NAME – MOHIT AKHOURI ROLL NO – 19UCC023 DATA MINING ASSIGNMENT – 2

Q 1) ------

Ans 1)

Given: Support Threshold = 20 %

(a) First, In order to calculate the frequent itemsets, the theory for the same is: Frequent itemsets are best represented by the dense columns in the graph (that is frequently occurring items).

Frequent itemsets for each dataset are:

Dataset 1 = 5 (Transactions overlap)

Dataset 2 = 4 (Transactions 1,2,3,4 and 5 overlap with each other)

Dataset 3 = 10 (All 10 transactions overlap)

Now, Data set **c** will produce the most number of frequent itemsets as it has the highest overlap.

- (**b**) For longest frequent itemset, we have to see where there are more number of 1 item datasets and whether they overlap or not. Dataset **c** will produce the longest frequent itemset, as it has 2-length transactions in which each 1 length subpart overlaps with many other transactions.
- (c) In dataset c, Item number of A occurs around 10000 times, which can be the maximum support for any dataset in this example.
- (d) Looking at the datasets, we can see that dataset b has many frequent item columns of varying lengths, that is there are transactions of length 3, 2 and 7. Therefore, dataset b will produce frequent itemsets containing items with widely varying support levels.

(e) Maximal frequent itemsets for each dataset can be as follows:

<u>Dataset 1</u> = Each item occurs atmost 5 times in this dataset. Therefore maximal frequent itemsets for this dataset = 5.

<u>Dataset 2</u> = Here Item A occurs 2 times, B and D occurs 3 times, C occurs 4 times and rest of items occurs 1 time. Therefore, maximal frequent itemsets for this dataset = 4.

<u>Dataset 3</u> = Here item A and B occur 10 times, items D and E occur 1 time and item G occurs 2 times, therefore maximal frequent itemsets for this dataset = 10.

The dataset which will produce the most number of frequent itemsets = **b**

(f) Number of closed frequent itemsets for each dataset are as follows:

<u>Dataset 1</u> = Items A to E occur around 5 times. Items F to J occur around 5 times, therefore number of closed frequent itemsets = 5.

<u>Dataset 2</u> = Item A occur 2 times, B and D occur 3 times, C occur 4 times and rest of items occur only 1 time. But the number of closed frequent itemsets = 1.

Dataset 3 = Items A and B occur 10 times. Items D and E occur only 1 time. Item G occur 2 time, therefore number of closed frequent itemsets = 10.

Dataset which will produce the most number of closed frequent itemsets = c

Q 2) -----

Ans 2) Introduction to Data Mining: Exercise 6.10 - Q2

(a) By treating each transaction ID as a market basket, the support for different itemsets can be calculated by counting their occurrences in the transactions. The support for different itemsets are as follows:

Support for itemset $\{e\}$ = $s(\{e\})$ = 8/10

Reason: item e occurs 8 times in the transactions out of 10.

Support for itemset $\{b,d\}$ = $s(\{b,d\})$ = 2/10

Reason: item {b,d} occur 2 times (In transaction ID 0012 and 0022).

Support for itemset $\{b,d,e\} = s(\{b,d,e\}) = 2/10$

Reason: item {b,d,e} occur 2 times (In transaction ID 0012 and 0022).

(b) The confidence for the different association rules are as follows:

Confidence for the association rule (bd -> e) is: C(bd -> e) = 0.2/0.2 = 1 = 100%

Confidence for the association rule ($e \rightarrow bd$) is : $C(e \rightarrow bd) = 0.2/0.8 = 0.25 = 25\%$

Since the association rules bd->e and e->bd are symmetric, but their confidence are not same. Hence, we can say that here confidence is not a symmetric measure.

