The Ground State Rotational Spectrum of Formaldehyde

R. Bocquet,* J. Demaison,* L. Poteau,* M. Liedtke,† S. Belov,† K. M. T. Yamada,† G. Winnewisser,† C. Gerke,‡ J. Gripp,‡ and Th. Köhler‡

*Laboratoire de Spectroscopie Hertzienne, URA CNRS 249, Bât. P5, Université de Lille I, 59655 Villeneuve D'Ascq Cedex, France; †I. Physikalisches Institut, Universität zu Köln, Zülpicher Strasse 77, D 50937 Cologne, Germany; and ‡Institut für Physikalische Chemie, Universität Kiel, Olshausenstrasse 40-60, D 24098 Kiel, Germany

Received January 29, 1996

The ground state rotational spectrum has been measured from 1 to 2600 GHz. These new measurements together with the older ones have been fitted to a standard A-reduced Watson-type Hamiltonian. The accuracy of the rotational and centrifugal distortion (including some octic ones) constants has been notably improved. The experimental constants are compared to the *ab initio* ones. © 1996 Academic Press, Inc.

INTRODUCTION

Formaldehyde (H₂CO) is one of the molecules most extensively studied by microwave spectroscopy: more than 365 papers have been published on this subject to date. The reasons for this interest are numerous:

- (i) With the advent of high-resolution spectroscopy in the terahertz region, it is of great interest to check the limits of the vibration-rotation theory and the applicability of the Watsonian approach to fitting the data. For light molecules such as, e.g., H_2S , the Padé formalism might be used as an alternative approach (I).
- (ii) It is a small tetraatomic molecule and its properties may be easily predicted by *ab initio* calculations. Particularly, many papers are devoted to the calculation of the harmonic and anharmonic force field of H₂CO. A list of references may be found in Ref. (2). To check the quality of the force field, it is desirable to experimentally determine parameters which depend on this force field (centrifugal distortion constants, rovibrational constants, . . .).
- (iii) Formaldehyde is one of the first polyatomic molecules to be detected in interstellar clouds (1968), and it is one of the most widely distributed interstellar molecules. In fact all its isotopic species have been detected including D_2CO (see, for instance, Ref. (3) for a list of references). Recently, it was also identified in several comets at submillimeter wavelengths (4).

The most recent centrifugal distortion analysis was published by Cornet and Winnewisser in 1980 (5). However, the measurement of the pure rotational spectrum was limited to the very low frequency range of the submillimeter-wave spectrum (460 GHz). Since H_2CO possesses large rotational constants ($A \approx 282$ GHz, $B \approx 39$ GHz, and $C \approx 34$ GHz), it would be extremely useful to mea-

sure the rotational spectrum at higher frequencies in order to improve the accuracy of the centrifugal distortion constants. Indeed to obtain accurate sextic constants, Cornet and Winnewisser (5) were obliged to combine the rotational data with infrared and ultraviolet combination differences. Nevertheless, the sextic constant Φ_J could still not be determined accurately: 0.031(7) Hz.

The recent development of submillimeter-wave radioastronomy has raised the interest for highly precise line predictions in the far-infrared range. In fact, the two recent Caltec-Submillimeterwave Observatory's CSO-frequency surveys from 325 to 360 GHz (6) and from 580 to 720 GHz (7) show that the higher J rotational transitions of H₂CO carry very strong intensities in high excitation sources such as Orion A. In fact, the $J = 9 \leftarrow 8$, K = 0 and K = 1 (upper/lower) transitions emit intensely from the cores of star-forming regions with antenna temperatures of about 15 K for Orion A. Precise rest frequency positions are required to establish unambiguously the Doppler corrections of the source. This fact assumes importance in determining experimentally the dynamics of the source and possibly in this manner can one derive from which part of the core region the emission emanates. This is the reason why we undertook a new and more complete study of the rotational spectrum of H₂CO.

EXPERIMENTAL DETAILS

The rotational spectrum of H₂CO was measured between 1 and 2600 GHz using several spectrometers in three different laboratories.

In Lille, the submillimeter-wave spectrum was measured between 800 and 2600 GHz with a far-infrared microwave sideband spectrometer (8). The outputs of

a computer-controlled synthesizer (2-18 GHz) and an optically pumped far-infrared laser are mixed on a Schottky diode. A heterodyne receiver is used to detect the sideband signal. The length of the laser cavity is adjusted at the top of the Doppler profile of the laser line. The accuracy of the frequency measurements depends on the accuracy of the frequency of the laser line. For most measurements, it is between 500 kHz and 1 MHz, but, at 2500 GHz, the total width at half maximum due to the Doppler broadening is on the order of 7 MHz, giving an uncertainty of a few MHz for the frequency of the laser line. Additional interesting millimeter-wave lines were measured in the range 100-470 GHz with a source-modulated millimeter-wave spectrometer whose radiation source is either BWOs (340-470 GHz) or a GaAs Schottky multiplier driven by Gunn diodes (100-300 GHz). The frequency of the measurements is generally better than 50 kHz.

At Cologne, we have used the recently constructed terahertz spectrometer. As fundamental frequency sources, phase- and frequency-locked BWOs are used (9). Recently, we have achieved operation up to about 1.3 THz (10) and have reached measurement accuracies for unblended strong lines of about 10 kHz. This high measurement accuracy can be used in the region of frequency overlap with other techniques, such as laser sideband or Fourier FIR spectroscopy, for calibration purposes. Further details of the Cologne spectrometer have been published (11, 12). At Cologne, we have measured and analysed in addition to the parent molecule the terahertz spectra of the astrophysically relevant ¹³C- and ¹⁸O-isotopomers. These results will be published independently.

