<u>Calculator-assumed Solutions</u>

- The number of phones she is given to repair for the week. 11.
 - She fixes 23 per day, for 4 days 23 x 4 = 92 phones (b)

 - $\frac{108}{23}$ = 4.69565 days (c) $0.69565 \times 8 = 5.5652$ hours

5 hours and 34 minutes

- $T_1 = 155$ $T_2 = 128$ $T_3 = 99$ $T_4 = 68$ (d) $T_{n+1} = T_n - (25 + 2n)$ $T_0 = 180$ [6]
- $x^2 + y^2 = 4$ 12.
 - $\tan \theta = \sqrt{3}$ $\therefore \theta = \frac{\pi}{3}$ radians (b)
 - radius = 2 units $OB = \frac{2}{\cos \frac{\pi}{3}} = 4$ (c)
 - Therefore area of $\triangle AOB = \frac{1}{2}(4)\sqrt{3} = 2\sqrt{3}$ units²

Area of sector = $\frac{1}{2}r^2\theta = \frac{1}{2}(2)^2 \left(\frac{\pi}{3}\right)$ = 3 units²

Area of shaded part = triangle - sector

 $= 2\sqrt{3} - \frac{2\pi}{3} = 1.37$ units² (3 sig fig) [6]

$$5.1 \text{ seconds}$$
 $v(t) = -9.8t + 25$

(b)
$$v(0) = 25$$

Maximum height is 31.89 m when t = 2.55 sec (c)

$$\frac{31.89 \times 2}{2.55 \times 2}$$
 = 12.5 m/s

14. (a)
$$f(x) = (2 + x)^2 = 4 + 4x + x^2$$

$$\lim_{h \to 0} \frac{(2+x+h)^2 - (2+x)^2}{h} = 2x + 4$$

(i) (b)

(ii) 18
(c)
$$p'(x) = 3x^2 - 3a$$

$$f'(x) = 3x^2 - 3a$$

$$0 = 3(\sqrt{2})^2 - 3a$$

a = 2

$$0 = 3(\sqrt{2})^{2} - 3a$$

$$a = 2$$

$$-\sqrt{2} = (\sqrt{2})^{3} - 3(2)(\sqrt{2}) + b$$

$$b = 3\sqrt{2}$$

15. (a)
$$3x^2 - \frac{4}{x^2} - 11 = 0$$
$$x = -2 \text{ or } x = 2$$

(b)

		-2		2	
у'	+	0	_	0	+
У	1	-	↓	-	1

x = -2 Maximum

x = 2 Minimum

(c)
$$y = x^3 - 11x + \frac{4}{x} + c$$

 $c = 13$

$$c = 13$$

$$y = x^3 - 11x + \frac{4}{x} + 13$$

(d)

[10]

