

微分方程数值解 2022 夏 张卓涵 3190101161

Project 3

1 Design Description

本次作业的程序中,依靠 Vec.h 文件中定义的向量类,通过类继承的方法实现了要求中的各种 IVP 数值方法。

1.1 Base Class: TimeIntegrator

TimeIntegrator 作为抽象基类,以维度 dim 作为模板参数,求解的数值结果作为其成员变量,并在其中定义了若干格式化输出函数,以便测试和绘图。

其中, solve() 函数包含一个提供了默认值的参数 p_{-} , 这是因为有些方法需要指定收敛阶, 考虑到程序主体需要采用对象工厂的方式调用, 因此其构造函数的参数列表是如一的, 所以考虑两种方式: 1. 将 p 作为构造函数的提供默认值参数, 即 p 是需要指定收敛阶的方法的成员; 2. 将 p 作为 solve() 函数的提供默认值参数。这里采用第二种思路, 这样构造出来的方法更

2 TESTS 2

灵活,能够使用同一个实例对象针对不同问题采用不同的收敛阶计算,而无需再去生成一个。

1.2 Inherited Classes: Numerical Methods

其余方法由基类继承而来,在这些方法里实现了虚函数 solve()和 solution_error()用于调用相应算法求解和计算误差。其中在多数算法中 solution_error()函数采用 Richardson etrapolation 的粗略弱化版本,即将步长调整为原步长的一半后求解作为准确值以求误差,在 forward Euler 方法中则是采用 Definition 10.229 中的原 Richardson extrapolation 算法计算误差。

此外在每个继承类中增加了一个成员变量

private:

int steps_;

用于记录总步数。之所以没有把 steps_ 变量直接作为基类的成员变量由继承类继承,是因为对于自适应步长算法,步数不是固定的,所以并不需要一个固定的步数作为其成员。不过在实际的 Fehlberg 4(5) 算法和 Dormand-Prince 5(4) 算法中仍然提供了这样一个成员变量 steps_, 这里是为了给算法设定一个初始步长,即使用 k = T/steps_ 作为算法的初始步长。

在一些隐式方法中,在求解非线性方程组时,考虑到求解的实际上是方程 f 的不动点,所以我直接采用了最简单的不动点迭代的形式,即 $x_{k+1} = f(x_k)$,只需要保证初始点 x_0 与所求不动点 x 足够接近即可。这里我在每次迭代求 U^{n+1} 时都把初始点设置为已知的 U^n ,这样在步长 k 足够小时就能保证初始点充分的接近不动点。实际在测试中,这个迭代过程的效果也是不错的。

2 Tests

为了不使篇幅过于冗长,下面只展示部分数值结果,完整结果可见于 output 目录下的 txt 文件中。在以下测试中,(10.199)的误差显著小于(10.198),这是因为(10.198)中的精确解是给定的,而(10.199)中的"精确解"是通过算法提高精度算出来的,所以在计算出的(10.199)问题的误差会明显更小。

2.1 Adams-Bashforth

	(10.198) with T_1 and $p = 4$		(10.199) with T_2 and $p = 4$	
steps	solution error CPU time (s)		solution error	CPU time (s)
100000	0.21655 0.265623		3.65037e-06	0.203932
200000	0.0162245	0.516608	4.56275 e-07	0.40101
400000	0.000895183	1.04227	5.70457e-08	0.775189

可以看到,对于 (10.198),随着步数的增加一倍,其误差基本上是缩小为原来的 $\frac{1}{16}$,即基本是 4 阶收敛的,符合预期。对于 (10.199),随着步数增加一倍,误差基本上缩小为原来

2 TESTS 3

的量,即基本是3阶收敛的,符合预期。

但是这里步数直到达到 10⁵ 的数量级才得到比较好的结果和收敛性,运行时间也一度接近甚至超过 1 秒,所以 Adams-Bashforth 算法在这个例子下是比较低效的。

2.2 Adams-Moulton

	(10.198) with T_1 and $p = 3$		(10.199) with T_2 and $p = 3$	
steps	solution error CPU time (s)		solution error	CPU time (s)
100000	0.0246602	0.388896	4.05709e-07	0.381835
200000	0.00499744	0.769632	5.0706e-08	0.767768
400000	0.000604053	1.53255	6.34028e-09	1.54895

可以看到,对于 (10.198),随着步数的增加一倍,其误差基本上是缩小为原来的 $\frac{1}{8}$,即基本是 3 阶收敛的,符合预期。对于 (10.199),随着步数增加一倍,误差基本上缩小为原来的 $\frac{1}{8}$,即基本是 3 阶收敛的,符合预期。

