

### Chapitre 3: Spectre et Corrélation

Dr Ndeye Fatou NGOM

Ecole Polytechnique de Thiès GEM-AERO DIC1 2019-2020

#### Plan

#### Introduction

Représentation fréquentielle d'un signal

Analyse de Fourier

#### Décomposition de Fourier

Séries de Fourier

Transformée de Fourier

#### Propriétés

Représentation temporelle et représentation fréquentielle

#### Corrélation et densité spectrale

Signaux déterministes

Signaux aléatoires

#### Analyse frequentielle de signaux discrets

Spectre d'un signal discret

Transformée de Fourier Discrète

## Fréquence

- La fréquence correspond au nombre de fois qu'un motif se répète par seconde.
  - ▶ Hautes fréquences : variations qui se répètent fréquemment.
  - Basses fréquences : variations qui se répètent peu.
- Unité (Physique) : Hertz, nombre de cycles par seconde.
- **Spectre** : représentation graphique de l'amplitude ou de la phase en fonction de la fréquence.
  - ▶ **Fréquence fondamentale** que nous noterons *f* ,
  - **Fréquence radiale** : souvent notée Ω et vaut 2πf.
- Un signal dont le spectre est nul en dehors d'une bande de fréquence donnée est appelée signal à bande limitée ou à spectre à support borné.

# Bande spectrale

- La bande spectrale définit le domaine des fréquences où le spectre a des valeurs non nulles.
- Le domaine des fréquences occupés par le spectre est appelé la largeur de bande spectrale ( $\Delta f = f_{max} f_{min}$ ) du signal.
- Remarques :
  - Les sons audibles vont des EBF (20hz) aux TBF (20khz).
  - ▶ Lorsque la fréquence du signal devient très grande ( > 3ghz), on raisonne en longueur d'onde. Exemple : les signaux lumineux.
- Si  $f_{moy} = \frac{f_{max} + f_{min}}{2}$ 
  - ▶ Signaux à bande étroite :  $\Delta f \prec \prec f_{mov}$ ,
  - ▶ Signaux à large bande :  $\Delta f \succ \succ f_{mov}$

# Joseph Fourier

Un signal peut être décomposé en une somme de signaux plus simples.



### Decomposition de Fourier

### Décomposition de Fourier

- fait apparaître les fréquences contenus dans un signal,
- permet d'analyser le contenue fréquentiel d'un signal et de déterminer son spectre.
- Permet d'exprimer un signal comme la somme pondérée de signaux exponentiels  $e^{2j\pi ft}$ , de fréquence f.
- Les signaux exponentiels sont
  - des fonctions faciles à manipuler dont les propriétés sont bien connues.
  - ne sont pas déformés au cours de leur propagation dans les milieux linéaires et stationnaires.
- Deux types : séries de Fourier, transformée de Fourier.

# Décomposition sur une base de fonctions sinusoïdales

#### Théorème

Soit  $x_{T_0}(t)$  un signal physiquement réalisable  $^1$  périodique de période  $T_0$ . Alors  $\exists$   $a_0$  constant tel que

$$x_{T_0}(t) = a_0 + \sum_{n=1}^{n=+\infty} \left[ \left( a_n \cos \left( 2\pi n f_0 t \right) + b_n \sin \left( 2\pi n f_0 t \right) \right) \right]$$

$$a_n = \frac{2}{T_0} \int_c^{c+T_0} x_{T_0}(t) \cos \left( 2\pi n f_0 t \right) dt;$$

$$b_n = \frac{2}{T_0} \int_c^{c+T_0} x_{T_0}(t) \sin \left( 2\pi n f_0 t \right) dt$$

a<sub>0</sub>: moyenne du signal

<sup>1.</sup> Par exemple  $x_{T_0}(t)$  est de classe  $\mathcal{C}^1$  par morceaux (t) (t) est de classe (t) par morceaux (t) (t)

