Математический анализ. Неофициальный конспект

Лектор: Сергей Витальевич Кисляков Конспектировал Леонид Данилевич

IV семестр, весна 2024 г.

Оглавление

1	Kom	иплексный анализ	2
	1.1	Интеграл от дифференциальной формы вдоль кусочно-гладкого пути	3
		1.1.1 Про дифференциальные формы	3
		1.1.2 Про интегрирование	3
		1.1.3 Интеграл от дифференциальной формы вдоль пути	
		1.1.4 Сумма путей	4
		1.1.5 Альтернативное определение	4
		1.1.6 (Не)зависимость от параметризации	6
	1.2	Условия существования первообразной у дифференциальной формы	6
	1.3	Операторы $\frac{\partial}{\partial z}$ и $\frac{\partial}{\partial \overline{z}}$	
		1.3.1 Связь с голоморфными функциями	
	1.4	Гармонические функции	
	1.5	Первообразная от замкнутой формы вдоль непрерывного пути	
		1.5.1 Наводящие предположения	
		1.5.2 Требуемые свойства	19
		1.5.3 О гомотопности путей	
	1.6	Ряды Лорана	22
	1.7	Изолированные особенности голоморфных функций	
	1.8	Вычеты	
		1.8.1 Как вычислять вычеты	26
		1.8.2 Индекс замкнутого пути относительно точки	

Глава 1

Комплексный анализ

Лекция I

16 февраля 2024 г.

Пусть $f:G\to\mathbb{C}$, где открытое $G\subset\mathbb{C}$.

Определение 1.0.1 (f голоморфна в $z_0 \in G$). $\exists \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \stackrel{def}{=} f'(z_0)$.

Во втором семестре мы проверяли, что f=u+iv (где $u,v:G\to\mathbb{R}$) голоморфна в $z_0\iff f$ дифференцируема в вещественном смысле, и выполняются уравнения Коши — Римана:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

Определение 1.0.2 (f аналитична в G). $\forall z_0 \in G : \exists c_i \in \mathbb{C}$:

$$f(z) = \sum_{j=0}^{\infty} c_j (z - z_0)^j$$
 (*)

где ряд сходится не только при $z=z_0$.

Теорема 1.0.1. f аналитична в $G \iff f$ голоморфна во всех точках G.

Доказательство.

⇒. Доказали во втором семестре, несложно.

⇐. Скоро займёмся, время пришло.

Из представления (*) следует, что производная в точке z считается почленно: $f'(z) = \sum_{j=1}^{\infty} jc_j(z-z_0)^{j-1}$. В частности, отсюда получается, что $f'(z_0) = c_1$, и вообще $f^{(n)}(z_0) = j! \cdot c_j$.

Вскоре мы увидим, что ситуация разительно отличается от вещественной: в вещественном случае были разные классы — дифференцируемые функции, C^1 , C^∞ , аналитичные, и множество промежуточных классов.

В комплексном же случае, если функция хотя бы один раз дифференцируема, то окажется, что этого достаточно, чтобы она была не просто дифференцируема, а непрерывно дифференцируема, бесконечно дифференцируема, и даже аналитична.

1.1 Интеграл от дифференциальной формы вдоль кусочно-гладкого пути

1.1.1 Про дифференциальные формы

Определение 1.1.1 (Линейная функция $l: \mathbb{R}^n \to \mathbb{C}$). $\forall \alpha, \beta \in \mathbb{R}, x, y \in \mathbb{R}^n : l(\alpha x + \beta y) = \alpha l(x) + \beta l(y)$.

Определение 1.1.2 (Линейная форма на множестве $G \subset \mathbb{R}^n$). Функция двух переменных $\phi : G \times \mathbb{R}^n \to \mathbb{C}$, линейная по второму аргументу.

В пространстве \mathbb{R}^n имеется базис (e_i) : $h = e_1 h_1 + \cdots + e_n h_n$.

Тем самым,
$$\phi(x,h) = \sum_{j=1}^{n} \underbrace{\phi(x,e_{j})}_{=:q_{j}(x)} h_{j} = \sum_{j=1}^{n} g_{j}(x) h_{j}.$$

Введём базисные линейные формы $\mathrm{d}x_j(u,h) = h_j$, игнорирующую первую координату, и возвращающая j-ю компоненту второго аргумента. Теперь $\phi(x,h)$ разложилась в сумму $\sum_{j=1}^n g_j \, \mathrm{d}x_j$.

Пример. Пусть $f:G\to \mathbb{C}$ — дифференцируемая в G функция. Заметим, что её дифференциал $\mathrm{d}_f(x,_)$ — в точности линейная форма на G.

При разложении по базису получится $d_f(x, _) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(x) dx_i$.

Вскоре мы увидим, что далеко не всякая линейная форма является чьим-то дифференциалом.

Если
$$\phi = \sum_{j=1}^n g_j \, \mathrm{d} x_j$$
 — дифференциал функции f , то непременно $g_j = \frac{\partial f}{\partial x_j}$.

Тот факт, что ϕ является дифференциалом f, можно сказать наоборот: f является первообразной ϕ .

1.1.2 Про интегрирование

Рассмотрим монотонную функцию $\Phi:\langle a,b\rangle\to\mathbb{R}$. Как и при определении стилтьесовой длины, будем считать, что Φ определена на некотором открытом множестве, содержащем $\langle a,b\rangle$. Обозначим за l_Φ стилтьесову длину, отвечающую функции Φ .

Пускай λ_{Φ} — продолжение стилтьесовой длины l_{Φ} по Лебегу — Каратеодори.

Она, как водится, определена на некоторой Σ -алгебре, в которой есть борелевские множества, но измеримы могут быть и какие-то другие множества, зависящие от конкретной функции Φ .

Примеры.

• Так, функция $\phi(x) = \begin{cases} 0, & x < 0 \\ 1, & x \geqslant 0 \end{cases}$ порождает дельта-меру δ_0 , относительно которой все множества измеримы.

Кроме того, эта мера сингулярна относительно стандартной меры Лебега.

• Может показаться, что так происходит из-за разрывности ϕ , но это не так.

Рекурсивно определим канторову лестницу $C:[0,1] \to [0,1]$:

Построив по данной функции стилтьесову длину λ_C , мы получим меру, сосредоточенную на канторовом множестве меры нуль.

Её носитель — само канторово множество, так как на всех отрезках вне канторова множества λ_C равна нулю. Она сингулярна относительно стандартной меры Лебега на \mathbb{R} , и её измеримые множества разительно отличаются от измеримых множеств меры Лебега.

По мере Стилтьеса можно интегрировать: если v является λ_Φ измеримой (в частности, измерима по Борелю и непрерывна), то определён интеграл $\int\limits_{\langle a,b\rangle} v\,\mathrm{d}\lambda_\Phi$ Иногда пишут просто $\int\limits_{\langle a,b\rangle} v\,\mathrm{d}\Phi.$

Теперь пусть I=[a,b], и $\Psi:[a,b]\to\mathbb{R}$ — функция ограниченной вариации. В таком случае $\Psi=\Phi_1-\Phi_2$, где некие Φ_1,Φ_2 возрастают. Можно определить знакопеременную меру $\lambda_\Psi\stackrel{def}{=}\lambda_{\Phi_1}-\lambda_{\Phi_2}$, понятно, что определение корректно.

1.1.3 Интеграл от дифференциальной формы вдоль пути

Пускай $\gamma:[a,b]\to G\subset\mathbb{R}^n$ — спрямляемый путь (путь конечной длины). Пускай $U=\sum\limits_{j=1}^n u_j\,\mathrm{d}x_j$ — дифференциальная форма в области G. Если не сказано противное, будем считать, что u_j — непрерывные функции.

Определение 1.1.3 (Интеграл от
$$U$$
 вдоль пути γ). $\int\limits_{\gamma}U\stackrel{def}{=}\sum\limits_{j=1}^{n}\int\limits_{[a,b]}u_{j}(\gamma(t))\,\mathrm{d}\gamma_{j}(t).$

Здесь $\gamma=(\gamma_1,\ldots,\gamma_n)$. Так как путь спрямляем, то все γ_j — ограниченной вариации, каждая порождает свою меру Стилтьеса, и определение интегрирует композицию $U\circ\gamma$ по данной мере.

1.1.4 Сумма путей

Пускай имеются два отрезка [a,c] и [c,d], и на них заданы пути $\gamma_1:[a,c]\to G,\ \gamma_2:[c,d]\to G.$ Предположим, что $\gamma_1(c)=\gamma_2(c).$

Тогда можно устроить путь
$$\gamma=\gamma_1\oplus\gamma_2:[a,d]\to G,\ \gamma(t)\stackrel{def}{=} \begin{cases} \gamma_1(t), & t\in[a,c]\\ \gamma_2(t), & t\in[c,d] \end{cases}.$$

Замечание. Интеграл аддитивен по множеству: $\int\limits_{\gamma_1 \oplus \gamma_2} U = \int\limits_{\gamma_1} U + \int\limits_{\gamma_2} U.$

1.1.5 Альтернативное определение

Далее мы не интересуемся никакими чудесами вроде канторовых лестниц, и считаем, что Φ такова, что λ_{Φ} абсолютно непрерывна относительно стандартной меры Лебега.

A раз так, то по теореме Радона — Никодима \exists суммируемая $w:[a,b] \to \mathbb{R}$, такая, что

$$\lambda_{\Phi}(e) = \int_{e} w(x) \, \mathrm{d}x \tag{+}$$

Факт 1.1.1. Формула (+) заведомо верна, если Φ непрерывно дифференцируема на [a,b], тогда $w=\Phi'$.

Доказательство. Введём меру $\nu(e) = \int\limits_e \Phi'(x) \,\mathrm{d}x$, заданную на измеримых по Лебегу множествах. Φ' непрерывна, и, следовательно, измерима.

Если
$$\langle c,d \rangle \subset [a,b]$$
, то $\nu(\langle c,d \rangle) = \int\limits_{\langle c,d \rangle} \Phi'(x) \,\mathrm{d}x = \Phi(d) - \Phi(c) = l_\Phi(\langle c,d \rangle).$

Таким образом, из теоремы единственности, продолжение l_Φ по Лебегу — Каратеодори совпадает с $\int\limits_{a}\Phi'(x)\,\mathrm{d}x$.

Замечание. Утверждение (факт 1.1.1) сохраняет силу, если Φ непрерывна и кусочно-непрерывно дифференцируема.

Далее где-то используется Φ , а где-то β , надо убедиться, что это везде одно и то же, и заменить. Пускай $\beta:[a,b]\to\mathbb{R}$ — функция ограниченной вариации, кусочно-непрерывно дифференцируемая: $\exists a=a_0< a_1<\cdots< a_k=b$, такие, что β непрерывно дифференцируема на $[a_s,a_{s+1}]$ при $0\leqslant s< k$. Введём $\rho(e)=\int\limits_e^{\beta}\beta'(x)\,\mathrm{d}x$ — это знакопеременная вещественная мера.

У данной меры возникают (см. разложение Хана) положительная и отрицательная части $\rho_+(e) \stackrel{def}{=} \int\limits_e (\beta')_+(x) \, \mathrm{d} x$ и $\rho_-(e) \stackrel{def}{=} \int\limits_e (\beta')_-(x) \, \mathrm{d} x$

Если обозначить за $\Phi_+(t) = \int\limits_0^t (\beta')_+(x) \,\mathrm{d}x$ и $\Phi_-(t) = \int\limits_0^t (\beta')_-(x) \,\mathrm{d}x$, то окажется, что соответствующие меры Стилтьеса совпадают с ρ_+ и ρ_- .

Более того, $\beta = \Phi_+ - \Phi_-$ — получили разложение функции ограниченной вариации в положительную и отрицательную части.

Замечание. Это разложение экономнее, чем то, которое было получено ранее — ранее в качестве Φ_+ выбиралась вариация Φ_-

Если всё, что написано выше, собрать вместе, то получится

$$\int_{[s,t]} v \, d\Phi = \int_{[s,t]} v(x)\beta'(x) \, dx$$

Далее «гладкий» используется, как синоним к непрерывно-дифференцируемому.

