CO₂ Price 138.152

Process Assumptions	future
	steady-state
Design capacity	2,739,726
Average production rate	2,465,753
Capacity factor	90%
	_
Oceanwater target pH Membrane contactor efficiency	90%
Electrodialysis acidified stream target pH	0.4
[H+] in acid stream needed to achieve target pH above	0.401
[H+]/s added to OW stream to achieve target pH (*nonEq)	2.55E-03
[CO ₂]/s at oceanwater target pH (*nonEq)	2.17E-03
[CO ₂]/[DIC] at oceanwater target pH	0.99
x electrodialyzed oceanwater for acidified stream	0.01
Multiplier	4.00
	Steady-state
CO ₂ partial pressure (Torr)	10.00
Liquid flow rate	60.00
Gas flow rate	60.00
Extraction efficiency	80%
Ratio of flow rates	1.00
Extraction efficiency (= cell below when varying ctf)	80%
Calculated extraction efficiency (for varying ctf)	89%
Catalytic turnover factor (*nonEq unless CTF=1)	1.0
Calculated ctf (for varying extraction efficiency)	0.9
Catalytic turnover number (Eq)	0.85
Calculated ctn (for varying extraction efficiency or ctf)	0.77
0	500
Current density Voltage	500 2.5
Voltage	2.3
Baseline capacity	30,976
Labor baseline capacity	21,120
Scaling factor exponent	0.60
Scale ratio	88.45
Labor scale ratio	129.72
In dividual all addates	0.00
Industrial electricity	0.02
CEPCI inflator (basis year to startup year)	1.00
Consumer price inflator (basis year to startup year)	1.00
Labor inflator (2018 to startup year)	1.12
Chemical price inflator (basis year to startup year)	1.00

System cost

Intake Screening

Micro/ultrafiltration

Nanofiltration

Electrodialysis

CO₂ stripping

PV system

Total

Scale Factor 14.72

Financial	
Length of Construction Period (years)	1
Startup year (= reference year = current year)	2019
Basis year	2019
Year of analysis	2020
% of Capital Spent in 1st Year of Construction	100%
% of Capital Spent in 2nd Year of Construction	0%
% of Capital Spent in 3rd Year of Construction	0%
% of Capital Spent in 4th Year of Construction	0%
Start-up Time (years)	1
Plant life (years)	40
Analysis period (years)	40
Depreciation Schedule Length (years)	20
Depreciation Type	MACRS
% Debt Financing	60%
% Equity Financing	40%
Interest rate on debt, if applicable (%)	3.70%
Debt period (years)	Constant debt
% of Fixed Operating Costs During Start-up (%)	75%
% of Revenues During Start-up (%)	50%
% of Variable Operating Costs During Start-up (%)	75%
Decommissioning costs (% of depreciable capital investment)	10%
Salvage value (% of total capital investment)	10%
Inflation rate (%)	1.9%
State Taxes (%)	6.0%
Federal Taxes (%)	21.0%
Total Tax Rate (%)	25.74%
WORKING CAPITAL (% of yearly change in operating costs)	15%
After-tax real IRR	6%
After-tax nominal IRR	8.01%
Inflation factor (basis year to startup year)	1.00

Capital costs

Depreciable capital costs

Direct capital cost Indirect capital cost Site preparation

Site preparation 2%
Engineering and design 10%
Project contingency 15%
Upfront permitting cost (legal and contractors fees) 7.5%

0

Total depreciable capital cost

Non depreciable capital costs

Cost of land (5 acre, \$50,000/acre)

Total capital costs

Fixed operating costs

Labor cost (\$50/FTE/hour) (\$/year)	10.50
G&A (\$/year)	20%
Property taxes and insurance (\$/year)	2%
Production maintenance and repairs (\$/year)	3%
Total fixed operating costs (\$/year)	

Variable operating costs

Energy utilities costs

Intake energy 0.561
Screening energy Micro/ultrafiltration energy 0.023
Nanofiltration energy 0.020
Electrodialysis energy 2.224
CO₂ stripping energy 0.371
Non energy utilities costs

Total variable operating costs (\$/year) 3.199

Replacements

Unplanned replacement capital cost (0.5% of total direct	capital cos 0.5%
Replacement costs (15% of remaining depreciable capital	al cost/5 ye 15%
Specified replacement cost (electrodialyzer/5year)	100%
Specified replacement cost (60% pre-treatment/5year)	60%
Specified replacement cost (gas stripping/10year)	100%

Year	Plant cost index
1992	358.2
1993	359.2
1994	368.1
1995	381.1
1996	381.7
1997	386.5
1998	389.5
1999	390.6
2000	394.1
2001	394.3
2002	395.6
2003	402
2004	444.2
2005	468.2
2006	499.6
2007	525.4
2008	
2009	521.9
2010	
2011	
2012	
2013	
2014	
2015	
2016	
2017	
2018	
2019	607.5

\$/ton CO₂

current or future? equilibrium or steady-st	ate (0D model)?		
kg CO₂/day kg CO₂/day		1,000,000 t CO ₂ /year 900,000 t CO ₂ /year	
Number of channels in	1/x = 156 electrodialyzer (3, but flo	ow 2x in diluate)	
Torr 1/min 1/min			
	89%	80%	
mA/cm ² V			
kg CO ₂ /day kg CO ₂ /day	20 kmol/hr, fro	30,976 m Eisaman, used only for labor scaling 7,709 t CO2/year in Eisaman ar	nalysis
\$/kWh			

Baseline installed cost in	Baseline installed cost in	Scaled installed cost in
basis year dollars	startup year dollars	startup year dollars
\$3,249,551	\$3,249,551	\$47,844,550
\$4,220,778	\$4,220,778	\$62,144,335
\$2,236,588	\$2,236,588	\$32,930,254
\$467,876	\$467,876	\$6,888,745
\$964,465	\$964,465	\$14,200,230
\$8,778,621	\$8,778,621	\$129,251,443
		\$0
\$19,917,879	\$19,917,879	\$293,259,556

Ratio of total scaled installed capital capital cost to total baseline installed capital costs. Used for

Values in startup year dollars (except land in basis year)	Combined plant scaling and inflation factor	Values in startup year dollars
\$293,259,556	1	\$293,259,556
		\$0
\$5,865,191	1	\$5,865,191
\$29,325,956	1	\$29,325,956
\$43,988,933	1	\$43,988,933
\$21,994,467	1	\$21,994,467
		\$394,434,102
\$0	14.72	\$0.00
		\$394,434,102

Values in basis year dollars	Combined plant scaling and inflation factor	Values in startup year dollars
\$415,000	3.78	\$1,569,861
\$83,000	3.78	\$313,972
		\$7,888,682
	1.00	\$8,797,787
		\$18,570,302

Values in startup year dollars	Combined plant scaling and inflation factor	Values in startup year dollars
\$10,100,967	1	\$10,100,967
\$0		\$0
\$408,542	1	\$408,542
\$356,576	1	\$356,576
\$40,031,829	1	\$40,031,829
\$6,685,540	1	\$6,685,540
\$0	1	\$0
\$57,583,453		\$57,583,453

Frequency	Cost	reference	Values in startup year
	1	\$293,259,556	\$1,466,298
	5	\$211,163,431	\$31,674,515
	5	\$14,200,230	\$14,200,230
	5	\$39,818,998	\$23,891,399
	10	\$129,251,443	\$129,251,443

<u>Deflator price index</u>	<u>Labor cost index</u>	Chemical price index
67.932	13.70	109.7583333
69.505	13.97	108.8416667
70.960	14.33	110.425
72.387	14.86	117.1833333
73.668	15.37	119.3333333
74.824	15.78	116.825
75.641	16.23	117.8666667
76.873	16.40	108.9166667
78.723	17.09	108.9083333
80.268	17.57	118.4833333
81.654	17.97	115.8916667
83.201	18.50	121.1416667
85.712	19.17	125.475
88.489	19.67	141.4333333
90.815	19.60	173.8
93.145	19.55	185.9916667
94.986	19.50	261.3916667
95.259	20.30	271.8583333
96.763	21.07	253.175
98.703	21.45	300.9083333
100.737	21.45	298.1916667
102.517	21.40	281.0916667
104.123	21.49	270.3083333
104.937	21.76	270.0083333
106.469	22.72	252.125
108.598	24.28	256.7916667
111.14	25.46	276.9
112.95	25.46	279.5916667

CO₂ Price 138.152 \$/ton CO₂

Cash Flow

	PV of cash flows	Discounted values	Categorization
Revenue	\$1,615,732,386	\$1,745,217,180	revenue
Initial depreciable cap	-\$215,016,344	-\$232,247,754	X (included in principal + interest)
Initial equity depricial	-\$143,344,230	-\$154,831,836	capex
Replacement costs	-\$289,532,893	-\$312,736,059	replacements
Cash from working ca	-\$11,329,364	-\$12,237,299	taxes & working capital
Non-depreciable capi	\$ 0	\$0	capex
Salvage value	\$3,484,060	\$3,763,272	fixed opex (cancels)
Decommisioning cost	-\$3,484,060	-\$3,763,272	fixed opex (cancels)
Fixed operating costs	-\$249,880,824	-\$269,906,273	fixed opex
Variable operating co	-\$774,839,333	-\$836,934,957	variable opex
Debt interest	-\$102,681,018	-\$110,909,875	capex
Pre-depreciation inco	\$488,331,211	\$527,466,074	X (sum)
Depreciation charge	-\$355,159,083	-\$383,621,532	X (sum)
Taxable income	\$133,172,128	\$143,844,542	X (sum)
Total tax	-\$34,278,506	-\$37,025,585	taxes & working capital
Principal payment	-\$9,846,219	-\$10,635,295	capex
After-tax, post-depred	\$0	\$0	X (sum)
Total	0	\$0	

Breakdown by Process Step

	Capital cost \$/ton	Electricity cost \$/tor	Replacements \$/ton	Capital cost %
Intake	\$3.57	\$11.62	\$0.00	16%
Screening	\$4.64	\$0.00	\$0.00	21%
Microfiltration	\$2.46	\$0.47	\$4.50	11%
Nanofiltration	\$0.51	\$0.41	\$0.00	2%
Electrodialysis	\$1.06	\$46.06	\$2.68	5%
CO ₂ stripping	\$9.64	\$7.69	\$9.89	44%
Other	\$0.00	\$0.00	\$7.68	0%
Total	\$21.88	\$66.25	\$24.76	100%
		Total	\$138.15	

Parameter Sweep

Param to vary current_density
Also calculate extraction_efficiency

CTF = 2

roon Brigo	Sacandamy recult
eep Price	Secondary result
25.0 \$238	80%
50.0 \$186	80%
75.0 \$168	80%
100.0 \$159	80%
200.0 \$146	80%
300.0 \$142	2 80%
400.0 \$140	80%
500.0 \$138	80%
600.0 \$137	7 80%
700.0 \$137	7 80%
800.0 \$136	80%
900.0 \$136	80%
,000.0 \$136	80%

Detailed Breakdown					
Param to vary voltage					
Values to sweep	1	2	3	4	
Label	1	2	3	4	
Intake/screening Cap	\$48.64	\$48.64	\$48.64	\$48.64	
Electrodialysis CapEx	\$22.15	\$22.15	\$22.15	\$22.15	
CO ₂ stripping CapEx	\$79.17	\$79.17	\$79.17	\$79.17	
Intake electricity	\$20.95	\$20.95	\$20.95	\$20.95	
Electrodialysis electric	\$33.20	\$66.41	\$99.61	\$132.82	
Fixed OpEx & Other	\$282.29	\$282.78	\$283.28	\$283.77	
Total	\$486.40	\$520.10	\$553.80	\$587.49	
*Includes replacements					

2D Parameter Sweep Param to vary 1 elec_cost Param to vary 2 cap_factor Secondary result ctn_calc primary result (price) 0.00 0.00 0.05 0.10 0.15 0.000 51680.20 1033.60 516.80 344.50 0.005 51695.10 1048.50 531.70 359.40 0.010 51710.00 1063.40 546.60 374.30 0.015 51724.80 1078.20 561.40 389.20 0.020 51739.70 1093.10 576.30 404.00 0.025 51754.60 1108.00 591.20 418.90 0.030 51769.50 1122.90 606.10 433.80 0.035 448.70 51784.30 1137.70 620.90 0.040 51799.20 1152.60 635.80 463.50 0.045 51814.10 1167.50 650.70 478.40 0.050 51829.00 1182.40 493.30 665.60 0.055 51843.80 1197.20 680.40 508.20 0.060 51858.70 1212.10 695.30 523.00 secondary result 0.00 0.00 0.05 0.10 0.15 0.00 0.85 0.85 0.85 0.85 0.85 0.01 0.85 0.85 0.85 0.01 0.85 0.85 0.85 0.85 0.85 0.02 0.85 0.85 0.85 0.02 0.85 0.85 0.85 0.85 0.03 0.85 0.85 0.85 0.85

0.85

0.85

0.85

0.85

0.85

0.85

0.85

0.85

0.85

0.85

0.85

0.85

0.85

0.85

0.85

0.03

0.04

0.04

0.05

0.05

0.85

0.85

0.85

0.85

0.85

0.06	0.85	0.85	0.85	0.85
0.06	0.85	0.85	0.85	0.85
0.00	0.00	0.20	0.40	0.60
0.00	0.00	0.25	0.49	0.74
0.00	0.01	0.30	0.60	0.90

Sensitivity Analysis: 10 kiloton scale, \$0.05/kWh				
	50% less	50% more	0.5x	1x
Electricity price	-\$77.63	\$77.64	\$469.01	\$546.64
ED voltage	-\$52.65	\$52.66	\$493.99	\$546.64
Membrane contactor	-\$42.41	\$42.42	\$504.23	\$546.64
ED current density	-\$6.24	\$18.73	\$540.40	\$546.64
ED membrane cost	-\$9.36	\$9.37	\$537.28	\$546.64
Intake piping cost	-\$4.48	\$4.49	\$542.16	\$546.64
Nanofiltration CapEx	-\$3.86	\$3.87	\$542.78	\$546.64