In Kiel, a few very weak high J, low K, direct Kdoublet Q-branch transitions located in the microwave region were measured. These lines are useful from the point of view of the centrifugal distortion and were recorded with waveguide microwave Fourier transform spectrometers in the frequency range from 1 to 26.5 GHz. The 1-4 GHz measurements have been performed with a setup using a 10-m coaxial cell (13). A circular waveguide cell has been used in the 18–26.5 GHz range (14). Standard setups containing waveguide cells with rectangular or quadratic cross sections and lengths from 2 to 12 m have been used in the 5-18 GHz range (15, 16). The microwave pulse power was about 10-100 mW, and the pulse length about 200 nsec. All measurements have been performed at room temperature with pressures between 2 and 5 mTorr.

The formaldehyde was freshly prepared before the measurements. Paraformaldehyde was heated *in vacuo*, and the reaction products were pumped through two traps connected in series and held at -20° C and liquid nitrogen

temperature. The content of the second trap was used for the measurements.

ANALYSIS

First, the existing data were used to estimate the rotational parameters together with their variance–covariance matrix, which were then used to predict unmeasured transitions and their standard deviation. Only transitions with a standard deviation significantly larger than the measurement accuracy were retained. It appeared that most of these transitions are in the submillimeter-wave range. The newly measured transitions are listed in Table 1. A total of 273 transitions with $J \leq 44$ and $K_a \leq 12$ have been assigned. The new transitions combined with those of Ref. (5) were fitted to the Hamiltonian of Watson using the I' representation in the A-reduction (17). It was found necessary to extend this Hamiltonian up to J^8 terms by adding (18):

$$\begin{split} H^{(8)} &= L_{x}\hat{J}^{8} + L_{JJK}\hat{J}^{6}\hat{J}_{z}^{2} + L_{JK}\hat{J}^{4}\hat{J}_{z}^{4} + L_{KKJ}\hat{J}^{2}\hat{J}_{z}^{6} + L_{K}\hat{J}_{z}^{8} \\ &+ 2\ell_{J}\hat{J}^{6}(\hat{J}_{x}^{2} - \hat{J}_{y}^{2}) + \ell_{JK}\hat{J}^{4}[\hat{J}_{z}^{2}(\hat{J}_{x}^{2} - \hat{J}_{y}^{2}) + (\hat{J}_{x}^{2} - \hat{J}_{y}^{2})\hat{J}_{z}^{2}] \\ &+ \ell_{KJ}\hat{J}^{2}[\hat{J}_{z}^{4}(\hat{J}_{x}^{2} - \hat{J}_{y}^{2}) + (\hat{J}_{x}^{2} - \hat{J}_{y}^{2})\hat{J}_{z}^{4}] \\ &+ \ell_{K}[\hat{J}_{z}^{6}(\hat{J}_{x}^{2} - \hat{J}_{y}^{2}) + (\hat{J}_{x}^{2} - \hat{J}_{y}^{2})\hat{J}_{z}^{6}]. \end{split}$$

The rotational and centrifugal distortion constants are given in Table 2 together with their standard deviation and their correlation matrix. The older experimental constants of Ref. (5) and the ab initio values of Ref. (2) are also given in Table 3. Although H₂CO is a near-symmetric top, the S-reduction does not give better results. It can be seen that most of our constants are in fair agreement with the older ones, and that Φ_I and Φ_{KI} are much more precise: $\Phi_I/\sigma(\Phi_I) = 86$ and $\Phi_{KI}/\sigma(\Phi_{KI}) = 161$ (instead of 4 and 12, respectively). It is for these two parameters that the difference between the new values and the older ones is the largest. Nevertheless, this difference is also large for some other parameters (δ_K , φ_K , . . .), more than 50 standard deviations. This result is surely not satisfactory but, in fact, rather common. It is due to the fact that more parameters are determined (three octic parameters) and that the system of normal equations is not well conditioned (19): in our best fit, the condition number is still $\kappa = 482$, indicating the presence of collinearity (according to Belsley (20) a system is well conditioned when its condition number κ is less than 30). This collinearity involves the sextic constant Φ_{JK} and the two octic constants L_{JJK} and ℓ_{KJ} . However, these three parameters are rather well determined (better than 17 times the standard deviation) and, in keeping one of them (or all) fixed at zero, the fit deteriorates significantly and the conditioning

