Principles of Machine Learning

Lecture 7: Model Evaluation and Validation

Sharif University of Technology Dept. of Aerospace Engineering

April 20, 2025

Table of Contents

- Introduction
- Performance Measures
- 3 Error Analysis
- 4 Cross-validation & Bootstrap

Table of Contents

- Introduction
- Performance Measures
- Error Analysis
- 4 Cross-validation & Bootstrap

Introduction

Model Evaluation

- ullet Some performance measures/metrics \longrightarrow effectiveness of the model
- For regression tasks:
 - Mean Absolute Error
 - Mean Squared Error
 - Root Mean Squared Error
 - R-squared (R²)
- For classification tasks:
 - 777
 - :
 - 777

Introduction

MNIST Dataset

Before continuing on evaluating classifiers, let's get to know about the MNIST dataset, the "Hello World!" of the AI/ML!

- Modified National Institute of Standards and Technology dataset was created in 1998
- A set of 70,000 small images of digits handwritten by high school students and employees of the US Census Bureau
- Each image is labeled with the digit it represents and has 784 features (pixels)

Introduction

MNIST Dataset

(a) MNIST sample belonging to the digit '7'.

(b) 100 samples from the MNIST training set.

Table of Contents

- Introduction
- Performance Measures
- Error Analysis
- 4 Cross-validation & Bootstrap

Performance Measures – Accuracy

Accuracy

- The most basic performance measure
- Defined as the ratio of correct predictions

$$\mathsf{Accuracy} = \frac{\mathsf{Correct\ Predictions}}{\mathsf{All\ Predictions}}$$

Performance Measures – Accuracy

Example 1. Implementing a classifier for MNIST

```
from sklearn.datasets import fetch_openml
mnist = fetch_openml('mnist_784', as_frame=False)

X, y = mnist.data, mnist.target
X_train, X_test, y_train, y_test = X[:60000], X[60000:], y
        [:60000], y[60000:]

y_train_5 = (y_train == '5') # True for all 5s, False for all
        other digits
y_test_5 = (y_test == '5')
```


Performance Measures – Accuracy

Example 1 contd. Implementing a classifier for MNIST

```
from sklearn.linear_model import SGDClassifier

sgd_clf = SGDClassifier(random_state=42)
sgd_clf.fit(X_train, y_train_5)

>>> sgd_clf.predict([some_digit])
array([ True])
```


Performance Measures - Accuracy using Cross Validation

Example 1 contd. Implementing a classifier for MNIST

```
1 >>> from sklearn.model_selection import cross_val_score
2 >>> cross_val_score(sgd_clf, X_train, y_train_5, cv=3, scoring=
     "accuracy")
3 array([0.95035, 0.96035, 0.9604])
5 from sklearn.dummy import DummyClassifier
6 dummy_clf = DummyClassifier()
7 dummy_clf.fit(X_train, y_train_5)
8 print(any(dummy_clf.predict(X_train))) # prints False: no 5s
     detected
>>> cross_val_score(dummy_clf, X_train, y_train_5, cv=3,
     scoring="accuracy")
array([0.90965, 0.90965, 0.90965])
```

Performance Measures – Accuracy using Cross Validation

Cross Validation

- A model validation technique
- Splitting to training data and validation data
- ullet Better generalization o reduce the chance of overfitting

k-fold Cross-validation

- Splitting the training set into *k* folds
- Training the model *k* times
- Holding out a different fold each time for evaluation

Why not "accuracy"?

- ullet From Example 1. \longrightarrow accuracy is usually not a good performance measure for classifiers
- Especially for *skewed* datasets (i.e., some classes are more frequent than others)

Confusion Matrices

- General idea: count the number of times instances of class A are classified as class B, for all A/B pairs
- First need to have a set of predictions so that they can be compared to the actual targets
- Could make predictions on the test set, but it's best to keep that untouched for now
- Each row: an actual class
- Each column: a predicted class

A Confusion MatriX

Predicted Values

A 3×3 Confusion Matrix example

Implementing CM for Example 1.

```
1 from sklearn.model_selection import cross_val_predict
2 y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5,
     cv=3)
4 >>> from sklearn.metrics import confusion_matrix
5 >>> cm = confusion_matrix(y_train_5, y_train_pred)
6 >>> cm
7 array([[53892, 687],
8 [ 1891, 3530]]
10 >>> y_train_perfect_predictions = y_train_5 # pretend we
     reached perfection
>>> confusion_matrix(y_train_5, y_train_perfect_predictions)
array([[54579, 0],
13 [ 0, 5421]])
14
```

The confusion matrix gives useful metrics:

Precision: the accuracy of the positive predictions

$$Precision = \frac{TP}{TP + FP}$$

Recall, sensitivity or the true positive rate (TPR): the ratio of
positive instances that are correctly detected by the classifier

$$\mathsf{Recall} = \frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FN}}$$

