Stochastic Gradient Descent in NPIV estimation

Anonymous Author(s)

Affiliation Address email

1 Problem setup

2 1.1 Basic definitions

Fix a probability space $(\Omega, \mathcal{A}, \mathbb{P})$. Given $X \in L^2(\Omega, \mathcal{A}, \mathbb{P}; \mathcal{X} \subseteq \mathbf{R}^p)$, we define

$$L^2(X) \triangleq \{h: \mathcal{X} \to \mathbf{R} : \mathbb{E}[h(X)^2] < \infty\},$$

- that is, $L^2(X) = L^2(\mathcal{X}, \mathcal{B}(\mathcal{X}), \nu_X)$, where we denote by ν_X the distribution of the r.v. X and by
- 5 $\mathcal{B}(\mathcal{X})$ the Borel σ -algebra in \mathcal{X} . This is a Hilbert space equipped with the inner product $\langle h, g \rangle_{L^2(X)} =$
- 6 $\mathbb{E}[h(X)g(X)]$. The regression problem we are interested in has the form

$$Y = h^{\star}(X) + \varepsilon, \tag{1}$$

- where $h^* \in L^2(X)$ and ε is an square-integrable r.v. such that $\mathbb{E}[\varepsilon \mid X] \neq 0$. We assume there exists $Z \in L^2(\Omega, \mathcal{A}, \mathbb{P}; \mathcal{Z} \subseteq \mathbf{R}^q)$ such that
- 9 i) Z influences X, that is, $\nu_{X|Z}(\cdot \mid Z) \neq \nu_X(\cdot)$;
- ii) Z and ε are uncorrelated, that is, $\mathbb{E}[\varepsilon \mid Z] = 0$.
- 11 The space $L^2(Z) = L^2(\mathcal{Z}, \mathcal{B}(\mathcal{Z}), \nu_Z)$ is defined accordingly. This variable is called the *instrumental*
- variable. The problem consists of estimating h^* based on independent joint samples from X, Z and
- 13 Y
- 14 Conditioning (1) in Z, we find

$$\mathbb{E}[Y \mid Z] = \mathbb{E}[h^*(X) \mid Z]. \tag{2}$$

This motivates us to introduce the operator $\mathcal{P}:L^2(X)\to L^2(Z)$ defined by

$$\mathcal{P}[h](z) \triangleq \mathbb{E}[h(X) \mid Z = z].$$

- 16 Clearly \mathcal{P} is linear and, using Jensen's inequality, one may prove that it's bounded. It's also interesting
- to notice that its adjoint $\mathcal{P}^*: L^2(Z) \to L^2(X)$ satisfies

$$\mathcal{P}^*[g](x) = \mathbb{E}[g(Z) \mid X = x]. \tag{3}$$

- Define $r_0:\mathcal{Z} \to \mathbf{R}$ by $r_0(Z) = \mathbb{E}[Y \mid Z]$. Again by Jensen's inequality, we have $r_0 \in L^2(Z)$, and
- 19 thus we can rewrite (2) as

$$\mathcal{P}[h^{\star}] = r_0. \tag{4}$$

- Hence, (1) can be formulated as an inverse problem, where we wish to invert the operator \mathcal{P} .
- 21 1.2 Risk measure
- Let $\ell: \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ be a pointwise loss function, which, with respect to its second argument, is
- convex and differentiable. We use the symbol ∂_2 to denote a derivative with respect to the second

Discuss the other implication, that if h satisfies $\mathcal{P}[h] = r_0$, then $h = h^*$. This is false, but the reason can be connected to the strength of the instrument Z

- argument. The example to keep in mind is the quadratic loss function $\ell(y,y')=\frac{1}{2}(y-y')^2$. Given
- 25 $h \in L^2(X)$, we define the *populational risk* associated with it to be

$$\mathcal{R}(h) \triangleq \mathbb{E}[\ell(r_0(Z), \mathcal{P}[h](Z))].$$

26 We would like to solve

$$\inf_{h\in\mathcal{F}}\mathcal{R}(h),$$

- where $\mathcal{F}\subseteq L^2(X)$ is a bounded, closed, convex set such that $h^\star\in\mathcal{F}$. We also assume that Assumption
- $D \triangleq \dim \mathcal{F} < \infty$ and that $0 \in \mathcal{F}$, so that $||h|| \leq D$ if $h \in \mathcal{F}$. A possible choice for the set \mathcal{F} is

$$\mathcal{F} = \left\{ h \in L^2(X) : \|h\|_{\infty} \le A \right\},\,$$

- where A > 0 is a constant chosen a priori. This set is obviously closed, convex and bounded in the
- 30 $L^2(X)$ norm. Furthermore, the projection operator $\pi_{\mathcal{F}}$ is very easy to compute, as $\pi_{\mathcal{F}}[h]$ is obtained
- by cropping h inside [-A, A]. More formally,

$$\pi_{\mathcal{F}}[h] = h^+ \wedge A - h^- \wedge A.$$

- We now state all the assumptions needed about the function ℓ :
- 33 **Assumption 1** (Regularity of ℓ).
- 1. The function $\ell: \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ is convex and C^2 with respect to its second argument;
- 2. The function ℓ has Lipschitz first derivative with respect to the second argument, i.e., there exists $L \ge 0$ such that, for all $y, y', u, u' \in \mathbf{R}$ we have

$$|\partial_2 \ell(y, y') - \partial_2 \ell(u, u')| \le L(|y - u| + |y' - u'|).$$

