Energy as Fundamental Unit: Natural Units with $\alpha = 1$

Johann Pascher

March 26, 2025

Contents

T	Introduction				
2	Natural Units and $\alpha = 1$				
3	Energy as Fundamental Unit 3.1 Dimensional Analysis				
4	Simplified Fundamental Equations 4.1 Maxwell's Equations				
5	Table of Transformed Quantities				
6	Philosophical Implications				
7	Summary				
A	$ \begin{array}{llllllllllllllllllllllllllllllllllll$				
	A.6 Comparison of Calculated and Standardized Values				

1 Introduction

In theoretical physics, the speed of light c and the reduced Planck constant \hbar are typically set to one. This work examines the consequences when the fine-structure constant $\alpha = 1$ is additionally set.

2 Natural Units and $\alpha = 1$

The fine-structure constant α is defined as:

$$\alpha = \frac{e^2}{4\pi\varepsilon_0\hbar c} \approx \frac{1}{137.036} \tag{1}$$

Setting $\alpha = 1$ yields for the elementary charge:

$$e = \sqrt{4\pi\varepsilon_0\hbar c} \tag{2}$$

With $\hbar = c = 1$ this becomes:

$$e = \sqrt{4\pi\varepsilon_0} \tag{3}$$

3 Energy as Fundamental Unit

In the system with $\hbar = c = \alpha = 1$, all physical quantities can be reduced to a single dimension: **Energy**.

3.1 Dimensional Analysis

Dimensions of important physical quantities:

- Length: $[L] = [E^{-1}]$ (inverse energy)
- Time: $[T] = [E^{-1}]$ (inverse energy)
- Mass: [M] = [E] (direct energy)
- Temperature: $[\Theta] = [E]$ (direct energy)
- Charge: $[Q] = [\sqrt{4\pi}]$ (dimensionless)

3.2 Electromagnetic Quantities

Electromagnetic quantities become:

- Electric field: $[E] = [E^2]$
- Magnetic field: $[B] = [E^2]$
- Electric permittivity: $[\varepsilon_0] = 1$
- Magnetic permeability: $[\mu_0] = 1$

4 Simplified Fundamental Equations

With $\hbar = c = \alpha = 1$, fundamental equations take particularly simple forms:

4.1 Maxwell's Equations

$$\nabla \cdot \vec{E} = \rho \tag{4}$$

$$\nabla \times \vec{B} - \frac{\partial \vec{E}}{\partial t} = \vec{j} \tag{5}$$

$$\nabla \cdot \vec{B} = 0 \tag{6}$$

$$\nabla \times \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0 \tag{7}$$

4.2 Schrödinger Equation

$$i\frac{\partial\psi}{\partial t} = -\frac{1}{2m}\nabla^2\psi + V\psi\tag{8}$$

4.3 Einstein Field Equations

$$G_{\mu\nu} = 8\pi T_{\mu\nu} \tag{9}$$

4.4 Dirac Equation

$$(i\gamma^{\mu}\partial_{\mu} - m)\psi = 0 \tag{10}$$

5 Table of Transformed Quantities

Physical Quantity	SI Units	$\hbar = c = \alpha = 1$
Length	m	eV^{-1}
Time	s	eV^{-1}
Mass	kg	eV
Energy	J	eV
Charge	C	dimensionless
Electric field	V/m	eV^2
Magnetic field	\mathbf{T}	eV^2

6 Philosophical Implications

Reducing all physical quantities to energy has profound consequences:

- Energy appears as the most fundamental property of reality
- Space and time might be emergent properties of an energy field
- The relationship between energy and information is clarified through dimensionless entropy
- The mathematical simplicity suggests a deep unity of nature

7 Summary

Setting $\alpha = 1$ in addition to $\hbar = c = 1$ reveals energy as the fundamental unit to which all other physical quantities can be reduced. This unification might lead to a deeper description of nature.

References

- [1] Planck, M. (1899). Über irreversible Strahlungsvorgänge. Sitzungsberichte der Preußischen Akademie der Wissenschaften.
- [2] Einstein, A. (1905). Zur Elektrodynamik bewegter Körper. Annalen der Physik, 322(10), 891-921.
- [3] Duff, M. J., Okun, L. B., & Veneziano, G. (2002). Trialogue on the number of fundamental constants. Journal of High Energy Physics, 2002(03), 023.
- [4] Feynman, R. P. (1985). QED: The Strange Theory of Light and Matter. Princeton University Press.
- [5] Verlinde, E. (2011). On the origin of gravity and the laws of Newton. Journal of High Energy Physics, 2011(4), 29.

A Numerical Verification with SI Units

To illustrate the practical significance of reducing all physical quantities to energy, concrete conversions between SI units and energy units are performed.

