### **LoRA**

Low-Rank Adaptation of Large Language Models

# NNs = matrix multiplication

**BERT** 

Encoder



**GPT** 

Decoder

#### Rank of a matrix

Number of independent (column) vectors

#### Rank of a matrix

Number of independent (column) vectors

• rank(M) = 2

#### Rank of a matrix

Number of independent (column) vectors

- rank(M) = 2

# Separating weight updates

#### Forward pass with Forward pass with original model updated model Obtain weight update via backpropagation Embedding h Embedding h Pretrained Weight Updated weights update weights $\Delta W$ Inputs x Inputs x

Regular Finetuning

#### \* The pretrained model could be any LLM, e.g., an encoder-style LLM (like BERT) or a generative decoder-style LLM (like GPT)

#### Alternative formulation (regular finetuning)



# **Putting it together**

- Observation: low rank in finetuned models
- Hypothesis: persists in separated weight matrices
- → dimension of ΔW can be scaled down
- Decompose  $W_0 + \Delta W \in \mathbb{R}^{d imes ar{k}}$  into  $W_0 + BA$  where  $B \in \mathbb{R}^{d imes r}, A \in \mathbb{R}^{r imes k}$

LoRA weights,  $W_A$  and  $W_B$ , represent  $\Delta W$ 



r « d and k

### **General benefits**

• 
$$\max_{\Phi} \sum_{(x,y)\in\mathcal{Z}} \sum_{t=1}^{|y|} \log (P_{\Phi}(y_t|x,y_{< t})) \to \max_{\Theta} \sum_{(x,y)\in\mathcal{Z}} \sum_{t=1}^{|y|} \log (p_{\Phi_0 + \Delta\Phi(\Theta)}(y_t|x,y_{< t}))$$

- $|\Theta| \ll |\Phi_0|$   $\rightarrow$  lower storage requirement and speed-up
- Converges to original fine-tuning by increasing rank
- Avoids inference latency: W = W<sub>0</sub> + B × A
- Easy task switching:  $W = W B \times A$ ;  $W = W + B' \times A'$

## **LoRA training for transformers**

- 4 matrices per attention layer:  $W_q$ ,  $W_k$ ,  $W_v$ , and  $W_o$  (ignores slicing through attention heads)
- No fine-tuning of feed-forward layers and layer norm
- Example: GPT-3
  - 2/3 reduction of VRAM (1.2TB  $\rightarrow$  350GB)
  - 10000 times reduction of checkpoint size with r = 4 (350GB → 35MB)
  - 25% speedup during fine-tuning (32.5 tokens/s → 41.1 tokens/s)

