2 空間ベクトル $\overrightarrow{x}=(x_1,\,x_2,\,x_3)$, $\overrightarrow{y}=(y_1,\,y_2,\,y_3)$ を考える.ただし,どちらも零ベクトルではないとする. $k=1,\,2,\,3$ に対し,複素数

$$z_k = x_k + y_k i$$
 $(i = \sqrt{-1}$ は虚数単位)

を考え,複素数 $w_k=u_k+v_k i$ (u_k , v_k は実数) を $w_k=(\sqrt{3}+i)z_k$ で定める.

さらに u_k , v_k から定まるベクトル

$$\overrightarrow{u} = (u_1, u_2, u_3), \quad \overrightarrow{v} = (v_1, v_2, v_3)$$

を考える.

- (1) \overrightarrow{x} の大きさを r , \overrightarrow{y} の大きさを s , \overrightarrow{x} と \overrightarrow{y} のなす角を θ $(0^\circ \le \theta \le 180^\circ)$ とするとき $z_1{}^2+z_2{}^2+z_3{}^2$ を r , s , θ で表せ .
- (2) \overrightarrow{x} と \overrightarrow{y} の大きさが等しく,両者はたがいに垂直であるとする.このとき \overrightarrow{u} と \overrightarrow{v} も大きさが等しく,たがいに垂直であることを示せ.
- (3) (2) の仮定のもとで, \overrightarrow{x} と \overrightarrow{u} のなす角を求めよ.