Arquitetura e Organização de Computadores

Capítulo 5

Memória interna

slide 1

© 2010 Pearson Prentice Hall. Todos os direitos reservados.

Tipos de memória de semicondutor

Tipo de memória	Categoria	Apagamento	Mecanismo de escrita	Volatilidade
Memória de acesso a leatório (RAM)	Memória de leitura-escrita	Eletricamente, em nivel de byte	Eletricamente	Voláti
Memória somente de leitura (ROM)			Máscaras	Não volátil
ROM programável (PROM, do inglês programmable ROM)	Memória somente de leitura	Não é possível		
PROM apagável (EPROM, do inglés erasable PROM)		Luz UV, nível de chip		
PFOM eletricamente apagável (EEPROM, do inglês electrically erasable PROM)	Memória principalmente de leitura	Eletricamente, nível de byte	Eletricamente	
Memória flash		Eletricamente, nivel de bioco		

Memória de semicondutor

- RAM :
 - —Nome incorreto, pois toda memória de semicondutor tem acesso aleatório.
 - —Leitura/escrita.
 - —Volátil.
 - —Armazenamento temporário.
 - -Estática ou dinâmica.

RAM dinâmica

- Bits armazenados como carga em capacitores.
- As cargas vazam.
- Precisa de renovação mesmo se alimentada.
- Construção mais simples.
- Menor por bit.
- · Mais barata.
- Precisa de circuitos de refresh.
- Mais lenta.
- Memória principal.
- Dispositivo basicamente analógico.
 - —Nível de carga determina o valor.

Operação da DRAM

- Linha de endereço ativa quando bit é lido ou escrito.
 - Chave de transistor fechada (corrente flui).
- Escrita:
 - Voltagem na linha de bit.
 - Alta para 1, baixa para 0.
 - Depois sinaliza linha de endereço.
 - Transfere carga ao capacitor.
- · Leitura:
 - Linha de endereço selecionada.
 - Transistor liga.
 - Carga do capacitor alimentada por linha de bit para amplificador comparar.
 - Compara com valor de referência para determinar 0 ou 1.
 - Carga do capacitor deve ser restaurada.

RAM estática

- Bits armazenados como chaves ligado/desligado.
- Sem carga para vazar.
- Não precisa de *refresh* quando alimentada.
- Construção mais complexa.
- Maior por bit.
- · Mais cara.
- Não precisa de circuitos de refresh.
- · Mais rápida.
- Exemplo: Cache.
- Digital.
 - -Usa flip-flops.

Operação da RAM estática

- Arranjo de transistores gera estado lógico estável.
- Estado 1:
 - $-C_1$ alta, C_2 baixa.
 - $-T_1 T_4$ desligados, $T_2 T_3$ ligados.
- Estado 0:
 - $-C_2$ alto, C_1 baixo.
 - $-T_2 T_3$ desligados, $T_1 T_4$ ligados.
- Linha de endereço controla dois transistores, T₅ T₆.
- Escrita aplica valor a B e complemento de B.
- · Leitura valor está na linha B.

SRAM versus DRAM

- Ambas voláteis.
 - —É preciso energia para preservar os dados.
- Célula dinâmica:
 - -Mais simples de construir, menor.
 - -Mais densa.
 - -Mais barata.
 - -- Precisa de refresh.
 - -Maiores unidades de memória.
- Estática:
 - -Mais rápida.
 - -Exemplo: Cache.

Read Only Memory (ROM)

- Armazenamento permanente.
 - -Não volátil.
- Microprogramação (ver mais adiante).
- Sub-rotinas de biblioteca.
- Programas do sistema (BIOS).
- Tabelas de função.

Tipos de ROM

- Gravada durante a fabricação:
 - -Muito cara para pequenas quantidades.
- Programável (uma vez):
 - -PROM.
 - —Precisa de equipamento especial para programar.
- Lida "na maioria das vezes":
 - Erasable Programmable (EPROM).
 - Apagada por UV.
 - Electrically Erasable (EEPROM):
 - Leva muito mais tempo para escrever que para ler.
 - —Memória flash:
 - Apaga memória inteira eletricamente.

