Probability Theory A Comprehensive Course

Achim Klenke

April 25, 2020

Contents

1	Basic Measure Theory		
	1.1	Classes of Sets	3
	1.2	Set Functions	8

1 Basic Measure Theory

1.1 Classes of Sets

Definition 1.1. A class of sets A is called

- \cap -closed or a π -system if $A \cap B \in \mathcal{A}$ whenever $A, B \in \mathcal{A}$
- σ - \cap -closed (closed under countable intersection)
- ∪-closed (closed under unions)
- σ - \cup -closed
- \-closed
- closed under complements

Definition 1.2 (σ -algebra). A class of sets $\mathcal{A}\subset 2^{\Omega}$ is called a σ -algebra if it fullills the following three conditions

- 1. $\Omega \in \mathcal{A}$
- 2. A is closed under complements
- 3. A is closed under countable unions

Theorem 1.3. *If* A *is closed under complements, then we have the equivalence*

$$\mathcal{A}$$
 is \cap -closed \iff \mathcal{A} is \cup -closed \mathcal{A} is σ - \cap -closed \iff \mathcal{A} is σ - \cup -closed

Theorem 1.4. Assume that A is $\-$ closed. Then the following statements hold:

- 1. A is \cup -closed
- 2. If in addition A is σ - \cup -closed, then A is σ - \cup -closed
- 3. Any countable (repectively finite) union of sets in A can be expressed as a countable (respectively finite) disjoint union of sets in A

Proof. 3. Assume that $A_1, A_2, \dots \in A$

$$\bigcup_{n=1}^{\infty} A_n = A_1 \uplus (A_2 \backslash A_1) \uplus ((A_3 \backslash A_2) \backslash A_1) \uplus \dots$$

Definition 1.5. A class of sets $\mathcal{A}\subset 2^\Omega$ is called an **algebra** if the following three conditions are fulfilled

- 1. $\Omega \in \mathcal{A}$
- 2. A is $\$ -closed
- 3. A is \cup -closed

3

Theorem 1.6. A class of sets $A \subset 2^{\Omega}$ is an algebra if and only if the following three properties hold

- 1. $\Omega \in \mathcal{A}$
- 2. A is closed under complements
- 3. A is closed under intersections

Definition 1.7. A class of sets $\mathcal{A}\subset 2^\Omega$ is called a **ring** if the following conditions hold

- 1. $\emptyset \in \mathcal{A}$
- 2. A is $\$ -closed
- 3. A is \cup -closed

Definition 1.8. A class of sets $A \subset 2^{\Omega}$ is called a **semiring** if

- 1. $\emptyset \in \mathcal{A}$
- 2. for any two sets $A, B \in \mathcal{A}$ the difference set $B \setminus A$ is a finite union of mutually disjoint sets in \mathcal{A}
- 3. A is \cap -closed

Definition 1.9. A class of sets $A \subset 2^{\Omega}$ is called a λ -system if

- 1. $\Omega \in \mathcal{A}$
- 2. for any two sets $A, B \in \mathcal{A}$ with $A \subset B$, $B \setminus A \in \mathcal{A}$
- 3. $\biguplus_{n=1}^{\infty} A_n \in \mathcal{A}$ for any choice of countably many pairwise disjoint sets $A_1, \dots \in \mathcal{A}$

Theorem 1.10. 1. Every σ -algebra also is a λ -system, an algebra and a σ -ring

- 2. Every σ -ring is a ring, and every ring is a semiring
- 3. Every algebra is a ring. An algebra on a finite set Ω is a σ -algebra

Definition 1.11 (liminf and limsup). Let A_1, A_2, \ldots be a subset of Ω . The sets

$$\lim_{n \to \infty} \inf A_n := \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_m \qquad \qquad \lim_{n \to \infty} \sup A_n := \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m$$

are called **limes inferior** and **limes superior**, respectively, of the sequence $(A_n)_{n\in\mathbb{N}}$

