National Company and Bibrary 1, 8 dg

SEP 2 7 1957

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

SCREW-THREAD STANDARDS FOR FEDERAL SERVICES 1957

Amends in part H28 (1944) (and in part its 1950 Supplement)

HANDBOOK H28 (1957)-Part I

U. S. DEPARTMENT OF COMMERCE

Sinclair Weeks, Secretary

NATIONAL BUREAU OF STANDARDS

A. V. Astin, Director

The National Bureau of Standards

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to Government Agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. A major portion of the Bureau's work is performed for other Government Agencies, particularly the Department of Defense and the Atomic Energy Commission. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover.

Publications

The results of the Bureau's work take the form of either actual equipment and devices or published papers; these papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three monthly periodicals, available from the Government Printing Office: The Journal of Research, which presents complete papers reporting technical investigations; the Technical News Bulletin, which presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: The Applied Mathematics Series, Circulars, Handbooks, Building Materials and Structures Reports, and Miscellaneous Publications.

Information on the Bureau's publications can be found in NBS Circular 460, Publications of the National Bureau of Standards (\$1.25) and its Supplement (\$0.75), available from the Superintendent of Documents, Government Printing Office, Washington 25, D. C.

NATIONAL BUREAU OF STANDARDS HANDBOOK H28 (1957)

SCREW-THREAD STANDARDS FOR FEDERAL SERVICES 1957

PART I

UNIFIED, AMERICAN, AMERICAN NATIONAL, AND NATIONAL MINIATURE THREADS

Amends in part H28 (1944) (and in part its 1950 Supplement) [Issued September 10, 1957]

UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1957

National Bureau of Standards

JUN 2 1965

130,249

Foreword

The Interdepartmental Screw Thread Committee has been established by the Departments of Defense, Army, Navy, Air Force, and Commerce to promote uniformity in screw-thread standards in the Departments concerned.

The Committee is charged: (1) With the development of standards for screw threads; (2) the standardization of gages, dies, and taps; and (3) the standardization of dimensions of nuts, bolt heads, wrenches, and other items associated with the manufacture and use of interchangeable threaded parts. Standards developed by the Committee, when approved by the Departments concerned, are to be published together with a joint order making their use mandatory in the Departments of Defense and Commerce, except where a need for deviations therefrom is shown. Standards thus established are subject to such extension and revision as the Committee may find desirable.

The basis for this Handbook is the 1933 report, and preceding reports, of the National Screw Thread Commission, and Handbooks H25 dated 1939, and H28 dated 1942 and 1944, which superseded those reports and which this Handbook supersedes, together with pertinent standards approved and promulgated by the American Standards Association.

The current Handbook is to be issued in three volumes or parts, of which this volume constitutes Part I, superseding sections I, II, III, IV, V, XV, and XVI and appendixes 1, 2, 6, and 8 of Handbook H28 (1944). Sections XI, XII, XIII, XIV, and XVII and appendix 7 of H28 (1944) are superseded by Federal Specifications listed in appendix 6 herein. Part II will include standards for hose-coupling, pipe, and gas cylinder threads, and will be issued when the revised standards have been completely formulated. This will be followed by Part III, to include Acme, Stub-Acme, Buttress, and miscellaneous standard threads.

The standardization of bolts, nuts, screws, and related items, for purposes of procurement by the Federal Government, is covered by several pertinent Federal Specifications which are listed in the Index of Federal Specifications and Standards, available on a subscription basis from the Superintendent of Documents.

Archibald T. McPherson, Chairman.

APPROVAL BY THE SECRETARIES OF DEFENSE AND COMMERCE

The accompanying Handbook H28 (1957), Part I, on screw-thread standards for Federal Services, submitted by the Interdepartmental Screw Thread Committee, is hereby approved for use by the Departments of Defense and Commerce.

For the

Secretary of Defense

Secretary of Commerce

Contents

	Page	Section VI—Continued	Page
Foreword Company of Defense and Company	iii	(c) Specifications for	111
Approval by the Secretaries of Defense and Com-	3.7	thread length (d) Marking of gages	114
merce Section I. Introduction	v 1	4. Gage tolerances and wear al-	116
1. Purpose of Federal standards	1	lowances	117
for threaded products	1	5. Recommended gage practices_	118
2. Personnel of the Committee	î	Appendix 1. American National form of thread and	110
Section II. Nomenclature, definitions, and letter	_	thread series for bolts, machine	
symbols	1	screws, nuts, tapped holes, and	
1. Introductory	1	general applications	121
2. Definitions of terms	2	1. Introduction	121
(a) Terms relating to		2. American National form of	
types of screw		$\operatorname{thread}_{}$	121
threads	2	(a) Specifications	121
(b) Terms relating to size		(b) Illustration	-121
and fit	2	(c) Basic thread data	121
(c) Terms relating to		3. Thread series	122
geometrical ele-		(a) American National	
ments of screw		coarse-thread series_	122
threads	3	(b) American National	
(d) Terms relating to di-		fine-thread series	122
mensions of screw		(c) American National	
threads	4	extra-fine thread	100
(e) Terms relating only		series	123
to taper screw	e	(d) American National	1.36
threads3. Letter symbols and abbrevia-	6	8-thread series	128
tions	7	(e) Ameri c an National 12-thread series	123
(a) Dimensional symbols	7	(f) American National	120
(b) Identification desig-	•	16-thread series	124
nations	8	4. Classification and tolerances	124
SECTION III. Unified thread form and thread series	O	(a) General specifications.	125
for bolts, machine screws, nuts,		(b) Screw-thread classes_	130
tapped holes, and general applica-		5. Method of designating an	100
tions	10	American National thread	132
1. Introduction	10	6. Limits of size of gages	145
2. The Unified form of thread	12	Appendix 2. American National screw threads of	
3. Thread series, symbols, and		special diameters, pitches, and	
suggested applications	13	lengths of engagement	179
4. Classification and tolerances	18	1. Form of thread	179
(a) General	18	2. Standard pitches	179
(b) Screw-thread classes_	23	3. Classification and tolerances	179
5. Method of designating a		(a) General specifica-	
screw thread	26	tions	179
6. Limits of size, standard thread	0.0	(b) Classification of	
series, table III.10	$\frac{26}{26}$	threads	179
7. Limits of size of gages	38	4. Tables of dimensions	180
8. Sizes of tap drills	68	5. Gages	186
Section IV. Unified threads of special diameters,	7.4	Appendix 3. Hole-size limits	186
pitches, and lengths of engagement. 1. Introduction	$\begin{array}{c} 74 \\ 74 \end{array}$	Appendix 4. Wire methods of measurement of pitch diameter of 60° threads	194
2. Unified form of thread	75	1. Size of wires	195
3. Preferred diameters and	10	2. Methods of measuring and	1 90
pitches	75	using wires	195
4. Classification and tolerances	75	3. Standard specification for	100
(a) General	75	wires and standard practice	
(b) Screw-thread classes_	79	in measurement of wires	196
5. Method of designating	98	4. General formula for measure-	200
6. Directions for determining lim-		ment of pitch diameter	196
its of size of special threads_	100	5. Measurement of pitch diam-	
7. Gages	100	eter of Unified, American.	
Section V. National Miniature screw threads	100	and American National	
1. Introduction	100	straight threads	197
2. Form of thread	101	6. Measurement of pitch diam-	
3. National Miniature thread se-		eter of American Standard	
ries	104	taper threads	197
4. Classification and tolerances	104	7. Measurement of pitch diam-	000
5. Thread designations 6. Limits of size	105	eter of thread ring gages	200
7. Gages and gaging	$\frac{105}{107}$	Appendix 5. Design of special threads	$\frac{200}{200}$
Section VI. Gages and gaging for Unified, Ameri-	107	2. Eccentricity of assembly and	∠00
can, and American National threads	107	cross threading	201
1. Introduction	107	3. Strength factors	$\frac{201}{201}$
2. Fundamentals	108	4. Thread proportions in relation	201
3. Specifications for gage elements.	109	to tapping	204
(a) General design	109	5. Examples of thread design	$\frac{201}{204}$
(b) Specifications for		Appendix 6. References	$\frac{205}{205}$
thread form	110	Index	207

Tables

	Page
Table II.1.—General symbols (see figs. II.2 and II.3)	9
Table II.2.—Pipe-thread symbols (see fig. II.4)	9
Table II.3 — Identification designations	10
Table III.1.—Thread data, Unified thread form (see fig. III.2) Table III.2.—Unified and American, screw thread standard series	$\tilde{1}\tilde{2}$
Table III.2 — Unified and American screw thread standard series	$\overline{15}$
Table III.3.—Coarse thread series, basic dimensions, UNC and NC	16
Table III.4.—Fine thread series, basic dimensions, UNF and NF	16
Table III.5.—Extra-fine thread series, basic dimensions, UNEF and NEF	17
Table 11.3.—Extra-line thread series, basic difficulties, UNEF and NEF	
Table III.6.—8-thread series, basic dimensions, 8UN and 8N	17
Table III.7.—12-thread series, basic dimensions, 12UN and 12N	18
Table III.8.—16-thread series, basic dimensions, 16UN and 16N	19
Table III.9.—Increments in pitch-diameter tolerance formula.	20
	2 7 –32
Table III.11.—Deviations in lead and half-angle equivalent to one-half of pitch diam-	
eter tolerances, Unified and American screw threads	32 - 38
Table III.12.—Gages for standard thread series, Unified and American screw threads	39 - 55
Table III.13.—Setting plug gages, Unified and American screw threads	56 - 68
Table III.14.—Tap drill sizes, Unified and American screw threads, classes 1B and	
	69-71
Table III.15.—Tap drill sizes, Unified and American screw threads, class 3B	72-74
Table IV.1.—Thread data, Unified and American thread form	76
Table IV.1.—Allowances for external threads of special diameters and pitches, classes	10
Table 1 v. 2.—Anowances for external infreads of special diameters and pitches, classes	77
1A and 2A	77
Table IV.2A.—Allowances, class 1AR	77
Table IV.3.—Major diameter tolerances for external threads of special diameters,	
pitches, and lengths of engagement, classes 1A, 1AR, 2A, and 3A	78
Table IV.4.—Pitch diameter tolerances for external threads of special diameters,	
pitches, and lengths of engagement, classes 1A and 1AR	30, 81
Table IV.5.—Pitch diameter tolerances for external threads of special diameters.	
pitches, and lengths of engagement, class 2A	82, 83
Table IV 6—Pitch diameter tolerances for external threads of special diameters	0-, 00
pitches, and lengths of engagement, class 3A	84, 85
Table IV.7.—Pitch diameter tolerances for internal threads of special diameters,	01, 00
nishes and lengths of engagement class 10	86. 87
pitches, and lengths of engagement, class 1B	00, 01
Table IV.8.—Pitch diameter tolerances for internal threads of special diameters,	00 00
pitches, and lengths of engagement, class 2B	88, 89
Table IV.9.—Pitch diameter tolerances for internal threads of special diameters,	
pitches, and lengths of engagement, class 3B	90, 91
Table IV.10.—Minor diameter tolerances for internal special screw threads, classes	
1B and 2B	92, 93
Table IV.11.—Minor diameter tolerances for internal special screw threads, class 3B	94 - 97
Table IV.12.—Unified special diameter-pitch combinations	99
Table IV.13.—Consolidated method for the calculation of dimensions of special	
threads	99
Table V.1.—Thread form data, National Miniature screw threads	102
Table V.2.—Basic and design sizes, National Miniature thread series	104
Table V.3.—Limits of size and tolerances, National Miniature thread series.	105
Table V.J.—Emilies of size and tolerances, National Militarite time at series.	100
Table VI.1.—Specifications and format for tables of limits of size of threaded and	
plain gages for Unified, American, and American National external and internal	110
threads	113
Table VI.2.—Specifications and format for tables of limits of size of threaded setting	
plug gages for Unified, American, and American National external threads	114
Table VI.3.—Constants for computing thread gage dimensions	115
Table VI.4.—Lengths of standard taperlock and trilock thread plug gage blanks	115
Table VI.5.—Lengths of standard thread ring gage blanks and total thread lengths of	
standard truncated setting plug gage blanks. Table VI.6.—Tolerances for W "go" and "not go" thread gages. Table VI.7.—Tolerances for X "go" and "not go" thread gages. Table VI.8.—Tolerances for Y "go" thread gages for classes 1, 1A, 1B, 2A, and 2B,	115
Table VI.6.—Tolerances for W "go" and "not go" thread gages	117
Table VI.7.—Tolerances for X "go" and "not go" thread gages	118
Table VI 8—Tolerances for V "go" thread gages for classes 1, 14, 1B, 2A, and 2B	
NS and UNS threads only	119
Table VI 9 — Tolorongos for plain gages	
Table VI.9.—Tolerances for plain gages	119
Table 1.1.—Basic thread data, American National form of thread	127
Table 1.2.—American National coarse-thread series, NC	128
Table 1.3.—American National fine-thread series, NF	129
Table 1.3.—American National fine-thread series, NF	129
Table 1.5.—American National 8-thread series, 8N	130
Table 1.6.—American National 12-thread series, 12N	131
Table 1.7.—American National 16-thread series, 16N	132
Table 1.8.—Limits of size and tolerances, classes 1, 2, 3, and 4, American National	
coarse-thread series, NC1	33, 134
coarse-thread series, NC1: Table 1.9.—Limits of size and tolerances, classes 1, 2, 3, and 4, American National	, 101
fine-thread series NF	35 126
fine-thread series, NF	ω, 1ου
fig. throad conic NTE	
fine-thread series, NEF	137
1 and 1.11.—Limits of size and tolerances, classes 2 and 3, American National 8-thread	10. 10.
series, 8N1; Table 1.12.—Limits of size and tolerances, classes 2 and 3, American National 12-	38, 139
thread series, 12N1	10-142

Tables—Continued

Table 1.19 I the table and table and a large of the table and tabl	Page
Table 1.13.—Limits of size and tolerances, classes 2 and 3, American National 16-thread series, 16N	2 144
Table 1.14.—Allowances and tolerances, classes 1 and 2	145
Table 1.15.—Allowances and tolerances, classes 3 and 4	145
Table 1.16.—Gages for standard thread series, American National screw threads146	
Table 1.17.—Setting plug gages, American National screw threads 164 Table 2.1.—Thread data for recommended pitches for threads of special diameters,	⊢ 178
pitches, and lengths of engagement	180
Table 2.2.—Schedule of tolerance increments for threads of special diameters, pitches,	-00
and lengths of engagement	180
Table 2.3.—Values for obtaining thread dimensions of screw threads of special diammeters, pitches, and lengths of engagement, classes 1, 2, 3, and 4	181
Table 2.4.—Pitch diameter tolerances for screw threads of special diameters, pitches.	101
and lengths of engagement, class 1	182
Table 2.5.—Pitch diameter tolerances for screw threads of special diameters, pitches,	
and lengths of engagement, class 2	183
and lengths of engagement, class 3	184
Table 2.7.—Pitch diameter tolerances for screw threads of special diameters, pitches,	101
and lengths of engagement, class 4	185
Table 3.1.—Recommended hole size limits before threading for different lengths of	
engagement, UNC, UNF, UNEF, UN, UNS, NC, NF, NEF, and N series, classes 1B and 2B	7_190
Table 3.2.—Recommended hole size limits before threading for different lengths of	-103
engagement, UNC, UNF, UNEF, UN, UNS, NC, NF, NEF, and N series.	
class 3B 190 Table 3.3.—Recommended hole size limits before threading for different lengths of	193
engagement, National Miniature thread series	193
Table 4.1.—Wire sizes and constants, Unified and American, American National,	1 30
hose-coupling, and pipe threads (60°)	195
Table 4.2.—Relation of best wire diameters and pitches—wires for Unified and	100
American, American National, hose-coupling, and pipe threads (60°) Table 5.1.—Data for determining strength factors in special thread design	$\frac{196}{203}$
Table 5.1.—Data for determining strength factors in special timead design.	200
Figures	
Figure II.1.—Blunt start	4
Figure II.2.—General screw thread symbols	6
Figure II.3.—General screw thread symbols	7
Figure II.4.—Pipe thread symbols	8
Figure II.4.—Pipe thread symbols	
material condition)	8
material condition). Figure III.2.—Symbols for thread data in table III.1. Figure III.3.—Disposition of tolerances, allowances, and crest clearances for classes	8 11 13
material condition). Figure III.2.—Symbols for thread data in table III.1. Figure III.3.—Disposition of tolerances, allowances, and crest clearances for classes 1A, 2A, 1B, and 2B.	8 11 13 24
material condition). Figure III.2.—Symbols for thread data in table III.1. Figure III.3.—Disposition of tolerances, allowances, and crest clearances for classes 1A, 2A, 1B, and 2B. Figure III.4.—Disposition of tolerances and crest clearances for classes 3A and 3B.	8 11 13 24 25
material condition). Figure III.2.—Symbols for thread data in table III.1. Figure III.3.—Disposition of tolerances, allowances, and crest clearances for classes 1A, 2A, 1B, and 2B. Figure III.4.—Disposition of tolerances and crest clearances for classes 3A and 3B. Figure IV.1.—Thread dimensions to be determined for a special thread. Figure V.1.—Basic thread form, National Miniature threads.	8 11 13 24
material condition). Figure III.2.—Symbols for thread data in table III.1. Figure III.3.—Disposition of tolerances, allowances, and crest clearances for classes 1A, 2A, 1B, and 2B. Figure III.4.—Disposition of tolerances and crest clearances for classes 3A and 3B. Figure IV.1.—Thread dimensions to be determined for a special thread. Figure V.1.—Basic thread form, National Miniature threads. Figure V.2.—National Miniature internal and external screw thread design forms	8 11 13 24 25 99 101
material condition). Figure III.2.—Symbols for thread data in table III.1 Figure III.3.—Disposition of tolerances, allowances, and crest clearances for classes 1A, 2A, 1B, and 2B. Figure III.4.—Disposition of tolerances and crest clearances for classes 3A and 3B. Figure IV.1.—Thread dimensions to be determined for a special thread. Figure V.1.—Basic thread form, National Miniature threads. Figure V.2.—National Miniature internal and external screw thread design forms (maximum material condition)	8 11 13 24 25 99
material condition). Figure III.2.—Symbols for thread data in table III.1 Figure III.3.—Disposition of tolerances, allowances, and crest clearances for classes 1A, 2A, 1B, and 2B. Figure III.4.—Disposition of tolerances and crest clearances for classes 3A and 3B. Figure IV.1.—Thread dimensions to be determined for a special thread. Figure V.1.—Basic thread form, National Miniature threads. Figure V.2.—National Miniature internal and external screw thread design forms (maximum material condition). Figure V.3.—Disposition of tolerances and crest clearances, National Miniature	8 11 13 24 25 99 101 103
material condition). Figure III.2.—Symbols for thread data in table III.1 Figure III.3.—Disposition of tolerances, allowances, and crest clearances for classes 1A, 2A, 1B, and 2B. Figure III.4.—Disposition of tolerances and crest clearances for classes 3A and 3B. Figure IV.1.—Thread dimensions to be determined for a special thread. Figure V.1.—Basic thread form, National Miniature threads. Figure V.2.—National Miniature internal and external screw thread design forms (maximum material condition). Figure V.3.—Disposition of tolerances and crest clearances, National Miniature	8 11 13 24 25 99 101
material condition). Figure III.2.—Symbols for thread data in table III.1 Figure III.3.—Disposition of tolerances, allowances, and crest clearances for classes 1A, 2A, 1B, and 2B. Figure III.4.—Disposition of tolerances and crest clearances for classes 3A and 3B. Figure IV.1.—Thread dimensions to be determined for a special thread. Figure V.1.—Basic thread form, National Miniature threads. Figure V.2.—National Miniature internal and external screw thread design forms (maximum material condition) Figure V.3.—Disposition of tolerances and crest clearances, National Miniature threads. Figure V.4.—Suggested chart for projection inspection of external National Miniature threads.	8 11 13 24 25 99 101 103 106 107
material condition). Figure III.2.—Symbols for thread data in table III.1. Figure III.3.—Disposition of tolerances, allowances, and crest clearances for classes 1A, 2A, 1B, and 2B. Figure III.4.—Disposition of tolerances and crest clearances for classes 3A and 3B. Figure IV.1.—Thread dimensions to be determined for a special thread. Figure V.1.—Basic thread form, National Miniature threads. Figure V.2.—National Miniature internal and external screw thread design forms (maximum material condition). Figure V.3.—Disposition of tolerances and crest clearances, National Miniature threads. Figure V.4.—Suggested chart for projection inspection of external National Miniature threads. Figure VI.1.—Thread form of gages for external and internal threads.	8 11 13 24 25 99 101 103 106 107 110
material condition). Figure III.2.—Symbols for thread data in table III.1 Figure III.3.—Disposition of tolerances, allowances, and crest clearances for classes 1A, 2A, 1B, and 2B. Figure III.4.—Disposition of tolerances and crest clearances for classes 3A and 3B. Figure IV.1.—Thread dimensions to be determined for a special thread. Figure V.1.—Basic thread form, National Miniature threads. Figure V.2.—National Miniature internal and external screw thread design forms (maximum material condition). Figure V.3.—Disposition of tolerances and crest clearances, National Miniature threads. Figure V.4.—Suggested chart for projection inspection of external National Miniature threads. Figure VI.1.—Thread form of gages for external and internal threads. Figure VI.2.—Thread form of truncated thread setting plug gages.	8 11 13 24 25 99 101 103 106 107 110 112
material condition). Figure III.2.—Symbols for thread data in table III.1 Figure III.3.—Disposition of tolerances, allowances, and crest clearances for classes 1A, 2A, 1B, and 2B. Figure III.4.—Disposition of tolerances and crest clearances for classes 3A and 3B. Figure IV.1.—Thread dimensions to be determined for a special thread. Figure V.1.—Basic thread form, National Miniature threads. Figure V.2.—National Miniature internal and external screw thread design forms (maximum material condition). Figure V.3.—Disposition of tolerances and crest clearances, National Miniature threads. Figure V.4.—Suggested chart for projection inspection of external National Miniature threads. Figure VI.1.—Thread form of gages for external and internal threads. Figure VI.2.—Thread form of truncated thread setting plug gages. Figure VI.3.—Thread form of basic-crest thread setting plug gages.	8 11 13 24 25 99 101 103 106 107 110 112 112
material condition). Figure III.2.—Symbols for thread data in table III.1 Figure III.3.—Disposition of tolerances, allowances, and crest clearances for classes 1A, 2A, 1B, and 2B. Figure III.4.—Disposition of tolerances and crest clearances for classes 3A and 3B. Figure IV.1.—Thread dimensions to be determined for a special thread. Figure V.1.—Basic thread form, National Miniature threads. Figure V.2.—National Miniature internal and external screw thread design forms (maximum material condition). Figure V.3.—Disposition of tolerances and crest clearances, National Miniature threads. Figure V.4.—Suggested chart for projection inspection of external National Miniature threads. Figure VI.1.—Thread form of gages for external and internal threads. Figure VI.2.—Thread form of truncated thread setting plug gages.	8 11 13 24 25 99 101 103 106 107 110 112
material condition). Figure III.2.—Symbols for thread data in table III.1 Figure III.3.—Disposition of tolerances, allowances, and crest clearances for classes 1A, 2A, 1B, and 2B. Figure III.4.—Disposition of tolerances and crest clearances for classes 3A and 3B. Figure IV.1.—Thread dimensions to be determined for a special thread. Figure V.1.—Basic thread form, National Miniature threads. Figure V.2.—National Miniature internal and external screw thread design forms (maximum material condition). Figure V.3.—Disposition of tolerances and crest clearances, National Miniature threads. Figure V.4.—Suggested chart for projection inspection of external National Miniature threads. Figure VI.1.—Thread form of gages for external and internal threads. Figure VI.2.—Thread form of truncated thread setting plug gages. Figure VI.3.—Thread form of basic-crest thread setting plug gages. Figure 1.1.—American National form of thread. Figure 1.2.—Disposition of tolerances, allowance (neutral space), and crest clearances for class 1.	8 11 13 24 25 99 101 103 106 107 110 112 112 121 122
material condition). Figure III.2.—Symbols for thread data in table III.1 Figure III.3.—Disposition of tolerances, allowances, and crest clearances for classes 1A, 2A, 1B, and 2B. Figure III.4.—Disposition of tolerances and crest clearances for classes 3A and 3B. Figure IV.1.—Thread dimensions to be determined for a special thread. Figure V.1.—Basic thread form, National Miniature threads. Figure V.2.—National Miniature internal and external screw thread design forms (maximum material condition). Figure V.3.—Disposition of tolerances and crest clearances, National Miniature threads. Figure V.4.—Suggested chart for projection inspection of external National Miniature threads. Figure VI.1.—Thread form of gages for external and internal threads. Figure VI.2.—Thread form of truncated thread setting plug gages. Figure VI.3.—Thread form of basic-crest thread setting plug gages. Figure 1.1.—American National form of thread. Figure 1.2.—Disposition of tolerances, allowance (neutral space), and crest clearances for class 1. Figure 1.3.—Disposition of tolerances and crest clearances for class 2.	8 11 13 24 25 99 101 103 106 107 110 112 112 121 122 123
material condition). Figure III.2.—Symbols for thread data in table III.1. Figure III.3.—Disposition of tolerances, allowances, and crest clearances for classes 1A, 2A, 1B, and 2B. Figure III.4.—Disposition of tolerances and crest clearances for classes 3A and 3B. Figure IV.1.—Thread dimensions to be determined for a special thread. Figure V.1.—Basic thread form, National Miniature threads. Figure V.2.—National Miniature internal and external screw thread design forms (maximum material condition). Figure V.3.—Disposition of tolerances and crest clearances, National Miniature threads. Figure V.4.—Suggested chart for projection inspection of external National Miniature threads. Figure VI.1.—Thread form of gages for external and internal threads. Figure VI.2.—Thread form of truncated thread setting plug gages. Figure VI.3.—Thread form of basic-crest thread setting plug gages. Figure 1.1.—American National form of thread. Figure 1.2.—Disposition of tolerances, allowance (neutral space), and crest clearances for class 1. Figure 1.3.—Disposition of tolerances and crest clearances for class 2. Figure 1.4.—Disposition of tolerances and crest clearances for class 3.	8 11 13 24 25 99 101 103 106 107 110 112 112 121 122
material condition). Figure III.2.—Symbols for thread data in table III.1. Figure III.3.—Disposition of tolerances, allowances, and crest clearances for classes 1A, 2A, 1B, and 2B. Figure III.4.—Disposition of tolerances and crest clearances for classes 3A and 3B. Figure IV.1.—Thread dimensions to be determined for a special thread. Figure V.1.—Basic thread form, National Miniature threads. Figure V.2.—National Miniature internal and external screw thread design forms (maximum material condition). Figure V.3.—Disposition of tolerances and crest clearances, National Miniature threads. Figure V.4.—Suggested chart for projection inspection of external National Miniature threads. Figure VI.1.—Thread form of gages for external and internal threads. Figure VI.2.—Thread form of truncated thread setting plug gages. Figure VI.3.—Thread form of basic-crest thread setting plug gages. Figure 1.1.—American National form of thread. Figure 1.2.—Disposition of tolerances, allowance (neutral space), and crest clearances for class 1. Figure 1.3.—Disposition of tolerances and crest clearances for class 2. Figure 1.4.—Disposition of tolerances, allowance (interference), and crest clearances	8 11 13 24 25 99 101 103 106 107 110 112 112 121 122 123
material condition). Figure III.2.—Symbols for thread data in table III.1 Figure III.3.—Disposition of tolerances, allowances, and crest clearances for classes 1A, 2A, 1B, and 2B. Figure III.4.—Disposition of tolerances and crest clearances for classes 3A and 3B. Figure IV.1.—Thread dimensions to be determined for a special thread. Figure V.1.—Basic thread form, National Miniature threads. Figure V.2.—National Miniature internal and external screw thread design forms (maximum material condition). Figure V.3.—Disposition of tolerances and crest clearances, National Miniature threads. Figure V.4.—Suggested chart for projection inspection of external National Miniature threads. Figure VI.1.—Thread form of gages for external and internal threads. Figure VI.2.—Thread form of truncated thread setting plug gages. Figure VI.3.—Thread form of basic-crest thread setting plug gages. Figure VI.3.—Thread form of tolerances, allowance (neutral space), and crest clearances for class 1. Figure 1.3.—Disposition of tolerances and crest clearances for class 2. Figure 1.4.—Disposition of tolerances and crest clearances for class 3. Figure 1.5.—Disposition of tolerances, allowance (interference), and crest clearances for class 4. Figure 1.6.—Relation of maximum and minimum pitch diameters of classes 1, 2, 3,	8 11 13 24 25 99 101 103 106 107 110 112 112 121 122 123 124 125
material condition). Figure III.2.—Symbols for thread data in table III.1 Figure III.3.—Disposition of tolerances, allowances, and crest clearances for classes 1A, 2A, 1B, and 2B. Figure III.4.—Disposition of tolerances and crest clearances for classes 3A and 3B. Figure IV.1.—Thread dimensions to be determined for a special thread. Figure V.1.—Basic thread form, National Miniature threads. Figure V.2.—National Miniature internal and external screw thread design forms (maximum material condition). Figure V.3.—Disposition of tolerances and crest clearances, National Miniature threads. Figure V.4.—Suggested chart for projection inspection of external National Miniature threads. Figure VI.1.—Thread form of gages for external and internal threads. Figure VI.2.—Thread form of truncated thread setting plug gages. Figure VI.3.—Thread form of basic-crest thread setting plug gages. Figure 1.1.—American National form of thread. Figure 1.2.—Disposition of tolerances, allowance (neutral space), and crest clearances for class 1. Figure 1.3.—Disposition of tolerances and crest clearances for class 2. Figure 1.4.—Disposition of tolerances and crest clearances for class 3. Figure 1.5.—Disposition of tolerances, allowance (interference), and crest clearances for class 4. Figure 1.6.—Relation of maximum and minimum pitch diameters of classes 1, 2, 3, and 4 to basic pitch diameters	8 11 13 24 25 99 101 103 106 107 110 112 121 122 123 124
material condition). Figure III.2.—Symbols for thread data in table III.1 Figure III.3.—Disposition of tolerances, allowances, and crest clearances for classes 1A, 2A, 1B, and 2B. Figure III.4.—Disposition of tolerances and crest clearances for classes 3A and 3B. Figure IV.1.—Thread dimensions to be determined for a special thread. Figure V.1.—Basic thread form, National Miniature threads. Figure V.2.—National Miniature internal and external screw thread design forms (maximum material condition). Figure V.3.—Disposition of tolerances and crest clearances, National Miniature threads. Figure V.4.—Suggested chart for projection inspection of external National Miniature threads. Figure VI.1.—Thread form of gages for external and internal threads. Figure VI.2.—Thread form of truncated thread setting plug gages. Figure VI.3.—Thread form of basic-crest thread setting plug gages. Figure 1.1.—American National form of thread. Figure 1.2.—Disposition of tolerances, allowance (neutral space), and crest clearances for class 1. Figure 1.3.—Disposition of tolerances and crest clearances for class 2. Figure 1.4.—Disposition of tolerances and crest clearances for class 3. Figure 1.5.—Disposition of tolerances, allowance (interference), and crest clearances for class 4. Figure 1.6.—Relation of maximum and minimum pitch diameters of classes 1, 2, 3, and 4 to basic pitch diameters. Figure 3.1.—Distribution of hole size limits before tapping, Unified and American	8 11 13 24 25 99 101 103 106 107 110 112 121 122 123 124 125
material condition). Figure III.2.—Symbols for thread data in table III.1. Figure III.3.—Disposition of tolerances, allowances, and crest clearances for classes 1A, 2A, 1B, and 2B. Figure III.4.—Disposition of tolerances and crest clearances for classes 3A and 3B. Figure IV.1.—Thread dimensions to be determined for a special thread. Figure V.1.—Basic thread form, National Miniature threads. Figure V.2.—National Miniature internal and external screw thread design forms (maximum material condition). Figure V.3.—Disposition of tolerances and crest clearances, National Miniature threads. Figure V.4.—Suggested chart for projection inspection of external National Miniature threads. Figure VI.1.—Thread form of gages for external and internal threads. Figure VI.2.—Thread form of truncated thread setting plug gages. Figure VI.3.—Thread form of basic-crest thread setting plug gages. Figure VI.3.—Thread form of tolerances thread setting plug gages. Figure 1.1.—American National form of thread. Figure 1.2.—Disposition of tolerances, allowance (neutral space), and crest clearances for class 1. Figure 1.3.—Disposition of tolerances and crest clearances for class 2. Figure 1.4.—Disposition of tolerances and crest clearances for class 3. Figure 1.5.—Disposition of tolerances, allowance (interference), and crest clearances for class 4. Figure 1.6.—Relation of maximum and minimum pitch diameters of classes 1, 2, 3, and 4 to basic pitch diameters. Figure 3.1.—Distribution of hole size limits before tapping, Unified and American threads	8 11 13 24 25 99 101 103 106 107 110 112 112 121 122 123 124 125
material condition). Figure III.2.—Symbols for thread data in table III.1 Figure III.3.—Disposition of tolerances, allowances, and crest clearances for classes 1A, 2A, 1B, and 2B. Figure III.4.—Disposition of tolerances and crest clearances for classes 3A and 3B. Figure IV.1.—Thread dimensions to be determined for a special thread. Figure V.1.—Basic thread form, National Miniature threads. Figure V.2.—National Miniature internal and external screw thread design forms (maximum material condition). Figure V.3.—Disposition of tolerances and crest clearances, National Miniature threads. Figure V.4.—Suggested chart for projection inspection of external National Miniature threads. Figure VI.1.—Thread form of gages for external and internal threads. Figure VI.2.—Thread form of truncated thread setting plug gages. Figure VI.3.—Thread form of basic-crest thread setting plug gages. Figure 1.1.—American National form of thread. Figure 1.2.—Disposition of tolerances, allowance (neutral space), and crest clearances for class 1. Figure 1.3.—Disposition of tolerances and crest clearances for class 2. Figure 1.4.—Disposition of tolerances and crest clearances for class 3. Figure 1.5.—Disposition of tolerances, allowance (interference), and crest clearances for class 4. Figure 1.6.—Relation of maximum and minimum pitch diameters of classes 1, 2, 3, and 4 to basic pitch diameters. Figure 3.1.—Distribution of hole size limits before tapping, Unified and American	8 11 13 24 25 99 101 103 106 107 110 112 121 122 123 124 125
material condition). Figure III.2.—Symbols for thread data in table III.1 Figure III.3.—Disposition of tolerances, allowances, and crest clearances for classes 1A, 2A, 1B, and 2B. Figure III.4.—Disposition of tolerances and crest clearances for classes 3A and 3B. Figure IV.1.—Thread dimensions to be determined for a special thread. Figure V.1.—Basic thread form, National Miniature threads. Figure V.2.—National Miniature internal and external screw thread design forms (maximum material condition). Figure V.3.—Disposition of tolerances and crest clearances, National Miniature threads. Figure V.4.—Suggested chart for projection inspection of external National Miniature threads. Figure VI.1.—Thread form of gages for external and internal threads. Figure VI.2.—Thread form of truncated thread setting plug gages. Figure VI.3.—Thread form of thread setting plug gages. Figure 1.1.—American National form of thread setting plug gages. Figure 1.2.—Disposition of tolerances, allowance (neutral space), and crest clearances for class 1 Figure 1.3.—Disposition of tolerances and crest clearances for class 2. Figure 1.4.—Disposition of tolerances and crest clearances for class 3. Figure 1.5.—Disposition of tolerances, allowance (interference), and crest clearances for class 4. Figure 1.6.—Relation of maximum and minimum pitch diameters of classes 1, 2, 3, and 4 to basic pitch diameters. Figure 3.1.—Distribution of hole size limits before tapping, Unified and American threads Figure 3.2.—Distribution of hole size limits before tapping, National Miniature threads. Figure 4.1.—Three-wire method of measuring pitch diameter of thread plug gages. Figure 4.1.—Three-wire method of measuring pitch diameter of thread plug gages.	8 11 13 24 25 99 101 103 106 107 110 112 112 121 122 123 124 125 126 186
rigure III.2.—Symbols for thread data in table III.1 Figure III.3.—Disposition of tolerances, allowances, and crest clearances for classes 1A, 2A, 1B, and 2B. Figure III.4.—Disposition of tolerances and crest clearances for classes 3A and 3B. Figure IV.1.—Thread dimensions to be determined for a special thread. Figure V.1.—Basic thread form, National Miniature threads. Figure V.2.—National Miniature internal and external screw thread design forms (maximum material condition) Figure V.3.—Disposition of tolerances and crest clearances, National Miniature threads. Figure V.4.—Suggested chart for projection inspection of external National Miniature threads. Figure VI.1.—Thread form of gages for external and internal threads. Figure VI.2.—Thread form of truncated thread setting plug gages. Figure VI.3.—Thread form of basic-crest thread setting plug gages. Figure 1.1.—American National form of thread. Figure 1.2.—Disposition of tolerances, allowance (neutral space), and crest clearances for class 1. Figure 1.3.—Disposition of tolerances and crest clearances for class 2. Figure 1.4.—Disposition of tolerances and crest clearances for class 3. Figure 1.5.—Disposition of tolerances, allowance (interference), and crest clearances for class 4. Figure 1.6.—Relation of maximum and minimum pitch diameters of classes 1, 2, 3, and 4 to basic pitch diameters. Figure 3.1.—Distribution of hole size limits before tapping, Unified and American threads. Figure 3.2.—Distribution of hole size limits before tapping, National Miniature threads. Figure 4.1.—Three-wire method of measuring pitch diameter of thread plug gages. Figure 4.2.—Measurement of pitch diameter of taper thread gages by the 2-wire	8 11 13 24 25 99 101 103 106 107 110 112 112 121 122 123 124 125 126 186 186 194
rigure III.2.—Symbols for thread data in table III.1 Figure IIII.3.—Disposition of tolerances, allowances, and crest clearances for classes 1A, 2A, 1B, and 2B. Figure III.4.—Disposition of tolerances and crest clearances for classes 3A and 3B. Figure IV.1.—Thread dimensions to be determined for a special thread. Figure V.1.—Basic thread form, National Miniature threads. Figure V.2.—National Miniature internal and external screw thread design forms (maximum material condition). Figure V.3.—Disposition of tolerances and crest clearances, National Miniature threads. Figure V.4.—Suggested chart for projection inspection of external National Miniature threads. Figure V.1.1.—Thread form of gages for external and internal threads. Figure VI.2.—Thread form of truncated thread setting plug gages. Figure VI.3.—Thread form of basic-crest thread setting plug gages. Figure 1.1.—American National form of thread. Figure 1.2.—Disposition of tolerances, allowance (neutral space), and crest clearances for class 1. Figure 1.3.—Disposition of tolerances and crest clearances for class 2. Figure 1.4.—Disposition of tolerances and crest clearances for class 3. Figure 1.5.—Disposition of tolerances, allowance (interference), and crest clearances for class 4. Figure 3.1.—Disposition of maximum and minimum pitch diameters of classes 1, 2, 3, and 4 to basic pitch diameters. Figure 3.1.—Distribution of hole size limits before tapping, Unified and American threads Figure 3.2.—Distribution of hole size limits before tapping, National Miniature threads. Figure 4.2.—Measurement of pitch diameter of taper thread gages by the 2-wire method.	8 11 13 24 25 99 101 103 106 107 110 112 121 122 123 124 125 126 186 186
material condition). Figure III.2.—Symbols for thread data in table III.1 Figure III.3.—Disposition of tolerances, allowances, and crest clearances for classes 1A, 2A, 1B, and 2B. Figure III.4.—Disposition of tolerances and crest clearances for classes 3A and 3B. Figure IV.1.—Thread dimensions to be determined for a special thread. Figure V.1.—Basic thread form, National Miniature threads. Figure V.2.—National Miniature internal and external screw thread design forms (maximum material condition). Figure V.3.—Disposition of tolerances and crest clearances, National Miniature threads. Figure V.4.—Suggested chart for projection inspection of external National Miniature threads. Figure V.1.2.—Thread form of gages for external and internal threads. Figure V.1.3.—Thread form of basic-crest thread setting plug gages. Figure V.1.3.—Thread form of basic-crest thread setting plug gages. Figure 1.2.—Disposition of tolerances, allowance (neutral space), and crest clearances for class 1. Figure 1.3.—Disposition of tolerances and crest clearances for class 2. Figure 1.4.—Disposition of tolerances and crest clearances for class 3. Figure 1.5.—Disposition of tolerances, allowance (interference), and crest clearances for class 4. Figure 3.1.—Distribution of hole size limits before tapping, Unified and American threads. Figure 3.2.—Distribution of hole size limits before tapping, National Miniature threads. Figure 4.2.—Measurement of pitch diameter of taper thread gages by the 2-wire method. Figure 4.3.—Measurement of pitch diameter of taper thread gages by the 3-wire method.	8 11 13 24 25 99 101 103 106 107 110 112 112 121 122 123 124 125 126 186 186 194
material condition). Figure III.2.—Symbols for thread data in table III.1 Figure III.3.—Disposition of tolerances, allowances, and crest clearances for classes 1A, 2A, 1B, and 2B	8 11 13 24 25 99 101 103 106 107 110 112 112 121 122 123 124 125 186 186 194 198 199
material condition). Figure III.2.—Symbols for thread data in table III.1 Figure III.3.—Disposition of tolerances, allowances, and crest clearances for classes 1A, 2A, 1B, and 2B. Figure III.4.—Disposition of tolerances and crest clearances for classes 3A and 3B. Figure IV.1.—Thread dimensions to be determined for a special thread. Figure V.1.—Basic thread form, National Miniature threads. Figure V.2.—National Miniature internal and external screw thread design forms (maximum material condition). Figure V.3.—Disposition of tolerances and crest clearances, National Miniature threads. Figure V.4.—Suggested chart for projection inspection of external National Miniature threads. Figure V.1.2.—Thread form of gages for external and internal threads. Figure V.1.3.—Thread form of basic-crest thread setting plug gages. Figure V.1.3.—Thread form of basic-crest thread setting plug gages. Figure 1.2.—Disposition of tolerances, allowance (neutral space), and crest clearances for class 1. Figure 1.3.—Disposition of tolerances and crest clearances for class 2. Figure 1.4.—Disposition of tolerances and crest clearances for class 3. Figure 1.5.—Disposition of tolerances, allowance (interference), and crest clearances for class 4. Figure 3.1.—Distribution of hole size limits before tapping, Unified and American threads. Figure 3.2.—Distribution of hole size limits before tapping, National Miniature threads. Figure 4.2.—Measurement of pitch diameter of taper thread gages by the 2-wire method. Figure 4.3.—Measurement of pitch diameter of taper thread gages by the 3-wire method.	8 11 13 24 25 99 101 103 106 107 110 112 121 122 123 124 125 126 186 194 198

1957 HANDBOOK OF SCREW-THREAD STANDARDS FOR FEDERAL SERVICES

As Approved 1957

SECTION I. INTRODUCTION

1. PURPOSE OF FEDERAL STANDARDS FOR THREADED PRODUCTS

The purpose of this Handbook is to present complete dimensional data upon which specifications may be based for threaded products for Government requirements. So far as practicable, these data are intended to conform to generally accepted commercial practice, although certain special requirements of the Government necessitate the inclusion of some standards not generally applicable outside of the Government services. References are cited throughout the text to the standards promulgated by the American Standards Association, and to such other published standards as are in agreement with the specifications herein.

There are included in the body of the Handbook specifications for threaded products and gages, embodying sufficient information to permit the writing of definite and complete specifications for the purchase of screw-thread products. In the appendixes there is arranged supplementary information of both a general and a technical nature, including such specifications as are not intended

to be mandatory.

2. PERSONNEL OF THE COMMITTEE

The personnel of the Interdepartmental Screw Thread Committee is as follows:

Representing the Department of Defense:

MR. SPENCER B. TERRY, Standardization Division, Supply and Logistics, Office of the Assistant Secretary of Defense, Washington 25, D. C.

Representing the Department of the Army:

Mr. EUGENE Von Loesch, Research and Development Division, Office of the Chief of Engineers, Department of the Army, Washington 25, D. C. Mr. M. L. Fruechtenicht, Gage Laboratory, Frankford Arsenal, Ord-nance Corps, Department of the Army, Philadelphia 37, Pennsylvania.

Representing the Department of the Navy:

MR. JAMES W. JENKINS, Metallurgical Branch, Material Development Division (Code 343), Department of the Navy, Washington 25, D. C. MR. J. E. Walter, Engineering Department, U. S. Naval Gun Factory, Washington 25, D. C.

Representing the Department of the Air Force:

Mr. Roy F. Bosron, WCXP, Wright Air Development Center, Wright-Patterson Air Force Base, Ohio.
Col. Irving H. Hare, RDTES, Air Research and Development Command, (now retired).

Representing the Department of Commerce:

DR. ARCHIBALD T. McPherson, chairman, Associate Director, National

Bureau of Standards, Washington 25, D. C.

Mr. Irvin H. Fullmer, Secretary, Chief, Engineering Metrology Section,
Optics and Metrology Division, National Bureau of Standards, Washington 25, D. C.

Liaison Representatives of Sectional Committees Organized Under the Procedure of the American Standards Association and Sponsored by The American Society of Mechanical Engineers and the Society of Automotive Engineers or the American Gas Association:

Engineers or the American Gas Association:

Mr. William L. Barth, Executive Secretary. Engineering Standards, General Motors Corporation, 3044 West Grand Blyd., Detroit 2, Michigan. (Member of ASA Committees Bl, B2, and Bl8.)

Mr. W. P. English, Engine Technical Committee, Aircraft Industries Association, Inc.; mail to Fairchild Engine Division, Fairchild Engine and Airplane Corp., Deer Park, Long Island, New York. (Member of ASA Committee Bl.)

Mr. H. C. Erdman, Technical Asst, to Pres., The National Screw & Manufacturing Co., 2440 E. 75th Street, Cleveland 4, Ohio. (Member of ASA Committees B1 and B18.)

Mr. H. W. Robb, Manager, Company Standards, Engineering Services Division, General Electric Co., 1 River Rood, Schenectady, New York. (Member of ASA Committees B1, B2, and B18.)

Mr. PAUL G. Schulz, Assistant Engineer of Standards, Engineering Division, Cranc Co., 836 S. Michigan Avenue, Chicago 5, Ill. (Member of ASA Committees B1 and B2.)

Mr. Wm. C. Stewart, Technical Adviser, Industrial Fasteners Institute, 1517 Terminal Tower, Cleveland 13, Ohio. (Member of ASA Committees B1 and B18.)

Mr. Frank P. Tisch, Voi-Shan Manufacturing Co., division of Pheoll Manufacturing Co., Culver City, Calif. (Member of ASA Committees B1 and B18.)

Manufacthring Co., Culver City, Calif. (Member of ASA Committees B1 and B18.)

Mr. W. G. Waltermer, Chief Products Engineer, The Lamson & Sessions Company, 1971 West 85th Street, Cleveland 2, Ohio. (Member of ASA Committees B1, B2, and B18.)

Mr. E. L. Wilcox, National Aircraft Standards Committee, Aircraft Industries Association of America, Inc.; mail to Republic Aviation Corp., Farmingdale, Long Island, New York.

Subgroup Members Who Participated in the Preparation of the 1957 Revision:

MR. P. S. CARTER, WCXP, Wright Air Development Center, Wright-Patterson Air Force Base, Ohio.
MR. W. L. COLEMAN, RDTES, Air Research and Development Command, P. O. Box 1395, Baltimore 3, Md.
MR. J. L. HERRING, Metallurgical Branch, Material Development Division (Code 343), Department of the Navy, Washington 25, D. C.
MR. F. F. JACOBS, Burcau of Aeronautics, Department of the Navy, Washington 25, D. C.
MR. JACK RATZEIN, Design Department, U. S. Naval Gun Factory, Washington 25, D. C.
MR. J. E. WATSON, National Control Division, Gage Laboratory, Frankford Arsenal, Ordnance Corps, Department of the Army, Philadelphia

ford Arsenal, Ordnance Corps, Department of the Army, Philadelphia

SECTION II. NOMENCLATURE, DEFINI-TIONS, AND LETTER SYMBOLS

1. INTRODUCTORY

The purposes of this section 1 are to establish uniform practices with regard to: (1) Screw-thread nomenclature, and (2) letter symbols for designating dimensions of screw threads for use on drawings, in tables of dimensions which set forth dimensional standards, and in other records, and for expressing mathematical relationships.

¹This standard is in general agreement with American Standard ASA B1.7, "Nomenclature, Definitions, and Letter Symbols for Screw Threads," published by The American Society of Mechanical Engineers, 29 West 39th St., New York 18, N. Y. The latest revision should be consulted when referring to such standards.

The section consists of a glossary of terms, two tables of screw-thread dimensional symbols, three illustrations showing the application of dimensional symbols, and one table of identification

designations.

Typography.—In accordance with the usual practice in published text, letter symbols and letter subscripts, whether upper or lower ease, should be printed in italie type. An exception is Greek letters; Greek capital letters are always vertical, and lower case always resemble italics. In manuscripts this is indicated by underlining each symbol to be italieized. Coefficients, numeral subscripts, and exponents should be printed in vertical Arabic numerals. Standard mathematical notation should be followed.

2. DEFINITION OF TERMS

The terms commonly applied to screw threads may be elassified in five general groups, namely: (1) Those relating to types of screw threads; (2) those relating to size and fit of mechanical parts in general; (3) those relating to geometrical elements of both straight and taper serew threads; (4) those relating to dimensions of serew threads; and (5) those relating only to taper screw threads.

The definitions presented herein apply to theoretically correct thread forms unless otherwise

indicated.

(a) Terms Relating to Types of Screw Threads.—Screw threads and the terms generally applied to designate the types of serew threads

are defined as follows:

- 1. Screw thread.—A screw thread (hereinafter referred to as a thread), is a ridge of uniform section in the form of a helix on the external or internal surface of a cylinder, or in the form of a eonieal spiral on the external or internal surface of a cone or frustum of a cone. A thread formed on a cylinder is known as a straight or parallel thread, to distinguish it from a taper thread which is formed on a cone or frustum of a cone.
- 2. External thread.—An external thread is a thread on the external surface of a cylinder or cone.
- 3. Internal thread.—An internal thread is a thread on the internal surface of a hollow cylinder or cone.

4. Right-hand thread.—A thread is a right-hand thread if, when viewed axially, it winds in a

elockwise and receding direction.

5. Left-hand thread.—A thread is a left-hand thread if, when viewed axially, it winds in a eounterclockwise and receding direction. All left-hand threads are designated LH.

6. Single thread.—A single (single-start) thread is one having lead equal to the pitch. (See (d)

1 and (d) 2, p. 4.)

7. Multiple thread.—A multiple (multiple-start) thread is one in which the lead is an integral multiple of the pitch. (See (d) 1 and (d) 2.)

8. Classes of threads.—Classes of threads are distinguished from each other by the amount of tolerance or tolerance and allowance specified.

(b) Terms Relating to Size and Fit.— Terms relating to the size and fit of parts, which are generally applicable to mechanical parts, including threads, are defined as follows:

1. Nominal size.—The nominal size is the designation which is used for the purpose of

general identification.

2. Dimension.—A dimension is a geometrical characteristic such as diameter, length, angle, or center distance.

3. Size.—Size is a designation of magnitude. When a value is assigned to a dimension it is referred to hereinafter as the size of that dimension.

Note, It is recognized that the words "dimension" and "size" are both used at times to convey the meaning of magnitude.

- 4. Allowance.—An allowance is an intentional difference between the maximum material limits of mating parts. It is the minimum elearance (positive allowanee) or maximum interference (negative allowance) between such parts. (See definition of "Fit.")
- 5. Tolerance.—A tolcrance is the total permissible variation of a size. The tolerance is the difference between the limits of size.

6. Basic size.—The basic size is that size from which the limits of size are derived by the applica-

tion of allowanees and toleranees.

- 7. Design size.—The design size is that size from which the limits of size are derived by the application of toleranecs. When there is no allowanee the design size is the same as the basic
- 8. Actual size.—An actual size is a measured siz^.

9. Limits of size.—The limits of size are the

applieable maximum and minimum sizes.

10. Maximum material limit.—A maximum material limit is the maximum limit of size of an external dimension or the minimum limit of size of an internal dimension.

11. Minimum material limit.—A minimum material limit is the minimum limit of size of an external dimension or the maximum limit of size of an internal dimension.

12. Tolerance limit.—A tolerance limit is the variation, positive or negative, by which a size is

permitted to depart from the design size.

13. Unilateral tolerance.—A unilateral toleranee is a tolerance in which variation is permitted only in one direction from the design size.

14. Bilateral tolerance.—A bilateral tolerance is a tolcranee in which variation is permitted in

both directions from the design size.

15. Unilateral tolerance system.—A design plan which uses only unilateral tolerances is known as a Unilateral Tolerance System.

16. Bilateral tolerance system.—A design plan which uses only bilateral tolerances is known as

a Bilateral Tolerance System.

17. Fit.—Fit is the general term used to signify the range of tightness which may result from the application of a specific eombination of allowanees and toleranees in the design of mating parts.

18. Actual fit.—The actual fit between two mating parts is the relation existing between them with respect to the amount of clearance or interference that is present when they are assembled.

Fits are of three general types: clearance, transition, and interference.

19. Clearance fit.—A clearance fit is one having limits of size so prescribed that a clearance always

results when mating parts are assembled.

20. Interference fit.—An interference fit is one having limits of size so prescribed that an interference always results when mating parts are assembled.

21. Transition fit.—A transition fit is one having limits of size so prescribed that either a clearance or an interference may result when

mating parts are assembled.

22. Basic hole system.—A basic hole system is a system of fits in which the design size of the hole is the basic size and the allowance is applied

23.—Basic shaft system.—A basic shaft system is a system of fits in which the design size of the shaft is the basic size and the allowance is applied

to the hole.

- (c) Terms Relating to Geometrical Ele-MENTS OF SCREW THREADS.—Terms relating to geometrical elements of both straight and taper threads are defined as follows:
- 1. Axis.—The axis of a thread is the axis of its pitch cylinder or cone.
- 2. Pitch line.—The pitch line is a generator of the cylinder or cone specified in the definition of pitch diameter.

3. Form.—The form of thread is its profile in an

axial plane for a length of one pitch.

4. Basic form of thread.—The basic form of a thread is the theoretical profile of the thread for a length of one pitch in an axial plane, on which the design forms of the threads for both the external and internal threads are based.

5. Design forms of thread.—The design forms for a thread are the maximum material forms permitted for the external and internal threads.

6. Fundamental triangle.—The fundamental triangle is the triangle whose corners coincide with three consecutive intersections of the extended flanks of the basic form.

7. Flank.—The flank (or side) of a thread is either surface connecting the crest with the root, the intersection of which, with an axial plane, is

theoretically a straight line.

8. Leading flank.—The leading flank of a thread is the one which, when the thread is about to be assembled with a mating thread, faces the mating

9. Following flank.—The following flank of a thread is the one that is opposite to the leading

flank.

10. Pressure flank.—The pressure flank is that which takes the thrust or load in an assembly. The term is used particularly in relation to buttress and other similar threads.

11. Clearance (or trailing) flank.—The clearance flank is that which does not take the thrust or

load in an assembly.

12. Crest.—The crest is that surface of the thread that joins the flanks of the thread and is farthest from the cylinder or cone from which the thread projects.

13. Root.—The root is that surface of the thread that joins the flanks of adjacent thread forms and is identical with or immediately adjacent to the cylinder or cone from which the thread

projects.

14. Sharp crest (or crest apex).—The sharp crest is the apex formed by the intersection of the flanks of a thread when extended, if necessary, beyond the crest.

15. Sharp root (or root apex).-The sharp root is the apex formed by the intersection of the flanks of adjacent thread forms when extended,

if necessary, beyond the root.

16. Base.—The base of a thread is that section of the thread that coincides with the cylinder or cone from which the thread projects.

17. Major cylinder or cone.—See "major diam-

eter" and "major cone."

18. Minor cylinder or cone.—See "minor diameter" and "minor cone."

19. Pitch cylinder or cone.—See "pitch diameter" and "pitch cone."

- 20. Complete thread.—The complete (or full) thread is that part of the thread having full form at both crest and root. When there is a chamfer at the start of the thread, not exceeding two pitches in length on an external thread or one pitch in length on an internal thread, it is included within the length of complete thread. When designing threaded products, it is necessary to take cognizance of: (1) Such permissible length of chamfer and (2) the first three threads which by virtue of "not go" gaging practice may exceed the product limits and which may be included within the length of complete thread. However, when the application is such as to require a minimum number of turns engagement, the specification shall so state and shall specify the minimum number of turns required.
- 21. Incomplete thread.—This is also known as the vanish or washout thread. On straight threads, the incomplete thread is that portion at the end having roots not fully formed by the lead or chamfer on threading tools.

On taper threads, the crest at the end may also be not fully formed due to the intersection of the major cone of an external thread, or the minor cone of an internal thread, with the cylindrical

surface of the work.

22. Effective thread.—The effective (or useful) thread includes the complete thread and that portion of the incomplete thread having fully formed roots but having crests not fully formed.

23. Total thread.—The total thread includes the complete or effective thread and the incomplete

thread.

24. Vanish cone.—The vanish cone is a cone, the surface of which would pass through the roots of the incomplete thread formed by the lead or chamfer of the threading tool.

25. Vanish point.—The vanish point of an external thread is the intersection of a generator of the vanish cone with a generator of the cylinder of the largest major diameter of the thread.

26. Blunt start.—"Blunt start" designates the removal of the partial thread at the entering end of thread. This is a feature of threaded parts that are repeatedly assembled by hand, such as hose couplings and thread plug gages, to prevent cutting of hands and crossing of threads, and which was formerly known as a Highee cut. (See fig. II.1.)

FIGURE II.1.—Blunt start.

(d) Terms Relating to Dimensions of Screw Threads.—Terms relating to dimensions of both straight and taper threads are defined as follows:

1. Pitch.—The pitch of a thread is the distance, measured parallel to its axis, between corresponding points on adjacent thread forms in the same axial plane and on the same side of the axis.

2. Lead.—The lead is the distance a threaded part moves axially, with respect to a fixed mating part, in one complete rotation.

3. Threads per inch.—The number of threads per inch is the reciprocal of the pitch in inches.

4. Turns per inch.—The number of turns per inch is the reciprocal of the lead in inches.

5. Included angle.—The included angle of a thread (or angle of thread) is the angle between the flanks of the thread measured in an axial plane.

6. Flank angle.—The flank angles are the angles between the individual flanks and the perpendicular to the axis of the thread, measured in an axial planc. A flank angle of a symmetrical thread is commonly termed the half-angle of thread.

7. Lead angle.—On a straight thread the lead angle is the angle made by the helix of the thread at the pitch line with a plane perpendicular to the axis. On a taper thread, the lead angle at a given axial position is the angle made by the conical

spiral of the thread at the pitch line with the plane perpendicular to the axis at that position.

8. Thickness of thread.—The thickness of thread is the distance between the flanks of the thread measured at a specified position and parallel to the axis.

9. Height of fundamental triangle.—The height of the fundamental triangle of a thread, or the height of a sharp-V thread, is the distance, measured perpendicular to the axis, between the sharp major and minor cylinders or cones, respectively.

10. Height of thread.—The height (or depth) of thread is the distance, measured perpendicular to the axis, between the major and minor cylinders

or cones, respectively.

11. Addendum.—The addendum of an external thread is the distance, measured perpendicular to the axis, between the major and pitch cylinders or cones, respectively. The addendum of an internal thread is the distance, measured perpendicular to the axis, between the minor and pitch cylinders or cones, respectively.

12. Dedendum.—The dedendum of an external thread is the distance, measured perpendicular to the axis, between the pitch and minor cylinders or cones, respectively. The dedendum of an internal thread is the distance, measured perpendicular to the axis, between the major and pitch cylinders or cones, respectively.

13. Crest truncation.—The crest truncation of a thread is the distance, measured perpendicular to the axis, between the sharp crest (or crest apex) and the cylinder or cone that would bound the crest.

14. Root truncation.—The root truncation of a thread is the distance, measured perpendicular to the axis, between the sharp root (or root apex) and the cylinder or cone that would bound the root.

15. Major diameter.—On a straight thread, the major diameter is the diameter of the coaxial cylinder that would bound the crest of an external thread or the root of an internal thread.

On a taper thread, the major diameter, at a given position on the thread axis, is the diameter

of the major cone at that position.

16. Minor diameter.—On a straight thread, the minor diameter is the diameter of the coaxial cylinder that would bound the root of an external thread or the crest of an internal thread.

On a taper thread, the minor diameter, at a given position on the thread axis, is the diameter

of the minor cone at that position.

17. Pitch diameter (simple effective diameter).—On a straight thread, the pitch diameter is the diameter of the coaxial cylinder, the surface of which would pass through the thread profiles at such points as to make the width of the groove equal to one-half of the basic pitch. On a perfect thread this occurs at the points where the widths of the thread and groove are equal.

On a taper thread, the pitch diameter at a given position on the thread axis is the diameter of the

pitch cone at that position.

18. Virtual diameter (or effective size).—The virtual diameter of an external or internal thread is the diameter derived by adding to the pitch diameter in the case of an external thread, or subtracting from the pitch diameter in the case of an internal thread, the cumulative effects of deviations from specified profile, including variations in lead, in uniformity of helix, in flank angle, taper, out-of-roundness, and surface defects.

19. Depth of thread engagement.—The depth (or height) of thread engagement between two mating threads is the distance, measured perpendicular to the axis, by which their thread forms overlap

each other.

20. Length of thread engagement.—The length of thread engagement of two mating threads is the distance between the extreme points of contact on the pitch cylinders or cones, measured parallel to the axis.

21. Crest clearance.—The crest clearance in a thread assembly is the distance, measured perpendicular to the axis, between the crest of a thread

and the root of its mating thread.

22. Tensile stress area.—The tensile stress area is the assumed area of an external threaded part that is used for the purpose of computing the tensile strength.

Tabulated stress areas in section III and appendix 1, applicable to steel parts, are computed from

the following formula:

$$A_s = 3.1416 \left(\frac{E}{2} - \frac{3H}{16}\right)^2$$

 $A_s = 0.7854 (D - 0.9743/n)^2$ or

where

E =basic pitch diameter D=basic major diameter n =threads per inch

For
$$\frac{3H}{16}$$
, see table III.1.

This formula correlates with test results for steels

up to 100,000 psi ultimate strength.

For steels having ultimate strengths greater than 100,000 psi, it is recommended that the following formula be used to determine the stress area:

$$A_s = 3.1416 \left(\frac{E_{\text{m in}}}{2} - \frac{3H}{16} \right)^2$$

where E_{\min} equals minimum pitch diameter of the class of thread specified.

23. Thread shear area.—The thread shear area of the external thread is the effective area at a diameter equal to the maximum minor diameter of the internal thread. The thread shear area of the internal thread is the effective area at a diameter equal to the minimum major diameter of the external thread. The formula for shear area of the external thread at a diameter equal to the maximum minor diameter of the internal thread (AS_s) is as follows:

$$AS_s =$$

$$3.1416nL_eK_n \max \left[\frac{1}{2n} + 0.57735(E_s \min - K_n \max)\right]$$

The formula for shear area of the internal thread at a diameter equal to the minimum major diameter of the external thread (AS_n) is as

$$AS_n =$$

$$3.1416nL_eD_s \min \left[\frac{1}{2n} + 0.57735(D_s \min - E_n \max)\right]$$

where n= number of threads per inch $L_e=$ length of engagement $K_n \max = \max$ maximum minor diameter of internal thread

 $E_s \min = \min$ minimum pitch diameter of external thread

 $D_s \min = \min \max \max \text{ diameter of ex-}$ ternal thread

 E_n max = maximum pitch diameter of internal thread.

As materials bearing the same name vary greatly in ultimate strength and in other essential characteristics, the formulas given below are included in order that a safe length of external thread mating with internal threads may be calculated. It is desirable that the length of internal thread and the dimensions of this thread, particularly its minor diameter, be such that, taking into account a possible difference in strength of material of the internal and external threads, the threaded portion of the external thread will break before either the external or internal threads strip. For this reason, the shearing strength of the assembled unit should be taken as ½ the tensile strength, which gives a small factor of safety.

The length of engagement of a threaded unit, that will develop maximum strength of an assembled threaded unit with external and internal threads manufactured of materials of equal tensile strength, is computed from the following formula:

$$\frac{L_e = 2 \times \text{Strcss area}}{3.1416nK_n \max \left[\frac{1}{2n} + 0.57735(E_s \min - K_n \max)\right]}$$

This formula has the factor "%" for relation of shearing strength to tensile strength incorporated therein. The formula, while given for steel external and internal threads, may be used for brass external and internal threads and provides an additional safety factor.

Where the external and internal threads are manufactured of materials of different tensile

strengths, the factor J for the relative strength in shear of external threads with respect to internal threads must be considered. The factor J is computed from the following formula:

$$J = \frac{AS_s \times \text{Tensile strength of external thread}}{AS_n \times \text{Tensile strength of internal thread}}$$

The length of engagement of a threaded unit adjusted to obtain proper relation of strength to eause breakage of the bolt before threads will shear is Q and is computed from the following formulas:

If J is less than 1, $Q=L_e$ If J is greater than 1, $Q=J\times L_e$.

(e) Terms Relating Only to Taper Screw Threads.—Terms relating only to taper threads are defined as follows:

1. Pitch cone.—The pitch cone is a cone, the surface of which would pass through the thread profiles at such points as to make the width of the groove equal to one half of the basic pitch. On a perfect thread this occurs at the point where the widths of the thread and groove are equal.

2. Major cone.—The major cone is a cone having an apex angle equal to that of the pitch cone, the surface of which would bound the crest of an external thread or the root of an internal thread.

3. Sharp major cone.—The sharp major cone is a cone having an apex angle equal to that of the pitch cone, the surface of which would pass through the sharp crest of an external thread or the sharp root of an internal thread.

4. Minor cone.—The minor cone is a cene having an apex angle equal to that of the pitch cone, the surface of which would bound the root of an external thread or the crest of an internal thread.

Figure II,2.—General screw thread symbols.

Note.—These diagrams are not intended to show standard thread forms but illustrate only the applications of symbols.

5. Sharp minor cone.—The sharp minor cone is a cone having an apex angle equal to that of the pitch cone, the surface of which would pass through the sharp root of an external thread or the sharp crest of an internal thread.

6. Standoff.—The standoff is the axial distance between specified reference points on external and internal taper threaded members or gages, when assembled with a specified torque or under other

specified conditions.

7. Bottom of chamfer.—On a chamfered internal taper thread the bottom of the chamfer is defined as the intersection of the chamfer cone and the pitch cone of the thread.

3. LETTER SYMBOLS AND ABBREVIATIONS

Symbols associated with screw threads are of two kinds: (1) Letter symbols for designating dimensions of screw threads and threaded products; and (2) abbreviations used as designations for various standard thread forms and thread series.

(a) Dimensional Symbols.—Standard letter symbols to designate the dimensions of screw threads are given in tables II.1 and II.2. General symbols are given in table II.1 and pipe-thread symbols in table II.2. The application of general symbols is illustrated in figures II.2 and II.3, inclusive, and pipe-thread symbols in figure II.4.

FIGURE II.3.—General screw thread symbols.

(b) Identification Designations.—Identification designations are capital letter abbreviations of names used to designate various forms of thread and thread series, and commonly consist of combinations of such abbreviations. There are assembled in table II.3 the names and abbreviations which are now in use, together with references to standards in which they occur, of various standard threads. See also p. 26.

The method of designating a screw thread is by the use of the initial letters of the thread series, preceded by the diameter in inches (or the screw number) and number of threads per inch, all in Arabic characters, and followed by the classification of allowance and tolerance in Arabic numerals. The designation applicable to each thread series is stated in the section where such series is presented, together with examples. If the thread is left hand, the symbol "LH" shall follow the class. No symbol is used to distinguish right hand threads. The number of threads per inch shall be indicated in all cases, irrespective of whether it is the standard number of threads for that particular size of threaded part, or special. Tools and gages for standard thread diameters and pitches shall bear standard identification designations, and special marking of such items shall be avoided.

Multiple threads shall be designated by showing both the pitch and the lead in accordance with examples given in the section on Acme threads.

FIGURE II.4.—Pipe thread symbols.

Symbols	Dimensions	Remarks
D	Major diameter	basic major diameter when this differs from the nominal major di- ameter. Subscripts s or n, indicating external or internal thread, may be
E	Pitch diameter	used if necessary. Subscripts s or n, indicating external or internal thread, may he used if necessary.
P l	Pitch Lead Number of threads per unit of	Equals $1/n$. Equals $1/N$. Equals $1/p$.
N	length (per inch). Number of turns per unit of length (per inch). Height of fundamental tri-	Equals l/l.
H	Height of fundamental tri- angle.	
h	Height of thread	Subscripts s or n, indicating external or internal thread, may he used if necessary.
h а h d h ь	Addendum. Dedendum. Equals $2h_a$ of basic external	
h ε α (alpha)	thread. Depth of thread engagement. Half-angle of symmetrical	
α1	thread. Angle between leading flank of thread and normal to axis	,
$lpha_2$	of thread. Angle between following flank of thread and normal to axis of thread.	,
λ (lamhda)	Lead angle	$\operatorname{Tan} \lambda = \frac{\iota}{\pi E}$.
r	Radius of rounding at crest, or radius of rounding at root.	Subscripts c or r indicating crest or root, and s or n indicating external or internal thread may be used if necessary.
8	Depth from apex of fundamental triangle to adjacent root or crest of thread: (1) If rounded. (2) If flat. Depth from apex of funda-	
cs	Depth from apex of fundamental triangle to: (1) Flat at crest of external thread.	
fra	(2) Flat at root of external thread.(3) Flat at crest of internal	
frn	thread. (4) Flat at root of internal	
F	thread. Width of: (1) Flat (general). (2) Flat at crest of external	
F cs	thread.	
F _{cn}	(3) Flat at root of external thread.	
F _{rn}	(4) Flat at crest of internal thread.(5) Flat at root of internal	
L	thread. Length of bolt or screw.	
L _t	Length of full thread	Subscripts s or n may be used.
$egin{array}{cccc} L_{c} & & & & & \\ w & & & & & \\ M_{w} & & & & & \\ \end{array}$	Length of thread engagement. Diameter of measuring wires. Measurement over wires.	
T.	Measurement under wires. Correction to measurement over wires to give pitch di-	$\begin{cases} E = M_w - C - c. \\ C = w (1 + \cos e c \ \alpha) - c. \end{cases}$
P	ameter. Correction to measurement under wires to give pitch diameter.	$(\cot \alpha)/2n.$ $E = T + P - c.$ $P = 1/2p \text{ cot } \alpha - (\csc \alpha - 1)w.$
λ' c	Wire angle Correction	See NPL "Gauging and Measuring Screw Threads," 1951, p. 23, or NBS Handbook H28
Prefix symbol with δ (delta).	Deviation in any dimension	L (1957), p. 197. Examples: Deviation in pitch, δp ; deviation in half-angle, $\delta \alpha_1$ or $\delta \alpha_2$.
$\delta E \alpha$ (delta $E \alpha$).	Pitch-diameter equivalent of deviations in flank angles.	nan-angιe, θαι θι θας.
δE_p (delta E_p).	Pitch-diameter equivalent of deviation in pitch.	

