序号	班级	か ロ	姓名
14 元	セリナ マルケ	学 号	U4 2
/ J J	71.7X	.1 7	XL 1

第一章 随机事件及其概率

习题 1-1 随机试验与随机事件

- 1.某城市发行甲、乙、丙三种报纸. 设 A、B、C 分别表示某居民订阅甲报、乙报、丙报,请用 A、B、C 表示下列事件:
- (1)该居民只订阅甲报的; (2)该居民只订阅甲、乙两报的; (3)该居民只订阅一种报纸的.

2. 某人对一目标接连射击三次,设 $A_i=\{$ 第i次命中目标 $\}$,i=1,2,3; $B_j=\{$ 恰好j次命中目标 $\}$,

j = 0, 1, 2, 3; $C_k = \{ 至少k次命中目标 \}$, k = 0, 1, 2, 3.

(1)由 A_1, A_2, A_3 表示 B_2 ; (2)由 B_0, B_1, B_2, B_3 表示 $C_1 - C_3$.

- 3. 设A, B, C为三个事件,指出下列各等式成立的充分必要条件
 - (1) ABC = A; (2) $A \cup B \cup C = A$; (3) $A \cup B = AB$.

习题 1—2 概率及其性质

1. 设 $P(A) = P(B) = P(C) = \frac{1}{4}$, $P(AB) = P(AC) = P(BC) = \frac{1}{8}$, $P(ABC) = \frac{1}{16}$, 求下列概率: $(1) P(A \cup B \cup C); (2) P(\overline{A} \overline{B} \overline{C}).$

2. 设事件 A,B 的概率分别为 $\frac{1}{5}$ 和 $\frac{1}{2}$,试在情况一: $A \subseteq B$ 互不相容; 情况二: $A \subset B$ 下,分别求 $P(\overline{A}B)$ 和 P($A\overline{B}$).

习题 1-3 古典概型与几何概型

1. 在手机号码簿中任取一个号码,(1)求后面四个数全不相同的概率(后面四个数中的每一个数都是等可能地取 0,1,2,…,9);(2)求后面四个数中最大数字为 6 的概率.

2. 在区间[0,1] 中随机地任取两个数,设 A 表示两数之和小于 $\frac{5}{4}$,B 表示两数之积大于 $\frac{1}{4}$,C 表示两数之和小于 $\frac{5}{4}$,且两数之积大于 $\frac{1}{4}$,分别求 P(A) ,P(B) ,P(C) .

序号	班级	学号	姓名	
/1. J			X1	

习题 1-4 条件概率与乘法公式

- 1. 根据电路停电情况的统计资料知,由于变电器损坏造成停电占5%;由于电路线损坏造成停电占80%;由于两者同时损坏造成停电占1%.试在停电状态下,分别求下列各情况发生的概率:
 - (1)在已知变电器损坏的条件下,电路线损坏; (2)变电器损坏,但电路线完好;
 - (3)在已知电路线没损坏的条件下,变电器损坏.

2. 设 100 只灯泡中有 10 只次品,现不放回地从中抽取 3 次,每次取一只,问第 3 次才取到合格品的概率 是多少?

序号	班级	学号	社 夕	
11 5	511-51X	ナケ	红 石	

习题 1-5 全概率公式与贝叶斯公式

- 1. 根据以往的考试结果分析,努力学习的学生中有90%的考试及格,不努力学习的学生中有90%的考试不及格,据调查,学生中有90%的人是努力学习的.
 - (1)任取一位学生, 求该学生考试及格的概率;
 - (2)如果该学生考试及格,问其属于不努力学习学生的概率是多少?

2. 设肺癌的发病率为 0.1%, 患肺癌的人群中吸烟者占 90%, 不患肺癌的人群中吸烟者占 20%, 试分别求 吸烟者与不吸烟者的人群中患肺癌的概率各为多少?

习题 1--6 事件的独立性与贝努里概型

1. 设 A, B 为两个事件,且 P(A) = 0.8, P(B) = 0.6, P(A - B) = 0.32,问 A 和 B 是否相互独立?为什么?

