CO SỞ DỮ LIỆU VĂN BẢN Text/Document Databases

Hệ cơ sở dữ liệu đa phương tiện

HK1, 2023 - 2024

Giới thiệu

Mỗi tài liệu văn bản là chuỗi các từ Simple can be harder than complex: You have to work hard to get your thinking clean to make it simple. But it's worth it in the end because once you get there, you can move mountains.

- Từ đồng nghĩa: xem coi, siêng năng chăm chỉ cần cù
- Từ đa nghĩa: mũi (mũi người, mũi dao...)
- Thứ tự các từ: ra đi đi ra, cơm bữa bữa cơm

Tập văn bản \sim tập các chuỗi

Giới thiệu

- Mỗi tài liệu văn bản D được biểu diễn bằng $\emph{chuỗi}$ (\emph{string}) từ
 - Toàn văn
 - Tiêu đề
 - Tóm tắt
- CSDL văn bản: tập hợp các chuỗi được lập chỉ mục hợp lý
- Tìm kiếm: tìm các văn bản trong CSDL có chứa các từ trong văn bản truy vấn
 - Bài toán khớp xâu (string-matching, substring-finding)

Ví dụ

DocumentID	String		
d_1	Jose Orojuelo's Operations in Bosnia		
d_2	The Medellin Cartel's Financial Organization		
d_3	The Cali Cartel's Distribution Network		
d_4	Banking Operation and Money Laundering		
d_5	Profile of Hector Gomez		
d_6	Connection between Terrorism and Asian Dope Operations		
d ₇	Hector Gomez: How He Gave Agents the Slip in Cali		
d_8	Drugs, and Videotape		
d_9	The Iranian Connection		
d ₁₀	Boating and Drugs: Slips Owned by the Cali Cartel		

Vấn đề khi khớp xâu

Vấn đề từ đồng nghĩa (Synonymy): từ truy vấn không xuất hiện trong tài liệu nhưng D liên quan đến chủ đề truy vấn

- Với chủ đề " $money\ laundering$ ": tìm được d_4 nhưng không tìm được d_2
- Với từ "'drugs"
 - Tìm được d_8 , d_1 0
 - Không tìm được d_6 (có từ đồng nghĩa dope)
 - Bị bỏ qua d_2 , d_3 (đề cập đến tập đoàn ma túy drug cartel)

Vấn đề khi khớp xâu

Vấn đề đa nghĩa (Polysemy): một từ có thể có nhiều nghĩa tùy theo bối cảnh

- Từ bank: financial institution, river bank, bank on,...
- Nếu truy vấn tài liệu liên quan đến tài chính: bỏ qua các tài liệu có tựa "Otters on the Banks of the Colorado River"

Xử lý trật tự từ

Kiến trúc tổng thể hệ thống IR

- Mỗi tài liệu được biểu diễn bởi một tập các từ (bag of words)
 - Ví dụ: "Game of Thrones": { "Game", "of", "Thrones" }
 - Mỗi từ được xem là một chiều trong không gian từ điển
 - Số chiều = kích thước của từ điển
- Một số kỹ thuật xử lý
 - Stop list
 - Stemming
 - Frequency table

Lược đồ logic của một document

Stop list: các từ không giúp phân biệt các tài liệu trong 1 tập các tài liệu được xem xét

- Chung: the, a, of, at, are...
- Tùy vào bản chất của tập dữ liệu
 - Ví dụ: báo cáo kỹ thuật của đề tài liên quan đến computer science "computer" thuộc stop list
 - Ví dụ: tài liệu về trồng trọt "computer" không thuộc stop list

Stemming: nhóm các biến thể của một từ gốc thành 1 nhóm, biểu diễn bởi 1 từ đại diện

- ullet retrieved, retrieval, retrieving, retrieve ightarrow retriev
- drug, drugs, drugged → drug

Thesaurus: nhóm các từ gần nghĩa \rightarrow sử dụng từ điến đồng nghĩa hoặc có liên quan

ullet learning, school work, study, reading o study

Frequency table (bảng tần suất): hỗ trợ xác định mức độ quan trọng khác nhau của các từ trong văn bản khi thực hiện

