N.Grainat département d'anesthésie réanimation

État de choc Définition

- Urgence vitale
- Défaillance circulatoire aiguë, périphérique, généralisée avec trouble de la microcirculation entraînant la souffrance des organes secondaire à une hypoxie cellulaire.
- Évolution mortelle en l'absence de traitement étiologique et symptomatique

Le système cardio-circulatoire bases physiologiques

Fonction = Milieu de transport de l'organisme

Apport d'éléments vitaux aux cellules

Oxygène (réserves impossibles)

Glucose,...

Elimination des déchets du métabolisme cellulaire

« acides » via le CO₂

métabolites toxiques

Importance de l'adéquation Besoins / Apports

Le système cardio-circulatoire bases physiologiques

Finalité de la circulation

- o Apports nutritifs
- o Eliminer les déchets

Le débit cardiaque est adapté au besoin en O₂

Le système cardio-circulatoire bases physiologiques

Trois composants:

- 1. Le cœur (la pompe)
- 2. Les vaisseaux (les tuyaux)
- 3. Le sang (le fluide)

Le cœur la pompe

PRECHARGE

CONTRACTION

FREQUENCE

CARDIAQUE

 $Q_c = 5 à 6 l/min$

 $IC = 3 \text{ à } 3,5 \text{ l/ min/m}^2$

2 pompes

unidirectionnelle en

série

POSTCHARGE

CONTRACTILITE

mesure DC: Swan-Ganz ou le

Picco

Pression Artérielle $= Q_c \times RVS$

 $Q_c = VES \times FC$

Les vaisseaux

Le système veineux capacitif à basse pression:

Le système artériel résistif à haute pression:

Le sang le fluide

Volémie: 70 ml/kg

Composé inhomogène

□ Plasma : protéine (Albumine) + sérum : 55%

☐ Globules Rouges (Hb) : 45%

Transport d'O,

HEMATIES

4 500 000 mm³

1 GR contient 280 millions
de molécules
d'hémoglobine
HEMOGLOBINE

12 g/dl pour la femme
14 g/dl pour l'homme
1 molécule d'Hb fixe 4 mol d'O2

Hb O2 / Hb Totale = SaO2
Proportion de molécules sous
forme oxygénée *Oxymétrie de*pouls
Contenu artériel en O2

1 g d'Hb transporte 1.34 ml d'O2

Contenu artériel en O2 CaO2 = SaO2 x Hb x

Etats de chocs

- V02 = T02 X E02 quantitatifs et distributifs
- $V02 = (CaO_2 \cdot DC) \times (SaO_2 SvO_2) / SaO_2$
- [(1.34 · Hb) · SaO₂] · DC X (SaO₂ SvO₂) / SaO₂
- V02 = (1.34 · Hb) · (SaO₂ SvO₂) · DC valeur normale: 3.5 mL/kg/min ou 250 mL/min valeur normale SvO₂: 70%
- Valeur normale de l'extraction 25 à 35 %

Transport d'O2

- $TaO_2 = \overset{\circ}{Q_c} \times CaO_2$
- Le transport artériel d'O2, représente la quantité d'O2 que chaque min le VG envoi dans le circuit artériel et qui est donc mis à la disposition de l'organisme
- 500 ml/min

Le système cardio-circulatoire bases physiologiques La distribution

Le système cardio-circulatoire RESPIRATION CELLULAIRE

Le système cardio-circulatoire RESPIRATION CELLULAIRE

RESPIRATION CELLULAIRE

Mécanisme de compensation

La réponse provient du SNC

⇒sa préservation est critique

Mécanisme de compensation

Redistribution de la perfusion aux différents

organes

Pas de récepteur α₁, autorégulation

Récepteur

Reins
Muscles
Intestin

Coeur Cerveau

DEFAILLANCE MULTIVISCERALE

Décompensation :

Baisse du TO₂ → HYPOXIE CELLULAIRE

- Adaptation cellulaire
- → Hausse de l'extraction d'Oxygène (SvO₂<70%)</p>
- → Réduction des besoins
- → Glycolyse anaérobie ► Lactates, H⁺

Jusqu'à la production insuffisante d'ATP...

