

Curso: PPGMNE

Disciplina: Programação Linear

Código: MNUM7078

Entrega: INDIVIDUAL

Data da entrega: 23/04/2025, até as 23:59.

Entregar em PDF (Organizados em arquivos único e sequencial por exercícios/letra) E ENTREGAR TAMBÉM os arquivos de excel (ou código na linguagem escolhida).

A cada dia de atraso na entrega desconto de 10% no valor final.

OBS: na entrega das tarefas você deve fazer o upload de todos os arquivos e depois clicar em ENVIAR (botão na direita superior).

Lista 1 – Modelagem em Programação Linear e Solução via solver Excel ou open solver no Excel

- a) Construir o modelo matemático e resolver todos os 22 exercícios utilizando o solver do Excel OU open solver no Excel OU via VBA/open solver/cbc ou gurobi ou ainda, em outra linguagem como Python, C++, C#, a sua escolha
- b) Para os exercícios 4, 10a, 10b, 12 e 18 você deve generalizar os dados de entrada e escrever o modelo matemático formal, definindo claramente índices, conjuntos, parâmetros, variáveis, função objetivo, restrições e explicação do modelo completo.

Exercício 1

"Uma empresa de comida canina produz dois tipos de rações: Tobi e Rex. Para a manufatura das rações são utilizados cereais e carne. Sabe-se que:

- √ a ração Tobi utiliza 5 kg de cereais e 1 kg de carne, e a ração Rex utiliza 4 kg de carne e 2 kg de
 cereais:
- √ o pacote de ração Tobi custa \$ 20 e o pacote de ração Rex custa \$ 30;
- ✓ o kg de carne custa \$ 4 e o kg de cereais custa \$ 1;
- ✓ estão disponíveis por mês 10 000 kg de carne e 30 000 kg de cereais.
 Deseja-se saber qual a quantidade de cada ração a produzir de modo a maximizar o lucro."

Exercício 2

Jma indústria dispõe de 3 recursos, matéria-prima, mão de obra e tempo de maquinário, em quantidades limitadas. Com esses recursos, a indústria pretende produzir dois produtos, 1 e 2. O quadro abaixo dá a utilização de cada recurso em cada um dos produtos e a disponibilidades de cada recurso.

Recurso gasto Recurso fazer 1 unidad produto 1		Recurso gasto para fazer 1 unidade do produto 2	Disponibilidade
Matéria-Prima	1	2	14
Mão de Obra	1	1	9
Tempo de Maquinário	7	4	56

A indústria sabe que cada unidade produzida do produto A dá um lucro de R\$ 5,00 e do produto B um lucro de R\$ 6,00.

A empresa Passarinho Ltda. faz dois tipos de ração animal, a ração forte e a ração light. O Custo calculado para produzir um kg de ração forte é de R\$ 6,00 e da ração light é de R\$ 10,00. Percebeu-se que o tipo de produção exigia que a diferença entre as quantidades de ração deveria ser no máximo 2kg, sendo que a ração light deve ser produzida em maior quantidade. A mão de obra para produzir um Kg da ração forte é uma pessoa e para produzir um kg de ração light são necessárias duas pessoas, sabe-se que a empresa tem disponível para isso pelo menos um funcionário, podendo utilizar quantas pessoas forem necessárias para a produção final. A produção da ração forte está limitada em 5kg e a ração light está limitada em 6kg. Para esta produção utiliza-se 2 insumos. A ração forte utiliza 3 unidades do insumo 1 e 5 unidades do insumo 2 para cada kg de ração produzido. Por sua vez, a ração light utiliza 5 unidades do insumo 1 e 4 unidades do insumo 2. Os insumos possuem vencimentos curtos e o mínimo que deve ser utilizado do insumo 1 é 15kg e o mínimo que deve ser utilizado do insumo 2 é 20kg.

