Movimento Retilíneo

Esdras Lins Bispo Jr. bispojr@ufg.br

Física para Ciência da Computação Bacharelado em Ciência da Computação

20 de outubro de 2016

Plano de Aula

- Pensamento
- Revisão
 - Medição
 - Comprimento
 - Tempo
 - Massa
- Movimento Retilíneo

Sumário

- Pensamento
- 2 Revisão
 - Medição
 - Comprimento
 - Tempo
 - Massa
- Movimento Retilíneo

Pensamento

Pensamento

Frase

Eu consigo calcular o movimento dos corpos celestiais, mas não a loucura das pessoas.

Quem?

Isaac Newton (1643-1727) Físico inglês.

Sumário

- Pensamento
- Revisão
 - Medição
 - Comprimento
 - Tempo
 - Massa
- Movimento Retilíneo

Descobrindo a física...

Medindo e comparando grandezas

Grandezas

- Comprimento,
- Tempo,
- Massa,
- Temperatura,
- Pressão,
- Corrente elétrica...

Como medimos uma grandeza

Comparando-a com um padrão

Unidade

Medida de uma grandeza

Exemplo

Metro é uma unidade de grandeza de comprimento

Sistema Internacional de Unidades (SI)

- 1971
- 14ª Conferência Geral de Pesos e Medidas
- Sete grandezas como fundamentais

_		-		_	
	а	0	е	18	-1

Unidades de Três Grandezas Fundamentais do SI

Grandeza	Nome da Unidade	Símbolo da Unidade
Comprimento	metro	m
Tempo	segundo	S
Massa	quilograma	kg

Unidades Derivativas

São aquelas unidades que podem ser obtidas a partir de unidades fundamentais.

Exemplo

$$1 \text{ watt} = 1 \text{ W} = 1 \text{ kg} \times m^2/s^3$$

Notação Científica

Onde é utilizada?

Usa-se a notação científica para expressar as grandezas muito grandes.

Formato

$$a \times 10^{b}$$

em que

- $a \in \mathbb{R}$ e $1 \le a < 10$; e
- $b \in \mathbb{Z}^*$.

Notação Científica

Exemplos

- $3.560.000.000 \text{ m} = 3,56 \times 10^9 \text{ m}$
- 0,000 000 492 s = $4,92 \times 10^{-7}$ s

Em linguagens de programação...

A notação abreviada normalmente é usada:

Notação Científica

Exemplos

- $3.560.000.000 \text{ m} = 3,56 \times 10^9 \text{ m}$
- 0,000 000 492 s = $4,92 \times 10^{-7}$ s

Em linguagens de programação...

A notação abreviada normalmente é usada:

$$7.59e9$$
 ou $4.93e - 7$

Umas das utilidades...

Bastante útil no processo de conversão de unidades.

Uso de prefixos

_					
		Tabel	a 1-2		
Prefixos das Unidades do SI					
Fator	Prefixo"	Símbolo	Fator	Prefixo ^a	Símbolo
1021	iota	1	10-1	deci-	d
1021	zeta-	Z	10-2	centi-	c
1018	exa-	E	10-3	mili-	m
1015	peta-	P	10-6	micro-	μ
1012	tera-	T	10-9	nano-	n
10°	giga-	G	10^{-12}	pico-	p
10°	mega-	M	10 -15	femto-	f
10^{3}	quilo-	Q	10 ⁻¹⁸	ato-	a
10^{2}	hecto-	h	10^{-21}	zepto-	Z
10 ¹	deca-	da	10^{-24}	iocto-	ř

[&]quot;Os prefixos mais usados aparecem em negrito.

Medida de Comprimento

Comprimento

No SI, a unidade para o comprimento é o metro (m).

Metro

Distância percorrida pela luz no vácuo durante um intervalo de tempo de 1/299.792.458 de segundo.

Curiosidade

Tabela 1-3 Alguns Comprimentos Aproximados			
Distância das galáxias mais antigas	2×10^{26}		
Distância da galáxia de Andrômeda	2×10^{22}		
Distância da estrela mais próxima, Proxima Centauri	4×10^{10}		
Distância de Plutão	6×10^{12}		
Raio da Terra	6×10^{6}		
Altura do Monte Everest	9×10^{3}		
Espessura desta página	1×10^{-4}		
Comprimento de um vírus típico	1×10^{-8}		
Raio do átomo de hidrogênio	5×10^{-11}		
Raio do próton	1×10^{-15}		

Medida de Tempo

Tempo

No SI, a unidade para o tempo é o segundo (s).

