KOSHA GUIDE P - 110 - 2023

화학공장의 피해최소화대책 수립에 관한 기술지침

2023. 8.

한국산업안전보건공단

안전보건기술지침은 산업안전보건기준에 관한 규칙 등 산업안전보건법령의 요구사항을 이행하는데 참고하거나 사업장 안전·보건 수준향상에 필요한 기술적 권고 지침임

안전보건기술지침의 개요

○ 작성자 : 권 혁 면

○ 개정자 : 이 근 원 한국산업안전보건공단 전문기술실 오상규

- 제·개정 경과
 - 2006년 4월 화학안전분야 기준제정위원회 심의
 - 2006년 5월 총괄기준제정위원회 심의
 - 2012년 7월 총괄 제정위원회 심의(개정, 법규개정조항 반영)
 - 2023년 7월 화학안전분야 표준제정위원회 심의(개정, 법규개정조항 반영)
- 관련규격 및 자료
 - CCPS, "Guideline for chemical process quantitative risk analysis", AIChE, New York, 1989.
 - CCPS, "Guideline for investigating chemical process incidents", AIChE,New York, 1992.
 - Lee, F. P., "Loss prevention in the process industries", 2nd ed., Butterworths, London, 1996.
 - API, "API Recommended practice 521 3rd ed", American petroleum institute, 1987.
 - API, "API Recommended practice 581 1st ed", American petroleum institute, 2000.
- 관련법규·규칙·고시 등
 - 산업안전보건법 시행규칙 제50조(공정안전보고서의 세부내용 등)
- 안전보건기술지침의 적용 및 문의
 - 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 (www.kosha.or.kr)의 안전보건기술지침 소관 분야별 문의처 안내를 참고 하시기 바랍니다.
 - 동 지침 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 개정본이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

공표일자 : 2023년 8월 24일

제 정 자 : 한국산업안전보건공단 이사장

<u>목 차</u>

1.	목적1
2.	적용범위1
3.	용어의 정의1
4.	사고시나리오의 선정1
5.	선정된 사고시나리오 구성의 구체화3
6.	피해최소화 대책 수립5

화학공장의 피해최소화대책 수립에 관한 기술지침

1. 목적

이 지침은 중대산업사고의 예방을 위하여 사업장에서 필요한 사고시나리오의 선정 및 이를 활용한 피해 최소화 대책의 작성시 필요한 사항을 제시하는데 그목적이 있다.

2. 적용범위

공정안전보고서 제출대상 사업장에서 산업안전기준에 관한 규칙 <별표 1>의위험물질 종류 중 인화성 액체, 인화성 가스 및 급성 독성물질의 누출·화재·폭발에 의한 가상사고의 선정 및 피해최소화의 대책 수립시 적용한다.

3. 용어의 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
- (가) "누출위치"라 함은 화학설비에서 위험물질이 누출되는 지점을 말한다.
- (나) "누출공"이라 함은 화학설비에서 위험물질이 누출되는 구멍의 직경을 말한다.
- (다) "누출시간"이라 함은 화학설비에서 위험물질이 누출되는 시간을 말한다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 산업 안전보건기준에 관한 규칙에서 정하는 바에 따른다.

4. 사고시나리오의 선정

화학공장의 피해최소화 대책수립의 첫 단계는 공정의 잠재적 위험을 찾아 사고로

발전할 가능성이 있는 가상 사고시나리오를 선정하는 것이다. 사고시나리오를 선정하는 방법은 아래와 같은 방법을 포함하여 다양한 종류들이 있다.

4.1 최악의 누출사고시나리오 활용

최악의 누출사고시나리오는 "최악의 누출시나리오 선정에 관한 기술지침 (KOSHA GUIDE)"에 따라 선정한다.

4.2 위험과 운전분석기법 (HAZOP)결과의 활용

(1) 위험과 운전분석기법을 활용할 경우에는 KOSHA GUIDE "위험과 운전분석(HAZOP)기법에 관한 기술지침"을 활용한 위험성 평가 결과 위험등급이 1, 2, 3등급에 해당되는 시나리오를 선정한다.

