title

Thomas Young

2020年7月30日

COLLIER is a fortran 单圈--标量和张量的数值积分程序库。 这些积分出现在微扰的相对论性量子场论中。 它具有以下 features:

- 1. 多粒子复杂度 scalar and tensor integrals
- 2. ultraviolet divergences 的维数正规化
- 3. soft infrared divergences 的维数正规化(对于非阿贝尔场, 也支持 mass regularization)
- 4. 对于共线质量奇点的维数正规化或者质量正规化
- 5. 对于不稳定粒子, complex 内线质量完全支持(外动量和 virtualities 认作是实数)
- 6. 数值危险区域(小 Gram 或者其他运动学行列式),使用专用的展开处理。
- 7. 所有基本模块都有两种平行的实现方式,可以用作内部交叉检验
- 8. 缓存系统--用来加速计算 \end{itemize}

代码提供了量子场论中任意张量和标量积分的数值结果。

- 1. 对于张量积分,不管协变分解中的系数还是张量元本身都将给出。
- 2. COLLIER 支持 complex 质量,在计算不稳定粒子时会需要。
- 3. 采用维数正规化处理紫外和红外奇点。
- 4. 对于 soft 和共线奇点,有可选用的质量正规化方案。

第一章 COLLIER doc

1.1 Convention

一致性地使用 Refs. [50, 59] 中的约定。约化张量积分的方法在 Refs. [43, 50] 中有描述,已经实现 4--点函数的结果可以在 Ref. [59] 中找到。标量 1-, 2-, 3-点函数的结果基于 Refs. [45, 52]

D 维空间中, 单圈 N 点张量积分的一般形式为:

$$T^{N,\mu_1,\cdots,\mu_P}(p_1,\cdots,p_{N-1},m_0,\cdots,m_{N-1}) = \frac{(2\pi\mu)^{4-D}}{i\pi^2} \int d^D q \frac{q^{\mu_1}\cdots q^{\mu_P}}{N_0 N_1\cdots N_{N-1}}$$
(1.1)

其中分母因子 $N_k = (q+p_k)^2 - m_k^2 + i\epsilon$, $k=0,\cdots,N-1,p_0=0$, 其中 $i\varepsilon$ 是无穷小的虚部。

对于 P=0,即分子上是 1,(1.1) 定义了 N-点标量积分 T_0^N 。

按照 Ref.[52],我们令 $T^1=A, T^2=B, T^3=C, T^4=D, T^5=E, T^6=F,$ and $T^7=G_\circ$

为了能够简洁的写出张量分解。

我们使用大括号来表示对所有洛伦兹指标进行对称化操作。比如:

$$\{p\cdots p\}_{i_1\cdots i_P}^{\mu_1\cdots \mu_P} = p_{i_1}^{\mu_1}\cdots p_{i_P}^{\mu_P}\{gp\}_{i_1}^{\mu\nu\rho} = g^{\mu\nu}p_{i_1}^{\rho} + g^{\nu\rho}p_{i_1}^{\mu} + g^{\mu\rho}p_{i_1}^{\nu}$$
 (1.2)

$$gg^{\mu\nu\rho\sigma} = g^{\mu\nu}g^{\rho\sigma} + g^{\mu\sigma}g^{\nu\rho} + g^{\mu\rho}g^{\nu\sigma} \tag{1.3}$$

这种分解是可以递归进行的。

$$\{p \cdots p\}_{i_1 \cdots i_P}^{\mu_1 \cdots \mu_P} = p_{i_1}^{\mu_1} \cdots p_{i_P}^{\mu_P}$$

$$\{g \cdots g p \cdots p\}_{i_{2n+1} \cdots i_P}^{\mu_1 \cdots \mu_P} = \frac{1}{n} \sum_{\substack{k,l=1\\k < l}}^{P} g^{\mu_k \mu_l} \{g \cdots g p \cdots p\}_{i_{2n+1} \cdots i_P}^{\mu_1 \cdots \mu_{k-1} \mu_{k+1} \cdots \mu_{l-1} \mu_{l+1} \cdots \mu_P}$$

$$(1.5)$$

我们把一般的张量积分约化到洛伦兹协变的结构,as

$$\begin{split} T^{N,\mu 1,\cdots,\mu P} &= \sum_{n=0}^{[p/2]} \sum_{i_{2n+1},\cdots,i_{p}=1}^{N-1} \left\{ \underbrace{g \cdots g}_{n} p \cdots p \right\}_{i_{2n+1}\cdots i_{p}}^{\mu 1 \cdots \mu P} T^{N}_{\underbrace{0 \cdots 0}}_{i_{2n+1}\cdots i_{p}} \\ &= \sum_{i_{1},\cdots,i_{p}=1}^{N-1} p^{\mu_{1}}_{i_{1}} \cdots p^{\mu_{P}}_{i_{P}} T^{N}_{i_{1}\cdots i_{P}} + \sum_{i_{3},\cdots,i_{p}=1}^{N-1} \left\{ gp \cdots p \right\}_{i_{3}\cdots i_{P}}^{\mu_{1}\cdots \mu_{P}} T^{N}_{00i_{3}\cdots i_{P}} \\ &+ \sum_{i_{5},\cdots,i_{p}=1}^{N-1} \left\{ ggp \cdots p \right\}_{i_{5}\cdots i_{p}}^{\mu_{1}\cdots \mu_{P}} T^{N}_{0000i_{5}\cdots i_{P}} + \cdots \\ &+ \left\{ \sum_{i_{p}=1}^{N-1} \left\{ g \cdots gp \right\}_{i_{P}}^{\mu_{1}\cdots \mu_{P}} T^{N}_{\underbrace{0 \cdots 0}}_{i_{P}}, \quad \text{for P odd,} \\ &+ \left\{ g \cdots g \right\}^{\mu_{1}\cdots \mu_{P}} T^{N}_{\underbrace{0 \cdots 0}}_{P}, \quad \text{for P even} \end{split}$$

其中 P/2 是小于等于 P/2 的最大整数。对于洛伦兹协变结构的每一个度规张量,对应的系数携带一个 00 指标,对于每一个动量 p_{i_r} ,系数携带一个指标 i_r 。通过定义,张量系数 $T^N_{i_1\cdots i_P}$ 对于指标 i_1,\cdots,i_P 是完全对称的。 UV-- or IR--singular 积分利用维数正规化来表示,其中 $D=4-2\epsilon$,as,

$$T^{N} = \tilde{T}_{\text{fin}}^{N} + a^{\text{UV}} (\Delta_{\text{UV}} + \ln \frac{\mu_{\text{UV}}^{2}}{Q^{2}}) + a_{2}^{\text{IR}} (\Delta_{\text{IR}}^{(2)})$$
(1.6)

$$+ \Delta_{\rm IR}^{(1)} \ln \frac{\mu_{\rm IR}^2}{Q^2} + \frac{1}{2} \ln^2 \frac{\mu_{\rm IR}^2}{Q^2}) + \tilde{a}_1^{\rm IR} (\Delta_{\rm IR}^{(1)} + \ln \frac{\mu_{\rm IR}^2}{Q^2}) \tag{1.7}$$

$$=T_{\rm fin}^N(\mu_{\rm UV}^2,\mu_{\rm IR}^2) + a^{\rm UV}\Delta_{\rm UV} + a_2^{\rm IR}(\Delta_{\rm IR}^{(2)} + \Delta_{\rm IR}^{(1)} \ln \mu_{\rm IR}^2) + a_1^{\rm IR}\Delta_{\rm IR}^{(1)}] \ \ (1.8)$$

其中

$$\Delta_{UV} = \frac{c(\epsilon_{UV})}{\epsilon_{UV}}, \qquad c(\epsilon) = \Gamma(1+\epsilon)(4\pi)^{\epsilon}$$

$$\Delta_{IR}^{(2)} = \frac{c(\epsilon_{IR})}{\epsilon_{IR}^{2}}, \qquad \Delta_{IR}^{(1)} = \frac{c(\epsilon_{IR})}{\epsilon_{IR}}$$

我们让所有的 UV 和 IR 极点清晰的展示出来,包括对应的质量能标 μ_{UV} 和 μ_{IR} 。我们进一步提取出因子 $c(\epsilon) = \Gamma(1+\epsilon)(4\pi)^{\epsilon} = 1 + \mathcal{O}(\epsilon)$,

并把它吸收到 Δ_{UV} , $\Delta_{IR}^{(2)}$, $\Delta_{IR}^{(1)}$ 的定义里。为了避免在 (1.8) 中第一个方程的对数里出现有量纲的量,我们分离出一个辅助的能标 Q, 它隐式地由进入各个圈图的质量和动量决定。

COLLIER 的输出对应 (1.8) 的最后一行,包括正比于 $a^{UV}, a_2^{IR}, a_1^{IR}$ 的项。参量 $\mu_{UV}^2, \mu_{IR}^2, \Delta_{UV}, \Delta_{IR}^{(2)}$, and, $\Delta_{IR}^{(1)}$ 可以由用户自由选取,但不会影响 UV-和 IR-极限下有限的量。

注意我们区分 IR 和 UV 起源的奇点,默认 $a^{UV}, a_2^{IR}, a_1^{IR}$ 被设置为 0,输出就是 $T_{fin}^N(\mu_{UV}^2, \mu_{IR}^2)$ 。将 Δ 's 设置成不同于 0 的数,可以数值的模拟极点 ϵ 的影响。

默认 IR-和 UV-奇点在维数正规化中计算。共线奇点也可以通过质量正规化。为了达到这个目的,相应的质量,下文称为 $\overline{m_i}$,必须在初始化中被声明为 small,此外,在后续子程序调用的时候,各质量参数必须和在初始化文件中是精确相同的(但不必要很小)。小质量在标量和张量函数中被当作无穷小量对待,其有限值只在质量-奇点的对数项中保留。

阿贝尔类型的软奇点,i.e. 当 $a_2^{IR}=0$,和共线奇点,通过质量 $\overline{m_i}$ 被正规化。当参数 $\Delta_{IR}^{(1)}$ 被设置为 0 之后,参数 μ_{IR} 可以看作是无穷小的光子或胶子质量。

变动参数 $\mu_{UV}^2, \mu_{IR}^2, \Delta_{UV}, \Delta_{IR}^{(2)}, \text{and}, \Delta_{IR}^{(1)}$ 的值可以检查奇点的相消情况。此外,给 $\Delta_{UV}, \Delta_{IR}^{(2)}, \text{and}, \Delta_{IR}^{(1)}$ 选择适合的值,可以允许用户在不同的约定中转换,考虑到提取前置因子 $c\left(\epsilon\right)$ 的不同方式。例如,在 [1] 中,相关的 ϵ 因子是 π^{ϵ} ,其中 $r_{\Gamma} = \Gamma^{2}\left(1-\epsilon\right)\Gamma\left(1+\epsilon\right)/\Gamma\left(1-2\epsilon\right)$,而本文 (1.1) 中的约定为 $(2\pi)^{2\epsilon}$ 。

因此我们必须如下替换我们的 $c(\epsilon)$:

$$\frac{c\left(\epsilon\right)}{r_{\Gamma}\left(4\pi\right)^{\epsilon}} = \frac{\Gamma\left(1+\epsilon\right)}{r_{\Gamma}} = \frac{\Gamma\left(1-2\epsilon\right)}{\Gamma^{2}\left(1-\epsilon\right)} = 1 + \epsilon^{2}\frac{\pi^{2}}{6} + \mathcal{O}\left(\epsilon^{3}\right)$$

为了得到 [1] 中约定下的奇点积分。这等价于作替换 $\Delta_{IR}^{(2)} \to \Delta_{IR}^{(2)} + \pi^2/6$,

同时保持我们计算中的 Δ_{UV} and $\Delta_{IR}^{(1)}$ 不变。在此变换之后,我们的参数 Δ_{UV} , $\Delta_{IR}^{(2)}$, and, $\Delta_{IR}^{(1)}$ 就分别对应于文献 [1] 中的极点 $1/\epsilon$, $1/\epsilon^2$, and $1/\epsilon$.

