Econometrics II

Lecture 9: Static Difference-in-Differences

David Schönholzer

Stockholm University

April 30, 2024

Plan for Today

- 1 Causal Effects in Panel Settings
 Treatment Structures
- 2 The 2×2 Difference-in-Differences Design Identification in 2×2 DID Estimation of 2×2 DID
- 3 Generalized DID Designs Estimation of $2 \times T$ DID Static Effects in Staggered DID Inference in DID
- 4 Appendix Static Effects in 2 × T Designs

Table of Contents

- 1 Causal Effects in Panel Settings
 Treatment Structures
- 2 The 2 × 2 Difference-in-Differences Design Identification in 2 × 2 DID Estimation of 2 × 2 DID
- 3 Generalized DID Designs Estimation of 2 × T DID Static Effects in Staggered DID Inference in DID
- 4 Appendix
 Static Effects in 2 × T Designs

Definition of Treatment Structure

- Let $i \in \mathcal{N} = \{1, ..., N\}$ and $t \in \mathcal{T} = \{1, ..., T\}$
- Consider only balanced panel and $D_{it} \in \{0, 1\}$ throughout
- A unit's treatment path is $1 \times T$ vector $\mathbf{D}_i = (D_{i1}, ..., D_{iT})$
 - For example, $\mathbf{D}_i = (0, 1, 0, 1)$ or (1, 1, 0, 0)
- Say units *i* and *i'* are in the same group if $\mathbf{D}_i = \mathbf{D}_{i'}$
 - Let $G_i \in \mathcal{G} \subseteq \{1, ..., T, \infty\}$ denote the group i is in
 - For example, $\mathcal{G} = \{1, 2\}$
 - Let $\mathbf{D}(g)$ be the treatment path of group $g \in \mathcal{G}$
- Define the $|\mathcal{G}| \times T$ grouped treatment structure **D** as

$$\mathbf{D} = \begin{bmatrix} \mathbf{D}(1) \\ \vdots \\ \mathbf{D}(G) \end{bmatrix} \stackrel{\text{e.g.}}{=} \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

Block Structure

- A block structure consists of only two groups:
 - 1 Treatment group $G_i = g$: $D_{it} = 0$ for t < g; $D_{it} = 1$ for $t \ge g$
 - 2 Control group $G_i = \infty$: $D_{it} = 0$ for all t
- Example: 2×3 block structure with g = 2:

$$\mathbf{D} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

- Define
 - Indicator for ever-treated units: $D_i \equiv \max_t D_{it}$
 - So if $D_i = 1$, then $G_i < \infty$ and if $D_i = 0$, then $G_i = \infty$
 - Indicator for post-treated periods: $P_t \equiv \max_i D_{it}$
- Typically reverse-sort $\mathbf{D}(g)$ by g, e.g. $\{\infty, 2\}$
- Lemma: Assume there is more than one group.

Then: Treatment structure is block structure iff $D_{it} = D_i P_t$

Staggered Rollout Structure

- Staggered rollout structure: at least two groups:
 - Groups $G_i = g$ have path $D_{it} = 0$ for t < g; $D_{it} = 1$ for $t \ge g$
 - There may or may not be a control group $G_i = \infty$
- Could also be called *absorbing structure*:
 - $D_{is} \leq D_{it}$ for s < t
 - Can define group indices as $G_i = \arg \min_t D_{it}$
- Example: 3 × 4 staggered rollout structure:

$$\mathbf{D} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

- Remark 1: Block structure is special case with $G_i \in \{g, \infty\}$
- Remark 2: In SRS, **D** is just a function of \mathcal{G} and T
 - In the example above, T = 4 and $G_i \in \{1, 2, 4\}$

Time Series Structures

• Time series structure has only one group

$$G_i = g$$
 with $1 < g \le T$

• For example 1×4 with $G_i = 3$ for all i:

$$\mathbf{D} = \begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}$$

- Can we ever have cross-sectional variation?
- Sometimes: cohort panel with eligibility varying by cohort
- Example: Petra Persson (2020)
 - Social insurance reform in Sweden in 1988
 - Cohorts based on birth quarter of first child
 - National reform is staggered rollout for cohorts!

