CHAPTER 1 DESCRIPTIVE STATISTICS

 L1 – Basic of data measurements – mean, variance and standard deviation

Learning Objectives:

At the end of the lesson, students should be able to:

- Explain the concepts of
 - sample mean, population mean,
 - sample variance, population variance, sample standard deviation,

Compute and interpret the sample mean, sample variance, sample standard deviation, sample median, an sample range

Population - Sample (Definition)

Population:

 A collection, or set, of individuals or objects or events whose properties are to be analyzed.
 (the number UTP students)

Sample:

A subset of the population. The number of individuals of a sample is called the sample size.

(the number of engineering students in UTP)

Illustration of selection of a sample from a population

Population - Sample

UNIVERSITI TEKNOLOGI PETRONAS

Variable:

- A characteristic of the objects in a population.
 - CGPA of UTP students (number)
 - Gender of an engineering graduate (category: male or female)
- Its value may change from one object to another in the population

Univariate:

A data set consists of observations on a single variable.
 (type of transmission in a car, automatic or manual)

Multivariate:

A data set arises when observations made on more than one variable (height and weight)

- -Methods of organizing display, and describe important features of data by
 - * tables,
 - * graphs, and
 - * summary measures

-Methods that use sample results to help make decisions (inferences) or predictions about a population

UNIVERSITI TEKNOLOGI PETRONAS

Numerical Summary: Mean

The mean is the balance point for a system of unit weights at points $x_1, x_2, ..., x_n$

$$X_{10}$$
 X_{7} X_{3} X_{1} \overline{X} X_{8} X_{2} X_{5} X_{4} X_{6} X_{9} 1.5 0 1 3 Δ 6.5 7 8.5 9.5 10 11

$$\sum x = x_1 + x_2 + \dots + x_{10} = 55;$$
 $\overline{x} = \frac{55}{10} = 5.5$

Population mean (mu):

Sum of all values In the population

$$\mu = \frac{\sum_{N} x}{N}$$
The population size

Sample mean

Sum of all values In the sample

The sample size

Population variance:

$$\sigma^2 = \frac{\sum x^2 - \frac{\left(\sum x\right)^2}{N}}{N}$$

Population standard deviation is σ

Numerical Summary: Variability

Sample Variance

$$s^{2} = \frac{1}{n-1} \sum_{x} (x - \overline{x})^{2} = \frac{1}{n-1} S_{xx}; S_{xx} = \sum_{x} (x - \overline{x})^{2}$$

$$S_{xx} = \sum x^2 - n(\bar{x})^2 = \sum x^2 - \frac{1}{n} (\sum x)^2$$

$$s^{2} = \frac{\sum x^{2} - \frac{(\sum x)^{2}}{n}}{n-1}$$

Sample Standard Deviation: SD = s

Exercise 1: (Example 4.1)

Find the mean, variance and standard deviation for the following observations:

$$\overline{x} = \frac{\sum x}{\mathbf{n}} = \frac{55 + 68 + 90 + 42 + 89 + 70}{6} = \frac{414}{6} = 69$$

$$s^{2} = \frac{\sum x^{2} - \frac{(\sum x)^{2}}{n}}{n-1} = \frac{30334 - \frac{(414)^{2}}{6}}{5} = 353.6$$

$$s = 18.804$$

Exercise 3: (L1)

Seven oxide thickness measurements of wafers are studied to assess quality in a semiconductor manufacturing process. The data (in angstroms) are: 1264, 1280, 1301, 1300, 1292, 1307, and 1275. Calculate the sample average, variance and standard deviation.

CHAPTER 1 DESCRIPTIVE STATISTICS

L2 - Graphical display of Data

Learning Objectives:

At the end of the lesson, students should be able to:

Construct and interpret pictorial and tabular display of data

Pictorial & Tabular Methods

1. Stem-and-Leaf Displays:

How to construct a Stem-and-Leaf Display:

- 1. Each numerical data is divided into two parts:
 - The leading digit(s) becomes the stem,
 and the remaining digit(s) becomes the leaf
- 2. List the stem values in a vertical column.
- 3. Record the leaf for each observation beside its stem.
- 4. Write the units for stems and leaves on the display.