Exercício 4

Seção 2.5.1 (ex. 1). A empresa americana KMX do setor automobilístico lançará três novos modelos de carros no próximo ano: modelo Arlington, modelo Marilandy e modelo Gristedes. A produção de cada um dos modelos passa pelos seguintes processos: injeção, fundição, usinagem, estamparia e acabamento. Os tempos médios de operação (minutos) de uma unidade de cada componente encontram-se na Tabela 2.15. Cada uma das operações é 100% automatizada. A quantidade de máquinas disponíveis para cada setor também se encontra na mesma tabela. É importante mencionar que cada máquina trabalha 16 horas por dia, de segunda a sexta-feira. O lucro unitário, além do potencial mínimo de vendas por semana, de cada modelo de automóvel, de acordo o setor comercial, está especificado na Tabela 2.16. Supondo que 100% dos modelos serão vendidos, formule o problema de programação linear que busca determinar as quantidades de automóveis de cada modelo a serem fabricados, a fim de maximizar o lucro líquido semanal.

Tabela 2.15 Tempo médio de operação (minutos) de uma unidade de cada componente e total de máquinas disponíveis

	Total Mé						
Setor	Arlington Marilandy Gristed		Gristedes	Máquinas disponíveis			
Injeção	3	4	3	6			
Injeção Fundição	5	5	4	8			
Usinagem	2	4	4	5			
Estamparia	4	5	5	8			
Acabamento	2	3	3	5			

Tabela 2.16 Lucro unitário e potencial mínimo de vendas semanal por produto

Modelos	Lucro unitário (U\$)	Potencial mín. vendas (unidades/ semana)	
Arlington	2.500	50	
Marilandy	3.000	30	
Gristedes	2.800	30	

Seção 2.5.1 (ex. 2). A empresa Refresh, do setor de bebidas, está revendo seu mix de produção de cervejas e refrigerantes. A produção de cerveja passa pelos seguintes processos: extração do malte (pode ou não ser fabricado internamente), processamento do mosto que dá origem ao álcool, fermentação (principal etapa), processamento da cerveja e enchimento dos vazilhames (envase). A produção de refrigerantes passa pelos seguintes processos: preparo do xarope simples, preparo do xarope composto, diluição, carbonatação e envase. Cada uma das etapas de processamento da cerveja e do refrigerante é 100% automatizada. Os tempos médios de operação (em minutos) de cada componente da cerveja encontram-se na Tabela 2.17, além do total de máquinas disponíveis para cada atividade. Os mesmos dados referentes ao processamento do refrigerante encontram-se na Tabela 2.18. É importante mencionar que cada máquina trabalha oito horas por dia, 20 dias úteis por mês. Em função da concorrência de mercado, pode-se afirmar que a demanda total por cerveja e refrigerante não ultrapassa 42 mil litros por mês. A margem de contribuição é R\$0,50 por litro produzido de cerveja e R\$0,40 por litro produzido de refrigerante. Formule o problema de programação linear que maximiza a margem mensal de contribuição total.

Tabela 2.17 Tempo médio de operação da cerveja e quantidade de máquinas disponíveis

Setor	Tempo de operação (minutos)	Quantidade de máquinas
Extração do malte	2	б
Processamento do mosto	4	12
Fermentação	3	10
Processamento da cerveja	4	12
Envase da cerveja	5	13

Tabela 2.18 Tempo médio de operação do refrigerante e quantidade de máquinas disponíveis

Setor	Tempo de operação (minutos)	Quantidade de máquinas
Xarope simples	1	б
Xarope composto	3	7
Diluição	4	8
Carbonatação	5	10
Envase do refrigerante	2	5
		_

Exercício 6

Seção 2.5.1 (ex. 3). A empresa Golmobile, do setor de eletrodomésticos, está revendo seu mix de produção referente aos principais equipamentos domésticos utilizados na cozinha: geladeira, freezer, fogão, lava-louças e micro-ondas. A fabricação de cada um desses produtos se inicia no processo de prensagem, que molda, fura, ajusta e recorta cada componente. A próxima etapa consiste na pintura, seguida pelo processo de liquidificação, que dá a forma final ao produto. As duas últimas etapas consistem na montagem e embalagem do produto final. A Tabela 2.19 apresenta o tempo requerido (em horas-máquina) para a fabricação de uma unidade de cada componente em cada processo de fabricação, além do tempo total disponível para cada setor.

