Matrix Algebra

Extra Homework 1

- 1. Let $\mathbf{x} = \begin{pmatrix} -1 \\ -2 \\ -3 \end{pmatrix}$ and $\mathbf{y} = \begin{pmatrix} 4 \\ 5 \\ -2 \end{pmatrix}$. Evaluate

 - b) 8x
 - c) 3x 2y
 - d) $\mathbf{x} \cdot \mathbf{y}$
 - e) ||x||
- 2. Let $\mathbf{x} = \begin{pmatrix} 2 \\ -4 \\ 1 \end{pmatrix}$ and $\mathbf{y} = \begin{pmatrix} 9 \\ 0 \\ 2 \end{pmatrix}$. Evaluate
 - a) $\mathbf{x} + \mathbf{y}$
 - b) $-3\mathbf{y}$
 - c) 5x + 4y
 - d) $\mathbf{x} \cdot \mathbf{y}$
 - e) ||x||
- 3. Which of the following are subspaces of \mathbb{R}^3 ? (For the ones which aren't subspaces, explain why they aren't.)
 - a) The set of $\binom{x}{z}$ where x and z can be anything.
 - b) The set of $\begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$.
 - c) The set of $\begin{pmatrix} \bar{x} \\ y \\ z \end{pmatrix}$ with x + 2y + 3z = 0 and x y z = 0.
 - d) The set of $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ with x + yz = 0.
 - e) The set of $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ with 2x y + 5z = 0.
 - f) The set of $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ with xy = 0.
- 4. Which of the following are subspaces of \mathbb{R}^4 ? (For the ones which aren't subspaces, explain why they aren't.)

 - a) The set of $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ where $x_1 x_2 + x_3x_4 = 0$. b) The set of $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$ where $x_2 + x_3 + x_4 = 0$. c) The set of $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$ with $x_1 = 0$ and $x_2 x_4 = 0$. d) The set of $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$ with $x_1 = x_2$ and $x_3 = x_4$. e) The set of $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$ with $x_1 + 2x_2 + 3x_3 + 4x_4 = 0$. f) The set of $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$ with $x_1x_2 + x_3 + x_4 = 0$.