Следствие 1.1.1 (Можно считать определением). Если $U = \sum_{j=1}^n u_j \, \mathrm{d} x_j - \partial u \phi \phi$ еренциальная форма в G с непрерывными коэффициентами, а $\gamma = (\gamma_1, \dots, \gamma_n) : [a,b] \to G$ — спрямляемый кусочно-гладкий путь, то

$$\int_{\gamma} U = \sum_{j=1}^{n} \int_{a}^{b} u_{j}(\gamma(t)) \gamma_{j}'(t) dt$$

1.1.6 (Не)зависимость от параметризации

Пускай $\gamma:[a,b] \to G$ — кусочно-гладкий путь, $\psi:[c,d] \to [a,b]$ — гладкий гомеоморфизм.

Теперь $\widetilde{\gamma} = \gamma \circ \psi$ — перепараметризация γ

Лемма 1.1.1. Для всякой формы U:

$$\int_{\widetilde{\gamma}} U = \pm \int_{\gamma} U$$

3нак + выбирается, если ψ возрастает, и - - если убывает.

Доказательство. Предположим, что γ — гладкий путь, иначе применяем к кусочкам гладкости по отдельности.

$$\int_{\widetilde{\gamma}} U = \sum_{j=1}^n \int_c^d u_j(\gamma(\psi(t))) \gamma_j'(\psi(t)) \cdot \psi'(t) \, \mathrm{d}t = \left\| \begin{array}{c} \tau = \psi(t) \\ \mathrm{d}\tau = \psi'(t) \, \mathrm{d}t \end{array} \right\| = \sum_{j=1}^n \int_{\psi(c)}^{\psi(d)} u_j(\gamma(\tau)) \gamma_j'(\tau) \, \mathrm{d}\tau = \pm \int_{\widetilde{\gamma}} U \quad \Box$$

Про ψ также можно считать, что это он не гладкий, а лишь кусочно-гладкий.

Тем самым, можно определить сумму путей для несоприкасающихся отрезков: для двух путей $\gamma_1:[a,b]\to G, \gamma_2:[c,d]\to G$ (при условии $\gamma_1(b)=\gamma_2(c)$) можно один их отрезков-прообразов линейным возрастающим преобразованием перевести в отрезок, соприкасающийся со вторым (например, $t\mapsto t+(b-c)$).

Также есть понятие обратного пути $\gamma^-(t) = \gamma(a+b-t)$. Для любой формы U:

$$\int\limits_{\gamma\oplus\gamma^-}U=\int\limits_{\gamma}U+\int\limits_{\gamma^-}U=\int\limits_{\gamma}U-\int\limits_{\gamma}U=0$$

1.2 Условия существования первообразной у дифференциальной формы

Теорема 1.2.1. Если у дифференциальной формы U в открытом множестве $G \subset \mathbb{R}^n$ имеется первообразная F, то для всякого кусочно-гладкого пути $\gamma:[a,b] \to G$

$$\int_{\gamma} U = F(\gamma(b)) - F(\gamma(a))$$

 \mathcal{L} оказательство. $U=\sum_{j=1}^n g_j\,\mathrm{d} x_j$, где $g_j(w)=\frac{\partial}{\partial x_j}F(w)$. Считаем, что путь гладкий.

$$\int_{\gamma} U = \sum_{j=1}^{n} \int_{a}^{b} \frac{\partial}{\partial x_{j}} F(\gamma(t)) \gamma_{j}'(t) dt = \int_{a}^{b} \frac{d}{dt} (F \circ \gamma)(t) dt = F(\gamma(b)) - F(\gamma(a))$$

Если же путь всего лишь кусочно-гладкий, то надо разбить отрезок на подотрезки гладкости, и сложить. \Box

Следствие 1.2.1. Если у дифференциальной формы U есть первообразная, то её интегралы по всем путям с данными началом и концом, равны.

Оказывается, верно и обратное.

Лемма 1.2.1. Пусть G — область в \mathbb{R}^n , тогда любые две её точки можно соединить ломаной (кусочно-линейным путём).

Доказательство. Выберем $x_0 \in G$, положим $U = \{y \in G | \text{существует ломаная в } G \text{ с началом в } x_0 \text{ и концом в } y\}.$

Покажем, что U открыто. Пусть $y \in U$, тогда найдётся шарик $B_{\varepsilon}(y) \subset G$, и $B_{\varepsilon}(y) \subset U$ — можно добавить одно звено к ломаной $x_0 \leadsto y$.

Покажем, что U замкнуто. Пусть $z \in G$ — предельная точка для U. Найдётся $B_{\varepsilon}(z) \subset G$, так как z — предельная, то $\exists y \in B_{\varepsilon}(z) \cap U$. Значит, $z \in U$ — можно добавить одно звено $y \to z$.

Замечание. Имея кусочно-линейный путь $\gamma:[a,b]\to G$, соединяющий $A,B\in G$, несложно получить бесконечно дифференцируемый путь, соединяющий их:

Пусть
$$\gamma_1:[a-1,b+1]\to G, \gamma_1(t)= \begin{cases} \gamma(t), & t\in[a,b]\\ \gamma(a), & t\in[a-1,a]. \end{cases}$$
 Теперь, сворачивая γ_1 с аппрокси- $\gamma(b), & t\in[b,b+1]$

мативной единицей с достаточно большим номером и достаточно малым компактным носителем, получим бесконечно дифференцируемый путь, соединяющий A и B.

Теорема 1.2.2. Пусть $\Phi = \sum_{j=1}^n f_j(x) \, \mathrm{d} x_j$ — непрерывная дифференциальная форма в G (то есть коэффициенты непрерывны в G). Следующие условия эквивалентны.

- 1. У Φ есть первообразная F, то есть функция $F\in C^1(G)$: $\mathrm{d} F=\Phi$ (иными словами, $\forall j:\frac{\partial}{\partial x_i}F=f_j$).
- 2. Для всех кусочно-гладких путей γ с фиксированными началом и концом $\gamma(a)=\gamma_a, \gamma(b)=\gamma_b$: $\int\limits_{\gamma}\Phi$ не зависит от γ (а только от начала и конца).
- 3. Для любой кусочно-гладкой петли (то есть замкнутого пути) γ в G: $\int\limits_{\gamma}\Phi=0$.

Доказательство. Мы уже доказали ранее цепочку импликаций $(1) \Rightarrow (3) \Rightarrow (2)$. Далее доказываем $(2) \Rightarrow (1)$.

Предъявим кандидат в первообразную. Зафиксируем $x_0 \in G$, выберем $x \in G$, пусть γ — произвольный кусочно-гладкий путь с началом в x_0 и концом в x. Определим $F(x) \stackrel{def}{=} \int\limits_{\gamma} \Phi$. Согласно посылке, F корректно определена — не зависит от выбора пути.

Покажем, что частные производные F существуют, и равны f_j . Тогда они получатся непрерывными, то есть F — дифференцируемой, и окажется, что F — первообразная Φ .

Пусть e_1,\ldots,e_n — стандартные базисные орты в \mathbb{R}^n . Рассмотрим $\frac{F(x+te_j)-F(x)}{t}$.

При малых t: отрезок между x и $x+te_j$ лежит внутри G. Пусть γ_1 — путь, соединяющий x_0 и x, l — отрезок от x до $x+te_j$.

$$\frac{F(x+te_j) - F(x)}{t} = \frac{1}{t} \left(\int_{\gamma_1 \oplus l} \Phi - \int_{\gamma_1} \Phi \right) = \frac{1}{t} \int_{l} \Phi = \frac{1}{t} \int_{0}^{t} f_j(x+\tau e_j) d\tau \xrightarrow[t \to 0]{} f_j(x) \qquad \Box$$

Определение 1.2.1 (Прямоугольник на плоскости). Множество вида $[a,b] \times [c,d] \subset \mathbb{R}^2$.

Область G на плоскости будем называть $y \partial o \delta h o \mathring{u}$, если $\exists x_0 \in G : \forall y \in G : \exists$ прямоугольник $P \subset G$, содержащий точки x и y.

Примеры (Удобные области).

• ${\rm Int}\,Q$, если Q — прямоугольник. В качестве центра x_0 подойдёт любая точка.

• $B_r(x_0) = \{x \in \mathbb{R}^2 \big| |x-x_0| < r\}$. В качестве центра x_0 стоит взять центр, иначе не получится:

Определение 1.2.2 (Ориентированная граница прямоугольника P). Петля γ , обходящая границу $P = [a,b] \times [c,d]$ против часовой стрелки, то есть вот так:

$$(a,d) \qquad \gamma_3 \qquad (b,d)$$

$$\gamma_4 \qquad \gamma_2 \qquad \gamma_2$$

$$(a,c) \qquad \gamma_1 \qquad (b,c)$$

 $\gamma = \gamma_1 \oplus \gamma_2 \oplus \gamma_3 \oplus \gamma_4.$

Для прямоугольника P будем обозначать за ∂P в зависимости от контекста либо границу P, как топологического подмножества \mathbb{R}^2 , либо путь, обходящий границу P против часовой стрелки.

Следствие 1.2.2 (Дополнение к (теорема 1.2.2)). Если G-yдобная область на плоскости, то к трём эквивалентным условиям (теорема 1.2.2) можно добавить

4.
$$\forall P \subset G : \int_{\partial P} \Phi = 0.$$

Доказательство. $(3) \Rightarrow (4)$ ясно, докажем $(4) \Rightarrow (1)$.

Пусть $x_0\in G$ — центр удобной области, определим $F(x)=\int\limits_\delta\Phi$, где δ — это либо $\delta_1\coloneqq\gamma_1\oplus\gamma_2$ либо $\delta_2\coloneqq\gamma_4^-\oplus\gamma_3^-$ (вне зависимости от выбора δ получится одно и то же).

Далее, чтобы проверить $\frac{\partial}{\partial x_1}F=f_1$ и $\frac{\partial}{\partial x_2}F=f_2$, воспользуемся подходящим представлением: пусть орт выглядит так:

тогда для проверки $\frac{\partial}{\partial x_1}F=f_1$ удобно воспользоваться определением F через δ_1 , для проверки $\frac{\partial}{\partial x_2}F=f_2$ — определением через δ_2 . Далее повторяем рассуждение из (теорема 1.2.2).

Пусть $\Phi = \sum\limits_{j=1}^n f_j(x)\,\mathrm{d} x_j$ — непрерывная дифференциальная форма в области $G\subset\mathbb{R}^n.$

Определение 1.2.3 (Форма Φ точна). Существует первообразная F в $G: \mathrm{d}F = \Phi$.

Определение 1.2.4 (Форма Φ замкнута). Форма Φ локально точна ($\forall x_0 \in G : \exists U \ni x_0 : \Phi|_U$ точна).

Понятно, что точная форма замкнута, но точность из замкнутости не следует: чуть позднее мы определим $\mathrm{d}z$, и покажем, что $\frac{\mathrm{d}z}{z}$ — замкнутая, но не точная форма на $\mathbb{C}\setminus\{0\}$

Теорема 1.2.3. Пусть Φ — дифференциальная форма в области $G \subset \mathbb{R}^n$. Следующие условия эквивалентны:

- Ф замкнута.
- 2. $\forall x_0 \in G: \exists V \ni x_0: \forall$ кусочно-гладкого замкнутого пути γ с носителем в $V: \int\limits_{\gamma} \Phi = 0.$

Если n=2, то дополнительно появляются ещё два условия:

3.
$$\forall z \in G : \exists V_z \subset G : \forall P \subset V_z : \int_{\partial P} \Phi = 0.$$

4.
$$\forall P \subset G : \int_{\partial P} \Phi = 0$$
.

Доказательство. Докажем, что $(3) \Rightarrow (4)$, остальное уже доказано выше.

Заметим, что границу прямоугольника P можно представить, как сумму границ четырёх прямоугольников вдвое меньшего диаметра:

Таким образом, чтобы доказать, что интеграл по границе большого прямоугольника P нулевой, разобьём его на достаточно маленькие прямоугольники, по ним-то интеграл нуль. Чтобы это формализовать, вспомним лемму Лебега о покрытии:

Теорема 1.2.4 (Лемма Лебега). Пусть K — компакт в метрическом пространстве, $\{U_j\}_{j\in J}$ — открытое покрытие компакта K. Тогда $\exists \delta > 0 : \forall A \subset K : \operatorname{diam} A < \delta \Rightarrow \exists j \in J : A \subset U_j$.

