Multivariada I

- □ Juliano van Melis jvmelis@gmail.com
- □ Profa. MSc. Edmila Montezani
- □ edmila@gmail.com

EXERCÍCIOS

- □ Perguntas que devem ser respondidas:
- 1. Quanto os formandos podem esperar de salário após a formatura?
- 2. Existem variáveis que tenham um efeito importante no valor do salário dos formandos (por exemplo: idade, gênero, quartil, lingua mãe, experiência)?
- 3. As informações fornecidas pelos programas de MBA são factíveis?

□ A base de dados é apresentada a seguir. (mba.xlsx)
 (várias linhas estão ocultas para facilitar a visualização).

age	sex	gmat_tot	gmat_qpc	gmat_vpc	gmat_tpc	s_avg	f_avg	quarter	work_yrs	frstlang	salary	satis
23	2	620	77	87	87	3,4	3	1	2	1	0	7
24	1	610	90	71	87	3,5	4	1	2	1	0	6
24	1	670	99	78	95	3,3	3,25	1	2	1	0	6
24	1	570	56	81	75	3,3	2,67	1	1	1	0	7
24	2	710	93	98	98	3,6	3,75	1	2	1	999	5
24	1	640	82	89	91	3,9	3,75	1	2	1	0	6
25	1	610	89	74	87	3,4	3,5	1	2	1	0	5
25	2	650	88	89	92	3,3	3,75	1	2	1	0	6
25	1	540	79	45	65	2,6	2,5	4	3	1	115000	5
26	1	550	72	58	69	2,6	2,75	4	3	1	126710	6
40	2	500	60	45	51	2,5	2,75	4	15	2	220000	6

□ A resolução apresentada a seguir é baseada no software R.

□ 1° abra o RStudio. Na linha de comando digite:

```
dados=read.csv("C:/Users/Edmila/Desktop/Facu/Mack/Aulas/Arquivos aula 5/mba.csv", header = TRUE, sep = ";", dec=",")
```

- □ 1a) Quanto os formandos podem esperar de salário após a formatura?
- Primeiro deve-se determinar qual o salário médio dos estudantes após a formatura. A utilização dos dados relativos aos 274 alunos é uma estratégia razoável? Para ter uma idéia dos dados e um sumário estatístico no R podemos fazer:
 - dados
 - names(dados) #mostra os nomes das colunas da planilha mba.csv
 - dados\$salary #mostra somente os dados de salária
 - mean(dados\$salary) #média dos salários
 - median(dados\$salary) #mediana dos salários
 - hist(dados\$salary) #média dos salários

- O primeiro problema com a abordagem anterior é que não "limpamos" o dataset *salary* para fazer o cálculo da média. Pela descrição dos dados, vemos que 998 e 999 não representam um valor de salário, mas sim a ausência ou não fornecimento de infos (BUG do R....)
- Sendo assim, vamos criar uma variável *salary2* a qual terá apenas os valores de salário reais. A partir dela iremos calcular a média, mediana e histograma dos valores. Para isto fazemos:

```
salary2 = dados$salary[ (dados$salary != 999) & (dados$salary != 998) ]
```

- dados\$salary! = 999 significa valores de dados\$salary que sejam diferentes de 999. Isto vai gerar uma lista de FALSE e TRUE
- □ & é um operador lógico AND. A lista de FALSE e TRUE será gerada a partir dos valores de *salary* que seja diferentes de 999 E 998.

- Calculamos agora a média, mediana e histograma para salary2.
 - mean(salary2)
 - median(salary2)
 - hist(salary2)
- □ Obtivemos os valores de \$54.985,32 para a média e \$85.000 para a mediana. Além do histograma mostrado abaixo.

