Práctica 6: Método de eliminación de Householder y factorización A=QR

Análisis Numérico Matricial. Curso 2022-23

Grado en Matemáticas Doble Grado en Ingeniería Informática y en Matemáticas

USC

1. Método de Householder

El **método de Householder** es un método general de resolución de un sistema lineal:

$$Au = b, A \in \mathcal{M}_{n \times n}$$
 invertible.

Consiste en:

▶ Un procedimiento de eliminación que, en n-1 etapas, permite tansformar el sistema de partida en otro equivalente con matriz triangular superior:

$$Au = b \iff H_{n-1} \dots H_1 Au = H_{n-1} \dots H_1 b \iff Ru = \hat{b}.$$

La resolución del sistema triangular superior resultante, $Ru = \hat{b}$, por remonte.

1.1. Matriz de Householder

Definición. Se denomina **matriz de Householder** a toda matriz de la forma:

$$H(v) = I - \frac{2}{v^*v}vv^*, v \in \mathbb{C}^n - \{\theta\}.$$

Observación 1. Adviértase que:

$$\forall v \in \mathbb{C}^n - \{\theta\} : H(v) = I - \frac{2}{\|v\|_2^2} vv^* = I - 2\frac{v}{\|v\|_2} \left(\frac{v}{\|v\|_2}\right)^*.$$

Luego:

$$H(v) = H(w), \; \, ext{para} \; w = rac{v}{\|v\|_2}, \; \, ext{siendo} \; \|w\|_2 = 1.$$

Por tanto, de ahora en adelante, consideraremos matrices de Householder relativas a vectores unitarios en norma 2, es decir:

$$H(v) = I - 2vv^*, \|v\|_2 = 1.$$

1.1.1. Propiedades

- (1) Para $v \in \mathbb{C}^n \{\theta\}$, H(v) es hermitiana y unitaria.
- (2) Para $v \in \mathbb{R}^n \{\theta\}$, H(v) es simétrica y ortogonal.
- (3) $\operatorname{sp}(H(v)) = \{-1, 1\}.$
- (4) $\det(H(v)) = -1$.

Para simplificar la notación, se representa H(v) por H.

(3) Para calcular el espectro de la matriz *H*, comenzamos calculando:

$$Hv = (I - 2vv^*)v = v - 2v(v^*v) = v - 2v = -v,$$

por tanto $-1 \in \operatorname{sp}(H)$.

Por otra parte, dado w en el conjunto ortogonal al vector v, $w \in <\{v\}>^{\perp}$, es decir $w/\langle w,v\rangle=v^*w=0$, se obtiene:

$$Hw = (I - 2vv^*)w = w - 2v(v^*w) = w,$$

por tanto $1 \in \operatorname{sp}(H)$.

Conocidas las multiplicidades geométricas de los autovalores -1 y 1, se obtienen sus multiplicidades algebraicas:

sp(H)	subespacio propio	mult. geométr. (≤)	mult. algebr.
-1	E_{-1}	1	1
1	E_1	n-1	n-1

No puede haber más autovalores, por tanto:

$$sp(H) = \{-1, 1\}.$$

(4) Basta aplicar la propiedad:

$$\det(A) = \prod_{i=1}^n \lambda_i, \ \lambda_i \in \operatorname{sp}(A),$$

a la matriz H y a su espectro (el autovalor -1 se repite una vez y el autovalor 1 se repite n-1 veces) para deducir que $\det(H)=-1$.

1.2. Interpretación geométrica de la transformación mediante una matriz de Householder H(v) para n=2

Para $v \in \mathbb{R}^2 / \|v\|_2 = 1$, $H \equiv H(v) = I - 2vv^T$ es una matriz de orden 2.

Dado que cualquier otro vector $x \in \mathbb{R}^2 - \{\theta\}$, se puede expresar como:

$$x = x^{(1)} + x^{(2)}, x^{(1)} \in \langle \{v\} \rangle, x^{(2)} \in \langle \{v\} \rangle^{\perp},$$

se obtiene:

$$Hx = H(x^{(1)} + x^{(2)}) = Hx^{(1)} + Hx^{(2)} = -x^{(1)} + x^{(2)},$$

sin más que utilizar la propiedad (3).

Sean, por ejemplo:

$$v = \left(\begin{array}{c} 1/\sqrt{2} \\ 1/\sqrt{2} \end{array}\right)$$

el vector unitario que define la tranformación de Householder $H(v) \equiv H$, y

$$w = \left(\begin{array}{c} -1/\sqrt{2} \\ 1/\sqrt{2} \end{array}\right)$$

un vector unitario generador del subespacio ortogonal $<\{v\}>^{\perp}$.

