Name: Ishaan Malhotra

Table of Contents

Roll no.: 1610110152	1
nstructer: Prof. Vijay Chakka	1
ab 1	
Aim: To understand the basic graphs and plotting techniques	1
Part 1	
Part 2	2
Part 3	12
Part 4	13
Part 5	23
Part 6	27
Functions	31

Roll no.: 1610110152

Instructer: Prof. Vijay Chakka

Lab 1

Aim: To understand the basic graphs and plotting techniques

```
clc
clear all
close all
```

```
0.9227 0.9848
0.8004 0.7157
0.2859 0.8390
0.5437 0.4333
```



```
ran6 = rand(length(line),2)
plot2DGraph(complete,ran1)
title('Complete Graph')
plot2DGraph(bipartite,ran2)
title('Bipartite Graph')
plot2DGraph(regular,ran3)
title('Regular Graph')
plot2DGraph(star,ran4)
title('Star Graph')
plot2DGraph(circular,ran5)
title('Circular Graph')
plot2DGraph(line,ran6)
title('Line Graph')
% Verification using gplot()
figure
gplot(complete,ran1)
title('Complete Graph using gplot')
figure
gplot(bipartite,ran2)
title('Bipartite Graph using gplot')
figure
gplot(regular,ran3)
title('Regular Graph using gplot')
figure
qplot(star,ran4)
title('Star Graph using gplot')
figure
gplot(circular,ran5)
title('Circular Graph using gplot')
figure
gplot(line,ran6)
title('Line Graph using gplot')
complete =
     0
           1
                 1
     1
           0
                 1
                       1
     1
           1
                 0
                       1
```

```
ran1 =
    0.4706
             0.5039
    0.5607
             0.6468
    0.2691
              0.3077
    0.7490
              0.1387
bipartite =
     0
           0
                 0
                       1
     0
           0
                 0
                       1
     0
           0
                 0
                       1
     1
           1
                1
                       0
     1
           1
                1
                       0
     1
           1
                1
                       0
     1
           1
                1
                       0
ran2 =
    0.4756
             0.5598
    0.3625
             0.3008
    0.7881
             0.9394
    0.7803
            0.9809
    0.6685
            0.2866
    0.1335
             0.8008
    0.0216
             0.8961
regular =
     0
           1
                1
                       1
     1
           0
                1
                       1
     1
                       1
           1
                 0
     1
           1
                1
                       0
ran3 =
    0.5975
             0.7284
    0.8840
              0.5768
    0.9437
              0.0259
    0.5492
              0.4465
```

star =

ran4 =

 0.6463
 0.8295

 0.5212
 0.8491

 0.3723
 0.3725

 0.9371
 0.5932

circular =

ran5 =

 0.8726
 0.6539

 0.9335
 0.0721

 0.6685
 0.4067

 0.2068
 0.6669

line =

ran6 =

0.9337 0.4170 0.8110 0.9718 0.4845 0.9880 0.7567 0.8641

Part 3

```
A = [[0 \ 0 \ 1 \ 1]; [0 \ 0 \ 1 \ 1]; [1 \ 1 \ 0 \ 1]; [1 \ 1 \ 0 \ 0]]
ran3D = rand(length(A),3)
plot3DGraph(A,ran3D)
title('3D Graph')
A =
     0
             0
                    1
                           1
      0
             0
                    1
                           1
      1
             1
                    0
                           1
      1
             1
                           0
                    1
ran3D =
    0.3889
                0.8828
                            0.1489
    0.4547
                0.9137
                            0.8997
    0.2467
                0.5583
                            0.4504
    0.7844
                0.5989
                            0.2057
```

