PSALTer results panel

$$S = \iiint (\mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \ \tau (\Delta + \mathcal{K})_{\alpha\beta} + \frac{1}{3} r_{\cdot} (4 \, \partial_{\beta} \mathcal{A}_{\alpha_{i}\theta} - 2 \, \partial_{\beta} \mathcal{A}_{\alpha_{\theta_{i}}} + 2 \, \partial_{\beta} \mathcal{A}_{i_{\theta\alpha}} - \partial_{i} \mathcal{A}_{\alpha_{\beta\theta}} + \partial_{\theta} \mathcal{A}_{\alpha_{\beta_{i}}} - 2 \, \partial_{\theta} \mathcal{A}_{\alpha_{i}\beta}) \, \partial^{\theta} \mathcal{A}^{\alpha\beta_{i}} + \frac{1}{2} t_{\cdot} (2 \, \mathcal{A}^{\alpha_{i}}_{\ \alpha} \, \mathcal{A}^{\,\,\theta}_{i_{\theta}} - 4 \, \mathcal{A}^{\,\,\theta}_{\alpha_{\theta}} \, \partial_{i} f^{\alpha_{i}} + 4 \, \mathcal{A}^{\,\,\theta}_{i_{\theta}} \, \partial^{i} f^{\alpha}_{\ \alpha} - 2 \, \partial_{i} f^{\,\,\theta}_{\ \theta} \, \partial^{i} f^{\alpha_{i}}_{\ \alpha} - 2 \, \partial_{i} f^{\alpha_{i}} \, \partial_{\theta} f^{\alpha_{i}}_{\ \alpha} + 4 \, \partial^{i} f^{\alpha}_{\ \alpha} \, \partial_{\theta} f^{\,\,\theta}_{i_{\theta}} - 2 \, \partial_{\alpha} f_{\,\,i_{\theta}} \, \partial^{\theta} f^{\alpha_{i}} - 2 \, \partial_{\alpha} f^{\,\,\theta}_{i_{\theta}} \, \partial^{\theta} f^{\alpha_{i}} + 2 \, \mathcal{A}^{\,\,\theta}_{\alpha_{i}} \, \partial^{\theta} f^{\alpha_{i}}_{\ \alpha} + 2 \, \partial^{\theta} f^{\alpha_{i}}_{\ \alpha} + 2 \, \partial^{\theta} f^{\alpha_{i}}_{\ \alpha})))[t, x, y, z] \, dz \, dy \, dx \, dt$$

Wave operator

Saturated propagator

Source constraints

Spin-parity form	Covariant form	Multiplicities
0+ τ [⊥] == 0	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$	1
$-2 \bar{i} k^{0,+} \sigma^{\parallel} + {}^{0,+} \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}{}^{\beta}$	1
$2ik \cdot 1 \cdot \sigma^{\perp \alpha} + 1 \cdot \tau^{\perp \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3
1- _τ α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
$i k 1^+_{\cdot} \sigma^{\perp}^{\alpha\beta} + 1^+_{\cdot} \tau^{\parallel}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = =$	3
	$\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	
$-2 i k 2^{+}_{\cdot} \sigma^{\parallel^{\alpha\beta}} + 2^{+}_{\cdot} \tau^{\parallel^{\alpha\beta}} == 0$	$-i\left(4\partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi}_{\ \chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi}-\right.$	5
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+$	
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+4ik^{\chi}\partial_{\epsilon}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\sigma^{\delta}_{\delta}{}^{\epsilon}-6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\delta\beta\epsilon}-6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\delta\alpha\epsilon}+6ik^{\chi}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{\alpha\beta\delta}+$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \alpha \delta} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi \delta} - 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} - 4 i \eta^{\alpha \beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta}^{\epsilon}) = 0$	
Total expected gauge generators:		16

Massive spectrum

Massive particle

Pole residue:	$-\frac{1}{r_{\cdot}^{2}} > 0$
Square mass:	$\frac{\frac{t}{1}}{\frac{r}{2}} > 0$
Spin:	0
Parity:	Odd

Massless spectrum

(No particles)

Unitarity conditions

r. < 0 && t. < 0