Содержание

Введе	ение		2
1 Об	зор пред	дметной области	3
1.1	Исторі	ия развития СКУД	3
	1.1.1	Первое поколение	3
	1.1.2	Второе поколение	4
	1.1.3	Третье поколение	5
1.2	Основ	ные составляющие СКУД	6
	1.2.1	Контроллер	6
	1.2.2	Считыватель	7
	1.2.3	Программное обеспечение	8
1.3	Виды	СКУД	9
		нализ существующих решений	11
3 Ob	зор пла	тформы для разработки и проектирование клиентской	
час	ти		15
3.1	Требон	вания и задачи	15
3.2	Аппар	ратная часть СКУД	15
3.3	Програ	аммное обеспечение СКУД	18
	3.3.1	Чат-бот	19
	3.3.2	Модуль распознавания лиц	19
	3.3.3	Модуль управления реле	20
3.4	Выбор	о инструментов разработки	20
	3.4.1	Работа с камерой	20
	3.4.2	Работа с распознаванием лиц	21
4 Pea	лизация	я технического задания	22
5 Экс	ономиче	еская часть	23
6 Ox	рана тру	уда и экология	24
Заклю	очение		25
Спис	ок литер	ратуры	26

					Код специальности			
Изм.	Лист	№ докум.	Подп.	Дата				
Разр	аб.	Имя автора				Лит.	Лист	Листов
Про	вер.	Имя проверяю	цего				1	26
Реце	Н3.				Тема			
Н. Контр.						Группа		1a
Утве	ерд.							

Введение

Система контроля и управления доступом (далее СКУД) - это совокупность программных и аппаратных средств, предоставлюящая возможность управления пропускным режимом, с целью ограничить доступ к определённым территориям или помещениям лицам, не имеющим к ним разрешения. Подобные системы широко используются среди не только крупных организаций и предприятий, но и малого бизнеса, индивидульных предпринимателей. Причинами такого успеха являются:

- централизованное управление пропускным режимом на объекты;
- сокращение времени на проверку документов;
- упрощение ведения статистики.

Для обеспечения контроля доступа в больших предприятий существует большое количество решений на рынке, однако для малых помещений с соответсвенно пониженной ценой наблюдается недостаток предложений. Именно поэтому, до сегоднешнего дня, малые организации используют простые замки или, к примеру, домофоны. Такие устройства значительно снижают удобство и быстроту доступа к определенным объектам.

Решением данной проблемы является разработка собственной СКУД, что определяет цель дипломного проекта. Для достижения данной цели должны быть решены следующие задачи:

- изучение теории по системам СКУД;
- анализ существующих решений на рынке, выявление их основных возможностей и недостатков;
- изучение теории по методам идентификации пользователей;
- выбор программных и аппаратных инструментов для разработки системы СКУД.

Структура работы включает в себя ...

Изм	Лист	№ докум.	Подп.	Дата

1. Обзор предметной области

СКУД - система контроля и управления доступом. В более широком смысле это совокупность программных и аппаратных средств технической защиты, цель которых - ограничение и отслеживание событий входа/выхода на определенной территории.

1.1. История развития СКУД

История СКУД начинается в связи с потребностью введения контроля над доступом людей на ограниченные территории, заменив старые, неактуальные способы контроля на автоматизированные и удобные в управлении системы. Структурная схема первых систем (на сегодняшний день также используются):

- считыватель (программно-аппаратное устройство, которое принимает коды от внешних устройств);
- валидатор (логический блок, предназначенный для проверки кода на его соотвествие);
- реле (программный или аппаратный модуль, предназначенный для управления устройствами блокировки прохода).

1.1.1. Первое поколение

СКУД первого поколения выполняли лишь базовые функции: считыватель ключей получал определенный код, передавал его в валидатор, далее валидатор проверял код на соответствие и принимал решение о открытии/закрытии блокирующего устройства.

Рисунок 1 – пример простого СКУД – Z-5R

Изм.	Лист	№ докум.	Подп.	Дата

В качестве устройств содержащих в себе ключ доступа широко использовалась TouchMemory — устройства, имеющие однопроводный протокол обмена информацией и флеш-память для её хранения.

Рисунок 2 – элеткронный ключ Button.com, реализующий систему TouchMemory

Подобные устройства хоть и не отличались большой функциональностью, внесли в развитие СКУД несколько нововведений:

- отказ от линий связи, что привело к использованию паллиативных механизмов программирования;
- внедрение протокола MicroLan, на основе которого позже будет создано множество охранных и пожарных систем.

