The Structural Theory of Pure Type Systems

Cody Roux Floris van Doorn

Carnegie Mellon University

July 15, 2014

Motivation

Consider the induction principle in Peano Arithmetic:

For all formulae $\varphi(x)$ the formula

$$\varphi(0) \to \forall n(\varphi(n) \to \varphi(n+1)) \to \forall n \ \varphi(n).$$

holds.

We can reify the quantification over φ in second order arithmetic:

$$\forall \varphi (\varphi(0) \rightarrow \forall n(\varphi(n) \rightarrow \varphi(n+1)) \rightarrow \forall n \ \varphi(n)).$$

Motivation

We want to formalize the process of reification of universal quantifiers.

Motivation

Questions:

- How to do this?
 - ▶ When reifying quantifiers over formulae in Peano Arithmetic we could obtain both second-order arithmetic and ACA₀.
- Is the reification conservative?
 - ► ACA₀ is conservative over Peano Arithmetic.
 - ▶ Second-order arithmetic is much stronger.

Approach

By the Curry-Howard isomorphism:

$$\begin{array}{ccc} \textbf{Logic} & \Longleftrightarrow & \textbf{Type Theory} \\ \text{universal quantification } (\forall) & \Longleftrightarrow & (\text{dependent}) \text{ function type } (\Pi) \\ \forall \text{ proof rule} & \Longleftrightarrow & \lambda\text{-abstraction} \end{array}$$

We will try to answer our questions using Pure Type Systems.

Pure Type Systems

- are a generic framework of type theories.
- only allow universal quantification/dependent function spaces.

A Pure Type Systems consists of

- A set of sorts S
- A set of axioms $\mathcal{A} \subseteq \mathcal{S} \times \mathcal{S}$
- A set of rules $\mathcal{R} \subseteq \mathcal{S} \times \mathcal{S} \times \mathcal{S}$

That's it!

Sorts

Informally, sorts $s, *, \square, \ldots \in S$ represent a class of objects.

Example

- * may represent the class of propositions.
- \square may represent the class of types.

Axioms

Informally, $(s_1, s_2) \in \mathcal{A}$ means that s_1 is a member of the class s_2 .

Example

$$(*,\Box)\in\mathcal{A}$$

Rules

```
Informally, (s_1, s_2, s_3) \in \mathcal{R} means:
```

You can quantify over an element of s_2 parametrized over an element of s_1 , and the result lives in the class s_3 .

```
If A: s_1 and B(x): s_2 whenever x: A, then \Pi x: A. B(x): s_3.
```

Example

If we have the rule $(\square, *, *)$ we have

```
\vdash \Pi A : *. A : *
```

Given a PTS, we have the following type system.

Sort formation

$$\frac{\Gamma \vdash}{\Gamma \vdash s_1 : s_2} (s_1, s_2) \in \mathcal{A}$$

prod
$$\frac{\Gamma \vdash A : s_1 \qquad \Gamma, \ x : A \vdash B : s_2}{\Gamma \vdash \Pi x : A. \ B : s_3} (s_1, s_2, s_3) \in \mathcal{R}$$

Term formation

$$\mathsf{var} \; \frac{ \; \Gamma, \; \; \mathsf{x} : \mathsf{A}, \Delta \vdash}{ \; \Gamma, \; \; \mathsf{x} : \mathsf{A}, \Delta \vdash \mathsf{x} : \mathsf{A}}$$

$$\mathbf{abs} \ \frac{\Gamma, \ x : A \vdash t : B \qquad \Gamma \vdash \Pi x : A. \ B : \mathbf{s}}{\Gamma \vdash \lambda x : A. \ t : \Pi x : A. \ B} \ s \in \mathcal{S}$$

$$\mathsf{app} \ \frac{\Gamma \vdash t : \Pi x : A. \ B \qquad \Gamma \vdash u : A}{\Gamma \vdash t \ u : B\{x \mapsto u\}}$$

Conversion

$$conv \frac{\Gamma \vdash t : A \qquad \Gamma \vdash A' : s}{\Gamma \vdash t : A'} A \simeq_{\beta} A', \ s \in \mathcal{S}$$

Here \simeq_{β} is β -conversion, generated by

$$(\lambda x : A. t)u \leadsto_{\beta} t\{x \mapsto u\}.$$

We omit the rules for creating contexts.

