智能数据库技术: 理论到实践

丁博麟

阿里巴巴达摩院-智能计算实验室-智能系统

智能系统团队研究方向

Lab members and Research interns

数据隐私

- 隐私法规监管和隐私技术
- 从算法技术、系统、到应用
- 隐私机制、市场效率、和社会伦理

智能系统

- Al4Database: 智能助力数据系统
- Al4Al: 智能助力机器学习系统
- Al4Econ: 智能助力营销策略

Where DB Meets ML

- Human involved in research/engineering/analyzing/administrating:
 - Building and maintaining indexes
 - Building histograms
 - Query optimization
 - Physical design tuning
 - Optimizing view materialization
- Learning to automatically designing/optimizing/tuning?

Outline

Learning to index [a brief survey and analysis]

Learning to be a statistician: NDV estimation [VLDB2022]

Learning to optimize: a case for AQP [SIGMOD2022]

• Deployment: Baihe (百合) framework

Outline

Learning to index [a brief survey and analysis]

Learning to be a statistician: NDV estimation [VLDB2022]

Learning to optimize: a case for AQP [SIGMOD2022]

• Deployment: Baihe (百合) framework

B-Tree Index from Learning Perspective

Input: Key

Output: Position Output: Position

B-Tree Index: position = B-tree(Key)

Learned Index: position = function(Key)

Why **Learning** Index from Data?

- Consider this (ideal) case: build an index to store and query over a table of *n* rows with continuous integer keys, *i.e.*, Keys = [11, 12, 13, 14, 15, ...] and Pos = [0, 1, 2, 3, 4, ...]
 - B-Tree: seeking Pos in time O(log n)
 - a learned function Pos = M(Key) = Key + offset : O(1)
- Main motivation: the **hidden yet useful distribution information** about the data to be indexed has not been fully explored and utilized in the classic index techniques
 - learned index: an automatic way to explore and utilize such information

Recursive-Model Index (RMI)

FITing-Tree

ShrinkingCone (building a segment): Point 1 is the origin of the cone. Point 2 is then added, resulting in the dashed cone. Point 3 is added next, yielding in the dotted cone. Point 4 is outside the dotted cone and therefore starts a new segment.

RMI v.s. FITing-Tree

More Learned Index Methods

• PGM [1] improves FITing-Tree by finding the optimal number of learned segments given an error bound.

 ALEX [2] proposes an adaptive RMI with workload-specific optimization, achieving high performance on dynamic workloads.

• RadixSpline [3] gains competitive performance with a radix structure while using a single-pass training.

• Multi-dimensional indexes: NEIST [4], Flood [5], Tsunami [6] and LISA [7].

More Learned Index Methods

- [1] The PGM-Index: A Fully-Dynamic Compressed Learned Index with Provable Worst-Case Bounds. *PVLDB*, 2020.
- [2] ALEX: An Updatable Adaptive Learned Index. SIGMOD, 2020.
- [3] RadixSpline: A Single-Pass Learned Index. In aiDM Workshop on SIGMOD, 2020.
- [4] NEIST: a Neural-Enhanced Index for Spatio-Temporal Queries. TKDE, 2019.
- [5] Learning Multi-dimensional Indexes. SIGMOD, 2020.
- [6] Tsunami: A Learned Multi-dimensional Index for Correlated Data and Skewed Workloads. *PVLDB*, 2020.
- [7] LISA: A Learned Index Structure for Spatial Data. SIGMOD, 2020.

Questions about Learned Indexes

How to systematically analyze and design machine learning based indexing methods? More scalable index learning methods? Which class of models suffice?

Task Definition

• Given a database \mathcal{D} with n records (rows), let's assume that a range index structure will be built on a specific column x. For each record $i \in [n]$, the value of this column, x_i , is adopted as the key, and y_i is the position where the record is stored.

• We want to learn a *mechanism* M with the key x as input and outputs a *predicated position* $\hat{y} \leftarrow M(x)$ for accessing data.

