

#### Ministério da Educação

#### UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ



Coordenação de Engenharia Elétrica (COELT)

Campus Apucarana

# Relatório do laboratório 02 GRUPO 1

João Vitor Garcia Carvalho Matrícula: 2270340 Maria Eduarda Pedroso Matrícula: 2150336 Gabriel Finger Conte Matrícula: 2270234

ANÁLISE DE CIRCUITOS ELÉTRICOS (FUCO5A)

#### Resumo (valor: 2,0)

Neste experimento o grupo realizou testes com resistores para verificar e validar sua resistência. Um resistor é um componente eletrônico que dificulta a passagem de corrente por um circuito, o mesmo detèm de um código de cores, para saber seu valor, e uma tolerância, sua margem de erro. Em um primeiro momento, o grupo anotou todos os códigos de cores dos resistores usados nesse experimento e também usou um ohmímetro, uma ferramenta que mede a resistência de um componente, para verificar o valor real da resistência dos componentes usados. Após este, o grupo usou de uma protoboard para alinhar os resistores em série, e posteriormente em paralelo, e realizou a mesma comparação na primeira parte, sendo que a resistência teórica do sistema em série é a soma de todas as resistências e em paralelo é aplicado a Lei de Ohm e, no final, o inverso da resistência é dado pela soma do inverso das resistências. Logo após isso, o grupo montou um circuito pré-determinado pelo professor:

Figura 1: Circuito pré-determinado



Fonte: Laboratório de Análise de Circuitos Elétricos, 2° Experimento

E validou a lei de Ohm calculando a corrente que passa pelo mesmo. Por fim, o grupo substituiu seis resistores por um potenciômetro e realizou os mesmos cálculos da etapa anterior.

# **Objetivos e Fundamentos (valor: 1,0)**

Neste trabalho serão desenvolvidos os seguintes tópicos:

- Validar código de resistores;
- Medir resistência com um ohmímetro.

Cada resistor detém um código de cores que define seu valor de resistência, no entanto ela não é sempre precisa, tendo uma tolerância, também determinada pelas cores do resistor. Com isso, o intuito deste experimento é validar os valores dos resistores com um ohmímetro.

### Materiais e equipamentos (valor: 1,0)

Os materiais utilizados para esse laboratório foram:

- multímetro e potenciômetro
- Placa de ensaio (Protoboard)
- Fonte de alimentação com uma tensão CC de 5 V
- 3 resistores de cada tolerância sendo elas:
  - 1,2 Ω;
  - 470 Ω;
  - 560 Ω;
  - 820 Ω;
  - $\circ$  1 k $\Omega$ ;
  - $\circ$  2,2 k $\Omega$ ;
  - 1,5 MΩ;

## Procedimentos e Medidas (valor: 2,0)

Para a prática um tivemos que ler e procurar os resistores com as resistências descritas na tabela 1 para assim dar início às atividades, primeiramente para a parte um fizemos a medição da resistência de cada um dos resistores com ajuda do ohmímetro, os dados estão na tabela abaixo:

Tabela 1: Valores da resistência nominal dos resistores utilizados

| R1     | R2   | R3    | R4    | R5    | R6    | R7     |
|--------|------|-------|-------|-------|-------|--------|
| 1,5 ΜΩ | 1 kΩ | 560 Ω | 470 Ω | 1,2 Ω | 820 Ω | 2,2 kΩ |

Fonte: autoria própria.