Décompensation :

Conséquence d'un manque d'ATP Défaut de la Na/K-ATPase

- Dépolarisation de la membrane plasmatique
- Ouverture des canaux voltage-dépendant
 - Influx de Na+ et Eau → œdème cellulaire
 - Influx de Ca2+ → stim. Phospholipase membranaire : -destruction
 Mb

-Thromboxane

 Dépolarisation de la membrane mitochondriale LESIONS CELLULAIRES IRREVERSIBLES

REACTION INFLAMMATOIRE SYSTEMIQUE

L'ischémie-reperfusion

Reperfusion → Stress oxydatif

→Eléments Réactifs de l'Oxygène (ERO)

HO' H2O' O" H₂0₂ etc...

- →lésions protéiques, lipidiques, ADN
- →inhibition de la chaîne respiratoire
- →stimulation inflammatoire:
 - Cytokines
 - Facteurs d'adhésion leucocytaire
 - Facteurs d'adhésion plaquettaire

L'ischémie-reperfusion

Victimes principales = **cell. Endothéliales**Perte de leurs propriétés

- ° Œdème interstitiel
- ° Œdème cellulaire endothélial
 - ↓ lumière capillaire↓ diffusion

° Activation de la coagulation

Microthrombis

Troubles de la microcirculation

MAJORATION DE L'HYPOXIE

CONSEQUENCES

- DEFAILLANCE CIRCULATOIRE
- L'O2 NE PARVIENT PLUS AUX TISSUS
- METABOLISME ANAEROBIE
- HYPOXIE TISSULAIRE
- DEFAILLANCE MULTIVICERALE

- MARQUEUR DE L'HYPOXIE
 - HYPERLACTATEMIE

La survenue d'une acidose lactique au cours du choc est un signe de gravité

Normalement: lactatémie < 2 mmol.l⁻¹

2 mmol.l⁻¹ < lactatémie < 10 mmol.l⁻¹ transitoirement

→ Hypoperfusion tissulaire transitoire

lactatémie > 10 mmol.l⁻¹ de manière prolongée

Classification

En fonction du transport ou l'extraction de 22

- Chocs quantitatifs.
 - Hémorragique (Volume sanguin circulant),
 - Hypovolémique (| Volume sanguin circulant),
 - Cardiogénique (Débit cardiaque),
 - Médullaire (Tonus vasculaire).
- Chocs distributifs
 - -septique
 - -anaphylactique
- Chocs obstructifs
 - -embolie pulmonaire, tamponnade cardiaque
 - -tamponnade gazeuse

Circulation pulmonaire

Schéma de la physiopathologie des différents choc montrant les cercles vicieux d'auto-aggravation

	Choc cardiogénique	Choc Hypovolémique	Choc septique	
P-OD (PVC)	11	111	11	
PAP	11			—
PAPO	111	111	11	/
Débit cardiaque (DC)	111	→ /	11	\
Résistances artérielles systémiques RAS=(PAm-PAPm)/DC		\ \	11	
Résistances artérielles pulmonaires RAP=(PAPO-POD)/DC			11	

« signes de choc »: Hypoxie cellulaire Dysfonction cellulaire

Souffrance cellulaire = nécrose

(libération des substances intracellulaires dans le milieu extracellulaire reconnues comme « étrangères ») emps

Activation de l'inflammation

Hyperlactatémie

Défaillances d'organes

Activation de l'inflammation

Défaillances d'organes

Souffrance cellulaire:

Fièvre

Hyperleucocytose

SIRS

Libération de cytokines

Activation de la coagulation (CIVD)

Cerveau: comalagitation

Rein: oligurie < 0,5 ml/kg/h

Peau: marbrures

TD:occlusion fonctionnelle

Foie:hyperbilirubinémie

Foie: TGO, TGP

Muscles : CPK, myoglobine

Cœur : CPKMB, Myoglobine, Troponine

Rein:oligurie avec IRA

Les signes cardiaques (tachycardie) et respiratoires (polypnée, tachypnée) sont des signes de compensation

Hypotension?

