Тема 1. Множества, операции над множествами

- 1.1. Выполнить операции над множествами
 - 1) Пусть $A=\{a, b, c, d\}$, $B=\{c, d, e, f, g\}$. Построить множества AUB, A \cap B, A \cap B, B \cap A.
 - 2) Пусть $U=\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $A=\{1, 2, 3, 4\}$, $B=\{2, 4, 6, 8\}$, $C=\{1, 2, 3, 7\}$, $D=\{4, 7, 9, 9\}$
- 9}. Построить множества $(A \cup B \cap \overline{C}) \cap \overline{D}$, $(B \cup \overline{A}) \cap (D \cup A \cap C)$.
- 1.2. Представить на кругах Эйлера соотношения между множествами, заданные утверждениями
- 1) У всех насекомых шесть ног (A множество всех насекомых, B множество имеющих 6 ног).
- 2) У некоторых насекомых есть крылья (В множество насекомых, С -множество всех, имеющих крылья).
- 1.3. Изобразить графически отношения между множествами:

$$A \subset B$$
; $A \subset (B \cap C)$; $A = (B \cap C)$; $(B \cap C) \subset A$; $A \subset (B \cup C)$; $(B \cup C) \subset A$; $A = B \setminus C$.

- 1.4. Решить задачу. На некоторой планете X были установлены соотношения:
 - 1) Все трёхглазые животные меняют свой цвет.
 - 2) Только излучающие волны страха опасны для человека.
 - 3) Ни одно из цветопеременных животных не имеет рукокрыльев.
 - 4) Все обитатели большого каньона имеют три глаза.
 - 5) Все излучающие волны страха рукокрылые.

Опасны ли для человека обитатели большого каньона?

- 1.5. Показать, что из А⊆ В для призвольного множества С следует:
 - 1) $A \cap C \subset B$;
 - 2) $A \subseteq B \cup C$;
 - 3) $A \cap C \subset B \cap C$;
 - 4) $A \cup C \subset B \cup C$.
- 1.6. Показать, что из $A \subseteq B \cap C$ следует, что $A \subseteq B$ и $A \subseteq C$.
- 1.7. Показать, что из $A \cup C \subseteq B$ следует, что $A \subseteq B$ и $C \subseteq B$.
- 1.8. Доказать связь операций с отношением включения:

$$(A \subseteq B) \Leftrightarrow (A \cup B = B) \Leftrightarrow (A \cap B = A) \Leftrightarrow (A \cap \overline{B} = \emptyset) \Leftrightarrow (\overline{A} \cup B = U) \Leftrightarrow (\overline{B} \subseteq \overline{A})$$

- 1.9. Проверить правильность следствий. В случае, если следование не выполняется, привести соответствующие примеры:
 - 1) Из $A \cap B \subseteq C$ следует $B \subseteq C$.
 - 2) Из $A \cup B \subset C$ следует $B \subset C$.
 - 3) Из $A \cup B \subseteq D$ и $D \cup G \subseteq C$ следует $A \subseteq C$.
 - 4) Из $A \subset B$ следует $A \cup C \subset B \cap C$.
 - 5) Из $A \subseteq B$ следует $A \cap C \subseteq B \cup C$.
- 1.10. Пусть известно, что $A \cap B \subseteq \overline{C}$, $A \cup C \subseteq B$. Следует ли из этого, что $A \cap C = \emptyset$? Проверить соотношение с помощью диаграмм и эквивалентных преобразований.
- 1.11. Проверить, существуют ли множества A,B,C, такие, что выполняются соотношения: $A \cap B \neq \emptyset$, $A \cap C = \emptyset$, $(A \cup B) \setminus C = \emptyset$.
- 1.12. Доказать с помощью эквивалентных преобразований свойства разности:

- 1) $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$
- 2) $(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$
- 3) $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C) = (A \setminus B) \setminus C$
- 4) $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$
- 1.13. Показать, что разность не ассоциативна, т.е. $(A\B)\C \neq A\(B\C)$
- 1.14. Привести выражения к аддитивной форме.
 - 1) $(A \cup B) \cap (C \cup B) \cap (A \cup D) \cap (B \cup D)$
 - 2) $(A \cup C) \cap (C \cup B) \cap (A \cup D) \cap (B \cup D)$
 - 3) $(A \cup B) \cap (\overline{A} \cup \overline{B})$
 - 4) $(A \cup \overline{B}) \cap (B \cup D) \cap (A \cup C) \cap (B \cup \overline{D})$
 - 5) $(A \cup B) \cap (B \cup C)$
 - 6) $(A \cup B) \cap (\overline{A} \cup B) \cap (A \cup \overline{B})$
- 1.15. Пусть заданы пересекающиеся множества A и B. Тогда 4 части плоскости будут соответствовать элементарным пересечениям $A \cap B$, $\overline{A} \cap \overline{B}$, $\overline{A} \cap \overline{B}$, $\overline{A} \cap \overline{B}$ следующим образом:

Построить изображение трёх пересекающихся множеств и расписать получившиеся части плоскости.

- 1.16. Даны три множества A,B,C. Записать множества, содержащие все те и только те элементы, которые принадлежат:
 - 1) не менее, чем одному из этих множеств;
 - 2) не менее, чем двум из этих трёх множеств;
 - 3) всем трём множествам;
 - 4) ровно одному из этих трёх множеств;
 - 5) ровно двум из этих трёх множеств;
 - 6) не более, чем одному из этих трёх множеств;
 - 7) не более, чем двум из этих трёх множеств;
 - 8) ни одному из этих множеств.
- 1.17. Проверить правильность соотношений:
 - 1) $(A \cup C) \setminus (A \cap C) = A \cap \overline{C} \cup \overline{A} \cap C$
 - 2) $(A \cup B) \setminus C = A \cup (B \setminus C)$
 - 3) $(A \cup B) \setminus C = A \cap (B \setminus C)$
 - 4) $A \cap B \cap C = A \cap B \cap (B \cup C)$
 - 5) $A \cup B = (A \setminus (A \cap B)) \cup B$
 - 6) $A \cap B \cup A \cap C \cup B \cap C \subseteq A \cup B \cup C$
 - 7) $(A \cup B) \setminus B = A$
 - 8) $A \cap \overline{B} \cap C \subset A \cup B$
 - 9) $\overline{A \cup B} \cap C = C \cap \overline{A} \cup \overline{B} \cap C$
 - 10) $\overline{A \cup B} \cap C = C \setminus (C \cap (A \cup B))$
 - 11) $A \cap B \cup \overline{B} \cap C \cup A \cap C = A \cap B \cup \overline{B} \cap C$