Несмотря на все достоинства, СКУД первого поколения не отвечали еще нескольким основным требованиям – ведению журнала событий и простоте программирования контроллеров.

1.1.2. Второе поколение

Опыт использования первых СКУД показал, что они востребованы, однако пользователи нуждаются в увеличении функциональности и безопасности.

В связи с увеличением мощности микроконтроллеров, а также появлением доступа к технологиям Ethernet. Из этого исходят следующие нововведения:

- появились журналы событий. Они не работали в реальном времени, но значительно повышали безопасность охраняемых объектов;
- контроллеры стали способны сами получать и передавать данные для обработки, без необходимости в управляющих командах;
- на платах СКУД предусматривался канал связи Ethernet. Отныне локальные сети стали ключевыми линиями связи.

Изм.	Лист	№ докум.	Подп.	Дата

Рисунок 3 – Сетевая СКУД Sigur – поддерживает работу по сети за счет встроенного Ethernet порта

В процессе использования СКУД нового поколения, были выявлены следующие недостатки:

- журналы событий не работали в реальном времени. Такая функция позволила бы незамедлительно реагировать на определенные события;
- не было поддержки более сложных алгоритмов валидации ключей, соответственно безопасность нельзя было повысить;
- не поддерживались разные виды идентификаторов, такие как штрих-коды, отпечатки пальцев и т.п.

1.1.3. Третье поколение

Применение локальных сетей ускорило развитие СКУД. Ранее совмещенные элементы систем контроля и управления доступом стали разделяться, образовывая распределенные системы. Это означало, что стало возможным располагать на разные объекты считыватели, подключённые к одному контроллеру СКУД.

Также, чаще роль контроллера СКУД стал выполнять персональный компьютер, с установленным управляющим программным обеспечением. Такая структура позволила:

 наделить системы СКУД гибкостью, возможностью использования различного ПО, выбираемого по требуемым характеристикам;

Изм.	Лист	№ докум.	Подп.	Дата

 использовать любые поддерживаемые методы идентификации – от простых TouchMemory до биометрии.

Рисунок 4 – структурная схема СКУД третьего поколения

Третье поколение СКУД вследствие больших нововведений получила и ряд нерешённых проблем:

- все элементы системы теперь зависели от одного-двух серверов, на которых выполнялось управляющее программное обеспечение;
- за счёт большого числа новых методов идентификации появилось множество проблем с безопаснотстью. Такая ситуация подтолкнула производителей к использованию и разработке новых протоколов обмена информацией между устройствами.

1.2. Основные составляющие СКУД

1.2.1. Контроллер

В современных системах контроля и управления доступом контроллер - одна из самых функциональных модулей. Он выполняет роль центрального модуля управления — в его памяти хранятся коды идентификаторов, а значит контроллер принимает решение о допуске определённого человека на охраняемый объект.

В случае необходимости автономного контроллера, он совмещается со считывателем в одном устройстве, что позволяет сократить затраты, снизить стоимость и упростить монтаж.

При использовании СКУД на несколько точек доступа, ощутимо возрастает значимость характеристик.

Изм	Лист	№ докум.	Подп.	Дата

Рисунок 5 – пример контролеров – автономный Z-5R (слева), Anviz SAC844 (слева)

1.2.2. Считыватель

Считыватель - устройство, которое получает код идентификатора и передаёт его в контроллер для обработки. Считыватели, в зависимости от модели, позволяют принимать в качестве идентификатора следующие идентификаторы:

- proximity-карты;
- TouchMemory;
- код доступа;
- биометрия (отпечатки пальцев, радужная оболочка глаз, лица).

Изм.	Лист	№ докум.	Подп.	Дата

Рисунок 6 – считыватели Smartec

1.2.3. Программное обеспечение

В случае использования компьютера в качестве контроллера, существует специальное програмнное обеспечение, роль которого — управление подключёнными модулями и хранение идентификаторов.

Программное обеспечение используется при необходимости более широкого функционала, чем может предоставить обычный контроллер, например:

- ведение отчётности, быстрый доступ к отчётам;
- подключение баз данных сотрудников, например в 1С;
- удалённое управление, изменение баз данных, конфигураций.

Изм.	Лист	№ докум.	Подп.	Дата

Рисунок 7 – программное обеспечение Castle

1.3. Виды СКУД

Все системы контроля и управления доступом можно разделить на две категории: сетевые и автономные системы.

В сетевой системе все контроллеры соединены с компьютером, что позволяет управлять десятками дверей, проходных пунтков, турникетов. Подобные системы удобны для больших объектов (офисов, производственных предпрятий).