A Tabela 2.20 apresenta o total de horas de mão de obra (horas-homem) necessárias para a fabricação de uma unidade de cada componente em cada processo de fabricação, além do número total de funcionários disponíveis que trabalham em cada setor. É importante mencionar que cada funcionário trabalha oito horas por dia, de segunda a sexta-feira.

Em função das limitações de estocagem, há uma capacidade máxima de produção por produto, conforme especificado na Tabela 2.21. A mesma tabela também apresenta a demanda mínima de cada produto que deve ser atendida, além do lucro líquido por unidade vendida.

Formular o problema de programação linear que maximiza o lucro líquido total.

Tabela 2.19 Tempo necessário (em horas-máquina) para fabricar uma unidade de cada componente em cada setor

	Tempo n	Tempo disponíel				
Setor	geladeira	freezer	fogão	lava- louças	micro- ondas	(horas-máquina/ semana)
Prensagem	0,2	0,2	0,4	0,4	0,3	400
Pintura	0,2	0,3	0,3	0,3	0,2	350
Liquidificação	0,4	0,3	0,3	0,3	0,2	250
Montagem	0,2	0,4	0,4	0,4	0,4	200
Embalagem	0,1	0,2	0,2	0,2	0,3	200

Tabela 2.20 Total de horas de mão de obra necessárias para produzir uma unidade de cada produto em cada setor, além do total de mão de obra disponível

Sator	Total	Funcionários				
Setor	geladeira	freezer	fogão	lava-louças	micro-ondas	disponíveis
Prensagem	0,5	0,4	0,5	0,4	0,2	12
Pintura	0,3	0,4	0,4	0,4	0,3	10
Liquidificação	0,5	0,5	0,3	0,4	0,3	8
Montagem	0,6	0,5	0,4	0,5	0,6	10
Embalagem	0,4	0,4	0,4	0,3	0,2	8

Tabela 2.21 Capacidade máxima, demanda mínima e lucro unitário por produto

Produto	Capacidade máxima (unidades/ semana)	Demanda mínima (unidades/ semana)	Lucro unitário (R\$/unidade)
Geladeira	1.000	200	52
Freezer	800	50	37
Fogão	500	50	35
Lava-louças	500	50	40
Micro-ondas	200	40	29

Exercício 7

A empresa TUDOLIMPO fabrica 3 tipos de amaciantes: *super*, *extra* e *comum*. O lucro líquido por kg de amaciante *super*, *extra* e *comum* produzido é de R\$5,00, R\$4,00 e R\$3,00, respectivamente. Cada produto requer 3 tipos de operações. Os tempos de processamento de cada operação por kg de amaciante *super* produzido são 6, 3 e 4 minutos, respectivamente. Para o amaciante *extra*, são necessários 4, 6

e 10 minutos para cada operação. Já para o amaciante *comum*, são necessários 2, 3 e 4 minutos para cada operação. O tempo total disponível para cada operação é de 240, 180 e 200 minutos, respectivamente. Quanto se deve produzir de cada amaciante para se obter o maior lucro possível?

Exercício 8

A LCL Motores Ltda., uma fábrica de motores especiais, recebeu recentemente R\$ 900.000,00 em pedidos de seus três tipos de motores. Cada motor necessita de determinado número de horas de trabalho no setor de montagem e acabamento. A LCL pode terceirizar parte da sua produção. A tabela a seguir resume esses dados. A fábrica deseja determinar quantos motores ela deve produzir e quantos devem ser produzidos de forma terceirizada para atender à demanda de pedidos.