Assumptions for Static Causal Effects

- Start off with static and homogeneous causal effects
- Define potential outcomes $Y_{it}(d)$ with $d \in \{0, 1\}$
- Built-in assumptions by writing $Y_{it}(D_{it})$:
 - SUTVA in panels: no contamination across units
 - No anticipation/memory: no contamination across periods
- Individual causal effect: $Y_{it}(1) Y_{it}(0)$
- ATE: $\mathbb{E}\left[Y_{it}(1) Y_{it}(0)\right]$
- Estimand is ATT: $\tau \equiv \mathbb{E}\left[Y_{it}(1) Y_{it}(0)|D_{it} = 1\right]$

Table of Contents

- 1 Causal Effects in Panel Settings
 Treatment Structures
- 2 The 2 × 2 Difference-in-Differences Design Identification in 2 × 2 DID
- 3 Generalized DID Designs
 Estimation of $2 \times T$ DID
 Static Effects in Staggered DID
 Inference in DID
- 4 Appendix
 Static Effects in 2 × T Designs

Basic Idea

- Origin: Snow (1849); prominence: Card and Krueger (1994)
- Effect of minimum wage increase D_{it} on employment Y_{it}
- New Jersey (NJ) increases minimum wage in mid-1992
 - Call early 1992 t = 0 and late 1992 t = 1
 - NJ gets $D_{i1} = 1$, while Pennsylvania (PA) keeps $D_{i1} = 0$
- Before enactment: NJ and PA averages: $\bar{Y}_{NJ,0}$ and $\bar{Y}_{PA,0}$
- After: $\bar{Y}_{NJ,1}$ and $\bar{Y}_{PA,1}$
- Intuitively:

$$\begin{split} \text{Treatment effect} &= (\bar{Y}_{\text{NJ},1} - \bar{Y}_{\text{PA},1}) - (\bar{Y}_{\text{NJ},0} - \bar{Y}_{\text{PA},0}) \\ &= (\bar{Y}_{\text{NJ},1} - \bar{Y}_{\text{NJ},0}) - (\bar{Y}_{\text{PA},1} - \bar{Y}_{\text{PA},0}) \end{split}$$

- Plausible even though D_{it} is clearly not randomized! Why?
- We now study the mathematics that underlies this intuition

Setup

• Consider 2 × 2 block structure:

$$\mathbf{D} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

- Let $t \in \{0, 1\}$ (pre/post) and $D_i \in \{0, 1\}$ (control/treatment)
- Define the 2×2 *CEF matrix*:

$$\begin{bmatrix} \mathbb{E}\left[Y_{i0}|D_i=0\right] & \mathbb{E}\left[Y_{i1}|D_i=0\right] \\ \mathbb{E}\left[Y_{i0}|D_i=1\right] & \mathbb{E}\left[Y_{i1}|D_i=1\right] \end{bmatrix}$$

• The potential outcomes matrix (POM) for $d \in \{0, 1\}$ is

$$\begin{bmatrix} \mathbb{E}\left[Y_{i0}(d)|D_i=0\right] & \mathbb{E}\left[Y_{i1}(d)|D_i=0\right] \\ \mathbb{E}\left[Y_{i0}(d)|D_i=1\right] & \mathbb{E}\left[Y_{i1}(d)|D_i=1\right] \end{bmatrix}$$

Potential Outcomes Matrices

- Are elements of POM counterfactual or "factual"?
 - Counterfactuals are unobserved, factuals are observed
 - We can write $Y_{it} = [1 D_i P_t] Y_{it} (0) + D_i P_t Y_{it} (1)$
 - Consider all eight POs in the 2×2 block structure POM:

$$Y_{it}(0) : \begin{bmatrix} \mathbb{E}[Y_{i0}(0)|D_{i}=0] & \mathbb{E}[Y_{i1}(0)|D_{i}=0] \\ \mathbb{E}[Y_{i0}(0)|D_{i}=1] & \mathbb{E}[Y_{i1}(0)|D_{i}=1] \end{bmatrix}$$

$$Y_{it}(1) : \begin{bmatrix} \mathbb{E}[Y_{i0}(1)|D_{i}=0] & \mathbb{E}[Y_{i1}(1)|D_{i}=0] \\ \mathbb{E}[Y_{i0}(1)|D_{i}=1] & \mathbb{E}[Y_{i1}(1)|D_{i}=1] \end{bmatrix}$$

- Notice observability mimics structure of D
- So the CEF matrix corresponds to following POs:

$$Y_{it}: egin{bmatrix} \mathbb{E}\left[Y_{i0}(0)|D_i=0
ight] & \mathbb{E}\left[Y_{i1}(0)|D_i=0
ight] \\ \mathbb{E}\left[Y_{i0}(0)|D_i=1
ight] & \mathbb{E}\left[Y_{i1}(1)|D_i=1
ight] \end{bmatrix}$$

