

ARITHMETIC CODING

Prof. Pintu Chauhan, Assistant Professor Information Technology Engineering

CHAPTER-6

Arithmetic Coding

Representation of Real Numbers in Binary

 Any real number x in the interval [0,1) can be represented in binary as .b₁b₂... where b_i is a bit.

Real-To-Binary Conversion Algortihm

```
\begin{split} L := 0; R := 1; i := 1 \\ \text{while } x > L * \\ \text{if } x < (L + R) / 2 \text{ then } b_i := 0 ; R := (L + R) / 2; \\ \text{if } x & \geq (L + R) / 2 \text{ then } b_i := 1 ; L := (L + R) / 2; \\ \text{i } := i + 1 \\ \text{end} \{ \text{while} \} \\ b_j := 0 \text{ for all } j \geq i \end{split}
```

* Invariant: x is always in the interval [L,R)

Arithmetic Coding

- Basic idea in arithmetic coding (Shannon-Fano- Elias):
 - Represent each string x of length n by a unique interval [L,R) in [0,1).
 - The width r-l of the interval [L,R) represents the probability of x occurring.
 - The interval [L,R) can itself be represented by any number, called a tag, within the half open interval.
 - The k significant bits of the tag .t₁t₂t₃... is the code of x. That is, .
 .t₁t₂t₃...t_k000... is in the interval [L,R).

Example of Arithmetic Coding

Some Tags are Better than others

Code Generation from Tags

- If binary tag is $t_1t_2t_3... = (L+R)/2$ in [L, R) then we want to choose k form the code $t_1t_2...t_k$.
- Short code :
 - Choose k to be as small as possible so that $L \leq t_1 t_2 \ldots t_k 0 0 \ldots < R$
- Guarantee Code :
 - o Choose $k = [\log_2 (1/(R L))] + 1$
 - o $L \leq t_1t_2 \ldots t_k b_1b_2b_3 \ldots < R$ for any bits $b_1b_2b_3 \ldots$
 - For fixed length strings provides a god prefix code.
 - Example: [.0000000...., .000010010...), tag = .000001001.... short code: 0

Guaranteed code: 000001

Guarantee Code Example

Arithmetic Coding Algorithm

$$C(x_i) = P(x_0) + P(x_1) + ... P(x_i)$$

```
Initialize L: = 0 and R: = 1;

For i = 1 to n do

W:= R - L;

L: = L + W*C(x<sub>i-1</sub>);

R := L + W*C(x<sub>i</sub>);

T: = (L+R)/2;

Choose code for the tag
```


$$P(A) = \frac{1}{4}, P(b) = \frac{1}{2}, P(c) = \frac{1}{4}$$

$$C(a) = \frac{1}{4}$$
, $C(b) = \frac{3}{4}$, $C(c) = 1$

abca

	symbol	W	L	R
W := R - L; L := L + W C(x); R := L + W P(x)			0	1
	а	1	0	1/4
	b	1/4	1/16	3/16
	С	1/8	5/32	6/32
	а	1/32	5/32	21/128

tag = (5/32 + 21/128)/2 = 41/256 = .001010010... L = .001010000... R = .001010100... code = 00101 prefix code = 00101001

R

Example

P(A) =
$$\frac{1}{4}$$
, P(b) = $\frac{1}{2}$, P(c) = $\frac{1}{4}$
C(a) = $\frac{1}{4}$, C(b) = $\frac{3}{4}$, C(c) = 1
bbbb

symbol W

L

W := R - L;
L := L + W C(x);

R := L + W P(x)

Decoding

- Assume the length is known to be 3
- 0001 which converts to the tag .0001000

Decoding

- Assume the length is known to be 3
- 0001 which converts to the tag .0001000

output a

Decoding

- Assume the length is known to be 3
- 0001 which converts to the tag .0001000

Arithmetic Decoding Algortihm

$$C(x_i) = P(x_0) + P(x_1) + ... P(x_i)$$

Decode b₁b₂ ...b_m, the number of symbols in n

```
Initialize L:= 0 and R := 1;

t:= .b_1b_2...b_m For i =

1 to n do

W := R-L;
Find j such that L + W*C(x_{j-1}) <= t < L + W*C(x_{j}) Output x_{j};

L := L + W*C(x_{j-1});
R := L + W*C(x_{j});
```


Decoding Example

$$P(a) = \frac{1}{4}$$
, $P(b) = \frac{1}{2}$, $P(c) = \frac{1}{4}$

$$C(a) = 0$$
, $C(b) = 1/4$, $C(c) = 3/4$

00101

Decoding Issues

- There are two ways for the decoder to know when to stop decoding.
 - 1. Transmit the length of the string
 - Transmit a unique end of string symbol

Practical Arithmetic Coding

- Scaling:
 - By scaling we can keep L and R in a reasonable range of values so that
 W = R L does not underflow.
 - The code can be produced progressively, not at the end.
 - Complicates decoding some.
- Integer arithmetic coding avoids floating point all together.

