BEST AVAILABLE COPY

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-010082

(43)Date of publication of application: 18.01.1994

(51)Int.Cl.

C22C 19/05 C22C 1/02 // F01D 5/28 F01D 9/02 F01K 23/10

(21)Application number: 05-044760

(71)Applicant: HITACHI METALS LTD

HITACHI LTD

(22)Date of filing:

05.03.1993

(72)Inventor: SATO KOJI

OONO TAKEHIRO YASUDA TAKESHI TAMAOKI HIDEKI YOSHINARI AKIRA

(30)Priority

Priority number: 04 50426

Priority date: 09.03.1992

Priority country: JP

(54) HIGH-CORROSION RESISTANT AND HIGH-STRENGTH SINTERED HARD ALLOY, HIGH-CORROSION RESISTANT AND HIGH-STRENGTH SINGLE CRYSTAL CASTING, GAS TURBINE AND COMBINED CYCLE POWER GENERATING SYSTEM

(57)Abstract:

PURPOSE: To provide a sintered hard alloy combining corrosion resistance more excellent than that of the existing single crystal alloy, oxidation resistance on a high level of the existing single crystal, high strength and creep rupture strength, single crystal cast parts for a blade and a nozzle using the same and a combined cycle power generating system using the same parts.

CONSTITUTION: The alloy is constituted of, by weight, 6 to 12% Cr, 4.5 to 6.5% Al, 2 to 12% W, 2.5 to 10% Ta, ≤5.8% Mo, 0.1 to 3% Co, 0.2 to 3% Nb, 0.1 to 4% Re and ≤0.3% Hf, and the balance Ni with inevitable impurities. By using the same alloy, the objective single crystal casting for a blade and a nozzle is formed, and by using the same parts, the objective combined cycle power generating system is formed.

LEGAL STATUS

[Date of request for examination]

28.07.1994

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

2843476

[Date of registration]

23.10.1998

[Number of appeal against examiner's decision of

rejection]

1. <u>JP,2843476,B</u>

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

(57) [Claim(s)]

[Claim 1] the P value which contains 2.5 - 10% of Ta, less than [Mo5.8%], 0.1 - 3% of Co(es), 0.2 - 3% of Nb(s), 0.1 - 4% of Re, and less than [Hf0.3%] W 2 to 12% by weight % 6 - 12% of Cr(s), and 4.5 - 6.5% of aluminum, and is calculated by (1) type by weight % -- 2350-3280 -- it is -- the remainder the high anticorrosion high intensity superalloy characterized by consisting of an unescapable impurity and nickel P=-200Cr+80Mo-20Mo2-250Ti2-50(TixTa)+15Nb+200W-14W2+30Ta-1.5Ta2+2.5Co+ 1200aluminum-100aluminum2+100Re+1000Hf-2000Hf2+700Hf3-2000V-500C-15000B-500Zr (1) -- [Claim 2] By weight %, exceed W 2 - 9%, and 2.5 - 8% of Ta 6 - 12% of Cr(s), and 4.5 - 6.5% of aluminum, exceed Mo3% 11.5% or less by W+Ta, and 0.1 - 3% of Co(es), 0.2 - 3% of Nb(s), 0.1 - 1.65% of Re, and less than [Hf0.3%] are contained 5.8% or less. and the P value calculated by (1) type by weight % -- 2350-3280 -- it is -- the remainder -- the high anticorrosion high intensity superalloy characterized by consisting of an unescapable impurity and nickel.

P=-200Cr+80Mo-20Mo2-250Ti2-50(TixTa)+15Nb+200W-14W2+30Ta-1.5Ta2+2.5Co+ 1200aluminum-100aluminum2+100Re+1000Hf2+700Hf3-2000V-500C-15000B-500Zr (1) -- [Claim 3] the P value which exceeds 2.5 - 9% of Ta, less than [Mo5%], 0.1 - 3% of Co(es), and Nb2% W 4 to 9% 7 - 12% of Cr(s), and 4.8 - 6.5% of aluminum, and contains 0.1 - 4% of Re, and less than [Hf0.3%] 3% or less by weight %, and be calculated by (1) type by weight % -- 2350-3280 -- it is -- the remainder -- the high anticorrosion high intensity superalloy characterized by consisting of an unescapable impurity and nickel. P=-200Cr+80Mo-20Mo2-250Ti2-50(TixTa)+15Nb+200W-14W2+30Ta-1.5Ta2+2.5Co+ 1200aluminum-100aluminum2+100Re+1000Hf2+700Hf3-2000V-500C-15000B-500Zr (1) -- [Claim 4] By weight %, contain W 4 - 12%, and 2.5 - 9% of Ta 7.3 - 10.5% of Cr(s), and 4.5 - 5.4% of aluminum, and less than [Mo2%], 0.1 - 3% of Co(es), 0.2 - 2.5% of Nb(s), 0.1 - 1.65% of Re, and less than [Hf0.13%] are contained 17% or less by W+Ta. and the P value calculated by (1) type by weight % -- 2350-3280 -- it is -- the remainder -- the high anticorrosion high intensity superalloy characterized by consisting of an unescapable impurity and nickel.

P=-200Cr+80Mo-20Mo2-250Ti2-50(TixTa)+15Nb+200W-14W2+30Ta-1.5Ta2+2.5Co+ 1200aluminum-100aluminum2+100Re+1000Hf-2000Hf2+700Hf3-2000V-500C-15000B-500Zr (1) -- [Claim 5] By weight %, contain W 4 - 9%, and 4.5 - 9% of Ta 7.3 - 12% of Cr(s), and 4.5 - 6.5% of aluminum, and less than [Mo1%], 0.1 - 3% of Co(es), 0.2 - 2% of Nb(s), 0.1 - 1.65% of Re, and less than [Hf0.13%] are contained 15% or less by W+Ta. and the P value calculated by (1) type by weight % -- 2350-3280 -- it is -- the remainder -- the high anticorrosion high intensity superalloy characterized by consisting of an unescapable impurity and nickel.

P=-200Cr+80Mo-20Mo2-250Ti2-50(TixTa)+15Nb+200W-14W2+30Ta-1.5Ta2+2.5Co+ 1200aluminum-100aluminum2+100Re+1000Hf-2000Hf2+700Hf3-2000V-500C-15000B-500Zr (1) -- [Claim 6] By weight %, contain W 4 - 9%, and 4.5 - 9% of Ta 7.3 - 12% of Cr(s), and 4.5 - 5.5% of aluminum, and less than [Mo1.8%], 0.1 - 2.5% of Co(es), 0.8 - 2.5% of Nb(s), 0.1 - 1.65% of Re, and less than [Hf0.13%] are contained 15% or less by W+Ta. and the P value calculated by (1) type by weight % -- 2350-3280 -- it is -- the remainder -- the high anticorrosion high intensity superalloy characterized by consisting of an unescapable impurity and nickel.

P=-200Cr+80Mo-20Mo2-250Ti2-50(TixTa)+15Nb+200W-14W2+30Ta-1.5Ta2+2.5Co+ 1200aluminum-100aluminum2+100Re+1000Hf-2000Hf2+700Hf3-2000V-500C-15000B-500Zr (1) -- [Claim 7] By weight %, contain W 5 - 9%, and 5 - 9% of Ta 7.3 - 11% of Cr(s), and 4.7 - 5.5% of aluminum, and 0.2 - 1.8% of Mo, 0.3 - 2.0% of Co(es), 0.8 - 2.5% of Nb(s), 0.1 - 1.65% of Re, and less than [Hf0.13%] are contained 14.5% or less by W+Ta. and the P value calculated by (1) type by weight % -- 2350-3280 -- it is --

the remainder -- the high anticorrosion high intensity superalloy characterized by consisting of an unescapable impurity and nickel.

P=-200Cr+80Mo-20Mo2-250Ti2-50(TixTa)+15Nb+200W-14W2+30Ta-1.5Ta2+2.5Co+ 1200aluminum-100aluminum2+100Re+1000Hf2+700Hf3-2000V-500C-15000B-500Zr (1) -- [Claim 8] the P value which contains 5 - 7.5% of Ta, 0.5 - 1.8% of Mo, 0.5 - 1.5% of Co(es), 1.3 - 1.8% of Nb(s), 1.3 - 1.65% of Re, and less than [Hf0.13%] W 5 to 6.3% by weight % 7.3 - 9% of Cr(s), and 4.7 - 5.5% of aluminum, and is calculated by (1) type by weight % -- 2350-3280 -- it is -- the remainder -- the high anticorrosion high intensity superalloy which consists of an unescapable impurity and nickel P=-200Cr+80Mo-20Mo2-250Ti2-50(TixTa)+15Nb+200W-14W2+30Ta-1.5Ta2+2.5Co+ 1200aluminum-100aluminum2+100Re+1000Hf2-2000Hf2+700Hf3-2000V-500C-15000B-500Zr (1) -- [Claim 9] By weight %, 2.5 - 10% of Ta, less than [Mo5.8%], 0.1 - 3% of Co(es), 0.2 - 3% of Nb(s), 0.1 - 4% of Re, and less than [Hf0.3%] are contained W 2 to 12% 6 - 12% of Cr(s), and 4.5 - 6.5% of aluminum. And the P values calculated by (1) type by weight % are 2350-3280. It consists of an unescapable impurity and nickel. the remainder -- the amount of above (W+Ta+Re+2Mo), and (W+Ta+2Mo) / (3.5Cr+2Nb) ratio High anticorrosion high intensity superalloy characterized by being in the field surrounded by A (26. 0 0.95), B (22. 0 0.95), C (14. 0 0.6), D (14. 0 0.1), and E (26. 0 0.6).

P=-200Cr+80Mo-20Mo2-250Ti2-50(TixTa)+15Nb+200W-14W2+30Ta-1.5Ta2+2.5Co+ 1200aluminum-100aluminum2+100Re+1000Hf-2000Hf2+700Hf3-2000V-500C-15000B-500Zr (1) -- [Claim 10] By weight %, 2.5 - 10% of Ta, less than [Mo5.8%], 0.1 - 3% of Co(es), 0.2 - 3% of Nb(s), 0.1 - 4% of Re, and less than [Hf0.3%] are contained W 2 to 12% 6 - 12% of Cr(s), and 4.5 - 6.5% of aluminum. and the P value calculated by (1) type by weight % -- 2350-3280 -- it is -- the remainder -- the high anticorrosion high intensity superalloy characterized by consisting of an unescapable impurity and nickel and said 2Nb(s) / (2 Nb+Ta) ratio being in the range of 0.2-0.8.

P=-200Cr+80Mo-20Mo2-250Ti2-50(TixTa)+15Nb+200W-14W2+30Ta-1.5Ta2+2.5Co+ 1200aluminum-100aluminum2+100Re+1000Hf-2000Hf2+700Hf3-2000V-500C-15000B-500Zr (1) -- [Claim 11] By weight %, 2.5 - 10% of Ta, less than [Mo5.8%], 0.1 - 3% of Co(es), 0.2 - 3% of Nb(s), 0.1 - 4% of Re, and less than [Hf0.3%] are contained W 2 to 12% 6 - 12% of Cr(s), and 4.5 - 6.5% of aluminum. and the P value calculated by (1) type by weight % -- 2350-3280 -- it is -- and the remainder -- the high anticorrosion high intensity superalloy characterized by consisting of an unescapable impurity and nickel and the aforementioned (3.5Cr+6.8aluminum) /(W+Ta+2Mo) ratio being in the range of 2.5-5.

P=-200Cr+80Mo-20Mo2-250Ti2-50(TixTa)+15Nb+200W-14W2+30Ta-1.5Ta2+2.5Co+ 1200aluminum-100aluminum2+100Re+1000Hf-2000Hf2+700Hf3-2000V-500C-15000B-500Zr (1) -- [Claim 12] The cylindrical polycrystal master ingot characterized by consisting of an alloy according to claim 1 to 11. [Claim 13] High anticorrosion high intensity single crystal casting characterized by consisting of an alloy according to claim 1 to 11.

[Claim 14] For the rate of the volume of the gamma dash phase after 5% or less and dissolution-ized + aging, the rate of the volume of the eutectic gamma dash phase which is not dissolved [which exists after a solution treatment] is [the gamma dash phase in which it deposits by 50 - 70%, and dissolution-ized + aging treatment] the high anticorrosion high intensity single crystal casting according to claim 13 characterized by die length of one side having the cube or rectangular parallelepiped configuration of 1 micrometer or less.

[Claim 15] High anticorrosion high intensity single crystal casting according to claim 13 characterized by the corrosion weight loss of 940 degrees C [in / in the creep rupture time of 2 / the 100 hour or more and 4 to 25 % of the weight NaCl mixed salt all immersion test of 75 % of the weight Na2SOs] and 50 hours after being [1040-degree C] two or less 300 mg/cm 19 kgf/mm.

[Claim 16] The gas turbine blade characterized by consisting of high anticorrosion high intensity single crystal casting according to claim 13 to 15.

[Claim 17] The gas turbine blade characterized by to have the dovetail section which is implanted in a disk in claim 16 and turns into a fixed part to this disk, the shank section which stands in a row in this dovetail section, the seal fin which protrudes on the side face of this shank section at one, and carries out the seal of the elevated-temperature gas, the platform section which is supported by said shank section and carries out the seal of the elevated-temperature gas, and the vane with which it is connected with in this platform section, and elevated-temperature gas collides.

[Claim 18] The gas turbine blade whose overall length of a longitudinal direction is 150mm or more in either of claims 16 or 17.

[Claim 19] It has the dovetail section used as the fixed part to a disk, the shank section equipped with the

unit or two or more seal fins which stood in a row in this dovetail section, and protruded on that side face at one, and the vane that stands in a row in this shank section. By weight % 2.5 - 10% of Ta, less than [Mo5.8%], 0.2 - 3% of Nb(s), and 0.1 - 4% of Re are contained W 2 to 12% 6 - 12% of Cr(s), and 4.5 - 6.5% of aluminum. And the P values calculated by (1) type by weight % are 2350-3280. It is the manufacturing method of the gas turbine blade which consists of a nickel radical alloy which are an unescapable impurity and nickel. the remainder -- It has the bypass mold which was open for free passage on said seal fin to the Maine mold equivalent to said vane, the shank section, and the dovetail section. The manufacture approach of the gas turbine blade characterized by including the process which a target is made to solidify gradually the molten metal of nickel radical alloy in said Maine mold and bypass mold at this rate on the other hand, and is cast in a single crystal organization.

P=-200Cr+80Mo-20Mo2-250Ti2-50(TixTa)+15Nb+200W-14W2+30Ta-1.5Ta2+2.5Co+ 1200aluminum-100aluminum2+100Re+1000Hf-2000Hf2+700Hf3-2000V-500C-15000B-500Zr (1) -- [Claim 20] The gas turbine nozzle characterized by consisting of high anticorrosion high intensity single crystal casting according to claim 13 to 15.

[Claim 21] It has a vane and the sidewall prepared in these vane ends. By weight % 2.5 - 10% of Ta, less than [Mo5.8%], 0.2 - 3% of Nb(s), and 0.1 - 4% of Re are contained W 2 to 12% 6 - 12% of Cr(s), and 4.5 - 6.5% of aluminum. And the P values calculated by (1) type by weight % are 2350-3280. It is the manufacturing method of a gas turbine nozzle which consists of a nickel radical alloy which are an unescapable impurity and nickel. the remainder -- The manufacture approach of the gas turbine nozzle characterized by including the process which have the bypass mold which was open for free passage to said sidewall to the Maine mold equivalent to said vane, and a target is made to solidify gradually the molten metal of nickel radical alloy in said Maine mold and bypass mold at this rate on the other hand, and is cast in a single crystal organization.

P=-200Cr+80Mo-20Mo2-250Ti2-50(TixTa)+15Nb+200W-14W2+30Ta-1.5Ta2+2.5Co+ 1200aluminum-100aluminum2+100Re+1000Hf-2000Hf2+700Hf3-2000V-500C-15000B-500Zr (1) -- [Claim 22] The gas turbine characterized by making combustion gas form using the air compressed by the compressor, making the elevated-temperature gas a gas turbine nozzle collide with through and the gas turbine blade according to claim 16 to 18 in which it was respectively implanted by two or more disks, and rotating this blade.

[Claim 23] The gas turbine characterized by making combustion gas form using the air compressed by the compressor, making the elevated-temperature gas a gas turbine nozzle according to claim 20 collide with through and the gas turbine blade in which it was respectively implanted by two or more disks, and rotating this blade.

[Claim 24] The gas turbine characterized by making combustion gas form using the air compressed by the compressor, making the elevated-temperature gas a gas turbine nozzle according to claim 20 collide with through and the gas turbine blade according to claim 16 to 18 in which it was respectively implanted by two or more disks, and rotating this blade.

[Claim 25] It is the combined-cycle-power-generation system which said gas turbine consists of a gas turbine according to claim 22 to 24 in the combined cycle power generation plant equipped with the generator driven with the gas turbine driven by the elevated-temperature gas which flows at high speed, the exhaust-heat-recovery boiler which obtains a steam with the energy of the exhaust gas of this gas turbine, the steam turbine driven with said steam, and said gas turbine and steam turbine, and is characterized by the thermal efficiency of an entire plant being 50% or more.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3. In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[Industrial Application] The new superalloy with which this invention is used for blades (bucket) and nozzles (stationary blade), such as an object for aircrafts or a gas turbine for a ground generation of electrical energy for which high creep rupture strength is needed, in a hot combustion gas ambient atmosphere, It is a thing about the efficient gas turbine made by using the single crystal components for gas turbines made by using the single crystal casting made by using this superalloy, and this single crystal casting, and these single crystal components. It is related with what corrosion resistance especially high at the object for a ground generation of electrical energy is required as. It is related with the efficient combined-cycle-power-generation system furthermore made using this efficient gas turbine.

[0002]

[Description of the Prior Art] The turbine blade put to the severest operating environment has usually accomplished changes to lifting of the combustion temperature accompanying the high power and efficientizing of a gas turbine engine to the single crystal alloy which does not have the grain boundary in the one direction columnar crystal coagulation alloy of polycrystal which does not have the grain boundary in the direction of a stress load from a casting alloy at all further. The history of such development is mainly a thing centering on an aviation gas turbine, and high creep rupture strength and high low-cycle-fatigue reinforcement with a comparatively short run length have been thought as important. [0003] Alloy444 (U.S. Pat. No. 4,116,723, JP,59-34776,B), PWA1484 (U.S. Pat. No. 4,719,080 and JP,61-284545,A --) "Second-generation Nickel-base Single Crystal Superalloy"; A.D. Cetel and D.N.Duhl; Superalloys 1988 and The Metall.Soc., (1988), pp 235-244, CMSX-4 (U.S. Pat. No. 4,643,782 --) JP,60-211031,A and "Process and Alloy Optimization for CMSX-4 Superalloy Single Cristal Airfoils"; D.J. Fraisier, J.R. Whetstone K. Harris, G.L. Erickson, R.E. Schwer; High Temp, Mater, Power Eng. 1990 Part2, (1990), and pp 1281-1300 and SC-83K (U.S. Pat. No. 4,976,791 --) JP,2-138431,A, "development of nickel radical single crystal superalloy"; Takehiro Ono, Watanabe ****; each of iron, steel, vol.77, (1991), pp(s) 832-839, etc. was developed for the purpose of the blade of an aviation gas turbine, and is hard to be referred to as having not necessarily sufficient corrosion resistance.

[0004] The blade of the actual condition and a gas turbine or the components of a nozzle are carrying out thermal spraying of the ceramics to a high anticorrosion-alloy pan on a front face, and are protected from severe corrosive environment. However, surface coating has the problem of exfoliation and the thing late as much as possible of the speed of advance of corrosion in the part which exfoliated is desirable. Since a run length is short and the cycle of inspection is short, even when the gas turbine for aircrafts of the corrosion resistance of single crystal superalloy is inadequate, the activity is possible somehow. However, since reducing a maintenance leads to improvement in dependability, to improve the corrosion resistance of superalloy is desired.

[0005] On the other hand, the casting alloy has usually been used highly [the object for the former and aircrafts] by the service temperature of the blade of the gas turbine for a ground generation of electrical energy mainly. However, also although efficient-ization of the gas turbine for a ground generation of electrical energy serves as pressing need and it is called the object for the grounds, the combustion temperature of a gas turbine became high and the shift to a single crystal alloy from a casting alloy has usually been needed from the environmental pollution problem of terrestrial magnitude in recent years, also for the alloy for blades, the object for the grounds is compared for aircrafts, a run length boils it markedly, and since it is long, it becomes spacing of inspection is long and especially important [the speed of advance of corrosion when coating exfoliates]. Therefore, although the anticorrosion and the oxidation resistance

under a combustion gas ambient atmosphere have the need of excelling the object for aircrafts, the actual condition is that the single crystal alloy aiming at such high corrosion resistance is not yet put in practical use.

[0006] Furthermore, the greatest neck of the increase in efficiency of a gas turbine is the durable temperature of the 1st step blade and a nozzle, if it can manufacture the single crystal casting using the high anticorrosion high intensity superalloy which solves the above-mentioned problem, and this superalloy, by that, the combustion temperature of a gas turbine will increase and efficient-ization of a gas turbine of it will be attained. Furthermore, if this efficient gas turbine can be manufactured, the efficient combined-cycle-power-generation system by which thermal efficiency of an entire plant was not able to reach with 50% or more of the conventional technique in the compound plant equipped with the generator driven with the exhaust-heat-recovery boiler which obtains a steam with the energy of the exhaust gas of this gas turbine, the steam turbine driven with said steam, and said gas turbine and steam turbine can be obtained.

[Problem(s) to be Solved by the Invention] As a corrosion product included in the combustion gas of the gas turbine for a ground generation of electrical energy, NaCl and Na2SO4 are mainly known. Generally corrosion resistance assessment is estimated by the burner rig trial containing such mixed salt, a spreading heat test, all the immersion tests of fused salt, etc. When using a single crystal alloy for a ground generation of electrical energy, it becomes a requirement to have conventionally the corrosion resistance near Rene80 (60nickel-14Cr-9.5Co-4Mo-4W-3aluminum-5Ti-0.17C-0.015B-0.03Zr) widely used as a polycrystal alloy, an EQC, or it. When the activity in an elevated temperature is furthermore considered from Rene80, it is also required to have the oxidation resistance which was more superior to Rene80.

[0008] this invention persons conducted comparison examination of the corrosion resistance of the various existing alloys with Rene80 and a polycrystal condition by all the immersion tests of the fused salt shown in the example later described as a means to evaluate corrosion resistance. Although PWA1484 and SC-83K are known as an alloy which has the highest creep rupture strength in the current world among above-mentioned single crystal alloys (it is not evaluating to the reinforcement of the target level of this invention since Alloy444 is too low) In assessment by this experiment, it turned out that a corrosion test piece produces all melting in a crucible, and does not have corrosion resistance sufficient as an object for the grounds for gas turbine blades in respect of corrosion resistance. On the other hand, although CMSX-4 in which high temperature strength is inferior to PWA1484 or SC-83K excelled the conventional single crystal alloy in corrosion resistance, they did not attain to the corrosion resistance of Rene80 at all.

[0009] The object of this invention Creep rupture strength usually equivalent to about the same the high anticorrosion and oxidation resistance as a casting alloy of the former used as blades (bucket) and nozzles (stationary blade), such as an object for aircrafts or a gas turbine for a ground generation of electrical energy for which high creep rupture strength is needed in a hot combustion gas ambient atmosphere, and the conventional single crystal alloy With the superalloy of high anticorrosion high intensity suitable for the single crystal components which it has, and the single crystal casting made by using the becoming master ingot and its alloy, The gas turbine blade and gas turbine nozzle which are made by furthermore using this single crystal casting, It is offering the efficient combined-cycle-power-generation system exceeding 50% of thermal efficiency made using the efficient gas turbine made by furthermore using these gas turbine blades and gas turbine nozzles, and this gas turbine.