3D Graph


```
[A,ran2D] = bucky
plot2DGraph(A,ran2D)
title('2D Bucky Graph')
[A,ran3D] = bucky
plot3DGraph(A,ran3D)
title('3D Bucky Graph')
A =
   (2,1)
   (5,1)
                1
   (6,1)
                1
   (1,2)
                1
   (3,2)
                1
  (11,2)
                1
   (2,3)
                1
   (4,3)
                1
                1
  (16,3)
                1
   (3,4)
   (5,4)
                1
  (21,4)
                1
                1
  (1,5)
   (4,5)
                1
  (26,5)
                1
  (1,6)
                1
   (7,6)
                1
  (10,6)
                1
   (6,7)
                1
                1
   (8,7)
  (30,7)
                1
   (7,8)
                1
                1
   (9,8)
                1
  (42,8)
   (8,9)
                1
  (10,9)
                1
  (38,9)
                1
  (6,10)
                1
   (9,10)
                1
  (12,10)
                1
                1
  (2,11)
                1
  (12,11)
  (15,11)
                1
  (10,12)
                1
                1
  (11, 12)
  (13, 12)
                1
  (12,13)
                1
  (14,13)
```

(37,13)	1
(13,14)	1
(15,14)	1
(33,14)	1
(11,15)	1
(14,15)	1
(17,15)	1
(3, 16)	1
(17,16)	1
(20,16)	1
(15,17)	1
(16,17)	1
(18,17)	1
(17,18)	1
(19,18)	1
(32,18)	1
(18,19)	1
(20,19)	1
(53,19)	1
(16,20)	1
(19,20)	1
(22,20)	1
(4,21)	1
(22,21)	1
(25,21)	1
(20,22)	1
(21, 22)	1
(23,22)	1
(22,23)	1
(24,23)	1
	1
(52,23)	
(23,24)	1
(25,24)	1
(48,24)	1
(21,25)	1
(24,25)	1
(27,25)	1
(5,26)	1
(27,26)	1
(30,26)	1
(25,27)	1
(26,27)	1
(28,27)	1
(27,28)	1
(29,28)	1
(47,28)	1
(28,29)	1
(30,29)	1
(43,29)	1
(7,30)	1
(26,30)	1
(29,30)	1
(32,31)	1
(35,31)	1

(54,31)	1
(18,32)	1
(31,32)	1
(33,32)	1
(14,33)	1
(32,33)	1
(34,33)	1
(33,34)	1
(35,34)	1
(36,34)	1
	1
(31,35)	
(34,35)	1
(56,35)	1
(34,36)	1
(37,36)	1
(40,36)	1
(13,37)	1
(36,37)	1
(38,37)	1
(9,38)	1
(37,38)	1
(39,38)	1
(38,39)	1
(40,39)	1
(41,39)	1
(36,40)	1
(39,40)	1
(57,40)	1
(39,41)	1
(42,41)	1
(45,41)	1
(8,42)	1
(41,42)	1
(43,42)	1
(29,43)	1
(42,43)	1
(44 42)	1
(43,44)	1
(45,44)	1
	1
(46,44)	
(41,45)	1
(44,45)	1
(58,45)	1
(44,46)	1
(47,46)	1
(50,46)	1
(28,47)	1
	1
(46,47)	
(48,47)	1
(24,48)	1
(47,48)	1
(49,48)	1
(48,49)	1
(50,49)	1

(51,49)	1	
(46,50)	1	
(49,50)	1	
(59,50)	1	
(49,51)	1	
(52,51)	1	
(55,51)	1	
(23,52)	1	
(51,52)	1	
(53,52)	1	
(19,53)	1	
(52,53)	1	
(54,53)	1	
(31,54)	1	
(53,54)	1	
(55,54)	1	
(51,55)	1	
(54,55)	1	
(60,55)	1	
(35,56)	1	
(57,56)	1	
(60,56)	1	
(40,57)	1	
(56,57)	1	
(58,57)	1	
(45,58)	1	
(57,58)	1	
(59,58)	1	
(50,59)	1	
(58,59)	1	
(60,59)	1	
(55,60)	1	
	1	
(56,60)		
(59,60)	1	
ran2D =		
0.3433	0	0.9392
0.1061	0.3265	0.9392
-0.2777	0.2018	0.9392
-0.2777	-0.2018	0.9392
0.1061	-0.3265	
		0.9392
0.6866	0	0.7271
0.7926	-0.3265	0.5149
0.9643	-0.2018	0.1716
0.9643	0.2018	0.1716
0.7926	0.3265	0.5149
0.2122	0.6530	0.7271
0.5554	0.6530	0.5149
0.4899	0.8547	0.1716
0.1061	0.9794	0.1716
-0.0656	0.8547	0.5149

