# Computational Linear Algebra EK103

Giacomo Cappelletto

21/1/2

# Contents

\_\_\_\_\_ Page 2\_

|             | 1.1 | Vectors, Norms and Products Interpretation of vectors in $\mathbb{R}^{2,3}$ — 6                                                                                                                          | 2               |   |
|-------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---|
|             | 1.2 | Rotation Matrices                                                                                                                                                                                        | 7               |   |
|             |     | Examples of 2D Matrix Transformations — 8                                                                                                                                                                |                 |   |
|             | 1.3 | Mapping                                                                                                                                                                                                  | 9               |   |
|             |     | Method 1 – Vector Method — 9 • Method 2 – Vertex Method — 9                                                                                                                                              |                 |   |
|             | 1.4 | A System of Linear Equations                                                                                                                                                                             | 11              |   |
|             | 1.5 | How to Determine Consistency, Uniqueness, and the Number of Solutions for a Linear S FRR — 13                                                                                                            | ystem 11        |   |
|             | 1.6 | Back Row Reduction                                                                                                                                                                                       | 13              |   |
|             |     |                                                                                                                                                                                                          |                 |   |
| Chapter $2$ |     | Linear Combinations                                                                                                                                                                                      | Page 16         | _ |
|             | 2.1 | Matrix-Vector Product as Linear Combination                                                                                                                                                              | 16              |   |
|             | 2.2 | Linear Combinations and the Span                                                                                                                                                                         | 17              |   |
|             | 2.3 | Geometric Plots in the Notes                                                                                                                                                                             | 17              |   |
|             |     | Key Conclusions — 18 $\bullet$ Dropping a vector to retain the same span — 18                                                                                                                            |                 |   |
|             | 2.4 | Evaluating Linear Dependence Procedurally                                                                                                                                                                | 19              |   |
|             | 2.5 | Identity Matrix ERP's and Identity Matrices — 23                                                                                                                                                         | 20              |   |
| Charter 2   |     |                                                                                                                                                                                                          |                 |   |
| Chapter 3   |     | Vector Spaces                                                                                                                                                                                            | Page 24         | _ |
|             | 3.1 | Column Space                                                                                                                                                                                             | 25              |   |
|             | 3.2 | Linear Combinations and Column Space  Basic Definitions and Concepts — 25 • Dimension and Basis of the Column Space — 25 • Para the Column Space — 26 • Geometry of the Column Space — 26 • Example — 26 | .metric Form of |   |
|             | 3.3 | Nullspace of a Matrix                                                                                                                                                                                    | 27              |   |
|             | 3.4 | Row Space of a Matrix                                                                                                                                                                                    | 29              |   |
|             | 3.5 | Dimension and Basis of Row Space                                                                                                                                                                         | 29              |   |
| Chapter 4   |     | Properties of Matrices                                                                                                                                                                                   | Page 31         |   |
| -           | 4.1 | Determinant of a Square Matrix                                                                                                                                                                           | 31              |   |
|             | 1.1 | Cofactor Algorithm for Computing Determinant — 31 • Properties of Determinants — 32                                                                                                                      | 91              |   |
|             | 4.2 | EigenVectors and EigenValues                                                                                                                                                                             | 32              |   |
|             | 4.3 | Properties of Eigenvectors                                                                                                                                                                               | 36              |   |

Chapter 1 Basics \_

## Chapter 1

## **Basics**

### 1.1 Vectors, Norms and Products

#### Note:-

Let us consider two vectors in  $\mathbb{R}^3$ :

$$u = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 and  $v = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ .

We wish to compute their magnitudes (norms and norm-squared), the angle between them, and the plane that they span. These methods are directly applicable to computational tools such as MATLAB.

#### Definition 1.1.1: Norm of a Vector

For a vector  $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ , its norm is

$$||x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

In many programming languages (including MATLAB), this is computed via norm(x), while the square of the norm is  $||x||^2 = x \cdot x = x_1^2 + \cdots + x_n^2$ .

Norm squared is the result of the dot product of a vector with itself. For example, the norm squared of x is

$$||x||^2 = x \cdot x = x_1^2 + \dots + x_n^2 = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \cdot \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}.$$

#### **Example 1.1.1** (Norms and Norm-Squared of u and v)

$$||u|| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3}, \quad ||v|| = \sqrt{1^2 + (-1)^2 + 1^2} = \sqrt{3}.$$

Thus, both vectors have the same magnitude  $\sqrt{3}$ . Their squared norms are

$$||u||^2 = 3, ||v||^2 = 3.$$

In MATLAB notation, one could write:

- norm(u) or norm(u,2) for the norm of u.
- dot(u,u) or norm(u)^2 for  $||u||^2$ .

### Definition 1.1.2: Angle Between Two Vectors

The angle  $\theta$  between two nonzero vectors u and v in  $\mathbb{R}^n$  is given by

$$\theta \ = \ \arccos\Bigl(\frac{u \cdot v}{\|u\| \|v\|}\Bigr).$$

### **Example 1.1.2** (Angle Between u and v)

First, compute the dot product:

$$u \cdot v = (1)(1) + (1)(-1) + (1)(1) = 1 - 1 + 1 = 1.$$

Hence,

$$\theta = \arccos\left(\frac{u \cdot v}{\|u\| \|v\|}\right) = \arccos\left(\frac{1}{\sqrt{3}\sqrt{3}}\right) = \arccos\left(\frac{1}{3}\right).$$

In MATLAB, one could write:

### Definition 1.1.3: Plane Spanned by Two Vectors

The plane containing vectors u and v and passing through the origin is given by

$$\{ \alpha u + \beta v \mid \alpha, \beta \in \mathbb{R} \}.$$

An equivalent description is all points  $x \in \mathbb{R}^3$  such that  $x \cdot (u \times v) = 0$ .

#### **Example 1.1.3** (Plane Containing u and v)

• Span form:

Plane = 
$$\left\{ \alpha \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \mid \alpha, \beta \in \mathbb{R} \right\}.$$

• Normal form: The cross product

$$u \times v = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 1 \\ 1 & -1 & 1 \end{vmatrix} = (2, 0, -2).$$

Hence, the plane also can be described by the set of points  $x = (x_1, x_2, x_3)$  for which

$$(2, 0, -2) \cdot (x_1, x_2, x_3) = 0 \implies 2x_1 - 2x_3 = 0 \implies x_1 = x_3.$$

In many computational environments, one simply keeps the span form or uses a symbolic package to compute the cross product and normal equation.

#### Definition 1.1.4: Cross Product

Construct a system of linear equations where the dot product of the vector is orthogonal to both the vectors in the matrix.

$$\begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

3

### Example 1.1.4 (Finding the Plane Spanned by Two Vectors)

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = t \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

Then, we must formulate an equation for any vector perpendicular to the normal of the plane, i.e. the cross product of the two original vectors.

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = 0$$

Hence,

$$y_1 - y_3 = 0$$

### Definition 1.1.5: Dot product

We can take a vector  $\vec{v}$  in  $\mathbb{R}^n$  and a vector  $\vec{w}$  in  $\mathbb{R}^n$ . Then, the dot product of  $\vec{v}$  and  $\vec{w}$  is defined as

$$\vec{v} \cdot \vec{w} = \vec{v}^T \vec{w} = \vec{w}^T \vec{v}$$

Therefore

$$\|\vec{v}\|^2 = \vec{v}^T \vec{v}$$

### Definition 1.1.6: Scalar Multiplication

Scalar multiplication is the operation of multiplying a vector by a scalar. The result is a new vector with the same direction as the original vector, but with a magnitude that is the product of the original magnitude and the scalar.

$$t \cdot \vec{v} = t \cdot \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} t & a_1 \\ t & a_2 \\ \vdots \\ t & a_n \end{bmatrix}$$

Where

$$||t \cdot \vec{v}|| = ||\vec{v}|| \cdot t$$

### Definition 1.1.7: Vector Addition

Vector addition is the operation of adding two vectors together. The result is a new vector that is the sum of the two original vectors.

$$\vec{v} + \vec{w} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = \begin{bmatrix} a_1 + b_1 \\ a_2 + b_2 \\ \vdots \\ a_n + b_n \end{bmatrix}$$

### Definition 1.1.8: Matrix to Vector Multiplication

Matrix to vector multiplication is the operation of multiplying a matrix by a vector. The result is a new vector that is the result of the matrix-vector multiplication. Matrices are represented as  $n \times m$ , where n is the number of rows and m is the number of columns. The number of columns of the matrix must be equal to the number of rows of the vector.

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n \end{bmatrix}$$

### Definition 1.1.9: Matrix to Matrix Multiplication

Matrix to matrix multiplication is the non-commutative operation of multiplying two matrices together. The result is a new matrix that is the product of the two original matrices.

For two matrices A and B to be multiplied, the number of columns of A must be equal to the number of rows of B. If A is an  $m \times n$  matrix and B is an  $n \times p$  matrix, then their product C = AB is an  $m \times p$  matrix. The element  $c_{ij}$  of the resulting matrix C is computed as:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

where  $a_{ik}$  is the element from the *i*-th row and *k*-th column of matrix A, and  $b_{kj}$  is the element from the k-th row and j-th column of matrix B.

