ITAM

Departamento de Estadística

Inferencia Estadística— Examen de Prueba 2 Parte Abierta

- 1. Suponga que $X_1, ..., X_n$ es una m.a. con $f_{X_i}(x_i|\theta) = \theta x_i^{\theta-1} \mathbb{I}_{(0,1)}(x_i), \ \theta > 0$. Se desea probar $H_0: \theta = \theta_0$ vs $H_1: \theta = \theta_1$ con $\theta_1 > \theta_0$
 - (a) Mediante el lema de Neyman-Pearson, demuestre que la región de rechazo correspondiente la prueba uniformemente más potente es de la forma $RR = \left\{ -\sum_{i=1}^{n} \ln(X_i) \leq \lambda \right\}$.
 - (b) Demuestre que para una prueba de tamaño α , el valor crítico de la región de rechazo del inciso anterior es $\lambda = \frac{\chi^2_{2n,(1-\alpha)}}{2\theta_0}$. [Hint: Demuestra que $-ln(X_i) \sim Exp(\frac{1}{\theta})$ y recuerda $T \sim Gamma(\alpha, \beta)$ entonces $\frac{2T}{\beta} \sim \chi^2_{2n}$]
- 2. Suponga que $X_1, ..., X_n$ es una m.a. de una población cuya densidad es una $Bernoulli(\theta)$ i.e $p(x|\theta) = \theta^x (1-\theta)^{1-x}$.
 - (a) Verifique que el EMV para θ es $\hat{\theta} = \sum_{i=1}^{n} \frac{X_i}{n}$
 - (b) Demuestre que el EMV $\hat{\theta}$ del inciso anterior es un estimador eficiente de θ .[Hint: Use la Cota Inferior de Crao Ramer= $\frac{[g'(\theta)]^2}{I_{\tilde{X}}}$ donde $I_{\tilde{X}}$ es la información de Fisher]
 - (c) Con base en las propiedades de los EMV's para muestras grandes, encuentre un IC(1 α)x100 % para la varianza de la distribución Bernoulli.
- 3. Suponga que $X_1, ..., X_n$ es una m.a. de una $Exp(\theta)$.
 - (a) Encuentre un IC de 90 % para θ , cuando n=9
 - (b) Sea $\hat{\theta}$ el EMV de θ . Encuentre una función g() tal que $\sqrt{n}[g(\hat{\theta}) g(\theta)]$ siga una distribución N(0,1). Usando este hecho, encuentre un IC al 90 % para θ , cuando $n \to \infty$

4. Sean $X_1,...,X_n$ es una m.a. de una $N(\mu,1)$ y queremos probar $H_0: \mu = \mu_0$ vs $H_1: \mu < \mu_0$. Si $\alpha = P(errortipoI)$ y la región de rechazo está dada por

$$RR = \left\{ x | \bar{x} < \mu_0 + \frac{\Phi^{-1}(\alpha)}{\sqrt{n}} \right\}$$

- (a) Encuentre la función potencia.
- (b) Demuestre que la función potencia es decreciente en μ
- 5. Sean $X_1,...,X_{25}$ es una m.a. de una $U(1,\theta)$ con $\theta>1$. Encuentre la prueba uniformemente más poderosa para $\alpha=0.05$ para probar $H_0:1<\theta\leq 3$ vs $H_1:\theta>3$
- 6. Sea $X_1, ..., X_n$ es una m.a. con $f(x; \theta) \frac{1}{2\theta} e^{|x|/\theta}$ donde $x \in \mathbb{R}$; $\theta > 0$. Encuentre un IC $(1-\alpha)x100\%$ para θ .