Course3_Module6

1) Model Interpretability

1.1. Tổng quan & phân loại mô hình

• Tự diễn giải (self-interpretable): tuyến tính (Linear), cây quyết định (Tree), KNN... vì cấu trúc/luật quyết định đơn giản, có thể đọc được.

• Khó diễn giải (black-box): ensemble lớn (RF/GBM), SVM nhân kernel, deep nets... cần post-hoc để giải thích.

Hai nhóm phương pháp: intrinsic (dùng trực tiếp trên mô hình tự diễn giải) và post-hoc/model-agnostic (giải thích mô hình bất kỳ sau khi huấn luyện).

1.2. Permutation Feature Importance (PFI) — "xáo trộn để đo tầm quan trọng"

Ý tưởng: nếu ta **xáo trộn** (permute) giá trị một đặc trưng $x_j \rightarrow$ phá vỡ quan hệ với nhãn, **độ đo chất lượng** của mô hình giảm bao nhiều chính là **độ quan trọng** của x_j .

Quy trình (step-by-step):

- 1. Chọn thước đo hiệu năng $m(\cdot)$ (ví dụ: accuracy/AUC/ R^2) và tập kiểm tra D.
- 2. Tính điểm gốc: $s_0=m(f,D)$.
- 3. Với từng đặc trưng j:
 - Lặp B lần: hoán vị ngẫu nhiên cột $x_j o$ nhận $D_{(j)}^{(b)}$; tính $s_j^{(b)} = m(f,D_{(j)}^{(b)}).$
 - PFI: $\mathrm{Imp}(j) = s_0 \frac{1}{B} \sum_{b=1}^B s_j^{(b)}$.
- 4. Xếp hạng (giá trị càng lớn càng quan trọng).

Biến thể conditional PFI (xáo trong từng "tầng" điều kiện) giúp giảm sai lệch khi đặc trưng tương quan mạnh.

City Development	Company Size	Company	Education	Experience	Prediction	Target
		Туре			0.1	0
0.92	< 10	Pvt Ltd	Phd	10 years	0.9	1
0.54	100 - 500	Funded Startup	Graduate	5 years		

Permutating feature values					Increasing Prediction Errors	
City Development	Company Size	Company	Education	Experience	Prediction	Target
		Туре			0.15	0
0.75	< 10	Pvt Ltd	Phd	10 years	0.85	1
0.55	100 - 500	Funded Startup	Graduate	5 years	0.65	-

1.3. Partial Dependence Plot (PDP) — "ảnh hưởng biên" của đặc trưng

Ý tưởng: PDP biểu diễn kỳ vọng dự đoán khi quét giá trị một (hoặc hai) đặc trưng quan tâm và **lấy trung bình** qua phần còn lại.

Công thức 1D: với đặc trưng xjx_jxj và tập kiểm tra $\{x^{(i)}\}_{i=1}^n$,

trong đó $x_{\backslash j}^{(i)}$ là vector đặc trưng của mẫu iii **trừ** thành phần j. Lặp nhiều giá trị z để vẽ đường cong PDP.

Quy trình (step-by-step):

- 1. Chọn đặc trưng quan tâm xjx_jxj và lưới giá trị z_1,\dots,z_T .
- 2. Với mỗi z_t , thay $x_j=z_t$ cho **toàn bộ** nnn hàng, tính $\hat{f}_{PD}(z_t)$ theo công thức trên.
- 3. Vẽ $\{(z_t,\hat{f}_{PD}(z_t))\}$. (2D PDP làm tương tự với cặp đặc trưng.)

PDP phù hợp để xem đơn điệu/phi tuyến, nhưng có thể gây hiểu nhầm khi đặc trưng tương quan mạnh; ICE plot giúp soi từng cá thể.

				Experience changes from 0 to 20 (years)	Calculate the average of changed predictions
City Development	Company Size	Company Type	Education	Experience	Prediction 0.11
0.92	< 10	Pvt Ltd	Phd	20	0.76
0.54	100 - 500	Funded Startup	Graduate	20	

1.4. SHAP (SHapley Additive exPlanations) — "chia công bằng" mức đóng góp

Khái niệm: SHAP gán cho mỗi đặc trưng một giá trị đóng góp vào dự đoán f(x), thỏa các tiên đề Shapley từ lý thuyết trò chơi; là khung thống nhất nhiều phương pháp quan trọng hoá trước đó.

Dạng cộng tính:

D,

trong đó ϕ_j là "điểm SHAP" của đặc trưng j cho mẫu xxx, ϕ_0 là kỳ vọng dự đoán. Tính ϕ_j bằng cách **trung bình biên** đóng góp của x_j qua mọi tập con đặc trưng.