# Symétrie : simplifier le calcul

• Si  $x_{T_0}(t)$  est paire, alors

$$x_{T_0}(t) = \frac{a_0}{2} + \sum_{n=1}^{n=+\infty} a_n \cos(2\pi n f_0 t)$$

$$a_n = \frac{4}{T_0} \int_0^{\frac{r_0}{2}} x_{T_0}(t) \cos(2\pi n f_0 t) dt$$

• Si  $x_{T_0}(t)$  est impaire, alors

$$x_{T_0}(t) = \sum_{n=1}^{n=+\infty} b_n sin(2\pi n f_0 t); b_n = \frac{4}{T_0} \int_0^{\frac{T_0}{2}} x_{T_0}(t) sin(2\pi n f_0 t) dt$$

 Tout signal peut être décomposée en somme d'un signal paire et d'un signal impaire

# Harmonique de rang n

#### • Forme trigonométrique

$$u_n(t) = a_n \cos(2\pi f_n t) + b_n \sin(2\pi f_n t)$$
 (2)

Forme polaire : mieux identifier l'amplitude et la phase des composantes d'un signal

$$u_n(t) = \sqrt{a_n^2 + b_n^2} \cos(2\pi f_n t + \varphi_n)$$
 (3)

- $\varphi_n = arctg\left(\frac{a_n}{b_n}\right) = arctg\left(\frac{-b_n}{a_n}\right)$  la phase
- $D_n = \sqrt{a_n^2 + b_n^2}$ , l'amplitude.
- $f_n = nf_0$ , la fréquence de l'harmonique.
- $\frac{D_n}{\sqrt{2}}$  la valeur efficace de l'harmonique.
- Le fondamental  $D_1$  est l'harmonique de rang 1.

# Existence : $x_{T_0}(t)$ est développable en séries de Fourier

### Deux conditions (Dirichlet)

- 1.  $x_{T_0}(t)$  est définie et continue sur l'intervalle  $\left[-\frac{T_0}{2}, \frac{T_0}{2}\right]$  à l'exception d'un nombre fini de points.
- 2.  $x_{T_0}(t)$  ne présente pas des discontinuités de seconde espèce.

#### Exemple

- 1. Signaux vérifiant les conditions de Dirichlet : tous les signaux d'énergie finie.
- 2. Signaux ne vérifiant pas les conditions de Dirichlet : tous les signaux admettant une discontinuité de seconde espèce
  - 2.1 La fonction tangente.
  - 2.2 La fonction de Dirichlet : D(x)=1 si x est rationnel et 0 sinon.

# Décomposition de Fourier d'un signal non périodique

#### **Définition**

Soit x(t) une fonction à temps continu et tel que  $\int_{-\infty}^{+\infty} x(t) dt$  est bornée. On appelle

• Transformée de Fourier de x(t), si elle existe,

$$X(f) = \int_{-\infty}^{+\infty} x(t) e^{-j2\pi ft} dt$$

Transformée de Fourier inverse

$$x(t) = \int_{-\infty}^{+\infty} X(f) e^{j2\pi ft} df$$

 $f \in \mathbb{C}$ 

## Remarque

- La transformée de Fourier X(f) et la transformée de Fourier inverse x(t) représentent un même signal respectivement dans l'espace fréquentiel et l'espace temporel.
- La transformée de Fourier est une **transformée de Laplace** prise pour  $p = j2\pi f$ .
- La transfomée de Laplace bilatérale d'une fonction x(t) est la fonction X(p) définie par l'inrégrale,

$$X(p) = \int_{-\infty}^{+\infty} x(t) e^{-pt} dt$$

où  $p \in \mathbb{C}$ 

• En Télécommunications, la transformée de Fourier est plus utile que la transformée de Laplace.

## Représentation dans l'espace fréquentielle

• Si X(f) = TF(x(t)), alors

$$X(f) = |X(f)| e^{j\theta(f)} = A(f) + jB(f)$$

où 
$$|X(f)| = \sqrt{A(f)^2 + B(f)^2}$$
 est le **module** de  $X(f)$  et  $\theta(f) = arctg\left(\frac{B(f)}{A(f)}\right)$  la **phase** de  $X(f)$ 

- Spectre d'amplitude : représentation du module |X (f)| en fonction de la fréquence,
- **Spectre de phase** : représentation de la phase des valeurs complexes du spectre en fonction de la fréquence,
- spectre de raie : spectre à support discret.