-0.5554

0.4035

0.7271

-0.4494	0.7300	0.5149
-0.6615	0.7300	0.1716
-0.8987	0.4035	0.1716
-0.8332	0.2018	0.5149
-0.5554	-0.4035	0.7271
-0.8332	-0.2018	0.5149
-0.8987	-0.4035	0.1716
-0.6615	-0.7300	0.1716
-0.4494	-0.7300	0.5149
0.2122	-0.6530	0.7271
-0.0656	-0.8547	0.5149
0.1061	-0.9794	0.1716
0.4899	-0.8547	0.1716
0.5554	-0.6530	0.5149
-0.5554	0.6530	-0.5149
-0.4899	0.8547	-0.1716
-0.1061	0.9794	-0.1716
0.0656	0.8547	-0.5149
-0.2122	0.6530	-0.7271
0.2122	0.7300	-0.5149
0.6615	0.7300	-0.1716
0.8987	0.4035	
		-0.1716
0.8332	0.2018	-0.5149
0.5554	0.4035	-0.7271
0.8332	-0.2018	-0.5149
0.8987	-0.4035	-0.1716
0.6615	-0.7300	-0.1716
0.4494	-0.7300	-0.5149
0.5554	-0.4035	-0.7271
0.0656	-0.8547	-0.5149
-0.1061	-0.9794	-0.1716
-0.4899	-0.8547	-0.1716
-0.5554	-0.6530	-0.5149
-0.2122	-0.6530	-0.7271
-0.7926	-0.3265	-0.5149
-0.9643	-0.2018	-0.1716
-0.9643	0.2018	-0.1716
-0.7926	0.3265	-0.5149
-0.6866	0.0000	-0.7271
-0.1061	0.3265	-0.9392
0.2777	0.2018	-0.9392
0.2777	-0.2018	-0.9392
-0.1061	-0.3265	-0.9392
-0.3433	0.0000	-0.9392
0.5455	0.0000	0.2322
A =		
(2,1)	1	
(5,1)	1	
(6,1)	1	
(1,2)	1	
/2 21	7	

(3,2)

(11,2)

1

1

(2,3)	1
(4,3)	1
(16,3)	1
(3,4)	1
(5,4)	1
(21,4)	1
(1,5)	1
(4,5)	1
(26,5)	1
(1,6)	1
(7,6)	1
(10,6)	1
(6,7)	1
(8,7)	1
(30,7)	1
(7,8)	1
(9,8)	1
(42,8)	1
(8,9)	1
(10,9)	1
(38,9)	1
(6,10)	1
(9,10)	1
(12,10)	1
(2,11)	1
(12,11)	1
(15,11)	1
(10,12)	1
(11,12)	1
(13,12)	1
(12,13)	1
(14,13)	1
(37,13)	1
(13,14)	1
(15,14)	1
(33,14)	1
(11,15)	1
(14,15)	7
	1
(17,15)	1
(3,16)	1
(17,16)	1
(20,16)	1
(15,17)	1
(16,17)	1
(18,17)	1
(17,18)	1
(19,18)	1
(32,18)	1
(18,19)	1
(20,19)	1
(53,19)	1
(16,20)	1
(19,20)	1
(22,20)	1

(4,21)	1
(22,21)	1
(25,21)	1
(20,22)	1
(21,22)	1
(23,22)	1
(22,23)	1
(24,23)	1
(52,23)	1
	1
(23,24)	1
(25,24)	1
(48,24)	1
(21,25)	1
(24,25)	1
(27,25)	1
(5,26)	1
(27,26)	1
(30,26)	1
(25,27)	1
(26,27)	1
(28,27)	1
(27,28)	1
	1
(29,28)	1
(47,28)	1
(28,29)	1
(30,29)	1
	1
(43,29)	1
(7,30)	1
(26,30)	1
(29,30)	1
(32,31)	1
(35,31)	1
(54,31)	1
(18,32)	1
(31,32)	1
(33,32)	1
(14,33)	1
(32,33)	1
(34,33)	1
(33,34)	1
(35,34)	1
(36,34)	1
(31,35)	1
(34,35)	1
(56,35)	1
(34,36)	1
(37,36)	1
(40,36)	1
(13,37)	1
(36,37)	1
(38,37)	1
(9,38)	1
(37,38)	1
(39,38)	1
() / ,) (/	_

