Economics 6400: Econometrics

Lecture 8: Heteroskedasticity and various other topics

CSU, East Bay

November 21, 2017

In lecture 4...

- We discussed the Gauss-Markov Assumptions.
- The four assumptions are used to establish unbiasedness and the fifth assumption is used to derive the variance formulas:
 - 1 Linearity: $y = \beta_0 + \beta_1 x + u$
 - **2** We have a random sample of size n, $\{(x_i, y_i) : i = 1, 2, ..., n\}$
 - 3 Sample variation of explanatory variable: The sample outcomes on x are not all the same value
 - 4 Zero conditional mean: E(u|x) = 0
 - 5 $Var(u|x_1, x_2 ..., x_k) = \sigma^2$
- Under these assumptions, the OLS estimators are the best linear unbiased estimators (BLUEs) of the regression coefficients
 - Best means smallest variance

Fifth Gauss-Markov Assumption: Homoskedasticity

■ Variation of the unobserved error, u, conditional on the explanatory variables, is constant: $Var(u_i|x_{i1}, x_{i2}..., x_{ik}) = \sigma^2$

Heteroskedasticity

■ If homoskedasticity assumption fails then the variance of the observed factors changes across different segments of the population: $Var(u_i|x_{i1},x_{i2}...,x_{ik}) = \sigma_i^2$

Heteroskedasticity

• As incomes rise, families have more discretionary income and more choice about whether to save or spend so σ_i^2 is likely to increase with income

Consequences of heteroskedasticity for OLS

- OLS still unbiased!
- Interpretation of R² unchanged
 - Note that $R^2 pprox 1 rac{\sigma_u^2}{\sigma_y^2}$ involves **unconditional** variances
- Heteroskedasticity invalidates variance formulas for OLS estimators =(
 - Usual F tests and t tests are not valid under heteroskedasticity
- Fortunately OLS standard errors and related statistics have been developed that are robust to heteroskedasticity of unknown form
- These formulas are only valid in large samples

Heteroskedasticity-robust OLS standard errors

■ Valid estimator of $Var(\hat{\beta}_i)$ is:

$$\widehat{Var}(\hat{eta}_j) = rac{\sum_{i=1}^n \hat{r}_{ij}^2 \hat{u}_i^2}{SSR_j^2}$$

where

- \hat{r}_{ii} is the *i*th residual from regressing x_i on others RHS variables
- SSR_i is the sum of squared residuals from the same regression
- Square-root is heteroskedasticity-robust standard error
 - Often the variance estimator is multiplied by $\frac{n}{n-k-1}$ before taking the square-root so that regular OLS standard errors are obtained if $\hat{u}_i^2 = \hat{u}^2$ for all *i* (i.e. homoskedasticity)
 - Note: $\frac{\sum_{i=1}^{n} \hat{r}_{ij}^2 \hat{u}^2}{SSR_j^2} = \frac{\hat{u}^2 \sum_{i=1}^{n} \hat{r}_{ij}^2}{SSR_j^2} = \frac{\hat{u}^2 SSR_j}{SSR_j^2} = \frac{\hat{u}^2}{SSR_j} = \frac{\hat{u}^2}{SST_j(1-R_j^2)}$ Multiplying by $\frac{n}{n-k-1}$ gives $\frac{\hat{\sigma}^2}{SST_j(1-R_j^2)}$

Calculating robust standard errors

■ Example: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$

i	Уi	X _{i1}	Xi2	ûi	\hat{u}_i^2	\hat{r}_{i1}	\hat{r}_{i1}^2	$\hat{u}_i^2 \hat{r}_{i1}^2$
1	3.1	11	2	0.05	0.0025	-0.4663	0.2175	0.0005
2	3.2	12	22	0.00	0.00	1.7805	3.1704	0.0000
3	3	11	2	-0.05	0.0025	-0.4663	0.2175	0.0005
4	6	8	44	0.00	0.00	-0.8479	0.7189	0.0000
							$\sum = 4.3242$	$\sum = 0.00109$

- SSR_1 from regression $x_1 = \delta_0 + \delta_1 x_2 + v$ is 4.32418953
- $\widehat{Var}(\hat{\beta}_1) = \frac{0.00109}{4.32418953^2} = 5.815 \times 10^{-5}$
- Robust standard error = $\sqrt{n/(n-k-1) \cdot 5.815 \times 10^{-5}} = 0.01525$