#### Convolution

#### **Definition**

**Produit de convolution** des deux signaux  $x_1(t)$  et  $x_2(t)$ 

$$(x_1 * x_2)(t) = \int_{\mathbb{R}} x_1(t') x_2(t-t') dt'$$
 (4)

#### Remarque

- La convolution est une opération fonctionnelle,
- L'impulsion de Dirac,  $\delta(t)$ , est l'élément neutre du produit de convolution.

# Impulsion de Dirac

### Impulsion de Dirac

$$\delta\left(t\right) = \begin{cases} 0 & \text{si } t \neq 0 \\ +\infty & \text{sinon} \end{cases} \text{ et } \int_{-\infty}^{+\infty} \delta\left(t\right) dt = 1$$

### **Propriétés**

- 1.  $(x * \delta)(t) = (\delta * x)(t) = x(t)$
- 2.  $(1*x)(t) = \int_{-\infty}^{+\infty} x(t') dt'$
- 3.  $\int_{\mathbb{R}} x(t) \, \delta(t-t_0) \, dt = x(t_0),$
- 4.  $x(t) \delta(t t_0) = x(t_0) \delta(t t_0)$
- 5.  $(x * \delta)(t t_0) = x(t t_0)$ .
- 6.  $TF(\delta(t)) = 1$ ;  $TF(1) = \delta(f)$

### Propriétés

#### Transformée de Fourier

### Identité de Parseval

 $x_1(t)$ ,  $x_2(t)$  deux signaux :

• Identité de Parseval : il y a conservation de l'énergie entre l'espace temporelle et l'espace fréquentielle.

$$\int_{\mathbb{R}} x_1(t) x_1^*(t) dt = \int_{\mathbb{R}} X_1(f) X_1^*(f) df$$

$$\int_{\mathbb{R}} x_1(t) x_2^*(t) dt = \int_{\mathbb{R}} X_1(f) X_2^*(f) df$$

- Relation de Gabor Heisenberg
  - ▶ On ne peut avoir un signal ayant à la fois une dispersion temporelle et une dispersion fréquentielle arbitrairement petite.
  - ▶ Si  $\Delta t \Delta f = \frac{1}{4\pi}$ , alors x(t) est un **signal de type gaussien**.

## Corrélation et densité spectrale

- Corrélation : étudier la ressemblance entre signaux. On distingue deux groupes de fonctions
  - Les fonctions d'autocorrélation qui permettent de comparer un signal avec lui même mais décalé dans le temps.
  - Les fonctions d'intercorrélation qui permettent de comparer deux signaux que l'on décale dans le temps.
- Densité spectrale de Puissance (DSP) : mesure de dispersion de la puissance d'un signal en fonction de la fréquence
  - ► Transformée de Fourier de la fonction de corrélation,
  - La densité spectrale se mesure en (*Joule/Hertz*).
- Densité Interspectrale de Puissance : transformée de Fourier de la fonction d'intercorrélation.

# Signaux déterministes à énergie finie

- $E = \int_{\mathbb{R}} |x(t)|^2 dt = \int_{\mathbb{R}} |X(f)|^2 df < \infty$
- Produit scalaire

$$\prec x(t), y(t) \succ = \int_{\mathbb{R}} x(t) y^*(t) dt$$

Fonction d'autocorrélation

$$R_{x}(\tau) = \prec x(t), x(t-\tau) \succ = \int_{\mathbb{R}} x(t) x^{*}(t-\tau) dt$$

Fonction d'intercorrélation

$$R_{xy}(\tau) = \prec x(t), y(t-\tau) \succ = \int_{\mathbb{R}} x(t) y^*(t-\tau) dt$$

Densité Spectrale

$$S_{x}(f) = TF[R_{x}(\tau)] = |X(f)|^{2}$$

# Signaux deterministes périodiques

• 
$$P = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} |x(t)|^2 dt < \infty$$
  
