Chương 4: Nội suy và xấp xỉ hàm

- 1. Khái niệm đa thức nội suy
- 2. Da thức nội suy Lagrange
- 3. Đa thức nội suy Newton
- 4. Bài toán xấp xỉ hàm thực nghiệm và phương pháp bình phương bé nhất

Khái niệm đa thức nội suy

Giả sử ta có một mối quan hệ giữa hai đại lượng, viết ở dạng hàm số: y=f(x), tuy nhiên ta **chưa biết** công thức của hàm số f(x) mà chỉ có các cặp giá trị (x_k,y_k) ở một số hữu hạn n+1 điểm $(k=\overline{0,n})$. Các giá trị x_k được gọi là **điểm nút** và xếp thứ tự tăng dần: $x_0 < x_1 < \cdots < x_n$.

Vấn đề được quan tâm: xây dựng đa thức P(x) thỏa mãn $P(x_k)=y_k, k=\overline{0,n}.$ Ta gọi P(x) là đa thức nội suy của hàm số f(x).

Lưu ý: có nhiều đa thức P(x) cùng thỏa điều kiện đi qua bộ các điểm $(x_k,y_k), k=\overline{0,n}$, tuy nhiên ta chứng minh được chỉ tồn tại duy nhất một đa thức nội suy P(x) có bậc nhỏ hơn hoặc bằng n.

Khái niệm đa thức nội suy

Ví dụ:

k	x_k	y_k
0	0.0	2.0000
1	2.0	-1.6372
2	4.0	14.109
3	6.0	12.059
4	8.0	-61.319

Ta tìm đa thức có bậc nhỏ hơn hay bằng n của hàm số f(x) trên $[x_0,x_n]$, gọi là **đa thức nội suy Lagrange**.

Ý tưởng: tạo ra các **đa thức cơ sở** bằng với 1 tại điểm x_k và bằng 0 tại các điểm $x_j, j \neq k$, để dễ dàng đạt được giá trị y_k tại mỗi điểm nút. Ta xây dựng các đa thức $p_n^{(k)}(x)$ có bậc bằng n và thỏa điều kiện:

$$p_n^{(k)}(x_j) = \begin{cases} 1 & j = k \\ 0 & j \neq k \end{cases}$$
 (1)

Từ các đa thức $p_n^{(k)}(x)$, ta lập đa thức nội suy Lagrange:

$$\mathcal{L}_{\mathbf{n}}(\mathbf{x}) = \sum_{\mathbf{k}=0}^{\mathbf{n}} \mathbf{p}_{\mathbf{n}}^{(\mathbf{k})}(\mathbf{x}).\mathbf{y}_{\mathbf{k}}$$
 (2)

Do (1), đa thức $\mathcal{L}_n(x)$ theo công thức (2) thỏa mãn yêu cầu $\mathcal{L}_n(x_k) = y_k, \forall k = \overline{0,n}$, và có bậc nhỏ hơn hoặc bằng n.

Vấn đề: lập các đa thức $p_n^{(k)}$ như thế nào để thỏa điều kiện (1)?

Đa thức $p_n^{(k)}(x)$ bậc n và có n nghiệm $x_0, \cdots, x_{k-1}, x_{k+1}, x_n$, nên ta có thể viết dưới dạng:

$$p_n^{(k)}(x) = C_k(x - x_0) \cdots (x - x_{k-1})(x - x_{k+1}) \cdots (x - x_n)$$
 (3)

với hằng số C_k .

Để $p_n^{(k)}(x_k)=1$ thì thay $x=x_k$ vào công thức (3), ta tìm được C_k :

$$C_k = \frac{1}{(x_k - x_0)\cdots(x_k - x_{k-1})(x_k - x_{k+1})\cdots(x_k - x_n)}$$
 (4)

Vậy ta tìm được công thức của đa thức $p_n^{(k)}(x)$:

$$\mathbf{p_n^{(k)}}(\mathbf{x}) = \frac{(\mathbf{x} - \mathbf{x_0}) \cdots (\mathbf{x} - \mathbf{x_{k-1}}) (\mathbf{x} - \mathbf{x_{k+1}}) \cdots (\mathbf{x} - \mathbf{x_n})}{(\mathbf{x_k} - \mathbf{x_0}) \cdots (\mathbf{x_k} - \mathbf{x_{k-1}}) (\mathbf{x_k} - \mathbf{x_{k+1}}) \cdots (\mathbf{x_k} - \mathbf{x_n})} \quad (5)$$

