Matte

Jakob Tigerström/Eric Johansson

September 23, 2015

Contents

1	TODO	4
2	Föreläsning 1	4
	2.1 Värdesiffror	4
	2.2 Addition och Subtraktion	4
	2.3 Uppskatta storleksordning	4
3	Föreläsning 2	5
	3.1 Uppgifter	5
	3.1.1 EX1	5
	3.1.2 EX2	5
	3.1.3 EX3	5
	3.1.4 EX4	5
4	Föreläsning 3	7
_	4.1 Vektorer	7
5	Föreläsning 4	7
_	5.1 Grundläggande algebra och prioriteringsregler	7
	5.2 Uppgifter	7
	5.2.1 EX1	7
	5.2.2 EX2	7
	5.2.3 EX3	8
		8
	5.3 Bråkräkning	0
6	Föreläsning 5 - uppställning och förenkling	8
	6.1 Uppgifter	8
	6.1.1 EX1	8
	6.1.2 EX2	8
	6.1.3 EX3	9
	6.1.4 EX4	9
	6.1.5 EX5	9

7	Före	äsning 7	9
	7.1	Polynom	9
	7.2	·	9
	7.3	1 1	9
	•••		9
			0.
	7.4	0 0	.0
	1.4	110	.0
			.0
			.0
			.0
			.0
			-
			0.
			0
			0
		$7.4.9 \text{EX9} \dots \dots 1$	0
8	Före	äsning 11 1	0
0	8.1	-	0
	8.2		1
	0.2		1
		~	1
		9	1
	8.3		1
	0.0		1
			2
			2
			2
			2
			2
			3
		5.0.1 12.11	.0
9		6	3
	9.1	110	.3
			.3
			.3
			.3
		9.1.4 EX4	4
			4
		9.1.6 EX6	4
10	т	" ' . 10	_
10		8	5
	10.1	O .	5
		8	5
		0 0	5
		8	6
	10.0		6
	10.2	110	6
			6
		10.2.2 EX2	6

11		eläsnin																	17
	11.1	Uppgi	fter .																17
		11.1.1																	
		11.1.2																	
		11.1.3																	
		11.1.4																	
		11.1.5																	
		11.1.6																	
12	Före	eläsnin	ıg 15																18
		Uppgi																	19
		12.1.1																	
13	Före	eläsnin	ıg 16																19
		Paralle	_	ie:	r.														19
		Uppgi																	
	_	13.2.1																	
		13.2.2																	
		13.2.3																	
		13 2 4																	

1 TODO

- 1. Skriv fler föreläsningar
- 2. Kolla stavning
- 3. Fixa warnings
- 4. Skriv in föreläsnings ämne i section
- 5. Överstryckning
- 6. Gör om bilder i geogebra eller liknande.

2 Föreläsning 1

2.1 Värdesiffror

Ex1: Hur många vädresiffror har talen

- 1. 251 3 st
- 2. 0,251 3 st
- 3. 0,001 1 st
- 4. 250 2 eller 3 st
 - $2,5*10^2$ 2 st
 - $2,50*10^2$ 3 st
- 5. 2500 2,3 eller 4 st $2,5*10^3$
 - $2,50*10^3$
 - $2,500*10^3$
- 6. 250,0 4 st

Multiplikation och division: Svara med lika många värdesiffror som det värde som har minst värdesiffror.

$$5,22 *3.1 = 16,182 = 16.$$

2.2 Addition och Subtraktion

Minst antal decimaler avgör.

$$23,52+12,4=35,92\approx 35,9$$

$$23,56+12,4=35,96\approx 36,0$$

2.3 Uppskatta storleksordning

 $\tfrac{2,8*10^5}{3,2*10^3}$

Storleksordningen på svaret är 10^2

Omskrivning av formler Densitet: $\rho = m/v$

3.1 Uppgifter

$\mathbf{EX1}$ 3.1.1

Beräkna densiteten för en sten som har volymen $12cm^3$ och väger 36g. $\rho = \frac{m}{v} = \frac{36}{12} = 3,0g/cm^3$

3.1.2 EX2

Beräkna volymen av ett okänt föremål med densiteten $0.8g/cm^3$ och väger 24g.