4.3 사고사례의 활용

- (1) 과거에 발생했던 사고사례를 토대로 향후 발생할 수 있는 사고시나리오를 선정하며, 과거에 사고가 발생한 경험이 없을 경우에는 현장 근로자의 의견 을 토대로 가상 사고시나리오를 선정한다.
- (2) 사고사례는 아차사고를 포함한 모든 형태의 사고를 포함하며 사고발생 시나리오를 구성하는 순서는 다음과 같다.
- (가) 과거의 사고사례 자료수집 및 정리
- (나) 화재, 폭발에 의하여 중대산업사고를 유발했던 사고에 대한 검토
- (다) 독성물질 확산에 의하여 중대산업사고를 유발했던 사고에 대한 검토
- (라) 현 공정에서 (나)와 같은 사고를 유발할 수 있는 장치 및 설비 분류
- (마) 현 공정에서 (다)와 같은 사고를 유발할 수 있는 장치 및 설비 분류
- (바) 해당 부서 근무자에 대한 의견 수렴
- (사) 화재, 폭발 예상 시나리오 정리

- (아) 독성물질 확산에 의한 예상 시나리오 정리
- (자) 전체 공정에 대하여 (가)~(아)의 반복

5. 선정된 사고시나리오 구성의 구체화

4항에 의해 사고시나리오가 선정되고 사고의 특성이 규정된 후 누출위치, 누출공, 누출시간 등을 구체화한다.

5.1 누출위치의 결정

- (1) 화학설비에서 가장 많이 누출되는 지점은 다음과 같다.
- (가) 입·출입 배관 부위의 누출
- (나) 용기의 부식(혹은 외부충격)에 의한 누출
- (다) 펌프씰(Seal) 파손으로 인한 누출
- (라) 안전밸브 작동에 따른 대기 누출 등.
- (2) 5.1항(1)호의 4가지 중에 가장 발생확률이 높은 사고시나리오는 물리적 결함에 의한 배관계 누출의 경우이다.
- (3) 밀폐용기의 전파의 경우 1차 사고에 의한 시나리오로 판정하지 않고 도미노 효과 (Domino effects)에 의한 영향에 대해서만 주로 평가한다.
- (4) 공정의 종류에 따라 장치별 누출위치는 <표 1>과 같이 선정한다.

<표 1> 장치별 누출위치 선정방법(예)

	연속공정	용기의 입・출입 노즐에서의 누출	
	회분식 공정	용기의 입・출입 노즐에서의 누출	
"가"형	펌프가 있을 경우, 씰 파손에 의한 영향도 추가하여 평가, 블로 우다운배관에 연결된 밀폐계 시스템은 평가 제외		
	ㅇ 안전밸브에 의한 영향	평가는 대기 방출에 대해서만 평가	
	반응기, 증발기 등과 같이 상변환 혹은 물질변환이 발생하는 장치		
	용기	배관 누출, 핀홀(Pin hole)	
	안전장치	안전밸브, 파열판 등에서의 누출	
"나"형	펌프가 있을 경우, 씰 파손에 의한 영향도 추가하여 평가, 블로 우다운배관에 연결된 밀폐계 시스템은 평가 제외		
	ㅇ 안전밸브에 의한 영향 평가는 대기 방출에 대해서만 평가		
	저장탱크, 중간 탱크 등		
"다"형	공정지역 외의 이송배관		

5.2 누출공의 결정

- (1) 누출속도는 누출 단면적에 비례한다. 따라서 누출공은 사고의 규모를 좌우하는 매우 중요한 변수가 된다.
- (2) 사고발생시 누출공을 추산하는 것은 쉽지 않아 경험을 바탕으로 판단하며 일반적으로 공정의 압력이 클수록, 또 공정의 온도가 높을수록 사고초기의 누출 직경이 커진다.
- (3) 장치별 누출지점 선정에 따른 누출공의 선정방법의 한 예는 <표 2>와 같다.

