Bounding Treatment Effects in Experimental Studies with Non-Compliance

Orville Mondal

November, 2022

Randomized Trials and Identifying the Impact of Treatment

- Suppose we want to understand if a treatment or intervention is actually helpful.
 - Does a job training program help people improve their employment outcomes?
- Randomized trials are a popular method to evaluate the impact of any such treatment.
 - Randomly assign participants of study to treatment or control arm.
 - Suppose all participants comply with their assigned treatment arm.
 - Compare outcomes in treatment arm to those of agents in control arm.
- In many randomized trials non-compliance with assigned treatment is common.

	Trained	Not Trained	Total
Assigned to Treatment	4804	2683	7487
Assigned to Control	54	3663	3717
Total	4868	6346	11204

Table 1: Non-compliance in the JTPA Study.

The Problem of Non-Compliance

- What are the consequences of non-compliance?
- Suppose we compare outcomes in treatment arm to those in control arm.
 - ⇒ Measure impact of an offer of training, not training itself.
- Suppose we compare those who accept training to those who did not.
 - ⇒ Biased results since complying agents are self selecting into treatment.
- Some agents can be encouraged to accept treatment by extending an offer.
 - ⇒ Proportion of agents who accept offer of treatment can be identified.
 - ⇒ Impact of actual treatment received for this sub-group can be identified.
- Can't identify impact of actual treatment received on full population of agents.

Understanding Non-Compliance

- We don't know why only some agents assigned to treatment actually accept.
- Some trials have additional information which might help understand this behavior.

	Reason	% of respondents
ſ	Took Job	18
treatment not beneficial?	Changed Mind	7
	Needed Job	4
(Transport Problem	3
unexpected shock	Health Problem	2
(

Table 2: Reasons for non-compliance recorded in JTPA Study.

This information can be used to understand non-compliance.

Using Follow up Surveys to Bound Treatment Effects

- I use reasons for non-compliance to bound the impact of treatment received.
 - ⇒ This information is often present but never used when analyzing treatment effects
 - ⇒ JTPA Study a very popular dataset collected this information.
- First define a model which rationalizes non-compliance.
 - ⇒ Quantifies qualitative information in reasons for non-compliance.
 - ⇒ Will require assumptions on agent beliefs about treatment efficacy.
- · Then use model to define set of treatment effects consistent with observed data.
 - ⇒ Treatment effect will be partially identified.

Importance of Following Up with Non-Compliers

- Model implied bounds will be much tighter than bounds without reasons information.
 - * Following up with non-compliers is important!

Outcome	Worst Case Bounds	Model Bounds	Improvement
Found job post treatment	[-0.25 , 0.10]	[-0.03 , 0.09]	66%
Months Employed post treatment	[-4.81 , 5.71]	[-0.48 , 5.11]	47%
Earnings post treatment (in '000s)	[-3.58 , 24.47]	[0.09 , 21.16]	25%

Table 3: Estimated identified sets for treatment effects of JTPA for different outcomes.

Setup I

• There are two potential outcomes taking on values in {0, 1}.

$$\mbox{Potential Outcomes:} \left\{ \begin{array}{cc} Y_i(0) & \mbox{if not treated,} \\ Y_i(1) & \mbox{if treated.} \end{array} \right.$$

• I am interested in the average treatment effect:

$$\mathsf{ATE} = \mathbb{E}[Y_i(1) - Y_i(0)].$$

- D_i denotes if agent i received treatment $\Rightarrow Y_i = D_i \cdot Y_i(1) + (1 D_i) \cdot Y_i(0)$.
- Z_i denotes if agent was assigned to treatment.

Setup II - Non-Compliance Again

- Assignment is independent of potential outcomes i.e. $Z_i \perp (Y_i(1), Y_i(0))$.
- Non-assigned cannot receive treatment i.e. $Z_i = 0 \Rightarrow D_i = 0$.
- There is non-compliance i.e. not everyone assigned to treatment accepted the offer:

$$0 < \mathbb{P}(D_i = 1 \mid Z_i = 1) < 1.$$

The Problem of Non-Compliance

$$\underbrace{\mathbb{E}[Y_i \mid Z_i = 1] - \mathbb{E}[Y_i \mid Z_i = 0]}_{\text{Intention to Treat Effect } (\theta^{ITT})} = \mathbb{E}[Y_i(1) - Y_i(0) \mid D_i = 1, Z_i = 1] \cdot \underbrace{\mathbb{P}(D_i = 1 \mid Z_i = 1)}_{\text{No problem if compliance perfect.}}$$

Why? Treatment effect for non-compliers is zero.

