Harris School of Public Policy Program Evaluation

Jaskirat Kaur

TA session 2 Oct 26, 2023

Outline

- Review of Fundamental Problem of Causal Inference
- Average Treatment Effect (ATE) vs Naïve Estimator
- ATT and ATN
- Omitted Variable Bias (OVB)
- R Markdown Tips

Fundamental Problem of Causal Inference

► The true treatment effect T_i for person i would be the difference in their outcomes Y between when they are treated (1) and not treated (0):

$$T_i = Y_1 - Y_0$$

- \blacktriangleright We cannot observe both Y_1 and Y_0 .
- ▶ We ONLY observe Y_1 OR Y_0 , not both.

Average Treatment Effect (ATE) vs Naïve Estimator

► The Average Treatment Effect (ATE):

$$T^{\mathsf{ATE}} = \mathbb{E}[Y_1 - Y_0]$$

► Naïve Estimator of ATE:

$$T_{\text{na\"ive}} = Y_1 - Y_0$$

Average Treatment Effect (ATE) vs Naïve Estimator

- ► The ATE measures potential outcomes, while the naïve uses observed outcomes.
- We can think of the naïve estimator as:

$$T_{\text{na\"{i}ve}} = T^{\text{ATE}} + \text{Selection Bias}$$

Selection on Observables vs Unobservables

- ► Selection on observables: when the "selection bias" happens along a set of variables we can observe
- We can minimize the difference between our unattainable T^{ATE} and our attainable T_{nave} by controlling for these observable variables
- Selection on unobservables: when the "selection bias" happens along a set of variables we cannot observe
- Example: motivation (hard to observe and accurately quantify/measure)
- Controlling for variables alone will not fix the issue

- ► Let's consider a sample of 100 people: 60 who attended college, 40 who did not
- ► Treated: 60 who attended college
- Untreated: 40 who did not attend college
- Average Treatment Effect on Treated (ATT): the T^{ATE} for the 60 people who attended college
- Average Treatment Effect on Not-Treated (ATN): the T^{ATE} for the 40 people who did not attend college

- ► Average Treatment Effect on Treated (ATT): the T^{ATE} for the 60 people who attended college
- Average Treatment Effect on Not-Treated (ATN): the T^{ATE} for the 40 people who did not attend college
- ► How would these relate to the ATE?

- Average Treatment Effect on Treated (ATT): the T^{ATE} for the 60 people who attended college
- Average Treatment Effect on Not-Treated (ATN): the T^{ATE} for the 40 people who did not attend college
- ► How would these relate to the ATE?
- ► The ATE would simply be a weighted average of the ATT and the ATN - we can think of the average treatment effect of our 100 people as a combination of the ATE for people who were treated, and ATE for people who weren't
- ightharpoonup ATE = 0.6(ATT) + 0.4(ATN)

▶ The following table can help illustrate this point:

	Attended College $(D=1)$	Did Not Attend College $(D=0)$
Y; (0)	Can't Observe	40,000
Y; (1)	80,000	Can't Observe

Table: ATT versus ATN

► The following table can help illustrate this point:

	Attended College $(D=1)$	Did Not Attend College $(D=0)$
<i>Y</i> ; (0)	Can't Observe	40,000
<i>Y</i> ; (1)	80,000	Can't Observe

Table: ATT versus ATN

- ➤ Suppose we figured out some research design that would help us estimate the counterfactuals that we cannot observe
- ► What is the ATT? The ATN?

Let's say our research design yielded the following estimates:

	Attended College($D=1$)	Did Not Attend College($D = 0$)
<i>Y</i> ; (0)	60,000	40,000
<i>Y</i> ; (1)	80,000	30,000

Table: ATT versus ATN

► What is the ATT? The ATN? - The ATT is 20,000, but the ATN is -10,000

Omitted Variable Bias (OVB) occurs when a relevant variable is left out of the model.

- Suppose the true relationship between variables is defined by the model: $Y = b_0 + b_1X_1 + b_2X_2 + e$
- Maybe it's impossible to get data for X_2 , so we instead run: $Y = a_0 + a_1 X_1 + e$

- Suppose the true relationship between variables is defined by the model: $Y = b_0 + b_1X_1 + b_2X_2 + e$
- Maybe it's impossible to get data for X_2 , so we instead run: $Y = a_0 + a_1X_1 + e$
- ▶ Intuition of omitted variable bias: how far off a_1 is from b_1 in the regression model.

► Consider the example:

$$\mathsf{salary} = b_0 + b_1(\mathsf{college} \ \mathsf{attendance}) + b_2(\mathsf{motivation}) + e$$

▶ We cannot measure "motivation", so we instead run:

salary =
$$a_0 + a_1$$
 (college attendance) + e

- ▶ The bias of our estimate for *b*₁ will be the product of the relationship between motivation and salary, and motivation and college attendance.
- Likely positive bias.

Fundamental Problem of Causal Inference

- As you have heard several times by now: the biggest problem around causal inference is that we only observe ONE state of the world
- Let's consider an example:
 - ► Person *i* (Bob)
 - ightharpoonup Treatment D_i (training program)
 - Outcome Y_i (income level)

State of the World 1: Bob attends training program

- In words:
 - Observed outcome: income level when Bob attends training program
 - Unobserved outcome: income level when Bob doesn't attend training program
- In math:
 - ▶ Observed Outcome = $Y_i(D_i = 1)$
 - ▶ Unobserved Outcome = $Y_i(D_i = 0)$

State of the World 2: Bob DOES NOT attend training program

- In words:
 - Observed outcome: income level when Bob doesn't attend training program
 - Unobserved outcome: income level when Bob attends training program
- ► In math:
 - ▶ Observed Outcome = $Y_i(D_i = 0)$
 - ▶ Unobserved Outcome = $Y_i(D_i = 1)$

What is Bob's treatment effect t_i ?

- In words:
 - ▶ It's the difference in Bob's income level in the state of the world with the training program, and Bob's income level in the state of the world without the training program.
- In math:
 - $t_i = Y_i(D_i = 1) Y_i(D_i = 0)$
- ➤ Since we cannot observe both states of the world at once, this is impossible to calculate.

Since individual TE are impossible \rightarrow ATE

- As we just saw, we cannot calculate individual treatment effects.
- ▶ But, we can calculate average treatment effects across many individuals.
- ► $T_{ATE} = \mathbb{E}[Y_i(D_i = 1) Y_i(D_i = 0)]$
- ▶ In order to get an unbiased estimate of the ATE, we need some conditions and assumptions.

Working with R/Rmd

Let's move on to discussing R!