ON AN EXPRESSION FOR BERNOULLI NUMBERS IN TERMS OF STIRLING NUMBERS OF THE SECOND KIND

SUMIT KUMAR JHA AND J. LÓPEZ-BONILLA

ABSTRACT. We give a combinatorial proof of an interesting expression for the Bernoulli numbers in terms of the Stirling numbers of the second kind.

1. Introduction

Definition 1. The *Bernoulli numbers* B_n can be defined by the following generating function:

$$\frac{t}{e^t - 1} = \sum_{n > 0} \frac{B_n t^n}{n!},$$

where $|t| < 2\pi$.

Definition 2. The Stirling number of the second kind, denoted by $\binom{n}{k}$, is the number of ways of partitioning a set of n elements into m nonempty sets.

Jha [1] obtained the following expression for the Bernoulli numbers:

$$B_{m+n} = \sum_{k=0}^{n} \sum_{r=0}^{m} \frac{(-1)^{k+r} (k! \, r!)^2}{(k+r+1)!} {m \brace r} {n \brace k} \qquad (m, n \ge 0)$$
 (1)

using an integral expression for the Riemann zeta function in terms of the polylogarithm function. The proof requires analytic continuation of both the Riemann zeta function and the polylogarithm function [2].

We give of a combinatorial proof of the above expression in the following section.

2. Proof of Main result

Proof of expression (1). When m = n = 0 the expression is trivial since we know that $B_0 = 1$.

When m = 0 with arbitrary n the expression (1) takes form of the following well known formula [3, 2, 4]

$$B_n = \sum_{k=0}^n \frac{(-1)^k \, k!}{k+1} \, \binom{n}{k} \qquad (n \ge 0).$$

²⁰¹⁰ Mathematics Subject Classification. 11B68, 11B73.

Key words and phrases. Bernoulli numbers; Fukuhara-Kawazumi-Kuno's relation; Stirling numbers.

Thus it is sufficient to prove the expression for $m, n \geq 1$. We first recall the Fukuharda-Kawazumi-Kuno identity [5, Theorem 1]

$$B_N = (-1)^M \sum_{j=1}^{Q+1} \frac{(-1)^{j+1}}{j} {Q+1 \choose j} \sum_{q=1}^{j-1} q^M (j-q)^{N-M}$$
 (2)

which is valid for all integers $N \ge 2$ and $0 \le M \le N \le Q$. Letting M=0, N=k+r, Q=m+n with $0 \le k+r \le Q=m+n$ in Eq. (2) gives us

$$B_{k+r} = \sum_{j=1}^{m+n+1} \frac{(-1)^{j+1}}{j} {m+n+1 \choose j} \sum_{q=1}^{j-1} (j-q)^{k+r}$$
 (3)

which can be multiplied by Stirling numbers of the first kind to obtain

$$\sum_{k=0}^{n} \sum_{r=0}^{m} B_{k+r} \begin{bmatrix} n \\ k \end{bmatrix} \begin{bmatrix} m \\ r \end{bmatrix} = \sum_{q=1}^{(m+n+1)} \sum_{l=0}^{(m+n+1-q)} \frac{(-1)^{l+q+1}}{l+q} \binom{m+n+1}{l+q} \sum_{k=0}^{n} \sum_{r=0}^{m} l^{k+r} \begin{bmatrix} n \\ k \end{bmatrix} \begin{bmatrix} m \\ r \end{bmatrix}
= m! \, n! \sum_{q=1}^{(m+n+1)} \sum_{l=0}^{(m+n+1-q)} \frac{(-1)^{l+q+1}}{l+q} \binom{m+n+1}{l+q} \binom{m+n+1}{l+q} \binom{l}{m} \binom{l}{n}
= m! \, n! \sum_{q=1}^{(m+n+1)} \sum_{j=q}^{(m+n+1)} \frac{(-1)^{j+1}}{j} \binom{m+n+1}{j} \binom{j-q}{m} \binom{j-q}{n}
= m! \, n! \sum_{j=\max(m+1,n+1)}^{m+n+1} \frac{(-1)^{j+1}}{j} \binom{m+n+1}{j} \sum_{t=\max(m,n)}^{j-1} \binom{t}{m} \binom{t}{n}
= \frac{(-1)^{m+n} (m! \, n!)^2}{(m+n+1)!}.$$
(4)

The double sum in the second last step was evaluated in Maple with the following code:

```
B:=proc(m,n) local j,t:add((-1)^j/j*binomial(n+m+1,j)
*add(binomial(t,n)*binomial(t,m),t=n..j-1),j=2..n+m+1):end:
```

ForB:= $proc(m,n): (-1)^(m+n+1)*m!*n!/(m+n+1)!:end:$

Using the Stirling inversion formula [6, 7]

$$\sum_{k=0}^{n} f(k) \begin{bmatrix} n \\ k \end{bmatrix} = g(n) \qquad \sum_{r=0}^{m} g(r) \begin{Bmatrix} m \\ r \end{Bmatrix} = f(m) \tag{5}$$

with Eq. (4) we get

$$\sum_{r=0}^{m} B_{m+r} {m \brack r} = (-1)^m (m!)^2 \sum_{r=0}^{m} \frac{(-1)^r (r!)^2}{(m+r+1)!} {m \brack r}.$$
 (6)

Finally, the use of Eq. (5) in Eq. (6) gives the expression Eq. (1).

ACKNOWLEDGEMENT

The authors would like to thank Prof. Doron Zeilberger (Rutgers University) for his kind help in evaluating an essential double sum using Maple.

References

- [1] S. K. Jha, An identity involving the Bernoulli numbers and the Stirling numbers of the second kind, Notes on Number Theory and Discrete Mathematics, 26 (3), 160-162.
- [2] H. M. Srivastava and J. Choi, Zeta and q-zeta functions and associated series and integrals, Elsevier, London (2012)
- [3] J. Quaintance and H. W. Gould, Combinatorial identities for Stirling numbers, World Scientific, Singapore (2016).
- [4] F. Qi and B. N. Guo, Alternative proofs of a formula for Bernoulli numbers in terms of Stirling numbers, *Analysis* (Berlin) **34**, No. 3 (2014) 311–317.
- [5] S. Fukuhara, N. Kawazumi, and Y. Kuno, Self-intersections of curves on a surface and Bernoulli numbers, Osaka J. Math., 55, No. 4 (2018), 761–768.
- [6] H. W. Gould, Explicit formulas for the Bernoulli and Euler numbers, J. London Math. Soc. 2, No. 2 (1972) 44–51.
- [7] M. Z. Spivey, The art of proving binomial identities, CRC Press, Boca Raton, Fl, USA (2019).

International Institute of Information Technology, Hyderabad-500032, India *Email address*: kumarjha.sumit@research.iiit.ac.in

ESIME-ZACATENCO, INSTITUTO POLITÉCNICO NACIONAL,, EDIF. 4, 1ER. PISO, COL. LINDAVISTA 07738, CDMX, MEXICO

Email address: jlopezb@ipn.mx