Comparing regular and robust standard errors using Stata's "robust" option

reg wage educ exper

wage	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
educ	.6442721	.0538061	11.97	0.000	.5385695	.7499747
exper	.0700954	.0109776	6.39	0.000	.0485297	.0916611
_cons	-3.390539	.7665661	-4.42	0.000	-4.896466	-1.884613

. reg wage educ exper, robust

wage	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
educ	.6442721	.0651869	9.88	0.000	.5162117	.7723324
exper	.0700954	.0109943	6.38	0.000	.048497	.0916938
_cons	-3.390539	.8648747	-3.92	0.000	-5.089595	-1.691484

 Robust standard errors tend to be larger (though they can be smaller) so coefficients are typically less significant

Inference with robust standard errors

t statistic obtained as before but now standard error in the denominator is robust

$$t = \frac{\textit{estimate} - \textit{hypothesized value}}{\textit{robust standard error}}$$

- Regular standard errors are still preferable with homoskedasticity since t statistics have exact t distributions regardless of sample size
 - Robust standard errors and t statistics only valid when sample size becomes large!
 - Worthwhile to check for the presence of heteroskedasticity
- Regular F statistic no longer valid but robust F (Wald) statistic can be obtained

Testing for heteroskedasticity: Breusch-Pagan test

Null hypothesis assumes homoskedasticity (no heteroskedasticity)

$$H_0: Var(u|x_1, x_2, \ldots, x_k) = Var(u|x) = \sigma^2$$

Since we assume E(u|x) = 0, null hypothesis is equivalent to:

$$H_0: Var(u|x) = E(u^2|x) - [E(u|x)]^2 = E(u^2|x) = E(u^2) = \sigma^2$$

■ Does the data indicate this is not true, i.e. is u^2 related to one or more of the explanatory variables?

Informal testing for heteroskedasticity: Graphical method

■ Little evidence of heteroskedasticity on the left; definite pattern on the right

Testing for heteroskedasticity: Breusch-Pagan test

Does the following linear regression have explanatory power?

$$\hat{u}^2 = \delta_0 + \delta_1 x_1 + \ldots + \delta_k x_k + v$$

Null hypothesis of homoskedasticity is:

$$H_0: \delta_1 = \delta_2 = \ldots = \delta_k = 0$$

F statistic:

$$F = rac{R_{\hat{g}^2}^2/k}{(1 - R_{\hat{g}^2}^2)/(n - k - 1)} \sim F_{k, n - k - 1}$$

If the p-value is sufficiently small, we can reject the null hypothesis of homoskedasticity

Heteroskedasticity in house price equations

Consider the simple house price equation:

$$\widehat{price} = \beta_0 + \beta_1 lotsize + \beta_2 sqrft + \beta_3 bdrms + u$$

. reg price lotsize sqrft bdrms

Source	SS	df		MS		Number of obs	
Model Residual	617130.701 300723.805	3 84		10.234 0.0453		Prob > F R-squared	= 0.0000 = 0.6724
Total	917854.506	87	1055	0.0518		Adj R-squared Root MSE	= 0.6607 = 59.833
price	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
lotsize sqrft bdrms _cons	.0020677 .1227782 13.85252 -21.77031	.0006 .0132 9.016 29.47	2374 0145	3.22 9.28 1.54 -0.74	0.002 0.000 0.128 0.462	.0007908 .0964541 -4.065141 -80.38466	.0033446 .1491022 31.77018 36.84405

Heteroskedasticity in house price equations

- . predict u, r
- . gen u_sq = u*u
- . reg u_sq lotsize sqrft bdrms

Source	SS	df	MS
Model Residual	701213780 3.6775e+09	3 84	233737927 43780003.5
Total	4.3787e+09	87	50330276.7

Number of obs =	88
F(3, 84) =	5.34
Prob > F =	0.0020
R-squared =	0.1601
Adj R-squared =	0.1301
Root MSE =	6616.6

u_sq	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lotsize sqrft bdrms _cons	.2015209 1.691037 1041.76 -5522.795	.0710091 1.46385 996.381 3259.478	2.84 1.16 1.05 -1.69	0.006 0.251 0.299 0.094	.0603116 -1.219989 -939.6526 -12004.62	.3427302 4.602063 3023.173 959.0348

$$F = \frac{0.1601/3}{(1-0.1601)/84} = 5.34 > {\rm critical~value~of~2.7} \Rightarrow {\rm Reject~H_0}$$

