Лекция 8

Анализ вариационных рядов

Математическая статистика

- Основная цель математической статистики это получение и обработка данных для статистически значимой поддержки процесса принятия решения, например, при решении задач планирования, управления, прогнозирования.
- Методы математической статистики можно разделить на описательные и аналитические.

Математическая статистика

Описательные методы позволяют описать реальные наблюдения с помощью таблиц, графиков, характеристик положения (среднее арифметическое, мода, медиана), характеристик рассеяния (среднее линейное отклонение, среднее квадратическое отклонение, дисперсия, коэффициент вариации) и т. д.

Аналитические методы позволяют на основании выборочных наблюдений сделать статистически значимые выводы о наличии закономерностей для всей совокупности.

Две группы методов:

- методы *параметрической статистики*
- методы *непараметрической статистики*.

<u>В реальных социально-экономических системах</u> нельзя проводить активные эксперименты, поэтому данные обычно представляют собой наблюдения за происходящим процессом.

Результаты наблюдений — это, в общем случае, ряд чисел, расположенных в беспорядке, который для изучения необходимо упорядочить (проранжировать).

• Операция, заключенная в расположении значений признака по возрастанию, называется ранжированием опытных данных.

 После операции ранжирования опытные данные можно сгруппировать так, чтобы в каждой группе признак принимал одно и то же значение, которое называется вариантом (X_i).
 Число элементов в каждой группе называется частотой варианта (n_i).

Размахом вариации называется число

$$W=x_{max}-x_{min},$$

где x_{max} — наибольший вариант, x_{min} — наименьший вариант.

• Сумма всех частот равна определенному числу *п*, которое называется объемом совокупности:

$$\sum_{i=1}^{k} n_i = n_1 + n_2 + \dots + n_k = n.$$
 (1)

• Отношение частоты данного варианта к объему совокупности называется *относительной частотой* (\widehat{p}_i) , или *частостью* этого варианта:

$$\widehat{p_i} = \frac{n_i}{n}, \qquad (2)$$

$$\sum_{i=1}^{k} \widehat{p_i} = \sum_{i=1}^{k} \frac{n_i}{n} = \frac{\sum_{i=1}^{k} n_i}{n} = \frac{n}{n} = 1 \quad (3)$$

- Последовательность вариантов, расположенных в возрастающем порядке, называется вариационным рядом (вариация изменение).
- Вариационные ряды бывают дискретными и непрерывными. Дискретным вариационным рядом называется ранжированная последовательность вариантов с соответствующими частотами и (или) частостями.

Пример 1. В результате тестирования группа из 24 человек набрала баллы: 4, 0, 3, 4, 1, 0, 3, 1, 0, 4, 0, 0, 3, 1, 0, 1, 1, 3, 2, 3, 1, 2, 1, 2. Построить дискретный вариационный ряд.

Решение. Проранжируем исходный ряд, подсчитаем частоту и частость вариантов:

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4.

В результате получим дискретный вариационный ряд

Балл, <i>х</i> _і	Число студентов, <i>n_i</i>	Относительная частота, $\widehat{p_i}$					
0	6	6/24					
1	7	7/24					
2	3	3/24					
3	5	5/24					
4	3	3/24					
Σ	24	1					

- Построение дискретного вариационного ряда нецелесообразно, если число значений признака велико.
- В этом случае следует построить интервальный вариационный ряд (промежуток изменения признака разбивается на ряд отдельных интервалов и подсчитывается количество значений величины в каждом из них).

• Будем считать, что отдельные (частичные) интервалы имеют одну и ту же длину. Число интервалов (*k*) в случае нормально распределенной совокупности можно определить по формуле Стерджесса:

$$k = 1+3,322 \text{ Ig} n$$
 (4)

или приближенно: $k \in [6;12]$.

