Cycle meeting – May 12, 2022

Rain-induced surface velocity variations of alpine glaciers monitored with a continuous GPS network

Anuar Togaibekov, Andrea Walpersdorf, Florent Gimbert

Glacier flow

Nanni et al., 2020

Hoffman et al., 2017

Transient rain water input effect

- How does water behave in the subglacial drainage system?
- Effect on changes in horizontal velocity?
- Effect on changes in vertical displacement?

Photo credit: Andrea Walpersdorf

Photo credit: Luc Moreau

Rainfall

Rainfall

Surface velocity

Rainfall

Surface velocity

Subglacial velocity

Rainfall

Surface velocity

Subglacial velocity

Vertical uplift

Rainfall

Surface velocity

Subglacial velocity

Vertical uplift

Water discharge

Rainfall

Surface velocity

Subglacial velocity

Vertical uplift

Water discharge

Seismic power

Speed-up events in October 2019

Speed-up events in October 2019

Velocity pulse propagation

SUMMARY

- The same mechanism does not entirely control horizontal acceleration and uplift
- Conditions for horizontal acceleration:
- Rate of water flux rather than volume
- Efficiency (connectivity) of subglacial drainage system
- Uplift is modulated by the water input in the system which is associated with cavity expansion
- Pulse propagation velocity ranges between 00.5 and 0.13 m s⁻¹ suggesting that the subglacial hydrologic system is distributed and inefficient