$\langle \overline{\Omega}$	2>	누추고	선정방법((레)
/ 1	4/	1さら	11'6 6 H	(JII)

	핀홀	배관누출	안전밸브
"A" 형	10 mm	1/5 내경	트림 내경
"B" 형	5 mm	1/10 내경	1/2 트림 내경
"C" 형	1 mm	1/25 내경	

"A"형 : 공정압력이 진공, 50 kg/cm 이상 혹은 공정온도 150 ℃ 이상 (펌프의 경우 압력비가 2이상 혹은 압력차가 50 kg/cm 이상)

"B"형 : 공정압력 혹은 공정온도가 "A"형 이하이면서 "C"형의 조건에서

벗어날 때

"C"형 : 공정압력과 공정온도가 대기압의 200 % 범위

(4) 기타 상세한 누출공 산출방법의 예는 <붙임 1>을 참조한다.

5.3 누출시간의 결정

- (1) 화학공장에서 가연성 물질이 대기 중으로 누출될 경우 짧은 시간내에 화재· 폭발을 초래할 수 있는 분위기를 형성하게 되므로 신속한 초기 대응은 사고의 규모를 최소화할 수 있는 가장 중요한 변수이다.
- (2) KOSHA GUIDE "최악의 누출시나리오 선정에 관한 기술지침"에서는 최대 누출시간을 10 분으로 제시하고 있다.
- (3) 화학공장의 누출감지기술 및 다양한 인터록시스템의 발달로 인하여 10 분이내에 누출 또는 이상반응에 의한 과압 형성 등의 초기사고를 제어할 수있을 경우에는 조치 가능한 실제시간을 누출 지속시간이라고 규정할 수 있다.
- (4) 기타 상세한 누출시간 산출방법의 예는 <붙임 2>를 참조한다.

6. 피해최소화 대책 수립

6.1 초기 대응시간의 단축 방법

(1) 사고로 인한 피해의 정도는 누출물질의 양에 비례하므로 사업장내의 모든

- 장치에 대하여 누출방지 및 초기진압시스템이 구성되어 있는지를 분석한다.
- (2) 사고의 피해범위를 최소화하기 위해서는 누출사고를 감지하는 순간 최대한 빠른 시간 안에 누출을 제어할 수 있도록 다음사항을 검토한다.
- (가) 누출 차단 시스템에 대한 기술적인 검토, 분석
 - ① 인터록 혹은 제어시스템의 효율성 재검토
 - ② 분산제어시스템(DCS)을 활용한 운전원의 대응능력 향상
- (나) 누출 감지 시스템에 대한 기술적인 검토, 분석
- ① 가스감지기 위치의 선정에 대한 기술적인 재검토
- ② 가스감지기 유지, 관리에 대한 현실성 재검토
- ③ 가스감지기의 신뢰성 검증 및 보정주기 재검토
- (다) 누출사고에 대한 초기발견자의 행동 요령 및 비상대응 절차 검토
 - ① 전 공정에 대하여 초기발견자의 신속한 신고를 유도할 수 있는 비상경보 장치의 설치 등에 대한 검토
 - ② 초기발견자가 진압이 가능한 사고의 경우 신속히 진압할 수 있도록 사전 교육의 강화
- 6.2 급성 독성물질의 확산방지 대책

포스겐, 암모니아 및 염소와 같은 유독물질은 사고시 소량의 흡입만으로도 인체에 심각한 영향을 주므로 이러한 유독물질의 사고가 발생할 경우 유독물질의 확산을 제어하기 위해서는 1차, 2차의 확산제어장치의 설치에 대하여 다음사항을 심도있게 검토하여야 한다.

