天津大学《数值计算方法与 Matlab》

2010-2011 学年第二学期考试试卷及答案 A 卷

一、填空题: (共42分,每空3分)按要求把正确的答案填在每题中的横线上方。

1.这些误差的来源主要有:观测误差、舍入误差、截断误差、模型误差。(至少三种)

2. cond
$$_{=}(A) = 3$$
 , $\frac{\left\| \mathcal{S} x \right\|_{=}}{\left\| x \right\|_{=}}$ 的上界为 3 ε 。

3. S(x) 在区间[a,b] 上还满足: 在每一子区间[x,,x,,] (k=0,1,...n) 上是次数不超过 3 的多项

式。

4. 几何意义是: $S_{\mu}(x) = f(x) = \Phi \Phi$ 中的正交投影。

5.
$$f'(1.0) = 3.52$$
, $f''(1.0) = 11.00$

6. 差商
$$p[2^{\circ}, 2^{1}]$$
 = 148 ,和 $p[2^{\circ}, 2^{1}, ..., 2^{7}]$ = 1 。

7. 建立常微分方程初值问题数值解计算格式的三种基本方法是:数值微分法、Talyor展开法、数值积分法;Runge-Kutta法的基本思想是:利用 f(x,y)在某些点处函数值的线性组合构造差分方程,从而避免了高阶导数的计算。

8.Gauss 求积公式

具有 2n+1 次代数精度,相应的求积节点xk称为 Gauss 点

。计算积分 $\int_{0}^{1} e^{x} \sin x dx$ 的三点 Gauss-Legendre 数值计算公式为:

$$\approx \frac{5}{9}e^{(-\sqrt{0.6}+2)}\sin\left(-\sqrt{0.6}+2\right) + \frac{8}{9}e^{2}\sin\left(2\right) + \frac{5}{9}e^{(\sqrt{0.6}+2)}\sin\left(\sqrt{0.6}+2\right)\circ$$

二、解下列各题: (共36分,每小题9分)

求出 A, B, C 使得如下数值求积公式

$$\int_{-1}^{1} x f(x) dx \approx Af(-1) + Bf(0) + Cf(1)$$

代数精度尽可能地高,并指出代数精度是多少?

解: 首先令 $f(x)=1,x,x^2$, 分别代入求积公式中,使其精确地成立,得关于系数 A,B,C 的方

程:

$$0 = A + B + C$$

$$\frac{2}{3} = -A + 0 + C$$

$$0 = A + 0 + C$$
(5 $\frac{4}{3}$)

解得
$$A = -\frac{1}{3}$$
, $B = 0$, $C = \frac{1}{3}$ 。将 A, B, C 的上述值代回积分公式,得
$$\int_{-1}^{1} x f(x) dx \approx -\frac{1}{3} f(-1) + \frac{1}{3} f(1)$$
。 (7分)

再令 $f(x) = x^3$,代入积分公式得: 左边 = 2/5,右边 = $\frac{2}{3}$,左边不等于右边,所以最大次数是 2。 (9分)

2.已知方程组
$$\begin{cases} 2x_1 - x_2 = 1 \\ -x_1 + 2x_2 - x_3 = 0 \end{cases}$$
,
$$\begin{vmatrix} -x_2 + 2x_3 = 1.8 \end{vmatrix}$$

- (1) 写出 ω = 1.4 的 SOR 法迭代公式;
- (2) 取初始向量 $x^{(0)} = [1, 1, 1]^T$, 求出第一次近似解(保留 4 位小数)。
- 解: (1) SOR 迭代公式为:

$$\begin{cases} x_1^{(k+1)} = x_1^{(k)} + \frac{\omega}{2} \left(1 - 2x_1^{(k)} + x_2^{(k)} \right) = (1 - \omega) x_1^{(k)} + \frac{\omega}{2} \left(1 + x_2^{(k)} \right) \\ x_2^{(k+1)} = x_2^{(k)} + \frac{\omega}{2} \left(x_1^{(k+1)} - 2x_2^{(k)} + x_3^{(k)} \right) = (1 - \omega) x_2^{(k)} + \frac{\omega}{2} \left(x_1^{(k+1)} + x_3^{(k)} \right), \quad k = 1, 2, 3, \dots \\ x_3^{(k+1)} = x_3^{(k)} + \frac{\omega}{2} \left(1.8 + x_2^{(k+1)} - 2x_3^{(k)} \right) = (1 - \omega) x_3^{(k)} + \frac{\omega}{2} \left(1.8 + x_2^{(k+1)} \right) \end{cases}$$