Symbols	Dimensions	Remarks
Ddt	Outside diameter of pipe Inside diameter of pipe Wall thickness of pipe	Subscript 4 is used for dimensions in plane of vanish point when these differ from D, d, or t, respectively. (Subscript x denotes plane)
T.	35.1 11	containing the diameter. For axial positions of
D_{x} E_{z} K_{z}	Major diameter Pitch diameter Minor diameter	planes see foot of this table. Subscripts s or n designating screw or nut may also be used in
Lz	Length of thread from plane of pipe end to plane containing basic diameter D_x , E_x , or K_x .	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
V	Length of washout (vanish cone) threads.	(&DIC.
β (heta)	Half apex angle of pitch cone of taper thread.	
γ (gamma)	Angle of chamfer at end of pipe measured from a plane nor- mal to the axis.	
4	Handtight standoff of face of coupling from plane contain-	
M	ing vanish point on pipe. Length from plane of hand- tight engagement to the face of coupling on internally	
8	threaded member. Distance of gaging step of plug gage from face of ring gage	
L_{n}	for handtight engagement. Length from center line of coupling, face of flange, or hottom of internal thread	
b	chamber to face of fitting. Width of bearing face on coupling.	
τ (tau)	Angle of chamfer at bottom of recess or counterbore meas-	
€ (epsilon)	ured from the axis. Halfapex angle of vanish cone.	
L ₁	Length from center line of coupling, face of flange, or bottom of internal thread chamber to end of pipe, wrenched engagement. (1) Length of straight full thread (see table II.1). (2) Length from plane of handtight engagement to small end of full internal	
o	Diameter of recess or counter-	
q	bore in fitting. Depth of recess or counterbore	
W	in fitting. Outside diameter of coupling or hub of fitting.	
	of hab of hering.	
DI	EFINITION OF PLANES DENOTED I	BY SUBSCRIPT x
x = 0 x = 1	Plane of pipe end	
x=2	diameter." Plane at which washout	
x=3	threads on pipe commence. Plane in coupling reached by end of pipe in wrenched condition. (L ₃ is measured from plane containing pipe end iu position of handtight engagement.)	
x=4	Plane containing vanish point of thread on pipe.	
x=5	Plane at which major diameter cone of thread intersects outside diameter of pipe.	

NOTE.—Additional special structure plane as a storows: Plane x=0 is the plane of the pipe end for railing joints. Plane x=7 is the plane of the API gage point at a specified length from the plane of vanish point. Plane x=8 is the plane of the large end of the " L_{δ} thread ring gage" for the compressed-gas cylinder valve inlet connection thread. Plane x=9 is the plane of the small end of the " L_{δ} thread plug gage" for the compressed-gas cylinder inlet thread.

		References			
Designation	Thread series	ASA Standards	Handbook H28 (1957), section No.		
Acme-C. Acme-G. Stub Acme A MO. N. Butt. NC. NF. NF. NEF. 8N. 12N. 16N. NGO. NM. NS. NCO. NF. NF. NPT. NPTF. NPTF. NPTR. NPSC. NPSL. NPSH. NPSL. NPSH.	American Standard straight pipe thread American Standard straight pipe thread in couplings American Standard internal straight pipe thread (dryseal) American Standard intermediate internal straight pipe thread (dryseal) American Standard straight pipe thread for mechanical joints American Standard straight pipe thread for mechanical joints American Standard straight pipe thread for locknuts and locknut pipe threads American Standard straight pipe thread for hose couplings and nipples Aeronautical taper pipe thread	B1.5 B1.9 B1.1 B1.1 B1.1 B1.1 B1.1 B1.1 B1.1	XII		
RMS UNC UNEF UNF UNF UN-	American Standard surveying instrument mounting thread. Unified coarse thread series. Unified selected diameter-pitch combinations of the extra-fine thread series. Unified fine thread series. Unified selected diameter-pitch combinations of the 8-, 12-, and 16-thread series. Unified streads of selected special diameters, pitches, and lengths of engagement.	B1.1	111. 111. 111. 111.		

Methods of designating multiple threads are shown in ASA B1.5 Acme Screw Threads, and Part III of Handhook H28 (1957).
 All threads, except NGO, are right hand, unless otherwise designated. For NGO threads, designations "RH" or "LH" are required.
 Military Specification M1L-P-7105, Pipe Threads, Taper, Aeronautical National Form.

SECTION III. UNIFIED THREAD FORM AND THREAD SERIES FOR BOLTS, MA-CHINE SCREWS, NUTS, TAPPED HOLES, AND GENERAL APPLICATIONS

1. INTRODUCTION

The Unified thread standards, which have been agreed upon by standards bodies of Canada, the United Kingdom, and the United States, constitute the basic American standards for fastening screw threads. They are a complete and integrated system of threads for fastening purposes in mechanisms and structures. Their outstanding characteristic is general interchangeability of threads achieved through the standardization of thread form, diameter-pitch combinations, and limits of size.

The standards have as their original basis the work done about a century ago by William Sellers in the United States and Sir Joseph Whitworth in Great Britain. Throughout the intervening years there have been many further developments and revisions, culminating in the system of Unified Threads approved and adopted for use by all inchusing countries.

Unification of screw thread standards received its impetus from the need for interchangeability among the billions of fasteners used in the complex equipment of modern warfare which was, and continues to be made in different countries. Equally important, however, are international trade in mechanisms of all kinds and the servicing of transportation equipment which moves from country to country. These have made unification not only highly advantageous but practically essential. In sizes ¼ in. and larger, complete unification of certain thread series and six tolerance classes was signalized by the signing of an accord on November 18, 1948. Since that time a limited unification of seven sizes only for attachment purposes has been extended into smaller sizes. Although thread sizes less than ¼ in. have not been unified, the tolerances and allowances based on Unified formulation are applied to these sizes in the United States and Canada, and they are known as American Standard threads.

In relation to previous American practice, as covered by appendixes 1 and 2 of this Handbook, Unified threads have substantially the same thread form and are mechanically interchangeable with American National threads of the same diameter and pitch.

The principal differences between the two systems relate to the application of allowances, the variation of tolerances with size, difference in amount of pitch diameter tolerance on external and internal threads, and differences in thread designations. Under the Unified system an allow-

² The Unified thread standards presented in this section are in general agreement with ASA B1.1, "Unified and American Screw Threads," published by the ASME, 29 West 39th Street, New York 18, N. Y.; also with CSA B1.1, "Standard for Unified and American Screw Threads," published by the Canadian Standards Association, Ottawa, Canada; and with British Standard 1580, "Unified Screw Threads," published by the British Standards Institution, 2 Park Street, London, W. 1. The latest revision should be consulted when referring to such standards sulted when referring to such standards.

 $\textbf{Figure III 1.--} Unified\ internal\ and\ external\ screw\ thread\ design\ forms\ (maximum\ material\ condition).}$

Note.—See table III.1 for numerical values. In practice the crests of external threads may be rounded.

ance is provided on both the classes 1A and 2A external threads, whereas under the American National system only the class 1 external thread has an allowance. Under the Unified system, the pitch diameter tolerance of an internal thread is 30 percent greater than that of the external thread, but such tolerances are equal under the American National system. Unified tolerances and allowances for both standard and special diameter-pitch combinations are derived from the same formula, but American National tolerances for special threads have a different basis from that for some standard threads.

2. THE UNIFIED FORM OF THREAD

- 1. Angle of Thread.—The basic angle of thread between the flanks of the thread, measured in an axial plane, is 60°. The line bisecting this 60° angle is perpendicular to the axis of the screw thread.
- 2. Form of Crest.—The form of the crest of external threads is flat. The crest of the basic thread form of the external thread shall be truncated from the sharp crest an amount equal to

H/8, where H is the depth of the fundamental triangle. The form of the crest of internal threads is flat and the crest shall be truncated from the sharp crest an amount equal to H/4.

3. Form of Root.—The crest clearances allowed are such as to permit rounded root forms in both the external and internal threads. Rounded roots are required in some applications and are made by tools that are purposely rounded. Otherwise, rounded roots may be the result of tool wear.

4. CLEARANCE AT MINOR DIAMETER.—A clearance is provided at the minor diameter of the internal thread by truncating from the sharp crest

an amount equal to H/4.

5. CLEARANCE AT MAJOR DIAMETER.—A clearance is provided at the major diameter of the internal thread by making the thread form at the root such that its width is less than p/8.

6. Illustrations.—Figure III .1 shows the design forms (maximum material condition) of the external and internal threads of the Unified form

of thread.

7. Basic Thread Data.—The basic thread data for all standard pitches of the Unified form of thread are given in table III.1.

Table III.1.—Thread data, Unified thread form (see fig. III.2)

Threads per inch,	Pitch,	Flat at internal thread crest, $F_{en} = p/4 = 0.25p$	Flat at internal thread root and external thread crest, $F_{rn} = F_{cs} = p/8 = 0.125p$	Height of sharp v-thread, $H=0.866025p$	Truncation of internal thread root and external thread crest, $f_{rn} = f_{es} = H/8 = 0.10825p$	Truncation of external thread root, $s_{rs} = H/6 = 0.14434p$	Half addendum of external thread, $^{3}16H= \\ 0.16238p$	Trunca- tion of internal thread crest, $f_{cn} = H/4 = 0.21651 p$	Addendum of external thread, $h_{ae} = \frac{3}{3} H = 0.32476 p$	Height of internal thread and depth of thread engagement, $h_n = h_s = 58H = 0.54127p$	Height of external thread, $h_s = \frac{1724H}{0.61343p}$	Twice the external thread addendum ^a , $h_b = 2h_{as} = 34 H = 0.649519 p$	Difference between max. major and pitch diameters of internal thread, 11/12H= 0.79386p	Double beight of internal thread, $2h_n = 1 \% H = 1.08253 p$	Double beight of external thread, $15/2H=1.22687p$
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
80 72 64 56 48	in. 0. 012500 . 013889 . 015625 . 017857 . 020833	in. 0.00312 .00347 .00391 .00446 .00521	in. 0.00156 .00174 .00195 .00223 .00260	in. 0.010825 .012028 .013532 .015465 .018042	in. 0.00135 .00150 .00169 .00193 .00226	in. 0, 00180 .00200 .00226 .00258 .00301	in. 0.00203 .00226 .00254 .00290 .00338	in. 0.00271 .00301 .00338 .00387 .00451	in. 0.00406 .00451 .00507 .005°0 .00677	in. 0.00677 .00752 .00846 .00967 .01128	in. 0.00767 .00852 .00958 .01095 .01278	in. 0. 008119 .009021 .010149 .011599 .013532	in. 0.00992 .01103 .01240 .01418 .01654	in. 0. 01353 . 01504 . 01691 . 01933 . 02255	in. 0.01534 .01704 .01917 .02191 .02556
44	.022727	. 00568	. 00284	.019682	. 00246	. 00328	.00369	. 00492	. 00738	. 01230	. 01394	.014762	.01804	. 02460	. 02788
40	.025000	. 00625	. 00312	.021651	. 00271	. 00361	.00406	. 00541	. 00812	. 01353	. 01534	.016238	.01985	. 02706	. 03067
36	.027778	. 00694	. 00347	.024056	. 00301	. 00401	.00541	. 00601	. 00902	. 01504	. 01704	.018042	.02205	. 03007	. 03408
32	.031250	. 00781	. 00391	.027063	. 00338	. 00451	.00507	. 00677	. 01015	. 01691	. 01917	.020297	.02481	. 03383	. 03834
28	.035714	. 00893	. 00446	.030929	. 00387	. 00515	.00580	. 00773	. 01160	. 01933	. 02191	.023197	.02835	. 03866	. 04382
27	. 037037	. 00926	. 00463	.032075	.00401	.00535	. 00601	. 00802	. 01203	. 02005	. 02272	. 024056	. 02940	. 04009	. 04544
24	. 041667	. 01042	. 00521	.0360§4	.00451	.00601	. 00677	. 00902	. 01353	. 02255	. 02556	. 027063	. 03308	. 04511	. 05112
20	. 050000	. 01250	. 00625	.043301	.00541	.00722	. 00812	. 01083	. 01624	. 02706	. 03067	. 032476	. 03969	. 05413	. 06134
18	. 055556	. 01389	. 00694	.048113	.00601	.00502	. 00902	. 01203	. 01804	. 03007	. 03408	. 036084	. 04410	. 06014	. 06816
16	. 062500	. 01562	. 00781	.054127	.00677	.00902	. 01015	. 01353	. 02030	. 03383	. 03834	. 040595	. 04962	. 06766	. 07668
$\begin{array}{c} 14 \\ 13 \\ 12 \\ 111 \\ 11 \end{array}$. 071429	.01786	. 00893	. 061859	. 00773	. 01031	. 01160	. 01546	. 02320	. 03866	. 04382	. 046394	.05670	. 07732	. 08763
	. 076923	.01923	. 00962	. 066617	. 00833	. 01110	. 01249	. 01665	. 02498	. 04164	. 04719	. 049963	.06107	. 08327	. 09437
	. 083333	.02083	. 01042	. 072169	. 00902	. 01203	. 01353	. 01804	. 02706	. 04511	. 05112	. 054127	.06615	. 09021	. 10224
	. 086957	.02174	. 01087	. 075307	. 00941	. 01255	. 01412	. 01883	. 02824	. 04707	. 05334	. 056450	.06903	. 09413	. 10668
	. 090909	.02273	. 01136	. 078730	. 00984	. 01312	. 01476	. 01968	. 02952	. 04921	. 05577	. 059047	.07217	. 09841	. 11153
10	. 100000	. 02500	. 01250	. 086603	.01083	.01443	. 01624	.02165	. 03248	. 05413	. 06134	.064952	. 07939	. 10825	. 12269
9	. 111111	. 02778	. 01389	. 096225	.01203	.01604	. 01804	.02406	. 03608	. 06014	. 06816	.072169	. 08821	. 12028	. 13632
8	. 125000	. 03125	. 01562	. 108253	.01353	.01804	. 02030	.02706	. 04059	. 06766	. 07668	.081190	. 09923	. 13532	. 15336
7	. 142857	. 03571	. 01786	. 123718	.01546	.02062	. 02320	.03093	. 04639	. 07732	. 08763	.092788	. 11341	. 15465	. 17527
6	. 166667	. 04167	. 02083	. 144338	. 01804	. 02406	. 02706	. 03608	. 05413	. 09021	. 10224	. 108253	. 13231	. 18042	. 20448
5	. 200000	. 05000	. 02500	. 173205	. 02165	. 02887	. 03248	. 04330	. 06495	. 10825	. 12269	. 129904	. 15877	. 21651	. 24537
4½	. 222222	. 05556	. 02778	. 192450	. 02406	. 03208	. 03608	. 04811	. 0 7 217	. 12028	. 13632	. 144338	. 17641	. 24056	. 27264
4	. 250000	. 06250	. 03125	. 216506	. 02706	. 03608	. 04059	. 05413	. 08119	. 13532	. 15336	. 162380	. 19846	. 27063	. 30672

 $^{{\}tt a}$ Equivalent to the "basic beight" ${\tt h}$ of the original American National form. ${\tt H}$

 $h_{dn} = h_{as} = \frac{3}{8}H$.

3. THREAD SERIES, SYMBOLS, AND SUGGESTED APPLICATIONS

1. Thread Series Definition.—Thread series are groups of diameter-pitch combinations distinguished from each other by the number of threads per inch applied to a specific diameter. The various diameter-pitch combinations of the six standard series are shown in table III.2, and the designations for the various thread series are shown in the dimensional tables.

2. Coarse-Thread Series.—The basic dimensions of the coarse-thread series, including both

Unified thread sizes and additional American standard thread sizes, are given in table III.

3. The limits of size, allowances, and tolerances for the Unified classes, based on a length of engagement of one diameter, are given in table III.

10. Thread sizes of the coarse-thread series that are recognized as Unified are designated by the symbol "UNC". See footnote b, p. 16. All others are designated by "NC" with the Unified class designations to indicate their conformance to the Unified thread formulation.

Figure III.2.—Symbols for thread data in table III.1.

The coarse-thread series is suitable for bolts, serews, nuts, and general use where the wall thickness will accommodate the thread dimensions. It is particularly advantageous for applications requiring rapid assembly or disassembly or for threading into lower-strength materials, such as

castings, soft metals, and plasties.

3. Fine-Thread Series.—The basic dimensions of the fine-thread series, including both Unified thread sizes and additional American standard thread sizes, are given in table III.4. The limits of size, allowances, and tolerances for the Unified classes, based on a length of engagement of one diameter, are given in table III.10. Thread sizes of the fine-thread series which are recognized as Unified are designated by the symbol "UNF". See footnote c, p. 16. All others are designated "NF" with the Unified class designations to indicate their conformance to the Unified thread formulation.

The fine thread series is suitable for bolts, screws, and nuts, and other applications where a closer ratio is desired between the static strengths of the bolt and thread, where length of engagement is limited, where a smaller lead angle is desired, or where the wall thickness requires a smaller thread. Caution should be observed when using this series in castings, soft metals, plastics,

and similar lower-strength materials.

4. Extra-Fine-Thread Series.—The extrafine-thread series is applicable where (1) thinwalled material is to be threaded, (2) thread height of nuts clearing ferrules, coupling flanges, etc., must be held to a minimum, and (3) a maximum practicable number of threads is required within a given thread length. The basic dimensions of the extra-fine-thread series are given in table III.5. The limits of size, allowances, and toleranees for the Unified classes, based on a length of engagement of 9 pitches, are given in table III.10. Thread sizes of the extra-fine-thread series which are recognized as Unified are designated by the symbol "UNEF". All others are designated by "NEF" with the Unified class designations to indicate their conformance to the Unified thread formulation.

5. 8-Thread Series.—The 8-thread series is a uniform-pitch series for large diameters. Although originally intended for high-pressure-joint bolts and nuts, it is now widely used as a substitute for the coarse-thread series for diameters larger than 1 in. It is used particularly on bolts for high-pressure pipe flanges, cylinder-head studs, and similar fasteners against pressure. The basic dimensions of the 8-thread series are given in table III.6. In American practice, the limits of size of this series are eustomarily based on a length of engagement of one diameter, as given in table III.10. Such threads are designated "8N" with the Unified class designations to indicate their conformance to the Unified thread formulation. Sizes of the 8-thread series 3 larger than 1½ in. in even ½ in. are recognized as Unified sizes when limits of size are based on a length of en-

gagement of 9 pitches, or 1% in.

6. 12-Thread Series.—The 12-thread series is a uniform-pitch series for large diameters requiring threads of medium-fine pitch. It is widely used in machine construction for thin nuts on shafts and sleeves. It also allows the specification of shoulder diameters in steps of \% in., as from the standpoints of good design and simplification of practice it is desirable to limit shoulder diameters to %-in. steps. Twelve threads per inch is the coarsest pitch in general use which will permit a threaded collar, which screws onto a threaded shoulder, to slip over a shaft, the difference in diameter between shoulder and shaft being 1/2 in. Sizes of the 12-thread series from ½ in. to and including 1% in. are used in boiler practice, which requires that worn stud holes be retapped with a tap of the next larger size, the increment being $\frac{1}{6}$ in. throughout most of the range. The 12thread series also provides continuation of the fine-thread series for diameters larger than 1½ in.

The basic dimensions of the 12-thread series are given in table III.7. The limits of size, allowances, and tolerances for the Unified classes, based on a length of engagement of 9 pitches or ¾ in., are given in table III.10. Thread sizes of the 12-thread series which are recognized as Unified are designated by the symbol "12UN." All others are designated "12N" with the Unified class designations to indicate their conformance

to the Unified thread formulation.³

7. 16-Thread Series.—The 16-thread series is a uniform-pitch series for large diameters requiring fine-pitch threads. It is suitable for adjusting collars and retaining nuts, and also serves as a continuation of the extra-fine-thread series for diameters larger than 2 in. The basic dimensions of the 16-thread series are given in table III. 8. The limits of size, allowances, and tolerances for the Unified classes, based on a length of engagement of 9 pitches or \(\frac{1}{16} \) in., are given in table III. 10. Thread sizes of the 16-thread series which are recognized as Unified are designated by the symbol "16UN." All others are designated "16N" with the Unified class designations to indicate their conformance to the Unified thread formulation (see footnote 3).

8. Uniform Pitch Series.—The above 8-, 12-, and 16-thread series have application on parts that are repeatedly assembled and disassembled where it might be advantageous to rethread oversize to recondition the thread portions of the

parts in service.

Whenever a thread in the 8-, 12-, and 16-thread series also appears in the UNC, NC, UNF, NF, UNEF or NEF series the designations, tolerances, and limits of size of these standard series are applicable.

³ The British designation for Unified sizes in this series is "UNS".

Table III.2.—Unified and American, screw thread standard series

				Threads	per inch			
Size	Basic major diameter	Coarse (UNC or NC)	Fine ^a (UNF or NF)	Extra fine b (UNEF or NEF)	8-Thread series (N)	12-Thread series (UN or N)	16-Thread series (UN or N)	Size
0	0.0600		80					0
1	.0730	64 56	80 72 64					$\frac{1}{2}$
$\frac{2}{3}$.0990	48 40	56					$\frac{2}{3}$
4 .1120 5 .1250 6 .1380 8 .1640 10 .1900 12 .2160	1 40	48 44					4 5	
6	. 1380	32 32 32 24 24	40					6
8 10	.1640 .1900	32	36 32					8 10
12	. 2160	24	28	32				12
14 5/16	, 2500	20	28	32				1,4
5/16 3/8	.3125 .3750	18 16	28 24 24	32 32				5/16 3/8 7/16
7/16	.4375	14	20 20 20	28				- 1/1e
1/2 9/16	. 5000 . 5625	13 12	20 18	28		12 c 12		1/2 9/16
58	. 6250	11	18	32 32 32 28 28 24 24 24 24 20		12		5,6
11/16	. 6875 . 7500	10	16	24		$12 \\ 12$	c 16	11/ 3/4
34 13/16	. 8125 . 8750			20		12	16	13/
78 15/16	.8750 .9375	9	14	20 20		12 12	16 16	7/8 15/
				20		12	10	
1	1.0000 1.0000	8	* 14 12	20 18	e 8	¢ 12	16	1
1116	1,0625		12	18		12 • 12	16	1 1/16 1 1/8 1 3/16
11/8 13/16	1, 1250 1, 1875	7		18 18	d 8	12	16 16	13/1
114	1, 2500	7	12	18	d 8	¢ 12	16	1/4
15/16 13/8	1, 3125 1, 3750	6	12	18 18	8	12 ¢ 12	16 16	15/1 13/8
17/16	1.4375			18		12	16	17/1
1½ 1%6	1, 5000 1, 5625	6	12	18 18	8	¢ 12	16 16	11/2 19/1
19/16 15/8 111/16	1,6250			18	8	12	16	158
134	1, 6875 1, 7500	5		18 16	8	12	16 • 16	$\frac{1^{1}}{1^{3}4}$
134 113/16 17/8	1,8125						16	113/
11/8 115/16	1.8750 1.9375	,			8	12	16 16	$\frac{176}{1^{15}}$
2	2,0000	41/2		16	8	12	c 16	2
2 2½6 2½8 2¾6 2½4 25√6	2, 0625 2, 1250				8	12	16 16	21/1 21/8 23/1 21/4
23/16	2, 1875						16	23/10
2 ⁵ / ₁₆	2, 2500 2, 3125	41/2			8	12	16 16	23/17
238	2,3750					12	16	934
236 27/16 21/2 25/8	2, 4375 2, 5000	4			8	12 12	16 16	$\frac{21}{21}$
258	2.6250 2.7500	4			8	12	16 16	25/8
23/4 27/8	2. 7500 2. 8750	4			8	12 12	16	278 27/1 21/2 25/8 23/4 27/8
3	3,0000	4			8	12	16	
31/8	3, 1250					12 12	16	3 3½ 3¼ 3¾ 338
338	3. 2500 3. 3750	4			8	12 12 12	16 16	33/8
31/2	3, 5000	4			8	$\frac{12}{12}$	16 16	31/2
3 31/8 31/4 33/8 31/2 35/8 33/4 37/8	3, 6250 3, 7500	4			8	12	16	31/2 35/8 33/4 37/8
37/8	3.8750					12	16	37/8
4	4.0000	4			8 8	12	16 16	4
41/4 41/2	4. 2500 4. 5000				8	12 12	16	4 1/4 4 1/2
4½ 4¾	4. 7500				8 8	12	16	434
5 5½	5.0000				8	12 12	16	5
51/2	5, 2500 5, 5000				8 8	12	16 16	51/4 51/2 53/4
51/2 53/4	5,7500				8	12 12	16	53/4
6	6.0000				8	12	16	6

[•] For diameters over 1½ in., use 12-thread series.
• For diameters over 2 in., use 16-thread series.
• For series symbols applying to a particular thread, see table III.10. Where the same thread is in two series, use symbols as explained in par. 8, p. 14.
• Posignated 8 UNS in the British Standard.
• NS. Formerly a standard size of the fine thread series.

 ${\it Table III.3.--Coarse\ thread\ series,\ basic\ dimensions}$ UNC and NC

	Designation		Basic major	Basic pitch	Minor diam-	Minor diam-	Lead angle at	Sectional area at minor	Tensile stress
Size	Threads per inch, n	Thread symbol	diameter, D	diameter, E	$rac{ ext{eter, external}}{ ext{threads, } K_s}$	eter, internal threads, K_n	hasic pitch diameter, λ	diameter at $D-2h_b$	$\pi \left(\frac{E}{2} - \frac{3H}{16}\right)^2$
1	2	3	4	5	6	7	8	9	10
No. in. 1 (.073) b 2 (.086) 3 (.099) b 4 (.112)	64 56 48 40	NC NC NC NC	in. 0.0730 .0860 .0990 .1120	in. 0.0629 .0744 .0855 .0958	in. 0.0538 .0641 .0734 .0813	in. 0. 0561 . 0667 . 0764 . 0849	$\begin{array}{c cccc} deg & min \\ 4 & 31 \\ 4 & 22 \\ 4 & 26 \\ 4 & 45 \\ \end{array}$	$in.^2$ 0.00218 $.00310$ $.00406$ $.00496$	$in.^2$ 0.00263 $.00370$ $.00487$ $.00604$
5 (.125) ^b 6 (.138) ^b 8 (.164) ^b 10 (.190) 12 (.216)	40 32 32 32 24 24	NC NC NC NC	. 1250 . 1380 . 1640 . 1900 . 2160	. 1088 . 1177 . 1437 . 1629 . 1889	. 0943 . 0997 . 1257 . 1389 . 1649	. 0979 . 1042 . 1302 . 1449 . 1709	4 11 4 50 3 58 4 39 4 1	. 00672 . 00745 . 01196 . 01450 . 0206	. 00796 . 00909 . 0140 . 0175 . 0242
5/16 5/16 3/8 7/16	20 18 16 14 13	UNC UNC UNC UNC UNC	. 2500 . 3125 . 3750 . 4375 . 5000	. 2175 . 2764 . 3344 . 3911 . 4500	. 1887 . 2443 . 2983 . 3499 . 4056	. 1959 . 2524 . 3073 . 3602 . 4167	4 11 3 40 3 24 3 20 3 7	. 0269 . 0454 . 0678 . 0933 . 1257	. 0318 . 0524 . 0775 . 1063 . 1419
9/16 5/8 3/4 7/8	12 11 10 9	UNC UNC UNC UNC	. 5625 . 6250 . 7500 . 8750	. 5084 . 5660 . 6850 . 8028	. 4603 . 5135 . 6273 . 7387	. 4723 . 5266 . 6417 . 7547	2 59 2 56 2 40 2 31	. 162 . 202 . 302 . 419	. 182 . 226 . 334 . 462
$1\\11/8\\11/4\\13/8\\11/2$	8 7 7 6 6	UNC UNC UNC UNC UNC	1, 0000 1, 1250 1, 2500 1, 3750 1, 5000	. 9188 1, 0322 1, 1572 1, 2667 1, 3917	. 8466 . 9497 1. 0747 1. 1705 1. 2955	. 8647 . 9704 1. 0954 1. 1946 1. 3196	2 29 2 31 2 15 2 24 2 11	. 551 . 693 . 890 1. 054 1. 294	. 606 . 763 . 969 1. 155 1. 405
$1\frac{3}{4}$ 2 $2\frac{1}{4}$ $2\frac{1}{2}$ $2\frac{3}{4}$	5 4 ¹ / ₂ 4 4	UNC UNC UNC UNC UNC	1, 7500 2, 0000 2, 2500 2, 5000 2, 7500	1, 6201 1, 8557 2, 1057 2, 3376 2, 5876	1, 5046 1, 7274 1, 9774 2, 1933 2, 4433	1, 5335 1, 7594 2, 0094 2, 2294 2, 4794	2 15 2 11 1 55 1 57 1 46	1. 74 2. 30 3. 02 3. 72 4. 62	1.90 2.50 3.25 4.00 4.93
3 3 ¹ / ₄ 3 ¹ / ₂ 3 ³ / ₄	4 4 4 4 4	UNC UNC UNC UNC UNC	3, 0000 3, 2500 3, 5000 3, 7500 4, 0000	2, 8376 3, 0876 3, 3376 3, 5876 3, 8376	2, 6933 2, 9433 3, 1933 3, 4433 3, 6933	2, 7294 2, 9794 3, 2294 3, 4794 3, 7294	1 36 1 29 1 22 1 16 1 11	5. 62 6. 72 7. 92 9. 21 10. 61	5. 97 7. 10 8. 33 9. 66 11. 08

Table III.4.—Fine thread series, basic dimensions UNF and NF

Size •	Designation Threads per inch, n	Thread symbol	Basic major diameter, D	Basic pitch diameter, E	$egin{array}{ll} ext{Minor diam-} \ ext{eter, external} \ ext{threads, } K_s \end{array}$	Minor diameter, internal threads, K_n	Lead angle at basic pitch diameter, \(\lambda\)	Sectional area at minor diameter at $D-2h_b$	Tensile stress area b. $\pi \left(\frac{E}{2} - \frac{3H}{16}\right)^2$
1	2	3	4	5	6	7	8	9	10
No. in. (.060) 1 (.073) 2 (.086) 3 (.099) 4 (.112)	80 72 64 56 48	NF NF NF NF	in. 0.0600 .0730 .0860 .0990 .1120	in. 0. 0519 0.0640 0.759 0.874 0.985	in. 0. 0447 . 0560 . 0668 . 0771 . 0864	in. 0, 0465 . 0580 . 0691 . 0797 . 0894	deg min 4 23 3 57 3 45 3 43 3 51	in. ² 0.00151 .00237 .00339 .00451 .00566	in.² 0.00180 .00278 .00394 .00523 .00661
5 (.125) 6 (.138) 8 (.164) • 10 (.190) 12 (.216)	44 40 36 32 28	NF NF NF NF	. 1250 . 1380 . 1640 . 1900 . 2160	. 1102 . 1218 . 1460 . 1697 . 1928	. 0971 . 1073 . 1299 . 1517 . 1722	. 1004 . 1109 . 1339 . 1562 . 1773	3 45 3 44 3 28 3 21 3 22	.00716 .00874 .01285 .0175 .0226	.00830 .01015 .01474 .0200 .0258
5/16 5/16 3/8 7/16	28 24 24 20 20	UNF UNF UNF UNF UNF	. 2500 . 3125 . 3750 . 4375 . 5000	. 2268 . 2854 . 3479 . 4050 . 4675	. 2062 . 2614 . 3239 . 3762 . 4387	. 2113 . 2674 . 3299 . 3834 . 4459	2 52 2 40 2 11 2 15 1 57	. 0326 . 0524 . 0809 . 1090 . 1486	.0364 .0580 .0878 .1187 .1599
9/16 5/8 3/4 7/8	18 18 16 14	UNF UNF UNF UNF	. 5625 . 6250 . 7500 . 8750	. 5264 . 5889 . 7094 . 8286	. 4943 . 5568 . 6733 . 7874	. 5024 . 5649 . 6823 . 7977	1 55 1 43 1 36 1 34	. 189 . 240 . 351 . 480	. 203 . 256 . 373 . 509
1 1½8 1½4 13/8 1½	12 12 12 12 12 12	UNF UNF UNF UNF UNF	1, 0000 1, 1250 1, 2500 1, 3750 1, 5000	. 9459 1. 0709 1. 1959 1. 3209 1. 4459	. 8978 1. 0228 1. 1478 1. 2728 1. 3978	. 9098 1. 0348 1. 1598 1. 2848 1. 4098	1 36 1 25 1 16 1 9 1 3	. 625 . 812 1. 024 1. 260 1. 521	.663 .856 1.073 1.315 1.581

See formula under definition of tensile stress area in Section II, p. 5.
 For attaching purposes only, numbered sizes 2-56, 4-40, 6-32, 8-32, and 10-24 are now included in the Unified thread series, designation NC. Bold type indicates Unified threads, UNC. See footnote b and table III.10.

[•] For sizes larger than 1½ in., use the 12-thread series. See table III.7.
• See formula under definition of tensile stress area in Section II, p. 5.
• For attaching purposes only, numbered sizes 0-80 and 10-32 are now included in the Unified thread series, designation NF.

Bold type indicates Unified threads, UNF. See footnote c and table III.10.

Table III.5.—Extra-fine thread series, basic dimensions UNEF and NEF

	Designatio	n	Basic major	Basic pitch		Minor diam-	Lead angle at	Sectional area at minor	Tensile stress
Size	Threads p inch, n	er Thread symbol	diameter, D	diameter, E		eter, internal threads, K_n	basic pitch diameter, λ	diameter at $D-2h_b$	$\pi \left(\frac{E - 3H}{2 - 16} \right)^2$
1	2	3	4	5	6	7	8	9	10
1/4 5/1 3/4	216) 32 32 6 32	NEF NEF NEF NEF UNEF	in. 0. 2160 . 2500 . 3125 . 3750 . 4375	in. 0. 1957 . 2297 . 2922 . 3547 . 4143	in. 0.1777 .2117 .2742 .3367 .3937	in. 0. 1822 . 2162 . 2787 . 3412 . 3988	$\begin{array}{c cccc} deg & min \\ 2 & 55 \\ 2 & 29 \\ 1 & 57 \\ 1 & 36 \\ 1 & 34 \\ \end{array}$	in.2 0. 0242 . 0344 . 0581 . 0878 . 1201	in.² 0.0270 .0379 .0625 .0932 .1274
1/2 9/1 5/6 1]	28 66 24 3 24 46 24	UNEF NEF NEF NEF	. 5000 . 5625 . 6250 . 6875	. 4768 . 5354 . 5979 . 6604	. 4562 . 5114 . 5739 . 6364	. 4613 . 5174 . 5799 . 6424	1 22 1 25 1 16 1 9	. 162 . 203 . 256 . 315	. 170 . 214 . 268 . 329
3/ ₄ 13 7/ ₈ 15	20 20 20 20 5/16 20	UNEF UNEF UNEF UNEF	.7500 .8125 .8750 .9375	.7175 .7800 .8425 .9050	. 6887 . 7512 . 8137 . 8762	. 6959 . 7584 . 8209 . 8834	$\begin{array}{c cccc} 1 & 16 \\ 1 & 10 \\ 1 & 5 \\ 1 & 0 \end{array}$. 369 . 439 . 515 . 598	.386 .458 .536 .620
1 1½ 1½ 1¾	18	UNEF NEF NEF NEF	1, 0000 1, 0625 1, 1250 1, 1875	. 9675 1, 0264 1, 0889 1, 1514	. 9387 . 9943 1. 0568 1. 1193	. 9459 1, 0024 1, 0649 1, 1274	0 57 0 59 0 56 0 53	. 687 . 770 . 871 . 977	.711 .799 .901 1.009
11/4 15/1 13/4 17/1	16 18 18	NEF NEF NEF	1, 2500 1, 3125 1, 3750 1, 4375	1, 2139 1, 2764 1, 3389 1, 4014	1. 1818 1. 2443 1. 3068 1. 3693	1, 1899 1, 2524 1, 3149 1, 3774	0 50 0 48 0 45 0 43	1, 090 1, 208 1, 333 1, 464	1, 123 1, 244 1, 370 1, 503
1½ 1½ 1½ 1½ 11½	16 18 18	NEF NEF NEF NEF	1. 5000 1. 5625 1. 6250 1. 6875	1. 4639 1. 5264 1. 5889 1. 6514	1, 4318 1, 4943 1, 5568 1, 6193	1. 4399 1. 5024 1. 5649 1. 6274	$\begin{array}{ccc} 0 & 42 \\ 0 & 40 \\ 0 & 38 \\ 0 & 37 \end{array}$	1. 60 1. 74 1. 89 2. 05	1, 64 1, 79 1, 94 2, 10
13/4	16	UNEF	1,7500	1.7094	1. 6733	1, 6823	0 40	2. 19	2. 24
2	16	UNEF	2,0000	1.9594	1, 9233	1.9323	0 35	2, 89	2.95

For sizes larger than 2 in., use 16-thread series. See table III. 8.
 See formula under definition of tensile stress area in section II, p. 5.
 Bold type indicates Unified threads, UNEF. See table III. 10.

Table III.6.—8-thread series, basic dimensions 8UN and 8N b

	Designation		Basic major	Basic pitch	Minor diam-	Minor diam-	Lead angle at	Sectional area	Tensile stress
Size	Threads per inch, n	Thread symbol	diameter, D	diameter, E	eter, external threads, K_*	eter, internal threads, K_n	basic pitch diameter, \(\lambda\)	diameter at $D-2h_b$	$\pi \left(\frac{E}{2} - \frac{3H}{16}\right)^2$
1	2	3	4	5	6	7	8	9	10
in. a 1 11/8 11/4 13/8	8 8 8 8	UNC N N N, UNS	in. 1,0000 1,1250 1,2500 1,3750	in. 0, 9188 1, 0438 1, 1688 1, 2938	in. 0.8466 .9716 1.0966 1.2216	in. 0.8647 .9897 1.1147 1.2397	deg min 2 29 2 11 1 57 1 46	in. ² 0. 551 . 728 . 929 1. 155	in. ² 0. 606 . 790 1. 000 1. 233
1½ 15/8 13/4 17/8	8 8 8 8	N, UNS N, UNS N, UNS N, UNS	1,5000 1,6250 1,7500 1,8750	1, 4188 1, 5438 1, 6688 1, 7938	1. 3466 1. 4716 1. 5966 1. 7216	1.3647 1.4897 1.6147 1.7397	1 36 1 29 1 22 1 16	1. 405 1. 68 1. 98 2. 30	1. 492 1. 78 2. 08 2. 41
$\begin{array}{c} 2\\ 2^{1}/8\\ 2^{1}/4\\ 2^{1}/2\\ 2^{3}/4 \end{array}$	8 8 8 8 8	N, UNS N, UNS N, UNS N, UNS N, UNS	2,0000 2,1250 2,2500 2,5000 2,7500	1, 9188 2, 0438 2, 1688 2, 4188 2, 6688	1. 8466 1. 9716 2. 0966 2. 3466 2. 5966	1, 8647 1, 9897 2, 1147 2, 3647 2, 6147	1 11 1 7 1 3 0 57 0 51	2, 65 3, 03 3, 42 4, 29 5, 26	2. 77 3. 15 3. 56 4. 44 5. 43
$\begin{array}{c} 3\\ 3\frac{1}{4}\\ 3\frac{1}{2}\\ 3\frac{3}{4} \end{array}$	8 8 8 8	N, UNS N, UNS N, UNS N, UNS	3.0000 3.2500 3.5000 3.7500	2.9188 3.1688 3.4188 3.6688	2, 8466 3, 0966 3, 3466 3, 5966	2, 8647 3, 1147 3, 3647 3, 6147	0 47 0 43 0 40 0 37	6. 32 7. 49 8. 75 10. 11	6. 51 7. 69 8. 96 10. 34
$\begin{array}{c} 4 \\ 4^{1}/_{4} \\ 4^{1}/_{2} \\ 4^{3}/_{4} \end{array}$	8 8 8 8	N, UNS N, UNS N, UNS N, UNS	4,0000 4,2500 4,5000 4,7500	3.9188 4.1688 4.4188 4.6688	3.8466 4.0966 4.3466 4.5966	3. 8647 4. 1147 4. 3647 4. 6147	$\begin{array}{ccc} 0 & 35 \\ 0 & 33 \\ 0 & 31 \\ 0 & 29 \end{array}$	11. 57 13. 12 14. 78 16. 53	11. 81 13. 38 15. 06 16. 82
5 5 ¹ / ₄ 5 ¹ / ₂ 5 ³ / ₄ 6	8 8 8 8	N, UNS N, UNS N, UNS N, UNS N, UNS	5.0000 5.2500 5.5000 5.7500 6.0000	4. 9188 5. 1688 5. 4188 5. 6688 5. 9188	4. 8466 5. 0966 5. 3466 5. 5966 5. 8466	4.8647 5.1147 5.3647 5.6147 5.8647	$\begin{array}{ccc} 0 & 28 \\ 0 & 26 \\ 0 & 25 \\ 0 & 24 \\ 0 & 23 \\ \end{array}$	18. 38 20. 33 22. 38 24. 52 26. 76	18, 69 20, 66 22, 72 24, 88 27, 14

a The I"-8 size is in the coarse thread series, table III. 3, p. 16.
b The 8N specified limits for all sizes are shown in table III. 10 in light type, based on a length of engagement equal to the basic major (nominal) diameter. For special applications, where tolerances based on a length of engagement of 9 threads are more suitable than those of the standard 8-thread series (8N), the 8UNS limits for all sizes larger than 1¼ in. may be derived from the tables in section IV. The 1½ and 1¼ in. sizes are in table III.10 and designated N. as the 1 diameter and 9 thread engagements are substantially equal.
c See formula under definition of tensile stress area in section II, p. 5.
Bold type indicates Unified threads, UNS.

Table III.7.—12-thread series, basic dimensions 12UN and 12N

Designation		Basic major	Basic pitch	Minor diam-	Minor diam-	Lead angle at	Sectional area at minor	Tensile str ss	
Size	Threads per inch, n	Thread symbol	diameter, D	diameter, E	$rac{ ext{eter, external}}{ ext{threads, } K_{ ext{s}}}$	eter, internal threads, K_n	basic pitch diameter, λ		$\pi \left(\frac{E}{2} - \frac{3H}{16} \right)^2$
1	2	3	4	5	6	7	8	9	10
in. 1/2 2 9/16 5/8 1 1/16	12 12 12 12 12	N UNC N N	in. 0.5000 .5625 .6250 .6875	in. 0. 4459 . 5084 . 5709 . 6334	in. 0.3978 .4603 .5228 .5853	in. 0. 4098 . 4723 . 5348 . 5973	deg min 3 24 2 59 2 40 2 24	in.² 0. 121 . 162 . 210 . 264	in.2 0.138 .182 .232 .289
3/4	12	N	. 7500	. 6959	. 6478	. 6598	$\begin{array}{cccc} 2 & 11 \\ 2 & 0 \\ 1 & 51 \\ 1 & 43 \end{array}$. 323	. 351
13/16	12	N	. 8125	. 7584	. 7103	. 7223		. 390	. 420
7/8	12	N	. 8750	. 8209	. 7728	. 7848		. 462	. 495
15/16	12	UN	. 9375	. 8834	. 8353	. 8473		. 540	. 576
a1	12	UNF	1, 0000	. 9459	. 8978	. 9098	1 36	. 625	. 663
1 1/16	12	UN	1, 0625	1. 0084	. 9603	. 9723	1 30	. 715	. 756
a1½	12	UNF	1, 1250	1. 0709	1. 0228	1. 0348	1 25	. 812	. 856
1 3/16	12	UN	1, 1875	1. 1334	1. 0853	1. 0973	1 20	. 915	. 961
$^{a}1^{1}/_{4}$ $^{1}5/16$ $^{a}1^{3}/_{8}$ $^{1}7/16$	12	UNF	1, 2500	1, 1959	1, 1478	1, 1598	1 16	1. 024	1, 073
	12	UN	1, 3125	1, 2584	1, 2103	1, 2223	1 12	1. 139	1, 191
	12	UNF	1, 3750	1, 3209	1, 2728	1, 2848	1 9	1. 260	1, 315
	12	UN	1, 4375	1, 3834	1, 3353	1, 3473	1 6	1. 388	1, 445
$^{a}_{1}^{1}_{/2}$ $^{1}_{5/8}$ $^{1}_{3/4}$ $^{1}_{7/8}$	12	UNF	1, 5000	1, 4459	1, 3978	1, 4098	1 3	1. 52	1. 58
	12	UN	1, 6250	1, 5709	1, 5228	1, 5348	0 58	1. 81	1. 87
	12	UN	1, 7500	1, 6959	1, 6478	1, 6598	0 54	2. 12	2. 19
	12	UN	1, 8750	1, 8209	1, 7728	1, 7848	0 50	2. 45	2. 53
2	12	UN	2, 0000	1, 9459	1, 8978	1, 9098	0 47	2. 81	2.89
1 ¹ / ₈	12	UN	2, 1250	2, 0709	2, 0228	2, 0348	0 44	3. 19	3,28
2 ¹ / ₄	12	UN	2, 2500	2, 1959	2, 1478	2, 1598	0 42	3. 60	3.69
2 ³ / ₈	12	UN	2, 3750	2, 3209	2, 2728	2, 2848	0 39	4. 04	4.13
2½	12	UN	2, 5000	2, 4459	2, 3978	2, 4098	0 37	4. 49	4. 60
25/8	12	UN	2, 6250	2, 5709	2, 5228	2, 5348	0 35	4. 97	5. 08
23/4	12	UN	2, 7500	2, 6959	2, 6478	2, 6598	0 34	5. 48	5. 59
21/8	12	UN	2, 8750	2, 8209	2, 7728	2, 7848	0 32	6. 01	6. 13
3 3½ 3½ 3½ 33/ ₈	12 12 12 12	UN UN UN UN	3, 0000 3, 1250 3, 2500 3, 3750	2, 9459 3, 0709 3, 1959 3, 3209	2,8978 3,0228 3,1478 3,2728	2, 9098 3, 0348 3, 1598 3, 2848	0 31 0 30 0 29 0 27	6. 57 7. 15 7. 75 8. 38	6. 69 7. 28 7. 89 8. 52
3½	12	UN	3,5000	3, 4459	3, 3978	3, 4098	0 26	9. 03	9, 18
35/8	12	UN	3,6250	3, 5709	3, 5228	3, 5348	0 26	9. 71	9, 86
33/4	12	UN	3,7500	3, 6959	3, 6478	3, 6598	0 25	10. 42	10, 57
3 ½ 8	12	UN	3,8750	3, 8209	3, 7728	3, 7848	0 24	11, 14	11, 30
4	12	UN	4,0000	3, 9459	3, 8978	3, 9098	0 23	11, 90	12.06
4 ¹ / ₄	12	UN	4,2500	4, 1959	4, 1478	4, 1598	0 22	13, 47	13.65
4 ¹ / ₂	12	UN	4,5000	4, 4459	4, 3978	4, 4098	0 21	15, 1	15.3
4 ³ / ₄	12	UN	4,7500	4, 6959	4, 6478	4, 6598	0 19	16, 9	17.1
5	12	UN	5, 0000	4, 9459	4,8978	4, 9098	0 18	18. 8	19. 0
51/4	12	UN	5, 2500	5, 1959	5,1478	5, 1598	0 18	20. 8	21. 0
51/2	12	UN	5, 5000	5, 4459	5,3978	5, 4098	0 17	22. 8	23. 1
53/4	12	UN	5, 7500	5, 6959	5,6478	5, 6598	0 16	25. 0	25. 2
6	12	UN	6, 0000	5, 9459	5,8978	5, 9098	0 15	27. 3	27. 5

^aThese are standard sizes of the UNC or UNF series. ^b See formula under definition of tensile stress area in section 11, p. 5. **Bold type indicates Unified threads, UN**. See table 111,10.

9. High-Temperature, High-Strength Applications.—For these applications the coarse-thread series is recommended in sizes from ¼ to 1 in, and the 8-thread series in sizes over 1 in. Limits of size are given in table III.10. Some high-temperature applications involving special physical characteristics or conditions may require modification of dimensions, and it is recommended that when such are necessary, they be applied to the external thread. See par. (b) 2, p. 23.

4. CLASSIFICATION AND TOLERANCES

(a) GENERAL

1. Thread Classes.—Thread classes are distinguished from each other by the amounts of tolerance and allowance. There are established for general use six distinct classes of screw-thread tolerances and allowances. These classes, together with the accompanying specifications, are for the purpose of assuring the interchangeable

Table III.8.—16-thread series, basic dimensions 16UN and 16N

Designation		Basic major	Basic pitch	Basic pitch Minor diam-		Lead angle at	Sectional area at minor	I Tensile stress	
Size	Threads per inch, n	Thread symbol	diameter, D	diameter, E	eter, external threads, K_*	Minor diameter, internal threads, K_n	basic pitch diameter, λ	$\begin{array}{c} \text{diameter at} \\ D-2h_b \end{array}$	$\pi \left(\frac{\text{area }^b,}{2} - \frac{3H}{16} \right)$
1	2	3	4	5	6	7	8	9	10
in. ^{a3} / ₄ 13/16 7/ ₈ 15/16	16 16 16 16	UNF UN UN UN	in. 0.7500 .8125 .8750 .9375	in. 0.7094 .7719 .8344 .8969	in. 0. 6733 . 7358 . 7983 . 8608	in. 0.6823 .7448 .8073 .8698	deg min 1 36 1 29 1 22 1 16	in.² 0. 351 420 495 . 576	in.2 0.373 .444 .521 .604
1	16	UN	1, 0000	. 9594	. 9233	. 9323	$\begin{array}{c cccc} 1 & 11 \\ 1 & 7 \\ 1 & 3 \\ 1 & 0 \end{array}$. 663	. 693
1 1/16	16	UN	1, 0625	1. 0219	. 9858	. 9948		. 756	. 788
1 ¹ / ₈	16	UN	1, 1250	1. 0844	1. 0483	1. 0573		. 856	. 889
1 3/16	16	UN	1, 1875	1. 1469	1. 1108	1. 1198		. 961	. 997
$1\frac{1}{4}$ $15/16$ $1\frac{3}{8}$ $17/16$	16	UN	1, 2500	1, 2094	1, 1733	1. 1823	0 57	1. 073	1. 111
	16	UN	1, 3125	1, 2719	1, 2358	1. 2448	0 54	1. 191	1. 230
	16	UN	1, 3750	4, 3344	1, 2983	1. 3073	0 51	1. 315	1. 356
	16	UN	1, 4375	1, 3969	1, 3608	1. 3698	0 49	1. 445	1. 488
1½	16	UN	1. 5000	1. 4594	1. 4233	1. 4323	0 47	1, 58	1. 63
1% 6	16	N	1. 5625	1. 5219	1. 4858	1. 4948	0 45	1, 72	1. 77
15/8	16	UN	1. 6250	1. 5844	1. 5483	1. 5573	0 43	1, 87	1. 92
1½ 6	16	N	1. 6875	1. 6469	1. 6108	1. 6198	0 42	2, 03	2. 08
$^{6}1\frac{3}{4}$ $^{1}1\frac{3}{1}6$ $^{1}7/8$ $^{1}5/16$	16	UNEF	1. 7500	1.7094	1. 6733	1, 6823	0 40	2 19	2. 24
	16	N	1. 8125	1.7719	1. 7358	1, 7448	0 39	2.35	2. 41
	16	UN	1. 8750	1.8344	1. 7983	1, 8073	9 37	2.53	2. 58
	16	N	1. 9375	1.8969	1. 8608	1, 8698	0 36	2.71	2. 77
21/16 21/8 23/16	16 16 16 16	UNEF N UN N	2, 0000 2, 0625 2, 1250 2, 1875	1. 9594 2. 0219 2. 0844 2. 1469	1. 9233 1. 9858 2. 0843 2. 1108	1. 9323 1. 9948 2. 0573 2. 1198	0 35 0 34 0 33 0 32	2 89 3.08 3.28 3.48	2. 95 3. 15 3. 35 3. 55
2½	16	UN	2, 2500	2, 2094	2, 1733	2, 1823	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3. 69	3. 76
2½16	16	N	2, 3125	2, 2719	2, 2358	2, 2448		3. 91	3. 98
2½8	16	UN	2, 3750	2, 3344	2, 2983	2, 3073		4. 13	4. 21
2½6	16	N	2, 4375	2, 3969	2, 3608	2, 3698		4. 36	4. 44
2½	16	UN	2.5000	2. 4594	2. 4233	2, 4323	0 28	4. 60	4. 67
25/8	16	UN	2.6250	2. 5844	2. 5483	2, 5573	0 26	5. 08	5. 16
23/4	16	UN	2.7500	2. 7094	2. 6733	2, 6823	0 25	5. 59	5. 68
27/8	16	UN	2.8750	2. 8344	2. 7983	2, 8073	0 24	6. 13	6. 22
3 3½8 3½4 3 ³ / ₈	16 16 16	UN UN UN UN	3,0000 3,1250 3,2500 3,3750	2, 9594 3, 0844 3, 2094 3, 3344	2. 9233 3. 0483 3. 1733 3. 2983	2, 9323 3, 0573 3, 1823 3, 3073	0 23 0 22 0 21 0 21	6. 69 7. 28 7. 89 8. 52	6, 78 7, 37 7, 99 8, 63
3 ¹ / ₂	16	UN	3,5000	3. 4594	3. 4233	3, 4323	0 20	9. 18	9, 29
3 ⁵ / ₈	16	UN	3,6250	3. 5844	3. 5483	3, 5573	0 19	9. 86	9, 98
3 ³ / ₄	16	UN	3,7500	3. 7094	3. 6733	3, 6823	0 18	10. 57	10, 69
3 ¹ / ₈	16	UN	3,8750	3. 8344	3. 7983	3, 8073	0 18	11. 30	11, 43
4	16	UN	4,0000	3. 9594	3. 9233	3. 9323	0 17	12. 06	12. 19
41/4	16	UN	4,2500	4. 2094	4. 1733	4. 1823	0 16	13. 65	13. 78
41/2	16	UN	4,5000	4. 4594	4. 4233	4. 4323	0 15	15. 34	15. 5
43/4	16	UN	4,7500	4. 7094	4. 6733	4. 6823	0 15	17. 1	17. 3
5 5 1/4 5 1/2 5 3/4 6	16 16 16 16 16	UN UN UN UN	5.0000 5.2500 5.5000 5.7500 6.0000	4, 9594 5, 2094 5, 4594 5, 7094 5, 9594	4, 9233 5, 1733 5, 4233 5, 6733 5, 9233	4, 9323 5, 1823 5, 4323 5, 6823 5, 9323	0 14 0 13 0 13 0 12 0 11	19. 0 21. 0 23. 1 25. 2 27. 5	19. 2 21. 1 23. 2 25. 4 27. 7

These are standard sizes of the UNF or UNEF series.
 See formula under definition of tensile stress area in section II, p. 5.
 Bold type indicates Unified threads, UN. See table III.10.

manufacture of screw-thread parts. This standard includes classes 1A, 2A, and 3A, applied to external threads only, and classes 1B, 2B, and 3B applied to internal threads only. The requirements for a screw-thread fit for specific applications can be met by specifying the proper combination of classes for the components. For example, an external thread made to class 2A limits can be used with tapped holes made to classes 1B, 2B, or 3B limits for specific applications. It is not the purpose of this standard to limit applications of the various standard classes.

2. Uniform Minimum Internal Thread.— The minimum major, pitch, and minor diameters of the internal thread are respectively the same for classes 1B, 2B, and 3B.

- 3. Direction and Scope of Tolerances.—
- (a) The tolerance on the internal thread is plus, and is applied from the basic size to above basic size.
- (b) The tolerance on the external thread is m:nus, and is applied from the maximum (or design) size to below the maximum size.
- (c) The tolerances specified represent the extreme variations permitted on the product.
- 4. Basic Formula for Allowances and Tolerances.—Classes identified by a numeral fol-

(PD tolerance = $C(0.0015\sqrt[3]{D} + 0.0015\sqrt{L_e} + 0.015\sqrt[3]{p^2}$)

Diameter, D			Length of engagement, L_e															
				Ba	sed or	1			Bas	sed or	ì			Bas	sed or	1		
D	$0.0015\sqrt[3]{\overline{D}}$	D	$0.0015\sqrt[3]{D}$	1 D for sizes	9p for tpi	20p for tpi	L_s	$\sqrt{L_{\bullet}}$	1 D for sizes	9p for tpi	20p for tpi	L_{*}	$\sqrt[0.0015]{L_s}$	1 D for sizes	9p for tpi	20p for tpi	L_{s}	$\sqrt[0.0015]{\sqrt{L_e}}$
in. 0.0600 .0625 .0730 .0860 .0938	in, 0.060587 .000595 .00627 .000662 .000682	in. 1. 9375 2. 0000 2. 0625 2. 1250 2. 1875	in. 0.001870 .001890 .001909 .001928 .001947	#0 #1 #2			in. 0.0600 .0625 .0730 .0781 .0860	in. 0.000367 .000375 .000405 .000419 .000440	716	20	44 40 36	in. 0. 4375 . 4500 . 4545 . 5000 . 5556	in. 0.000992 .001006 .001011 .001061 .001118				in. 3. 1250 3. 2500 3. 3333 3. 3750 3. 5000	in. 0.00265 .00270 .00273 .00275 .00280
.0990 .1120 .1250 .1380 .1640	.000694 .000723 .000750 .000775	2, 2500 2, 3125 2, 3750 2, 4375 2, 5000	.001966 .001984 .002001 .002019 .002036	#3	80		.0933 .0990 .1904 .1120 .1125	.000459 .000472 .000496 .000502 .000503	9/16 5/8	16 14	32	. 5625 . 6250 . 6429 . 6875 . 7143	.001125 .001186 .001203 .001244 .001268	33/4		5	3, 6250 3, 7500 3, 8750 4, 0000 4, 1250	.00285 .00290 .00295 .00300
. 1875 . 1900 . 2160 . 2500 . 3125	.000859 .000862 .000900 .060945 .001018	2. 6250 2. 7500 2. 8750 3. 0000 3. 1250	.002069 .002102 .002133 .002163 .002193	#5 #6	72 -64 -56		. 1250 . 1380 . 1406 . 1563 . 1607	.000530 .000557 .000562 .000593 .000601	3/4 	12	27	.7407 .7500 .8125 .8333 .8750	.001291 .001299 .001352 .001369 .001403	41/2			4. 2500 4. 3750 4. 5000 4. 6250 4. 7500	.00309 .00313 .00318 .00322
. 3750 . 4375 . 5000 . 5625 . 6250	.001082 .001139 .001191 .001238 .001282	3. 2500 3. 3750 3. 5000 3. 6250 3. 7500	.002222 .002250 .002277 .002304 .002330	#8 #10	48		. 1640 . 1719 . 1875 . 1900 . 2031	.000607 .000622 .000650 .000654 .000676	1	10 9	20	. 9000 . 9375 1. 0000 1. 0625 1. 1111	.001423 .001452 .001506 .001546 .001581	5 5½			4. 8750 5. 0000 5. 1250 5. 2500 5. 3750	.06331 .00335 .00339 .00343 .00347
. 6875 . 7500 . 8125 . 8750 . 9375	.001324 .001363 .001400 .001435 .001468	3.8750 4.0000 4.2500 4.5000 4.7500	. 002356 . 002381 . 002430 . 002476 . 002521	#12	44		. 2045 . 2160 . 2188 . 2250 . 2344	.000678 .000697 .000702 .000712 .000726	1½8 1¼ 1¾ 1¾		16	1. 1250 1. 1875 1. 2500 1. 3125 1. 3750	.001591 .001635 .001677 .001718 .001759				5,5000 5,6250 5,7500 5,8750 6,0000	.00351 .00355 .00359 .00363
1,0000 1,0625 1,1250 1,1875 1,2500	.001500 .001531 .001560 .001588 .001616	5,0000 5,2500 5,5000 5,7500 6,0000	. 002565 . 002607 . 002648 . 002687 . 002726	1/4	36 32	80 	. 2500 . 2656 . 2778 . 2812 . 2969	.000750 .000773 .000791 .000795 .000817	11/2 15/8	6	14	1. 4286 1. 4375 1. 5000 1. 6250 1. 6667	.001793 .001798 .001837 .001912 .001936				6, 5000 7, 0000 7, 5000 8, 0000 8, 5000	.00382 .00396 .00410 .00424 .00437
1.3125	.001642	7.0000	.002869	5/16		64	. 3125	.000839	134			1, 7500	.001984				9,0000	.00450
1. 3750 1. 4375 1. 5000 1. 5625	.001668 .001693 .001717 .001741	8.0000 9.0000 10.0000 12.0000	.003000 .003120 .003232 .003434		28 27	60	. 3214 . 3281 . 3333 . 3438	.000850 .000859 .000866 .000880	17/8 2 21/8 21/4	41/2	10	1, 8750 2, 0000 2, 1250 2, 2500	.002054 .002121 .002187 .002250				9.5000 10.0000 10.5000 11.0000	.00462 .00474 .00486 .00497
1, 6250 1, 6875 1, 7500 1, 8125 1, 8750	.001764 .001786 .001808 .001829 .001850	14.0000 16.0000 18.0000 20.0000 24.0000	.003615 .003780 .003931 .004072 .004327	3/8	24	56	.3571 .3594 .3750 .3906 .4063	.000896 .000899 .000919 .000937 .000956	2½ 2¾		8	2. 3750 2. 5000 2. 6250 2. 7500 2. 8750	.002312 .002372 .002430 .002487 .002543					
						48	. 4167 . 4219	.000968	3			3,0000	, 002598					

Pit	еh,	1

Threads per inch	$0.015\sqrt[3]{p^2}$	Threads per inch	$0.015\sqrt[3]{p^2}$	Threads per inch	$0.015 \sqrt[3]{p^2}$	Threads per inch	$0.015\sqrt[3]{p^2}$	Threads per inch	$0.015\sqrt[3]{p^2}$	Threads per inch	$0.015\sqrt[3]{p^2}$	Threads per inch	$0.015\sqrt[3]{p^2}$
80 72 64 60 56	in, 0,000808 .000867 .000938 .000979 .001025	50 48 44 42 40	in. 0.001105 .001136 .001204 .001241 .001282	36 34 32 30 28	in. 0.001376 .001429 .001488 .001554 .001627	27 26 24 22 20	in. 0.001667 .001709 .001803 .001910 .002036	18 16 14 13 12	in. 0.002184 .002362 .002582 .002713 .002862	11½ 11 10 9 8	in. 0.002944 .003033 .003232 .003467 .003750	7 6 5½ 5 4½ 4	in. 0.004099 .004543 .004814 .005130 .005503 .005953

¹ For class 2A, C=1. For other classes, values of C are given in the text, pp. 21 and 22.

lowed by the letters A and B are derived from Unified formulas in which the pitch diameter tolerances are based on increments of the basic major (nominal) diameter, the pitch, and the length of engagement. These formulas and the class designations apply to all of the threads specified in section III.

The basic formula, from which allowances on all diameters and tolerances on pitch diameter are derived, is:

Tolerance (or allowance) = $C(0.0015 \ \sqrt[3]{D} + 0.0015 \ \sqrt{L_e} + 0.015 \ \sqrt[3]{p^2}),$

where

C=a factor which differs for the allowance or tolerance for each class

D=basic major diameter

 L_e =length of engagement

p = pitch.

This formula is based on the accuracy of present-day threading practice, and is applicable to all reasonable combinations of diameter, pitch, and length of engagement. Numerical values of the increments in the formula for standard diameters, pitches, and lengths of engagement are given in table III. 9.

5. Allowances.—Allowances are applied only to external threads. The values of the factor C (par. 4 above) for allowances are as follows:

Class	Factor C
1A	0. 300
2A	. 300
3A	. 000

6. Major Diameter Tolerances.—(a) External threads.—The tolerance on major diameter for class 1A is equal to 0.090 $\sqrt[3]{p^2}$ and for classes 2A and 3A is equal to $0.060 \sqrt[3]{p^2}$. Tolerances equal to $0.090\sqrt[3]{p^2}$ are provided for class 2A coarse and 8-thread series threads of unfinished, hot-

rolled material.

(b) Internal threads.—The tolerance on major diameter of internal threads is equal to H/6 plus the pitch diameter tolerance of the class of thread involved. The maximum major diameter of the internal thread may be determined by adding 0.7939p = 11H/12, table III.1) to the maximum pitch diameter of the internal thread. In dimensioning internal threads the maximum major diameter is not specified, being established by the crest of an unworn tool. In practice, the major diameter of an internal thread is satisfactory when accepted by a gage or gaging method that represents the maximum material condition of an exter-

nal thread which has no allowance.

7. Minor Diameter Tolerances.—(a) External threads.—The tolerance on minor diameter of external threads is for reference only. At the nominal minor diameter, that is at the intersection of the rounded root with its center line (see fig. III.1) it equals the pitch diameter tolerance plus H/12 and applies only where the rounded root is a requirement of the design. Otherwise the tolerance shall be H/4 plus the pitch diameter tolerance. The minimum minor diameter of the external thread may be determined by subtracting 0.6495p = 3H/4, table III.1) from the minimum pitch diameter of the external thread. In dimensioning external threads the minimum minor diameter is not specified, being established by the crest of an unworn tool. In practice, the minor diameter of an external thread is satisfactory when accepted by a gage or gaging method that represents the maximum material condition of the internal thread less the allowance, if any.

(b) Internal threads.—Internal thread minor diameter tolerances specified in the dimensional tables are based on the use of materials of equal tensile strength for screw or bolt and nut or tapped hole and a length of engagement equal to the nominal diameter. See p. 5. For general applications these tolerances are suitable for lengths of engagement up to 1½ diameters. They

are based on formulas as follows:

Classes 1B and 2B:

All thread series in sizes less than ¼ inch, tolerance= $[0.05 \sqrt[3]{p^2} + 0.03p/D] - 0.002$ in., within

the following limitations:

Tolerances shall not be greater than 0.394p. (This corresponds to 53 percent of the basic thread height and applies in the range of the smallest number sizes of the NC and NF thread series.)

Tolerances shall not be less than $0.25p - 0.4p^2$. (This corresponds to a thread height of 65 per-

cent for 80 to 24 threads per inch.)

The formulas are suitable for general applications having lengths of engagement up to $1\frac{1}{2}D$. However, some thread applications require lengths of engagement which are greater than $1\frac{1}{2}D$ or less than D. For such applications it may be advantageous to increase or decrease tolerances, respectively, as explained in section IV or to use recommended hole size limits for different lengths of engagement, appendix 3, table 3.1, p. 187.

All thread series ¼ in. and larger,4

tolerance=0.25p- $0.4p^2$.

(This corresponds to a thread height of 64.5 percent for 32 threads per inch graduating to 71.8 percent for 4 threads per inch.)

Class 3B, all thread series:

Tolerance= $0.05\sqrt[3]{p^2}+0.03p/D-0.002$ in.,

within the following limitations:

Tolerance shall not be greater than 0.394p. (This corresponds to 53 percent of the basic thread height and applies in the range of the smallest numbered sizes of the UNC, UNF, NC, and NF thread series.)

Tolerance shall not be less than:

For 80 to 13 threads per inch, inclusive, $0.23p-1.5p^2$. (This corresponds to a thread height of 67 percent for 80 threads per inch, graduating to 74 percent for 13 threads per

For 12 threads per inch and coarser, 0.120p. (This corresponds to a thread height of 74 percent and is the tolerance for all sizes, 12 threads

and coarser and 1 in, and larger.)

The formulas are suitable for general applications having lengths of engagement up to 1½ D. However, some thread applications require lengths of engagement which are greater than $1\frac{1}{2}D$ or less than D. For such applications it may be advantageous to increase or decrease tolerances, respectively, as explained in section IV or to use recommended hole size limits for different lengths of engagement, appendix 3, table 3.2, p. 190.

8. PITCH DIAMETER⁵ Tolerances.—(a) Values of factor C.—The values of the factor C (par. 4

⁴ The formula is not applicable to threads coarser that 4 tpi. For such threads use tolerance=0.15p.
⁵ The British designation for "pitch diameter" is "effective diameter."

above) for pitch diameter tolerances are as follows:

Class	Factor C
1A	1. 500
1B	1. 950
2A	1. 000
2B	1. 300
3A	0. 750
3B	. 975

It will be noted that the factor C is 30 percent greater for internal than for external threads of a given class number on account of the relative difficulties of manufacture.

(b) Length of engagement.—The toleranees on pitch diameter, and the allowances on all diameters, for the eoarse-, fine-, and 8-thread series are based on a length of engagement equal to the basic major (nominal) diameter and are applicable to lengths of engagement up to 1½ diameters. For the extra-fine-, 12-, and 16-thread series they are based on a length of engagement of 9 pitches and are applicable to lengths of engagement from 5 to 15 pitches. Where the length of engagement exceeds that for which the toleranees are applicable, toleranees and allowances should be obtained from the tabulated tolerances or increments for special threads, if applicable, or computed from the formulas.

(c) Limits of size.5a—With respect to the pitch diameter limits of size, it is intended, except as hereinafter qualified, that no portion of the complete thread be permitted to project beyond the envelope defined by the maximum-metal limits on the one hand, or beyond that defined by the minimum-metal limits on the other, and thus be outside of the tolerance zone as illustrated in figures III.3 and III.4.5b Also, the diameter equivalent of the variation in any given element except pitch diameter shall not exceed one-half of the pitch diameter tolerance. Deviations from specified size and profile include variations in lead, uniformity of helix, flank angle, taper, out-of-roundness, and surface defects. Accordingly, values are given in table III.11, for the standard thread series and classes, of one-half of the pitch diameter tolerances and the deviations in lead and flank angle which are equivalent thereto. Flank angle equivalents are based on a depth of thread engagement of 5H/8.

The diameter equivalents of variations in lead, uniformity of helix, and flank angle are always in the direction toward maximum material, that is, they increase the virtual diameter of the external thread and decrease that of the internal thread. Thus, the maximum-material pitch diameter limits are a limitation of the virtual diameter (effective size) and are so specified herein for all thread classes.

Variations in taper and roundness of the pitch diameter, together with variations of the pitch diameter as a whole, may be in the direction of minimum material, and thus the minimummaterial pitch diameter limit may be specified as a limitation of the pitch diameter as a single element. However, in view of the interrelation of the pitch diameter, variation in lead and flank angle, etc., together with practical considerations relating to established production processes, product application, and inspection procedures, it is customary to interpret the minimum pitch diameter of the external thread and the maximum pitch diameter of the internal thread as virtual diameters (effective sizes) in classes 1A, 2A, 1B, 2B, and 3B, for application to various mass-produced bolts, nuts, screws, and other similar threaded fasteners, and to some custom threaded parts where design requirements are fulfilled. See "Limit gages" and "Aeeeptability of threads," section VI, pp. 108 and 118.

(1) Diameter equivalent of angle deviation.—The general formula expressing the relation between deviation in the half angle of thread and its diameter equivalent—that is, the amount of the pitch diameter tolerance absorbed by such a deviation—

$$\cot \delta \alpha = \frac{h_e}{\delta E \sin \alpha \cos \alpha} \pm \cot \alpha,$$

in which

 δE =pitch diameter increment due to deviation in half angle

 h_e =depth of thread engagement α =basic half angle of thread $\delta\alpha$ = error in half angle of thread.

In solving for δE the average value of $\delta \alpha$ for two sides of the thread, regardless of their sign, should be taken. The sign of eot α is plus when the half angle of thread is less than basie, minus when the half angle is greater than basic. By omitting $\pm \cot \alpha$ from the formula an approximate mean value for $\delta \alpha$ or δE is obtained which differs very little from either extreme value. The Committee has, therefore, adopted for general use the formula

$$\cot \delta \alpha = \frac{h_e}{\delta E \sin \alpha \cos \alpha}.$$

For threads of Unified, American, or American National form, where $h_e=5H/8$, this formula reduces to

eot
$$\delta \alpha = \frac{5p}{4\delta E}$$
 or $\delta E = 1.25p \tan \delta \alpha$.

