Cours 1: INTRODUCTION et DESCRIPTION DE TABLEAU DE Données

Présentée par:

Introduction

Analyse de données est un processus qui consiste à examiner et interpréter des données afin d'élaborer les réponses à des questions

Les principales étapes de l'analyse de données:

- Cerner les sujets de l'analyse
- Déterminer la disponibilité de données
- Le choix de méthode pour répondre aux questions
- Résumer et communiquer le résultat

Dans l'industrie des grandes quantités de données sont générées de plus en plus. Ces données brute provenant de différents domaines

L'impact de l'analyse des données dans l'industrie

- ➤ Améliorer la fabrication
- ➤ Personnalisez la conception des produits
- >Assurer une meilleure assurance qualité
- ➤Évaluer tout risque potentiel

Les modèles statistiques

Sont utilisés pour nettoyer les données au début par l'élimination des valeurs aberrantes, et aussi de visualiser les données, afin de construire l'ensemble initial d'exemples.

Les modèles classification

Construisent des règles et des modèles prédictifs pour synthétiser et structurer l'information contenue dans des données.

Les modèles factorielles

Cherchent à réduire le nombre de variables en les résumant par un petit nombre de composantes synthétiques en utilisant essentiellement des outils de l'algèbre linéaire.

L'exploration de données, l'intelligence artificiel et l'apprentissage automatique

Domaine d'études qui donne aux ordinateurs la capacité d'apprendre sans être explicitement programmés Consiste à explorer (ou fouiller) les données. Il permet d'établir Analyse de données des associations et relations entre les données qui sont cachées ou non évidentes, tres souvent **Data Mining** réparties sur plusieurs bases de données relationnelles **Machine learning Artificiel Intelligence**

Consacrée au développement de systemes de traitement de données qui exécutent des fonctions normalement associées à l'intelligence humaine, telles que le raisonnement, l'apprentissage et l'auto-amélioration de données de methodes mathématiques et informatiques l'auto-amélioration de données

Types de données

Les méthodes d'analyse

Objectif	Variables quantitative	Variables qualitative/mixtes
Repérer et visualiser les	Analyse en composantes	Analyse factorielle des
corrélations multiples entre	principales (ACP)	correspondances
variables et/ou les		(AFC) et
ressemblances entre		Analyse factorielle des
individus		Correspondances Multiples,
		(AFCM)
Réaliser une typologie	Méthodes de	AFC ou AFCM et
des individus	classification	classification
Caractériser de groupes	Analyse factorielle	Analyse factorielle
d'individus à l'aide de	discriminante	discriminante
variables	(AFD)	(AFD)

Cas d'application

Les données se présentent généralement sous la forme d'un tableau

- •Les lignes correspondent à des individus ou objets
- •Les colonnes correspondent à des attributs ou caractéristiques.

Le tableau de variables quantitatives

		Variables				
individus		X_1	$\mathbf{X_{j}}$	X _m		
	1					
	•••••					
	i		$\mathbf{X_{ij}}$			
	•••••					
	N					

La méthode d'analyse porte le nom d'analyse en composantes principales : ACP

Exemple: Le tableau de variables quantitatives

Le tableau de notes

	Math	science	physique	Histoire
JE	6	9	12	14
LA	8	10	17	12
SA	14	6	10	13
REB	10	9	12	11
JIMS	5	9,5	6	9

Description de données

Individu

Variable

Nom des Fournisseurs	Sexe	Age	Chiffre d'affaire
Mohamed	Н	40	Modéré
Sarah	F	50	Important
Ismail	Н	44	Moyen
Ilyes	Н	50	Modéré
Hanane	F	35	Important
Ghouti	Н	60	Moyen
Yasmina	F	55	Modéré
Fatima	F	35	Moyen

Modalité

Population: Fournisseurs

Topulation: Tourmsset

Cas d'application

Plus généralement on ajoute en dernière ligne et en dernière colonne les sommes par lignes et par colonnes appelés effectifs marginaux.

EXEMPLE: Le tableau de contingence

OBSEVATION

Individu	bac	sexe
1	S	НОММЕ
2	TM	FEMME
3	TM	НОММЕ
4	L	FEMME
5	S	FEMME
6	TM	Femme

TABLEAU DE CONTINGENCE

MODALITE	HOMME	FEMME	
S	1	1	2
TM	1	2	3
L	0	1	1
	2	4	6

n11=1,n31=0,....

nij

Statistique Descriptive

L'objectif de la Statistique Descriptive est de décrire les données observées pour mieux les analyser

- **Description de données**
- Valeurs centrales
- Indicateurs de dispersion

Description de données

Effectifs

La variable Age

Age	35	40	50	55
Effectifs	2	2	4	1

Nom des Fournisseurs	Sexe	Age	Chiffre d'affaire
Mohamed	Н	40	Modéré
Sarah	F	50	Important
Ismail	Н	40	Moyen
Ilyes	Н	50	Modéré
Hanane	F	35	Important
Ghouti	Н	50	Moyen
Yasmina	F	55	Modéré
Fatima	F	35	Moyen
Karima	F	50	Important

5

Description de données

Fréquence

Fréquence de la modalité « M » d'une variable qualitative (FM)

$$F_{M} = \frac{Effe_corresp_M}{Effe_Total}$$

Pourcentage

Pourcentage des individus correspondant à la modalité « M »

$$P_M = F_M \times 100$$

	Age	Effectifs	Fréquences	Pourcentage
	35	2	2/9=0.22	22%
Ī	40	2	2/9=0.22	22%
	50	4	4/9=0.45	45%
Ī	55	1	1/9=0.11	11%
		Total Effectifs «9»	Total Fréquences « 1 »	Total Pourcentage 100
		I	I	

Diagramme en secteurs de l'Age

Valeurs centrales

La moyenne arithmétique

On dispose d'une population de N individus et on observe X1, X2,...., Xn les valeurs d'une variable quantitative discrète X pour ces individus.

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Age	35	40	50	55
Effectifs	2	2	4	1

$$\bar{x} = 45$$

Indicateurs de dispersion

L'étendue

L'étendue Ex de la variable quantitative discrète X est la différence entre la plus grande et la plus petite des valeurs observées

La variance

- •La variance est une mesure de la dispersion d'une série de données.
- Une variance faible indique que les nombres de la série de données sont proches l'un de l'autre.
- Une variance élevée indique que les nombres sont très distants.

Indicateurs de dispersion

La variance

Age	35	40	50	55
Effectifs	2	2	4	1

$$\sigma^2 = \frac{\sum (x_i - \mu)^2}{N}$$

$$\sigma^2 = \frac{1}{N} \left(\sum n_i x_i^2 \right) - \overline{x}^2$$

Application:

$$\sigma^2$$
 =1/9(2*35²+2*40²+4*50²+1*55²)-45²

! :la moyenne

Indicateurs de dispersion

L'écart-type

- →L'écart-type est une mesure de la dispersion d'une série statistique autour de sa moyenne.
- → Plus la distribution est dispersée c'est-à-dire les valeurs ne sont pas concentrées autour de la moyenne, plus l'écart-type sera élevé.

$$Ecart _type(x) = \sqrt{var(x)}$$