- (1) 급성 독성물질 취급ㆍ제조설비에 대한 건물 내 격리 및 중화설비 설치
- (2) 타 공정 혹은 타 지역으로 유독물질이 확산되는 것을 방지하기 위한 설비의 설치
 - ① 수막(Water curtain) 혹은 스팀막(Steam curtain) 설치
 - ② 독성물질 취급공정에 대한 중화설비의 효율성 재검토

- ③ 국부적인 유독물질 누출에 대비한 이동용 중화설비의 도입 필요성 검토 6.3 화재·폭발사고에 대비한 비상대응체계 재검토
 - (1) 인화성액체를 대량으로 저장하고 있는 저장 지역에서의 화재와 같이 장시 간 제어되지 않은 화재가 발생할 경우 다음의 대책을 수립하여 2차, 3차 사고를 제어하여야 한다.
 - (가) 복사열 차단을 위한 수막 설치 검토
 - (나) 주변 설비의 가열을 제어할 수 있는 설비의 적정성 검토
 - (다) 대형재해 발생시 예상되는 최대 피해범위와 대피지점의 안전성 검토
 - (2) 가압된 상태로 저장되어 있는 가연성 물질의 경우와 같이 폭발성이 강한 설비의 경우 폭발에 의한 주변설비의 타격과 그로 인한 연쇄사고에 대한 다음의 검토가 필요하다
 - (가) 폭발사고로 인한 주변 설비의 연쇄사고 가능 여부
 - (나) 폭발압력의 최소화를 위한 기술적 대책
- 6.4 피해최소화 대책의 수립
- 6.4.1 피해범위의 명확한 파악

피해최소화 대책을 수립하기 위한 첫 번째 단계는 앞 장에서 제시한 사고시나리오 선정 방법을 토대로 실제 사고가 발생할 경우 예상되는 피해거리(혹은 피해범위)를 정확하게 표시하여야 하며 피해범위계산은 KOSHA GUIDE "사고피해예측 기법에 관한 기술지침"에 따른다.

(1) 확산범위의 표시

확산범위는 <붙임 3>과 같이 누출물질의 가연범위 및 가스감지기가 감지할 수 있는 범위를 공정도면 상에 표시하여야 한다.

(2) 복사열 피해범위의 표시

복사열의 피해 범위는 <붙임 4>와 같이 복사열 기준을 공정도면 상에 표시 하여야 하며, 피해범위 내에 어떠한 설비 혹은 장치가 가동 중인지 검토하 여야 한다.

(가) 4 kW/m² : 근로자에게 상해를 가할 수 있는 범위

(나) 12.5 kW/m²: 2차 화재를 유발할 수 있는 범위

(다) 37.5 kW/m²: 시설물의 전파를 유발할 수 있는 범위

(3) 폭풍압 피해 범위의 표시

폭풍압의 피해 범위는 <붙임 5>와 같이 폭풍압 기준을 공정도면 상에 표시 하여야 하며, 피해범위 내에 어떠한 설비 혹은 장치가 가동 중인지를 검토하 여야 한다.

(가) 0.07 bar(7 kPa) : 압력파에 의해 시설물의 초기 타격

(나) 0.21 bar(21 kPa) : 근로자에게 상해를 가할 수 있는 범위

(다) 0.84 bar(84 kPa) : 시설물의 전파를 유발할 수 있는 범위

6.4.2 화재·폭발사고에 대한 진압 전략

- (1) 피해범위가 정확하게 예측이 되면, 실제 사고발생시 신속한 대응을 하기 위하여 <붙임 6>과 같이 대응지침을 작성하여야 한다.
- (2) 화재의 경우에는 초기화재, 화재의 성장, 화재의 쇠퇴, 화재의 종료와 같이 일련의 진행순서가 있지만, 폭발의 경우에는 순간적으로 시작과 종료가 결 정되기 때문에 대피에 대한 사전전략이 수립되어야 한다.

