COMS E6998: Advanced Data Structures (Spring'19)

Mar 28, 2019

Lecture #9: Cell Probe LBs for Dynamic Range Counting

Instructor: Omri Weinstein Scribes: Weston Jackson

1 Last Time

Orthogonal Range Counting (ORC): return all points (or sum of weights of all points) in a rectangle R:

$$\sum_{(x,y)\in R} w_{xy}$$

Previously, we used layered range trees to solve in time:

• Static: $t_u = t_q = O(\log^{d-1} n)$

• Dynamic: $t_u = t_q = O(\log^d n)$

Fort he static case, we used fractional cascading in the last layer to save one log factor. We pay $\log n$ overhead for dynamization, which adds this factor back. However, it is possible to do better $t_u = O(\log^d n), t_q = O(\log^{d-1} n)$ with weight-balanced trees¹.

1D-ORC: Updates are insertions into the number line. Queries ask us to report all points in some interval [i, j]:

$$x_1$$
 x_5 x_7 x_{10} x_{10}

2 Partial Sums (PS_n) Problem

2.1 Static Case

The PS_n problem is equivalent. Our updates just set the index $A[i] \leftarrow \{0,1\}$. For queries, we define PREFIX() function as the following:

$$PREFIX(i) = \sum_{j \leq i} A[j]$$

For QUERY(i, j), we make two PREFIX() calls, and just return:

$$PREFIX(j) - PREFIX(i) \\$$

¹https://pdfs.semanticscholar.org/841a/31780b7e8f4de224fac06181321ca2ea807e.pdf

For the static case, we can just precompute the answers! Directly store $B[i] := \sum_{j \le i} A[j]$. On query, B[i] = PREFIX(i) and thus we can answer in constant time. For example, if A is the following:

1	0	1	0	0	1	0	0	1	1
		l .	l					l	

Then B would be:

Observation 1. For the static case using O(n) space, we can just precompute the answers for each key. We can then use a $O(\log \log n)$ predecessor search to get the partial sum up to that key.

The following question remains: how do we maintain this structure when inserting new points?

2.2 Dynamic Case

The first idea is to keep a tree where the leaves point at the array A. Each node in the tree keeps track of the partial sums in its left and right subtrees. Thus, when we insert a new point x, we just update each node n along the path from root to leaf:

Theorem 2. There exists a dynamic partial sum data structure with:

$$t_q = O(\log n), t_u = O(\sqrt{\log n})$$

Main ideas: (1) Delay updates by buffering. (2) Exploit the self-reducibility of PS_n

Claim 3. Suppose there exists a data structure \mathcal{D}_L for PS_{2^L} (a smaller array). Suppose it has update and query time t_u^L, t_q^L . Then we can design a data structure for PS_n using:

$$t_u = O(t_u^L \cdot \frac{\log n}{L}), t_q = O(t_q^L \cdot \frac{\log n}{L})$$

Proof. We maintain a tree as before, but each node has fan out of size 2^L . Then the total height of the tree is $\frac{\log n}{L}$. Each node also maintains the smaller data structure \mathcal{D}_L .

- INSERT(x): At each node, insert x into small partial sum data structures \mathcal{D}_L .
- QUERY(x): Traverse tree, query each node for partial sums in children in time $\frac{\log n}{L}$.

The time to query and update each node is just t_q^L and t_u^L , thus the total query and update time is:

$$t_u = O(t_u^L \cdot \frac{\log n}{L}), t_q = O(t_q^L \cdot \frac{\log n}{L})$$

2.3 Buffer Trees

Note that there is room for improvement in our partial sum tree data structure. Our word size is $\log n$ and key size is L, but we don't exploit the fact that we can store lots of keys in a single word. When we perform updates, we only update a single bit as we traverse the tree. However, we can improve on this with Buffer Trees:

- Keep a buffer at each node of size $w = \log n$. \forall nodes $\in \mathcal{D}_L$, each node has buffer of most recent $\Theta(\frac{w}{L})$ updates. If buffer is not full, just insert into the buffer.
- INSERT(x):
 - (1) If current node buffer is not full, insert x into the buffer (do not reflect this new key in the partial sums of the left and right subtrees).
 - (2) If current node buffer is full, flush the buffer and distribute the updates to the children. Recompute partial sums of both children (O(1)). Recurse if necessary.
- QUERY(x):

Traverse the tree and collect the partial sums + buffers at each node. Traversing the tree takes time L, thus total time is:

$$t_q = O(t_q^L \cdot \frac{\log n}{L}) = O(L \cdot \frac{\log n}{L}) = O(\log n)$$

Amortized insertion analysis:

$$Cost(t_u^L) = O(1) + Amortized(Cost of flushing)$$

The cost of flushing a buffer is O(1) and the buffer flushes only with $O(\frac{L}{w})$ frequency. A single inserted key cannot trigger more than L flushes total when going down the tree. Thus the amortized cost is: $O(\frac{L^2}{w})$:

$$Cost(t_u^L) = O(1) + O(\frac{L^2}{w})$$

To calculate the overall amortized cost in the original tree:

$$t_u = \frac{\log n}{L}(O(1) + O(\frac{L^2}{w})) = \frac{\log n}{L} + \frac{L \log n}{w}$$

Choosing $L = \sqrt{w}$ and using $w = O(\log n)$:

$$t_u = O(\sqrt{\log n})$$

OPEN: Is this optimal? Conjecture that $t_u = o(\sqrt{\log n}) \implies t_q = \omega(\log n)$

3 Lower Bounds: Chronogram Method

Theorem 4 (FS '89). For all dynamic data structures for PS_n , $t_q \ge \Omega(\log_{t_u} n)$. This implies that:

$$max\{t_u, t_q\} \ge \Omega(\frac{\log n}{\log \log n})$$

Idea 1: Do a series of random insertions $\in_R \{0,1\}$ into random locations of array A, and then perform a random query. After n random updates to A, a random PS_n query $q \in_R [n]$ must read a lot of memory cells.