156 BOCQUET ET AL.

TABLE 1
Observed Rotational Frequencies (MHz) of H₂CO Used in the Analysis^a

J Ka Kc	←J Ka Kc	fexp.	0-C	σ	S	El	Ref.	-	J	Ka k	(c	←J	Ka Kc	fexp.	0-с	σ	S	El	Ref.
10 5 5	10 5 6	0.103	0.001	1	4.770	337.91	CW		9		6	9	3 7	600.740	0.000	1	1.894	183.05	B1
16 6 10 11 5 6	16 6 11 11 5 7	0.142 0.271	0.003	4 1	4.362 4.353	624.11 364.63	CW		4 10		2 7	4 10	2 3 8	1065.869 1113.190	0.000	1	1.798 1.710	57.04 207.37	B1 B1
18 6 12	18 6 13	0.580	0.002	2	3.886	709.07	CW		26	5 2		26	5 22	1428.685	-0.004	5	1.848	1057.37	K
25 7 18	25 7 19	0.606	0.003	3	3.828	1188.02	CW		18	4 1	4	18	4 15	1547.359	-0.001	5	1.709	546.65	K
3 3 0 12 5 7	3 3 1 12 5 8	0.655 0.657	0.002	1	5.250 4.003	88.24 393.77	CW		11 27		8	11	3 9	1942.451	0.000	5	1.558	234.13	K
26 7 19	26 7 20	1.044	0.001 0.000	1 1	3.681	1251.07	CW		19		5	27 19	5 23 4 16	2063.262 2360.186	-0.004 0.001	5 5	1.775 1.616	1123.05 592.89	K K
19 6 13	19 6 14	1.111	0.002	2	3.684	755.19	CW		5	2	3	5	2 4	2483.408	0.000	5	1.463	69.18	ĸ
13 5 8	13 5 9	1.476	0.001	1	3.704	425.35	CW		28		23	28	5 24	2936.930	-0.004	5	1.705	1191.17	K
27 7 20 20 6 14	27 7 21 20 6 15	1.776 2.056	0.006	10 1	3.544 3.502	1316.54 803.74	CW		12 20		9	12 20	3 10 4 17	3225.423 3518.794	0.000 0.001	5 5	1.429 1.532	263.33 641.58	K K
8 4 4	8 4 5	2.454	0.002	2	3.776	218.33	CW		1		0	1	1 1	4829.660	0.000	1	1.500	10.54	cw
28 7 21	28 7 22	2.939	0.001	2	3.416	1384.43	CW		6		4	6	2 5	4954.760	0.049	100	1.232	83.75	cw
14 5 9 21 6 15	14 5 10 21 6 16	3.110 3.692	0.000 0.001	1 2	3.446 3.337	459.36 854.72	CW		13 21	3 1	0	13 21	3 11 4 18	5136.539 5138.492	0.001 0.000	5 5	1.318 1.454	294.97 692.72	K K
4 3 1	4 3 2	4.573	0.000	1	4.050	97.96	CW		39		33	39	6 34	5427.157	-0.008	10	1.733	2188.02	ĸ
15 5 10	15 5 11	6.210	0.000	1	3.222	495.80	CM		31		30	30	3 27	5461.220	0.001	10	0.025	1218.66	K
9 4 5 22 6 16	9 4 6 22 6 17	6.369 6.442	0.000 0.001	1 1	3.375 3.186	240.20 908.14	B2 CW		30 40	5 2		30 40	5 26 6 35	5718.241 7248.848	-0.003 0.000	5 5	1.579 1.680	1334.74 2285.19	K K
23 6 17	23 6 18	10.955	0.000	i	3.047	963.97	CW		22		8	22	4 19	7362.640	0.000	5	1.383	746.29	ĸ
16 5 11	16 5 12	11.833	0.000	1	3.024	534.67	CW		31		26	31	5 27	7833.287	-0.001	5	1.520	1410.18	K
10 4 6 5 3 2	10 4 7 5 3 3	14.845 18.283	-0.001 0.000	2 1	3.051 3.299	264.51 110.11	CW		14 7	3 1	1 5	14 7	3 12 2 6	7892.034 8884.820	0.002	5	1.222	329.04	K
17 5 12	17 5 13	21.646	0.000	1	2.848	575.98	CW		41		5 35	41	6 36	9600.263	-0.001 -0.001	10 5	1.063 1.630	100.73 2384.79	CW K
11 4 7	11 4 8	31.773	0.000	2	2.783	291.24	CW		23		9	23	4 20	10366.520	0.003	10	1.316	802.31	CW
18 5 13 6 3 3	18 5 14 6 3 4	38.201	0.000	1	2.692	619.72	CW		32		27	32	5 28	10608.668	-0.002	10	1.464	1488.07	cŵ
6 3 3 12 4 8	12 4 9	54.818 63.446	0.001 0.000	1	2.784 2.558	124.69 320.42	CW		32 15	2 3	30 2	31 15	4 27 3 13	11345.861 11753.122	0.016 0.001	50 10	0.033 1.136	1341.45 365.56	CW CW
19 5 14	19 5 15	65.301	0.000	1	2.550	665.90	CW		42	6 3	36	42	6 37	12610.781	0.007	10	1.580	2486.82	ĸ
2 2 0	2 2 1	71.140	0.001	1	3.333	40.04	CW		33		89	33	5 29	14211.795	0.002	5	1.410	1568.39	K
20 5 15 13 4 9	20 5 16 13 4 10	108.483 119.615	0.000	1	2.423 2.365	714.51 352.02	B1 CW		24 2		20	24 2	4 21 1 2	14360.927 14488.479	0.002 0.000	5 1	1.254 0.833	860.78 15.24	CW
7 3 4	7 3 5	136.925	0.000	1	2.408	141.71	ćw		8		6	8	2 7	14726.637	0.000	5	0.932	120.13	K
21 5 16	21 5 17	175.641	-0.001	1	2.306	765.56	B1		23		20	24	1 23	16583.764	-0.003	5	0.027	748.79	K
14 4 10 22 5 17	14 4 11 22 5 18	214.812 277.811	0.000 -0.001	1	2.199 2.199	386.07 819.04	B1 B1		25 16		24 3	24 16	3 21 3 14	16769.270 17027.482	-0.001 0.002	5 5	0.028 1.060	808.70	K K
8 3 5	8 3 6	300.870	0.000	i	2.121	161.16	CM		34	5 2		34	5 30	18841.428	0.002	10	1.359	404.50 1651.15	cw
3 2 1	3 2 2	355.568	0.001	1	2.333	47.33	CW		25	4 2	21	25	4 22	19595.163	0.031	20	1.195	921.68	CW
15 4 11 9 2 7	15 4 12 9 2 8	370.019	0.000	1	2.054	422.55	B1		44 9		88	44	6 39	21253.251	0.000	5	1.485	2698.17	K
