Notation

Rubem Vasconcelos Pacelli rubem.engenharia@gmail.com

Department of Teleinformatics Engineering, Federal University of Ceará. Fortaleza, Ceará, Brazil. Version: April 14, 2023

1 Font notation

$a, b, c, \ldots, A, B, C, \ldots$	Scalars
a, b, c, \dots	Vectors
A, B, C, \dots	Matrices
$\mathcal{A}, \mathcal{B}, \mathcal{C}, \dots$	Tensors
$A, B, C, \ldots, A, B, C, \ldots, A, B, C, \ldots$	Sets

2 Signals and functions

2.1 Time indexing

x(t)	Continuous-time t
$x[n], x[k], x[m], x[i], \dots$	Discrete-time n, k, m, i, \ldots (parenthe-
$x_n, x_k, x_m, x_i, \dots$	sis should be adopted only if there
$x(n), x(k), x(m), x(i), \dots$	are no continuous-time signals in the
	context to avoid ambiguity)
$x\left[\left((n-m)\right)_{N}\right], x\left((n-m)\right)_{N}$	Circular shift in m samples within a
	N-samples window [10, 14]

2.2 Common functions

$\delta(t)$	Delta function
$\delta[n], \delta_{i,j}$	Kronecker function $(n = i - j)$
h(t), h[n]	Impulse response (continuous and
	discrete time)

$\tilde{x}[n], \tilde{x}(t)$	Periodic discrete- or continuous-time
	signal
$\hat{x}[n], \hat{x}(t)$	Estimate of $x[n]$ or $x(t)$
$\dot{x}[m]$	Interpolation of $x[n]$

2.3 Operations and symbols

$f:A\to B$	A function f whose domain is A and codomain is B
$\mathbf{f}:A o\mathbb{R}^n$	A vector-valued function \mathbf{f} , i.e., $n \geq 2$
$f^n, x^n(t), x^n[k]$	<i>n</i> th power of the function f , $x[n]$ or $x(t)$
$f^{(n)}, x^{(n)}(t)$	nth derivative of the function f or $x(t)$
$f', f^{(1)}, x'(t)$	1th derivative of the function f or $x(t)$
$f^{\prime\prime}, f^{(2)}, x^{\prime\prime}(t)$	2th derivative of the function f or $x(t)$
$\underset{x \in \mathcal{A}}{\arg\max} \ f(x)$	Value of x that minimizes x
$\underset{x \in \mathcal{A}}{\operatorname{argmin}} f(x)$	Value of x that minimizes x
$f(\mathbf{x}) = \inf_{\mathbf{y} \in \mathcal{A}} g(\mathbf{x}, \mathbf{y})$	Infimum, i.e., $f(\mathbf{x}) = \min\{g(\mathbf{x}, \mathbf{y}) \mid \mathbf{y} \in \mathcal{A} \land (\mathbf{x}, \mathbf{y}) \in \text{dom } (g)\},$ which is the greatest lower bound of this set [2]
$f(\mathbf{x}) = \sup_{\mathbf{y} \in \mathcal{A}} g(\mathbf{x}, \mathbf{y})$	Supremum, i.e., $f(\mathbf{x}) = \max \{g(\mathbf{x}, \mathbf{y}) \mid \mathbf{y} \in \mathcal{A} \land (\mathbf{x}, \mathbf{y}) \in \text{dom}(g)\},$ which is the least upper bound of this set [2]
$f \circ g$	Composition of the functions f and
*	g Convolution (discrete or continuous)
(N)	Circular convolution [6, 14]

2.4 Transformations

W_N	Twiddle factor, $e^{-j\frac{2\pi}{N}}$ [10]
$\mathcal{F}\left\{ \cdot \right\}$	Fourier transform
$\mathcal{L}\left\{ \cdot \right\}$	Laplace transform
$\mathcal{Z}\left\{ \cdot ight\}$	z-transform
$\hat{x}(t), \hat{x}[n]$	Hilbert transform of $x(t)$ or $x[n]$
X(s)	Laplace transform of $x(t)$
X(f)	Fourier transform (FT) (in linear fre-
	quency, Hz) of $x(t)$

 $X(j\omega)$ Fourier transform (FT) (in angular frequency, rad/sec) of x(t) $X(e^{j\omega})$ Discrete-time Fourier transform (DTFT) of x[n] $X[k], X(k), X_k$ Discrete Fourier transform (DFT) or fast Fourier transform (FFT) of x[n], or even the Fourier series (FS) of the periodic signal x(t) $\tilde{X}[k], \tilde{X}(k), \tilde{X}_k$ Discrete Fourier series (DFS) of $\tilde{x}[n]$ X(z)z-transform of x[n]