Learning Index: A Machine Learning Task

Learning Index: A Machine Learning Task

Benefits of Learned Index

- Smaller Size
- Faster Index Seek
- Better Handling Index Update (hopefully)
 - Generalization ability of machine learning
 - Incremental learning

How to systematically analyze and design machine learning based indexing methods?

More scalable index learning methods?

• Is model training/inference scalable enough?

Which class of models suffice?

Learned Index with Sampling

Fig: Illustration of sampling

- How large the sample needs to be?
 - *n* is the data size
 - *M** is fully optimized

Theorem 1. Consider the optimization problem:

$$M^* = \underset{M \in \mathcal{M}}{\operatorname{arg \, min}} \operatorname{MDL}(M, \mathcal{D}) = \underset{M \in \mathcal{M}}{\operatorname{arg \, min}} \left(L(M) + \alpha L(\mathcal{D}|M) \right).$$

We can solve it on a random sample D_s with size $s = O(\alpha^2 \log^2 n)$ as

$$\hat{M}^* = \arg\min_{M \in \mathcal{M}} \mathrm{MDL}(M, \mathcal{D}_s)$$

s.t., $MDL(\hat{M}^*, \mathcal{D}) \leq MDL(M^*, \mathcal{D}) + O(1)$ with high probability.

Learned Index with Sampling

Fig: Illustration of sampling

- Up to 78x
 building speedup
- Non-degraded performance in terms of query time and prediction error)

Linearization of a learned model

A learned model

$$\overline{y} = M(x)$$

Linearization of a learned model

Linearization of a learned model

A learned model $\overline{y} = M(x)$ Landmark points $+ \dots, (x_l, y_l), (x_r, y_r), \dots$ Linearized model $\widehat{y} = M_L(x)$ connecting $(x_l, \overline{y}_l = M(x_l))$ to $(x_r, \overline{y}_r = M(x_r))$

Linearization of a learned model

A learned model $\overline{y} = M(x)$ Landmark points $+ \dots, (x_l, y_l), (x_r, y_r), \dots$ Linearized model $\widehat{y} = M_L(x)$ connecting $(x_l, \overline{y}_l = M(x_l))$ to $(x_r, \overline{y}_r = M(x_r))$

Theorem 2. Suppose $\forall x, |\overline{y} - y| \le \epsilon$, after linearization, we have $\forall x, |\widehat{y} - y| \le 3\epsilon + 2(y_r - y_l)$.

Sampling-Restriction-Linearization

A Pluggable Learned Index Method via Sampling and Gap Insertion, https://arxiv.org/pdf/2101.00808.pdf

Still Open...

- How to build it into real DB systems?
 - Without too much modification to the current system
 - Index seek v.s. the whole plan: worth a try?

Outline

Learning to index [a brief survey and analysis]

• Learning to be a statistician: NDV estimation [VLDB2022]

Learning to optimize: a case for AQP [SIGMOD2022]

• Deployment: Baihe (百合) framework

Learning to be a statistician

Statistician's task: data $C \rightarrow$ some statistics, e.g., mean(C), median(C), NDV(C), ...

Estimating statistics from random sample:

- Draw a sample S from C
- Derive some formula (estimator) h(S) ≈ stat(C)
- **Desirable property:** unbiasedness, small variance (or sampling efficiency), consistency, ...

Can we learn h?

Input feature: **S** (drawn from **C**)

Alchemy: h (train a machine learning model to approximate what a statistician derives)

Technical challenges:

- How to generate training data?
- What are the features?
- What model/loss function should be used?
- Workload-dependent? (able to be generalized?)

Learning to be a statistician: a toy example

Consider a Gaussian distribution $N(\mu, \sigma^2)$, and a sample $\mathbf{S} = \{v_1, v_2, \dots, v_k\}$ How to estimate μ and σ ?

Statistician:
$$\mu^{\rm MLE}=\frac{1}{k}\sum v_i$$
 ; $\sigma^{\rm MLE}=\sqrt{\frac{1}{k}\sum(v_i-\mu^{\rm MLE})^2}$

Both $\hat{\mu}$ and $\hat{\sigma}$ are in the form h(S)... Can we learn it from samples?

