$12n_{0237} (K12n_{0237})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{41} + u^{40} + \dots + b + 2u, \ u^{41} + u^{40} + \dots + a - 4u, \ u^{42} + 2u^{41} + \dots + u + 1 \rangle$$

$$I_2^u = \langle -u^4 + u^3 - 2u^2 + b + u, \ a, \ u^6 - u^5 + 3u^4 - 2u^3 + 2u^2 - u - 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 48 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^{41} + u^{40} + \dots + b + 2u, \ u^{41} + u^{40} + \dots + a - 4u, \ u^{42} + 2u^{41} + \dots + u + 1 \rangle$$

(i) Arc colorings

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{41} - u^{40} + \dots + 2u^{2} + 4u \\ -u^{41} - u^{40} + \dots - 8u^{2} - 2u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{41} - u^{40} + \dots + 2u^{2} + 4u \\ -u^{41} - 2u^{40} + \dots - 2u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{12} + 5u^{10} + 9u^{8} + 4u^{6} - 6u^{4} - 5u^{2} + 1 \\ u^{14} + 6u^{12} + 13u^{10} + 10u^{8} - 4u^{6} - 8u^{4} - u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{9} + 4u^{7} + 5u^{5} - 3u \\ -u^{37} - u^{36} + \dots + 8u^{2} + 2u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{6} - 3u^{4} - 2u^{2} + 1 \\ -u^{6} - 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{9} - 4u^{7} - 5u^{5} + 3u \\ -u^{9} - 3u^{7} - 3u^{5} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^{41} 8u^{40} + \cdots + 15u 9$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{42} + 13u^{41} + \dots + 28u + 1$
c_2, c_4	$u^{42} - 7u^{41} + \dots - 8u + 1$
c_3, c_8	$u^{42} + u^{41} + \dots + 192u + 64$
c_5, c_6, c_{10}	$u^{42} - 2u^{41} + \dots - 55u + 17$
c_7, c_{11}, c_{12}	$u^{42} + 2u^{41} + \dots + u + 1$
<i>c</i> ₉	$u^{42} + 2u^{41} + \dots + 5u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{42} + 39y^{41} + \dots - 212y + 1$
c_2, c_4	$y^{42} - 13y^{41} + \dots - 28y + 1$
c_3, c_8	$y^{42} - 39y^{41} + \dots - 90112y + 4096$
c_5, c_6, c_{10}	$y^{42} - 38y^{41} + \dots - 4011y + 289$
c_7, c_{11}, c_{12}	$y^{42} + 34y^{41} + \dots - 19y + 1$
<i>c</i> 9	$y^{42} + 46y^{41} + \dots - 19y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.884997		
a = -0.685840	-8.59934	-6.83080
b = -0.554744		
u = -0.860411 + 0.091340I		
a = 1.60817 + 0.83486I	-1.28738 + 8.63776I	-11.30852 - 5.50570I
b = 0.281208 + 1.248210I		
u = -0.860411 - 0.091340I		
a = 1.60817 - 0.83486I	-1.28738 - 8.63776I	-11.30852 + 5.50570I
b = 0.281208 - 1.248210I		
u = -0.819362 + 0.102352I		
a = -1.76027 - 0.48960I	0.15821 + 2.18866I	-9.63326 - 1.25581I
b = -0.358516 - 0.802687I		
u = -0.819362 - 0.102352I		
a = -1.76027 + 0.48960I	0.15821 - 2.18866I	-9.63326 + 1.25581I
b = -0.358516 + 0.802687I		
u = -0.818580		
a = 1.24094	-7.20526	-12.4480
b = -0.564691		
u = 0.813444 + 0.036008I		
a = -0.240335 - 1.364030I	-5.56172 - 2.39562I	-13.13795 + 3.14651I
b = -0.236106 - 1.145350I		
u = 0.813444 - 0.036008I		
a = -0.240335 + 1.364030I	-5.56172 + 2.39562I	-13.13795 - 3.14651I
b = -0.236106 + 1.145350I		
u = -0.360418 + 1.144850I		
a = 0.461015 + 1.052370I	3.34850 + 2.08589I	-6.37713 - 2.84313I
b = 0.396025 + 0.874829I		
u = -0.360418 - 1.144850I		
a = 0.461015 - 1.052370I	3.34850 - 2.08589I	-6.37713 + 2.84313I
b = 0.396025 - 0.874829I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.039780 + 1.228480I		
a = -0.408011 + 0.443145I	1.48060 - 0.96666I	-6.26750 - 1.40491I
b = 0.69289 + 2.43964I		
u = 0.039780 - 1.228480I		