当 ω = 1.4 的 SOR 迭代公式为

$$\begin{cases} x_1^{(k+1)} = 0.7 - 0.4x_1^{(k)} + 1.4x_2^{(k)} \\ x_2^{(k+1)} = 0.7x_1^{(k+1)} - 0.4x_2^{(k)} + 0.7x_3^{(k)} \\ x_3^{(k+1)} = 0.7 \times 1.8 + 0.7x_2^{(k+1)} - 0.4x_3^{(k)} \end{cases}$$

$$(7 \frac{h}{h})$$

- (2) 以 $x^{(0)} = [1, 1, 1]^T$ 为初始向量,得到第一次迭代近似解为 $x^{(1)} = (1, 1, 1.56)^T$ 。(9分)
- 3. 用积分 $\int_{2}^{x} x^{-1} dx = 2 \ln 2$ 计算 $\ln 2$,为使误差不超过 10^{-3} ,估计用复化 simpson 公式计算,需要取多少个节点? 并计算此 $\ln 2$ 的近似值。

解: 依愿意
$$\ln 2 = \frac{1}{2} \int_{2}^{x} x^{-1} dx$$
 ,被积函数 $f(x) = \frac{1}{2} x^{-1}$ 。 (2分)

设将区间[2.8] N等分, 步长 h=6/N。

用复化 simpson 公式计算时,余项 $R_s(f) = -\frac{b-a}{100} (\frac{h}{2})^4 f^{(4)}(\xi)$ 。令:

$$|R_s(f)| = \frac{6}{180} (\frac{3}{N})^4 |12\xi^{-5}| \le \frac{2 \cdot 3^4}{5N^4} \cdot \max_{2s \neq s8} |x^{-5}| \le \frac{1}{5} (\frac{3}{2N})^4 \le 10^{-3}$$

解得 $N \ge [15 / \sqrt{50}] \approx 5.6$,亦即,利用复化 simpson 公式计算时至少需要将区间[2,8] 6 等分,

计算时需要 13 个节点的函数值。

此时,步长
$$h=1$$
,节点 $x_k=2+k\cdot 1=k+2$,中点 $x_{k+\frac{1}{2}}=2+(k+\frac{1}{2})\cdot 1=k+\frac{5}{2}$ 。由复化

simpson 公式,有:

In
$$2 \approx S_6 = \frac{h}{6} \left[f(a) + 4 \sum_{k=0}^{N-1} f(x_{k+\frac{1}{2}}) + 2 \sum_{k=1}^{N-1} f(x_k) + f(b) \right]$$

$$= \frac{1}{6} \left[f(2) + 4 \sum_{k=0}^{5} f(k + \frac{5}{2}) + 2 \sum_{k=1}^{5} f(k + 2) + f(8) \right]$$

$$= \frac{1}{6} \left[\frac{1}{4} + 4 \sum_{k=0}^{5} \frac{1}{2k + 5} + 2 \sum_{k=1}^{5} \frac{1}{2k + 4} + \frac{1}{16} \right]$$

$$= \frac{1}{6} \left[\frac{1}{4} + 4 \left(\frac{1}{5} + \frac{1}{7} + \frac{1}{9} + \frac{1}{11} + \frac{1}{13} + \frac{1}{15} \right) + 2 \left(\frac{1}{6} + \frac{1}{8} + \frac{1}{10} + \frac{1}{12} + \frac{1}{14} \right) + \frac{1}{16} \right]$$

$$\approx 0.69320$$

$$(8 \frac{h}{2})$$

 $4. \forall v = \cos x$ 的函数数据表如下:

Xk	0.0	0.1	0.2	0.3	0.4	0.5	0.6
Уk	1.00000	0.99500	0.98007	0.95534	0.92106	0.87758	0.82534

利用适当的四次牛顿插公式计算 cos(0.575)的近似值(保留5位小数)。

解: 首先构造差分表如下:

从差分表中可以看出四阶差分近似为常数,所以可取四次插值的结果作为近似值。因 x=0.575 位 于表末,故取 $x_n = x_{6} = 0.6$,此时 h=0.1, $t=(x-x_n)/h=(0.575-0.6)/0.1=-0.25$. 利用四次 Newton 后插 公式有:

$$\cos 0.575 \approx N_4(0.6 + th) = f_n + t \nabla f_n + \frac{t(t+1)}{2!} \nabla^2 f_n + \frac{t(t+1)(t+2)}{3!} \nabla^3 f_n + \frac{t(t+1)(t+2)(t+3)}{4!} \nabla^4 f_n$$

Xk	Уk	Δy	$\Delta^2 y$	∆ ⁵ y	$\Delta^4 y$
0.0	1.00000	-0.00500	-0.00993	0.00013	0.00012
0.1	0.99500	-0.01493	-0.00980	0.00025	0.00010
0.2	0.98007	-0.02473	-0.00955	0.00035	0.00009
0.3	0.95534	-0.03428	-0.00920	0.00044	
0.4	0.92106	-0.04348	-0.00876		
0.5	0.87758	-0.05224			
0.6	0.82534				

(4分)

= 0.82534 + (-0.25)(-0.05224) +
$$\frac{(-0.25) \times (-0.25 + 1)}{2!} \times (-0.00876)$$

