

FEATURIZED PROBABILISTIC LINEAR MODELS

Why

It is natural to embed a dataset.

Definition

Let $(x: \Omega \to \mathbb{R}^d, A \in \mathbb{R}^{n \times d}, e: \Omega \to \mathbb{R}^n)$ be a probabilistic linear model over the probability space $(\Omega, \mathcal{A}, \mathbb{P})$. Let $\phi: \mathbb{R}^d \to \mathbb{R}^{d'}$ be a feature map.

We call the sequence (x, A, e, ϕ) a featurized probabilistic linear model (also embedded probabilistic linear model). We interpret the model as a random field $h: \Omega \to (\mathbb{R}^d \to \mathbb{R})$ which is a linear function of the features

$$h_{\omega}(a) = \phi(a)^{\top} x(\omega).$$

Denote the data matrix of the embedded feature vectors by $\phi(A)$. In other words, $\phi(A) \in \mathbf{R}^{n \times d'}$ is a matrix whose rows are feature vectors. Then (x, A, e, ϕ) corresponds to the probabilistic linear model $(x, \phi(A), e)$.

Normal case

In the normal (Gaussian) case, the parameter posterior $g_{x|y}(\cdot, \gamma)$ is a normal density with mean

$$\Sigma_x \phi(A)^{\top} \left(\phi(A) \Sigma_x \phi(A)^{\top} + \Sigma_e \right)^{-1} \gamma$$

and covariance

$$\left(\Sigma_x^{-1} + \phi(A)^{\top} \Sigma_e^{-1} \phi(A)\right)^{-1}$$
.

The predictive density for $a \in \mathbb{R}^d$ is normal with mean

$$\phi(a)^{\top} \Sigma_x \phi(A)^{\top} \left(\phi(A) \Sigma_x \phi(A)^{\top} + \Sigma_e \right)^{-1} \gamma.$$

and covariance

$$\phi_a^{\mathsf{T}} \Sigma_x \phi_a - \phi_a^{\mathsf{T}} \Sigma_x \phi(A)^{\mathsf{T}} \left(\phi(A) \Sigma_x \phi(A)^{\mathsf{T}} + \Sigma_e \right)^{-1} \phi(A) \Sigma_x \phi_a.$$

So the featurized linear regressor is the predictor $h: \mathbf{R}^d \to \mathbf{R}$ defined by

$$h(a) = \phi(a)^{\top} \Sigma_x \phi(A)^{\top} \left(\phi(A) \Sigma_x \phi(A)^{\top} + \Sigma_e \right)^{-1} \gamma.$$

