

PATENT

CERTIFICATE OF MAILING VIA "EXPRESS MAIL"

PURSUANT TO 37 C.F.R. 1.10, I HEREBY CERTIFY THAT THIS PAPER OR FEE IS BEING DEPOSITED WITH THE UNITED STATES POSTAL SERVICE "EXPRESS MAIL POST OFFICE TO ADDRESSEE" AND IS ADDRESSED TO:

THE HONORABLE COMMISSIONER OF PATENTS
BOX PATENT APPLICATION
WASHINGTON, D.C. 20231

ON MARCH 30, 2001.

Ronald L. Chichester Reg. No. 36,765

Date: 03.30.01

Express Mail:

Express Mail Label: EL477922109US

APPLICATION FOR LETTERS PATENT

FOR

DEBUGGING EMBEDDED SYSTEMS

Inventors: Charles Simmers and Joseph W. Triece

ASSIGNEE: MICROCHIP TECHNOLOGY INCORPORATED

DEBUGGING EMBEDDED SYSTEMS

Field of the Invention

The present invention relates generally to background debuggers, and more particularly to on-chip debuggers, and even more particularly to on-chip debuggers for microcontrollers.

Background of the Invention Technology

In recent years, microprocessors have become almost commonplace in electronic devices. Indeed, even household appliances, such as washing machines, refrigerators and water heaters, may include microprocessors to control some aspect of their operation. A microprocessor used in such an application is frequently referred to as a "microcontroller." An application that incorporates a microprocessor is sometimes called an "embedded system," because the control for the system is embedded in the system rather than being external to the system.

One of the challenges of testing embedded systems is that the microcontroller and the system it is controlling are frequently so intertwined as to make testing the microcontroller apart from the system, or vice versa, very difficult. In the past, engineers have addressed this problem by using "in-circuit emulators," or ICEs, which are sophisticated systems that emulate the operation of the microprocessor through a cable and connector that connect in the place usually occupied by the microprocessor.

ICE systems typically allow a user to set "breakpoints" in the microprocessor code. Generally, the breakpoints are associated with a condition of the microprocessor, such as a program address being accessed, a data address being accessed or some other event. The ICE executes software that emulates execution of the microprocessor code 5 and monitors the condition of the emulated microprocessor to detect breakpoints. When a breakpoint is reached, the ICE stops emulating the microprocessor operation and allows the condition of the emulated microprocessor to be examined. Assuming that the emulator software is operating correctly and that it correctly emulates the microprocessor operation, an ICE system can be used to debug the hardware and software of embedded 10 microprocessor systems.

What is needed is a debugger that will work without removing the embedded microprocessor and thus will not rely on the accuracy of an emulation.

SUMMARY OF THE INVENTION

The invention overcomes the above-identified problems as well as other 15 shortcomings and deficiencies of existing technologies by providing a debugging system that works without removing the embedded microprocessor. Registers provided with the system store breakpoint conditions. Logic coupled to the registers and the system busses determines when the monitored conditions occur and interrupts the system. The registers and logic are implemented in hardware which allows an embedded system to be 20 debugged with the microprocessor or microcontroller installed in the system and running its own software or firmware. In one embodiment, the debug logic is implemented on the

same chip as the microcontroller or microprocessor. In another embodiment, the debug logic is incorporated in a separate module that can be coupled to the microprocessor or microcontroller for debugging purposes.

In accordance with an exemplary embodiment of the present invention, an
5 embedded system is provided with the capability to be debugged. The embedded system includes a central processing unit (CPU) that is coupled to a bus having certain contents. A register, also with contents, is available for loading by the CPU. Finally, a debug logic circuit is also included. The debug logic circuit is coupled to both the bus and the CPU.
The debug circuit itself is composed of a breakpoint detect circuit that is coupled to the
10 bus and to the register. This circuitry enables a breakpoint signal that is produced by the breakpoint detect circuit when the contents of the register equal the contents of the bus.