3 Probability, statistics, and stochastic processes

3.1 Operators and symbols

$\mathbf{E}\left[\cdot\right],E\left[\cdot\right],\mathbb{E}\left[\cdot\right]$	Statistical expectation operator [5, 13]
$\mathbf{E}_{u}\left[\cdot\right],E_{u}\left[\cdot\right],\mathbb{E}_{u}\left[\cdot\right]$	Statistical expectation operator with respect to u
$\operatorname{var}\left[\cdot\right], \operatorname{VAR}\left[\cdot\right]$	Variance operator [1, 9, 12, 16]
$\operatorname{var}_{u}\left[\cdot\right]\left[\cdot\right], \operatorname{VAR}_{u}\left[\cdot\right]$	Variance operator with respect to u
$\operatorname{cov}\left[\cdot\right],\operatorname{COV}\left[\cdot\right]$	Covariance operator [1]
$\operatorname{cov}_{u}[\cdot], \operatorname{COV}_{u}[\cdot]$	Covariance operator with respect to
	и
$\mu_{\scriptscriptstyle X}$	Mean of the random variable x
$\mu_{\mathrm{x}}, \mathrm{m}_{\mathrm{x}}$	Mean vector of the random variable
	x [3]
μ_n	nth-order moment of a random vari-
	able
σ_x^2, κ_2	Variance of the random variable x
\mathcal{K}_x, μ_4	Kurtosis (4th-order moment) of the
	random variable x
κ_n	nth-order cumulant of a random vari-
	able
$ ho_{x,y}$	Pearson correlation coefficient be-
•	tween x and y
$a \sim P$	Random variable a with distribution P
$\mathcal R$	Rayleigh's quotient

3.2 Stochastic processes

$r_X(au), R_X(au)$	Autocorrelation function of the sig-
3 (1), 3 (1)	$\operatorname{nal} x(t) \text{ or } x[n] \text{ [13]}$
$S_x(f), S_x(j\omega)$	Power spectral density (PSD) of $x(t)$
	in linear (f) or angular (ω) frequency
$S_{x,y}(f), S_{x,y}(j\omega)$	Cross PSD of $x(t)$ and $y(t)$ in linear
	or angular (ω) frequency
R_x	(Auto)correlation matrix of $\mathbf{x}(n)$
$r_{x,d}(\tau), R_{x,d}(\tau)$	Cross-correlation between $x[n]$ and
	d[n] or $x(t)$ and $d(t)$ [13]
$\mathbf{R}_{\mathbf{x}\mathbf{y}}$	Cross-correlation matrix of $\mathbf{x}(n)$ and
	$\mathbf{y}(n)$
$\mathbf{p}_{\mathrm{x}d}$	Cross-correlation vector
	between $\mathbf{x}(n)$ and $d(n)$
	$[{ m diniz}{ m Adaptive}{ m Filtering}1997]$
$c_x(\tau), C_x(\tau)$	Autocovariance function of the signal
	x(t) or x[n] [13]
$C_x, K_x, \Sigma_x, \operatorname{cov}\left[x\right]$	(Auto)covariance matrix of \mathbf{x} [9, 12,
	16, 19
$c_{xy}(\tau), C_{xy}(\tau)$	Cross-covariance function of the sig-
	$\operatorname{nal} x(t) \text{ or } x[n] [13]$
$\mathrm{C}_{\mathrm{xy}}, \mathrm{K}_{\mathrm{xy}}, \Sigma_{\mathrm{xy}}$	Cross-covariance matrix of ${\bf x}$ and ${\bf y}$
3.3 Functions	
$Q(\cdot)$	Q-function, i.e., $P[\mathcal{N}(0,1) > x]$ [16]
$\operatorname{erf}(\cdot)$	Error function [16]
$\operatorname{erfc}(\cdot)$	Complementary error function i.e.,
0110()	$\operatorname{erfc}(x) = 2Q(\sqrt{2}x) - \operatorname{erf}(x) [16]$
P[A]	Probability of the event or set A [12]
$p(\cdot), f(\cdot)$	Probability density function (PDF)
	or probability mass function (PMF)
	[12]
$p(x \mid A)$	Conditional PDF or PMF [12]
$F(\cdot)$	Cumulative distribution function
	(CDF)
$\Phi_X(\omega), M_X(j\omega), E\left[e^{j\omega X}\right]$	First characteristic
	function (CF) of x
	[the odorid is Machine Learning Bayesian 2020a,
	16]
$M_X(t), \Phi_X(-jt), E\left[e^{tX}\right]$	Moment-generating func-
	tion (MGF) of x
	[theodoridisMachineLearningBayesian2020a,
	16]
$\Psi_{\omega}(\omega) \ln \Phi_{\omega}(\omega) \ln E \left[e^{j\omega x}\right]$	Second characteristic function

Second characteristic function

 $\Psi_x(\omega), \ln \Phi_x(\omega), \ln E\left[e^{j\omega x}\right]$

$K_X(t), \ln E$	$[e^{tx}]$, ln	$M_x(t)$
-----------------	-----------------	----------