 $^{^{5}a}$ For aeronautical applications, practices may deviate from those here specified. See Military Specification M1L–S–7742. 5b The full tolerance cannot, therefore, be used on pitch diameter unless deviations in all other thread elements are zero.

(2) Diameter equivalent of lead deviations.—The formula expressing the relation between lead deviation between any two threads within the length of engagement, and its diameter equivalent is as follows:

$$\delta E = (\pm \delta p) \cot \alpha$$
,

in which

 δE = pitch diameter increment due to lead deviation δp = the maximum pitch deviation between any two of the threads engaged

 α =half angle of thread.

The quantity δE is always added to the measured pitch diameter in the case of an external thread, and it is always subtracted in the case of an internal thread, regardless of the sign introduced by the lead deviation δp .

For threads of Unified, American, or American National form, the above formula reduces to

$$\delta E = 1.7321 \ \delta p$$
.

(b) SCREW-THREAD CLASSES

1. Classes 1A and 1B.—(a) Definition.—Classes 1A and 1B threads replace class 1 for new designs. These classes are intended for ordnance and other special uses. They are used on threaded components where quick and easy assembly is necessary and where a liberal allowance is required to permit ready assembly, even with

slightly bruised or dirty threads.

Maximum diameters of class 1A (external) threads are less than basic by the amount of the same allowance as applied to class 2A. For the intended applications in American practice the allowance is not available for plating or coating. Where the thread is plated or coated, special provisions are necessary. The minimum diameters of class 1B (internal) threads, whether or not plated or coated, are basic, affording no allowance or clearance for assembly with maximum metal external thread components having maximum diameters which are basic.

(b) Allowances and tolerances.—Allowances and tolerances for the respective thread series are specified in tables and their application is shown

in figure III.3.

2. Classes 2A and 2B.—(a) Definition.—Class 2A for external threads and 2B for internal threads are the most commonly used thread standards for general applications, including production of bolts, screws, nuts, and similar threaded fasteners.

The maximum diameters of class 2A (external) uncoated threads are less than basic by the amount of the allowance. The allowance minimizes galling and seizing in high-cycle wrench assembly, or it can be used to accommodate plated finishes or other coating. However, for threads with additive finish, the maximum diameters of class 2A may be exceeded by the amount of the allowance;

i.e., the 2A maximum diameters apply to an unplated part or to a part before plating whereas the basic diameters (the 2A maximum diameter plus allowance) apply to a part after plating. The minimum diameters of class 2B (internal) threads, whether or not plated or coated, are basic, affording no allowance or clearance in assembly at maximum metal limits. See par. 9, p. 18.

Certain applications require an allowance to permit application of the proper lubricant when making up the assembly, particularly with pressure vessels and steel pipe flanges, fittings, and valves for high-temperature, high-pressure service. For such applications class 2A, which has an allowance, and class 2B are recommended, replacing class 7 which was previously established for such applications but which has been discontinued as an American Standard. See par. 9, p. 18. In this application, when the thread is coated, the 2A allowance may not be consumed by such coating.

(b) Allowances and tolerances.—Allowances and tolerances for the respective thread series are specified in tables and their application is shown

in figure III.3.

3. Classes 3A and 3B.—(a) Definition.—Class 3A for external threads and class 3B for internal threads provide for applications where closeness of fit and accuracy of lead and angle of thread are important. They are obtainable consistently only by the use of high quality production equipment supported by a very efficient system of gaging and inspection. The maximum diameters of class 3A (external) threads and the minimum diameters of class 3B (internal) threads, whether or not plated or coated, are basic, affording no allowance or clearance for assembly of maximum-material components.

(b) Allowances and tolerances.—No allowance is provided, but since the tolerances on "go" gages are within the limits of size of the product, the gages will assure a slight clearance between product made to the maximum material limits. Tolerances for the respective thread series are specified in tables and their application is shown in figure III.4.

4. Coated Threads.—It is not within the scope of this standard to make recommendations for thicknesses of, or to specify limits for, coatings. However, it will aid mechanical interchangeability if certain principles are followed wherever conditions permit.

It is desirable that the finished threads be within the limits of size established herein. To that end, external threads should not exceed the basic size after plating and internal threads should not be below the basic size after plating. It is recognized that there are some commonly used processes, such as hot-dip galvanizing, which are firmly established, and threads coated by such processes do not fall within the scope of this recommendation.

Class 2A provides both a tolerance and an allowance. Many requirements for coatings are such as those deposited by electroplating processes. In

Figure III.3.—Disposition of tolerances, allowances, and crest clearances for classes 1A, 2A, 1B, and 2B.

Note: "Nominal minor diameter of screw" is that specified in tables.

Figure III.4.—Disposition of tolerances and crest clearances for classes 3A and 3B.

Note: "Nominal minor diameter of screw" is that specified in tables.

general the 2A allowance provides adequate undercut for such coatings. See par. 2 above. There are variables in thickness of coating and symmetry of coating resulting from commercial processes. It should be stressed that threads after plating should be accepted by a basic size "go" thread ring gage or equivalent functional gage. Class 1A provides an allowance, but in this case the allowance is maintained for both coated and uncoated product.

Some tolerance classes do not include an allowance, i. e., class 3A. It is suggested that the limits of size before plating be reduced by the amount of the 2A allowance wherever that

allowance is adequate.

No provision is made for overcutting internal threads, as coatings on such threads are not generally required. Further, it is very difficult to deposit a significant thickness of coating on the flanks of internal threads. Where a specific thickness of coating is required in an internal thread, it is suggested that the thread be overcut so that the thread as coated will be accepted by a "go" thread plug gage of basic size.

5. METHOD OF DESIGNATING A SCREW THREAD

1. Standard Method of Designating.—The standard method of designating a screw thread is by specifying in sequence the nominal size, number of threads per inch, thread series symbol, and thread class symbol, supplemented optionally by pitch diameter and its tolerance or pitch-diameter limits of size.

An example of an external thread designation and its meaning is given below:

PD 0.2175-0.2147—(Specification of PD optional)

Where this, or a thread of a class other than 2A, is to be coated, the designation may, unless otherwise specified in procurement documents, be followed by the words "after coating," thus:

¼—20 UNC−3A

PD 0.2175-0.2147 AFTER COATING (Specification of PD optional)

1/4-20 UNC-2A

PD 0.2164-0.2127 (Specification of PD optional when uncoated)

 $\begin{array}{c} \text{PD } 0.2164 - 0.2127 \\ \text{BEFORE COATING} \\ \text{PD } 0.2175 \text{ MAX.} \\ \text{AFTER COATING} \end{array} \right\} (\begin{array}{c} (Required \ when \ eo ated \\ except \ on \ stock \ items.) \end{array}$

Unless otherwise specified, threads are right hand; a left-hand thread shall be designated "LH" as follows:

1/4-20 UNC-3A-LH

2. Application of Standard Designations.— The standard series designations listed in table III.10, col. 2, are applicable to the corresponding standard thread sizes when limits of size conform to those listed in table III.10 or when thread crests are modified in accordance with par. 3 below. The designation "NS" applies to all threads of the standard series for which limits of size are computed from step tables (section IV), increment tables, or Unified and American formulations for all elements.

3. Modified Threads.—It is occasionally necessary to modify the limits of size of the major diameter of an external thread or the minor diameter of an internal thread from the limits established for standard series threads in order to fit a specific purpose but without change in class of thread or pitch diameter limits. Such threads should be specified with the established thread designation followed by a statement of the modified diameter limits and the designation "MOD."

Examples:

External thread:

%—24 UNF—3A MOD.

Major diameter 0.3720-0.3648 MOD.

Internal thread:

%-24 NF-2B MOD.

Minor diameter 0.330-0.336 MOD.

4. Threads Otherwise Altered.—See section

IV, p. 100.

5. Unified Thread Symbol Designations.—Where a thread series symbol in a designation of a screw thread starts with "U", it indicates that this series or diameter-pitch combination corresponds in all respects, including tolerances and allowances (if any), with the British and Canadian thread of the same designation. However, where the U does not appear in a thread designation of classes 1A, 2A, 3A, 1B, 2B, or 3B, all thread elements conform to the principle on which Unified threads are based.

6. LIMITS OF SIZE, STANDARD THREAD SERIES, TABLE III.10

The limits of size, allowances, and tolerances for the Unified classes are given in table III.10. See "3. Thread Series, Symbols, and Suggested

Applications", p. 13.

The maximum-material pitch diameter limits (maximum external and minimum internal threads) are a limitation of the virtual diameter (effective size) for all thread classes. The minimum pitch diameter limits are to be interpreted in accordance with par. 8c, p. 22.

Table III.10.—Standard series limits of size—Unified and American screw threads

					I	External	a	•					I	nternal	2		
Nominal size and threads	Series designa- tion	G)	Allow-	Major	diameter	limits	Pitch o	liameter	limits	Minor diam-	Class	Minor eter li	diam- mits *	Pitch o	diameter	limits	Major diam- eter
per inch		Class	ance	Max b	Min	Min c	Max b	Min	Toler- ance	eter d	01000	Min	Max	Min	Max	Toler- ance	Min
0-80 1-64 1-72 2-56 2-64	NF NC NF NC	{ 2A 3A 2A 3A 2A 3A 2A 3A 2A 3A 3A 3A	in. 0.0005 .0000 .0006 .0006 .0006 .0006 .0000 .0006	in. 0.0595 .0600 .0724 .0730 .0724 .0730 .0724 .0854 .0860 .0854 .0860	in. 0.0563 .0568 .0686 .0692 .0689 .0695 .0813 .0819 .0816	in.	in. 0.0514 .0519 .0623 .0629 .0634 .0640 .0738 .0744 .0753 .0759	in. 0.0496 .0506 .0603 .0614 .0615 .0626 .0717 .0728 .0733 .0744	in. 0.0018 .0013 .0020 .0015 .0019 .0014 .0021 .0016 .0020 .0015	in. 0.0442 .0447 .0532 .0538 .0554 .0560 .0635 .0641 .0662 .0668	2B 3B 2B 3B 2B 3B 2B 3B 2B 3B	in. 0.0465 .0465 .0561 .0561 .0580 .0580 .0667 .0691 .0691	in. 0.0514 .0514 .0623 .0623 .0635 .0635 .0737 .0737 .0753	in. 0.0519 .0519 .0629 .0629 .0640 .0640 .0744 .0744 .0759 .0759	in. 0.0542 .0536 .0655 .0648 .0665 .0659 .0772 .0765 .0786 .0779	in. 0.0023 .0017 .0026 .0019 .0025 .0019 .0028 .0021 .0027 .0020	in. 0.0600 .0600 .0730 .0730 .0730 .0730 .0730 .0860 .0860 .0860 .0860
3-48 3-56 4-40 4-48 5-40	NC NF NC NF	$\left\{\begin{array}{l} 2A \\ 3A \\ 2A \\ 3A \end{array}\right.$.0007 .0000 .0007 .0000 .0000 .0008 .0000 .0008	. 0983 . 0990 . 0983 . 0990 . 1112 . 1120 . 1113 . 1120 . 1242 . 1250	.0938 .0945 .0942 .0949 .1061 .1069 .1068 .1075 .1191		. 1080	.0825 .0838 .0845 .0858 .0925 .0939 .0954 .0967 .1054 .1069	.0023 .0017 .0022 .0016 .0025 .0019 .0024 .0018 .0026 .0019	.0727 .0734 .0764 .0771 .0805 .0813 .0857 .0864 .0935 .0943	2B 3B 2B 3B 2B 3B 2B 3B 2B 3B	.0764 .0764 .0797 .0797 .0849 .0849 .0894 .0894 .0979	. 0845 . 0845 . 0865 . 0865 . 0939 . 0939 . 0968 . 0968 . 1062 . 1062	. 0855 . 0855 . 0874 . 0874 . 0958 . 0958 . 0985 . 0985 . 1088 . 1088	.0885 .0877 .9902 .0895 .0991 .0982 .1016 .1008 .1121 .1113	.0030 .0022 .0028 .0021 .0033 .0024 .0031 .0023 .0033 .0025	. 0990 . 0990 . 0990 . 0990 . 1120 . 1120 . 1120 . 1250 . 1250
5-44 6-32 6-40 8-32 8-36	NF NC NF NC	{ 2A 3A 2A 3A 2A 3A 2A 3A 2A 3A 2A 3A 3A 3A	.0007 .0000 .0008 .0000 .0008 .0000 .0009 .0000 .0008	.1243 .1250 .1372 .1380 .1372 .1380 .1631 .1640 .1632	.1195 .1202 .1312 .1320 .1321 .1329 .1571 .1580 .1577 .1585		.1169 .1177 .1210 .1218 .1428 .1437	. 1070 . 1083 . 1141 . 1156 . 1184 . 1198 . 1399 . 1415 . 1424 . 1439	.0025 .0019 .0028 .0021 .0026 .0020 .0029 .0022 .0028 .0021	. 0964 . 0971 . 0989 . 0997 . 1065 . 1073 . 1248 . 1257 . 1291 . 1299	2B 3B 2B 3B 2B 3B 2B 3B 2B 3B	. 1004 . 1004 . 104 . 1040 . 111 . 1110 . 130 . 1300 . 134 . 1340	. 1079 . 1079 . 114 . 1140 . 119 . 1186 . 139 . 1389 . 142 . 1416	.1102 .1102 .1177 .1177 .1218 .1218 .1437 .1437 .1460	. 1134 . 1126 . 1214 . 1204 . 1252 . 1243 . 1475 . 1465 . 1496 . 1487	.0032 .0024 .0037 .0027 .0034 .0025 .0038 .0028 .0036	. 1250 . 1250 . 1380 . 1380 . 1380 . 1380 . 1640 . 1640 . 1640 . 1640
10-24 10-32 12-24 12-28 12-32	NC NF NC NF	{ 2A 3A 4 2A 3A 4 3A 4 3A 4 3A 4 3A 4 3A	.0010 .0000 .0009 .0000 .0010 .0000 .0010 .0000 .0009	. 1890 . 1900 . 1891 . 1900 . 2150 . 2160 . 2150 . 2160 . 2151 . 2160	. 1818 . 1828 . 1831 . 1840 . 2078 . 2088 . 2085 . 2095 . 2091 . 2100		. 1629 . 1688 . 1697 . 1879 . 1889 . 1918 . 1928	. 1586 . 1604 . 1658 . 1674 . 1845 . 1863 . 1886 . 1904 . 1917 . 1933	. 0033 . 0025 . 0030 . 0023 . 0034 . 0026 . 0032 . 0024 . 0031	.1379 .1389 .1508 .1517 .1639 .1649 .1712 .1722 .1768	2B 3B 2B 3B 2B 3B 2B 3B 2B 3B	.145 .1450 .156 .1560 .171 .1710 .177 .1770 .182 .1820	.156 .1555 .164 .1641 .181 .1807 .186 .1857 .190 .1895	. 1629 . 1629 . 1697 . 1697 . 1889 . 1889 . 1928 . 1928 . 1957 . 1957	. 1672 . 1661 . 1736 . 1726 . 1933 . 1922 . 1970 . 1959 . 1988	. 0043 . 0032 . 0039 . 0029 . 0044 . 0033 . 0042 . 0031 . 0041	. 1900 . 1900 . 1900 . 2160 . 2160 . 2160
1/4-20 1/4-28 1/4-32 5/16-18 5/16-24	UNC UNF NEF UNC	\$\begin{cases} 1A & 2A & 3A & 3A & 3A & 3A & 3A & 3A & 3	. 0011 . 0011 . 0000 . 0010 . 0010 . 0010 . 0010 . 0012 . 0012 . 0000 . 0011 . 0011	. 2489 . 2489 . 2500 . 2490 . 2500 . 2500 . 3113 . 3125 . 3114 . 3114	. 2367 . 2408 . 2419 . 2392 . 2425 . 2435 . 2430 . 2440 . 2982 . 3026 . 3038 . 3006 . 3042	0. 2367	. 2164 . 2164 . 2175 . 2258 . 2268 . 2287 . 2297 . 2752 . 2752 . 2764 . 2843	. 2108 . 2127 . 2147 . 2208 . 2225 . 2243 . 2255 . 2273 . 2691 . 2712 . 2734 . 2788 . 2806 . 2827	. 0025 . 0032 . 0024 . 0061 . 0040 . 0030 . 0055	. 1876 . 1876 . 1887 . 2052 . 2052 . 2062 . 2107 . 2117 . 2431 . 2431 . 2603 . 2603 . 2614	2B 3B 1B 2B 3B 3B 1B 2B 3B 1B 2B	. 196 . 196 . 1960 . 211 . 211 . 2110 . 216 . 2160 . 252 . 252 . 252 . 267 . 267	. 207 . 207 . 2067 . 220 . 220 . 2190 . 224 . 2229 . 265 . 265 . 2630 . 277 . 277 . 2754	. 2175 . 2175 . 2175 . 2268 . 2268 . 2268 . 2297 . 2764 . 2764 . 2854 . 2854	. 2223 . 2211 . 2333 . 2311 . 2300 . 2339 . 2328 . 2843 . 2817 . 2803 . 2925	. 0065 . 0043 . 0032 . 0042 . 0031 . 0079 . 0053 . 0039 . 0071 . 0048	.2500 .2500 .2500 .2500 .2500 .2500 .2500 .2500 .3125 .3125 .3125 .3125 .3125
5/16-32 3/8-16 3/8-24 3/8-32 7/16-14	UNF	2A 3A 1A 2A 3A 1A 2A 3A 1A 2A 3A 1A 2A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A	. 0010 . 0000 . 0013 . 0013 . 0000 . 0011 . 0000 . 0010 . 0000 . 0014 . 0004	. 3115 . 3125 . 3737 . 3737 . 3750 . 3739 . 3750 . 3750 . 3750 . 3750 . 4361 . 4361	. 3055 . 3065 . 3595 . 3643 . 3656 . 3631 . 3667 . 3680 . 3680 . 3680 . 4206 . 4258	3595	2912 2922 3331 3344 3468 3479 3537 3547 3587	. 2898 .3266 .3287 .3311 .3411 .3430 .3450 .3503 .3522 .3826 .3850	. 0024 . 0065 . 0044 . 0033 . 0057 . 0038 . 0029 . 0034 . 0025 . 0071 . 0047	. 2970 . 2983 . 3228 . 3228 . 3239 . 3357 . 3485 . 3485	3B 1B 2B 3B 1B 2B 3B 2B 3B 1B 2B 3B 2B 3B	. 279 . 2790 . 307 . 307 . 307 . 330 . 330 . 330 . 341 . 3410 . 360 . 360 . 360	.321 .321 .3182 .340 .340 .3372 .349 .3469 .376 .376	.3479 .3479 .3479 .3547 .3547 .3911 .3911	2 2953 3429 3401 3387 3553 3528 0 3516 3591 3580 4003 3972	. 0031 . 0085 . 0057 . 0043 . 0074 . 0049 . 0033 . 0092 . 0061	3125 3750 3750 3750 3750 3750 3750 3750 375
7/16-20 7/16-28 ½-12 1/2-13	UNEF N	\begin{cases} 1A & 2A \\ 3A & 2A & 3A \\ 2A & 3A & 1A \\ 2A & 3A & 2A \\ 3A & 3A & 3A \\ \end{cases}	. 0013 . 0012 . 0000 . 0011 . 0000 . 0014 . 0015 . 0000	3 .4362 3 .4375 4 .4364 3 .4384 5 .4984 6 .4985 6 .4985 6 .4985	2 .4281 4294 4 .4299 5 .4310 4 .4870 .4886 .4886 .4876	1 1 2 3 5 .4822	4050 4132 4143 4443 4459 4485	3995 4019 4096 4116 3 4389 4419 6 4411 6 443	0042 0031 0036 0027 0054 0040 0074 0056	3749 .3762 .3926 .3937 .3962 .3978 .4041	2B 2B 2B 3B 2B 2B 3B 1B 1B 2B	.383 .383 .3830 .399 .3990 .410 .4106 .417 .417	.407 .4051 .428 .4223 .434 .434	. 4143 . 4143 . 4459 . 4459 . 4500	.4104 .4091 .4189 .4178 .4529 .4511 .4597 .4565	. 0054 . 0041 . 0046 . 0035 . 0070 . 0052 . 0097 . 0065	4 .4375 .4375 .4375 .4375 .5000 .5000 .5000 .5000 .5000

Note.—The following seven sizes have been standardized as between American, Canadian, and British military services or industry for purposes of attachment, e. g., an instrument or accessory to a panel: 0-80 NF, 2-56 NC, 4-40 NC, 6-32 NC, 10-24 NC, and 10-32 NF, with 10-32 preferred over 10-24.

]	External	a							Internal	a		
Nominal size and threads per inch	Series designa- tion	Class	Allow-	Major	diamete	r limits	Piteh	diameter	limits	Minor diam-	Class		diam- limits •	Pitch	diameter	limits	Major diam- eter
per men		C 1655	ance	Max b	Min	Min •	Max b	Min	Toler- ance	eter d		Min	Max	Min	Max	Toler- ance	Min
1/2-20 1/2-28 9/16-12 9/16-18	UNF UNEF UNC	\begin{cases} 1A & 2A & 3A & 2A & 3A & 1A & 2A & 3A & 1A & 2A & 3A & 1A & 2A & 2A & 3A & 1A & 2A & 2A & 2A & 2A & 2A & 2A & 2	in. 0.0013 .0013 .0030 .0011 .0000 .0016 .0016 .0000 .0014 .0014	in. 0.4987 .4987 .5000 .4989 .5000 .5609 .5609 .5625 .5611 .5611	in. 0.4865 .4906 .4919 .4924 .4935 .5437 .5437 .5480 .5524	in.	in. 0.4662 .4662 .4675 .4757 .4768 .5068 .5068 .5084 .5250 .5250	in. 0.4598 .4619 .4643 .4720 .4740 .4990 .5016 .5045 .5182 .5205	in. 0.0064 .0043 .0032 .0037 .0028 .0078 .0052 .0039 .0068 .0045	in. 0,4374 4374 4374 4387 4551 4562 4587 4587 4603 4929 4929	1B 2B 3B 2B 3B 1B 2B 3B 1B	in. 0.446 .446 .4460 .461 .4610 .472 .472 .502 .502	in. 0.457 .457 .457 .4537 .470 .4676 .490 .490 .4843 .515 .515	in. 0.4675 .4675 .4675 .4768 .4768 .4768 .5084 .5084 .5084 .5264	in. 0.4759 .4731 .4717 .4816 .4804 .5186 .5152 .5135 .5353 .5323	in. 0.0084 .0056 .0042 .0048 .0036 .0102 .0068 .0051 .0089 .0059	in. 0.5000 .5000 .5000 .5000 .5000 .5000 .5625 .5625 .5625 .5625 .5625 .5625 .5625
9/16-24	NEF	$\left\{\begin{array}{c} 3\mathbf{A} \\ 2\mathbf{A} \\ 3\mathbf{A} \end{array}\right.$.0000 .0012 .0000	.5625 .5613 .5625	.5524 .5538 .5541 .5553		.5264 .5342 .5354	.5230 .5303 .5325	.0034	. 4943 . 5102 . 5114	3B 2B 3B	.5020 .517 .5170	.5106 .527 .5244	.5264 .5354 .5354	.5308 .5405 .5392	.0044 .0051 .0038	. 5625 . 5625 . 5625
5%-11 5%-12 5%-18 5%-24 11/16-12	UNC N UNF NEF	$\left\{\begin{array}{c} 1A \\ 2A \\ 3A \\ 2A \\ 3A \\ 1A \\ 2A \\ 3A \\ 2A \\ 3A \\ 2A \\ 3A \\ 2A \\ 3A \\ 3$.0016 .0016 .0000 .0016 .0000 .0014 .0014 .0012 .0000 .0016 .0000	. 6234 . 6234 . 6250 . 6234 . 6250 . 6236 . 6256 . 6250 . 6250 . 6859 . 6875	.6052 .6113 .6129 .6120 .6136 .6105 .6149 .6163 .6166 .6178 .6745 .6761	. 6052	. 5644 . 5644 . 5660 . 5693 . 5709 . 5875 . 5875 . 5889 . 5967 . 5979 . 6318 . 6334	.5561 .5589 .5619 .5639 .5668 .5805 .5828 .5824 .5927 .5949 .6264 .6293	. 0083 . 0055 . 0041 . 0054 . 0041 . 0070 . 0047 . 0035 . 0040 . 0030 . 0054 . 0041	.5119 .5119 .5135 .5212 .5228 .5554 .5554 .5568 .5727 .5739 .5837 .5853	1B 2B 3B 2B 3B 1B 2B 3B 2B 3B 2B 3B	.527 .527 .5270 .535 .5350 .565 .565 .565 .5800 .5800 .597 .5970	.546 .546 .5391 .553 .5463 .578 .578 .578 .5790 .5869 .615 .6085	.5669 .5660 .5709 .5709 .5889 .5889 .5879 .5979 .6334 .6334	. 5767 . 5732 . 5714 . 5780 . 5762 . 5980 . 5949 . 5934 . 6031 . 6018 . 6405 . 6387	.0107 .0072 .0954 .0071 .0053 .0091 .0060 .0045 .0052 .0039 .0071 .0053	. 6250 . 6250 . 6250 . 6250 . 6250 . 6250 . 6250 . 6250 . 6250 . 6875 . 6875
11/16-24 3/4-10 3/4-12 3/4-16 3/4-20	NEF UNC N UNF	$\left\{\begin{array}{c} 2A \\ 3A \\ 1A \\ 2A \\ 3A \\ \left\{\begin{array}{c} 2A \\ 3A \\ 1A \\ 2A \\ 3A \\ \left\{\begin{array}{c} 2A \\ 3A \\ 3A \\ 3A \\ 3A \\ \end{array}\right.\right\}$.0012 .0000 .0018 .0018 .0000 .0017 .0000 .0015 .0015 .0300 .0013	. 6863 . 6875 . 7482 . 7482 . 7500 . 7483 . 7500 . 7485 . 7500 . 7487 . 7500	. 6791 . 6803 . 7288 . 7353 . 7371 . 7369 . 7386 . 7343 . 7391 . 7406 . 7406 . 7419	.7288	. 6592 . 6604 . 6832 . 6832 . 6850 . 6942 . 6959 . 7079 . 7079 . 7094 . 7162 . 7175	. 6552 . 6574 . 6744 . 6773 . 6806 . 6887 . 6918 . 7004 . 7029 . 7056 . 7118 . 7142	.0040 .0030 .0088 .0059 .0044 .0055 .0041 .0075 .0050 .0038 .0044 .0033	.6352 .6364 .6255 .6255 .6273 .6461 .6478 .6718 .6718 .6733 .6874	2B 3B 1B 2B 3B 2B 3B 1B 2B 3B 2B 3B	.642 .6420 .642 .642 .642 .660 .6600 .682 .682 .682 .696	. 652 . 6494 . 663 . 663 . 6545 . 678 . 6707 . 696 . 696 . 6908 . 707 . 7037	.6604 .6604 .6850 .6850 .6850 .6959 .7094 .7094 .7175 .7175	. 6656 . 6643 . 6965 . 6927 . 6907 . 7031 . 7013 . 7192 . 7159 . 7143 . 7232 . 7218	.0052 .0039 .0115 .0077 .0057 .0072 .0054 .0098 .0065 .0049 .0057	. 6875 . 6875 . 7500 . 7500 . 7500 . 7500 . 7500 . 7500 . 7500 . 7500 . 7500
13/16-12 13/16-16 13/16-20 7/8-9 7/8-12	N UN UNEF UNC	{ 2A 3A 2A 3A 2A 3A 1A 2A 3A 2A 3A 2A 3A	.0017 .0000 .0015 .0000 .0013 .0000 .0019 .0019 .0000 .0017	. 8108 . 8125 . 8110 . 8125 . 8112 . 8125 . 8731 . 8750 . 8733 . 8750	. 7994 . 8011 . 8016 . 8031 . 8031 . 8044 . 8523 . 8592 . 8611 . 8619 . 8636	. 8523	.7567 .7584 .7704 .7719 .7787 .7800 .8009 .8009 .8028 .8192 .8209	.7512 .7543 .7655 .7683 .7743 .7767 .7914 .7946 .7981 .8137 .8168	. 0055 . 0041 . 0049 . 0036 . 0044 . 0033 . 0095 . 0063 . 0047 . 0055 . 0041	.7086 .7103 .7343 .7358 .7498 .7512 .7368 .7368 .7387 .7711 .7728	2B 3B 2B 3B 2B 3B 1B 2B 3B 3B	.722 .7220 .745 .7450 .758 .7580 .755 .755 .755 .785 .7850	.740 .7329 .759 .7533 .770 .7662 .778 .778 .7681 .803 .7952	.7584 .7584 .7719 .7719 .7800 .7800 .8028 .8028 .8028 .8028 .8029	.7656 .7638 .7782 .7766 .7857 .7843 .8151 .8110 .8089 .8281 .8263	.0072 .0054 .0063 .0047 .0057 .0043 .0123 .0082 .0061 .0072 .0054	.8125 .8125 .8125 .8125 .8125 .8125 .8750 .8750 .8750 .8750
7/8-14 7/8-16 7/8-20 15/16-12 15/16-16	UNF UN UNEF UN UN	1A 2A 3A 2A 3A 2A 3A 2A 3A 2A 3A 2A 3A 3A 3A	.0016 .0016 .0000 .0015 .0000 .0013 .0000 .0017 .0000 .0015 .0000	. 8734 . 8734 . 8750 . 8735 . 8750 . 8737 . 8750 . 9358 . 9375 . 9360 . 9375	.8579 .8631 .8647 .8656 .8656 .8656 .8669 .9241 .9261 .9266 .9281		. 8270 . 8270 . 8286 . 8329 . 8344 . 8412 . 8425 . 8817 . 8834 . 8954 . 8969	.8189 .8216 .8245 .8280 .8308 .8368 .8368 .8793 .8793 .8904 .8932	.0081 .0054 .0041 .0049 .0036 .0044 .0033 .0057 .0041	.7858 .7858 .7874 .7968 .7983 .8124 .8137 .8336 .8353 .8593 .8608	1B 2B 3B 2B 3B 2B 3B 2B 3B 2B 3B	.798 .798 .7980 .807 .8070 .821 .8210 .847 .8470 .870	.814 .814 .8068 .821 .8158 .832 .8287 .865 .8575 .884 .8783	. 8286 . 8286 . 8286 . 8344 . 8344 . 8425 . 8425 . 8434 . 8834 . 8969 . 8969	.8392 .8356 .8339 .8407 .8391 .8482 .8468 .8908 .8889 .9034 .9018	.0106 .0070 .0053 .0063 .0047 .0057 .0043 .0074 .0055 .0065	. 8750 . 8750 . 8750 . 8750 . 8750 . 8750 . 9375 . 9375 . 9375
15/16-20 1-8 1-12 1-16 1-20	UNEF UNC UNF UN UNEF	\begin{cases} 2A & 3A \\ 1A & 2A \\ 3A & 1A \\ 2A & 3A \\ 4 & 3A \\ 2A & 3A \\ 4 & 3A \\ 3 & 3A \\ 1 & 3A \\ 3 & 3 & 3A \\ 1 & 3 & 3 & 3A \\ 1 & 3 & 3 & 3 & 3 \\ \ \ \ \ \ \ \ \ \ \	. 0014 . 0000 . 0020 . 0020 . 0000 . 0018 . 0018 . 0000 . 0015 . 0000 . 0014 . 0000	. 9361 . 9375 . 9980 . 9980 1. 0000 . 9982 . 9982 1. 0000 . 9985 1. 0000	. 9280 . 9294 . 9755 . 9830 . 9850 . 9810 . 9868 . 9886 . 9891 . 9906 . 9905 . 9919	. 9755	. 9036 . 9050 . 9168 . 9168 . 9188 . 9441 . 9441 . 9459 . 9579 . 9594 . 9661 . 9675	. 8991 . 9016 . 9067 . 9100 . 9137 . 9353 . 9382 . 9415 . 9529 . 9557 . 9616 . 9641	. 0045 . 0034 . 0101 . 0068 . 0051 . 0088 . 0059 . 0044 . 0050 . 0037 . 0045 . 0034	.8748 .8762 .8446 .8446 .8466 .8960 .8960 .8978 .9218 .9233 .9373 .9387	2B 3B 1B 2B 3B 1B 2B 3B 2B 3B 2B 3B	.883 .8830 .865 .865 .8650 .910 .910 .910 .932 .9320 .946 .9460	. 895 . 8912 . 890 . 8797 . 928 . 928 . 9198 . 946 . 9408 . 957 . 9537	. 9050 . 9050 . 9188 . 9188 . 9459 . 9459 . 9459 . 9459 . 9594 . 9675 . 9675	. 9109 . 9094 . 9320 . 9276 . 9254 . 9573 . 9535 . 9516 . 9659 . 9643 . 9734 . 9719	.0059 .0044 .0132 .0088 .0066 .0114 .0076 .0057 .0065 .0049 .0059	. 9375 . 9375 1, 0000 1, 0000 1, 0000 1, 0000 1, 0000 1, 0000 1, 0000 1, 0000 1, 0000
1 1/16-12 1 1/16-16 13/16-18 11/8-7 13/8-8 11/8-12	UN UN NEF UNC N UNF	\begin{cases} 2A & 3A & 2A & 3A & 1A & 2A & 2A & 2A & 2A & 2A & 2A & 2	. 0017 . 0000 . 0015 . 0000 . 0014 . 0090 . 0022 . 0022 . 0000 . 0021 . 0000 . 4018 . 0018	1. 0608 1. 0625 1. 0610 1. 0625 1. 0611 1. 0625 1. 1228 1. 1228 1. 1228 1. 1229 1. 1232 1. 1232 1. 1232	1, 0494 1, 0511 1, 0516 1, 0531 1, 0524 1, 0538 1, 0982 1, 1064 1, 1086 1, 1079 1, 1100 1, 1050 1, 1118 1, 1136	1. 0982	1.0067 1.0084 1.0204 1.0219 1.0250 1.0264 1.0300 1.0322 1.0417 1.0438 1.0691 1.0709	1. 0010 1. 0042 1. 0154 1. 0182 1. 0203 1. 0228 1. 0191 1. 0228 1. 0348 1. 0386 1. 0601 1. 0631	. 0057 . 0042 . 0050 . 0037 . 0047 . 0036 . 0109 . 0072 . 0054 . 0069 . 0052 . 0090 . 0060 . 0045	. 9586 . 9603 . 9843 . 9858 . 9929 . 9943 . 9475 . 9475 . 9695 . 9716 1. 0210 1. 0228	2B 3B 2B 3B 2B 3B 1B 2B 3B 2B 3B 3B 3B	. 972 . 9720 . 995 . 995 . 9950 1. 0020 . 970 . 970 . 9700 . 990 . 9900 1. 035 1. 035 1. 0350	. 990 . 9823 1. 009 1. 0033 1. 015 1. 0105 . 998 . 9875 1. 015 1. 0047 1. 053 1. 053 1. 0448	1, 0084 1, 0084 1, 0219 1, 0219 1, 0264 1, 0322 1, 0322 1, 0438 1, 0709 1, 0709	1. 0158 1. 0139 1. 0284 1. 0268 1. 0326 1. 0416 1. 0416 1. 0528 1. 0505 1. 0826 1. 0787 1. 0768	.0074 .0055 .0065 .0049 .0062 .0046 .0141 .0094 .0071 .0090 .0067 .0117 .0078	1, 0625 1, 0625 1, 0625 1, 0625 1, 0625 1, 1250 1, 1250 1, 1250 1, 1250 1, 1250 1, 1250 1, 1250

 ${\tt Table\ III.10.--Standard\ series\ limits\ of\ size--Unified\ and\ American\ screw\ threads---Continued}$

					I	External	a							Internal	a		
Nominal size and threads	Series designa- tion	Class	Allow-	Major	diameter	rlimits	Pitch	diameter	· limits	Minor diam-	Class		diam-	Pitch	diameter	limits	Major diam- eter
per inch		Class	ance	Max b	Min	Min ¢	Max b	Min	Toler- ance	eter d	Class	Min	Max	Min	Max	Toler- ance	Min
1½-16 1½-18 1 3/16-12 1 3/16-16 1¾6-18	UN NEF UN UN NEF	$\left\{\begin{array}{c} {\bf 2A} \\ {\bf 3A} \\ {\bf 2A} \\ {\bf 3A} \\ \left\{\begin{array}{c} {\bf 2A} \\ {\bf 3A} \\ {\bf 3A} \\ \end{array}\right. \\ \left\{\begin{array}{c} {\bf 2A} \\ {\bf 3A} \\ {\bf 3A} \\ \left\{\begin{array}{c} {\bf 2A} \\ {\bf 3A} \\ \end{array}\right. \\ \left\{\begin{array}{c} {\bf 2A} \\ {\bf 3A} \\ \end{array}\right.$	in. 0.0015 .0000 .0014 .0000 .0017 .0000 .0015 .0000 .0015	in. 1. 1235 1. 1250 1. 1250 1. 1250 1. 1858 1. 1875 1. 1860 1. 1875 1. 1860 1. 1875	in. 1, 1141 1, 1156 1, 1149 1, 1163 1, 1744 1, 1761 1, 1766 1, 1781 1, 1773 1, 1788	in.	in. 1.0829 1.0844 1.0875 1.0889 1.1317 1.1334 1.1454 1.1469 1.1499 1.1514	in, 1,0779 1,0807 1,0828 1,0853 1,1259 1,1291 1,1403 1,1431 1,1450 1,1478	in. 0.0050 .0037 .0047 .0036 .0058 .0043 .0051 .0038 .0049	in. 1. 0468 1. 0483 1. 0554 1. 0568 1. 0856 1. 0853 1. 1093 1. 1108 1. 1178 1. 1193	2B 3B 2B 3B 2B 3B 2B 3B 3B 3B	in. 1.057 1.0570 1.065 1.0650 1.097 1.120 1.120 1.127 1.127	in. 1,071 1,0658 1,078 1,0730 1,115 1,1073 1,134 1,1283 1,140 1,1355	in. 1.0844 1.0844 1.0889 1.0889 1.1334 1.1334 1.1469 1.1469 1.1514	in. 1,0909 1,0893 1,0951 1,0935 1,1409 1,1390 1,1535 1,1519 1,1577 1,1561	in. 0,0065 .0049 .0062 .0046 .0075 .0056 .0066 .0050 .0063	in. 1, 1250 1, 1250 1, 1250 1, 1250 1, 1875 1, 1875 1, 1875 1, 1875 1, 1875
11/4-7 11/4-8 11/4-12 11/4-16 11/4-18	UNC N UNF UN NEF	$\left\{\begin{array}{c} {\bf 1A} \\ {\bf 2A} \\ {\bf 3A} \\ \end{array}\right.$ $\left\{\begin{array}{c} {\bf 2A} \\ {\bf 3A} \\ \end{array}\right.$. 0022 . 0022 . 0000 . 0021 . 0000 . 0018 . 0018 . 0000 . 0015 . 0000 . 0015 . 0000	1, 2478 1, 2478 1, 2500 1, 2479 1, 2500 1, 2482 1, 2482 1, 2500 1, 2485 1, 2500 1, 2485 1, 2500	1, 2232 1, 2314 1, 2336 1, 2329 1, 2350 1, 2310 1, 2368 1, 2386 1, 2391 1, 2406 1, 2398 1, 2413	1. 2232	1. 1550 1. 1550 1. 1572 1. 1667 1. 1688 1. 1941 1. 1941 1. 1959 1. 2079 1. 2094 1. 2124 1. 2139	1, 1439 1, 1476 1, 1517 1, 1597 1, 1635 1, 1849 1, 1879 1, 1913 1, 2028 1, 2056 1, 2075 1, 2103	.0111 .0074 .0055 .0070 .0053 .0092 .0062 .0046 .0051 .0038 .0049 .0036	1. 0725 1. 0725 1. 0747 1. 0945 1. 0966 1. 1460 1. 1460 1. 1478 1. 1718 1. 1733 1. 1803 1. 1818	1B 2B 3B 1B 2B 3B 1B 2B 3B 3B 3B 3B 3B 3B	1. 095 1. 095 1. 0950 1. 115 1. 1150 1. 160 1. 160 1. 182 1. 1820 1. 190 1. 1900	1, 123 1, 123 1, 1125 1, 140 1, 1297 1, 178 1, 178 1, 1698 1, 196 1, 1908 1, 203 1, 1980	1, 1572 1, 1572 1, 1572 1, 1688 1, 1688 1, 1959 1, 1959 1, 2094 1, 2094 1, 2139 1, 2139	1. 1716 1. 1668 1. 1644 1. 1780 1. 1757 1. 2079 1. 2039 1. 2019 1. 2160 1. 2144 1. 2202 1. 2186	.0144 .0096 .0072 .0092 .0069 .0120 .0080 .0060 .0066 .0050 .0063 .0047	1, 2500 1, 2500
1 5/16-12 1 5/16-16 1 5/16-18 13/8-6 13/8-8	UN UN NEF UNC	$\left\{\begin{array}{c} 2A \\ 3A \\ 2A \\ 3A \\ 2A \\ 3A \\ 1A \\ 2A \\ 3A \\ 2A \\ 3A \\ \end{array}\right.$.0017 .0000 .0015 .0000 .0015 .0000 .0024 .0024 .0024 .0022 .0000	1, 3108 1, 3125 1, 3110 1, 3125 1, 3110 1, 3125 1, 3726 1, 3726 1, 3750 1, 3750 1, 3750	1, 2994 1, 3011 1, 3016 1, 3031 1, 3023 1, 3038 1, 3453 1, 3544 1, 3568 1, 3578 1, 3600	1. 3453	1. 2567 1. 2584 1. 2704 1. 2719 1. 2749 1. 2643 1. 2643 1. 2667 1. 2916 1. 2938	1, 2509 1, 2541 1, 2653 1, 2681 1, 2700 1, 2728 1, 2523 1, 2563 1, 2607 1, 2844 1, 2884	. 0058 . 0043 . 0051 . 0038 . 0049 . 0036 . 0120 . 0080 . 0060 . 0072 . 0054	1. 2086 1. 2103 1. 2343 1. 2358 1. 2428 1. 2443 1. 1681 1. 1705 1. 2194 1. 2216	2B 3B 2B 3B 2B 3B 1B 2B 3B 3B 3B	1, 222 1, 2220 1, 245 1, 2450 1, 252 1, 2520 1, 195 1, 195 1, 1950 1, 240 1, 2400	1, 240 1, 2323 1, 259 1, 2533 1, 265 1, 265 1, 225 1, 2146 1, 265 1, 2547	1, 2584 1, 2584 1, 2719 1, 2719 1, 2764 1, 2667 1, 2667 1, 2667 1, 2938 1, 2938	1. 2659 1. 2640 1. 2785 1. 2769 1. 2827 1. 2811 1. 2823 1. 2771 1. 2745 1. 3031 1. 3008	. 0075 . 0056 . 0066 . 0050 . 0063 . 0047 . 0156 . 0104 . 0078 . 0093 . 0070	1, 3125 1, 3125 1, 3125 1, 3125 1, 3125 1, 3750 1, 3750 1, 3750 1, 3750
13/8-12 13/8-16 13/6-18 1 7/16-12 1 7/16-16	UNF UN NEF UN UN	$ \left\{ \begin{array}{c} 1A \\ 2A \\ 3A \\ 3$.0019 .0019 .0000 .0015 .0000 .0015 .0000 .0018 .0000 .0016	1, 3731 1, 3731 1, 3750 1, 3735 1, 3750 1, 3735 1, 3750 1, 4357 1, 4375 1, 4375	1, 3559 1, 3617 1, 3636 1, 3641 1, 3656 1, 3648 1, 3663 1, 4243 1, 4261 1, 4265 1, 4281		1,3190 1,3190 1,3209 1,3329 1,3344 1,3374 1,3389 1,3816 1,3834 1,3953 1,3969	1.3096 1.3127 1.3162 1.3278 1.3306 1.3325 1.3353 1.3757 1.3790 1.3901 1.3930	.0094 .0063 .0047 .0051 .0038 .0049 .0059 .0044 .0052	1. 2709 1. 2709 1. 2728 1. 2968 1. 2983 1. 3053 1. 3068 1. 3335 1. 3353 1. 3592 1. 3608	1B 2B 3B 2B 3B 2B 3B 2B 3B 2B 3B	1, 285 1, 285 1, 2850 1, 307 1, 3070 1, 315 1, 3150 1, 347 1, 347 1, 370 1, 370	1,303 1,303 1,2948 1,321 1,3158 1,328 1,3230 1,365 1,3573 1,384 1,3783	1, 3209 1, 3209 1, 3209 1, 3344 1, 3344 1, 3389 1, 3889 1, 3834 1, 3834 1, 3969 1, 3969	1,3332 1,3291 1,3270 1,3410 1,3394 1,3452 1,3436 1,3910 1,3891 1,4037 1,4020	.0123 .0082 .0061 .0066 .0050 .0063 .0047 .0076 .0057 .0068	1,3750 1,3750 1,3750 1,3750 1,3750 1,3750 1,3750 1,4375 1,4375 1,4375
17/16-18 11/2-6 11/2-8 11/2-12 11/2-16	NEF UNC N UNF	\begin{cases} 2A & 3A \\ 1A & 3A \\ 2A & 3A \\ 1A & 2A \\ 3A & 2A \\ 3A & 3A \\ 2A & 3A \\ 3A & 3A	.0015 .0000 .0024 .0024 .0000 .0022 .0000 .0019 .0019 .0000 .0016	1. 4360 1. 4375 1. 4976 1. 4976 1. 5000 1. 4978 1. 5000 1. 4981 1. 5000 1. 4984 1. 5000	1, 4273 1, 4288 1, 4703 1, 4794 1, 4818 1, 4828 1, 4850 1, 4809 1, 4867 1, 4886 1, 4890 1, 4906	1, 4703 1, 4753	1. 3999 1. 4014 1. 3893 1. 3893 1. 38917 1. 4166 1. 4188 1. 4440 1. 4445 1. 4594	1. 3949 1. 3977 1. 3772 1. 3812 1. 3856 1. 4093 1. 4133 1. 4344 1. 4376 1. 4411 1. 4526 1. 4555	.0050 .0037 .0121 .0081 .0061 .0073 .0055 .0096 .0064 .0048 .0052	1. 3678 1. 3693 1. 2931 1. 2955 1. 3444 1. 3466 1. 3959 1. 3978 1. 4217 1. 4233	2B 3B 1B 2B 3B 1B 2B 3B 2B 3B	1, 377 1, 3770 1, 320 1, 320 1, 3200 1, 365 1, 3650 1, 410 1, 410 1, 4100 1, 432 1, 4320	1. 390 1. 3855 1. 350 1. 350 1. 3396 1. 3797 1. 428 1. 428 1. 4198 1. 4408	1, 4014 1, 4014 1, 3917 1, 3917 1, 3917 1, 4188 1, 4489 1, 4459 1, 4459 1, 4594 1, 4594	1. 4079 1. 4062 1. 4075 1. 4022 1. 3996 1. 4283 1. 4259 1. 4542 1. 4542 1. 4662 1. 4645	.0065 .0048 .0158 .0105 .0079 .0095 .0071 .0125 .0083 .0063 .0068	1. 4375 1. 5000 1. 5000 1. 5000 1. 5000 1. 5000 1. 5000 1. 5000 1. 5000 1. 5000 1. 5000
1½-18 1%6-16 1%6-18 15%-8 15%-12	NEF N NEF N UN	$ \left\{ \begin{array}{l} 2A \\ 3A \\ 2A \\ 3A \end{array} \right. $.0015 .0000 .0016 .0000 .0015 .0000 .0022 .0000 .0018	1. 4985 1. 5000 1. 5609 1. 5625 1. 5610 1. 5625 1. 6228 1. 6250 1. 6232 1. 6250	1. 4898 1. 4913 1. 5515 1. 5531 1. 5523 1. 5538 1. 6078 1. 6100 1. 6118 1. 6136	1.6003	1. 4624 1. 4639 1. 5203 1. 5219 1. 5249 1. 5264 1. 5416 1. 5438 1. 5691 1. 5709	1. 4574 1. 4602 1. 5151 1. 5180 1. 5199 1. 5227 1. 5342 1. 5382 1. 5632 1. 5665	. 0050 . 0037 . 0052 . 0039 . 0050 . 0037 . 0074 . 0056 . 0059	1. 4303 1. 4318 1. 4842 1. 4858 1. 4928 1. 4943 1. 4694 1. 4716 1. 5210 1. 5228	2B 3B 2B 3B 2B 3B 2B 3B 2B 3B	1, 440 1, 4400 1, 495 1, 4950 1, 5020 1, 5020 1, 4900 1, 535 1, 5350	1. 452 1. 4480 1. 509 1. 5033 1. 515 1. 5105 1. 515 1. 5047 1. 553 1. 5448	1, 4639 1, 4639 1, 5219 1, 5219 1, 5264 1, 5264 1, 5438 1, 5438 1, 5709 1, 5709	1, 4704 1, 4687 1, 5287 1, 5270 1, 5329 1, 5312 1, 5535 1, 5510 1, 5785 1, 5766	.0065 .0048 .0068 .0051 .0065 .0048 .0097 .0072 .0076	1, 5000 1, 5000 1, 5625 1, 5625 1, 5625 1, 6250 1, 6250 1, 6250 1, 6250
15%-16 15%-18 11½6-16 11½6-18 13⁄4-5	UN NEF N NEF UNC	$ \left\{ \begin{array}{l} {\bf 2A} \\ {\bf 3A} \\ {\bf 1A} \\ {\bf 2A} \\ {\bf 3A} \\ {\bf 3A} \\ {\bf 1A} \\ {\bf 2A} \\ {\bf 3A} \end{array} \right. $.0016 .0000 .0015 .0000 .0016 .0000 .0015 .0000 .0027 .0027	1. 6234 1. 6250 1. 6235 1. 6250 1. 6859 1. 6865 1. 6875 1. 7473 1. 7473	1, 6140 1, 6156 1, 6148 1, 6163 1, 6765 1, 6781 1, 6773 1, 6788 1, 7165 1, 7268 1, 7295	1. 7165	1. 5828 1. 5844 1. 5874 1. 5889 1. 6453 1. 6469 1. 6514 1. 6174 1. 6174	1.5776 1.5805 1.5824 1.5852 1.6400 1.6429 1.6448 1.6476 1.6040 1.6085 1.6134	. 0052 . 0039 . 0050 . 0037 . 0053 . 0040 . 0051 . 0038 . 0134 . 0089 . 0067	1,5467 1,5483 1,5553 1,5568 1,6092 1,6108 1,6178 1,6193 1,5019 1,5019	2B 3B 2B 3B 2B 3B 2B 3B 1B 2B 3B	1, 557 1, 5570 1, 565 1, 5650 1, 6200 1, 6200 1, 627 1, 6270 1, 534 1, 534	1.571 1.5658 1.578 1.5730 1.634 1.6283 1.640 1.6355 1.568 1.568	1. 5844 1. 5844 1. 5889 1. 5889 1. 6469 1. 6514 1. 6514 1. 6201 1. 6201	1.5912 1.5895 1.5954 1.5937 1.6538 1.6521 1.6580 1.6563 1.6375 1.6317 1.6288	.0068 .0051 .0065 .0048 .0069 .0052 .0066 .0049 .0174 .0116	1. 6250 1. 6250 1. 6250 1. 6250 1. 6875 1. 6875 1. 6875 1. 7500 1. 7500
1¾-8 1¾-12	N UN	$ \begin{cases} 2A \\ 3A \\ 2A \\ 3A \end{cases} $.0023 .0000 .0018 .0000	1. 7477 1. 7500 1. 7482 1. 7500	1, 7327 1, 7350 1, 7368 1, 7386	1.7252	1. 6665 1. 6688 1. 6941 1. 6959	1, 6590 1, 6632 1, 6881 1, 6914	. 0075 . 0056 . 0060 . 0045	1,5943 1,5966 1,6460 1,6478	2B 3B 2B 3B	1. 615 1. 6150 1. 660 1. 6600	1, 640 1, 6297 1, 678 1, 6698	1, 6688 1, 6688 1, 6959 1, 6959	1, 6786 1, 6762 1, 7037 1, 7017	. 0098 . 0074 . 0078 . 0058	1,7500 1,7500 1,7500 1,7500

]	External	G							Internal	a		
Nominal size and threads per inch	Series designa- tion	Class	Allow-	Major	diamete	r limits	Pitch	diameter	limits	Minor diam-	Class		· diam- limits •	Pitch	diameter	limits	Major diam- eter
per men				Max b	Min	Min ¢	Max b	Min	Toler- ance	eter d		Min	Max	Min	Max	Toler- ance	Min
1 ³ / ₄ -15 1 ¹ ³ / ₁ 6-16 1 ⁷ / ₈ -8 1 ⁷ / ₈ -12 1 ⁷ / ₈ -16	UNEF N N UN	$\left\{\begin{array}{c} 2A \\ 3A \\ 2A \\ 3A \\ 2A \\ 3A \\ 2A \\ 3A \\ 2A \\ 3A \end{array}\right.$	in. 0.0016 .0000 .0016 .0000 .0023 .0000 .0018 .0000 .0016 .0000	in. 1.7484 1.7500 1.8109 1.8125 1.8727 1.8750 1.8732 1.8750 1.8734 1.8750	in. 1.7390 1.7406 1.8015 1.8031 1.8577 1.8600 1.8618 1.8636 1.8640 1.8656	in,	in, 1,7078 1,7094 1,7703 1,7719 1,7915 1,7938 1,8191 1,8209 1,8328 1,8344	in. 1.7025 1.7054 1.7650 1.7659 1.7838 1.7881 1.8131 1.8164 1.8275 1.8304	in. 0.0053 .0040 .0053 .0040 .0077 .0057 .0060 .0045 .0053 .0040	in. 1. 6717 1. 6733 1. 7342 1. 7358 1. 7193 1. 7216 1. 7710 1. 7728 1. 7967 1. 7983	2B 3B 2B 3B 2B 3B 2B 3B 3B	in, 1, 682 1, 6820 1, 745 1, 7450 1, 740 1, 7400 1, 785 1, 7850 1, 807 1, 8070	in. 1, 696 1, 6908 1, 759 1, 7533 1, 765 1, 7547 1, 803 1, 7948 1, 821 1, 8158	in. 1,7094 1,7094 1,7719 1,7719 1,7938 1,7938 1,8209 1,8209 1,8344 1,8344	in. 1,7163 1,7146 1,7788 1,7771 1,8038 1,8013 1,8287 1,8267 1,8413 1,8396	in, 0,0069 .0052 .0069 .0052 .0100 .0075 .0078 .0058 .0069 .0052	in. 1,750 1,750 1,812 1,812 1,875 1,875 1,875 1,875 1,875
1 ¹⁵ / ₁₆ -16 2-4 ¹ / ₂ 2-8 2-12 2-16	N UNC N UN UNEF	$\left\{\begin{array}{c} 2A \\ 3A \\ 1A \\ 2A \\ 3A \\ \left\{\begin{array}{c} 2A \\ 3A \\ 3A \\ \left\{\begin{array}{c} 2A \\ 3A \\ 3A \\ \end{array}\right.\right\}$.0016 .0000 .0329 .0029 .0000 .0023 .0000 .0918 .0000 .0016 .0000	1. 9359 1. 9375 1. 9971 1. 9971 2. 0000 1. 9977 2. 0000 1. 9982 2. 0000 1. 9984 2. 0000	1, 9265 1, 9281 1, 9641 1, 9751 1, 9780 1, 9827 1, 9850 1, 9868 1, 9868 1, 9890 1, 9906	1. 9641	1. 8953 1. 8969 1. 8528 1. 8528 1. 8557 1. 9165 1. 9188 1. 9441 1. 9459 1. 9578 1. 9594	1. 8899 1. 8929 1. 8385 1. 8433 1. 8486 1. 9087 1. 9130 1. 9380 1. 9414 1. 9524 1. 9554	.0054 .0040 .0143 .0095 .0071 .0078 .0058 .0061 .0045 .0054	1. 8592 1. 8608 1. 7245 1. 7245 1. 7274 1. 8443 1. 8466 1. 8960 1. 8978 1. 9217 1. 9233	2B 3B 1B 2B 3B 2B 3B 2B 3B 2B 3B	1, 870 1, 8700 1, 759 1, 759 1, 7590 1, 865 1, 8650 1, 910 1, 9100 1, 932 1, 9320	1. 884 1. 8783 1. 795 1. 795 1. 7861 1. 890 1. 8797 1. 928 1. 9198 1. 946 1. 9408	1. 8969 1. 8969 1. 8557 1. 8557 1. 8557 1. 9188 1. 9188 1. 9459 1. 9459 1. 9594	1. 9039 1. 9021 1. 8743 1. 8681 1. 8650 1. 9289 1. 9264 1. 9538 1. 9518 1. 9664 1. 9646	.0070 .0052 .0186 .0124 .0093 .0101 .0076 .0079 .0059 .0070 .0052	1. 937 1. 937 2. 000 2. 000 2. 000 2. 000 2. 000 2. 000 2. 000
2½6-16 2½8-8 2½8-12 2½8-16 2¾6-16	N N UN UN N	$ \left\{ \begin{array}{c} 2A \\ 3A \\ 2A \\ 3A \\ \end{array} \right. \\ \left\{ \begin{array}{c} 2A \\ 3A \\ \end{array} \right\} \\ \left\{ \begin{array}{c} $.0016 .0000 .0024 .0000 .0018 .0000 .0016 .0000	2. 0609 2. 0625 2. 1226 2. 1250 2. 1232 2. 1250 2. 1234 2. 1250 2. 1859 2. 1875	2. 0515 2. 0531 2. 1076 2. 1100 2. 1118 2. 1136 2. 1140 2. 1156 2. 1765 2. 1781	2. 1001	2. 0203 2. 0219 2. 0414 2. 0438 2. 0691 2. 0709 2. 0828 2. 0844 2. 1453 2. 1469	2. 0149 2. 0179 2. 0335 2. 0379 2. 0630 2. 0664 2. 0774 2. 0803 2. 1399 2. 1428	. 0054 . 0040 . 0079 . 0059 . 0061 . 0045 . 0054 . 0054 . 0041	1. 9842 1. 9858 1. 9692 1. 9716 2. 0210 2. 0228 2. 0467 2. 0483 2. 1092 2. 1108	2B 3B 2B 3B 2B 3B 2B 3B 2B 3B	1. 995 1. 9950 1. 990 1. 9900 2. 035 2. 0350 2. 057 2. 0570 2. 120 2. 1200	2.009 2.0033 2.015 2.0047 2.053 2.0448 2.071 2.0658 2.134 2.1283	2. 0219 2. 0219 2. 0438 2. 0438 2. 0709 2. 0709 2. 0844 2. 1469 2. 1469	2, 0289 2, 0271 2, 0540 2, 0515 2, 0788 2, 0768 2, 0914 2, 0896 2, 1539 2, 1521	.0070 .0052 .0102 .0077 .0079 .0059 .0070 .0052	2. 062 2. 062 2. 123 2. 123 2. 123 2. 123 2. 125 2. 125 2. 185 2. 185
2½-4½ 2½-8 2½-12 2½-16 2½-16	UNC N UN UN N	$\left\{ \begin{array}{c} 1A \\ 2A \\ 3A \\ \left\{ \begin{array}{c} 2A \\ 3A \\ \end{array} \right. \\ \left\{ \begin{array}{c} 2A \\ 3A \\ \end{array} \right] \\ \left\{ \begin{array}{c} 2A \\ 3A \\ \end{array} \right. \\ \left\{ \begin{array}{c} 2A \\ 3A \\ \end{array} \right$.0029 .0029 .0000 .0024 .0000 .0018 .0000 .0016 .0300 .0017	2, 2471 2, 2471 2, 2500 2, 2476 2, 2500 2, 2482 2, 2500 2, 2484 2, 2500 2, 3108 2, 3125	2, 2141 2, 2251 2, 2280 2, 2326 2, 2350 2, 2368 2, 2386 2, 2390 2, 2406 2, 3014 2, 3031	2. 2141	2. 1028 2. 1028 2. 1057 2. 1664 2. 1688 2. 1941 2. 1959 2. 2078 2. 2094 2. 2702 2. 2719	2, 0882 2, 0931 2, 0984 2, 1584 2, 1628 2, 1880 2, 1914 2, 2024 2, 2053 2, 2647 2, 2678	.0146 .0097 .0073 .0080 .0060 .0061 .0045 .0054 .0054 .0055	1, 9745 1, 9745 1, 9774 2, 0942 2, 0966 2, 1460 2, 1478 2, 1717 2, 1733 2, 2341 2, 2358	1B 2B 3B 2B 3B 2B 3B 2B 3B 2B 3B 3B 3B	2,009 2,009 2,0090 2,115 2,1150 2,160 2,1600 2,182 2,1820 2,245 2,2450	2. 045 2. 045 2. 0361 2. 140 2. 1297 2. 178 2. 1698 2. 196 2. 1908 2. 259 2. 2533	2, 1057 2, 1057 2, 1057 2, 1688 2, 1688 2, 1959 2, 1959 2, 2094 2, 2719 2, 2719	2, 1247 2, 1183 2, 1152 2, 1792 2, 1766 2, 2038 2, 2018 2, 2164 2, 2791 2, 2773	.0190 .0126 .0095 .0104 .0078 .0079 .0059 .0070 .0052 .0072 .0054	2. 250 2. 250 2. 250 2. 250 2. 250 2. 250 2. 250 2. 250 2. 250 2. 312 2. 312
23/8-12 23/8-16 27/16-16 21/2-4 21/2-8	UN UN N UNC	$\left\{\begin{array}{c} 2A \\ 3A \\ 2A \\ 3A \\ 2A \\ 3A \\ 1A \\ 2A \\ 3A \\ 2A \\ 3A \\ 3A \end{array}\right.$. 0019 . 0000 . 0017 . 0000 . 0017 . 0000 . 0031 . 0001 . 0024 . 0000	2, 3731 2, 3750 2, 3733 2, 3750 2, 4358 2, 4375 2, 4969 2, 5000 2, 4976 2, 5000	2. 3617 2. 3636 2. 3639 2. 3656 2. 4264 2. 4281 2. 4612 2. 4731 2. 4762 2. 4826 2. 4850	2. 4612 2. 4751	2, 3190 2, 3209 2, 3327 2, 3344 2, 3952 2, 3969 2, 3345 2, 3345 2, 3376 2, 4164 2, 4188	2, 3128 2, 3163 2, 3272 2, 3303 2, 3897 2, 3928 2, 3190 2, 3241 2, 3298 2, 4082 2, 4127	. 0062 . 0046 . 0055 . 0041 . 0055 . 0041 . 0155 . 0104 . 0078 . 0082 . 0061	2, 2709 2, 2728 2, 2966 2, 2983 2, 3591 2, 3608 2, 1902 2, 1902 2, 1933 2, 3442 2, 3466	2B 3B 2B 3B 2B 3B 1B 2B 3B 2B 3B	2. 285 2. 2850 2. 307 2. 3070 2. 370 2. 3700 2. 229 2. 229 2. 2290 2. 365 2. 3650	2, 303 2, 2948 2, 321 2, 3158 2, 384 2, 3783 2, 267 2, 267 2, 2594 2, 390 2, 3797	2. 3209 2. 3209 2. 3344 2. 3344 2. 3969 2. 3376 2. 3376 2. 3376 2. 4188 2. 4188	2, 3290 2, 3269 2, 3416 2, 3398 2, 4041 2, 4023 2, 3578 2, 3511 2, 3477 2, 4294 2, 4268	.0081 .0060 .0072 .0054 .0072 .0054 .0202 .0135 .0101 .0106	2, 37; 2, 37; 2, 37; 2, 37; 2, 43; 2, 50; 2, 50; 2, 50; 2, 50; 2, 50; 2, 50;
2½-12 2½-16 25%-12 25%-16 23¼-4	UN UN UN UN UN UNC	{ 2A 3A { 2A 3A { 2A 3A { 2A 3A { 2A 3A 3A 3A 3A	. 0019 .0000 .9017 .0000 .0019 .0030 .0017 .0000 .0032 .0032	2, 4981 2, 5000 2, 4983 2, 5000 2, 6231 2, 6250 2, 6233 2, 6250 2, 7468 2, 7468 2, 7500	2, 4867 2, 4886 2, 4889 2, 4906 2, 6117 2, 6136 2, 6139 2, 6156 2, 7111 2, 7230 2, 7262	2. 7111	2. 4440 2. 4459 2. 4577 2. 4594 2. 5690 2. 5709 2. 5827 2. 5844 2. 5844 2. 5844 2. 5876	2. 4378 2. 4413 2. 4522 2. 4553 2. 5628 2. 5663 2. 5772 2. 5803 2. 5739 2. 5797	. 0062 .0046 .0055 .0041 .0062 .0046 .0055 .0041 .0158 .0105	2, 3959 2, 3978 2, 4216 2, 4233 2, 5209 2, 5228 2, 5466 2, 5483 2, 4401 2, 4433	2B 3B 2B 3B 2B 3B 2B 3B 2B 3B 1B 2B	2. 410 2. 4100 2. 432 2. 4320 2. 535 2. 5350 2. 557 2. 479 2. 479 2. 479 2. 4790	2. 428 2. 4198 2. 446 2. 4408 2. 553 2. 5448 2. 571 2. 5658 2. 517 2. 517 2. 5094	2, 4459 2, 4459 2, 4594 2, 4594 2, 5709 2, 5709 2, 5844 2, 5876 2, 5876 2, 5876	2, 4540 2, 4519 2, 4666 2, 4648 2, 5790 2, 5769 2, 5916 2, 5898 2, 6082 2, 6013 2, 5979	. 0081 .0060 .0072 .0054 .0081 .0060 .0072 .0054 .0137	2, 500 2, 500 2, 500 2, 500 2, 620 2, 620 2, 620 2, 750 2, 750 2, 750
2 ³ / ₄ -8 2 ³ / ₄ -12 2 ³ / ₄ -16 2 ⁷ / ₈ -12 2 ⁷ / ₈ -16	N UN UN UN	{ 2A 3A { 2A 3A { 2A 3A { 2A 3A { 2A 3A { 3A	.0025 .0000 .0019 .0000 .0017 .0000 .0019 .0000 .0017 .0000	2. 7475 2. 7500 2. 7481 2. 7500 2. 7483 2. 7500 2. 8731 2. 8750 2. 8733 2. 8750	2. 7325 2. 7350 2. 7367 2. 7386 2. 7389 2. 7406 2. 8617 2. 8636 2. 8639 2. 8656	2. 7250	2. 6663 2. 6588 2. 6940 2. 6959 2. 7077 2. 7094 2. 8190 2. 8209 2. 8327 2. 8344	2. 6580 2. 6626 2. 6878 2. 6913 2. 7022 2. 7053 2. 8127 2. 8162 2. 8271 2. 8302	.0083 .0062 .0062 .0046 .0055 .0041 .0063 .0047 .0056	2. 5941 2. 5966 2. 6459 2. 6478 2. 6716 2. 6733 2. 7709 2. 7728 2. 7966 2. 7983	2B 3B 2B 3B 2B 3B 2B 3B 2B 3B	2. 615 2. 6150 2. 660 2. 6600 2. 682 2. 6820 2. 785 2. 7850 2. 807 2. 8070	2. 640 2. 6297 2. 678 2. 6698 2. 696 2. 6908 2. 803 2. 7948 2. 821 2. 8158	2. 6688 2. 6688 2. 6959 2. 6959 2. 7094 2. 7094 2. 8209 2. 8209 2. 8344 2. 8344	2. 6796 2. 6769 2. 7040 2. 7019 2. 7166 2. 7148 2. 8291 2. 8271 2. 8417 2. 8399	. 0108 . 0081 . 0081 . 0060 . 0072 . 0054 . 0082 . 0062 . 0073 . 0055	2, 750 2, 750 2, 750 2, 750 2, 750 2, 750 2, 875 2, 875 2, 875 2, 875 2, 875
3-4 3-8 3-12 3-16	UNC N UN UN otnotes a	$ \left\{ \begin{array}{l} 1A \\ 2A \\ 3A \\ \end{array} \right. \\ \left\{ \begin{array}{l} 2A \\ 3A \\ \end{array} \right] \\ \left\{ \begin{array}{l} 2A \\ 3A \\ \end{array} \right. \\ \left\{ \begin{array}{l} 2A \\ 3A \\ \end{array} \right] \\ \left\{ \begin{array}{l} 2A \\ 3A \\ \end{array} \right] \\ \left\{ \begin{array}{l} 2A \\ 3A \\ \end{array} \right] \\ \left\{ \begin{array}{l} 2A \\ 3A \\ \end{array} \right] \\ \left\{ \begin{array}{l} 2A \\ 3A \\ \end{array} \right] \\ \left\{ \begin{array}{l} 2A \\ 3A \\ \end{array} \right] \\ \left\{ \begin{array}{l} 2A \\ $.0032 .0032 .0000 .0026 .0000 .0019 .0000 .0017 .0000	2, 9968 2, 9968 3, 0000 2, 9974 3, 0000 2, 9981 3, 0000 2, 9983 3, 0000	2, 9611 2, 9730 2, 9762 2, 9824 2, 9850 2, 9867 2, 9886 2, 9889 2, 9906	2, 9611	2, 8344 2, 8344 2, 8376 2, 9162 2, 9188 2, 9440 2, 9459 2, 9577 2, 9594	2, 8183 2, 8237 2, 8296 2, 9077 2, 9124 2, 9377 2, 9412 2, 9521 2, 9552	.0161 .0107 .0080 .0085 .0064 .0063 .0047 .0056	2, 6901 2, 6901 2, 6933 2, 8440 2, 8466 2, 8959 2, 8978 2, 9216 2, 9233	1B 2B 3B 2B 3B 2B 3B 2B 3B	2,729 2,729 2,7290 2,865 2,8650 2,910 2,9100 2,932 2,9320	2, 767 2, 767 2, 7594 2, 890 2, 8797 2, 928 2, 9198 2, 946 2, 9408	2, 8376 2, 8376 2, 8376 2, 9188 2, 9188 2, 9459 2, 9459 2, 9594 2, 9594	2, 8585 2, 8515 2, 8480 2, 9299 2, 9271 2, 9541 2, 9521 2, 9667 2, 9649	. 0209 . 0139 . 0104 . 0111 . 0083 . 0082 . 0062 . 0073 . 0055	3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000

Table III.10.—Standard series limits of size—Unified and American screw threads—Continued

