Meta-Learning Framework for Schema Matching

Elizabeth Witten

CS 7290

Background on Schema Matching

Schema Matching

Motivation

- Goal: Find relevant datasets among numerous data sources
- Data lakes store a lot of heterogeneous data
- Relevant data sources are unlinked
- Data integration and dataset discovery are essential for data science tasks
 - Searching for joinable tables
 - Augmenting given table with more data entries or attributes

Schema Matching

Problem Definition

- Find matching pairs of columns between a source and target schema
- Capture relationships between elements of different schemas
- Schema- and Instance-based matchers

Valentine

Valentine: Evaluating Matching Techniques for Dataset Discovery

- Experiment suite to execute automated matching experiments
- Motivated by an abundance of matching methods and lack of comparison
- Implements seminal schema matching methods
- Provides evaluation datasets

Overview of Schema-Based Matchers

Cupid			Similarity Flooding		COMA
•	Schemas translated into tree structures	•	Schemas translated into directed graphs	•	Schemas translated into directed graphs
•	Weighted score of name similarity and structural similarity	 Merged into a propagation graphs where similar nodes are collapsed into map pairs 		•	Incorporates multiple schema-based matchers
					* Extension includes two instance-based matchers
					Supports human feedback
"C	J. Madhavan, P. A. Bernstein, and E. Rahm, "Generic schema matching with cupid," in VLDB, 2001.		Melnik, H. Garcia-Molina, and E. Rahm, imilarity flooding: A versatile graph atching algorithm and its application to hema matching," in IEEE ICDE, 2002.	HH. Do and E. Rahm, "COMA: a syste for flexible combination of schema matching approaches," in VLDB, 2002.	
			6 , - , -	m	Engmann and S. Massmann, "Instance atching with COMA++." in BTW orkshops, vol. 7, 2007, pp. 28–37.

Overview of Hybrid Matchers

	EmbDI	SemProp				
•	Method for embedding values and attribute names of relations	•	Uses an ontology and pre-trained word embeddings			
•	Uses external knowledge such as synonym dictionaries Finds relationships by comparing two column embeddings	•	 Two stages: Semantic matcher: follows links from attribute and table names to ontology classes based on word embeddings Syntactic matcher: looks at instance values 			
eı	R. Cappuzzo, P. Papotti, and S. Thirumuruganathan, "Creating embeddings of heterogeneous relational datasets for data integration tasks," in SIGMOD, 2020.		C. Fernandez, E. Mansour et al., "Seeping semantics: Linking casets using word embeddings for data discovery," in IEEE DE, 2018.			

Overview of Instance-Based Matchers

Distribution-Based	Jaccard-Levenshtein				
 Clusters relational attributes using column value distribution similarity 	 Naïve matcher that computes all pairwise column similarities 				
Outputs disjoint clusters whose relational attributes are considered related	 Computes Jaccard similarity, and considers two values as identical if their Levenshtein distance is below a given threshold 				
	 Outputs ranked list of column pairs 				
M. Zhang, M. Hadjieleftheriou, B. C. Ooi et al., "Automatic discovery of attributes in relational databases," in ACM SIGMOD, 2011.					

Meta-Learning Implementation

Meta-Learned Matcher

- Casts schema matching into a binary sequence classification task
- Takes the values of two columns as input
- Applies the InvDA operator to augment the training samples
- Uses the Rotom meta-learning framework to optimize data augmentation

Data Pre-Processing

- Consider each column pair between different tables
 - Skip pairs containing numeric columns
 - Sample 15 random tokens from each column
 - Limit the number of negative samples

Data Serialization

- Serialize each column to be concatenated [COL] a_1 a_2 ... a_n [SEP] [COL] b_1 b_2 ... b_m
- Label with 1 if the columns are considered a match, 0 otherwise

[COL] Stockport MBC Stockport Stockport Stockport MBC Stockport MBC Stockport MBC MBC Stockport MBC MBC [SEP] [COL] Human Soft & Arts Fuel Soft Communication Equipment Vehicle Care Supplies Furnishings Resources Furniture Community

Data Augmentation with InvDA

- Train the InvDA seq2seq model (T5) on the labeled training data
- Use the trained model to generate augmented training files

[COL] Appropriations Higher Reform rights; and Management Beverage on Special Serving Industry for on Funds Sugar

[COL] Appropriations Higher Reform rights; and Management Beverage Beer to Special Serving Industry for on Funds Sugar