• Длина частичного интервала определяется по формуле:

$$h = \frac{W}{k} = \frac{x_{max} - x_{min}}{k} = \frac{15 - 4}{7} \approx 1,6.$$
 (5)

Пример 2. Пусть дан ряд распределения хозяйств по количеству рабочих на 100 га сельскохозяйственных угодий (n=60)

12	6	8	6	10	11	7	10	12	8	7	7	6	7	8	6	11	9	11
9	10	11	9	10	7	8	8	8	11	9	8	7	5	9	7	7	14	11
9	8	7	4	7	5	5	10	7	7	5	8	10	10	15	10	10	13	12
11	15	6																

Построить интервальный вариационный ряд.

Решение. Для определения числа групп подставим значение n=60 в формулу Стерджесса: k=1 + 3,322lg60 \approx 6,907; k = 7.

Группы хозяйств по численности работников на 100 га с/х угодий	Число хозяйств в группе (n _i)	Накопленное число хозяйств (Si)	Относительная частота $(\widehat{\mathbf{p}_i})$
4-5,6	5	5	5/60.
5,61-7,2	17	22	17/60
7,21-8,8	9	31	9/60
8,81-10,4	15	46	15/60
10,41 -12,0	10	56	10/60
12,01 -13,6	1	57	1/60
13,61-15,2	3	60	3/60
Итого:	60	-	1

Графическое изображение вариационных рядов

Вариационные ряды изображают графически с помощью полигона и гистограммы.

- Полигон частот это ломаная, отрезки которой соединяют точки $(x_1; n_1), (x_2; n_2), ..., (x_k; n_k)$.
- Полигон относительных частот это ломаная, отрезки которой соединяют точки: $(x_1; \frac{n_1}{n}), (x_2; \frac{n_2}{n}), \dots, (x_k; \frac{n_k}{n}).$
- Гистограммой частот называется фигура, состоящая из прямоугольников с основанием h и высотами n_i . Для гистограммы относительных частот в качестве высоты рассматривают n_i/n .
- Гистограмма относительных частот является аналогом дифференциальной функции случайной величины.

- Вариационные ряды позволяют получить первое представление об изучаемом распределении.
- Далее необходимо исследовать **числовые характеристики распределения** (аналогичные характеристикам распределения теории вероятностей):
 - характеристики положения (средняя арифметическая, мода, медиана);
 - характеристики рассеяния (дисперсия, среднее квадратическое отклонение, коэффициент вариации);
 - характеристики меры скошенности (коэффициент асимметрии) и островершинности (эксцесс) распределения.

Характеристики положения вариационного ряда

• *Средней арифметической* (X) дискретного вариационного ряда называется отношение суммы произведений вариантов на соответствующие частоты к объему совокупности:

$$\bar{X} = \frac{\sum x_i n_i}{\sum n_i} = \frac{\sum x_i n_i}{n}.$$

• Средняя арифметическая имеет те же единицы измерения, что и варианты.

Характеристики положения вариационного ряда

• Свойства средней арифметической

1) Средняя арифметическая суммы соответствующих друг другу значений, принадлежащих двум группам наблюдений, равна алгебраической сумме средних арифметических этих групп:

$$\overline{X \pm Y} = \overline{X} \pm \overline{Y}.$$

2) Если ряд наблюдении состоит из двух непересекающихся групп наблюдений, то средняя арифметическая \bar{Z} всего ряда наблюдений равна взвешенной средней арифметической групповых средних \bar{X} и \bar{Y} , причем весами являются объемы групп $n_1 = \sum n_i, n_2 = \sum m_i$ соответственно

$$\overline{X \pm Y} = \frac{\sum x_i n_i + \sum y_j m_j}{n_1 + n_2}$$

Характеристики положения вариационного ряда

Свойства средней арифметической

3) Средняя арифметическая постоянной равна самой постоянной

$$\overline{C} = C.$$

4) Если все результаты наблюдений умножить на одно и то же число, то имеет место равенство:

$$\bar{Z} = \overline{CX} = C\bar{X}$$

5) Сумма отклонений результатов наблюдений от их средней, взвешенная с соответствующими частотами, равна нулю

$$\sum (x_i - \bar{X})n_i = 0.$$

Характеристики положения вариационного ряда

Свойства средней арифметической

6) Если все результаты наблюдений увеличить (уменьшить) на одно и то же число, то средняя арифметическая увеличится (уменьшится) на то же число, т. е.:

$$\overline{Z} = \overline{X \pm C} = \overline{X} \pm C.$$

7) Если все частоты вариантов умножить на одно и то же число, то средняя арифметическая не изменится.