[0010]

[Means for Solving the Problem] this invention persons considered the effect of ****** various alloying elements to corrosion-resistant improvement in the polycrystal condition as preliminary examination of single crystal alloy development. About all the various existing development alloys of high intensity first known for various reference, the polycrystal alloy of the same presentation as the chemical entity shown by reference was created, all the same heat treatment conditions further known for reference were carried out, and anticorrosion and oxidation-resistant assessment were performed. About these results, the numeric value conventionally concrete as an alloy is shown in the example of this invention. In recent years, CMSX-4 and PWA1484 which were developed are an alloy which contains Re it is supposed that is worked effective in both reinforcement and corrosion resistance 3%. In our examination, although it has checked that CMSX-4 raised corrosion resistance compared with an alloy like SC83K which surely do not contain Re, it turned out that it becomes [Rene80] and corrosion resistance is inferior.

[0011] On the other hand, although PWA1484 contained Re the 3 same% as CMSX-4, it was understood that corrosion resistance is completely inadequate like SC83K. If the addition of Cr is lowered too much just because it is considered to be the cause that Cr of PWA1484 is as low as 5% and it means the improvement

in on the strength like PWA1484, as for this, corrosion resistance will completely serve as [this invention] imperfection to the level to mean.

[0012] The corrosion resistance in a combustion gas ambient atmosphere and oxidation resistance are strongly required as having mentioned above components, such as a blade of the gas turbine for the grounds. this invention persons performed corrosion resistance assessment not much on reinforcement in the history of development of a single crystal alloy paying attention to Ta which did not attract attention, and Nb which is the consolidation element of congeneric gamma'. Consequently, although sufficient break through was not made at present about the corrosion mechanism, it turned out that moderate addition of Nb easily exceeds the corrosion resistance of an alloy conventionally clearly when compound addition is carried out with Re, and the good corrosion resistance usually near the casting alloy Rene80 average or it which has high corrosion resistance is acquired.

[0013] It became clear that the corrosion resistance which excelled Rene80 in the comparative study of Rene80 rather in the sample which furthermore single-crystal-ized this invention alloy when the system simulation combustion test was carried out is shown. It is one by which the point which clarified effectiveness of such Nb addition and effectiveness of compound addition of Nb and Re is characterized [of this invention], and such an idea is that there was nothing on the conventional technique. On the other hand, Nb(s) are Ta and an element of the same family, and carry out the same work to improvement in elevatedtemperature creep rupture strength as a gamma' solid-solution-strengthening element. Since the effectiveness excels Nb in Ta, an optimum value exists in both rate from reinforcement and corrosion resistance both sides. It is also one of the descriptions of this invention to have found out this rate newly. [0014] The place by which it is furthermore characterized [of the invention in this application / other] is having found out the optimal addition of Co. In the conventional alloy, it was considered that Co was only impurity extent or it was added by reverse about 5 to 10% for the object of the improvement in on the strength. Too much of this Co showed clearly that they are many [unsuitably] amounts to this invention alloy even in oxidation resistance, corrosion resistance, and a side on the strength. Co of this amount controlled carefully exerted remarkable effectiveness on all to improvement in the oxidation resistance of this invention alloy, corrosion resistance, and high temperature strength together with little addition of Hf. [0015] Moreover, although W and Ta contribute to improvement in high temperature strength separately, when both are both added so much, an alpha-W phase, a non-dissolved eutectic gamma dash phase, etc.

remain, and they cause lowering of high temperature strength on the contrary, and have the fault of raising specific gravity beyond the effectiveness of the improvement in on the strength of an alloy. Therefore, it is one characterized [of this invention] also by finding out the upper limit of both sum. Furthermore, it is one characterized [of this invention] also by finding out the high corrosion resistance which is not in an alloy conventionally in the high presentation region of the addition of Mo which becomes advantageous in respect

[0016] (W+Ta+Re+2Mo) is taken for the examination result of this invention as a strong index. Moreover, on the other hand, as a corrosion resistance index If handling and (W+Ta+2Mo)/(3.5Cr+2Nb) is taken as an element which improves corrosion resistance for Nb like Cr from the above-mentioned reason As the high corrosion resistance which this invention makes an aim, and the field which has high creep rupture strength are expressed with these indexes and shown in <u>drawing 1</u> The amount of above (W+Ta+Re+2Mo), and (W+Ta+2Mo) / (3.5Cr+2Nb) ratio It was also shown clearly that it is located in the range in the field surrounded by A (26. 0 0.95), B (22. 0 0.95), C (14. 0 0.6), D (14. 0 0.1), and E (26. 0 0.6). It is also one of the descriptions of this invention to newly have defined such an index. Furthermore, in this invention alloy containing Nb, when choosing W, Ta, and Mo as an element which brings about negative effectiveness for Cr and aluminum to the same corrosion resistance as the above on the other hand as an element which has effectiveness in corrosion resistance and taking both ratio, it was shown clearly that the optimal range also for this value exists.

[0017] Conventionally, among alloys, although U.S. Pat. No. 4,719,080 (JP,61-284545,A) is the alloy of the presentation containing PWA1484, about this alloy, Nb is [only being contained in the large presentation range, and], it has separated from the suitable range and the alloy which contains Nb also in an example is not found. Furthermore, in the P value of the formula (1) showing invention of this United States patent below, it is sung that it is 3360-4850 in the large presentation range and that it is 3800-4400 more preferably (all the values in a formula (1) are values of weight %).

P = -200 Cr + 80 Mo - 20 Mo 2 - 250 Ti2 - 50 (TixTa) + 15 Nb + 200 W - 14 W2 + 30 Ta - 1.5 Ta2 + 2.5 Co + 1200 aluminum - 100 aluminum 2 + 100 Re + 1000 Hf - 2000 Hf 2 + 700 Hf 3 - 2000 V - 500 C - 1500 0B - 500 Zr - - (1)

[0018] It is thought that the P value expresses the contribution exerted on the reinforcement of each alloy

of the specific gravity of an alloy.

element. Although the P value was calculated also about this invention alloy shown in an example for reference, and all are less than 3360, sufficient high temperature strength is obtained. Without the main causes which the P value of this invention alloy is less than 3360 coming from the low amount of Ta relatively [amount / of Cr(s) / high] relatively, and being influenced by the P value about this invention alloy, high temperature strength high enough is obtained, and a formula (1) is not suitable at all, although high temperature strength is drawn. Therefore, this invention can be said to be that this invention alloy is heterogeneous invention.

[0019] The high anticorrosion high intensity superalloy of this invention can carry out [single crystal]-izing according to one direction coagulation casting. Since single crystal components made using this single crystal superalloy, such as a blade of a gas turbine and a nozzle, have high corrosion resistance and high temperature strength, the gas turbine of the actual condition in which rate-limiting is carried out by the engine performance of these components in combustion efficiency is using the blade and nozzle of single crystal superalloy of this invention, and the manufacture of the efficient gas turbine which is not in the former of it is attained. Furthermore by manufacture of this efficient gas turbine, 50% or more of efficient combined-cycle-power-generation system is obtained by cycle generation of electrical energy with a steam turbine.

[0020] The 1st invention of this inventions obtained as a result of a detailed examination mentioned above By weight %, 2.5 - 10% of Ta, less than [Mo5.8%], 0.1 - 3% of Co(es), 0.2 - 3% of Nb(s), 0.1 - 4% of Re, and less than [Hf0.3%] are contained W 2 to 12% 6 - 12% of Cr(s), and 4.5 - 6.5% of aluminum. and the P value calculated by (1) type by weight % -- 2350-3280 -- it is -- the remainder -- it is the high anticorrosion high intensity superalloy characterized by consisting of an unescapable impurity and nickel. P=-200Cr+80Mo-20Mo2-250Ti 2-50 (TixTa) +15Nb+200W-14W2+30Ta-1.5Ta2+2.5Co+ 1200aluminum-100aluminum2+100Re+1000Hf-2000Hf2+700Hf3-2000V-500C-15000B-500Zr also in (1) The presentation which serves as low specific gravity relatively is weight %. Exceed Mo3% for W 2 - 9%, and 2.5 - 8% of Ta 11.5% or less by W+Ta 6 - 12% of Cr(s), and 4.5 - 6.5% of aluminum, and 0.1 - 3% of Co (es), 0.2 - 3% of Nb(s), 0.1 - 1.65% of Re, and less than [Hf0.3%] are contained 5.8% or less. and the P value calculated by the aforementioned (1) formula by weight % -- 2350-3280 -- it is -- the remainder -- it is the high anticorrosion high intensity superalloy which consists of an unescapable impurity and nickel. When especially corrosion resistance is thought as important, by weight %, exceed 2.5 - 9% of Ta, less than [Mo5%], 0.1 - 3% of Co(es), and Nb2% W 4 to 9% 7 - 12% of Cr(s), and 4.8 - 6.5% of aluminum, and 0.1 - 4% of Re and less than [Hf0.3%] are contained 3% or less, and the P value calculated by the aforementioned (1) formula by weight % -- 2350-3280 -- it is -- the remainder -- the high anticorrosion high intensity superalloy which consists of an unescapable impurity and nickel is suitable. [0021] In meaning especially high intensity, by weight % Less than [Mo2%], 0.1 - 3% of Co(es), 0.2 -2.5% of Nb(s), 0.1 - 1.65% of Re, and less than [Hf0.13%] are contained for W 4 - 12%, and 2.5 - 9% of Ta 17% or less by W+Ta 7.3 - 10.5% of Cr(s), and 4.5 - 5.4% of aluminum, and the P value calculated by the aforementioned (1) formula by weight % -- 2350-3280 -- it is -- the remainder -- the high anticorrosion high intensity superalloy which consists of an unescapable impurity and nickel is suitable. Moreover, as a presentation excellent in oxidation resistance, are weight % and less than [Mo1%], 0.1 - 3% of Co(es), 0.2 - 2% of Nb(s), 0.1 - 1.65% of Re, and less than [Hf0.13%] are contained for W 4 - 9%, and 4.5 - 9% of Ta 15% or less by W+Ta 7.3 - 12% of Cr(s), and 4.5 - 6.5% of aluminum. and the P value calculated by the aforementioned (1) formula by weight % -- 2350-3280 -- it is -- the remainder -- the high anticorrosion high intensity superalloy which consists of an unescapable impurity and nickel is suitable. [0022] moreover, in meaning the presentation in which both high temperature strength and corrosion resistance are excellent By weight %, contain W 4 - 9%, and 4.5 - 9% of Ta 7.3 - 12% of Cr(s), and 4.5 -5.5% of aluminum, and less than [Mo1.8%], 0.1 - 2.5% of Co(es), 0.8 - 2.5% of Nb(s), 0.1 - 1.65% of Re, and less than [Hf0.13%] are contained 15% or less by W+Ta, and the P value calculated by the aforementioned (1) formula by weight % -- 2350-3280 -- it is -- the remainder -- the high anticorrosion high intensity superalloy which consists of an unescapable impurity and nickel is suitable. furthermore, when all high temperature strength, elevated-temperature ductility, and corrosion resistance and oxidation-resistant are thought as important As a good presentation of balance, by weight % 0.2 - 1.8% of Mo, 0.3 - 2.0% of Co (es), 0.8 - 2.5% of Nb(s), 0.1 - 1.65% of Re, and less than [Hf0.13%] are contained for W 5 - 9%, and 5 -9% of Ta 14.5% or less by W+Ta 7.3 - 11% of Cr(s), and 4.7 - 5.5% of aluminum. The high anticorrosion high intensity superalloy which consists of an unescapable impurity and nickel is suitable, and the P value calculated by the aforementioned (1) formula by weight % -- 2350-3280 -- it is -- the remainder -- by weight

% as a presentation with the most sufficient balance especially 5 - 7.5% of Ta, 0.5 - 1.8% of Mo, 0.5 - 1.5%

of Co(es), 1.3 - 1.8% of Nb(s), 1.3 - 1.65% of Re, and less than [Hf0.13%] are contained W 5 to 6.3% 7.3 - 9% of Cr(s), and 4.7 - 5.5% of aluminum. and the P value calculated by the aforementioned (1) formula by weight % -- 2350-3280 -- it is -- the remainder -- the high anticorrosion high intensity superalloy which consists of an unescapable impurity and nickel is suitable.

[0023] In addition, when thinking only high temperature strength and corrosion resistance as important and not thinking oxidation resistance as important, it is not necessary to add Co and Hf intentionally. Moreover, when thinking only especially high temperature strength as important and not thinking corrosion resistance as important so much Make Nb additive-free, and by weight %, exceed 2.5 - 10% of Ta, and Mo3% W 2 to 12% 6 - 12% of Cr(s), and 4.5 - 6.5% of aluminum, and 0.1 - 3% of Co(es), 0.1 - 4% of Re, and less than [Hf0.3%] are contained 5.8% or less. and the P value calculated by the aforementioned (1) formula by weight % -- 2350-3280 -- it is -- the remainder -- the presentation which consists of an unescapable impurity and nickel is sufficient. If an amount (W+Ta+Re+2Mo) is taken along an axis of ordinate as shown in drawing 1 of an example among the alloy presentation groups described above, and (W+Ta+2Mo) / (3.5Cr+2Nb) ratio is taken along an axis of abscissa The outstanding high temperature strength and corrosion resistance are acquired in the field especially surrounded by A (26. 0 0.95), B (22. 0 0.95), C (14. 0 0.6), D (14. 0 0.1), and E (26. 0 0.6).

[0024] Moreover, it is compatible in high temperature strength and corrosion resistance excellent in making 2Nb(s) / (2 Nb+Ta) ratio into the range of 0.2-0.8, as shown in drawing 2 of an example among the above alloy presentation groups. Moreover, it is compatible in reinforcement and corrosion resistance by making (3.5Cr+6.8aluminum) / (W+Ta+2Mo) ratio into the range of 2.5-5 among above-mentioned alloy presentation groups. The 2nd invention of this inventions is a cylindrical master ingot which consists of an above-mentioned alloy. The 3rd invention of this inventions is high anticorrosion high intensity single crystal casting which can do an above-mentioned alloy by carrying out one direction coagulation and which does not have the grain boundary substantially. Furthermore, the gamma dash phase in which the rate of the volume of the gamma dash phase after dissolution-ized + aging deposits [the rate of the volume of the eutectic gamma dash phase which is not dissolved / to which this high anticorrosion high intensity single crystal casting exists after a solution treatment 1 after 50 - 70% and dissolution-ized + aging treatment 5% or less is that die length of one side is adjusted to the cube or rectangular parallelepiped configuration of 1 micrometer or less, and the outstanding high temperature strength and corrosion resistance are acquired. Moreover, 940 degrees C [in / 19 kgf/mm / 1040 degrees C / casting / this / high anticorrosion high intensity single crystal / in the creep rupture time of 2 / the 100 hour or more and 4 to 25 % of the weight NaCl mixed salt all immersion test of 75 % of the weight Na2SOs 1 and 50-hour Ushiro's corrosion weight loss can acquire a two or less 300 mg/cm property.

[0025] The 4th invention of this inventions is a gas turbine blade characterized by becoming the 3rd invention from the high anticorrosion high intensity single crystal casting of a publication. Said gas turbine blade has the dovetail section which is implanted in a disk and turns into a fixed part of this disk, the shank section which stands in a row in this dovetail section, the seal fin which protrudes on the side face of this shank section at one, and carries out the seal of the elevated-temperature gas, the platform section which is supported by said shank section and carries out the seal of the elevated-temperature gas, and the vane with which it is connected with in this platform section, and elevated-temperature gas collides, and is effective in the improvement in thermal efficiency as an object for a generation of electrical energy.

[0026] Furthermore, when using these gas turbine blades as an object for a generation of electrical energy beyond output abbreviation 25,000kW, the overall length of a longitudinal direction needs to be 150mm or more. The dovetail section from which the gas turbine blade concerning this invention serves as a fixed part to a disk, It stands in a row in this dovetail section, and has the shank section equipped with the unit or two or more seal fins which protruded on that side face at one, and the vane which stands in a row in this shank section. By weight % 2.5 - 10% of Ta, less than [Mo5.8%], 0.2 - 3% of Nb(s), and 0.1 - 4% of Re are contained W 2 to 12% 6 - 12% of Cr(s), and 4.5 - 6.5% of aluminum. And the P values calculated by the aforementioned (1) formula by weight % are 2350-3280. Consist of a nickel radical alloy which are an unescapable impurity and nickel, and it has the bypass mold which was open for free passage on said seal fin to the Maine mold equivalent to said vane, the shank section, and the dovetail section. the remainder -- It can obtain according to a manufacturing method including the process which an one direction is made to solidify gradually the molten metal of nickel radical alloy in said Maine mold and bypass mold at this rate, and is cast in a single crystal organization.

[0027] The 5th invention of this inventions is a gas turbine nozzle characterized by consisting of abovementioned high anticorrosion high intensity single crystal casting. When using said gas turbine nozzle as an object for a generation of electrical energy beyond output abbreviation 25,000kW, it has one vane and the sidewall formed in these vane ends, and said vane has the structure effective in the improvement in thermal efficiency where the die length to an outlet side is set to 100mm or more from 70mm or more and a combustion gas entrance side by between the sidewalls of ends.

[0028] The gas turbine nozzle concerning this invention is equipped with a vane and the sidewall prepared in these vane ends, is equipped with a vane and the sidewall prepared in these vane ends, and is weight %. 2.5 - 10% of Ta, less than [Mo5.8%], 0.2 - 3% of Nb(s), and 0.1 - 4% of Re are contained W 2 to 12% 6 - 12% of Cr(s), and 4.5 - 6.5% of aluminum. And the P values calculated by the aforementioned (1) formula by weight % are 2350-3280. Consist of a nickel radical alloy which are an unescapable impurity and nickel, and it has the bypass mold which was open for free passage to said sidewall to the Maine mold equivalent to said vane, the remainder -- An one direction can be made to be able to solidify gradually the molten metal of nickel radical alloy in said Maine mold and bypass mold at this rate, and it can obtain according to a manufacturing method including the process cast in a single crystal organization. The 6th invention of this inventions is a gas turbine which burns the air compressed by the compressor, makes the elevated-temperature gas a gas turbine nozzle collide with through and the gas turbine blade of this invention 4th in which it was respectively implanted by two or more disks, and rotates this blade.

[0029] The 7th invention of this inventions is a gas turbine which burns the air compressed by the compressor, makes the elevated-temperature gas the 5th gas turbine nozzle of this invention collide with through and the gas turbine blade in which it was respectively implanted by two or more disks, and rotates this blade. The 8th invention of this inventions is a gas turbine which burns the air compressed by the compressor, makes the elevated-temperature gas the 5th gas turbine nozzle of this invention collide with through and the 4th gas turbine blade of this invention in which it was respectively implanted by two or more disks, and rotates this blade.

[0030] The gas turbine in this invention has the structure of making it colliding with the blade in which the fuel gas compressed by the compressor was implanted by the disk through the nozzle, and rotating this blade. It has three or more steps of of said blade and nozzle. The first rank of this blade A vane, The seal fin which consists of a projection prepared in the both sides of the plat-form section which has the flat part which stands in a row in this vane, the shank section which stands in a row in this plat-form section, and this shank section, It has the dovetail section which stands in a row in said shank section. This blade and said nozzle by weight % 2.5 - 10% of Ta, less than [Mo5.8%], 0.1 - 3% of Co(es), 0.2 - 3% of Nb(s), 0.1 - 4% of Re, and less than [Hf0.3%] are contained W 2 to 12% 6 - 12% of Cr(s), and 4.5 - 6.5% of aluminum. And the P values calculated by the aforementioned (1) formula by weight % are 2350-3280. It is characterized by consisting of a single crystal casting of nickel radical alloy which consists of an unescapable impurity and nickel. the remainder -- Said temperature of combustion in an inlet port is 1,300 degrees C or more, and the overall length of the first rank of said blade is 150mm or more, moreover, said temperature of combustion -- 1,500 degrees C or more -- it is -- said blade and nozzle -- three or more steps -- having -- the first rank of this blade -- The first rank of this blade and the first rank of said nozzle consist of single crystal casting of said nickel radical alloy, and it is characterized by generation-of-electrical-energy capacity being more than 25,000kW.

[0031] The gas turbine which drives the 9th invention of this inventions by the elevated-temperature gas which flows at high speed, The exhaust-heat-recovery boiler which obtains a steam with the energy of the exhaust gas of this gas turbine, In the combined cycle power generation plant equipped with the generator driven with the steam turbine driven with said steam, and said gas turbine and steam turbine By using this invention 6th - the 8th one of gas turbines for said gas turbine, it is the combined-cycle-power-generation system characterized by the thermal efficiency of an entire plant becoming 50% or more.

[0032] The gas turbine driven with the combustion gas with which especially this invention flows at high speed, In the combined cycle power generation plant equipped with the generator driven with the exhaust-heat-recovery boiler which obtains a steam with the combustion gas of this gas turbine, the steam turbine driven with said steam, and said gas turbine and steam turbine Blade inlet temperature is 1300 degrees C or more. said gas turbine -- a blade -- three or more steps -- having -- the first rank of said combustion gas -- The combustion-gas temperature of a turbine outlet is 560 degrees C or more, and a steam 530 degrees C or more is obtained by said exhaust-heat-recovery boiler. Said steam turbine is high low voltage one apparatus, and said steam temperature to the first rank of this steamy turbine blade is 530 degrees C or more. the generation-of-electrical-energy capacity of said gas turbine is [50,000kW or more and the generation-of-electrical-energy capacity of a steam turbine] 30,000kW or more, and total thermal efficiency is 50% or more -- the description -- carrying out -- the first rank -- a blade and the first rank -- the above-mentioned

single crystal alloy is used for a nozzle. [0033]

[Function] Hereafter, the reason for component definition of this invention alloy is explained. Since Cr has the operation which raises the oxidation resistance of an alloy, and corrosion resistance, at least 6% is needed, but in order that too much addition may produce harmful deposit phases, such as a sigma phase, and may reduce creep rupture strength and ductility, it is limited to 6 - 12%. It is still more desirably [7.3% or more of] desirable 7% or more suitably. The most suitable range is 7.3 - 9%.

[0034] aluminum is an important element in order to form the coat of aluminum 2O3 which contributes to an improvement of the high-temperature-oxidation property of an Ni base superalloy most, and about this point, more ones are [the amount of aluminum] desirable. Moreover, aluminum is also the main consolidation element which forms the gamma dash phase which is the intermetallic compound which carries out precipitation strengthening of the Ni base superalloy simultaneously. A gamma dash phase is further strengthened by dissolving elements other than aluminum, such as Ti, Ta, W, Mo, and Nb, although a basic presentation is expressed with nickel3aluminum. An operation of these elements is described in detail below. Although a single crystal alloy usually contains the gamma dash phase of a thing large quantity 50% or more at the rate of the volume, since the big and rough gamma dash phase called an eutectic gamma dash phase to the last coagulation section exists at the time of coagulation termination, in order to make this once dissolve into a host phase (gamma-phase), a solution treatment is performed at an elevated temperature. The gamma dash phase which dissolved by the solution treatment strengthens an alloy by depositing uniformly minutely by the aging treatment of under cooling and after that.

