S.P.E.A.R

Soft Pneumatic EMG Assisted Rehabilitation

Aim

SPEAR is an Active Ankle-Foot Orthosis (AFO), aimed at providing a cheap and affordable solution for rehabilitating stroke survivors.

Abstract

- Stroke patients often suffer from Foot Drop, a paralysis of the muscles in the anterior portion of the lower leg, causing an inability or impaired ability to raise the foot from the ankle. This leads to extremities of the foot dragging along the ground while walking, and can cause tripping and other accidents. Presently, patients are trained to walk with canes, and physiotherapy is also prescribed. The physiotherapy requires the presence of a trainer, and these frequent consultations lead to huge expenditure.
- Currently, robotic therapeutic tools exist, but the rigidity does not lend itself to the compliant nature of the body, and are unwieldy. They are bulky and heavy which makes them unwearable under regular usage.
- As a bio-inspired solution, SPEAR aims to provide a soft robotic approach to the physio therapy. The end effectors at the ankle are a set of soft pneumatic actuators, controlled by electromyography signals (EMG). This achieves a reduction of weight at the joint, and can be custom made to fit the patient's needs.
- Keywords Rehabilitative robotics, stroke, foot drop, Soft robotics, soft pneumatic actuators, Electromyography

Application

Ease of physiotherapy for those affected with stroke. Physiotherapy is a costly and continuous process, whereas a robotic solution would be a one-time investment. Because of its compliant nature, SPEAR is lighter, smaller and easier to use, contrary to traditional rigid approaches.

COMPONENTS / PART	Role / Functionality.			
Thermoplastic Polyurethane, Nylon Mesh	Fabricate the pneumatic actuator			
Air compressor	To compress the air from atmosphere and			
	transfer the compressed air to pneumatic			
	actuators			
Solenoid Valve	To control the air flow to pneumatic actuators			
MCU	To control the solenoid valve from the data			
	obtained from the corresponding EMG sensors			
Electromyographic (EMG) sensor	To measure the electrical activity of muscles			

Block Diagram

Ankle Motion

McKibben Muscles (Soft artificial muscles)

- McKibben Muscles have been fabricated.
- The price of a readymade McKibben muscle is minimum Rs.1500
- Using off-the shelf components, cost has been reduced to an average Rs.150, depending on Muscle size, diameter

Component	Cost(Rs.)
Bladder(Silicon Rubber)	40 - 60
Nylon Mesh Sleeve	40 - 60
Miscellaneous (Connectors, Seals)	50
Total	150

Testing Results

Inner Diameter (inch)	Outer Diamete r (inch)	Length (cm)	Slack in Nylon Weave	Contrac tion (cm)	Percent age Contrac tion
1/3	1/2	20	No	2.5	12.5
1/3	1/2	20	Yes	0.5	2.5
1/2	5/8	30	No	3	10

Muscle Test (Video)

Dorsiflexion

Prototype (120° range of motion)

Plantarflexion

Orthosis Design

EMG Dynamic Thresholding (Video)

9600 baud 🔝 🗸

Tibialis Anterior for Dorsiflexion

EMG Voltage-Time Graph

 Figure shows the voltage time graph obtained after the application of the Kalman Filter to both signals, and the threshold lines calculated using the above formula.

EMG Intent Estimation (Video)

Working Video

Surface EMG Calibrating

Future Work

The Orthosis can be extended to Inversion and Eversion motion in the ankle.

The Orthosis which has primarily been optimised for rehabilitation can be upgraded to Exoskeleton for the lower limb.

Expandability is present for machine learning algorithms for greater accuracy of EMG intent estimation.

The main features of this exoskeleton:

- 1. Soft McKibben muscles provide actuation, eliminating rigidity and preventing damage to the user
- 2. Autonomous control of the Lower limb with Electromyography signals.