- ullet \mathcal{D} : tập N văn bản
- ullet \mathcal{T} : tập M từ trong các tài liệu thuộc \mathcal{D}
- Frequency table: $M \times N$
- $\mathsf{tf}(i,j)$ (term frequency): số lần xuất hiện các từ t_i trong văn bản d_j

Term/doc	d_8	d_9	d_{10}
drug	1	0	1
videotape	1	0	0
iran	0	1	0
connection	0	1	0
boat	0	0	1
slip	0	0	1
own	0	0	1
cali	0	0	1
cartel	0	0	1

Term/doc	d_1	d_2	d_3	d_4	d_5	d_6
t_1	615	390	10	10	18	65
t_2	15	4	76	217	91	816
t_3	2	8	815	142	765	1
t_4	312	511	677	11	711	2
t_5	45	33	516	64	491	59

- Mỗi văn bản d_j được biểu diễn bởi 1 vector chỉ tần suất xuất hiện của các từ trong văn bản đó: $(\mathsf{tf}_{1,j},\mathsf{tf}_{2,j},\ldots,\mathsf{tf}_{M,j})$
- Thường được chuẩn hóa về [0,1]: để tính đến ảnh hưởng của đô dài văn bản

◆ロト ◆御 ト ◆恵 ト ◆恵 ト ・恵 ・ 夕久 ②

Term/doc	d_1	d_2	d_3	d_4	d_5	d_6
t_1	0.62	0.41	0.00	0.02	0.01	0.07
t_2	0.02	0.00	0.04	0.49	0.04	0.87
t_3	0.00	0.01	0.39	0.32	0.37	0.00
t_4	0.32	0.54	0.32	0.02	0.34	0.00
t_5	0.05	0.03	0.25	0.14	0.24	0.06

- (d_1, d_2) và (d_3, d_5) : tương đồng
- (d_3, d_6) : khác biết

 idf (inverse document frequency): xác định độ quan trọng của mỗi từ trong tập dữ liệu văn bản đang xem xét

$$\mathsf{idf}_i = \mathsf{log}\left(\frac{N}{\mathsf{df}_i}\right)$$

- $\bullet~N$: tổng số văn bản trong tập dữ liệu
- df_i : số văn bản có chứa từ t_i
- Trọng số tf . idf của từ t_i trong văn bản d_j là:

$$w_{i,j} = \mathsf{tf}_{i,j} \times \mathsf{idf}_{i,j}$$

ullet Mỗi văn bản d_j được biểu diễn bởi 1 vector tf . idf

$$(w_{1,j},w_{2,j},\ldots,w_{M,j})$$

sở dữ liệu văn bản HK1, 2023 - 2024

Ví dụ

- D_1 : "John has some cats"
- D_2 : "Cats eat fish"
- D_3 : "I eat a big fish"

Bài tập

Cho các document

- Doc1: Ben studies about computers in Computer Lab.
- Doc2: Steve teaches at Brown University.
- Doc3: Data Scientists works on large datasets.
- Doc4: Data Science is a subject taught by the head of Computer Lab.
- Query: Data Scientist

Đánh chỉ mục (Indexing)

- ullet Nếu dùng flat-files o không hiệu quả
- Inverted files:
 - Hiệu quả
 - Dễ cài đặt
 - Thông dụng trong hệ thống tìm kiếm văn bản
- Signature files (PAT trees, graphs)

File đảo – inverted file **Document**

DocID	Postings_list
DocID1	Term1, Term2, Term4
DocID2	Term2, Term3, Term4
DocID3	Term1, Term3, Term4

Term

Term	Postings_list
Term1	DocID1, DocID3
Term2	DocID1, DocID2
Term3	DocID2, DocID3
Term4	DocID1, DocID2, DocID3