In another embodiment of the present invention, a method is disclosed for debugging an embedded system having a microcontroller with a CPU. First, a debug logic circuit that resides on the same chip as the microcontroller is programmed to detect
15 a predetermined condition in the microcontroller. Next, application software is run on the microcontroller. When a predetermined condition is detected, the CPU is interrupted which provides the ability to view the condition of the microcontroller. Programming the debug logic circuit can include the storing of a breakpoint address in a breakpoint address register. Afterward, a program memory address bus is selected for comparison to the
20 contents of the breakpoint address register, upon which time a breakpoint counter is set to zero. The steps of interrupting and detecting are accomplished by comparing the contents

of the program memory address bus to the contents of the breakpoint register and, if they are equal, then the CPU is interrupted.

Yet another embodiment of the present invention is composed of a bus interface for interfacing to a microcontroller bus. In addition, a communications interface is 5 included for receiving debug instructions. A register is also provided which holds the contents that can be loaded through the communications interface. A breakpoint detect circuit is coupled to the bus interface and the register. In operation, a breakpoint signal is produced by the breakpoint detect circuit when the contents of the register equal the contents of the bus.

10 A technical advantage of the present invention is that the debugger can be executed with the microcontroller in place in the target system and executing target system code. This eliminates reliance on ICE interpreting target system code.

Features and advantages of the invention will be apparent from the following description of the embodiments, given for the purpose of disclosure and taken in 15 conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present disclosure and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, wherein:

20 Figure 1 is a block diagram of a target system in a debug configuration.

Figure 2 is a block diagram of a target system.

Figure 3 is a block diagram of a prior art microcontroller.

Figure 4 is a block diagram of a microcontroller including on-chip debug logic.

Figure 5 is a block diagram of a microcontroller and a separate debug module in a

5 debug configuration.

Figure 6 is a map of the debug registers.

Figure 7 is a block diagram of the debug logic.

Figure 8 is a flow chart for setting up a break on program memory address match.

Figure 9 is a flow chart for monitoring for a program memory address match

10 breakpoint.

Figure 10 is a flow chart for setting up a break on number of program memory address matches.

Figure 11 is a flow chart for monitoring for a number of program memory address matches breakpoint.

15 Figure 12 is a flow chart for setting up a break on SFR address match.

Figure 13 is a flow chart for monitoring for a SFR address match breakpoint.

Figure 14 is a flow chart for setting up a break on SFR address and data match.

Figure 15 is a flow chart for monitoring for a SFR address and data breakpoint.

Figure 16 is a flow chart for setting up a break on number of SFR address and data matches.

5 Figure 17 is a flow chart for monitoring for a number of SFR address and data matches breakpoint.

While the present invention is susceptible to various modifications and alternative forms, specific exemplary embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however, that
10 the description herein of specific embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.

DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

15 The present invention is directed to debugging embedded systems.

Referring now to the drawings, the details of an exemplary embodiment of the present invention is schematically illustrated. Like elements in the drawings will be represented by like numbers, and similar elements will be represented by like numbers with a different lower case letter suffix.

In an exemplary embodiment, illustrated in Fig. 1, a target system under development 100 is configured to be debugged under the control of a personal computer ("PC") 105 running a development tool. An example of such a development tool is the MPLAB system, available commercially from Microchip Technology Incorporated.

5 A protocol translator gateway 110 contains a microcontroller which translates the commands from the PC 105 into a format acceptable to the microcontroller. In the case of microcontrollers manufactured by Microchip Technology Incorporated, the interface is a serial interface. The serial interface allows software running on the PC 105 to control the debugging of the target system 100.

10 In one exemplary embodiment, the target system under development, shown in more detail in Fig. 2, includes a microcontroller 200 with a serial interface to the protocol translator gateway 110. The microcontroller 200 also includes outputs 205 for controlling actuators in a controlled system 210 and inputs 215 for monitoring sensors installed in the controlled system 210. The controlled system 210 can be any kind of
15 system susceptible to control in this manner. For example, the controlled system 210 can be a household appliance, such as a refrigerator or a water heater.

An existing microcontroller 200, illustrated in Fig. 3, includes a CPU 300, which communicates with the protocol translator gateway 110 through a serial I/O interface 305. The CPU controls actuators and reads sensors on the controlled system 210 through
20 a sensor/actuator I/O 310. The microcontroller 200 includes a program memory 315 and a data memory 320, connected by separate busses to the CPU 300.