Issues with Arithmetic Coding

- The intervals are getting smaller as the sequence of symbols is getting longer.
- Arithmetic's (computations) on very small numbers results in underflow!
- Need to rescale at every step!

Representation of Real Number in Binary

 Always scale the interval to unit size, but X must be changed as part of the scaling

Binary Conversion with Scaling

```
y \coloneqq x; \ i \coloneqq 0

while \ y > 0^*

i \coloneqq i+1;

if \ y < 1/2 \ then \ b_i \coloneqq 0; \ y \coloneqq 2y;

if \ y \ge 1/2 \ then \ b_i \coloneqq 1; \ y \coloneqq 2y-1;

end\{while\}

b_j \coloneqq 0 \ for \ all \ j \ge i+1;
```

* Invariant : $x = b_1 b_2 b_i + y/2^i$

Proof of Invariant

- Initially $x = 0 + y/2^0$
- Assume x =.b₁b₂ ... b_i + y/2ⁱ

- Case 1. y < 1/2.
$$b_{i+1} = 0$$
 and y' = 2y
 $.b_1b_2 ... b_i b_{i+1} + y'/2^{i+1} = .b_1b_2 ... b_i 0 + 2y/2^{i+1}$
 $= .b_1b_2 ... b_i + y/2^i$
 $= x$

- Case 2.
$$y \ge 1/2$$
. $b_{i+1} = 1$ and $y' = 2y - 1$
 $.b_1b_2 ... b_i b_{i+1} + y'/2^{i+1} = .b_1b_2 ... b_i 1 + (2y-1)/2^{i+1}$
 $= .b_1b_2 ... b_i + 1/2^{i+1} + 2y/2^{i+1} - 1/2^{i+1}$
 $= .b_1b_2 ... b_i + y/2^i$
 $= x$

Excercise

$$x = 1/3$$

$$x = 17/27$$

Scaling

- Scaling:
 - By scaling we can keep L and R in a reasonable range of values so that
 W = R L does not underflow.
 - The code can be produced progressively, not at the end.
 - Complicates decoding some.

Scaling Algorithm for Arithmetic Coding

Lower Half

while [L, R) is contained in [0, .5) then L := 2L; R := 2R output 0, followed by C 1's C := 0.

Upper Half

while [L, R) is contained in [.5,1) then $L \coloneqq 2L - 1$; $R \coloneqq 2R - 1$ output 1, followed by $C \ 0's$ $C \coloneqq 0$.

Lower Half

while [L, R) is contained in [.25, .75) then L := 2L - .5; R := 2R - .5C := C + 1.

<u>b</u>aa

b<u>a</u>a

Scale middle half

b<u>a</u>a

ba<u>a</u>

• ba<u>a 01</u>

baa 01<u>1</u>

In end L < $\frac{1}{2}$ < R, choose tag to be $\frac{1}{2}$

Integer Implementation

- m bit integers
 - Represent 0 with 000...0 (m times)
 - Represent 1 with 111...1 (m times)
- Probabilities represented by frequencies
 - n_i is the number of times that symbol a_i occurs

$$- C_i = n_1 + n_2 + ... + n_{i-1}$$

$$- N = n_1 + n_2 + ... + n_m$$

$$W := R - L + 1$$

$$L' := L + \left\lfloor \frac{W \cdot C_i}{N} \right\rfloor$$

$$R := L + \left\lfloor \frac{W \cdot C_{i+1}}{N} \right\rfloor - 1$$

$$L := L'$$

Coding the i-th symbol using integer calculations. Must use scaling!

Arithmetic Coding with Context

- Maintain the probabilities for each context.
- For the first symbol use the equal probability model.
- For each successive symbol use the model for the previous symbol.