Ví dụ: tính đa thức nội suy Lagrange với các giá trị cho trong bảng số:

k	x_k	y_k
0	0.0	1
1	1.0	-1
2	3.0	2

Kết quả:
$$\mathcal{L}_2(x)=rac{7}{6}x^2-rac{19}{6}x+1$$

k	x_k	y_k
0	0.0	1
1	1.0	-1
2	3.0	2

Cách dễ nhớ để tính các hệ số của đa thức nội suy Lagrange: lập bảng.

x	_	x_1		x_n	
x_0	$x-x_0$	$x_0 - x_1$		$x_0 - x_n$ $x_1 - x_n$ \dots	D_0
x_1	x_1-x_0	$\mathbf{x} - \mathbf{x_1}$	• • •	$x_1 - x_n$	D_1
x_n	$x_n - x_0$	$x_n - x_1$		$\mathbf{x} - \mathbf{x_n}$	D_n
					$\mathbf{w}(\mathbf{x})$

Lấy tích theo hàng ngang thứ k là đa thức D_k , còn lấy tích theo đường chéo chính thì ta được w(x). Khi đó đa thức nội suy Lagrange là:

$$\mathcal{L}_{\mathbf{n}}(\mathbf{x}) = \mathbf{w}(\mathbf{x}) \sum_{k=0}^{n} \frac{\mathbf{y}_{k}}{\mathbf{D}_{k}}$$
 (6)

Ngoài ra, với mỗi điểm $x \in [x_0, x_n]$ bất kỳ, ta thay giá trị đó vào bảng và dùng công thức (6) thì tìm ra được giá trị nội suy $\mathcal{L}_n(x)$.

8/22 CTUT

Ví dụ: tìm giá trị nội suy tại điểm x=2 từ bảng số:

k	x_k	y_k
0	0.0	1
1	1.0	-1
2	3.0	2

- 1. Dùng công thức vừa tính được ở ví dụ trước: $\mathcal{L}_2(x) = \frac{7}{6}x^2 \frac{19}{6}x + 1$
- 2. Lập bảng để vừa xây dựng công thức, vừa tính giá trị nội suy

Tính giá trị nội suy tại x = 2:

$$\mathcal{L}_2(2) = -2\left(\frac{1}{6} + \frac{-1}{-2} + \frac{2}{-6}\right) = -\frac{2}{3} \tag{7}$$

Ví dụ: dùng nội suy Lagrange tính giá trị tại x=2 với các giá trị cho trong bảng số:

k	x_k	y_k
0	0.0	1
1	1.0	1
2	3.0	2
3	4.0	-1

Lập bảng:

x = 2	0	1	3	4	
0	2	-1	-3	-4	-24
1	1	1	-2	-3	6
3	3	2	-1		6
4	4	3	1	-2	-24
					4

Tính giá trị nội suy:

$$\mathcal{L}_3(2) = 4\left(\frac{1}{24} + \frac{1}{6} + \frac{2}{6} + \frac{-1}{24}\right) = 2$$

Công thức của đa thức nội suy: $\mathcal{L}_3(x) = -\frac{1}{3}x^3 + \frac{3}{2}x^2 - \frac{7}{6}x + 1$

Câu hỏi: có cách nào khác để lập bảng và tính toán giá trị của đa thức nội suy tại một điểm x^* không?

Trả lời: ta có thể viết đa thức nội suy dưới dạng **đa thức nội suy Newton**, và lập bảng để tính.