Remark. 1. liminf and limsup can be rewritten as

$$\liminf_{n \to \infty} A_n = \{ \omega \in \Omega : \#\{n \in \mathbb{N} : \omega \notin A_n\} < \infty \}$$
$$\limsup_{n \to \infty} A_n = \{ \omega \in \Omega : \#\{n \in \mathbb{N} : \omega \in A_n\} = \infty \}$$

In other words, limes inferior is the event where **eventually all** of the A_n occur. On the other hand, limes superior is the event where **infinitely many** of the A_n occur. In particular, $A_* := \lim \inf_{n \to \infty} A_n \subset A^* := \lim \sup_{n \to \infty} A_n$

2. We define the **indicator function** on the set *A* by

$$\mathbb{1}_A(x) := \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$$

With this notation

$$\mathbb{1}_{A_*} = \liminf_{n \to \infty} \mathbb{1}_{A_n} \quad \text{and} \quad \mathbb{1}_{A^*} = \limsup_{n \to \infty} \mathbb{1}_{A_n}$$

3. If $A \subset 2^{\Omega}$ is a σ -algebra and if $A_n \in \mathcal{A}$ for every $n \in \mathbb{N}$, then $A_* \in \mathcal{A}$ and $A^* \in \mathcal{A}$

Theorem 1.12 (Intersection of classes of sets). Let I be an arbitrary index set, and assume that A_i is a σ -algebra for every $i \in I$. Hence the intersection

$$\mathcal{A}_I := \{A \subset \Omega : A \in \mathcal{A}_i \text{ for every } i \in I\} = \bigcap_{i \in I} \mathcal{A}_i$$

is a σ -algebra. The analogous statement holds for rings, σ -rings, algebras and λ -systems. However, it fails for semirings

Theorem 1.13 (Generated σ -algebra). Let $\mathcal{E} \subset 2^{\Omega}$. Then there exists a smallest σ -algebra $\sigma(\mathcal{E})$ with $\mathcal{E} \subset \sigma(\mathcal{E})$

$$\sigma(\mathcal{E}) := \bigcap_{\substack{\mathcal{A} \subset 2^{\Omega} \text{ is a σ-algebra} \\ \mathcal{A} \supset \mathcal{E}}} \mathcal{A}$$

 $\sigma(\mathcal{E})$ is called the σ -algebra generated by \mathcal{E} . \mathcal{E} is called a generator of $\sigma(\mathcal{E})$. Similarly, we define $\delta(\mathcal{E})$ as the λ -system generated by \mathcal{E}

Remark. The following three statements hold

- 1. $\mathcal{E} \subset \sigma(\mathcal{E})$
- 2. If $\mathcal{E}_1 \subset \mathcal{E}_2$, then $\sigma(\mathcal{E}_1) \subset \sigma(\mathcal{E}_2)$
- 3. A is a σ -algebra if and only if $\sigma(A) = A$

Theorem 1.14 (\cap -closed λ -system). Let $\mathcal{D} \subset 2^{\Omega}$ be a λ -system. Then

$$\mathcal{D}$$
 is a π -system \iff \mathcal{D} is a σ -algebra

Proof. " \Longrightarrow "

3. Let $A, B \in \mathcal{D}$. By assumption, $A \cap B \in \mathcal{D}$ and trivially $A \cap B \subset A$. Thus $A \setminus B = A \setminus (A \cap B) \in \mathcal{D}$. This implies that \mathcal{D} is \setminus -closed. Thus by Theorem 1.4, works.

Theorem 1.15 (Dynkin's π - λ theorem). *If* $\mathcal{E} \subset 2^{\Omega}$ *is a* π -system, then

$$\sigma(\mathcal{E}) = \delta(\mathcal{E})$$

Proof. 1. \supseteq . $A^c = \Omega \setminus A$.

