Projet numérique : Soutenance finale Modèle de Vicsek

ROYER Antoine and PEYROUTET Alexis

L3 PCAME - Tarbes

- Présentation et explication
 - Présentation du modèle
 - Explications sur le modèle

Méthode utilisée

Tamás Vicsek (74 ans);

Essaim d'oiseaux

- Tamás Vicsek (74 ans);
- Etude des mouvements collectifs (systèmes auto-organisés);

Migration des grues

- Tamás Vicsek (74 ans);
- Etude des mouvements collectifs (systèmes auto-organisés);
- Auncun agent leader dans le modèle;

- Tamás Vicsek (74 ans);
- Etude des mouvements collectifs (systèmes auto-organisés);
- Auncun agent leader dans le modèle ;
- Création du modèle en 1995.

Les bases du modèles

Le modèle de Vicsek permet d'étudier un groupe d'agents qui se déplace dans un espace.

Les bases du modèles

Chacun des agents a une vitesse donnée (en norme et en direction) et va interagir avec ses voisins.

Création d'un mouvement de groupe suite aux interactions entre les agents.

$$\begin{cases} \Theta_i(t+dt) = \Theta_{j|r_i-r_j|< r} + \eta_i(t) \\ r_i(t+dt) = r_i(t) + v_i \Delta t \end{cases}$$

• r_i la position de chaque individu ;

$$\begin{cases} \Theta_i(t+dt) = \Theta_{j|r_i-r_j|< r} + \eta_i(t) \\ r_i(t+dt) = r_i(t) + v_i \Delta t \end{cases}$$

- r_i la position de chaque individu ;
- *i* est l'indice de l'agent en question et *t* le temps. ;

$$\begin{cases} \Theta_i(t+dt) = \Theta_{j|r_i-r_j|< r} + \eta_i(t) \\ r_i(t+dt) = r_i(t) + v_i \Delta t \end{cases}$$

- r_i la position de chaque individu ;
- i est l'indice de l'agent en question et t le temps. ;
- η le bruit et Θ l'angle définissant la direction de sa vitesse ;

$$\begin{cases} \Theta_i(t+dt) = \Theta_{j|r_i-r_j|< r} + \eta_i(t) \\ r_i(t+dt) = r_i(t) + v_i \Delta t \end{cases}$$

• $\Theta_{j|r_i-r_j|< r}$ est la direction moyenne des vitesses des agents dans un cercle de rayon r;

$$\begin{cases} \Theta_i(t+dt) = \Theta_{j|r_i-r_j|< r} + \eta_i(t) \\ r_i(t+dt) = r_i(t) + v_i \Delta t \end{cases}$$

- $\Theta_{j|r_i-r_j|< r}$ est la direction moyenne des vitesses des agents dans un cercle de rayon r;
- *j* représentera alors l'ensemble des voisins de *i* compris dans ce cercle.

Autres intérêts du modèle

Comportement des foules et construction de bâtiments

Autres intérêts du modèle

Domaine de la robotique

- Présentation et explication
 - Présentation du modèle
 - Explications sur le modèle

Méthode utilisée