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1p} \\ b_{21} & b_{22} & \cdots & b_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1p} \\ c_{21} & c_{22} & \cdots & c_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mn} \end{bmatrix}$$

### Example 1.1.5 (Matrix to Matrix Multiplication)

Consider the matrices

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix}.$$

Their product C = AB is computed as follows:

$$C = \begin{bmatrix} 1 \cdot 7 + 2 \cdot 10 & 1 \cdot 8 + 2 \cdot 11 & 1 \cdot 9 + 2 \cdot 12 \\ 3 \cdot 7 + 4 \cdot 10 & 3 \cdot 8 + 4 \cdot 11 & 3 \cdot 9 + 4 \cdot 12 \\ 5 \cdot 7 + 6 \cdot 10 & 5 \cdot 8 + 6 \cdot 11 & 5 \cdot 9 + 6 \cdot 12 \end{bmatrix} = \begin{bmatrix} 27 & 30 & 33 \\ 61 & 68 & 75 \\ 95 & 106 & 117 \end{bmatrix}.$$



Figure 1.1: Matrix-Matrix Multiplication Diagram

### Definition 1.1.10: Matrix Multiplication of a Matrix with Itself

When a matrix A is multiplied by its transpose  $A^T$ , the resulting matrix is a symmetric matrix. The element  $c_{ij}$  of the resulting matrix  $C = AA^T$  is computed as:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} a_{jk}$$

where  $a_{ik}$  is the element from the *i*-th row and *k*-th column of matrix A, and  $a_{jk}$  is the element from the *j*-th row and *k*-th column of matrix A.

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1m} \\ c_{21} & c_{22} & \cdots & c_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mm} \end{bmatrix}$$

The zeros in this matrix represent orthogonality between the corresponding rows of the original matrix A. Specifically, if  $c_{ij} = 0$ , it means that the i-th row and the j-th row of matrix A are orthogonal to each other.

### Example 1.1.6 (Orthogonality in Matrix Multiplication)

Consider the matrix

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Its transpose is

$$A^T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

The product  $C = AA^T$  is computed as follows:

$$C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Notice that the resulting matrix is the identity matrix, which is symmetric and has zeros in all off-diagonal elements, indicating that the rows (and columns) of the original matrix A are orthogonal to each other.

### 1.1.1 Interpretation of vectors in $\mathbb{R}^{2,3}$

#### Definition 1.1.11: Position Vector

A position vector is a vector that describes the position of an object in space with reference to an origin.

### Definition 1.1.12: Translational Vector

A translational vector is a vector that describes the displacement of an object in space with reference to an origin.

### 1.2 Rotation Matrices

### Note:-

We are considering vectors in  $\mathbb{R}^2$ , denoted by

$$\vec{v} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

We also have a  $2 \times 2$  matrix (linear operator or transformation) given by

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}.$$

### Note:-

Applying A to an input vector  $\vec{v}_i$  produces the output vector  $\vec{v}_o$ :

$$A \vec{v}_i = \vec{v}_o$$
.

Explicitly,

$$\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}.$$

#### Question 1: Transforming a region

Suppose we restrict the input vectors  $\vec{v}_i$  to the square region in the  $(x_1, x_2)$ -plane with coordinates

$$0 \le x_1 \le 1$$
,  $0 \le x_2 \le 1$ .

- How does A map this square region in the input space to a region in the  $(y_1, y_2)$ -plane?
- Geometrically, what does that image region look like?

**Solution:** We can answer this question *mechanically* by observing what happens to the corners of the square, or by spanning the space with two basis vectors:

$$\vec{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \vec{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Each point in the square can be written as

$$x_1 \vec{e}_1 + x_2 \vec{e}_2$$
 with  $0 \le x_1, x_2 \le 1$ .

Applying A to these basis vectors, we get

$$A\vec{e}_1 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad A\vec{e}_2 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}.$$

Hence, the image of the unit square (spanned by  $\vec{e}_1$  and  $\vec{e}_2$ ) is the parallelogram spanned by

$$A\vec{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and  $A\vec{e}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ .

In other words, every point  $(x_1, x_2)$  in the original square is mapped to

$$x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} x_1 + 2x_2 \\ x_2 \end{bmatrix},$$

with  $0 \le x_1, x_2 \le 1$ . Geometrically, this results in a parallelogram in the  $(y_1, y_2)$ -plane whose vertices are (0, 0), (1, 0), (1 + 2, 1), and (2, 1).

7

Thus, restricting  $\vec{v}_i$  to a square region in the input space restricts  $\vec{v}_o$  to a parallelogram in the output space.

### **Algorithm 1:** Mapping a unit square under the linear transformation A

**Input:** Input vector  $\vec{v}_i = [x_1 \ x_2]^T$  with  $0 \le x_1, x_2 \le 1$ **Output:** Output vector  $\vec{v}_o = [y_1 \ y_2]^T$  in the parallelogram

/\* Matrix 
$$A$$
: \*/

1  $A \leftarrow \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ ;

/\* Apply  $A$  to input: \*/

- **2**  $y_1 \leftarrow x_1 + 2 x_2$ ;
- $\mathbf{3} \ y_2 \leftarrow x_2;$
- 4 return  $\vec{v}_o$ ;

#### **Examples of 2D Matrix Transformations** 1.2.1

**Example 1.2.1** ( 
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$
 )

**Transformation:** Vertical stretch scaling  $x_2$  by a factor of 2.



**Example 1.2.2** ( 
$$A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
 )

Transformation: Reflection about the vertical axis.

$$x_2$$
 $e_2$ 
 $Ae_1$ 
 $e_1$ 
 $x_1$ 

**Example 1.2.3** ( 
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 )

**Transformation:** Reflection about the line  $x_1 = x_2$ .

$$\begin{array}{c} x_2 \\ Ae_2 \\ \hline Ae_2 \end{array} x_1$$

Example 1.2.4 ( 
$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 )



**Transformation:** Counterclockwise rotation by  $\theta$  about the origin.

**Example 1.2.5** (  $A = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$  )



Transformation: Projection onto the vertical axis.

### 1.3 Mapping

$$[x_1, x_2] \longmapsto \text{point } (x_1, x_2).$$

Under the linear transformation given by

$$[x_1, x_2] \mapsto \begin{bmatrix} x_1 + 2x_2 \\ x_2 \end{bmatrix},$$

we see that points are "stretched to the right" in the  $x_1$ -direction, while the  $x_2$  coordinate remains unchanged.

### 1.3.1 Method 1 – Vector Method

The matrix under consideration is

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}.$$

The columns of this matrix are:

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and  $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ .

These are the images of the standard basis vectors  $\mathbf{e}_1$  and  $\mathbf{e}_2$ , respectively.



### 1.3.2 Method 2 – Vertex Method

Consider the unit square with vertices

We apply A to each vertex:

$$A \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad A \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad A \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \quad A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}.$$

Hence the new vertices are (0,0), (1,0), (2,1), and (3,1). Plotting these points yields the transformed parallelogram (the image of the original unit square).



### Definition 1.3.1: Rules for Linear Transformations

- 1. Straight lines remain straight.
- 2. Parallel lines remain parallel.
- 3. Distances along lines scale in a consistent, proportional way.

#### Justification

1. Straight lines stay straight. A line in parametric form is:

$$r(t) = t \mathbf{v} + \mathbf{w}.$$

Applying A gives:

$$A(r(t)) = A(t \mathbf{v} + \mathbf{w}) = t A(\mathbf{v}) + A(\mathbf{w}),$$

which is again a parametric line.

- 2. Parallel lines stay parallel. If two lines are parallel, their direction vectors are scalar multiples of each other. After applying A, the resulting direction vectors are  $A(\mathbf{v})$  for each original direction  $\mathbf{v}$ . Since A is linear, any scalar multiples remain so, preserving parallelism.
- 3. Distances scale proportionally. For two points  $\mathbf{v}_1$  and  $\mathbf{v}_2$ , the difference is  $\mathbf{d} = \mathbf{v}_2 \mathbf{v}_1$ . Under A:

$$A\mathbf{v}_2 - A\mathbf{v}_1 = A(\mathbf{v}_2 - \mathbf{v}_1) = A(\mathbf{d}).$$

Thus the new distance  $\|\mathbf{d}'\| = \|A(\mathbf{d})\|$  is a consistent transform of  $\|\mathbf{d}\|$ , depending on the nature of A.

**Example 1.3.1** (A matrix A that acts on a parallelogram (spanned by two vectors  $\mathbf{x}_1, \mathbf{x}_2$ ) will produce another parallelogram in the output plane.)



Here, lines remain lines, parallels remain parallel.