# It works!

| Model & Method                             | # Trainable<br>Parameters |                     | SST-2                       | MRPC                        | CoLA                                  | QNLI                       | QQP                         | RTE                         | STS-B                   | Avg. |
|--------------------------------------------|---------------------------|---------------------|-----------------------------|-----------------------------|---------------------------------------|----------------------------|-----------------------------|-----------------------------|-------------------------|------|
| RoB <sub>base</sub> (FT)*                  | 125.0M                    | 87.6                | 94.8                        | 90.2                        | 63.6                                  | 92.8                       | 91.9                        | 78.7                        | 91.2                    | 86.4 |
| RoB <sub>base</sub> (BitFit)*              | 0.1M                      | 84.7                | 93.7                        | 92.7                        | 62.0                                  | 91.8                       | 84.0                        | 81.5                        | 90.8                    | 85.2 |
| $RoB_{base} (Adpt^{D})^*$                  | 0.3M                      | $87.1_{\pm .0}$     | $94.2_{\pm.1}$              | $88.5_{\pm 1.1}$            | $60.8_{\pm.4}$                        | $93.1_{\pm.1}$             | $90.2_{\pm.0}$              | $71.5_{\pm 2.7}$            | $89.7_{\pm .3}$         | 84.4 |
| $RoB_{base} (Adpt^{D})^*$                  |                           |                     |                             | $88.4_{\pm.1}$              |                                       |                            |                             | $75.9_{\pm 2.2}$            |                         | 85.4 |
| RoB <sub>base</sub> (LoRA)                 | 0.3M                      | $87.5_{\pm .3}$     | $95.1_{\pm.2}$              | $89.7 \scriptstyle{\pm .7}$ | $63.4_{\pm 1.2}$                      | $93.3{\scriptstyle\pm.3}$  | $90.8 \scriptstyle{\pm .1}$ | $86.6 \scriptstyle{\pm .7}$ | $91.5_{\pm.2}$          | 87.2 |
| RoB <sub>large</sub> (FT)*                 | 355.0M                    | 90.2                | 96.4                        | 90.9                        | 68.0                                  | 94.7                       | 92.2                        | 86.6                        | 92.4                    | 88.9 |
| RoB <sub>large</sub> (LoRA)                | 0.8M                      | $90.6_{\pm .2}$     | $96.2_{\pm.5}$              | $\textbf{90.9}_{\pm 1.2}$   | $\textbf{68.2}_{\pm 1.9}$             | $\textbf{94.9}_{\pm.3}$    | $91.6 \scriptstyle{\pm .1}$ | $\textbf{87.4}_{\pm 2.5}$   | $\textbf{92.6}_{\pm.2}$ | 89.0 |
| RoB <sub>large</sub> (Adpt <sup>P</sup> )† | 3.0M                      | 90.2 <sub>±.3</sub> | 96.1 <sub>±.3</sub>         | 90.2 <sub>±.7</sub>         | <b>68.3</b> <sub>±1.0</sub>           | 94.8 <sub>±.2</sub>        | <b>91.9</b> <sub>±.1</sub>  | 83.8 <sub>±2.9</sub>        | 92.1 <sub>±.7</sub>     | 88.4 |
| $RoB_{large} (Adpt^{P})^{\dagger}$         | 0.8M                      | 90.5 <sub>±.3</sub> | $\textbf{96.6}_{\pm.2}$     | $89.7_{\pm 1.2}$            | $67.8_{\pm2.5}$                       | $\textbf{94.8}_{\pm.3}$    | $91.7_{\pm.2}$              | $80.1_{\pm 2.9}$            | $91.9_{\pm.4}$          | 87.9 |
| $RoB_{large} (Adpt^{H})^{\dagger}$         | 6.0M                      | $89.9_{\pm.5}$      | $96.2 \scriptstyle{\pm .3}$ | $88.7_{\pm 2.9}$            | $66.5_{\pm4.4}$                       | $94.7_{\pm.2}$             | $92.1_{\pm.1}$              | $83.4_{\pm 1.1}$            | $91.0_{\pm1.7}$         | 87.8 |
| $RoB_{large} (Adpt^{H})^{\dagger}$         | 0.8M                      | $90.3_{\pm .3}$     | $96.3_{\pm.5}$              | $87.7_{\pm 1.7}$            | $66.3_{\pm2.0}$                       | $94.7_{\pm.2}$             | $91.5_{\pm.1}$              | $72.9_{\pm 2.9}$            | $91.5_{\pm.5}$          | 86.4 |
| RoB <sub>large</sub> (LoRA)†               | 0.8M                      | $ 90.6_{\pm .2} $   | $96.2_{\pm.5}$              | <b>90.2</b> $_{\pm 1.0}$    | $68.2_{\pm 1.9}$                      | <b>94.8</b> <sub>±.3</sub> | $91.6_{\pm.2}$              | <b>85.2</b> $_{\pm 1.1}$    | <b>92.3</b> $_{\pm .5}$ | 88.6 |
| DeB <sub>XXL</sub> (FT)*                   | 1500.0M                   | 91.8                | 97.2                        | 92.0                        | 72.0                                  | 96.0                       | 92.7                        | 93.9                        | 92.9                    | 91.1 |
| $DeB_{XXL}$ (LoRA)                         | 4.7M                      | $91.9_{\pm .2}$     | $96.9_{\pm.2}$              | $\textbf{92.6}_{\pm.6}$     | $\textbf{72.4} \scriptstyle{\pm 1.1}$ | $\textbf{96.0}_{\pm.1}$    | $\textbf{92.9}_{\pm.1}$     | $\textbf{94.9}_{\pm.4}$     | $\textbf{93.0}_{\pm.2}$ | 91.3 |