Busca en la siguiente figura los vectores $x = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$ y Hx. ¿Comprendes que las matrices de Householder también se denominen **reflexiones de Householder?**

A la vista de la anterior interpretación geométrica:

Dado un vector $x = (x1, x2)^T$, $x2 \neq 0$, ¿puedes encontrar algún vector unitario v tal que el nuevo vector H(v)x tenga la segunda componente cero?

Solución

- Para obtener H(v)x en la dirección positiva del eje x, el vector w, que da la dirección ortogonal a v y además es el vector respecto al que se hace la reflexión, debe bisecar el ángulo delimitado por los vectores x y $(1,0)^T$.
- Para obtener H(v)x en la dirección negativa del eje x, el vector w, que da la dirección ortogonal a v y además es el vector respecto al que se hace la reflexión, debe bisecar el ángulo delimitado por los vectores x y $(-1,0)^T$.

1.3. Algoritmo de eliminación de Householder¹

Dado $x \in \mathbb{R}^n - \{\theta\}$, sean:

$$\alpha = \begin{cases}
\sigma, & \text{si } x_1 > 0, \\
-\sigma, & \text{si } x_1 \leq 0,
\end{cases}$$

$$\beta = \frac{1}{\alpha(\alpha + x_1)},$$

$$\beta = \frac{1}{\alpha(\alpha + x_1)},$$

$$w = x + \alpha e_1 = \begin{pmatrix} x_1 + \alpha \\ x_2 \\ \vdots \\ \vdots \end{pmatrix}.$$

Entonces:

1993. pp. 198-203.

(1) Para
$$v = \frac{w}{\|w\|_2}$$
 resulta que $H(v) = I - \beta w w^T$.

(2)
$$H(v)x = -\alpha e_1 = \begin{pmatrix} -\alpha \\ 0 \\ \vdots \\ e_n \end{pmatrix}$$
.

¹J. Stoer y R. Bulirsch. *Introduction to Numerical Analysis*. Springer-Verlag,

Observación 1. La elección del signo de α en el algoritmo de Householder se ha hecho a efectos prácticos, teniendo en cuenta la presencia de la expresión $(\alpha + x_1)$ en el denominador de β , con la intención de evitar la división por un número "demasiado pequeño".

Observación 2. Dado $b \in \mathbb{R}^n$ cualquiera, el cálculo de H(v)b se puede efectuar como sigue:

$$H(v)b = (I - \beta ww^T)b = b - \beta w(w^Tb) = b - \beta(w^Tb)w,$$

es decir:

$$\begin{cases}
q = w^T b \in \mathbb{R}, \\
p = \beta q \in \mathbb{R}, \\
b - pw \in \mathbb{R}^n,
\end{cases}$$

con un coste de 2n + 1 multiplicaciones y 2n - 1 sumas.

2. Factorización A=QR

La interpretación matricial del método de Householder conduce a la remarcable factorización A = QR.

Teorema (existencia y unicidad de la factorización A = QR)² Dada $A \in \mathcal{M}_{n \times n}(\mathbb{R})$, existen una matriz ortogonal Q y una matriz triangular superior R tales que:

$$A = QR$$
.

Además, es posible obtener todos los elementos diagonales de R mayores o iguales que cero. Si A es invertible, la factorización A=QR, con los elementos diagonales de R mayores que cero, es única.

²P. G. Ciarlet. *Introduction to numerical linear algebra and optimisation*. Cambridge University Press,1989, pp. 155-156

Efectivamente, después de n-1 etapas del procedimiento de eliminación de Householder:

$$H_{n-1}\cdots H_1A=R$$
,

así que despejando A en la anterior ecuación se deduce:

$$A = (H_{n-1} \cdots H_1)^{-1} R = H_1 \cdots H_{n-1} R,$$

gracias a la propiedad 1.1.1.2. Por lo tanto:

$$A = QR$$

siendo la nueva matriz $Q = H_1 \cdots H_{n-1}$ ortogonal, por ser producto de matrices ortogonales.

Supongamos el sistema lineal:

$$Au = b, A \in \mathcal{M}_{n \times n}(\mathbb{R})$$
 invertible.

Si se dispone de la factorización A = QR entonces:

A no singular \iff R no singular .

Además, puesto que Q es no singular:

$$Au = b \iff QRu = b \iff \begin{cases} Qv = b, \\ Ru = v. \end{cases}$$

Dado que no es fácil obtener explícitamente la matriz $Q = H_1 \cdots H_{n-1}$, se despeja v en la primera ecuación y se resuelve:

$$Ru = Q^T b = H_{n-1} \cdots H_1 b = \hat{b}.$$

Por tanto, para resover el sistema efectuaremos:

- ▶ Un **procedimiento de eliminación** que, en n-1 etapas, permite obtener R y los elementos que definen las matrices H_1, \ldots, H_{n-1} .
- La modificación del término independiente b para obtener \hat{b} .
- La resolución del sistema triangular superior resultante, $Ru = \hat{b}$, por remonte.