Performance analysis for parallel applications

- Robert Roy
- Department of Computer and Software Engineering

Monitoring Distributed Systems for Diagnostic Purposes Workshop at Ericsson, Montréal January 29-30, 2008

Outline

- Parallel vs. distributed computing
- Specific performance problems
 - using MPI or OpenMP
 - some parallel tools
- RQCHP: the HPC network
- DRAP laboratory
- Developer's remarks

Parallel vs. distributed computing

- Parallel systems:
 - Often SPMD programs:
 - using OpenMP or MPI
 - Real-time performance:
 - dedicated nodes
 - No workload sharing
 - 1-to-1 mapping
 - (Processor, Thread)

- Distributed systems :
 - Often MPMD programs:
 - client-server, P2P, ...
 - ...

Using MPI and OpenMP standards

- Message passing interface
 - data distribution and task scheduling:
 - controlled by developer
 - explicit communications
 - often predictable

- Open Multiprocessing
 - shared memory and fork/join model:
 - synchronized by developer
 - implicit communications
 - ... less predictable
 - Memory access ?

Some MPI performance problems

- Point-to-point communication
 - Late sender Idle receiver waiting for message
 - Late receiver Idle (blocked?) sender
- Collective communication
 - Late broacast/scatter Root not ready to send
 - Early reduce /gather Waiting for non-root
- Any I/O: MPI-IO, PVFS, database ?

MPI perf analysis tools

- tracing
 - MPE/Jumpshot, Trace Collector/Analyzer, KOJAK
- profiling
 - TAU, mpiP, hpcprof
 - many tools use
 - PAPI, PMPI, DynInst

Now OpenMP performance problems

Load Imbalance

- In parallel section Work per thr. or # of thr.
- In parallel loop Iterations (wait, no wait)
- Synchronization, parallel control
 - Contention in critical section Competing threads
 - Serialization Parallel loop with critical section
 - Bad scheduling Loop overhead
 - False sharing Overhead to get same cache line

OpenMP perf analysis tools

- tracing
 - Thread Checker, OPARI
- profiling
 - TAU, Thread Profiler, ompP

OpenMP performance analysis

- Quick (and cheap) look :
 - use hardware counters to identify problems
- Identify region and search the cause:
 - true/false sharing invalidations
 - coherence misses (?)

« Performance of a multiprocessor depends on the performance of the system when sharing data. » Hennessy & Patterson, Computer Architecture, IV ed., MK(2007)

Cache coherence problems

- Detect coherence miss:
 - access data that was in the proc.cache previously, but was invalidated by a write from another proc.
 - Not for hardware counter!
- SMP cache simulator: ccSIM (Rsim, SimOS...)
 - Huge tracing files: online compression (LZO, ...)

« Source-code-correlated cache coherence characterization of OpenMP benchmarks » Marathe & Mueller, IEEE TPDS, vol. 18, pp. 818-834 (2007)

RQCHP: HPC network

http://rqchp.ca

researchers from:

- Universités: de Montréal, de Sherbrooke, Concirdia, Bishop, École Polytechnique,
- FCI funding

RQCHP: HPC network

http://rqchp.ca

- Mammouth (Mp) @ Université de Sherbrooke
 - Most powerful supercomputer in Canada
 - Dell 1425SC: 576 nodes dual-Xeon 8 GB mem
 - Network interface (communication) InfiniBand
- Altix 4700 @ Université de Montréal
 - SGI 384 nodes dual-Itanium II 4 GB mem
 - Shared memory image: NUMAlink

RQCHP: HPC network

http://rqchp.ca

- Analysts use tools :
 - gprof GNU/tool
 - pfmon HP dev.
 - pgprof Portland gr.
 - histx SGI
 - Trace Analyzer (ex-Vampir)

- plus, for debug:
 - gdb, pgdb, idb
 - Totalview
 - and monitoring
 - ganglia

Altix 4700 – common problems

- Code run well with small #(proc)
 - Automatic parallelization, etc.
- When #(proc) is increased, be aware of:
 - any memory leak
 - TotalView or MemoryScape can help
 - cache coherency misses
 - doing too much I/O

The DRAP laboratory

http://www.polymtl.ca/drap

- Design and Realization of Parallel Applications
 - Parallel codes:
 - DRAGON/DONJON codes (nuclear engineering)
 - Varin, Dahmani, He
 - LBM and DEM codes (chemical engineering)
 - · Leclaire, Vidal
 - Tools for parallel systems:
 - AdélieLinux
 - Clone+Napalm
 - ..and other projects: MPI2XML, PolyJob

AdélieLinux

- Idea:
 - diskless node get OS by network (Adélie/SSI)
 - with optimized parallel tools (Adélie/HPC)
- Single-system image
 - integrated in Gentoo distr. (32 & 64-bit versions)
 - limits: scalability, I/O
- Benoît Morin, B.Ing., M.Sc.A., now working at IREQ

Clone+Napalm

- Idea:
 - light virtual nodes boot/transfer OS clones
 - coupling virtualization (Xen) and UnionFS
- Single-filesystem image
 - transferring kernel and early-userspace module
 - using initramfs under Genkernel
- Jean-François Richard, B.Ing., M.Sc.A., now in Norway

Clone+Napalm

- Heartbeat & monitoring of clones:
 - gmond
 - gmetad
 - XML data
 - ganglia

Clone+Napalm

- Performance of user-level programs:
 - Processor-bound No virtualization overhead
 - Network (netperf) No visible overhead
 - (here only1 clone <=>1 NIC)
 - www.vmware.com/pdf//Multi-VM_Network_Performance.pdf
 - I/O 10-15% overhead
 - Most overhead is from UnionFS

Steps in performance analysis

instrumentation/measurement

- source, wrapper library, binary
- hardware counters, trace points
- must ensure:
 - correctness, scalability

analysis

- online, automatic, post-mortem
- timeline diagrams, charts, metric panels, source code

Developer's remarks

usability:

- less work to do => most likely to use the tool!
 - clear documentation, quick start, tutorial

efficiency:

- Is tool any better than ad-hoc techniques?
- Does tool help to find performance problem?
- Is tool able to analyze and find it? ... solve it?

My bucket list

- Tracing/profiling in the VMM:
 - anyone remembers SIMMON ?
 - http://en.wikipedia.org/wiki/SIMMON
- Parallel analysis of trace files:
 - next generation Vampir ?