Tabela 2: Dados obtidos da análise dos resistores comerciais utilizados no experimento.

| Resisto<br>r | Código de Cores                          | Resistê<br>ncia<br>Nomina<br>I (Ω) | Tolerân<br>cia (Ω) | Valor<br>Medido<br>1 ± Erro<br>(Ω) | Valor<br>Medido<br>2 ± Erro<br>(Ω) | Valor<br>Medido<br>3 ± Erro<br>(Ω) | Média<br>Valor<br>Medido<br>(Ω) | Desvio<br>Padrão<br>(Ω) | Erro da<br>média<br>em<br>relação<br>ao<br>valor<br>nomina<br>I (%) | Erro<br>(%) em<br>relação<br>ao<br>desvio |
|--------------|------------------------------------------|------------------------------------|--------------------|------------------------------------|------------------------------------|------------------------------------|---------------------------------|-------------------------|---------------------------------------------------------------------|-------------------------------------------|
| R1           | Marrom - Vermelho -<br>Dourado - Dourado | 1,2                                | 0,06               | 1,2 ± 0,1                          | 1,2 ± 0,1                          | 1,3 ± 0,1                          | 1,2                             | 0,05774                 | 2,78                                                                | 3,77                                      |
| R2           | Amarelo - Violeta -<br>Marrom - Dourado  | 470                                | 23,5               | 465,7 ± 0,1                        | 467,8 ± 0,1                        | 466,3 ± 0,1                        | 466,6                           | 1,08167                 | 0,72                                                                | 95,40                                     |
| R3           | Verde - Azul - Marrom<br>- Dourado       | 560                                | 28                 | 550,0 ±<br>0,1                     | 549,0 ±<br>0,1                     | 549,8 ± 0,1                        | 549,6                           | 0,52915                 | 1,86                                                                | 98,11                                     |
| R4           | Cinza - Vermelho -                       | 820                                | 41                 | 799 ± 1                            | 804 ± 1                            | 803 ± 1                            | 802,0                           | 2,64575                 | 2,20                                                                | 93,55                                     |

|    | Marrom - Dourado                            |             |       |                   |                   |                   |               |                 |      |       |
|----|---------------------------------------------|-------------|-------|-------------------|-------------------|-------------------|---------------|-----------------|------|-------|
| R5 | Marrom - Preto -<br>Vermelho - Dourado      | 1000        | 50    | 986 ± 1           | 972 ± 1           | 991 ± 1           | 983,0         | 9,84886         | 1,70 | 80,30 |
| R6 | Vermelho - Vermelho -<br>Vermelho - Dourado | 2200        | 110   | 2181 ± 1          | 2186 ± 1          | 2192 ± 1          | 2186,3        | 5,50757         | 0,62 | 94,99 |
| R7 | Marrom - Verde -<br>Verde - Dourado         | 150000<br>0 | 75000 | 1528000<br>± 1000 | 1507000<br>± 1000 | 1621000<br>± 1000 | 155200<br>0,0 | 60671,2<br>4525 | 3,47 | 19,11 |

Fonte: autoria própria.

Foi calculado também com ajuda de uma planilha do excel, o erro percentual entre o valor medido e o nominal, assim conseguindo realizar o cálculo do desvio e tolerância, todos os dados estão descritos acima. Analisando a tabela podemos notar que o maior valor de erro percentual obtido foi o resistor R7, tal fato pode ser explicado por erros do medidor de resistência, ohmímetro, e por erros no próprio componente, como desgaste de uso ou algum erro cometido na sua construção.

Na última parte realizamos as medidas de dois circuitos sendo eles em série e paralelo, um exemplo dos circuitos foram montados na protoboard e os resultados das medições estão explícitos na tabela abaixo.

Tabela 3: Resistência equivalente para diferentes associações dos resistores utilizados.

| Tipo de    | Resistência E | Desvio            |                |
|------------|---------------|-------------------|----------------|
| Associação | Teórica       | Prática           | Percentual (%) |
| Série      | 1,505 M       | (2,653 ± 0,001) M | 76,27906977    |
| Paralela   | 1,2           | $(6,5 \pm 0,1)$   | 441,6666667    |

Fonte: autoria própria.

Já na parte 2 dessa prática utilizamos um resistor de cada valor da etapa anterior e construímos um circuito em série com uma fonte de tensão de  $(5,0\pm0,1)$ V sendo essa uma carga contínua. Com esse circuito conseguimos determinar a queda de tensão de cada resistor tabela 4, corrente do circuito, potência dissipada em cada resistor tabela 5, energia consumida em 2 horas desse circuito é de  $33,22*10^{\circ}(-6)$  Wh, todos os cálculos foram realizados sem considerar a tolerância visto que era uma sugestão do roteiro.