					1	External	a							Internal •	3		
Nominal size and threads	Series designa- tion	Class	Allow- ance	Major	diameter	rlimits	Piteh	diameter	limits	Minor diam-	Class	Minor eter l	diam- imits ¢	Pitch	diameter	limits	Major diam- eter
per ineh		Class	ance	Max b	Min	Min ¢	Max b	Min	Toler- ance	eter 4	Class	Min	Max	Min	Max	Toler- ance	Min
$3\frac{1}{8}$ -12 $3\frac{1}{8}$ -16 $3\frac{1}{4}$ -4 $3\frac{1}{4}$ -8 $3\frac{1}{4}$ -12 $3\frac{1}{4}$ -16	UN UNC N UNC UN	$\left\{\begin{array}{c} 2A \\ 3A \\ 2A \\ 3A \\ 1A \\ 2A \\ 3A \\ 3$	in. 0.0019 .0000 .0017 .0000 .0033 .0033 .0000 .0026 .0000 .0019 .0000 .0017 .0000	in. 3, 1231 3, 1250 3, 1233 3, 1250 3, 2467 3, 2500 3, 2474 3, 2500 3, 2481 3, 2500 3, 2483 3, 2500	in. 3, 1117 3, 1136 3, 1139 3, 1156 3, 2110 3, 2229 3, 2262 3, 2324 3, 2350 3, 2367 3, 2386 3, 2389 3, 2406	in. 3. 2110 3. 2249	in. 3.0690 3.0709 3.0827 3.0844 3.0843 3.0876 3.1662 3.1688 3.1940 3.1959 3.2077 3.2094	in. 3.0627 3.0662 3.0771 3.0802 3.0680 3.0734 3.1575 3.1623 3.1877 3.1912 3.2021 3.2052	$\begin{array}{c} in.\\ 0.0063\\ .0047\\ .0056\\ .0042\\ .0163\\ .0109\\ .0082\\ .0087\\ .0065\\ .0063\\ .0047\\ .0056\\ .0042\\ \end{array}$	in. 3.0209 3.0228 3.0466 3.0483 2.9400 2.9400 2.9433 3.0940 3.0966 3.1459 3.1478 3.1716 3.1733	2B 3B 2B 3B 1B 2B 3B 2B 3B 2B 3B	in. 3,035 3,0350 3,057 3,0570 2,979 2,979 2,9790 3,115 3,1150 3,160 3,160 3,182 3,1820	in. 3.053 3.0448 3.071 3.0658 3.017 3.0094 3.140 3.1297 3.178 3.1698 3.196 3.1908	im. 3.0709 3.0709 3.0844 3.0844 3.0876 3.0876 3.1688 3.1688 3.1959 3.1959 3.2094 3.2094	in. 3,0791 3,0771 3,0917 3,0899 3,1088 3,1017 3,0982 3,1801 3,1772 3,2041 3,2021 3,2167 3,2149	in. 0.0082 .0062 .0073 .0055 .0212 .0141 .0106 .0113 .0084 .0082 .0062 .0073 .0055	im. 3, 1250 3, 1250 3, 1250 3, 1250 3, 2500 3, 2500 3, 2500 3, 2500 3, 2500 3, 2500 3, 2500 3, 2500 3, 2500 3, 2500 3, 2500
33/s-12 33/s-16 31/2-4 31/2-8 31/2-12	UN UN UNC N UN	$\left\{\begin{array}{c} 2A \\ 3A \\ 2A \\ 3A \\ 1A \\ 2A \\ 3A \\ \left\{\begin{array}{c} 2A \\ 3A \\ 3A \\ \end{array}\right.$.0019 .0000 .0017 .0000 .0033 .0033 .0000 .0026 .0000 .0019	3, 3731 3, 3750 3, 3733 3, 3750 3, 4967 3, 5000 3, 4974 3, 5000 3, 4981 3, 5000	3.3617 3.3636 3.3639 3.3656 3.4610 3.4729 3.4762 3.4824 3.4850 3.4867 3.486	3.4610	3.3190 3.3209 3.3327 3.3344 3.3343 3.3376 3.4162 3.4188 3.4440 3.4459	3.3126 3.3161 3.3269 3.3301 3.3177 3.3233 3.3293 3.4074 3.4122 3.4376 3.4411	.0064 .0048 .0058 .0043 .0166 .0110 .0083 .0088 .0066 .0064	3.2709 3.2728 3.2966 3.2983 3.1900 3.1903 3.3440 3.3466 3.3959 3.3978	2B 3B 2B 3B 1B 2B 3B 2B 3B 2B	3. 285 3. 2850 3. 307 3. 3070 3. 229 3. 229 3. 365 3. 3650 3. 410 3. 4100	3,303 3,2948 3,321 3,3158 3,267 3,267 3,2594 3,390 3,3797 3,428 3,4198	3.3209 3.3209 3.3344 3.3344 3.3376 3.3376 3.4188 3.4188 3.4459 3.4459	3. 3293 3. 3272 3. 3419 3. 3400 3. 3591 3. 3519 3. 3484 3. 4303 3. 4274 3. 4543 3. 4522	.0084 .0063 .0075 .0056 .0215 .0143 .0108 .0115 .0086 .0084 .0063	3, 3750 3, 3750 3, 3750 3, 3750 3, 5000 3, 5000 3, 5000 3, 5000 3, 5000 3, 5000 3, 5000
3½-16 35%-12 35%-16 3¾-4 3¾-8	UN UN UN UNC	$\left\{\begin{array}{c} 2A \\ 3A \\ 2A \\ 3A \\ 2A \\ 3A \\ 1A \\ 2A \\ 3A \\ 2A \\ 3A \\ \end{array}\right.$.0017 .0000 .0019 .0000 .0017 .0000 .0034 .0034 .0004 .0027 .0000	3.4983 3.5000 3.6231 3.6250 3.6233 3.6250 3.7466 3.7466 3.7500 3.7473 3.7500	3.4889 3.4906 3.6117 3.6136 3.6156 3.7109 3.7228 3.7228 3.7323 3.7350	3.7109	3,4577 3,4594 3,5690 3,5709 3,5827 3,5844 3,5842 3,5842 3,5876 3,6661 3,6688	3, 4519 3, 4551 3, 5626 3, 5661 3, 5769 3, 5801 3, 5674 3, 5730 3, 5792 3, 6571 3, 6621	.0058 .0043 .0064 .0048 .0058 .0043 .0168 .0112 .0084 .0090 .0067	3,4216 3,4233 3,5209 3,5228 3,5466 3,5483 3,4399 3,4399 3,4433 3,5939 3,5966	2B 3B 2B 3B 2B 3B 1B 2B 3B 2B 3B	3, 432 3, 4320 3, 535 3, 5350 3, 557 3, 5570 3, 479 3, 479 3, 615 3, 6150	3, 446 3, 4408 3, 553 3, 5448 3, 571 3, 5658 3, 517 3, 517 3, 5094 3, 640 3, 6297	3,4594 3,4594 3,5709 3,5709 3,5844 3,5844 3,5876 3,5876 3,6688 3,6688	3. 4669 3. 4650 3. 5793 3. 5772 3. 5919 3. 5900 3. 6094 3. 6021 3. 5985 3. 6805 3. 6776	.0075 .0056 .0084 .0063 .0075 .0056 .0218 .0145 .0109 .0117 .0088	3,5000 3,5000 3,6250 3,6250 3,6250 3,7500 3,7500 3,7500 3,7500 3,7500
3 ³ / ₄ -12 3 ³ / ₄ -16 3 ⁷ / ₈ -12 3 ⁷ / ₈ -16	UN UN UN UN UNC	$\left\{\begin{array}{c} 2A \\ 3A \\ 2A \\ 3A \\ 2A \\ 3A \\ 2A \\ 3A \\ 1A \\ 2A \\ 3A \end{array}\right.$. 0019 . 0000 . 0017 . 0000 . 0020 . 0000 . 0018 . 0000 . 0034 . 0034	3.7481 3.7500 3.7483 3.7500 3.8730 3.8750 3.8750 3.8752 3.8750 3.9966 4.0000	3.7367 3.7386 3.7389 3.7406 3.8616 3.8636 3.8638 3.8656 3.9609 3.9728 3.9762	3.9609	3. 6940 3. 6959 3. 7077 3. 7094 3. 8189 3. 8209 3. 8326 3. 8344 3. 8342 3. 8342 3. 8376	3. 6876 3. 6911 3. 7019 3. 7051 3. 8124 3. 8160 3. 8267 3. 8300 3. 8172 3. 8229 3. 8291	.0064 .0048 .0058 .0043 .0065 .0049 .0059 .0044 .0170 .0113	3.6459 3.6478 3.6716 3.6733 3.7708 3.7728 3.7985 3.7983 3.6899 3.6899 3.6933	2B 3B 2B 3B 2B 3B 2B 3B 1B 2B 3B	3,660 3,6600 3,682 3,6820 3,785 3,7850 3,807 3,807 3,729 3,729 3,729 3,729	3.678 3.6698 3.696 3.6908 3.803 3.7948 3.821 3.8158 3.767 3.767 3.7594	3.6959 3.6959 3.7094 3.7094 3.8209 3.8209 3.8344 3.8344 3.8376 3.8376	3.7043 3.7022 3.7169 3.7150 3.8294 3.8273 3.8420 3.8401 3.8597 3.8523 3.8487	. 0084 . 0063 . 0075 . 0056 . 0085 . 0064 . 0076 . 0057 . 0221 . 0147 . 0111	3, 7500 3, 7500 3, 7500 3, 7500 3, 8750 3, 8750 3, 8750 4, 0000 4, 0000 4, 0000
4-8 4-12 4-16 4 ¹ / ₄ -8 4 ¹ / ₄ -12	N UN UN N UN	$\left\{\begin{array}{c} 2A \\ 3A \\ 3$.0027 .0000 .0020 .0000 .0018 .0000 .0028 .0000 .0020 .0000	3, 9973 4, 0000 3, 9980 4, 0000 3, 9982 4, 0000 4, 2472 4, 2500 4, 2480 4, 2500	3, 9823 3, 9850 3, 9866 3, 9886 3, 9888 3, 9906 4, 2322 4, 2350 4, 2366 4, 2386	3. 9748 	3.9161 3.9188 3.9439 3.9459 3.9576 3.9594 4.1660 4.1688 4.1939 4.1959	3. 9070 3. 9120 3. 9374 3. 9410 3. 9517 3. 9550 4. 1618 4. 1874 4. 1910	.0091 .0068 .0065 .0049 .0059 .0044 .0093 .0070 .0065	3. 8439 3. 8466 3. 8958 3. 8978 3. 9215 3. 9233 4. 0938 4. 1458 4. 1478	2B 3B 2B 3B 2B 3B 2B 3B 3B 3B	3. 865 3. 8650 3. 910 3. 9100 3. 932 3. 9320 4. 115 4. 1150 4. 160	3.890 3.8797 3.928 3.9198 3.946 3.9408 4.140 4.1297 4.178 4.1698	3. 9188 3. 9189 3. 9459 3. 9459 3. 9594 4. 1688 4. 1688 4. 1959 4. 1959	3. 9307 3. 9277 3. 9544 3. 9523 3. 9670 3. 9651 4. 1809 4. 1778 4. 2044 4. 2023	.0119 .0089 .0085 .0064 .0057 .0121 .0090 .0085	4. 0000 4. 0000 4. 0000 4. 0000 4. 0000 4. 0000 4. 2500 4. 2500 4. 2500 4. 2500
4½-16 4½-8 4½-12 4½-12 4½-16 4¾-8	UN N UN UN N	$\left\{\begin{array}{c} 2A \\ 3A \\ 2A \\ 3A \end{array}\right.$. 0018 . 0000 . 0028 . 0000 . 0020 . 0000 . 0018 . 0000 . 0029 . 0000	4. 2482 4. 2500 4. 4972 4. 5000 4. 4980 4. 5000 4. 4982 4. 5000 4. 7471 4. 7500	4. 2388 4. 2406 4. 4822 4. 4850 4. 4866 4. 4888 4. 4906 4. 7321 4. 7350	4. 4747	4. 2076 4. 2094 4. 4160 4. 4188 4. 4439 4. 4459 4. 4576 4. 4594 4. 6659 4. 6688	4. 2017 4. 2050 4. 4066 4. 4117 4. 4374 4. 4410 4. 4517 4. 4550 4. 6564 4. 6616	.0059 .0044 .0094 .0071 .0065 .0049 .0059 .0044 .0095	4.1715 4.1733 4.3438 4.3456 4.3958 4.3978 4.4215 4.4233 4.5937 4.5966	2B 3B 2B 3B 2B 3B 2B 3B 2B 3B	4, 182 4, 1820 4, 365 4, 3650 4, 410 4, 4100 4, 432 4, 4320 4, 615 4, 6150	4. 196 4. 1908 4. 390 4. 3797 4. 428 4. 4198 4. 446 4. 4408 4. 640 4. 6297	4.2094 4.2094 4.4188 4.4188 4.4459 4.4459 4.4594 4.6688 4.6688	4, 2170 4, 2151 4, 4310 4, 4280 4, 4544 4, 4523 4, 4670 4, 4651 4, 6812 4, 6781	.0076 .9057 .0122 .0092 .0085 .0064 .0076 .0057 .0124 .0093	4, 2500 4, 2590 4, 5000 4, 5000 4, 5000 4, 5000 4, 5000 4, 5000 4, 7500 4, 7500
4 ³ / ₄ -12 4 ³ / ₄ -16 5-8 5-12 5-16	UN UN N UN UN	{ 2A 3A 2A 3A 2A 3A 2A 3A 2A 3A 2A 3A	.0020 .0000 .0018 .0000 .0029 .0000 .0020 .0000 .0018	4,7480 4,7500 4,7482 4,7500 4,9971 5,0000 4,9980 5,0000 4,9982 5,0000	4,7366 4,7386 4,7388 4,7406 4,9821 4,9850 4,9866 4,9886 4,9888 4,9906	4,9746	4.6939 4.6959 4.7076 4.7094 4.9159 4.9188 4.9439 4.9459 4.9576 4.9594	4.6872 4.6909 4.7015 4.7049 4.9062 4.9116 4.9372 4.9409 4.9515 4.9549	. 0067 . 0050 . 0061 . 0045 . 0097 . 0072 . 0067 . 0050 . 0061 . 0045	4. 6458 4. 6478 4. 6715 4. 6733 4. 8437 4. 8466 4. 8958 4. 8978 4. 9215 4. 9233	2B 3B 2B 3B 2B 3B 2B 3B 3B 3B	4.660 4.6600 4.682 4.6820 4.865 4.8650 4.910 4.9100 4.932 4.9320	4.678 4.6698 4.696 4.6908 4.890 4.8797 4.928 4.9198 4.946 4.9408	4.6959 4.6959 4.7094 4.7094 4.9188 4.9188 4.9459 4.9459 4.9594 4.9594	4.7046 4.7025 4.7173 4.7153 4.9314 4.9282 4.9546 4.9525 4.9673 4.9653	. 0027 . 0066 . 0079 . 0059 . 0126 . 0094 . 0087 . 0066 . 0079 . 0059	4,7500 4,7500 4,7500 4,7500 5,0000 5,0000 5,0000 5,0000 5,0000
5½-8 5½-12	N UN	$\left\{\begin{array}{c} 2\mathbf{A} \\ 3\mathbf{A} \\ 2\mathbf{A} \\ 3\mathbf{A} \end{array}\right.$. 0029 . 0000 . 0020 . 0000	5. 2471 5. 2500 5. 2480 5. 2500	5. 2321 5. 2350 5. 2366	5, 2246	5. 1659 5. 1688 5. 1939	5. 1561 5. 1615 5. 1872 5, 1909	.0098 .0073 .0067 .0050	5. 0937 5. 0966 5. 1458 5. 1478	2B 3B 2B 3B	5, 115 5, 1150 5, 160 5, 1600	5. 140 5. 1297 5. 178 5. 1698	5, 1688 5, 1688 5, 1959 5, 1959	5. 1815 5. 1783 5. 2046 5. 2025	.0127 .0095 .0087 .0066	5. 2500 5. 2500 5. 2500 5. 2500

					-	External	a							Internal	a		
Nominal size and threads per inch	Serics designa- tion	Class	Allow- ance	Major	diamete	r limits	Pitch	diameter	limits	Minor diam-	Class		diam- limits •	Pitch	diameter	limits	Major diam- eter
P-1				Max b	Min	Min e	Max b	Min	Toler- ance	eter d		Min	Max	Min	Max	Toler- ance	Min
51/4-16	UN	{ 2A 3A	in. 0, 0018	in. 5, 2482 5, 2500	in. 5, 2388 5, 2406	in.	in. 5, 2076 5, 2094	in. 5, 2015 5, 2049	in. 0. 0061 . 0045	in. 5, 1715 5, 1733	2B 3B	in. 5, 182 5, 1820	in. 5, 196 5, 1908	in. 5, 2094 5, 2094	in. 5, 2173 5, 2153	in. 0.0079 .0059	in. 5, 2500 5, 2500
51/2-8	N	2A 3A	. 0030	5. 4970 5. 5000	5. 4820 5. 4850	5, 4745	5. 4158 5. 4188	5, 4059 5, 4114	. 0099	5. 3436 5. 3466	2B 3B	5. 365 5. 3650	5. 390 5. 3797	5. 4188 5. 4188	5, 4317 5, 4285	. 0129	5. 5000 5. 5000
5½-12	UN	{ 2A 3A	.0020	5, 4980 5, 5000	5. 4866 5. 4886		5, 4439 5, 4459	5, 4372 5, 4409	. 0067	5, 3958 5, 3978	2B 3B	5, 410 5, 4100	5. 428 5. 4198	5, 4459 5, 4459	5. 4546 5. 4525	.0087	5.5000 5.5000
51/2-16	UN	2A 3A	.0018	5, 4982 5, 5000	5. 4888 5. 4906		5, 4576 5, 4594	5, 4515 5, 4549	. 0061	5, 4215 5, 4233	2B 3B	5, 432 5, 4320	5. 446 5. 4408	5, 4594 5, 4594	5. 4673 5. 4653	.0079	5, 5000 5, 5000
53/4-8	N	$ \begin{cases} 2A \\ 3A \end{cases} $. 0030	5. 7470 5. 7500	5. 7320 5. 7350	5. 7245	5, 6658 5, 6688	5, 6558 5, 6613	. 0100	5. 5936 5. 5966	2B 3B	5. 615 5. 6150	5. 640 5. 6297	5, 6688 5, 6688	5, 6818 5, 6786	. 0130 . 0098	5. 7500 5. 7500
53/4-12	UN	$\left\{ egin{array}{c} 2A \ 3A \end{array} ight.$.0021	5.7479 5.7500	5, 7365 5, 7386		5, 6938 5, 6959	5, 6869 5, 6907	.0069 .0052	5, 6457 5, 6478	2B 3B	5, 660 5, 6600	5, 678 5, 6698	5, 6959 5, 6959	5,7049 5,7026	.0090 .0067	5, 7500 5, 7500
53/4-16	UN	$\begin{cases} 2A \\ 3A \end{cases}$.0019	5.7481 5.7500	5, 7387 5, 7406		5, 7075 5, 7094	5.7013 5.7047	.0062	5, 6714 5, 6733	2B 3B	5, 682 5, 6820	5, 696 5, 6908	5,7094 5,7094	5, 7175 5, 7155	.0081	5, 7500 5, 7500
6-8	N	$\begin{cases} 2A \\ 3A \end{cases}$.0030	5, 9970 6, 0000	5, 9820 5, 9850	5. 9745	5, 9158 5, 9188	5, 9056 5, 9112	.0102	5. 8436 5. 8466	2B 3B	5. 865 5. 8650	5. 890 5. 8797	5, 9188 5, 9188	5. 9320 5. 9287	. 0132	6.0000 6.0000
6-12	UN	2A 3A	.0021	5, 9979 6, 0000	5, 9865 5, 9886		5, 9438 5, 9459	5,9369 5,9407	.0069	5, 8957 5, 8978	2B 3B	5, 910 5, 9100	5, 928 5, 9198	5, 9459 5, 9459	5, 9549 5, 9526	.0090	6,0000 6,0000
6-16	UN	} 2A 3A	.0019	5. 9981 6. 0000	5, 9887 5, 9906		5, 9575 5, 9594	5, 9513 5, 9547	.0062	5, 9214 5, 9233	2B 3B	5, 932 5, 9320	5, 946 5, 9403	5, 9594 5, 9594	5, 9675 5, 9655	.0081	6,0000 6,0000

Table III.11.—Deviations in lead and half-angle equivalent to one-half of pitch diameter tolerances, Unified and American screw threads

Designa	ation		Exte	ernal			Inte	ernal		
Size	Threads per inch	Thread symbol	Half of pitch diameter tolerance	Equiv. devi- ation in lead	Equiv. devi- ation in half- angle	Thread symbol	Half of pitch diameter tolerance	Equiv. devi- ation in lead	Equiv. ation in ang	n half-
1	2	3	4	5	6	7	8	9	10)
No. in. 0 0.060 1 .073 1 .073 2 .086 2 .086	80 { 64 { 72 { 56 { 64 {	NF-2A NF-3A NC-2A NC-3A NF-2A NF-3A NC-2A NC-3A NF-2A NF-3A	in. 0.00090 .00065 .00100 .00075 .00095 .00070 .00105 .00080 .00100 .00075	in. 0.00052 .00038 .00058 .00043 .00055 .00040 .00061 .00046 .00058	deg min 3 18 2 23 2 56 2 12 3 8 2 19 2 42 2 3 2 56 2 12	NF-2B NF-3B NC-2B NC-3B NF-2B NF-3B NC-2B NC-3B NF-2B NF-3B	in. 0.00115 .00085 .00130 .00095 .00125 .00095 .00140 .00105 .00135	in. 0.00066 .00049 .00075 .00055 .00072 .00055 .00081 .00061 .00078	deg 4 3 3 2 4 3 3 2 4 3 3 2 2 4 3 3 2 2	min 13 7 48 47 7 8 35 42 57 56
3 .099 3 .099 4 .112 4 .112 5 .125	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NC-2A NC-3A NF-2A NF-3A NC-2A NC-3A NF-2A NF-3A NC-3A	. 00115 . 00085 . 00110 . 00080 . 00125 . 00095 . 00120 . 00090 . 00130 . 00095	. 00066 .00049 .00064 .00046 .00072 .00055 .00069 .00052 .00075	2 32 1 52 2 49 2 3 2 17 1 44 2 38 1 59 2 23 1 44	NC-2B NC-3B NF-2B NF-3B NC-2B NC-3B NF-2B NF-3B NC-2B NC-3B	. 00150 . 00110 . 00140 . 00105 . 00165 . 00120 . 00155 . 00115 . 00165	. 00087 . 00064 . 00081 . 00061 . 00095 . 00069 . 00089 . 00086 . 00095 . 00072	3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2	18 25 35 42 1 12 24 32 1 17
5 . 125 6 . 138	44 32 {	NF-2A NF-3A NC-2A NC-3A	. 00125 . 00095 . 00140 . 00105	. 00072 . 00055 . 00081 . 00061	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} { m NF-2B} \\ { m NF-3B} \\ { m NC-2B} \\ { m NC-3B} \end{array}$. 00160 . 00120 . 00185 . 00135	. 00092 . 00069 . 00107 . 00078	3 2 2 1	13 25 43 59

<sup>Regarding combinations of thread classes, see par. 1, p. 18.
For class 2A threads having an additive finish the maximum is increased to the basic size, the value being the same as for class 3A shown in this column, see par. 2, and 4, p. 23.
For unfinished hot-rolled material.
See figs. 111.1, 111.3, and 111.4, pp. 11, 24, and 25.
Revised minor diameter limits of classes 1B and 2B are in process of ratification as Unified Standard.</sup>

Table III.11.—Deviations in lead and half-angle equivalent to one-half of pitch diameter tolerances, Unified and American screw threads—Continued

Des	signation		Ext	ernal				Inte	ernal		
Size	Thread: per ineh	s Thread symbol	Half of pitch diameter tolerance	Equiv. devi- ation in lead	Equiv. ation in ang	half-	Thread symbol	Half of pitch diameter tolerance	Equiv. devi- ation in lead	ation	. devi- in half- gle
1	2	3	4	5	6		7	8	9	1	.0
No. in 6 0.1 8 .1 8 .1 10 .1 10 .1	38 40 64 32 64 36 90 24	NF-2A NF-3A NC-2A NC-3A NF-3A NF-3A NC-2A NC-2A NC-3A NF-3A	in. 0.00130 .00100 .00145 .00110 .00140 .00105 .00165 .00125 .00150 .00115	in. 0.00075 .00058 .00084 .00064 .00081 .00095 .00072 .00087 .00086	deg 2 1 2 1 2 1 1 1 2 1 1 2 1	min 23 50 8 37 19 44 49 22 12 41	NF-2B NF-3B NC-2B NC-3B NF-2B NF-3B NC-2B NC-3B NF-2B NF-3B	in. 0.00170 .00125 .00190 .00140 .00180 .00135 .00215 .00160 .00195	in. 0.00098 .00072 .00110 .00081 .01104 .00078 .00124 .00092 .00113 .00084	deg 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	min 7 17 47 3 58 14 22 46 52 8
12 .2 12 .2 12 .2 12 .2 14	216 28 216 32 20	NC-2A NC-3A NF-2A NF-2A NFF-2A NEF-3A UNC-1A UNC-2A UNC-3A UNF-1A UNF-3A	. 00170 .00130 .00160 .00120 .00155 .00120 .00280 .00185 .00140 .00250 .00165	.00098 .00075 .00092 .00069 .00069 .00162 .00107 .00081 .00144 .00095	1 1 2 1 2 1 2 1 3 2 1	52 26 3 32 16 46 34 42 17 12 7 36	NC-2B NC-3B NF-3B NF-3B NEF-2B NEF-3B UNC-1B UNC-3B UNC-3B UNF-1B UNF-1B	. 00220 . 00165 . 00210 . 00155 . 00205 . 00155 . 00365 . 00240 . 00180 . 00325 . 00215 . 00160	. 00127 . 00095 . 00121 . 00089 . 00118 . 00089 . 00211 . 00139 . 00104 . 00188 . 00124	2 1 2 1 3 2 3 2 1 4 2 2	25 49 42 59 0 16 21 12 39 10 45 3
1/4 5/1 5/1 5/1 3/8	6 18 24 32	\begin{cases} NEF-2A \ NEF-3A \ UNC-1A \ UNC-2A \ UNC-3A \ UNF-1A \ UNF-2A \ UNF-3A \ NEF-2A \ NEF-3A \ UNC-1A \ UNC-3A	.00160 .00120 .00305 .00200 .00150 .00275 .00185 .00160 .00120 .00325 .00220	. 00092 . 00069 . 00176 . 00115 . 00087 . 00159 . 00107 . 00078 . 00092 . 00069 . 00188 . 00127 . 00095	2 1 2 1 3 2 1 2 1 2 1 2 1 1	21 46 31 39 14 1 2 29 21 46 23 37 13	NE F-2B NE F-3B UNC-1B UNC-2B UNC-3B UNF-1B UNF-3B UNF-3B NE F-3B UNC-1B UNC-1B	.00210 .00155 .00395 .00265 .00195 .00355 .00240 .00180 .00210 .00155 .00425 .00285	.00121 .00089 .00228 .00153 .00113 .00205 .00139 .00104 .00121 .00089 .00245 .00165	3 2 3 2 1 3 2 1 3 2 3 2 1 3 2 1	5 16 15 11 37 54 38 59 5 16 7 5 35
3/s 3/s 7/1 7/1	32 6 14 6 20	UNF-1A UNF-2A UNF-3A NEF-3A UNC-1A UNC-2A UNC-3A UNF-1A UNF-3A UNF-3A UNEF-3A	. 00285 . 00190 . 00145 . 00170 . 00125 . 00355 . 00235 . 00175 . 00310 . 00210 . 00155 . 00185	. 00165 . 00110 . 00084 . 00098 . 00072 . 00205 . 00136 . 00101 . 00179 . 00121 . 00089 . 00104 . 00078	3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	8 5 36 30 50 17 30 7 50 55 25 19 44	UNF-1B UNF-2B UNF-3B NEF-2B NEF-3B UNC-1B UNC-2B UNC-3B UNF-1B UNF-1B UNF-2B UNF-2B UNF-2B UNEF-2B	. 00370 . 00245 . 00185 . 00185 . 00220 . 00165 . 00305 . 00305 . 00230 . 00405 . 00230 . 00270 . 00230 . 00230	.00214 .00141 .00107 .00127 .00095 .00266 .00176 .00133 .00234 .00156 .00118	4 2 3 2 1 1 1 3 2 2 2 1 2 2 2 2 2 2 2 2 2	4 42 2 13 25 57 57 29 42 28 53 57 15
1/2 1/2 1/2 1/2 1/2 1/2 1/2	13 2 20 2 28	N-2A N-3A UNC-1A UNC-2A UNC-3A UNF-1A UNF-3A UNF-3A UNEF-3A UNC-1A UNC-1A UNC-3A	.00270 .00200 .00370 .00250 .00185 .00320 .00215 .00160 .00185 .00140 .00390 .00260	.00156 .00115 .00214 .00144 .00107 .00185 .00124 .00092 .00107 .00081 .00225 .00150	1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 1	29 6 12 29 6 56 58 28 22 48 9 26 4	N-2B N-3B UNC-1B UNC-2B UNC-3B UNF-1B UNF-2B UNF-3B UNEF-3B UNC-1B UNC-1B UNC-2B	.00350 .00260 .00485 .00325 .00240 .00220 .00210 .00210 .00210 .00340 .00340 .00340	.00202 .00150 .00280 .00188 .00139 .00242 .00162 .00121 .00139 .00104 .00294	1 1 2 1 1 3 2 1 3 2 2 1 3 2 1	55 26 53 56 26 51 34 55 5 19 48 52 24
91 91 98 98 98	16 24 11 12 12	UNF-1A UNF-2A UNF-2A UNF-3A NEF-2A NEF-3A UNC-1A UNC-3A UNC-3A UNF-1A UNF-1A UNF-1A	.00340 .00225 .00170 .00195 .00145 .00415 .00275 .00205 .00270 .00205 .00350 .00235	.00196 .00130 .00098 .00113 .00084 .00240 .00159 .00118 .00156 .00118	2 1 2 1 2 1 1 1 1 1 2 1 1	48 51 24 9 36 5 23 2 29 8 53 56 27	UN F-1B UN F-2B UN F-3B UN F-3B NEF-3B UNC-1B UNC-2B UNC-3B N-2B N-3B UN F-1B UN F-2B UN F-2B	.00445 .00295 .00229 .00255 .00190 .00535 .00360 .00270 .00355 .00455 .00300 .00225	.00257 .00170 .00127 .00147 .00110 .00309 .00208 .00156 .00205 .00153 .00263 .00173	3 2 1 2 2 2 1 1 1 1 3 2	40 26 49 48 5 42 49 22 57 27 45 28
	6 24 12 16 24	NEF-2A NEF-3A N-2A N-3A NEF-2A NEF-3A	.00200 .00150 .00270 .00270 .00205 .00200	. 90105 . 90115 . 90087 . 90156 . 90118 . 90115 . 90087	2 1 1 1 1 2 1	12 39 29 8 12 39	NEF-2B NEF-3B N-2B N-3B NEF-2B NEF-3B	.00260 .00195 .00355 .00265 .00260 .00195	. 00150 . 00150 . 00113 . 00205 . 00153 . 00150 . 00113	2 2 1 1 2 2	51 9 57 27 51 9

 $\begin{tabular}{ll} \textbf{Table III.11.--} Deviations in lead and half-angle equivalent to one-half of pitch diameter tolerances, Unified and American screw threads--- Continued \\ \end{tabular}$

Designa	ition		Exte	ernal			Inte	rnal	
Size	Threads per inch	Thread symbol	Half of pitch diameter tolerance	Equiv. devi- ation in lead	Equiv. devi- ation in half- angle	Thread symbol	Half of pitch diameter tolerance	Equiv. devi- ation in lead	Equiv. de ation in ha angle
1	2	3	4	5	6	7	8	9	10
No. in. 3/4	10	$\left\{\begin{array}{c} \text{UNC-1A} \\ \text{UNC-2A} \\ \text{UNC-3A} \end{array}\right.$	in. 0.00440 .00295 .00220	in. 0.00254 .00170 .00127	$\begin{array}{cccc} deg & min \\ 2 & 1 \\ 1 & 21 \\ 1 & 0 \\ \end{array}$	UNC-1B UNC-2B UNC-3B	in. 0.00575 .00385 .00285	in. 0.00332 .00222 .00165	deg m 2 3 1 4 1 1
3/4	12	N-2A N-3A	.00275	.00159	1 31 1 8	N-2B N-3B	. 00360	.00208	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3/4	16	UNF-1A UNF-2A	. 00375	.00217	2 45 1 50	UNF-1B UNF-2B	.00490	. 00283	3 3
3/4	20	UNF-3A UNEF-2A UNEF-3A	.00190 .00220 .00165	.00110 .00127 .00095	$\begin{bmatrix} 1 & 24 \\ 2 & 1 \\ 1 & 31 \end{bmatrix}$	UNF-3B UNEF-2B UNEF-3B	. 00245 . 00285 . 00215	.00141 .00165 .00124	$egin{array}{cccccccccccccccccccccccccccccccccccc$
13/16	12	N-2A N-3A	.00275	.00159	1 31 1 8	N-2B N-3B	.00360 .00270	.00208	$egin{array}{cccccccccccccccccccccccccccccccccccc$
13/16	16	{ UN-2A UN-3A	. 00245	.00141	1 48 1 19	UN-2B UN-3B	.00315	.00182	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
13/16	20	UNEF-2A UNEF-3A	.00220	.00104	2 1 1 31	UNEF-2B UNEF-3B	. 00285 . 00215	. 00165	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
7/8	9	UNC-1A UNC-2A	.00475	. 00274 . 00182	1 58 1 18	UNC-1B UNC-2B	.00615	.00355	2 3 4
7/8	12	{ UNC-3A { N-2A N-3A	. 00235 . 00275 . 00205	.00136 .00159 .00118	$\begin{bmatrix} 0 & 58 \\ 1 & 31 \\ 1 & 8 \end{bmatrix}$	UNC-3B N-2B N-3B	. 00305 . 00360 . 00270	.00176 .00208 .00156	$egin{bmatrix} 1 & 1 & 1 \ 1 & 5 \ 1 & 5 \ \end{bmatrix}$
7/8	14	UNF-1A UNF-2A	. 00405	.00234	2 36 1 44	UNF-1B UNF-2B	. 00530	.00306	$\begin{bmatrix} 1 & 2 \\ 3 & 2 \\ 2 & 1 \end{bmatrix}$
		(UNF-3A (UN-2A	. 00205	. 00118	1 19 1 48	UNF-3B UN-2B	,00265	. 00153	2 1
7/8	16	UN-3A UNEF-2A	. 00180	.00104	1 19 2 1	UN-3B UNEF-2B	. 00235	. 00136	1 4 2 3
7/8 15/16	20 12	UNEF-3A UN-2A	.00165	.00095	1 31 1 34	UNEF-3B UN-2B	.00215	. 00124	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
15/16	16	UN-3A UN-2A	. 00205 . 00250	. 00118 . 00144	1 8 1 50	U N-3B U N-2B	.00275	. 00159 . 00188	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
15/16	20	\ UN-3A { UNEF-2A { UNEF-3A	. 00185 . 00225 . 00170	.00107 .00130 .00098	1 21 2 4 1 33	$\begin{array}{c} \text{UN-3B} \\ \text{UNEF-2B} \\ \text{UNEF-3B} \end{array}$.00245 .00295 .00220	.00141 .00170 .00127	$egin{bmatrix} 2 & 2 \\ 1 & 4 \\ 2 & 4 \\ 2 & 2 \end{bmatrix}$
		UNC-1A UNC-2A	. 00505	.00292	1 51	UNC-1B UNC-2B	. 00660	.00381	$\begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$
1	8	UNC-3A UNF-1A	.00340 .00255 .00440	.00196 .00147 .00254	$\begin{array}{c cccc} 1 & & 15 \\ 0 & & 56 \\ 2 & & 25 \end{array}$	UNC-3B UNF-1B	. 00440 . 00330 . 00570	.00234	
1	12	UNF-2A UNF-3A	.00295	.00170	1 37 1 13	UNF-2B UNF-3B	. 00380	.00219	$\begin{bmatrix} 1 & 1 \\ 3 & 2 \\ 1 & 3 \end{bmatrix}$
1	16	{ UN-2A UN-3A	. 00250 . 00185	. 00144	1 50 1 21	U N-2B U N-3B	.00325	.00188	$ \begin{array}{c cccc} & 2 & 2 \\ & 1 & 4 \\ & 2 & 4 \\ & 2 & \\ & 1 & 3 & \\ \end{array} $
1	20	UNEF-2A UNEF-3A	. 00225	.00130	2 4 1 33	UNEF-2B UNEF-3B	.00295	.00170	2 4
11/16	12	$\left\{\begin{array}{c} \text{UN-2A} \\ \text{UN-3A} \end{array}\right.$. 00285 . 00210	.00165 .00121	1 34 1 9	UN-2B UN-3B	. 00370 . 00275	. 00214 . 00159	$\frac{2}{1}$
1½6	16	{ UN-2A UN-3A	00250	.00144	1 50 1 21	UN-2B UN-3B	. 00325	.00188	2 2
11/16	18	NEF-2A NEF-3A	. 00235 . 00180	.00136	1 56 1 29	NEF-2B NEF-3B	. 00310	.00179	$\begin{bmatrix} 2 & 3 \\ 1 & 5 \end{bmatrix}$
11/8	7	UNC-1A UNC-2A	. 00545	.00315	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	UNC-1B UNC-2B UNC-3B	.00705 .00470 .00355	. 00407 . 00271 . 00205	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
11/8	8	UNC-3A N-2A N-3A	. 00270 . 00345 . 00260	.00156 .00199 .00150	$\begin{bmatrix} 0 & 52 \\ 1 & 16 \\ 0 & 57 \end{bmatrix}$	N-2B N-3B	.00450	.00260	
11/8	12	UNF-1A UNF-2A UNF-3A	.00450 .00300 .00225	. 00260 . 00173 . 00130	2 28 1 39 1 14	UNF-1B UNF-2B UNF-3B	.00585 .00390 .00295	.00338 .00225 .00170	$\begin{bmatrix} 3 & 1 \\ 2 & 1 \\ 1 & 3 \end{bmatrix}$
11/8	16	J UN-2A	. 00250	. 00144	1 50	UN-2B UN-3B	. 00325	. 00188	2 2
11/8	18	UN-3A NEF-2A	. 00185	. 00107	1 21 1 56	NEF-2B	.00245	. 00141	2 3
13/16	12	NEF-3A UN-2A	. 00180	.00104	1 29 1 36	NEF-3B UN-2B UN-3B	.00230	. 00133 . 00217 . 00162	$\begin{array}{c c} 1 & 5 \\ 2 & 1 & 3 \end{array}$
13/16	16	UN-3A UN-2A	. 00215	.00124	1 11 1 52	U N-3B U N-2B U N-3B	.00280	.00162	$\begin{bmatrix} 1 & 3 \\ 2 & 2 \\ 1 & 3 \end{bmatrix}$
13/16	18	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	. 00190 . 00245 . 00180	. 00110 . 00141 . 00104	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NEF-2B NEF-3B	. 00250 . 00315 . 00235	.00144	$\begin{bmatrix} 1 & 3 \\ 2 & 3 \\ 1 & 5 \end{bmatrix}$
1¼	7	$\left\{\begin{array}{c} \text{UNC-1A} \\ \text{UNC-2A} \\ \text{UNC-3A} \end{array}\right.$. 00555 . 00370 . 00275	. 00320 . 00214 . 00159	$\begin{array}{ccc} 1 & & 47 \\ 1 & & 11 \\ 0 & & 53 \end{array}$	UNC-1B UNC-2B UNC-3B	. 00720 . 00480 . 00360	. 00416 . 00277 . 00208	2 1 1 3
11/4	8	N-2A N-3A	.00350	.00202	1 17 0 58	N-2B N-3B	.00460	.00266	1 4
11/4	12	UNF-1A UNF-2A UNF-3A	. 00460 . 00310 . 00230	. 00266 . 00179 . 00133	2 32 1 42 1 16	UNF-1B UNF-2B UNF-3B	.00600 .00400 .00300	.00346 .00231 .00173	$\begin{bmatrix} 3 & 1 \\ 2 & 1 \\ 1 & 3 \end{bmatrix}$

 $\begin{array}{c} \textbf{Table III.11.--} Deviations \ in \ lead \ and \ half-angle \ equivalent \ to \ one-half \ of \ pitch \ diameter \ tolerances, \ Unified \ and \ American \\ screw \ threads--- Continued \end{array}$

Design	ation		Ext	ernal			Inte	ernal	
Size	Threads per inch	Thread symbol	Half of pitch diameter tolerance	Equiv. devi- ation in lead	Equiv. devi- ation in half- angle	Thread symbol	Half of pitch diameter tolerance	Equiv. devi- ation in lead	Equiv. deviation in half- angle
1	. 2	3	4	5	6	7	8	9	10
Vo. in.			in.	in.	deg min		in.	in.	deg min
11/4	16	UN-2A UN-3A	0.00255 .00190	0.00147 .00110	1 52 1 24	UN-2B UN-3B	0.00330 .00250	0.00191 .00144	2 25 1 50 2 36
11/4	18	NEF-2A NEF-3A	.00245	.00141	2 1 1 29	NEF-2B NEF-3B	.00315	. 00182	1 56
$1\frac{5}{1}$ 6	12	UN-2A UN-3A	.00290	.00167	1 36 1 11	UN-2B UN-3B UN-3B	. 00375	.00217 .00162 .00191	1 32
15/16	16	UN-2A UN-3A NEF-2A	.00255	.00147	$\begin{array}{cccc} 1 & 52 \\ 1 & 24 \\ 2 & 1 \end{array}$	UN-2B UN-3B NEF-2B	. 00330 . 00250 . 00305	.00191	2 25 1 50 2 36
15/16	18	NEF-3A	. 00245 . 00180	. 00141	$\begin{array}{ccc} 2 & 1 \\ 1 & 29 \end{array}$	NEF-2B NEF-3B	. 00235	. 00136	1 56
13/8	6	UNC-1A UNC-2A UNC-3A	. 00600 . 00400 . 00300	. 00346 . 00231 . 00173	1 39 1 6 0 50	UNC-1B UNC-2B UNC-3B	. 00780 . 00520 . 00390	. 00450 . 00300 . 00225	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
13%	8	N-2A N-3A	.00360	.00208	1 19 0 59	N-2B N-3B	.00465	.00268	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
13/8	12	UNF-1A UNF-2A	.00470	.00271	2 35 1 44	UNF-1B UNF-2B	.00615	.00355	3 23 2 15
		UNF-3A UN-2A	. 00235	.00136	1 18 1 52	UNF-3B UN-2B	. 00305	.00176	$\begin{array}{ccc} 1 & 41 \\ 2 & 25 \end{array}$
13/8	16	UN-3A NEF-2A	.00190	.00110	$\begin{array}{ccc} 1 & 24 \\ 2 & 1 \end{array}$	UN-3B NEF-2B	.00250	. 00144	$\begin{array}{ccc} 1 & 50 \\ 2 & 36 \end{array}$
13/8	18	NEF-3A	. 00180	.00104	1 29	NEF-3B	. 00235	.00136	1 56
17/16	12	UN-2A UN-3A	. 00295	.00170 .00127	1 37 1 13	UN-2B UN-3B	.00380 .00285	.00219	2 5 1 34
17/16	16	UN-2A UN-3A	.00260	.00150	1 54 1 26	UN-2B UN-3B	. 00340	.00196	2 30 1 52
17/16	18	NEF-2A NEF-3A UNC-1A	.00250	.00144	2 4 1 32	NEF-2B NEF-3B	.00325	.00188	2 41 1 59 2 10
11/2	6	UNC-2A UNC-3A	. 00605	.00349	1 40 1 7 0 50	UNC-1B UNC-2B UNC-3B	.00790	. 00456 . 00303 . 00228	1 27
11/2	8	N-2A N-3A	. 00305 . 00365 . 00275	.00176 .00211 .00159	0 50 1 20 1 0	N-2B N-3B	. 00395 . 00475 . 00355	.00274	1 5 1 44 1 18
		UNF-1A	. 00480	.00277	2 38	UNF-1B	.00625	. 00361	3 26
11/2	1.5	UNF-2A UNF-3A	. 00320	.00185	1 46 1 19	UNF-2B UNF-3B	.00415	. 00240 . 00182	2 17 1 44
11/2	16	UN-2A UN-3A	.00260	.00150	$\begin{array}{ccc} 1 & 54 \\ 1 & 26 \end{array}$	UN-2B UN-3B	.00340	.00196	2 30 1 52
11/2	18	NEF-2A NEF-3A	.00250	.00144	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NEF-2B NEF-3B	.00325	. 00188 . 00139	2 41 1 59
1%6	16	N-2A N-3A	. 00260 . 00195	.00150	1 54 1 26	N-2B N-3B	. 00340	.00196 .00147	2 30 1 52
$1\frac{9}{16}$	18	NEF-2A NEF-3A	. 00250	.00144 .00107	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NEF-2B NEF-3B	. 00325	. 00188 . 00139	2 41 1 59
15%	8	N-2A N-3A	.00370	. 00214 . 00162	1 21	N-2B N-3B	. 00485	. 00280 . 00208	1 47 1 19
15/8	12	UN-2A UN-3A	.00295	.00170	1 37 1 13	UN-2B UN-3B	.00380	.00219	2 5 1 34
15/8	16	UN-2A UN-3A	.00260	.00150	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	UN-2B UN-3B	.00340	.00196	2 30 1 52
15%	18	NEF-2A NEF-3A	.00250 .00185	.00144	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NEF-2B NEF-3B	.00325	. 00188	2 41 1 59
$1^{1}/1_{6}$	16	N-2A N-3A	. 00265	. 00153 . 00115	1 57 1 28	N-2B N-3B	. 00345	. 00199 . 00150	$\begin{array}{ccc} 2 & 32 \\ 1 & 54 \end{array}$
111/16	18	NEF-2A NEF-3A	. 00255	.00147	$\begin{array}{ccc} 2 & 6 \\ 1 & 34 \end{array}$	NEF-2B NEF-3B	. 90330	. 00191 . 00141	2 43 2 1
134	5	UNC-1A UNC-2A	. 00670	. 00387 . 00257	1 32 1 1	UNC-1B UNC-2B	.00870	. 00502 . 00335	$\begin{array}{ccc} \overline{2} & \overline{0} \\ 1 & 20 \end{array}$
13/4		UNC-3A N-2A	. 00335	.00193	0 46 1 22	UNC-3B N-2B	. 00435	.00251	1 0 1 48
13/4	12	N-3A UN-2A	. 00280	.00162	1 2 1 39	N-3B UN-2B	. 00370	.00214	1 21 2 9
13/4	16	\ UN-3A { UNEF-2A { UNEF-3A	. 00225 . 00265 . 00200	. 00130 . 00153 . 00115	1 14 1 57 1 28	UN-3B UNEF-2B UNEF-3B	. 00290 . 00345 . 00260	. 00167 . 00199 . 00150	1 36 2 32 1 54
113/16	16	N-2A N-3A	. 00265	. 00153 . 00115	1 57 1 28	N-2B N-3B	, 00345 , 00260	. 00199	2 32 1 54
17/8	8	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	. 00200	. 00115	1 28 1 25 1 3	N-3B N-2B N-3B	. 00500	.00289	1 50 1 22
17/8	12	(, 00283 , 00300 , 00225	. 00173	1 39 1 14	UN-2B UN-3B	. 00373	. 00217	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
17/8	16	{ UN-2A { UN-3A	. 00265	. 00153	1 57 1 28	UN-2B UN-3B	. 00245	. 00107	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
115/16	16	{ N-2A N-3A	. 00200	. 00156	1 59 1 28	N-2B N-3B	. 00350	.00202	2 34 1 54

Design	ation		Ext	ernal			Inte	rnal	
Size	Threads per inch	Thread symbol	Half of pitch diameter tolerance	Equiv. devi- ation in lead	Equiv. devi- ation in half- angle	Thread symbol	Half of pitch diameter tolerance	Equiv. devi- ation in lead	Equiv. dev ation in hal angle
1	2	3	4	5	6	7	8	9	10
No. in.	412	UNC-1A UNC-2A	in. 0. 00715 . 00475	in. 0. 00413 . 00274	deg min 1 28 0 59	UNC-1B UNC-2B	in. 0. 00930 . 00620	in. 0. 00537 . 00358	deg min 1 55 1 17
2	8	UNC-3A N-2A N-3A	. 00355 . 00390 . 00290	. 00205 . 00225 . 00167	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	UNC-3B N-2B N-3B	. 00465 . 00505 . 00380	. 00268 . 00292 . 00219	0 58 1 51 1 24
2	12	UN-2A UN-3A	. 00305 . 00225	. 00176	1 41 1 14	UN-2B UN-3B	. 00395 . 00295	. 00228	2 10 1 37
2	16	UNEF-2A UNEF-3A N-2A	. 00270 . 00200 . 00270	. 00156 . 00115 . 00156	1 59 1 28 1 59	$\begin{array}{c} \text{UNEF-2B} \\ \text{UNEF-3B} \\ \text{N-2B} \end{array}$. 00350 . 00260 . 00350	. 00202 . 00150 . 00202	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$2\frac{1}{16}$	16	N-3A	. 00200	. 00115	1 28	N-3B	. 00260	. 00150	1 5
218	8	N-2A N-3A UN-2A	. 00395 . 00295 . 00305	. 00228 . 00170 . 00176	1 27 1 5 1 41	N-2B N-3B UN-2B	. 00510 . 00385 . 00395	. 00294 . 00222 . 00228	1 52 1 22 2 10
21/8 21/8	12 16	UN-3A UN-2A	. 00225	. 00130 . 00156	1 14 1 59	UN-3B UN-2B	. 00295 . 00350	. 00170	1 3' 3'
2346	16	UN-3A N-2A N-3A	. 00200 . 00270 . 00200	. 00115 . 00156 . 00115	1 28 1 59 1 28	UN-3B N-2B N-3B	. 00260 . 00350 . 00260	. 00150 . 00202 . 00150	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
21/4	41/2	UNC-1A UNC-2A UNC-3A	. 00730 . 00485 . 00365	. 00421 . 00280 . 00211	$\begin{array}{cccc} 1 & 25 \\ 1 & 30 \\ 1 & 0 \\ 0 & 45 \end{array}$	UNC-1B UNC-2B UNC-3B	. 00200 . 00950 . 00630 . 00475	. 00548 . 00364 . 00274	1 56 1 158 1 18 0 59
$2\frac{1}{4}$	8	N-2A N-3A	. 00400 . 00300	. 00231 . 00173	1 28 1 6	N-2B N-3B	. 00520 . 00390	. 00300 . 00225	1 5- 1 20
$2\frac{1}{4}$	12	UN-2A UN-3A	. 00305	. 00176 . 00130	1 41 1 14	UN-2B UN-3B	. 00395	. 00228	1 2 19
$2\frac{1}{4}$	16	UN-2A UN-3A	. 00270	. 00156	1 59 1 28	UN-2B UN-3B	. 00350	. 00202	1 2 3
25/16	16	N-2A N-3A UN-2A	. 00275 . 00205 . 00310	. 00159 . 00118 . 00179	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N-2B N-3B UN-2B	. 00360 . 00270 . 00405	. 00208 . 00156 . 00234	2 3 1 5 2 1
23/8	12	UN-3A UN-2A	. 00230	. 00133	1 16 2 1	UN-3B UN-2B	. 00300	. 00173	1 39
234	16 ·	UN-3A N-2A	. 00275	. 00159	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	UN-3B N-2B	. 00360	. 00208 . 00156 . 00208	2 31 1 59 2 31
2½6 2½	4	N-3A UNC-1A UNC-2A	. 00205 . 00775 . 00520	. 00118 . 00447 . 00300	1 30 1 25 0 57	N-3B UNC-1B UNC-2B	. 00270 . 01010 . 00675	. 00156 . 00583 . 00390	1 5 1 5 1 1
21/2	8	UNC-3A N-2A N-3A	. 00390 . 00410 . 00305	. 00225 . 00237 . 00176	0 43 1 30 1 7	UNC-3B N-2B N-3B	. 00505 . 00530 . 00400	. 00292 . 00306 . 00231	$egin{array}{cccc} 0 & 5 \ 1 & 5 \ 1 & 2 \ \end{array}$
$2\frac{1}{2}$	12	UN-2A UN-3A	. 00310	. 00179	1 42 1 16	UN-2B UN-3B	. 00405	. 00234	2 1
$2\frac{1}{2}$	16	{ UN-2A UN-3A	. 00275 . 00205	. 00159	2 1 1 30	UN-2B UN-3B	. 00360 . 00270	. 00208 . 00156	2 33 1 59
25%	12	UN-2A UN-3A	. 00310	. 00179	1 42 16	UN-2B UN-3B	. 00405	. 00234	$\begin{array}{ccc} 2 & 1 \\ 1 & 3 \end{array}$
258	16	UN-2A UN-3A UNC-1A	. 00275 . 00205 . 00790	. 00159 . 00118 . 00456	$\begin{array}{c cccc} 2 & 1 \\ 1 & 30 \\ 1 & 27 \end{array}$	UN-2B UN-3B UNC-1B	. 00360 . 00270 . 01030	. 00208 . 00156 . 00595	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$2\frac{3}{4}$	4	UNC-2A UNC-3A	. 00525	. 00430	0 58 0 43	UNC-2B UNC-3B	. 00685	. 00395	$\begin{array}{c cccc} 1 & 55 \\ 1 & 1 \\ 0 & 5 \end{array}$
$2\frac{3}{4}$	8	N-2A N-3A	. 00415 . 00310	. 00240 . 00179	1 31 1 8	N-2B N-3B	. 00540 . 00405	. 00312 . 00234	1 5°
23/4	12	{ UN-2A UN-3A	. 00310 . 00230	. 00179	1 42 1 16	UN-2B UN-3B	. 00405	. 00234 . 00173	2 1
23/4	16	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	. 00275	. 00159	2 1 1 30	UN-2B UN-3B UN-2B UN-3B UN-2B	. 00360 . 00270 . 00410	. 00208	2 3 1 5
27/8	12	UN-2A UN-3A UN-2A	. 00315 . 00235 . 00280	. 00182 . 00136 . 00162	$\begin{array}{cccc} 1 & 44 \\ 1 & 18 \\ 2 & 3 \end{array}$	UN-2B UN-3B UN-2B	. 00410	. 00237 . 00179 . 00211	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
27/s 3	16	UN-3A UNC-1A UNC-2A UNC-3A	. 00210 . 00805 . 00535 . 00400	. 00121 . 00465 . 00309 . 00231	1 32 1 29 0 59 0 44	UN-3B UNC-1B UNC-2B UNC-3B	. 00275 . 01045 . 00695 . 00520	. 00159 . 00603 . 00401 . 00300	1 5 1 1 0 5
3	8	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	. 00425	. 00245	1 33 1 10	N-2B N-3B UN-2B	. 00555	. 00320	2 1 3
3	12	UN-2A UN-3A	. 00315	. 00182	1 44 1 18	11 N -3 B	. 00410	. 00237	2 13 1 42
3	16	(UN-2A UN-3A	. 00280	. 00162 . 00121	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	UN-2B UN-3B UN-2B	. 00365 . 00275	. 00211 . 00159	2 40
314	12	$\left\{\begin{array}{c} \text{UN-2A} \\ \text{UN-3A} \end{array}\right.$. 00315	. 00182 . 00136	1 44 1 18	U N-2B U N-3B	. 00410 . 00310	. 00237 . 00179	$\begin{array}{ccc} 2 & 1 \\ 1 & 4 \end{array}$

Table III.11.—Deviations in lead and half-angle equivalent to one-half of pitch diameter tolerances, Unified and American screw threads—Continued

Design	ation		Exte	ernal			Inte	rnal	
Size	Threads per inch	Thread symbol	Half of pitch diameter tolerance	Equiv. devi- ation in lead	Equiv. devi- ation in half- angle	Thread symbol	Half of pitch diameter tolerance	Equiv, devi- ation in lead	Equiv. dev ation in hal angle
1	2	3	4	5	6	7	8	9	10
70. in. 31/8 31/4 31/4 31/4	16 { 4	UN-2A UN-3A UNC-1A UNC-2A UNC-3A N-2A N-3A UN-2A	in. 0.00280 .00210 .00815 .00545 .00410 .00435 .00325 .00315	in, 0, 00162 .00121 .00471 .00315 .00237 .00251 .00188 .00182	deg min 2 3 1 32 1 30 1 0 0 45 1 36 1 11 1 44 1 18	UN-2B UN-3B UNC-1B UNC-2B UNC-3B N-2B N-3B UN-2B UN-3B	in. 0.00365 .00275 .01060 .00705 .00530 .00565 .00420 .00410	in. 0.00211 .00159 .00612 .00407 .00306 .00326 .00242 .00237 .00179	deg mi: 2 40 2 1 1 57 1 0 58 2 4 1 32 2 1 1 32 1 1 12
3\\\^4 3^3\\\^8 3^3\\\^8 3\\\^2 3\\\^2 3\\\^2 3\\\^2 3\\\^2	16 { 12 { 16 { 4 { 8 { 12 { 17 { 18 { 19 { 19 { 10 { 10 { 10 { 10 { 10 { 10 { 10 { 10	UN-2A UN-3A UN-3A UN-3A UN-2A UNC-1A UNC-1A UNC-2A UNC-3A N-2A N-3A UN-2A UN-2A UN-3A	. 00280 . 00210 . 00320 . 00240 . 00290 . 00215 . 00830 . 00550 . 00416 . 00330 . 00320 . 00240	. 00162 . 00121 . 00185 . 00139 . 00167 . 00124 . 00479 . 00318 . 00240 . 00254 . 00191 . 00185 . 00139	2 3 1 32 1 46 1 19 2 8 1 35 1 31 1 0 0 46 1 37 1 13 1 46 1 19	UN-2B UN-2B UN-3B UN-3B UN-3B UNC-1B UNC-2B UNC-3B N-2B N-3B UN-3B UN-3B	. 00365 . 00275 . 00420 . 00315 . 00375 . 00280 . 01075 . 00715 . 00540 . 00575 . 00430 . 00420 . 00315	. 00211 .00159 .00242 .00182 .00217 .00162 .00621 .00413 .00312 .00332 .00248 .00242 .00182	2 44 2 11 1 44 2 45 1 55 1 15 2 6 1 37 2 11
3½ 35% 35% 35% 3¾ 334	16 { 12 { 16 { 18 } 4 { 8 } }	UN-2A UN-3A UN-2A UN-3A UN-2A UN-3A UNC-1A UNC-3A UNC-3A N-3A	. 00290 . 00215 . 00320 . 00240 . 00290 . 00215 . 00840 . 00560 . 00420 . 00450 . 00335	.00167 .00124 .00185 .00139 .00167 .00124 .00485 .00323 .00242 .00260 .00193	2 8 1 35 1 46 1 19 2 8 1 35 1 32 1 2 0 46 1 39 1 14	UN-2B UN-3B UN-2B UN-3B UN-2B UN-3B UNC-1B UNC-2B UNC-3B N-2B N-3B	. 00375 . 00280 . 00420 . 00315 . 00375 . 00280 . 01090 . 00725 . 00545 . 00585	. 00217 . 00162 . 00242 . 00182 . 00217 . 00162 . 00629 . 00419 . 00315 . 00338 . 00254	2 44 2 19 1 44 2 43 2 6 1 20 1 20 1 3
334 334 378 378 4	12	UN-2A UN-3A UN-2A UN-2A UN-3A UN-2A UN-3A UNC-1A UNC-1A UNC-2A UNC-3A	. 00320 . 00240 . 00290 . 00215 . 00325 . 00245 . 00295 . 00220 . 00850 . 00565 . 00425	. 00185 . 00139 . 00167 . 00124 . 00188 . 00141 . 00170 . 00127 . 00491 . 00326 . 00245	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	UN-2B UN-3B UN-2B UN-3B UN-2B UN-3B UN-2B UN-3B UNC-1B UNC-1B UNC-1B	. 00420 . 00315 . 00375 . 00280 . 00425 . 00320 . 00380 . 00285 . 01105 . 00735 . 00555	. 00242 . 00182 . 00217 . 00162 . 00245 . 00185 . 00219 . 00165 . 00638 . 00424 . 00320	2 1 1 4 2 4 2 2 1 4 2 2 1 4 2 2 1 2 1 2
4 4 4 4 ¹ / ₄ 4 ¹ / ₄	8 { 12 { 16 { 8 { 12 { 16 { 12 { 16 { 12 { 16 { 12 { 16 { 12 { 16 { 12 { 16 { 12 { 16 { 12 { 16 { 16 { 17 { 18	N-2A N-3A UN-2A UN-3A UN-2A UN-3A N-2A N-3A UN-2A UN-3A	. 00455 . 00340 . 00325 . 00245 . 00295 . 00220 . 00465 . 00350 . 00325 . 00245	. 00263 . 00196 . 00188 . 00141 . 00170 . 00127 . 00268 . 00202 . 00188 . 00141	1 40 1 15 1 47 1 21 2 10 1 37 1 42 1 17 1 47 1 21	N-2B N-3B UN-2B UN-3B UN-3B UN-3B N-2B N-3B UN-2B UN-3B	. 00595 . 00445 . 00425 . 00320 . 00380 . 00285 . 00605 . 00450 . 00425	. 00344 .00257 .00245 .00185 .00219 .00165 .00349 .00260 .00245 .00185	2 1 33 2 2 2 1 1 4 4 2 2 1 1 2 2 1 1 2 2 1 1 4 4 1 2 2 1 1 4 4 1 1 1 1
414 4½ 4½ 4½ 4½ 4½ 4¾	16 8 12 16 8	UN-2A UN-3A N-2A N-3A UN-2A UN-3A UN-3A UN-3A N-2A N-3A	. 00295 . 00220 . 00470 . 00355 . 00325 . 00245 . 00295 . 00296 . 00475 . 00360	.00170 .00127 .00271 .00205 .00188 .00141 .00170 .00127 .00274 .00208	2 10 1 37 1 43 1 18 1 47 1 2 10 1 27 1 44 1 19	$\begin{array}{c} \text{UN-2B} \\ \text{UN-3B} \\ \text{N-2B} \\ \text{N-2B} \\ \text{UN-2B} \\ \text{UN-3B} \\ \text{UN-3B} \\ \text{UN-3B} \\ \text{UN-3B} \\ \text{N-3B} \\ \text{N-3B} \end{array}$. 00380 . 00285 . 00610 . 00460 . 00425 . 00320 . 00380 . 00285 . 00620 . 00465	. 00219 . 00165 . 00352 . 00266 . 00245 . 00185 . 00219 . 00165 . 00358 . 00268	2 4 2 1 1 4 2 4 2 1 1 4 1 2 1 1 4 1 1 1 1
434 434 5 5	12 { 16	UN-2A UN-3A UN-2A UN-3A N-2A N-3A UN-2A UN-3A UN-3A	. 00335 . 00250 . 00305 . 00225 . 00485 . 00360 . 00335 . 00250 . 00305 . 00225	.00193 .00144 .00176 .00130 .00280 .00208 .00193 .00144 .00176 .00130	1 51 1 22 2 14 1 39 1 47 1 19 1 51 1 22 2 14 1 39	UN-2B UN-3B UN-2B UN-3B N-2B N-3B UN-2B UN-2B UN-2B UN-2B	.00435 .00330 .00395 .00295 .00630 .00470 .00435 .00330 .00395	. 00251 . 00191 . 00228 . 00170 . 00364 . 00271 . 00251 . 00191 . 00228 . 00170	2 22 1 44 2 5- 2 10 2 11 1 44 2 22 1 49 2 5- 2 10
51/4	8	N-2A N-3A	. 00490	. 00283	$\begin{array}{ccc} 1 & 48 \\ 1 & 20 \end{array}$	N-2B N-3B	. 00635 . 00475	. 00367 . 00274	2 2 1 4

Table III.11.—Deviations in lead and half-angle equivalent to one-half of pitch diameter tolerances, Unified and American screw threads—Continued

Design	ation		Exte	ernal	*		Inte	rnal	
Size	Threads per inch	Thread symbol	Half of pitch diameter tolerance	Equiv. devi- ation in lead	Equiv. devi- ation in half- angle	Thread symbol	Half of pitch diameter tolerance	Equiv. devi- ation in lead	Equiv. devi ation in half angle
1	2	3	4	5	6	7	8	9	10
No. in. 51/4 51/4 51/2 51/2 51/2	12 { 16	UN-2A UN-3A UN-2A UN-3A N-2A N-3A UN-2A UN-3A UN-3A	in. 0.00335 .00250 .00305 .00225 .00495 .00370 .00335 .00250 .00305 .00255	in. 0,00193 .00144 .00176 .00130 .00286 .00214 .00193 .00144 .00176 .00130	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	UN-2B UN-3B UN-2B UN-3B N-2B UN-3B UN-2B UN-3B UN-2B	in. 0.00435 .00330 .00395 .00295 .00645 .00485 .00435 .00395 .00395	in. 0.00251 .00191 .00228 .00170 .00372 .00280 .00251 .00191 .00228 .00170	deg min 2 23 1 49 2 54 2 10 2 22 1 47 2 23 1 47 2 53 1 49 2 54 2 10
5¾ 5¾	8 {	N-2A N-3A UN-2A UN-3A	.00500 .00375 .00345 .00260	. 00289 . 00217 . 00199 . 00150	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N-2B N-3B UN-2B UN-3B	.00650 .00490 .00450 .00335	. 00375 . 00283 . 00260 . 00193	$\begin{array}{cccc} 2 & 23 \\ 1 & 48 \\ 2 & 28 \\ 1 & 51 \end{array}$
$5\frac{3}{4}$	16	UN-2A UN-3A	.00310	.00179	2 16 1 43	UN-2B UN-3B	.00405	.00234	2 58 2 14
6	$\begin{array}{ccc} & 8 & \{\\ & 12 & \{\end{array}$	N-2A N-3A UN-2A UN-3A	.00510 .00380 .00345 .00260	.00294 .00219 .00199 .00150	1 52 1 24 1 54 1 26	${f N-2B} \\ {f N-3B} \\ {f UN-2B} \\ {f UN-3B}$.00660 .00495 .00450 .00335	. 00381 . 00286 . 00260 . 00193	2 25 1 49 2 28 1 51
6	16 {	U N-2A U N-3A	. 00310 . 00235	.00179	2 16 1 43	UN-2B UN-3B	.00405	.00234	$\begin{array}{ccc} 2 & 58 \\ 2 & 14 \end{array}$

7. LIMITS OF SIZE OF GAGES

The limits of size of plain and thread gages applicable to the standard series of Unified and American screw threads are presented in table III.12. In this table X tolerances are applied to thread gages and Z tolerances to plain gages.

The limits of size of W truncated thread setting plug gages, and of both W and X basic-crest thread setting plug gages, are presented in table III.13 or as indicated in the footnotes to table III.13. These limits are developed in accordance with the requirements for gages and gaging stated in section VI, p. 107.

