Table 3.1: Summary of frequency response characteristics of linear phase FIR filters

Impulse Response h(n)	Number of samples of h(n) N	The magnitude function of H(ω)
Symmetric	Odd	Symmetric
Symmetric	Even	Antisymmetric
Antisymmetric	Odd	Antisymmetric
Antisymmetric	Even	Symmetric

Table 3.2 : Summary of $|H(\omega)|$ for linear phae FIR filters

Nature of impulse response	Magnitude function
Case I: Impulse response is symmetric and N is odd	$ H(\omega) = h\left(\frac{N-1}{2}\right) + \sum_{n=1}^{\frac{N-1}{2}} 2h\left(\frac{N-1}{2} - n\right)\cos\omega r$
Case II: Impulse response is symmetric and N is even	$ H(\omega) = \sum_{n=1}^{\frac{N}{2}} 2h\left(\frac{N}{2} - n\right) \cos\left(\omega\left(n - \frac{1}{2}\right)\right)$
Case III: Impulse response is antisymmetric and N is odd	$ H(\omega) = \sum_{n=1}^{\frac{N-1}{2}} 2h(\frac{N-1}{2} - n) \sin \omega n$
Case IV: Impulse response is antisymmetric and N is even	$ H(\omega) = \sum_{n=1}^{\frac{N}{2}} 2h\left(\frac{N}{2} - n\right) \sin\left(\omega\left(n - \frac{1}{2}\right)\right)$

D When Sompulse response

Sym. & add

Hag ofn.
$$|H(\omega)| = h\left(\frac{N-1}{2}\right) + \frac{N-1}{2} = 2h\left(\frac{N-1}{2}-n\right)x$$

Phase $2H(\omega) = -io\left(\frac{N-1}{2}\right) = -iod$

Response

Sym. & even

Mag $|H(\omega)| = \begin{bmatrix} \frac{N}{2} & 2h\left(\frac{N}{2}-n\right)\cos\left(\omega\left(n-\frac{1}{2}\right)\right) \end{bmatrix}$

Phase $2H(\omega) = -\omega\left(\frac{N-1}{2}-n\right)\cos\left(\omega\left(n-\frac{1}{2}\right)\right)$

Phase $2H(\omega) = -\omega\left(\frac{N-1}{2}-n\right)\sin\omega$
 $2H(\omega) = \frac{N-1}{2} = \frac{N-1}{2}$

Antisym. & even

 $2H(\omega) = \frac{T}{2} - \omega\frac{N-1}{2} = \frac{N-1}{2}$

Antisym. & even

 $2H(\omega) = \frac{T}{2} - \omega\frac{N-1}{2} = \frac{N-1}{2}$
 $2H(\omega) = \frac{T}{2} - \omega\frac{N-1}{2} = \frac{N-1}{2}$