Tabela 4: Queda de tensão dos resistores.

| Resistor | Queda Tensão ( | Desvio                       |                |
|----------|----------------|------------------------------|----------------|
| Resistor | Teórico        | Prático                      | Percentual (%) |
| R1       | 4,983          | 5,051 ± 0,001                | 1,36           |
| R2       | 3,32 m         | (3,07 ± 0,01) m              | 7,53           |
| R3       | 1,86 m         | (1,69 ± 0,01) m              | 9,14           |
| R4       | 1,56 m         | (1,43 ± 0,01) m              | 8,33           |
| R5       | 0,00 m         | $(0.00 \pm 0.01) \mathrm{m}$ | -              |

| R6 | 2,72 m | (2,48 ± 0,01) m | 8,82 |
|----|--------|-----------------|------|
| R7 | 7,31 m | (6,82 ± 0,01) m | 6,70 |

Fonte: autoria própria.

<u>Tabela 5: Potência dissipada no</u>s resistores.

| Resistor | Potência<br>Dissipada (W) |
|----------|---------------------------|
| R1       | 16,55 μ                   |
| R2       | 11,04 n                   |
| R3       | 6,18 n                    |
| R4       | 5,19 n                    |
| R5       | 0,01 n                    |
| R6       | 9,05 n                    |
| R7       | 24,28 n                   |

Fonte: autoria própria.

Com o valor da potência de um resistor é possível calcular seu consumo em Wh (Watt.Hora). A energia gasta por um resistor é dada pelo produto da potência pelo tempo, considerando 2 horas, tem-se:

Tabela 6: Energia gasta nos resistores.

| Resistor | Potência Dissipada (W) | Energia Gasta (Wh) |
|----------|------------------------|--------------------|
| R1       | 16,55 μ                | 33,1 µ             |
| R2       | 11,04 n                | 22,08 n            |
| R3       | 6,18 n                 | 12,36 n            |
| R4       | 5,19 n                 | 10,38 n            |
| R5       | 0,01 n                 | 0,02 n             |
| R6       | 9,05 n                 | 18,1 n             |
| R7       | 24,28 n                | 48,56 n            |
| Total    | 55,75 n                | 111,5 n            |

Fonte: Autoria própria.

Após toda a análise substituímos os resistores do segundo ao sétimo lugar por um potenciômetro, e escolhemos três valores arbitrários sendo estes  $2k\Omega$ ,  $6k\Omega$ ,  $10k\Omega$ , para fins propostos calculamos o desvio percentual entre esses valores teóricos e os valores que conseguimos através do potenciômetro, os resultados estão descritos na tabela 7.

<u>Tabela 7: Resistência equivalente para diferentes resis</u>tências do potenciômetro utilizado.

| Res     | Desvio             |      |
|---------|--------------------|------|
| Teórica | Percentual (%)     |      |
| 2 k     | ( 2,008 ± 0,001) k | 0,40 |
| 6 k     | (6,003 ± 0,001) k  | 0,05 |

| 10 k | (0,00924 ± 0,00001) M | 7,60 |
|------|-----------------------|------|
|      |                       |      |

Fonte: autoria própria.

Por fim, para cada valor arbitrário de resistência do nosso potenciômetro determinamos a corrente no potenciômetro na tabela 8,a tensão que no nosso caso não alterou, se manteve como 5V igual ao teórico e a potência tabela 9.

Tabela 8: Corrente para diferentes resistências do potenciômetro utilizado.

| Intensidade | Desvio                |      |  |
|-------------|-----------------------|------|--|
| Teórica     | Teórica Prática ± 0,1 |      |  |
| 3,3         | 3,1                   | 6,06 |  |
| 3,3         | 3,1                   | 6,06 |  |
| 3,3         | 3,1                   | 6,06 |  |

Fonte: autoria própria.