  $< x(t), y(t) >= \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} x(t) y^*(t) dt$ 

Fonction d'autocorrélation

$$R_{x}(\tau) = \prec x(t), x(t-\tau) \succ = \frac{1}{T_{0}} \int_{-\frac{T_{0}}{2}}^{\frac{T_{0}}{2}} x(t) x^{*}(t-\tau) dt$$

Fonction d'intercorrélation

$$R_{xy}\left(\tau\right) = \prec x\left(t\right), y\left(t-\tau\right) \succ = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} x\left(t\right) y^*\left(t-\tau\right) dt$$

• **DSP** de  $x(t) = \sum_{k \in \mathbb{Z}} c_k exp(j2\pi f_0 t)$ 

$$Sx_{x}(f) = TF[R_{x}(\tau)] = \sum_{k \in \mathbb{Z}} |c_{k}|^{2} \delta(f - kf_{0})$$

# Signaux déterministe à puissance finie

- $P_m = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |x(t)|^2 dt < \infty$
- Produit scalaire

$$\prec x(t), y(t) \succ == \lim_{T\to\infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{1}{2}} x(t) y^*(t) dt$$

Fonction d'intercorrelation

$$R_{xy}\left(\tau\right) = \prec x\left(t\right), y\left(t-\tau\right) \succ = \lim_{T\to\infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{t}{2}} x\left(t\right) y^*\left(t-\tau\right) dt$$

Densité spectrale

$$S_{x}(f) = TF\left[R_{x}(\tau)\right] = \lim_{T \to \infty} \frac{1}{T} |X_{T}(f)|^{2}$$

où 
$$X_T(f) = \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) \exp(-j2\pi ft) dt$$

# Signaux aléatoires Stationaires

Si  $X_i$  représente la variable aléatoire correspondandant au processus aléatoire  $X(t,\xi)$  à l'instant  $t_i$ , alors

- Fonction de répartition :  $F_{X_i}(u) = F_X(u, t_i) = P(X_i \prec u)$ ,
- Densité de probabilité :  $p_{X_i}(u) = p_X(u, t_i) = \frac{d}{du} F_{X_i}(u)$
- Moment d'ordre 1 (Moyenne) :  $E[X(t,\xi)] = E(X_i) = \int_{-\infty}^{+\infty} u p_{X_i}(u) du$ , indépendant de t
- Moment centré d'ordre 2 :  $E\left[(X_i E\left[X_i\right])^2\right] = \int_{-\infty}^{+\infty} (u E\left[X_i\right])^2 p_{X_i}(u) du$  indépendant de t
- Stationarité : la moyenne du signal est constante,
- Bruit blanc : la moyenne du signal est nulle,
- Produit scalaire

$$\prec x(t), y(t) \succ = E[x(t)y^*(t)]$$

# Correlation et densité spectrale

$$\prec x(t), y(t) \succ = E[x(t)y^*(t)]$$

- Fonction d'autocorrélation  $R_x(\tau) = E[x(t)x^*(t-\tau)]$
- Fonction d'intercorrélation  $E[x(t) y^*(t-\tau)] = \langle x(t), y(t-\tau) \rangle$
- Puissance moyenne

$$P = R_x(0) = E[|x(t)|^2] = \int_{\mathbb{R}} S_x(f) df$$

Densité spectrale

$$S_{x}(f) = TF[R_{x}(\tau)] = lim_{T \to \infty} \frac{1}{T} E[|X_{T}(f)|^{2}]$$

• Remarque : X(f) n'existe pas.

