FEATURES

High performance, low power 8bit RISC core

131 Instructions, 80% execute in one cycle 32x8 general purpose registers

Up to 32MIPS when running at 32MHz $\,$

Integrated one-cycle 8x8 Multiplier

Data and Programming Memory

8Kbytes In-system-programmable FLASH memory

1Kbytes Internal SRAM

504Bytes Data FLASH, Support Byte-wise access (E2PROM like)

Creative flash encryption based on state changing.

Peripherals

Two 8bit Timer/Counter, support compare-match output

One 16bit Timer/Counter with separated clock prescalar, Support Input

Capture and compare-match output

Internal 32 KHz RC oscillator, support calibrated to ±1%

Up to 6-channel PWM

8-channel 10bit Analog/Digital Converter

- 3-channel Difference input, x7.5, x15, x30 gain control
- Integrated thermal sensor

2-channel Analog Comparator, channel can be extended from ADC

Programmable Watch dog timer

Programmable serial USART

Master/slave SPI serial Interface

Byte-oriented 2-wire serial interface (Philips I2C compatible)

Special Microcontroller features

Serial Wire on-chip Debug (SWD)

External and internal interrupt sources

Power on reset and 3-level Brown-out Reset (Low voltage reset)

Internal 32 MHz RC oscillator, ±1% after calibration

Internal 32 KHz RC oscillator, ±1% after calibration

External crystal support 32.768 KHz or 400K~32MHz

Up to 12-channel capacitive touch keys

8-channel NMOS I/O, sink up to 80mA current.

I/O and Package

QFP32L (provide up to 30 GPIO)

S/SOP28L (provide up to 26 GPIO)

Operating Environment

Power supply: $1.8V \sim 5.5V$ Frequency: $0 \sim 32MHz$ Temperature: $-40C \sim +85C$ HBM ESD: 4000V

8-bit LGT8XM

RISC Microcontroller with 8192 Bytes In-System Programmable FLASH Memory

LGT8F88A

Data book

Version 1.1.1

Application

Kitchen

Microwave oven

Induction cooker

Electric cooker

Smart home appliance

Milk machine

Coffee maker

Water heater

Smart control devices

Li-on charger

Motor control

Smart toys

Hand-held device

System Architecture

LGT8F88A Diagram

Module Name	Function Description
SWD	On-chip debugger
LGT8XM	8bit High performance RISC core
CMU	Clock management Unit
PMU	Power Management Unit
RMU	Reset Management Unit
POR/LVD	Power on Reset and Low voltage detector
ADC	8-channel 10bit ADC
Thermal Sensor	Thermal Sensor
AC	Analog Comparator
AIO	ADC and Touch Key inputs
NIO	80mA high sink NMOS I/O
PIO	Programmable Digital I/O
WDT	Watch Dog Timer

Pin-out Assignment

Pin-out Definition

PIN Name	Function Description
vcc	Power supply (1.8V ~ 5.5V)
GND	System Ground
OSC1	External Crystal or clock input
OSC2	
RSTN	External Reset input, low active
RXD	USART interface
TXD	
ХСК	
INTO/1	External Interrupts or external wake-up sources
OC0A/B	Timer/Counter 0 compare-match output (PWM0A/B)
OC1A/B	Timer/Counter 1 compare-match output (PWM1A/B)
OC2A/B	Timer/Counter 2 compare-match output (PWM2A/B)
SCL	Byte-oriented Two wire interface (I2C compatible)
SDA	
SCK	Master/Slave SPI interface
SPSS	
MISO	
MOSI	
ТО	External clock input of Timer0
T1	External clock input of Timer1
ICP1	Capture input of Timer1
SWD	SWD on-chip debugger or ISP interface
SWC	
PCINTX	Pin status change interrupts
ADC70	Analog input channels of ADC
TK110	Capacitive touch key inputs
VREF/TCAP104	External VREF of ADC
	External filter-capacitance (0.1uF) of Touch Key circuit
AIN0	Input channel of Analog Comparator
AIN1	
CLKO	System clock output
PB70	Programmable General Purpose I/O
PD70	Programmable General Purpose I/O
PC60	Programmable General Purpose I/O
PE60	Programmable General Purpose I/O
PD50	NMOS I/O, Can be sink up to 80mA
PE54	