2. 某射手对一目标独立地进行四次射击,若至少命中一次的概率为 $\frac{80}{81}$,求该射手每次射击时的命中率.

3. 某实习生用一台机器独立地制造了3个同种零件,其中第i个零件不合格的概率为 $p_i = \frac{1}{i+1}$ (i=1,2,3). (1)求三个零件中前两个合格,而第三个不合格的概率; (2)求三个零件中至少有一个合格的概率.

第二章 一维随机变量及其分布

习题 2-1 随机变量及其分布函数

1. 已知随机变量 X 的分布函数为 $F(x) = \begin{cases} a + be^{-\frac{x^2}{2}}, & x > 0,$ 求常数 a,b 以及 $P\{1 < X < 2\}$. 0, $x \le 0$,

2. 分别判断下列各函数是否可以作为某个随机变量的分布函数,并给出理由.

$$(1)F(x) = \frac{1}{1+x^2}, -\infty < x < +\infty$$

(1)
$$F(x) = \frac{1}{1+x^2}$$
, $-\infty < x < +\infty$; (2) $F(x) = \int_{-\infty}^{x} f(t)dt$, $\sharp + \int_{-\infty}^{+\infty} f(x)dx = 1$;

(3)
$$F(x) = \begin{cases} \frac{1}{2}(1 - e^{-x}), & x > 0, \\ 0, & x \le 0 \end{cases}$$

序号	班级	学号	姓名	
11, 2		サラ	<u></u>	

习题 2-2 离散型随机变量及其分布律

1. 一汽车到达目的地的途中需经过 4 个装有红绿灯的交叉路口,假设在各交叉路口遇到红灯的概率均为 0.6,且各交叉路口出现红灯是相互独立的,求汽车首次停止时已经经过的交叉路口数 X 的分布律和分 布函数.

- 2. 设实验室有 4 台同类设备,且每台设备一年里需要维修的概率为 0.25.
 - (1)求一年里需要维修的设备台数 X 的分布律;
 - (2)求一年里没有设备需要维修的概率;
 - (3)求一年里至少有两台设备需要维修的概率.

习题 2-3 连续型随机变量及其密度函数

- 1. 设随机变量 X 的密度函数为 $f(x) = k|x|e^{-|x|}, x \in (-\infty, +\infty)$.
 - (1)求常数 k; (2)求 $P\{-1 < X < 2\}$; (3)求 X 的分布函数 F(x).

- 2. 若连续型随机变量 X 的分布函数为 $F(x) = \begin{cases} 0, & x < 1, \\ \ln x, & 1 \le x \le e, \\ 1, & x > e. \end{cases}$
 - (1)求 $P{X < 2}$ 和 $P{0 < X \le 3}$; (2)求 X 的密度函数 f(x).

	班奶	\sim \sim	肚 夕
177	T/T 2/7	学 专	
/ 1 1		. , , _	

- 3. 设某年级学生的数学考试成绩(单位:分) $X \sim N(72, \sigma^2)$.
 - (1) 若 $\sigma = 10$,且规定 90 分以上的成绩为"优秀", 求考试成绩"优秀"学生占该年级学生的比例;
- (2)若 σ 未知,但已知 96 分以上的学生占该年级学生的比例为 2.3%,求考试成绩在 60 分至 84 分之间的概率.

4. 设随机变量 X 的密度函数为 $f(x) = \begin{cases} 2x, & 0 < x < 1, \\ 0, &$ 其他,以 Y 表示对 X 的三次独立重复观察中事件 $\{X \leq \frac{1}{2}\}$ 出现的次数,求 $P\{Y = 2\}$.

习题 2-4 一维随机变量函数的分布

1. 已知离散型随机变量 X 的分布律为

X	-2	-1	0	1	3
$p_{\scriptscriptstyle k}$	$\frac{1}{5}$	$\frac{1}{6}$	$\frac{1}{5}$	$\frac{1}{15}$	а

(1)确定常数 a; (2)求 $Y = X^2$ 的分布律.