37

42

- 38 Some useful facts which follow immediately from these assumptions are:
- **Proposition 1.** *Under Assumption 1 we have:*
- 1. Setting $C_0 = |\partial_2 \ell(0,0)|$ we have

$$|\partial_2 \ell(y, y')| \le C_0 + L(|y| + |y'|)$$

- for all $y, y' \in \mathbf{R}$;
 - 2. The map $f \mapsto \partial_2 \ell(r_0(\cdot), f(\cdot))$ from $L^2(Z)$ to $L^2(Z)$ is well-defined and L-Lipschitz.
- 3. The second derivative with respect to the second argument is bounded: $\left|\partial_2^2 \ell(y,y')\right| \leq L$ for all $y,y' \in \mathbf{R}$;
- 45 Proof.
- 1. Write $\partial_2 \ell(y, y') = \partial_2 \ell(y, y') \partial_2 \ell(0, 0) + \partial_2 \ell(0, 0)$ and apply the triangle inequality as well as Assumption 1.2.
- 2. From the previous item we know this map is well-defined. If f and g belong to $L^2(Z)$, we have

$$\|\partial_{2}\ell(r_{0}(\cdot), f(\cdot)) - \partial_{2}\ell(r_{0}(\cdot), g(\cdot))\|_{L^{2}(Z)}^{2} = \mathbb{E}\left[\left|\partial_{2}(r_{0}(Z), f(Z)) - \partial_{2}(r_{0}(Z), g(Z))\right|^{2}\right]$$

$$\leq L^{2}\mathbb{E}\left[\left|f(Z) - g(Z)\right|^{2}\right]$$

$$= L^{2}\|f - g\|_{L^{2}(Z)}^{2}.$$

3. Follows from the definition of derivative and Assumption 1.2.

51

52 2 Gradient computation

We'd like to compute $\nabla \mathcal{R}(h)$ for $h \in L^2(X)$. We start by computing the directional derivative of \mathcal{R} at h in the direction f, denoted by $D\mathcal{R}[h](f)$:

$$\begin{split} D\mathcal{R}[h](f) &= \lim_{\delta \to 0} \frac{1}{\delta} \left[\mathcal{R}(h + \delta f) - \mathcal{R}(f) \right] \\ &= \lim_{\delta \to 0} \frac{1}{\delta} \mathbb{E} \left[\ell(r_0(Z), \mathcal{P}[h + \delta f](Z)) - \ell(r_0(Z), \mathcal{P}[h](Z)) \right] \\ &= \lim_{\delta \to 0} \frac{1}{\delta} \mathbb{E} \left[\ell(r_0(Z), \mathcal{P}[h](Z) + \delta \mathcal{P}[f](Z)) - \ell(r_0(Z), \mathcal{P}[h](Z)) \right] \\ &= \lim_{\delta \to 0} \frac{1}{\delta} \mathbb{E} \left[\delta \partial_2 \ell(r_0(Z), \mathcal{P}[h](Z)) \cdot \mathcal{P}[f](Z) \right. \\ &\qquad \qquad + \frac{\delta^2}{2} \partial_2^2 \ell(r_0(Z), \mathcal{P}[h + \theta f](Z)) \cdot \mathcal{P}[f](Z)^2 \right] \\ &= \mathbb{E} \left[\partial_2 \ell(r_0(Z), \mathcal{P}[h](Z)) \cdot \mathcal{P}[f](Z) \right] \\ &\qquad \qquad + \lim_{\delta \to 0} \mathbb{E} \left[\frac{\delta}{2} \partial_2^2 \ell(r_0(Z), \mathcal{P}[h + \theta f](Z)) \cdot \mathcal{P}[f](Z)^2 \right] \\ &= \mathbb{E} \left[\partial_2 \ell(r_0(Z), \mathcal{P}[h](Z)) \cdot \mathcal{P}[f](Z) \right], \end{split}$$

- where $\theta \in \mathbf{R}$ is due to Taylor's formula. The last step is then due to Proposition 1.3.
- We can in fact expand the calculation a bit more, as follows:

$$D\mathcal{R}[h](f) = \mathbb{E}\left[\partial_2 \ell(r_0(Z), \mathcal{P}[h](Z)) \cdot \mathcal{P}[f](Z)\right]$$

= $\langle \partial_2 \ell(r_0(\cdot), \mathcal{P}[h](\cdot)), \mathcal{P}[f] \rangle_{L^2(Z)}$
= $\langle \mathcal{P}^*[\partial_2 \ell(r_0(Z), \mathcal{P}[h](\cdot))], f \rangle_{L^2(X)}.$

This shows that \mathcal{R} is Gateux-differentiable, with Gateux derivative at h given by

$$D\mathcal{R}[h] = \mathcal{P}^*[\partial_2 \ell(r_0(\cdot), \mathcal{P}[h](\cdot))].$$

- By Proposition 1.2 we have that $h \mapsto D\mathcal{R}[h]$ is a continuous mapping from $L^2(X)$ to $L^2(X)$, which
- \mathcal{R} implies that \mathcal{R} is also Fréchet-differentiable, and both derivatives coincide. Therefore,

Cite a reference for

$$\nabla \mathcal{R}(h) = \mathcal{P}^*[\partial_2 \ell(r_0(\cdot), \mathcal{P}[h](\cdot))].$$

50 3 Estimating the gradient

61 We have found that

$$\nabla \mathcal{R}(h)(x) = \mathcal{P}^*[\partial_2 \ell(r_0(\cdot), \mathcal{P}[h](\cdot))](x) = \mathbb{E}[\partial_2 \ell(r_0(Z), \mathcal{P}[h](Z)) \mid X = x].$$

- This turns out to be hard to estimate in practice, as we have two nested conditional expectation
- operators. Our objective in this section is to write $\nabla \mathcal{R}(h)(x) = \mathbb{E}[\Phi(x,Z)\partial_2 \ell(r_0(Z),\mathcal{P}[h](Z))],$
- for some suitable kernel Φ . Then, for a given sample of Z, the function $\Phi(\cdot,Z)\partial_2\ell(r_0(Z),\mathcal{P}[h](Z))$
- acts as an stochastic estimate for $\nabla \mathcal{R}(h)$. To ease the notation, define $\Psi_h(z) \triangleq \partial_2 \ell(r_0(z), \mathcal{P}[h](z))$.
- 66 Assuming that X and Z have a joint distribution which is absolutely continuous with respect to
- Lebesgue measure in \mathbf{R}^{p+q} , we can write

Assumption

$$\nabla \mathcal{R}(h)(x) = \mathbb{E}[\Psi_h(Z) \mid X = x]$$

$$= \int_{\mathbb{Z}} p(z \mid x) \Psi_h(z) \, dz$$

$$= \int_{\mathbb{Z}} p(z) \frac{p(z \mid x)}{p(z)} \Psi_h(z) \, dz$$

$$= \mathbb{E}\left[\frac{p(Z \mid x)}{p(Z)} \Psi_h(Z)\right].$$

68 Thus, we must take

$$\Phi(x,z) = \frac{p(z \mid x)}{p(z)} = \frac{p(x \mid z)}{p(x)} = \frac{p(x,z)}{p(x)p(z)}.$$

- With this choice, setting $u_h(x) = \Phi(x, Z)\Psi_h(Z)$ we clearly have $\mathbb{E}[u_h(x)] = \nabla \mathcal{R}(h)(x)$.
- An obvious obstacle for this approach is that we don't know how to analytically compute Φ , r_0 nor \mathcal{P} ,
- se we will proceed with estimators $\widehat{\Phi}$, $\widehat{r_0}$ and $\widehat{\mathcal{P}}$. In what follows, we will remain agnostic to the exact
- form taken by these estimators and will present the algorithm assuming we know how to compute
- 73 them. Later, we will show how the individual convergence rates of these three pieces come together
- to determine the convergence rate of our method.
- 75 We state here all the assumptions which we need from these estimators to bound the excess risk:
- 76 Assumption 2.