Характеристики положения вариационного ряда

- *Модой* $(M_0^*(X))$ дискретного вариационного ряда называется вариант, имеющий наибольшую частоту.
- *Медианой* $(M_e^*(X))$ дискретного вариационного ряда называется вариант, делящий ряд на две равные части.
 - Если дискретный вариационный ряд имеет 2n членов в ранжированной совокупности: $x_1, x_2, ..., x_n, x_{n+1,...}, x_{2n}$, то

$$M_e^*(X) = \frac{x_n + x_{n+1}}{2}$$
 (6)

Характеристики положения вариационного ряда

• Если дискретный вариационный ряд в ранжированной совокупности имеет 2n+1 членов: $x_1, x_2, ..., x_{n-1}, x_n, x_{n+1,...}, x_{2n+1}$, то

$$M_e^*(X) = x_{n+1} (7)$$

В примере 1:

$$\bar{X} = \frac{0 \cdot 6 + 1 \cdot 7 + 2 \cdot 3 + 3 \cdot 5 + 4 \cdot 3}{24} = \frac{40}{24} = \frac{5}{3} = 1,67;$$

$$M_0^*(X) = 1, \qquad M_e^*(X) = \frac{1+1}{2} = 1.$$

Характеристики положения вариационного ряда

Для **интервальных вариационных рядов** имеют место формулы:

а) медианы:
$$M_e^*(X) = x_{Me} + h \cdot \frac{0.5n - S_{Me-1}}{n_{Me}}$$
, (8)

где x_{Me} - начало медианного интервала,

h - длина частичного интервала, n - объем совокупности,

 S_{Me-1} - накопленная частота интервала, предшествующего медианному,

 n_{Me} - частота медианного интервала;

б) моды:
$$M_0^*(X) = x_{Mo} + h \cdot \frac{(n_{Mo} - n_{Mo-1})}{(n_{Mo} - n_{Mo-1}) + (n_{Mo} - n_{Mo+1})}$$
, (9)

где x_{Mo} - начало модального интервала,

h - длина частичного интервала, π_{Mo} - частота модального интервала,

 n_{Mo-1} - частота предмодального интервала,

 n_{Mo+1} - частота послемодального интервала;

Характеристики положения вариационного ряда

в) средней арифметической, совпадающей с формулой (6) для дискретного вариационного ряда, причем в качестве вариантов x_i принимаются середины соответствующих интервалов.

Мода и медиана используются в качестве характеристики среднего положения в случае, если границы ряда нечеткие или если ряд не симметричен.

Показатели вариации

Показатели центральной тенденции (M_0 , M_e , \overline{X}) не исчерпывают всех свойств распределения. В одних случаях значения признака концентрируются тесно около среднего значения, в других наблюдается значительное рассеяние.

Для изучения степени изменчивости признака вводят показатели вариации:

- 1) W = x_{max} x_{min} размах вариации;
- 2) значения x_i имеют свойство концентрироваться около \overline{X}_i поэтому вводят следующие характеристики

(т. к
$$\sum (x_i - \bar{X})n_i = 0$$
):

Показатели вариации

• Дисперсия дискретного ряда распределения:

$$D^* = \frac{\sum (x_i - \bar{X})^2 n_i}{n} \tag{10}$$

характеризует средний квадрат отклонения x_i , от $\overline{\mathbf{x}}$.

• Среднее квадратическое отклонение дискретного ряда распределения

$$\sigma^* = \sqrt{\frac{\sum (x_i - \bar{X})^2 n_i}{n}}$$

выражается в тех же единицах, что и x_i .