REGISTERS INDEX

Address	Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
			<u> </u>	Extended	IO Registe				
\$F6	GUID3				(GUID Byte 3			
\$F5	GUID2				(GUID Byte 2			
\$F4	GUID1				(GUID Byte 1			
\$F3	GUID0				(GUID Byte 0			
\$F2	PMCR	PMCE	LFEN	EXTEN	WCES	OSCKEN	OSCMEN	RCKEN	RCMEN
\$F1	DSCR	DSCE	-	-	DSC4	DSC3	DSC2	DSC1	DSC0
\$F0	IOCR	IOCE	-	-	-	-	-	REFIOEN	RSTIOEN
			I	I		I	I	I	
\$E2	PSSR	PSS1	_	_	-	_	-	-	PSR1
			1	ı		ı	1	1	
\$CF	DIDR3	-	_	-	-	TIN11D	TIN10D	TIN9D	TIN8D
\$CE	DIDR2	TIN7D	TIN6D	TIN5D	TIN4D	TIN3D	TIN2D	TIN1D	TINOD
\$CD	TKCSR	TKPD		TKPSEL			TKI	MUX	
			I			I			
\$C6	UDR0					JSART Data			
\$C5	UBRROH	-	-	-	-	U:	SART Baud Ra	ite Register H	igh
\$C4	UBRROL		I	I	USART Ba	ud Rate Regis			
							UCSZ01/	UCSZ00/	
\$C2	UCSR0C	UMS	SELO	UP	M0	USBS0	UDORD0	UCPHA0	UCPOL0
\$C1	UCSR0B	RXCIE0	TXCIE0	UDRIE0	RXEN0	TXEN0	UCSZ02	RXB80	TXB80
\$C0	UCSR0A	RXC0	TXC0	UDRE0	FE0	DOR0	UPE0	U2X0	МРСМ0
\$BD	TWAMR				TWI Addre	ss Mask			-
\$BC	TWCR	TWINT	TWEA	TWSTA	TWSTO	TWWC	TWEN	-	TWIE
\$BB	TWDR					TWI Data			
\$BA	TWAR				TWI Add	dress			TWGCE
\$B9	TWSR			TWI Stat	us		-	TV	VPS
\$B8	TWBR				7	WI Bit Rate			
\$B6	ASSR	-	EXCLK	AS2	TCN2UB	OCR2AUB	OCR2BUB	TCR2AUB	TCR2BUB
		'	1			1			
\$B4	OCR2B			Timer	/Counter 2	Output Com	pare Register	В	
\$B3	OCR2A			Timer	/Counter 2	Output Com	pare Register	A	
\$B2	TCNT2					iter 2 Counte			
\$B1	TCCR2B	FOC2A	FOC2B	-	-	WGM22		CS2	
\$B0	TCCR2A	CON	л 12A	COI	M2B	_	_	WGM21	WGM20