- O próximo ponto a ser levado em consideração é a grande quantidade de valores iguais a zero. Podemos obter o número de pontos totais, iguais e diferentes de zero fazendo:
 - length(salary2)
 - \blacksquare sum(salary2==0)
 - sum(salary2>0)
- □ Obtemos respectivamente 193, 90 e 103.
- □ Vamos agora criar um outro vetor de salários no qual estarão presentes apenas os salários maiores que 0 e diferentes de 999 e 998. Partindo de *salary2* fazemos:
 - \blacksquare salary3 = salary2[salary2>0]
 - mean(salary3); median(salary3); hist(salary3);

□ Obtemos como resultados, para a média: \$103.030,7; para a mediana \$100.000 e o histograma:

A maior similaridade da média e da mediana, além do próprio histograma garantem agora uma maior simetria, a qual por sua vez, pode ser interpretada como um sinal de melhor qualidade no *dataset* ©

- □ Outra forma de obter o resumo dos dados seria:
 - summary(salary3)
 - Min. 1st Qu. Median Mean 3rd Qu. Max.
 - **6**4000 95000 100000 103000 106000 220000
- Ou poderíamos analisar os dados de forma visual através de um boxplot:
 - boxplot(salary3)

No próximo slide veremos como melhorar o boxplot.

Opções para boxplot em ordem crescente de detalhes

- boxplot(salary3, ylab="Salary")
- boxplot(salary3, ylab="Salary", xlab="Number of Respondents")
- boxplot(salary3, ylab="Salary", xlab="Number of Respondents", main="Boxplot for MBA Salaries")

Boxplot for MBA Salaries

Opções para boxplot em ordem crescente de detalhes

• • • • • • •

- boxplot(salary3, ylab="Salary", xlab="Number of Respondents", main="Boxplot for MBA Salaries", col="blue")
- boxplot(salary3/1000, ylab="Salary in (000s)", xlab="Number of Respondents", main="Boxplot for MBA Salaries", col="blue")

Boxplot for MBA Salaries

- □ Para gerar uma tabela de frequências e de frequências cumulativas de *salary3*:
 - Salary3

```
> salary3
  [1] 85000 85000
                    86000 88000
                                  92000
                                         93000 95000
                                                       95000 95000
 [12] 100000 100000 100000 105000 105000 105000 105000 105000 105000 106000 106000
 [23] 107500 108000 110000 112000 115000 115000 118000 120000 120000 120000 120000
                                 93000 95000 95000
 [34] 146000 162000 82000 92000
                                                       96000 96500
      98000 99000 100000 100000 101000 103000 104000 105000 105000 105000 107000
 [56] 112000 115000 115000 130000 145800 78256
                                               88500
                                                       90000
                                                              90000
      97000 97000 98000 98000
                                  98000 98000 98000
                                                       98000 100000 100000 101000
 [78] 101100 102500 105000 106000 107300 108000 112000
                                                       64000
                                                             77000
                                         98000 100000 100000 100400 101600 104000
      86000 90000
                    92000
                           95000
                                  96000
[100] 105000 115000 126710 220000
```

Table(salary3)

□ Para gerar uma tabela de frequências e de frequências cumulativas de *salary3*:

... (continuação)

- o as.data.frame(table(salary3)) #visualização em colunas
- salary4 = as.data.frame(table(salary3))
- o salary4[,2] #dados da segunda coluna
- salary4\$CumFreq = cumsum(salary4[,2]) #soma acumulada
- o salary4 #visualiza os dados em coluna com a adição da coluna com soma acumulada
- o names(salary4) # nomes das colunas: [1] "salary3" "Freq" "CumFreq"
- o salary4\$PercFreq= salary4[,2]/sum(salary4[,2]) #% da coluna Freq
- salary4\$PercCumFreq= cumsum(salary4[,3])/sum(salary4[,2])
- #% da coluna Freq Acumulada
- salary4 #Apresenta a tabela de frequências

- □ Para obter os valores numéricos dos fatores de classificação de *salary4* podemos fazer:
 - salary4[,1] #Fatores não numéricos e sua descrição
 - levels(salary4[,1]) #Apenas os fatores não numéricos
 - o as.numeric(levels(salary4[,1])) #Fatores numéricos como números
 - o niveis = as.numeric(levels(salary4[,1])) #tabela como números
- □ Em seguida para inserir os níveis numéricos na segunda coluna do data frame (criando outro data frame agora com o nome *salary5*):
 - salary5 = data.frame(salary4[,1], niveis, salary4[,2], salary4[,3], salary4[,4], salary4[,5])
- □ No entanto isto requer uma grande digitação de dados repetidos. Podemos abreviar a digitação fazendo a sequência a seguir (próximo slide):

