Álgebra I Práctica 7 - Polinomios

General idades.

- 1. Calcular el grado y el coeficiente principal de los siguientes polinomios en $\mathbb{Q}[X]$:
 - i) $(4X^6 2X^5 + 3X^2 2X + 7)^{77}$,
 - ii) $(-3X^7 + 5X^3 + X^2 X + 5)^4 (6X^4 + 2X^3 + X 2)^7$,
 - iii) $(-3X^5 + X^4 X + 5)^4 81X^{20} + 19X^{19}$.
- 2. Calcular el coeficiente de X^{20} de los siguientes polinomios
 - i) $(X^{18} + X^{16} + 1)(X^5 + X^4 + X^3 + X^2 + X + 1)$ en $\mathbb{Q}[X]$ y en $(\mathbb{Z}/2\mathbb{Z})[X]$,
 - ii) $(X 3i)^{133}$ en $\mathbb{C}[X]$,
 - iii) $(X-1)^4(X+5)^{19} + X^{33} 5X^{20} + 7$ en $\mathbb{Q}[X]$,
 - iv) $f = X^{10}(X^5 + 4)^7$ en $(\mathbb{Z}/5\mathbb{Z})[X]$.
- **3**. Hallar, cuando existan, todos los $f \in \mathbb{C}[X]$ tales que
 - i) $f^2 = Xf + X + 1$,

iii) $(X+1) f^2 = X^6 + X f$,

ii) $f^2 - Xf = -X^2 + 1$,

- iv) $f \neq 0$ y $f^3 = \operatorname{gr}(f) \cdot X^2 f$.
- 4. Hallar el cociente y el resto de la división de f por g en los casos
 - i) $f = 5X^4 + 2X^3 X + 4$, $q = X^2 + 2$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$,
 - ii) $f = 4X^4 + X^3 4$, $q = 2X^2 + 1$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$ $\mathbb{V}[X]$,
 - iii) $f = X^n 1$, g = X 1 en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$ y $(\mathbb{Z}/p\mathbb{Z})[X]$,
- **5**. Determinar todos los $a \in \mathbb{C}$ tales que
 - i) $X^3 + 2X^2 + 2X + 1$ sea divisible por $X^2 + aX + 1$,
 - ii) $X^4 aX^3 + 2X^2 + X + 1$ sea divisible por $X^2 + X + 1$.
 - iii) El resto de la división de $X^5 3X^3 X^2 2X + 1$ por $X^2 + aX + 1$ sea -8X + 4.
- **6**. Definición: Sea K un cuerpo y sea $h \in K[X]$ un polinomio no nulo. Dados $f, g \in K[X]$, se dice que f es congruente a g módulo h si $h \mid f g$. En tal caso se escribe $f \equiv g \pmod{h}$.
 - i) Probar que $\equiv \pmod{h}$ es una relación de equivalencia en K[X].
 - ii) Probar que si $f_1 \equiv g_1 \pmod{h}$ y $f_2 \equiv g_2 \pmod{h}$ entonces $f_1 + f_2 \equiv g_1 + g_2 \pmod{h}$ y $f_1 \cdot f_2 \equiv g_1 \cdot g_2 \pmod{h}$.
 - iii) Probar que si $f \equiv g \pmod{h}$ entonces $f^n \equiv g^n \pmod{h}$ para todo $n \in \mathbb{N}$.
 - iv) Probar que r es el resto de la división de f por h si y sólo si $f \equiv r \pmod{h}$ y r = 0 ó gr(r) < gr(h).
- 7. Hallar el resto de la división de f por g para
 - i) $f = X^{353} X 1$ y $g = X^{31} 2$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$,
 - ii) $f = X^{1000} + X^{40} + X^{20} + 1$, $g = X^6 + 1$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$ y $(\mathbb{Z}/p\mathbb{Z})[X]$,
 - iii) $f = X^{200} 3X^{101} + 2$, $g = X^{100} X + 1$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$,
 - iv) $f = X^{3016} + 2X^{1833} X^{174} + X^{137} + 2X^4 X^3 + 1$, $g = X^4 + X^3 + X^2 + X + 1$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$. (Sug. ver Ej. 4)iii)