# It works on larger models

| Model & Method                   | # Trainable | E2E NLG Challenge       |                        |                          |                         |                      |  |  |  |
|----------------------------------|-------------|-------------------------|------------------------|--------------------------|-------------------------|----------------------|--|--|--|
|                                  | Parameters  | BLEU                    | NIST                   | MET                      | ROUGE-L                 | CIDEr                |  |  |  |
| GPT-2 M (FT)*                    | 354.92M     | 68.2                    | 8.62                   | 46.2                     | 71.0                    | 2.47                 |  |  |  |
| GPT-2 M (Adapter <sup>L</sup> )* | 0.37M       | 66.3                    | 8.41                   | 45.0                     | 69.8                    | 2.40                 |  |  |  |
| GPT-2 M (Adapter <sup>L</sup> )* | 11.09M      | 68.9                    | 8.71                   | 46.1                     | 71.3                    | 2.47                 |  |  |  |
| GPT-2 M (Adapter <sup>H</sup> )  | 11.09M      | $67.3_{\pm .6}$         | $8.50_{\pm .07}$       | $46.0_{\pm .2}$          | $70.7_{\pm.2}$          | $2.44_{\pm .01}$     |  |  |  |
| GPT-2 M ( $FT^{Top2}$ )*         | 25.19M      | 68.1                    | 8.59                   | 46.0                     | 70.8                    | 2.41                 |  |  |  |
| GPT-2 M (PreLayer)*              | 0.35M       | 69.7                    | 8.81                   | 46.1                     | 71.4                    | 2.49                 |  |  |  |
| GPT-2 M (LoRA)                   | 0.35M       | $70.4_{\pm.1}$          | $\pmb{8.85}_{\pm .02}$ | $\textbf{46.8}_{\pm .2}$ | $\textbf{71.8}_{\pm.1}$ | $2.53_{\pm.02}$      |  |  |  |
| GPT-2 L (FT)*                    | 774.03M     | 68.5                    | 8.78                   | 46.0                     | 69.9                    | 2.45                 |  |  |  |
| GPT-2 L (Adapter <sup>L</sup> )  | 0.88M       | $69.1_{\pm.1}$          | $8.68_{\pm .03}$       | $46.3_{\pm .0}$          | $71.4_{\pm .2}$         | $\pmb{2.49}_{\pm.0}$ |  |  |  |
| GPT-2 L (Adapter <sup>L</sup> )  | 23.00M      | $68.9_{\pm .3}$         | $8.70_{\pm .04}$       | $46.1_{\pm .1}$          | $71.3_{\pm .2}$         | $2.45_{\pm .02}$     |  |  |  |
| GPT-2 L (PreLayer)*              | 0.77M       | 70.3                    | 8.85                   | 46.2                     | 71.7                    | 2.47                 |  |  |  |
| GPT-2 L (LoRA)                   | 0.77M       | $\textbf{70.4}_{\pm.1}$ | $\pmb{8.89}_{\pm.02}$  | $\textbf{46.8}_{\pm .2}$ | $\textbf{72.0}_{\pm.2}$ | $2.47_{\pm .02}$     |  |  |  |

# It works on even larger models

| Model&Method                  | # Trainable<br>Parameters | WikiSQL<br>Acc. (%) | MNLI-m<br>Acc. (%) | SAMSum<br>R1/R2/RL |
|-------------------------------|---------------------------|---------------------|--------------------|--------------------|
| GPT-3 (FT)                    | 175,255.8M                | 73.8                | 89.5               | 52.0/28.0/44.5     |
| GPT-3 (BitFit)                | 14.2M                     | 71.3                | 91.0               | 51.3/27.4/43.5     |
| GPT-3 (PreEmbed)              | 3.2M                      | 63.1                | 88.6               | 48.3/24.2/40.5     |
| GPT-3 (PreLayer)              | 20.2M                     | 70.1                | 89.5               | 50.8/27.3/43.5     |
| GPT-3 (Adapter <sup>H</sup> ) | 7.1M                      | 71.9                | 89.8               | 53.0/28.9/44.8     |
| GPT-3 (Adapter <sup>H</sup> ) | 40.1M                     | 73.2                | 91.5               | 53.2/29.0/45.1     |
| GPT-3 (LoRA)                  | 4.7M                      | 73.4                | 91.7               | 53.8/29.8/45.9     |
| GPT-3 (LoRA)                  | 37.7M                     | 74.0                | 91.6               | 53.4/29.2/45.1     |