Partially Identified Treatment Effects

• If there is non-compliance, part of ATE is unobserved in data:

$$ATE = \theta^{ITT} + \mathbb{P}(D_i = 0 \mid Z_i = 1) \cdot \mathbb{E}[Y_i(1) - Y_i(0) \mid D_i = 0, Z_i = 1]$$

· Recall outcomes are binary so it must be:

$$\underbrace{\theta^{ITT} - \mathbb{P}(D_i = 0 \mid Z_i = 1)}_{\textit{identified}} \leqslant \mathsf{ATE} \leqslant \underbrace{\theta^{ITT} + \mathbb{P}(D_i = 0 \mid Z_i = 1)}_{\textit{identified}}$$

- · Can we do better? Yes.
 - ★ Following up with non-compliers ⇒ narrower identified set.

A Compliance Model

- When assigned to treatment agent does the following:
 - * Form expectation of treatment effect:

$$\theta_i^e = \mathbb{E}[Y_i(1) - Y_i(0) \mid \mathcal{I}_i]$$

- * Observe cost of accepting treatment: C_i.
 - Not related to treatment but may discourage/encourage acceptance of offer.
- Agent accepts offer of treatment if net benefit is non-negative.

$$D_i = \mathbb{1}\left\{\theta_i^e - C_i \geqslant 0\right\}$$

A Compliance Model - Reasons for Non-Compliance

Suppose for those who do not accept treatment we see a binary variable R_i such that:

$$R_i = \begin{cases} 1 \Rightarrow \text{ Did not think treatment would help.} \\ 0 \Rightarrow \text{ Would have accepted if not for unrelated cost shock.} \end{cases}$$

OR

$$R_{i} = \begin{cases} 1 \Rightarrow \theta_{i}^{e} < 0, & \theta_{i}^{e} < C_{i}. \\ 0 \Rightarrow \theta_{i}^{e} \ge 0, & \theta_{i}^{e} < C_{i}. \end{cases}$$

reasons in JTPA

- Agents know θ_i^e AND C_i when assigned to treatment/control.
 - * I'm assuming R_i correctly tells me the sign of θ_i^e .

How Does this Help?

• How does agent's treatment effect relate to θ_i^e ?

$$\theta_i \equiv Y_i(1) - Y_i(0) = \underbrace{\mathbb{E}[Y_i(1) - Y_i(0) \mid \mathcal{I}_i]}_{\theta_i^e} + \underbrace{\nu_i}_{\mathbb{E}[\nu_i \mid \mathcal{I}_i] = 0}$$

· Consider agents who "changed their mind" after being assigned to treatment.

$$\begin{split} \mathbb{E}[\theta_i \mid R_i = 1, D_i = 0, Z_i = 1] &= \mathbb{E}[\theta_i^e + \nu_i \mid R_i = 1, D_i = 0, Z_i = 1] \\ &= \mathbb{E}[\theta_i^e + \nu_i \mid \underbrace{\theta_i^e < 0}_{\text{defn. of } R_i}, \underbrace{\theta_i^e < C_i}_{D_i = 0}] \\ &= \mathbb{E}[\theta_i^e \mid \theta_i^e < 0, \theta_i^e < C_i] < 0. \end{split}$$

How Does this Help? II

• For non-compliers the following is true:

$$\begin{split} \mathbb{E}[\theta_{i} \mid D_{i} = 0, Z_{i} = 1] &= \mathbb{P}(R_{i} = 1, D_{i} = 0 \mid Z_{i} = 1) \cdot \underbrace{\mathbb{E}[\theta_{i} \mid R_{i} = 1, D_{i} = 0, Z_{i} = 1]}_{<0} \\ &+ \mathbb{P}(R_{i} = 0, D_{i} = 0 \mid Z_{i} = 1) \cdot \underbrace{\mathbb{E}[\theta_{i} \mid R_{i} = 0, D_{i} = 0, Z_{i} = 1]}_{\geq 0} \end{split}$$

What is lowest value for average treatment effect for non-compliers?