78

- 77 1. $\hat{r_0} \in L^2(Z)$;
 - 2. $\widehat{\mathcal{P}}: L^2(X) \to L^2(Z)$ is a bounded linear operator;
- 79 3. Letting $W = X \times Z$, we have

$$\|\widehat{\Phi}\|_{\infty} \triangleq \sup_{\boldsymbol{w} \in \mathcal{W}} |\Phi(\boldsymbol{w})| < \infty.$$

o 4 Algorithm

Having an estimator of the gradient, we can construct Functional GD algorithm for estimating h^* .

Algorithm 1: SGD-NPIV

input: Datasets \mathcal{D}_{r_0} , \mathcal{D}_{Φ} and $\mathcal{D}_{\mathcal{P}}$ for estimating r_0 , Φ and \mathcal{P} , respectively. Samples $\{(\boldsymbol{z}_m)\}_{m=1}^M$ for the gradient descent loop. Discretization $\{\boldsymbol{x}_k\}_{k=1}^K$ of \mathcal{X} which contains the observed values of X. Sequence of learning rates $(\alpha_m)_{m=1}^M$.

output: h

Compute $\widehat{r_0}$, $\widehat{\Phi}$, $\widehat{\mathcal{P}}$ using \mathcal{D}_{r_0} , \mathcal{D}_{Φ} , $\mathcal{D}_{\mathcal{P}}$, respectively;

for $1 \le m \le M$ do

$$\begin{split} & \overset{-}{\operatorname{Set}} u_m = \widehat{\Phi}(\cdot, \boldsymbol{z}_m) \partial_2 \ell \left(\widehat{r_0}(\boldsymbol{z}_m), \widehat{\mathcal{P}}[\widehat{h}_{m-1}](\boldsymbol{z}_m) \right); \\ & \operatorname{Set} \widehat{h}_m(\boldsymbol{x}_k) = \pi_{\mathcal{F}} \left[\widehat{h}_{m-1} - \alpha_m u_m \right] (\boldsymbol{x}_k) \quad \text{ for } 1 \leq k \leq K; \end{split}$$

end

Set
$$\hat{h} = \frac{1}{M} \sum_{m=1}^{M} \hat{h}_m$$
;

83 5 Proof of convergence

- To lighten the notation, the symbols $\|\cdot\|$ and $\langle\cdot,\cdot\rangle$, when written without a subscript to specify which
- space they refer to, will act as the norm and inner product, respectively, of $L^2(X)$.
- **Lemma 1.** In the procedure of Algorithm 1 we have $u_m \in L^2(X)$ for all $1 \leq m \leq M$ and,
- 87 furthermore,

$$\mathbb{E}_{\boldsymbol{z}_{1:M}}[\|u_m\|^2] \leq \rho\left(\widehat{\Phi}, \widehat{r_0}, \widehat{\mathcal{P}}\right),\,$$

88 where

$$\rho\left(\widehat{\Phi},\widehat{r_0},\widehat{\mathcal{P}}\right) = 3\left\|\widehat{\Phi}\right\|_{\infty}^2 \left(C_0^2 + L^2 \|\widehat{r_0}\|_{L^2(Z)}^2 + L^2 D^2 \left\|\widehat{\mathcal{P}}\right\|_{\mathrm{op}}^2\right).$$

Must discuss why $u_h \in L^2(X)$.

Must we? Since we end up not using u_h , but an approximation which we know is in $L^2(X)$.

don't know and must

Comment on exactly what is needed to estimate each unknown (samples from which r.v.'s).

discretizing X

89 *Proof.* By Assumption 2 we have:

$$\|u_{m}\|_{L^{2}(X)}^{2} = \|\widehat{\Phi}(\cdot, \boldsymbol{z}_{m})\partial_{2}\ell\left(\widehat{r_{0}}(\boldsymbol{z}_{m}), \widehat{\mathcal{P}}[\widehat{h}_{m-1}](\boldsymbol{z}_{m})\right)\|_{L^{2}(X)}^{2}$$

$$= \mathbb{E}_{X}\left[\left|\widehat{\Phi}(X, \boldsymbol{z}_{m})\partial_{2}\ell\left(\widehat{r_{0}}(\boldsymbol{z}_{m}), \widehat{\mathcal{P}}[\widehat{h}_{m-1}](\boldsymbol{z}_{m})\right)\right|^{2}\right]$$

$$\leq \partial_{2}\ell\left(\widehat{r_{0}}(\boldsymbol{z}_{m}), \widehat{\mathcal{P}}[\widehat{h}_{m-1}](\boldsymbol{z}_{m})\right)^{2}\|\widehat{\Phi}\|_{\infty}^{2}$$

$$\leq \infty.$$

$$(5)$$

Hence, $u_m \in L^2(X)$ for all m. This computation and Proposition 1.1 then imply

