Problem §1 Let v_1, \ldots, v_n be a basis for V, and let w_1, \ldots, w_n be another basis for V.

(a) Prove that for any $j \in \{1, ..., n\}$, there exists an $i \in \{1, ..., n\}$ such that

$$v_1,\ldots,\hat{v}_i,\ldots,v_n,w_j$$

is a basis.

(b) Prove that for any $i \in \{1, ..., n\}$, there exists a $j \in \{1, ..., n\}$ such that

$$v_1,\ldots,\hat{v}_i,\ldots,v_n,w_i$$

is a basis.

Solution:

(a) Let w_j be any basis vector in the basis w_1, \ldots, w_n , and create the list

$$w_j, v_1, \ldots, v_n$$
.

Since v_1, \ldots, v_n spans V, so does w_j, v_1, \ldots, v_n ; additionally, the list is linearly dependent, since $w_j \in \text{span}(v_1, \ldots, v_n)$. Consider

$$a_j w_j + a_1 v_1 + \ldots + a_n v_n = 0,$$

and let i be the largest value in $\{j, 1, ..., n\}$ such that $a_i \neq 0$.

We know that $i \neq j$, since otherwise the list would be linearly independent, a contradiction. Thus $i \in \{1, ..., n\}$. By the Linear Dependence Lemma, $v_i \in \text{span}(w_j, v_1, ..., v_{i-1})$, and

$$\operatorname{span}(w_j, v_1, \dots, \hat{v}_i, \dots, v_n) = \operatorname{span}(w_j, v_1, \dots, v_n).$$

Since every spanning set with length $n = \dim V$ is a basis for V, and $w_j, v_1, \ldots, \hat{v}_i, \ldots, v_n$ has length n, we have that

$$v_1, \ldots, \hat{v}_i, \ldots, v_n, w_i$$

is a basis, as required.

(b) Let v_i be any basis vector in the basis v_1, \ldots, v_n , and form the list

$$v_1,\ldots,\hat{v}_i,v_n,w_1,\ldots,w_n.$$

This list spans V (since w_1, \ldots, w_n form a basis for V) and is linearly dependent. We then proceed with an iterative step to remove elements from the list: in order from j=1 to (n-1)+n, for $w_j \in v_1, \ldots, \hat{v}_i, \ldots, v_n, w_1, \ldots, w_n$, if $w_j \in \operatorname{span}(v_1, \ldots, \hat{v}_i, \ldots, v_n, \ldots, w_{j-1})$, then remove it from the list. Since $v_1, \ldots, \hat{v}_i, \ldots, v_n$ is linearly independent, none of the v's are removed. Now, we have two options with w_j from j=1 to n:

- (a) If $w_j \in \text{span}(v_1, \dots, \hat{v}_i, \dots, v_n)$, then we delete w_j from the list and proceed to w_{j+1} (the span is unchanged, by the Linear Dependence Lemma).
- (b) If $w_j \notin \operatorname{span}(v_1, \dots, \hat{v}_i, \dots, v_n)$, then the list $v_1, \dots, \hat{v}_i, \dots, v_n, w_j$ is a linearly independent list of length n. Since every linearly independent list with length $n = \dim V$ is a basis, any w_k with k > j is in the span of $v_1, \dots, \hat{v}_i, \dots, v_n, w_j$, and so we can remove every w_k .

Observe also that we cannot remove every w_j ; at least (and at most, as shown above) one of the w_j 's must not be in the span of $v_1, \ldots, \hat{v}_i, \ldots, v_n$. Otherwise, the final list $v_1, \ldots, \hat{v}_i, \ldots, v_n$ does not span V, a contradiction to the requirement of not changing the span. Hence, after removing any v_i , we are left with a basis $v_1, \ldots, \hat{v}_i, \ldots, v_n, w_j$ for some $w_j \in \{w_1, \ldots, w_n\}$, as required.

