IV. Implementation

IV-A Method 1: Direct Implementation

以 STFT 為例

$$X(t,f) = \int_{-\infty}^{\infty} w(t-\tau)x(\tau)e^{-j2\pi f\tau}d\tau$$

Converting into the Discrete Form

$$t = n\Delta_t$$
, $f = m\Delta_f$, $\tau = p\Delta_t$

$$X\left(n\Delta_{t}, m\Delta_{f}\right) = \sum_{p=-\infty}^{\infty} w\left((n-p)\Delta_{t}\right) x\left(p\Delta_{t}\right) e^{-j2\pi pm\Delta_{t}\Delta_{f}} \Delta_{t}$$

Suppose that $w(t) \cong 0$ for |t| > B, $B/\Delta_t = Q$

$$X\left(n\Delta_{t}, m\Delta_{f}\right) = \sum_{p=n-Q}^{n+Q} w\left((n-p)\Delta_{t}\right) x\left(p\Delta_{t}\right) e^{-j2\pi pm\Delta_{t}\Delta_{f}} \Delta_{t}$$

Problem: 對 Gabor transform 而言, Q = ?

• Constraint for Δ_t (The only constraint for the direct implementation method)

To avoid the aliasing effect,

 $\Delta_t < 1/2\Omega$, Ω is the bandwidth of ?

There is no constraint for Δ_f when using the direct implementation method.

Four Implementation Methods

(1) Direct implementation

Complexity:

假設 t-axis 有 T 個 sampling points, f-axis 有 F 個 sampling points

(2) FFT-based method

Complexity:

(3) FFT-based method with recursive formula Complexity:

(4) Chirp-Z transform method

Complexity:

(A) Direct Implementation

Advantage: simple, flexible

Disadvantage: higher complexity

(B) DFT-Based Method

Advantage: lower complexity

Disadvantage: with some constraints

(C) Recursive Method

Advantage:

Disadvantage:

(D) Chirp Z Transform

Advantage:

Disadvantage:

IV-B Method 2: FFT-Based Method

Constraints : $\Delta_t \Delta_f = 1/N$,

$$N = 1/(\Delta_t \Delta_f) \ge 2Q + 1$$
: $(\Delta_t \Delta_f$ 是整數的倒數)

$$X\left(n\Delta_{t}, m\Delta_{f}\right) = \sum_{p=n-Q}^{n+Q} w\left((n-p)\Delta_{t}\right) x\left(p\Delta_{t}\right) e^{-j\frac{2\pi pm}{N}} \Delta_{t}$$

Note that the input of the FFT has less than N points (others are set to zero).

Standard form of the DFT
$$Y[m] = \sum_{n=0}^{N-1} y[n]e^{-j\frac{2\pi mn}{N}}$$

$$X(n\Delta_{t}, m\Delta_{f}) = \Delta_{t}e^{j\frac{2\pi(Q-n)m}{N}} \sum_{q=0}^{N-1} x_{1}(q)e^{-j\frac{2\pi qm}{N}}, \quad q = p-(n-Q) \to p = (n-Q)+q$$

where
$$x_1(q) = w((Q-q)\Delta_t)x((n-Q+q)\Delta_t)$$
 for $0 \le q \le 2Q$,
 $x_1(q) = 0$ for $2Q < q < N$.

注意:

(1) 可以使用 Matlab 的 FFT 指令來計算 $\sum_{q=0}^{N-1} x_1(q) e^{-j\frac{2\pi qm}{N}}$

(2) 對每一個 n 都要計算一次

$$X\left(n\Delta_{t}, m\Delta_{f}\right) = \Delta_{t}e^{j\frac{2\pi(Q-n)m}{N}} \sum_{q=0}^{N-1} x_{1}(q)e^{-j\frac{2\pi qm}{N}}$$

假設
$$t = n_0 \Delta_t$$
, $(n_0+1) \Delta_t$, $(n_0+2) \Delta_t$, ……, $(n_0+T-1)\Delta_t$
$$f = m_0 \Delta_f$$
, $(m_0+1) \Delta_f$, $(m_0+2) \Delta_f$, ……, $(m_0+F-1)\Delta_f$

Step 1: Calculate n_0 , m_0 , T, F, N, Q

Step 2: $n = n_0$

Step 3: Determine $x_1(q)$

Step 4: $X_1(m) = FFT[x_1(q)]$

Step 5: Convert $X_1(m)$ into $X(n\Delta_t, m\Delta_f)$

$$X(n\Delta_t, m\Delta_f) = X_1(?) \times ?$$

Step 6: Set n = n+1 and return to Step 3 until $n = n_0 + T - 1$.

