Soluciones de los problemas

Tabla de contenidos

1 Problema 1	2
1.1 Caso favorable	3
1.1.a Método pesimista	3
1.1.b Método optimista	3
1.1.c Método Hurwicz	3
1.1.d Método Savage	5
1.1.e Método Laplace	5
1.1.f Método punto ideal	5
1.1.g Resumen caso favorable	5
1.2 Caso desfavorable	6
1.2.a Método pesimista	6
1.2.b Método optimista	6
1.2.c Método Hurwicz	6
1.2.d Método Savage	8
1.2.e Método Laplace	8
1.2.f Método punto ideal	9
1.2.g Resumen caso desfavorable	9
2 Problema 2	10
2.1 Planteamiento del problema	10
# Cargar librarias nasasarias	
<pre># Cargar librerías necesarias library(tinytable)</pre>	
cibrary (ciny cases)	
# Cargar script con funciones	
<pre>source("teoriadecision_funciones_incertidumbre.R")</pre>	
# Preparar tema propio para tablas	
<pre>colores <- hcl.colors(5, palette = "Berlin") crea_vector_posiciones_tabla <- function(numero_columnas) {</pre>	
posiciones <- ""	
<pre>for(i in 1:numero_columnas) {</pre>	
posiciones <- paste0(posiciones, "c")	
}	
return(posiciones)	
}	
<pre>crea_tabla_estilo <- function(tabla, nombresfila = TRUE) {</pre>	
<pre>if (nombresfila == TRUE) {</pre>	

```
rn <- rownames(tabla)</pre>
    if (is.null(rn)) rn <- rep("", nrow(tabla))</pre>
    tabla <- cbind(rn = rn, tabla, stringsAsFactors = FALSE)
    colnames(tabla)[1] <- ""</pre>
    rownames(tabla) <- NULL</pre>
 }
 t <- tt(tabla, theme = "empty", width = 1) |>
    style_tt(j = 1:ncol(tabla), align =
crea vector posiciones tabla(ncol(tabla)), alignv = "m") |>
    style_tt(i = 0, line = "b", line_color = colores[2], line_width = 0.2,
    background = colores[5], color = colores[3]) |>
    style_tt(i = 0, line = "t", line_color = colores[1], line_width = 0.1) |>
    style_tt(i = 1:nrow(tabla), line = "b", line_color = colores[1],
line_width = 0.1) |> style_tt(j = 1:(ncol(tabla)-1), line = "r", line_color =
colores[1], line width = 0.1)
 return(t)
}
```

1 Problema 1

Se deben implementar todos los métodos de decisión bajo incertidumbre, tanto para el caso favorable como para el caso desfavorable (pesimista, optimista, Hurwicz, Savage, Laplace y punto ideal) para la siguiente tabla de decisión:

	ω1	ω2	ω3	ω4
a1	5	15	8	18
a2	7	13	14	20
a3	6	17	11	17
a4	4	14	16	16
a5	10	10	13	15

1.1 Caso favorable

1.1.a Método pesimista

```
alternativa_pesimista <- criterio.Wald(tabla_decision, favorable = TRUE)
```

Para el criterio de Wald, en el caso favorable, la alternativa 5 es la mejor y el valor óptimo es 10.

1.1.b Método optimista

```
alternativa_optimista <- criterio.Optimista(tabla_decision, favorable = TRUE)
```

Para el criterio Optimista, en el caso favorable, la alternativa 2 es la mejor y el valor óptimo es 20.

1.1.c Método Hurwicz

Para el criterio de Hurwicz, en el caso favorable, la alternativa 2 es la mejor y el valor óptimo es 13.5. Con un valor de alfa = 0.5.