- □ Inserção de dados (colunas) em data frame (entre a 1ª e a 2ª coluna):
 - o 2:5
 - salary4
 - salary4[,2:5] #tira a informação de Salários
 - o niveis = as.numeric(levels(salary4[,1]))
 - o data.frame(salary4[,1],niveis,salary4[,2:5])
 - #encontra a tabela de frequencias da tabela "niveis"
 - salary5= data.frame(salary4[,1],niveis,salary4[,2:5])
 - o names(salary5)[1] = "SalaryLevels"
 - names(salary5)[2] = "Níveis"
 - > salary5 > salary5 | SalaryLevels Níveis Freq CumFreq | PercFreq | PercCumFreq | Perc
 - names(salary5)

```
> names(salary5)
[1] "SalaryLevels" "Níveis"
[6] "PercCumFreq"
```

- □ Status Atual:
 - summary(salary3)
 - Média: \$103.000
 Mediana: \$100.000
 Summary(salary3)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 64000 95000 100000 103000 106000 220000
- Histograma de Salários
 - hist(salary3/1000, breaks=seq(from=50, to = 230, by=10), col="gray", xlab="Salary (000s)", ylab="Frequency Counts", main="Histogram of Salary")

Histograma de Salários com texto informando média, desvio e contagem......

(Próximo slide)

Histogram of Salary

" \n N =", length(salary3)));

2a) Existem variáveis que afetam o valor esperado do salário inicial de um recém formado?

- Podem ser analisados: notas, genêro, lingua mãe e experiência. Vamos analisar o efeito através de boxplots que serão divididos pelas categorias dos quatro fatores, através do código abaixo (resultado a seguir):
 - o layout(matrix(c(1,2,3,4),2,2,byrow=TRUE))
 - boxplot(dados\$salary~dados\$quarter, main="Salary by Quarter")
 - boxplot(dados\$salary~dados\$sex, main="Salary by gender")
 - boxplot(dados\$salary~dados\$frstlang, main="Salary by mother tongue")
 - boxplot(dados\$salary~dados\$work_yrs, main="Salary by work experience")
 - \circ layout(1,1,1)

Salary by Quarter

Salary by gender

Salary by mother tongue

Salary by work experience

- As comparações do slide anterior foram feitas no entanto considerando-se todos os elementos do dataset *salary*.
- Devemos lembrar que nossa análise desconta os elementos de *salary* com valores iguais a 0, 999 ou 0,998. Para criar gráficos com estes dados podemos fazer:
 - o layout(matrix(c(1,2,3,4),2,2,byrow=TRUE))
 - attach(dados)
 - salary2 = salary[salary!=0 & salary!=998 & salary!=999]
 - o quarter2 = quarter[salary!=0 & salary!=998 & salary!=999]

 - o frstlang2 = frstlang[salary!=0 & salary!=998 & salary!=999]
 - o work_yrs2 = work_yrs[salary!=0 & salary!=998 & salary!=999]
 - boxplot(salary2~quarter2, main="Salary by Quarter")
 - boxplot(salary2~sex2, main="Salary by gender")
 - boxplot(salary2~frstlang2, main="Salary by mother tongue")
 - boxplot(salary2~work_yrs2, main="Salary by work experience")
 - detach(dados)
 - $\circ \quad \text{layout}(1,1,1)$

Salary by Quarter

Salary by gender

Salary by mother tongue

Salary by work experience

A comparação também pode ser executada através de cálculos diretos nos datasets. No caso abaixo, as medidas estatísticas foram calculadas no R com os comandos:

```
o summary(salary2[quarter2==1]);sd(salary2[quarter2==1]); length(salary2[quarter2==1])
```

- summary(salary2[quarter2==2]);sd(salary2[quarter2==2]); length(salary2[quarter2==2])
- summary(salary2[quarter2==3]);sd(salary2[quarter2==3]); length(salary2[quarter2==3])
- summary(salary2[quarter2==4]);sd(salary2[quarter2==4]); length(salary2[quarter2==4])

