CS258: Information Theory

Fan Cheng Shanghai Jiao Tong University

http://www.cs.situ.edu.cn/~chengfan/ chengfan@situ.edu.cn Spring, 2020

Outline

- Entropy
- Relative entropy
- Mutual information
- Information inequality

Independence Bound on Entropy

From intuition to math expression

Let X_1, X_2, \dots, X_n be drawn according to $p(x_1, x_2, \dots, x_n)$. Then

$$H(X_1, X_2, ..., X_n) \le \sum_{i=1}^n H(X_i)$$

with equality if and only if the X_i are independent.

By chain rule for entropies,

$$H(X_1, X_2, ..., X_n) = \sum_{i=1}^n H(X_i | X_{i-1}, ..., X_1) \le \sum_{i=1}^n H(X_i)$$

- lacksquare Conditioning reduces entropy $H(Y|X) \leq H(Y)$
- \blacksquare Equality holds if and only if X_i is independent of X_{i-1}, \dots, X_1 for all i (i.e., if and only if the X_i 's are independent).

Intuition is not always correct

Markov Chain

Random variables X, Y, Z are said to form a Markov chain in that order (denoted by $X \to Y \to Z$) if the conditional distribution of Z depends only on Y and is conditionally independent of X. Specifically, X, Y, and Z form a Markov chain $X \to Y \to Z$ if the joint probability mass function can be written as

$$p(x, y, z) = p(x)p(y|x)p(z|y).$$

MC is a simple but very import structure for real world

- $\blacksquare X \to Y \to Z$ if and only if X and Z are conditionally independent given Y.
- $X \to Y \to Z$ implies that $Z \to Y \to X$. Thus, the condition is sometimes written $X \leftrightarrow Y \leftrightarrow Z$.
- $\blacksquare \text{ If } Z = f(Y) \text{, then } X \to Y \to Z.$ $I(X; Y|Z) = E_{p(X,Y,Z)} \log \frac{p(X,Y|Z)}{p(X|Z)p(Y|Z)}$

If $X \to Y \to Z$, then I(X; Z|Y) = 0 (X and Z are conditionally independent given Y)

Data Processing Inequality

(Data processing inequality) If $X \to Y \to Z$, then $I(X;Y) \ge I(X;Z)$

```
Proof sketch: Expand I(X;Y,Z) by chain rule I(X;Y,Z) = I(X;Z) + I(X;Y|Z) I(X;Y,Z) = I(X;Y) + I(X;Z|Y) where I(X;Z|Y) = \mathbf{0}
```

- In particular, if Z = g(Y), we have $I(X; Y) \ge I(X; g(Y))$.
- If $X \to Y \to Z$, then $I(X; Y|Z) \le I(X; Y)$.
- Assume X, Y are two independent random variables uniformly distributed on $\{0,1\}$. $Z=X+Y\ (mod\ 2)$

Calculate I(X;Y|Z) (I(X;Y|Z) > I(X;Y)).

I(X; Y; Z)

 \blacksquare Assume X, Y are two independent random variables uniformly distributed on $\{0,1\}$.

$$Z = X + Y \pmod{2}$$

Calculate I(X;Y|Z) (I(X;Y|Z) > I(X;Y)).

Some facts:

- \blacksquare X, Y, Z are all uniformly distributed H(X) = H(Y) = H(Z)
- Any two of X, Y, Z can determine the other H(X, Y, Z) = H(X, Y)
- Any two of X, Y, Z are independent H(X, Y) = H(X) + H(Y)

$$I(X;Y|Z) = H(X|Z) - H(X|Y,Z)$$

$$= H(X|Z)$$

$$= H(X)$$

$$= 1$$

$$I(X;Y|Z) > I(X;Y)$$

Define: I(X;Y;Z) = I(X;Y) - I(X;Y|Z)

Conditioning may not reduce mutual information. Mutual information is not uncertainty

Information Diagram: 2 RVs

Information Diagram: 3 RVs

- Area may be signed: negative
- Three circles: not three watches

Except $I(X_1; X_2; X_3)$, every part is ≥ 0 . May be Negative!

$$Z = X + Y \pmod{2}$$

Reference: Ch. 3, Information Theory and Network Coding, R. W. Yeung

Information Diagram: 4 RVs

H(X|Y)

I(X;Y|Z)

Only items like I(X;Y|Z), $H(X|Y) \ge 0$

Reference: Ch. 3, Information Theory and Network Coding, R. W. Yeung

Information Diagram: Markov Chain

$$X \to Y \to Z$$

Each area ≥ 0

$$X_1 \to X_2 \to \cdots \to X_n$$

Reference: Ch. 3, Information Theory and Network Coding, R. W. Yeung

Examples

$$H(X,Y,Z) \leq \frac{H(X,Y) + H(Y,Z) + H(Z,X)}{2} \leq H(X) + H(Y) + H(Z)$$

$$H(X|Y,Z) + H(Y|X,Z) + H(Z|X,Y) \le \frac{H(X,Y|Z) + H(Y,Z|X) + H(Z,X|Y)}{2} \le H(X,Y,Z)$$

Examples (cont'd)

Homework 3

- Prove that under the constraint that $X \to Y \to Z$ forms a Markov chain, $X \perp Y | Z$ and $X \perp Z$ imply $X \perp Y$.
- Prove that the implication in (a) continues to be valid without the Markov chain constraint.
- Prove that $Y \perp Z \mid T$ implies $Y \perp Z \mid (X, T)$ conditioning on $X \rightarrow Y \rightarrow Z \rightarrow T$.
- Let $X \to Y \to Z \to T$ form a Markov chain. Determine which of the following inequalities always hold:
 - I. $I(X;T) + I(Y;Z) \ge I(X;Z) + I(Y;T)$
 - II. $I(X;T) + I(Y;Z) \ge I(X;Y) + I(Z;T)$
 - III. $I(X;Y) + I(Z;T) \ge I(X;Z) + I(Y;T)$

Example: Causality (因果推断)

给定条件: 戴眼镜、爱好文学、弹吉他

推断:他/她是哪位同学

In information theory, we may use random variable to denote the conditions given in the problem, and apply the techniques in information measures to check whether a given condition is satisfied.

