1. We wish to derive the composite Simpson's rule. Let $x_i = a + ih$, $h = \frac{b-a}{2}$ for $0 \le i \le n$. Then, we may break the integral as follows: $\int_a^b f(x)dx = \int_{x_0}^{x_1} f(x)dx + \int_{x_1}^{x_2} f(x)dx + \dots + \int_{x_{n-1}}^{x_n} f(x)dx$. For each of these, we may approximate the integral with Simpson's rule, as follows:

$$\begin{split} \int_{a}^{b} f(x) dx &= \int_{x_{0}}^{x_{1}} f(x) dx + \int_{x_{1}}^{x_{2}} f(x) dx + \ldots + \int_{x_{n-1}}^{x_{n}} f(x) dx \\ &\approx \frac{x_{1} - x_{0}}{6} \left[f(x_{0}) + 4f\left(\frac{x_{0} + x_{1}}{2}\right) + f(x_{1}) \right] + \frac{x_{2} - x_{1}}{6} \left[f(x_{1}) + 4f\left(\frac{x_{1} + x_{2}}{2}\right) + f(x_{2}) \right] + \ldots + \frac{x_{n} - x_{n-1}}{6} \left[f(x_{n-1}) + 4f\left(\frac{x_{n-1} + x_{n}}{2}\right) + f(x_{n}) \right] \end{split}$$

Notice that, since we are dividing [a,b] into evenly spaced subintervals, $x_i - x_{i-1} = \frac{x_n - x_0}{n} = h$ where n is the number of subintervals. Thus, we find that

$$\int_{a}^{b} f(x)dx \approx \frac{h}{6} \left[f(x_0) + 2 \sum_{i=1}^{n-1} f(x_i) + 4 \sum_{i=1}^{n} f\left(\frac{x_i + x_{i-1}}{2}\right) + f(x_n) \right]$$

is a composite Simpson's rule that will approximate for n subintervals. Now, let $[a,b] = [a,c] \cup [c,b]$ where $c = \frac{a+b}{2}$. Then, we find that

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

$$\approx \frac{b-a}{12} \left[f(a) + 2f(c) + 4f\left(\frac{a+c}{2}\right) + 4f\left(\frac{c+b}{2}\right) + f(b) \right].$$

Now, let n=4. Then, with $h=\frac{b-a}{4}$, we find that

$$\int_{a}^{b} f(x)dx = \int_{a}^{a+h} f(x)dx + \int_{a+h}^{a+2h} f(x)dx + \int_{a+2h}^{a+3h} f(x)dx + \int_{a+3h}^{b} f(x)dx$$

$$\approx \frac{b-a}{24} \left[f(a) + 2\sum_{i=1}^{3} f(a+ih) + 4\sum_{i=1}^{4} f\left(\frac{a+ih+a+(i-1)h}{2}\right) + f(b) \right].$$

2. Here is my code:

```
function y = csimpson(f,a,b,n)
%y = csimpson(f,a,b,n)
%This is an algorithm by Alexander Winkles used to perform composite
%Simpson's rule to compute numerical integral values.
```

%f: the function being integrated %a: the lower bound of the integral %b: the upper bound of the integral %n: the number of subintervals used

h=(b-a)/n;

x = zeros(1,n+1); x(1) = a; x(n+1) = b; p = 0;

for i=2:n

q = 0;

```
x(i) = a + h*(i-1);
end;
for i=2:n
  p = p + f(x(i));
q = q + f((x(i)+x(i-1))/2); end;
y = (h/6)*(f(a) + 2*p + 4*q + f(b));
Here is my work. The expected value for the integral is 1/10, or 0.1000.
f = 0(x) \sin(10*x)
f =
    @(x)sin(10*x)
y = csimpson(f,0,pi/20,2)
   0.100013458497419
0.1000 - y
ans =
    -1.345849741937744e-05
y = csimpson(f,0,pi/20,3)
   0.100002631217059
0.1000 - y
ans =
    -2.631217059262392e-06
y = csimpson(f,0,pi/20,4)
   0.100000829552397
0.1000 - y
ans =
    -8.295523967610796e-07
y = csimpson(f,0,pi/20,5)
   0.100000339222090
0.1000 - y
ans =
```

```
-3.392220900566567e-07
   y = csimpson(f,0,pi/20,6)
      0.100000163443858
   0.1000 - y
   ans =
       -1.634438579894981e-07
   diary off
   Thus, errors using this method are small, so the approximation is good.
3. Here is my code:
   {\tt type\ romberg.m}
   function y = romberg(f,a,b,n,q1,q2)
   y = romberg(f,a,b,n,r,q)
   %This is an algorithm written by Alexander Winkles that performs Romberg
   %f: the function being integrated
   %a : the lower bound of the integral
   %b : the upper bound of the integral
   \mbox{\ensuremath{\mbox{\%}}\mbox{n}} : the 2^n subinterval specification
   \%q1 : if q == 1, returns an array of all Romberg values computed
   \mbox{\em q2} : a two element vector. if \mbox{\em q2}(1) == 1, then prints the error matrix
           where q2(2) is the true value
   h = b-a;
   R = zeros(n+1,n+1);
   R(1,1) = (1/2)*h*(feval(f,a) + feval(f,b));
   for i = 2 : n+1
       h = h/2;
       sum = 0;
       for u = 1 : (2^{(i-2)})
           sum = sum + feval(f,(a + (2*u-1)*h));
       R(i,1) = (1/2)*R(i-1,1) + h*(sum);
       for j = 2 : i
           R(i,j) = R(i,j-1) + (R(i,j-1) - R(i-1,j-1))/(4^{(j-1)} - 1);
       end;
   end;
   if q1 == 1
       disp(R)
   end;
   if q2(1) == 1
       E = zeros(n+1,n+1);
       for i=1:n+1
           for j=1:n+1
                if i >= j
                    E(i,j) = q2(2) - R(i,j);
               end;
           end;
```

```
end;
    disp(E)
end;
y = R(n+1,n+1);
Here are my results, with the actual answer being (\sin(5))^2/5:
f = 0(x) \sin(10*x)
f =
    @(x)\sin(10*x)
romberg(f,0,1,5,1,[1 (sin(5)^2/5)])
  -0.272010555444685
                                                           0
                                                                               0
                                                                                                   0
                                                                                                                       0
  -0.615467415053912 -0.729953034923654
                                                           0
                                                                               0
                                                                                                   0
                                                                                                                       0
  0.376131875510389
                                                                               0
                                                                                                   0
                                                                                                                       0
                                                                                                                       0
   0.159313166073844 \qquad 0.186956113867552 \qquad 0.178953083551505 \qquad 0.175823261456920
  0.177881250868329 \qquad 0.184070612466491 \qquad 0.183878245706420 \qquad 0.183956422883482
                                                                                   0.183988317634175
                                                                                                                       0
  0.182408071050210 0.183917011110837
                                          0.183906771020460
                                                              0.183907223803223
                                                                                   0.183907030865653
                                                                                                       0.183906951406446
  0.455917708352330
                                                          0
                                                                               0
                                                                                                   0
   0.799374567961557 0.913860187831299
                                                           0
                                                                               0
                                                                                                   0
                                                                                                                       0
                                                                                                                       0
                                          -0.192224722602744
                                                                               0
                                                                                                   0
  0.107522830214927 -0.123094415700616
                                                                                                                       0
  0.024593986833801 -0.003048960959907
                                          0.004954069356140
                                                              0.008083891450726
  0.006025902039316 -0.000163459558846
                                          0.000028907201225 -0.000049269975837 -0.000081164726530
  0.001499081857435 \quad -0.000009858203192 \quad 0.000000381887185 \quad -0.00000070895577 \quad 0.000000122041992
                                                                                                      0.000000201501199
ans =
```

