- 1. Address decoder circuit for two R/W memories are given below.
 - a. Determine the sizes of both memories
 - b. Determine the start and end addresses (span) of both memories
 - c. Redesign the memory address decoder if we change only the span of second memory to \$9000-\$97FF. (First memory stays the same, do not use extra logic gates, you may change decoder output connections)

Solution:

a. First memory: 1K, Second memory 2K

b. First memory: \$C000-\$C3FF, Second memory: \$6800-\$6FFF

2. We have 4K*4 R/W memory chips. Using these chips design a 16K*8 memory that starts from memory address \$8000. Show instructional CPU connections. (Data bus is 8bits, address bus is 16bits)

Solution:

$A_{15}A_{14}A_{13}A_{12}$			$A_{11}A_{10}A_{9}A_{8}$			$A_7A_6A_5A_4$				A	$A_3A_2A_1A_0$					
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\$8000
1	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	\$8FFF
1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	\$9000
1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	\$9FFF
1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	\$A000
1	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	\$AFFF
1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	\$B000
1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	\$BFFF

O/Y = R/W SEÇ = CS