

Lecture 4 자기조직화지도

자기조직화지도

- Self-organizing maps (SOM)
 - Tuevo Kohonen
 - Kohonen networks

기본 작동원리

- SOMs are Feedforward
- Each node in given layer, completely connected to every node in next layer
- Every connection between two nodes has weight
- Weight values initialized randomly 0 ~ 1
- Adjusting weights is key feature of learning process
- Attribute values are normalized or standardized
- SOMs do not have hidden layer
- Data passed directly from input layer to output layer

3가지 특징

- ❖ 경쟁 (Competition)
 - Output nodes compete with one another for "best" score
 - Winning node produces smallest distance between inputs and connection weights
- ❖ 협동 (Cooperation)
 - Winning node becomes center of neighborhood
 - Output nodes in neighborhood share "excitement" or "reward"
- ❖ 적응 (Adaptation)
 - Neighborhood nodes participate in adaptation (learning)
 - Weights adjusted to improve score function

가중치 조정

❖ 현재 가중치 벡터와 입력 벡터와의 선형 결합을 통한 조정

$$w_{ij,NEW} = w_{ij,CURRENT} + \eta(x_{ni} - w_{ij,CURRENT})$$
, where

 $\mathbf{X}_n = x_{n1}, x_{n2}, \dots, x_{nm}$

m field values for nth record

 $\mathbf{w}_{j} = w_{1j}, w_{2j}, \dots, w_{mj}$

currentset of m weights, for particular output node j

 $\eta, 0 < \eta < 1$

learning rate

코호넨 네트워크 알고리즘

- ❖ 초기화
 - 가중치를 난수로 부여
- ❖ 경쟁
 - 각 출력노드 j 에 대해 거리 함수 **D(w**_j, x_n)를 계산

Euclidean Distance=
$$D(w_j, x_n) = \sqrt{\sum_i (w_{ij} - x_{ni})^2}$$

- D(wj, xn)를 최소화 시키는 승리 노드 j 를 탐색
- ❖ 협동
 - Identify output nodes j, within neighborhood of J defined by neighborhood size R
- ❖ 적응
 - Adjust weights of all neighborhood nodes j:

$$W_{ij,NEW} = W_{ij,CURRENT} + \eta(x_{ni} - W_{ij,CURRENT})$$

사례

- 2 x 2 Kohonen Network
- ❖ 이웃 크기 = 0, 학습율 = 0.5
- ❖ 정규화된 나이와 소득수준 변수로 구성된 4명의 데이터

1	x11 = 0.8	x12 = 0.8	높은 소득수준을 가진 노인
2	x21 = 0.8	x22 = 0.1	낮은 소득수준을 가진 노인
3	x31 = 0.2	x32 = 0.9	높은 소득수준을 가진 청년
4	x41 = 0.1	x42 = 0.1	낮은 소득수준을 가진 청년

❖ 네트워크 가중치 초기화 (랜덤값):

w11 = 0.9	w21 = 0.8	w12 = 0.9	w22 = 0.2
w13 = 0.1	w23 = 0.8	w14 = 0.1	w24 = 0.2

❖ 사례에 사용된 네트워크 구조

- ❖ 첫 번째 데이터 x1 = (0.8, 0.8)
 - Competition Phase
 - Compute Euclidean Distance between input and weight vectors

Node1:
$$D(w_1, x_1) = \sqrt{(0.9 - 0.8)^2 + (0.8 - 0.8)^2} = 0.10$$

Node 2:
$$D(w_2, x_1) = \sqrt{(0.9 - 0.8)^2 + (0.2 - 0.8)^2} = 0.61$$

*Node*3:
$$D(w_3, x_1) = \sqrt{(0.1 - 0.8)^2 + (0.8 - 0.8)^2} = 0.70$$

Node 4:
$$D(w_4, x_1) = \sqrt{(0.1 - 0.8)^2 + (0.2 - 0.8)^2} = 0.92$$

- The winning node is Node 1 (minimizes distance = 0.10)
- Note, node 1 weights most similar to input record values
- Node 1 may exhibit affinity (cluster) for records of "older persons with high income"

- Cooperation Phase
 - Neighborhood Size R = 0
 - Therefore, nonexistent "excitement" of neighboring nodes
 - Only winning node receives weight adjustment
- Adaptation Phase
 - Weights for Node 1 adjusted, where j = 1 (Node 1), n = 1 (First record), and learning rate = 0.5:

Age:
$$\Rightarrow w_{11,NEW} = w_{11,CURRENT} + 0.5(x_{11} - w_{11,CURRENT})$$

 $= 0.9 + 0.5(0.8 - 0.9) = 0.85$
Income: $\Rightarrow w_{21,NEW} = w_{21,CURRENT} + 0.5(x_{12} - w_{21,CURRENT})$
 $= 0.8 + 0.5(0.8 - 0.8) = 0.8$

- ❖ 두 번째 데이터 x2 = (0.8, 0.1)
 - Competition
 - Compute Euclidean Distance between input and weight vectors

Node1:
$$D(w_1, x_2) = \sqrt{(0.9 - 0.8)^2 + (0.8 - 0.1)^2} = 0.71$$

Node 2:
$$D(w_2, x_2) = \sqrt{(0.9 - 0.8)^2 + (0.2 - 0.1)^2} = 0.14$$

Node3:
$$D(w_3, x_2) = \sqrt{(0.1 - 0.8)^2 + (0.8 - 0.1)^2} = 0.99$$

Node4:
$$D(w_4, x_2) = \sqrt{(0.1 - 0.8)^2 + (0.2 - 0.1)^2} = 0.71$$

- Node 2 is the winning node with distance = 0.14
- Node 2 weights (0.9, 0.2) most similar to input record values (0.8, 0.1)
- Records of "older persons and low income" may cluster to Node 2

