

Klaszterezés

2023.10.09.

Huszti Dorottya data scientist

MODELLEZÉSI ALAPOK

Feladat

Van egy tanító adathalmazom ... ahol ismerem a tulajdonságokat

Kérdés, hogy milyen csoportokba rakható úgy, hogy

... csoporton belül hasonlóak

.... csoportok ne hasonlítsanak egymásra

Kérdések

- Hány csoportba soroljuk az adatokat?
- Hogyan mérjük a hasonlóságot?
- Honnan tudjuk, hogy mennyire jó a modell?

ADATBÁNYÁSZATI ALAPPROBLÉMÁK

Tulajdonságleíró változók – input attribútumok

Életkor	Jövedelem	Lakásméret	Gyerekek	Autók száma
42	280 000	82	3	1
88	90 000	44	0	0
22	180 000	32	0	1
38	400 000	102	1	2

Klaszterező algoritmusok

ALGORITMUSOK FAJTÁI

Sűrűség alapú DBSCAN, Mean-shift clustering

K-közép (Kmeans)

Klaszterező algoritmusok

 Klaszterközéppontok (centroid) véletlenszerű kiválasztása

 Klaszterközéppontok (centroid) véletlenszerű kiválasztása

- Klaszterközéppontok (centroid) véletlenszerű kiválasztása
- 2. Pontok hozzárendelése a legközelebbi centroidhoz

- Klaszterközéppontok (centroid) véletlenszerű kiválasztása
- 2. Pontok hozzárendelése a legközelebbi centroidhoz

- Klaszterközéppontok (centroid) véletlenszerű kiválasztása
- 2. Pontok hozzárendelése a legközelebbi centroidhoz
- 3. Centroid újraszámítás (klaszterek súlypontja)

- Klaszterközéppontok (centroid) véletlenszerű kiválasztása
- 2. Pontok hozzárendelése a legközelebbi centroidhoz
- 3. Centroid újraszámítás (klaszterek súlypontja)

- Klaszterközéppontok (centroid) véletlenszerű kiválasztása
- 2. Pontok hozzárendelése a legközelebbi centroidhoz
- 3. Centroid újraszámítás
- 2-3. Pontok ismétlése, míg nem változik

- Klaszterközéppontok (centroid) véletlenszerű kiválasztása
- 2. Pontok hozzárendelése a legközelebbi centroidhoz
- 3. Centroid újraszámítás
- 2-3. ismétlése, míg nem változik

 Klaszter középpontok (centroid) véletlenszerű kiválasztása

- Klaszter középpontok (centroid) véletlenszerű kiválasztása
- 2. Pontok hozzárendelése a legközelebbi centroidhoz

- Klaszter középpontok (centroid) véletlenszerű kiválasztása
- 2. Pontok hozzárendelése a legközelebbi centroidhoz
- Centroid újraszámítás: Átlagosan legközelebb lévő pont

- Klaszter középpontok (centroid) véletlenszerű kiválasztása
- 2. Pontok hozzárendelése a legközelebbi centroidhoz
- Centroid újraszámítás: Átlagosan legközelebb lévő pont
- 4. Iteráció, míg nem konvergál2. ponttól

K-MEANS KIHÍVÁSAI

Eltérő skálák Hiányzó értékek • Kiugró értékek • Nem tudunk távolságot • Torzítják a centroidok • Nagyobb skálájú változók számolni pozícióját dominálnak Kategorikus Bemenet K meghatározása változók meghatározása [°] 5 Irreleváns változók zajt Nem tudunk távolságot Releváns és nem triviális visznek a rendszerbe számolni csoportok megtalálása

Eltérő skálák

K MEGHATÁROZÁSA

Könyökpont keresés

- Amíg az SSE dinamikusan csökken
- SSE: (sum of squared errors) Klaszteren belüli négyzetes távolság a klaszterközépponttól

$$SSE = \sum_{i=1}^{k} \sum_{j=1}^{n} (xi^{(j)} - c_j)$$

K MEGHATÁROZÁSA

K MEGHATÁROZÁSA

K-MEANS K-MEDOID

Előnyök

- 1. Könnyen implementálható
- 2. Gyors

Hátrányok

- Előre meg kell határoznunk a klaszterek számát
- Kezdeti centroidokra nagyon érzékeny
- 3. Gömb alakú klasztereket talál
- 4. Hasonló méretű és sűrűségű klaszterekre működik jól
- Klasztereket hipersíkokkal (több D sík) vágja el egymástól

Kezdjünk bele!

Irány a notebook

URL: https://bme.dmlab.hu/tree?

JELSZÓ: BME_D@t@23

HA KÉRDÉSED VAN, BÁTRAN KERESS MINKET!

HUSZTI DOROTTYA
DATA SCIENTIST
huszti.dorottya@dmlab.hu

