LINFO2263: Text Completion and Categorization

Pierre Dupont

```
annotation deep learning
computational linguistics
algorithm natural language processing part of speech
stemming hidden markov model ngrams
machine translation phrase structure

context grammar syntax word embeddings
corpus chatbots
```

Outline

Text Completion and Ngram Evaluation

Text Categorization

Outline

- Text Completion and Ngram Evaluation
- 2 Text Categorization

Text Completion

Character or word completion in search engines, query systems, text messaging, source code editors, . . .

- Ngram models are evaluated by computing how well they perform
 - when predicting the next word by ranking the predictions according to the probability estimates $\hat{P}(is \mid h)$, $\hat{P}(has \mid h)$, $\hat{P}(from \mid h)$ with h the history, or (partial) left context, of the word to be predicted
 - when repeating such a prediction game (= the Shannon's game) throughout a text which serves as test set
- the quality of this prediction depends on the model order (= the N value) and the smoothing as it influences the probability estimates ($\hat{P}(...)$)
- the quality of this prediction is computed according to the test set perplexity metric

Data splitting

- Basic protocol: split available corpus into training and test files
 - Use training set (typically 90%) to estimate a model (including the definition of a vocabulary)
 - ► Use test set (typically 10%) to evaluate its quality (perplexity value)
- Refinement 1
 - Split training set into 90% actual training and 10% validation set
 - Validation set is used to
 - tune meta-parameters: pseudo-counts for additive smoothing, λ_i 's for interpolation, none with back-off models (discounting values are based on count histograms)
 - possibly select an optimal model order
 - Re-train on the whole training set with any meta-parameter being fixed (except possibly the model order)
- Refinement 2: repeat the above using 10-fold cross validation

Test set perplexity

• A test set $S = \{w_1, \dots, w_M\}$ can be viewed as a single sequence:

$$(s) W_1 \dots W_n < /s) (s) W_{1'} \dots W_{n'} < /s) \dots$$
sentence, sentence,

Per-word log likelihood LL

$$LL = \frac{1}{M} \log_2 \left(\prod_{i=1}^M \hat{P}(w_i|h) \right) = \frac{1}{M} \sum_{i=1}^M \log_2 \hat{P}(w_i|h)$$

- $\hat{P}(w_i|h)$ is a score (between 0 and 1) of how much the model predicts that the word, at position i in the test, actually follows its (partial) left-context h
- ▶ the likelihood $\hat{P}(w_1, ..., w_M) = \prod_{i=1}^M \hat{P}(w_i|h)$ measures how likely is the whole test set according to the model
- $ightharpoonup \log_2$ avoids numerical underflow, $\frac{1}{M}$ normalizes according to test set length
- Test set perplexity PP (the lower the better)

$$PP = 2^{-LL} = 2^{\left[-\frac{1}{M}\sum_{i=1}^{M}\log_{2}\hat{P}(w_{i}|h)\right]}$$

• Valid measures only if consistent model: $\forall h, \sum_{w \in V} \hat{P}(w|h) = 1$

Perplexity Computation $PP = 2^{\left[-\frac{1}{M}\sum_{i=1}^{M}\log_2\hat{P}(w_i|h)\right]}$

● - log₂ scale

M = 7 predicted tokens

$$\frac{1}{7}$$
 (10.96 + 9.38 + 13.29 + 9.97 + 12.29 + 11.29 + 12.70) = 11.41

• Perplexity: $PP = 2^{11.41} = 2721$

Checking consistency: $\sum_{w} \hat{P}(w|h) = 1, \forall h$

- Each sum must run over all word types in the vocabulary, including
 UNK> and </s> but excluding <s> (which is never predicted but used as possible history)
- The consistency should ideally be checked on all possible histories $(\forall h)$
 - When lexicon size is 10,000, each sum requires 10,000 additions and there are $O(10^8)$ possible histories for a trigram model
 - This check should be run at least on the observed histories in the test set = the histories considered when computing PP

Perplexity: 0-gram case

Predicting uniformly at random

Assume a vocabulary size |V| = 10,000 word types (including </s> and <UNK>) 0-gram: $\hat{P}(w) = \frac{1}{10,000} = 0.0001$ for each word w in the vocabulary