(38,39)	1
(40,39)	1
(41,39)	1
(36,40)	1
(39,40)	1
(57,40)	1
	1
(42,41)	1
(45,41)	1
(8,42)	1
(41,42)	1
(43,42)	1
(29,43)	1
(42,43)	1
(44,43)	1
(43,44)	1
(45,44)	1
(46,44)	1
(41,45)	1
(44,45)	1
(58,45)	1
(44,46)	1
(47,46)	1
(50,46)	1
(28,47)	1
(46,47)	1
(48,47)	1
(24,48)	1
(47,48)	1
(49,48)	1
(48,49)	1
	7
(50,49)	1
(51,49)	1
(46,50)	1
(49,50)	1
(59,50)	1
(49,51)	1
(52,51)	1
(55,51)	1
(23,52)	1
(51,52)	1
(53,52)	1
(19,53)	1
(52,53)	1
	1
(54,53)	
(31,54)	1
	1
(53,54)	
(55,54)	1
	1
(54,55)	1
(60,55)	1
(35,56)	1
(57,56)	1
(60,56)	1

(40,57) (56,57) (58,57) (45,58) (57,58) (59,58) (50,59) (58,59) (60,59) (55,60) (56,60) (59,60)	1 1 1 1 1 1 1 1 1 1	
ran3D =		
0.3433 0.1061 -0.2777 -0.2777 0.1061 0.6866 0.7926 0.9643 0.7926 0.2122 0.5554 0.4899 0.1061 -0.6656 -0.5554 -0.4494 -0.6615 -0.8332 -0.8332 -0.8332 -0.6615 -0.4494 0.2122 -0.6656 0.1061 0.4899 0.5554 -0.4899 0.5554 -0.4899 0.5554 -0.4899 0.5554 -0.4899 0.5554 -0.4899 -0.5554 -0.4899 -0.5666 0.1061 0.4899 0.5554 -0.4899 -0.5554 -0.4899 -0.5554 -0.4899 -0.5554 -0.4899 -0.5554 -0.4899 -0.5554 -0.4899 -0.4899 -0.4944	0 0.3265 0.2018 -0.2018 -0.3265 -0.2018 0.2018 0.2018 0.3265 0.6530 0.6530 0.6530 0.8547 0.9794 0.8547 0.4035 0.7300 0.7300 0.4035 -0.2018 -0.8547 -0.8547 -0.8547 -0.8547 -0.8547 -0.8547 -0.8547 -0.8547 -0.8547 -0.8547 -0.6530 -0.8547 -0.8547 -0.8547 -0.8547 -0.8547 -0.6530 -0.8547 -0.8547 -0.8530 -0.8547 -0.8530 -0.8547 -0.8530 -0.8547 -0.8530 -0.8547 -0.8530 -0.8547 -0.8530 -0.8547 -0.8530 -0.8547 -0.8530 -0.8547 -0.8530 -0.8547 -0.8530 -0.8547 -0.8530 -0.8547 -0.8530 -0.8547 -0.8530 -0.8547 -0.85530 -0.8547 -0.85530 -0.8547 -0.85530 -0.8547 -0.85530 -0.8547 -0.85530 -0.8547 -0.85530 -0.8547 -0.85530 -0.8	0.9392 0.9392 0.9392 0.9392 0.9392 0.7271 0.5149 0.1716 0.5149 0.7271 0.5149 0.7271 0.5149 0.1716 0.5149 0.1716 0.5149 0.1716 0.5149 0.1716 0.5149 0.1716 0.5149