$$\rho = \frac{m}{v}$$

$$\rho * V \frac{m}{V} * V$$

$$\frac{\rho * V}{V} = m$$

$$V = \frac{m}{\rho}$$

$$V = m/\rho = 24/0, 8 = 30 cm3$$

$$V = m/\rho = 24/0, 8 = 30cm3$$

Hooke lag

$$F = k * \Delta l$$

F - kraft

k - fjäderkonstant

 Δl - fjäderns förlägning

3.1.3 EX3

Bestäm konstanten för en fjäder som sträcks ut 18cm när den belastas med kraften 37N.

$$F = k * \Delta l$$

$$\frac{F}{\Delta l} = k$$

$$\frac{F}{\Delta I} = k$$

$$\stackrel{\Delta l}{k} = \frac{F}{\Delta l} = \frac{37}{0.18} = 205, 55... \approx 2, 1 * 10^2 N/m$$

Formel för rörelse energi: $w = \frac{mv^2}{2}$

w - energi(J)

m - massa(kg)

h - höjd(m)

g - gravitationskonstant. 9,52
m/s2 $\,$

v - hastighet(m/s)

3.1.4 EX4

Beräkna rörelseenergin för en bil som väger 1200kg och kör 90km/h $w = \frac{mv^2}{2} = \frac{1200*25^2}{2} = 375000 \approx 4*10^5 J = 400kJ = 0,4mJ$

$$\begin{array}{l} 90km = 90000m \\ 1h = 3600s \\ \frac{90000}{3600} = \frac{90}{3,6} = 25m/s \end{array}$$

4.1 Vektorer

Storhet som har både storlek och riktning.

Storheter där riktningen ej är relevant kallas skalärer.

Att skriva vektorer:

F, (f)

Att rita vektorer:

Pilens riktning är vektorens riktning.

Pilens längd är vektorens storlek.

Att addera två vektorer:

Parallellogrammetoden.

Polygonmetoden

Att multiplicera/dividera en vektor med en skalär(ett tal):

Multiplicera vektorn v(med tak) med talet k, k > 0.

Sammar riktning ,storleken påverkas av k, k < 0.

Motsatta riktningen storleken påverkas av k.

Komposanter(att dela upp en vektor) (x1; y1) + (x2; y2) = (x1 + x2; y1 + y2)

5 Föreläsning 4

5.1 Grundläggande algebra och prioriteringsregler

När vi beräknar värdet av ett uttryck måste vi ta hänsyn tilll prioriterings reglerna.

- 1. Paranteser
- 2. Potenser
- 3. Multiplikation och division
- 4. Addition och division

5.2 Uppgifter

5.2.1 EX1

$$\underbrace{20/4}_{3} \underbrace{+8 - 6 * 2}_{4} = \underbrace{5 + 8}_{3} \underbrace{-12}_{3} = 1$$

5.2.2 EX2

$$\underbrace{2*}_{3}\underbrace{5^{3}}_{2} = \underbrace{2*125}_{3} = 250$$

5.2.3 EX3

$$\underbrace{(8+5)}_{1}\underbrace{\overset{2}{\underset{2}{\underbrace{(16+14)}}}}\underbrace{(16+14)}_{1}=\underbrace{13^{2}}_{2}\underbrace{*30}_{3}=\underbrace{169*30}_{3}=5070$$
 Addition $term+term=summa$

Subtraktion term - term = differens

Multiplikation faktor * faktor = produkt

Divistion $\frac{t\ddot{a}ljare}{n\ddot{a}mnare} = kvot$

Bråkräkning

Multiplikation $\frac{3}{5} * \frac{8}{7} = \frac{24}{35}$ Täljare multipliceras till en täljare.

nämnare multipliceras till en nämnare.

Addition och subtraktion.

$$\frac{1}{3} + \frac{1}{8} = \frac{8*1}{8*3} + \frac{1*3}{8*3} = \frac{8}{24} + \frac{3}{24} = \frac{11}{24}$$

Föreläsning 5 - uppställning och förenkling 6

Uppgifter

6.1.1 EX1

Emil hyr en bil. Dygnsavgiften är 250kr och milkostnaden är 8kr/mil.