● - log₂ scale

• M = 7 predicted tokens

$$\frac{1}{7}$$
 (13.29 + 13.29 + 13.29 + 13.29 + 13.29 + 13.29 + 13.29) = 13.29

Perplexity properties $PP = 2^{\left[-\frac{1}{h}\sum_{l=1}^{M}\log_2\hat{P}(w_l|h)\right]}$

Perplexity is a measure of quality of an iterated Shannon game

$$\dots \underbrace{w_{i-N+1} \ w_{i-N+2} \ \dots \ w_{i-1}}_{p} \underbrace{w_{i} \dots}_{q}$$

Perplexity is a geometric average representing a gambling cost

$$PP = 2^{\left[-\frac{1}{M}\sum_{i=1}^{M}\log_{2}\hat{P}(w_{i}|h)\right]} = 2^{\left[\log_{2}\left(\left(\prod_{i=1}^{M}\hat{P}(w_{i}|h)\right)^{-\frac{1}{M}}\right)\right]} = \sqrt[M]{\prod_{i=1}^{M}\frac{1}{\hat{P}(w_{i}|h)}}$$

- ▶ the model gambles $\hat{P}(w_i|h)$ on word w_i
- the model receives 1 \$ to gamble on (actually 1 as total probability mass for a consistent model) for each prediction step i
- ▶ it will cost $\frac{1}{\hat{P}(w|h)}$: minimal cost = 1 (no loss), maximal cost ∞
- the total cost is the geometric average over all prediction steps

Perplexity properties (ctd.)

$$PP = \sqrt[M]{\prod_{i=1}^{M} \frac{1}{\hat{P}(w_i|h)}}$$

- the simplest model (0-gram) predicts uniformly at random
 - $\hat{P}(w_i|h) = \hat{P}(w_i) = \frac{1}{|V|}$
 - Its perplexity is equal to the vocabulary size

$$PP = \sqrt[M]{\prod_{i=1}^{M} \frac{1}{\hat{P}(w_i)}} = \sqrt[M]{|V|^M} = |V|$$

- the PP value, generally lower than |V| for a well smoothed N-gram model, can be interpreted as the number of words among which one predicts if one would predict uniformly at random
 - Example: |V| = 10,000 and PP = 100 means that the uncertainty is the same as if one would predict only among 100 possibilities and an equal probability $\frac{1}{100}$ for each word
 - The model actually predicts among 10,000 possibilities but with unequal probabilities

Perplexity properties (ctd.)

- Better models have a lower perplexity ⇒ they are more predictive
- Unsmoothed models can be much worse than random guessing $PP = +\infty$ if $\hat{P}(w_i|h) = 0$ for some i
- A test sample $S = \{w_1, \dots, w_M\}$ viewed as a single sequence:

$$(s) w_1 \dots w_n (s) w_{1'} \dots w_{n'} \dots$$
sentence₁ sentence₂

- <s> is never predicted because it is trivial to predict it
- </s> is predicted because end of sentence matters
- ▶ the actual number M of predictions in a test set of K sentences, each one with n_j "real" words, is $M = \sum_{i=1}^{K} (n_i + 1)$
- Training set PP decreases with the model order N (true with no or minimal smoothing) ⇒ avoid overfitting!
- Test set PP is minimal for an optimal order (often close to 3)

Vocabulary and unknown word

- The vocabulary or lexicon V is defined
 - either from the application domain (i.e. independently of the data)
 - from the observed word types in the training set
 - ⇒ some word in the test set (assumed representative of new data) may have never been observed before
- A consistent $(\sum_{w \in V} \hat{P}(w|h) = 1)$ and smoothed model $(\hat{P}(w|h) > 0, \forall w \in V, \forall h)$ assigns a zero probability to any new word:

$$\hat{P}(w_{new}|h) = 0$$
 if $w_{new} \notin V \Rightarrow w_{new}$ is never predicted

