Relazione di laboratorio 1

Paolo Allione 296500 Claudio Camolese 297378 Alessandro Reniero 272888

Indice

1	Analisi teorica							
2	Alimentazione duale e consumo di corrente							
3	Diagramma di Bode sperimentale							
4	Frequenze di taglio sperimentali							
5	Limitazioni dell'OP-AMP reale 5.1 Limitazione di banda (prodotto banda-guadagno)							
	5.5 Massimo swing di fiscita	n						

1 Analisi teorica

Sono state calcolate le funzioni di trasferimento teoriche $\frac{V^+}{V_{in}}$ per le varie configurazioni degli interruttori:

• Per S3 e S4 aperti, S5 chiuso:

$$\frac{V^+}{V^{in}} = \frac{R_4}{R_3 + R_4 + \frac{1}{sC_5}} = \frac{100s}{147s + 100000} \tag{1}$$

• Per S3 aperto, S4 e S5 chiusi:

$$\frac{V^+}{V^{in}} = \frac{R_4}{R_3 + R_4} = \frac{10^4 \Omega}{0.47 * 10^4 \Omega + 10^4 \Omega} = 0,68$$
 (2)

• Per S4 aperto, S3 e S5 chiusi

$$\frac{V^+}{V^{in}} = \frac{R_4}{R_4 + \frac{1}{sC_5}} = \frac{s}{s + 1000} \tag{3}$$

• Per S3 e S4 chiusi, S5 aperto:

$$\frac{V^+}{V_{in}} = 1 \tag{4}$$

• Per S3, S4 e S5 aperti:

$$\frac{V^+}{V_{in}} = 1 \tag{5}$$

• Per S3 e S5 aperti, S4 chiuso:

$$\frac{V^+}{V_{in}} = 1 \tag{6}$$

• Per S3, S4, S5 chiusi:

$$\frac{V^+}{V_{in}} = 1\tag{7}$$

e le funzioni di trasferimento teoriche $\frac{V_{out}}{V^+}$

• Per S1 e S2 chiusi, S6 aperto:

$$\frac{V_{out}}{V^{+}} = \left(1 + \frac{R_1/\frac{1}{sC_3}}{R_2}\right) = \frac{R_1 + R_2(1 + sC_3R_1)}{R_2(1 + sC_3R_1)} \approx \frac{0,018s + 112000}{0,018s + 12000}$$
(8)

• Per S1, S2 e S6 aperti:

$$\frac{V_{out}}{V^{+}} = \left(1 + \frac{R_1}{R_2 + \frac{1}{sC_1}}\right) = \frac{28s + 2500}{3s + 2500} \tag{9}$$

• Per S1 chiuso, S2 e S6 aperti:

$$\frac{V_{out}}{V^{+}} = \left(1 + \frac{R_1/\frac{1}{sC_3}}{R_2 + \frac{1}{sC_4}}\right) = \dots \approx \frac{0.01s + (0.0012s + 1)(1.5 * 10^{-6}s + 1)}{(0.0012s + 1)(1.5 * 10^{-6}s + 1)}$$
(10)

• Per S1 aperto, S2 chiuso e S6 aperto:

$$\frac{V_{out}}{V^+} = (1 + \frac{R_1}{R_2}) = 9,33 \tag{11}$$

• Per S1, S2 e S6 chiusi:

$$\frac{V_{out}}{V^{+}} = 1 \tag{12}$$

• Per S1 e S2 aperti, S6 chiuso:

$$\frac{V_{out}}{V^{+}} = 1 \tag{13}$$

• Per S1 aperto, S2 e S6 chiusi:

$$\frac{V_{out}}{V^{+}} = 1 \tag{14}$$

• Per S1 chiuso, S2 aperto, S6 chiuso:

$$\frac{V_{out}}{V^{+}} = 1 \tag{15}$$

2 Alimentazione duale e consumo di corrente

Il secondo punto richiede di riportare i valori di tensione e quelli di corrente, impostando tutti gli interruttori come chiusi. Si riportano dunque i seguenti valori:

VAL_{+}	+12V
VAL_{-}	-12V
IAL_{+}	$2.96~\mathrm{mA}$
IAL_{+}	-2.96 mA

Tabella 1: Valori sperimentali tensione e corrente di alimentazione

Per il calcolo della potenza si procede quindi calcolando:

$$P_{AL+} = V_{AL+} \cdot I_{AL+} = 12V \cdot 0,00296A = 0,036W$$
(16)

$$P_{AL-} = V_{AL-} \cdot I_{AL-} = (-12)V \cdot (-0,00296)A = 0,036W \tag{17}$$

$$P_{tot} = P_{AL+} + P_{AL-} = 0,072W (18)$$

3 Diagramma di Bode sperimentale

In questa sezione si ha l'obiettivo di analizzare il circuito in frequenza. Quindi, si riportano i valori delle misurazioni effettuate a diverse frequenze.

