Devoir maison n°13: Ln, IAF et suites

Jules Charlier, Thomas Diot, Pierre Gallois, Jim Garnier 1E1

Problème 1 - Fonction logarithme népérien

1	۱ ۱
J	IJ
	,

_	
า	١
4	,

Problème 2 - Inégalité des accroissements finis et suites

Partie A

1) Supposons être dans les conditions de l'énoncé. Posons :

$$g(x) = f(x) - f(a) - M(x-a) \\$$

$$h(x) = f(x) - f(a) - m(x-a) \\$$

Alors, d'une part, g(a) = h(a) = 0. De plus, ces deux fonctions sont dérivables sur]a;b[par sommes de fonctions dérivables et pour tout $x \in]a;b[$:

$$g'(x) = f'(x) - M \leq 0$$
 par hypothèse

Ainsi que :

$$h'(x) = f'(x) - m \geq 0$$
 par hypothèse

Donc g est décroissante sur]a;b[. Comme elle est continue sur [a;b], on peut conclure que, comme $b\geq a,$ $g(b)\leq g(a)=0,$ d'où :

$$f(b)-f(a) \leq M(b-a)$$

Similairement, h est croissante sur]a;b[et $h(b)\geq h(a)=0,$ d'où :

$$m(b-a) \leq f(b) - f(a)$$

Ce qu'il fallait démontrer.

Partie B

On définit sur \mathbb{R}_* :

$$\varphi(x) = \frac{1}{2} \left(x + \frac{5}{x} \right)$$

2) φ est paire : soit $x \in \mathbb{R}_*$. Alors $-x \in \mathbb{R}_*$ et :

$$\varphi(-x) = \frac{1}{2} \left(-x - \frac{5}{x} \right) = -\frac{1}{2} \left(x + \frac{5}{x} \right)$$
$$= \varphi(x)$$

3)

• Quand $x \to +\infty : \frac{5}{x} \to 0$ et par somme :

$$\lim_{x\to +\infty} \varphi(x) = +\infty$$

• Quand $x \to -\infty : \frac{5}{x} \to 0$ et par somme :

$$\lim_{x\to -\infty}\varphi(x)=-\infty$$

• Quand $x \to 0^- : \frac{5}{x} \to -\infty$ et par somme :

$$\lim_{x \to 0^-} \varphi(x) = -\infty$$

- Quand $x \to 0^+: \frac{5}{x} \to +\infty$ et par somme :

$$\lim_{x \to 0^+} \varphi(x) = +\infty$$

4) TODO: Thomas? dis moi si tu ne veux pas le faire:3

5)

6)

Partie C

1)

2)

- 3) a)
 - b)
- 4)
- **5)**