Da thức nội suy Newton được định nghĩa dựa trên sai phân hữu hạn:

$$\Delta_{y_k} = y_{k+1} - y_k, \Delta_{x_k} = x_{k+1} - x_k.$$

Ta giới thiệu khái niệm **tỉ sai phân cấp 1** của hàm f trên doạn $[x_k, x_{k+1}]$:

$$f[x_k, x_{k+1}] = \frac{\Delta_{y_k}}{\Delta_{x_k}} = \frac{y_{k+1} - y_k}{x_{k+1} - x_k}$$
 (8)

và tỉ sai phân cấp \mathbf{p} (áp dụng cho $p=2,3,\cdots$):

$$f[x_k, \cdots, x_{k+p}] = \frac{f[x_{k+1}, \cdots, x_{k+p}] - f[x_k, \cdots, x_{k+p-1}]}{x_{k+p} - x_k}$$
(9)

Công thức của đa thức nội suy Newton:

$$f(x) = y_0 + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \dots + f[x_0, \dots, x_n](x - x_0) + \dots + (x - x_{n-1}) + \dots + f[x, x_0, \dots, x_n](x - x_0) + \dots + (x - x_{n-1})(x - x_n)$$

$$(10)$$

Ta đặt $\mathcal{R}_n(x)$ là số hạng cuối của (10), và phần trước là $\mathcal{N}_n^f(x)$:

$$\mathcal{N}_n^f(x) = y_0 + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \dots + f[x_0, \dots, x_n](x - x_0) \dots (x - x_{n-1})$$
(11)

$$\mathcal{R}_n(x) = f[x, x_0, \cdots, x_n](x - x_0) \cdots (x - x_{n-1})(x - x_n)$$
(12)

Khi đó ta viết gọn lại:

$$f(x) = \mathcal{N}_n^f(x) + \mathcal{R}_n(x) \approx \mathcal{N}_n^f(x) \tag{13}$$

Để tính toán giá trị hàm số f(x) theo công thức (13), tức $f(x) \approx \mathcal{N}_n^f(x)$ với sai số là $\mathcal{R}_n(x)$, ta lập **bảng tỉ sai phân**.

Ví dụ: Tính giá trị gần đúng của hàm số tại x=1.5, với dữ liệu:

k	x_k	y_k
0	1.0	-3
1	2.0	0
2	3.0	15
3	4.0	48
4	5.0	105
5	6.0	192
		I

Kết quả tính bảng tỉ sai phân: (ký hiệu $f_{\Delta}^k = f[x_0, \cdots, x_k]$)

		y_k	f^1_Δ	f_{Δ}^2	f_{Δ}^3	f_{Δ}^4	f_{Δ}^{5}
0	1.0	-3.0					
1	2.0	0.0	3.0				
2	3.0	15.0 48.0	15.0	6.0			
3	4.0	48.0	33.0	9.0	1.0		
4	5.0	105.0	57.0	12.0	1.0	0.0	
5	6.0	192.0	87.0	15.0	1.0	0.0	0.0

$$f(1.5) \approx \mathcal{N}_6^f(1.5)$$

$$= -3 + 3(0.5) + 6(0.5)(-0.5) + 1(0.5)(-0.5)(-1.5) + 0(0.5)(-0.5)(-0.5)(-0.5)$$

$$= -2.625$$

Vài lưu ý:

- Biểu thức $\mathcal{R}_n(x)$ (bậc n+1) là sai số của đa thức nội suy Newton.
- Công thức (11) gọi là công thức Newton tiến (forward), ta còn có thể dùng công thức Newton lùi (backward):

$$\mathcal{N}_{n}^{b}(x) = y_{n} + f[x_{n-1}, x_{n}](x - x_{n}) + f[x_{n-1}, x_{n-1}, x_{n}](x - x_{n-1})(x - x_{n-2}) + \dots + f[x_{0}, \dots, x_{n}](x - x_{1}) \dots (x - x_{n})$$

$$(14)$$

• Do đa thức nội suy bậc n trở xuống là duy nhất (khi đi qua bộ n+1 điểm), nên khi xây dựng bằng phương pháp Lagrange và Newton thì sẽ ra kết quả giống nhau: $\mathcal{L}_n(x) = \mathcal{N}_n^f(x) = \mathcal{N}_n^b(x)$.

Da thức nội suy spline bậc ba

Vấn đề: Nếu có nhiều điểm, phải lập đa thức nội suy bậc cao, phải tính toán nhiều. Có dạng đa thức nội suy nào bậc thấp, linh hoạt hơn?