- 8. Sea K un cuerpo. Sean $n \in \mathbb{N}$ y $a \in K$.
 - i) Probar que $X a \mid X^n a^n$ en K[X].
 - ii) Probar que si n es impar entonces $X + a \mid X^n + a^n$ en K[X].
 - iii) Probar que si n par entonces $X + a \mid X^n a^n$ en K[X].

Calcular los cocientes en cada caso.

9. Calcular el máximo común divisor entre f y g en $\mathbb{Q}[X]$ y escribirlo como combinación polinomial de f y g siendo

i)
$$f = X^5 + X^3 - 6X^2 + 2X + 2$$
, $g = X^4 - X^3 - X^2 + 1$,

ii)
$$f = X^6 + X^4 + X^2 + 1$$
, $g = X^3 + X$,

iii)
$$f = 2X^6 - 4X^5 + X^4 + 4X^3 - 6X^2 + 4X + 1$$
, $g = X^5 - 2X^4 + 2X^2 - 3X + 1$.

¿Cambia algo si se consideran los polinomios en $\mathbb{R}[X]$ o $\mathbb{C}[X]$?

Evaluación y raíces.

- 10. Sea $f \in \mathbb{Q}[X]$ tal que f(1) = -2, f(2) = 1 y f(-1) = 0. Hallar el resto de la división de f por $X^3 2X^2 X + 2$.
- 11. Sea $n \in \mathbb{N}$, $n \ge 3$. Hallar el resto de la división de $X^{2n} + 3X^{n+1} + 3X^n 5X^2 + 2X + 1$ por $X^3 X$ en $\mathbb{Q}[X]$.
- 12. Hallar la forma binomial de cada una de las raíces complejas del polinomio $X^6 + X^3 2$.
- 13. Sea $\omega = e^{\frac{2\pi}{7}i}$. Probar que $\omega + \omega^2 + \omega^4$ es raíz del polinomio $X^2 + X + 2$.
- 14. i) Probar que si $\omega = e^{\frac{2\pi}{5}i} \in G_5$, entonces

$$X^{2} + X - 1 = (X - (\omega + \omega^{-1}))(X - (\omega^{2} + \omega^{-2})).$$

- ii) Calcular, justificando cuidadosamente, el valor exacto de $\cos(\frac{2\pi}{5})$.
- **15**. i) Sean $f, g \in \mathbb{C}[X]$ y sea $a \in \mathbb{C}$. Probar que a es raíz de f y de g si y sólo si a es raíz de (f:g).
 - ii) Hallar todas las raíces complejas de X^4+3X-2 sabiendo que tiene una raíz común con X^4+3X^3-3X+1 .
- 16. Determinar la multiplicidad de a como raíz de f en los casos
 - i) $f = X^5 2X^3 + X$, a = 1.
 - ii) $f = X^6 3X^4 + 4$, a = i,
 - iii) $f = (X-2)^2(X^2-4) + (X-2)^3(X-1), \quad a = 2,$
 - iv) $f = (X-2)^2(X^2-4) 4(X-2)^3$, a = 2.
- 17. Sea $n \in \mathbb{N}$. Determinar todos los $a \in \mathbb{C}$ tales que $f = nX^{n+1} (n+1)X^n + a$ tiene sólo raíces simples en \mathbb{C} .
- **18**. Determinar todos los $a \in \mathbb{R}$ para los cuales $f = X^{2n+1} (2n+1)X + a$ tiene al menos una raíz múltiple en \mathbb{C} .
- 19. Sea $f = X^{20} + 8X^{10} + 2a$. Determinar todos los valores de $a \in \mathbb{C}$ para los cuales f admite una raíz múltiple en \mathbb{C} . Para cada valor hallado determinar cuántas raíces distintas tiene f y la multiplicidad de cada una de ellas.
- **20**. Sea $f = X^{68} 17X^4 16 \in \mathbb{C}[X]$. Determinar la forma binomial de cada raíz *múltiple* de f en \mathbb{C} y la multiplicidad de cada una de ellas.

