Systemy różnych reprezentantów (SRR)

Przypomnijmy, że ciąg zbiorów $\mathcal{A} = (A_1, A_2, \dots, A_n)$ ma system różnych reprezentantów (SRR), zwany też transwersalą, jeżeli istnieją **różne** punkty x_1, \dots, x_n , takie że $x_i \in A_i$ dla każdego $i \leq n$.

- 1. Niech $\mathcal{A} = (A_1, A_2, \dots, A_n)$ będzie ciągiem zbiorów, posiadającą SRR. Niech x będzie elementem z A_1 . Pokazać, że istnieje SRR zawierający x; pokazać na przykładzie, że może nie istnieć SRR, w którym x reprezentuje A_1 .
- 2. Niech $\mathcal{A} = (A_1, A_2, \dots, A_n)$ będzie ciągiem zbiorów spełniającym silniejszy Warunek Halla

$$|A_{i_1} \cup A_{i_2} \cup \ldots \cup A_{i_k}| \geqslant k+1,$$

dla każdego k = 1, 2, ..., n i dowolnego wyboru k różnych indeksów $i_1, i_2, ..., i_k$. Niech x będzie elementem z A_1 . Pokazać, że A ma SRR, w którym x reprezentuje A_1 .

3. Pokazać, że ciąg zbiorów

$$A_i = \{1, 2, \dots, n\} \setminus \{i\}, \qquad (i = 1, 2, \dots, n),$$

posiada SRR oraz liczba różnych SRR tego ciągu jest równa n-tej liczbie nieporządków D_n .

- **4.** Udowodnić, że jeżeli każdy zbiór z ciągu \mathcal{A} ma $\geq d$ elementów, a każdy punkt należy do co najwyżej d zbiorów z \mathcal{A} (gdzie d > 0 jest ustalone) to taki ciąg ma SRR.
- **5.** Udowodnić, że ciąg $\mathcal{A} = (A_1, A_2, \dots, A_n)$ niepustych podzbiorów skończonego zbioru X ma SRR wtedy i tylko wtedy gdy $|\{i: A_i \subseteq Y\}| \leq |Y|$ dla każdego $Y \subseteq X$.
- **6.** Po rozgrywce brydżowej talia 52 kart jest podzielona na 13 lew po 4 karty. Udowodnić, że można z każdej lewy wybrać po jednej karcie, tak aby otrzymać wszystkie figury $2, 3, \ldots, 10, W, D, K, A$ (bez uwzględniania kolorów).

Kojarzenie par w grafach dwudzielnych

- 7. Wyprowadzić twierdzenie Halla o małżeństwach z twierdzenia Halla o SRR.
- 8. Wybrać (nieduży) graf dwudzielny i pewne kojarzenie par w tym grafie; można posłużyć się przykładem z wykładu. Przećwiczyć działanie algorytmu etykietującego; zdefiniować nowe, lepsze kojarzenie par.

EULER RAZ JESZCZE

 $Grafem\ dualnym\ do\ grafu\ planarnego\ (V,E)\ (wyznaczającego\ zbiór\ ścian\ F)$ nazwiemy graf (F,E), w którym każda krawędź łączy obszary, które rozdziela.

Inaczej mówiąc, można utożsamić ścianę $f \in F$ z pewnym punktem p_f do niej należącym i połączyć krawędziami te pary p_f i p_g , dla których ściany f i g mają wspólną krawędź w wyjściowym grafie. Warto popróbować na rysunku.

9. Pokazać, że jeśli (V, E') jest drzewem rozpinającym w planarnym grafie (V, E) to $(F, E \setminus E')$ jest drzewem rozpinającym w grafie dualnym (F, E). Wywnioskować stąd formułę Eulera.