EE365 and MS&E251: Introduction

About the course

Optimization

Dynamical systems

Stochastic control

About the course

About the course

- ▶ EE365 is the same as MS&E251
- ▶ created by Stephen Boyd, Sanjay Lall, and Ben Van Roy in 2012
- ▶ taught by Sanjay Lall this year

Control

- ▶ multi-step decision making, in an uncertain dynamic environment
- ▶ observe, act, observe, act, . . .
 - your current action affects the future
 - ▶ there is uncertainty in what the effect of your action will be
- ▶ goal is to find policy
 - ▶ (computational) map from what you know to what you do
- ▶ called *recourse* or *feedback*, a richer concept than optimization

1

Applications

- multi-period investment
- automatic control
- supply chain optimization
- ▶ internet ad display
- ▶ revenue management
- operation of a smart grid
- data center operation

...and many, many others. What is the common abstraction?

Approach

- ▶ how to formulate and solve problems
- solution is usually an algorithm
- ▶ focus on ideas, not technicalities of corner cases
- ▶ similar style to ee263
- practical homeworks with extensive coding
- ▶ Matlab, not Julia, Python, ...

Dynamics

intellectual components

▶ observe: statistical inference

▶ decide: optimization

▶ repeat: dynamics, with uncertainty

this course focuses on the consequences of dynamics, specifically:

- dynamic programming
- ▶ for Markov decision processes

Prerequisites

- ▶ linear algebra (EE263 or MS&E211; more than Math 51)
- ▶ probability (EE178/278A or MS&E220)
- ▶ not dependencies, but may increase appreciation:
 - other classes in control
 - ▶ artificial intelligence, Markov chains, optimization

Curriculum

- ▶ MS&E251 in the MS core, and in decision and risk analysis
- ▶ EE&365 satisfies MS breadth, and in two depth sequences:
 - control and system engineering
 - dynamical systems and optimization

Administration

- ► TAs: Samuel Bakouch and Alex Lemon
- ▶ the website ee365.stanford.edu
- ▶ piazza, coursework
- ▶ you have some grace days for homework
- ▶ 70% final, 30% homework
- ▶ 24-hour take-home final exam, only 6/6, 6/7, 6/8, 6/9, 6/10 or 6/11

Books

- ▶ Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming (online)
- ▶ Bertsekas, Dynamic Programming and Optimal Control, vol. 1

Optimization

Optimization problem

```
\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in \mathcal{X} \end{array}
```

- x is decision variable (discrete, continuous)
- $ightharpoonup \mathcal{X}$ is constraint set
- ▶ $f: \mathcal{X} \to \mathbb{R}$ is objective (cost function)
- ightharpoonup x is feasible if $x \in \mathcal{X}$
- lacksquare x is optimal (or a solution) if $f(x) = \inf_{z \in \mathcal{X}} f(z)$
- f and \mathcal{X} can depend on parameters (data)
- ightharpoonup can maximize by minimizing -f (reward, utility, profit, ...)
- \blacktriangleright standard trick: allow $f(x)=\infty$ (to embed further constraints in objective)

Solving optimization problems

- ▶ a solution method or algorithm computes a solution, given parameters
- difficulty of solving optimization problem depends on
 - \blacktriangleright mathematical properties of f, \mathcal{X}
 - ▶ problem size (e.g., dimension of x when $x \in \mathbb{R}^n$)
- a few problems can be solved 'analytically'
- ▶ but this is not particularly relevant, since we adopt algorithmic approach

Examples

- lacktriangleright find shortest path on weighted graph from node S to node T
 - ightharpoonup x is path
 - ightharpoonup f(x) is weighted path length (sum of weights on edges)
 - $ightharpoonup \mathcal{X}$ is set of paths from S to T

- lacktriangle allocate a total resource B among n entities to maximize total profit
 - $ightharpoonup x \in \mathbb{R}^n$ gives allocation
 - (maximize) objective $f(x) = \sum_{i=1}^{n} P_i(x_i)$
 - ▶ $P_i(x_i)$ is profit of entity i given resource amount x_i
 - $\mathcal{X} = \{ x \mid x \ge 0, \ \mathbf{1}^T x = B \}$

Dynamical systems

(Deterministic) dynamical systems

$$x_{t+1} = f_t(x_t, u_t), \quad t = 0, 1, \dots$$

- ▶ t is time (epoch, stage, period)
- ▶ $x_t \in \mathcal{X}_t$ is state
- ightharpoonup initial state x_0 is known or given
- $lackbox{} u_t \in \mathcal{U}_t$ is input (action, decision, choice, control)
- ▶ $f_t : \mathcal{X}_t \times \mathcal{U}_t \to \mathcal{X}_{t+1}$ is state transition function
- \blacktriangleright called time-invariant if f_t , \mathcal{X}_t , \mathcal{U}_t don't depend on t
- lacktriangle variation: \mathcal{U}_t can depend on x_t