1.1.1 总结

对于单圈 N 点张量积分:

$$T^{N,\mu_1,\dots,\mu_P}(p_1,\dots,p_{N-1},m_0,\dots,m_{N-1}) = \frac{(2\pi\mu)^{4-D}}{i\pi^2} \int d^D q \frac{q^{\mu_1}\dots q^{\mu_P}}{N_0 N_1 \dots N_{N-1}}$$

点的数目是 N, 那么引入的外动量数目是 N-1, 最后张量指标的数目也是 N-1。依照惯例,把分子上不含积分动量的积分称为标量积分 $A,B,C\cdots,G$,

一个张量积分可以约化成 coefficients and 张量结构的形式。coefficients 就是一些含有不同外动量参数的标量积分 $A,B,C\cdots,G$,张量结构由外动量的对称化和度规张量组成。张量结构中外动量的对称性,可以从积分表达式中看出来。

1.2 introduction

multi-leg one-loop amplitudes 振幅求值的巨大进步,来自于两方面:

- 1. 传统费曼图方法的系统改进
- 2. 基于推广的幺正性关系的新理论技术

在第二种方法中,单圈振幅被直接表示成标量积分的组合。这种向固定标量 积分基的直接约化,会引发相空间特定区域的数值问题。一般可以通过采用 四次精度的数值计算克服。

相反,费曼图方法,包括最近的递归方法依赖于张量积分。此方法允许分解方法自适应于相空间的不同区域,在相当大的程度上,通过最优选择避免数值不稳定性。COLLIER 库提供了计算标量和张量积分的全面工具。在两种互补的方法中都能应用。

将张量积分约化到一小族基本积分的方法,可以追溯到 Brown and Feynman, Melrose, and Passarino and Veltman。又经过了数十年的发展, 文献 [43, 50] 展示的完整方法,是 COLLIER 代码的基础。作为张量分解基础的标量积分首次由 t' Hooft and Veltman 进行了系统研究。已经存在数个计算单圈标量和张量积分的库、比如:

- FF, LoopTools,
- QCDLoop, OneLoop,
- GoLem95C, PJFRY, Package-X

这里介绍的 COLLIER 库,提供完全的张量积分集合,处理带有复数质量的过程,并且没有先验的粒子数限制。

COLLIER 已在用于多个前沿课题的计算。

文章结构:

• Section 2: COLLIER 相关约定

• Section 3: 计算张量积分的方法轮廓

• Section 4: COLLIER 库的内部结构

• Section 5: 用法

• Section 6: 总结

• Appendix A: 定义单圈积分的运动学输入细节

1.3 实现方法

1.3.1 张量系数的计算

计算张量积分的方法依赖于它的传播子数目 N。对于 N=1,2,我们使用显式的数值稳定表达式 [2,3]。

对于 N=3,4,所有张量积分被数值约化到基本的标量积分,通过使用文献 [4-6] 给出的解析表达式。默认情况下,约化使用的是标准的 Paassarino-Veltman [2] 约化。在相空间不稳定殿,其 Gram 行列式变得很小,Paassarino-Veltman 约化变得不稳定。这在些点上,我们使用专用的递归展开方法 [3]。所有这些方法都在 COLLIER 中得到实现,并且对于展开参数可以到任意阶。为了决定一个特定相空间点的约化方法,以下步骤被采用:

 $\operatorname{rank} \hat{P}$ 的最终的误差结果 $\Delta T^N \left(\hat{P} \right)$, 小于一个预定义的精度标签 η_{req} (required precision),结果被保留并传递给用户。

- 2. 若步骤 1 没有提供足够的精度,一般意味着张量积分包括外动量的小GRAM 行列式。COLLIER 切换到专用展开。为决定到哪一阶是足够的,一个先验的误差估计式 $\Delta T_{\mathrm{prelim}}^{N}(P)$,对于系数 $T_{i1,\dots iP}^{N}$ 被构建,对于不同方法的最高 $\mathrm{rank}\hat{P}$ 。误差估计基于展开的期望精度评定,和所需标量积分的简化的误差传递。 $\Delta T_{\mathrm{prelim}}^{N}(P)$ 最小的展开方法被采用。在展开式的实际计算中,评估的是更加现实的精度 $\Delta T^{N}(P)$,通过分析最后一次迭代的修正。如果预定义的精度标签 η_{req} 达到,结果被保存并返回给用户。否则在达到一个预定义的展开深度时,展开停止,或者从一次迭代到下一次,精度没有增加。
- 3. 如果步骤 2 没有提供所需精度。将对其他方法进行重复,这些方法对于足够小的 $\Delta T_{\rm prelim}^N(P)$,将能够保证收敛。如果经过这些重复任一个,达到预定义精度,结果被保留并返回给用户。
- 4. 如果 PAASSARINO-VELTMAN 和其他展开方法都不能达到目标精度, 具有最小误差估计的 $\Delta T^N(P)$ 的方法,其结果将被返回给用户。

通过这种方法,对于几乎所有相空间的点,都能得到稳定的结果。保证了可靠的 MONTE CARLO 积分。

对于 N=5,6,张量积分被约化到具有更低 rank 和 N 的积分,遵循 [3,7],i.e. 不涉及到 GRAM 行列式的逆。对于 $N\geq 7$,文献 [3]Section 7 中 6-点张量积分约化的修改版被应用(见 (7.10) 之后的文字)。

1.3.2 全张量的计算

目前为止,文中描述的方法是用洛伦兹不变的项进行约化,得到的系数为 $T_{i1,\dots,iP}^N$ 。新一代的 NLO 生成器比如 OPENLOOPS, RECOLA,需要全张量 $T^{N,\mu 1,\dots,\mu P}$ 的分量。为了达到这个目的,COLLIER 中实现了一套高效的算法,来从 $T_{i1,\dots,iP}^N$ 构建 $T^{N,\mu 1,\dots,\mu P}$ 。它递归地计算 4 中那些单举动量构造的张量结构。张量结构的非零分量包括度规矩阵递归地得到,通过添加成对相等的洛伦兹指标,到带有更少度规的张量上,考虑到指标组合因子和度规张量引起的符号。相关的组合系数在 COLLIER 初始化的时候计算并列表。

coefficients for	$\hat{P} = 0$	$\hat{P}=1$	$\widehat{P}=2$	$\widehat{P}=3$	$\widehat{P}=4$	$\widehat{P}=5$	$\widehat{P}=6$
N=3	1	3	7	13	22	34	50
N = 4	1	4	11	24	46	80	130
N = 5	1	5	16	40	86	166	296
N = 6	1	6	22	62	148	314	610
N = 7	1	7	29	91	239	553	1163
components	1	5	15	35	70	126	210

Table 1: Number $n_c(N, \widehat{P})$ of invariant coefficients $T^N_{i_1...i_P}$ for $N=3,\ldots,7$ and rank $P\leq \widehat{P}=0,\ldots,6$ (rows 2–6) and number $n_t(\widehat{P})$ of independent tensor components $T^{N,\mu_1...\mu_P}$ for rank $P\leq \widehat{P}=0,\ldots,6$ (last row).

$$B_{i_1...i_P}$$
 $C_{i_1...i_P}$ $D_{i_1...i_P}$ $E_{i_1...i_P}$ $F_{i_1...i_P}$ $G_{i_1...i_P}$...
$$B^{\mu_1\cdots\mu_P}$$
 $C^{\mu_1\cdots\mu_P}$ $D^{\mu_1\cdots\mu_P}$ $E^{\mu_1\cdots\mu_P}$ $F^{\mu_1\cdots\mu_P}$ $G^{\mu_1\cdots\mu_P}$...

Figure 1: Reduction chains in Collier: For $N \geq 6$ reduction can be performed at the tensor level.

图 1.1: COLLIER 约化链: 对于 $N \ge 6$, 约化可以在张量层次进行

洛伦兹不变的系数 T_{i_1,\dots,i_P}^N 和 $T^{N,\mu 1,\dots,\mu P}$ 被列在 fig.1.1中.

对于 $N \leq 4$,不变系数的数目小于张量分量的数目,这也是 Passarino-Veltman 约化方法的前提。另一方面,对于 $N \geq 5$,情况发生反转。实际上,[3] 中 (7.7) 中对于 $N \geq 6$ 所展现的方法,约化是用全张量的项推导的。若要得到张量系数,需要进行对陈化操作,得到的系数也不是唯一的,由于张量结构具有的冗余性。所以,对于 $N \geq 6$ 的张量 $T^{N,\mu 1,\cdots,\mu P}$ 的约化,COLLIER 直接在张量层次实现,而不用依赖于协变分解。

而当 $N \leq 5$, 迭代在 coefficient 的层次 exclusively 进行, $T^{N,\mu 1,\cdots,\mu P}$ 随后才构建,由各自的 coefficients $T^N_{i1,\cdots,iP}$,对于 $N \geq 6$,约化也可以在 tensors 层次完成。意思是,若要计算一个 $N \geq 6$ 的张量积分,可以选取一个 $5 < N_{\rm tenred} \leq N$ 的 $N_{\rm tenred}$,对于 $N < N_{\rm tenred}$,进行 coefficients 层次的递归运算,对于 $N \geq N_{\rm tenred}$,在 tensor 水平进行计算。从 coefficients 到 tensor 的转变可以发生在 $N_{\rm tenred}$ — 1。可能的约化链示于图1.1。

1.4 库的结构

COLLIER 的结构在图 2 中图形化的展示出来。库的核心由模块 COLI和 DD 组成。它们是标量积分 T_0^N 和洛伦兹不变系数 $T_{i_1\cdots i_P}^N$ 的两种独立的实现,利用前文描述的方案。模块 tensors 提供了从 $T_{i_1\cdots i_P}^N$ 构建 $T^{N,\mu_1\cdots\mu_P}$ 的路径,同时也包括 $N\geq 6$ 的时候 N 点积分,张量层次的直接约化。用户通过 COLLIER 的全局界面和 COLI,DD,and tensors 的常规流程交互。它提供了路径,去设置或提取 COLI和 DD 的参数,还有计算张量系数 $T_{i_1\cdots i_P}^N$ 和张量元 $T^{N,\mu_1\cdots\mu_P}$ 的路径。用户可以选择使用那个分支—COLI或 DD。也可以用两个分支计算每个积分,来做结果的交叉检验。