Sensitivity Analysis: 10 kilotons CO₂/ye CO₂ Price (\$/to

Sensitivity Analysis: megaton scale, \$0.02/kWh					
	50% less	50% more	0.5x	1x	
Electricity price	-\$31.05	\$31.06		\$84.26	\$115.31
ED voltage	-\$21.06	\$21.06		\$94.25	\$115.31

Membrane contactor	-\$6.72	\$6.73	\$108.59	\$115.31
ED current density	-\$0.99	\$2.97	\$114.32	\$115.31
ED membrane cost	-\$1.48	\$1.49	\$113.83	\$115.31
Intake piping cost	-\$0.71	\$0.71	\$114.60	\$115.31
Nanofiltration CapEx	-\$0.61	\$0.62	\$114.70	\$115.31

Category	Cost breakdown	Contribution to CO ₂ pri %	
CapEx Replacements	\$276,377,006 \$312,736,059	21.88 24.76	16% 18%
Fixed OpEx Variable OpEx Taxes & Working Cap	\$269,906,273 \$836,934,957 \$49,262,884	21.37 66.25 3.90	15% 48% 3%
Revenue Total CO2 Sales (kg)	\$1,745,217,180 13,117,138,882		
Total	\$0	\$138.15	
Total	\$0	\$138.15	

Direct Capital Cos

Electricity cost %	Replacements %
18%	0%
0%	0%
1%	18%
1%	0%
70%	11%
12%	40%
0%	31%
100%	100%

Current D

\$100

0.20	0.25	0.30	0.35
258.40	206.70	172.30	147.70
273.30	221.60	187.10	162.50
288.20	236.50	202.00	177.40
303.00	251.30	216.90	192.30
317.90	266.20	231.80	207.20
332.80	281.10	246.60	222.00
347.70	296.00	261.50	236.90
362.50	310.80	276.40	251.80
377.40	325.70	291.30	266.70
392.30	340.60	306.10	281.50
407.20	355.50	321.00	296.40
422.00	370.30	335.90	311.30
436.90	385.20	350.80	326.20
0.20	0.25	0.30	0.35
0.85	0.85	0.85	0.85
0.85	0.85	0.85	0.85
0.85	0.85	0.85	0.85
0.85	0.85	0.85	0.85
0.85	0.85	0.85	0.85
0.85	0.85	0.85	0.85
0.85	0.85	0.85	0.85
0.85	0.85	0.85	0.85
0.85	0.85	0.85	0.85
0.85	0.85	0.85	0.85
0.85	0.85	0.85	0.85

0.85	0.85	0.85	0.85
0.85	0.85	0.85	0.85
0.80	1.00	1.20	1.40
0.99	1.24	1.48	1.73
1.20	1.50	1.80	2.10

ear, \$0.05/kWh

n(nc

, more

1.5x \$146.37 \$136.37 \$122.04 \$118.28 \$116.80 \$116.02 \$115.93

year, \$0.02/kWh \$/ton) \$30.00 \$60.00 \$146.37 22.04 18.28 16.80 16.02 15.93

Cost Breakdown

Electricity Cost by Process S

ensity Sweep

: Density (mA/cm²)

akdown: Current

■ Electrodialysis CapEx■ Intake electricity

city ■ Fixed OpEx & Other

0.40	0.45	0.50	0.55	0.60
129.20	114.80	103.40	94.00	86.10
144.10	129.70	118.20	108.80	101.00
159.00	144.60	133.10	123.70	115.90
173.80	159.50	148.00	138.60	130.80
188.70	174.30	162.90	153.50	145.60
203.60	189.20	177.70	168.30	160.50
218.50	204.10	192.60	183.20	175.40
233.30	219.00	207.50	198.10	190.30
248.20	233.80	222.40	213.00	205.10
263.10	248.70	237.20	227.80	220.00
278.00	263.60	252.10	242.70	234.90
292.80	278.50	267.00	257.60	249.80
307.70	293.30	281.90	272.50	264.60
0.40	0.45	0.50	0.55	0.60
0.85	0.85	0.85	0.85	0.85
0.85	0.85	0.85	0.85	0.85
0.85	0.85	0.85	0.85	0.85
0.85	0.85	0.85	0.85	0.85
0.85	0.85	0.85	0.85	0.85
0.85	0.85	0.85	0.85	0.85
0.85	0.85	0.85	0.85	0.85
0.85	0.85	0.85	0.85	0.85
0.85	0.85	0.85	0.85	0.85
0.85	0.85	0.85	0.85	0.85
0.85	0.85	0.85	0.85	0.85

0.85	0.85	0.85	0.85	0.85
0.85	0.85	0.85	0.85	0.85
1.60	1.79	1.99	2.19	2.39
1.98	2.23	2.47	2.72	2.97
2.41	2.71	3.01	3.31	3.61

tep

filtration stripping

0.65	0.70	0.75	0.80	0.85
79.50	73.80	68.90	64.60	60.80
94.40	88.70	83.80	79.50	75.70
109.30	103.60	98.70	94.40	90.60
124.10	118.50	113.50	109.20	105.40
139.00	133.30	128.40	124.10	120.30
153.90	148.20	143.30	139.00	135.20
168.80	163.10	158.20	153.90	150.10
183.60	178.00	173.00	168.70	164.90
198.50	192.80	187.90	183.60	179.80
213.40	207.70	202.80	198.50	194.70
228.30	222.60	217.70	213.40	209.60
243.10	237.50	232.50	228.20	224.40
258.00	252.30	247.40	243.10	239.30
0.65	0.70	0.75	0.80	0.85
0.85	0.85	0.85	0.85	0.85
0.85	0.85	0.85	0.85	0.85
0.85	0.85	0.85	0.85	0.85
0.85	0.85	0.85	0.85	0.85
0.85	0.85	0.85	0.85	0.85
0.85	0.85	0.85	0.85	0.85
0.85	0.85	0.85	0.85	0.85
0.85	0.85	0.85	0.85	0.85
0.85	0.85	0.85	0.85	0.85
0.85	0.85	0.85	0.85	0.85
0.85	0.85	0.85	0.85	0.85

0.85	0.85	0.85	0.85	0.85
0.85	0.85	0.85	0.85	0.85
2.59	2.79	2.99	3.19	3.39
3.21	3.46	3.71	3.96	4.20
3.91	4.21	4.51	4.81	5.11

0.90	0.95	1.00
57.40	54.4	51.7
72.30	69.3	66.6
87.20	84.2	81.4
102.00	99.0	96.3
116.90	113.9	111.2
131.80	128.8	126.1
146.70	143.7	140.9
161.50	158.5	155.8
176.40	173.4	170.7
191.30	188.3	185.6
206.20	203.2	200.4
221.00	218.0	215.3
235.90	232.9	230.2

0.90	0.95	1.00
0.85	0.8	0.8
0.85	0.8	8.0
0.85	0.8	8.0
0.85	0.8	8.0
0.85	0.8	0.8
0.85	0.8	0.8
0.85	0.8	8.0
0.85	0.8	0.8
0.85	0.8	8.0
0.85	0.8	0.8
0.85	0.8	0.8

0.85	0.8	0.8
0.85	0.8	0.8
3.59	3.8	4.0
4.45	4.7	4.9
5.41	5.7	6.0

CO₂ Price 138.152 \$/ton CO₂

Results	
CO ₂ production cost (\$/kç	\$0.14
NPV	\$0
CO ₂ cost (\$/kg) in year of	\$0.14

Calculation			
	Depreciable capital	Depreciation charge	Principal
Discounted values	479,805,194	(383,621,532)	10,635,295
Tax coefficient	100.00%	25.74%	100.00%
Present values	479,805,194	(98,744,182)	10,635,295

Cash flow				
Year	Analysis year	Operation year	Inflation rate factor	e increase
	2018	1	-1	0.98
	2019	2	1	1.00
	2020	3	2	1.02
	2021	4	3	1.04
	2022	5	4	1.06
	2023	6	5	1.08
	2024	7	6	1.10
	2025	8	7	1.12
	2026	9	8	1.14
	2027	10	9	1.16
	2028	11	10	1.18
	2029	12	11	1.21
	2030	13	12	1.23
	2031	14	13	1.25
	2032	15	14	1.28
	2033	16	15	1.30
	2034	17	16	1.33
	2035	18	17	1.35
	2036	19	18	1.38
	2037	20	19	1.40
	2038	21	20	1.43
	2039	22	21	1.46
	2040	23	22	1.48
	2041	24	23	1.51
	2042	25	24	1.54
	2043	26	25	1.57
	2044	27	26	1.60
	2045	28	27	1.63
	2046	29	28	1.66
	2047	30	29	1.69

		PV of cas Discounte	
2058	41	40	2.08
2057	40	39	2.04
2056	39	38	2.01
2055	38	37	1.97
2054	37	36	1.93
2053	36	35	1.90
2052	35	34	1.86
2051	34	33	1.83
2050	33	32	1.79
2049	32	31	1.76
2048	31	30	1.73

Depreciation type

Depreciation type
Depreciation period **MACRS**

20 Total initial depreciable cap 387,079,590

Depreciation calcula	ation table		
Operation year	Annual depreciable capit	1	2
-	1 \$0	\$0	\$0
	1 \$388,545,888	\$14,570,471	\$28,049,128
	2 \$1,494,157	\$56,031	\$107,863
	3 \$1,522,546	\$57,095	\$109,913
	4 \$1,551,475	\$58,180	\$112,001
	5 \$1,580,953	\$59,286	\$114,129
	6 \$78,261,605	\$2,934,810	\$5,649,705
	7 \$1,641,600	\$61,560	\$118,507
	8 \$1,672,790	\$62,730	\$120,759
	9 \$1,704,573	\$63,921	\$123,053
1	0 \$1,736,960	\$65,136	\$125,391
1	1 \$242,003,311	\$9,075,124	\$17,470,219
1	2 \$1,803,592	\$67,635	\$130,201
1	3 \$1,837,860	\$68,920	\$132,675
1	4 \$1,872,779	\$70,229	\$135,196
1	5 \$1,908,362	\$71,564	\$137,765
1	6 \$94,469,277	\$3,542,598	\$6,819,737
1	7 \$1,981,569	\$74,309	\$143,049
1	8 \$2,019,218	\$75,721	\$145,767
1	9 \$2,057,584	\$77,159	\$148,537
2	0 \$2,096,678	\$78,625	\$151,359
2	1 \$292,121,248	\$10,954,547	\$21,088,233
2	2 \$2,177,108	\$81,642	\$157,165
	3 \$2,218,473	\$83,193	\$160,152
	4 \$2,260,624	\$84,773	\$163,194
2		\$86,384	\$166,295
2	6 \$114,033,494	\$4,276,256	\$8,232,078
2	7 \$2,391,944	\$89,698	\$172,674

28	\$2,437,391	\$91,402	\$175,955
29	\$2,483,701	\$93,139	\$179,298
30	\$2,530,891	\$94,908	\$182,705
31	\$352,618,414	\$13,223,191	\$25,455,523
32	\$2,627,979	\$98,549	\$189,714
33	\$2,677,911	\$100,422	\$193,318
34	\$2,728,791	\$102,330	\$196,991
35	\$2,780,638	\$104,274	\$200,734
36	\$137,649,383	\$5,161,852	\$9,936,909
37	\$2,887,306	\$108,274	\$208,435
38	\$2,942,165	\$110,331	\$212,395
39	\$2,998,066	\$112,427	\$216,430
40	\$3,055,029	\$114,564	\$220,543

MACRS Depreciation T	able (Half-Year Conve	ention)	
R	Recovery Period		
Recovery Year	3	5	7
1	33.33%	20.00%	14.29%
2	44.45%	32.00%	24.49%
3	14.81%	19.20%	17.49%
4	7.41%	11.52%	12.49%
5		11.52%	8.93%
6		5.76%	8.92%
7			8.93%
8			4.46%
9			
10			
11			
12			
13			

NPV - Real IRR NPV - Nominal IRR	89.31% 86.15%	85.26% 81.10%	81.55% 76.58%
NPV - Real IRR	90 240/	05 260/	04 EE0/
21			
20			
19			
18			
17			
16			
15			
14			

Replacements Inflation rate increase Year Analysis year **Operation year** factor 0.98 -1 1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16 1.18 1.21 1.23 1.25 1.28 1.30 1.33 1.35 1.38 1.40 1.43 1.46 1.48 1.51 1.54 1.57 1.60 1.63 1.66 1.69 1.73 1.76 1.79 1.83

2052	35	34	1.86
2053	36	35	1.90
2054	37	36	1.93
2055	38	37	1.97
2056	39	38	2.01
2057	40	39	2.04
2058	41	40	2.08
Total			

Operating costs	Tax incentives		CO ₂ sales (kg/year)
1,217,751,105		0	13,117,138,882
74.26%		100.00%	74.26%
904,301,971		0	9,740,787,334

Revenues	Initial depreciable capital financed with debt	Initial equity depreciable capital	Replacement costs
0	(232,247,754)	(154,831,836)	0
61,009,443	(===,= :: ;: = :)	0	(1,466,298)
124,337,245		0	(1,494,157)
126,699,653		0	(1,522,546)
129,106,946		0	(1,551,475)
131,559,978		0	(1,580,953)
134,059,618		0	(78,261,605)
136,606,750		0	(1,641,600)
139,202,279		0	(1,672,790)
141,847,122		0	(1,704,573)
144,542,217		0	(1,736,960)
147,288,519		0	(242,003,311)
150,087,001		0	(1,803,592)
152,938,654		0	(1,837,860)
155,844,489		0	(1,872,779)
158,805,534		0	(1,908,362)
161,822,839		0	(94,469,277)
164,897,473		0	(1,981,569)
168,030,525		0	(2,019,218)
171,223,105		0	(2,057,584)
174,476,344		0	(2,096,678)
177,791,394		0	(292,121,248)
181,169,431		0	(2,177,108)
184,611,650		0	(2,218,473)
188,119,272		0	(2,260,624)
191,693,538		0	(2,303,576)
195,335,715		0	(114,033,494)
199,047,093		0	(2,391,944)
202,828,988		0	(2,437,391)
206,682,739		0	(2,483,701)