Cumulant-generating (CGF) of x [9]

function

3.4 Distributions

 $\mathcal{N}(\mu, \sigma^2)$

 $\mathcal{CN}(\mu, \sigma^2)$

 $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

 $\mathcal{CN}(\mu, \Sigma)$

 $\mathcal{U}(a,b) \\ \chi^2(n), \chi_n^2$

 $Exp(\lambda)$

 $\Gamma(\alpha, \beta)$

 $\Gamma(\alpha, \theta)$

Nakagami (m, Ω)

Rayleigh(σ)

 $\operatorname{Rayleigh}(\Omega)$

 $Rice(s, \sigma)$

Gaussian distribution of a random variable with mean μ and variance σ^2 . The same notation can be used to denote a real-valued white Gaussian process with mean equal to μ and power spectral density equal to $N_0/2$, e.g., $s(t) \sim \mathcal{N}(\mu, N_0/2)$

Complex Gaussian distribution of a random variable with mean μ and variance σ^2 . The same notation can be used to denote a complex-valued white Gaussian process with mean equal to μ and power spectral density equal to N_0 , e.g., $s(t) \sim \mathcal{CN}(\mu, N_0)$ Gaussian distribution of a vector random variable with mean μ and condom variable with mean μ and condom variable with mean μ

dom variable with mean μ and covariance matrix Σ

Complex Gaussian distribution of a vector random variable with mean μ and covariance matrix Σ

Uniform distribution from a to bChi-square distribution with n degree of freedom (assuming that the Gaussians are $\mathcal{N}(0,1)$)

Exponential distribution with rate parameter λ

Gamma distribution with shape parameter α and rate parameter β Gamma distribution with shape pa-

rameter α and scale parameter $\theta = 1/\beta$

Nakagami-m distribution with shape parameter m and spread parameter Ω Rayleigh distribution with scale parameter σ

Rayleigh distribution with the second moment $\Omega = E[x^2] = 2\sigma^2$

Rice distribution with noncentrality parameter (specular component) s and σ

Rice distribution with Rice factor $K=s^2/2\sigma^2$ and scale parameter $A=s^2+2\sigma^2$

4 Statistical signal processing

$\mathbf{\nabla} f, \mathbf{g}$	Gradient descent vector
$\nabla_x f, \mathbf{g}_x$	Gradient descent vector with respect
\mathbf{g} (or $\hat{\mathbf{g}}$ if the gradient vector is \mathbf{g})	x Stochastic gradient descent (SGD)
$J(\cdot), \mathcal{E}(\cdot)$	Cost-function or objective function
$\Lambda(\cdot)$	Likelihood function
$\Lambda_l(\cdot)$	Log-likelihood function
$\hat{x}(t) \text{ or } \hat{x}[n]$	Estimate of $x(t)$ or $x[n]$
$\hat{\mathbf{\mu}}_{x}, \hat{\mathbf{m}}_{x}$	Sample mean of $x[n]$ or $x(t)$ Sample mean vector of $\mathbf{x}[n]$ or $\mathbf{x}(t)$
$\hat{\boldsymbol{\mu}}_{\mathbf{x}}, \hat{\mathbf{m}}_{\mathbf{x}}$ $\hat{r}_{x}(\tau), \hat{R}_{x}(\tau)$	Estimated autocorrelation function
	of the signal $x(t)$ or $x[n]$
$\hat{S}_x(f), \hat{S}_x(j\omega)$	Estimated power spectral density (PSD) of $x(t)$ in linear (f) or angular
	(ω) frequency
$\hat{\mathbf{R}}_{\mathbf{x}}$	Sample (auto)correlation matrix
$\hat{r}_{x,d}(au), \hat{R}_{x,d}(au)$	Estimated cross-correlation between
	x[n] and $d[n]$ or $x(t)$ and $d(t)$
$\hat{S}_{x,y}(f), \hat{S}_{x,y}(j\omega)$	Estimated cross PSD of $x(t)$ and $y(t)$
	in linear or angular (ω) frequency
$\hat{\mathbf{R}}_{\mathbf{x}\mathbf{y}}$	Sample cross-correlation matrix of
	$\mathbf{R}_{\mathbf{x}\mathbf{y}}$
$\hat{ ho}_{x,y}$	Estimated Pearson correlation coeffi-
^	cient between x and y
$\hat{c}_x(au), \hat{C}_x(au)$	Estimated autocovariance function of
^ ^	the signal $x(t)$ or $x[n]$
$\hat{\mathbf{C}}_{\mathbf{x}}, \hat{\mathbf{K}}_{\mathbf{x}}, \hat{\mathbf{\Sigma}}_{\mathbf{x}}$	Sample (auto)covariance matrix
$\hat{c}_{xy}(\tau), \hat{C}_{xy}(\tau)$	Estimated cross-covariance function
	of the signal $x(t)$ or $x[n]$
$\hat{\mathbf{C}}_{\mathbf{x}\mathbf{y}},\hat{\mathbf{K}}_{\mathbf{x}\mathbf{y}},\hat{\mathbf{\Sigma}}_{\mathbf{x}\mathbf{y}}$	Sample cross-covariance matrix
$\mathbf{w}, \mathbf{\theta}$	Parameters, coefficients, or weights
+ 0 0+	vector
$\mathbf{w}_{o}, \mathbf{w}^{\star}, \mathbf{\theta}_{o}, \mathbf{\theta}^{\star}$	Optimum value of the parameters,
11 7	coefficients, or weights vector
W	Matrix of the weights
J	Jacobian matrix
H	Hessian matrix

5 Linear Algebra

5.1 Common matrices and vectors

\mathbf{W}, \mathbf{D}	Diagonal matrix
P	Projection matrix; Permutation ma-
	trix
J	Jordan matrix
L	Lower matrix
\mathbf{U}	Upper matrix
\mathbf{C}	Cofactor matrix
$\mathbf{C}_{\mathbf{A}}, \operatorname{cof}\left(\mathbf{A}\right)$	Cofactor matrix of A
\mathbf{S}	Symmetric matrix
Q	Orthogonal matrix
\mathbf{I}_N	$N \times N$ -dimensional identity matrix
$0_{M imes N}$	$M \times N$ -dimensional null matrix
0_N	N-dimensional null vector
$1_{M imes N}$	$M \times N$ -dimensional ones matrix
1_N	N-dimensional ones vector
0	Null matrix, vector, or tensor (di-
	mensionality understood by context)
1	Ones matrix, vector, or tensor (di-
	mensionality understood by context)

5.2 Indexing

$x_{i_1,i_2,,i_N}, [\mathcal{X}]_{i_1,i_2,,i_N}$	Element in the position
17.27,17	(i_1, i_2, \ldots, i_N) of the tensor \mathcal{X}
$\mathcal{X}^{(n)}$	nth tensor of a nontemporal sequence
$\mathbf{x}_n, \mathbf{x}_{:n}$	nth column of the matrix X
\mathbf{x}_{n} :	nth row of the matrix X
$\mathbf{X}_{i_1,,i_{n-1},:,i_{n+1},,i_N}$	Mode- n fiber of the tensor \mathcal{X}
$\mathbf{X}_{:,i_{2},i_{3}}$	Column fiber (mode-1 fiber) of the
	thrid-order tensor \mathcal{X}
$\mathbf{x}_{i_1,:,i_3}$	Row fiber (mode-2 fiber) of the thrid-
17.70	order tensor \mathcal{X}
$\mathbf{x}_{i_1,i_2,:}$	Tube fiber (mode-3 fiber) of the
	thrid-order tensor \mathcal{X}
$\mathbf{X}_{i_1,}$	Horizontal slice of the thrid-order
	tensor \mathcal{X}

 $\mathbf{X}_{:,i_2,:}$ Lateral slices slice of the thrid-order tensor $\boldsymbol{\mathcal{X}}$ $\mathbf{X}_{i_3}, \mathbf{X}_{:,:,i_3}$ Frontal slices slice of the thrid-order tensor $\boldsymbol{\mathcal{X}}$

5.3 General operations

 $\langle \cdot, \cdot \rangle$ Inner product, e.g., $\langle \mathbf{a}, \mathbf{b} \rangle = \mathbf{a}^{\mathsf{T}} \mathbf{b}$ Outer product, e.g., $\mathbf{a} \circ \mathbf{b} = \mathbf{a} \mathbf{b}^{\mathsf{T}}$ Kronecker product \otimes \odot Hadamard (or Schur) (elementwise) product $\odot n$ nth-order Hadamard power $\cdot \circ \frac{1}{n}$ nth-order Hadamard root 0 Hadamard (or Schur) (elementwise) division Khatri-Rao product \Diamond Kronecker Product \otimes *n*-mode product \times_n

5.4 Operations with matrices and tensors

 \mathbf{A}^{-1} Inverse matrix $\mathbf{A}^+, \mathbf{A}^\dagger$ Moore-Penrose left pseudoinverse $\mathbf{A}^{ op}$ Transpose Transpose of the inverse, i.e., $\left(\mathbf{A}^{-1}\right)^{\mathsf{T}} = \left(\mathbf{A}^{\mathsf{T}}\right)^{-1} \left[7, 15\right]$ \mathbf{A}^* Complex conjugate \mathbf{A}^{H} Hermitian Frobenius norm $\|\mathbf{A}\|_{\mathrm{F}}$ Matrix norm $\|\mathbf{A}\|$ $|\mathbf{A}|, \det(\mathbf{A})$ Determinant diag(A)The elements in the diagonal of A $\text{vec}(\mathbf{A})$ Vectorization: stacks the columns of the matrix A into a long column vec- $\text{vec}_{d}(\mathbf{A})$ Extracts the diagonal elements of a square matrix and returns them in a column vector $\mathrm{vec}_{\mathrm{l}}\left(\boldsymbol{A}\right)$ Extracts the elements strictly below the main diagonal of a square matrix in a column-wise manner and returns them into a column vector