[0035] Therefore, although aluminum needs at least 4.5%, since, as for too much addition exceeding 6.5%, there are [to dissolve an eutectic gamma dash phase thoroughly by the solution treatment] too many gamma dash phases, reinforcement comes to fall to reverse. Moreover, that solid solution strengthening of the gamma dash phase is not fully carried out also means that the amount of aluminum becomes high relatively to the solid-solution-strengthening element of the above-mentioned gamma dash phases, such as Ta, W, Mo, and Nb. Therefore, in this invention, aluminum is limited to 4.5 - 6.5% of range. It is desirable for the addition of aluminum to be low to the object which raises especially high temperature strength, and 5.5% or less of addition is suitable. To the object which raises high temperature strength more, 5.4% or less of addition is desirable. The most suitable range is 4.7 - 5.5%.

[0036] W is an element which dissolves to gamma-phase and a gamma dash phase, and strengthens a biphase, and needs at least 2%. However, too much addition deposits an alpha-W phase and a Re-W phase, reduces reinforcement, and causes corrosion resistance hot lowering and buildup of specific gravity further. Therefore, W is limited to 2 - 12% of range. Moreover, from a strong viewpoint, 4% or more is suitable. Furthermore, in balance, such as specific gravity, reinforcement, and corrosion resistance, 4 - 9% of range is desirable. It is 5 - 9% more desirably, and is 5 - 6.3% of range still more suitably. It is the element which dissolves to gamma-phase and a gamma dash phase, and strengthens a bi-phase like W, and Mo is also an indispensable alloying element. However, too much addition deposits an alpha-Mo phase and a Re-Mo phase, reduces reinforcement, and also reduces further hot corrosion resistance. Therefore, Mo is limited to 5.8% or less of range. Moreover, when especially aiming at low specific gravity, reduction of the amount of W+Ta accompanying the addition and it exceeding 3% is effective. However, from oxidation resistance and a corrosion resistance viewpoint, the lower one is desirable, and Mo is 1% or less more desirably 1.8% or less still more desirably 2% or less more suitably 5% or less suitably. When an example is taken in balance with reinforcement, 0.2 - 1.8% of range is desirable, and is 0.5 to 1.8 or less more suitably.

[0037] Co is an element which plays an important role in this invention alloy, and the optimal addition which raises corrosion resistance and oxidation resistance clearly exists to the addition to this invention alloy. In respect of reinforcement, addition of Co reduces the stacking-fault energy of an alloy, and has the operation which raises the creep strength of a low temperature range comparatively, and the operation which is made to increase whenever [dissolution / of a gamma dash phase] to reverse in a pyrosphere, weakens precipitation strengthening, and makes creep strength in a pyrosphere imperfection. For the operation with which both disagree, the optimal addition exists in Co also in respect of reinforcement. For such effectiveness, Co needs at least 0.1% of addition. However, the addition exceeding 3% becomes already effective [to oxidation resistance or corrosion resistance] less, and high temperature strength also comes to fall. Moreover, since it becomes easy to produce generation of the harmful phase called a TCP phase

(topologically close-packed phase), Co is limited to 0.1 - 3.0%. [0038] In the single crystal alloy containing Nb or Re, it is also one of the descriptions of this invention to contain Co of such a limited amount, and it is 0.1 - 2.5% of range more suitably. It is 0.3 - 2.0% more

desirably, and is 0.5 - 1.5% still more suitably. No is an alloying element indispensable although the corrosion resistance of an alloy is raised with Re in this invention. Having found out the effectiveness of such a corrosion-resistant improvement of Nb is one of this inventions by which it is characterized most, and the effectiveness of the corrosion-resistant improvement especially by compound addition with Re is completely new discovery. Although it now is not clear about the device of a corrosion-resistant improvement, in order to acquire the effectiveness, Nb needs at least 0.2% of addition. Moreover, although Nb dissolves mainly in a gamma dash phase and a gamma dash phase is strengthened, too much addition which is a little small compared with Ta of the same family as for the effectiveness, and exceeds 3% will reduce the amount of dissolution of Ta in gamma' conversely, and will reduce high temperature strength. [0039] Therefore, in this invention, Nb is limited to 0.2 - 3.0% of range. However, about oxidation resistance, too much addition of Nb has 0.2 - 2.5% of desirable range desirably. On the other hand, when especially aiming at high corrosion resistance, it exceeds 2% and 3% or less of addition is suitable. From reinforcement and corrosion resistance balance, it is 1.3 - 1.8% more suitably 0.8 to 2.5% desirably. Ta mainly carries out solid solution strengthening of the gamma dash phase like Nb. Therefore, although at least 2.5% is needed, too much addition exceeding 10% causes lifting of the dissolution temperature of an eutectic gamma dash phase, and the deposit of a Re-Ta phase, and reduces high temperature strength conversely. Therefore, Ta is limited to 2.5 - 10% of range. When meaning especially high intensity, it is still more desirably [5% or more of] suitable 4.5% or more. Conversely, since addition excessive from a corrosion resistance viewpoint is not desirable, 9% or less of its addition is desirable in that case. The more suitable range is 5 - 7.5%.

[0040] Although Nb(s) are Ta and an element of the same family and Nb has the operation superior to Ta in respect of corrosion resistance like the above, since Ta excels Nb in improvement in elevated-temperature creep rupture strength rather as a gamma' solid-solution-strengthening element, an optimum value exists in both rate from reinforcement and corrosion resistance both sides. As a value which converted the weight % ratio into atomic % ratio, that value is expressed with 2Nb / (2 Nb+Ta) ratio, and it is desirable for the range of this value to be 0.2-0.8.

[0041] Re has the effectiveness which raises the corrosion resistance of an alloy while it dissolves to gamma-phase and strengthens a base. However, the effectiveness serves as level which can be equal to the activity of elevated-temperature long duration, such as a gas turbine for a generation of electrical energy, for the first time by coexisting with Nb, therefore required Re is at least 0.1%. On the other hand, Re is a very expensive element, and in order that too much addition exceeding 4% may just raise the price of an alloy in vain and may also cause the deposit of harmful phases, such as Re-W, Re-Mo, and Re-Ta, Re is taken as 0.1 - 4.0% of range. Moreover, the addition range which has especially effectiveness from the point of an alloy price and specific gravity is 0.1 - 1.65%, and is 1.3 - 1.65% more desirably. Hf is an important element for improving the oxidation resistance of an alloy, and high temperature strength, and is an indispensable alloying element. The effectiveness shows up from the addition of a minute amount very much. However, since too much addition of Hf reduces solution-treatment temperature in order to lower the melting point of an alloy, and it becomes impossible to fully dissolve an eutectic gamma dash phase, little direction of an addition is as much as possible good [addition]. Therefore, although Hf considers as 0.3% or less of addition, the more suitable range is 0.13% or less.

[0042] Among the alloy elements described above, respectively, W and Ta are the main solid-solution-strengthening elements of gamma-phase and a gamma dash phase, and it is also very important for them to specify both sum in addition to the component range specified independently, respectively. If W+Ta becomes large, an alpha-W phase, a non-dissolved eutectic gamma dash phase, etc. will remain, and lowering of high temperature strength will be caused on the contrary, and specific gravity will be raised more than the rise of an alloy on the strength. Moreover, it also comes to reduce hot corrosion resistance. Therefore, 17% or less is desirable, and in order to raise elevated-temperature corrosion resistance further, as desirable range, 15% or less of W+Ta is suitable, and is 14.5% more desirably. Moreover, in order to lower the specific gravity of an alloy, while increasing the addition of Mo, as for W+Ta, it is effective to consider as 11.5% or less of addition. However, since high temperature strength will fall if both sum becomes small, it is necessary to make it the addition according to the object.

[0043] The alloy element described above is effective to the respectively independent or improvement in reinforcement and corrosion resistance. [fill / in addition to the component range specified by compound / the following relation] To the high temperature strength of an alloy, contribution of W, Ta, Re, and Mo is large, and the effectiveness is proportional to atomic % in general. Therefore, in order to obtain the target elevated-temperature creep rupture strength, it is desirable for the degree type (W+Ta+Re+2Mo) which is

expressed with weight % in addition to the component range of each element to be 14.0 or more. On the other hand, about corrosion resistance, Cr and Nb have forward effectiveness and are arranged in the same formula. Conversely, W, Ta, and Mo have negative effectiveness. Although the corrosion resistance of an alloy is fundamentally improved about Re, since the deposit of a harmful phase is caused and corrosion resistance is degraded as a result with the increment in an addition, it is difficult to contain in a formula as a corrosion resistance index uniquely. If expressed with atomic % conversion like [a corrosion resistance index] reinforcement, in order to acquire the elevated-temperature corrosion resistance which this invention makes the object, it is required for degree type (W+Ta+2Mo)/(3.5Cr+2Nb) which is expressed with weight % in addition to the component range of each element to be 0.95 or less.

[0044] It is desirable for the amount of above (W+Ta+Re+2Mo), and (W+Ta+2Mo) / (3.5Cr+2Nb) ratio to be in the range in the field surrounded by A (26. 0 0.95), B (22. 0 0.95), C (14. 0 0.6), D (14. 0 0.1), and E (26. 0 0.6) especially, as shown in <u>drawing 1</u> of an example. moreover, the 2Nb(s) / (2 Nb+Ta) the ratio above-mentioned [corrosion resistance], and the method of the filing / (W+Ta+2Mo) (3.5Cr+2Nb) -- in addition, if it is the presentation field of this invention alloy containing Nb, although Cr and aluminum are chosen as an element effective in corrosion resistance and W, Ta, and Mo are chosen as a disadvantageous element for corrosion resistance, the suitable component range will be obtained. If these ratios are expressed with an atomic ratio, it will become (3.5Cr+6.8aluminum)/(W+Ta+2Mo), corrosion resistance becomes good so that this value is high, as shown in <u>drawing 3</u> of an example, but since high temperature strength comes to fall to reverse, this (3.5Cr+6.8aluminum) / (W+Ta+2Mo) ratio has the desirable range of 2.5-5. The range of 3-4.5 is more desirably suitable.

[0045] In addition, Ti is added by the conventional single crystal alloy in many cases. Although Ti dissolves to a gamma dash phase and it is useful to solid solution strengthening of a gamma dash phase, since it is easy to build an eutectic gamma dash phase and the melting point of an alloy is lowered, it narrows, the difference, i.e., the heat treatment window, of initial melting temperature and the full dissolution temperature of gamma' phase, and dissolution of the gamma dash phase by the solution treatment serves as imperfection. Therefore, Ti was made additive-free at this invention alloy. In addition, although C, Si, Mn, P, S, B, Zr, Y, REM, and Cu will not pose especially a problem on a property among elements other than the above if they are within the limits shown below, the lower one as much as possible is desirable. C <=0.015% Si<=0.05% Mn<=0.5%P <=0.005% S<=0.003% B <=0.003%Zr<=0.02% Y<=0.2% REM

<=0.2%Cu<=0.1%[0046] The above-mentioned alloy presentation group is the technique described below, is formed into a master ingot and serves as single crystal casting further. Here, although gamma-phase [of a host phase] (austenite phase) and a gamma dash phase are different phases, since they are an equal phase [****] of crystal orientation, they are usually called a single crystal. First, after making the master ingot of an above-mentioned alloy presentation into a master ingot by vacuum melting using the return material which refined beforehand each alloy element or the scrap of the single crystal casting described below, and lowered impurity level to it to reusable level, in a vacuum, after remelting, one direction coagulation can be carried out and it can obtain the single crystal casting. At this time, as for a master ingot, what has purity high as much as possible is suitable for manufacture of the single crystal casting.</p>

[0047] This single crystal casting is receiving heat treatment of a solution treatment, aging treatment, surface coating processing, etc., and becomes usable industrially. As for this single crystal casting, it is desirable to adjust heat treatment and an alloy presentation so that it may have the organization which shows below. First, if the eutectic gamma dash phase generated to the 1st at the time of coagulation cannot fully dissolve by the solution treatment, the part of this non-dissolved eutectic gamma dash phase will serve as an origin of creep fracture. Therefore, 5% or less of the rate of the volume of the eutectic gamma dash phase which is not dissolved [which exists after a solution treatment] is desirable. The amount of the gamma dash phase which exists in the 2nd after dissolution-ized + aging treatment is also large to the reinforcement of the casting, and ductility, and it influences. If the rate of the volume of this gamma dash phase is less than 50%, sufficient high temperature strength will not be obtained, but if it exceeds 70% conversely, a non-dissolved eutectic gamma dash phase comes to remain too much by the solution treatment. Therefore, the rate of the volume of the gamma dash phase after dissolution-ized + aging treatment is limited to 50 - 70%. The rate of the volume of a more suitable gamma dash phase is 55 - 65%.

[0048] As for the gamma dash phase which deposits in the 3rd at the time of this aging treatment, it is desirable to have the austenite phase which is a base, and a lattice constant [**** / enough], and to carry out the detailed deposit of a regular cube or a rectangular parallelepiped configuration. Unless an austenite phase and a gamma dash phase are fully adjustment, die length of one side exceeds 1 micrometer, the angle of a cube or a rectangular parallelepiped collapses, or it comes to carry out a spherical deposit, and sufficient

high temperature strength is no longer obtained as the result. Therefore, die length of one side is 1 micrometer or less, and the gamma dash phase which deposits at the time of aging treatment needs to have a cube or a rectangular parallelepiped configuration. Die length of one side of a more desirable gamma dash phase is 0.02-0.7 micrometers. Moreover, as for this single crystal casting, it is desirable as a property for the corrosion weight loss of 940 degrees C [in / in the creep rupture time of 2 / the mixed salt all immersion test in 100 hours or more and 4 to 25 % of the weight NaCl of 75 % of the weight Na2SOs] and 50-hour Ushiro to be two or less 300 mg/cm 19 kgf/mm 1040 degrees C.

[0049] The high anticorrosion high intensity single crystal casting which carried out one direction coagulation of the above-mentioned new ingredient is suitable for the article with which high creep rupture strength, the outstanding corrosion resistance, and oxidation resistance are demanded and which is used under a harsh environment. Since the gas turbine blade and gas turbine nozzle which consist of above-mentioned high anticorrosion high intensity single crystal casting have high creep rupture strength, the outstanding corrosion resistance, and oxidation resistance, they become possible [making the temperature of combustion of a gas turbine higher than current], and its thermal efficiency of a gas turbine improves substantially as a result. Since it is an elevated temperature, the thermal efficiency as the whole system becomes 50% or more from the thing of the former [system / using an above-mentioned gas turbine / combined-cycle-power-generation / temperature of combustion / of a gas turbine].

[0050]

[Example]

(Example 1) In order to show that the chemical composition of the sample used in order to compare the property of an alloy with a table 1 this invention alloy, a comparison alloy, and conventionally, a W+Ta value, and the alloy indicated by U.S. Pat. No. 4,719,080 are those from which an alloy presentation and its effectiveness completely differ, the P value of a formula 1 is shown. This invention alloy No.1-32, comparison alloy About No.41-54 and conventional alloy No.61-64, each created the 5kg master ingot by the vacuum induction dissolution. Conventionally, about the alloy, the same presentation as the presentation released by each was aimed at, and it dissolved. Conventionally, among alloys, in SC-83K and No.62, PWA1484 and No.63 show CMSX-4 and No.64 show [No.61] Rene80.

[0051]

[A table 1]

	会金			化	學	楓	戓	(w	t%)					T
種別	番号	Ni	Cr	W	Mo	Co .	Al	Ti	N6	Ta	Re	Н	W+Ta	P値
	1	Bal.	6.8	6.7	4.4	0.8	5.1	-	1.8	4.1	1.5	0.1	10.8	3193
1	2	Bal.	6.9	6,9	4.3	0.5	5.2	-	1.8	4.1	0.8	0.1	11.0	3130
	3	Bel.	6.4	6.1	5.4	1.0	4.9	. •	1.2	5.3	1.6	0.1	11.4	3125
	4	Bat.	6.5	6.1	5.4	1.0	4.8	•	1,7	4.6	1.6	0.1	10.7	3079
]	5	Bal.	7.0	2.3	5.5	1.1	4.8	•	1.7	7.7	1.6	0.1	10.0	2688
	6	Bai.	8.1	8.5	0.9	0.9	4.6	•	1.6	7.5	1.6	0.1	16.0	2936
	7	Bal.	7.0	9.5	0.9	1.0	4.6	-	1.6	6.7	1.6	0.2	16.2	2962
本発明	8	Bal.	7.8	7.2	1.8	0.8	4.7	·	1.6	7.5	1.6	0.1	14.7	3072
合金	9	Bal.	7.2	11.5	1.8	0.7	4.7	-	1.6	3.8	1.6	0.1	15.3	2877
	10	Bal.	7.6	8.1	1.8	1.2	4.7	-	1.2	7.5	1.6	0.1	15.6	3094
	11	Bal.	7.7	7.9	1.8	1.5	4.8	-	1.6	8.1	1.6	0.2	14.0	31.42
	12	Bal.	6.9	9.2	0.9	1.5	5.2	-	0.9	5.4	1.6	0.1	14.6	3243
	13	Bal.	8.1	5.0	0.9	1.1	5.5	•	0.9	8.2	3.0	0.1	13.2	3203
	14	Bal.	7.5	9.5	0.8	1.0	5.2	-	0.9	7.2	1.4	0,1	16.7	3099
	15	Bal.	7.1	6.6	4.4	1.0	5.1	•	2.7	2.7	1.5	0,1	9.3	3118
	16	Bal.	7.7	B.2	0.9	2.1	5.4	-	0.9	6.5	1.5	0.1	14.7	3160
	17	Bal.	7.6	9.2	0.8	0.9	5.3	-	0.9	6.4	1.5	0,1	15.6	3114
i	18	Bal.	7.5	8.3	0.8	1.4	4.9	•	2.2	7.2	1.5	0.1	15.5	3131
	19	Bal.	7.6	7.3	0.8	0.9.	4.9	•	2.2	8.0	1.5	0.1	15.3	3134
	20	Bal.	8.0	6.1	1.5	1.1	5.0	-	1.5	6.9	1.6	0.1	13.0	3077
ļ	21	Bal.	7.4	5.9	1.5	0.8	5.3	-	1.6	7.3	1.5	0.1	13.2	3234
	2 2	Bal.	7.7	7.9	0.9	1.0	5.6	-	0.9	5.7	1.5	0.1	13.6	3175
•	23	Bal.	7.8	5.2	0.8	1.0	5.3	•	1.6	8.8	1.5	0.1	1.4.0	3109
	24	Bal.	7.5	7.0	0.8	0.B	5.3	•	1.6	7.3	1,5	0.1	14.3	3212
	25	Bal.	7.3	8.6	0.8	1.1	5.3	-	1.6	5.8	1.5	0.1	14.4	3208
	26	Bal.	7.6	6.3	0.8	0.7	5.5	•	1.5	6.9	1.5	0.1	13.2	3201
	27	Bal.	7.5	7.2	0.8	0.8	5.0	-	1.7	B.8	1.4	0.1	16.0	3161
	28	Bal.	7.3	5.4	0.5	O.B	6.0	-	1.4	7.0	1.4	0.1	12.4	3227
	29	Bal.	6.9	4.4	1.3	0.7	6.0	•	1.4	7.1	1.4	0.1	11.5	3280
	3 0	Bal.	7.8	5.0	1.0	0.8	5.4	-	2.7	4.7	2.5	0.1	9.7	3195
	3 1	Sal.	10.1	6.2	0.7	1.1	5.3	-	1.5	8.9	1.5	0.1	1 3.1	2670
1	3 2	Bal.	11.4	6.4	0.7	2.2	4.9	•	1.4	6.5	1.6	0.1	1 2.9	2350
	4 1	Bat.	7.3	6.5	4.5	1.2	5.0	•	3.5	0.9	1.5	0,1	7.4	3015
,	42	Bal.	6.6	6.7	4.2	1.2	5.4	•	٠	7.3	1.5	0.1	1 4.0	3312
	4 3	Bai.	7.1	7.1	4.2	1.0	4.8	1.6	-	5.7	1.5	0.1	12.8	1993
l	4 4	Bal.	4.7	6.8	4.3	0.9	5.2	·	1.8	4,1	1.5	0.1	10.9	3641
比較	4 5	Bal.	6.9	8.9	4.3	8.0	5.2	•	1.8	4.1	•	0.1	11.0	3051
숨술	4 6	Bal.	6.1	3.0	7.3	0.3	4.9	-	1.3	5.4	1.6	0.2	9.3	2768
	47	Bal.	6.2	8.4	8.0	1.2	5.5	·	0.9	5.6	4.3	0.1	14.0	3727
	4 8	Bal.	6.7	6.6	4.4	1.0	5.1	•	1.8	4.0	1.5	· ·	10.6	3129
	4 9	Bal.	6.8	6.7	4.5	-	5.0	•	1.9	4.1	1.4	0.1	10.8	3153
	50	Bal.	6.8	6.6	4.3	-	5.1	•	1.7	4.2	1.6	<u> </u>	10.8	3128
1 1	5 1	Bal.	6.7	6.7	4.5	5.2	5.1	•	1.8	4.0	1.5	0.1	10.7	3212
	5 2	Bal.	6.1	7.1	6.0	1.0	5.4	•	0.9	3.3	1.5	0.1	10.4	3148
	5 3	Bal.	8.6	6.0	1.0	٠	5.4	1.0	-	7.9	0.8	•	13.9	2178
	5 4	Bai.	10.0	6.0	0.7	4.5	5.4	2.0	·	5.4	0.1	•	10.4	908
l	6 1	Bai.	6.4	7.3	4.3	1.0	5.1	•	-	7.3		0.1	14.6	3149
従来	6 2	Bal.	5,1	6.0	2.0	9.9	5.5	<u> </u>	<u> </u>	8.8	2.9	0.1	14.8	3874
合金	6 3	Bai.	6.6	6.4	0.6	9.6	5.6	1.0	Ŀ	6.5	3.0	0.1	1 2.9	2973
L	6 4	Bal.	14.0	3.9	3.9	9.3	3.0	5.0	<u>.</u>	C: 0.17	B:0.016	Zr:0.03	3.9	لسنسا

[0052] a table 2 -- 75wt%Na2SO4-25wt% of each alloy -- the average of three corrosion weight loss each in all the immersion tests in the inside of 940-degree-C end crater which gets -50 h in the inside of NaCl mixed salt -- 1100 degrees C in the inside of a crucible show the oxidation loss-in-quantity value of Ushiro who repeated the heat cycle of air cooling 10 times, the structural stability of an alloy, 1040-degree C creep rupture time [in / -19 kgf/mm / 2] and the elongation at that time, and the corrosion-weight-loss value after a simulation combustion corrosion test after 16-hour heating. Moreover, about the alloy which consists of only gamma-phase [the microstructure after each heat treatment to], and a gamma dash phase about the structural stability of an alloy, when O mark was included for harmful phases other than gamma-phase and a gamma dash phase in the property column, x mark was indicated in the property column.