Применяя лемму Лебега для покрытия P окрестностями $\{V_z\}_{z\in P}$, получим такое число δ . Теперь надо разбить границу прямоугольника P в сумму границ прямоугольников диаметра меньше δ , а посылка теоремы говорит, что интеграл по ним уже нуль.

1.3 Операторы $\frac{\partial}{\partial z}$ и $\frac{\partial}{\partial \overline{z}}$

Как известно, $\mathbb{C}=\{x+iy|x,y\in\mathbb{R}\}$, то есть $\forall z\in\mathbb{C}:z=x+iy$, аналогично $\overline{z}=x-iy$.

Рассмотрим z и \overline{z} , как функции $\mathbb{R}^2 \to \mathbb{C}$, $(x,y) \mapsto x \pm iy$. Теперь $\mathrm{d}z = \mathrm{d}x + i\,\mathrm{d}y$ и $\mathrm{d}\overline{z} = \mathrm{d}x - i\,\mathrm{d}y$ образуют базис в пространстве дифференциальных форм (тех, которые не зависят от точки), обратное преобразование выглядит так:

$$\begin{cases} dx = \frac{dz + d\overline{z}}{2} \\ dy = \frac{dz - d\overline{z}}{2i} \end{cases}$$

Рассмотрим форму $\Phi: \mathbb{R}^2 \to \mathbb{C}, \Phi(x,y) = \alpha(x,y) \, \mathrm{d}x + \beta(x,y) \, \mathrm{d}y$. Перепишем её в новом базисе:

$$\Phi(x,y) = \frac{\alpha(x,y)}{2}(\mathrm{d}z + \mathrm{d}\overline{z}) + \frac{\beta(x,y)}{2i}(\mathrm{d}z - \mathrm{d}\overline{z}) = \frac{\alpha(x,y) - i\beta(x,y)}{2}\,\mathrm{d}z + \frac{\alpha(x,y) + i\beta(x,y)}{2}\,\mathrm{d}\overline{z}$$

Теперь пусть Φ — точная форма, то есть $\Phi = \mathrm{d}F$, и тогда $\alpha(x,y) = \frac{\partial}{\partial x}F(x,y)$ и $\beta(x,y) = \frac{\partial}{\partial y}F(x,y)$. Теперь

$$dF = \frac{1}{2} \left(\frac{\partial F}{\partial x} - i \frac{\partial F}{\partial y} \right) dz + \frac{1}{2} \left(\frac{\partial F}{\partial x} + i \frac{\partial F}{\partial y} \right) d\overline{z}$$

Определение 1.3.1 $(\frac{\partial F}{\partial z})$. Коэффициент, стоящий перед $\mathrm{d}z$, то есть $\frac{1}{2}\left(\frac{\partial F}{\partial x}-i\frac{\partial F}{\partial y}\right)$.

Определение 1.3.2 $(\frac{\partial F}{\partial \overline{z}})$. Коэффициент, стоящий перед $d\overline{z}$, то есть $\frac{1}{2}\left(\frac{\partial F}{\partial x}+i\frac{\partial F}{\partial y}\right)$.

Иначе говоря, мы ввели операторы $\frac{\partial}{\partial z}\stackrel{def}{=}\frac{1}{2}\left(\frac{\partial}{\partial x}-i\frac{\partial}{\partial y}\right)$ и $\frac{\partial}{\partial \overline{z}}\stackrel{def}{=}\frac{1}{2}\left(\frac{\partial}{\partial x}+i\frac{\partial}{\partial y}\right)$ так, что

$$\mathrm{d}F = \frac{\partial}{\partial z} F \, \mathrm{d}z + \frac{\partial}{\partial \overline{z}} F \, \mathrm{d}\overline{z}$$

1.3.1 Связь с голоморфными функциями

Пусть F = u + iv, где $u, v : \mathbb{R}^2 \to \mathbb{R}$. Запишем

$$\frac{\partial F}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} + i \left(\frac{\partial u}{\partial y} + i \frac{\partial v}{\partial y} \right) \right) = \frac{1}{2} \left(\left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) + i \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) \right)$$

В правой части равенства получились выражения из уравнений Коши — Римана.

Факт 1.3.1. Вещественные функции u,v удовлетворяют уравнениям Коши — Римана $\Leftrightarrow \frac{\partial (u+iv)}{\partial \overline{z}} \equiv 0.$

Факт 1.3.2. F голоморфна \iff $\mathrm{d}F = \frac{\partial F}{\partial z}\,\mathrm{d}z$. При этом $\frac{\partial F}{\partial z}$ есть производная F по комплексному аргументу.

Доказательство. Функция дифференцируема по комплексному аргументу \iff её дифференциал — умножение на комплексное число. □

В основном нас будут интересовать дифференциальные формы вида $\phi(z)\,\mathrm{d}z$, где ϕ — произвольная функция.

Выясним, когда у формы $\phi(z)\,\mathrm{d}z=\phi(z)\,\mathrm{d}x+i\phi(z)\,\mathrm{d}y$ имеется первообразная, то есть функция $g:\frac{\partial g}{\partial x}=\phi,\frac{\partial g}{\partial y}=i\phi$. Заметим, что $\frac{\partial g}{\partial z}=\frac{1}{2}(\phi-i(i\phi))=\phi$ и $\frac{\partial g}{\partial \overline{z}}=\frac{1}{2}(\phi+i(i\phi))=0$.

Утверждение 1.3.1. Форма $\phi \, dz$ имеет первообразную $g \iff g$ голоморфна, и $g' = \phi$.

Теорема 1.3.1 (Коши). Если $g:G\to\mathbb{C}$ — голоморфная функция (область $G\subset\mathbb{C}$), то форма $g(z)\,\mathrm{d} z$ замкнута.

Доказательство. Потом.

Контрпример (Глобально первообразной может не быть). Пусть $G=\mathbb{C}\setminus\{0\}, g:G\to\mathbb{C}, g:z\mapsto \frac{1}{z}.$

По теореме Коши у g имеется локальная первообразная — комплексный логарифм — но глобально определить не получится. Пусть $\Gamma = \partial \mathbb{T}$ — комплексная окружность, ориентируем её против часовой стрелки, а именно, рассмотрим стандартный обход окружности $\alpha: [0,2\pi] \to \mathbb{C}, \alpha: \phi \mapsto e^{i\phi}$. Теперь убедимся, что форма не точна:

$$\int_{\Omega} \phi = \int_{\Omega} \frac{\mathrm{d}z}{z} = \int_{0}^{2\pi} \frac{\left(e^{it}\right)'}{e^{it}} \,\mathrm{d}t = \int_{0}^{2\pi} \mathrm{d}t = 2\pi i \neq 0$$

Для будущих применений также определим ориентированную против часовой стрелки границу $B_r(z_0)$, это путь $\beta(t)=z_0+re^{it}$ для $t\in[0,2\pi]$.

Пример. Пусть $z_0, w \in \mathbb{C}, r \in \mathbb{R}_{>0}, \ |w-z_0| \neq r$, пусть путь γ обходит границу $B_r(z_0)$ против часовой стрелки:

Тогда, оказывается, (посчитаем чуть позже):

$$\int_{\gamma} \frac{\mathrm{d}z}{z - w} = \begin{cases} 0, & |z - w| > r \\ 2\pi i, & |z - w| < r \end{cases} \tag{\diamond}$$

Грубой силой этот интеграл посчитать непросто, так как w находится где угодно — внутри или снаружи круга — а интеграл, оказывается, зависит только от этих двух альтернатив.

Теорема 1.3.2 (Основная оценка интеграла вдоль пути). Пускай $\Phi = \sum_{j=1}^n f_j \, \mathrm{d} x_j$ — непрерывная дифференциальная форма в области $G \subset \mathbb{R}^n$, а $\gamma : [a,b] \to G$ — кусочно-гладкий путь, $K \coloneqq \mathrm{Im}(\gamma) \subset G$.

Тогда
$$\left| \int_{\gamma} \Phi \right| \leqslant \sup_{x \in K} \left(\sum_{j=1}^{n} |f_{j}(x)|^{2} \right)^{1/2} \cdot l(\gamma).$$

 ${\it Доказательство}.$ Считаем, что γ — гладкий путь, иначе нужно разбить на кусочки гладкости.

$$\left| \int_{\gamma} \Phi \right| = \left| \int_{a}^{b} \sum_{j=1}^{n} f_{j} \left(\gamma(t) \right) \gamma_{j}'(t) \, \mathrm{d}t \right| \underset{KBIII}{\leqslant} \int_{a}^{b} \left(\sum_{j=1}^{n} |f_{j}(\gamma(t))|^{2} \right)^{1/2} \cdot \left(\sum_{j=1}^{n} |\gamma_{j}'(t)|^{2} \right)^{1/2} \, \mathrm{d}t \leqslant A \cdot \underbrace{\int_{a}^{b} \left(\sum_{j=1}^{n} |\gamma_{j}'(t)|^{2} \right)^{1/2} \, \mathrm{d}t}_{l(\gamma)} \right|$$

Лекция III

1 марта 2024 г.

Рассмотрим дифференциальную форму $\Phi=F(z)\,\mathrm{d} z$, где F — непрерывная функция в $G\subset\mathbb{C}$. Пусть $\gamma:[a,b]\to G$ — плоский путь.

Расписав $\Phi(z) = F(z) \, \mathrm{d} x + i F(z) \, \mathrm{d} y$ и применив основную оценку интеграла вдоль пути, получаем

$$\left| \int_{\gamma} \Phi \right| \leqslant \max_{z \in K} \sqrt{|F(z)|^2 + |F(z)|^2} \cdot l(\gamma) = \sqrt{2} \max_{z \in K} |F(z)| \cdot l(\gamma)$$

Эта оценка вызывает некоторую неудовлетворённость: кажется, что $\sqrt{2}$ здесь лишний. И это действительно правда: можно расписать интеграл аккуратнее.

Пусть $\gamma = \gamma_1 + i\gamma_2$, тогда по определению

$$\int_{\gamma} \Phi = \int_{a}^{b} F(\gamma(t)) \cdot \gamma_{1}'(t) + iF(\gamma(t)) \cdot \gamma_{2}'(t) dt = \int_{a}^{b} F(\gamma(t)) \cdot \gamma'(t) dt$$

Таким образом, интеграл от комплексной формы вдоль пути имеет более простое представление, и оно легко поддаётся более плотной оценке:

$$\left| \int\limits_{\gamma} \Phi \right| \leqslant \int\limits_{a}^{b} |F(\gamma(t))| \cdot |\gamma'(t)| \, \mathrm{d}t \leqslant \max_{z \in K} |F(z)| \underbrace{\int\limits_{a}^{b} |\gamma'(t)| \, \mathrm{d}t}_{l(\gamma)}$$

Посчитаем анонсированный на предыдущей лекции интеграл (\circ). Пусть $z_0, w \in \mathbb{C}, r > 0$.

• Сначала рассмотрим случай $|w-z_0| < r$. Заметим, что, согласно основной оценке интеграла, если коэффициенты равномерно стремятся к какому-то значению и интегралы ограничены, то предельный интеграл тоже сходится.

