## FYS-MEK 1110 / Vår 2018 / Ukesoppgaver #8 (13.-16.3.)

**Eksamenstrening:** (Du skal løse én av oppgavene i gruppetimen.)

## Oppgave A (16 poeng)

En blokk av masse  $m_A$  står på et skråplan som har en helningsvinkel  $\alpha$ . Et tau forbinder blokken til en vekt B med masse  $m_B$  over en trinse som vist i figuren. Både tauet og trinsen kan betraktes masseløst, og trinsen roterer uten friksjon. Den statiske friksjonskoeffisienten



mellom blokk A og skråplanet er  $\mu_s$ , den dynamiske friksjonskoeffisienten er  $\mu_d$ . Tyngdeakselerasjonen er g.

- a) Tegn et fri-legeme diagram for blokk A og navngi kreftene for det tilfelle hvor det ikke er noen vekt B festet til den andre enden av tauet. (3 poeng)
- b) Tegn et fri-legeme diagram for blokk A og navngi kreftene for det tilfelle hvor en vekt B er festet til den andre enden av tauet. Anta at massen  $m_B$  er slik at systemet knapt forblir i ro. (3 poeng)
- c) Finn et uttrykk for den maksimale massen  $m_{\rm B,max}$  som du kan henge på tauet uten at blokk A begynner å skli opp skråplanet. Uttrykk den maksimale massen  $m_{\rm B,max}$  som funksjon av massen  $m_A$ , vinkelen  $\alpha$  og den statiske friksjonskoeffisienten  $\mu_S$ . (5 poeng)
- d) Du fester en masse som er større enn den maksimale massen fra del c.,  $m_{\rm B,max}$ , til tauet og blokk A begynner å skli opp skråplanet. Finn akselerasjonen til de to legemene, uttrykt som funksjon av massene  $m_A$  og  $m_B$ , vinkelen  $\alpha$ , den dynamiske friksjonskoeffisienten  $\mu_d$  og tyngdeakselerasjonen g. (5 poeng)

## Oppgave B (16 poeng)

En kloss beveger seg langs en horisontal flate fra A til B og etterpå gjennom en looping med radius R. Avstanden mellom punktene A og B er s. Den dynamiske friksjonskoeffisienten mellom kloss og flate er  $\mu_d$ . Mens klossen beveger seg gjennom loopingen er friksjon neglisjerbart. Vi ser også bort fra luftmotstanden. Klossen starter i punkt A med fart  $v_A$ .



- a. Tegn et frilegeme diagram for klossen på toppen av loopingen i punkt C. (3 poeng)
- b. Hvor stor må farten  $v_C$  i punkt C på toppen minst være for at klossen forblir i kontakt med loopingen? (4 poeng)
- c. Hvor stor må farten  $v_B$  in punkt B nederst i loopingen minst være for at klossen fullfører loopingen? (4 poeng)
- d. Hvor stor må farten  $v_A$  i punkt A være for at klossen fullfører loopingen? (5 poeng)

Uttrykk svarene som funksjon av radius R, tyngdeakselerasjon g, friksjonskoeffisient  $\mu_d$  og strekningen s.