在计算一个典型的单圈矩阵元时,一个张量积分会被调用好几次,并输入相同的运动学参数:另一方面,在计算 $P \geq 2$ 的 N 点积分时,会引起对更低阶 N/ 积分的递归调用。在约化树中,对于 N/ $\leq N-2$ 阶的积分,有不同的抵达路径。为了避免对同一个积分进行重复运算,COLLIER 的子库连接到了一个 Global 的 cache 系统,其工作原理如下:

参数 $N_{\rm ext}$ 计数外部程序的积分调用次数,在约化过程中,内部调用被一个二进制标识符 id 记录。对于每一个索引对 $(N_{\rm ext},id)$ 分配一个指针。对于第一个相空间点的计算,相应函数的参数被比较,具有相同参数的索引对 $(N_{\rm ext},id)$ 被指向 cache 中的相同地址。第一次计算的结果被写入 cache,后续相空间点的计算可以读取这些结果,如果指向相同的地址。使用 external cache 系统是可选择的,在一个 Monte Carlo 积分中,对张量积分的调用,需要相空间所有点的次序是 exactly 相同的,在初始化之后(初始化标志着矩阵元计算的开始,对于各个相空间点)。此外,对于每个事件,第一次和最后一次调用积分的内部参数必须保持不变。

1.5 库的使用

1.5.1 安装

下载包 COLLIER-v.tar.gz collier homepage。其中 v 是库的版本。还 应该安装 CMAKE 创建系统。由于 COLLIER 是一个单机的 Fortran95 代码,无需额外的库。

gunzip and untar COLLIER-v.tar.gz 将会解压到./COLLIER-v 文件夹,包含以下文件和文件夹

- 1. Cmakelists.txt: cmake makefile 用来产生 COLLIER 库。
- 2. src: COLLIER 源代码库,包含 COLLIER 的主要代码和子库的主要代码。
 - COLI: 包含 COLI 分支的文件
 - DDlib: 包含 DD 分支的文件
 - tensors: 包含构建张量和直接张量约化的文件
 - Aux: 包含辅助文件。
- 3. build: build 文件夹, CMAKE 存放所有创建用必须文件的地方, 比如对象文件。
- 4. modules: 空文件夹, for fortran 模块文件。
- 5. demos:展示 COLLIER 用法的示例文件夹。
- 6. COPYING: 版权信息文件。

使用以下命令创建 COLLIER 库:

cd build

cmake

make

默认 cmake 会建立一个动态库。如果需要静态库,在 COLLIER-v 文件夹中,使用以下选项

 $cmake - Dstatic=ON \dots$

如果不指定编译器, cmake 会自动寻找安装的 fortran 编译器, 选择合适的。使用特定的编译器比如 ifort, 可以用以下选项

cmake -DCMAKE_Fortran_COMPILER=ifort ...

可以给出编译器的全路径。

makefile 创建以后, make 命令就会产生动态库 libCOLLIER.so 或者静态库 libCOLLIER.a 在 COLLIER-v 文件夹中,可以用来链接到用户程序。

若要创建 demos 文件夹内示例程序的可执行文件,在文件夹 COLLIER- ${
m v}$ /build 内使用

make democache

所有使用 make 命令创建的文件可以用 "make clean"来丢弃,在 COLLIER-v/build 中来运行。

也可以删除 COLLIER-v/build 中的所有文件。

Sample programs

在 COLLIER-v/build 文件夹中使用以下命令创建两个示例程序

make demo

make democache

可以在 COLLIER-v/demo 文件夹使用以下命令运行

- ./demo
- ./democache

程序 demo 专门用来计算 single 张量积分。

在运行过程中,会询问用户在 N 点-积分中选择一个例子来计算。计算结果被写入 demo_Npoint_exampleX.dat 中,它指向 demo.f90 中的段落,其中给出了计算各个积分的源代码,接着一小段程序,用来给 COLLIER 输出化,对于所有示例程序都差不多。其中包含了很多被注释的行,去掉感叹号就会起作用,其中展示了很多 COLLIER 的 global 参数,可以修改使用。

程序 decmocache 展示了 cache 的用法。对于 1000 个相空间点,8 个 张量积分被计算了数次。这个玩具 monte carlo 在四种子集中相继执行:先 用 COLI,用或不用缓存,再用 DD,用或不用缓存。源代码存储在文件 democache.f90 中。

1.5.2 概括使用说明

为了在 FORTRAN 程序中使用 COLLIER, COLLIER- ν /modules 中的对应模块必须被载入:

use COLLIER

COLLIER-ν 中的 *library libCOLLIER.so* or *libCOLLIER.a* 必须提供给 LINKER。这样程序才有权访问 COLLIER 的公共函数和子程序。所有的子程序都带有后缀"_cll"。为了避免冲突,也为了增加可读性。

在使用 COLLIER 之前,必须进行初始化,Calling

subroutine Init_cll(Nmax,rin,folder_name,noreset)
integer Nmax :maximal # of loop propagators
integer, optional rin :maximal rank of loop integrals
character, optional folder_name : name of folder for output
logical, optional noreset : no new output folder and files

Nmax 是强制性的,另外两个参数 rin,folder_name, and noreset 是可选的。利用 Nmax 指定所需计算张量圈积分 $T^{N,P}$ 的最大传播子数目。 $(N < N_{max})$,可选参数 rin 制定了最高阶 $P_{max}(p \le P_{max})$ 。如果参数 rin 被忽略,那么默认将 rin 设置为 Nmax,对于可重整化理论足够。Nmax and rin 决定了 COLLIER 内部产生的表格的大小。

folder_name 参数指定特定名称的输出文件夹。缺省值是'output_cll'。 也可以传递给 init_cll 一个空字符串 foldername=", 这样会阻止创建输出文件夹,除了初始化信息和重要错误会被写入到标准输出通道 stdout cll=6.

在后续的调用和计算中,如果 noreset 被设置为.true.,那么输出文件夹不会被重新创建,但是文件会被覆盖。在第一次 call init_cll 的时候, flag noreset 会被忽略。

call init_cll 会将所有内部参数设置为 Table.1.2 中的值。在后续的调用中,如果 noreset 设置为.true.,那么自行设定的参数值不会被重置为这里的初始化值。

在初始化之后,很多参数可以被设置得不同,满足用户需要。为实现这个功能,COLLIER 提供了 subroutine SetX_cll 对每个参数 X, subroutines SwitchOnY_cll, SwithchY_cll, 对于每个 flag Y。To read out the current value of parameter X, a subroutine getX_cll is available. 这些参数可以被用户修改, subroutine 在 section5.4 进了详细描述。

在初始化之后和可能潜在的重新定义之后,COLLIER 就可以计算张量积分了。

通用 subroutine TN_cll 计算洛伦兹协变分解中的张量系数 $T^N_{i1,\cdots,iP}$ TNten cll 返回张量元 $T^{N,\mu 1\cdots \mu p}$ 。

此外也提供可选的特定 subroutine A_cll, B_cll,...,\G_cll, and Aten_cll, Bten_cll,..., Gten_cll for the 1-,2-,...,7-point 积分,同样也有 A0_cll, B0_cll, ..., D0_cll 对于标量积分。

两点函数的动量导数,通常需要用来计算重整化常数,可以使用通用

parameter	type	set with	default
mode	$\mathtt{integer} \in \{1,2,3\}$	SetMode_cll	1
$\eta_{ m req}$	double precision	SetReqAcc_cll	1d-8
$\eta_{ m crit}$	double precision	SetCritAcc_cll	1d-1
$\eta_{ m check}$	double precision	SetCheckAcc_cll	1d-2
μ_{UV}^2	double precision	SetMuUV2_cll	1d0
$\mu_{ m IR}^2$	double precision	SetMuIR2_cll	1d0
$\Delta_{ m UV}$	double precision	SetDeltaUV_cll	0d0
$\Delta_{\rm IR}^{(1)}, \Delta_{\rm IR}^{(2)}$	double precision	SetDeltaIR_cll	0d0,0d0
$\overline{\{\overline{m}_1^2,\ldots,\overline{m}_{n_{\text{reg}}}^2\}}$	double complex $(n_{ m reg})$	SetMinf2_cll	{}
$\sigma_{ m stop}$	integer < 0	SetErrStop_cll	-8
N_{tenred}	${\tt integer} \geq 6$	SetTenRed_cll	6
$n_{\rm cache}$	$integer \ge 0$	InitCacheSystem_cll	0
$N_{\text{cache}}^{\text{max}}$	integer $(n_{\text{cache}}) \geq 1$	SetCacheLevel_cll	_
$n_{ m err}$	$integer \ge 0$	SetMaxErrOut_cll	100
$n_{ m err,COLI}$	$integer \ge 0$	SetMaxErrOutCOLI_cll	100
$n_{\rm err,DD}$	$integer \ge 0$	SetMaxErrOutDD_cll	100
$n_{\rm inf}$	$integer \ge 0$	SetMaxInfOut_cll	1000
$n_{\mathrm{check}}^{N,\mathrm{max}}$	integer $(N_{\max}) \geq 0$	SetMaxCheck_cll	$\{50,,50\}$
$n_{ m check}^{B', m max}$	$integer \ge 0$	SetMaxCheckDB_cll	50
$n_{\text{crit}}^{N,\text{max}}$	integer $(N_{\max}) \geq 0$	SetMaxCrit_cll	$\{50,, 50\}$
$n_{\rm crit}^{B', \rm max}$	$integer \ge 0$	SetMaxCritDB_cll	50
$\widehat{P}^{ ext{max}}$	${\tt integer} \geq 6$	SetRitmax_cll	14
outlev	$\mathtt{integer} \in \{0,1,2\}$	SetInfOutLev_cll	2

图 1.2: Table 2: lists of COLLIER parameters

subroutine DB_cll 计算到任意阶。对于最低阶,可以使用特定 subroutine, DB0_cll, DB1_cll, DB00_cll, and DB11_cll。更多介绍张量积分计算 subroutine 的信息在 section5.3 中给出。

COLLIER 的一个典型应用是在一个 NLO Monte Carlo 生成器中,提供单圈张量积分。在这种情况下,主程序对 MC 事件进行一个循环,对于每个事件,主程序调用 COLLIER 计算一组张量积分来得出矩阵元。在这种情形下中,the subroutine

subroutine InitEvent_cll(cacheNr) integer, optional cacheNr: number of cacher

应该在每次计算张量积分之前被调用。这个调用将初始化 error flag and accuracy flag of COLLIER,这些 flag 可以在积分计算完成后,读取用来得到计算 status 的整体信息。如果使用了 cache system, call of InitEvent_cll 将是必须的,以用来初始化每次 MC 事件的 cache。如果使用了 multiple caches,那么各自的 cache number cacheNr 需要传递给 InitEvent_cll,作为一个可选参数。更多关于使用缓存的信息,可以在 section5.5 中找到。

为了帮助用户熟悉 COLLIER 的使用,两个示例程序 demo 和 democache 一并包含在发行版中。在 section 5.7 中可以找到描述。

1.5.3 张量积分的计算

对于张量积分,COLLIER 提供了 subroutine,传递洛伦兹协变分解系数 $T^N_{i1,\cdots,ip}$,和张量元 T^{N,μ_1,\cdots,μ_P} 。

$$T^{N,\mu_1,\cdots,\mu_P}(p_1,\cdots,p_{N-1},m_0,\cdots,m_{N-1}) = \frac{(2\pi\mu)^{4-D}}{i\pi^2} \int d^D q \frac{q^{\mu_1}\cdots q^{\mu_P}}{N_0 N_1\cdots N_{N-1}}$$
(1.9)

积分中的外部变量共 N-1 个,分子上的带指标被积动量共有 p 个。所以出来的洛伦兹结构中,也是有 p 个指标,

构成这 p 个指标的材料为,度规张量和 N-1 个外动量,从中挑选出 p 个,所以外动量的循环指标是 $1 \sim N-1$.