$$\begin{split} \mathbb{E}_{\boldsymbol{z}_{1:M}} \left[\|u_{m}\|^{2} \right] &\leq 3 \left\| \widehat{\Phi} \right\|_{\infty}^{2} \left(C_{0}^{2} + L^{2} \left(\|\widehat{r_{0}}\|_{L^{2}(Z)}^{2} + \left\| \widehat{\mathcal{P}}[\widehat{h}_{m-1}] \right\|_{L^{2}(Z)}^{2} \right) \right) \\ &\leq 3 \left\| \widehat{\Phi} \right\|_{\infty}^{2} \left(C_{0}^{2} + L^{2} \left(\|\widehat{r_{0}}\|_{L^{2}(Z)}^{2} + \left\| \widehat{\mathcal{P}} \right\|_{\text{op}}^{2} \left\| \widehat{h}_{m-1} \right\|^{2} \right) \right) \\ &\leq 3 \left\| \widehat{\Phi} \right\|_{\infty}^{2} \left(C_{0}^{2} + L^{2} \left(\|\widehat{r_{0}}\|_{L^{2}(Z)}^{2} + D^{2} \|\widehat{\mathcal{P}} \right\|_{\text{op}}^{2} \right) \right) \\ &= 3 \left\| \widehat{\Phi} \right\|_{\infty}^{2} \left(C_{0}^{2} + L^{2} \|\widehat{r_{0}}\|_{L^{2}(Z)}^{2} + L^{2} D^{2} \|\widehat{\mathcal{P}} \right\|_{\text{op}}^{2} \right) \triangleq \rho \left(\widehat{\Phi}, \widehat{r_{0}}, \widehat{\mathcal{P}} \right). \end{split}$$

91 **Lemma 2.** In the procedure of Algorithm 1 we have

$$\left\| \mathbb{E}_{\boldsymbol{z}_m} \left[\nabla \mathcal{R}(\widehat{h}_{m-1}) - u_m \right] \right\| \leq \kappa \left(\widehat{\Phi} \right) \left(\left\| \Phi - \widehat{\Phi} \right\|_{L^2(\nu_X \otimes \nu_Z)}^2 + \left\| r_0 - \widehat{r_0} \right\|_{L^2(Z)}^2 + \left\| \mathcal{P} - \widehat{\mathcal{P}} \right\|_{\text{op}}^2 \right)^{\frac{1}{2}},$$

Comment on how this is the step that is diferent from the other rticle, since in the impler scenario, this ifference would van-

92 where

$$\kappa^2\left(\widehat{\Phi}\right) \triangleq 2\max\left\{3(C_0^2 + L^2\mathbb{E}[Y^2] + L^2D^2), 2L^2\left\|\widehat{\Phi}\right\|_{\infty}^2, 2L^2D^2\left\|\widehat{\Phi}\right\|_{\infty}^2\right\}.$$

93 *Proof.* To ease the notation, we define

$$\Psi_m(Z) \triangleq \partial_2 \ell(r_0(Z), \mathcal{P}[\widehat{h}_{m-1}](Z)).$$

$$\widehat{\Psi}_m(Z) \triangleq \partial_2 \ell(\widehat{r_0}(Z), \widehat{\mathcal{P}}[\widehat{h}_{m-1}](Z)).$$

Let's expand the definition of $\|\cdot\|$:

$$\begin{split} \left\| \mathbb{E}_{\boldsymbol{z}_{m}} \left[\nabla \mathcal{R}(\widehat{h}_{m-1}) - u_{m} \right] \right\| &= \mathbb{E}_{X} \left[\mathbb{E}_{\boldsymbol{z}_{m}} \left[\nabla \mathcal{R}(\widehat{h}_{m-1})(X) - u_{m}(X) \right]^{2} \right]^{\frac{1}{2}} \\ &= \mathbb{E}_{X} \left[\left(\nabla \mathcal{R}(\widehat{h}_{m-1})(X) - \mathbb{E}_{\boldsymbol{z}_{m}} \left[u_{m}(X) \right] \right)^{2} \right]^{\frac{1}{2}} \\ &= \mathbb{E}_{X} \left[\left(\mathbb{E}_{Z} \left[\Phi(X, Z) \Psi_{m}(Z) \right] - \mathbb{E}_{\boldsymbol{z}_{m}} \left[\widehat{\Phi}(X, \boldsymbol{z}_{m}) \widehat{\Psi}_{m}(\boldsymbol{z}_{m}) \right] \right)^{2} \right]^{\frac{1}{2}} \\ &= \mathbb{E}_{X} \left[\left(\mathbb{E}_{Z} \left[\Phi(X, Z) \Psi_{m}(Z) - \widehat{\Phi}(X, Z) \widehat{\Psi}_{m}(Z) \right] \right)^{2} \right]^{\frac{1}{2}}, \end{split}$$

Now we add and subtract $\widehat{\Phi}(X,Z)\Psi_m(Z)$, so that

$$\begin{split} \mathbb{E}_{X} \left[\left(\mathbb{E}_{Z} \left[\Phi(X, Z) \Psi_{m}(Z) - \widehat{\Phi}(X, Z) \widehat{\Psi}_{m}(Z) \right] \right)^{2} \right]^{\frac{1}{2}} \\ &= \mathbb{E}_{X} \left[\left(\mathbb{E}_{Z} \left[\Psi_{m}(Z) \left(\Phi(X, Z) - \widehat{\Phi}(X, Z) \right) + \widehat{\Phi}(X, Z) \left(\Psi_{m}(Z) - \widehat{\Psi}_{m}(Z) \right) \right] \right)^{2} \right]^{\frac{1}{2}} \\ &\leq \mathbb{E}_{X} \left[\left(\left\| \Psi_{m} \right\|_{L^{2}(Z)} \left\| \Phi(X, \cdot) - \widehat{\Phi}(X, \cdot) \right\|_{L^{2}(Z)} + \left\| \widehat{\Phi}(X, \cdot) \right\|_{L^{2}(Z)} \left\| \Psi_{m} - \widehat{\Psi}_{m} \right\|_{L^{2}(Z)} \right)^{2} \right]^{\frac{1}{2}} \\ &\leq \sqrt{2} \mathbb{E}_{X} \left[\left\| \Psi_{m} \right\|_{L^{2}(Z)}^{2} \left\| \Phi(X, \cdot) - \widehat{\Phi}(X, \cdot) \right\|_{L^{2}(Z)}^{2} + \left\| \widehat{\Phi}(X, \cdot) \right\|_{L^{2}(Z)}^{2} \left\| \Psi_{m} - \widehat{\Psi}_{m} \right\|_{L^{2}(Z)}^{2} \right]^{\frac{1}{2}} \\ &= \sqrt{2} \left(\left\| \Psi_{m} \right\|_{L^{2}(Z)}^{2} \left\| \Phi - \widehat{\Phi} \right\|_{L^{2}(V_{X} \otimes \nu_{Z})}^{2} + \left\| \widehat{\Phi} \right\|_{L^{2}(V_{X} \otimes \nu_{Z})}^{2} \left\| \Psi_{m} - \widehat{\Psi}_{m} \right\|_{L^{2}(Z)}^{2} \right)^{\frac{1}{2}}, \end{split}$$