210,609,711		0	(2,530,891)
214,611,296		0	(352,618,414)
218,688,910		0	(2,627,979)
222,843,999		0	(2,677,911)
227,078,035		0	(2,728,791)
231,392,518		0	(2,780,638)
235,788,976		0	(137,649,383)
240,268,967		0	(2,887,306)
244,834,077		0	(2,942,165)
249,485,924		0	(2,998,066)
254,226,157		0	(3,055,029)
1,615,732,386	(215,016,344)	(143,344,230)	(289,532,893)
1,745,217,180	(232,247,754)	(154,831,836)	(312,736,059)

2	4	5	
3 \$0	4 \$0	5 \$0	6 \$0
\$25,943,209	\$24,000,480	\$22,197,627	\$20,534,650
\$99,765	\$92,294	\$85,361	\$78,966
\$101,660	\$94,048	\$86,983	\$80,467
\$103,592	\$95,835	\$88,636	\$81,995
\$105,560	\$97,655	\$90,320	\$83,553
\$5,225,527	\$4,834,219	\$4,471,085	\$4,136,126
\$109,610	\$101,402	\$93,785	\$86,759
\$111,692	\$103,328	\$95,763 \$95,567	\$88,407
\$113,814	\$105,291	\$97,382	\$90,087
\$115,977	\$107,292	\$99,233	\$91,798
\$16,158,561	\$14,948,545	\$13,825,649	\$12,789,875
\$120,426	\$111,408	\$103,039	\$95,320
\$122,714	\$113,525	\$104,997	\$97,131
\$125,045	\$115,682	\$106,992	\$98,976
\$127,421	\$117,880	\$109,025	\$100,857
\$6,307,714	\$5,835,367	\$5,397,030	\$4,992,701
\$132,309	\$122,401	\$113,207	\$104,726
\$134,823	\$124,727	\$115,358	\$106,716
\$137,385	\$127,097	\$117,550	\$108,743
\$139,995	\$129,512	\$119,783	\$110,809
\$19,504,936	\$18,044,330	\$16,688,887	\$15,438,608
\$145,366	\$134,480	\$124,378	\$115,060
\$148,127	\$137,035	\$126,741	\$117,246
\$150,942	\$139,639	\$129,149	\$119,474
\$153,810	\$142,292	\$131,603	\$121,744
\$7,614,016	\$7,043,849	\$6,514,733	\$6,026,670
\$159,710	\$147,750	\$136,652	\$126,414

\$162,745	\$150,558	\$139,248	\$128,816
\$165,837	\$153,418	\$141,894	\$131,264
\$168,988	\$156,333	\$144,590	\$133,758
\$23,544,332	\$21,781,239	\$20,145,090	\$18,635,883
\$175,470	\$162,330	\$150,136	\$138,889
\$178,804	\$165,415	\$152,989	\$141,528
\$182,201	\$168,557	\$155,896	\$144,217
\$185,663	\$171,760	\$158,858	\$146,957
\$9,190,849	\$8,502,602	\$7,863,909	\$7,274,770
\$192,785	\$178,349	\$164,952	\$152,594
\$196,448	\$181,738	\$168,086	\$155,493
\$200,181	\$185,191	\$171,280	\$158,448
\$203,984	\$188,709	\$174,534	\$161,458

10	15	20
10.00%	5.00%	3.75%
18.00%	9.50%	7.22%
14.40%	8.55%	6.68%
11.52%	7.70%	6.18%
9.22%	6.93%	5.71%
7.37%	6.23%	5.29%
6.55%	5.90%	4.89%
6.55%	5.90%	4.52%
6.56%	5.91%	4.46%
6.55%	5.90%	4.46%
3.28%	5.91%	4.46%
	5.90%	4.46%
	5.91%	4.46%

	5.90% 5.91% 2.95%	4.46% 4.46% 4.46% 4.46% 4.46% 4.46% 2.23%
76.49%	65.49%	58.67%
70.55%	57.92%	50.57%

Unplanned yearly	Unspecified/regular basis	Specified: electrodialysis	Specified: pre-treatment
\$0	\$0	\$0	\$0
-\$1,466,298	\$0	\$0	\$0
-\$1,494,157	\$0	\$0	\$0
-\$1,522,546	\$0	\$0	\$0
-\$1,551,475	\$0	\$0	\$0
-\$1,580,953	\$0	\$0	\$0
-\$1,610,991	-\$34,800,132	-\$15,601,498	-\$26,248,984
-\$1,641,600	\$0	\$0	\$0
-\$1,672,790	\$0	\$0	\$0
-\$1,704,573	\$0	\$0	\$0
-\$1,736,960	\$0	\$0	\$0
-\$1,769,962	-\$38,234,183	-\$17,141,042	-\$28,839,214
-\$1,803,592	\$0	\$0	\$0
-\$1,837,860	\$0	\$0	\$0
-\$1,872,779	\$0	\$0	\$0
-\$1,908,362	\$0	\$0	\$0
-\$1,944,621	-\$42,007,103	-\$18,832,507	-\$31,685,046
-\$1,981,569	\$0	\$0	\$0
-\$2,019,218	\$0	\$0	\$0
-\$2,057,584	\$0	\$0	\$0
-\$2,096,678	\$0	\$0	\$0
-\$2,136,515	-\$46,152,332	-\$20,690,884	-\$34,811,702
-\$2,177,108	\$0	\$0	\$0
-\$2,218,473	\$0	\$0	\$0
-\$2,260,624	\$0	\$0	\$0
-\$2,303,576	\$0	\$0	\$0
-\$2,347,344	-\$50,706,609	-\$22,732,645	-\$38,246,895
-\$2,391,944	\$0	\$0	\$0
-\$2,437,391	\$0	\$0	\$0
-\$2,483,701	\$0	\$0	\$0
-\$2,530,891	\$0	\$0	\$0
-\$2,578,978	-\$55,710,299	-\$24,975,886	-\$42,021,070
-\$2,627,979	\$0	\$0	\$0
-\$2,677,911	\$0	\$0	\$0

-\$2,728,791	\$0	\$0	\$0
-\$2,780,638	\$0	\$0	\$0
-\$2,833,470	-\$61,207,749	-\$27,440,487	-\$46,167,677
-\$2,887,306	\$0	\$0	\$0
-\$2,942,165	\$0	\$0	\$0
-\$2,998,066	\$0	\$0	\$0
-\$3,055,029	\$0	\$0	\$0
-\$21,650,983	-\$75,420,637	-\$33,812,369	-\$56,888,150

Taxes

-\$37,025,585

\$0.14 Calculated without tax coefficient

Cash from working	Non-depreciable capital	Salvage value	Decommisioning cost	
capital reserve	cost			
0	0		0	0
(8,567,297)	0		0	0
(3,072,804)	0		0	0
(221,162)	0		0	0
(225,364)			0	0
(229,646)			0	0
(234,009)	0		0	0
(238,455)	0		0	0
(242,986)	0		0	0
(247,603)				0
(252,307)				0
(257,101)				0
(261,986)	0			0
(266,964)				0
(272,036)				0
(277,205)				0
(282,472)				0
(287,839)				0
(293,307)	0			0
(298,880)	0			0
(304,559)				0
(310,346)	0			0
(316,242)	0			0
(322,251)				0
(328,374)				0
(334,613)				0
(340,970)	0			0
(347,449)	0			0
(354,050)	0			0
(360,777)	0		0	0

(367,632)	0	0	0
(374,617)	0	0	0
(381,735)	0	0	0
(388,988)	0	0	0
(396,378)	0	0	0
(403,910)	0	0	0
(411,584)	0	0	0
(419,404)	0	0	0
(427,373)	0	0	0
(435,493)	0	0	0
23,356,167	0	82,180,283	(82,180,283)
(11,329,364)	0	3,484,060	(3,484,060)
(12,237,299)	0	3,763,272	(3,763,272)

7	8	9	10
\$0	\$0	\$0	\$0
\$18,992,123	\$17,570,045	\$17,336,918	\$17,333,032
\$73,034	\$67,566	\$66,669	\$66,654
\$74,422	\$68,850	\$67,936	\$67,921
\$75,836	\$70,158	\$69,227	\$69,211
\$77,277	\$71,491	\$70,542	\$70,526
\$3,825,427	\$3,538,990	\$3,492,033	\$3,491,250
\$80,241	\$74,233	\$73,248	\$73,232
\$81,766	\$75,644	\$74,640	\$74,623
\$83,320	\$77,081	\$76,058	\$76,041
\$84,903	\$78,545	\$77,503	\$77,486
\$11,829,122	\$10,943,390	\$10,798,188	\$10,795,768
\$88,160	\$81,558	\$80,476	\$80,458
\$89,835	\$83,108	\$82,005	\$81,987
\$91,541	\$84,687	\$83,563	\$83,545
\$93,281	\$86,296	\$85,151	\$85,132
\$4,617,658	\$4,271,901	\$4,215,219	\$4,214,274
\$96,859	\$89,607	\$88,418	\$88,398
\$98,699	\$91,309	\$90,098	\$90,077
\$100,575	\$93,044	\$91,809	\$91,789
\$102,486	\$94,812	\$93,554	\$93,533
\$14,278,887	\$13,209,723	\$13,034,450	\$13,031,529
\$106,417	\$98,449	\$97,143	\$97,121
\$108,439	\$100,319	\$98,988	\$98,966
\$110,499	\$102,225	\$100,869	\$100,846
\$112,599	\$104,168	\$102,786	\$102,763
\$5,573,957	\$5,156,595	\$5,088,174	\$5,087,034
\$116,918	\$108,164	\$106,729	\$106,705

\$119,140	\$110,219	\$108,756	\$108,732
\$121,403	\$112,313	\$110,823	\$110,798
\$123,710	\$114,447	\$112,928	\$112,903
\$17,235,988	\$15,945,405	\$15,733,834	\$15,730,307
\$128,456	\$118,837	\$117,260	\$117,234
\$130,896	\$121,095	\$119,488	\$119,462
\$133,383	\$123,396	\$121,759	\$121,731
\$135,918	\$125,740	\$124,072	\$124,044
\$6,728,302	\$6,224,505	\$6,141,915	\$6,140,539
\$141,132	\$130,564	\$128,832	\$128,803
\$143,813	\$133,045	\$131,279	\$131,250
\$146,545	\$135,573	\$133,774	\$133,744
\$149,330	\$138,148	\$136,315	\$136,285

Specified: gas stripping	Total
\$0	\$0
\$0	-\$1,466,298
\$0	-\$1,494,157
\$0	-\$1,522,546
\$0	-\$1,551,475
\$0	-\$1,580,953
\$0	-\$78,261,605
\$0	-\$1,641,600
\$0	-\$1,672,790
\$0	-\$1,704,573
\$0	-\$1,736,960
-\$156,018,910	-\$242,003,311
\$0	-\$1,803,592
\$0	-\$1,837,860
\$0	-\$1,872,779
\$0	-\$1,908,362
\$0	-\$94,469,277
\$0	-\$1,981,569
\$0	-\$2,019,218
\$0	-\$2,057,584
\$0	-\$2,096,678
-\$188,329,815	-\$292,121,248
\$0	-\$2,177,108
\$0	-\$2,218,473
\$0	-\$2,260,624
\$0	-\$2,303,576
\$0	-\$114,033,494
\$0	-\$2,391,944
\$0	-\$2,437,391
\$0	-\$2,483,701
\$0	-\$2,530,891
-\$227,332,182	-\$352,618,414
\$0	-\$2,627,979
\$0	-\$2,677,911

\$0	-\$2,728,791
\$0	-\$2,780,638
\$0	-\$137,649,383
\$0	-\$2,887,306
\$0	-\$2,942,165
\$0	-\$2,998,066
\$0	-\$3,055,029
-\$124,963,919	-\$312,736,059

Fixed operating costs	Variable operating costs	Debt interest	Pre-depreciation income
0	0	(8,593,167)	(8,593,167)
(13,927,727)	(43,187,590)	(8,593,167)	(4,699,040)
(18,923,138)	(58,677,538)	(8,593,167)	38,143,402
(19,282,678)	(59,792,412)	(8,593,167)	39,031,397
(19,649,048)	(60,928,467)	(8,593,167)	39,936,263
(20,022,380)	(62,086,108)	(8,593,167)	40,858,322
(20,402,806)	(63,265,744)	(8,593,167)	41,797,901
(20,790,459)	(64,467,793)	(8,593,167)	42,755,331
(21,185,478)	(65,692,682)	(8,593,167)	43,730,952
(21,588,002)	(66,940,842)	(8,593,167)	44,725,111
(21,998,174)	(68,212,718)	(8,593,167)	45,738,158
(22,416,139)	(69,508,760)	(8,593,167)	46,770,453
(22,842,046)	(70,829,427)	(8,593,167)	47,822,362
(23,276,045)	(72,175,186)	(8,593,167)	48,894,257
(23,718,289)	(73,546,514)	(8,593,167)	49,986,518
(24,168,937)	(74,943,898)	(8,593,167)	51,099,532
(24,628,147)	(76,367,832)	(8,593,167)	52,233,693
(25,096,082)	(77,818,821)	(8,593,167)	53,389,404
(25,572,907)	(79,297,378)	(8,593,167)	54,567,073
(26,058,792)	(80,804,029)	(8,593,167)	55,767,117
(26,553,909)		(8,593,167)	56,989,962
(27,058,434)	(83,903,752)	(8,593,167)	58,236,042
(27,572,544)		(8,593,167)	59,505,797
(28,096,422)	(87,122,384)	(8,593,167)	60,799,677
(28,630,254)	(88,777,709)	(8,593,167)	62,118,141
(29,174,229)		(8,593,167)	63,461,656
(29,728,539)	· · · · · · · · · · · · · · · · · · ·	(8,593,167)	64,830,698
(30,293,382)	· · · · · · · · · · · · · · · · · · ·	(8,593,167)	66,225,751
(30,868,956)		(8,593,167)	67,647,311
(31,455,466)	(97,538,226)	(8,593,167)	69,095,880