Term

Lưu các từ/khái niệm/từ khóa

 Postings_list
 Chỉ ra văn bản [, vị trí trong văn bản] mà term xuất hiên

File đảo – inverted file

Mỗi bản ghi của bảng term

- Có thể chứa thông tin chi tiết vị trí của mỗi xuất hiện trong từng tài liệu
 - term *i*: Doc id, paragraph number, sentence number, word number
 - Information: R99, 10, 8, 3; R155, 15, 3, 6; R166, 2, 3, 1
 - Retrieval: R77, 9, 7, 2; R99, 10, 8, 4; R166, 10, 2, 5
- Có thể có thông tin về tần suất xuất hiện của term trong tài liệu
 - Term1: R1, 0.3; R3, 0.5; R6, 0.8; R7, 0.2; R11, 1
 - Term2: R2, 0.7; R3, 0.6; R7, 0.5; R9, 0.5
 - Term3: R1, 0.8; R2, 0.4; R9, 0.7

Tim kiếm (retrieving textual documents)

- Truy vấn hiệu quả các tài liệu đã được đánh chỉ mục
 - ullet Câu truy vấn Q được biểu diễn tương tự các tài liệu
 - ullet So sánh Q và các tài liệu trong CSDL
 - ightarrow Xác định khoảng cách giữa Q và các d_j
- 03 loại phương pháp truy vấn
 - Boolean Models: Fuzzy, Extended Boolean Models
 - Vector Models: Generalized vector, Latent Semantic Index, Neural Networks...
 - Probabilistic Models: Inference Network, Belief Network...

Boolean Model

- Mỗi văn bản trong CSDL: tập các từ khóa
- Câu truy vấn Q:
 - Biểu diễn bằng các từ khóa
 - Các phép toán logic: AND, OR, NOT
 - Ví dụ: information AND retrieval
- Thực hiện dễ dàng với Inverted File thông qua các phép hợp, giao, trừ

- \bullet Giả sử các văn bản và truy vấn đều được biểu diễn bởi 1 tập cố định M khái niệm/từ (term) có trọng số
- Mỗi văn bản D_j , truy vấn Q_i được biểu diễn bàng vector

$$\overrightarrow{D_j} = [w_{1,j}, w_{2,j}, \dots, w_{M,j}] \overrightarrow{Q_i} = [w_{1,i}, w_{2,i}, \dots, w_{M,i}]$$

Với:

- ullet $w_{k,j}$, $w_{k,i}$: trọng số của từ k trong D_j và Q_i
- ullet $w_{k,l}$: $\{0,1\}$, tf.idf, tf,... ightarrow thường nhận trọng số tf.idf

Khoảng cách D_j và Q_i

• Khoảng cách khái niệm

$$d(Q_i, D_j) = \sqrt{\sum_{k=1}^{M} (w_{k,i} - w_{k,j})^2}$$

• Khoảng cách cosine: $1 - S(Q_i, D_j)$

$$S(Q_i, D_j) = \frac{\overrightarrow{Q}_i.\overrightarrow{D}_j}{\|\overrightarrow{Q}_i|.\|\overrightarrow{D}_j\|} = \frac{\sum_{k=1}^{M} w_{k,i}.w_{k,j}}{\sqrt{\sum_{k=1}^{M} w_{k,i}^2}.\sqrt{\sum_{k=1}^{M} w_{k,j}^2}}$$

Kết quả thu được sẽ được sắp xếp (ranking) theo thứ tự giảm dần của độ tương tự

Ví dụ:

$$D_1 = [0.2, 0.1, 0.4, 0.5], D_2 = [0.5, 0.6, 0.3, 0],$$

 $D_3 = [0.4, 0.5, 0.8, 0.3], D_4 = [0.1, 0, 0.7, 0.8],$
 $Q = [0.5, 0.5, 0, 0]$
 $S(Q, D_1) = 0.31, S(Q, D_2) = 0.93,$
 $S(Q, D_3) = 0.66, S(Q, D_4) = 0.07$

→ Kết quả: ?

