第2章 述語論理

● 個体定数: a, b, c など

● 個体変数: x, y, z など

● 関数記号: f, g, h など

● 述語記号: P, Q, R など

項の (再帰的) 定義

- (1) 個体定数および個体変数は項である.
- (2) $t_1,\ldots t_n$ が項で,f が関数記号のとき, $f(t_1,\ldots,t_n)$ も項である.

述語論理式の (再帰的) 定義

- (1) 命題定数は述語論理式である.
- (2) $t_1,\ldots t_n$ が項で,P が述語記号のとき, $P(t_1,\ldots,t_n)$ は述語論理式 (素式,原子論理式) である.
- (3) A, B が述語論理式のとき,以下も述語論理式である.

$$(\neg A), (A \land B), (A \lor B), (A \Rightarrow B)$$

(4) A が述語論理式で,x が個体変数のとき,以下も述語論理式である.

$$(\forall xA)$$
 (全称, for all, any: すべての x について A) (弓在, exists, some: ある x について A)

対象領域が有限なら,全称は連言で,存在は選言で表現できる.たとえば,対象領域 $D=\{a_1,\dots,a_n\}$ とすると以下のようになる.

$$\forall x P(x) = P(a_1) \land \dots \land P(a_n)$$

$$\exists x P(x) = P(a_1) \lor \dots \lor P(a_n)$$

2.0.1 述語論理式のいくつかの性質

$$\forall x(A \land B) \equiv \forall xA \land \forall xB \qquad \exists x(A \lor B) \equiv \exists xA \lor \exists xB$$
$$\neg \forall xA \equiv \exists x \neg A \qquad \neg \exists xA \equiv \forall x \neg A$$
$$\neg \forall x(A \Rightarrow B) \equiv \exists x(A \land \neg B) \quad \neg \exists x(A \land B) \equiv \forall x(A \Rightarrow \neg B)$$

Exercise 2.0.1 論理式による記述の練習 (別紙)

2.0.2 述語論理の節形式と導出原理

節形式 (clausal form)

- リテラル: 素式 (原子論理式) またはその否定 .
- 節 (clause): 0 個以上のリテラルの集合.リテラルの選言の全称閉包を表す.(例: $\{P(x), \neg Q(x,y)\}$ は $\forall x \forall y (P(x) \lor \neg Q(x,y))$ を表す)
- 節集合: 0 個以上の節の集合.節の連言を表す.

節形式への変換方法

- (1) $A \Rightarrow B$ の形の論理式を $\neg A \lor B$ に変換する.
- (2) ド・モルガンの法則および二重否定の法則を用いて,リテラル以外に「が現れないように変換する.
- (3) $\exists y$ があれば,その外側に現れている全称束縛されている変数を x_1,\ldots,x_n として,y を $f(x_1,\ldots,x_n)$ (スコーレム関数)で置き換える.ただし f は論理式中に現れていない新しい関数記号である.
- (4) すべての変数名が異なるように,変数名を付け換える.
- (5) 全称記号,存在記号を一番前に移す(冠頭形).
- (6) 分配法則を用いて,連言標準形に変換する.

導出

 $C_1,\,C_2$ を節とし,それぞれの変数に適当な項を代入すると $\{P_1,\ldots,P_m\},\,\{Q_1,\ldots,Q_n\}$ となり, P_1 が原子論理式で Q_1 がその否定となっているとする(すなわち $\neg P_1=Q_1$).このとき節 $C=\{P_2,\ldots,P_m,Q_2,\ldots,Q_n\}$ を得ることを導出と呼び,C を導出節と呼ぶ.C はリテラルの集合であるので,同一のリテラルは一つにまとめられる点に注意すること.

述語論理に対しても,導出原理は健全かつ完全である.

Exercise 2.0.2 以下を導出法で証明せよ (Kowalski 著「論理による問題の解法」より).

すべてのキノコ (Fungus) は食用キノコ (Mushroom) であるか毒キノコ (Toadstool) である. すべてのイグチ属キノコ (Boletus) はキノコである. すべての毒キノコは毒である. イグチ属キノコは食用キノコではない. このとき, すべてのイグチ属キノコは毒であることを示せ.

Exercise 2.0.3 以下を導出法で証明せよ (Genesereth, Nilsson 著「人工知能基礎論」より).

もしも講座がやさしいものであれば,幸せな受講生が存在する.もしも講座に期末試験があるのであれば,すべての受講生は不幸である.このとき,期末試験のある講座はやさしくないことを示せ.

述語論理式による記述の練習

対象領域は,人間の集合とする.

