknlmnknjbhvgcvbjnklmnkjnb.

Capítulo 3

Alcance y objetivos del proyecto

En este capítulo se define el alcance y los objetivos de este proyecto, es decir, lo que se pretende conseguir con este proyecto y hasta donde puede llegar.

3.1 Propósito y alcance

El propósito de este proyecto es el control automático de un robot móvil utilizando ROS. Lo que se pretende es implementar la navegación autónoma del robot basándose en un control reactivo a partir de la información obtenida a través del sensor Kinect.

El alcance del proyecto requiere múltiples elementos de trabajo:

En primer lugar, requiere un conocimiento previo del sistema hardware, como es el robot Pioneer 3 AT así como la sensor Kinect. Cómo integrar estos elementos y acceder a la información que aportan sus sensores y comandar al robot para que realice movimientos.

En segundo lugar, requiere un conocimiento del entorno de desarrollo ROS. Las herramientas software de las que dispone, el funcionamiento interno y la manera de programar e interaccionar con los diferentes elementos, el aprendizaje y comprensión.

En tercer lugar, incorporar los sensores pertienentes para obtener la información que permita al robot posicionarse en el entorno.

En cuarto lugar, implementar los ajustes necesarios para que el robot pueda operar utilizando el entorno de navegación ofrecido por ROS. Realizar una configuración óptima de los sensores y realizar las pruebas reales para el cáculo de trayectorias y el control reactivo del robot.

Por último, realizar la integración del sistema dentro de la plataforma robótica. Disponer de todo lo necesario para que el robot quede totalmente adaptado al sistema ROS e integrado con el sensor Kinect y los sensores pertinentes.

3.2 Objetivos

El objetivo de este proyecto es realizar el control de un robot móvil para que sea un robot autónomo, basándose en la información que da la odometría y la nube de puntos que proporciona un sensor que captura el entorno en 3 dimensiones como el sensor Kinect.

Desarrollo del proyecto

- 4.1 Planteamiento
- 4.2 Planificación del proyecto
- 4.3 Tecnologías empleadas en el proyecto
- 4.4 Herramientas utilizadas en el proyecto

4.5 Hardware

En esta parte se explica detalladamente el hardware empleado en el desarrollo del proyecto.

4.5.1 Pioneer 3 AT

El robot Pioneer 3 AT (Figura 4.1), perteneciente a la empresa Adept MobileRobots, es un robot de cuatro ruedas en configuración skid-steer y todo terreno (AT, All Terrain) de operación e investigación en laboratorio.

Figura 4.1: Robot Pioneer 3-AT

Su configuración en skid-steer permite un control relativamente simple utilizando el modo diferencial para poder realizar giros con gran maniobrabilidad, sin embar-

go, esta configuración depende mucho del tipo de suelo, con lo que se pierde precisión.

Este robot dispone de baterías, interruptor con parada de emergencia, dos motores de corriente continua para cada par de ruedas con transmisión mediante correa, encoders para leer la odometría y un microcontrolador con firmware ARCOS.

Ademas cuenta con un pequeño computador interno conectado al microcontrolador que puede utilizarse para realizar operaciones de manera autónoma.

El cuerpo del robot es de aluminio y su parte delantera así como superior es fácilmente desmontable para realizar las conexiones pertinentes y acceder al ordenador de a bordo y la placa microcontroladora. En la plataforma superior se sitúa el panel de control (Figura 4.2)para acceder al ordenador de abordo conectando un monitor, teclado y ratón, puerto serial RS-232, botones de encendido y reset varios leds indicadores de estado y de envío y recepción de datos.

Figura 4.2: Panel de control del robot Pioneer 3-AT

En la siguiente tabla (Tabla 4.1) se describen las principales características del robot.

4.5.2 Sensor Kinect

Kinect es un conjunto de sensores de bajo coste que lo convierte en una herramienta excepcional (Figura 4.4). Este dispositivo incluye una cámara de vídeo RGB, una cámara infrarroja de profundidad, un array de micrófonos y altavoces, un acelerómetro y un pequeño motor que le permite hacer movimientos de inclinación.

