## Examen Matematică

(21.01.2022)

timp de lucru: 1h45'

## Subjectul 1. (20 p.) Determinați integrala

$$\int \frac{\mathrm{e}^{\frac{1}{x}}}{x^3} \mathrm{d}x, \ x > 0.$$

Subiectul 2. (30 p.) Fie funcția  $f : \mathbb{R}^2 \to \mathbb{R}$  definită prin

$$f(x,y) := \begin{cases} \frac{(x+y)\sin(x-y)}{x^2+y^2}, & (x,y) \neq (0,0); \\ 0, & (x,y) = (0,0). \end{cases}$$

- a) Calculați limitele iterate  $\lim_{x\to 0}\lim_{y\to 0}f(x,y)$  și  $\lim_{y\to 0}\lim_{x\to 0}f(x,y)$ ; (15 p.)
- b) Fie funcția  $g: \mathbb{R}^2 \to \mathbb{R}$  definită prin  $g(x,y) := (x-y) \cdot f(x,y)$ . Determinați derivata direcțională a funcției g în (0,0) în direcția (2,-1). (15 p.)

Subiectul 3. (40 p.) Fie funcția  $f: \mathbb{R}^3 \to \mathbb{R}$  definită prin

$$f(x, y, z) := xy^2 - 27yz^2 + 8zx^2 - x^2.$$

- a) Calculați derivatele parțiale de ordinul întâi ale funcției f (10 p.);
- b) Calculați derivatele parțiale de ordinul doi ale funcției f (10 p.);
- c) Determinați punctele critice ale funcției f și tipul acestora (minim local, maxim local sau punct șa) (20 p.).

Puncte din oficiu: 10 p.