其中分母因子 $N_k = (q+p_k)^2 - m_k^2 + i\epsilon$, $k = 0, \dots, N-1, p_0 = 0$, 其中 $i\varepsilon$ 是无穷小的虚部。

$$\begin{split} T^{N,\mu 1,\cdots,\mu P} &= \sum_{i_1,\cdots,i_p=1}^{N-1} p_{i_1}^{\mu_1}\cdots p_{i_P}^{\mu_P} T^N_{i_1\cdots i_P} + \sum_{i_3,\cdots,i_p=1}^{N-1} \{gp\cdots p\}_{i_3\cdots i_P}^{\mu_1\cdots \mu_P} T^N_{00i_3\cdots i_P} \\ &+ \sum_{i_5,\cdots,i_p=1}^{N-1} \{ggp\cdots p\}_{i_5\cdots i_P}^{\mu_1\cdots \mu_P} T^N_{0000i_5\cdots i_P} + \cdots \end{split}$$

张量系数 $T_{i1,\cdots,ip}^N$ 表示成一个 N-维数组, type double complex, 并按 照如下的约定:

$$TN(n_0, n_1, \cdots, n_{N-1}) = T_{\underbrace{0 \cdots 0}_{2n_0}}^{\underbrace{N}} \underbrace{1 \cdots 1}_{n_1} \underbrace{2 \cdots 2}_{n_2} \underbrace{N - 1 \cdots N - 1}_{n_{N-1}}$$

利用这种方法,所有张量系数, $T^N_{i1\cdots iP}$,其中 $P=0,\cdots \hat{P}$, up to a given rank \hat{P} ,可以储存进同一个数组中

double complex
$$\text{TN}(0:[\hat{P}/2],\underbrace{0:\hat{P},\cdots,0:\hat{P}}_{N-1})$$

注意到相同的系数 $T_{i1\cdots ip}^N$, 通过一个指标的置换 $\{i1,\cdots,iP\}$ 相互关联, 在 TN 中也被表示成同一个 entry。作为例子,张量系数 $D_{i1\cdots iP}$ 和数组 D 的对应关系,展现在 Table 1.3 中。这是 4 点函数到阶数 4 的情形。

圈积分 D 有 4 个传播子,3 个外动量,所以允许的最高阶指标数目为 4,

左边一列的下标中的数字,指的是传播子中外动量的序号,在结果中出现。重复的表示重复出现。

右边一列的四个位置,相当于四个传播子,其中的数字,是每个外动量, 在最终结果中出现的次数。

它们是一一对应的。

可选的,N-点积分的张量系数 up to rank \hat{P} ,可以通过一维数组得到

double complex TN1
$$\left(\eta_c\left(N,\hat{P}\right)\right)$$

其中 $\eta_c\left(N,\hat{P}\right)$ 是张量系数 $T^N_{i1\cdots iP}$ 的总数目,其中 $i1\leq i2\leq\cdots\leq iP$ and $P\leq\hat{P}$ 。对于 $N=1,\cdots,7$ and $\hat{P}=0,\cdots 6,\eta_c\left(N,\hat{P}\right)$ 的具体数值在 table.1.4 中给出。张量系数在数组 TN1 中按照升序排列,从 P=0 到 $P=\hat{P}$ 。相同 rank 的系数 $T^N_{i1\cdots iP}$ 按照他们的第一个相异的指标

D_0	D(0,0,0,0)	D_{113}	D(0,2,0,1)	D_{1112}	D(0,3,1,0)
D_1	D(0,1,0,0)	D_{122}	D(0,1,2,0)	D_{1113}	D(0,3,0,1)
D_2	D(0,0,1,0)	D_{123}	D(0,1,1,1)	D_{1122}	D(0,2,2,0)
D_3	D(0,0,0,1)	D_{133}	D(0,1,0,2)	D_{1123}	D(0,2,1,1)
D_{00}	D(1,0,0,0)	D_{222}	D(0,0,3,0)	D_{1133}	D(0,2,0,2)
D_{11}	D(0,2,0,0)	D_{223}	D(0,0,2,1)	D_{1222}	D(0,1,3,0)
D_{12}	D(0,1,1,0)	D_{233}	D(0,0,1,2)	D_{1223}	D(0,1,2,1)
D_{13}	D(0,1,0,1)	D_{333}	D(0,0,0,3)	D_{1233}	D(0,1,1,2)
D_{22}	D(0,0,2,0)	D_{0000}	D(2,0,0,0)	D_{1333}	D(0,1,0,3)
D_{23}	D(0,0,1,1)	D_{0011}	D(1,2,0,0)	D_{2222}	D(0,0,4,0)
D_{33}	D(0,0,0,2)	D_{0012}	D(1,1,1,0)	D_{2223}	D(0,0,3,1)
D_{001}	D(1,1,0,0)	D_{0013}	D(1,1,0,1)	D_{2233}	D(0,0,2,2)
D_{002}	D(1,0,1,0)	D_{0022}	D(1,0,2,0)	D_{2333}	D(0,0,1,3)
D_{003}	D(1,0,0,1)	D_{0023}	D(1,0,1,1)	D_{3333}	D(0,0,0,4)
D_{111}	D(0,3,0,0)	D_{0033}	D(1,0,0,2)		
D_{112}	D(0,2,1,0)	D_{1111}	D(0,4,0,0)		

Table 3: Mapping between tensor coefficients $D_{i_1...i_P}$ $(P \leq 4)$ and elements $\mathsf{D}(n_0,n_1,n_2,n_3)$ of the array $\mathsf{D}(0\!:\!2,0\!:\!4,0\!:\!4,0\!:\!4)$. The mapping onto the elements of the one-dimensional array representation $\mathsf{D1}(46)$ is obtained by numerating the coefficients in the table starting from the top left entry downwards.

图 1.3: table 3

coefficients for	$\hat{P} = 0$	$\widehat{P}=1$	$\widehat{P}=2$	$\widehat{P}=3$	$\widehat{P}=4$	$\widehat{P}=5$	$\widehat{P}=6$
N=3	1	3	7	13	22	34	50
N=4	1	4	11	24	46	80	130
N = 5	1	5	16	40	86	166	296
N = 6	1	6	22	62	148	314	610
N = 7	1	7	29	91	239	553	1163
components	1	5	15	35	70	126	210

Table 1: Number $n_c(N, \widehat{P})$ of invariant coefficients $T_{i_1...i_P}^N$ for N = 3, ..., 7 and rank $P \le \widehat{P} = 0, ..., 6$ (rows 2–6) and number $n_t(\widehat{P})$ of independent tensor components $T^{N,\mu_1...\mu_P}$ for rank $P \le \widehat{P} = 0, ..., 6$ (last row).

图 1.4: table 1

 i_k, j_k 进行排列。对于 4 点函数至 rank4,排序表见于1.3。由于 FORTRAN 数组只支持到 7 维,所以,对于 $N \geq 8$ 的 N 点积分,只能表示成一维数组 的格式。

全张量积分 T^{N,μ_1,\cdots,μ_P} 通过 type double complex 的 4-维数组表示,并按照以下约定

$$\text{TNten}\,(n_0,n_1,n_2,n_3) = T^{N,\overbrace{0\cdots 0}^{n_0}\underbrace{1\cdots 1}^{n_1}\underbrace{2\cdots 2}^{n_2}\underbrace{3\cdots 3}^{n_3}$$

按照这种方法,所有张量元 T^{N,μ_1,\cdots,μ_P} ,其中 $P=0,\ldots,\hat{P}$ 至一给定 rank \hat{P} ,被存储在相同的数组中

double complex TNten
$$\left(0:\hat{P},0:\hat{P},0:\hat{P},0:\hat{P}\right)$$

注意, 全同的张量元 T^{N,μ_1,\cdots,μ_P} , 通过一个指标的置换 被 $\{\mu_1,\ldots,\mu_p\}$ 彼此联系的,在数组 TNten 中用同一个 entry 表示。张量元 T^{N,μ_1,\cdots,μ_P} 和数组 TNten 间的对应,在 table1.5中展示,至 rank $\hat{P}=3$ 。

洛伦兹协变分解1.9中的系数 $T_{i1\cdot iP}^N$, 来自于张量积分 $T^{N,P}$, 其中 $N=1,\cdots,7$ 可以通过下列 subroutine 分别计算:A_cll,...,G_cll. subroutine N_cll(N_cll=A_cll,...,G_cll) 的参数结构如下给出:

subroutine N_cll(TN,TNuv ,MomInv,mass2,R,TNerr)