Idea of state

- current action affects future states, but not current or past states
- current state depends on past actions
- ▶ state is link between past and future
 - ▶ if you know state x_t and actions u_t, \ldots, u_{s-1} , you know x_s
 - $\triangleright u_0, \ldots, u_{t-1}$ not relevant
- state is sufficient statistic (summary) for past

Examples (with finite state and input spaces)

discrete dynamical system:

- $\mathcal{X} = \{1, \dots, n\}, \, \mathcal{U} = \{1, \dots, m\}$
- $lackbox{} f_t: \mathcal{X} imes \mathcal{U}
 ightarrow \mathcal{X}$ called transition map, given by table (say)

moving on directed graph $(\mathcal{V}, \mathcal{E})$:

- $ightharpoonup \mathcal{X} = \mathcal{V}$, $\mathcal{U}(x_t)$ is set of out-going edges from x_t
- $ightharpoonup f_t(x_t,u_t)=v$, where $u_t=(x_t,v)$

Examples (with infinite state and input spaces)

linear dynamical system:

- $\mathcal{X} = \mathbb{R}^n$, $\mathcal{U} = \mathbb{R}^m$
- $x_{t+1} = f_t(x_t, u_t) = A_t x_t + B_t u_t + c_t$

very special form for dynamics, but arises in many applications

Dynamic optimization (deterministic optimal control)

minimize
$$J = \sum_{t=0}^{T-1} g_t(x_t, u_t) + g_T(x_T)$$
 subject to
$$x_{t+1} = f_t(x_t, u_t), \quad t = 0, \dots, T-1$$

- ightharpoonup initial state x_0 is given
- ▶ $g_t : \mathcal{X}_t \times \mathcal{U}_t \to \mathbb{R} \cup \{\infty\}$ is stage cost function
- ▶ $g_T: \mathcal{X}_T \to \mathbb{R} \cup \{\infty\}$ is terminal cost function
- ▶ variables are $x_1, \ldots, x_T, u_0, \ldots, u_{T-1}$ (or just u_0, \ldots, u_{T-1} , since these determine x_1, \ldots, x_T)
- just an optimization problem (possibly big)
- also called classical or open-loop control

Deterministic optimal control

- ▶ addresses dynamic effect of actions across time
- ▶ no uncertainty or randomness in model
- ▶ is widely used (often, by simply ignoring uncertainty in the application)

Stochastic control

Stochastic dynamical systems

$$x_{t+1} = f_t(x_t, u_t, w_t), \quad t = 0, 1, \dots$$

- $lacktriangleright w_t$ are random variables (usually assumed independent for $t \neq s$)
- state transitions are nondeterministic, uncertain
- \blacktriangleright choice of input u_t determines *distribution* of x_{t+1}
- lacksquare initial state x_0 is random variable (usually assumed independent of w_0, w_1, \ldots)

Objective

▶ objective (to be minimized) is

$$J = \mathbf{E} \left(\sum_{t=0}^{T-1} g_t(x_t, u_t, w_t) + g_T(x_T, w_T) \right)$$

- ▶ $g_t : \mathcal{X}_t \times \mathcal{U}_t \times \mathcal{W}_t \to \mathbb{R} \cup \{\infty\}$ is stage cost function
- ▶ $g_T : \mathcal{X}_T \times \mathcal{W}_T \to \mathbb{R} \cup \{\infty\}$ is terminal cost function
- lacktriangle often $g_t,\,g_T$ don't depend on $w_t,\,i.e.$, stage and terminal costs are deterministic
- \blacktriangleright infinite values of g_t encode constraints
- objective is mean total stage cost plus terminal cost

Information pattern constraints

ightharpoonup information pattern constraint: u_t depends on what you know at time t

$$u_t = \phi_t(Z_t)$$

- $ightharpoonup Z_t$ is what you know at time t
- \blacktriangleright $(\phi_0,\ldots,\phi_{T-1})$ is called policy
- \blacktriangleright goal is to find policy that minimizes J, subject to dynamics

Information patterns

- full knowledge (prescient): $Z_t = (w_0, \dots, w_{T-1})$
 - ▶ for each realization, reduces to deterministic optimal control problem
- ▶ no knowledge: $Z_t = \emptyset$
 - reduces to an optimization problem; called open-loop
- ▶ in between: $Z_t = x_t$ (called state feedback)
- ▶ a little more: $Z_t = (x_t, w_t)$

these are very different problems!

Example: Stochastic shortest path

- lacktriangleright move from node S to node T in directed weighted graph
- minimize expected total weight along path
- edge weights are random variables, independent in each time period

information patterns:

- no knowledge: commit to path beforehand (knowing distributions of weights, but not actual values)
- full knowledge: weights on all edges at all times are revealed before path is chosen
- ▶ local knowledge: at each node, at each time, weights of out-going edges are revealed before next edge on path is chosen

Example: Optimal disposition of stock

- ightharpoonup sell a total amount S of a stock in T periods
- price (and transaction cost) varies randomly
- maximize expected revenue

information patterns:

- ▶ no knowledge: commit to sales amounts beforehand
- in each time period, the price and transaction cost is known before amount sold is chosen