Tabular Solution Methods Dynamic Programming

Alina Vereshchaka

CSE4/510 Reinforcement Learning Fall 2019

avereshc@buffalo.edu

September 5, 2019

Overview

Recap

- 2 Model Based
- Iterative Policy Evaluation
- Policy Improvement

Table of Contents

Recap

- 2 Model Based
- Iterative Policy Evaluation
- Policy Improvement

Recap: Finite Markov Decision Processes (MDP)

Reward

RL agents learn to maximize cumulative future reward (R).

Value Functions

There are two types of value functions:

Value Functions

There are two types of value functions:

- \blacksquare state value function V(s)
- \blacksquare action value function Q(s, a)

State value function V(s)

Definition

State value function describes the value of a state when following a policy. It is the expected return when starting from state s acting according to our policy π :

$$V^{\pi}(s) = \mathbb{E}_{\pi}[R_t|S_t = s]$$

Action value function Q(s, a)

Definition

Action value function tells us the value of taking an action a in state s when following a certain policy π . It is the expected return given the state and action under π :

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi}[R_t|S_t = s, A_t = a]$$

Policies π

Definition

A *policy* π is a distribution over actions given states. It defines the agent's behaviour It can be either deterministic or stochastic:

- Deterministic: $\pi(s) = a$
- Stochastic: $\pi(a|s) = \mathbb{P}_{\pi}[A = a|S = s]$
- A policy fully defines the behaviour of an agent
- MDP policies depend on the current state (not the history)
- **Optimal policy** π^* : policy that maximizes the expectation of cumulative reward.

Example

Example

$$P_{\pi}[A_t = \mathsf{Eat}|S_t = \mathsf{Hungry}] = 0.8$$

$$P_{\pi}[A_t = \mathsf{Don't} \; \mathsf{Eat} | S_t = \mathsf{Hungry}] = 0.2$$

$$P_{\pi}[A_t = \mathsf{Eat}|S_t = \mathsf{Full}] = 0$$

$$P_{\pi}[A_t = \mathsf{Don't} \; \mathsf{Eat} | S_t = \mathsf{Full}] = 1$$

RL Objective

Solving a reinforcement learning task means finding an optimal policy π^* that achieves maximum reward over the long run.

Optimal (greedy) policy π^* chooses an action (a), such that

$$lacksquare a = \operatorname{arg\,max}_a[\mathbb{E}_{\pi}[r_t + \gamma V^*(S_{t+1}|S_t = s, A_t = a]]$$

RL Objective

Solving a reinforcement learning task means finding an optimal policy π^* that achieves maximum reward over the long run.

Optimal (greedy) policy π^* chooses an action (a), such that

$$lacksquare$$
 $a = \operatorname{arg\,max}_a[\mathbb{E}_{\pi}[r_t + \gamma V^*(S_{t+1}|S_t = s, A_t = a]]$

$$lacksquare a = \operatorname{arg\,max}_a[Q_\pi^*(s,a)]$$

Table of Contents

Recap

- 2 Model Based
- Iterative Policy Evaluation
- Policy Improvement

Model Based

Goal: compute optimal policies given a perfect model of the environment

Optimal Value Functions

$$V^{*}(s) = \max_{a} \mathbb{E}[r_{t+1} + \gamma V^{*}(S_{t+1}) | S_{t} = s, A_{t} = a]$$

$$= \max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V^{*}(s')]$$

Optimal Value Functions

$$V^*(s) = \max_{a} \mathbb{E}[r_{t+1} + \gamma V^*(S_{t+1})|S_t = s, A_t = a]$$
$$= \max_{a} \sum_{s',r} p(s',r|s,a)[r + \gamma V^*(s')]$$

$$Q^{*}(s) = \mathbb{E}[r_{t+1} + \gamma \max_{a'} Q^{*}(S_{t+1}, a') | S_{t} = s, A_{t} = a]$$

$$= \sum_{s', r} p(s', r | s, a) [r + \gamma \max_{a'} Q^{*}(s', a')]$$

■ Dynamic Programming (DP) is a model-based approach

- Dynamic Programming (DP) is a model-based approach
- A method for solving complex problems, by breaking them down into sub-problems:
 - Solve the subproblems

- Dynamic Programming (DP) is a model-based approach
- A method for solving complex problems, by breaking them down into sub-problems:
 - Solve the subproblems
 - Combine solutions to subproblems

- Dynamic Programming (DP) is a model-based approach
- A method for solving complex problems, by breaking them down into sub-problems:
 - Solve the subproblems
 - Combine solutions to subproblems
- Iteratively evaluates value functions and improving policy following Bellman equations.