\$A9	PORTE		Port Output E						
\$A8	DDRE				Data l	Direction E			
\$A7	PINE				Por	t Input E			
\$8B	OCR1BH			Time	r/Counter 1 C	Output Compa	re B High		
\$8A	OCR1BL			Time	er/Counter 1 (Output Compa	ire B Low		
\$89	OCR1AH			Time	r/Counter 1 C	Output Compa	re A High		
\$88	OCR1AL			Time	er/Counter 1 (Output Compa	ire A Low		
\$87	ICR1H			Tir	mer/Counter	1 Input Captui	re High		
\$86	ICR1L			Tiı	mer/Counter	1 Input Captu	re Low		
\$85	TCNT1H				Timer/Count	er 1 Counter I	High		
\$84	TCNT1L				Timer/Count	er 1 Counter I	_ow		
\$82	TCCR1C	FOC1A	FOC1B	-	-	-	-	-	-
\$81	TCCR1B	ICNC1	ICES1	-	WGM13	WGM12		CS1	
\$80	TCCR1A	CON	/1A	со	M1B	-	-	WGM11	WGM10
\$7F	DIDR1	-	-	-	-	-	-	AIN1D	AIN0D
\$7E	DIDR0	ADC7D	ADC6D	ADC5D	ADC4D	ADC3D	ADC2D	ADC1D	ADC0D
\$7D	ADTMR	GA	IN	-	-	-		ADTM	
\$7C	ADMUX	RE	FS	ADLAR	-		М	UX	
\$7B	ADCSRB	-	ACME	-	ICTL	-		ADTS	
\$7A	ADCSRA	ADEN	ADSC	ADATE	ADIF	ADIE		ADPS	
\$79	ADCH				ADC	Data High			
\$78	ADCL				ADC	Data Low			
\$77	EEDRH				EEPROI	M Data High			
ć7F	I) (DACE				lata and Ma	-t D A-l-l			
\$75	IVBASE				interrupt ved	ctor Base Add	ress		
\$70	TIMSK2	-	-	-	-	-	OCIE2B	OCIE2A	TOIE2
\$6F	TIMSK1	-	-	ICIE1	-	-	OCIE1B	OCIE1A	TOIE1
\$6E	TIMSK0	-	-	-	-	-	OCIE0B	OCIE0A	TOIE0
\$6D	PCMSK2		1	1	PCIN	NT[23:16]	1	1	
\$6C	PCMSK1					NT[15:8]			
\$6B	PCMSK0				PC	INT[7:0]			
\$69	EICRA	-	-	-	-	IS	C1	ISC	0
\$68	PCICR	-	-	-	-	-	PCIE2	PCIE1	PCIE0
\$66	OSCCAL	-	-			OSC Ca	libration	1	
\$65	PRR1	-	-	PRWDT	-	-	PREFL	PRPCI	-
\$64	PRR	PRTWI	PRTIM2	PRTIM0	_	PRTIM1	PRSPI	PRUSARTO	PRADC

\$62	VDTCR	VDTCE	SWRSTN	-	-	-	VD.	TSEL	VDTEN
\$61	CLKPR	CLKPCE	CLKOEN 0	CLKOEN 1	-		CL	KPS	
\$60	WDTCSR	WDIF	WDIE	WDP3	WDCE	WDE	WDP2	WDP1	WDP0
\$5F(\$3F)	SREG	I	Т	Н	S	V	N	Z	С
\$5E(\$3E)	SPH				Stack po	int high byte			
\$5D(\$3D)	SPL				Stack po	int low byte			
\$55(\$35)	MCUCR	-	BODS	BODSE	PUD	-	-	IVSEL	IVCE
\$54(\$34)	MCUSR	SWDD	-	-	OCDRF	WDRF	BORF	EXTRF	PORF
\$53(\$33)	SMCR	_	-	-	-		SM		SE
1 (1 7									
\$50(\$30)	ACSR	ACD	ACBG	ACO	ACI	ACIE	ACIC	А	CIS
\$4E(0x2E)	SPDR				SPI Da	ta Register			
\$4D(\$2D)	SPSR	SPIF	WCOL	_	-	-	DUAL	_	SPI2X
\$4C(\$2C)	SPCR	SPIE	SPE	DORD	MSTR	CPOL	СРНА	S	PR
\$4B(\$2B)	GPIOR2					ose I/O regist	er 2		
\$4A(\$2A)	GPIOR1					ose I/O regist			
7 ((4-) 1)	0.10112								
\$48(\$28)	OCR0B			Timer/co	ounter 0 ou	tput compare	register B		
\$47(\$27)	OCR0A			Timer/co	ounter 0 ou	tput compare	register A		
\$46(\$26)	TCNT0				Timer/Cou	nter 0 counte	r		
\$45(\$25)	TCCROB	FOC0A	FOC0B	OC0AS	-	WGM02		CS0	
\$44(\$24)	TCCR0A	COI	M0A	CON	ИOВ	-	-	WGM01	WGM00
\$43(\$23)	GTCCR	TSM	-	-	-	-	-	PSRASY	PSRSYN
\$42(\$22)	EEARH			ı	EEPROM AC	dress high by	te		
\$41(\$21)	EEARL				EEPROM A	ddress low byt	æ		
\$40(\$20)	EEDR				EEPR	OM Data			
\$3F(\$1F)	EECR	EEPM2	-	EEPM1	EEPM0	EERIE	EEMWE	EEWE	EERE
\$3E(\$1E)	GPIOR0			G	ieneral purp	ose IO registe	er 0		
\$3D(\$1D)	EIMSK	-	-	-	-	-	-	INT1	INT0
\$3C(\$1C)	EIFR	-	-	-	-	-	-	INTF1	INTF0
\$3B(\$1B)	PCIFR	-	-	-	-	-	PCIF2	PCIF1	PCIF0
\$37(\$17)	TIFR2	-	-	-	-	-	OCF2B	OCF2A	TOV2
\$36(\$16)	TIFR1	-	-	ICF1	-	-	OCF1B	OCF1A	TOV1
\$35(\$15)	TIFRO	-	-	-	-	-	OCF0B	OCF0A	TOV0
					Port	output D			
\$2B(\$0B)	PORTD			Data direction D					
\$2B(\$0B) \$2A(\$0A)	PORTD					lirection D			
					Data d	lirection D			