Cơ sở dữ liệu văn bản

Ưu điểm:

- Cho phép tìm kiếm gần đúng (partial matching)
- Đo được mức độ giống nhau giữa văn bản và truy vấn
- Đơn giản
- Thích hợp với các văn bản ngắn

Hạn chế:

- Coi các term không có liên quan với nhau
- Chưa tính đến mối liên hệ không gian giữa các từ
- ullet Độ phức tạp tìm kiếm: $O(M \times N)$ lớn khi M , N lớn

- Mô hình Latent Semantic Indexing: mô hình chỉ mục ngữ nghĩa tiềm năng
- Một biến thể của Vector Models

Ý tưởng

- Văn bản thường liên quan đến khái niệm (concept) hơn là liên quan trực tiếp đến các từ dùng trong văn bản
 Đồi, sườn dốc, núi, hang động, đá → thuộc 1 concept
- → Tìm kiếm dựa trên khái niệm
 - ullet Biểu diễn văn bản với K chiều với $K \ll M$

Kỹ thuật giảm số chiều: **SVD** (Singular Valued **Decomposition**)

$$T^\mathsf{T}T = I_R, \ D^\mathsf{T}D = I_R$$

MxN

$$S(i,j) = 0$$
, $i \neq j$

$$S(1,1) \ge S(2,2) \ge \cdots \ge S(R,R)$$

Cơ sở dữ liệu văn bản

Mxk

Giả sử FreqT có SVD

$$\begin{pmatrix} a_1^1 & a_2^1 & a_3^1 & a_4^1 & a_5^1 \\ a_1^2 & a_2^2 & a_3^2 & a_4^2 & a_5^2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_1^M & a_2^M & a_3^M & a_4^M & a_5^M \end{pmatrix} \begin{pmatrix} 20 & 0 & 0 & 0 & 0 \\ 0 & 16 & 0 & 0 & 0 \\ 0 & 0 & 12 & 0 & 0 \\ 0 & 0 & 0 & 0.08 & 0 \\ 0 & 0 & 0 & 0.004 \end{pmatrix} \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 & \cdots & b_N^1 \\ b_1^2 & b_2^2 & b_3^2 & \cdots & b_N^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_1^5 & b_2^5 & b_3^5 & \cdots & b_N^5 \end{pmatrix}$$

Nếu đặt ngưỡng là 3, thì kết quả là

$$\begin{pmatrix} a_1^1 & a_2^1 & a_3^1 \\ a_1^2 & a_2^2 & a_3^2 \\ \vdots & \vdots & \vdots \\ a_1^M & a_2^M & a_3^M \end{pmatrix} \begin{pmatrix} 20 & 0 & 0 \\ 0 & 16 & 0 \\ 0 & 0 & 12 \end{pmatrix} \begin{pmatrix} b_1^1 & b_2^1 & b_3^1 & \cdots & b_N^1 \\ b_1^2 & b_2^2 & b_3^2 & \cdots & b_N^2 \\ b_1^3 & b_2^3 & b_3^3 & \cdots & b_N^3 \end{pmatrix}$$

4 D > 4 B > 4 E > 4 E > 9 Q C

- Kích thước của bảng tần suất ban đầu là $M \times N$
 - Kích thước của có thể lên đến M=1 triệu và $N=\!10,\!000$ ngay cả với CSDL tài liệu nhỏ
- Sau SVD: kích thước của các ma trận đơn với k=200
 - Ma trận T: $M \times k \sim 1$ triệu $\times 200 = 200$ triệu đầu vào
 - Ma trận S: $k \times k \sim 200 \times 200 = 40,000$ đầu vào (chỉ 200 giá trị cần lưu trữ; toàn bộ các đầu vào còn lại có giá trị 0)
 - Ma trận D: $k \times N \sim 200 \times 10,000 = 2$ triệu đầu vào
 - $\rightarrow\,$ Tổng số dữ liệu cần lưu trữ xấp xỉ 202 triệu thay vì 10,000 triêu

Các bước của LSI

- ullet Tạo ma trận: tính bảng tần suất FreqT (M imes N)
- ullet Áp dụng SVD để phân rã FreqT thành T,S,D
- Xác định vector biểu diễn cho mỗi văn bản d(vec(d)): các phần tử trong FreqT tương ứng với dòng không bị loại bỏ trong ma trận S
- Tạo chỉ số: lưu lại các vec(d) của CSDL (sử dụng cấu trúc dữ liệu đa chiều, vd: R-tree, k-D tree, TV-tree)

