

Complex Network Systems

Scale-free networks

Ilche Georgievski

2019/2020 Winter

Degree distribution of WWW

Power-law degree distribution

Power-law degree exponents

- Typical $2 \le \alpha \le 3$
 - Web graph
 - $\alpha_{in} = 2.1$, $\alpha_{out} = 2.4$ [Broder et al. 2000]
 - Autonomous systems
 - $\alpha = 2.4$ [Faloutsos 1999]
 - Actor collaborations
 - $\alpha = 2.3$ [Barabási-Albert 2000]
 - Citations to papers
 - $\alpha \approx 3$ [Redner 1998]
 - Online social networks
 - $\alpha \approx 2$ [Leskovec et al. 2007]

Tail contains 1098 highly collaborative scholars (0.16% of all authors)

Starting degree: III

$$\alpha = 4.4$$

$$p = 0.11$$

Typical shape

(a) Power-Law Degree Distribution

(b) Log-Log Plot of Power-Law Degree Distribution

Power-law distribution: Test

- Test whether a network follows a power-law distribution
 - I. Choose a popularity measure and compute it for the whole network
 - e.g., number of friends for all nodes
 - 2. Compute p_k
 - Fraction of individuals having popularity k
 - 3. Plot a log-log graph, where the x-axis represents $\log(k)$ and the y-axis represents $\log(p_k)$
 - 4. Observe if there is a straight line. If yes, a power-law distribution exists

Scale-free networks

A scale-free network is a network whose degree distribution follows a power law

HUBS

Poisson vs power-law distributions

Poisson vs power-law distributions

Let us use the WWW to illustrate the properties of the high-k regime. The probability to have a node with k=100 is

- About $P(100) \cong 10^{-30}$ in a Poisson distribution
- About if $P(100) \cong 10^{-4}$ if P(k) follows a power law
- Consequently, if the WWW were to be a random network, according to the Poisson prediction, we would expect $N_{k>100}\cong 10^{-18}$, or none.
- For a power-law degree distribution, we expect about $N_{k>100}=10^9$

Random vs scale-free networks

Hubs are large in scale-free networks

Expected maximum degree, k_{max}

$$k_{max} = k_{min} N^{\frac{1}{\alpha - 1}}$$

- k_{max} increases with the size of the network
 - — →the larger a system is, the larger its biggest hub
- For $\alpha > 2$, k_{max} increases slower than N
 - → the largest hub will contain a decreasing fraction of links as *N* increases
- For $\alpha = 2$, $k_{max} \sim N$.
 - \rightarrow The size of the biggest hub is O(N)
- For $\alpha < 2$, k_{max} increases faster than N: condensation phenomena
 - → the largest hub will grab an increasing fraction of links. Anomaly!

Hubs are large in scale-free networks

Hubs are large in scale-free networks

Ultra-small property

- Shrinks the average path lengths. Therefore most scale-free networks of practical interest are not only "small" but are "ultra-small". This is a consequence of the hubs, that act as bridges between many small degree nodes.
- Changes the dependence of \bar{d} on the system size. The smaller is α , the shorter are the distances between the nodes.
- Only for $\alpha > 3$ we recover the $\ln N$ dependence, the signature of the small-world property characterising random networks.

Scale-free networks are degree dependent

Examples: Power-law distribution

More examples: Power-law distribution

Sources

- Leskovec, J. Analysis of Networks, CS224W, Stanford University (2018), http://web.stanford.edu/class/cs224w/
- Mateos, G. Degrees, Power Laws and Popularity, University of Rochester, 2018.
- Zafarani, R., Abbasi, M.A. and Liu, H. Social Media Mining: An Introduction, Cambridge University Press, 2014.
- Barabási, A. Network Science, http://networksciencebook.com