6.4.3 인명피해 최소화 대책

- (1) 급성 독성물질에 의한 인명피해 최소화 전략은 다음과 같다.
- (가) 급성 독성물질의 건물내 진입 방지를 위한 양압설비 도입 검토

- (나) 양압설비가 현실적으로 불가능 할 경우 설비 전면부로 향한 출입문과 창 호에 대한 밀폐 검토
- (다) 조업자의 안전한 대피를 위하여 개인보호 장구의 현장비치 검토
- (라) 위험설비 주변의 경우 셸터(Shelter) 등의 이동 사무실 배치 금지
- (마) 최악의 인명피해 방지를 위한 건물 및 셸터의 분산 배치
- (바) 제어실의 경우 양압설비 설치 및 최종 대피자를 위한 개인보호 장구의 설치 등
- (2) 인화성 및 폭발성 물질을 취급하는 저장탱크의 화재, 폭발로 인하여 다수의 사상자가 발생 할 수 있는 시나리오에 대한 인명피해 최소화 전략은 다음과 같다.
 - (가) 화재·폭발에 대한 주변 건물의 안전성 검토 필요
 - ① 화재의 경우 복사열에 의한 건물내 인명피해 가능성 검토 및 내화기준에 대한 재검토 필요
 - ② 폭발의 경우 폭발압력에 의한 건물내 인명피해 가능성 검토 및 외벽의 안 전성 재검토 필요
- (나) 대형화재의 발생으로 인하여 비상대피가 불가능 할 경우의 대안 마련
- (다) 폭발의 특성상 대피가 불가능하기 때문에 폭발의 분위기가 형성되기 전 대피시점 산정에 대한 기술적인 검토 필요
- (3) 사고시나리오에 대한 대피장소의 지정방법은 다음과 같다.
- (가) 사고가 지속적으로 진행되거나 혹은 대형화될 수 있다고 판단될 경우에는 비상대응요원을 제외한 모든 근로자들은 신속하게 안전지대로 대피하여야 한다.
- (나) 적절한 대피장소는 아래와 같은 기본적인 질문을 통하여 선정할 수 있다. <붙임 7>은 비상대피장소를 사고의 중심선을 기준으로 분할하여 지정한 내용을 보여주고 있는 예시이다.

- ① 사고의 위험으로부터 안전한가?
- ② 신속하게 대피할 수 있는 곳인가?
- ③ 사고지점을 통과하게 되어 있는가?
- ④ 사고가 대형화될 경우 제2의 안전한 곳으로 이동이 가능한가?

6.4.4. 물리적 보호 전략

- (1) 사고시나리오에 대한 피해예측 결과 피해범위가 너무 커서 현실적으로 비 상대응이나 대피가 불가능할 수도 있다. 이러한 사고시나리오는 대응과 대 피에 앞서 사고의 규모를 축소화시킬 필요가 있다.
- (2) 사고의 규모를 축소화시키는 방법으로 방유제나 수막을 사용한다.
- (3) <붙임 8>, <붙임 9>는 방유제와 수막을 설치하여 피해의 규모를 최소화시키는 방법에 대한 예시이다.

<붙임 1>

미국 석유화학협회의 위험기반검사 기준(API 581)에 따른 누출공 산출방법

API 581에서는 누출공을 소형, 중형, 대형, 그리고 파열형으로 분류하며, 일반적으로 각각의 설비별로 <붙임 1 표 1>과 같이 4가지 누출공을 이용한다.

누출공	범위	대표치
소형	0 - 1/4 인치	¹ / ₄ 인치
중형	1/4 - 2 인치	1 인치
대형	2 - 6 인치	4 인치
파열형	> 6 인치	설비의 전체 직경(최대 16 인치)

<붙임 1 표 1> 위험기반검사 분석에서 사용되는 누출공

설비의 특정 부분별로 적합한 누출공을 선택하는 방법은 다음과 같다.

