Solution to Cal State Hayward Problem of the month March 2017

Galen Novello

March 9, 2017

Problem: Suppose $f: P(S) \to P(S)$ satisfies $A \subset B \Rightarrow f(A) \subset f(B)$. Show there is $X \subset S$ such that f(X) = X.

Solution: Consider
$$A = \{A \subset S | A \subset f(A)\}$$
 and let $X = \bigcup_{A} A$. I claim that $f(X) = X$.

First note that X is non-empty since it contains $f(\emptyset)$. If $f(\emptyset) = \emptyset$ we're done. $\emptyset \subset A$ for all $A \in P(S)$, so $\emptyset \subset f(\emptyset) \in P(S)$. Furthermore $\emptyset \subset f(\emptyset) \Rightarrow f(\emptyset) \subset f(f(\emptyset))$, so $f(\emptyset) \in \mathcal{A}$ which implies $f(\emptyset) \subset X$ by construction of X. Therefore, $\emptyset \neq f(\emptyset) \subset X$ and X is not empty.

To see that $X \subset f(X)$, pick $x \in X$. Then $x \in A$ for some $A \in \mathcal{A}$. $A \subset X$ implies $f(A) \subset f(X)$, but $A \subset f(A) \Rightarrow f(A) \in f(f(A))$ so $f(A) \in \mathcal{A}$. So $f(A) \subset f(X)$. Furthermore, by construction of \mathcal{A} , $A \subset f(A)$ so

$$x \in A \subset f(A) \subset f(X) \to X \subset f(X)$$
.

To see that $f(X) \subset X$ note that $X \subset f(X) \Rightarrow f(X) \subset f(f(X))$ by construction of f hence $f(X) \in \mathcal{A}$. All members of \mathcal{A} are subsets of X by construction of X, so $f(X) \subset X$.

So
$$X \subset f(X)$$
 and $f(X) \subset X$ so $f(X) = X$ as desired.