(c) If we treat each customer ID as a market basket and each item as a binary variable (1 if item appears in at least one transaction and 0 otherwise), Support count for different itemsets are as follows:

Support for itemset $\{e\}$ = $s(\{e\})$ = 4/5 = 0.8 = 80%

<u>Support for itemset $\{b,d\}$ </u> = $s(\{b,d\})$ = 5/5 = 1 = 100%

Support for itemset $\{b,d,e\}$ = $s(\{b,d,e\})$ = 4/5 = 0.8 = 80%

(d) Using the results of previous part c, Confidence for the different association rules can be as follows:

Confidence for the association rule (bd -> e) is : C(bd -> e) = 0.8/1 = 0.8 = 80%

Confidence for the association rule ($e \rightarrow bd$) is : $C(e \rightarrow bd) = 0.8/0.8 = 1 = 100\%$

(e) Here, s_1 and c_1 are the support and confidence values of association rule \mathbf{r} , if we treat each transaction ID as a market basket. Now, s_2 and c_2 are support and confidence values of \mathbf{r} if we treat customer ID as a market basket. Looking from the above table and different values we got in the previous parts, we can see that there is no visible relationships between s_1, s_2, c_1 and c_2 .

Q3)-----

Ans 3) Introduction to Data Mining : Exercise 6.10 - Q3

(a) Confidence for the rules $\phi \rightarrow A$ and $A \rightarrow \phi$ are as follows:

Confidence of $\phi \rightarrow A = \text{Support of } \phi \rightarrow A : c(\phi \rightarrow A) = s(\phi \rightarrow A)$

Confidence of A -> ϕ = **100**%

(**b**) The formulas for c_1, c_2 and c_3 are as follows:

$$c_1 = s(p U q) / s(p)$$

$$c_2 = s(p U q U r) / s(p)$$

$$c_3 = s(p U q U r) / s(p U r)$$

In the above formulas, **s** indicates the support count.

We can consider s(p) >= s(p U q) >= s(p U q U r), therefore the conclusion for the relationship between c_1, c_2 and c_3 are as follows:

Relation: $c_1 >= c_2$ and $c_3 >= c_2$

Therefore we can say that c_2 has the lowest confidence.

(c) Given the Assumption: Rules have identical support.

We can consider s(p U q) = s(p U q U r)

But we have deduced that $s(p) >= s(p \cup r)$, therefore we say that : $c_3 >= (c_1 = c_2)$.

So the <u>conclusion</u> that we can make is that either for all the rules, confidence is the same or c_3 has the highest confidence among all.

(d) Given some pre-conditions : c(A -> B) and c(B -> C) > minconf.

<u>YES</u>, it is possible for A -> C has a confidence less than minconf. It depends on the support of items A,B and C. The <u>example</u> for the same can be discussed as below:

Let s(A,B) = 60%, s(A) = 90%, s(A,C) = 20%, s(B) = 70%, s(B,C) = 50% and s(C) = 60%. Let minconf = 50%. Therefore the conclusions can be made as follows :

 $c(A \rightarrow B) = 66\%$ which is greater than minconf.

 $c(B \rightarrow C) = 71\%$ which is greater than minconf.

But confidence for A -> C, c(A -> C) = 22% which is less than minconf.

Q4)-----

Ans 4) Introduction to Data Mining: Exercise 6.10 - Q6

- (a) Observing the table, we can conclude that there are six items in the dataset. The items are : { Milk, Beer, Diapers, Bread, Butter and Cookies }. Therefore, total number of rules that can be extracted from this dataset are : **602**.
- (**b**) Assuming minsup > 0, we can see from the table that longest transaction which are transactions 6 and 9 contains **4** items each. Therefore, maximum size of the frequent itemset = **4**.
- (c) To derive the maximum number of size-3 itemsets, we can use the probability concepts: ${}^{6}C_{3} = 20$.

- (d) The itemset of size 2 or larger and which has the largest support is as follows: {Bread, Butter}
- (e) The pair of items a and b, such that the rules : {a} -> {b} and {b} -> {a} have the same confidence are :

```
{Beer, Cookies}
{Bread, Butter}
```

Q 5) -----

Ans 5) Introduction to Data Mining: Exercise 6.10 - Q7

(a) Using the F_{k-1} x F_1 merging strategy, all candidate 4-itemsets are as follows :

$$\{1,2,3,4\}$$
, $\{1,2,3,5\}$, $\{1,2,3,6\}$, $\{1,2,4,5\}$, $\{1,2,4,6\}$, $\{1,2,5,6\}$, $\{1,3,4,5\}$, $\{1,3,4,6\}$, $\{2,3,4,5\}$, $\{2,3,4,6\}$, $\{2,3,5,6\}$

- **(b)** Using the candidate procedure Apriori , candidate-4 itemsets are as follows : {1,2,3,4} , {1,2,3,5} , {1,2,4,5} , {2,3,4,5} , {2,3,4,6}
- (c) All candidate-4 itemsets that survive the candidate pruning step of Apriori algorithm are : $\{1,2,3,4\}$.