S(x) \equiv "x は学生である"

T(x) \equiv "x は教師である"

L(x) \equiv "x は怠け者である"

H(x) \equiv "x は幸福である"

Q(x,y) \equiv "x は y を好きだ"

論理式	意味
$\forall x H(x)$	すべての人は幸福である.
	すべての人は怠け者である.
$\exists x L(x)$	怠け者の人がいる.ある人は怠け者だ.
$\exists x H(x)$	
$\neg \exists x L(x)$	怠け者の人はいない.
$\forall x \neg L(x)$	すべての人は怠け者でない.
	すべての人は不幸である.
$\neg \forall x H(x)$	すべての人が幸福,ということではない.
$\exists x \neg H(x)$	幸福でない人がいる.不幸な人がいる.
$\exists x \neg L(x)$	

論理式	意味
$\exists x (S(x) \land H(x))$	学生であり幸福な人がいる.幸福な学生がい
	న .
$\exists x (L(x) \land \neg H(x))$	怠け者であり不幸な人がいる.不幸な怠け者
	がいる.
$\forall x (S(x) \Rightarrow H(x))$	すべての人は,その人が学生ならば幸福であ
	る.すべての学生は幸福である.
	すべての教師は怠け者である.
$\forall x (L(x) \Rightarrow \neg H(x))$	
$\neg \exists x (S(x) \land H(x))$	幸福な学生はいない.
$\forall x(S(x) \Rightarrow \neg H(x))$	すべての学生は幸福でない . どんな学生も不
	幸である.
$\neg \forall x (S(x) \Rightarrow H(x))$	すべての学生が幸福,ということではない.学
	生がすべて幸福であるとは限らない.
$\exists x (S(x) \land \neg H(x))$	学生で幸福でない人がいる.不幸な学生がい
	る.
$\neg \exists x (T(x) \land L(x))$	
	すべての教師は怠け者でない.
	教師がすべて怠け者であるとは限らない.

論理式	意味
$\forall x(S(x) \Rightarrow (H(x) \land L(x)))$	すべての学生は,幸福かつ怠け者である.
$\forall x((T(x) \land L(x)) \Rightarrow H(x))$	すべての人は,その人が教師であり怠け者な
	らば,幸福である.すべての怠け者の教師は
	幸福である.
$\forall x (T(x) \Rightarrow (L(x) \Rightarrow H(x)))$	すべての人は,その人が教師のとき,その人
	が怠け者ならば幸福である. すべての怠け者
	の教師は幸福である.

論理式	意味
$\forall x \forall y Q(x,y)$	すべての人は,すべての人を好きだ.人類み
	な愛しあっている.
$\exists x \exists y Q(x,y)$	ある人は,ある人を好きだ.誰かが誰かを好
	きだ.
$\exists x \forall y Q(x,y)$	ある人は,すべての人を好きだ.マリア様み
	たいな人.
$\forall x \exists y Q(x,y)$	すべての人は,ある人を好きだ.誰にでも好
	きな人がいる.
$\forall y (T(y) \Rightarrow Q(x,y))$	x は , すべての教師を好きだ .
$\forall x \forall y (T(y) \Rightarrow Q(x,y))$	
	すべての学生は,すべての教師を好きだ.
	ある学生は,すべての教師を好きだ.すべて
	の教師を好きな学生がいる.
$\exists y (T(y) \land Q(x,y))$	x は , ある教師を好きだ . x には好きな教師が
	เาอ .
	すべての学生は,ある教師を好きだ.どんな
	学生にも好きな教師がいる.
$\exists x (S(x) \land \exists y (T(y) \land Q(x,y)))$	
$T(y) \land \forall x(S(x) \Rightarrow Q(x,y))$	y は,全学生から好かれている教師である.
	全学生から好かれている教師は幸福である.
$\forall y (T(y) \Rightarrow ((\forall x (S(x) \Rightarrow Q(x,y))) \Rightarrow H(y)))$	
	怠け者は幸福な人が好きではない.
$\forall y((H(y) \land S(y)) \Rightarrow \neg Q(x,y))$	x は ,
	怠け者の学生は幸福な学生が好きではない.
$\forall x((L(x) \land S(x)) \Rightarrow \forall y((L(y) \land T(y)) \Rightarrow Q(x,y)))$	
$\exists x (L(x) \land S(x) \land \forall y ((L(y) \land T(y)) \Rightarrow Q(x,y)))$	
	x は , ある怠け者の教師が好きだ . x には , 好
	きな怠け者の教師がいる.
	好きな怠け者の教師がいる学生は,みな怠け
	者である.