A) Hur mycket kostar det ifall Emil hyr bilen i ett dygn och kör 12 mil.

$$\underbrace{250}_{\text{Dygnsavg.}} + \underbrace{8*12}_{\text{mil kost.}} = 250 + 96 = 346kr$$
 Svar: Det kostar honom 346kr

B) Hur mycket ska Emil betala om han hyr bilen i k dygn och kör x mil?

$$\underbrace{250k}_{\text{Dyngsavg.}} + \underbrace{8k}_{\text{mil kost.}} < \text{- Algebraiskt uttryck}$$

6.1.2 EX2

Annika lånar 15000kr för att köpa bil. Hon får betala 3% i ränta.

A) Hur stor är hennes skuld efter 5år om hon ej har betalt tillbaka något.

8

$$\underbrace{15000}_{\text{Lån}} + \underbrace{1,03^5}_{\text{F\"{o}r\"{a}ndringsfaktor}} \approx 17389kr$$

 $^{5}=antal\mathring{\mathbf{a}}r$

Svar: Hon är skylldig ca 17389kr och är fast i lyxfällan

B) Hur stor är skulden efter x år?

$$\underbrace{15000}_{\text{Lån}} + \underbrace{1,03^x}_{\text{Förändringsfaktor}}$$

6.1.3 EX3

Förenkla: 4x + 3x + 6 - 2.

$$\underbrace{4x + 3x}_{\text{Addera}} + \underbrace{6 - 2}_{\text{subtrahera}} = 7x + 4$$

6.1.4 EX4

Förenkla: $\frac{5}{4}a - \frac{a}{2}$.

$$\underbrace{\frac{5}{4}a - \underbrace{\frac{1}{2}a}_{\frac{a}{2}} = \frac{5}{4}a - \underbrace{\frac{1*2}{2*2}a}_{\text{Multiplicera}} = \frac{5}{4}a - \frac{2}{4}a = \frac{3}{4}a}_{\text{Multiplicera}}$$

6.1.5 EX5

Förenkla: a(a+b) - b(a-7b).

$$\underbrace{a(a+b)}_{a^2+ab} \underbrace{-}_{ab-7b^2} \underbrace{b(a+7b)}_{ab-7b^2} = a^2+ab-ab-7b^2 = a^2-7b^2$$

7 Föreläsning 7

7.1 Polynom

Ett polynom är en summa av termer där variablernas exponenter är possitiva heltal. Koeffcient

 $\underbrace{x^3 + \underbrace{2}_{\text{Variabel term}} x} - \underbrace{4}_{\text{Konstant term}}$

7.2 Multiplicera polynom

$$(a+b)(c+d) = ac + ad + bc + bd$$

 $(a+b+)(c+d+e) = ac + ad + ae + bc + bd + be$

7.3 Regler

7.3.1 Konjugat regeln

$$\underbrace{(x+2)(x-2)}_{\text{Konjugat regeln}} = x^2 - 2x + 2x - 4 = x^2 - 4$$

7.3.2 Kvadrerings regelerna

$$\underbrace{(a+b)^2 = (a+b)(a+b)}_{\text{Kvadrerings regel}} = a^2 + ab + ab + b^2 = a^2 + 2ab + b^2$$

$$\underbrace{(a-b)^2 = (a-b)(a-b)}_{\text{Kvadrerings regel}} = a^2 - ab - ab + b^2 = a^2 - 2ab + b^2$$

$$\underbrace{(a-b)^2 = (a-b)(a-b)}_{\text{Kvadrerings regel}} = a^2 - ab - ab + b^2 = a^2 - 2ab + b^2$$

