

Chapter 6. Reviews

ITSS Java Programming

Lab 1: If else statement

- Use Eclipse to create a project with the name MyGradesProject.
- Create a file Grades.java (described in next slide). Study the use of if/else control structure
- Build and run the program
- Modify the **Grades.java** as following:
 - If the average is greater than 90 (average > 90), display "You worked too hard! Your average is xx.0."
 - If the average is greater than 50 (average > 50) and less than or equal to 90 (average <= 90), display "You did OK! Your average is xx.0."
 - If the average is less than or equal to 50 (average <= 50), display "You need to do some work! Your average is xx.0."</p>

Lab 1: If else statement

```
import javax.swing.JOptionPane;
public class Grades {
  public static void main(String[] args) {
     int mathGrade = 0;
     int historyGrade = 0;
     int scienceGrade = 0;
     double average = 0;
     mathGrade = Integer.parseInt(JOptionPane.showInputDialog("Enter math grade
         between 0 and 100!"));
     historyGrade = Integer.parseInt(JOptionPane.showInputDialog("Enter history
         grade between 0 and 100!"));
     scienceGrade = Integer.parseInt(JOptionPane.showInputDialog("Enter science
         grade between 0 and 100!"));
```

Lab 1: If else statement

```
// Compute average
     average = (mathGrade+historyGrade+scienceGrade)/3;
     // Perform if & else control
     if (average \geq 60){
        JOptionPane.showMessageDialog(null, "Good job! Your average is " +
         average);
     } else{
        JOptionPane.showMessageDialog(null, "You need to do better! Your average
         is " + average);
```


Lab2: For Loop

- Study Forloop.java and complet this program so that it can search the name inputed by user in the array.
- Some image of the execution of program

Lab2: For Loop

```
public class ForLoop {
 /** Creates a new instance of ForLoop */
 public ForLoop() {
 * @param args the command line arguments
 public static void main(String[] args) {
    // Declare and initialize String array variable called names.
String names []={"Beah","Bianca","Lance","Belle","Nico","Yza","Gem","Ethan"};
    // This is the search string we are going to use to search the array.
    String searchName = JOptionPane.showInputDialog("Enter either'\"Yza\" or
     \"noname\"!");
    // Declare and initialize boolean primitive type variable called foundName.
    boolean foundName =false;
```

Lab2: For Loop

```
// Search the String array using for loop.
    * The "names.length" is the size of the array.
    * This for loop compares the value of each entry of the array with
    the value of searchString String type variable.

* The equals(..) is a method of String class. Think about why you cannot use "names[i] == searchName" as comparison logic here.
for (int i=0; i<names.length; i++){</pre>
   if (names [i ].equals(searchName)){
      foundName =true;
      break;
// Display the result
if (foundName)
   `JOptionPané.showMessageDialog(null, searchName + " is found!");
else
   JOptionPane.showMessageDialog(null, searchName + " is not found!");
```


- Modify program in Lab2 to use an arraylist instead of the array.
- When a name entered by user is not found, add it to the name list.

Lab4: Command Arguments

- The homework is to create a new Eclipse project called "MyOwnCLA" as following:
- Receive the ages of the all your family members (between 3 to 6 members) as command line arguments in the format as following (name then age)
 - Hoang 12 Trang 34 Lan 23
- Compute and display the average of the ages that were entered.

Lab5: Class and Object

- Using Eclipse to create a project named MyStudentRecordProject
- Creat a new class StudentRecord (source code given in next slides)
- Creat a new class StudentRecord and fill in the code of main function that follows the guide in the comments

StudentRecord.java

```
public class StudentRecord {
      /** Creates a new instance of
    StudentRecord */
       public StudentRecord() {
          Declare instance variables.
       private String name;
       private double mathGrade;
       private double englishGrade;
       private double scienceGrade;
       // Declare static variables.
       private static int studentCount = 0;
       /**
       * Returns the name of the student
       public String getName(){
         return name;
       * Changes the name of the student
       public void setName(String temp ){
         name =temp;
```

```
Computes the average of the english, math and
  science grades */
     public double getAverage(){
       double result =0;
       result=(getMathGrade()+getEnglishGrade()
         +getScienceGrade() )/3;
       return result;
/** * Returns the number of instances of
  StudentRecords
     public static int getStudentCount(){
       return studentCount;
     /**
     * Returns the number of instances of
  StudentRecords.
     * This is a static method.
     public static void increaseStudentCount(){
       studentCount++;
     // Instance methods
     public double getMathGrade() {
       return mathGrade;
```

StudentRecord.java

```
public void setMathGrade(double mathGrade) {
  this.mathGrade = mathGrade;
public double getEnglishGrade() {
  return englishGrade;
public void setEnglishGrade(double englishGrade) {
  this.englishGrade = englishGrade;
public double getScienceGrade() {
  return scienceGrade;
public void setScienceGrade(double scienceGrade) {
  this.scienceGrade = scienceGrade;
```

StudentRecordExample.java

```
public class StudentRecordExample {
  public static void main(String[] args) {
    // Create an object instance of StudentRecord class.
     // Increament the studentCount by invoking a static method.
    // Create another object instance of StudentRecord class.
    // Increament the studentCount by invoking a static method.
    // Create the 3rd object instance of StudentRecord class.
    // Increament the studentCount by invoking a static method.
   // Set the names of the students.
    // Print anna's name.
    // Print number of students.
    ...//;
```

Lab6: Overloading

 Add two overloaded myprint() methods to the StudentRecored.java as shown in the code below. Build and Run project.