[A table 2]

合金	Γ	クリーブ	破断特性	耐食·耐	後化特性 #	en (mo / cm²)	\$1 4b
種別	番号	寿命 (n)	伸び 四	るつは保食量品	模擬燃焼試鞋	るつば単化党目	安全中
	Ť	169	8.3	0.3	37.7	-0.6	Ô
	2	1 3 3	21.2	1.8	• • • • • • • • • • • • • • • • • • • •	1.1	ŏ
] .	3	159	12.6	277	69.7	18.3	ŏ
}	4	1 4 5	20.5	0.6	•	19.1	ŏ
	5	199	9.4	0.6		6.3	ŏ
	6	227	8.3	255	1 4.7	0.1	Ö
1	7	236	7.8	263	27.6	1.8	ō
本発明	8	208	11.2	273	19.0	2.5	0
合金	9	199	1 0.5	1.5	-	14.4	0
	10	223	1 2.1	240	2.7	0.7	0
	11	188	1 3.3	0.5	0.4	1.3	0
	12	1 3 4	26.4	0.7	1.6	0.4	0
]	1 3	164	16.6	238	-	0.1	0
	14	229	15.4	289	2.2	2.3	0
l i	15	137	25.3	1.5	•	19.6	ठ
	16	164	2 0.1	258	19.2	0.9	Ö
1 1	17	208	1 3.7	273	8.7	1.7	0
1	1 B	205	7.8	1.2	-	5.4	0
	19	223	8.2	0.8	•	4.4	0
	20	188	18.4	0.3	0.7	0.4	0
	2 1	193	18.1	0.3	0.4	0.3	0
	2 2	164	1 3.2	1.1	3.3	0.5	0
	2 3	220	7.6	0.3	•.	0.4	0
	2 4	218	9.4	0.5	•	1.0	0
ļ. l	2 5	207	1 0.3	0.3		1.2	0
	26	163	16.4	0.3	•	0.2	0
	27	244	6.7	503	•	1.1	0
	28	1 1 8	1 1 . 4	0.5	•	-0.2	0
	29	113	12.3	1.6	-	0.3	0
1	30	101	1 4.4	1.5	•	17.7	0
i i	3 1	161	16.4	0.2	•	0.4	0
	32	130	8.8	0.3	•	-0.3	0
[4 1	7 3	9.8	1.6	-	30.3	0
	4 2	265	1 0.4	528	•	1.9	0
	4 3	51	7.3	全溶融	-	2.7	×
比較	4 4	1 3 3	18.3	520	-	92.4	0
, ,	4 5	101	22.2	533	-	2.3	0
合金	4 6	153	1 2.2	全溶融	•	75.2	0
	4 7	146	5.9	全溶酶	•	74.4	×
	4 8		17.3	156	-	37.3	Ŏ
	50	137	1 2.1	141 244		2 8 . 1	0
1.	51	98	1 4.0	507		55.3	0
	5 2	156	1 2.3	444		44.2	0
1	53			444	-		0
1	5 4	•		589	-	8.3	8
<u> </u>	61	242	•	全溶刷	-	0.9	8
従来	6 2			全溶融	-	74.6	18
合金	63	1431	<u>:</u>	533		8.0	8
"	64	1 4 3	•	30	113	95.0	8
L	الترث			30	113	1 3 3 , 0	-

※:ラーソンミラーパラメーターで計算

[0054] Among the various trials shown in a table 2, except [all] the creep rupture test and the system simulation combustion test, heat treatment predetermined with a polycrystal condition was performed, the predetermined test piece condition was processed, and the master ingot of a casting as was offered as a sample to the experiment. Both the crucible corrosion test piece and the crucible anti-oxidation test piece used what was processed into the disc-like test piece with a diameter [of 7mm], and a thickness of 4mm. About the creep rupture test, after reducing the above-mentioned master ingot and single-crystal-izing at a formula one direction coagulation furnace about the comparison alloy except all this invention alloys, No.53, and No.54, heat treatment shown in the same following as other trials was carried out, and it was further processed into the test piece with a parallel part diameter [of 6.35mm], and a distance [between scores] of 25.4mm, and examined on condition that the above based on the ASTM method. In addition, the creep rupture curve conventionally arranged by the Larson Miller parameter among alloys read the fracture time amount which is equivalent to 2 1040 degrees C -19 kgf/mm from a creep rupture curve about 63 in well-known alloy No.61, and wrote together to a table 2.

[0055] The system simulation combustion test was carried out only about some this invention alloys and conventional alloy No.64 (Rene80). About this invention alloy, No.64 used the sample of a polycrystal as using the single crystal sample at the time of creep rupture test production. After processing it into a round bar test piece with a diameter [of 9mm], and a die length of 50mm, in the system simulation combustion gas ambient atmosphere, after 900 degree-Cx7hx7 cycle heating, each of these samples performed descaling and measured corrosion weight loss.

[0056] About this invention alloy and the comparison alloy, the organization which did after [4 hour heating] air cooling in 1250-1350 degrees C was considered in advance, as for any alloy, the gamma dash phase chose as solution-treatment temperature fundamentally the temperature which dissolves thoroughly, and heat treatment conditions carried out the solution treatment of air cooling after 4-hour maintenance at the temperature. About the aging conditions after a solution treatment, two-step aging treatment of air cooling after 20-hour heating was performed at 870 degrees C which follows air cooling after 4-hour heating, and it at 1080 degrees C. Conventionally, about the alloy, No.61 (SC-83K) performed air cooling after 4-hour heating at 1320 degrees C, and heat-treated air cooling after 20h heating by 1080 degrees C at after [5 hour heating] air cooling, and 870 degrees C. After carrying out after [4 hour heating] air cooling of No.62 (PWA1484) at 1316 degrees C, they performed air cooling after 4-hour heating at 1080 degrees C, and heat-treated air cooling after 20-hour heating at 870 more degrees C.

[0057] No.63 (CMSX-4) -- the recommendation heat treatment conditions (source; ("single-crystal-izing and its high-temperature-strength property" of the newest nickel base superalloy),; iron besides Yoshio Ota and steel, vol.76, and (1990) --) of Cannon-Muskegon It doubles with pp 940-947. At after [2 hour maintenance] temperature up, and 1288 degrees C by 1272 degrees C After [2 hour maintenance] temperature up, It was 1296 degrees C, and the six steps of continuation solution treatments of air cooling after 2-hour maintenance operation-back was carried out at after [3 hour maintenance] temperature up, and 1316 more degrees C, and aging treatment of air cooling after 20-hour maintenance was carried [after / 3 hour maintenance / temperature up, and 1304 degrees C / after / 3 hour maintenance / temperature up, and 1313 degrees C] out at air cooling after 4-hour maintenance, and 871 degrees C by 1080 degrees C. Conventionally, among the alloy, after carrying out after [2 hour heating] air cooling of Rene80 used in the state of polycrystal at 1220 degrees C, it used what carried out with air cooling after 4-hour heating at 1096 degrees C, and carried out after [16 hour heating] air cooling, and 845 more degrees C.

[0058] From a table 1, each P value calculated by the aforementioned (1) formula of this invention alloy is less than 3360 specified by U.S. Pat. No. 4,719,080, it is clear that this invention is different invention, and a table 2 shows that each this invention alloy No.1-32 has good corrosion resistance, oxidation resistance, a creep rupture life, creep rupture elongation, and structural stability. About especially corrosion resistance, crucible corrosion weight loss is also No.64 (Rene80), an EQC, or the level near it, and is clearly better than a single crystal alloy conventionally. Furthermore, this invention alloy has clearly good corrosion resistance rather than No.64 in system simulation combustion corrosion weight loss. also about oxidation resistance, it is markedly alike, No.64 (Rene80) are excelled, and it goes into a category conventionally good also in an alloy.

[0059] Moreover, even if it sees about a creep rupture life, this invention alloy is the life of extent which it is the longest thing, and a life almost equivalent to conventional alloy No.61 (SC-83K) is acquired, and is slightly less also than the shortest thing from conventional alloy No.63 (CMSX-4) and an EQC, and this reinforcement is level without something to say as a single crystal alloy. Furthermore, as for the presentation of the <u>drawing 1</u> twist and this invention alloy, as for (W+Ta+Re+2Mo), 14.0 or more and close (W+Ta+2Mo)/(3.5Cr+2Nb) are [all] or less in 0.95. Although close has some which are in this invention field of <u>drawing 1</u> in a comparison alloy, each component element has separated. In <u>drawing 1</u>, each point of this invention alloy of an axis of ordinate and an axis of abscissa is in the range in the field surrounded by A (26. 0 0.95), B (22. 0 0.95), C (14. 0 0.6), D (14. 0 0.1), and E (26. 0 0.6), and is especially desirable. [0060] Moreover, drawing 2 takes crucible corrosion weight loss and creep rupture time along an axis of ordinate, and arranges an axis of abscissa by 2Nb(s)/(2 Nb+Ta) on it. Although corrosion resistance becomes good so that from this drawing and 2Nb(s) / (2 Nb+Ta) ratio becomes high, although it reaches with this invention alloy No.6, and 14 and 15 comparison alloy No.41 and the value of only 42 is illustrated as an example of representation, high temperature strength falls to reverse and it turns out that the field which is compatible in corrosion resistance and reinforcement exists in the place whose 2Nb / (2 Nb+Ta) ratio are 0.2-0.8. Furthermore, the effect of the /(W+Ta+2Mo) ratio exerted on a simulation combustion test loss-in-quantity value at drawing 3 (3.5Cr+6.8aluminum) is shown. It is this invention alloy which contains

Nb in this drawing, and further, although only what carried out the simulation combustion test is illustrated, in the presentation field containing Nb, it turns out that corrosion resistance tends to be excellent, so that (3.5Cr+6.8aluminum) / (W+Ta+2Mo) ratio is high. On the other hand, about a comparison alloy, although each property also has a thing with the property which is equal to this invention alloy, in balance, no properties serve as fitness good like this invention alloy. It is clear from these how the alloy of component within the limits of this invention shows the outstanding property with sufficient balance. [0061] Since No.61 (SC-83K) are conventionally excellent in creep rupture strength among alloys and little Co and little Hf are included, oxidation resistance is also good, but since Re and Nb are not included, corrosion resistance is bad. Although No.62 (PWA1484) contain Re, since Cr is also low, corrosion resistance and oxidation resistance are inferior in them compared with this invention alloy excluding Nb. Moreover, although oxidation resistance also with good No.63 (CMSX-4) and a creep rupture life are acquired, corrosion resistance is a little inferior compared with the level of this invention alloy too. Although the crucible corrosion resistance of No.64 (Rene80) which are the polycrystal material of an alloy conventionally is good to be sure, when it comes to the corrosion resistance under system simulation combustion gas, it is inferior to this invention alloy, and on the other hand, creep rupture strength is very low and its oxidation resistance is also bad. In addition, in this invention alloy, a P value is [creep rupture time 1 100 hours or more in the range of 2350 to 3280, and the two or less 300 mg/cm high anticorrosion high intensity alloy was obtained for the corrosion weight loss in a crucible trial. [0062] (Example 2)

The gas turbine nozzle shown in the gas turbine blade and <u>drawing 5</u> which are shown in <u>drawing 4</u> was manufactured using this invention alloy No.8 in an example 1. The vane 1 which the gas turbine blade shown in the above and drawing 4 consists of high anticorrosion high intensity single crystal casting, sealizes high pressure gas, and changes the energy into turning effort, The platform 2 from which support this vane 1 and combustion gas is made not to leak outside, It had the seal fin 3 which carries out the seal of the combustion gas so that it may not leak outside, and has the dovetail section 5 which fixes to a disk the shank section 4 and the blade which secure the desired die length to the vane 1 which supports said vane 1 and platform section 2. The front view of the core for gas turbine nozzles is shown in drawing 6 at the object for gas turbine blades, and drawing 7. As for a gas turbine in recent years, it is common to prepare the cooling hole of a complicated configuration in the interior of a blade and a nozzle in order to reduce the temperature of a surface of metal and the interior with elevated-temperature-izing of combustion gas. In order to manufacture the blade and nozzle of such hollow structure, the core formed with the refractories which use the silica of the configuration of drawing 6 and drawing 7 as a principal component was used. The wax pattern was produced around this core, ceramic shell was further formed in that outside with refractories, such as an alumina, zircon, and yttria, and what was dewaxed and calcinated was used as mold. [0063] Drawing 8 is the sectional view of the mold for gas turbine nozzles in the object for gas turbine blades, and drawing 9. First, in order to have obtained the gas turbine blade using the mold shown by drawing 8, it fixed on the water-cooled copper chill 11, and the mold 10 which has the bypass section 12 which was open for free passage on the seal fin 3 to the Maine mold equivalent to a vane 1, the shank section 4, and the dovetail section 5 was set into the mold heating heater 13. Next, the master ingot of a presentation of this invention alloy No.8 which dissolved by high-frequency heating is cast in the mold 10 heated more than the melting point of an alloy, and it is a reduction rate. By 30 cm/h, it pulled out from the mold heating heater 13, and one direction coagulation was carried out one by one than the starter section 14. Although many columnar crystals grew within the starter section 14, only one crystal of them was grown up using the selector section 15, and the part above the selector section 15 was made into the single crystal casting. Next, in order to have obtained the gas turbine nozzle using the mold shown by drawing 9, it fixed on the water-cooled copper chill 11, and the mold 10 which has the bypass section 12 which was open for free passage to sidewalls 7 and 8 to the Maine mold equivalent to a vane 6 was set into the mold heating heater 13. Next, the master ingot of a presentation of this invention alloy No.8 which dissolved by highfrequency heating is cast in the mold 10 heated more than the melting point of an alloy, and it is a reduction rate. By 30 cm/h, it pulled out from the mold heating heater 13, and one direction coagulation was carried out one by one than the starter section 14. Although many columnar crystals grew within the starter section 14, only one crystal of them was grown up using the selector section 15, and the part above the selector section 15 was made into the single crystal casting. A gas turbine blade and a gas turbine nozzle can consider as the single crystal casting over the whole by using the above-mentioned manufacture approach. [0064] Mold 10 was pulled out thoroughly, and it was made into the temperature more than the melting point of an alloy until the casting solidified the mold heating heater 13 thoroughly. The back [process /

which sets mold 10 to the water-cooled copper chill 11 among the above processes] was performed in the vacuum. The mold 10 after cooling was removed by ejection, alkali removed the core, the starter section, the selector section, the feeding head section, etc. were cut, and the gas turbine nozzle of the configuration shown in the gas turbine blade and drawing 5 of the configuration shown in drawing 4 was obtained. A gas turbine blade is about 220mm in overall length, among those the vane of about 130mm and a gas turbine nozzle is [between two sidewalls] about 130mm. Here, the bypass section 12 is used in order to single-crystal-ize the part from which the cross section changes rapidly to the crystal growth direction of the seal fin 3 which is the overhang section, and sidewall 8 grade, eventually, is cut like the dead head section etc. and removed. By using this, generating of the different crystal in the overhang section of the large-sized single crystal casting was controlled, and the yield improved.

[0065] A crystal is set to a blade. The <001> directions in the direction of an aerofoil division manager hand (the direction of a limb 16 to the dovetail section 5) That is, it is desirable to make it grow up to be the business which the <001> directions consist of in the direction which a centrifugal force requires. Moreover, it is desirable to make it grow up so that the <001> directions may become in a nozzle in the direction of vane Yokote (the direction of a sidewall 7 to the sidewall 8), i.e., the direction which the thermal stress which the <001> directions produce from the heat cycle accompanying the deactivation of a gas turbine requires. It had set to this example and the single crystal casting of less than 5 times was obtained [the gap] for the gap of crystal growth bearing from <001>. A gas turbine blade and a gas turbine nozzle are thickness in a vacuum after the solution treatment of air cooling after 1300-degree-C 4-hour heating, and to a vane. The 100-micrometer CoNiCrAlY alloy layer was formed by the plasma metal spray method, and the outer layer was further coated with ZrO2-6wt%Y2O3 film with a thickness of 300 micrometers by the plasma metal spray method. Aging treatment of air cooling after 870-degree-C 20-hour heating was performed in order to prepare the configuration of gamma' layer after that furthermore.

[0066] (Example 3) <u>Drawing 10</u> is the sectional view of the rotating part of the gas turbine which has the gas turbine blade and nozzle of this invention of an example 2. 30 -- a turbine stub shaft and 33 -- a turbine blade and 43 -- a turbine stacking bolt and 38 -- a turbine spacer and 49 -- for a compressor disc and 37, as for a compressor stacking bolt and 39, a compressor blade and 41 are [DISUTANTO piece and 40 / a nozzle and 36 / a compressor stub shaft and 34] turbine discs. Compressor discs 36 are [those with 17 step and the turbine blade 33 of the gas turbine of this invention] three steps of things. A turbine blade 33 also has four steps of cases, and can apply the alloy of this invention to all.

[0067] The formats with the main gas turbine in this example are a heavy TEYUTI form and 1 shaft type, and consist of a horizontally split casing and stacking type Rota, compressors are [the 1st step of a three step impulse form, a blade, and a nozzle and the 2nd step of a 17 step axial flow form and a turbine] airquenching types, and combustors are a berth flow form, 16 tins, and a slot cool method. The DISUTANTO piece 49, a turbine disc 34, a spacer 38, and the stacking bolt 43 are weight %s, and the total-destruction-by-fire return martensitic stainless steel which consists of 0.03 - 0.15% of Nb(s), 0.04 - 0.15% of N, and the remainder Fe is used 0.06 - 0.15% of C, less than [Si 1%], less than [Mn 1.5%], 9.5 - 12.5% of Cr(s), 1.5 - 2.5% of nickel, 1.5 - 3.0% of Mo, and V 0.1-0.3%. As a property in this example, it is tensile strength 2 or 0.2% proof stress of 90-120kg/mm. 70-90kg/mm2, elongation percentage 10 - 25%, contraction percentage 50 - 70%, V notch impact resistance value 5 - 9.5 kg-m/cm2,450 degree-C-106h creep rupture strength 45-55kg /was [mm] 2.

[0068] what a turbine blade 33 is a three-step type, and was manufactured in the example 2 to the first rank - using -- the compression pressure of a compressor -- 14.7 and temperature 400 degrees C and the first rank -- the temperature of combustion according blade inlet temperature to 1,350 degrees C and a combustor was made into 1500-degree-C class. Moreover, the hollow aerofoil of 280mm of length of a wing (vane 160mm and the plat-form section or subsequent ones die-length 120mm) which consists of the polycrystalline substance of Rene80 (Cr 14%, Co 9.5%, Mo 4%, W 4%, aluminum 3%, Ti 5%, C 0.17%, B 0.015%, Zr 0.03%, nickel remainder) was used for the 2nd step of a turbine blade 33. The length of a wing which becomes the 3rd step from the polycrystalline substance of IN738 (C 0.17%, Cr 16%, Co 8.5%, Mo 1.75%, W 2.6%, Nb 0.9%, Ti 3.4%, aluminum 3.4%, Ta 1.75%, B 0.01%, and nickel remainder) The 350mm (vane 230mm, others 120mm) solid aerofoil was used. The process was based on the precision casting by the conventional lost wax process.

[0069] Known Co radical alloy is used for what was obtained in the example 2, the 2nd step, and the 3rd step at the first rank of a turbine nozzle 40. The 2nd step and the 3rd step formed what consists of one vane by vacuum precision casting with the conventional method. The die length of a vane has the die length equivalent to the die length of the vane of a blade, and has a pin fin cooling, impingement cooling, and film-

cooling structure. Although an one-step nozzle is restrained at sidewall ends, the 2nd step and the 3rd step are restrained at one side by the side of a sidewall periphery. An intercooler is prepared in a gas turbine. As for a generation-of-electrical-energy output, 60,000kW is obtained by this example, and, as for the thermal efficiency, 33% or more of high thing is obtained.

[0070] (Example 4) Drawing 11 is the schematic diagram showing the 1 shaft type combined-cycle-powergeneration system used together with the steam turbine using the gas turbine of an example 3. When generating electricity using a gas turbine, it is in the inclination which adopts the so-called combined-cyclepower-generation method to collect the exhaust gas energy of a gas turbine, to drive a steam turbine with the hot steam obtained by this, and to have made it drive a generator by this steam turbine and gas turbine, in recent years. If this combined-cycle-power-generation method is adopted, it will become possible to raise thermal efficiency substantially as compared with a gas turbine and steam turbine independent case and the gas turbine of this invention will be used, system-wide thermal efficiency will reach to 50% or more. [0071] In this system, air is first introduced into the air compressor of a gas turbine through an air cleaner and an inhalation-of-air silencer, and the compressed air compressed here is sent to a combustor. A fuel is injected and burned in this compressed air, elevated-temperature gas 1500 degrees C or more is made from a combustor, this elevated-temperature gas works in a turbine, and power generates it. Next, the heat energy under delivery and gas turbine exhaust air is collected for the exhaust air of 500 degrees C or more discharged from the turbine to an exhaust-heat-recovery boiler through an exhaust air silencer, and a high voltage steam 500 degrees C or more is generated. The generated high-pressure and low-pressure steam is sent to a steam turbine.

[0072] Furthermore, the steam which came out of the steam turbine is led to a condenser, carries out a vacuum deairing, and it considers as condensation. Pressure up of the condensation is carried out with a condensate pump, it turns into supplying water, and is sent to a boiler. A gas turbine and a steam turbine drive the generator of direct connection from both the axis end the above result. The 90,000kW generation of electrical energy was able to be obtained from 60,000kW from a gas turbine, and a steam turbine in 30,000kW total by the combined-cycle-power-generation system of this example. Moreover, since the steam turbine in this example becomes compact, compared with a large-sized steam turbine, manufacture becomes possible economically to the same generation-of-electrical-energy capacity. When the steam turbine concerning this invention is used as a high low voltage one apparatus steam turbine, and the steam pressure of the main steam inlet-port section of this high low voltage one apparatus steam turbine is raised to 100atg (s) and it raises temperature at 538 degrees C, the increment in the single opportunity output of a turbine can be aimed at. It is necessary to increase the length of a wing of the last stage blade to 30 inches or more, and to increase a steamy flow rate by the increment in a single opportunity output.

[0073] The steam turbine concerning this invention is equipped with 13 or more steps of blades implanted in the high low voltage one apparatus Rota shaft, and a steam flows with 538 degrees C and the elevated-temperature high voltage of 100atg like the above-mentioned from a steamy inlet port through a steamy control valve. A steam flows from an inlet port to an one direction, and is steam temperature. It is set to 33 degrees C and 722mHg, and is discharged from an outlet through the blade of the last stage. As for the high low voltage 1 mold Rota shaft concerning this invention, the forged steel of nickel-Cr-Mo-V low alloy steel is used. The die length of the disk of the thicket section of the blade of the Rota shaft becomes so long that the die length of a blade is short, and lessens an oscillation. The high low voltage one apparatus Rota shaft concerning this example is 0.18 - 0.30% of C, less than [Si 0.1%], less than [Mn 0.3%], 1.0 - 2.0% of nickel, 1.0 - 1.7% of Cr(s), 1.0 - 2.0% of Mo, V 0.20-0.3%, and the remainder at weight %. It consists of Fe and tempering is performed by water spray cooling at 650-680 degrees C after hardening by 900-1050 degrees C.

