Titolo

Mattia Puddu mattiapuddu@icloud.com

21 ottobre 2023

Abstract

Introduzione

1 Expansion

1.1 from time to scale factor

We have two kinds of "time" in cosmology since our Universe are expanding. If we focus on the coordinate, the metric is written as

$$ds^2 = dt^2 + a(t) (dx^2 + dy^2 + dz^2)$$

By scaling the time axis, we can get the conformal time, which is equalized to the space coordinates

$$ds^{2} = a(t) \left(d\tau^{2} + dx^{2} + dy^{2} + dz^{2} \right)$$

The scale factor can be solved from the Friedmann equation,

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho$$

with the model of energy-momentum contained in the Universe

$$\frac{\rho(t)}{\rho_{\rm cr}} = \sum_{s=\gamma, m, \nu, \rm DE} \Omega_s a(t)^{-3(1+w_s)}$$

This model assumes a constant

$$= \Omega_R \left(\frac{a}{a_0}\right)^{-4} + \Omega_M \left(\frac{a}{a_0}\right)^{-3} + \Omega_\Lambda + \Omega_K \left(\frac{a}{a_0}\right)^{-2}$$

where the second line is for Λ CDM model.

In Λ CDM model, just solve the differencial equation

$$\dot{a} = H_0 \sqrt{\Omega_R \left(\frac{a}{a_0}\right)^{-2} + \Omega_M \left(\frac{a}{a_0}\right)^{-1} + \Omega_\Lambda \left(\frac{a}{a_0}\right)^2 + \Omega_K}$$

It's not linear, so need numerical solution.

But it's OK to see some exceptions.

Propositions 1.1

matter donimated:

$$\dot{a} = H_0 \left(a_0 \Omega_M \right)^{\frac{1}{2}} a^{-\frac{1}{2}}$$

Friedmann equation itself has assumptions about the energy-momentum, it's ideal fluid which can be parameterized by only ρ and P..

also deriveing the Friedmann equations from Einstein field equation is not that trival, see another block in preparation..

then
$$t=\frac{2}{3H_{0}\left(a_{0}\Omega_{M}\right)^{\frac{1}{2}}}a^{\frac{3}{2}}$$
 assumed $a\left(t=0\right)=0.$

MTEX

mathbb command is used to convert upper case and lowercase letters to blackboard-bold in terms of shape, as $\mathbb{AC}.$