Modelo	1 2		3	Total
Demanda	3000 unid. 2500 unio		500 unid.	6000 unid.
Montagem	1 h/unid.	2 h/unid.	0,5 h/unid.	6000 h
Acabamento	2,5 h/unid.	1 h/unid.	4 h/unid.	10000 h
Custo de	R\$ 50,00	R\$ 90,00	R\$ 120,00	
Produção				
Terceirizado	R\$ 65,00	R\$ 92,00	R\$ 140,00	

Exercício 9

Uma oficina mecânica deseja alocar o tempo ocioso disponível em suas máquinas para a produção de 3 produtos. A tabela abaixo dá as informações sobre as necessidades de horas de máquina para produzir uma unidade de cada produto, assim como a disponibilidade das máquinas, o lucro dos produtos e a demanda máxima existente no mercado. Deseja-se o esquema semanal de produção de lucro máximo.

Tipo de máquina	Produto A	Produto B	Produto C	Tempo disponível (horas por semana)
Torno	5	3	5	400
Fresa	8	4	0	500
Furadeira	2	5	3	300
Lucro	20	15	18	
Demanda Semanal Mínima	40	50	20	

Exercício 10

Um fabricante de sapatos prevê a seguinte demanda para os próximos 6 meses:

Mês	1	2	3	4	5	6
Pares	5000	6000	5000	9000	7000	5000

Um sapateiro leva cerca de 30 minutos para produzir um par de sapatos e trabalha 150 horas/mês e, eventualmente, um máximo de 30 horas/mês de horas extras. O salário de um sapateiro é de \$2.000,00/mês mais \$50,00 por cada hora extra.

O custo de manter um sapato em estoque é estimado em \$1,00 por par de sapato (aplicado ao nível de estoque ao fim do mês). Por razões técnicas, o número máximo de operários que pode trabalhar simultaneamente é 20.

O estoque inicial é de 1000 sapatos, e ao fim do 6º mês a companhia deseja ter um estoque mínimo de 2000 sapatos.

- a) Estabeleça um modelo de programação linear para determinar o nível de mão de obra a empregar a cada mês e as horas extras trabalhadas, de forma a atender a demanda ao menor custo. (sugestão: defina variáveis para o número de operários, para o total de horas extras e para o nível de estoque ao fim do mês.)
- b) Suponha que haja uma penalidade para a variação mensal do número de operários, ou seja, para todo recrutamento há um custo de \$770,00 por operário e um custo de \$1.000,00 por operário demitido. No mês inicial há 15 operários. Como adequar o modelo anterior para incorporar esses elementos?

Exercício 11

Uma certa fábrica de camisetas deseja aproveitar as finais de um campeonato de futebol para vender camisetas dos times envolvidos. Os jogos vão durar quatro semanas. O custo de produção de cada camiseta é R\$ 2,00 nas duas primeiras semanas e subirá para R\$ 2,50 nas duas últimas, quando a concorrência demandar por material no mercado. A demanda semanal de camisetas será de 5.000,10.000, 30.000 e 60.000. A capacidade máxima de produção da empresa é de 25.000 camisetas. Na primeira e na segunda semana a empresa poderá, em um esforço excepcional, carrear mão-de-obra em horas extras e fabricar mais 10.000 camisetas em cada semana. Nesse caso, o custo dessas camisetas será de R\$ 2,80. O excesso de produção pode ser estocado a um custo de R\$ 0,20 por unidade por semana.

Pedido 1: Formular o modelo de PL que minimize os custos.

Pedido 2: Após o planejamento anterior, a direção da empresa verificou que a demanda iria variar substancialmente dentro dos quatro modelos de camiseta que representavam os quatro times disputando as finais. Apesar da demanda total ser exatamente aquela anteriormente levantada, o valor das camisetas iria variar em conformidade com o time e sua posição no campeonato. Nas duas primeiras semanas todos os times estariam em pé de igualdade até que fosse decidido os dois finalistas. A partir daí, as camisetas dos times eliminados cairiam em valor e em demanda no mercado, e as dos times finalistas subiriam conforme a tabela a seguir:

	Semana							
	1		2		3		4	
	Demanda	Valor	Demanda	Valor	Demanda	Valor	Demanda	Valor
Time A	1250	5,00	2500	6,00	500	3,00	-	-
Time B	1250	5,00	2500	6,00	500	3,00	-	-
Time Final, C	1250	5,00	2500	6,00	14500	8,00	30000	9,00
Time Final. D	1250	5,00	2500	6,00	14500	8,00	30000	9,00

Sabendo-se que existe um completo equilíbrio entre os quatro finalistas, formular o modelo que maximize os lucros da empresa produtora de camisetas.