$\mathtt{TNten}(0,\!0,\!0,\!0)$	T^{22}	$\mathtt{TNten}(0,\!0,\!2,\!0)$	T^{033}	$\mathtt{TNten}(1,0,0,2)$
$\mathtt{TNten}(1,\!0,\!0,\!0)$	T^{23}	$\mathtt{TNten}(0,\!0,\!1,\!1)$	T^{111}	$\mathtt{TNten}(0,\!3,\!0,\!0)$
$\mathtt{TNten}(0,\!1,\!0,\!0)$	T^{33}	$\mathtt{TNten}(0,\!0,\!0,\!2)$	T^{112}	$\mathtt{TNten}(0,\!2,\!1,\!0)$
$\mathtt{TNten}(0,\!0,\!1,\!0)$	T^{000}	$\mathtt{TNten}(3,\!0,\!0,\!0)$	T^{113}	$\mathtt{TNten}(0,\!2,\!0,\!1)$
$\mathtt{TNten}(0,\!0,\!0,\!1)$	T^{001}	$\mathtt{TNten}(2,\!1,\!0,\!0)$	T^{122}	$\mathtt{TNten}(0,\!1,\!2,\!0)$
$\mathtt{TNten}(2,\!0,\!0,\!0)$	T^{002}	$\mathtt{TNten}(2,\!0,\!1,\!0)$	T^{123}	$\mathtt{TNten}(0,\!1,\!1,\!1)$
$\mathtt{TNten}(1,\!1,\!0,\!0)$	T^{003}	$\mathtt{TNten}(2,\!0,\!0,\!1)$	T^{133}	TNten(0,1,0,2)
$\mathtt{TNten}(1,\!0,\!1,\!0)$	T^{011}	$\mathtt{TNten}(1,\!2,\!0,\!0)$	T^{222}	$\texttt{TNten}(0,\!0,\!3,\!0)$
$\mathtt{TNten}(1,\!0,\!0,\!1)$	T^{012}	$\mathtt{TNten}(1,1,1,0)$	T^{223}	$\mathtt{TNten}(0,\!0,\!2,\!1)$
$\mathtt{TNten}(0,\!2,\!0,\!0)$	T^{013}	$\mathtt{TNten}(1,1,0,1)$	T^{233}	$\mathtt{TNten}(0,\!0,\!1,\!2)$
$\mathtt{TNten}(0,\!1,\!1,\!0)$	T^{022}	$\mathtt{TNten}(1,\!0,\!2,\!0)$	T_{333}	$\mathtt{TNten}(0,\!0,\!0,\!3)$
$\mathtt{TNten}(0,\!1,\!0,\!1)$	T^{023}	$\mathtt{TNten}(1,\!0,\!1,\!1)$		
	$ \begin{split} & \text{TNten}(0,1,0,0) \\ & \text{TNten}(0,0,1,0) \\ & \text{TNten}(0,0,0,1) \\ & \text{TNten}(2,0,0,0) \\ & \text{TNten}(1,1,0,0) \\ & \text{TNten}(1,0,1,0) \\ & \text{TNten}(1,0,0,1) \\ & \text{TNten}(0,2,0,0) \\ & \text{TNten}(0,1,1,0) \end{split} $	$\begin{array}{lll} {\rm TNten}(1,0,0,0) & & & & & & & & & & & & & & & & & & &$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 4: Mapping between tensor components $T^{\mu_1...\mu_P}$ $(P \leq 3)$ and elements $\mathsf{Tten}(n_0,n_1,n_2,n_3)$ of the array $\mathsf{TNten}(0:3,0:3,0:3,0:3)$. The mapping onto the elements of the one-dimensional array representation $\mathsf{TNten1}(35)$ is obtained by numerating the coefficients in the table starting from the top left entry downwards.

图 1.5: table 4

double complex
(0:R/2,
$$\underbrace{0:R,\dots,0:R}_{N-1})$$
 TN : $T_{i_1,\dots,i_P}^{N,P}$ with
 $P\leq R$

double complex
(0:R/2,
$$\underbrace{0:R,\ldots,0:R}_{N-1}$$
) TNuv : $T_{i_1,\ldots,i_P}^{N,P\,\mathrm{UV}}$ with $P\leq R$

double complex $(1:n_P)$ MomInv: momentum invariants

double complex(0:N-1) mass2 : squared masses

integer R: maximal rank

double precision(0:R) optional TNerr: error estimates

一共有
$$n_{\mathcal{P}} = \begin{pmatrix} N \\ 2 \end{pmatrix} = \frac{N(N-1)}{2} = \frac{(N-1)(N-2)}{2} + \frac{2(N-1)}{2}$$
 个动量组成的

不变量 \mathcal{P}_N ,用符号 MomInv 表示,按照如下顺序排列: 头 N 个对应 N 个 incoming 动量 k_i ,后面 N 个是毗连动量的和的平方 $(k_i+k_{i+1})^2$,如此等等。如果用 off-set(偏移)动量 $p_i=k_1+\ldots+k_i$ (在1.9中的传播子中出现)来写的话,将会是

$$\mathcal{P}_{2k} = (p_1 - p_0)^2, (p_2 - p_1)^2, \dots, (p_{2k-1} - p_{2k-2})^2, (p_0 - p_{2k-1})^2$$

$$(p_2 - p_0)^2, (p_3 - p_1)^2, \dots, (p_0 - p_{2k-2})^2, (p_1 - p_{2k-1})^2,$$

$$\dots$$

$$(p_{k-1} - p_0)^2, (p_k - p_1)^2, \dots, (p_{k-3} - p_{2k-2})^2, (p_{k-2} - p_{2k-1})^2,$$

$$(p_k - p_0)^2, (p_{k+1} - p_1)^2, \dots, (p_{2k-2} - p_{k-2})^2, (p_{2k-1} - p_{k-1})^2, (1.10)$$

$$\mathcal{P}_{2k+1} = \left\{ (p_1 - p_0)^2, (p_2 - p_1)^2, \dots, (p_{2k} - p_{2k-1})^2, (p_0 - p_{2k})^2 \right\}$$

$$(p_2 - p_0)^2, (p_3 - p_1)^2, \dots, (p_0 - p_{2k-1})^2, (p_1 - p_{2k})^2,$$

$$\dots$$

$$(p_k - p_0)^2, (p_{k+1} - p_1)^2, \dots, (p_{k-2} - p_{2k-1})^2, (p_{k-1} - p_{2k})^2, (1.11)$$

注意1.10中的前 k-1 行每行有 N=2 个元素,第 k 行只有 k=N/2 个元素。而1.11中 k 行中每行都有 N=2k+1 个元素。

由于存在一个 overall 的动量守恒, N 个 incoming ki, 但是独立的偏移量 p_i 只有 N-1 个。

可以想象一个圆周,圆周上等距离的画着 N 个点,相当于两点之间连线,然后开始转动,要求两端的点不能重复。如果连线是一条直径,那么只

有一半是不重复的。但是只有当圆周上的点是 2k 的时候,才可能实现这种情况。

对于 $N=2,\ldots,7$,不变动量 \mathcal{P}_N 的集合列在 Appendix A 中。它们必须以 type double complex 提供给 subroutine N_cll。或者是长度为 $n_{\mathcal{P}}$ 的数组,或者是 $n_{\mathcal{P}}$ 个 single 参数。值得注意的是,尽管变量类型是 double complex,现版本的 COLLIER 还不支持动量不变量有虚部的情况。从长远看更重要的是,保证动量不变量的组合(对应单个外线粒子的质量平方)采用它们的精确数值,以避免任何偏差,比如对这些动量平方进行数值计算时。此外,在 IR-divergent 积分中,程序内部将会比较动量和质量参数来决定采用的解析表达式。显然,在单点积分 A_cll 中,参数 MomInv 将会省略。

squared masses 集合

$$\mathcal{M}_N = \left\{ m_0^2, m_1^2, \dots, m_{N-1}^2 \right\} \tag{1.12}$$

进入到圈传播子中,在1.9给出,由 N 个 type double complex 的参数 表示,记作 mass2。这些参数可以有不为零(负的)虚部,应当传递给 $N_{\rm cll}$,格式为单个数组或者独立的参数,取决于动量不变量 MomInv 采用的格式。

integer 参数 R 表示张量积分的最高 rank \hat{P} 。因此它定义了输出数组 TN and TNuv 的 size (type complex)。像之前描述的,它们可以是 N-维数组, $(0:[\hat{P}/2],(0:P),\dots(0:P)$ 。也可以是一维数组,长度为 $n_c\left(N,\hat{P}\right)$ 。由 COLLIER 在初始化过程中表格化,可以由以下函数获取

function $GetNc_cll(N,R)$ result(nc) integer N,R,nc:

integer N,R,nc: $N, \hat{P}, n_c(N, \hat{P})$

最后,可以给出额外的输出数组 TNerr ,添加 $\left(0:\hat{P}\right)$ 个 type double precision 的 entries 到参数列表。如果存在的话,这个数组的成员传递了张量系数 $T_{i1\cdot iP}^N$ 的决定误差,其中所有的 $i_k \neq 0$,对于相应的 rank P。误差估计 $\Delta T^N\left(P\right)$ 大概由以下方法决定:迭代计算中的误差传递,和展开式中忽略的高阶项(见 section 3.1)。返回的误差值不应该被理解为精确且可靠的,而应该被当成低层不确定性的数量级估计。

代替单独的 subroutine A_cll,..., G_cll, 也可以用通用 subroutine 计算任意 N 的张量系数

subroutine TN_cll(TN, TNuv, MomInv, mass2, Nn, R, TNerr)

generic TN_cll 的参数根特定的 A_cll,..., G_cll 的不同仅在于 additional integer Nn,

integer Nn: # of loop propagators (=N)

定义了圈图中传播子的数目。在 TN_cll 的情况下,momentum invariants **MomInv**, squared masses **mass2**, coefficients **TN**, **TNuv** 只能按照 一维数组的方式处理,长度分别为 $n_{\mathcal{P}}, N$, and $n_{c}\left(N, \hat{P}\right)$ 。

张量元 T^{N,μ_1,\cdots,μ_P} with $N=1,\cdots,7$ 可以通过各自的 subroutine Aten_cll, ..., Gten_cll 进行计算。这些 subroutine Nten_cll 的参数结构如下

subroutine

Nten cll(TNten, TNtenuv, MomVec, MomInv, mass2, R, Tntenerr)

除了 MomInv 和 mass2, 跟 N_cll 中的用法一致。这里还必须提供 N-1 个四矢量 p_i ,就是出现在的传播子中的那些。用符号 MomVec 表示。 double complex MomVec (...)

momentum components

可以用 N-1 个数组表示,每个数组 (0:3),也可以用单个数组,维数为 (0:3,N-1)。注意 MomVec, MomInv, mass2 的参数形式应该一样,或者是单个数组,或者是一堆参数。和 MomInv 一样,type double complex (尽管在现版本的 COLLIER 中不支持虚部)。对于单点积分 A_cll, MomVec 参数应该省略。

整数 R 代表张量积分的最高阶 \hat{P} ,决定了输出数组 TNten and TNtenuv 的大小 (type complex)。如同之前描述的,它们可以是 4-维数组 $\left(0:\hat{P},0:\hat{P},0:\hat{P},0:\hat{P}\right)$,或者一维数组,长度为 $n_t(P)$ 。 $n_t(P)$ 在 COLLIER 初始化的时候决定,可以用以下函数获得

function GetNt_cll(R) result(nt)

integer R,nt : \hat{P} , $n_t(\hat{P})$

同样可以获得误差估计,通过在参数列表中提供可选的 output array TNtenerr。它的 entries $(0:\hat{P})$ of type precision 提供了,张量元对应 rank 绝对误差的幅值,如同在 subroutine N_cll 中。

除了使用独立的 Aten_cll,..., Gten_cll ,还可以用 generic subroutine 计算张量元到任意 N(原则上)

subroutine

 $TNten_cll(TNten, TNtenuv, MomVec, MomInv, mass2, Nn, R, TNtenerr).$

TNten_cll 跟 Aten_cll,...,Gten_cll 不同之处在于,多了一个 integer Nn 参数,用来指定圈图传播子的数目。

如果使用 TNten_cll, 那么 MomVec,MomInv,mass2 只能是单个数组的 形式,长度为 (0:3,1:N-1,), $(1:n_P)$ and,(0:N-1),而不能是参数集 合。但是输出中的 Tnten TNtenuv 用户仍然可以选择使用 $\left(0:\hat{P},0:\hat{P},0:\hat{P},0:\hat{P}\right)$,或者 $(1:n_t(P))$ 的形式。

显然,不管是系数 subroutine A_cll,..,G_cll, TN_cll, 还是张量元 subroutine Aten_cll,...,Gten_cll,or TNten_cll 的调用,都在各自的输出中,给出了相应标量积分的结果。如果用户只对标量 1-,...,4-点主积分感兴趣,可以选择限制 rank:R=0(i.e. $\hat{P}=0$),或者使用可选的 routines N0_cll=A0_cll,..,D0_cll:

subroutine NO_cll(TNO, MomInv, mass2)

double complex TN0: T_0^N .

