Squeeze Theorem Lazy Proof

Jeremy Chow

10/9/18

The squeeze theorem stated that $a_n \leq b_n \leq c_n$, $(a_n) \to k$ and $(c_n) \to k$, then $(b_n) \to k$. In order to prove this theorem, we need to show that for any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that n > N implies $|b_n - k| < \varepsilon$.

Given by the situation,

$$|a_n - k| < \varepsilon \text{ for } N_1 \text{ and }$$

$$|c_n - k| < \varepsilon \text{ for } N_2.$$

Let $n > \max\{N_1, N_2\}$ so both statements holds true.

The lowest that a_n will be is given by $k - a_n < \varepsilon, k - \varepsilon < a_n$.

The highest that c_n will be is given by $c_n - k < \varepsilon$, $c_n < k + \varepsilon$.

So we have

$$k - \varepsilon < a_n \le b_n \le c_n < k + \varepsilon,$$

$$k - \varepsilon < b_n < k + \varepsilon$$
,

which can be rewritten as

$$|b_n - k| < \varepsilon.$$

Hence, by the $N - \varepsilon$ definition of sequence convergence, $(b_n) \to k$ if $a_n \le b_n \le c_n$, $(a_n) \to k$ and $(c_n) \to k$. QED