Identification of ATT

- We are interested in $\tau \equiv \mathbb{E}\left[Y_{it}\left(1\right) Y_{it}\left(0\right) | D_{it} = 1\right]$
- Since $D_{it} = D_i P_t$ in block structures, we have

$$\tau = \mathbb{E} [Y_{it}(1) - Y_{it}(0) | D_i = 1, P_t = 1]$$

= $\mathbb{E} [Y_{i1}(1) - Y_{i1}(0) | D_i = 1]$

and hence

$$\tau = \mathbb{E}\left[Y_{i1}\left(1\right)|D_{i}=1\right] - \mathbb{E}\left[Y_{i1}\left(0\right)|D_{i}=1\right]$$

$$= \mathbb{E}\left[Y_{i1}|D_{i}=1\right] - \mathbb{E}\left[Y_{i1}\left(0\right)|D_{i}=1\right]$$
observed
need model

• We model missing PO using parallel trends assumption:

$$\underbrace{\mathbb{E}\left[Y_{i1}\left(0\right) - Y_{i0}\left(0\right) \middle| D_{i} = 1\right]}_{\text{counterfactual trend in } D_{i} = 1 \text{ group}} = \underbrace{\mathbb{E}\left[Y_{i1}\left(0\right) - Y_{i0}\left(0\right) \middle| D_{i} = 0\right]}_{\text{"factual" trend in } D_{i} = 0 \text{ group}}$$

Modeling the Counterfactual through Parallel Trends

Reorganizing parallel trends yields

$$\mathbb{E}[Y_{i1}(0) | D_i = 1] = \mathbb{E}[Y_{i0}(0) | D_i = 1] + \mathbb{E}[Y_{i1}(0) - Y_{i0}(0) | D_i = 0]$$

$$= \mathbb{E}[Y_{i0} | D_i = 1] + \mathbb{E}[Y_{i1} - Y_{i0} | D_i = 0]$$
observed

From this, it follows that

$$\tau = \mathbb{E}\left[Y_{i1}|D_i = 1\right] - \mathbb{E}\left[Y_{i1}\left(0\right)|D_i = 1\right]$$

$$= \underbrace{\mathbb{E}\left[Y_{i1} - Y_{i0}|D_i = 1\right]}_{\text{Treated pre/post diff}} - \underbrace{\mathbb{E}\left[Y_{i1} - Y_{i0}|D_i = 0\right]}_{\text{Control pre/post diff}}$$

So DID simply fills in the missing PO using parallel trends

Table of Contents

- 1 Causal Effects in Panel Settings
 Treatment Structures
- 2 The 2 × 2 Difference-in-Differences Design Identification in 2 × 2 DID Estimation of 2 × 2 DID
- 3 Generalized DID Designs
 Estimation of $2 \times T$ DID
 Static Effects in Staggered DID
 Inference in DID
- 4 Appendix
 Static Effects in 2 × T Designs

Method of Moments in Simple Numerical Example

- Let $\bar{Y}_{gt} = \frac{1}{N_g} \sum_{i:G_i = g} Y_{it}$ be the group g mean in t
- Observable group means matrix:

$$\begin{bmatrix} \bar{Y}_{00} & \bar{Y}_{01} \\ \bar{Y}_{10} & \bar{Y}_{11} \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix}$$

Can use Method of Moments:

$$\widehat{\tau}_{\mathsf{MM}} = \widehat{\mathbb{E}} \left[Y_{i1} - Y_{i0} | D_i = 1 \right] - \widehat{\mathbb{E}} \left[Y_{i1} - Y_{i0} | D_i = 0 \right]$$

$$= (\bar{Y}_{11} - \bar{Y}_{10}) - (\bar{Y}_{01} - \bar{Y}_{00})$$

$$= (5 - 3) - (3 - 2) = 2 - 1 = 1$$

• Note: equivalently, we estimated $\widehat{\mathbb{E}}\left[Y_{i1}\left(0\right)|D_{i}=1\right]=4$