Testing for heteroskedasticity: Breusch-Pagan test

- If you suspect that heteroskedasticity is driven by certain variables, you can simply regress \hat{u}^2 on those independent variables and carry out the appropriate F test using the degrees of freedom determined by the initial regression to recover \hat{u}
 - If one suspects that the heteroskedasticity is caused by a single variable, an *t* test is appropriate
 - It may be the case that the heteroskedasticity is driven by an outlier

Heteroskedasticity driven by outliers?

■ Spread of \hat{u} seems to be driven by outliers (3 very large houses)

Heteroskedasticity driven by outliers?

Less evidence of heteroskedasticity with 4 large houses removed

Heteroskedasticity in house price equations without outliers

. reg u_sq lotsize sqrft bdrms if lotsize < 20000

Source	SS	df	MS		Number of obs	-
Model Residual	14923253 2.3551e+09		974417.67 9439336.7		F(3, 80) Prob > F R-squared	= 0.9170 = 0.0063
Total	2.3701e+09	83 28	8555062.5		Adj R-squared Root MSE	= -0.0310
u_sq	Coef.	Std. Er	r. t	P> t	[95% Conf.	Interval]
lotsize sqrft bdrms _cons	0485008 005961 509.292 1193.495	.2086503 1.380003 856.6123 2968.213	2 -0.00 7 0.59	0.817 0.997 0.554 0.689	4637276 -2.752253 -1195.422 -4713.435	.3667261 2.740331 2214.006 7100.425

$$F = \frac{0.0063/3}{(1 - 0.0063)/80} = 0.17 < \text{critical value of } 2.7 \Rightarrow \text{Fail to reject H}_0$$

Heteroskedasticity in house price equations with log(price)

Benefit of using log form is that heteroskedasticity is often reduced:

. reg u_sq lotsize lsqrft bdrms

Source	SS	df	MS
Model Residual	.021478783 .449858578	3 84	.007159594 .005355459
Total	.471337362	87	.005417671

Number of obs = 88 F(3, 84) = 1.34 Prob > F = 0.2679 R-squared = 0.0456 Adj R-squared = 0.0115 Root MSE = .07318

u_sq	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lotsize	1.90e-08	7.83e-07	0.02	0.981	-1.54e-06	1.58e-06
lsqrft	067345	.0357179	-1.89	0.063	138374	.0036841
bdrms	.0167766	.0109334	1.53	0.129	0049656	.0385188
_cons	.4824728	.2521839	1.91	0.059	0190225	.9839681

$$F = \frac{0.046/3}{(1-0.046)/84} = 1.34 < {\rm critical~value~of~} 2.7 \Rightarrow {\rm Fail~to~reject~} {\rm H_0}$$

Testing for heteroskedasticity: White test

- An alternative test that allows for a more flexible pattern of heteroskedasticity
 - <u>Idea</u>: Test whether u^2 is correlated with the right-hand side variables (x_i) , the squares of the variables (x_i^2) , and the cross products (e.g. x_1x_2)
- When k = 3, White test based on estimation of:

$$\hat{u}^2 = \delta_0 + \delta_1 x_1 + \delta_2 x_2 + \delta_3 x_3 + \delta_4 x_1^2 + \delta_5 x_2^2 + \delta_6 x_3^2 + \delta_7 x_1 x_2 + \delta_8 x_1 x_3 + \delta_9 x_2 x_3 + error$$

■ Perform F test to see whether coefficients $\delta_1 \dots \delta_9$ are jointly equal to zero

Testing for heteroskedasticity: White test

- With a large number of regressors (k), the White test consumes many degrees of freedom
 - With 5 independent variables, the White test requires 5+5+10=20 regressors
- To preserve degrees of freedom, one could regress \hat{u}^2 on the fitted values instead:

$$\hat{u}^2 = \delta_0 + \delta_1 \hat{y} + \delta_2 \hat{y}^2 + error$$

• With k = 2,

$$\hat{y}^2 = (\hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2) \times (\hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2)$$

