Лекция. Параллелепипед. Куб.

Практическое занятие №38. Решение задач по теме «Призма»

Вспомним основные определения.

1. Определения.

Призма — это многогранник, у которого выделены две грани (основания призмы), лежащие в параллельных плоскостях, являющиеся равными и параллельно расположенными многоугольниками (т. е. одно основание призмы получается параллельным переносом другого).

Боковые ребра призмы соединяют соответствующие вершины оснований. Они равны и параллельны друг другу.

Боковые грани призмы представляют собой параллелограммы.

Призма называется **прямой**, если ее боковые ребра перпендикулярны основаниям (боковые грани при этом также перпендикулярны плоскостям оснований).

Прямая призма называется **правильной**, если ее основаниями являются правильные многоугольники.

Параллелепипед — это четырехугольная призма, в основании которой лежит параллелограмм.

Параллелограммы, из которых составлен параллелепипед, называются гранями, их стороны ребрами, а вершины параллелограммов — вершинами параллелепипеда. Параллелепипед имеет шесть граней, двенадцать ребер и восемь вершин. Две грани параллелепипеда, имеющие общее ребро, называются смежными, а не имеющие общих ребер — противоположными. На рисунке 36, б противоположными являются грани ABCD и $A_1B_1C_1D_1$, ABB_1A_1 и DCC_1D_1 , ADD_1A_1 и BCC_1B_1 . Две вершины, не принадлежащие одной грани, называются противоположными.

прямой Параллелепипед бывает наклонный. У произвольного И параллелепипеда шесть граней – параллелограммы. отомкап все боковые параллелепипеда параллелограммы, основания грани прямоугольники. У прямоугольного параллелепипеда – все шесть граней – прямоугольники.

Параллелепипед

Для любого параллелепипеда сформулируем 2 свойства:

- 1. Противоположные грани параллелепипеда параллельны и равны.
- 2. Диагонали параллелепипеда пересекаются в одной точке и делятся в этой точке пополам.

Часто в задачах говорится о трех измерениях параллелепипеда.

Рассмотрим на примере прямоугольного параллелепипеда

Длины трёх рёбер, имеющих общую вершину, называются измерениями прямоугольного параллелепипеда.

Свойства прямоугольного параллелепипеда

Свойство №2

Все двухгранные углы прямоугольного параллелепипеда — прямые.

Свойство №3

Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений

Дано:

 $ABCDA_1B_1C_1D_1$ — прямоугольный параллелепипед

Доказать:
$$DB_1^2 = AB^2 + BC^2 + BB_1^2$$

- Доказательство: 1) $DB^2 = AC^2 = AB^2 + BC^2$ (по свойству прямоугольника)
- 2) $BB_1 \perp DB$, $DB_1^2 = DB^2 + BB_1^2$

3)
$$DB_1^2 = DB^2 + BB_1^2$$

 $DB^2 = AB^2 + BC^2$ $\Rightarrow DB_1^2 = AB^2 + BC^2 + BB_1^2$

Равенство диагоналей.

Диагонали прямоугольного параллелепипеда равны

Куб

прямоугольный параллелепипед, у которого все три измерения равны (все ребра равные)

У куба все три измерения: длина, ширина и высота равны, значит если принять величину ребра куба = a, то

диагональ грани = $a\sqrt{2}$

диагональ куба = $a\sqrt{3}$

Практическое занятие

На практическом занятии предлагается выполнить Задание 3 Глава 8 «Многогранники и круглые тела», «Академия-Медиа»

Для выполнения этого задания необходимо вспомнить лекцию предыдущего занятия. Формулу Эйлера $B+\Gamma-P=2$

Задание №4 связано непосредственно с темой этого занятия.