Additive Separability

• Parallel trends are equivalent to additive separability:

$$\mathbb{E}\left[Y_{it}\left(0\right)|D_{i},P_{t}\right]=\mu+\alpha D_{i}+\gamma P_{t}$$
 where $\mu\equiv\mathbb{E}\left[Y_{it}\left(0\right)|D_{i}=0,P_{t}=0\right]$ and
$$\alpha\equiv\mathbb{E}\left[Y_{it}\left(0\right)|D_{i}=1,P_{t}=0\right]-\mu$$

$$\gamma\equiv\mathbb{E}\left[Y_{it}\left(0\right)|D_{i}=0,P_{t}=1\right]-\mu$$

Then, use observed outcome as function of POs:

$$Y_{it} = Y_{it}(0) + [Y_{it}(1) - Y_{it}(0)] D_i P_t$$

Taking conditional expectations, we get

$$\mathbb{E}\left[Y_{it}|D_{i},P_{t}\right] = \mathbb{E}\left[Y_{it}\left(0\right)|D_{i},P_{t}\right] + \mathbb{E}\left[Y_{it}\left(1\right) - Y_{it}\left(0\right)|D_{i},P_{t}\right]D_{i}P_{t}$$
$$= \mu + \alpha D_{i} + \gamma P_{t} + \tau D_{i}P_{t}$$

DID Estimation through Regression

• Recall estimating cell means – this is the same:

$$\mathbb{E}\left[Y_{it}|D_i, P_t\right] = \mu + \alpha D_i + \gamma P_t + \tau D_i P_t$$

So this equals saturated OLS model:

$$Y_{it} = \mu + \alpha D_i + \gamma P_t + \tau D_i P_t + \varepsilon_{it}$$

• Hence, let $\beta = (\mu, \alpha, \gamma, \tau)$ and $\mathbf{X}_{it} = (1, D_i, P_t, D_i P_t)$:

$$\widehat{eta}_{\mathsf{OLS}} = \left(\sum_{i=1}^{N}\sum_{t=0}^{1}\mathbf{X}_{it}\mathbf{X}'_{it}
ight)^{-1}\left(\sum_{i=1}^{N}\sum_{t=0}^{1}\mathbf{X}_{it}Y_{it}
ight)$$

and it can be shown that $\widehat{\tau}_{OLS} = \widehat{\tau}_{MM}$ if $N_0 = N_1$

Card and Krueger (1994) Example

TABLE 3—AVERAGE EMPLOYMENT PER STORE BEFORE AND AFTER THE RISE IN NEW JERSEY MINIMUM WAGE

		Stores by state			Stores in New Jersey ^a			Differences within NJb	
Variable	PA (i)	NJ (ii)	Difference, NJ-PA (iii)	Wage = \$4.25 (iv)	Wage = \$4.26-\$4.99 (v)	Wage ≥ \$5.00 (vi)	Low- high (vii)	Midrange- high (viii)	
FTE employment before, all available observations	23.33 (1.35)	20.44 (0.51)	-2.89 (1.44)	19.56 (0.77)	20.08 (0.84)	22.25 (1.14)	-2.69 (1.37)	-2.17 (1.41)	
FTE employment after, all available observations	21.17 (0.94)	21.03 (0.52)	-0.14 (1.07)	20.88 (1.01)	20.96 (0.76)	20.21 (1.03)	0.67 (1.44)	0.75 (1.27)	
Change in mean FTE employment	-2.16 (1.25)	0.59 (0.54)	2.76 (1.36)	1.32 (0.95)	0.87 (0.84)	-2.04 (1.14)	3.36 (1.48)	2.91 (1.41)	
 Change in mean FTE employment, balanced sample of stores^c 	-2.28 (1.25)	0.47 (0.48)	2.75 (1.34)	1.21 (0.82)	0.71 (0.69)	-2.16 (1.01)	3.36 (1.30)	2.87 (1.22)	
 Change in mean FTE employment, setting FTE at temporarily closed stores to 0^d 	-2.28 (1.25)	0.23 (0.49)	2.51 (1.35)	0.90 (0.87)	0.49 (0.69)	-2.39 (1.02)	3.29 (1.34)	2.88 (1.23)	

DID with Fixed Effects

- What about $Y_{it} = \alpha_i + \gamma_t + \tau D_i P_t + \varepsilon_{it}$? (see TWFE below)
- Concerning γ_t , in 2 × 2, full rank $\mathbf{X}_{it}\mathbf{X}'_{it}$ implies
 - Need to normalize one γ_t and include dummy for other one
 - This is equivalent to γP_t , just notational change
- Concerning α_i , apply FWL to Y_{it} and $D_{it} = D_i P_t$ to get

$$Y_{it} - \bar{Y}_i = \gamma_t + \tau \left(D_{it} - \bar{D}_i \right) + \varepsilon_{it} - \bar{\varepsilon}_i$$