### 1.4 A System of Linear Equations

We have a matrix A of size  $m \times n$ , multiplying an unknown vector  $\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$  (which belongs to  $\mathbb{R}^n$ ), producing a result

vector 
$$\begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \end{bmatrix}$$
 in  $\mathbb{R}^m$ :

$$A_{m \times n} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \end{bmatrix}.$$

This can be viewed as a system of m linear equations in n unknowns. We are often interested in two main questions:

- 1. **Does a solution exist?** That is, can we find  $x_1, x_2, ..., x_n$  so that  $A\mathbf{x} = \mathbf{v}$ ? Geometrically, this asks if  $\mathbf{v}$  lies in the *column space* (or image) of A.
- 2. If at least one solution exists, is it unique or are there infinitely many? Uniqueness is typically tied to whether the columns of A are linearly independent (and whether m, n are related in a way that gives a single solution). If there are fewer pivots than unknowns, or if the system is underdetermined, infinitely many solutions can occur.

Key intuition:

- The question of existence boils down to whether  $\mathbf{v}$  is in the span of the columns of A.
- The question of uniqueness depends on whether those columns form a set of independent vectors and on the relationship between m and n.

# 1.5 How to Determine Consistency, Uniqueness, and the Number of Solutions for a Linear System

Note:-

We consider a linear system

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

and write it in *augmented matrix* form:

$$\begin{bmatrix} A \mid \mathbf{b} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}.$$

- We perform *elementary row operations* (EROs) on  $[A \mid \mathbf{b}]$  to attempt to solve the system. The EROs are:
  - 1. Scaling (multiplying a row by a nonzero constant).

- 2. Row replacement  $(R_i = R_i + c R_j \text{ for } i \neq j)$ .
- 3. Interchanging two rows  $(R_i \leftrightarrow R_i)$ .

These operations do not change the solution set of the system.

**Row Echelon Form (REF)** We say  $[A \mid \mathbf{b}]$  is in row echelon form if:

- All rows of all zeros (if any) are at the bottom of the matrix.
- Each pivot (leftmost nonzero entry in a nonzero row) is strictly to the right of the pivot in the row above.

A pivot column in A corresponds to a *leading variable* (or *basic variable*), and any other column (apart from the augmented column) is called a *free column* (its corresponding variable is a *free variable*).

### Consistency & Number of Solutions

• If, in the augmented matrix, there is a pivot in the last column (meaning a row of the form

$$\begin{bmatrix} 0 & 0 & \cdots & 0 \mid c \end{bmatrix}$$
,  $c \neq 0$ ,

) then the system is inconsistent (no solutions). This corresponds to an equation 0=c where  $c\neq 0$ , which is impossible.

- If no such contradiction is found, then at least one solution exists (the system is *consistent*).
- $\bullet$  The number of pivot columns in A (i.e. the number of leading variables) tells us whether solutions are unique or infinite:
  - 1. If the number of pivots equals the number of unknowns n, then there is exactly one solution (assuming no inconsistency).
  - 2. If the number of pivots is less than n, then there are free variables, implying infinitely many solutions (again, assuming no inconsistency).

#### Example 1.5.1 (Example: Augmented Matrix and REF)

$$\begin{bmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 6 & 9 \\ 3 & 6 & 9 & 15 \end{bmatrix} \longrightarrow (REF).$$

One performs row operations to get an upper-triangular or echelon form. If the last row becomes something like

$$[0 \ 0 \ 0 \ | \ c], \ c \neq 0,$$

then there is no solution. Otherwise, we identify pivot columns, read off the relationships among variables, and find a general solution (unique or infinite).

### Definition 1.5.1: Free Columns and Basic Columns

Once an augmented matrix is in REF, we label each pivot column (in A) as a basic column, and any other column (except the last augmented column) as a free column.

- If  $x_i$  corresponds to a free column, we may label  $x_i$  as a parameter (e.g.  $t_1, t_2, \ldots$ ).
- The variables in pivot columns can then be written in terms of these parameters.

In this manner, we get a general solution describing the entire solution set to  $A\mathbf{x} = \mathbf{b}$ .

### Algorithm to Convert $[A \mid b]$ to REF(A)

1. Select a candidate row: Choose the topmost row among those not yet having a pivot in which a pivot might appear.

- 2. Pivot search and possible row swap: Among this candidate row and those below it, find a row having a leftmost nonzero entry in the desired pivot column. Interchange (swap) that row with the candidate row if needed, placing a nonzero entry where your pivot should be.
- 3. Declare the pivot and eliminate below: Scale the pivot row (if desired) so that the pivot becomes 1. Then use row replacement to produce zeros below that pivot in the same column.
- 4. Move to the next row down and next column to the right, and repeat until you have a row echelon form.

One can then further use row replacement operations to clear the entries *above* each pivot, yielding the *reduced* row echelon form (RREF). However, for most solution purposes, REF is already sufficient to read off whether solutions exist, how many, and so on.

#### 1.5.1 FRR

#### **Algorithm 2:** Forward Row Reduction (Forward Elimination)

```
Input: Matrix A of size m \times n and vector b of size m
    Output: Upper triangular matrix A and modified vector b
    /* Forward elimination process */
 1 for k \leftarrow 1 to \min(m, n) do
        for i \leftarrow k + 1 to m do
            if A_{kk} \neq 0 then
 3
                 f \leftarrow A_{ik}/A_{kk};
 4
                 for j \leftarrow k to n do
 5
                 A_{ij} \leftarrow A_{ij} - f \cdot A_{kj};
 6
                end b_i \leftarrow b_i - f \cdot b_k;
 9
        end
10
11 end
12 return A, b;
```

### 1.6 Back Row Reduction

### Note:-

Back row reduction, also known as back substitution, is a method used to solve a system of linear equations that has been transformed into an upper triangular form through Gaussian elimination. This method involves solving the equations starting from the last row and moving upwards.

### Definition 1.6.1: Back Row Reduction

Consider a system of linear equations represented in matrix form as  $A\mathbf{x} = \mathbf{b}$ , where A is an upper triangular matrix:

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}.$$

The solution is obtained by solving the last equation first and then substituting the obtained values into the preceding equations.

#### Example 1.6.1 (Example of Back Row Reduction)

Consider the following upper triangular system:

$$\begin{cases} 2x_1 + 3x_2 + 4x_3 = 5, \\ 0x_1 + 6x_2 + 7x_3 = 8, \\ 0x_1 + 0x_2 + 9x_3 = 10. \end{cases}$$

We start with the last equation:

$$9x_3 = 10 \quad \Rightarrow \quad x_3 = \frac{10}{9}.$$

Next, we substitute  $x_3$  into the second equation:

$$6x_2 + 7\left(\frac{10}{9}\right) = 8 \implies 6x_2 + \frac{70}{9} = 8 \implies 6x_2 = 8 - \frac{70}{9} \implies x_2 = \frac{2}{9}.$$

Finally, we substitute  $x_2$  and  $x_3$  into the first equation:

$$2x_1 + 3\left(\frac{2}{9}\right) + 4\left(\frac{10}{9}\right) = 5 \quad \Rightarrow \quad 2x_1 + \frac{6}{9} + \frac{40}{9} = 5 \quad \Rightarrow \quad 2x_1 = 5 - \frac{46}{9} \quad \Rightarrow \quad x_1 = \frac{1}{9}.$$

Thus, the solution is:

$$x_1 = \frac{1}{9}$$
,  $x_2 = \frac{2}{9}$ ,  $x_3 = \frac{10}{9}$ .

### Algorithm 3: Back Row Reduction (Back Substitution)

**Input:** Upper triangular matrix A of size  $n \times n$  and vector **b** of size n

Output: Solution vector  $\mathbf{x}$  of size n

/\* Initialize solution vector \*/

```
1 for i \leftarrow n to 1 do

2 \begin{vmatrix} x_i \leftarrow b_i; \\ \text{3} & \text{for } j \leftarrow i+1 \text{ to } n \text{ do} \\ & | x_i \leftarrow x_i - A_{ij} \cdot x_j; \\ \text{5} & \text{end} \\ & | x_i \leftarrow x_i/A_{ii}; \end{vmatrix}
```

7 end

8 return x:

### Example 1.6.2 (Full SLE solving)

$$\begin{bmatrix} 1 & 1 & 2 & 2 \\ 1 & -1 & 0 & -2 \\ 2 & 0 & m & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 & 2 \\ 0 & -2 & -2 & -4 \\ 0 & -2 & m-4 & -4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 & 2 \\ 0 & -2 & -2 & -4 \\ 0 & 0 & m-2 & 0 \end{bmatrix}$$

given m=0

$$\begin{bmatrix} 1 & 1 & 2 & 2 \\ 0 & -2 & -2 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

| $\begin{bmatrix} 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ |
|---------------------------------------------------------------------------------|
| $\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ |

# Chapter 2

# **Linear Combinations**

### 2.1 Matrix-Vector Product as Linear Combination

$$Ax = \begin{bmatrix} 1 & -2 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + x_2 \begin{bmatrix} -2 \\ 2 \end{bmatrix} = b.$$

Intuition: "Scaling each column of A by its corresponding entry in x."

In other words, to compute Ax, you take  $x_1$  times the first column of A plus  $x_2$  times the second column of A.

### **Example 2.1.1** ( A Specific Choice of x)

If

$$A = \begin{bmatrix} 1 & -2 \\ 3 & 2 \end{bmatrix},$$

then the first column is

$$a_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
 and  $a_2 = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$ .