(a) The contingency tables for the rules after observing the given table are as follows:

<u>Rule</u>: $\{b\} - > \{c\}$

	С	c'
b	3	4
b'	2	1

<u>Rule</u>: $\{a\} - > \{d\}$

	d	ď'
а	4	1
a'	5	0

<u>Rule</u>: $\{b\} - > \{d\}$

	d	ď'
b	6	1
b'	3	0

<u>Rule</u>: $\{e\} - > \{c\}$

	С	c'
e	2	4
e'	3	1

<u>Rule</u>: $\{c\} - > \{a\}$

	a	a'
С	2	3
c'	3	2

- (b) Using the contingency tables in the previous part, Ranking the rules :
 - (i) Support: The table and rankings are as follows –

Rules	Support	Rank
b -> c	0.3	3
a -> d	0.4	2
b -> d	0.6	1
e -> c	0.2	4
c - > a	0.2	4

(ii) Confidence: The table and rankings are as follows –

Rules	Confidence	Rank
b -> c	3/7 = 0.42	3
a -> d	4/5 = 0.80	2
b -> d	6/7 = 0.85	1
e -> c	2/6 = 0.33	5
c - > a	2/5 = 0.40	4

(iii) Interest (X -> Y) = (P(X,Y) / P(X)) * P(Y).

The table and rankings are as follows –

Rules	Interest	Rank
b -> c	0.214	3
a -> d	0.72	2
b -> d	0.771	1
e -> c	0.167	5
c - > a	0.2	4

(iv)
$$IS (X -> Y) = P(X,Y) / (sqrt (P(X) * P(Y)).$$

The table and rankings are as follows –

Rules	IS	Rank
b -> c	0.507	3
a -> d	0.596	2
b -> d	0.756	1
e -> c	0.365	5
c - > a	0.4	4

$$(v) Klosgen (X -> Y) = sqrt(P(X,Y)) * (P(Y|X) - P(Y)).$$

The table and rankings are as follows –

Rules	Klosgen	Rank
b -> c	-0.039	2
a -> d	-0.063	4
b -> d	-0.033	1
e -> c	-0.075	5
c - > a	-0.045	3

(vi) $Odds \ ratio (X -> Y) = (P(X,Y) * P(X'Y')) / (P(X,Y') * P(X',Y)).$

The table and rankings are as follows –

Rules	Odds Ratio	Rank
b -> c	0.375	2
a -> d	0	4
b -> d	0	4
e -> c	0.167	3
c - > a	0.444	1

Q7)-----

Ans 7) Introduction to Data Mining: Exercise 7.8 - Q1

(a) The binarized version of the given dataset is as follows:

Good	Bad	Alcohol	Sober	Exceed	None	Disobey	Disobey	Belt	Belt	Major	Minor
				Speed		Stop	Traffic	=	=		
								No	Yes		
1	0	1	0	1	0	0	0	1	0	1	0
0	1	0	1	0	1	0	0	0	1	0	1
1	0	0	1	0	0	1	0	0	1	0	1
1	0	0	1	1	0	0	0	0	1	1	0
0	1	0	1	0	0	0	1	1	0	1	0
1	0	1	0	0	0	1	0	0	1	0	1
0	1	1	0	0	1	0	0	0	1	1	0
1	0	0	1	0	0	0	1	0	1	1	0
1	0	1	0	0	1	0	0	1	0	1	0
0	1	0	1	0	0	0	1	1	0	1	0
1	0	1	0	1	0	0	0	0	1	1	0
0	1	0	1	0	0	1	0	0	1	0	1

- (b) Observing from the binarized table, we can conclude that maximum width of each transaction in the binarized data -5.
- (c) Assuming that support threshold is given as 30%. The number of candidate and frequent itemsets that will be generated are as follows:

<u>The number of candidate itemsets from size one to size three can be</u>: 10+28+3=41

<u>The number of frequent itemsets from size one to size three can be</u>: 8+10+0=18

(d) Assuming that support threshold is 30%, after generating the required binarized data for Traffic accident dataset, we come to the following two conclusions:

<u>The number of candidate itemsets from size one to size three can be</u>: 5+10+0=15 The number of frequent itemsets from size one to size three can be: 5+3+0=8

(e) We can see from part c and d, number of candidate and frequent itemsets in part d is less than part c.