这些 routines 提供了标量积分的结果,输出为单个变量 TN0 of type complex, 而输入 MomInv and mass2 可以在通常的用法中作选择。注意 routines A0_cll,...,D0_cll 没有连接到 cache system,并且如果 3-点函数的 Gram 行列式和 4-点函数的 Cayley 行列式为零,可能会 fail。

最后, COLLIER 也提供 routines, 来计算 2-点系数的动量导数, 在对外线粒子做波函数重整化的时候会用到。需要用到的 subroutine 是 DB_cll, 参数结构是

subroutine DB_cll(DB, DBuv, MomInv, mass2, R, DBerr)
double complex DB(...)
double comple DBuv(...)
double complex DBerr(...)

导数 $B'_{i_1\cdots i_{\tilde{P}}}\left(p_1^2\right)\equiv\partial B_{i_1\cdots i_{\tilde{P}}}\left(p_1^2\right)/\partial p_1^2$,的结果通过数组 DB and DBuv 返回。输入和输出参数的约定和 B_cll 完全类似。函数 B'_0,B'_1,B'_{00} , and B'_{11} 可以用以下 subroutines 得到,作为单个 double complex variables.

subroutine DB0_cll(DB0, MomInv, mass2) double complex DB0,

subroutine DB1_cll(DB0, MomInv, mass2) double complex DB1, subroutine DB00_cll(DB0, MomInv, mass2) double complex DB00, subroutine DB11_cll(DB0, MomInv, mass2) double complex DB011,

由于导数 $B'_{i_1\cdots i_p}$ (p_1^2) 没有被 cached, 所以 calls of the subroutine DB_cll, DB0_cll, DB1_cll, DB00_cl, and DB11_cll 与 COLLIER 的缓存系统不相干。

1.5.4 设置和获取参数

张量积分的结果不仅依赖于质量和动量参数的确切值,还依赖于 regularization parameters, as well as on technical parameters 决定约化方案的选择,和展开方法的迭代次数。最后的两组参数,对于一组确定的积分调用,通常是固定的。在 COLLIER 初始化期间,它们被初始化成默认值,在1.2中给出,并可以在稍后修改。稍后我们会给出这些参数的细节,以及使用 subroutine 改变或读取它们的值。

首先,我们注意到,COLLIER 的版本可以通过下面的 calling 获取: subroutine GetVersionNumber_cll(version)

1.5.4.1 正规化参数

character (len=5) version

COLLIER 使用维数正规化来处理 UV 发散。因此 UV 发散积分的结果依赖于1.8中的正规子 Δ_{UV} ,和维数正规化能标 μ_{UV} ,更精确地说,依赖于组合 $\Delta_{UV}+\ln\left(\mu_{UV}^2/Q^2\right)$,其中 Q^2 是张量积分中出现的一些能标。在微扰理论的固定阶,物理的 S-矩阵不依赖于 Δ_{UV} and μ_{UV} 。在 COLLIER 中, Δ_{UV} and μ_{UV}^2 被视为 type double precision 的数值参数,默认值为 $\Delta_{UV}=0$ and $\mu_{UV}^2=1$,其数值可以通过以下 subroutines 修改

subroutine SetDeltaUV_cll(delta) double precision delta, subroutine SetMuUV2_cll(mu2) double precision mu2

一方面,通过 varying 这些参数,用户数值地可以验证 S—矩阵元的 UV 有限性。另一方面,在重整化方案如 MS or \overline{MS} ,维数重整化标度 μ_{UV} 等同于跑动耦合 $g\left(\mu_{ren}\right)$ 的重整化标度 μ_{ren} 。在这种情况下,它具有了物理诠释,并且对 S—矩阵元有影响。 Δ_{UV} and μ_{UV}^2 值可以通过 subroutines 得到

subroutine GetDeltaUV_cll(delta) double precision delta, subroutine GetMuUV2_cll(mu2) double precision mu2

默认行为是。IR 发散也通过维数正规化。因此 IR-发散的积分,其结果依赖于 $\Delta_{IR}^{(1)}$ and $\Delta_{IR}^{(2)}$ defined in 1.8, and scale of dimensional regularization, μ_{IR} 。在微扰理论的固定阶,IR-finite 的物理量不依赖于 $\Delta_{IR}^{(1)}$, $\Delta_{IR}^{(2)}$ and μ_{IR} , 一旦 virtual and real 修正被组合。在 COLLIER 中, $\Delta_{IR}^{(1)}$, $\Delta_{IR}^{(2)}$ and μ_{IR}^{2} 用 type double precision 的数值参数来表示,默认值为 $\Delta_{IR}^{(1)} = \Delta_{IR}^{(2)} = 0$ and $\mu_{IR}^{2} = 1$,可以通过以下 subroutines 修改

subroutine SetDeltaIR_cll(delta1, delta2)
double precision delta1, delta2
subroutine SetMuIR2_cll(mu2)
double precision mu2

注意,特别地, $\Delta_{IR}^{(1)}$ and $\Delta_{IR}^{(2)}$ 可以被独立地改变。对 $\Delta_{IR}^{(1)}$, $\Delta_{IR}^{(2)}$ and μ_{IR}^2 的 variation 可以对可观测量的 IR 有限性进行数值检验。现有的值可以通过以下 calling 获取

subroutine GetDeltaIR_cll(delta1, delta2) double precision delta1, delta2, subroutine GetMuIR2_cll(mu2) double precision mu2

collinear 发散也可以通过引入一列质量正规子来正规化,

$$\mathcal{R}_{n_{reg}} = \left\{ \overline{m}_1^2, \overline{m}_2^2, \dots, \overline{m}_{n_{\text{reg}}}^2 \right\}$$

为了使用此功能,用户可以这样设置

subroutine SetMinf2_cll(nminf, minf2)
double complex minf2(nminf)

integer nminf

其中 integer 变量 nminf 代表不同正规子质量的数目 n_{reg} , 数组 minf2 包含了 \overline{m}_i^2 的平方值, of type double complex。可选择地,正规子质量可以相继被添加,通过 calling the subroutine

subroutine AddMinf2_cll(m2) double complex m2

它让 n_{reg} 增加 1,然后添加 double complex value m2 到列表 $\mathcal{R}_{n_{\text{reg}}}$ 中。当一个张量积分被调用,它的参数(质量平方和动量不变量)被数值 地与 $\mathcal{R}_{n_{\text{reg}}}$ 的元素进行比较。相同的 entries 被当成无穷小 throughout the calculation,它们的数值 (并不需要很小) are only kept in otherwise singular logarithms。在 calls of all subroutines,small masses 具有 exactly 相同的值是很重要的。mass regulators 的数目 n_{reg} and list of squared values can be read out with

subroutine GetNminf_cll(nminf)
subroutine GetMinf2_cll(minf2)
integer nminf

finally, the subroutine

subroutine ClearMinf2 cll

允许清除列表 $\mathcal{R}_{n_{reg}}$ and 重置 n_{reg} to zero.

1.5.4.2 技术参数

COLLIER 可以在三种不同模式下运行,通过

subroutine SetMode_cll(mode)
integer mode

其中 integer argument mode=1,2,3。For mode=1(默认值),使用 COLI branch ,for mode=2,the DD branch is used, for mode=3,the integrals 在 两种模式下都计算。在最后一种情形下,COLLIER 会返回两种结果中更好的那个。误差估计(如果在调用中指定可选参数的话)则根据两个分支的具体情况,并返回大的那一个。COLI and DD 之间大于一定阈值的差别,将会被存储的文件 CheckOut.cll 中。mode 的值可以被获取

subroutine GetMode_cll(mode)
integer mode

计算中设定的精度目标 η_{req} 可以通过下列 calling 设定 subroutine SetReqAcc_cll(acc) double precision acc

参数 acc of type double precision。为了达到精度目标,COLLIER 会选择合适的 scheme,如果必要的话会作多种选择,展开到足够的阶。因此, $\eta_{\rm req}$ 的选择决定了结果的 precision 和运行时间,最好权衡一下。默认值是 $\eta_{\rm req=10^{-8}}$,并且 library 对此设定进行了优化。 $\eta_{\rm req}$ 的当前值可以如下获得:subroutine GetReqAcc_cll(acc) double precision acc

至于实际结果满足精度 $\eta_{\rm req}$ 的程度取决于问题的复杂度。作为第二道精度门槛,一个关键精度 $\eta_{\rm crit}$,应该比 $\eta_{\rm req}$ 要大,可以如下设定

subroutine SetCritAcc_cll(acc)
double precision acc

参数 acc of type double precision。关键精度并不影响实际计算,它只是一个记账策略:如果计算的积分序列中有一个在某相空间点的不确定度达到 $\eta_{\rm crit}$,就升起一个 accuracy flag 来指示一个警告。用户可以查询这个flag,然后决定如何继续(比如放弃这个相空间点,或者改用不同的方法等等)。而且,关键的积分可以被监视。如果这个选项启用,它们的参数和结果会被自动写入到输出文件里。更多关于 accuracy flag and 监视关键积分的信息在 section 5.6 给出。关键精度被初始化为 $\eta_{\rm crit}=10^{-1}$;它的值可以如下设定

subroutine GetCritAcc_cll(acc)
double precision acc

最后,第三个精度参数 $\eta_{\rm check}$,应该比 $\eta_{\rm req}$ 大,管理 COLI 和 DD 结果 的比较。 $\eta_{\rm check}$ 的默认值应该是 $\eta_{\rm check}=10^{-4}$;它可以如下修改:

subroutine SetCheckAcc_cll(acc) subroutine GetCheckAcc_cll(acc) double precision acc For mode=3, 如果 COLI 和 DD 的结果差距超过 η_{check} , 将会被记录 到 file CheckOut.cll 中。mode=1 and mode=2 的时候, η_{check} 参数无关。

