9자, 유의성 검정2 - 이표본 검정

독립인 자료(Independent data)

· 비교하고자 하는 두 집단의 측정치들이 서로 다른 개체에서 얻어진 것으로 한 집단의 측정치가 다른 집단의 측정치에 영향을 주지 않는 경우에 얻어진 자료로 각 개체들은 서로 독립이어야 한다.

· 대표적인 통계기법

-- 모수적 기법 ; T-test

-- 비모수적 기법 ; Wilcoxon rank sum test(Mann-Whitney U Test), Median test

9.1. 이표본 T-Test (독립표본)

· 가설검정 절차(T-test)

① 가설 $H_0: \mu_1 = \mu_2 \text{ v.s. } H_1: \mu_1 \neq \mu_2$

② 유의수준 α

③ 검정통계량

ⓐ 대표본인 경우 :
$$Z = \frac{(\overline{X_1} - \overline{X_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \approx M(0,1)$$
 : 생략

ⓑ 정규모집단, 등분산인 경우($\sigma_1^2 = \sigma_2^2 = \sigma^2$):

$$T = \frac{(\overline{X_1} - \overline{X_2}) - (\mu_1 - \mu_2)}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2) \ , \ \ \text{and} \ \ S_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

© 정규모집단, 등분산이 아닌 경우(이분산):

$$T = \frac{(\overline{X_1} - \overline{X_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim t(dt), \quad \text{of } 7 \text{ A} \quad df = \frac{\left[\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right]^2}{\frac{\left[s_1^2/n_1\right]^2}{n_1 - 1} + \frac{\left[s_2^2/n_2\right]^2}{n_2 - 1}}$$

④ H_0 를 기각 if $|T| \ge t_{\alpha/2,\,n1+n2-2}$ 또는 $p-value \le \alpha$, where $p-value = \Pr(\mathsf{t_{n1+n2-2}} \ge |\mathsf{T}|)$

0) 자료의 형태

A-type(1강의)

여자 키
158
165
160
160
160
170
153

B type(2강의)

1/24	
gender	height
1	179
1	168
1	170
2	158
2	165
1	180
1	174
2	160
1	168
2	160
2	170
- 2	150

A. 자료의 형태 (A-type)

A-1. 정규모집단, 등분산인 경우 (R 제공)

(1) 예제자료 1 - 지혈제 A와 지혈제 B의 지혈시간

x1 = c (1.1, 2.3, 4.3, 2.2, 5.3) # 지혈제 A의 지혈시간

x2 = c (2.3, 4.3, 3.5) # 지형제 B의 지형시가

t.test(x1, x2, var.equal = T) # $H_1: \mu_1 \neq \mu_2$ 등분간 가정하에서

Two Sample t-test

data: x1 and x2

t = -0.2956, df = 6, p-value = 0.7775

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-3.030714 2.377381 sample estimates:

mean of x mean of y 3.040000 3.366667

해석:

• 추정 : 지혈제 A의 평균 지혈시간은 3.04시간, 지혈제 B의 평균 지혈시간은 3.36시간이다. 지혈제 A와 지혈제 B의 평균 지혈시간차에 대한 95% 신뢰구간은 (-3.03, 2.37)이다.

• 가설검정

- ① 가설 H_0 : 지혈제 A와 지혈제 B의 평균 지혈시간은 같다. H_1 : 지혈제 A와 지혈제 B의 평균 지혈시간은 다르다.
- ② 유의수준 α=0.05
- ③ 검정통계량 T값 = -0.2956
- ④ P값 = 0.7775 > α => H₀를 기각할 수 없다
- ⑤ 결론 : 유의수준 5%에서 지혈제 A와 지혈제 B의 평균 지혈시간은 통계적으로 유의한 차이가 없었다.

A-2. 정규모집단, 등분산이 아닌 경우(이분산) (R 제공)

t.test(x1, x2, var.equal = F) $\#^{\square} \Xi = H_1 : \mu_1 \neq \mu_2$

Welch Two Sample t-test

data: x1 and x2

t = -0.33995, df = 5.9717, p-value = 0.7455

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-2.680674 2.027341

sample estimates:

mean of x mean of y

3.040000 3.366667

A-3. 이표본 분산비 F-Test (R 제공)

[NOTE]

A-1 또는 A-2를 하기 전에 등분산인지, 이분산인지 검정하고, A-1,또는 A-2를 선택 (p값 > 0.05 => 등분산 => A-1), (p값 < 0.05 => 이분산 => A-2)

[NOTE] F분포

 x = seq(0,5, by=0.01)
 # -5 ~ 5까지 0.01 간격으로..

 yf = df (x , 5, 6)
 # =>

 plot(x, yf, type = "l", col = "blue")
 # => 그림

· 가설검정 절차(F-test)