page 99
$$m = f/ \Delta_f$$

$$m_1 = \text{mod}(m, N) + 1$$

IV-C Method 3: Recursive Method

A very fast way for implementing the rec-STFT

$$X(n\Delta_t, m\Delta_f) = \sum_{p=n-Q}^{n+Q} x(p\Delta_t) e^{-j\frac{2\pi pm}{N}} \Delta_t$$

$$X((n-1)\Delta_t, m\Delta_f) =$$

(1) Calculate $X(\min(n)\Delta_t, m\Delta_f)$ by the *N*-point FFT

$$X(n_0\Delta_t, m\Delta_f) = \Delta_t e^{j\frac{2\pi(Q-n_0)m}{N}} \sum_{q=0}^{N-1} x_1(q) e^{-j\frac{2\pi qm}{N}}, \quad n_0 = \min(n),$$

$$x_1(q) = x((n-Q+q)\Delta_t)$$
 for $q \le 2Q$, $x_1(q) = 0$ for $q > 2Q$

(2) Applying the recursive formula to calculate $X(n\Delta_t, m\Delta_f)$,

$$n = n_0 + 1 \sim \max(n)$$

$$\begin{split} X\left(n\Delta_{t}, m\Delta_{f}\right) &= X\left((n-1)\Delta_{t}, m\Delta_{f}\right) - x\left((n-Q-1)\Delta_{t}\right)e^{-j2\pi(n-Q-1)m/N}\Delta_{t} \\ &\qquad + x\left((n+Q)\Delta_{t}\right)e^{-j2\pi(n+Q)m/N}\Delta_{t} \end{split}$$

IV-D Method 4: Chirp Z Transform

$$\exp(-j2\pi \ pm\Delta_t \Delta_f) = \exp(-j\pi \ p^2 \Delta_t \Delta_f) \exp(j\pi (p-m)^2 \Delta_t \Delta_f) \exp(-j\pi m^2 \Delta_t \Delta_f)$$

For the STFT

$$X\left(n\Delta_{t}, m\Delta_{f}\right) = \Delta_{t} \sum_{p=n-Q}^{n+Q} w\left((n-p)\Delta_{t}\right) x\left(p\Delta_{t}\right) e^{-j2\pi pm\Delta_{t}\Delta_{f}} \Delta_{t}$$

$$X\left(n\Delta_{t}, m\Delta_{f}\right) = \Delta_{t}e^{-j\pi m^{2}\Delta_{t}\Delta_{f}} \sum_{p=n-Q}^{n+Q} w\left((n-p)\Delta_{t}\right)x\left(p\Delta_{t}\right)e^{-j\pi p^{2}\Delta_{t}\Delta_{f}}e^{j\pi(p-m)^{2}\Delta_{t}\Delta_{f}}$$

Step 1 multiplication

Step 2 convolution

Step 3 multiplication

Step 1
$$x_1[p] = w((n-p)\Delta_t)x(p\Delta_t)e^{-j\pi p^2\Delta_t\Delta_f}$$

$$n$$
- $Q \le p \le n$ + Q

Step 2
$$X_2[n,m] = \sum_{p=n-Q}^{n+Q} x_1[p]c[m-p]$$
 $c[m] = e^{j\pi m^2 \Delta_t \Delta_f}$

Step 3
$$X(n\Delta_t, m\Delta_f) = \Delta_t e^{-j \pi m^2 \Delta_t \Delta_f} X_2[n, m]$$

Step 2 在計算上,需要用到 linear convolution 的技巧

Question: Step 2 要用多少點的 DFT?

• Illustration for the Question on Page 104

$$y[n] = \sum_{k} x[n-k]h[k]$$

• Case 1

When length(x[n]) = N, length(h[n]) = K, N and K are finite, length(y[n]) = N+K-1,

Using the (N+K-1)-point DFTs (學信號處理的人一定要知道的常識)

• Case 2

x[n] has finite length but h[n] has infinite length ????

$$y[n] = \sum_{k} x[n-k]h[k]$$

• Case 2

x[n] has finite length but h[n] has infinite length

$$x[n]$$
 的範圍為 $n \in [n_1, n_2]$,範圍大小為 $N = n_2 - n_1 + 1$

h[n] 無限長

$$y[n] = \sum_{k} x[n-k]h[k]$$
 $y[n]$ 每一點都有值(範圍無限大)

但我們只想求出 y[n] 的其中一段

希望算出的y[n]的範圍為 $n \in [m_1, m_2]$,範圍大小為 $M = m_2 - m_1 + 1$

h[n] 的範圍?