Idea 2: Divide n random updates into geometrically decaying epochs $U_k \cdots U_1$:

$$U_k = \boxed{u_1 \mid u_2 \mid u_3 \mid \cdots \mid} \cdots U_i = \boxed{\qquad} \cdots U_1 = \boxed{\qquad}$$

In each epoch $|U_i| = \beta^i$, where $\beta = (t_u \cdot w)^3$ and $k = \Theta(\log_\beta n)$. We then insert β^i random updates into evenly spaced locations:

$$\forall j = 1...\beta^i, A[j \cdot \frac{n}{\beta^i}] := u_j$$

where $u_j \in_R \{0,1\}$. For example:

- U_1 updates $A[0\frac{n}{\beta}], A[1\frac{n}{\beta}], A[2\frac{n}{\beta}] \cdots$
- U_2 updates $A[0\frac{n}{\beta^2}], A[1\frac{n}{\beta^2}], A[2\frac{n}{\beta^2}] \cdots$
- U_k updates $A[0\frac{n}{\beta^k}], A[1\frac{n}{\beta^k}], A[2\frac{n}{\beta^k}] \cdots$

etc. Remember that the updates are processed from $U_k \to U_1$.

Claim 5. Geometric decay reduces a dynamic problem on n updates to roughly $\log n$ independent state problems.

Claim 6. The only memory cells in the data structure that reveal substantial information about U_i are cells written during that epoch.

Let $D(U_i)$ be the memory state of the data structure after epoch U_i . Let $A_i :=$ the set of memory cells last written during U_i . This is equivalent to a partition of the memory state into $\log n$ colors. For example if we denote A_i as red (r), A_{i-1} as blue (b), A_{i-2} as green (g):

$$D(U_{i-2}) = \boxed{\mathbf{r} \mid \mathbf{b} \mid \mathbf{r} \mid \mathbf{b} \mid \mathbf{r} \mid \mathbf{r} \mid \mathbf{b} \mid \mathbf{g} \mid \mathbf{r}}$$

The idea is that a certain number of registers A_i for epoch U_i must be queried to reflect the events from epoch U_i . To show this, consider how many bits of information about U_i can be revealed by the past and future epochs:

- Past $A_{>i}$: These reveal no information about U_i because past updates are independent in that they happened beforehand.
- Future $A_{< i}$: These are not necessarily independent from U_i . Its possible a memory cell in the future copied some memory cell that was written during the epoch U_i . But considering that the number of updates decays geometrically, very few cells should be written in the future.

Calculating the number of cells that can be written after U_i :

$$\sum_{j=1}^{i-1} |U_j| \cdot t_u \cdot w = \sum_{j=1}^{i-1} \beta^j(t_u w)$$

$$\leq 5\beta^{i-1} \cdot t_u w \qquad \text{Since } \beta_j \text{ is decating}$$

$$<<\beta_i = |U_i| \qquad \text{Since } \beta_i = (t_u \cdot w)^3$$

Lemma 7. For large epochs (any epoch with size > a small constant), we have that:

$$\mathbb{E}_{q,U}[|D(q) \cap A_i|] \ge \Omega(1)$$

when D(q) reads t_q memory cells on query q

Note that this implies the total size of the data structure over random query is at least:

$$\mathbb{E}_{q,U}[|D(q)|] \ge \sum_{i=1}^k \mathbb{E}[|D(q) \cap A_i|]$$
 A_i are disjoint
$$= \sum_{i=1}^k \Omega(1)$$

$$= \Omega(\log_\beta n)$$

Proof. Assume for purpose of contradiction that the Lemma is false, and there is an epoch where $\mathbb{E}_{q,U}[|D(q) \cap A_i|] = o(1)$. Let epoch U_i be this epoch. Then 99% of partial sum queries $q \in [n]$ do not read cells A_i . Consider all other epochs fixed. Alice's input is all epochs $U_k \cdots U_1$, while Bob's input is all epochs except for U_i . We construct an impossible compression scheme such that we can encode β^i random updates in $< \beta^i$ bits.

	Alice	Bob			
Input	$U_k, U_{k-1}, \cdots, U_i, \cdots U_1$	$U_k, U_{k-1}, \cdots, (?), \cdots U_1$			

Idea 1: Alice sends Bob all updated contents $A_{\leq i} = o(\beta_i)$.

Idea 2: Alice sends parity $\in \{0,1\}$ for 1% of queries that touch A_i .

Decoding: Bob simulates his data structure for epochs $U_{i+1} \cdots U_k$ to get cells $A_{>i}$. Bob then updates his data structure with the contents of $A_{< i}$ from Alice. The only cells Bob doesn't know are A_i . Bob uses parity of queries from Alice (for 1% of queries that touch A_i) and existing data structure to reconstruct the partial sums for any new query.

Complexity: The size of Alice's first message is the number of cells written by epochs $U_1 \cdots U_{i-1}$ which can be encoded in $\leq \frac{\beta^i}{4}$ bits. The size of Alice's parity messages are:

$$\log \binom{\beta_i}{\beta_i/100} \approx \beta_i \frac{\log 100}{100} < \frac{\beta_i}{4}$$

Thus, the total size of Alice's messages is $\frac{\beta_i}{4} + \frac{\beta_i}{4} < \beta_i$. This is a contradiction, as the encoding should be at least β_i .