Arithmetic Coding with Context

- Simple solution Equally Probable Model.
 - Initially all symbols have frequency 1.
 - After symbol x is coded, increment its frequency by 1.
 - Use the new model for coding the next symbol.
- Example in alphabet a,b,c,d.

```
a a b a a c
a 1 2 3 3 4 5 5
b 1 1 1 2 2 2 2
c 1 1 1 1 1 1 1 1
d 1 1 1 1 1 1 1
```


Arithmetic Coding with Context

- Both compress very well. For m symbol grouping.
 - Huffman is within 1/m of entropy.
 - Arithmetic is within 2/m of entropy.
- Context
 - Huffman needs a tree for every context.
 - Arithmetic needs a small table of frequencies for every context.
- Adaptation
 - Huffman has an elaborate adaptive algorithm
 - Arithmetic has a simple adaptive mechanism.
- Bottom Line Arithmetic is more flexible than Huffman.

CHAPTER-7

Dictionary Coding

Review of Entropy Coding

Minimize the number of bits to code a, b, c based on the statistical properties of the source

Dictionary Coding

Both encoder and decoder are assumed to have the same dictionary (table)

Ziv-Lempel Coding (ZL or LZ)

- Named after J. Ziv and A. Lempel (1977).
- Adaptive dictionary technique.
 - Store previously coded symbols in a buffer.
 - Search for the current sequence of symbols to code.
 - If found, transmit buffer offset and length.

LZ77

Output triplet <offset, length, next>

Transmitted to decoder: 8 3 d 0 0 e 1 2 f

If the size of the search buffer is N and the size of the alphabet is M we need

$$\lceil \log(N+1) \rceil + \lceil \log(N+1) \rceil + \lceil \log M \rceil$$

bits to code a triplet.

Variation: Use a VLC to code the triplets!

PKZip, Zip, Lharc, PNG, gzip, ARJ

Drawback with LZ77

 Repetetive patterns with a period longer than the search buffer size are not found.

If the search buffer size is 4, the sequence a b c d e a b c d e a b c d e a b c d e ... will be expanded, not compressed.

LZ78

- Store patterns in a dictionary
- Transmit a tuple <dictionary index, next>

LZ78

LZW

- Modification to LZ78 by Terry Welch, 1984.
- Applications: GIF, v42bis
- Patented by UniSys Corp.
- Transmit only the dictionary index.
- The alphabet is stored in the dictionary in advance.

LZW

Input sequence:

a b c a b a b c

Output: dictionary index

Transmitted:

1 2 3 4 5

 1
 a
 6
 bc

 2
 b
 7
 ca

 3
 c
 8
 aba

 4
 d
 9
 abc

 5
 a b

Encoder dictionary:

Decoded:

a b c ab ab

1 a 6 bc
2 b 7 ca
3 c 8 aba
4 d
5 a b

Decoder dictionary:

GIF

- CompuServe Graphics Interchange Format (1987, 89).
- Features:
 - Designed for up/downloading images to/from BBSes via PSTN.
 - 1-, 4-, or 8-bit colour palettes.
 - Interlace for progressive decoding (four passes, starts with every 8th row).
 - Transparent colour for non-rectangular images.
 - Supports multiple images in one file ("animated GIFs").

GIF: Method

- Compression by LZW.
- Dictionary size 2^{b+1} 8-bit symbols
 - *b* is the number of bits in the palette.
- Dictionary size doubled if filled (max 4096).
- Works well on computer generated images.

GIF: Problems

- Unsuitable for natural images (photos):
 - Maximum 256 colors () bad quality).
 - Repetetive patterns uncommon () bad compression).
- LZW patented by UniSys Corp.
- Alternative: PNG

PNG: Portable Network Graphics

- Designed to replace GIF.
- Some features:
 - Indexed or true-colour images (· 16 bits per plane).
 - Alpha channel.
 - Gamma information.
 - Error detection.
- No support for multiple images in one file.
 - Use MNG for that.
- Method:
 - Compression by LZ77 using a 32KB search buffer

CHAPTER-6

Context Coding

Context Coding

 $H(X|Y) \le H(X) \longrightarrow H(X|Y)$ takes fewer bits to code than H(X)

Context Coding

- The distribution of the next symbol based on the current context (past symbols) is skewed.
 - Next symbol is likely to be a certain alphabet the than others.
 - Less information
 - Easier to code.