- 12) $A \cup B = (A B) \cup (B A)$
- 13) $A \div (A \div B) = A$
- 14) $A \setminus B = A \div (A \cap B)$
- 15) A∸∅=A
- 1.18. Решить уравнения с множествами (определить наиболее точным образом множество X и указать, при каком соотношении параметров A, B, C... такое решение существует).
 - 1) $\begin{cases} A \cup X = B \\ A = X = B \end{cases}$
 - ¹) (A∩X=B
 - $2) \quad \begin{cases} A \cup X = B \\ A \cap X = C \end{cases}$
 - $A \cup X = B$
 - (A)X=B
 - 4) $\begin{cases} A \cup X = B \cap X \\ A \cap X = C \cup X \end{cases}$
 - (A)X = C
 - $(C\setminus X=A)$
 - 6) $\begin{cases} A \setminus X = B \\ X \setminus A = C \end{cases}$
 - 7) $\begin{cases} A \setminus X = B \\ Y \setminus P = G \end{cases}$
 - (X) (X) (X)
 - 8) $\begin{cases} A \setminus X = X \setminus B \\ Y \setminus A = C \setminus Y \end{cases}$
 - $(X \setminus A = C \setminus X)$ $(A \cup X = D \cap X)$
 - 9) $\begin{cases} AOX = D \cap X \\ A \cap X = C \end{cases}$
 - 10) $\begin{cases} A \cap X = B \setminus X \\ C \cup X = X \setminus A \end{cases}$
 - 11) $\begin{cases} A \cup X = B \setminus X \\ C \cup X = X \setminus A \end{cases}$

Тема 2. Совершенные формы

Здесь и далее обозначение пересечения опускается, АВ означает А∩В.

- 2.1. Привести к совершенной аддитивной нормальной форме представления множеств:
 - 1) $(A \cup B) \setminus AC$;
 - 2) $(A \cup B) \cap (\overline{A} \cup \overline{B});$
 - 3) $A\overline{B}C\cup\overline{A}B$;
 - 4) $AB \cup \overline{A}BC$;
 - 5) AB $\overline{C} \cup BC$;
 - 6) $A \overline{C} \cup \overline{A} \overline{B}C$;
 - 7) $AB\overline{C}\cup\overline{A}\overline{C}D\cup BD$;
 - 8) $AB\overline{C} \cup \overline{A} \overline{C} D \cup \overline{B} D$;
 - 9) $(AB \cup BC \cup AC) \setminus ABC$.
- 2.2. Привести выражения задачи 2.1 к совершенной мультипликативной форме.

- 2.3. Развалины старинного замка труднодоступны для фотографирования. Нас предупредили, что замок не виден оттуда, откуда видны тесно растущая группа деревьев и современная гостиница, расположенная недалеко от замка, а так же оттуда, откуда видны деревья и разрушенные ворота укрепления рядом с замком. Мы сами установили, что если не видны ни деревья, ни гостиница, то не видны ворота укрепления, а сам замок закрыт холмом. Пусть нет другой информации. Сколько существует видов фотографий замка? Можно ли сфотографировать замок с воротами? (Считаем отдельным видом фотографии с различным набором упоминаемых в задаче объектов)
- 2.4. Построить покрытия двоичных таблиц:

a)

	1	2	3	4	5	6	7
a	1	1	1				
b			1	1	1		
c	1	1				1	1
d		1		1		1	1

b)

	1	2	3	4
a	1			1
b	1	1		
c		1	1	
d			1	1

c)

	1	2	3	4	5
a	1	1		1	1
b			1	1	1
c	1	1		1	
d	1		1		1

d)

	1	2	3	4	5
a	1		1		1
b	1	1		1	
c		1			1
d			1	1	

e)

	1	2	3	4	5	6	7
a	1		1				
b	1			1			
c		1	1		1		
d				1		1	
e			1		1		1
f					1		
g			1			1	1

2.5. Решить оптимизационную задачу: для фирмы переводчиков надо набрать сотрудников таким образом, чтобы мог осуществляться перевод с каждого из представленных языков и суммарная зарплата была наименьшей из возможных.

		Английский	Немецкий	Французский	Итальянский	Испанский	Греческий	3/п
a	Иванов	1		1	1			6
b	Петров		1			1		3
c	Сидоров	1		1				2
d	Васильев			1	1			3
e	Михайлов					1	1	2
f	Терентьев		1				1	5

2.6. Минимизировать сложность представления множества М в аддитивной форме и в виде скобочной структуры:

$$M = \overline{M}_1 \overline{M}_2 \overline{M}_3 \overline{M}_4 \cup \overline{M}_1 M_2 \overline{M}_3 \overline{M}_4 \cup M_1 \overline{M}_2 \overline{M}_3 \overline{M}_4 \cup \overline{M}_1 \overline{M}_2 M_3 \overline{M}_4 \cup \overline{M}_1 M_2 \overline{M}_3 M_4 \cup M_1 M_2 \overline{M}_3 \overline{M}_4 \cup M_1 \overline{M}_$$

- 2.7. Минимизировать представления множеств, заданных набором интервалов
 - 1) $\{0000, 0100, 1000, 0010, 0101, 0110, 1100, 1010, 1101, 1110\}$
 - $\{0000, 1000, 0001, 0101, 1100, 1010, 1101, 1110, 1111\}$ 2)
 - $\{0000, 0100, 1000, 0010, 0101, 0110, 1100, 1010, 1101, 1111\}$ 3)
 - $\{0001, 0011, 0101, 0111, 1010, 1011, 1110, 1111, 0010\}$ 4)
 - $\{0000, 0001, 1000, 1001, 1010, 1110, 1011, 1111\}$ 5)
- 2.8. Минимизировать не полностью определённые множества в классе нормальных форм

1)
$$M = \begin{cases} M_1 M_2 \overline{M}_3, & M_1 \overline{M}_2 M_4, \overline{M}_1 M_2 M_3 \overline{M}_4, M_1 \overline{M}_2 M_3 \overline{M}_4 \in M \\ \overline{M}_1 M_2 \overline{M}_3, \overline{M}_2 \overline{M}_3 \overline{M}_4, M_1 M_2 M_3 M_4 \notin M \end{cases}$$
2) $M = \begin{cases} M_1 M_2 M_3 \overline{M}_4, & \overline{M}_1 \overline{M}_2 M_3 M_4, \overline{M}_1 M_2 M_3 \in M \\ M_1 \overline{M}_2 M_3 M_4, & M_1 M_2 \overline{M}_3 M_4, \overline{M}_2 \overline{M}_3 M_4 \notin M \end{cases}$

$$2) \quad M = \begin{cases} M_1 \, M_2 M_3 \overline{M}_4, \ \overline{M}_1 \overline{M}_2 M_3 M_4, \overline{M}_1 M_2 M_3 \in M_1 \\ M_1 \overline{M}_2 M_3 M_4, M_1 M_2 \overline{M}_3 M_4, \overline{M}_2 \overline{M}_3 M_4 \notin M_2 \end{cases}$$