Simply Typed Lambda Calculus

The STLC can be encoded as PTS using

$$S = \{*, \square\}$$

$$A = \{(*, \square)\}$$

$$R = \{(*, *, *)\}$$

Example

In STLC

$$A: *, B: * \vdash \lambda a: A.\lambda b: B. a: A \rightarrow B \rightarrow A$$

Note: $A \rightarrow B$ abbreviates $\Pi x : A$. B.

Examples of PTSs

Name	Sorts S	Axioms A	Rules \mathcal{R}	
STLC	*, 🗆	$(*,\Box)$	(*,*,*)	
:	*	(*,*)	(*,*,*)	
LF/\lambdaP	*, 🗆	$(*,\Box)$	$(*,*,*)$, $(*,\square,\square)$	
System F	*, 🗆	$(*,\Box)$	$(*,*,*), (\Box,*,*)$	
U-	*, □, △	(∗, □) ,	$(*,*,*), (\Box,*,*),$	
		(\Box, \triangle)	(\Box,\Box,\Box) , (\triangle,\Box,\Box)	
СС	*, □	$(*,\Box)$	$(*,*,*)$, $(*,\square,\square)$,	
CC			$(\square,*,*)$, $(\square,\square,\square)$	
CC^ω	\Box_i	(\square_i,\square_j)	$(\square_i, \square_0, \square_0),$	
(core of Coq)	$(i \in \mathbb{N})$	(i < j)	$(\square_i, \square_j, \square_k) \ (k \geq i, j)$	

Normalization

A PTS is (weakly) normalizing iff $\Gamma \vdash t : T \Rightarrow t \text{ has a } \beta\text{-normal form}.$

Normalization implies

- the decidability of type-checking.
- the consistency of the system interpreted as a logic.

Normalization

Normalization is hard to predict:

Name	Axioms A	Rules \mathcal{R}	Norm.	
STLC	(∗,□)	(*,*,*)	Yes	
:	(*,*)	(*, *, *)	No	
LF/\lambdaP	(∗,□)	$(*,*,*)$, $(*,\square,\square)$	Yes	
System F	(∗,□)	(*, *, *), (□, *, *)	Yes	
U-	(∗,□),	$(*,*,*), (\Box,*,*),$	· · · · · ·	
	(\Box, \triangle)	(\Box,\Box,\Box) , (\triangle,\Box,\Box)		
СС	$(*,\Box)$	$(*,*,*)$, $(*,\square,\square)$,	Yes	
		$(\square,*,*)$, $(\square,\square,\square)$	165	
CC^ω	(\square_i,\square_j)	$(\square_i,\square_0,\square_0),$	Yes	
(core of Coq)	(i < j)	$(\square_i, \square_j, \square_k) \ (k \ge i, j)$	163	

Proposal

Our proposal:

- Conder the study of the class of PTSs as a whole rather than individually.
- Examine normalization preserving operations.

We call this the Structual Theory of PTSs.

First observation

Given PTSs $\bf P$ and $\bf Q$ we can define the disjoint union $\bf P + \bf Q$ by taking the disjoint union of the sorts, axioms and rules.

This implies that if P and Q are normalizing, then P + Q is normalizing.

Second observation

We can add additional rules to P + Q.

Let Terms be the PTS

```
\begin{split} \mathcal{S}_{\mathsf{Terms}} &= \{\mathsf{Set}, \mathsf{Fun}, \mathsf{Univ}\} \\ \mathcal{A}_{\mathsf{Terms}} &= \{(\mathsf{Set}, \mathsf{Univ})\} \\ \mathcal{R}_{\mathsf{Terms}} &= \{(\mathsf{Set}, \mathsf{Set}, \mathsf{Fun}), (\mathsf{Set}, \mathsf{Fun}, \mathsf{Fun})\} \end{split}
```

This is a term language with only first-order terms.