(249,880,824) (269,906,273)	(774,839,333) (836,934,957)	(102,681,018) (110,909,875)	488,331,211 527,466,074
(38,691,195)	(119,975,033)	(8,593,167)	86,966,762
(37,969,770)	(117,738,011)	(8,593,167)	85,184,977
(37,261,796)	(115,542,700)	(8,593,167)	83,436,415
(36,567,022)	(113,388,321)	(8,593,167)	81,720,456
(35,885,203)	(111,274,113)	(8,593,167)	80,036,492
(35,216,098)	(109,199,326)	(8,593,167)	78,383,928
(34,559,468)	(107,163,225)	(8,593,167)	76,762,176
(33,915,081)	(105,165,088)	(8,593,167)	75,170,663
(33,282,710)	(103,204,208)	(8,593,167)	73,608,825
(32,662,129)	(101,279,890)	(8,593,167)	72,076,109
(32,053,120)	(99,391,453)	(8,593,167)	70,571,972

11	12	13	14
\$0	\$0	\$0	\$0
\$17,336,918	\$17,333,032	\$17,336,918	\$17,333,032
\$66,669	\$66,654	\$66,669	\$66,654
\$67,936	\$67,921	\$67,936	\$67,921
\$69,227	\$69,211	\$69,227	\$69,211
\$70,542	\$70,526	\$70,542	\$70,526
\$3,492,033	\$3,491,250	\$3,492,033	\$3,491,250
\$73,248	\$73,232	\$73,248	\$73,232
\$74,640	\$74,623	\$74,640	\$74,623
\$76,058	\$76,041	\$76,058	\$76,041
\$77,503	\$77,486	\$77,503	\$77,486
\$10,798,188	\$10,795,768	\$10,798,188	\$10,795,768
\$80,476	\$80,458	\$80,476	\$80,458
\$82,005	\$81,987	\$82,005	\$81,987
\$83,563	\$83,545	\$83,563	\$83,545
\$85,151	\$85,132	\$85,151	\$85,132
\$4,215,219	\$4,214,274	\$4,215,219	\$4,214,274
\$88,418	\$88,398	\$88,418	\$88,398
\$90,098	\$90,077	\$90,098	\$90,077
\$91,809	\$91,789	\$91,809	\$91,789
\$93,554	\$93,533	\$93,554	\$93,533
\$13,034,450	\$13,031,529	\$13,034,450	\$13,031,529
\$97,143	\$97,121	\$97,143	\$97,121
\$98,988	\$98,966	\$98,988	\$98,966
\$100,869	\$100,846	\$100,869	\$100,846
\$102,786	\$102,763	\$102,786	\$102,763
\$5,088,174	\$5,087,034	\$5,088,174	\$5,087,034
\$106,729	\$106,705	\$106,729	\$106,705

\$108,756	\$108,732	\$108,756	\$108,732
\$110,823	\$110,798	\$110,823	\$110,798
\$112,928	\$112,903	\$112,928	\$112,903
\$15,733,834	\$15,730,307	\$15,733,834	\$15,730,307
\$117,260	\$117,234	\$117,260	\$117,234
\$119,488	\$119,462	\$119,488	\$119,462
\$121,759	\$121,731	\$121,759	\$121,731
\$124,072	\$124,044	\$124,072	\$124,044
\$6,141,915	\$6,140,539	\$6,141,915	\$6,140,539
\$128,832	\$128,803	\$128,832	\$128,803
\$131,279	\$131,250	\$131,279	\$131,250
\$133,774	\$133,744	\$133,774	\$133,744
\$136,315	\$136,285	\$136,315	\$136,285

Depreciation charge	Taxable income	Total tax	Principal payment
0	(0.500.407)	0.044.004	0
(4.4.570.474)	(8,593,167)	2,211,881	0
(14,570,471)		4,959,972	0
(28,105,159)		(2,583,844)	0
(26,108,168)		(3,326,439)	0
(24,268,337)		(4,032,924)	0
(22,562,868)		(4,709,250)	0
(23,866,590)		(4,615,519)	0
(25,070,732)		(4,552,016)	0
(23,316,601)		(5,254,654)	0
(22,779,730)		(5,648,741)	0
(22,500,309)		(5,981,422)	0
(31,266,511)		(3,990,715)	0
(39,375,214)		(2,174,296)	0
(37,881,256)		(2,834,747)	0
(36,716,601)		(3,415,677)	0
(35,693,052)		(3,965,628)	0
(38,221,110)	14,012,583	(3,606,839)	0
(40,571,574)	12,817,830	(3,299,309)	0
(39,280,859)	15,286,213	(3,934,671)	0
(38,772,112)	16,995,005	(4,374,514)	0
(38,433,991)	18,555,971	(4,776,307)	0
(40,348,013)	17,888,029	(4,604,379)	0
(41,437,256)	18,068,541	(4,650,842)	0
(39,563,565)	21,236,112	(5,466,175)	0
(38,092,186)	24,025,955	(6,184,281)	0
(36,783,742)	26,677,914	(6,866,895)	0
(38,057,117)	26,773,581	(6,891,520)	0
(39,109,441)	27,116,310	(6,979,738)	0
(37,479,768)	30,167,543	(7,765,125)	0
(36,788,042)	32,307,838	(8,316,038)	0

(383,621,532)	143,844,542	(37,025,585)	(10,635,295)
(355,159,083)	133,172,128	(34,278,506)	(9,846,219)
(714,458,224)	(627,491,462)	161,516,302	(232,247,754)
(43,639,360)	41,545,617	(10,693,842)	0
(36,305,404)	47,131,010	(12,131,522)	0
(36,788,042)	44,932,414	(11,565,603)	0
(37,479,768)	42,556,724	(10,954,101)	0
(39,109,441)	39,274,486	(10,109,253)	0
(38,057,117)	38,705,059	(9,962,682)	0
(36,783,742)	38,386,922	(9,880,794)	0
(38,092,186)	35,516,639	(9,141,983)	0
(39,563,565)	32,512,544	(8,368,729)	0
(41,437,256)	29,134,715	(7,499,276)	0

15	16	17	18
\$0	\$0	\$0	\$0
\$17,336,918	\$17,333,032	\$17,336,918	\$17,333,032
\$66,669	\$66,654	\$66,669	\$66,654
\$67,936	\$67,921	\$67,936	\$67,921
\$69,227	\$69,211	\$69,227	\$69,211
\$70,542	\$70,526	\$70,542	\$70,526
\$3,492,033	\$3,491,250	\$3,492,033	\$3,491,250
\$73,248	\$73,232	\$73,248	\$73,232
\$74,640	\$74,623	\$74,640	\$74,623
\$76,058	\$76,041	\$76,058	\$76,041
\$77,503	\$77,486	\$77,503	\$77,486
\$10,798,188	\$10,795,768	\$10,798,188	\$10,795,768
\$80,476	\$80,458	\$80,476	\$80,458
\$82,005	\$81,987	\$82,005	\$81,987
\$83,563	\$83,545	\$83,563	\$83,545
\$85,151	\$85,132	\$85,151	\$85,132
\$4,215,219	\$4,214,274	\$4,215,219	\$4,214,274
\$88,418	\$88,398	\$88,418	\$88,398
\$90,098	\$90,077	\$90,098	\$90,077
\$91,809	\$91,789	\$91,809	\$91,789
\$93,554	\$93,533	\$93,554	\$93,533
\$13,034,450	\$13,031,529	\$13,034,450	\$13,031,529
\$97,143	\$97,121	\$97,143	\$97,121
\$98,988	\$98,966	\$98,988	\$98,966
\$100,869	\$100,846	\$100,869	\$100,846
\$102,786	\$102,763	\$102,786	\$102,763
\$5,088,174	\$5,087,034	\$5,088,174	\$5,087,034
\$106,729	\$106,705	\$106,729	\$106,705

\$108,756	\$108,732	\$108,756	\$108,732
\$110,823	\$110,798	\$110,823	\$110,798
\$112,928	\$112,903	\$112,928	\$112,903
\$15,733,834	\$15,730,307	\$15,733,834	\$15,730,307
\$117,260	\$117,234	\$117,260	\$117,234
\$119,488	\$119,462	\$119,488	\$119,462
\$121,759	\$121,731	\$121,759	\$121,731
\$124,072	\$124,044	\$124,072	\$124,044
\$6,141,915	\$6,140,539	\$6,141,915	\$6,140,539
\$128,832	\$128,803	\$128,832	\$128,803
\$131,279	\$131,250	\$131,279	\$131,250
\$133,774	\$133,744	\$133,774	\$133,744
\$136,315	\$136,285	\$136,315	\$136,285

After-tax, post- depreciation cash flow	Cumulative cash flow	Pre-tax cash flow
(161,213,122)	(161,213,122)	(163,425,003)
(9,772,663)	(170,985,785)	(14,732,635)
30,992,596	(139,993,189)	33,576,440
33,961,249	(106,031,939)	37,287,688
34,126,500	(71,905,439)	38,159,424
34,338,474	(37,566,965)	39,047,724
(41,313,233)	(78,880,198)	(36,697,713)
36,323,260	(42,556,938)	40,875,276
36,560,522	(5,996,416)	41,815,176
37,124,194	31,127,778	42,772,935
37,767,468	68,895,246	43,748,891
(199,480,674)	(130,585,427)	(195,489,959)
43,582,489	(87,002,939)	45,756,784
43,954,687	(43,048,252)	46,789,433
44,426,026	1,377,775	47,841,703
44,948,337	46,326,112	48,913,965
(46,124,894)	201,218	(42,518,055)
47,820,687	48,021,905	51,119,997
48,319,875	96,341,780	52,254,547
49,036,139	145,377,919	53,410,653
49,812,419	195,190,338	54,588,726
(238,799,931)		(234,195,552)
52,361,604	8,752,011	57,012,446
52,792,778	61,544,789	58,258,953
53,344,862	114,889,651	59,529,143
53,956,572	168,846,223	60,823,467
(56,435,286)		(49,543,766)
56,506,620	168,917,558	63,486,359
57,090,744	226,008,302	64,855,870
57,935,364	283,943,666	66,251,401

60,174,172	344,117,838	67,673,448	
, ,	, ,	, ,	
(289,285,651)	54,832,187	(280,916,922)	
61,457,129	116,289,316	70,599,112	
62,222,971	178,512,288	72,103,765	
63,674,325	242,186,612	73,637,007	
65,090,127	307,276,740	75,199,380	
(68,978,576)	238,298,164	(58,024,475)	
66,848,143	305,146,306	78,413,746	
67,935,355	373,081,662	80,066,877	
71,057,576	444,139,238	81,751,418	
36,536,448	480,675,686	(124,979,855)	
0	(254,285,032)	34,278,506	
0	(274,663,434)	37,025,585	
	(=: :,::::)	0.,0=3,000	

19	20	21	Depreciation charges
\$0	\$0	\$0	\$0
\$17,336,918	\$17,333,032	\$8,668,459	\$14,570,471
\$66,669	\$66,654	\$33,335	\$28,105,159
\$67,936	\$67,921	\$33,968	\$26,108,168
\$69,227	\$69,211	\$34,613	\$24,268,337
\$70,542	\$70,526	\$35,271	\$22,562,868
\$3,492,033	\$3,491,250	\$1,746,016	\$23,866,590
\$73,248	\$73,232	\$36,624	\$25,070,732
\$74,640	\$74,623	\$37,320	\$23,316,601
\$76,058	\$76,041	\$38,029	\$22,779,730
\$77,503	\$77,486	\$38,752	\$22,500,309
\$10,798,188	\$10,795,768	\$5,399,094	\$31,266,511
\$80,476	\$80,458	\$40,238	\$39,375,214
\$82,005	\$81,987	\$41,003	\$37,881,256
\$83,563	\$83,545	\$41,782	\$36,716,601
\$85,151	\$85,132	\$42,576	\$35,693,052
\$4,215,219	\$4,214,274	\$2,107,610	\$38,221,110
\$88,418	\$88,398	\$44,209	\$40,571,574
\$90,098	\$90,077	\$45,049	\$39,280,859
\$91,809	\$91,789	\$45,905	\$38,772,112
\$93,554	\$93,533	\$46,777	\$38,433,991
\$13,034,450	\$13,031,529	\$6,517,225	\$40,348,013
\$97,143	\$97,121	\$48,571	\$41,437,256
\$98,988	\$98,966	\$49,494	\$39,563,565
\$100,869	\$100,846	\$50,435	\$38,092,186
\$102,786	\$102,763	\$51,393	\$36,783,742
\$5,088,174	\$5,087,034	\$2,544,087	\$38,057,117
\$106,729	\$106,705	\$53,364	\$39,109,441

\$108,756	\$108,732	\$54,378	\$37,479,768
\$110,823	\$110,798	\$55,411	\$36,788,042
\$112,928	\$112,903	\$56,464	\$41,437,256
\$15,733,834	\$15,730,307	\$7,866,917	\$39,563,565
\$117,260	\$117,234	\$58,630	\$38,092,186
\$119,488	\$119,462	\$59,744	\$36,783,742
\$121,759	\$121,731	\$60,879	\$38,057,117
\$124,072	\$124,044	\$62,036	\$39,109,441
\$6,141,915	\$6,140,539	\$3,070,958	\$37,479,768
\$128,832	\$128,803	\$64,416	\$36,788,042
\$131,279	\$131,250	\$65,640	\$36,305,404
\$133,774	\$133,744	\$66,887	\$43,639,360
\$136,315	\$136,285	\$68,158	\$50,018,750
			\$47,757,024
			\$45,980,929
			\$44,401,510
			\$45,938,597
			\$47,208,853
			\$45,241,681
			\$44,406,701
			\$43,824,111
			\$36,715,239
			\$29,531,216
			\$28,876,825
			\$28,642,665
			\$28,504,392
			\$25,883,007
			\$23,274,724
			\$23,162,994
			\$23,055,353
			\$22,941,353
			\$15,020,122
			\$7,095,951
			\$6,976,227

