

Department of CSE PROJECT REPORT

Course Code: CSE345

Course Name: Digital Logic Design

Project name: 4-bit Binary to Even Parity Code Converter

Summer 2021

Summ	Summer 2021						
Submitted By	Submitted To						
Hasib Ar Rafiul Fahim	Musharrat Khan						
ID: 2019-1-60-036	Senior Lecturer						
	Department of Computer Science						
	and Engineering,						
	East West University, Bangladesh.						

1.Problem statement:

This project is about a 4-bit code converter for even parity converts the 4-bit input to 5-bit output so that even parity is ensured. In even parity, parity bit is '0' if there are even number of 1s in inputs and the parity bit is '1' if there are odd number of 1s in inputs. Here 'S' is the parity bit.

2.Design Details:

	Trutt	s to	6160-	_					
	Inputs			outputs					
	A	B	د	D	01	02	03	04	3
	0	0	0	0	0	D	0	0	0
	0	D	0	1	0	0	0	1	1
	0	0	1	0	0	0	1	0	1
	D	0	1	1	O	0	1	1	0
	0	1	D	0	0	1	6	0	1
4-0	5 6A	1	0	1°29'	10	11	1010	811 L	0
	0	1	1	6	0	1	1	0	0
	Ô	1	1	1	0	918	11: (11/0/3	TITE
(60	1	D.,	0	D	1	0	0	0	1
STILL I	1	D	0	1	1903	0 8	0:	(12)5	100 AB
	1	0	12	0)	(1)	0	1	0	0
	1	0	1_	1	1	D	1	1	() I)
	1_	1	000	0	0100	1	6	0	0
	1	1	0	1	70	11.	0	1	1
	1	1	1	0	1	1	1	3	1
	1	1	1	1	1	1	1	1110	0

From above table:

O1=A, O2=B, O3=C, O4=D.

S=A'B'C'D + A'B'C D' + A'B C'D' + A'B C D + A B'C'D' + A B'C D + A B C'D + A B C D'

= A'B'(C'D + CD') + A'B(C'D' + CD) + AB(C'D + CD') + AB'(C'D' + CD)

= A'B'(C xor D) + A'B(C xnor D) + AB(C xor D) + AB'(C xnor D)

= (A'B' + AB) (C xor D) + (A'B + AB') (C xnor D)

= (A xnor B) (C xor D) + (A xor B) (C xnor D)

= (A xor B)' (C xor D) + (A xor B) (C xor D)'

= A xor B xor C xor D.

3. Circuit Diagram:

4. Structural and Behavioral Verilog Code and Simulation Results:

Structural verilog code:

Procedural model:

```
module even_parity_procedural(input A,B,C,D, output reg 01,02,03,04,S);
          always@(A,B,C,D)begin
                    01=A;
                    02=B;
                    03=C;
                    04=D;
                    S=0;
          if (\simA&\simB&\simC&D) S=1;
          if (~A&~B&C&~D) S=1;
          if (~A&B&~C&~D) S=1;
          if (\simA&B&C&D) S=1;
          if (A&B&\simC&D) S=1;
          if (A&B&C&\simD) S=1;
          if (A&\sim B&\sim C&\sim D) S=1;
          if (A\&\sim B\&C\&D) S=1;
          end
endmodule
```


Continuous assign statement:

