Мы будем обозначать через $\pi(x)$ количество простых натуральных чисел, не превосходящих x. История определения асимптотики функции $\pi(x)$ такова:

- 1. Евклид: $\pi(x) \to \infty$ при $x \to \infty$;
- 2. Эйлер: $\frac{\pi(x)}{x} \to 0$ при $x \to \infty$;
- 3. Чебышёв (1848 г.): Если предел $\frac{\pi(x)\ln(x)}{x}$ существует, то он равен 1;
- 4. Адамар и Валле-Пуссен (1896 г.): $\frac{\pi(x)\ln(x)}{x} \to 1$ при $x \to \infty$.

В этом листке мы докажем неравенства

$$a \frac{x}{\ln x} \leqslant \pi(x) \leqslant b \frac{x}{\ln x}.$$

Константы, которые получатся у нас, будут такими: $a=\frac{\ln 2}{2}\approx 0.3465,$ а $b=5\ln 2\approx 3.4657.$ У Чебышёва константы были более точные: $a\approx 0.92129,$ $b\approx 1.10555.$

Задача 1. (*Нижняя оценка для НОК*) Обозначим НОК $[1,2,\ldots,2n+1]$ через K, а $\int\limits_0^1 \left(x(1-x)\right)^n dx$ через I. Докажите, что: **a)** $I<\frac{1}{4^n};$ **б)** число $K\cdot I$ целое; **в)** $K>4^n.$

Задача 2. (*Нижняя оценка для* $\pi(x)$) В обозначениях предыдущей задачи докажите, что

a)
$$K < (2n+1)^{\pi(2n+1)};$$
 6) $\pi(2n+1) > \frac{2n}{\log_2(2n+1)};$ B) $\frac{\ln 2}{2} \frac{x}{\ln x} \leqslant \pi(x)$

Задача 3. (Оценка произведения простых чисел)

- а) Докажите, что число C^m_{2m-1} больше произведения всех простых чисел, больших m, но меньших 2m;
- **б)** Докажите, что $\prod_{p\leqslant x} p < 4^x$, где $\prod_{p\leqslant x} p$ произведение всех простых чисел, не превосходящих x.

Задача 4. (Верхняя оценка для $\pi(x)$) Докажите, что

a)
$$\pi(x)^{\pi(x)/2} \leqslant \pi(x)! \leqslant 4^x$$
; 6) $\pi(x) \leqslant 5 \ln 2 \frac{x}{\ln x}$.

Задача 5. Пусть $p_1, p_2, \ldots, -$ последовательность всех простых чисел. Докажите, что найдутся такие константы α и β , что $\alpha n \ln n < p_n < \beta n \ln n$ для всех n.

Задача 6. Докажите, что ряд из обратных простых чисел расходится.

$\begin{bmatrix} 1 \\ a \end{bmatrix}$	1 6	1 B	2 a	2 6	2 B	3 a	3 6	4 a	4 6	5	6