통계분석 Statistical Analysis

Probability Plot

Sampling from Population Distribution

Population distribution

0.00

 \rightarrow We can figure out the underlying distribution that the sample data is based on, by using the probability plot.

Review: Percentiles of Distributions

(100p)th percentile of some continuous distribution = $\eta(p)$

Can we define percentiles for sample data?

$$x_1 < x_2 < x_3 < x_4 < x_5 < x_6 < x_7 < x_8 < x_9 < x_{10}$$

Can we define percentiles for sample data?

Can we define percentiles for sample data?

Order the n sample observations from smallest to largest. Then the ith smallest observation in the list is taken to be the [100(i-0.5)/n]th sample percentile.

Order the n sample observations from smallest to largest. Then the ith smallest observation in the list is taken to be the [100(i-0.5)/n]th sample percentile.

If the sample data comes from some specifying distribution of population, It is plausible that sample percentiles are quite close to percentiles of the underlying distribution.

- 1. Assume one possible distribution of population.
- Calculate percentiles of the distribution corresponding to sample percentiles
- 3. Compare sample data and percentiles calculated in the previous step.
- 4. If two data show linear behavior, one can say that these sample data may come from the assumed distribution.

Order the n sample observations from smallest to largest. Then the ith smallest observation in the list is taken to be the [100(i-0.5)/n]th sample percentile.

ith smallest sample = [100(i - .5)/n] sample percentile

If the sample data comes from some specifying distribution,

ith smallest sample $\approx [100(i-.5)/n]$ percentile of the distribution

Probability Plot

([100(i-.5)/n] percentile of the distribution, ith smallest sample)

If these pairs show a <u>linear behavior</u>, the sample data are derived from the assumed distribution of population.

Example: Probability Plot

Normal Probability Plot

([100(i - .5)/n] percentile of $N(\mu, \sigma^2)$, ith smallest sample)

Normal distribution

(100p)th percentile for $N(\mu, \sigma^2) =$ = $\mu + [(100p)\text{th percentile for } N(0, 1)] \sigma$

Example: Normal Probability Plot

```
Observation
              24.46
                      25.61
                              26.25
                                     26.42
                                            26.66
                                                    27.15
                                                           27.31
                                                                   27.54
                                                                          27.74
                                                                                 27.94
                             -1.15
                                      -.93
             -1.96
                     -1.44
                                             -.76
                                                    -.60
                                                            -.45
z percentile
                                                                   -.32
                                                                          -.19
                                                                                  -.06
              27.98
Observation
                      28.04
                              28.28
                                     28.49
                                             28.50
                                                    28.87
                                                           29.11
                                                                   29.13
                                                                          29.50
                                                                                 30.88
z percentile
                .06
                        .19
                                .32
                                        .45
                                               .60
                                                      .76
                                                              .93
                                                                    1.15
                                                                           1.44
                                                                                   1.96
```

Probability and Statistics for Engineering and the Sciences, J. L. Devore

Example: Normal Probability Plot

Observation 25.61 26.25 26.42 26.66 27.15 24.46 27.31 27.54 27.74 27.94 -1.96-1.44-1.15-.93-.76-.60-.45-.32z percentile -.19-.06Observation 27.98 28.04 28.28 28.49 28.50 28.87 29.11 29.13 29.50 30.88 .06 .19 .32 .45 .60 .76 .93 1.15 1.44 1.96 z percentile

Example: Normal Probability Plot

