Entrega final Tarea 1: Programación dinámica

Código: EL7021-1

Nombre: José Luis Cádiz Sejas

Parte I:

Pregunta 1:

• **Espacio de estados:** Dado el espacio $(x,y) \in \Re^2$, definimos el espacio de estados:

$$S = \{(RewardGgrid(x, y) = -1) \text{ or } (RewardGgrid(x, y) = 0)\}$$

Donde RewardGgrid(x, y) es la función de recompensa que puede generar valores -1, 0 o NULL según si el estado es de transición, terminal o no factible respectivamente.

En particular si (RewardGgrid(x, y) = 0), estamos hablando del estado terminal:

$$s_t \in S \mid (RewardGgrid(x, y) = 0)$$

- Espacio de acciones: α ∈ {0,1,2,3} donde
 {"0":"up","1":"down","2":"right","3":"left"}
- Función de recompensa: Función independiente de las acciones.

$$R(s,a) = \begin{cases} -1 & \text{if } s \neq s_t \\ 0 & \text{if } s = s_t \end{cases} donde s \in S$$

• Función de transición de estados: Esta función indica la probabilidad de transición del estado s al estado s'. Dada las acciones que define la política $\pi(a|s)$.

$$T(s',s,a) = \begin{cases} p_{dir} & \text{if } a = \pi(a|s) \\ \frac{1-p_{dir}}{2} & \text{if } a = \bot \pi(a|s) \text{ (Estados perpendiculares a la dirección de a)} \\ 0 & \text{if } s \notin S \text{ (Restricción de paredes)} \end{cases}$$

Pregunta 2: Código adjunto.

Pregunta 3:

• Función de valor:

• Política aprendida:

• Número de iteraciones sobre la función de valor: 253 iteraciones en los 11 llamados que se hizo a la función policy_evaluation.

Iteración Policy evaluation	Iteraciones dentro de Policy evaluation
	-
1	84
2	16
3	16
4	41
5	20
6	19
7	34
8	15
9	6
10	1
11	1

Parte II:

Pregunta 1: Código adjunto.

Pregunta 2: 1 - p = 0.2

• # de iteraciones: 36

• Función de valor:

Value Function

• Política aprendida:

• **Comentarios**: Se obtiene la misma función de valor y política que con policy_evaluation pero con un número menor de iteraciones sobre la función de valor (253 vs 36).

Pregunta 3: 1 - p = 0

- Policy_iteration:
 - > # de iteraciones: 117
 - > Función de valor:

Value Function

> Política aprendida:

Value_iteration:

de iteraciones: 30

> Función de valor:

Value Function

> Política aprendida:

Análisis: Para ambos casos se obtiene la misma función de valor y política aprendida. Por otro lado, se observa a partir de la función de valor, que el efecto que tiene el hecho de que el ambiente sea determinista ($p_{dir}=1$), disminuye el costo de llegar a la meta final. Además, observando la política aprendida, se aprecia que las direcciones aprendidas son más directas en comparación a cuando el ambiente tiene cierto grado de incertidumbre.

Adicionalmente también se observa que el número de iteraciones para aprender la política optima disminuye en un ambiente determinista.

Pregunta 4: 1 - p = 0.4

- Gamma=0.2:
 - > # de iteraciones: 7
 - > Función de valor:

> Política aprendida:

• Gamma=1:

- > # de iteraciones: 64
- Función de valor:

Value Function

Política aprendida:

Policy

• Interpretación: La diferencia entre ambas políticas aprendidas radica en el grado de importancia que se les dan a las recompensas futuras, para el caso en que gamma=0.2, se le está dando gran importancia las recompensar inmediatas, por otro lado, para el caso gamma=1 se le está dando la mayor importancia posible a las recompensas futuras.

Para el caso gamma=0.2, no se alcanza a aprender una política óptima en los casos en que los estados iniciales están muy alejados de la meta, lo cual tiene sentido debido a que el contexto del problema amerita en darle relevancia a las recompensas en el largo plazo. Esto también se aprecia en la función de valor, en donde para la mayoría de los estados se obtiene un valor -1.2.

Para el caso gamma=1, se logra obtener una política optima para todos los estados, pero se observa un notable aumento del número de iteraciones para obtener la política.

Pregunta 5: Gamma=1 representa que el agente le da exactamente la misma importancia a cada una de las recompensas inmediatas y futuras, lo cual en el contexto del problema es útil, sin embargo, puede haber un aumento del tiempo para encontrar la política optima en comparación con un gamma=0.9.