P1 Chapter 1: Algebra

Fractional Indices

Negative and Fractional Indices

$$a^{0} = 1$$

$$a^{\frac{1}{m}} = \sqrt[m]{a}$$

$$a^{\frac{n}{m}} = (\sqrt[m]{a})^{n}$$

$$a^{-m} = \frac{1}{a^{m}}$$

Note: $\sqrt{9}$ only means the <u>positive</u> square root of 9, i.e. 3 not -3.

Otherwise, what would be the point of the \pm in the quadratic formula before the $\sqrt{b^2 - 4ac}$?

Prove that $x^{\frac{1}{2}} = \sqrt{x}$

Ç

Evaluate $27^{-\frac{1}{3}}$

 $\dot{7}$

Evaluate $32^{\frac{2}{5}}$

?

Simplify
$$\left(\frac{1}{9}x^6y\right)^{\frac{1}{2}}$$

?

Evaluate
$$\left(\frac{27}{8}\right)^{-\frac{2}{3}}$$

?

If $b = \frac{1}{9}a^2$, determine $3b^{-2}$ in the form kb^n where k, n are constants.

?

Negative and Fractional Indices

$$a^{0} = 1$$

$$a^{\frac{1}{m}} = \sqrt[m]{a}$$

$$a^{\frac{n}{m}} = (\sqrt[m]{a})^{n}$$

$$a^{-m} = \frac{1}{a^{m}}$$

Note: $\sqrt{9}$ only means the <u>positive</u> square root of 9, i.e. 3 not -3.

Otherwise, what would be the point of the \pm in the quadratic formula before the $\sqrt{b^2 - 4ac}$?

Prove that
$$x^{\frac{1}{2}} = \sqrt{x}$$

$$x^{\frac{1}{2}} \times x^{\frac{1}{2}} = x^{1}$$
But $\sqrt{x} \times \sqrt{x} = x$

$$\therefore x^{\frac{1}{2}} = \sqrt{x}$$

Evaluate $27^{-\frac{1}{3}}$

$$=\frac{1}{27^{\frac{1}{3}}}=\frac{1}{3}$$

Evaluate $32^{\frac{2}{5}}$

$$= 2^2 = 4$$

Simplify
$$\left(\frac{1}{9}x^6y\right)^{\frac{1}{2}}$$

$$=\frac{1}{3}x^3y^{\frac{1}{2}}$$

Evaluate $\left(\frac{27}{8}\right)^{-\frac{2}{3}}$

$$= \left(\frac{8}{27}\right)^{\frac{2}{3}} = \left(\frac{2}{3}\right)^2 = \frac{4}{9}$$

If $b = \frac{1}{9}a^2$, determine $3b^{-2}$ in the form kb^n where k, n are constants.

$$3b^{-2} = 3\left(\frac{1}{9}a^2\right)^{-2}$$
$$= 3(81a^{-4}) = 243a^{-4}$$

Writing a surd using indices

```
If 9\sqrt{3} = 3^k, determine the value of k.
```

Writing a surd using indices

If $9\sqrt{3} = 3^k$, determine the value of k.

The key here is to write everything as powers with a consistent base, in this case, 3.

$$9\sqrt{3} = 9 \times \sqrt{3}$$

$$= 3^{2} \times 3^{\frac{1}{2}}$$

$$= 3^{\frac{5}{2}}$$

$$\therefore k = \frac{5}{2}$$

Note: In algebra we like to avoid mixed numbers. So don't write $3^{2\frac{1}{2}}$

Further Examples

[Edexcel IGCSE May14-4H]
Given that

$$\left(2^{\frac{1}{2}}\right)^n = \frac{2^x}{8^y}$$

Express n in terms of x and y.

[Edexcel IAL C12 Jan 2019 Q2c] Given that $y = 2^x$, express the following in terms of y.

$$\frac{1}{4^{2x-3}}$$

Write your expression in its simplest form.

?

<u>.</u>

Further Examples

[Edexcel IGCSE May14-4H]
Given that

$$\left(2^{\frac{1}{2}}\right)^n = \frac{2^x}{8^y}$$

Express n in terms of x and y.

[Edexcel IAL C12 Jan 2019 Q2c] Given that $y = 2^x$, express the following in terms of y.

$$\frac{1}{4^{2x-3}}$$

Write your expression in its simplest form.

$$2^{\frac{1}{2}n} = \frac{2^x}{(2^3)^y}$$

$$= \frac{2^x}{2^{3y}} = 2^{x-3y}$$

$$\therefore \frac{1}{2}n = x - 3y$$

$$n = 2x - 6y$$

Write 8 as a power of 2 (putting a bracket around it), for consistency of base with the other powers.

$$\frac{1}{4^{2x-3}} = 4^{-(2x-3)}$$

$$= 4^{-2x+3}$$

$$= (2^2)^{-2x+3}$$

$$= 2^{-4x+6}$$

$$= 2^{-4x} \times 2^6$$

$$= (2^x)^{-4} \times 64$$

$$= 64y^{-4} \text{ or } \frac{64}{y^4}$$

Test Your Understanding

Edexcel Paper 2 – May 2019

Given

$$2^x \times 4^y = \frac{1}{2\sqrt{2}}$$

express y as a function of x.

(3)

Test Your Understanding

Edexcel Paper 2 – May 2019

Given

$$2^x \times 4^y = \frac{1}{2\sqrt{2}}$$

express y as a function of x.