Quy trình (ý tưởng):

1. Xác định phân phối nền (background) để lấy kỳ vọng.

- 2. Với mỗi đặc trưng j, tính đóng góp biên giữa có/không có j cho nhiều tập con;
- 3. Lấy **trung bình có trọng số** (theo số phần tử tập con) $\rightarrow \phi_j$. (Thực tế dùng xấp xỉ: TreeSHAP, KernelSHAP...).

1.5. LIME (Local Interpretable Model-Agnostic Explanations) — "mô hình thay thế cục bộ"

Ý tưởng: xung quanh một điểm x, sinh lân cận, gán trọng số theo khoảng cách, rồi khớp một **mô hình đơn giản** (ví dụ tuyến tính hiếm tham số) để **xấp xỉ** fff **cục bộ**.

Hàm mục tiêu (khái quát):

D,

với G là họ mô hình interpretable (linear/rule list), π_x là hạt nhân khoảng cách (kernel) quanh x, $\mathcal L$ đo **độ trung thành cục bộ** (fidelity), Ω phạt độ phức tạp để lời giải "dễ hiểu".

Quy trình (step-by-step):

- 1. Tạo NNN mẫu lân cận quanh xxx; tính $f(\cdot)$ cho từng mẫu.
- 2. Tính trọng số $\pi_x(\cdot)$ theo khoảng cách tới x.
- 3. Khớp ggg (linear/ridge/LASSO) với trọng số π_x .
- 4. Hệ số của g chính là lời giải thích cục bộ cho x.

Global surrogate: khớp một mô hình đơn giản trên toàn bộ dữ liệu để bắt chước black-box; nhưng có thể không trung thành nếu dữ liệu có nhiều cụm/hành vi khác nhau → khi đó ưu tiên local surrogate (LIME).

2) Modeling Unbalanced Classes

2.1. Vấn đề & chỉ số nên dùng

 Mất cân bằng làm accuracy đánh lừa (đoán luôn lớp đa số vẫn cao). Nên dùng AUC/PR-AUC, F1, Cohen's Kappa, cùng Precision/Recall và điểm vận hành trên ROC/PR.

Trade-off: tăng Recall thường giảm Precision → chọn **ngưỡng** theo mục tiêu nghiệp vụ.

2.2. Chiến lược dữ liệu (resampling & trọng số)

(A) Stratified split trước tiên

Giữ tỷ lệ lớp ở train/test/val để đánh giá công bằng.

(B) Oversampling lớp thiểu số

- Random OverSampling: lấy mẫu lặp có hoàn lại từ lớp thiểu số. Dễ dùng, hợp dữ liệu rời rạc.
- **SMOTE/ADASYN:** sinh mẫu tổng hợp giữa điểm thiểu số và láng giềng (SMOTE) hoặc **tự thích nghi** theo độ khó khu vực biên (ADASYN).

SMOTE (minh hoa):

Chọn điểm thiểu số x, chọn láng giềng x_{NN} , sinh $x'=x+\lambda(x_{NN}-x), \lambda \sim U(0,1)$

(C) Undersampling lớp đa số

• NearMiss, Tomek Links, ENN: các kỹ thuật chọn/bỏ điểm đa số để làm ranh giới rõ hơn.

(D) Kết hợp & Ensemble

- SMOTE + Tomek/ENN (làm sạch sau oversample).
- Balanced Bagging (Blagging): bagging với mẫu cân bằng từng bootstrap.

(E) Class weights (nếu mô hình hỗ trợ)

Đặt $w_c \propto rac{1}{{
m freq}(c)}$ để cân bằng **hàm mất mát**, **không** phải sửa dữ liệu.

2.3. Quy trình step-by-step

- 1. Khám phá & phân tích tỷ lệ lớp; quyết định metric phù hợp (F1/PR-AUC).
- 2. Stratified split (train/val/test).
- 3. Chọn **chiến lược dữ liệu**:
 - ít dữ liệu thiểu số → ưu tiên oversampling (Random/SMOTE/ADASYN);
 - dữ liệu rất lớn → cân nhắc undersampling để tiết kiệm tính toán;
 - ranh giới nhiễu → SMOTE+ENN/Tomek để "làm sạch".

- 4. Huấn luyện nhiều mô hình/thiết lập; dùng **CV** để chọn cấu hình tốt theo **AUC/F1**.
- 5. Chọn ngưỡng trên ROC/PR theo mục tiêu (ví dụ tối đa F1 hoặc chi phí FP/FN).
- 6. **Diễn giải** mô hình đã chọn bằng **PFI/PDP/SHAP/LIME** để kiểm định hợp lý nghiệp vụ (feature drift, leakage...).

2.4. Ảnh hưởng điển hình khi resampling

- **Downsampling:** nâng **Recall**, hạ **Precision** khá mạnh (thiểu số được "phóng đại" tầm quan trọng).
- **Upsampling:** Recall vẫn cao hơn Precision nhưng "dịu" hơn so với downsample; thường được coi là **hợp lý** cho dữ liệu mất cân bằng.