

Universitatea Tehnică din Cluj-Napoca

Facultatea de Automatică și Calculatoare, Automatică și Informatică Aplicată

PROIECT:

- Reductor
- Mecanism cu camă și tachet de translație
 - Mecanism cu cruce de Malta

ELEMENTE DE INGINERIE MECANICĂ

Nume student: Rus Dana-Bendis-Héra

Nume profesor îndrumător: prof.dr.ing. Tătar Mihai Olimpiu

Grupa 30121/2

An universitar 2022-2023

Cuprins:

Tema proiectului	3
Reductorul	3
 Calculul elementelor geometrice Desen 	
Mecanismul cu camă și tachet de translație	6
3. Analiza cinematică	6
Mecanismul pentru transmiterea intermitentă a mișcării – crucea de Malta	9
4. Elemente teoretice și de calcul. Cinematica mecanismului	9
5. Desen mecanism	10
 Diagrama de variație a vitezei unghiulare și a accelerației unghiulare 	11
Bibliografie	13

Tema proiectului:

Proiectarea unui sistem mecanic compus dintr-un reductor, un mecanism cu camă și tachet de translație și un mecanism pentru transmiterea intermitentă a mișcării (mecanism cu cruce de Malta).

Reductorul:

i = 23;

 n_1 = 2160 rot/min – turația care intră în reductor

1. Calculul elementelor geometrice

Nr.crt.	Denumirea mărimii	Simbol	Relația de calcul	Valoare	Unitate de
					măsură
1.	Numărul de dinți	z_1	-	15	-
		\mathbf{z}_2	-	22	1
2.	Coeficienții de deplasare a	X ₁	Se alege din tabelul 9.2 sau din conturele de blocare, în funcție de ce se	0.55	-
	profilurilor	X ₂	urmărește a fi îmbunătățit la agrenaj –	0.54	-
			în cazul nostru, am luat în considerare		
			rezistența la uzură și grupare		
3.	Modulul	m	Se rotunjește conform STAS 822-61	3.5	mm

		DIN CLUJ-NAPOCA		
Unghiul de angrenare	α	$inv\alpha = inv\alpha_0 + 2 * \frac{x_1 + x_2}{z_1 + z_2} * tg\alpha_0,$	26.55	grade
Coeficientul de modificare a distantei dintre axe	у	$y = \frac{z_1 + z_2}{2} * \left(\frac{\cos \alpha_0}{\cos \alpha} - 1\right)$	0.9337	-
Distanța axială	a	$a = m * \frac{z_1 + z_2}{2} * \frac{\cos \alpha_0}{\cos \alpha}$	68.018	mm
Coeficientul de scurtare a înălțimilor dinților	Ψ	$\psi = x_1 + x_2 - y$	0.1563	-
Înălțimea dinților	h	$h = m^*(2.25 - \psi)$	7.328	mm
Diametrul cercurilor	d_1	$d_1 = 2 * r_1 = m * z_1$	52.5	mm
de divizare	d_2	$d_2 = 2 * r_2 = m * z_2$	77	mm
Diametrul cercurilor de bază	d _{b1}	$d_{b1} = 2 * r_{b1} = m * z_1 * \cos \alpha_0$	49.333	mm
	d _{b2}	$d_{b2} = 2 * r_{b2} = m * z_2 * \cos \alpha_0$	72.356 3	mm
Diametrul cercurilor de rostogolire	d_{w1}	$d_{w1} = 2 * r_{w1} = m * z_1 * \frac{\cos \alpha_0}{\cos \alpha}$	55.149 7	mm
	d_{w2}	$d_{w2} = 2 * r_{w2} = m * z_2 * \frac{\cos \alpha_0}{\cos \alpha}$	80.886	mm
Diametrul cercurilor de cap	d _{a1}	$d_{a1} = 2 * r_{a1} = m * (z_1 + 2 + 2 * x_1 - 2 * \psi)$	62.255 9	mm
	d _{a2}	$d_{a2} = 2 * r_{a2} = m * (z_2 + 2 + 2 * x_2 - 2 * \psi)$	86.685 9	mm
Diametrul cercurilor de picior	d _{f1}	$d_{f1} = 2 * r_{f1} = m * (z_1 - 2 + 2 * x_1 - 0.5)$	47.6	mm
	d _{f2}	0.5)		mm
Arcele dinților pe	s_1	$s_1 = \frac{\pi m}{2} + 2 * m * x_1 * tg\alpha_0$	6.8991	mm
cercurile de divizare	S ₂	$s_2 = \frac{\pi m}{2} + 2 * m * x_2 * tg\alpha_0$	6.8736	mm
Gradul de acoperire	3	$\varepsilon = \frac{\sqrt{r_{a2}^2 - r_{b2}^2} + \sqrt{r_{a1}^2 - r_{b1}^2} - a * \sin \alpha}}{\pi m * \cos \alpha_0}$	1.2053	-
	angrenare Coeficientul de modificare a distanței dintre axe Distanța axială Coeficientul de scurtare a înălțimilor dinților Înălțimea dinților Diametrul cercurilor de divizare Diametrul cercurilor de bază Diametrul cercurilor de rostogolire Diametrul cercurilor de rostogolire Arcele dinților pe cercurile de divizare	angrenare Coeficientul de modificare a distanței dintre axe Distanța axială Coeficientul de scurtare a înălțimilor dinților Înălțimea dinților Diametrul cercurilor de divizare Diametrul cercurilor de bază Diametrul cercurilor de rostogolire Diametrul cercurilor de rostogolire Diametrul cercurilor de cap d_{w2} Diametrul cercurilor de picior d_{a1} d_{b2} Arcele dinților pe cercurilor de divizare d_{f1} d_{f2}	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