A linear combination of these columns is

$$x_1 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + x_2 \begin{bmatrix} -2 \\ 2 \end{bmatrix} = b.$$

As an example, if  $x_1 = -\frac{1}{3}$  and  $x_2 = 1$ ,

$$-\frac{1}{3} \begin{bmatrix} 1 \\ 3 \end{bmatrix} + \begin{bmatrix} -2 \\ 2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{3} - 2 \\ -1 + 2 \end{bmatrix} = \begin{bmatrix} -\frac{7}{3} \\ 1 \end{bmatrix}.$$

In the notes, a similar combination yields  $\begin{bmatrix} -2 \\ -2 \end{bmatrix}$ . The key point is that any pair  $(x_1, x_2)$  gives a vector in  $\mathbb{R}^2$ .

### Definition 2.1.1: Span

Span of a set of vectors is the collection of all linear combinations of those vectors. Concretely, for

$$a_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \quad a_2 = \begin{bmatrix} -2 \\ 2 \end{bmatrix},$$

we write

$$\mathrm{Span}\{\,a_1,a_2\} = \Big\{\,x_1a_1 + x_2a_2 \;\big|\; x_1,x_2 \in \mathbb{R}\Big\}.$$

Any vector b not in this span means Ax = b has no solution.

### 2.2 Linear Combinations and the Span

Vectors "outside" the span of  $\{a_1, a_2\}$  are precisely those b for which the system Ax = b is not consistent. Equivalently, they are not expressible as a linear combination of  $a_1$  and  $a_2$ .

### 2.3 Geometric Plots in the Notes

1. First Plot (showing the columns  $a_1$  and  $a_2$ ):



Any linear combination  $x_1a_1 + x_2a_2$  lands in the parallelogram structure (and its extensions) formed by these two vectors.

2. Second Plot (showing a vector not in the span):



If  $v_1$  and  $v_2$  do not cover (1,1) by any linear combination, then  $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$  is not in their span, hence no solution exists for Ax = b.

17

3. Plot illustrating parallel vectors:



Here,  $v_1$  and  $v_2$  are multiples of each other, so their span is just the single dashed line. The vector b off that line cannot be written as any combination of  $v_1$  and  $v_2$ .



### 2.3.1 Key Conclusions

- Span $\{a_1, a_2\}$  is the set of all vectors b for which Ax = b has a solution.
- If b is not in that span, there is no solution.
- Geometrically, if  $a_1$  and  $a_2$  are not multiples of each other, their span is a 2D plane through the origin in  $\mathbb{R}^2$ . If they are multiples, the span is just a single line, and most vectors in  $\mathbb{R}^2$  lie outside that line (no solution).
- $spana_1$  is a line or point.  $spana_1, a_2$  is a plane, line or point. and so on

### 2.3.2 Dropping a vector to retain the same span

Question 2: Drop vector 
$$a_3$$
 to retain the same span as  $a_1$ ,  $a_2$  and  $a_3$ . 
$$a_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 
$$a_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$a_3 = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

**Solution:** yes,  $spana_1$ ,  $a_2$ ,  $a_3 = spana_1$ ,  $a_2$  because  $a_3$  is a linear combination of  $a_1$  and  $a_2$  ( $a_1 + a_2a_3$ )

### 2.4 Evaluating Linear Dependence Procedurally

**Example 2.4.1** (Finding linear dependence of a set of vectors.)

$$\vec{v_1} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \vec{v_2} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}, \vec{v_3} = \begin{bmatrix} 5 \\ 2 \\ -1 \end{bmatrix}$$

Since  $v_3$  is a linear combination of  $v_1$  and  $v_2$ , we can drop  $v_3$  to retain the same span as  $v_1$  and  $v_2$ .

$$spanv_1, v_2, v_3 = spanv_1, v_2$$

As

$$v_3 = 2v_1 - v_2$$

#### Note:-

Working towards a procedure for evaluating linear dependence of a set of vectors.

$$-v_1 + 2v_2 - v_3 = 0$$

$$\begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

We know that one solution is

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix}$$

Since this SLE has one particular solution as well as the trivial one, then it must have infinitely many solutions.

Then if  $A\vec{x} = 0$  has infinitely many solutions, then the set of vectors (columns) in A is linearly dependent. Conversely, if  $A\vec{x} = 0$  has only one solution ( $\vec{x} = \vec{0}$ ), then the set of vectors (columns) in A is linearly independent.

### Definition 2.4.1: Linear Independence

We say a set of vectors  $\{v_1, v_2, \cdots, v_n\}$  is linearly independent if the only solution to the SLE

$$\begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

is the trivial solution, i.e.  $\vec{x} = \vec{0}$ .

$$A' = \begin{bmatrix} 1 & 3 & 5 & 0 \\ 2 & 2 & 2 & 0 \\ 3 & 1 & -1 & 0 \end{bmatrix} \xrightarrow{R_2 = R_2 - 2R_1, \quad R_3 = R_3 - 3R_1} \begin{bmatrix} 1 & 3 & 5 & 0 \\ 0 & -4 & -8 & 0 \\ 0 & -8 & -16 & 0 \end{bmatrix} \xrightarrow{R_3 = R_3 - 2R_2} \begin{bmatrix} 1 & 3 & 5 & 0 \\ 0 & -4 & -8 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \text{REF}(A')$$

1 Free variable ⇒ Linearly Independent

$$\operatorname{REF}(A') \xrightarrow{R_2 = R_2/(-4)} \begin{bmatrix} 1 & 3 & 5 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_1 = R_1 - 3R_2} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \operatorname{RREF}(A') \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Then

$$\begin{bmatrix} \vec{v_1} & \vec{v_2} & \vec{v_3} \end{bmatrix} t_3 \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

And therefore the linear combination in its homogeneous form implies

$$t_3(\vec{v_1} - 2\vec{v_2} + \vec{v_3}) = \vec{0}$$

### 2.5 Identity Matrix

### Definition 2.5.1: Identity Matrix

special Square matrix where the diagonal elements are 1 and the off-diagonal elements are 0.

$$I_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

Note that  $I_n\vec{x} = \vec{x}$  and  $I'_n = I_n$  and therefore is called a symmetric matrix

#### Question 3: Matrix Multiplication that gives Identity matrix

$$A = \begin{bmatrix} 1 & 0.7 \\ 0 & 1 \end{bmatrix}$$

Find a matrix B such that

$$AB = I$$

**Solution:** Since A makes a horizontal shear of 0.7 then B should do the opposite

$$\therefore B = \begin{bmatrix} 1 & -0.7 \\ 0 & 1 \end{bmatrix} = A^{-1}$$

#### Question 4: Matrix Multiplication that gives Identity matrix 2

$$A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

Find a matrix B such that

$$AB = I$$

**Solution:** Since A makes a reflection about the  $x_2$  axis, B must do the same

$$\therefore B = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = A^{-1}$$

### Question 5: Matrix Multiplication that gives Identity matrix

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

Find a matrix B such that

$$AB = I$$

**Solution:** A flattens all vertical components. Geometrically speaking,  $A^{-1}$  doesn't exist, as shown here

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}$$

Observe that spanA is the line  $x_2 = 0$ 

### Definition 2.5.2: General Case for inverses of square matrices

For a matrix A which is  $n \times n$ ,  $A^{-1}$  exists if and only if

$$span\{A\} = \mathbb{R}^n$$

### Definition 2.5.3: Finding $A^{-1}$

Get the Augmented matrix

$$A'' = [A | I]$$

where A, I are in the form  $n \times n$  and then perform RREF on this augmented matrix. Once done, you will have a matrix in the form

$$RREF(A'') = [I | A^{-1}]$$

### Example 2.5.1 (Finding $A^{-1}$ )

$$A = \begin{bmatrix} 1 & 0.7 \\ 0 & 1 \end{bmatrix}$$

$$A'' = \begin{bmatrix} 1 & 0.7 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

Then RREF

$$\xrightarrow{R_1 = R_1 - 0.7R_2} \begin{bmatrix} 1 & 0 & 1 & -0.7 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$\therefore A^{-1} = \begin{bmatrix} 1 & -0.7 \\ 0 & 1 \end{bmatrix}$$

### Example 2.5.2 (Finding $A^{-1}$ )

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 2 & 1 \\ 3 & 1 & 3 \end{bmatrix}$$