Organização em detalhes

- Um chip de 16 Mbits pode ser organizado como 1M de palavras de 16 bits.
- Um sistema de um bit por chip tem 16 lotes de chip de 1 Mbit com bit 1 de cada chip no chip 1, e assim por diante.
- Um chip de 16 Mbits pode ser organizado como um array de 2048 x 2048 x 4 bits.
 - -Reduz número de pinos de endereço.
 - Multiplexa endereço de linha e endereço de coluna.
 - -11 pinos para endereçar ($2^{11}=2048$).
 - Aumentar um pino dobra o intervalo de valores, de modo que a capacidade multiplica por 4.

Refreshing

- Circuito de *refresh* incluído no chip.
- · Desabilita chip.
- Conta por linhas.
- Lê e escreve de volta.
- Leva tempo.
- Atrasa o desempenho aparente.

Memória intercalada

- Coleção de chips de DRAM.
- Agrupada em banco de memória.
- Bancos atendem a solicitações de leitura ou escrita independentemente.
- K bancos podem atender a k solicitações simultaneamente.

Correção de erro

- Falha permanente.
 - —Defeito permanente.
- Erro não permanente:
 - -Aleatório, não destrutivo.
 - —Sem dano permanente à memória.
- Detectado usando código de correção de erro de Hamming.

Organização avançada da DRAM

- DRAM básica igual desde primeiros chips de RAM.
- DRAM avançada.
 - —Também contém pequena SRAM.
 - —SRAM mantém última linha lida.
- Cache DRAM:
 - -- Maior componente em tamanho é a SRAM.
 - —Usa-se como cache ou buffer serial.

Desempenho de algumas alternativas a DRAM

 Tabela 5.3
 Comparação do desempenho de algumas alternativas à DRAM

	Frequência de clock (MHz)	Taxa de transferência (GB/s)	Tempo de acesso (ns)	Contagem de pinos	
SDRAM	166	1,3	18	168	
DDR	200	3,2	12,5	184	
RDRAM	600	4,8	12	162	

DRAM síncrona (SDRAM)

- · Acesso sincronizado com clock externo.
- Endereço é apresentado à RAM.
- RAM encontra dados (CPU espera na DRAM convencional).
- Como a SDRAM move dados em tempo com o clock do sistema, CPU sabe quando os dados estarão prontos.
- CPU n\u00e3o precisa esperar, e pode fazer alguma outra coisa.
- Modo de rajada permite que SDRAM defina fluxo de dados e o dispare em bloco.

SDRAM Tabela 5.4 Atribuições de pino da SDRAM A0 a A13 Entradas de endereço CLK Entrada de clock CKE Habilitação de clock <u>cs</u> Seleção se chip RAS Strobe de endereço de linha CAS Strobe de endereço de coluna WE Habilitação de escrita DQ0 a DQ7 Entrada/saída de dados DQM Máscara de dados

DRAM RamBus (ou RDRAM)

- Adotada pela Intel para Pentium & Itanium.
- Concorrente principal da SDRAM.
- Encapsulamento vertical todos os pinos em um lado.
- Troca de dados com processador por 28 fios < 12 cm.
- Barramento endereça até 320 chips RDRAM a 1,6GBps.
- Barramento especial: informações de endereço e controle usando protocolo
- · Protocolo assíncrono orientado a bloco:
 - —Tempo de acesso de 480ns.
 - -Então, 1,6 GBps.

DDR - SDRAM

- Desenvolvida pela JEDEC Solid State Technology Association, agência de padronização da EIA (Electronics Industries Alliance)
- SDRAM só pode enviar dados uma vez por ciclo de clock.
- **DDR-SDRAM** (*Double Data Rate*) envia dados duas vezes por ciclo de clock
 - —Transição de subida e transição de descida.

