Graeco-Latin Square Design

Peter Yeh

12/14/2022

Introduction

Graeco-Latin square design is a Latin square design with $p \geq 3$ (except 6) blocking factors and one treatment factor. Appears as a pxp Latin square superposed on a second pxp Latin Square in which the treatments are denoted by Greek/Latin letters.

If two squares when superimposed have the property that each Greek letter appears once and only once with each Latin letter, the two Latin Squares are orthogonal.

Model

$$y_{ijkl} = \mu + \alpha_i + \tau_j + \beta_k + \zeta_l + \epsilon_{ijkl}, i, j, k, l = 1, 2, ..., p$$

Assumptions

 $\mu = \text{grand mean}$

 $\alpha_i = i$ th block 1 effect(row effect), $\sum \alpha_i = 0$

 $\tau_j = j$ th treatment effect, $\sum \tau_j = 0$

 $\beta_k = k$ th block 2 effect(column effect), $\sum \beta_k = 0$

 $\zeta_l = l {\rm th}$ block 3 effect
(Greek letter effect), $\sum \zeta_l = 0$

 $\epsilon_{ijkl} \sim N(0, \sigma^2)$ (independent)

Completely additive model (no interaction)

Estimates

$$\hat{\mu} = \bar{y}$$

$$\hat{\alpha}_i = \bar{y}_{i...} - \bar{y}_{...}$$

$$\hat{\tau}_j = \bar{y}_{.j..} - \bar{y}_{...}$$

$$\hat{\beta}_i = \bar{y}_{-k} - \bar{y}$$

$$\hat{\zeta}_l = \bar{y}_{...l} - \bar{y}_{...}$$

$$\hat{\epsilon}_{ijkl} = y_{ijkl} - \bar{y}_{i...} - \bar{y}_{.j..} - \bar{y}_{..k.} - \bar{y}_{...l} + 3\bar{y}_{...}$$

Sum of Squares

$$\begin{split} SS_{Row} &= p \sum (\bar{y}_{i...} - \bar{y}_{...})^2 \\ SS_{Treatment} &= p \sum (\bar{y}_{.j..} - \bar{y}_{...})^2 \\ SS_{Column} &= p \sum (\bar{y}_{..k.} - \bar{y}_{...})^2 \\ SS_{Greek} &= p \sum (\bar{y}_{...l} - \bar{y}_{...})^2 \\ SS_{E} &= \sum \sum \hat{\epsilon}_{ijkl}^2 \end{split}$$

■ TABLE 4.19

Analysis of Variance for a Graeco-Latin Square Design

Source of Variation	Sum of Squares	Degrees of Freedom
Latin letter treatments	$SS_L = \frac{1}{p} \sum_{j=1}^{p} y_{j}^2 - \frac{y_{}^2}{N}$	p-1
Greek letter treatments	$SS_G = \frac{1}{p} \sum_{k=1}^p y_{k.}^2 - \frac{y_{}^2}{N}$	p - 1
Rows	$SS_{Rows} = \frac{1}{p} \sum_{i=1}^{p} y_{i}^2 - \frac{y_{}^2}{N}$	p-1
Columns	$SS_{\text{Columns}} = \frac{1}{p} \sum_{l=1}^{p} y_{l}^2 - \frac{y_{l}^2}{N}$	p-1
Error	SS_E (by subtraction)	(p-3)(p-1)
Total	$SS_T = \sum_{i} \sum_{j} \sum_{k} \sum_{l} y_{ijkl}^2 - \frac{y_{}^2}{N}$	$p^{2}-1$

Note:

 $N=p^2$

Hypothesis

 $H_0: \tau_1 = \tau_2 = \ldots = \tau_p = 0$ vs. $H_1:$ at least one is not

$$F_0 \sim F_{\alpha, p-1, (p-1)(p-3)}$$