Ecole Nationale d'Ingénieurs de Carthage

Devoir surveillé d'Analyse Numérique

Classes : 1^{ère} année ING-INFO
Date : 12 Mars 2019

Durée : **1h30**Nbre de pages : **2**

Les documents ne sont pas autorisés.

Une grande importance sera attachée à la clarté de la rédaction et au soin de la présentation.

Exercice 1 (2 points)

On s'intéresse au nombre d'opérations élémentaires (additions/soustractions, multiplications, divisions) nécessaires au calcul de $P_n(x) = \sum_{i=0}^n y_i L_i(x)$ pour $x, \{x_0, \dots, x_n\}$ et $\{y_0, \dots, y_n\}$ donnés.

- 1. Donner le nombre d'opérations élémentaires pour calculer chaque polynôme de Lagrange $L_i(x) = \prod_{i=0}^n \frac{x-x_j}{x_i-x_j}$
- 2. En déduire le nombre total d'opérations élémentaires pour calculer $P_n(x)$.

Exercice 2 (5 points)

Calculer le polynôme d'interpolation P_3 relatif aux points (x_i, y_i) , i = 0..3, suivants

x_i	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$
y_i	0	1	0	-1

en utilisant la base de Lagrange puis celle de Newton.

Exercice 3 (5 points)

Soit $f(x)=x^3-3$. On souhaite calculer la racine réelle α de l'équation f(x)=0 par la méthode de point fixe associée à la fonction

$$g(x) = (1 - \beta)x^3 + (1 - \frac{\beta}{3})x + \frac{\beta}{x^2} + 3(\beta - 1)$$

où β est un paramètre réel.

- 1. Vérifier que, $\forall \beta \in \mathbb{R}$, α est un point fixe de g.
- 2. Pour quelle(s) valeur(s) de β la méthode proposée est-elle d'ordre supérieur à un ?
- 3. Existe-t-il une valeur de β telle que l'ordre de la méthode soit supérieur à 2 ?

Exercice 4 (8 points)

Soit
$$f(x) = 2x^3 - 3x^2 - 1$$
, $x \in \mathbb{R}$. On note $I = [\frac{3}{2}, 2]$

- 1. Montrer que que l'équation f(x) = 0 admet une racine unique α dans $\left[\frac{3}{2}, 2\right]$
- 2. En utilisant la méthode de dichotomie sur I, quel est le nombre n_0 d'itérations nécessaires pour obtenir une valeur approchée de α à 10^{-6} près.
- 3. Calculer une valeur approchée de α à 10^{-1} près, par la méthode de dichotomie.
- 4. On considère la méthode de point fixe associée à la fonction $g(x) = \left(\frac{3x^2 + 1}{2}\right)^{\frac{1}{3}}$
 - (a) Montrer que cette méthode est localement convergente vers α , et déterminer son ordre de convergence.
 - (b) Montrer qu'elle est globalement convergente sur I.
 - (c) Trouver une constante C > 0 telle que, si $x_0 \in I$,

$$|x_{n+1} - \alpha| \le C|x_n - \alpha|, \ \forall n \in \mathbb{N}$$

- (d) En prenant $x_0 = 1.75$, déterminer le nombre n_1 d'itérations nécessaires pour obtenir une valeur approchée de α à 10^{-6} près.
- 5. Ecrire la méthode de Newton pour la recherche d'une valeur approchée de α .
- 6. Entre la méthode de Newton et la méthode de point fixe associée à g, laquelle choisiriezvous pour calculer une approximation de α ? Justifier votre réponse.

Corrigé

Exercice 1

- 1. Pour calculer $L_i(x)$ on doit répéter n fois l'instruction $L_i \leftarrow L_i * \frac{x x(j)}{x(i) x(j)}$, soit 4n opérations élémentaires.
- 2. Pour calculer $P_n(x)$ on doit répéter (n+1) fois l'instruction $P \leftarrow P + y(i) \star L_i(x)$, soit au total (n+1)(4n+2) opérations élémentaires.

