Causaliteit en Machine learning

Misja Mikkers & Gertjan Verhoeven

Nederlandse Zorgautoriteit (NZa) & Tilburg University

23 september 2019

Causaliteit en Machine learning

Misja Mikkers & Gertjan Verhoeven

Inleiding

Causanten

DAGS

Machine learning en causaliteit

Inleiding

Causaliteit en Machine learning

Misja Mikkers & Gertjan Verhoeven

Inleiding

'aucalitoit

DAGS

Machine learning en causaliteit

Voorbeeld van een dataset

Causaliteit en Machine learning

Misja Mikkers & Gertjan Verhoeven

Inleiding

Machine learning en causaliteit

TILBURG

X_1	X_2	X_3	X_i	1	Y0	Y1
Man	9	14	1	0	67	NA
Vrouw	60	36	0	1	NA	113
Vrouw	7	2	1	1	NA	54
<u> </u>						

Voorspellen versus begrijpen

Causaliteit en Machine learning

Misja Mikkers & Gertjan Verhoeven

Inleiding

Causaliteit

DAGS

Machine learning en causaliteit

Voorspellen versus begrijpen

Misja Mikkers & Gertjan Verhoeven

Inleiding

Causaliteit

DAGS

Machine learning en causaliteit

Basisvormen DAGs

Causaliteit en Machine learning

Misja Mikkers & Gertjan Verhoeven

nleiding

ausaliteit

DAGS

Machine learning en causaliteit

Confounder

Machine learning
Misja Mikkers &
Gertjan

Causaliteit en

Verhoeven

eiding

nusalit

DAGS

Machine learning en causaliteit

Conclusie

IQ_ouders Cito_score

Aantal_boeken

Collider

Causaliteit en Machine learning Misja Mikkers & Gertjan

Verhoeven

Inleiding

DAGS

Machine learning en causaliteit

Conclusie

Snelheid Lengte

NBA

Veroorzaakt Lengte Snelheid?

Inleiding

Causaliteil

DAGS

Machine learning en causaliteit

Veroorzaakt Lengte Snelheid?

Inleiding

Causalitei

DAGS

Machine learning en causaliteit

Mediator

Causaliteit en Machine learning

Misja Mikkers & Gertjan Verhoeven

nleiding

ausaliteit

DAGS

Machine learning en causaliteit

Conclusie

TILBURG UNIVERSITY

Budgetten en punten

Inleiding

Causaliteit

DAGS

Machine learning en causaliteit

Budgetten en punten

Inleiding

Causaliteit

DAGS

Machine learning en causaliteit

Voorbeeld van een meer complexe DAG

Causaliteit en Machine learning

Misja Mikkers & Gertjan Verhoeven

Inleiding

Causalite

DAGS

Machine learning en causaliteit

Machine learning en causaliteit

Causaliteit en Machine learning

Misja Mikkers & Gertjan Verhoeven

nleiding

ausaliteit

AGS

Machine learning en causaliteit

Machine learning

..................

De variabele *Ziektelast* is bepaald op basis van de volgende formule:

Ziektelast =
$$abs(scale(V1^3 + 2 * V2 + 3 * V3^2 + 4 * V4 + 5 * V5 + 6 * V6 * V7)) + \epsilon$$

1. Fit een Random Forest model op de data 2. Bepaal het gemiddelde treatment effect met behulp van generalized random forests (grf)

We doorlopen deze procedure 2 keer:

a. Een analyse waarbij we de ziektelast voorspellen met alle variabelen ("het verkeerde model") b. Een analyse waarbij we de ziektelast voorspellen met alle variabelen minus de collider *Zorgkosten* ("het goede model")

Summary statistics

Causaliteit en Machine learning

Misja Mikkers & Gertjan Verhoeven

nleiding

ausaliteit

AGS

Machine learning en causaliteit

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
Ziektelast	1,000	0.830	0.558	0.005	0.493	0.936	2.695
Treatment	1,000	0.493	0.500	0	0	1	1
Zorgkosten	1,000	5.629	3.197	-0.228	3.639	7.169	16.276
V1	1,000	497.768	287.495	1	254	747.2	1,000
V2	1,000	498.749	285.709	2	253.5	746.2	1,000
V3	1,000	499.119	292.200	4	233.8	746	1,000
V4	1,000	504.484	294.009	1	243.8	769	1,000
V5	1,000	489.628	282.146	1	255	734.2	1,000
V6	1,000	506.039	284.987	2	270.5	762.2	1,000
V7	1,000	496.600	283.415	1	265	735.2	998
V8	1.000	498.522	287.912	1	250.8	747.5	999

Voorspellingen Random Forest

Misja Mikkers & Gertjan Verhoeven

Inleiding

ausaliteit

DAGS

Machine learning en causaliteit

Schatting van het treatment effect

DAGS

Machine learning en causaliteit

Gemiddeld Interventie Effect

Conclusie

Causaliteit en Machine learning

Misja Mikkers & Gertjan Verhoeven

nleiding

DAGS

Machine learning en causaliteit

Conclusie

Het is essentieel om een causaal model te hebben

Wanneer machine learning wordt gebruikt is de verleiding groot om alle variabelen in het model te gebruiken

We hebben laten zien dat dit kan leiden tot misleidende conclusies