Tabela 9: Potência para diferentes resistências do potenciômetro utilizado.

| Pot     | Desvio  |                |
|---------|---------|----------------|
| Teórica | Prática | Percentual (%) |
| 22,16   | 19,30   | 12,91          |
| 66,14   | 57,69   | 12,78          |
| 109,64  | 88,80   | 19,01          |

Fonte: autoria própria.

# Teoria e Cálculos (valor: 2,0)

Antes de mais nada, vale revisar alguns conceitos básicos a respeito de circuitos elétricos. Começando do mais fundamental, tem-se o conceito de corrente elétrica, medida em Ampères, que resume-se ao fluxo de elétrons em uma determinada região do espaço, no caso trabalhado o circuito elétrico, por um determinado período de tempo.

Um dos meios por onde a corrente elétrica pode passar são através dos circuitos elétricos fechados, ou seja, que tem uma fonte e um destino final. Não havendo corrente elétrica em circuitos onde, por mais que tenham uma fonte de energia, não existe um destino para essa energia "escoar".

Além disso, é importante ressaltar que para criar uma corrente elétrica é necessário uma fonte de tensão. Sendo a tensão o potencial elétrico armazenado ou produzido por dispositivos específicos, sendo esse potencial produzido pela separação de cargas elétricas e íons que, no caso da pilha, concentram os elétrons em uma das extremidades da pilha de modo que internamente os mesmos não fluam de um lado para o outro. Dessa forma, a diferença na

concentração de elétrons entre as extremidades da pilha, que quando não conectadas, geram um potencial elétrico chamado de tensão, medida em Volts (V) no SI.

Num cenário ideal, a corrente "escoaria" livremente pelos circuitos, todavia no cenário real, os componentes físicos oferecem naturalmente uma resistência ao fluxo de elétrons. Essa propriedade de resistir à corrente elétrica é chamada de resistividade, sendo representada no SI pela unidade de Ohms  $(\Omega)$ .

Um dos componentes utilizados em circuitos elétricos são os chamados resistores, que consistem em utensílios para fornecer um certo controle sobre a corrente que percorre o circuito. A fim de facilitar a identificação dos mesmos foi desenvolvido um código de cores que, através de 4 a 5 faixas seria possível identificar a resistência de cada um. Sendo a última faixa a tolerância de erro no valor da resistência em relação ao descrito pelo código de cores, a penúltima é um multiplicador para representar valores em diferentes escalas, e as primeiras faixas seriam os dígitos do valor da resistência.

Após várias pesquisas, análises e observações foram descobertas algumas relações entre essas grandezas. Através desses resultados foi formulado a chamada Lei de Ohm, a qual postula a relação existente entre corrente, tensão e resistência de forma que a tensão é equivalente ao produto da corrente e da resistência no circuito ou trecho analisado:

$$V = R * I \tag{1}$$

A partir dessa equação é possível deduzir outras duas equações que servem para calcular a resistência ou a corrente em termos das outras duas grandezas:

$$R = I/V (2)$$

$$I = V/R \tag{3}$$

Outro fato observado foi que o ato de resistir a corrente gera uma dissipação de energia na forma de trabalho trabalho. E, analisando esse trabalho ao longo do tempo é possível calcular a potência dissipada ou mesmo a potência total de uma fonte ou conjunto de fontes de tensão ao somar todos os valores de potência dissipada no circuito. Em relação à potência, observou-se que a mesma é equivalente ao produto da tensão pela corrente, e é medida em Watts(W) no SI:

$$P = V * I \tag{4}$$

Analisando em conjunto as fórmulas (1) e (4), foi possível obter duas outras relações que descrevem a potência:

$$P = V^2 * R \tag{5}$$

$$P = R * I^2 \tag{6}$$

Agora, aprofundando mais no estudo de resistores, foi observado que ao ligá-los em série, ou seja, cada extremidade de cada resistor tem no máximo uma única conexão com outro resistor, medindo a resistência entre as extremidades do circuito, viu-se que a resistência dita equivalente era exatamente igual à soma da resistência de todos os resistores, assim para associações de resistores em série tem-se que:

$$Req = R1 + R2 + ... + Rn$$
 (7)