2. 设随机变量 $X \sim N(0,1)$, 求 $Y = e^{x}$ 的密度函数.

3. 设随机变量 X 服从参数 $\lambda=2$ 的指数分布,证明: $Y=1-e^{-2X}$ 服从[0,1]上的均匀分布.

序号		学号	姓名	
/1 /	クエンス	.1 1	▶エ.'□	

第三章 多维随机变量及其分布

习题 3—1 二维随机变量及其分布函数

1. 设二维随机变量(X,Y)的分布函数为F(x,y), 试用F(x,y)表示下列概率:

(1) $P\{X \le b, Y < +\infty\}$; (2) $P\{a < X \le b, Y \le d\}$; (3) $P\{X > a, Y > c\}$;

其中a,b,c,d为常数,且a < b.

习题 3—2 二维离散型随机变量及其分布律

1. 掷骰子 2 次, 记X 为掷得偶数点的次数, 记Y 为掷得奇数点的次数,(1)求(X,Y) 的分布律; (2)求 $P\{X \ge Y\}$ $\Re P\{X < 1 | Y > 0\}$.

序号	班级	学号	姓名
11. 2		ナヮ	X171

习题 3—3 二维连续型随机变量及其密度函数

1. 设二维随机变量 (X,Y) 在区域 $D=\{(x,y) | 0 < x < 2, -1 < y < 2)\}$ 上服从均匀分布, 试求(1) P $\{X \le Y\}$, (2) P $\{X+Y>1\}$.

- 2. 设二维随机变量的联合概率密度函数为 $f(x,y) = \begin{cases} ke^{-2(x+y)}, & 0 < x < +\infty, & 0 < y < +\infty, \\ 0, & 其他. \end{cases}$
 - 求: (1)常数 k 的值; (2) $P\{(X,Y) \in D\}$, 其中 $D = \{(x,y) | x+y \le 1\}$;
 - (3)随机变量 X与Y至少有一个小于 2 的概率.

\rightarrow \Box	ナトナ ノンフ	次 口	姓名	
1字号	カル グルケ	字号	7/生 2/2.	
序号	班级	丁 フ	XL 17	

习题 3—4 边缘分布

1. 设一射手每次击中目标的概率为0.7,射击进行到击中目标两次为止. 设X表示第一次击中目标所进行的射击次数,以Y表示总射击次数. (1)求(X,Y)的分布律; (2)分别求(X,Y)关于X与Y的边缘分布律.

- 2. 设二维随机变量 (X,Y) 的密度函数为 $f(x,y) = \begin{cases} k(x^2 + xy), & 0 \le x \le 1, 0 \le y \le 2, \\ 0, &$ 其他.
 - (1)求常数 k 的值; (2)分别求 (X,Y) 关于 X 与 Y 的密度函数 $f_{X}(x)$ 和 $f_{Y}(y)$.

习题 3—5 条件分布

1. 设二维随机变量(X,Y)的密度函数为 $f(x,y) = \begin{cases} \frac{1}{2}\sin(x+y), 0 < x < \frac{\pi}{2}, 0 < y < \frac{\pi}{2}, \\ 0, 其他. \end{cases}$

试分别求 $f_{\scriptscriptstyle X\mid Y}(x\mid y) \ (0 < y < \frac{\pi}{2})$ 和 $f_{\scriptscriptstyle Y\mid X}(y\mid x) \ (0 < x < \frac{\pi}{2})$.

2. 设 10 件产品中有 2 件一级品, 7 件二级品和 1 件次品, 从中不放回地抽取 3 件, 用 X 表示其中一级品 的个数,用Y表示其中二级品的个数,(1)求在X=0的条件下,Y的条件分布律; (2)求在Y=2的条 件下,X的条件分布律.

