

Final Remarks on Planning: Learning and Beyond

Planning Algorithms in Al

Gonzalo Ferrer

First an most important question is to think about the **state space** and **action space**.

Do we want a single plan or a **multiple query** algorithm?

Yes, plan can be as complex as we want

Discrete planning (L02), RRT (L04), Traj. Optimization (L06) No, we will execute the plan multiple times

PRM (L04)

Discrete Planning (L02) (it might be still more efficient)

Multiple-VI (L05) (only if memory is not a problem)

There will be perturbation while executing the plan? (policy)

Is this a game? → gigantic state space

State space is "small" enough for building a decision tree

Alpha-Beta Pruning (Russel&Norvig)

It allows to almost double the depth wrt naive decision tree and the solutions are guaranteed to be optimal State space is monstrous but the action space is relatively small

Monte-Carlo Tree Search

The evaluation is approximated by sampling and this allows to explore depth of the tree unthinkable for exhaustive search

Is there **uncertainty** of any kind?

Yes No, states are observable and transitions are Yes, but the MDP (L08) (Sutton&Barto) deterministic environment might be • It works well for finite state unknown spaces Requires known transitions **Planning methods** from L1-6

Reinforcement Learning

• It only interacts with the environment and does not require **complete** knowledge.

Are any parameters of the environment unknown?

Yes, such as transition function, action execution, etc.

Learning Based approaches:

- Supervised learning
- Reinforcement Learning

No, we have total control on all elements

Planning L1-4, discrete, sampling, policies, etc.

MDP (L08) For discrete and low dimensional state spaces

Dimensionality is high, we need function NN approximators

Planning Taxonomy

Now we see the power of combining plans and a hierarchical approach.

Learning in planning: Limits and Potentials

- Some problems do not require learning and planning methods can be enough, so it is better if we ask first: does it make sense for your problem?
- We must always think what is the learning algorithm doing:
 - Policy approximated by a parametrized function
 - Compressing a value function over a continuous state space.
 - Heuristics for a distance function
- •Second we must think about the state space:
 - Position, Pose, Image, a sequence of values, etc.
- The equivalent in CV to classification and regression is not always applicable since the agent, as a result of a plan, executes an action in an environment, whose results are uncertain as well.

Learning in planning: Limits and Potentials

- On the other hand, learning-based approaches **allow** to solve planning under impossible conditions for planning, such as unknown dynamics, changes in parameters and many other artifacts.
- Combining both approaches can be a great way to go. Examples are MCTS with learned policies, which also combines approximation to evaluation functions.
 - In RRT, learning sampling distributions, A* learning heuristics, Potential functions learned, etc.