17 3 14	17 3 15	22965.630 24068.353	0.005 0.000	10 10	0.827 0.991	141.94 445.88	CW		3	1 0	8 3	9	1 9 0 2	216568.651 218222.192	-0.016 0.003	30 10	0.213 2.999	113.70 7.29	CW
35 5 30	35 5 31	24730.539	0.003	10	1.309	1736.35	CW		3	2	2	2	2 1	218475.632	-0.008	10	1.667	40.04	CW
26 4 22	26 4 23	26358.798	0.007	10	1.140	985.02	CW		3		1	2	2 0	218760.066	-0.003	10	1.667	40.04	CW
3 1 2 31 3 28	3 1 3 32 1 31	28974.805 30724.378	0.003 -0.078	10 200	0.583 0.023	22.28 1294.85	CW		3 17		2 15	2 17	1 1 2 16	225697.775 227583.553	0.000	10 30	2.667 0.395	15.72 402.78	CW
36 5 31	36 5 32	32148.522	-0.003	10	1.260	1823.99	CW		26		23	26	3 24	236589.150	0.001	30	0.558	927.23	Ē
30 1 29	29 3 26	32345.456	-0.004	20	0.027	1143.96	CW		19		16	20	1 19	237482.325	-0.005	30	0.017	529.52	L
18 3 15 10 2 8	18 3 16 10 2 9	33270.587 34100.050	-0.002 -0.001	10 10	0.928 0.741	489.70 166.17	CW		10 18		9 16	10 18	1 10 2 17	264270.140 274617.580	-0.001 -0.017	200 200	0.194 0.366	137.10 446.09	CW
27 4 23	27 4 24	34982.292	0.001	10	1.087	1050.80	CW		4	1	4	3	1 3	281526.929	0.006	10	3.750	22.28	cw
26 1 25	25 3 22	40254.701	-0.015	20	0.029	870.63	CW		4	0	4	3	0 3	290623.405	-0.010	10	3.999	14.57	CW
37 5 32 19 3 16	37 5 33 19 3 17	41402.359 45063.028	-0.004 0.004	30 20	1.213 0.870	1914.06 535.94	CW		4 4	2	3 2	3	2 2 3 1	291237.780	0.007	200	3.000	47.33	CW
28 4 24	28 4 25	45834.995	-0.004	20	1.037	1119.02	CW		4		1	3	3 0	291380.488 291384.264	0.033 -0.110	100 100	1.750 1.750	88.24 88.24	CW
4 1 3	4 1 4	48284.547	0.034	20	0.450	31.67	CW		4		2	3	2 1	291948.060	-0.014	200	3.000	47.34	CW
11 2 9 29 1 28	11 2 10 28 3 25	48618.033	0.032	20 50	0.669	192.80	CW		4	1	3	3	1 2	300836.635	0.001	10	3.750	23.25	cw
29 1 26	26 3 23	49516.276 53589.200	-0.047 -0.602	600	0.028 0.029	1071.79 935.12	CW		27 5		23 5	28 4	2 26 1 4	341039.674 351768.645	0.014 0.004	30 30	0.019 4.800	1040.60 31.67	CM
28 1 27	27 3 24	56661.500	0.213	600	0.029	1002.18	CW		5	0	5	4	0 4	362736.048	0.033	30	4.997	24.26	cw
22 3 19	23 1 22	59352.700	-0.834	900	0.025	690.56	CW		5	2	4	4	2 3	363945.894	0.020	30	4.200	57.04	CW
20 3 17 12 2 10	20 3 18 12 2 11	59896.870 66973.580	-0.040 0.041	100 100	0.817 0.607	584.60 221.82	CW		5 5		2	4	4 1 4 0	364103.249 364103.249	0.026 -0.013	30 30	1.800 1.800	155.17 155.17	CW
5 1 4	5 1 5	72409.090	0.005	100	0.367	43,41	CW		5		3	4	3 2	364275.141	-0.065	100	3.200	97.96	CW
1 0 1	0 0 0	72837.948	-0.001	10	1.000	0.00	CW		5		2	4	3 1	364288.884	-0.032	100	3.200	97.96	CW
22 3 19 6 1 5	22 3 20 6 1 6	100511.100 101332.991	-0.053 0.011	150 44	0.719 0.310	689.19 57.48	CW		5 12		3	4 12	2 2 1 12	365363.428 372986.243	0.015 -0.012	30 50	4.200 0.166	57.08 190.84	CW
7 1 6	7 1 7	135030.440	-0.004	100	0.269	73.89	CW		5	1	4	4	1 3	375893.216	0.003	30	4.800	33.28	cw
2 1 2	1 1 1	140839.502	-0.016	10	1.500	10.54	CW		20	2 1			2 19	383592.517	-0.040	50	0.319	539.77	L
2 0 2 18 2 16	1 0 1 19 0 19	145602,949 148655,337	-0.003 0.118	10 100	2.000 0.013	2.43 450.29	CW		17 29	3 1		18 29	1 17 3 27	389364.903 394068.595	0.014 -0.100	30 100	0.012 0.465	433.70 1130.81	L
15 2 13	15 2 14	148679.198	-0.024	30	0.464	323.26	cw		6		6	5	1 5	421920.772	0.168	200	5.833	43.41	cw
2 1 1	1 1 0	150498.334	-0.004	10	1.500	10.70	CW		6	0	6	5	0 5	434492.995	0.048	30	5.995	36.36	CW
13 2 11 24 3 21	14 0 14 24 3 22	154025.270 158528.320	-0.039 -0.093	30 100	0.014 0.633	251.10 803.42	L		6 6		5 1	5 5	2 4 5 0	436586.486 436751.040	-0.009 -0.021	30 30	5.333	69.18	L
20 3 17	21 1 20	170589.029	0.002	100	0.020	580.91	cw		6		3	5	4 2	436957.406	0.073	500	1.833 3.333	240.78 167.31	L L
8 1 7	8 1 8	173461.705	-0.003	30	0.238	92.63	CW		6	3	4	5	3 3	437199.519	0.023	30	4.500	110.11	Ē
12 2 10 16 2 14	13 0 13 16 2 15	181017.384 185607.137	0.000 -0.013	50 30	0.013	218.02 361.83	CW		6 6		3 4	5 5	3 2	437235.976	-0.054	30	4.500	110.11	L
3 1 3	2 1 2	211211.468	0.016	10	0.427 2.667	15.24	CW			2 4 2		5 27	2 3 2 25	439057.786 442896.100	-0.012 -0.010	30 30	5.333 0.017	69.27 971.13	L L

