实验一: MIPS汇编程序设计

专业班级:通信2101班

姓名: **罗畅**

学号: U202113940

实验名称

MIPS汇编程序设计

实验目的:

- 1. 熟悉常见的MIPS汇编指令
- 2. 掌握MIPS汇编程序设计
- 3. 了解MIPS汇编语言与机器语言之间的对应关系
- 4. 了解C语言语句与汇编指令之间的关系
- 5. 掌握MARS的调试技术
- 6. 掌握程序的内存映像

实验仪器

Mars MIPS汇编编译器

实验任务

- 在数据段定义两个int型变量a, b;
- 在数据段定义一个int型数组c[40],不初始化
- 通过系统调用功能从键盘输入a, b的值(不大于20)
- 采用MIPS汇编指令实现c[a+b] = a*b
- 通过系统调用功能分别显示c[a+b]所在的存储地址和值
- 指出程序运行后a, b, c[a+b]所在的数据段储存位置以及取值, 验证程序功能的正确性

实验源代码

```
.data
a: .word 0
b: .word 0
c: .word 0:20
inputAStr: .asciiz "Please input the value of a:"
inputBStr: .asciiz "Please input the value of b:"
outputAddr: .asciiz "The data address is:"
outputData: .asciiz "\nThe data is:"
.text
.globl main
main:
   la $a0, inputAStr #print "Please input the value of a:"
   li $v0, 4
   syscall
   li $v0, 5 #read a's value from terminal
   syscall
   add $t0, $v0, $zero #save a's value to $t0
   la $a0, a
    sw $t0, 0($a0) #save a's value to memory
   la $a0, inputBStr #print "Please input the value of b:"
   li $v0, 4
   syscall
   li $v0, 5 #read b's value from terminal
    syscall
   add $t1, $v0, $zero #save b's value to $t1
   la $a0, b #save b's value to memory
   sw $t1, 0($a0)
   add $t2, $t0, $t1 #calculate the array subscript (a+b)
   mul $t3, $t0, $t1 #calculate the data (a*b)
   addi $s0,$zero,4
   mul $t4,$s0,$t2 #offset correction
   la $a0, c #get c's first address
   add $a0, $a0, $t4 #get right addr
   sw $t3, 0($a0) #save data to memory
```

```
add $s0, $a0,$zero #save the address to $to

la $a0,outputAddr #print "The data address is:"
li $v0, 4
syscall

add $a0, $s0,$zero #print the data address
li $v0, 1
syscall

la $a0,outputData #print "\nThe data is:"
li $v0,4
syscall

add $a0,$t3,$zero #print the data value
li $v0,1
syscall

li $v0,10 #exit
syscall
```

