Envia tus examenes a lawikifiuba@gmail.com

Apellido y nombres:			
Dodrón:	Correo electrónico	:	
Cursada. Cuatrimestre:	Año:	Profesor:	

Análisis Matemático III.

Examen Integrador. Quinta fecha. 3 de agosto de 2018.

1		2		3		4	
a	b	a	p.	a	b	a	Ъ
106 - 777 - 1904 - 1904 - 1904 - 1904 - 1904 - 1904 - 1904 - 1904 - 1904 - 1904 - 1904 - 1904 - 1904 - 1904 -		10.00					

Justificar claramente todas las respuestas. La aprobación del examen requiere la correcta resolución de al menos 4(cuatro) ítems, entre los cuales debe figurar uno del ejercicio 1 o del 2 y uno del ejercicio 3 o del 4.

Ejercicio 1.

Ejercicio 1.

(a) Sea
$$f(z) = 2 + \sum_{n=1}^{\infty} \frac{z^n}{n(3+4i)^n}$$
. Determinar para qué valores de r está bien definida la integral $\int_{|z|=r}^{\infty} \frac{1}{z} \left(3 - \frac{2}{z}\right) f(z) dz$ y en tales casos, calcularla.

(b) Hallar u(x,y) acotada que sea solución del problema de Dirichlet en el semiplano $\{(x,y)\in\mathbb{R}^2,x>0\}$ con condición en la frontera u(0,y)=1 para $|y|\leqslant 1$ y u(0,y)=0para |y| > 1. ¿Es única? Describir un sistema físico que pueda modelarse mediante este problema.

Ejercicio 2.

(a) Resolver:

$$u_{tt} + u_t - u_{xx} = 0$$
 en $0 < x < \pi$, $t > 0$ $u(0,t) = u_x(\pi,t) = 0$ para todo $t \ge 0$ $u(x,0) = 3 \operatorname{sen}\left(\frac{x}{2}\right) - 4 \operatorname{sen}\left(\frac{3x}{2}\right)$ para todo $0 \le x \le \pi$ $u_t(x,0) = 0$ para todo $0 \le x \le \pi$

(b) Dar hipótesis suficientes sobre una función f definida en el intervalo [-T, T] para que:

$$\int_{-T}^{T} f(x) \sin\left(\frac{n\pi x}{T}\right) dx = 0 \quad \forall n \in \mathbb{N} \quad \text{y} \quad \lim_{n \to \infty} \int_{-T}^{T} f(x) \cos\left(\frac{n\pi x}{T}\right) dx = 0.$$

Ejercicio 3.

Ejercicio 3.

(a) Sea
$$f(x) = \begin{cases} 1 & |x| \le 1 \\ 0 & \text{en otro caso} \end{cases}$$
. Hallar $\mathcal{F}[f]$, $\mathcal{F}\left[\frac{\text{sen } x}{x}\right]$ y $\int_{-\infty}^{\infty} \left(\frac{\text{sen } x}{x}\right)^2 dx$.

(b) Resolver:

$$\begin{cases} u_{xx} = \frac{1}{c^2} u_t & -\infty < x < +\infty, \ t > 0 \\ u(x,0) = g(x) & -\infty < x < +\infty \end{cases}$$
 ($c > 0$)

especificando las condiciones supuestas sobre g.

Ejercicio 4.

- (a) Demostrar que la transformada de Laplace de la convolución es igual al producto de las transformadas, especificando las correspondientes hipótesis.
- (b) Obtener $x_1(t)$ y $x_2(t)$ que para $t \ge 0$ verifican:

$$\begin{cases} x_1'(t) = 3x_1(t) + x_2(t) \\ x_2'(t) = -x_1(t) + x_2(t) + t^2 e^{2t} H(t) \end{cases}, x_1(0) = x_2(0) = 0$$

con H(t) función de Heaviside.