TABLE 1—Continued

J Ka Kc ←J Ka Kc	fexp. o-	<u>σ</u>	<u> </u>	<u>El</u>	Ref.	J	Ka	a Ko	ل→	Ka	a Kc	fexp.	o-c	σ	S	El	Ref.
21 2 19 21 2 20 44	45274.162 -0.0	25 30	0.300	590.13	L	12	2 6	7	11	6	6	873159.787	-0.004	100	9.000	454.20	С
6 1 5 5 1 4 45	50844.412 -0.0	37 100	5.832	45.82	L	12	2 5	8	11			873775.413	0.177	100	9.917	364.63	Č
30 3 27 30 3 28 45	57331.271 -0.1	29 100	0.439	1203.40	L	12	2 4	9	11	4	8	874557.380	-0.010	100	10.667	291.24	Ç
8 1 8 7 1 7 56	61899.318 0.0	04 100	7.873	73.89	С	12	2 4	- 8	11	4	7	874589.043	-0.020	100	10.667	291.24	С
15 1 14 15 1 15 56	66608.786 0.0	27 100	0.140	288.77	С	12	2 3	10	11	3	3 9	875366.175	-0.005	100	11.250	234.13	С
	76708.315 0.0		7.989	67.73	С	12			11			876649.150	-0.002	100	11.250	234.20	С
	81611.847 -0,0		7.499	100.73	Ç	12			11			888629.012	-0.008	30	11.666	194.42	С
	81749.983 0.0		1.875	467.71	Ç	12		11	11		10	896805.097	-0.004	150	11.907	173.37	Ç
	82058.559 0.0		0.269	697.84	C	27		25	27		26	901481.861	0.268	500	0.230	941.06	Ç
	82070.795 -0.0		3.500	361.98	C	13			12		12	909507.566	-0.111	150	12.916	190.84	Č
	82382.070 -0.0		4.875	272.34	C	13			12		12	923587.825	0.002	50	12.963	187.21	C
	82722.953 0.1: 82724.280 - 0.1		6.000 6.000	198.90 198.90	C	11 13			12	12	11 2 1	926754.911 941690.074	0.031 -0.065	200 150	0.002	203.28 1354.94	C
	83144.604 -0.0		6.875	141.71	č	13			12			942076.535	0.004	50	1.923 12.687	221.82	C
	83308.558 -0.0		6.875	141.71	č		3 11			11		942510.238	0.003	30	3.692	1170.49	č
	87453.659 -0.0		7.499	101.02	č	13				10		943273.417	0.003	30	5.308	1001.54	č
	00330.566 -0.0		7.873	78.39	Č	13			12			943984.915	0.030	30	6.769	848.21	č
	21133.112 0.0		0.001	36.36	č	13			12			944653.527	-0.003	30	8.077	710.66	č
9 1 9 8 1 8 63	31702.813 -0.0	13 100	8.886	92.63	С	13	3 8	5	12	. 8	3 4	944653.527	-0.003	30	8.077	710.66	Č
16 1 15 16 1 16 63	38263.261 0.0	33 50	0.134	326.00	С	13	3 7	7	12	7	6	945295.262	-0.004	50	9.231	588.99	C
90980864	47081.735 -0.0	04 30	8.984	86.96	С	13	3 7	6	12	7	7 5	945295.262	-0.004	50	9.231	588.99	С
	48802.628 0.0		0.006	307.67	С	13	3 6		12	6	7	945941.087	-0.002	30	10.231	483.33	С
	53970.155 -0.0		8.554	120.13	С	13			12			945941.087	-0.008	30	10.231	483.33	С
	54065.180 0.0		1.889	608.85	Ç	13			12			946658.419	0.415	1000	11.077	393.77	С
	54463.345 0.0		3.556	487.12	Ç	13			12			946658.419	-0.403	1000	11.077	393.77	Ç
	54838.225 -0.0		5.000	381.39	C	13			12			947591.820	0.003	30	11.769	320.42	Ç
	55639.907 0.0		7.222	218.33	C	13		-	12			947647.981	-0.005	80	11.769	320.42	C
	55643.676 -0.0 56164.708 -0.0		7.222	218.33	C	13			12			948453.819	0.007	100	12.307	263.33	C
	56164.708 -0.0 56464.572 -0.0		8.000 8.000	161.16	C	13			12			950364.931	0.004	100	12.307	263.44	C
	56658.582 0.0		0.257	161.17 755.18	Č	13 8			12 8		10	964668.054 994322.727	0.001 0.076	50 250	12.693 0.014	224.06 86.96	C
	74809.776 -0.0		8.885	98.42	č	9			9		-	1001211.089	0.006	200	0.014	108.55	Č
	91921.105 0.1		0.000	24.26	č	10			10	-		1010480.968	-0.005	200	0.019	132.46	č
	01370.458 -0.0		9.896	113.70	Č	14			13	-	12	1013711.409	0.020	50	13.708	253.25	č
	12908.776 0.0		0.129	365.53	č		1 12		13			1014053.257	-0.608	1120	3.714	1386.35	č
