THAM QUAN

Một khu du lịch sinh thái có n địa điểm đánh số từ 1 tới n và m đường đi hai chiều, mỗi đường đi thứ i nối giữa hai địa điểm u_i , v_i và cho phép đi lại hai chiều giữa hai địa điểm đó với chi phí là w_i .

Mr.X rất thú vị với khu du lịch thái và năm nào anh ta cũng đến tham quan. Mỗi lần Mr.X cũng đi từ địa điểm 1 tới địa điểm n nhưng để đảm bảo tính mới lạ cho mỗi chuyến đi, Mr. X yêu cầu các hướng dẫn viên du lịch dẫn mình đi theo những con đường mà chưa đi qua lần nào trong các lần du lịch trước.

Yêu cầu: Xác định số lần tối đa có thể phục vụ cho yêu cầu của Mr.X(k) và chỉ ra hành trình cho k lần tham quan sao cho tổng chi phí đi lại của những lần tham quan (c) là ít nhất.

Dữ liệu: Vào từ file văn bản TOURISM.INP

- Dòng 1 chứa hai số nguyên dương $n \le 10^3$; $m \le 10^5$
- ullet m dòng tiếp theo, mỗi dòng chứa 3 số nguyên dương u_i, v_i, w_i ($w_i \leq 10^6$)

Kết quả: Ghi ra file văn bản TOURISM.OUT hai số nguyên k, c. Trong đó k là số lần tham quan tối đa có thể phục vụ và c là tổng chi phí các lần tham quan đó theo phương án tìm được.

Ví dụ

TOURISM.INP	TOURISM.OUT
8 10	3 19
1 2 1	
1 4 2	
1 6 2	
2 3 2	
2 5 1	
3 8 2	
4 5 2	
5 8 1	
6 7 3	
7 8 4	

TRẢ TIỀN

Nước Silverland sử dụng hệ thống 100 loại tiền xu, trong đó các xu có mệnh giá là một số chính phương từ 1^2 đến 100^2 :

Với hệ thống này, để trả 10 xu ta có 4 cách:

- Trả 10 đồng 1 xu
- Trả 6 đồng 1 xu và 1 đồng 4 xu
- Trả 2 đồng 1 xu và 2 đồng 4 xu
- Trả 1 đồng 1 xu và 1 đồng 9 xu

Nhiệm vụ của bạn là xác định xem có bao nhiều cách trả một số tiền cho trước ở Silverland (k) và cho biết một cách trả phải dùng ít đồng xu nhất.

Dữ liệu: Vào từ file văn bản COINS.INP chứa số tiền nguyên dương không lớn hơn $10^5 \, {\rm xu}$.

Kết quả: Ghi ra file văn bản COINS.OUT

- Dòng 1: Ghi giá trị $k \mod 123456789$
- Dòng 2: Ghi số đồng xu tối thiểu phải trả
- Các dòng tiếp theo, mỗi dòng ghi hai số nguyên dương a,b cách nhau ít nhất một dấu cách: cho biết sẽ có a đồng xu loại mệnh giá b^2 trong phương án tối ưu (dùng ít đồng xu nhất)

Ví dụ:

COINS.INP	COINS.OUT
19	10
	3
	2 3
	1 1

QUAN HỆ

Cho n biến số $v_1, v_2, ..., v_n$ và m ràng buộc, mỗi ràng buộc có một trong 5 dạng:

- i < j: Cho biết v_i phải nhỏ hơn v_j
- i > j: Cho biết v_i phải lớn hơn v_j
- $i \le j$: Cho biết v_i phải nhỏ hơn hoặc bằng v_i
- i >= j: Cho biết v_i phải lớn hơn hoặc bằng v_i
- i = j: Cho biết v_i phải bằng v_i .

Yêu cầu: Hãy tìm cách gán các giá trị số tự nhiên cho các biến $v_1, v_2, ..., v_n$ để thỏa mãn tất cả các ràng buộc đã cho. Nếu có nhiều cách gán giá trị, hãy tìm cách gán để $\max_{1 \le i \le n} \{v_i\}$ là nhỏ nhất có thể.

Dữ liệu: Vào từ file văn bản REL.INP

Dòng 1 chứa 2 số nguyên dương $n, m \le 10^5$ cách nhau một dấu cách

m dòng tiếp theo, mỗi dòng chứa một quan hệ (trên dòng hoàn toàn không có dấu cách)

Kết quả: Ghi ra file văn bản REL.OUT n số tự nhiên trên 1 dòng cách nhau ít nhất một dấu cách lần lượt là các giá trị gán cho v_1, v_2, \dots, v_n

Ví dụ

REL.INP	REL.OUT
6 7	0 1 2 1 2 3
1<2	
2<3	
3=5	
6>5	
2>=4	
4<5	
1<=6	