FUNDAMENTOS DE PROCESSAMENTO DE IMAGENS

- Modelo de Câmera Pinhole
- A Geometria da Formação de Imagens

GEOMETRIA DE FORMAÇÃO DA IMAGEM

COM UM SISTEMA DE COORDENADAS NA CÂMERA

Formação de imagem na câmera de orifício (Pinhole) Utilizaremos essa simplificação para deduzir um modelo matemático e projeção da cena sobre o sensor.

A geometria da formação de imagem na retina é similar à da câmera de orifício (Pinhole)

Formação de imagem na câmera Pinhole

Por conveniência matemática, movemos o plano de imagem para a frente do foco.

Isso permite uma modelagem mais simples.

Projeção perspectiva: plano de projeção deslocado para a frente do centro de projeção sobre o eixo +Z

Dedução da Matriz de projeção perspectiva

$$\frac{x_c}{d} = \frac{x}{z} \Rightarrow x_c = \frac{x}{z/c}$$

$$\frac{y_c}{d} = \frac{b}{c} \Rightarrow y_c = \frac{y}{z/d}$$

A) Matriz de projeção perspectiva considerando:

Plano de projeção normal ao eixo Z a uma distância d em relação a origem.

$$\mathbf{M}_{per} = \left[egin{array}{ccc} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1/d \end{array}
ight]$$

x_c e y_c: são coordenadas da projeção de Q sobre a imagem. estão em unidades métricas iguais às de Q (milímetros, por exemplo)

A) Matriz de projeção perspectiva considerando:

Plano de projeção normal ao eixo Z a uma distância *d* em relação a origem.

Q_h é o ponto no espaço homogêneo, com w=z/d

 Q_c é o ponto no espaço cartesiano = Q_h/w

Qpé o ponto em pixels

$$Q_h = M * Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1/d \end{bmatrix} * \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \\ z/d \end{bmatrix}$$

 Q_h é o ponto no espaço homogêneo, com w=100

 Q_c é o ponto no espaço cartesiano = Q_h/w

Qpé o ponto em pixels

d=5mm
$$Q = \begin{bmatrix} 150,75 \\ 1500 \\ 500 \end{bmatrix} mm$$

$$Q_c = \begin{bmatrix} ? \\ ? \end{bmatrix} mm \ Q_p = \begin{bmatrix} ? \\ ? \end{bmatrix}$$
 pixels

$$Q_h = M * Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1/d \end{bmatrix} * \begin{bmatrix} 150,75 \\ 1500 \\ 500 \end{bmatrix} = \begin{bmatrix} 150,75 \\ 1500 \\ 100 \end{bmatrix} = \begin{bmatrix} x_h \\ y_h \\ w \end{bmatrix}$$

$$Q_c = \begin{bmatrix} x_h/w \\ y_h/w \\ w/w \end{bmatrix} = \begin{bmatrix} 1,51 \\ 15 \\ 1 \end{bmatrix} mm$$

$$Q_p = ???$$

$$Q = \begin{bmatrix} 150,75 \\ 1500 \\ 500 \end{bmatrix} mm \rightarrow Q_c = \begin{bmatrix} X_c^Q = 1,51 \\ Y_c^Q = 15,0 \end{bmatrix} mm$$

$$R = \begin{bmatrix} 150,75 \\ 1510 \\ 500 \end{bmatrix} mm \rightarrow R_c = \begin{bmatrix} X_c^R = ? \\ Y_c^R = ? \end{bmatrix}$$

$$R_{h}^{*} = M * R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1/5 \end{bmatrix} * \begin{bmatrix} 150,75 \\ 1510 \\ 500 \end{bmatrix} = \begin{bmatrix} 150,75 \\ 1510 \\ 100 \end{bmatrix} = \begin{bmatrix} X_{h}^{R} \\ Y_{h}^{R} \\ W \end{bmatrix}$$

$$X_h^R = 150,75$$
 $Y_h^R = 1510$ $W = 100$

$$R_{c} = \frac{R_{h}}{W} = \begin{vmatrix} X_{h}^{R}/W \\ Y_{h}^{R}/W \\ W \end{vmatrix} = \begin{bmatrix} 1,51 \\ 15,1 \\ 1 \end{bmatrix} \Rightarrow X_{c}^{R} = 1,51 mm \quad Y_{c}^{R} = 15,1 mm$$

$$Q_{c} = \begin{bmatrix} X_{c}^{Q} \\ Y_{c}^{Q} \end{bmatrix} = \begin{bmatrix} 1,51 \, mm \\ 15,0 \, mm \end{bmatrix}$$

$$R_{c} = \begin{bmatrix} X_{c}^{R} \\ Y_{c}^{R} \end{bmatrix} = \begin{bmatrix} 1,51 \, mm \\ 15,1 \, mm \end{bmatrix}$$

Se um pixel for um quadrado de 7,5 microns (0,0075 mm), será possível separar R de Q na imagem? A resposta depende de quantos pixels separam os pontos projetados.