- Dynamic Programming (DP) is a model-based approach
- A method for solving complex problems, by breaking them down into sub-problems:
 - Solve the subproblems
 - Combine solutions to subproblems
- Iteratively evaluates value functions and improving policy following Bellman equations.
- Assumes full knowledge of the MDP

- Dynamic Programming (DP) is a model-based approach
- A method for solving complex problems, by breaking them down into sub-problems:
 - Solve the subproblems
 - Combine solutions to subproblems
- Iteratively evaluates value functions and improving policy following Bellman equations.
- Assumes full knowledge of the MDP
- Bellman equations give recursive decomposition

Table of Contents

1 Recap

- 2 Model Based
- Iterative Policy Evaluation
- 4 Policy Improvement

$$V_{\pi}(s) \dot{=} \mathbb{E}_{\pi}[R_t | S_t = s]$$

$$egin{aligned} V_{\pi}(s) &\doteq \mathbb{E}_{\pi}[R_t | S_t = s] \ &= \mathbb{E}_{\pi}[r_{t+1} + \gamma R_{t+1} | S_t = s] \end{aligned}$$

$$egin{aligned} V_{\pi}(s) & \doteq \mathbb{E}_{\pi}[R_{t}|S_{t}=s] \ & = \mathbb{E}_{\pi}[r_{t+1} + \gamma R_{t+1}|S_{t}=s] \ & = \mathbb{E}_{\pi}[r_{t+1} + \gamma V_{\pi}(S_{t+1})|S_{t}=s] \end{aligned}$$

$$\begin{aligned} V_{\pi}(s) &\doteq \mathbb{E}_{\pi}[R_{t}|S_{t} = s] \\ &= \mathbb{E}_{\pi}[r_{t+1} + \gamma R_{t+1}|S_{t} = s] \\ &= \mathbb{E}_{\pi}[r_{t+1} + \gamma V_{\pi}(S_{t+1})|S_{t} = s] \\ &= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V_{\pi}(s')] \end{aligned}$$

$$V_{k+1}(s) \doteq \mathbb{E}_{\pi}[r_{t+1} + \gamma V_k(S_{t+1}) | S_t = s]$$

$$V_{k+1}(s) \doteq \mathbb{E}_{\pi}[r_{t+1} + \gamma V_k(S_{t+1})|S_t = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V_k(s')]$$

Iterative Policy Evaluation, for estimating $V \approx v_{\pi}$

Input π , the policy to be evaluated

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

Loop:

$$\begin{array}{l} \Delta \leftarrow 0 \\ \text{Loop for each } s \in \mathbb{S} \colon \\ v \leftarrow V(s) \\ V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \big[r + \gamma V(s') \big] \\ \Delta \leftarrow \max(\Delta,|v-V(s)|) \\ \text{until } \Delta < \theta \end{array}$$

Example: Small Gridworld

		1	2	3			
	4	5	6	7			
	8	9	10	11			
	12	13	14				

r = -1 on all transitions

- Undiscounted episodic MDP ($\gamma = 1$)
- Non-terminal states 1, . . . , 14
- lacksquare r(s,a,s')=-1 reward is -1 until the terminal state is reached
- Agent follows uniform random policy

Example: Small Gridworld

		1	2	3			
	4	5	6	7			
	8	9	10	11			
	12	13	14				

r = -1 on all transitions

- Undiscounted episodic MDP ($\gamma = 1$)
- Non-terminal states 1, . . . , 14
- $\mathbf{r}(s,a,s')=-1$ reward is -1 until the terminal state is reached
- Agent follows uniform random policy

$$\pi(n|\cdot) = \pi(e|\cdot) = \pi(s|\cdot) = \pi(w|\cdot) = 0.25$$

Example: Small Gridworld

 v_k for the Random Policy

 0.0
 0.0
 0.0
 0.0

 0.0
 0.0
 0.0
 0.0

 0.0
 0.0
 0.0
 0.0

 0.0
 0.0
 0.0
 0.0

Greedy Policy w.r.t. v_k

k = 0

Small Gridworld

Example: Small Gridworld

$$k = 1$$

$$\begin{vmatrix}
0.0 & -1.0 & -1.0 & -1.0 \\
-1.0 & -1.0 & -1.0 & -1.0 \\
-1.0 & -1.0 & -1.0 & -1.0 \\
-1.0 & -1.0 & -1.0 & 0.0
\end{vmatrix}$$