Table III.12.—Gages for standard thread series, Unified and American screw threads

		Nominal size and threads	per ineh		21	08-0	1-64	1-72	2-56	2-64	3-48	3-56	4-40	4-48	5-40	5-44
		Series designa-	tion		20	Z Z	NC	N FN	NC	Z E	NC	N F	NG NG	N F	NC	ži Z
		Class			19	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B
	ages for ameter		Not go		18	in. 0.0514 .0513 .0514	. 0622 . 0622 . 0623 . 0623	.0635 .0634 .0635 .0635	. 0737 . 0736 . 0737 . 0736	. 0753 . 0752 . 0753	. 0845 . 0844 . 0845 . 0844	. 0865 . 0864 . 0865	. 0939 . 0938 . 0938	. 0968 . 0967 . 0968 . 0967	. 1062 . 1061 . 1062 . 1061	. 1079 . 1079 . 1079
	Z plain gages for minor diameter		Ĝ		17	in. 0.0465 0.0466 0.0466	. 0551 . 0562 . 0561 . 0562	. 0580 . 0581 . 0580 . 0581	. 0667 . 0668 . 0667 . 0668	. 0691 . 0692 . 0691 . 0692	. 0764 . 0765 . 0764	.0797 .0798 .0797	. 0849 . 0850 . 0849	. 0894 . 0895 . 0894 . 0895	. 0979 . 0980 . 0979 . 0980	.1004 .1005 .1004 .1005
hreads			ameter	Plus toleranee gage	16	in. 0.0542 0.0536	. 0655 . 0648 . 0650 . 0650	. 0665 . 0667 . 0659 . 0651	. 0772 . 0774 . 0765 . 0767	. 0786 . 0788 . 0779 . 0781	. 0885 . 0887 . 0879	. 0902 . 0904 . 0895 . 0897	. 0991 . 0993 . 0982 . 0984	. 1016 . 1018 . 1008	. 1121 . 1123 . 1113	. 1134 . 1136 . 1126 . 1128
Gages for internal threads	Si	Notgo	Pitch diameter	Minus tolerance gage	15	in. 0.0542 0.0540 0.0536	. 0655 . 0653 . 0648 . 0646	. 0665 . 0633 . 0659 . 0657	. 0772 . 0770 . 0765 . 0763	. 0786 . 0784 . 0779 . 0777	. 0885 . 0883 . 0877 . 0875	. 0902 . 0900 . 0895 . 0893	. 0991 . 0989 . 0980 . 0980	.1016 .1014 .1008 .1006		.1134 .1132 .1126
Gages for	X thread gages			Major diameter	14	in. 0.0596 0.0593 0.0593	. 0723 . 0719 . 0716 . 0712	. 0725 . 0722 . 0719 . 0716	. 0849 . 0845 . 0842 . 0838	. 0854 . 0850 . 0847 . 0843	. 0975 . 0971 . 0967 . 0963	. 0979 . 0975 . 0972 . 0968	. 1099 . 1095 . 1090	.1106 .1102 .1098 .1094	. 1229 . 1225 . 1221 . 1217	.1232 .1228 .1224 .1220
	X t			Piteh diameter	13	in. 0.0519 .0521 .0519 .0519	. 0629 . 0631 . 0631	. 0640 . 0642 . 0640 . 0642	. 0744 . 0746 . 0744 . 0746	. 0759 . 0761 . 0759 . 0761	. 0855 . 0857 . 0855 . 0855	. 0874 . 0876 . 0874 . 0876	. 0958 . 0960 . 0958 . 0960	. 0985 . 0987 . 0985 . 0985	. 1088 . 1090 . 1085	. 1102 . 1104 . 1102
		Go		Major diameter	12	in. 0.0600 .0603 .0600	. 0730 . 0734 . 0730	. 0730 . 0733 . 0730	. 0860 . 0864 . 0860 . 0864	. 0864 . 0864 . 0860	. 0990 . 0994 . 0990 . 0994	. 0990 . 0994 . 0990 . 0994	. 1120	. 1120	. 1250 . 1254 . 1250 . 1254	. 1250 . 1254 . 1250
	najor	go	Un-	finished hot-rolled material	11	im.										
	Z plain gages for major diameter	Not go		Semi- finished	10	im. 0.0563 0.0564 0.0568	.0686 .0687 .0692 .0693	. 0689 . 0690 . 0695 . 0696	. 0813 . 0814 . 0820	. 0816 . 0817 . 0822 . 0823	. 0938 . 0945 . 0946	. 0942 . 0943 . 0949 . 0950	. 1061 . 1062 . 1069	. 1068 . 1069 . 1075	. 1191 . 1192 . 1199	1195 1196 1202 1203
S	Z plain			-	6	im. 0.0595 .0594 .0600	. 0724 . 0723 . 0730 . 0729	. 0724 . 0723 . 0730 . 0729	. 0854 . 0853 . 0860 . 0859	. 0854 . 0853 . 0860 . 0859	. 0983 . 0982 . 0990 . 0989	. 0983 . 0982 . 0990 . 0989	11120	.1113	. 1242 . 1241 . 1250 . 1249	. 1243 . 1242 . 1250 . 1249
Gages for external threads				Minor	∞	im. 0. 0469 0. 0472 0. 0479 0. 0482	. 0569 . 0573 . 0580 . 0584	. 0585 . 0588 . 0596 . 0599	. 0678 . 0682 . 0689	. 0699 . 0703 . 0710	. 0780 . 0784 . 0793 . 0797	. 0806 . 0810 . 0819 . 0823	. 0871 . 0875 . 0885 . 0889	. 0909 . 0913 . 0922 . 0926	.1004 .1015 .1015	. 1021 . 1025 . 1034 . 1038
ges for exte	S.	Not go	ameter	Minus toleranee gage	7	in. 0.0496 .0494 .0506	. 0603 . 0601 . 0614	. 0615 . 0613 . 0626 . 0624	. 0717 . 0715 . 0728 . 0726	. 0733 . 0731 . 0744	. 0825 . 0828 . 0838 . 0836	. 0843 . 0843 . 0858	. 0925 . 0923 . 0939 . 0937	. 0954 . 0952 . 0967 . 0965	. 1054 . 1052 . 1069 . 1067	.1070 .1068 .1083 .1081
Gay	X thread gages		Piteh diameter	Plus toleranee gage	9	im. 0. 0496 0.0498 0.0506	.0603 .0605 .0614 .0616	. 0615 . 0617 . 0626 . 0628	.0717 .0719 .0728	. 0733 . 0735 . 0744 . 0746	. 0825 . 0827 . 0838 . 0840	. 0845 . 0847 . 0858 . 0860	. 0925 . 0927 . 0939 . 0941	. 0954 . 0956 . 0967 . 0969	. 1054 . 1056 . 1069	.1070 .1072 .1083 .1085
	X			Minor	70	im. 0. 0460 0.0457 0.0465 0.0465	. 0555 . 0551 . 0561 . 0557	. 0574 . 0571 . 0580 . 0577	. 0661 . 0657 . 0667 . 0663	. 0685 . 0681 . 0691	. 0758 . 0754 . 0765	. 0790 . 0786 . 0797 . 0793	. 0842 . 0838 . 0850	. 0888 . 0884 . 0895	. 0972 . 0968 . 0980 . 0976	. 0997
		Go		Piteh diameter	4	in. 0.0514 .0512 .0519	. 0623 . 0621 . 0629 . 0627	. 0634 . 0632 . 0640 . 0638	. 0738 . 0736 . 0744	. 0753 . 0751 . 0759	. 0848 . 0846 . 0855	. 0867 . 0865 . 0874 . 0872	. 0950 . 0948 . 0958	. 0978 . 0985 . 0985	. 1080 . 1078 . 1088	. 1095 . 1093 . 1102
		Class			60	2A 3A	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right\}$	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right\}$	2A 3A	2A 3A	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right\}$	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right\}$	2A 3A	2A 3A	$\begin{cases} 2A \\ 3A \end{cases}$	2A 3A
		Series	tion		2	ξN	Z Z	Z E	NG	E Z	NC	Ë	NG	Z	NG	N
		Nominal size and	threads per inch		-	08-0	1-64	1-72	2-56	2-64	3-48	3-56	4-40	4-48	5-40	544

Table III.12.—Gages for standard thread series, Unified and American screw threads—Continued

		Nominal size and threads			21	6-32	6-40	8-32	8-36	10-24	10-32	12-24	12-28	12-32	1/4-20
		Series designa-	tion		20	NC	NF	NG	* K	N N N	ĘZ.	NC	N EN	NEF	UNC
		Class			19	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	1B 2B 3B
	ages for ameter		Notgo		18	0. 1140 1139 1139 1139	. 1190 . 1189 . 1186	. 1390 . 1389 . 1389	. 1420 . 1419 . 1416	.1560 .1559 .1555	. 1640 . 1639 . 1641 . 1640	. 1810 . 1809 . 1807	. 1860 . 1859 . 1857	. 1900 . 1895 . 1895	2070 2069 2070 2069 2067
	Z plain gages for minor diameter		Go		17	in. 0. 1040 . 1041 . 1040 . 1040	. 1110	. 1300 . 1301 . 1300	. 1340 . 1341 . 1340 . 1341	.1450 .1451 .1450	. 1560 . 1561 . 1560 . 1561	. 1710 . 1711 . 1710 . 1711	. 1770 . 1771 . 1770	. 1820 . 1821 . 1820	. 1960 . 1961 . 1960 . 1961 . 1960
hreads			nmeter	Plus tolerance gage	16	in. 0.1214 .1217 .1204 .1204	. 1252 . 1254 . 1243 . 1245	. 1475 . 1478 . 1465 . 1468	. 1496 . 1497 . 1487 . 1489	. 1672 . 1675 . 1661	. 1736 . 1739 . 1726	. 1933 . 1922 . 1922	. 1970 . 1973 . 1959	. 1998 . 2001 . 1988 . 1991	2248 2223 2223 2226 2211 2214
Gages for internal threads	SS	Not go	Pitch diameter	Minus tolcrance gage	15	in. 0.1214 .1211 .1204 .1204	. 1252 1250 . 1243 . 1241	. 1475 . 1472 . 1465	. 1496 . 1494 . 1487	. 1672 . 1669 . 1661	. 1736 . 1733 . 1726	. 1933 . 1930 . 1922 . 1919	. 1970 . 1967 . 1959 . 1956	. 1998 . 1985 . 1988	2248 2245 2223 2220 2220 2211
Gages fo	X thread gages			Major diameter	14	in. 0. 1349 . 1334 . 1339 . 1333	. 1360 . 1356 . 1351 . 1347	. 1610 . 1605 . 1600 . 1595	. 1616 . 1612 . 1607	. 1852 . 1847 . 1841	. 1871 . 1866 . 1861 . 1856	. 2113 . 2108 . 2102 . 2097	. 2125 . 2120 . 2114	. 2133 . 2128 . 2123 . 2123	. 2465 . 2460 . 2440 . 2435 . 2428
ì	×	0		Pitch diameter	13	in. 0.1177 .1180 .1177 .1177	. 1218 . 1220 . 1218 . 1220	. 1437 . 1440 . 1437 . 1440	. 1460 . 1462 . 1460	. 1629 . 1632 . 1629	. 1697 . 1700 . 1697	. 1889 . 1892 . 1889	. 1928 . 1931 . 1928	. 1957 . 1960 . 1957 . 1960	2175 2178 2175 2175 2176 2176
		Go		Major liameter	12	in. 0.1380 .1385 .1385 .1385	. 1380 . 1384 . 1380 . 1384	.1640 .1645 .1640	. 1640 . 1644 . 1640 . 1644	. 1900 . 1905 . 1905	. 1900 . 1905 . 1900	. 2160 . 2165 . 2160 . 2165	. 2160 . 2165 . 2160 . 2165	. 2160 . 2165 . 2160 . 2165	2500 2505 2500 2500 2500 2500
	major	050	Un-	finished hot-rolled material	11	in.									0.2367
	Z plain gages for major diameter	Not go		Semi- finished	10	im. 0.1312 .1313 .1320 .1321	. 1321 . 1322 . 1329 . 1330	. 1571 . 1572 . 1580 . 1581	.1577 .1578 .1585	1818 1819 1828 1829	. 1831 . 1832 . 1840 . 1841	. 2078 . 2079 . 2088	2085 2086 2095 2096	. 2091 . 2092 . 2100	2367 2368 2408 2409 2419 2419
ls	Z plair		Go		6	in. 0.1372 .1371 .1380 .1379	. 1372 . 1371 . 1380 . 1379	.1631 .1630 .1640 .1639	. 1632 . 1631 . 1640 . 1639	. 1890 . 1900 . 1899	. 1891 . 1890 . 1900 . 1899	. 2150 . 2149 . 2160	. 2150 . 2149 . 2160	. 2151 . 2150 . 2160 . 2159	2489 2489 2488 2500 2499
for external threads				Minor diameter	∞	in. 0.1073 .1078 .1088 .1093	.1130	.1331 .1336 .1347 .1352	. 1364 . 1368 . 1379 . 1383	. 1496 . 1501 . 1514 . 1519	. 1590 . 1595 . 1606 . 1611	. 1755 . 1760 . 1773 . 1778	. 1809 . 1814 . 1827 . 1832	. 1849 . 1854 . 1865 . 1870	2000 2005 2019 2024 2039
Gages for exte	Se	Not go	ameter	Minus tolerance gage	1-	im. 0.1141 .1138 .1156	. 1184 . 1182 . 1198 . 1196	. 1399 . 1396 . 1415	. 1424 . 1422 . 1439 . 1437	. 1586 . 1583 . 1604 . 1601	. 1658 . 1655 . 1674 . 1671	. 1845 . 1842 . 1863 . 1860	. 1883 . 1904 . 1901	. 1917 . 1914 . 1933 . 1930	2108 2105 2127 2124 2147
Ga	X thread gages		Pitch diameter	Plus tolcranee gage	9	<i>im.</i> 0.1141 .1144 .1156 .1159	. 1184 . 1186 . 1198	.1399 .1402 .1415	. 1424 . 1426 . 1439 . 1441	. 1586 . 1589 . 1604	. 1658 . 1661 . 1674 . 1677	. 1845 . 1848 . 1863 . 1866	. 1886 . 1889 . 1904 . 1907	. 1917 . 1920 . 1933 . 1936	2108 2111 2127 2130 2147 2150
	×	0			5	in. 0. 1034 . 1029 . 1042 . 1037	. 1102 . 1098 . 1110	. 1293 . 1288 . 1302 . 1297	. 1332 . 1328 . 1340 . 1336	. 1439 . 1434 . 1449 . 1444	.1553 .1548 .1562 .1557	. 1699 . 1694 . 1709	. 1763 . 1758 . 1773 . 1768	. 1813 . 1808 . 1822 . 1817	. 1948 . 1943 . 1943 . 1959
		Go		Pitch Minor diameter diameter	4	in. 0.1169 .1166 .1177 .1174	. 1210 . 1208 . 1218 . 1216	. 1428 . 1425 . 1437 . 1434	. 1452 . 1450 . 1460 . 1458	. 1619 . 1616 . 1629 . 1626	. 1685 . 1685 . 1697 . 1694	. 1879 . 1876 . 1889 . 1886	. 1918 . 1915 . 1928 . 1925	. 1948 . 1945 . 1957 . 1954	2164 2161 2164 2164 2175
		Class			es	2A 3A	2A 3A	2A 3.4	2A 3A	2.A 3.A	2.8	2A 3A	2A 3A	2A 3A	2A 3A
		Series designa-	tion		6	N N	ž.	NC	E Z	S N	Z.	NG	ž Z	NEF	UNG
		Nominal size and c	threads per ineh		1	6-32	6-40	8-32	8-36	10-24	10-32	12-24	12-28	12-32	14-20

),4-28	1,4-32	5/16-18	310-24	5,16-32	3 s-16	38-24	3/8-32	7,16-14	7/16-20	7/10-28	1/2-12	1½-13
UNF	NEF	UNC	UNE	NEF	UNG	UNF	E Z	UNC	UNF	UNEF	Z	UNG
11B 22B 33B	2B 3B	11B 2B 3B	1B 2B 3B	2B 3B	1B 2B 3B	1B 2B 3B	2B 3B	11B 2B 3B	1B 2B 3B	2B 3B	2B 3B	1B 2B 3B
. 2200 . 2199 . 2199 . 2199 . 2190	. 2240 . 2239 . 2229 . 2228	. 2650 . 2649 . 2649 . 2649 . 2630 . 2630	2770 2769 2770 2769 2754 2754	. 2859 . 2847 . 2846	. 3210 , 3209 . 3210 . 3209 . 3182	. 3400 . 3399 . 3400 . 3399 . 3372	. 3490 . 3469 . 3469	.3760 .3759 .3760 .3717 .3716	. 3950 . 3949 . 3950 . 3949 . 3916	. 4070 . 4069 . 4051 . 4050	. 4280 . 4279 . 4223	. 4340 . 4339 . 4339 . 4284 . 4283
2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	. 2160 . 2161 . 2160 . 2161	. 2520 . 2521 . 2520 . 2521 . 2521 . 2520	. 2670 . 2671 . 2670 . 2671 . 2670	. 2790 . 2791 . 2790 . 2791	. 3070 . 3071 . 3070 . 3071 . 3070	.3300 .3301 .3300 .3300	. 3410 . 3411 . 3410	. 3600 . 3601 . 3601 . 3601 . 3601	.3830 .3831 .3830 .3831 .3830 .3830	. 3990 . 3991 . 3990 . 3991	. 4100 . 4101 . 4100	4170 4171 4170 1171 1171 1170
2333 2336 2314 2314 2300	. 2339 . 2342 . 2328	2846 2846 2817 2820 2803 2803	. 2925 . 2928 . 2902 . 2905 . 2890	. 2964 . 2967 . 2953 . 2956	. 3429 . 3432 . 3401 . 3404 . 3387 . 3390	. 3553 . 3556 . 3528 . 3531 . 3516	. 3591 . 3594 . 3583	. 4003 . 4006 . 3972 . 3975 . 3957	. 4131 . 4134 . 4104 . 4001	. 4189 . 4192 . 4178 . 4181	. 4529 . 4532 . 4511	. 4597 . 4500 . 4565 . 4568 . 4548
. 2333 . 2330 . 2311 . 2308 . 2300	. 2339 . 2336 . 2328	2843 2840 2817 2814 2803	2925 2922 2902 2899 2890 2887	. 2964 . 2961 . 2953 . 2950	3429 3426 3401 3398 3387 3384	. 3553 . 3550 . 3528 . 3525 . 3516	. 3591 . 3588 . 3580 . 3577	. 4003 . 4000 . 3972 . 3957 . 3957	. 4131 . 4128 . 4104 . 4101 . 4091	4189 . 4178 . 4175	. 4529 . 4526 . 4511 . 4508	. 4597 . 4565 . 4565 . 4562 . 4548
. 2488 . 2466 . 2461 . 2451	. 2474 . 2469 . 2463 . 2458	3084 3079 3058 3053 3044 3039	. 3105 . 3100 . 3077 . 3070	. 3099 . 3088 . 3088	. 3700 . 3694 . 3672 . 3658 . 3658	. 3733 . 3728 . 3708 . 3696 . 3691	. 3726 . 3721 . 3715	.4312 .4306 .4281 .4275 .4266	. 4348 . 4343 . 4321 . 4316 . 4308	. 4344 . 4339 . 4333	. 4890 . 4884 . 4872 . 4866	. 4930 . 4924 . 4898 . 4892 . 4881
. 2268 . 2271 . 2268 . 2271 . 2268	. 2297 . 2300 . 2297 . 2300	2764 2767 2764 2767 2764 2764	2857 2857 2857 2857 2857 2857	2922 2925 2922 2925	. 3344 . 3347 . 3347 . 3347 . 3347	34779 3482 3479 3479 3479	. 3547 . 3547 . 3547	. 3911 . 3914 . 3911 . 3914 . 3914	. 4050 . 4053 . 4050 . 4050 . 4053	. 4143 . 4146 . 4143 . 4146	. 4459 . 4462 . 4459 . 4462	.4500 .4503 .4500 .4500 .4503
. 2500 . 2505 . 2506 . 2506 . 2506	. 2500 . 2505 . 2506	. 3125 . 3130 . 3125 . 3125 . 3125 . 3130	. 3125 . 3130 . 3125 . 3125 . 3125 . 3125	. 3125 . 3130 . 3125 . 3130	.3750 .3756 .3756 .3756 .3756	.3750 .3755 .3750 .3755 .3755	. 3750 . 3755 . 3750 . 3750	.4375 .4381 .4375 .4381 .4375	4375 4380 4375 4380 4375 4375	. 4375 . 4375 . 4375	. 5000	5000 5000 5000 5000 5000 5000
		. 2982			3595			. 4206			. 4812	. 4822
2392 2393 2425 2426 2436 2436	. 2430 . 2431 . 2440 . 2441	2982 2983 3026 3027 3038	3006 3042 3043 3043 3053 3054	. 3055 . 3056 . 3066 . 3066	3595 3596 3644 3656 3656	3631 3632 3667 3668 3678	. 3680 . 3681 . 3690	. 4206 . 4207 . 4258 . 4272 . 4273	. 4240 . 4241 . 4281 . 4282 . 4294	. 4299 . 4300 . 4311	. 4870 . 4871 . 4886 . 4887	4823 4823 4876 4877 4891
. 2489 . 2489 . 2489 . 2500	. 2490 . 2489 . 2500 . 2499	. 3113 . 3112 . 3112 . 3125 . 3125	3114 3113 3114 3114 3125 3125	. 3115 . 3114 . 3125 . 3124	3737 3736 3737 3736 3750 3749	3739 3738 3738 3738 3750 3749	. 3740 . 3739 . 3750	. 4361 . 4360 . 4361 . 4375	. 4362 . 4361 . 4361 . 4375 . 4374	. 4364 . 4363 . 4375	. 4984 . 4983 . 5000	. 4985 . 4984 . 4984 . 5000 . 4999
2131 2136 2148 2153 2166	. 2187 . 2192 . 2205 . 2210	. 2571 . 2576 . 2592 . 2597 . 2614	. 2698 . 2703 . 2716 . 2737 . 2742	. 2812 . 2817 . 2830 . 2835	. 3131 . 3137 . 3152 . 3158 . 3176	. 3321 . 3326 . 3340 . 3345 . 3360	. 3435 . 3440 . 3454 . 3459	. 3671 . 3677 . 3695 . 3701 . 3721	. 3867 . 3872 . 3887 . 3892 . 3911	. 4019 . 4024 . 4039 . 4044	. 4209 . 4239 . 4245	. 4245 . 4251 . 4269 . 4275 . 4297
. 2208 . 2205 . 2225 . 2225 . 2243 . 2243	. 2255 . 2252 . 2273 . 2270	2691 2688 2712 2709 2734 2731	2788 2785 2806 2803 2827 2824	. 2880 . 2877 . 2898	3266 3263 3287 3284 3311 3308	. 3411 . 3408 . 3430 . 3427 . 3450	. 3503 . 3522 . 3522	.3826 .3823 .3850 .3847 .3876	. 3975 . 3972 . 3995 . 3992 . 4019	. 4096 . 4093 . 4116	. 4389 . 4386 . 4419 . 4416	. 4408 . 4435 . 4435 . 4432 . 4463
. 2208 . 2211 . 2225 . 2228 . 2248 . 2246	. 2255 . 2258 . 2273 . 2276	2694 2694 2712 2715 2734 2737	2788 2791 2806 2809 2827 2830	. 2880 . 2883 . 2898	3266 3287 3290 3311 3314	. 3411 . 3414 . 3430 . 3433 . 3450	. 3503 . 3506 . 3522 . 3525	. 3826 . 3829 . 3850 . 3853 . 3876	. 3975 . 3978 . 3995 . 4019 . 4022	. 4096 . 4099 . 4116 . 4119	. 4389 . 4392 . 4419 . 4422	. 4411 . 4414 . 4435 . 4438 . 4463
. 2103 . 2098 . 2103 . 2113 . 2113	. 2152 . 2147 . 2162 . 2157	2511 2506 2511 2506 2523 2523	. 2663 2658 2658 2658 . 2654	. 2777 2772 2787 . 2782	. 3060 . 3054 . 3054 . 3073 . 3073	3288 3288 3288 3299 3294	. 3402 . 3397 . 3412	3582 3582 3582 3582 3590 3590 3590 3590 3590 3590 3590 3590	3821 3816 3821 3816 3834 3829	. 3977 . 3972 . 3988 . 3983	. 4082 . 4076 . 4098	.4152 .4146 .4152 .4146 .4167
. 2258 . 2258 . 2258 . 2258 . 2268	. 2287 . 2284 . 2297 . 2294	. 2752 . 2749 . 2752 . 2749 . 2764	2843 2840 2844 2844 2854 2854	2912 2909 2922 2919	. 3331 . 3328 . 3331 . 3328 . 3344 . 3344	. 3465 . 3465 . 3465 . 3479 . 3476	. 3537 . 3547 . 3547	. 3897 . 3894 . 3894 . 3911 . 3908	. 4037 . 4034 . 4037 . 4050 . 4047	. 4132 . 4129 . 4143	. 4443 . 4440 . 4459	. 4485 . 4485 . 4485 . 4500 . 4597
1A 2A 3A	2A 3A	1A 2A 3A	1A 2A 3A	2A 3A	1A 2A 3A	1A 2A 3A	2A 3A	1A 2A 3A	1A 2A 3A	2A 3A	2A 3A	2A 3A
UNF	NEF	UNC	UNF	NEF	UNC	UNF	ZE	UNC	UNF	UNEF	Z	UNC
14-28	1,4-32	§√6-18	616-24	% e-32	38-16	38-24	3,8-32	7.6-14	746-20	746-28	1/2-12	1/2-13

Table III.12.—Gages for standard thread series, Unified and American serew threads—Continued

		Nominal size and threads	per ineh		21	1/2-20	1/2-28	9/16-12	9/16-18	9/16-24	58-11	5/8-12	5,8-18	5/8-24
			tion		20	UNF	UNEF	unç	UNF	NEF	UNC	Ż	UNF	NEF
		Class			19	1B 2B 3B	2B 3B	1B 2B 3B	1B 2B 3B	2B 3B	1B 2B 3B	2B 3B	1B 2B 3B	2B 3B
	ages for ameter		Notes		18	in. 0,4570 4569 4570 4570 4589 4537 4536	. 4700 . 4699 . 4676 . 4675	. 4900 . 4899 . 4899 . 4843	. 5150 . 5149 . 5150 . 5149 . 5106	. 5269 . 5269 . 5244 . 5243	. 5460 . 5459 . 5460 . 5459 . 5391	. 5530 . 5529 . 5463	. 5780 . 5779 . 5780 . 5779 . 5730	. 5899 . 5899 . 5869
	Z plain gages for minor diameter		9	5	17	in. 0.4460 .4461 .4450 .4461 .4461	.4610 .4611 .4610 .4610	4720 4721 4720 4721 4721 4720	. 5020 . 5021 . 5020 . 5021 . 5020	. 5170 . 5171 . 5170 . 5170	. 5270 . 5271 . 5270 . 5271 . 5270	. 5350 . 5351 . 5350 . 5351	5650 5651 5650 5650 5651 5650	. 5800 . 5801 . 5800 . 5801
hreads			ameter	Plus tolerance gage	16	in. 0,4759 4762 4731 4731 4734 4734 4720	. 4816 . 4819 . 4804	.5186 .5152 .5155 .5155 .5135	. 5353 . 5356 . 5323 . 5326 . 5308	. 5405 . 5408 . 5392 . 5395	. 5770 . 5732 . 5735 . 5735 . 5714	. 5780 . 5783 . 5762 . 5765	5980 5983 5949 5952 5934	.6031 .6034 .6018 .6021
Gages for internal threads	S.	Not go	Pitch diameter	Minus toleranee gage	15	in. 0.4759 .4756 .4731 .4717 .4717	. 4816 . 4813 . 4804 . 4801	.5186 .5183 .5152 .5149 .5135	. 5353 . 5323 . 5323 . 5308	. 5405 . 5402 . 5392 . 5389	. 5767 . 5764 . 5732 . 5729 . 5714	. 5780 . 5777 . 5762 . 5759	. 59%0 . 5947 . 5946 . 5946 . 5934	.6031 .6028 .6018 .6015
Gages for	X thread gages			Major	14	in. 0.4976 .4971 .4948 .4943 .4934 .4934	. 4971 . 4966 . 4959	. 5547 . 5541 . 5513 . 5507 . 5496	.5594 .5589 .5564 .5559 .5549	. 5585 . 5580 . 5572 . 5567	.6161 .6155 .6126 .6120 .6108	. 6141 . 6135 . 6123 . 6117	. 6221 . 6216 . 6190 . 6185 . 6175	. 6211 . 6206 . 6198 . 6193
	X			Piteh diameter	13	in. 0.4675 .4678 .4675 .4675 .4675	. 4768 . 4771 . 4768	5084 5084 5084 5087 5087 5087	. 5264 . 5267 . 5264 . 5264 . 5264	. 5354 . 5354 . 5354	. 5660 . 5663 . 5663 . 5663 . 5663	. 5709 . 5712 . 5709	5889 5892 5889 5889 5889 5889	. 5979 . 5982 . 5979 . 5982
		Go			12	im. 0.5000 .5005 .5000 .5005 .5000	. 5000 . 5005 . 5000	. 5625 . 5625 . 5625 . 5625 . 5625	. 5625 . 5625 . 5625 . 5625 . 5625	. 5625 . 5630 . 5625 . 5630	.6250 .6250 .6250 .6250 .6256	.6250 .6256 .6250 .6256	. 6255 . 6255 . 6256 . 6255 . 6255	.6250 .6255 .6250 .6255
	najor	go	Ŭ,	finished Major hot-rolled diameter material	11	im.		0.5437			.6052			
	Z plain gages for major diameter	Not go		Semi- finished	10	in. 0, 4865 . 4866 . 4906 . 4919 . 4919	4924 . 4925 . 4935	. 5437 . 5495 . 5496 . 5511	5480 5524 5525 5528 5538	. 5541 . 5542 . 5553	. 6052 . 6053 . 6113 . 6129 . 6129	. 6120 . 6121 . 6136	.6105 .6149 .6150 .6150 .6163	.6166 .6167 .6179
Is	Z plain		2		6	in. 0.4987 .4986 .4987 .4986 .5000	. 4989 . 4988 . 5000	. 5609 . 5608 . 5609 . 5625 . 5625	.5611 .5610 .5610 .5610 .5625	.5613 .5612 .5625	. 6234 . 6233 . 6234 . 6234 . 6250	. 6234 . 6233 . 6250 . 6249	. 6236 . 6235 . 6235 . 6235 . 6250	. 6238 . 6237 . 6250 . 6249
Gages for external threads				Minor diameter	∞	in. 0.4490 .4495 .4511 .4516 .4535 .4536	. 4648 . 4663 . 4668	.4810 .4816 .4836 .4842 .4865	. 5062 . 5067 . 5085 . 5090 . 5110	. 5213 . 5218 . 5235 . 5240	. 5364 . 5370 . 5392 . 5422 . 5422	. 5459 . 5465 . 5488 . 5494	.5685 .5690 .5708 .5713 .5734	. 5837 . 5842 . 5859 . 5864
ges for exte	38	Not go	ameter	Minus tolerance gage	2	in. 0.4598 .4595 .4619 .4616 .4643 .4640	. 4720 . 4717 . 4740	. 4990 . 4987 . 5016 . 5013 . 5045	. 5182 . 5179 . 5205 . 5202 . 5230	. 5303 . 5300 . 5325 . 5322	. 5561 . 5558 . 5589 . 5586 . 5619	. 5639 . 5636 . 5668 . 5665	5805 5802 5828 5825 5825 5854	. 5927 . 5924 . 5949 . 5946
Ga	X thread gages		Pitch diamet	Plus tolcranee gage	9	in. 0.4598 .4601 .4619 .4622 .4643 .4646	. 4720 . 4723 . 4740 . 4743	. 4990 . 4993 . 5016 . 5045	5182 5185 5205 5208 5233	. 5303 . 5306 . 5325 . 5328	. 5561 . 5564 . 5589 . 5592 . 5619 . 5622	. 5639 . 5642 . 5668 . 5671	. 5805 . 5808 . 5828 . 5831 . 5854	. 5927 . 5930 . 5949 . 5952
	×	0		Minor	22	in. 0.4446 .4441 .4446 .4459 .4459	.4602 .4597 .4613	.4707 .4701 .4701 .4701 .4723	5009 5004 5009 5004 5023 5018	. 5162 . 5157 . 5174 . 5169	. 5250 . 5244 . 5250 . 5244 . 5244 . 5266	. 5332 . 5326 . 5348 . 5342	5634 5629 5629 5629 5628 5648	. 5787 . 5782 . 5799 . 5794
		Go		Piteh diameter	4	in. 0.4662 .4659 .4652 .4659 .4675	. 4757 . 4754 . 4768	5068 5065 5065 5065 5084	. 5250 . 5247 . 5250 . 5247 . 5264	. 5342 . 5339 . 5354	5644 5641 5641 5641 5660 5660	. 5693 . 5690 . 5709 . 5706	.5875 .5872 .5872 .5872 .5889	. 5967 . 5964 . 5979 . 5976
		Class			6	1A 2A 3A	$\begin{bmatrix} 2A \\ 3A \end{bmatrix}$	1A 2A 3A	1A 2A 3A	2A 3A	1A 2A 3A	$\begin{bmatrix} 2A \\ 3A \end{bmatrix}$	1A 2A 3A	$\begin{bmatrix} 2A \\ 3A \end{bmatrix}$
		Series designa-	tion		63	UNF	UNEF	UNG	UNF	NEF	UNC	Z	UNF	NEF
		Nominal size and	threads per ineh		-	1/2-20	1/2-28	916-12	916-18	9/16-24	58-11	5/8-12	5/8-18	5%-24

11/16-12	$^{11/6-24}$	34-10	34-12	34-16	3,4-20	13/16-12	13/16-16	13/16-20	6-8/2	7,8-12	7,8–14	78-16	7/8-20
z	NEF	UNG	Z	UNF	UNEF	MD CIN	N D	UNEF	UNC	z	UNE	N.O.	UNEF
2B 3B	2B 3B	1B 2B 3B	2B 3B	1B 2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	1B 2B 3B	2B 3B	11B 22B 33B	2B 3B	2B 3B
. 6150 . 6149 . 6085 . 6084	. 6520 . 6519 . 6494 . 6493	. 6630 . 6629 . 6630 . 6529 . 6545	. 6780 . 6779 . 6707 . 6706	. 6960 . 6959 . 6960 . 6959 . 6908	. 7070 . 7069 . 7037 . 7036	. 7400 . 7399 . 7329	. 7590 . 7533 . 7532	. 7700 . 7699 . 7662	. 77800 . 77788 . 77780 . 76810 . 76798	80300 80288 79520 79508	.81400 .81388 .81400 .81388 .80680	. 82100 . 82088 . 81580 . 81568	. 83200 . 83188 . 82870 . 82858
. 5970 . 5971 . 5970 . 5971	. 6420 . 6421 . 6420	. 6420 . 6421 . 6420 . 6421 . 6421	. 6600 . 6601 . 6601 . 6601	.6820 .6821 .6821 .6821 .6820	. 6960 . 6961 . 6960 . 6961	. 7220 . 7221 . 7220	. 7450 . 7451 . 7450 . 7451	. 7580 . 7581 . 7580 . 7581	. 75500 . 75512 . 75500 . 75512 . 75500 . 75500	. 78500 . 78512 . 78500 . 78512	79800 79812 79800 79812 79812 79812	. 80700 . 80712 . 80700 . 80712	. \$2100 . \$2112 . \$2100 . \$2112
. 6405 . 6408 . 6387 . 6390	. 6656 . 6659 . 6643 . 6646	. 5965 . 6968 . 6927 . 6930 . 6907	. 7031 . 7034 . 7013 . 7016	7192 7195 7159 7162 7143	7232 7235 7218 7218	. 7556 . 7659 . 7638 . 7641	7782 7785 7766 7766	7857 7860 7843 7846	8151 8154 8110 8113 8089 8092	. 8281 . 8284 . 8263 . 8266	8392 8395 8356 8359 8342	. 8410 . 8410 . 8391 . 8394	. 8482 . 8485 . 8468 . 8471
. 6402 . 6387 . 6384	. 6656 . 6653 . 6643	. 6965 . 6962 . 6927 . 6924 . 6907	. 7031 . 7028 . 7013 . 7010	7192 7189 7159 7156 7143	. 7232 . 7229 . 7218 . 7215	. 7656 . 7653 . 7638 . 7635	. 7782 . 7779 . 7766 . 7763	7857 7854 7843 7840	. 8151 . 8148 . 8110 . 8107 . 8089	.8281 .8278 .8263 .8260	88392 83350 83350 83353 83353 8353	. 8407 . 8404 . 8391 . 8388	. 8482 . 8479 . 8468
. 6766 . 6760 . 6748	.6836 .6831 .6823 .6818	. 7398 . 7392 . 7360 . 7354 . 7340	. 7392 . 7386 . 7374 . 7368	7463 7457 7430 7424 7414 7414	. 7449 . 7444 . 7435 . 7430	. 8017 . 8011 . 7999 . 7993	. 8053 . 8047 . 8037	8074 8069 8060 8055	8625 8625 8591 8594 8570 8563	. 8642 . 8636 . 8624 . 8618	.8501 .8695 .8665 .8659 .8648	. 8678 . 8672 . 8662 . 8656	. 8699 . 8694 . 8685 . 8680
. 6334 . 6337 . 6334	. 6604 . 6697 . 6694	. 6850 . 6853 . 6859 . 6850 . 6850	. 6959 . 6952 . 6959 . 6962	. 7094 . 7097 . 7094 . 7097	. 7175 . 7178 . 7175 . 7175	. 7584 . 7587 . 7584 . 7584	. 7719 . 7722 . 7719	7800 7803 7800 7803	8028 8031 8028 8028 8031 8031	. 8209 . 8212 . 8209 . 8212	88888888888888888888888888888888888888	. 8344 . 8347 . 8344 . 8344	. 8425 . 8428 . 8428 . 8428
. 6881 . 6875 . 6875 . 6881	. 6875 . 6880 . 6875 . 6880	7500 7506 7506 7506 7506 7506	. 7500 . 7506 . 7500	.7500 .7506 .7500 .7506 .7506	. 7500 . 7505 . 7500 . 7505	. 8125 . 8131 . 8125 . 8131	. 8125 . 8131 . 8125 . 8131	. 8125 . 8130 . 8125 . 8130	8750 8757 8750 8757 8750 8757	. 8750 . 8756 . 8750 . 8756	8750 8756 8756 8756 8756 8756	. 8750 . 8756 . 8750 . 8756	.8750 .8755 .8750 .8755
		.7288							. 85230				
. 6745 . 6746 . 6761	. 6791 . 6792 . 6893 . 6804	. 7288 . 7359 . 7353 . 7354 . 7371	. 7369 . 7370 . 7386 . 7387	. 7343 . 7344 . 7391 . 7406 . 7407	. 7406 . 7407 . 7419 . 7420	. 7994 . 7995 . 8011	. 8016 . 8017 . 8031	. 8031 . 8032 . 8044 . 8045	.85230 .85242 .85920 .85932 .86110	. 86202 . 86302 . 86372	.85790 .85802 .86310 .86322 .86470	. 86410 . 86422 . 86560 . 86572	. 86560 . 86572 . 86690 . 86702
. 6859 . 6875 . 6875	. 6863 . 6862 . 6875	. 7482 . 7481 . 7482 . 7481 . 7500 . 7499	. 7483 . 7482 . 7500 . 7499	7485 7484 7485 7484 7500 7499	. 7487 . 7486 . 7500 . 7499	8108 8107 8125 8124	8110 8109 8125 8124	. 8112 . 8111 . 8125 . 8125	87310 87298 87298 87298 87590 87488	. 87330 . 87318 . 87500	87340 87328 87328 87328 87500 87488	. 87350 . 87338 . 87500	. 87370 . 87358 . 87500 . 87488
. 6084 . 6090 . 6113	. 6462 . 6467 . 6484 . 6489	. 6528 . 6534 . 6557 . 6563 . 6590	. 6707 . 6713 . 6738 . 6744	. 6875 . 6894 . 6900 . 6921	. 7010 . 7015 . 7034 . 7039	. 7332 . 7338 . 7363 . 7369	7520 7526 7548 7554	. 7635 . 7640 . 7659 . 7664	7673 7680 7705 7712 7740	. 7957 . 7963 . 7988 . 7994	8034 8040 8061 8067 8090 8090	. 8145 . 8151 . 8173	. 8265 . 8265 . 8284 . 8284
. 6264 . 6261 . 6293	. 6552 . 6549 . 6574 . 6571	. 6744 . 6741 . 6773 . 6770 . 6806	.6887 .6884 .6918	7004 7001 7029 7026 7026 7056	. 7118 . 7115 . 7142 . 7139	. 7512 . 7509 . 7543 . 7540	. 7655 . 7652 . 7683 . 7680	. 7743 . 7740 . 7767 . 7764	. 7914 . 7911 . 7946 . 7943 . 7981	.8137 .8134 .8168 .8165	. 8189 . 8216 . 8213 . 8245	. 8280 . 8277 . 8308 . 8305	. 8368 . 8365 . 8392 . 8389
. 6264 . 6293 . 6293	. 6552 . 6555 . 6574 . 6577	.6744 .6747 .6773 .6776 .6806	. 6887 . 6890 . 6918 . 6921	. 7004 . 7007 . 7029 . 7032 . 7056	. 7118 . 7121 . 7142 . 7145	. 7512 . 7543 . 7546	. 7655 . 7658 . 7683 . 7686	7748 7746 7767 7770	. 7914 . 7917 . 7946 . 7949 . 7981	. 8137 . 8140 . 8168 . 8171	.8189 .8192 .8216 .8219 .8245	. 8280 . 8283 . 8308 . 8311	. 8368 . 8371 . 8392 . 8395
. 5957 . 5951 . 5973 . 5967	. 6412 . 6407 . 6424 . 6419	.6399 .6393 .6393 .6317	. 6581 . 6575 . 6598 . 6592	6808 6802 6808 6802 6823 6817	. 6946 . 6941 . 6959 . 6954	. 7206 . 7223 . 7217	. 7433 . 7427 . 7448 . 7442	. 7571 . 7566 . 7584 . 7579	7528 7521 7521 7521 7547	. 7831 . 7825 . 7848 . 7842	. 7961 . 7955 . 7961 . 7975 . 7977	. 8058 . 8052 . 8073 . 8067	. 8196 . 8191 . 8209
.6318 .6315 .6334 .6331	. 6592 . 6589 . 6604 . 6601	6832 6832 6832 6829 6850	. 6942 . 6939 . 6956	. 7079 . 7076 . 7076 . 7094	7162 7159 7175 7175	. 7567 . 7564 . 7584 . 7581	. 7704 . 7701 . 7719 . 7716	. 7787 . 7784 . 7800 . 7797	88008 88009 88008 88038 8208	. 8192 . 8189 . 8209 . 8206	. 8270 . 8267 . 8267 . 8286 . 8286	. 8329 . 8344 . 8341	. 8412 . 8409 . 8425 . 8422
2A 3A	$\begin{cases} 2A \\ 3A \end{cases}$	1A 2A 3A	2A 3A	$\begin{bmatrix} 1A \\ 2A \\ 3A \end{bmatrix}$	$\begin{cases} 2\Lambda \\ 3A \end{cases}$	$\begin{cases} 2\Lambda \\ 3\Lambda \end{cases}$	2A 3A	2A 3A	$ \begin{bmatrix} 1A \\ 2A \\ 3A \end{bmatrix} $	$\left\{\begin{array}{c} 2A\\ 3A \end{array}\right\}$	1A 2A 3A	2A 3A	$\begin{bmatrix} 2A \\ 3A \end{bmatrix}$
Z	NEF	UNC	Z	UNF	UNEF	UN	UN	UNEF	UNG	Z	UNE	UN	UNEF
11/16-12	11/16-24	84-10	%-12	34-16	3,1-20	13/16-12	13/16-16	19/16-20	7/89	78-12	7,8–14	7/8-16	7/8-20

Table III.12.—Gages for standard thread series, Unified and American screw threads—Continued

		Nominal size and threads	per ineh		21	19/6-12	15/16-16	15/16-20	1-8	1-12	1–16	1-20	11/16-12	11/16-16	11/16-18
		Series designa-	tion		20	ON ON	ND	UNEF	UNC	UNF	ND QN	UNEF	ND	ND	NEF
		Class			19	2B 3B	2B 3B	2B 3B	1B 2B 3B	1B 2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B
	ages for		Notgo		18	in. 0. 86500 . 86488 . 85750 . 85738	. 88400 . 88388 . 87830 . 87818	. 89500 . 89488 . 89120 . 89108	. 89000 . 88988 . 88988 . 87970 . 87958	92800 92788 92800 92788 91980 91980	. 94600 . 94588 . 94080 . 94068	. 95700 . 95688 . 95370 . 95358	. 99000 . 98988 . 98230	1. 00900 1. 00888 1. 00330 1. 00318	1, 01500 1, 01488 1, 01050 1, 01038
	Z plain gages for minor diameter		Ĝ		17	in. 0.84700 .84712 .84700 .84712	. 87009 . 87012 . 87012	. 88312 . 88312 . 88300	. 86500 . 86512 . 86500 . 86512 . 86500 . 86512	. 91000 . 91012 . 91000 . 91012 . 91000	. 93200 . 93212 . 93200 . 93212	. 94600 . 94612 . 94600	. 97200 . 97212 . 97200 . 97212	. 99500 . 99512 . 99500 . 99512	1. 00200 1. 00212 1. 00200 1. 00212
threads			ameter	Plus tolerance gage	16	in. 0. 8908 0. 8911 . 8889 . 8892	. 9034 . 9037 . 9018 . 9021	. 9109 . 9112 . 9094 . 9097	9320 9324 9276 9280 9254	9573 9576 9535 9538 9516	. 9659 . 9662 . 9643 . 9646	. 9734 . 9737 . 9719	1. 0158 1. 0161 1. 0139 1. 0142	1. 0284 1. 0287 1. 0268 1. 0271	1. 0326 1. 0329 1. 0310 1. 0313
Gages for internal threads	Se	Not go	Piteh diameter	Minus toleranee gage	15	in. 0. 8908 . 8905 . 8889 . 8886	. 9034 . 9031 . 9018	. 9109 . 9106 . 9094 . 9091	. 9320 . 9316 . 9276 . 9272 . 9254	9573 9570 9535 9532 9516	. 9659 . 9656 . 9643 . 9640	. 9734 . 9731 . 9719	1. 0158 1. 0155 1. 0139 1. 0136	1. 0284 1. 0281 1. 0268 1. 0265	1. 0326 1. 0323 1. 0310 1. 0307
Gages fo	X thread gages			Major diameter	14	in. 0, 9269 9263 9250 9244	. 9305 . 9299 . 9289 . 9283	. 9326 . 9321 . 9311 . 9306	9861 9854 9817 9810 9795 9788	. 9934 . 9928 . 9896 . 9877 . 9877	. 9930 . 9924 . 9914 . 9908	. 9951 . 9946 . 9936 . 9931	1, 0519 1, 0513 1, 0500 1, 0494	1, 0555 1, 0549 1, 0539 1, 0533	1. 0567 1. 0562 1. 0551 1. 0546
	×	0			13	in. 0.8834 .8837 .8834 .8837	. 8969 . 8972 . 8969 . 8972	. 9050 . 9053 . 9056 . 9053	. 9188 . 9192 . 9188 . 9192 . 9188	9459 9462 9462 9462 9462 9459	. 9594 . 9597 . 9594 . 9597	. 9675 . 9678 . 9675	1, 0084 1, 0087 1, 0084 1, 0087	1. 0219 1. 0222 1. 0219 1. 0222	1. 0264 1. 0267 1. 0264 1. 0267
		Go		Major Pitch diameter diameter	12	in. 0. 9375 . 9381 . 9375 . 9375	. 9375 . 9381 . 9375 . 9381	. 9375 . 9380 . 9375 . 9380	1, 0000 1, 0007 1, 0007 1, 0007 1, 0007	1, 0000 1, 0006 1, 0006 1, 0006 1, 0006	1. 0000 1. 0006 1. 0000 1. 0006	1. 0000 1. 0005 1. 0000 1. 0005	1. 0625 1. 0631 1. 0625 1. 0631	1. 0625 1. 0631 1. 0625 1. 0631	1, 0625 1, 0630 1, 0625 1, 0630
	major	go	Un-	finished hot-rolled material	11	in.			0.97550						
	Z plain gages for major diameter	Not go		Semi- finished	10	im. 0. 92440 92452 92610 92622	. 92660 . 92672 . 92810 . 92822	. 92800 . 92812 . 92940 . 92952	. 97550 . 97562 . 98300 . 98312 . 98500	. 98100 . 98112 . 98692 . 98860 . 98860	. 98910 . 98922 . 99060	. 99050 . 99062 . 99190 . 99202	1. 04940 1. 04952 1. 05110 1. 05122	1. 05160 1. 05172 1. 05310 1. 05322	1. 05240 1. 05252 1. 05380 1. 05392
ls.	Z platr		Go		6	in. 0. 93580 . 93568 . 93750 . 93738	. 93600 . 93588 . 93750 . 93738	. 93610 . 93598 . 93750 . 93738	. 99800 . 99788 . 99800 . 99788 1. 00000	. 99820 . 99808 . 99820 . 99808 1. 00000	. 99850 . 99838 1. 00000 . 99988	. 99860 . 99848 1. 00000 . 99988	1. 06080 1. 06068 1. 06250 1. 06238	1. 06100 1. 06088 1. 06250 1. 06238	1. 06110 1. 06098 1. 06250 1. 06238
for external threads				Minor diameter	œ	in. 0.8580 .8586 .8613 .8619	. 8769 . 8775 . 8797 . 8803	. 8883 . 8888 . 8908 . 8913	. 8803 . 8829 . 8829 . 8836 . 8866	. 9173 . 9179 . 9202 . 9208 . 9235	. 9394 . 9400 . 9422 . 9428	. 9508 . 9513 . 9533 . 9538	. 9830 . 9836 . 9862 . 9868	1, 0019 1, 0025 1, 0047 1, 0053	1. 0083 1. 0088 1. 0108 1. 0113
Gages for exte	es	Not go	ameter	Minus toleranee gage	7	in. 0.8760 .8757 .8793 .8790	. 8904 . 8901 . 8929	. 8981 . 8988 . 9016 . 9013	. 9067 . 9063 . 9100 . 9096 . 9137	9353 9350 9382 9379 9415	. 9529 . 9526 . 9557 . 9554	. 9616 . 9613 . 9641 . 9638	1, 0010 1, 0007 1, 0042 1, 0039	1. 0154 1. 0151 1. 0182 1. 0179	1, 0203 1, 0200 1, 0228 1, 0225
Ga	X thread gages		Pitch diame	Plus toleranee gage	9	in. 0.8760 .8763 .8793 .8793	. 8904 . 8932 . 8935	. 8991 . 8994 . 9016 . 9019	. 9067 . 9071 . 9100 . 9104 . 9137	. 9353 . 9356 . 9382 . 9385 . 9415	. 9529 . 9532 . 9557 . 9560	. 9616 . 9619 . 9641 . 9644	1, 0010 1, 0013 1, 0042 1, 0045	1. 0154 1. 0157 1. 0182 1. 0185	1. 0203 1. 0206 1. 0228 1. 0231
	×	0		Minor diameter	Ð	iii. 0.8456 .8450 .8473	. 8683 8677 8698 . 8692	. 8820 . 8815 . 8834 . 8829	. 8627 . 8620 . 8627 . 8620 . 8647 . 8647	. 9080 . 9074 . 9080 . 9074 . 9098	. 9308 . 9302 . 9323 . 9317	. 9444 . 9439 . 9459 . 9454	. 9706 . 9700 . 9723 . 9717	. 9933 . 9927 . 9948 . 9942	1, 0009 1, 0004 1, 0023 1, 0018
		Go		Pitch diameter	4	in. 0.8817 .8814 .8834 .8831	. 8954 . 8951 . 8969 . 8966	. 9036 . 9033 . 9050 . 9047	9168 9164 9168 9168 9188	9441 9438 9441 9441 9456	. 9579 . 9576 . 9591 . 9591	9658 9675 9672	1. 0067 1. 0064 1. 0084 1. 0081	1. 0204 1. 0201 1. 0219 1. 0216	1. 0250 1. 0247 1. 0264 1. 0261
ı		Class			ಣ	2A 3A	2.A 3.A	2.A 3.A	2.A 3.A	2.7	2A 3A	2.A 3.A	3.1	2.1 3.4	2A 3A
		Series designa-	tion		2	ND	Z D	UNEF	UNC	UNE	N	UNEF	Z 5	ND	NEF
		Nominal size and	threads per inch		-	15//6-12	15/16-16	15/16-20	1-8	1-12	1–16	1–20	11/16-12	11/16-16	13/6 18

11/8-7	11/8-8	138-12	11/8-16	11/8-18	13/16-12	13/16-16	13/6-18	1)4-7	1),4-8	154-12	11/4-16	11/118	174713	5	1916-12
UNC	z	Z N	NU	NEF	N. D.	UN	NEF	UNC	z	UNE	No C	Z F F	NEF	2	
1B 2B 3B	2B 3B	1B 2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	11B 22B 38B	2B 3B	1B 2B 3B	2B 3B	2B	3B	2B	3B
99800 99788 99800 99788 98750	1, 01500 1, 01488 1, 00470 1, 00458	1. 05300 1. 05288 1. 05300 1. 05288 1. 04480 1. 04468	1, 07100 1, 07088 1, 06580 1, 06568	1, 07800 1, 07788 1, 07300 1, 07288	1, 11500 1, 11488 1, 10730 1, 10718	1, 13400 1, 13388 1, 12830 1, 12818	1, 14000 1, 13988 1, 13550 1, 13538	1. 12300 1. 12288 1. 12300 1. 12288 1. 11250 1. 11238	1, 14000 1, 13988 1, 12970 1, 12958	1.17800 1.17788 1.17800 1.17788 1.16980 1.16968	1.19600 1.19588 1.19080 1.19068	1, 20300 1, 20288	1.19800	1, 24000 1, 23988	1, 23230 1, 23218
. 97000 . 97012 . 97000 . 97012 . 97012	. 99000 . 99012 . 99000 . 99012	1, 03500 1, 03512 1, 03500 1, 03512 1, 03512 1, 03512	1.05700 1.05712 1.05700 1.05712	1, 06500 1, 06512 1, 06500 1, 06512	1. 09700 1. 09712 1. 09700 1. 09712	1, 12000 1, 12012 1, 12000 1, 12012	1, 12700 1, 12712 1, 12700 1, 12712	1. 09500 1. 09512 1. 09500 1. 09512 1. 09500 1. 09512	1, 11500 1, 11512 1, 11500 1, 11512	1. 16000 1. 16012 1. 16000 1. 16012 1. 16000 1. 16000	1, 18200 1, 18212 1, 18200 1, 18212	1, 19000	1.19000	1, 22200 1, 22212	1, 22200
1, 0463 1, 0467 1, 0416 1, 0420 1, 0393 1, 0397	1, 0528 1, 0532 1, 0505 1, 0509	1, 0826 1, 0829 1, 0787 1, 0790 1, 0768 1, 0771	1. 0909 1. 0912 1. 0893 1. 0896	1. 0951 1. 0954 1. 0935 1. 0938	1. 1409 1. 1412 1. 1390 1. 1393	1.1535 1.1538 1.1519 1.1522	1.1577 1.1580 1.1561 1.1564	1.1716 1.1720 1.1668 1.1672 1.1644 1.1648	1.1780 1.1784 1.1757 1.1757 1.1761	1, 2079 1, 2082 1, 2039 1, 2042 1, 2019 1, 2022	1. 2160 1. 2163 1. 2144 1. 2147	1, 2202 1, 2205	1, 2186 1, 2189	1, 2659 1, 2662	1, 2640 1, 2643
1. 0463 1. 0459 1. 0416 1. 0412 1. 0393 1. 0389	1.0528 1.0524 1.0505 1.0501	1. 0826 1. 0823 1. 0787 1. 0784 1. 0768 1. 0765	1. 0909 1. 0906 1. 0893 1. 0890	1.0951 1.0948 1.0935 1.0932	1. 1409 1. 1406 1. 1390 1. 1387	1, 1535 1, 1532 1, 1519 1, 1516	1.1577 1.1574 1.1561 1.1558	1, 1716 1, 1712 1, 1668 1, 1664 1, 1644 1, 1640	1, 1780 1, 1776 1, 1757 1, 1753	1,2079 1,2076 1,2036 1,2036 1,2019 1,2016	1, 2160 1, 2157 1, 2144 1, 2141	1, 2202 1, 2199	1.2186	1. 2659 1. 2656	1. 2640 1. 2637
1, 1082 1, 1075 1, 1035 1, 1028 1, 1012 1, 1005	1. 1069 1. 1062 1. 1046 1. 1039	1, 1187 1, 1181 1, 1148 1, 1142 1, 1129 1, 1123	1, 1180 1, 1174 1, 1164 1, 1158	1, 1192 1, 1187 1, 1176 1, 1171	1, 1770 1, 1764 1, 1751 1, 1745	1, 1806 1, 1800 1, 1790 1, 1784	1, 1818 1, 1813 1, 1802 1, 1797	1, 2335 1, 2328 1, 2287 1, 2280 1, 2263 1, 2263	1, 2321 1, 2314 1, 2298 1, 2291	1, 2440 1, 2434 1, 2434 1, 2304 1, 2380 1, 2374	1. 2431 1. 2425 1. 2415 1. 2409	1. 2443 1. 2438	1, 2427	1.3020	1.3001
1, 0322 1, 0326 1, 0322 1, 0322 1, 0322 1, 0322	1.0438 1.0442 1.0438	1, 0709 1, 0712 1, 0709 1, 0712 1, 0709 1, 0712	1. 0844 1. 0847 1. 0844 1. 0844	1.0889 1.0892 1.0889 1.0892	1.1334 1.1337 1.1334 1.1337	1.1469 1.1472 1.1469 1.1472	1. 1514 1. 1517 1. 1514 1. 1514	1, 1572 1, 1572 1, 1572 1, 1572 1, 1575 1, 1575	1, 1688 1, 1692 1, 1688 1, 1692	1, 1959 1, 1962 1, 1959 1, 1962 1, 1959 1, 1962	1, 2094 1, 2097 1, 2094 1, 2097	1, 2139	1, 2139	1, 2584 1, 2587	1, 2584
1, 1250 1, 1257 1, 1250 1, 1257 1, 1250 1, 1250	1, 1250 1, 1257 1, 1250 1, 1250	1, 1250 1, 1256 1, 1256 1, 1256 1, 1250 1, 1256	1. 1250 1. 1256 1. 1250 1. 1256	1, 1250 1, 1255 1, 1250 1, 1255	1, 1875 1, 1881 1, 1875 1, 1881	1, 1875 1, 1881 1, 1875 1, 1881	1. 1875 1. 1880 1. 1875 1. 1880	1, 2500 1, 2507 1, 2500 1, 2500 1, 2500 1, 2500	1, 2500 1, 2507 1, 2500 1, 2507	1. 2500 1. 2506 1. 2506 1. 2506 1. 2506 1. 2506	1, 2500 1, 2506 1, 2500 1, 2506	1, 2500 1, 2505	1. 2500	1, 3125 1, 3131	1,3125
1.09820	1.10040							1, 22320	1, 22540						
1, 09820 1, 09832 1, 10649 1, 10652 1, 10860 1, 10872	1, 10790 1, 10802 1, 11000 1, 11012	1, 10600 1, 10612 1, 11180 1, 11192 1, 11372	1. 11410 1. 11422 1. 11560 1. 11572	1.11490 1.11502 1.11630 1.11642	1.17440 1.17452 1.17610 1.17622	1.17660 1.17672 1.17810 1.17822	1.17730 1.17742 1.17880 1.17892	1, 22320 1, 22332 1, 23140 1, 23152 1, 23360 1, 23372	1, 23290 1, 23302 1, 23500 1, 23512	1, 23100 1, 23112 1, 23680 1, 23692 1, 23860 1, 23872	1. 23910 1. 23922 1. 24060 1. 24072	1. 23980	1. 24130	1. 29940	1.30110
1, 12280 1, 12268 1, 12280 1, 12268 1, 12500 1, 12488	1, 12290 1, 12278 1, 12500 1, 12488	1. 12320 1. 12308 1. 12308 1. 12308 1. 12500 1. 12488	1.12350 1.12338 1.12500 1.12488	1, 12360 1, 12348 1, 12500 1, 12488	1, 18580 1, 18568 1, 18750 1, 18738	1.18600 1.18588 1.18750 1.18738	1. 18600 1. 18588 1. 18750 1. 18738	1, 24780 1, 24768 1, 24768 1, 24768 1, 25000 1, 24988	1. 24790 1. 24778 1. 25000 1. 24988	1, 24820 1, 24808 1, 24808 1, 24808 1, 25000 1, 24988	1. 24830 1. 24838 1. 25000 1. 24988	1, 24850	1. 25000 1. 24988	1,31080	1, 31250 1, 31238
. 9882 . 9889 . 9919 . 9926 . 9956	1.0077 1.0084 1.0115 1.0122	1. 0421 1. 0427 1. 0451 1. 0457 1. 0484 1. 0490	1.0644 1.0650 1.0672 1.0678	1. 0708 1. 0713 1. 0733 1. 0738	1. 1079 1. 1085 1. 1111 1. 1117	1. 1268 1. 1274 1. 1296 1. 1302	1.1330 1.1335 1.1358 1.1363	1, 1130 1, 1137 1, 1167 1, 1174 1, 1208 1, 1215	1, 1326 1, 1333 1, 1364 1, 1371	1. 1669 1. 1675 1. 1699 1. 1705 1. 1733	1. 1893 1. 1899 1. 1921 1. 1927	1. 1955 1. 1960	1, 1933	1, 2329	1. 2361
1. 0191 1. 0187 1. 0228 1. 0224 1. 0268 1. 0264	1. 0348 1. 0344 1. 0386 1. 0382	1.0601 1.0598 1.0631 1.0628 1.0664	1. 0779 1. 0776 1. 0807 1. 0804	1.0828 1.0825 1.0853 1.0850	1, 1259 1, 1256 1, 1291 1, 1288	1, 1403 1, 1400 1, 1431 1, 1428	1. 1450 1. 1447 1. 1478 1. 1475	1, 1439 1, 1435 1, 1476 1, 1472 1, 1517 1, 1513	1, 1597 1, 1593 1, 1635 1, 1631	1. 1849 1. 1846 1. 1879 1. 1876 1. 1913 1. 1910	1. 2028 1. 2025 1. 2056 1. 2056	1, 2075 1, 2072	1. 2103 1. 2100	1, 2509 1, 2506	1, 2541
1, 0191 1, 0195 1, 0228 1, 0232 1, 0268 1, 0272	1.0348 1.0352 1.0386 1.0390	1.0601 1.0604 1.0631 1.0634 1.0664 1.0664	1, 0779 1, 0782 1, 0807 1, 0810	1,0828 1,0831 1,0853 1,0856	1, 1259 1, 1262 1, 1291 1, 1294	1. 1403 1. 1406 1. 1431 1. 1434	1.1450 1.1453 1.1478 1.1481	1, 1439 1, 1443 1, 1476 1, 1480 1, 1517 1, 1521	1. 1597 1. 1601 1. 1635 1. 1639	1. 1849 1. 1852 1. 1879 1. 1882 1. 1913 1. 1913	1. 2028 1. 2031 1. 2056 1. 2059	1. 2075 1. 2078	1. 2103	1, 2509	1, 2541
.9681 .9674 .9681 .9703	. 9876 . 9869 . 9897	1.0330 1.0324 1.0330 1.0324 1.0348	1, 0558 1, 0552 1, 0573 1, 0567	1. 0634 1. 0629 1. 0648 1. 0643	1.0956 1.0950 1.0973 1.0967	1, 1183 1, 1177 1, 1198 1, 1192	1, 1258 1, 1253 1, 1273 1, 1268	1.0931 1.0924 1.0931 1.0924 1.0953	1, 1126 1, 1119 1, 1147 1, 1140	1. 1580 1. 1574 1. 1580 1. 1574 1. 1598 1. 1592	1. 1808 1. 1802 1. 1823 1. 1817	1.1883	1. 1898 1. 1893	1, 2206 1, 2200	1, 2223 1, 2217
1, 0300 1, 0296 1, 0300 1, 0296 1, 0322 1, 0318	1. 0417 1. 0413 1. 0438 1. 0434	1.0691 1.0688 1.0691 1.0688 1.0709 1.0709	1. 0829 1. 0826 1. 0844 1. 0841	1,0875 1,0872 1,0889 1,0886	1. 1317 1. 1314 1. 1334 1. 1331	1, 1454 1, 1451 1, 1469 1, 1466	1, 1499 1, 1496 1, 1514 1, 1511	1.1550 1.1546 1.1550 1.1546 1.1572 1.1568	1.1667 1.1663 1.1688 1.1684	1. 1941 1. 1938 1. 1941 1. 1938 1. 1959 1. 1956	1. 2079 1. 2076 1. 2094 1. 2091	1.2124	1, 2139	1, 2567	1, 2584
1A 2A 3A	2A 3A	1.A 2.A 3.A	2.A 3.A	2.A 3.A	2A 3A	2A 3A	2A 3A	$\begin{bmatrix} 1A \\ 2A \\ 3A \end{bmatrix}$	2A 3A	$ \left\{ \begin{array}{c} 1A \\ 2A \\ 3A \end{array} \right. $	2A 3A	2A	34	2A	3A
UNG	Z	UNF	UN	NEF	ND	UN	NEF	UNG	Z	UNF	UN	5	7		Z D
178-7	13,8-8	118-12	158-16	11,8-18	13/16-12	13/6-16	13/16-18	114-7	11,4-8	114-12	114-16	9 7 7 1	174-18		15/16-12

Table III.12.—Gages for standard thread series, Unified and American screw threads—Continued

		-			21	157, 16	07_07/7	157. 10	12/6-10	•	13%-6		137.0	1/8-0		138-12		137.16	07-8/7	132 10	01-86-1	1777	1576-12
		Series designa-	tion		20	Ž			I I		UNC		<u></u>	X-		UNF		<u></u>		- A	444	-	Z
		Class			19	2B	3B	2B	3B	1B	2B	3B	2B	3B	1B	2B	3B	2B	3B	2B	3B	2B	3B
	ages for ameter		Notgo		18	in. 1. 25900 1. 25888	1, 25330 1, 25318	1, 26500 1, 26488	1, 26050 1, 26038	1, 22500 1, 22488	1, 22500 1, 22488	1. 21460	1. 26500 1. 26488	1, 25470 1, 25458	1.30300	1,30300	1. 29480 1. 29468	1, 32100	1.31580 1.31568	$\frac{1.32800}{1.32788}$	1, 32300 1, 32288	1.36000	1.35730
	Z plain gages for minor diameter		Ĝ		17	in. 1. 24500 1. 24512	1. 24500 1. 24512	1, 25200 1, 25212	1, 25200 1, 25212	1. 19500 1. 19512	1. 19500 1. 19512	1.19500 1.19512	1, 24000	1. 24000 1. 24012	1.28500 1.28512	1. 28500	1, 28500 1, 28512	1.30700	1.30700	1.31500 1.31512	1,31500 1,31512	1.34700	1.34700
hreads			ameter	Plus tolerance gage	16	in. 1. 2785 1. 2788	1, 2769	1, 2827 1, 2830	1. 2811	1, 2822	1, 2771	1, 2745	1,3031	1.3008	1.3332	1.3291	1.3270	1.3410	1, 3394	1.3452	1.3436	1,3910 1,3913	1.3891
Gages for internal threads	es	Not go	Pitch diameter	Minus toleranee gage	15	in. 1, 2785 1, 2782	1. 2769	1. 2827	1. 2811	1. 2822	1, 2771	1. 2745	1.3031	1.3008	1.3332	1, 3291	1.3270	1.3410	1.3394	1,3452	1.3436	1.3910	1.3891
Gages fo	X thread gages			Major diameter	14	<i>in.</i> 1. 3056 1. 3050	1.3040	1, 3068	1.3052	1.3544	1,3493	1, 3467	1.3572 1.3565	1.3549	1.3693	1,3652	1.3631	1.3681	1.3665 1.3659	1.3693	1.3677	1.4271	1, 4252
	×	0		Piteh diameter	13	in. 1, 2719 1, 2722	1, 2719	1. 2764	1, 2764	1. 2667 1. 2671	1. 2667	1. 2667	1. 2938	1, 2938	1.3209	1,3209	1.3209	1.3344	1, 3344	1.3389	1.3389	1.3834	1.3834
		Go		Major diameter	12	<i>in</i> . 1. 3125 1. 3131	1.3125	1. 3125 1. 3130	1.3125	1.3750	1.3750	1. 3750 1. 3758	1.3750	1.3750 1.3757	1.3750 1.3756	$\frac{1.3750}{1.3756}$	1.3750 1.3756	1.3750 1.3756	1,3750 1,3756	1,3750	1.3750 1.3755	1.4375	1.4375
	major	go	Un-	finished Major hot-rolled diameter material	111	in.					1.34530 1.34542		1.35030 1.35042								1 1		
	plain gages for major diameter	Not go		Semi- finished	10	in. 1.30160 1.30172	1.30310	1.30230	1, 30380	1.34530	1. 35440 1. 35452	1,35680	1.35780 1.35792	1.36000	1.35590	1. 36170 1. 36182	1.36360	1.36410 1.36422	1.36560	1.36480	1.36630	1, 42430	1, 42610
qs	Z plair		Ĝ		6	<i>in.</i> 1. 31100 1. 31088	1. 31250 1. 31238	1.31100	1.31250 1.31238	1.37260	1.37260	1.37500	1.37280 1.37268	1.37500 1.37488	1. 37310 1. 37298	1, 37310 1, 37298	1.37500	1.37350 1.37338	1. 37500 1. 37488	1.37350 1.37338	1.37500 1.37488	1. 43570 1. 43558	1. 43750 1. 43738
or external threads				Minor diameter	00	in. 1. 2518 1. 2524	1, 2546	1, 2580	1,2608	1, 2162 1, 2170	1, 2202	1, 2246	1, 2573	1. 2613 1. 2620	1, 2916 1, 2922	1, 2947	1.2982	1.3143	1.3171	1.3205	1.3233	1,3577	1.3610
Gages for exte	es	Not go	ımeter	Minus tolerance gage	1	in. 1. 2653 1. 2650	1. 2681	1. 2700	1, 2728 1, 2725	1, 2523 1, 2519	1, 2563 1, 2559	1, 2607	1, 2844	1. 2884	1.3096	1. 3127 1. 3124	1.3162 1.3159	1.3278	1.3306	1.3325	1, 3353 1, 3350	1.3757	1, 3790
G	X thread gages		Pitch diameter	Plus tolerance gage	9	in. 1. 2653 1. 2656	1, 2681	1, 2700	1. 2728	1, 2523 1, 2527	1 2563 1. 2567	1, 2607	1, 2844	1, 2884	1, 3096 1, 3099	1.3127 1.3130	1.3162 1.3165	1.3278	1.3306	1. 3325	1.3353	1.3757	1.3790
	×	0		Minor diameter	10	in. 1. 2433 1. 2427	1. 2448	1, 2508	1, 2523	1. 1921 1. 1913	1. 1921	1.1945	1, 2375 1, 2368	1, 2397	1. 2829	1, 2829	1, 2848	1.3058	1, 3073	1.3133	1.3148	1.3455	1.3473
		Go		Pitch diameter	4	in. 1. 2704 1. 2701	1. 2719	1. 2749	1, 2764 1, 2761	1, 2643	1, 2643	1, 2667 1, 2663	1, 2916 1, 2912	1, 2938	1.3190	1, 3190	1, 3209	1.3329	1. 3344	1. 3374	1.3389	1,3816	1,3834
		Class			89	2.A	3A	V2)	3.4	11.	2A	3.4	2A	3.4	1A	2Λ	3.A	2A	3A	2A	3A) 2A	3A
		Series designa-	tion		2	N	Š.	<u> </u>	1 1 Z		UNC	74	2	Z-1		UNF		N	40	5	4	NL	Z C IZ
		Nominal Size and	threads per inch			257	01-9161	9	1%16-18		13,8-6		0 7 6	0-861		13/6-12		37 76	07-827	136.10	178-10	177	15/16-12

i P	1/16-16		1/16-18	175-6	Š	1/2-8	1}2-12	917.10	1,52-10	117.10	1/2-18	197,-16	1/16-10	10% 10	1716-13	0 75	1/8-10 1/8-10	01 751	178-17	21. 21.	07-841	154.10	178-13
	Z S	<u> </u>	Z Z	UNC	,	Z	UNF		Z	9	I I	,	Z	Z Z	4 4 2 2	,	Z		Z C	Ė	Z	Z E	1 1 1 1 1
2B	3B	28	33	1B 2B 3B	2B	3B	1B 2B 3B	2B	3B	2B	3B	2B	3B	2B	33	2B	3B	28	3B	2B	38	2B	3B
1.38400	1.37830	1.39000	1,38550 1,38538	1,35000 1,34938 1,35000 1,34988 1,33960 1,33948	1, 39000	1, 37970 1, 37958	1, 42788 1, 42788 1, 42800 1, 42788 1, 41980 1, 41968	1,44600	1,44080	1. 45200 1. 45188	1,44800	1,50900	1, 50330 1, 50314	1.51500 1.51484	1, 51050 1, 51034	1,51500	1, 50470 1, 50454	1, 55300 1, 55284	1,54480 1,54464	1, 57100 1, 57081	1. 56580 1. 56564	1.57800	1. 57300 1. 57284
1.37000	1.37000	1.37700	1.37700	1, 32000 1, 32012 1, 32000 1, 32012 1, 32010 1, 32012	1, 36500 1, 36512	1, 36500 1, 36512	1,41000 1,41012 1,41012 1,41012 1,41012 1,41012	1, 43200 1, 43212	1,43200	1,44000	1, 44000 1, 44012	1,49500 1,49516	1, 49500 1, 49516	1, 50200 1, 50216	1,50200 1,50216	1, 49300	1, 49000	1,53500	1,53500 1,53516	1,55700	1, 55700 1, 55716	1, 56500 1, 56516	1,56500
1. 40 3 7 1. 4040	1. 4020 1. 4023	1. 4079	1. 4062 1. 4065	1, 4075 1, 4079 1, 4022 1, 4026 1, 3996 1, 4000	1,4283	1,4259	1. 4584 1. 4587 1. 4542 1. 4545 1. 4525 1. 4525	1. 4662 1. 4665	1,4645	1, 4704 1, 4707	1.4687 1.4690	1.5287 1.5291	1, 5270 1, 5274	1,5329	1,5312	1,5535	1,5510 1,5515	1. 5785 1. 5789	1.5766	1.5912	1, 5895 1, 5899	1,5954 1,5958	1, 5937 1, 5941
1.4037	1.4020	1. 4079 1. 4076	1, 4062 1, 4059	1, 4075 1, 4071 1, 4022 1, 4018 1, 3996 1, 3992	1, 4283 1, 4279	1, 4259	1, 4584 1, 4581 1, 4542 1, 4539 1, 4522 1, 4519	1. 4662 1. 4659	1,4645	1,4704	1,4687	1, 5287 1, 5283	1, 5270 1, 5266	1,5329	1, 5312 1, 5308	1, 5535 1, 5530	1.5510 1.5505	1.5785 1.5781	1, 5766 1, 5762	1, 5912 1, 5908	1, 5895 1, 5891	1, 5954 1, 5950	1, 5937 1, 5933
1, 4308	1.4291	1.4320 1.4315	1, 4303 1, 4298	1, 1797 1, 4789 1, 4744 1, 4736 1, 4718 1, 4710	1.4824	1.4800	1, 4945 1, 4939 1, 4903 1, 4897 1, 4883 1, 4877	1,4933	1, 4916 1, 4910	1, 4945	1, 4928 1, 4923	1, 5558 1, 5552	1,5511 1,5535	1,5570 1,5565	1, 5553 1, 5518	1. 6076 1. 6069	1,6051	1.6146 1.6140	1.6127	1.6183	1.6166	1.6195 1.6190	1.6178
1.3969	1.3969	1.4014	1. 4014 1. 4017	1, 3917 1, 3921 1, 3917 1, 3921 1, 3917 1, 3921	1, 4188 1, 4192	1,4188 1,4192	1, 4459 1, 4462 1, 4459 1, 4462 1, 4462 1, 4462	1,4594	1,4594	1, 4639	1,4639	1, 5219	1,5219	1, 5264 1, 5268	1, 5261	1,5438	1.5438	1. 5709 1. 5713	1, 5709	1.5844	1.5844	1, 5889	1, 5889
1, 4375	1. 4375	1. 4375 1. 4380	1. 4375 1. 4380	1, 5000 1, 5000 1, 5000 1, 5000 1, 5000 1, 5000	1, 5000 1, 5007	1.5000	1,5000 1,5006 1,5006 1,5006 1,5000 1,5000	1,5000	1,5000	1,5000	1, 5000 1, 5005	1, 5625 1, 5631	1, 5625 1, 5631	1. 5625 1. 5630	1, 5625 1, 5630	1,6250 1,6257	1,6250	1, 6250 1, 6256	1. 6250 1. 6256	1,6250	1. 6250 1. 6256	1, 6250 1, 6255	1. 6250 1. 6255
		1 8 1 1 8 1 8 1 7 1 1 1 4 1 8 1		1, 47030	1, 47530 1, 47542											1,60030						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1, 42650 1, 42662	1. 42810 1. 42822	1. 42730 1. 42742	1. 42880 1. 42892	1, 47030 1, 47042 1, 47940 1, 47952 1, 48180 1, 48192	$\frac{1,48280}{1,48292}$	1.48500 1.48512	1,48090 1,48102 1,48670 1,48682 1,48860 1,48872	$\frac{1.48900}{1.48912}$	$\frac{1,49060}{1,49072}$	1,48980 1,48992	1, 49130 1, 49142	1, 55150 1, 55166	$\frac{1.55310}{1.55326}$	1, 55230 1, 55246	1.55380 1.55396	1, 60780 1, 60796	1.61000 1.61016	1.61180 1.61196	1,61360 1,61376	1,61400 1,61416	1.61560 1.61576	1.61480 1.61496	1.61630 1.61646
1, 43590 1, 43578	1. 43750 1. 43738	1.43600 1.43588	1.43750 1.43738	1, 49760 1, 49748 1, 49760 1, 49748 1, 50000 1, 49988	1.49780 1.49768	1, 50000 1, 49988	1, 49810 1, 49798 1, 49810 1, 49798 1, 50000 1, 49988	1, 49840 1, 49828	1,50000 1,49988	1, 49850 1, 49838	1, 50000 1, 49988	1,56090 1,56074	1.56250 1.56234	1,56100 1,56084	1, 56250 1, 56234	1.62280	1.62500 1.62484	1, 62320 1, 62304	1,62500 1,62484	1, 62340 1, 62324	1.62500 1.62484	1, 62350	1.62500
1.3766	1.3795	1.3829	1.3857	1.3411 1.3419 1.3451 1.3459 1.3495	1.3822	1.3862	1, 4164 1, 4170 1, 4196 1, 4202 1, 4231 1, 4237	1,4391	1,4420	1,4454	1,4482	1, 5016	1,5045	1,5079	1. 5107 1. 5112	1.5071	1,5111	1.5452	1.5485	1, 5641	1.5670 1.5676	1,5704	1,5732
1.3901	1.3930	1.3949	1.3977	1, 3772 1, 3768 1, 3812 1, 3808 1, 3856 1, 3856	1, 4093	1.4133	1, 4344 1, 4311 1, 4376 1, 4373 1, 4411 1, 4408	1, 4526 1, 4523	1.4555 1.4552	1, 4574	1,4602	1,5151	1,5180	1,5199	1. 5227 1. 5223	1, 5342	1,5382	1.5632	1.5665	1.5776	1,5805	1,5824	1,5852
1.3901 1.3904	1. 3930 1. 3933	1.3949	1.3977 1.3980	1.3772 1.3776 1.3812 1,3816 1.3856 1.3860	1,4093	1, 4133	1. 4344 1. 4347 1. 4376 1. 4379 1. 4411	1, 4526 1, 4529	1.4555 1.4558	1, 4574	1, 4602 1, 4605	1. 5151 1. 5155	1,5180 1,5184	1,5199	1.5227	1, 5342	1, 5382 1, 5387	1, 5632 1, 5636	1. 5665 1. 5669	1.5776	1, 5805 1, 5809	1,5824	1, 5852 1, 5856
1.3682	1. 3698 1. 3692	1. 3758	1.3773	1.3171 1.3163 1.3171 1.3163 1.3195 1.3187	1.3625	1, 3647	1, 4079 1, 4073 1, 4073 1, 4073 1, 4098 1, 4092	1,4307	1, 4323	1, 4383	1, 4398	1. 4932 1. 4926	1, 4948	1,5008	1,5023	1, 4875	1,4897	1,5330	1,5348	1.5557	1, 5573	1, 5633	1.5648 1.5643
1.3953	1.3969	1.3999	1.4014	1, 3893 1, 3889 1, 3889 1, 3893 1, 3917 1, 3913	1.4166	1,4188	1. 4440 1. 4437 1. 4437 1. 4459 1. 4456	1. 4578 1. 4575	1,4594	1, 4624	1,4639	1, 5203 1, 5199	1, 5219	1, 5249	1, 5264	1,5416	1, 5438 1, 5433	1, 5691 1, 5687	1,5709 1,5705	1. 5828	1. 5844 1. 5840	1, 5874 1, 5870	1. 5889 1. 5885
2A	34	2A	3A	2A 3A	2A	34	1A 2A 3A	2A	3A	2A	34	2A	3.4	2A	3.4	2A	3A	2.A	3.4	2.A	3.4	2.A	34
,	Z S	£	Z Z	UNC	,	Z	UNF	1111	ž O	1	NEF	2	Z,	9	4 4 2	,	Z	,	Z.	****	N O	E E	Z Z
	17/6-16	i	17/6-18	1½-6	2	152-8	1½-12	2	172-10		172-18	21 - 701	1916-10	0 70 1	1916-18	G M	198-8	0 7 20 7	178-12	7	178-10	95.78	x1-8-1x