Segundo

O intervalo de tempo que corresponde a 9.192.631.770 oscilações da luz (de um comprimento de onda especificado) emitida por um átomo de césio 133.

Hora Coordenada Universal (UTC)

Fornecida por um relógio atômico no Colorado, EUA.

Curiosidade

Tabela 1-4				
Alguns Intervalos de Tempo Aproximados				
Descrição	Intervalo de Tempo em Segundos			
Tempo de vida do próton (teórico)	3×10^{40}			
Idade do universo	5×10^{17}			
Idade da pirâmide de Quéops	1×10^{11}			
Expectativa de vida de um ser humano	$2 \times 10^{\circ}$			
Duração de um dia	9×10^{4}			
Intervalo entre duas batidas de um coração humano	8×10^{-1}			
Tempo de vida do múon	2×10^{-6}			
Pulso luminoso mais curto obtido em laboratório	1×10^{-16}			
Tempo de vida da partícula mais instável	1×10^{-23}			
Tempo de Planck ^a	1×10^{-43}			

[&]quot;Tempo decorrido após o big bang a partir do qual as leis de física que conhecemos passaram a ser válidas.

JFG gional Jatai

Medida de Massa

Massa

No SI, a unidade para massa é o quilograma (kg).

Quilograma

Um cilindro de platina irídio com 3,9cm de altura e 3,9cm de diâmetro.

Curiosidade

Tabela 1-5

Algumas Massas Aproximadas

	Massa em Qui logramas	
Descrição		
Universo conhecido	1×10^{53}	
Nossa galáxia	2×10^{41}	
Sol	2×10^{30}	
Lua	7×10^{22}	
Asteroide Eros	5×10^{15}	
Montanha pequena	1×10^{12}	
Transatlântico	7×10^{7}	
Elefante	5×10^3	
Uva	3×10^{-3}	
Grão de poeira	7×10^{-10}	
Molécula de penicilina	5×10^{-17}	
Átomo de urânio	4×10^{-25}	
Próton	2×10^{-27}	
Elétron	9×10^{-31}	

Massa Específica

Massa específica

É a massa por unidade de volume.

$$\rho = \frac{\textit{m}}{\textit{V}}$$

Exemplo: Massa específica da água

 1 g/cm^3

Sumário

- Pensamento
- 2 Revisão
 - Medição
 - Comprimento
 - Tempo
 - Massa
- Movimento Retilíneo

Um dos objetivos da Física...

• Estudar características do movimento;

Um dos objetivos da Física...

- Estudar características do movimento;
- Ex.: Rapidez com que eles se realizam.

Um dos objetivos da Física...

- Estudar características do movimento;
- Ex.: Rapidez com que eles se realizam.

Aplicações

ullet Engenheiros da NASCAR o desempenho de carros;

Um dos objetivos da Física...

- Estudar características do movimento;
- Ex.: Rapidez com que eles se realizam.

Aplicações

- ullet Engenheiros da NASCAR o desempenho de carros;
- Médicos → mapeamento do fluxo de sangue;

Um dos objetivos da Física...

- Estudar características do movimento;
- Ex.: Rapidez com que eles se realizam.

Aplicações

- ullet Engenheiros da NASCAR o desempenho de carros;
- Médicos → mapeamento do fluxo de sangue;
- Motoristas → redução de velocidade.

Um dos objetivos da Física...

- Estudar características do movimento;
- Ex.: Rapidez com que eles se realizam.

Aplicações

- ullet Engenheiros da NASCAR o desempenho de carros;
- Médicos → mapeamento do fluxo de sangue;
- Motoristas → redução de velocidade.

Movimento Unidimensional

É o estudo do movimentos de objetos em linha reta.

Movimento Unidimensional

Propriedade Gerais:

• Trajetória (retilínea):

Movimento Unidimensional

Propriedade Gerais:

- Trajetória (retilínea):
 - vertical;
 - horizontal; ou
 - inclinada.

Movimento Unidimensional

Propriedade Gerais:

- Trajetória (retilínea):
 - vertical;
 - horizontal; ou
 - inclinada.
- "Forças" que atuam sobre o objeto;

Movimento Unidimensional

Propriedade Gerais:

- Trajetória (retilínea):
 - vertical;
 - horizontal; ou
 - inclinada.
- "Forças" que atuam sobre o objeto;
 - Velocidade;
 - Direção...
- Tipo de objeto:
 - Partícula;
 - Fluido...

