7) Two-Stage Least Squares (2SLS)

Vitor Kamada

June 2018

1/16

Tables, Graphics, and Figures from

Mastering 'Metrics: The Path from Cause to Effect

Angrist & Pischke (2014): Chapter 3.3

2/16

Instrumental Variables Estimation

$$y = \beta_0 + \beta_1 x + u$$

I)
$$Cov(z, u) = 0$$

II)
$$Cov(z, x) \neq 0$$

$$Cov(z, y) = \beta_1 Cov(z, x) + Cov(z, u)$$

$$\hat{\beta}_1 = \frac{Cov(z, y)}{Cov(z, x)}$$

Instrument Relevance

$$x = \pi_0 + \pi_1 z + v$$

$$\pi_1 = \frac{Cov(z,x)}{Var(z)}$$

$$H_0: \pi_1 = 0$$

4 / 16

Does High Fertility Rate Perpetuate Poverty?

Population Grows Faster than Food (Malthus)

Quantity-Quality Tradeoff (Gary Becker)

Negative correlation between average family size and development indicators like education

China One Child Policy in 1979

Angrist, Lavy, and Schlosser (2010)

Second Birth	Children per Family
Singleton	3.6
Twin	3.92

1% of mothers have twins

Second-Born Sibling	Children per Family
Opposite Sex	3.6
Same Sex	3.68

Half of families have either two boys or two girls

Two-Stage Least Squares (2SLS)

$$y_1 = \beta_0 + \beta_1 y_2 + \beta_2 z_1 + u_1$$

$$y_2 = \pi_0 + \pi_1 z_1 + \pi_2 z_2 + \pi_3 z_3 + v_2$$

$$Cov(z_i, v_2) = 0, \quad i = 1, 2, 3$$

 $\pi_2 \neq 0 \text{ or } \pi_3 \neq 0$

 y_1 on \hat{y}_2 and z_1

Quantity-Quality First Stages

	Twins instruments		Same-sex instruments		Twins and same- sex instruments	
	(1)	(2)	(3)	(4)	(5)	
Second-born twins	.320 (.052)	.437 (.050)			.449 (.050)	
Same-sex sibships			.079 (.012)	.073 (.010)	.076 (.010)	
Male		018 (.010)		020 (.010)	020 (.010)	
Controls	No	Yes	No	Yes	Yes	

Sample Size is 89,445

Estimates of the Quantity-Quality Trade-off

		-	2SLS estima	tes
Dependent variable	OLS estimates (1)	Twins instruments (2)	Same-sex instruments (3)	Twins and same- sex instruments (4)
Years of schooling	145	.174	.318	.237
	(.005)	(.166)	(.210)	(.128)
High school graduate	029	.030	.001	.017
	(.001)	(.028)	(.033)	(.021)
Some college	023	.017	.078	.048
(for age ≥ 24)	(.001)	(.052)	(.054)	(.037)
College graduate	015	021	.125	.052
(for age ≥ 24)	(.001)	(.045)	(.053)	(.032)

How to Install Packages in Anaconda?

Vitor Kamada ECO 6100 Econometrics June 2018

10 / 16

Go to Anaconda Environments

- 1) Click in the green arrow of "base (root)" to "Open Terminal"
- 2) Then, type: "pip install linearmodels"

Mroz (1987)

"The Sensitiviy of an Empirical Model of Married Women's Hours of Work to Economic and Statistical Assumptions", Econometrica, 55, 765-799.

import pandas as pd import numpy as np from linearmodels.iv import IV2SLS

 $\label{lem:def} $$ df = pd.read_stata('C:\Vitor\Vito$

df[['wage','educ','exper','motheduc','fatheduc']].describe()

	wage	educ	exper	motheduc	fatheduc
count	428.000000	753.000000	753.00000	753.000000	753.000000
mean	4.177680	12.286853	10.63081	9.250996	8.808765
std	3.310283	2.280246	8.06913	3.367468	3.572290
min	0.128200	5.000000	0.00000	0.000000	0.000000
25%	2.262600	12.000000	4.00000	7.000000	7.000000
50%	3.481900	12.000000	9.00000	10.000000	7.000000
75%	4.970750	13.000000	15.00000	12.000000	12.000000
max	25.000000	17.000000	45.00000	17.000000	17.000000

13 / 16

$mod1 = 'np.log(wage) \sim 1 + exper + expersq + educ'$

reg1 = IV2SLS.from_formula(mod1, df).fit(cov_type='robust')
print(reg1)

	Parameter	Std. Err.	T-stat	P-value
Intercept	-0.5220	0.2007	-2.6010	0.0093
exper	0.0416	0.0152	2.7344	0.0063
expersq	-0.0008	0.0004	-1.9402	0.0524
educ	0.1075	0.0132	8.1697	0.0000

14 / 16

$mod2 = 'np.log(wage) \sim 1 + exper + expersq + [educ \sim motheduc + fatheduc]'$

reg2 = IV2SLS.from_formula(mod2, df).fit(cov_type='robust')
print(reg2)

	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
Intercept	0.0481	0.4278	0.1124	0.9105	-0.7903	0.8865
exper	0.0442	0.0155	2.8546	0.0043	0.0138	0.0745
expersq	-0.0009	0.0004	-2.1001	0.0357	-0.0017	-5.997e-05
educ	0.0614	0.0332	1.8503	0.0643	-0.0036	0.1264

Endogenous: educ

Instruments: motheduc, fatheduc
Robust Covariance (Heteroskedastic)

Vitor Kamada ECO 6100 Econometrics June 2018 15 / 16

print(reg2.first_stage)

	educ
R-squared	0.2115
Partial R-squared	0.2076
Shea's R-squared	0.2076
Partial F-statistic	100.22
P-value (Partial F-stat)	0.0000 ₀
Partial F-stat Distn	chi2(2) 👸
	9.1026 as 621.58)
Intercept	9.1026 b
exper	0.0452 .⊆
	(1.0854) p -0.0010 t
expersq	-0.0010 ₹
	(-0.7671) o
motheduc	0.1576 [@]
	(4.4718) s
fatheduc	0.1895 kg
	(5.8771) H