MLOps	Intrastructure & Tooling	Development & Tracellasheating	-> pull fixed date of (voodoned) and run a full terining Ren,
	Distributed Training	Strategy for OL troubleshooting (-) posinistic)	check model performance consistency
Devops: Technical & management	Scenarios that regains > 1 GPU: duta batel / Model		Functionality tasts: unit tests for production code; a oal:
practices that aim to increase an	might not fit on a single CPU	a single metric (accuracy, precision,)	audid regression in the coule -) load a prefrained model and
organization's velocity in teleasing high-	Data perallelism (split batcher): distribute a single		test prediction on a few key examples
ruality software -> (1, (D, monitoring, Intra-		defaults (adar aphinizer, no regularization), normaliza	Evaluation touts: Integration tooks between your training
Structure are coole	across them (-> alls must have fast inter-corrects)	input (subtract mean and divided by stal), simplify the	system and prediction; Good: make sure model is ready
UCPS externer of Decops to ML projects,	Model parallelism: what taken up GOO monory?	problem (smaller deleset)	to go into production -) evaluate model on all notices, datase
set of tools and bort practices for bringing	uptimizes states (as), gradients (5), model perens (pl	Implement & debuy () get your model to run: step	that you care about, olice-based evaluation, robustness
41 into production	a.) Shared Data Pavallelian: Zelo-3-3 distribute p,	through in a desupper -> water out for OGM,	teuts: like data can contain noise, making it different from
MLOps Features & lifecycle	g as over the data-parallel GPU's	courting and shape(2) overfit a single baten: look for	test - add noise to date
Design: Pecquirements Ensineering (business dice-	2. Pipelined model-percullelism: Split model over	currented date, overegularization, broadcasting errs	Shadocs tests: integration took between prediction and
tives, ML use case prioritisation, Data check	several GPOs (Deepspeed, FairScale) (3) Toror	3 Compacts a known rought: keep iterating will	serving system - detect inconsistencies between offline
Madel dev: Data engineering Laterage, versioning,	parallelism: Matrix multiplication can be distributed	model performs up to expectations	and online model; them: run new model in proof, but
que labelling), Model ensineering, Ruting,	over GPUs -> 30-parallelish combines these nethods	Funcale: Bias-variance decomposition: breakdown of	don't return predictions to users
b (Validation	Cradient checkpointing: saw stratedically selected	test error by src, test error = irreducible error + bics + verience	Labelly texts: Goal catch pour quality labels before they
Operations: Deployment, CI/CO pipelines,	activations in the forward pass - only a traction		corrupt your model; train and cartify the labellers
Monitoring (model/data drift, basing)	needs to be recompensed in the buckward pear	one sampled from fraining aliutribution and one from to	Expedicion tests: unit tests for day a - great_expectations
11 system design systematic approach to	FFCV: climinate data bottlenecks (caccing,	Biog-variance with distribution shift: test error += distr. shift	Data Engineering
MLOps -> considers on ML system holistically	data pre-locading, async data transco)	High variance - outlitting; High biens -> uncertitting	Data sources bota rage dater lake
to course that all the components and	Conjutation	Ingrave model/data: 1 undertitting: bisser	Building blocks: Filesystem, asject stomp , OB, work house
heir stakeholders can work together to	CIPO rain factors: VRAM Carount of data fitting	model, reduce regularization, ever analysis	Object storage: API over the filesystem - 53, HOFS, Ceph
satisfy the specifical objectives	on GPU), Compare speed, Link speed (CAU-GAU)	2) Overfitting: more training date, normalization	Catacolos: Persistent, faut, secicose
ML project life sycle	Cloud us On-pron: for high utilisation, local ItW	3) distribution drift: donain adaption techniques	WereLowe: streetered aggregation of data for
1. Planning & project setup: requirements & souls,	is recommended (cheaper), for sealing up for pearts	(1) re-balance destaset: Fort: Waishts & Biases	acilysis - ETL (extract, transform, bad)
allocate resources, ethical implication	wage, on-demand cloud is more flexible	(1) re-barance detaset: trad: Waishts & Biases The hyperparameter: Unid search: try out all	lake: unstructural aggregation of data from multiple
2. Data collection & labelling: training data, annatute with	Revource management	combinations of hyperperens -> forecast combination	sources (deates ases, logs,) -> ELT (extract, load, transon)
ground truth labels	Typical workflow: 1 ran an experient 2 define	train model decilnate Randon scarch: some as	Data Accersing
3. Training & debusging: implement barcline, find Sola	machine + 4PU, solware schap, training dataset	grid search - ofth more efficient then grid scarch	DAG (Directood Acyclic Graph) (A) (D)
rodal and reproduce, debug, improve model	- passible solutions: SLUKM, Docker + Keberneter	Teuting	Hadage / Spark: Penallel, distributed big date proccuring
1. Deploying & terring: setup production system, write	Schooling: when to our jobs oreviser retire copacity	Best practices: conternate tests (CI/CD) test country	Airflow: Workflow rangement tool. Workflow as OAG
erts, walnute the binses, roll out	Orchestrater: where to san jobs fand vice versa	-> Pytest, deetest (tests in docutions), blacks there of	Feature Store (Tecton, Feart, FeatureForn)
Ml product archetypes	Container: built packased ENV VM: to vironalize a HW slee	: Influentracture Trots: Unit tests for training coole	Ml-specific data system that. @ reas data pipelines