Ponto de referência: origem;

- Ponto de referência: origem;
- Sentido: positivo ou negativo;

- Ponto de referência: origem;
- Sentido: positivo ou negativo;
- Unidade de comprimento: m (por exemplo).

Deslocamento

A mudança de posição x_1 para a posição x_2 está associado a um deslocamento Δx :

Deslocamento

A mudança de posição x_1 para a posição x_2 está associado a um deslocamento Δx :

$$\Delta x = x_2 - x_1$$

Deslocamento

A mudança de posição x_1 para a posição x_2 está associado a um deslocamento Δx :

$$\Delta x = x_2 - x_1$$

Símbolo Δ

Associado à variação de grandezas, correspondendo à diferença entre os valores final e inicial.

Deslocamento

A mudança de posição x_1 para a posição x_2 está associado a um deslocamento Δx :

$$\Delta x = x_2 - x_1$$

Símbolo Δ

Associado à variação de grandezas, correspondendo à diferença entre os valores final e inicial.

Cuidado!!!

Distância efetivamente percorrida é diferente de deslocamento.

Deslocamento é uma grandeza vetorial

Deslocamento é uma grandeza vetorial

Módulo;

Deslocamento é uma grandeza vetorial

- Módulo;
- Direção;

Deslocamento é uma grandeza vetorial

- Módulo;
- Direção;
- Sentido.

Deslocamento é uma grandeza vetorial

- Módulo;
- Direção;
- Sentido.

Exercício

Considere três pares de posições iniciais e finais, respectivamente, ao longo do eixo x. A que pares correspondem deslocamentos negativos:

- \bullet -3 m, + 5 m;
- 2 -3 m, -7 m;
- 3 7 m, -3 m.

Gráfico posição × tempo

Notação

x(t) representa a função x em relação a t.

Gráfico posição × tempo

$$v_{\text{m\'ed}} = \frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1}$$

Velocidade Média

$$v_{\text{m\'ed}} = \frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1}$$

• x_1 é a posição no instante t_1 ;

$$v_{\text{m\'ed}} = \frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1}$$

- x_1 é a posição no instante t_1 ;
- x_2 é a posição no instante t_2 ;

$$v_{\mathsf{m\'ed}} = \frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1}$$

- x_1 é a posição no instante t_1 ;
- x₂ é a posição no instante t₂;
- No SI, a unidade de v_{méd} é m/s;

$$v_{\mathsf{m\'ed}} = \frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1}$$

- x_1 é a posição no instante t_1 ;
- x₂ é a posição no instante t₂;
- No SI, a unidade de v_{méd} é m/s;
- v_{méd} também é uma grandeza vetorial.

x (m)

Gráfico posição x tempo

Este é um gráfico da posição x em função do tempo t.

Para determinar a velocidade média. trace uma linha reta do início ao fim e calcule a inclinação da reta.

Início do intervalo

v_{méd} = inclinação desta reta elevação Δx 2 extensão Fim do intervalo 4 (s) -1 -2 -3 x(t)

Esta distância vertical é a distância percorrida, do início ao fim: $\Delta x = 2 \text{ m} - (-4 \text{ m}) = 6 \text{ m}$

Esta distância horizontal é o tempo de percurso, do inido ao firn: $\Delta t = 4s - 1s = 3s$

Velocidade Escalar Média

$$s_{m\acute{e}d} = rac{distância total}{\Delta t}$$

Velocidade Escalar Média

$$s_{m\'ed} = \frac{distância\ total}{\Delta t}$$

- s_{méd} não é uma grandeza vetorial;
- o valor de s_{méd} pode ser diferente do valor de v_{méd}.

Exercício

Depois de dirigir um carro em uma estrada retilínea por 8,4 km a 70 km/h, você para por falta de gasolina. Nos 30 min seguintes, você caminha por mais 2,0 km ao longo da estrada até chegar a um posto de gasolina.

Exercício

Depois de dirigir um carro em uma estrada retilínea por 8,4 km a 70 km/h, você para por falta de gasolina. Nos 30 min seguintes, você caminha por mais 2,0 km ao longo da estrada até chegar a um posto de gasolina.

