2-9 Sorting and Selection

Hengfeng Wei

hfwei@nju.edu.cn

May 28, 2018

Show that · · ·

Show that · · ·

Argue that · · ·

Show that · · ·

Argue that · · ·

= Prove that \cdots

QUICKSORT Invented by Tony Hoare in 1959/1960

QUICKSORT Invented by Tony Hoare in 1959/1960

null pointer

4 / 12

QUICKSORT Invented by Tony Hoare in 1959/1960

null pointer
"I call it my billion-dollar mistake."

$$T(n) = 2T(\frac{n}{2}) + \Theta(n)$$

$$T(n) = 2T(\frac{n}{2}) + \Theta(n)$$

$$T(n) = \underbrace{n}_{\text{PARTITION}} \underbrace{\log n}_{\text{Height}}$$
 (Recursion Tree)

Show that QUICKSORT's best-case running time is $\Omega(n \log n)$.

$$T(n) = 2T(\frac{n}{2}) + \Theta(n)$$

$$T(n) = \underbrace{n}_{\text{PARTITION}} \underbrace{\log n}_{\text{Height}}$$
 (Recursion Tree)

$$T(n) = \min_{0 \le q \le n-1} \left(T(q) + T(n-q-1) \right) + \Theta(n)$$

5 / 12

$$T(n) = 2T(\frac{n}{2}) + \Theta(n)$$

$$T(n) = \underbrace{n}_{\text{PARTITION}} \underbrace{\log n}_{\text{Height}}$$
 (Recursion Tree)

$$T(n) = \min_{0 \le q \le n-1} \left(T(q) + T(n-q-1) \right) + \Theta(n)$$

$$T(n) = \Omega(n \log n)$$

Show that QUICKSORT's best-case running time is $\Omega(n \log n)$.

$$T(n) = 2T(\frac{n}{2}) + \Theta(n)$$

$$T(n) = \underbrace{n}_{\text{PARTITION}} \underbrace{\log n}_{\text{Height}}$$
 (Recursion Tree)

$$T(n) = \min_{0 \le q \le n-1} \left(T(q) + T(n-q-1) \right) + \Theta(n)$$

$$T(n) = \Omega(n \log n)$$

By substitution.

Median-of-3 Partition (Problem 7-5)

Argue that in the $\Omega(n \log n)$ running time of QUICKSORT, the *median-of-3* method affects only the constant factor.

Median-of-3 Partition (Problem 7-5)

Argue that in the $\Omega(n \log n)$ running time of QUICKSORT, the *median-of-3* method affects only the constant factor.

Median-of-3 Partition (Problem 7-5)

Argue that in the $\Omega(n \log n)$ running time of QUICKSORT, the *median-of-3* method affects only the constant factor.

$$T(n) = \min_{0 \le q \le n-1} \left(T(q) + T(n-q-1) \right) + \Theta(n)$$
$$T(n) = \Omega(n \log n)$$

Sorts an already $\frac{n}{k}$ -sorted array

n elements

not sorted

Sorts an already $\frac{n}{k}$ -sorted array

n elements

k elements

not sorted

 $\Omega(n \log k)$

Sorts an already $\frac{n}{k}$ -sorted array

n elements

k elements

not sorted

$$\Omega(n \log k)$$
 $O(n \log k)$

Sorts an already $\frac{n}{k}$ -sorted array

n elements

k elements

not sorted

$$\Omega(n \log k)$$
 $O(n \log k)$

$$(k!)^{\frac{n}{k}} < \underline{L} < 2^H$$

9 / 12

O(?)

$$O(?)$$
 $\Omega(?)$

$$O(?)$$
 $\Omega(?)$

$$L \ge \left(\underbrace{\frac{n}{k, \dots, k}}\right) = \frac{n!}{(k!)^{\frac{n}{k}}}$$

9 / 12

$$O(?)$$
 $\Omega(?)$

$$L \ge \left(\underbrace{\frac{n}{k, \dots, k}}\right) = \frac{n!}{(k!)^{\frac{n}{k}}} \implies \Omega(n \log(n/k))$$

9 / 12

Thank You!

Office 302

Mailbox: H016

hfwei@nju.edu.cn