REPUBLIQUE TUNISIENNE Ministère de l'Enseignement Supérieur

Concours Nationaux d'Entrée aux Cycles de Formation d'Ingénieurs Session : 2007

الجمهورية التونسية وزارة التعليم العالي المناظرات الوطنية للدغول الى مراحل تكوين المهندسين دورة 2007

Concours Mathématiques et physique Correction de l'épreuve de chimie

I-1)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S SALA	0,5
I-2) La coordinence de Hg ²⁺ est 8.		
Car chaque ion Hg ²⁺ est entouré par huit ions F situés aux sommets d'un cube d'arête a/2.	justification	0,5
La coordinence de F est 4.	iti@cation	0.5
Car chaque ion F est entouré par quatre ions Hg ²⁺ situés aux sommets d'un tétraèdre.	justification	0,5
I-3) $n_{ion} (Hg^{q+}) = 8 \times \frac{1}{8} + 6 \times \frac{1}{2} = 4.$ $n_{ion} (F^{-}) = 8.$ $n_{gf} = 4(HgF_{2})$		0,5
I-4) le groupement formulaire est : HgF ₂		0,5
x = 1 et y = 2.		0,5
La neutralité électrique :	773	0,5
I-5) Cette structure est de type CaF ₂ (fluorine).		0,5
6-a) La distance Hg-F la plus courte est celle entre le sommet du cube et le centre du site tétraédrique. $r_{Hg^{2*}} + r_{F^-} = \frac{a \times \sqrt{3}}{4}$ $r_{Hg^{2*}} = \frac{a \times \sqrt{3}}{4} - r_{F^-}$		0,5
Application numérique :		
$r_{Hg}^2 = \frac{5,54 \times \sqrt{3}}{4} - 1,33 = 1,07 \text{ Å}$		