- ① 가설 $H_0: \sigma_1^2 = \sigma_2^2 v.s. H_1: \sigma_1^2 \neq \sigma_2^2$
- ② 유의수준 α
- ③ 검정통계량 $F = \frac{{S_1}^2}{{S_2}^2} \sim F(n_1-1,n_2-1)$
- ④ H_0 를 기각 if $F \geq F_{\alpha/2,\,n_1-1,\,n_2-1}$ 또는 $F \leq F_{1-\alpha/2,\,n_1-1,\,n_2-1}$ if $p-value~\leq~\alpha$

var.test(x1, x2)

정규욕집단에서 사용 $ext{H}_1: \sigma_1^{\ 2}
eq \sigma_2^{\ 2}$

$\mathrm{H_1}:\,\sigma_1^{\ 2}
eq \sigma_2^{\ 2}$: 더 나은 통계량 Levene's test, Bartlett.test

F test to compare two variances

data: x1 and x2
F = 2.8895, num df = 4, denom df = 2, p-value = 0.5465
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
 0.07362013 30.77032496
sample estimates:
ratio of variances
 2.889474

해석:

- 가설검정
 - ① 가설 H₀: 지혈제 A와 지혈제 B의 분산은 같다.
 H₁: 지혈제 A와 지혈제 B의 분산은 다르다.
 - ② 유의수준 = 0.a05
 - ③ 검정통계량 F값 = 2.8895
 - ④ P값 = 0.5465 > α => H₀를 기각할 수 없다
 - ⑤ 결론 : 지혈제 A와 지혈제 B의 지혈시간은 분산이 통계적으로 유의한 차이가 없었다.
- => 이표본 T-Test에서 등분산 가정 적용(A-1)

```
A-4. 이표본 T-Test (독립표본) (R 프로그래밍)
```

```
T_{\text{test}} = A = function(x, y) 
 n1 = length(x); n2 = length(y) # 등분산 F-test
 s1 = var(x); s2 = var(y)
 F = s1 / s2
 pvalue = min(2*pf(F, n1-1, n2-1), 2*(1 - pf(F, n1-1, n2-1)))
 cat( " ========= 이표본 분산비 검정 ========", "\n", "\n")
               F = ", F, ", P - value = ", pvalue, "\n", "\n")
 cat( "
                                           # 등분산인 경우 t-test
 xbar = mean(x); ybar = mean(y)
 sp = sqrt ( (n1 - 1) * s1 + (n2 - 1) * s2 ) / (n1 + n2 - 2) )
 T = (xbar - ybar) / (sp * sqrt (1/n1 + 1/n2))
 pvalue = 2 * (1 - pt(abs(T), n1 + n2 - 2))
 cat( " ========= 이표본 평균차 검정 ========", "\n", "\n")
 cat( " 등분산인 경우 : T = " , T, " , P - value = " , pvalue , "\n")
 df = (s1/n1 + s2/n2)^2 / ((s1/n1)^2 / (n1 - 1) + (s2/n2)^2 / (n2 - 1))
 T = (xbar - ybar) / sqrt (s1/n1 + s2/n2) # 이분산인 경우 t-test
 pvalue = 2 * (1 - pt(abs(T), df))
 cat( " 이분산인 경우 : T = " , T, " , P - value = " , pvalue , "\n")
 }
 T test 2A(x1, x2)
====== 이표본 분산비 검정 =========
        F = 2.889474 , P - value = 0.5465404
====== 이표본 평균차 검정 ========
등분산인 경우 : T = -0.295603 , P - value = 0.7774965
이분산인 경우 : T = -0.3399501 , P - value = 0.7455324
```

[NOTE] SPSS 결과

독립표본 검정

		Levene의 f	등분산 검정	평균의 동일성에 대한 T검정						
		F	유의확률	t	자유도	유의확률 (양 축)	평균차이	표준오차 차이	차이의 959 하한	6 신뢰구간 상한
지혈시간	동분산을 가정함	2.366	.175	296	6	.777	32667	1.10509	-3.03071	2.37738
	동분산을 가정하지 않음			340	5.972	.746	32667	.96093	-2.68067	2.02734

[과제23] (여러분은 따라서 해보시고, 아래 실습문제를 과제로 제출하시길)

- 과제방법 :
 - ① R에서 제공 결과 => 결과분석
 - ② R 프로그래밍 결과 => ①의 결과와 같음을 확인

[실습1] 12가게를 조사하여 6가게는 새제품을 판매하였고, 또 다른 6가게는 기존 제품을 판매하였더니 다음과 같은 자료를 얻었습니다.

새제품과 기존제품의 판매량에 차이가 있는지 검정하시오.

새제품	기존제품
50	45
48	43
47	45
45	44
46	43
43	40

[실습2] 두 사료의 우유생산량에 차이가 있는지 검정하시오.

사료1	54	60	66	53	62	61	42	50	
사료2	53	60	62	67	59	45	60	52	52

첨부파일: 학번이름23.hwp (예: 20192260홍길동23.hwp)