GÖRÜNTÜ İŞLEME

HAFTA 2 SAYISAL GÖRÜNTÜ TEMELLERİ

- Üç temel zar ile kaplıdır.
- 1- DışZar(kornea veSklera)
- 2- Koroid
- □ 3- Retina

- Dış Zar
- İki kısımdan oluşur. Kornea ve Sklera
- Kornea sert ve saydam bir yapıya sahiptir.
- Sklera saydam olmayan bir yapıdadır ve optik bölümünü kuşatır.

- --Koroid
- Koroid sklera boyunca uzanan bir zardır.
- Bu zarda gözü besleyen kan damarları yoğun şekilde bulunur.

- Retina
- Gözün en önemli tabakası retinadır.
- Nesnenin görüntüsü bu tabakaya düşer.
- Nesneler retinanın yüzeyindeki algılayıcılar ile algılanır.
- Cone (Koni) ve Rod(Çubuk)

- —Cone ve Rod
- -Cone
- □ 6-7 milyon/göz
- Renklere karşı çok hassas
- Detaylar bu algılayıcılar ile algılanır
- -Rod
- 75-150 milyon/göz
- Işığa karşı çok hassas
- Görüntü ile ilgili genel özellikler bu algılayıcılar ile algılanır

- Gözde görüntü oluşturulurken görüntü uzaklığı lens ve retina ile ayarlanır. Görüntü oluştururken uygun odaklanma uzaklığı ayarlanması için lensin şekli değişir.
- Lens esnektir ve ışığı kırma oranı kalınlığı ile kontrol edilir. Kalınlık ise kasların gerilmesi ile gerçekleşir.
- Uzaktaki cisimi görmek için yassılaşır ve kırma minimumdur.
- Yakındaki cisimi görmek için ise kırma maksimumdur.

IŞIK VE ELEKTROMAGNETİK SPEKTRUM

- Elektromanyetik dalgalar değişen dalgaboylardaki sinüzoidal dalgaların ışık hızında yayılımı olarak veya dalga şekli biçiminde ışık hızında ilerleyen kütlesiz parçacıkların akışı olarak düşünülebilir.
- Her kütlesiz parçacık belli bir miktarda enerji içerir. Her bir enerji yığınına foton denir.

IŞIK VE ELEKTROMAGNETİK SPEKTRUM

What is light

The electromagnetic spectrum

Shorter Wavelength Longer Wavelength

10-5	nm	10 ⁻³	nm	1	nm	10 ³	nm	106	nm		m nm)	10 ³ m
	Gam	nma ys	X-ray	s	UV		Infra	ed	Micro	waves	Radio	waves

Higher frequency Higher energy

$$f = \frac{c}{\lambda} \qquad c = 2.998 \cdot 10^8 \, m \, / \, s$$

$$E = h \cdot f$$
 $h = 6.623 \cdot 10^{34} Js$

Smaller frequency Smaller energy

IŞIK VE ELEKTROMAGNETİK SPEKTRUM

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

a b

FIGURE 2.14 (a) Image acquisition using a linear sensor strip. (b) Image acquisition using a circular sensor strip.

Görüntülerin matematiksel ifade edilişi

- Görüntü düzlemi üzerinde düzgün bir ızgaranın düğüm noktalarında görüntü değerlerinin alınmasına örnekleme denir.
- Gerçel değerli görüntü örnek değerini sonlu sayıdaki ayrık değerlere dönüştürmeye kuantalama denir.
- Genellikle 256 gri düzeyine sahip görüntü örnek değeri 8 bit ile temsil edilir.

a b

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

Değişik resülasyonlarda örneklemeler

Değişik düzeylerde kuantalanmış görüntüler

2 bits / pixel

- —MATLAB Görüntü Çeşitleri
- Binary Görüntü[0,1]
- Gri Düzeyli Görüntü[0,1],uint8,uint16,int16,single,double
- İndekslenmiş Görüntü
 k*3 renk matrisi,m*n görüntü matrisi
- RGB Görüntüm*n*3 görüntü matrisi

- —MATLAB Dosya Çeşitleri
- .bmp -> RGB, Indexed
- □ .gif -> Indexed
- □ .jpeg -> RGB, Gri
- png -> RGB, Intensity, Indexed

Binary Görüntü

Sadece iki değer alır, 1(beyaz) veya O(siyah)

Gri Düzeyli Görüntü

 Gri ve tonları ile görüntü oluşturulur.
 Siyah ve beyaz arasındaki tonlar kullanılır

- İndekslenmişGörüntü
- Görüntü iki matris ile ifade edilir. Birincisi renkleri belirten indeks map diğeri ise görüntünün ilgili pixeldeki rengi belirleyen (color mapteki) image matrisidir.

- RGBGörüntü
- Görüntü
 boyutu
 m*n*3'dür.
 Herbir renk
 katmanı ilgili
 pixel için o
 rengin
 oranını verir.

UYGULAMA

- Binary Görüntü Uygulaması
- Gri Düzeyli Görüntü Uygulaması
- İndekslenmiş Görüntü Uygulaması
- RGB Uygulaması

ÖDEV 2

 Matlab ile aşağıda görüntü matrisi ve çıktısı verilen görüntünün indeks matrisini oluşturun.

1	2	3
3	3	2
1	4	1
5	6	7

Görüntü matrisi

ÖNÜMÜZDEKİ HAFTA

- Yoğunluk Dönüşümü ve Uzaysal Filtreleme
 Temelleri
- Yoğunluk Dönüşüm Fonksiyonları
- Histogram İşleme
- Filtreleme Temelleri

SORULAR?