TMD Exame DE RECURSO 2016/2017 4/fev/2017

1. (a)

þe	Pi	P2	PIVPZ	100	9	p1 → p2	7 (p, - p2)	po -> 7(p1 + p2)	Y
1	1	1	1	0	0	1	0	0	1
1	1	0	1	0	1	0	1	1	0
1	0	1	1	0	1	1	0	0	1
1	0	0	0	0	0	1	0	0	1
0	1	1	1	4	1	1	0	4	0
0	1	0	1	1	4	0	1	1	0
0	0	1	1	1	4	1	0	1	0
0	0	0	0	1	0	1	0	1	0

Se y tem valor bigios 1, entos temos os casos descritos no 1º, na 3º e na 4º limbas da table. Nesses casos, y também tem valor bigios 1. A apinmoeró i, portanto, verdodira.

(4)
(i) $x: \forall y \in \mathbb{N} \ (y \neq x) \Rightarrow \forall m \in \mathbb{N} \ (x \mid y \Rightarrow x \in \varphi x)$

Em 12, afinma-se que os divisous naturais dos números pares são pares, o que mos é verdade

y = 6 i par , x=3 i tal que x i um divisor de y , mas x mos i par.

1: Hyein (y fimo > (Yxein (x pr > xxy)))

Em s, afirme-se que not hó divisous pares de um mimero primo, o que é falso pois 2 é primo e o próprio 2 é vom seu divisor natural par.

Assisa, mentina des proposições é vadedira.

(ii)
$$7\pi \iff \exists y \in \mathbb{N} \ \left(p(y) \land (\exists x \in \mathbb{N} \ (d(x,y) \land \neg p(x))) \right)$$
 $\iff \exists y \in \mathbb{N} \ \left(p(y) \land \left(\exists x \in \mathbb{N} \ (d(x,y) \land i(x)) \right) \right) \ \left(\text{nustable formule ness occurs a contrivo } \neg \right)$

2.
(a) $x+2 \in A \iff x+2=3 \lor x+2=7 \pmod{\frac{1}{2}}$ (m) $x+2 \in A \iff x+2=4 \pmod{\frac{1}{2}}$ $\iff x=1 \lor x=5$

logo, $B = \{1,5\}$ & $B \times B = \{(1,1), (1,5), (5,1), (5,5)\}$ $X \in B \land |y| = x \iff (x = 1 \land |y| = 1) \Leftrightarrow (x = 5 \land |y| = 5)$ $(x = 1 \land y = \pm 1) \Leftrightarrow (x = 5 \land y = \pm 5)$.

Arrim, $C = \{(1,1), (1,-1), (5,5), (5,-5)\}$ Portanti, $C \setminus (B \times B) = \{(1,-1), (5,-5)\}$.

(4) $P(E) \setminus D = \{\emptyset, \{3,4\}\} \Rightarrow \{3,4\} \notin D : 3 \in E : 4 \in E.$ So $3 \in E$, $\{3\} \in P(E)$. Como $\{3\} \notin P(E) \setminus D$, $\{3\} \in D$.

Como $4 \in E$, $\{4\} \in P(E)$. Anim, $\{4\} \in D$. $D \cap E = \{2\} \iff 2 \in D : 2 \in E.$

Como 2∈ € 1 {2} ¢ P(€) \D, {2} € D. Como 2,4 sal ilemanto de € 1 {2,4} ¢ P(€) \D preter {2,4} € D. O recomo pre {2,3} 1 {2,3,4}

Consideration $E = \{2,3,4\}$ $D = \{2,\{2\},\{3\},\{4\},\{2,3\},\{2,4\},\{2,3,4\}\}\}$.

(P(E) = {Ø, {2}, {3}, {4}, {2,3}, {2,4}, {3,4}, {2,3,4})

3. Supoulumos que (AUC) \((B)C) \(\psi\) (A\(\B)\)UC. Entais, existe pelo menos um elemento \(\pi\) tal que \(\pi\) (AUC) \((B\(\C)\)) \(\exi\) \(\pi\) (A\(\B)\)UC. Ora,

x ∈ (AUC) \((B)C) ⇒ x ∈ AUC \ x ∉ (B)C)

⇔ x ∈ AUC \ (x ∉B v x ∈ C)

 $x \notin (A \setminus B) \cup C = x \notin (A \setminus B) \land x \notin C$ $\iff (x \notin A \lor x \in B) \land x \notin C.$

De $x \in A \cup C$ = $x \notin C$, concluintos que $x \in A$. Logo, de $x \notin A \lor x \in B$, concluintos que $x \in B$. Repare-se que $x \in A$, $x \in B$ e $x \notin C$

contradiz a condició x&Bvx EC.