- But note that $D_{it} \bar{D}_i = 0$ for $D_i = 0$
- For treatment group, $D_{it} \bar{D}_i = D_{it} \frac{T g 1}{T}$
- Now let $\mu = -\tau \times \frac{T-g-1}{T}$ and $\alpha D_i + \bar{\varepsilon}_i = \bar{Y}_i$
- Then we have recovered $Y_{it} = \mu + \alpha D_i + \gamma P_t + \tau D_i P_t + \varepsilon_{it}$
- So algebraically equivalent!
- Only true in 2 × 2 block structures, strongly balanced panel

Table of Contents

- 1 Causal Effects in Panel Settings
 Treatment Structures
- 2 The 2 × 2 Difference-in-Differences Design Identification in 2 × 2 DID Estimation of 2 × 2 DID
- 3 Generalized DID Designs Estimation of 2 × T DID Static Effects in Staggered DID Inference in DID
- 4 Appendix
 Static Effects in 2 × T Designs

Estimation $2 \times T$ DID

• Consider now $2 \times T$ block structures with t = 1, ..., T, e.g.

$$\mathbf{D} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

• 2 × 2 pre/post outcome matrix:

$$\begin{bmatrix} \mathbb{E} [Y_{it}|D_i = 0, P_t = 0] & \mathbb{E} [Y_{it}|D_i = 0, P_t = 1] \\ \mathbb{E} [Y_{it}|D_i = 1, P_t = 0] & \mathbb{E} [Y_{it}|D_i = 1, P_t = 1] \end{bmatrix}$$

• Corresponding 2 × 2 sample averages:

$$\begin{bmatrix} \bar{Y}_{0,\mathsf{pre}} & \bar{Y}_{0,\mathsf{post}} \\ \bar{Y}_{1,\mathsf{pre}} & \bar{Y}_{1,\mathsf{post}} \end{bmatrix}$$

where for $d \in \{0, 1\}$

$$\bar{Y}_{d, \mathsf{pre}} = \frac{1}{N_d(g-1)} \sum_{i: D_i = d, t < g} Y_{it}; \quad \bar{Y}_{d, \mathsf{post}} = \frac{1}{N_d(T-g+1)} \sum_{i: D_i = d, t \ge g} Y_{it}$$

Method of Moments and Regression Estimators

- MM: $\hat{\tau}_{\mathsf{MM}} = (\bar{Y}_{1,\mathsf{post}} \bar{Y}_{1,\mathsf{pre}}) (\bar{Y}_{0,\mathsf{post}} \bar{Y}_{0,\mathsf{pre}})$
- Regression: $\mathbb{E}^* [Y_{it}|1, D_i, P_t, D_iP_t]$ just like in 2 × 2
- $\widehat{\tau}_{\mathsf{MM}} = \widehat{\tau}_{\mathsf{OLS}}$ if $N_0 = N_1$ and 2(g-1) = T
- Wide format illustration with g = 4, T = 6:

i	Di	Y_{i1}	Y_{i2}	Y_{i3}	Y _{i4}	Y_{i5}	Y_{i6}
1	0						
2	0		$\bar{Y}_{0,\mathrm{pre}}$			$\bar{Y}_{0,post}$:
3	0						
4	1						
5	1		$\bar{Y}_{1, \mathrm{pre}}$			$\bar{Y}_{1,post}$:
6	1						

Run regression in long format

Table of Contents

- 1 Causal Effects in Panel Settings
 Treatment Structures
- 2 The 2 × 2 Difference-in-Differences Design Identification in 2 × 2 DID Estimation of 2 × 2 DID
- 3 Generalized DID Designs Estimation of 2 × T DID Static Effects in Staggered DID Inference in DID
- 4 Appendix
 Static Effects in 2 × T Designs

Treatment-Timing Groups

- Let's turn to staggered rollout structures
- We now have at least two $G_i < \infty$, e.g.

$$\mathbf{D} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

We might still have a never-treated group, e.g.

$$\mathbf{D} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

- No longer always $D_{it} = D_i P_t$ (since not block structure)
- Instead, we have $D_{it} = 1$ [$t \geq G_i$] for each $g \in \mathcal{G}$
 - Generalization; collapses to $D_{it} = D_i P_t$ in block structures

Identification and Estimation

- Identification of $\tau = \mathbb{E}\left[Y_{it}\left(1\right) Y_{it}\left(0\right) | D_{it} = 1\right]$:
 - Analogous to 2 × T case (see Appendix)
 - Again requires parallel trends: for $t \ge 2$ and any $g, g' \in \mathcal{G}$

$$\mathbb{E}\left[Y_{it}\left(0\right) - Y_{it-1}\left(0\right) \middle| G_i = g\right] = \mathbb{E}\left[Y_{it}\left(0\right) - Y_{it-1}\left(0\right) \middle| G_i = g'\right]$$