 $vec_u\left(\boldsymbol{A}\right)$ Extracts the elements strictly above the main diagonal of a square matrix in a column-wise manner and returns them into a column vector $\mathrm{vec_b}\left(\mathbf{A}\right)$ Block vectorization operator: stacks square block matrices of the input into a long block column matrix unvec (A) Reshapes a column vector into a ma- trix $\mathrm{tr}\left(\mathbf{A}\right)$ trace $\mathbf{X}_{(n)}$ *n*-mode matricization of the tensor \mathcal{X}

5.5 Operations with vectors

 $\begin{array}{lll} \|\mathbf{a}\| & l_1 \text{ norm, 1-norm, or Manhatan norm} \\ \|\mathbf{a}\|, \|\mathbf{a}\|_2 & l_2 \text{ norm, 2-norm, or Euclidean norm} \\ \|\mathbf{a}\|_p & l_p \text{ norm, } p\text{-norm, or Minkowski norm} \\ \|\mathbf{a}\|_{\infty} & l_{\infty} \text{ norm, } \infty\text{-norm, or Chebyshev} \\ & \text{norm} \\ \\ \text{diag (a)} & \text{Diagonalization: a square, diagonal} \\ & \text{matrix with entries given by the vector } \mathbf{a} \end{array}$

5.6 Decompositions

Λ	Eigenvalue matrix [18]
Q	Eigenvectors matrix; Orthogonal ma-
	trix of the QR decomposition[18]
R	Upper triangular matrix of the QR
	decomposition[18]
U	Left singular vectors[18]
\mathbf{U}_r	Left singular nondegenerated vectors
Σ	Singular value matrix
Σ_r	Singular value matrix with nonzero
	singular values in the main diagonal
Σ^+	Singular value matrix of the pseu-
	doinverse [18]
Σ_r^+	Singular value matrix of the pseu-
·	doinverse with nonzero singular val-
	ues in the main diagonal
\mathbf{V}	Right singular vectors [18]
\mathbf{V}_r	Right singular nondegenerated vec-
	tors
$\mathrm{eig}\left(\mathbf{A} ight)$	Set of the eigenvalues of A [4, 12, 15]

 $[\![\mathbf{A},\mathbf{B},\mathbf{C},\ldots]\!]$

 $[\![\lambda; A, B, C, \ldots]\!]$

CANDECOMP/PARAFAC (CP) decomposition of the tensor \mathcal{X} from the outer product of column vectors of \mathbf{A} , \mathbf{B} , \mathbf{C} , . . .

Normalized CANDE-COMP/PARAFAC (CP) decomposition of the tensor \mathcal{X} from the outer product of column vectors of $\mathbf{A}, \mathbf{B}, \mathbf{C}, \dots$

5.7 Spaces

span $(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)$

C(A), columnspace(A), range(A), span(A), image(A)

 $C(A^H)$

 $N(\mathbf{A})$, nullspace(\mathbf{A}), kernel(\mathbf{A}) $N(\mathbf{A}^H)$ rank (\mathbf{A})

nullity (A) $\mathbf{a} \perp \mathbf{b}$ $\mathbf{a} \not\perp \mathbf{b}$ Vector space spanned by the argument vectors [7]

Columnspace, range or image, i.e., the space span $(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)$, where \mathbf{a}_i is the ith column vector of the matrix \mathbf{A} [13, 18]

Row space (also called left columnspace) [13, 18]

Nullspace (or kernel space) [13, 18] Left nullspace

Rank, that is, $\dim (\operatorname{span} (\mathbf{A})) = \dim (\mathbf{C} (\mathbf{A}))$ [13]

Nullity of \mathbf{A} , i.e., dim $(N(\mathbf{A}))$

 $\begin{array}{l} \mathbf{a} \text{ is orthogonal to } \mathbf{b} \\ \mathbf{a} \text{ is not orthogonal to } \mathbf{b} \end{array}$

5.8 Inequalities

 $\mathcal{X} \leq 0$

 $\mathbf{a} \leq_K \mathbf{b}$

 $\mathbf{a} \prec_K \mathbf{b}$

 $\mathbf{a} \leq \mathbf{b}$

Nonnegative tensor

Generalized inequality meaning that $\mathbf{b} - \mathbf{a}$ belongs to the conic subset K in the space $\mathbb{R}^n[2]$