- TP: # true positives
- FP: # false positives
- TN: # true negatives
- FN: # false negatives

The confusion matrix for the example 1 (predicting the digit 5)

Implementing Precision, Recall, & F-1 for Example 1.

```
1 >>> from sklearn.metrics import precision_score, recall_score
2 >>> precision_score(y_train_5, y_train_pred) # == 3530 / (687 + 3530)
3 0.8370879772350012
4 >>> recall_score(y_train_5, y_train_pred) # == 3530 / (1891 + 3530)
5 0.6511713705958311
6
7 >>> from sklearn.metrics import f1_score
8 >>> f1_score(y_train_5, y_train_pred)
9 0.7325171197343846
```

F-1 Score

- A combination of precision and recall
- Defined as the harmonic mean of the precision and recall

$$\text{F-1} = 2 \cdot \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

- Useful especially when comparing two classifiers
- ullet Both precision and recall high \longrightarrow high F-1 score

Performance Measures – The Precision/Recall Trade-off

The precision/recall trade-off is carried out by a *decision function* that determines a *threshold*:

Performance Measures - The Precision/Recall Trade-off

Figure: Precision and recall versus the decision threshold

Performance Measures - The Precision/Recall Trade-off

Another way of selecting a good precision/recall trade-off:

Performance Measures – The Precision/Recall Trade-off

The receiver operating characteristic (ROC) curve

- A common evaluation tool for binary classifiers
- Plots TPR (true positive rate) against FPR (false positive rate)
- TPR = recall: sensitivity, FPR = 1 TNR: 1 specificity

Performance Measures - The Precision/Recall Trade-off

The ROC curve

Performance Measures – The Precision/Recall Trade-off

For The ROC curve

- A good classifier: stay toward the top-left corner
- To compare two classifiers: measure the area under the curve (AUC)
 - Perfect: AUC=1
 - A purely random classifier: AUC=0.5

Performance Measures – The Precision/Recall Trade-off

Figure: Comparing PR curves: the random forest classifier is superior to the SGD classifier because its PR curve is much closer to the top-right corner, and it has a greater AUC

Multiclass Classification

- distinguish between more than two classes
- multiclass classifiers:
 LogisticRegression, RandomForestClassifier,
 GaussianNBanNB
- strictly binary classifiers: SGDClassifier, SVC

To perform multiclass classification with multiple binary classifiers

• one-versus-the-rest (OvR) or one-versus-all (OvA) strategy

Example. classify the digit images into 10 classes (from 0 to 9)

- train 10 binary classifiers, one for each digit
 - a 0-detector
 - a 1-detector
 - a 2-detector
 - •
- get the decision score from each classifier for that image
- select the class whose classifier outputs the highest score

To perform multiclass classification with multiple binary classifiers

one-versus-one (OvO)

Example. classify the digit images into 10 classes (from 0 to 9)

- train a binary classifier for every pair of digits
 - one to distinguish 0s and 1s
 - another to distinguish 0s and 2s
 - another for 1s and 2s
 - •
- For N classes, train $\frac{N(N-1)}{2}$ classifiers
 - For the MNIST problem, this means training 45 binary classifiers
 - run the image through all 45 classifiers
 - see which class wins the most duels
- Main advantage: each classifier only needs to be trained on part of the training set containing the two classes that it must distinguish

OvR vs. OvO

- Some algorithms (like SVM classifiers) scale poorly with the size of the training set $\longrightarrow \mathbf{OvO} \longrightarrow$ faster to train many classifiers on small training sets than to train few classifiers on large training sets
- ullet For most binary classification algorithms $\longrightarrow \mathbf{OvR}$
- Note that scikit-learn automatically detects when you try to use a binary classification algorithm for a multiclass classification task and automatically runs OvR or OvO depending on the algorithm

Multilabel Classification

- outputs multiple binary tags
 - face-recognition classifier: multiple faces in the same picture
 - one tag per person
- multiple classes for each instance

```
import numpy as np
from sklearn.neighbors import KNeighborsClassifier

y_train_large = (y_train >= '7')
y_train_odd = (y_train.astype('int8') % 2 == 1)
y_multilabel = np.c_[y_train_large, y_train_odd]

knn_clf = KNeighborsClassifier()
knn_clf.fit(X_train, y_multilabel)
```


Evaluating a Multilabel Classifier

(Note that selecting the right metric really depends on the project)

- Measure F₁ score for each individual label (or any other binary classifier metric)
 - then compute the average score
 - assumes that labels are equally important (have same weight)
- For a non-natively multilabel classifier (such as SVC): train one model per label
 - cannot capture the dependencies between the labels
 - to solve the above issue: oraganize the models in a chain
 - ClassifierChain

