

Calculating Hydrocarbon Volumes in a Reservoir

Student Name: Albert Lamy Christian UID: 19BPE1026

Branch: Petroleum Section/Group: 02

Semester: 05 Date of Performance: 09/09/2021

Subject Name: Formation evaluation lab

Subject Code: PEP-318

1. Aim/Overview of the practical:

Calculating hydrocarbon volumes in a reservoir.

2. Task to be done:

To calculate the volume of oil or gas in the reservoir.

3. Apparatus:

- Reservoir data
- Code editor or IDE

4. Algorithm/Flowchart:

NA

5. Theme/Interests definition:

Oil originally in place (OOIP): refers to the total oil content of an oil reservoir.

Gas originally in place (GOIP): is the total gas content of an oil reservoir.

Stock tank oil originally in place (STOOIP): refers to the oil in place before the commencement of production.

6. Steps for experiment/practical:

- Develop a script, with relevant inputs, for designing the relevant formulation.
- Execute the program and display in the console.

7. Observations/Discussions:

• For the Oil reservoir

Parameter	Value (units)
Area of the zone (A)	2000 acres
Thickness (h)	150 ft
Porosity (\phi)	15 %
Water Saturation (Sw)	30 %
Oil formation volume factor (Bo)	1.65

• For the Gas reservoir

Parameter	Value (units)
Area of the zone (A)	2000 acres
Thickness (h)	150 ft
Porosity (\$\phi\$)	15 %
Water Saturation (Sw)	30 %
Gas formation volume factor (Bg)	0.0035

8. <u>Percentage error</u> (if any or applicable):

NA

9. Calculations/ Chemical Reactions / Theorems /Formulas used etc:

• For the oil reservoir

$$OIP = 7758 Ah\phi (1 - Sw) = 7758 \times 2000 \times 150 \times 0.15 \times (1 - 0.30) = 244377000$$

 $STOOIP = OIP / Bo = 244377000 / 1.65 = 1481072.727273$

• For the gas reservoir

$$GIP = 43560 Ah\phi (1 - Sw) = 43560 \times 2000 \times 150 \times 0.15 \times (1 - 0.30) = 1372000000$$

 $STGOIP = GIP / Bg = 1372000000 / 0.0035 = 392040000000$

10. Result/Output/Writing Summary:

	Oil Reservoir	Gas Reservoir
OOIP (bbl)	244377000	-
GOIP (cu ft)	-	1372140000
STOOIP (bbl)	1481072.727273	-
STGOIP (cu ft)	-	392040000000

11. Graphs (If Any):

NA

12. <u>Learning outcomes</u> (What I have learned):

- Recoverable reserves are a fraction of the OOIP or GOIP and are dependent on the efficiency of the reservoir drive mechanism.
- OOIP and GOIP are based on a geological model that geometrically describes the volume of hydrocarbons in the reservoir.
- Due to gas evolving from the oil as pressure and temperature are decreased, oil at the surface occupies less space than it does in the subsurface.
- Because of expansion, gas occupies more space at the surface than it does in the subsurface.