Activation de l'inflammation

Défaillances d'organes

Souffrance cellulaire:

Fièvre

Hyperleucocytose

SIRS

Libération de cytokines

Activation de la coagulation (CIVD)

Cerveau: comalagitation

Rein: oligurie < 0,5 ml/kg/h

Peau: marbrures

TD:occlusion fonctionnelle

Foie:hyperbilirubinémie

Foie: TGO, TGP

Muscles : CPK, myoglobine

Cœur : CPKMB, Myoglobine, Troponine

Rein:oligurie avec IRA

Les signes cardiaques (tachycardie) et respiratoires (polypnée, tachypnée) sont des signes de compensation

Hypotension: définie par une pression artérielle systolique < 80 mmHg ou

Exploration hémodynamique: la pression artérielle invasive movenne

Pression artérielle moyenne

 $PAM = Qc \cdot RAS$

Baisse du Qc

Choc quantitatif Circulations régionales adaptées

Baisse RAS

Choc distributif = vasoplégique

Circulations régionales inadaptées

Augmentation des RAS

Marbrures

Pâleur

S_vO, basses

Augmentation du Qc

Absence de marbrures

« Choc chaud »

S_vO₂ hautes

Exploration hémodynamique: la pression artérielle invasive

- □ Facile d'interprétation
- □Rapide à mettre en œuvre
- Permet de faire des prélèvements sanguins artériel

Exploration hémodynamique: la pression artérielle invasive

- 1. Aide à faire le diagnostic
 - Vasoplégie
 - □VES
- 2. Guide le choix de la thérapeutique
 - Vasopresseurs
 - Expansion volémique
- Fournit une valeur cible fiable de PAM pour le traitement (=65 mmHg)

Exploration hémodynamique: la pression artérielle invasive

C'est l'outil de base indispensable à l'exploration hémodynamique mais pas le seul.....

Exploration hémodynamique: le débit cardiaque

Choc hémorragique

Phase compensée: sympatho-excitatrice

Phase décompensée: sympatho-inhibitrice

Phase irréversible : SDMV (syndrome de détresse multiviscérale), acidose sévère, Apoptose, mauvais pronostic.

Choc cardiogénique

Anomalie d'un des 5 déterminants de la performance cardiaque

- Pré charge
- Post charge
- Contractilité
- Synergie de la contraction
- Excitabilité

Le choc septique

Vasonlégie perméabilité capillaire dépression myocardique trouble microcirculatoire

Choc anaphylactique

Allergène:

- •1^{er} contact (clef sur la serrure)
- •2^{ème} contact

Activation par les IgE des cellules immunitaires (mastocytes, éosinophiles et basophiles)

Libération de médiateurs : histamine, PAF, leucotriènes, prostaglandines, ...

Vasodilatation, oedèmes, rash allergique ou urticaire, bronchospasme...

Choc obtructif

Obstacle à l'éjection :

- •Obstacle de l'artère pulmonaire : embolie pulmonaire
- •Obstacle par épanchement péricardique : tamponnade cardiaque
- Obstacle par épanchement gazeux pulmonaire : tamponnade gazeuse

traitement

- 1. Mise en condition
- 2. Monitorage
- 3. Abord veineux solide, 2 courts, de gros calibre
- 4. Remplissage
- 5. Oxygénothérapie
- 6. Inotrope positif
- 7. Traitement selon le type de choc :

Transfusion (hémorragique),

Inotrope positif, angioplastie (cardiogénique),

Antibiotique (septique),

Adrénaline titrée (anaphylactique),

Embolectomie, drainage péricardique et pleurale (obstructif).

merc i