序号	}	班
/ 3 3		/

级 ______ 学号 _____ 姓名 ____

习题 3—6 随机变量的独立性

1. 设随机变量Y的密度函数为 $f_{Y}(y) = \begin{cases} e^{-y}, & y > 0, \\ 0, & y \le 0, \end{cases}$ 令 $X_{k} = \begin{cases} 2, & Y \le k, \\ 3, & Y > k \end{cases}$ (k = 1, 2),求 X_{1} 和 X_{2} 的联 合分布律,并判断 X_1 与 X_2 是否相互独立.

- 2. 设随机变量 X 与 Y 相互独立, X 服从 (0,1) 内的均匀分布, Y 的密度函数为 $f_{Y}(y) = \begin{cases} \frac{1}{2}e^{-y/2}, & y > 0, \\ 0, & y \leq 0. \end{cases}$
- (1)求X与Y的联合密度函数; (2)求t为未知量的二次方程 $t^2+2Xt+Y^2=0$ 有实根的概率 p.

习题 3—7 二维随机变量函数的分布

- 1.设随机变量 X与 Y 相互独立,其分布律分别为 $X \sim \begin{pmatrix} 0 & 1 \\ \frac{1}{4} & \frac{3}{4} \end{pmatrix}$, $Y \sim \begin{pmatrix} 1 & 2 \\ \frac{2}{5} & \frac{3}{5} \end{pmatrix}$, 令 U = 2X + Y , V = XY ,
- (1)求U 的分布律; (2)求(U,V) 的分布律.

2. 设随机变量 $X \sim B(n_1,p), Y \sim B(n_2,p),$ 且 X 与 Y 相互独立,证明 $X + Y \sim B(n_1+n_2,p)$.

序号	班级	学早	灶夕	
<i>叶</i> 写		_ 子写	姓名	

3. 设二维随机变量 (X,Y) 的密度函数为 f(x,y) = $\begin{cases} 3x,0 < x < 1,0 < y < x, \\ 0, &$ 其它. $f_{Z}(z). \end{cases}$

4. 设随机变量 X 和 Y 相互独立,且均服从[0,1] 上的均匀分布,求 $Z=\min(X,Y)$ 的密度函数 $f_{z}(z)$.

序号	班奶	学号	性名	
刀 ケ		子 勺	红石	

第四章 随机变量的数字特征

习题 4-1 数学期望

1. 将n 只球随机地放到m 个盒子中,每个盒子可装任意多个球,每个球以相同的概率落入每个盒子中,求有球的盒子数X 的数学期望.

2. 已知二维随机变量(X,Y)服从二维正态分布,其密度函数为

$$f(x,y) = \frac{1}{2\pi} e^{-\frac{1}{2}(x^2 + y^2)}, -\infty < x < +\infty, -\infty < y < +\infty,$$

分别计算 EX 和 $E(\sqrt{X^2 + Y^2})$.

 		νγ. Π	1.1. 2.	
序号	班级	学号	姓名	

习题 4-2 方差

1. 设随机变量X的分布律为 $X \sim \begin{pmatrix} -2 & 0 & 2 \\ 0.4 & 0.3 & 0.3 \end{pmatrix}$, 分别计算DX和 $D(-3X^2-5)$.

序号	班级	学号	姓名	
/1. J			X1	

习题 4-3 常见分布的数学期望与方差

1. 设随机变量 X 服从参数为 λ 的泊松分布,如果 E[(X-1)(X-2)]=1 ,求 $P\{X\geq 1\}$.

2. 设随机变量 X 和 Y 相互独立,且 $X \sim N(2,1)$, $Y \sim N(-2,4)$, Z=3X-2Y+4 .(1)计算 E(Z) , D(Z) ; (2) 求 $P\{Z \leq 9\}$.

习题 4-4 协方差和相关系数

- 1. 设二维随机变量(X,Y)服从区域 $D = \{(x,y)|x^2 + y^2 \le 1\}$ 上的均匀分布.
 - (1)分别求X和Y的数学期望和方差;
 - (2)求X与Y的协方差Cov(X,Y)和相关系数 ρ_{XY} ;
 - (3)判断 X 和 Y 是否不相关,又是否相互独立,给出你的理由.