• Estimation with two-way fixed effects (TWFE) regression:

$$Y_{it} = \alpha_i + \gamma_t + D_{it} \tau_{\mathsf{TWFE}} + \varepsilon_{it}$$

- Called staggered DID regression when $D_{it} = 1$ [$t \ge G_i$]
- But even used if generic $D_{it} \in \{0, 1\}$ (i.e. D_{it} not absorbing)
- Two important recent insights in TWFE:
 - 1 $\tau_{\text{TWFE}} \neq \tau$ if effects are heterogeneous along group/time
 - 2 For staggered rollouts, τ_{TWFE} is weighted avg. of 2 × T DIDs

Static Group-Time Treatment Effects

- Assume generic **D** with N_{gt} observations in cell (g, t)
 - Consider running $Y_{it} = \alpha_{G_i} + \gamma_t + \tau_{TWFE}D_{it} + \varepsilon_{it}$
 - How does τ_{TWFE} relate to τ ?
- Write static group-time treatment effects as

$$\tau_{gt} = \frac{1}{N_{gt}} \sum_{i \in \sigma} \left[Y_{it} \left(1 \right) - Y_{it} \left(0 \right) \right]$$

which is called the ATE in cell (g, t)

- Define $N_1 = \sum_{i,t} D_{it}$ as the number of treated observations
- We can then write the ATT as

$$au = \mathbb{E}\left[\sum_{(g,t):D_{it}=1}rac{ extstyle N_{gt}}{ extstyle N_{1}} au_{gt}
ight]$$

which says that τ is weighted average of group-time effects

Decomposing the TWFE Estimator

Theorem (de Chaisemartin & d'Haultfoeuille 2020)

TWFE regression is given by:

$$au_{\mathsf{TWFE}} = \mathbb{E}\left[\sum_{(g,t):D_{it}=1} rac{ extstyle N_{gt}}{ extstyle N_1} w_{gt} au_{gt}
ight]$$

where

$$w_{gt} = rac{ ilde{D}_{gt}}{\sum_{(g,t):D_{it}=1}rac{N_{gt}}{N_{i}} ilde{D}_{gt}}$$

where $\tilde{D}_{gt} = D_{it} - \mathbb{E}^* \left[D_{it} | \alpha_{G_i}, \gamma_t \right]$ are the residuals of D_{it} after removing TWFE, which are constant within group (as is D_{it}).

Understanding the Decomposition Result: Example

- What does this result say?
 - If τ_{gt} are constant, then $\tau_{\mathsf{TWFE}} = \tau$ (as $\sum_{(g,t):D_{it}=1} \frac{N_{gt}}{N_1} w_{gt} = 1$)
 - But with varying τ_{gt} , in general $\tau_{\mathsf{TWFE}} \neq \tau$
 - Hence τ_{TWFE} is generally a biased estimator of τ
- Consider staggered rollout with T=3 and $\mathcal{G}=\{2,3\}$

$$\mathbf{D} = \begin{bmatrix} \mathbf{D} (3) \\ \mathbf{D} (2) \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

- According to FWL, we have $\tilde{D}_{gt} = D_{it} \bar{D}_g \bar{D}_t + \bar{D}$
- This implies:

$$\tilde{D}_{33} = 1 - \frac{1}{3} - 1 + \frac{1}{2} = \frac{1}{6}$$

$$\tilde{D}_{22} = 1 - \frac{2}{3} - \frac{1}{2} + \frac{1}{2} = \frac{1}{3}$$

$$\tilde{D}_{23} = 1 - \frac{2}{3} - 1 + \frac{1}{2} = -\frac{1}{6}$$

Negative TWFE Although all (g, t)-ATEs are Positive

- ullet Consider, for example, $\mathbb{E}\left[au_{33}
 ight]=\mathbb{E}\left[au_{22}
 ight]=1$ and $\mathbb{E}\left[au_{23}
 ight]=4$
- It follows then from the Theorem that

$$au_{\mathsf{TWFE}} = rac{1}{2}\mathbb{E}\left[au_{33}
ight] + \mathbb{E}\left[au_{22}
ight] - rac{1}{2}\mathbb{E}\left[au_{23}
ight] = -rac{1}{2}$$

- So τ_{TWFE} is negative even though all $\mathbb{E}\left[\tau_{\mathsf{gt}}\right]$ are positive!
- ullet However, if e.g. $\mathbb{E}\left[au_{gt}
 ight]=1$ (i.e. homogeneous), then

$$au_{\sf TWFE} = au = 1$$

- The negative weight makes τ_{TWFE} very different from τ
- But why does this problem happen?