实验结果

程序代码段映像

kpt	Address	Code	Basic		Source
		0x3c011001		16:	la \$a0, inputAStr #print "Please input the value of a:"
			ori \$4,\$1,88		· · · · · · · · · · · · · · · · · · ·
			addiu \$2,\$0,4	17:	li \$v0, 4
i		0x0000000c		18:	syscall
			addiu \$2,\$0,5	20:	li \$v0, 5 #read a's value from terminal
	0x00400014	0x0000000c	syscall	21:	syscall
	0x00400018	0x00404020	add \$8,\$2,\$0	23:	add \$t0, \$v0, \$zero #save a's value to \$t0
	0x0040001c	0x3c011001	lui \$1,4097	25:	la \$a0, a
	0x00400020	0x34240000	ori \$4,\$1,0		
	0x00400024	0xac880000	sw \$8,0(\$4)	26:	sw \$t0, 0(\$a0) #save a's value to memory
	0x00400028	0x3c011001	lui \$1,4097	29:	la \$a0, inputBStr #print "Please input the value of b:"
	0x0040002c	0x34240075	ori \$4,\$1,117		
			addiu \$2,\$0,4	30:	li \$v0, 4
	0x00400034	0x0000000c	syscall	31:	syscall
	0x00400038	0x24020005	addiu \$2,\$0,5	33:	li \$v0, 5 #read b's value from terminal
	0x0040003c	0x0000000c	syscall	34:	syscall
	0x00400040	0x00404820	add \$9,\$2,\$0	36:	add \$t1, \$v0, \$zero #save b's value to \$t1
	0x00400044	0x3c011001	lui \$1,4097	38:	la \$a0, b #save b's value to memory
П	0x00400048	0x34240004	ori \$4,\$1,4		
П	0x0040004c	0xac890000	sw \$9,0(\$4)	39:	sw \$t1, 0(\$a0)
П	0x00400050	0x01095020	add \$10,\$8,\$9	41:	add \$t2, \$t0, \$t1 #calculate the array subscript (a+b)
	0x00400054	0x71095802	mul \$11,\$8,\$9	42:	mul \$t3, \$t0, \$t1 #calculate the data (a*b)
	0x00400058	0x20100004	addi \$16,\$0,4	43:	addi \$s0,\$zero,4
	0x0040005c	0x720a6002	mul \$12,\$16,\$10	44:	mul \$t4,\$s0,\$t2 #offset correction
	0x00400060	0x3c011001	lui \$1,4097	46:	la \$a0, c #get c's first address
	0x00400064	0x34240008	ori \$4,\$1,8		
	0x00400068	0x008c2020	add \$4,\$4,\$12	47:	add \$a0, \$a0, \$t4 #get right addr
	0x0040006c	0xac8b0000	sw \$11,0(\$4)	49:	sw \$t3, 0(\$a0) #save data to memory
	0x00400070	0x00808020	add \$16,\$4,\$0	51:	add \$s0, \$a0,\$zero #save the address to \$to
	0x00400074	0x3c011001	lui \$1,4097	53:	la \$a0,outputAddr #print "The data address is:"
П	0x00400078	0x34240092	ori \$4,\$1,146		
	0x0040007c	0x24020004	addiu \$2,\$0,4	54:	li \$v0, 4
	0x00400080	0x0000000c	syscall	55:	syscall
	0x00400084	0x02002020	add \$4,\$16,\$0	57:	add \$a0, \$s0,\$zero #print the data address
	0x00400088	0x24020001	addiu \$2,\$0,1	58:	li \$v0, 1
	0x0040008c	0x0000000c	syscall	59:	syscall
	0x00400090	0x3c011001	lui \$1,4097	61:	la \$a0,outputData #print "\nThe data is:"
	0x00400094	0x342400a7	ori \$4,\$1,167		
	0x00400098	0x24020004	addiu \$2,\$0,4	62:	li \$v0,4
	0x0040009c	0x0000000c	syscall	63:	syscall
	0x004000a0	0x01602020	add \$4,\$11,\$0	65:	add \$a0,\$t3,\$zero #print the data value
	0x004000a4	0x24020001	addiu \$2,\$0,1	66:	li \$v0,1
	0x004000a8	0x0000000c	syscall	67:	syscall
	0x004000ac	0x2402000a	addiu \$2,\$0,10	69:	li \$v0,10 #exit

输入输出端口测试

Please input the value of a:5 Please input the value of b:6 The data address is:268501044 The data is:30 -- program is finished running --

程序数据段映像

Address	Value (+0)	Value (+4)	Value (+8)	Value (+c)	Value (+10)	Value (+14)	Value (+18)	Value (+1c)
0x10010000	5	6	0	0	0	0	0	
0x10010020	0	0	0	0	0	30	0	
0x10010040	0	0	0	0	0	0	1634036816	1763730
0x10010060	1953853550	1701344288	1818326560	1864394101	979443814	1701597184	543519585	1970302
0x10010080	1752440948	1635131493	543520108	1646290543	1750335546	1633951845	1629512052	1701995
0x100100a0	1763734387	167787123	543516756	1635017060	980642080	0	0	
0x100100c0	0	0	0	0	0	0	0	
0x100100e0	0	0	0	0	0	0	0	
0x10010100	0	0	0	0	0	0	0	
0x10010120	0	0	0	0	0	0	0	
0x10010140	0	0	0	0	0	0	0	
0x10010160	0	0	0	0	0	0	0	
0x10010180	0	0	0	0	0	0	0	

Registers	Coproc 1	Coproc 0	
Name		Number	Value
\$zero		C	0
\$at		1	268500992
\$v0		2	10
\$v1		3	0
\$a0		4	30
\$a1		5	0
\$a2		6	0
\$a3		7	0
\$t0		8	5
\$t1		9	6
\$t2		10	11
\$t3		11	30
\$t4		12	44
\$t5		13	0
\$t6		14	0
\$t7		15	0
\$s0		16	268501044
\$s1		17	0
\$s2		18	0
\$s3		19	0
\$s4		20	0
\$s5		21	0
\$s6		22	0
\$s7		23	
\$t8		24	0
\$t9		25	0
\$k0		26	0
\$k1		27	0
\$gp		28	268468224
\$sp		29	2147479548
\$fp		30	0
\$ra		31	0
рс			4194484
hi			0
10			44

结果分析

从I/O端口输入的数据正确的运算并存入了a、b、c[a+b]对应的内存映像中,实验正确

实验小结

本次实验我使用了Mars软件进行汇编语言的练习,学会了使用syscall来进行数据的输入和输出,最后实验结果正确,收获很大!