\$27(\$07)	DDRC	Port direction C
\$26(\$06)	PINC	Port input C
\$25(\$05)	PORTB	Port output B
\$24(\$04)	DDRB	Port direction B
\$23(\$03)	PINB	Port input B

INSTRUCTION INDEX

Inst.	Орс.	Funcitons	Operation	FLAG	CYCLE
Arithmetic	and Logic operat	tion			
ADD	R _d , R _r	Add two registers	$R_d \leftarrow R_d + R_r$	Z,C,N,V,H	1
ADC	R _d , R _r	Add with carry two regiters	$R_d \leftarrow R_d + R_r + C$	Z,C,N,V,H	1
ADIW	R _{dl} , K	Add immediate to word	$R_{dh}:R_{dl} \leftarrow R_{dh}:R_{dl} + K$	Z,C,N,V,S	1
SUB	R _d , R _r	Subtract two registers	$R_d \leftarrow R_d - R_r$	Z,C,N,V,H	1
SUBI	R _d , K	Subtract constant from registers	$R_d \leftarrow R_d - K$	Z,C,N,V,H	1
SBC	R _d , R _r	Subtract with carry	$R_d \leftarrow R_d - R_r - C$	Z,C,N,V,H	1
SBCI	R _d , K	Subtract with carry constant	$R_d \leftarrow R_d - K - C$	Z,C,N,V,H	1
SBIW	R _{dl} , K	Subtract immediate from word	R _{dh} :R _{dl} ← R _{dh} :R _{dl} - K	Z,C,N,V,S	1
AND	R _d , R _r	Logical AND	$R_d \leftarrow R_d \& R_r$	Z,N,V	1
ANDI	R _d , K	Logical AND register and constant	$R_d \leftarrow R_d \& K$	Z,N,V	1
OR	R _d , R _r	Logical OR	$R_d \leftarrow R_d \mid R_r$	Z,N,V	1
ORI	R _d , K	Logical OR register and constant	$R_d \leftarrow R_d \mid K$	Z,N,V	1
EOR	R _d , R _r	Exclusive OR	$R_d \leftarrow R_d \oplus R_r$	Z,N,V	1
СОМ	R _d	One's complement	$R_d \leftarrow \$FF - R_d$	Z,C,N,V	1
NEG	R _d	Two's complement	R _d ← \$00 - R _d	Z,C,N,V,H	1
SBR	R _d , K	Set bit(s) in Register	$R_d \leftarrow R_d \vee K$	Z,N,V	1
CBR	R _d , K	Clear bit(s) in Rigister	$R_d \leftarrow R_d v (\$FF - K)$	Z,N,V	1
INC	R _d	Increment	$R_d \leftarrow R_d + 1$	Z,N,V	1
DEC	R _d	Decrement	$R_d \leftarrow R_d - 1$	Z,N,V	1
TST	R _d	Test for zero or minus	$R_d \leftarrow R_d \& R_d$	Z,N,V	1
CLR	R _d	Clear register $R_d \leftarrow R_d \oplus R_d$		Z,N,V	1
SER	R _d	Set register	$R_d \leftarrow \$FF$	None	1
MUL	R _d , R _r	Multiply unsigned	$R_1: R_0 \leftarrow R_d \times R_r$	Z,C	1
MULS	R _d , R _r	Multiply signed	$R_1: R_0 \leftarrow R_d \times R_r$	Z,C	1
MULSU	R _d , R _r	Multiply signed with unsigned	$R_1: R_0 \leftarrow R_d \times R_r$	Z,C	1
FMUL	R _d , R _r	Fractional MUL	$R_1: R_0 \leftarrow (R_d \times R_r) << 1$	Z,C	1
FMULS	R _d , R _r	Fractional MULS	$R_1: R_0 \leftarrow (R_d \times R_r) << 1$	Z,C	1
FMULSU	R _d , R _r	Fractional MULSU	$R_1: R_0 \leftarrow (R_d \times R_r) \ll 1$	Z,C	1
Branch Inst	ructions	'	<u> </u>	·	'
RJMP	K	Relative jump	PC ← PC + K + 1	None	1
IJMP		Indirect jump to (Z)	PC ← Z	None	2
JMP	K	Direct jump	PC ← K	None	2
RCALL	К	Relative subroutine call	PC ← PC + K + 1	None	1
ICALL		Indirect call to (Z)	PC ← Z	None	2
CALL	K	Direct subroutine call	PC ← K	None	2
RET		Subroutine return	PC ← Stack	None	2
RETI		Interrupt return	PC ← Stack	1	2