$\frac{\varepsilon - \frac{}{\pi m * \cos \alpha_0}}{Script \ Matlab \ pentru \ calcularea \ valorilor \ elementelor:}$

```
z1 = 15;

z2 = 22;

x1 = 0.55;

x2 = 0.54;

m = 3.5;

alfa0 = 20; % grade

alfa0rad = 0.3490658504; % radiani

invalfa = 0.014904 + 2*(x1+x2)/(z1+z2)*tan(alfa0rad);
```



```
alfa = 26.55; % grade
alfarad = 0.4633849164; %radiani
y = (z1+z2)/2*(cos(alfa0rad)/cos(alfarad)-1);
a = m*(z1+z2)/2*cos(alfa0rad)/cos(alfarad);
psi = x1 + x2 - y;
h = m*(2.25-psi);
d1 = m*z1;
d2 = m*z2;
db1 = m*z1*cos(alfa0rad);
db2 = m*z2*cos(alfa0rad);
dw1 = m*z1*cos(alfa0rad)/cos(alfarad);
dw2 = m*z2*cos(alfa0rad)/cos(alfarad);
da1 = m*(z1+2+2*x1-2*psi);
da2 = m*(z2+2+2*x2-2*psi);
df1 = m*(z1-2+2*x1-0.5);
df2 = m*(z2-2+2*x2-0.5);
s1 = pi*m/2+2*m*x1*tan(alfa0rad);
s2 = pi*m/2+2*m*x2*tan(alfa0rad);
ra1 = da1/2;
ra2 = da2/2;
rb1 = db1/2;
rb2 = db2/2;
epsilon = (sqrt(ra2*ra2-rb2*rb2)+sqrt(ra1*ra1-rb1*rb1)-
a*sin(alfarad))/(pi*m*cos(alfa0rad));
```

2. Desen

Mecanismul cu camă și tachet de translație:

 $n_2 = n_3 = n_1 * \left| -\frac{z_1}{z_2} \right| = 1472.7 \text{ rot/min} - \text{turația care iese din reductor și}$ intră în mecanismul cu camă și tachet de translație

3. Analiza cinematică

$$h = 19.5 \text{ mm}$$

$$\varphi_u = 100^o$$

$$\varphi_R = 80^o$$

$$\varphi_c = 100^o$$

$$\varphi_r = 80^o$$

Legi de mișcare:

- sinus urcare
- cosinus coborâre

Excentricitatea este nulă => unghiul de profil al camei este egal cu unghiul de rotație al camei.

Considerăm cercul de raza $r_0 = \frac{19.5}{2}$ mm cercul de bază.

Profilul camei corespunzător fazelor de repaus superior b-c și repaus inferior d-a este format din câte un arc de cerc cu centrul în O_3 – cama este una compusă datorită prezenței acestor faze.