Example

$$A : \mathsf{Set} \vdash A \to A \to A : \mathsf{Fun}$$

 $A : \mathsf{Set} \vdash \lambda xy : A. \ x : A \to A \to A$

Step 1

We can build a new PTS FOL by

- Taking the direct sum Terms + STLC
- Adding the rules (Set, *, *) and (Set, □, □)
 - ▶ This allows for parametrized propositions

Example

$$A : \mathsf{Set}, P : A \to * \vdash \mathsf{\Pi} a : A. P(a) : *$$

This allows us to formulate the induction principle for a single formula:

$$\Gamma = \mathbb{N} : \mathsf{Set}, \ 0 : \mathbb{N}, \ S : \mathbb{N} \to \mathbb{N}, \ \varphi : \mathbb{N} \to *$$

$$\Gamma \vdash \varphi(0) \to (\Pi n : \mathbb{N}. \ \varphi(n) \to \varphi(S \ n)) \to \Pi m : \mathbb{N}. \ \varphi(m) : *$$

Step 2

We can create a new PTS WSOL by

- Taking FOL;
- Adding a new sort *';
- Adding a new rule $(\square, *, *')$.

Now we can formulate the induction principle for all formulae:

$$\Gamma = \mathbb{N} : \mathsf{Set}, \ 0 : \mathbb{N}, \ S : \mathbb{N} \to \mathbb{N}$$

$$\Gamma \vdash \Pi \varphi : \mathbb{N} \to *. \ \varphi(0) \to (\Pi n : \mathbb{N}. \ \varphi(n) \to \varphi(S \ n)) \to \Pi m : \mathbb{N}. \ \varphi(m) : *'$$

Reification of quantification!

Fact

The PTSs FOL and WSOL are normalizing

Our result shows this follows from the normalization STLC!

We define $\forall P.Q$ to be P+Q with added rules

$$(s, k, k), (s \in S_P, k \in S_Q)$$

Intuition

Q is a logic, and P are terms.

Then $\forall P.Q$ is the logic Q where quantification over the terms in P is allowed.

Example

$$FOL \subseteq \forall Terms.STLC$$

Theorem

If P and Q are normalizing, then $\forall P.Q$ is normalizing.

In fact, $\forall P.Q$ is a conservative extension of Q.

We define P_{poly} to be P with added sorts

$$k^s$$
, $(s, k \in \mathcal{S}_{\mathbf{P}})$

and added rules

$$(s, k, k^s), (s, k^s, k^s) \quad (s, k \in \mathcal{S}_{\mathbf{P}})$$

Intuition

This allows for quantification over any free variable in P.

 k^s is the sort of s-parametrized ks

Example

$$WSOL \subseteq FOL_{poly}$$

Theorem

If P is normalizing, then P_{poly} is normalizing.

Moreover, P_{poly} is a conservative extension of P.

The proof uses ideas from [Bernardy and Lasson (2011)]

For the normalization of $\forall P.Q$ we partition \rightarrow_{β} into three reductions:

- **P**-reductions $\rightarrow_{\mathbf{P}}$ from abstractions from **P**;
- **Q**-reductions $\rightarrow_{\mathbf{Q}}$ from abstractions from **Q**;
- I-reductions \rightarrow_I from the new added rules.

We want to give a β -normal form for a term t with type in $\forall P.Q$:

∀P.Q

The proof uses ideas from [Bernardy and Lasson (2011)]

For the normalization of $\forall P.Q$ we partition \rightarrow_{β} into three reductions:

- **P**-reductions $\rightarrow_{\mathbf{P}}$ from abstractions from **P**;
- **Q**-reductions $\rightarrow_{\mathbf{Q}}$ from abstractions from **Q**;
- I-reductions \rightarrow_I from the new added rules.

```
\forall P.Q t \downarrow Q \lfloor t \rfloor
```

The proof uses ideas from [Bernardy and Lasson (2011)]