Inst.	Орс.	Funcitons	Operation	FLAG	CYCLE
Branch In	structions (Cont'd)			
CPSE	R _d , R _r	Compare, skip if equal	If($R_d=R_r$) PC \leftarrow PC + 2 or 3	None	1/2
СР	R _d , R _r	Compare	R _d - R _r	Z,N,V,C,H	1
СРС	R _d , R _r	Compare with carry	$R_d - R_r - C$	Z,N,V,C,H	1
СРІ	R _d , K	Compare with immediate	R _d - K	Z,N,V,C,H	1
SBRC	R _r , b	Skip if bit in register cleared	If(R _r (b)=0) PC \leftarrow PC + 2 or 3	None	1/2
SBRS	R _r , b	Skip if bit in register set	If(R _r (b)=1) PC \leftarrow PC + 2 or 3	None	1/2
SBIC	P, b	Skip if bit in I/O cleared	If(P(b)=0) PC \leftarrow PC + 2 or 3	None	1/2
SBIS	P, b	Skip if bit in I/O set	If(P(b)=1) PC \leftarrow PC + 2 or 3	None	1/2
BRBS	s, k	Branch if status flag set	If(SREG(S)=1) $PC \leftarrow PC + K + 1$	None	1/2
BRBC	s, k	Branch if status flag cleared	If(SREG(S)=0) $PC \leftarrow PC + K + 1$	None	1/2
BREQ	k	Branch if equal	if (Z = 1) then PC \leftarrow PC + k + 1	None	1/2
BRNE	k	Branch if not equal	if (Z = 0) then PC ← PC + k + 1	None	1/2
BRCS	k	Branch if carry set	if (C = 1) then PC ← PC + k + 1	None	1/2
BRCC	k	Branch if carry cleared	if (C = 0) then PC ← PC + k + 1	None	1/2
BRSH	k	Branch if same or higher	if (C = 0) then PC ← PC + k + 1	None	1/2
BRLO	k	Branch if lower	if (C = 1) then PC ← PC + k + 1	None	1/2
BRMI	k	Branch if minus	if (N = 1) then PC ← PC + k + 1	None	1/2
BRPL	k	Branch if plus	if (N = 0) then PC ← PC + k + 1	None	1/2
BRGE	k	Branch if greater or equal, signed	if (N ⊕ V= 0) then PC ← PC + k + 1	None	1/2
BRLT	k	Branch if less than zerio, signed	if (N \oplus V= 1) then PC \leftarrow PC + k + 1	None	1/2
BRHS	k	Branch if half carry flag set	if (H = 1) then PC ← PC + k + 1	None	1/2
BRHC	k	Branch if half carry flag cleared	if (H = 0) then PC ← PC + k + 1	None	1/2
BRTS	k	Branch if T flag set	if (T = 1) then PC ← PC + k + 1	None	1/2
BRTC	k	Branch if T flag cleared	if (T = 0) then PC ← PC + k + 1	None	1/2
BRVS	k	Branch if overflow flag is set	f (V = 1) then PC ← PC + k + 1	None	1/2
BRVC	k	Branch if overflow flag cleared	f (V = 0) then PC ← PC + k + 1	None	1/2
BRIE	k	Branch if interrupt enabled	f (I = 1) then PC ← PC + k + 1	None	1/2
BRID	k	Branch if interrupt disabled	f (I = 0) then PC ← PC + k + 1	None	1/2
DATA TRA	NSFER Inst	ructions			
MOV	Rd, Rr	Move between registers	Rd ← Rr	None	1
MOVW	Rd, Rr	Copy register word	Rd+1:Rd ← Rr+1:Rr	None	1
LDI	Rd, K	Load immediate	Rd ← K	None	1
LD	Rd, X	Load indirect	Rd ← (X)	None	1
LD	Rd, X+	Load indirect and post-inc.	Rd ← (X), X ← X + 1	None	1
LD	Rd, -X	Load indirect and pre-dec	X ← X - 1, Rd ← (X)	None	1
LD	Rd, Y	Load indirect	Rd ← (Y)	None	1
LD	Rd, Y+	Load indirect and post-inc	Rd ← (Y), Y ← Y + 1	None	1
LD	Rd, -Y	Load indirect and pre-dec	Y ← Y - 1, Rd ← (Y)	None	1
LDD	Rd, Y+q	Load indirect with displacement	Rd ← (Y + q)	None	1