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

 $R_t = -1 \\ \text{on all transitions}$

$$V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

k = 2

Table of Contents

Recap

- 2 Model Based
- 3 Iterative Policy Evaluation
- Policy Improvement

New greedy policy π'

$$\pi'(s) \stackrel{.}{=} rg \max_{a} Q_{\pi}(s,a)$$

New greedy policy π'

$$\pi'(s) \stackrel{.}{=} rg \max_{a} Q_{\pi}(s, a)$$

$$= rg \max_{a} \mathbb{E} \big[r_{t+1} + \gamma V_{\pi}(S_{t+1}) | S_t = s, A_t = a \big]$$

New greedy policy π'

$$\pi'(s) \stackrel{.}{=} rg \max_{a} Q_{\pi}(s, a)$$

$$= rg \max_{a} \mathbb{E} \left[r_{t+1} + \gamma V_{\pi}(S_{t+1}) | S_t = s, A_t = a \right]$$

$$= rg \max_{a} \sum_{s',r} p(s', r | s, a) \left[r + \gamma V_{\pi}(s') \right]$$

Small Gridworld

Small Gridworld

- Given a policy π
 - **Evaluate** the policy π

$$V_{\pi}(s) = \mathbb{E}[r_{t+1} + \gamma r_{t+2} + \dots | S_t = s]$$
 (1)

$$\pi' = greedy(V_{\pi}) \tag{2}$$

$$\pi_0 \xrightarrow{\mathsf{E}} V_{\pi_0}$$

- Given a policy π
 - **Evaluate** the policy π

$$V_{\pi}(s) = \mathbb{E}[r_{t+1} + \gamma r_{t+2} + \dots | S_t = s]$$

$$\tag{1}$$

$$\pi' = greedy(V_{\pi}) \tag{2}$$

$$\pi_0 \xrightarrow{\mathsf{E}} V_{\pi_0} \xrightarrow{\mathsf{I}} \pi_1$$

- Given a policy π
 - **Evaluate** the policy π

$$V_{\pi}(s) = \mathbb{E}[r_{t+1} + \gamma r_{t+2} + \dots | S_t = s]$$

$$\tag{1}$$

$$\pi' = greedy(V_{\pi}) \tag{2}$$

$$\pi_0 \xrightarrow{\mathsf{E}} V_{\pi_0} \xrightarrow{\mathsf{I}} \pi_1 \xrightarrow{\mathsf{E}} V_{\pi_1}$$

- Given a policy π
 - **Evaluate** the policy π

$$V_{\pi}(s) = \mathbb{E}[r_{t+1} + \gamma r_{t+2} + \dots | S_t = s]$$

$$\tag{1}$$

$$\pi' = greedy(V_{\pi}) \tag{2}$$

$$\pi_0 \xrightarrow{\mathsf{E}} V_{\pi_0} \xrightarrow{\mathsf{I}} \pi_1 \xrightarrow{\mathsf{E}} V_{\pi_1} \xrightarrow{\mathsf{I}} \pi_2 \xrightarrow{\mathsf{E}} V_{\pi_2} \xrightarrow{\mathsf{E}} \dots$$

- Given a policy π
 - **Evaluate** the policy π

$$V_{\pi}(s) = \mathbb{E}[r_{t+1} + \gamma r_{t+2} + \dots | S_t = s]$$

$$\tag{1}$$

$$\pi' = greedy(V_{\pi}) \tag{2}$$

$$\pi_0 \xrightarrow{\mathsf{E}} V_{\pi_0} \xrightarrow{\mathsf{I}} \pi_1 \xrightarrow{\mathsf{E}} V_{\pi_1} \xrightarrow{\mathsf{I}} \pi_2 \xrightarrow{\mathsf{E}} V_{\pi_2} \xrightarrow{\mathsf{E}} \dots \xrightarrow{\mathsf{I}} \pi_* \xrightarrow{\mathsf{E}} V_*$$

Policy Interaction Algorithm

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

1. Initialization

$$V(s) \in \mathbb{R}$$
 and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$

2. Policy Evaluation

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement

$$policy\text{-}stable \leftarrow true$$

For each $s \in S$:

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \arg\max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

Policy evaluation Estimate v_{π} Iterative policy evaluation Policy improvement Generate $\pi' \geq \pi$ Greedy policy improvement