1. 배관의 누출공 선택

배관에는 4가지 표준 누출공이 이용된다. 누출 구멍의 직경이 배관 자체의 직경보다 작거나 같다면, $^{1}/_{4}$ 인치, 1 인치, 4 인치 그리고 파열형이 이용된다. 예를 들어, 1 인치의 배관은 최대 가능 선택이 1 인치 누출공과 동일하므로 단지 두 가지 누출공 즉 $^{1}/_{4}$ 인치와 파열 크기를 가질 수 있고 4 인치 배관은 같은 이유로 인해 $^{1}/_{4}$ 인치, 1 인치 그리고 파열의 3가지 누출공을 가질 수 있다.

2. 압력용기 누출공 선택

압력용기는 다양한 크기와 유형을 갖는 용기 모두에 대해서 4가지 누출공을 가질 수 있으며 이 일반적인 분류에 포함되는 설비유형으로는 다음과 같은 것들이 있다.

- (1) 용기류: 드럼, 압축기 및 반응기와 같은 표준 압력용기
- (2) 필터류: 필터와 여과기

- (3) 탑류: 증류탑, 흡수 장치, 스트리퍼(Stripper) 등
- (4) 열교환기 동체: 재열기(Reboiler), 응축기 및 열교환기의 동체 측
- (5) 열 교환기 튜브 재열기, 응축기 및 열교환기의 튜브 측
- (6) 핀/팬 냉각기 핀/팬 형 열교환기
- 3. 펌프의 누출공 선택

펌프는 3가지 누출공을 가질 수 있다. 즉, ¹/₄ 인치, 1 인치 및 4 인치이다. 흡인라인이 4 인치 미만일 경우, 최종적으로 가능한 누출공은 흡인라인 직경이다.

4. 압축기의 누출공 선택

원심형 압축기와 왕복형 압축기 모두 두 가지, 즉, 1 인치와 4 인치(혹은 흡입 배관의 직경)의 누출공을 이용한다.

5. 상압저장탱크의 누출공 선택

상압저장탱크의 경우 다음의 누출공과 위치가 가정된다.

- (1) 탱크 지상 부위에서 $\frac{1}{4}$ 인치, 1 인치 및 4 인치 누출
- (2) 벽 또는 바닥으로부터의 탱크 파열
- (3) 탱크의 바닥에서 $\frac{1}{4}$ 인치와 1 인치의 누출

<붙임 2>

미국 석유화학협회의 위험기반검사 기준(API 581)에 따른 누출시간 산출방법

누출시간 산출방법은 검출시스템의 유형 및 차단 시스템의 분류 등급을 결정하고 이를 고려하여 산출하다.

<붙임 2 표 1>은 설비의 검출 및 차단시스템의 등급(A, B 또는 C)을 결정하는 기준이다. 이러한 등급은 후 최종 피해크기에 대한 완화 시스템의 영향을 결정하기 위해서 피해크기 결정시 최종 이용된다. 검출 시스템 A는 특수 화학분야에서만 사용되고 있는 점에 주의해야 한다.

<붙임 2 표 2>에서 제시되는 등급결정기준은 연속누출의 피해크기를 평가할 경우에만 이용된다. 만약 10,000 파운드 이상의 탄화수소가 3 분 내에 누출될 경우에는 검출 및 차단능력을 평가하는 과정은 적용되지 않는다.

<붙임 2 표 2>에 있는 총 누출시간은 다음과 같은 시간들의 합계이다.

- (1) 누출 검출 시간
- (2) 사고를 분석하고 시정 조치를 결정하는 시간
- (3) 적절한 시정 조치를 완전히 끝마치는 시간

사용자가 운전자 응답시간과 관련하여 보다 나은 자료를 보유하고 있는 경우에는 <불임 2 표 2>의 수치 대신에 사용한다.

