Ústav fyziky a technologií plazmatu Přírodovědecké fakulty Masarykovy univerzity

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 2

Zpracoval: Lukáš Lejdar **Naměřeno:** 19. listopadu 2024

Obor: F **Skupina:** Út 16:00 **Testováno:**

Úloha č. 3:

Rozložení elektrického pole

$$T = 21.3 \, {}^{\circ}\text{C}$$

$$p = 998,1 \text{ kPa}$$

$$\varphi = 35 \%$$

1. Úvod

V úloze budu měřit napětí v okolí dvou válcových vodičů a ověřím jestli odpovídá teoretickým výpočtům.

2. Postup měření

Do ploché nádoby naplněné slabým elektrolytem vložíme dvě válcové elektrody vzdálené, od sebe 2h m. Pro měření napětí v libovolném místě v nádobě použijeme střídavý můstek, zapojený jako na obrázku 1. Pokud se sonda S nachází na místě se stejným napětím jako to nastavené na potenciometru S_1 , bude můstek vyrovnaný a osciloskop vykazuje minimální signál.

Tabulka 1: Napětí v bodě M od dvou

Tabulka 2: Zapojení střídavého můstku pro měření v elektrolytické vaně.

Teoreticky by potom měli všechny vykreslené ekvipotenciální plochy mít tvar kruhu. Jejich poloměr r a střed (x,0) pro hladinu s potenciálem V zjistíme z

$$\lambda = \left(\frac{h+a}{R}\right)^{\frac{2V}{U}-1},\tag{1}$$

$$x_s = a\frac{\lambda^2 + 1}{\lambda^2 - 1} \tag{2}$$

$$r = \sqrt{x_s^2 - a^2} \tag{3}$$

kde U je napětí mezi elektrodami a R poloměr válců.

3. Výsledky měření

Použil jsem elektrody o poloměru R=1.5 cm, vzdálené od sebe h=15 cm a napětí U=5 V. Změřené body několika ekvipotenciálních ploch jsem vykreslil na obrázek 3 a s nimi očekávané kružnice podle vztahů (1), (2) a (3). Parametry těchto kružnic jsou taky uvedené v tabulce 1.

V(V)	λ	y_s (cm)	r (cm)
1.5	0.053	-19.6	8.62
2.0	0.239	-36.4	28.7
2.3	0.555	-93.7	89.8
2.5	0.973	-	-
2.7	1.900	70.2	66.8
3.0	3.684	39.4	32.3
3.3	1.065	22.9	12.8
4.0	6.613	15.8	3.82

Tabulka 3: Dopočítané parametry ekvipotenciálních kružnic pro použitá napětí ${\cal V}$

Obrázek 1: Změřené body odpovídající některým potenciálním hladinám a jejich teoretický tvar šedě

4. Závěr

Změřil jsem tvar několika ekvipotenciálních ploch uvnitř homogenního vodiče, kterým protékal stacionární proud a ověřil že odpovídají teoretické předpovědi.

Reference

 $[1] \ \ N\'{a}vod\ k\ \'{u}loze\ z\ https://www.physics.muni.cz/praktika/static/navody/fp2/uloha03.pdf.$