LASER dataset for the samples A, B, C, D and perovskite

```
ln[2]:= \tau = {\text{"Sample A", "Sample B", "Sample C", "Sample D", "Perovskite"}};
      δ =
         Dataset[Import[ToString@StringForm["/Users/giovannigravili/Library/Mobile
                       Documents/com~apple~CloudDocs/LM
                       MANO/Notebooks/NP/esperimento/LASER/laser_``.txt", #],
                 "Table", "HeaderLines" → 0, "FieldSeparators" → "\t",
                 "NumberPoint" → ".", CharacterEncoding → "UTF8"]][
              All, Range[1, 2]][All, <|"\lambda (nm)" \rightarrow 1, "I" \rightarrow 2|>] & /@
           {"sample_A", "sample_B", "sample_C",
            "sample_D",
            "perovskite2"};
ln[4]:=\delta=Transpose[{\#[All, "\lambda (nm)"], \#[All, "I"]} // Normal] & /@ <math>\delta;
ln[5]:= \lambda_{pk} = FindPeaks[#, 100, Automatic, 0.1] & /@
           (TimeSeriesResample@TimeSeries[#2, {#1}] &@@@ (Transpose[#] & /@\delta)) // Normal
Out[5] = \{ \{ \{374.073, 0.640095\}, \{460.5, 0.163117\} \}, \}
       \{\{374.278, 0.197324\}, \{554.3, 0.830747\}\},\
       \{\{374.38, 1.\}, \{672.472, 0.209141\}, \{673.291, 0.209379\}\},\
       \{\{374.073, 0.720259\}, \{550.409, 0.628496\}\}, \{\{571.504, 0.671659\}\}\}
ln[6]:= ListLinePlot[\delta, PlotRange \rightarrow All, AxesLabel \rightarrow {"\lambda (nm)", "I"}] //
       Show[#, ListPlot[\lambda_{pk}, PlotLabels \rightarrow \tau], ImageSize \rightarrow Large, PlotRange \rightarrow All] &
      1.0
                                                               Sample B
      0.8
                                                               Perovskite
      0.6
                                                               Sample D
Out[6]=
      0.4
                                                               Sample C
      0.2
                                                               Sample A
         200
```

```
ln[7] := \Lambda = \{ \{400, 530\}, \{500, 650\}, \{600, 750\}, \{450, 650\}, \{550, 650\} \} \};
                                          \kappa = \texttt{Cases}[\#1, \{x\_, y\_\} \ /; \#2[\![1]\!] \le x \le \#2[\![2]\!]] \&@@@\mathsf{Transpose}[\{\delta, \Lambda\}];
     \ln[9]:= \phi = \text{NonlinearModelFit}\Big[\#1, A e^{-\frac{(\lambda-\mu)^2}{2\sigma^2}}, \{A, \{\mu, \#2\}, \sigma\}, \lambda\Big] \&@@@
                                                                     Transpose[\{\kappa, \{460.5, 554.3, 672.47, 550.4, 571.5\}\}];
\label{eq:loss_loss} $$\inf[10]:= \{Show[Plot[\#1[\lambda], \{\lambda, \#3[1]\}, \#3[2]]\}, ImageSize \rightarrow Medium, PlotLabel \rightarrow \#4], $$\inf[10]:= \{Show[Plot[\#1[\lambda], \{\lambda, \#3[1]\}, \#3[2]]\}, ImageSize \rightarrow Medium, PlotLabel \rightarrow \#4], $$\inf[10]:= \{Show[Plot[\#1[\lambda], \{\lambda, \#3[1]\}, \#3[2]]\}, ImageSize \rightarrow Medium, PlotLabel \rightarrow \#4], $$\inf[10]:= \{Show[Plot[\#1[\lambda], \{\lambda, \#3[1]\}, \#3[2]]\}, ImageSize \rightarrow Medium, PlotLabel \rightarrow \#4], $$\inf[10]:= \{Show[Plot[\#1[\lambda], \{\lambda, \#3[1]\}, \#3[2]]\}, ImageSize \rightarrow Medium, PlotLabel \rightarrow \#4], $$\inf[10]:= \{Show[Plot[\#1[\lambda], \{\lambda, \#3[1]\}, \#3[2]]\}, $$\inf[10]:= \{Show[Plot[\#1[\lambda], \{\lambda, \#3[1]\}, \{\lambda, \#3[1]\}, \#3[2]]\}, $$\inf[10]:= \{Show[Plot[\#1[\lambda], \{\lambda, \#3[1]\}, \{\lambda, \#3[1]\}, \{\lambda, \#3[1]\}, \{\lambda, \#3[1]\}, \#3[2]\}, $$\inf[10]:= \{Show[Plot[\#1[\lambda], \{\lambda, \#3[1]\}, \{\lambda, \#3[1]\},
                                                                                                ListPlot[#2, PlotStyle → {Orange, PointSize[Small]}], PlotRange → All],
                                                                                        Column[{#1["ANOVATable"], "", #1["ParameterTable"]}]} &@@@
                                                                     Transpose[\{\phi, \kappa, \Lambda, \tau\}] // Quiet // TableForm
```