Показатели вариации

• Среднее линейное отклонение:

$$L(X) = \frac{\sum |x_i - \bar{X}| n_i}{n} \tag{12}$$

• Коэффициент вариации:

$$V^* = \frac{\sigma^*}{\bar{X}} \cdot 100\%,\tag{13}$$

характеризует относительное значение среднего квадратического отклонения и обычно служит для сравнения колеблемости несоизмеримых показателей.

Показатели вариации

Свойства дисперсии:

1) Дисперсия постоянной величины равна 0

$$D^*(C)=0.$$

2) Если все результаты наблюдений увеличить (уменьшить) на одно и то же число С, то дисперсия и среднее квадратическое отклонение не изменятся, т. е.

$$D^*(X \pm C) = D^*(X), \sigma^*(X \pm C) = \sigma^*(X).$$

3) Если все результаты наблюдений умножить на одно и то же число, то имеет место равенство:

$$D^*(CX) = C^2D(X), \qquad \sigma^*(CX) = |C|\sigma^*(X).$$

Показатели вариации

Свойства дисперсии:

- 4) Если все частоты вариантов умножить на одно и то же число, то дисперсия и среднее квадратическое отклонение не изменятся.
- 5) Свойство минимальности дисперсии.

$$\frac{\sum (x_i - C)^2 n_i}{n}$$
 \to min при $C = \bar{X}$.

• Следствие 1. Средний квадрат отклонений значений x_i от их средней арифметической равен среднему квадрату отклонений x_i от произвольной постоянной a минус квадрат разности между средней арифметической (\overline{X}) и этой произвольной постоянной.

Пусть
$$\sigma^{*2}=\frac{\sum (x_i-\bar{X})^2 n_i}{n}$$
, $\sigma_a^{*2}=\frac{\sum (x_i-a)^2 n_i}{n}$, тогда $\sigma_x^{*2}=\sigma_a^{*2}-(\bar{X}-a)^2$.

Показатели вариации

• Следствие 2. Дисперсия равна средней арифметической из квадратов значений признака минус квадрат средней арифметической:

$$\sigma_{\chi}^{*2} = \overline{X^2} - (\overline{X})^2.$$

6) Правило сложения дисперсий.

Если объединяются несколько распределений в одно, то общая дисперсия σ_0^{*2} нового распределения равна средней арифметической из дисперсий объединяемых распределений, сложенной с дисперсией частных средних относительно общей средней нового распределения.

Показатели вариации

Правило сложения дисперсий

Иначе говоря, общая дисперсия равна сумме внутригрупповой и межгрупповой дисперсий:

$$\sigma_0^{*2} = \overline{\sigma^{*2}} + \delta_0^{*2}$$
, (14) или $\sigma_0^{*2} = \frac{\sum_{i,j} (x_{ij} - \overline{X_0})^2 \cdot n_{ij}}{N} = \frac{\sum x_j^2 N_j}{N} - (\overline{X_0})^2$,

где n_{ij} — частота j-го варианта i-го частного распределения (j=1,..., m; i=1,2,...,k), x_{ii} - j- \ddot{u} вариант i-го частного распределения (j=1,..., m; i=1, 2,..., k), n_i - объем i-го частного распределения,

 $N_i = \sum_i n_{i\,i}$ - частота j-го варианта нового распределения,

N - объем нового распределения,

$$\overline{X}_i = rac{\sum_j n_{ij} x_i}{n_i}$$
 - средняя арифметическая

(i-го частного распределения, (i=1,..., κ),

$$\overline{X_0} = \frac{\sum x_j N_j}{N}$$
 - средняя арифметическая нового распределения,

j	X ₁	X ₂	 X _m	Σ
1	n ₁₁	n ₁₂	 n _{1m}	n_1
2	n ₂₁	n ₂₂	 n _{2m}	n ₂
3	n ₃₁	n ₃₂	 n _{3m}	n ₃
	•••		 •••	•••
k	n _{k1}	n _{k2}	n _{km}	n _m
Σ	N ₁₁	N_2	N _m	Ν

$$\sigma_i^2 = rac{\sum_j x_{ij}^2 n_{ij}}{n_i} - (\overline{X}_i)^2$$
 - дисперсия *i*-го

частного распределения

$$\overline{\sigma^{*2}} = rac{\sum \sigma_i^2 n_i}{N}$$
 - внутригрупповая дисперсия, $\delta^{*2} = rac{\sum (\overline{X_i} - \overline{X_0})^2}{N}$ - межгрупповая дисперсия.