Table 5-0				
	Q1	Q2	Q3	Q4
Média	\$106.328	\$103.612	\$98.319	\$102.142
Mediana	\$105.000	\$100.000	\$98.000	\$98.000
Mínimo	\$85.000	\$82.000	\$78.526	\$64.000
Máximo	\$162.000	\$145.800	\$112.000	\$190.000
Intervalo	\$77.000	\$63.800	\$33.744	\$222.000
Desvio	\$15.838	\$12.818	\$7.175	\$31.600
Tam.Am.	35	25	24	19

Comentários: 1) Aumento da média no 4º quartil -> decorre de um elemento *outlier* (220k), referente ao salário de aluno que retornou ao seu país de origem para assumir os negócios da família + pequeno tamanho da amostra neste quartil.

Comentários: 2) Melhor quartil para previsões: 3º por conta do menor desvio

Estudo de Caso: MBA Salaries – Teste ANOVA – Influência da Nota no Salário

- Vamos agora realizar um teste ANOVA, para avaliar se existe diferença na média dos salários quando segmentados por quartil de nota. Observe a forma como as tabelas de dados foram geradas a partir do data frame *dados*
 - attach(dados)
 - o names(dados) # nomes das colunas
 - o dados2 = dados[salary!=0 & salary!=999 & salary!=998,] # retirar as sujeiras
 - detach(dados)
 - o attach(dados2)
 - o names(dados2)
 - oneway.test(salary~quarter, data=dados, var.equal=TRUE)
- □ Obtemos como resultado:

One-way analysis of means data: salary and quarter F = 2.993, num df = 3, denom df = 270, p-value = 0.03136

O p-value de 0.031 aponta para a não existência de diferença entre as médias salariais por quartil.

Estudo de Caso: MBA Salaries — Teste ANOVA — Influência da Nota no Salário

- □ Podemos também gerar rapidamente um boxplot de *salary* separado por *quarter* fazendo o seguinte:
 - boxplot(salary~quarter, main="Salary by Quarter")
- O teste ANOVA é visualmente confirmado pelo boxplot, pois os diagramas não mostram diferença significativa entre as média

Salary by Quarter

Estudo de Caso: MBA Salaries – Teste ANOVA – Influência do gênero no Salário

- Gerando o boxplot:
 - boxplot(salary~sex, main="Salary by Gender")

- □ Não parece haver uma grande diferença, porém calculamos podemos calcular o ANOVA para confirmar
 - oneway.test(salary~sex, data=dados2, var.equal=TRUE)
- □ Obtemos como resultado:
 - One-way analysis of means data: salary and sex F = 2.87, num df = 1, denom df = 101, p-value = 0.0932

Teste ANOVA – Influência do gênero no Salário

- No slide anterior, executamos o ANOVA sob a pressuposição de variâncias equivalentes. Vamos testar esta pressuposição.
 - var.test(salary~sex)

□ Obtemos como resultado:

- F test to compare two variances data: salary by sex F = 0.30486, num df = 71, denom df = 30, p-value = 4.241e-05 alternative hypothesis: true ratio of variances is not equal to 1 95 percent confidence interval: 0.1589648 0.5414794 sample estimates: ratio of variances 0.3048572
- **Executamos então um teste** *t* **com dados não emparelhados, variâncias distintas.**
- t.test(salary~sex, paired=FALSE, var.equal=FALSE)

□ Neste caso obtemos como resultado:

Welch Two Sample t-test data: salary by sex t = 1.36, df = 38.1, p-value = 0.1809 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -3129 16022 sample estimates: mean in group 1 mean in group 2

104971 98524

Poderíamos também ter executado o teste ANOVA sob a pressuposição de variâncias distintas fazendo:

• oneway.test(salary~sex, data=dados2, var.equal=FALSE)

□ Obtendo como resultado:

One-way analysis of means (not assuming equal variances) data: salary and sex F = 1.86, num df = 1.0, denom df = 38.1, p-value = 0.1809

ANOVA 2 way – Influência do quartil e do gênero no salário

- Para isto precisamos utilizar outra função *aov()*, as regras de modelagem multivariada do R e a função *summary*.
 - o result=aov(salary~quarter*sex, data=dados2)
 - summary(result)

Fazendo *quarter*sex* estamos testando possíveis interações entre os quartis e o gênero. Poderíamos ter feito *quarter+sex* o que tornaria o modelo linear (aditivo, sem interações).