Out[10]//TableForm=

	DF	SS	MS
Model	3	3.33954	1.11318
Error	588	0.142996	0.00024319
Uncorrected Total	591 3	3.48254	
Corrected Total	590	1.47775	

	Estimate	Standard Erro	or t-Statistic P)_	Value
Α	0.148411	0.00155118	95.6765	0.	
μ	465.551	0.226788	2052.8	0.	
σ	18.7921	0.226815	82.8519	0.	

0.8 0.6 0.4 0.2 520 540 560 580 600 620 640 Sample C				Sa	mpie B			
0.4 0.2 520 540 560 580 600 620 640 Sample C	0.8	- - -						
0.2 520 540 560 580 600 620 640 Sample C	0.6	- - -		•				
520 540 560 580 600 620 640 Sample C	0.4	- - -		•				
Sample C	0.2						•	
Sample C		520	540	560	580	600	620	640

	DF SS	MS	
Model	3 68.45	55 22 .8185	
Error	664 0.1227	07 0.00018	4799
Uncorrected Total	667 68.5782	2	
Corrected Total	666 45.7676	6	

	Estimate	Standard Erro	r t-Statistic F)_	Valu€
Α	0.808636	0.00162721	496.945	0.	
μ	554.26	0.0307381	18 031.7	0.	
σ	13.2287	0.0307377	430.374	0.	

0.20		ı		Sa	ample C			
0.10	0.20	-		/				
	0.15	-						
0.05	0.10	- - - -		N. C.	***			
A SALA SALA SALA SALA SALA SALA SALA SA	0.05		mir wiking	1		A ARREST	end and a	
620 640 660 680 700 720 740	-	- 620	640	660	680	700	720	740

	DF	SS	MS
Model	3	3.95992	1.31997
Error	651	0.0298337	0.0000458
Uncorrected Total	6543	3.98976	
Corrected Total	653	2.54211	

	Estimate	Standard Error	t-Statistic	P-	Value
Α	0.192741	0.000803042	240.013	0.	
μ	672.052	0.0663241	10 132.9	0.	
σ	13.786	0.0663233	207.861	0.	

	DF	SS	MS
Model	3	44.8615	14.9538
Error	891	0.282091	0.0003166
Uncorrected Total	894 4	45.1436	
Corrected Total	893	30.961	

	Estimate	Standard Error	t-Statistic F	P- Value
Α	0.600014	0.00195221	307.352	0.
μ	549.599	0.0590979	9299.8	0.
σ	15.7305	0.0590969	266.181	0.

	DF	SS	MS
Model	3	23.804	7.93468
Error	439	1.16107	0.0026448
Uncorrected Total	442 2	24.9651	
Corrected Total	441 1	17.4937	

	Estimate	Standard Error	t-Statistic P	- Value
Α	0.643393	0.00830639	77.4576	3.85314
μ	574.345	0.10877	5280.35	0.
σ	7.29657	0.108786	67.0728	7.79074