Check if  $span\{A\} = \mathbb{R}^3$ 

Here A has 3 pivots, so it is invertible. Next, make the augmented matrix  $A'' = [A \mid I]$  and perform RREF

$$\begin{bmatrix} 1 & 3 & 2 & 1 & 0 & 0 \\ 2 & 2 & 1 & 0 & 1 & 0 \\ 3 & 1 & 3 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{2} = R_{2} - 2R_{1}$$

$$\begin{bmatrix} 1 & 3 & 2 & 1 & 0 & 0 \\ 2 & 2 & 1 & 0 & 1 & 0 \\ 3 & 1 & 3 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_{3} = R_{3} - 3R_{1}} \begin{bmatrix} 1 & 3 & 2 & 1 & 0 & 0 \\ 0 & -4 & -3 & -2 & 1 & 0 \\ 0 & -8 & -3 & -3 & 0 & 1 \end{bmatrix} \xrightarrow{R_{3} = R_{3} - 2R_{2}} \begin{bmatrix} 1 & 3 & 2 & 1 & 0 & 0 \\ 0 & -4 & -3 & -2 & 1 & 0 \\ 0 & 0 & 3 & 1 & -2 & 1 \end{bmatrix}$$

$$\xrightarrow{R_{2} = -\frac{1}{4}R_{2}} \begin{bmatrix} 1 & 3 & 2 & 1 & 0 & 0 \\ 0 & 1 & \frac{3}{4} & \frac{1}{2} & -\frac{1}{4} & 0 \\ 0 & 0 & 3 & 1 & -2 & 1 \end{bmatrix} \xrightarrow{R_{1} = R_{1} - 3R_{2}} \begin{bmatrix} 1 & 0 & -\frac{1}{4} & -\frac{1}{2} & \frac{3}{4} & 0 \\ 0 & 1 & \frac{3}{4} & \frac{1}{2} & -\frac{1}{4} & 0 \\ 0 & 0 & 3 & 1 & -2 & 1 \end{bmatrix}$$

$$R_1 = R_1 + \frac{1}{4}R_3$$

$$\xrightarrow{R_3 = \frac{1}{3}R_3} \begin{bmatrix} 1 & 0 & -\frac{1}{4} & -\frac{1}{2} & \frac{3}{4} & 0 \\ 0 & 1 & \frac{3}{4} & \frac{1}{2} & -\frac{1}{4} & 0 \\ 0 & 0 & 1 & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \end{bmatrix} \xrightarrow{R_2 = R_2 - \frac{3}{4}R_3} \begin{bmatrix} 1 & 0 & 0 & -\frac{5}{12} & \frac{7}{12} & \frac{1}{12} \\ 0 & 1 & 0 & \frac{1}{4} & \frac{1}{4} & -\frac{1}{4} \\ 0 & 0 & 1 & \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \end{bmatrix}.$$

Therefore

$$A^{-1} = \begin{bmatrix} -\frac{5}{12} & \frac{7}{12} & \frac{1}{12} \\ \frac{1}{4} & \frac{1}{4} & -\frac{1}{4} \\ \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \end{bmatrix}$$

#### Example 2.5.3 (Review)

$$A(5,5), B\left(\frac{5}{2}, \frac{5}{2}\right), C\left(\frac{15}{2}, \frac{5}{2}\right), D(5,0)$$



$$A'(0,0)$$
,  $B'\left(-\frac{5}{2}, -\frac{5}{2}\right)$ ,  $C'\left(\frac{5}{2}, -\frac{5}{2}\right)$ ,  $D'(0,-5)$ 



$$\vec{AB} = \vec{v_2} = \begin{bmatrix} -\frac{5}{2} \\ -\frac{5}{2} \end{bmatrix}, \vec{AC} = \vec{v_1} = \begin{bmatrix} \frac{5}{2} \\ -\frac{5}{2} \end{bmatrix}$$
$$\vec{v_1}^T \vec{v_2} = -\frac{25}{4} + \frac{25}{4} = 0 = |\vec{v_1}| |\vec{v_2}| \cos(\theta)$$
$$\therefore \theta = 90^{\circ}$$

### 2.5.1 ERP's and Identity Matrices

Let A'' be a matrix. Consider the augmented matrix:

$$[A \mid I] : m \times 2m$$

Perform a sequence of elementary row operations (ERPs) on A to turn it into the identity matrix I:

$$E_p \dots E_2 E_1 A'' = B [A \mid I] = [BA \mid BI]$$

where B is an  $m \times m$  matrix. If we achieve BA = I, then:

$$B = A^{-1}$$

### Question 6: Thinklet

Consider a set S of vectors in  $\mathbb{R}^m$  who's tips form a straight line through the origin. If we linearly combine a set of vectors in S, is the result guaranteed to be in S?

Solution: DUH

# Chapter 3

# **Vector Spaces**

### Definition 3.0.1: Vector Space

A vector space is a set of vectors in  $\mathbb{R}^m$  for which the following hold:

- 1. The set is closed under addition: that is, if  $\vec{v_1}$ ,  $\vec{v_2}$  are both in the set, then  $\vec{v_1} + \vec{v_2}$  is also in the set.
- 2. The set is closed under scalar multiplication: that is, if  $\vec{v}$  is in the set and  $c \in \mathbb{R}$ , then  $c\vec{v}$  is also in the set.

### Definition 3.0.2: Basis of a Vector Space

A basis for a vector space in  $\mathbb{R}^m$  is a set of independent vectors that span the vector space. The maximum number of vectors that could be in that basis is m.

m is the **dimension** of the vector space.

Example 3.0.1 (Examples of Vector Spaces)

| S                                                                                                                                                  | Basis                                                                                                                                                                                                                                  | Dimension |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| $\{\vec{0}\}$                                                                                                                                      | Ø                                                                                                                                                                                                                                      | 0         |
| $\left\{ \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix} t \right\}$                                                                     | $ \left\{ \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix} \right\} $                                                                                                                                                         | 1         |
| $ \left\{ \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix} t_1 + \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} t_2 \right\} $ | $ \left\{ \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix}, \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} \right\} $                                                                                              | 2         |
| $\left\{ \sum_{i=1}^{k} \begin{bmatrix} a_{1i} \\ a_{2i} \\ \vdots \\ a_{mi} \end{bmatrix} t_i \right\}$                                           | $ \left\{ \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}, \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}, \dots, \begin{bmatrix} a_{1k} \\ a_{2k} \\ \vdots \\ a_{mk} \end{bmatrix} \right\} $ | k         |

### 3.1 Column Space

### Definition 3.1.1: Column space of matrix A

The *column space* of an  $m \times n$  matrix A, denoted as Col(A), is the subspace of  $\mathbb{R}^m$  spanned by the columns of A. Formally,

$$\operatorname{Col}(A) = \operatorname{span}(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)$$

where  $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$  are the column vectors of A. This means that  $\operatorname{Col}(A)$  consists of all possible linear combinations of the columns of A.

### 3.2 Linear Combinations and Column Space

### 3.2.1 Basic Definitions and Concepts

### Definition 3.2.1: Matrix Notation

An  $m \times n$  matrix A is a rectangular array of numbers with m rows and n columns. We can represent A as a collection of column vectors:

$$A = [\vec{v}_1 \ \vec{v}_2 \ \dots \ \vec{v}_n]$$

where each  $\vec{v}_i$  is a vector in  $\mathbb{R}^m$ .

### Definition 3.2.2: Column Space (Col A)

The column space of a matrix A, denoted as Col A, is the set of all linear combinations of the columns of A. Formally, if  $A = [\vec{v}_1 \ \vec{v}_2 \ \dots \ \vec{v}_n]$ , then

Col 
$$A = \text{span}\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\} = \{t_1\vec{v}_1 + t_2\vec{v}_2 + \dots + t_n\vec{v}_n \mid t_1, t_2, \dots, t_n \in \mathbb{R}\}$$

### 3.2.2 Dimension and Basis of the Column Space

### Question 7: What is the dimension of Col A?

The dimension of Col A is equal to the number of pivot columns in the reduced row echelon form (REF) of A.

**Solution:** The dimension corresponds to the number of linearly independent columns in matrix A.

#### Question 8: What is the basis for Col A?

The basis for Col A is formed by the column vectors of the **original** matrix A that correspond to the pivot columns in the REF of A. These are referred to as the "basic columns."

#### Solution:

- 1. Find REF(A).
- 2. Identify the pivot columns in REF(A).
- 3. Select the corresponding columns from the original\* matrix A. These columns form the basis.

### 3.2.3 Parametric Form of the Column Space

### Question 9: What is the parametric form of Col A?

If the basis for Col A is  $\{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_k\}$ , then the parametric form of any vector  $\vec{v}$  in Col A is given by:

$$\vec{v} = t_1 \vec{w}_1 + t_2 \vec{w}_2 + \dots + t_k \vec{w}_k$$

where  $t_1, t_2, \ldots, t_k$  are scalar parameters (real numbers).

**Solution:** This expresses any vector in the column space as a linear combination of the basis vectors.



### 3.2.4 Geometry of the Column Space

### Question 10: What is the geometry of Col A?

The geometric interpretation of Col A depends on its dimension:

- If dim(Col A) = 0, Col A is a point (the origin,  $\vec{0}$ ).
- If  $\dim(\operatorname{Col} A) = 1$ ,  $\operatorname{Col} A$  is a line through the origin.
- If  $\dim(\operatorname{Col} A) = 2$ ,  $\operatorname{Col} A$  is a plane through the origin.
- If dim(Col A) = 3, Col A is a volume (all of  $\mathbb{R}^3$ ) through the origin.
- In general, if A is an  $m \times n$  matrix, and dim(Col A) = k, Col A is a k-dimensional subspace of  $\mathbb{R}^m$ .

**Solution:** The dimension indicates the "degrees of freedom" or the number of independent directions spanned by the column vectors.

