Review

Correction and Supplement

Corrections

Book and slide

- Book (Ch. 7, pp 204) 如如果是 即生行
 - Specificity = TN/(FP + TN) = True negative rate = 1 False positive rate
 - Sensitivity = TP/(TP + FN) = True positive rate
- Slide (Ch. 7, pp 29)

expected profit =
$$p(\mathbf{p})$$
 $[p(\mathbf{Y} \mid \mathbf{p}) \cdot b(\mathbf{Y}, \mathbf{p}) + p(\mathbf{N} \mid \mathbf{p}) \cdot c(\mathbf{N}, \mathbf{p})] + p(\mathbf{n}) \cdot [p(\mathbf{N} \mid \mathbf{n}) \cdot b(\mathbf{N}, \mathbf{n}) + p(\mathbf{Y} \mid \mathbf{n}) \cdot c(\mathbf{Y}, \mathbf{n})]$

Text book (pp. 204)

+ *FP*), which is the accuracy over the cases predicted to be positive. The *F-measure* is the harmonic mean of precision and recall at a given point, and is:

$$F\text{-measure} = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

Practitioners in many fields such as statistics, pattern recognition, and epidemiology speak of the sensitivity and specificity of a classifier:

Sensitivity
$$=$$
 $TN / (TN + FP) =$ True negative rate = 1 - False positive rate Specificity $=$ $TP / (TP + FN) =$ True positive rate

You may also hear about the *positive predictive value*, which is the same as precision.

Accuracy, as mentioned before, is simply the count of correct decisions divided by the total number of decisions, or:

$$Accuracy = \frac{TP + TN}{P + N}$$

Swets (1996) lists many other evaluation metrics and their relationships to the confusion matrix.

Slide (Ch. 7, pp. 29)

- We now can deal with our motivating example
 - Instead of computing accuracies for the competing model, we would compute *expected values*
- Furthermore, we can compare the two models easily for various distributions
 - For each distribution, we can simply replace the *priors*
 - (ex) A unbalanced distribution: $p(\mathbf{p}) = 0.7$, $p(\mathbf{n}) = 0.3$
 - (ex) A balanced distribution: $p(\mathbf{p}) = 0.5$, $p(\mathbf{n}) = 0.5$

expected profit =
$$p(\mathbf{p}) \left[p(\mathbf{Y} \mid \mathbf{p}) \cdot b(\mathbf{Y}, \mathbf{p}) + p(\mathbf{N} \mid \mathbf{p}) \cdot c(\mathbf{N}, \mathbf{p}) \right] + p(\mathbf{n}) \cdot \left[p(\mathbf{N} \mid \mathbf{n}) \cdot b(\mathbf{N}, \mathbf{n}) + p(\mathbf{Y} \mid \mathbf{n}) \cdot c(\mathbf{Y}, \mathbf{n}) \right]$$

The other factors in the equation will **not** change

Supplements

Ch.9: Advantages of Naive Bayes (1/2)

- It is a very simple classifier
 - Yet it still takes all the feature evidence into account
- It is very efficient in terms of storage space and execution time
 - **Training**: consists only of storing p(c) and $p(e_i \mid c)$ for each c and e_i
 - p(c): we count the proportions of examples of class c among all examples
 - $p(e_i \mid c)$: we count the proportion of examples in class c for which e_i appears
 - Classification: requires only simple multiplications of them
- In spite of its simplicity and the strict independence assumption, it performs surprisingly well on many real-world tasks
 - Because the violation of the independence assumption tends not to hurt classification performance
 - What if two pieces of evidence are actually NOT independent and we treat them as being independent? → double counting of the evidence
 - However, double counting will not tend to hurt us (i.e., probability will be simply overestimated)
 - E.g.) $P(AB) = P(A) \times P(B|A)$ vs. $P(AB) = P(A) \times P(B)$

Ch. 7: Alternative Calculation of EV (4/4)

- We now can deal with our motivating example
 - Instead of computing accuracies for the competing model, we would compute *expected values*
- Furthermore, we can compare the two models easily for various distributions
 - For each distribution, we can simply replace the *priors*
 - (ex) A unbalanced distribution: $p(\mathbf{p}) = 0.7$, $p(\mathbf{n}) = 0.3$
 - (ex) A balanced distribution: $p(\mathbf{p}) = 0.5$, $p(\mathbf{n}) = 0.5$

expected profit =
$$p(\mathbf{p}) \begin{bmatrix} p(\mathbf{Y} \mid \mathbf{p}) \cdot b(\mathbf{Y}, \mathbf{p}) + p(\mathbf{N} \mid \mathbf{p}) \cdot c(\mathbf{N}, \mathbf{p}) \end{bmatrix} + p(\mathbf{n}) \begin{bmatrix} p(\mathbf{N} \mid \mathbf{n}) \cdot b(\mathbf{N}, \mathbf{n}) + p(\mathbf{Y} \mid \mathbf{n}) \cdot c(\mathbf{Y}, \mathbf{n}) \end{bmatrix}$$

The other factors in the equation will **not** change

Example

Model A

	р	n
Υ	500	200
N	0	300

$$P(Y|p) = 500/500 = 1$$

 $P(N|p) = 0/500 = 0$

$$P(Y|n) = 200/500 = 0.4$$

 $P(N|n) = 300/500 = 0.6$

Idea

	р	n
Υ	100	0
N	0	900

→ Accuracy 100%

	р	n	
Y	TP rate P(Y p)	FP rate P(Y n)	
N	FN rate P(N p)	TN rate P(N n)	

Model A

	р	n
Υ	100	360
N	0	540

$$P(Y|p) = 100/100 = 1$$

 $P(N|p) = 0/100 = 0$

$$P(Y|n) = 360/900 = 0.4$$

 $P(N|n) = 540/900 = 0.6$

expected profit =
$$p(\mathbf{p})$$
 $[p(\mathbf{Y} \mid \mathbf{p})] b(\mathbf{Y}, \mathbf{p}) + [p(\mathbf{N} \mid \mathbf{p})] c(\mathbf{N}, \mathbf{p})] + p(\mathbf{n}) [p(\mathbf{N} \mid \mathbf{n})] b(\mathbf{N}, \mathbf{n}) + [p(\mathbf{Y} \mid \mathbf{n})] c(\mathbf{Y}, \mathbf{n})]$

Ch. 7: Problems with Unbalanced Classes (2/3)

- Even when the skew is not so great, accuracy can be greatly misleading
- Example: consider again our cellular-churn problem
 - Suppose A and B build their own churn prediction models
 - In a test set of 1,000 customers, the confusion matrices are as follows

- A's model: correctly classifies 100% of "churn" but only 60% of "not churn"
- B's model: correctly classifies 100% of "not churn" but only 60% of "churn"
- Though they operate very differently, their accuracy are the same as 80%

Ch. 7: Problems with Unbalanced Classes (3/3)

Furthermore, their accuracy changes with different test sets

Example

	р	n	
Y	TP rate P(Y p)	FP rate P(Y n)	
N	FN rate P(N p)	TN rate P(N n)	

		р	n
Model A	Υ	500	200
(Accuracy 80%)	Ν	0	300

Model A Y 100 360
N 0 540

$$TPR = 100/100 = 1$$

 $FNR = 0/100 = 0$

n

Model **B** Y **60** 0 N 40 **900**

Accuracy: 96% = 960/1000

Accuracy: 64% = 640/1000