2. 设有随机变量 X,Y,Z, 已知 EX=1, EY=2, EZ=-1, DX=1, DY=2, DZ=3, 且

序号		学号	姓名	
11. 2	54.50	ナフ	XL 17	

第五章 大数定律与中心极限定理

习题 5—1 切比雪夫不等式与大数定律

1. 设随机变量 X 与 Y 的数学期望分别为 -2 和 2 ,方差分别为 1 和 4 , X 与 Y 的相关系数为 -0.5 ,利用 切比雪夫不等式估计 $P\{|X+Y| \ge 6\}$.

2. 抛一枚匀质硬币 1000 次,利用切比雪夫不等式估计出现正面的次数在 400 次与 600 次之间的概率.

序号	班级	学早	性 夕	
刀"与		_ 丁 勺		

习题 5—2 中心极限定理

1. 设一本 400 页的书中,每一页上印刷错误的个数服从参数 $\lambda = 0.16$ 的泊松分布,且各页上印刷错误的个数是相互独立的,试用中心极限定理求这本书印刷错误的总数不多于 80 个的概率.

2. 某车间有同型号机床 200 台,每台机床开动的概率为 0.7,每台机床开动时要消耗电能 15 单位.假定各机床开机是相互独立的,问电厂至少要供应多少电能,才能以不低于 95%的概率确保该车间不会因为供电不足而影响生产.

第六章 数理统计的基础知识

习题 6—1 数理统计的基本概念

1. 设总体X的数学期望 $EX = \mu$ 已知,方差 $DX = \sigma^2$ 未知, (X_1, X_2, \dots, X_n) 为其一个样本,试判别

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2, \quad \frac{1}{2} (X_1 + X_2) - \mu, \quad \min \{X_1, X_2, \dots, X_n\}, \quad \frac{(n-1)S^2}{\sigma^2}, \quad \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2, \quad \frac{1}{2} (X_1 + X_2) - \mu, \quad \min \{X_1, X_2, \dots, X_n\}, \quad \frac{(n-1)S^2}{\sigma^2}, \quad \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2, \quad \frac{1}{2} (X_1 + X_2) - \mu, \quad \frac{1}{2} (X_1 + X$$

之中哪些是统计量,哪些不是统计量,为什么?

2. 设总体 X 服从参数为 $\lambda(\lambda>0)$ 的泊松分布, (X_1,X_2,\cdots,X_n) $(n\geq 2)$ 为来自总体 X 的一个样本,令

$$T_{1} = \frac{1}{n} \sum_{i=1}^{n} X_{i}, \quad T_{2} = \frac{1}{n-1} \sum_{i=1}^{n-1} X_{i} + \frac{1}{n} X_{n}, \quad S_{n}^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}, \quad RET_{1}, ET_{2}, DT_{1}, DT_{2} \bowtie RET_{2}.$$

习题 6—2 抽样分布

1. 设总体 $X \sim N(0,1), (X_1, X_2, \dots, X_n)$ (n > 2) 为其一个样本,试分别求出下列统计量所服从的分布.

$$(1)\frac{X_1 - X_2}{\sqrt{X_3^2 + X_4^2}}; \quad (2)\frac{1}{m}(\sum_{i=1}^m X_i)^2 + \frac{1}{n-m}(\sum_{i=m+1}^n X_i)^2 \quad (0 < m < n); \quad (3)\frac{(n-2)\sum_{i=1}^2 X_i^2}{2\sum_{i=1}^n X_i^2}.$$

2. 设随机变量 $U \sim N(0,1)$, $\chi^2 \sim \chi^2(1)$, α 为满足 $0 < \alpha < 1$ 的实数,数 U_α , $\chi^2_\alpha(1)$ 分别满足 $P\{U > U_\alpha\} = \alpha$, $P\{\chi^2 > \chi^2_\alpha(1)\} = \alpha$. 证明 $U_{\frac{\alpha}{2}}^2 = \chi^2_\alpha(1)$.

