1.1 Theorem. Let a, b, and c be integers. If $a b$ and $a c$, then $a (b+c)$.
Proof: By definition of divides
1.2 Theorem. Let a, b, and c be integers. If $a b$ and $a c$, then $a (b-c)$.
Proof:
1.3 Theorem. Let a , b , and c be integers. If $a b$ and $a c$, then $a bc$.
Proof:
1.4a Question. Can you weaken the hypothesis of the previous theorem and still prove the conclusion?
Answer: Yes, a only needs to divide b or c instead of b and c .
1.4b Question. Can you keep the same hypothesis, but replace the conclusion by the stronger conclusion that $a^2 bc$ and still prove the theorem?
Answer: Yes, you can.

1.5 Theorem. Let a, b, and c be integers. If $a b$ and $a c$, then $a^2 bc$.
Proof:
1.6 Theorem. Let a , b , and c be integers. If $a b$, then $a bc$.
Proof:
 1.7 Exercise. Answer each of the following questions, and prove that your answer is correct. 1. Is 45 ≡ 9 (mod 4)? 2. Is 37 ≡ 2 (mod 5)? 3. Is 37 ≡ 3 (mod 5)? 4. Is 37 ≡ -3 (mod 5)?
1.8 Exercise. For each of the following congruences, characterize all the integers m that satisfy that congruence. 1. $m \equiv 0 \pmod{3}$. $m = 3k$ $k \in \mathbb{Z}$ 2. $m \equiv 1 \pmod{3}$. $m = 3k + 1$ $k \in \mathbb{Z}$ 3. $m \equiv 2 \pmod{3}$. $m = 3k + 2$ $k \in \mathbb{Z}$ 4. $m \equiv 3 \pmod{3}$. $m = 3k$ $k \in \mathbb{Z}$ 5. $m \equiv 4 \pmod{3}$. $m = 3k + 1$ $k \in \mathbb{Z}$
1.9 Theorem. Let a and n be integers with $n > 0$. Then $a \equiv a \pmod{n}$.
Proof:

1.10 Theorem. Let a, b, and n be integers with $n > 0$. If $a \equiv n$.	$a b \pmod{n}$, then $b \equiv a \pmod{n}$
Proof:	
1.11 Theorem. Let a , b , c , and n be integers with $n > 0$. If $(\text{mod } n)$, then $a \equiv c \pmod{n}$.	If $a \equiv b \pmod{n}$ and $b \equiv c$
Proof:	