96 where

$$\|\Phi\|_{L^2(\nu_X \otimes \nu_Z)}^2 = \int_{\mathcal{X} \times \mathcal{Z}} \Phi(x, z)^2 p(x) p(z) \, \mathrm{d}x \mathrm{d}z$$

is the norm with respect to the independent coupling of the distributions of X and Z. By Proposition

98 1.1 we have

$$\begin{split} \|\Psi_{m}\|_{L^{2}(Z)}^{2} &= \mathbb{E}_{Z} \left[\partial_{2} \ell(r_{0}(Z), \mathcal{P}[\widehat{h}_{m-1}](Z))^{2} \right] \\ &\leq \mathbb{E}_{Z} \left[\left(C_{0} + L \left(|r_{0}(Z)| + \left| \mathcal{P}[\widehat{h}_{m-1}](Z) \right| \right) \right)^{2} \right] \\ &\leq 3 \left(C_{0}^{2} + L^{2} \|r_{0}\|_{L^{2}(Z)}^{2} + L^{2} \|\mathcal{P}[\widehat{h}_{m-1}]\|_{L^{2}(Z)}^{2} \right) \\ &\leq 3 \left(C_{0}^{2} + L^{2} \mathbb{E}[Y^{2}] + L^{2} D^{2} \right). \end{split}$$

99 It is also clear that, by Assumption 2,

$$\left\|\widehat{\Phi}\right\|_{L^2(\nu_X\otimes\nu_Z)}^2 \leq \left\|\widehat{\Phi}\right\|_{\infty}^2.$$

100 Finally, by Assumption 1.2 we also have

$$\begin{split} \left\| \Psi_{m} - \widehat{\Psi}_{m} \right\|_{L^{2}(Z)}^{2} &= \mathbb{E}_{Z} \left[\left(\partial_{2} \ell(r_{0}(Z), \mathcal{P}[\widehat{h}_{m-1}](Z)) - \partial_{2} \ell(\widehat{r_{0}}(Z), \widehat{\mathcal{P}}[\widehat{h}_{m-1}](Z)) \right)^{2} \right] \\ &\leq 2L^{2} \left(\left\| r_{0} - \widehat{r_{0}} \right\|_{L^{2}(Z)}^{2} + \left\| (\mathcal{P} - \widehat{\mathcal{P}})[\widehat{h}_{m-1}] \right\|_{L^{2}(Z)}^{2} \right) \\ &\leq 2L^{2} \left(\left\| r_{0} - \widehat{r_{0}} \right\|_{L^{2}(Z)}^{2} + D^{2} \left\| \mathcal{P} - \widehat{\mathcal{P}} \right\|_{\text{op}}^{2} \right). \end{split}$$

101 To combine all terms, we first define

$$\kappa^2\left(\widehat{\Phi}\right) \triangleq 2\max\left\{3(C_0^2 + L^2\mathbb{E}[Y^2] + L^2D^2), 2L^2\left\|\widehat{\Phi}\right\|_{\infty}^2, 2L^2D^2\left\|\widehat{\Phi}\right\|_{\infty}^2\right\}.$$

102 Then, it's easy to see that

$$\left\| \mathbb{E}_{\boldsymbol{z}_m} \left[\nabla \mathcal{R}(\widehat{h}_{m-1}) - u_m \right] \right\| \leq \kappa \left(\widehat{\Phi} \right) \left(\left\| \Phi - \widehat{\Phi} \right\|_{L^2(\nu_X \otimes \nu_Z)}^2 + \left\| r_0 - \widehat{r_0} \right\|_{L^2(Z)}^2 + \left\| \mathcal{P} - \widehat{\mathcal{P}} \right\|_{\operatorname{op}}^2 \right)^{\frac{1}{2}},$$

as we wanted to show.

Theorem 1. Assume that $\hat{h}_0, \dots, \hat{h}_{M-1}$ are generated according to Algorithm 1. If we let $\hat{h} = \sum_{m=1}^{M} \hat{h}_{m-1}$, the following excess risk bound holds:

$$\mathbb{E}_{\boldsymbol{z}_{1:M}}\left[\mathcal{R}(\widehat{h}) - \mathcal{R}(h^{\star})\right] \leq \frac{D^{2}}{2M\alpha_{M}} + \xi\left(\widehat{\Phi}, \widehat{r_{0}}, \widehat{\mathcal{P}}\right) \frac{1}{M} \sum_{m=1}^{M} \alpha_{m} + \tau\left(\widehat{\Phi}\right) \left(\left\|\Phi - \widehat{\Phi}\right\|_{L^{2}(\nu_{X} \otimes \nu_{Z})}^{2} + \left\|r_{0} - \widehat{r_{0}}\right\|_{L^{2}(Z)}^{2} + \left\|\mathcal{P} - \widehat{\mathcal{P}}\right\|_{\text{op}}^{2}\right)^{\frac{1}{2}},$$

106 where

$$\begin{split} \xi\left(\widehat{\Phi},\widehat{r_0},\widehat{\mathcal{P}}\right) &= \frac{3}{2} \left\|\widehat{\Phi}\right\|_{\infty}^2 \left(C_0^2 + L^2 \|\widehat{r_0}\|_{L^2(Z)}^2 + L^2 D^2 \left\|\widehat{\mathcal{P}}\right\|_{\mathrm{op}}^2\right), \\ \tau\left(\widehat{\Phi}\right) &= 2D \max\left\{3(C_0^2 + L^2 \mathbb{E}[Y^2] + L^2 D^2), 2L^2 \left\|\widehat{\Phi}\right\|_{\infty}^2, 2L^2 D^2 \left\|\widehat{\Phi}\right\|_{\infty}^2\right\}, \\ \left\|\widehat{\Phi} - \widehat{\Phi}\right\|_{L^2(\nu_X) \otimes \nu_Z}^2 &= \int_{\mathcal{X} \times \mathcal{Z}} (\Phi - \widehat{\Phi})^2(x, z) p(x) p(z) \, \mathrm{d}x \mathrm{d}z. \end{split}$$