2. \subseteq . By Theorem 1.14, it is enough to show that $\delta(\mathcal{E})$ is a π -system. For any $B \in \delta(\mathcal{E})$ define

$$\mathcal{D}_B := \{ A \in \delta(\mathcal{E}) : A \cap B \in \delta(\mathcal{E}) \}$$

In order to show that $\delta(\mathcal{E})$ is a π system, it is enough to show that

$$\delta(\mathcal{E}) \subset \mathcal{D}_B$$
 for any $B \in \delta(\mathcal{E})$

 \mathcal{D}_E is a λ -system

- (a) $\Omega \cap E = E \in \delta(\mathcal{E})$. Hence $\Omega \in \mathcal{D}_E$
- (b) For any $A, B \in \mathcal{D}_E$ with $A \subset B$, we have $(B \backslash A) \cap E = (B \cap E) \backslash (A \cap E) \in \delta(E)$
- (c) Assume that $A_1,\ldots,\in\mathcal{D}_E$ are mutually disjoint. Hence

$$\left(\bigcup_{n=1}^{\infty}\right) \cap E = \biguplus_{n=1}^{\infty} (A_n \cap E) \in \delta(\mathcal{E})$$

By assumption, $A \cap E \in \mathcal{E}$ if $A, E \in \mathcal{E}$; thus $\mathcal{E} \subset \mathcal{E}_E$ if $E \in \mathcal{E}$. Hence $\delta(\mathcal{E}) \subset \delta(\mathcal{D}_E) = \mathcal{D}_E$ for any $E \in \mathcal{E}$. Hence we get that $B \cap E \in \delta(\mathcal{E})$ for any $B \in \delta(\mathcal{E})$ and $E \in \mathcal{E}$. This implies that $E \in \mathcal{E}_B$ for any $B \in \delta(\mathcal{E})$. Thus $\mathcal{E} \subset \mathcal{D}_B$ for any $B \in \delta(\mathcal{E})$.

Definition 1.16 (Topology). Let $\Omega \neq \emptyset$ be an arbitrary set. A class of sets $\tau \subset 2^{\Omega}$ is called a **topology** if it has the following three properties:

- 1. $\emptyset, \Omega \in \tau$
- 2. $A \cap B \in \tau$ for any $A, B \in \tau$
- 3. $\bigcup_{A \in \mathcal{F}} A \in \tau$ for any $\mathcal{F} \subset \tau$

Figure 1: Inclusions between classes of sets $\mathcal{E} \subset 2^{\Omega}$

The pair (Ω, τ) is called a **topological space**. The sets $A \in \tau$ are called **open**, and the sets $A \subset \Omega$ with $A^c \in \tau$ are called closed

Let d be a metric on Ω , and denote the open ball with radius r>0 centered at $x\in\Omega$ by

$$B_r(x) = \{ y \in \Omega : d(x, y) < r \}$$

Then the usual class of open sets is the topology

$$\tau = \left\{ \bigcup_{(x,r)\in F} B_r(x) : F \subset \Omega \times (0,\infty) \right\}$$

Definition 1.17 (Borel σ -algebra). Let (Ω, τ) be a topological space. The σ -algebra

$$\mathcal{B}(\Omega) := \mathcal{B}(\Omega, \tau) := \sigma(\tau)$$

that is generated by the open sets is called the **Borel** σ -algebra on Ω . The elements $A \in \mathcal{B}(\Omega, \tau)$ are called **Borel sets** or **Borel measuable sets**

For $a, b \in \mathbb{R}^n$, we write

$$a < b$$
 if $a_i < b_i$ for all $i = 1, \dots, n$

For a < b, we define the open **rectangle** as the Cartesian product

$$(a,b) := \sum_{i=1}^{n} (a_i, b_i) := (a_1, b_1) \times (a_2, b_2) \times \cdots \times (a_n, b_n x)$$

Definition 1.18 (Trace of a class of sets). Let $A \subset 2^{\Omega}$ be an arbitrary class of subsets of Ω and let $A \in 2^{\Omega} \setminus \{\emptyset\}$. The class

$$\mathcal{A}|_A := \{A \cap B : B \in \mathcal{A}\} \subset 2^A$$

is called the **trace** of A on A or the **restriction** of A on A

Theorem 1.19. Let $A \subset \Omega$ be a nonempty set and let A be a σ -algebra on Ω (ring,semiring,). Then $A|_A$ is a class of sets of the same type as A; however on A instead of Ω . For λ -systems this is not true in general