Se muestra a continuación una tabla con las alternativas óptimas y los valores óptimos para diferentes valores de alfa, que van desde 0 hasta 1 con incrementos de 0.1:

Alfa	Alternativa óptima	Valor óptimo
0.0	5	10.0
0.1	5	10.5
0.2	5	11.0
0.3	5	11.5
0.4	2	12.2
0.5	2	13.5
0.6	2	14.8
0.7	2	16.1
0.8	2	17.4
0.9	2	18.7
1.0	2	20.0

Y gráficamente:

```
gráfico_Hurwicz <- dibuja.criterio.Hurwicz(tabla_decision, favorable = TRUE)</pre>
```

Criterio de Hurwicz (favorable - línea discontinua)

Además, se muestra un gráfico donde se pueden apreciar los intervalos de las alternativas óptimas para diferentes valores de alfa:

```
intervalos_Hurwicz <- dibuja.criterio.Hurwicz_Intervalos(tabla_decision,
favorable = TRUE)</pre>
```

Criterio de Hurwicz (favorable - línea discontinua)

1.1.d Método Savage

```
alternativa_Savage <- criterio.Savage(tabla_decision, favorable = TRUE)
```

Para el criterio de Savage, en el caso favorable, la alternativa 2 es la mejor y el valor óptimo es 4.

1.1.e Método Laplace

```
alternativa_Laplace <- criterio.Laplace(tabla_decision, favorable = TRUE)
```

Para el criterio de Laplace, en el caso favorable, la alternativa 2 es la mejor y el valor óptimo es 13.5.

1.1.f Método punto ideal

```
alternativa_puntoideal <- criterio.PuntoIdeal(tabla_decision, favorable =
TRUE)</pre>
```

Para el criterio de Punto Ideal, en el caso favorable, la alternativa 2 es la mejor y el valor óptimo es 5.3851648.

1.1.g Resumen caso favorable

Criterio	Alternativa_Óptima
Wald	5
Optimista	2
Hurwicz	2
Savage	2
Laplace	2
Punto Ideal	2

Vemos que las alternativas óptimas son diferentes según el criterio utilizado, siendo la alternativa a_2 la que más veces aparece como óptima (5 veces). Ya alternativa a_5 aparece una sola vez como óptima para el criterio pesimista y es la mejor alternativa también para el criterio de Hurwicz con valores de α menores que _____ .

1.2 Caso desfavorable

1.2.a Método pesimista

```
alternativa_pesimista_desfavorable <- criterio.Wald(tabla_decision, favorable
= FALSE)</pre>
```

Para el criterio de Wald, en el caso desfavorable, la alternativa 5 es la mejor y el valor óptimo es 15.

1.2.b Método optimista

```
alternativa_optimista_desfavorable <- criterio.Optimista(tabla_decision,
favorable = FALSE)</pre>
```

Para el criterio Optimista, en el caso desfavorable, la alternativa 4 es la mejor y el valor óptimo es 4.

1.2.c Método Hurwicz

```
alternativa_Hurwicz_desfavorable <- criterio.Hurwicz(tabla_decision, alfa =
0.5, favorable = FALSE)</pre>
```

Para el criterio de Hurwicz, en el caso desfavorable, la alternativa 4 es la mejor y el valor óptimo es 10. Con un valor de alfa = 0.5.

Se muestra a continuación una tabla con las alternativas óptimas y los valores óptimos para diferentes valores de alfa, que van desde 0 hasta 1 con incrementos de 0.1:

Alfa	Alternativa Óptima	Valor Óptimo
0.0	5	15.0
0.1	5	14.5
0.2	4	13.6
0.3	4	12.4
0.4	4	11.2
0.5	4	10.0
0.6	4	8.8
0.7	4	7.6
0.8	4	6.4
0.9	4	5.2
1.0	4	4.0

Y gráficamente:

```
gráfico_Hurwicz_desfavorable <- dibuja.criterio.Hurwicz(tabla_decision,
favorable = FALSE)</pre>
```

Criterio de Hurwicz (desfavorable - línea discontinua)

Además, se muestra un gráfico donde se pueden apreciar los intervalos de las alternativas óptimas para diferentes valores de alfa:

```
intervalos_Hurwicz_desfavorable <-
dibuja.criterio.Hurwicz_Intervalos(tabla_decision, favorable = FALSE)</pre>
```

Criterio de Hurwicz (desfavorable - línea discontinua)

1.2.d Método Savage

```
alternativa_Savage_desfavorable <- criterio.Savage(tabla_decision, favorable =
FALSE)</pre>
```

Para el criterio de Savage, en el caso desfavorable, la alternativa 1 es la mejor y el valor óptimo es 5.