7.4 Uppgifter

7.4.1 EX1

$$(a+5)(a-5) = a^2 - 5a + 5a - 25 = a^2 - 25$$

7.4.2 EX2

$$(a+3)^2 = (a+3)(a+3) = a^2 + 6a + 4$$

7.4.3 EX3

$$(3x+4y)^2 = 9x^2 + 2*3x*4y + 16y^2 = 9x^2 + 24xy + 16y^2$$

7.4.4 EX4

Faktorisera: $2xy^2 + x^2y = xy(2y + x)$

7.4.5 EX5

Faktorisera: $x^2 - 16 = (x+4)(x-4)$

7.4.6 EX6

Faktorisera: $x^2 + 6x + 9 = (x + 3)^2$

7.4.7 EX7

Faktorisera: $2x^2 + 10x + 50 = 2(x^2 + 5x + 25)$

7.4.8 EX8

Faktorisera: $5^x + 5^{x+1} = 5^x + 5^x * 5 = 5^x (1 + 5 = 6 * 5^x)$

7.4.9 EX9

Faktorisera: $a^{2x+2} - a^{2x} = a^{2x}a^2 - a^{2x} = a^{2x}(a^2 - 1) = a^{2x}(a+1)(a-1)$

8 Föreläsning 11

8.1 Logaritmer och logaritmlagar

"Logaritmen av 2000 är det tal vi måste upphöja 10 med för att få 2000".

Definition: Om
$$\underbrace{10^x = y}_{\text{potensform}}$$
 så är $\underbrace{x = \log y}_{\text{logaritmform}}$

Hur löser vi 10^x =1000? Detta är lätt att lösa, antingen vet man att x=3 eller så testar man olika värden på x tills man kommer till något i närheten. Man kan även använda en grafritande räknare och kolla vart x skär 1000 Hur löser vi 10^x =2000? Detta är ett mycket svårare tal att lösa och görs lättast genom att använda logaritm, men man kan även använda en grafritande räknare.

$$\underbrace{\frac{10^x = 2000}_{\text{potensform}}}_{\text{potensform}} > \underbrace{\frac{x = \log 2000}_{\text{logaritmform}}}_{\text{logaritmform}}$$
 Svaret blir: $x \approx 3,301$

8.2 Logaritmlagarna

 $a = 10^{\log a}$

Vi härleder logaritmlagarna med hjälp av potenslagarna

8.2.1 1:a lagen

$$\begin{array}{l} {\rm AB} = 10^{\log A}*10^{\log B} = 10^{\log A + \log B} \\ {\rm AB} = 10^{\log AB} \\ {\rm Lagen~s\"{a}ger~att~"log}\,AB = \log A + \log B" \end{array}$$

8.2.2 2:a lagen

$$\frac{A}{B}=10^{\log A}/10^{\log B}=10^{(\log A-\log B)}$$

$$\frac{A}{B}=10^{\log A/B}$$
 Lagen säger att "log $A/B=\log A-\log B$ "

8.2.3 3:e lagen

$$\begin{array}{l} A^k = \underbrace{A*A*A..*A}_{\text{k st}} = \underbrace{10^{\log A}*10^{\log A}*10^{\log A}..10^{\log A}}_{\text{k st}} = \\ = (10^{\log A})^k = 10^{k*\log A} \end{array}$$

Lagen säger att " $\log(A^k) = k * \log A$ "

8.3 Logoritm exempel

8.3.1 EX1

Lös ekvationen $10^x = 67$

$$\underbrace{10^x = 67}_{\text{potensform}} -> \underbrace{x = \log 67}_{\text{logaritmform}}$$
Svaret blir: $x \approx 1, 8$

8.3.2 EX2 - KONTROLLERA

Skriv talet 7 (exakt) som en potens med 10 som bas.

Svar: $7 = 10^{\log 7}$

8.3.3 EX3

Lös ekvationen $2 * \log x = 12$

$$2 * \log x = \underbrace{\frac{2 * \log x}{2}}_{\text{Dividera med 2}} = \underbrace{\frac{12}{2}}_{\text{Dividera med 2}} = \log x = 6$$

 $\log x = 6$ $x = 10^6$

Svar: $x = 10^6$

8.3.4 EX4 - FIXA

Lös exakt $3^x = 8$

Alt1.

Alt2.

