

Research Institute for Future Media Computing Institute of Computer Vision 未来媒体技术与研究所

计算机视觉研究所

多媒体系统导论-形和图像的数据表现

授课教师: 张小燕

Email: xyzhang15@szu.edu.cn

Outline of Lecture 02

- Fundamentals of image data representation
 - Standard image
- Gray-level image
 - Bitmap and bitplane (位平面)
- Color image
 - 24-bit color image and 8-bit color image
 - Histogram and color lookup tables
- Some popular image file format
- Some calculations
 - How to calculate the size of image?
 - How to transform 24 bit color image to 8 bit color image?
 - How to calculate histogram?
 - How does dithering work?

Fundamentals of Image Data Representation

Images

Fundamentals of Image Data Representation

Images consist of pixels

- Pixel: picture element
- The smallest discrete component of an image on the screen

Image resolution

- The number of pixels in a digital image

Standard images

- Illustrate algorithms and compare the performance
- Lena: for gray-level image generally
- Baboon(狒狒): for color image generally

Standard Images

- Lena:
 - □ Image Resolution is 256 * 256
- **Baboon:**
 - □ Image Resolution is 512* 512

Fundamentals of Image Data Representation

Fundamentals of Image Data Representation

- Matlab, imread(filename) 读取 uint8格式的图像(取值范围0-255)
- See demo1RGB

Outline of Lecture 02

- Fundamentals of image data representation
 - Standard image
- Gray-level image
 - Bitmap and bitplane
- Color image
 - 24-bit color image and 8-bit color image
 - Histogram and color lookup tables
- Some popular image file format
- Some calculations
 - How to calculate the size of image?
 - How to transform 24 bit color image to 8 bit color image?
 - How to calculate histogram?
 - How does dithering work?

Gray-Level Image(灰度图像)

- ◆ Image is represented using luminance (亮度) information only
- ♦ 8-bit gray-level image
 - Each pixel has a gray value between 0 and 255
 - Matlab code : rgb2gray(I)

Gray-Level Image(灰度图像)

- ◆ 512x512的24位彩色图像转成8位灰度图像后,未压缩 时数据量关系?
 - a. 灰度图像和彩色图像大小一样
 - b. 灰度图像是彩色图像数据量大小的一半
 - c. 灰度图像是彩色图像数据量大小的三分之一

Binary Image (二值图像)

- \bullet Each pixel is stored as a single bit 0/1.
- ◆ Also referred as 1-bit image
- ◆ Use for the pictures containing simple graphics or text

Bitmap of Gray-level Image

◆ The two-dimensional array of pixel values that represent the images/graphics

- Bitplanes
 - Consider the 8-bit image as a set of 1-bit bitplanes
 - Each plane consists of a 1-bit representation of the image

Demo of gray image

- Demo2
 - see demo2rgb2gray
 - Show color image, gray image, bit image
 - Convert color to gray and bit images
- Demo3
 - See demo3bitplane
 - Show bitplane

Outline of Lecture 02

- Fundamentals of image data representation
 - Standard image
- Gray-level image
 - Bitmap and bitplane
- Color image
 - 24-bit color image and 8-bit color image
 - Histogram and color lookup tables
- Some popular image file format
- Some calculations
 - How to calculate the size of image?
 - How to transform 24 bit color image to 8 bit color image?
 - How to calculate histogram?
 - How does dithering work?

24-bit Color Image of RGB Model

- ◆ R
 - 8-bit
- **♦** G
 - 8-bit
- **♦** B
 - 8-bit

24-bit Color Image(真彩色)

- Each pixel is represented by three Bytes, usually RGB
 - Supports 256*256*256, totally 16.8-million possible combined color
 - Storage: for image resolution of 640*480, needs 900KB (640*480*3/1024)
- Some 24-bit color images are stored as 32-bit image
 - Extra byte of data for special-effect information

Color Lookup Tables (颜色查找表)

- ◆ Many systems can make use of 8 bits of color in producing a screen image (伪彩色).
- ◆ Such image files use the concept of a lookup table (查找表) to store color information.
- ◆ Use index(索引) or code value(编码值) instead of 24-bit color information for each pixel
- Color lookup the table works well for small combinations

Image Histogram(直方图)

- A histogram is an accurate representation of the distribution of numerical data
- ◆ See demo4Hist

Probability
$$p_r(r_k) = \frac{n_k}{n}$$

 n_k is the number of pixels that have a value r_k n is the total number of pixels of the image

8-bit Color Image

- Divide the RGB cube into equal slides in each dimension
 - R: 3-bit; G: 3-bit; B: 2-bit;
 - Edge artifacts (边缘伪影)
 - See demo5RGBto8
- ◆ Based image histogram, select 256 most popular colors

 24-bit颜色图

 8-bit颜色图

Outline of Lecture 02

- Fundamentals of image data representation
 - Standard image
- Gray-level image
 - Bitmap and bitplane
- Color image
 - 24-bit color image and 8-bit color image
 - Histogram and color lookup tables
- Some popular image file format
- Some calculations
 - How to calculate the size of image?
 - How to transform 24 bit color image to 8 bit color image?
 - How to calculate histogram?
 - How does dithering work?