Su función principal es la de percibir el entorno captando una serie de puntos que se ubican en las tres dimensiones. Su funcionamiento a grandes rasgos se basa en un emisor de infrarrojos a 830 nm que interactñua con los objetos y una cámara infrarroja que etecta la diferencia entre la proyección anterior y la actual, obteniendo la distancia a cada objeto.

En primer lugar, el laser infrarrojo es emitido por Kinect con un patrón determinado, el cual no es simétrico sino que tiene puntos aleatorios que se dispersa gracias a unas lentes de proyección. Estos puntos aleatorios se reflejan en los objetos, los cuales sería posible verlos con una cámara externa.

4.5. HARDWARE

Especificaciones	Pioneer 3 AT
Largo	508 mm
Ancho	$497~\mathrm{mm}$
Alto	$277 \mathrm{mm}$
Distancia al suelo	$80~\mathrm{mm}$
Peso	$12~\mathrm{kg}$
Carga útil	$32~\mathrm{kg}$
Cuerpo	Aluminio de 1.6 mm
Baterías	3 de 12 V Ah, estancas, plomo-ácido
${ m Autonom\'ia}$	4-8 horas
Sistema motriz	4 ruedas motrices
Ruedas	Neumáticos de Nylon
Diámetro de rueda	$222~\mathrm{mm}$
Ancho de rueda	$88 \mathrm{\ mm}$
Sistema de giro	Diferencial
radio máxima curvatura	$40~\mathrm{cm}$
Radio de giro	$0~\mathrm{cm}$
Máxima velocidad de avance	$1.2 \mathrm{\ m/s}$
Máximo escalón	$10~\mathrm{cm}$
Máximo hueco	$15.2~\mathrm{cm}$
Terreno	Asfalto, Tierra, Césped, etc.
Encoders	500 pulsos
Procesador	Hitachi H8S

Tabla 4.1: Especificaciones del robot Pioneer 3 AT

A continuación, al sensor de Kinect MT9M001C12STM, que no es más que el sensor CMOS de una cámara en la que se le trata para que observe solo el infrarrojo, obteniendo los puntos infrarrojos en el plano 2D. El motivo por el que podemos medir la profundidad de los objetos (su distancia) es porque sabemos el patrón de cómo emite el laser emisor, por tanto sabremos que si un punto no está en el sitio que corresponde, se ha trasladado respecto al punto inicial y se le aplica la correspondiente transformación, obteniendo finalmente los puntos de toda la nube en coordenadas cartesianas XYZ.

La siguiente tabla (Tabla 4.2) muestra las especificaciones del sensor Kinect.

4.5.3 Láser SICK LMS100

Aunque el planteamiento incial del proyecto planteaba la navegación basada únicamente en el sensor kinect, debemos mencionar el uso del sensor láser Sick LMS100 (Figura 4.5).

Este es un sensor láser por infrarrojos de clase I (Inofensivo para el ojo humano), que obtiene la medida de distancias con gran preción y rapidez en un solo plano y

Figura 4.3: Sensor Kinect

Figura 4.4: Proyección de infrarrojos y obtención de la nube de puntos

Figura 4.5: Sensor escaner láser Sick LMS100

4.5. HARDWARE

Especificaciones	Sensor Kinect
Dimensiones del conjunto	$270 \text{mm} \times 50 \text{mm} \times 70 \text{mm}$
Fuente infrarroja	$830\mathrm{nm}$
Potencia	$60~\mathrm{mW}$
Cámara Infrarroja	MT9M001C12STM
Resolución cámara infrarroja	1200×960 pixeles
Frecuencia	$30~\mathrm{Hz}$
Tamaño pixel	$5.2\mathrm{um} \times 5.2\mathrm{um}$
Pixeles activos	$1280 \mathrm{H} \times 1024 \mathrm{V}$
Campo de visión	$58^{\circ} \text{ H}, 45^{\circ} \text{ V}, 70^{\circ} \text{ D}$
Resolución espacial	3mm (a 2 metros de distancia)
Resolución de profundidad	1cm (a 2 metros de distancia)
Distancia de operación	$0.45\mathrm{m}$? $6.5\mathrm{m}$
Cámara RGB	MT9M112
Resolución cámara RGB	$640 \times 480)$
Audio	TAS1020B (Controlador de Audio)
Formato	16kHz, 16-bit mono, modulación por codificación de pulso (PCM)
Entrada de audio	4 micrófonos con conversión analógico digital de 24bits
Acelerómetro	KXSD9-2050

Tabla 4.2: Características del sensor Kinect

realizando un barrido de 270° (Figura 4.6).