### **3.2.5** Example

### Example 3.2.1 (Example Calculation)

Let

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 4 & 6 \end{bmatrix}$$

Find the REF of A, the dimension of Col A, a basis for Col A, the parametric form of Col A, and the geometry of Col A.

**Solution:** First, find the reduced row echelon form (REF) of A:

$$REF(A) = \begin{bmatrix} 1 & 0 & -1 \\ 0 & -4 & -8 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

• **Dimension of Col A:** The REF has two pivot columns (the first and second columns). Therefore,  $\dim(\text{Col }A) = 2$ .

26

• Basis for Col A: The pivot columns in REF(A) are the first and second columns. We take the corresponding columns from the \*original\* matrix A to form the basis:

$$Basis(Col\ A) = \left\{ \begin{bmatrix} 1\\3\\2 \end{bmatrix}, \begin{bmatrix} 2\\2\\4 \end{bmatrix} \right\}$$

• Parametric Form of Col A: Any vector  $\vec{v}$  in Col A can be written as a linear combination of the basis vectors:

$$\vec{v} = t_1 \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} + t_2 \begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix}$$

where  $t_1$  and  $t_2$  are any real numbers.

• Geometry of Col A: Since  $\dim(\operatorname{Col} A) = 2$ , Col A is a plane in  $\mathbb{R}^3$  that passes through the origin.

### 3.3 Nullspace of a Matrix

### Definition 3.3.1: Nullspace

The nullspace of a matrix A, denoted by Nul A, is the set of all solutions to the homogeneous equation  $A\vec{x} = \vec{0}$ .

### Note:-

The solution space for  $A\vec{x} = \vec{0}$  is a vector space. The nullspace of A resides in  $\mathbb{R}^n$ , where n is the number of columns of A.

#### Question 11: Dimension of Nullspace

What is the dimension of Nul A?

**Solution:** The dimension of Nul A is equal to the number of free columns in the reduced row echelon form (RREF) of A. We write this as Dim(Nul A) = # of free columns in RREF(A).

#### Question 12: Basis for Nullspace

What is the basis for Nul A?

**Solution:** To find the basis for Nul A, we first find the RREF of A. If the solution space of  $A\vec{x} = \vec{0}$  is given by

$$\vec{x} = t_1 \vec{w}_1 + t_2 \vec{w}_2 + \dots + t_k \vec{w}_k$$

where k is the number of free columns in RREF(A), and  $t_1, t_2, \ldots, t_k$  are arbitrary scalars, then the basis of Nul A is the set  $\{\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k\}$ .

#### Question 13: Parametric Form of Nullspace

What is the parametric form of Nul A?

**Solution:** The parametric form of Nul A is given by the linear combination of the basis vectors:

$$\vec{v} = t_1 \vec{w}_1 + t_2 \vec{w}_2 + \dots + t_k \vec{w}_k$$

where  $\vec{w}_1, \vec{w}_2, ..., \vec{w}_k$  are the basis vector for the nullspace.

### Example 3.3.1 (Example)

Let

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 4 & 6 \end{bmatrix}$$

Find the null space, its dimension, basis, and the geometric interpretation. First, find the RREF of A:

$$REF(A) = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -4 & -8 \\ 0 & 0 & 0 \end{bmatrix}$$

Further reducing to RREF:

$$RREF(A) = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

- The first column corresponds to a basic variable.
- The second column corresponds to a basic variable.
- The third column corresponds to a free variable.

The dimension of the nullspace is the number of free variables:

$$Dim(N(A)) = 1$$

To find the solution space for  $A\vec{x} = \vec{0}$ , we use the RREF:

Let  $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ . The RREF gives us the following equations:

$$x_1 - x_3 = 0$$
$$x_2 + 2x_3 = 0$$

 $x_3$  is free. Let  $x_3 = t_3$ . Then  $x_1 = t_3$  and  $x_2 = -2t_3$ . So,

$$\vec{x} = \begin{bmatrix} t_3 \\ -2t_3 \\ t_3 \end{bmatrix} = t_3 \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$

Therefore, the basis for Nul A is:

$$Basis(Nul\ A) = \left\{ \begin{bmatrix} 1\\ -2\\ 1 \end{bmatrix} \right\}$$

The geometry of Nul A is a line in  $\mathbb{R}^3$  passing through the origin and in the direction of the vector  $\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$ .

28



### 3.4 Row Space of a Matrix

### Definition 3.4.1: Row Space

The row space of a matrix A, denoted as Row A, is defined as the column space of the transpose of A, i.e., Row  $A = \text{Col } A^T$ .

Let's consider a matrix A and its transpose  $A^T$ :

$$A = \begin{bmatrix} - & r_1 & - \\ - & r_2 & - \\ & \vdots & \\ - & r_m & - \end{bmatrix} \qquad A^T = \begin{bmatrix} | & | & | & | \\ r_1^T & r_2^T & \dots & r_m^T \\ | & | & | & | \end{bmatrix}$$

Where  $r_1, r_2, \ldots, r_m$  represent the rows of matrix A. The rows of A become the columns of  $A^T$ .

Note:-

The row vectors  $r_1, r_2, \ldots, r_m$  live in  $\mathbb{R}^n$ .



### 3.5 Dimension and Basis of Row Space

### Question 14: What is the dimension of Row A?

What is the dimension of the row space of a matrix A?

**Solution:** The dimension of Row A is equal to the number of pivots in the row echelon form (REF) of A. It is also equal to the number of pivots in the REF of  $A^T$ .

 $Dim(Row A) = \# pivots in REF(A) = \# pivots in REF(A^T)$ 

### Question 15: What is the Basis of Row A

How to find the basis for the Row Space of A

#### Solution:

- 1. Identify all the rows of REF(A) that have pivots.
- 2. The basis vectors for Row A are:
  - Vectors corresponding to rows (with pivots in REF(A)) of A.

OR

• Vectors corresponding to rows (with pivots in REF(A)) of REF(A).

OR

• Vectors corresponding to rows (with pivots in REF(A)) of RREF(A).

### Example 3.5.1 (Example: Finding the Basis and Dimension)

Let

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 2 & 3 \end{bmatrix}$$

Find the dimension and a basis for Row A.

**Solution:** First, find the REF of A:

$$REF(A) = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

The REF of A has one pivot (in the first row).

Dimension of Row A:

$$Dim(Row\ A) = 1$$

Basis for Row A:

- Using rows of A with pivots in REF(A): [1 2 3]
- Using rows of REF(A) with pivots: [1 2 3]

### Algorithm 4: Finding Dimension and Basis of Row Space

```
Input: Matrix A
   Output: Dimension of Row A, Basis of Row A
   /* Compute the Row Echelon Form (REF) of A */
 1 REF\_A \leftarrow REF(A);
   /* Count the number of pivots in REF(A) */
 2 num\_pivots ← Number of pivots in REF_A;
   /* The dimension of Row A is the number of pivots */
 3 \ dim\_row\_A \leftarrow num\_pivots;
   /* Initialize an empty set to store basis vectors */
 4 basis\_row\_A \leftarrow \emptyset;
   /* Identify rows with pivots in REF(A) */
 5 foreach row r in REF_A do
      if row r has a pivot then
          /* Add corresponding row from original matrix A to basis */
          Let r' be the corresponding row in matrix A. basis_row_A \leftarrow basis_row_A \cup \{r'\};
      end
 9 end
10 return dim_row_A, basis_row_A;
```

## Chapter 4

# Properties of Matrices

### 4.1 Determinant of a Square Matrix

Consider a square Matrix

 $A: m \times m$ 

If

$$A^{-1}exists \Leftrightarrow \dim(Col(A)) = \dim(Row(A)) = m$$
  
 $\therefore Rank(A) = m \text{ and Nul}(A) = \{0\}$ 

And most importantly, since the columns of A are linearly independent,

$$det(ref(A)) \neq 0$$

To make REF(A) unique for A, we require that in constructing REF(A), we follow three rules:

- 1. Use the "REPLACE" ERP freely.
- 2. When using the "SWAP" ERP, apply the "SCALE" ERP to one of the rows by -1.
- 3. Don't use the "SCALE" ERP for any other purpose than the one in Rule 2.

### 4.1.1 Cofactor Algorithm for Computing Determinant

Given a square matrix  $A = [a_{ij}]$  of size  $n \times n$ , the determinant can be computed by expanding along any row i (where  $1 \le i \le n$ ) as follows:

- 1. Base Case: If n = 1, then  $det(A) = a_{11}$ .
- 2. Recursive Case: For n > 1:

$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det(M_{ij}),$$

where:

- $M_{ij}$  is the **minor matrix** obtained by deleting row i and column j from A,
- $(-1)^{i+j} \det(M_{ij})$  is the **cofactor** of the element  $a_{ij}$ .

#### Steps:

- Choose a row i (commonly the first row, i = 1, but any row works).
- For each element  $a_{ij}$  in row i:
  - Compute the minor  $M_{ij}$ .

- Recursively calculate  $\det(M_{ii})$ .
- Multiply  $a_{ij}$ ,  $(-1)^{i+j}$ , and  $det(M_{ij})$ .
- Sum the results for all columns j in row i.

