Folha 4 - Espaços Vectoriais

- 1. Prove que $\mathbb{R}^2 = \{(x_1, x_2) : \forall i = 1, 2\}$, algebrizado com as operações usuais constitui um espaço vectorial real.
- 2. Prove que $\mathcal{M}_{2\times 2}(\mathbb{R})=\left\{\begin{pmatrix} a & b \\ c & d \end{pmatrix}: a,b,c,d\in\mathbb{R}\right\}$, algebrizado com a adição de matrizes e multiplicação de um número real por uma matriz, é um espaço vectorial real.
- 3. Averigue se \mathbb{R}^2 , algebrizado com as operações seguintes, é um espaço vectorial real:

$$\text{(a) } \left\{ \begin{array}{l} (x_1,x_2) + (y_1,y_2) = (x_1+y_1,x_2+y_2) : \forall x_i,y_i \in \mathbb{R}, \forall i=1,2, \\ k(x_1,x_2) = (kx_1,x_2), \forall x_i,y_i \in \mathbb{R}, \forall i=1,2, \forall k \in \mathbb{R}. \end{array} \right.$$

(b)
$$\begin{cases} (x_1, x_2) + (y_1, y_2) = (x_1 y_1, x_2 y_2) : \forall x_i, y_i \in \mathbb{R}, \forall i = 1, 2, \\ k(x_1, x_2) = (k x_1, k x_2), \forall x_i, y_i \in \mathbb{R}, \forall i = 1, 2, \forall k \in \mathbb{R}. \end{cases}$$

4. Considere o subconjunto de \mathbb{R}^2 ,

$$B = \left\{ x = \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) \in \mathbb{R}^2 : x_1 = x_2 \right\}$$

- (a) Prove que B é um subespaço de \mathbb{R}^2 .
- (b) Geometricamente o que representa B?
- 5. Seja E o subconjunto de \mathbb{R}^2 definido por:

$$E = \left\{ x = \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) \in \mathbb{R}^2 : x_1 > 0 \right\}$$

- (a) Identifique geometricamente E?
- (b) Verifique se E é um subespaço de \mathbb{R}^2 .
- 6. Considerando o espaço vectorial \mathbb{R}^4 , determine quais dos seguintes subconjuntos são seus subespaços vectoriais:

(a)
$$A_1 = \{(x, y, z, t) \in \mathbb{R}^4 : x = y, z = t\}$$
,

(b)
$$A_2 = \{(x, y, z, t) \in \mathbb{R}^4 : x + y + z + t = 0\},$$

(c)
$$A_3 = \{(x, y, z, t) \in \mathbb{R}^4 : x = 1, y = 0, z + t = 1\}$$
,

(d)
$$A_4 = \{(x, y, z, t) \in \mathbb{R}^4 : z = x + 2y, t = x - 3y\},$$

(e)
$$A_5 = \{(x, y, z, t) \in \mathbb{R}^4 : xt = yz\}.$$

- 7. Considerando o espaço vectorial $M_{3\times3}(\mathbb{R})$, das matrizes reais quadradas de ordem 3, determine quais dos seguintes subconjuntos são seus subespaços vectoriais:
 - (a) o conjunto de todas as matrizes simétricas,
 - (b) o conjunto de todas as matrizes diagonais,
 - (c) o conjunto de todas as matrizes invertíveis,
 - (d) o conjunto de todas as matrizes triangulares superiores.
- 8. Seja $P_2=\{a_0+a_1x+a_2x^2:a_i\in\mathbb{R}; \forall i=0,1,2\}$, o espaço vectorial real dos polinómios de grau não superior a 2. Determine quais dos seguintes subconjuntos são subespaços vectoriais de P_2 :
 - (a) o conjunto dos polinómios de grau exactamente igual a 2,
 - (b) o conjunto dos polinómios de grau menor ou igual a 1.
- 9. No espaço vectorial \mathbb{R}^4 considere os subespaços A e B tais que:

$$A = <(1, 2, 0, 1), (-1, 1, 1, 1)>,$$

 $B = <(0, 0, 1, 1), (2, 2, 2, 2)>.$

Determine o subespaço $A \cap B$ e diga qual a dimensão deste subespaço.

