What drives Q and investment fluctuations? Ilan Cooper, Paulo Maio and Chunyu Yang

Discussed by: Juan Imbet

Ph.D. student in Finance Pompeu Fabra University

2nd Corporate Policies and Asset Prices Conference Cass Business School December 6 2018

Overview

- Summary
- 2 General Feedback
- Suggestions
- 4 Conclusions

The main result

What do Cooper, Maio, and Yang find?

The main result

What do Cooper, Maio, and Yang find?

• Cash flow changes vs discount rates matter more than we think to explain fluctuations in managers decisions.

The main result

What do Cooper, Maio, and Yang find?

- Cash flow changes vs discount rates matter more than we think to explain fluctuations in managers decisions.
- The authors show it cleanly using an Euler equation and a Campbell and Shiller (1988) decomposition

How do Cooper, Maio, and Yang get to this result?

How do Cooper, Maio, and Yang get to this result?

Definition (Marginal)

How do Cooper, Maio, and Yang get to this result?

Definition (Marginal)

 $mq_t = \log\left[\frac{M_t}{1+Q_t}\right]$ Log of ratio between marginal profitability of capital to marginal Q

• Estimate firm's marginal Q from the first order condition in Liu, Whited, and Zhang (2009)

How do Cooper, Maio, and Yang get to this result?

Definition (Marginal)

- Estimate firm's marginal Q from the first order condition in Liu, Whited, and Zhang (2009)
- **Contribution 1** Present value relation to study what drives fluctuations in mq_t .

How do Cooper, Maio, and Yang get to this result?

Definition (Marginal)

- Estimate firm's marginal Q from the first order condition in Liu, Whited, and Zhang (2009)
- **Contribution 1** Present value relation to study what drives fluctuations in mq_t .
 - Discount rates shocks

How do Cooper, Maio, and Yang get to this result?

Definition (Marginal)

- Estimate firm's marginal Q from the first order condition in Liu, Whited, and Zhang (2009)
- **Contribution 1** Present value relation to study what drives fluctuations in mq_t .
 - Discount rates shocks
 - Changes in expectations of profitability growth

How do Cooper, Maio, and Yang get to this result?

Definition (Marginal)

- Estimate firm's marginal Q from the first order condition in Liu, Whited, and Zhang (2009)
- **Contribution 1** Present value relation to study what drives fluctuations in mq_t .
 - Discount rates shocks
 - Changes in expectations of profitability growth
- Contribution 2 Data suggests that is shocks to expected marginal capital profitability what matters

How do Cooper, Maio, and Yang get to this result?

Definition (Marginal)

- Estimate firm's marginal Q from the first order condition in Liu, Whited, and Zhang (2009)
- **Contribution 1** Present value relation to study what drives fluctuations in mq_t .
 - Discount rates shocks
 - Changes in expectations of profitability growth
- Contribution 2 Data suggests that is shocks to expected marginal capital profitability what matters
- Contribution 3 Most of the variance goes to marginal Q

Investment and the business cycle

- Investment and the business cycle
- Investor's vs managers' rationality

- Investment and the business cycle
- Investor's vs managers' rationality
 - Why does it seem that investors care about discount rates and not managers?

- Investment and the business cycle
- Investor's vs managers' rationality
 - Why does it seem that investors care about discount rates and not managers?
 - Authors suggestion: Waves of investor sentiment?

- Investment and the business cycle
- Investor's vs managers' rationality
 - Why does it seem that investors care about discount rates and not managers?
 - Authors suggestion: Waves of investor sentiment?
 - Or maybe changes in risk aversion matter for investors' valuations and not for managers' perceived benefit from investing?