Запись ниже $\int\limits_{|z-z_0|=r}$, и вообще все аналогичные записи, которые встретятся в дальнейшем,

по умолчанию означают, что граница соответствующего множества (в данном случае — круга) обходится стандартным образом, то есть против часовой стрелки.

$$\int_{|z-z_0|=r} \frac{\mathrm{d}z}{z-z_0 - (w-z_0)} = \int_{|z-z_0|=r} \frac{1}{z-z_0} \frac{1}{1 - \frac{w-z_0}{z-z_0}} \, \mathrm{d}z =$$

$$= \int_{|z-z_0|=r} \frac{1}{z-z_0} \left(1 + \frac{w-z_0}{z-z_0} + \left(\frac{w-z_0}{z-z_0} \right)^2 + \dots \right) \, \mathrm{d}z =$$

На слагаемые из ряда имеется равномерная по z оценка: $\left|\frac{w-z_0}{z-z_0}\right| \leqslant \frac{|w-z_0|}{r} < 1$, и по теореме Вейерштрасса функциональный ряд сходится. Значит, сумму можно вынести из-под интеграла

Первое слагаемое мы умеем брать, а у каждого слагаемого из остальной суммы имеется первообразная: $\frac{1}{(z-z_0)^{j+1}} = -\frac{1}{j} \left(\frac{1}{(z-z_0)^j}\right)'$

• Теперь разберёмся со случаем $|w - z_0| > r$.

$$\int_{|z-z_0|=r} \frac{\mathrm{d}z}{z-z_0-(w-z_0)} = -\frac{1}{w-z_0} \int_{|z-z_0|=r} \frac{\mathrm{d}z}{1-\frac{z-z_0}{w-z_0}} = -\frac{1}{w-z_0} \sum_{j=0}^{\infty} \int_{|z-z_0|=r} \frac{(z-z_0)^j}{(w-z_0)^j} \, \mathrm{d}z$$

Аналогично предыдущему случаю, ряд сходится абсолютно, поэтому сумму опять можно вынести из под интеграла, и в данном случае всё ещё проще: каждое слагаемое имеет первообразную, там нет отрицательных степеней z, поэтому вся сумма обращается в нуль.

Пусть $\Phi = f_1 \, \mathrm{d} x_1 + \dots + f_n \, \mathrm{d} x_n$ — непрерывная дифференциальная форма в некоторой области $G \subset \mathbb{R}^n$.

Теорема 1.3.3. Если все функции $f_j \in C^1$, то следующие условия эквивалентны:

- Ф замкнута.
- $\forall 1\leqslant i,j\leqslant n: \frac{\partial f_i}{\partial x_j}=\frac{\partial f_j}{\partial x_i}$ «накрест взятые частные производные равны».

Доказательство.

- \Rightarrow Выберем $x\in G$, так как форма замкнута, то $\exists U\ni x:\Phi$ имеет первообразную $F:U\to\mathbb{R}.$ Тем самым, $f_i=\frac{\partial F}{\partial x_i}$, и так как $f_i\in C^1$, то действительно $\frac{\partial f_j}{\partial x_i}=\frac{\partial^2 F}{\partial x_i\partial x_j}=\frac{\partial^2 F}{\partial x_j\partial x_i}=\frac{\partial f_i}{\partial x_j}.$
- \Leftarrow Сначала приведём доказательство случая n=2. В таком случае $\Phi=f\,\mathrm{d} x+g\,\mathrm{d} y$. Согласно посылке, $h\coloneqq \frac{\partial f}{\partial y}=\frac{\partial g}{\partial x}$. Кстати, равенство слева равносильно одному из эквивалентных уравнений Коши Римана.

Рассмотрим произвольный $P=[a,b] imes [c,d]\subset G$, и докажем, что $\int\limits_{\partial P}\Phi=0$.

То, что мы увидим сейчас, является первым заходом на формулу Остроградского — Гаусса. Функция h непрерывна, и можно записать на неё интеграл Лебега: $\int\limits_P h(x,y)\,\mathrm{d}x\,\mathrm{d}y$. Теперь, применяя теорему Фубини, раскладываем интеграл в сумму повторных:

$$\int_{\gamma_3^-} f(\underline{\ \ },d) \, \mathrm{d}x + \int_{\gamma_1^-} f(\underline{\ \ },c) \, \mathrm{d}x = \int_a^b \left[f(x,d) - f(x,c) \right] \mathrm{d}x = \int_a^b \left(\int_c^d \frac{\partial f}{\partial y} \, \mathrm{d}y \right) \mathrm{d}x =$$

$$= \int_P h(x,y) \, \mathrm{d}x \, \mathrm{d}y =$$

$$= \int_c^d \left(\int_a^b \frac{\partial g}{\partial x} \, \mathrm{d}x \right) \mathrm{d}y = \int_c^d \left[g(b,y) - g(a,y) \right] \mathrm{d}y = \int_{\gamma_2} g(b,\underline{\ \ \ }) \, \mathrm{d}y + \int_{\gamma_4} g(a,\underline{\ \ \ \ }) \, \mathrm{d}y$$

Итого, $\int\limits_{\gamma_3^-} f(_,d) \,\mathrm{d}x + \int\limits_{\gamma_1^-} f(_,c) \,\mathrm{d}x = \int\limits_{\gamma_2} g(b,_) \,\mathrm{d}y + \int\limits_{\gamma_4} g(a,_) \,\mathrm{d}y$, откуда действительно $\int\limits_{\gamma} \Phi = 0$.

 \leftarrow Теперь приведём альтернативное доказательство индукцией по n.

<u>База:</u> Случай n=1 тривиален: теорема Ньютона — Лейбница говорит, что у непрерывной функции есть первообразная.

<u>Переход:</u> Пусть n>1, и для n-1 теорема доказана. Рассмотрим $a\in G$, и возьмём прямоугольный параллелепипед со сторонами, параллельными осям координат P такой, что $a\in {\rm Int}\, P$. Докажем, что на P у Φ есть первообразная.

Построим
$$g(x_1,\ldots,x_n)=\int\limits_{a_1}^{x_1}f_1(t,x_2,\ldots,x_n)\,\mathrm{d}t.$$
 Обозначим $\phi_j:=\frac{\partial g}{\partial x_j}.$ Заметим, что $\phi_1=\frac{\partial g}{\partial x_r}=f_1.$

Теперь рассмотрим форму $\Psi(x_1,\ldots,x_n) = \phi_1 dx_1 + \cdots + \phi_n dx_n$. Эта форма имеет первообразную g на параллелепипеде P.

Теперь посмотрим на $\Phi - \Psi =: h_1 \, \mathrm{d} x_1 + \dots + h_n \, \mathrm{d} x_n$. По построению $h_1 = 0$. По условию накрест взятые частные производные равны у Φ , и они равны у Ψ , так как у неё есть первообразная. Значит, это же верно и для разности, в частности, $\frac{\partial h_i}{\partial x_1} = \frac{\partial h_1}{\partial x_i} = 0$. Иными словами, $\forall i:h_i$ не зависит от x_1 .

А раз так, то на $\Phi - \Psi$ можно смотреть, как на форму (n-1)-й переменной, и применить индукционное предположение.

3амечание. Тут есть некоторый обман: производные $\frac{\partial \phi_i}{\partial x_j}$ могут просто не существовать.

Попробуем обойти его так: пусть $\beta \in C^{\infty}$, с компактным носителем. Выберем аппроксимативную единицу $\beta_t(x) = \frac{1}{t^n} \beta(\frac{x}{t})$.

Назначим
$$f_k^{(t)} = f_k * \beta_t$$
, $f_k^{(t)} \underset{t \to 0}{\Longrightarrow} f_k$.

Далее у формы $\Phi^{(t)}$ коэффициенты $h_k^{(t)}$ не зависят от x_1 . А раз они равномерно стремятся к h_k , то и они не зависят от x_1 . Это было произнесено устно, я наверняка что-то не так записал.

Теорема 1.3.4 (Коши). Пусть F — голоморфная функция в открытом множестве $G \subset \mathbb{C}$. Тогда дифференциальная форма F(z) dz замкнута, то есть локально $\exists S : S'(z) = F(z)$.

Замечание. Теорема совсем проста, если заранее предположить, что F'(z) непрерывна (а так в итоге и должно получиться, так как F — аналитична (теорема 1.0.1)). В таком случае имеется следующее более простое доказательство.

Доказательство. Надо проверить второе уравнение Коши — Римана: $\forall z \in \mathbb{C} : \frac{\partial F}{\partial y}(z) = i \frac{\partial F}{\partial x}(z)$ (первое выполнено, так как накрест-взятые частные производные равны).

Поскольку $F(z)\,\mathrm{d}z=F(z)\,\mathrm{d}x+iF(z)\,\mathrm{d}y$, утверждение эквивалентно (согласно (теорема 1.3.3)) тому, что $\forall z\in\mathbb{C}:\frac{\partial F}{\partial y}(z)=i\frac{\partial F}{\partial x}(z).$ Пусть F(z)=u(x,y)+iv(x,y).

$$\frac{\partial u}{\partial y} + i \frac{\partial v}{\partial y} = i \left(\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} \right)$$

то есть $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ и $\frac{\partial v}{\partial y} = \frac{\partial u}{\partial x}$. Я вообще не понял, что произошло.

Теперь докажем теорему Коши вне предположения непрерывности производной.

Доказательство. Докажем от противного: пусть форма $F(z)\,\mathrm{d} z$ не замкнута, $\exists P_0\subset G:\alpha=\int\limits_{\partial P_0}F(z)\,\mathrm{d} z\neq 0.$

Будем потихонечку делить этот прямоугольник на четыре равные части: пусть $P_0 = Q_1 \cup Q_2 \cup Q_3 \cup Q_4$.

Модуль интеграла по границе по крайней мере одного из Q_i хотя бы $\frac{|\alpha|}{4}$. Назовём этот прямоугольник P_1 , и продолжим процесс. Получим систему вложенных замкнутых прямоугольников $P_0 \supset$

$$P_1\supset\ldots$$
, таких, что $\left|\int\limits_{\partial P_k}F(z)\,\mathrm{d}z\right|\geqslant rac{|lpha|}{4^k}.$ При этом $l(\partial P_k)=2^{-k}l(\partial P_0)$, и $\mathrm{diam}(P_k)=2^{-k}\,\mathrm{diam}(P_0).$

Имеется ровно одна точка z_0 в пересечении $\bigcap_{k\geqslant 0} P_k$. Воспользуемся условием того, что F голоморф-

на в точке
$$z_0$$
: $F(z)=F(z_0)+F'(z_0)(z-z_0)+\underbrace{\psi(z)}_{o(|z-z_0|)}$

Зафиксируем $\varepsilon>0$. $\exists \delta>0: |z-z_0|<\delta\Rightarrow |\psi(z)|\leqslant \varepsilon|z-z_0|$. Пусть k настолько велико, что $\operatorname{diam} P_k<\delta$.

$$\int_{\partial P_k} F(z) dz = \int_{\partial P_k} [F(z_0) + F'(z_0)(z - z_0)] dz + \int_{\partial P_k} \psi(z) dz$$

Первый интеграл обнуляется, так как это линейная функция по z, у неё есть первообразная. Оценивая второй интеграл, получаем

$$\frac{|\alpha|}{4^k} \leqslant \left| \int_{\partial P_k} \psi(z) \, \mathrm{d}z \right| \leqslant \varepsilon \operatorname{diam} P_k \cdot l(\partial P_0) = \varepsilon \cdot 2^{-k} \operatorname{diam} P_0 \cdot 2^{-k} l(\partial P_0) = 4^{-k} \varepsilon \cdot \operatorname{diam} P_0 \cdot l(\partial P_0)$$

Выбирая довольно маленький ε , получаем, что $|\alpha|$ меньше любого положительного числа.

Теорема 1.3.5 (Об устранимой особенности замкнутой дифференциальной формы). Пускай $\Phi = f \, \mathrm{d} x + g \, \mathrm{d} y$ — непрерывная дифференциальная форма в области $G \subset \mathbb{C}$.

Если $z_0 \in G$, и Φ замкнута в $G \setminus \{z_0\}$, то Φ замкнута в G

Доказательство. Докажем, что $\forall P\subset G:\int\limits_{\partial P}\Phi=0.$ Рассмотрим случаи.

- Если $z_0 \notin P$, то интеграл нуль по условию.
- Если $z_0 \in \text{Int } P$, то данный случай сводится к следующему: разобьём прямоугольник на два так, чтобы z_0 оказалось на границе:

• Если $z_0\in\partial P$, то отступим на arepsilon, интеграл по границе $P_arepsilon$ будет нулём: $\int\limits_{\partial P_arepsilon}\Phi=0.$

Заметим, что $\int\limits_{\partial P_{\varepsilon}}\Phi\longrightarrow\int\limits_{\varepsilon\to 0}\Phi$, так как коэффициенты дифференциальной формы равномерно непрерывны в некоторой окрестности P. Значит, $\int\limits_{\partial P}\Phi=0.$

Теорема 1.3.6 (Малая интегральная формула Коши). Пусть f — голоморфна в области G, $B = B(z_0, r)$ — круг, $\overline{B} \subset G$. Тогда $\forall z \in B$:

$$f(z) = \frac{1}{2\pi i} \int_{\partial B} \frac{f(\zeta)}{\zeta - z} d\zeta$$

Доказательство. Докажем для некоего фиксированного $z \in B$.