= \dots + \hat{\beta}_1^2 x_1^2 + \dots + 2\hat{\beta}_1 \hat{\beta}_2 x_1 x_2 + \dots + \hat{\beta}_2^2 x_2^2

so this approaches captures the spirit of the White test

Effects of data scaling on OLS statistics

- When variables are rescaled (e.g. ounces to pounds), the coefficients, standard errors, confidence intervals, t statistics, and F statistics change in ways to preserved measured effects and testing outcomes
- Consider our standard birth weight equation:

$$\widehat{bwght} = \hat{\beta}_0 + \hat{\beta}_1 cigs + \hat{\beta}_2 faminc$$

What is the effect of:

- Measuring birth weight (left-hand side variable) in pounds rather than ounces? <u>Note</u>: 1 pound = 16 ounces
- 2 Measuring cigarettes (right-hand side variable) in packets rather than individual cigarettes? Note: Assume 1 packet has 20 cigarettes

Effects of data scaling

	(1)	(2)	(3)
	birth weight, ounces	birth weight, pounds	birth weight, ounces
cigs	-0.463**	-0.029**	
	(0.092)	(0.006)	
faminc	0.093**	0.006**	0.093**
	(0.029)	(0.002)	(0.029)
packs			-9.268**
			(1.832)
Constant	116.974**	7.311**	116.974**
	(1.049)	(0.066)	(1.049)
Observations	1388	1388	1388
R^2	0.030	0.030	0.030
SSR	557,485.51	2,177.6778	557,485.51

Standard errors in parentheses * p < 0.05, ** p < 0.01

Effect of measuring birth weight in pounds

Divide the original equation by 16:

$$\widehat{\mathit{bwght}}/16 = \hat{eta}_0/16 + (\hat{eta}_1/16)\mathit{cigs} + (\hat{eta}_2/16)\mathit{faminc}$$

so that each new coefficient is simply the original coefficient divided by 16

- e.g. $\frac{\hat{\beta}_1}{16} = \frac{-0.463}{16} = -0.029$
- \blacksquare R^2 and statistical significance equivalent across models
- SSR is different since \hat{u} is now $\frac{\hat{u}}{16}$ so SSR = $(\frac{\hat{u}}{16})^2 = \frac{\hat{u}^2}{256}$
 - Therefore $\hat{\sigma}^2 = SSR/(n-k-1) = SSR/1,385$ is 256 times smaller, i.e. 557,485.51/256 = 2,177.6778
 - Small SSR simply reflects a difference in units of measurement

Effect of measuring cigarettes in terms of packets

We can rewrite the original equation as:

$$\widehat{bwght} = \hat{\beta}_0 + (20\hat{\beta}_1)(cigs/20) + \hat{\beta}_2 faminc$$
$$= \hat{\beta}_0 + (20\hat{\beta}_1)packs + \hat{\beta}_2 faminc$$

so the coefficient on *packs* is now 20 times the original coefficient on *cigs*

■ The standard error is also 20 times larger so the *t* statistic for testing the statistical significance of smoking is unchanged

•
$$t = \frac{20\hat{\beta}_j}{20 \cdot se(\hat{\beta}_j)} = \frac{\hat{\beta}_j}{se(\hat{\beta}_j)}$$

Note you would not want to include both cigs and packs on the right-hand side since they are perfectly linearly related

Units of measurement and logarithmic functional form

 If a dependent (left-hand side) variable is in logarithmic form then changing the unit of measurement will not affect any of the slope coefficients since

$$\log(c_1y_i) = \log(c_1) + \log(y_i)$$

- lacksquare This means the new intercept will be $\hat{eta}_0 + \log(c_1)$
- Intercept will also be the only thing to change if an x_j that is represented in logarithmic form has its units of measurement changed

Beta coefficients

- Often difficult to understand the scale that right-hand side variables are measured in
 - This makes it difficult to compare the size of coefficients across variables and infer which variables are "most important"
- Often helpful to talk about what effect a right-hand side variable has in terms of a one standard deviation change
- This can be achieved by standardizing each variable by computing its z-score, which involves subtracting its sample mean and dividing by its standard deviation

Beta coefficients

■ Begin with original OLS equation:

$$y_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} + \ldots + \hat{\beta}_k x_{ik} + \hat{u}$$
 (1)