Overloading

Modify StudentRecordExample.java as shown in Code below.
 Build and Run project.

```
public class StudentRecordExample {
      public static void main(String[] args) {
         // Create an object instance of StudentRecord class.
         // Set Anna's grades
         annaRecord.setName("Anna");
annaRecord.setEnglishGrade(95.5);
annaRecord.setScienceGrade(100);
         // Invoke overloaded methods
         annaRecord.myprint();
         annaRecord.myprint(annaRecord.getName());
         annaRecord.myprint(annaRecord.getName(), annaRecord.getAverage());
```

Lab7: Constructors

Add to StudentRecord class the constructor as the specification below:

```
// Default constructor
public StudentRecord() {
// Constructor that gets single parameter
public StudentRecord(String name){
// Constructor that gets two parameters
public StudentRecord(String name, double mGrade){
// Constructor that gets three parameters
public StudentRecord(String name, double mGrade, double eGrade){
// Constructor that gets four parameters
public StudentRecord(String name, double mGrade, double eGrade,
      double sGrade){
```

StudentRecordExample.java

```
public class StudentRecordExample {
  public static void main(String[] args) {
     // Create an object instance of StudentRecord class.
     StudentRecord annaRecord = new StudentRecord("Anna");
     // Increament the studentCount by invoking a static method.
    StudentRecord.increaseStudentCount();
     // Create another object instance of StudentRecord class.
     StudentRecord beahRecord = new StudentRecord("Beah", 45);
     // Increament the studentCount by invoking a static method.
    StudentRecord.increaseStudentCount():
     // Create the 3rd object instance of StudentRecord class.
     StudentRecord crisRecord = new StudentRecord("Cris", 23.3, 67.45, 56);
     // Increament the studentCount by invoking a static method.
     StudentRecord.increaseStudentCount();
     // Print Cris' name and average
     System.out.println("Name = " + crisRecord.getName() + " Average = " +
      crisRecord.getAverage());
     // Print number of students.
     System.out.println("Student Count = "+StudentRecord.getStudentCount());
```

Exercise

- The Student class has StudentRecord class as an instance variable. Name it as studentRecord. You can use the StudentRecord class from the MyStudentRecordProject above or you can create a new one the only requirement is that it has to have at least one instance variable of its own.
- The Student class has studentId instance variable whose type is Integer type.
- Move the studentCount static variable from the StudentRecord class to Student class.
- Rewrite main.java as following
 - Create 3 instances of Student class and initialize them accordingly use whatever initialization values that are appropriate.
 - Display the information of each student including the student id, name.
 - Display the studentCount.

- Create a new project name MyOnlineShop
- Create a class Product in Product.java(code given)

```
package myonlineshop;
    public class Product {
       private double regularPrice;
       /** Creates a new instance of Product */
       public Product(double regularPrice) {
         this.regularPrice = regularPrice;
       // Method that will be overridden
       public double computeSalePrice(){
         return 0;
       public double getRegularPrice() {
         return regularPrice;
       public void setRegularPrice(double regularPrice) {
         this.regularPrice = regularPrice;
```

Write Electronics.java that extends Product class.

```
package myonlineshop;
    public class Electronics extends Product{
       private String manufacturer;
       /** Creates a new instance of Electronics */
       public Electronics(double regularPrice,
            String manufacturer) {
         super(regularPrice);
         this.manufacturer = manufacturer;
       // Override this method
      public double computeSalePrice(){
   return super.getRegularPrice() * 0.6;
       public String getManufacturer() {
         return manufacturer;
       public void setManufacturer(String manufacturer) {
         this.manufacturer = manufacturer;
```

Write MP3Player.java that extends Electronics class.

```
package myonlineshop;
   MP3Player extends Electronics {
     private String manufacturer;
     /** Creates a new instance of Electronics */
     public MP3Player(double regularPrice,
              String manufacturer,
              String color) {
        Override this method
     public double computeSalePrice(){
        // Price is calculated by the rate of 0.9 of the RegularPrice
```