No entanto a análise do resultado de *summary* mostra que os *p-values* foram: 0,182; 0,080 e 0,019 para *quarter, sex* e *interações* (*quarter x sex*) respectivamente.

Isto mostra que ocorre uma interação (evento específico) de quartil com gênero.

ANOVA 2 way – Influência do quartil e do gênero no salário

- □ Fazendo o boxplot:
 - boxplot(salary~quarter*sex, data=dados2)
- □ Obtemos: isto mostra que no 4º quartil
 - gênero = 2 (fem) existe um salário discrepante

Estudo de Caso: MBA Salaries – Efeito da Lingua Mãe

- □ Neste caso não é viável realizar este teste pois apenas 7 dos respondentes afirmaram não ser o inglês sua lingua mãe.
- □ Isto pode ser confirmado fazendo-se:
 - sum(frstlang==2)
 - **7**

MBA Salaries – Efeito da Experiência, Nível de Satisfação e Notas

- Neste caso vamos utilizar uma tabela de correlações para observar se existe uma relação entre o salário e os fatores experiência, notas e nível de satisfação.
- □ Para tal precisaremos dos seguintes comandos
 - o names(dados2)
 - o mbacor = data.frame(gmat_tot, salary, s_avg, work_yrs, satis)
- □ Para obter o no.de observações
 - length(mbacor[,1])
- Para obter a matriz de correlações, utilizasse a função *cor()* a qual aceita data frame como input
 - cor(mbacor)

```
> cor(mbacor)
                         salary
                                             work_yrs
                                                            satis
           gmat_tot
                                     s_avg
                                 0.1719887 -0.12280018
        1.00000000 -0.09067141
gmat_tot
                                                       0.06474206
salary
        -0.09067141 1.00000000
                                 0.1017317
                                           0.45466634 -0.04005060
s_avg 0.17198874 0.10173175
                                1.0000000 0.16328236 -0.14356557
work_yrs -0.12280018  0.45466634  0.1632824
                                           1.00000000 0.06299926
satis
         0.06474206 -0.04005060 -0.1435656 0.06299926
                                                      1.00000000
```

MBA Salaries – Efeito da Experiência, Nível de Satisfação e Notas

Caso queira-se saber também o p-valor de todas as correlações encontradas pode-se utilizar a função rcorr() do pacote Hmisc. Esta função no entanto aceita apenas matrizes como input. Sendo assim deve-se: utilizar:

```
library(Hmisc)
```

rcorr(as.matrix(mbacor))

```
> rcorr(as.matrix(mbacor))
        gmat_tot salary s_avg work_yrs satis
            1.00 -0.09 0.17
                                 -0.12 0.06
gmat_tot
salary
           -0.09 1.00 0.10
                                 0.45 - 0.04
s_avg
           0.17
                   0.10 1.00
                                 0.16 - 0.14
work_yrs
           -0.12 0.45 0.16
                                 1.00 0.06
satis
           0.06 -0.04 -0.14
                                 0.06 1.00
n= 103
Ρ
        gmat_tot salary s_avg work_yrs satis
                 0.3624 0.0824 0.2165
gmat_tot
                                       0.5159
salary
                        0.3065 0.0000
                                       0.6879
        0.3624
        0.0824
                 0.3065
                                       0.1480
s_avg
                               0.0994
work_yrs 0.2165
                 0.0000 0.0994
                                       0.5273
        0.5159
                 0.6879 0.1480 0.5273
satis
```

No caso da função padrão do R *cor.test* a mesma aceita apenas pares de vetores. Sendo assim seria necessário utilizar combinações como:

-0.09067141

```
cor.test(mbacor[,1], mbacor[,2])
```

□ Resultados são apresentados a seguir:

```
Pearson's product-moment correlation

data: mbacor[, 1] and mbacor[, 2]

t = -0.91501, df = 101, p-value = 0.3624

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:
   -0.2792952   0.1046903

sample estimates:
   cor
```

MBA Salaries – Análise de Correlações e Modelo de Regressão

- A única correlação significativa ocorre entre salário e anos de experiência (r = .455, p < .001).
- A partir das variáveis pede-se agora construir um modelo de regressão de modo a prever o valor do salário inicial. O modelo inicial (o qual inclui gênero, GMAT score, notas, anos de experiência, lingua mãe e idade) é apresentado a seguir.
- □ O modelo foi desenvolvido através dos comandos:
 - o names(dados2)
 - o lm(salary~gmat_tot+s_avg+age+sex+frstlang+age+work_yrs)->a
 - summary(a)

MBA Salaries – Análise de Correlações e Modelo de Regressão

```
> summary(a)
call:
lm(formula = salary ~ gmat_tot + s_avg + age + sex + frstlang +
   age + work_yrs)
Residuals:
  Min
         10 Median
                       30
                            Max
-31300 -8779 -2326 6045 80330
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                     31350.22 1.666
(Intercept) 52225.51
                                       0.099 .
                        31.58 -0.509
gmat_tot
           -16.08
                                       0.612
s_avg
            3440.28 4332.59 0.794
                                    0.429
          1570.27 1110.24 1.414 0.160
age
         -5044.31 3474.99 -1.452 0.150
sex
frstlang 10755.93 7041.44 1.528
                                       0.130
                      1138.46 0.741
work_yrs
            843.48
                                       0.461
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 15610 on 96 degrees of freedom
Multiple R-squared: 0.2821, Adjusted R-squared: 0.2372
F-statistic: 6.287 on 6 and 96 DF, p-value: 1.333e-05
```

Regressão no Excel © (Pode ficar feliz, Thiago!!)

Outro Exemplo - Manutenção do caminhão

Uma agroindústria quer saber o custo de manutenção de seus caminhões durante o corrente ano, para tanto foram coletadas informações de quilometragem e tempo do caminhão. A tabela abaixo nos mostra esses valores.

Custo de Manutenção	Quilometragem (x1000)	Tempo do caminhão (em anos)			
832	6	8			
73	7	7			
647	9	6			
553	11	5			
467	13	4			
373	15	3			
283	17	2			
189	18	1			
96	19	0			

Resolução

Nesse caso será feito diretamente análise sem plotar o gráfico.

O procedimento no software Excel é: Ferramenta -> Análise de Dados -> Regressão. No campo Intervalo X de Entrada deve ser preenchida com a faixa de valores das variáveis independentes, que nesse caso são a quilometragem e o tempo do caminhão.

Regressão Não Linear

Regressão Não-Linear

Nem sempre a relação entre a variável independente (X) e a variável dependente

(Y) possui uma relação linear, em certos casos essa relação é não-linear.

Nesses casos, pode-se através de mudanças de variáveis resolver o problema utilizando basicamente as equações já mencionadas nesse material.

Para efeito de demonstração da Regressão-Linear será utilizado o Excel através

do seu recurso de Tendência, todavia conforme já mencionado, esse não dá informações estatísticas sobre o ajuste.

Vamos ver um exemplo.....

Exemplo: Série Temporal da Produção de Carne de Frango no Brasil ((1989--2003))

De acordo com a Associação Brasileira de Exportadora dos Produtores e Exportadores de Frango, ABEF, a produção brasileira de carne de frango (em mil toneladas) para o mercado interno e externo no período de 1989 a 2003 é dada pela tabela abaixo:

Ano	Mercado Interno	Exportação	Total		
1989	1,811	244	2,055		
1990	1,968	299	2,267		
1991	2,200	322	2,522		
1992	2,351	372	2,727		
1993	2,710	433	3,143		
1994	2,930	481	3,411		
1995	3,617	429	4,050		
1996	3, 4 83	569	4,052		
1997	3,812	649	4,461		
1998	4,262	612	4,875		
1999	4,755	771	5,526		
2000	5,070	907	5,977		
2001	5, 4 86	1,249	6,736		
2002	5,917	1,600	7,517		
2003	5,921	1,922	7,843		

Nesse exemplo será avaliada somente a produção para o mercado externo, o gráfico que representa essa produção ao longo do ano pode ser visto logo abaixo.