Strict generalized inequality meaning that $\mathbf{b} - \mathbf{a}$ belongs to the interior of the conic subset K in the space $\mathbb{R}^n[2]$ Generalized inequality meaning that $\mathbf{b} - \mathbf{a}$ belongs to the nonnegative orthant conic subset, \mathbb{R}^n_+ , in the space $\mathbb{R}^n.[2]$

$\mathbf{a} \prec \mathbf{b}$	Strict generalized inequality meaning that $\mathbf{b} - \mathbf{a}$ belongs to the positive orthant conic subset, \mathbb{R}^n_{++} , in the space $\mathbb{R}^n[2]$
$\mathbf{A} \leq_K \mathbf{B}$	Generalized inequality meaning that
	$\mathbf{B} - \mathbf{A}$ belongs to the conic subset K
	in the space $\mathbb{S}^n[2]$
$\mathbf{A} \prec_K \mathbf{B}$	Strict generalized inequality meaning
	that $\mathbf{B} - \mathbf{A}$ belongs to the interior of
	the conic subset K in the space $\mathbb{S}^n[2]$
$A \leq B$	Generalized inequality meaning that
	B - A belongs to the positive semidef-
	inite conic subset, \mathbb{S}_{+}^{n} , in the space
	$\mathbb{S}^{n}[2]$
A < B	Strict generalized inequality meaning
	that $\mathbf{B} - \mathbf{A}$ belongs to the positive or-
	thant conic subset, \mathbb{S}_{++}^n , in the space
	$\mathbb{S}^n[2]$

6 Communication systems

B	One-sided bandwidth of the trans-
	mitted signal, in Hz
W	One-sided bandwidth of the trans-
	mitted signal, in rad/s
x_i	Real or in-phase part of x
x_q	Imaginary or quadrature part of x
f_c, f_{RF}	Carrier frequency (in Hertz)
f_L	Carrier frequency in L-band (in
	Hertz)
f_{IF}	Intermediate frequency (in Hertz)
f_s	Sampling frequency or sampling rate
	(in Hertz)
T_s	Sampling time inter-
	val/duration/period
R	Bit rate
T	Bit interval/duration/period
T_c	Chip interval/duration/period
T_{sy}, T_{sym}	Symbol/signaling[16] inter-
	val/duration/period
S_{RF}	Transmitted signal in RF
S_{FI}	Transmitted signal in FI

s, s_l r_{RF}	Lowpass (or baseband) equivalent signal or envelope complex of trans- mitted signal Received signal in RF
r_{FI}	Received signal in FI
r, r_l	Lowpass (or baseband) equivalent
	signal or envelope complex of re-
	ceived signal
ϕ	Signal phase
ϕ_0	Initial phase
η_{RF}, w_{RF}	Noise in RF
η_{FI}, w_{FI}	Noise in FI
η, w	Noise in baseband
τ	Timing delay
Δau	Timing error (delay - estimated)
arphi	Phase offset
$\Delta arphi$	Phase error (offset - estimated)
f_d	Linear Doppler frequency
Δf_d	Frequency error (Doppler frequency -
	estimated)
ν	Angular Doppler frequency
Δv	Frequency error (Doppler frequency -
	estimated)
γ, A	Transmitted signal amplitude
γ_0, A_0	Combined effect of the path loss and
7070	antenna gain

7 Discrete mathematics

7.1 Set theory

A + B	Set addition (Minkowski sum), i.e.,
	$\{\mathbf{v} \in \mathbb{R}^n \mid \mathbf{v} = \mathbf{x} + \mathbf{y}, \forall \ \mathbf{x} \in \mathcal{X} \land \mathbf{y} \in \mathcal{Y}\}$
	[11]
A - B	Minkowski difference, i.e.,
	$\{\mathbf{v} \in \mathbb{R}^n \mid \mathbf{v} = \mathbf{x} - \mathbf{y}, \forall \ \mathbf{x} \in \mathcal{X} \land \mathbf{y} \in \mathcal{Y}\}$
$A\ominus B$	Pontryagin difference, i.e.,
	$\{\mathbf{v} \in \mathbb{R}^n \mid \mathbf{v} + \mathbf{y} \in \mathcal{X}, \forall \mathbf{y} \in \mathcal{Y}\}$ [11]
$A \setminus B, A - B$	Set difference or set subtraction, i.e.,
	$A \setminus B = \{x x \in A \land x \notin B\}$ the set con-
	taining the elements of A that are not
	in B [17]
$A \cup B$	Set of union
$A \cap B$	Set of intersection

