

Aplicação de abordagens teórico-práticas que não utilizam métodos de gradientes à resolução do problema de geração de energia.

Nicolas Luiz Baptista Dias ¹, Antônio Roberto Balbo ²

¹ Colégio Técnico Industrial Professor Isaac Portal Roldán, UNESP Bauru, SP, ² Departamento de Matemática, Faculdade de Ciências, FC/UNESP, Bauru, SP

1 Introdução

O trabalho proposto visa uma introdução ao estudo de problemas de otimização não linear irrestritos, principalmente ao problema de geração de energia, da Engenharia Elétrica. Para a resolução desse problema consideram-se métodos numéricos de resolução, que não dependem da derivada de funções, denominados na literatura de métodos sem derivada e que estão inseridos na área de Otimização. O método sem derivada estudado e implementado nesse trabalho é o conhecido método de coordenada cíclica. Esse método, a cada iteração, depende da realização de um procedimento de busca unidimensional a ser realizado em uma e a cada uma das variáveis do problema, através de procedimentos de busca unidimensional, fixando-se as demais variáveis. Para a realização da busca unidimensional foram considerados métodos clássicos unidimensionais que não utilizam derivadas, o de busca dicotômica, de Fibonacci e do segmento áureo. O método cíclico com procedimento de busca unidimensional foi implementado em linguagem de programação C# e testado no problema de geração de energia com 3 geradores, comparando-se o desempenho do método com cada um dos métodos irrestritos citados.

2 Materiais e métodos

Apresentaremos a seguir o método de coordenada cíclica [2], o qual é desenvolvido para resolução do problema irrestrito de otimização não linear para funções de duas variáveis, definido por: Minimizar f(x,y) sujeito $a: x \in [a,b] \subset \mathbb{R}$ $e y \in [c,d] \subset \mathbb{R}$, em que $f: \mathbb{R}^2 \to \mathbb{R}$ \mathbb{R} ; $(x,y) \in \mathbb{R}^2$ tal que $x \in [a,b] \subset \mathbb{R}$ e $y \in [c,d] \subset \mathbb{R}$.

Considerando-se a solução $(x^*, y^*) \in \mathbb{R}^2$ como a que minimiza o problema, então, a coordenada de mínimo no eixo das abcissas pertence ao intervalo [a,b], ou seja, $x^* \in [a,b]$ e a coordenada de mínimo do eixo das ordenadas pertence ao intervalo [c,d], ou seja, $y^* \in [c,d]$.

2.1 Método da coordenada cíclica

De acordo com [2], o método de coordenada cíclica é um algoritmo de otimização iterativo para encontrar soluções ótimas para problemas de programação não linear. Ele é baseado em ciclos onde cada variável é otimizada enquanto as outras são mantidas fixas. O método depende de métodos irrestritos unidimensionais (dicotômico, segmento áureo e Fibonacci) vistos em [1].

2.1.1 Algoritmo do método da coordenada cíclica

Passo 1 (Inicialização): Para k = 0, começar com os intervalos $[a_k b_k]$, $[c_k d_k]$, os quais podem ser quaisquer intervalos finitos que contenham, respectivamente, as soluções $x^* \in \mathbb{R}$ e $y^* \in \mathbb{R}$, para o Problema (2.1);

Passo 2 (Seleção da Variável): Em cada iteração, escolher uma variável para otimizar. Devese selecionar uma variável de forma sequencial ou usar uma estratégia de seleção mais sofisticada, dependendo do problema;

Passo 3 (Otimização da Variável Selecionada): Fixar todas as outras variáveis e otimizar a variável selecionada, ou seja, encontrar o valor dessa variável que minimiza ou maximiza a função objetivo, considerando-se fixos os valores das outras variáveis. Conforme a natureza do problema, utilizam-se métodos simples como tentativa e erro, ou métodos mais avançados como de busca e partição, os quais foram explorados nesse passo: busca dicotômica (2.4), Fibonacci (2.5) ou segmento áureo (2.6);

Passo 4 (Atualização da Solução): Após encontrar o valor ótimo da variável selecionada, atualizar a solução substituindo o valor antigo dessa variável pelo valor ótimo encontrado. Mantenha as outras variáveis constantes

Passo 5 (Critério de Parada): Verificar se o critério de parada foi alcançado, ou seja, todas as variáveis do problema já foram minimizadas: $l_1 = |a_k - b_k| \le \varepsilon$ e $l_2 = |d_k - c_k| \le \varepsilon$, $\varepsilon > 0$: tolerância positiva. Assim, $x^* \in [a_k, b_k]$ e $y^* \in [c_k, d_k]$;

Passo 6 (Seleção da Próxima Variável): Caso o critério de parada não tenha sido alcançado, selecione a próxima variável para otimizar e repita os passos 3 a 5;

Passo 7 (Conclusão): Quando o critério de parada for alcançado no Passo 5, tem-se uma solução aproximadamente ótima para o problema de otimização (2.1).