	70063.852 0.1	76 100	1.917	1141.47	Ċ	14				11		1014942.457	-0.199	120	5.357	1201.93	č
12 2 11 11 2 10 87	70273.480 -0.0	01 100	11.663	192.80	C	14	1 10	5	13	10) 4	1015771.991	-0.107	150	6.857	1033.00	č
12 9 4 11 9 3 87	71410.665 0.0	52 100	5.250	819.15	С	14	1 9	6	13	9	5	1016548.672	-0.059	40	8.215	879.70	С
	72016.071 0.0	26 100	6.667	681.57	С	14	1 8	- 7	13	8	6	1017283.605	-0.023	30	9.429	742.17	С
12 7 6 11 7 5 87	7 2590.976 -0.0	08 100	7.917	559.89	С	14	1 7	8	13	7	7	1017996.678	-0.004	30	10.500	620.52	С
	8726.640 0.02		11.429	514.88	С	19		15	18	4	14	1387277.490	0.083	1000	18.158	546.70	L
	9557.779 0.82		12.215	425.35	С	20) 1	20	19	1	19	1390236.900	-0.209	1000	19.932	451.44	L
	20448.368 0.0		0.002	173.37	Ç	19			18		17	1401314.410	0.137	1000	18.901	433.70	L
	22509.473 -0.00		0.032	158.69	C	21		17	20		16	1534564.900	-0.214	1000	20.238	641.70	L
	37631.665 -0.00		0.039	187.21	Ç	22		18	21		17	1608419.900	1.037	1000	21.272	692.89	L
	10865.220 0.1		13.716	256.24	L	22			21		20	1609503.280	0.617	1000	21.881	580.91	Ļ
15 1 15 14 1 14 104 13 2 12 13 0 13 105			14.923 0.047	253.82 218.02	C	25		21	24		20	1831086.500	0.558	1000	24.359	861.26	L
13 2 12 13 0 13 105 17 1 17 16 1 16 118			16.928	326.00	Ç	26			25		21	1895910.000	0.493	1000	25.039	994.13	Ļ
16 1 15 15 1 14 118			15.912	307.67	L L	26 26		21 23	25 25		20	1896364.980 1898997.300	0.864 0.944	1000 1000	25.039 25.383	994.16 921.68	L
17 1 16 16 1 15 125			16.910	347.29		34			33		29	2513626.720	2.133	2500	33.534	1501.44	L
	31740.250 0.38		17.944	363.87	Ĺ	35		33	34		32	2525928.640	0.222	1000	34.700	1517.18	Ĺ
	31452.419 0.3		16.422	814.56	Ĺ	34		31	33	_	30	2539009.750	-0.547	1000	33.754	1457.83	Ī
19 5 15 18 5 14 138			17.685	619.72	Ĺ	36			35		34	2539183.030	2.116	2500	35.816	1537.20	ī
	34359.880 0.29		17.685	619.72	Ē	37			36		36	2539404.460	0.967	1000	36.934	1547.32	Ĺ
19 3 17 18 3 16 138			18.523	489.70	Ē	37		37	36		36	2539580.000	0.382	1000		1547.29	Ē
19 4 16 18 4 15 138	86464.730 0.14	18 1000	18.158	546.65	L											•	_

a) The uncertainties assumed in the present analysis are given in the column $\sigma(kHz)$, S is the line strength and El (cm⁻¹) the energy of the lower level. The frequencies indicated by C have been measured in Cologne, K in Kiel and L in Lille. The other frequencies are taken from the literature: CW from Ref. (5), Bl from Ref. (25) and B2 from Ref. (26).

does not improve. It is still possible to slightly improve the fit by freeing the octic constant L_{JK} , but it is not accurate $(L_{JK}/\sigma(L_{JK})=6)$ and, in the final fit, it was fixed at zero. The situation is still worse for the older parameters where $\Phi_J/\sigma(\Phi_J)=4$ and $\Phi_{KJ}/\sigma(\Phi_{KJ})=12$. In the latter case, we are clearly in a situation of harmful collinearity, and it may explain the differences found for some parameters. Although the collinearity is generally much less harmful for the prediction of a spectrum than for the estimation of the parameters, it is clearly desirable to

continue to improve the conditioning of the data. It could be achieved by combining the rotational data with the high resolution infrared data.