Prepare training data points and feed into an NN model:

Features (size-4 sample => 4-dim features)	Label μ	Label σ
$(from N(0,100)) => \{-1.2, -3.6, 3.2, 2.1\}$	0	100
(from $N(2,80)$) => {1.1, 2.2, 3.4, 0.3}	2	80
$(from N(6,200)) => \{0, 4.2, 6.3, 18.7\}$	6	200
$(from N(-2,10)) \Rightarrow \{-1.6, -1.9, -4, 0.2\}$	-2	10

Estimating number of distinct values (NDV) from random sample

A value $i \in \Omega$

Data column C: a multi-set of *N* values

A random sample S \subseteq **C**: n values drawn uniformly at random from **C**

Sampling rate $\alpha=n/N$ NDV D and sample NDV d

Frequency (N_i) : # times i appears in \mathbf{C}

Profile (F_i) : # distinct values with frequency j in **C**

Deterministic relation: $D = \sum_{j>0} F_j$

Sample frequency (n_i) : # times i appears in **S**

Sample profile (f_j) : # distinct values with sample frequency j in **S**

$$\mathbf{C} = \{1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7\}$$

$$\mathbf{S} = \{1, 1, 2, 3, 4, 7\}$$

$$D = 7$$

$$d = 5$$

$$(N_i) = (4, 2, 2, 1, 1, 1, 1)$$

 $(F_i) = (4, 2, 0, 1, ...)$

$$(n_i) = (2, 1, 1, 1, 0, 0, 1)$$

 $(f_i) = (4, 1, 0, 0, ...)$

A MLE-based formulation

MLE: maximum likelihood estimation

Probability distribution of sample profile f: $\mathbb{P}(f \mid F)$

Feasible *D*-NDV profile configurations: $\mathcal{F}(D) = \{F \mid \sum_{j>0} F_j = D\}$

 $D^{\mathsf{MLE}} = \operatorname*{arg\,max}_{D} \sum_{F \in \mathcal{F}(D)} \mathbb{P}(f \mid F)$ We can estimation:

Easy to be formulated but difficult to be solved;(

Existing estimators

Shlosser [Shlosser 1981]: works well on skewed datasets with $\frac{\mathrm{E}[f_i]}{\mathrm{E}[f_1]} \approx \frac{F_i}{F_1}$

$$D^{\mathsf{Shlosser}} = d + \frac{f_1 \cdot \sum_{i=1}^n (1 - \alpha)^i \cdot f_i}{\sum_{i=1}^n i \cdot \alpha (1 - \alpha)^{i-1} \cdot f_i}$$

Chao [Chao 1984]: approximate E[D] with N approaches infinity

$$D^{\mathsf{Chao}} = d + \frac{f_1^2}{2f_2}$$

Negative results [Charikar, Chaudhuri, Motwani, Narasayya 2000]:

$$\operatorname{error}(\hat{D}) = \max\{\hat{D}/D, D/\hat{D}\}\$$

w.h.p.

$$\operatorname{error}(\widehat{D}) \geq \Omega(\sqrt{N/n})$$

Intuition: hard to distinguish a dataset with NDV = N and one with NDV = n

GEE [Charikar, Chaudhuri, Motwani, Narasayya 2000]: a "worst-case" optimal estimator

$$D^{\mathsf{GEE}} = \sqrt{\frac{1}{\alpha}} \cdot f_1 + \sum_{i=2}^{n} f_i$$

A (workload-agnostic) learning framework

Generating training sample:

Generate data column ${\bf C}$ from distribution ${\cal A}$

→ Draw sample S from randomly from C

Input feature (f, α) from **S**

Label (NDV) D from ${\bf C}$

Or equivalently:

Generate profile F from distribution \mathcal{F}

Draw sample profile f randomly from F

Input feature (f, α)

Label (NDV) D from C

Train a machine learning model h to approximate (recall the MLE formulation

$$\hat{D} = h(f, \alpha) \approx \underset{D}{\text{arg max}} \, \mathbb{P}_{\mathcal{F}}(f \mid D)$$