CO₂ sales (kg/year)

450,000,000 900,000,000

900,000,000

900,000,000 900,000,000 900,000,000 900,000,000 900,000,000 900,000,000 900,000,000 900,000,000 900,000,000 900,000,000

13,117,138,882

CO₂ Price

138.152 \$/ton CO₂

6/10 rule Extrapolation

6,178,607 885,573

Intake

Fraction Oceanwater 100%

Flow Rate $400,000 \, \text{m}^3/\text{day}$ Pressure $1.25 \, \text{bar}$ Head $42 \, \text{ft}$

Capital Cost

Equipment Unit capacity (m³/day) Cost per unit, CE 607.5

 Centrifugal pump #1
 27,255
 \$41,942

 Centrifugal motor #1
 27,255
 \$6,779

 Intake piping
 400,000
 \$419,644

TOTAL

Centrifugal Pump Calculations

Pump Index Valid? Pump capacity (gal/min)

4 Yes 5000

Motor Type Valid? Pump efficiency

2 Yes 86%

Screening

Fraction Oceanwater 100%

Flow Rate 400,000 m³/day
Pressure 0.25 bar
Head 8 ft

Capital Cost

Equipment Unit capacity (m³/day) Cost per unit, CE 607.5

Centrifugal Pump #1

Centrifugal Motor #1

Microscreening 400,000 \$3,246,752

TOTAL

Micro/ultrafiltration

Fraction oceanwater 2.6%

Flow rate 10,476 m³/day
Pressure 2.0 bar
Head 67 ft
Recovery rate 98%

Capital Cost

Equipment Unit capacity (m³/day) Cost per unit, CE 607.5

 Centrifugal pump #2
 27,255
 \$47,040

 Centrifugal motor #2
 27,255
 \$10,935

 Filter
 400,000
 \$1,555,446

TOTAL

Centrifugal Pump Calculations

Pump Index Valid? Pump capacity (gal/min)

4 Yes 5000

Motor Type Valid? Pump efficiency

2 Yes 86%

Nanofiltration

Fraction oceanwater 0.6%

Flow rate 2,852 m³/day
Pressure 6.5 bar
Head 217 ft
Recovery rate 90%

Capital Cost

Equipment Unit capacity (m³/day) Cost per unit, CE 607.5

 Centrifugal pump #3
 8,176
 \$29,981

 Centrifugal motor #3
 8,176
 \$12,364

 Filter
 4
 \$180

TOTAL

Centrifugal Pump Calculations

Pump Index Valid? Pump capacity (gal/min)

3 Yes 1500

Motor Type Valid? Pump efficiency

5 Yes 80%

Electrodialysis

Fraction oceanwater 0.6%

Flow rate 2,852 m³/day
Pressure 1.0 bar
Head 33 ft
Recovery rate 90%

Capital Cost

Equipment Unit capacity (m³/day) Cost per unit, CE 607.5

ED Stack 2,852 \$688,903

TOTAL

ED Stack Calculations			
Membrane Cost (\$/cm ²)	BPM cost	CEM/AEM	cost
0	.05	\$229,634	\$114,817

CO₂ Stripping

Fraction Oceanwater 100%

Flow Rate $400,000 \, \text{m}^3/\text{day}$ Pressure $0.5 \, \text{bar}$ Head $17 \, \text{ft}$ MC type 1

Capital Cost

Equipment Unit capacity (m³/day) Cost per unit, CE 607.5

Centrifugal pump #1 Centrifugal motor #1

 Membrane contactor
 1,920
 \$6,600

 Water condenser
 272,727
 \$21,000

 Vacuum pump #1
 80,095
 \$251,785

TOTAL

0D Model Calculations

Lfr Max MC Lfr Max unit capacity

60.0 38 1920

Assume vols are equal at min number of each. If Ifr multiplier > 1, need lower gfr and more VPs. I

Vacuum Pump Calculations

Pump Index Valid? Pump capacity (m³/h)

2 Yes 10,000

Partial presure in (Torr) Partial pressure out (Torr) Pump efficiency

10 760 35%

10 (copy-paste this when varying pressure)

Partial pressure in	10 kilotons/year	1 megaton/year	
150 Torr		\$519	\$112
70 Torr		\$537	\$117
20 Torr		\$621	\$132
2 Torr		\$1,625	\$297

Pro	portiona	litv
	portiona	·····y

Size factor

37,116,184

Total Capital Cost Total Energy Usage

Capital Cost **Energy Usage**

69

5 m (intake) + 0.5 bar (membrane contactor) + 0.25 bar (screening)

Number of units	Uninstalled cost	Cost factor	
	15	\$629,134	3.7
	15	\$101,680	3.7
	1.0	\$419,644	1.3

Bare cost Material type factor 32,324 \$8,630 2 Pump brake horsepower Motor efficiency Motor power consumption

Capital Cost

Included in intake pumping, desal pg 248

64

Number of units Uninstalled cost **Cost factor**

> 1.0 \$3,246,752 1.3

93%

Capital Cost **Energy Usage**

Energy Usage

Desal pg 315

Number of units	Uninstalled cost		Cost factor
1		\$47,040	3.7
1		\$10,935	3.7
1.0	\$	1,555,446	1.3
Size factor	Bare cost		Material type factor
40,887		\$9,679	2
Pump brake horsepower	Motor efficiency		Motor power consumption
102		94%	108

Capital Cost Energy Usage

Desal Table 14.1

Number of units	Uninstalled cost		Cost factor	
1		\$29,981		3.7
1		\$12,364		3.7
753		\$135,303		2.3
Size factor	Bare cost		Material type factor	
22,113		\$7,258		2
Pump brake horsepower	Motor efficiency		Motor power consumption	1
107		95%		114

Total Fixed Cost Energy Usage

1 bar included in microfiltration pumping

Number of units Uninstalled cost Cost factor
1 \$688,903 1.4

_							4
•	ta	^	v	•	^	•	н

\$688,903

Total Fixed Cost Energy Usage

CO₂ pumping speed (mol/s)

Included in intake pumping, from Liquicell spec sheet

Number of units	Uninstalled cost	Cost factor	
208	\$1,375,0	000 2.9)
2	\$42,0	000 3.3	,
5.0	\$1,257,4	138 3.7	

Unit capacity

Size factor

1,920

f multiplier < 1, need lower lfr and more MCs.

10,000	\$207,231	1.63
Pump power consumption (W) Energy of	vacuum pump (J/kg Pump pov	ver (W/(m³/hr))
393,090	1,096,428	10

Purchase cost, CE 500

Different Vacuum Pumps

\$19,917,879

3.199 kWh/kg CO₂

\$3,249,551

0.561 kWh/kg CO₂

Installed cost Notes

\$2,327,796 Seider \$376,217 Seider

\$545,538 Desal Fig 6.8. HDPE, offshore intake, 10 m of piping

\$3,249,551

Pump type factor Purchase cost, CE 500 Notes

2 \$34,520 4 or 2 are best

Bare cost motor Motor type factor Purchase cost, CE 500

\$4,292 1.3 \$5,579

\$4,220,778

0.00 kWh/kg CO₂

Installed cost Notes

\$0 Included in intake \$0 Included in intake

\$4,220,778 Desal Fig 8.14, microscreen to go with MF/UF

\$4,220,778

\$2,236,588

0.023 kWh/kg CO₂

Installed cost Notes

\$174,049 Seider \$40,460 Seider

\$2,022,079 Desal fig 12.11, redid fit as polynomial

\$2,236,588

Pump type factor Purchase cost, CE 500 Notes

2 \$38,716

Bare cost motor Motor type factor Purchase cost, CE 500

\$6,923 1.3 \$9,000

\$467,876

0.020 kWh/kg CO₂

Installed cost Notes

\$110,931 Seider \$45,747 Seider

\$311,198 Desal table 14.23 and following pages

\$467,876

Pump type factor Purchase cost, CE 500 Notes

1.7 \$24,676

Bare cost motor Motor type factor Purchase cost, CE 500

\$7,269 1.4 \$10,176

\$964,465

2.224 kWh/kg CO₂

Installed cost Notes

\$964,465 \$0 **\$964,465**

\$8,778,621 0.371 kWh/kg CO₂ Installed cost **Notes** \$0 Included in intake \$0 Included in intake \$3,987,500 Liquicell/Eisaman \$138,600 Eisaman \$4,652,521 Seider. Not rounding for ease of lfr/gfr calculation \$8,778,621 CO2 pumping speed (m³/day) Unit capacity, OW (m³/day) CO₂ pumping speed (kg/s) 0.07 240,000 80,095 Electrical efficiency Pump energy usage (kWh/kg CO₂) 82% 0.371 Power consumption is the work Since the pressure is the partial

> 20.72306306 vacuum 82.5 membrane contactor

oceanwater pre-treatment

Assuming CTN=1

1.578282828

of pumps.

CO₂ Price

138.152 \$/ton CO₂

CO2 Concentration

 $\begin{array}{ccc} \text{DIC concentration} & 2.20\text{E-}03 & \text{mol/L} \\ \text{CO}_2 & \text{molar mass} & 4.40\text{E-}02 & \text{kg/mol} \\ \text{Density seawater} & 8.68 & \text{lb/gallon} \end{array}$

Oceanwater Flow Rate (At a given extraction efficiency)

CO2 Production Rate (At a given extraction efficiency)

CO₂ to H+ and Oceanwater Inverconversions

Oceanwater volume to extract7.74E-05 kg/L (ss)Oceanwater volume to extracted25.37 L $_{\text{OW}}$ /L $_{\text{CO2}}$ Oceanwater volume to extracted7.74E-02 kg/m 3 (ss)Moles H+ produced by ED to moles H+ added to moles CO29.94E-01 mol/molMoles H+ added to moles CO2 ϵ 8.50E-01 mol/mol

Constants

Moles H+ added to kg CO₂

R (gas constant) 8.314 J/(K*mol) T (temperature) 273 K κCO_2 (adibatic constant of CO_2) 1.3 κN_2 (adibatic constant of N_2) 1.4 Faraday's constant 96485.3 As/mol (charge per mol e-s)

3.03E-02 kg/mol

Conversions (non-SI to SI, SI/non-SI)

Liters to cubic meters 1.00E-03 m³/L

Hours to seconds	3.60E+03 s/hr
Days to minutes	1.44E+03 days/min
Energy in kWh to energy in Joul	3.60E+06 Ws/kWh
Tons to kg	1.00E+03 kg/ton
Bar to pascal	1.00E+05 Pa/bar
Torr to pascal	1.33E+02 Pa/torr
Bar to ft head	3.34E+01 ft head/bar
Gas volume of 1 mol	2.24E+01 L/mol
Gallons to cubic meters	3.79E-03 m³/gal
Cubic feet to cubic meters	2.83E-02 m ³ /ft ³

Radial Centrifugal Pump Types

Seider Table 22.20 Page 561

Туре	No. Stages	Shaft rpm	
	1	1	3600
	2	1	1800
	3	1	3600
	4	1	1800
	5	2	3600
	6	2	3600

Centrifugal Pump Materials of Construction Seider Table 22.21 Page 562			
Material	Material Factor		
Cast iron	1		
Ductile iron	1.15		
Cast steel	1.35		
Bronze	1.9		
Stainless steel	2		
Hastelloy C	2.95		
Monel	3.3		
Nickel	3.5		
Titanium	9.7		

Motor Types

Seider Table 22.22 Page 563

Туре	Name	Shaft rpm	
	1 Open, drip-proof		1800
	2 Totally enclosed,	fan-cooled	1800
	3 Explosion-proof		1800
	4 Open, drip-proof		3600
	5 Totally enclosed,	fan-cooled	3600
	6 Explosion-proof		3600

Vacuum Pumps

Seider Table 22.32 Page 595 CP=(purchase cost factor)*S^(purchase cost exponent)

Туре	Name	Flow rate min (m ³ /hr)
	1 One-stage jet ejector	657
	2 Liquid ring pumps	85
	3 Three-stage lobe (roots)	102
	4 Three-stage claw	102
	5 Screw compressors	85

Cost Factors

Item	Factor	Notes
Pumps	3.7	Eisaman Table S1
ED	1.4	Eisaman Table S1
Membrane contactor	2.9	Eisaman Table S1
Water condenser	3.3	Eisaman Table S1
Filters	2.3	Eisaman Table S1
Other	1.3	Desal Table 17.4 (~buildings + 6

Membrane Contactors

Permselect & liquicell websites Assuming liquid flow on shell side (more efficient)

Type	Name	Price	
	1 Liquicell (PP)		\$6,600
	2 Permselect (PDMS)		\$1,045

Area	0.25	m^2
Thickness	0.00005	m
Henry's constant	34	mM/atm
CO2 dissolved	2	mM
Head gas	0.06	Atm
Gas permeability	1.10E-12	mol*m/(m^2 s Pa)
Rate	4.36	L/min
	3.24E-05	mol/s

1.025 kg/m3

CO₂ volumetric flow rate

10 torr 49,941 m³/h (air, pumping) 0.33 equilibrium lfr/gfr

Case-split orientation	Flow rate min (gpm)	Flow rate max (gpm)	
VSC		50	900
VSC		50	3500
HSC	•	100	1500
HSC	2	250	5000
HSC		50	1100
HSC	•	100	1500

Hp min	Нр Мах	Type factor	
	1	700	0.9
	1	250	1.3
	1	250	1.7
	1	700	1
	1	250	1.4
	1	250	1.8

Max flow rates updated from:

https://vacaero.com/information-resources/vacuum-pump-technology-education-and-training/1039

Flow rate max (m ³ /hr)	Purchase cost exponent F	Purchase cost factor
657	0.41	1690
10,000	0.35	8250
100,000	0.41	7120
800	0.36	8630
750	0.38	9590

	T&S Table 7.5, Fluids	
	Equipment erection	0.3
	Piping	0.8
	Instrumentation & control	0.3
	Electrical	0.2
	Civil	0.3
	Structures & buildings	0.2
	Lagging & Paint	0.1
electrical)	Total ISBL	3.2
	Offsites	0.3
	D&E	0.3
	Contingency	0.3
	Total OSBL	1.9
	Total	6.1

