Option: Electromécanique

TP:1 MESURE DES RESISTANCES

(Méthodes Directes)

I. Complément théorique :

I.1) mesures directes

1- Mesure de la résistance par le code des couleurs

La valeur des résistances de faibles puissances (moins de 5W) est généralement inscrite sous forme de code formé de 4, 5 ou 6 anneaux de couleur. Figure.1, 2 et 3 illustrent le code des couleurs formé de 4 et 5 anneaux.

Figure 1. Identification des résistances avec le code des couleurs

Option: Electromécanique

Figure 2 Marquage des résistances avec le code des couleurs

Figure 3. Exemple d'identification de la valeur d'une résistance avec le code des couleurs

2- Mesures à l'ohmmètre.

Principe de l'ohmmètre.

L'appareil fait circuler un courant de faible intensité I (de l'ordre du mA, µA ou du nA) dans la résistance à mesurer et affiche le résultat R=U/I, U étant la tension aux bornes de la résistance.

Figue 4. Principe de l'ohmmètre

Option: Electromécanique

1.1) Ohmmètre analogique (à déviation ou à aiguille)

> Incertitudes due à l'instrument de mesure

 R_X : résistance à mesurer.

l'incertitude absolue instrumentale $\Delta R_{x_{inst}}$ due à l'appareil de mesure

$$\Delta R_{x_{inst}} = \frac{Classe.Calibre}{100}$$

 $\Delta R_{x_{inst}} = \frac{Classe.Calibre}{100}$ L'incertitude relative instrumentale peut s'écrire sous la forme :

$$\frac{\Delta R_{x_{inst}}}{R_{x}}$$

> Incertitudes due à la lecture (opérateur)

Incertitude absolue due la lecture $\Delta R_{x_{opérat}}$ peut s'écrire sous la forme :

$$\Delta R_{x_{opérat}} = \frac{1}{4}$$
. Division

l'incertitude relative due la lecture peut s'écrire sous la forme :

$$\frac{\Delta R_{x_{opér}at}}{R_{x}}$$

Ohmmètre numérique 2.2)

La précision des appareils numériques se présente généralement sous la forme suivante :

$\Delta R_X =\%$ de la lecture + ...?..digit(digit : résolution de l'appareil).

Incertitude absolue totale

pour les appareils à déviation :

$$\Delta R_{x_{totale}} = \Delta R_{x_{inst}} + \Delta R_{x_{opérat}}$$

pour les appareils à affichage numérique:

$$\Delta R_{x_{totale}} = \Delta R_{x_{inst}}$$

Centre Universitaire de Mila

Option: Electromécanique

Institut des sciences et technologie

Nom et Prénoms		Groupe	Note
Nom et Prénoms			
Date:	 Horaire:	Lab. N°	

TP: 1 MESURE DES RESISTANCES (Méthodes Directes)

II. Objectifs:

- I.1) Mesure de la résistance à l'aide de différentes méthodes directes:
 - Mesure de la résistance par le code des couleurs
 - Mesure de la résistance par ohmmètre analogique.
 - Mesure de la résistance par ohmmètre numérique.
- I.2) Calcul de l'incertitude relative pour chacune des méthodes
- III. Matériel utilisé: Pour la manipulation de ce TP, le matériel est le suivant :
 - □ Multimètres numérique.
 - □ Multimètre analogique (à déviation)
 - \square Résistances ($R_x = 1k\Omega$).

IV. Etude expérimentale

1) Mesures directes (Code des couleurs et ohmmètres)

- Relever les couleurs de la résistance de gauche vers la droite et déduire sa valeur R_x et sa tolérance.
- Mesurer la résistance R_x avec l'ohmmètre analogique après avoir ajusté son zéro.
- Mesurer la résistance R_x avec l'ohmmètre numérique

Tableau de mesure 1 : Mesures directes (Code des couleurs et ohmmètres)

Résistance	Code des couleurs	Ohmmètre numérique	Ohmmètre analogique
$R_x\Omega$			
$\Delta R_x \Omega$			
$\delta R_x = \Delta R_x / R_x \%$			
$R_x - \Delta R_x \le R_x \le R_x + \Delta R_x \Omega$			

Centre Universitaire de Mila

Calculer les valeurs manquées et remplir le tableau au-dessus.

Institut des sciences et technologie

Option: Electromécanique

-	Caracté	eristiques d	le la r	nesure par	r l'ohm	nmètre anal	ogique			
Classe.	0),1	, ca	libre	.20 kΩ	, Di	vision	100 Ω		
		,				,				
									-	
		,								

V) Travail à effectuer

- 1/ Comparer les précisions (incertitudes relatives) obtenues avec les différentes méthodes de mesure directes:
- 2/ Donner une conclusion à ce travail.

Centre Universitaire de Mila

Institut des sciences et technologie

Option : Electromécanique

	 	 	
onelusion:			
onclusion:			