Dinh nghĩa spline:

Một spline bậc ba nội suy của một hàm f(x) trên đoạn [a,b] là hàm g(x) thỏa các điều kiện:

- g(x) có đạo hàm đến cấp hai liên lục trên đoạn [a,b].
- Trên mỗi đoạn $[x_k,x_{k+1}], k=0,\cdots,n-1$, ta có $g(x)=g_k(x)$ là một đa thức bậc ba.
- $\bullet \ g(x_k) = f(x_k) = y_k, \forall k.$

Tóm lại: spline là đa thức bậc ba trên mỗi khoảng $[x_k, x_{k+1}], k = 0, \cdots, n-1$, và có đặc điểm là liên tục, khả vi tại các điểm nối.

Một vấn đề khác: Giả sử có một tập hợp điểm là từ một hàm đơn giản (ví dụ: đường thẳng), nhưng do có các **nhiễu** nên có thể nằm lệch. Làm sao tìm một hàm số theo dạng đã biết và **gần** tập hợp điểm đó nhất? (không nhất thiết phải đi qua tất cả các điểm)

Cách giải quyết: **Phương pháp bình phương bé nhất** (hoặc: PP bình phương cực tiểu, PP bình phương tối thiểu).

Cho tập hợp điểm $(x_k,y_k), k=1,\cdots,n$, ta tìm một hàm f(x) sao cho tổng sau là nhỏ nhất:

$$g(f) = \sum_{k=1}^{n} [f(x_k) - y_k]^2$$
 (15)

Trường hợp thường gặp: hàm f(x) là hàm số tuyến tính (đa thức bậc một), tức là f(x)=A+Bx. Bài toán phát biểu là:

$$\min_{A,B} g(A,B) = \min_{A,B} \sum_{k=1}^{n} (A + Bx_k - y_k)^2$$
 (16)

Cách giải: để tìm giá trị A^*, B^* mà $g(A^*, B^*) = \min_{A,B} g(A,B)$, ta tìm đạo hàm của g theo các biến A,B, và giải để đạo hàm bằng không:

$$\begin{cases}
\frac{\partial g}{\partial A} = 2\sum_{k=1}^{n} (A + Bx_k - y_k) = 0 \\
\frac{\partial g}{\partial B} = 2\sum_{k=1}^{n} (A + Bx_k - y_k)x_k = 0
\end{cases}$$
(17)

Ta viết lại thành hệ phương trình tuyến tính với hai ẩn là A và B:

$$\begin{cases} n\mathbf{A} + (\sum_{k=1}^{n} x_k) \mathbf{B} = \sum_{k=1}^{n} y_k \\ (\sum_{k=1}^{n} x_k) \mathbf{A} + (\sum_{k=1}^{n} x_k^2) \mathbf{B} = \sum_{k=1}^{n} x_k y_k \end{cases}$$
(18)

với các giá trị $x_k, y_k, k = \overline{1,n}$ là dữ liệu đã có và đóng vai trò hằng số trong hệ phương trình tuyến tính này. Khi giải hệ phương trình (18), ta sẽ tìm được các giá trị A^* và B^* của hàm xấp xỉ $y = A^* + B^*x$.

Tương tự, đối với dạng hàm f(x)=Ap(x)+Bq(x), ta lập hàm số $g(A,B)=\sum_{k=1}^n[Ap(x_k)+Bq(x_k)-y_k]^2$, và tính các đạo hàm $\frac{\partial g}{\partial A},\frac{\partial g}{\partial B}$, để tìm ra giá trị A^*,B^* mà tại đó tổng sai số $g(A^*,B^*)$ là nhỏ nhất.

Ví dụ: lập phương trình đường thẳng y=A+Bx để xấp xỉ tập dữ liệu trong bảng dưới: (phương trình đường thẳng là y=2.362+0.843x)

k	x_k	y_k
0	0	2.494
1	1	3.32
2	2	3.809
3	3	5.229
4	4	5.68
5	5	6.236
6	6	6.941
7	7	8.571
8	8	9.074
9	9	10.189