• *Моменты* для вариационных рядов в математической статистике находятся по формулам, аналогичным формулам для ДСВ:

$$a_S^* = rac{\sum x_i^S n_i}{n}$$
 - начальный момент *s*-го порядка, $\mu_S^* = rac{\sum (x_i - ar{x})^S n_i}{n}$ - центральный момент *s*-го порядка, $r_S^* = rac{\sum (x_i - ar{x})^S n_i}{n \sigma_X^{*S}}$ - основной момент *s*-го порядка, $r_{S,h}^* = rac{\sum (x_i - ar{x})^S (y_i - ar{y})^h n_i}{n \sigma_Y^{*S} \cdot \sigma_Y^{*h}}$ - основной момент порядка *s,h*.

- Соотношения между начальными и центральными моментами в математической статистике соответствуют таким формулам для ДСВ.
- Коэффициент асимметрии: $Sk^* = \frac{\sum (x_i X)^3 n_i}{n\sigma^{*3}}$.
- Эксцесс: $Ex^* = \frac{\sum (x_i \bar{X})^4 n_i}{n\sigma^{*4}} 3.$

• Рассчитаем среднюю арифметическую, дисперсию, коэффициенты асимметрии и эксцесса для примера 2.

Среднее значение признака:

$$\bar{X} = \frac{\sum x_i n_i}{\sum n_i} = \frac{516,18}{60} = 8,613.$$

Дисперсия и среднее квадратическое отклонение:

$$D^* = \frac{\sum (x_i - \bar{X})^2 n_i}{n} = \frac{358,869}{60} = 5,981,$$

$$\sigma^* = \sqrt{\frac{\sum (x_i - \bar{X})^2 n_i}{n}} = \sqrt{5,981} = 2,446.$$

Коэффициент вариации:

$$V^* = \frac{\sigma^*}{\bar{X}} \cdot 100\% = \frac{2,446}{8,613} \cdot 100\% = 28,4\%.$$

• Рассчитаем среднюю арифметическую, дисперсию, коэффициенты асимметрии и эксцесса для примера 2.

Вспомогательная таблица для расчета числовых характеристик ряда распределения

Группы предприятий по численности работников на 100 га сельхозугодий, чел	Среднее значение интерва- ла (X _i)	Число хозяйств в группе (n _i)	x _i n _i	$x_i - ar{X}$	$(x_i - \bar{X})^2 n_i$	$rac{x_i - ar{X}}{\sigma^*}$	$\left(rac{x_i-ar{X}}{\sigma^*} ight)^3 n_i$	$\left(rac{x_i-ar{X}}{\sigma^*} ight)^4 n_i$
4-5,6	4,8	5	24	-3,813	72,708	-1,559	-18.954	29,554
5,61 - 7,2	6,4	17	108,8	-2,213	83,280	-0,905	-12,601	11,404
7,21-8,8	8	9	72	-0,613	3,386	-0,251	-0,142	0,036
8,81-10,4	9,6	15	144	0,987	14,603	0,403	0,985	0,397
10,41-12	11,2	10	112	2,587	66.908	1,058	11,832	12,514
12,01-13,6	12,8	1	12,8	4,187	17,528	1,712	5,017	8,588
13,61-15,2	14,4	3	43,2	5,787	100,457	2,366	39.740	94,030
итого	-	60	516,8	-	358,869	-	25,876	156,523

• Коэффициент асимметрии: $Sk^* = \frac{\sum (x_i - \bar{X})^3 n_i}{n\sigma^{*3}} = \frac{25,876}{60} = 0,43.$

• Эксцесс:
$$Ex^* = \frac{\sum (x_i - \bar{X})^4 n_i}{n\sigma^{*4}} - 3 = \frac{156,523}{60} - 3 = -0,39.$$

Выводы: Плотность работников -

 $\overline{X} \pm \sigma^* = 8,61 \pm 2,45$, то есть от 6,16 до 11,06 чел. на 100га с/х угодий.