a = -0.408011 - 0.443145I	1.48060 + 0.96666I	-6.26750 + 1.40491I
b = 0.69289 - 2.43964I		
u = -0.193377 + 1.231330I		
a = 0.262816 + 0.483914I	2.73948 + 2.47038I	-3.06420 - 3.92417I
b = 0.802069 + 0.546478I		
u = -0.193377 - 1.231330I		
a = 0.262816 - 0.483914I	2.73948 - 2.47038I	-3.06420 + 3.92417I
b = 0.802069 - 0.546478I		
u = -0.415470 + 1.179020I		
a = -0.775903 - 0.927476I	2.05152 - 4.06193I	-8.19749 + 0.I
b = -0.095078 - 0.588213I		
u = -0.415470 - 1.179020I		
a = -0.775903 + 0.927476I	2.05152 + 4.06193I	-8.19749 + 0.I
b = -0.095078 + 0.588213I		
u = 0.357741 + 1.238750I		
a = -0.744213 - 0.408723I	-1.85166 - 1.82090I	-9.63780 + 0.I
b = 0.418778 - 1.322100I		
u = 0.357741 - 1.238750I		
a = -0.744213 + 0.408723I	-1.85166 + 1.82090I	-9.63780 + 0.I
b = 0.418778 + 1.322100I		
u = -0.079247 + 1.295310I		
a = 0.637223 - 0.258877I	4.02758 + 2.15699I	0
b = 1.01766 - 1.34640I		
u = -0.079247 - 1.295310I		
a = 0.637223 + 0.258877I	4.02758 - 2.15699I	0
b = 1.01766 + 1.34640I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.365234 + 1.269190I		
a = -0.284658 - 0.718402I	-3.26541 + 4.25757I	0
b = -0.34989 - 2.35592I		
u = -0.365234 - 1.269190I		
a = -0.284658 + 0.718402I	-3.26541 - 4.25757I	0
b = -0.34989 + 2.35592I		
u = 0.517463 + 0.417209I		
a = 1.47848 - 1.77950I	4.73868 - 4.97358I	-7.62188 + 6.30595I
b = 0.187293 - 1.152780I		
u = 0.517463 - 0.417209I		
a = 1.47848 + 1.77950I	4.73868 + 4.97358I	-7.62188 - 6.30595I
b = 0.187293 + 1.152780I		
u = 0.443990 + 0.494284I		
a = -1.67760 + 1.53589I	5.02884 + 1.46246I	-6.53686 + 0.89586I
b = -0.210344 + 0.860490I		
u = 0.443990 - 0.494284I		
a = -1.67760 - 1.53589I	5.02884 - 1.46246I	-6.53686 - 0.89586I
b = -0.210344 - 0.860490I		
u = 0.418536 + 1.277910I		
a = 0.134196 - 0.433061I	-4.63050 - 4.66445I	0
b = 0.636951 - 0.103857I		
u = 0.418536 - 1.277910I		
a = 0.134196 + 0.433061I	-4.63050 + 4.66445I	0
b = 0.636951 + 0.103857I		
u = 0.361948 + 1.295330I		
a = 0.843712 + 0.183840I	-1.40855 - 6.62685I	0
b = 0.34096 + 1.49506I		
u = 0.361948 - 1.295330I		
a = 0.843712 - 0.183840I	-1.40855 + 6.62685I	0
b = 0.34096 - 1.49506I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.361210 + 1.333990I		
a = 0.133728 + 1.145250I	4.66389 + 6.44264I	0
b = 1.68733 + 2.67654I		
u = -0.361210 - 1.333990I		
a = 0.133728 - 1.145250I	4.66389 - 6.44264I	0
b = 1.68733 - 2.67654I		
u = 0.108456 + 1.380140I		
a = 0.156921 - 1.186400I	10.88470 - 0.27094I	0
b = 1.07791 - 4.11722I		
u = 0.108456 - 1.380140I		
a = 0.156921 + 1.186400I	10.88470 + 0.27094I	0
b = 1.07791 + 4.11722I		
u = 0.146369 + 1.377200I		
a = 0.141022 + 1.192190I	10.39390 - 7.18776I	0
b = -0.84503 + 4.22749I		
u = 0.146369 - 1.377200I		
a = 0.141022 - 1.192190I	10.39390 + 7.18776I	0
b = -0.84503 - 4.22749I		
u = -0.385158 + 1.335160I		
a = 0.110632 - 1.155620I	3.18564 + 13.11100I	0
b = -1.67195 - 2.97617I		
u = -0.385158 - 1.335160I		
a = 0.110632 + 1.155620I	3.18564 - 13.11100I	0
b = -1.67195 + 2.97617I		
u = -0.492418		
a = -0.979682	-0.983238	-9.79060
b = -0.240678		
u = -0.283222 + 0.253637I		
a = -1.15749 + 1.43241I	-0.614323 + 0.919516I	-9.08610 - 7.37537I
b = -0.099702 + 0.442777I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.283222 - 0.253637I		
a = -1.15749 - 1.43241I	-0.614323 - 0.919516I	-9.08610 + 7.37537I
b = -0.099702 - 0.442777I		
u = 0.256764		
a = 1.58568	-2.02811	1.75710
b = -0.984824		