Exercice 2 Forme de Lagrange

$$P_3(x) = y_0 L_0(x) + y_1 L_1(x) + y_2 L_2(x) + y_3 L_3(x)$$

$$= y_1 L_1(x) + y_3 L_3(x)$$

$$= \frac{4}{\pi^3} x(x - \pi)(x - 3\frac{\pi}{2}) - \frac{4}{3\pi^3} x(x - \frac{\pi}{2})(x - \pi)$$

Forme de Newton : Table des différences divisées

$$\frac{x_{i}}{0} \quad y_{i} \quad \text{ordre 1} \quad \text{ordre 2} \quad \text{ordre 3}$$

$$\frac{\pi}{2} \quad 1 \quad \frac{2}{\pi}$$

$$\pi \quad 0 \quad \frac{2}{\pi}$$

$$\pi \quad 0 \quad -\frac{2}{\pi}$$

$$\frac{3\pi}{2} \quad -1$$

$$P_{3}(x) = \frac{2}{\pi}x - \frac{4}{\pi^{2}}x(x - \frac{\pi}{2}) + \frac{8}{3\pi^{3}}x(x - \frac{\pi}{2})(x - \pi).$$

Exercice 3

1.
$$g(\alpha) = (1 - \beta)\alpha^3 + (1 - \frac{\beta}{3})\alpha + \frac{\beta}{\alpha^2} + 3(\beta - 1)$$

 $= 3(1 - \beta) + (1 - \frac{\beta}{3})\alpha + \frac{\beta}{\alpha^2} + 3(\beta - 1) \quad (f(\alpha) = 0 \Leftrightarrow \alpha^3 = 3)$
 $= 3(1 - \beta) + (1 - \frac{\beta}{3})\alpha + \frac{\beta}{3}\alpha + 3(\beta - 1) \quad (\alpha^2 = \frac{3}{\alpha})$
 $= \alpha$

 $\Rightarrow \alpha$ est un point fixe de $g, \forall \beta \in \mathbb{R}$.

2. g est de classe C^{∞} sur \mathbb{R}^* . L'ordre de la méthode est supérieur à 1 si $g'(\alpha)=0$.

$$\forall x \in \mathbb{R}^*, g'(x) = 3(1-\beta)x^2 + (1-\frac{\beta}{3}) - \frac{2\beta}{x^3}.$$

Pour $x = \alpha$, on obtient $g'(\alpha) = 3(1-\beta)\alpha^2 + (1-\frac{\beta}{3}) - \frac{2\beta}{3}$. $(\alpha^3 = 3)$

$$g'(\alpha) = 0 \Leftrightarrow 3(1-\beta)\alpha^2 + (1-\frac{\beta}{3}) - \frac{2\beta}{3} = 0.$$

$$\Leftrightarrow (1-\beta)(3\alpha^2 + 1) = 0 \Leftrightarrow \underline{\beta} = \underline{1}. \quad (3\alpha^2 + 1 \neq 0)$$

3. L'ordre de la méthode est supérieur à 2 si $g'(\alpha) = 0$ et $g''(\alpha) = 0$. On a $g'(\alpha) = 0 \Leftrightarrow \beta = 1$. Vérifions alors pour $\beta = 1$ si $g''(\alpha) = 0$.

En prenant
$$\beta = 1$$
, on obtient $g'(x) = \frac{2}{3} - \frac{2}{x^3}$ et $g''(x) = \frac{6}{x^4}$ ce qui donne, pour $x = \alpha$,

$$g''(\alpha) = \frac{6}{\alpha^4} = \frac{2}{\alpha} \neq 0,$$

donc on ne peut pas avoir un ordre supérieur à 2.

Exercice 4

- 1. f continue sur I, $f(\frac{3}{2})f(2) = -1 \times 3 < 0$, alors d'après le T.V.I $\exists \alpha \in]\frac{3}{2}, 2[$ tel que $f(\alpha) = 0$. De plus f est strictement croissante sur $I(f'(x) = 6x(x-1) > 0 \ \forall x \in I)$, d'où l'unicité de α .
- 2. Le nombre d'itérations n_0 assurant une précision $\epsilon = 10^{-6}$ vérifie $\frac{2-3/2}{2n_0} \le 10^{-6}$

$$\Leftrightarrow 2^{(n_0+1)} \ge 10^6 \Leftrightarrow n_0 \ge \frac{6\ln(10)}{\ln(2)} - 1 \simeq 18,93$$

Donc $n_0 = 19$ itérations.