In one exemplary embodiment, shown in Fig. 4, the microcontroller 200 is modified to include a debug logic circuit 400. The debug logic circuit 400 interfaces with the program memory busses and the data memory busses and produces a break signal 405. The break signal 405 is coupled to a CPU input so that when the break signal 405 is activated, the CPU will be interrupted and vectored in a conventional manner to an debug interrupt vector where code is stored for executing appropriate interrupt software or firmware. In one exemplary embodiment, the data memory 320 includes a set of debug registers 410 which facilitate debugging, as described below.

In an alternative embodiment, illustrated in Fig. 5, the debug logic circuit 400 and registers 410 are located in a module 500 separate from the microcontroller. The module 500 has a serial interface which allows it to be controlled by the PC 105 through the protocol translator gateway 110. The module 500 also has an interface that allows it to connect to the microcontroller's program memory busses and data memory busses and to provide the break signal 405, as described above.

The embodiment illustrated in Fig. 4 has the advantage that it is always available to be debugged. The disadvantage is that some space on the microcontroller chip must be devoted to the debug logic circuit. This disadvantage is mediated by the simplicity of the debug logic circuit, as shown below.

The advantage of the embodiment illustrated in Fig. 5 is that it can be applied to any microprocessor or microcontroller system in which the busses are available as shown in Fig. 5 and in which the CPU 300 has an interrupt input that can be used for debug

purposes. The disadvantage of this embodiment is that a separate debug module is necessary.

The debug registers used in one exemplary embodiment, illustrated in Fig. 6, include a DEBUG register 600, an ICKBUG register 605, a BIGBUG register 610, a 5 GLOBUG register 615, a CNTBUG register 620 and a SLGBUG register 625. A configuration register (not shown) includes a BKBUG bit which, if set to zero, enables the background debugger hardware.

The DEBUG register includes a read-only INBUG bit which is set to "1" when the device is executing background debugger code. A FREEZ bit, when set to "1," will 10 cause peripherals to freeze when INBUG is set to "1." When a SSTEP bit is set to "1," the debug program will execute one instruction word of user code upon return from the debug code. If a SHDW bit is set to "1," a read from breakpoint register location will yield the contents of the breakpoint registers. If the SHDW bit is set to "0," a read from breakpoint register locations will yield the contents of device peripheral registers mapped 15 at these locations.

The ICKBUG register includes a PPDAT bit, which is the Program Space or Data Space Compare Select Bit. When the PPDAT bit is set to "0," the debug circuitry is in the "program break" mode, in which the value in the CNTBUG register is decremented every time the contents of the program memory address bus equals the contents of the 20 breakpoint address register (discussed later) on instruction fetch or a fetch of a first word of a two word instruction. A breakpoint will occur when CNTBUG underflows below

"0." When the PPDAT bit is "1," the debug circuitry is in "data break" mode, which means that the DATRW bit, see next paragraph, is enabled.

The DATRW bit is the Data Read/Write Access Select bit. If the PPDAT bit is one, the DATRW bit is set to "0," and the File Register Address (discussed below) equals 5 the breakpoint address on a read cycle, a break will result. If PPDAT is set to "1," DATRW is set to "1," and the File Register Address equals the breakpoint address on a write cycle, a break occurs. In either case, the SFR value read or written is copied into the GLOBUG register (discussed below). If the PPDAT bit equals "0," the DATRW bit is a don't care bit.

10 The DCMP bit is a data compare bit. If the PPDAT bit is set to "1," and the DCMP bit is set to "1," the contents of the data memory data bus are compared to the contents of the GLOBUG register. If the File Register Address equals the breakpoint address and the GLOBUG register equals the data being read or written, a breakpoint occurs. If PPDAT is set to "1" and DCMP is set to "0," no data comparison is done. If 15 PPDAT is set to "0," DCMP is a don't care bit.

The STKBRK bit is a Stack Overflow/Underflow Break bit. If the STKBRK bit is set to "1," a break occurs when the stack overflows or underflows, as represented by STKOVF or STKUNF bits, respectively. If the SJKBRK bit is set to "0," no action occurs on those conditions.

