4

Problem Statement

Objective:-A cloth manufacturing company is interested to know about the segment or attributes causes high sale.

1. Importing Necessary Libraries

```
In [1]: import pandas as pd
        import matplotlib.pyplot as plt
        from sklearn import datasets
        import numpy as np
        from sklearn.model_selection import train_test_split
        from sklearn.tree import DecisionTreeClassifier
        from sklearn import tree
        from sklearn.metrics import classification_report
        from sklearn import preprocessing
```

2. Importing data

0	9.50	138	73	11	276	120	Bad	42	17
1	11.22	111	48	16	260	83	Good	65	10
2	10.06	113	35	10	269	80	Medium	59	12
3	7.40	117	100	4	466	97	Medium	55	14
4	4.15	141	64	3	340	128	Bad	38	13
395	12.57	138	108	17	203	128	Good	33	14
396	6.14	139	23	3	37	120	Medium	55	11
397	7.41	162	26	12	368	159	Medium	40	18
398	5.94	100	79	7	284	95	Bad	50	12
399	9.71	134	37	0	27	120	Good	49	16

3. Data Understanding

3.1 Initial Analysis

```
In [4]: company_data.shape
Out[4]: (400, 11)
In [5]: company_data.dtypes
Out[5]: Sales
                       float64
        CompPrice
                          int64
        Income
                          int64
        Advertising
                          int64
        Population
                          int64
        Price
                          int64
        ShelveLoc
                         object
                         int64
        Age
                          int64
        Education
        Urban
                         object
        US
                         object
        dtype: object
```

Note :we will create the nuemarical variable for the categorical data

```
In [6]: company_data.isna().sum()
Out[6]: Sales
                        0
        CompPrice
                        0
        Income
        Advertising
                        0
        Population
                        0
        Price
                        0
        ShelveLoc
        Age
        Education
                        0
        Urban
                        0
        US
                        0
        dtype: int64
```

4. Data Preparation

*Note: Since machine will not understand the objective type data, We will create the nuemarical variable for the categorical data

```
In [7]: from sklearn import preprocessing
In [8]: LabelEncoder = preprocessing.LabelEncoder()
        company_data['ShelveLoc'] = LabelEncoder.fit_transform(company_data['ShelveLoc'])
        company data['Urban'] = LabelEncoder.fit transform(company data['Urban'])
        company_data['US'] = LabelEncoder.fit_transform(company_data['US'])
```

In [9]: company_data

Out[9]:

	Sales	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Education	Ur
0	9.50	138	73	11	276	120	0	42	17	
1	11.22	111	48	16	260	83	1	65	10	
2	10.06	113	35	10	269	80	2	59	12	
3	7.40	117	100	4	466	97	2	55	14	
4	4.15	141	64	3	340	128	0	38	13	
395	12.57	138	108	17	203	128	1	33	14	
396	6.14	139	23	3	37	120	2	55	11	
397	7.41	162	26	12	368	159	2	40	18	
398	5.94	100	79	7	284	95	0	50	12	
399	9 71	134	37	n	27	120	1	49	16	•

```
In [10]: company_data.dtypes
```

Out[10]: Sales float64 CompPrice int64 Income int64 Advertising int64 Population int64 Price int64 ShelveLoc int32 Age int64 Education int64 Urban int32 US int32 dtype: object

```
In [17]: company_data['Sales'] = company_data['Sales'].astype('int')
```

In [18]: company_data.dtypes

Out[18]: Sales int32 CompPrice int64 int64 Income Advertising int64 Population int64 Price int64 ShelveLoc int32 Age int64 Education int64 Urban int32 US int32

dtype: object

5. Model Building

- 2 steps in model building 1 Separate input & output features
- 2. Go for train test split for model validation

5.1 Separate input and output features

```
In [19]: X = company_data.drop(labels='Sales', axis=1)
         y = company_data[['Sales']]
```

In [20]: X

Out[20]:

	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Education	Urban	us
0	138	73	11	276	120	0	42	17	1	1
1	111	48	16	260	83	1	65	10	1	1
2	113	35	10	269	80	2	59	12	1	1
3	117	100	4	466	97	2	55	14	1	1
4	141	64	3	340	128	0	38	13	1	0
395	138	108	17	203	128	1	33	14	1	1
396	139	23	3	37	120	2	55	11	0	1
397	162	26	12	368	159	2	40	18	1	1
398	100	79	7	284	95	0	50	12	1	1
399	134	37	0	27	120	1	49	16	1	1

400 rows × 10 columns

```
In [21]: y
Out[21]:
                 Sales
              0
                     9
                    11
                    10
              3
                     7
            395
            396
                     6
            397
            398
            399
           400 rows × 1 columns
```

5.2 Train test split

X_train									
			•				J		
93	145	30	0	67	104	2	55	17	1
23	121	31	0	292	109	2	79	10	1
299	135	40	17	497	96	2	54	17	0
13	115	28	11	29	86	1	53	18	1
90	115	22	0	491	103	2	64	11	0
255	123	81	8	198	81	0	80	15	1
72	115	45	0	432	116	2	25	15	1
396	139	23	3	37	120	2	55	11	0
235	126	32	8	95	132	2	50	17	1
37	121	41	5	412	110	2	54	10	1

```
In [24]: y_train
Out[24]:
                Sales
                    8
            93
            23
                    5
           299
                    9
            13
                   10
            90
                    5
           255
                    7
            72
                    5
           396
                    6
           235
                    5
            37
                    4
          320 rows × 1 columns
In [25]: # For training data
          X_train.shape,y_train.shape
```

```
Out[25]: ((320, 10), (320, 1))
In [26]: # For test data
         X_test.shape,y_test.shape
Out[26]: ((80, 10), (80, 1))
```

6. Model training

```
In [27]: import warnings
         warnings.filterwarnings('ignore')
In [67]: from sklearn.tree import DecisionTreeClassifier
         dt model = DecisionTreeClassifier(criterion='gini', max depth=3)
         dt_model.fit(X_train,y_train)
Out[67]: DecisionTreeClassifier(max_depth=3)
```

Plot tree

```
In [68]: #Prepare a plot figure with set size
         from sklearn.tree import plot_tree
         from matplotlib import pyplot as plt
```

```
In [69]: plt.figure(figsize=(20,16))
         plot_tree(dt_model,rounded=True,filled=True)
         plt.show()
```


7. Model Testing

```
In [70]: # For training data
         y_train_pred = dt_model.predict(X_train)
```

```
In [71]: #For Testing data
         y_test_pred = dt_model.predict(X_test)
```

8. Model Evaluation

In [72]: from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,recal

For training data

```
In [73]: |accuracy_score(y_train,y_train_pred)
```

Out[73]: 0.246875

```
In [74]: |print(confusion_matrix(y_train,y_train_pred))
                               2
                                                              0
                                                                 0
                                                                     0]
                                                          0
                 0
                    0
                        0
                                  0
                                      0
                                                   0
                                                       0
                                                          0
                                                              0
                                                                 0
                                                                     0]
                               3
                                  2
                                                          0
                                                              0
                                                                 0
                                                                     0]
                                                              0
                                                                 0
                                                                    0]
                                                                     0]
                          10
                               6 28
                               1 32
                                                                    0]
                                      7
                 0
                               1 21
                                                              0
                                                                    0]
                 0
                           1
                               0 22
                                      5
                                                                    0]
                               0 11
                                                8
                                                                     0]
                               0 10
                                  2
                                                                    0]
                                  3
                        0
                               0
                                      0
                                         1
                                                          0
                                                                    0]
                 0
                    0
                               0
                                  0
                                      2
                           0
                                                                    0]
                               0
                                  0
                                                                    0]
              0
                           0
                               0
                                  0
                                                1
                                                       0
                                                          0
                                                              0
                                                                 0
                                                                    0]
                                                                    0]]
```