The *ab initio* and experimental centrifugal distortion constants are also compared in Table 3. The agreement is rather satisfactory for the quartic constants where the mean deviation is 6%, the *ab initio* constants being systematically smaller than the experimental ones. The largest deviation is for δ_K : 13%; this result seems to be rather general, δ_K being more difficult to determine accu-

158 BOCQUET ET AL.

TABLE 2 Molecular Parameters of H2CO in the Ground Vibrational State Determined Using an A-reduced Hamiltonian in the I' Representationa

			Correla	ation	matr	ix														
Α	MHz	281970.5418(84)	1.00																	
В	MHz	38836.05020(32)	0.16 1	.00																
С	MHz	34002.20056(30)	0.35).77	1.00															
Δ_{J}	kHz	75.3244(12)	0.22).67	0.62	1.00														
Δ_{JK}	kHz	1290.967(26)	0.10	0.50	0.39	0.29	1.00													
Δ_{K}	kHz	19421.9(15)	0.79 -0	0.12	0.11	0.21	-0.46	1.00												
δ_{J}	kHz	10.45394(16)	-0.17	0.31	0.11	0.38	0.13	-0.15	1.00											
δ_{K}	kHz	1028.024(37)	-0.19 C).25	-0.26	0.02	0.23	-0.31	-0.27	1.00										
Φ_{J}	Hz	0.0949(11)	0.11	0.42	0.38	0.79	0.26	0.10	0.43	-0.03	1.00									
Φ_{JK}	Hz	32.006(73)	-0.04 C	0.30	-0.02	0.08	0.63	-0.37	-0.08	0.67	0.22	1.00								
Φ_{KJ}	Hz	-80.14(50)	0.09	0.34	0.36	0.36	0.70	-0.29	0.21	-0.09	0.11	0.01	1.00							
Φ_{K}	Hz	4386(64)	0.68 -0	0.16	80.0	0.16	-0.56	0.97	-0.24	-0.31	0.00	-0.49	-0.31	1.00						
φЈ	Hz	0.04423(19)	0.14	0.20	0.23	0.54	0.01	0.25	0.62	-0.36	0.69	0.09	-0.12	0.14	1.00					
φјк	Hz	16.953(49)	-0.42	0.16	-0.24	-0.16	0.29	-0.60	0.12	0.61	-0.06	0.30	0.19	-0.59	-0.53	1.00				
φк	Hz	1483.9(25)	-0.08	0.23	-0.18	0.03	0.26	-0.20	-0.24	0.85	-0.07	0.81	-0.17	-0.22	-0.09	0.24	1.00			
LJJK	mHz	-1.404(51)	0.27 -0	0.19	0.19	0.20	-0.53	0.56	0.09	-0.76	0.14	-0.83	-0.07	0.61	0.34	-0.69	-0.75	1.00		
L _{KK} J	mHz	51.0(30)	-0.06 -0	0.34	-0.28	-0.37	-0.69	0.29	-0.16	-0.08	-0.12	-0.15	-0.96	0.32	0.10	-0.21	-0.04	0.19	1.00	
ℓ_{KJ}	mHz	-71.3(23)	0.42 -0	0.22	0.25	0.14	-0.42	0.63	-0.08	-0.80	0.08	-0.72	-0.05	0.66	0.31	-0.81	-0.70	0.95	0.17	1.00
73 lines																				

^a Standard errors in parentheses are shown in units of the last digit.

rately. It is known that the choice of the rotational constants (either equilibrium or ground state) has a nonnegligible effect on the calculated value of δ_K (21). Furthermore, the agreement is systematically better with the T constants than with the Δ constants for most of the molecules studied so far (22). There is a systematic deviation

TABLE 3 Comparison of the Experimental and ab Initio Centrifugal Distortion Constants^a

	Old values (5)	Present value	es		Ab initio	(<u>2</u>)
	p _o (σ)	p ₀ /σ	p _n (σ)	p _n /σ	Δp/p ^b	pa	∆p/p ^c
Δ_{J}	75.2953(70)	10756	75.3244(12)	64711	0.04	72.730	3.44
Δ_{JK}	1 290.51(12)	10464	1 290.967(26)	48865	0.04	1265.244	1.99
Δ_{K}	19424(2)	8324	19421.9(15)	12784	-0.01	18609.317	4.18
δ_J	10.45676(30)	34856	10.45394(15)	66143	-0.03	9.563	8.52
δ_{K}	1 026.031(83)	12312	1 028.024(37)	27637	0.19	896.290	12.81
Φ_{J}	0.0314(70)	4	0.0949(11)	86	66.87	0.090	5.22
$\Phi_{\sf JK}$	29.02(23)	126	32.006(73)	440	9.33	25.812	19.35
Φ_{KJ}	-112.2(93)	12	-80.14(50)	161	-39.98	-58.190	27.39
Φ_{K}	4499(67)	67	4386(64)	69	-2.58	3789.197	13.61
φυ	0.04240(57)	75	0.04423(19)	235	4.14	0.030	32.22
ΨЈК	15.67(10)	152	16.953(49)	344	7.59	13.760	18.83
φκ	1372(6)	229	1483.9(25)	588	7.53	1156.030	22.09

a) p = parameter (quartic in kHz, sextic in Hz), σ = its standard deviation.

b) (p_n - p₀)/p_n in %. c) (p_n - p_a)/p_n in %.

of 20% between the *ab initio* sextic constants and the experimental ones, the *ab initio* constants being smaller.

