

Viscous internal waves and streaming

Antoine Renaud

Laboratoire de Physique, ENS Lyon

Introduction

Internal waves in labs

Viscosity can play an in important role for internal waves generated in labs. The Reynolds number $\mathrm{Re} = \frac{UL}{\nu}$ is several order of magnitude lower in labs experiments than in the ocean context.

Consequently, viscosity associated features might matter:

- Decay of internal wave beams
- Boundary layers
- Streaming

Table of contents

- 1. Introduction
- 2. The 2D Boussinesq model
- 3. Viscous internal waves
- 4. Streaming
- 5. Waves in shear-flows: WKB solutions
- 6. Boundary conditions: computation of the full wave field
- 7. Computation of Reynold stress in large Reynold number limit

The 2D Boussinesq model

• Momentum equation:

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla P + b \mathbf{e}_z + \nu \Delta \mathbf{u}$$

• Buoyancy advection equation

$$\partial_t b + \mathbf{u} \cdot \nabla b + N^2 w = 0$$

• Incompressible flow

$$\nabla \cdot \mathbf{u} = 0$$

Velocity field : $\mathbf{u} = (u, w)$

• Momentum equation:

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla P + b\mathbf{e}_z + \nu \Delta \mathbf{u}$$

• Buoyancy advection equation

$$\partial_t b + \mathbf{u} \cdot \nabla b + N^2 \mathbf{w} = 0$$

Incompressible flow

$$\nabla \cdot \mathbf{u} = 0$$

Nabla operator $\nabla = (\partial_x, \partial_z)$ and Laplacian operator $\Delta = \partial_x^2 + \partial_z^2$

Momentum equation:

$$\partial_t \mathbf{u} + \left(\mathbf{u} \cdot \nabla\right) \mathbf{u} = -\nabla P + b\mathbf{e}_z + \nu \Delta \mathbf{u}$$

Buoyancy advection equation

$$\partial_t b + \mathbf{u} \cdot \nabla b + N^2 w = 0$$

Incompressible flow

$$\nabla \cdot \mathbf{u} = 0$$

Pressure field $\frac{P}{P}$ and the buoyancy field $\frac{b}{b} = -g\frac{\rho - \rho_0}{\rho_0} - \frac{N^2}{2}z$ where N is the Brunt-Väisälä frequency assumed constant

• Momentum equation:

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla P + b \mathbf{e}_z + \nu \Delta \mathbf{u}$$

Buoyancy advection equation

$$\partial_t \mathbf{b} + \mathbf{u} \cdot \nabla \mathbf{b} + N^2 \mathbf{w} = 0$$

Incompressible flow

$$\nabla \cdot \mathbf{u} = 0$$

2D Boussinesq model : Adimensionalization

- $(\tilde{x}, \tilde{z}) = K(x, z)$ where K is a typical wave number (e.g. the wave number of the generator)
- $\tilde{t} = \Omega t$ where Ω is a typical frequency (e.g. the frequency of the generator)
- $\tilde{\mathbf{u}} = \frac{K}{\Omega}\mathbf{u}$
- $\tilde{b} = \frac{K}{N^2}b$
- $\bullet \ \tilde{P} = \frac{k^2}{\Omega^2} P$

2D Boussinesq model : Dimensionless parameters and adimensionalized equations

There are two independant dimensionless parameters :

- The Reynold number : $\frac{\Omega}{\nu K^2}$
- The Fround number : $\frac{\Omega}{N}$

The resulting adimensionalized equations write:

$$\begin{cases} \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} &= -\nabla P + \frac{1}{|\mathbf{Fr}^2|} b \mathbf{e}_z + \frac{1}{|\mathbf{Re}|} \Delta \mathbf{u} \\ \partial_t b + \mathbf{u} \cdot \nabla b + w &= 0 \\ \nabla \cdot \mathbf{u} &= 0 \end{cases}$$

Viscous internal waves

Linearization

Let us linearize the equations of motion about the rest state $\mathbf{u}, b, P = 0$:

$$\begin{cases} \partial_t u + \partial_x P - \frac{1}{\text{Re}} \Delta u &= 0\\ \partial_t w + \partial_z P - \frac{1}{\text{Fr}^2} b - \frac{1}{\text{Re}} \Delta \mathbf{w} &= 0\\ \partial_t b + w &= 0\\ \nabla \cdot \mathbf{u} &= 0 \end{cases}$$

Dispersion relation

We look for non-vanishing plane waves solutions

$$\begin{bmatrix} u \\ w \\ b \\ P \end{bmatrix} = \begin{bmatrix} \tilde{u} \\ \tilde{w} \\ \tilde{b} \\ \tilde{P} \end{bmatrix} e^{i(\omega t - kx - mz)}.$$