Recall that

$$\overline{y} = \hat{\beta}_0 + \hat{\beta}_1 \overline{x}_1 + \hat{\beta}_2 \overline{x}_2 + \ldots + \hat{\beta}_k \overline{x}_k$$
 (2)

So subtracting (2) from (1) gives:

$$y_{i} - \overline{y} = \hat{\beta}_{0} + \hat{\beta}_{1}x_{i1} + \hat{\beta}_{2}x_{i2} + \dots + \hat{\beta}_{k}x_{ik} + \hat{u}_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}\overline{x}_{1}$$
$$- \hat{\beta}_{2}\overline{x}_{2} - \dots - \hat{\beta}_{k}\overline{x}_{k}$$
$$\Rightarrow y_{i} - \overline{y} = \hat{\beta}_{1}(x_{i1} - \overline{x}_{1}) + \hat{\beta}_{2}(x_{i2} - \overline{x}_{2}) + \dots + \hat{\beta}_{k}(x_{ik} - \overline{x}_{k}) + \hat{u}_{i}$$

Beta coefficients

Let $\hat{\sigma}_y$ be the sample standard deviation of the left-hand side variable and $\hat{\sigma}_1$ be the sample standard deviation of x_1 . Therefore:

$$(y_i - \overline{y})/\hat{\sigma}_y = (\hat{\sigma}_1/\hat{\sigma}_y)\hat{\beta}_1[(x_{i1} - \overline{x}_1)/\hat{\sigma}_1] + \dots \dots + (\hat{\sigma}_k/\hat{\sigma}_y)\hat{\beta}_k[(x_{ik} - \overline{x}_k)/\hat{\sigma}_k] + \hat{u}_i$$

■ Each variable has now been replaced by its z-score and the new slope coefficient for x_j is $\hat{b}_j = (\hat{\sigma}_j/\hat{\sigma}_y)\hat{\beta}_j$:

$$z_y = \hat{b}_1 z_1 + \hat{b}_2 z_2 + \ldots + \hat{b}_k z_k + error$$

- Intercept has been dropped
- These coefficients are known as standardized coefficients or beta coefficients
- Interpretation: If x_j increases by one standard deviation then \hat{y} increases by \hat{b}_i standard deviations

Example: Effects of pollution on house prices One s.d. increase in *nox* decreases *price* by 0.34 s.d.

$$price = \beta_0 + \beta_1 nox + \beta_2 crime + \beta_3 rooms + \beta_4 dist + \beta_5 stratio + u$$

	Regular coeff. (\hat{eta}_j)	Standardized coeff. (\hat{b}_j)				
nox	-2706.433**	-0.340**				
crime	-153.601**	-0.143**				
rooms	6735.498**	0.514**				
dist	-1026.806**	-0.234**				
stratio	-1149.204**	-0.270**				
Constant	20871.127**					
Observations	506	506				
R^2	0.636	0.636				
* n < 0.05 ** n < 0.01						

General remarks on R-squared

- A high R-squared does not imply that there is a causal interpretation
 - Incorrectly estimated time-series regressions with lags of key variables often produces unrealistically high R-squared statistics
 - If I regressed drowning deaths on ice-cream sales I might obtain a large \mathbb{R}^2 but ice-cream consumption should not cause drowning!
- A low R-squared does not preclude precise estimation of partial effects
 - All that matters is the zero conditional mean assumption!
 - There is nothing in the classical linear model assumptions that requires R^2 to be above some value

Adjusted R-squared

Ordinary R-squared can be rewritten as

$$R^2 = 1 - \frac{SSR}{SST} = 1 - \frac{SSR/n}{SST/n}$$

Define the population R-squared as

$$\rho^2 = 1 - \frac{\sigma_u^2}{\sigma_y^2}$$

which is the proportion of the variation in y in the population explained by the independent variables

■ The ordinary R^2 should be estimating this!