107 *Proof.* We start by checking that \mathcal{R} is convex in \mathcal{F} : if $h, g \in \mathcal{F}$ and $\lambda \in [0, 1]$, then

$$\mathcal{R}(\lambda h + (1 - \lambda)g) = \mathbb{E}[\ell(r_0(Z), \mathcal{P}[\lambda h + (1 - \lambda)g](Z))]$$

$$= \mathbb{E}[\ell(r_0(Z), \lambda \mathcal{P}[h](Z) + (1 - \lambda)\mathcal{P}[g](Z))]$$

$$\leq \lambda \mathbb{E}[\ell(r_0(Z), \mathcal{P}[h](Z))] + (1 - \lambda)\mathbb{E}[\ell(r_0(Z), \mathcal{P}[g](Z))]$$

$$= \lambda \mathcal{R}(h) + (1 - \lambda)\mathcal{R}(g).$$

108 By the Algorithm 1 procedure, we have

$$\begin{split} \frac{1}{2} \left\| \widehat{h}_{m} - h^{\star} \right\|^{2} &= \frac{1}{2} \left\| \pi_{\mathcal{F}} \left[\widehat{h}_{m-1} - \alpha_{m} u_{m} \right] - h^{\star} \right\|^{2} \\ &\leq \frac{1}{2} \left\| \widehat{h}_{m-1} - \alpha_{m} u_{m} - h^{\star} \right\|^{2} \\ &= \frac{1}{2} \left\| \widehat{h}_{m-1} - h^{\star} \right\|^{2} - \alpha_{m} \langle u_{m}, \widehat{h}_{m-1} - h^{\star} \rangle + \frac{\alpha_{m}^{2}}{2} \|u_{m}\|^{2}. \end{split}$$

After adding and subtracting $\alpha_m \langle \nabla \mathcal{R}(\hat{h}_{m-1}), \hat{h}_{m-1} - h^* \rangle$, we are left with

$$\frac{1}{2}\left\|\widehat{h}_{m-1}-h^{\star}\right\|^{2}-\alpha_{m}\langle u_{m}-\nabla\mathcal{R}(\widehat{h}_{m-1}),\widehat{h}_{m-1}-h^{\star}\rangle+\frac{\alpha_{m}^{2}}{2}\left\|u_{m}\right\|^{2}-\alpha_{m}\langle\nabla\mathcal{R}(\widehat{h}_{m-1}),\widehat{h}_{m-1}-h^{\star}\rangle.$$

Applying the basic convexity inequality on the last term give us, in total,

$$\frac{1}{2} \| \widehat{h}_{m} - h^{\star} \|^{2} \leq \frac{1}{2} \| \widehat{h}_{m-1} - h^{\star} \|^{2} - \alpha_{m} \langle u_{m} - \nabla \mathcal{R}(\widehat{h}_{m-1}), \widehat{h}_{m-1} - h^{\star} \rangle
+ \frac{\alpha_{m}^{2}}{2} \| u_{m} \|^{2} - \alpha_{m} (\mathcal{R}(\widehat{h}_{m-1}) - \mathcal{R}(h^{\star})).$$

111 Rearranging terms, we get

$$\begin{split} \mathcal{R}(\widehat{h}_{m-1}) - \mathcal{R}(h^{\star}) &\leq \frac{1}{2\alpha_{m}} \left(\left\| \widehat{h}_{m-1} - h^{\star} \right\|^{2} - \left\| \widehat{h}_{m} - h^{\star} \right\|^{2} \right) \\ &+ \frac{\alpha_{m}}{2} \left\| u_{m} \right\|^{2} - \langle u_{m} - \nabla \mathcal{R}(\widehat{h}_{m-1}), \widehat{h}_{m-1} - h^{\star} \rangle. \end{split}$$

Finally, summing over $1 \le m \le M$ leads to

$$\sum_{n=1}^{M} \left[\mathcal{R}(\hat{h}_{m-1}) - \mathcal{R}(h^{\star}) \right] \leq \sum_{m=1}^{M} \frac{1}{2\alpha_{m}} \left(\left\| \hat{h}_{m-1} - h^{\star} \right\|^{2} - \left\| \hat{h}_{m} - h^{\star} \right\|^{2} \right) + \sum_{m=1}^{M} \frac{\alpha_{m}}{2} \|u_{m}\|^{2} + \sum_{m=1}^{M} \left\langle \nabla \mathcal{R}(\hat{h}_{m-1}) - u_{m}, \hat{h}_{m-1} - h^{\star} \right\rangle.$$
(6)

The next step is to take the average of both sides with respect to $z_{1:M}$, taking advantage of the

independence between $z_{1:M}$ and $\mathcal{D}_{r_0,\Phi,\mathcal{P}}$. Each summation in the RHS is then bounded separately.

The first summation admits a deterministic bound: By assumption, we have diam $\mathcal{F} = D < \infty$.

$$\sum_{m=1}^{M} \frac{1}{2\alpha_{m}} \left(\left\| \hat{h}_{m-1} - h^{\star} \right\|^{2} - \left\| \hat{h}_{m} - h^{\star} \right\|^{2} \right) = \sum_{m=2}^{M} \left(\frac{1}{2\alpha_{m}} - \frac{1}{2\alpha_{m-1}} \right) \left\| \hat{h}_{m-1} - h^{\star} \right\|^{2} \\
+ \frac{1}{2\alpha_{1}} \left\| \hat{h}_{0} - h^{\star} \right\|^{2} - \frac{1}{2\alpha_{M}} \left\| \hat{h}_{M} - h^{\star} \right\|^{2} \\
\leq \sum_{m=2}^{M} \left(\frac{1}{2\alpha_{m}} - \frac{1}{2\alpha_{m-1}} \right) D^{2} + \frac{1}{2\alpha_{1}} D^{2} \\
= \frac{D^{2}}{2\alpha_{M}}. \tag{7}$$