Resolução

Pelo gráfico percebe-se uma tendência que a relação entre a produção de carne de frango (variável dependente, Y) e o tempo (variável independente, X) seja dado por uma equação linear. Para determinar essa equação será utilizado o software Excel.

No Excel será utilizada a ferramenta Regressão que é um módulo do Suplemento Análise de Dados.

Acionando-se essa ferramenta, o passo seguinte será preencher a caixa de diálogo da Regressão conforme os dados.

Onde na opção Intervalo Y de Entrada deverá ser colocado o valor da variável dependente, e na opção Intervalo X de Entrada, deverá ser colocado os valores da

variável independente.

iegressao	BOOK ON THE STATE OF THE STATE	ĬI.
Entrada		ок
Intervalo <u>Y</u> de entrada:	\$E\$4:\$E\$18	OI.
Intervalo <u>X</u> de entrada:	\$A\$4:\$A\$18 <u>N</u>	Cancelar
☐ <u>R</u> átulos	☐ Constante é <u>z</u> ero	<u>A</u> juda
☐ Mivel de confrança	95 %	
Opções de saída		
C Intervalo de gaída:	<u></u>	
Nova planiha: Outa planiha: Outa planiha: Outa planiha: Outa planiha: Outa planiha: Outa planiha: Outa planiha: Outa planiha: Outa planiha: Outa planiha: Outa planiha: Outa planiha: Outa planiha: Outa planiha: Outa planiha: Outa planiha: Outa planiha: Outa planiha: Outa planiha: Outa planiha: Outa planiha: Outa planiha: Outa planiha: Outa planiha:		
C Nova pasta da trabalho		
-Residuos		
Resi <u>d</u> uos	Plotar residuos	
Resíd <u>u</u> os padronizados	✓ Plotar ajuste de linha	
-Probabilidade normal		
☐ <u>Pl</u> otagem de probabilidad		

Após o preenchimento das caixas de diálogo basta pressionar o botão de *Ok*, e o resultado aparecerá em uma nova planilha.

A figura abaixo mostra o resultado para o exemplo em questão.

Dessa planilha se destacam os seguintes valores:

Na estatística padrão: *R-quadrado* = 0.9687

Na Anova:

E por fim:

Interseção: 1146,99 Variável X: 416,30

Assim a equação do modelo poderá ser escrita como:

$$\hat{Y} = 1146,99 + 416,30X_{1i}$$

Pode-se agora plotar os dados dos valores verdadeiros com os valores do modelo.

Também se pode fazer prognóstico para valores futuros. Por exemplo, para o ano de 2004 o modelo prevê uma produção de 7.807 toneladas de carne de frango.

Uma outra maneira de fazer essa análise, porém sem as mesmas informações seria utilizar o recurso de *Adicionar Linha de Tendência...* no Menu Gráfico da barra de menu do Excel.

Selecionado o modelo Linear, clica-se na aba Opções e marca-se as opções:

Exibir equação no gráfico e Exibir valor do R-quadrado no gráfico.

Resolução

Rebanho bovino brasileiro – efetivo por estado (Mil cabeças)