Adjusted R-squared

- Ordinary R-squared estimates σ_u^2 by $\frac{SSR}{n}$, and estimates σ_y^2 by $\frac{SST}{n}$, which are both biased
- Replace them with unbiased estimates, SSR/(n-k-1) and SST/(n-1), to obtain the adjusted R-squared statistic:

$$\overline{R}^2 = 1 - \frac{SSR/(n-k-1)}{SST/(n-1)}$$

- Primary appeal: can impose penalty for adding additional variables to a model, unlike with the ordinary R-squared
 - SSR will fall but k will rise
 - Adjusted R-squared will rise if, and only if, the t-statistic of a newly added regressor is greater than 1 in absolute value
- Relationship between two statistics: $\overline{R}^2 = 1 \frac{(1-R^2)(n-1)}{n-k-1}$

Using adjusted R-squared to choose between non-nested models

- Models are non-nested if neither is a special case of the other
- Consider the following two models relating R&D intensity to sales:

rdintens =
$$\beta_0 + \beta_1 \log(\text{sales}) + u$$
, $R^2 = 0.06$, $\overline{R}^2 = 0.03$
rdintens = $\beta_0 + \beta_1 \text{sales} + \beta_2 \text{sales}^2 + u$, $R^2 = 0.15$, $\overline{R}^2 = 0.09$

- Comparison between the R^2 of both models is unfair since the first model contains fewer parameters
- In the above example, even after adjusting for the difference in degrees of freedom, the quadratic model is preferred

Prediction

- Using model estimates to obtain predictions is useful but are subject to sampling variation
- How do we obtain confidence intervals for a prediction from the OLS regression line?
 - Note that the interval is for the average y, not a particular y
- Suppose we have estimated the equation

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \ldots + \hat{\beta}_k x_k$$

- Let c_1, c_2, \ldots, c_k denote particular values for each of the k independent variables
- We seek to estimate:

$$\theta_0 = \beta_0 + \beta_1 c_1 + \beta_2 c_2 + \ldots + \beta_k c_k$$

= $E(y|x_1 = c_1, x_2 = c_2, \ldots, x_k = c_k)$

■ The estimator of θ_0 is

$$\hat{\theta}_0 = \hat{\beta}_0 + \hat{\beta}_1 c_1 + \hat{\beta}_2 c_2 + \ldots + \hat{\beta}_k c_k$$

Prediction

- This is easy to compute by hand or with Stata "predict" command
- How can we construct a confidence interval for θ_0 , which is centered around $\hat{\theta}_0$?
 - Let's use our trick again!
- Rearrange the above equation

$$\beta_0 = \theta_0 - \beta_1 c_1 - \ldots - \beta_k c_k$$

and plug it into the original equation to obtain:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

= \theta_0 + \beta_1 (x_1 - c_1) + \beta_2 (x_2 - c_2) + \dots + \beta_k (x_k - c_k) + u

Predicted value and its standard error obtained from the intercept of the above regression!

Prediction example: College GPA

Suppose we predict college GPA using results from estimated equation:

$$\widehat{colgpa} = 1.493 + 0.00149sat - 0.01386hsperc - 0.06088hsize + 0.00546hsize^2$$

- To obtain a prediction when sat = 1,200, hsperc = 30, and hsize = 5 we plug these values in to obtain colgpa = 2.70
- To obtain a standard error, we generate new variables by subtracting the values of the right-hand side variables, e.g. sat0 = sat 1200, hsperc0 = hsperc 30 etc. and re-run the regression with the new variables
- The coefficient on the intercept (2.7) is our prediction, and the standard error is 0.02
- 95% confidence interval for expected college GPA is $2.70 \pm 1.96 (0.020)$ or (2.66, 2.74)

Prediction example: College GPA

- . gen sat0=sat-1200
- . gen hsperc0=hsperc-30
- . gen hsize0=hsize-5

_cons

- . gen hsizesg0=hsizesg-25
- . reg colgpa sat0 hsperc0 hsize0 hsizesq0 Source SS df

Model Residual Total	499.030503 1295.16517 1794.19567	4132 .31	.757626 3447524 3799728		F(4, 4132) Prob > F R-squared Adj R-squared Root MSE	= 0.0000 = 0.2781
colgpa	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
sat0 hsperc0 hsize0 hsizesq0	.0014925 0138558 0608815 .0054603	.0000652 .000561 .0165012 .0022698	22.89 -24.70 -3.69 2.41	0.000 0.000 0.000 0.016	.0013646 0149557 0932328 .0010102	.0016204 0127559 0285302 .0099104

135.83

.0198778

0.000

MS

Number of obs =

2.661104

4137

2.739047

Next lecture

■ Final exam revision