3)
$$M = \begin{cases} \overline{M}_{2}M_{3}M_{4}, M_{1}M_{2}\overline{M}_{3}M_{4}, \overline{M}_{2}\overline{M}_{3}M_{4} \in M \\ M_{1}M_{2}M_{3}\overline{M}_{4}, \overline{M}_{1}\overline{M}_{2}M_{3}M_{4}, \overline{M}_{1}M_{2}M_{3}_{1} \notin M \end{cases}$$

4)
$$M = \begin{cases} M_1 \overline{M}_2 M_3 \overline{M}_4 M_5, M_1 M_3 \overline{M}_5, M_1 \overline{M}_3 M_4, M_1 M_2 M_3 \overline{M}_4 \in M \\ \overline{M}_1 M_3 M_4, M_1 M_3 M_4 M_5, \overline{M}_1 M_2 \overline{M}_4 M_5 \notin M \end{cases}$$

4)
$$M = \begin{cases} M_{1}\overline{M}_{2}M_{3}\overline{M}_{4}M_{5}, M_{1}M_{3}\overline{M}_{5}, M_{1}\overline{M}_{3}M_{4}, M_{1}M_{2}M_{3}\overline{M}_{4} \in M \\ \overline{M}_{1}M_{3}M_{4}, M_{1}M_{3}M_{4}M_{5}, \overline{M}_{1}M_{2}\overline{M}_{4}M_{5} \notin M \end{cases}$$
5)
$$M = \begin{cases} M_{1}\overline{M}_{2}M_{3}\overline{M}_{5}, \overline{M}_{1}M_{2}M_{3}\overline{M}_{4}, M_{1}M_{2}M_{3}\overline{M}_{4}, M_{1}M_{2}M_{3}M_{4}M_{5} \in M \\ M_{1}M_{2}\overline{M}_{3}\overline{M}_{4}, \overline{M}_{1}\overline{M}_{2}M_{3}M_{5}, M_{1}\overline{M}_{2}\overline{M}_{3}\overline{M}_{4}, \overline{M}_{1}\overline{M}_{2}\overline{M}_{3}\overline{M}_{5} \notin M \end{cases}$$

6)
$$M = \begin{cases} M_{1}M_{2}\overline{M}_{3}, \overline{M}_{1}M_{2}M_{4}M_{5}, M_{1}\overline{M}_{2}M_{3}\overline{M}_{5}, M_{1}M_{2}M_{3}M_{4}M_{5} \in M \\ \overline{M}_{1}\overline{M}_{2}M_{3}M_{5}, M_{1}\overline{M}_{2}\overline{M}_{4}M_{5}, \overline{M}_{1}M_{2}\overline{M}_{3}\overline{M}_{5}, M_{1}\overline{M}_{2}\overline{M}_{3}\overline{M}_{4}\overline{M}_{5} \notin M \end{cases}$$
7)
$$M = \begin{cases} M_{1}M_{2}\overline{M}_{3}M_{4}, \overline{M}_{1}M_{2}M_{4}M_{5}, M_{1}\overline{M}_{2}M_{3}\overline{M}_{5}, M_{1}M_{2}M_{3}M_{4}M_{5} \in M \\ \overline{M}_{1}\overline{M}_{2}M_{3}M_{5}, M_{1}\overline{M}_{2}\overline{M}_{4}M_{5}, \overline{M}_{1}M_{2}\overline{M}_{3}M_{4}\overline{M}_{5}, M_{1}\overline{M}_{2}\overline{M}_{3}\overline{M}_{4}\overline{M}_{5} \notin M \end{cases}$$
8)
$$M = \begin{cases} M_{1}M_{2}M_{3}M_{4}, \overline{M}_{1}M_{2}M_{3}\overline{M}_{5}, M_{1}\overline{M}_{2}\overline{M}_{3}M_{5}, M_{1}\overline{M}_{3}\overline{M}_{4}M_{5} \in M \\ \overline{M}_{1}\overline{M}_{2}\overline{M}_{3}\overline{M}_{5}, \overline{M}_{1}\overline{M}_{2}M_{3}M_{4}, M_{1}\overline{M}_{3}M_{4}\overline{M}_{5}, M_{1}\overline{M}_{2}M_{3}\overline{M}_{5} \notin M \end{cases}$$
9)
$$M = \begin{cases} M_{1}\overline{M}_{2}\overline{M}_{3}M_{4}, M_{1}\overline{M}_{2}M_{3}M_{4}, M_{1}\overline{M}_{3}M_{4}\overline{M}_{5}, M_{1}\overline{M}_{3}M_{4}\overline{M}_{5} \in M \\ M_{1}M_{2}M_{3}\overline{M}_{4}, \overline{M}_{1}M_{2}M_{3}\overline{M}_{4}M_{5}, \overline{M}_{1}\overline{M}_{3}M_{4}\overline{M}_{5} \in M \end{cases}$$

$$7) \quad M = \begin{cases} \underline{M_1}\underline{M_2}\overline{M_3}\underline{M_4}, \underline{\overline{M_1}}\underline{M_2}\underline{M_4}\underline{M_5}, \underline{M_1}\overline{M_2}\underline{M_3}\overline{M_5}, \underline{M_1}\underline{M_2}\underline{M_3}\underline{M_4}\underline{M_5} \in M \\ \overline{M_1}\overline{M_2}\underline{M_3}\underline{M_5}, \underline{M_1}\overline{M_2}\overline{M_4}\underline{M_5}, \overline{M_1}\underline{M_2}\overline{M_3}\underline{M_4}\overline{M_5}, \underline{M_1}\overline{M_2}\overline{M_3}\overline{M_4}\overline{M_5} \notin M \end{cases}$$

8)
$$M = \begin{cases} \frac{M_1 M_2 M_3 M_4}{\overline{M}_1 \overline{M}_2 \overline{M}_3 \overline{M}_5}, M_1 \overline{M}_2 \overline{M}_3 M_5, M_1 \overline{M}_3 \overline{M}_4 M_5 \in M \\ \overline{M}_1 \overline{M}_2 \overline{M}_3 \overline{M}_5, \overline{M}_1 \overline{M}_2 M_3 M_4, M_1 \overline{M}_3 M_4 \overline{M}_5, M_1 \overline{M}_2 M_3 \overline{M}_5 \notin M \end{cases}$$

9)
$$M = \begin{cases} M_1 \overline{M}_2 \overline{M}_3 M_4, M_1 \overline{M}_2 M_3 M_4 M_5, M_1 \overline{M}_3 M_4 \overline{M}_5 \in M \\ M_1 M_2 M_3 \overline{M}_4, \overline{M}_1 M_2 M_3 \overline{M}_4 M_5, \overline{M}_1 M_2 \overline{M}_3 M_4 \notin M \end{cases}$$

Тема 3. Отношения, операции над отношениями

Декартово произведение множеств.