- Define an additional word type <UNK> as part of the vocabulary and relies on smoothing
 - either from some out-of-vocabulary (OOV) words in the training data
 - or purely from the smoothing mechanism:

 $\hat{P}(\langle \text{UNK} \rangle | h)$ is function of $C(h, \langle \text{UNK} \rangle)$, possibly corrected with smoothing

with interpolation or backoff to a zero-gram, if necessary:

$$\hat{P}(\langle \text{UNK} \rangle) = \frac{1}{|V|}$$

Language Modeling Experiments

Corpus: 98 million words from the Wall Street Journal

Alphabet size = lexicon size = 20,000 distinct word types

Average sequence length = 23

Results for training set with 100,000 sentences (~ 2 million words)

Test set: 2,500 sentences (∼ 50,000 words)

Results

Model Order	Smoothing	Perplexity
0	Uniform model	20,000
2	Add one	832
3	Add one	1,910
2	Linear Interpolation	194
3	Linear Interpolation	119
2	Back-off smoothing	173
3	Back-off smoothing	101

Outline

- 1 Text Completion and Ngram Evaluation
- Text Categorization

Text Categorization

Definition

The task of assigning a label or a category to an entire text or document

Examples

- email spam filtering: email categorization into spam versus ham (= not spam)
- language identification: automatic identification of the language in which a document is written
- topic labeling: assignment of a subject category or topic label to a text
- sentiment analysis: positive or negative orientation of a text (e.g. book/movie/restaurant reviews)
 - + ... awesome caramel sauce and sweet toasty almonds. I love this place!
 - ...awful pizza and ridiculously overpriced...

Bag of Words

In its simplest from, a text document is represented as a bag of words: an unordered set of words with their frequency in the document but ignoring their position

- each word w is a feature and its frequency is the feature value
- the whole document d is represented as a vector made of these feature values w_1, \ldots, w_n

Illustration from Speech and Language Processing, Jurafsky and Martin, 3rd ed.

Maximum A Posteriori (MAP) classifier

Decision rule

For a document d out of $c \in C$ classes (or categories), this probabilistic classifier returns the class \hat{c} which maximizes the posterior probability

$$\hat{c} = \operatorname{argmax}_{c \in C} P(c \mid d)$$

Bayes rule

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(c \mid d) = \underset{c \in C}{\operatorname{argmax}} \frac{P(d \mid c)P(c)}{P(d)} = \underset{c \in C}{\operatorname{argmax}} P(d \mid c)P(c)$$

Multinomial naive Bayes classifier

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} \overbrace{P(d \mid c)}^{\text{likelihood}} \overbrace{P(c)}^{\text{prior}} = \underset{c \in C}{\operatorname{argmax}} P(w_1, \dots, w_n \mid c) P(c)$$

Generative model

An observed document is supposed to come from a random experiment:

- \bigcirc a class c is drawn at random according to P(c)
- 2 given c, the frequencies of occurrence of words are drawn at random according to $P(w_1, \ldots, w_n \mid c)$

Estimating $P(w_1, \ldots, w_n \mid c)$ is difficult because there are many possible combinations of words and their frequencies, even after ignoring their positions according to the bag of words representation

19/27

Naive Bayes assumption

$$P(w_1, ..., w_n \mid c) \approx P(w_1 \mid c) ... P(w_n \mid c) = \prod_{i=1}^n P(w_i \mid c)$$

Conditional independence

The frequency of occurrence of a word is assumed independent of the frequencies of other words, given the class

- this assumption is often violated: White House, President, ...
- yet, it is often satisfactory to categorize documents correctly
 - ▶ the probability of occurrence of a word (*e.g. President*) depends on the class (*e.g. Politics* ≠ *Computer Science*)

Naive Bayes decision rule

$$c_{NB} = \operatorname*{argmax}_{c \in C} P(c) \prod_{i} P(w_i \mid c) = \operatorname*{argmax}_{c \in C} \left[\log P(c) + \sum_{i} \log P(w_i \mid c) \right]$$

