集合

1.集合的表达方法

1.列举法

$$A=\{1,2,3\cdots\}$$

2.表达式法

$$A=\{x|x\in N, x\leq 2\}$$

2.特殊集合

1.空集

 $A=\emptyset$

注: 空集是任意集合的子集, 但研究子集时一般研究非空集合

2.自然数集,正整数集

自然数集: *N* 正整数集: *N*+

3.实数集

A = R

注: 实数集可以用区间来表示 $(-\infty, +\infty)$

4.全集

A = U

全集代表全体,全部,所有的内容

3.集合的运算

1.属于(不属于)

若 \times 为集合 \wedge 内的一个元素,则 \times 属于 \wedge 记作 $x \in A$

若 \times 不为集合 \wedge 内的一个元素,则 \times 不属于 \wedge , 记作 $x \notin A$

2.包含于

若 A 中的每一个元素都是 B 内的一个元素,则 A 包含于 B ,记作 $A\subseteq B$ 若 A 包含于 B ,且 B 包含于 A ,则 A 和 B 是同一个集合,记作 A=B 若 A 包含于 B ,且 A 不等于 B ,则 A 是 B 的一个真子集,记作 $A\subsetneq B$

3.交集

图示

定义

若 A 和 B 是两个非空集合,则 A 和 B 的交集为 A 和 B 的重复部分构成的集合

表示方法

A 交 B: $A \cap B$

定义法: $\{x|x\in A\ and\ x\in B\}$

4.并集

图示

定义

若 A 和 B 是两个非空集合,则 A 和 B 的交集为 A 和 B 的所有元素构成的集合

表示方法

A 并 B: $A \cup B$

定义法: $\{x|x\in A\ or\ x\in B\}$

5.补集

图示

若 A 为非空集合,则 A 的补集为全集 U 中 A 没有的元素

表示方法

A 的补集: C_UA

定义法: $\{x|x\in U\ and\ x\not\in A\}$

6.直积(笛卡尔积)

图示

若 A 和 B 都为非空实数集,则由集合 A 和 B 所有实数对对应的点组成的集合叫 A 和 B 的直积

表示方法

A和B的直积: $A \times B$

定义法: $\{(x,y)|x\in A,y\in B\}$

7.区间

1.开区间

图示

在实数轴 a 和 b 点中间 (不包括 a b 两点)的所有实数所构成的集合

表示方法

开区间a, b: (a,b)

定义法: $\{x | a < x < b\}$

2.闭区间

图示

定义

在实数轴 a 和 b 点中间(包括 a b 两点)的所有实数所构成的集合

表示方法

闭区间a, b: [a,b]

定义法: $\{x | a \le x \le b\}$

3.半开区间

图示

定义

在实数轴 a 和 b 点中间(包括 a b 其中一点)的所有实数所构成的集合

表示方法

半开区间a, b: [a,b) (a,b]

定义法: $\{x | a \le x < b\} \ \{x | a < x \le b\}$

4.无限区间

在实数轴 a 点之前(之后)的所有实数所构成的集合

表示方法

无限区间a: $[a, +\infty)$ $(-\infty, a]$ 定义法: $\{x|x < a\}$ $\{x|a < x\}$

注:正无限、负无限、无限都不可参与运算

5.邻域

定义

实数 a 为圆心, θ 半径长的所有实数所构成的集合

表示方法

a, θ的邻域: $U(a, \theta)$

区间表示法: $[a-\theta,a+\theta]$ 定义法: $\{x | |x - \theta| < a\}$

a, θ的邻域(去中心a): $\stackrel{o}{U}(a,\theta)$

区间表示法: $[a-\theta,a)\cap(a,a+\theta]$ 定义法: $\{x\big|0<|x-\theta|< a\}$

8.运算律

1.交换律

$$A \cap B = B \cap A$$
 $A \cup B = B \cup A$

2.结合律

$$A\cap (B\cap C)=(A\cap B)\cap C$$
 $A\cup (B\cup C)=(A\cup B)\cup C$

3.分配律

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$
 $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$

4.对偶律(德摩根律)

$$C_U(A\cap B)=C_UA\cup C_UB \qquad \quad C_U(A\cup B)=C_UA\cap C_UB$$

4.映射

1. 定义

在集合 X Y 中,有对应法则 f ,使得 $\forall x \in X$,有唯一的 $y \in Y$,则 X 关 于 Y 映射,且 $f:A \to B$,y=f(x)

2.易错点

y 是唯一的,而 x 不一定是唯一的

三要素: 定义域,对应法则,值域(X为定义域,f为对应法则,Y为值

$\mathbf{3.}R_{f}$

定义

$$R_f = f(X) = \{f(x)|x \in X\}$$
 R_f 是 B 的一个子集

4.映射方式

1.满射

f(X) = Y, 即每一个 y 都有若干个对应的 x

2.单射

 $orall x_1, x_2 \in X$, $x_1
eq x_2$, 且 $f(x_1)
eq f(x_2)$, 即每一个 y 都只有一个对应的 x

3.双射

满射和单射的结合体,即——对应

5.常用符号

1.逻辑运算符

1.推出

 \Rightarrow

1. 定义

若 A 和 B 是两个命题,则 A 推出 B 表示知道 A 就可以知道 B, A 是 B 的充分条件,B 是 A 的必要条件

2.例子

1 < x < 2 是 x < 2 的充分条件,x < 2 是 1 < x < 2 的必要条件

2. 互推

若 A 和 B 是两个命题,则 AB 互推表是 AB 互为充分必要条件,简称充要条件

2.数字运算符

1.任取

 \forall

定义

任意的数(可以有范围),一般代指任何,所有的

2.存在

 \exists

能够找到