Homework 5

- 1. Diagonalize the following matrices.
 - (a) $\begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix}$ (b) $\begin{pmatrix} 1 & 4 \\ 1 & 5 \end{pmatrix}$ (c) $\begin{pmatrix} 0 & 0 & 3 \\ 1 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix}$
- **2.** Diagonalize the linear transformation $S: M_n(F) \to M_n(F)$ given by $S(A) = A^T$.
- **3.** Given $A \in M_n(F)$, the trace of A, or tr(A) is the number $A_{1,1} + \ldots + A_{n,n}$.
 - (a) Use the formula for matrix multiplication to explain why tr(AB) = tr(BA) for any $A, B \in M_n(F)$.
 - (b) Show explicitly that for any 2 matrix A, $P_A(x) = x^2 \operatorname{tr}(A)x + \det(A)$.
 - (c) Suppose that A, B are similar matrices (so $B = X^{-1}AX$ for some X). Explain why $p_A = p_B$.
 - (d) Suppose that A is a diagonalizable $n \times n$ matrix. Explain why $p_A(x) = x^n \operatorname{tr}(A)x^{n-1} + a_{n-2}x^{n-1} + \ldots + a_x + (-1)^n \operatorname{det}(A)$.
 - (e) Express tr(A), set(A) and the other coefficients that appear in p_A in terms of the eigenvalues of A.
- **4.** Let $f_0 = 1$, $f_1 = 1$, $f_{n+2} = f_{n+1} + f_n$. The numbers f_0, f_1, f_2, \ldots are called the Fibonacci numbers.
 - (a) Let $F = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$. Explain why for every n:

$$F^n \left(\begin{array}{c} 1 \\ 1 \end{array} \right) = \left(\begin{array}{c} f_n \\ f_{n+1} \end{array} \right)$$

- (b) Diagonalize F.
- (c) Suppose that $A = X^{-1}DX$ for a diagonal matrix D. Show that for any $n, A^n = X^{-1}D^nX$.
- (d) Find an explicit formula for the number f_n .
- **5.** Recall the game we played on the first week with a 2×2 grid with black and white squares. To show that one can pass from any configuration to any other configuration, you showed that a certain 4×4 matrix with entries in F_2 is invertible. Write down this matrix, but now consider its entries as elements

of \mathbb{Z} (so use 0 instead of [0], and 1 instead of [1]). Calculate the determinant of this matrix. Now find all primes p such that if the game is played on a 2×2 grid with p colors instead of 2, then there are some configurations that can't be reached from other configurations. If the game is played on a $n \times n$ grid, show that there is a always some p where some configurations can't be reached from other configurations. (Challenge: for every n, show that there are only finitely many such p).