LD	Rd, Z	Load indirect	Rd ← (Z)	None	1
LD	Rd, Z+	Load indirect and post-inc	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	1
LD	Rd, -Z	Load indirect and pre-dec	Z ← Z - 1, Rd ← (Z)	None	1
LDD	Rd, Z+q	Load indirect with displacement	$Rd \leftarrow (Z + q)$	None	1
LDS	Rd, k	Load direct from SRAM	Rd ← (k)	None	2
ST	X, Rr	Store indirect	$(X) \leftarrow Rr$	None	1
ST	X+, Rr	Store indirect and post-inc	$(X) \leftarrow Rr, X \leftarrow X + 1$	None	1
ST	-X, Rr	Store indirect and pre-dec	$X \leftarrow X - 1$, $(X) \leftarrow Rr$	None	1
ST	Y, Rr	Store indirect	(Y) ← Rr	None	1
ST	Y+, Rr	Store indirect and post-inc	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	1
ST	-Y, Rr	Store indirect and pre-dec	$Y \leftarrow Y - 1, (Y) \leftarrow Rr$	None	1
STD	Y+q, Rr	Store indirect with displacement	$(Y + q) \leftarrow Rr$	None	1
ST	Z, Rr	Store indirect	(Z) ← Rr	None	1
ST	Z+, Rr	Store indirect and post-inc	$(Z) \leftarrow Rr, Z \leftarrow Z + 1$	None	1
ST	-Z, Rr	Store indirect and pre-dec	$Z \leftarrow Z - 1$, $(Z) \leftarrow Rr$	None	1
STD	Z+q, Rr	Store indirect with displacement	$(Z+q) \leftarrow Rr$	None	1
STS	k, Rr	Store direct	(k) ← Rr	None	2
LPM		Load program memory	R0 ← (Z)	None	2
LPM	Rd, Z	Load program memory	Rd ← (Z)	None	2
LPM	Rd, Z+	Load program and post-inc	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, Z+	Load	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	1
LD	Rd, -Z	Load indirect and pre-dec	$Z \leftarrow Z - 1$, Rd \leftarrow (Z)	None	1
LDD	Rd, Z+q	Load indirect with displacement	$Rd \leftarrow (Z + q)$	None	1
LDS	Rd, k	Load direct from SRAM	Rd ← (k)	None	2
				1	
IN	Rd, P	In port	Rd ← P	None	1
OUT	P, Rr	Out port	P ← Rr	None	1
PUSH	Rr	Push register on stack	STACK ← Rr	None	1
POP	Rd	Pop register from stack	Rd ← STACK	None	1
BIT and B	IT-TEST Inst	ructions			
SBI	P, b	Set bit in I/O register	I/O(P, b) ← 1	None	1
CBI	P, b	Clear bit in I/O register	I/O(P, b) ← 0	None	1
LSL	Rd	Logical shift left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical shift right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z	1
ROL	Rd	Rotate left through carry	$Rd(0) \leftarrow C, Rd(n+1) \leftarrow Rd(n), C \leftarrow Rd(7)$	Z	1
ROR	Rd	Rotate right through carry	$Rd(7) \leftarrow C, Rd(n) \leftarrow Rd(n+1), C \leftarrow Rd(0)$	Z	1
ASR	Rd	Arithmetic shift right	Rd(n) ← Rd(n+1), n=0:6	Z	1
SWAP	Rd	Swap nibbles	Rd(3:0) ← Rd(7:4), Rd(7:4) ← Rd(3:0)	None	1
BSET	S	Flag set	SREG(s) ← 1	SREG(s)	1
BCLR	S	Flag clear	SREG(s) ← 0	SREG(s)	1
BST	Rr, b	Bit store from register to T	T ← Rr(b)	T	1
BLD	Rd, b	Bit load from T to register	Rd(b) ← T	None	1
SEC	110, 0	Set Carry	C ← 1	С	1
JLC		Jet Carry	C - 1		1

