PURLTL: Mining LTL Specification from Imperfect Traces in Testing

Bo Peng¹ Pingjia Liang¹ Tingchen Han¹ Weilin Luo¹ Jianfeng Du^{2,3} Hai Wan¹ Rongzhen Ye¹ Yuhang Zheng¹

¹Sun Yat-Sen University

²Guangdong University of Foreign Studies

³Pazhou Lab

The 38th IEEE/ACM International Conference on Automated Software Engineering, September 2023

Problem

Linear Temporal Logic (LTL) specification mining is to mine LTL formula which describes the system behaviors from traces.

Input

A set of traces:

$$[a, a, b, c],$$

 $[b, a],$

Output

An LTL formula: aUb.

Challenges

Large search space

- Exponential complexities
- Requiring templates

Noisy data

- Lots of traditional approaches failed with noisy traces
- Very common in industrial scenarios, may come from
 - buggy programs
 - partial profiling
 - ...

Neural Network as LTL Path Checking

LTL path checking

- Input: a single trace
- Output: satisfy/unsatisfy a certain LTL formula

Examples

Formula: aUb

- Input 1: [a, a, b, c]
- Output 1: SAT

- Input 2: [a, b, a, c]
- Output 2: UNSAT

Neural Network as LTL Path Checking

We design a neural network to simulate the LTL path checking:

$$f_{\theta}(x): T \rightarrow \{0,1\}$$

where θ is a set of trainable parameters, and T is the trace space.

After training, we can interpret θ to an LTL formula.

Training Strategy

New chellenge

- We need a label-balanced training set for binary classification tasks
- In this case, negative samples are unavailable

Solution

Apply positive and unlabeled (PU) learning to our approach.

- Use real software logs as positive sample
- Randomly generated traces as unlabeled samples
- Apply variational PU loss

The Overall Procedure of Our Approach

Results on Noise-free Inputs

Table: F_1 scores (%) of Texada, GLTLf and PURLTL on noise-free data.

	Texada	GLTLf	PURLTL
Response	100	49.41	<u>100</u>
Alternating	<u>100</u>	81.97	89.49
MultiEffect	<u>100</u>	80	99.5
MultiCause	<u>100</u>	86.58	<u>100</u>
EffectFirst	<u>100</u>	58.61	99.5
CauseFirst	<u>100</u>	85.11	<u>100</u>
OneCause	<u>100</u>	66.52	<u>100</u>
OneEffect	<u>100</u>	61.98	<u>100</u>

Results on Noisy Inputs

Table: F_1 scores (%) of GLTLf and PURLTL with different noise rates.

		0%	10%	30%	50%
Response	GLTLf	49.41	49.25	49.25	49.25
	PURLTL	100	<u>100</u>	<u>100</u>	<u>100</u>
Alternating	GLTLf	81.97	81.97	80	80
	PURLTL	89.49	89.49	89.49	89.49
MultiEffect	GLTLf	80	80	80	80
	PURLTL	<u>99.5</u>	<u>99.25</u>	<u>97.3</u>	<u>97.3</u>
MultiCause	GLTLf	86.58	86.58	86.58	86.58
	PURLTL	100	<u>100</u>	<u>100</u>	<u>100</u>
EffectFirst	GLTLf	58.61	58.61	58.61	58.61
	PURLTL	<u>99.5</u>	<u>99.5</u>	96.37	96.37
CauseFirst	GLTLf	85.11	85.11	85.11	85.11
	PURLTL	100	<u>100</u>	<u>100</u>	<u>100</u>
OneCause	GLTLf	66.52	66.52	66.52	66.52
	PURLTL	100	<u>100</u>	100	100
OneEffect	GLTLf	61.98	61.98	61.98	61.98
	PURLTL	<u>100</u>	92.35	92.35	95.69

Ablation Study of VPU Loss

Table: F_1 scores (%) of PURLTL with different loss functions.

	Response	Alternating	MultiEffect	MultiCause
MSE	49.41	88.89	88.79	86.58
VPU	<u>66.42</u>	<u>98.04</u>	<u>96.11</u>	86.58
	EffectFirst	CauseFirst	OneCause	OneEffect
MSE	75.14	85.11	61.3	72.49
VPU	61.21	85.11	83.68	72.49

10 / 12

Results with and without Templates

Peng, et. al. (SYSU)

Table: F_1 scores (%) on noise-free inputs with and without templates.

	Response	Alternating	MultiEffect	MultiCause
w/ t.	100	100	99.5	100
w/o t.	66.42	98.04	96.11	86.58
	EffectFirst	CauseFirst	OneCause	OneEffect
w/ t.	99.5	100	100	100
w/o t.	61.21	85.11	83.68	72.49

Conclusions

We propose an approach to mine LTL specifications, namely PURLTL, which has the following advantages:

- High efficiency (polynomial complexity of neural networks)
- Ability of accepting noisy inputs
- Template-free