Já para associações de resistores com mais de uma ligação em suas extremidades, chamada de associação em paralelo, notou-se o seguinte comportamento:

$$\frac{1}{Reg} = \frac{1}{R1} + \frac{1}{R2} + \dots + \frac{1}{Rn}$$
 (8)

Em relação aos cálculos realizados, em um primeiro momento, com os três valores de resistência obtidos para cada valor nominal, calculou-se uma média aritmética desses valores a fim de determinar um valor médio para os resultados obtidos, com o auxílio das Planilhas do Google através do código "=MÉDIAA(Valor1;Valor2;Valor3)". Obteve-se assim os seguintes resultados:

Tabela 10 - Código usado e valor da média aritmética dos valores medidos

| Código Planilha do Google        | Média Valor<br>Medido (Ω) |
|----------------------------------|---------------------------|
| =MÉDIAA(1,2;1,2;1,3)             | 1,2                       |
| =MÉDIAA(465,7;467,8;466,3)       | 466,6                     |
| =MÉDIAA(550;549;549,8)           | 549,6                     |
| =MÉDIAA(799;804;803)             | 802,0                     |
| =MÉDIAA(986;972;991)             | 983,0                     |
| =MÉDIAA(2181;2186;2192)          | 2186,3                    |
| =MÉDIAA(1528000;1507000;1621000) | 1552000,0                 |

Fonte: autoria própria

Em seguida, determinou-se o desvio padrão amostral para os valores medidos através do comando "=DESVPADA(Valor1;Valor2;Valor3)". Obtendo-se assim:

Tabela 11 - Código usado e valor do desvio padrão dos valores medidos

| Código Planilha do Google          | Desvio Padrão (Ω) |
|------------------------------------|-------------------|
| =DESVPADA(1,2;1,2;1,3)             | 0,05774           |
| =DESVPADA(465,7;467,8;466,3)       | 1,08167           |
| =DESVPADA(550;549;549,8)           | 0,52915           |
| =DESVPADA(799;804;803)             | 2,64575           |
| =DESVPADA(986;972;991)             | 9,84886           |
| =DESVPADA(2181;2186;2192)          | 5,50757           |
| =DESVPADA(1528000;1507000;1621000) | 60671,24525       |

Fonte: autoria própria

Dando continuidade, calculou-se o desvio percentual do valor nominal de cada resistor em relação à média do valor medido através da seguinte relação:

 $Dp = |Rnominal - \overline{R}medido|/Rnominal * 100 [%]$ . Para para o desvio percentual em relação à tolerância usou-se a mesma ideia, Dp = |Tolerancia - Desv Padrão|/Tolerância \* 100 [%]. Chegando nos seguintes resultados:

Tabela 12 - Código usado e valor do desvio percentual em relação ao valor nominal e ao desvio

| Código Planilha do Google     | Erro da média<br>em relação ao<br>valor nominal<br>(%) | Código Planilha do Google         | Erro (%) em<br>relação ao<br>desvio |
|-------------------------------|--------------------------------------------------------|-----------------------------------|-------------------------------------|
| =ABS(1,2-1,2)/1,2*100         | 2,78                                                   | =ABS(0,06-0,05774)/0,06*100       | 3,77                                |
| =ABS(470-466,6)/470*100       | 0,72                                                   | =ABS(23,5-1,08167)/23,5*100       | 95,40                               |
| =ABS(560-549,6)/560*100       | 1,86                                                   | =ABS(28-0,52915)/28*100           | 98,11                               |
| =ABS(820-802,0)/820*100       | 2,20                                                   | =ABS(41-2,64575)/41*100           | 93,55                               |
| =ABS(1000-983,0)/1000*100     | 1,70                                                   | =ABS(50-9,84886)/50*100           | 80,30                               |
| =ABS(2200-2186,3)/2200*100    | 0,62                                                   | =ABS(110-5,50757)/110*100         | 94,99                               |
| =ABS(1500000-H12)/1500000*100 | 3,47                                                   | =ABS(75000-60671,24525)/75000*100 | 19,11                               |