Figura 4.6: Campo de visión del sensor láser Sick LMS100

Este sensor está colocado en la parte trasera del robot, enfocando hacia atrás para cubrir un mayor rango y conocer todo el entorno alrededor del robot.

En la siguiente tabla (Tabla 4.3) se recogen sus características principales.

4.5.4 Intel NUC ***

Especificaciones	Sick LMS100
Campo de aplicación	Interno
Fuente infrarroja	$905 \mathrm{nm}$
Clase Láser	1 (IEC 60825-1)
Campo de visión	$270^{\rm o}$
Frecuencia de escaneo	$25 \mathrm{Hz}/50 \mathrm{Hz}$
Resolución angular	$0.25^{\circ}/0.5^{\circ}$
Distancia de operación	0.05 - 20 m
Tiempo de respuesta	$20~\mathrm{ms}$
Error	$30 \mathrm{mm}$
Interfaz de datos	Ethernet
Tensión de operación	10.8V - $20V$ DC
Consumo	$20~\mathrm{W}$
Peso	$1.1~\mathrm{Kg}$
Dimensiones	$105\text{mm} \times 102\text{mm} \times 152\text{mm}$

Tabla 4.3: Características del sensor láser Sick LMS100

Arquitectura

Esta seccin tiene como objetivo plantear la arquitectura general utilizada en el robot, las comunicaciones con el resto del hardware y con los nodos que porporcionan la informacin necesaria para que el robot sea totalmente autnomo.

- 5.1 Arquitectura general
- 5.2 Arquitectura del proyecto

Entorno ROS

- 6.1 Configuración de ROS
- 6.2 Configuración de los paquetes ROS
- 6.3 Control teleoprado
- 6.4 Navegación autónoma
- 6.5 Guiado mediante sensor Kinect

Diseño del sistema

- 7.1 Jerarquización de tareas
- 7.2 Control de acciones mediante comandos de voz
- 7.3 Ejecución autónoma de los nodos

Implementación del sistema

- 8.1 Ejecución en el arranque
- 8.2 Nodo de ejecución automática de nodos
- 8.3 Reconocimiento de comandos de voz
- 8.4 Feedback mediante text-to-speech
- 8.5 Nodo de navegación
- 8.6 Nodo de guiado
- 8.7 Nodo de mapeo: slam gmapping

Pruebas del sistema

En este capítulo...

9.1 Simulación

Simulación con MobileSim Simulación con Gazebo

- 9.2 Visualización mediante RViz
- 9.3 Pruebas reales

Conclusion

Se presentan a continuación las conclusiones...

- 10.1 Conclusión sobre la metodología
- 10.2 Conclusión sobre los resultados

Una vez finalizado el proyecto...

10.3 Desarrollos futuros

Un posible desarrollo...

Bibliografía

[1] A. Brunete, M. Hernando, and E. Gambao. Offline ga-based optimisation for heterogeneous modular multi-configurable chained micro-robots. *Transactions on Mechatronics*, 18(2):578 – 585, 2013.

34 BIBLIOGRAFÍA

Anexo I: Configuración del sistema

- 11.1 Configuración del espacio de trabajo
- 11.1.1 Instalación de las librerías
- 11.1.2 Gestión de las dependencias
- 11.2 Configuración del hardware
- 11.2.1 Calibración de los encoders
- 11.2.2 Ordenador de abordo
- 11.2.3 Sensor Kinect
- 11.2.4 Láser SICK LMS100