(ii) $357980 = \frac{n}{2}(23 + 2534)$ $n = 280$ (b) (i) $T_{n+1} = \frac{1}{4}T_n$ $T_1 = 12$ $S = \frac{12}{1 - \frac{1}{4}} = 16$ (ii) $\sqrt{\frac{1}{4}}$ (b) $\sqrt{\frac{1}{4}}$ $\sqrt{\frac{1}{4}}}$ $\sqrt{\frac{1}{4}}$ $\sqrt{\frac{1}{4}}$ $\sqrt{\frac{1}{4}}}$ $\sqrt{\frac{1}{4}}}$ $\sqrt{\frac{1}{4}}$ $\sqrt{\frac{1}{4}}}$	16.	(a)	(i) $T_{100} = 23 + (99)(9)$ = 914	✓ ✓	
17. (a) 92°C (initial temp of tea)			(ii) $357980 = \frac{n}{2}(23 + 2534)$	✓ ✓	
17. (a) 92°C (initial temp of tea)		(b)	(i) $T_{n+1} = \overline{4}T_n$ $T_1 = 12$ $S_{\infty} = \frac{12}{1} = 16$	√ √	
22°C (room temp) (b) After 4.12 mins and before 7.45 mins $4.12 \le t \le 7.45$ (c) Horizontal asymptote $y = 22$ The tea will cool at a decreasing rate as it approaches room temperature which is 22°. [6] 18. (a) $y = \frac{2}{x-3} + 2$ (b) $y = -3\sqrt{x+4}$ $y = \left(\frac{1}{2}\right)^x - 4$ (c) $y = \left(\frac{1}{2}\right)^x - 4$ (d) Pr(X \(\text{O}\)Y) = Pr(X) \(\text{X} \) Pr(Y) if independent Pr(X \(\text{U}\)Y) = Pr(X) \(\text{Y} \) Pr(Y) = Pr(X) \(\text{X} \) Pr(Y) \(\text{Y} \) Pr(Y) P			(ii) $1 - \frac{1}{4}$	$\checkmark\checkmark$	[8]
(b) After 4.12 mins and before 7.45 mins $4.12 \le t \le 7.45$ (c) Horizontal asymptote $y = 22$ The tea will cool at a decreasing rate as it approaches room temperature which is 22° . [6] 18. (a) $y = \frac{2}{x-3} + 2$ (b) $y = -3\sqrt{x} + 4$ $y = \left(\frac{1}{2}\right)^x - 4$ (c) $y = \left(\frac{1}{2}\right)^x - 4$ (d) $y = \left(\frac{1}{2}\right)^x - 4$ (e) $y = \left(\frac{1}{2}\right)^x - 4$ (f) $y = \left(\frac{1}{2}\right)^x - 4$ (g) $y = \left(\frac{1}{2}\right)^x - 4$ (h) $y = \left(\frac{1}{2}\right)^x - 4$ (e) $y = \left(\frac{1}{2}\right)^x - 4$ (f) $y = \left(\frac{1}{2}\right)^x - 4$ (g) $y = \left(\frac{1}{2}\right)^x - 4$ (h) $y = \left(\frac{1}{$	17.	(a)		✓	
(c) Horizontal asymptote $y = 22$ The tea will cool at a decreasing rate as it approaches room temperature which is 22° . 18. (a) $y = \frac{2}{x-3} + 2$ (b) $y = -3\sqrt{x} + 4$ (c) $y = \left(\frac{1}{2}\right)^x - 4$ (d) $y = \left(\frac{1}{2}\right)^x - 4$ (e) $y = \left(\frac{1}{2}\right)^x - 4$ (f) $y = \left(\frac{1}{2}\right)^x - 4$ (g) $y = \left(\frac{1}{2}\right)^x - 4$ (h) $y = \left(\frac{1}{2}\right)^x - 4$ (c) $y = \left(\frac{1}{2}\right)^x - 4$ (d) $y = \left(\frac{1}{2}\right)^x - 4$ (e) $y = \left(\frac{1}{2}\right)^x - 4$ (f) $y = \left(\frac{1}{2}\right)^x - 4$ (g) $y = \left(\frac{1}{2}\right)^x - 4$ (h) $y = \left(\frac{1}{2}\right)^x - 4$ (e) $y = \left(\frac{1}{2}\right)^x - 4$ (f) $y = \left(\frac{1}{2}\right)^x - 4$ (g) $y = \left(\frac{1}{2}\right)^x - 4$ (g) $y = \left(\frac{1}{2}\right)^x - 4$ (h) $y = \left(\frac{1}{2}\right)^$		(b)	After 4.12 mins and before 7.45	mins	
