CS 70 Discrete Mathematics and Probability Theory

 $Summer \ 2022 \quad \hbox{Jingjia Chen, Michael Psenka and Tarang Srivastava}$

DIS 4A

1 Counting on Graphs + Symmetry

- (a) How many ways are there to color the faces of a cube using exactly 6 colors, such that each face has a different color? Note: two colorings are considered the same if one can be obtained from the other by rotating the cube in any way.
- (b) How many ways are there to color a bracelet with *n* beads using *n* colors, such that each bead has a different color? Note: two colorings are considered the same if one of them can be obtained by rotating the other.
- (c) How many distinct undirected graphs are there with *n* labeled vertices? Assume that there can be at most one edge between any two vertices, and there are no edges from a vertex to itself. The graphs do not have to be connected.
- (d) How many distinct cycles are there in a complete graph K_n with n vertices? Assume that cycles cannot have duplicated edges. Two cycles are considered the same if they are rotations or inversions of each other (e.g. (v_1, v_2, v_3, v_1) , (v_2, v_3, v_1, v_2) and (v_1, v_3, v_2, v_1) all count as the same cycle).

CS 70, Summer 2022, DIS 4A

2 The Count

Z	The Count
(a)	The Count is trying to choose his new 7-digit phone number. Since he is picky about his numbers he wants it to have the property that the digits are non-increasing when read from left to right. Fo example, 9973220 is a valid phone number, but 9876545 is not. How many choices for a new phone number does he have?
(b)	Now instead of non-increasing, they must be strictly decreasing. So 9983220 is no longer valid, while
	9753210 is valid. How many choices for a new phone number does he have now?
(c)	The Count now wants to make a password to secure his phone. His password must be exactly 10 digitalong and can only contain the digits 0 and 1. On top of that, he also wants it to contain at least five consecutive 0's. How many possible passwords can he make?

CS 70, Summer 2022, DIS 4A 2

3 Captain Combinatorial

Please provide combinatorial proofs for the following identities.

(a)
$$\binom{n}{i} = \binom{n}{n-i}$$
.

(b)
$$\sum_{i=1}^{n} i \binom{n}{i}^2 = n \binom{2n-1}{n-1}$$
. (Hint: Part (a) might be useful.)

(c)
$$\sum_{i=0}^{n} {n \choose i} \sum_{j=0}^{n-i} {n-i \choose j} = 3^n$$
. (Hint: consider the number of ways of splitting *n* elements into 3 groups.)

4 Inclusion and Exclusion

What is the total number of positive integers strictly less than 100 that are also coprime to 100?