习题 6—3 正态总体样本均值和样本方差的分布

1. 设总体 $X \sim N(\mu, \sigma^2)$, (X_1, X_2, \cdots, X_n) 为其一个样本,求 $P\{(\overline{X} - \mu)^2 \leq \frac{4\sigma^2}{n}\}$.

2.设 (X_1,X_2,\cdots,X_n) (n>1)是来自总体 $X\sim N(\mu,\sigma^2)$ 的样本,记

$$S_1^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2, S_2^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2, S_3^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \mu)^2, S_4^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2, S_4^2$$

则服从自由度为n-1的t分布是随机变量是(

$$(A)\frac{\overline{X} - \mu}{S_1 / \sqrt{n-1}}$$

(A)
$$\frac{\overline{X} - \mu}{S_1 / \sqrt{n-1}}$$
 (B) $\frac{\overline{X} - \mu}{S_2 / \sqrt{n-1}}$ (C) $\frac{\overline{X} - \mu}{S_3 / \sqrt{n}}$ (D) $\frac{\overline{X} - \mu}{S_4 / \sqrt{n}}$

(C)
$$\frac{\overline{X} - \mu}{S_3 / \sqrt{n}}$$

(D)
$$\frac{\overline{X} - \mu}{S_4 / \sqrt{n}}$$

序号	班

H级 _____ 学号 _____ 姓名 ____

第七章 参数估计

习题 7—1 点估计

1.设 (X_1, X_2, \cdots, X_n) 为来自 $X \sim B(1, p)$ 的一个样本,求未知参数p的矩估计量 $\hat{p}_{\scriptscriptstyle M}$ 和极大似然估计量 \hat{p}_{L} .

2. 设总体 X 的分布函数为 $F(x; \beta) = \begin{cases} 1 - \frac{1}{x^{\beta}}, x > 1, \\ 0, x \le 1, \end{cases}$ 其中未知参数 $\beta > 0$, (X_1, X_2, \dots, X_n) 为其样本,求 β 的矩估计量 $\hat{oldsymbol{eta}}_{\scriptscriptstyle{M}}$ 和极大似然估计量 $\hat{oldsymbol{eta}}_{\scriptscriptstyle{L}}$.

序是	TH: /.77	W 🗆	Lil. 😝
戶亏	班级	字亏	姓名

3. 设总体 X 的密度函数为 $f(x;\theta) =$ $\begin{cases} \frac{1}{\theta}, & 0 \le x \le \theta, \\ 0, & \text{其中未知参数} \ \theta > 0, \ (X_1, X_2, \cdots, X_n) \)$ 为来自总体

X的一个样本,试求heta的极大似然估计 $\hat{oldsymbol{ heta}}$.

\rightarrow	\Box
13	一
<i>1</i> 1′	\neg

班级 ______ 学号 ______ 姓名 _____

习题 7—2 估计量的评价标准

1. 设总体 $X \sim N(\mu, \sigma^2)$, (X_1, X_2, \cdots, X_n) 为其一个样本,试确定常数k,使得 $\frac{k}{n}\sum_{i=1}^n \left|X_i - \mu\right|$ 为 σ 的无偏 估计.

- 2. 设 (X_1, X_2) 为取自总体X的样本, $EX = \mu, DX = \sigma^2$, c_1, c_2 为常数,且 $c_1 + c_2 = 1$.
 - (1) 证明 $\hat{\mu} = c_1 X_1 + c_2 X_2$ 为 $EX = \mu$ 的无偏估计;
 - (2) 证明当 $c_1 = c_2 = \frac{1}{2}$ 时,即 $\hat{\mu} = \overline{X}$,其方差 $D(\hat{\mu})$ 最小.

