

Fire Peril Loss Cost Prediction

Frank Lanfa Wang, Ruonan Ding 6/28/2016

Product Overview

Fire Peril is one type of coverages in Property Insurance.

Property insurance also Includes:

- fire insurance,
- flood insurance,
- earthquake insurance,
- home insurance,
- boiler insurance.

Outline

- Dataset Overview
- Feature Engineering
- Modeling:
 - Overall Approach
 - Measure Metrics
 - Model Fitting
- Final Result
- Takeaways

Dataset Overview

Competition Goal:

to predict the loss cost of total insured value of insurance policies.

Challenge:

Rare Event: 0.2%

the total non-zero response is 1188 out of 450K records.

Many Features:

- 4 categories of features
- 300+ features
- categorical and numeric with missing values

Outline

- Dataset Overview
- Feature Engineering
- Modeling:
 - Overall Approach
 - Measure Metrics
 - Model Fitting
- Final Result
- Takeaways

Raw Features

Policy Characteristic

- 17 variables
- A set of normalized variables representing policy characteristics.
- both categorical and Numeric

Geodemographic Variables

- 37 variables
- A set of normalized geodemographic variables

Crime Rate Variables

- 9 Variables
- A set of normalized Crime Rate variables

Weather Variables

- 236 Variables
- A set of normalized weather station variables

Feature Engineering

Policy Characteristic

- Delete features that have more than 50% of missing value (7 features were deleted)
- Convert categorical features to dummies (var4, 7, 8, 9 need to have dummies)
- 9 origin features were kept
- 74 features after making dummies.

Geodemographic Variables

- Reduced to 2 dimensions using PCAs.
- 2 new synthetic variables

Crime Rate Variables

- Reduced to 2 dimensions using PCAs.
- 2 new synthetic variables

Weather Variables

- Reduced to 2 variables using Lasso L1 penalty.
- 2 features remained

After Feature Engineering

Outline

- Dataset Overview
- Feature Engineering
- Modeling:
 - Overall Approach
 - Measure Metrics
 - Model Fitting
- Final Result
- Takeaways

Overall Approach

Model 1 - XGBoost Summary

Model 1 - XGBoost Summary

Final Model:

Objective = count:poisson;

Learning rate=0.05; Max_depth=6; Gamma=5; Num_round=24

Model 2 - Linear Regression ElasticNet

 $\langle =1\oplus 10^{-7} \rangle = 0.5$; target: Gini=0.253; log-target: Gini=0.2

Model 3 - Gradient Boosting Regressor

Gini Plot of Gradient Boosting Regressor

Using target: Gini=0.285

Using log-target. Gini=0.274

Model: n_estimators=100, learning_rate=0.05

Outline

- Dataset Overview
- Feature Engineering
- Modeling:
 - Overall Approach
 - Measure Metrics
 - Model Fitting
- Final Result
- Takeaways

Takeaways

- Feature Engineering is KEY:
 - Extracting value from blocks of features;
 - Reduce correlation between variables PCA
 - Reduce noise by significance L1 penalty
 - Our scored improved on average 15% just by feature selections.
- Sampling technique is important with very rare event:
 - 100K including all zero losses and the 1188 response
 - cross validation
- Poisson distribution as the link function is suitable for RARE count event.
- Log transformation on the response variable is not necessary for treebased regressors

Backup slides

Linear regression, ElasticNet, fine steps, logloss

Linear regression, ElasticNet, target

elastic = linear_model.ElasticNet(l1_ratio =0.5,normalize=True) elastic.set_params(alpha = 1e-7)

Post>Deadline

wang frank 0.25396 Fri, 24 Jun 2016 15:42:00

Logistic regression, Gini=0.223

Logit_best = Pipeline([('scale', MinMaxScaler()),
 ('classifier', LogisticRegression())])
Logit_best.set_params(classifier__C=0.5)

Ruonan Logistic Regression got 0.21 on the leaderboard too.

wang

frank

0.22303

Fri, 24 Jun 2016 20:27:20

GradientBoostingRegressor

- (n_estimators=100, learning_rate=0.05)
- Frank use the target.
- Ruonan use log-target.

-	RuonanDing	0.27362	-	Thu, 23 Jun 2016 15:05:08	Post-Deadline
-	wang frank	0.28522	-	Fri, 24 Jun 2016 17:34:54	Post-Deadline

GradientBoostingClassifier

- gbc_best = GradientBoostingClassifier(n_estimators=120,
- learning_rate=0.05, random_state= 2015)

Convert target into binary and use the predict_prob as outcome.