6-b) La masse volumique :		
$n_{ion}(Hg^{2+}) \times M_{Hg} + n_{ion}(F^{-}) \times M_{F} n_{gf} \times M_{HgF}$		0,75
$\rho = \frac{n_{ion} \left(Hg^{2+}\right) \times M_{Hg} + n_{ion} \left(F^{-}\right) \times M_{F}}{N_{A} \times a^{3}} = \frac{n_{gf} \times M_{HgF_{2}}}{N_{A} \times a^{3}}$	na si ser di	
Application numérique :	Apple of the basis of	4 (2)
$0 = \frac{4 \times 238,6}{-9.32 \text{ g cm}^{-3}}$	Dillatti cangled	0,25
$\rho = \frac{4 \times 238,6}{6,023 \times 10^{23} \times (5,54 \times 10^{-8})^3} = 9,32 \text{ g.cm}^{-3}.$,,
6-c) La compacité :		
$4 \qquad \left(n_{ion} \left(Hg^{2+} \right) \times r_{Hg^{2+}}^{3} + n_{ion} \left(F^{-} \right) \times r_{F}^{3} \right)$		0.5
$\zeta = \frac{4}{3} \times \pi \times \left(\frac{n_{\text{ion}} \left(Hg^{-1} \right) \times r_{Hg^{2+}}^{3} + n_{\text{ion}} \left(F^{-1} \right) \times r_{F^{-1}}^{3}}{a^{3}} \right)$	7.1	0,5
Application numérique :		
$4 \times (1,07)^3 + 8 \times (1,33)^3$		0,5
$\zeta = \frac{4}{3} \times \pi \times \left(\frac{4 \times (1,07)^3 + 8 \times (1,33)^3}{(5,54)^3} \right) = 0,58$	PARLE I	
Problème II :		
1) $2Hg_{(liq)} + O_{2(g)} = 2HgO_{(sd)}$		0,25
P^0		
2) A l'équilibre, $K_T^0 = \left(\frac{P^0}{P_{O_2}}\right)_{eq}$	and ab comean	0,25
3) $\Delta_{\rm r}G = \Delta_{\rm r}G_{\rm T}^0 + R \times T \times \ln\left(\frac{P^0}{P_{\rm O_2}}\right)$	Thes Tables	0,25
4) $\Delta_r G_T^0 = \Delta_r H_{298}^0 - T \times \Delta_r S_{298}^0$		
$\Delta_{\rm r} H_{\rm 298}^0 = 2 \times \Delta_{\rm f} H_{\rm HgO_{(sd)}}^0 - 2 \times \Delta_{\rm f} H_{\rm Hg_{(lia)}}^0 - \Delta_{\rm f} H_{\rm O_{2(g)}}^0$		
$\Delta_{\rm r} H_{298}^0 = 2 \times (-90, 8) - 2 \times 0 - 0 = -181, 6 \text{ kJ.mol}^{-1}$		
$\Delta_{\rm r} S_{298}^0 = 2 \times S_{\rm HgO(set)}^0 - 2 \times S_{\rm Hg(lin)}^0 - S_{\rm O_2(re)}^0$		0,5
$\Delta_{r}S_{298}^{0} = 2 \times 70, 3 - 2 \times 76, 0 - 205, 0 = -216, 4 \text{ J.K}^{-1}.\text{mol}^{-1}$		
$\Delta_{\rm r}G_{\rm T}^0 = -181, 6 + {\rm T} \times 0, 216 \ ({\rm kJ.mol^{-1}})$	niclastral inser-	7. 1
5) L'augmentation de la température favorise la réaction dans le sens endothermique.	againtas/a	0,25
C'est-à dire dans le sens inverse.	Justification	
D'après la loi de Van't Hoff: $\frac{d(LnK_T^0)}{dT} = \frac{\Delta_r H_T^0}{R \times T^2}$	Washington .	是现于(b)
Si T $\nearrow \Rightarrow dT > 0 \Rightarrow d(LnK_T^0) < 0 \text{ car } \Delta_r H_T^0 < 0 \Rightarrow K_T^0 \searrow$	La Faltas	0,25
$\Rightarrow \text{Réaction possible spontanément dans le sens inverse.}$		
— reaction possible spontanement dans le sens inverse.		
6) Dans l'air $P_{O_2} = 0, 2$ bar		0,25
L'air est constitué de 20% de O _{2(g)} .	justification	0,23
7) A l'équilibre : $\Delta_r G = \Delta_r G_{T_{eq}}^0 + R \times T_{eq} \times Ln \left(\frac{P^0}{P_{Q_2}}\right) = 0$	Supply form	and the latest the lat
$\Delta_{r}G_{T_{eq}}^{0} = -R \times T_{eq} \times Ln\left(\frac{P^{0}}{P_{O_{2}}}\right)$		and the second
(\mathbf{r}_{0_2})	17.7	

D--- 10

	(p ⁰)			
$-181, 6 + T_{eq} \times 0, 216 = -R \times T_{eq} \times Ln$	P			
	$\left(P_{o_2}\right)$			
(pº))				
$T_{eq} \left(0,216 + R \times Ln \left(\frac{P^0}{P_{o_1}} \right) \right) = 181,6$				
(P_{o_2})			0,75	
181.6			٠,.٠	
$T_{eq} = \frac{181, 6}{0,216 + R \times Ln\left(\frac{P^{0}}{P_{O_{2}}}\right)}$				
$0,216 + R \times Ln \left \frac{P}{R} \right $				
$\left(P_{o_{2}}\right)$				
Application numérique :				
181,6	-701 7 K		0.25	
$I_{eq} = \frac{1}{1}$	= 191, 7 K		0,25	
$T_{eq} = \frac{181,6}{0,216+8,314\times10^{-3}\times\text{Ln}\left(\frac{1}{0,2}\right)}$				
8) D'après l'énoncé $T_{eb}^{\circ}(Hg) = 630K <$			Α	
	P°) ne croise pas le segment correspondant au			
	essus. En conséquence nous avons toujours y		1	
	de façon totale dans le sens de la formation de	184F		
l'oxyde de mercure, il n'est donc pas po				
Problème III :				
1) Les segments verticaux présentent de	es composés définis.		0,25	
2) Dans le cas général un composé défin	ni de formule (HgCl ₂) _u (NH ₄ Cl) _v			
	V			
X_{NH_4}	$_{\text{Cl}} = \frac{\text{V}}{\text{U} + \text{V}}$	-		
V	$\langle (n+v)-v \rangle$		0,25	
X _{NH₄}	$_{\text{Cl}} \times (u + v) = v$			
u _	$1-x_{NH_4C1}$			
$\frac{-}{v}$	X _{NH.Cl}			
	Nn ₄ CI			
$C_3 (50\%) \rightarrow \frac{u}{v} = \frac{1 - 0.5}{0.5} = \frac{1}{1}$				
		110	0,25	
(HgCl2)1 (NH4Cl)1 = NH4HgCl3				
3) Le composé C ₃ est à fusion congrue	nte.		0,25	
4)				
Domaine	Phase présente			
(1)	Liquide + gaz		0,75	
(2)	Liquide $+C_{1(sd)}$			
(3)	$NH_4Hg_2Cl_{5(sd)} + C_{3(sd)}$			
5)				
F: azéotrope.			0,75	
K: température de fusion standard de HgCl ₂			-	
: point péritectique.		and the second second		
6)		PARTY MANAGEMENT		
A 243,5°C : Liquide(I) + $NH_4Cl_{(sd)}$ =	C _{5(sd)} : transformation peritectique		0,5	