10. Considere os seguintes subespaços vectoriais do espaço vectorial real \mathbb{R}^3 :

$$\begin{split} V_1 &= \left\{ (x,y,z) \in \mathbb{R}^3 : z = 0 \right\}, \\ V_2 &= \left\{ (x,y,z) \in \mathbb{R}^3 : y + z = 0, y - z = 0 \right\}, \\ V_3 &= \left\{ (x,y,z) \in \mathbb{R}^3 : x - y = 0, 2y + z = 0 \right\}, \\ V_4 &= \left\{ (x,y,z) \in \mathbb{R}^3 : x + y = 0 \right\}. \end{split}$$

(a) Mostre que

i.
$$V_3 = \left\{ (a, a, -2a) \in \mathbb{R}^3 : a \in \mathbb{R} \right\}$$
, ii. $V_2 = \left\{ (b, 0, 0) \in \mathbb{R}^3 : b \in \mathbb{R} \right\}$,

- (b) Diga, justificando, quais dos seguintes subconjuntos de \mathbb{R}^3 são subespaços vectoriais de \mathbb{R}^3 :
 - i. $V_2 \cap V_4$,
 - ii. $V_3 \cup V_2$,
 - iii. $V_2 \cup V_1$.
- 11. Determine um conjunto de geradores para os seguintes subespaços vectoriais de \mathbb{R}^3 .
 - (a) $U_1 = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$,
 - (b) $U_1 = \{(x, y, z) \in \mathbb{R}^3 : x = y\},\$
 - (c) $U_1 = \{(x, y, z) \in \mathbb{R}^3 : 2x + 3y = 0, z = 0\}.$
- 12. Determine um conjunto de geradores para os seguintes subespaços vectoriais de $M_{2\times 2}(\mathbb{R})$.

(a)
$$\mathcal{M}_1(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2 \times 2}(\mathbb{R}) : a = 0 \right\}$$

(b)
$$\mathcal{M}_1(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2 \times 2}(\mathbb{R}) : b = c \right\}$$

13. Seja $P_2 = \{a_0 + a_1x + a_2x^2\}$: $a_i \in \mathbb{R}, \forall i = 0, 1, 2\}$, o espaço vectorial real dos polinómios de grau não superior a 2.

Averigue se os seguintes vectores constituem um conjunto de geradores de P_2 , send0:

(a)
$$p(x) = 1 + 2x + x^2$$
 e $q(x) = 2 + x^2$;

(b)
$$p(x) = 1 + x^2, q(x) = 1 - x + x^2 e r(x) = x - x^2$$
.

14. Considere, no espaço vectorial real \mathbb{R}^3 , os vectores

$$v_1 = (1, -1, 1), v_2 = (2, 1, -2), u_1 = (-1, 0, 1), u_2 = (1, 0, 0), u_3 = (1, 0, 1).$$

Verifique se

- (a) (1,-4, 5) é combinação linear de v_1, v_2 ,
- (b) (1, 2, 1) é combinação linear de v_1, v_2 ,
- (c) (3, 0, 2) é combinação linear de u_1, u_2, u_3 ,
- (d) (0, 2, 1) é combinação linear de u_1, u_2, u_3 .

15. Verifique se
$$\begin{pmatrix} 2 \\ 5 \\ -3 \end{pmatrix} \in \left\langle \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \\ 3 \end{pmatrix} \right\rangle$$
.

$$\text{16. Determine } \alpha,\beta \in \mathbb{R} \text{, de modo que} \left(\begin{array}{c} 1 \\ 1 \\ \alpha \\ \beta \end{array} \right) \in \ < \left(\begin{array}{c} 1 \\ 0 \\ 2 \\ 1 \end{array} \right) \left(\begin{array}{c} 1 \\ -1 \\ 2 \\ 2 \end{array} \right) >$$

- 17. Averigue quais dos seguintes conjuntos de vectores são linearmente independentes:
 - (a) $\{(1,2,-1),(3,2,5)\}$,
 - (b) $\{(1,0),(0,1),(2,-2)\},$
 - (c) $\{(4,2,1),(2,6,-5),(1,-2,3)\}$
 - (d) $\{(1,1,0),(0,2,3),(1,2,3),(3,6,6)\}.$
- 18. Averigue quais dos seguintes conjuntos de vectores de $\mathbb{R}^{2\times 2}$ são linearmente independentes:

$$\left. \left(\begin{array}{cc} 1 & 1 \\ 1 & 2 \end{array} \right), \left(\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array} \right), \left(\begin{array}{cc} 0 & 3 \\ 1 & 2 \end{array} \right), \left(\begin{array}{cc} 2 & 6 \\ 4 & 6 \end{array} \right) \right\}$$