BKA19-BKA16 are Breakpoint Address bits. They are bits 19-16, respectively, of the breakpoint address register and bits 3-0 of the File Register.

The BIGBUG register includes BKA15-BKA8, which are bits 15-8, respectively, of the breakpoint address register and bits 7-0 of the File Register.

5 The GLOBUG register includes BKA07-BKA00 which are bits 7-0, respectively, of the breakpoint address register, or, if the PPDAT bit is set to "1," bits 7-0 of the breakpoint data register.

10 The CNTBUG register includes bits BKC07-BKC00, which are breakpoint counter bits. This register holds a counter value for the number of passes to allow before break is issued, as discussed below.

The SLGBUG register includes an RSBUG bit, which is the debugger reset vector selection. If the RSBUG bit equals one, all resets will vector to address 200028H. If RSBUG equals zero, all resets will vector to 000000H.

15 The debug logic circuit 400 and the registers 410, illustrated in more detail in Fig. 7, interface with the data memory data bus 700, the data memory address bus 702, and the program memory address bus 704, and produce the break signal 405, which is used to interrupt the CPU. The registers 410 include a breakpoint data register 410a, a breakpoint address register 410b, and a breakpoint count register 410c.

20 The debug logic circuit 400 includes a multiplexer 706, which has as inputs the data memory address bus 702 and the program memory address bus 704. The

multiplexer 706 produces one of these inputs on its output depending on a select signal 708, which is coupled to the PPDAT bit in the ICKBUG register. If the PPDAT bit is set to "1," the contents of the data memory address bus will appear at the output of the multiplexer 706. If the PPDAT bit is set to "0," the contents of the program memory address bus will appear at the output of the multiplexer 706.

The output of the multiplexer 706 is coupled to one input of an address comparator 710. The other input of the address comparator 710 is coupled to the breakpoint address register 410b. The address comparator 710 has an output which is high if the output of the multiplexer 706 equals the contents of the breakpoint address register 410b. Thus, the combination of the multiplexer 706 and the address comparator 410b can be used to compare either the contents of the data memory address bus 702 or the contents of the program memory address bus 704 to the contents of the breakpoint address register 410b.

The combination of the address comparator 710 and two 4-input AND gates 712, 714 forms a compare circuit 716 indicated by a dashed box in Fig. 7. The output of AND gate 712, an address-equal-on-read signal 718, is high when the READ signal from the CPU is high, the DATRW bit is low, the PPDAT bit is high, and the output of the address comparator 710 is high. Thus, the address-equal-on-read signal indicates that contents of the program memory address bus 704 (PPDAT is high, causing that bus to be selected by the multiplexer 706) matched the contents of the breakpoint address register 410b, on a read cycle when it was desired to look for such a match (DATRW high).

The output of AND gate 714, an address-equal-on-write signal 720, is high when the WRITE signal from the CPU is high, the DATRW bit is high, the PPDAT bit is high, and the output of the address comparator 710 is high. Thus, the address-equal-on-write signal indicates that contents of the program memory address bus 704 (PPDAT is high, 5 causing that bus to be selected by the multiplexer 706) matched the contents of the breakpoint address register 410b, on a write cycle when it was desired to look for such a match (DATRW high).

An OR gate 722 ORs the address-equal-on-read and address-equal-on-write signals. The resulting signal is ANDed with an inverted signal coupled to the DCMP bit 10 by AND gate 724. Thus, the output of AND gate 724 is high for either a read or a write when the contents of the program memory address bus 704 match the contents of the breakpoint address register 410, the PPDAT bit is high, and no data comparison is done (the DCMP bit is low). The output of the AND gate 724 is ORed by OR gate 726 to produce a breakpoint signal 728.

15 A second input to OR gate 726, and thus a second source of the breakpoint signal 728, is the output of AND gate 730. One of the inputs to the AND gate 730 is the output of a data comparator 732, which is high if the contents of the data memory data bus 700 equal the contents of the breakpoint data register 410a. Otherwise it is low.

A second input to the AND gate 730 is the DCMP signal. Thus, the output of the 20 AND gate 730 cannot be high unless the DCMP signal is high, indicating that a data compare is desired.