The second summation can be bounded with the aid of Lemma 1:

$$\mathbb{E}_{\boldsymbol{z}_{1:M}}\left[\sum_{m=1}^{M} \frac{\alpha_{m}}{2} \|u_{m}\|^{2}\right] = \frac{\mathbb{E}_{\boldsymbol{z}_{1:M}}\left[\|u_{m}\|^{2}\right]}{2} \sum_{m=1}^{M} \alpha_{m} \leq \frac{\rho\left(\widehat{\Phi}, \widehat{r_{0}}, \widehat{\mathcal{P}}\right)}{2} \sum_{m=1}^{M} \alpha_{m}. \tag{8}$$

Finally, the third summation can be bounded using Lemma 2. Let $\mathbb{E}_{z_{-m}}$ denote the expectation with

respect to $z_1, \ldots, z_{m-1}, z_{m+1}, \ldots, z_M$ and notice that

$$\begin{split} \mathbb{E}_{\boldsymbol{z}_{1:M}} \left[\langle \nabla \mathcal{R}(\widehat{h}_{m-1}) - u_m, \widehat{h}_{m-1} - h^{\star} \rangle \right] &= \mathbb{E}_{\boldsymbol{z}_{-m}} \left[\mathbb{E}_{\boldsymbol{z}_m} \left[\langle \nabla \mathcal{R}(\widehat{h}_{m-1}) - u_m, \widehat{h}_{m-1} - h^{\star} \rangle \right] \right] \\ &= \mathbb{E}_{\boldsymbol{z}_{-m}} \left[\langle \mathbb{E}_{\boldsymbol{z}_m} \left[\nabla \mathcal{R}(\widehat{h}_{m-1}) - u_m \right], \widehat{h}_{m-1} - h^{\star} \rangle \right] \\ &= \mathbb{E}_{\boldsymbol{z}_{-m}} \left[\left\| \mathbb{E}_{\boldsymbol{z}_m} \left[\nabla \mathcal{R}(\widehat{h}_{m-1}) - u_m \right] \right\| \left\| \widehat{h}_{m-1} - h^{\star} \right\| \right] \\ &\leq D \mathbb{E}_{\boldsymbol{z}_{-m}} \left[\left\| \mathbb{E}_{\boldsymbol{z}_m} \left[\nabla \mathcal{R}(\widehat{h}_{m-1}) - u_m \right] \right\| \right]. \end{split}$$

Then, applying Lemma 2 and setting $\tau \triangleq D\kappa$ we get

$$\mathbb{E}_{\boldsymbol{z}_{1:M}}\left[\left\langle\nabla\mathcal{R}(\widehat{h}_{m-1}) - u_{m}, \widehat{h}_{m-1} - h^{\star}\right\rangle\right]$$

$$\leq \tau\left(\widehat{\Phi}\right)\left(\left\|\Phi - \widehat{\Phi}\right\|_{L^{2}(\nu_{X}\otimes\nu_{Z})}^{2} + \left\|r_{0} - \widehat{r_{0}}\right\|_{L^{2}(Z)}^{2} + \left\|\mathcal{P} - \widehat{\mathcal{P}}\right\|_{\operatorname{op}}^{2}\right)^{\frac{1}{2}}.$$

$$(9)$$

All that is left to do is to apply equations (6), (7), (8) and (9) along with a basic convexity inequality. Let $\hat{h} \triangleq \frac{1}{M} \sum_{m=1}^{M} \hat{h}_{m-1}$ and $\xi \triangleq \rho/2$. Then:

$$\begin{split} \mathbb{E}_{\boldsymbol{z}_{1:M}} \left[\mathcal{R}(\widehat{h}) - \mathcal{R}(h^{\star}) \right] \\ &\leq \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_{\boldsymbol{z}_{1:M}} \left[\mathcal{R}(\widehat{h}_{m}) - \mathcal{R}(h^{\star}) \right] \\ &\leq \frac{D^{2}}{2M\alpha_{M}} + \xi \left(\widehat{\Phi}, \widehat{r_{0}}, \widehat{\mathcal{P}} \right) \frac{1}{M} \sum_{m=1}^{M} \alpha_{m} \\ &+ \tau \left(\widehat{\Phi} \right) \left(\left\| \Phi - \widehat{\Phi} \right\|_{L^{2}(\nu_{X} \otimes \nu_{Z})}^{2} + \left\| r_{0} - \widehat{r_{0}} \right\|_{L^{2}(Z)}^{2} + \left\| \mathcal{P} - \widehat{\mathcal{P}} \right\|_{\text{op}}^{2} \right)^{\frac{1}{2}}. \quad \Box \end{split}$$

What's left to do:

125

126

• Use some estimate on $\left\| \mathcal{P} - \widehat{\mathcal{P}} \right\|_{OP}$ (Adapt notation and setup in the KIV paper). 124

Conclusion (20/08/2023): We might need the extra hypothesis that $\operatorname{Im}(\operatorname{id}_{L^2(X)} - \iota_X \iota_X^*) \subseteq$ $\ker \mathcal{P}$, where $\iota_X : \mathcal{H}_X \to L^2(X)$ is the inclusion operator, whose adjoint is given by

$$\iota_X^*(f) = (x \mapsto \mathbb{E}_X[f(X)k_X(X,x)]),$$

with $k_X: \mathbb{X} \times \mathbb{X} \to \mathbf{R}$ being the kernel associated with \mathcal{H}_X . Then $\mathcal{P} = \mathcal{P} \circ \iota_X \iota_X^*$ and we can directly apply the result on KIV's paper, since $\mathcal{P} \circ i_X$ can be seen as the restriction of \mathcal{P} to \mathcal{H}_X . We then also need the further hypothesis that $\mathrm{Im}(\mathcal{P} \circ \iota_X) \subseteq \mathcal{H}_Z$, or something like this (because, rigorously speaking, $\mathcal{P}f$ is an equivalence class of functions, so in what way can we say that this equivalence class is "in \mathcal{H}_Z "?). This hypothesis is implicitly made in the KIV paper, when they say that $E:\mathcal{H}_X \to \mathcal{H}_Z$ without providing any assumptions on \mathcal{H}_X and \mathcal{H}_Z , other than saying that they are RKHS. Who can guarantee that $(z \mapsto \mathbb{E}[f(X) \mid Z = z]) \in \mathcal{H}_Z$ for every $f \in \mathcal{H}_X$?

• Find way to estimate r_0 which gives estimate on $||r_0 - \widehat{r_0}||_{L^2(Z)}$. Maybe use the same estimation technique we have for \mathcal{P} as an operator from $L^2(Y) \to L^2(Z)$ applied to the identity and employ the same bound?