除了分别使用 subroutines 设置,还可以用一个 subroutine 同时设置 $\eta_{\text{req}},\ \eta_{\text{crit}},\ \eta_{\text{check}},$

subroutine SetAccurary_cll(acc0, acc1, acc2) double precision acc0, acc1, acc2

double precision arguments acc0,acc1,acc2 分别代表 η_{req} , η_{crit} , η_{check} 。 一个更重要的技术参数是,在迭代计算中,张量积分的最高 rank \hat{P}^{max} ,它也定义了展开方法的 cut-off order。可以如下进行设定

subroutine SetRitmax_cll(ritmax)
integer ritmax

其中 ritmax 可以大于等于 7。ritmax 的值可以通过以下的方式获取 subroutine GetRitmax_cll(ritmx)

如果对于 4-点函数, $\hat{P}^{\max} \geq 7$ 作为最高 rank,那么在内部,对于 3-点和 2-函数,自动设置为 $\hat{P}^{\max} + 2$ and $\hat{P}^{\max} + 4$ 。所以如果 $N \leq 4$, \hat{P}^{\max} 的值将会影响计算精度和时间(from external and internal calls),library 为默认值 $\hat{P}^{\max} = 14$ 特地进行了优化。注意,为了能够计算 $N = N_{\max}$ and $P = P_{\max}$ 的所有张量积分 $T^{N,P}$ (N_{\max} , P_{\max} 的值在初始化 call of Init_cll 中被指定), \hat{P}^{\max} 的值不能小于 $P_{\max} + 4 - N_{\max}$ 。

如同在 section 3 中解释的,对于 $N \geq 6$,约化方法既用 $T^N_{i_1,\dots i_P}$ 实现,也用 $T^{N,\mu_1\cdots\mu_P}$ 实现了。所以当 $N \geq 6$ 时,对于一个通常的 $T^{N,\mu_1\cdots\mu_P}$ 的计算分为 3 步: 首先,对于 $5 \leq \bar{N} = N_{\rm tenred} - 1 \leq 6$,系数 $T^{\bar{N}}_{i_1,\dots i_{P_{\bar{N}}}}$ 递归的从 2-点系数开始计算。然后用 $T^{\bar{N}}_{i_1,\dots i_{P_{\bar{N}}}}$ 构建 $T^{\bar{N},\mu_1\cdots\mu_{P_{\bar{N}}}}$ 。最后,张量 $T^{N,\mu_1\cdots\mu_P}$ 递归地计算自 $T^{\bar{N},\mu_1\cdots\mu_{P_{\bar{N}}}}$,见图1.6。阈值 $N_{\rm tenred}$ -从何处开始张量约化,可以如下设定和获取

subroutine SetTenRed_cll(Ntenred)
subroutine GetTenRed_cll(Ntenred)
integer Ntenred

其中参数 Ntenred 代表参数 N_{tenred} , subroutine subroutine SwitchOnTenRed cll

$$B_{i_1...i_P}$$
 $C_{i_1...i_P}$ $D_{i_1...i_P}$ $E_{i_1...i_P}$ $F_{i_1...i_P}$ $G_{i_1...i_P}$...
$$B^{\mu_1\cdots\mu_P}$$
 $C^{\mu_1\cdots\mu_P}$ $D^{\mu_1\cdots\mu_P}$ $E^{\mu_1\cdots\mu_P}$ $F^{\mu_1\cdots\mu_P}$ $G^{\mu_1\cdots\mu_P}$...

Figure 1: Reduction chains in Collier: For $N \geq 6$ reduction can be performed at the tensor level.

图 1.6: figure1 reduction chains

等价于 SetTenRed_cll(Ntenred) 并令 Ntenred=6, opts for the maximal level of tensor reduction, 而 subroutine

subroutine SwitchOffTenRed_cll

则将它完全关闭。默认设定是 maximal tensor reduction $N_{\text{tenred}} = 6$, 考虑到 run time 因素。

1.5.5 使用缓存系统

COLLIER 安排有 Cache 系统,避免重复计算相同的积分,以此来加快运算速度。它可以运行在 local 或者 global mode: 在 local mode,仅仅在单个 subroutine call 的过程中(Section 5.3),积分被存储。cache 系统探测在约化过程中,通过不同路径到达的相同积分,然后避免它们的重复计算。在 Global 中,不同的 subroutine call 也被连接起来。local mode 总是在工作的,而 global mode 需要被显式指定。为了这个目的,也许需要创建 $n_{\rm cache}$ 个单独的 cache,来储存系数或者张量的结果。可以实现如下

subroutine InitCacheSystem_cll(ncache,Nmax)
integer ncache, Nmax

其中参数 ncache and Nmax 分别代表,缓存的总数目 n_{cache} 以及计算 N-point 积分被 cached 的数目 up to $N = N_{\text{cache}}^{\text{max}}$ 。为了启用 global mode,必须在每个计算每个相空间点之前,用 call of InitEvent(cacheNr) 把这个 队列的 integral calls 分配到第 cacheNr 缓存。我们强调,对于每一个相空间点,integral calls 必须按照相同的顺序,并且在同一个相空间点,global parameters(like μ_{UV}^2 , mode of COLLIER 等等) 不能被 reset,因为积分是 依靠在用户调用序列中的次序来 identified。注意对 cacheNr 的数目没有限

制,需要的内存被动态分配,during the first phase-space points。取决于所解决的问题,cache in global mode 可能会引起 hig use of memory resources。

除了在一开始固定缓存总数 n_{cache} ,还能在后续添加缓存,通过 calling of subroutine

subroutine AddNewCache_cll(cache_no,Nmax) integer cache_no,Nmax

新的 cache,被初始化为最多储存 Nmax-点积分的结果作为输入,分配的缓存数目通过 output 参数 cache_no 返回。如果之前没有初始化 cache system, call of AddNewCache cll 相当于 call of InitCacheSystem(ncahce=1,Nmax)。

The threshold $N_{\text{cache}} \leq N_{\text{cache}}^{\text{max}}$ up to which 积分被 cached,可以被单独调整,for each cache。使用如下 subroutine

subroutine SetCacheLevel_cll(cache_no,Nmax)
integer cache_no,Nmax

注意第 cache_no 个缓存的 level $N_{\text{cache}}^{\text{max}}$,只能在这个缓存的第一个相空间点被计算之前改变。(i.e. 在 InitEvent_cll 被首次计算之前, with the argument cache_no)

可以使用 subroutine

subroutine SwitchOffCacheSystem_cll

暂时关闭 global cache 系统。如果需要临时在 integral calls 序列中加入额外的 call,这个选项将会很有用

subroutine SwitchOnCacheSystem_cll

将 global 缓存再次打开,将在它被中断的地方重新开始工作。

也可以之关闭一个特定的 cache calling

subroutine SwitchOffCache_cll(cache_no) integer cache_no

在这种情况下,使用

subroutine SwitchOnCache_cll(cache_no) integer cache_no

再次打开。cache 在被暂停的地方重新开始,或者,如果在暂停期间 subroutine InitEvent 被调用,从缓存 cache_no 积分列表中的第一个开始。

1.5.6 错误处理和输出文件

内部错误或者精度不够,在 COLLIER 中有两种处理方法:一方面,可以在运行过程中,设置和读取 flags for errors and accurary;另一方面,对应的错误信息,和出错的积分 calls,将会被记录在输出文件中。

error flag $\sigma_{\rm err}$ 获取 calling

subroutine GetErrFlag_cll(errflag)
integer errflag

integer errflag 的值从 $\sigma_{\rm err}=0$ (无错误)到 $\sigma_{\rm err}=-10$ (fatal errors)。 $\sigma_{\rm err}$ 保存它的值,直到被重写为更小的负数,表明遇到更加严重的错误。如此,errflag 指出了它遇到的最严重的错误。当 call of InitEvent_cll 之后,对于新相空间点的计算,它自动被重置为 $\sigma_{\rm err}=0$,也可以在任意时间重置

subroutine InitErrFlag_cll

如果 $\sigma_{\rm err}$ 的值小于一个门槛 $\sigma_{\rm stop}$,程序的执行将会自动停止。默认值是 $\sigma_{\rm stop}=-8$,以使得对于相空间点的特定错误计算不会停止,而在所有相空间点出现共性错误时,停止计算。可以给 $\sigma_{\rm stop}$ 设置不同的值,或者获取它的值,通过给 subroutine 提供 integer argument stopflag

subroutine SetErrStop_cll(stopflag),
subroutine GetErrStop_cll(stopflag)
integer stopflag

可以通过调用

subroutine SwitchOffErrStop_cll()

避免程序停止。

精度 flag $\sigma_{\rm acc}$ 的工作方式类似。它反映了结果的精度,可以作为 integer argument accflag 被获取

subroutine GetAccFlag_cll(accflag)
integer accflag

初始化为 $\sigma_{\rm acc}=0$,如果没有达到 $\eta_{\rm req}$,就降为 $\sigma_{\rm acc}=-1$,如果没有达到 $\eta_{\rm crit}$,就降为 $\sigma_{\rm acc}=-2$ (这些参数的细节见1.5.4.2)。想在 error flag 的情形一样, $\sigma_{\rm acc}$ 会被更加小的负值覆盖,来表明计算中最差的精度(从 $\sigma_{\rm acc}$ 被

初始化之后)。call of InitEvent_cll for a new phase-space point 将会自动初始化 $\sigma_{\rm acc}=0$,也可以用

subroutine InitAccFlag_cll

在初始化 COLLIER 的时候,用户可以选择 errors and accuracy 的 messages 返回的方式。默认地,COLLIER 把它们存储在

./output_cll/

下的独立文件中。像在 section1.5.2中描述的,用户可以自定义输出路径,通过添加相应的字符串,作为 subroutine Init_cll 的第二个可选参数。如果传入一个空字符串,那么相当于不创建输出文件夹。这个预定义的设置可以在随后修改,通过

subroutine SwitchOffFileOutput_cll,
subroutine SwitchOnFileOutput_cll,

或者创建新的输出文件夹

subroutine SetOutputFolder_cll(fname) character(len=*) fname.

输出文件夹的名字是 fname, 可以被获取

subroutine GetOutputFolder_cll(fname) character(len=*) fname

Error messages 被导出至 files ErrOut.coli, ErrOut.dd, and ErrOut.cll 取决于 err 来自于 COLI,DD,or global 接口 (or module tensors)。在初始化 COLLIER 的时候,这些文件被创建,一个 free output channel(number>100)被分配给它们。Output channel 可以被用户手动分配,通过

subroutine SeterroutCOLI_cll(outchan)
subroutine SeterroutDD_cll(outchan)
subroutine Seterrout_cll(outchan)
integer outchan

channel number outchan 是 integer 参数。尤其是,可以通过选择 outchan=6,将 error 重定向到标准 channel。注意,如果文件输出被关闭,通过 subroutine SwitchOffFileOutput cll, standard channel 并不会被关闭,而且,重定向

到标准 channel (terminal 或者一个专用文件) 的 COLLIER 输出会继续传递。当前选择的输出 channel 可以如下获取

subroutine GeterroutCOLL_cll(outchan) subroutine GeterroutDD_cll(outchan) subroutine Geterrout_cll(outchan) integer outchan.