The third input to the AND gate 730 is the output of OR gate 722, which will be high under the circumstances described above.

Thus, the output of the OR gate 722 will be high, producing a breakpoint signal 728 at the output of OR gate 726, if (1) the DCMP bit is high (indicating that a data 5 compare is desired), (2) there is a match between the contents of the data memory data bus 700 and the breakpoint data register 410a, (3) there is a match on read (if DATRW is low) or write (if DATRW is high) between the contents of the program memory address bus 704 and the contents of the breakpoint address register 410b and (4) the PPDAT bit is high.

10 The third input to the OR gate 726, and thus a third source of the breakpoint signal 728, is the output of AND gate 734 which has as inputs the inverse of the signal coupled to the PPDAT bit and the output of the address comparator 710. This signal will be high when the contents of the data memory address bus equal the contents of the breakpoint address register 410b and PPDAT is low. In the exemplary embodiment 15 illustrated in Fig. 7, when PPDAT is low, the GLOBUG register is the breakpoint data register 410a and the breakpoint address register is only 12 bits.

The breakpoint signal 728 is used to downclock a breakpoint counter 730. In some debug applications (discussed below), the breakpoint counter 730 is loaded by storing a value in the breakpoint count register 410c and then asserting the 20 run-until-break-control signal 732. When the contents of the breakpoint counter 730 equal 00H and the down clock signal is asserted, an underflow condition will occur,

causing an underflow output of the breakpoint counter to be asserted, which produces the break signal 405.

In use, the personal computer 105 would store in the breakpoint count register 410c the number of passes by a particular breakpoint that are desired before interrupting 5 the CPU. The personal computer 105 would then cause the run-until-break-control signal 732 to be asserted, loading the breakpoint counter 730. Thereafter, every time that breakpoint is encountered, the breakpoint counter 730 would be decremented until it reaches zero. The next time the breakpoint is encountered, the breakpoint counter 730 would underflow and produce the break signal.

10 In one exemplary embodiment, the microcontroller is interrupted or halted when a breakpoint occurs. The typical HALT method is by breakpoint. To enter breakpoint mode, the BKBUG configuration bit is set to "0." When the PPDAT bit is "0," the ICKBUG, BIGBUG and GLOBUG registers contain a 20 bit value that is compared against PC (the value of the program counter). Bit zero of PC is not compared to the 15 breakpoint value because, in the exemplary embodiment, it is assumed to be zero. When the values are equal and INBUG bit is not set, the circuit will generate a break signal on that cycle.

If the CNTBUG register 00H, the system will break on the first occurrence of an address match.

The ICKBUG, BIGBUG and GLOBUG registers are mapped in an overlay of the user memory space. When the BKBUG bit is enabled, the breakpoint address registers can be read and written. The power off and master clear initialization state of these registers will be 000000h, equal to the reset vector.

5 Disabling the breakpoints is implemented by setting the breakpoint address to all ones (1FFFFFFH). When the breakpoint address is set to the last location of addressable program space, no breakpoint will occur as long as execution takes place in user program memory.

If the breakpoint is set to PC, the instruction at PC will be executed, and the stack
10 will point to PC + 2 for the trap return. No manipulation of the stack is required for
program address breakpoints.

The system provides the ability to break on program address match, as shown in Figures 8 and 9. Breakpoints of this type occur on an address match of the first address
15 fetch of any two cycle instruction. A breakpoint on address match will typically not
occur on an address match if the address is pointing to the second word of a two-word
instruction or if the address is generated for TBLRD or TBLWT instructions, which treat
program memory as data memory. For the case of conditional instructions, the second
20 fetch of a two-cycle instruction points to a “dummy address,” so the breakpoint address is
invalid. For two word instructions, the second fetch is only an operand. The breakpoint
would typically not be set to an operand address in an application.