Script Matlab pentru realizarea graficelor:

phiu = deg2rad(100); phiR = deg2rad(80); phic = deg2rad(100); phir = deg2rad(80); h = 19.5; % mm % urcare sinusoidala phi = 0:0.0001:phiu; for i=1:length(phi)


```
su(i) = h*(phi(i)/phiu-1/(2*pi)*sin(2*pi/phiu*phi(i)));
  vu(i) = h/phiu*(1-cos(2*pi/phiu*phi(i)));
  au(i) = 2*pi*h/phiu^2*sin(2*pi/phiu*phi(i));
end
figure(1),plot(phi,su,'k'); hold on;
figure(2),plot(phi,vu,'k'); hold on;
figure(3),plot(phi,au,'k'); hold on;
%repaus superior
phi = phiu:0.0001:phiu+phiR;
for j=1:length(phi)
  sR(j) = su(i);
  vR(j) = vu(i);
  aR(i) = au(i);
end
figure(1),plot(phi,sR,'m');
figure(2),plot(phi,vR,'m');
figure(3),plot(phi,aR,'m');
%coborare cosinusoidala
phi = 0.0.0001:phic;
l = length(phi);
for i=1:1
  sc(1-i+1) = h/2*(1-cos((pi/phic)*phi(i)));
  vc(1-i+1) = pi*h/(2*phic)*sin((pi/phic)*phi(i));
  ac(1-i+1) = pi^2 + h/(2 + phic^2) + cos((pi/phic) + phi(i));
end
figure(1),plot(phi+phiu+phiR,sc,'b');
figure(2),plot(phi+phiu+phiR,-vc,'b');
figure(3),plot(phi+phiu+phiR,ac,'b');
line([phiu+phiR,phiu+phiR],[aR(j),ac(1)],'Color','yellow');
%repaus inferior
phi = phiu+phiR+phic:0.0001:2*pi;
for i=1:length(phi)
  sr(j) = su(1);
  vr(i) = vu(1);
  ar(j) = au(1);
end
figure(1),plot(phi,sr,'g');
figure(2),plot(phi,vr,'g');
figure(3),plot(phi,ar,'g');
line([phiu+phiR+phic,phiu+phiR+phic],[ac(l),ar(j)],'Color','yellow');
%adnotatii
figure(1)
```



```
grid on; axis tight;
xlabel('\phi'),ylabel('s(\phi)');
title('Diagrama de variatie a spatiului');
hold off;
figure(2)
grid on; axis tight;
xlabel('\phi'),ylabel('v/omega(\phi)');
title('Diagrama de variatie a vitezei reduse');
hold off;
figure(3)
grid on; axis tight;
xlabel('\phi'),ylabel('a/omega^2(\phi)');
title('Diagrama de variatie a acceleratiei reduse');
hold off;
```

Mecanismul pentru transmiterea intermitentă a mișcării – crucea de Malta:

 $n_6 = n_2 = 1472.7 \text{ rot/min} - \text{turația care intră în crucea de Malta}$

L = 250 mm – distanța dintre centrele de rotație -- aleasă arbitrar

 $n_a = 1 - numărul de antrenori$

z = 5 - numărul de canale

4. Elemente teoretice și de calcul. Cinematica mecanismului

Nr.crt.	Denumirea mărimii	Formule de calcul	Valori
1.	Viteza unghiulară a elementului	$\omega_1 = \frac{\pi * n_2}{30}$	154.2236
	conducător	- 30	rad/min
2.	Constanta mecanismului cu cruce	$\lambda = \frac{R_1}{I} = \sin \varphi_2 = \sin \frac{\pi}{I}$	0.5878
	de Malta	L Z	
3.	Lungimea brațului de antrenare	$R_1 = L * \sin \varphi_2 = L * \sin \frac{\pi}{2}$	146.9463
	(raza elementului de antrenare)	, 2 z	mm
4.	Timpul de mișcare în care	$2*\varphi_1 \qquad \pi*(1-\frac{2}{2})$	0.0122
	elementul conducător antrenează	$t_m = \frac{2*\varphi_1}{\omega_1} = \frac{\pi*(1-\frac{2}{z})}{\omega_1}$	min
	elementul condus		
5.	Timpul de repaus al elementului	$t = \frac{2*\pi - 2*\varphi_1}{z} = \frac{\pi*(1+\frac{2}{z})}{z}$	0.0285
	condus	$t_r = \frac{1}{\omega_1} = \frac{2}{\omega_1}$	min
6.	Timpul de rotație completă al	$T = t_m + t_r = \frac{2*\pi}{}$	0.0407
	elementului conducător	ω_1	min
7.	Coeficientul de mișcare	$k_m = \frac{t_m}{T} = \frac{1}{2} - \frac{1}{2}$	0.3
0	C £: -: 1	t 1 1	0.7
8.	Coeficientul de repaus	$k_r = \frac{\iota_r}{T} = \frac{1}{2} + \frac{1}{z}$	0.7