No exemplo acima, Qc e Rc estão alinhados na mesma coluna da Imagem.

Mas, qual seria o caso? Há separação em pixels?

No exemplo, Q_c e R_c estão alinhados na mesma coluna da Imagem.

Como saber se Q_c e R_c estão separados? Como calcular, em pixels, a separação ?

$$Q_{c} = \begin{bmatrix} X_{c}^{Q} \\ Y_{c}^{Q} \end{bmatrix} = \begin{bmatrix} 1,51 \, mm \\ 15,0 \, mm \end{bmatrix}$$

$$R_c = \begin{bmatrix} X_c^R \\ Y_c^R \end{bmatrix} = \begin{bmatrix} 1,51 \, mm \\ 15,1 \, mm \end{bmatrix}$$

A imagem é uma matriz de pixels referenciada no canto superior esquerdo

No caso, Q_c e R_c estão na mesma coluna, então a solução é calcular a distância L1-L2 em pixels e verificar se há separação.

Lembrando que a matriz M fornece a projeção em relação ao sistema XYZ na câmera, para determinar L1 e L2 é preciso fazer contas para conversão dos valores de unidades métricas (mm, microns...) para pixels... é preciso saber o tamanho do pixel!

A imagem é uma matriz de pixels referenciada no canto superior esquerdo

Cálculo de L1 e L2 a partir das especificações do tamanho de pixel, por exemplo, para um pixel quadrado de lado = 0,0075 mm, teremos:

$$L_1 = \frac{15,0}{0.0075} = 2000 \quad L_2 = \frac{15,1}{0.0075} \approx 2013$$

$$R_{c} = \begin{bmatrix} X_{c}^{R} \\ Y_{c}^{R} \end{bmatrix} = \begin{bmatrix} 1,51 \, mm \\ 15,1 \, mm \end{bmatrix}$$

A imagem é uma matriz referenciada no canto superior esquerdo

L2-L1=13, portanto há 11 pixels de separação entre Q_c e R_c

$$L_1 = \frac{15,0}{0,0075} = 2000$$

$$L_2 = \frac{15,1}{0.0075} \approx 2013$$

Exercício:

Suponha o caso abaixo para a mesma câmera discutida anteriormente, descreva a resolução de Q e R na imagem. Ops pontos são separáveis? Qual é a distância em pixels entre eles?

$$Q = \begin{bmatrix} 150,75 \\ 1500 \\ 500 \end{bmatrix} mm$$

$$R = \begin{bmatrix} 180,75 \\ 1510 \\ 500 \end{bmatrix} mm$$

Calculando a separação em pixels via Método Eficiente – via implementação por produto matricial

Calculando a separação em pixels via Matriz de Transformação

A imagem é uma matriz de pixels referenciada no canto superior esquerdo

É preciso alinhar

A modelagem apenas com a matriz M nos ajuda a entender o conceito de resolução de pontos projetados, porém, não fornece a melhor solução no que tange à obtenção das coordenadas em pixels de forma mais direta e de fácil implementação computacional.

Ao invés de fornecer o ponto projetado homogêneo em unidades métricas (mm, microns, etc) em relação ao sistema XYZ na câmera (o que não é intuitivamente associado a conceitos tais como o de resolução), seria muito mas eficiente se a matriz da transformação fornecesse o ponto projetado homogêneo, em pixels e respeitando a orientação do sistema matricial da imagem.

$$Q_{h} = M * Q = \begin{bmatrix} X_{h} \\ Y_{h} \\ W \end{bmatrix} pixels$$

De onde facilmente se pode obter as coordenadas em linhas e colunas:

$$Q_{p} = \begin{bmatrix} X_{h}/W \\ Y_{h}/W \end{bmatrix} pixels = \begin{bmatrix} coluna \\ linha \end{bmatrix} pixels$$

Essa nova matriz de transformação depende não apenas da distância focal da câmera, mas também das dimensões de pixel (s_x, s_y) e das coordenadas do centro da imagem (O_x,O_y) fornecidas em pixels, esses, juntamente com a distância focal são os parâmetros intrínsecos da câmera.