Thus, errors using this method are small, so the approximation is good.

4. To create a Romberg formula based on the composite Simpson's rule, we simply substituted using our composite Simpson's rule for the usual trapezoid rule used to compute the R(n,0) values.

5. Here is my code:

diary off

0.183906951406446

```
type romberg2.m
function y = romberg2(f,a,b,n,q1,q2)
y = romberg(f,a,b,n,r,q)
%This is an algorithm written by Alexander Winkles that performs Romberg
%integration from composite Simpson's rule.
\% f : the function being integrated
%a : the lower bound of the integral
%b : the upper bound of the integral
%n : the 2^n subinterval specification
%q1 : if q == 1, returns an array of all Romberg values computed
\mbox{\ensuremath{\mbox{$^{\circ}$}}} q2 : a two element vector. if q2(1) == 1, then prints the error matrix
        where q2(2) is the true value
R = zeros(n+1,n+1);
for i=1:n+1
   R(i,1) = csimpson(f,a,b,n*i);
end;
for i=2:n+1
        R(i,j) = R(i,j-1) + (R(i,j-1) - R(i-1,j-1))/(4^{(j-1)} - 1);
```

diary off

```
end;
end;
y = R(n+1,n+1);
if q1 == 1
    disp(R)
end:
if q2(1) == 1
   E = zeros(n+1,n+1);
   for i=1:n+1
       for j=1:n+1
            if i >= j
               E(i,j) = q2(2) - R(i,j);
            end;
        end;
    end:
    disp(E)
end:
Here are my results:
romberg2(f,0,1,5,1,[1 (sin(5)^2/5)])
                                                           0
                                                                               0
                                                                                                   0
                                                                                                                       0
  0.185064715255191
                                       0
   0.183972961249513
                      0.183609043247620
                                                           0
                                                                               0
                                                                                                   0
                                                                                                                       0
  0.183919935383224
                      0.183902260094461
                                           0.183921807884250
                                                                               0
                                                                                                   0
                                                                                                                       0
  0.183911173839661
                     0.183908253325140
                                           0.183908652873852
                                                             0.183908444064163
                                                                                                                       0
  0.183908795455152
                       0.183908002660316
                                           0.183907985949327
                                                               0.183907975363224
                                                                                   0.183907973525181
                                                                                                                       0
  0.183907943875968
                      0.183907660016240
                                           0.183907637173302
                                                               0.183907631637174
                                                                                   0.183907630289229
                                                                                                       0.183907629953710
  -0.001157562347546
                                                           0
                                                                               0
                                                                                                                       0
                                                                                                   0
                       0.000298109660025
                                                                                                                       0
  -0.000065808341867
                                                           0
                                                                               0
                                                                                                   0
 -0.000012782475579
                      0.000004892813184
                                          -0.000014654976605
                                                                               0
                                                                                                   0
                                                                                                                       0
 -0.000004020932016 -0.000001100417495
                                          -0.000001499966206
                                                             -0.000001291156518
                                                                                                   0
                                                                                                                       0
  -0.000001642547507
                     -0.000000849752670
                                          -0.000000833041682
                                                              -0.000000822455579
                                                                                  -0.000000820617536
  -0.000000790968323 -0.000000507108595 -0.000000484265656
                                                             -0.000000478729529 -0.000000477381584 -0.000000477046065
ans =
  0.183907629953710
```

Notice with this method that there is a larger error than with just the Romberg. This can be attributed to the error associated with each of the composite Simpson's errors adding up.