CLC		Clear carry	C ← 0	С	1			
SEN		Set negative flag	N ← 1	N	1			
CLN		Clar negative flag	N ← 0	N	1			
SEZ		Set zero flag	Z ← 1	Z	1			
CLZ		Clear zero flag	Z ← 0	Z	1			
SEI		Global interrupt enable	← 1	I	1			
CLI		Global interrupt disable	1 ← 0	I	1			
SES		Set signed test flag	S ← 1	S	1			
CLS		Clear signed test flag	S ← 0	S	1			
SEV		Set 2's complement overflow	V ← 1	V	1			
CLV		Clear 2's complement overflow	V ← 0	V	1			
SET		Set T in SREG	T ← 1	Т	1			
CLT		Clear T in SREG	T ← 0	Т	1			
MCU Con	MCU Control Instructions							
NOP		No operation		None	1			
SLEEP		Sleep		None	1			
WDR		Watchdog reset		None	1			
BREAK		Software break	Only for debug purpose	None	N/A			

Package Definitions

LQFP32L Dimension

Simboly	Min.	Typical.	Max.	Unit
D	8.90	9.00	9.10	mm
D1	6.90	7.00	7.10	mm
b	0.15	0.20	0.25	mm
е	0.75	0.80	0.85	mm
E	8.90	9.00	9.10	mm
E1	6.90	7.00	7.10	mm
С	-	0.10	-	mm
L	0.55	0.60	0.65	mm
A1	-	1.40	-	mm