A contradição resultan de segarmos (AUC) (BIC) & (AIB) UC. Logo,
(AUC) \((BIC) \subseteq (A\B) UC.

- 4. Sijs P(n) o pudicodo 1+5+9+...+ (4m-3) = \frac{1}{2} m (4m-2) .sobre m \in IN.
 - ① $1 = \frac{1}{2} \times 1(4 \times 1 2) \iff 1 = 1$ (P.V.)
 - Sys KEIN tsigm 1+5+9+...+ $(4K-3) = \frac{1}{2} K (4K-2) . (H.E)$.

 Mostumos que 1+5+9+...+ $(4(K+1)-3) = \frac{1}{2} (K+1) (4(K+1)-2)$.

 Temos $1+5+9+...+ (4K-3) + (4(K+1)-3) = \frac{1}{2} (K+1) (4(K+1)-2) \Leftarrow$ $\frac{1}{2} K (4K-2) + (4(K+1)-3) = \frac{1}{2} (K+1) (4(K+1)-2) \Leftarrow$

$$\Leftrightarrow$$
 $\frac{1}{2} \times (4K-2) + (4K+1) = \frac{1}{2} (K+1) (4K+2)$

$$(=> 2K^2 - K + 4K + 1) = 2K^2 + K + 2K + 1$$

Logo, P(K+1).

Por O. D. pelo Primipio de Inducisi Estatural, tomein P(n).

5

(a)
$$g((3,2)) = 3-2+2=3$$

 $g((2,-1)) = 2$
 $g((2,-1)) = 2$
 $g((2,-1)) = 2$
 $g((4,4)) = 4-4+2=2$

Assim, 9 ({(3,2), (2,-1), {(2)}) = {2,3}.

(b) Como g (12,-1) = g (14,4) = 2, g not é injetire.

Averignum ng i sobrejetivs. Sija me Z. Vyannos ne existem p, q e Z tan que m= g (p,q).

$$M = g(p_1q) \Leftrightarrow$$

$$\begin{cases}
M = p - q + 2 & \text{if } q \geq 0 \\
M = 2 & \text{if } q < 0
\end{cases}$$

?
$$M = p - q + 2$$
 ? $(q \ge 0)$

Podemos socioo $M = (m-1) - 1 + 2$

P q

Logo, n= g ((m-1),1) e g i sohrjetiva.

(c) Jof: Z → Z

Jado $m \in \mathbb{Z}$, $(g \circ f)(m) = g(f(m)) = g((m^2, m^2)) =$ $= m^2 - m^2 + 2 = 2.$ $m^2 \neq 0$

Logo, got i um funcis constante.

6. $\chi Ry \iff (n^2 - y^2) = \chi - y \iff (\chi - y)(\eta + y) = (\eta - y)$ $\iff (\eta - y)(\eta + y) - (\eta - y) = 0$ $\iff (\eta - y)(\chi + y - 1) = 0$

(3) x = y $\sqrt{x + y - 1} = 0$ (5) x = y $\sqrt{x + y} = 1$.

(a) $[1]_R = \{x \in IR \mid x = 1 \lor x + 1 = 1\}$ $= \{x \in IR \mid x = 1 \lor x = 0\} = \{0,1\}.$ $[-2]_R = \{x \in IR \mid x = -2 \lor x - 2 = 1\} = \{-2,3\}$

(b) Sijam $x_1, y_2 \in \mathbb{R}$ tais que x Ry x y Rz. Timos x Ry x y Rz G $x^2-y^2=xy \wedge y^2-z^2=y-z$ $\Rightarrow x^2-y^2+y^2-z^2=x-y+y-z$ $\Rightarrow x^2-y^2+y^2-z^2=x-y+y-z$ $\Rightarrow x^2-z^2=x-z \Rightarrow x Rz$.

logo, Ri hounties.

7.
$$[a]_{\rho} = [c]_{\rho} \Rightarrow a_{\rho}c_{\perp}c_{\rho}a_{\rho}$$

 $(a, b) \notin \rho \Rightarrow [b]_{\rho} \neq [a]_{\rho} \Rightarrow b_{\rho}a_{\perp}a_{\rho}b_{\rho}$
 log_{0} , $[b]_{\rho} \neq [c]_{\rho} \Rightarrow b_{\rho}c_{\perp}c_{\rho}b_{\rho}$.
 $\rho = \{(a,a), (b,b), (c,c), (a,c), (c,a)\}$.

(d)
$$Y = \{9,4\}$$
 Min $(Y) = \{2,4,5\}$
 $inf(Y) = 2$