Задание 14.

Преобразование $A: V_2 \to V_2$ пространства V_2 — геометрических векторов в стандартном базисе $\overline{i}, \overline{j}$ имеет матрицу $A = \begin{pmatrix} 3 & 6 \\ 6 & -2 \end{pmatrix}$. Представить эту матрицу в виде произведения A = SQ неотрицательной симметрической матрицы S и ортогональной матрицы Q. Выяснить геометрический смысл преобразования A, рассматривая его как композицию A = SQ неотрицательного самосопряженного преобразования S (с матрицей S) и ортогонального преобразования S (с матрицей S) и ортогонального преобразования S (с матрицей S).

Решение.

Нужно найти полярное разложение A = SQ матрицы преобразования A. Действуем согласно алгоритму.

1. Вычисляем симметрическую матрицу:

$$C = AA^{T} = \begin{pmatrix} 3 & 6 \\ 6 & -2 \end{pmatrix} \begin{pmatrix} 3 & 6 \\ 6 & -2 \end{pmatrix} = \begin{pmatrix} 45 & 6 \\ 6 & 40 \end{pmatrix}.$$

2. Находим собственные значения и собственный вектор матрицы C:

$$\begin{vmatrix} 45 - \lambda & 6 \\ 6 & 40 - \lambda \end{vmatrix} = \lambda^2 - 85\lambda + 1800 - 36 = \lambda^2 - 85\lambda + 1764 = 0;$$

$$\lambda_1 = 36, \lambda_2 = 49.$$

Для собственного значения $\lambda_1 = 36$ составляем расширенную матрицу системы ($C - \lambda_1 E$)x = o:

$$(C - \lambda_1 E|o) = \begin{pmatrix} 9 & 6 & 0 \\ 6 & 4 & 0 \end{pmatrix} \sim \begin{pmatrix} 3 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Находим ненулевое решение, например, $\phi_1 = (2 - 3)^T$.

Для собственного значения $\lambda_2 = 49$ аналогично получаем $\phi_2 = (3 \ 2)^T$. Собственные векторы ϕ_1 , ϕ_2 матрицы $\mathcal C$ нормируем:

$$d_1 = \frac{1}{|\varphi_1|} \varphi_1 = \left(\frac{2}{\sqrt{13}} - \frac{3}{\sqrt{13}}\right)^T, d_2 = \frac{1}{|\varphi_2|} \varphi_2 = \left(\frac{3}{\sqrt{13}} - \frac{2}{\sqrt{13}}\right)^T.$$

Составим преобразующую матрицу

$$D = \begin{pmatrix} \frac{2}{\sqrt{13}} & \frac{3}{\sqrt{13}} \\ -\frac{3}{\sqrt{13}} & \frac{2}{\sqrt{13}} \end{pmatrix}$$
, приводящую матрицу C к диагональному виду

$$\Lambda = D^{-1}CD = \begin{pmatrix} \frac{2}{\sqrt{13}} & -\frac{3}{\sqrt{13}} \\ \frac{3}{\sqrt{13}} & \frac{2}{\sqrt{13}} \end{pmatrix},$$

$$\begin{pmatrix} 45 & 6 \\ 6 & 40 \end{pmatrix} \begin{pmatrix} \frac{2}{\sqrt{13}} & \frac{3}{\sqrt{13}} \\ -\frac{3}{\sqrt{13}} & \frac{2}{\sqrt{13}} \end{pmatrix} = \frac{1}{13} \begin{pmatrix} 72 & -108 \\ 147 & 98 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ -3 & 2 \end{pmatrix} =$$

$$= \frac{1}{13} \begin{pmatrix} 468 & 0 \\ 0 & 637 \end{pmatrix} = \begin{pmatrix} 36 & 0 \\ 0 & 49 \end{pmatrix}.$$

3. Вычисляем неотрицательную симметрическую матрицу:

$$S = D\sqrt{\Lambda}D^{-1} = \frac{1}{\sqrt{13}} \cdot \frac{1}{\sqrt{13}} \begin{pmatrix} 2 & 3 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} 6 & 0 \\ 0 & 7 \end{pmatrix} \begin{pmatrix} 2 & -3 \\ 3 & 2 \end{pmatrix} =$$

$$\frac{1}{13} \begin{pmatrix} 12 & 21 \\ -18 & 14 \end{pmatrix} \begin{pmatrix} 2 & -3 \\ 3 & 2 \end{pmatrix} = \begin{pmatrix} \frac{87}{13} & \frac{6}{13} \\ \frac{6}{13} & \frac{82}{13} \end{pmatrix}.$$