+
$$\frac{(-0.25) \times (-0.25 + 1)(-0.25 + 2)}{3!} \times (-0.00044)$$
 (9 分)

$$+\frac{(-0.25)\times(-0.25+1)(-0.25+2)(-0.25+3)}{4!}\times(-0.00009)$$

≈ 0.83915

三、 应用题: (共22分, 每小题 11分)

下面表格中的数据反映了在六个星期时间中果蝇群体的增长。用最小二乘法,估计模型 $P = a e^{b/t}$ 中参数 a, b (结果保留 3 位小数)。

7	15 117 1					35	
1	(观测到的果蝇数目)P	8	41	133	250	280	297

 \mathbf{K} : 対 $\mathbf{v} = \mathbf{a} e^{\mathbf{b} t}$ 两边取自然对数,得 $\mathbf{h} \mathbf{v} = \mathbf{h} \mathbf{a} + \mathbf{b} / t$ 。 令 $\mathbf{u} = \mathbf{h} \mathbf{v}$, $\mathbf{x} = 1 / t$, $\mathbf{A} = \mathbf{h} \mathbf{a}$, $\mathbf{B} = \mathbf{b}$

则: $\Pi u = A + Bx$ 来拟合原始数据。

首先, 由 $u_1 = \ln y_1$, $x_2 = 1/t_1$, 得到新的数据关系表如下:

Xk	0.1429	0.0714	0.0476	0.0357	0.0286	0.0238
u _k	2.0794	3.7136	4.8903	5.5215	5.6348	5.6937

即在 Φ = span $\{1, x\}$ 中求函数 u。此时 n=1,m=5,权函数o(x) = 1 , o(x) = 1 , o(x) = x 。法 方程形如:

$$\begin{pmatrix} (\boldsymbol{\varphi}_{_0},\boldsymbol{\varphi}_{_0}) & (\boldsymbol{\varphi}_{_1},\boldsymbol{\varphi}_{_0}) \\ (\boldsymbol{\varphi}_{_0},\boldsymbol{\varphi}_{_1}) & (\boldsymbol{\varphi}_{_1},\boldsymbol{\varphi}_{_1}) \end{pmatrix} \begin{pmatrix} \boldsymbol{A} \\ \boldsymbol{B} \end{pmatrix} = \begin{pmatrix} (\boldsymbol{u},\boldsymbol{\varphi}_{_0}) \\ (\boldsymbol{u},\boldsymbol{\varphi}_{_1}) \end{pmatrix}$$

这里
$$(\varphi_0, \varphi_0) = \sum_{i=0}^{5} 1 = 6$$
, $(\varphi_0, \varphi_1) = (\varphi_1, \varphi_0) = \sum_{i=0}^{5} x_i = 0.3500$, $(\varphi_1, \varphi_1) = \sum_{i=0}^{5} x_i^2 = 0.0304$

$$(u, \varphi_0) = \sum_{i=0}^{5} u_i = 27.5333$$
 和 $(u, \varphi_1) = \sum_{i=0}^{5} u_i x_i = 1.2889$ 。故有

$$\begin{cases} 6A + 0.3500B = 27.5333 \\ 0.3500A + 0.0304B = 1.2889 \end{cases}$$
 (9 $\frac{1}{2}$)

解得 A = 6.4354, B=-31.6538, 由此 a = 623.5075, b = -31.6538, 所以最小二乘解为 y = 623.5075 $e^{-31.65381}$ \approx 623.508 $e^{-31.6541}$ \approx (11分)

2.对于第二类椭圆积分 $y(x) = \int_0^x \sqrt{1-a \sin^{-2} t} \, dt \, \left(a \in (0,1)\right) \, x \in [0,\pi/2]$,利用求解常微分

方程初值问题数值解的标准四阶 Runge-Kutta 法,构造一个求解函数 y(x) 的数值解的计算公式。

解: 求解 $y(x) = \int_0^x \sqrt{1-a\sin^2 t} \, dt$ 等价于求解常微分方程初值问题

$$y'(x) = \sqrt{1 - a \sin^{-2} x}, y(0) = 0$$
 (3 $\frac{4}{3}$)

设积分结点为 x_a ,步长为h,记 y_a 为精确解 $y(x_a)$ 的数值近似。由标准四阶 Runge-Kutta 公式,

得

$$y_{n+1} = y_n + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$
,

$$k_1 = f(x_n, y_n) = \sqrt{1 - a \sin^{-2} x_n}$$
,

$$k_2 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2}k_1) = \sqrt{1 - a \sin^{-2}(x_n + 0.5h)}$$

$$k_3 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2}k_2) = \sqrt{1 - a \sin^{-2}(x_n + 0.5h)}$$
,

$$k_4 = f(x_n + h, y_n + hk_3) = \sqrt{1 - a \sin^2(x_n + h)}$$

将初值 $y(0) = y_0 = 0$, n = 0 , $x_0 = 0$ 代入上面各式, 可依次计算出函数 y(x) 数值解 y_1 , y_2 ,