Devoir de cours autocorrigé, révisions vacances

- 1) Logique.
 - a) La négation de $A \Rightarrow B$ est :
 - b) Écrire la négation de $\forall M > 0, \ \exists a \in \mathbb{R} \ / \ \forall x \geq a, \ f(x) \geq M$:
 - c) Écrire avec des quantificateurs « la fonction f est majorée sur $\mathbb R$ » et sa négation :
- 2) Sommes.

a)
$$\forall n \in \mathbb{N}^*, \sum_{k=1}^n k =$$

b)
$$\forall n \in \mathbb{N}^*, \sum_{k=1}^n k^2 =$$

- c) Pour $n \in \mathbb{N}$ et $q \in \mathbb{C}$, $\sum_{k=0}^{n} q^k =$
- d) Pour $n \in \mathbb{N}$, n! =
- e) Pour $k, n \in \mathbb{N}, \binom{n}{k} =$
- f) Pour $a, b \in \mathbb{C}$ et $n \in \mathbb{N}$, $(a+b)^n =$
- g) Écrire la somme $\sum_{1 \leq i \leq j \leq n} u_{i,j}$ comme deux sommes consécutives, avec l'indice i en premier puis l'indice j puis avec l'indice j en premier puis l'indice i:
- 3) Généralités sur les fonctions.
 - a) Pour $f: \mathbb{R} \to \mathbb{R}$, donner la définition de f est paire et de f est impaire. Quelle est l'interprétation graphique de ces propriétés?
 - b) Quelle propriété de sin doit-on utiliser pour calculer $\lim_{x\to 0} \frac{\sin(x)}{x}$? Que vaut cette limite?
 - c) Donner l'équation de la tangente à f en x_0 (on suppose f dérivable en x_0):

4) Trigo et complexes.

a)
$$\begin{cases} \sin(a+b) = \\ \cos(a+b) = \\ \tan(a+b) = \end{cases}$$

b) Pour $a \in \mathbb{R}$, factoriser $1 - e^{ia}$.

c) Soit $n \in \mathbb{N}^*$. Résoudre $z^n = -1 + i$.

- d) Donner l'expression complexe de la similitude directe s de centre d'affixe ω , d'angle θ et de rapport k.
- e) Réciproquement, si s(z) = az + b avec $a \neq 1$ et $a \neq 0$, comment trouve-t-on le centre de cette similitude directe, son angle et son rapport?
- 5) Applications. Soient $f: X \to Y$ et $g: Y \to Z$.
 - a) Donner la définition de f est injective.
 - b) Donner la définition de f est surjective.
 - c) Si $g \circ f$ est bijective, quelle fonction est injective? Surjective?
 - d) Si f et g sont bijectives, justifier que $g \circ f$ est bijective et donner l'expression de $(g \circ f)^{-1}$.
- 6) Fonctions usuelles.
 - a) Montrer que $\forall x > 0$, $\arctan(x) + \arctan\left(\frac{1}{x}\right) = \frac{\pi}{2}$.

b) $D\'{e}riv\'{e}es$ usuelles. Pour chacune des fonctions suivantes, donner son domaine de définition, de dérivabilité et sa dérivée.

f(x)	D_f	D'	f'(x)
1			<i>J</i> (<i>w</i>)
$\frac{f(x)}{\frac{1}{x}}$			
x^n où $n \in \mathbb{N}$			
x^{α} où $\alpha \in \mathbb{R}$			
\sqrt{x}			
ch(x)			
sh(x)			
th(x)			
1 /)			
$\ln(x)$			
• ()			
$\sin(x)$			
$\cos(x)$			
amagin (m)			
$\arcsin(x)$			
arccos(x)			
arccos(x)			
$\tan(x)$			
$\lim_{x \to a} (x)$			
$\arctan(x)$			
arctan(x)			

c) Tracer les graphes des fonctions suivantes en faisant apparaitre également les valeurs aux bords/les limites :

ii)
$$f: x \mapsto \operatorname{ch}(x)$$
 et $g: x \mapsto \operatorname{sh}(x)$

$$h: x \mapsto \operatorname{th}(x)$$

- d) Théorème de la bijection. Soient a < b et $f : [a, b] \to \mathbb{R}$.
 - i) Que faut-il vérifier pour montrer que f est une bijection de [a,b[dans un intervalle I (que l'on précisera en fonction de la monotonie de f)?

- ii) À quelle(s) condition(s) sur f la réciproque de f est-elle continue sur I? À quelle(s) condition(s) sur f la réciproque de f est-elle dérivable sur I?
- 7) Intégration
 - a) Déterminer $\int_0^1 t^2 e^{3t} dt$ en utilisant une IPP (et en donner les hypothèses!).

b) Déterminer $\int_1^e \frac{(\ln(t))^3}{t} dt$ en utilisant le changement de variable $x = \ln(t)$ (en donner les hypothèses!).

c) Primitives usuelles. Pour chacune des fonctions suivantes, donner l(es) intervalle(s) sur le(s)quel(s) elles sont continues et une primitive sur ce(s) intervalle(s).

f	I	$\int_{0}^{x} f(t)dt$
$x \mapsto \frac{1}{x}$		*
$x \mapsto x^{\alpha}$ où $\alpha \in \mathbb{R} \setminus \{-1\}$		
$x \mapsto e^{\lambda x}$ où $\lambda \in \mathbb{C}^*$		
sin		
cos		
$x \mapsto \frac{1}{\sqrt{1-x^2}}$		
$x \mapsto \frac{1}{1+x^2}$		
$x \mapsto \frac{u'(x)}{u(x)}$	I où u ne s'annule pas	
$x \mapsto u'(x)u(x)$	I	
$x \mapsto \ln(x)$		

d) Déterminer $\int_0^x \frac{t+1}{t^2+t+1} dt$.

e) Déterminer $\int_0^x e^{2t} \sin(t) dt$ (en utilisant les complexes).