(init care yas)													
Regiões	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
Norte	13,317	15,362	15,847	17,067	17,966	19,183	17,983	19,298	21,099	22,431	24,518	27,284	30,429
RO	1,719	2,826	2,774	3,286	3,470	3,928	3,937	4,331	5,104	5,442	5,664	6,605	8,040
AC	400	404	409	445	465	471	853	863	907	930	1,033	1,673	1,817
AM	637	648	640	689	747	806	734	771	809	826	843	864	895
RR	-	346	349	-	286	282	400	378	425	481	480	438	423
PA	6,182	6,626	6,990	7,435	7,539	8,058	6,751	7,539	8,337	8,863	10,271	11,047	12,191
AP	70	71	62	73	86	93	64	66	75	77	83	87	84
то	4,309	4,441	4,624	5,139	5,374	5,544	5,243	5,351	5,442	5,813	6,142	6,571	6,979
Nordeste	26,190	26,669	26,912	22,527	22,825	23,174	23,882	23,831	21,981	21,875	22,567	23,414	23,891
MA	3,900	3,949	3,931	4,020	4,102	4,162	3,936	3,905	3,937	3,966	4,094	4,483	4,776
PI	1,974	2,046	2,029	1,982	2,054	2,135	1,730	1,737	1,751	1,756	1,779	1,792	1,804
CE	2,621	2,625	2,602	2,098	2,186	2,266	2,400	2,411	2,114	2,168	2,206	2,194	2,230
RN	956	966	930	566 859	646	722	935	941	793 929	755	804	788	839
PB PE	1,345 1,966	1,315 1,952	1,320 1,923	1,271	975 1,349	1,054 1,362	1,305 1,954	1,303 1,682	1,470	886 1,420	953 1,516	918 1,673	952 1,753
AL	891	961	959	802	822	834	839	956	900	815	779	843	816
SE	1,030	1,047	1,058	908	815	797	946	946	918	937	880	866	863
BA	11,505	11,808	12,160	10,022	9,877	9,841	9,838	9,950	9,168	9,171	9,557	9,856	9,856
Sudeste	36,323 20,472	36,724	<i>37,231</i> 21,066	<i>37,627</i> 21,034	<i>37,604</i> 20,707	<i>37,168</i> 20,146	<i>36,605</i> 20,148	<i>36,977</i> 20,378	<i>37,074</i> 20,501	<i>36,899</i> 20,082	<i>36,852</i> 19,975	<i>37,119</i> 20,219	<i>37,924</i> 20,559
MG ES	1,665	20,764 1,766	1,829	1,935	1,919	1,968	1,816	1,936	1,938	1,882	1,825	1,665	1,683
RJ	1,924	1,932	1,942	1,967	2,004	1,905	1,843	1,837	1,881	1,866	1,959	1,977	1,981
SP	12,263	12,262	12,394	12,690	12,974	13,148	12,798	12,827	12,753	13,069	13,092	13,258	13,701
SUL	25,326	25,272	25,451	25,727	26,429	26,641	26,421	26,683	26,600	26,190	26,298	26,784	27,537
PR PR	8,617	8,542	8,499	8,607	8,912	9,389	9,880	9,897	9,767	9,473	9,646	9,817	10,048
SC	2,994	3,057	3,047	3,017	2,960	2,993	3,098	3,087	3,090	3,053	3,051	3,096	3,118
RS	13,715	13,673	13,905	14,103	14,556	14,259	13,443	13,700	13,743	13,664	13,601	13,872	14,371
Centro-Oeste	45,946	48,109	48,788	52,186	53,420	55,061	53,398	54,627	56,402	57,227	59,641	61,787	65,567
MS	19,164	19,543	20,395	21,800	22,244	22,292	20,756	20,983	21,422	21,576	22,205	22,620	23,168
MT GO	9,041 17,635	9,891 18,574	10,138 18,148	11,682 18,581	12,654 18,397	14,154 18,492	15,573 16,955	16,338 17,182	16,752 18,118	17,243 18,297	18,925 18,399	19,922 19,132	22,184 20,102
DF	106	10,5/4	10,146	124	124	123	115	123	110	110	112	113	113
Brasil	147,102	152,136	154,229	155,134	158,243	161,228	158,289	161,416	163,154	164,621	169,876	176,389	185,347
DIASII	147,102	152,136	154,229	155,134	150,243	161,228	150,289	161,416	163,154	164,621	163,676	1/6,389	105,34/

Fonte: IBGE - Pesquisa Pecuária Municipal (www.ibge.gov.br).

Obrigada!

Edmila Montezani edmila@gmail.com