ERRATA

Os autores apelam aos leitores que lhes façam chegar correcções, comentários ou sugestões para melhorar esta e futuras edições do livro "Introdução à instrumentação médica". Para tal, os endereços electrónicos de ambos os autores seguem abaixo:

José Higino Correia higino.correia@dei.uminho.pt

João Paulo Carmo jcarmo@sc.usp.br

Guimarães, 18 de Maio de 2017.

pág •	localização	onde se lê	deverá ler-se / nota
23	Par 1/ Lin -4	material.	material. Adicionalmente, refira-se que a temperatura afeta o comportamento dos extensómetros.
47	Par 4/Lin 3	nominal de 0.385Ω .°C ⁻¹ .	nominal de 0.385 Ω.°C ⁻¹ com elevada linearidade.
67	Equação (2.62)	$A = A_0 e^{-\frac{K_a}{C}}$	$A = A_0 e^{-K_a C}$
67	Equação (2.63)	$A = A_0 e^{-\frac{K_b}{d}}$	$A = A_0 e^{-K_b d}$
117	Eq. (4.22)	$\angle H(jf) = \angle \left[H_0 \times \frac{1}{1 + j(\frac{f}{f_0})} \right] =$ $= \angle \left[\frac{1}{1 + j(\frac{f}{f_0})} \right] =$ $= -\angle \left[1 + j(\frac{f}{f_0}) \right] =$ $= -\arctan(\frac{f}{f_0})$	$\angle H(jf) = \angle \left[H_0 \times \frac{1}{1 + j(\frac{f}{f_0})} \right] =$ $= \angle (H_0) + \angle \left[\frac{1}{1 + j(\frac{f}{f_0})} \right] =$ $= \angle (H_0) - \angle \left[1 + j(\frac{f}{f_0}) \right] =$ $= 180^\circ - \operatorname{arctg}(\frac{f}{f_0})$

119	Linha 1	$f_0=1/(2\pi R_2C_2)$	$f_0=1/(2\pi R_1C_1)$	
119	Eq. (4.25)	$\angle H(jf) = \angle (H_0 \times \frac{j(\frac{f}{f_0})}{1 + j(\frac{f}{f_0})}) =$ $= \angle [j(\frac{f}{f_0})] + \angle \frac{1}{1 + j(\frac{f}{f_0})} =$ $= \angle [j(\frac{f}{f_0})] - \angle [1 + j(\frac{f}{f_0})] = 90^{\circ} - \operatorname{arctg}(\frac{f}{f_0})$	$ \angle H(jf) = \angle (H_0 \times \frac{j(\frac{f}{f_0})}{1 + j(\frac{f}{f_0})}) = $ $ = \angle (H_0) + \angle [j(\frac{f}{f_0})] + \angle \frac{1}{1 + j(\frac{f}{f_0})} = $ $ = \angle (H_0) + \angle [j(\frac{f}{f_0})] - \angle [1 + j(\frac{f}{f_0})] = $ $ = 180^\circ + 90^\circ - \operatorname{arctg}(\frac{f}{f_0}) = $ $ = 270^\circ - \operatorname{arctg}(\frac{f}{f_0}) $	
129	Equação (4.48)		$H(jf) = -\frac{K\left(\frac{f}{f_0}\right)^2}{1 - \left(\frac{f}{f_0}\right)^2 + \left(\frac{j}{Q}\right) \times \left(\frac{f}{f_0}\right)}$	
136	Exercício 4.10(c)	$V_i(t) = 2 + \cos(500/\pi)t$	$V_i(t) = 2 + \cos(1000t)$	
160	Linha 14	consoante V_{comp} tome	consoante V_{out} tome	
164	Exercício 5.1(b)	quatro bits	três bits	
186	Tabela 6.3	braço direito	braço esquerdo	
186	Tabela 6.3	braço esquerdo	braço direito	
190	Figura 6.14(c)	$ \begin{array}{c c} RA & & \\ \hline RL & & \\ \hline RL & & \\ \hline R & & \\ R & & \\ \hline R & & \\ R & & \\ \hline R & & \\ R & & \\ \hline R & & \\ R &$	RA LLL R O	
191 Figura 6.15(a)		RA LA R	RA V, a V ₆ O RA RA R R R R R R R R R R	

- 2 - © **LIDEL** – Edições Técnicas

191	Figura 6.15(b)	T T T T T T T T T T T T T T T T T T T	V ₂ , V ₃ , V ₃
191	Legenda Fig 6.15(b)	(b) localização das derivações unipolares pré-cordiais	(b) posição dos elétrodos pré-cordiais no tórax.
199	Tabela 6.5	crianças	crianças, <i>stress</i> em adultos
199	Tabela 6.5	idade no estado acordado	idade no estado acordado, intensa atividade mental
204	Par 3/Lin 6	tipo de crise epilética.	tipo de crise epilética parcial.

240	Par 1/Lin 3	parasita C_{body} (desde que	parasita C _{terra} (desde que
240	Par 1/Lin 4	de modo comum V_{cm} , degradando ainda mais o desempenho do amplificador.	de modo comum V_{cm} , degradando ainda mais o desempenho do amplificador.

- 4 -

		Deve-se ver	elétrodo 1 Proposition de la company de la	$\begin{array}{c c} R_1 & R_2 \\ R_3 & C_1 \\ \hline R_3 & R_3 \\ \hline R_4 & R_2 \\ \hline R_5 & R_2 \\ \hline R_7 & R_2 \\ \hline R_7 & R_2 \\ \hline R_8 & R_2 \\ \hline \end{array}$
243	Par -1/ Lin -1	que	se somam na saída.	que se combinam na saída.
247	Par - 1/Lin -4	a pa	arte não isolada e a solada.	a parte isolada e a parte não isolada.