Area (m^2)	Pric	e per area (\$/m^2)	Max liquid flow rate (m^3/hr)
	220	\$30	80
	2.1	\$498	0.48

50% CO2 50% H2O

40-50 Torr

Partial pressure of CO2 is 25 Torr

Coincidence that this is the same as the OW flow rate at 35 Torr? Yes

Pump head min (ft)	Pump head max (ft)	Maximum motor Hp	
• • • • • • • • • • • • • • • • • • • •	0	400	75
Ę	0	200	200
10	0	450	150
Ę	0	500	250
30	0	1100	250
65	0	3200	1450

9-an-introduction-to-vacuum-pumps.html

Base pressure (Torr)	Notes	Flow rate min (ft^3/min)	
75	Not possible to separate working		429
35	Some amount of liquid in output		50
1.00E-03	Low pumping efficiency from atr		60
1.00E-03	""		60
1.00E-02	***		50

Use to compare to ID	
	1.00
	1.25
	1.00
	1.00
	1.00
	1.00

Max flow rate (m^3/hr/m^2) Volume	e (m^3) Max Ifr (1/min)	
0.36	0.035	38
0.23	8.83E-04	9

Type Factor 1 1.5 1.7 2 2.7 8.9

Flow rate max (ft^3/min)

429

350

240

270

350

Packing fraction (m^2/m^3) Thickness (m)

6,286 2,377 3.00E-05

5.50E-05

DIC	0.0022	ı	K 1	1.38038E-06		K2 1.20226E-09
new titration	n data					
	equi	ilibrium cond	entrations			change in H+ id
CO_2	HCO ₃ ⁻	$CO_3^{\bar{2}}$	H ⁺	OH-	pН	CO ₂ HCO ₃
2.20E-03	3.04E-09	3.65E-18	1.00	6.03E-14	0	-1.90E-03
2.20E-03	3.82E-09	5.79E-18	0.79	7.59E-14	0.1	-1.90E-03
2.20E-03	4.81E-09	9.17E-18	0.63	9.55E-14	0.2	-1.90E-03
2.20E-03	6.06E-09	1.45E-17	0.50	1.20E-13	0.3	-1.90E-03
2.20E-03	7.63E-09	2.30E-17	3.98E-01	1.51E-13	0.4	-1.90E-03
2.20E-03	9.60E-09	3.65E-17	3.16E-01	1.91E-13	0.5	-1.90E-03
2.20E-03	1.21E-08	5.79E-17	2.51E-01	2.40E-13	0.6	-1.90E-03
2.20E-03	1.52E-08	9.17E-17	2.00E-01	3.02E-13	0.7	-1.90E-03
2.20E-03	1.92E-08	1.45E-16	1.58E-01	3.80E-13	0.8	-1.90E-03
2.20E-03	2.41E-08	2.30E-16	1.26E-01	4.79E-13	0.9	-1.90E-03
2.20E-03	3.04E-08	3.65E-16	1.00E-01	6.03E-13	1	-1.90E-03
2.20E-03	3.82E-08	5.79E-16	7.94E-02	7.59E-13	1.1	-1.90E-03
2.20E-03	4.81E-08	9.17E-16	6.31E-02	9.55E-13	1.2	-1.90E-03
2.20E-03	6.06E-08	1.45E-15	5.01E-02	1.20E-12	1.3	-1.90E-03
2.20E-03	7.63E-08	2.30E-15	3.98E-02	1.51E-12	1.4	-1.90E-03
2.20E-03	9.60E-08	3.65E-15	3.16E-02	1.91E-12	1.5	-1.90E-03
2.20E-03	1.21E-07	5.79E-15	2.51E-02	2.40E-12	1.6	-1.90E-03
2.20E-03	1.52E-07	9.17E-15	2.00E-02	3.02E-12	1.7	-1.90E-03
2.20E-03	1.92E-07	1.45E-14	1.58E-02	3.80E-12	1.8	-1.90E-03
2.20E-03	2.41E-07	2.30E-14	1.26E-02	4.79E-12	1.9	-1.90E-03
2.20E-03	3.04E-07	3.65E-14	1.00E-02	6.03E-12	2	-1.90E-03
2.20E-03	3.82E-07	5.79E-14	7.94E-03	7.59E-12	2.1	-1.90E-03
2.20E-03	4.81E-07	9.17E-14	6.31E-03	9.55E-12	2.2	-1.90E-03
2.20E-03	6.06E-07	1.45E-13	5.01E-03	1.20E-11	2.3	-1.90E-03
2.20E-03	7.63E-07	2.30E-13	3.98E-03	1.51E-11	2.4	-1.90E-03
2.20E-03	9.60E-07	3.65E-13	3.16E-03	1.91E-11	2.5	-1.90E-03
2.20E-03	1.21E-06	5.78E-13	2.51E-03	2.40E-11	2.6	-1.90E-03
2.20E-03	1.52E-06	9.16E-13	2.00E-03	3.02E-11	2.7	-1.90E-03
2.20E-03	1.91E-06	1.45E-12	1.58E-03	3.80E-11	2.8	-1.90E-03
2.20E-03	2.41E-06	2.30E-12	1.26E-03	4.79E-11	2.9	-1.90E-03
2.20E-03	3.03E-06	3.65E-12	1.00E-03	6.03E-11	3	-1.90E-03
2.20E-03	3.82E-06	5.78E-12	7.94E-04	7.59E-11	3.1	-1.90E-03
2.20E-03	4.80E-06	9.15E-12	6.31E-04	9.55E-11	3.2	-1.90E-03
2.19E-03	6.04E-06	1.45E-11	5.01E-04	1.20E-10	3.3	-1.90E-03
2.19E-03	7.60E-06	2.30E-11	3.98E-04	1.51E-10	3.4	-1.89E-03
2.19E-03	9.56E-06	3.64E-11	3.16E-04	1.91E-10	3.5	-1.89E-03
2.19E-03	1.20E-05	5.75E-11	2.51E-04	2.40E-10	3.6	-1.89E-03
2.18E-03	1.51E-05	9.11E-11	2.00E-04	3.02E-10	3.7	-1.89E-03
2.18E-03	1.90E-05	1.44E-10	1.58E-04	3.80E-10	3.8	-1.88E-03
2.18E-03	2.39E-05	2.28E-10	1.26E-04	4.79E-10	3.9	-1.88E-03
2.17E-03	3.00E-05	3.60E-10	1.00E-04	6.03E-10	4	-1.87E-03
2.16E-03	3.76E-05	5.69E-10	7.94328E-05	7.59E-10	4.1	-1.86E-03
2.15E-03	4.71E-05	8.97E-10	6.30957E-05	9.55E-10	4.2	-1.85E-03
2.14E-03	5.90E-05	1.41E-09	5.01187E-05	1.20E-09	4.3	-1.84E-03
2.13E-03	7.37E-05	2.23E-09	3.98107E-05	1.51E-09	4.4	-1.83E-03
2.11E-03	9.20E-05	3.50E-09	3.16228E-05	1.91E-09	4.5	-1.81E-03
2.09E-03	1.15E-04	5.49E-09	2.51189E-05	2.40E-09	4.6	-1.79E-03

2.06E-03	1.42E-04	8.58E-09	1.99526E-05	3.02E-09	4.7		-1.76E-03
2.02E-03	1.76E-04	1.34E-08	1.58489E-05	3.80E-09	4.8		-1.73E-03
1.98E-03	2.17E-04	2.08E-08	1.25893E-05	4.79E-09	4.9		-1.68E-03
1.93E-03	2.67E-04	3.21E-08	0.00001	6.03E-09	5		-1.63E-03
1.87E-03	3.26E-04	4.93E-08	7.94328E-06	7.59E-09	5.1		-1.58E-03
1.81E-03	3.95E-04	7.52E-08	6.30957E-06	9.55E-09	5.2		-1.51E-03
1.72E-03	4.75E-04	1.14E-07	5.01187E-06	1.20E-08	5.3		-1.43E-03
1.63E-03	5.66E-04	1.71E-07	3.98107E-06	1.51E-08	5.4		-1.33E-03
1.53E-03	6.68E-04	2.54E-07	3.16228E-06	1.91E-08	5.5		-1.23E-03
1.42E-03	7.80E-04	3.73E-07	2.51189E-06	2.40E-08	5.6		-1.12E-03
1.30E-03	8.99E-04	5.42E-07	1.99526E-06	3.02E-08	5.7		-1.00E-03
1.18E-03	1.02E-03	7.77E-07	1.58489E-06	3.80E-08	5.8		-8.78E-04
1.05E-03	1.15E-03	1.10E-06	1.25893E-06	4.79E-08	5.9		-7.51E-04
9.24E-04	1.27E-03	1.53E-06	0.000001	6.03E-08	6		-6.26E-04
8.03E-04	1.40E-03	2.11E-06	7.94328E-07	7.59E-08	6.1		-5.06E-04
6.89E-04	1.51E-03	2.87E-06	6.30957E-07	9.55E-08	6.2		-3.93E-04
5.85E-04	1.61E-03	3.86E-06	5.01187E-07	1.20E-07	6.3		-2.90E-04
4.91E-04	1.70E-03	5.14E-06	3.98107E-07	1.51E-07	6.4		-1.98E-04
4.09E-04	1.78E-03	6.78E-06	3.16228E-07	1.91E-07	6.5		-1.17E-04
3.37E-04	1.85E-03	8.87E-06	2.51189E-07	2.40E-07	6.6		-4.75E-05
2.76E-04	1.91E-03	1.15E-05	1.99526E-07	3.02E-07	6.7		1.08E-05
2.25E-04	1.96E-03	1.49E-05	1.58489E-07	3.80E-07	6.8		5.88E-05
1.82E-04	2.00E-03	1.91E-05	1.25893E-07	4.79E-07	6.9		9.73E-05
1.47E-04	2.03E-03	2.44E-05	0.0000001	6.03E-07	7		1.27E-04
1.18E-04	2.05E-03	3.10E-05	7.94328E-08	7.59E-07	7.1		1.50E-04
9.44E-05	2.07E-03	3.94E-05	6.30957E-08	9.55E-07	7.2		1.65E-04
7.53E-05	2.07E-03	4.98E-05	5.01187E-08	1.20E-06	7.3		1.74E-04
5.99E-05	2.08E-03	6.27E-05	3.98107E-08	1.51E-06	7.4		1.76E-04
4.75E-05	2.07E-03	7.88E-05	3.16228E-08	1.91E-06	7.5		1.72E-04
3.76E-05	2.06E-03	9.88E-05	2.51189E-08	2.40E-06	7.6		1.62E-04
2.96E-05	2.05E-03	1.23E-04	1.99526E-08	3.02E-06	7.7		1.46E-04
2.32E-05	2.02E-03	1.53E-04	1.58489E-08	3.80E-06	7.8		1.22E-04
1.82E-05	1.99E-03	1.90E-04	1.25893E-08	4.79E-06	7.9		9.03E-05
1.41E-05	1.95E-03	2.35E-04	0.00000001	6.03E-06	8		5.00E-05
1.09E-05	1.90E-03	2.88E-04	7.94328E-09	7.59E-06	8.1	0.00E+00	0.00E+00
8.41E-06	1.84E-03	3.51E-04	6.30957E-09	9.55E-06	8.2	5.05E-06	-6.05E-05
6.42E-06	1.77E-03	4.24E-04	5.01187E-09	1.20E-05	8.3	9.03E-06	-1.32E-04
4.86E-06	1.69E-03	5.09E-04	3.98107E-09	1.51E-05	8.4	1.22E-05	-2.15E-04
3.65E-06	1.59E-03	6.05E-04	3.16228E-09	1.91E-05	8.5	1.46E-05	-3.10E-04
2.70E-06	1.49E-03	7.11E-04	2.51189E-09	2.40E-05	8.6	1.65E-05	-4.15E-04
1.98E-06	1.37E-03	8.26E-04	1.99526E-09	3.02E-05	8.7	1.79E-05	-5.30E-04
1.44E-06	1.25E-03	9.48E-04	1.58489E-09	3.80E-05	8.8	1.90E-05	-6.51E-04
1.03E-06	1.12E-03	1.07E-03	1.25893E-09	4.79E-05	8.9	1.98E-05	-7.76E-04
7.23E-07	9.99E-04	1.20E-03	0.00000001	6.03E-05	9	2.04E-05	-9.03E-04
5.04E-07	8.75E-04	1.32E-03	7.94328E-10	7.59E-05	9.1	2.09E-05	-1.03E-03
3.46E-07	7.57E-04	1.44E-03	6.30957E-10	9.55E-05	9.2	2.12E-05	-1.14E-03
2.35E-07	6.47E-04	1.55E-03	5.01187E-10	1.20E-04	9.3	2.14E-05	-1.25E-03
1.58E-07	5.47E-04	1.65E-03	3.98107E-10	1.51E-04	9.4	2.16E-05	-1.35E-03
1.05E-07	4.58E-04	1.74E-03	3.16228E-10	1.91E-04	9.5	2.17E-05	-1.44E-03
6.92E-08	3.80E-04	1.82E-03	2.51189E-10	2.40E-04	9.6	2.17E-05	-1.52E-03
4.53E-08	3.13E-04	1.89E-03	1.99526E-10	3.02E-04	9.7	2.18E-05	-1.59E-03
2.94E-08	2.56E-04	1.94E-03	1.58489E-10	3.80E-04	9.8	2.18E-05	-1.65E-03