(3)

$$2^{x} \times 2^{2y} = 2^{-\frac{3}{2}}$$

$$2^{x+2y} = 2^{-\frac{3}{2}} \implies x + 2y = -\frac{3}{2} \implies y = \dots$$
E.g. $y = -\frac{1}{2}x - \frac{3}{4}$ or $y = -\frac{1}{4}(2x + 3)$
A1

Exercise 1.4

Pearson Pure Mathematics Year 1/AS Page 3

[MAT 2007 1A]

Let $oldsymbol{r}$ and $oldsymbol{s}$ be integers. Then

$$\frac{6^{r+s}\times 12^{r-s}}{8^r\times 9^{r+2s}}$$

?

is an integer if

$$\ \ r+s \leq 0$$

$$\circ$$
 $s \leq 0$

$$r \leq 0$$

$$\circ$$
 $r \geq s$

Exercise 1.4

Pearson Pure Mathematics Year 1/AS Page 3

[MAT 2007 1A]

Let ${\it r}$ and ${\it s}$ be integers. Then

$$\frac{6^{r+s} \times 12^{r-s}}{8^r \times 9^{r+2s}}$$

$$= \frac{2^{r+s} \times 3^{r+s} \times 2^{2r-2s} \times 3^{r-s}}{2^{3r} \times 3^{2r+4s}}$$
$$= 2^{-s} \times 3^{-4s}$$

This is an integer only if $s \leq 0$.

is an integer if

- $r + s \le 0$
- s < 0
 </p>
- $r \leq 0$
- \circ $r \geq s$

Homework Exercise

1 Simplify:

a
$$x^3 \div x^{-2}$$

d
$$(x^2)^{\frac{3}{2}}$$

$$\mathbf{g} \ 9x^{\frac{2}{3}} \div 3x^{\frac{1}{6}}$$

$$\int \sqrt{x} \times \sqrt[3]{x}$$

b
$$x^5 \div x^7$$

e
$$(x^3)^{\frac{5}{3}}$$

h
$$5x^{\frac{7}{5}} \div x^{\frac{2}{5}}$$

$$\mathbf{k} \ (\sqrt{x})^3 \times (\sqrt[3]{x})^4$$

c
$$x^{\frac{3}{2}} \times x^{\frac{5}{2}}$$

f
$$3x^{0.5} \times 4x^{-0.5}$$

i
$$3x^4 \times 2x^{-5}$$

$$1 \quad \frac{(\sqrt[3]{x})^2}{\sqrt{x}}$$

2 Evaluate:

a
$$25^{\frac{1}{2}}$$

$$g (\frac{3}{4})^0$$

$$\mathbf{j} = \left(\frac{27}{8}\right)^{\frac{2}{3}}$$

b
$$81^{\frac{3}{2}}$$

e
$$9^{-\frac{1}{2}}$$

h
$$1296^{\frac{3}{4}}$$

$$k^{(\frac{6}{5})^{-1}}$$

c
$$27^{\frac{1}{3}}$$

$$f (-5)^{-3}$$

$$i \quad \left(\frac{25}{16}\right)^{\frac{3}{2}}$$

$$\left(\frac{343}{512}\right)^{-\frac{2}{3}}$$

3 Simplify:

a
$$(64x^{10})^{\frac{1}{2}}$$

b
$$\frac{5x^3 - 2x^2}{x^5}$$

c
$$(125x^{12})^{\frac{1}{3}}$$
 d $\frac{x+4x^3}{x^3}$

$$e^{\frac{2x+x^2}{x^4}}$$

$$f \left(\frac{4}{9}x^4\right)^{\frac{3}{2}}$$

$$\mathbf{g} \ \frac{9x^2 - 15x^5}{3x^3} \qquad \qquad \mathbf{h} \ \frac{5x + 3x^2}{15x^3}$$

$$h \frac{5x + 3x^2}{15x^3}$$

4 a Find the value of
$$81^{\frac{1}{4}}$$
.

b Simplify $x(2x^{-\frac{1}{3}})^4$.

(1 mark)

(2 marks)

5 Given that $y = \frac{1}{8}x^3$ express each of the following in the form kx^n , where k and n are constants.

a
$$y^{\frac{1}{3}}$$

(2 marks)

b
$$\frac{1}{2}y^{-2}$$

(2 marks)

Homework Answers

1 **a**
$$x^5$$
 b x^{-2} **c** x^4 **d** x^3 **e** x^5 **f** $12x^0 = 12$ **g** $3x^{\frac{1}{2}}$ **h** $5x$

i
$$6x^{-1}$$
 j $x^{\frac{5}{6}}$ k $x^{\frac{17}{6}}$ l $x^{\frac{1}{6}}$

$$x_5^2$$

2 a 5 **b** 729 **c** 3 **d**
$$\frac{1}{16}$$

$$d \frac{1}{16}$$

$$e^{-\frac{1}{3}}$$

e
$$\frac{1}{3}$$
 f $\frac{-1}{125}$ g 1
i $\frac{125}{64}$ j $\frac{9}{4}$ k $\frac{5}{6}$

$$i = \frac{125}{64}$$

$$1 \frac{64}{40}$$

3 **a**
$$8x^5$$
 b $\frac{5}{x^2} - \frac{2}{x^3}$ **c** $5x^4$

$$\frac{1}{r^2} + 4$$

d
$$\frac{1}{x^2} + 4$$
 e $\frac{2}{x^3} + \frac{1}{x^2}$ **f** $\frac{8}{27}x^6$

$$f = \frac{8}{27}x^6$$

$$g = \frac{3}{r} - 5x^2$$

$$\mathbf{g} = \frac{3}{x} - 5x^2$$
 $\mathbf{h} = \frac{1}{3x^2} + \frac{1}{5x}$

4 a 3 **b**
$$\frac{16}{\sqrt[3]{x}}$$

5 a
$$\frac{x}{2}$$

b
$$\frac{32}{x^6}$$