38 For the rest of the paper:

127

128

129

130

131

132

133

134

135

136

137

139

140

142

143

144

- Create section which describes, in detail, how we are estimating Φ , \mathcal{P} and r_0 , lists all the references, states the main convergence theorems and lists all of the assumptions that are being made.
- Adapt the algorithm section to use the KIV first stage, which directly estimates \mathcal{P} .
- Find better letter for either the number of iterations or the upper bound for the set F. Right now, both are being denoted by the letter M.

145 6 Binary response models

We want to be able to employ the same risk minimization procedure:

$$\underset{h \in \mathcal{F}}{\arg \min} \, \mathcal{R}(h) = \underset{h \in \mathcal{F}}{\arg \min} \, \mathbb{E}_Z \left[\ell(r_0(Z), \mathcal{P}[h](Z)) \right]. \tag{10}$$

Let's see what data generating procedure makes this possible. Firstly, let

$$Y \mid X, \varepsilon \sim \text{Bernoulli}(\sigma(h^*(X) + \varepsilon)),$$
 (11)

where σ is the logistic function, $\mathbb{E}[\varepsilon \mid X] \neq 0$ and $\mathbb{E}[\varepsilon \mid Z] = 0$. For (10) to make sense, we'd like $r_0(Z) = \mathbb{E}[Y \mid Z]$ and $\mathcal{P}[h^*](Z) = \mathbb{E}[h^*(X) \mid Z]$ to be close according to a suitable loss function ℓ , at least close enough so that h^* is a solution to (10). Let's see if this is the case under (11):

$$\mathbb{E}[Y \mid Z] = \mathbb{P}[Y = 1 \mid Z],$$

Assuming (11), we may compute this conditioning on X and ε and then integrating them out:

$$\mathbb{P}[Y = 1 \mid Z = z] = \int_{\mathcal{X} \times \mathbf{R}} \mathbb{P}[Y = 1 \mid Z = z, X = x, \varepsilon = e] p_{X, \varepsilon \mid Z}(x, e \mid z) \, \mathrm{d}x \mathrm{d}\varepsilon$$
$$= \int_{\mathcal{X} \times \mathbf{R}} \sigma(h^{\star}(x) + e) p_{X, \varepsilon \mid Z}(x, e \mid z) \, \mathrm{d}x \mathrm{d}\varepsilon$$
$$= \mathbb{E}[\sigma(h^{\star}(X) + \varepsilon) \mid Z = z].$$

There are a two main problems here. The first one is that ε appears inside σ and, hence, does not vanish after conditioning on Z=z. I cannot think of a way to remove it without assuming known the distribution of ε given X, which is prohibitive. The second problem is that, even if there was no ε , the expectation is outside the function σ . In order for (10) to work under (11), we'd like set

$$\ell(y, y') = BCE(y, \sigma(y')),$$

where BCE is the binary cross entropy loss function:

$$BCE(y, p) = -[y \log p + (1 - y) \log(1 - p)].$$

That is, we'd like to have $\sigma(\mathbb{E}[h(X) \mid Z])$ inside $\mathcal{R}(h)$, instead of $\mathbb{E}[\sigma(h(X)) \mid Z]$.

158 The second option is to set

$$Y = \mathbf{1}[h^{\star}(X) + \varepsilon > 0]. \tag{12}$$

159 Here, we have

$$\mathbb{E}[Y \mid Z = z] = \mathbb{P}[h^*(X) + \varepsilon > 0 \mid Z = z]. \tag{13}$$

To try to make this lead somewhere, let's define $\eta = h^*(X) - \mathbb{E}[h^*(X) \mid Z] + \varepsilon$, so that

$$Y = \mathbf{1}[\mathbb{E}[h^{\star}(X) \mid Z] + \eta > 0]$$

and $\mathbb{E}[\eta \mid Z] = 0$. Let $t(Z) = \mathbb{E}[h^*(X) \mid Z]$. This implies

$$\begin{split} \mathbb{E}[Y\mid Z] &= \mathbb{P}[t(Z) + \eta > 0\mid Z] \\ &= 1 - F_{\eta\mid Z}(-t(Z)). \end{split}$$

162 Hence, we have

$$t(Z) = -F_{\eta|Z}^{-1}(r_0(Z) - 1).$$

163 Or, equivalently:

$$\mathbb{E}[h^{\star}(X) \mid Z] = -F_{n|Z}^{-1} \left(\mathbb{E}[Y \mid Z] - 1 \right).$$

This looks promising: If we assume to know the conditional distribution of η given Z, we have a

couple of options. We can minimize

$$BCE(r_0(Z), 1 - F_{\eta|Z}(-\mathbb{E}[h(X) \mid Z])),$$

166 Or

$$\left(\mathbb{E}[h(X) \mid Z] + F_{\eta|Z}^{-1}(r_0(Z) - 1)\right)^2.$$

167 This assumption was used on the paper "Nonparametric Instrumental Variable Estimation of Binary

Response Models", by P. L. Florens, from where I took the ideas for these calculations.

In an unpublished version of that paper, they assume that $\eta = \frac{1}{\zeta(Z)}v$, where $v \mid Z \sim$

KnownDistribution $(0, \sigma_v^2)$. This implies

$$\mathbb{E}[Y \mid Z] = \mathbb{P}[t(Z) + \eta > 0 \mid Z]$$

$$= \mathbb{P}[t(Z) + \frac{v}{\zeta(Z)} > 0 \mid Z]$$

$$= \mathbb{P}[v > -t(Z)\zeta(Z) \mid Z]$$

$$= 1 - F_v(-t(Z)\zeta(Z))$$

$$\triangleq 1 - F_v(-\gamma(Z)).$$

171 Equivalently, this means that

$$\gamma(Z) = -F_v^{-1}(1 - \mathbb{E}[Y \mid Z]),$$

where $\gamma(Z) = \mathbb{E}[h^{\star}(X) \mid Z]\zeta(Z)$. They proceed to use γ to estimate r_0 (this involves splitting Z

into two parts and is the main contribution in their article) and then use this estimate of r_0 to estimate

 h^* through Tikhonov regularization.

However, on the published version, the authors assume that η is *independent* of Z, which is good for

176 US