Para obter a transformação agora desejada é necessário aplicar transformações adicionais sobre a matriz M: um alinhamento do sistema X-Y com o sistema linhascolunas e a utilização do tamanho efetivo do pixel.

Para obter a transformação agora desejada, resumidamente, é necessário aplicar sobre a matriz M: um alinhamento do sistema X-Y com o sistema linhas-colunas e a utilização do tamanho efetivo do pixel.

rotação e translação. colunas colunas colunas Rotação Translação linhas

Para alinhar os dois sistemas são necessárias:

A seguir temos o Passo-a-Passo para obter a nova matriz de projeção. Lembrando que originalmente temos:

temos:
$$Q_h = M * Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1/d \end{bmatrix} * \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \\ z/d \end{bmatrix} \Rightarrow Q_c = \frac{Q_h}{z/d} = \begin{bmatrix} \frac{x}{z/d} \\ \frac{y}{z/d} \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{d \cdot x}{z} \\ \frac{d \cdot y}{z} \\ 1 \end{bmatrix}$$

Rotação conveniente: alinha XY e linha-coluna

$$Q_{h} = Rot * M * Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} * \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ -y \\ z/d \end{bmatrix}$$

$$Q_{h} = Rot * M * Q = \begin{bmatrix} x \\ -y \\ z/d \end{bmatrix} \Rightarrow Q_{c} = \frac{Q_{h}}{z/d} = \begin{bmatrix} x_{c} \\ -y_{c} \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{d \cdot x}{z} \\ -d \cdot y \\ \overline{z} \\ 1 \end{bmatrix}$$

$$Q_{h} = Rot * M * Q = \begin{bmatrix} x \\ -y \\ z/d \end{bmatrix} \Rightarrow Q_{c} = \frac{Q_{h}}{z/d} = \begin{bmatrix} x_{c} \\ -y_{c} \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{d \cdot x}{z} \\ -d \cdot y \\ \overline{z} \\ 1 \end{bmatrix}$$

Calculando as

coordenadas da linha em

$$coluna_{j} = O_{x} + x_{p} em \ pixels = O_{x} + \frac{d \cdot x}{z \cdot s_{x}}$$

$$linha_{i} = O_{y} + y_{p} em \ pixels = O_{y} + \left(\frac{-d \cdot y}{z \cdot s_{y}}\right) \text{ O ideal \'e termos a formulação matricial}$$

$$Q_h = Translação(O_x, O_y) * escala(s_x, s_y) * Rot * M * Q =$$

$$\begin{bmatrix} 1 & 0 & O_{x} \\ 0 & 1 & O_{y} \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 1/s_{x} & 0 & 0 \\ 0 & 1/s_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1/d \end{bmatrix} * \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \frac{x}{s_{x}} + \frac{O_{x} \cdot z}{d} \\ \frac{-y}{s_{y}} + \frac{O_{y} \cdot z}{d} \\ \frac{z/d}{d} \end{bmatrix}$$

$$\Rightarrow Q_c = \frac{Q_h}{z/d} = \begin{bmatrix} \frac{d \cdot x}{s_x z} + O_x \\ -d \cdot y \\ s_y z \end{bmatrix} = \begin{bmatrix} \frac{d \cdot x}{s_x z} + O_x \\ -d \cdot y \\ s_y z \end{bmatrix} = \begin{bmatrix} coluna_j \\ linha_i \end{bmatrix}$$

