4/18/22, 12:32 AM Assignment-9

Assignment 9 - Data Visualization 2

Kaustubh Shrikant Kabra

ERP Number: - 38

TE Comp 1

- Use the inbuild dataset 'titanic'. Plot a box plot for distribution of age with respect to each gender along with the information about wheather they survived or not.
- Write observations on the inference form the above statistics.

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

data = pd.read_csv("train.csv")
data.head()
```

Out[1]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Eml
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	

```
In [2]: data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype				
0	PassengerId	891 non-null	int64				
1	Survived	891 non-null	int64				
2	Pclass	891 non-null	int64				
3	Name	891 non-null	object				
4	Sex	891 non-null	object				
5	Age	714 non-null	float64				
6	SibSp	891 non-null	int64				
7	Parch	891 non-null	int64				
8	Ticket	891 non-null	object				
9	Fare	891 non-null	float64				
10	Cabin	204 non-null	object				
11	Embarked	889 non-null	object				
dtynes: $float64(2)$ int64(5) object(5)							

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

VARIABLE DESCRIPTIONS

- Pclass Passenger Class (1 = 1st; 2 = 2nd; 3 = 3rd)
- survival Survival (0 = No; 1 = Yes)
- name Name
- sex Sex
- age Age
- sibsp Number of Siblings/Spouses Aboard
- parch Number of Parents/Children Aboard
- ticket Ticket Number
- fare Passenger Fare (British pound)
- cabin Cabin
- embarked Port of Embarkation (C = Cherbourg; Q = Queenstown; S = Southampton)

```
In [3]: data.shape
```

Out[3]: (891, 12)

Out[4]:

In [4]: data.describe()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

```
In [5]: ###Now let us look at the ages of the passengers

data['Age'].hist(bins=70)
```

Out[5]: <AxesSubplot:>

There are more number of people from age group 15-35 years old.

```
In [6]:
         fig = plt.figure(figsize=(12, 8))
         gs = fig.add gridspec(3,1)
         gs.update(hspace= -0.55)
         axes = list()
         colors = ["#022133", "#5c693b", "#51371c"]
         for idx, cls, c in zip(range(3), sorted(data['Pclass'].unique()), colors):
             axes.append(fig.add_subplot(gs[idx, 0]))
             # you can also draw density plot with matplotlib + scipy.
             sns.kdeplot(x='Age', data=data[data['Pclass']==cls],
                         fill=True, ax=axes[idx], cut=0, bw method=0.25,
                         lw=1.4, edgecolor='lightgray', hue='Survived',
                         multiple="stack", palette='PuBu', alpha=0.7
             axes[idx].set ylim(0, 0.04)
             axes[idx].set_xlim(0, 85)
             axes[idx].set yticks([])
             if idx != 2 : axes[idx].set_xticks([])
             axes[idx].set ylabel('')
             axes[idx].set xlabel('')
             spines = ["top","right","left","bottom"]
             for s in spines:
                 axes[idx].spines[s].set_visible(False)
             axes[idx].patch.set alpha(0)
             axes[idx].text(-0.2,0,f'Pclass {cls}',fontweight="light", fontfamily='serif', fonts
             if idx != 1 : axes[idx].get_legend().remove()
         fig.text(0.13,0.81, "Age distribution by Pclass in Titanic", fontweight="bold", fontfami
```

4/18/22, 12:32 AM Assignment-9

```
plt.show()
```

Age distribution by Pclass in Titanic

From above graph, we can infer that there are less numbers of survivers form class 2 & 3 and their age group is between 10-30 years

```
survival_rate = data.groupby(['Sex']).mean()[['Survived']]
male_rate = survival_rate.loc['male']
female_rate = survival_rate.loc['female']
display(survival_rate)
```

Survived

Sex

female 0.742038

male 0.188908

```
male_pos = np.random.uniform(0, male_rate, len(data['data['Sex']=='male') & (data['Surv
male_neg = np.random.uniform(male_rate, 1, len(data[(data['Sex']=='male') & (data['Surv
female_pos = np.random.uniform(0, female_rate, len(data[(data['Sex']=='female') & (data
female_neg = np.random.uniform(female_rate, 1, len(data[(data['Sex']=='female') & (data
```

```
ax.scatter(np.random.uniform(-0.3, 0.3, len(male_neg)), male_neg, color='#004c70', edge
# Female Stripplot
ax.scatter(1+np.random.uniform(-0.3, 0.3, len(female_pos)), female_pos, color='#990000'
ax.scatter(1+np.random.uniform(-0.3, 0.3, len(female neg)), female neg, color='#990000'
# Set Figure & Axes
ax.set_xlim(-0.5, 2.0)
ax.set_ylim(-0.03, 1.1)
# Ticks
ax.set_xticks([0, 1])
ax.set_xticklabels(['Male', 'Female'], fontweight='bold', fontfamily='serif', fontsize=
ax.set_yticks([], minor=False)
ax.set ylabel('')
# Spines
for s in ["top","right","left", 'bottom']:
    ax.spines[s].set_visible(False)
# Title & Explanation
fig.text(0.1, 1, 'Distribution of Survivors by Gender', fontweight='bold', fontfamily='
fig.text(0.1, 0.96, 'As is known, the survival rate for female is high, with 19% of mal
ax.legend(loc=(0.8, 0.5), edgecolor='None')
plt.tight_layout()
plt.show()
```

4/18/22, 12:32 AM Assignment-9

Distribution of Survivors by Gender

As is known, the survival rate for female is high, with 19% of male and 74% of female.

In [10]: plt.scatter(data.Survived, data.Age, alpha=0.1) ## here the plot has to be transparen plt.title("Age wrt Survived")

Out[10]: Text(0.5, 1.0, 'Age wrt Survived')

So From the above we can understand that, some of the older people died (between 50-70) and some of the younger people (between 20-40) survived more.

```
g = sns.FacetGrid(data=df,col="Sex",margin_titles=True)
g.map(sns.boxplot,"Survived","Age",order=[False,True])
```

NameError: name 'df' is not defined

```
In [14]:
```

```
sns.factorplot(x="SibSp", y="Survived", data=data);
```

C:\Users\asus\anaconda3\lib\site-packages\seaborn\categorical.py:3717: UserWarning: The
`factorplot` function has been renamed to `catplot`. The original name will be removed i
n a future release. Please update your code. Note that the default `kind` in `factorplot
` (`'point'`) has changed `'strip'` in `catplot`.
warnings.warn(msg)

More people have survived with family size 2 and less people from family size 5