0.8332	0.2018	-0.5149
0.5554	0.4035	-0.7271
0.8332	-0.2018	-0.5149
0.8987	-0.4035	-0.1716
0.6615	-0.7300	-0.1716
0.4494	-0.7300	-0.5149
0.5554	-0.4035	-0.7271
0.0656	-0.8547	-0.5149
-0.1061	-0.9794	-0.1716
-0.4899	-0.8547	-0.1716
-0.5554	-0.6530	-0.5149
-0.2122	-0.6530	-0.7271
-0.7926	-0.3265	-0.5149
-0.9643	-0.2018	-0.1716
-0.9643	0.2018	-0.1716
-0.7926	0.3265	-0.5149
-0.6866	0.0000	-0.7271
-0.1061	0.3265	-0.9392
0.2777	0.2018	-0.9392
0.2777	-0.2018	-0.9392
-0.1061	-0.3265	-0.9392
-0.3433	0.0000	-0.9392

3D Bucky Graph


```
A = randAdjMatrix(5)
ran2D = rand(length(A),2)
ran3D = rand(length(A),3)
plot2DGraph(A,ran2D)
title('2D Random Graph')
plot3DGraph(A,ran3D)
title('3D Random Graph')
A =
     []
B =
     1
           1
                 1
                       0
                              1
A =
     1
           1
                 1
                       0
                              1
```

B =					
	0	1	0	0	0
A =					
	1 0	1 1	1 0	0 0	1 0
B =					
	0	0	1	0	1
A =					
	1 0 0	1 1 0	1 0 1	0 0 0	1 0 1
B =					
	0	0	0	1	0

A =

B = 0 0 0 0 0 0

A =

B =

	1 1 1 0 1	0 1 0 0	0 0 1 0 1	0 0 0 1 0	0 0 0 0
A =	0 0 0 0	1 0 0 0	1 0 0 0	0 0 0 0	1 0 1 0 0
A =	1 1 1 0 1	1 1 0 0	1 0 1 0	0 0 0 1 0	1 0 1 0 0
A =	0 1 1 0	1 0 0 0	1 0 0 0 0	0 0 0 0	1 0 1 0
A =	0 1 1 0	1 0 0 0	1 0 0 0 1	0 0 0 0	1 0 1 0
ran2	D = 0.6948 0.8344 0.6096 0.5747 0.3260		0.4564 0.7138 0.8844 0.7209 0.0186		

ran3D =

0.6748	0.3249	0.5619
0.4385	0.2462	0.3958
0.4378	0.3427	0.3981
0.1170	0.3757	0.5154
0.8147	0.5466	0.6575

3D Random Graph

Part 6

```
A = [[0 \ 1 \ 1 \ 1]; [1 \ 0 \ 1 \ 1]; [1 \ 1 \ 0 \ 1]; [1 \ 1 \ 1 \ 0]]
%Degree Matrix
degree = degreeMat(A)
% Laplacian Matrix
laplacian = laplacianMat(A)
% Normalized Laplacian Matrix
normLap = normLapMat(A)
% Random Walk Laplacian Matrix
randWalkLapMat = rwLapMat(A)
A =
     0
            1
                   1
     1
            0
                   1
                          1
            1
                          1
     1
            1
                   1
```

D =

[]

D =

D =

3 0 0 3

D =

3 0 0 0 3 0 0 0 3

D =

degree =

D =

[]

D =

D =

3 0 0 3 D =

D =

3	0	0	0
0	3	0	0
0	0	3	0
0	0	0	3

L =

laplacian =

D =

[]

D =

3

D =

D =

D =

3 0 0 0 0 3 0 0 0 0 3 0 0 0 0 3

L =

3 -1 -1 -1 -1 3 -1 -1 -1 -1 3 -1 -1 -1 -1 3

Ln =

1.0000 -0.3333 -0.3333 -0.3333 -0.3333 1.0000 -0.3333 -0.3333 -0.3333 -0.3333 1.0000 -0.3333 -0.3333 -0.3333 -0.3333 1.0000

normLap =

1.0000 -0.3333 -0.3333 -0.3333 -0.3333 1.0000 -0.3333 -0.3333 -0.3333 -0.3333 1.0000 -0.3333 -0.3333 -0.3333 -0.3333 1.0000

D =

[]

