다목적 댐의 상태 평가와 예측을 위한 머신러닝 기반 모델 개발

이화여자대학교 박신영 배주원 차수빈

목차

이 의제 목표 및 활용 데이터

■ 분석 프로세스 도식화

02 EDA, 군집분석, 모델링

■ 시각화한 자료들을 통한 각 군집 별 특징 분석 및 모델링

- 활용용량 및 활용능력 계산
- 수질 데이터와 결합하여 그룹 재분할

분석 프로세스

데이터 탐색 - 1) Target 변수

데이터 탐색 - 1) Target 변수

데이터 탐색 결과

스케일과 분포 양상에 차이가 있음

유사한 특성을 가진 댐별로 그룹화하기 위해 군집분석을 수행

⊙ 최적 군집 개수 탐색

- Elbow Method
- 실루엣 계수

◀실루엣 분석

⊙ 군집화 결과

- group 1(Cluster 0): 군위, 김천부항, 남강, 밀양, 보령, 보현산,

부안, 성덕, 영주, 장흥, 주암(조). 횡성

- group 2(Cluster 1): 소양강, 충주

- group 3(Cluster 2): 섬진강, 용담, 임하, 주암(본), 합천

- group 4(Cluster 3): 대청, 안동

⊙ 그룹 1

(군위, 김천부항, 남강, 밀양, 보령, 보현산, 부안, 성덕, 영주, 장흥, 주암(조). 횡성)

- 저수량: 낮음

- 저수율: 낮음(약 55%)

- 유입량, 방류량: 낮음

- 평균풍속, 습도는 안정적

⊙ 그룹 2

(소양강, 충주)

- 저수량: 가장 큼(1조 6000억 **m**³)

- 저수율: 낮음(약 57%) -> 주의 필요

- 유입량, 방류량: 큼

- 낮은 기온, 적은 강우량과 일사량

⊙ 그룹 3

(섬진강, 용담, 임하, 주암(본), 합천)

- 저수량: 큼

- 저수율: 낮음(60% 미만)

- 2020년 이후로 저수량 감소 추세

- 유입량, 방류량: 작음

- 습도와 일사량 변동 폭이 큼

⊙ 그룹 4

(대청, 안동)

- 저수량: 큼

- 저수율: 안정적(60% 이상)

- 유입량, 방류량: 상당히 큼

- 평균 습도 낮음, 강우량은 평균 정도

- 높은 기온과 큰 풍속

- 일사량 변동 큼

회귀분석(모델링)

AutoML - PyCaret

- 최적 알고리즘 선정

Group 1

	Mode I	RMSE	R2
et	Extra Trees Regressor	0.0715	0.9939
catboost	CatBoost Regressor	0.0973	0.9891
rf	Random Forest Regressor	0.1074	0.9860
xgboost	Extreme Gradient Boosting	0.1216	0.9825
dt	Decision Tree Regressor	0.1314	0.9791
lightgbm	Light Gradient Boosting Machine	0.1450	0.9754

Group 3

	Model	RMSE	R2
et	Extra Trees Regressor	17.7554	0.9878
catboost	CatBoost Regressor	21.5037	0.9823
rf	Random Forest Regressor	23.0638	0.9796
xgboost	Extreme Gradient Boosting	24.6570	0.9767
lightgbm	Light Gradient Boosting Machine	25.3933	0.9754

Group 2

	Model	RMSE	R2
et	Extra Trees Regressor	57.7325	0.9563
catboost	CatBoost Regressor	68.6755	0.9383
rf	Random Forest Regressor	70.2862	0.9355
xgboost	Extreme Gradient Boosting	75.7080	0.9247
lightgbm	Light Gradient Boosting Machine	79.3183	0.9176

Group 4

	Model	RMSE	R2
et	Extra Trees Regressor	27.6604	0.9559
catboost	CatBoost Regressor	32.4148	0.9400
rf	Random Forest Regressor	33.7301	0.9354
lightgbm	Light Gradient Boosting Machine	35.6573	0.9281
xgboost	Extreme Gradient Boosting	36.0730	0.9260

회귀분석(모델링) - 회귀 곡선 시각화

⊙ 그룹 1

(RMSE: 5.072, Adjusted R2: 0.9904)

⊙ 그룹 3

(RMSE: 16.460, Adjusted R2: 0.9895)

⊙ 그룹 2

(RMSE: 52.185, Adjusted R2: 0.9651)

⊙ 그룹 4

(RMSE: 29.469, Adjusted R2:

0.9556)

회귀분석(모델링) - 피처 중요도 시각화

⊙ 그룹 1

⊙ 그룹 3

⊙ 그룹 2

⊙ 그룹 4

efficiency =
$$\frac{usable_qy}{maximum_use_qy} = \frac{reserve_qy - unused_qy}{maximum_use_qy}$$

[변수 설명]

tot_qy: 총저수량

valid_qy: 유효저수용량

flood_qy: 홍수조절용량

unused_qy: 비활용용량

usable_qy: 활용 가능 용량

maximum_use_qy: 이수용량

efficiency: 활용 능력

감사합니다