Stem & Leaf Display

Result of Math. Exam. of a 50-student class:

Stem-and-Leaf Display

35	42	56	41	63
26	37	66	92	16
49	28	56	64	72
59	17	45	56	29
30	45	39	37	43
76	73	64	51	60
40	52	57	65	83
68	52	84	91	64
45	76	56	90	73
34	26	57	41	56

```
67
             Stem: tens digit
             Leaf: ones digit
  6689
3
  045779
  011235559
  1226666779
  03444568
6
  23366
  3 4 6
```


2. Histogram:

A bar graph representing a frequency distribution of a quantitative variable. A histogram is made up of the following components. Histograms are used to summarize large data sets.

Age	Freq.	Rel. Freq.
18	20	0.20
19	24	0.24
20	26	0.26
21	18	0.18
22	5	0.05
23	3	0.03
24	2	0.02
25	2	0.02
Sum	100	1.00

Histogram: ages of 100 students

3. Box plot:

a graphical display that simultaneously describes several important features of a data set:

- center
- Spread
- departure from symmetry
- identification of outliers

a box plot displays the median, the first quartile and the third quartiles on a rectangular box, aligned either horizontally or vertically.

sometimes called box whiskers plot.

Numerical Summary: Sample Median

The median of a sample depends on whether the number of terms in the sample is even or odd.

- •If the number of terms is odd, then the median is the value of the term in the middle.
- •If the number of terms is even, then the median is the average of the two terms in the middle
- Arrange the observations $x_1, ..., x_n$ in increasing order: $x_{(1)} \le x_{(2)} \le ... \le x_{(n)}$

Use the following rule:

$$\widetilde{x} = \begin{cases} \frac{1}{2} \left(x_{(\frac{n}{2})} + x_{(\frac{n}{2}+1)} \right) & \text{if n is even} \\ x_{(\frac{n+1}{2})} & \text{if n is odd.} \end{cases}$$

Numerical Summary: Sample Median

Example 1: Find Median for the following observations:

0.3 7.8 4.6 3.7 9.2 12.1 -5 -2.5 10.8

Numerical Summary: Sample Median

Example 1: Find Median for the following observations:

0.3 7.8 4.6 3.7 9.2 12.1 -5 -2.5 10.8

Arrange the observations in increasing order: n = 9

- 5 -2.5 0.3 3.7 4.6 7.8 9.2 10.8 12.1

$$\widetilde{x} = \begin{cases} \frac{1}{2} \left(x_{(\frac{n}{2})} + x_{(\frac{n}{2}+1)} \right) & \text{if n is even} \\ x_{(\frac{n+1}{2})} & \text{if n is odd.} \end{cases}$$

> Example 2: Find Median for given observations :

2.8 5.2 -2.3 2.6 3.6 1.4 6.9 4.3 8.4 2.8

Example 2: Find Median for given observations:

2.8 5.2 -2.3 2.6 3.6 1.4 6.9 4.3 8.4 2.8

Rearrange the observations in increasing order:

- 2.3 1.4 2.6 2.8 2.8 3.6 4.3 5.2 6.9 8.4

Median =
$$(2.8 + 3.6)/2 = 3.2$$

$$\widetilde{x} = \begin{cases} \frac{1}{2} \left(x_{(\frac{n}{2})} + x_{(\frac{n}{2}+1)} \right) & \text{if n is even} \\ x_{(\frac{n+1}{2})} & \text{if n is odd.} \end{cases}$$

ANGE ;

LOWER QUARTILE, UPPER QUARTILE, INTERQUARTILE RANGE

Percentile:

Measure of central tendency that divide a group of data into 100 parts.