 $D^{\mathsf{MLE}} = \underset{D}{\operatorname{arg\,max}} \sum_{F \in \mathcal{F}(D)} \mathbb{P}(f \mid F)$

Ratio Error: $\operatorname{error}(\hat{D}) = \max\{\hat{D}/D, D/\hat{D}\}\$

Loss function and empirical loss:

$$L(\mathsf{h}(f,\alpha) = \hat{D},D) = |\log \hat{D} - \log D|^2 = \left(\log \operatorname{error}(\hat{D})\right)^2 \qquad \qquad \hat{R}_A(h) = \sum_{((f,\alpha),D) \in A} L(\mathsf{h}(f,\alpha),D)$$

How to use the learned estimator

- Load the learned estimator ("model paras.npy")
- Generate profile from the sample (sample: predrawn/block-level/top-k)
- Use profile as the input feature to predict NDV

(implemented in Alibaba MaxCompute-ODPS)

https://figshare.com/s/0415ccdd6d19645e44b5

```
class Estimator:
   def init (self, para path="model paras.npy"):
       self.paras = np.load(para path, allow pickle=True)
   def sample2profile(self,S):
       , counts = np.unique(S, return counts=True)
       cnt, val = np.unique(counts, return counts=True)
       fs = np.zeros(np.max(cnt)).astype(int)
       fs[cnt - 1] = val
       return fs
   def sample predict(self,S,N):
       estimate number of distinct values in population from a sample S
       :param S: a sample, list
       :param N: population size, int
       :return: estimated number of distinct values, int
       f = self.sample2profile(S)
       f sparse = to sparse(f)
       ndv = self.profile predict([f sparse],[N],is sparse=True)
       return ndv
```

World's Worst

Question:

"Are you sure?"

- Synthetic training data v.s. estimation on real workload?
- Proper feature?
- Hardness result?

How to make the model workload-agnostic?

$$\mathbb{P}_{\mathcal{F}}(f \mid D) = \sum_{F \in \mathcal{F}(D)} \mathbb{P}(f, F \mid D)$$

$$= \sum_{F \in \mathcal{F}(D)} \mathbb{P}(f \mid F, D) \cdot \mathbb{P}(F \mid D) = \sum_{F \in \mathcal{F}(D)} \mathbb{P}(f \mid F, D) \cdot \frac{\mathbb{P}(F, D)}{\mathbb{P}(D)}$$

$$= \sum_{F \in \mathcal{F}(D)} \mathbb{P}(f \mid F) \cdot \frac{\mathbb{P}(F)}{\mathbb{P}(D)}$$

Choose the distribution ${\mathcal F}$ carefully

If $\mathbb{P}(F)/\mathbb{P}(D)$ is a constant:

$$\mathbb{P}_{\mathcal{F}}(f \mid D) \sim \sum_{F \in \mathcal{F}(D)} \mathbb{P}(f \mid F)$$

approximation to an MLE estimator

$$\underset{D}{\operatorname{arg\,max}} \, \mathbb{P}_{\mathcal{F}}(f \mid D) = \underset{D}{\operatorname{arg\,max}} \, \sum_{F \in \mathcal{F}(D)} \mathbb{P}(f \mid F) = D^{\mathsf{MLE}}$$

Rest questions

- Feature reduction/selection
- Training sample generation
- Model structure
- Hardness results v.s. Model regularization

Feature reduction

- From sample to profile: profile suffices for "consistent" estimator (proved in the paper)
- Dimensionality reduction $\{f_1, f_2, ..., f_n\} \rightarrow \{f_1, f_2, ..., f_B\}$: from n-dim to B-dim, why?