Uma empresa produz televisão em 3 fábricas: São Paulo, João Pessoa e Manaus. Os pontos principais de revenda, com as respectivas encomendas mensais são:

Pontos de Revenda	Encomendas (unidades)
Rio de Janeiro	6,000
Salvador	5,000
Aracajú	2,000
Maceió	1,000
Recife	3,000

A produção máxima mensal em cada fábrica é:

Fábricas	Capacidade (unidades)
São Paulo	10.000
João Pessoa	5.000
Manaus	6.000

O custo de transportes das fábricas até as revendas, para cada lote de 1.000 aparelhos, é dado pelo quadro abaixo:

Para De	Rio de Janeiro	Salvador	Aracaju	Maceió	Recife
São Paulo	1,000	2,000	3,000	3,500	4.000
João Pessoa	4.000	2.000	1.500	1.200	1.000
Manaus	6.000	4.000	3.500	3.000	2.000

Determinar o número de unidades produzidas em cada fábrica e entregues a cada revenda, a fim de minimizar o custo de transporte.

Exercício 13

Consideremos o problema da metalurgia de alumínio, em que se deseja produzir 2.000 kg de uma liga de alumínio, a custo mínimo, pela mistura de diversas matérias-primas (minérios). Esta liga deve atender a requisitos de engenharia que especificam os máximos e mínimos de diversos elementos químicos que a compõe. Os custos das matérias-primas são:

Mat prima	Mat1	Mat2	Mat3	Mat4	Mat5	Mat6	Mat7
Custo	0,03	0,08	0,17	0,12	0,15	0,21	0,38

A composição dos minérios e a participação mínima/máxima de cada um dos elementos químicos nos 2.000 kg da liga são mostradas a seguir:

Elemento	Mat1	Mat2	Mat3	Mat4	Mat5	Al-puro	Si-puro	Mínimo	Máximo
Fe	0,15	0,04	0,02	0,04	0,02	0,01	0,03	ı	60
Cu	0,03	0,05	0,08	0,02	0,06	0,01	ı	ı	100
Mn	0,02	0,04	0,01	0,02	0,02	-	ı	ı	40
Mg	0,02	0,03	-	-	0,01	-	ı	ı	30
Al	0,70	0,75	0,80	0,75	0,80	0,97	-	1500	-
Si	0,02	0,06	0,08	0,12	0,02	0,01	0,97	250	300

Na tabela anterior temos, por exemplo, que Mat1 contém 15% de Ferro, 3% de Cobre, etc. Temos, ainda, que a liga a ser obtida (2.000 kg) deve conter, no máximo, 60 kg de Ferro, 100 kg de Cobre e que a quantidade de Silício deve estar entre 250 kg e 300 kg.

Quanto à disponibilidade de matéria-prima, os dados estão indicados a seguir na linha "Disponibilidade Máxima". A linha "Disponibilidade Mínima" refere-se a quantidade que se deseja forçar a entrar neste processo (por algum motivo, tal como liberação de espaço).

	Mat1	Mat2	Mat3	Mat4	Mat5	Mat6	Mat7
Disp. Mín.	-	-	400	100	-	-	1
Disp. Máx.	200	750	800	700	1500	Infinito	Infinito

Exercício 14

Um fundo de investimentos tem até R\$ 300.000,00 para aplicar em duas ações. A empresa D é diversificada (tem 40% do seu capital aplicado em cerveja e o restante aplicado em refrigerantes) e espera-se que forneça bonificações de 12%. A empresa N não é diversificada (produz apenas cerveja) e espera-se que distribua bonificações de 20%. Para este investimento, considerando a legislação governamental aplicável, o fundo está sujeito às seguintes restrições:

- a) O investimento na empresa diversificada pode atingir R\$ 270.000,00.
- b) O investimento na empresa não-diversificada pode atingir R\$ 150.000,00.
- c) Em cada produto (cerveja ou refrigerante) pode-se investir até R\$ 180.000,00.