- i) Probar que para todo $a\in\mathbb{C},$ el polinomio $f=X^6-2X^5+(1+a)X^4-2aX^3+(1+a)X^2-2X+1$ 21. es divisible por $(X-1)^2$.
 - ii) Determinar todos los $a \in \mathbb{C}$ para los cuales f es divisible por $(X-1)^3$.
- **22**. Determinar todos los $a \in \mathbb{C}$ tales que 1 sea raíz doble de $X^4 aX^3 3X^2 + (2+3a)X 2a$.
- **23**. Sea $n \in \mathbb{N}$. Probar que $\sum_{k=0}^{n} \frac{X^k}{k!} \in \mathbb{C}[X]$ tiene todas sus raíces complejas simples.
- **24**. Sea $(f_n)_{n\in\mathbb{N}}$ la sucesión de polinomios en $\mathbb{C}[X]$ definida por

$$f_1 = X^4 + 2X^2 + 1$$
 y $f_{n+1} = (X - i)(f_n + f'_n), \forall n \in \mathbb{N}.$

Probar que i es raíz doble de f_n para todo $n \in \mathbb{N}$.

25. Sea $(f_n)_{n\in\mathbb{N}}$ la sucesión de polinomios definida por

$$f_1 = X^3 + 2X - 1$$
 y $f_{n+1} = Xf_n^2 + X^2f_n', \forall n \in \mathbb{N}.$

Probar que $gr(f_n) = 2^{n+1} - 1$ para todo $n \in \mathbb{N}$.

- **26**. Sea $\alpha \in \mathbb{C}$ raíz de multiplicidad 3 de $f \in \mathbb{C}[X]$. Probar que el resto de dividir a f' por $(X \alpha)^3$ es $a(X - \alpha)^2$, con $a \in \mathbb{C}$, $a \neq 0$.
- **27**. i) Hallar todas las raíces racionales de
 - (a) $2X^5 + 3X^4 + 2X^3 X$.
 - (b) $X^5 \frac{1}{2}X^4 2X^3 + \frac{1}{2}X^2 \frac{7}{2}X 3$,
 - ii) Probar que $X^4 + 2X^3 3X^2 2$ no tiene raíces racionales.

Factorización.

- 28. Factorizar en $\mathbb{C}[X]$, $\mathbb{R}[X]$, $\mathbb{Q}[X]$ y en $(\mathbb{Z}/7\mathbb{Z})[X]$ los polinomios cuadráticos
- i) $X^2 + 6X 2$, ii) $X^2 + X 6$, iii) $X^2 2X + 10$.
- **29**. Factorizar en $\mathbb{C}[X]$ los polinomios
 - i) $X^2 + (1+2i)X + 2i$, ii) $X^8 1$,

iii) $X^6 - (2-2i)^{12}$.

- **30**. Factorizar en $\mathbb{C}[X]$, $\mathbb{R}[X]$ y $\mathbb{Q}[X]$ los polinomios
 - i) $X^6 9$,

ii) $X^4 + 3$.

iii) $X^4 - X^3 + X^2 - 3X - 6$.