Fonte: autoria própria

Após isso, com a resistência nominal de cada resistor e o auxílio das fórmulas (7) e (8) calculou-se os valores teóricos da resistência equivalente para a associação em série em em paralelo de 7 resistores, cada um com uma resistência distinta.

Tabela 13 - Cálculo usado e valor da resistência equivalente teórica para os dois tipos de associações

| Tipo de Associação | Resistência<br>Equivalente (Ω) | Cálculo                                                           |  |
|--------------------|--------------------------------|-------------------------------------------------------------------|--|
|                    | Teórica                        |                                                                   |  |
| Série              | 1,505 M                        | =1,2+470+560+820+1000+2200+1500000                                |  |
| Paralela           | 1,2                            | =1 / (1/1,2 + 1/470 + 1/560 + 1/820 + 1/1000 + 1/2200 + 1/1500000 |  |

Fonte: autoria própria

Em um segundo momento, considerando uma associação em série de 7 resistores, cada um com uma resistência diferente e dado que teoricamente a fonte de alimentação fornecia uma tensão CC de 5V, buscou-se calcular as seguintes informações:

 A corrente teórica no circuito, com o auxílio da fórmula (7) para obter a resistência equivalente e da fórmula (3) obtida através da Lei de Ohm;

$$I_{\text{teórica}} = Vf / REQ = 5 / 1505000 \approx 3.3 \ \mu A$$

 A queda de tensão teórica de cada resistor, sabendo do valor teórico da corrente e com a fórmula (1);

Tabela 14 - Cálculo usado e valor da queda de tensão teórica para cada resistor

| Resistor | Queda Tensão<br>(V) | Cálculo                     |  |
|----------|---------------------|-----------------------------|--|
|          | Teórico             |                             |  |
| R1       | 4,983               | =R1 * I = 1500000*0,0000033 |  |
| R2       | 3,32 m              | =R2 * I = 1000*0,0000033    |  |
| R3       | 1,86 m              | =R3 * I = 560*0,0000033     |  |
| R4       | 1,56 m              | =R4 * I = 470*0,0000033     |  |
| R5       | 0,00 m              | =R5 * I = 1,2*0,0000033     |  |
| R6       | 2,72 m              | =R6 * I = 820*0,0000033     |  |
| R7       | 7,31 m              | =R7 * I = 2200*0,0000033    |  |

Fonte: autoria própria

A potência dissipada por cada resistor através da fórmula (6);

Tabela 15 - Cálculo usado e valor da potência para cada resistor

| Resistor | Potência<br>Dissipada (W) | Cálculo                                                 |
|----------|---------------------------|---------------------------------------------------------|
| R1       | 16,55 µ                   | =R1 * I <sup>2</sup> = 1500000*0,000003311 <sup>2</sup> |
| R2       | 11,04 n                   | =R2 * I <sup>2</sup> = 1000*0,000003311 <sup>2</sup>    |
| R3       | 6,18 n                    | =R3 * I <sup>2</sup> = 560*0,000003311 <sup>2</sup>     |
| R4       | 5,19 n                    | =R4 * I <sup>2</sup> = 470*0,000003311 <sup>2</sup>     |
| R5       | 0,01 n                    | =R5 * I <sup>2</sup> = 1,2*0,000003311 <sup>2</sup>     |
| R6       | 9,05 n                    | =R6 * I <sup>2</sup> = 820*0,000003311 <sup>2</sup>     |
| R7       | 24,28 n                   | =R7 * I <sup>2</sup> = 2200*0,000003311 <sup>2</sup>    |

Fonte: autoria própria

Após calcular a potência dissipada por cada resistor, somando todos esses valores foi possível obter o valor da potência total dissipada pelo circuito. Dado que por definição a potência é o trabalho realizado em um período de tempo, que tempo no SI são os segundos, a potência efetivamente consumida em um período de tempo t (s) pode ser obtida por:

$$Pconsumida = Ptotal * t$$
 (9).