1.2 Set Functions

Definition 1.20. Let $\mathcal{A}\subset 2^{\Omega}$ and let $\mu:\mathcal{A}\to [0,\infty]$ be a set function. We say that μ is

- 1. **monotone** if $\mu(A) \leq \mu(B)$ for any two sets $A, B \in \mathcal{A}$ with $A \subset B$
- 2. **additive** if $\mu(\biguplus_{i=1}^n A_i) = \sum_{i=1}^n \mu(A_i)$ for any choice of finitely many mutually disjoint sets $A_1, \ldots, A_n \in \mathcal{A}$ with $\bigcup_{i=1}^n A_i \in \mathcal{A}$
- 3. σ -additive if $\mu(\biguplus_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$ for any choice of countably many mutually disjoint sets $A_1, \dots \in \mathcal{A}$ with $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$
- 4. **subadditive** if for any choice of finitely many sets $A, A_1, \ldots, A_n \in \mathcal{A}$ with $A \subset \bigcup_{i=1}^n A_i$, we have $\mu(A) \leq \sum_{i=1}^n \mu(A_i)$
- 5. σ **subadditive** if for any choice of countably many sets $A, A_1, \dots \in \mathcal{A}$ with $A \subset \bigcup_{i=1}^{\infty} A_i$, we have $\mu(A) \leq \sum_{i=1}^{\infty} \mu(A_i)$

Definition 1.21. Let \mathcal{A} be a semiring and let $\mu : \mathcal{A} \to [0, \infty]$ be a set function with $\mu(\emptyset) = 0$, μ is called a

- **content** if μ is additive
- **premeasure** if μ is σ -additive
- **measure** if μ is a premeasure and A is a σ -algebra
- **probability measure** if μ is a measure and $\mu(\Omega) = 1$

Definition 1.22. Let A be a semiring. A content μ on A is called

- 1. **finite** if $\mu(A) < \infty$ for every $A \in \mathcal{A}$ and
- 2. σ -finite if there exists a sequence of sets $\Omega_1, \Omega_2, \ldots, \in \mathcal{A}$ s.t. $\Omega = \bigcup_{n=1}^{\infty} \Omega_n$ and s.t. $\mu(\Omega_n) < \infty$ for all $n \in \mathbb{N}$

- **Example 1.1** (Contents, measures). 1. Let $\omega \in \Omega$ and $\delta_{\omega}(A) = \mathbb{1}_A(\omega)$. Then δ_{ω} is a probability measure on any σ -algebra $\mathcal{A} \subset 2^{\Omega}$. δ_{ω} is called the **Dirac measure** for the point ω
 - 2. Let Ω be a finite nonempty set. By

$$\mu(A) := \frac{\#A}{\#B} \quad \text{for } A \subset \Omega$$

we define a probability measure on $\mathcal{A}=2^{\Omega}$. This μ is called the **uniform distribution** on Ω . For this distribution, we introduce the symbol $\mathcal{U}_{\Omega} := \mu$. The resulting triple $(\Omega, \mathcal{A}, \mathcal{U}_{\Omega})$ is called a **Laplace space**

Lemma 1.23 (Properties of contents). *Let* A *be a semiring and let* μ *be a content on* A. *Then the following statements hold.*

- 1. If A is a ring, then $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$
- 2. μ is monotone. If A is a ring, then $\mu(B) = \mu(A) + \mu(B\mathbb{A})$ for any two sets $A, B \in \mathcal{A}$ with $A \subset B$
- 3. μ is subadditive. If μ is σ -additive, then μ is also σ -subadditive
- 4. If \mathcal{A} is a ring then $\sum_{n=1}^{\infty} \mu(A_n) \leq \mu(\bigcup_{n=1}^{\infty} A_n)$ for any choice of countably many mutually disjoint sets $A_1, \dots \in \mathcal{A}$ with $\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$

 $\#+END_{definition}$