Examen de Teoría de Sistemas Inteligentes - Segundo Bloque

MUINF - ETSINF, Universitat Politècnica de València, Junio de 2022

Anellidos	Nombre	
Apenidos.	TOILDIC.	

Cuestiones (1.5 puntos, 60 minutos, sin apuntes)

- B Los modelos de N-gramas:
 - A) Dan el valor de P(w) para una cadena w
 - B) Realizan una aproximación a P(w) para una cadena w
 - C) Se estiman a partir de un autómata finito probabilístico
 - D) Estiman P(c|w) para una cierta clase c y cadena w
- C Dado el conjunto de muestras {aaa, aba, abb, aac, aca}, ¿cuál de las siguientes estimaciones no es correcta en un modelo de bigramas?
 - A) $p(a|a) = \frac{3}{10}$
 - B) $p(a|b) = \frac{1}{3}$
 - C) $p(a|c) = \frac{1}{10}$ D) $p(b|a) = \frac{2}{10}$
- D | El suavizado en N-gramas se emplea para:
 - A) Mejorar la estimación de los eventos vistos en el entrenamiento
 - B) Aumentar la probabilidad de los eventos vistos con poca frecuencia en el entrenamiento
 - C) Eliminar probabilidad de los eventos vistos con poca frecuencia en el entrenamiento
 - D) Dar probabilidad a los eventos no vistos en el entrenamiento
- A | En un autómata finito probabilístico $\mathcal{A} = \langle Q, \Sigma, \delta, I, F, P \rangle$ se debe cumplir:

 - $\begin{array}{ll} \mathbf{A}) & \sum_{q \in Q} I(q) = 1 \\ \mathbf{B}) & \sum_{q \in Q} F(q) = 1 \\ \mathbf{C}) & \sum_{x \in \Sigma, p \in Q} P(q, x, p) = 1 & \forall q \in Q \\ \mathbf{D}) & \sum_{q \in Q} I(q) + F(q) = 1 \end{array}$
- B Si se tienen cuatro eventos con probabilidades $(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8})$, su entropía en bits es:
 - A) 2
 - B) 1.75
 - C) 1.5
 - D) 1.25
- C | La regla de la cadena para entropía se formula como:
 - A) H(Y|X) = H(X) + H(X,Y)

 - B) $H(X,Y) = H(X) \cdot H(Y|X)$ C) H(X,Y) = H(X) + H(Y|X)D) H(X,Y) = H(Y) + H(Y|X)
- En general, la regla de estimación por máxima entropía se puede enunciar como:
 - A) La distribución ha de satisfacer un conjunto de restricciones y ser uniforme para el resto del espacio de probabilidad
 - B) La distribución ha de satisfacer un conjunto de restricciones y trasladarlas al resto del espacio de probabilidad
 - C) La distribución debe ser uniforme en las restricciones proporcionadas
 - D) La distribución se define sólo para satisfacer las restricciones
- D Dado un conjunto de N muestras de entrenamiento donde una muestra (x, y) aparece k veces, la probabilidad empírica $\tilde{p}(x,y)$ es igual a:
 - A) $k \log(N)$

- $oxed{C}$ En la solución de estimación de probabilidad por máxima entropía, el término Z(x) es:
 - A) Un activador de las características escogidas
 - B) Una probabilidad a priori
 - C) Un factor de normalización para garantizar que se estima una probabilidad
 - D) Un término que da cuenta del número de muestras de entrenamiento
- A ¿Cuál de las siguientes **no** es una característica del algoritmo IIS?
 - A) Calcula directamente λ_i (peso asociado a f_i) en cada paso
 - B) Es iterativo
 - C) Realiza un cálculo analítico para obtener el incremento δ_i asociado a λ_i
 - D) Empieza con valores arbitrarios de λ_i
- Dado un problema de estimación por máxima entropía con clases $\mathbb{C} = A, B$ y muestras (a_1, a_2) con $a_i \in \{1, 2, 3, 4\}$, si se definen las características $f_i(x, y)$ por su activación $(f_i(x, y) = 1)$ cuando $y = S, S \in \mathbb{C}$ y $x = a_1$, el valor de $f^{\#}(1, A)$ será:
 - A) 1
 - B) 2
 - $\stackrel{-}{\text{C}}$ 3
 - D) 4
- A En el proceso del algoritmo IIS se ha llegado a un punto en el que $\tilde{p}(f) = \frac{1}{5}$, $p_{\lambda}(f) = \frac{3}{20}$ y M = 1. ¿Qué incremento δ se calcula para el peso λ de f en esa iteración?
 - A) $\log \frac{4}{3}$
 - B) $\log \frac{3}{4}$
 - C) $\frac{1}{2} \log \frac{4}{3}$
 - D) $\log \frac{1}{3}$

Se ha estimado un modelo de máxima entropía para clasificar cadenas con tres símbolos del alfabeto $\Sigma = \{a, b\}$ en dos clases $\mathbb{C} = \{A, B\}$, siendo las características f(x, y) = 1 si y es de una cierta clase C y $x = t_i$ indica que el símbolo $t \in \Sigma$ está en la posición i. Los parámetros $\lambda_{s_p c}$ (s símbolo, p posición, c clase) del modelo son:

	a			b		
Clase	0	1	2	0	1	2
A	0.0	0.096	-0.074	0.170	-0.051	0.061
В	0.231	-0.135	0.061	-0.366	0.045	-0.074

Teniendo en cuenta que $p(y|x) = \frac{1}{Z(x)} \exp\left(\sum_i \lambda_i f_i(x,y)\right)$ y $Z(x) = \sum_y \exp\left(\sum_i \lambda_i f_i(x,y)\right)$

- B | El valor de Z("aaa") es:
 - A) 1.02
 - B) 2.19
 - C) 1.87
 - D) 1.69
- D La probabilidad P(A|"aaa") dada por el modelo es:
 - A) 0.533
 - B) 0.307
 - C) 0.157
 - D) 0.466
- C Las cadenas "abb" y "baa" se clasifican respectivamente en:
 - A) A,A
 - B) A,B
 - C) B,A
 - D) B,B