7-a)

 $\%x_{NH_4Cl} = \frac{n_{NH_4Cl}}{n_{HgCl_2} + n_{NH_4Cl}} \times 100$ $\%x_{NH_4Cl} = \frac{0,7}{0,3+0,7} \times 100 = 70\%$

0,5

Problème IV:	type i	1
1-a) $Hg^{2+}/Hg_2^{2+}: 2Hg^{2+} + 2 e^{-} = Hg_2^{2+}$		
$E_{1} = E_{1}^{0} + \frac{0.059}{2} \times \log_{10} \left(\frac{\left[Hg^{2+} \right]^{2}}{\left[Hg_{2}^{2+} \right]} \right)$		
Convention de frontière :		
$ \begin{cases} 2 \times \left[Hg_2^{2+} \right] = \left[Hg^{2+} \right] \\ G = \left[Hg^{2+} \right] = \left[Hg^{2+} \right] \end{cases} $		
$C_{tra} = \left[Hg^{2+}\right] + 2 \times \left[Hg_2^{2+}\right]$		0,5
$[Hg^{2+}] = \frac{C_{tra}}{2}; [Hg_2^{2+}] = \frac{C_{tra}}{4}$		
$E_{1} = E_{1}^{0} + \frac{0,059}{2} \times \log_{10} \left(\frac{\left(\frac{C_{tra}}{2}\right)^{2}}{\left(\frac{C_{tra}}{4}\right)} \right) = E_{1}^{0} + \frac{0,059}{2} \times \log_{10} \left(C_{tra}\right)$		
$E_1 = 0,920 + \frac{0,059}{2} \times \log_{10} (10^{-3}) = 0,832 \text{ V}$		
1-b) $Hg(OH)_{2(aq)}/Hg_2^{2+}: 2Hg(OH)_{2(aq)} + 4H^+ + 2e^- = Hg_2^{2+} + 4H_2O$		
$E_{2} = E_{2}^{0} + \frac{0,059}{2} \times \log_{10} \left(\frac{\left[Hg(OH)_{2} \right]^{2} \times \left[H^{+} \right]^{4}}{\left[Hg_{2}^{2+} \right]} \right)$		
$E_2 = E_2^0 + \frac{0,059}{2} \times \log_{10} \left(\frac{\left[\text{Hg(OH)}_2 \right]^2}{\left[\text{Hg}_2^{2+} \right]} \right) - 0,118 \times \text{pH}$		
Convention de frontière :		
$ \begin{cases} 2 \times \left[Hg_2^{2+} \right] = \left[Hg(OH)_2 \right] \\ C_{tra} = \left[Hg(OH)_2 \right] + 2 \times \left[Hg_2^{2+} \right] \end{cases} $		
	Mongado,	
$\left[\operatorname{Hg}(\operatorname{OH})_{2} \right] = \frac{\operatorname{C}_{\operatorname{tra}}}{2}; \left[\operatorname{Hg}_{2}^{2+} \right] = \frac{\operatorname{C}_{\operatorname{tra}}}{4}$		0,5
$E_{2} = E_{2}^{0} + \frac{0,059}{2} \times \log_{10} \left(\frac{\left(\frac{C_{tra}}{2} \right)^{2}}{\left(\frac{C_{tra}}{4} \right)} \right) - 0,118 \times pH$		
$E_2 = E_2^0 + \frac{0.059}{2} \times \log_{10} (C_{tra}) - 0.118 \times pH$		
$E_2 = E_2^0 + \frac{0,059}{2} \times \log_{10} (10^{-3}) - 0,118 \times pH = 1,191 - 0,118 \times pH$	1 7 20 1.1	3- 1.
	f.1.	