 $[a_0, b_0] = \left[\frac{3}{2}, 2\right], \ f\left(\frac{3}{2}\right) = -1, \ f(2) = 3, \ x_0 = \frac{2+3/2}{2} = \frac{7}{4}$ 3.

$$\frac{27}{16} - \frac{13}{8} = 0.0625 < 10^{-1} \text{ donc la solution } \alpha \in \left[\frac{13}{8}, \frac{27}{16}\right] = \left[1.625, 1.687\right]$$

4. (a) $g(\alpha) = \left(\frac{3\alpha^2 + 1}{2}\right)^{\frac{2}{3}} = \left(\frac{2\alpha^3}{2}\right)^{\frac{1}{3}} = \alpha \text{ donc } \alpha \text{ est un point fixe de } g.$

$$g$$
 est dérivable sur I et $g'(x) = \frac{1}{3}(3x)(g(x))^{-2} = \frac{x}{(g(x))^2}$.

Pour $x = \alpha$, $g'(\alpha) = \frac{1}{\alpha} < 1$ ($\alpha \in]\frac{3}{2}, 2[$), donc la méthode est local. convergente. Comme $g'(\alpha) \neq 0$ alors la méthode est d'ordre 1.

(b) $g'(x) = x \left(\frac{3x^2 + 1}{2}\right)^{-\frac{2}{3}} > 0$, $\forall x \in I$ donc g est strictement croissante sur I.

Ce qui donne
$$\forall x \in I$$
, $g(3/2) \le g(x) \le g(2)$.

Ce qui donne
$$\forall x \in I', \ g(3/2) \le g(x) \le g(2).$$
 $g(2) \simeq 1.866 < 2$ et $g(3/2) \simeq 1.57 > \frac{3}{2}$. Ainsi $g(I) \subset I$ (1)

$$g''(x) = \left(\frac{3x^2+1}{2}\right)^{-\frac{2}{3}} \left(\frac{1-x^2}{3x^2+1}\right) < 0 , \ \forall x \in I, \ \text{donc } g \ \text{est strictement décrois-}$$

sante sur
$$I$$
 et par suite $0 < g'(2) \le g'(x) \le g'(3/2) \simeq 0.608 < 1$, $\forall x \in I$.

g dérivable et $|g'(x)| \le g'(3/2) < 1$, $\forall x \in I \Rightarrow g$ est contractante sur I (2).

Grâce au théorème de point fixe, (1) et (2) donnent le résultat.

(c) On montre par recurrence que si $x_0 \in I$ alors $x_n \in I$, $\forall n \in \mathbb{N}$ ($g(I) \subset I$). Le T.A.F appiquée à f montre qu'il existe ξ_n entre x_n et α tel que

$$g(x_n) - g(\alpha) = g'(\xi_n)(x_n - \alpha) \Rightarrow |x_{n+1} - \alpha| \le \max_{x \in I} |g'(x)| |x_n - \alpha|$$

(g' continue sur I donc g' est bornée et atteint ses bornes). En prenant $C=\max_{x\in I}|g'(x)|=g'(3/2)\simeq 0.608$, on obtient

$$|x_{n+1} - \alpha| \le C|x_n - \alpha|, \ \forall n \in \mathbb{N}$$

(d) En utilisant l'inégalité précédente on montre par recurrence que

$$|x_n - \alpha| \le C^n |x_0 - \alpha|, \ \forall n \in \mathbb{N}$$

Pour $x_0=1.75$ (milieu de $[\frac{3}{2},2]$), on a $|x_0-\alpha|\leq 0.25$ et la formule d'estimation d'erreur s'écrit

$$|x_n - \alpha| \le 0.25 \cdot C^n$$
, $\forall n \in \mathbb{N}$

Donc le nombre d'itérations n_1 assurant une précision $\epsilon=10^{-6}$ vérifie

$$0.25 \cdot C^{n_1} \le 10^{-6}$$
 ou encore $n_1 \ge \frac{\ln(25 \cdot 10^4)}{\ln(1/C)} \simeq 24.9$

 $n_1 = 25$ itérations.

5. méthode de Newton

$$\begin{cases} x_0 \text{ donn\'e} \\ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = \frac{4x_n^3 - 3x_n^2 + 1}{6x_n^2 - 6x_n}, & n \ge 0 \end{cases}$$
 (1)

6. α étant un zéro simple de f ($f'(\alpha) = 6\alpha(\alpha - 1) \neq 0$), donc la méthode de Newton converge vers α avec un ordre ≥ 2 , tandisque la méthode de point fixe associée à $g(x) = \left(\frac{3x^2+1}{2}\right)^{\frac{1}{3}}$ converge linéairement, on choisira alors la méthode de Newton.