Applying steady roade approximation: d[x] = k, [A] - (k, +k2)[x] + k_2[z] =0 [x] = R, [A] + R, [Z]
R, + R, The net roate of consumption of A is -dlas = RITAI - RITAI = R, [A] - R, R, + R2 [Z] = (k₁+k₂)k₁[A] - k₁k₁[A] (-k₁+k₂) = \frac{\frac{1}{k_1 k_2 \sqrt{4}}}{\frac{1}{k_1 + k_2}} = \frac{\frac{1}{k_1 k_{-2}}}{\frac{1}{k_1 + k_2}} = \frac{\frac{1}{k_1 k_{-2}}}{\frac{1}{k_1 + k_2}} = \frac{\frac{1}{k_1 k_2 \sqrt{2}}}{\frac{1}{k_1 + k_2}} = \frac{\frac{1}{k_1 k_2 \sqrt{2}}}{\frac{1}{k_1 k_2 \sqrt{2}}} = \frac{\frac{1}{k_1 k_2 k_2 \sqrt{2}}}{\frac{1}{k_1 k_2 k_2 k_2 \sqrt{2}}} = \frac{\frac{1}{k_1 k_2 k In the previous derivation, The excitated term has Sign problem.