序号	班级	学号	世 名
/1 /	21.1X	.1 .	XL-11

习题 7—3 区间估计

1. 某大型公司希望估计其职工实际探亲的平均天数 μ .为此,通过抽取若干个职工调查,并且希望其平均探亲天数与 μ 的误差不超过 2 天,且置信度不低于 0.9,假定职工实际探亲天数 $X \sim N(\mu,15^2)$,问至少应调查多少职工?

- 2. 为比较两种品牌的小卡车的燃料经济效益如何,做一项试验.取 13 辆甲品牌车和 10 辆乙品牌车,以 90~km/h 的不变速度来使用,测得结果为: $x_1 = 16~km/L$ 千米/公升, $s_1 = 1.0~km/L$; $x_2 = 11~km/L$ 千米/公升, $s_2 = 0.8~km/L$.假设每辆甲品牌车每公升所走的距离 $X_1 \sim N(\mu_1, \sigma_1^2)$,每辆乙品牌车每公升所走的距离 $X_2 \sim N(\mu_2, \sigma_2^2)$.
 - (1)求标准差比 $\frac{\sigma_1}{\sigma_2}$ 的置信度为98%的置信区间;
 - (2)若 $\sigma_1^2 = \sigma_2^2$, 求数学期望之差 $\mu_1 \mu_2$ 的置信度为 98% 的置信区间.

序号	班级	学号	姓名	
/1. J			X1	

第八章 假设检验

习题 8—1 假设检验的基本概念

- 1. 甲制药厂进行有关麻疹疫苗效果的研究,用X表示用这种疫苗注射后人体的抗体强度,并假定X 服从 $X \sim N(\mu, \sigma^2)$. 另外已知乙制药厂的同种疫苗注射后人体的平均抗体强度为 1.9. 现甲厂欲通过抽样,利用假设检验来证实其产品比乙厂有更高的抗体强度.
- (1)如何提出假设 H_0 和 H_1 ? (2)请描述第一类错误和第二类错误在该题中分别反映什么现象.

习题 8-2 单正态总体中均值和方差的假设检验

1. 某大学去年大一女生身高(单位: cm) $X \sim N(162.5, 6.9^2)$,现从今年大一女生中随机选出 50 名女生,测得其平均身高为 165.2cm,假设方差不变,试问在显著水平 $\alpha = 0.02$ 下,可否认为今年大一女生的平均身高发生了改变?

厅 5	亨号	班级	学号	姓名	
-----	----	----	----	----	--

2. 某品牌香烟的每支尼古丁含量(单位: mg)服从 $N(\mu,1.3^2)$. 若从中随机抽取 8 支此品牌香烟,测得其样本标准差为 s=1.8mg ,试在显著性水平 $\alpha=0.05$ 下,检验假设 H_0 : $\sigma=1.3, H_1$: $\sigma\neq1.3$.

习题 8—3 双正态总体中均值和方差的假设检验

1. 中药厂从某药材中提取有效成份,为提高效率,改革提炼方法.现对同一品质的药材用新、旧两种方法各做10次试验,其效率分别为:

旧方法的效率 X	72.4	76.2	74.3	77.4	78.4	78.1	76.0	75.5	76.7	77.3
新方法的效率Y	81.0	79.1	77.3	79.1	80.0	79.1	79.1	77.3	80.2	82.1

设这两个样本分别来自正态总体 $X\sim \mathrm{N}(\mu_{\!\scriptscriptstyle 1},\sigma_{\!\scriptscriptstyle 1}^2)$, $Y\sim \mathrm{N}(\mu_{\!\scriptscriptstyle 2},\sigma_{\!\scriptscriptstyle 2}^2)$,且两个样本相互独立.

- (1)试问新旧方法的方差是否有变化? 取 $\alpha = 0.01$; $(H_0: \sigma_1^2 = \sigma_2^2, H_1: \sigma_1^2 \neq \sigma_2^2)$
- (2)试问新方法比旧方法的效率是否更高? 取 $\alpha = 0.01$. $(H_0: \mu_1 = \mu_2, H_1: \mu_1 < \mu_2)$