Table III.12.—Gages for standard thread series, Unified and American screw threads—Continued

		Nominal size and threads			21		1.416-16		1,516-18	134-5	134-8	134-12	134-16	113/10-16	8-8/21	17,8-12	91-821
		Serles designa-	tion		20	:	Z		Z Z Z	UNC	z	Nn	UNEF	z 	Z ——	Z5	ON ON
		Class			19	2B	3B	2B	8.B	11B 2B 3B	2B 3B						
	ages for ameter		Notgo		18	<i>in.</i> 1, 63400 1, 63384	1. 62830 1. 62814	1,64000	1, 63550	1. 56800 1. 56784 1. 56800 1. 56784 1. 55750 1. 55734	1. 64000 1. 63984 1. 62970 1. 62954	1. 67800 1. 67784 1. 66980 1. 66964	1. 69600 1. 69584 1. 69080 1. 69064	1, 75900 1, 75884 1, 75330 1, 75314	1, 76500 1, 76484 1, 75470 1, 75454	1, 80300 1, 80284 1, 79480 1, 79464	1. 82100 1. 82084 1. 81580 1. 81564
	Z plain gages for minor diameter		g.		17	in. 1. 62000 1. 62016	1, 62000 1, 62016	1, 62700 1, 62716	1, 62700 1, 62716	1, 53400 1, 53416 1, 53400 1, 53416 1, 53410 1, 53410	1. 61500 1. 61516 1. 61500 1. 61516	1. 66000 1. 66016 1. 66000 1. 66016	1. 68200 1. 68216 1. 68200 1. 68216	1. 74500 1. 74516 1. 74500 1. 74516	1, 74000 1, 74016 1, 74000 1, 74016	1. 78500 1. 78516 1. 78500 1. 78516	1. 80700 1. 80716 1. 80700 1. 80716
hreads			meter	Plus tolerance gage	16	in. 1. 6538 1. 6542	1. 6521 1. 6525	1,6580	1. 6563	1, 6375 1, 6380 1, 6317 1, 6322 1, 6288 1, 6293	1, 6786 1, 6791 1, 6762 1, 6767	1, 7037 1, 7041 1, 7017 1, 7021	1. 7163 1. 7167 1. 7146 1. 7150	1. 7788 1. 7792 1. 7771 1. 7775	1, 8038 1, 8043 1, 8013 1, 8018	1, 8287 1, 8291 1, 8267 1, 8271	1. 8413 1. 8417 1. 8396 1. 8400
Gages for internal threads	so.	Not go	Pitch diameter	Minus tolerance gage	15	in. 1. 6538 1. 6534	1. 6521 1. 6517	1.6580 1.6576	1. 6563 1. 6559	1, 6375 1, 6370 1, 6317 1, 6312 1, 6288 1, 6283	1, 6786 1, 6781 1, 6762 1, 6757	1, 7037 1, 7033 1, 7017 1, 7013	1. 7163 1. 7159 1. 7146 1. 7142	1. 7788 1. 7784 1. 7771 1. 7767	1. 8038 1. 8033 1. 8013 1. 8008	1. 8287 1. 8283 1. 8267 1. 8263	1. 8413 1. 8409 1. 8395 1. 8392
Gages for	thread gages			Major diameter	14	<i>in.</i> 1. 6809 1. 6803	1. 6792 1. 6786	1. 6821 1. 6816	1.6804	1, 7241 1, 7233 1, 7183 1, 7175 1, 7175 1, 7154	1, 7327 1, 7320 1, 7303 1, 7296	1. 7398 1. 7392 1. 7378 1. 7372	1. 7434 1. 7428 1. 7417 1. 7411	1. 8059 1. 8053 1. 8042 1. 8036	1. 8579 1. 8572 1. 8554 1. 8547	1. 8648 1. 8642 1. 8628 1. 8622	1. 8684 1. 8678 1. 8667 1. 8661
	X			Pitch diameter	13	in. 1. 6469 1. 6473	1.6469	1, 6514 1, 6518	1.6514	1, 6201 1, 6206 1, 6201 1, 6201 1, 6201 1, 6206	1, 6688 1, 6693 1, 6693 1, 6693	1, 6959 1, 6963 1, 6959 1, 6963	1. 7094 1. 7098 1. 7094 1. 7098	1. 7719 1. 7723 1. 7719 1. 7723	1. 7938 1. 7943 1. 7938 1. 7943	1. 8209 1. 8213 1. 8209 1. 8213	1. 8344 1. 8348 1. 8344 1. 8344
		Go		Major diameter	12	in. 1. 6875 1. 6881	1, 6875	1.6875 1.6880	1.6875	1, 7500 1, 7508 1, 7508 1, 7508 1, 7508 1, 7508	1, 7500 1, 7507 1, 7500 1, 7500	1, 7500 1, 7506 1, 7500 1, 7506	1, 7500 1, 7506 1, 7500 1, 7506	1, 8125 1, 8131 1, 8125 1, 8131	1. 8750 1. 8757 1. 8750 1. 8750	1. 8750 1. 8756 1. 8750 1. 8750	1, 8750 1, 8756 1, 8750 1, 8756
	najor	go	ďn.	finished hot-rolled material	11	in.				1,71650	1, 72520				1, 85020		
	gages for major diameter	Not		Semi- finished	10	in. 1. 67650 1. 67666	1. 67810 1. 67826	1. 67730	1. 67880 1. 67896	1, 71650 1, 71666 1, 72680 1, 72696 1, 72950 1, 72966	1. 73270 1. 73286 1. 73500 1. 73516	1. 73680 1. 73696 1. 73860 1. 73876	1. 73900 1. 73916 1. 74060 1. 74076	1. 80150 1. 80166 1. 80310 1. 80326	1. 85770 1. 85786 1. 86000 1. 86016	1. 86180 1. 86196 1. 86360 1. 86376	1. 86400 1. 86416 1. 86560 1. 86576
ls	Z plain		Go		6	in. 1. 68590 1. 68574	1. 68750 1. 68734	1.68600	1. 68750 1. 68734	1, 74730 1, 74714 1, 74730 1, 74714 1, 75000 1, 74984	1, 74770 1, 74754 1, 75000 1, 74984	1, 74820 1, 74804 1, 75000 1, 74984	1, 74840 1, 74824 1, 75000 1, 74984	1, 81090 1, 81074 1, 81250 1, 81234	1, 87270 1, 87254 1, 87500 1, 87484	1. 87320 1. 87304 1. 87500 1. 87484	1. 87340 1. 87324 1. 87500 1. 87484
external threads				Minor diameter	œ	in. 1. 6265 1. 6271	1.6294	1, 6328 1, 6333	1, 6356 1, 6361	1, 5607 1, 5615 1, 5652 1, 5660 1, 5701 1, 5709	1, 6319 1, 6326 1, 6361 1, 6368	1. 6701 1. 6707 1. 6734 1. 6740	1. 6890 1. 6896 1. 6919 1. 6925	1, 7515 1, 7521 1, 7544 1, 7550	1, 7567 1, 7574 1, 7610 1, 7617	1, 7951 1, 7957 1, 7984 1, 7990	1. 8140 1. 8146 1. 8169 1. 8175
Gages for exte	SS	Not go		Minus tolerance gage	2	in. 1. 6400 1. 6396	1.6429	1. 6448	1. 6476 1. 6472	1. 6040 1. 6035 1. 6085 1. 6080 1. 6134 1. 6129	1. 6590 1. 6585 1. 6632 1. 6627	1, 6881 1, 6877 1, 6914 1, 6910	1, 7025 1, 7021 1, 7054 1, 7050	1, 7650 1, 7646 1, 7679 1, 7675	1, 7838 1, 7833 1, 7881 1, 7876	1. 8131 1. 8127 1. 8164 1. 8160	1. 8275 1. 8271 1. 8304 1. 8300
G	X thread gages		Pitch diameter	Plus tolerance gage	9	in. 1. 6400 1. 6404	1. 6429 1. 6433	1. 6448 1. 6452	1.6476	1, 6040 1, 6045 1, 6085 1, 6080 1, 6090 1, 6134 1, 6139	1. 6590 1. 6595 1. 6632 1. 6637	1, 6881 1, 6885 1, 6914 1, 6918	1, 7025 1, 7029 1, 7054 1, 7058	1, 7650 1, 7654 1, 7679 1, 7683	1. 7838 1. 7843 1. 7881 1. 7886	1. 8131 1. 8135 1. 8164 1. 8168	1, 8275 1, 8279 1, 8304 1, 8308
	×	0		Minor	ī,	in. 1. 6182 1. 6176	1.6198	1, 6258 1, 6253	1. 6273 1. 6268	1, 5308 1, 5300 1, 5300 1, 5308 1, 5300 1, 5335 1, 5327	1, 6124 1, 6117 1, 6147 1, 6140	1, 6580 1, 6574 1, 6598 1, 6592	1. 6807 1. 6801 1. 6823 1. 6817	1, 7432 1, 7426 1, 7448 1, 7442	1, 7374 1, 7367 1, 7397 1, 7390	1, 7830 1, 7824 1, 7848 1, 7842	1. 8057 1. 8051 1. 8073 1. 8067
		Go		Pitch diameter	4	ia. 1. 6453 1. 6449	1, 6469 1, 6465	1.6499	1, 6514 1, 6510	1. 6174 1. 6169 1. 6174 1. 6169 1. 6201 1. 6196	1, 6665 1, 6660 1, 6688 1, 6683	1, 6941 1, 6937 1, 6959 1, 6955	1. 7078 1. 7074 1. 7094 1. 7090	1, 7703 1, 7699 1, 7719 1, 7715	1, 7915 1, 7910 1, 7938 1, 7933	1, 8191 1, 8187 1, 8209 1, 8205	1. 8328 1. 8324 1. 8344 1. 8340
		Class			က	2A	3.A	2.A	3.4	1A 2.3 3.3	3.1	3.1	3.1	3.1	2A 3.4	2A 3.4	2A 3A
		Series designa-	tion		2	>	4	7 7 7	T N P	UNG	z	Z Z	UNEF	Z	Z	N	N N
		Nominal size and	threads per inch		1	1117.00	07-97/-7	31.12	01-916-1	13,4-5	134-8	134-12	134-16	113/16-16	8-8/21	178-12	17/8-16

115/16-16	2-41/5	2–8	2–12	2–16	21/16-16	21/8-8	21/8-12	2),8-16	2%6-16	21,4-41,5	21,4-8	21/4-12	21/4-16	29/16-16
z	UNC	z	ND	UNEF	z	z	ND	N D	z	UNC	z	ND	ND	z
2B 3B	1B 2B 3B	2B3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	3B	1B 2B 3B	2B 3B	2B 3B	2B 3B	2B 3B
1, 88400 1, 88384 1, 87830 1, 87814	1, 79500 1, 79484 1, 79500 1, 79484 1, 78610 1, 78594	1, 89000 1, 88984 1, 87970 1, 87954	1, 92800 1, 92784 1, 91980 1, 91964	1, 94600 1, 94584 1, 94080 1, 94064	2. 00900 2. 00884 2. 00330 2. 00314	2. 01500 2. 01484 2. 00470 2. 00454	2, 05300 2, 05284 2, 04480 2, 04464	2. 07100 2. 07084 2. 06580 2. 06564	2. 13400 2. 13384 2. 12830 2. 12814	2. 04500 2. 04484 2. 04500 2. 04484 2. 03610 2. 03594	2. 14000 2. 13984 2. 12970 2. 12954	2. 17800 2. 17784 2. 16980 2. 16964	2. 19600 2. 19534 2. 19030 2. 19064	2, 25900 2, 25884 2, 25330 2, 25314
1, 87000 1, 87016 1, 87000 1, 87016	1, 75900 1, 75916 1, 75900 1, 75916 1, 75916 1, 75916	1. 86500 1. 86516 1. 86500 1. 86516	1, 91000 1, 91016 1, 91000 1, 91016	1, 93200 1, 93216 1, 93200 1, 93216	1. 99500 1. 99516 1. 99500 1. 99516	1, 99000 1, 99016 1, 99000 1, 99016	2, 03500 2, 03516 2, 03500 2, 03516	2, 05700 2, 05716 2, 05700 2, 05716	2, 12000 2, 12016 2, 12000 2, 12016	2. 00900 2. 00916 2. 00900 2. 00916 2. 00916 2. 00916	2,11500 2,11516 2,11500 2,11516	2, 16000 2, 16016 2, 16000 2, 16016	2, 18200 2, 18216 2, 18200 2, 13216	2, 24500 2, 24516 2, 24500 2, 24516
1, 9039 1, 9043 1, 9021 1, 9025	1, 8743 1, 8748 1, 8681 1, 8686 1, 8650 1, 8655	1, 9289 1, 9294 1, 9264 1, 9269	1, 9538 1, 9542 1, 9518 1, 9522	1, 9664 1, 9668 1, 9646 1, 9650	2, 0289 2, 0293 2, 0271 2, 0275	2, 0540 2, 0545 2, 0515 2, 0520	2, 0788 2, 0792 2, 0768 2, 0772	2. 0914 2. 0918 2. 0896 2. 0900	2, 1539 2, 1543 2, 1521 2, 1525	2, 1247 2, 1252 2, 1183 2, 1188 2, 1152 2, 1157	2, 1792 2, 1797 2, 1766 2, 1771	2, 2038 2, 2042 2, 2018 2, 2022	2, 2164 2, 2168 2, 2146 2, 2150	2, 2791 2, 2795 2, 2773 2, 2777
1, 9039 1, 9035 1, 9021 1, 9017	1, 8743 1, 8738 1, 8681 1, 8676 1, 8645	1, 9289 1, 9284 1, 9264 1, 9259	1, 9538 1, 9534 1, 9518 1, 9514	1, 9664 1, 9660 1, 9646 1, 9642	2, 0289 2, 0285 2, 0271 2, 0267	2, 0540 2, 0535 2, 0515 2, 0510	2, 0788 2, 0784 2, 0768 2, 0764	2, 0914 2, 0910 2, 0896 2, 0892	2, 1539 2, 1535 2, 1521 2, 1517	2, 1247 2, 11542 2, 1183 2, 1178 2, 1152 2, 1147	2, 1792 2, 1787 2, 1766 2, 1761	2, 2038 2, 2034 2, 2018 2, 2014	2, 2164 2, 2160 2, 2146 2, 2142	2, 2791 2, 2787 2, 2773 2, 2769
1, 9310 1, 9304 1, 9292 1, 9286	1. 9705 1. 9697 1. 9643 1. 9635 1. 9612 1. 9604	1, 9830 1, 9823 1, 9805 1, 9798	1, 9899 1, 9893 1, 9879 1, 9873	1, 9935 1, 9929 1, 9917 1, 9911	2, 0550 2, 0554 2, 0542 2, 0586	2, 1081 2, 1074 2, 1056 2, 1049	2, 1149 2, 1143 2, 1129 2, 1123	2, 1185 2, 1179 2, 1167 2, 1161	2. 1810 2. 1804 2. 1792 2. 1786	2, 2209 2, 2201 2, 2145 2, 2137 2, 2114 2, 2106	2, 2333 2, 2326 2, 2307 2, 2300	2, 2399 2, 2393 2, 2379 2, 2373	2, 2435 2, 2429 2, 2417 2, 2411	2, 3062 2, 3056 2, 3044 2, 3038
1. 8969 1. 8973 1. 8969 1. 8973	1.8557 1.8557 1.8557 1.8557 1.8557 1.8562	1. 9188 1. 9193 1. 9188 1. 9193	1. 9459 1. 9463 1. 9459 1. 9463	1, 9594 1, 9598 1, 9594 1, 9598	2, 0219 2, 0223 2, 0219 2, 0223	2. 0438 2. 0443 2. 0438 2. 0443	2, 0709 2, 0713 2, 0709 2, 0713	2. 0844 2. 0848 2. 0844 2. 0848	2, 1469 2, 1473 2, 1469 2, 1473	2, 1057 2, 1062 2, 1062 2, 1062 2, 1062 2, 1062	2, 1688 2, 1693 2, 1688 2, 1693	2. 1959 2. 1963 2. 1959 2. 1963	2, 2094 2, 2098 2, 2094 2, 2098	2, 2719 2, 2723 2, 2719 2, 2723
1, 9375 1, 9381 1, 9375 1, 9381	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	2, 0000 2, 0007 2, 0000 2, 0007	2. 0000 2. 0006 2. 0000 2. 0006	2, 0000 2, 0006 2, 0000 2, 0000	2, 0625 2, 0631 2, 0625 2, 0631	2, 1250 2, 1257 2, 1250 2, 1257	2, 1250 2, 1256 2, 1250 2, 1256	2, 1250 2, 1256 2, 1250 2, 1250 2, 1256	2, 1875 2, 1881 2, 1875 2, 1881	2500 2500 2500 2500 2500 2500 2500 2500	2, 2500 2, 2507 2, 2500 2, 2500	2, 2500 2, 2506 2, 2506 2, 2506	2, 2500 2, 2506 2, 2506 2, 2506	2, 3125 2, 3121 2, 3125 2, 3131
3 1 1 3 0 1 0 0 1 1 1 0 0 0 2 1 1 1 2 1 0 1 1 0 0 1 0 0 0 1	1. 96410	1, 97520		1 1 1 3		2, 10010				2, 21410 2, 21426	2, 22510			
1, 92650 1, 92666 1, 92810 1, 92826	1, 96410 1, 96426 1, 97510 1, 97526 1, 97800 1, 97816	1. 98270 1. 98286 1. 98500 1. 98516	1. 98680 1. 98696 1. 98860 1. 98876	1, 98900 1, 98916 1, 99060 1, 99076	2. 05150 2. 05166 2. 05310 2. 05326	2. 10760 2. 10776 2. 11000 2. 11016	2.11180 2.11196 2.11360 2.11376	2, 11400 2, 11416 2, 11560 2, 11576	2, 17650 2, 17666 2, 17810 2, 17826	2, 21410 2, 21426 2, 22510 2, 22526 2, 22800 2, 22816	2, 23260 2, 23276 2, 23500 2, 23516	2, 23680 2, 23696 2, 23860 2, 23876	2, 23900 2, 23916 2, 24060 2, 24076	2, 30140 2, 30156 2, 30310 2, 30326
1, 93590 1, 93574 1, 93750 1, 93734	1, 99710 1, 99694 1, 99710 1, 99694 2, 00000 1, 99984	1. 99770 1. 99754 2. 00000 1. 99981	1. 99820 1. 99804 2. 00000 1. 99984	1, 99840 1, 99824 2, 00000 1, 99984	2. 06090 2. 06074 2. 06250 2. 06234	2, 12260 2, 12244 2, 12500 2, 12484	2, 12320 2, 12304 2, 12500 2, 12484	2, 12340 2, 12324 2, 12500 2, 12484	2. 18590 2. 18574 2. 18750 2. 18734	2, 24710 2, 24694 2, 24710 2, 24694 2, 25000 2, 24984	2, 24760 2, 24744 2, 25000 2, 24984	2, 24820 2, 24804 2, 25000 2, 24984	2, 24840 2, 24824 2, 25000 2, 24984	2, 310£0 2, 31064 2, 31250 2, 31234
1.8764 1.8770 1.8794 1.8800	1, 7904 1, 7912 1, 7952 1, 7960 1, 8005 1, 8013	1, 8816 1, 8823 1, 8859 1, 8866	1, 9200 1, 9206 1, 9234 1, 9240	1, 9389 1, 9395 1, 9419 1, 9425	2, 0614 2, 0020 2, 0044 2, 0050	2, 0064 2, 0071 2, 0108 2, 0115	2. 0450 2. 0456 2. 0484 2. 0490	2. 0639 2. 0645 2. 0669 2. 0675	2. 1264 2. 1270 2. 1294 2. 1300	2, 0401 2, 0409 2, 0450 2, 0458 2, 0503 2, 0511	2. 1313 2. 1320 2. 1357 2. 1364	2, 1700 2, 1706 2, 1734 2, 1740	2, 1889 2, 1895 2, 1919 2, 1925	2, 2512 2, 2518 2, 2543 2, 2549
1, 8899 1, 8895 1, 8929 1, 8925	1, 8385 1, 8380 1, 8433 1, 8428 1, 8486 1, 8486	1, 9087 1, 9082 1, 9130 1, 9125	1. 9380 1. 9376 1. 9414 1. 9410	1, 9524 1, 9520 1, 9554 1, 9550						2, 0882 2, 0877 2, 0931 2, 0926 2, 0984 2, 0979				
1, 8899 1, 8903 1, 8929 1, 8933	1. 8385 1. 8390 1. 8433 1. 8438 1. 8486 1. 8591	1, 9087 1, 9092 1, 9130 1, 9135	1, 9380 1, 9384 1, 9414 1, 9118	1, 9524 1, 9528 1, 9554 1, 9558	2, 0149 2, 0153 2, 0179 2, 0183	2. 0335 2. 0340 2. 0379 2. 0384	2, 0630 2, 0634 2, 0664 2, 0668	2. 0774 2. 0778 2. 0803 2. 0807	2, 1399 2, 1403 2, 1428 2, 1432	2, 0882 2, 0887 2, 0931 2, 0936 2, 0984 2, 0989	2, 1584 2, 1589 2, 1628 2, 1633	2, 1880 2, 1884 2, 1914 2, 1918	2, 2024 2, 2028 2, 2053 2, 2057 2, 2057	2, 2647 2, 2651 2, 2678 2, 2682
1. 8682 1. 8676 1. 8698 1. 8692	1, 7566 1, 7568 1, 7566 1, 7558 1, 7595 1, 7595	1, 8624 1, 8617 1, 8647 1, 8640	1. 9080 1. 9074 1. 9098 1. 9092	1, 9307 1, 9301 1, 9323 1, 9317	1, 9932 1, 9926 1, 9948 1, 9942	1, 9873 1, 9866 1, 9897 1, 9890	2, 0330 2, 0324 2, 0348 2, 0342	2, 0557 2, 0551 2, 0573 2, 0567	2, 1182 2, 1176 2, 1198 2, 1192	2, 0066 2, 0058 2, 0056 2, 0058 2, 0095	2, 1123 2, 1116 2, 1147 2, 1140	2, 1580 2, 1574 2, 1598 2, 1592	2, 1807 2, 1801 2, 1823 2, 1817	2, 2431 2, 2425 2, 2448 2, 2448
1, 8953 1, 8949 1, 8969 1, 8965	1. 8528 1. 8528 1. 8528 1. 8523 1. 8557 1. 8557	1, 9165 1, 9160 1, 9188 1, 9183	1, 9441 1, 9487 1, 9459 1, 9455	1, 9578 1, 9574 1, 9594 1, 9590	2, 0203 2, 0199 2, 0219 2, 0215	2. 0414 2. 0409 2. 0438 2. 0433	2, 0691 2, 0687 2, 0709 2, 0705	2, 0828 2, 0824 2, 0844 2, 0840	2, 1453 2, 1449 2, 1469 2, 1465	2, 1028 2, 1028 2, 1028 2, 1623 2, 1057 2, 1057	2, 1664 2, 1659 2, 1688 2, 1683	2, 1941 2, 1937 2, 1959 2, 1955	2, 2078 2, 2074 2, 2094 2, 2090	2, 2702 2, 2698 2, 2719 2, 2715
$\left\{\begin{array}{c} 2\Lambda \\ 3\Lambda \end{array}\right\}$	1A 2A 3A	2.A 3.1	2.7	2A 33A	2.7	2.A 3.A	2.A 3.A	2A 3A	3.1	$\begin{bmatrix} 1.A \\ 2.A \\ 3.A \end{bmatrix}$	2A 3A	2A 3A	$\begin{cases} 2\Lambda \\ 3\Lambda \end{cases}$	2A 3A
z	UNC	Z	ND	UNEF	Z	Z	N	N D	z	UNC	Z	N D	Z	Z
115/16-16	2-41/2	2-8	2-12	2-16	2)/16-16	21,8-8	21/8-12	258-16	2316-16	21,4-41%	21/4-8	21/4-12	21/4-16	25/16-16

Table III.12.—Gages for standard thread series, Unified and American screw threads—Continued

		Nominal size and threads	per inch		21	238-12	23,8-16	27/16-16	21/2-4	21/2-8	21/2-12	21/2-16	258-12	25/8-16	234-4
		Series designa-	tion		20	Z	N D	z	UNG	Z-	Z.	Ď N	ž	N D	UNC
		Class			19	2B 3B	2B 3B	2B 3B	1B 2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	11B 23B
	tages for iameter		Notgo		18	in. 2. 30300 2. 30284 2. 29480 2. 29464	2, 32100 2, 32084 2, 31580 2, 31564	2, 38400 2, 38384 2, 37830 2, 37814	2, 26700 2, 26684 2, 26700 2, 2684 2, 25940 2, 25924	2, 39000 2, 38984 2, 37970 2, 37954	2, 42800 2, 42784 2, 41980 2, 41964	2. 44600 2. 44584 2. 44080 2. 44064	2, 5530 2, 5528 2, 5448 2, 5446	2, 5710 2, 5708 2, 5658 2, 5656	2, 5170 2, 5168 2, 5170 2, 5170 2, 5094 2, 5099
	Z plain gages for minor diameter		Go		17	in. 2. 28500 2. 28516 2. 28500 2. 28516	2.30700 2.30716 2.30700 2.30716	2, 37000 2, 37016 2, 37000 2, 37016	2, 22900 2, 22916 2, 22900 2, 22916 2, 22900 2, 22916	2, 36500 2, 36516 2, 36500 2, 36516	2, 41000 2, 41016 2, 41000 2, 41016	2, 43200 2, 43216 2, 43200 2, 43216	2, 5350 2, 5352 2, 5350 2, 5352	2, 5570 2, 5572 2, 5570 2, 5570	2, 4790 2, 4792 2, 4790 2, 4790 2, 4792 2, 4792
threads			ameter	Plus toleranee gage	16	in. 2.3290 2.3294 2.3269 2.3273	2, 3416 2, 3420 2, 3398 2, 3402	2. 4041 2. 4045 2. 4023 2. 4027	2, 3578 2, 3583 2, 3511 2, 3516 2, 3477 2, 3482	2, 4294 2, 4299 2, 4268 2, 4273	2, 4540 2, 4544 2, 4519 2, 4523	2. 4666 2. 4670 2. 4648 2. 4652	2. 5790 2. 5794 2. 5769 2. 5773	2, 5916 2, 5920 2, 5898 2, 5902	2, 6082 2, 6087 2, 6013 2, 5018 2, 5979 2, 5984
Gages for internal threads	SS	Not go	Pitch diameter	Minus toleranee gage	15	in. 2, 3290 2, 3286 2, 3269 2, 3265	2, 3416 2, 3412 2, 3398 2, 3394	2. 4041 2. 4037 2. 4023 2. 4019	2, 3578 2, 3573 2, 3511 2, 3506 2, 3477 2, 3472	2, 4294 2, 4289 2, 4268 2, 4263	2, 4540 2, 4536 2, 4519 2, 4515	2. 4666 2. 4662 2. 4648 2. 4644	2, 5790 2, 5786 2, 5769 2, 5755	2, 5916 2, 5912 2, 5898 2, 5894	2, 6082 2, 6017 2, 6018 2, 5979 2, 5974
Gages fo	X thread gages			Major dlameter	14	in. 2. 3651 2. 3645 2. 3630 2. 3624	2, 3687 2, 3681 2, 3669 2, 3663	2, 4312 2, 4306 2, 4294 2, 4288	2. 4661 2. 4652 2. 4594 2. 4585 2. 4560 2. 4561	2, 4835 2, 4828 2, 4809 2, 4802	2. 4901 2. 4895 2. 4880 2. 4874	2, 4937 2, 4931 2, 4919 2, 4913	2. 6151 2. 6145 2. 6130 2. 6124	2. 6187 2. 6181 2. 6169 2. 6163	2, 7165 2, 7156 2, 7096 2, 7087 2, 7062 2, 7053
	×			Piteh diameter	13	in. 2. 3209 2. 3213 2. 3209 2. 3209	2, 3344 2, 3348 2, 3344 2, 3348	2, 3969 2, 3973 2, 3969 2, 3973	2, 3376 2, 3381 2, 3381 2, 3381 2, 3381 2, 3381	2. 4188 2. 4193 2. 4188 2. 4193	2, 4459 2, 4463 2, 4459 2, 4463	2, 4594 2, 4598 2, 4594 2, 4594	2. 5709 2. 5713 2. 5709 2. 5713	2, 5844 2, 5848 2, 5844 2, 5844 2, 5848	2, 5876 2, 5881 2, 5881 2, 5881 2, 5881 2, 5881 2, 5881
		Go		Major liameter	12	in. 2, 3750 2, 3756 2, 3756 2, 3756	2, 3750 2, 3756 2, 3756 2, 3756	2, 4375 2, 4381 2, 4375 2, 4381	2, 5000 2, 5000 2, 5000 2, 5000 2, 5000 2, 5000	2, 5000 2, 5007 2, 5000 2, 5007	2, 5000 2, 5006 2, 5000 2, 5000	2,5000 2,5000 2,5000 2,5000	2. 6250 2. 6256 2. 6256 2. 6256	2. 6250 2. 6256 2. 6250 2. 6256	2, 7500 2, 7509 2, 7509 2, 7509 2, 7509 2, 7509
	major	go.	Un-	al Bed	11	im.			2.46120 2.46136	2,47510					2, 7111
	Z plain gages for major diameter	Not go		Semi- finished	10	in. 2.36170 2.36186 2.36360 2.36376	2, 36390 2, 36406 2, 36560 2, 36576	2, 42640 2, 42656 2, 42810 2, 42826	2, 46120 2, 46136 2, 47310 2, 47326 2, 47620 2, 47636	2, 48276 2, 48276 2, 48500 2, 48516	2. 48670 2. 48686 2. 48860 2. 48876	2, 48890 2, 48906 2, 49060 2, 49076	2. 6117 2. 6119 2. 6136 2. 6138	2. 6139 2. 6141 2. 6156 2. 6158	2, 7111 2, 7113 2, 7230 2, 7232 2, 7262 2, 7264
qs	Z plab		Go		6	in. 2. 37310 2. 37294 2. 37500 2. 37484	2, 37330 2, 37214 2, 37500 2, 37484	2, 43580 2, 43564 2, 43750 2, 43734	2, 49690 2, 49674 2, 49690 2, 49674 2, 50000 2, 49984	2, 49760 2, 49744 2, 50000 2, 49984	2, 49810 2, 49794 2, 50000 2, 49984	2, 49830 2, 49814 2, 50000 2, 49981	2, 6231 2, 6229 2, 6250 2, 6248	2. 6233 2. 6231 2. 6250 2. 6248	2, 7468 2, 7466 2, 7466 2, 7466 2, 7466 2, 7498
external threads				Minor diameter	∞	in. 2, 2948 2, 2954 2, 2983 2, 2989	2. 3137 2. 3143 2. 3168 2. 3174	2, 3762 2, 3768 2, 3793 2, 3799	2, 2649 2, 2658 2, 2700 2, 2709 2, 2757 2, 2766	2, 3811 2, 3818 2, 3856 2, 3863	2, 4198 2, 4204 2, 4233 2, 4239	2. 4387 2. 4393 2. 4418 2. 4424	2, 5448 2, 5454 2, 5483 2, 5483	2, 5637 2, 5643 2, 5668 2, 5674	2, 5145 2, 5154 2, 5198 2, 5207 2, 5256 2, 5256
Gages for ext	es	Not go	ameter	Minus toleranee gage	7	in. 2. 3128 2. 3124 2. 3163 2. 3159	2, 3272 2, 3268 2, 3303 2, 3299	2, 3897 2, 3893 2, 3928 2, 3924	2, 3190 2, 3185 2, 3241 2, 3236 2, 3298 2, 3298	2, 4082 2, 4077 2, 4127 2, 4122	2, 4378 2, 4374 2, 4413 2, 4409	2, 4522 2, 4518 2, 4553 2, 4499	2, 5628 2, 5624 2, 5663 2, 5659	2, 5772 2, 5768 2, 5803 2, 5799	2, 5686 2, 5681 2, 5739 2, 5734 2, 5797 2, 5792
G	X thread gages		Pitch diameter	Plus toleranee gage	9	im. 2, 3128 2, 3132 2, 3163 2, 3163	2, 3272 2, 3276 2, 3303 2, 3307	2, 3897 2, 3901 2, 3928 2, 3932	2, 3190 2, 3195 2, 3241 2, 3246 2, 3298 2, 3303	2, 4082 2, 4087 2, 4127 2, 4132	2, 4378 2, 4382 2, 4413 2, 4417	2, 4522 2, 4526 2, 4553 2, 4553	2, 5628 2, 5632 2, 5663 2, 5663	2, 5772 2, 5776 2, 5803 2, 5807	2, 5686 2, 5691 2, 5739 2, 5744 2, 5797 2, 5802
	×	0		Minor	ro	in. 2, 2829 2, 2823 2, 2848 2, 2842	2, 3056 2, 3050 2, 3073 2, 3067	2, 3681 2, 3675 2, 3698 2, 3692	2, 2263 2, 2254 2, 2263 2, 2254 2, 2294 2, 2294	2, 3623 2, 3616 2, 3647 2, 3640	2. 4079 2. 4073 2. 4098 2. 4092	2. 4306 2. 4300 2. 4323 2. 4217	2, 5329 2, 5323 2, 5348 2, 5342	2, 5556 2, 5550 2, 5573 2, 5567	2, 4762 2, 4763 2, 4762 2, 4753 2, 4794 2, 4785
		Go		Pitch diameter	4	in. 2. 3190 2. 3186 2. 3209 2. 3205	2, 3327 2, 3323 2, 3344 2, 3340	2, 3952 2, 3948 2, 3969 2, 3965	2, 3345 2, 3340 2, 3346 2, 3340 2, 3371	2, 4164 2, 4159 2, 4188 2, 4183	2, 4440 2, 4436 2, 4459 2, 4455	2, 4577 2, 4573 2, 4594 2, 4590	2. 5690 2. 5686 2. 5709 2. 5705	2, 5827 2, 5823 2, 5844 2, 5840	2, 5844 2, 5839 2, 5844 2, 5839 2, 5876 2, 5876
		Class			3	2A 3A	$\begin{cases} 2\Lambda \\ 3A \end{cases}$	$\begin{cases} 2A \\ 3A \end{cases}$	1A 2A 3A	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right\}$	2A 3A	2.A 3.A	2A 3A	2A 3.1	1A 2A 3A
		Series lesigna-	tion		21	ND	Z D	Z	UNC	Z	ND	N D	NO	ND	UNG
		Nominal Series	threads per ineh		1	23/8-12	238-16	27/16-16	2½-4	2½-8	2½-12	2½-16	25/8-12	258-16	234-4

234-8	234-12	234-16	278-12	27/8-16	3-4	%- - -8	3-12	3-16	31/8-12	3) ₈ -16	31/4-4	31,4-8	31,4-12	314-15
z	ND	nn	N N	NO	UNC	Z	ND	ND NO	ž.	N n	TNC	Ż.	Z	ZD .
38	2B 3B	2B 3B	38	2B 3B	11B 2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	11B 28 3B	2B 3.B	2B 3B	38
2. 6400 2. 6398 2. 6297 2. 6295	2. 6780 2. 6778 2. 6698 2. 6696	2. 6960 2. 6958 2. 6908 2. 6906	2. 8030 2. 8028 2. 7948 2. 7946	2. 8210 2. 8208 2. 8158 2. 8156	2. 7670 2. 7668 2. 7670 2. 7668 2. 7594 2. 7592	2. 8900 2. 8898 2. 8797 2. 8795	2, 9280 2, 9278 2, 9198 2, 9196	2. 9460 2. 9458 2. 9408 2. 9406	3. 0530 3. 0528 3. 0448 3. 0446	3. 0710 3. 0708 3. 0658 3. 0656	3. 0170 3. 0168 3. 0168 3. 0168 3. 0094 3. 0092	3. 1400 3. 1398 2. 1297 3. 1295	3. 1780 3. 1778 3. 1698 3. 1356	5, 1960 3, 1958 3, 1908 3, 1906
2, 6150 2, 6152 2, 6150 2, 6150	2. 6600 2. 6602 2. 6600 2. 6600	2. 6820 2. 6822 2. 6822 2. 6822	2. 7850 2. 7852 2. 7850 2. 7850	2. 8070 2. 8072 2. 8070 2. 8072	2, 7290 2, 7292 2, 7290 2, 7290 2, 7290	2.8650 2.8652 2.8650 2.8650	2. 9100 2. 9102 2. 9100 2. 9102	2. 9320 2. 9322 2. 9320 2. 9322	3. 0350 3. 0352 3. 0350 3. 0352	3. 0570 3. 0572 3. 0572 3. 0572	2, 9790 2, 9792 2, 9790 2, 9790 2, 9790 2, 9792	3, 1150 3, 1152 3, 1150 3, 1152	3. 1600 3. 1602 3. 1600 3. 1600	3, 1820 3, 1822 3, 1822 5, 1822
2. 6796 2. 6801 2. 6769 2. 6774	2. 7040 2. 7044 2. 7019 2. 7023	2. 7166 2. 7170 2. 7148 2. 7152	2. 8291 2. 8295 2. 8271 2. 8275	2. 8417 2. 8421 2. 8399 2. 8403	2.8585 2.8590 2.8590 2.8520 2.8480 2.8480	2. 9299 2. 9304 2. 9271 2. 9276	2. 9541 2. 9545 2. 9521 2. 9525	2. 9667 2. 9671 2. 9649 2. 9653	3. 0791 3. 0795 3. 0771 3. 0775	3. 0917 3. 0921 3. 0899 3. 0903	3, 1088 3, 1093 3, 1017 3, 1022 3, 0982 3, 0987	3. 1801 3. 1806 3. 1772 3. 1777	3, 2041 3, 2045 3, 2021 3, 2025	3, 2167 3, 2171 3, 2149 3, 2153
2. 6796 2. 6791 2. 6769 2. 6769	2. 7040 2. 7036 2. 7019 2. 7015	2, 7166 2, 7162 2, 7148 2, 7144	2. 8291 2. 8287 2. 8271 2. 8267	2, 8417 2, 8413 2, 8399 2, 8395	2,8585 2,8580 2,8515 2,8510 2,8470 2,8475	2. 9299 2. 9294 2. 9271 2. 9266	2. 9541 2. 9537 2. 9521 2. 9517	2. 9667 2. 9663 2. 9649 2. 9645	3. 0791 3. 0787 3. 0771 3. 0767	3. 0917 3. 0913 3. 0899 3. 0895	3, 1088 3, 1083 3, 1017 3, 1012 3, 0982 3, 0977	3. 1801 3. 1796 3. 1772 3. 1767	3. 2041 3. 2037 3. 2021 3. 2017	3, 2167 3, 2163 3, 2149 3, 2145
2. 7337 2. 7330 2. 7310 2. 7303	2. 7401 2. 7395 2. 7380 2. 7374	2. 7437 2. 7431 2. 7419 2. 7413	2. 8652 2. 8646 2. 8632 2. 8626	2. 8688 2. 8682 2. 8670 2. 8664	2. 9668 2. 9659 2. 9598 2. 9589 2. 9563	2. 9840 2. 9833 2. 9812 2. 9805	2. 9902 2. 9896 2. 9882 2. 9876	2. 9938 2. 9932 2. 9920 2. 9914	3, 1152 3, 1146 3, 1132 3, 1126	3. 1188 3. 1182 3. 1170 3. 1164	3. 2171 3. 2162 3. 2160 3. 2091 3. 2065 3. 2065	3, 2342 3, 2335 3, 2313 3, 2306	3. 2402 3. 2396 3. 2382 3. 2376	5. 2438 3. 2432 5. 2420 5. 2414
2. 6688 2. 6688 2. 6688 2. 6693	2. 6959 2. 6963 2. 6959 2. 6963	2. 7094 2. 7098 2. 7094 2. 7094	2. 8209 2. 8213 2. 8209 2. 8213	2. 8344 2. 8348 2. 8344 2. 8348	2.83376 2.83381 2.83376 2.83376 2.83376 2.83376	2. 9188 2. 9193 2. 9188 2. 9193	2. 9459 2. 9463 2. 9459 2. 9463	2. 9594 2. 9598 2. 9594 2. 9598	3. 0709 3. 0713 3. 0709 3. 0713	3. 0844 3. 0848 3. 0844 3. 0844	3. 0876 3. 0881 3. 0881 3. 0881 3. 0881	3. 1688 3. 1693 3. 1688 3. 1693	3. 1959 3. 1963 3. 1959 3. 1963	3, 2094 3, 2094 3, 2094 3, 2098
2, 7500 2, 7507 2, 7500 2, 7507	2. 7500 2. 7506 2. 7500 2. 7506	2. 7500 2. 7506 2. 7500 2. 7506	2. 8750 2. 8756 2. 8756 2. 8756	2. 8750 2. 8756 2. 8756 2. 8756	3. 0000 3. 0000 3. 0000 3. 0000 3. 0000	3. 0000 3. 0007 3. 0000 3. 0007	3. 0000 3. 0006 3. 0000 3. 0006	3. 0000 3. 0006 3. 0000 3. 0006	3, 1250 3, 1256 3, 1256 3, 1256	3, 1250 3, 1256 3, 1256 3, 1256	2500 2500 2500 2500 2500 2500 2500	3. 2500 3. 2507 3. 2500 3. 2507	3, 2500 3, 2506 3, 2500 3, 2500	3. 2500 3. 2506 3. 2506 3. 2506
2, 7250					2.9611	2. 9749					3. 2110	3. 2249		
2, 7325 2, 7327 2, 7350 2, 7352	2. 7367 2. 7369 2. 7386 2. 7388	2. 7389 2. 7391 2. 7406 2. 7408	2.8617 2.8619 2.8636 2.8638	2, 8639 2, 8641 2, 8656 2, 8658	2. 9611 2. 9613 2. 9730 2. 9732 2. 9762 2. 9764	2. 9824 2. 9826 2. 9850 2. 9852	2.9867 2.9869 2.9886 2.9888	2.9889 2.9891 2.9906 2.9908	3. 1117 3. 1119 3. 1136 3. 1138	3. 1139 3. 1141 3. 1156 3. 1158	3, 2110 3, 2112 3, 2229 3, 2231 3, 2262 3, 2263	3, 2324 3, 2326 3, 2350 3, 2352	3, 2367 3, 2369 3, 2386 3, 2388	3, 2389 3, 2391 3, 2406 5, 2408
2. 7475 2. 7473 2. 7500 2. 7598	2. 7481 2. 7479 2. 7500 2. 7498	2, 7483 2, 7481 2, 7500 2, 7498	2, 8731 2, 8729 2, 8750 2, 8748	2. 8733 2. 8731 2. 8750 2. 8748	2. 9968 2. 9968 2. 9968 3. 0000 2. 9998	2, 9974 2, 9972 3, 0000 2, 9998	2. 9981 2. 9979 3. 0000 2. 9998	2. 9983 2. 9981 3. 0000 2. 9998	3. 1231 3. 1229 3. 1250 3. 1248	3, 1233 3, 1231 3, 1250 3, 1248	3, 2467 3, 2467 3, 2467 3, 2465 3, 2500 3, 2498	3. 2474 3. 2472 3. 2500 3. 2498	3. 2481 3. 2479 3. 2500 3. 2498	3. 2483 3. 2481 3. 2500 3. 2498
2. 6309 2. 6316 2. 6355 2. 6355	2. 6698 2. 6704 2. 6733 2. 6739	2. 6887 2. 6893 2. 6918 2. 6924	2. 7947 2. 7953 2. 7982 2. 7988	2. 8136 2. 8142 2. 8167 2. 8173	2, 7642 2, 7651 2, 7696 2, 7705 2, 7755	2. 8806 2. 8813 2. 8853 2. 8860	2, 9197 2, 9203 2, 9232 2, 9238	2. 9386 2. 9392 2. 9417 2. 9423	3. 0447 3. 0453 3. 0482 3. 0488	3. 0636 3. 0642 3. 0667 3. 0673	3, 0139 3, 0148 3, 0193 3, 0202 3, 0253 3, 0262	3. 1304 3. 1311 3. 1352 3. 1359	3. 1697 3. 1703 3. 1732 3. 1738	3, 1886 3, 1892 3, 1917 3, 1922
2. 6580 2. 6575 2. 6626 2. 6621	2. 6878 2. 6874 2. 6913 2. 6909	2. 7022 2. 7018 2. 7053 2. 7049	2. 8127 2. 8123 2. 8162 2. 8158	2. 8271 2. 8267 2. 8302 2. 8298	2,8183 2,8178 2,8237 2,8232 2,8296 2,8296	2. 9077 2. 9072 2. 9124 2. 9119	2. 9377 2. 9373 2. 9412 2. 9408	2, 9521 2, 9517 2, 9552 2, 9548	3. 0627 3. 0623 3. 0662 3. 0658	3. 0771 3. 0767 3. 0802 3. 0798	3.0680 3.0675 3.0734 3.0729 3.0794 3.0789	3, 1575 3, 1570 3, 1623 3, 1618	3. 1877 3. 1873 3. 1912 3. 1908	3. 2021 3. 2017 3. 2052 3. 2046
2. 6580 2. 6585 2. 6626 2. 6631	2. 6878 2. 6882 2. 6913 2. 6917	2. 7022 2. 7026 2. 7053 2. 7057	2, 8127 2, 8131 2, 8162 2, 8166	2. 8271 2. 8275 2. 8302 2. 8306	2.8183 2.8188 2.8237 2.8242 2.8296 2.8301	2. 9077 2. 9082 2. 9124 2. 9129	2. 9377 2. 9381 2. 9412 2. 9416	2, 9521 2, 9525 2, 9552 2, 9552	3. 0627 3. 0631 3. 0662 3. 0666	3. 0771 3. 0775 3. 0802 3. 0806	3. 0680 3. 0685 3. 0734 3. 0739 3. 0794 3. 0799	3. 1575 3. 1580 3. 1623 3. 1628	3. 1877 3. 1881 3. 1912 3. 1916	3. 2021 3. 2025 3. 2052 3. 2056
2. 6122 2. 6115 2. 6147 2. 6140	2. 6579 2. 6573 2. 6598 2. 6592	2. 6806 2. 6800 2. 6823 2. 6817	2, 7829 2, 7823 2, 7848 2, 7842	2. 8056 2. 8050 2. 8073 2. 8067	2, 7262 2, 7263 2, 7263 2, 7263 2, 7264 2, 7294	2. 8621 2. 8614 2. 8647 2. 8640	2. 9079 2. 9073 2. 9098 2. 9092	2. 9306 2. 9300 2. 9323 2. 9317	3. 0329 3. 0323 3. 0348 3. 0342	3, 0556 3, 0550 3, 0573 3, 0567	2. 9761 2. 9761 2. 9761 2. 9752 2. 9784	3, 1121 3, 1114 3, 1147 3, 1140	3, 1579 3, 1573 3, 1598 3, 1592	3. 1806 3. 1800 3. 1823 3. 1817
2 2 2 2 2 2 6688 6688 6688	2. 6940 2. 6936 2. 6959 2. 6955	2. 7077 2. 7073 2. 7094 2. 7090	2. 8190 2. 8186 2. 8209 2. 8205	2. 8327 2. 8323 2. 8344 2. 8340	2.8334 2.8334 2.8334 2.8334 2.8337 8377	2. 9162 2. 9157 2. 9188 2. 9183	2. 9440 2. 9436 2. 9459 2. 9455	2. 9577 2. 9573 2. 9594 2. 9590	3. 0690 3. 0686 3. 0709 3. 0705	3. 0827 2. 0823 3. 0844 3. 0840	3.0843 3.0838 3.0838 3.0838 3.0876 3.0877	3. 1662 3. 1657 3. 1688 3. 1683	3. 1940 3. 1936 3. 1959 3. 1955	3. 2077 3. 2073 3. 2094 3. 2090
2.7	2A 3A	2A 3A	2.4	2A 3A	1A 2A 3A	$\left\{\begin{array}{c} 2\Lambda \\ 3A \end{array}\right\}$	(2A 3A	2A 3A	2A 3A	2A 3A	(1A 2A 3A	2A 3.A	2A 3A	$\begin{bmatrix} 2\Lambda \\ 3\Lambda \end{bmatrix}$
z	NO	Z S	ND.	N D	UNC	Z	Й	й	UN	ND	UNC	Z	N D	UN
294-8	2%4-12	234-16	27.8-12	27,8-16	3-4	3-8	3-12	3-16	31,8–12	31/8-16	314-4	3)4-8	314-12	31/4-16

Table III.12.—Gages for standard thread series, Unified and American screw threads—Continued

		Nominal size and threads			21	338-12	33,6-16	31/2-4	31,5-8	31/2-12	31/2-16	35,8-12	378-16	334-4	334-8
		Series designa-	tion		20	N D	ND QN	UNG	Z	ND C	ND	ND CIN	Z D	UNC	Z
		Class			19	2B 3B	2B 3B	1B 2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	1B 2B 3B	2B 3B
	sages for iameter		Notgo	:	18	in. 3. 3030 3. 3028 3. 2948 3. 2946	3, 3210 3, 3208 3, 3158 3, 3156	3, 2670 3, 2668 3, 2670 3, 2668 3, 2594 3, 2594	3. 3900 3. 3898 3. 3797 3. 3795	3. 4280 3. 4278 3. 4198 3. 4196	3. 4460 3. 4458 3. 4408 3. 4406	3, 5530 3, 5528 3, 5448 3, 5446	3, 5710 3, 5708 3, 5658 3, 5656	3, 5170 3, 5168 3, 5170 3, 5168 3, 5094 3, 5092	3. 6400 3. 6398 3. 6297 3. 6295
	Z plain gages for minor diameter		G ₀		17	in. 3. 2850 3. 2852 3. 2850 3. 2850	3, 3070 3, 3072 3, 3070 3, 3072	3, 2290 3, 2292 3, 2290 3, 2290 3, 2290 3, 2290	3. 3650 3. 3652 3. 3650 3. 3650	3, 4100 3, 4102 3, 4100 3, 4102	3, 4320 3, 4322 3, 4320 3, 4320	3, 5350 3, 5352 3, 5350 3, 5350	3, 5570 3, 5572 3, 5570 3, 5570	3, 4790 3, 4792 3, 4792 3, 4792 3, 4792 3, 4792	3, 6150 3, 6152 3, 6150 3, 6150
threads			ameter	Plus tolerance gage	91	in. 3. 3293 3. 3297 3. 3272 3. 3276	3, 3419 3, 3423 3, 3400 3, 3404	3, 3591 3, 3596 3, 3519 3, 3524 3, 3484 3, 3489	3, 4303 3, 4308 3, 4274 3, 4279	3, 4543 3, 4547 3, 4522 3, 4522	3. 4669 3. 4673 3. 4650 3. 4654	3. 5793 3. 5797 3. 5772 3. 5776	3, 5919 3, 5923 3, 5900 3, 5904	3. 6094 3. 6099 3. 6021 3. 5985 3. 5990	3, 6805 3, 6810 3, 6776 3, 6781
Gages for internal threads	es	Not go	Pitch diameter	Minus tolcrance gage	15	in. 3. 3293 3. 3289 3. 3272 3. 3268	3. 3419 3. 3415 3. 3400 3. 3396	3, 3591 3, 3586 3, 3519 3, 3514 3, 3484 3, 3479	3. 4303 3. 4298 3. 4274 3. 4269	3, 4543 3, 4539 3, 4522 3, 4518	3. 4669 3. 4665 3. 4650 3. 4646	3, 5793 3, 5789 3, 5772 3, 5768	3, 5919 3, 5915 3, 5900 3, 5896	3. 6094 3. 6089 3. 6021 3. 5016 3. 5985 3. 5980	3, 6805 3, 6800 3, 6776 3, 6771
Gages fo	X thread gages			Major diameter	14	in. 3. 3654 3. 3648 3. 3633 3. 3627	3, 3690 3, 3684 3, 3671 3, 3665	3, 4674 3, 4665 3, 4602 3, 4593 3, 4567 3, 4558	3, 4844 3, 4837 3, 4815 3, 4808	3. 4904 3. 4898 3. 4883 3. 4877	3. 4940 3. 4934 3. 4921 3. 4915	3. 6154 3. 6148 3. 6133 3. 6127	3. 6190 3. 6184 3. 6171 3. 6165	3, 7177 3, 7168 3, 7104 3, 7095 3, 7068 3, 7059	3, 7346 3, 7339 3, 7317 3, 7310
	X	0		Pitch diameter	13	in. 3. 3209 3. 3213 3. 3209 3. 3213	3. 3344 3. 3348 3. 3348 3. 3348	3. 3376 3. 3381 3. 3376 3. 3381 3. 3381	3. 4188 3. 4193 3. 4193	3. 4459 3. 4463 3. 4463	3. 4594 3. 4598 3. 4594 3. 4599	3. 5709 3. 5713 3. 5709 3. 5713	3. 5844 3. 5848 3. 5848 3. 5844	3, 5876 3, 5881 3, 5881 3, 5881 8, 5881 8, 5881	3. 6688 3. 6693 3. 6688 6693
		Go		Major diameter	12	in. 3. 3750 3. 3756 3. 3756 3. 3756	3. 3750 3. 3756 3. 3756 3. 3756	3, 5000 3, 5000 3, 5000 3, 5000 3, 5000	3. 5000 3. 5007 3. 5000 3. 5000	3. 5000 3. 5000 3. 5000 3. 5000	3. 5000 3. 5006 3. 5000 3. 5000	3. 6250 3. 6256 3. 6250 3. 6250	3. 6250 3. 6256 3. 6256 3. 6250	3, 7500 3, 750 3, 7500 3, 7509 3, 7509 3, 7509	3, 7500 3, 7507 3, 7500 3, 7500
	major	. 80	Un-	finished hot-rolled material	11	in.		3.4610	3. 4749					3.7109 3.7111	3, 7248
	plain gages for major diameter	Not go		Semi- finished	10	in. 3. 3617 3. 3619 3. 3636 3. 3638	3. 3639 3. 3641 3. 3656 3. 3658	3, 4610 3, 4612 3, 4729 3, 4731 3, 4762 3, 4764	3. 4824 3. 4826 3. 4850 3. 4852	3. 4867 3. 4869 3. 4886 3. 4886	3. 4891 3. 4891 3. 4906 3. 4908	3. 6117 3. 6119 3. 6136 3. 6138	3. 6139 3. 6141 3. 6156 3. 6158	3, 7109 3, 7111 3, 7228 3, 7230 3, 7262 3, 7264	3, 7323 3, 7325 3, 7350 3, 7352
ds	Z plair		Go		6	in. 3. 3731 3. 3729 3. 3750 3. 3750	3. 3733 3. 3731 3. 3750 3. 3748	3, 4967 3, 4965 3, 4967 3, 4965 3, 4998	3. 4974 3. 4972 3. 5000 3. 4998	3. 4981 3. 4979 3. 5000 3. 4998	3. 4983 3. 4981 3. 5000 3. 4998	3. 6231 3. 6229 3. 6250 3. 6248	3. 6233 3. 6231 3. 6250 3. 6248	3, 7466 3, 7464 3, 7466 3, 7464 3, 7464 3, 7498	3, 7473 3, 7471 3, 7500 3, 7498
for external threads				Minor	80	in. 3. 2946 3. 2952 3. 2981 3. 2987	3. 3134 3. 3140 3. 3166 3. 3172	3, 2636 3, 2645 3, 2692 3, 2701 3, 2752 3, 2761	3, 3803 3, 3810 3, 3851 3, 3858	3. 4196 3. 4202 3. 4231 3. 4237	3. 4384 3. 4390 3. 4416 3. 4422	3. 5446 3. 5452 3. 5481 3. 5487	3. 5634 3. 5640 3. 5666 3. 5672	3, 5133 3, 5142 3, 5142 3, 5189 3, 5198 3, 5251 3, 5260	3, 6300 3, 6307 3, 6350 3, 6357
Gages for ext	cs	Not go	Pitch diameter	Minus tolerance gage	2	in. 3. 3126 3. 3122 3. 3161 3. 3161	3. 3269 3. 3265 3. 3301 3. 3297	3, 3177 3, 3172 3, 3233 3, 3238 3, 3298 3, 3298	3. 4074 3. 4069 3. 4122 3. 4117	3. 4376 3. 4372 3. 4411 3. 4407	3, 4519 3, 4515 3, 4551 3, 4547	3. 5626 3. 5622 3. 5661 3. 5657	3, 5769 3, 5765 3, 5801 3, 5797	3, 5674 3, 5669 3, 5730 3, 5725 3, 5792 3, 5787	3, 6571 3, 6566 3, 6621 3, 6616
Ö	X thread gages			Plus toleranee gage	9	in. 3. 3126 3. 3130 3. 3161 3. 3165	3, 3269 3, 3273 3, 3301 3, 3305	3, 3177 3, 3182 3, 3233 3, 3238 3, 3293 3, 3298	3, 4074 3, 4079 3, 4122 3, 4127	3. 4376 3. 4380 3. 4411 3. 4415	3, 4519 3, 4523 3, 4551 3, 4555	3, 5626 3, 5630 3, 5661 3, 5665	3, 5769 3, 5773 3, 5801 3, 5805	3, 5674 3, 5679 3, 5730 3, 5735 3, 5792 3, 5797	3. 6571 3. 6576 3. 6621 3. 6626
	X	Go		Minor diameter	22	in. 3. 2829 3. 2823 3. 2848 3. 2842	3. 3056 3. 3050 3. 3073 3. 3067	3, 2261 3, 2262 3, 2262 3, 2261 3, 2264 3, 2294	3. 3621 3. 3614 3. 3647 3. 3640	3. 4079 3. 4073 3. 4098 3. 4092	3, 4306 3, 4300 3, 4323 3, 4317	3, 5329 3, 5323 3, 5348 3, 5342	3, 5556 3, 5550 3, 5573 3, 5567	3, 4760 3, 4751 3, 4760 3, 4751 3, 4794 3, 4785	3. 6120 3. 6113 3. 6147 3. 6140
		9		Pitch diameter	4	in. 3. 3190 3. 3209 3. 3209 3. 3205	3, 3327 3, 3323 3, 3344 3, 3340	3, 3343 3, 3343 9, 3338 9, 3334 3, 3376 3, 3371	3. 4162 3. 4157 3. 4188 3. 4183	3, 4440 3, 4436 3, 4459 3, 4455	3. 4577 3. 4573 3. 4594 3. 4590	3, 5690 3, 5686 3, 5709 3, 5705	3, 5827 3, 5823 3, 5844 3, 5840	3, 5842 3, 5837 3, 5842 3, 5842 3, 5837 3, 5876 3, 5871	3. 6661 3. 6656 3. 6688 3. 6683
		Class			es .	2A 3A	2A 3A	1A 2A 3A	2.A 3.A	2A 3A	2A 3A	2A 3.4	2A 3A	2.A 3.A	2A 3A
		Series designa-	tion		5	ND.	N N	UNC	Z	NO	ND	NO	ND	UNC	z
		Nominal size and	threads per inch		-	338-12	33,8-16	315-4	31/2-8	31/2-12	3½-16	358-12	35,8-16	334-4	334-8

33,4-12	334-16	378-12	378-16	4-4	8-4	4-12	4-16	414-8	4)4-12	414-16	41/2-8	41/2-12	41/2-16	434-8
N D	ND CIN	N N	ND	UNO	Z	ND	ND	z	Nn	ND	z	nn {	nn -	z
2B 3B	2B 3B	2B 3B	2B 3B	1B 2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	3B	2B 3B	2B 3B	2B 3B	2B 3B
3. 6780 3. 6778 3. 6698 3. 6696	3. 6960 3. 6958 3. 6908 3. 6906	3. 8030 3. 8028 3. 7948 3. 7946	3. 8210 3. 8208 3. 8158 3. 8156	3, 7670 3, 7668 3, 7670 3, 7668 3, 7594 3, 7592	3. 8900 3. 8898 3. 8797 3. 8795	3, 9280 3, 9278 3, 9198 3, 9196	3. 9460 3. 9458 3. 9408 3. 9406	4. 1400 4. 1398 4. 1297 4. 1295	4. 1780 4. 1778 4. 1698 4. 1696	4. 1960 4. 1958 4. 1908 4. 1906	4. 3900 4. 3898 4. 3797 4. 3795	4, 4280 4, 4278 4, 4198 4, 4196	4. 4460 4. 4458 4. 4408 4. 4406	4. 64000 4. 63975 4. 62970 4. 62945
3. 6600 3. 6602 3. 6602 3. 6600	3, 6820 3, 6822 3, 6820 3, 6820	3, 7850 3, 7852 3, 7850 3, 7850	3. 8070 3. 8072 3. 8070 3. 8072	3, 7290 3, 7292 3, 7290 3, 7292 3, 7290 3, 7290	3, 8650 3, 8652 3, 8650 3, 8652	3. 9100 3. 9102 3. 9100 3. 9102	3. 9320 3. 9322 3. 9320 3. 9322	4, 1150 4, 1152 4, 1150 4, 1152	4. 1600 4. 1602 4. 1600 4. 1602	4, 1820 4, 1822 4, 1820 4, 1822	4. 3652 4. 3652 4. 3650 4. 3652	4. 4100 4. 4102 4. 4100 4. 4102	4, 4320 4, 4322 4, 4320 4, 4322	4. 61500 4. 61525 4. 61500 4. 61525
3, 7043 3, 7047 3, 7022 3, 7026	3. 7169 3. 7173 3. 7150 3. 7154	3. 8294 3. 8298 3. 8273 3. 8277	3. 8424 3. 8424 3. 8401 3. 8405	3, 8597 3, 8602 3, 8523 3, 8487 3, 8487	3. 9307 3. 9312 3. 9277 3. 9282	3, 9544 3, 9548 3, 9523 3, 9527	3, 9670 3, 9674 3, 9651 3, 9655	4, 1809 4, 1815 4, 1778 4, 178	4, 2044 4, 2050 4, 2023 4, 2029	4, 2170 4, 2176 4, 2151 4, 2157	4. 4310 4. 4316 4. 4280 4. 4286	4, 4544 4, 4550 4, 4523 4, 4529	4, 4670 4, 4676 4, 4651 4, 4657	4, 6812 4, 6818 4, 6781 4, 6787
3, 7043 3, 7039 3, 7022 3, 7018	3. 7169 3. 7165 3. 7150 3. 7146	3. 8294 3. 8290 3. 8273 3. 8269	3. 8420 3. 8416 3. 8401 3. 8397	3.8597 3.8592 3.8523 3.8518 3.8487 3.8482	3. 9307 3. 9302 3. 9277 3. 9272	3, 9544 3, 9540 3, 9523 3, 9519	3. 9670 3. 9666 3. 9651 3. 9647	4, 1809 4, 1803 4, 1778 4, 1772	4. 2044 4. 2038 4. 2023 4. 2017	4. 2170 4. 2164 4. 2151 4. 2145	4, 4310 4, 4304 4, 4280 4, 4274	4, 4544 4, 4538 4, 4523 4, 4527	4. 4670 4. 4664 4. 4651 4. 4645	4. 6812 4. 6806 4. 6781 4. 6775
3, 7404 3, 7398 3, 7383 3, 7377	3, 7440 3, 7434 3, 7421 3, 7415	3. 8655 3. 8649 3. 8634 3. 8628	3. 8691 3. 8685 3. 8672 3. 8666	3. 9680 3. 9671 3. 9606 3. 9597 3. 9570	3. 9848 3. 9841 3. 9818 3. 9811	3. 9905 3. 9899 3. 9884 3. 9878	3, 9941 3, 9935 3, 9922 3, 9916	4, 2350 4, 2339 4, 2319 4, 2308	4, 2405 4, 2396 4, 2384 4, 2375	4. 2441 4. 2432 4. 2422 4. 2413	4, 4851 4, 4840 4, 4821 4, 4810	4, 4905 4, 4896 4, 4884 4, 4875	4, 4941 4, 4932 4, 4922 4, 4913	4, 7353 4, 7342 4, 7322 4, 7311
3. 6959 3. 6959 3. 6959 3. 6963	3. 7094 3. 7098 3. 7094 3. 7098	3. 8209 3. 8213 3. 8209 3. 8213	3. 8344 3. 8348 3. 8344 3. 8348	3.8376 3.8376 3.8376 3.8381 3.8381 3.8381 3.8381	3. 9188 3. 9193 3. 9188 3. 9193	3. 9459 3. 9463 3. 9459 3. 9463	3. 9594 3. 9598 3. 9594 3. 9598	4, 1688 4, 1694 4, 1688 4, 1694	4. 1959 4. 1965 4. 1959 4. 1965	4. 2094 4. 2100 4. 2094 4. 2100	4. 4188 4. 4194 4. 4188 4. 4194	4. 4459 4. 4465 4. 4459 4. 4465	4. 4594 4. 4600 4. 4594 4. 4600	4. 6688 4. 6694 4. 6698 4. 6694
3, 7500 3, 7506 3, 7500 3, 7500	3, 7500 3, 7506 3, 7506 3, 7506	3 8750 3. 8756 3. 8750 3. 8750	3. 8750 3. 8756 3. 8750 3. 8750	4 4 4 4 4 4 9 0000 0000 0000 0000 0000	4. 0000 4. 0007 4. 0000 4. 0007	4. 0000 4. 0006 4. 0000 4. 0006	4. 0000 4. 0006 4. 0000 4. 0006	4, 2500 4, 2511 4, 2500 4, 2511	4, 2500 4, 2509 4, 2500 4, 2509	4, 2500 4, 2509 4, 2500 4, 2509	4. 5000 4. 5011 4. 5000 4. 5011	4. 5000 4. 5009 4. 5000 4. 5009	4. 5000 4. 5009 4. 5000 4. 5009	4. 7500 4. 7511 4. 7500 4. 7511
				3.9609	3. 9748			4, 2247			4. 4747			4. 72460
3. 7367 3. 7369 3. 7386 3. 7386	3. 7389 3. 7391 3. 7406 3. 7408	3. 8616 3. 8618 3. 8638 3. 8638	3. 8638 3. 8640 3. 8656 3. 8658	3, 9609 3, 9611 3, 9728 3, 9730 3, 9762 3, 9764	3. 9823 3. 9825 3. 9850 3. 9850	3. 9866 3. 9868 3. 9886 3. 9886	3. 9888 3. 9890 3. 9906 3. 9908	4, 2322 4, 2324 4, 2350 4, 2352	4, 2366 4, 2368 4, 2386 4, 2386	4, 2388 4, 2390 4, 2406 4, 2408	4. 4822 4. 4824 4. 4850 4. 4852	4. 4866 4. 4868 4. 4886 4. 4886	4. 4888 4. 4890 4. 4906 4. 4908	4. 73235 4. 73235 4. 73500 4. 73525
3. 7481 3. 7479 3. 7500 3. 7498	3, 7483 3, 7481 3, 7500 3, 7498	3. 8730 3. 8728 3. 8750 3. 8748	3. 8732 3. 8730 3. 8750 3. 8748	3. 9966 3. 9964 3. 9966 4. 0000 3. 9998	3, 9973 3, 9971 4, 0000 3, 9998	3, 9980 3, 9978 4, 0000 3, 9998	3, 9982 3, 9980 4, 0000 3, 9998	4. 2472 4. 2470 4. 2500 4. 2498	4, 2480 4, 2478 4, 2500 4, 2498	4, 2482 4, 2480 4, 2500 4, 2498	4. 4972 4. 4970 4. 5000 4. 4998	4. 4980 4. 4978 4. 5000 4. 4998	4. 4982 4. 4980 4. 5000 4. 4998	4. 74710 4. 74685 4. 75000 4. 74975
3. 6696 3. 6702 3. 6731 3. 6731	3. 6884 3. 6890 3. 6916 3. 6922	3. 7944 3. 7950 3. 7980 3. 7986	3. 8132 3. 8138 3. 8165 3. 8171	3. 7631 3. 7640 3. 7688 3. 7697 3. 7750 3. 7759	3.8799 3.8806 3.8849 3.8856	3. 9194 3. 9200 3. 9230 3. 9236	3. 9382 3. 9388 3. 9415 3. 9421	4. 1296 4. 1307 4. 1347 4. 1358	4. 1694 4. 1703 4. 1730 4. 1739	4. 1882 4. 1891 4. 1915 4. 1924	4. 3795 4. 3896 4. 3846 4. 3857	4. 4194 4. 4203 4. 4230 4. 4239	4. 4382 4. 4391 4. 4415 4. 4424	4. 6293 4. 6304 4. 6345 4. 6356
3. 6876 3. 6872 3. 6911 3. 6907	3. 7019 3. 7015 3. 7051 3. 7047	3.8124 3.8120 3.8160 3.8160	3. 8267 3. 8263 3. 8300 3. 8296	3, 8172 3, 8167 3, 8229 3, 8224 3, 8291 3, 8291	3, 9070 3, 9065 3, 9120 3, 9115	3. 9374 3. 9370 3. 9410 3. 9406	3. 9517 3. 9513 3. 9550 3. 9546	4, 1567 4, 1561 4, 1618 4, 1612	4. 1874 4. 1868 4. 1910 4. 1904	4, 2017 4, 2011 4, 2050 4, 2044	4. 4066 4. 4060 4. 4117 4. 4111	4, 4374 4, 4368 4, 4410 4, 4404	4, 4517 4, 4511 4, 4550 4, 4544	4. 6564 4. 6558 4. 6616 4. 6610
3. 6876 3. 6880 3. 6911 3. 6915	3. 7019 3. 7023 3. 7051 3. 7055	3, 8124 3, 8128 3, 8160 3, 8164	3. 8267 3. 8271 3. 8300 3. 8304	3.8172 3.8229 3.8229 3.8234 3.8234 3.8291	3. 9070 3. 9075 3. 9120 3. 9125	3, 9374 3, 9378 3, 9410 3, 9414	3. 9517 3. 9521 3. 9550 3. 9554	4. 1567 4. 1573 4. 1618 4. 1624	4, 1874 4, 1880 4, 1910 4, 1916	4, 2017 4, 2023 4, 2050 4, 2056	4, 4066 4, 4072 4, 4117 4, 4123	4, 4374 4, 4380 4, 4410 4, 4416	4. 4517 4. 4523 4. 4550 4. 4556	4. 6564 4. 6570 4. 6616 4. 6622
3. 6579 3. 6573 3. 6598 3. 6592	3. 6806 3. 6800 3. 6823 3. 6817	3, 7828 3, 7822 3, 7848 3, 7842	3. 8055 3. 8049 3. 8073 3. 8067	3, 7280 3, 7280 3, 7251 3, 7251 3, 7294 3, 7284	3. 8620 3. 8613 3. 8647 3. 8640	3, 9078 3, 9072 3, 9098 3, 9092	3, 9305 3, 9299 3, 9323 3, 9317	4, 1119 4, 1108 4, 1147 4, 1136	4, 1578 4, 1569 4, 1598 4, 1589	4, 1805 4, 1796 4, 1823 4, 1814	4, 3619 4, 3608 4, 3647 4, 3636	4. 4078 4. 4069 4. 4089 4. 4089	4, 4305 4, 4296 4, 4323 4, 4314	4. 6118 4. 6107 4. 6147 4. 6136
3. 6940 3. 6936 3. 6959 3. 6955	3. 7077 3. 7073 3. 7094 3. 7090	3. 8189 3. 8185 3. 8209 3. 8205	3, 8326 3, 8322 3, 8344 3, 8340	3.8342 3.8337 3.8337 3.8337 3.8376 3.8376	3. 9161 3. 9156 3. 9188 3. 9183	3, 9439 3, 9435 3, 9459 3, 9455	3. 9576 3. 9572 3. 9594 3. 9590	4, 1660 4, 1654 4, 1688 4, 1682	4, 1939 4, 1953 4, 1959 4, 1953	4, 2076 4, 2070 4, 2094 4, 2088	4. 4160 4. 4154 4. 4188 4. 4182	4, 4439 4, 4433 4, 4459 4, 4453	4, 4576 4, 4570 4, 4594 4, 4588	4. 6659 4. 6653 4. 6688 4. 6682
2A 3A	2A 3A	2A 3.1	2A 3A	2.7	2.A 3.1	2A 3.A	2.A 3.A	3,4	3.7	3.1	2A 3A	2A 3.A	2A 3A	2A 3A
Z.	. ND	N N	N D	UNC	z	Z	N N	Z	Z N	UN	Z	ND	UN	Z
33/4-12	334-16	37/8-12	378-16	4- 4-	8-4	4-12	4–16	414-8	41/2-12	41/4-16	41/5-8	41/2-12	41/2-16	434-8