Рассмотрим функцию $g(\zeta) = \frac{f(z) - f(\zeta)}{z - \zeta}$. g голоморфна в области $G \setminus \{z\}$. Тем самым, $g(\zeta) \, \mathrm{d}\zeta$ — замкнутая форма в $G \setminus \{z\}$, а по теореме об устранимой особенности $g(\zeta) \, \mathrm{d}\zeta$ замкнута в G (доопределим по непрерывности $g(z) \coloneqq f'(z)$).

Но так как круг — удобная область, то у g имеется первообразная в некотором круге $B(z_0,r(1+\varepsilon))$ (где $\varepsilon>0$ настолько мал, что $B(z_0,r(1+\varepsilon))\subset G$),

Тем самым, $\int\limits_{|\zeta-z_0|=r} rac{f(z)-f(\zeta)}{z-\zeta}\,\mathrm{d}\zeta=0$, откуда

$$\int_{|\zeta-z_0|=r} \frac{f(\zeta)}{\zeta-z} \,\mathrm{d}\zeta = \int_{|\zeta-z_0|=r} \frac{f(z)}{\zeta-z} \,\mathrm{d}\zeta = f(z) \cdot \int_{|\zeta-z_0|=r} \frac{1}{\zeta-z} \,\mathrm{d}\zeta = 2\pi i \cdot f(z)$$

Следствие 1.3.1 (Теорема Коши). Если функция голоморфна в области $G \subset \mathbb{C}$, то $\forall z_0 \in G$ функция f (в некоторой окрестности) раскладывается в некоторый степенной ряд $f(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n$, причём радиус сходимости хотя бы $\operatorname{dist}(z_0, \partial G)$.

Доказательство. Пусть $r\in (0,\mathrm{dist}(z_0,\partial G))$. Рассмотрим $B=B_r(z_0)$. Так как $B\subset G$, то для точки $z\in B$ получаем

$$f(z) = \frac{1}{2\pi i} \int_{|\zeta - z_0| = r} \frac{f(\zeta)}{\zeta - z} \, d\zeta = \frac{1}{2\pi i} \int_{|\zeta - z_0| = r} \frac{f(\zeta)}{(\zeta - z_0) - (z - z_0)} \, d\zeta =$$

$$= \frac{1}{2\pi i} \int_{|\zeta - z_0| = r} \frac{1}{\zeta - z_0} \cdot \frac{1}{1 - \frac{z - z_0}{\zeta - z_0}} f(\zeta) \, d\zeta = \frac{1}{2\pi i} \sum_{j=0}^{\infty} (z - z_0)^j \int_{|\zeta - z_0| = r} \frac{f(\zeta)}{(\zeta - z_0)^{j+1}} \, d\zeta$$

Абсолютная равномерная сходимость в круге радиус r при $r < \operatorname{dist}(z_0, \partial G)$ имеется по тем же причинам, что и при доказательстве (\circ).

Таким образом, мы получили степенной ряд, и так как коэффициенты степенного ряда, раз определены, не зависят от радиуса круга $(c_j = \frac{f^{(j)}(z_0)}{j!})$, то радиус сходимости данного ряда хотя бы $\mathrm{dist}(z_0,\partial G)$.

Лекция IV

12 марта 2024 г

Замечание. Интегральную форму Коши можно спокойно дифференцировать: так,

$$\frac{\mathrm{d}}{\mathrm{d}z}f(z) = \frac{\mathrm{d}}{\mathrm{d}z} \left(\frac{1}{2\pi i} \int_{|\zeta - z_0| = r} \frac{f(\zeta)}{\zeta - z} \,\mathrm{d}\zeta \right) = \frac{1}{2\pi i} \int_{|\zeta - z_0| = r} \frac{f(\zeta)}{(\zeta - z_0)^2} \,\mathrm{d}\zeta$$

В общем случае

$$\frac{\mathrm{d}^k}{\mathrm{d}z^k} f(z) = \frac{\mathrm{d}^k}{\mathrm{d}z^k} \left(\frac{1}{2\pi i} \int_{|\zeta - z_0| = r} \frac{f(\zeta)}{\zeta - z} \,\mathrm{d}\zeta \right) = \frac{k!}{2\pi i} \int_{|\zeta - z_0| = r} \frac{f(\zeta)}{(\zeta - z_0)^{k+1}} \,\mathrm{d}\zeta$$

Определение 1.3.3 (Целая (entire) функция). Голоморфная функция, заданная в С.

Выберем $z_0=0$. Согласно (следствие 1.3.1), получаем $f(z)=\sum_{j=0}^{\infty}c_j$, где $c_j=\frac{1}{2\pi i}\int\limits_{|\zeta|=r}\frac{f(\zeta)}{\zeta^{j+1}}\,\mathrm{d}\zeta$, причём имеется абсолютная сходимость везде в $\mathbb C$.

Теорема 1.3.7. Если f целая, и $|f(z)|=\mathcal{O}(z^N)$ при $|z|\underset{z\to\infty}{\longrightarrow}\infty$, то f — многочлен степени не более N.

Доказательство. Из определения $\mathcal{O}:\exists C,a\in\mathbb{R}:|f(z)|\leqslant C|z|^N$ при |z|>a.

Выберем r>a, и оценим: $|c_j|=\left|\frac{1}{2\pi i}\int\limits_0^{2\pi}\frac{f(re^{i\theta})}{(re^{i\theta})^{j+1}}ire^{i\theta}\,\mathrm{d}\theta\right|\leqslant \frac{1}{2\pi}\int\limits_0^{2\pi}\frac{Cr^N}{r^j}\,\mathrm{d}\theta=\frac{Cr^N}{r^j}.$ Получается, при $j>N:|c_j|$ меньше любого наперёд заданного положительного числа.

Следствие 1.3.2 (Теорема Лиувилля). Ограниченная целая функция постоянна.

Следствие 1.3.3 (Основная теорема алгебры). $\forall p \in \mathbb{C}[z] : \deg p > 0 \Rightarrow \exists z_0 \in \mathbb{C} : p(z_0) = 0.$

Доказательство. Пусть $p(z)=\sum\limits_{j=0}^{N}c_{j}z^{j}$, где N>0 и $c_{N}\neq 0$.

Пойдём от противного: пусть $\forall z \in \mathbb{C} : p(z) \neq 0$.

Рассмотрим $f(z) \coloneqq \frac{1}{p(z)}$.

• С одной стороны, это целая функция: $\frac{\mathrm{d}}{\mathrm{d}z}f(z)=-\frac{p'(z)}{p(z)^2}.$

- С другой стороны, f ограничена: оценим $|p(z)|\geqslant |z^N|\left(|c_N|-\sum\limits_{j=0}^{N-1}\frac{|c_j|}{|z|^{N-j}}\right)$, откуда для достаточно больших $|z|:|p(z)|\geqslant \frac{|c_N|}{2}|z|^N$.
 - Тем самым, $p(z) \underset{|z| \to \infty}{\longrightarrow} \infty$, то есть $f(z) \underset{|z| \to \infty}{\longrightarrow} 0$. А при малых |z|:f ограничена, как непрерывная функция на компакте.
- Тем самым, по теореме Лиувилля, $f \equiv {\rm const.}$ то есть $p \equiv {\rm const.}$ Противоречие, мы предполагали $\deg p > 0$.

Теорема 1.3.8 (Теорема о среднем). Пусть $z_0 \in G, f: G \to \mathbb{C}$ голоморфна в G. Выберем $r < \mathrm{dist}(z_0, \partial G)$. Тогда

$$f(z_0) = \frac{1}{2\pi} \int_{0}^{2\pi} f(z_0 + re^{it}) dt$$

Доказательство. Посчитаем $f(z_0)$ по интегральной формуле:

$$f(z_0) = \frac{1}{2\pi i} \int_{|\zeta - z_0| = r} \frac{f(\zeta)}{\zeta - z_0} d\zeta = \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(z_0 + re^{it})ire^{it}}{re^{it}} dt = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it}) dt$$

Это действительно среднее в обычном смысле: f проинтегрирована по окружности по мере Лебега, и интеграл поделили на меру окружности.

Теорема 1.3.9 (Принцип максимума модуля). Пусть $f:G\to \mathbb{C}$ — непостоянная голоморфная функция. Тогда $|f|:z\mapsto |f(z)|$ не может достигать наибольшего значения при $z\in G$.

Доказательство. Пойдём от противного: пусть $\exists z_0 \in G: \forall z \in G: |f(z)| \leqslant |f(z_0)|$. Выберем $r>0: B(z_0,r) \subset G$, и докажем, что |f| постоянна в $B(z_0,r)$. Пусть $\rho < r$, по теореме о среднем $|f(z_0)| = \frac{1}{2\pi} \left| \int\limits_0^{2\pi} f(z_0 + \rho e^{it}) \, \mathrm{d}t \right| \leqslant \frac{1}{2\pi} \int\limits_0^{2\pi} \underbrace{|f(z_0)|}_{\leqslant |f(z_0)|} \, \mathrm{d}t$, причём равенство достигается только если

 $\forall t \in [0,2\pi]: |f(z_0+\rho e^{it})| = |f(z_0)|$ (если $\exists t_0 \in (0,2\pi): |f(z_0+\rho e^{it_0}| < |f(z_0)|)$, то по непрерывности $\exists \varepsilon > 0: \forall t \in (t_0-\varepsilon,t_0+\varepsilon): |f(z_0+\rho e^{it}| < |f(z_0)|-\varepsilon$, то есть на промежутке $(t_0-\varepsilon,t_0+\varepsilon)$ интеграл строго меньше требуемого значения).

Лемма 1.3.1. Пусть $f: G \to \mathbb{C}$ голоморфна, $u \exists z_0 \in G: f'(z_0) \neq 0$. Тогда $\exists U \ni z_0: f(z_0) \in \operatorname{Int} f(U)$.

Доказательство леммы.

Теорема об обратной функции.

Тем самым, $\forall z \in B(z_0, r) : f'(z) = 0$ (так как |f(z)| — максимум).

Далее применяем теорему единственности, доказанную во II семестре: f и константа, равная $|f(z_0)|$ совпадают на множестве с предельной точкой, значит, они совпадают везде в G.

Следствие 1.3.4. Пусть G — ограниченная область, $f:\overline{G}\to\mathbb{C}$ голоморфна в G. Тогда $\forall z\in G: |f(z)|\leqslant \max_{\zeta\in\partial G}|f(\zeta)|.$

Доказательство. f достигает своё наибольшее значение на компакте \overline{G} , но согласно принципу максимума, это значение достигается не внутри G.

1.4 Гармонические функции

Запишем теорему о среднем для $f: G \to \mathbb{C}$:

$$f(z_0) = \int_{1}^{\infty} 2\pi (f(z_0) + re^{it}) dt$$

Пусть f = u + iv, где u, v — вещественные функции в G. Теорема о среднем говорит, что

$$u(z_0) = \int_1^1 2\pi (u(z_0) + re^{it}) dt \qquad v(z_0) = \int_1^1 2\pi (v(z_0) + re^{it}) dt$$

Так как f аналитична, то в вещественном смысле $u, v \in C^{\infty}(G)$.

Запишем уравнения Коши — Римана:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

Дифференцируя второй раз, получаем

$$\begin{cases} \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 v}{\partial x \partial y} \\ \frac{\partial^2 u}{\partial y^2} = -\frac{\partial^2 v}{\partial x \partial y} \end{cases}$$

Это так называемое уравнение Лапласа: $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$.

Обобщим. Пусть $G \subset \mathbb{R}^n$ — область, пусть $f \in C^2(G)$.

Определение 1.4.1 (f — гармоническая функция в G). $\frac{\partial^2 u}{\partial x_1^2} + \cdots + \frac{\partial^2 u}{\partial x_n^2} = 0$.

Оператор $\Delta = \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_n^2}$ называется *оператором Лапласа*, и понятно, что гармонические функции — в точности такие u, что $\Delta u = 0$.