Learning the Naive Bayes Classifier

$$\hat{P}(c) = \frac{N_c}{N_{doc}}$$

- N_c number of documents labeled as class c in a training set
- N_{doc} total number of documents in the training set

$$\hat{P}(w_i \mid c) = \frac{n_{w_i,c}+1}{\sum_{w \in V} n_{w,c}+|V|}$$

- n_{wi,c} number of occurrences of word w_i in all documents labeled c
- V the vocabulary: by default, all words appearing in the training set
- add-one (Laplace) smoothing to avoid a zero probability if a word in the vocabulary V never appeared in the training set for some class c
- test words not included in the training vocabulary V are simply ignored from the bag of words representation ⇒ no need of <UNK> when classifying a document

Refinements for Sentiment Analysis

Sentiment analysis is, in its simplest form, a binary classification problem: positive/negative sentiment \Rightarrow whether a word occurs or not matters more than its frequency in each document

Binary naive Bayes clips the word counts in each document at 1

Four original documents:		NB Counts + -		Binary Counts + -	
- it was pathetic the worst part was the boxing scenes - no plot twists or great scenes + and satire and great plot twists + great scenes great film After per-document binarization: - it was pathetic the worst part boxing scenes - no plot twists or great scenes + and satire great plot twists + great scenes film	and boxing film great it no or part pathetic plot satire scenes the twists was	2 0 1 3 0 0 0 0 0 0 1 1 1 1 0	0 1 0 1 1 1 1 1 1 1 0 2 2 1	1 0 1 2 0 0 0 0 0 0 0 1 1 1 1	0 1 0 1 1 1 1 1 1 1 1 0 2 1 1

Illustration from Speech and Language Processing, Jurafsky and Martin, 3rd ed.

Refinements for Sentiment Analysis (ctd.)

Negative words (*n't, not, no, never*) modify $+ \Leftrightarrow -$

- + I really like this movie
- I didn't like this movie
- + don't dismiss this movie

The bag of words (BOW) representation and Naive Bayes consider each word independently of its context

Preprocessing

 prepend the prefix NOT_ to every word after a token of logical negation till the next punctuation mark

```
didn't like this movie , but I
becomes
```

```
didn't NOT_like NOT_this NOT_movie , but I
```

 these additional NOT_words are added to the vocabulary and are part of the Naive Bayes features

23/27

Naive Bayes and Language Models

 multinomial naive Bayes is a class conditional unigram: one unigram model for each class (with add-one smoothing)

$$\hat{P}(w_i \mid c) = \frac{n_{w_i,c} + 1}{\sum_{w \in V} n_{w,c} + |V|}$$

 Smoothed class conditional N-grams (with N > 1) may be used as features in a MAP classifier. For example, a class conditional 3-gram:

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} \left[\log \hat{P}(c) + \sum_{i} \log \hat{P}(w_i | w_{i-1} w_{i-2}; c) \right]$$

- i, i-1, i-2 are now relative positions of the words in the text
- a distinct model is considered for each class c
- relative word orders now matters (but not absolute word positions), contrary to the BOW representation, with a possible marginal gain in classification accuracy
- character N-grams (instead of word N-grams) are often used for language identification

Summary

- Text completion is a common task used in search engines, sms typing, code editors, . . .
- N-grams are typically evaluated to perform this task (at the word or character level)
- Test set perplexity measures to which extent a probabilistic model indeed assigns a high probability to a word token occurring in a text when predicting it from its left context
 - the PP of uniform random guessing is the vocabulary size
 - the lower PP the better
 - PP may be larger than the vocabulary size, and even infinite, for a poorly smoothed model
- Bag of Words representation and Naive Bayes assumption are simple yet efficient modeling to categorize text
- Multinomial Naive Bayes is a class conditional unigram model

Perspectives

- Spelling correction is somewhat similar to text completion, except that it needs not be performed from left to right
- Neural methods offer recent alternatives to estimate N-grams and can also be used for
 - text completion
 - sentence generation (= complete iteratively till predicting </s>)
 - text categorization
 - ⇒ see lecture on *Deep Learning Methods for Sequence Processing*

Further Reading

Jurafsky D. and Martin J.H. Speech and Language Processing, 3rd edition (draft), chapter (3 and) 4.