Находим ортогональную матрицу:

$$Q = S^{-1}A = \begin{pmatrix} \frac{82}{13} & -\frac{6}{13} \\ -\frac{6}{13} & \frac{87}{13} \end{pmatrix} \begin{pmatrix} 3 & 6 \\ 6 & -2 \end{pmatrix} = \frac{1}{42} \cdot \frac{1}{13} \begin{pmatrix} 210 & 504 \\ 504 & -210 \end{pmatrix} = \begin{pmatrix} \frac{5}{13} & \frac{12}{13} \\ \frac{12}{13} & -\frac{5}{13} \end{pmatrix}.$$

Записываем полярное разложение A = SQ матрицы A:

$$\begin{pmatrix} 3 & 6 \\ 6 & -2 \end{pmatrix} = \begin{pmatrix} \frac{87}{13} & \frac{6}{13} \\ \frac{6}{13} & \frac{82}{13} \end{pmatrix} \begin{pmatrix} \frac{5}{13} & \frac{12}{13} \\ \frac{12}{13} & -\frac{5}{13} \end{pmatrix}.$$

Этому разложению соответствует представление A = SQ преобразования A в виде композиции самосопряженного преобразования S и ортогонального

преобразования Q, которые имеют в стандартном базисе \bar{i}, \bar{j} найденные матрицы S и Q соответственно.

Выясняем геометрический смысл преобразования А. Самосопряженное S представляет преобразование собой растяжения вдоль взаимно перпендикулярных направлений, которые определяются собственными векторами. Учитывая связь $\sqrt{\Lambda} = D^{-1}SD$, заключаем, что собственные значения матрицы S равны $k_1 = \sqrt{\Lambda_1} = 6$ и $k_2 = \sqrt{\Lambda_2} = 7$, а собственным вектором матрицы S служат столбцы $d_{_1}$, $d_{_2}$ или коллинеарные им столбцы $\phi_1 = \begin{pmatrix} 2 & -3 \end{pmatrix}^T$ и $\phi_2 = \begin{pmatrix} 3 & 2 \end{pmatrix}^T$. Значит, преобразование S есть композиция растяжения с коэффициентом $k_1 = 6$ вдоль направления $\overline{\phi_1} = 2\overline{i} - 3\overline{j}$ и растяжения с коэффициентом $k_2 = 7$ вдоль направления $\overline{\phi_2} = 3\overline{i} + 2\overline{j}$.

Определим геометрический смысл преобразования Q. Находим собственные векторы и собственные значения матрицы Q. Решая характеристическое уравнение

$$\begin{vmatrix} \frac{5}{13} - u & \frac{12}{13} \\ \frac{12}{13} & -\frac{5}{13} - u \end{vmatrix} = 0 \Leftrightarrow 169u^2 - 169 = 0,$$

$$u_1 = 1, u_2 = -1.$$

Для собственного значения $u_1 = 1$ находим собственный вектор матрицы Q. Например, $\psi_1 = \begin{pmatrix} 3 & 2 \end{pmatrix}^T$, а для $u_2 = -1$ аналогично получаем $\psi_2 = \begin{pmatrix} 2 & -3 \end{pmatrix}^T$. Этим столбцам соответствуют собственные векторы $\overline{\psi_1} = 3\overline{i} + 2\overline{j}$ и $\overline{\psi_2} = 2\overline{i} - 3\overline{j}$. Следовательно, ортогональное преобразование Q представляет собой зеркальное отражение в подпространстве $Lin(3\overline{i} + 2\overline{j})$.

Omeem:
$$\begin{pmatrix} 3 & 6 \\ 6 & -2 \end{pmatrix} = \begin{pmatrix} \frac{87}{13} & \frac{6}{13} \\ \frac{6}{13} & \frac{82}{13} \end{pmatrix} \begin{pmatrix} \frac{5}{13} & \frac{12}{13} \\ \frac{12}{13} & -\frac{5}{13} \end{pmatrix}$$
;

преобразование A является композицией зеркального отражения в подпространстве $Lin(3\overline{i}+2\overline{j})$ и растяжений вдоль направления $\overline{\phi_1}=2\overline{i}-3\overline{j}$ с коэффициентом $k_1=6$ и вдоль $\overline{\phi_2}=3\overline{i}+2\overline{j}$ с коэффициентом $k_2=7$.