<붙임 2 표 1> 검출 및 차단시스템의 등급결정 기준

검출 시스템 유형	검출 등급
시스템 운전조건의 변화에 따라 물질의 손실(즉, 압력 혹은 흐름 손실)을 검출하기 위하여 특별히 고안된 시스템	A
압력설비 밖에 물질이 존재하는지를 결정하기 위해 적절히 설치된 검출기	В
육안검출, 카메라 혹은 검출기	С
차단 시스템 유형	차단 등급
어떠한 운전자의 개입 없이 공정 기기나 검출기로부터 직접 차단되는 시스템	A
누출 영역에서 멀리 떨어져 있는 제어실 또는 기타 적절한 위치에 있는 운전자에 의해서 제어되는 차단 시스템	В

<붙임 2 표 2> 검출 및 차단 시스템에 기반한 누출시간

검출 시스템 등급	차단 시스템 등급	누출시간
A	A	1/4인치 누출의 경우엔 20분 1 인치 누출의 경우엔 10분 4 인치 누출의 경우엔 5분
A	В	1/4인치 누출의 경우엔 30분 1 인치 누출의 경우엔 20분 4 인치 누출의 경우엔 10분
A	С	1/4인치 누출의 경우엔 40분 1 인치 누출의 경우엔 30분 4 인치 누출의 경우엔 20분
В	A 또는 B	1/4인치 누출의 경우엔 40분 1 인치 누출의 경우엔 30분 4 인치 누출의 경우엔 20분
В	С	1/4인치 누출의 경우엔 1시간 1 인치 누출의 경우엔 30분 4 인치 누출의 경우엔 20분
С	A, B, 혹은 C	1/4인치 누출의 경우엔 1시간 1 인치 누출의 경우엔 40분 4 인치 누출의 경우엔 20분

<붙임 3>

확산범위를 표시하는 방법 예시

① 가연범위 : 42 m

② 가스누출감지기 감지 범위 : 80 m

<붙임 4>

복사열 피해범위를 표시하는 예시

- 1 37.5 kW/m²: 19 m
- (2) 12.5 kW/m² : 41 m

 $3 \ 4 \ \text{kW/m}^2 : 95 \ \text{m}$

<붙임 5>

폭풍압 피해범위를 표시하는 방법 예시

- 1 0.84 bar(84 kPa) : 13 m 2 0.21 bar(21 kPa) : 16 m
- **3** 0.07 bar(7 kPa) : 24 m

<붙임 6>

화재・폭발사고에 대한 대응 지침 예시

- 1 화학약품(Chemical foam)을 이용한 2 물을 이용한 냉각범위(압력용기) 소화범위
 - 주기적인 재고량 점검
 - 대형화재를 대비한 원격모니터 (Remote monitor) 설치 검토
 - 소방차 최적 위치 검토

- - 소화전 확보 검토
 - 소방대원에 지급가능한 방열복 점검
 - 소방용수의 용량 검토

<붙임 7>

사고시나리오에 대한 비상대피장소의 지정 예시

- 1 행정건물 (1구역)
 - 방유제 외곽 130 m지점
 - 즉각적인 대피
- 제품 창고 (2구역)
 - 방유제 외곽 180 m지점
- 공무건물 및 정문으로 인원의 사고가 확대될 경우 신속하게 안전지대로 대피

<붙임 8>

통합형 방유제를 분할하여 피해범위를 최소화하는 방법 예시

<붙임 9>

수막을 이용한 화재발생 지점과 주변 설비와의 격리 예시

1 화재발생지점

2 보호 용기

안전보건기술지침 개정 이력

□ 개정일 : 2023. 8. 24.

○ 개정자 : 안전보건공단 전문기술실 오상규

○ 개정사유 : 산업안전보건법 관련 법령조항 삭제

○ 주요 개정내용

- (1. 목적) 산업안전보건법 제 49조의2(공정안전보고서의 제출 등), 같은 법 시행령 제 33조의 7(공정안전보고서의 내용) 및 같은 법 시행규칙 제130조 의 2(공정안전보고서 세부내용 등)"법령 조항 삭제
- (2. **적용범위**) 영 제 33조의 6(공정안전보고서의 제출 대상)" 법령 조항 삭제