Write TV.java that extends Electronics class as the code given below.

```
package myonlineshop;
    public class TV extends Electronics {
       int size;
       /** Creates a new instance of TV */
       public TV(double regularPrice,
               String manufacturer,
               int size) {
          super(regularPrice, manufacturer);
          this.size = size;
       // Override this method
       public double computeSalePrice(){
  return super.getRegularPrice() * 0.8;
```


Create the Book class that extends Product class as the code below

```
// Override this method
   public double computeSalePrice(){
    return super.getRegularPrice() * 0.5;
   public String getPublisher() {
      return publisher;
   public void setPublisher(String publisher) {
      this.publisher = publisher;
   public int getYearPublished() {
      return yearPublished;
   public void setYearPublished(int
yearPublished) {
      this.yearPublished = yearPublished;
}
```

- Write a Main Class that create and store objects in an array of five Products. The objects are:
 - a TV: Price = 1000, Manufacturer: "Samsung", size:30;
 - a TV: Price = 2000, Manufacturer: "Sony", size:50;
 - a MP3Player: Price = 250, Manufacturer: "Apple", color:blue;
 - a Book: Price = 34, Publisher: "Sun press", Year=1992
 - a Book: Price = 15, Publisher: "HUT Press", Year=1986
- Print out the total regular price and total sale price and the detail regular price and sale price for each product.

- Add Camera class which is a sub-class of Eletronics class
 - Compute the sale price of Camera with the following business logic
 - Regular price * 0.7
 - In the Main.java, initialize two object instances of Camera class

Lab 9: Polymorphism – Abstract class

- Modify the Product class so that it becomes an abstract class with the abstract method computeSalePrice
- Write two new class extends class Book:
 - ChildrenBook which has an additional Attribute: age (int) and rate for Sale Price is 0.3
 - Cartoon which has an additional Attribute: characterName (String) and rate for Sale Price is 0.4
- Modify Main.java by adding 2 objects of Cartoon and ChildrenBook class as follows:
 - ChildrenBook: RegPrice=15, Publisher= "Kim Dong press", Year= 1987,
 Age= 8
 - Cartoon: RegPrice=14, Publisher= "Marvel press", 1924, "Batman");
- Run and build the project

Solution: Product.java

```
package myonlineshop;
public abstract class Product {
  private double regularPrice;
  /** Creates a new instance of Product */
  public Product(double regularPrice) {
     this.regularPrice = regularPrice;
  // Abstract method
  public abstract double computeSalePrice();
  public double getRegularPrice() {
     return regularPrice;
  public void setRegularPrice(double regularPrice) {
     this.regularPrice = regularPrice;
```


Solution: ChildrenBook.java

```
package myonlineshop;
   public class ChildrenBook extends Book{
      int age; // age this book is written for
      /** Creates a new instance of ChildrenBook */
      public ChildrenBook(double regularPrice,
             String publisher,
             int yearPublished,
             int age) {
          super(100, "Sun press", 2002);
         this.age = age;
      // Override this method
      public double computeSalePrice(){
   return super.getRegularPrice() * 0.3;
```

•

Solution: Cartoon.java

```
package myonlineshop;
    public class Cartoon extends Book {
       String characterName;
       /** Creates a new instance of Cartoon */
       public Cartoon(double regularPrice,
              String publisher,
          int yearPublished,
String characterName) {
super(150, "Sun press", 1978);
           this.characterName = characterName;
       // Override this method
       public double computeSalePrice(){
   return super.getRegularPrice() * 0.4;
```

Main.java

```
// Create object instances and assign them to
    // the type of Product.
    pa[0] = new TV(1000, "Samsung", 30);
    pa[1] = new TV(2000, "Sony", 50);
    pa[2] = new MP3Player(250, "Apple", "blue");
    pa[3] = new Book(34, "Sun press", 1992);
    pa[4] = new Book(15, "Korea press", 1986);
    pa[5] = new ChildrenBook(15, "Kim Dong press", 1987, 8);
    pa[6] = new Cartoon(14, "Marvel press", 1924, "Batman");
```

Lab10: Interface

- Modify the project MyOnlineShop in previous lab by using interfaces.
- Declare ProductInterface (code given)
- Declare ElectronicsInterface (code given)
- Modify the classes Product, Electronics to implement these interface
- Write BookInterface.java

Lab10: Interface

Create an interface BookInterface as follows:

package myonlineshopusinginterface;

```
public interface BookInterface extends ProductInterface {
    public String getPublisher();
    public void setPublisher(String publisher);
    public int getYearPublished();
    public void setYearPublished(int yearPublished);
}
```

- Modify the Book class to implement this interface.
- Build and Run the project.

Code given

```
package myonlineshopusinginterface;
   public interface ElectronicsInterface extends ProductInterface {
   public String getManufacturer();
  }
package myonlineshopusinginterface;
   public interface ProductInterface {
        public double computeSalePrice();
        public double getRegularPrice();
        public void setRegularPrice(double regularPrice);
```