The Complexity of Model Checking Multi-Stack Systems

Benedikt Bollig¹ Dietrich Kuske² Roy Mennicke²

¹LSV, CNRS and ENS de Cachan, France

²Ilmenau University of Technology, Germany

Multiply Nested Words

Concurrent programs with recursive procedure calls can be modelled by pushdown automata with multiple stacks.

An execution of a multi-stack system can be considered as a word with multiple nesting relations.

Each edge of a nesting relation relates a push (procedure call) with its matching pop (return).

Consider the following 2-nested word:

The first (second) nesting relation is represented by the upper (lower) edges.

Example Modalities

Matching Call: $P_s \varphi$ (where s is a stack) (expresses that φ holds at the matching call position)

Existential Until: $\varphi \text{ EU } \psi$ (there exists a path such that φ holds until ψ holds)

 $\varphi \, \mathsf{EU} \, \psi$ holds at the minimal position

MSO-definable Temporal Logics

We consider all temporal logics whose modalities are MSO-definable, based on the atomic formulas:

$$P_a(x) \mid x \lessdot y \mid x \prec_s y \mid x = y \mid x \in Z$$

 $\mid \operatorname{call}_s(x) \mid \operatorname{return}_s(x) \mid \min(x) \mid \max(x)$

Modality is $M\Sigma_n$ -definable if it is definable by a formula

$$\exists \overline{Z}_1 \forall \overline{Z}_2 \dots \exists / \forall \overline{Z}_n \colon \psi$$

where ψ is a first-order formula (\overline{Z}_i are tuples of set variables)

Example Modalities Continued

Matching Call: $P_s \varphi$

(expresses that φ holds at the matching call position)

$$\llbracket \mathsf{P}_s \rrbracket(Z_1, x) = \exists y \, (y \prec_s x \land y \in Z_1)$$

Existential Until: $\varphi EU \psi$

(there exists a path such that φ holds until ψ holds)

$$[\![\mathrm{EU}]\!](Z_1, Z_2, x) = \exists P \left[\begin{array}{c} P \cap Z_2 \neq \emptyset \land P \subseteq Z_1 \cup Z_2 \land x \in P \\ \land \forall y \in P \ (x = y \lor \exists z \colon (z \in P \land \varphi(z, y))) \end{array} \right]$$

where $\varphi(z,y) = z \lessdot y \lor z \prec_1 y \lor z \prec_2 y \lor \dots$

Phase-Boundedness (La Torre et al. '07)

Phase: interval in which all returns refer to the same stack

 $\tau\text{-phase}$ nested word: can be divided into τ many phases

example nested word is a 4-phase NW; it is no 3-phase nested word since no two of the positions 2, 6, 8, and 10 can belong to the same phase

Bounded Satisfiability Problem of a temporal logic TL

Input: temporal formula F from TL and phase bound $\tau \in \mathbb{N}$ Question: Is there a τ -phase nested word satisfying F?

decidable in EXPTIME if phase bound τ is fixed (Bollig, Cyriac, Gastin, Zeitoun '11)

Upper Bound: NWs to Trees (La Torre et al.)

2-phase 2-nested word ν :

Tree t_{ν} representing ν :

Theorem (La Torre, Madhusudan, and Parlato '07)

From $\tau \in \mathbb{N}$, one can construct in 2-EXPTIME a tree automaton recognizing the set of all tree representations of τ -phase nested words.

Upper Bound: From Formulas to Tree Automata

Given: $\varphi(x_1, \ldots, x_k, Z_1, \ldots, Z_\ell)$ MSO-formula and $\tau \in \mathbb{N}$; Goal: construct a "small" tree automaton \mathcal{A} such that $\nu, x_1, \ldots, x_k, Z_1, \ldots, Z_\ell \models \varphi \iff (t_{\nu}, x_1, \ldots, x_k, Z_1, \ldots, Z_\ell) \in L(\mathcal{A})$

For this: construct tree automata for all (negated) atomic formulas in space polynomial in τ

Quite easy for:

Also easy: transforming their negations into automata

La Torre, Madhusudan, Parlato '07: $x \le y$

We have $\neg(x \lessdot y)$ iff

- $y \le x$ or
- there exists z such that x < z < y.