Calculando esse valor para 2 horas = 3600s, obtemos quantidade de potência consumida pelo circuito num período de duas horas em Ws. Assim, temos:

 $P_{\text{consumida}}$  = (16,55  $\mu$  + 11,04 n + 6,18 n + 5,19 n + 0,01 n + 9,05 n + 24,28 n) \* 3600  $\approx$  0,1195972602 Ws

Com esse valor, sabendo que 1 Wh = 3600 Ws, por regra de três obtém-se a potência dissipada pelo circuito em 2 horas na medida de Wh. Assim:

$$P_{consumida} = 0,1195972602 / 3600 \approx 33,22 * 10^{-6} Wh$$

Tendo substituído o conjunto de R2 à R7 pelo potenciômetro, os cálculos que foram feitos forma relativamente semelhantes:

• Calculando a intensidade da corrente a partir da fórmula (1)

Tabela 16 - Cálculo usado e valor da intensidade da corrente para cada caso de resistência do potenciômetro

| Resistência (Ω) | Intensidade de<br>Corrente (µA) | Cálculo                                       |  |  |
|-----------------|---------------------------------|-----------------------------------------------|--|--|
| Teórica         | Teórica                         |                                               |  |  |
| 2 k             | 3,3                             | = V / Req = V / (R1+2k) = 5 / (1500000+2000)  |  |  |
| 6 k             | 3,3                             | = V / Req = V / (R1+6k) = 5 / (1500000+6000)  |  |  |
| 10 k            | 3,3                             | = V / Req= V / (R1+10k) = 5 / (1500000+10000) |  |  |

Fonte: autoria própria

• Calculou-se a queda de tensão no potenciômetro usando a fórmula (3)

Tabela 17 - Cálculo usado e valor da queda de tensão para cada caso de resistência do potenciômetro

| Resistência (Ω) | Queda de<br>Tensão (mV) | Cálculo                       |  |
|-----------------|-------------------------|-------------------------------|--|
| Teórica         | Teórica                 |                               |  |
| 2 k             | 6,66                    | = I * R = 0,000003311 * 2000  |  |
| 6 k             | 19,92                   | = I * R = 0,000003311 * 6000  |  |
| 10 k            | 33,11                   | = I * R = 0,000003311 * 10000 |  |

Fonte: autoria própria

Calculou-se a queda de tensão no potenciômetro usando a fórmula (3)

Tabela 18 - Cálculo usado e valor da potência para cada caso de resistência do potenciômetro

| Resistência (Ω) | (Ω) Potência Teórica (nW) |                               |       | Potência Prática (nW)        |
|-----------------|---------------------------|-------------------------------|-------|------------------------------|
| Teórica         | Valor                     | Cálculo                       | Valor | Cálculo                      |
| 2 k             | 22,16                     | = (3,3µ) <sup>2</sup> * 2000  | 19,30 | = (3,1µ) <sup>2</sup> * 2008 |
| 6 k             | 66,14                     | $= (3.3\mu)^2 * 6000$         | 57,69 | = (3,1µ) <sup>2</sup> * 6003 |
| 10 k            | 109,64                    | = (3,3µ) <sup>2</sup> * 10000 | 88,80 | = (3,1µ) <sup>2</sup> * 9240 |