LSI - Truy vấn

- Giả sử sau khi loại bỏ các thành phần ít quan trọng, SVD cho FreqT được biểu diễn bởi T^* , S^* , D^{*T}
- ullet Sự tương tự giữa 2 văn bản d_i , d_j trong CSDL

$$\sum_{z=1}^{k} D^{*T}[i, z] \times D^{*T}[j, z]$$

LSI - Truy vấn

- \bullet Tìm kiếm p văn bản phù hợp đầu tiên cho truy vấn Q
 - Xem Q như 1 tài liệu để tính vector biểu diễn cho Q: vec_Q
 - \bullet Điểm khác biệt: chỉ xét trên k khái niệm chứ (không phải M)
- p tài liệu $d_{\alpha(1)}, d_{\alpha(2)}, \ldots, d_{\alpha(p)}$ phù hợp với Q: $\forall i, j \colon 0 \leq i \leq j \leq p$ similarity $(\text{vec}_Q, d_{\alpha(i)}) \geq \text{similarity}(\text{vec}_Q, d_{\alpha(j)})$ $\neg \exists z \notin \{\alpha(1), \alpha(2), \ldots, \alpha(p)\}$ similarity $(\text{vec}_Q, d_z) \geq \text{similarity}(\text{vec}_Q, d_{\alpha(p)})$

LSI - Truy vấn

$$\mathsf{FreqT} = T^* \times S^* \times D^{*T} \Rightarrow D = \mathsf{FreqT}^T \times T^* \times S^{*-1}$$

- Xác định vector vec_Q biểu diễn cho Q từ T^* , S^* , ${D^*}^T$
 - Vector tần số cho truy vấn Q trên M từ $f_Q: M \times 1$ $\text{vec}_Q = f_Q^T \times T^* \times S^{*-}1$
- Xác định độ tương tự giữa vector vec_Q và các vector tương ứng với các cột trong D^{*T}

Probabilistic Model

- Dựa trên lý thuyết xác suất gồm các tham số
 - $P(\operatorname{rel}|d_j)$: xác suất 1 văn bản liên quan (relevant) tới truy vấn Q
 - $P(\text{nonrel}|d_j)$: xác suất 1 văn bản không liên quan (non-relevant, irrelevant) tới truy vấn Q
 - Chi phí tương ứng khi trả về tài liệu non-relevant
 - Chi phí tương ứng khi không lấy tài liệu relevant
- Không hiệu quả trong truy vấn do khó xác định $P(\text{rel}|d_j)$, $P(\text{nonrel}|d_j)$

Phản hồi có liên quan (Relevance Feedback)

- RF Relevance Feedback
 - Cho phép người sử dụng đánh dấu các câu trả lời đúng (relevant) và chưa đúng (irrelevant)
 - ightarrow Cải tiến hiệu năng của hệ thống
 - Thích hợp với Vector Model
- 2 hướng tiếp cận
 - Query Modification
 - Document Modification

Phản hồi có liên quan (Relevance Feedback)

Phản hồi có liên quan (Relevance Feedback)

• Thay đổi biểu diễn câu truy vấn (Query Modification)

$$Q^{i+1} = Q^i + \alpha \sum\limits_{D^i \in \mathsf{rel}} D^i - \beta \sum\limits_{D^j \in \mathsf{rel}} D^j$$

- Thông dung
- Cải tiến hiệu năng của hệ thống
- Chỉ cho 1 người sử dung, không tân dung được cho người dùng khác
- Thay đổi biểu diễn văn bản trong CSDL (Document modification)
 - Có thể tân dung cho người dùng khác nhau
 - Có thể giảm hiệu quả do các truy vấn sau khác câu truy vấn đã thay đổi văn bản

39 / 42

Các độ đo thông dụng

• Độ chính xác (Precision)

$$\mathsf{Prec} = \frac{C}{A+C}$$

• Độ nhạy (Recall)

$$\mathsf{Recall} = \frac{C}{B+C}$$

Các độ đo thông dụng

Đường cong precision - recall

Các độ đo thông dụng

- P@n, R@n: độ chính xác tính trên n kết quả trả về gần nhất
- F-score:

$$F = \frac{2 \times \mathsf{Prec} \times \mathsf{Recall}}{\mathsf{Prec} + \mathsf{Recall}}$$

- Average precision
- Mean average precision
- ...