Spectre d'un signal discret

### Spectre d'un Signal échantillonné

Le spectre du signal échantillonné a pour expression

$$TF\left[x_{e}\left(t\right)\right] = X_{e}\left(f\right) = F_{e}\sum_{n\in\mathbb{Z}}X\left(f - nf_{e}\right)$$



FIGURE: Echantillonnage : a) signal b) spectre du signal c) signal échantillonné d) spectre du signal échantillonné

### **Problèmes**

- Problème : quelle est la condition sur Fe pour que, à partir du signal échantillonné  $x_e(t)$ , on puisse reconstruire intégralement x(t)?
- Théorème de Shanon
  - Supposons qu'un signal x(t) a un spectre à support borné ie  $\{X(f)=0, |f| \succ f_{max}\}$ . Alors, il est possible d'échantillonner ce signal sans perdre d'information. Il suffit pour cela de **choisir une fréquence d'échantillonnage**  $f_e \succ 2f_{max}$ .
  - La condition  $f_e > 2f_{max}$  est appelée condition de Shannon. La fréquence limite  $\frac{f_e}{2}$  est appelée fréquence de Shannon ou fréquence de Nyquist ou encore fréquence de repliement (folding frequency).

# Reconstruction d'un signal

### Formule d'interpolation de Shannon

• Un signal qui a été échantillonné en respectant la condition de Shannon, peut s'exprimer sous la forme :

$$x(t) = \sum_{n \in \mathbb{Z}} T_e x(nT_e) \frac{\sin(\pi f_e(t - nT_e))}{\pi(t - nT_e)}$$

• La formule d'interpolation de Shannon correspond à une décomposition du signal  $x\left(t\right)$  sur la base des fonctions orthogonales

$$s_{n}\left(t\right) = \frac{sin\left(\pi F_{e}\left(t - nT_{e}\right)\right)}{\pi\left(t - nT_{e}\right)}; x\left(nT_{e}\right) = \int_{\mathbb{R}} x\left(t\right)s_{n}\left(t\right)dt$$

#### Transformée de Fourier discret

 $x(n) = x(nT_e)$  comme un échantillon du signal discret x.

#### Transformée de Fourier Discrète

• Transformée de Fourier Discrète (TFD) de la suite de N termes  $\{x(n), n \in [0, N-1]\}$ , la suite de N termes  $\{X(n), n \in [0, N-1]\}$ 

$$X(k) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi \frac{nk}{N}}$$

• La transformée de Fourier inverse, calculée à partir des X(k)

$$X(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j2\pi \frac{nk}{N}}$$

### Forme matricielle

Notons par  $W_N$ , la matrice obtenue en faisant varier k de 0 à N-1

$$W_{N} = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & w^{1} & w^{2} & \dots & w^{N-1} \\ 1 & w^{2} & w^{4} & \dots & w^{2(N-1)} \\ \dots & \dots & \dots & \dots & \dots \\ \vdots & \dots & \dots & \dots & \vdots \\ \vdots & \dots & \dots & \dots & \dots & \vdots \\ 1 & w^{N-1} & w^{2(N-1)} & \dots & \dots & w^{(N-1)^{2}} \end{pmatrix}$$
(5)

Alors

$$\begin{pmatrix} X(0) \\ X(1) \\ X(2) \\ \vdots \\ X(N-1) \end{pmatrix} = W_N \begin{pmatrix} x(0) \\ x(1) \\ \vdots \\ x(N-1) \end{pmatrix}$$

Transformée de Fourier Discrète

Transformée de Fourier Discrète

#### **TFD**

Le calcul de la transformée de Fourier discrète se résume à une multiplication matricielle de la forme

$$X = W_{N}x \tag{6}$$

Comme la matrice  $W_N$  est inversible, on vérifie que la TFD de X inverse est donnée

$$x = \frac{1}{N}W_N * X$$

#### Propriétés de la TFD

La TFD possède la plupart des propriétés de la transformée de Fourier continue à cause des proprités de  $W_N$ .

### Références

- Christian Jutten, 2009. Note de cours théorie du signal deuxième année du département 3i. Université Joseph Fourier. Polytech Grenoble.
- Jean Yves Tourneret, 2013. Note de cours traitement du Signal. Université de Toulouse.
- Bellanger, M. 2012. Traitement numérique du signal, Cours et exercices corrigés, 9 eme édition Second et troisième cycles Master, Écoles d'ingénieurs. Dunod.
- Gaillard, O and Lengellé, R, 2006. Analyse et traitement du signal. Ellipse.