Standard automata techniques: $\neg(x \lessdot y)$

Similarly: $\neg \max(x)$

Remaining: $x \le y$ and $\max(x)$

Recovering the direct successor relation is quite difficult.

Upper Bound: Characterizing \leq

New characterisation of the order relation $\leq = (<)^*$ of a nested word ν in the tree t_{ν} :

phase word pw(v) of a node v: sequence of the phases on the path from the root of t_{ν} to v where repetitions are deleted

strict partial order \sqsubseteq : $s = (s_1, \ldots, s_m) \sqsubseteq t = (t_1, \ldots, t_n)$ if and only if

- \bullet $s_m < t_n$ or
- $s_m = t_n \text{ and } (s_1, \dots, s_{m-1}) \supset (t_1, \dots, t_{n-1}).$

For instance: $(1,2,4) \sqsubset (1,5)$ and therefore $(1,2,4,6) \sqsupset (1,5,6)$.

Upper Bound: Characterizing \leq

Lemma

Let ν be a nested word and x, y be positions. Then x < y iff

- (1) $pw(x) \sqsubset pw(y)$
- (2) pw(x) = pw(y) and x is a predecessor of y in t_{ν}
- (3) pw(x) = pw(y) and there exist positions z, x', y' such that $x' \neq y'$, x' and y' are children of z, x' is a predecessor of x and y' one of y, and x' is left child of $z \iff (|pw(x)| |pw(z)| \text{ even iff } x' \text{ and } y' \text{ belong to the same phase})$

This allows us to construct tree automata for $x \leq y$ and $\max(x)$ in polynomial space.

We save one exponent timewise compared to La Torre, Madhusudan, Parlato.

Upper Bound

Theorem

A temporal formula ${\cal F}$ can be transformed in polynomial time into an equivalent formula

$$\psi = \exists \overline{Z}(\neg \psi_1(\overline{Z}) \land \forall x \, \psi_2(x, \overline{Z}))$$

such that ψ_i is of the form $\exists \overline{Z}_1 \forall \overline{Z}_2 \dots \exists / \forall \overline{Z}_{n+1} : \varphi$ where φ is quantifier-free.

Proof uses Hanf's locality principle and exploits the fact that every position has at most one preceding (resp. succeeding, matching return, and matching call) position

Theorem

Let TL be some $M\Sigma_n$ -definable temporal logic. The bounded satisfiability problem of TL is in (n+2)-EXPTIME.

Lower Bound: Labeled Grids

Theorem

For every n > 0, there exists an $\mathsf{M}\Sigma_n$ -definable temporal logic TL^G over labeled grids such that the following problem is $n\text{-}\mathsf{EXPSPACE}$ -hard:

Input: temporal formula F from TL^G and $m \in \mathbb{N}$

Question: Is there a labeled grid with m columns satisfying F?

Proof idea: let M be Turing machine solving an n-EXPSPACE-complete problem; reduce the word problem of M to the bounded satisfiability problem of some $M\Sigma_n$ -definable temporal logic over labeled grids

Core of the proof: encoding of large counters using formulas of low monadic quantifier alternation depth (cf. Kuske and Gastin '10, Matz '02)

Lower Bound: Representing Grids by NWs

Labeled grid G over alphabet Γ :

Representation of G as 2-nested word ν_G over $\Gamma \uplus \{\bot\}$:

If G has exactly m columns, ν_G can be divided into (2m-2) phases.

Theorem

For all n > 0, there is an $M\Sigma_n$ -definable temporal logic whose bounded satisfiability problem is n-EXPSPACE-hard.

Conclusion

bounded satisfiability problem of every $\mathsf{M}\Sigma_n\text{-definable temporal logic is solvable in <math display="inline">(n+2)\text{-EXPTIME}$

for each level n, there exists an $\mathsf{M}\Sigma_n$ -definable temporal logic whose bounded satisfiability problem is n-EXPSPACE-hard

Future Work:

- close the gap between the lower and upper bounds
- consider other under-approximation concepts for nested words (like bounded split-width recently introduced by Cyriac, Gastin, and Narayan Kumar)
- investigate the complexity of model checking message-passing automata using MSO-definable temporal logics