- **31**. Factorizar los polinomios
 - i) $X^4 1$ en $(\mathbb{Z}/5\mathbb{Z})[X]$ y $(\mathbb{Z}/7\mathbb{Z})[X]$,
- iii) $X^4 + X^3 + X^2$ en $(\mathbb{Z}/7\mathbb{Z})[X]$,

ii) $X^4 + 3$ en $(\mathbb{Z}/7\mathbb{Z})[X]$,

- iv) $X^7 X$ en $(\mathbb{Z}/7\mathbb{Z})[X]$.
- **32**. Sea $n \in \mathbb{N}$. Probar que $\sum_{k=0}^{n} X^k \in \mathbb{C}[X]$ tiene todas sus raíces complejas simples.
- **33**. Factorizar los siguientes polinomios en $\mathbb{C}[X]$, $\mathbb{R}[X]$ y $\mathbb{Q}[X]$
 - i) $X^5 4X^4 X^3 + 9X^2 6X + 1$ sabiendo que $2 \sqrt{3}$ es raíz.
 - ii) $X^5 X^3 + 17X^2 16X + 15$ sabiendo que 1 + 2i es raíz,
 - iii) $X^{6} + X^{5} + 5X^{4} + 4X^{3} + 8X^{2} + 4X + 4$ sabiendo que $\sqrt{2}i$ es raíz múltiple,
 - iv) $X^4 + 2X^3 + 3X^2 + 10X 10$ sabiendo que tiene una raíz imaginaria pura,

- v) $X^5 3X^4 2X^3 + 13X^2 15X + 10$ sabiendo que tiene alguna raíz en común con $X^3 + 1$.
- vi) $f = X^4 6X^3 + 11X^2 2X 10$, sabiendo que tiene alguna raíz en común con el polinomio $g = X^4 5X^3 + 7X^2 6$.
- **34**. Hallar todos los $a \in \mathbb{Q}$ tales que $f = X^4 (a+4)X^3 + (4a+5)X^2 (5a+2)X + 2a$ tenga a a como raíz doble. Para cada valor de a hallado, factorizar f en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$.
- 35. Hallar todos los $a \in \mathbb{C}$ para los cuales al menos una de las raíces de

$$f = X^6 + X^5 - 3X^4 + 2X^3 + X^2 - 3X + a$$

es una raíz sexta de la unidad y ninguna de sus raíces es raíz cúbica de la unidad.

Para cada valor de $a \in \mathbb{Q}$ hallado, factorizar f en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$.

- **36**. i) En cada caso, hallar un polinomio $f \in \mathbb{Q}[X]$ de grado mínimo tal que:
 - (a) $X^2(X^2+1) \mid (f:f')$.
 - (b) $(f:f') = X^5 5X^4 + \frac{25}{4}X^3$ y f(1) = 3.
 - (c) $X + 2 \mid f$, $(f : (X \sqrt{2})^2) = X \sqrt{2}$ y f mónico.
 - ii) Determinar todos los $f \in \mathbb{Q}[X]$ mónicos de grado 5 que satisfacen simultáneamente que (f:f') tiene grado 2, 1+2i es raíz de f y $f(1)=\frac{1}{2}$.
- 37. Sean $a, b, c \in \mathbb{C}$ las raíces de $2X^3 3X^2 + 4X + 1$. Determinar
 - i) a + b + c,

- ii) ab + ac + bc,
- iii) abc.
- 38. i) Hallar todas las raíces en \mathbb{C} del polinomio $f = X^4 (i+4)X^3 + (8+4i)X^2 (2i+24)X + 12$ sabiendo que tiene al menos una raíz real.
 - ii) Hallar todas las raíces en $\mathbb C$ del polinomio $f=X^6-3X^4-(2+8\,i)X^3+24\,iX+16\,i$, sabiendo que tiene al menos una raíz entera.
- **39**. i) ¿Cuántos polinomios mónicos de grado 2 hay en $(\mathbb{Z}/7\mathbb{Z})[X]$? ¿Cuántos de ellos son reducibles y cuántos irreducibles?
 - ii) Sea p un número primo. ¿Cuántos polinomios mónicos de grado 2 hay en $(\mathbb{Z}/p\mathbb{Z})[X]$? ¿Cuántos de ellos son reducibles y cuántos irreducibles?