Context Coding

 From information theory – The lower the information, the fewer bits are needed to code the symbol.

$$\inf(a) = \log_2(\frac{1}{P(a)})$$

Examples:

$$-P(a) = 1023/1024$$
, inf(a) = .000977

$$- P(a) = 1/2$$
, $inf(a) = 1$

$$-P(a) = 1/1024$$
, inf(a) = 10

Review of Entropy

 Entropy is the expected number of bit to code a symbol in the model with a_i having probability P(a_i).

$$H = \sum_{i=1}^{m} P(a_i) log_2(\frac{1}{P(a_i)})$$

- Good coders should be close to this bound.
 - Arithmetic
 - Huffman
 - Golomb
 - Tunstall

Problem with Context Coding

- Context explosion!
 - Suppose we want to use 5-letter context to predict the next letter in an English paragraph.
 - Number of contexts = 24⁵.
 - No storage for contexts.
 - Speed

Which Context to Use?

- Using previous table, which context for italicized letter?
 - "We pulled a heavy wagon."
 - "The theatre was fun."
 - "'Twas theere haus!"

PPM- Prediction with Partial Matching

- Cleary and Witten (1984)
- Uses only current contexts (not all possible contexts)
- Uses arithmetic coding to code the context

JBIG

- Coder for binary images
 - documents
 - graphics
- Codes in scan line order using context from the same and previous scan lines.

Uses adaptive arithmetic coding with context.

JBIG Example

$$H = \frac{10}{110} \log(\frac{110}{10}) + \frac{100}{110} \log(\frac{110}{100}) = .44$$

$$H = \frac{15}{65}\log(\frac{65}{15}) + \frac{50}{65}\log(\frac{65}{50}) = .78$$

Issue with Context

- Context dilution
 - If there are too many contexts then too few symbols are coded in each context, making them in effective because of the zero-frequency problem.
- Context saturation
 - If there are too few contexts then the contexts might not be as good as having more context
- Wrong context
 - poor predictors.

Burrows – Wheeler Transform

- Burrows-Wheeler (1994)
- BW Transform creates a representation of the data which has a small working set.
- The transformed data is compressed with move to front compression.
- The decoder is quite different from the encoder.
- The algorithm requires processing the entire string at once (it is not on-line).
- It is a remarkably good compression method.

- abracadabra
- Create all cyclic shifts of the string.
 - 0 abracadabra
 - 1 bracadabraa
 - 2 racadabraab
 - 3 acadabraabr
 - 4 cadabraabra
 - 5 adabraabrac
 - 6 dabraabraca
 - 7 abraabracad
 - 8 braabracada
 - 9 raabracadab
 - 10 aabracadabr

2. Sort the strings alphabetically in to array A

0	abracadabra	A_0	aabracadabr
1	bracadabraa	1	abraabracad
2	racadabraab	2	abracadabra
3	acadabraabr	3	acadabraabr
4	cadabraabra	→ 4	adabraabrac
5	adabraabrac	5	braabracada
6	dabraabraca	6	bracadabraa
7	abraabracad	7	cadabraabra
8	braabracada	8	dabraabraca
9	raabracadab	9	raabracadab
10	aabracadabr	10	racadabraab

3. L = the last column

```
Α
```

- 0 aabracadabr
- 1 abraabracad
- 2 abracadabra
- 3 acadabraabr
- 4 adabraabrac
- 5 braabracada
- 6 bracadabraa
- 7 cadabraabra
- 8 dabraabraca
- 9 raabracadab
- 10 racadabraab

L = rdarcaaaabb

 Transmit X the index of the input in A and L (using move to front coding).

Α

- 0 aabracadabr
- 1 abraabracad
- 2 abracadabra
- 3 acadabraabr
- 4 adabraabrac
- 5 braabracada
- 6 bracadabraa
- 7 cadabraabra
- 8 dabraabrada
- 9 raabracadab
- 10 racadabraab

L = rdarcaaaabb

X = 2

Why does BW Works?

- Ignore decoding for the moment.
- The prefix of each shifted string is a context for the last symbol.
 - The last symbol appears just before the prefix in the original.
- By sorting, similar contexts are adjacent.
 - This means that the predicted last symbols are similar.

