PRINCIPAL COMPONENT ANALYSIS

Probabilistic PCA

Let X be a standard Gaussian random variable in \mathbb{R}^d and assume that conditionally on X, Z has a Gaussian distribution with mean $WX + \mu$ and variance $\sigma^2 I_d$.

1. Prove that Z has a Gaussian distribution with mean μ and variance $C = WW^{\top} + \sigma^2 I_d$.

It is enough to write

$$Z = WX + \mu + \sigma\varepsilon$$
,

where X and ε are independent Gaussian random variables. Therefore, $Z \sim \mathcal{N}(\mu, C)$.

2. Prove that conditionally on Z, X has a Gaussian distribution with mean $m = C^{-1}W^{\top}(Z-\mu)$ and variance $\Sigma = \sigma^2 C^{-1}$.

The joint distribution of Z and X can be written, for all $(x,z) \in \mathbb{R}^d \times \mathbb{R}^d$,

$$p(z,x) \propto \exp(-\frac{1}{2}x^{\top}x) \exp(-\frac{1}{2\sigma^2}(z - Wx - \mu)^{\top}(z - Wx - \mu)).$$

Therefore,

$$\begin{split} p(x|z) &\propto p(z,x) \\ &\propto \exp(-\frac{1}{2}x^\top x) \exp(-\frac{1}{2\sigma^2}(z-Wx-\mu)^\top (z-Wx-\mu)) \,, \\ &\propto \exp(-\frac{1}{2\sigma^2}(z-Wx-\mu)^\top (z-Wx-\mu)) \,, \\ &\propto \exp(-\frac{1}{2\sigma^2}(x-m)^\top \Sigma^{-1}(x-m)) \,, \end{split}$$

where $\Sigma = \sigma^2 C^{-1}$ and $m = C^{-1} W^{\top} (Z - \mu)$ which concludes the proof.

3. Assume that $\{Z_i\}_{1 \leq i \leq n}$ are n i.i.d. observations with the same distribution has Z. Write the loglikelihood of (Z_1, \ldots, Z_n) .

By definition,

$$\log p_C(Z_1, \dots, Z_n) = \sum_{i=1}^n \log p_C(Z_i),$$

$$= \sum_{i=1}^n \left(-\frac{1}{2} \log \det(2\pi C) - \frac{1}{2} (Z_i - m)^\top \Sigma^{-1} (Z_i - m) \right),$$

$$= -\frac{n}{2} \log \det(2\pi C) - \frac{1}{2} \sum_{i=1}^n (Z_i - m)^\top \Sigma^{-1} (Z_i - m),$$

$$= -\frac{n}{2} \log \det(2\pi C) - \frac{n}{2} \operatorname{Trace}(C^{-1} S_n),$$

where

$$S_n = \frac{1}{n} \sum_{i=1}^{n} (Z_i - \mu)^{\top} (Z_i - \mu).$$

- 4. Assuming that $C = WW^{\top} + \sigma^2 I_d$, show that $\widehat{C} = \widehat{W}\widehat{W}^{\top} + \sigma^2 I_d$ with $\widehat{W} = U_q(\Lambda_q \sigma^2 I_q)^{1/2}R$ is a stationary point of the loglikelihood (and therefore maximizes the loglikelihood).
- 5.
- 6.