3 Aplicação e resultados

O problema de geração de energia, da área de engenharia elétrica, tem relação com a geração de potência elétrica e de despachar usinas para atender à demanda de energia de forma mais econômica e eficaz. Esses problemas são denominados de forma geral, problemas de despacho econômico [3]. Em sua formulação mais simples, quando não se considera a inserção de carregamento de pontos de válvula, a função objetivo de minimização de custos termelétricos F_{ρ} desse problema, é uma função quadrática e convexa. Em (1) é formulado e apresentado o modelo matemático que expressa esse problema:

Minimizar
$$Fe = \sum_{i=1}^{n} a_i P g_i^2 + b_i P g_i + c_i$$
; Sujeito a $\sum_{i=1}^{n} P g_i = D$; onde
$$P g_i^{min} \le P g_i \le P g_i^{max} \text{ e } i=1,...,n.$$
 (1)

em que, a função objetivo F_{ρ} definida em (1), é quadrática, convexa e conhecida como a função custo de geração das unidades térmicas; a_i , b_i , c_i , são os coeficientes de custo desta função; Pg_i é a potência gerada, Pg_i^{min} a potência mínima e Pg_i^{max} é a potência máxima considerada para cada unidade geradora i, i = 1,...,n.. O problema (1) é transformado em um problema irrestrito reescrevendo-se $Pg_n = D - \sum_{i=1}^{n-1} Pg_i$, substituindo-se Pg_n na função Fe de (1). A interpretação geométrica do PGE com 3 geradores nas variáveis Pg₁, Pg₂, é vista na Figura 1.

	P_{min}	P_{max}	a _i	b_i	c _i
Gerador	(MW)	(MW)	(\$/MW²)	(\$/MW)	(\$)
1	100	600	0,001562	7,92	561
2	50	200	0,00482	7,97	78
2	400	400	0.004040	7.05	240

Tabela 1. Dados do PGE de 3 geradores.

Figura 1. O PGE com 3 geradores representado em Pg₁, Pg₂.

Na Tabela 1 são mostrados os dados e na Tabela 2, os resultados obtidos pelo método visto na Seção 2.1, testado em linguagem C#, para o PGE - 3 geradores, cujos dados estão em [3].

Tabela 2. Resultados obtidos pelos métodos de busca unidimensional no problema de otimização PGE com 3 geradores.

Método	Dicotômica	Aureo	Fibonacci	
Solução (x;y)	(393,17726; 122,22099)	(393,16981;122,22642)	(393,16888; 122,22712)	
Função objetivo	8194,35612	8194,35612	8194,35612	
Nº de iterações	188	252	227	
Nº ciclos	15	15	15	
Tempo (s)	1,55	1,74	1,83	

Observa-se que todos os métodos obtiveram uma solução próxima à solução ótima para o PGE, a qual é $(Pg_1, Pg_2) = (393,17; 122,22)$, tal que $Pg_3 = 850 - \sum_{i=1}^{2} Pg_i = 334,61$, com Fe = 8194,35. A cada ciclo (repetição) de execução do método implementado, ocorre um refinamento da região de confiança $[Pg_1^{min}, Pg_1^{max}] = [100,400]$ e $[Pg_2^{min}, Pg_2^{max}] = [100,400]$ [50,150] até que sua amplitude satisfaça a precisão $\varepsilon = 10^{-3}$, que foi considerada para o critério de parada descrito no Passo 5 do algoritmo 2.1.1, tal que $Pg_3 \in [Pg_3^{min}, Pg_3^{max}] =$ [100,400].

Comparando-se os resultados dos métodos de busca unidimensional implementados para a execução do Passo 3 do algoritmo 2.1.1, observa-se que os 3 métodos considerados tiveram um bom desempenho computacional à determinação da solução ótima do PGE com 3 geradores, a qual é dada em [3].

4 Conclusão

Apesar de possuírem menor precisão e necessitarem de mais iterações e ciclos para a obtenção do mínimo global do problema visto em [3], os métodos caracterizados na literatura como sem derivadas (without derivatives), desenvolvidos e implementados para a realização desse trabalho, obtiveram bons resultados para a solução ótima e para o valor mínimo da função objetivo do PGE com 3 geradores.

Referências

[1] BAPTISTA, E. C., Otimização Não-Linear. Material didático ou instrucional -Apostila. Pós-graduação em Engenharia Elétrica. FEB-Unesp de Bauru. 2008. [2] BAZARAA, M. S.; SHERALI, H. D.; SHETTY, C. M. Nonlinear Programming, Theory and Algoritms, New York, John Wiley & Sons, 2010.

[3] STEINBERG, M. J. C and SMITH, T. H. Economic loading of power plants and eletric systems. MacGraw-Hill, 1943.