Methodology

• Starting point: the first order condition of firm's optimization problem as in Liu, Whited and Zhang (2009)

$$\begin{aligned} R_{i,t+1} &= \\ &\underbrace{\frac{M_{i,t+1} \text{ Marginal profits}}{(1-\tau_{t+1}) \left[\alpha \frac{Y_{i,t+1}}{K_{i,t+1}} + \frac{a}{2} \left(\frac{I_{i,t+1}}{K_{i,t+1}}\right)^2\right] + \tau_{i,t+1} \delta}_{1+\left(1-\tau_t\right) \frac{a}{2} \left(\frac{I_{i,t}}{K_{i,t}}\right)} \\ &\underbrace{\frac{1+\left(1-\tau_t\right) \frac{a}{2} \left(\frac{I_{i,t}}{K_{i,t}}\right)}{1+Q_t \text{ Marginal } Q}}_{1+Q_t \text{ Marginal } Q} \end{aligned}$$

Methodology: Estimation

• Estimation: GMM on $(\alpha \text{ and } a)$ while assuming values for δ , and τ .

Methodology: Estimation

- Estimation: GMM on (α and a) while assuming values for δ , and τ .
- 2 Moments
 - ullet Match the average Q observed in the model with the one in real data.
 - Match the investment return (model) with the weighted average return on stocks and after-tax bonds on the data.

Methodology: Estimation

- Estimation: GMM on (α and a) while assuming values for δ , and τ .
- 2 Moments
 - ullet Match the average Q observed in the model with the one in real data.
 - Match the investment return (model) with the weighted average return on stocks and after-tax bonds on the data.
- Estimate return on debt using an ordered-probit model

Methodology: Present Value relation

• Derive a present value relation from the first order condition:

$$R_{t+1} = \frac{(1-\delta)(1+Q_{t+1}) + M_{t+1}}{1+Q_t}$$

à la Campbell and Shiller (1988)

$$mq_t = c + \sum_{j=1}^{\infty}
ho^{j-1} \mathbb{E}_t r_{t+j} - \sum_{j=1}^{\infty} \mathbb{E}_t
ho^{j-1} \Delta m_{t+j}$$
Discount Rates Growth on marginal profitability of capital

Methodology: Predictive Regressions

Predictive regressions

 Weighted long-horizon regressions following Cochrane (2008, 2011) and Maio and Santa-Clara (2015) for different horizons.

$$\sum_{j=1}^{K} \rho^{j-1} r_{t+j} = a_r^K + b_r^K m q_t + \epsilon_{t+K}^r$$

$$\sum_{j=1}^{K} \rho^{j-1} \Delta m_{t+j} = a_m^K + b_m^K m q_t + \epsilon_{t+K}^m$$

$$\rho^K m q_{t+k} = a_{mq}^K + b_{mq}^K m q_t + \epsilon_{t+K}^{mq}$$

Methodology: Results

Slopes and t-statistics (selected results)

Panel B (t-stats)

Methodology (cont.)

- mq_t predicts future mq_{t+k} in the first years
- mq_t predicts future m_{t+k} up to 20 years.
- No return predictability of mq_t on r_{t+k}
- Similar results based on value or equally weighted portfolios, or single vs VAR based regressions

General Feedback

- Interesting results arising from a very simple but powerful idea.
- I personally like the link that the authors make with the Campbell Shiller decomposition during the paper. It makes it intuitive and easy to follow.
- Resurrect interest on predictability. Most papers in the Q-theory literature focus on cross-sectional stories. Clear way of separating from the rest.

1 main comment

Economic relevance

- Can you present your results like in Cochrane's presidential address? Plot in the same graph a time series of Δm_{t+k} and a scaled time series of mq_t .
- How economically significant is the prediction? Does it get better with horizon?
- Perhaps study the co-integration between m_t and q_t ?

Suggestions

- If m_t and q_t are cointegrated, how fast are deviations corrected? (ECM) Is it a long or a short run story?
- I like the original present value relation without linearising. It would be nice to see more analysis on the original formula. GMM Estimators could allow you to work with non-linear models.

$$1 + Q_t = \sum_{k=1}^{\infty} (1 - \delta)^{k-1} \mathbb{E}_t \left[\frac{M_{t+k}}{R_{t \to t+k}} \right]$$

• Do results hold with asymmetric adjustment costs as in Zhang (2005), every quarter an average 18.2% of firms record negative gross investment (Clementi and Plazzo 2018)

Conclusions

- Very interesting empirical evidence
- Q-theory of investment applied to time series data rather than cross-sectional data.
- Cash flow channel vs Discount rate channel

Thank you! juan.imbet@upf.edu