

Machine Learning 1 – Fundamentals

Inductive Learning Prof. Dr. J. M. Zöllner, M.Sc. Nikolai Polley, M.Sc. Marcus Fechner

Learning System – Basics

- Every machine learning method requires data from an input space X
- An input instance $x_i \in X$ consists of attributes $x_i = \begin{pmatrix} x_{i_1} \\ \cdots \\ x_{i_m} \end{pmatrix}$
- All input instances should be mapped to the solution space Y
 - Often classification or regression tasks
 - For a true/false classification, $Y = \{0, 1\}$
- **Assumption**: There exists a target function $t: X \to Y$, which can map all instances $x_i \in X$ perfectly to the solution space Y
 - t is unknown
 - The number of all possible input instances x_i is usually extremely high

Learning System

■ A hypothesis h is an "arbitrary" mapping $h: X \rightarrow Y$

■ The hypothesis space H, consists of all possible $h \in H$, which can be represented by the model

Hypothesis space H

■ **Goal**: The machine learning method should find the best hypothesis $h \approx t$ in the large hypothesis space, that best fits the observed data.

Labeled input data/instances with $X = \mathbb{R}^2$ and $Y = \{0, 1\}$

Learning System

- Consistent
 - No negative examples are classified positive all negative
- Complete
 - All positive examples are classified positive

all positive

Consistent hypothesis h_1 (not complete)

Complete hypothesis h_2 (not consistent)

Complete and consistent hypothesis h_3

Version Space

Definition: The version space $VS_{H,D}$, with respect to the hypothesis space H and the set of training examples D, is the subset of hypotheses of H that are consistent and complete with the training examples in D.

What is Induction? 归纳法

- Inductive reasoning is a method of reasoning in which a general principle is derived from a body of specific observations.
 - Example:

"Socrates is a human being", "Socrates is mortal", "Caesar is a human being", "Caesar is mortal"

- => "All human beings are mortal."
- **Definition**: Given a body of specific observations *D*. Hypothesis *h* follows inductively from *D* and prior knowledge *B* if ...

$$B \cup h \mapsto D, B \nrightarrow D, B \cup D \nrightarrow \neg h$$

Caution: Individual examples can be derived from hypotheses, but not the other way around!

What is Deduction? 演绎法

- Deductive reasoning is a method of reasoning that starts with a general principle and and examines the possibility to reach a specific, logical conclusion.
 - Uses mainly prior knowledge.
 - "All humans are mortal.", "Socrates is a human being."=> "Sokrates is mortal."
- **Definition**: From a set of principles A, B follows \Leftrightarrow There is a sequence of principles, from which B follows.
- Examples:

$$\frac{A, A \to B}{B} \qquad \qquad \frac{\forall x P(x)}{P(a)}$$

Modus Ponens

Instantiation

Induction vs. Deduction

添加两种方法的对比表格(gpt)

Induction

- Truth-expanding (generation of new hypotheses)
- Basic approach based on the so-called inductive learning hypothesis
- **Plausibility**
- Very widespread learning approach
 - (based on a biological approach; makes living beings capable of surviving)

Deduction

- Truth-preserving (Deriving new rules / facts)
- **Logical Conclusion**
- Correctness

Induction vs. Deduction

Inductive Learning Hypothesis

Challenge:

- The dimensionality of input space X is often very high
 - **Example:** Input instances are "normal" 8-bit RGB images with a size of 20×20 pixels
 - Space *X* contains $dim(X) = (256 * 256 * 256)^{20*20} \approx 10^{2900}$ different images
 - There are 10⁸⁰ atoms in the universe
- Target function t is unknown

Solution:

- \blacksquare Create dataset $D \subseteq X$
- Create loss function $\ell(t,h)$, which estimates the distance of a hypothesis h to the target function t.
- **Learn** hypothesis h for which ℓ is minimal

Inductive Learning Hypothesis

- **Definition**: Any hypothesis h that approximates the target function t well enough over a sufficiently large set of training instances $x_i \in D$ will also approximate the target function t well over unknown examples.
- If a learning system makes good predictions even on unknown data, we call this generalization.

那些从训练数据中学到的假设或规则,能够适用于尚未见过的测试数据。

11

Hypothesis Space and Version Space

- Problems with models with small hypothesis space
 - The hypothesis space H_{lin} of a linear model contains only linear hypotheses.
 - In example 1, there is no consistent and complete linear hypothesis.
 - Version space $VS_{H,D} = \emptyset$
 - Target function t not included in H_{lin} !
- Model with larger hypothesis space required, e.g. space of polynomials H_{pol} .
 - See example 2
 - Are models with infinite hypothesis space always best?

Example 1:

Linear hypothesis space H_{lin} does not contain a consistent and complete hypothesis to map the target function. $h_1 \in H_{lin}$

Example 2:

Polynomial hypothesis space H_{pol} contains the target function. $h_2 \notin H_{lin}$ $h_1, h_2 \in H_{pol}$

Inductive Bias

- What does "Sufficiently large number of training instances" mean?
 - The number of training examples required correlates with the size of the hypothesis space |H| of a model
 - Constrain the hypothesis space of a model by means of prior assumptions, but keep $h \approx t$ in the reduced hypothesis space

Inductive bias:

- Set of assumptions or prior knowledge that a learning system incorporates to generalize from data
- Certain hypotheses are preferred over other hypotheses in the hypothesis space
- All machine learning techniques have an inductive bias to facilitate an efficient learning process and generalization
 - Different methods have different biases

Typical Inductive Biases

 The hypothesis that maximizes the distance between input instances of different classes is preferred. (See SVM in later lecture) If a simple hypothesis and a complex hypothesis both minimize the loss function, the simpler hypothesis is preferred. (See Occam's Razor)

奥卡姆剃刀原则

Next Lecture

Learning theory

- Deepen the concepts addressed in this lecture and demonstrate them with examples.
- More fundamentals about machine learning

15