- We first decode assuming some information. We then show how compute the information.
- Let A^s be A shifted by 1

Α		Δs	
0	aabracadabr	Λ 0	raabracadab
1	abraabracad	1	dabraabraca
2	abracadabra	2	aabracadabr
3	acadabraabr	3	racadabraab
4	adabraabrac	4	cadabraabra
5	braabracada	5	abraabracad
6	bracadabraa	6	abracadabra
7	cadabraabra	7	acadabraabr
8	dabraabraca	8	adabraabrac
9	raabracadab	9	braabracada
10	racadabraab	10	bracadabraa

- Assume we know the mapping T[i] is the index in As
 of the string i in A.
- T = [2 5 6 7 8 9 10 4 1 0 3]

Α			Δs	
<i>,</i> .	0	aabracadabr	~ 0	raabracadab
	1	abraabracad	1	dabraabraca
	2	abracadabra	2	aabracadabr
	3	acadabraabr	3	racadabraab
	4	adabraabrac	4	cadabraabra
	5	braabracada	5	abraabracad
	6	bracadabraa	6	abracadabra
	7	cadabraabra	7	acadabraabr
	8	dabraabraca	8	adabraabrac
	9	raabracadab	9	braabracada
	10	racadabraab	10	bracadabraa

 Let F be the first column of A, it is just L, sorted.

 Follow the pointers in T in F to recover the input starting with X.

$$X = 2$$

a

ab

abr

- Why does this work?
- The first symbol of A[T[i]] is the second symbol of A[i] because A^s[T[i]] = A[i].

Α			Δs	
, ,	0	aabracadabr	Λ 0	raabracadab
	1	abraabracad	1	dabraabraca
	2	abracadabra	2	aabracadabr
	3	acadabraabr	3	racadabraab
	4	adabraabrac	4	cadabraabra
	5	braabracada	5	abraabracad
	6	bracadabraa	6	abracadabra
	7	cadabraabra	7	acadabraabr
	8	dabraabraca	8	adabraabrac
	9	raabracadab	9	braabracada
	10	racadabraab	10	bracadabraa

How do we compute T from L and X?

Note that L is the first column of As and As is in the same order as A.

If i is the k-th x in F then T[i] is the k-th x in L.

Notes on BW

- Alphabetic sorting does not need the entire cyclic shifted inputs. You just have to look at long enough prefixes.
 - A bucket sort will work here.
- Requires entire input. In practice, that's impossible.
 - Break input into blocks.
- There are high quality practical implementations:
 - Bzip
 - Bzip2 (public domain)

Move To Front Algorithm

- MTF is part of Burrows-Wheeler, basis for bzip2!
- Non-numerical data.
- The data have a relatively small working set that changes over the sequence.
 - Example: a b a b a a b c c b b c c c c b d b c c
- Move to Front algorithm:
 - Symbols are kept in a list indexed 0 to m-1.
 - To code a symbol output its index and move the symbol to the front of the list.

Example: a b a b a a b c c b b c c c c b d b c c

0 1 2 3 a b c d

Example: ababaccbbccccbdbcc
 01

0 1 2 3 a b c d
0 1 2 3 b a c d

Example: ababaabccbbccccbdbcc
 011

0 1 2 3 b a c d
0 1 2 3 a b c d

Example: a b a b a a b c c b b c c c c b d b c c
 0 1 1 1

Example: ababaabccbbccccbdbcc
 01111

0 1 2 3 b a c d 1 2 3 a b c d

Example: ababaabccbbccccbdbcc
 011110

0 1 2 3 a b c d

Example: <u>a b a b a a b</u> c c b b c c c c b d b c c
 0 1 1 1 1 0 1

Example: ababaabccbbcccbbbcccbbbcc
 01111012

Example: <u>a b a b a a b c c b b c c c c b d b c c</u>
 0 1 1 1 1 0 1 2 0 1 0 1 0 00 1 3 1 2 0

0 1 2 3 c b d a

Example: <u>a b a b a a b c c b b c c c c b d b c c</u>
 0 1 1 1 1 0 1 2 0 1 0 1 0 00 1 3 1 2 0

Frequencies of {a, b, c, d} a b c d 4 7 8 1

Frequencies of {0, 1, 2, 3} 0 1 2 3 8 9 2 1

Input:

Output

00000000100000000200000000300000000

Frequencies of a b c d a b c d 10 10 10 10

Frequencies of 0 1 2 3 0 1 2 3 3 1 1 1 1

Input:

Output

00000000100000000200000000300000000

Frequencies of a b c d a b c d 10 10 10 10

Frequencies of 0 1 2 3 0 1 2 3 3 1 1 1 1

DIGITAL LEARNING CONTENT

Parul[®] University