但是这里同样步数直到达到 10^5 的数量级才得到比较好的结果和收敛性,运行时间也比较长,所以 Adams-Moulton 算法在这个例子下也是比较低效的。

2.3 Backward Differentiation Formulas

	(10.198) with T_1 and $p = 4$		(10.199) with T_2 and $p = 4$	
steps	solution error CPU time (s)		solution error	CPU time (s)
100000	0.0984906	0.27678	0.378463	0.299356
200000	0.241012	0.560489	0.492389	0.566249
400000	0.281448	1.10923	0.0287123	1.1252

BDF 算法的运行结果是很糟糕的,即便是步数达到了 10^5 的数量级,误差也没有达到可以接受的精度,更没有收敛性。

2.4 Classical Runge-Kutta

	(10.198) with T_1		(10.199) with T_2	
steps	solution error CPU time (s)		solution error	CPU time (s)
12000	1.76256	0.031874	2.11243e-09	0.031925
24000	0.204469	0.064156	3.30833e-10	0.064365
48000	0.0108932	0.127158	2.41786e-11	0.129579

对于 (10.198),随着步数的增加一倍,其误差基本上是缩小为原来的 $\frac{1}{8}$ 到 $\frac{1}{16}$,即基本可以认定符合预期的 4 阶收敛。对于 (10.199),随着步数增加一倍,误差基本上缩小为原来的 $\frac{1}{8}$ 到 $\frac{1}{16}$,即基本也是 4 阶收敛的。

从下文中的图像可以看到,经典 RK 方法虽然在求解 (10.198) 问题中的误差没有达到很小的数量级,但这个结果已经足以保证绘制出非常接近准确解的图像了。

2 TESTS 4

2.5 ESDIRK

	(10.198) with T_1		(10.199) with T_2	
steps	solution error CPU time (s)		solution error	CPU time (s)
10000	1.54671	0.161873	2.74876e-08	0.177303
20000	0.125585	0.30029	5.16898e-09	0.347471
40000	0.0076391	0.595244	2.44824e-09	0.632963

对于 (10.198),随着步数的增加一倍,其误差基本上是缩小为原来的 $\frac{1}{16}$,即基本可以认定 4 阶收敛。对于 (10.199),步数从 10000 到 20000 的过程中满足 4 阶的收敛率,在 20000 到 40000 的过程中,误差下降很少,推断是因为两个问题计算误差的方法不同,(10.199) 中的"精确解"实际上是采用更准确的方法得到的数值解,所以在步长充分小的时候,误差的下降是越来越慢的。

2.6 Gauss-Legendre RK

	(10.198) with	T_1 and $s=2$	(10.199) with T_2 and $s = 1$		
steps	solution error CPU time (s) s		solution error	CPU time (s)	
10000	1.18123	0.065197	0.00101314	0.032234	
20000	0.0796395	0.135682	0.00025186	0.061937	
40000	0.0051198	0.263749	5.69224e-05	0.117864	

对于 (10.198),随着步数的增加一倍,其误差基本上是缩小为原来的 $\frac{1}{16}$,即基本可以认定为符合预期的 4 阶收敛。对于 (10.199),随着步数的增加一倍,其误差基本上是缩小为原来的 $\frac{1}{4}$,即基本可以认定为符合预期的 2 阶收敛。

2.7 Fehlberg 4(5) embedded RK

	(10.198) with T_1		(10.199)	with T_2
initial step length	solution error CPU time (s)		solution error	CPU time (s)
0.01	0.0145282	0.002217		0.002722

考虑到,嵌入式 RK 方法是自适应步长的,所以这里不再展示收敛率和 (10.199) 问题的误差。事实上从下文可以看到,自适应步长方法是效果最好、效率最高的方法。

2.8 Dormand-Prince 5(4) embedded RK

	(10.198) with T_1		(10.199)	with T_2
initial step length	solution error CPU time (s)		solution error	CPU time (s)
0.01	0.000894613	0.002525		0.00328

同理,结合下文可以看到,Dorman-Prince方法显示出更小的误差和更好的效果。

3 PLOTS 5

3 Plots

• Euler method with 24000 steps.

图 1: (10.198) with T_1

图 2: (10.199) with T_2

可以看到,24000 步的 Euler 方法得到的结果是很糟糕的,实际上,即便是步数达到 10^5 数量级,也依然不能呈现出比较好的结果。

(10.198) 耗时: 0.046518 秒; (10.199) 耗时: 0.016837 秒。

• Classical RK method with 12000 steps.

图 3: (10.198) with T_1

图 4: (10.199) with T_2

这里,由于 6000 步的经典 RK 方法呈现的结果欠佳,将步数提高一倍就得到了非常好的结果。

(10.198) 耗时: 0.03287 秒; (10.199) 耗时: 0.031312 秒。

• Dormand-Prince 5(4) method with initial step length 0.01.

图 5: (10.198) with T_1

图 6: (10.199) with T_2

(10.198) 耗时: 0.002424 秒; (10.199) 耗时: 0.003282 秒。

从上可以看到, Dormand-Prince 方法耗时最短, 且得到的结果最精确。