1.2.e Método Laplace

```
alternativa_Laplace_desfavorable <- criterio.Laplace(tabla_decision, favorable
= FALSE)</pre>
```

Para el criterio de Laplace, en el caso desfavorable, la alternativa 1 es la mejor y el valor óptimo es 11.5.

1.2.f Método punto ideal

```
alternativa_puntoideal_desfavorable <- criterio.PuntoIdeal(tabla_decision,
favorable = FALSE)</pre>
```

Para el criterio de Punto Ideal, en el caso desfavorable, la alternativa 1 es la mejor y el valor óptimo es 5.9160798.

1.2.g Resumen caso desfavorable

```
resumen desfavorable <- data.frame(</pre>
  Criterio = c(alternativa pesimista desfavorable$criterio,
               alternativa optimista desfavorable$criterio,
               alternativa_Hurwicz_desfavorable$criterio,
               alternativa Savage desfavorable$criterio,
               alternativa_Laplace_desfavorable$criterio,
               alternativa_puntoideal_desfavorable$criterio),
  `Alternativa Óptima` = c(alternativa_pesimista_desfavorable$AlternativaOpt,
                         alternativa optimista desfavorable$AlternativaOpt,
                         alternativa_Hurwicz_desfavorable$AlternativaOpt,
                         alternativa Savage desfavorable$AlternativaOpt,
                         alternativa_Laplace_desfavorable$AlternativaOpt,
                         alternativa puntoideal desfavorable$AlternativaOpt)
)
crea_vector_posiciones_tabla <- function(numero_columnas) {</pre>
  posiciones <- ""
  for(i in 1:numero columnas) {
    posiciones <- paste0(posiciones, "c")</pre>
 }
  return(posiciones)
}
tt(resumen_desfavorable, theme = "empty") |>
  style tt(j = 1:ncol(resumen desfavorable), align =
crea_vector_posiciones_tabla(ncol(resumen_desfavorable)), alignv = "m") |>
  style_tt(i = 0, line = "b", line_color = colores[2], line_width = 0.2,
  background = colores[5], color = colores[3]) |>
  style tt(i = 0, line = "t", line color = colores[1], line width = 0.1) |>
  style_tt(i = 1:nrow(resumen_desfavorable), line = "b", line_color =
colores[1], line_width = 0.1) |>
```

```
style_tt(j = 1:(ncol(resumen_desfavorable)-1), line = "r", line_color =
colores[1], line_width = 0.1)
```

Criterio	Alternativa.Óptima		
Wald	5		
Optimista	4		
Hurwicz	4		
Savage	1		
Laplace	1		
Punto Ideal	1		

Vemos que las alternativas óptimas son diferentes según el criterio utilizado, siendo la alternativa a_1 la que más veces aparece como óptima (3 veces). La alternativa a_4 aparece en dos ocasiones como óptima, por último para el criterio pesimista la mejor alternativa es a_5 y es la mejor alternativa también para el criterio de Hurwicz con valores de α menores que _____.

2 Problema 2

Una persona recibe una herencia de 200.000 euros y se le presentan diferentes opciones de inversión para los próximos 10 años.

Puede terminar de pagar su hipoteca actual, ahorrando 40.000 euros de intereses y le sobrarían 30.000 euros que pondría en una cuenta remunerada al 2% anual

Puede seguir pagando su hipoteca y elegir una de las siguientes opciones

- Adquirir un piso por esa cantidad y si los alquileres turísticos siguen siendo posibles podrá generar un 6% anual. Si por el contrario se regularan pasaría a perder un 1% anual.
- Invertir en un fondo indexado que le puede generar un 7% anual pero si la bolsa baja perderá un 8%.
- Invertir en una franquicia de una cadena de comida rápida. Si acierta con el sitio podrá generar un 10% anual pero si se equivoca al seleccionar el sitio incurrirá en unas pérdidas anuales del 10%

2.1 Planteamiento del problema

Alternativas

- · a1: Pagar hipoteca
- a2: Adquirir piso
- a3: Invertir en un fondo
- a4: Invertir en una franquicia

Estados de la naturaleza

• e1: Regulación alquileres

- e2: No regulación alquileres
- e3: Bolsa sube
- e4: Bolsa baja
- e5: Acierta con la ubicación
- e6: Se equivoca con la ubicación

Ahora vamos a construir la matriz de decisión para un año. Puesto que los estados de la naturaleza afectan por parejas (e1-e2, e3-e4, e5-e6) a las alternativas (a2, a3, a4). Se van a reducir a que la inversión de cada alternativa salga bien o mal ese año.

