

Simple Linear Models

Itthi Chatnuntawech

Manual Parameter Tuning

$$\hat{y} = \hat{w}_0 + \hat{w}_1 x$$

Pick the parameters that make the orange lines as short as possible

Mean-Squared Error (MSE)

Compute the error from sample i using the following loss function

$$L(y_i, \hat{y}_i) = (y_i - \hat{y}_i)^2$$

Mean-Squared Error (MSE)

Compute the error from sample i using the following loss function

$$L(y_i, \hat{y}_i) = (y_i - \hat{y}_i)^2$$

Combine the errors from all samples

Samples
$$MSE(Y, \hat{Y}) = \frac{1}{n} \sum_{i=1}^{n} L(y_i, \hat{y}_i)$$

$$Y: y_1, y_2, \dots, y_i, \dots, y_n$$

$$\hat{Y}: \hat{y}_1, \hat{y}_2, \dots, \hat{y}_i, \dots, \hat{y}_n = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Linear Regression

$$MSE(Y, \hat{Y}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - (\hat{w}_0 + \hat{w}_1 x_i))^2$$

Find $\hat{w_0}$ and \hat{w}_1 that minimize $MSE(Y, \hat{Y})$

$$\min_{\hat{w}_0, \hat{w}_1} MSE(Y, \hat{Y}) = \min_{\hat{w}_0, \hat{w}_1} \frac{1}{n} \sum_{i=1}^{n} (y_i - (\hat{w}_0 + \hat{w}_1 x_i))^2$$

Optional: Linear Regression

$$\min_{\hat{w_0}, \hat{w_1}} MSE(Y, \hat{Y}) = \min_{\hat{w_0}, \hat{w_1}} \frac{1}{n} \sum_{i=1}^{n} (y_i - (\hat{w_0} + \hat{w_1} x_i))^2$$

Compute the gradients of the loss function with respect to $\hat{w_0}$ and $\hat{w_1}$, and set them to 0

"Taking the partial derivatives and set them to 0"

$$\frac{\partial}{\partial \hat{w}_0} \frac{1}{n} \sum_{i=1}^n (y_i - (\hat{w}_0 + \hat{w}_1 x_i))^2 = 0$$

$$\frac{\partial}{\partial \hat{w}_1} \frac{1}{n} \sum_{i=1}^n (y_i - (\hat{w}_0 + \hat{w}_1 x_i))^2 = 0$$

Optional: Linear Regression

Optimal solutions

$$\hat{w}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} \quad \text{and} \quad \hat{w}_0 = \bar{y} - \hat{w}_1 \bar{x}$$

where

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 and
$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

numpy.mean for loop numpy.sum

Linear Regression

sklearn.linear_model.LinearRegression

class sklearn.linear_model.LinearRegression(*, fit_intercept=True, copy_X=True, n_jobs=None, positive=False)

[source]

Ordinary least squares Linear Regression.

LinearRegression fits a linear model with coefficients w = (w1, ..., wp) to minimize the residual sum of squares between the observed targets in the dataset, and the targets predicted by the linear approximation.

Linear Regression

Data

$$(x_1, y_1), (x_2, y_2), \dots, (x_{100}, y_{100})$$

X

У

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{100} \end{bmatrix}$$

shape =
$$(100, 1)$$
 shape = $(100, 1)$


```
# Import a necessary module
from sklearn.linear_model import LinearRegression
# Create the model
model_linear = LinearRegression()
# Train the model
model_linear.fit(x, y)
# Make prediction
y_hat = model_linear.predict(x)
```