To initiate a breakpoint on program address match, the personal computer 105, through the protocol translator gateway 110 and the serial I/O 305, or the serial I/O shown in Figure 5, would first store the breakpoint address in the breakpoint address register 410b (block 800). This would cause data representing the desired breakpoint 5 address to be stored in bits BKA19-BKA00 in the ICKBUG register, the BIGBUG register and the GLOBUG register. The PPDAT bit in the ICKBUG register would then be set to zero (block 805), and the breakpoint count register would be set to zero (block 810). The target firmware would then be executed (block 815).

As the target firmware is being executed, the contents of the program memory 10 address bus 704 would be compared to the contents of the breakpoint address register 410b (block 900). If they are equal (block 905), and the breakpoint count register equals zero (block 910), which it is in this case, the CPU is interrupted (block 915). Thus, using this set of steps, the CPU can be interrupted when the PC equals a particular address.

The exemplary embodiment also supports breakpoints on a predetermined number 15 of program address matches. This type of breakpoint processing is very much like the processing discussed in reference to Figures 8 and 9. The difference is that the instruction is executed the predetermined number of times before the CPU is interrupted. To initiate this type of breakpoint processing, a 20 bit value to be compared to the PC is stored in the ICKBUG, BIGBUG and GLOBUG registers. The number of times that the 20 address this value represents is to be fetched (“passed”) is loaded into the CNTBUG register. Each time the breakpoint address register matches the PC, the value in

CNTBUG is decremented. Before the CNTBUG register is decremented, the value is compared to zero. If it is zero and the INBUG bit is not set, then the circuit will generate a halt signal on that cycle.

The value to be loaded into CNTBUG is equal to the number of passes to be
5 allowed minus one. This insures backward compatibility with the standard breakpoint
halt.

The CNTBUG register must be 00H to break on the first occurrence of an address
match. Any other value in CNTBUG, with PPDAT bit equal to “0,” will invoke a
passpoint operation and a halt will not occur until CNTBUG equals zero.

10 Processing to implement the break on number of program address matches is
illustrated in Figures 10 and 11. The personal computer sets up this breakpoint mode by
storing the breakpoint address in the breakpoint address register 410b (block 1000). The
PPDAT bit is set to zero (block 1005), and the breakpoint count register 410b is set to
equal the number of desired passes (block 1010). The target firmware is then executed
15 (block 1015).

As the firmware executes, the contents of the program memory address bus 704
are compared to the contents of the breakpoint address register 410b (block 1100 of
Figure 11). A check is made to determine if the contents are equal (block 1105). If not,
execution is looped back to block 1100. Otherwise (i.e., if the contents are equal) then
20 the breakpoint count register is decremented (block 1110) and another check is made to

determine if the breakpoint count register is equal to zero (block 1115). If the breakpoint count register is not equal to zero, then execution jumps back to block 1100 and the cycle repeats. Otherwise, i.e., if the breakpoint count register is equal to zero, then the CPU is interrupted (block 1125).

5 The exemplary embodiment also provides the ability to halt execution on a Special Function Register address match. This breakpoint is selected by setting the PPDAT bit to “1.” The ICKBUG and BIGBUG registers are loaded with a 12 bit value that is compared against the output of the multiplexer 706, shown in Figure 7. Normally, the value in GLOBUG is ignored during an SFR access breakpoint. The type of access is
10 configured by the DATARW bit. When the values are equal and INBUG is not set, the circuit will generate a halt signal on that cycle.

Alternatively, the DCMP bit may be set to cause a compare between the value of the written SFR data and the GLOBUG value. If PPDAT and DCMP are both “1” and the SFR address equals the contents of ICKBUG and BIGBUG and the SFR data equals
15 GLOBUG, a halt signal will be issued in that cycle.

As before, the CNTBUG register will be set to zero if it is desired to break on the first occurrence of a SFR address or address/data match. Any other value in CNTBUG, with the PPDAT bit set to “1,” will invoke a pass point operation and a halt will not occur until the CNTBUG bit equals zero.

20 The DATARW and the TCMP bits have no effect if PPDAT equals zero.

Because of the delay in the execution of the instruction, the halt occurs on PC + 2 instead of PC. The instruction at PC + 2 will have been executed and the stack will be pointing to PC + 4 as the trap returns.