要用多少點的 FFT?

$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[n-k]h[k]$$

改寫成 $y[n] = x[n] * h[n] = \sum_{s=n_1}^{n_2} x[s]h[n-s]$
 $y[n] = x[n_1]h[n-n_1] + x[n_1+1]h[n-n_1-1] + x[n_1+2]h[n-n_1-2]$
 $+\cdots + x[n_2]h[n-n_2]$
當 $n = m_1$
 $y[m_1] = x[n_1]h[m_1-n_1] + x[n_1+1]h[m_1-n_1-1] + x[n_1+2]h[m_1-n_1-2]$
 $+\cdots + x[n_2]h[m_1-n_2]$
當 $n = m_2$
 $y[m_2] = x[n_1]h[m_2-n_1] + x[n_1+1]h[m_2-n_1-1] + x[n_1+2]h[m_2-n_1-2]$
 $+\cdots + x[n_2]h[m_2-n_2]$

所以,有用到的h[k]的範圍是 $k \in [m_1 - n_2, m_2 - n_1]$

範圍大小為
$$m_2 - n_1 - m_1 + n_2 + 1 = N + M - 1$$

FFT implementation for Case 2

$$x_1[n] = x[n+n_1]$$
 for $n = 0, 1, 2, ..., N-1$
 $x_1[n] = 0$ for $n = N, N+1, N+2, ..., L-1$ $L = N+M-1$
 $h_1[n] = h[n+m_1-n_2]$ for $n = 0, 1, 2, ..., L-1$
 $y_1[n] = IFFT_L \left(FFT_L \left\{x_1[n]\right\}FFT_L \left\{h_1[n]\right\}\right)$
 $y[n] = y_1[n-m_1+N-1]$ for $n = m_1, m_1+1, m_1+2, ..., m_2$

IV-E Unbalanced Sampling for STFT and WDF

將 pages 95 and 99 的方法作修正

$$X(t,f) = \int_{-\infty}^{\infty} w(t-\tau)x(\tau)e^{-j2\pi f \tau} d\tau$$

$$X(n\Delta_t, m\Delta_f) = \sum_{p=nS-Q}^{nS+Q} w((nS-p)\Delta_\tau)x(p\Delta_\tau)e^{-j2\pi pm\Delta_\tau \Delta_f} \Delta_\tau$$

where
$$t = n\Delta_t$$
, $f = m\Delta_f$, $\tau = p\Delta_\tau$, $B = Q\Delta_\tau$ (假設 $w(t) \cong 0$ for $|t| > B$), $S = \Delta_t/\Delta_\tau$ $\Delta_t \neq \Delta_\tau$

註: Δ_{τ} (sampling interval for the input signal)

 Δ_t (sampling interval for the output *t*-axis) can be different.

However, it is better that $S = \Delta / \Delta_{\tau}$ is an integer.

When
$$(1)$$
 $\Delta_t \Delta_f = 1/N$, (2) $N = 1/(\Delta_t \Delta_f) > 2Q + 1$: $(\Delta_t \Delta_f)$ 只要是整數的倒數即可)

(3) $\Delta_{\tau} < 1/2\Omega$, Ω is the bandwidth of $w(\tau - t)x(\tau)$

i.e.,
$$|FT\{w(\tau-t)x(\tau)\}| = |X(t,f)| \approx 0$$
 when $|f| > \Omega$

$$X\left(n\Delta_{t}, m\Delta_{f}\right) = \sum_{p=nS-Q}^{nS+Q} w\left((nS-p)\Delta_{\tau}\right) x\left(p\Delta_{\tau}\right) e^{-j\frac{2\pi pm}{N}} \Delta_{\tau}$$

$$X\left(n\Delta_{t}, m\Delta_{f}\right) = \Delta_{\tau}e^{j\frac{2\pi(Q-nS)m}{N}} \sum_{q=0}^{N-1} w\left((Q-q)\Delta_{\tau}\right) x_{1}(q)e^{-j\frac{2\pi qm}{N}}$$