Утверждение 1.4.1. Если $u \in C^2(G)$, где область $G \subset \mathbb{R}^2$, то локально существует голоморфная $f: u = \Re f$. Иными словами, $\forall z_0 \in G: \exists U \ni z_0, \exists$ аналитическая $f: U \to \mathbb{C}: u = \Re f$.

 \mathcal{L} оказательство. Пусть $\phi \coloneqq \frac{\partial u}{\partial x}, \psi \coloneqq -\frac{\partial u}{\partial y}$. Тогда $\frac{\partial \phi}{\partial x} - \frac{\partial \psi}{\partial y} = 0$, то есть $\frac{\partial \phi}{\partial x} = \frac{\partial \psi}{\partial y}$ везде в G.

Раз накрест-взятые частные производные совпадают, то дифференциальная форма $\phi \, \mathrm{d}x + \psi \, \mathrm{d}y$ замкнута, значит, локально имеется первообразная. Что-то я немного выпал, а что дальше?

Теорема 1.4.1 (Морера). Пусть $f:(G\subset \mathbb{C})\to \mathbb{C}$ непрерывна. Следующие условия эквивалентны.

- $1. \ f$ голоморфна в G.
- 2. f аналитична в G.
- 3. Дифференциальная форма f(z) dz замкнута.

Доказательство. (1) \iff (2) уже доказано: (теорема 1.0.1) и (следствие 1.3.1).

 $(1) \Rightarrow (3)$ доказано тоже: (теорема 1.3.1).

Докажем (3) \Rightarrow (2). Пусть F — первообразная формы $f(z) \, \mathrm{d} z$ в круге $B(z_0,r) \subset G$. F голоморфна в $B(z_0,r)$, и $\forall z \in D : F'(z) = f(z)$.

Значит, F раскладывается в степенной ряд $F(z) = \sum\limits_{j=0}^{\infty} a_j (z-z_0)^j$. Отсюда $f(z) = \sum\limits_{j=1}^{\infty} j a_j (z-z_0)^{j-1}$.

1.5 Первообразная от замкнутой формы вдоль непрерывного пути

1.5.1 Наводящие предположения

Пусть f dx + g dy — непрерывная дифференциальная форма в G, предположим, что она точная: имеется первообразная F.

Пусть $\gamma:[a,b]\to G$ — кусочно-гладкий путь. Ранее было получено, что $\int\limits_{\gamma}f\,\mathrm{d}x+g\,\mathrm{d}y=F(\gamma(b))-F(\gamma(a)).$

Давайте обобщим интеграл вдоль пути: пусть $\gamma:[a,b]\to G$ — произвольный непрерывный путь. Положим по определению $\int\limits_{\gamma} f\,\mathrm{d}x + g\,\mathrm{d}y \stackrel{def}{=} F(\gamma(b)) - F(\gamma(a)).$

Теперь пусть $f\,\mathrm{d} x + g\,\mathrm{d} y$ всего лишь замкнута. Выберем $a=t_0 < t_1 < \dots < t_k = b$ так, что $\forall j: \gamma([t_j,t_{j+1}])$ лежит в области G_j , в которой у формы $f\,\mathrm{d} x + g\,\mathrm{d} y$ есть первообразная F_j . Попробуем определить

$$\int_{\gamma \mid_{[t_j,t_{j+1}]}} f \, \mathrm{d}x + g \, \mathrm{d}y \stackrel{def}{=} F_j(\gamma(t_{j+1})) - F_j(\gamma(t_j))$$

И

$$\int_{\gamma} f \, \mathrm{d}x + g \, \mathrm{d}y \stackrel{def}{=} \sum_{j=0}^{k-1} F_j(\gamma(t_{j+1})) - F_j(\gamma(t_j))$$

Проблема в том, чтобы доказать, что определение корректно — не зависит от выбора разбиения $a=t_0<\dots< t_k=b.$

1.5.2 Требуемые свойства

Пусть $\Phi = f \, \mathrm{d} x + g \, \mathrm{d} y$ — замкнутая форма в области $G \subset \mathbb{C}$, и $\gamma : [a,b] \to G$ — путь.

Определение 1.5.1 (Первообразная формы Φ вдоль пути γ). Такая функция $v:[a,b]\to G$:

ullet $\forall t \in [a,b]: \exists U \ni \gamma(t), \varepsilon > 0$ и найдётся первообразная F для Φ на U, такая, что

$$\forall \tau \in (t - \varepsilon, t + \varepsilon) : v(\tau) = F(\gamma(\tau))$$

Факт 1.5.1. Функция v, если существует, непрерывна на [a,b].

Доказательство. Непрерывность в какой-то конкретной точке следует из непрерывности композиции $F \circ \gamma$.

Теорема 1.5.1. Первообразная замкнутой дифференциальной формы вдоль пути γ всегда существует, и любые две отличаются на константу.

Доказательство. Сначала докажем существование. Для всех $t \in [a,b]$ выберем окрестность $U_t \coloneqq B(\gamma(t), r_t)$, где r_t настолько мал, что в U_t есть первообразная.

Семейство $\{U_t\}_{t \in [a,b]}$ образуют открытое покрытие $\gamma([a,b])$. По лемме Лебега $\exists \varepsilon > 0: \forall t \in [a,b]: B(\gamma(t),\varepsilon)$ содержится в каком-то $U_{t'}$. Применяя теорему Кантора о ранвомерной непрерывности, получаем существование разбиения $a=t_0<\dots< t_k=b$, такое, что $\gamma([t_j,t_{j+1}])$ лежит в одном из U_t .

Произвольно выберем v(a). Построим $v\big|_{[t_i,t_{i+1}]}$ индукцией по j.

<u>База:</u> Пусть $\gamma([t_0,t_1])\subset U_0$, и имеется первообразная F_0 на U_0 . Определим $v(\tau)=F_0(\gamma(\tau))$ при $\tau\in[t_0,t_1].$

Переход: Пусть $\gamma([t_j,t_{j+1}])\subset U_j, F_j$ — первообразная Φ на U_j . Найдётся такое $\delta>0:\gamma([t_j-\overline{\delta},t_{j+1}])\subset U_j$, значит, $U_j\cap U_{j-1}\neq\varnothing$. Это пересечение связно, на нём имеются две первообразные, F_{j-1} и F_j .

Добавим константу к F_j так, чтобы $F_j \equiv F_{j-1}$ при $t \in [t_j - \delta, t_j]$, и определим $v(\tau) = F_j(\gamma(\tau))$ при $\tau \in [t_j, t_{j+1}]$. Окрестность U_j захватывает отрезок $[t_j - \delta, t_{j+1}]$, значит, для точек во внутренности выполнено условие из определения первообразной.

Докажем единственность: рассмотрим точку $t\in [a,b]$. Найдутся два круга $U,V\ni \gamma(t)$, и первообразные F,H формы Φ в этих окрестностях, такие, что $u(\tau)=F(\gamma(\tau))$ и $v(\tau)=H(\gamma(\tau))$ при τ , достаточно близких к t.

Тем самым, u-v локально постоянна, но локально постоянная функция на связном множестве — константа (прообраз любого элемента из образа открыто-замкнут).

Лекция V 15 марта 2024 г.

Теперь определим интеграл $\int\limits_{\gamma} \Phi = v(b) - v(a)$, где v — первообразная для Φ вдоль пути γ , получившаяся из (теорема 1.5.1). Теперь интеграл определён для любой замкнутой формы вдоль пути (однако для кусочно-гладкого пути интеграл (определение 1.1.3) был определён для необязательно замкнутой формы).

Свойства (Свойства первообразной вдоль пути).

- Аддитивность по дифференциальной форме: $\int\limits_{\gamma} (\Phi + \Psi) = \int\limits_{\gamma} \Phi + \int\limits_{\gamma} \Psi.$
- Аддитивность вдоль пути: $\int\limits_{\gamma_1 \oplus \gamma_2} \Phi = \int\limits_{\gamma_1} \Phi + \int\limits_{\gamma_2} \Phi.$
- ullet Если γ кусочно-гладкий путь, то определение совпадает со старым.

Доказательство. γ' существует везде, кроме, может быть, конечного множества.

При помощи леммы Лебега разобьём отрезок точками $a=t_0<\cdots< t_k=b$ так, что $\forall j< k:\exists U_j\supset \gamma([t_j,t_{j+1}])$ такая, что на U_j найдётся первообразная H_j :

$$\forall \tau \in [t_i, t_{i+1}] : F(\tau) = H_i(\gamma(\tau))$$

И старый, и новый интегралы аддитивны вдоль пути. Несложно видеть, что в обеих определениях $\int \Phi$ совпадают. \Box $\gamma \Big|_{[t_j,t_{j+1}]}$

- Так как путь γ необязательно дифференцируем, то основную оценку интеграла вдоль пути распространить на новое определение проблематично: длины может не существовать.
- Пусть $\phi:[a,b] \to [c,d]$ гомеоморфизм, $\gamma:[a,b] \to G$ путь, тогда

$$\int_{\gamma} \Phi = \pm \int_{\gamma \circ \phi} \Phi$$

где знак зависит от того, возрастает ϕ , или убывает.

 $\ \Pi$ ричина. Если F — первообразная Φ вдоль пути γ , то $F\circ\phi$ — первообразная для Φ вдоль пути $\gamma\circ\phi$.

1.5.3 О гомотопности путей

Пусть $K = [0,1] \times [a,b]$ — квадрат гомотопии.

Определение 1.5.2 (Гомотопия). Непрерывное отображение $\Gamma: K \to \mathbb{C}$.

Положим $\gamma_s \coloneqq \Gamma(s,_)$. Как водится, γ_0,γ_1 — два пути $[a,b] \to \mathbb{C}$, и существование Γ по определению влечёт гомотопность этих путей.

Пути $\gamma_0,\gamma_1:[a,b] o G$ гомотопны в G, если найдётся гомотопия $\Gamma:K o G.$

Будем говорить о гомотопности двух замкнутых путей γ_1 и γ_2 при условии существования гомотопии $\Gamma: K \to G$, соединяющей γ_1 и γ_2 в классе замкнутых путей: $\forall s \in [0,1]: \Gamma(s,a) = \Gamma(s,b)$.

Гомотопность путей — отношение эквивалентности, также как и гомотопность замкнутых путей.

Теорема 1.5.2. Пусть F — аналитическая функция в области G, а γ_0 и γ_1 — замкнутые пути, гомотопные в G (в классе замкнутых путей). Тогда $\int\limits_{\mathcal{C}} F \,\mathrm{d}z = \int\limits_{\mathcal{C}} F \,\mathrm{d}z$.

Доказательство.

Определение 1.5.3 (Односвязная область). Область, в которой всякий замкнутый путь гомотопен постоянному. Иными словами, фундаментальная группа тривиальна.

Определение 1.5.4 (Звёздная область $A \subset \mathbb{R}^n$). Такая область, что для некоторого *центра* $z_0 \in A$: $\forall z \in A : \{z_0 + s(z-z_0) | s \in [0,1]\} \subset A$.

Факт 1.5.2. Всякая звёздная область А односвязна.

Доказательство. Прогомотопируем путь $\gamma:[a,b]\to A$ при помощи

$$\Gamma: [0,1] \times [a,b] \to K$$

$$\tau, t \mapsto z_0 \tau + (1-\tau)\gamma(t)$$

Пример (Неодносвязная область). Пусть A — звёздная область, выкинем точку $w_0 \in A$.

Интеграл $\frac{\mathrm{d}z}{z-w_0}$ по маленькой окружности ω , обходящей w_0 , равен $2\pi i$, значит, путь не стягиваем.

Теорема 1.5.3 (Первообразная вдоль гомотопии). Пусть $K = [0,1] \times [a,b]$ — квадрат, $\Gamma: K \to G$ — гомотопия, и $\Phi = f \, \mathrm{d} x + g \, \mathrm{d} y$ — замкнутая дифференциальная форма в G. Тогда $\exists F: K \to \mathbb{C}$ — первообразная формы Φ вдоль гомотопии Γ , то есть такая функция, что $\forall (s,t) \in K: \exists U \ni (s,t): U \subset G, \exists \delta > 0: \exists \Phi: U \to \mathbb{C}$ — первообразная формы F, такая, что

$$\begin{cases} |\sigma - s| < \delta \\ |\tau - t| < \delta \end{cases} \Rightarrow F(\sigma, \tau) = H(\Gamma(\sigma, \tau))$$

Доказательство. Покроем множество $\Gamma(K)$ кругами $U\subset G$, такими что в каждом круге U у Φ есть первообразная H_U .