Table III.12.—Gages for standard thread series, Unified and American screw threads—Continued

		Nominal size and threads	per inch		21	434-12	434-16	5-8	5-12	5-16	514-8	51/4-12	514-16	512-8	5}2-13
		Series designa-	tion		20	Z S	ON	z	Z Z	N D	Z	ND G	ND	Z	ND
		Class			19	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B	2B 3B
	ages for ameter		Notgo		18	in. 4. 67800 4. 67775 4. 66980 4. 66955	4. 69600 4. 69575 4. 69080 4. 69055	4. 89000 4. 88975 4. 87970 4. 87945	4. 92800 4. 92775 4. 91980 4. 91955	4, 94600 4, 94575 4, 94080 4, 94055	5. 14000 5. 13975 5. 12970 5. 12945	5. 17800 5. 17775 5. 16980 5. 16955	5. 19600 5. 19575 5. 19080 5. 19055	5, 39000 5, 38975 5, 37970 5, 37945	5, 42800 5, 42775 5, 41980 5, 41955
	Z plain gages for minor diameter		Go		17	<i>in.</i> 4, 66000 4, 66025 4, 66000 4, 66025	4, 68200 4, 68225 4, 68200 4, 68225	4. 86500 4. 86525 4. 86500 4. 86525	4. 91000 4. 91025 4. 91000 4. 91025	4, 93200 4, 93225 4, 93200 4, 93225	5. 11500 5. 11525 5. 11500 5. 11525	5, 16000 5, 16025 5, 16000 5, 16025	5. 18200 5. 18225 5. 18200 5. 18225	5, 36500 5, 36525 5, 36500 5, 36525	5, 41000 5, 41025 5, 41000 5, 41025
hreads			ameter	Plus tolerance gage	16	in. 4, 7046 4, 7052 4, 7025 4, 7031	4, 7173 4, 7179 4, 7153 4, 7159	4. 9314 4. 9320 4. 9282 4. 9288	4. 9546 4. 9552 4. 9525 4. 9531	4. 9673 4. 9679 4. 9653 4. 9659	5, 1815 5, 1821 5, 1783 5, 1789	5, 2046 5, 2052 5, 2025 5, 2031	5, 2173 5, 2179 5, 2153 5, 2159	5, 4317 5, 4323 5, 4285 5, 4291	5, 4546 5, 4552 5, 4525 5, 4531
Gages for internal threads	S	Not go	Pitch diameter	Minus toleranee gage	15	in. 4, 7046 4, 7040 4, 7025 4, 7019	4, 7173 4, 7167 4, 7153 4, 7147	4. 9314 4. 9308 4. 9282 4. 9276	1, 9546 4, 9540 4, 9525 4, 9519	4. 9673 4. 9667 4. 9653 4. 9647	5. 1815 5. 1809 5. 1783 5. 1777	5, 2046 5, 2040 5, 2025 5, 2019	5. 2173 5. 2167 5. 2153 5. 2147	5, 4317 5, 4311 5, 4285 5, 4279	5, 4546 5, 4540 5, 4525 5, 4519
Gages fo	X thread gages			Major diameter	14	in. 4. 7407 4. 7398 4. 7386 4. 7377	4, 7444 4, 7435 4, 7424 4, 7415	4, 9855 4, 9844 4, 9823 4, 9812	4. 9907 4. 9898 4. 9886 4. 9877	4, 9944 4, 9935 4, 9924 4, 9915	5, 2356 5, 2345 5, 2324 5, 2313	5, 2407 5, 2398 5, 2386 5, 2377	5. 2444 5. 2435 5. 2424 5. 2415	5. 4858 5. 4847 5. 4826 5. 4815	5, 4907 5, 4898 5, 4886 5, 4877
	X	0		Piteh diameter	13	in. 4, 6959 4, 6965 4, 6959 4, 6965	4. 7094 4. 7100 4. 7094 4. 7100	4, 9188 4, 9194 4, 9188 4, 9194	4, 9459 4, 9465 4, 9459 4, 9465	4. 9594 4. 9600 4. 9594 4. 9600	5. 1688 5. 1694 5. 1688 5. 1694	5. 1959 5. 1965 5. 1959 5. 1965	5. 2094 5. 2100 5. 2094 5. 2100	5. 4188 5. 4194 5. 4194 5. 4194	5, 4459 5, 4465 5, 4459 5, 4465
		Go		Major diameter	12	in. 4. 7500 4. 7509 4. 7509 4. 7509	4, 7500 4, 7509 4, 7500 4, 7509	5, 0000 5, 0011 5, 0000 5, 0011	5. 0000 5. 0009 5. 0000	5. 0000 5. 0009 5. 0000	5, 2500 5, 2511 5, 2500 5, 2511	5, 2500 5, 2509 5, 2500 5, 2509	5, 2500 5, 2509 5, 2500 5, 2509	5. 5000 5. 5011 5. 5000 5. 5011	5. 5000 5. 5000 5. 5000
	major	go	Un-	led al	111	in.		4. 97460			5. 22460 5. 22485			5, 47450	1 1 1
	plain gages for major diameter	Not		Semi- finished	10	in. 4, 73660 4, 73685 4, 73860 1, 73885	4. 73880 4. 73905 4. 74060 4. 74085	4, 98210 4, 98235 4, 98500 4, 98525	4. 98660 4. 98685 4. 98860 4. 98885	4. 98880 4. 98905 4. 99060 4. 99085	5. 23210 5. 23235 5. 23500 5. 23525	5, 23660 5, 23685 5, 23860 5, 23885	5. 23880 5. 23905 5. 24060 5. 24085	5, 48205 5, 48225 5, 48500 5, 48525	5. 48660 5. 48685 5. 48860 5. 48885
Is	Z plain		Go		6	in. 4. 74800 4. 74775 4. 75000 4. 74975	4, 74820 4, 74795 4, 75000 4, 74975	4. 99710 4. 99685 5. 00000 4. 99975	4. 99800 4. 99775 5. 00000 4. 99975	4. 99820 4. 99795 5. 00000 4. 99975	5. 24710 5. 24685 5. 25000 5. 24975	5, 24800 5, 24775 5, 25000 5, 24975	5. 24820 5. 24795 5. 25000 5. 24975	5. 49700 5. 49675 5. 50000 5. 49975	5, 49800 5, 49775 5, 50000 5, 49975
for external threads				Minor diameter	× ×	in. 4. 6692 4. 6701 4. 6729 4. 6738	4. 6880 4. 6889 4. 6914 4. 6923	4. 8791 4. 8845 4. 8856	4, 9192 4, 9201 4, 9229 4, 9238	4. 9380 4. 9389 4. 9414 4. 9423	5, 1290 5, 1301 5, 1344 5, 1355	5. 1692 5. 1701 5. 1729 5. 1738	5. 1889 5. 1914 5. 1923	5. 3788 5. 3799 5. 3843 5. 3854	5, 4192 5, 4201 5, 4229 5, 4238
Gages for exte	Se	Not go	ameter	Minus tolerance gage	7	<i>im.</i> 4. 6872 4. 6909 4. 6903	4. 7015 4. 7009 4. 7049 4. 7043	4, 9062 4, 9056 4, 9116 4, 9110	4. 9372 4. 9366 4. 9409 4. 9403	4. 9515 4. 9509 4. 9549 4. 9543	5. 1561 5. 1555 5. 1615 5. 1609	5. 1872 5. 1866 5. 1909 5. 1903	5, 2015 5, 2009 5, 2049 5, 2043	5, 4059 5, 4053 5, 4114 5, 4108	5. 4372 5. 4366 5. 4409 5. 4403
ර්	thread gages		Pitch diam	Plus tolerance gage	9	in. 4. 6872 4. 6878 4. 6909 4. 6915	4, 7015 4, 7021 4, 7049 4, 7055	4, 9062 4, 9068 4, 9116 4, 9122	4. 9372 4. 9378 4. 9409 4. 9415	4, 9515 4, 9521 4, 9549 4, 9555	5. 1561 5. 1567 5. 1615 5. 1621	5. 1872 5. 1878 5. 1909 5. 1915	5. 2015 5. 2021 5. 2049 5. 2055	5, 4059 5, 4065 5, 4114 5, 4120	5, 4372 5, 4378 5, 4409 5, 4415
	×	0		Minor diameter	2	in. 4. 6578 4. 6599 4. 6598	4. 6805 4. 6796 4. 6823 4. 6814	4. 8618 4. 8607 4. 8647 4. 8636	4, 9078 4, 9069 4, 9089 4, 9089	4. 9305 4. 9296 4. 9323 4. 9314	5. 1118 5. 1107 5. 1147 5. 1136	5. 1578 5. 1569 5. 1598 5. 1589	5. 1805 5. 1796 5. 1823 5. 1814	5. 3617 5. 3606 5. 3647 5. 3636	5. 4078 5. 4069 5. 4098 5. 4089
		Go		Pitch diameter	4	in. 4. 6939 4. 6933 4. 6959 4. 6958	4. 7076 4. 7070 4. 7094 4. 7088	4, 9159 4, 9153 4, 9188 4, 9182	4, 9439 4, 9433 1, 9459 4, 9453	4, 9576 4, 9570 4, 9594 4, 9588	5. 1659 5. 1653 5. 1688 5. 1682	5, 1939 5, 1933 5, 1959 5, 1953	5, 2076 5, 2070 5, 2094 5, 2088	5. 4158 5. 4152 5. 4188 5. 4182	5. 4439 5. 4433 5. 4459 5. 4453
		Class			60	2A 8A	2A 3.4	2A 3A	2A 3A	2.A 3.A	2A 3A	2A 3A	2A 3A	2A 3A	2A 3A
		Serics designa-	tion		2	ND	Z S	z	Z S	N N	z	N	NO.	z	N D
		Nominal Size and	threads per ineh		-	434-12	43,4-16	8	5-12	5-16	51/4-8	51/4-12	51/4-16	51/2-8	5½-12

5/2-16	534-8	534-12	534-16	8-9	6-12	6-16
UN	Z	ND	ND A	z	ND	ND CIN
2B						
3B						
5. 44600	5. 64000	5. 67800	5, 69600	5.89000	5. 92800	5. 94600
5. 44575	5. 63975	5. 67775	5, 69575	5.88975	5. 92775	5. 94575
5. 44080	5. 62970	5. 66980	5, 69080	5.87970	5. 91980	5. 94085
5. 44055	5. 62945	5. 66955	5, 69055	5.87945	5. 91955	5. 94055
5, 43200	5. 61500	5. 66000	5. 68220	5.86500	5. 91000	5, 93200
5, 43225	5. 61525	5. 66025	5. 68225	5.86525	5. 91025	5, 93225
5, 43200	5. 61500	5. 66000	5. 6.200	5.86500	5. 91000	5, 93200
5, 43225	5. 61525	5. 66025	5. 68225	5.86525	5. 91025	5, 93225
5. 4673	5.6818	5. 7049	5. 7175	5, 9320	5, 9549	5. 9675
5. 4679	5.6824	5. 7055	5. 7181	5, 9326	5, 9555	5. 9681
5. 4653	5.6786	5. 7026	5. 7155	5, 9287	5, 9526	5. 9655
5. 4659	5.6792	5. 7032	5. 7161	5, 9293	5, 9532	5. 9661
5. 4673	5. 6818	5. 7049	5. 7175	5. 9320	5, 9549	5, 9675
5. 4667	5. 6812	5. 7048	5. 7169	5. 9314	5, 9543	5, 9669
5. 4653	5. 6786	5. 7026	5. 7155	5. 9287	5, 9526	5, 9655
5. 4647	5. 6780	5. 7020	5. 7149	5. 9281	5, 9520	5, 9640
5. 4944	5. 7359	5. 7410	5, 7446	5. 9861	5. 9911	5, 9946
5. 4935	5. 7348	5. 7401	5, 7437	5. 9850	5. 9901	5, 9937
5. 4924	5. 7327	5. 7387	5, 7426	5. 9828	5. 9887	5, 9926
5. 4915	5. 7316	5. 7378	5, 7417	5. 9817	5. 9878	5, 9917
5. 4594	5. 6688	5, 6959	5. 7094	5. 9188	5. 9459	5, 9594
5. 4600	5. 6694	5, 6965	5. 7100	5. 9194	5. 9465	5, 9600
5. 4594	5. 6698	5, 6959	5. 7094	5. 9188	5. 9459	5, 9594
5. 4600	5. 6694	5, 6965	5. 7100	5. 9194	5. 9465	5, 9600
5, 5000 5, 5009 5, 5009 5, 5009	5, 7500 5, 7511 5, 7500 5, 7511	5. 7500 5. 7509 5. 7509 5. 7509	5, 7500 5, 7509 5, 7500 5, 7509	6, 0000 6, 0011 6, 0011 6, 0011	6. 0000 6. 0009 6. 0000 6. 0009	6. 0000 6. 0000 6. 0000
	5, 72450 5, 72475			5. 97450 5. 97475		
5. 48880	5, 73200	5. 73650	5, 73870	5, 98200	5, 98650	5, 98870
5. 48905	5, 73225	5. 73675	5, 73895	5, 98225	5, 98675	5, 98895
5. 49060	5, 73500	5. 73860	5, 74060	5, 98500	5, 98860	5, 99060
5. 49085	5, 73525	5. 73885	5, 74085	5, 98525	5, 98885	5, 99085
5, 49820	5. 74700	5. 74790	5, 74810	5. 99700	5. 99790	5, 99810
5, 49795	5. 74675	5. 74765	5, 74785	5. 99675	5. 99765	5, 99785
5, 50000	5. 75000	5. 75000	5, 75000	6. 00000	6. 00000	6, 00000
5, 49975	5. 74975	5. 74975	5, 74975	5. 99975	5. 99975	5, 99975
5, 4380	5, 6287	5, 6689	5. 6878	5, 8785	5, 9189	5, 9378
5, 4389	5, 6298	5, 6698	5. 6887	5, 8796	5, 9198	5, 9387
5, 4414	5, 6342	5, 6727	5. 6912	5, 8841	5, 9227	5, 9412
5, 4423	5, 6353	5, 6736	5. 6921	5, 8852	5, 9236	5, 9421
5, 4515	5, 6558	5. 6869	5. 7013	5. 9056	5. 9369	5, 9513
5, 4509	5, 6552	5. 6863	5. 7007	5. 9050	5. 9363	5, 9507
5, 4549	5, 6613	5. 6907	5. 7047	5. 9112	5. 9407	5, 9547
5, 4543	5, 6607	5. 6901	5. 7041	5. 9106	5. 9401	5, 9541
5, 4515	5. 6558	5. 6869	5. 7013	5. 9056	5, 9369	5, 9513
5, 4521	5. 6564	5. 6875	5. 7019	5. 9062	5, 9375	5, 9519
5, 4549	5. 6613	5. 6907	5. 7047	5. 9112	5, 9407	5, 9547
5, 4555	5. 6619	5. 6913	5. 7053	5. 9118	5, 9413	5, 9553
5, 4305	5. 6117	5, 6577	5. 6804	5. 8617	5. 9077	5, 9304
5, 4296	5. 6106	5, 6568	5. 6795	5. 8606	5. 9068	5, 9295
5, 4323	5. 6147	5, 6598	5. 6823	5. 8647	5. 9098	5, 9323
5, 4314	5. 6136	5, 6589	5. 6814	5. 8636	5. 9089	5, 9314
5. 4576 5. 4594 5. 4588	5, 6658 5, 6652 5, 6688 5, 6682	5, 6938 5, 6932 5, 6959 5, 6953	5. 7075 5. 7069 5. 7094 5. 7088	5, 9158 5, 9152 5, 9188 5, 9182	5. 9438 5. 9432 5. 9459 5. 9453	5, 9575 5, 9569 5, 9584 5, 9588
2A	2.A	2A	2A	2A	2A	2.A
3A	3.A	3A	33	3A	3A	3.A
N	Z	UN	ND	Z	N	UN
5½-16	534-8	534-12	534-16	8-9	6-12	6-16

 ${\bf Table~III.13.} {\bf --} Setting~plug~gages,~Unified~and~American~screw~threads$

					W trun	cated setting	plugs]	Basic-crest s	etting plugs	
Nominal size and	Serics		Pl	ug for "Go	,,		Plug for	"Not go"			Major d	iameter	
threads per inch	designa- tion	Class	Major di	ameter	Pitch	Major di	ameter	Pitch d	iameter	Ge) 1	Not	go ²
			Trun- cated	Full	Pitch diameter	Trun- cated	Full	Plus tol- erance gage	Minus tol- erance gage	W tol- erance	X tol- erance	W tol- erance	X tol- erance
1	2	3	4	5	6	7	8	9	10	11A	11B	12A	12B
0-80	NF	2A 3A	in. 0. 0561 . 0558 . 0566 . 0563	<i>in</i> . 0.0595 .0598 .0600 .0603	in. 0.0514 .0513 .0519 .0518	in. 0.0550 .0547 .0560 .0557	in. 0.0584 .0587 .0594 .0597	in. 0. 0496 . 0497 . 0506 . 0507	in. 0.0496 .0495 .0506 .0505	in. 0.0595 .0598 .0600 .0603	in. 0.0595 .0598 .0600 .0603	in. 0.0584 .0587 .0594 .0597	in. 0.0584 .0587 .0594 .0597
1-64	NC	$ \begin{cases} 2A \\ 3A \end{cases} $. 0684 . 0681 . 0690 . 0687	. 0724 . 0727 . 0730 . 0733	. 0623 . 0622 . 0629 . 0628	.0671 .0668 .0682 .0679	. 0717 . 0720 . 0728 . 0731	.0603 .0604 .0614 .0615	.0603 .0602 .0614 .0613	. 0724 . 0727 . 0730 . 0733	. 0724 . 0728 . 0730 . 0734	. 0717 . 0720 . 0728 . 0731	. 0717 . 0721 . 0728 . 0732
1-72	NF	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$.0687 .0684 .0693 .0690	.0724 .0727 .0730 .0733	.0634 .0633 .0640 .0639	.0675 .0672 .0686 .0683	. 0715 . 0718 . 0726 . 0729	.0615 .0616 .0626 .0627	. 0615 . 0614 . 0626 . 0625	.0724 .0727 .0730 .0733	.0724 .0727 .0730 .0733	.0715 .0718 .0726 .0729	.0715 .0718 .0726 .0729
2-56	NC	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$.0810 .0807 .0816 .0813	. 0854 . 0857 . 0860 . 0863	.0738 .0737 .0744 .0743	.0794 .0791 .0805 .0802	. 0850 . 0853 . 0860 . 0863	.0717 .0718 .0728 .0729	.0717 .0716 .0728 .0727	.0854 .0857 .0860 .0863	. 0854 . 0858 . 0860 . 0864	. 0850 . 0853 . 0860 . 0863	.0850 .0854 .0860 .0864
2-64	NF	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$. 0814 . 0811 . 0820 . 0817	. 0854 . 0857 . 0860 . 0863	. 0753 . 0752 . 0759 . 0758	.0801 .0798 .0812 .0809	.0847 .0850 .0858 .0861	.0733 .0734 .0744 .0745	.0733 .0732 .0744 .0743	. 0854 . 0857 . 0860 . 0863	. 0854 . 0858 . 0860 . 0864	. 0847 . 0850 . 0858 . 0861	.0847 .0851 .0858 .0862
3-48	NC	$ \begin{cases} 2A \\ 3A \end{cases} $. 0934 . 0931 . 0941 . 0938	. 0983 . 0986 . 0990 . 0993	. 0848 . 0847 . 0855 . 0854	. 0915 . 0912 . 0928 . 0925	. 0981 . 0984 . 0990 . 0993	. 0825 . 0826 . 0838 . 0839	.0825 .0824 .0838 .0837	. 0983 . 0986 . 0990 . 0993	. 0983 . 0987 . 0990 . 0994	. 0981 . 0984 . 0990 . 0993	.0981 .0985 .0990 .0994
3-56	NF		. 0939 . 0936 . 0946 . 0943	. 0983 . 0986 . 0990 . 0993	.0867 .0866 .0874 .0873	. 0922 . 0919 . 0935 . 0932	. 0978 . 0981 . 0990 . 0993	. 0845 . 0846 . 0858 . 0859	. 0845 . 0844 . 0858 . 0857	. 0983 . 0986 . 0990 . 0993	. 0983 . 0987 . 0990 . 0994	. 0978 . 0981 . 0990 . 0993	. 0978 . 0982 . 0990 . 0994
4-40	NC		. 1056 . 1053 . 1064 . 1061	. 1112 . 1115 . 1120 . 1123	. 0950 0949 . 0958 . 0957	. 1033 . 1030 . 1047 . 1044	. 1112 . 1115 . 1120 . 1123	. 0925 . 0926 . 0939 . 0940	. 0925 . 0924 . 0939 . 0938	. 1112 . 1115 . 1120 . 1123	.1112 .1116 .1120 .1124	. 1112 . 1115 . 1120 . 1123	.1112 .1116 .1120 .1124
4-48	NF	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$. 1064 . 1061 . 1071 . 1068	. 1113 . 1116 . 1120 . 1123	. 0978 . 0977 . 0985 . 0984	. 1044 . 1041 . 1057 . 1054	. 1110 . 1113 . 1120 . 1123	. 0954 . 0955 . 0967 . 0968	. 0954 . 0953 . 0967 . 0966	. 1113 . 1116 . 1120 . 1123	. 1113 . 1117 . 1120 . 1124	. 1110 . 1113 . 1120 . 1123	.1110 .1114 .1120 .1124
5-40	NC	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$. 1186 . 1183 . 1194 . 1191	. 1242 . 1245 . 1250 . 1253	. 1080 . 1079 . 1088 . 1087	. 1162 . 1159 . 1177 . 1174	. 1242 . 1245 . 1250 . 1253	. 1054 . 1055 . 1069 . 1070	. 1054 . 1053 . 1069 . 1068	. 1242 . 1245 . 1250 . 1253	. 1242 . 1246 . 1250 . 1254	. 1242 . 1245 . 1250 . 1253	. 1242 . 1246 . 1250 . 1254
5-44	NF	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$.1191 .1188 .1198 .1195	. 1243 . 1246 . 1250 . 1253	. 1095 . 1094 . 1102 . 1101	. 1168 . 1165 . 1181 . 1178	. 1240 . 1243 . 1250 . 1253	. 1070 . 1071 . 1083 . 1084	. 1070 . 1069 . 1083 . 1082	. 1243 . 1246 . 1250 . 1253	. 1243 . 1247 . 1250 . 1254	. 1240 . 1243 . 1250 . 1253	. 1240 . 1244 . 1250 . 1254
6–32	NC	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$. 1307 . 1304 . 1315 . 1312	. 1372 . 1375 . 1380 . 1383	. 1169 . 1168 . 1177 . 1176	. 1276 . 1273 . 1291 . 1288	. 1372 . 1375 . 1380 . 1383	.1141 .1142 .1156 .1157	. 1141 . 1140 . 1156 . 1155	. 1372 . 1375 . 1380 . 1383	. 1372 . 1377 . 1380 . 1385	. 1372 . 1375 . 1380 . 1383	. 1372 . 1377 . 1380 . 1385
6-40	NF	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$. 1316 . 1313 . 1324 . 1321	. 1372 . 1375 . 1380 . 1383	. 1210 . 1209 . 1218 . 1217	. 1292 . 1289 . 1306 . 1303	. 1372 . 1375 . 1380 . 1383	. 1184 . 1185 . 1198 . 1199	. 1184 . 1183 . 1198 . 1197	. 1372 . 1375 . 1380 . 1383	. 1372 . 1376 . 1380 . 1384	. 1372 . 1375 . 1380 . 1383	. 1372 . 1376 . 1380 . 1384
8-32	NC	$ \begin{cases} 2A \\ 3A \end{cases} $. 1566 . 1563 . 1575 . 1572	. 1631 . 1634 . 1640 . 1643	. 1428 . 1427 . 1437 . 1436	. 1534 . 1531 . 1550 . 1547	.1631 .1634 .1640 .1643	. 1399 . 1400 . 1415 . 1416	. 1399 . 1398 . 1415 . 1414	. 1631 . 1634 . 1640 . 1643	. 1631 . 1636 . 1640 . 1645	. 1631 . 1634 . 1640 . 1643	. 1631 . 1636 . 1640 . 1645
8-36	NF	$ \begin{cases} 2A \\ 3A \end{cases} $. 1572 . 1569 . 1580 . 1577	. 1632 . 1635 . 1640 . 1643	. 1452 . 1451 . 1460 . 1459	. 1544 . 1541 . 1559 . 1556	. 1632 . 1635 . 1640 . 1643	. 1424 . 1425 . 1439 . 1440	. 1424 . 1423 . 1439 . 1438	. 1632 . 1635 . 1640 . 1643	. 1632 . 1636 . 1640 . 1644	. 1632 . 1635 . 1640 . 1643	. 1632 . 1636 . 1640 . 1644
10-24	NC	$\left\{\begin{array}{c} 2\Lambda \\ 3\Lambda \end{array}\right.$. 1811 . 1806 . 1821 . 1816	. 1890 . 1895 . 1900 . 1905	. 1619 . 1618 . 1629 . 1628	. 1766 . 1761 . 1784 . 1779	. 1890 . 1895 . 1900 . 1905	. 1586 . 1587 . 1604 . 1605	. 1586 . 1585 . 1604 . 1603	. 1890 . 1895 . 1900 . 1905			
10-32	NF	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$. 1826 . 1823 . 1835 . 1832	. 1891 . 1894 . 1900 . 1903	. 1688 . 1687 . 1697 . 1696	. 1793 . 1790 . 1809 . 1806	. 1891 . 1894 . 1900 . 1903	. 1658 . 1659 . 1674 . 1675	. 1658 . 1657 . 1674 . 1673	. 1891 . 1894 . 1900 . 1903	. 1891 . 1896 . 1900 . 1905	. 1891 . 1894 . 1900 . 1903	. 1891 . 1896 . 1900 . 1905

					W trun	cated setting	plugs			1	Basic-crest s	etting plugs	
Nominal size and	Series		P	lug for "Go	,,		Plug for '	'Not go"			Major d	iameter	
threads per inch	designa- tion	Class	Major di	ameter	Pitch	Major di	ameter	Pitch o	liameter	Ge) 1	Not	go ²
			Trun- cated	Full	diameter	Trun- cated	Full	Plus tol- erance gage	Minus tol- erance gage	W tol- erance	X tol- erance	W tol- erance	X tol- erance
1	2	3	4	5	6	7	8	9	10	11A	11B	12A	12B
12-24	NC	$ \begin{cases} 2A \\ 3A \end{cases} $	in. 0.2071 .2066 .2081 .2076	in. 0. 2150 . 2155 . 2160 . 2165	in. 0.1879 .1878 .1889 .1888	in. 0. 2025 . 2020 . 2043 . 2038	in. 0. 2150 2155 2160 2165	in. 0. 1845 . 1846 . 1863 . 1864	in. 0.1845 .1844 .1863 .1862	in. 0. 2150 2155 2160 2165	in. 0. 2150 2155 2160 2165	in. 0. 2150 2155 2160 2165	in. 0. 2150 . 2155 . 2160 . 2165
12-28	NF	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$. 2079 . 2074 . 2089 . 2084	. 2150 . 2155 . 2160 . 2165	. 1918 . 1917 . 1928 . 1927	. 2041 . 2036 . 2059 . 2054	. 2150 . 2155 . 2160 . 2165	. 1886 . 1887 . 1904 . 1905	. 1886 . 1885 . 1904 . 1903	. 2150 . 2155 . 2160 . 2165	. 2150 . 2155 . 2160 . 2165	. 2150 . 2155 . 2160 . 2165	. 2150 . 2155 . 2160 . 2165
12-32	NEF	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$. 2086 . 2083 . 2095 . 2092	$\begin{array}{c} .2151 \\ .2154 \\ .2160 \\ .2163 \end{array}$. 1948 . 1947 . 1957 . 1956	. 2052 . 2049 . 2068 . 2065	$\begin{array}{c} .2151 \\ .2154 \\ .2160 \\ .2163 \end{array}$. 1917 . 1918 . 1933 . 1934	. 1917 . 1916 . 1933 . 1932	. 2151 . 2154 . 2160 . 2163	. 2151 . 2156 . 2160 . 2165	. 2151 . 2154 . 2160 . 2163	. 2151 . 2156 . 2160 . 2165
1/4-20	UNC	$\left\{\begin{array}{c} 1A\\ 2A\\ 3A \end{array}\right.$. 2399 . 2394 . 2399 . 2394 . 2410 . 2405	. 2489 . 2494 . 2489 . 2494 . 2500 . 2505	. 2164 . 2163 . 2164 . 2163 . 2175 . 2174	. 2324 . 2319 . 2344 . 2339 . 2364 . 2359	. 2483 . 2488 . 2489 . 2494 . 2500 . 2505	. 2108 . 2109 . 2127 . 2128 . 2147 . 2148	. 2108 . 2107 . 2127 . 2126 . 2147 . 2146	. 2489 . 2494 . 2489 . 2494 . 2500 . 2505	. 2489 . 2494 . 2489 . 2494 . 2500 . 2505	. 2483 . 2488 . 2489 . 2494 . 2500 . 2505	. 2483 . 2488 . 2489 . 2494 . 2500 . 2505
1/4-28	UNF	$\left\{\begin{array}{c} 1A \\ 2A \\ 3A \end{array}\right.$. 2419 . 2414 . 2419 . 2414 . 2429 . 2424	. 2490 . 2495 . 2490 . 2495 . 2500 . 2505	. 2258 . 2257 . 2258 . 2257 . 2268 . 2267	. 2363 . 2358 . 2380 . 2375 . 2398 . 2393	. 2476 . 2481 . 2490 . 2495 . 2500 . 2505	. 2208 . 2209 . 2225 . 2226 . 2243 . 2244	. 2208 . 2207 . 2225 . 2224 . 2243 . 2242	. 2490 . 2495 . 2490 . 2495 . 2500 . 2505	. 2490 . 2495 . 2490 . 2495 . 2500 . 2505	. 2476 . 2481 . 2490 . 2495 . 2500 . 2505	. 2476 . 2481 . 2490 . 2495 . 2500 . 2505
1/4-32	NEF	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$. 2425 . 2422 . 2435 . 2432	. 2490 . 2493 . 2500 . 2503	. 2287 . 2286 . 2297 . 2296	. 2390 . 2387 . 2408 . 2405	. 2489 . 2492 . 2500 . 2503	. 2255 . 2256 . 2273 . 2274	. 2255 . 2254 . 2273 . 2272	. 2490 . 2493 . 2500 . 2503	$\begin{array}{c} .2490 \\ .2495 \\ .2500 \\ .2505 \end{array}$. 2489 . 2492 . 2500 . 2503	. 2489 . 2494 . 2500 . 2505
5/16-18	UNC	1A 2A 3A	. 3016 . 3011 . 3016 . 3011 . 3028 . 3023	. 3113 . 3118 . 3113 . 3118 . 3125 . 3130	. 2752 . 2751 . 2752 . 2751 . 2764 . 2763	. 2932 . 2927 . 2953 . 2948 . 2975 . 2970	.3108 .3113 .3113 .3118 .3125 .3130	. 2691 . 2692 . 2712 . 2713 . 2734 . 2735	. 2691 . 2690 . 2712 . 2711 . 2734 . 2733	.3113 .3118 .3113 .3118 .3125 .3130	.3113 .3118 .3113 .3118 .3125 .3130	. 3108 . 3113 . 3113 . 3118 . 3125 . 3130	. 3108 . 3113 . 3113 . 3118 . 3125 . 3130
5/16-24	UNF	1 A 2 A 3 A	. 3035 . 3030 . 3035 . 3030 . 3046 . 3041	. 3114 . 3119 . 3114 . 3119 . 3125 . 3130	. 2843 . 2842 . 2843 . 2842 . 2854 . 2853	. 2968 . 2963 . 2986 . 2981 . 3007 . 3002	.3100 .3155 .3114 .3119 .3125 .3130	. 2788 . 2789 . 2806 . 2807 . 2827 . 2828	. 2788 . 2787 . 2806 . 2805 . 2827 . 2826	. 3114 . 3119 . 3114 . 3119 . 3125 . 3130	. 3114 . 3119 . 3114 . 3119 . 3125 . 3130	. 3100 . 3105 . 3114 . 3119 . 3125 . 3130	.3100 .3105 .3114 .3119 .3125 .3130
5/16-32	NEF	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$. 3050 . 3047 . 3060 . 3057	. 3115 . 3118 . 3125 . 3128	. 2912 . 2911 . 2922 . 2921	. 3015 . 3012 . 3033 . 3030	. 3114 . 3117 . 3125 . 3128	. 2880 . 2881 . 2898 . 2899	. 2880 . 2879 . 2898 . 2897	.3115 $.3118$ $.3125$ $.3128$. 3115 . 3120 . 3125 . 3130	. 3114 . 3117 . 3125 . 3128	. 3114 . 3119 . 3125 . 3130
3%-16	UNC	1A 2A 3A	. 3632 . 3626 . 3632 . 3626 . 3645 . 3639	. 3737 . 3743 . 3737 . 3743 . 3750 . 3756	. 3331 . 3330 . 3331 . 3330 . 3344 . 3343	. 3537 . 3531 . 3558 . 3552 . 3582 . 3576	. 3735 . 3741 . 3737 . 3743 . 3750 . 3756	. 3266 . 3267 . 3287 . 3288 . 3311 . 3312	.3266 .3265 .3287 .3286 .3311 .3310	. 3737 . 3743 . 3737 . 3743 . 3750 . 3756	.3737 .3743 .3737 .3743 .3750	. 3735 . 3741 . 3737 . 3743 . 3750 . 3756	. 3735 . 3741 . 3737 . 3743 . 3750 . 3756
³ / ₈ -24	UNF	1A 2A 3A	. 3660 . 3655 . 3660 . 3655 . 3671 . 3666	. 3739 . 3744 . 3739 . 3744 . 3750 . 3755	. 3468 . 3467 . 3468 . 3467 . 3479 . 3478	. 3591 . 3586 . 3610 . 3605 . 3630 . 3625	. 3724 . 3729 . 3739 . 3744 . 3750 . 3755	. 3411 . 3412 . 3430 . 3431 . 3450 . 3451	.3411 .3410 .3430 .3429 .3450 .3449	. 3739 . 3744 . 3739 . 3744 . 3750 . 3755	. 3739 . 3744 . 3739 . 3744 . 3750 . 3755	. 3724 . 3729 . 3739 . 3744 . 3750 . 3755	. 3724 . 3729 . 3739 . 3744 . 3750 . 3755
3/8-32	NEF	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$. 3675 . 3672 . 3685 . 3682	. 3740 . 3743 . 3750 . 3753	. 3537 . 3536 . 3547 . 3546	. 3638 - 3635 . 3657 . 3654	. 3737 . 3740 . 3750 . 3753	. 3503 . 3504 . 3522 . 3523	. 3503 . 3502 . 3522 . 3521	. 3740 . 3743 . 3750 . 3753	. 3740 . 3745 . 3750 . 3755	. 3737 . 3740 . 3750 . 3753	.3737 .3742 .3750 .3755
7∕16-14	UNC	1A 2A 3A	. 4246 . 4240 . 4246 . 4240 . 4260 . 4254	. 4361 . 4367 . 4361 . 4367 . 4375 . 4381	. 38970 . 38955 . 38970 . 38955 . 39110 . 39095	. 4135 . 4129 . 4159 . 4153 . 4185 . 4179	. 4361 . 4367 . 4361 . 4367 . 4375 . 4381	. 38260 . 38275 . 38500 . 38515 . 38760 . 38775	. 38260 . 38245 . 38500 . 38485 . 38760 . 38745	. 4 . 4 . 4	361 367 361 367 375 381	$\begin{array}{c} .4 \\ .4 \\ .4 \\ .4 \\ \end{array}$	361 367 361 367 375 381
716-20	UNF	1A 2A 3A	. 4272 . 4267 . 4272 . 4267 . 4285 . 4280	. 4362 . 4367 . 4362 . 4367 . 4375 . 4380	. 4037 . 4036 . 4037 . 4036 . 4050 . 4049	. 4192 . 4187 . 4212 . 4207 . 4236 . 4231	. 4350 . 4355 . 4362 . 4367 . 4375 . 4380	. 3975 . 3976 . 3995 . 3996 . 4019 . 4020	. 3975 . 3974 . 3995 . 3994 . 4019 . 4018	. 4 . 4 . 4 . 4	362 367 362 367 375 380	. 4 . 4 . 4 . 4	350 355 362 367 375 380

Table III.13.—Setting plug gages, Unified and American screw threads—Continued

					W tru	ncated setting	plugs			Basic-crest s	etting plugs
Nominal size and	Series des-		PI	ug for "Go"			Plug for	'Not go"		Major d	iameter
threads per inch	ignation	Class	Major dia	meter	Pitch di-	Major di	ameter	Pitch d	iameter	Go 1	Not go ²
			Truncated	Full	ameter	Truncated	Full	Plus toler- ance gage	Minus toler- ance gage	W and X tolerances	W and X tolerances
1	2	3	4	5	6	7	8	9	10	11	12
7∕16-28	UNEF	2A 3A	in. 0.4293 .4288 .4304 .4299	in. 0. 4364 . 4369 . 4375 . 4380	in. 0.4132 .4131 .4143 .4142	in. 0. 4251 . 4246 . 4271 . 4266	in. 0. 4364 . 4369 . 4375 . 4380	in. 0.4096 .4097 .4116 .4117	in. 0.4096 .4095 .4116 .4115	in. 0. 4364 . 4369 . 4375 . 4380	in. 0, 4364 , 4369 , 4375 , 4380
1/2-12	N	{ 2A 3A	. 4855 . 4849 . 4871 . 4865	. 4984 . 4990 . 5000 . 5006	. 44430 . 44415 . 44590 . 44575	. 4750 . 4744 . 4780 . 4774	. 4984 . 4990 . 5000 . 5006	. 43890 . 43905 . 44190 . 44205	. 43890 . 43875 . 44190 . 44175	. 4984 . 4990 . 5000 . 5006	. 4984 . 4990 . 5000 . 5000
1/2-13	UNC	1A 2A 3A	. 4863 . 4857 . 4863 . 4857 . 4878 . 4872	. 4985 . 4991 . 4985 . 4991 . 5000 . 5006	. 44850 . 44835 . 44850 . 44835 . 45000 . 44985	. 4744 . 4738 . 4768 . 4762 . 4796	. 4985 . 4991 . 4985 . 4991 . 5000	. 44110 . 44125 . 44350 . 44365 . 44630 . 44645	. 44110 . 44095 . 44350 . 44335 . 44630 . 44615	. 4985 . 4991 . 4985 . 4991 . 5000	. 4985 . 4991 . 4985 . 4991 . 5000
1/2-20	UNF	1 A 2 A 3 A	. 4897 . 4892 . 4897 . 4892 . 4910 . 4905	. 4987 . 4992 . 4987 . 4992 . 5000 . 5005	$\begin{array}{c} .4662 \\ .4661 \\ .4662 \\ .4661 \\ .4675 \\ .4674 \end{array}$. 4814 . 4809 . 4836 . 4831 . 4860 . 4855	. 4973 . 4978 . 4987 . 4992 . 5000 . 5005	. 4598 . 4599 . 4619 . 4620 . 4643 . 4644	. 4598 . 4597 . 4619 . 4618 . 4643 . 4642	. 4987 . 4992 . 4987 . 4992 . 5000 . 5005	. 4973 . 4978 . 4987 . 4992 . 5000 . 5003
1/2-28	UNEF	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$. 4918 . 4913 . 4929 . 4924	. 4989 . 4994 . 5000 . 5005	. 4757 . 4756 . 4768 . 4767	. 4875 . 4870 . 4895 . 4890	. 4988 . 4993 . 5000 . 5005	. 4720 . 4721 . 4740 . 4741	. 4720 . 4719 . 4740 . 4739	. 4989 . 4994 . 5000 . 5005	. 4988 . 4995 . 5000 . 5000
%6-12	UNC	1A 2A 3A	. 5480 . 5474 . 5480 . 5474 . 5496 . 5490	. 5609 . 5615 . 5609 . 5615 . 5625 . 5631	. 5068 . 5066 . 5068 . 5066 . 5084 . 5082	. 5351 . 5345 . 5377 . 5371 . 5406 . 5400	. 5609 . 5615 . 5609 . 5615 . 5625 . 5631	. 4990 . 4992 . 5016 . 5018 . 5045	. 4990 . 4988 . 5016 . 5014 . 5045 . 5043	. 5609 . 5615 . 5609 . 5615 . 5625 . 5631	. 560 . 561 . 560 . 561 . 562 . 563
% 6-18	UNF	$ \left\{ \begin{array}{c} 1A \\ 2A \\ 3A \end{array} \right. $. 5514 . 5509 . 5514 . 5509 . 5528 . 5523	. 5611 . 5616 . 5611 . 5616 . 5625 . 5630	. 52500 . 52485 . 52500 . 52485 . 52640 . 52625	. 5423 . 5418 . 5446 . 5441 . 5471 . 5466	. 5599 . 5604 . 5611 . 5616 . 5625 . 5630	.51820 .51835 .52050 .52065 .52300 .52315	. 51820 . 51805 . 52050 . 52035 . 52300 . 52285	. 5611 . 5616 . 5611 . 5616 . 5625 . 5630	. 559 . 560 . 561 . 561 . 562 . 563
% 6−24	NEF	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$. 5534 . 5529 . 5546 . 5541	. 5613 . 5618 . 5625 . 5630	. 53420 . 53405 . 53540 . 53525	. 5483 . 5478 . 5505 . 5500	. 5613 . 5618 . 5625 . 5630	. 53030 . 53045 . 53250 . 53265	. 53030 . 53015 . 53250 . 53235	. 5613 . 5618 . 5625 . 5630	. 561 . 561 . 562 . 563
5%- 11	UNC	$\left\{\begin{array}{c} 1A \\ 2A \\ 3A \end{array}\right.$. 6097 . 6091 . 6097 . 6091 . 6113	. 6234 . 6240 . 6234 . 6240 . 6250 . 6256	. 5644 . 5642 . 5644 . 5642 . 5660 . 5658	. 5955 . 5949 . 5983 . 5977 . 6013 . 6007	. 6234 . 6240 . 6234 . 6240 . 6250 . 6256	. 5561 . 5563 . 5589 . 5591 . 5619	. 5561 . 5559 . 5589 . 5587 . 5619 . 5617	. 6234 . 6240 . 6234 . 6240 . 6250 . 6256	. 623 . 624 . 623 . 624 . 625
5∕8-12	N	$\left\{\begin{array}{cc} 2\mathbf{A} \\ 3\mathbf{A} \end{array}\right.$. 6105 . 6099 . 6121 . 6115	. 6234 . 6240 . 6250 . 6256	. 5693 . 5691 . 5709 . 5707	. 6000 . 5994 . 6029 . 6023	. 6234 . 6240 . 6250 . 6256	. 5639 . 5641 . 5668 . 5670	. 5639 . 5637 . 5668 . 5666	. 6234 . 6240 . 6250 . 6256	. 623 . 624 . 625 . 625
5%-18	UNF	$\left\{\begin{array}{c} 1A \\ 2A \\ 3A \end{array}\right.$.6139 .6134 .6139 .6134 .6153 .6148	. 6236 . 6241 . 6236 . 6241 . 6250 . 6255	. 58750 . 58735 . 58750 . 58735 . 58890 . 58875	. 6046 . 6041 . 6069 . 6064 . 6095 . 6090	. 6222 . 6227 . 6236 . 6241 . 6250 . 6255	. 58050 . 58065 . 58280 . 58295 . 58540 . 58555	. 58050 . 58035 . 58280 . 58265 . 58540 . 58525	.6236 .6241 .6236 .6241 .6250 .6255	. 622: . 622: . 623: . 624: . 625: . 625:
5/8-24	NEF	2A 3A	. 6159 . 6154 . 6171 . 6166	. 6238 . 6243 . 6250 . 6255	. 59670 . 59655 . 59790 . 59775	. 6107 . 6102 . 6129 . 6124	. 6238 . 6243 . 6250 . 6255	. 59270 . 59285 . 59490 . 59505	. 59270 . 59255 . 59490 . 59475	. 6238 . 6243 . 6250 . 6255	. 623 . 624 . 625 . 625
11/16-12	N		. 6730 . 6724 . 6746 . 6740	. 6859 . 6865 . 6875 . 6881	. 6318 . 6316 . 6334 . 6332	. 6625 . 6619 . 6654 . 6648	. 6859 . 6865 . 6875 . 6881	. 6264 . 6266 . 6293 . 6295	. 6264 . 6262 . 6293 . 6291	. 6859 . 6865 . 6875 . 6881	. 685 . 686 . 687 . 688
¹ ½ ₆ –24	NEF		. 6784 . 6779 . 6796 . 6791	. 6863 . 6868 . 6875 . 6880	. 65920 . 65905 . 66040 . 66025	. 6732 . 6727 . 6754 . 6749	. 6863 . 6868 . 6875 . 6880	. 65520 . 65535 . 65740 . 65755	. 65520 . 65505 . 65740 . 65725	. 6863 . 6868 . 6875 . 6880	. 686 . 686 . 687 . 688

Table III.13.—Setting plug gages, Unified and American screw threads—Continued

					W tru	ncated setting [plugs			Basic-crest s	etting plugs
Nominal size and	Series des-		P	lug for "Go"			Plug for '	'Not go"		Major d	iameter
threads per inch	ignation	Class	Major dia	ameter	Pitch di-	Major dia	meter	Pitch d	iameter	Go 1	Not go ²
			Truncated	Full	ameter	Truncated	Full	Plus toler- ance gage	Minus toler- ance gage	W and X tolerances	W and X tolerances
1	2	3	4	5	6	7	8	9	10	11	12
34-10	UNC	1A 2A 3A	in. 0. 7336 . 7330 . 7336 . 7330 . 7354 . 7348	in. 0.7482 .7488 .7482 .7488 .7500 .7506	in. 0. 6832 . 6830 . 6832 . 6830 . 6850 . 6848	in. 0.7177 .7171 .7206 7200 .7239 .7233	in. 0,7482 .7488 .7482 .7488 .7500 .7506	in. 0. 6744 6746 6773 6775 6806 6808	in. 0. 6744 . 6742 . 6773 . 6771 . 6806 . 6804	in. 0.7482 .7488 .7482 .7488 .7500 .7506	in. 0.7482 .7488 .7482 .7488 .7500 .7500
3/4-12	N	2A 3A	. 7354 . 7348 . 7371 . 7365	. 7483 . 7489 . 7500 . 7506	. 6942 . 6940 . 6959 . 6957	.7248 .7242 .7279 .7273	. 7483 . 7489 . 7500 . 7506	. 6887 . 6889 . 6918 . 6920	. 6887 . 6885 . 6918 . 6916	. 7483 . 7489 . 7500 . 7506	.7489 .7489 .7500 .7500
34-16	UNF	1A 2A 3A	. 7380 . 7374 . 7380 . 7374 . 7395 . 7389	.7485 .7491 .7485 .7491 .7500 .7506	.7079 .7077 .7079 .7077 .7094 .7092	. 7275 . 7269 . 7300 . 7294 . 7327 . 7321	.7473 .7479 .7485 .7491 .7500 .7506	. 7004 . 7006 . 7029 . 7031 . 7056 . 7058	. 7004 . 7002 . 7029 . 7027 . 7056 . 7054	. 7485 . 7491 . 7485 . 7491 . 7500 . 7506	.7473 .7479 .7484 .749 .7500
3/4-20	UNEF	$\begin{cases} 2A \\ 3A \end{cases}$.7397 .7392 .7410 .7405	.7487 .7492 .7500 .7505	. 71620 . 71605 . 71750 . 71735	. 7334 . 7329 . 7358 . 7353	.7487 .7492 .7500 .7505	. 71180 . 71195 . 71420 . 71435	.71180 .71165 .71420 .71405	.7487 .7492 .7500 .7505	. 748 . 749 . 750 . 750
13/16-12	N	2A 3A	. 7979 . 7973 . 7996 . 7990	\$108 *114 . 8125 . 8131	. 7567 . 7565 . 7584 . 7582	. 7873 . 7867 . 7904 . 7898	.8108 .8114 .8125 .8131	.7512 .7514 .7543 .7545	.7512 .7510 .7543 .7541	. 8108 . 8114 . 8125 . 8131	. 8100 . 8114 . 8123 . 813
¹³ / ₁₆ –16	UN	2A 3A	. 8005 . 7999 . 8020 . 8014	. 8110 . 8116 . 8125 . 8131	.7704 .7702 .7719 .7717	. 7926 . 7920 . 7954 . 7948	. 8110 . 8116 . 8125 . 8131	. 7655 . 7657 . 7683 . 7685	. 7655 . 7653 . 7683 . 7681	. 8110 . 8116 . 8125 . 8131	. 8110 . 8110 . 812 . 813
13/16-20	UNEF	2A 3A	. 8022 . 8017 . 8035 . 8030	.8112 .8117 .812 ^r .8130	. 77870 . 77855 . 78000 . 77985	. 7960 . 7955 . 7984 . 7979	. 8112 . 8117 . 8125 . 8130	. 77430 . 77445 . 77670 . 77685	. 77430 . 77415 . 77670 . 77655	.8112 .8117 .8125 .8130	. 811: . 811: . 812: . 813
7,8-9	UNU	1A 2A 3A	.8573 .8566 .8573 .8566 .8592 .8585	. 8731 . 8738 . 8731 . 8738 . 8750 . 8757	. 8009 . 8007 . 8009 . 8007 . 8028 . 8026	. 8395 . 8388 . 8427 . 8420 . 8462 . 8455	. 8731 . 8738 . 8731 . 8738 . 8750 . 8757	. 7914 . 7916 . 7946 . 7948 . 7981 . 7983	. 7914 . 7912 . 7946 . 7944 . 7981 . 7979	. 8731 . 8738 . 8731 . 8738 . 8750 . 8757	. 873 . 873 . 873 . 873 . 875 . 875
7/8-12	N	$\left\{\begin{array}{c} 2\mathrm{A} \\ 3\mathrm{A} \end{array}\right.$. 8604 . 8598 . 8621 . 8615	. 8733 . 8739 . 8750 . 8756	. 8192 . 8190 . 8209 . 8207	.8498 .8492 .8529 .8523	. 8733 . 8739 . 8750 . 8756	. 8137 . 8139 . 8168 . 8170	. 8137 . 8135 . 8168 . 8166	. 8733 . 8739 . 8750 . 8756	. 873 . 873 . 875 . 875
76-14	UNF	1A 2A 3A	. 8619 . 8613 . 8619 . 8613 . 8635 . 8629	. 8734 . 8740 . 8734 . 8740 . 8750 . 8756	. 8270 . 8268 . 8270 . 8268 . 8286 . 8284	.8498 .8492 .8525 .8519 .8554	. 8725 . 8731 . 8734 . 8740 . 8750 . 8756	. 8189 . 8191 . 8216 . 8218 . 8245 . 8247	. 8189 . 8187 . 8216 . 8214 . 8245 . 8243	.8734 .8740 .8734 .8740 .8750 .8756	. 872 . 873 . 873 . 874 . 875 . 875
7/s-16	UN	2A 3A	. 8630 . 8624 . 8645 . 8639	.8735 .8741 .8750 .8756	. 8329 . 8327 . 8344 . 8342	. 8551 . 8545 . 8579 . 8573	. 8735 . 8741 . 8750 . 8756	. 8280 . 8282 . 8308 . 8310	. 8280 . 8278 . 8308 . 8306	. 8735 . 8741 . 8750 . 8756	. 873 . 874 . 875 . 875
3 %-20	UNEF	2A 3A	. 8647 . 8642 . 8660 . 8655	. 8737 . 8742 . 8750 . 8755	. 84120 . 84105 . 84250 . 84235	. 8584 . 8579 . 8608 . 8603	. 8737 . 8742 . 8750 . 8755	. 83680 . 83695 . 83920 . 83935	. 83680 . 83665 83920 . 83905	. 8737 . 8742 . 8750 . 8755	. 873 . 874 . 875 . 875
15/16-12	UN	2A 3A	. 9229 . 9223 . 9246 . 9240	. 9358 . 9364 . 9375 . 9381	. 8817 . 8815 . 8834 . 8832	. 9121 . 9115 . 9154 . 9148	. 9358 . 9364 . 9375 . 9381	. 8760 . 8762 . 8793 . 8795	. 8760 . 8758 . 8793 . 8791	. 9358 . 9364 . 9375 . 9381	. 935 . 936 . 937 . 938
15/16-16	UN		. 9255 . 9249 . 9270 . 9264	. 9360 . 9366 . 9375 . 9381	. 8954 . 8952 . 8969 . 8967	. 9175 . 9169 . 9203 . 9197	. 9360 . 9366 . 9375 . 9381	. 8904 . 8906 . 8932 . 8934	. 8904 . 8902 . 8932 . 8930	. 9360 . 9366 . 9375 . 9381	. 936 . 936 . 937 . 938
15/16-20	UNEF	2A 3A	. 9271 . 9266 . 9285 . 9280	. 9361 . 9366 . 9375 . 9380	. 90360 . 90345 . 90500 . 90485	. 9208 . 9203 . 9232 . 9227	. 9361 . 9366 . 9375 . 9380	. 89910 . 89925 . 90160 . 90175	. 89910 . 89895 . 90160 . 90145	. 9361 . 9366 . 9375 . 9380	. 936 . 936 . 937 . 938

Table III.13.—Setting plug gages, Unified and American screw threads—Continued

					W tru	ncated setting	plugs			Basic-crest	setting plugs
Nominal size and	Series des-		P	lug for "Go"			Plug for	'Not go"		Major d	iameter
threads per inch	ignation	Class	Major dia	meter	Pitch di-	Major di	ameter	Pitch d	iameter	Go 1	Not go ²
			Truncated	Full	ameter	Truncated	Full	Plus toler- ance gage	Minus toler- ance gage	W and X tolerances	W and X tolerances
1	2	3	4	5	6	7	8	9	10	11	12
1-8	UNC	1A 2A 3A	in. 0. 9809 9802 9809 9802 9802 9829	in. 0.9980 .9987 .9980 .9987 1.0000 1.0007	in. 0.9168 .9166 .9168 .9166 .9188 .9186	in. 0.9608 .9601 .9641 .9634 .9678	in. 0,9980 .9887 .9980 .9987 1,0000 1,0007	in. 0.9067 .9069 .9100 .9102 .9137 .9139	in. 0.9067 .9065 .9100 .9098 .9137 .9135	in. 0.9980 .9987 .9987 .9987 1.0000 1.0007	in. 0.998 .998 .998 .998 1.000 1.000
1–12	UNF	1A 2A 3A	. 9853 . 9847 . 9853 . 9847 . 9871 . 9865	. 9982 . 9988 . 9982 . 9988 1. 0000 1. 0006	. 9441 . 9439 . 9441 . 9439 . 9459 . 9457	. 9714 . 9708 . 9743 . 9737 . 9776 . 9770	. 9978 . 9984 . 9982 . 9988 1. 0000 1. 0006	. 9353 . 9355 . 9382 . 9384 . 9415 . 9417	. 9353 . 9351 . 9382 . 9380 . 9415 . 9413	. 9982 . 9988 . 9982 . 9988 1. 0000 1. 0006	. 997 . 998 . 998 . 998 1. 000
1-16	UN	$ \begin{cases} 2A \\ 3A \end{cases} $. 9880 . 9874 . 9895 . 9889	. 9985 . 9991 1. 0000 1. 0006	. 9579 . 9577 . 9594 . 9592	. 9800 . 9794 . 9828 . 9822	. 9985 . 9991 1. 0000 1. 0006	. 9529 . 9531 . 9557 . 9559	. 9529 . 9527 . 9557 . 9555	. 9985 . 9991 1, 0000 1, 0006	. 998 . 999 1. 000 1. 000
1-20	UNEF	2A 3A	. 9896 . 9891 . 9910 . 9905	. 9986 . 9991 1,0000 1,0005	. 96610 . 96595 . 96750 . 96735	. 9832 . 9827 . 9858 . 9853	. 9986 . 9991 1. 0000 1. 0005	. 96160 . 96175 . 96410 . 96425	. 96160 . 96145 . 96410 . 96395	. 9986 . 9991 1. 0000 1. 0005	. 998 . 999 1. 000 1. 000
11/16-12	UN	2A 3A	1. 0479 1. 0473 1. 0496 1. 0490	1.0608 1.0614 1.0625 1.0631	1.0067 1.0065 1.0084 1.0082	1.0371 1.0365 1.0403 1.0397	1. 0608 1. 0614 1. 0625 1. 0631	1. 0010 1. 0012 1. 0042 1. 0044	1. 0010 1. 0008 1. 0042 1. 0040	1. 0608 1. 0614 1. 0625 1. 0631	1, 060 1, 060 1, 060 1, 060
11/16-16	UN	2A 3A	1, 0505 1, 0499 1, 0520 1, 0514	1.0610 1.0616 1.0625 1.0631	1. 0204 1. 0202 1. 0219 1. 0217	1. 0425 1. 0419 1. 0453 1. 0447	1. 0610 1. 0616 1. 0625 1. 0631	1. 0154 1. 0156 1. 0182 1. 0184	1. 0154 1. 0152 1. 0182 1. 0180	1. 0610 1. 0616 1. 0625 1. 0631	1, 06 1, 06 1, 06 1, 06
11/16-18	NEF	$ \begin{cases} 2A \\ 3A \end{cases} $	1. 0514 1. 0509 1. 0528 1. 0523	1.0611 1.0616 1.0625 1.0630	1. 02500 1. 02485 1. 02640 1. 02625	1. 0444 1. 0439 1. 0469 1. 0464	1.0611 1.0616 1.0625 1.0630	1. 02030 1. 02045 1. 02280 1. 02295	1. 02030 1. 02015 1. 02280 1. 02265	1. 0611 1. 0616 1. 0625 1. 0630	1. 06 1. 06 1. 06 1. 06
11/6-7	UNC	1A 2A 3A	1. 1040 1. 1033 1. 1040 1. 1033 1. 1062 1. 1055	1. 1228 1. 1235 1. 1228 1. 1235 1. 1250 1. 1257	1. 0300 1. 0298 1. 0300 1. 0298 1. 0322 1. 0320	1. 0810 1. 0803 1. 0847 1. 0840 1. 0887 1. 0880	1, 1228 1, 1235 1, 1228 1, 1235 1, 1250 1, 1257	1. 0191 1. 0193 1. 0228 1. 0230 1. 0268 1. 0270	1. 0191 1. 0189 1. 0228 1. 0226 1. 0268 1. 0266	1. 1228 1. 1235 1. 1228 1. 1235 1. 1250 1. 1257	1. 12 1. 12 1. 12 1. 12 1. 12 1. 12
11/6-8	N	2A 3A	1. 1058 1. 1051 1. 1079 1. 1072	1. 1229 1. 1236 1. 1250 1. 1257	1. 0417 1. 0415 1. 0438 1. 0436	1. 0889 1. 0882 1. 0927 1. 0920	1. 1229 1. 1236 1. 1250 1. 1257	1, 0348 1, 0350 1, 0386 1, 0388	1. 0348 1. 0346 1. 0386 1. 0384	1. 1229 1. 1236 1. 1250 1. 1257	1, 12 1, 12 1, 12 1, 12
1}6-12	UNF	1A 2A 3A	1. 1103 1. 1097 1. 1103 1. 1097 1. 1121 1. 1115	1, 1232 1, 1238 1, 1232 1, 1238 1, 1250 1, 1256	1, 0691 1, 0689 1, 0689 1, 0709 1, 0707	1. 0962 1. 0956 1. 0992 1. 0986 1. 1025 1. 1019	1. 1226 1. 1232 1. 1232 1. 1238 1. 1250 1. 1256	1. 0601 1. 0603 1. 0631 1. 0633 1. 0664 1. 0666	1. 0601 1. 0599 1. 0631 1. 0629 1. 0664 1. 0662	1, 1232 1, 1238 1, 1232 1, 1238 1, 1250 1, 1256	1. 12 1. 12 1. 12 1. 12 1. 12 1. 12
11/6-16	UN	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$	1. 1130 1. 1124 1. 1145 1. 1139	1, 1235 1, 1241 1, 1250 1, 1256	1. 0829 1. 0827 1. 0844 1. 0842	1. 1050 1. 1044 1. 1078 1. 1072	1. 1235 1. 1241 1. 1250 1. 1256	1, 0779 1, 0781 1, 0807 1, 0809	1, 0779 1, 0777 1, 0807 1, 0805	1. 1235 1. 1241 1. 1250 1. 1256	1. 12 1. 12 1. 12 1. 12
11/6-18	NEF	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$	1. 1139 1. 1134 1. 1153 1. 1148	1. 1236 1. 1241 1. 1250 1. 1255	1, 08750 1, 08735 1, 08890 1, 08875	1. 1069 1. 1064 1. 1094 1. 1089	1. 1236 1. 1241 1. 1250 1. 1255	1. 08280 1. 08295 1. 08530 1. 08545	1. 08280 1. 08265 1. 08530 1. 08515	1. 1236 1. 1241 1. 1250 1. 1255	1. 12 1. 12 1. 12 1. 12
13/16-12	UN	$ \left\{ \begin{array}{c} 2A \\ 3A \end{array} \right.$	1. 1729 1. 1723 1. 1746 1. 1740	1, 1858 1, 1864 1, 1875 1, 1881	1. 1317 1. 1315 1. 1334 1. 1332	1. 1620 1. 1614 1. 1652 1. 1646	1. 1858 1. 1864 1. 1875 1. 1881	1. 1259 1. 1261 1. 1291 1. 1293	1, 1259 1, 1257 1, 1291 1, 1289	1, 1858 1, 1864 1, 1875 1, 1881	1. 18 1. 18 1. 18 1. 18
13/16-16	UN	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$	1. 1755 1. 1749 1. 1770 1. 1764	1, 1860 1, 1866 1, 1875 1, 1881	1. 1454 1. 1452 1. 1469 1. 1467	1. 1674 1. 1668 1. 1702 1. 1696	1, 1860 1, 1866 1, 1875 1, 1881	1, 1403 1, 1405 1, 1431 1, 1433	1. 1403 1. 1401 1. 1431 1. 1429	1, 1860 1, 1866 1, 1875 1, 1881	1. 18 1. 18 1. 18 1. 18
13/16-18	NEF	$ \begin{cases} 2A \\ 3A \end{cases} $	1, 1763 1, 1758 1, 1778 1, 1773	1. 1860 1. 1865 1. 1875 1. 1880	1, 14990 1, 14975 1, 15140 1, 15125	1, 1691 1, 1686 1, 1719 1, 1714	1. 1860 1. 1865 1. 1875 1. 1880	1. 14500 1. 14515 1. 14780 1. 14795	1. 14500 1. 14485 1. 14780 1. 14765	1. 1860 1. 1865 1. 1875 1. 1880	1. 18 1. 18 1. 18 1. 18

