13.12 Show that the three forms of independence in Equation (13.11) are equivalent.

Equation (13.11):

$$P(a \mid b) = P(a) \text{ or } P(b \mid a) = P(b) \text{ or } P(a \land b) = P(a) \times P(b)$$

Bayes Rule says:

$$P(a \mid b) = P(b \mid a) \times P(a) / P(b)$$

If $PP(a \mid b) = P(a)$ then we can use the Bayes Rule formula and replace $P(a \mid b)$ with P(a)

$$P(a) = P(b \mid a) \times P(a) / P(b)$$

Dividing the whole formula by P(a):

$$1 = P(b \mid a) / P(b)$$
$$P(b \mid a) = P(b)$$

So, if
$$P(a \mid b) = P(a)$$
 then $P(b \mid a) = P(b)$.

Using the same idea we arrive to the conclusion that if $P(b \mid a) = P(b)$ then $P(a \mid b) = P(a)$ So saying $P(b \mid a) = P(b)$ is equivalent to say that $P(a \mid b) = P(a)$

To show that last equation is equivalent to the other ones I need to use the Product Rule that says:

$$P(a \land b) = P(a \mid b) \times P(b)$$

And when $P(a \land b) = P(a) \times P(b)$ we can replace and say that:

$$P(a \land b) = P(a) \times P(b) = P(a \mid b) \times P(b)$$

$$P(a) \times P(b) = P(a \mid b) \times P(b)$$

$$P(a) = P(a \mid b)$$

So, if
$$P(a \land b) = P(a) \times P(b)$$
 then $P(a) = P(a \mid b)$

We know the intersection operator is commutative so:

$$P(a \land b) = P(b \land a) = P(b \mid a) \times P(a)$$
 by the product rule

And when $P(a \land b) = P(a) \times P(b)$ we can replace and say that:

$$P(b \mid a) \times P(a) = P(b) \times P(a)$$

 $P(b \mid a) = P(b)$

So, if
$$P(a \land b) = P(a) \times P(b)$$
 then $P(b) = P(b \mid a)$

Then the three equations are equivalent when a and b are independents. Q.E.D.