为了避免输出文件体积过大,默认的 error messages 展示数目为 100。可以通过如下更改

subroutine SetMaxErrOutCOLI_cll(nout)
subroutine SetMaxErrOutDD_cll(nout)
subroutine SetMaxErrOut_cll(nout)
integer nout

指定对应的 integer 数目 nout 即可。默认 error 等的 counters 在每次 COL-LIER 重新初始化之后被重置,如果不希望重置的话,可以将 noreset=.true. 传递给 Init_cll, 这些 counters 也可以手动重置

subroutine InitErrCntCOLI_cll subroutine InitErrCntDD_cll subroutine InitErrCnt_cll

error 输出可以被 dis- and enabled by calling

subroutine SetErrOutLev_cll(outlev) integer outlev

其中 outlve=0 或者 outlev=1。如果 COLLIER 初始化的时候被传递了空数 组作为输出文件夹的名字,那么 error 输出默认被关闭,其他情况都是被打开的。

额外信息和与 errors 无关的状态信息被记录在 log-file InfOut.cll, 在 初始化 COLLIER 时指定的目录中。同时也会有一个 free output channel(number > 100) 自动产生,并且可以被用户修改,通过传递 integer outchan to

subroutine Setninfout_cll(outchan)
integer outchan

同样允许设置为标准 channel outchan=6。获得现在的 channel 可以用 subroutine Getinfout cll(outchan)

integer outchan

默认 output 上限是 $n_{\text{inf}}^{max} = 1000$,但是用户也可以修改

subroutine SetMaxInfOut_cll(nout) integer nout

默认情形下, n_{\inf}^{max} 以及其他的 counter 均会在 COLLIER 重新初始化期间被重置,除非设置了 noreset=.true.,作为 Init_cll 的额外参数。informative输出的程度可以被控制

subroutine SetInfOutLev_cll(outlev)
integer outlev

其中的 integer argument outlev=0,1,2。用空数组作为输出文件夹时,隐含了 outlev=0(不输出),其他情况输出被设置为 outle=2(最大输出)。在后一种情况,任何内部参数的改变,都会被记录在输出文件中,可能会导致文件体积很大。比如有些参数(UV 标度 $\mu_{\rm UV}^2$)被重复修改的时候(例如对于每个相空间点)。因此,也提供了折中的输出层次 outlev=1,它只追踪那些特别的活动,发生的频率较低。

当 COLLIER 的模式被首次切换到 mode=3 的时候, CheckOut.cll 在通常的输出文件夹中创建。同样有相应的 channel

subroutine Setncheckout_cll(outchan)
subroutine Getncheckout_cll(outchan)
integer outchan

在 mode=3,积分同时用 library 中的 COLI 和 DD branch 计算,文件 CheckOut.cll 收集这些积分的 input and results ,如果相对偏差大于 $\eta_{\rm check}$ (见 Section1.5.4.2)。2-点函数的导数也会被比较和保存,如果偏差大于 $\eta_{\rm check}$ 。输出数目被限制到 $n_{\rm check}^{\rm N,max}$ 个问题积分和 $n_{\rm check}^{\rm B\prime,max}$ 个问题导数。对于每个 N,可以单独修改 $n_{\rm check}^{\rm N,max}$

subroutine SetMaxCheck_cll(npoints,N)
integer npoints,N

npoints and N 代表 $n_{\text{check}}^{\text{N,max}}$ 和 N。对于 $n_{\text{check}}^{\text{B\prime,max}}$ 也是类似的

subroutine SetMaxCheckDB_cll(npoints)
integer npoints

也可以一次性设定 $n_{\text{check}}^{1,\text{max}}, \dots, n_{\text{check}}^{N,\text{max}}$, 通过传递 integer array $\left\{n_{\text{check}}^{1,\text{max}}, \dots, n_{\text{check}}^{N,\text{max}}\right\}$ 作为单个参数 npointarray 给

subroutine SetMaxCheck_cll(npointarray)
integer npointarray(Nmax)

注意 $N_{\rm max}$ 的值从上次 COLLIER 重新初始化时,call of Init_cll 之后就是固定的(见1.5.2)。初始值是 $n_{\rm check}^{1,{\rm max}}=\cdots=n_{\rm check}^{{\rm N},{\rm max}}=n_{\rm check}^{{\rm B}\prime,{\rm max}}=50$ 。call of Init_cll 导致 limits 和 counters 的重新初始化,除非 noreset=.true.。更进一步的,注意 counters for output messages in Checkout.cll 可以被手动重置为 0,通过

subroutine InitCheckCnt_cll

对于 N—点积分, and

subroutine InitCheckCntDB cll

对于 2-导数。

此外,用户也可以要求关于积分更详细的信息,for which 估计精度没有达到门槛 $\eta_{\rm crit}$ (见1.5.4.2) 这个 feature 必须显式开启

call InitMonitoring cll

激活之后, input and outputs for integrals 没有达到指定精度的,将会被记录到 CritPointsOut.cll。同样分配有 channel number

subroutine Setncritpointsout_cll(outchan)
subroutine Getncritpointsout_cll(outchan)
integer outchan

输出被限制为头 $n_{\rm crit}^{\rm N,max}=50$ 个有问题的 N-点积分和头 $n_{\rm crit}^{\rm B\prime,max}=50$ 个导数. 这些 limits 都可以更改

subroutien SetMaxCritPoints_cll(npoints,N),
subroutien SetMaxCritPoints_cll(npointarray),
subroutien SetMaxCritPointsDB_cll(npoints),
integer npoints,N
integer npointarray(Nmax)

工作方式和 subroutine SetMaxCheck_cll and SetMaxCheckDB_cll 是完全相似的。初始化或者后续初始化 of COLLIER 不会改变 $n_{\rm crit}^{\rm N,max}, n_{\rm crit}^{\rm BI,max}$ 和对应的 counters。但是,call of InitMonitoring_cll 将重置 $n_{\rm crit}^{\rm 1,max}=\cdots=n_{\rm crit}^{\rm 1,max}=50$,相应的 counters 也将重置为 0。若想只重置 conunters,可以 calling

subroutine InitPointsCnt_cll.

1.5.7 示例程序

在文件夹 diretory COLLIER-v/build 中执行命令

make demo

make democache

会产生两个示例程序,可以通过下面的命令执行

- ./demo
- ./democache

in the folder COLLIER-v/demos

程序 demo 专门用来计算单个张量积分。在运行过程中,用户会被要求指定 mode,并在众多 N—点积分的例子中选择一个偏爱的进行计算。计算结果写入到文件 demo_Npoint_exampleX.dat 中,引导用户查找到 demo.90 中各个积分的计算程序。在许多例子中,展示了同一个积分的各种调用,展示了如何与 subroutine 传递参数的不同方式。例子中使用的变量定义在文件 demo.f90 的一开始。其中包含了很多注释,通过移除前面的感叹号,可以激活它们,以此来改变 COLLIER 的各种全局参数。

程序 democache 展示了缓存的使用。对 1000 个相空间的点集, 计算了一系列共 8 个张量积分, 并重复几次。这个玩具 Monte Carlo 在四种配置下分别计算: 使用 COLI 分支, with or without cache, 然后使用 DD 分支, with and without cache。源代码放在 democache.f90 中。

1.6 总结

fortran-based library COLLIER 数值计算单圈标量或张量积分,并且对 粒子的 multiplicities 没有先天的限制。COLLIER 的特别在于: 对相空间的 delicate 区域,用专用技术自动优化数值稳定性,支持不稳定粒子的 complex 质量,对于红外发散,可以选择使用维数或质量正规化。此外,COLLIER 支持检查结果的正确性和数值稳定性,由于它使用了两种独立的积分 libraries,COLI and DD。

COLLIER 可以用在传统的费曼图方法和现代的幺正性方法中。The library 已经是 essential building block 的代表,在自动化单圈振幅 generator,如 OPENLOOPS and RECOLA,也将被更多其他生成器所使用。

1.7 附录 A. 动量不变量的集合,对于 N = 1, ..., 7

N-点张量积分依赖于动量不变量 \mathcal{P}_N 的完整集合, \mathcal{P}_N 由1.9式中传播 子中的动量 p_i 组成。我们对集合 \mathcal{P}_N 中元素次序的约定在1.10和1.11中给 出。为了方便,我们 $N=2,\cdots,7$ 的 \mathcal{P}_N 清楚地列在这里:

$$\mathcal{P}_{2} = \left\{ p_{1}^{2} \right\},$$

$$\mathcal{P}_{3} = \left\{ p_{1}^{2}, (p_{2} - p_{1})^{2}, p_{2}^{2} \right\},$$

$$\mathcal{P}_{4} = \left\{ p_{1}^{2}, (p_{2} - p_{1})^{2}, (p_{3} - p_{2})^{2}, p_{3}^{2}, p_{2}^{2}, (p_{3} - p_{1})^{2} \right\},$$

$$\mathcal{P}_{5} = \left\{ p_{1}^{2}, (p_{2} - p_{1})^{2}, (p_{3} - p_{2})^{2}, (p_{4} - p_{3})^{2}, p_{4}^{2}, p_{2}^{2}, (p_{3} - p_{1})^{2}, (p_{4} - p_{2})^{2}, p_{3}^{2}, (p_{1} - p_{4})^{2} \right\},$$

$$\mathcal{P}_{6} = \left\{ p_{1}^{2}, (p_{2} - p_{1})^{2}, (p_{3} - p_{2})^{2}, (p_{4} - p_{3})^{2}, (p_{5} - p_{4})^{2}, p_{5}^{2}, p_{2}^{2}, (p_{3} - p_{1})^{2}, (p_{4} - p_{2})^{2}, (p_{5} - p_{3})^{2}, p_{4}^{2}, (p_{1} - p_{5})^{2}, p_{3}^{2}, (p_{4} - p_{1})^{2}, (p_{5} - p_{2})^{2} \right\},$$

$$\begin{split} \mathcal{P}_7 = & \{p_1^2, (p_2 - p_1)^2, (p_3 - p_2)^2, (p_4 - p_3)^2, (p_5 - p_4)^2, (p_6 - p_5)^2, p_6^2, \\ & p_2^2, (p_3 - p_1)^2, (p_4 - p_2)^2, (p_5 - p_3)^2, (p_6 - p_4)^2, p_5^2, (p_1 - p_6)^2, \\ & p_3^2, (p_4 - p_1)^2, (p_5 - p_2)^2, (p_6 - p_3)^2, p_4^2, (p_1 - p_5)^2, (p_2 - p_6)^2\}. \end{split}$$

end of file end of file

参考文献

- [1] ref61
- [2] ref37
- [3] ref 50
- [4] ref45
- [5] ref52
- [6] ref59
- [7] ref43