

## Institute of Mathematics and Image Computing

Jan Modersitzki, Caterina Rust

# MA1500: Lineare Algebra und Diskrete Strukturen 2

Übungsblatt 1

Abgabe: Freitag, 12.04.2019, 08:30 Uhr

#### Aufgabe 1 (5 Punkte)

Gegeben seien folgende Vektoren aus dem  $\mathbb{R}^3$ :

$$v_1 = \begin{pmatrix} 2 \\ 0 \\ 4 \end{pmatrix}, \ v_2 = \begin{pmatrix} 3 \\ -2 \\ 0 \end{pmatrix} \text{ und } v_3 = \begin{pmatrix} 4 \\ -4 \\ \alpha \end{pmatrix}.$$

a) Bestimmen Sie die Dimension von span $\{v_1, v_2, v_3\}$  in Abhängigkeit von  $\alpha$ .

b) Stellen Sie für  $\alpha=0$  den Vektor  $v_4=\begin{pmatrix}1\\2\\2\end{pmatrix}$  als Linearkombination von  $v_1,v_2,v_3$  dar.

c) Bestimmen Sie für  $\alpha = -4$  eine Basis von span $\{v_1, v_2, v_3\}$ .

#### Aufgabe 2 (6 Punkte)

Sei  $(V, \langle \cdot, \cdot \rangle)$  ein euklidischer Vektorraum und  $\| \cdot \|$  die induzierte Norm.

a) Seien  $v, w \in V$  mit ||v|| = 1 und ||w|| = 1. Zeigen Sie, dass gilt:

 $|\langle v, w \rangle| \neq 1 \Leftrightarrow (v, w)$  linear unabhängig.

b) Sei  $x \in V \setminus \{0\}$  beliebig. Zeigen Sie, dass es einen Vektor  $z \in V$  mit den Eigenschaften ||z|| = 1 und

$$\forall y \in V : \frac{\langle y, x \rangle}{\langle x, x \rangle} x = \langle y, z \rangle z$$

gibt.

### Aufgabe 3 (4 Punkte)

a) Gegeben sind die Matrizen  $A:=\begin{pmatrix}1&2\\3&4\end{pmatrix}, B:=\begin{pmatrix}1&1\\0&1\end{pmatrix}, C:=\begin{pmatrix}1+i&i\\1&2i\end{pmatrix}\in\mathbb{C}^{2\times 2}$ . Berechnen Sie:

$$A\cdot B, \quad A\cdot B^{-1}, \quad \det(B), \quad \det(A\cdot C^H).$$

b) Es seien

$$A := \begin{pmatrix} 3 & 2 \\ 2 & 4 \end{pmatrix}$$
 und  $\langle \cdot, \cdot \rangle_A : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ ,  $(v, w) \mapsto v^T A w$ .

Zeigen Sie:  $\langle \cdot, \cdot \rangle_A$  ist ein Skalarprodukt auf  $\mathbb{R}^2$ .