This leads to the following dispersion relation:

$$\omega \left(\omega - i\frac{k^2 + m^2}{\text{Re}}\right) = \frac{1}{\text{Fr}^2} \frac{k^2}{k^2 + m^2}$$

Inviscid limit

In the inviscid limit (i.e. $\mathrm{Re}=+\infty$), we recover the well known dispersion relation :

$$\omega^2 = \frac{1}{\text{Fr}^2} \frac{k^2}{k^2 + m^2} = \frac{1}{\text{Fr}^2} \sin^2 \theta$$

With the phase and group velocities

$$\mathbf{c}_{\varphi} = \pm \frac{1}{\operatorname{Fr}(k^2 + m^2)} \begin{bmatrix} k \\ m \end{bmatrix}$$
 , $\mathbf{c}_{g} = \pm \frac{k^2}{\operatorname{Fr}\sqrt{k^2 + m^2}} \begin{bmatrix} m^2 \\ -mk \end{bmatrix}$

such that $\mathbf{c}_{\varphi}\cdot\mathbf{c}_g=0$ We must have $|\omega|<rac{1}{\mathrm{Fr}}$ for propagating waves.

Back to the viscous case : horizontal generator

Let us consider again the viscous case. We consider the case where $\omega=1$ and k=1. (generator set-up horizontally)

$$\operatorname{Fr}^{2}\left(1-i\frac{1+m^{2}}{\operatorname{Re}}\right)\left(1+m^{2}\right)=1$$

We can already remark a few things

- 4th order complex polynomial equation for m meaning there are 4 different complex solutions
- ullet The symetry m o -m indicates two important branches

Two branches:

$$m^2 = \frac{\mathrm{Re}}{2i} \left(1 \pm \sqrt{1 - \frac{4i}{\mathrm{ReFr}^2}} \right) - 1$$

Large Reynold number limit

We now consider large values of the Reynold number (such that ${\rm Fr}^2{\rm Re}\gg 1).$ The solution then writes :

$$\begin{split} m_w &= \pm \left(m_0 + \frac{i}{2 \mathrm{Fr}^4 m_0 \mathrm{Re}}\right) \\ m_{bl} &= \pm \left(1 - i\right) \sqrt{\frac{\mathrm{Re}}{2}} \end{split}$$

where $m_0 = \sqrt{\frac{1}{{\rm Fr}^2} - 1}$ is the inviscid value for m.

Few remarks:

- m_w : Propagating branche
- $L_{\rm Re} = 2 {\rm Fr}^4 {\rm Re} m_0$: penetration length for the wave beam
- m_{bl} : Boundary layer branche
- $\delta_{\mathrm{Re}} = \sqrt{2/\mathrm{Re}}$: Boundary layer length

Back to the viscous case: vertical generator

We consider here the case where $\omega=1$ and m=1. (generator set-up vertically)

$$\operatorname{Fr}^{2}(1+k^{2})\left(1-i\frac{1+k^{2}}{\operatorname{Re}}\right)-k^{2}=0$$

Two branches:

$$k^2 = \frac{i\text{Re}}{2k_0^2} \left(1 + \frac{2ik_0^2}{\text{Re}} - \sqrt{1 + 4i\frac{(1+k_0^2)k_0^2}{\text{Re}}} \right)$$

where $k_0 = \frac{\mathrm{Fr}}{\sqrt{1-\mathrm{Fr}^2}}$ is the inviscid value for k.

Large Reynold number limit

We now consider large values of the Reynold number. The solution then writes :

$$\begin{split} k_w &= \pm \left(k_0 - \frac{i k_0 \left(1 + k_0^2\right)^2}{2 \mathrm{Re}}\right) \\ m_{bl} &= \pm \left(1 + i\right) \sqrt{\frac{\mathrm{Re}}{2 k_0^2}} \end{split}$$

where $k_0 = \frac{Fr}{\sqrt{1 - Fr^2}}$ is the inviscid value for k.

Few remarks:

- k_w : Propagating branche
- ullet $L_{
 m Re} = rac{2{
 m Re}}{k_0 \left(1+k_0^2
 ight)^2}$: Penetration length for the wave beam
- \bullet k_{bl} : Boundary layer branche
- ullet $\delta_{
 m Re} = \sqrt{2k_0^2/{
 m Re}}$: Boundary layer length

Streaming

Wave-mean flow decomposition

- The averaging operator is defined by $\overline{u} = \frac{1}{(2\pi)^2} \int_0^{2\pi} \int_0^{2\pi} u \, dx dt$.
- The wave-mean decomposition is defined by $(u, w, b, P) = (\overline{u}, \overline{w}, \overline{b}, \overline{P}) + (u', w', b', P')$
- Taking the mean part of the equations of motion leads to :

$$\partial_t \overline{u} - \frac{1}{\mathrm{Re}} \Delta \overline{u} = -\partial_z \overline{u'w'}$$

and $\overline{w}, \overline{b} = 0$.

