|   |     |                                             |                                             |                                               |                                            |                                                                                                                |                                |                         |                                  | Note Title |                      |
|---|-----|---------------------------------------------|---------------------------------------------|-----------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------|----------------------------------|------------|----------------------|
|   |     | $p(x) \phi = q \Rightarrow (+x) \phi \phi$  | $(42)\phi = (4)\phi (2)\phi = 42$           | Then, $Q = \varphi'(x)$ and $b = \varphi'(x)$ | Such that $\phi(\alpha) = x$ and $\phi(1)$ |                                                                                                                | Trood: Let IC, y C Go, Then, A | in also an inomosphism. | Theorem 1: If of G, -> G, in     |            | Lecture 19:          |
| # | 12, | φ (¥) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | $(\mathcal{A}_{\mathcal{X}}) \phi = ab (a)$ | (R)                                           | b) = ソ,                                    | , and the second se | there exist unique a and bing, |                         | an isomorphism, then o 's, -> 5, | 9/12/2022  | Monday, Sep 12, 2022 |

then 4.0.4: G, -> G3 in also a group isomosphism. troof; For 2, 7 & G1, we have movem 2: If \$: G1 > G2 and 4: G2 > G3 are group isomorphisms so yo bin a bijective. Hence, 'to bin an isomorphism. to \$ in a group homomosphism. Since \$ and y are bijectives,  $(\forall \varphi)(x) = \forall (\varphi(x)) = (\forall \varphi)(\varphi(x))$  $= (\psi, \phi)(x) (\psi, \phi)(x)$  $= + (\phi(x)) + (\phi(x))$ #

Ex2: Find all the group homomorphism f: Zn -> Zm Solution: f(R) = Rf(1), so fin determined by the < X 1 : value of f(1). Hence, f(k)= a.k for some fixed a & Zm. then I in the Irivial homeomorphism, that in, I(x)=0 YxEG, QEZm, let fa: Zn -> Zm If G in a finite and f; G-Z in a homomosphism,  $f_{\lambda}(x) = g_{\lambda}(x) + g_{\lambda}(x) = g_{\lambda}(x)$ be letined by

for each solution x=a, we have a homosonosphism the congruence  $\eta x \equiv 0 \pmod{m}$  for  $d = \gcd(n, m)$ Solution, namely,  $\chi = \frac{m}{d}k$ , k = 0, 1, 2, ..., d-1. It Ia: In I in a group homomosphism, Theorem I (b=0 case) of lesture of we have  $0 = f_{\alpha}(0) = f_{\alpha}(n) = p + f_{\alpha}(1) = n \cdot \alpha \pmod{n}$ 

Hence, the set of homeonophisms I  $\alpha = \frac{m}{d} k$ ,  $k = 0, 1, \dots, d-1$ In I am in the map defined

§ Automorphism:

group under composition of Junctions, Aut (G) = 4 0: G -> G | 0 in an automosphism |

fact, if G in on infinite cyclic group, then  $Aut(Z) = \{1, \phi\} \cong Z_1, \text{ here } \phi(x) = -x + x \in Z$  $Aut(G) \cong \mathbb{Z}_2$ 

EX2! If G in a finite cyclic group of order no then  $G \cong (\bigcup (n), \cdot)$ 

Let 
$$x = \frac{b}{4}$$
,  $x \neq 0$ ,  $q > 0$ .

Then, if  $f: \mathcal{R} \to \mathcal{B}$  in a homomorphism, we have  $q: f(x) = f(q:x) = f(p) = p f(1)$ 

If  $x = 0$ , thum  $f(x) = x = x = f(1)$ .

It is,  $f(x) = x = x = f(1)$  if  $f(x) = 0 = x = x = f(1)$ .

Thus,  $f(x) = x = x = f(1)$  if  $f(x) = 0 = x = x = f(1)$ .

Thus,  $f(x) = x = x = f(1)$  if  $f(x) = 0 = x = x = f(1)$ .