UV dataset for the samples A, B, C, D

```
ln[11]:= \tau = {"Sample A", "Sample B", "Sample C", "Sample D"};
          Dataset[Import[ToString@StringForm["/Users/giovannigravili/Library/Mobile
                       Documents/com~apple~CloudDocs/LM
                       MANO/Notebooks/NP/esperimento/uvNewCorrect/sample``.txt",
                    #], "Table", "HeaderLines" → 0, "FieldSeparators" → "\t",
                  "NumberPoint" → ".", CharacterEncoding → "UTF8"]][All, Range[1, 2]][
              All, \langle | "\lambda (nm)" \rightarrow 1, "I" \rightarrow 2 | \rangle ] \& /@ {"A", "B", "C", "D"};
 ln[13]:=\delta = Transpose[{\#[All, "\lambda (nm)"], \#[All, "I"]} // Normal] & /@ <math>\delta;
 In[14]:= \lambda_{pk} = FindPeaks[#, 50, Automatic, 0.05] & /@
           (TimeSeriesResample@TimeSeries[#2, {#1}] &@@@ (Transpose[#] & /@\delta)) // Normal
Out[14]=
       \{\{406.842, 0.791361\}, \{467.259, 0.117173\}\},\
        \{\{407.046, 0.833625\}, \{553.686, 0.899401\}\},\
        \{\{407.251, 0.808092\}, \{672.677, 0.206275\}\},\
        \{\{407.046, 0.0945755\}, \{557.167, 0.164092\}\}\}
```

```
In[15]:= ListLinePlot[\delta, PlotRange \rightarrow All, AxesLabel \rightarrow {"\lambda (nm)", "I"}] //
                              Show[#, ListPlot[\lambda_{pk}, PlotLabels \rightarrow \tau], ImageSize \rightarrow Large, PlotRange \rightarrow All] &
Out[15]=
                                                                                                                                                                                                              Sample B
                         8.0
                         0.6
                         0.4
                                                                                                                                                                                                              Sample C
                         0.2
                                                                                                                                                                                                              Sample D
                                                                                                                                                                                                              Sample A
                                                                                                                                                                                                                                                                                                                     λ (nm)
                                   200
                                                                                                                                                                                                                                    800
    ln[16]:= \Lambda = \{ \{440, 500\}, \{480, 650\}, \{600, 750\}, \{500, 650\} \};
                         \kappa = \text{Cases}[\#1, \{x_{,} y_{,} \} / ; \#2[[1]] \le x \le \#2[[2]]] \&@@@ Transpose[\{\delta, \Lambda\}];
    \ln[18]:= \phi = \text{NonlinearModelFit}\left[\#1, A e^{-\frac{(\lambda-\mu)^2}{2\sigma^2}}, \{A, \{\mu, \#2\}, \sigma\}, \lambda\right] \&@@@
                                  Transpose [\{\kappa, \{467.25, 553.68, 672.47, 557.4\}\}]
 Out[18]=
                                                                                 0.106529 e^{-0.00153351} (\ll 1 \gg)^2
                                                                                                                                                                 , FittedModel 0.875347 e^{-0.00256873 (-\ll18\gg+\lambda)^2}
                           {FittedModel |
                              FittedModel
                                                                                 0.191232 e^{-0.00237737} (\ll 1 \gg)^2
                                                                                                                                                                , FittedModel
                                                                                                                                                                                                                          0.157592 e^{-0.00236518} (\ll 1 \gg)^2
    \label{eq:local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_
                                                    ListPlot[#2, PlotStyle → {Orange, PointSize[Small]}], PlotRange → All],
                                               Column[{#1["ANOVATable"], "", #1["ParameterTable"]}]} &@@@
                                       Transpose[\{\phi, \kappa, \Lambda, \tau\}] // Quiet // TableForm
```


	DF	SS	MS
Model	3	1.61686	0.538954
Error	269	0.0121337	0.00004510
Uncorrected Total	272 1	.629	
Corrected Total	271 (0.182624	

	Estimate	Standard Error	t-Statistic	P- Valu	ıe
Α	0.106529	0.000721465	147.656	1.7627)
μ	467.477	0.145401	3215.09	0.	
σ	18.0569	0.176268	102.44	1.5823	

	DF SS	MS
Model	3 84.6172	28.2057
Error	754 0.171484	0.000227432
Uncorrected Total	757 84.7887	
Corrected Total	756 57.893	

	Estimate	Standard Erro	r t-Statistic F)_	Value
Α	0.875347	0.00175761	498.033	0.	
μ	553.295	0.0323471	17104.9	0.	
σ	13.9517	0.0323466	431.317	0.	