 \bullet Streaming is induced by the waves from the Reynold stress $\partial_z \overline{u'w'}$

Waves equations

$$\begin{cases} \partial_{t}u' + \overline{u}\partial_{x}u' + w'\partial_{z}\overline{u} + u'\partial_{x}u' + w'\partial_{z}u' - \partial_{z}\overline{u'w'} & = -\partial_{x}P' + \frac{1}{\operatorname{Re}}\Delta u' \\ \partial_{t}w' + \overline{u}\partial_{x}w' + u'\partial_{x}w' + w'\partial_{z}w' - \partial_{z}\overline{w'^{2}} & = -\partial_{z}P' + \frac{1}{\operatorname{Fr}^{2}}b' + \frac{1}{\operatorname{Re}}\Delta w' \\ \partial_{t}b' + \overline{u}\partial_{x}b' + u'\partial_{x}b' + w'\partial_{z}b' + w' & = 0 \\ \partial_{x}u' + \partial_{z}w' & = 0 \end{cases}$$

Non-linear terms responsible of the PSI.

Waves in shear-flows: WKB

solutions

WKB ansatz and linearization

We introduce a small dimensionles parameter $a \ll 1$ and assume that the mean-flow writes U = U(Z, T) where (Z, T) = a(z, t).

WKB ansatz:

$$\begin{bmatrix} u \\ w \\ b \\ P \end{bmatrix} = \sum_{j=0}^{\infty} a^{j+1} \begin{bmatrix} u_j(Z,T) \\ w_j(Z,T) \\ b_j(Z,T) \\ P_j(Z,T) \end{bmatrix} \exp\left(i\frac{\Phi(Z,T)}{a} - ix\right)$$

Injecting this ansatz into the wave equation and collecting the leading order terms in a leads to :

$$\mathbf{M} \begin{bmatrix} u_0 \\ w_0 \\ b_0 \\ P_0 \end{bmatrix} + a \begin{pmatrix} M \begin{bmatrix} u_1 \\ w_1 \\ b_1 \\ P_1 \end{bmatrix} + \begin{bmatrix} \partial_T u_0 + w_0 \partial_Z U + \frac{i}{\operatorname{Re}} \left(u_0 \partial_Z m + 2m \partial_Z u_0 \right) \\ \partial_T w_0 + \partial_Z P_0 + \frac{i}{\operatorname{Re}} \left(w_0 \partial_Z m + 2m \partial_Z w_0 \right) \\ \partial_T b_0 \\ \partial_Z w_0 \end{bmatrix} \right) = 0$$

WKB ansatz and linearization

$$\mathbf{M} \begin{bmatrix} u_0 \\ w_0 \\ b_0 \\ P_0 \end{bmatrix} + a \begin{pmatrix} M \begin{bmatrix} u_1 \\ w_1 \\ b_1 \\ P_1 \end{bmatrix} + \begin{bmatrix} \partial_T u_0 + w_0 \partial_Z U + \frac{i}{\operatorname{Re}} \left(u_0 \partial_Z m + 2m \partial_Z u_0 \right) \\ \partial_T w_0 + \partial_Z P_0 + \frac{i}{\operatorname{Re}} \left(w_0 \partial_Z m + 2m \partial_Z w_0 \right) \\ \partial_T b_0 \\ \partial_Z w_0 \end{bmatrix} \right) = 0$$

With:

$$\mathbf{M} = \begin{bmatrix} i(\omega - U) + \frac{1+m^2}{\text{Re}} & 0 & 0 & -i \\ 0 & i(\omega - U) + \frac{1+m^2}{\text{Re}} & -\frac{1}{\text{Fr}^2} & -im \\ 0 & 1 & i(\omega - U) & 0 \\ -i & -im & 0 & 0 \end{bmatrix}$$

$$\omega = \partial_I \Psi$$
$$m = -\partial_Z \Phi$$

Order zero

$$\mathbf{M} \begin{bmatrix} u_0 \\ w_0 \\ b_0 \\ P_0 \end{bmatrix} = 0 \implies \begin{cases} \det \mathbf{M} &= 0 \\ \begin{bmatrix} u_0 \\ w_0 \\ b_0 \\ P_0 \end{bmatrix} \\ = \begin{bmatrix} U - \omega \\ \frac{\omega - U}{m} \\ \frac{i}{m} \\ -(\omega - U)^2 \left(1 - i \frac{1 + m^2}{\operatorname{Re}(\omega - U)}\right) \end{bmatrix}$$