Сетевые системы используются для:

- использования сложных алгоритмов допуска сотрудников с разными привидегиями в разные зоны объекта;
- организации учёта рабочего времени;
- при взаимодействии с другими системами безопасности, например с пожарной сигнализацией.

В сетевой СКУД могут применяться как проводные, так и беспроводные методы передачи данных, например:

- Bluetooth;
- Wi-Fi;
- GSM.

Изм	Лист	№ докум.	Подп.	Дата

Автономные системы менее функциональны, дешевле, проще в эксплуатации. Они не требуют прокладки сотен метров кабеля, а также сопряжения и управления с компьютера. При этом, автономные системы могут иметь некоторый функционал сетевых СКУД, например, ведение отчётов, удалённое управление, но должны обеспечивать безопасность хранения информации, т.к. все идентификаторы располлагаются непосредственно в автономной системе. Лист Код специальности

Подп.

Дата

№ докум.

Изм. Лист

10

2. Обзор и анализ существующих решений

В качестве примеров существующих на рынке СКУД, были выбраны следующие системы:

- комплексная система с распознаванием лиц Sigur;
- Smartec ST-FR040EM;
- комплексная система Perco.

Важно отметить, что для выполнения сравнения системы Sigur и Perco были теоретически собраны из представленных модулей.

Краткое описание всех выбранных систем:

В продуктах Sigur распознавание лиц используется для автоматической идентификации сотрудников в точках прохода. Видеопоток может быть получен с IP-камер, подключённых к системе напрямую.

Комплексная система Sigur поддерживает как только распознавание лиц, так и другие методы идентификации совместно.

Рисунок 8 – СКУД Sigur

Корректная работа гарантируется только при следующих условиях:

- количество лиц в базе до 1000;
- качественный видеопоток;
- качественное освещение.

Изм.	Лист	№ докум.	Подп.	Дата

При этом СКУД Sigur требует для работы компьютер/сервер со следующими техническими характеристиками: процессор Intel Core i7, не менее 8 Гб ОЗУ.

Цена продукта определения посредством лицензирования — выбором покупателем количества камер и максимального количества сотрудников в базе. Например, минимальная конфигурация, состоящая из:

- одна камера 7000 руб.
- 10 лиц сотрудников в базе 72000 руб.
- контроллер 16170 руб.

стоит 95170 руб.

Следующая система, биометрический считыватель ST-FR040EM марки Smartec выполняет распознавание геометрии лица, а также идентификацию пользователей по коду доступа и картам стандарта Em Marine. Наличие встроенного контроллера позволяет ему выполнять функции СКУД в автономном режиме.

Рисунок 9 – СКУД Smartec ST-FR040EM

На передней панели считывателя под небольшим углом к вертикальной плоскости расположены две камеры: обычная цветная и камера, фиксирующая изображение в ИК-диапазоне. При этом распознавание лиц выполняется с помощью обработки кадров, зафиксированных ИК-камерой.

Помимо биометрического ридера, ST-FR040EM имеет встроенный считыватель карт доступа формата Em Marine, а также оснащен экранной кодонаборной клавиатурой. Благодаря этому, устройство позволяет реализовать не только распознавание лиц, но и осуществлять контроль доступа по картам,

Изм.	Лист	№ докум.	Подп.	Дата

коду, а также использовать эти методы идентификации в различных комбинациях.

ST-FR040EM имеет релейный выход с H3/HP контактами, через который считыватель может управлять электрическим дверным замком. HP-контакт применяется в тех случаях, когда устройство для распознавания лиц должно управлять замком, открывающимся при подаче напряжения, а H3 – когда замок открывается при отключении питания. При этом, если рабочее напряжение замка составляет 12 В, то для него и устройства распознавания можно использовать единый источник электропитания достаточной мощности. Система обеспечивает корректную работу при выполнении следующих условий:

- до 500 лиц в базе распознавания;
- температурах работы от 0 до 50 С;
- питание не более 400 мА.

Розничная цена СКУД Smartec составляет 29000 руб.

Системы контроля доступа PERCo-S-20 интегрированы с биометрическими контроллерами Suprema предназначенными для учета отпечатков пальцев сотрудников и посетителей. В качестве идентификаторов в системе могут использоваться карты доступа и отпечатки пальцев совместно или по отдельности.

Рисунок 10 – биометрический СКУД Perco Suprema

Изм	Лист	№ докум.	Подп.	Дата

Для функционирования оборудования Suprema необходимо приобрести, как минимум, Базовое ПО PERCo-SN01 и один контроллер PERCo с интерфейсом связи по Ethernet.