Melhorias em DDR - SDRAM

- DDR2 aumenta a frequência operacional do chip
- DDR2 aumenta o buffer de pré-busca de 2 bits para 4 bits por chip
- Buffer de pré-busca é uma cache no chip de RAM
- Portanto, aumenta a taxa de transferência de dados
- DDR3 (introduzida em 2007) aumenta tamanho do buffer de pré-busca para 8 bits

Módulo Faixa de Operação (MHz)					
DDR	200 a 600				
DDR2	400 a 1300				
DDR3	800 a 1600				

Memórias DDR - SDRAM

Nome padrão	Clock dos chips	Ciclo de tempo	Clock real	Dados por segundo	Nome do módulo	Taxa de Transferê ncia
DDR-200	100 MHz	10 ns	100 MHz	200 Milhões	PC-1600	1600 MB/s
DDR-266	133 MHz	7.5 ns	133 MHz	266 Milhões	PC-2100	2100 MB/s
DDR-300	150 MHz	6.67 ns	150 MHz	300 Milhões	PC-2400	2400 MB/s
DDR-333	166 MHz	6 ns	166 MHz	333 Milhões	PC-2700	2700 MB/s
DDR-400	200 MHz	5 ns	200 MHz	400 Milhões	PC-3200	3200 MB/s

Memórias DDR2 - SDRAM

Nome padrão	Clock dos chips	Ciclo de tempo	Clock real	Dados por segundos	Nome do módulo	Taxa de transferên cia
DDR2-400	100 MHz	10 ns	200 MHz	400 Milhões	PC2-3200	3200 MB/s
DDR2-533	133 MHz	7.5 ns	266 MHz	533 Milhões	PC2-4200 PC2-4300	4266 MB/s
DDR2-667	166 MHz	6 ns	333 MHz	667 Milhões	PC2-5300 PC2-5400	5333 MB/s
DDR2-800	200 MHz	5 ns	400 MHz	800 Milhões	PC2-6400	6400 MB/s
DDR2-1066	266 MHz	3.75 ns	533 MHz	1066 Milhões	PC2-8500 PC2-8600	8533 MB/s
DDR2-1300	325 MHz	3.1 ns	650 MHz	1300 Milhões	PC2-10400	10400 MB/ s

Memórias DDR3 - SDRAM

Nome padrão	Clock de memó ria	Temp o de ciclo	Velocida de de clock	Taxa de dados	Nome do módulo	Pico de taxa de transferência	Tempos
DDR3-1066	133 MHz	7.5 ns	533 MHz	1066 MT/s	PC3-8500	8533 MB/s	6-6-6 7-7-7 8-8-8
DDR3-1333	166 MHz	6 ns	667 MHz	1333 MT/s	PC3-10600	10667 MB/s	7-7-7 8-8-8 9-9-9 10-10-10
DDR3-1600	200 MHz	5 ns	800 MHz	1600 MT/s	PC3-12800	12800 MB/s	8-8-8 9-9-9 10-10-10 11-11-11
DDR3-2133	266⅔ MHz	3 ¾ ns	1066⅔ MHz	2133⅓ MT/s	PC3- 17000	17066⅔ MB/s	11-11-11 12-12-12 13-13-13 14-14-14

- DDR3 consome 30% menos que DDR2
- MT/s Mega Transferências/segundo

Memórias DDR3 - SDRAM

- **Tempos**: (CL-tRCD-tRP)
- CL ciclos de clock entre o envio de um endereço de coluna para a memória e o início da recepção dos dados.
- tRCD ciclos de clock entre a ativação da linha e leituras/escritas.
- tRP ciclos de clock entre a carga de linha e sua ativação.
- Latência do CAS: latência do CAS de 9 em 1000 MHz (DDR3-2000) é de 9 ns, enquanto que a latência do CAS de 7 em 667 MHz (DDR3-1333) é de 10.5 ns. Quanto mais baixa, melhor.
 - (CAS Latency / Frequency (MHz)) × 1000 = X ns

