BTECH

(SEM II) THEORY EXAMINATION 2023-24 ENGINEERING MATHEMATICS-II

TIME: 3 HRS

M.MARKS: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 7 = 14$

	4 A / -	14
Question	Marks	CO
Find Particular integral of $\frac{d^2y}{dx^2} + 4y = \sin 2x$.	2	ī
Find the complementary function of $(D^2+a^2)y=0$	2	-
Find the Laplace transform of $f(t) = t^4 e^{2t}$	2	2
series defined in (-1, 1). $= x+x^2$ is expanded in Fourier	2	3
	2	4
$\int_{c} \frac{e^{zz}}{(z+1)^{5}} dz \text{ where c is the circle } z = 2$	2	5
Define Laurent's series.	2	5
_	Find Particular integral of $\frac{d^2y}{dx^2} + 4y = \sin 2x$. Find the complementary function of $(D^2+a^2)y = 0$ Find the Laplace transform of $f(t) = t^4 e^{2t}$. Find the constant term if the function $f(x) = x + x^2$ is expanded in Fourier series defined in $(-1, 1)$. Find the Residue of $\frac{z^2}{(z-1)(z-2)^2}$ at $z = 2$.	Question Question Find Particular integral of $\frac{d^2y}{dx^2} + 4y = \sin 2x$. Find the complementary function of $(D^2 + a^2)y = 0$ Find the Laplace transform of $f(t) = t^4 e^{2t}$. Find the constant term if the function $f(x) = x + x^2$ is expanded in Fourier Series defined in $(-1, 1)$. Find the Residue of $\frac{z^2}{(z-1)(z-2)^2}$ at $z = 2$. $\int_C \frac{e^{2z}}{(z+1)^5} dz$ where c is the circle $ z = 2$

SECTION B

2. Attempt any three of the following:

X ^	220	显	45	$7 \times 3 = 21$

Q no.	Joe de de	(,	
Q 110.	Question	Marks	CO
a	Using variation of parameter method, solve $x^2 \frac{d^2y}{dx^2} + 2x \frac{dy}{dx} - 12y = 0$.	m	1
b.	Use convolution theorem to find the inverse Laplace transform of $\frac{1}{(s^2+a^2)^2}$.	7	2
c.	Test the convergence of the series $1+\frac{2}{5}x+\frac{6}{9}x^2+\frac{14}{17}x^3+\dots$	7	3
d.	Show that the function $u = \frac{1}{2} \log (x^2 + y^2)$ is harmonic .Find its harmonic conjugate.	7	4
e.	Evaluate the following integral using Cauchy Integral formula $\int_{C} \frac{4-3z}{z(z-1)(z-2)} dz, \text{ where C is circle } z = \frac{3}{2}$	7	5

SECTION C

3. Attempt any one part of the following:

7	X	1	=	7

Q no.	Question	Marks	CO
	Solve the following differential equation $(D^2 -4D +4)y = 8x^2 e^{2x} \sin 2x $	7	1
b.	Solve simultaneous differential equation: $D^2x-4Dx+4x = y$, $D^2y+4Dy+4y=25x+16e^t$, where $D=\frac{d}{dt}$.	7	1

BTECH (SEM II) THEORY EXAMINATION 2023-24 ENGINEERING MATHEMATICS-II

TIME: 3 HRS

M.MARKS: 70

4.	Attempt	any	one	part	of	the	following:	
----	---------	-----	-----	------	----	-----	------------	--

	7	x	1	=	7
٠,	_				-

	0		Marks	(0)	
	Q no.	Question	7	7	
	a.	Find the Laplace transform of f(t) = 1-cant	,	2	
	b.	Using Laplace transformation solve the following differential	7	2	
4		equation			
Į		$y'' + 4y' + 4y = 6e^{-t}$, if $y(0) = -2$, $y'(0) = 8$			

5. Attempt any of

Attempt any one part of the following:

7 x 1 =	7
---------	---

	Q no.	Question	Marks	co	
	a,	Find the half range Fourier sine series f(x) defined over the range 0 <x<4< td=""><td>7</td><td>3</td><td></td></x<4<>	7	3	
ا ،		as $f(x) = \begin{cases} \frac{x_0 \cdot 0 < x < 2}{4 - x, 2 < x < 4} \end{cases}$			
	b. /	Test for the convergence of the series	7	3	ı
닉		$1 + \frac{x}{2} + \frac{1.3}{2.4}x^2 + \frac{1.3.5}{2.4.6}x^3 + \dots, x > 0$			

6. Attempt any one part of the following:

7	x	1	=.7	Q
•		_	18	_

Q no,	Question V	Marks	"CO
بَبت	Show that ex (x cosy - y siny) is a harmonic function. Find the analytic function for which ex (x cosy - y siny) is imaginary part.	7	4
b.	Define analytic function and show that $f(z) = z z $ is not analytic anywhere.	7	4

7. Attempt any one part of the following:

7	x	1	=	7

Q no.	Question	Marks	CO
a,	Expand $f(z) = \frac{z}{(z-1)(2-z)}$ is Laurent series valid for	7	5
<u> </u>	a z-1 > 1 and $ a z-2 < 1$	7	5
b.	Evaluate $\int \frac{e^z}{(z-1)(z-4)} dz$ where C is the circle $ \ddot{z} = 2$ by using Cauchy's		
1	integral formula.		
	Oc. Price		- -

2 | Page