[COL] Appropriations Higher Reform rights; Management On and Beverage Special Serving Industry for on Funds Sugar

Meta-Learning Framework

• Use the augmented training data in the meta-learning algorithm to train the target model

Datasets

SANTOS

- Sampled a subset of the data lake tables
 - 34 sets of unionable tables (e.g., albums, animal_tag_data)
- Ground truth determined by matching column names
- Pre-processed and serialized
- Split between Rotom training data and test data

Valentine Datasets

- Valentine's Fabrication Module
 - Created by systematically splitting existing tables (horizontally or vertically)
 - Optionally add noise in schema information and instance values
 - Original table holds the ground truth

Open Data Dataset Pair

- Fabricated dataset pair published with Valentine
- Parameters:
 - Horizontal split with 50% row overlap
 - Verbatim schema and instances (no noise added)
- Pre-processed and serialized
- Used as test data

Experiments

Methodology

- Trained 4 Rotom-based models on the same training data
 - Rotom (full meta-learning framework) with semi-supervised learning
 - Rotom (full meta-learning framework) without semi-supervised learning
 - InvDA data augmentation and fined-tuned RoBERTa
 - Fine-tuned RoBERTa

Methodology

- Evaluated each model on the SANTOS data and the Open Data dataset from Valentine
 - 4 experimental Rotom-based models
 - Distribution-based matcher (implemented by Valentine)
 - Jaccard-Levenshtein matcher (implemented by Valentine)

SANTOS Results

Open Data Results

Discussion of Results

Rotom + Valentine models mostly performed well on lane_description

Rotom + Valentine models performed well on lane_description

Sdate	LaneDescription	DirectionDescription	Flag Text
19/07/2012 00:00	Northbound	NorthEast	Bad data
19/07/2012 00:00	Southbound	SouthWest	Bad data
19/07/2012 01:00	Northbound	NorthEast	Bad data

- The non-numeric columns have very little variety
- Data augmentation likely did not help due to the small set of values

Rotom + Valentine models performed well on **311_calls_historic_data**

Rotom + Valentine models performed well on 311_calls_historic_data

issue_type	ticket_created_ date_time	ticket_closed_ date_time	ticket_ status	neighborhood_ district	city	state	case_title
Pothole/Roadway Surface Repair	7/28/2015 8:23:00 AM	7/29/2015 12:47:38 PM	Closed	MID-CITY	NEW ORLEANS	LA	Roadway Surface Repair - Pothole
Trash/Garbage Pickup	7/23/2012 10:22:46 AM	11/30/2012 5:15:08 PM	Closed	LAKEVIEW	NEW ORLEANS	LA	Start Trash Service
Trash/Garbage Pickup	10/23/2017 11:01:04 AM	10/25/2017 1:41:54 PM	Closed	LAKEWOOD	NEW ORLEANS	LA	Start Trash Service

- The non-numeric columns also have little variety
- But more variety than lane_description, so InvDA was more effective

Rotom outperformed Valentine models on animal_tag_data

Rotom outperformed Valentine models on animal_tag_data

animal_id	animal_type	breed_group	primary_breed	tag_no	tag_type	tag_subtype	tag_stat
A577425	DOG	SETTER/RETRIEVE	GOLDEN RETR	L16-044079	LIC ALTERED	HLP WEB	RENEWED
A583973	CAT	SHORTHAIR	DOMESTIC SH	L16-056016	LIC ALTERED	HLP SCAN	RENEWED
A562321	DOG	тоу	SHIH TZU	U15-003015	RABIES CERT	HLP IMPORT	CURRENT

- This table also has limited values for each column
- Unclear why the Valentine models did not perform as well

Valentine models outperformed Rotom-based models on **contributors_parties**

Valentine models outperformed Rotom-based models on **contributors_parties**

Political Entity	Recipient	Electoral event	Fiscal date
Registered Party	Canadian Reform Conservative Alliance	Annual	12/31/2002
Registered Party	Canadian Reform Conservative Alliance	Annual	12/31/2003
Registered Party	New Democratic Party	Annual	12/31/2003

 Rotom's low effectiveness may be due to the sampling of column tokens during serialization

All models performed poorly on albums

All models performed poorly on albums

title	album
mechanical ape!	charge!!
end credits (jfk homage)	songs in the key of springfield
stand up (for it)	stand up

- Very difficult to distinguish between title and album
- Lots of overlap in values