	DF	SS	MS
Model	3	4.10082	1.36694
Error	651	0.039738	0.00006104
Uncorrected Total	654 4	4.14056	
Corrected Total	653	2.48463	

		Estimate	Standard Error	t-Statistic F)_	Value
	Α	0.191232	0.000903615	211.63	0.	
	μ	671.905	0.0791273	8491.44	0.	
,	σ	14.5023	0.0791263	183.28	0.	

	DF	SS	MS
Model	3	2.85658	0.952194
Error	664	0.0145978	0.00002198
Uncorrected Total	667 2	2.87118	
Corrected Total	666	1.77811	

	Estimate	Standard Error	t-Statistic F	D _	Value
Α	0.157592	0.000535448	294.318	0.	
μ	556.035	0.057043	9747.66	0.	
σ	14.5396	0.0570424	254.891	0.	

Green, red and UV LEDs spectra

```
In[20]:= \tau = {"Green LED", "Red LED", "UV LED"};
           Dataset[Import[ToString@StringForm["/Users/giovannigravili/Library/Mobile
                         Documents/com~apple~CloudDocs/LM
                         MANO/Notebooks/NP/esperimento/LEDs/``LedTxt.txt", #],
                    "Table", "HeaderLines" → 0, "FieldSeparators" → "\t",
                    "NumberPoint" → ".", CharacterEncoding → "UTF8"]][All, Range[1, 2]][
               All, \langle | "\lambda (nm)" \rightarrow 1, "I" \rightarrow 2 | \rangle ] \& /@ \{"green", "red", "uv"\};
 ln[22]:=\delta = Transpose[{\#[All, "\lambda (nm)"], \#[All, "I"]} // Normal] &/@<math>\delta;
 In[23]:= \lambda_{pk} = FindPeaks[#, 100, Automatic, 0.05] &/@
             (TimeSeriesResample@TimeSeries[#2, {#1}] &@@@ (Transpose[#] & /@ δ)) // Normal
Out[23]=
        \{\{\{560.854, 0.0649853\}\}, \{\{686.398, 0.200778\}\}, \{\{406.637, 0.114673\}\}\}\}
 In[24]:= ListLinePlot[\delta, PlotRange \rightarrow All, AxesLabel \rightarrow {"\lambda (nm)", "I"}] //
         Show[#, ListPlot[\lambda_{pk}, PlotLabels \rightarrow \tau], ImageSize \rightarrow Large, PlotRange \rightarrow All] &
Out[24]=
        0.20
        0.15
                                                                     UV LED
        0.10
                                                                     Green LED
        0.05
                                                                                                      \lambda (nm)
                                                                                                1000
           200
                                                                           800
 ln[25]:= \Lambda = \{ \{500, 650\}, \{580, 800\}, \{360, 450\} \};
```

 $\kappa = \text{Cases}[\#1, \{x_{,} y_{,} \} / ; \#2[1]] \le x \le \#2[2]] \&@@\text{Transpose}[\{\delta, \Lambda\}];$

In[27]:= ϕ = NonlinearModelFit[#1, A $e^{-\frac{(\lambda-\mu)^2}{2\sigma^2}}$, {A, { μ , #2}, σ }, λ] &@@@ Transpose[$\{\kappa, \{560.9, 686.4, 406.6\}\}$]

Out[27]=

{FittedModel| 0.0623024 $e^{-0.00275522} (\ll 1 \gg)^2$ 0.183749 $e^{-0.00299913} \stackrel{(\ll1\gg)^2}{||}$, FittedModel || 0.10579 $e^{-0.00947149} \stackrel{(\ll1\gg)^2}{||}$ FittedModel