Svar: x = 1, 9

8.3.5 EX5

Lös: $\log x = \log 5 + \log 12$ Lösning med 1:a lagen.

$$\log x = \log 5 + \log 12$$

$$\log x = \underbrace{\log 5 * 12}_{\text{G\"{o}r om } \log 12 \text{ till } 12}$$

$$\underbrace{\log x}_{\text{Ta bort log}} = \underbrace{\log 60}_{\text{Ta bort log}}$$

x = 60

Svar: x = 60

8.3.6 EX6 - KONTROLLERA SVAR

Lös: $\log x = 2 * \log 3$ Lösning med 3:e lagen.

$$\log x = 2 * \log 3$$
$$\log x = \log 3^2$$

 $x = 3^{2}$

Svar: x = 60

8.3.7 EX7

Lös: $\log x^2 = 8$ Lösning med 3:e lagen.

 $2 * \log x = 8$

$$\underbrace{\frac{2*\log x}{2}}_{2} = \underbrace{\frac{8}{2}}_{2}$$

Dividera med 2 Dividera med 2

 $\log x = 4$

Svar: x = 4

Föreläsning 12 9

9.1Uppgifter

9.1.1 EX1

$$lgx = 2lg3 + 4lg2$$

$$lgx = lg(3^2) + lg(2^4)$$

$$lgx = lg9 + lg16$$

$$lgx = lg(9*16)$$

$$x = 144$$

9.1.2 EX2

Lös ekvationen:

$$2*3^x = 4^x$$

$$lg(2*3^x) = lg(4^x)$$

$$lg2 + lg(3^x) = xlg4$$

$$lg2 + xlg3 = xlg4$$

$$lg2 = xlg4 - xlg3$$

$$lg2 = x(lg4 - lg3)$$
$$lg2 = x(lg4 - lg3)$$
$$x = \frac{lg2}{lg4 - lg3}$$

$$x = \frac{lg2}{lg2}$$

9.1.3 EX3 KONTOLLERA

Antag att vi vet att $10^{0.6} \approx 4$

Vad är då lg 400?

$$10^{0.6} \approx 4$$

$$10^{0.6} \approx 4$$

$$10^{0.6} * 10^{2} \approx 400$$

$$10^{2,6}\approx 400$$

9.1.4 EX4

Lös ekvationen:

```
\begin{split} &lg(x+4) + lg(x+2) = lg(x-1) + lg(x-10) \\ &lg((x+4)(x+2)) = lg((x-1)(x-10)) \\ &(x+4)(x+2) = (x-1)(x-10) \\ &x^2 + 2x + 4x + 8 = x^2 - 10x - x + 10 \\ &x^2 + 6x + 8 = x^2 - 11x + 10 \\ &6x + 8 = -11x + 10 \\ &17x = 2 \\ &x = \frac{2}{17} \\ &lg(x-1) \text{ och } lg(x-10) \text{ ej det, n\"ar } x = \frac{2}{17} \text{ uppgiften saknar l\"osningar.} \end{split}
```

9.1.5 EX5

Jordens folkmängd var år 2008 6,68 miljarder. Tillväxten var då 1,2% per år.

1. Ställ upp en formel som ger jordens folkmängd om vi antar att den årliga procentuella ökningen ej ändras.

$$y = 6,68 * 10^9 * 1,012^x$$

x är anta år efter 2008. y är folkmängden x antal år efter 2008

2. När är folkmängden 9 miljarder enligt denna modell?

$$\begin{array}{l} 9*10^9 = 6,68*10^9*1,012^x \\ 9*10^9 = 6,68*10^9*1,012^x \\ \frac{9}{6,68} = 1,012^x \\ lg(\frac{9}{6,68}) = lg1,012^x \\ lg(\frac{9}{6,68} = xlg1,012 \\ x = \frac{lg(9/6,68)}{lg1,012} = 24,99 \end{array}$$

Svar: År 2033 är folkmängden på jorden 9 miljarder.

9.1.6 EX6

I en kärnreaktor bildas bland annat plutonium-239 med en halveringstid på 24000 år.

1. Ställ upp och berätta hur mycket av 400 mg plutonium-239 finns kvar efter 100000 år.

$$400 * 0,5^{x/24000}$$

x är antalet år efter sönderfallets början.
y är mängden plutonium-239 efter x är $y=400*0,5^{x/24000}$

$$y(100000) = 400*0, 5^{100000/24000} \approx 22mg$$
 Svar: Det är 22 mg plutonium-239 kvar efter 100000 år.

