

Universidade Federal de Ouro Preto - UFOP

Instituto de Ciências Exatas e Biológicas – ICEB

Departamento de Computação - DECOM

TUTORIA DE PROGRAMAÇÃO DE COMPUTADORES I BCC701 Aula 11 Matriz

<u>Observação</u>: façam os exercícios em duas versões: sem o uso de funções, conforme os exemplos de execução; e usando as funções da apostila da disciplina, capítulo 7.

Exercício 1

Escreva um programa para:

- ler as dimensões de uma matriz quadrada, **n** linhas e **n** colunas;
- ler os elementos inteiros da matriz, um de cada vez;
- calcular o somatório dos elementos da diagonal <u>principal</u>;
- calcular o produtório dos elementos da diagonal <u>secundária</u>;
- calcular o produtório dos elementos <u>acima</u> da diagonal principal;
- descobrir quantos elementos s\u00e3o nulos abaixo da diagonal principal;

Considerando a matriz Mat, teremos a saída no exemplo de execução abaixo:

Mat = [1102121376903404]

Exercício 1 - Operações com Matriz
Qual a dimensão da matriz (n) ? 4
Leitura dos elementos da matriz:
Elemento [0][0]: 1
Elemento [0][1]: 1
Elemento [0][2]: 1
Elemento [0][3]: 2
Elemento [1][0]: 0
Elemento [1] [1]: 2
Elemento [1][2]: 1
Elemento [1][3]: 3
Elemento [2][0]: 7
Elemento [2][1]: 6
Elemento [2][2]: 3
Elemento [2][3]: 4
Elemento [3][0]: 9
Elemento [3][1]: 0
Elemento [3][2]: 0
Elemento [3][3]: 4
Resultados
Somatório (diagonal principal): 10.00
Produtório (diagonal secundária): 108.00
Produtório (acima da diagonal principal): 24.00
Nulos (abaixo da diagonal principal): 3

Universidade Federal de Ouro Preto - UFOP

Instituto de Ciências Exatas e Biológicas – ICEB

Departamento de Computação - DECOM

Exercício 2

Escreva um programa para:

- ler uma matriz qualquer, de elementos inteiros, todos os elementos de uma única vez;
- descobrir as dimensões da matriz: n linhas e n colunas;
- solicitar ao usuário o valor de uma constante inteira k;
- solicitar ao usuário o valor de um índice referente a uma coluna da matriz, um valor c;
- multiplicar toda a coluna **c** pela constante **k**;
- imprimir a matriz resultante;
- não é necessário validar as entradas de dados.

Considerando a matriz **A**, temos a seguinte execução:

$$A = [125691372483]$$

Exer	cício 2 -	Modifica	ção de uma Coluna da Matriz					
Digite toda a matriz de inteiros: >>> 1, 2, 3, 4; 5, 6, 7, 8; 9, 1, 2, 3 Digite uma constante: 10 Índice de uma coluna: 2 Resultados								
Matriz	Resultant	 te:						
1.00	2.00	30.00	4.00					
5.00	6.00	70.00	8.00					
9.00	1.00	20.00	3.00					

Universidade Federal de Ouro Preto – UFOP Instituto de Ciências Exatas e Biológicas – ICEB

Departamento de Computação - DECOM

Exercício 3

Seja a matriz **M**, definida por um comando de atribuição:

$$M = [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]$$

Codifique um programa que gere um vetor onde cada elemento, na posição **i**, representa:

- a) o produtório dos elementos da linha i de M, quando i for par;
- b) o somatório dos elementos da linha i de **M**, quando i for ímpar. Logo, a partir de **M**, tem-se o vetor **V**:

$$V = [6, 15, 504, 33]$$

Abaixo um exemplo de execução do programa.

Ez	ercío	cio 3 -	Análi	se das	Linhas	da	Matriz		
			Res	ultado	s				
Matri	 z:								
	2								
4	5	6							
7	8	9							
10	11	12							
Vetor Resultante:									
[(5 15	5 504	33]					

Universidade Federal de Ouro Preto – UFOP Instituto de Ciências Exatas e Biológicas – ICEB

Departamento de Computação - DECOM

Exercício 4

Uma imagem em preto e branco pode ser digitalizada para utilização em um computador. Desta forma, a imagem pode ser representada por uma matriz de zeros e uns: **0** representa a cor "preta" e **1** representa a cor "branca". Por exemplo, a matriz representa a imagem de um triângulo:

0	0	0	0	1	0	0	0	0
0	0	0	1	0	1	0	0	0
0	0	1	0	0	0	1	0	0
0	1	0	0	0	0	0	1	0
1	1	1	1	1	1	1	1	1

Escreva um programa que leia uma matriz que representa uma imagem, através da leitura de todos seus elementos, de uma única vez. O programa obterá o negativo desta imagem, ou seja, trocará os zeros por uns e vice-versa:

1	1	1	1	0	1	1	1	1
1	1	1	0	1	0	1	1	1
1	1	0	1	1	1	0	1	1
1	0	1	1	1	1	1	0	1
0	0	0	0	0	0	0	0	0

A seguir, um exemplo de execução do programa:

Universidade Federal de Ouro Preto – UFOP Instituto de Ciências Exatas e Biológicas – ICEB

Departamento de Computação - DECOM

Ex	Exercício 4 - Imagem em Preto e Branco										
>>> [[Digite a matriz da imagem, todos os elementos: >>> [[0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 1, 0, 0, 0], [0, 0, 1, 0, 0, 0, 1, 0, 0], [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] Resultados										
	RESULCACOS										
Imagem: 0.00	Imagem: 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00										
0.00	0.00	0.00	1.00	0.00	1.00	0.00	0.00	0.00			
0.00	0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00			
0.00	1.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00			
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
 Negativ	<i>r</i> o:										
1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00			
1.00	1.00	1.00	0.00	1.00	0.00	1.00	1.00	1.00			
1.00	1.00	0.00	1.00	1.00	1.00	0.00	1.00	1.00			
1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00			
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			