$$Q_{h} = Translaçao(O_{x}, O_{y}) * escala(s_{x}, s_{y}) * Rot * M * Q = \\ \begin{bmatrix} 1 & 0 & O_{x} \\ 0 & 1 & O_{y} \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 1/s_{x} & 0 & 0 \\ 0 & 1/s_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1/s_{x} & 0 & O_{x}/d \\ 0 & -1/s_{y} & O_{y}/d \\ 0 & 0 & 1/d \end{bmatrix} * \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1/s_{x} & 0 & O_{x}/d \\ 0 & -1/s_{y} & O_{y}/d \\ 0 & 0 & 1/d \end{bmatrix} * \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1/s_{x} & 0 & O_{x}/d \\ 0 & -1/s_{y} & O_{y}/d \\ 0 & 0 & 1/d \end{bmatrix} * \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1/s_{x} & 0 & O_{x}/d \\ 0 & -1/s_{y} & O_{y}/d \\ 0 & 0 & 1/d \end{bmatrix} * \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1/s_{x} & 0 & O_{x}/d \\ 0 & -1/s_{y} & O_{y}/d \\ 0 & 0 & 1/d \end{bmatrix} * \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1/s_{x} & 0 & O_{x}/d \\ 0 & -1/s_{y} & O_{y}/d \\ 0 & 0 & 1/d \end{bmatrix} * \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1/s_{x} & 0 & O_{x}/d \\ 0 & -1/s_{y} & O_{y}/d \\ 0 & 0 & 1/d \end{bmatrix} * \begin{bmatrix} x \\ y \\ z \end{bmatrix} *$$

O ideal é termos a formulação matricial e condensada em uma única matriz: M_{completa}

$$coluna_{j} = O_{x} + x_{c} em \ pixels = O_{x} + \frac{d \cdot x}{z \cdot s_{x}} \qquad linha_{i} = O_{y} + y_{c} em \ pixels = O_{y} + \left(\frac{-d \cdot y}{z \cdot s_{y}}\right)$$

Aplicando a M_{completa} sobre Q

$$Q_{h} = M_{completa} * Q$$

$$\Rightarrow Q_{h} = \begin{bmatrix} 1/s_{x} & 0 & O_{x}/d & 0 \\ 0 & -1/s_{y} & O_{y}/d & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} * \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{x}{s_{x}} + \frac{O_{x} \cdot z}{d} \\ \frac{-y}{s_{y}} + \frac{O_{y} \cdot z}{d} \\ \frac{z}{d} \end{bmatrix}$$

$$Q_h = M_{completa} * Q$$

$$Q_{h} = \begin{bmatrix} 1/s_{x} & 0 & O_{x}/d \\ 0 & -1/s_{y} & O_{y}/d \\ 0 & 0 & 1/d \end{bmatrix} * \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1/0,0075 & 0 & 2048/5 \\ 0 & -1/0,0075 & 2048/5 \\ 0 & 0 & 1/5 \end{bmatrix} * \begin{bmatrix} 150,75 \\ 1500,0 \\ 500 \end{bmatrix} = \begin{bmatrix} 2,249 \times 10^{5} \\ 4,8 \times 10^{3} \\ 100 \end{bmatrix}$$

$$Q_c = Q_h/w \Rightarrow Q_c \approx \begin{bmatrix} 2249 \\ 48 \\ 1 \end{bmatrix}$$

$$R_h = M_{completa} * R$$

$$R_{h} = \begin{bmatrix} 1/s_{x} & 0 & O_{x}/d \\ 0 & -1/s_{y} & O_{y}/d \\ 0 & 0 & 1/d \end{bmatrix} * \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1/0,0075 & 0 & 2048/5 \\ 0 & -1/0,0075 & 2048/5 \\ 0 & 0 & 1/5 \end{bmatrix} * \begin{bmatrix} 150,75 \\ 1510,0 \\ 500 \end{bmatrix} = \begin{bmatrix} 2,249 \times 10^{5} \\ 3,466 \times 10^{3} \\ 100 \end{bmatrix}$$

$$R_c = R_h/w \Rightarrow R_c \approx \begin{bmatrix} 2249 \\ 34 \\ 1 \end{bmatrix}$$

Supondo:

Ox=Oy=2048 pixels sx=sy=0,0075 mm

D=5 mm

Independente de quaisquer das modelagens feitas anteriormente, o modelo representado na matriz M é restrito a um único sistemas de referência 3D na câmera. Na prática isso não é comum, ocorrendo um sistema na câmera e outro para os objetos da cena.

Nesse caso, além de levar em conta os parâmetros intrínsecos à câmera (tamanho de pixel, centro da câmera, distância focal) é necessário determinar a rotação e translação (parâmetros extrínsecos à câmera) para alinhamento dos dois sistemas 3D.

M'= (translação(Ox,Oy)*escala(sx,sy)* rot) * (Rotação*Translação)

E quanto a distorções por defeitos na lente?

Se forem significativas, podem ser tratadas por técnicas de

correção

Segue...