Álgebra lineal II, Grado en Matemáticas

Junio 2014, 2^a semana.

No se permite el uso de material impreso (libros, apuntes) ni ningún tipo de calculadora. Todas las soluciones tendrán que darse suficientemente razonadas.

Defina los siguientes conceptos: (2 puntos)

- (a) Producto escalar.
- (b) Autovalor o valor propio.
- (c) Ley de inercia de Sylvester.
- (d) Subespacio propio generalizado.

Ejercicio 1: (2 puntos)

Sean (V, <, >) un espacio vectorial euclídeo, U un subespacio vectorial de V y $\{u_1, ..., u_r\}$ una base ortogonal de U. Demuestre que para todo $v \in V$ se cumple:

$$p_U(v) = \frac{\langle v, u_1 \rangle}{||u_1||^2} u_1 + \dots + \frac{\langle v, u_r \rangle}{||u_r||^2} u_r$$
.

Ejercicio 2: (3 puntos)

Dado el endomorfismo f de un espacio vectorial real de dimensión 4 cuya matriz es

$$\begin{pmatrix} -1/2 & 3/2 & -1/2 & 1/2 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ -1/2 & 1/2 & -1/2 & 1/2 \end{pmatrix}.$$

- a) Encuentre la forma canónica de Jordan J de f. El polinomio característico de f es $p(\lambda) = \lambda^2 (\lambda 1)^2$.
- b) Sea B una base tal que $M_B(f) = J$. Determine los subespacios invariantes de f respecto de dicha base.

Ejercicio 3: (3 puntos)

a) Clasifique la familia de formas cuadráticas $\Phi_a: \mathbb{R}^3 \to \mathbb{R}$ para los distintos valores del parámetro $a \in \mathbb{R}$.

$$\Phi_a(x, y, z) = x^2 + 2y^2 + 2xy + 2xz + 4yz + (2+a)z^2.$$

- b) Para cada $a \in \mathbb{R}$, determine un plano vectorial U_a tal que la restricción de Φ_a a dicho plano sea una forma cuadrática definida positiva.
- c) Para qué valores de $a \in \mathbb{R}$ la forma polar asociada a Φ_a define un producto escalar.