- 3. 1. Пусть $A = \{a,b,c\}, B = \{a,c\}, C = \{c,d\}$. Постороить $A \times B, B \times C, A \times B \times C$
- 3.2 Показать с использованием диаграмм, что для любых множеств А, В, С, D выполняется соотношение

$$(A \times B) \cap (C \times D) = (A \times D) \cap (C \times B).$$

3.3. Доказать с помощью эквивалентных преобразований, что для любых множествА, В, С выполняется соотношение:

$$(A\backslash B)\times C=(A\times C)\backslash (B\times C).$$

- 3.4. Какое отношение выполняется между объединением произведений (A×B)∪(C×D) и произведением объединений $(A \cup C) \times (D \cup B)$? В каких случаях выполняется равенство?
- 3.5. Пусть $A \neq \emptyset$, $B \neq \emptyset$, $(A \times B) \cup (B \times A) = C \times D$. Доказать, что A = B = C = D.

Формы представления отношений.

3.6. Для заданных бинарных отношений, заданных на множества A={a, b, c}, построить матричное и графовое представления. Определить δ_R , ρ_R для каждого из отношений. Построить $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 \setminus R_2$, $R_1 \setminus R_2$, $R_1 \circ R_2$, $R_1 \circ R_2$, $R_1 \circ R_2$, $\overline{R_1}$, $\overline{R_2}$.

$$R_1 = \begin{cases} a & b \\ b & c \\ c & b \\ a & c \end{cases}, \quad R_2 = \begin{cases} b & a \\ b & b \\ c & b \\ a & c \end{cases}.$$

- 3.7. Найти δ_R , ρ_R , R^{-1} , $R \circ R$, $R \circ R^{-1}$, $R^{-1} \circ R$ для отношений:
- a) $R = \{ \langle x, y \rangle | x, y \in \mathbb{N}_0, x = 3y \};$
- 6) $R = \{ \langle x,y \rangle | x,y \in \mathbb{Z}, x+y=17 \};$

- в) R={<x,y>| x,y \in N₀, x делит у нацело};
- Γ) R={ $\langle x,y \rangle | x,y \in \mathbb{R}, x+y \le 0$ };
- д) $R = \{ \langle x, y \rangle | x, y \in \mathbb{R}, 2x \ge 3y \};$
- e) $R=\{\langle x,y\rangle | x,y\in\mathbb{N}_0, x+y=0 \pmod{2}\}$ (здесь и далее mod относится к равенству, т.е, в данном случае, остаток от деления на 2 левой части равенства равен остатку от деления на 2 правой части равенства).
- ж) $R = {\langle x,y \rangle | x,y \in \mathbb{N}_0, x+y=1 \pmod{2}};$
- 3) $R = {\langle x,y \rangle | x,y \in \mathbb{N}_0, x = y + 3 \pmod{4}};$
- и) $R = \{ \langle x, y \rangle | x, y \in \mathbb{N}_0, x = y + 2 \pmod{4} \};$
- κ) R={ $\langle x,y \rangle | x,y \in \mathbb{N}_0, x = 2y \pmod{4}$ };
- 3.8. Пусть А и В конечные множества, содержащие m и n элементов соответственно.
- а) Сколько существует бинарных отношений на А×В?
- б) Сколько существует функций из А в В?
- в) Сколько существует функций из А на В?
- г) Сколько существует 1-1 функций из А в В?
- д) Сколько существует взаимнооднозначных соответствий между А и В, при каких значениях m и n?
- 3.9. Пусть $A = \{a,b,c,d\}$, $B = \{c,d,f,e\}$, $C = \{a,c,d,e,f\}$. Построить:
- а) функцию из А в В;
- б)функцию из А в С;
- в) функцию из А на В;
- г)1-1 функцию из А в С;
- д) взаимнооднозначное отображение для тех множеств, для которых возможно такое построение.

Свойства отношений.

3.10. Определить свойства отношений, заданных на множестве A={a, b, c}.

$$R_1 = \begin{cases} a & b \\ a & c \\ b & c \\ a & a \\ b & b \end{cases} \qquad R_2 = \begin{cases} a & b \\ a & a \\ b & a \\ c & b \\ b & b \end{cases}$$

- 3.11. Для каждого из отношений задач 3.6 и 3.7 построить рефлексивное замыкание, транзитивное замыкание, симметричное замыкание.
- 3.12. Построить транзитивное замыкание для следующего отношения:

$$R = \begin{cases} a & b \\ b & c \\ c & a \end{cases}$$

Определить свойства полученного отношения.

- 3.13. Построить отношения, обладающие следующими свойствами:
- 1) рефлексивное, симметричное, не транзитивное;
- 2) рефлексивное, антисимметричное, не транзитивное;
- 3) рефлексивное, не симметричное, транзитивное;
- 4) антисимметричное, транзитивное, не рефлексивное;
- 5) симметричное, транзитивное, не рефлексивное.
- 3.14. Для каких отношений R выполняется соотношение

$$R^{-1} = \bar{R}$$
?

- 3. 15. Пусть конечное множество А содержит п элементов. Сколько на этом множестве существует различных отношений? Отношений, обладающих следующими свойствами:
- 1) рефлексивных;
- 2) иррефлексивных;
- 3) симметричных и рефлексивных;
- 4) антисимметричных?
- 3.16. Определить свойства отношений, заданных в задаче 3.7.

Тема 4. Свойства отношений. Специальные бинарные отношения

- 4.1. Пусть R определено на $A \times A$. Известно, что $\delta_R = A$, $R(x,y) \& R(z,y) \Longrightarrow R(x,z)$. Определить свойства отношения.
- 4.2. Пусть R, определённое на $A \times A$, транзитивно и симметрично, $\delta_R \cup \rho_R = A$. Доказать, что R эквивалентность.

- 4.3. Пусть R рефлексивно, R(x,y)&R(z,y) \Rightarrow R(x,z). Доказать, что R эквивалентность.
- 4.4. Доказать, что R эквивалентность тогда и только тогда, когда $R \circ R^{-1} \cup i_A = R$.
- 4.5. Пусть R_1 , R_2 эквивалентности на A. Доказать, что $R_1 \cup R_2$ эквивалентность тогда и только тогда, когда $R_1 \circ R_2 = R_1 \circ R_2$.
- 4.6. Пусть ≤ и < определены на \mathbb{N}_0 обычным образом. Доказать, что <0< ≠<, ≤0<=< , ≤0≥= \mathbb{N}^2 .
- 4.7. Доказать, что отношение і_А частичный порядок на А.
- 4.8. Пусть R частичный порядок на A. Доказать, что $R^{\text{-}1}$ так же является частичным порядком на A.
- 4.9. Показать, что R предпорядок на A тогда и только тогда, когда $R \circ R \cup i_A = R$.
- 4.10. Пусть R_1 предпорядок на A. Определим <a,b> \in $R_2 \Leftrightarrow$ <a,b> \in $R_1 \& <$ b, a> \in R_1 . Доказать, что R_2 эквивалентность на A.
- 4.11. Пусть R частичный порядок на A, B⊆A. Доказать, R∩B 2 частичный порядок.
- 4.12. Пусть частичный порядок на множества $A=\{a, b, c, d, e, f, g, h, i, j, k, s\}$ задан диаграммой Хассе.