11



# **Optimal choice of trainable parameters**

|                                                     |            | # of Trainable Parameters = 18M                             |                           |                 |                      |                      |                      |                      |                      |  |
|-----------------------------------------------------|------------|-------------------------------------------------------------|---------------------------|-----------------|----------------------|----------------------|----------------------|----------------------|----------------------|--|
| Weight Type<br>Rank r                               |            | $egin{array}{cccc} V_q & W_k & W_v \ 8 & 8 & 8 \end{array}$ |                           | $\frac{W_o}{8}$ | $W_q, W_k$ 4         | $W_q,W$ 4            | $V_v = W_q$          | $W_q, W_k, W_v, W_o$ |                      |  |
| WikiSQL ( $\pm 0.5\%$ )<br>MultiNLI ( $\pm 0.1\%$ ) | 70<br>  91 |                                                             | 70.0<br>90.8              | 73.0<br>91.0    | 73.2<br>91.3         | 71.4<br>91.3         | <b>73.7</b> 91.3     |                      | 73.7<br>91.7         |  |
|                                                     |            | '                                                           | Weight                    | Туре            | r = 1                | r=2                  | r=4                  | r = 8                | r = 64               |  |
| WikiSQL(±0.                                         | 5%)        | $W_{\epsilon}$                                              | $W_q, W_q, W_k,$          | *               | 68.8<br>73.4<br>74.1 | 69.6<br>73.3<br>73.7 | 70.5<br>73.7<br>74.0 | 70.4<br>73.8<br>74.0 | 70.0<br>73.5<br>73.9 |  |
| MultiNLI (±0.                                       | 1%)        | $W_{\alpha}$                                                | $W_q, W_q, W_k, W_k, W_k$ |                 | 90.7<br>91.3<br>91.2 | 90.9<br>91.4<br>91.7 | 91.1<br>91.3<br>91.7 | 90.7<br>91.6<br>91.5 | 90.7<br>91.4<br>91.4 |  |

# How similar are the subspaces spanned by weight matrices of different ranks?



• Similar result across different fine-tuned models,  $W_q$  has higher rank than  $W_\nu$ 

# Digression: SVD and subspace similarity

• 
$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 2 & 2 & 1 \\ -2 & 1 & -3 & -2 & 0 \\ 3 & -1 & 5 & 4 & 1 \end{bmatrix}$$
  $\mathbf{A} = \begin{bmatrix} 1 & 0 & 2 & 2 & 1 \\ -2 & 1 & -3 & -2 & 0 \end{bmatrix}$   $\mathbf{A}' = \begin{bmatrix} 1 & 0 & 2 & 2 & 1 \\ 2 & 0 & 4 & 4 & 2 \end{bmatrix}$ 

$$\mathbf{A'} = \begin{matrix} 1 & 0 & 2 & 2 & 1 \\ 2 & 0 & 4 & 4 & 2 \end{matrix}$$

- SVD:  $M = U \times \Sigma \times V$
- $U_M^1 \times U_A^1 \sim \{\{-1\}\}$  $\rightarrow$   $\phi$ (M, A, 1, 1)  $\sim$  1
- $U_M^3 \times U_A^1 \sim \{\{-1\}, \{0.02\}, 0\}$  $\rightarrow$   $\phi$ (M, A, 1, 3)  $\sim$  1
- $U_M^2 \times U_A^2 \sim \{\{-1,0\},\{0,1\}\}$  $\rightarrow$   $\phi$ (M, A, 2, 2)  $\sim$  1

$$U_{M}^{1} \times U_{A}^{1} \sim \{\{0.96\}\}\$$
  
  $\rightarrow \phi(M, A', 1, 1) \sim 0.92$ 

$$U_{M}^{2} \times U_{A}^{2} \sim \{\{0.96, -0.2\}, \{0.27, 0.71\}\}\$$
  
  $\rightarrow \varphi(M, A', 2, 2) \sim 1.54/2 = 0.76$ 

#### **How does ΔW correlate with W?**

## Project W onto r-dimensional subspace of ΔW

|                               |                          | r=4   |        | r = 64       |              |        |  |
|-------------------------------|--------------------------|-------|--------|--------------|--------------|--------|--|
|                               | $\Delta W_q$             | $W_q$ | Random | $\Delta W_q$ | $W_q$        | Random |  |
| $  U^{\top}W_qV^{\top}  _F =$ | 0.32                     | 21.67 | 0.02   | 1.90         | 37.71        | 0.33   |  |
| $  W_q  _F = 61.95$           | $ \Delta W_q  _F = 6.91$ |       |        |              | $ W_q  _F$ = | = 3.57 |  |

This suggests that the low-rank adaptation matrix potentially amplifies the important features for specific downstream tasks that were learned but not emphasized in the general pre-training model.

#### How does AW correlate with W?



Figure 8: Normalized subspace similarity between the singular directions of  $W_q$  and those of  $\Delta W_q$  with varying r and a random baseline.  $\Delta W_q$  amplifies directions that are important but not emphasized in W.  $\Delta W$  with a larger r tends to pick up more directions that are already emphasized in W.