NEA-DEA-Äquivalenzklassen

Gegeben ist der deterministische endliche Automat $A=(Q,\{0,1\},\delta,q_0,F)$, wobei $Q=\{A,B,C,D,E\}$, $q_0=A$, F=E und

δ	0	1
A	В	С
В	Е	С
С	D	С
D	Е	Α
Е	Е	Е

- (a) Minimieren Sie den Automaten mit dem bekannten Minimierungsalgorithmus. Dokumentieren Sie die Schritte geeignet.
- (b) Geben Sie einen regulären Ausdruck für die erkannte Sprache an.

$$r = (0|1)*00(0|1)*$$

(c) Geben Sie die Äquivalenzklassen der Myhill-Nerode-Äquivalenz der Sprache durch reguläre Ausdrücke an.

Die Äquivalenzklassen lauten: [A, C], [B, D], [E]

$$r_A = (1^*(01)^*)^*$$

 $r_B = (1^*(01)^*)^*0$
 $r_C = r$