There was difficulty on **biodiversity**

There was difficulty on **biodiversity**

scientific name	family name	common name
symphyotrichum novae-angliae	asteraceae	new england aster
phoradendron leucarpum	viscaceae	oak mistletoe
acer macrophyllum	aceraceae	bigleaf maple

- Domain-specific language adds complexity
- Data augmentation did not help

Overall Discussion

- Results vary greatly from dataset to dataset
- No matching method consistently performs better than the others
- On average, the Rotom meta-learning framework decreases effectiveness compared to the RoBERTa baseline
- On average, data augmentation with InvDA does not improve effectiveness compared to the RoBERTa baseline

Future Work

- Refine the pre-processing used for training and test data
 - Token sampling
 - Increase number of samples
- Improve use of Valentine
 - Test against more of the Valentine datasets
 - Tune the matchers' parameters instead of using the default

Thank you!

Additional Slides

Dataset	Rotom w/ SSL	Rotom w/o SSL	InvDA + RoBERTa	RoBERTa	Distribution-Based	Jaccard-Levenshtein
311_calls_historic_data	0.941176471	0.761904762	0.941176471	0.875	0.857142857	0.769230769
abandoned_wells	I	0.769230769	I	I	0.66666667	0.8
albums	0	0.5	0.5	0	0	0
animal_tag_data	I	I	I	I	0.461538462	0.5
biodiversity	0	0.8	0	0.8	0	0.8
business_rates	0.848484848	0.612244898	0.914285714	0.692307692		
cdc_nutrition_physical_activity	0.6	0.736842105	0.8	0.833333333	0.6	0.727272727
cihr_co-applicant	0.88888889	0.571428571	0.75	0.857142857	0.461538462	0.823529412
civic_building_locations	0.5	0.615384615	0.66666667	0.857142857		
complaint_by_practice	I	0.545454545	0.8	0.461538462	0	0.857142857
contributors_parties	0.857142857	0.8	0.727272727	0.8	I	1
data_mill	0.75	0.666666667	0.875	0.66666667		
deaths_2012_2018	0.842105263	0.833333333	0.869565217	0.740740741		
film_locations_in_san_francisco	0	0	0.5	0.833333333	0	0.285714286
immigration_records	0.8	0.5	0.714285714	0.857142857	0.66666667	0.66666667
ipopayments	0.4	0.7	0.8	0.88888889	0.545454545	0.66666667
job_pay_scales	0.727272727	0.615384615	0.769230769	0.923076923	0.44444444	0.923076923
lane_description	I	I	0.88888889	I	0.857142857	I
mines	0.857142857	0.857142857	I	0.75	0.857142857	0.66666667
monthly_data_feed	0.5	0.666666667	0.44444444	0.44444444	0	0
new_york_city_restaurant_inspec	0.842105263	0.571428571	0.64	0.689655172	0.461538462	0.75
oil_and_gas_summary_production_	0.88888889	0.909090909	0.8	0.66666667	0.571428571	0.75
practice_reference	0.8	0.666666667	0.769230769	0.705882353	0.5	I
prescribing	0.5	0.8	0.66666667	0.666666667	0.5	0.909090909
psyckes_antipsychotic_polypharm	0.75	0.8	0.833333333	0.714285714	0.571428571	1
purchasing_card	0.875	0.761904762	0.842105263	0.64	0.5	0.714285714
report_card_discipline_for_2015	0.8	0.75	0.8	0.75	0.571428571	0.615384615
senior_officials_expenses	0.2	0.592592593	0.592592593	0.56	0	0
stockport_contracts	0.642857143	0.682926829	0.64	0.62745098	0.272727273	0.94444444
time_spent_watching_vcr_movies	I	0.5	0.857142857	0.75	ı	1
tuition_assistance_program_tap_	0.88888889	0.545454545	0.714285714	0.714285714	0.75	0.88888889
wholesale_markets	0.727272727	0.823529412	0.714285714	0.736842105	0.6	0.833333333
workforce_management_information	0.845070423	0.352941176	0.845070423	0.987341772		
ydn_spending_data	0.769230769	0.66666667	0.625	0.823529412		
Average	0.707103765	0.675731957	0.744133234	0.744510753	0.489867474	0.71040696

Valentine Instance-Based Matcher Results

- Effectiveness results of instance-based matching methods for each dataset relatedness scenario
- Results on fabricated datasets