D

D

 A_1

B

С

В продолжении рассмотрим следующие задачи

Дано:

 $ABCDA_1B_1C_1D_1$ — прямоугольный параллелепипед $BC_1 = 11 \text{ cm}, DB = 20 \text{ cm}, A_1B = 19 \text{ cm}$

Найти: D₁B

Решение:

1) $d^2 = a^2 + b^2 + c^2$ (по свойству прямоугольного параллелепипеда)

2) $A_1A \perp AB \Rightarrow \triangle A_1AB -$ прямоугольный $\Rightarrow A_1B^2 = a^2 + c^2$

3) $C_1C \perp BC \Rightarrow \triangle C_1CB$ — прямоугольный $\Rightarrow C_1B^2 = b^2 + c^2$

4) ABCD — прямоугольник \Rightarrow DB² = a² + b²

5) $a^2 + b^2 = 20^2$ $\begin{vmatrix} a^{2} + c^{2} &= 19^{2} \\ a^{2} + c^{2} &= 19^{2} \end{vmatrix} \Rightarrow 2(a^{2} + b^{2} + c^{2}) = 20^{2} + 19^{2} + 11^{2} \Rightarrow b^{2} + c^{2} = 11^{2}$

 $2d^2 = 20^2 + 19^2 + 11^2 \Rightarrow d^2 = \frac{20^2 + 19^2 + 11^2}{2} = 441 \Rightarrow d = 21 \text{ cm}$

Ответ: 21 см

Задачи и теоретический материал Вы можете изучить с помощью видеоурока сайта «Инфоурок» https://infourok.ru/videouroki/1430

Задача 2

Дано:

 $ABCDA_1B_1C_1D_1$ — прямоугольный параллелепипед

 $AC_1 = 12$ см, BD_1 составляет с плоскостью грани

 AA_1D_1D угол в 30°, а с ребром DD_1 – угол в 45°

Найти: AB, AD, D₁D

Решение:

1) AB
$$\perp$$
 (AA₁D₁D) \Rightarrow AD₁ — проекция BD₁ \Rightarrow \angle AD₁B = 30°

2)
$$BD_1 = AC_1 = 12$$
 см (по свойству)

3)
$$\Delta D_1 AB$$
 – прямоугольный, $\angle AD_1 B = 30^\circ$, $D_1 B = 12$ см, $\frac{D_1 B}{2} = 6$ см

5)
$$\triangle$$
BAD- прямоугольный, AB = 6 см, BD=6 √2 см

$$AD = \sqrt{BD^2 - AB^2} = \sqrt{72 - 36} = \sqrt{36} = 6 \text{ cm}$$

Ответ: 6 см, 6 см, $6\sqrt{2}$ см

Задача 219.

Дано: $ABCDA_1B_1C_1D_1$ — прямоугольный параллеле-

пипед, AB = 12 см, AD = 5 см, $(D_1\widehat{B}, \widehat{ABC}) = 45^\circ$.

Найти DD_1 .

Решение.

1) Из
$$\triangle ABD$$
 имеем $BD = \sqrt{AB^2 + AD^2}$, $BD = \sqrt{12^2 + 5^2} = \sqrt{12^2 + 5^2}$

$$=\sqrt{169}=13$$
 (cm) (puc. 3.1).

2) $D_1D \perp ADC$, BD — проекция диагонали BD_1 на плоскость ADC, поэтому $\angle D_1BD$ — угол между диагональю BD_1 и плоскостью основания: $\angle D_1BD = 45^\circ$. $\triangle D_1BD$ прямоугольный и равнобедренный:

 $D_1D = DB = 13$ (cm). Other: 13 cm.

В

Глава 8 «Многогранники и круглые тела», учебник Башмаков М.И. Математика: алгебра и начала математического анализа, геометрия: учеб. для студ. учреждений сред.проф. образования/ М.И. Башмаков. – 4-е изд.,стер. – М.: ИЦ «Академия», 2017, - 256 с.

В случае отсутствия печатного издания, Вы можете обратиться к Электроннобиблиотечной системе «Академия»

Список использованных интернет-ресурсов:

- 1. https://urait.ru/
- 2. https://23.edu-reg.ru/
- 3. https://infourok.ru/videouroki/