Given: $X \perp Y | Z$ and $X \perp Z$

Prove: $X \perp Y$

$$I(X;Y|Z) = 0, I(X;Z) = 0$$
$$I(X;Y) = 0$$

Example: Perfect Secrecy

秘密: X = 0010001

密钥: Z=1110001

窃听者

接收端: X = 0010001

Let X be the plain text, Y be the cipher text, and Z be the key in a secret key cryptosystem

lacksquare Y is generated from X and Z

$$H(Y|X,Z)=0$$

明文: Y=1010110

lacksquare Since X can be recovered from Y and Z, we have

$$H(X|Y,Z) = 0$$

■ We will show that this constraint implies

$$I(X;Y) \ge H(X) - H(Z)$$

lacksquare If the cipher text Y is required to be independent of the plain text X

$$I(X;Y)=0$$

Then

 $H(X) \leq H(Z)$ (信息长度小于密钥长度)

Fano's Inequality: Estimation

- Suppose that we wish to estimate a random variable X with a distribution p(x).
- We observe a random variable Y that is related to X by the conditional distribution p(y|x).
- From Y, we calculate a function $g(Y) = \widehat{X}$, where \widehat{X} is an estimate of X and takes on values in \widehat{X} .
 - We will not restrict the alphabet $\widehat{\mathcal{X}}$ to be equal to X, and we will also allow the function g(Y) to be random.
- We wish to bound the probability that $\hat{X} \neq X$. We observe that $X \to Y \to \hat{X}$ forms a Markov chain. Define the probability of error

$$P_e = \Pr(\hat{X} \neq X)$$

■ When H(X|Y)=0, we know that $P_e=0$. How about H(X|Y), as $P_e\to 0$?

Fano: Establish the relation between P_e and H(X|Y)

Fano's Inequality

Theorem 2.10.1 (Fano's Inequality) For any estimator \hat{X} such that $X \to Y \to \hat{X}$, with $P_e = \Pr(\hat{X} \neq X)$, we have

$$H(P_e) + P_e \log |\mathcal{X}| \ge H(X|\hat{X}) \ge H(X|Y)$$

This inequality can be weakened to

$$1 + P_e \log |\mathcal{X}| \ge H(X|Y)$$
 or $P_e \ge \frac{H(X|Y) - 1}{\log |\mathcal{X}|}$

Define an error random variable

Intuition: $P_e \rightarrow 0$ implies $H(X|Y) \rightarrow 0$

$$E = \begin{cases} 0, & \text{if } \hat{X} = X \\ 1, & \text{if } \hat{X} \neq X \end{cases}$$

Then

$$H(E,X|\hat{X}) = H(X|\hat{X}) + H(E|X,\hat{X})$$

= $H(E|\hat{X}) + H(X|E,\hat{X})$

Facts:

$$\blacksquare \quad H(E|X,\widehat{X}) = 0$$

$$\blacksquare \quad H(E|\hat{X}) \le H(E) = H(P_e)$$

$$H(X|E, \widehat{X}) \le P_e \log |\mathcal{X}|$$

Corollary. Let
$$P_e = \Pr(X \neq \hat{X})$$
, and let $\hat{X}: \mathcal{Y} \to \mathcal{X}$; then $H(P_e) + P_e \log(|\mathcal{X}| - 1) \ge H(X|Y)$

$$H(X|E, \hat{X}) = \Pr(E = 0)H(X|\hat{X}, E = 0) + \Pr(E = 1)H(X|\hat{X}, E = 1)$$

 $\leq (1 - P_e)0 + P_e \log |\mathcal{X}|,$

Convexity/Concavity of Information Measures

(Log sum inequality) For nonnegative numbers, a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n ,

$$\sum_{i=1}^{n} a_i \log \frac{a_i}{b_i} \ge \left(\sum_{i=1}^{n} a_i\right) \log \frac{\sum_{i=1}^{n} a_i}{\sum_{i=1}^{n} b_i}$$

with equality if and only if $\frac{a_i}{b_i} = \text{const.}$

Prove via convexity/concavity

- \blacksquare (Concavity of entropy) H(p) is a concave function of p.
- Let $(X,Y) \sim p(x,y) = p(x)p(y|x)$. The mutual information I(X;Y) is a concave function of p(x) for fixed p(y|x) and a convex function of p(y|x) for fixed p(x).
- Convexity of relative entropy) D(p||q) is convex in the pair (p,q); that is, if (p_1,q_1) and (p_2,q_2) are two pairs of probability mass functions, then $D(\lambda p_1 + (1-\lambda)p_2||\lambda q_1 + (1-\lambda)q_2) \leq \lambda D(p_1||q_1) + (1-\lambda)D(p_2||q_2)$ for all $0 \leq \lambda \leq 1$.

Homework 3:

Cover: 2.8, 2.9, 2.10 2.14, 2.15, 2.18, 2.20, 2.27, 2.32

Summary

The materials of this lecture are related to

- The textbook of T. Cover: 2.7, 2.8., 2.10
- The textbook of R. Yeung: 3.5, 3.6