II. $I_2^u = \langle -u^4 + u^3 - 2u^2 + b + u, \ a, \ u^6 - u^5 + 3u^4 - 2u^3 + 2u^2 - u - 1 \rangle$

(i) Arc colorings

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{4} - u^{3} + 2u^{2} - u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0 \\ u^{4} - u^{3} + 2u^{2} - u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{2} + 1 \\ 2u^{4} - u^{3} + 4u^{2} - u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{5} - 2u^{3} - u \\ -u^{5} + u^{4} - 2u^{3} + u^{2} - u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{2} - 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-5u^4 + 6u^3 11u^2 + 6u 17$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^6$
c_3, c_8	u^6
<i>C</i> ₄	$(u+1)^6$
c_5, c_6, c_9	$u^6 - u^5 - 3u^4 + 2u^3 + 2u^2 + u - 1$
	$u^6 + u^5 + 3u^4 + 2u^3 + 2u^2 + u - 1$
c_{10}	$u^6 + u^5 - 3u^4 - 2u^3 + 2u^2 - u - 1$
c_{11}, c_{12}	$u^6 - u^5 + 3u^4 - 2u^3 + 2u^2 - u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^6$
c_3, c_8	y^6
c_5, c_6, c_9 c_{10}	$y^6 - 7y^5 + 17y^4 - 16y^3 + 6y^2 - 5y + 1$
c_7, c_{11}, c_{12}	$y^6 + 5y^5 + 9y^4 + 4y^3 - 6y^2 - 5y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.873214		
a = 0	-9.30502	-19.0600
b = 0.567375		
u = -0.138835 + 1.234450I		
a = 0	1.31531 + 1.97241I	-8.22189 - 4.83849I
b = -1.35607 + 0.92119I		
u = -0.138835 - 1.234450I		
a = 0	1.31531 - 1.97241I	-8.22189 + 4.83849I
b = -1.35607 - 0.92119I		
u = 0.408802 + 1.276380I		
a = 0	-5.34051 - 4.59213I	-15.2853 + 2.7994I
b = -0.354716 - 0.801205I		
u = 0.408802 - 1.276380I		
a = 0	-5.34051 + 4.59213I	-15.2853 - 2.7994I
b = -0.354716 + 0.801205I		
u = -0.413150		
a = 0	-2.38379	-21.9250
b = 0.854195		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^6)(u^{42}+13u^{41}+\cdots+28u+1)$
c_2	$((u-1)^6)(u^{42} - 7u^{41} + \dots - 8u + 1)$
c_3, c_8	$u^6(u^{42} + u^{41} + \dots + 192u + 64)$
c_4	$((u+1)^6)(u^{42} - 7u^{41} + \dots - 8u + 1)$
c_5, c_6	$ (u^6 - u^5 - 3u^4 + 2u^3 + 2u^2 + u - 1)(u^{42} - 2u^{41} + \dots - 55u + 17) $
c_7	$ (u^{6} + u^{5} + 3u^{4} + 2u^{3} + 2u^{2} + u - 1)(u^{42} + 2u^{41} + \dots + u + 1) $
<i>c</i> 9	$(u^6 - u^5 - 3u^4 + 2u^3 + 2u^2 + u - 1)(u^{42} + 2u^{41} + \dots + 5u + 1)$
c_{10}	$(u^6 + u^5 - 3u^4 - 2u^3 + 2u^2 - u - 1)(u^{42} - 2u^{41} + \dots - 55u + 17)$
c_{11}, c_{12}	$ (u6 - u5 + 3u4 - 2u3 + 2u2 - u - 1)(u42 + 2u41 + \dots + u + 1) $

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^6)(y^{42} + 39y^{41} + \dots - 212y + 1)$
c_2, c_4	$((y-1)^6)(y^{42}-13y^{41}+\cdots-28y+1)$
c_3, c_8	$y^6(y^{42} - 39y^{41} + \dots - 90112y + 4096)$
c_5, c_6, c_{10}	$(y^6 - 7y^5 + 17y^4 - 16y^3 + 6y^2 - 5y + 1)$ $\cdot (y^{42} - 38y^{41} + \dots - 4011y + 289)$
c_7, c_{11}, c_{12}	$(y^6 + 5y^5 + \dots - 5y + 1)(y^{42} + 34y^{41} + \dots - 19y + 1)$
<i>c</i> 9	$(y^6 - 7y^5 + \dots - 5y + 1)(y^{42} + 46y^{41} + \dots - 19y + 1)$