Testing AutoTrace

A machine-learning approach to automated tongue contour data extraction

Gustave Hahn-Powell¹, Diana Archangeli^{1,2}

Department of Linguistics, University of Arizona, USA ²Linguistics, University of Hong Kong, HK

Introduction

- Ultrasound is efficient, noninvasive, portable, and (relatively) inexpensive
- Used in experimental work (8; 11; 1; 7), in field (9; 10; 3; 2), clinical
 (4) and pedagogical settings (15; 16), and for ASR (12)

Problem

The time it takes to identify and hand label the tongue's surface in each image is prohibitive.

Figure: Ultrasound image of tongue contour

- How can the error from automated systems (AutoTrace) be minimized?
- Retraining networks with the inclusion of hand-corrected images improves performance (20), (6)

Questions

- Can retraining improvements be extended beyond the initial study (6)?
- 1) Is a network trained on multiple speakers effective on data from another set of speakers?
- ② Can a network trained on data from one language be adapted to work effectively with data from another language?

Background

Figure: Network training procedure (see (6) & (18))

- (6) and (18) found:
- A high-entropy TrS gives better performance than a randomly-selected TrS
- A second training (G2) (the TrS + DS) resulted in improved performance
- \bullet A third training (TrS + DS + additional DS) failed to improve performance

Design

- SonoSite TITAN; C-11/7-4 11-mm broadband curved array transducer
- Transducer created a 90° fan-shaped 5 mm-thick mid-sagittal section
- Image at the same depth for all studies
- Modified test design (below)

G1 Network

- TrS uses data from Harvard Sentences (HS) (17)
- Phonetically-balanced; 12 subjects

Table: Data comparison between studies

	Language	Speakers	Images	FPS	G1 size (best)
Current	English	12	33,000+	30	850
Previous	Italian	1	3,200	25	450

- Previous work: G1 size is variable
- Our G1: 850 images from HS
- 800 with high entropy
- 50 with lowest entropy

Development and Test Sets

- Four datasets for development & testing
- DSs & TeSs balanced for contour variety (see (14; 6))
- Each DS & TeS consists of 100 unique images, proportionally:
- Top 80% high-entropy
- Bottom 20% low-entropy

Language	Abbrev.	Туре	pproxImages	Speakers	
English (HS)	HS	(see (17))	33,000	30	
English (palatal)	EN	(see (Sung))	2,000	7	
Korean (palatal)	K	(see (Sung))	1,200	11	
Scottish Gaelic	SG	(see (3))	10,000	4	

Table: Data pool for DS and TeSs

G2 Networks

Evaluation metric: Mean Sum of Distances (MSD) (see (13))

Figure: Mean Sum of Distances $MSD(U,V) = \frac{1}{2n} \left(\sum_{i=1}^n \min_j |\nu_i - u_j| + \sum_{i=1}^n \min_j |u_i - \nu_j| \right)$

U and V are vectors representing pixel values at points along the tongue contour

- Two G2 networks for each DS
- DS errors MSD>10
- DS errors MSD>5
- TeS labeled by G1 and G2 for comparison

Figure: G2 ancestry

Retraining criteria

- Too much retraining increases error (6)
- Cautious inclusion of retraining data
- Retraining with different MSD thresholds

Experiments

Experiment 1: Additional subjects

- G1 network retrained with HS & EN DSs
- Two G2 networks for each DS above
- Each G2 network tested on respective TeS (MSD metric)

Table: Experiment 1 Results (in MSD)

	HS	HS size	EN	EN size
Original	43.09	850	14.38	850
G2 (≥10)	13.08	896	5.03	925
G2 (≥5)	13.57	917	4.30	946

Experiment 2: Additional languages

For this study, we again used the original G1 network. Retraining was based on K and SG DSs. In addition to the HS G2 networks, this produced two K G2 networks and two SG G2 networks:

Table: Experiment 2 Results (in MSD)

	HS	HS size	K	K size	SG	SG size
Original	43.09	850	31.30	850	13.63	850
G2 (≥10)	13.08	896	5.72	948	5.40	928
G2 (≥5)	13.57	917	5.47	950	4.81	943

Discussion

All G2 networks show improvement over G1

- Results consistent with those reported in (6; 5)
- ullet On average a lower MSD with $\geq \! 5$ networks than with $\geq \! 10$ networks
- except for the HS G2 performance

Correction requirements

- End goal is human-level performance
- (13) reported an inter-annotator discrepancy of 2.9 MSD
- TeS traces with MSD>2.9 are Candidates for Correction (CC)

Table: TeS CC

	CC	% <2.9 MSD		CC	% <2.9 MSD	
English (HS)			Korean (palatals)			
G1	94	6	G1	100	0	
HS G2 (≥10)	85	15	K G2 (≥10)	81	19	
HS G2 (≥5)	83	17	K G2 (≥5)	75	25	
English (palatals)			Scottish Gaelic			
G1	100	0	G1	99	1	
EN G2 (≥10)	74	26	SG G2 (≥10)	82	18	
EN G2 (≥5)	60	40	SG G2 (≥5)	72	28	

- As average MSD decreases, CCs decrease
- Not the case for the HS G2 \geq 5 network
- slightly higher average MSD (13.57>13.08)
- slightly fewer CC (83<85)
- (6; 5) reported a 41% reduction of error between a between a G1 and a G2 network (TrS+100 images)
- Our greatest reduction of error is similar
- 40% for EN
- others are in the range of 27-25%

Cross-linguistic performance

- Greatest performance gain with retraining with EN data (≥5 EN G2 network)
- language bias from TrS (English and EN (English)?
- retraining focused network on palatals (focus of study by (Sung))
- Improvements on SG and K data similar
- little difference between $\geq \! 10$ MSD and the $\geq \! 5$ MSD conditions
- Gains not as great as EN

Conclusions

Our findings confirm that the model developed in (6) is effective when used with multi-speaker and multi-language data.

- With retraining, a tDBN trained on one language can be adapted to data from other speakers of the same language as well as data from other languages
- Our best G2 network reduced errors by 40% over the G1 network