Коэффициент асимметрии недостаточно близко к нулю => распределение не симметрично.

Эксцесс $Ex^* \neq 0 = >$ возможно распределение отлично от нормального.

- В реальных условиях обычно бывает трудно или экономически нецелесообразно, а иногда и невозможно исследовать всю совокупность, характеризующую изучаемый признак (генеральную совокупность).
- На практике широко применяется выборочное наблюдение, когда обрабатывается часть генеральной совокупности (выборочная совокупность).

- Свойства (закон распределения и его параметры) генеральной совокупности неизвестны, поэтому возникает задача их оценки по выборке.
- Для получения хороших оценок характеристик генеральной совокупности необходимо, чтобы выборка была *репрезентативной* (представительной).
- Репрезентативность, в силу закона больших чисел, достигается случайностью отбора.

Различают 5 основных типов выборок.

- 1) Собственно случайная:
 - повторная (элементы после выбора возвращаются обратно);
 - бесповторная (выбранные элементы не возвращаются).
- **2)** *Типическая* генеральная совокупность предварительно разбивается на группы типических элементов, и выборка осуществляется из каждой.

Следует различать:

а) равномерные выборки (при равенстве объемов исходных групп в генеральной совокупности выбирается одинаковое количество элементов из каждой);

б) пропорциональные (численность выборок формируют пропорционально численностям или средним квадратическим отклонениям групп генеральной совокупности);

в) комбинированные (численность выборок пропорциональна и средним квадратическим отклонениям, и численностям групп генеральной совокупности).

Различают 5 основных типов выборок.

- 3) *Механическая* отбор элементов проводится через определенный интервал.
- **4)** *Серийная* отбор проводится не по одному элементу, а сериями для проведения сплошного обследования.
- **5)** *Комбинированная* используются различные комбинации вышеуказанных методов, например, типическая выборка сочетается с механической и собственно случайной.

- После осуществления выборки возникает задача оценки числовых характеристик генеральной совокупности по элементам выборочной совокупности.
- Различают точечные и интервальные оценки.
- Точечная оценка характеристики генеральной совокупности это число, определяемое по выборке.
- Пусть $\hat{\theta} = \widehat{\theta_n}$ выборочная характеристика, вычисленная по результатам n наблюдений величины X, используемая в качестве оценки θ характеристики генеральной совокупности (в качестве θ может быть M(X), D(X) и т. д.).

- Качество оценки $\widehat{\theta}$ устанавливается по трем свойствам: **состоятельность, несмещенность, эффективность**.
- 1) Состоятельность. Оценка $\widehat{\theta_n}$ является состоятельной оценкой генеральной характеристики θ , если для любого $\epsilon > 0$ выполняется следующее равенство

$$\lim_{n\to\infty} P(|\widehat{\theta_n} - \theta| < \varepsilon) = 1$$

Это означает, что при увеличении объема выборки n выборочная характеристика $\widehat{\theta_n} \to \theta$.

- 2) Несмещенность. Оценка $\widehat{\theta}$ генеральной характеристики θ называется несмещенной, если для любого фиксированного числа наблюдений и выполняется равенство $M(\widehat{\theta_n}) = \theta$.
- 3) Эффективность. Несмещенная оценка $\hat{\theta} = \widehat{\theta}_n$ генеральной характеристики θ называется несмещенной эффективной, если среди всех подобных оценок той же характеристики она имеет наименьшую дисперсию: $D(\widehat{\theta}_n) \to min$.