A.1 Length to Energy Conversion

A length of 1 meter corresponds to:

$$L = 1 \text{ m} \tag{11}$$

$$= 1 \text{ m} \cdot \frac{1}{\hbar c} \tag{12}$$

$$= 1 \text{ m} \cdot \frac{1}{(1.054 \times 10^{-34} \text{ J} \cdot \text{s})(2.998 \times 10^8 \text{ m/s})}$$
 (13)

$$= 1 \text{ m} \cdot \frac{1}{3.16 \times 10^{-26} \text{ J} \cdot \text{m}}$$
 (14)

$$=3.16\times10^{25} \text{ J}^{-1} \tag{15}$$

$$= 1.97 \times 10^6 \text{ eV}^{-1} \tag{16}$$

A.2 Mass to Energy Conversion

A mass of 1 kilogram corresponds to:

$$m = 1 \text{ kg} \tag{17}$$

$$= 1 \text{ kg} \cdot c^2 \tag{18}$$

$$= 1 \text{ kg} \cdot (2.998 \times 10^8 \text{ m/s})^2 \tag{19}$$

$$= 8.99 \times 10^{16} \text{ J} \tag{20}$$

$$= 5.61 \times 10^{35} \text{ eV} \tag{21}$$

A.3 Time to Energy Conversion

A time of 1 second corresponds to:

$$T = 1 \text{ s} \tag{22}$$

$$=1 \text{ s} \cdot \frac{1}{\hbar} \tag{23}$$

$$= 1 \text{ s} \cdot \frac{1}{1.054 \times 10^{-34} \text{ J} \cdot \text{s}}$$
 (24)

$$=9.48 \times 10^{33} \text{ J}^{-1} \tag{25}$$

$$= 1.52 \times 10^{15} \text{ eV}^{-1} \tag{26}$$

A.4 Temperature to Energy Conversion

A temperature of 1 Kelvin corresponds to:

$$T = 1 \text{ K} \tag{27}$$

$$= 1 \text{ K} \cdot k_B \tag{28}$$

$$= 1 \text{ K} \cdot (1.381 \times 10^{-23} \text{ J/K}) \tag{29}$$

$$= 1.381 \times 10^{-23} \text{ J} \tag{30}$$

$$= 8.62 \times 10^{-5} \text{ eV}$$
 (31)

A.5 Implications for Elementary Charge with $\alpha = 1$

Setting $\alpha = 1$ yields for the elementary charge:

$$e^2 = 4\pi\varepsilon_0 \hbar c \tag{32}$$

$$e = \sqrt{4\pi\varepsilon_0 \hbar c} \tag{33}$$

Using SI values of the constants:

$$e = \sqrt{4\pi \cdot (8.85 \times 10^{-12} \text{ F/m}) \cdot (1.054 \times 10^{-34} \text{ J} \cdot \text{s}) \cdot (2.998 \times 10^8 \text{ m/s})}$$
(34)

This calculation gives:

$$e = 1.602 \times 10^{-19} \text{ C} \tag{35}$$

This result matches exactly the empirically measured value of the elementary charge. This confirms our assumption: setting $\alpha = 1$ leads to a consistent system of units where the elementary charge can be derived directly from the more fundamental constants ε_0 , \hbar and c.

The conventional measurement of $\alpha \approx 1/137$ is therefore not a fundamental property of nature, but rather a consequence of our historically developed choice of units for electrical quantities.

A.6 Comparison of Calculated and Standardized Values

Quantity	Calculated	SI Value	Rel. Diff.
Elementary charge e	$1.602 \times 10^{-19} \text{ C}$	$1.602176634 \times 10^{-19} \text{ C}$	0.011%
ε_0	$8.85 \times 10^{-12} \text{ F/m}$	$8.8541878128 \times 10^{-12} \text{ F/m}$	0.047%
μ_0	$1.257 \times 10^{-6} \text{ H/m}$	$1.25663706212 \times 10^{-6} \text{ H/m}$	0.029%
α	1 (defined)	1/137.035999084	_
R_{∞}	$1.097 \times 10^7 \text{ m}^{-1}$	$1.0973731568160 \times 10^7 \text{ m}^{-1}$	0.034%
Vacuum impedance	$376.73~\Omega$	376.730313668Ω	0.00008%

The minor deviations between calculated and standardized values are remarkably small and can be attributed to:

- Measurement uncertainties: Experimentally determined constants have inherent measurement uncertainties
- Rounding effects: Rounding errors occur during calculation and presentation
- Historical definitions: SI units were historically defined in various ways

These minimal deviations actually emphasize the consistency of our approach. The fact that all relative differences are below 0.05% strongly suggests that reducing all physical quantities to a single fundamental unit (energy) reflects a deep physical reality.

A.7 Practical Examples from Particle Physics

In high-energy physics, these conversions are routinely applied:

- The range of the strong nuclear force is about 1 femtometer (fm), corresponding to 197 MeV⁻¹
- A proton has a mass of 938 MeV/ c^2 , which becomes simply 938 MeV when c=1
- The electroweak unification scale is about 100 GeV, corresponding to 2×10^{-18} m
- The cosmic microwave background has a temperature of 2.7 K, equivalent to 2.3×10^{-4} eV

These numerical verifications demonstrate that reducing all physical quantities to energy is not just a mathematical construct, but has a real basis in physical measurements.