1-c) $HHgO_2^-/Hg_2^{2+}: 2HHgO_2^-+6H^++2 e^- = Hg_2^{2+}+4H_2O$	
$E_{3} = E_{3}^{0} + \frac{0.059}{2} \times \log_{10} \left(\frac{\left[HHgO_{2}^{-} \right]^{2} \times \left[H^{+} \right]^{6}}{\left[Hg_{2}^{2+} \right]} \right)$	
$E_{3} = E_{3}^{0} + \frac{0.059}{2} \times \log_{10} \left(\frac{\left[HHgO_{2}^{-} \right]^{2}}{\left[Hg_{2}^{2+} \right]} \right) - 0.177 \times pH$	
Convention de frontière : $ \int 2 \times \left[Hg_2^{2+} \right] = \left[HHgO_2^{-} \right] $	
$ C_{tra} = \left[HHgO_2^- \right] + 2 \times \left[Hg_2^{2+} \right] $	0,5
$\left[HHgO_{2}^{-} \right] = \frac{C_{tra}}{2}; \left[Hg_{2}^{2+} \right] = \frac{C_{tra}}{4}$	
$E_{3} = E_{3}^{0} + \frac{0,059}{2} \times \log_{10} \left(\frac{\left(\frac{C_{tra}}{2}\right)^{2}}{\left(\frac{C_{tra}}{4}\right)} \right) - 0,177 \times pH$	
$E_3 = E_3^0 + \frac{0,059}{2} \times \log_{10} (C_{tra}) - 0,177 \times pH$	
$E_3 = E_3^0 + \frac{0,059}{2} \times \log_{10} (10^{-3}) - 0,177 \times pH$	
$E_3 = 2,071 - 0,177 \times pH$	844
2-a) $Hg^{2+} + 2H_2O = Hg(OH)_{2(aq)} + 2H^+$ $pK_T^0 = 6,09$ $K_T^0 = \frac{\left[Hg(OH)_{2(aq)}\right] \times \left[H^+\right]^2}{\left[Hg^{2+}\right]}$	
$-\log_{10}\left(\mathrm{K}_{\mathrm{T}}^{0}\right) = -\log_{10}\left(\frac{\left[\mathrm{Hg}\left(\mathrm{OH}\right)_{2(\mathrm{aq})}\right]}{\left[\mathrm{Hg}^{2+}\right]}\right) - 2 \times \log_{10}\left(\left[\mathrm{H}^{+}\right]\right)$	
$pK_{T}^{0} = -\log_{10}\left(\frac{\left[Hg(OH)_{2(aq)}\right]}{\left[Hg^{2+}\right]}\right) + 2 \times pH$	0,5
$pH = \frac{1}{2} \times \left(pK_{T}^{0} + log_{10} \left(\frac{\left[Hg(OH)_{2(aq)} \right]}{\left[Hg^{2+} \right]} \right) \right)$	
A la frontière : $\left[\text{Hg}(\text{OH})_{2(aq)} \right] = \left[\text{Hg}^{2+} \right]$	
$pH = \frac{1}{2} \times \left(pK_{T}^{o} \right)$	7-17-1
Application numérique :	
$pH = \frac{1}{2} \times (6,09) = 3,05$	0.05
	0,25