Найти для В (В⊆А) нижнюю грань, точную нижнюю грань, верхнюю грань, точную верхнюю грань, минимальный, максимальный, наибольший, наименьший элементы.

- a) $B = \{a, s, d\};$
- 6) $B = \{c, s, d\};$
- B) $B = \{b, s, d, h\};$
- Γ) B={b, c, g, h};
- д) $B = \{ b, c, g, f \};$
- e) $B = \{c, f, g\}.$

Тема 5. Алгебра высказываний.

- 5.1. Пусть а идёт дождь, b дует ветер. Записать:
- 1) идёт дождь или дует ветер,

- 2) идёт дождь и дует ветер,3) идёт дождь, но не дует ветер;4) не идёт дождь и не дует ветер;5) не идёт дождь или не дует ветер;
- 6) не дует ветер или идёт дождь;
- 7) если идёт дождь, то дует ветер;
- 8) если идёт дождь, то не дует ветер;
- 9) либо идёт дождь, либо дует ветер;
- 10) дождь идёт тогда и только тогда, когда дует ветер;
- 11) неверно, что если идёт дождь, то дует ветер;
- 12) неверно, что дождь идёт тогда и только тогда, когда не дует ветер;
- 13) если дует ветер, то идёт дождь;
- 14) неверно, что дождь идёт тогда и только тогда, когда дует ветер;
- 15) неверно, что идёт дождь или дует ветер;
- 16) неверно, что либо идёт дождь, либо дует ветер;
- 17) неверно, что идёт дождь и дует ветер;
- 18) неверно, что не идёт дождь и не дует ветер;
- 19) неверно, что не идёт дождь или не дует ветер.

Построить таблицу истинности для каждого высказывания. Найти равные (эквивалентные) высказывания.

- 5.2. Записать
- 1)а истинно тогда и только тогда, когда **b** ложно;
- 2) **a** истинно, когда **b** ложно;
- 3) а истинно только тогда, когда **b** ложно;
- 4) если а истинно, то из **b** следует **c**;
- 5) если из **a** следует **b**, то **c** истинно;
- 6) если значения истинности a и b различны, то значение истинности c совпадает со значением истинности a:
- 7) если значения истинности **a** и **b** различны, то **a** истинно;

Упростить два последних высказывания.

5.3. Обозначим \mathbf{a} — Джон умён, \mathbf{b} — Гарри глуп, \mathbf{c} — Джон выиграет состязание.

Записать высказывания:

- 1) Если Джон умён, а Гарри глуп, то Джон выиграет состязание.
- 2) Джон выиграет состязание в том и только том случае, если он умён илиГарри глуп.
- 3) Если Гарри глуп, а Джон не выиграет состязание, то Джон не умён.

Определить среди этих высказываний эквивалентные.

5.4. Определить, могут ли одновременно выполняться оба равенства, и если могут, то при каком значении переменной b.

- 1) a=1, a&b=0; 9) $a=1, a \Rightarrow b=0;$ 2) **a=1, a&b=1;** 10) a=1, $a\Rightarrow b=1$; 3) **a=0, a&b=1**; 11) a=0, $a\Rightarrow b=1$; 4) **a=0, a&b=0**; 12) $\mathbf{a} = \mathbf{0}, \mathbf{a} \Rightarrow \mathbf{b} = \mathbf{0};$ 5) a=1, $a\lor b=0$; 13) $a = 1, b \Rightarrow a = 0$: 6) **a=1, a\b=1**; 14) $a = 1, b \Rightarrow a = 1$; 7) a=0, $a\lor b=0$; 15) a = 0, $b \Rightarrow a = 0$; 8) a=0, $a\lor b=1$. 16) $a = 0, b \Rightarrow a = 1;$ 17) **a=1, a&b=b**; 21) a=1, $a\lor b=b$; 18) **a=1, a&b=a**; 22 **a=1**, **a**\b=a; 19) **a=0, a&b=b**; 23) a=0, $a\lor b=b$; 20) **a=0, a&b=a**; 24) **a=0, a>b=a.**
- 5.5. Определить значения истинности пропозициональных переменных.

1)
$$(1 \Rightarrow x) \Rightarrow y = 0$$

- 2) $x \vee y = \overline{x}$
- 5.6. По данным значениям истинности определить значения истинности высказываний.
- 1) $x \Rightarrow y=1$, $x \Leftrightarrow y=0$, $y \Rightarrow x=?$
- 2) $x \Leftrightarrow y=1$, $\overline{x} \Leftrightarrow y=?$ $y \Leftrightarrow \overline{x}=?$ $x \oplus y=?$
- 3) $x=1 \overline{x} & y \Rightarrow z=? \overline{x} \Rightarrow z \lor y=?$
- 4) $x \Rightarrow y=1$; $z \Rightarrow (x \Rightarrow y)=? \overline{x \Rightarrow y} \Rightarrow y=? (x \Rightarrow y) \Rightarrow z=?$
- 5.7. Найти эквивалентные среди высказываний:

$$a \Rightarrow b$$
; $a \& \overline{b} \Rightarrow a$, $a \& \overline{b} \Rightarrow b$, $a \& \overline{b} \Rightarrow 0$, $\overline{b} \Rightarrow \overline{a}$

5.8. На перемене 9 учеников оставалось в классе. Один из них разбил окно. На вопрос учителя, кто разбил окно, были получены следующие ответы.

Петя: Это сделал Вадик.

Боря: Это неправда.

Таня: Его разбила я.

Коля: Окно разбила либо Таня, либо Аня.

Вадик: Боря лжёт.

Юра: Окно разбила Таня.

Лёня: Таня окно не разбивала.

Аня: Ни Таня, ни я этого не делали.

Оля: Аня права, но Вадик тоже не виновен.

Если из 9 высказываний истинно ровно 3, кто из них разбил окно? Кто из школьников сказал правду?

5.9. Проверить правильность рассуждений афинянки и её сына.

Мать предупреждает честолюбивого сына, который решил стать оратором: «Если ты будешь говорить правду, тебя возненавидят богатые и знатные. Если ты будешь лгать, тебя возненавидит простой народ. Но ты должен будешь говорить правду или лгать. Следовательно, тебя возненавидят богатые и знатные, или возненавидит простой народ!»

На это сын отвечает: «Если я буду говорить правду, меня прославит простой народ. Если я буду лгать, меня прославят богатые и знатные. Но я должен буду говорить правду или лгать. Следовательно, меня прославят богатые и знатные, или меня прославит простой народ.»

