Classifying Roof Material From Drone Imagery An Approach to the Open AI Caribbean Challenge

Johannes Leonhard Ruether

January 8, 2020

1 Introduction (Context and Challenges)

1.1 Context

Regions like the Carribean are regularly hit by rainstorms, floods or earthquakes. Despite being so prone, many houses in those areas are unable to withstand these natural hazards due to poor construction quality. This exposes their inhabitants to a great risk of becoming homeless during the next disaster.

International programs as the World Bank's Global Program for Resilient Housing are making attempts to retrofit houses to the natural forces they are exposed to. In these large and often informal settlements it is difficult to assess which houses pose especially high risks due to their construction or are damaged and need repair. Exploring these areas on the ground is time consuming and costly. This is why the possibilities of image processing for automatic recognition of vulnerable houses on the basis of drone imagery is explored. Such a technology could assist building inspectors and narrow down large areas to those that are worth a closer inspection on the ground. The material that roofs are made up of is a central indicator of how well a house is prepared against natural disasters. Therefore, classifying roof material from aerial images is a key step to identify precarious houses.

1.2 Open AI Challenge

The above background led to the initiation of the *Open AI Caribbean Challenge: Mapping Disaster Risk from Aerial Imagery*, which was conducted in between October and December 2020 on *drivendata.org*. This report describes an approach to solve this challenge.

Probabilities instead of hard labels

1.3 Previous Work

In many applications, the identification of roofs is considered useful. Roof segmentation is often done with LiDAR data, as presented in [1]. Other papers such as [2] have successfully attempted roof segmentation using only drone imagery, which is less costly. This step will become relevant for the task at hand. The approach discussed in this report however uses images of roofs that have already been segmented.

The identification of roof defects has been addressed in previous works, e.g. [3], in which water stagnation on roofs is measured. Multiple patents such as (e.g. [4]) employ aerial images to evaluate damage on individual roofs for insurance purposes. To my best knowledge, academic works on roof material and condition classification from drone imagery on a large scale have not been published.

Figure 1: Example images for each material class. (Scales differ)

2 Data Description

2.1 Images

The data provided for the challenge consists of high resolution (4cm) drone imagery of five patches of land: two from Soacha, Colombia, two from Mixco, Guatemala and one from Dennery (St. Lucia). For every region, there is one stitched cloud-optimized GeoTIFF file, ranging from 500 to 1800 Megapixels in size.

Platform	WeRobotics (private drone)
	DrivenData Competition
Source	https://www.drivendata.org/competitions/58/disaster-
	response-roof-type/data/
Acquisition Method	Drone Photography
SRS	Ellipsoid (EPSG:32616, 32618, 326120)
Spatial/Spectral resolution	3.8-4.5cm, RGB
Type of Product	Cloud-optimized GeoTIFF

2.2 Labels

Roofs are labeled as one of five classes, examples of which are given in Fig. 1:

- 1. Concrete and Cement: Roofs made out of concrete or cement.
- 2. Healthy Metal: Roofs of metal that are intact but may be corrugated or galvanized.
- 3. Incomplete: Roofs that are severely damaged or under construction.
- 4. Irregular Metal: Roofs that are slightly damaged, rusted or patched.
- 5. Other: Roofs that do not fit into other categories (include tiles, red painted, other materials).

Figure 2: (a) and (b) named differently due to incoherent labeling of rusty roofs. Similarly unclear boundary between "irregular metal" and "incomplete" ((d) and (e)). Obvious labeling error in (c).

2.3 Data Noise

Class membership is unfortunately sometimes ambiguous in the provided groundtruth data. First, labels are sometimes used inconsistently. This is especially true for "irregular" and "healthy metal". Where rusty roofs should be labeled as "irregular", many of them get a "healthy metal" label. Moreover there is confusion about features that make a roof "irregular" or "incomplete". These inconsistencies might stem from different annotators labeling images.

Second, labels are sometimes clearly incorrect, e.g. concrete roofs are labeled as "healthy metal". Some regions seems to be annotated with more care than others.

It is impossible to quantify the extent to which annotations are noisy. Some examples of these ambiguities are shown in Fig. 2. The implications for the results are discussed in section 5.

3 Proposed Processing Routine

3.1 Petrained Neural Network as Feature Extractor

The proposed processing routine uses a pretrained neural network as feature extractor. Natural images
Parameters

The employed pretrained architectures were trained images from the ImageNet database [5].

3.2 Pixel-based Baseline Method

As a baseline for comparison, several statistical metrics were extracted as features and classified with a SVM.

Figure 3: Proposed processing routine: The classification part of a pretrained neural network is removed, leaving the feature extraction. A SVM or RF is used to build a model out of the training features and the groundtruth labels in an iterative process. Test features are fed into this model to predict labels and determine prediction confidence.

4 Results

Results qualitative (e.g. maps) and quantitative (e.g. accuracies, statistics). /! This implies that you have either access to groundtruth data or digitized/photointerpreted some areas in order to compute accuracies.

5 Discussion

Discussion where you are critical about what has been done and what could be further explored. You have investigated a topic and achieving your initial goal is not always possible in a fixed time frame, however you should be able to assess your situation and what should then be done/improved in order to reach your goal.

!!!Noisy Data!!!

6 Appendix

APPENDIX: Include your scripts (Matlab, GoogleEarthEngine or others) and the specific functions you used in QGIS (if applicable) *Include a descriptive header on your different scripts * Comment your code, use indentation and spacing * Only keep the code you used for your latest results

References

[1] D. Chen, L. Zhang, J. Li, and R. Liu, "Urban building roof segmentation from airborne lidar point clouds," *International Journal of Remote Sensing*, vol. 33, no. 20, pp. 6497–6515, 2012.

- [2] K. Soman, "Rooftop detection using aerial drone imagery," in *Proceedings of the ACM India Joint International Conference on Data Science and Management of Data*, CoDS-COMAD 19, (New York, NY, USA), p. 281284, Association for Computing Machinery, 2019.
- [3] D. Yudin, A. Naumov, A. Dolzhenko, and E. Patrakova, "Software for roof defects recognition on aerial photographs," *Journal of Physics: Conference Series*, vol. 1015, p. 032152, may 2018.
- [4] E. A. B. Matthew A. Shreve, "Image segmentation system for verification of property roof damage, us patent 20170352100a1," 2017.
- [5] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al., "Imagenet large scale visual recognition challenge," *International journal of computer vision*, vol. 115, no. 3, pp. 211–252, 2015.