Nth percentile:

At least n% of the data lie between the nth percentile and at most (100-n)% of the data lie above the nth percentile

90 percentile:

At least 90% of the data lie between the 90th percentile and at most (10)% of the data lie above the 90th percentile

- LQ (Q₁) is 25 percentile
- Median (Q₂) is 50 percentile
- •UQ (Q₃) is 75 percentile

25 percentile = Q₁

At least 25% of the data lie between the 25th percentile and at most (75)% of the data lie above the 25th percentile

UNIVERSITI TEKNOLOGI PETRONAS

LOWER QUARTILE, UPPER QUARTILE, INTERQUARTILE RANGE

- **LQ** (Q₁) and UQ (Q₃) are defined as follows
- Step 1. Arrange the values in increasing order
- Step 2. Q_1 is the value in position 0.25(n+1) Q_3 is the value in position 0.75(n+1)
- Step 3. If the positions are not integers, Q₁ and Q₃ are found by *interpolation*, using adjacent values
- IQR = $Q_3 Q_1$

LOWER QUARTILE, UPPER QUARTILE, INTERQUARTILE RANGE

$$n = 11, \quad 0.25(n+1) = 0.25(12) = 3;$$

 $0.75(n+1) = 0.75(12) = 9$

$$Q_1 = X_{(3)} = 0.4,$$

$$Q_3 = X_{(9)} = 12.1,$$

and
$$IQR = 12.1 - 0.4 = 11.7$$

LOWER QUARTILE, UPPER QUARTILE, INTERQUARTILE RANGE

Example 2: (values are arranged in increasing order)

-5 -4 2 6 6.5 7.8 9.2 10.8 12.5 14.5 15 16.4

$$0.25(n+1) = 0.25(13) = 3.25;$$
 $0.75(n+1) = 0.75(13) = 9.75$

$$Q_1 = X_{(3)} + 0.25(X_{(4)} - X_{(3)}) = 2 + 0.25(6 - 2) = 2 + 0.25(4) = 3$$

$$Q_3 = X_{(9)} + 0.75(X_{(10)} - X_{(9)}) = 12.5 + 0.75(14.5 - 12.5) = 14$$

LOWER QUARTILE, UPPER QUARTILE, INTERQUARTILE RANGE

Example 3: (values are arranged in increasing order)

2 5 9 9.8 10.2 10.8 12.5 14 16.4 18.7

n=10,

$$0.25(n+1) = 0.25(11) = 2.75;$$
 $0.75(n+1) = 0.75(11) = 8.25$

$$Q_1 = X_{(2)} + 0.75(X_{(3)} - X_{(2)}) = 5 + 0.75(9 - 5) = 5 + 0.75(4) = 8$$

$$Q_3 = X_{(8)} + 0.25(X_{(9)} - X_{(8)}) = 14 + 0.25(16.4 - 14) = 14.6$$

Example 4:

The following "cold start ignition time" of an automobile engine obtained for a test vehicle are as follows:

- a) Calculate the sample median, the quartiles and the IQR
- b) Construct a box plot of the data.

Example 4:

The following "cold start ignition time" of an automobile engine obtained for a test vehicle are as follows:

- 1.92

- 2.62 2.35 3.09 3.15
- 2.53

- a) Calculate the sample median, the quartiles and the IQR
- b) Construct a box plot of the data.

Solution:

Rank the n = 8 measurements from smallest to largest

- 1.75 1.91 1.92 2.35 2.53 2.62 3.09

sample median: since n is even

$$\widetilde{x} = \frac{1}{2} (x_{(n/2)} + x_{(n/2 + 1)})$$

$$\Rightarrow \tilde{x} = \frac{1}{2}(x_{(4)} + x_{(5)}) = \frac{1}{2}(2.35 + 2.53) = 2.44$$

Solution:

Lower quartile: $Q_1 = x_{(0.25(n+1))} = x_{(0.25(8+1))} = x_{(2.25)}$

$$Q_1 = x_{(2)} + 0.25(x_3 - x_2) = 1.91 + 0.25(1.92 - 1.91) = 1.913$$

Upper quartile: $Q_3 = x_{(0.75(n+1))} = x_{(0.75(8+1))} = x_{(6.75)}$

$$Q_3 = x_{(6)} + 0.75(x_7 - x_6) = 2.62 + 0.75(3.09 - 2.62) = 2.973$$

IQR:

$$Q_3 - Q_1 = 2.973 - 1.913 = 1.06$$

b) Construct a box plot of the data.