- e1_red: Inversión exitosa
- e2_red: Inversión fallida

Puesto que la alternativa 1 no se ve afectada por los estados de la naturaleza esta alternativa tendrá valores fijos en todos ellos y no se va afectada por esta reducción.

```
m11 < -4000 + 30000 * 0.02
m12 < -4000 + 30000 * 0.02
m13 < -4000 + 30000 * 0.02
m14 < -4000 + 30000 * 0.02
m15 < -4000 + 30000 * 0.02
m16 <- 4000 + 30000 * 0.02
m21 < -200000 * 0.01 - 4000
m22 <- 200000 * 0.04 - 4000
m23 <- 200000 * 0.04 - 4000
m24 <- 200000 * 0.04 - 4000
m25 < -200000 * 0.04 - 4000
m26 <- 200000 * 0.04 - 4000
m31 <- 200000 * 0.07 - 4000
m32 <- 200000 * 0.07 - 4000
m33 <- 200000 * 0.07 - 4000
m34 < -200000 * 0.08 - 4000
m35 <- 200000 * 0.07 - 4000
m36 <- 200000 * 0.07 - 4000
m41 <- 200000 * 0.1 - 4000
m42 < -200000 * 0.1 - 4000
m43 < -200000 * 0.1 - 4000
m44 < -200000 * 0.1 - 4000
m45 < -200000 * 0.1 - 4000
m46 < -200000 * 0.1 - 4000
tabla_decision2 <- crea.tablaX(c(m11, m12, m13, m14, m15, m16,
                      m21, m22, m23, m24, m25, m26,
                      m31, m32, m33, m34, m35, m36,
                      m41, m42, m43, m44, m45, m46),
                      numalternativas = 4,
                      numestados = 6,
                      nb alternativas = c("Pagar hipoteca",
```

```
"Aquirir piso",

"Invertir fondo",

"Invertir franquicia"),

nb_estados = c("Regulación alquileres",

"No regulación alquileres",

"Bolsa sube",

"Bolsa baja",

"Acierta ubicación",

"Falla ubicación"))
```

```
m11 < -4000 + 30000 * 0.02
m12 < -4000 + 30000 * 0.02
m21 <- 200000 * 0.06 - 4000
m22 < - -200000 * 0.01 - 4000
m31 <- 200000 * 0.07 - 4000
m32 < - -200000 * 0.08 - 4000
m41 < -200000 * 0.1 - 4000
m42 < - -200000 * 0.1 - 4000
tabla_decision2 <- crea.tablaX(c(m11, m12,</pre>
                      m21, m22,
                      m31, m32,
                       m41, m42),
                       numalternativas = 4,
                       numestados = 2,
                       nb_alternativas = c("Pagar hipoteca",
                                           "Aquirir piso",
                                           "Invertir fondo",
                                           "Invertir franquicia"),
                       nb_estados = c("Inversión exitosa",
                                      "Inversión fallida"))
```

```
resultado2 <- criterio.Todos(tabla_decision2, alfa = 0.5, favorable = TRUE)
res <- as.data.frame(resultado2)

crea_tabla_estilo(res, nombresfila = TRUE)</pre>
```

	Inver- sión exito- sa	Inver- sión fallida	Wald	Opti- mista	Hur- wicz	Sava- ge	Lapla- ce	Punto Ideal	Veces Opti- ma
Pagar hipo- teca	4600	4600	4600	4600	4600	11400	4600	11400	4
Aqui- rir pi- so	8000	-6000	-6000	8000	1000	10600	1000	13280	1
Inver- tir fon- do	10000	-20000	-20000	10000	-5000	24600	-5000	25321	0
In- vertir fran- quicia	16000	-24000	-24000	16000	-4000	28600	-4000	28600	1
iAlt.Opt (fav.)	-	-	Pagar hipo- teca	In- vertir fran- quicia	Pagar hipo- teca	Aqui- rir pi- so	Pagar hipo- teca	Pagar hipo- teca	Pagar hipo- teca