Linear Algebra - Exercise sheet

September 14, 2025

1 Lecture 1 - Vector spaces, linear maps

Exercise 1

For

$$v = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad w = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

describe graphically all points cv with:

- (a) c being an integer, that is $c \in \mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, ...\}$.
- (b) $c \in \mathbb{R}$, with $c \ge 0$.

Describe cv + dw where $d \in \mathbb{R}$ and c is like in (a) or (b).

Solution to Exercise 1

Let

$$v = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad w = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Write a general scalar multiple of v as $cv = \begin{pmatrix} c \\ 0 \end{pmatrix}$.

(a) c an integer, $c \in \mathbb{Z}$. The set $\{cv : c \in \mathbb{Z}\}$ is

$$\left\{ \begin{pmatrix} n \\ 0 \end{pmatrix} : n \in \mathbb{Z} \right\}.$$

Geometric description: these are all points on the x-axis whose x-coordinate is an integer. In other words, the points $(\ldots, -2, 0), (-1, 0), (0, 0), (1, 0), (2, 0), \ldots$ They form a discrete set of equally spaced points on the x-axis.

(b) $c \in \mathbb{R}$ with $c \ge 0$. The set $\{cv : c \in \mathbb{R}, c \ge 0\}$ is

$$\left\{ \begin{pmatrix} t \\ 0 \end{pmatrix} : t \ge 0 \right\}.$$

Geometric description: this is the nonnegative ray of the x-axis, i.e. the half-line starting at the origin and extending to the right. In Cartesian form it is $\{(x,y)\in\mathbb{R}^2:y=0,\ x\geq 0\}.$

Describe cv + dw with $d \in \mathbb{R}$ and c as in (a) or (b). Compute

$$cv + dw = \begin{pmatrix} c \\ d \end{pmatrix}.$$

• If $c \in \mathbb{Z}$ (case (a)) and $d \in \mathbb{R}$, then

$$\{cv + dw : c \in \mathbb{Z}, d \in \mathbb{R}\} = \left\{ \begin{pmatrix} n \\ y \end{pmatrix} : n \in \mathbb{Z}, y \in \mathbb{R} \right\}.$$

Geometric description: the union of all vertical lines whose x-coordinate is an integer. Equivalently, vertical lines located at $x = \dots, -2, -1, 0, 1, 2, \dots$

• If $c \in \mathbb{R}$ with $c \geq 0$ (case (b)) and $d \in \mathbb{R}$, then

$$\{cv + dw : c \ge 0, d \in \mathbb{R}\} = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : x \ge 0, y \in \mathbb{R} \right\}.$$

Geometric description: the closed right half-plane (including the y-axis). In Cartesian form this is $\{(x,y) \in \mathbb{R}^2 : x \geq 0\}$.

NB: In the unconstrained case $c, d \in \mathbb{R}$, the set $\{cv + dw : c, d \in \mathbb{R}\}$ is all of \mathbb{R}^2 , since (1,0) and (0,1) are the standard basis vectors.

Figure 1: Set of integer multiples of $v = (1,0)^T$: discrete points on the x-axis.

Figure 2: Nonnegative multiples of v: the ray on the positive x-axis.

Figure 3: Points of the form cv+dw with $c\in\mathbb{Z},\,d\in\mathbb{R}$: vertical lines at integer x coordinates.

Exercise 2

Is

$$z = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$$

in the span of

$$x = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad y = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}?$$

If so, find $\alpha, \beta \in \mathbb{R}$ such that $z = \alpha x + \beta y$.

Solution to Exercise 2

$$z = 3y - 2x$$

Figure 4: Points of the form cv + dw with $c \ge 0, d \in \mathbb{R}$: the right half-plane $x \ge 0$.

Exercise 3

1. Prove that

$$\mu_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \mu_2 = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}, \quad \mu_3 = \begin{pmatrix} 0 \\ 0 \\ 4 \end{pmatrix}$$

are linearly independent.

2. Is $\{\mu_1, \mu_2, \mu_3\}$ a basis of \mathbb{R}^3 ?

Hint to Exercise 3

(1) solve $\lambda_1 \mu_1 + \lambda_2 \mu_2 + \lambda_3 \mu_3 = 0$. (2) A free family of the same size as the dimension of the vector space.

Exercise 4

Consider the following transformations:

$$L_1: \mathbb{R}^2 \to \mathbb{R}^2, \quad \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} y \\ x \end{pmatrix}$$

$$L_2: \mathbb{R}^2 \to \mathbb{R}^2, \quad \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x^2 \\ y \end{pmatrix}$$

$$L_3: \mathbb{R}^3 \to \mathbb{R}^3, \quad \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} z+y \\ z-y \\ 0 \end{pmatrix}$$

Are they linear? Justify your answers.

Hint to Exercise 4

Use the definition of a linear transformation.

Exercise 5

- 1. Prove that if $T: U \to V$ is a linear transformation, then $T(0_U) = 0_V$.
- 2. Prove that a linear transformation $T:U\to V$ is injective if and only if

$$\ker(T) = \{0_U\}.$$

Hint to Exercise 5

(1) Use $0_U = 0_U - 0_U$ then linearity. (2) Prove one implication, then the other.

