Homotopy Theory as a Cohomology Theory

Maximilian Hans

3rd October 2022

Abstract

We follow [Hat02] to establish a well-known, but surprising connection between homotopy theory and cohomology. The nth-homotopy group of a pointed topological space (X, x_0) is defined to be the set of all basepoint-preserving maps $f:(S^n,s_0)\to (X,x_0)$ up to basepoint-preserving homotopy, denoted as $[S^n,X]$. As we generally work in the category \mathbf{CW}_{\bullet} of pointed CW-complexes, we will mostly omit any mention of the basepoint. Similarly, one could consider two spaces X,Y and study [X,Y], though to define a general group structure could prove difficult. We will study Ω -spectra which will give rise to special families of CW-complexes $\{K_n\}$ such that $[X,K_n]$ with a certain group structure turns out to define a cohomology theory.

1 Establishing a group structure on [X, K]

The first step will consist of discussing which characteristics either X or K have to have, to be able to define an interesting group structure on [X, K], similarly to the group structure of the homotopy groups.

Definition 1.1. Let X, K be spaces. We consider the reduced suspension

$$\Sigma X = \frac{X \times I}{X \times \{0\} \cup X \times \{1\} \cup x_0 \times I}$$

and define a group structure on $[\Sigma X, K]$. Let $f, g \in [\Sigma X, K]$. We define

$$(f+g): \Sigma X \xrightarrow{p} \Sigma X \vee \Sigma X \xrightarrow{f\vee g} K$$

with p being the equatorial pinch map. This given structure turns $[\Sigma X, K]$ into a group.

Definition 1.2 (Loop space). Let X be a pointed topological space. The loop space ΩX is defined to be the set of all pointed loops $f:(S^1,s_0)\to (X,x_0)$. Equivalently, we can think about elements in ΩX to be maps $f:I\to X$ such that $f(0)=x_0=f(1)$. Considering $\Omega^2 X:=\Omega(\Omega X)$ we can inductively define $\Omega^n X:=\Omega^{n-1}(\Omega X)$.

Lemma 1.3. The sets $[\Sigma X, K]$ and $[X, \Omega K]$ stand in bijective relation.

Proof. We define $\phi : [\Sigma X, K] \to [X, \Omega K]$ by $\phi(f(x))(t) := f(x, t)$. Note that by definition of ΣX we have $f(x, 0) = f(x_0) = f(x, 1)$.

This is an example of Eckmann-Hilton duality, see [Hat02, 4.H]

Definition 1.4. We will now define a group structure on $[X, \Omega K]$ and compare it to the one defined above. Let $f, g \in [X, \Omega K]$. We define

$$(f+g)(x) \coloneqq (f \circ g)(x)$$

by composition of the loops in ΩK . Under the relation asserted in Lemma 1.3 this agrees with the previously introduced group structure.

For locally compact Hausdorff spaces X, Y, we have a homeomorphism $(K^X)^Y \cong K^{X \times Y}$, see for example [Hat02, A.16]. Here, K^X denotes the set of morphisms $f: X \to K$. Hence, we can view $\Omega^n K$ as the set of maps $f: (I^n, \partial I^n) \to (K, k_0)$.

Lemma 1.5. $[X, \Omega^n K]$ is abelian for $n \geq 2$.

Proof. This is the same proof as for $\pi_n(X, x_0)$, $n \geq 2$.

Considering Lemma 1.3, we have that $[\Sigma^n X, K] = [X, \Omega^n K]$ is abelian for $n \geq 2$, thus a functor $[-, K] : \mathbf{CW}^{\mathbf{op}}_{\bullet} \to \mathbf{Ab}$.

2 Respresenting Homotopy Theory as a Cohomology Theory

From the previously established facts, to view $h^{\bullet}(X) := [X, K_{\bullet}]$ as a cohomology theory, we would need each K_{\bullet} to be a double loop space. There is a weaker condition that suffices. Let $K_{\bullet} \to \Omega L_{\bullet}$ be a weak homotopy equivalence for some spaces L_{\bullet} . Then $[X, K_{\bullet}] = [X, \Omega L_{\bullet}]$. This naturally leads to the following definition.

Definition 2.1 (Ω -spectrum). An Ω -spectrum is a sequence of CW-complexes K_n together with weak homotopy equivalences $K_n \to \Omega K_{n+1}$ for all $n \in \mathbb{N}$.