 H_2CO is a planar molecule. Indeed its inertial defect is very small, $\Delta = 0.0559(1)$ uÅ², in good agreement with the empirical value calculated using the formulation of Watson (23): 0.0576 uÅ². The planarity defect in centrifugal distortion, whose defining equation is

$$\Delta \tau = 4 \left(T_{cc} - \frac{T_2 - CT_1}{A + B} \right), \qquad [2]$$

is also very small, but significantly different from zero, $\Delta \tau = -0.00398(1)$ MHz, and it has the right order of magnitude and is negative, as was previously found for all planar molecules studied thus far (24). The defect in the sextic planarity relation (18)

$$\Delta H = 6C\Phi_{J} - (B - C)\Phi_{JK} - 2(2A + B + 3C)\varphi_{J}$$

$$+ 2(B - C)\varphi_{JK} + 4\Delta_{J}^{2}$$

$$- 4\delta_{J}(4\Delta_{J} + \Delta_{JK} - 2\delta_{J} - 2\delta_{K})$$
[3]

is also significantly different from zero, $\Delta H = 0.00916$ (57) MHz².

ACKNOWLEDGMENTS

This work has been supported in part by the European Programme Human Capital and Mobility (Network Contract ERBCHRXCT 93-0157). The work in the Cologne laboratories was supported by the Deutsche Forschungsgemeinschaft via Special Research Grant SFB 301. The Kiel group thanks the Deutsche Forschungsgemeinschaft and the Fonds der Chemie for funds. The Lille group thanks the CNRS (G.D.R.P.C.M.G.I.) for funds.

REFERENCES

- S. P. Belov, K. M. T. Yamada, G. Winnewisser, L. Poteau, R. Bocquet, J. Demaison, O. Polyansky, and M. Yu. Tretyakov, J. Mol. Spectrosc. 173, 380–390 (1995).
- J. M. L. Martin, T. J. Lee, and P. R. Taylor, J. Mol. Spectrosc. 160, 105–116 (1993).
- 3. F. J. Lovas, J. Phys. Chem. Ref. Data 21, 181-272 (1992).
- D. Bockelée-Morvan, R. Padman, J. K. Davies, and J. Crovisier, *Planet. Sci.* 42, 655–662 (1994).
- 5. R. Cornet and G. Winnewisser, J. Mol. Spectrosc. 80, 438–452 (1980).
- P. Schilke, T. D. Groesbeck, G. A. Blake, and T. G. Phillips, submitted for publication.
- 7. P. Schilke, private communication.
- D. Boucher, R. Bocquet, J. Burie, and W. Chen, J. Phys. III (France) 4, 1467–1480 (1994).
- 9. See, e.g., G. Winnewisser, Vib. Spectrosc. 8, 241–253 (1995).
- S. P. Belov, F. Lewen, Th. Klaus, and G. Winnewisser, J. Mol. Spectrosc. 174, 606–612 (1995).
- G. Winnewisser, A. F. Krupnov, M. Yu. Tretyakov, M. Liedtke, F. Lewen, A. H. Saleck, R. Schieder, A. P. Shkaev, and S. V. Volokhov, J. Mol. Spectrosc. 165, 294–300 (1994).
- S. P. Belov, M. Liedtke, Th. Klaus, R. Schieder, A. H. Saleck, J. Behrend, K. M. T. Yamada, G. Winnewisser, and A. F. Krupnov, J. Mol. Spectrosc. 166, 489–494 (1994).
- 13. C. Gerke and H. Dreizler, Z. Naturforsch. A 47, 1058-1062 (1992).
- 14. Th. Köhler and H. Mäder, Mol. Phys. 86, 287-300 (1995).
- M. Krüger, H. Harder, C. Gerke, and H. Dreizler, Z. Naturforsch. A 48, 737-738 (1993).
- 16. M. Krüger and H. Dreizler, Z. Naturforsch. A 45, 724-726 (1990).
- J. K. G. Watson, in "Vibrational Spectra and Structure" (J. R. Durig, Ed.), Vol. 6, p. 1. Elsevier, Amsterdam, 1977.
- W. Gordy and R. L. Cook, "Microwave Molecular Spectra." Wiley, New York, 1984.
- J. Demaison, J. Cosléou, R. Bocquet, and A. G. Lesarri, J. Mol. Spectrosc. 167, 400–418 (1994).
- 20. D. A. Belsley, "Conditioning Diagnostics." Wiley, New York, 1991.
- 21. A. G. Császár and P. Fogarasi, J. Chem. Phys. 89, 7646-7648 (1988).
- G. Wlodarczak, J. Demaison, B. P. Van Eijck, M. Zhao, and J. E. Boggs, J. Chem. Phys. 94, 6698–6707 (1991).
- 23. J. K. G. Watson, J. Chem. Phys. 98, 5302-5309 (1993).
- J. Demaison, M. Le Guennec, G. Wlodarczak, and B. P. Van Eijck, J. Mol. Spectrosc. 159, 357–362 (1993).
- 25. J. C. Chardon and J. J. Miller, Can. J. Phys. 59, 378-386 (1981).
- J. C. Chardon, C. Genty, J.-C. Labrune, J. Phys. (Paris) 47, 1483– 1492 (1986).