# Style Transfer

By Wei Gao

# Optimization Method

Image Style Transfer Using Convolutional Neural Networks



$$G_{ij}^l = \sum_k F_{ik}^l F_{jk}^l.$$

$$E_{l} = \frac{1}{4N_{l}^{2}M_{l}^{2}} \sum_{i,j} (G_{ij}^{l} - A_{ij}^{l})^{2}$$

# Swap Method

## Fast Patch-based Style Transfer of Arbitrary Style

For every content patch, swap it with the best matching style patch, which we define using the normalized cross-correlation:

$$BestMatch(c) = \arg\max_{s \in S} \frac{\langle c, s \rangle}{||c|| \cdot ||s||}$$



This operation can be implemented efficiently using a 2D convolutional layer and a 2D transposed convolutional layer.



# Learning Method

Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization

replacing DIN layers with fix layers:

$$IN(x) = \gamma \left(\frac{x - \mu(x)}{\sigma(x)}\right) + \beta \qquad AdaIN(x, y) = \sigma(y) \left(\frac{x - \mu(x)}{\sigma(x)}\right) + \mu(y) \qquad (8)$$

$$CIN(x; s) = \gamma^{s} \left( \frac{x - \mu(x)}{\sigma(x)} \right) + \beta^{s}$$
 (7)

# Learning Method

Perceptual Losses for Real-Time Style Transfer and Super-Resolution

$$\ell_{feat}^{\phi,j}(\hat{y}, y) = \frac{1}{C_i H_i W_i} \|\phi_j(\hat{y}) - \phi_j(y)\|_2^2$$

$$G_j^{\phi}(x)_{c,c'} = \frac{1}{C_j H_j W_j} \sum_{h=1}^{H_j} \sum_{w=1}^{W_j} \phi_j(x)_{h,w,c} \phi_j(x)_{h,w,c'}.$$

## Zero-Shot Method

#### Universal Style Transfer via Feature Transforms

Whitening transform. Before whitening, we first center  $f_c$  by subtracting its mean vector  $m_c$ . Then we transform  $f_c$  linearly as in (2) so that we obtain  $\hat{f}_c$  such that the feature maps are uncorrelated  $(\hat{f}_c\hat{f}_c^{\top} = I)$ ,

$$\hat{f}_c = E_c \, D_c^{-\frac{1}{2}} \, E_c^{\top} \, f_c \,, \tag{2}$$

where  $D_c$  is a diagonal matrix with the eigenvalues of the covariance matrix  $f_c$   $f_c^{\top} \in \Re^{C \times C}$ , and  $E_c$  is the corresponding orthogonal matrix of eigenvectors, satisfying  $f_c$   $f_c^{\top} = E_c D_c E_c^{\top}$ .

**Coloring transform.** We first center  $f_s$  by subtracting its mean vector  $m_s$ , and then carry out the coloring transform [14], which is essentially the inverse of the whitening step to transform  $\hat{f}_c$  linearly as in (3) such that we obtain  $\hat{f}_{cs}$  which has the desired correlations between its feature maps  $(\hat{f}_{cs} \ \hat{f}_{cs}^{\top} = f_s \ f_s^{\top})$ ,

$$\hat{f}_{cs} = E_s \, D_s^{\frac{1}{2}} \, E_s^{\top} \, \hat{f}_c \,, \tag{3}$$

where  $D_s$  is a diagonal matrix with the eigenvalues of the covariance matrix  $f_s$   $f_s^{\top} \in \Re^{C \times C}$ , and  $E_s$  is the corresponding orthogonal matrix of eigenvectors. Finally we re-center the  $\hat{f}_{cs}$  with the mean vector  $m_s$  of the style, i.e.,  $\hat{f}_{cs} = \hat{f}_{cs} + m_s$ .

## Zero-Shot Method

Universal Style Transfer via Feature Transforms



## Zero-Shot Method

Avatar-Net: Multi-scale Zero-shot Style Transfer by Feature Decoration



# Video Style Transfer

Real-Time Neural Style Transfer for Videos



# Video Style Transfer

### Characterizing and Improving Stability in Neural Style Transfer



Figure 3. We train feedforward style transfer models for twelve styles, and define the *instability* of a style as the mean squared error between stylized adjacent frames over a dataset of videos with a static camera and no motion. We also compute the trace of the Gram matrix at two layers of the VGG-16 loss network for each style; styles with larger trace tend to be more unstable.



# Photorealistic Style Transfer

#### Deep Photo Style Transfer

Formally, we build upon the Matting Laplacian of Levin et al. [9] who have shown how to express a grayscale matte as a locally affine combination of the input RGB channels. They describe a least-squares penalty function that can be minimized with a standard linear system represented by a matrix  $\mathcal{M}_I$  that only depends on the input image I (We refer to the original article for the detailed derivation. Note that given an input image I with N pixels,  $\mathcal{M}_I$  is  $N \times N$ ). We name  $V_c[O]$  the vectorized version  $(N \times 1)$  of the output image O in channel C and define the following regularization term that penalizes outputs that are not well explained by a locally affine transform:

$$\mathcal{L}_m = \sum_{c=1}^3 V_c[O]^T \mathcal{M}_I V_c[O]$$
 (2)

# Photorealistic Style Transfer

A Closed-form Solution to Photorealistic Image Stylization



# Photorealistic Style Transfer

#### A Closed-form Solution to Photorealistic Image Stylization

$$\underset{r}{\operatorname{argmin}} \frac{1}{2} \left( \sum_{i,j=1}^{N} w_{ij} \| \frac{r_i}{\sqrt{d_{ii}}} - \frac{r_j}{\sqrt{d_{jj}}} \|^2 + \lambda \sum_{i=1}^{N} \| r_i - y_i \|^2 \right), \tag{4}$$

where  $y_i$  is the pixel color in the PhotoWCT-stylized result Y and  $r_i$  is the pixel color in the desired smoothed output R. The variable  $d_{ii} = \sum_{j} w_{ij}$  is the diagonal element in the degree matrix D of W, i.e.,  $D = \text{diag}\{d_{11}, d_{22}, ..., d_{NN}\}$ . In (4),  $\lambda$  controls the balance of the two terms.

which encourages consistent stylization within semantically similar regions. The above optimization problem is a simple quadratic problem with a closed-form solution, which is given by

$$R^* = (1 - \alpha)(I - \alpha S)^{-1}Y,$$
(5)

where I is the identity matrix,  $\alpha = \frac{1}{1+\lambda}$  and S is the normalized Laplacian matrix computed from  $I_C$ , i.e.,  $S = D^{-\frac{1}{2}}WD^{-\frac{1}{2}} \in \mathbb{R}^{N \times N}$ . As the constructed graph is often sparsely connected (i.e., most elements in W are zero), the inverse operation in (5) can be computed efficiently. With the closed-form solution, the smoothing step can be written as a function mapping given by:

$$R^* = \mathcal{F}_2(Y, I_C) = (1 - \alpha)(I - \alpha S)^{-1}Y.$$
(6)