Frequent (Sample-frequent) value $i: N_i > B$ $(n_i > B)$

- a) Infrequent -> sample-infrequent: stay in the sample, with probability roughly α
- b) Infrequent -> disappearing: unobserved, with probability roughly $1-\alpha$
- c) Frequent -> sample-frequent: stand out
- d) Frequent -> sample-infrequent: mixed with a)
- e) Frequent -> disappearing: with low probability (roughly $1/e^{\alpha B}$)

Choose
$$B \geq (1/\alpha) \ln N$$
 a) + d) c) e)
$$h(f,\alpha) \approx g(f_1,f_2,\ldots,f_B) + \sum_{j=B+1}^n f_j + O(1)$$

Feature set 1:
$$\{f_1, f_2, ..., f_B\}$$

Feature 2: $\{f_{B+} = \sum_{j>B} f_j\}$

Training sample generation

A profile distribution with constant $\mathbb{P}(F)/\mathbb{P}(D)$ (F follows uniform distribution, conditioned on D)

Draw $F^{\sim} \mathcal{F}_{\text{I}}$ iniformly at random, with constraints

$$N = \sum_{i} iF_{i} \; ; \; D = \sum_{i} F_{i}$$

Reduce to random fixed sum problem:

$$Q(N,M) = \{SF \mid \sum_{i=1}^{M} SF_i = N \& SF_i \ge SF_{i+1} \ \forall \ i\}$$

One-to-one mapping: $F_i = SF_i - SF_{i+1}$ (F_i) satisfies constraints and is uniformly at random

Model structure

Logarithmic -> K + 2 fully connected layers -> Exponential

Hardness results v.s. Model regularization

An instance-level hardness result:

Observing a sample with sample NDV d

Hard to distinguish two scenarios (w.h.p.):

- 1. D = d: no unobserved values in the full column
- 2. $D = d + \Theta(\frac{N}{n})$: there are $\frac{N}{n}$ values unobserved values which appear only once in the full column

Worst-case optimal estimator

$$\widehat{D} = \sqrt{d \cdot (d + N/n)}$$

Ratio error (\widehat{D}) can be as large as: $maxerr(d) = \sqrt{\frac{d+N/n}{d}}$ (w.h.p.)

Hardness results v.s. Model regularization

Model regularization:

$$L(h(f,\alpha) = \hat{D}, D) = |\log \hat{D} - \log D|^2 = \left(\log \operatorname{error}(\hat{D})\right)^2$$

$$L(h(f,\alpha) = \hat{D}, D) = \left|(\log \operatorname{error}(\hat{D}))^2 - (\log \operatorname{maxerr}(d))^2\right|$$

Intuition:

Observed sample

Underlying data D = d $D = d + \Theta(\frac{N}{n})$

Force to learn \widehat{D} in the middle; otherwise adversary may make \widehat{D} lie on the boundary

Datasets: 6 public + 3 private

Sampling rate: from 0.0001 to 0.01

Default hyperparameters: B = 100, 7 + 2 fully connect layers

Eight previous NDV estimators + Ours (learned one) + LB (workload-dependent lower-bound)

	GEE	HYB GEE	HYB SKEW	AE	Chao	Chao -Lee	Shlo sser	APML	LB	Our
Kasandr	3.4	7.9	8.2	4.6	4.7	9.9	19.2	5.1	2.2	2.4
Airline	4.1	1.8	1.8	1.4	1.6	1.8	70.0	2.0	2.5	1.9
DMV	5.2	3.5	17.5	7.7	8.8	13.8	23.5	7.6	3.2	2.7
Campaign	7.3	6.5	8.4	291.8	13.4	48.0	21.9	13.2	2.9	3.9
SSB	5.2	1.2	1.2	1.1	1.1	1.2	173.1	1.3	1.5	2.0
NCVR	12.2	31.0	56.9	150.2	13.2	58.6	42.6	16.9	5.6	6.4
Product	36.3	60.6	58.7	46.1	46.9	250.6	30.5	54.8	9.2	14.6
Inventory	17.8	23.5	18.4	75.1	24.8	252.9	11.6	26.7	4.5	7.8
Logistics	17.1	93.1	100.0	552.0	15.5	275.1	19.5	16.7	3.6	3.5
Average	12.1	25.5	30.1	125.6	14.5	101.3	45.7	16.0	3.9	5.0

Tuning the model

More details

Sampling rate 0.001 Min + 25% + 50% + 75% + Max + Outliers

Average error: different sampling rates and NDVs

Summary

- Attempt to learn an estimator (which is hard to derive)
- Synthetic training sample -> workload-agnostic model/estimator
- Careful feature engineering and model regularization