Say B which has the Form

$$\begin{bmatrix} a_1 & a_2 & \dots \\ b_1 & b_2 & \dots \end{bmatrix}$$

And delimits an area in  $\mathbb{R}^2$ , then the absolute value of the determinant of a matrix A which applies a transformation to B gives the scaling of the area of B

### 4.1.2 Properties of Determinants

- $det(A \cdot B) = det(A) \cdot det(B)$
- $det(A^{-1}) = \frac{1}{det(A)}$
- $det(A^T) = det(A)$
- det(I) = 1

- $det(E_{REPLACE} \cdot A) = det(A)$
- $det(E_{SCALE=\alpha} \cdot A) = \alpha \cdot det(A)$
- $det(A) = 0 \Leftrightarrow det(REF(A)) = 0$

### 4.2 EigenVectors and EigenValues

Given  $A \in \mathbb{R}^{n \times n}$ 

$$A\vec{x} = \vec{0} \leftarrow \vec{x} \in Null(A)$$

Can rewrite As

$$A\vec{x} = 0\vec{x}$$

Generalise

$$A\vec{x} = \lambda \vec{x}$$

where the solution for  $\vec{x}$  also defines a vector space, called an **EigenSpace**, where any vector in this space is called and **EigenVector**, and has a corresponding value of  $\lambda$  called an **EigenValue**.

#### Example 4.2.1 (Eigenvectors)

$$A = \begin{bmatrix} -2 & 0 \\ 0 & 3 \end{bmatrix}$$

is  $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$  an eigenvector for A?

$$\begin{bmatrix} -2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} -4 \\ 6 \end{bmatrix} = \lambda \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

No such Lambda, therefore not eigenvector, but

$$\begin{bmatrix} -2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} -4 \\ 0 \end{bmatrix} = -2 \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

So  $\lambda = -2$  is the EigenValue for the EigenVector that is  $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$ 

### Eigenvectors and Eigenvalues

### Definition 4.2.1: Eigenvector and Eigenvalue

Let A be an  $n \times n$  matrix. A non-zero vector  $\vec{x}$  is an eigenvector of A if there exists a scalar  $\lambda$  (called an eigenvalue) such that:

$$A\vec{x} = \lambda \vec{x}$$

### Note:-

The geometric interpretation of  $A\vec{x} = \lambda \vec{x}$  is that applying the transformation represented by A to the eigenvector  $\vec{x}$  results in a vector that is simply a scaled version of  $\vec{x}$ . The direction is either preserved (if  $\lambda > 0$ ), reversed (if  $\lambda < 0$ ), or the vector becomes the zero vector (if  $\lambda = 0$ ). Crucially,  $\vec{x}$  \*cannot\* be the zero vector, but  $\lambda$  can be.

### Example 4.2.2 (Rotation Matrix)

Consider a rotation matrix A in 2D that rotates vectors by 45 degrees counterclockwise:

$$A = \begin{bmatrix} \cos(45^{\circ}) & -\sin(45^{\circ}) \\ \sin(45^{\circ}) & \cos(45^{\circ}) \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$$



This matrix A has \*no\* real eigenvectors (and thus no real eigenvalues). Applying A to any non-zero vector  $\vec{x}$  will \*always\* rotate it; there's no non-zero vector that will simply be scaled by A. The resulting vector  $A\vec{x}$  will never have the same (or opposite) direction as the original  $\vec{x}$ .

#### Example 4.2.3 (Horizontal Shear and Stretch)

Consider the matrix:

$$A = \begin{bmatrix} 2 & 0.5 \\ 0 & 1 \end{bmatrix}$$

This matrix represents a horizontal shear and stretch. Let's visualize its effect on a unit square:



- Vectors along the  $x_1$ -axis (of the form  $\alpha \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ ) are stretched by a factor of 2, but their direction remains unchanged.
- ullet Vectors along the  $x_2$ -axis (of the form  $\alpha \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ ) are sheared horizontally by 0.5 units, but their vertical

33

component is unchanged.

• Consider a general vector  $\begin{bmatrix} \alpha \\ \beta \end{bmatrix}$ . Applying the transformation yields  $A \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} 2\alpha + 0.5\beta \\ \beta \end{bmatrix}$ .

Let's find the eigenvectors and eigenvalues for this matrix.

• For vectors along the  $x_1$  axis:

$$A \begin{bmatrix} \alpha \\ 0 \end{bmatrix} = \begin{bmatrix} 2 & 0.5 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha \\ 0 \end{bmatrix} = \begin{bmatrix} 2\alpha \\ 0 \end{bmatrix} = 2 \begin{bmatrix} \alpha \\ 0 \end{bmatrix}$$

So,  $\begin{bmatrix} \alpha \\ 0 \end{bmatrix}$  is an eigenvector with eigenvalue  $\lambda = 2$ .

 $\bullet$  For vectors along the  $x_2$  axis, we might \*think\* they are eigenvectors, but let's check:

$$A \begin{bmatrix} 0 \\ \alpha \end{bmatrix} = \begin{bmatrix} 2 & 0.5 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ \alpha \end{bmatrix} = \begin{bmatrix} 0.5\alpha \\ \alpha \end{bmatrix} = \alpha \begin{bmatrix} 0.5 \\ 1 \end{bmatrix}$$

This is \*not\* a scalar multiple of the original vector  $\begin{bmatrix} 0 \\ \alpha \end{bmatrix}$ . So, vectors along the  $x_2$  axis are \*not\* eigenvectors.

• Now consider the case where the transformed vector is  $\alpha$  times the original:

$$\begin{bmatrix} 2 & 0.5 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -0.5\alpha \\ \alpha \end{bmatrix} = \begin{bmatrix} -1\alpha + 0.5\alpha \\ \alpha \end{bmatrix} = \begin{bmatrix} -0.5\alpha \\ \alpha \end{bmatrix} = 1 * \begin{bmatrix} -0.5\alpha \\ \alpha \end{bmatrix}$$

So  $\begin{bmatrix} -0.5\alpha \\ \alpha \end{bmatrix}$  is an eigenvector corresponding to eigenvalue 1.

### Finding Eigenvalues and Eigenvectors

#### **Theorem 4.2.1** Finding Eigenvalues

To find the eigenvalues of a matrix A, we solve the characteristic equation:

$$\det(A - \lambda I) = 0$$

where I is the identity matrix of the same size as A.

*Proof.* We start with the definition  $A\vec{x} = \lambda \vec{x}$ . Rearranging, we get:

$$A\vec{x} - \lambda \vec{x} = \vec{0}$$

$$A\vec{x} - \lambda I\vec{x} = \vec{0}$$

$$(A - \lambda I)\vec{x} = \vec{0}$$

Let  $B = A - \lambda I$ . We have  $B\vec{x} = \vec{0}$ . We are looking for non-zero vectors  $\vec{x}$  that satisfy this equation.

- If B is invertible (i.e.,  $det(B) \neq 0$ ), then the only solution is  $\vec{x} = \vec{0}$ . But eigenvectors are \*non-zero\* by definition. Therefore, we must have det(B) = 0.
- If det(B) = 0, then B is \*not\* invertible, and the system  $B\vec{x} = \vec{0}$  has infinitely many solutions (i.e., a non-trivial null space). These non-zero solutions are the eigenvectors.

Therefore, to find the eigenvalues  $\lambda$ , we must solve  $\det(A - \lambda I) = 0$ .

### Example 4.2.4 (Finding Eigenvalues (Continued))

Let's go back to our example:

$$A = \begin{bmatrix} 2 & 0.5 \\ 0 & 1 \end{bmatrix}$$

We form  $B = A - \lambda I$ :

$$B = \begin{bmatrix} 2 & 0.5 \\ 0 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 0.5 \\ 0 & 1 - \lambda \end{bmatrix}$$

Now we find the determinant of B:

$$\det(B) = (2 - \lambda)(1 - \lambda) - (0.5)(0) = (2 - \lambda)(1 - \lambda)$$

Setting det(B) = 0, we get:

$$(2 - \lambda)(1 - \lambda) = 0$$

This gives us the eigenvalues  $\lambda_1 = 2$  and  $\lambda_2 = 1$ .

### Finding Eigenvectors

### Algorithm 5: Finding Eigenvalues and Eigenvectors

Input: A matrix A

**Output:** Eigenvalues and corresponding eigenvectors of A

- 1 Calculate the characteristic polynomial:  $det(A \lambda I)$ ;
- **2** Solve the characteristic equation  $det(A \lambda I) = 0$  to find the eigenvalues  $\lambda_i$ ;
- з for each eigenvalue  $\lambda_i$  do
- 4 | Form the matrix  $B_i = A \lambda_i I$ ;
- Solve the homogeneous system  $B_i \vec{x} = \vec{0}$  to find the eigenvectors corresponding to  $\lambda_i$ ;
- 6 The solution set will typically involve free variables. Express the eigenvectors in terms of these free variables.:
- 7 end
- **8 return** The eigenvalues  $\lambda_i$  and their corresponding eigenvectors.