2. Hur länge måste man vänta om man vill att mängden plutonium ska gå ner till 1 promille av den ursprungliga mängden?

$$y = A * 0,5^{x/24000}$$

A är den ursprungliga mängden och x är antalet år sedan sönderfallets början, y är återstående mängd plutonium-239 vid tiden x år.

$$\frac{A}{1000} = A * 0,5^{x/24000}$$
$$lg(\frac{1}{1000}) = lg(0,5^{x/24000})$$

$$\begin{array}{l} lg(\frac{1}{1000}) = \frac{x}{24000} lg0,5\\ 24000 lg(1/1000) = x lg0,5\\ x = \frac{24000 lg(1/1000)}{lg0,5} = 240000 \mathring{a}r\\ \text{Svar: Det tar } 240000\ \mathring{a}r \text{ innan mängden minskat till en promille.} \end{array}$$

10.1 Likformighet

Alla kvadrater är likformiga

Dessa rektanglar är likformiga eftersom förhållandet mellan motsvarande sidor är lika.

Definition likformighet

Motsvarande vinklar är lika stora och förhållandet mellan motsvarande sidor är lika.

10.1.2 Likformiga trianglar

Man behöver känna till två vinklar i varje triangel för att kunna jämföra dem

och se om de är likformiga.

10.1.3 Likbelägnavinklar

Likbelägna vinklar är lika stora.

10.1.4 Transversalsatsen

$$\frac{b}{a} = \frac{d}{c} \ \frac{a}{b} = \frac{c}{d}$$

Uppgifter 10.2

10.2.1 $\mathbf{EX1}$

Trianglarna är likformiga. Beräkna x och y $\frac{19,0}{12,0} = \frac{24,0}{y} = \frac{32,0}{x}$ $y = \frac{19,0}{12,0} = 24,0$ $y = \frac{24,0*12,0}{19,0} \approx 15,2cm$ $\frac{19,0}{12,0} = \frac{32,0}{x}$ $x = \frac{32,0*12,0}{19,0} \approx 20,2cm$

$$y = \frac{12,0}{19,0} = 24,0$$

 $y = \frac{24,0*12,0}{19,0} \approx 15,2cn$

$$g = {}^{19,0}_{19,0} \sim 10,$$
 $\frac{19,0}{19,0} = \frac{32,0}{19,0}$

$$x = \frac{32,0*12,0}{19,0} \approx 20,2cm$$

10.2.2 EX2

DE är paralell med AB. Bestäm y(sträckan CE) $\frac{3,0}{5,0}=\frac{y}{6,0}$ $y=\frac{3,0*6,0}{5,0}=3,6cm$ Svar: y=3,6cm

$$y = \frac{3,0*6,0}{5,0} = 3,6cm$$

 $\begin{array}{l} \frac{a}{b} = \frac{x}{y} \\ \frac{a}{b} = \frac{motståendekatet}{n\"{a}rliggandekatet} = \tan v(\text{uttalas "tangens" v}) \\ \text{R\"{a}knaren måste vara inställd på "degree" i mode.} \end{array}$

Uppgifter 11.1

11.1.1 EX1

 $\begin{array}{l} \frac{motståendekatet}{n\ddot{a}rliggandekatet} = \tan v \\ motståendekatet = \tan v * n\ddot{a}rliggandekatet \end{array}$ $x = 15, 0 * \tan 38^{\circ}$ $x \approx 12$

Svar: Sidan x är 12cm.

11.1.2 EX2

Bestäm y $\tan 28^{\circ} = \frac{z}{18}$ $\tan 36^{\circ} = \frac{y+z}{18}$ $y + x018 \tan 36^{\circ}$ $y = 18 \tan 36^{\circ} - z = 18 \tan 36^{\circ} - 18 \tan 28^{\circ} \approx 3, 5$

Svar: Sidan y är $3,5~\mathrm{cm}$.

11.1.3 EX3

Skriv in från mobil bild.

11.1.4 EX4

Skriv in från mobil bild.