(b)
$$\left\{ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix} \right\}$$

- 19. Averigue quais dos seguintes conjuntos de vectores são linearmente independentes:
 - (a) $\{2x^2+1, x^2+3, x\}$,
 - (b) $\{3x+1, 2x^2+1, 2x^2+6x+3\}$,
- 20. Para os subespaços vectoriais determinados no Exercício 6, calcule uma base e indique a dimensão do respectivo subespaço.
- 21. Para os subespaços vectoriais determinados no Exercício 7, calcule uma base e indique a dimensão do respectivo subespaço.
- 22. Para os subespaços vectoriais determinados no Exercício 8, calcule uma base e indique a dimensão do respectivo subespaço.

- 23. Sem efectuar quaisquer cálculos, diga, justificando, se:
 - (a) os vectores $u_1 = (1, 2, -1)$ e $u_2 = (3, -1 2)$ geram \mathbb{R}^3 ;
 - (b) os vectores $v_1=(1,2), v_2=(3,5)$ e $v_3=(7,-4)$ são vectores linearmente independentes de \mathbb{R}^2 ?
- 24. Determine quais dos seguintes conjuntos constituem uma base de \mathbb{R}^3 :
 - (a) $\{(1,1,1),(1,2,3),(2,-1,1)\},\$
 - (b) $\{(1,1,2),(1,2,5),(5,3,4)\}.$
- 25. Escreva a matriz $\left(\begin{array}{cc} 2 & 0 \\ 1 & -2 \end{array} \right)$ como combinação linear das matrizes

$$A = \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}, C = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}.$$

26. Considere o vector x = (1, 0, -1) e U o subespaço definido por:

$$U = <(1,1,1),(1,2,3),(0,-1,-2),(1,-2,5)>$$

- (a) Escreva o vector x como combinação linear dos vectores de U.
- (b) Determine uma base de U.
- (c) Escreva o vector x como combinação linear dos vectores da base determinada na alínea anterior.
- (d) Determine α de modo que o vector $y=(0,2,\alpha)$ seja combinação linear dos vectores da base de U determinada na alínea b).
- 27. Considere o espaço vectorial real P_3 .
 - (a) Indique uma base do subespaço S de P_3 tal que

$$S = \langle x^3 + x, x^3 - x, x^2 + x, x^2 - x \rangle$$

- (b) Escreva o vector $2x^3 + x^2 x$ como combinação linear dos vectores da base determinada na alínea anterior.
- - (a) Determine as coordenadas do vector (3, 2, 1) relativamente a esta base
- 29. Considere os seguintes vectores do espaço vectorial real \mathbb{R}^3 :

$$v_1 = (\alpha, 6, -1), \quad v_2 = (1, \alpha, -1), \quad v_3 = (2, \alpha, -3).$$

- (a) Determine os valores do parâmetro real α para os quais o conjunto $\{v_1, v_2, v_3\}$ é uma base de R^3 .
- (b) Para um dos valores de α determinados na alínea anterior, calcule as coordenadas do vector v=(-1,1,2) em relação à base $\{v_1,v_2,v_3\}$.

- 30. Seja $\{e_1, e_2, e_3\}$ a base canónica de IR^3 . Considere os vectores $v_1 = (1, 0, 1), v_2 = (1, 1, 0)$ e $v_3 = (1, 1, 1)$.
 - (a) Mostre que v_1, v_2 e v_3 formam uma base de IR^3 .
 - (b) Exprima os vectores e_1, e_2 e e_3 na base $\{v_1, v_2, v_3\}$.
 - (c) Determine as coordenadas do vector $u = 3e_1 + 4e_2 e_3$ na base $\{v_1, v_2, v_3\}$.
- 31. Mostre que quaisquer que sejam $a,b,c\in\mathbb{R}$ os vectores de \mathbb{R}^4 , $x_1=(1,a,b),x_2=(0,1,c)$ e $x_3=(0,0,1)$ são linearmente independentes.
- 32. Seja $S=\{(-2y-z,y,z)\in \mathbb{R}^3: y,z\in \mathbb{R}\}$ um subconjunto de $\mathbb{R}^3.$
 - (a) Verifique que S é um subespaço vectorial de \mathbb{R}^3 .
 - (b) Determine uma base de S.
 - (c) Determine $\alpha \in \mathbb{R}$ de modo que $S = <(1,0,-1),(-1-1,\alpha)>$.
- 33. Seja T = <(1,1,0,0), (1,0,-1,0), (1,1,1,1)>.:
 - (a) Determine a forma genérica dos vectores de \mathbb{R}^4 que pertencem a T.
 - (b) Os vectores (1, 1, 0, 0), (1, 0, -1, 0), (0, 0, 1, 1) constituem uma base de T?
- 34. Considere, no espaço vectorial real \mathbb{R}^4 , os subespaços:

$$U = \{(a_1, a_2, a_3, a_4) \in \mathbb{R}^4 : a_1 - a_4 = 0, a_4 - a_3 = 0\},$$

$$W_1 = \{(b_1, b_2, b_{3,4}) \in \mathbb{R}^4 : b_2 + 2b_3 = 0, b_1 + 2b_3 - b_4 = 0\},$$

$$W_2 = <(1, 1, 1, 0), (-1, 1, 0, 1), (1, 3, 2, 1), (-3, 1, -1, 2) > .$$

- (a) Diga, justificando, se $\{(1,1,1,1),(0,1,0,0),(1,0,0,1)\}$ é uma base de U.
- (b) Determine uma base de W_1 e uma base de W_2 .
- 35. Mostre que os vectores (a,b),(c,d) são uma base de \mathbb{R}^2 se e só se $ad-bc\neq 0$.
- 36. Para cada uma das alienas seguintes indique se é verdadeira ou falsa a respectiva afirmação.
 - (a) Se $V = \langle v_1, v_2, \dots, v_n \rangle$, então dim V = n.
 - (b) Se $\{v_1, v_2, \dots, v_n\}$ é uma base de V, então o vector nulo não pode escrever-se como combinação linear dos vectores v_1, v_2, \dots, v_n .
 - (c) Se dimV = n e v_1, v_2, \ldots, v_n são vectores de V linearmente independentes, então $\{v_1, v_2, \ldots, v_n\}$ é uma base de V.
 - (d) Se $V = \langle v_1, v_2, \dots, v_n \rangle$ então $\{v_1, v_2, \dots, v_n, v_{n+1}\}$ é uma base de V.
 - (e) Se $\{v_1,v_2,\ldots,v_{n-1},v_n\}$ é uma base de V, então $\{v_1,v_2,\ldots,v_{n-1},v_1+v_n\}$ também é uma base de V.
 - (f) Se dimV = n, então quaisquer n-1 vectores de V são linearmente independentes.
 - (g) O conjunto $T = \{\alpha v_1 + \beta v_2 : \alpha, \beta \in \mathbb{R}, v_1, v_2 \in V\}$ é um subespaço vectorial de V.
 - (h) O subespaço $T = \{(x, x, x) : x \in \mathbb{R}\}$ tem dimensão 3.

37. Determine a dimensão e indique uma base para o espaço das colunas e para o espaço das linhas de cada uma das seguintes matrizes.

(a)
$$A = \begin{pmatrix} 0 & 2 & 1 & 1 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

(b)
$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

(c)
$$C = \begin{pmatrix} -1 & 3 & 0 & 2 \\ 0 & 2 & 2 & 0 \\ -1 & 3 & 0 & 2 \end{pmatrix}$$

(d)
$$D = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- 38. Determine a dimensão e indique uma base para o núcleo de cada uma das matrizes do exercício 37.
- 39. Determine uma base e indique a dimensão do subespaço de \mathbb{R}^4 formado pelas soluções do sistema homogéneo:

$$\begin{cases} x_1 - 2x_3 = 0 \\ x_2 + x_3 - x_4 = 0 \end{cases}$$

40. Resolva o seguinte sistema indeterminado escrevendo a sua solução geral como soma de uma solução particular do sistema do sistema com a solução geral do sistema homogéneo associado.

$$\begin{cases} 2x_1 + 6x_2 - x_3 + x_4 = -3\\ x_1 - x_2 + x_3 - x_4 = 2\\ -x_1 - 3x_2 + 3x_3 + 2x_4 = 4 \end{cases}$$

41. Determine uma base do espaço das soluções do seguinte sistema homogéneo:

$$\begin{pmatrix} 1 & 2 & 2 & 1 & -1 \\ 0 & 2 & 2 & -1 & -2 \\ 2 & 6 & 2 & 1 & -4 \\ 1 & 4 & 0 & 0 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \\ w \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$