Note that we thus have the following weak homotopy equivalence for each $n \in \mathbb{N}$.

$$K_n \to \Omega K_{n+1} \to \Omega^2 K_{n+2}$$

Considering each K_{n-1} as a CW-approximation of ΩK_n , we can extend the sequence for $n \in \mathbb{Z}$. Furthermore, since we work in \mathbf{CW}_{\bullet} , Whitehead's theorem gives us $[X, K_n] = [X, \Omega K_{n+1}]$.

Theorem 2.2. Let $\{K_n\}$ be an Ω -spectrum. Then the functors $h^n(-): \mathbf{CW}^{\mathbf{op}}_{\bullet} \to \mathbf{Ab}$ defined by $h^n(-) := [-, K_n], n \in \mathbb{Z}$ define a reduced cohomology theory.

The converse is true as well, this is Brown's representability theorem. Before we give a proof of Theorem 2.2, one more tool is needed. For a pointed space (X, x_0) , the reduced cone CX is defined to be the following.

$$CX := \frac{X \times I}{X \times \{0\} \cup x_0 \times I}$$

For a CW-pair (X, A), consider the following diagram.

The homotopy equivalences are gives by the fact that the cone is contractible, and there exists a homotopy from $i: A \hookrightarrow CA$ to $p: * \hookrightarrow CA$. The only map that has to be discussed is $X/A \to \Sigma A$, we define it to be the composition of choosing a homotopy inverse $X/A \to X \cup CA$ and then following the arrows of the third square. Thus, the diagram commutes up to homotopy. Repeating this process, and identifying $\Sigma(X/A) \cong \Sigma X/\Sigma A$ holds the following definition.

Definition 2.3 (Puppe sequence). Let (X, A) be a CW-pair. The natural sequence

$$A \longrightarrow X \longrightarrow X/A$$

$$\Leftrightarrow \Sigma A \longrightarrow \Sigma X \longrightarrow \Sigma X/\Sigma A$$

$$\Leftrightarrow \Sigma^2 A \longrightarrow \Sigma^2 X \longrightarrow \dots$$

is called the Puppe sequence of the pair (X, A).

Proof of Theorem 2.2. Let us start with homotopy invariance. A morphism $f: X \to Y$ induces $f^*: [Y, K_n] \to [X, K_n]$ given by pre-composition, $Y \to K_n \mapsto X \xrightarrow{f} Y \to K_n$. The fact that f^* is a homomorphism is evident if we replace K_n by ΩK_{n+1} and consider the group structure established in Definition 1.4. As we are dealing with homotopy classes, and the induced map is given by pre-composition, $f, g \in [X, Y]$ implies that $f^* = g^*$.

The wedge sum axiom holds for obvious reasons. A map $\bigvee_{i \in I} X_i \to K_n$ is a collection of maps $X_i \to K_n$ for every $i \in I$.

Given a CW-pair (X, A), we now want to define a long exact sequence. The Puppe sequence gives rise to the following sequence.

$$[A, K_n] \longleftarrow [X, K_n] \longleftarrow [X/A, K_n] \longleftarrow$$

$$[\Sigma A, K_n] \longleftarrow [\Sigma X, K_n] \longleftarrow [\Sigma X/\Sigma A, K_n] \longleftarrow$$

$$[\Sigma^2 A, K_n] \longleftarrow [\Sigma^2 X, K_n] \longleftarrow \dots$$

Considering $[\Sigma X, K_n] = [X, \Omega K_n]$, and K_{n-1} as a CW-approximation of ΩK_n , we extend the sequence to a long sequence.

$$\dots \longleftarrow [A, K_n] \longleftarrow [X, K_n] \longleftarrow [X/A, K_n]$$

$$= \underbrace{[A, K_{n-1}] \longleftarrow [X, K_{n-1}] \longleftarrow [X/A, K_{n-1}]}_{[A, K_{n-2}] \longleftarrow [X, K_{n-2}] \longleftarrow [X/A, K_{n-2}] \longleftarrow \dots$$

It is left to show that this sequence is indeed exact. As each element in the Puppe sequence is obtained by its two predecessors, thus, it suffices to show that the sequence

$$[A, K_n] \leftarrow [X, K_n] \leftarrow [X \cup CA, K_n]$$

is exact. Note that $X/A \simeq X \cup CA$, as CA is homotopy equivalent to a point. Let $f \in [X, K_n]$. This is a zero element in $[A, K_n]$ if and only its restriction to A is nullhomotopic, equivalently, the map $f: X \to K_n$ extends to a map $f: X \cup CA \to K_n$. As we consider homotopy classes, this can be written as $f: X/A \to K_n$. Hence, the long sequence is exact.

References

[Hat02] Allen Hatcher. Algebraic topology. Cambridge University Press, 2002.