Don't be so specific:
exploiting diversity in synthesis to fast-track
synthetic biology

Tom Ellis

Jim Collins Group, Boston University

systems biology

aging bioenergy mammalian disease

vibrating insoles

Collins Lab Boston University

noise

modeling

synthetic biology

Brewing with Synthetic Biology

April 23rd, 2009 by Jabba

Synthetic biology rests on the hope that biological "parts" like DNA and proteins can be engineered and assembled just like a machine or computer circuit, but the field still

"While we may not fully understand the terminology and the processes involved, we do know that Collins has used the technology to brew beer. Really good beer."

"We love the idea of this RoboBeer, but they'd better not start toying around with PBR."

Sunrise Post, 26-4-09

What is Synthetic Biology?

a new area of biological research that combines **science** and **engineering** in order to **design and build** ("synthesize") novel biological functions and systems source: wikipedia

Constructing novel gene networks

Investigating biology by building and modeling equivalent systems

Synthesizing entirely new biomolecules

Rewriting genomes

Building new life

Andrianantoandro E et al, 2006

Building gene networks - everyone's favourite part of synthetic biology

Systems often don't work first time

London Heathrow Terminal 5

What went wrong?

London Millennium Bridge
Retrofitted

Building gene networks - everyone's favourite part of synthetic biology

idea – hour model – week network – year

Alternative Approaches

Module shuffling – Guet at al, 2002

Directed evolution – Yokobayashi et al, 2002

A role for **diversity** in synthetic biology

But...

These use diversity after model design

Can't we introduce diversity before design?

Think of a set of screws

- 1. Make libraries of parts using diversity
 - 2. Make models of intended networks
 - 3. Input library data into models

Models act as a guide - selecting the best library parts for the output function needed

Construct the intended networks (and use them)

Bypass debugging

Promoter Library

Synthesis techniques:

- By DNA shuffling Elowitz/Cohen
- By Mutation:Alper & Stephanopolous
- By Synthesis: Jensen & Hammer

Made using oligos Include regulation sites Uses *de novo* design

Characterizing in parallel

Regulated Promoter Libraries

Range of S_{min} and S_{max} = range of input and output

Tom Ellis 28-4-09

TetR-regulated promoters

e i							
Promoter	Max Output	error	Min Output	error			
TX	918.00	33.83	7.46	0.46			
T01	694.23	19.89	32.79	2.58			
T02	595.79	17.07	8.38	0.50			
T03	506.31	27.48	20.22	2.16			
T04	421.78	5.83	3.26	0.16			
T05	408.04	22.91	9.87	0.41			
T06	418.60	16.63	6.46	1.68			
T07	319.66	13.41	3.04	0.15			
T08	277.75	12.94	30.88	1.75			
T09	244.21	11.79	11.34	0.62			
T10	216.99	7.34	3.27	0.18			
T11	203.14	6.90	3.41	0.18			
T12	201.76	3.75	7.08	0.53			
T13	154.46	12.15	4.01	0.23			
T14	151.03	10.36	6.42	0.19			
T15	118.93	5.85	4.62	0.19			
T16	108.22	3.40	3.71	0.13			
T17	81.70	3.39	5.91	0.27			
T18	51.75	3.27	3.26	0.25			
T19	48.29	1.10	5.13	0.89			
T20	30.69	0.40	6.95	0.45			
TFF1	287 38	14 38					

LacI-regulated promoters

Promoter	Max Output	error	Min Output	error
LX	717.38	21.06	13.06	0.77
L01	399.90	25.02	11.11	0.60
L02	372.59		9.71	0.11
L03	292.11	11.60	83.05	1.09
L04	282.01	13.61	50.55	1.92
L05	246.73	6.42	151.75	2.77
L06	228.45	15.37	23.79	0.31
L07	139.99	8.43	5.40	0.36
L08	141.86	6.23	7.67	0.38
L09	134.04	9.73	23.54	1.58
L10	129.13	8.04	4.96	0.30
L11	108.27	4.18	5.74	0.48
L12	107.35	4.73	5.07	0.38
L13	103.58	9.54	4.37	0.29
L14	82.32		4.15	0.23
L15	70.91	4.42	20.83	0.98
L16	72.03	3.05	4.28	0.23
L17	56.97	1.77	5.15	0.38
L18	47.16	1.33	3.91	0.28
L19	44.10	2.25	4.25	0.20
L20	37.08	2.12	9.41	0.69