Where do Negative Weights Come From?

• It arises because it can be shown that in the example:

$$au_{\mathsf{TWFE}} = (\mathsf{DID}_1 + \mathsf{DID}_2) / 2$$

where

$$\begin{aligned} \mathsf{DID}_1 &= \mathbb{E}\left[(\bar{Y}_{22} - \bar{Y}_{21}) - (\bar{Y}_{32} - \bar{Y}_{31}) \right] \\ \mathsf{DID}_2 &= \mathbb{E}\left[(\bar{Y}_{33} - \bar{Y}_{32}) - (\bar{Y}_{23} - \bar{Y}_{22}) \right] \end{aligned}$$

• So it is the average of all 2×2 DIDs:

$$\mathsf{DID}_1: \left[egin{array}{c|c} 0 & 0 & 1 \\ 0 & 1 & 1 \end{array} \right] \text{ and } \mathsf{DID}_2: \left[egin{array}{c|c} 0 & 0 & 1 \\ 0 & 1 & 1 \end{array} \right]$$

- $\mathsf{DID}_1 = \mathbb{E}\left[\tau_{22}\right]$ as hoped, but $\mathsf{DID}_2 = \mathbb{E}\left[\tau_{33}\right] (\mathbb{E}\left[\tau_{23}\right] \mathbb{E}\left[\tau_{22}\right])$
- So DID₂ goes awry if τ_{23} is very different from τ_{22}
- Also see Goodman-Bacon (2020) for a similar result

Robustness to Heterogeneity

- de Chaisemartin and d'Haultfoeuille (2020) propose:
 - Diagnostic to assess sensitivity to heterogeneity
 - Alternative heterogeneity-robust estimator
- The target parameter for estimator is:

$$au_{S} \equiv \mathbb{E}\left[\frac{1}{N_{S}}\sum_{\left(g,t\right):t\geq2,D_{it}\neq D_{it-1}}\left(Y_{it}\left(1\right)-Y_{it}\left(0\right)\right)
ight]$$

where $N_S = \sum_{(g,t):t \geq 2, D_{it} \neq D_{it-1}}$ are obs in switching cells

- This is the ATE of all switching cells $D_{it} \neq D_{it-1}$
- In staggered adoption, mean ATE at start of treatment

Heterogeneity-Robust Estimator

The estimator is

$$\tau_{\mathsf{dCdH}} = \sum_{t=2}^{T} \left(\omega_{+,t} \mathsf{DID}_{+,t} + \omega_{-,t} \mathsf{DID}_{-,t} \right)$$

where $\omega_{+,t}$ and $\omega_{-,t}$ are sample weights

- Basic idea:
 - DID_{+,t} measures "joiner-effect": [0, 1] against [0, 0]
 - DID_{-,t} "leaver-effect": [1, 0] against [1, 1]
 - Ignore the rest so use only DID₁ in example
- See did_multiplegt

Real-World Example: Gentzkow et al. (2011)

- $\hat{eta}_{\textit{fe}} = \widehat{ au}_{\mathsf{TWFE}}$
- $\mathsf{DID}_\mathsf{M} = \widehat{ au}_\mathsf{dCdH}$

TABLE 3—ESTIMATES OF THE EFFECT OF ONE ADDITIONAL NEWSPAPER ON TURNOUT

	Estimate	Standard error	Observations
\hat{eta}_{fd}	0.0026	0.0009	15,627
\hat{eta}_{fd} \hat{eta}_{fe}	-0.0011	0.0011	16,872
$\mathrm{DID}_{\mathrm{M}}$	0.0043	0.0014	16,872
$\mathrm{DID}^{\mathrm{pl}}_{\mathrm{M}}$	-0.0009	0.0016	13,221
$\mathrm{DID}_{\mathrm{M}}, \mathrm{on} \mathrm{placebo} \mathrm{subsample}$	0.0045	0.0019	13,221

Notes: This table reports estimates of the effect of one additional newspaper on turnout, as well as a placebo estimate of the common trends assumption underlying DID_{M} . Estimators are computed using the data of Gentzkow, Shapiro, and Sinkinson (2011), with state-year fixed effects as controls. Standard errors are clustered by county. To compute the DID_{M} estimators, the number of newspapers is grouped into 4 categories: 0, 1, 2, and more than 3.

