CSC373H1 Summer 2014 Assignment 4

Names: John Armstrong, Henry Ku

 $SNs\CDF$ username: 993114492\g2jarmst, 998551348\g2kuhenr

Question #	Score
1	
2	
3	
4	
Total	

Acknowledgements:

"We declare that we have not used any outside help in completing this assignment."

Name: John Armstrong, Henry Ku

Date: July 27, 2014

Q1. The Mute Prison

Claim: The mute prison problem is NP-complete.

Proof:

- 1. Show the mute prison problem is NP.
- 2. Show the mute prison problem is NP-hard.
- <u>1.</u> Suppose we are given a certificate S and have access to value k and matrix T. We can verify that the certificate is satisfiable in the following way. Suppose each element in S represents an inmate. Verification would involve iterating on each inmate in the following way:

```
for inmate\ in\ S do j=0; while j\leqslant m do j=0 if T[inmate,\ j] then j=0 for (other inmate,\ j]=0 then j=0 if j=0 then j=0 is not a subset of inmates who do don't speak the same language; end j=0 end j=0 end j=0 end j=0 end j=0 end j=0
```

Clearly, the verification that S is a subset where no two inmates speak the same language can run in polynomial time $O(mn^2)$. Once this verification if complete all that is left to do is to verify that $|S| \ge k$, which is O(1). Therefore the mute prison problem is NP.

<u>2.</u>

Q2. The Nonsense Prerequisites

Q3. T-rex Christmas

Q4. Vertex Cover