Обозначения: b— возненавидят богатые и знатные, \overline{b} - прославят богатые и знатные, c — возненавидит простой народ, \overline{c} — прославит простой народ, a — говорить правду, \overline{a} — лгать.

5.10. Упростить формулы, приведя их к дизьюнктивной форме, и применив законы алгебры логики:

1)
$$\overline{\overline{x}} \vee \overline{y} \vee (x \Longrightarrow y) \& x$$

2)
$$x\&z\lor x\&\overline{z}\lor y\&z\lor \overline{x}\&y\&z$$

$$3) (x \Rightarrow y) & (y \Rightarrow z) \Rightarrow (x \Rightarrow z)$$

$$4) (x \Longrightarrow y) \& (y \Longrightarrow z) \Longrightarrow (z \Longrightarrow x)$$

- 5) $x\&y\&z\lorx\&y\&\overline{z}\lorx\&\overline{y}\&z\lorx\&\overline{y}\&\overline{z}$
- 5.11. Привести выражения к дизьюнктивной форме:
- 1) b⊕bc
- 2) $(a \oplus b) \& (\overline{c} \lor a)$
- 3) $(a\lorb)&(b\lorc)&(a\lor\overline{c})&(\overline{a}\lorc)$
- 4) $(a \Rightarrow b) & (\overline{a} \Rightarrow c)$
- 5) $((a \Rightarrow b) \Rightarrow (c \Rightarrow \overline{a})) \Rightarrow (\overline{b} \Rightarrow \overline{c})$
- $6) (a \Rightarrow (b \Rightarrow c)) \Rightarrow ((a \Rightarrow \overline{c}) \Rightarrow (a \Rightarrow \overline{b}))$
- 7) $((((a \Rightarrow b) \Rightarrow \overline{a}) \Rightarrow \overline{b}) \Rightarrow \overline{c}) \Rightarrow c$
- 5.12. Построить разложение Шеннона для следующих функций:
- 1) а&b⊕(b∨с&d) по переменной b;
- 2) а&b&с⊕(а∨b&с) по переменной а;
- 3) (а⇒b&с)⊕с&d по переменной d;
- 4) а&b \oplus (с \Rightarrow а& \overline{b}) по переменной а, по переменной **b**.
- 5.13.1) Построить совершенные формы для функций задачи 5.10(1-4).
- 2) Для формулы $x_1 \& \overline{x_2} \lor (x_1 \lor \overline{x_3}) \& (x_3 \lor \overline{x_1})$ построить совершенную дизъюнктивную форму. По ней записать совершенную конъюнктивную форму.
- 3) Для формулы $(x_1 \lor \overline{x_2}) \& x_3$ построить совершенную конъюнктивную форму. По совершенной конъюнктивной форме записать совершенную дизъюнктивную форму.
- 5.14. Записать функцию с \vee а& \overline{b} с использованием связок {&, }; { \vee , }.
- 5.15. Для функции $f(x_1, x_2, x_3) = x_1 \oplus x_2 \& \overline{x_3}$ построить таблицу истинности и суперпозиции:

 $f(x_1, x_2, x_2)$, $f(x_1, x_1, x_2)$, $f(x_1, x_2, x_1)$. Определить свойства функции $f(x_1, x_2, x_3)$.

- 5.16. Определить свойства функций:
- 1) $f(x_1, x_2, x_3) = x_1 \oplus x_2 \vee \overline{x_3}$
- 2) $f(x_1, x_2, x_3) = \overline{x_1} \& \overline{x_2} \lor (x_2 \oplus x_3)$
- 5.17. Определить свойства функций $f_9(x_1, x_2)$, $f_7(x_1, x_2)$, $f_9(x_1, x_2)$, $f_8(x_1, x_2)$, $f_5(x_1, x_2)$, $f_{14}(x_1, x_2)$, $f_{13}(x_1, x_2)$.

5.18. Построить полиномы Жегалкина для формул:

- 1)*x* ∨ *y*
- 2) $x_1 \vee \overline{x_2}$
- 3) x_1 &($x_2 \vee \overline{x_3}$)
- $4) x_1 \Rightarrow (x_2 \Rightarrow x_3)$
- 5) По полиному Жегалкина

 $1 \oplus x \oplus y \oplus z \oplus xz \oplus yz \oplus xyz$

построить аддитивную форму.

5.19. Упростить релейно-контактные схемы

a)

b)

c)

d)

e)

f)

g)

h)

$$\begin{array}{c|c}
x \\
\hline
y \\
\hline
x \\
\hline
\end{array}
\begin{array}{c|c}
x \\
\hline
z \\
\hline
\end{array}
\begin{array}{c|c}
y - x - z \\
\hline
\hline
z - \overline{y} - \overline{x} \\
\end{array}$$

i)

j)
$$-x = \begin{bmatrix} x \\ a \end{bmatrix} \begin{bmatrix} x \\ b \end{bmatrix} \cdots \begin{bmatrix} x \\ k \end{bmatrix} \bullet$$

Тема 6. Исчисление предикатов. Запись суждений в исчислении предикатов

6.1. Пусть $\Psi(x)$ означает x- чётное, $\Pi(x)$: x -простое число; Q(x,y): x=y; c₂ - константа, соответствующая числу 2, s(x) - функция x+1(число, следующее за x). Записать:

- а) существует чётное число;
- б) существует простое число;
- в) существует чётное простое число;
- г) если число чётное, то следующее за ним нечётно, и если число нечётно, то следующее за ним чётно;
- д) число чётно тогда и только тогда, когда следующее за ним нечётно;

- е) все чётные числа, кроме двойки, не простые;
- ж) если число простое и не равно 2, то оно нечётное.
- 6.2. Пусть C(x) x торговец подержанными автомобилями, H(x) x честный.

Прочитать суждения, выраженные формулами:

- a) $\exists x C(x)$;
- б) $\exists x \ H(x);$
- $B) \forall x (C(x) \Rightarrow \overline{H(x)})$
- Γ) \exists x(C(x)&H(x));
- д) $\exists x (H(x) \Rightarrow C(x)).$
- 6.3. Пусть предикат S(x,y) означает обманывать объект x во время y. Записать суждение:

Можно обманывать кого-то всё время, можно обманывать всех некоторое время, но нельзя обманывать всех всё время.

6.4. Пусть для описания базы данных используются предикаты:

Cotp(x,y) - человек $x(\Phi MO)$ занимает должность y,

Преп(х) - должность х является преподавательской,

Студент (х) - человек х (ФИО) является студентом,

Группа(х) - объект х - студенческая группа,

Учится (x,y) - человек $x(\Phi MO)$ учится в группе у,

ВедётЗанятия(x,y,z,w) - преподаватель $x(\Phi MO)$ ведёт занятия в группе y, по дисциплине z, вид занятия w.