Table of Contents

- 1 Causal Effects in Panel Settings
 Treatment Structures
- 2 The 2 × 2 Difference-in-Differences Design Identification in 2 × 2 DID Estimation of 2 × 2 DID
- 3 Generalized DID Designs Estimation of 2 × T DID Static Effects in Staggered DID Inference in DID
- 4 Appendix Static Effects in 2 × T Designs

Serial Correlation in Y_{it} in Long Panels

- Consider staggered rollouts with moderaly large T (say 30)
- $Cov(Y_{it}, Y_{is})$ and $Cov(D_{it}, D_{is})$ are often high in this case
 - Makes it likely that $Cov(\varepsilon_{it}, \varepsilon_{is})$ is high as well
 - Ignoring serial correlation overstates precision of $\widehat{\beta}_{\mathsf{OLS}}$
- Bertrand et al. (2004):
 - Robust standard errors reject too often
 - Treatment-unit clustered SEs work well \rightarrow do this
 - Some "fancier" standard errors work, others do not
- Takeaway: always use *G_i*-clustered SEs as default

Table of Contents

- 1 Causal Effects in Panel Settings
 Treatment Structures
- 2 The 2×2 Difference-in-Differences Design Identification in 2×2 DID Estimation of 2×2 DID
- 3 Generalized DID Designs Estimation of 2 × T DID Static Effects in Staggered DID Inference in DID
- 4 Appendix Static Effects in $2 \times T$ Designs

$2 \times T$ Design Setup

• Consider now $2 \times T$ block structures with t = 1, ..., T, e.g.

$$\mathbf{D} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

- Two groups: $G_i \in \{g, \infty\}$ with $1 < g \le T$
- Parameter of interest still: $\tau = \mathbb{E}\left[Y_{it}(1) Y_{it}(0)|D_{it} = 1\right]$
- Now write $P_t \equiv \max_i D_{it} = 1 [t \geq g]$
- Just like before, can split estimand:

$$\tau = \mathbb{E}\left[Y_{it}(1)|D_i = 1, P_t = 1\right] - \mathbb{E}\left[Y_{it}(0)|D_i = 1, P_t = 1\right]$$

$$= \mathbb{E}\left[Y_{it}|D_i = 1, P_t = 1\right] - \mathbb{E}\left[Y_{it}(0)|D_i = 1, P_t = 1\right]$$
observed need model

Parallel Trends in $2 \times T$

• Parallel trends: for $t \ge 2$

$$\mathbb{E}\left[Y_{it}(0) - Y_{it-1}(0) | D_i = 1\right] = \mathbb{E}\left[Y_{it}(0) - Y_{it-1}(0) | D_i = 0\right]$$

so that specifically for $t \ge g$

$$\mathbb{E}\left[Y_{it}(0) | D_{i} = 1\right] = \mathbb{E}\left[Y_{it}(0) | D_{i} = 1, P_{t} = 1\right]$$

$$= \mathbb{E}\left[Y_{it-1}(0) | D_{i} = 1\right]$$

$$+ \mathbb{E}\left[Y_{it}(0) - Y_{it-1}(0) | D_{i} = 0\right]$$

• So we are already identified if g = T (same as 2×2)

Multiple Post-Periods

- Recursively use $\mathbb{E}\left[Y_{it-1}\left(0\right)|D_{i}=1\right]$ until it "turns blue"
 - If t = g: $\mathbb{E}[Y_{it-1}(0) | D_i = 1] = \mathbb{E}[Y_{it-1} | D_i = 1, P_{t-1} = 0]$
 - If t = g + 1 (i.e. second post-period), then

$$\mathbb{E}\left[Y_{it-1}(0) | D_i = 1\right] = \mathbb{E}\left[Y_{it-2} | D_i = 1, P_{t-2} = 0\right] + \mathbb{E}\left[Y_{it-1}(0) - Y_{it-2}(0) | D_i = 0\right]$$

- And so forth, with $s \ge 0$ for t + s = g + 1
- Hence we can show that τ is identified:

$$\tau = (\mathbb{E}[Y_{it}|D_i = 1, P_t = 1] - \mathbb{E}[Y_{it}|D_i = 1, P_t = 0]) - (\mathbb{E}[Y_{it}|D_i = 0, P_t = 1] - \mathbb{E}[Y_{it}|D_i = 0, P_t = 0])$$