Continuité

Généralités et grands théorèmes

QCOP CONT.1

Soit I un intervalle de \mathbb{R} . Soit $f:I\longrightarrow \mathbb{R}$. Soit $a\in I$.

 \blacksquare Donner la définition de « f est continue en a ».

Énoncer et démontrer le théorème de caractérisation séquentielle de la continuité.

Soit $(u_n)_{n\in\mathbb{N}}\in I^{\mathbb{N}}$. Soit $\ell\in I$. On suppose que f est continue sur I.

(a) Montrer que

$$u_n \longrightarrow \ell \implies f(u_n) \longrightarrow f(\ell).$$

(b) On suppose que f[I] = I et que

$$\begin{cases} u_0 \in I \\ \forall n \in \mathbb{N}, \quad u_{n+1} = f(u_n). \end{cases}$$

Montrer que

$$u_n \longrightarrow \ell \implies f(\ell) = \ell.$$

QCOP CONT.2

- Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction continue. Que dire de l'image par f d'un intervalle de \mathbb{R} ?
- (a) Montrer que tout polynôme réel de degré impair admet au moins une racine réelle.
 - (b) Est-ce vrai pour un polynôme de degré pair?

QCOP CONT.3

Soient $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ deux fonctions. Soient $a, b \in \mathbb{R}$ tels que a < b.

- ${\cal S}$ On suppose que f continue sur [a,b]. Montrer que f est bornée sur [a,b] et atteint ses bornes.
- **%** Montrer que

$$\forall x \in [a, b], f(x) < g(x)$$

$$\downarrow \downarrow$$

$$\sup_{x \in [a, b]} f(x) < \sup_{x \in [a, b]} g(x).$$

Les résultats précédents restent-ils vrais si l'on étudie f sur \mathbb{R} et non sur [a,b]?

Continuité uniforme

QCOP CONT.4

Soit I un intervalle de \mathbb{R} .

Soit $f: I \longrightarrow \mathbb{R}$ une fonction.

- Donner la définition de « f est uniformément continue sur l ».
- On considère les trois assertions suivantes :
 - (i) f est continue sur I;
 - (ii) f est uniformément continue sur I;
 - (iii) f est lipschitzienne sur I.

Énoncer et démontrer les implications les reliant.

Lesquelles des assertions précédentes sont vraies pour $f = \sqrt{\cdot}$ et I = [0, 1]?

QCOP CONT.5

Soit [a, b] un segment de \mathbb{R} .

Soit $f : [a, b] \longrightarrow \mathbb{R}$ une fonction continue sur [a, b].

- Que dire de *f* ? Quel théorème venez-vous d'énoncer ?
- (a) Écrire à l'aide de quantificateurs « f n'est pas uniformément continue sur [a, b] ».
 - (b) Aboutir à une contradiction à l'aide de la caractérisation séquentielle de la continuité.