Outline

Morning program

Preliminaries
Semantic matching
Learning to rank
Entities

Afternoon program

Modeling user behavior Generating responses Recommender systems

Industry insights

Q & A

Deep Learning in industry

- Companies have endless amounts of data! Or do they?
- ▶ Performance Is .9 accuracy/F₁/etc. good enough? No? Would 0.95 be?
- Business logic/constraints
 - Your model is doing great in general, but not in case X, Y and Z. Can you keep it exactly as it is now, and fix just these cases?
- Explicit domain knowledge E.g.: recommending product X for user Y is not applicable, as it is not available where user Y lives.

Deep Learning in industry

- ► Hybrid Code Networks Combining RNNs with domain-specific knowledge
- ► Smart Reply
 Automated response suggestion for email

Hybrid Code Networks

Task

Dialogue system. User can converse with a system that can interact with APIs.

Combining RNNs with domain-specific knowledge

- Incorporate business logic by including modules in the system that can be programmed
- Explicitly condition actions on external knowledge

[Williams et al., 2017]

Industry insights

Hybrid Code Networks

Trapezoids refer to programmatic code provided by the software developer. Shaded boxes are trainable components.

Industry insights

Smart Reply

Automated response suggestion for email

Use an RNN to generate responses for any given input message.

Additional constraints

Response quality

Ensure that the individual response options are always high quality in language and content.

Utility

Select multiple options to show a user so as to maximize the likelihood that one is chosen.

Scalability

Process millions of messages per day while remaining within the latency requirements.

Privacy

Develop this system without ever inspecting the data except aggregate statistics.

[Kannan et al., 2016]

Smart Reply

[Kannan et al., 2016]

Response selection

- ightharpoonup Construct a set of allowed responses R.
- Organise the elements of R into a trie.
- Conduct a left-to-right beam search, and only retain hypotheses that appear in the trie.

Complexity: O(beam size \times response length).

Utility/diversity

Goal: present user with diverse responses Instead of "No", "No, thanks", and "Thanks!", we'd rather produce "No, thanks", "Yes, please", "Let me come back to it".

- Manually label a couple of messages per response intent.
- Use a state-of-the-art label propagation algorithm to label all other messages in R.

What do we learn?

- ▶ Deep learning component is a (small) part of a much larger system.
- Getting the right training data can be hard.
- ▶ The machine learned part is guided/corrected/prevented from predicting undesired output.

Neural IR at Bing

Long history of neural IR models at Bing/Microsoft

- ► RankNet/LambdaRank [Burges et al., 2005, 2006]
- ▶ ListNet/ListMLE [Cao et al., 2007, Xia et al., 2008]
- DSSM/CDSSM [Huang et al., 2013, Shen et al., 2014]
- ▶ Recent representation learning models for long text [Mitra et al., 2017, Zamani et al., 2018]

NN and GBDT are both popularly used across many teams

Neural IR at Bing

Beyond Web search, heavy use of deep learning systems for

- ► Speech recognition [Xiong et al., 2017c]
- Conversational models (e.g., Cortana & Zo)
- ▶ Machine translation [Hassan et al., 2018]
- ▶ Machine reading [Wang et al., 2017] and emerging Office Intelligence scenarios (e.g., [Van Gysel et al., 2017])
- And others...

Neural IR at Bing

Some of the unique challenges and considerations:

- Supervision
 - Large (explicitly/implicitly) labeled datasets are available for training deep models in Web search
 - ▶ Not available for many multi-tenant enterprise scenarios due to privacy and scalability considerations—distance supervision and other approaches may be necessary
- Infrastructure investments
 - ► GPU and other machine resources for experimentation; serving infrastructure investments for running deep models in production
 - Neural model based features vs. rethinking the stack with neural models as first class citizens
- Model reuse: across tenants and different services