

planetmath.org

Math for the people, by the people.

limit of $(1+s_n)^n$ is one when limit of ns_n is zero

 ${\bf Canonical\ name} \quad {\bf Limit Of 1 Snn Is One When Limit Of NSn Is Zero}$

 $\begin{array}{lll} \text{Date of creation} & 2013\text{-}03\text{-}22 \ 15\text{:}48\text{:}55 \\ \text{Last modified on} & 2013\text{-}03\text{-}22 \ 15\text{:}48\text{:}55 \end{array}$

Owner rspuzio (6075) Last modified by rspuzio (6075)

Numerical id 7

Author rspuzio (6075)

Entry type Proof Classification msc 26D99 The inequalities for differences of powers may be used to show that $\lim_{n\to\infty} (1+s_n)^n = 1$ when $\lim_{n\to\infty} ns_n = 0$. This fact plays an important role in the development of the theory of the exponential function as a limit of powers.

To derive this limit, we bound $1+s_n$ using the inequalities for differences of powers.

$$ns_n \le (1+s_n)^n - 1 \le \frac{ns_n}{1 - (n-1)s_n}$$

Since $\lim_{n\to\infty} ns_n = 0$, there must exist N such that $ns_n < 1/2$ when n > N. Hence, when n > N,

$$|(1+s_n)^n - 1| < 2|ns_n|$$

so, as $n \to \infty$, we have $(1 + s_n)^n \to 1$.