### Example 4.2.5 (Finding Eigenvectors (Continued))

We found the eigenvalues  $\lambda_1 = 2$  and  $\lambda_2 = 1$  for the matrix  $A = \begin{bmatrix} 2 & 0.5 \\ 0 & 1 \end{bmatrix}$ . Now let's find the eigenvectors.

• For  $\lambda_1 = 2$ :

$$B_1 = A - 2I = \begin{bmatrix} 2 - 2 & 0.5 \\ 0 & 1 - 2 \end{bmatrix} = \begin{bmatrix} 0 & 0.5 \\ 0 & -1 \end{bmatrix}$$

We solve  $B_1\vec{x} = \vec{0}$ :

$$\begin{bmatrix} 0 & 0.5 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Row reducing (although not strictly necessary here, we do it for demonstration):

$$\begin{bmatrix} 0 & 0.5 \\ 0 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

This gives us  $x_2 = 0$ , and  $x_1$  is free. Let  $x_1 = t_1$ . Then the eigenvector is:

$$\vec{x} = \begin{bmatrix} t_1 \\ 0 \end{bmatrix} = t_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

• For  $\lambda_2 = 1$ :

$$B_2 = A - I = \begin{bmatrix} 2 - 1 & 0.5 \\ 0 & 1 - 1 \end{bmatrix} = \begin{bmatrix} 1 & 0.5 \\ 0 & 0 \end{bmatrix}$$

We solve  $B_2\vec{x} = \vec{0}$ :

$$\begin{bmatrix} 1 & 0.5 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

This system is already in row-echelon form. We have  $x_1 + 0.5x_2 = 0$ , so  $x_1 = -0.5x_2$ .  $x_2$  is free. Let  $x_2 = t_2$ . Then  $x_1 = -0.5t_2$ , and the eigenvector is:

$$\vec{x} = \begin{bmatrix} -0.5t_2 \\ t_2 \end{bmatrix} = t_2 \begin{bmatrix} -0.5 \\ 1 \end{bmatrix}$$

### 4.3 Properties of Eigenvectors

### Definition 4.3.1: Dimension of eigenspace

When an eigenvalue repeats k times,

 $1 \leq dim(eigenspace for that eigenvalue) \leq k$ 

### Example 4.3.1 (Example 1 of this property)

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$A - \lambda I = \begin{bmatrix} 1 - \lambda & 0 & 0 \\ 0 & 1 - \lambda & 0 \\ 0 & 0 & 1 - \lambda \end{bmatrix}$$
$$\det(A - \lambda I) = (I1 - \lambda)^3$$

$$\lambda_1=1, \lambda_2=1, \lambda_3=1, k=3$$

$$\lambda_1$$
 repeats  $3 (= k)$  times

And the eigenspace for  $\lambda_1 = 1$  is

$$A - \lambda_1 I = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

therefore the eigenspace is

$$\left\{t_1\begin{bmatrix}1\\0\\0\end{bmatrix}+t_2\begin{bmatrix}0\\1\\0\end{bmatrix}+t_3\begin{bmatrix}0\\0\\1\end{bmatrix}:t_1,t_2,t_3\in\mathbb{R}\right\}$$

#### **Example 4.3.2** (Example 2 of this property)

$$A = \begin{bmatrix} 1 & 0.5 \\ 0 & 1 \end{bmatrix}$$
$$\det(A - \lambda I) = (I1 - \lambda)^3$$
$$(1 - \lambda)^2 - (0.5)(0) = 0$$

$$\lambda_1=1, \lambda_2=1, k=2$$

Therefore the eigenspace is

$$A - \lambda_1 I = \begin{bmatrix} 0 & 0.5 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 = 2R_1} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

Therefore the eigenspace for  $\lambda=1$  is

$$\left\{ t_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} : t_1 \in \mathbb{R} \right\}$$

 $\therefore$  dim(eigenspace for  $\lambda = 1$ ) =  $1 \le k = 2$ 

### Definition 4.3.2: Dominant Eigenvector

An eigenvector whose eigenvalue (among all eigenvalues for some  $A: m \times m$ ) has the largest magnitude  $(|\lambda|)$  gives the direction along which an initial blob of points is stretched the most.

### Example 4.3.3 (Dominant Eigenvector Example)

A=

$$\begin{bmatrix} 2 & 4 \\ 3 & 3 \end{bmatrix}$$
$$\det(A - \lambda I) = (2 - \lambda)(3 - \lambda) - 4 * 3 = 0$$
$$\therefore \lambda_1 = 6, \lambda_2 = -1$$

Eigenspace for largest magnitude of eigenvalue  $\lambda_1 = 6$ 

$$A = \begin{bmatrix} -4 & 4 \\ 3 & -3 \end{bmatrix} \xrightarrow{R_2 = R_2 + \frac{3}{4}R_1} \begin{bmatrix} -4 & 4 \\ 0 & 0 \end{bmatrix} \xrightarrow{R_1 = -\frac{1}{4}R_1} \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$$

$$\therefore \vec{v}_1 = t_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

and the eigenspace for  $\lambda_1=6$  is

$$\left\{ t \begin{bmatrix} 1 \\ 1 \end{bmatrix} : t \in \mathbb{R} \right\}$$

Now apply the transformation to a set of points (unit square)

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 4 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 4 & 3 \end{bmatrix}$$

Visually represented this looks like this



### Example 4.3.4 (Dominant Eigenvector Example 2)

Consider

$$A = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}.$$

The eigenvalues come from

$$\det(A - \lambda I) = (3 - \lambda)(2 - \lambda) = 0,$$

so  $\lambda_1 = 3$  and  $\lambda_2 = 2$ . The dominant eigenvalue is 3. To find its eigenvector, solve

$$(A - 3I)\vec{v} = \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \vec{0}.$$

The first row gives  $v_2 = 0$ ; choosing  $v_1 = 1$  yields

$$\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

This indicates that the largest stretch occurs in the horizontal direction.

### Transformation on a set of points:

Consider the original set of points

$$\mathcal{P} = \{(x, y) \mid -1 \le x \le 1, -0.5 \le y \le 0.5\}.$$

Under the transformation A, each point (x, y) is mapped to

$$(x', y') = (3x + y, 2y).$$

The four corners transform as follows:

- (-1, -0.5) maps to (3(-1) + (-0.5), 2(-0.5)) = (-3.5, -1).
- (1, -0.5) maps to (3(1) + (-0.5), 2(-0.5)) = (2.5, -1).

- (1,0.5) maps to (3(1) + (0.5), 2(0.5)) = (3.5, 1).
- (-1,0.5) maps to (3(-1)+(0.5), 2(0.5)) = (-2.5, 1).

Thus, the image of  $\mathcal{P}$  is the quadrilateral

$$\mathcal{P}' = \{(x', y')\}$$

with vertices at (-3.5, -1), (2.5, -1), (3.5, 1), and (-2.5, 1).

### Diagram:



### Definition 4.3.3: Eigenvalues of Triangular Matrices

The elements on the main diagonal of a triangular matrix are the eigenvalues of that matrix.

### Example 4.3.5 (EigenValues of Triangular matricies example)

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$$
$$\det(A - \lambda I) = (1 - \lambda)(4 - \lambda)(6 - \lambda)$$
$$\lambda_1 = 1, \lambda_2 = 4, \lambda_3 = 6$$
Eigenvalues of  $A = \{1, 4, 6\}$ 

### Definition 4.3.4: Number of Distinct EigenValues

The number of distinct eigenvalues of a matrix  $A:m\times m$  is  $\leq m$ 

### Definition 4.3.5: Eigenvalues and Determinant

For a matrix  $A: m \times m$ 

$$\det(A) = \lambda_1 \cdot \lambda_2 \cdot \dots \cdot \lambda_m$$

Proof:

$$dat(A - \lambda I) = \pm \lambda^m + a_{m-1}\lambda^{m-1} + \dots + a_1\lambda + a_0$$

where the  $\pm$  follows

$$\begin{cases} +1, & m\%2 = 0 \\ -1, & m\%2 = 1 \end{cases}$$

$$\begin{cases} +1, & m\%2 = 0 \\ -1, & m\%2 = 1 \end{cases}$$

$$\therefore |A - \lambda I| = \begin{cases} \lambda^m - a_{m-1}\lambda^{m-1} + \dots - a_1\lambda + a_0, & m\%2 = 0 \\ -\lambda^m + a_{m-1}\lambda^{m-1} - \dots + a_1\lambda - a_0, & m\%2 = 1 \end{cases}$$

Set  $\lambda = 0$ 

$$|A| = \begin{cases} \lambda_1, \lambda_2, \dots, \lambda_m, & m\%2 = 0\\ \lambda_1, \lambda_2, \dots, \lambda_m, & m\%2 = 0 \end{cases}$$

### Definition 4.3.6: Non-invertible Square matrix

For a non-invertible (singular) square matrix  $A: m \times m$ , the determinant is 0, therefore at least one eigenvalue is 0.

### Definition 4.3.7: Spanning Eigenvectors

The eigenvectors of A span all of  $\mathbb{R}^m$  if and only if A has m distinct eigenvalues. If an eigenvalue repeats k times, the dimension of the corresponding space is k.