1.90E-08	2.09E-04	1.99E-03	1.25893E-10	4.79E-04	9.9	2.18E-05	-1.69E-03
1.22E-08	1.69E-04	2.03E-03	1E-10	6.03E-04	10	2.19E-05	-1.73E-03
7.85E-09	1.36E-04	2.06E-03	7.94328E-11	7.59E-04	10.1	2.19E-05	-1.76E-03
5.01E-09	1.10E-04	2.09E-03	6.30957E-11	9.55E-04	10.2	2.19E-05	-1.79E-03
3.20E-09	8.80E-05	2.11E-03	5.01187E-11	1.20E-03	10.3	2.19E-05	-1.81E-03
2.03E-09	7.05E-05	2.13E-03	3.98107E-11	1.51E-03	10.4	2.19E-05	-1.83E-03
1.29E-09	5.64E-05	2.14E-03	3.16228E-11	1.91E-03	10.5	2.19E-05	-1.84E-03
8.19E-10	4.50E-05	2.15E-03	2.51189E-11	2.40E-03	10.6	2.19E-05	-1.86E-03
5.19E-10	3.59E-05	2.16E-03	1.99526E-11	3.02E-03	10.7	2.19E-05	-1.87E-03
3.29E-10	2.86E-05	2.17E-03	1.58489E-11	3.80E-03	10.8	2.19E-05	-1.87E-03
2.08E-10	2.28E-05	2.18E-03	1.25893E-11	4.79E-03	10.9	2.19E-05	-1.88E-03
1.31E-10	1.81E-05	2.18E-03	1E-11	6.03E-03	11	2.19E-05	-1.88E-03
8.31E-11	1.44E-05	2.19E-03	7.94328E-12	7.59E-03	11.1	2.19E-05	-1.89E-03
5.25E-11	1.15E-05	2.19E-03	6.30957E-12	9.55E-03	11.2	2.19E-05	-1.89E-03
3.32E-11	9.13E-06	2.19E-03	5.01187E-12	1.20E-02	11.3	2.19E-05	-1.89E-03
2.09E-11	7.26E-06	2.19E-03	3.98107E-12	1.51E-02	11.4	2.19E-05	-1.89E-03
1.32E-11	5.77E-06	2.19E-03	3.16228E-12	1.91E-02	11.5	2.19E-05	-1.90E-03
8.35E-12	4.59E-06	2.20E-03	2.51189E-12	2.40E-02	11.6	2.19E-05	-1.90E-03
5.27E-12	3.65E-06	2.20E-03	1.99526E-12	3.02E-02	11.7	2.19E-05	-1.90E-03
3.33E-12	2.90E-06	2.20E-03	1.58489E-12	3.80E-02	11.8	2.19E-05	-1.90E-03
2.10E-12	2.30E-06	2.20E-03	1.25893E-12	4.79E-02	11.9	2.19E-05	-1.90E-03
1.32E-12	1.83E-06	2.20E-03	1E-12	6.03E-02	12	2.19E-05	-1.90E-03
8.36E-13	1.45E-06	2.20E-03	7.94328E-13	7.59E-02	12.1	2.19E-05	-1.90E-03
5.27E-13	1.15E-06	2.20E-03	6.30957E-13	9.55E-02	12.2	2.19E-05	-1.90E-03
3.33E-13	9.17E-07	2.20E-03	5.01187E-13	1.20E-01	12.3	2.19E-05	-1.90E-03
2.10E-13	7.28E-07	2.20E-03	3.98107E-13	1.51E-01	12.4	2.19E-05	-1.90E-03
1.33E-13	5.79E-07	2.20E-03	3.16228E-13	1.91E-01	12.5	2.19E-05	-1.90E-03
8.36E-14	4.60E-07	2.20E-03	2.51189E-13	2.40E-01	12.6	2.19E-05	-1.90E-03
5.28E-14	3.65E-07	2.20E-03	1.99526E-13	3.02E-01	12.7	2.19E-05	-1.90E-03
3.33E-14	2.90E-07	2.20E-03	1.58489E-13	3.80E-01	12.8	2.19E-05	-1.90E-03
2.10E-14	2.30E-07	2.20E-03	1.25893E-13	4.79E-01	12.9	2.19E-05	-1.90E-03
1.33E-14	1.83E-07	2.20E-03	1E-13	6.03E-01	13	2.19E-05	-1.90E-03
8.36E-15	1.45E-07	2.20E-03	7.94328E-14	7.59E-01	13.1	2.19E-05	-1.90E-03
5.28E-15	1.15E-07	2.20E-03	6.30957E-14	9.55E-01	13.2	2.19E-05	-1.90E-03
3.33E-15	9.17E-08	2.20E-03	5.01187E-14	1.20E+00	13.3	2.19E-05	-1.90E-03
2.10E-15	7.28E-08	2.20E-03	3.98107E-14	1.51E+00	13.4	2.19E-05	-1.90E-03
1.33E-15	5.79E-08	2.20E-03	3.16228E-14	1.91E+00	13.5	2.19E-05	-1.90E-03
8.36E-16	4.60E-08	2.20E-03	2.51189E-14	2.40E+00	13.6	2.19E-05	-1.90E-03
5.28E-16	3.65E-08	2.20E-03	1.99526E-14	3.02E+00	13.7	2.19E-05	-1.90E-03
3.33E-16	2.90E-08	2.20E-03	1.58489E-14	3.80E+00	13.8	2.19E-05	-1.90E-03
2.10E-16	2.30E-08	2.20E-03	1.25893E-14	4.79E+00	13.9	2.19E-05	-1.90E-03
1.33E-16	1.83E-08	2.20E-03	1E-14	6.03E+00	14	2.19E-05	-1.90E-03

ons due to this species from pH 8.1

CO ₃ ²⁻	H [†]	OH ⁻	H ⁺ / OH− added	1/x process	x processed	Extractable	Extraction E
-5.76E-04	1.00E+00	-7.59E-06	1.00E+00			0.00	100%
-5.76E-04	7.94E-01	-7.59E-06	7.97E-01			0.00	100%
-5.76E-04	6.31E-01	-7.59E-06	6.33E-01			0.00	100%
-5.76E-04	5.01E-01	-7.59E-06	5.04E-01			0.00	100%
-5.76E-04	3.98E-01	-7.59E-06	4.01E-01	1.0	1.01E+00	0.01	100%
-5.76E-04	3.16E-01	-7.59E-06	3.19E-01	1.2	8.01E-01	0.01	100%
-5.76E-04	2.51E-01	-7.59E-06	2.54E-01	1.6	6.37E-01	0.01	100%
-5.76E-04	2.00E-01	-7.59E-06	2.02E-01	2.0	5.07E-01	0.01	100%
-5.76E-04	1.58E-01	-7.59E-06	1.61E-01	2.5	4.04E-01	0.01	100%
-5.76E-04	1.26E-01	-7.59E-06	1.28E-01	3.1	3.22E-01	0.02	100%
-5.76E-04	1.00E-01	-7.59E-06	1.02E-01	3.9	2.57E-01	0.02	100%
-5.76E-04	7.94E-02	-7.59E-06	8.19E-02	4.9	2.06E-01	0.03	100%
-5.76E-04	6.31E-02	-7.59E-06	6.56E-02	6.1	1.65E-01	0.03	100%
-5.76E-04	5.01E-02	-7.59E-06	5.26E-02	7.6	1.32E-01	0.04	100%
-5.76E-04	3.98E-02	-7.59E-06	4.23E-02	9.4	1.06E-01	0.05	100%
-5.76E-04	3.16E-02	-7.59E-06	3.41E-02	11.7	8.57E-02	0.06	100%
-5.76E-04	2.51E-02	-7.59E-06	2.76E-02	14.4	6.93E-02	0.08	100%
-5.76E-04	2.00E-02	-7.59E-06	2.24E-02	17.7	5.64E-02	0.10	100%
-5.76E-04	1.58E-02	-7.59E-06	1.83E-02	21.7	4.61E-02	0.12	100%
-5.76E-04	1.26E-02	-7.59E-06	1.51E-02	26.4	3.79E-02	0.15	100%
-5.76E-04	1.00E-02		1.25E-02	31.9	3.14E-02	0.18	100%
-5.76E-04	7.94E-03	-7.59E-06	1.04E-02	38.2	2.62E-02	0.21	100%
-5.76E-04	6.31E-03	-7.59E-06	8.79E-03	45.3	2.21E-02	0.25	100%
-5.76E-04	5.01E-03	-7.59E-06	7.50E-03	53.1	1.88E-02	0.29	100%
-5.76E-04	3.98E-03	-7.59E-06	6.46E-03	61.6	1.62E-02	0.34	100%
-5.76E-04	3.16E-03	-7.59E-06	5.65E-03	70.5	1.42E-02	0.39	100%
-5.76E-04	2.51E-03	-7.59E-06	5.00E-03	79.7	1.25E-02	0.44	100%
-5.76E-04	2.00E-03	-7.59E-06	4.48E-03	88.9	1.12E-02	0.49	100%
-5.76E-04	1.58E-03	-7.59E-06	4.07E-03	97.9	1.02E-02	0.54	100%
-5.76E-04	1.26E-03	-7.59E-06	3.74E-03	106.4	9.40E-03	0.59	100%
-5.76E-04	1.00E-03	-7.59E-06	3.48E-03	114.4	8.74E-03	0.63	100%
-5.76E-04	7.94E-04	-7.59E-06	3.27E-03	121.6	8.23E-03	0.67	100%
-5.76E-04	6.31E-04	-7.59E-06	3.11E-03	128.0	7.81E-03	0.71	100%
-5.76E-04	5.01E-04	-7.59E-06	2.98E-03	133.6	7.48E-03	0.74	100%
-5.76E-04	3.98E-04	-7.59E-06	2.87E-03	138.5	7.22E-03	0.76	100%
-5.76E-04	3.16E-04	-7.59E-06	2.79E-03	142.6	7.01E-03	0.78	100%
-5.76E-04	2.51E-04	-7.59E-06	2.72E-03	146.2	6.84E-03	0.80	99%
-5.76E-04	2.00E-04	-7.59E-06	2.67E-03	149.2	6.70E-03	0.82	99%
-5.76E-04	1.58E-04	-7.59E-06	2.62E-03	151.7	6.59E-03	0.83	99%
-5.76E-04	1.26E-04	-7.59E-06	2.59E-03	153.9	6.50E-03	0.84	99%
-5.76E-04	1.00E-04	-7.59E-06	2.55E-03	155.8	6.42E-03	0.85	99%
-5.76E-04	7.94E-05	-7.59E-06	2.53E-03	157.6	6.35E-03	0.86	98%
-5.76E-04	6.31E-05	-7.58E-06	2.50E-03	159.2	6.28E-03	0.86	98%
-5.76E-04	5.01E-05	-7.58E-06	2.48E-03	160.8	6.22E-03	0.86	97%
-5.76E-04	3.98E-05	-7.58E-06	2.45E-03	162.5	6.16E-03	0.87	97%
-5.76E-04	3.16E-05	-7.58E-06	2.42E-03	164.2	6.09E-03	0.87	96%
-5.76E-04	2.51E-05	-7.58E-06	2.39E-03	166.2	6.02E-03	0.87	95%

-5.76E-04	1.99E-05	-7.58E-06	2.36E-03	168.5	5.93E-03	0.87	94%
-5.76E-04	1.58E-05	-7.58E-06	2.32E-03	171.3	5.84E-03	0.87	92%
-5.76E-04	1.26E-05	-7.58E-06	2.28E-03	174.6	5.73E-03	0.87	90%
-5.75E-04	9.99E-06	-7.58E-06	2.23E-03	178.7	5.60E-03	0.87	88%
-5.75E-04	7.94E-06	-7.58E-06	2.17E-03	183.8	5.44E-03	0.87	85%
-5.75E-04	6.30E-06	-7.58E-06	2.10E-03	190.0	5.26E-03	0.86	82%
-5.75E-04	5.00E-06	-7.57E-06	2.01E-03	197.7	5.06E-03	0.86	78%
-5.75E-04	3.97E-06	-7.57E-06	1.92E-03	207.2	4.83E-03	0.85	74%
-5.75E-04	3.15E-06	-7.57E-06	1.82E-03	218.9	4.57E-03	0.84	70%
-5.75E-04	2.50E-06	-7.56E-06	1.71E-03	233.3	4.29E-03	0.83	65%
-5.74E-04	1.99E-06	-7.56E-06	1.59E-03	251.0	3.98E-03	0.82	59%
-5.74E-04	1.58E-06	-7.55E-06	1.46E-03	272.6	3.67E-03	0.80	53%
-5.73E-04	1.25E-06	-7.54E-06	1.33E-03	298.6	3.35E-03	0.79	48%
-5.72E-04	9.92E-07	-7.53E-06	1.21E-03	329.7	3.03E-03	0.76	42%
-5.71E-04	7.86E-07	-7.51E-06	1.09E-03	366.6	2.73E-03	0.74	36%
-5.70E-04	6.23E-07	-7.49E-06	9.71E-04	409.9	2.44E-03	0.71	31%
-5.68E-04	4.93E-07	-7.47E-06	8.66E-04	459.8	2.18E-03	0.68	27%
-5.65E-04	3.90E-07	-7.43E-06	7.71E-04	516.5	1.94E-03	0.64	22%
-5.62E-04	3.08E-07	-7.40E-06	6.87E-04	579.9	1.72E-03	0.60	19%
-5.58E-04	2.43E-07	-7.35E-06	6.13E-04	649.6	1.54E-03	0.55	15%
-5.53E-04	1.92E-07	-7.28E-06	5.49E-04	724.9	1.38E-03	0.50	13%
-5.46E-04	1.51E-07	-7.21E-06	4.94E-04	805.3	1.24E-03	0.46	10%
-5.37E-04	1.18E-07	-7.21E-06	4.47E-04	890.1	1.12E-03	0.41	8%
-5.27E-04	9.21E-08	-6.98E-06	4.06E-04	979.4	1.02E-03	0.36	7%
-5.13E-04	7.15E-08	-6.83E-06	3.71E-04	1073.9	9.31E-04	0.32	5%
-4.97E-04	5.52E-08	-6.63E-06	3.39E-04	1175.8	8.50E-04	0.28	4%
-4.76E-04	4.22E-08	-6.38E-06	3.09E-04	1289.1	7.76E-04	0.24	3%
-4.50E-04	3.19E-08	-6.07E-06	2.80E-04	1421.2	7.04E-04	0.21	3%
-4.18E-04	2.37E-08	-5.68E-06	2.51E-04	1584.8	6.31E-04	0.19	2%
-3.78E-04	1.72E-08	-5.19E-06	2.21E-04	1802.9	5.55E-04	0.17	2%
-3.29E-04	1.20E-08	-4.57E-06	1.88E-04	2121.5	4.71E-04	0.16	1%
-2.69E-04	7.91E-09	-3.78E-06	1.50E-04	2647.5	3.78E-04	0.15	1%
-1.95E-04	4.65E-09	-2.80E-06	1.08E-04	3699.9	2.70E-04	0.17	1%
-1.06E-04	2.06E-09	-1.56E-06	5.79E-05	6871.7	1.46E-04	0.24	1%
0.00E+00	0.00E+00	0.00E+00	0.00E+00	#DIV/0!	0.00E+00	#DIV/0!	0%
	-1.63E-09	1.96E-06	5.85E-05			0.14	0%
	-2.93E-09	4.44E-06	1.28E-04			0.05	0%
	-3.96E-09	7.55E-06	2.08E-04			0.02	0%
	-4.78E-09	1.15E-05	2.98E-04			0.01	0%
	-5.43E-09	1.64E-05	3.99E-04			0.01	0%
	-5.95E-09	2.26E-05	5.07E-04			0.00	0%
	-6.36E-09	3.04E-05	6.21E-04			0.00	0%
						0.00	
	-6.68E-09	4.03E-05	7.36E-04				0%
	-6.94E-09	5.27E-05	8.50E-04			0.00	0%
	-7.15E-09	6.83E-05	9.58E-04			0.00	0%
	-7.31E-09	8.79E-05	1.06E-03			0.00	0%
	-7.44E-09	1.13E-04	1.14E-03			0.00	0%
	-7.55E-09	1.44E-04	1.21E-03			0.00	0%
	-7.63E-09	1.83E-04	1.26E-03			0.00	0%
	-7.69E-09	2.32E-04	1.29E-03			0.00	0%
	-7.74E-09	2.94E-04	1.29E-03			0.00	0%
	-7.78E-09	3.73E-04	1.27E-03			0.00	0%