 $In[28]:= \{Show[Plot[#1[\lambda], \{\lambda, #3[1]], #3[2]]\}, ImageSize \rightarrow Medium, PlotLabel \rightarrow #4], In[28]:= \{Show[Plot[#1[\lambda]], \{\lambda, #3[1]], #3[2]]\}, ImageSize \rightarrow Medium, PlotLabel \rightarrow #4], In[28]:= \{Show[Plot[#1[\lambda]], \{\lambda, #3[1]], #3[2]]\}, ImageSize \rightarrow Medium, PlotLabel \rightarrow #4], In[28]:= \{Show[Plot[#1[\lambda]], \{\lambda, #3[1]], #3[2]]\}, ImageSize \rightarrow Medium, PlotLabel \rightarrow #4], In[28]:= \{Show[Plot[#1[\lambda]], \{\lambda, #3[1]], #3[2]]\}, ImageSize \rightarrow Medium, PlotLabel \rightarrow #4], In[28]:= \{Show[Plot[#1[\lambda]], \{\lambda, #3[1]], #3[2]]\}, ImageSize \rightarrow Medium, PlotLabel \rightarrow #4], In[28]:= \{Show[Plot[#1[\lambda]], \{\lambda, #3[1]], \#3[2]]\}, ImageSize \rightarrow Medium, PlotLabel \rightarrow #4], In[28]:= \{Show[Plot[#1[\lambda]], \{\lambda, #3[1]], \#3[2]]\}, ImageSize \rightarrow Medium, PlotLabel \rightarrow #4], In[28]:= \{Show[Plot[#1[\lambda]], \{\lambda, #3[1]], \#3[2]]\}, ImageSize \rightarrow Medium, PlotLabel \rightarrow #4], In[28]:= \{Show[Plot[#1[\lambda]], \{\lambda, #3[1]], \#3[2]]\}, ImageSize \rightarrow Medium, PlotLabel \rightarrow #4], In[28]:= \{Show[Plot[#1[\lambda]], \{\lambda, #3[1]], \#3[2]]\}, ImageSize \rightarrow Medium, PlotLabel \rightarrow #4], In[28]:= \{Show[Plot[#1]], [Abov[Main[Ab$ ListPlot[#2, PlotStyle → {Orange, PointSize[Small]}], PlotRange → All], Column[{#1["ANOVATable"], "", #1["ParameterTable"]}]} &@@@ Transpose[$\{\phi, \kappa, \Lambda, \tau\}$] // Quiet // TableForm

Out[28]//TableForm=

	DF	SS	MS
Model	3	0.412719	0.137573
Error	664	0.00884482	0.000013
Uncorrected Total	667 (0.421563	
Corrected Total	666	0.26772	

	Estimate	Standard Error	t-Statistic F	D _	Valı
Α	0.0623024	0.000433495	143.721	0.	
μ	567.	0.108231	5238.78	0.	
σ	13.4712	0.10823	124.469	0.	

0.20 -			\bigwedge		
0.10					
Ļ	600	650	700	750	800

DF	55	IVIS
3	3.36313	1.12104
954	0.0776968	0.0000814
957	3.44083	
956	2.59732	
	3 954 957	3 3.36313 954 0.0776968 957 3.44083 956 2.59732

	Estimate	Standard Erro	r t-Statistic F)_	Value
Α	0.183749	0.00110745	165.92	0.	
μ	684.39	0.0898578	7616.37	0.	
σ	12.9118	0.0898569	143.693	0.	

				D.		
0.12	_		UV LE	D		
0.12	-		8			
0.10	_		<i>//</i>	· ·		
			1	<i>i</i>		
0.08	_			<i>!</i> :		
	_		<i>[</i>	<i>!</i> }		
	_		ŀ	<i>!</i> !		
0.06	_		<i>[</i>	<i>!</i> !		
	_		/	4		
0.04	_		K	1		
	_		F	Ę.		
0.02	_		F	//		
0.02		at the	F	/3	Δ.,	
	-	The state of the s			What of April 19	
_	ڎۄٷڂٷڂڿڮڿۄ ؙ	380	400	420	4	40

	DF	SS	MS
Model	3	0.665053	0.221684
Error	412	0.00903571	0.0000219
Uncorrected Total	415 (0.674089	
Corrected Total	414 (0.451651	

	Estimate Standard Error t-Statistic P-Value			
Α	0.10579	0.000744038	142.184	0.
μ	407.296	0.0590058	6902.65	0.
σ	7.26567	0.0590055	123.136	0.