Remembering Emotional Stimuli Re-Instantiates Valence Coding Voxel-Patterns from Visual and Temporal Cortex Holly J. Bowen¹, John C. Ksander² & Elizabeth A. Kensinger¹

¹Boston College ²Brandeis University

Introduction

- Retrieval involves the ability to reproduce information from the encoding episode¹
- The reactivation of visual cortex supports memory retrieval of negative, vivid memories in particular²
- Do regions that code for valence during encoding of emotional stimuli become reinstantiated during retrieval of those emotional memories?
- Hypothesis: encoding-related valence codes in visual cortex will reinstate during retrieval using non-emotional probes

Methods & Behavioral Results

Siemens 3T Trio; 32 channel head coil 4 encoding-retrieval blocks 48 old & 40 new stim/ block

Encoding: neutral words w/ negative, neutral, or positive scenes or faces

Intentiona encoding of words; face/scene judgment

Retrieval: neutral word retrieval cues

ensure R K N

Remember, know or new judgment

Behavioral Results (N = 16) Neg Pos Neu

Encoding analysis

Identify valence-coding cortex during study • Searchlight RSA following the Chikazoe et al. analysis³

Searchlights

- 5 voxel diameter spheres, volume of 81 voxels
- Statistical evaluation with Stelzer et al.⁵ cluster null simulations
- For MVPA, voxel patterns from encoding (ROIs) and test (searchlights) aligned in response space with Srinivasan et al. "lightweight hyperalignment" method⁴
 - Data reduced to the first 60 PCs; LDA classifier does not require identically ordered PCs

Memory analysis

Find reinstated valence codes during test Searchlight MVPA classifying memory valence based on

prior valence codes during study

Learn valence coding from viewing emotional stimuli

Conclusions

- Evidence in support of our hypothesis: valence codes in visual cortex from prior encoding event were reinstated during retrieval using neutral probes
- At study, posterior temporal cortex coded valence; at retrieval coding reinstates in anterior temporal cortex
- Modeling and experimental results show information becomes more abstract along the ventral steam⁶
- Suggests we retrieve emotion as abstract representations of previous experiences

References

- Tulving, E. & Thompson, D.M. (1973). Encoding specificity and retrieval processes in episodic memory. Psychological Review, *80,* 352-373.
- Bowen, H.J., Kark, S.M & Kensinger, E.A. (in press). NEVER forget: Negative emotional valence enhances recapitulation. Psych. Bull. & Review.
- Chikazoe, Lee, Kriegeskorte & Anderson (2014). Population coding of affect across stimuli, modalities and individuals. Nat. Neurosci.
- Srinivasan, Golomb & Martinez (2016). A neural basis of facial action recognition in humans. J. Neurosci.
- Stelzer, Chen & Turner (2013). Statistical inference and multiple testing correction in classification-based multi-voxel pattern analysis (MVPA): random permutations and cluster size control. Neuroimage
- Yamins & DiCarlo (2016). Using goal-driven deep learning models to understand sensory cortex. Nat. Neurosci.

Acknowledgements

The authors would like to thank Sarah Scott, Haley DiBiase and Tala Berro for assistance with data collection. This work was supported by a NIH Grant MH080833 (EAK).

Results

- Codes valence during study
- Codes valence during study, and code reinstates during test
- Reinstated (orange) valence code during test

Searchlight cluster searchlights < .001 .001 .018