Константы C_{np} - должность "профессор", $C_{доц}$ - должность "доцент", C_{π} - вид занятий "лекция", C_c - вид занятий "семинар".

Записать суждения:

- а) Существуют студенты.
- б) Существуют преподаватели.
- в) Существуют сотрудники, не преподаватели.
- г) Каждый студент где-нибудь учится.
- д) В каждой группе кто-нибудь учится.
- е) Студентов в группе более одного.

- ж) Студент учится ровно в одной группе.
- з) Каждый преподаватель ведёт занятия по какому-нибудь предмету (в какой-нибудь группе, какой-нибудь вид занятий).
- и) Каждый профессор читает какой-нибудь лекционный курс.
- к) Каждый доцент, читающий лекции по какой-нибудь дисцилине, ведёт семинарские занятия по этой лисциплине.
- л) Никакой профессор не ведёт семинарские занятия по предмету, который он не читает.
- 6.5. Пусть есть предикаты: Д(x,y) число x делится на y нацело; N(x) число x является натуральным; $\Pi(x)$ x число простое; Q(x,y): x=y. C_1 константа 1.

Записать суждения:

- а) Число простое, если оно делится только на себя и на 1.
- б) Если у числа есть делители, отличные от него самого и 1, то оно не простое.
- 6.6. Пусть есть предикаты: N(x) число x является натуральным; Q(x,y): x=y; S(x,y,z): x+y=z; P(x,y,z): x>y=z, G(x,y): x>y.
- а) Описать числа 0, 1, 2 (записать формулы со свободной переменной x, истинные тогда и только тогда, когда x равен данному числу).
- б) Описать число чётное, нечётное(формула со свободной переменной х, истинная тогда и только тогда, когда выполняется условие).
- в) Описать: z является наименьшим общим кратным чисел x и y.
- г) х является простым числом.
- д) z является наибольшим общим делителем чисел х и у.
- 6.7. Геометрия. Даны предикаты Т(х): х точка;

 $\Pi p(x)$: x - прямая;

 Π л(х): х - плоскость;

Прин(x,y): $x \in y$ (элемент принадлежит множеству, например, точка прямой или плоскости);

Q(x,y): x=y.

Записать суждения:

- а) Через любую точку можно провести прямую.
- б) На любой прямой есть точка.
- в) На прямой более, чем одна точка.

- г) Через любые две (различные) точки можно провести прямую и притом только одну.
- д) Через любые две прямые можно провести не более одной плоскости.
- е) Через любые три точки можно провести не более одной прямой.
- ж) Через три точки, не лежащие на одной прямой, можно провести ровно 1 плоскость.
- и) Если прямая принадлежит плоскости, то любая точка прямой принадлежит плоскости.
- к)Любые две (различные) прямые имеют не более одной общей точки.
- л) Прямая х параллельна прямой у.
- 6.8. Записать суждение:

Если всякий разумный филосов - циник, и только женщины являются разумными философами, то тогда, если существуют разумные философы, некоторые из женщин циники.

Использовать предикаты: $P\phi(x)$: x является разумным философом; U(x): x является циником; W(x): x - женщина.

Тема 7. Интерпретации формул. Модели

7.1. Для формулы построить интерпретацию, в которой формула истинна (ложна):

$$\exists x (P(x) \Rightarrow Q(x)) \& \exists y P(y) \Rightarrow \exists z Q(z)$$

7.2. Для интерпретации с областью $D=\{a,b\}$ и значениями предиката P(x,y), заданными таблицей, определить значения истинности формул:

X	y	P(x,y)
a	a	1
a	b	0
b	a	1
b	b	1

- a) $\exists x \exists y P(x,y)$;
- b) $\exists x \forall y P(x,y)$;
- c) $\forall x \forall y P(x,y)$;
- d) $\forall y P(x,y)$;
- e) $\exists y \ P(x,y);$
- f) $\forall x P(x,x)$;
- g) $\forall x \forall y (P(x,y) \Rightarrow P(y,x));$
- h) $\forall x \forall y (P(x,y) \Rightarrow P(x,x))$.
- 7.3. Найти интерпретации, для которых одновременно выполняются условия:
 - а) $\forall x P(x,x) U, \exists x \forall y P(x,y) Л;$
 - b) $\forall y \exists x P(x,y) H, \exists x P(x,x) \Pi$;

- c) \forall x \exists y P(x,y) И, \forall x P(x,x)- Л;
- d) $\forall y \exists x P(x,y) И, \exists x \forall y P(x,y) Л;$
- e) $\exists x \ P(x,x)$ \mathcal{U} ; $\forall x \exists y \ P(x,y)$ \mathcal{J} ;
- f) $\forall x \exists y P(x,y) И$, $\exists y \forall x P(x,y) Л$;
- g) $\forall x P(x,x)$ \mathcal{U} , $\forall y \forall x P(x,y)$ \mathcal{I} ;
- h) $\forall x P(x,x)$ И, $\forall y \exists x P(x,y)$ Л.
- 7.4. Для интерпретации с областью $D=\{1,2\}$ и значениями функции f(x) и предиката P(x,y), заданными таблицами, определить значения истинности формул:

X	f(x)		X	y	P(x,y)
1	2	_	1	1 2 1 2	1
2	1		1	2	0
	•		2	1	1
			2	2	1

- a) $\forall x \exists y P(x,y)$;
- b) $\forall y \ \forall x \ (P(x,y) \lor P(f(y),x));$
- c) $\exists x \forall y (P(x,y) \lor P(y,x));$
- d) $\forall x \ \forall y \ (P(x,y) \Rightarrow P(f(x),f(y));$
- e) $\exists x \ \forall y \ (P(x,y) \Rightarrow P(f(x),f(y));$
- f) $\exists x \ \forall y \ (P(x,y) \Rightarrow P(f(y),f(x));$
- g) $\forall x P(x,f(x));$
- h) $\exists x P(x,f(x));$
- i) $\forall x \exists y (P(x,y) \lor P(f(y),f(x)).$
- 7.5. В парке растут дубы и сосны. Какие из следующих утверждений могут быть истинными?
 - а) Каждый дуб ниже какой-то сосны, и каждая сосна ниже любого дуба.
 - b) Каждый дуб ниже какой-то сосны, и какая-то сосна ниже любого дуба.
 - с) Какой-то дуб ниже какой-то сосны, и любая сосна ниже любого дуба.
 - d) Какой-то дуб ниже любой сосны, и какая-то сосна ниже любого дуба.
 - е) Какой-то дуб ниже какой-то сосны, и каждая сосна ниже какого-то дуба.
- 7.6. Проверить общезначимость формул методом семантических таблиц. В случае необщезначимости формулы привести интерпретацию, в которой формула ложна.
 - a) $\forall x (P(x) \Rightarrow Q(x)) \Rightarrow (\forall y P(y) \Rightarrow \forall z Q(z))$
 - b) $\forall x (P(x) \Rightarrow Q(x)) \Rightarrow (\exists y P(y) \Rightarrow \exists z Q(z))$
 - c) $(\exists x P(x) \Rightarrow \exists y Q(y)) \Rightarrow \forall z (P(z) \Rightarrow Q(z))$
 - d) $(\exists x \ P(x) \Rightarrow \forall y \ Q(y)) \Rightarrow \forall z (P(z) \Rightarrow Q(z))$
 - e) $\exists x (P(x) \Rightarrow Q(x)) \Leftrightarrow (\forall y P(y) \Rightarrow \exists y Q(y))$
 - f) $\forall x (P(x) \Rightarrow Q(x)) \Rightarrow (\exists y P(y) \Rightarrow \forall z Q(z))$
 - g) $\forall x (P(x) \Leftrightarrow Q(x)) \Rightarrow (\exists y P(y) \Leftrightarrow \exists z Q(z))$
 - h) $\forall x(P(x) \& Q(x)) \Leftrightarrow \forall yP(y) \& \forall zQ(z)$
 - i) $\exists x (P(x) \lor Q(x)) \Leftrightarrow \exists y P(y) \lor \exists z Q(z)$