Start

	O 1011 1	
<u> </u>	taaaagtatcaacaa	<mark>aaaaat maraannannannannannannannannannannannanna</mark>
acttettatteaaatgtaa	taaaagtatcaacaa	naaaat tottaatatacctctatactttaacotcaaggagaaaaaacccc <mark>oyatcc</mark>
atececgecggcgeggatt <mark>:</mark>	taaaagtat caacaa	<mark>aaaaat</mark> ogctgocoooctcgotocccoototctcocgottcoocgocctc <mark>ggatcc</mark>
aaa ee ee ae d aa eeedd aw	taaaagtatcaacaa	<mark>aaaaat</mark> teoooootgoogoeogoegogoooooooooooooooog <mark>ggatcc</mark>
cggtgaattacctatcatt	taaaagtatcaacaa	<mark>aaaaat</mark> ttetgtetteetagtgteeettataaeggeaeteeeataeaege <mark>ggatee</mark>
teeceategeeegttagee	taaaagtat caacaa	<mark>kaaa</mark> gt geeteetgeeeeeeeeeeeeeeeggttttgggeeeeeegg <mark>ggatee</mark>
	taaaagtatcaacaa	<mark>accont</mark> eteccoegacetatacegeccegeatecegteccegeaceaata <mark>ggotec</mark>
	-aa <mark>t</mark> agtatcaacaa	<mark>aaaaat</mark> ccacgcctagccccaccctgcgccccaccctcccccgccg <mark>ggatcc</mark>
		<mark>aaaaat</mark> ccteccggcgtcccctgececceeeccgcceccecgtecccce <mark>ggatcc</mark>
		<mark>aaaaaat</mark> tteoesessaattessaattettagaotssossooggag <mark>aoss</mark> gyato
		Radaat Ctcaattcagtgcatcattaattatccaaacaaaatcagga <mark>ggatcc</mark>
		<mark>sasast</mark> ceccecectrocctroccgegoogrocgeteccccccccc <mark>orgastor</mark>
		<mark>kaat</mark> toetetootoeteetetogoooooogooogoogoootogotte <mark>gyatco</mark>
		<mark>gasast</mark> ecdacacetacecaacacddccccdcctacdaccccccacdcc <mark>dastcc</mark>
ect.ccceecceetecctg	taaaagtatcaacaa	<mark>sasast</mark> ccccccgccgccactcagtacgacacctcccaaggcccccccc
		<mark>kaaaat</mark> toeeeeoooootgoooooooogeoottgottoeoeoooooo <mark>gyatoo</mark>
ttacagacaaaataccgg <mark>t</mark>		
		<mark>aaaa t</mark> tgegeatgeeggeetggattttgegeaaatttaeettaaegtee <mark>ggatee</mark>
		<mark>aaaaat</mark> otooooeteooogegoeooogeeoootgogeoogettooooog <mark>yyato</mark>
		<mark>;aaaat</mark> aggcaagacagacgctcccgggcacaaacgctgtgctcgtcaat <mark>ggatcc</mark>
		<mark>kaaaat</mark> o eme oteotettoogmeoogmeooootugooooottooooootm <mark>yyatee</mark>
gtaataatttatgatatee:	i t taaaagtatcaaca	<mark>kaaaaat</mark> ttgotgoggteseooooggoeetogeeogoteeteootgetoegooe <mark>ggo</mark>

Feed forward loop motif - robust, non-linear

Modeling type: prediction ahead of assembly

Monostable toggles that act as programmable 'timers' unbalanced mutual repression

Modeling type: predictions based on single example

 P_{LX}

Predicted Relationship from computational model + one experimental test case

Applying the network

Yeast flocculation - sedimentation

Why would this be of use? **Beer**, wine... and now biofuels

Advantages of the system – controlled, predictable

So what?

"Diversity? Isn't this just degenerate synthesis?"