- Можно показать, что статистики \overline{X} , \hat{p} являются состоятельными, несмещенными и эффективными характеристиками математического ожидания M(X) и вероятности p соответственно.
- Выборочная дисперсия \widehat{D} (далее $\widehat{D} = \sigma^2$) не обладает свойством несмещенности. На практике используют исправленную выборочную дисперсию S^2 , которая является несмещенной оценкой дисперсии генеральной совокупности:

$$S^{2} = \frac{n}{n-1}\sigma^{2}(x) = \frac{n}{n-1} \cdot \frac{\sum (x_{i} - \bar{X})^{2} \cdot n_{i}}{n} = \frac{\sum (x_{i} - \bar{X})^{2} \cdot n_{i}}{n-1}, \quad (15)$$

где S - стандартное отклонение.

• Кроме того, в расчетах используют стандартную ошибку выборки:

$$S_{\chi} = \frac{S}{\sqrt{n}}.$$
 (16)

- Точечные оценки получают обычно с помощью метода моментов и метода максимального правдоподобия.
- Интервальной называют оценку, которая определяется двумя числами границами интервала. Она позволяет ответить на вопрос: внутри какого интервала и с какой вероятностью находится неизвестное значение оцениваемого параметра ϑ генеральной совокупности?

- Пусть $\hat{\theta}$ точечная оценка параметра θ . Чем меньше разность $\hat{\theta}$ и θ , тем точнее и лучше оценка.
- Обычно говорят о *доверительной вероятности* (надежности оценки) p=1 α , с которой θ будет находиться в интервале

$$\hat{\theta} - \Delta < \theta < \hat{\theta} + \Delta$$

где: $\Delta(\Delta>0)$ - предельная ошибка выборки, которая может быть либо задана наперед, либо вычислена; α - риск или уровень значимости (вероятность того, что неравенство будет неверным).

- Оценка указанного доверительного интервала может быть получена (с наименьшей вероятностью) с помощью неравенства Чебышева (при $\varepsilon = \Delta$).
- В качестве 1-*α* принимают значения 0,90; 0,95; 0,99; 0,999.
- Доверительная вероятность показывает, что в $(1-\alpha)100\%$ случаев оценка θ будет накрываться указанным интервалом.

• Точечная оценка математического ожидания M(X)=a определяется как средняя арифметическая:

$$\bar{X} = \frac{1}{n} \sum x_i n_i \tag{17}$$

• Точечная оценка вероятности p_i определяется как относительная частота:

$$\widehat{p}_i = \frac{n_i}{n}. \tag{18}$$

• Для построения доверительного интервала параметра *а* - математического ожидания нормального распределения составляют выборочную характеристику *(статистику)*, функционально зависимую от наблюдений и связанную с *а*, например, для повторного отбора:

$$u = \frac{\bar{X} - a}{\sigma(\bar{X})} = \frac{\bar{X} - a}{\frac{\sigma}{\sqrt{n}}}$$
 (19)

• Статистика u распределена по нормальному закону распределения с математическим ожиданием a=0 и средним квадратическим отклонением $\sigma=1$.

Отсюда

$$P(|u| < u_{\alpha/2}) = 1 - \alpha,$$
 или $2\Phi(u_{\alpha/2}) = 1 - \alpha,$

где Φ - функция Лапласа, $u_{\alpha/2}$ - *квантиль* нормального закона распределения, соответствующая уровню значимости α .

• Доверительный интервал для параметра а:

$$\bar{X} - u_{\alpha/2} \frac{\sigma}{\sqrt{n}} < a < \bar{X} + u_{\alpha/2} \frac{\sigma}{\sqrt{n}},$$
 (20)

где $\Delta_{\bar{X}} = u_{\alpha/2} \sigma(\bar{X})$ - предельная ошибка выборочной средней.