With model +
$$R_i$$
 variable : $-\mathbb{P}(R_i = 1, D_i = 0 \mid Z_i = 1)$

Without R_i variable : $-\mathbb{P}(D_i = 0 \mid Z_i = 1)$
 \Rightarrow Gain from R_i : $\mathbb{P}(R_i = 0, D_i = 0 \mid Z_i = 1)$

Model Implied Bounds

• We can now compare bounds on the ATE with/without the model.

	Description	Bound	Difference	
Lower	Without model With model	$\frac{\theta^{ITT} - \mathbb{P}(D_i = 0 \mid Z_i = 1)}{\theta^{ITT} - \mathbb{P}(R_i = 1, D_i = 0 \mid Z_i = 1)}$	$\mathbb{P}(R_i = 0, D_i = 0 \mid Z_i = 1)$	
Upper	Without model With model	$\theta^{ITT} + \mathbb{P}(D_i = 0 \mid Z_i = 1)$ $\theta^{ITT} + \mathbb{P}(R_i = 0, D_i = 0 \mid Z_i = 1)$	$-\mathbb{P}(R_i=1,D_i=0\mid Z_i=1)$	

- Proportion of non-compliers who felt program would've helped \uparrow ⇒ lower bound \uparrow .
- Proportion of non-compliers who felt program wouldn't help \uparrow ⇒ upper bound \downarrow .
 - ⋆ Why? Agents are correct about their assessment of the ATE on average.

Empirical Application: The JTPA Study

- Commissioned to measure benefits of training offered under the Job Training Partnership Act.
 - Meant to improve outcomes of economically, socially disadvantaged.
 - Treatments included classroom training, practical training, job search assistance.
- Eligible applicants were randomly assigned to a treatment or control group.
 - Treatment group offered training under JTPA.
 - Control group barred from JTPA for 18 months.
- Participants tracked for 30 months post treatment phase.

Empirical Application: Did JTPA Help Applicants Find Jobs?

· Look at whether applicants found employment within 12 months after treatment.

Description		N	ITT	LATE	Worst Case	Model Bounds	
Overall		10826	0.01	0.02	[-0.25 , 0.10]	[-0.03 , 0.09]	
				(0.00,0.03)	(0.00,0.05)	(-0.27, 0.11)	(-0.05, 0.10)
	Age < 30	Did not graduate HS	506	-0.02	-0.04	[-0.20 , 0.11]	[-0.05 , 0.09]
No income	7.gc < 00			(-0.11, 0.06)	(-0.16, 0.09)	(-0.27, 0.18)	(-0.12, 0.16)
	Age ≽ 30	Graduated HS	541	0.12	0.18	[-0.13 , 0.20]	[0.07 , 0.20]
				(0.04 , 0.20)	(0.05 , 0.30)	(-0.21, 0.27)	(0.00, 0.27)
		Did not graduate HS	656	0.04	0.07	[-0.18 , 0.24]	[0.01 , 0.22]
				(-0.04, 0.12)	(-0.07, 0.20)	(-0.24, 0.30)	(-0.06, 0.28)
		Graduated HS	870	0.05	0.07	[-0.11 , 0.17]	[0.03 , 0.17]
				(-0.02, 0.12)	(-0.02, 0.17)	(-0.17, 0.23)	(-0.03 , 0.23)

Table 4: ATE on whether applicant found employment within 12 months of treatment phase.

Distribution Treatment Effects

- Treatment effects can be identified for many other outcomes.
- Consider an agent's aggregate earnings over post treatment phase E_i and define:

$$Y_i = \mathbb{1} \{ E_i \leqslant y \}, \text{ for } y \geqslant 0.$$

Then we can define distribution treatment effects:

$$\mathbb{E}[Y_i(1)-Y_i(0)]=\mathbb{P}(E_i(1)\leqslant y)-\mathbb{P}(E_i(0)\leqslant y).$$

Key distinction:

Looking at avg. earnings \rightarrow Positive treatment effect is good.

Looking at distribution of earnings → Negative treatment effect is good.

Empirical Application: Did JTPA Improve Applicant Earnings?

• Now look at the distribution of total earnings in post treatment phase.

Conclusion

- I propose a model to rationalize non-compliance behavior in randomized trials.
- Bounds on ATE produced by model can greatly improve identified sets for ATE.
- Illustrates the importance of following up with non-compliers.
 - Collecting reasons for non-compliance is easy.
 - Phrasing of questions asking for this information is important remove ambiguity.