f [Hz]	Vin,pp[V]	Vout,pp $[V]$	Guadagno G	Guadagno (db)	$\varepsilon_r G$	fase $\Delta \phi[$ ° $]$	$\varepsilon_r \Delta \phi$
5,00E+00	0,32	0,352	1,10	0,83	0,12	16,2	0,44
1,00E+01	0,392	0,4	1,02	0,18	0,10	18	2,00
5,00E+01	0,4	1	2,50	7,96	0,35	54	0,67
1,00E+02	0,42	1,62	3,86	11,73	0,06	54	1,33
5,00E+02	0,44	2,8	6,36	16,07	0,53	10,8	6,67
1,00E+03	0,44	2,88	6,55	16,32	0,52	1,8	20,00
5,00E+03	0,4	2,82	7,05	16,96	0,29	1,8	20,00
1,00E+04	0,4	2,88	7,20	17,15	0,28	9	4,00
5,00E+04	0,4	2,88	7,20	17,15	0,06	27	6,67
1,00E+05	0,4	2,78	6,95	16,84	0,06	0,18	2000,00
5,00E+05	0,4	1,5	3,75	11,48	0,06	0,9	2000,00
1,00E+06	0,32	0,74	2,31	7,28	0,09	1,8	2000,00

Tabella 2: Valori sperimentali con S4 chiuso

Si riportano di seguito anche i grafici di modulo e fase. Ripetiamo gli stessi dati con S4 aperto.

f [Hz]	Vin,pp [V]	Vout,pp [V]	Guadagno G	Guadagno (db)	$\varepsilon_r G$	fase $\Delta \phi$ [°]	$\varepsilon_r \ \Delta \phi$
5,00E+00	0,32	0,06	0,18	-15,14	0,42	10,8	0,67
1,00E+01	0,39	0,06	0,15	-16,30	0,38	75,6	0,48
5,00E+01	0,40	0,30	0,75	-2,50	0,58	108	0,33
1,00E+02	0,42	0,78	1,86	5,38	0,07	108	0,67
5,00E+02	0,44	2,64	6,00	15,56	0,53	32,4	2,22
1,00E+03	0,44	2,88	6,55	16,32	0,52	9	4,00
5,00E+03	0,40	2,82	7,05	16,96	0,29	1,8	20,00
1,00E+04	0,40	2,88	7,20	17,15	0,28	9	4,00
5,00E+04	0,40	2,80	7,00	16,90	0,06	27	6,67
1,00E+05	0,40	2,78	6,95	16,84	0,06	54	6,67
5,00E+05	0,40	1,50	3,75	11,48	0,06	0,9	2000,00
1,00E+06	0,32	0,74	2,31	7,28	0,09	1,8	2000,00

Tabella 3: Valori sperimentali con S4 aperto

Per avere un rapido confronto, si riportano anche i diagrammi di modulo e fase ideali.

Figura 1: Grafici modulo e fase sperimentali con S4 chiuso

Figura 2: Grafici modulo e fase sperimentali con S4 aperto

Figura 3: Grafici modulo e fase ideali con S4 aperto a sinistra e chiuso a destra

Si riportano anche, nella pagina seguente, i grafici che permettono un confronto tra i dati sperimentali e quelli ideali circa il guadagno calcolati tramite la funzione trasferimento.

Figura 4: Confronto guadagno teorico-sperimentale

Infine, dopo aver riportato la frequenza a 50 kHz abbiamo misurato il guadagno in DC portando il valor medio dell'ingresso a 50mV e misurando il valore medio dell'uscita, ottenendo un risultato pari a 7.

4 Frequenze di taglio sperimentali

Sono state analizzate sperimentalmente le frequenze di taglio, note come le frequenze alle quali il guadagno è inferiore di 3 dB rispetto al guadagno in banda:

- S4 chiuso
 - $-f_1 = 131 \text{ Hz con } 14.9 \text{ dB}$
 - $-f_2 = 395 \text{ kHz con } 14,6 \text{ dB}$
- S4 aperto
 - $-f_1 = 227 \text{ Hz con } 14,17 \text{ dB}$
 - $-f_2 = 391 \text{ kHz con } 14,10 \text{ dB}$

5 Limitazioni dell'OP-AMP reale

In questa sezione sono state analizzate più in dettaglio le caratteristiche dell'OP-AMP reale.

5.1 Limitazione di banda (prodotto banda-guadagno)

Trattandosi di un amplificatore non invertente sono stati svolti i seguenti calcoli:

$$A_v = \frac{1}{\beta} = 1 + \frac{R_f}{R_4} = 1 + \frac{100 \text{ k}\Omega}{10 \text{ k}\Omega} = 11$$
 (19)

GBWP =
$$A_v \cdot f|_{-3dB} = 11 \cdot 391 \text{kHz} = 4,3 \text{ MHz} \text{ (datasheet valore tipico 4 MHz)}$$
 (20)

5.2 Limitazione di slew-rate

Abbiamo iniziato a notare una minima distorsione al valore di ampiezza di ingresso di 3,5 V per poi percepirla nettamente a 4,2 V.

Il valore atteso era di 3,76 V, che riteniamo ragionevole in quanto la verifica diretta (ad occhio) non offre garanzie di precisione assoluta.

5.3 Massimo swing di uscita

Tensioni misurate:

- $V_{max} = 11,4 \text{ V}$
- $V_{min} = -10.2 \text{ V}$

Di conseguenza, l'amplificatore non è rail-to-rail.