Problem §2 Let V, W be vector spaces. Suppose v_1, \ldots, v_m are linearly independent in V and suppose w_1, \ldots, w_m are any vectors in W. Prove that there exists a linear map $T: V \to W$ such that

$$T(v_1) = w_1, \dots, T(v_m) = w_m.$$

Solution: Let v_1, \ldots, v_m be linearly independent in V, and extend the list to a basis $v_1, \ldots, v_m, u_1, \ldots, u_n$. Define a linear map

$$T(a_1v_1 + \ldots + a_mv_m + b_1u_1 + \ldots + b_nu_n) = a_1w_1 + \ldots + a_mw_m.$$

(All of the u_i 's are sent to 0). Because $v_1, \ldots, v_m, u_1, \ldots, u_n$ is a basis, T is a function, as each element of V can be uniquely written in the form $v = a_1v_1 + \ldots + a_mv_m + b_1u_1 + \ldots + b_nu_n$. By taking $a_i = 1$ and the other a's as zero, we have that

$$T(v_i) = w_i$$
.

Now, take any two vectors $u, v \in V$ and any two scalars $\lambda_1, \lambda_2 \in \mathbb{F}$. We have

$$T(\lambda_{1}u + \lambda_{2}v) = T((\lambda_{1}a_{1}v_{1} + \dots + \lambda_{1}a_{m}v_{m} + \lambda_{1}b_{1}u_{1} + \dots + \lambda_{1}b_{n}u_{n}) + (\lambda_{2}c_{1}v_{1} + \dots + \lambda_{2}c_{m}v_{m} + \lambda_{2}d_{1}u_{1} + \dots + \lambda_{2}d_{n}u_{n}))$$

$$= (\lambda_{1}a_{1}w_{1} + \dots + \lambda_{1}a_{m}w_{m}) + (\lambda_{2}c_{1}w_{1} + \dots + \lambda_{2}c_{m}w_{m})$$

$$= \lambda_{1}(a_{1}w_{1} + \dots + a_{m}w_{m}) + \lambda_{2}(c_{1}w_{1} + \dots + c_{m}w_{m})$$

$$= \lambda_{1}T(a_{1}v_{1} + \dots + a_{m}v_{m} + b_{1}u_{1} + \dots + b_{n}u_{n}) + \lambda_{2}T(c_{1}v_{1} + \dots + c_{m}v_{m} + d_{1}u_{1} + \dots + d_{n}u_{n})$$

$$= \lambda_{1}T(u) + \lambda_{2}T(v).$$

Thus T preserves linearity and homogeneity, and so T is a linear map (note that T is very much not injective! Going from the 2nd last step to the 3rd last step is guaranteed, but the reverse is very much not guaranteed.)

Problem §3 Let V, W be vector spaces over \mathbb{F} , and suppose V is finite-dimensional with dim V > 0. Let $w \in W$ be any vector. Prove that there exists a linear map $T: V \to W$ such that

$$range(T) = span(w)$$
.

Solution: Let $n = \dim V$. Since n > 0, there exists a length-n basis v_1, \ldots, v_n of V. Define a linear map

$$T(a_1v_1 + \ldots + a_nv_n) = a_1w$$
 [all of the $v_i, j > 1$ are mapped to 0]

Since v_1, \ldots, v_n is a basis of V, each $v \in V$ has a unique representation, and so T is a valid function. Moreover, we see that

range(T) =
$$\{T(v) \mid v \in V, v = a_1v_1 + \ldots + a_nv_n, \ a_1, \ldots, a_n \in \mathbb{F}, v_1, \ldots, v_n \in V\}$$

= $\{a_1w \mid a_1 \in \mathbb{F}\}$
= span(w),

as required. Now, take any two vectors $u, v \in V$ and any two scalars $\lambda_1, \lambda_2 \in \mathbb{F}$. We have

$$T(\lambda_1 u + \lambda_2 v) = T(\lambda_1 a_1 v_1 + \ldots + \lambda_n a_n v_n + \lambda_2 b_1 v_1 + \ldots + \lambda_2 b_n v_n)$$

$$= \lambda_1 a_1 w + \lambda_2 b_1 w$$

$$= \lambda_1 T(a_1 v_1 + \ldots + a_n v_n) + \lambda_2 T(b_1 v_1 + \ldots + b_n v_n)$$

$$= \lambda_1 T(u) + \lambda_2 T(v).$$

Thus T preserves linearity and homogeneity, and so T is a linear map (much like problem 2, T is very much not injective).