- j) $\forall x P(x) \lor \forall y Q(y) \Rightarrow \forall z (P(z) \lor Q(z))$
- k) $\forall x (P(x) \lor Q(x)) \Rightarrow \forall y P(y) \lor \forall z Q(z)$
- 1) $\exists x \ P(x) \& \forall y \ Q(y) \Rightarrow \exists z \ (P(z) \& \ Q(z))$
- m) $\exists x \ P(x) \& \exists y \ Q(y) \Rightarrow \exists z \ (P(z) \& \ Q(z))$
- n) $\forall x P(x) \lor \exists y Q(y) \Longrightarrow \forall z (P(z) \lor Q(z))$
- o) $\forall x (P(x) \& M(x)) \& \exists y (M(y) \Rightarrow Q(y)) \Rightarrow \exists z (P(z) \& Q(z))$
- p) $\exists x (P(x) \& M(x)) \& \exists y (M(y) \& \overline{S}(y)) \Rightarrow \exists z (P(z) \& \overline{S}(z))$
- q) $\forall x (P(x) \Rightarrow \overline{M}(x)) \& \exists y (S(y) \& M(y)) \Rightarrow \exists z (S(z) \& \overline{P}(z))$
- r) $\forall x (P(x) \Leftrightarrow Q(x)) \& \exists y P(y) \Rightarrow \exists z \ Q(z))$
- s) $\exists x \forall y P(x,y) \Rightarrow \forall y \exists x P(x,y)$
- t) $\forall y \exists x P(x,y) \Rightarrow \exists x \forall y P(x,y)$

7.6. Доказать общезначимость формул разбором случаев

- a) $\forall x (P(x) \Rightarrow Q(x)) \Rightarrow (\forall y P(y) \Rightarrow \forall z Q(z))$
- b) $\forall x(P(x) \Rightarrow Q(x)) \Rightarrow (\exists y P(y) \Rightarrow \exists z \ Q(z))$
- c) $(\exists x \ P(x) \Rightarrow \forall y \ Q(y)) \Rightarrow \forall z (P(z) \Rightarrow Q(z))$
- d) $\exists x (P(x) \Rightarrow Q(x)) \Leftrightarrow (\forall y P(y) \Rightarrow \exists z Q(z))$
- e) $\forall x (P \Rightarrow Q(x)) \Leftrightarrow (P \Rightarrow \forall y Q(y))$
- f) $\forall x (P(x) \Rightarrow Q) \Leftrightarrow (\exists y P(y) \Rightarrow Q)$
- g) $\exists x (P \Rightarrow Q(x)) \Leftrightarrow (P \Rightarrow \exists y Q(y))$
- h) $\exists x (P(x) \Rightarrow Q) \Leftrightarrow (\forall y P(y) \Rightarrow Q)$
- i) $\forall x(P(x) \& Q(x)) \Leftrightarrow \forall yP(y) \& \forall zQ(z)$
- $j) \quad \exists x \; (P(x) \lor Q(x)) \; \Longleftrightarrow \exists y \; P(y) \lor \exists z \; Q(z)$
- k) $\forall x P(x) \lor \forall y Q(y) \Rightarrow \forall z (P(z) \lor Q(z))$
- 1) $\exists x (P(x) \& Q(x)) \Rightarrow \exists y P(y) \& \exists z Q(z)$
- m) $\forall x (P(x) \lor Q(x)) \Rightarrow \forall y P(y) \lor \exists z Q(z)$
- n) $\exists x \ P(x) \& \forall y \ Q(y) \Rightarrow \exists z \ (P(z) \& \ Q(z))$
- o) $\forall x (P \& Q(x)) \Leftrightarrow P \& \forall y Q(y)$
- p) $\forall x (P \lor Q(x)) \Leftrightarrow P \lor \forall y Q(y)$
- q) $\exists x (P \& Q(x)) \Leftrightarrow P \& \exists y Q(y)$
- r) $\exists x (P \lor Q(x)) \Leftrightarrow P \lor \exists y Q(y)$

7.7. Привести формулы к предварённой нормальной форме

- a) $\forall x(P(x) \Rightarrow Q(x,y) \& \exists z S(x,z)) \Rightarrow (\forall x \exists z Q(x,z) \Rightarrow \forall w P(w))$
- b) $\forall x P(x) \& \forall y Q(y) \Rightarrow \forall z (\exists y S(z,y) \Rightarrow P(z))$
- c) $\forall x (P(x) \& \exists y (S(y,x) \Rightarrow \forall w S(w,y)) \Rightarrow \exists u Q(u)))$
- d) $\forall x P(x) \Rightarrow (\exists y Q(y) \Rightarrow \forall w S(w))) \Rightarrow \exists t (S(t) \& P(t))$
- e) $\forall x(\exists z \ Q(x,z) \Leftrightarrow \exists y S(x,y)) \Rightarrow \exists \ w P(w))$
- f) $\forall x (P(x) \Leftrightarrow \forall y Q(x,y) \& \exists z S(x,z)) \Rightarrow (\forall x \exists z Q(x,z) \Rightarrow \forall w P(w))$
- g) $\forall x (\forall y Q(x,y) \lor P(x) \Rightarrow \exists z S(x,z)) \Rightarrow (\forall x \exists z Q(x,z) \Leftrightarrow \forall w P(w))$
- h) $\forall x (P(x) \& \forall y Q(x,y) \Rightarrow \exists z S(x,z)) \Leftrightarrow (\forall x \exists z Q(x,z) \Rightarrow \forall w P(w))$