Q8)-----

Ans 8) Introduction to Data Mining : Exercise 7.8 - Q10

Assuming that there are no timing constraints imposed on the sequences and assuming support >= 50%. After observing the given sequence database, frequent subsequences that can be found are as follows:

$$< \{A\} > , < \{B\} > , < \{C\} > , < \{D\} > , < \{E\} > , < \{A\}, \{C\} > , < \{A\}, \{D\} > , < \{A\}, \{E\} > , < \{B\}, \{C\} > , < \{B\}, \{D\} > , < \{B\}, \{E\} > , < \{C\}, \{D\} > , < \{C\}, \{E\} > , < \{D, E\} >$$

Q9)-----

Ans 9) Introduction to Data Mining: Exercise 7.8 - Q11

(a) The table of event subsequences generated by various sensors are given. According to the given timing constraints and given sequence : $< \{1,2,3\}, \{2,4\}, \{2,4,5\}, \{3,5\}, \{6\} >$.

Sequence (w)	Whether this is subsequence?
< {1},{2},{3} >	YES
< {1,2,3,4} , {5,6} >	NO
< {2,4} , {2,4} , {6} >	YES
< {1}, {2,4}, {6}>	YES
< {1,2} , {3,4} , {5,6} >	NO

(**b**) Given the timing constraints and table of event subsequences, checking for contiguous subsequences of the following sequence s .

• For sequence: < {1,2,3,4,5,6}, {1,2,3,4,5,6}, {1,2,3,4,5,6} >

Sequence (w)	Whether this is contiguous?
< {1},{2},{3} >	YES
< {1,2,3,4} , {5,6} >	YES
< {2,4} , {2,4} , {6} >	YES
< {1}, {2,4}, {6}>	YES
< {1,2} , {3,4} , {5,6} >	YES

• For sequence: < {1,2,3,4}, {1,2,3,4,5,6}, {3,4,5,6} >

Sequence (w)	Whether this is contiguous ?
< {1},{2},{3} >	YES
< {1,2,3,4} , {5,6} >	YES
< {2,4} , {2,4} , {6} >	YES
< {1}, {2,4}, {6} >	YES
< {1,2} , {3,4} , {5,6} >	YES

• For sequence: < {1,2}, {1,2,3,4}, {3,4,5,6}, {5,6} >

Sequence (w)	Whether this is contiguous?
< {1},{2},{3} >	YES
< {1,2,3,4} , {5,6} >	YES
< {2,4} , {2,4} , {6} >	NO
< {1}, {2,4}, {6}>	YES
< {1,2} , {3,4} , {5,6} >	YES

• For sequence: < {1,2,3}, {2,3,4,5}, {4,5,6} >

Sequence (w)	Whether this is contiguous ?
< {1},{2},{3} >	NO
< {1,2,3,4} , {5,6} >	NO
< {2,4} , {2,4} , {6} >	NO
< {1}, {2,4}, {6}>	YES
< {1,2} , {3,4} , {5,6} >	YES

Q 10) -----

Ans 10) Introduction to Data Mining: Exercise 8.7 - Q7

<u>Given</u>: There is a dataset with the following properties –

- There are **m** points and **K** clusters
- Half of points and clusters are in "more dense region"
- Half of points and clusters are in "less dense region"
- The two regions are well-separated from each other

The <u>conclusion</u> we obtain after observing the above properties and the available given options is: <u>More centroids should be allocated to the denser region</u>. The <u>reason</u> for the same is – Less dense region require more centroids if we want the squared error is to be minimized.

Q 11) -----

Ans 11) Introduction to Data Mining: Exercise 8.7 - 10

Cosine measure is NOT the appropriate similarity measure to use with K-means clustering for time-series date due to these reasons :

- Time series data is a high-dimensional and denser data.
- Cosine measure is appropriate for sparse data.

<u>Alternate Solution</u> – **Euclidean distance** could be used with K-means clustering when the magnitude of time series is important. **Correlation** would be appropriate if shapes of the time series data is important.