Comparação entre Módulos DDR3 - SDRAM

módulo de memória do tipo DDR/184 pinos

módulo de memória do tipo DDR2/240 pinos

módulo de memória do tipo DDR3/240 pinos

Memórias DDR, DDR2 e DDR3

DDR 400 1G

DDR2 400 512M

DDR3 1333 2G

Fonte: http://www.tomshardware.com/reviews/dual-channel-ram-ddr3-4gb,2618.html

DDR é diferente de Dual-channel

- DDR significa que cada módulo de memória é acessado 2 vezes por clock.
- Dual-channel é uma arquitetura que descreve uma tecnologia que teoricamente dobra a vazão de dados da memória para o controlador de memória (dobra a largura de banda).
- Controladores de memória com Dual-channel habilitado usam 2 canais de dados simultâneos de 64 bits.
- Usa a tecnologia de memória existente, mas muda controlador de memória (placa-mãe).
- As duas tecnologias são independentes uma da outra. Uma placa-mãe eventualmente pode usar ambas, ou seja, usar memórias DDR na configuração dual-channel.

Velocidade & Largura de Banda?

- Exemplo:
- Uma estrada de mão dupla com 2 pistas, cuja velocidade máxima permitida é 100 Km/hora
 - Velocidade = 100 Km/hora
 - Largura de Banda = 200 Km/hora
- Uma estrada de mão dupla com 4 pistas, cuja velocidade máxima permitida é 100 Km/hora
 - Velocidade = 100 Km/hora
 - Largura de Banda = 400 Km/hora
- No caso de um canal simples significa uma única pista de ida e volta (leitura e escrita)
- No caso Dual-channel significa 2 pistas de ida e volta (leitura e escrita)

Ver: http://en.wikipedia.org/wiki/List_of_device_bandwidths

Memórias DDR4 (DDR Graphics RAM) ou GDDR4 (Graphics Double Data Rate, versão 4)

- Primeiro módulo **DDR4** lançado pela Sansung em janeiro de 2011 2 GB, depois Hynix em abril de 2011
- Consome 40% menos energia que **DDR3**
- Produção em massa esperada para o 2° semestre de 2012
- pré-busca de 16 bits/clock (DDR3 é 8 bits/clock)

Memórias DDR5 (DDR Graphics RAM) ou GDDR5 (Graphics Double Data Rate, versão 5)

- GDDR5 é baseada na SDRAM DDR3.
- Também possui buffer de pré-busca de 8 bits, como a DDR3.
- Opera com 2 diferentes tipos de clock (CK e WCK).
- CK é usado como referência para endereços e entradas de comando. WCK é usado como referência para leitura e escrita de dados. WCK é o dobro da frequência de CK.
- Exemplo: 1 CK de 1.25 GHz, WCK de 2.5 GHz => taxa de dados de 5Gb/s, já que 2 dados serão em 1 pulso de WCK.
- A Hynix introduziu o primeiro chip de memória de 1Gb GDDR5, largura de banda de 20GB/s sobre um barramento de 32 bits.
- Chips de memória de 2 Gbit GDDR5 permitirá placas de vídeo com 2 GB ou mais de memória onboard com uma largura de banda de pico de 224 GB/s ou maior.

Cache DRAM (CDRAM)

- · Desenvolvida pela Mitsubishi.
- Integra pequena cache SRAM (16 kb) no chip de DRAM genérico.
- · Usada como cache verdadeira.
 - —linhas de 64 bits.
 - Efetiva para acesso aleatório comum.
- Para admitir acesso serial de bloco de dados.
 - -Por exemplo, ao renovar tela de mapa de bits.
 - CDRAM pode previamente buscar os dados da DRAM no buffer de SRAM.
 - Acessos subsequentes unicamente à SRAM.