Tömörítési hiba illusztrálása Gimppel

Lépések:

- 1. Importáltam az arcképem gimpbe
- 2. Ezután a Layer -> Transparancy beállításokban hozzáadtam egy Alpha-csatornát
- 3. Majd Free Select tool segítségével körbevágtam magam
- 4. Hozzáadtam egy új layert, majd rátettem egy háttérképet
- 5. A layerek sorrendjét megfordítottam
- 6. Átméreteztem magam, hogy ráférjek a képre
- 7. Átméreteztem a canvas méretet 600x600-ra

 Image
 Image ID

 Dimensions
 600 x 600

 Width
 600 pixels

 Height
 600 pixels

 Horizontal resolution
 300 dpi

 Vertical resolution
 300 dpi

 Bit depth
 24

Alap

A tömörítés mértékét a megadott formula segítségével tudjuk kiszámolni tömörítés mértéke = 24 [bit/pixel] / (adott képfájl mérete [bit] / pixelek száma [db]) 24/(762168/(600*600)) = 11.336

Az elkészült kép 20-as ás 90-es minőségben:

20 90

Az exportált képeket megnyitottam Gimp-ben 2 db layerként. Átállítottam a layer műveletet különbségre, majd utána a 2 layert összemostam, világosítottam és az alábbi kép lett az alábbi hisztogram értékekkel

A képek a Beadando1/Beadando1/images/original mappában találhatóak

Hisztogramtranszformációk

Lineáris széthúzás

A képek világosodtak, és részletesebbek lettek. peppers_sotet

.

Lineárisan széthúzott

boat_sotet alap

boat_sotet lineárisan széthúzott

Gyökös széthúzás

A peppers_sotet, peppers_vilagos és lena_vilagos-ra teszteltem le a gyökös széthúzást. lena_vilagos

A lena_vilagos kép világosabb és kevésbé részletes lett

A peppers_sotet kép világosabb és részletesebb lett

peppers_vilagos

Alap

Módosított

A peppers_vilagos világosabb és kevésbé részletes lett

Négyzetes széthúzás

peppers_sotet

A peppers_sotet sötétebb és kevésbé részletes lett

lena_vilagos

A lena_vilagos sötétebb és részletesebb lett

peppers_vilagos

a peppers_vilagos sötétebb és részletesebb lett

A hisztogramokon megfigyelhető, hogy az algoritmus feltölti színekkel a képeket, ettől a világos képek részletesebbek lesznek, de a sötétek kevésbé részletesek.

A hisztogram széthúzáshoz a main.cpp fájlban található 68-77 sorban a függvény meghívása a képekre, a függvények a 349, 159, 168, 177 sorokban találhatóak

Hisztogramkiegyenlítés

A lineáriskiegyenlítés során a program jobban kiegyenlíti a színeket.

Kiegyenlítette a képen a színeket, tehát nem volt a kép egyik fele túl sötét, a másik túl világos, ezzel az algoritmussal egységesebbé tettük.

A hisztogram kiegyenlítéshez a main.cpp fájlban található 80-81 sorban a függvény meghívása a képekre, a függvények a 414, 186 sorokban találhatóak

Konvolúciók

Laplace és a Sobel algoritmus eltünteti a színeket, és csak a sötét területek körvonalait rajzolja ki.

4 operátorral, 8 operátorral, 4 operátorral és hisztogramkiegyenlítéssel.

A saját képem (montage) és lena képeket teszteltem.

lena

montage

lena:

montage

A konvoluciokhoz a main.cpp fájlban található 85-86 sorban a függvény meghívása a képekre, a függvények a 465, 284, 309, 327, 186 sorokban találhatóak

Wallis

A kontraszt és világosság értékének állításával a következő képeket kaptuk:

bridge:

Md:128,Sd:100

Md: 32, Sd: 100

Md: 256, Sd: 100

Md: 256, Sd: 50

montage:

Md: 256, Sd: 50

A wallis szűrökhöz a main.cpp fájlban található 89-99 sorban a függvény meghívása a képekre, a függvények a 585, 208, 231 sorokban találhatóak

Nemlineáris szűrők

Ezek az algoritmusok zajok szűrésére alkalmasak. Összehasonlíthatjuk a pixelértékeinket a lokális átlagok értékeivel, amelyet egy értékhez hasonlítunk, vehetjük egy "ablakon" belül a pixelek mediánját, és külön meghatározzuk az oszlopok mediánját, majd ennek a számhalmaznak vesszük a mediánját.

A nem-lineáris szűrőköz a main.cpp fájlban található 102-104 sorban a függvény meghívása a képekre, a függvények a 620, 250 sorokban találhatóak

saját képem zajjal:

szürke zajos

Outlier

Median

Fast Median

Barbara 0.01

Zajos

Outlier

Median

Fast Median

Barbara 0.025

Zajos

Outlier

Median

Fast Median