По лемме Лебега $\exists \rho > 0 : \forall e \subset K : \operatorname{diam}(e) < \rho \Rightarrow e$ лежит в одном из кругов данного покрытия.

Разобьём квадрат гомотопии K на прямоугольники диаметра меньше ρ :

Аналогично доказательству (теорема 1.2.2), в каждом горизонтальном прямоугольнике найдётся первообразная F_j , а дальше их надо сшить. Сшить несложно: вдоль горизонтального отрезка — пересечения прямоугольничков — $F_j\big|_{\dots} = F_{j+1}\big|_{\dots}$. Так как это — первообразные вдоль пути, то они отличаются на константу. Значит, можно изменить все F_j на константы так, чтобы их склейка была непрерывной функцией.

Дальше надо проверить, что действительно получилась первообразная на квадрате. Выберем точку $(s,t) \in K$. Если точка попала внутрь какого-то прямоугольничка, то можно выбрать окрестность, лежащую внутри прямоугольничка, иначе чуть сложнее, но несильно.

Теорема 1.5.4. Интегралы от замкнутой формы Φ по гомотопным замкнутым путям равны.

Доказательство. Определим $w(t)\coloneqq\int\limits_{\gamma_t}\Phi$ для всех $t\in[0,1].$

Пусть F — первообразная для формы Φ вдоль гомотопии Γ . Понятно, что w(t) = F(t,b) - F(t,a).

Докажем, что w локально постоянна на [0,1], следствием будет, что w постоянна, что и требуется доказать.

 $\forall (\alpha, \beta) \in [0, 1] \times [a, b]$: $\exists \delta > 0$, круг U и первообразная H_U , такие, что

$$\begin{cases} |\alpha - \alpha'| < \delta \\ |\beta - \beta'| < \delta \end{cases} \Rightarrow F(\alpha', \beta') = H_U(\Gamma(\alpha', \beta'))$$

Пусть U_1, U_2 — такие шары для (t,b) и (t,a) соответственно. Тогда для τ , достаточно близких к t, выполнено $w(t) = H_{U_1}(\Gamma(t,b)) - H_{U_2}(\Gamma(t,a))$. H_1, H_2 — две первообразные в одной окрестности, они отличаются на константу, а $\Gamma(t,a) \equiv \Gamma(t,b)$, поэтому w локально постоянна.

Замечание. Если очень хочется, то можно соединить пути $\gamma_0:[a_0,b_0]\to \mathbb{C}$ и $\gamma_1:[a_1,b_1]\to \mathbb{C}$ гомотопией $\Gamma:K\to \mathbb{C}$, где $K:=\{(t,s)|t\in [0,1],s\in [a_t,b_t]\}$ $(a_t,b_t-$ какие-то непрерывные функции от t, такие, что $a_t< b_t$).

1.6 Ряды Лорана

Pяд Лорана f(z) — ряд вида $f(z) = \sum\limits_{n \in \mathbb{Z}} c_n (z-z_0)^n.$

Говорят, что ряд Лорана сходится в точке z, если оба ряда $f_+(z) = \sum_{n\geqslant 0} c_n (z-z_0)^n$ и $f_-(z) = \sum_{n\geqslant 0} c_n (z-z_0)^n$ сходятся.

Первый ряд степенной, имеется некий радиус сходимости r_+ , такой, что $|z-z_0| < r_+ \Rightarrow f_+$ сходится. При замене переменной $w:-\frac{1}{z-z_0},\ f_-(^1\!/w)$ становится степенным рядом от w, сходящимся при $w<\frac{1}{r}$.

Таким образом, ряд сходится абсолютно внутри «кольца» $\{z \in \mathbb{C} | r_- < |z-z_0| < r_+ \}$:

Теорема 1.6.1. Пусть $0 \leqslant r_- < r_+ \leqslant \infty$, функция f голоморфна в «кольце» $K := \{z \in \mathbb{C} | r_- < |z| < r_+ \}$. Тогда f представима в K сходящимся рядом Лорана.

Доказательство. Пусть
$$z\in K$$
. Определим $\phi_z:K\to\mathbb{C}, \phi_z(\zeta)=egin{cases} \frac{f(\zeta)-f(z)}{\zeta-z}, & \zeta\neq z\\ f'(z), & \zeta=z \end{cases}$

Согласно (теорема 1.3.5), форма $\phi_z(\zeta) d\zeta$ замкнута в K.

Выберем $r,R\in\mathbb{R}$ так, что $r_-< r<|z|< R< r_+$. Для $\rho\in\mathbb{R}$ определим $\gamma_\rho:[0,2\pi]\to K, \gamma_\rho(t)\coloneqq \rho e^{it}$. Пути γ_R и γ_r гомотопны, значит, $\int\limits_{\gamma_r}\phi_z(\zeta)\,\mathrm{d}\zeta=\int\limits_{\gamma_R}\phi_z(\zeta)\,\mathrm{d}\zeta$. А именно,

$$\int_{\gamma_R} \frac{f(\zeta) - f(z)}{\zeta - z} \,d\zeta = \int_{\gamma_r} \frac{f(\zeta) - f(z)}{\zeta - z} \,d\zeta$$

Преобразовывая, получаем

$$\int_{\gamma_R} \frac{f(\zeta)}{\zeta - z} \, d\zeta - \int_{\gamma_r} \frac{f(\zeta)}{\zeta - z} \, d\zeta = f(z) \int_{\underbrace{\gamma_R}} \frac{1}{\zeta - z} \, d\zeta - f(z) \int_{\underbrace{\gamma_r}} \frac{1}{\zeta - z} \, d\zeta$$

Тем самым, получили малую интегральную форму Коши для кольца:

$$f(z) = \frac{1}{2\pi i} \left(\int_{\gamma_R} \frac{f(\zeta)}{\zeta - z} \, d\zeta - \int_{\gamma_r} \frac{f(\zeta)}{\zeta - z} \, d\zeta \right)$$

Осталось преобразовать дроби в ряды:

$$\int_{\gamma_R} \frac{f(\zeta)}{\zeta - z} d\zeta = \int_{\gamma_R} \frac{f(\zeta)}{(\zeta - z_0) - (z - z_0)} d\zeta = \int_{\gamma_R} \frac{1}{\zeta - z_0} \frac{f(\zeta)}{1 - \frac{z - z_0}{\zeta - z_0}} d\zeta = \sum_{j=0}^{\infty} \int_{\gamma_R} \frac{f(\zeta)}{(\zeta - z_0)^{j+1}} d\zeta \cdot (z - z_0)^j$$

$$\int_{\gamma_r} \frac{f(\zeta)}{\zeta - z} d\zeta = \int_{\gamma_r} \frac{f(\zeta)}{(\zeta - z_0) - (z - z_0)} d\zeta = -\frac{1}{z - z_0} \int_{\gamma_r} \frac{f(\zeta)}{1 - \frac{\zeta - z_0}{z - z_0}} d\zeta = -\frac{1}{z - z_0} \sum_{k=0}^{\infty} \int_{\gamma_r} f(\zeta)(\zeta - z_0)^k d\zeta \cdot \frac{1}{(z - z_0)^k}$$

Сходимость степенная, имеется признак Вейерштрасса, можно поменять местами сумму и интеграл, поэтому все преобразования законны.

При замене j = -k - 1, второе выражение преобразуется в форму

$$-\sum_{j=-1}^{-\infty} \int_{\gamma_r} \frac{f(\zeta)}{(\zeta-z_0)^{j+1}} d\zeta \cdot (z-z_0)^j$$

Теперь можно заметить, что интегралы вдоль γ_r и γ_R равны, так как особенностей у интегралов — слагаемых в ряде — в кольце нет. Окончательно получаем

$$f(z) = \sum_{j \in \mathbb{Z}} c_j (z - z_0)^j$$
, где $c_j = \int_{|z - z_0| = \rho} \frac{f(\zeta)}{(\zeta - z_0)^{j+1}} \,\mathrm{d}\zeta$ для любого $\rho \in (r_-, r_+)$

Лекция VI

22 марта 2024 г.

Ряд Лорана $g(z) = \sum -j \in \mathbb{Z} c_j z^j$ принято раскладывать на две части — регулярную $\sum\limits_{j \geq 0} c_j (z-z_0)^j$ и главную $\sum\limits_{j < 0} c_j (z-z_0)^j$.

Если ряд Лорана изучать в маленькой окрестности z_0 , то главная часть асимптотически больше. Регулярная же сходится на всей комплексной плоскости.

1.7 Изолированные особенности голоморфных функций

Пусть область $G \subset \mathbb{C}, z_0 \in G, \ f$ задана и аналитична в $G \setminus \{z_0\}$. Тогда говорят, что f имеет особенность в z_0 .

Возможны случаи:

- 1. f ограничена вблизи z_0 . Точка z_0 называется устранимой особенностью, так как в силу (теорема 1.7.1) $\exists \lim_{z \to z_0} f(z)$.
- $2. \lim_{z \to z_0} |f(z)| = \infty.$

Точка z_0 называется *полюсом*.

3. f не имеет предела в z_0 .

Точка z_0 называется существенно особой точкой.

Теорема 1.7.1. В первом случае — f ограничена вблизи $z_0 - f$ единственным образом продолжается до аналитической функции в области G.

Доказательство. Выберем R>0 такой, что $B(z_0,R)\subset G$. f разложится в некоторый ряд Лорана при $0<|z-z_0|< R$.

Запишем $c_j = \frac{1}{2\pi i} \int\limits_0^{2\pi} f(z+\rho e^{it}) (\rho e^{it})^{-j-1} \cdot \rho e^{it} \, \mathrm{d}t$ и грубо оценим коэффициенты главной части (j<0). Пусть $|f|\leqslant C$ внутри круга $B(z_0,R)$ для некоторой константы C.

$$|c_j| \leqslant \frac{C}{2\pi} \int_{0}^{2\pi} \rho^{-j} \, \mathrm{d}t = C\rho^{-j}$$

Устремляя ho o 0, получаем $c_j = 0$. Тем самым, f раскладывается в ряд Тейлора в окрестности z_0 .

Запишем несколько другую классификацию особенностей точки, опирающуюся на ряд Лорана $f(z) = \sum\limits_{j \in \mathbb{Z}} c_j (z-z_0)^j.$

I При всяком j < 0: $c_j = 0$.

II Множество $\mathcal{A} \coloneqq \{j < 0 | c_j \neq 0\}$ конечно.

III Множество $\mathcal{A} \coloneqq \{j < 0 | c_j \neq 0\}$ бесконечно.

Понятно, что I эквивалентно 1.

Теорема 1.7.2. На самом деле, II \iff 2, III \iff 3.

Доказательство.

 $II \Rightarrow 2$ Пусть $k = -\min A$.

$$f(z) = \frac{c_{-k}}{(z - z_0)^k} + \frac{c_{-k+1}}{(z - z_0)^{k-1}} \dots + c_0 + \sum_{j > 0} c_j (z - z_0)^j = \frac{1}{z - z_0}^k (c_{-k} + c_{-k+1} + \dots) = \frac{g(z)}{(z - z_0)^k}$$

При этом $g(z_0) \neq 0$ и g(z) аналитична. Тем самым, $\lim_{z \to z_0} |f(z)| = \infty$.