Solution to Exercise 5

(a) Let $T: U \to V$ be linear. We want to prove that $T(0_U) = 0_V$. Since T is linear, we have

$$T(0_U - 0_U) = T(0_U) + (-1) \cdot T(0_U) = 0_V$$

(b) Let $T: U \to V$ be a linear map. We prove that T is injective if and only if $\ker(T) = \{0_U\}$.

Recall that T is injective if

$$\forall x, y \in U, \quad T(x) = T(y) \implies x = y.$$

 (\Rightarrow) Suppose T is injective. Let $x \in \ker(T)$, i.e.

$$T(x) = 0_V$$
.

But we have also proven that $T(0_U) = 0_V$. Since T is injective, it follows that $x = 0_U$. Therefore

$$\ker(T) = \{0_U\}.$$

 (\Leftarrow) Conversely, assume $\ker(T) = \{0_U\}$. Let $x, y \in U$ such that

$$T(x) = T(y)$$
.

Then by linearity of T

$$T(x) - T(y) = 0_V \quad \Rightarrow \quad T(x - y) = 0_V.$$

Hence $x - y \in \ker(T)$, so $x - y = 0_U$, which implies x = y. Therefore T is injective.

Exercise 6

Determine whether the following functions are injective, surjective, or bijective:

1. $f_1: \{a, b, c\} \to \{a, b, c, d\}$ defined by:

$$f_1(a) = a$$
, $f_1(b) = b$, $f_1(c) = c$

2. $f_2: \{a, b, c\} \to \{a, b, c, d\}$ defined by:

$$f_2(a) = a$$
, $f_2(b) = a$, $f_2(c) = c$

3. $f_3: \{a, b, c\} \to \{a, b, c\}$ defined by:

$$f_3(a) = b$$
, $f_3(b) = c$, $f_3(c) = a$

Hint to Exercise 6

(1) injective by not surjective, (2) not injective, not surjective (3) bijective.

Exercise 7

Let F, G be two vector subspaces of a finite-dimensional vector space E. Prove that

$$\dim(F+G) = \dim(F) + \dim(G) - \dim(F \cap G).$$

• The Cartesian product $F \times G$ is endowed with the structure of a \mathbb{K} -vector space. For $(x, y), (x', y') \in F \times G$ and $\lambda \in \mathbb{K}$, define:

$$(x,y) + (x',y') = (x+x',y+y'),$$

$$\lambda \cdot (x, y) = (\lambda x, \lambda y).$$

Then $(F \times G, +, \cdot)$ is a \mathbb{K} -vector space (NB: verify the axioms).

• Define the linear map

$$\varphi: F\times G\to E, \quad (x,y)\mapsto x+y.$$

• φ is linear, since

$$\varphi(\lambda(x,y)) = \varphi(\lambda x, \lambda y) = \lambda x + \lambda y = \lambda(x+y) = \lambda \varphi(x,y).$$

• By construction,

$$\operatorname{Im}(\varphi) = F + G.$$

• Now consider the kernel. We have

$$(x,y) \in \ker(\varphi) \iff x+y=0 \iff x=-y.$$

So $x, y \in F \cap G$ and the map

$$F \cap G \longrightarrow \ker(\varphi), \quad x \mapsto (x, -x)$$

is an isomorphism. Hence

$$\dim(\ker(\varphi)) = \dim(F \cap G).$$

• By the rank-nullity theorem:

$$\dim(\operatorname{Im}(\varphi)) = \dim(F \times G) - \dim(\ker(\varphi)).$$

But

$$\dim(F \times G) = \dim(F) + \dim(G),$$

NB: A generating and linearly independant family of vectors \mathcal{B} of $F \times G$ can be built from bases $(f_1, ... f_n)$ of F and $(g_1, g_2, ... g_k)$ of G.

$$\mathcal{B} = ((f_1, 0), (f_2, 0), ...(f_{dim(F)}, 0), (0, g_1), (0, g_2), ...(0, g_{dim(G)}))$$

So \mathcal{B} is a basis of $F \times G$. Since \mathcal{B} contains $\dim(F) + \dim(G)$ vectors, we have $\dim(F \times G) = \dim(F) + \dim(G)$.

Therefore,

$$\dim(F+G) = \dim(F) + \dim(G) - \dim(F \cap G).$$

Exercise 7

Let $n \in \mathbb{N} \setminus \{0, 1\}$, E_1, \dots, E_n vector spaces on \mathbb{K} . We suppose that E_1, \dots, E_n are finite-dimensional. Show that $E_1 \times E_2 \times \dots \times E_n$ is of finite dimension, with

$$\dim(E_1 \times E_2 \times \cdots \times E_n) = \sum_{i=1}^n \dim(E_i).$$

Hint: reasoning by recurrence on n.

Exercise 8

Let us denote by E the set of functions from \mathbb{R} to \mathbb{R} , F the set of functions of E that are symmetrical, G the set of functions of E that are anti-symmetrical. Prove that

$$E = F \oplus G$$
.

Hint: decompose $h \in E$ as a vector from F and a vector from G.

Exercise 9

Prove the rank-nullity theorem.