Some Popular Image File Formats

BMP

- BitMap
- Mainly use RGB color model

Gif

- Graphics Interchange Format
- Important formats because of its historical connection to the WWW and HTML

PDF

- Portable Document Format
- Include compression

◆ JPEG

- Joint Photographic Experts Group
- Currently the most important common file format

Outline of Lecture 02

- Fundamentals of image data representation
 - Standard image
- Gray-level image
 - Bitmap and bitplane
- Color image
 - 24-bit color image and 8-bit color image
 - Histogram and color lookup tables
- Some popular image file format
- Some calculations
 - How to calculate the size of image?
 - How to transform 24 bit color image to 8 bit color image?
 - How to calculate histogram?
 - How does dithering work?

How to Calculate the Size of Image

- 8 bit Gray image
 - Image resolution: 640*480
- Bytes
 - 640*480*8 = 2457600b= 2457600 /1024 Kb = 2400Kb
 - -640*480 = 307200B = 307200/1024 KB = 300KB
- 24 bit color image
- Bytes
 - -640*480*24 = 7372800b = 7372800/1024 Kb = 7200 Kb
 - 640*480*3 = 921600B = 921600/1024KB = 900KB

How to Transform 24-bit to 8-bit?

- Divide the RGB cube into equal slides in each dimension
 - R: 3-bit (0-7); G: 3-bit (0-7); B: 2-bit (0-3);
 - See demo5RGBto8

How to Calculate Histogram?

- Histogram
 - representation of the distribution of numerical data
- Help hist, imhist in Matlab
 - N = hist(Y) bins the elements of Y into 10 equally spaced containers and returns the number of elements in each container. Y is a vector.
 - imhist displays a histogram for the intensity image
- ♦ See demo4Hist

How Does Dithering (抖动) Work?

◆ 用只有黑墨的打印机,怎么打印出一个灰度图像?

- Basic strategy of dithering work
 - Trade intensity resolution for spatial resolution
- Dithering
 - To calculate patterns (图案) of dots such that values from 0 to 255 correspond to patterns that are more and more filled at darker pixel values, for printing on a 1-bit printer

◆ Halftone printing (网板打印)

- Replace a pixel value by a larger pattern, say 2×2 or 4×4
- Rule: If the intensity is > the dither matrix entry then print an on dot at that entry location: replace each pixel by an $n \times n$ matrix of dots

Dithering matrix

$$\begin{bmatrix} 0 & 2 \\ 3 & 1 \end{bmatrix}$$

In the printing color space, 0 represents white, 255 represents black. We can first re-map image values in 0...255 into the new range 0..4 by (integer) dividing by 256/5. Then, e.g., if the pixel value is 0 we print nothing, in a 2×2 area of printer output. But if the pixel value is 4 we print all four dots.

$$\begin{bmatrix} 0 & 2 \\ 3 & 1 \end{bmatrix}$$

0	1	2
3	4	0
1	2	3
4	0	1

0	0	1	0	1	0
0	0	0	0	0	1
1	1	1	1	0	0
0	1	1	1	0	0
1	0	1	0	1	1
0	0	0	1	0	1
1	1	0	0	1	0
1	1	0	0	0	0

0	1	2
3	4	0
1	2	3
4	0	1

• Note that for a dithered image, since replacing each pixel by a 4 \times 4 array of dots, makes an image 16 times as large.

◆ Ordered dither (有序抖动)

- turning on the printer output bit for a pixel if the intensity level is greater than the particular matrix element just at that pixel

position

0	8	2	10
12	4	14	6
3	11	1	9
15	7	13	5

0	1	2	3	4	5	6	7
6	7	8	9	10	11	9	10
12	13	14	15	16	0	1	2
1	2	3	4	5	6	3	4
7	8	9	10	11	12	7	8
7	8	9 15	10 16	0	12	7 10	8

0	0	0	0	1	0	0	0
0	1	0	1	0	1	0	1
1	1	1	1	1	0	0	0
0	0	0	0	0	0	0	0
1	0	1	0	1	1	1	0
1	1	1	1	0	0	0	1
0	0	1	0	1	0	1	1
0	1	0	1	0	1	1	¹ 34

Algorithm

- An algorithm for ordered dither, with $n \times n$ dither matrix, is as follows:
- See demo6dither

```
BEGIN
    for x = 0 to x_{max} // columns
        for y = 0 to y_{max} // rows
            i = x \mod n
            j = y \mod n
            I(x, y) is the input, O(x, y) is the
            output,
            //D is the dither
            matrix. if I(x, y) > D(i, j)
                O(x, y) = 1;
            else
                O(x, y) = 0;
```

Results

Fig. 3.4: Dithering of grayscale images.

(a): 8-bit grey image "lenagray.bmp". (b): Dithered version of the image. (c): Detail of dithered version.