Qual foi o deslocamento total, do início da viagem até chegar ao posto de gasolina?

Exercício

Depois de dirigir um carro em uma estrada retilínea por 8,4 km a 70 km/h, você para por falta de gasolina. Nos 30 min seguintes, você caminha por mais 2,0 km ao longo da estrada até chegar a um posto de gasolina.

- Qual foi o deslocamento total, do início da viagem até chegar ao posto de gasolina?
- 2 Qual é o intervalo de tempo Δt entre o início da viagem e o instante em que você chega ao posto?

Exercício

Depois de dirigir um carro em uma estrada retilínea por 8,4 km a 70 km/h, você para por falta de gasolina. Nos 30 min seguintes, você caminha por mais 2,0 km ao longo da estrada até chegar a um posto de gasolina.

Exercício

Depois de dirigir um carro em uma estrada retilínea por 8,4 km a 70 km/h, você para por falta de gasolina. Nos 30 min seguintes, você caminha por mais 2,0 km ao longo da estrada até chegar a um posto de gasolina.

Qual é a velocidade média v_{méd} do início da viagem até a chegada ao posto de gasolina? Determine a solução numericamente e graficamente.

Exercício

Depois de dirigir um carro em uma estrada retilínea por 8,4 km a 70 km/h, você para por falta de gasolina. Nos 30 min seguintes, você caminha por mais 2,0 km ao longo da estrada até chegar a um posto de gasolina.

- Qual é a velocidade média v_{méd} do início da viagem até a chegada ao posto de gasolina? Determine a solução numericamente e graficamente.
- Suponha que para encher um bujão de gasolina, pagar e caminhar de volta para o carro você leva 45 min. Qual é a velocidade escalar média do início da viagem até o momento em que você chega de volta ao lugar onde deixou o carro?

Gráfico posição × tempo

Velocidade Instantânea

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

Velocidade Instantânea

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

• v também é uma grandeza vetorial.

Velocidade Instantânea

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

v também é uma grandeza vetorial.

Velocidade Escalar Instantânea

Velocidade escalar instantânea, ou, simplesmente, **velocidade escalar**, é o módulo da velocidade, ou seja, a velocidade desprovida de qualquer indicação de direção ou sentido.

Exercício

- (a) Em que caso(s) a velocidade v da partícula é constante?
- (b) Em que caso(s) a velocidade v é no sentido negativo do eixo x?

Exercício

- (a) Em que caso(s) a velocidade v da partícula é constante?
- (b) Em que caso(s) a velocidade v é no sentido negativo do eixo x?

Exercício

- (a) Em que caso(s) a velocidade v da partícula é constante?
- (b) Em que caso(s) a velocidade v é no sentido negativo do eixo x?

1
$$x = 3t - 2$$

$$x = -4t^2 - 2$$

Exercício

- (a) Em que caso(s) a velocidade v da partícula é constante?
- (b) Em que caso(s) a velocidade v é no sentido negativo do eixo x?

1
$$x = 3t - 2$$

$$x = -4t^2 - 2$$

$$x = 2/t^2$$

Exercício

- (a) Em que caso(s) a velocidade v da partícula é constante?
- (b) Em que caso(s) a velocidade v é no sentido negativo do eixo x?

$$x = -4t^2 - 2$$

$$x = 2/t^2$$

$$x = -2$$

Gráfico posição × tempo

Gráfico velocidade × tempo

Gráficos de x(t) e v(t)

Gráfico aceleração imes tempo

Gráficos de v(t) e a(t)

Bônus (0,5 pt)

Desafio

(Halliday 3.23) O oásis B está 25 m a leste do oásis A. Partindo do oásis A, um camelo percorre 24 m em uma direção 15° ao sul do leste e 8,0 m para o norte. A que distância o camelo está do oásis B?

Bônus (0,5 pt)

Desafio

(Halliday 3.23) O oásis B está 25 m a leste do oásis A. Partindo do oásis A, um camelo percorre 24 m em uma direção 15° ao sul do leste e 8,0 m para o norte. A que distância o camelo está do oásis B?

Informações úteis

- Candidaturas (25 de outubro, 17h20);
- Resposta escrita e apresentação (27 de outubro, 19h00).

Movimento Retilíneo

Esdras Lins Bispo Jr. bispojr@ufg.br

Física para Ciência da Computação Bacharelado em Ciência da Computação

20 de outubro de 2016