Система поддерживает хранение до 10 отпечатков для одного сотрудника/посетителя, а максимальное количество отпечатков, хранимых в СКУД -20000.

При использовании контроллеров и считывателей Suprema могут быть использованы как недельные, так и сменные графики доступа для сотрудников.

Интеграция настольных считывателей серии BioMini позволяет регистрировать биометрические данные сотрудников/посетителей централизованно, например, сотрудником отдела кадра или бюро пропусков.

Цена подобной системы составляет 22470 руб.

Изм.	Лист	№ докум.	Подп.	Дата

3. Обзор платформы для разработки и проектирование клиентской части

3.1. Требования и задачи

Для создания системы контроля и управления доступом были сформулированы наиболее важные идеи, задачи и требования на основе проведённого теоретического анализа и обзора существующих решений.

Разрабатываемая система должна:

- осуществлять контроль доступа на основе биометрического метода идентификации – распознавания лиц. Такой метод является наиболее практичным для небольшого количества сотрудников, т.к. позволяет не приобретать карты доступа, а также даёт возможность более быстрой идентификации.
- иметь реле для управления различными видами замков, турникетов, и т.п.
- иметь клиентскую часть, представленную в виде чат-бота в мессенджере. Исследование рынка показало, что методы управления СКУД неудобны, не имеют большого функционала и часто требуют непосредственного нахождения рядом с управляющим блоком. Основные модули, из которых должна состоять клиентская часть: модуль обработки видеопотока и распознавания лиц; модуль чат-бота мессенджера. В качестве мессенджера был выбран Telegram, так как имеет самое функциональное и документированное АРІ для создания чат-ботов и сами чат-боты Telegram отличаются от всех мессенджеров наличием таких особенностей как: возможность общения с ботом посредством клавиатур, команд (например, /help или /menu), обычных сообщений и картинок; возможность построения многоуровневых меню, что решает проблему незнания пользователем команд управления; модуль управления реле. Модуль отвечает за принятие команд от модуля распознавания, подачей напряжения на контакты GPIO для управления реле.
- обеспечивать безопасность хранения информации.

3.2. Аппаратная часть СКУД

Разработка системы контроля и управления доступом осуществляется на платформе компании Raspberry Pi Foundations – Raspberry Pi 3B. Основой данного продукта является процессор с ARM-архитектурой Cortex-A53 с частотой 1,2 ГГц и модуль оперативной памяти на 1 Гб. Raspberry Pi 3B

Изм.	Лист	№ докум.	Подп.	Дата

разработана с интерфейсами Ethernet и USB, что позволяет использовать многочисленные устройства расширения.

Поддержка технологий Wi-Fi и Bluetooth обеспечивает широкие возможности для организации соединения и контактирования внешних устройств с платой.

Raspberry Pi имеет контакты GPIO, что может быть использовано для программного управления различными устройствами.

Выбранное устройство имеет малые габариты $-85,6\times53,98\times17$ мм. Это подразумевает то, что конечное устройство будет занимать минимальное количество места.

Рисунок 11 – Raspberry Pi 3B

Raspberry Pi имеет слот CSI, представляющий интерфейс между платой и модулем камеры. Такая возможность позволяет передавать данные с камеры со скоростью до 5 Гбит/с и не использовать IP-камеры, имеющие задержку из-за передачи данных по сети.

Для создания видеопотока для обработки следует использовать камеру. Благодаря описанному разъёму CSI плата может использовать модуль камеры с соотвествующим интерфейсом.

В качестве модуля камеры был выбран Raspberry Pi Camera Board v2.1 – модуль от производителя основной платы. Это обеспечивает совместимость камеры с компьютером, а также даёт возможность использовать официальный SDK для работы с камерой, тем самым получая наилучшее быстродействие.

Изм.	Лист	№ докум.	Подп.	Дата

Рисунок 12 – модуль камеры Raspberry Pi Camera Board

Модуль камеры основан на сенсоре Sony IMX 219 PQ, имеет разрешение до $8~\rm Mn~(3280x2464)$ и поддерживает видеоформаты от $480p~(90~\rm FPS)$ до $1080p~(30~\rm FPS)$.

Для выполнения одной из главных функций устройства — управления внешними блокирующими устройствами — выбран модуль реле Tongling с рабочим напряжением 5В. Данный модуль поддерживает проходяющий ток до 10А, а также имеет специальные контакты для подключения к контактам GPIO.

