Exercise 1 Draw the graph of a function defined on [0,8] such that f(0) = f(8) = 3 and the function does not satisfy the conclusion of Rolle's Theorem on [0,8].

Exercise 2 Draw the graph of a function that is continuous on [0,8] where f(0) = 1 and f(8) = 4 and that does not satisfy the conclusion of the Mean Value Theorem on [0,8].

Exercise 3 Verify that the function $f(x) = x^3 - 3x + 2$ satisfies the hypotheses of the Mean Value Theorem on the interval [-2, 2]. Then find all numbers c that satisfy the conclusion of the Mean Value Theorem.

Exercise 4 Let $f(x) = \tan(x)$. Show that $f(0) = f(\pi)$ but there is no number c in $(0, \pi)$ such that f'(c) = 0. Why does this not contradict Rolle's Theorem?

Exercise 5 Let f(x) = 2 - |2x - 1|. Show that there is no value of c such that f(3) - f(0) = f'(c)(3-0). Why does this not contradict the Mean Value Theorem?

Exercise 6 Show that the equation $x^3 + e^x = 0$ has 'exactly' one real root.