Approximation de fonctions

raph

September 17, 2023

Contents

1	Esp	ace métrique	2
	1.1	Notion de distance	2
	1.2	Les boules	2
	1.3	Notion de norme	2
	1.4	Normes dans des espaces de fonctions	4

1 Espace métrique

Rappel: Définition de suite (U_n) convergente:

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, n \ge N \implies |U_n - \ell| < \epsilon$$

1.1 Notion de distance

Une distance satisfis:

- 1. Separation: $\forall x, y \in E, d(x, y) = 0 \iff x = y$
- 2. Symétrie: $\forall x, y \in E, d(x, y) = d(y, x)$
- 3. Inégalité Δ : $\forall x, y, z \in E, d(x, y) \leq d(x, z) + d(z, y)$

Les boules 1.2

Définition: Une boule ouvert / fermée. On appelle une boule ouverte centrée en ade rayon r par rapport a la distance d'ensemble:

$$B_d(a,r) = \{ x \in E | d(a,x) < r \}$$

Et une boule fermée:

$$B_d(a,r) = \{x \in E | d(a,x) <= r\}$$

1.3 Notion de norme

Définition: Soit $p \in [1, +\infty[$. On appelle norme p sur \mathbb{R}^n la norme notée $||x||_p =$ $\left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}}$

On note d_p la distance induite par $\|\cdot\|_p$.

- d_1 distance de Manhattan d'équation $d_1=|x_1-x_2|+|y_1-y_2|$ d_2 distance euclidienne $d_2=\sqrt{\left|x_1-x_2\right|^2+\left|y_1-y_2\right|^2}$
- d_{∞} distance infinie $d_{\infty} = \sup(|x_1 x_2|, |y_1 y_2|)$

On remarque l'égalité:

$$||x - y||_{\infty} \le ||x - y||_2 \le ||x - y||_1$$

On a bien $\forall x \in \mathbb{R}^n$:

$$||x||_{\infty} \le ||x||_2 \le ||x||_1 \le n||x||_{\infty}$$

Et plus généralement:

$$p < q \implies \|x\|_p \ge \|x\|_q$$

1.4 Normes dans des espaces de fonctions

$$||f||_p = \left(\int_I |f(t)|^p dt\right)^{\frac{1}{p}}$$

Et pour $p = +\infty$ on a:

$$||f||_{\infty} = \sup_{x \in I} |f(x)|$$