"Libraries aren't new"

"Predictive models aren't new"

"I'm too busy to make multiple parts"

"Can I just use yours?"

Advantages

Fast
Predictive
Desired output levels
Fine-tuning of response

Provides parts for community

Follow-ups

Promoters with activation Mammalian cells, *E.coli* More complex networks

Sequence/output relation Digital understanding

What to apply it to?

Regulatory networks
Modular bioparts
RNA – eg. RBS/polyA
Protein binding sites

Investigate motifs/modules

Future Vision

Implementable in a BioFAB Scaled-up libraries

All parts made this way? Diversify from start chassis

Tom Ellis – Techniques, Construction and Implementation

now at University of Cambridge, Dept of Biotechnology and Chemical Eng.

Mammalian cell synthetic biology
Engineer dry-life tolerance into cells
genetic, metabolic and protein engineering
And other ideas...

Xiao Wang – Modeling and Predictions doing even more amazing work with Matlab – e.g. cells that count

Done with help from: Jim Collins, Boston University

Henry H Lee, Boston University

Peter R Jensen, Biocentrum DTU

Kevin Verstrepen, KU Leuven

nature biotechnology

Diversity-based, model-guided construction of synthetic gene networks with predicted functions

Tom Ellis 1,2, Xiao Wang 1,2 & James J Collins 1

Engineering artificial gene networks from modular components is a major goal of synthetic biology. However, the construction of gene networks with predictable functions remains hampered by a lack of suitable components and the fact that assembled networks often require extensive, iterative retrofitting to work as intended. Here we present an approach that couples libraries of diversified components (synthesized with randomized nonessential sequence) with in silico modeling to guide predictable gene network construction without the need for post hoc tweaking. We demonstrate our approach in Saccharomyces cerevisiae by synthesizing regulatory promoter libraries and using them to construct feed-forward loop networks with different predicted input-output characteristics. We then expand our method to produce a synthetic gene network acting as a predictable timer. modifiable by component choice. We use this network to control the timing of yeast sedimentation, illustrating how the plug-and-play nature of our design can be readily applied to biotechnology.

Synthetic biology promises to transform biotechnology by applying engineering principles to biological systems1. In less than a decade this field has already yielded technological applications, providing new avenues for drug manufacture^{2,3}, biofabrication⁴ and therapeutics^{5,6}, while also showing promise in alternative energy7. A major focus of the field is the synthesis of gene networks with predictable behavior8-10, either to endow cells with novel functions 11-15 or to study analogous natural systems^{8,16–19}. Despite a booming community and notable successes, the basic task of assembling a predictable gene network from biomolecular parts remains a considerable challenge and often takes many months before a desired network is realized20. If that creates libraries of components ahead of any assembly. Then, by

Directed evolution has been shown to provide a short-cut through this phase21 but is complicated by the additional work needed to couple networks to selective pressures.

This time-consuming post hoc tweaking phase stems in part from having to work with a limited set of imperfect components. Although this lack of reliable parts is being addressed by community efforts 26, it remains an acute problem because most of the available components are inadequately characterized. For example, many promoters are Q3 simply characterized as being 'weak' or 'strong'. What is needed to resolve this problem and fast-track synthetic biology is an approach

[1] 2 Vert >

Wednesday, April 22, 2009

Brewing with Synthetic Biology

A new approach offers a more efficient way to design biological "circuits."

By Courties Humphries

Synthetic biology rests on the hope that biological "parts" like DNA and proteins can be engineered and assembled just like a machine or computer circuit, but the feld still has some way to go before this is the case. As much as biologists know about the structure and function of biological molecules, their behavior when interacting with one another is still unpredictable.

A new approach detailed in this week's issue of the journal Nature Biotechnology offers a more systematic approach

to assemble, but I trink that they'll need to demonstrate comething much more novel than this

before people really jump onto the bandwagon.

RetaBeer Forume> Baer/ Bite News

Poet a reply

Reply

Private rreseaux 🖾

Promoter Construction

Cloning to get set-up and get appropriate controls

Make everything modular!

Work large scale (pooling colonies from plates), use plate-reader and then flow cytometer to pick 20 clones

Take repeatable measurements of each library member