Order one

$$\begin{bmatrix} U - \omega \\ \frac{\omega - U}{m} \\ -\frac{i}{m \operatorname{Fr}^{2}} \\ -(\omega - U)^{2} \left(1 - i \frac{1 + m^{2}}{\operatorname{Re}(\omega - U)}\right) \end{bmatrix} \cdot \begin{bmatrix} \partial_{T} u_{0} + w_{0} \partial_{Z} U + \frac{i}{\operatorname{Re}} \left(u_{0} \partial_{Z} m + 2m \partial_{Z} u_{0}\right) \\ \partial_{T} w_{0} + \partial_{Z} P_{0} + \frac{i}{\operatorname{Re}} \left(w_{0} \partial_{Z} m + 2m \partial_{Z} w_{0}\right) \\ \partial_{Z} w_{0} \end{bmatrix}$$

$$\implies \mathcal{F}[U,\phi_0] = 0$$

where \mathcal{F} is differential operator (linear in ϕ_0).

Inviscid limit

For $\mathrm{Re}=\infty$, the last equation can be simplified into the wave activity equation :

$$\partial_T A + \partial_Z (Aw_g) = 0$$

with $A=E/(\omega-U)$ and $E=\frac{1}{4}\left(|u_0|^2+|w_0|^2+\operatorname{Fr}^2|b_0|^2\right)$. Also $\overline{u_0w_0}=Akw_g$ such that at leading order :

$$\partial_z \overline{u_0 w_0} = -\partial_t (kA)$$

Injecting this result into the mean-flow evolution equation leads to

$$\partial_t \left(U - kA \right) = 0$$

This result is known as the **non-acceleration theorem**.

Boundary conditions:

computation of the full wave field

Boundary condition: transverse oscillation

Let us consider a horizontally set-up generator. The fluid is viscous wih a **no-slip** boundary condition :

$$\mathbf{u}(x,z=h_b(x,t),t)=\partial_t h_b(x,t)\mathbf{e}_z$$

If we now suppose that $||h_b||\ll 1$, we perform the wave-decomposition and linearize this boundary condition to get :

$$\begin{cases} \overline{u}(z=0,t) = 0\\ u'(x,z=0,t) = 0\\ w'(x,z=0,t) = \partial_t h_b(x,t) \end{cases}$$

Important consequence :
$$\int\limits_{0}^{\infty}\partial_{z}\overline{u'w'}\,\mathrm{d}z=0.$$

Boundary condition: Progressive wave

Here we consider $h_b(x,t) = \epsilon \mathcal{R} e\left[e^{i(t-x)}\right]$ corresponding to $(\omega,k)=(1,1)$. Considering waves propagating upwardly, the we retain the solution for m with a negative imaginary part only. We first ignore the mean-flow.

$$\begin{cases} \tilde{w}'(z) &= a_{w}(Z) e^{-i \int_{0}^{z} m_{w} dz} + a_{bl}(Z) e^{-i \int_{0}^{z} m_{bl}, dz} \\ \partial_{z} \tilde{w}'(z=0) &= 0 \\ \tilde{w}'(z=0) &= i\epsilon \end{cases}$$

$$\implies \begin{cases} a_{w}(0) &= i\epsilon \frac{m_{bl}(0)}{m_{bl}(0) - m_{w}(0)} \\ a_{bl}(0) &= i\epsilon \frac{m_{w}(0)}{m_{w}(0) - m_{bl}(0)} \end{cases}$$

large Reynold number limit

Computation of Reynold stress in

General expression

For a wave field of the form $\tilde{w}(z) = a_w e^{-i \int m_w} + a_{bl} e^{-i \int m_{bl}}$, we have :

$$\overline{u'w'} = -\frac{1}{2} \left(|a_w|^2 m_w' e^{2 \int m_w''} + |a_{bl}|^2 m_{bl}' e^{2 \int m_{bl}''} \right.$$

$$\left. + \mathcal{R}e \left[a_w^* a_{bl} \left(m_{bl} + m_w^* \right) \right] \mathcal{R}e \left[e^{i \int (m_w^* - m_{bl})} \right] \right.$$

$$\left. + \mathcal{I}m \left[a_w^* a_{bl} \left(m_{bl} + m_w^* \right) \right] \mathcal{I}m \left[e^{i \int (m_w^* - m_{bl})} \right] \right)$$

- Bulk streaming
- Boundary streaming