Unsupervised Clustering Mark Dredze Machine Learning CS 600.475

Today

- Focus on specific algorithms for clustering
- Gently transition into probabilistic methods

Classification

- We can't do classification anymore
 - No classes!
- But we still have a notion of groups
- Divide things into two piles
- Classification found patterns that explained a label
- We can find patterns that separate the data

Clustering

- Sort the data into clusters (groups)
- Examples that are in the same group are similar
 - Ideally: clusters correspond to class labels
- We don't know what we will get
 - What does it mean for examples to be similar
 - Think of the problems with similarity in knn

Clustering

- Data $\{(x_i)\}_{i=1}^N$ $x_i \in \mathfrak{R}^M$
- Input: number of clusters k
- Algorithm: partition data into k clusters
 - Each x belongs to a cluster
- Cluster: a group of similar examples

Solving Clustering

- How do we group examples into clusters?
- Same as before!
 - Design a model
 - Define a model objective to represent learning goal
 - Write procedure for maximizing objective
 - Compute model parameters using procedure

Defining Clusters

- A cluster is a group of similar examples
- ullet Define cluster k by a prototype $\,\mu_{\emph{k}}$
- $r_{nk} \in \{0,1\}$, value of 1 means example n in cluster k
- $\mu_k = \frac{1}{\sum_{n=1}^N r_{nk}} \sum_{i=1}^N r_{nk} X_n$, mean of the examples in cluster k

Objective

- What are good clusters?
 - A good cluster is a group of points that is maximally similar
 - Objective: maximize the similarity of every cluster
- Objective (distortion measure)

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} || x_n - \mu_k ||^2$$

- Each example measured as distance from prototype
 - Euclidean distance
- Note: similar to sum of squares error

Learning

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} || x_n - \mu_k ||^2$$

- Notice there are two parameters: μ_k and r_{nk}
- Learning: select values for parameters that minimize objective

Learning

- Note that μ_k and r_{rk} are dependent on each other
 - If we knew μ_k we could set r_{nk}
 - Assign each point to closest cluster
 - If we knew r_{nk} we could set μ_k
 - Compute cluster means from examples in cluster
- Strategy: iterative procedure
 - Select μ_k that minimizes J with fixed r_{nk}
 - Select r_{nk} that minimizes J with fixed μ_k

Update Rules

- Take the derivative of J with respect to each parameter
 - Set to 0 and solve for the parameter

$$r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j} ||x_n - \mu_j||^2 \\ 0 & \text{otherwise} \end{cases}$$

$$\mu_k = \frac{\sum_n r_{nk} x_n}{\sum_n r_{nk}}$$

Convergence

- Each update reduces the value of J
 - Therefore it will converge
- Note: J is non-convex
 - Resulting value may not be the best
 - Initialization values matter!

Algorithm: K-Means

- Given data $\{(\mathbf{x}_i)\}_{i=1}^N$ $\mathbf{x}_i \in \mathfrak{R}^M$
- Initialize μ_k
- Iteratively update until convergence:

$$r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j} ||x_{n} - \mu_{j}||^{2} \\ 0 & \text{otherwise} \end{cases}$$

$$\mu_{k} = \frac{\sum_{n} r_{nk} x_{n}}{\sum_{n} r_{nk}}$$

Differences from Classification

- No train and test data
 - We have no labels, so use all available data
- How do we choose k?
 - Requires human input
- Evaluation measure
 - What do we compare against?
 - Usually we have some labeled data for evaluation only

Image Compression and Segmentation

- Even this simple algorithm yields powerful results
- Image compression/segmentation
 - Each pixel is represented using RGB values
 - Cluster pixels using K-means
 - Note: ignores location of pixel in image

K-Means Issues

- Computational Complexity?
 - Re-assignment step:
 - Vector distance- M operations
 - Find best cluster for each example: K*N distances
 - Total: O(KNM)
 - Compute new means:
 - Each example added to cluster once- O(NM)
 - For I iterations, total is O(IKNM)
 - Linear in each variable
 - Still slow compared to some supervised methods
- Difficulty of finding optimal assignment?
 - NP-Hard in Euclidean space (certainly non-convex)
 - Solution: Random restarts

Problems with K-Means

- Hard assignment
 - Examples go from one cluster to the other right away
- A smooth transition might be better
- How do we do smooth transitions?
- Probabilities!

Generative Clustering Model

- Let's come up with a generative story with clustering
- Assume we have K clusters
- Each cluster represented by a multi-variate Gaussian
- Generative process:
 - Select a cluster (a Gaussian distribution)
 - Generate an example by sampling from the Gaussian

Gaussian Mixtures

- Since we have multiple Gaussians generating points, we call the model Gaussian Mixture Model
- Why Gaussians?
 - Captures intuition about clusters
 - Examples are more likely to be near center of cluster

Gaussian Mixture Model

Gaussian Mixture Model

 Cluster means, variances, coefficients

$$\mu_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma(Z_{nk}) X_{n} \qquad \gamma(Z_{k}) = \frac{\pi_{k} N(x \mid \mu_{k}, \Sigma_{k})}{\sum_{j=1}^{K} \pi_{j} N(x \mid \mu_{j}, \Sigma_{j})}$$

$$N_{k} = \sum_{n=1}^{N} \gamma(Z_{nk})$$

$$1 \sum_{n=1}^{N} \gamma(Z_{nk})$$

$$N_k = \sum_{n=1}^{N} \gamma(Z_{nk})$$

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^{N} \gamma(Z_{nk}) (X_n - \mu_k) (X_n - \mu_k)^T$$

$$\pi_k = \frac{N_k}{N}$$

Algorithm: GMMs

- Given data $\{(\mathbf{x}_i)\}_{i=1}^N$ $\mathbf{x}_i \in \Re^M$
- Initialize μ_k Σ_k π_k
- Iteratively update until convergence:
 - $\gamma(Z_k)$
 - $\bullet \quad \mu_k \quad \Sigma_k \quad \pi_k$

GMM Video

 http://www.clsp.jhu.edu/~damianos/DOC/ movie_3gaussians.gif

Similarities

K-Means Gaussian Mixtures

Assign examples to clusters

 r_{nk}

 $\gamma(Z_k)$

Compute new model parameters that maximize assignments

 μ_{k}

 $\mu_k \sum_k \pi_k$

Same Algorithm

- The maximization algorithm for both models is the same!
- Iterate two steps
 - Compute the **expected** cluster assignments according to the current model
 - **Maximize** the model parameters according to the current cluster assignments
- Expectation Maximization Algorithm (EM)

Next Time The EM Algorithm