

Department of Computer Science and Engineering

P.E.S College of Engineering, Mandya, (An Autonomous Institution under VTU)

Course Title : Data Structures

Course Code : P18CS33 | Semester : 3 | L :T:P:H : 4:0:0:4 | Credits: 3

Contact Period: Lecture: 52 Hrs, Exam: 3 Hrs | Weightage: CIE:50%, SEE:50%

Course Content

Unit-1

Pointers: Pointers and character strings, array of pointers, pointers as function arguments, functions returning arguments, pointers to functions, pointers and structures.

Introduction to data structures-Definition, Classification of Data Structures.

Stacks: Representing stack in C- Implementation of Push, Pop and display operations using arrays and pointers. Applications of Stacks: Infix, Postfix, Prefix, Infix to postfix, prefix to postfix, evaluation of postfix.

Self Study Component : Structures concepts, Programmes on structures

10 Hours

Unit-2

Recursion: Definition, Writing Recursive programs-Factorial Numbers, Fibonacci Numbers and Tower of Hanoi Problem

Queues: Definition, Representation, operations, implementation using arrays and linked lists. Different types of queues, Basic operations on - Linear queue, Circular queue, Priority Queue and Double ended Queue (Using SLL), Applications of Queues

Self Study Component : Recursive programmes on Multiplication of natural numbers, GCD of two numbers.

10 Hours

Unit-3

Linked Lists: Static Memory Allocation and Dynamic Memory Allocation, Basic operations on SLL, DLL, Circular SLL and Circular DLL: insertion, deletion and display. Implementation of SLL with Header nodes

Applications of Linked Lists: Merging, Reversing, Searching, Addition of two polynomials using SLL.

Self Study Component : Conversion from Infix to Prefix expression, Postfix to Prefix expression.

10 Hours

Unit-4

Trees: Introduction-Definition, Tree Representation, Properties of Trees, Operations on Binary tree, Binary Search Tree [BST] - Definition, searching BST, Insertion to BST, Deletion from BST, Display BST. Tree and their Applications- Tree Traversal, General Expression as a tree, Evaluating an Expression Tree; Threaded Binary Trees-Threads, Inorder Traversal of a Threaded Binary Tree, Inserting a Node into a Threaded Binary Tree

Self Study Component : Different traversal techniques using iterative approach

12 Hours

Unit-5

Sorting Techniques: Address calculation sort, Binary tree sort, Radix sort.

Searching Techniques: Sentinel search, probability search, ordered list search (Text Book-2)

Self Study Component : Sorting methods – Quick sort, Merge sort, Searching methods –

Binary search, Indexed sequential search

10 Hours

Department of Computer Science and Engineering

P.E.S College of Engineering, Mandya, (An Autonomous Institution under VTU)

Text Books:

- 1. Data Structures using C and C++ by Yedidyah Langsam and Moshe J. Augenstein and Aaron M.Tenanbaum, PHI, 2nd Edition.
- 2. Data Structures A pseudo code Approach with C Richard F Gilberg and Behrouz A forouzan, 2nd Edition.
- 3. Programming in ANSI C, C.Balaguruswamy, 6th edition 2013.

Reference Book:

1. Fundamentals of Data Structures in C -Horowitz, Sahani, Anderson-Freed, 2nd Edition, University Press. 2nd Ed. Understand primitive and derived data structure.

Course Outcomes

After learning all the units of the course, the student is able to:

- 1. **Design** and Implement standard data structures like stack using recursion
- 2. **Design** and implement operations on linked list.
- 3. **Develop** programs to implement different queues.
- 4. **Design and** implement diffèrent tree traversal techniques using iteraton and recursion.
- 5. **Implement** sorting and searching techniques

CO-PO Mapping

Semester: 3			Course code :					Title: Data Structures								
			P18CS33													
CO	Statement	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	
		-		_	4	_	U	′	0	-	10	11	12	OI		
CO	Solve the given problems using	2	2	2		2				2					3	
303.1	the concepts of stacks															
CO	Apply the concepts of linked	2	2	2		2				2					3	
303.2	list															
CO	Apply the concepts of queues	2	2	2		2				2					3	
303.3																
CO	Design different types of trees	2	2	2		2				2					3	
303.4	for a given problem.															
CO	Apply sorting and searching	2	2	2		2				2					3	
303.5	techniques															
C303		2	2	2		2				2					3	