$A \times B$	Cartesian product
A^n	$A \times A \times \cdots \times A$
A^{\perp} $A \oplus B$	Orthogonal complement of A , e.g., $N(\mathbf{A}) = C(\mathbf{A}^{\top})^{\perp} [2]$ Direct sum, i.e., each $\mathbf{v} \in \{\sum \mathbf{a}_i \mid \mathbf{a}_i \in S_i, i = 1, \dots, k\}$ has a unique representation of $\sum \mathbf{a}_i$ with $\mathbf{a}_i \in S_i$. That is, they expand to a
$A\stackrel{\perp}{\oplus} B$	space. Note that $\{S_i\}$ might not be orthogonal each other [7]
$A \oplus B$	Direct sum of two space that are orthogonal and span a n -dimensional
	space, e.g., $C(\mathbf{A}^{\top}) \stackrel{\perp}{\oplus} C(\mathbf{A}^{\top})^{\perp} = \mathbb{R}^n$ (this decomposition of \mathbb{R}^n is called the orthogonal decomposition induced by \mathbf{A}) [2]
$ar{A},A^c$	Complement set (given U)
#A, A	Cardinality
$a \in A$	a is element of A
$a \notin A$	a is not element of A
$\{1,2,\ldots,n\}$	Discrete set containing the integer el-
	ements $1, 2, \ldots, n$
U	Universe
2^A	Power set of A
\mathbb{R}	Set of real numbers
\mathbb{C}	Set of complex numbers
\mathbb{Z}	Set of integer number
$\mathbb{B} = \{0, 1\}$	Boolean set
Ø	Empty set
N	Set of natural numbers
$\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$	Real or complex space (field)
$\mathbb{K}^{I_1 imes I_2 imes \cdots imes I_N}$	$I_1 \times I_2 \times \cdots \times I_N$ -dimensional real (or
	complex) space
\mathbb{K}_{+}	Nonnegative real (or complex) space [2]
\mathbb{K}_{++}	Positive real (or complex) space, i.e., $\mathbb{K}_{++} = \mathbb{K}_{+} \setminus \{0\}$ [2]
$\mathbb{S}^n, \mathcal{S}^n$	Conic set of the symmetric matrices in $\mathbb{R}^{n \times n}$ [2]
$\mathbb{S}^n_+, \mathcal{S}^n_+$	Conic set of the symmetric positive semidefinite matrices in $\mathbb{R}^{n \times n}$ [2]
$\mathbb{S}^n_{++}, \mathcal{S}^n_{++}$	Conic set of the symmetric positive definite matrices in $\mathbb{R}^{n\times n}$, i.e., $\mathbb{S}^n_{++} = \mathbb{S}^n_+ \setminus \{0\}$ [2]

\mathbb{H}^n	Set of all hermitian matrices in $\mathbb{C}^{n\times n}$
[a,b]	Closed interval of a real set from a to
	b
(a,b)	Opened interval of a real set from a
	to b
[a,b),(a,b]	Half-opened intervals of a real set
	from a to b

7.2 Quantifiers, inferences

<u> </u>	For all (universal quantifier) [8]
3	There exists (existential quantifier) [8]
∄	There does not exist [8]
∃!	There exist an unique [8]
€	Belongs to [8]
∉	Does not belong to [8]
::	Because [8]
ļ,:	Such that, sometimes that parantheses is used [8]
$,,(\cdot)$	Used to separate the quantifier with restricted domain from the its scope, e.g., $\forall x < 0 \ (x^2 > 0)$ or $\forall x < 0, x^2 > 0$
£	0 [8] Therefore [8]

7.3 Propositional Logic

$\neg a$	Logical negation of a [17]
$a \wedge b$	Conjunction (logical AND) operator
	between a and $b[17]$
$a \lor b$	Disjunction (logical OR) operator be-
	tween a and $b[17]$
$a \oplus b$	Exclusive OR (logical XOR) operator
	between a and $b[17]$
$a \rightarrow b$	Implication (or conditional) statement[17]
$a \leftrightarrow b$	Bi-implication (or biconditional)
$u \leftrightarrow v$	- (
	statement, i.e., $(a \rightarrow b) \land (b \rightarrow a)$
	[17]
$a \equiv b, a \iff b, a \Leftrightarrow b$	Logical equivalence, i.e., $a \leftrightarrow b$ is a
	tautology[17]

8 Physics

${f E}$	Electric feild vector (in V/m)
Φ	Electric flux (scalar) (in V m)
D	Electric flux density, electric dis-
	placement, or electric induction vec-
	$tor (in C/m^2)$
J	Electric current density vector (in
	A/m^2)
H	Magnetic feild vector (in A/m)
В	Magnetic flux density vector (in
	$Wb/m^2 = T$)
ϵ	Electric permittivity
μ	Magnetic permeability
μ_0	Magnetic permeability in vacuum

9 Number theory, algorithm theory, and other notations

9.1 Mathematical symbols

	Q.E.D.
≜	Equal by definition
:=,←	Assignment [17]
≠	Not equal
∞	Infinity
j	$\sqrt{-1}$

9.2 Calculus

∇	Nabla operator (vector differential
	operator)
\oint_C	Closed line integral around the con-
	tour C
\iint_S	Sufarce integral over S enclosed by C