假設
$$t = c_0 \Delta_t$$
, $(c_0+1) \Delta_t$, $(c_0+2) \Delta_t$, ……, $(c_0+C-1) \Delta_t$
 $= c_0 S \Delta_\tau$, $(c_0 S+S) \Delta_\tau$, $(c_0 S+2S) \Delta_\tau$, ……, $[c_0 S+(C-1)S] \Delta_\tau$,
 $f = m_0 \Delta_f$, $(m_0+1) \Delta_f$, $(m_0+2) \Delta_f$, ……, $(m_0+F-1) \Delta_f$
 $\tau = n_0 \Delta_\tau$, $(n_0+1) \Delta_\tau$, $(n_0+2) \Delta_\tau$, ……, $(n_0+T-1) \Delta_\tau$, $S = \Delta_t / \Delta_\tau$

$$\tau = n_0 \Delta_{\tau}, (n_0+1) \Delta_{\tau}, (n_0+2) \Delta_{\tau}, \dots, (n_0+T-1) \Delta_{\tau}, \qquad S = \Delta_{t}/\Delta_{\tau}$$

Step 1: Calculate c_0 , m_0 , n_0 , C, F, T, N, Q

Step 2: $n = c_0$

Step 3: Determine $x_1(q)$

Step 4: $X_1(m) = \text{FFT}[x_1(q)w((Q-q)\Delta_{\tau})]$

Step 5: Convert $X_1(m)$ into $X(n\Delta_t, m\Delta_f)$

Step 6: Set n = n+1 and return to Step 3 until $n = c_0 + C - 1$.

Complexity = ?

IV-F Non-Uniform Δ_t

- (A) 先用較大的 Δ_t
- (B) 如果發現 $\left| X\left(n\Delta_{t}, m\Delta_{f} \right) \right|$ 和 $\left| X\left((n+1)\Delta_{t}, m\Delta_{f} \right) \right|$ 之間有很大的差異 則在 $n\Delta_{t}$, $(n+1)\Delta_{t}$ 之間選用較小的 sampling interval Δ_{t1} $\left(\Delta_{\tau} < \Delta_{t1} < \Delta_{t}, \quad \Delta_{t} / \Delta_{t1} \right)$ 哲為整數) 再用 page 112 的方法算出 $X\left(n\Delta_{t} + \Delta_{t1}, m\Delta_{f} \right), \quad X\left(n\Delta_{t} + 2\Delta_{t1}, m\Delta_{f} \right), \quad \cdots, \quad X\left((n+1)\Delta_{t} - \Delta_{t1}, m\Delta_{f} \right)$
- (C) 以此類推,如果 $|X(n\Delta_t + k\Delta_{t1}, m\Delta_f)|$, $|X((n+1)\Delta_t + (k+1)\Delta_{t1}, m\Delta_f)|$ 的差距還是太大,則再選用更小的 sampling interval Δ_{t2} ($\Delta \tau < \Delta t_2 < \Delta t_1$, $\Delta t_1/\Delta t_2$ 和 $\Delta t_2/\Delta \tau$ 皆為整數)

Gabor transform of a music signal

 Δ_{τ} = 1/44100 (總共有 44100 × 1.6077 sec + 1 = 70902 點

- (A) Choose $\Delta_t = \Delta_\tau$ running time = out of memory
- (B) Choose $\Delta_t = 0.01 = 441\Delta_\tau \ (1.6/0.01 + 1 = 161 \text{ points})$ running time = 1.0940 sec (2008年)
- (C) Choose the sampling points on the *t*-axis as

$$t = 0, 0.05, 0.1, 0.15, 0.2, 0.4, 0.45, 046, 0.47, 0.48, 0.49, 0.5, 0.55, 0.6, 0.8, 0.85, 0.9, 0.95, 0.96, 0.97, 0.98, 0.99, 1, 1.05, 1.1, 1.15, 1.2, 1.4, 1.6$$

(29 points)

running time = 0.2970 sec

附錄四 和 Dirac Delta Function 相關的常用公式

$$(1) \quad \int_{-\infty}^{\infty} e^{-j2\pi t f} dt = \delta(f)$$

(2)
$$\delta(t) = |a| \delta(at)$$
 (scaling property)

(3)
$$\int_{-\infty}^{\infty} e^{-j2\pi t g(f)} dt = \sum_{n} |g'(f_n)|^{-1} \delta(f - f_n)$$
 where f_n are the zeros of $g(f)$

(4)
$$\int_{-\infty}^{\infty} \delta(t - t_0) y(t, \dots) dt = y(t_0, \dots)$$
 (sifting property I)

(5)
$$\delta(t-t_0)y(t,\dots) = \delta(t-t_0)y(t_0,\dots)$$
 (sifting property II)