Fonte: autoria própria

#### Resultados e Conclusão (valor: 2,0)

João Vitor Garcia Carvalho

O resistor é um componente da eletrônica capaz de diminuir o fluxo da corrente em um circuito elétrico, o mesmo tem várias aplicações em um circuito. Para saber o quanto um componente deste pode resistir deve saber sua resistência, a mesma pelo código de cores do resistor. Mas existe uma tolerância que determina o quanto este valor pode se diferenciar do valor esperado. Na primeira parte deste relatório foram analisadas as diferenças entre os valores teóricos e práticos, dessa forma foi possível observar que os resistores têm valores diferentes e os mesmos podem ser explicados por alguns fatores, como erro pelo medidor ou desgaste do resistor com o tempo. Em um segundo momento, o componente foi testado em um circuito em série, os mesmos erros foram apresentados, seguindo os mesmos motivos. No entanto, quando os resistores estão em série, às suas resistências se somam e quando estão em paralelo o valor da resistência equivalente é calculada de outra forma.

#### Resultados e Conclusão (valor: 2,0)

Maria Eduarda Pedroso

Esse relatório foi bem instigante e sua parte laboratorial extensa, mas o intuito que ele tinha acredito que alcançamos, conseguimos fazer todas as medições e cálculos necessários, testamos o componente em um circuito em série e obtivemos o mesmo erro pelo mesmo motivo. No entanto, quando os resistores estão em série, suas resistências se somam e quando estão em paralelo, o valor da resistência equivalente é calculado de forma diferente, mas existe uma tolerância que determina o quanto esse valor pode diferir do valor esperado. Na primeira parte deste relatório foram analisadas as diferenças entre os valores teóricos e práticos, assim foi possível observar que as resistências possuem valores diferentes e podem ser explicadas por alguns fatores, como o erro de o medidor ou o desgaste da resistência ao longo do tempo.

Um resistor é um componente eletrônico que pode reduzir o fluxo de corrente em um circuito elétrico, tem muitas utilizações em um circuito. Para saber o quanto esse componente pode suportar Você precisa conhecer sua resistência, no qual você consegue lendo o código de cores do resistor.

# Resultados e Conclusão (valor: 2,0)

**Gabriel Finger Conte** 

Após a pesquisa e realização dos experimentos e a efetuação de cálculos pode-se observar na primeira parte, ou seja, na análise dos resistores que a medida da resistência real teve um baixo desvio em relação ao esperado, cerca de 3.5% nos casos que mais divergiram. Mas o desvio desse valor para todos os sete resistores permaneceu dentro do intervalo da tolerância informada no código de cores. Em relação a resistência equivalente observou-se um grande desvio em relação ao esperado na teoria, o que pode ter sido causado pelos jumpers e a

própria protoboard utilizados para montar o equipamento e as possíveis interferências eletromagnéticas dos equipamentos ao redor.

Na segunda parte do experimento, pode-se constatar um leve desvio em relação à teoria dos valores de queda de tensão de cada resistor e a corrente do sistema, validando assim a lei de Ohm na prática. Sendo que esses desvios podem ter sido causados também devido à influências tanto dos materiais utilizados como ondas eletromagnéticas como mencionado anteriormente. Pode-se observar que, devido a utilização de um resistor com uma resistência muito alta,  $1.5 \mathrm{M}\Omega$  nominal, a intensidade da corrente tornou-se muito pequena, limitando drasticamente o valor de potência dissipada para a escala de nanoWatts. O que pode ser visto pela potência dissipada após duas horas ser de apenas  $33,22 * 10^{-6} \mathrm{Wh}$ .

Na terceira parte do experimento, devido ao resistor que foi mantido ter uma alta resistência,  $1.5M\Omega$  nominal, não pode ser observado variações na corrente ao alterar a resistência do potenciômetro. Todavia pode-se observar para a queda de tensão o impacto da resistência na mesma, validando mais uma vez a lei de Ohm. Além disso, como ocorreu na segunda parte do experimento, devido a esse resistor de alta resistência a potência dissipada pelo potenciômetro foi reduzida, devido ao impacto na corrente, mas não chegou a cair para a escala nanométrica, permanecendo na escala de micro-Watts.