5.131) Soient $(\overline{r}_i; \overline{s}_i) \in (\mathbb{Z}/m\mathbb{Z})^* \times (\mathbb{Z}/n\mathbb{Z})^*$.

> Puisque m et n sont premiers entre eux, le théorème chinois des restes garantit que le système de congruences

$$\begin{cases} x \equiv r_i \mod m \\ x \equiv s_j \mod n \end{cases}$$

possède une unique solution modulo mn. On définit \overline{a}_{ij} comme étant l'unique élément de $\mathbb{Z}/mn\mathbb{Z}$ solution de ce système de congruences.

Après avoir vérifié que cette application est bien définie, prouvons qu'elle est injective.

Supposons que $(\overline{r}_i; \overline{s}_j) \longrightarrow \overline{a}_{ij}$, que $(\overline{r}_k; \overline{s}_l) \longrightarrow \overline{b}_{kl}$ et que $\overline{a}_{ij} = \overline{b}_{kl}$. Il s'agit de montrer que $(\overline{r}_i; \overline{s}_i) = (\overline{r}_k; \overline{s}_l)$.

Les exercices 5.3 et 5.4 assurent les équivalences suivantes :

$$\overline{a}_{ij} = \overline{b}_{kl} \iff a_{ij} \equiv b_{kl} \mod mn \iff \begin{cases} a_{ij} \equiv b_{kl} \mod m \\ a_{ij} \equiv b_{kl} \mod n \end{cases}$$

Il en résulte par conséquent :
$$\begin{cases} r_i \equiv a_{ij} \equiv b_{kl} \equiv r_k \mod m \\ s_j \equiv a_{ij} \equiv b_{kl} \equiv s_l \mod n \end{cases}$$
 c'est-à-dire
$$\begin{cases} \overline{r}_i = \overline{r}_k \\ \overline{s}_j = \overline{s}_l \end{cases}$$

2) (a) $a_{ij} \equiv r_i \mod m$ équivaut à $a_{ij} = r_i + mq$ pour un certain $q \in \mathbb{Z}$. L'exercice 3.2 donne $D(a_{ij}, m) = D(a_{ij} - mq, m) = D(r_i, m)$. Il en résulte que $pgcd(a_{ij}, m) = pgcd(r_i, m)$.

> Comme \overline{r}_i est un élément inversible de $\mathbb{Z}/m\mathbb{Z}$, r_i et m sont premiers entre eux : $pgcd(r_i, m) = 1$.

Il s'ensuit que a_{ij} et m sont aussi premiers entre eux.

(b) $a_{ij} \equiv s_j \mod n$ équivaut à $a_{ij} = s_j + n q^*$ pour un certain $q^* \in \mathbb{Z}$. L'exercice 3.2 donne $D(a_{ij}, n) = D(a_{ij} - n q^*, n) = D(s_i, n)$. Il en résulte que $pgcd(a_{ij}, n) = pgcd(s_j, n)$.

Comme \overline{s}_j est un élément inversible de $\mathbb{Z}/n\mathbb{Z}$, s_j et n sont premiers entre eux : $\operatorname{pgcd}(s_i, n) = 1$.

Il s'ensuit que a_{ij} et n sont aussi premiers entre eux.

(c) D'après le théorème de Bézout, il existe des entiers u, v, x, y tels que $a_{ij} u + m v = 1$ et $a_{ij} x + n y = 1$.

En multipliant ces deux équations, on obtient :

$$a_{ij} (a_{ij} u x + n u y + m v x) + m n v y = 1.$$

Le théorème de Bachet de Mériziac implique $pgcd(a_{ij}, mn) = 1$.

3) (a) D'après le théorème chinois des restes, il existe un unique a modulo mn tel que $\begin{cases} a \equiv r \mod m \\ a \equiv s \mod n \end{cases}$.

Si l'on avait $\overline{r} = \overline{r}_i$ pour un certain $1 \leqslant i \leqslant \varphi(m)$ et $\overline{s} = \overline{s}_j$ pour un certain $1 \leq j \leq \varphi(n)$, alors \overline{a} serait forcément égal à \overline{a}_{ij} .

Puisque l'on suppose le contraire, $\overline{r} \neq \overline{r}_i$ pour tout $1 \leq i \leq \varphi(m)$ ou $\overline{s} \neq \overline{s}_j$ pour tout $1 \leq j \leq \varphi(n)$. En d'autres termes, $r \notin (\mathbb{Z}/m\mathbb{Z})^*$ ou $s \notin (\mathbb{Z}/n\mathbb{Z})^*$.

- (b) $a \equiv r \mod m$ équivaut à $a = r + m \, q$ pour un certain $q \in \mathbb{Z}$. L'exercice 3.2 donne $\mathrm{D}(a,m) = \mathrm{D}(a-m \, q,m) = \mathrm{D}(r,m)$. Il en résulte que $\mathrm{pgcd}(a,m) = \mathrm{pgcd}(r,m) > 1$. Puisque tout diviseur de m divise a fortiori mn, on conclut que $\mathrm{pgcd}(a,mn) \geqslant \mathrm{pgcd}(a,m) > 1$. Ainsi, a et mn ne sont pas premiers entre eux, si bien que \overline{a} n'est pas un élément inversible de $\mathbb{Z}/mn\mathbb{Z}$.
- (c) $a \equiv s \mod n$ équivaut à $a = s + n \, q^*$ pour un certain $q^* \in \mathbb{Z}$. L'exercice 3.2 donne $\mathrm{D}(a,n) = \mathrm{D}(a-n \, q^*,n) = \mathrm{D}(s,n)$. Il en résulte que $\mathrm{pgcd}(a,n) = \mathrm{pgcd}(s,n) > 1$. Puisque tout diviseur de n divise a fortiori mn, on conclut que $\mathrm{pgcd}(a,mn) \geqslant \mathrm{pgcd}(a,n) > 1$. Ainsi, a et mn ne sont pas premiers entre eux, si bien que \overline{a} n'est pas un élément inversible de $\mathbb{Z}/mn\mathbb{Z}$.
- 4) Nous avons montré en 2) que l'application définie en 1) est injective. En 3), nous avons établi que l'application définie en 1) a pour image l'ensemble des éléments inversibles de $\mathbb{Z}/mn\mathbb{Z}$. Par conséquent, il y a une bijection entre l'ensemble des unités de $\mathbb{Z}/mn\mathbb{Z}$ et $(\mathbb{Z}/m\mathbb{Z})^* \times (\mathbb{Z}/n\mathbb{Z})^*$. D'où la formule $\varphi(mn) = \varphi(m) \varphi(n)$.