-7.82E-09	4.71E-04	1.22E-03	0.00	0%
-7.84E-09	5.95E-04	1.14E-03	0.00	0%
-7.86E-09	7.51E-04	1.01E-03	0.00	0%
-7.88E-09	9.47E-04	8.44E-04	0.00	0%
-7.89E-09	1.19E-03	6.19E-04	0.00	0%
-7.89E-09	1.19E-03 1.51E-03	3.25E-04	0.00	0%
-7.90E-09 -7.91E-09	1.90E-03		(0.00)	0%
			•	
-7.92E-09	2.39E-03	-5.35E-04	(0.00)	0%
-7.92E-09	3.01E-03	-1.15E-03	(0.00)	0%
-7.93E-09	3.79E-03	-1.92E-03	(0.00)	0%
-7.93E-09	4.78E-03	-2.90E-03	(0.00)	0%
-7.93E-09	6.02E-03	-4.13E-03	(0.00)	0%
-7.94E-09	7.58E-03		(0.00)	0%
-7.94E-09	9.54E-03		(0.00)	0%
-7.94E-09	1.20E-02	-1.01E-02	(0.00)	0%
-7.94E-09	1.51E-02	-1.32E-02	(0.00)	0%
-7.94E-09	1.90E-02	-1.72E-02	(0.00)	0%
-7.94E-09	2.40E-02	-2.21E-02	(0.00)	0%
-7.94E-09	3.02E-02	-2.83E-02	(0.00)	0%
-7.94E-09	3.80E-02	-3.61E-02	(0.00)	0%
-7.94E-09	4.79E-02	-4.60E-02	(0.00)	0%
-7.94E-09	6.02E-02	-5.83E-02	(0.00)	0%
-7.94E-09	7.59E-02	-7.40E-02	(0.00)	0%
-7.94E-09	9.55E-02	-9.36E-02	(0.00)	0%
-7.94E-09	1.20E-01	-1.18E-01	(0.00)	0%
-7.94E-09	1.51E-01	-1.49E-01	(0.00)	0%
-7.94E-09	1.91E-01	-1.89E-01	(0.00)	0%
-7.94E-09	2.40E-01	-2.38E-01	(0.00)	0%
-7.94E-09	3.02E-01	-3.00E-01	(0.00)	0%
-7.94E-09	3.80E-01	-3.78E-01	(0.00)	0%
-7.94E-09	4.79E-01	-4.77E-01	(0.00)	0%
-7.94E-09	6.03E-01	-6.01E-01	(0.00)	0%
-7.94E-09	7.59E-01	-7.57E-01	(0.00)	0%
-7.94E-09	9.55E-01	-9.53E-01	(0.00)	0%
-7.94E-09		-1.20E+00	(0.00)	0%
-7.94E-09		-1.51E+00	(0.00)	0%
-7.94E-09		-1.90E+00	(0.00)	0%
-7.94E-09		-2.40E+00	(0.00)	0%
-7.94E-09		-3.02E+00	(0.00)	0%
-7.94E-09		-3.80E+00	(0.00)	0%
-7.94E-09		-4.78E+00	(0.00)	0%
-7.94E-09		-6.02E+00	(0.00)	0%
7.0-76-03	J.JJL . JU	3.02E · 00	(0.00)	0 /0

-CO₂

•HCO₃-

CO₃2-

-H+

1.00

0.90

08.0

0.70

0.60

0.50

0.40

0.30

0.20

0.10

7

8

Extractable CO₂/H⁺ Added

OH-

CO₂ Price

138.152 \$/ton CO₂

Eisaman's TEA shows much higher CO₂ cost than ours. Why?

1. Difference in scale

Eisaman:

· · · · · · · · · · · · · · · · ·		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
tons/yr	7,709	tons/year	
kg/day	21,121	kg CO ₂ /day	
ft/min	264	ft ³ CO ₂ /min	
mol/s	5.56	mol/s	

kmol/hr 20.00 kmol/hr kg/s 0.24 kg/s

CO2 Production Rate (At a given extraction efficiency)

Oceanwater Flow Rate (At a given extraction efficiency)

m ³ /day	272,734	m³/day
m ³ /h	11,364	m ³ /h
gal/min	50,034	gal/min

MGD	72	MGD
L/s	3,157	L/s

Our costs are relatively close if you compare their co-location, best call

E	Eisaman			
E	Electrodialysis BoP Fotal	Capital cost \$/ton \$40.00 \$169.00 \$209.00	Electricity cost \$/tor \$58 \$15 \$73	Replacements \$/ton \$15 \$56 \$71
l	Js			
E	Electrodialysis BoP Fotal	Capital cost \$/ton \$34.86 \$116.94 \$151.79	Electricity cost \$/tor \$83.01 \$34.24 \$117.26	Replacements \$/ton \$88.07 \$126.35 \$214.42

2. We assume a floating platform, much smaller intake costs

	Us	Them	
Electricity price \$/kWh		\$0.020	\$0.040
MC cost \$/m^3/hr		\$83	\$110
ED membrane cost \$/m^2		\$400	\$460
Intake \$M/MGD		\$0.45	\$0.4
Outfall \$M/MGD			\$0.5
Pretreatment \$M/MGD		\$0.90	\$0.5

3. We may be underestimating nanofiltration capital costs

Eisaman				Co-location, acid proc
Equipment	Qty	Р	Purch. Cost (\$/Unit)	Purch Cost (\$)
Membrane contactor CO2		192	\$6,930	\$1,330,560
Nanofilter		1	\$506,500	\$506,500
RO Concentrator		1	\$822,400	\$822,400
Clarifier		1	\$69,200	\$69,200
Ion exchange		1	\$120,700	\$120,700
ED package		4	\$422,700	\$1,690,800
Water condenser		1	\$21,000	\$21,000
Vacuum pump		1	\$316,300	\$316,300
Vacuum pump chiller		1	\$120,000	\$120,000

Us				
Equipment	Qty		Purch. Cost (\$/Unit)	Purch Cost (\$)
Membrane contactor CO2		209	\$6,600	\$1,379,400
Nanofilter		753	\$180	\$135,540
RO Concentrator				\$0
Clarifier				\$0
Ion exchange				\$0
ED package		1	\$3,444,516	\$3,444,516
Water condenser				\$0
Vacuum pump		2	\$107,930	\$251,785
Vacuum pump chiller				\$0

We can achieve a pretty good match if we increase CapEx at multiple

Breakdown by Process Step			
	Capital cost \$/ton	Electricity cost \$/tor	Replacements \$/ton
Intake	\$469.57	\$10.47	\$0.00
Screening	\$304.96	\$0.00	\$0.00
Microfiltration	\$161.60	\$0.42	\$29.62
Nanofiltration	\$33.80	\$0.37	\$0.00
Electrodialysis	\$34.84	\$41.51	\$88.03
CO2 stripping	\$43.37	\$5.86	\$44.49
Other	\$0.00	\$0.00	\$52.18
Total	\$1,048.14	\$58.63	\$214.32
		Total	\$669.23
Eisaman	\$1,300	\$150	\$100
	ED CapEx & Replace	BoP CapEx	ED Electricity
Eisaman	\$55	\$1,225	\$58
Our baseline	\$4	\$34	\$42
Smaller scale	\$25	\$237	\$42
Worse ED performance	\$123	\$243	\$42
Higher electricity price	\$123	\$243	\$102
Onshore intake & outfall	\$123	\$952	\$102
	\$4	\$43	\$46

Electrodialysis	\$40.00	\$58	\$15
BoP	\$169.00	\$15	\$56
Total	\$209.00	\$73	\$71

Breakdown by Process Step	LINKED		
	Capital cost \$/ton	Electricity cost \$/ton	Replacements \$/ton
Intake	\$4	\$12	\$0
Screening	\$5	\$0	\$0
Microfiltration	\$2	\$0	\$5
Nanofiltration	\$1	\$0	\$0
Electrodialysis	\$1	\$46	\$3
CO2 stripping	\$10	\$8	\$10
Other	\$0	\$0	\$8
Total	\$22	\$66	\$25
		Total	\$138

INKED
_

Us:

CO2 Production Rate (At a given extraction efficiency)

tons/yr	1,000,000 ton	ıs/year	
kg/day	2,739,726 kg	CO ₂ /day	Scale (tons/yr)
ft/min	34,205 ft ³	CO ₂ /min	7,709
mol/s	720.68 mo	l/s	100,000
kmol/hr	2,594.44 km	ol/hr	1,000,000
kg/s	31.71 kg/s	's	

Oceanwater Flow Rate (At a given extraction efficiency)

m ³ /day	35,378,694	m ³ /day
m ³ /h	1,474,112	m ³ /h
gal/min	6,490,320	gal/min

MGD	9,346	MGD
L/s	409,476	L/s

ase to ours (but theirs doesn't include costs of intake & micro/ultrafiltratio

Best case, co-location	on, acid process
Fixed OpEx \$/ton	
\$9)
\$54	1
\$63.00	\$20
TOTAL	\$436
100 mA/cm2, 2.5 V,	same scale as theirs
Fixed OpEx \$/ton	Waste \$/ton
\$217	7
\$216.59	\$20
TOTAL	\$720

Breakdown by Process Step			
Ca	pital cost \$/ton		
Intake	\$23.49		
Screening	\$30.51		
Microfiltration	\$16.17		
Nanofiltration	\$3.38		
Electrodialysis	\$34.86		
CO2 stripping	\$43.39		
Other	\$0.00		
Total	\$151.79		

System cost			
	Baseline installed cost in basis year dollars	Baseline installed cost in startup year dollars	Scaled installed cost in startup year dollars
Intake	\$3,249,551	\$3,249,551	\$47,844,550
Screening	\$4,220,778	\$4,220,778	\$62,144,335
Micro/ultrafiltration	\$2,236,588	\$2,236,588	\$32,930,254

ess		
Cost Factor	Install	ed Cost
	2.9	\$3,858,624
:	2.3	\$1,164,950
;	2.3	\$1,891,520
	l.1	\$283,720
	l.1	\$494,870
	.4	\$2,367,120
;	3.3	\$69,300
;	3.7	\$1,170,310
	2.3	\$276,000

TOTAL	\$11,576,414

Cost Factor	Ins	talled Cost		
	2.9	\$4,000,260		
	2.3	\$311,742		
	2.3	\$0	needed for de	emine
	4.1	\$0	needed for div	valen
	4.1	\$0	needed for div	valen [.]
	1.4	\$4,822,322		
	3.3	\$0		
	3.7	\$931,605		
	2.3	\$0		
TOTAL		\$10,065,929		

steps

Fixed OpEx; Taxes

Increase CapEx by 20x (to include outfall too)

Increase CapEx by 10x Increase CapEx by 10x Increase CapEx by 10x

\$462.04 Keep labor the same, multiply CapEx by 0.25

\$1,783.13

\$300 \$1,850

BoP Electricity	Fixed OpEx	Check sum	Notes	Total cost
\$150	\$350	\$1,838		\$1,839
\$17	\$21	\$117		\$115
\$17	\$210	\$531	1 megaton to 7709 to	\$504
\$17	\$245	\$669	500 to 100 mA/cm^2	\$587
\$42	\$246	\$756	\$0.02 to \$0.049/kWh	\$677
\$42	\$663	\$1,881	20x intake CapEx	\$1,980
\$20	\$25	\$138		

	\$9	
	\$54	
	\$63.00	\$20
TOTAL		\$436

Capital cost %	Electricity cost %	Replacements %
\$0	\$0	\$0
\$0	\$0	\$0
\$0	\$0	\$0
\$0	\$0	\$0
\$0	\$1	\$0
\$0	\$0	\$0
\$0	\$0	\$0
\$1	\$1	\$1

Co-locate with desalination pla

Co-locate with power plant usir seawater coolin

Stand-alone pla

Cost (\$/kg)

667.00 (assuming 100 mA/cm2 and 2.5 V)

\$250.02

\$163.97