9.3 Operations

10	a	Absolute value of a				
lo	og	${\bf Base\text{-}10}$	logarithm	or	$\operatorname{decimal}$	loga-
		rithm				

lnNatual logarithm $\text{Re}\left\{x\right\}$ Real part of x $\operatorname{Im}\left\{ x\right\}$ Imaginary part of xphase (complex argument) $x \mod y$ Remainder, i.e., $x - y \lfloor x/y \rfloor$, for $y \neq 0$ $x \operatorname{div} y$ Quotient [17] $x \equiv y \pmod{m}$ Congruent, i.e., $m \setminus (x - y)$ [17] $\operatorname{frac}(x)$ Fractional part, i.e., $x \mod 1$ [8] $a \backslash b$, $a \mid b$ b is a positive integer multiple of a, i.e., $\exists n \in \mathbb{Z}_{++} \mid b = na \ [8, 17]$ $a \ \ b$, $a \ \ b$ b is not a positive integer multiple of $a, \text{ i.e., } \nexists n \in \mathbb{Z}_{++} \mid b = na \ [8, 17]$ Ceiling operation [8] $\lfloor \cdot \rfloor$ Floor operation [8]

9.4 Functions

 $\begin{array}{ll} \mathcal{O}(\cdot), O(\cdot) & \text{Big-O notation} \\ \Gamma(\cdot) & \text{Gamma function} \\ Q(\cdot) & \text{Quantization function} \end{array}$

10 Abbreviations

wrt. With respect to
st. Subject to
iff. If and only if
EVD Eigenvalue decomposition, or eigendecomposition [13]
SVD Singular value decomposition
CP CANDECOMP/PARAFAC

References

- Christopher M Bishop and Nasser M Nasrabadi. Pattern Recognition and Machine Learning. Vol. 4. 4. Springer, 2006.
- [2] Stephen Boyd, Stephen P. Boyd, and Lieven Vandenberghe. *Convex Optimization*. Cambridge university press, 2004.
- [3] Robert Grover Brown and Patrick YC Hwang. "Introduction to Random Signals and Applied Kalman Filtering: With MATLAB Exercises and Solutions". In: Introduction to random signals and applied Kalman filtering: with MATLAB exercises and solutions (1997).

- [4] Rama Chellappa and Sergios Theodoridis. Signal Processing Theory and Machine Learning. Academic Press, 2014. ISBN: 0-12-396502-0.
- [5] Paulo SR Diniz. Adaptive Filtering: Algorithms and Practical Implementation. Nowell, MA: Kluwer Academic Publishers, 2002.
- [6] Paulo SR Diniz, Eduardo AB Da Silva, and Sergio L Netto. *Digital Signal Processing: System Analysis and Design*. Cambridge University Press, 2010. ISBN: 1-139-49157-1.
- [7] Gene H Golub and Charles F Van Loan. Matrix Computations. JHU press, 2013. ISBN: 1-4214-0859-7.
- [8] Ronald L Graham et al. "Concrete Mathematics: A Foundation for Computer Science". In: *Computers in Physics* 3.5 (1989), pp. 106–107. ISSN: 0894-1866.
- [9] Simon S Haykin. Adaptive Filter Theory. Pearson Education India, 2002. ISBN: 81-317-0869-1.
- [10] Vinay K Ingle and John G Proakis. *Digital Signal Processing Using MAT-LAB*. Cole Publishing Company, 2000.
- [11] Basil Kouvaritakis and Mark Cannon. "Model Predictive Control". In: Switzerland: Springer International Publishing 38 (2016).
- [12] Alberto Leon-Garcia. Probability, Statistics, and Random Processes for Electrical Engineering. 3rd ed. edição. Upper Saddle River, NJ: Prentice Hall, 2007. ISBN: 978-0-13-147122-1.
- [13] Josef Nossek. Adaptive and Array Signal Processing. 2015.
- [14] Alan V. Oppenheim and Ronald W. Schafer. Discrete-Time Signal Processing: International Edition. 3ª edição. Upper Saddle River Munich: Pearson, Nov. 12, 2009. ISBN: 978-0-13-206709-6.
- [15] Kaare Brandt Petersen and Michael Syskind Pedersen. "The Matrix Cook-book". In: Technical University of Denmark 7.15 (2008), p. 510.
- [16] John Proakis and Masoud Salehi. *Digital Communications*. 5th ed. edição. Boston: Mc Graw Hill, Jan. 1, 2007. ISBN: 978-0-07-295716-7.
- [17] Kenneth H Rosen. "Discrete Mathematics and Its Applications (7Th Editio)". In: William C Brown Pub (2011).
- [18] Gilbert Strang et al. *Introduction to Linear Algebra*. Vol. 3. Wellesley-Cambridge Press Wellesley, MA, 1993.
- [19] Harry L Van Trees. Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory. John Wiley & Sons, 2002. ISBN: 0-471-09390-4.