In [75]: print(classification_report(y_train,y_train_pred))

	precision	recall	f1-score	support
0	0.00	0.00	0.00	2
1	0.00	0.00	0.00	1
2	0.00	0.00	0.00	8
3	0.00	0.00	0.00	16
4	0.29	0.44	0.35	32
5	0.43	0.14	0.21	44
6	0.21	0.73	0.33	44
7	0.23	0.17	0.20	41
8	0.40	0.06	0.10	36
9	0.00	0.00	0.00	27
10	0.20	0.45	0.28	29
11	1.00	0.28	0.43	18
12	0.00	0.00	0.00	12
13	0.00	0.00	0.00	6
14	0.00	0.00	0.00	2
15	0.00	0.00	0.00	1
16	0.00	0.00	0.00	1
accuracy			0.25	320
macro avg	0.16	0.13	0.11	320
weighted avg	0.27	0.25	0.19	320
_				

For Testing Data

```
In [76]: | accuracy_score(y_test,y_test_pred)
```

Out[76]: 0.0875

```
In [77]: | print(confusion_matrix(y_test,y_test_pred))
          [[0 0 0 0 0 1 2 0 0 0 0 0 0 0]
           [0 0 0 0 1 0 0 0 0 0 0 0 0 0]
           [0 0 0 0 0 1 1 0 0 0 0 0 0 0]
           [0 0 0 0 0 1 1 0 0 0 1 0 0 0]
           [0 0 0 0 2 0 7 0 0 0 0 0 0 0]
           [0 0 0 0 2 1 6 0 0 0 0 0 0 0]
           [ 0 \ 0 \ 0 \ 0 \ 2 \ 0 \ 4 \ 1 \ 0 \ 0 \ 2 \ 1 \ 0 \ 0 ]
           [0 0 0 0 2 0 6 0 0 0 3 0 0 0]
           [0 0 0 0 1 0 8 0 0 0 3 2 0 0]
           [0 0 0 0 0 0 4 1 0 0 3 0 0 0]
           [0 0 0 0 0 0 0 0 0 0 0 1 0 0]
           [0 0 0 0 0 0 0 1 0 0 3 0 0 0]
           [0 0 0 0 0 0 1 1 0 0 2 0 0 0]
           [0 0 0 0 0 0 0 1 0 0 0 0 0 0]]
```

```
In [78]: | print(classification report(y test, y test pred))
                          precision
                                        recall f1-score
                                                             support
                      0
                               0.00
                                          0.00
                                                      0.00
                                                                    3
                      1
                                          0.00
                                                                    1
                               0.00
                                                      0.00
                      2
                                                                    2
                               0.00
                                          0.00
                                                      0.00
                      3
                               0.00
                                                      0.00
                                                                    3
                                          0.00
                                                                    9
                      4
                               0.20
                                          0.22
                                                      0.21
                      5
                               0.25
                                                      0.15
                                                                    9
                                          0.11
                      6
                               0.10
                                          0.40
                                                      0.16
                                                                   10
                      7
                               0.00
                                          0.00
                                                      0.00
                                                                   11
                      8
                               0.00
                                          0.00
                                                      0.00
                                                                   14
                      9
                                                      0.00
                               0.00
                                          0.00
                                                                    8
                     10
                               0.00
                                          0.00
                                                      0.00
                                                                    1
                               0.00
                                          0.00
                                                      0.00
                                                                    4
                     11
                     12
                               0.00
                                          0.00
                                                      0.00
                                                                    4
                     13
                               0.00
                                          0.00
                                                      0.00
                                                                    1
                                                      0.09
                                                                   80
               accuracy
                               0.04
                                          0.05
                                                      0.04
                                                                   80
             macro avg
```

9. Model Deployment

```
In [83]: from pickle import dump
In [84]: | dump(dt model,open('logf model.pkl','wb'))
In [85]: from pickle import load
In [86]: | dt model pickle = load(open('logf model.pkl','rb'))
In [87]: | pickle_pred = dt_model_pickle.predict(X_test)
```

Conclusion:-We can see maximum depth of tree 3 is good as accuracy prospective & classification is good technique for predict the sale & regression is not usual to good at this dataset

T 0 0		
In :		
+ L] .	•	