Билет 42

Автор1, ..., Aвтор<math>N

20 июня 2020 г.

Содержание

0.1	Билет 42: !	критерии	сходимости	ряда	C	неотр	ица.	гельны	МИ	4,11	SHS	ши	 пр	из	на	<u> </u>	
	сравнения.	Следствие.															1

0.1. Билет 42: ! Критерий сходимости ряда с неотрицательными членами. Признак сравнения. Следствие.

Теорема 0.1.

Если $a_n \geqslant 0$, то $\sum\limits_{n=1}^{\infty} a_n$ сходится \iff частичные суммы ограничены.

Доказательство.

$$S_n = \sum_{k=1}^n \leqslant \sum_{k=1}^{n+1} = S_{n+1}$$

т.е. S_n монотонно возрастает.

 $\implies S_n$ имеет конечный предел

 \iff (свойство монотонно возрастающей последовательности) S_n – ограничена

Теорема 0.2 (Признак сравнения).

$$0 \leqslant a_n \leqslant b_n$$

1.
$$\sum_{n=1}^{\infty} b_n$$
 – сходится $\implies \sum_{n=1}^{\infty} a_n$ – сходится

$$2. \sum_{n=1}^{\infty} a_n$$
 – расходится $\implies \sum_{n=1}^{\infty} b_n$ – расходится

Доказательство.

1.
$$A_n := \sum_{k=1}^n a_k \leqslant B_n := \sum_{k=1}^n b_k$$

$$\sum_{n=1}^{\infty} b_n - \operatorname{сходится}$$

 $\implies B_n$ – ограничены

 $\implies A_n$ – ограничены

 $\implies \sum_{n=1}^{\infty} a_n - \text{сходится}$

2. От противного.

Пусть
$$\sum_{n=1}^{\infty} b_n$$
 – сходится

$$\implies \sum_{n=1}^{\infty} a_n$$
 – сходится

⇒ противоречие.

Следствие.

$$a_n, b_n \geqslant 0$$

1.
$$a_n = \mathcal{O}(b_n)$$
 и $\sum_{n=1}^{\infty} b_n$ – сходится $\implies \sum_{n=1}^{\infty} a_n$ – сходится.

2.
$$a_n \sim b_n \implies \sum_{n=1}^\infty a_n$$
 и $\sum_{n=1}^\infty b_n$ ведут себя одинакого.

Доказательство.

- 1. $0 \leqslant a_n \leqslant Cb_n$ и $\sum Cb_n = C \sum b_n$ сходится \implies (предыдущая теорема) $\sum a_n$ сходится
- 2. При достаточно больших $n\colon \frac{b_n}{2}\leqslant a_n\leqslant 2b_n$ Из $a_n\leqslant 2b_n\colon \sum b_n$ сходится $\Longrightarrow \sum a_n$ сходится Из $\frac{b_n}{2}\leqslant a_n\colon \sum a_n$ сходится $\Longrightarrow \sum b_n$ сходится