Expressivity of ReLU-Networks under Convex Relaxations

Maximilian Baader | Mark Müller | Yuhao Mao | Martin Vechev

Background: Robustness and Certification

Adversarial Examples: Neural networks can be fooled into misclassification by imperceptible input perturbations.

h(x) = "panda"

h(x + 0.007e) = "gibbon"

Certification: Local robustness to input perturbations of a network can be certified using convex relaxations.

Convex Relaxations for ReLU:

Fundamental Question:

Training for certifiability severely reduces accuracy, and thus realworld utility, despite best efforts

What is the expressivity of certified neural networks?

Definitions

Encoding: Let $f: \mathcal{X} \rightarrow \mathcal{Y}$ be a function and $h: \mathcal{X} \rightarrow \mathcal{Y}$ be a neural network. We say hencodes f iff

$$h(x)=f(x) \quad \forall x \in \mathcal{X}.$$

Analysis: $h^D(B)$ is the **D**-analysis of h on B, denoting the polytope in $\mathcal{X} \times \mathcal{Y}$ containing the graph $\{(x, h(x))|x\in B\}\subseteq h^D(B)$ of h on B as obtained with *D*.

Precision: The D-analysis of h is precise if it yields precise lower and upper bounds, that is for all B

$$[h^{D}(B), h^{D}(B)] = [f(B), f(B)].$$

Expressivity: Let \mathscr{Z} be a set of functions and \mathscr{N} a set of networks. \mathscr{N} can *D*-express \mathscr{Z} iff $\forall f \in \mathscr{Z} \exists h \in \mathscr{N}$ s.t. h encodes f and its D-analysis is precise

Theorem: Single Neuron Convex Relaxation Limit

Theorem: Finite ReLU networks can not Δ -express convex, monotone, CPWL($[0,1]^2$, \mathbb{R}) functions.

Proof: By contradiction. Let $f=max: \mathbb{R}^2 \to \mathbb{R}$.

- 1. Locality: $\exists \mathcal{U}$ s.t. all ReLUs are either stable or switch activation at x=y.
- 2. The network can be represented recursively as $hI_{\mathcal{U}} = h_{\{R,L\}}^{i} = h_{L}^{i-1} + W_{i} \text{ ReLU}(h_{R}^{i-1}),$

with $h_{\{R,L\}}^0 = b + W_0 x$, s.t. all ReLUs switch at x = y.

1. This network can be Simplified:

This leads to $h(x)=b+w_xx+w_yy+\alpha$ ReLU(z).

 $b=0, w_x=0, w_v=1, \alpha=1.$ 4. $h(x,y) = \max(x,y)$

Analysis directly yields $h^{\triangle}(B)=1.5 > 1=\max(B)$.

ReLU networks can not Δ -express the set of MC-CPWL functions.

Separation

Prior Work:

No ReLU network can IBP-express convex CPWL(I, \mathbb{R}) functions. No single-layer ReLU network can IBP-express monotone CPWL(I, \mathbb{R}) functions.

Theorem: Finite ReLU networks can IBP-express the set of monotone CPWL(I, \mathbb{R}) functions.

Depth increases expressivity of IBP-certified ReLU networks.

Theorem: For any convex CPWL function $f: I \rightarrow \mathbb{R}$, there exists exactly one network of the form

$$h(x)=b+\sum_{i}\gamma_{i} \text{ ReLU}(\pm_{i} (x-x_{i})),$$

with $\gamma_i > 0$ encoding f, with the minimum number of neurons such that its DP-0-analysis is precise.

DP-0 is more expressive than IBP.

Theorem: Let $f \in CPWL(I, \mathbb{R})$ be convex. For any network h of the form

$$h(x)=b+c x+\sum_{i}\gamma_{i} \text{ReLU}(\pm_{i}(x-x_{i})),$$

We have that its Δ -analysis is precise. In particular $\pm i$ can be chosen freely.

Δ allows more parametrizations to express the same function compared to DP-0.

Theorem: For every network h, there exists a network g such that the DP-0 analysis of h and the DP-1 analysis of g are equivalent.

Results

Novel results are in red or green, previous results in black. M: monotone, C: convex, MC: monotone and convex.

$\overline{\mathcal{X}}$	Relaxation	CPWL	M-CPWL	C-CPWL	MC-CPWL
	IBP	Х	✓	X	✓
\mathbb{R}	DEEPPOLY-0	?			
	DEEPPOLY-1	?			
	Δ	?			
	$Multi-Neuron_{\infty}$				
$\overline{\mathbb{R}^d}$	Δ	X	X	X	X