

General information

Designation

Polyetherimide (Unfilled)

Tradenames

Superio-UT; Sustatec; Tecapei; Tempalux; Ultem; Whistatt

Typical uses

High temperature switchgear; microwave cookware; electrical connectors; lamp housings; under-bonnet components.

Composition overview

Compositional summary

(-N-[CO2]-C6H3-O-C6H4-[CH3]2-C6H4-O-C6H3-[CO]2-N-C6H4-)n

Material family Plastic (thermoplastic, amorphous)

Base material PEI (Polyether imide)

Polymer code PEI

Composition detail (polymers and natural materials) Polymer 100				%
Price Price	* 7.61	-	8.39	USD/lb
Physical properties Density	0.0455	-	0.0462	lb/in^3
Mechanical properties Young's modulus Yield strength (elastic limit) Tensile strength Elongation Compressive modulus Compressive strength Flexural modulus Flexural strength (modulus of rupture) Shear modulus Bulk modulus Poisson's ratio Shape factor Hardness - Vickers	0.419 * 10.7 13.3 55.8 0.467 * 20.9 0.467 20.9 * 0.15 * 0.654 * 0.385 4.6 * 22.1		11.8 14.7 64.5 0.49 23.1	10^6 psi ksi % strain 10^6 psi ksi 10^6 psi ksi 10^6 psi
Hardness - Rockwell M Hardness - Rockwell R Fatigue strength at 10^7 cycles Mechanical loss coefficient (tan delta)	109 * 121 * 4.92 * 0.0132	- - -	110 134 6.39 0.0138	ksi
Impact & fracture properties Fracture toughness Impact strength, notched 23 °C Impact strength, notched -30 °C Thermal properties	* 1.81 0.00233 0.00233		3.67 0.00257 0.00257	ksi.in^0.5 BTU/in^2 BTU/in^2
Glass temperature Heat deflection temperature 0.45MPa Heat deflection temperature 1.8MPa	419 405 387	-	423 410 392	°F °F °F

°F

Maximum service temperature	322	-	354	c
Minimum service temperature	* -56.2	-	-20.2	c
Thermal conductivity	0.0708	-	0.075	E

Thermal conductivity 0.0708 - 0.075 BTU.ft/hr.ft^2.°F Specific heat capacity * 0.352 - 0.366 BTU/lb.°F Thermal expansion coefficient 47 - 56 µstrain/°F

Electrical properties

Electrical resistivity 3.3e22 3e23 µohm.cm Dielectric constant (relative permittivity) 3.1 3.3 Dissipation factor (dielectric loss tangent) 0.0019 0.0021 Dielectric strength (dielectric breakdown) 480 521 V/mil Comparative tracking index 100 250 ٧

Optical properties

Refractive index 1.65 - 1.67
Transparency Transparent

Magnetic properties

Magnetic type Non-magnetic

Bio-data

RoHS (EU) compliant grades?

Food contact

Yes

Absorption & permeability

Water absorption @ 24 hrs 0.227 - 0.275 %

Processing properties

Polymer injection molding Acceptable Polymer extrusion Acceptable Polymer thermoforming Acceptable 0.5 0.7 % Linear mold shrinkage °F Melt temperature 588 806 ٥F 338 Mold temperature 158 Molding pressure range 10 20 ksi

Durability

Excellent Water (fresh) Water (salt) Excellent Weak acids Excellent Excellent Strong acids Weak alkalis Excellent Strong alkalis Limited use Organic solvents Excellent Oxidation at 500C Unacceptable UV radiation (sunlight) Excellent Flammability Self-extinguishing

Primary production energy, CO2 and water

BTU/lb Embodied energy, primary production * 8.47e4 9.33e4 CO2 footprint, primary production * 10.6 - 11.7 lb/lb NOx creation * 0.0308 0.034 lb/lb 0.102 lb/lb SOx creation * 0.0924 * 1.36e4 1.5e4 in^3/lb Water usage

Processing energy, CO2 footprint & water

Polymer extrusion energy	* 2.63e3	-	2.91e3	BTU/lb
Polymer extrusion CO2	* 0.459	-	0.507	lb/lb
Polymer extrusion water	* 137	-	205	in^3/lb
Polymer molding energy	* 1.16e4	-	1.28e4	BTU/lb
Polymer molding CO2	* 2.02	-	2.23	lb/lb
Polymer molding water	* 443	-	665	in^3/lb
Coarse machining energy (per unit wt removed)	* 691	-	764	BTU/lb
Coarse machining CO2 (per unit wt removed)	* 0.121	-	0.133	lb/lb
Fine machining energy (per unit wt removed)	* 5.07e3	-	5.6e3	BTU/lb
Fine machining CO2 (per unit wt removed)	* 0.885	-	0.978	lb/lb
Grinding energy (per unit wt removed)	* 9.94e3	-	1.1e4	BTU/lb
Grinding CO2 (per unit wt removed)	* 1.73	-	1.92	lb/lb

Recycling and end of life

Recycling and end of the				
Recycle	✓			
Embodied energy, recycling	* 2.87e4	-	3.17e4	BTU/lb
CO2 footprint, recycling	* 3.6	-	3.98	lb/lb
Recycle fraction in current supply	0.1			%
Downcycle	✓			
Combust for energy recovery	✓			
Heat of combustion (net)	* 1.24e4	-	1.3e4	BTU/lb
Combustion CO2	* 2.68	-	2.82	lb/lb
Landfill	✓			
Biodegrade	×			

Geo-economic data for principal component

Principal component

Polyether

Links

ProcessUniverse

Producers

Reference

Shape