Рисунок 13 – модуль реле Tongling на 5В

Общая архитектура аппаратной части системы контроля и управления доступом:

Изм.	Лист	№ докум.	Подп.	Дата

Рисунок 14 – структура аппаратной части системы

3.3. Программное обеспечение СКУД

Разработка программного обеспечения СКУД осуществляется на основе трёх модулей: чат-бота, модуля распознавания лиц и модуля управлдения реле.

Основная схема программного обеспечения:

Изм.	Лист	№ докум.	Подп.	Дата

Рисунок 15 – структура клиентской части СКУД

3.3.1. Чат-бот

Задача данного программного модуля состоит в получении пользовательских команд, обработки, конструирования и отправки ответов.

Основная функциональность, выполняемая модулем:

- построение пользовательских меню;
- построение диалогов с пользователем;
- проведение аутентификации пользоваетеля чат-бота;
- управление базой лиц: добавление, удаление, модификация;
- уведомеления о происходящих событиях пользователя (например проход распознанного/нераспознанного лица).

3.3.2. Модуль распознавания лиц

Модуль распознавания лиц выполняет одну из главных задач системы контроля и управления доступом – идентификацию пользователей. Функциональность модуля:

- обработка и подготовка изображения для детектирования лиц;
- детектирование лица на фотографии, составление выделющих масок;

Изм.	Лист	№ докум.	Подп.	Дата

- распознавание лиц, идентификация лиц с заранее заданными фотографиями пользователей в режиме единичной фотографии или в режиме потока кадров;
- принятие решения об подаче сигнала открытия/закрытия на реле.

3.3.3. Модуль управления реле

Данный модуль представляет простое сокрытие реализации работы с контактами GPIO, то есть предоставляет интерфейс для управления состояниями реле.

Функциональность данного модуля состоит из:

- подачи сигнала отключения реле;
- подачи сигнала включения реле.

3.4. Выбор инструментов разработки

В рамках разработки системы контроля и управления доступом выбор инструментов зависит не только от возможностей тех или иных библиотек конкретных языков программирования, но и от задач поставленных в разделе 3.1.

В результате проведения обзора высокоуровневых языков, в качестве которых были выбраны C++, Java, Python, был сделан выбор в пользу Python по следующим причинам:

- код программы выполняется интерпретатором, что даёт возможность запускать программу без процесса компиляции. Это ускоряет процесс разработки и отладки программного обеспечения;
- интерпретатор Python занимает гораздо меньший объём памяти по сравнению с JRE;
- большая кроссплатформенность в отличие от С++;

3.4.1. Работа с камерой

В качестве решения для работы с модулем камеры была выбрана официальная библиотека для Raspberry Pi Camera Board – picamera. Она предоставлет интерфейс для камеры на языке программирования Python.

рісатега позволяет выполнять такие операции как:

 работа с изображением с камеры, сохранение, обработка (поворот, изменение цвета и т.п.);

Изм.	Лист	№ докум.	Подп.	Дата

 получение видеопотока, возможность выбора формата и количества кадров в секунду.

3.4.2. Работа с распознаванием лиц

Для распознавания лиц был выбран инструмент Face Recognition, который представляет из себя библиотеку, имеющюю интерфейс на языке Pythion. Данная библиотека использует два основных инструмента:

- библиотеку OpenCV широко распространённый набор алгоритмов компьютерного зрения, обработки изображений и численных алгоритмов. Включает в себя базовые структуры, вычисления (математические функции, генераторы случайных чисел), обработку изображений, модели машинного обучения, модули для работы с калибровкой камеры.
- библиотеку dlib, для работы с нейронными сетями, машинным обучением и пр. Использует обученные каскады для поиска лиц.

Используя возможности детектирования лиц и обученных нейросетей Face Recognition добивается максимального процента распознавания лиц.

Изм.	Лист	№ докум.	Подп.	Дата

		4. Реали	изация	техні	ического задания	
		Тут опи	сание п	рове	дённой работы:	
		–				
					Код специальности	Лис
Изм	. Лист	№ докум.	Подп.	Дата		22

		5. Экон	омичес	ская ч	насть	
		– 6.1 pa	асчет се	ебест	оимости	
		– 6.2 oi	ценка э	ффек	тивности внедрения	
\vdash				Π		Лис
Из	м. Лист	№ докум.	Подп.	Дата	Код специальности	23
	- 7201		-10,411.	1 ~~~~	I	

Охрана труда и экология
Нужно ли это делать?

- 7.1 вредные факторы
- 7.2 правила техники безопасности
- 7.3 противопожарная безопасность

Изм	Лист	№ докум.	Подп.	Дата