11.1.5 EX5

$$\begin{array}{l} \sin 45^{\circ} = \frac{a}{26} \\ a = 26 * \sin 45^{\circ} \\ \sin 35^{\circ} = \frac{a}{x} \\ x = \frac{a}{\sin 35^{\circ}} = \frac{26 \sin 45^{\circ}}{\sin 35^{\circ}} \approx 32 cm \\ \mathrm{Svar\ Sidan\ x\ \ddot{a}r\ 32 cm} \end{array}$$

11.1.6 EX6

Bestäm $\sin u, \sin v, \cos u, \cos v$. Ser vi något samband? $\sin u = \frac{12}{3}$

$$\sin u = \frac{27}{\sqrt{585}}$$

$$\sin v = \frac{\sqrt{585}}{27}$$

$$\cos u = \frac{\sqrt{585}}{27}$$

$$\cos v = \frac{12}{27}$$

$$v + u = 90^{\circ}$$

$$v = 90^{\circ} - u$$

$$\sin u = \cos v = \cos(90^{\circ} - u)$$

$$\sin v = \cos u = \cos(90^{\circ} - v)$$

12 Föreläsning 15

Medelvärde: Addera alla värden och dividera med antalet värden. Medianvärde: Storleksordna alla värden, välj det mittersta värdet. Typvärde: Det värde som förekommer flest gånger.

12.1 Uppgifter

12.1.1 EX1

1. Dygnets maxtemperatur under en sommarvecka var 24, 28, 27, 24, 25, 30, 24

Bestäm medelvärde , median och typvärde. Medelvärde: $\frac{24+28+27+24+25+30+24}{7} = \frac{182}{7} = 26$

Median: 24,24,24,(25),27,28,30 median = 25

Typvärde: Förekommer 3 gånger.

13 Föreläsning 16

Räta linjens ekvation och grafisklösning av ekvationssystem.

En rät linje kan skrivas på formen k=kx+m x,y är koordinater. k,m är konstanter

13.1 Parallella linjer

Två linjer är parallella om de har samma k-värde.

Två linjer är parallella om $k_1 * k_2 = -1$

bild på parallell linje>

 $y = k_1 x + m_1$

 $y = k_2 x + m_2$

13.2 Uppgifter

13.2.1 EX1

Rita ett koordinatsystem och bestäm k och m värde.

m = vart den räta linjen skär y-axeln vid x: 0

k = antal y per x steg framåt.

Vad händer med linjens utseende när vi följer olika värden på k och m?

$$y = 2x + 3$$

$$y = x + 3$$
 Possitiv lutning. $k > 0$

$$y = -2x + 3$$

$$y = -x + 3$$
Negativ lutning. k < 0

Det som är genemsamt för dessa är att samtliga linjer skär genom y=3.

Att beräkna k:

Vi behöver 2 st koordinater att utgå ifrån. x_1, x_2 och y_1, y_2 . Formeln för att ränka ut detta är;

$$\Delta x = x_2 - x_2 = 8$$

$$\Delta y = y_2 - y_1 = 4$$

$$k = \frac{\Delta y}{\Delta x} = \frac{8}{4} = 2$$
Svar: k = 2

$$k = \frac{\Delta y}{\Delta x} = \frac{8}{4} = 2$$

Svar:
$$\mathbf{k} = 2$$

13.2.2 EX2

Bestäm ekvationen för den räta linje som går genom punkterna (2,8) och

$$(4,14).$$

$$k = \frac{\Delta y}{\Delta x} = \frac{14-8}{4-2} = \frac{6}{2} = 3$$

$$y = 3x + m$$

$$8 = 3*2 + m$$

$$8 = 6 + m$$

$$8-6 = m$$

$$m = 2$$

Svar: Linjens ekvation är y=3x+2

13.2.3 EX3

Bestäm ekvationen som går genom punkten (3,5) och har k-värdet 4.

Rätalinjens ekvation i enpunktsform

$$y - y_1 = k(x - x_1)$$

$$=> y - 5 = 4(x - 3)$$

$$=> y - 5 = 4x - 12$$

$$=> y = 4x - 7$$
 Svar: y = 4x-7

13.2.4 EX4

Ange k-värde för en linje som är vinkelrät mot linjen y=2x+7, vi söker

k-värdet sådant att
$$2 * 2 = -1 > k = -\frac{1}{2}$$

Svar:
$$y = -\frac{1}{2} + 3$$