Zamanlama Sırası, Rastgele Erişimli Bellek (Random Access Memory: RAM) ve Hata Düzelten Kod (Hamming kodu)

BIL-204: Lojik Devreler II

Dersi veren öğretim üyesi:

Yrd. Doç. Dr. Fatih Gökçe

Süleyman Demirel Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü

Zamanlama Sırası

Seri çalışma için sözcük zaman kontrolünün üretilmesi

Zamanlama işaretlerinin <u>üretilmesi</u>

Johnson Sayıcı

	Sıra numarası	$\frac{\mathrm{Fl}}{A}$	ip-flop B	çıkışl C	arı <u>E</u>	Çıkışlar için gerekli VE kapısı
-	1	0	0	0	0	A'E'
	2	1	0	0	0	AB'
	3	1	1	0	0	BC'
	4	1	1	1	0	CE'
	5	1	1	1	1	AE
	6	0	1	1	1	A'B
	7	0	0	1	1	B'C
	8	0	0	0	1	C'E

Rastgele Erişimli Bellek (Random Access Memory: RAM)

Bir bellek biriminin blok diyagramı

1024x16'lık bir belleğin içeriği

Bellek Adresi

İkili	Onlu	Bellek içeriği
000000000	0	1011010101011101
0000000001	1	1010101110001001
0000000010	2	0000110101000110
	• •	• • •
1111111101	1021	1001110100010100
1111111110	1022	0000110100011110
1111111111	1023	1101111000100101

Bir bellek biriminin blok diyagramı

CS (Bellek izni)	RW (Okuma/Yazma)	Bellek İşlevi
0	×	Yok
1	0	Seçilen sözcüğün yazılması
1	1	Seçilen sözcüğün okunması

Bellek hücresi

4x4 RAM'ın Lojik Yapısı

Çıkış Sinyallerinin Birleştirilmesi

 Tüm çıkışları doğrudan birbirine bağlamak hatalıdır. Farklı hücrelerin çıkışları farklı olursa <u>çakışma</u> yaşanır.

 Çıkışları birleştirmenin ilk akla gelebilecek yolu VEYA kapıları ya da MUX (veri seçici) kullanmaktır.

 Bu çözüm pek de iyi değildir. İletkenlerin bağlanması ve çok fazla sayıda girişe sahip kapı tasarlanması işleri karmaşıklaştırır.

3-durumlu tampon (buffer)

- EN girişi bulunan aşağıdaki tampon 3-durumlu tampon'dur.
- Normal lojik kapılardan farklı olarak, çıkış sinyali 3 farklı duruma sahip olabilir.

EN	IN	OUT
0	×	Bağlantı kopuk
1	0	0
1	1	1

 "Bağlantı kopuk" herhangi bir çıkış değerinin görünmemesidir. Bağlantı telin kopmasıyla aynı durum demektir. Bu durum teknik olarak yüksek empedans (high impedance) veya Hi-Z ile de ifade edilir.

3-durumlu tamponların birlikte bağlantısı

- 3-durumlu tamponlardan herhangi bir anda sadece birinin aktifleştirileceği garanti ediliyorsa, bu tamponların çıkışları birbirine bağlanabilir.
- Bunu yapmanın en kolay yolu dekoder kullanmaktır!
- Dekoder aktifleştirilmemişse tüm 3 durumlu tamponların çıkış ile bağlantısı kopuk demektir ve herhangi bir çıkış alınmaz.
- Dekoder aktifleştirilmişse, sadece bir tane çıkışı 1 olabilir ve bu sayede 3 durumlu tamponlardan sadece 1 tanesi çıkışa bağlanmış olur.

64K x 8 RAM'lerden 256K x 8 RAM

Adres aralıkları

64K x 16 RAM

Hata Düzelten Kod (Hamming kodu)

Bu konu tahta kullanılarak anlatılmıştır. Ders notlarına bakınız.