$Schwarz^1$

Übungsaufgaben zur theoretischen Mechanik²

18 Punkte

SS2020: Übung 09

V: Feldmeier

<u>1.</u> Winkel- und Wirkungsvariable

8 Punkte

Betrachten Sie ein nicht explizit zeitabhängiges Hamilton-System $H = \frac{p^2}{2m} + U(q)$

a) Zeigen Sie, dass das Phasenportrait eines autonomen Hamilton-Systems H(q,p) immer symmetrisch zur q-Achse ist (bei entgegengesetztem Durchlaufsinn oberhalb und unterhalb der Achse) (1 Punkt) und dass die von einer periodischen Bahn (kein Gleichgewichtspunkt) umschlossene Fläche F(E) (E ist der Wert von H längs der Bahn) zur zeitlichen Periode T in der Beziehung

$$\frac{\mathrm{d}F(E)}{\mathrm{d}E} = T(E)$$

steht (2 Punkte).

- b) Berechnen Sie F(E) und T(E) für den harmonischen Oszillator (2 Punkt).
- c) Motivieren Sie, dass $I(E) = F(E)/2\pi$ eine Wirkungsvariable ist, und lösen Sie die kanonische Bewegungsgleichung des harmonischen Oszillators für die zugehörige Winkelvariable $\theta(t)$ (2 Punkte).
- d) Bestimmen Sie mit der Methode der Wirkungs- und Winkelvariablen die Grundfrequenzen eines dreidimensionalen harmonischen Oszillators mit unterschiedlichen Kraftkonstanten k_1 , k_2 und k_3 (1 Punkte).

$\underline{2.}$ Erhaltungsgröße

4 Punkte

Eine Hamilton-Funktion $H = H(f(q_1, p_1), q_2, p_2, \dots, q_n, p_n, t)$ hänge von den Variablen q_1 und p_1 nur mittelbar über eine Funktion $f(q_1, p_1)$ ab. Man zeige, dass f eine Erhaltungsgröße ist.

3. Trajektorie auf dem Torus

6 Punkte

Eine Trajektorie verläuft periodisch auf dem zweidimensionalen Torus $S \times S$ im vierdimensionalen Phasenraum, $\dot{\varphi}_1 = \omega_1$, $\dot{\varphi}_2 = \omega_2$ mit konstanten ω_1, ω_2 . Zeichnen Sie die Trajektorien in einem quadratischen Diagramm mit φ_1 als x-Achse und φ_2 als y-Achse (beide von 0 bis 2π), für die Fälle $\omega_2/\omega_1 = 2:1$ und 3:2 und 4:3. Begründen Sie damit die Aussage: ist ω_2/ω_1 eine rationale Zahl, dann schließt sich die Trajektorie auf dem Torus.

¹udo.schwarz@uni-potsdam.de