Notations.

On note \land le pgcd et \lor le ppcm, par ailleurs on préfère la notation $a \equiv b \pmod n$ pour exprimer que a est congru à b modulo n.

Exercice 1.

Soit $n \geqslant 2$. Calculer:

- **1.** $n \wedge (2n+1)$
- **2.** $n \lor (2n+1)$
- 3. $(n-1) \wedge (2n+1)$
- **4.** $(n-1) \lor (2n+1)$

Ma solution

 $n \wedge (2n+1)$?

Comme le reste de la division euclidienne entre les deux nombres vaut 1, alors $n \wedge (2n+1) = \mathbf{1}$

$$n \vee (2n+1)$$
?

Comme $n \wedge (2n+1) = 1$ alors $n \vee (2n+1) = n \times (2n+1)$

$$(n-1) \wedge (2n+1)$$
 ?

La division euclidienne de (2n+1) par (n-1) vaut 3. Donc $(n-1) \wedge (2n+1) = 3$

$$(n-1) \vee (2n+1)$$
?

On a trois cas qui se présente à nous.

- 1. Lorsque $n\equiv 1\pmod 3$, on a (n-1) et $(2n+1)\equiv 0\pmod 3$. Donc $(n-1)\vee (2n+1)$ vaut $(n-1)\times (2n+1)$
- 2. Lorsque $n \equiv 2 \pmod 3$, on a $(n-1) \equiv 1 \pmod 3$ et $(2n+1) \equiv 2 \pmod 3$.

Donc
$$(n-1) \lor (2n+1)$$
 vaut $\frac{(n-1) \times (2n+1)}{3}$

3. Lorsque $n \equiv 0 \pmod 3$, on a $(n-1) \equiv 2 \pmod 3$ et $(2n+1) \equiv 1 \pmod 3$.

Donc
$$(n-1) \vee (2n+1)$$
 vaut $\frac{(n-1) \times (2n+1)}{3}$

Solution, proposée par le manuel, de l'exercice 1.

1. $n \wedge (2n+1)$?

La division euclidienne de 2n+1 par n s'exprime par l'égalité $2n+1=2\times n+1$, c'est-à-dire 2n+1-2n=1 d'où on conclut que les entiers (2n+1) et n sont premiers entre eux.

2. $n \lor (2n+1)$ **?**

Comme le pgcd de (2n+1) et n vaut 1, alors le ppcm de (2n+1) et n est le produit $(2n+1) \times n$.

3. $(n-1) \wedge (2n+1)$?

La division euclidienne de 2n+1 par n-1 s'exprime par l'égalité $2n+1=2\times(n-1)+3$, d'où on conclut que le pgcd de (n-1) et (2n+1) est un diviseur de 3, donc est égal à 3 ou bien 1.

— Dans le cas où $n \not\equiv 1 \pmod 3$ implique $n-1 \not\equiv 0 \pmod 3$ c'est-à-dire n-1 n'est pas divisible par 3 et donc $(n-1) \wedge (2n+1) = 1$.

— Dans le cas où $n\equiv 1\pmod 3$, on a alors $2n+1\equiv 2\times 1+1\equiv 3\pmod 3$ c'est-à-dire $2n+1\equiv 0\pmod 3$, donc 3 divise 2n+1. $n\equiv 1\pmod 3$ implique $n-1\equiv 0\pmod 3$ c'est-à-dire 3 divise n-1 et donc $(n-1)\wedge (2n+1)=3$.

4.
$$(n-1) \lor (2n+1)$$
 ?

Les calculs des pgcd ci-dessus permettent de trouver aisément les ppcm. En conclusion on a :

• si
$$n \equiv 1 \pmod{3}$$
, alors $(n-1) \vee (2n+1) = \frac{(n-1)(2n+1)}{3}$;

• si
$$n \not\equiv 1 \pmod{3}$$
, alors $(n-1) \vee (2n+1) = (n-1)(2n+1)$.

Exercice 2.

Soit $(a,b,c)\in (\mathbb{N}*)^3$ tel que $a^2+b^2=c^2$ et $a\wedge b\wedge c=1$. Montrer que $a\wedge b=a\wedge c=b\wedge =1$.

Solution de l'exercice 2.

Exercice 3.

Soit $(a, b, c) \in (\mathbb{N}^*)^3$ tel que $a^2 + b^2 = c^2$ et $a \wedge b = 1$.

Montrer que a et b ne sont pas de même parité.

Indication. On pourra utiliser des congruences modulo 4.

Solution de l'exercice 3.