Resolver e enviar por e-mail até hoje (14/10) às 22:40 horas.

- 1. Obtenha a equação da reta que passa pelos pontos A (3, 1) e B (2, 0).
- 2. Esboce os gráficos das seguintes funções.

a)
$$y = x^2 - 2x + 1$$

b)
$$f(x) = 3x^3$$

b)
$$f(x) = 3x^3$$
 c) $y = 3.senx$

d)
$$f(x) = 3^x$$

3. Calcule os limites das funções abaixo ($\lim f(x)$).

a)
$$f(x) = 2x^2 + 5$$
; a=2

b)
$$f(x) = \frac{2x^2 + 4x}{3x}$$
; a=0 c) $f(x) = \frac{3}{x-2}$; a=2

c)
$$f(x) = \frac{3}{x-2}$$
; a=2

d)
$$f(x) = \frac{3}{x^5}$$
; a=0

e)
$$f(x) = \frac{3}{x^3}$$
; a= - ∞

f)
$$f(x) = 5x^2 + 3x + 5$$
; $a = \infty$

4. Obtenha os intervalos de crescimento e decrescimento das funções por meio da derivada primeira.

a)
$$f(x) = x^2 - x + 3$$

b)
$$f(x) = 3x^3 + 2x^2$$

4. Encontre a concavidade das funções do exercício 4 usando a derivada segunda.