Pede-se: Qual o esquema de investimento que maximiza o lucro?

Exercício 15

Uma companhia aérea possui três tipos de aviões e é obrigada a servir quatro rotas aéreas. A tabela abaixo fornece a capacidade máxima (em número de passageiros) de cada tipo de aeronave, o número de aviões disponíveis de cada tipo, bem como o número de viagens por dia que cada tipo de avião pode fazer em uma determinada rota (por exemplo: um avião do tipo 1 pode realizar três viagens na rota 1 ou 2 viagens na rota 2, etc). Na tabela seguinte, é dado também o número de passageiros que necessariamente terá que ser transportado em cada rota.

Tipo de	Capacidade	Número de	úmero de Viagens Diárias em Cada Rota			
Aeronave	(pass)	Aeronaves	R1	R2	R3	R4
A1	50	5	3	2	2	1
A2	30	8	4	3	3	2
A3	20	10	5	5	4	2
Passageiros a serem transportados diariamente em cada rota			100	200	90	120

O Custo operacional por viagem para cada avi \tilde{a} o nas diferentes rotas \acute{e} dado pela tabela abaixo.

Tina da Aavanava	Custos Operacionais por Viagem					
Tipo de Aeronave	R1	R2	R3	R4		
A1	1.000,00	1.100,00	1,200,00	1.500,00		
A2	800,00	900,00	1.000,00	1.000,00		
A3	600,00	800,00	800,00	900,00		

Formular um modelo de programação linear que permita alocar os aviões às diversas rotas, visando a minimizar o custo operacional do sistema.

Exercício 16

Um navio tem três compartimentos de carga: proa, centro e popa. As capacidades limites são:

Compartimento	Peso (ton)	Volume (m³)
Proa	2,000	30,000
Centro	3,000	40.000
Popa	1,500	20.000

A empresa de navegação, proprietária do navio pode aceitar toda ou parte das seguintes cargas:

Carga	Quant, (ton)	Vol. Esp. (m ³ /ton)	Lucro (R\$/ton)
Α	6,000	60	6,000
В	4.000	50	8,000
С	2,000	25	5,000

Para preservar o equilíbrio do navio, o peso em cada compartimento deve ser proporcional a sua capacidade em toneladas. Formule um modelo para determinar como carregar o navio de modo a maximizar o lucro ?

Exercício 17

Uma determinada fábrica produz panelas de metal médias e grandes a partir de elementos circulares de diâmetros de 0,25 e 0,40 metros, respectivamente. A primeira operação para obter as panelas é um corte desses elementos circulares sobre chapas de dimensão de 1,40 x 0,50 metros. Os elementos planos circulares são transformados em panelas em uma segunda operação de estamparia. Para o corte existem quatro tipos de matrizes conforme mostra a figura abaixo.

A fábrica deseja uma produção diária mínima de 500 panelas médias (obtidas do elemento circular de diâmetro 0,25) e 350 grandes (obtidas do elemento circular de diâmetro de 0,40). Os custos em reais por chapa pelo uso de cada matriz de corte são respectivamente: 1, 2, 3, 2. Elaborar o modelo de Programação Linear que planeje a produção de modo a minimizar o custo com o uso das chapas.

Considerar a produção das latas que são estampadas em folhas planas de alumínio. Uma lata consiste em um corpo principal e em duas extremidades (topo e base). Existem 4 padrões de estampas possíveis (que envolvem 2 tamanhos diferentes de folha de metal), como mostrado abaixo:

Considerando que deverão ser fabricadas 5.000 latas, qual é a forma mais econômica de produzí-las?