Формулы предельной ошибки и необходимого объема выборки для различных случаев отбора

Выборка		Собственно-случайная		Типическая		Серийная	
		повторная	бесповторная	повторная	бесповторная	повторная	бесповторная
Предельная ошибка, Δ	Средней, х̄	$t\sqrt{\frac{\sigma^2}{n}}$	$t\sqrt{\frac{\sigma^2}{n}\left(1-\frac{n}{N}\right)}$	$t\sqrt{\frac{\overline{\sigma^2}}{n}}$	$t\sqrt{\frac{\overline{\sigma^2}}{n}\Big(1-\frac{n}{N}\Big)}$	$t\sqrt{rac{\delta_{ ext{ iny M.C}}^2}{n_{ ext{ iny C}}}}$	$t\sqrt{\frac{\delta_{\text{M.C}}^2}{n_{\text{c}}}\bigg(1-\frac{n_{\text{c}}}{N_{\text{c}}}\bigg)}$
	Доли, Р	$t\sqrt{\frac{pq}{n}}$	$t\sqrt{\frac{pq}{n}\left(1-\frac{n}{N}\right)}$	$t\sqrt{\frac{\overline{pq}}{n}}$	$t\sqrt{\frac{\overline{pq}}{n}\left(1-\frac{n}{N}\right)}$	$t\sqrt{rac{pq_{ ext{ iny M.C}}}{n_{ ext{ iny C}}}}$	$t\sqrt{\frac{pq_{\text{M.C}}}{n_{\text{c}}}\bigg(1-\frac{n_{\text{c}}}{N_{\text{c}}}\bigg)}$
Необходимая численность.п	Средней, <u>x</u>	$\frac{t^2\sigma^2}{\Delta^2}$	$\frac{t^2\sigma^2N}{t^2\sigma^2 + \Delta^2N}$	$\frac{t^2\overline{\sigma^2}}{\Delta^2}$	$\frac{t^2\overline{\sigma^2}N}{t^2\overline{\sigma^2} + \Delta^2N}$	$\frac{t^2\delta_{\text{\tiny M.C}}^2}{\Delta^2}$	$\frac{t^2 \delta_{\text{M.c}}^2 N_{\text{c}}}{t^2 \delta_{\text{M.c}}^2 + \Delta^2 N_{\text{c}}}$
	Доли, Р	$\frac{t^2pq}{\Delta^2}$	$\frac{t^2Npq}{t^2pq + \Delta^2N}$	$\frac{t^2\overline{pq}}{\Delta^2}$	$\frac{t^2 N \overline{pq}}{t^2 \overline{pq} + \Delta^2 N}$	$rac{t^2pq_{ ext{ iny M.C}}}{\Delta^2}$	$\frac{t^2 N_{\rm c} p q_{\rm \scriptscriptstyle M.C}}{t^2 p q_{\rm \scriptscriptstyle M.C} + \Delta^2 N_{\rm c}}$

Формулы предельной ошибки и необходимого объема выборки для различных случаев отбора (пояснения к таблице)

- t квантиль распределения, соответствующая уровню значимости α,
- а) при n \geq 30 t=u $_{\alpha/2}$ квантиль нормального закона распределения (прил.1),
- б) при n<30 t квантиль распределения Стьюдента с v=n-l степенями свободы для двусторонней области;
- σ^2 выборочная дисперсия,
- а) при n≥30 $\sigma^2 = \frac{\sum (x_i \bar{x})^2 n_i}{n}$,
- б) при n<30 вместо σ^2 берут $S^2 = \frac{\sum (x_i \bar{x})^2 n_i}{n-1}$;
- рq дисперсия относительной частоты в схеме повторных независимых испытаний;

Формулы предельной ошибки и необходимого объема выборки для различных случаев отбора (пояснения к таблице)

- N объем генеральной совокупности;
- n- объем выборки;
- $\overline{\sigma^2}$ средняя арифметическая групповых дисперсий (внутригрупповая дисперсия);
- \overline{pq} средняя арифметическая дисперсий групповых долей;
- $\delta_{\text{м.с}}^2$ -межсерийная дисперсия;
- Рам.с межсерийная дисперсия доли;
- Nc число серий в генеральной совокупности;
- пс число отобранных серий (объем выборки);