For the normalization of $\forall P.Q$ we partition \rightarrow_{β} into three reductions:

- **P**-reductions $\rightarrow_{\mathbf{P}}$ from abstractions from **P**;
- **Q**-reductions $\rightarrow_{\mathbf{Q}}$ from abstractions from **Q**;
- I-reductions \rightarrow_I from the new added rules.

$$\forall \mathbf{P}.\mathbf{Q}$$
 t \downarrow \mathbf{Q} $\lfloor t \rfloor$ $\rightarrow_{\mathbf{Q}}$ \cdots $\rightarrow_{\mathbf{Q}}$ u

The proof uses ideas from [Bernardy and Lasson (2011)]

For the normalization of $\forall P.Q$ we partition \rightarrow_{β} into three reductions:

- **P**-reductions $\rightarrow_{\mathbf{P}}$ from abstractions from **P**;
- **Q**-reductions $\rightarrow_{\mathbf{Q}}$ from abstractions from **Q**;
- I-reductions \rightarrow_I from the new added rules.

$$\forall \mathbf{P}.\mathbf{Q} \qquad t \qquad \rightarrow_{\mathbf{I}}^{*} \rightarrow_{\mathbf{Q}} \qquad \cdots \qquad \rightarrow_{\mathbf{I}}^{*} \rightarrow_{\mathbf{Q}} \qquad u'$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathbf{Q} \qquad \lfloor t \rfloor \qquad \rightarrow_{\mathbf{Q}} \qquad \cdots \qquad \rightarrow_{\mathbf{Q}} \qquad u$$

The proof uses ideas from [Bernardy and Lasson (2011)]

For the normalization of $\forall P.Q$ we partition \rightarrow_{β} into three reductions:

- **P**-reductions $\rightarrow_{\mathbf{P}}$ from abstractions from **P**;
- **Q**-reductions $\rightarrow_{\mathbf{Q}}$ from abstractions from **Q**;
- I-reductions \rightarrow_I from the new added rules.

$$\forall \mathbf{P}.\mathbf{Q} \qquad t \qquad \rightarrow_{\mathbf{I}}^{*} \rightarrow_{\mathbf{Q}} \qquad \cdots \qquad \rightarrow_{\mathbf{I}}^{*} \rightarrow_{\mathbf{Q}} \qquad u' \qquad \rightarrow_{\mathbf{I}}^{*} \qquad v$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathbf{Q} \qquad \qquad \lfloor t \rfloor \qquad \rightarrow_{\mathbf{Q}} \qquad \cdots \qquad \rightarrow_{\mathbf{Q}} \qquad u$$

The proof uses ideas from [Bernardy and Lasson (2011)]

For the normalization of $\forall P.Q$ we partition \rightarrow_{β} into three reductions:

- **P**-reductions $\rightarrow_{\mathbf{P}}$ from abstractions from **P**;
- **Q**-reductions $\rightarrow_{\mathbf{Q}}$ from abstractions from **Q**;
- I-reductions \rightarrow_I from the new added rules.

$$\forall \mathbf{P}.\mathbf{Q} \qquad t \qquad \rightarrow_{\mathbf{I}}^{*} \rightarrow_{\mathbf{Q}} \qquad \cdots \qquad \rightarrow_{\mathbf{I}}^{*} \rightarrow_{\mathbf{Q}} \qquad u' \qquad \rightarrow_{\mathbf{I}}^{*} \qquad v \qquad \rightarrow_{\mathbf{P}}^{*} \qquad w$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathbf{Q} \qquad \lfloor t \rfloor \qquad \rightarrow_{\mathbf{Q}} \qquad \cdots \qquad \rightarrow_{\mathbf{Q}} \qquad u$$

Conclusions

- Pure Type Systems can be used to answer questions about reification of quantification
- It is interesting to study normalization preserving extensions and combinations of PTSs
- We can build richer type systems with the same logical strength.

Future Work

- Which rules can be added using this method?
- Can we simplify consistency proofs using this approach?
- Extensions to "Impure Type Systems"

Thank you