Exercício 19

Por volta de 435 a.C., Esparta decidiu convocar reservistas para suplementar seu exército regular. Os novos combatentes podiam ser alistados por 1, 2, 3 ou 4 anos, respectivamente com custos de \$10, \$18, \$25 e \$31. A força mínima total de combatentes reservistas foi estabelecida na tabela abaixo. Como um general espartano, você poderia achar uma política de alistamento ótima para os próximos 10 anos, resolvendo o problema com um modelo de otimização. Formule o modelo e resolva.

Ano	Reservistas
435 AC	10.200
434 AC	11.800
433 AC	10.500
432 AC	12.300
431 AC	15.000
430 AC	14.500
429 AC	14.000
428 AC	16.100
427 AC	16.400
426 AC	16.500

Considere que não será possível contratar mais do que 13.000 reservistas em um único ano. Qual seria a solução ?

Um empreendedor pode aplicar seu dinheiro em 5 projetos de investimento, cujos dados são apresentados abaixo:

Fluxo de Caixa Anula (R\$ 1.000,00)					
Projeto	0	1	2	3	
I	(100,00)		170,00		
II	(150,00)			220,00	
III		(100,00)		150,00	
IV	(50,00)	80,00			
V		(70,00)		130,00	

Formule um modelo que ajude o investidor a determinar os projetos que maximizam o seu capital ao final do ano 3, considerando que:

- a) o capital inicial disponível é de R\$ 220.000,00 e não poderá ser tomado empréstimo;
- b) todo capital disponível poderá ser aplicado na poupança que rende juros de 10 % a.a;
- c) I e V são projetos mutuamente exclusivos.

Exercício 21

Uma empresa deseja determinar o plano de investimentos para o próximo ano, e dispõe dos seguintes projetos:

Possibilidade de Investimento		Valor Presente Líquido (US\$)	Capital Requerido (US\$)
I	Construir um novo depósito	7.000.000,00	5.000.000,00
II	Recuperar o depósito antigo	4.500.000,00	3.000.000,00
III	Automatizar o depósito novo	5.500.000,00	4.200.000,00
IV	Comprar a fornecedora do produto A	12.000.000,00	9.300.000,00
٧	Construir uma fábrica para produzir A	9.500.000,00	7.100.000,00
VI	Reformar o escritório da empresa	1,500,000,00	900,000,00

Entre os projetos acima apresentados, as alternativas I e II são mutuamente excludentes, assim como IV e V. O projeto III, por sua vez, depende da realização do projeto I. A empresa dispõe de US\$ 20.000.000,00 para investir nestes projetos. Formule um modelo de programação inteira binária para determinação do portafólio ótimo de investimento.

A diretora de pessoal de uma empresa de aviação comercial deve decidir quantas aeromoças deverão ser treinadas e contratadas nos próximos seis meses. As necessidades, expressas pelo número de aeromoças-horas-de-vôo são as seguintes: 8.000 em janeiro; 9.000 em fevereiro; 7.000 em março; 10.000 em abril; 9.000 em maio; e 11.000 em junho.

Leva um mês de treinamento antes que uma aeromoça possa ser posta em um vôo regular; assim, uma garota deve ser contratada pelo menos 1 mês antes que ela seja realmente necessária. Cada moça treinada requer requer 100 horas de supervisão de uma aeromoça experiente durante o mês de treinamento, de modo que são disponíveis 100 horas a menos para o serviço de vôo por aeromoças regulares.

Cada aeromoça experiente pode trabalhar até 150 horas em um mês, e a empresa dispõe de 60 aeromoças no começo de janeiro. A política da empresa é não demitir ninguém. Porém, no fim de cada mês, aproximadamente 10% das aeromoças pedem demissão para se dedicarem a outras atividades e para se casarem. Uma aeromoça experiente custa a empresa R\$ 1.500,00 por mês, enquanto que na fase de treinamento o custo é de somente R\$ 900,00 (já incluindo os encargos legais).

- / - --

Prof. Cassius Tadeu Scarpin cassiusts@gmail.com cassiusts@ufpr.br