Future work

Fine-tuning of the estimator

Pros: even better accuracy Cons: may not generalize

- Learn other statistics
- How it works together with other components, e.g., query optimizer

Outline

Learning to index [a brief survey and analysis]

Learning to be a statistician: NDV estimation [VLDB2022]

• Learning to optimize: a case for AQP [SIGMOD2022]

• Deployment: Baihe (百合) framework

Approximate Query Processing (AQP)

SELECT SUM(Price) WHERE Country = 'CHINA'

AQP: using Sampler

Data

Item	Price	Country
1	0	CHINA
2	50	CA
3	300	CHINA
4	100	CHINA

Sampler

Item	Price	Country	Prob.
4	100	CHINA	0.05
2	50	CA	0.02
1	0	CHINA	0.01

Estimator:
$$q(S) = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i}{p_i}$$

AQP: when Multiple Samplers Available

SELECT SUM(Price) WHERE Country = 'CHINA'

Multiple Samplers: One Size Does Not Fit All

Data

Item	Price	Country
1	10	CHINA
2	50	CA
3	300	CHINA
4	100	CHINA

Uniform sampler: each tuple sampled with equal prob.

Optimized for COUNT

Prob.	
0.01	
0.01	
0.01	
0.01	

Measure-biased sampler: prob. is proportional to measure values

Optimized for SUM

Prob.
0.001
0.005
0.03
0.01

Stratified sampler: prob. is equal within each group

Optimized for GROUP-BY

Prob.
0.02
0.01
0.02
0.01

- Which sampler(s) should we use?
- How should we combine them?

Sampler Combination Problem (SamComb)

Estimator: $q(\psi) = w_1 q(S_1) + \cdots + w_k q(S_k)$

Goal: minimize $var(q(\psi))$

Variables: weights w_1 , w_2 , ..., w_k s.t. $\sum_i w_i = 1$; samples S_1 , S_2 , ..., S_k

SamComb: two Sub-Problems

Estimator: $q(\psi) = w_1 q(S_1) + \dots + w_k q(S_k)$

Goal: minimize $var(q(\psi))$

Variables: weights w_1 , w_2 , ..., w_k <u>s.t.</u> $\sum_i w_i = 1$; samples S_1 , S_2 , ..., S_k

Budget allocation: how to allocate sample budget $n_i = |S_i|$ for each sampler?

Weight allocation: given samples, how to allocate weights w_i in the estimator?

Optimal allocation

$$w_i = \frac{n_i}{var(D_i)} / \sum \frac{n_j}{var(D_j)}$$

Pseudo-optimal allocation

$$w_i \sim \frac{n_i}{\widehat{var}(D_i)}$$

Prop-to-size allocation

$$w_i \sim n_i$$

SamComb: two Sub-Problems

Estimator: $q(\psi) = w_1 q(S_1) + \cdots + w_k q(S_k)$

Goal: minimize $var(q(\psi))$

Variables: weights w_1 , w_2 , ..., w_k <u>s.t.</u> $\sum_i w_i = 1$; samples S_1 , S_2 , ..., S_k

Budget allocation: how to allocate sample budget $n_i = |S_i|$ for each sampler?

Weight allocation: given samples, how to allocate weights w_i in the estimator?

The optimal budget allocation is to allocate all the budget to the best sampler (i.e., with minimal $var(D_i)$).

Don't know the best sampler in advance?