Break on SFR address match processing is illustrated in Figures 12 and 13. The
5 personal computer sets up the break on SFR address match breakpoint by storing the
breakpoint data address in the breakpoint address register 410b (block 1200). The
PPDAT bit is set to one and the DCMP bit is set to zero (block 1205). The breakpoint
count register is set to zero (block 1210). The target firmware is then executed (block
1215).

10 As the target firmware is executing, the contents of the data memory address bus
702 are compared to the contents of the breakpoint address register (block 1300). If they
are equal (block 1305) and the breakpoint count register equals zero (block 1310), which
it does in this case, the CPU is interrupted (block 1320).

To set up a breakpoint on SFR address and data match, as illustrated in Figures 14
15 and 15, the personal computer stores the breakpoint data address in the breakpoint
address register 410b (block 1400). The breakpoint data is then stored in the breakpoint
data register 410a (block 1405). The PPDAT bit and the DCMP bit are then set to “1”
(block 1410). The breakpoint count register is set to zero (block 1415) and the target
firmware is executed (block 1420).

As the target firmware executes, the contents of the program memory address bus 704 is compared to contents of the breakpoint address register 410b (block 1500). If they are equal (block 1505), the contents data memory data bus 700 are compared to the contents of the breakpoint data register 410a (block 1510). If they are equal (block 5 1515), the CPU is interrupted (block 1520).

To set up a breakpoint on a number of SFR address and data matches, as illustrated in Figures 16 and 17, the personal computer stores the breakpoint data address in the breakpoint address register 410b (block 1600). The breakpoint data is then stored in the breakpoint data register (block 1605). The PPDAT and DCMP bits are then set to 10 “1” (block 1610). The breakpoint count register is set to the number of passes desired (block 1615), and the target firmware is executed (block 1620).

As the target firmware executes, the contents of the program memory address bus 704 are compared to the contents of the breakpoint address register 410b (block 1700). If they are equal (block 1705), the contents of the data memory data bus 700 are compared 15 to the contents of the breakpoint data register 410a (block 1710). If they are equal (block 1715), the breakpoint count register 410c is examined to determine if it is zero (block 1720). If it is not equal to zero (block 1725), the breakpoint count register 410c is decremented (block 1730) and the loop repeats. If the breakpoint count register 410c equals zero the CPU is interrupted (block 1735).

20 A breakpoint may also occur on stack overflow and underflow conditions. Under software control, the stack overflow and underflow can cause a device to vector to the

debug code. This is enabled by the STKBRK bit. If either the stack overflow or underflow bits are set, a force trap is generated on that cycle.

If both the STKBRK and the STVRE bit are set, an overflow or underflow will set the appropriate stack overflow or stack underflow bits and cause a trap to the debug
5 handler.

When such a breakpoint occurs, the stack is already full. Therefore, the trap execution will overwrite the last return address in the stack with a trap return address. The stack will then contain the sequence that caused the stack overflow, so the user has visibility to the sequence. It is up to the debugger system code in the personal computer
10 to correctly handle the subsequent execution. In most cases, the user will not continue with the code, but will debug and reset the device.

The stack overflow and stack underflow bits are not cleared until the user or debugger software clears them or a power on reset clears them.

The invention, therefore, is well adapted to carry out the objects and attain the ends
15 and advantages mentioned, as well as others inherent therein. While the invention has been depicted, described, and is defined by reference to exemplary embodiments of the invention, such references do not imply a limitation on the invention, and no such limitation is to be inferred. The invention is capable of considerable modification,
alternation, and equivalents in form and function, as will occur to those ordinarily skilled
20 in the pertinent arts and having the benefit of this disclosure. The depicted and described

embodiments of the invention are exemplary only, and are not exhaustive of the scope of the invention. Consequently, the invention is intended to be limited only by the spirit and scope of the appended claims, giving full cognizance to equivalents in all respects.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
229
230
231
232
233
234
235
236
237
238
239
239
240
241
242
243
244
245
246
247
248
249
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
269
270
271
272
273
274
275
276
277
278
279
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
787
788
789
789
790
791
792
793
794
795
796
797
798
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
887
888
889
889
890
891
892
893
894
895
896
897
898
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
987
988
989
989
990
991
992
993
994
995
996
997
997
998
999
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
18