[0074] The configuration of a plant was used as 1 shaft type which combined with 6 juxtaposition 1 set of generation-of-electrical-energy systems which consist of a gas turbine, exhaust-heat-recovery boilers, steam turbines, and one generator. Moreover, in addition to this, one generator can be combined with 6 juxtaposition to one gas turbine, the steam further obtained from the exhaust gas of each gas turbine can be introduced into one set of a steam turbine, and it can consider as the multishaft type which consisted of one set of one set of this steam turbine, and a generator, and said 6 sets of gas turbines. It is realized in the combination of a steam turbine that deactivation of combined cycle power generation is as small as an easy gas turbine in a short time, and simple. For this reason, output adjustment can be performed easily, it is the optimal as intermediate-load thermal power suitable for change of need, and there is a big merit which can be economically operated to fluctuation of the amount of generations of electrical energy. Since the dependability of a gas turbine is increasing by leaps and bounds by development of the latest technique and

the combined cycle power generation plant constitutes the system from combination of a small capacity machine, even if failure should occur, the effect can be stopped locally, and it is a reliable power source. [0075] This system was able to perform the generation of electrical energy with about 52% of thermal efficiency exceeding the thermal efficiency of the conventional thermal power station. Moreover, since it is [in the case of the generation-of-electrical-energy system which packs two or more combined-cycle-power-generation systems, and is made into one plant] possible to operate the facility under operation by reducing the number of driver's stands of a gas turbine near [where thermal efficiency is high] a rated load also in a partial load, it becomes possible to maintain thermal efficiency high as an entire plant. [0076]

[Effect of the Invention] As mentioned above, this invention alloy has the creep rupture strength near the alloy, the EQC, or it which conflicts the corrosion resistance superior to the existing single crystal alloy, the oxidation resistance of a category good also in the existing single crystal alloy, and in the existing single crystal alloy, and is made into reason high intensity. Consequently, conventionally, the operation corrosive environment severe as single crystal casting the blade of the efficient gas turbine for a ground generation of electrical energy which was difficult to be adapted, for nozzles, etc., and under high creep stress is attained, and the efficient combined-cycle-power-generation system of 50% or more of thermal efficiency which was not able to be attained conventionally is obtained.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DRAWINGS

[Drawing 2]

[Drawing 1]

[Drawing 3]

[Drawing 9]

[Drawing 11]

[Translation done.]

(19)日本国特許庁(JP)

(51) Int.Cl.8

F01D

C22C 19/05

5/28

9/02

(12) 特 許 公 報(B2)

FΙ

F01D

C 2 2 C 19/05

5/28

9/02

(11)特許番号

第2843476号

(45)発行日 平成11年(1999) 1月6日

識別記号

101

(24)登録日 平成10年(1998)10月23日

С

101

F01K 23/10		F01K 23/	10 Т
			請求項の数25(全 21 頁)
(21)出願番号	特願平5-4476 0	(73)特許権者	000005083
			日立金属株式会社
(22)出願日	平成5年(1993)3月5日		東京都千代田区丸の内2丁目1番2号
		(73)特許権者	000005108
(65)公開番号	特開平6-10082		株式会社日立製作所
(43)公開日	平成6年(1994)1月18日		東京都千代田区神田駿河台四丁目6番地
審查請求日	平成6年(1994)7月28日	(72)発明者	佐藤 光司
(31)優先権主張番号	特願平4-50426		島根県安来市安来町2107番地の2 日立
(32)優先日	平4 (1992) 3月9日		金属株式会社安来工場内
(33)優先権主張国	日本 (JP)	(72)発明者	大野 丈博
			島根県安来市安来町2107番地の2 日立
			金属株式会社安来工場内
		(74)代理人	弁理士 大場 充
		審査官	諸岡 健一

高耐食高強度超合金、高耐食高強度単結晶鋳造物、ガスターピンおよびコンパインドサイクル発 (54) 【発明の名称】 電システム

1

(57)【特許請求の範囲】

【請求項1】 重量%で、Cr6~12%, A14.5 ~6. 5%, W2~12%, Ta2. 5~10%, Mo 5. 8%以下, CoO. 1~3%, NbO. 2~3%, ReO. 1~4%, HfO. 3%以下を含有し、かつ (1)式により重量%で計算されるP値が2350~32 80であり、残部不可避の不純物とNiからなることを 特徴とする高耐食高強度超合金。

 $P=-200Cr+80Mo-20Mo^2-250Ti^2-50(Ti \times Ta)+15Nb+200W-14$ 2000Hf3 +700Hf3 -2000V-500C-15000B-500Zr····(1) 【請求項2】 重量%で、Cr6~12%, A14.5 ~6.5%, ₩2~9%とTa2.5~8%を₩+Ta

で11.5%以下, Mo3%を超え5.8%以下, Co 0. 1~3%, Nb0. 2~3%, Re0. 1~1. 6

5%、Hf0.3%以下を含有し、かつ(1)式により重 量%で計算されるP値が2350~3280であり、残 部不可避の不純物とNiからなることを特徴とする高耐 食高強度超合金。

最終頁に続く

 $P=-200Cr+80Mo-20Mo^2-250Ti^2-50(Ti \times Ta)+15Nb+200W-14$ W +30Ta-1.5Ta +2.5Co+ 1200Al-100Al +100Re+1000Hf-2000Hf² +700Hf³ -2000V-500C-15000B-500Zr····(1)

【請求項3】 重量%で、Cr7~12%, A14.8 ~6. 5%, W4~9%, Ta2. 5~9%, Mo5% W+30Ta-1.5Ta²+2.5Co+ 1200A1-100A1²+100Re+1000Hf- 10 以下, CoO. 1~3%, Nb 2%を超え3%以下, R e 0. 1~4%, Hf 0. 3%以下を含有し、かつ(1) 式により重量%で計算されるP値が2350~3280 であり、残部不可避の不純物とNiからなることを特徴 とする高耐食高強度超合金。

 $P=-200Cr+80Mo-20Mo^2-250Ti^2-50(Ti \times Ta)+15Nb+200W-14$

3

W + 30Ta-1.5Ta² +2.5Co+ 1200Al-100Al² +100Re+1000Hf-2000Hf² +700Hf² -2000V-500C-15000B-500Zr····(1) 【請求項4】 重量%で、Cr7.3~10.5%, A 14.5~5.4%, W4~12%とTa2.5~9%をW+Taで17%以下, Mo2%以下, Co0.1~3%, Nb0.2~2.5%, Re0.1~1.65%, Hf0.13%以下を含有し、かつ(1)式により重量%で計算されるP値が2350~3280であり、残部不可避の不純物とNiからなることを特徴とする高耐食高強度超合金。

P=-200Cr+80Mo-20Mo²-250Ti²-50(Ti×Ta)+15Nb+200W-14 W²+30Ta-1.5Ta²+2.5Co+ 1200Al-100Al²+100Re+1000Hf-2000Hf²+700Hf²-2000V-500C-15000B-500Zr・・・・・(1) 【請求項5】 重量%で、Cr7.3~12%, Al4.5~6.5%, W4~9%とTa4.5~9%をW+Taで15%以下, Mol%以下, Co0.1~3%, Nb0.2~2%, Re0.1~1.65%, Hf0.13%以下を含有し、かつ(1)式により重量%で計算されるP値が2350~3280であり、残部不可避の不純物とNiからなることを特徴とする高耐食高強度 20 超合金。

P=-200Cr+80Mo-20Mo²-250Ti²-50(Ti×Ta)+15Nb+200W-14 W²+30Ta-1.5Ta²+2.5Co+ 1200Al-100Al²+100Re+1000Hf-2000Hf²+700Hf³-2000V-500C-1.5000B-500Zr····(1) 【請求項6】 重量%で、Cr7.3~12%, Al4.5~5.5%, W4~9%とTa4.5~9%をW+Taで15%以下, Mo1.8%以下, Co0.1~2.5%, Nb0.8~2.5%, Re0.1~1.65%, Hf0.13%以下を含有し、かつ(1)式により重量%で計算されるP値が2350~3280であり、残部不可避の不純物とNiからなることを特徴とする高耐食高強度超合金。

P=-200Cr+80Mo-20Mo²-250Ti²-50(Ti×Ta)+15Nb+200W-14 W²+30Ta-1.5Ta²+2.5Co+ 1200A1-100A1²+100Re+1000Hf-2000Hf²+700Hf³-2000V-500C-15000B-500Zr・・・・・(1) 【請求項7】 重量%で、Cr7.3~11%, Al4.7~5.5%, W5~9%とTa5~9%をW+Taで14.5%以下, Mo0.2~1.8%, Co0.3~2.0%, Nb0.8~2.5%, Re0.1~1.65%, Hf0.13%以下を含有し、かつ(1)式により重量%で計算されるP値が2350~3280であり、残部不可避の不純物とNiからなることを特徴とする高耐食高強度超合金。

P=-200Cr+80Mo-20Mo²-250Ti²-50(Ti×Ta)+15Nb+200W-14 W²+30Ta-1.5Ta²+2.5Co+ 1200Al-100Al²+100Re+1000Hf-2000Hf²+700Hf³-2000V-500C-15000B-500Zr・・・・・(1) 【請求項8】 重量%で、Cr7.3~9%, Al4.7~5.5%, W5~6.3%, Ta5~7.5%, Mo0.5~1.8%, Co0.5~1.5%, Nb1.3~1.8%, Re1.3~1.65%, Hf0.13 50

%以下を含有し、かつ(1)式により重量%で計算される P値が2350~3280であり、残部不可避の不純物

とNiからなる高耐食高強度超合金。
P=-200Cr+80Mo-20Mo²-250Ti²-50(Ti×Ta)+15Nb+200W-14
W*+30Ta-1.5Ta²+2.5Co+ 1200A1-100A1²+100Re+1000Hf2000Hf²+700Hf²-2000V-500C-15000B-500Zr・・・・(1)
【請求項9】 重量%で、Cr6~12%、Al4.5
~6.5%、W2~12%、Ta2.5~10%、Mo5.8%以下、Co0.1~3%、Nb0.2~3%、10 Re0.1~4%、Hf0.3%以下を含有し、かつ(1)式により重量%で計算されるP値が2350~3280であり、残部不可避の不純物とNiからなり、前記(W+Ta+Re+2Mo)量と(W+Ta+2Mo)/(3.5Cr+2Nb)比とが、A(26.0,0.95)、B(22.0,0.95)、C(14.0,

P= $-200Cr+80Mo-20Mo^2-250Ti^2-50(Ti \times Ta)+15Nb+200W-14$ 20 W² +30Ta-1.5Ta² +2.5Co+ 1200Al-100Al² +100Re+1000Hf-2000Hf² +700Hf³ -2000V-500C-15000B-500Zr····(1)

髙耐食髙強度超合金。

0.6), D(14.0, 0.1) およびE(26.

0, 0. 6)で囲まれた領域内にあることを特徴とする

【請求項10】 重量%で、Cr6~12%、A14.5~6.5%、W2~12%、Ta2.5~10%、M05.8%以下、Co0.1~3%、Nb0.2~3%、Re0.1~4%、Hf0.3%以下を含有し、かつ(1)式により重量%で計算されるP値が2350~3280であり、残部不可避の不純物とNiからなり、前記2Nb/(2Nb+Ta)比が0.2~0.8の範囲にあることを特徴とする高耐食高強度超合金。

30 $P=-200Cr+80Mo-20Mo^2-250Ti^2-50(Ti \times Ta)+15Nb+200W-14$ $W^2+30Ta-1.5Ta^2+2.5Co+-1200Al-100Al^2+100Re+1000Hf-2000Hf^2+700Hf^3-2000V-500C-15000B-500Zr\cdots (1)$

【請求項11】 重量%で、Cr6~12%、A14.5~6.5%、W2~12%、Ta2.5~10%、M05.8%以下、Co0.1~3%、Nb0.2~3%、Re0.1~4%、Hf0.3%以下を含有し、かつ(1)式により重量%で計算されるP値が2350~3280であり、および残部不可避の不純物とNiからなり、前記(3.5Cr+6.8A1)/(W+Ta+2Mo)比が2.5~5の範囲にあることを特徴とする高

Mo)比かと、5~5の範囲にあることを将倒とする個耐食高強度超合金。

P. 200Cp. 80M: 250Fi² 50/Fi×Ta)+15Mb+200M-1

 $P=-200Cr+80Mo-20Mo^{2}-250Ti^{2}-50(Ti \times Ta)+15Nb+200W-14$ $W^{2}+30Ta-1.5Ta^{2}+2.5Co+ 1200Al-100Al^{2}+100Re+1000Hf-2000Hf^{2}+700Hf^{3}-2000V-500C-15000B-500Zr\cdots (1)$

【請求項12】 請求項1~11のいずれかに記載の合金からなることを特徴とする棒状多結晶マスターインゴット。

【請求項13】 請求項1~11のいずれかに記載の合金からなることを特徴とする高耐食高強度単結晶鋳造物。

10

【請求項14】 固溶化処理後に存在する未固溶の共晶 γ'相の体積率が5%以下、固溶化+時効後のγ'相の体 積率が50~70% および固溶化+時効処理で析出する γ'相は、一辺の長さが1 μm以下の立方体または直方体 形状を有することを特徴とする請求項13に記載の髙耐 食高強度単結晶鋳造物。

【請求項15】 1040℃、19kgf/mm'での クリーブ破断時間が100時間以上、および75重量% Na, SO, -25重量%NaC1混合塩全浸漬試験にお ける、940℃、50時間後の腐食減量が300mg/ с ш'以下であることを特徴とする請求項13に記載の 高耐食高強度単結晶鋳造物。

【請求項16】 請求項13~15のいずれかに記載の 髙耐食髙強度単結晶鋳造物からなることを特徴とするガ スタービンブレード。

【請求項17】 請求項16において、ディスクに植設 され、該ディスクへの固定部となるダブテール部と、該 ダブテール部に連なるシャンク部と、該シャンク部の側 面に一体に突設し高温ガスをシールするシールフィン と、前記シャンク部に支持され髙温ガスをシールするプ 20 ガスタービン。 ラットホーム部と、該ブラットホーム部に連なって高温 ガスの衝突する翼部とを有することを特徴とするガスタ ービンブレード。

【請求項18】 請求項16または17のいずれかにお いて、長手方向の全長が150mm以上であるガスタービ ンブレード。

【請求項 19】 ディスクへの固定部となるダブテール 部と、このダブテール部に連なりその側面に一体に突設 された単数または複数のシールフィンを備えたシャンク 部と、このシャンク部に連なる翼部とを備え、重量% σ , $Cr6\sim12\%$, A14. $5\sim6$. 5%, $W2\sim1$ 2%, Ta 2. 5~10%, Mo 5. 8%以下, Nb 0.2~3%, ReO.1~4%を含有し、かつ(1)式 により重量%で計算されるP値が2350~3280で あり、残部不可避の不純物とNiであるNi基合金から なるガスタービンブレードの製造法であって、前記翼 部、シャンク部およびダブテール部に相当するメーン鋳 型に対して前記シールフィンに連通したバイパス鋳型を 有し、前記メーン鋳型とバイバス鋳型内のN i 基合金の 溶湯を同速度で一方的に漸次凝固させ単結晶組織に鋳造 40 する工程を含むことを特徴とするガスタービンブレード の製造方法。

 $P=-200Cr+80Mo-20Mo^2-250Ti^2-50(Ti \times Ta)+15Mb+200W-14$ W2+30Ta-1.5Ta2+2.5Co+ 1200Al-100Al2+100Re+1000Hf- $2000Hf^{2} + 700Hf^{3} - 2000V - 500C - 15000B - 500Zr \cdot \cdot \cdot \cdot (1)$

【請求項20】 請求項13~15のいずれかに記載の 高耐食高強度単結晶鋳造物からなることを特徴とするガ スタービンノズル。

【請求項21】 翼部と、該翼部両端に設けられたサイ ドウォールとを備え、重量%で、Cr6~12%、A1

4. 5~6. 5%, W2~12%, Ta2. 5~10 %, Mo5. 8%以下, Nb0. 2~3%, Re0. 1 ~4%を含有し、かつ(1)式により重量%で計算される P値が2350~3280であり、残部不可避の不純物 とNiであるNi基合金からなるガスターピンノズルの 製造法であって、前記翼部に相当するメーン鋳型に対し て前記サイドウォールに連通したバイパス鋳型を有し、 前記メーン鋳型とバイパス鋳型内のN i 基合金の溶湯を 同速度で一方的に漸次凝固させ単結晶組織に鋳造する工 程を含むことを特徴とするガスタービンノズルの製造方 法。

 $P=-200Cr+80Mo-20Mo^2-250Ti^2-50(Ti \times Ta)+15Nb+200W-14$ $W^2 + 30Ta - 1.5Ta^2 + 2.5Co + 1200Al - 100Al^2 + 100Re + 1000Hf -$ 2000Hf² +700Hf³ -2000V-500C-15000B-500Zr····(1)

【請求項22】 コンブレッサにより圧縮された空気を 用いて燃焼ガスを形成させ、その高温ガスをガスタービ ンノズルを通し、複数のディスクに各々植設された請求 項16~18のいずれかに記載のガスタービンブレード に衝突させて該ブレードを回転させることを特徴とする

【請求項23】 コンプレッサにより圧縮された空気を 用いて燃焼ガスを形成させ、その髙温ガスを請求項20 に記載のガスタービンノズルを通し、複数のディスクに 各々植設されたガスタービンブレードに衝突させて該ブ レードを回転させることを特徴とするガスタービン。

【請求項24】 コンプレッサにより圧縮された空気を 用いて燃焼ガスを形成させ、その高温ガスを請求項20 に記載のガスタービンノズルを通し、複数のディスクに 各々植設された請求項16~18のいずれかに記載のガ 30 スタービンブレードに衝突させて該ブレードを回転させ ることを特徴とするガスタービン。

【請求項25】 高速で流れる高温ガスによって駆動さ れるガスタービンと、該ガスタービンの排ガスのエネル ギーによって水蒸気を得る排熱回収ポイラと、前記水蒸 気によって駆動される蒸気タービンと、前記ガスタービ ンおよび蒸気タービンによって駆動される発電機とを備 えた複合発電プラントにおいて、前記ガスタービンは請 求項22~24のいずれかに記載のガスタービンからな り、プラント全体の熱効率が50%以上であることを特 徴とするコンパインドサイクル発電システム。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、髙温の燃焼ガス雰囲気 で高いクリーブ破断強度が必要とされる航空機用または 地上発電用ガスタービン等のブレード(動翼)やノズル (静翼) に使用される新規の超合金と、該超合金を用い ることによってできる単結晶鋳造物、および該単結晶鋳 造物を用いることによってできるガスターピン用単結晶 部品、および該単結晶部品を用いることによってできる 50 高効率ガスタービンに関するもので、とりわけ地上発電

用で高い耐食性が要求されるものに関する。さらに該高 効率ガスタービンを用いてできる高効率コンバインドサ イクル発電システムに関する。

[0002]

【従来の技術】ガスタービンエンジンの髙出力・髙効率 化にともなう燃焼温度の上昇に対し、もっとも厳しい使 用環境に曝されるタービンブレードは、多結晶の普通鋳 造合金から、応力負荷方向に結晶粒界をもたない一方向 柱状晶凝固合金に、さらに結晶粒界を全くもたない単結 晶合金へと変遷を遂げてきた。このような発展の歴史は 主に航空機用ガスタービンを中心としたもので、連続運 転時間が比較的短く高いクリーブ破断強度と高い低サイ クル疲労強度が重視されてきた。

【0003】A11oy444(米国特許第4, 11 6,723号、特公昭59-34776号)、PWA1 484 (米国特許第4, 719, 080号、特開昭61 -284545号、"Second-generation Nickel-base Single Crystal Superalloy"; A.D.Cetel and D.N.Duhl; Superalloys 1988, The Metall. Soc., (1988), pp235-24 4) 、CMSX-4 (米国特許第4, 643, 782 号、特開昭60-211031号,"Process and Allo y Optimization for CMSX-4 Superalloy Single Cristal Airfoils";D.J.Fraisier,J.R.Whetstone, K.Harris, Mater. Power G.L.Erickson, R.E.Schwer; High Temp. Eng. 1990 Part2,(1990),pp1281-1300) PSC = 83 K(米国特許第4, 976, 791号、特開平2-138 431号,"Ni基単結晶超耐熱合金の開発";大野丈博、 渡辺力蔵;鉄と鋼,vol.77,(1991),pp832-839) などはい ずれも航空機用ガスタービンのブレードを目的に開発さ れたもので、必ずしも十分な耐食性をもっているとは言 30 いがたい。

【0004】現状、ガスタービンのブレードあるいはノ

ズルの部品は、表面に高耐食性合金さらにはセラミック

スを溶射することで、厳しい腐食環境から保護されてい

る。しかし、表面のコーティングは剥離の問題があり、 剥離した部分での腐食の進行速度は極力遅いことが望ま しい。航空機用のガスタービンでは、連続運転時間が短 く、点検のサイクルが短いので、単結晶超合金の耐食性 が不十分でもなんとか使用は可能である。しかし、メン テナンス作業を減らすことは信頼性の向上につながるの で、超合金の耐食性を改善することが望まれている。 【0005】一方、地上発電用のガスタービンのブレー ドの使用温度は、従来、航空機用ほど高くなく普通鋳造 合金が主に使用されてきた。しかし、近年の地球的規模 の環境汚染問題から、地上発電用ガスタービンの高効率 化が急務となり、地上用といえどもガスタービンの燃焼 温度は高くなり、ブレード用合金も普通鋳造合金から、 単結晶合金への移行が必要となってきた。地上用は航空 機用に比べて、連続運転時間が格段に長いために、点検

行速度が特に重要となる。従って、燃焼ガス雰囲気下で

の耐食・耐酸化性は航空機用よりも優れる必要性がある が、このような髙耐食性を目的とした単結晶合金は未だ

実用化されていないのが現状である。 【0006】さらに、ガスタービンの効率化の最大のネ

ックは、第1段ブレードとノズルの耐用温度であり、上 記の問題を解決する髙耐食髙強度超合金とこの超合金を 用いた単結晶鋳造物が製造できればそのことにより、ガ

スタービンの燃焼温度が高まり、ガスタービンの高効率 化が可能となる。さらに、この髙効率ガスターピンが製 造できれば、このガスタービンの排ガスのエネルギーに よって水蒸気を得る排熱回収ボイラと、前記水蒸気によ

って駆動される蒸気タービンと、前記ガスタービンおよ び蒸気タービンによって駆動される発電機とを備えた複

合プラントにおいてプラント全体の熱効率が50%以上 の従来技術では到達出来なかった高効率のコンパインド

サイクル発電システムを得ることができる。

[0007]

【発明が解決しようとする課題】地上発電用ガスタービ 20 ンの燃焼ガスに含まれる腐食生成物としては、主にNa C1とNa,SO,が知られている。一般に耐食性の評価 はこれらの混合塩を含むパーナーリグ試験、塗布加熱試 験、溶融塩の全浸漬試験等で評価される。地上発電用に 単結晶合金を使用する場合、従来、多結晶合金として広 く使用されてきたRene80(60Ni-14Cr-9.5Co-4Mo-4 W-3A1-5Ti-0.17C-0.015B-0.03Zr)と同等、あるいはそれ に近い耐食性をもつことが必要条件となる。さらにRe ne80より高温での使用を考えた場合、Rene80 よりも、より優れた耐酸化性をもつことも必要である。 【0008】本発明者らは、耐食性を評価する手段とし て後に述べる実施例に示す溶融塩の全浸漬試験により、 各種既存合金の耐食性をRene80と多結晶状態のま まで比較調査した。上述の単結晶合金(Alloy44

4は本発明の目標レベルの強度に対して低過ぎるので、 評価を行なっていない)のうち、PWA1484やSC -83Kは、現在世界でもっとも高いクリープ破断強度・ を有する合金として知られているが、本実験による評価 では、耐食試験片がるつぼ中で全溶融を生じ、耐食性の 点では地上用ガスタービンブレード用として十分な耐食 性をもたないことがわかった。一方、PWA1484や SC-83Kよりも高温強度の劣るCMSX-4は従来 の単結晶合金よりは耐食性に優れるものの、Rene8