 $2\Rightarrow$ II Положим $h(z)\coloneqq rac{1}{f(z)}$ в некоторой окрестности $z_0.$

h аналитична при $z \neq z_0$, и $\lim_{z \to z_0} h(z) = 0$, значит, h имеет устранимую особенность в z_0 . Может что-то пропустил. Пусть k — наименьший номер, такой, что $b_k \neq 0$, где b_k — коэффициент из разложения h в ряд Тейлора:

$$h(z) = b_k(z - z_0)^k + b_{k+1}(z - z_0)^{k+1} + \dots + \dots = (z - z_0)^k (b_k + b_{k+1}(z - z_0) + \dots) = (z - z_0)^k \cdot u(z)$$

u аналитична вблизи z_0 , и $u(z_0) = b_k \neq 0$.

$$f(z) = \frac{1}{(z - z_0)^k} \frac{1}{u(z)} = \frac{1}{(z - z_0)^k} (c_0 + c_1(z - z_0) + \cdots)$$

Почленно деля, действительно получаем, что f(z) имеет конечное число ненулевых членов в разложении в ряд Лорана. $\hfill\Box$

Пусть z_0 — полюс $f, k := -\min\{j < 0 | c_j \neq 0\}$. Число k называется порядком полюса z_0 .

Если же g аналитична в $z_0, g(z_0) = 0, g \not\equiv 0$, то $g(z) = \sum_{j \geqslant 0} a_j (z - z_0)^j$, положим $l \coloneqq \min \{j | a_j \neq 0\}$.

Число l — порядок f.

Факт 1.7.1. f имеет полюс порядка k в $z_0 \iff \frac{1}{f}$ имеет ноль порядка k в z_0 .

Интересный факт (Теорема Пикара). Пусть z_0 — существенно особая точка аналитической функции f. Тогда $\forall \varepsilon > 0$: $f(\{z | 0 < |z - z_0| < \varepsilon\})$ есть \mathbb{C} , кроме, может быть, двух точек.

Мы докажем более простой вариант теоремы Пикара.

Теорема 1.7.3 (Сохоцкий). Пусть z_0 — существенно особая точка аналитической функции f. Тогда $\forall \varepsilon > 0 : \mathcal{B} \coloneqq f(\{z | 0 < |z - z_0| < \varepsilon\})$ плотно в \mathbb{C} .

Доказательство. От противного: пусть $\exists w_0 \notin \overline{B}$, то есть $\exists \delta > 0 : B(w_0, \delta) \cap \mathcal{B} = \emptyset$.

Определим

$$h: B(z_0, \varepsilon) \setminus \{z_0\} \to \mathbb{C}$$

$$z \mapsto \frac{1}{f(z) - w_0}$$

Хотя h и имеет особенность при $z=z_0$, но h ограничена, то есть особенность устранима. $f(z)=\frac{1}{h(z)}+w_0$, и так как h аналитична в z_0 , то особенность в z_0 — то ли тоже устранимая особенность, то ли полюс, но уж никак z_0 — не существенно особая точка.

Пример. Возьмём $\int_0^\infty \frac{\sin x}{x} \, dx$. У подынтегральной функции в нуле особенность устранимая, а с бесконечностью есть некоторые проблемы. Впрочем, избавимся и от нуля в области интегрирования:

$$\int_{0}^{\infty} \frac{\sin x}{x} \, \mathrm{d}x = \lim_{\varepsilon \to 0, R \to \infty} \int_{\varepsilon}^{R} \frac{\sin x}{x} \, \mathrm{d}x =$$

Запишем формулу Эйлера $e^{ix} = \cos x + i \sin x$. Интегрируя по всей оси $\frac{\cos x}{x}$, мы поучим нуль из-за нечётности, поэтому можно продолжить равенство так:

Теперь перейдём к функции, аналитической в комплексной плоскости: $\phi(z) \coloneqq \frac{e^{iz}}{z}$.

Введём путь $\Gamma=[arepsilon \to R]\cdot \gamma_R\cdot [-R\to -arepsilon]\to \gamma_{arepsilon}$, где $[a\to b]$ — путь, проходящий отрезок [a,b] в направлении от a к b, а $\begin{cases} \gamma_R(t)=Re^{it}, & t\in [0,\pi]\\ \gamma_{arepsilon}(t)=arepsilon e^{i(\pi-t)}, & t\in [0,\pi] \end{cases}.$

$$\int\limits_{\gamma_{\varepsilon}} \phi(z) \,\mathrm{d}z = \int\limits_{0}^{\pi} \frac{e^{i\varepsilon e^{i(\pi-t)}}}{\varepsilon e^{i(\pi-t)}} \varepsilon i e^{i(\pi-t)} \,\mathrm{d}t = \int\limits_{0}^{\pi} i e^{i\varepsilon e^{i(\pi-t)}} \,\mathrm{d}t \xrightarrow{\text{подынтегральное выражение равномерно сходится к } i.} -i\pi$$

$$\int\limits_{\gamma_R} \phi(z) \, \mathrm{d}z = \int\limits_0^\pi \frac{e^i R e^{it}}{R e^{it}} R i e^{it} \, \mathrm{d}t = i \int\limits_0^\pi e^{i R e^{it}} \, \mathrm{d}t$$

Оценим $e^{iRe^{it}}=e^{iR\cos t-R\sin t}=e^{iR\cos t}\cdot e^{-R\sin t}$. По теореме Лебега о мажорируемой сходимости интеграл по γ_R будет **нулём**. ...

Этот интеграл получилось так взять, так как у ϕ была особенность в нуле, и мы её обошли. А иногда особенности находятся внутри пути интегрирования, в таком случае пригождается формула в вычетах.

1.8 Вычеты

Пусть f задана и голоморфна в $G\setminus\{z_0\}$, где G — область, $z_0\in G$ — изолированная особенность. Вблизи z_0 f раскладывается в ряд Лорана $f(z)=\sum\limits_{j\in\mathbb{Z}}c_j(z-z_0)^j$.

Определение 1.8.1 (Вычет функции f в точке z_0). Коэффициент c_{-1} , обозначается $\mathrm{Res}_{z_0} f$.

Этот коэффициент так важен, так как у $c_j(z-z_0)^j$ при $j\neq -1$ имеется первообразная в G, и при интегрировании по окружности, обходящей z_0 , пропадут все коэффициенты ряда Лорана, кроме вычета.

1.8.1 Как вычислять вычеты

У нас есть формула для вычисления коэффициентов ряда Лорана, но она получается интегрированием, а мы как раз и хотим использовать вычеты, чтобы уметь удобно интегрировать. Поэтому иногда пригождаются следующие частные случаи:

• Пусть z_0 — полюс функции f степени k:

$$f(z) = \frac{c_{-k}}{(z - z_0)^k} + \frac{c_{-k+1}}{(z - z_0)^{k-1}} + \dots + \frac{c_{-1}}{(z - z_0)} + f_+(z)$$

где f_{+} — аналитическая вблизи z_{0} .

Домножая f на $(z-z_0)^k$, получаем аналитическую

$$(z-z_0)^k f = c_{-k} + c_{-k+1}(z-z_0) + \dots + c_{-1}(z-z_0)^{k-1} + (z-z_0)^k \cdot f_+(z)$$

Теперь можно найти $\operatorname{Res}_{z_0} f$ по формуле: $\operatorname{Res}_{z_0} f = \frac{1}{(k-1)!} \cdot \left(\frac{\mathrm{d}}{\mathrm{d}z}\right)^{k-1} \left[(z-z_0)^k f(z) \right] \Big|_{z=z_0}$.

• Пусть k=1 — у f имеется полюс первого порядка. Тогда дифференцировать не надо, и формула вырождается в

$$\operatorname{Res}_{z_0} f = \lim_{z \to z_0} (z - z_0) f(z)$$

• Возьмём ещё более частный случай: $f(z) = \frac{g(z)}{h(z)}$, где g,h аналитичны в окрестности z_0 , $g(z_0) \neq 0$, а h имеет простой нуль в z_0 (нуль кратности 1).

$$\operatorname{Res}_{z_0} f = \lim_{z \to z_0} \frac{f(z)(z - z_0)}{h(z)} = \lim_{z \to z_0} g(z) \frac{z - z_0}{h(z) - h(z_0)} = \frac{g(z)}{h'(z)}$$

1.8.2 Индекс замкнутого пути относительно точки

Пусть $G \subset \mathbb{C}$ — область, Φ — замкнутая дифференциальная форма в G. Пусть $\gamma_1, \ldots, \gamma_n$ — какието замкнутые пути с носителем в G. Обозначим $\Gamma = \{\gamma_1, \ldots, \gamma_n\}$.

Определим интеграл от формы Φ по данной совокупности путей $\int\limits_{\Gamma}\Phi\stackrel{def}{=}\sum\limits_{j=1}^{n}\int\limits_{\gamma_{j}}\Phi.$

Назовём систему путей Γ *правильной*, если для всякой аналитической функции f в G: $\int_{\Gamma} f(z) \, \mathrm{d}z = 0$.

Примеры (Правильные системы путей).

- $|\Gamma|=1$. Если γ_1 гомотопен тождественному, то Γ , конечно, правильная.
- В частности, любой замкнутый путь в односвязной области формирует правильную систему из одного пути.
- Пусть в кольце имеются два пути γ_1, γ_2 , обходящие концентрические окружности в противоположных направлениях. Тогда $\{\gamma_1, \gamma_2\}$ — правильная система, так как $\gamma_1 \sim \gamma_2^-$.
- Рассмотрим область с двумя дырками, и тремя путями ну тут без картинки точно не обойтись.

Пусть γ — петля в \mathbb{C} , $z_0 \notin \operatorname{Im}(\gamma)$.

Определение 1.8.2 (Индекс пути γ относительно z_0). Значение интеграла $\frac{1}{2\pi i}\int\limits_{\gamma}\frac{\mathrm{d}z}{z-z_0}$. Обозначается $\mathrm{Ind}_{z_0}\,\gamma$.

Это определение очевидным образом распространяется на систему путей: $\forall \gamma_j \in \Gamma: z_0 \notin \operatorname{Im}(\gamma) \Rightarrow$ определён $\operatorname{Ind}_{z_0} \Gamma \stackrel{def}{=} \sum_{j=1}^n \frac{1}{2\pi i} \int\limits_{\gamma_j} \frac{\mathrm{d}z}{z-z_0}$

Свойства (Свойства индекса, докажем потом).

- $\operatorname{Ind}_{z_0} \gamma \in \mathbb{Z}$.
- Функция $[z_0 \mapsto \operatorname{Ind}_{z_0} \gamma]$ постоянна на каждой компоненте связности $\mathbb{C} \setminus \operatorname{Im}(\gamma)$.
- На неограниченной компоненте связности $\mathbb{C}\setminus \mathrm{Im}(\gamma)$ индекс равен нулю.

Теорема 1.8.1 (Формула вычетов). Пусть $G \subset \mathbb{C}$ — область, Γ — правильная система путей в G, $f:G\setminus \{z_1,\ldots,z_k\}\to \mathbb{C}$ — аналитическая функция, и z_1,\ldots,z_k — её полюса. Если все точки z_j не лежат на носителе системы путей Γ , то

$$\int_{\Gamma} f(z) dz = 2\pi i \left(\sum_{j=1}^{k} \operatorname{Res}_{z_{j}} f \cdot \operatorname{Ind}_{z_{j}} \Gamma \right)$$

Доказательство. Пусть g_1,\dots,g_k — главные части рядов Лорана для f в точках z_1,\dots,z_k соответственно. Тогда функция $h(z)\coloneqq f(z)-g_1(z)-\dots-g_k(z)$ — аналитическая функция в области G.

Так как Γ — правильная, то $\int\limits_{\Gamma}h(z)\,\mathrm{d}z=0.$ Тем самым, мы получили

$$\int_{\Gamma} f(z) dz = \sum_{j=1}^{k} \int_{\Gamma} g_j(z) dz$$

Посчитаем $\int\limits_{\Gamma}g_{j}(z)\,\mathrm{d}z$. Распишем

$$g_j(z) = \frac{\operatorname{Res}_{z_j} g}{z - z_j} + \frac{a_1}{(z - z_j)^2} + \dots + \frac{a_{s-1}}{(z - z_j)^s}$$

У всех слагаемых, кроме первого, есть первообразная, значит, $\int\limits_{\Gamma}g(z)\,\mathrm{d}z=(\mathrm{Res}_{z_j}\,f)2\pi i\cdot\mathrm{Ind}_{z_0}\,\Gamma$ (очевидно, $\mathrm{Res}_{z_j}\,g_j=\mathrm{Res}_{z_j}\,f$).

На самом деле, теорема верна и для существенно особых точек, только надо чуть больше слов сказать, может, я их напишу попозже.