Software 20: take something traditional SW is good	Experiment nonascreent	Cocal: avoid booss in training pipeline - aced single better	that transform naw data into feature values
at and make it better with MC Human in the Goop:	Terrarboard: solution for single projects MLFlow:	or single epoch test, run frequently	(1) stores and manages the feature data itself
complement humans with ML looks Autonomans agritours	OS SW for experiment and model management	Training teuts: hteoration tests between training and data system; Goal: rake sere training is reproducible	3 serves feature data consistently for training and intercnee

Ocita exploration (Pandao)	Judgement sampling: experts decide what to include	Monitoring & Continual Learning	Large Language Hodel (LLM)
Initial understanding of data before training a	and carpling: quoters for cortain slices of date	Date drift date distribution changes -> different	success recipe: tokenization, ensealding croation, transformer
model that typically involves visual-profiling	Stratifical sampling: divide paperlation by subgroups	users, different essege patterns; Instentaneous	Tokenization: Text is split up - indices into weedulary
-) theck for anomalier or niving values	Class instalance: not enough signal to learn about	drift: model deployed in new donain, but in	Transferner architectures: O Decader only (GM): generates
Data Versioning	rak clases - sampling binous, kedding errors	pipeline; Cradenal shift: coor profesorous dange	takens to continue given input () Encoder only (BFRT):
Level C: envoyinged (filesysten)	b Rescripting: underscripting: revous scripter from	over time	Icans text representation that can support various NLP lawks
L1: versioned via snapshot at truthing time	rajorly classes (overlitting); oversampling: and none	Model Shift "Concept chiff": some input, expecting	Few-shot learning: aring prempto that include instructions
12: versioned as a mix of currets b code (GitLFS)	sample to niverity deas (-> less of information)	different output. Can be cyclic and scarcinal.	with a teer exemples, one can address about any NI
13: specialized data various robutton (Oxen, Ox)	Date augmentation & Synthetic Date	What to nonitor: model netrics, business netries,	terk
Data Privacy	Increase size and oliversity of data without actually	model inputs & outputs, system performance	Linitations: leak state/menory, stockastic/probabilistic, stake
Federated Gerning: trains a youland mode	collecting new data -> tonchision	Measuring distribution change: 1 select a	information, hoge, hallycination
from data on a local decice, without having	Feature Engineering	reference window of "good" date 2 select	LLMOgs
account to the elate	Process of creating new features or modifying existing	neasurement window 3 compare aring a distance	RAG (Retrieval Agroted Concretion): Entence UM
Differential Privacy: agregating data such	Herdling niving values: - remove column with	metric - , rale - soved us statistical (albi-detect)	by giving then access to intornation from OB
that individual points campt be identified	too many mirring values; - row deletion (band	Manitering tals: namy ML, dupolecks, new relic	ML Roles and Teans
Training data & Feature Engineering	when many examples have nissing fields);	letraining	Economic: All reduces cour of prediction - we MI when
Octra Labeling	- imputation (fill missing values)	-) when their is date/model drift or new data	inpact is Light and feasability is high
Cool-effective and high quality dates labelity is key	Best precioes: use features that generalize well	is accijeste	Cost driver: data availability, needel accoracy, difficulty
to successful model development labeling SW: Label	Deployment	Periodic retraining: 1 Lossing: log everything	
Studio, Difform, Proding	Model Prediction	1) Chrotica: scripte at random to give max obta	
therd lesseling: Expanice, non-private, slay non-adopti	Datel Prediction: Periodically ran rader on	points 3 Trigger: actrain 4 datavet formation:	
Self-superized learning; model is trained on a pretod-	new data and eache results in a DB.	use colling window of the 5 offline testing,	
task using the olak itself to general supervivory	Galine Prediction: on-demand prediction	then online tenting On what data to retrain:	
signals, rater than relying on external labels	Co Madel-in-scruce: Wes server locals model and	- rotatin on all available date, sliding window,	
Scri-supervised learning: small port of training act	calls it to make prodictions	gentinear learning (-) fineture on new derte)	
has labels, most date is unlabelled	Model-as-service: model hooted on its own rem	of previous locard	
Weakly supervised learning: small part of train data	-> Real Scree, Towardow sorving, ML Screen	Continual Lecroing	
har labels, the remainder has "week" labels,	Deployment	Pealay methods. maintain subset of surprise from	
astained from houristic	Tecals: Cecropic Cloudy Azere MC	previous tank and rease as additioned inputs in Part.	
Active larning: Learning Mgo can interactively	Model store: save crifects (porens, date,	Regularization add regularization ten to loss	
Guera a human to lasel new data points	dependencies) -> MLFlow, Peptere, CICGIML	fine. Consolidating previous knowledge when	
Transfer learning: rold devisioned for one took	Optinizations: nodel corpaion, praning	learning on new days	
is nused on a different task	Edge deployment (TFLite, Corettle, Pstorec mobile)	Foundation Models	
C			
Sampling & Class inbalance	Edge competing: works will and internet, don't wany	Model that is trained on broad date at scale, is	
Convenience sampling: schotten barred an availability		Model that is trained on broad date at scale, is defined for generality of output -> can be adapted to	