D =

3

D =

3 0 0 3

D =

3 0 0 0 3 0 0 0 3

```
D =
    3
         0
    0
         3
               0
                    0
    0
         0
               3
                    0
    0
         0
                    3
L =
    3
        -1
              -1
                   -1
         3
   -1
              -1
                   -1
   -1
        -1
              3
                   -1
   -1
         -1
              -1
                   3
Lrw =
          -0.3333 -0.3333
   1.0000
                            -0.3333
           1.0000
                   -0.3333
  -0.3333
                            -0.3333
  -0.3333 -0.3333 1.0000
                            -0.3333
  -0.3333
           -0.3333
                   -0.3333
                            1.0000
randWalkLapMat =
   1.0000
          -0.3333
                   -0.3333
                            -0.3333
  -0.3333
           1.0000 -0.3333
                            -0.3333
  -0.3333 -0.3333
                    1.0000
                           -0.3333
  -0.3333
           -0.3333 -0.3333
                             1.0000
```

Functions

```
% To find degree matrix
%function D = degreeMat(A)
%D = []
%Creating degree matrix
%for i = 1:length(A)
%    D(i,i) = sum(A(i,:))
%end
%end
% To find laplacian matrix
%function L = laplacianMat(A)
%D = []
%Creating diagonal matrix
%for i = 1:length(A)
%    D(i,i) = sum(A(i,:))
%end
```

```
%Creating laplacian matrix
L = D-A
%end
% To find normalized laplacian matrix
%function Ln = normLapMat(A)
D = []
%Creating degree matrix
%for i = 1:length(A)
    D(i,i) = sum(A(i,:))
%end
%Creating laplacian matrix
L = D-A
%Creating normalised laplacian matrix
Ln = (D^{(-1/2)})L^{(-1/2)}
%end
% To find laplacian random walk
%function Lrw = rwLapMat(A)
D = []
%Creating Degree matrix
%for i = 1:length(A)
    D(i,i) = sum(A(i,:))
%end
%Creating laplacian matrix
L = D-A
%Creating random walk laplacian matrix
Lrw = inv(D)*L
%end
% To create a random NxN adjacency matrix
%function A = randAdjMatrix(N)
A = []
% Creating upper triangular random matrix
%for i=N:-1:1
    B = [zeros(1,N-i) round(rand(1,i))]
%
    A = [A;B]
%end
%B = A.' % Taking transpose of upper triangular matrix
%A = A - diag(diag(A)) %Making diagonal 0
%A = A + B %Adding transpose to the original triangular matrix
%A = A - diag(diag(A)) %Making diagonal 0
%end
% To plot 2D graph
%function plot2DGraph(A,ran)
%figure
for k = 1: length(A)
    row = A(k,:); %Extracting kth row
```

```
for i = 1:length(row)
응
        if A(k,i) == 1
                                    % If weight is 1
응
            x = [ran(k,1) ran(i,1)];
응
            y = [ran(k,2) ran(i,2)]; %x,y-axes stores random points
응
            k1 = int2str(k);
                                     % Converting node number to
응
                                              string
            text(ran(k,1),ran(k,2),k1) % Naming the node
응
            line(x,y);
                                     % Drawing line
%
        end
    end
%end
%end
% To plot 3D graph
%function plot3DGraph(A,ran)
%figure
%plot3(ran(:,1),ran(:,2),ran(:,3),'O') %Creating random points in 3D
space
for k = 1: length(A)
  row = A(k,:); %Extracting kth row
    for i = 1:length(row)
응
        if A(k,i) == 1 % If weight is 1
            x = [ran(k,1) ran(i,1) ran(k,1)]; %x,y,z-axes stores
random
응
                                                points
응
            y = [ran(k,2) ran(i,2) ran(k,2)];
응
            z = [ran(k,3) ran(i,3) ran(k,3)];
            k1 = int2str(k);
%
                                             %Converting node number
to
왕
                                              string
%
            text(ran(k,1),ran(k,2),ran(k,3),k1) % Naming the node
%
            line(x,y,z); % Drawing line
        end
    end
%end
%end
```

Published with MATLAB® R2018a