0の耐食性にはまったく及ばなかった。 【0009】本発明の目的は、高温の燃焼ガス雰囲気で 高いクリーブ破断強度が必要とされる航空機用または地 上発電用ガスタービン等のブレード(動翼)やノズル (静翼) にする従来の普通鋳造合金並みの高い耐食・耐 酸化性と従来の単結晶合金と同等のクリープ破断強度を 併せもつ単結晶部品に適した高耐食高強度の超合金と、 の間隔が長く、コーティングが剥離した場合の腐食の進 50 それからなるマスターインゴットおよびその合金を用い 10

30

を及ぼした。

ることによってできる単結晶鋳造物、さらにこの単結晶 鋳造物を用いることによってできるガスタービンブレー ドおよびガスタービンノズル、さらにこれらのガスター ビンブレードおよびガスタービンノズルを用いることに よってできる髙効率のガスタービンおよびこのガスター ビンを用いてできる熱効率50%を超える高効率のコン バインドサイクル発電システムを提供することである。 [0010]

【課題を解決するための手段】本発明者らは、単結晶合 金開発の予備検討として、多結晶状態での耐食性向上に およぼす各種添加元素の影響を検討した。まず最初に各 種文献で知られる限りの高強度の種々の既存開発合金に ついて、文献で示される化学成分と同一の組成の多結晶 合金を作成し、さらに文献で知られる限りの同一の熱処 理条件を実施して、耐食・耐酸化性の評価を行なった。 これらの結果については本発明の実施例のなかで従来合 金として具体的な数値を示している。近年、開発された CMSX-4やPWA1484は、ともに強度、耐食性 に有効に働くとされるReを3%含む合金である。我々 の検討において、CMSX-4は確かにReを含まない 20 SC83Kのような合金に比べて、耐食性を向上させる ことが確認できたが、Rene80に比べるとかなり耐 食性が劣ることがわかった。

【0011】一方、PWA1484は、CMSX-4と 同じ3%Reを含むにもかかわらず、SC83Kと同 様、耐食性が全く不十分であることがわかった。これ は、PWA1484のCrが5%と低いことが原因と考 えられ、PWA1484のように、強度向上を意図する あまりCrの添加量を下げ過ぎると、耐食性が本発明が 意図するレベルに対し全く不十分となる。

【0012】地上用ガスターピンのブレード等の部品 は、前述したように燃焼ガス雰囲気中の耐食性、耐酸化 性が強く要求される。本発明者らは単結晶合金の開発の 歴史で強度上あまり、注目されていなかったTaと同属 のγ'の強化元素であるNbに着目して耐食性の評価を 行なった。その結果、腐食機構に関して、現時点で十分 な解明はなされていないが、適度のNbの添加はReと 複合添加された場合にあきらかに従来合金の耐食性をは るかに上回り、高耐食性を有する普通鋳造合金Rene 80並みか、あるいはそれに近い良好な耐食性が得られ 40 ることがわかった。

【0013】さらに本発明合金を単結晶化した試料をR ene80との比較試験で、実機模擬燃焼試験を実施し たところむしろ、Rene80よりも優れた耐食性を示 すことがあきらかになった。このようなNb添加の効果 およびNbとReの複合添加の効果をあきらかにした点が 本発明の特徴とするところの一つで、このような着想は 従来技術になかったことである。一方で、NbはTaと 同族の元素であり、高温クリーブ破断強度の向上には、 γ 固溶強化元素として、同様の働きをする。その効果 50 0であること、より好ましくは $3800\sim4400$ であ

は、Taの方がNbよりも優れるので、強度と耐食性の 両面から、両者の割合には最適値が存在する。この割合 を新規に見出したことも本発明の特徴の一つである。 【0014】さらに本願発明の他の特徴とするところ は、Coの最適な添加量を見い出したことである。従来 の合金では、Coは不純物程度としか見なされていなか ったか、逆に強度向上の目的で5~10%程度添加され ていた。との過度のCoは、耐酸化性や耐食性および強 度面でも本発明合金に対しては、不適当に多い量である ことを明らかにした。この注意深く制御された量のCo はHfの少量添加と合わせ本発明合金の耐酸化性、耐食

【0015】また、WとTaは個々に高温強度の向上に は寄与するが、両者をともに多量に添加した場合は、α - W相や未固溶の共晶γ'相等が残り、かえって髙温強 度の低下を招き、また合金の強度向上の効果以上に比重 を高めてしまうという欠点がある。そのために、両者の 和の上限を見出したことも本発明の特徴とするところの 一つである。さらに、合金の比重の点で有利となるMo の添加量の高い組成域でも従来合金にない高い耐食性を 見いだしたことも本発明の特徴とするところの一つであ

性および髙温強度の向上に対し、いずれにも著しい効果

【0016】また、本発明の検討結果を強度の指標とし て (W+Ta+Re+2Mo)をとり、一方耐食性の指 標として、上記の理由からNbをCrと同様に耐食性を よくする元素として取扱い、(W+Ta+2Mo)/ (3.5Cr+2Nb)をとると、本発明が狙いとする 高い耐食性と高いクリープ破断強度を有する領域はこれ らの指標で表され、図1に示すように、前記(W+Ta +Re+2Mo)量と(W+Ta+2Mo)/(3.5 Cr+2Nb) 比とが、A (26.0,0.95),B (22. 0, 0. 95), C(14. 0, 0. 6), D (14.0,0.1)およびE(26.0,0.6)で 囲まれた領域内の範囲に位置することもあきらかにし た。このような指標を新たに定めたことも本発明の特徴 の一つである。さらに、Nbを含有する本発明合金にお いて、耐食性に効果のある元素としてCrとAlを、一 方上記と同じ耐食性に対して負の効果をもたらす元素と してW. TaおよびMoを選んで、両者の比をとれば、 この値にも最適な範囲が存在することをあきらかにし

【0017】従来合金のうち、米国特許第4,719, 080号 (特開昭61-284545号) は、PWA1 484を含む組成の合金であるが、この合金について は、Nbは広い組成範囲に含まれるのみで、好適な範囲 からは外れており、実施例中にもNbを含む合金は見当 たらない。さらに、この米国特許の発明は以下に示す式 (1)のP値において広い組成範囲で3360~485

11

ることがうたわれている(式(1)中の値はすべて重量* *%の値)。

 $P = -200Cr + 80Mo - 20Mo^2 - 250Ti^2 - 50(TixTa) + 15Nb + 200W - 14W^2 + 30Ta - 1.5Ta^2 + 2.5C$ 0+1200A7-100A72 +100Re+1000Hf-2000Hf2 +700Hf3 -2000V-500C-15000B-500Zr

30

... (1)

12

【0018】P値は個々の合金元素の強度に及ぼす寄与 率を表しているものと考えられる。参考のために実施例 に示す本発明合金についてもP値を計算したが、いずれ も3360を下回っているにもかかわらず十分な高温強 度が得られている。本発明合金のP値が3360を下回 る主な原因は相対的に高いCr量と相対的に低いTa量 10 からきており、本発明合金については、P値に左右され ることなく、十分に高い高温強度が得られ、式(1)は 高温強度を導くのに、全く適当ではない。よって、この 発明は本発明合金とは、異質の発明であると言える。

【0019】本発明の高耐食高強度超合金は、一方向凝 固鋳造法により単結晶化できる。この単結晶超合金を用 いて出来るガスタービンのブレードやノズル等の単結晶 部品は高い耐食性と高温強度を有するため、これらの部 品の性能によって燃焼効率を律速されている現状のガス タービンは本発明の単結晶超合金のブレードやノズルを 20 用いることで、従来にない高効率のガスタービンの製造 が可能となる。さらにこの高効率のガスタービンの製造 によって、蒸気タービンとのサイクル発電で、50%以 上の高効率のコンバインドサイクル発電システムが得ら れる。

【0020】上述した詳細な検討の結果得られた本発明 のうちの第1発明は、重量%で、Cr6~12%, Al 4. $5\sim6$. 5%, $W2\sim12\%$, Ta2. $5\sim10$ %, Mo5. 8%以下, CoO. 1~3%, NbO. 2 ~3%, ReO. 1~4%, HfO. 3%以下を含有 し、かつ(1)式により重量%で計算されるP値が235 0~3280であり、残部不可避の不純物とNiからな ることを特徴とする高耐食高強度超合金である。 $P=-200Cr+80Mo-20Mo^2-250Ti^2-50(Ti \times Ta)+15Nb+200W-14$ $W^2 + 30Ta - 1.5Ta^2 + 2.5Co + 1200Al - 100Al^2 + 100Re + 1000Hf - 1200Al - 100Al^2 + 100Al^$ 2000Hf² +700Hf³ -2000V-500C-15000B-500Zr····(1) なかでも、相対的に低比重となる組成は、重量%で、C r 6~12%, A14. 5~6. 5%, ₩2~9%とT a2.5~8%をW+Taで11.5%以下, Mo3% を超え5.8%以下, CoO.1~3%, NbO.2~ 40 3%, Re 0. 1~1.65%, Hf 0.3%以下を含 有し、かつ前記(1)式により重量%で計算されるP値が 2350~3280であり、残部不可避の不純物とNi からなる髙耐食髙強度超合金である。耐食性を特に重視 した場合には、重量%で、Cr7~12%, A14.8 ~6. 5%, W4~9%, Ta2. 5~9%, Mo5% 以下、CoO. 1~3%、Nb2%を超え3%以下、R e 0. 1~4%, Hf 0. 3%以下を含有し、かつ前記 (1)式により重量%で計算されるP値が2350~32 80であり、残部不可避の不純物とNiからなる高耐食 50 加しなくてもよい。また、高温強度のみを特に重視し、

髙強度超合金が適している。

【0021】特に高強度を意図する場合には、重量% で、Cr7. 3~10. 5%, A14. 5~5. 4%, W4~12%とTa2. 5~9%をW+Taで17%以 下, Mo2%以下, CoO. 1~3%, NbO. 2~ 2.5%, ReO.1~1.65%, HfO.13%以 下を含有し、かつ前記(1)式により重量%で計算される P値が2350~3280であり、残部不可避の不純物 とNiからなる高耐食高強度超合金が適している。ま た、耐酸化性に優れた組成としては、重量%で、Cr 7. 3~12%, A14. 5~6. 5%, W4~9% & Ta4. 5~9%をW+Taで15%以下, Mo1%以 下, CoO. 1~3%, NbO. 2~2%, ReO. 1 ~1.65%, Hf0.13%以下を含有し、かつ前記 (1)式により重量%で計算されるP値が2350~32 80であり、残部不可避の不純物とNiからなる髙耐食 高強度超合金が適している。

【0022】また、髙温強度と耐食性がともに優れる組 成を意図する場合には、重量%で、Cェ7.3~12 %, A14. 5~5. 5%, ₩4~9%とTa4. 5~ 9%をW+Taで15%以下, Mo1. 8%以下, Co 0. 1~2. 5%, NbO. 8~2. 5%, ReO. 1 ~1.65%, Hf0.13%以下を含有し、かつ前記 (1)式により重量%で計算されるP値が2350~32 80であり、残部不可避の不純物とNiからなる高耐食 高強度超合金が適している。さらに、髙温強度、髙温延 性および耐食性・耐酸化性のすべてを重視した場合に は、バランスのよい組成として、重量%で、Cェ7.3 ~11%, A14. 7~5. 5%, W5~9%とTa5 ~9%をW+Taで14.5%以下, MoO.2~1. 8%, CoO. $3\sim2$. 0%, NbO. $8\sim2$. 5%, Re 0. 1~1. 65%, Hf 0. 13%以下を含有 し、かつ前記(1)式により重量%で計算されるP値が2 350~3280であり、残部不可避の不純物とNiか らなる高耐食高強度超合金が適し、なかでも最もバラン スのよい組成として、重量%で、Cr7.3~9%, A 14. $7\sim5$. 5%, $W5\sim6$. 3%, $Ta5\sim7$. 5 %, MoO. 5~1. 8%, CoO. 5~1. 5%, N b1. 3~1. 8%, Rel. 3~1. 65%, Hf 0. 13%以下を含有し、かつ前記(1)式により重量% で計算されるP値が2350~3280であり、残部不 可避の不純物とNiからなる髙耐食髙強度超合金が適し

【0023】なお、髙温強度と耐食性のみを重視し、耐 酸化性を重視しない場合は、CoおよびHfは故意に添 側面に一体に突設された単数または複数のシールフィンを備えたシャンク部と、このシャンク部に連なる翼部とを備え、重量%で、Cr6~12%, Al4.5~6.5%, W2~12%, Ta2.5~10%, Mo5.8%以下, Nb0.2~3%, Re0.1~4%を含有し、かつ前記(1)式により重量%で計算されるP値が2350~3280であり、残部不可避の不純物とNiであるNi基合金からなり、前記翼部、シャンク部およびダブテール部に相当するメーン鋳型に対して前記シールフィンに連通したバイバス鋳型を有し、前記メーン鋳型とバイバス鋳型内のNi基合金の溶湯を同速度で一方向に漸次凝固させ単結晶組織に鋳造する工程を含む製造法によって得ることができる。

14

[0027]本発明のうちの第5発明は、上述の高耐食 高強度単結晶鋳造物からなることを特徴とするガスター ピンノズルである。前記ガスタービンノズルを出力約 2.5万KW以上の発電用として用いる場合、1個の翼 部と該翼部両端に形成されたサイドウォールとを有し、 前記翼部は両端のサイドウォール間が70mm以上、燃焼 ガス入口側から出口側までの長さが100mm以上となる 構造が熱効率向上に有効である。

【0028】本発明に係るガスタービンノズルは、翼部 と、該翼部両端に設けられたサイドウォールとを備え、 翼部と、該翼部両端に設けられたサイドウォールとを備 え、重量%で、Cr6~12%, A14.5~6.5 %, W2~12%, Ta2. 5~10%, Mo5. 8% 以下, Nb0. 2~3%, Re0. 1~4%を含有し、 かつ前記(1)式により重量%で計算されるP値が235 0~3280であり、残部不可避の不純物とNiである Ni基合金からなり、前記翼部に相当するメーン鋳型に 対して前記サイドウォールに連通したバイパス鋳型を有 し、前記メーン鋳型とバイバス鋳型内のN i 基合金の溶 湯を同速度で一方向に漸次凝固させ、単結晶組織に鋳造 する工程を含む製造法によって得ることができる。本発 明のうちの第6発明は、コンプレッサにより圧縮された 空気を燃焼させ、その高温ガスをガスタービンノズルを 通し、複数のディスクに各々植設された本発明第4のガ スターピンブレードに衝突させて該プレードを回転させ るガスタービンである。

【0029】本発明のうちの第7発明は、コンプレッサにより圧縮された空気を燃焼させ、その高温ガスを本発明第5のガスタービンノズルを通し、複数のディスクに各々植設されたガスタービンブレードに衝突させて該ブレードを回転させるガスタービンである。本発明のうちの第8発明は、コンプレッサにより圧縮された空気を燃焼させ、その高温ガスを本発明第5のガスタービンノズルを通し、複数のディスクに各々植設された本発明の第4のガスタービンブレードに衝突させて該ブレードを回転させるガスタービンである。

【0030】本発明におけるガスタービンは、コンプレ

耐食性をそれほど重視しない場合は、Nbを無添加とし、重量%で、Cr6~12%, Al4.5~6.5%, W2~12%, Ta2.5~10%, Mo3%を超え5.8%以下、Co0.1~3%, Re0.1~4%, Hf0.3%以下を含有し、かつ前記(1)式により重量%で計算されるP値が2350~3280であり、残部不可避の不純物とNiからなる組成でもよい。以上述べた合金組成群のうち、実施例の図1に示すように縦軸に(W+Ta+Re+2Mo)量をとり、横軸に(W+Ta+2Mo)/(3.5Cr+2Nb)比をとると、とくに、A(26.0,0.95), B(22.0,0.95), C(14.0,0.6), D(14.0,0.1)およびE(26.0,0.6)で囲まれた領域内で、優れた高温強度と耐食性が得られる。

【0024】また、以上の合金組成群のうち、実施例の 図2に示すように2Nb/(2Nb+Ta)比を0.2 ~0.8の範囲とすることで、優れた高温強度と耐食性 を両立できる。また、上述の合金組成群のうち、(3. 5Cr+6.8A1)/(W+Ta+2Mo)比を2. 5~5の範囲とすることで、強度と耐食性を両立でき る。本発明のうちの第2発明は、上述の合金からなる棒 状マスターインゴットである。本発明のうちの第3発明 は、上述の合金を一方向凝固させてできる、実質的に結 晶粒界を有しない髙耐食髙強度単結晶鋳造物である。さ らにこの高耐食高強度単結晶鋳造物は、固溶化処理後に 存在する未固溶の共晶 ~ 相の体積率が5%以下、固溶 化+時効後のγ'相の体積率が50~70%、および固 溶化+時効処理後に析出するγ'相は一辺の長さが1μ m以下の立方体または直方体形状に調整されることで、 優れた高温強度と耐食性がえられる。また、この高耐食 高強度単結晶鋳造物は、1040℃、19kgf/mm 『でのクリープ破断時間が100時間以上、および75 重量%Na,SO,-25重量%NaC1混合塩全浸漬試 験における、940℃、50時間後の腐食減量が300 mg/cm'以下の特性を得ることができる。

【0025】本発明のうちの第4発明は、第3発明に記載の高耐食高強度単結晶鋳造物からなることを特徴とするガスタービンブレードである。前記ガスタービンブレードは、ディスクに植設され、該ディスクの固定部となるダブテール部と、該ダブテール部に連なるシャンク部 40と、該シャンク部の側面に一体に突設し高温ガスをシールするシールフィンと、前記シャンク部に支持され高温ガスをシールするブラットホーム部と、該ブラットホーム部に連なって高温ガスの衝突する翼部とを有し、発電用として熱効率向上に有効である。

【0026】さらに、これらのガスタービンブレードを 出力約2.5万KW以上の発電用として用いる場合、長 手方向の全長は150mm以上である必要がある。本発明 に係るガスタービンブレードは、ディスクへの固定部と なるダブテール部と、このダブテール部に連なり、その 50

30

る。C r は合金の耐酸化性、耐食性を向上させる作用をもつため、最低 6 %を必要とするが、過度の添加は σ 相などの有害析出相を生じ、クリーブ破断強度と延性を低下させるため、 $6\sim12$ %に限定する。好適には 7 %以上、さらに望ましくは 7 、3 %以上が望ましい。最も好適な範囲は 7 、3 ~9 %である。

16

【0034】A1はNi基超耐熱合金の高温酸化特性の 改善に最も寄与するA1,O,の皮膜を形成するために重 要な元素であり、この点に関しては、A1量は多い方が 望ましい。また、同時にA1はNi基超耐熱合金を析出 強化する金属間化合物であるγ'相を形成する主要強化 元素でもある。 γ'相は基本組成はNi,Alで表され るが、Al以外のTi, Ta, W, Mo, Nbなどの元 素を固溶することによりさらに強化される。これらの元 素の作用は以下に詳しく述べる。単結晶合金は通常体積 率で50%以上もの多量のγ'相を含むが、凝固終了時 には最終凝固部に、共晶ャ'相と呼ばれる粗大ヶ'相が 存在するので、これを母相 (γ相) 中へ一旦固溶させる ために高温で固溶化処理を行なう。固溶化処理で固溶し た ア 相は、冷却中およびその後の時効処理により、均 20 一微細に析出することにより、合金を強化する。

【0035】そのために、A1は最低4.5%を必要とするが、6.5%を超える過度の添加は γ'相が多過ぎて、共晶 γ'相を固溶化処理で完全に固溶することが出来ないので、強度が逆に低下するようになる。また、A1量が上記のTa, W, Mo, Nbなどの γ'相の固溶強化元素に対して相対的に高くなることは、十分に γ'相が固溶強化されていないことも意味する。よって、本発明において、A1は4.5~6.5%の範囲に限定する。特に高温強度を高める目的に対しては、A1の添加量は、低いことが望ましく、5.5%以下の添加が好適である。より高温強度を高める目的に対しては、5.4%以下の添加が望ましい。最も好適な範囲は 4.7~5.5%である。

【0036】 Wは γ 相および γ '相に固溶して両相を強化する元素であり最低2%を必要とする。しかしながら、過度の添加は α – W相やRe – W相を析出して強度を低下させ、さらに高温の耐食性の低下や比重の増大を招く。従って、Wは $2\sim12\%$ の範囲に限定する。また、強度の観点からは4%以上が好適である。さらに、比重、強度、耐食性といったバランスにおいては $4\sim9\%$ の範囲が好ましい。より望ましくは $5\sim9\%$ で、さらに好適には $5\sim6$. 3%の範囲である。MoもWと同様、 γ 相および γ '相に固溶して両相を強化する元素であり必須の添加元素である。しかしながら、過度の添加は α – Mo相やRe – Mo相を析出して強度を低下させ、さらに高温の耐食性も低下させる。従って、Moは5. 8%以下の範囲に限定する。また、特に低比重を目的とする場合は3%を超える添加とそれに伴うW+Ta

ッサによって圧縮された燃料ガスをノズルを通じてディ スクに植設されたブレードに衝突させて該ブレードを回 転させる構造を有し、前記ブレードおよびノズルは3段 以上有し、該ブレードの初段が翼部と、該翼部に連なる 平坦部を有するプラットフォーム部と、該プラットフォ ーム部に連なるシャンク部と該シャンク部の両側に設け られた突起からなるシールフィンと、前記シャンク部に 連なるダブテール部とを有し、該ブレードおよび前記ノ ズルが重量%で、Cr6~12%, Al4.5~6.5 %, W2~12%, Ta2. 5~10%, Mo5. 8% 以下, CoO. 1~3%, NbO. 2~3%, ReO. 1~4%, HfO. 3%以下を含有し、かつ前記(1)式 により重量%で計算されるP値が2350~3280で あり、残部不可避の不純物とNiからなるNi基合金の 単結晶鋳物からなることを特徴とし、また前記燃焼ガス 温度が1,500℃以上であり、前記ブレードおよびノ ズルが3段以上有し、該ブレードの初段入口での前記燃 焼ガス温度が1,300℃以上であり、前記ブレードの 初段は全長が150mm以上で、該ブレードの初段および 前記ノズルの初段が前記N i 基合金の単結晶鋳造物から なり、発電容量が2.5万kW以上であることを特徴と するものである。

【0031】本発明のうちの第9発明は、高速で流れる高温ガスによって駆動されるガスタービンと、該ガスタービンの排ガスのエネルギーによって水蒸気を得る排熱回収ボイラと、前記水蒸気によって駆動される蒸気タービンと、前記ガスタービンおよび蒸気タービンによって駆動される発電機とを備えた複合発電プラントにおいて、前記ガスタービンに本発明第6~第8のいずれかのガスタービンを用いることにより、プラント全体の熱効率が50%以上となることを特徴とするコンバインドサイクル発電システムである。

【0032】特に本発明は高速で流れる燃焼ガスによっ て駆動するガスタービンと、該ガスタービンの燃焼排ガ スによって水蒸気を得る排熱回収ボイラと、前記水蒸気 によって駆動される蒸気ターピンと、前記ガスターピン および蒸気タービンによって駆動される発電機とを備え た複合発電ブラントにおいて、前記ガスタービンはブレ ードを3段以上有し、前記燃焼ガスの初段ブレード入口 温度が1300℃以上で、ターピン出口の燃焼排ガス温 40 度が560℃以上であり、前記廃熱回収ボイラによって 530℃以上の水蒸気を得、前記蒸気タービンは高低圧 一体型であり、該蒸気タービンブレードの初段への前記 蒸気温度が530℃以上であり、前記ガスタービンの発 電容量が、5万kW以上および蒸気タービンの発電容量 が3万kW以上であり、総合熱効率が50%以上である ことを特徴とし、初段ブレードおよび初段ノズルに前述 の単結晶合金が用いられるものである。