Use some budget to estimate the sampler quality

Model as multi-armed bandit (MAB) problem

SamComb-MAP: Exploration & Exploitation

Initialization Phase

Allocation Phase

Combination

$$q(S) = w_1 q(S_1) + ... + w_k q(S_k)$$

Exploration

use budget to explore the quality of each sampler

Exploitation

allocate budget to the empirically best sampler

SamComb-MAP: Exploration & Exploitation

Initialization Phase

Allocation Phase

 ε_t -Greedy and LCB are asymptotically optimal with prop-to-size weight allocation

ε_t -Greedy:

- Select a random sampler with prob ε_t
- allocated $O(\ln n)$ budget

a sub-optimal sampler is

• Select the empirically best sampler with prob $1-\varepsilon_t$

Lower Confidence Bound (LCB):

 Select the sampler with the minimum lower confidence bound of the sampler's estimation error

Adaptive-LCB

Adaptively adjust the bound based on the sample information

$$q(S) = w_1 q(S_1) + ... + w_k q(S_k)$$

Experiments

• TPCH-Skew benchmark: one size does not fit all

SamComb strategy:

 adaptively combine multiple samplers to improve the estimation quality
 allocation + combination: no budget waste

Outline

Learning to index [a brief survey and analysis]

Learning to be a statistician: NDV estimation [VLDB2022]

Learning to optimize: a case for AQP [SIGMOD2022]

• Deployment: Baihe (百合) framework

Actual Deployment: Challenges

- ML4DB sounds great, but...
 - It can be challenging to deploy in a real world production setting
 - Even more so in mission critical systems such as DBs!

Key Issues

- Brittleness of most models, hard to detect stochastic failures, model training is not a well-defined process
- Dependencies (ML stacks, external services, ...)
- Keeping track of training data and model versions

DBs and ML: A Tale of Two Cities

Databases

- Central and fundamental piece of IT infrastructure for almost any business
- Need rock-solid, reliable and stable behavior
- Deterministic

Machine Learning

- Produces predictions based on probabilistic methods
- Needs close supervision due to wide range of failure modes
- Stochastic

Need to resolve conflict through proper software engineering practices!

→ Requirements, design iterations, ...

Deriving Requirements

High Level Design Philosophy

- Separation from the core system
- Minimal third party dependencies
- Robustness, stability and fault tolerance
- Usability and configurability.

Concrete ML-related requirements

- Supporting wide range of models and ML frameworks
- Supporting iterative model development and evaluation process
- Not introducing too many dependencies
- Training outside of the core system
- Fallbacks in case of model failures
- Well defined and robust model deployment procedure

Different User Perspectives

Actual User (both human and technical)

Should not have to care about what have happened inside (with ML4DB)

DBAs/OPs

- Should only have to learn a few config knobs and management commands (e.g. activate training data collection, configure which model to use, deploy a readily packaged model,...)
- Should not be responsible for managing extra external services which provide inference APIs
- Should not have to worry that some fancy new piece of tech breaks their system or security.

Model Developer / Researcher

- Easy access to training data, fast development iteration cycles
- Develop models based on environments (libs, packages, ...) close to the usual ML/DS stack
- Simple packaging and deployment (resp. handover to DBA)

Baihe: Design Blue Print and Implementation

Highlights

- Extend Postgres hooking mechanism through shadow planner component
- Make idiomatic use of Postgres functionality for shared memory, background workers, process management, and IPC
- Simple model packaging and deployment for cardinality estimation, query runtime prediction, query optimization, and more... (to-do: reinforcement learning)
- Easy to use test bed for ML4DB research

Open Source Release

- Research oriented MVP: available soon!
- Comments and discussions welcome!

Demo Time!

 Andreas Pfadler, Rong Zhu, Wei Chen, Botong Huang, Tianjing Zeng, Bolin Ding, Jingren Zhou. Baihe: SysML Framework for Al-driven Databases, Arxiv, 2022. https://arxiv.org/abs/2112.14460

Outline

Learning to index [a brief survey and analysis]

Learning to be a statistician: NDV estimation [VLDB2022]

Learning to optimize: a case for AQP [SIGMOD2022]

• Deployment: Baihe (百合) framework

智能系统团队研究方向

Lab members and Research interns

(hiring contact: bolin.ding@alibaba-inc.com)

数据隐私

- 隐私法规监管和隐私技术
- 从算法技术、系统、到应用
- 隐私机制、市场效率、和社会伦理

智能系统

- Al4Database: 智能助力数据系统
- Al4Al: 智能助力机器学习系统
- Al4Econ: 智能助力营销策略