Adaptation

Weights for Node 2 adjusted, where j = 2 (Node 2), n = 2 (Second record), and learning rate = 0.5:

Age:
$$= w_{12,NEW} = w_{12,CURRENT} + 0.5(x_{21} - w_{12,CURRENT})$$

$$= 0.9 + 0.5(0.8 - 0.9) = 0.85$$
Income:
$$= w_{22,NEW} = w_{22,CURRENT} + 0.5(x_{22} - w_{22,CURRENT})$$

$$= 0.2 + 0.5(0.1 - 0.2) = 0.15$$

- Again, weights move towards input field values
- Initial $w_{12} = 0.9$, adjusted to 0.85 (direction of $x_{12} = 0.8$)
- Initial $w_{22} = 0.2$, adjusted to 0.15 (direction of $x_{22} = 0.1$)
- Node 2 develops affinity for records of "older, lower income" persons

- ❖ 세 번째 데이터 x3 = (0.2, 0.9)
 - Competition
 - Compute Euclidean Distance between input and weight vectors

Node1:
$$D(w_1, x_3) = \sqrt{(0.9 - 0.2)^2 + (0.8 - 0.9)^2} = 0.71$$
Node2:
$$D(w_2, x_3) = \sqrt{(0.9 - 0.2)^2 + (0.2 - 0.9)^2} = 0.99$$
Node3:
$$D(w_3, x_3) = \sqrt{(0.1 - 0.2)^2 + (0.8 - 0.9)^2} = 0.14$$
Node4:
$$D(w_4, x_3) = \sqrt{(0.1 - 0.2)^2 + (0.2 - 0.9)^2} = 0.71$$

- Node 3 is the winning node with distance = 0.14
- Node 3 weights (0.1, 0.8) most similar to input record values (0.2, 0.9)
- Records of "younger persons and high income" may cluster to Node 3

Adaptation

• Weights for Node 3 adjusted, where j = 3 (Node 3), n = 3 (Third record), and learning rate = 0.5:

Age:
$$= w_{13,NEW} = w_{13,CURRENT} + 0.5(x_{31} - w_{13,CURRENT})$$

$$= 0.1 + 0.5(0.2 - 0.1) = 0.15$$
Income:
$$= w_{23,NEW} = w_{23,CURRENT} + 0.5(x_{32} - w_{23,CURRENT})$$

$$= 0.8 + 0.5(0.9 - 0.8) = 0.85$$

- Again, weights move towards input field values
- Initial $w_{13} = 0.1$, adjusted to 0.15 (direction of $x_{12} = 0.2$)
- Initial w23 = 0.8, adjusted to 0.85 (direction of x22 = 0.9)
- Node 3 develops affinity for records of "younger, high income" persons

- ❖ 네 번째 데이터 x4 = (0.1, 0.1)
 - Competition
 - Compute Euclidean Distance between input and weight vectors

Node1:
$$D(w_1, x_4) = \sqrt{(0.9 - 0.1)^2 + (0.8 - 0.1)^2} = 1.06$$
Node2:
$$D(w_2, x_4) = \sqrt{(0.9 - 0.1)^2 + (0.2 - 0.1)^2} = 0.81$$
Node3:
$$D(w_3, x_4) = \sqrt{(0.1 - 0.1)^2 + (0.8 - 0.1)^2} = 0.70$$
Node4:
$$D(w_4, x_4) = \sqrt{(0.1 - 0.1)^2 + (0.2 - 0.1)^2} = 0.10$$

- Node 4 is the winning node with distance = 0.10
- Node 4 weights (0.1, 0.2) most similar to input record values (0.1, 0.1)
- Records of "younger persons and low income" may cluster to Node 4

Adaptation

• Weights for Node 4 adjusted, where j = 4 (Node 4), n = 4 (Fourth record), and learning rate = 0.5:

Age:
$$= w_{14,NEW} = w_{14,CURRENT} + 0.5(x_{41} - w_{14,CURRENT})$$

$$= 0.1 + 0.5(0.1 - 0.1) = 0.10$$
Income:
$$= w_{24,NEW} = w_{24,CURRENT} + 0.5(x_{42} - w_{24,CURRENT})$$

$$= 0.2 + 0.5(0.1 - 0.2) = 0.15$$

- Again, weights move towards input field values
- Initial $w_{14} = 0.1$, adjusted to 0.10 (direction of $x_{12} = 0.1$)
- Initial w₂₄ = 0.2, adjusted to 0.15 (direction of x₂₂ = 0.1)
- Node 4 develops affinity for records of "younger, lower income" persons

분석 결과

Four output nodes represent distinct clusters

Cluster	Associated With	Description
1	Node 1	Older person with high income
2	Node 2	Older person with low income
3	Node 3	Younger person with high income
4	Node 4	Younger person with low income

SOM 진화과정

학습 후 SOM

From Wikipedia

World Poverty Map

- The Self-Organizing Map (SOM) can be used to portray complex correlations in statistical data.
- Here the data consisted of World Bank statistics of countries in 1992.

Altogether 39 indicators describing various quality-of-life factors, such as state of health, nutrition, educational services, etc, were

used.

Customer segmentation: Case of Dublin

https://www.shanelynn.ie/self-organising-maps-for-customer-segmentation-using-r/