[0033]

【作用】以下、本発明合金の成分限定理由について述べ 50 量の低減が有効である。ただし、耐酸化性、耐食性の観

点からは低い方が望ましく、Moは好適には5%以下、 より好適には2%以下、さらに望ましくは1.8%以 下、より望ましくは1%以下である。強度とのバランス を鑑みた場合には、0.2~1.8%の範囲が望まし く、より好適には0.5~1.8以下である。

【0037】Coは本発明合金において、重要な役割を 果たす元素であり、本発明合金への添加に対し、耐食 性、耐酸化性をあきらかに向上させる最適な添加量が存 在する。強度面では、Coの添加は合金の積層欠陥エネ ルギーを低下させて、比較的低温域のクリーブ強度を向 上させる作用と、高温域では逆にイ、相の固溶度を増加 させて、析出強化を弱め、高温域でのクリーブ強度を不 十分にする作用をもつ。両者の相反する作用のために、 Coには強度面でも最適な添加量が存在する。このよう な効果のために、Coは最低O.1%の添加を必要とす る。しかし、3%を超える添加は、耐酸化性や耐食性に 対してもはや有効でなくなり、高温強度も低下するよう になる。また、TCP相(topologically close-packed phase)と呼ばれる有害相の生成を生じやすくなるのでC oは0.1~3.0%に限定する。

【0038】NbやReを含有する単結晶合金におい て、このような限定された量のCoを含有することも本 発明の特徴の一つであり、より好適には0.1~2.5 %の範囲である。より望ましくは0.3~2.0%で、 さらに好適には0.5~1.5%である。Nbは、本発 明において、Reとともに合金の耐食性を高めるのに、 必須の添加元素である。このようなNbの耐食性改善の 効果を見いだしたことは、本発明のもっとも特徴とする ところのひとつであり、特にReとの複合添加による耐 食性向上の効果は、全く新規な発見である。耐食性改善 の機構については現在のところあきらかではないが、そ の効果を得るためにNは最低0.2%の添加を必要と する。また、Nbは主としてア、相中に固溶して、アン 相を強化するが、その効果は同族のTaに比べてやや小 さく、3%を超える過度の添加は、逆に γ '中のTaの 固溶量を減じて、高温強度を低下させてしまう。

【0039】したがって、本発明において、Nbは0. 2~3.0%の範囲に限定する。ただし、耐酸化性に関 しては、Nbの過度の添加は望ましくなく、0.2~ 2.5%の範囲が望ましい。一方、特に高耐食性を目的 40 とする場合は2%を超え3%以下の添加が好適である。 強度、耐食性のバランスからは望ましくは0.8~2. 5%、より好適には1.3~1.8%である。TaはN bと同様、主にγ'相を固溶強化する。したがって、最 低2.5%を必要とするが、10%を超える過度の添加 は、共晶γ'相の固溶温度の上昇やRe-Ta相の析出 を招き、高温強度を逆に低下させる。したがって、Ta は2.5~10%の範囲に限定する。特に高強度を意図 する場合は4.5%以上、さらに望ましくは5%以上が 好適である。逆に耐食性の観点からは過度の添加は望ま 50 したがって、目的とする高温クリープ破断強度を得るた

しくないので、その場合は9%以下の添加が望ましい。 より、好適な範囲は5~7.5%である。

【0040】上記のごとくNbはTaと同族の元素であ り、耐食性の点では、NbはTaよりも優れた作用をも つが、髙温クリープ破断強度の向上には、γ'固溶強化 元素として、むしろTaの方がNbよりも優れるので、 強度と耐食性の両面から、両者の割合には最適値が存在 する。その値は、重量%比を原子%比に換算した値とし て、2Nb/(2Nb+Ta) 比で表わされ、この値が 10 0.2~0.8の範囲であることが望ましい。

【0041】Reは、γ相に固溶して基地を強化すると ともに、合金の耐食性を髙める効果をもつ。しかし、そ の効果はNbと共存することではじめて、発電用ガスタ ービンなどの髙温長時間の使用に耐えうるレベルとな り、そのために、必要なReは最低0.1%である。一 方、Reは非常に高価な元素であり、4%を超える過度 の添加は、いたずらに合金の価格を高めるばかりで、R e-W, Re-Mo, Re-Taなどの有害相の析出も 招くため、Reは0.1~4.0%の範囲とする。ま 20 た、合金価格、比重の点から、特に効果のある添加範囲 は0.1~1.65%であり、より望ましくは1.3~ 1. 65%である。Hfは合金の耐酸化性および髙温強 度を改善するための重要な元素であり、必須の添加元素 である。その効果はごく微量の添加量から現れる。しか し、Hfの過度の添加は合金の融点を下げるために固溶 化処理温度を低下させ、共晶ャ'相を十分に固溶できな くなるため、できるだけ添加量は少ない方がよい。した がって、Hfは0.3%以下の添加とするが、より、好 適な範囲は0.13%以下である。

【0042】以上述べた合金元素のうち、WとTaはそ れぞれ、 γ 相および γ ・相の主要な固溶強化元素であ り、それぞれ単独で規定された成分範囲に加え、両者の 和を規定することも大変重要である。W+Taが大きく なると、 $\alpha - \mathbb{V}$ 相や未固溶の共晶 γ 相等が残り、かえ って髙温強度の低下を招き、また合金の強度アップ以上 に比重を高めてしまう。また、高温の耐食性も低下させ るようになる。そのために、W+Taは17%以下が望 ましく、さらに髙温耐食性を髙めるために望ましい範囲 として15%以下が適切であり、より望ましくは14... 5%である。また、合金の比重を低めるためには、Mo の添加量を増すとともに、W+Taは11.5%以下の 添加とすることが有効である。但し、両者の和が小さく なると高温強度が低下するので、目的に応じた添加量に する必要がある。

【0043】以上述べた合金元素は、それぞれ単独ある いは複合で規定された成分範囲に加え、以下の関係を満 たすことも強度と耐食性の向上に対して有効である。合 金の髙温強度に対しては、W. Ta. ReおよびMoの 寄与が大きく、またその効果は概ね原子%に比例する。

30

なる。ととで、母相のγ相(オーステナイト相)とγ 相とは異なった相ではあるが、結晶方位の等しい整合な 相であるので、通常単結晶と呼ばれる。まず、上述の合 金組成のマスターインゴットは事前に個々の合金元素、 または以下に述べる単結晶鋳造物のスクラップを精錬し 再利用可能なレベルまで、不純物レベルをさげたリター ン材を用いて、真空溶解でマスターインゴットとしたの ちに、真空中で再溶解後、一方向凝固させて単結晶鋳造

物を得ることができる。このとき、マスターインゴット はできるだけ、純度の高いものが、単結晶鋳造物の製造 に適する。

【0047】との単結晶鋳造物は、固溶化処理、時効処 理および表面のコーティング処理等の熱処理を受けると とで、工業的に使用可能となる。この単結晶鋳造物は、 以下に示す組織を有するように、熱処理と合金組成を調 整することが好ましい。まず第1に、凝固時に生成する 共晶γ′相が固溶化処理で十分に固溶できないと、この 未固溶共晶γ′相の部分がクリーブ破壊の起点となる。 したがって、固溶化処理後に存在する未固溶の共晶で 効処理後に存在するで、相の量も鋳造物の強度と延性に 大きく影響する。との7'相の体積率が50%を下回る と十分な高温強度が得られず、逆に70%を超えると固 溶化処理で未固溶の共晶~'相が過度に残存するように なる。従って、固溶化+時効処理後の~'相の体積率は 50~70%に限定する。より、好適なγ'相の体積率 は55~65%である。

【0048】第3に、この時効処理時に析出する~'相 は、基地であるオーステナイト相と十分に整合な格子定 数をもち、規則正しい立方体あるいは直方体形状の微細 析出をすることが望ましい。オーステナイト相とア・相 が十分に整合でないと、一辺の長さが 1 μ m を超えた り、立方体または直方体の角がくずれたり、球状の析出 をするようになり、その結果として、十分な高温強度が 得られなくなる。したがって、時効処理時に析出する γ' 相は、一辺の長さが1μm以下で、立方体または直 方体形状を有することが必要である。より、望ましい γ 相の一辺の長さは $0.02\sim0.7\mu m$ である。ま た、この単結晶鋳造物は、特性として、1040℃、1 9 kgf/mm'でのクリーブ破断時間が100時間以 上、および75重量%Na2SO4-25重量%NaC1 中混合塩全浸漬試験における、940℃、50時間後の 腐食減量が300mg/cm゚以下であることが望まし

【0049】上述の新規な材料を一方向凝固させた高耐 食高強度単結晶鋳造物は、高いクリーブ破断強度と優れ た耐食性および耐酸化性の要求される、過酷な環境下で 用いられる物品に好適である。上述の高耐食高強度単結 晶鋳造物からなるガスタービンブレードおよびガスター

めに、個々の元素の成分範囲に加え、重量%で表される 次式 (W+Ta+Re+2Mo) が14.0以上である ことが望ましい。一方、耐食性に関しては、CrとNb は正の効果をもち、同一の式のなかで整理される。逆に W. TaおよびMoは負の効果をもつ。Reに関して は、基本的には合金の耐食性を改善するが、添加量の増 加にともない、有害相の析出を招き、結果的に耐食性を 劣化させるので、一義的には耐食性の指標として式中に 含むことが困難である。耐食性の指標も強度と同様原子 %換算で表せば、本発明が目的とする高温耐食性を得る ために、個々の元素の成分範囲に加え、重量%で表され る次式 (W+Ta+2Mo)/(3.5Cr+2Nb) が0.95以下であることが必要である。

【0044】特に前記 (W+Ta+Re+2Mo) 量と (W+Ta+2Mo)/(3.5Cr+2Nb) 比と が、実施例の図1に示すように、A(26.0,0.9 5), B(22.0, 0.95), C(14.0, 0. 6), D(14.0,0.1)およびE(26.0, 0.6)で囲まれた領域内の範囲にあることが望まし い。また、耐食性は上述の2Nb/(2Nb+Ta)比 20 相の体積率は5%以下が望ましい。第2に、固溶化+時 や (W+Ta+2Mo) / (3.5Cr+2Nb) とい った整理の仕方に加えて、Nbを含む本発明合金の組成 領域であれば、耐食性に有効な元素としてCrとA1 を、耐食性に不利な元素としてW、TaおよびMoを選 んでも適当な成分範囲が得られる。これらの比は原子比 で表わせば、(3.5Cr+6.8Al)/(W+Ta +2Mo)となり、実施例の図3に示すようにこの値が 高いほど耐食性は良好になるが、逆に高温強度が低下す るようになるので、この(3.5Cr+6.8Al)/ (W+Ta+2Mo) 比は2. 5~5の範囲が望まし い。より、望ましくは3~4.5の範囲が好適である。 【0045】なお、従来の単結晶合金にはTiが添加さ れていることが多い。Tiは γ '相に固溶し、 γ '相の 固溶強化に役立つが、共晶で'相をつくりやすく、かつ・ 合金の融点を下げるので、初期溶融温度と γ' 相の完全 固溶温度との差、すなわち熱処理ウィンドウを狭めて、 固溶化処理によるャ'相の固溶が不十分となる。したが って、本発明合金には、Tiを無添加とした。尚、上記 以外の元素のうち、C, Si, Mn, P, S, B, Z r, Y, REM, Cuは下記に示す範囲内ならば、特性 40 上特に問題とはならないが、極力低い方が望ましい。

 $Si \le 0.05\%$ $C \le 0.015\%$ Μn ≦0.5%

 $S \le 0.003\%$ $P \le 0.005\%$ В ≦0.003%

 $Y \le 0.2\%$ $Zr \leq 0.02\%$ REM ≦0.2%

Cu ≤ 0. 1%

【0046】上記の合金組成群は、以下に述べる手法 で、マスターインゴット化され、さらに単結晶鋳造物と 50 ピンノズルは、高いクリーブ破断強度と優れた耐食性お

よび耐酸化性を有しているため、ガスタービンの燃焼ガ ス温度を現在以上に高くすることが可能となり、結果と してガスタービンの熱効率が大幅に向上する。上述のガ スタービンを用いたコンバインドサイクル発電システム は、ガスタービンの燃焼ガス温度が従来のものより髙温 であるため、システム全体としての熱効率が50%以上 となる。

[0050]

【実施例】

(実施例1)表1に本発明合金、比較合金および従来合 10 80を示す。 金の特性を比較するために用いた試料の化学組成、W+ Ta値、および米国特許第4,719,080号に記載*

* される合金とは合金組成およびその効果が全く異なるも のであることを示すために、式1のP値を示す。本発明 合金No. 1~32、比較合金 No. 41~54およ び従来合金No. 61~64については、いずれも真空 誘導溶解により5kgのマスターインゴットを作成し た。従来合金については、いずれも公表されている組成 と同一の組成を狙って溶解した。従来合金のうち、N o. 61はSC-83K、No. 62はPWA148 4、No. 63はCMSX-4、No. 64はRene

[0051]

【表1】

- 1	合金			化	学	植	茂	(w1	%)			-		•
程別	番号	Ni	Cr	W	Mb	Co .	Al-	Ti	Иb	Ta	Re	H	W₊Ta	P镇
	- 1	Bal.	6.8	6.7	4.4	0.8	5.1	•	1.8	4.1	1.5	0.1	10.8	3193
	2	Bal.	6.9	8,9	4.3	0.6	5.2	-	1.8	4.1	9.0	0.1	71.0	3130
١	3	Bal.	6.4	6.1	5.4	1.0	4.9		1.2	5.3	1.6	0.1	11.4	3125
- 1	4	Bal.	6.5	6.1	5.4	1.0	4.0	•	1.7	4.6	1.6	0.1	1 0.7	3079
- 1	5	Bal	7.0	2.3	5.5	1.1	4.8	•	1.7	7.7	1.6	0.1	10.0	2688
•	6	Bat.	8.1	8.5	0.9	0.9	4.6	•	1.6	7.5	1.6	0.1	16.0	2938
	7	Bai.	7.9	9.5	0.9	1.0	4.6	-	1.6	8.7	1.6	0.2	1 6.2	2962
本発明	8	Bat.	7.8	7.2	1.8	9.0	4.7	•	1.6	7.5	1.6	0.1	14.7	3072
合金	9	Bat.	7.2	11.5	1.8	0.7	4.7	-	1.6	3.8	1.6	0.1	15.3	2877
	10	Bal.	7.6	8.1	1.B	1.2	4.7	•	1.2	7.5	1.6	0.1	1 5.6	3094
	11	Bal.	7.7	7.9	1.8	1.5	4.8	-	1.6	B.1	1.8	0.2	1 4.0	3142
	12	Bal.	6.9	9.2	0.9	1.5	5.2	-	0.9	5.4	1.5	0,1	14.6	3243
	13	Bal.	8.1	5.0	0.9	1.1	5.5	-	. 0.9	6.2	3.0	0.1	13.2	3203
	14	Bal.	7.5	9.5	0.8	1.0	5.2	•	0.9	7.2	1.4	0.1	16.7	3000
	15	Bal.	7.1	6.6	4.4	1.0	5.1	•	2.7	2.7	1.5	0.1	9.3	3118
	16	Bal.	7.7	8.2	0.9	2.1	5.4	•	0.9	8.5	1.5	0.1	1 4.7	3160
	17	Bal.	7.6	9.2	0.8	0.9	5.3	-	0.9	5.4	1.5	0,1	15.6	3114
	18	Bal.	7.5	8.3	0.B	1.4	4.9	•	2.2	7.2	1.5	0.1	15.5	3131
	19	Bal.	7.6	7.3	0.8	0.9.	4.9	•	2.2	8.0	1.5	0.1	15.3	3134
	20	Bal.	8.0	6.1	1.6	1.1	5.0	-	1.5	6.9	1.6	0.1	13.0	3077
	21	Bal.	7.4	5.9	1.5	0.8	5.3	-	1.6	7.3	1.5	0.1	13.2	3234
	22	Bat.	7.7	7.9	0,9	1.0	5.6	-	0.9	5.7	1,5	0.1	13.6	3175
	23	Bal.	7.8	5.2	0.В	1.0	5.3	· -	1.6	8.8	1.5	0.1	1.4.0	3109
	24	Bal.	7.5	7.0	0.8	0.8	5.3	İ٠	1.6	7.3	1,5	0.1	14.3	3212
	25	Bal.	7.3	8.6	0.8	1.1	5.3	-	1.6	5.8	1.5	0.1	14.4	3208
	26	Bal.	7.6	6.3	0.B	0.7	5.5	•	1.5	6.9	1.5	0,1	1 3.2	3201
	27	Bal.	7.5	7.2	0.8	0.8	5.0	-	1.7	8.8	1.4	0.1	16.0	3161
	28	Bal.	7.3	5.4	0.5	0.8	8.0	-	1.4	7.0	1.4	0,1	12.4	3227
	2 9	Bal.	8.9	4.4	1.3	0.7	6.0	•	1.4	7.1	1.4	0.1	11.5	3280
	3.0	Bal.	7.8	5.0	1.0	0.8	5.4	-	2.7	4.7	2.5	0.1	9.7	3195
	31	Sal.	10.1	6.2	0.7	1.1	5.3	-	1.5	6.9	1.5	0.1	13.1	2670
	3 2	Bal.	11.4	6.4	0.7	2.2	4.9	-	1.4	6.5	1.6	0.1	12.9	2350
	41	Bat.	7.3	6.5	4.5	1.2	5.0	-	3.5	0.9	1.5	0.1	7.4	3015
	4 2	Bal.	6.8	8.7	4.2	1.2	5.4	-	-	7.3	1.5	0.1	14.0	3312
	4 3	Bal.	7.1	7.1	4.2	1.0	4.B	1.6	-	5.7	1.5	0.1	12.8	1993
	4 4	Bal.	4.7	6.8	4.3	.0.9	5.2	i -	1.8	4,1	1.5	0.1	10.9	3641
比較	45	Bal.	6.9	8.9	4.3	0.8	5.2	١.	1.8	4.1	-	0.1	11.0	3051
合全	4 6	Bal.	8.1	3.9	7.3	0.3	4.9	<u> </u>	1.9	6.4	1.6	0.2	9.3	2768
	47	Bat.	6.2	8.4	0.8	1.2	5.5	├ •	0.9	5.6	4.3	0.1	14.0	3727
	48	Bal.	6.7	6.6	4.4	1.0	5.1	 -	1.8	4.0	1.5	-	1 0.6	3129
	49	Bal.	6.8	6.7	4.5	 .	5.0	† 	1.9	4.1	1.4	0.1	10.B	3153
	50	Bal.	8.8	0.6	4.3	-	5.1	 -	1.7	4.2	1.6		10.8	3128
	5 1	Bal	6.7	6.7	4.5	5.2	5.1	 	1.8	4.0	1.5	0.1	10.7	3212
	5 2	Bal	6.1	7.1	6.0	1.0	5.4	١.	0.9	9.3	1.5	0.1	10.4	3148
	5 3	Bal.	8.8	6.0	1.0	 	5.4	1.0	 	7.0	0.8		13.9	2178
	5 4	Bal.	10.0	6.0	0.7	4.5	5.4	2.0	 	5.4	0.1	-	10.4	908
<u> </u>	6 1	Bal.	6.4	7.3	4.3	1.0	5.1	+:-	l ·	7.3	+::-	0.1	14.6	3149
從棄	6 2	Bal.	5.1	6.0	2.0	9.9	5.5	 -	+-	8.8	2.9	0.1	14.8	3874
合金	6 3	Bal.	6.6	6.4	0.6	9.6	5.6	1.0	1	8.5	3.0	0.1	1 2.9	2973
	6 4	Bal.	14.0	3.9	3.9	9.3	3.0	5.0	+-		8:0.018			1 .
	T 4 4	Dail.	14.0	3.9	3.5	9.4	1 3.0	4.0	<u> </u>	1 0:0.12	100.018	2.0.00		

【0052】表2は、各合金の75wt%Na,SO,-2

中での全浸漬試験における各3個の腐食減量の平均値、 5wt%NaCl混合塩中での940℃-50hのるつぼ 50 るつぼ中での1100℃で16時間加熱後、空冷の熱サ

イクルを10回繰り返した後の酸化減量値、合金の組織 安定性、1040℃-19kgf/mm'におけるクリープ 破断時間とその時の伸びおよび模擬燃焼腐食試験後の腐 食減量値を示す。また、合金の組織安定性については、 各熱処理後のミクロ組織から、 γ相と γ'相のみから構*

23

*成される合金については、特性欄に○印を、γ相とγ' 相以外の有害相を含む場合は特性欄に×印を記載した。 [0053] 【表2】

合金		クリーブ殻断特性 函食・耐酸化特性 Will (mg/cm²)							
種別	番号	寿命 (h)		るつは保食性表					
	1	169	8.3	0.3	37.7	-0.6	0		
l 1	2	133	21.2	1.8	•	1.1	Ō		
	3	159	12.6	277	69.7	18.3	0		
	4	145	20.5	0.6		19.1	0		
1 1	5	199	9.4	0.6	-	6.3	$\overline{}$		
i I	6	227	8.3	255	1.4.7	0.1	0		
	7	236	7.8	263	27.6	1.8	O		
本発明	8	208	11.2	273	19.0	2.5	0		
合金	9	199	1 0.5	1.5	-	14.4	0		
	10	229	1 2.1	240	2.7	0.7	0		
	11	188	1 3.3	0.5	0.4	1.3	O		
	12	1 3 4	26.4	0.7	1.6	0.4	0		
	1 3	164	16.6	238		0.1	O		
	14	229	15.4	289	2.2	2.3	ठ		
1 1	15	137	25.3	1.5	-	19.6	Ō		
	1 6	164	2 0.1	258	18.2	0.8	0		
	17	208	1 3.7	273	8.7	1.7	0		
	1 B	205	7.8	1.2	-	5.4	0		
	1 9	223	8.2	0.8	-	4.4	0		
i i	20	188	18.4	0.3	0.7	0.4	ा		
	2 1	193	1 8.1	0.3	0.4	0.3	ठ		
	22	164	1 3.2	1.1	3.9	0.5	ि		
	2 3	220	7.6	0.3		0.4	0		
	2 4	218	9.4	0.5	· ·	1.0	O		
	25	207	1 0.3	0.3	-	1.2	ठ		
1	26	163	16.4	0.3		0.2	0		
	27	244	6.7	203	-	1.1	0		
1	28	1 1 8	11.4	0.5		-0.2	ि		
1	2 9	113	1 2.3	1.6	-	0.3	0		
i i	3 0	101	1 4.4	1.5	-	17.7	0		
	31	161	16.4	0.2	•	0.4	0		
1	3 2	130	8.8	0.3	-	0.3	O		
	4 1	7 3	9.8	1.6	-	30.3	0		
	4 2	265	10.4	528	-	1.9	0		
	4 3	5 1	7.3	全溶融	-	2.7	×		
	4 4	133	18.3	520	-	92.4	0		
比較	4 5	101	22.2	533	-	2.3	0		
合会	46	153	1 2.2	全溶融		75.2	0		
	47	67	5.9	全音融	-	74.4	×		
l	4 8	146	17.3	156	•	37.3	0		
[4 9	137	1 2.1	141	•	28.1	O		
1.	50	132	1 4.0	244	-	55.3	0		
l '	5 1	98	1 O.B	507	•	44.2	0		
1	5 2	156	12.3	444		•	0		
1	5 3	•		429	-	20.2	0		
	5 4	•		589	-	8.3	0		
	6 1	242	-	全溶膜		0.9	0		
従来	6 2			全溶融	•	74.6	0		
		143		533		8.0	Τō		
合金	63	1 4 3	<u> </u>			1 0.0	$\overline{}$		