				מוט	CLUJ-NAPOCA	٩	
9.	Coeficientul timpului de lucru al mecanismului	$k = \frac{1}{2}$	$\frac{k_m}{k_r} =$	$\frac{z-2}{z+2}$		0.4286	

Script Matlab pentru calcularea valorilor elementelor:

z1 = 15;z2 = 22;n1 = 2160; n2 = n1*abs(z1/z2); %turatia motorului de antrenare L = 250; %mmn = 1; % numarul de antrenori z = 5; %numarul de canale omega1 = pi*n2/30; lambda = sin(pi/z);R1 = L*lambda; %mm tm = pi*(1-2/z)/omega1;tr = pi*(1+2/z)/omega1;T = 2*pi/omega1;km = tm/T;kr = tr/T; k = km/kr;

5. Desen mecanism

Mecanism echivalent:

6. Diagrama de variație a vitezei unghiulare și a accelerației unghiulare

$$\varphi_2 = f(\varphi_1) = arctg(\frac{\lambda * sin\varphi_1}{1 - \lambda * cos\varphi_1})$$

$$\omega_2 = f(\phi_1) = \frac{\lambda*(\cos\phi_1 - \lambda)}{1 - 2*\lambda*\cos\phi_1 + \lambda^2} * \omega_1$$

- cu steluța roșie a fost figurată $\omega_{2\max} = \frac{\lambda}{1-\lambda} * \omega_1$, pentru $\varphi_1 = 0$

$$\epsilon_2 = f(\phi_1) = -\frac{\lambda*(1-\lambda^2)*\sin\phi_1}{(1-2*\lambda*\cos\phi_1+\lambda^2)^2}* \ \omega_1^2$$

- cu steluța roșie a fost figurată $\epsilon_2=0$, pentru $\phi_1=0$
- cu steluța verde a fost figurată accelerația unghiulară la intrarea antenorului în canalele crucii, $\epsilon_2=-\omega_1^2*tg\frac{\pi}{z}$

Script Matlab pentru realizarea graficelor:

```
phi1 = -pi:0.0001:pi;
lambda = 0.5878;
omega1 = 154.2236;
z = 5;
for i=1:length(phi1)
        phi2(i) = atan((lambda*sin(phi1(i)))/(1-lambda*cos(phi1(i))));
        omega2(i) = (lambda*(cos(phi1(i))-lambda))/(1-i)
2*lambda*cos(phi1(i))+lambda^2)*omega1;
        epsilon2(i) = -(lambda*(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i)))/(1-lambda*2)*sin(phi1(i))(1-lambda*2)*sin(phi1(i))(1-lambda*2)*sin(phi1(i))(1-lambda*2)*sin(phi1(i))(1-lambda*2)*sin(phi1(i))(1-lambda*2)*sin(phi1(i))(1-lambda*2)*sin(phi1(i))(1-lambda*
2*lambda*cos(phi1(i))+lambda^2)^2*(omega1^2);
end
plot(phi1,phi2); grid on;
xlabel('\phi_1'), ylabel('\phi_2');
title('Unghiul de rotatie al elementului condus');
figure()
plot(phi1,omega2); grid on;
xlabel('\phi_1'),ylabel('\omega_2');
title('Viteza unghiulara a elementului condus');
omega2max = lambda/(1-lambda)*omega1;
hold on, plot(0,omega2max,'r*');
hold off;
figure()
plot(phi1,epsilon2); grid on;
xlabel('\phi_1'),ylabel('\epsilon_2');
title('Acceleratia unghiulara a elementului condus');
hold on, plot(0,0,r^*);
epsilon2intrare = -omega1^2*tan(pi/z);
plot(pi/50,epsilon2intrare, 'g*');
```

Bibliografie

Materialele furnizate de profesorul îndrumător întru realizarea acestui proiect.