temperature which is 22°. \checkmark [6] 18. (a) $y = \frac{2}{x-3} + 2$ \checkmark (b) $y = -3\sqrt{x} + 4$ \checkmark [6] 19. (a) 0.2 \checkmark (b) 0.5 \checkmark (c) 0.3 \checkmark (d) $Pr(X \cap Y) = Pr(X) \times Pr(Y)$ if independent $Pr(X \cup Y) = Pr(X) + P(Y) - Pr(X \cap Y)$ \checkmark $Pr(X) + Pr(Y) - Pr(X \cup Y) = Pr(X) \times Pr(Y)$ \checkmark $Pr(X) + Pr(Y) - Pr(X \cup Y) = Pr(X) \times Pr(Y)$ \checkmark $Pr(X) + Pr(Y) - Pr(X \cup Y) = Pr(X) \times Pr(Y)$ \checkmark $Pr(X) + Pr(Y) = R$ $0.5 + R - 0.8 = 0.5R$ $R = 0.6 = Pr(Y)$ $R = 0.5R$ $R = 0.6 = Pr(Y)$ $R = 0.5R$ $R = 0.6 = Pr(Y)$ $R = 0.5R$ $R = 0.5R$ $R = 0.6 = Pr(Y)$ $R = 0.5R$ $R = 0.6 = Pr(Y)$ $R = 0.5R$		(c)	Horizontal asymptote $y = 22$	·	
(b) $y = -3\sqrt{x+4}$					[6]
(b) $y = -3\sqrt{x+4}$	10	(2)	$y = \frac{2}{x - 3} + 2$	4.4	
(c) $y = \left(\frac{1}{2}\right)^{x} - 4$	10.	(a) (b)	$y = -3\sqrt{x+4}$		
19. (a) 0.2			$y = \left(\frac{1}{2}\right)^x - 4$	√ ✓	[6]
(b) 0.5 (c) 0.3 (d) Pr(X ∩ Y) = Pr(X) x Pr(Y) if independent Pr(X ∪ Y) = Pr(X) + P(Y) - Pr(X ∩ Y) Pr(X) + Pr(Y) - Pr(X ∪ Y) = Pr(X) x Pr(Y) Let Pr(Y) = k 0.5+ k - 0.8 = 0.5k k = 0.6 = Pr (Y) ✓ (6) 20. (a) 1, 3, 7, 15, T _{n+1} = T _n + 2 ⁿ T ₁ = 1	19.		0.2	✓	
(d) $Pr(X \cap Y) = Pr(X) \times Pr(Y)$ if independent $Pr(X \cup Y) = Pr(X) + P(Y) - Pr(X \cap Y)$ \checkmark $Pr(X) + Pr(Y) - Pr(X \cup Y) = Pr(X) \times Pr(Y)$ \checkmark Let $Pr(Y) = k$ 0.5 + k - 0.8 = 0.5k $k = 0.6 = Pr(Y)$ \checkmark [6] 20. (a) $1, 3, 7, 15,$ $T_{n+1} = T_n + 2^n$ $T_1 = 1$	10.	(b)	0.5	✓	
Pr(X) + Pr(Y) - Pr(X U Y) = Pr(X) x Pr(Y) Let Pr(Y) = k $0.5+ k - 0.8 = 0.5k$ $k = 0.6 = Pr(Y)$ 20. (a) 1, 3, 7, 15, $T_{n+1} = T_n + 2^n T_1 = 1$			$Pr(X \cap Y) = Pr(X) \times Pr(Y)$ if inde	ependent	
Let $Pr(Y) = k$ 0.5 + k - 0.8 = 0.5k $k = 0.6 = Pr(Y)$ \checkmark [6] 20. (a) $1, 3, 7, 15,$ $T_{n+1} = T_n + 2^n$ $T_1 = 1$					
$k = 0.6 = Pr (Y)$ 20. (a) 1, 3, 7, 15, $T_{n+1} = T_n + 2^n T_1 = 1$			Let $Pr(Y) = k$, ()	
$T_{n+1} = T_n + 2^n$ $T_1 = 1$				✓	[6]
	20.	(a)			
		(b)		∨ ∨ ✓	[3]

25. (a)

(b) (i) 0.5323

(ii) 0.2726

(iii) 0.51

(iv) 0.8026

/ / /

✓

/

[7]

26. The particle's initial displacement is 5 m to the right of the origin.

 $v = 3t^2 - 12t$... Initial velocity = 0

[2]