【0054】表2に示す各種試験のうち、クリーブ破断 試験と実機模擬燃焼試験以外は、すべて鋳造ままのマス ターインゴットを多結晶状態のままで所定の熱処理を行 ない、所定の試験片状態に加工して実験に供試した。る つぼ耐食試験片、るつぼ耐酸化試験片はともに直径7m m 厚さ4mmの円盤状の試験片に加工したものを使用し た。クリーブ破断試験については、本発明合金のすべて 50 ラーパラメーターで整理されたクリーブ破断曲線が公知

とNo. 53とNo. 54を除く比較合金について、上 記のマスターインゴットを引下げ式一方向凝固炉で単結 晶化した後、他の試験と同じ以下に示す熱処理を実施 し、さらに平行部直径6.35mm、評点間距離25.4 mmの試験片に加工して、ASTM法に基づき上記の条件 で試験を実施した。なお、従来合金のうち、ラーソンミ

となっている合金No. $61 \ge 63$ については、クリープ破断曲線から1040 C-19 kgf/mm² に相当する破断時間を読み取り表2に併記した。

25

【0055】実機模擬燃焼試験は本発明合金の一部と従来合金No.64(Rene80)についてのみ実施した。本発明合金については、クリーブ破断試験作製時の単結晶試料を用い、No.64は多結晶ままの試料を用いた。これらの試料は、いずれも直径9mm、長さ50mmの丸棒試験片に加工後、実機模擬燃焼ガス雰囲気中で、900℃×7h×7サイクル加熱後、脱スケールを行な 10い腐食減量を測定した。

【0057】No.63 (CMSX-4)は、Cannon-Muskegon社の推奨 熱処理条件(出典; "最新ニッケル基超合金の単結晶化とその高温強度特性",太田芳雄他;鉄と鋼,vol.76,(1990),pp940-947)に合わせ、1272℃で2時間保持後昇温、1288℃で2時間保持後 30昇温、1296℃で3時間保持後昇温、1304℃で3時間保持後昇温、1313℃で3時間保持後昇温、さらに1316℃で2時間保持後空冷の6段の連続固溶化処理を実施後、1080℃で4時間保持後空冷と871℃で20時間保持後空冷の時効処理を実施した。従来合金中、多結晶状態で使用されるRene80は、1220℃で2時間加熱後空冷した後、1096℃で4時間加熱後空冷、1050℃で16時間加熱後空冷、さらに845℃で16時間加熱後空冷、さらに845℃で16時間加熱後空冷したものを使用した。

【0058】表1より、本発明合金の前記(1)式で計 40 算されるP値はいずれも、米国特許第4,719,08 0号で規定されている3360を下回っており、本発明とは、異なる発明であることが明らかであり、表2より、本発明合金No.1~32はいずれも良好な耐食性、耐酸化性、クリーブ破断寿命、クリーブ破断伸びおよび組織安定性を有していることがわかる。とくに耐食性については、るつぼ腐食減量でもNo.64(Rene80)と同等あるいはそれに近いレベルで、従来単結晶合金よりもあきらかに良好である。さらに、本発明合金は、実機模擬燃焼腐食減量において、No.64より 50

もあきらかに良好な耐食性を有している。耐酸化性についてもNo.64(Rene80)より、格段に優れ、従来合金のなかでも良好な部類に入る。

26

【0059】また、クリープ破断寿命についてみても、 本発明合金は最長のもので従来合金No. 61 (SC-83K)とほぼ同等の寿命が得られ、最短のものでも従 来合金No. 63 (CMSX-4) と同等からわずかに 下回る程度の寿命であり、この強度は単結晶合金とし て、申し分のないレベルである。さらに、図1より、本 **発明合金の組成はいずれも(W+Ta+Re+2Mo)** が14.0以上、(W+Ta+2Mo)/(3.5Cr +2Nb)が0.95以下に入っている。比較合金のな かには、図1の本発明領域のなかに入っているものもあ るが、個々の成分元素が外れている。図1において、縦 軸および横軸の本発明合金の各点は、A(26.0, 0. 95), B (22. 0, 0. 95), C (14. 0, 0. 6), D (14. 0, 0. 1)およびE (2 6.0,0.6) で囲まれた領域内の範囲にあり、特に 好ましいものである。

【0060】また、図2は、縦軸に、るつぼ腐食減量と クリープ破断時間をとり、横軸を2Nb/(2Nb+T a) で整理したものである。代表例として、本発明合金 No. 6、14および15と比較合金No. 41および 42のみの値を図示するが、この図からあきらかなよう に2Nb/(2Nb+Ta) 比が高くなるほど、耐食性 がよくなるが、逆に高温強度が低下し、2 N b / (2 N b+Ta) 比が0.2~0.8のところに耐食性と強度 を両立する領域が存在することがわかる。 さらに、図3 に模擬燃焼試験減量値に及ぼす(3.5Cr+6.8A 1) / (W+Ta+2Mo) 比の影響を示す。この図に はNbを含有する本発明合金で、さらに、模擬燃焼試験 を実施したものしか図示されないが、Nbを含有する組 成領域のなかでは、(3.5℃ r + 6.8 A 1) / (₩ +Ta+2Mo)比が高いほど、耐食性が優れる方向に あることがわかる。一方、比較合金については、個々の 特性は本発明合金に匹敵する特性を持つものもあるが、 すべての特性が、本発明合金のようにバランスよく良好 とはならない。これらから、本発明の成分範囲内の合金 が如何に優れた特性をバランスよく示すかがあきらかで ある。

【0061】従来合金のうち、No. 61(SC-83 K)はクリーブ破断強度に優れており、少量のCoとH fを含むために耐酸化性も良いが、Re, Nbを含まないために耐食性が悪い。No. 62(PWA1484)はReを含むがNbを含まず、Crも低いために、耐食性と耐酸化性が本発明合金に比べて劣っている。また、No. 63(CMSX-4)も良好な耐酸化性とクリープ破断寿命が得られるが、やはり耐食性が本発明合金のレベルに比べるとやや劣る。従来合金の多結晶材である50 No. 64 (Rene80)は確かにるつば耐食性は良

好であるが、実機模擬燃焼ガス下での耐食性となると本 発明合金に劣り、一方、クリーブ破断強度は極めて低 く、耐酸化性も悪い。なお、本発明合金においては、P 値が2350から3280の範囲でクリープ破断時間が 100時間以上で、かつ、るつぼ試験における腐食減量 が300mg/cm²以下の高耐食高強度合金が得られ

【0062】(実施例2)

実施例1中の本発明合金No. 8を用い、図4に示すガ スタービンブレードおよび図5に示すガスタービンノズ 10 ルを製造した。前記、図4に示すガスタービンブレード は、高耐食高強度単結晶鋳造物からなり、高圧ガスをシ ール化し、そのエネルギーを回転力に変える翼部1と、 該翼部1を支持し、燃焼ガスを外部に漏れないようにす るプラットホーム2と、燃焼ガスを外部に漏れないよう にシールするシールフィン3を有し、前記翼部1とプラ ットホーム部2を支持する翼部1に対して所望の長さを 確保するシャンク部4およびブレードをディスクに固定 するダブテール部5を備えている。図6にガスターピン ブレード用、図7にガスタービンノズル用の中子の正面 20 図を示す。近年のガスタービンは燃焼ガスの高温化に伴 い、金属表面および内部の温度を低下させるために、ブ レードおよびノズルの内部に複雑な形状の冷却孔を設け ることが一般的である。このような中空構造のブレード およびノズルを製造するために、図6および図7の形状 のシリカを主成分とする耐火物で形成された中子を用い た。この中子のまわりにワックス模型を作製し、さらに その外側にアルミナ、ジルコンおよびイットリア等の耐 火物でセラミックスシェルを形成し、脱ろうおよび焼成 したものを鋳型とした。

【0063】図8はガスタービンブレード用、図9はガ スタービンノズル用の鋳型の断面図である。先ず、図8 で示す鋳型を用いてガスタービンブレードを得るには、 翼部1、シャンク部4およびダブテール部5に相当する メーン鋳型に対してシールフィン3に連通したバイパス 部12を有する鋳型10は水冷銅チル11の上に固定 し、鋳型加熱ヒーター13の中にセットした。次に、高 周波加熱で溶解した本発明合金No. 8の組成のマスタ ーインゴットを、合金の融点以上に加熱した鋳型10の 中に鋳込み、引き下げ速度 30cm/hで鋳型加熱ヒー ター13から引き出し、スターター部14より順次一方 向凝固させた。スターター部14内ではいくつもの柱状 晶が成長するが、セレクター部15を用いてその中の一 つの結晶のみを成長させ、セレクター部15より上の部 分を単結晶鋳造物とした。次に図9で示す鋳型を用いて ガスタービンノズルを得るには、 翼部6 に相当するメー ン鋳型に対してサイドウォール7、8に連通したパイパ ス部12を有する鋳型10は水冷銅チル11の上に固定 し、鋳型加熱ヒーター13の中にセットした。次に、高 周波加熱で溶解した本発明合金No. 8の組成のマスタ

ーインゴットを、合金の融点以上に加熱した鋳型10の 中に鋳込み、引き下げ速度 30cm/hで鋳型加熱ヒー ター13から引き出し、スターター部14より順次一方 向疑固させた。スターター部14内ではいくつもの柱状

28

晶が成長するが、セレクター部15を用いてその中の一 つの結晶のみを成長させ、セレクター部15より上の部 分を単結晶鋳造物とした。上述の製造方法を用いること でガスタービンブレードおよびガスタービンノズルが全

体に渡って単結晶鋳造物とすることができる。

【0064】鋳型加熱ヒーター13は鋳型10が完全に 引き出され、鋳造物が完全に凝固するまで合金の融点以 上の温度とした。以上の工程のうち水冷銅チル11に鋳 型10をセットする工程より後は真空中で行なった。冷 却後鋳型10を取り出し、中子をアルカリで除去し、ス ターター部、セレクター部および押し湯部等を切断し、 図4に示す形状のガスタービンブレードおよび図5に示 す形状のガスタービンノズルを得た。ガスタービンプレ ードは全長約220mmで、そのうち翼部が約130mm、 ガスタービンノズルは二つのサイドウォール間が約13 Ommである。とこで、バイバス部12は張出し部である シールフィン3 およびサイドウォール8等の結晶成長方 向に対して急激に断面積が変化する部分を単結晶化する ために用いるもので、最終的には押湯部等と同様、切断 し除去する。これを用いることで、大型単結晶鋳造物の 張出し部における異結晶の発生を抑制し、歩留が向上し

【0065】結晶は、ブレードにおいては〈001〉方 向が翼部長手方向(拡大部16からダブテール部5の方 向)に、つまり〈001〉方向が遠心力のかかる方向に なる用に成長させることが望ましく、またノズルにおい ては〈001〉方向が翼部横手方向(サイドウォール7 からサイドウォール8の方向)に、つまり〈001〉方 向がガスタービンの起動停止に伴う熱サイクルから生じ る熱応力のかかる方向になるように成長させることが望 ましい。本実施例においてはいずれも〈001〉方向か らの結晶成長方位のずれが5度以内の単結晶鋳造物が得 **られた。ガスタービンブレードおよびガスタービンノズ** ルとも、真空中で1300℃4時間加熱後空冷の固溶化 処理の後、翼部に厚さ 100μmのCoNiCrAl Y合金層をブラズマ溶射法で形成し、さらにその外層に 厚さ300μmのZrO₂-6wt%Y₂O₃膜をプラズ マ溶射法でコーティングした。さらにその後、アー層の 形状を整える目的で870℃20時間加熱後空冷の時効 処理を行なった。

【0066】(実施例3)図10は実施例2の本発明の ガスタービンブレードおよびノズルを有するガスタービ ンの回転部分の断面図である。30はタービンスタブシ ャフト、33はタービンブレード、43はタービンスタ ッキングボルト、38はターピンスペーサ、49はディ 50 スタントピース、40はノズル、36はコンプレッサデ

ークーラーが設けられる。本実施例によって発電出力は 6万kWが得られ、その熱効率は33%以上の高いもの が得られる。

30

ィスク、37はコンプレッサブレード、41はコンプレッサスタッキングボルト、39はコンプレッサスタブシャフト、34はタービンディスクである。本発明のガスタービンはコンプレッサディスク36が17段あり、またタービンブレード33が3段のものである。タービンブレード33は4段の場合もあり、いずれにも本発明の合金が適用できる。

【0070】(実施例4)図11は実施例3のガスタービンを用い、蒸気タービンと併用した一軸型コンバインドサイクル発電システムを示す概略図である。ガスタービンを利用して発電を行なう場合、近年ではガスタービンを利用して発電を行なう場合、近年ではガスタービンの排ガスエネルギーを回収し、これにより得られた高温の水蒸気で蒸気タービンを駆動し、この蒸気タービンとガスタービンとで発電機を駆動するようにした、いわゆるコンバインドサイクル発電方式を採用する傾向にある。このコンバインドサイクル発電方式を採用すると、ガスタービンおよび蒸気タービン単独の場合と比較して熱効率を大幅に向上させることが可能となり、本発明のガスタービンを用いれば、システム全体の熱効率は50%以上に達する。

【0067】本実施例におけるガスタービンは、主な形 式がヘビーテューティ形、一軸形で、水平分割ケーシン グ、スタッキング式ロータからなり、圧縮機は17段軸 流形、タービンは3段インパルス形、ブレードおよびノ ズルの第1段および第2段は空気冷却式で、燃焼器はバ ースフロー形、16缶、スロットクール方式である。デ ィスタントピース49、ターピンディスク34、スペー サ38、スタッキングボルト43は重量%で、С0. 06~0.15%、Si 1%以下、Mn 1.5%以 下、Cr 9. 5~12. 5%、Ni 1. 5~2. 5 %, Mo 1. 5~3. 0%, V 0. 1~0. 3%, N b 0. 03~0. 15%, N 0. 04~0. 15%, 残部Feからなる全焼もどしマルテンサイト鋼が用いら れる。本実施例における特性として、引張強さ90~1 20kg/mm²、0.2%耐力 70~90kg/mm²、伸び率 10~25%、絞り率 50~70%、Vノッチ衝撃値 5~9. 5 kq-m/cm²、450℃-10°hクリープ破断 強度 45~55 kg/mm²であった。

【0071】本システムでは、まず空気を吸気フィルタと吸気サイレンサを通ってガスタービンの空気圧縮機に導入し、ここで圧縮された圧縮空気を燃焼器へ送る。燃 20 焼器では、この圧縮空気の中に燃料を噴射し燃焼させ1500℃以上の高温ガスを作り、この高温ガスはタービンで仕事をし、動力が発生する。次に、タービンから排出された500℃以上の排気を、排気サイレンサを通って排熱回収ボイラへ送り、ガスタービン排気中の熱エネルギを回収して500℃以上の高圧水蒸気を発生させる。発生した高圧および低圧の蒸気は蒸気タービンへ送られる。

【0068】タービンブレード33は3段式で、初段に 実施例2で製造したものを用い、圧縮機の圧縮圧を1 4. 7、温度 400℃、初段ブレード入口温度を1, 350℃、燃焼器による燃焼ガス温度を1500℃級と した。また、タービンブレード33の2段目にはRen e80 (Cr14%, Co 9. 5%, Mo4%, W 4 %, A1 3%, Ti 5%, C 0. 17%, B 0. 01 5%、Zr 0. 03%、Ni残部)の多結晶体からなる 翼長280mm(翼部 160mm、ブラットフォーム部以降 長さ 120mm)の中空翼を用いた。第3段目には、IN 738 (C 0. 17%, Cr 16%, Co 8. 5%, Mo 1. 75%、₩ 2. 6%、Nb 0. 9%、Ti 3. 4%, A1 3. 4%, Ta 1. 75%, B 0. 0 1%、Ni 残部)の多結晶体からなる翼長 350 mm(翼 部 230mm、他 120mm)の中実翼を用いた。製法は 従来のロストワックス法による精密鋳造法によった。 【0069】タービンノズル40の初段には、実施例2 で得たもの、第2段および第3段には既知のCo基合金 が用いられる。第2段および第3段は従来法により真空 精密鋳造によって翼部1ヶからなるものを形成した。翼 部の長さはブレードの翼部の長さに相当する長さを有 し、ピンフィン冷却、インピンジメント冷却およびフィ ルム冷却構造を有する。1段ノズルはサイドウォール両 端で拘束されるが、2段目および3段目はサイドウォー

ル外周側の片側で拘束される。ガスタービンにはインタ 50

【0072】さらに、蒸気タービンを出た蒸気を復水器 に導き、真空脱気して復水とする。復水は、復水ポンプ で昇圧され給水となってボイラへ送られる。以上の結 果、ガスタービンと蒸気タービンは、直結の発電機をそ の両軸端から駆動する。本実施例のコンバインドサイク ル発電システムによりガスタービンから6万kW、蒸気 タービンから3万kWのトータルで9万kWの発電を得 ることができた。また、本実施例における蒸気タービン はコンパクトとなるので、大型蒸気タービンに比べ同じ 発電容量に対し経済的に製造可能となる。本発明に係る 蒸気タービンは高低圧一体型蒸気タービンとし、この高 低圧一体型蒸気タービンの主蒸気入口部の蒸気圧力を1 00atgに、温度を538℃に上昇させることによりタ ービンの単機出力の増加を図ることができる。単機出力 の増加により、最終段プレードの翼長を30インチ以上 に増大し、蒸気流量を増す必要がある。

【0073】本発明に係る蒸気タービンは高低圧―体型ロータシャフトに植設されたブレードを13段以上備えており、蒸気は蒸気コントロールバルブを通って蒸気入口より前述の如く538℃、100atgの高温高圧で流入する。蒸気は入口より一方向に流れ、蒸気温度33℃、722mHgとなって最終段のブレードを通り出口より排出される。本発明に係る高低圧―型体ロータシャフ

トは、Ni-Cr-Mo-V低合金鋼の鍛鋼が用いられる。ロータシャフトのブレードの植込み部のディスクの長さは、ブレードの長さが短いほど長くなり、振動を少なくするようになっている。本実施例に係る高低圧一体型ロータシャフトは重量%でC 0.18~0.30%、Si 0.1%以下、Mn 0.3%以下、Ni 1.0~2.0%、Cr1.0~1.7%、Mo 1.0~2.0%、V 0.20~0.3%、残部 Feよりなり、900~1050℃で水噴霧冷却によって焼入れ後、650~680℃で焼もどしが施される。

【0074】プラントの構成は、ガスタービン、排熱回 収ポイラ、蒸気タービン、発電機1基からなる1組の発 電システムを6つ並列に組み合わせた1軸型とした。ま た、この他にガスターピン1基に対し発電機1基を6つ 並列に組み合わせ、さらに各ガスタービンの排ガスから 得た蒸気を1台の蒸気タービンに導入し、この1台の蒸 気タービンと1台の発電機および前記6組のガスタービ ンとから構成された多軸型とすることができる。複合発 電は、起動停止が短時間で容易なガスタービンと小型で 単純な蒸気タービンの組み合わせで成立っている。この 20 ため、出力調整が容易にでき、需要の変化に即応した中 間負荷火力として最適であり、発電量の変動に対して経 済的に運転できる大きなメリットがある。ガスターピン の信頼性は、最近の技術の発展により飛躍的に増大して おり、また複合発電プラントは、小容量機の組み合わせ でシステムを構成しているので、万一故障が発生しても その影響を局部的にとどめることができ、信頼性の高い 電源である。

【0075】本システムにより、従来の火力発電の熱効率を上回る約52%の熱効率での発電を行なうことがで 30 きた。また、複数のコンバインドサイクル発電システムをまとめて一つのプラントとする発電システムの場合、部分負荷の場合もガスタービンの運転台数を減らすことにより、運転中の設備を熱効率の高い定格負荷付近で運転することが可能なため、プラント全体として高い熱効率を維持することが可能となる。

[0076]

【発明の効果】以上のように、本発明合金は既存単結晶合金よりも優れた耐食性と、既存単結晶合金のなかでも良好な部類の耐酸化性、および既存単結晶合金のなかで40もとりわけ高強度とされる合金と同等あるいはそれに近いクリーブ破断強度を兼備している。その結果、従来適応が困難であった地上発電用高効率ガスタービンのブレードやノズル用等の単結晶鋳造物として、厳しい腐食環境と高いクリープ応力下での操業が可能となり、従来達成できなかった熱効率50%以上の高効率コンパインドサイクル発電システムが得られる。

【図面の簡単な説明】

【図1】縦軸に(W+Ta+Re+2Mo)の値をとり、横軸に(W+Ta+2Mo)/(3.5Cr+2N 50

32

b)の値をとった時の本発明の高耐食性単結晶合金の領域を示す図である。

【図2】るつぼ腐食減量とクリーブ破断時間の及ぼす2Nb/(2Nb+Ta)の影響を示す図である。

【図3】本発明合金の模擬燃焼試験減量に及ぼす(3. 5 C r + 6. 8 A l) / (W+ T a + 2 M o) の影響を 示す図である。

【図4】本発明に係るガスタービンブレードの斜視図である。

10 【図5】本発明に係るガスターピンノズルの斜視図である。

【図6】本発明に係るガスターピンブレードの製造に用いた中子の正面図である。

【図7】本発明に係るガスターピンノズルの製造に用いた中子の正面図である。

【図8】本発明に係るガスターピンブレードの製造方法を示す、ガスターピンブレード用の鋳型の縦断面図である。

【図9】本発明に係るガスタービンノズルの製造方法を 示す、ガスタービンノズル用の鋳型の縦断面図である。

【図10】本発明に係るガスタービンの模式図である。

【図11】本発明に係るコンバインドサイクル発電システムの模式図である。

【符号の説明】

- 1 翼部
- 2 プラットフォーム部
- 3 シールフィン
- 4 シャンク部
- 5 ダブテール部
- 30 6 翼部
 - 7,8 サイドウォール
 - 10 鋳型
 - 11 水冷銅チル
 - 12 バイバス部
 - 13 鋳型加熱ヒーター
 - 14 スターター部
 - 15 セレクター部
 - 16 拡大部
 - 30 タービンスタブシャフト
- 33 タービンブレード
 - 34 タービンディスク
 - 36 コンプレッサディスク
 - 37 コンプレッサブレード
 - 38 タービンスペーサ
 - 39 コンプレッサスタブシャフト
 - 40 ノズル
 - 41 コンプレッサスタッキングボルト
 - 43 タービンスタッキングボルト
 - 49 ディスタントピース

[図2]

【図1】

【図10】

[図11]

フロントページの続き

(72)発明者 安田 健

茨城県日立市大みか町7-1-1 株式

会社日立製作所日立研究所内

(72)発明者 玉置 英樹

茨城県日立市大みか町7-1-1 株式

会社日立製作所日立研究所内

(72)発明者 吉成 明

茨城県日立市大みか町7-1-1 株式

会社日立製作所日立研究所内

(56)参考文献 特開 昭56-108851 (JP, A)

(58)調査した分野(Int.Cl.⁶, DB名)

C22C 19/00 - 19/05

F01D 5/28

FO1D 9/02 - 9/02 104

F01K 23/10

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
G-COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAÝ SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.