Table III.13.—Setting plug gages, Unified and American screw threads—Continued

=======================================					W tru	ncated setting	plugs			Basic-crest	setting plugs
Nominal size and	Series des-		Pl	ug for "Go"			Plug for '	'Not go"		Major d	iameter
threads per inch	ignation	Class	Major dia	meter	Pitch di-	Major di	ameter	Pitch d	liameter	G ₀ ¹	Not go ²
			Truncated	Full	ameter	Truncated	Full	Plus toler- ance gage	Minus toler- ance gage	W and X tolerances	W and X tolerances
1	2	3	4	5	6	7	8	9	10	11	12
11/4-7	UNC	1A 2A 3A	in. 1, 2290 1, 2283 1, 2290 1, 2283 1, 2312	in. 1. 2478 1. 2485 1. 2478 1. 2485 1. 2500	in. 1, 1550 1, 1548 1, 1550 1, 1548 1, 1572	in. 1, 2058 1, 2051 1, 2095 1, 2088 1, 2136	in. 1, 2478 1, 2485 1, 2478 1, 2485 1, 2500	in. 1. 1439 1. 1441 1. 1476 1. 1478 1. 1517	in. 1. 1439 1. 1437 1. 1476 1. 1474 1. 1517	in. 1, 2478 1, 2485 1, 2478 1, 2485 1, 2485 1, 2500	in. 1, 2478 1, 2485 1, 2478 1, 2485 1, 2500
11/4-8	N	2A 3A	1. 2305 1. 2308 1. 2301 1. 2329 1. 2322	1. 2507 1. 2507 1. 2479 1. 2486 1. 2500 1. 2507	1. 1570 1. 1667 1. 1665 1. 1688 1. 1686	1, 2139 1, 2138 1, 2131 1, 2176 1, 2169	1, 2500 1, 2507 1, 2479 1, 2486 1, 2500 1, 2507	1. 1517 1. 1519 1. 1597 1. 1599 1. 1635 1. 1637	1. 1517 1. 1515 1. 1597 1. 1595 1. 1635 1. 1633	1. 2500 1. 2507 1. 2479 1. 2486 1. 2500 1. 2507	1, 2500 1, 2507 1, 2479 1, 2486 1, 2500 1, 2507
11/4-12	UNF	1A 2A 3A	1. 2353 1. 2347 1. 2353 1. 2347 1. 2371 1. 2365	1. 2482 1. 2488 1. 2482 1. 2488 1. 2500 1. 2506	1. 1941 1. 1939 1. 1941 1. 1939 1. 1959 1. 1957	1, 2210 1, 2204 1, 2240 1, 2234 1, 2274 1, 2268	1. 2474 1. 2480 1. 2482 1. 2488 1. 2500 1. 2506	1, 1849 1, 1851 1, 1879 1, 1881 1, 1913 1, 1915	1, 1849 1, 1847 1, 1879 1, 1877 1, 1913 1, 1911	1, 2482 1, 2488 1, 2482 1, 2488 1, 2500 1, 2506	1, 2474 1, 2480 1, 2482 1, 2488 1, 2500 1, 2506
134-16	UN	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$	1, 2380 1, 2374 1, 2395 1, 2389	1, 2485 1, 2491 1, 2500 1, 2506	1, 2079 1, 2077 1, 2094 1, 2092	1, 2299 1, 2293 1, 2327 1, 2321	1, 2485 1, 2491 1, 2500 1, 2506	1, 2028 1, 2030 1, 2056 1, 2058	1, 2028 1, 2026 1, 2056 1, 2054	1. 2485 1. 2491 1. 2500 1. 2506	1. 2485 1. 2491 1. 2500 1. 2506
11/4-18	NEF	2A 3A	1. 2388 1. 2383 1. 2403 1. 2398	1. 2485 1. 2490 1. 2500 1. 2505	1, 21240 1, 21225 1, 21390 1, 21375	1, 2316 1, 2311 1, 2344 1, 2339	1, 2485 1, 2490 1, 2500 1, 2505	1, 20750 1, 20765 1, 21030 1, 21045	1, 20750 1, 20735 1, 21030 1, 21015	1. 2485 1. 2490 1. 2500 1. 2505	1, 2485 1, 2490 1, 2500 1, 2505
15/16-12	UN	2A 3A	1, 2979 1, 2973 1, 2996 1, 2990	1.3108 1.3114 1.3125 1.3131	1. 2567 1. 2565 1. 2584 1. 2582	1, 2870 1, 2864 1, 2902 1, 2896	1, 3108 1, 3114 1, 3125 1, 3131	1, 2509 1, 2511 1, 2541 1, 2543	1, 2509 1, 2507 1, 2541 1, 2539	1, 3108 1, 3114 1, 3125 1, 3131	1, 3108 1, 3114 1, 3125 1, 3131
15/16-16	UN	2A 3A	1, 3005 1, 2999 1, 3020 1, 3014	1, 3110 1, 3116 1, 3125 1, 3131	1. 2704 1. 2702 1. 2719 1. 2717	1, 2924 1, 2918 1, 2952 1, 2946	1, 3110 1, 3116 1, 3125 1, 3131	1, 2653 1, 2655 1, 2681 1, 2683	1, 2653 1, 2651 1, 2681 1, 2679	1. 3110 1. 3116 1. 3125 1. 3131	1.3110 1.3116 1.3125 1.3131
15/16-18	NEF	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$	1, 3013 1, 3008 1, 3028 1, 3023	1.3110 1.3115 1.3125 1.3130	1. 27490 1. 27475 1. 27640 1. 27625	1, 2941 1, 2936 1, 2969 1, 2964	1, 3110 1, 3115 1, 3125 1, 3130	1, 27000 1, 27015 1, 27280 1, 27295	1. 27000 1. 26985 1. 27280 1. 27265	1. 3110 1. 3115 1. 3125 1. 3130	1.3110 1.3115 1.3125 1.3130
13%-6	UNC	1A 2A 3A	1. 3516 1. 3508 1. 3516 1. 3508 1. 3540 1. 3532	1. 3726 1. 3734 1. 3726 1. 3734 1. 3750 1. 3758	1. 2643 1. 2641 1. 2643 1. 2641 1. 2667 1. 2665	1, 3245 1, 3237 1, 3285 1, 3277 1, 3329 1, 3321	1. 3726 1. 3734 1. 3726 1. 3734 1. 3750 1. 3758	1, 2523 1, 2525 1, 2563 1, 2565 1, 2607 1, 2609	1. 2523 1. 2521 1. 2563 1. 2561 1. 2607 1. 2605	1, 3726 1, 3734 1, 3726 1, 3734 1, 3750 1, 3758	1. 3726 1. 3734 1. 3726 1. 3734 1. 3750 1. 3758
13/8-8	N	$ \begin{cases} 2A \\ 3A \end{cases} $	1, 3557 1, 3550 1, 3579 1, 3572	1.3728 1.3735 1.3750 1.3757	1, 2916 1, 2914 1, 2938 1, 2936	1, 3385 1, 3378 1, 3425 1, 3418	1, 3728 1, 3735 1, 3750 1, 3757	1, 2844 1, 2846 1, 2884 1, 2886	1, 2844 1, 2842 1, 2884 1, 2882	1. 3728 1. 3735 1. 3750 1. 3757	1, 3728 1, 3735 1, 3750 1, 3757
13∕6−12	UNF	1A 2A 3A	1. 3602 1. 3596 1. 3602 1. 3596 1. 3621 1. 3615	1. 3731 1. 3737 1. 3731 1. 3737 1. 3750 1. 3756	1, 3190 1, 3188 1, 3190 1, 3188 1, 3209 1, 3207	1. 3457 1. 3451 1. 3488 1. 3482 1. 3523 1. 3517	1. 3721 1. 3727 1. 3731 1. 3737 1. 3750 1. 3756	1. 3096 1. 3098 1. 3127 1. 3129 1. 3162 1. 3164	1. 3096 1. 3094 1. 3127 1. 3125 1. 3162 1. 3160	1. 3731 1. 3737 1. 3731 1. 3737 1. 3750 1. 3756	1. 3721 1. 3727 1. 3731 1. 3737 1. 3750 1. 3756
13/8-16	UN	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$	1. 3630 1. 3624 1. 3645 1. 3639	1. 3735 1. 3741 1. 3750 1. 3756	1. 3329 1. 3327 1. 3344 1. 3342	1. 3549 1. 3543 1. 3577 1. 3571	1, 3735 1, 3741 1, 3750 1, 3756	1. 3278 1. 3280 1. 3306 1. 3308	1. 3278 1. 3276 1. 3306 1. 3304	1. 3735 1. 3741 1. 3750 1. 3756	1. 3735 1. 3741 1. 3750 1. 3756
13/8-18	NEF	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$	1. 3638 1. 3633 1. 3653 1. 3648	1. 3735 1. 3740 1. 3750 1. 3755	1. 33740 1. 33725 1. 33890 1. 33875	1. 3566 1. 3561 1. 3594 1. 3589	1. 3735 1. 3740 1. 3750 1. 3755	1. 33250 1. 33265 1. 33530 1. 33545	1, 33250 1, 33235 1, 33530 1, 33515	1. 3735 1. 3740 1. 3750 1. 3755	1. 3735 1. 3740 1. 3750 1. 3755
17/16-12	UN	2A 3A	1. 4228 1. 4222 1. 4246 1. 4240	1, 4357 1, 4363 1, 4375 1, 4381	1, 3816 1, 3814 1, 3834 1, 3832	1. 4118 1. 4112 1. 4151 1. 4145	1, 4357 1, 4363 1, 4375 1, 4381	1. 3757 1. 3759 1. 3790 1. 3792	1. 3757 1. 3755 1. 3790 1. 3788	1. 4357 1. 4363 1. 4375 1. 4381	1. 4357 1. 4363 1. 4375 1. 4381
17/16-16	UN	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$	1. 4254 1. 4248 1. 4270 1. 4264	1. 4359 1. 4365 1. 4375 1. 4381	1, 3953 1, 3951 1, 3969 1, 3967	1, 4172 1, 4166 1, 4201 1, 4195	1. 4359 1. 4365 1. 4375 1. 4381	1. 3901 1. 3903 1. 3930 1. 3932	1, 3901 1, 3899 1, 3930 1, 3928	1. 4359 1. 4365 1. 4375 1. 4381	1. 4359 1. 4365 1. 4375 1. 4381

Table III.13.—Setting plug gages, Unified and American screw threads—Continued

Nominal size and threads per inch	Series des- ignation	Class	W truncated setting plugs							Basic-crest setting plugs	
			Plug for "Go"			Plug for "Not go"				Major diameter	
			Major diameter		Pitch di-	Major diameter		Pitch d	Pitch diameter		Not go ²
			Truncated	Full	ameter	Truncated	Full	Plus toler- ance gage	Minus toler- ance gage	W and X tolerances	W and X tolerances
1	2	3	4	5	6	7	8	9	10	11	12
17/16-18	NEF	$\begin{cases} 2A \\ 3A \end{cases}$	in. 1, 4263 1, 4258 1, 4278 1, 4273	in. 1. 4360 1. 4365 1. 4375 1. 4380	in. 1. 39990 1. 39975 1. 40140 1. 40125	in. 1, 4190 1, 4185 1, 4218 1, 4213	in. 1. 4360 1. 4365 1. 4375 1. 4380	in. 1. 39490 1. 39505 1. 39770 1. 39785	in. 1. 39490 1. 39475 1. 39770 1. 39755	in. 1. 4360 1. 4365 1. 4375 1. 4380	in. 1, 4360 1, 4365 1, 4375 1, 4380
1½-6	UNC	1A 2A 3A	1. 4766 1. 4758 1. 4766 1. 4758 1. 4790 1. 4782	1, 4976 1, 4984 1, 4976 1, 4984 1, 5000 1, 5008	1. 3893 1. 3891 1. 3893 1. 3891 1. 3917 1. 3915	1. 4494 1. 4486 1. 4534 1. 4526 1. 4578 1. 4570	1. 4976 1. 4984 1. 4976 1. 4984 1. 5000 1. 5008	1, 3772 1, 3774 1, 3812 1, 3814 1, 3856 1, 3858	1. 3772 1. 3770 1. 3812 1. 3810 1. 3856 1. 3854	1. 4976 1. 4984 1. 4976 1. 4984 1. 5000 1. 5008	1. 4976 1. 4984 1. 4976 1. 1984 1. 5000 1. 5000
1½-8	N	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$	1. 4807 1. 4800 1. 4829 1. 4822	1. 4978 1. 4985 1. 5000 1. 5007	1. 4166 1. 4164 1. 4188 1. 4186	1. 4634 1. 4627 1. 4674 1. 4667	1. 4978 1. 4985 1. 5000 1. 5007	1. 4093 1. 4095 1. 4133 1. 4135	1. 4093 1. 4091 1. 4133 1. 4131	1, 4978 1, 4985 1, 5000 1, 5007	1. 4978 1. 4985 1. 5000 1. 5007
1½-12	UNF	1A 2A 3A	1. 4852 1. 4846 1. 4852 1. 4846 1. 4871 1. 4865	1. 4981 1. 4987 1. 4981 1. 4987 1. 5000 1. 5006	1. 4440 1. 4438 1. 4440 1. 4438 1. 4459 1. 4457	1. 4705 1. 4699 1. 4737 1. 4731 1. 4772 1. 4766	1. 4969 1. 4975 1. 4981 1. 4987 1. 5000 1. 5006	1. 4344 1. 4346 1. 4376 1. 4378 1. 4411 1. 4413	1. 4344 1. 4342 1. 4376 1. 4374 1. 4411 1. 4409	1. 4981 1. 4987 1. 4981 1. 4987 1. 5000 1. 5006	1, 4969 1, 4974 1, 4981 1, 4987 1, 5000 1, 5000
1½-16	UN	2A 3A	1, 4879 1, 4873 1, 4895 1, 4889	1. 4984 1. 4990 1. 5000 1. 5006	1. 4578 1. 4576 1. 4594 1. 4592	1. 4797 1. 4791 1. 4826 1. 4820	1, 4984 1, 4990 1, 5000 1, 5006	1. 4526 1. 4528 1. 4555 1. 4557	1, 4526 1, 4524 1, 4555 1, 4553	1. 4984 1. 4990 1. 5000 1. 5006	1. 498- 1. 4990 1. 5000 1. 5000
1½-18	NEF	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$	1, 4888 1, 4883 1, 4903 1, 4898	1. 4985 1. 4990 1. 5000 1. 5005	1. 46240 1. 46225 1. 46390 1. 46375	1. 4815 1. 4810 1. 4843 1. 4838	1. 4985 1. 4990 1. 5000 1. 5005	1. 45740 1. 45755 1. 46020 1. 46035	1, 45740 1, 45725 1, 46020 1, 46005	1. 4985 1. 4990 1. 5000 1. 5005	1. 498; 1. 4990 1. 5000 1. 5008
1%6-16	N	2A 3A	1. 5504 1. 5498 1. 5520 1. 5514	1. 5609 1. 5615 1. 5625 1. 5631	1. 52030 1. 52005 1. 52190 1. 52165	1. 5422 1. 5416 1. 5451 1. 5445	1. 5609 1. 5615 1. 5625 1. 5631	1. 51510 1. 51535 1. 51800 1. 51825	1, 51510 1, 51485 1, 51800 1, 51775	1. 5609 1. 5615 1. 5625 1. 5631	1, 5609 1, 5619 1, 5629 1, 5631
1%6-18	NEF	2A 3A	1. 5513 1. 5508 1. 5528 1. 5523	1. 5610 1. 5615 1. 5625 1. 5630	1. 5249 1. 5247 1. 5264 1. 5262	1. 5440 1. 5435 1. 5468 1. 5463	1. 5610 1. 5615 1. 5625 1. 5630	1. 5199 1. 5201 1. 5227 1. 5229	1. 5199 1. 5197 1. 5227 1. 5225	1. 5610 1. 5615 1. 5625 1. 5630	1, 5616 1, 5618 1, 5628 1, 5630
15/8-8	N	2A 3A	1. 6057 1. 6050 1. 6079 1. 6072	1. 6228 1. 6235 1. 6250 1. 6257	1. 54160 1. 54135 1. 54380 1. 54355	1, 5883 1, 5876 1, 5923 1, 5916	1. 6228 1. 6235 1. 6250 1. 6257	1. 53420 1. 53445 1. 53820 1. 53845	1. 53420 1. 53395 1. 53820 1. 53795	1. 6228 1. 6235 1. 6250 1. 6257	1, 6228 1, 6233 1, 6250 1, 6257
15/8-12	UN	2A 3A	1. 6103 1. 6097 1. 6121 1. 6115	1. 6232 1. 6238 1. 6250 1. 6256	1. 56910 1. 56885 1. 57090 1. 57065	1. 5993 1. 5987 1. 6026 1. 6020	1, 6232 1, 6238 1, 6250 1, 6256	1, 56320 1, 56345 1, 56650 1, 56675	1. 56320 1. 56295 1. 56650 1. 56625	1. 6232 1. 6238 1. 6250 1. 6256	1, 6232 1, 6238 1, 6250 1, 6256
15%-16	UN	2A 3A	1. 6129 1. 6123 1. 6145 1. 6139	1. 6234 1. 6240 1. 6250 1. 6256	1. 58280 1. 58255 1. 58440 1. 58415	1. 6047 1. 6041 1. 6076 1. 6070	1. 6234 1. 6240 1. 6250 1. 6256	1. 57760 1. 57785 1. 58050 1. 58075	1. 57760 1. 57735 1. 58050 1. 58025	1. 6234 1. 6240 1. 6250 1. 6256	1. 6234 1. 6240 1. 6250 1. 6256
15/8-18	NEF	$ \begin{cases} 2A \\ 3A \end{cases} $	1. 6138 1. 6133 1. 6153 1. 6148	1. 6235 1. 6240 1. 6250 1. 6255	1. 5874 1. 5872 1. 5889 1. 5887	1. 6065 1. 6060 1. 6093 1. 6088	1. 6235 1. 6240 1. 6250 1. 6255	1. 5824 1. 5826 1. 5852 1. 5854	1. 5824 1. 5822 1. 5852 1. 5850	1. 6235 1. 6240 1. 6250 1. 6255	1. 6235 1. 6240 1. 6250 1. 6255
111/16-16	N	$ \begin{cases} 2A \\ 3A \end{cases} $	1. 6754 1. 6748 1. 6770 1. 6764	1. 6859 1. 6865 1. 6875 1. 6881	1. 64530 1. 64505 1. 64690 1. 64665	1. 6671 1. 6665 1. 6700 1. 6694	1. 6859 1. 6865 1. 6875 1. 6881	1. 64000 1. 64025 1. 64290 1. 64315	1. 64000 1. 63975 1. 64290 1. 64265	1, 6859 1, 6865 1, 6875 1, 6881	1, 6859 1, 6865 1, 6875 1, 6881
111/16-18	NEF	2A 3A	1. 6763 1. 6758 1. 6778 1. 6773	1. 6860 1. 6865 1. 6875 1. 6880	1. 6499 1. 6497 1. 6514 1. 6512	1. 6689 1. 6684 1. 6717 1. 6712	1. 6860 1. 6865 1. 6875 1. 6880	1. 6448 1. 6450 1. 6476 1. 6478	1. 6448 1. 6446 1. 6476 1. 6474	1. 6860 1. 6865 1. 6875 1. 6880	1. 6860 1. 6865 1. 6875 1. 6880
1¾-5	UNO	1A 2A 3A	1. 7234 1. 7226 1. 7234 1. 7226 1. 7261 1. 7253	1. 7473 1. 7481 1. 7473 1. 7481 1. 7500 1. 7508	1. 61740 1. 61715 1. 61740 1. 61715 1. 62010 1. 61985	1. 6906 1. 6898 1. 6951 1. 6943 1. 7000 1. 6992	1. 7473 1. 7481 1. 7473 1. 7481 1. 7500 1. 7508	1. 60400 1. 60425 1. 60850 1. 60875 1. 61340 1. 61365	1. 60400 1. 60375 1. 60850 1. 60825 1. 61340 1. 61315	1. 7473 1. 7481 1. 7473 1. 7481 1. 7500 1. 7508	1. 7473 1. 7481 1. 7473 1. 7481 1. 7500 1. 7508

					W tru	ncated setting	plugs			Basic-crest s	etting plug
Nominal size and	Series des-		P	lug for "Go"			Plug for '	'Not go''		Major d	iameter
hreads per inch	ignation	Class	Major dia	meter	Pitch di-	Major dia	ameter	Pitch d	iameter	Go 1	Not go 2
			Truncated	Full	ameter	Truncated	Full	Plus toler- ance gage	Minus toler- ance gage	W and X tolerances	W and X tolerances
1	2	3	4	5	6	7	8	9	10	11	12
134-8	N	$ \begin{cases} 2A \\ 3A \end{cases} $	in. 1.7306 1.7299 1.7329 1.7322	in. 1. 7477 1. 7484 1. 7500 1. 7507	in. 1. 66650 1. 66625 1. 66880 1. 66855	in. 1. 7131 1. 7124 1. 7173 1. 7166	in. 1. 7477 1. 7484 1. 7500 1. 7507	in. 1, 65900 1, 65925 1, 66320 1, 66345	in. 1. 65900 1. 65875 1. 66320 1. 66295	$in. \\ 1.7477 \\ 1.7484 \\ 1.7500 \\ 1.7507$	in. 1. 74 1. 75 1. 75
134-12	UN	$ \begin{cases} 2A \\ 3A \end{cases} $	1. 7353 1. 7347 1. 7371 1. 7365	1. 7482 1. 7488 1. 7500 1. 7506	1. 69410 1. 69385 1. 69590 1. 69565	1. 7242 1. 7236 1. 7275 1. 7269	1. 7482 1. 7488 1. 7500 1. 7506	1. 68810 1. 68835 1. 69140 1. 69165	1, 68810 1, 68785 1, 69140 1, 69115	1. 7482 1. 7488 1. 7500 1. 7506	1. 74 1. 74 1. 75 1. 75
134-16	UNEF	$ \begin{cases} 2A \\ 3A \end{cases} $	1. 7379 1. 7373 1. 7395 1. 7389	1. 7484 1. 7490 1. 7500 1. 7506	1. 70780 1. 70755 1. 70940 1. 70915	$\begin{array}{c} 1.7296 \\ 1.7290 \\ 1.7325 \\ 1.7319 \end{array}$	1. 7484 1. 7490 1. 7500 1. 7506	1. 70250 1. 70275 1. 70540 1. 70565	1. 70250 1. 70225 1. 70540 1. 70515	1. 7484 1. 7490 1. 7500 1. 7506	1. 7- 1. 7- 1. 7- 1. 7-
113/16-16	N	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$	1. 8004 1. 7998 1. 8020 1. 8014	1. 8109 1. 8115 1. 8125 1. 8131	1. 77030 1. 77005 1. 77190 1. 77165	1. 7921 1. 7915 1. 7950 1. 7944	1. 8109 1. 8115 1. 8125 1. 8131	1. 76500 1. 76525 1. 76790 1. 76815	1. 76500 1. 76475 1. 76790 1. 76765	1. 8109 1. 8115 1. 8125 1. 8131	1.8 1.8 1.8 1.8
17/8-8	N	$\begin{cases} & 2A \\ & 3A \end{cases}$	1. 8556 1. 8549 1. 8579 1. 8572	1. 8727 1. 8734 1. 8750 1. 8757	1. 79150 1. 79125 1. 79380 1. 79355	1. 8379 1. 8372 1. 8422 1. 8415	1. 8727 1. 8734 1. 8750 1. 8757	1. 78380 1. 78405 1. 78810 1. 78835	1. 78380 1. 78355 1. 78810 1. 78785	1. 8727 1. 8734 1. 8750 1. 8757	1. 8 1. 8 1. 8 1. 8
17/8-12	UN	2A 3A	1, 8603 1, 8597 1, 8621 1, 8615	1.8732 1.8738 1.8750 1.8756	1. 81910 1. 81885 1. 82090 1. 82065	1, 8492 1, 8486 1, 8525 1, 8519	1. 8732 1. 8738 1. 8750 1. 8756	1. 81310 1. 81335 1. 81640 1. 81665	1. 81310 1. 81285 1. 81640 1. 81615	1. 8732 1. 8738 1. 8750 1. 8756	1. 8 1. 8 1. 8 1. 8
178-16	UN	2A 3A	1. 8629 1. 8623 1. 8645 1. 8639	1.8734 1.8740 1.8750 1.8756	1.83280 1.83255 1.83440 1.83415	1. 8546 1. 8540 1. 8575 1. 8569	1.8734 1.8740 1.8750 1.8756	1. 82750 1. 82775 1. 83040 1. 83065	1. 82750 1. 82725 1. 83040 1. 83015	1. 8734 1. 8740 1. 8750 1. 8756	1. 8 1. 8 1. 8 1. 8
11516-16	N	2A 3A	1. 9254 1. 9248 1. 9270 1. 9264	1. 9359 1. 9365 1. 9375 1. 9381	1.89530 1.89505 1.89690 1.89665	1. 9170 1. 9164 1. 9200 1. 9194	1. 9359 1. 9365 1. 9375 1. 9381	1. 88990 1. 89015 1. 89290 1. 89315	1, 88990 1, 88965 1, 89290 1, 89265	1. 9359 1. 9365 1. 9375 1. 9381	1. 9 1. 9 1. 9 1. 9
2-41/2	UNC	1A 2A 3A	1. 9713 1. 9705 1. 9713 1. 9705 1. 9742 1. 9734	1. 9971 1. 9979 1. 9971 1. 9979 2. 0000 2. 0008	1. 85280 1. 85255 1. 85280 1. 85255 1. 85570 1. 85545	1. 9347 1. 9339 1. 9395 1. 9387 1. 9448 1. 9440	1, 9971 1, 9979 1, 9971 1, 9979 2, 0000 2, 0008	1. 83850 1. 83875 1. 84330 1. 84355 1. 84860 1. 84885	1. 83850 1. 83825 1. 84330 1. 84305 1. 84860 1. 84835	1, 9971 1, 9979 1, 9971 1, 9979 2, 0000 2, 0008	1. 9 1. 9 1. 9 2. 0 2. 0
2-8	>	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$	1. 9806 1. 9799 1. 9829 1. 9822	1. 9977 1. 9984 2. 0000 2. 0007	1. 91650 1. 91625 1. 91880 1. 91855	1. 9628 1. 9621 1. 9671 1. 9664	1. 9977 1. 9984 2. 0000 2. 0007	1. 90870 1. 90895 1. 91300 1. 91325	1. 90870 1. 90845 1. 91300 1. 91275	1. 9977 1. 9984 2. 0000 2. 0007	1.9 1.9 2.0 2.0
2-12	UN	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$	1. 9853 1. 9847 1. 9871 1. 9865	1, 9982 1, 9988 2, 0000 2, 0006	1. 94410 1. 94385 1. 94590 1. 94565	1. 9741 1. 9735 1. 9775 1. 9769	1, 9982 1, 9988 2, 0000 2, 0006	1. 93800 1. 93825 1. 94140 1. 94165	1. 93800 1. 93775 1. 94140 1. 94115	1. 9982 1. 9988 2. 0000 2. 0006	1. 1. 2. 0 2. 0 2. 0
2-16	UNEF	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$	1. 9879 1. 9873 1. 9895 1. 9889	1, 9984 1, 9990 2, 0000 2, 0006	1, 95780 1, 95755 1, 95940 1, 95915	1. 9795 1. 9789 1. 9825 1. 9819	1. 9984 1. 9990 2. 0000 2. 0006	1. 95240 1. 95265 1. 95540 1. 95565	1. 95240 1. 95215 1. 95540 1. 95515	1, 9984 1, 9990 2, 0000 2, 0006	1. 1. 2. 2.
21/16-16	N	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$	2.0504 2.0498 2.0520 2.0514	2. 0609 2. 0615 2. 0625 2. 0631	2. 02030 2. 02005 2. 02190 2. 02165	2. 0420 2. 0414 2. 0450 2. 0444	2.0609 2.0615 2.0625 2.0631	2.01490 2.01515 2.01790 2.01815	2.01490 2.01465 2.01790 2.01765	2. 0609 2. 0615 2. 0625 2. 0631	2. 0 2. 1 2. 2. 2. 2. 2. 1
23/8-8	N	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$	2. 1055 2. 1048 2. 1079 2. 1072	2. 1226 2. 1233 2. 1250 2. 1257	$\begin{array}{c} 2.04140 \\ 2.04115 \\ 2.04380 \\ 2.04355 \end{array}$	2.0876 2.0869 2.0920 2.0913	2. 1226 2. 1233 2. 1250 2. 1257	2.03350 2.03375 2.03790 2.03815	2. 03350 2. 03325 2. 03790 2. 03765	2. 1226 2. 1233 2. 1250 2. 1257	2. 2. 2. 2.
236-12	UN	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$	2. 1103 2. 1097 2. 1121 2. 1115	2. 1232 2. 1238 2. 1250 2. 1256	2. 06910 2. 06885 2. 07090 2. 07065	2. 0991 2. 0985 2. 1025 2. 1019	2. 1232 2. 1238 2. 1250 2. 1256	2.06300 2.06325 2.06640 2.06665	2. 06300 2. 06275 2. 06640 2. 06615	2. 1232 2. 1238 2. 1250 2. 1256	2. 2. 2. 2.
23/8-16	UN	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$	2. 1129 2. 1123 2. 1145 2. 1139	2. 1234 2. 1240 2. 1250 2. 1256	2. 08280 2. 08255 2. 08440 2. 08415	2. 1045 2. 1039 2. 1075 2. 1069	2. 1234 2. 1240 2. 1250 2. 1256	2. 07740 2. 07765 2. 08030 2. 08055	2.07740 2.07715 2.08030 2.08005	2. 1234 2. 1240 2. 1250 2. 1256	2. 2. 2. 2.
23/16-16	N	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$	2. 1754 2. 1748 2. 1770 2. 1764	2. 1859 2. 1865 2. 1875 2. 1881	2. 14530 2. 14505 2. 14690 2. 14665	2. 1670 2. 1664 2. 1700 2. 1694	2. 1859 2. 1865 2. 1875 2. 1881	2. 13990 2. 14015 2. 14280 2. 14305	2. 13990 2. 13965 2. 14280 2. 14255	2. 1859 2. 1865 2. 1875 2. 1881	2. 2. 2. 2. 2. 2.

Table III.13.—Setting plug gages, Unified and American screw threads—Continued

					W tru	ncated setting	plugs			Basic-crest s	setting plugs
Nominal size and	Series des-		Pi	lug for "Go"			Plug for	'Not go"		Major d	iameter
threads per inch	ignation	Class	Major dia	meter	Pitch di-	Major di	ameter	Pitch d	iameter	G ₀ 1	Not go ²
			Truncated	Full	ameter	Truncated	Full	Plus toler- ance gage	Minus toler- ance gage	W and X tolerances	W and X tolerances
1	2	3	4	5	6	7	8	9	10	11	12
21/4-41/2	UNC	1A 2A 3A	in. 2. 2213 2. 2205 2. 2213 2. 2205 2. 2242 2. 2234	$\begin{array}{c} in.\\ 2.2471\\ 2.2479\\ 2.2471\\ 2.2479\\ 2.2500\\ 2.2508\\ \end{array}$	in. 2. 10280 2. 10255 2. 10280 2. 10255 2. 10570 2. 10545	in. 2. 1844 2. 1836 2. 1893 2. 1885 2. 1946 2. 1938	$in, \\ 2.2471 \\ 2.2479 \\ 2.2471 \\ 2.2479 \\ 2.2500 \\ 2.2508$	in. 2. 08820 2. 08845 2. 09310 2. 09335 2. 09840 2. 09865	in. 2.08820 2.08795 2.09310 2.09285 2.09840 2.09815	in. 2. 2471 2. 2479 2. 2471 2. 2479 2. 2500 2. 2508	in. 2. 247 2. 247 2. 247 2. 247 2. 247 2. 250 2. 250
21⁄4-8	N	2A 3A	2, 2305 2, 2298 2, 2329 2, 2322	2. 2476 2. 2483 2. 2500 2. 2507	2. 16640 2. 16615 2. 16880 2. 16855	$\begin{array}{c} 2.2125 \\ 2.2118 \\ 2.2169 \\ 2.2162 \end{array}$	2. 2476 2. 2483 2. 2500 2. 2507	2. 15840 2. 15865 2. 16280 2. 16305	2. 15840 2. 15815 2. 16280 2. 16255	2. 2476 2. 2483 2. 2500 2. 2507	2. 247 2. 248 2. 250 2. 250
21/4-12	UN	2A 3A	2. 2353 2. 2347 2. 2371 2. 2365	2. 2482 2. 2488 2. 2500 2. 2506	2. 19410 2. 19385 2. 19590 2. 19565	2. 2241 2. 2235 2. 2275 2. 2269	2. 2482 2. 2488 2. 2500 2. 2506	2. 18800 2. 18825 2. 19140 2. 19165	2. 18800 2. 18775 2. 19140 2. 19115	2. 2482 2. 2488 2. 2500 2. 2506	2. 248 2. 248 2. 250 2. 250
21⁄4-16	UN	2A 3A	2. 2379 2. 2373 2. 2395 2. 2389	2. 2484 2. 2490 2. 2500 2. 2506	2. 20780 2. 20755 2. 20940 2. 20915	2. 2295 2. 2289 2. 2325 2. 2319	2. 2484 2. 2490 2. 2500 2. 2506	2. 20240 2. 20265 2. 20530 2. 20555	2. 20240 2. 20215 2. 20530 2. 20505	2. 2484 2. 2490 2. 2500 2. 2506	2. 248 2. 249 2. 250 2. 250
25/16-16	N	2A 3A	2, 3003 2, 2997 2, 3020 2, 3014	2. 3108 2. 3114 2. 3125 2. 3131	2. 27020 2. 26995 2. 27190 2. 27165	2. 2918 2. 2912 2. 2949 2. 2943	2. 3108 2. 3114 2. 3125 2. 3131	2. 26470 2. 26495 2. 26780 2. 26805	2. 26470 2. 26445 2. 26780 2. 26755	2. 3108 2. 3114 2. 3125 2. 3131	2. 310 2. 311 2. 312 2. 313
23/8-12	UN	2A 3A	2. 3602 2. 3596 2. 3621 2. 3615	2. 3731 2. 3737 2. 3750 2. 3756	2. 31900 2. 31875 2. 32090 2. 32065	2. 3489 2. 3483 2. 3524 2. 3518	2. 3731 2. 3737 2. 3750 2. 3756	2. 31280 2. 31305 2. 31630 2. 31655	2. 31280 2. 31255 2. 31630 2. 31605	2. 3731 2. 3737 2. 3750 2. 3756	2. 373 2. 373 2. 375 2. 375
236-16	UN	2A 3A	2. 3628 2. 3622 2. 3645 2. 3639	2. 3733 2. 3739 2. 3750 2. 3756	2. 33270 2. 33245 2. 33440 2. 33415	2. 3543 2. 3537 2. 3574 2. 3568	2. 3733 2. 3739 2. 3750 2. 3756	2. 32720 2. 32745 2. 33030 2. 33055	2. 32720 2. 32695 2. 33030 2. 33005	2, 3733 2, 3739 2, 3750 2, 3756	2. 373 2. 373 2. 375 2. 375
27/16-16	N	2A 3A	2. 4253 2. 4247 2. 4270 2. 4264	2. 4358 2. 4364 2. 4375 2. 4381	2. 39520 2. 39495 2. 39690 2. 39665	2. 4168 2. 4162 2. 4199 2. 4193	2. 4358 2. 4364 2. 4375 2. 4381	2. 38970 2. 38995 2. 39280 2. 39305	2. 38970 2. 38945 2. 39280 2. 39255	2. 4358 2. 4364 2. 4375 2. 4381	2. 435 2. 436 2. 437 2. 438
21/2-4	UNO	1A 2A 3A	2. 4688 2. 4679 2. 4688 2. 4679 2. 4719 2. 4710	2. 4969 2. 4978 2. 4969 2. 4978 2. 5000 2. 5009	2. 33450 2. 33425 2. 33450 2. 33425 2. 33760 2. 33735	2. 4272 2. 4263 2. 4324 2. 4315 2. 4380 2. 4371	2. 4969 2. 4978 2. 4969 2. 4978 2. 5000 2. 5009	2. 31900 2. 31925 2. 32410 2. 32435 2. 32980 2. 33005	2. 31900 2. 31875 2. 32410 2. 32385 2. 32980 2. 32955	2. 4969 2. 4978 2. 4969 2. 4978 2. 5000 2. 5009	2. 496 2. 497 2. 496 2. 497 2. 500 2. 500
21/2-8	N	2A 3A	2. 4805 2. 4798 2. 4829 2. 4822	2. 4976 2. 4983 2. 5000 2. 5007	2, 41640 2, 41615 2, 41880 2, 41855	2. 4623 2. 4616 2. 4668 2. 4661	2. 4976 2. 4983 2. 5000 2. 5007	2. 40820 2. 40845 2. 41270 2. 41295	2. 40820 2. 40795 2. 41270 2. 41245	2. 4976 2. 4983 2. 5000 2. 5007	2. 497 2. 498 2. 500 2. 500
21/2-12	UN	2A 3A	2. 4852 2. 4846 2. 4871 2. 4865	2. 4981 2. 4987 2. 5000 2. 5006	2. 44400 2. 44375 2. 44590 2. 44565	2. 4739 2. 4733 2. 4774 2. 4768	2. 4981 2. 4987 2. 5000 2. 5006	2. 43780 2. 43805 2. 44130 2. 44155	2. 43780 2. 43755 2. 44130 2. 44105	2. 4981 2. 4987 2. 5000 2. 5006	2. 498 2. 498 2. 500 2. 500
2½-16	UN -	2A 3A	2. 4878 2. 4872 2. 4895 2. 4889	2. 4983 2. 4989 2. 5000 2. 5006	2. 45770 2. 45745 2. 45940 2. 45915	2, 4793 2, 4787 2, 4824 2, 4818	2. 4983 2. 4989 2. 5000 2. 5006	2. 45220 2. 45245 2. 45530 2. 45555	2. 45220 2. 45195 2. 45530 2. 45505	2. 4983 2. 4989 2. 5000 2. 5006	2. 498 2. 498 2. 500 2. 500
25%-12	UN	2A 3A	2. 6102 2. 6096 2. 6121 2. 6115	2. 6231 2. 6237 2. 6250 2. 6256	2. 56900 2. 56875 2. 57090 2. 57065	2. 5989 2. 5983 2. 6024 2. 6018	2. 6231 2. 6237 2. 6250 2. 6256	2. 56280 2. 56305 2. 56630 2. 56655	2. 56280 2. 56255 2. 56630 2. 56605	2. 6231 2. 6237 2. 6250 2. 6256	2, 623 2, 623 2, 625 2, 625
25/6-16	UN	2A 3A	2. 6128 2. 6122 2. 6145 2. 6139	2. 6233 2. 6239 2. 6250 2. 6256	2. 58270 2. 58245 2. 58440 2. 58415	2. 6043 2. 6037 2. 6074 2. 6068	2. 6233 2. 6239 2. 6250 2. 6256	2. 57720 2. 57745 2. 58030 2. 58055	2. 57720 2. 57695 2. 58030 2. 58005	2. 6233 2. 6239 2. 6250 2. 6256	2. 623 2. 623 2. 625 2. 625
234-4	UNC	1A 2A 3A	2. 7187 2. 7178 2. 7187 2. 7187 2. 7219 2. 7210	2. 7468 2. 7477 2. 7468 2. 7477 2. 7500 2. 7509	2. 58440 2. 58415 2. 58440 2. 58415 2. 58760 2. 58735	2. 6768 2. 6759 2. 6822 2. 6813 2. 6880 2. 6871	2. 7468 2. 7477 2. 7468 2. 7477 2. 7500 2. 7509	2. 56860 2. 56885 2. 57390 2. 57415 2. 57970 2. 57995	2. 56860 2. 56835 2. 57390 2. 57365 2. 57970 2. 57945	2. 7468 2. 7477 2. 7468 2. 7477 2. 7500 2. 7509	2. 746 2. 747 2. 746 2. 747 2. 750 2. 750

See footnotes at end of table.

Table III.13.—Setting plug gages, Unified and American screw threads—Continued

					W tru	ncated setting	plugs			Basic-crest s	etting plug
Nominal size and	Series des-		P	lug for "Go"			Plug for	'Not go"		Major d	iameter
threads per inch	ignation	Class	Major dia	ameter	Pitch di-	Major dia	ameter	Pitch d	iameter	Go 1	Not go 2
			Truncated	Full	ameter	Truncated	Full	Plus toler- ance gage	Minus toler- ance gage	W and X tolerances	W and X tolerances
1	2	3	4	5	6	7	8	9	10	11	12
23/4-8	N	2A 3A	in. 2.7304 2.7297 2.7329 2.7322	in. 2. 7475 2. 7482 2. 7500 2. 7507	in. 2. 66630 2. 66605 2. 66880 2. 66855	in. 2. 7121 2. 7114 2. 7167 2. 7160	in. 2. 7475 2. 7482 2. 7500 2. 7507	in. 2. 65800 2. 65825 2. 66260 2. 66285	in. 2,65800 2,65775 2,66260 2,66235	in. 2. 7475 2. 7482 2. 7500 2. 7507	in. 2. 74 2. 74 2. 75 2. 75
234-12	UN .	2A 3A	2. 7352 2. 7346 2. 7371 2. 7365	2. 7481 2. 4787 2. 7500 2. 7506	2. 69400 2. 69375 2. 69590 2. 69565	2, 7239 2, 7233 2, 7274 2, 7268	2. 7481 2. 7487 2. 7500 2. 7506	2. 68780 2. 68805 2. 69130 2. 69155	2. 68780 2. 68755 2. 69130 2. 69105	2. 7481 2. 7487 2. 7500 2. 7506	2. 74 2. 74 2. 75 2. 75
234-16	UN	2A 3A	2. 7378 2. 7372 2. 7395 2. 7389	2. 7483 2. 7489 2. 7500 2. 7506	2, 70770 2, 70745 2, 70940 2, 70915	2. 7293 2. 7287 2. 7324 2. 7318	2, 7483 2, 7489 2, 7500 2, 7506	2. 70220 2. 70245 2. 70530 2. 70555	2. 70220 2. 70195 2. 70530 2. 70505	2, 7483 2, 7489 2, 7500 2, 7506	2. 74 2. 74 2. 75 2. 75
27/s-12	UN	2A 3A	2. 8602 2. 8596 2. 8621 2. 8615	2. 8731 2. 8737 2. 8750 2. 8756	2, 81900 2, 81875 2, 82090 2, 82065	2, 8488 2, 8482 2, 8523 2, 8517	2. 8731 2. 8737 2. 8750 2. 8756	2. 81270 2. 81295 2. 81620 2. 81645	2. 81270 2. 81245 2. 81620 2. 81595	2. 8731 2. 8737 2. 8750 2. 8756	2, 87 2, 87 2, 87 2, 87
27/8-16	UN	$\begin{cases} 2A \\ 3A \end{cases}$	2. 8628 2. 8622 2. 8645 2. 8639	2. 8733 2. 8739 2. 8750 2. 8756	2. 83270 2. 83245 2. 83440 2. 83415	2. 8542 2. 8536 2. 8573 2. 8567	2. 8733 2. 8739 2. 8750 2. 8756	2. 82710 2. 82735 2. 83020 2. 83045	2. 82710 2. 82685 2. 83020 2. 82995	2. 8733 2. 8739 2. 8750 2. 8756	2. 85 2. 85 2. 85 2. 85
3–4	UNC	1A 2A 3A	2. 9687 2. 9678 2. 9687 2. 9678 2. 9719 2. 9710	2. 9968 2. 9977 2. 9968 2. 9977 3. 0000 3. 0009	2. 83440 2. 83415 2. 83440 2. 83415 2. 83760 2. 83735	2. 9266 2. 9257 2. 9320 2. 9311 2. 9378 2. 9369	2, 9968 2, 9977 2, 9968 2, 9977 3, 0000 3, 0009	2, 81830 2, 81855 2, 82370 2, 82395 2, 82960 2, 82985	2. \$1830 2. \$1805 2. \$2370 2. \$2345 2. \$2960 2. \$2935	2. 9968 2. 9977 2. 9968 2. 9977 3. 0000 3. 0009	2. 99 2. 99 2. 99 2. 99 3. 00 3. 00
3–8	N ·	2A 3A	2. 9803 2. 9796 2. 9829 2. 9822	2, 9974 2, 9981 3, 0000 3, 0007	2, 91620 2, 91595 2, 91880 2, 91855	2, 9618 2, 9611 2, 9665 2, 9658	2. 9974 2. 9981 3. 0000 3. 0007	2. 90770 2. 90795 2. 91240 2. 91265	2. 90770 2. 90745 2. 91240 2. 91215	2. 9974 2. 9981 3. 0000 3. 0007	2. 9 ² 2. 9 ³ 3. 0 ³ 3. 0 ⁴
3-12	UN	$\left\{\begin{array}{c} 2\mathrm{A} \\ 3\mathrm{A} \end{array}\right.$	2. 9852 2. 9846 2. 9871 2. 9865	2. 9981 2. 9987 3. 0000 3. 0006	2. 94400 2. 94375 2. 94590 2. 94565	2. 9738 2. 9732 2. 9773 2. 9767	2. 9981 2. 9987 3. 0000 3. 0006	2. 93770 2. 93795 2. 94120 2. 94145	2. 93770 2. 93745 2. 94120 2. 94095	2. 9981 2. 9987 3. 0000 3. 0006	2, 9 2, 9 3, 0 3, 0
3-16	UN ·	2A 3A	2. 9878 2. 9872 2. 9895 2. 9889	2, 9983 2, 9989 3, 0000 3, 0006	2. 95770 2. 95745 2. 95940 2. 95915	2. 9792 2. 9786 2. 9823 2. 9817	2. 9983 2. 9989 3. 0000 3. 0006	2, 95210 2, 95235 2, 95520 2, 95545	2. 95210 2. 95185 2. 95520 2. 95495	2. 9983 2. 9989 3. 0000 3. 0006	2. 9 2. 9 3. 0 3. 0
31/8-12	UN	2A 3A	3. 1102 3. 1096 3. 1121 3. 1115	3. 1231 3. 1237 3. 1250 3. 1256	3, 06900 3, 06875 3, 07090 3, 07065	3. 0988 3. 0982 3. 1023 3. 1017	3. 1231 3. 1237 3. 1250 3. 1256	3. 06270 3. 06295 3. 06620 3. 06645	3, 06270 3, 06245 3, 06620 3, 06595	3. 1231 3. 1237 3. 1250 3. 1256	3. 1 3. 1 3. 1 3. 1
3}8-16	UN	2A 3A	3. 1128 3. 1122 3. 1145 3. 1139	3. 1233 3. 1239 3. 1250 3. 1256	3. 08270 3. 08245 3. 08440 3. 08415	3. 1042 3. 1036 3. 1073 3. 1067	3. 1233 3. 1239 3. 1250 3. 1256	3, 07710 3, 07735 3, 08020 3, 08045	3. 07710 3. 07685 3. 08020 3. 07995	3. 1233 3. 1239 3. 1250 3. 1256	3, 1 3, 1 3, 1 3, 1
31⁄4-4	UNC	1A 2A 3A	3. 2186 3. 2177 3. 2186 3. 2177 3. 2219 3. 2210	3. 2467 3. 2476 3. 2467 3. 2476 3. 2500 3. 2509	3. 08430 3. 08405 3. 08430 3. 08405 3. 08760 3. 08735	3. 1762 3. 1753 3. 1816 3. 1807 3. 1876 3. 1867	3. 2467 3. 2476 3. 2467 3. 2476 3. 2500 3. 2509	3. 06800 3. 06825 3. 07340 3. 07365 3. 07940 3. 07965	3. 06800 3. 06775 3. 07340 3. 07315 3. 07940 3. 07915	3. 2467 3. 2476 3. 2467 3. 2476 3. 2500 3. 2509	3, 2 3, 2 3, 2 3, 2 3, 2 3, 2
31/4-8	N	2A 3A	3. 2303 3. 2296 3. 2329 3. 2322	3. 2474 3. 2481 3. 2500 3. 2507	3. 16620 3. 16595 3. 16880 3. 16855	3. 2116 3. 2109 3. 2164 3. 2157	3. 2474 3. 2481 3. 2500 3. 2507	3. 15750 3. 15775 3. 16230 3. 16255	3. 15750 3. 15725 3. 16230 3. 16205	3. 2474 3. 2481 3. 2500 3. 2507	3. 2 3. 2 3. 2 3. 2
31⁄4-12	UN	2A 3A	3. 2352 3. 2346 3. 2371 3. 2365	3. 2481 3. 2487 3. 2500 3. 2506	3. 19400 3. 19375 3. 19590 3. 19565	3. 2238 3. 2232 3. 2273 3. 2267	3. 2481 3. 2487 3. 2500 3. 2506	3. 18770 3. 18795 3. 19120 3. 19145	3. 18770 3. 18745 3. 19120 3. 19095	3. 2481 3. 2487 3. 2500 3. 2506	3. 2 3. 2 3. 2 3. 2
31/4-16	UN	2A 3A	3, 2378 3, 2372 3, 2395 3, 2389	3. 2483 3. 2489 3. 2500 3. 2506	3. 20770 3. 20745 3. 20940 3. 20915	3. 2292 3. 2286 3. 2323 3. 2317	3, 2483 3, 2489 3, 2500 3, 2506	3. 20210 3. 20235 3. 20520 3. 20545	3. 20210 3. 20185 3. 20520 3. 20495	3. 2483 3. 2489 3. 2500 3. 2506	3, 2 3, 2 3, 2 3, 2
338-12	UN	2A 3A	3, 3602 3, 3596 3, 3621 3, 3615	3. 3731 3. 3737 3. 3750 3. 3756	3. 31900 3. 31875 3. 32090 3. 32065	3. 3487 3. 3481 3. 3522 3. 3516	3. 3731 3. 3737 3. 3750 3. 3756	3. 31260 3. 31285 3. 31610 3. 31635	3. 31260 3. 31235 3. 31610 3. 31585	3. 3731 3. 3737 3. 3750 3. 3756	3, 3 3, 3 5, 3 3, 3

See footnotes at end of table.

					W tru	ncated setting	plugs			Basic-crest	setting plugs
Nominal size and	Series des-		P	lug for "Go"	,		Plug for	"Not go"		Major d	iameter
threads per inch	ignation	Class	Major dia	nmeter	Pitch di-	Major d	iameter	Pitch d	liameter	Go 1	Not go 2
			Truncated	Full	ameter	Truncated	Full	Plus toler- ance gage	Minus toler- ance gage	W and X tolerances	W and X tolerances
1	2	3	4	5	6	7	8	9	10	11	12
33%-16	UN	2A 3A	in. 3. 3628 3. 3622 3. 3645 3. 3639	in. 3, 3733 3, 3739 3, 3750 3, 3756	in. 3. 33270 3. 33245 3. 33440 3. 33415	1n. 3. 3540 3. 3534 3. 3572 3. 3566	in. 3, 3733 3, 3739 3, 3750 3, 3756	in. 3. 32690 3. 32715 3. 33010 3. 33035	in. 3. 32690 3. 32665 3. 33010 3. 32985	in. 3. 3733 3. 3739 3. 3750 3. 3756	in. 3. 3733 3. 3739 3. 3750 3. 3756
		1A	3. 4686 3. 4677	3. 4967 3. 4976	3. 33430 3. 33405	3, 4260 3, 4251	3. 4967 3. 4976	3. 31770 3. 31795	3. 31770 3. 31745	3. 4967 3. 4976	3. 4967 3. 4976
31/2-4	UNC	2A 3A	3. 4686 3. 4677 3. 4719 3. 4710	3. 4967 3. 4976 3. 5000 3. 5009	3. 33430 3. 33405 3. 33760 3. 33735	3. 4316 3. 4307 3. 4376 3. 4367	3. 4967 3. 4976 3. 5000 3. 5009	3. 32330 3. 32355 3. 32930 3. 32955	3. 32330 3. 32305 3. 32930 3. 32905	3. 4967 3. 4976 3. 5000 3. 5009	3. 4967 3. 4976 3. 5000 3. 5000
3½-8	N	2A 3A	3. 4803 3. 4796 3. 4829 3. 4822	3. 4974 3. 4981 3. 5000 3. 5007	3. 41620 3. 41595 3. 41880 3. 41855	3. 4615 3. 4608 3. 4663 3. 4656	3. 4974 3. 4981 3. 5000 3. 5007	3. 40740 3. 40765 3. 41220 3. 41245	3. 40740 3. 40715 3. 41220 3. 41195	3. 4974 3. 4981 3. 5000 3. 5007	3, 4974 3, 4983 3, 5000 3, 5000
3½-12	UN «	2A 3A	3. 4852 3. 4846 3. 4871 3. 4865	3. 4981 3. 4987 3. 5000 3. 5006	3. 44400 3. 44375 3. 44590 3. 44565	3. 4737 3. 4731 3. 4772 3. 4766	3. 4981 3. 4987 3. 5000 3. 5006	3. 43760 3. 43785 3. 44110 3. 44135	3. 43760 3. 43735 3. 44110 3. 44085	3, 4981 3, 4987 3, 5000 3, 5006	3. 498 3. 498 3. 500 3. 500
3½-16	UN	2A 3A	3. 4878 3. 4872 3. 4895 3. 4889	3. 4983 3. 4989 3. 5000 3. 5006	3. 45770 3. 45745 3. 45940 3. 45915	3. 4790 3. 4784 3. 4822 3. 4816	3, 4983 3, 4989 3, 5000 3, 5006	3. 45190 3. 45215 3. 45510 3. 45535	3. 45190 3. 45165 3. 45510 3. 45485	3. 4983 3. 4989 3. 5000 3, 5006	3, 4983 3, 4989 3, 5000 3, 5000
35%-12	UN	2A 3A	3. 6102 3. 6096 3. 6121 3. 6115	3, 6231 3, 6237 3, 6250 3, 6256	3, 56900 3, 56875 3, 57090 3, 57065	3, 5987 3, 5981 3, 6022 3, 6016	3. 6231 3. 6237 3. 6250 3. 6256	3, 56260 3, 56285 3, 56610 3, 56635	3, 56260 3, 56235 3, 56610 3, 56585	3, 6231 3, 6237 3, 6250 3, 6256	3. 6231 3. 6233 3. 6256 3. 6256
35/8-16	UN	2A 3A	3. 6128 3. 6122 3. 6145 3. 6139	3. 6233 3. 6239 3. 6250 3. 6256	3. 58270 3. 58245 3. 58440 3. 58415	3. 6040 3. 6034 3. 6072 3. 6066	3. 6233 3. 6239 3. 6250 3. 6256	3. 57690 3. 57715 3. 58010 3. 58035	3. 57690 3. 57665 3. 58010 3. 57985	3. 6233 3. 6239 3. 6250 3. 6256	3, 623; 3, 623; 3, 625; 3, 625;
3¾-4	UNC	1A 2A 3A	3. 7185 3. 7176 3. 7185 3. 7176 3. 7219 3. 7210	3. 7466 3. 7475 3. 7466 3. 7475 3. 7500 3. 7509	3. 58420 3. 58395 3. 58420 3. 58395 3. 58760 3. 58735	3. 6756 3. 6747 3. 6812 3. 6803 3. 6874 3. 6865	3. 7466 3. 7475 3. 7466 3. 7475 3. 7500 3. 7509	3, 56740 3, 56765 3, 57300 3, 57325 3, 57920 3, 57945	3. 56740 3. 56715 3. 57300 3. 57275 3. 57920 3. 57895	3. 7466 3. 7475 3. 7466 3. 7475 3. 7500 3. 7509	3, 7466 3, 7473 3, 7466 3, 7473 3, 7500 3, 7509
3 ¾-8	N	2A 3A	3. 7302 3. 7295 3. 7329 3. 7322	3. 7473 3. 7480 3. 7500 3. 7507	3. 66610 3. 66585 3. 66880 3. 66855	3. 7112 3. 7105 3. 7162 3. 7155	3. 7473 3. 7480 3. 7500 3. 7507	3. 65710 3. 65735 3. 66210 3. 66235	3. 65710 3. 65685 3. 66210 3. 66185	3. 7473 3. 7480 3. 7500 3. 7507	3. 7473 3. 7480 3. 7500 3. 7500
33/4-12	UN	2A 3A	3. 7352 3. 7346 3. 7371 3. 7365	3. 7481 3. 7487 3. 7500 3. 7506	3. 69400 3. 69375 3. 69590 3. 69565	3. 7237 3. 7231 3. 7272 3. 7266	3. 7481 3. 7487 3. 7500 3. 7506	3. 68760 3. 68785 3. 69110 3. 69135	3. 68760 3. 68735 3. 69110 3. 69085	3. 7481 3. 7487 3. 7500 3. 7506	3. 7481 3. 7487 3. 7500 3. 7500
3¾-16	UN	2A 3A	3. 7378 3. 7372 3. 7395 3. 7389	3. 7483 3. 7489 3. 7500 3. 7506	3. 70770 3. 70745 3. 70940 3. 70915	3. 7290 3. 7284 3. 7322 3. 7316	3. 7483 3. 7489 3. 7500 3. 7506	3. 70190 3. 70215 3. 70510 3. 70535	3. 70190 3. 70165 3. 70510 3. 70485	3. 7483 3. 7489 3. 7500 3. 7506	3. 7483 3. 7489 3. 7500 3. 7500
37/s-12	UN	2A 3A	3. 8601 3. 8595 3. 8621 3. 8615	3, 8730 3, 8736 3, 8750 3, 8756	3. 81890 3. 81865 3. 82090 3. 82065	3. 8485 3. 8479 3. 8521 3. 8515	3. 8730 3. 8736 3. 8750 3. 8756	3. 81240 3. 81265 3. 81600 3. 81625	3. 81240 3. 81215 3. 81600 3. 81575	3. 8730 3. 8736 3. 8750 3. 8756	3. 8730 3. 873€ 3. 8750 3. 875€
3 7⁄s-16	UN	2A 3A	3.8627 3.8621 3.8645 3.8639	3. 8732 3. 8738 3. 8750 3. 8756	3. 83260 3. 83235 3. 83440 3. 83415	3. 8538 3. 8532 3. 8571 3. 8565	3. 8732 3. 8738 3. 8750 3. 8756	3. 82670 3. 82695 3. 83000 3. 83025	3. 82670 3. 82645 3. 83000 3. 82975	3. 8732 3. 8738 3. 8750 3. 8756	3. 8732 3. 8738 3. 8750 3. 8750
4-4	UNC	1A 2A 3A	3. 9685 3. 9676 3. 9685 3. 9676 3. 9719 3. 9710	3. 9966 3. 9975 3. 9966 3. 9975 4. 0000 4. 0009	3. 83420 3. 83395 3. 83420 3. 83395 3. 83760 3. 83735	3. 9254 3. 9245 3. 9312 3. 9303 3. 9374 3. 9365	3, 9966 3, 9975 3, 9966 3, 9975 4, 0000 4, 0009	3. 81720 3. 81745 3. 82290 3. 82315 3. 82910 3. 82935	3. 81720 3. 81695 3. 82290 3. 82265 3. 82910 3. 82885	3. 9966 3. 9975 3. 9966 3. 9975 4. 0000 4. 0009	3, 9966 3, 9976 3, 9966 3, 9976 4, 0000 4, 0000
4-8	N	2A 3A	3. 9802 3. 9795 3. 9829 3. 9822	3. 9973 3. 9980 4. 0000 4. 0007	3. 91610 3. 91585 3. 91880 3. 91855	3. 9611 3. 9604 3. 9661 3. 9654	3. 9973 3. 9980 4. 0000 4. 0007	3. 90700 3. 90725 3. 91200 3. 91225	3. 90700 3. 90675 3. 91200 3. 91175	3. 9973 3. 9980 4. 0000 4. 0007	3. 9973 3. 9980 4. 0000 4. 0007
4-12	UN	2A 3A	3. 9851 3. 9845 3. 9871 3. 9865	3. 9980 3. 9986 4. 0000 4. 0006	3. 94390 3. 94365 3. 94590 3. 94565	3. 9735 3. 9729 3. 9771 3. 9765	3. 9980 3. 9986 4. 0000 4. 0006	3. 93740 3. 93765 3. 94100 3. 94125	3. 93740 3. 93715 3. 94100 3. 94075	3. 9980 3. 9986 4. 0000 4. 0006	3. 9986 3. 9986 4. 0000 4. 0006

Table III.13.—Setting plug gages, Unified and American screw threads—Continued

					W tru	ncated setting	plugs			Basic-crest	setting plugs
Nominal size and	Series des-		P	lug for "Go"	,		Plug for	"Not go"		Major d	iameter
threads per inch	ignation	Class	Major dia	nmeter	Pitch di-	Major dia	ameter	Pitch d	iameter	Go 1	Not go ²
			Truncated	Full	ameter	Truncated	Full	Plus toler- ance gage	Minus toler- ance gage	W and X tolerances	W and X tolcrances
1	2	3	4	5	6	7	8	9	10	11	12
4-16	UN -	2A 3A	in. 3. 9877 3. 9871 3. 9895 3. 9889	in. 3. 9982 3. 9988 4. 0000 4. 0006	in. 3. 95760 3. 95735 3. 95940 3. 95915	in. 3. 9788 3. 9782 3. 9821 3. 9815	in. 3, 9982 3, 9988 4, 0000 4, 0006	in. 3, 95170 3, 95195 3, 95500 3, 95525	in. 3. 95170 3. 95145 3. 95500 3. 95475	in. 3. 9982 3. 9988 4. 0000 4. 0006	in. 3. 9982 3. 9988 4. 0000 4. 0006
41/4~8	N	2A 3A	4. 2301 4. 2290 4. 2329 4. 2318	4. 2472 4. 2483 4. 2500 4. 2511	4. 1660 4. 1657 4. 1688 4. 1685	4, 2108 4, 2097 4, 2159 4, 2148	4. 2472 4. 2483 4. 2500 4. 2511	4. 1567 4. 1570 4. 1618 4. 1621	4. 1567 4. 1564 4. 1618 4. 1615	4. 2472 4. 2483 4. 2500 4. 2511	4, 2472 4, 2483 4, 2500 4, 2511
41/4-12	UN	2A 3A	4. 2351 4. 2342 4. 2371 4. 2362	4. 2480 4. 2489 4. 2500 4. 2509	4. 1939 4. 1936 4. 1959 4. 1956	4, 2235 4, 2226 4, 2271 4, 2262	4. 2480 4. 2489 4. 2500 4. 2509	4. 1874 4. 1877 4. 1910 4. 1913	4. 1874 4. 1871 4. 1910 4. 1907	4. 2480 4. 2489 4. 2500 4. 2509	4. 2480 4. 2489 4. 2500 4. 2509
41/4-16	UN	2A 3A	4. 2377 4. 2368 4. 2395 4. 2386	4. 2482 4. 2491 4. 2500 4. 2509	4. 2076 4. 2073 4. 2094 4. 2091	4. 2288 4. 2279 4. 2321 4. 2312	4. 2482 4. 2491 4. 2500 4. 2509	4. 2017 4. 2020 4. 2050 4. 2053	4. 2017 4. 2014 4. 2050 4. 2047	4, 2482 4, 2491 4, 2500 4, 2509	4. 2482 4. 2491 4. 2500 4. 2509
41/2-8	N	2A 3A	4. 4801 4. 4790 4. 4829 4. 4818	4. 4972 4. 4983 4. 5000 4. 5011	4. 4160 4. 4157 4. 4188 4. 4185	4. 4607 4. 4596 4. 4658 4. 4647	4. 4972 4. 4983 4. 5000 4. 5011	4. 4066 4. 4069 4. 4117 4. 4120	4. 4066 4. 4063 4. 4117 4. 4114	4. 4972 4. 4983 4. 5000 4. 5011	4. 4972 4. 4983 4. 5000 4. 5011
41/2-12	UN	$\begin{cases} 2A \\ 3A \end{cases}$	4. 4851 4. 4842 4. 4871 4. 4862	4, 4980 4, 4989 4, 5000 4, 5009	4. 4439 4. 4436 4. 4459 4. 4456	4, 4735 4, 4726 4, 4771 4, 4762	4, 4980 4, 4989 4, 5000 4, 5009	4. 4374 4. 4377 4. 4410 4. 4413	4. 4374 4. 4371 4. 4410 4. 4407	4. 4980 4. 4989 4. 5000 4. 5009	4, 4980 4, 4989 4, 5000 4, 5009
41/2-16	UN	2A 3A	4. 4877 4. 4868 4. 4895 4. 4886	4. 4982 4. 4991 4. 5000 4. 5009	4. 4576 4. 4573 4. 4594 4. 4591	4, 4788 4, 4779 4, 4821 4, 4812	4. 4982 4. 4991 4. 5000 4. 5009	4. 4517 4. 4520 4. 4550 4. 4553	4. 4517 4. 4514 4. 4550 4. 4547	4. 4982 4. 4991 4. 5000 4. 5009	4. 4982 4. 4991 4. 5000 4. 5009
43/4-8	N	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$	4. 7300 4. 7289 4. 7329 4. 7318	4. 7471 4. 7482 4. 7500 4. 7511	4, 6659 4, 6656 4, 6688 4, 6685	4, 7105 4, 7094 4, 7157 4, 7146	4. 7471 4. 7482 4. 7500 4. 7511	4. 6564 4. 6567 4. 6616 4. 6619	4. 6564 4. 6561 4. 6616 4. 6613	4.7471 4.7482 4.7500 4.7511	4. 7471 4. 7482 4. 7500 4. 7511
43/4-12	UN	$\left\{\begin{array}{c} 2A \\ 3A \end{array}\right.$	4, 7351 4, 7342 4, 7371 4, 7362	4. 7480 4. 7489 4. 7500 4. 7509	4. 6939 4. 6936 4. 6959 4. 6956	4. 7233 4. 7224 4. 7270 4. 7261	4. 7480 4. 7489 4. 7500 4. 7509	4. 6872 4. 6875 4. 6909 4. 6912	4. 6872 4. 6869 4. 6909 4. 6906	4. 7480 4. 7489 4. 7500 4. 7509	4, 7480 4, 7489 4, 7500 4, 7509
434-16	UN	2A 3A	4, 7377 4, 7368 4, 7395 4, 7386	4. 7482 4. 7491 4. 7500 4. 7509	4. 7076 4. 7073 4. 7094 4. 7091	4. 7286 4. 7277 4. 7320 4. 7311	4.7482 4.7491 4.7500 4.7509	4. 7015 4. 7018 4. 7049 4. 7052	4. 7015 4. 7012 4. 7049 4. 7046	4. 7482 4. 7491 4. 7500 4. 7509	4. 7482 4. 7491 4. 7500 4. 7509
5–8	N	2A 3A	4. 9800 4. 9789 4. 9829 4. 9818	4. 9971 4. 9982 5. 0000 5. 0011	4, 9159 4, 9156 4, 9188 4, 9185	4. 9603 4. 9592 4. 9657 4. 9646	4. 9971 4. 9982 5. 0000 5. 0011	4. 9062 4. 9065 4. 9116 4. 9119	4. 9062 4. 9059 4. 9116 4. 9113	4. 9971 4. 9982 5. 0000 5. 0011	4, 9971 4, 9982 5, 0000 5, 0011
5–12	UN	$ \begin{cases} 2A \\ 3A \end{cases} $	4. 9851 4. 9842 4. 9871 4. 9862	4. 9980 4. 9989 5. 0090 5. 0009	4. 9439 4. 9436 4. 9459 4. 9456	4. 9733 4. 9724 4. 9770 4. 9761	4. 9980 4. 9989 5. 0000 5. 0009	4. 9372 4. 9375 4. 9409 4. 9412	4, 9372 4, 9369 4, 9409 4, 9406	4. 9980 4. 9989 5 0000 5. 0009	4, 9980 4, 9989 5, 0000 5, 0009
5–16	UN .	$ \begin{cases} 2A \\ 3A \end{cases} $	4, 9877 4, 9868 4, 9895 4, 9886	4. 9982 4. 9991 5. 0000 5. 0009	4. 9576 4. 9573 4. 9594 4. 9591	4. 9786 4. 9777 4. 9820 4. 9811	4. 9982 4. 9991 5. 0000 5. 0009	4. 9515 4. 9518 4. 9549 4. 9552	4, 9515 4, 9512 4, 9549 4, 9546	4. 9982 4. 9991 5. 0000 5. 0009	4, 9982 4, 9991 5, 0000 5, 0009
51/4-8	N	2A 3A	5. 2300 5. 2289 5. 2329 5. 2318	5. 2471 5. 2482 5. 2500 5. 2511	5. 1659 5. 1656 5. 1688 5. 1685	5. 2102 5. 2091 5. 2156 5. 2145	5. 2471 5. 2482 5. 2500 5. 2511	5. 1561 5. 1564 5. 1615 5. 1618	5. 1561 5. 1558 5. 1615 5. 1612	5. 2471 5. 2482 5. 2500 5. 2511	5. 247 5. 2482 5. 2500 5. 2511
51/4-12	UN	2A 3A	5. 2351 5. 2342 5. 2371 5. 2362	5. 2480 5. 2489 5. 2500 5. 2509	5, 1939 5, 1936 5, 1959 5, 1956	5. 2233 5. 2224 5. 2270 5. 2261	5. 2480 5. 2489 5. 2500 5. 2509	5. 1872 5. 1875 5. 1909 5. 1912	5. 1872 5. 1869 5. 1909 5. 1906	5. 2480 5. 2489 5. 2500 5. 2509	5. 2486 5. 2489 5. 2500 5. 2500
51/4-16	UN	2A 3A	5. 2377 5. 2368 5. 2395 5. 2386	5. 2482 5. 2491 5. 2500 5. 2509	5. 2076 5. 2073 5. 2094 5. 2091	5. 2286 5. 2277 5. 2320 5. 2311	5. 2482 5. 2491 5. 2500 5. 2509	5. 2015 5. 2018 5. 2049 5. 2052	5. 2015 5. 2012 5. 2049 5. 2046	5. 2482 5. 2491 5. 2500 5. 2509	5. 2482 5. 249 5. 2500 5. 2500
5½-8	N	$ \begin{cases} 2A \\ 3A \end{cases} $	5. 4799 5. 4788 5. 4829 5. 4818	5. 4970 5. 4981 5. 5000 5. 5011	5, 4158 5, 4155 5, 4188 5, 4185	5. 4690 5. 4589 5. 4655 5. 4644	5. 4970 5. 4981 5. 5000 5. 5011	5. 4059 5. 4062 5. 4114 5. 4117	5. 4059 5. 4056 5. 4114 5. 4111	5. 4970 5. 4981 5. 5000 5. 5011	5. 4970 5. 4981 5. 5000 5. 5011

See footnotes at end of table.

					W tru	ncated setting	plugs			Basic-crest	setting plugs
Nominal size and	Series des-		P	lug for "Go"	,		Plug for '	'Not go"		Major d	liameter
threads per inch	ignation	Class	Major dia	ameter	Pitch di-	Major di	ameter	Pitch d	iameter	Go 1	Not go 2
			Truncated	Full	ameter	Truncated	Full	Plus toler- ance gage	Minus toler- ance gage	W and X tolerances	W and X tolerances
1	2	3	4	5	6	7	8	9	10	11	12
		(2A	in. 5. 4851	in. 5, 4980	in. 5. 4439	in. 5. 4733	in. 5. 4980	in. 5. 4372	in. 5. 4372	in. 5. 4980	in. 5. 4980
5½-12	UN	3A	5. 4842 5. 4871 5. 4862	5, 4989 5, 5000 5, 5009	5. 4436 5. 4459 5. 4456	5. 4724 5. 4770 5. 4761	5. 4989 5. 5000 5. 5009	5. 4375 5. 4409 5. 4412	5. 4369 5. 4409 5. 4406	5, 4989 5, 5000 5, 5009	5, 4989 5, 5000 5, 5009
5½-16	UN	2A 3A	5. 4877 5. 4868 5. 4895 5. 4886	5. 4982 5. 4991 5. 5000 5. 5009	5. 4576 5. 4573 5. 4594 5. 4591	5. 4786 5. 4777 5. 4820 5. 4811	5. 4982 5. 4991 5. 5000 5. 5009	5, 4515 5, 4518 5, 4549 5, 4552	5. 4515 5. 4512 5. 4549 5. 4546	5. 4982 5. 4991 5. 5000 5. 5009	5. 4982 5. 4991 5. 5000 5. 5009
534-8	N	2A 3A	5. 7299 5. 7288 5. 7329 5. 7318	5. 7470 5. 7481 5. 7500 5. 7511	5, 6658 5, 6655 5, 6688 5, 6685	5. 7099 5. 7088 5. 7154 5. 7143	5. 7470 5. 7481 5. 7500 5. 7511	5, 6558 5, 6561 5, 6613 5, 6616	5. 6558 5. 6555 5. 6613 5. 6610	5. 7470 5. 7481 5. 7500 5. 7511	5. 7470 5. 7481 5. 7500 5. 7511
53/4-12	UN	2A 3A	5. 7350 5. 7341 5. 7371 5. 7362	5. 7479 5. 7488 5. 7500 5. 7509	5, 6938 5, 6935 5, 6959 5, 6956	5, 7230 5, 7221 5, 7268 5, 7259	5. 7479 5. 7488 5. 7500 5. 7509	5, 6869 5, 6872 5, 6907 5, 6910	5. 6869 5. 6866 5. 6907 5. 6904	5. 7479 5. 7488 5. 7500 5. 7509	5. 7479 5. 7488 5. 7500 5. 7509
53/4-16	UN	2A 3A	5. 7376 5. 7367 5. 7395 5. 7386	5. 7481 5. 7490 5. 7500 5. 7509	5. 7075 5. 7072 5. 7094 5. 7091	5, 7284 5, 7275 5, 7318 5, 7309	5, 7481 5, 7490 5, 7500 5, 7509	5. 7013 5. 7016 5. 7047 5. 7050	5. 7013 5. 7010 5. 7047 5. 7044	5. 7481 5. 7490 5. 7500 5. 7509	5, 7481 5, 7490 5, 7500 5, 7509
6-8	N	{ 2A 3A	5. 9799 5. 9788 5. 9829 5. 9818	5, 9970 5, 9981 6, 0000 6, 0011	5. 9158 5. 9155 5. 9188 5. 9185	5, 9597 5, 9586 5, 9653 5, 9642	5, 9970 5, 9981 6, 0000 6, 0011	5, 9056 5, 9059 5, 9112 5, 9115	5. 9056 5. 9053 5. 9112 5. 9109	5. 9970 5. 9981 6. 0000 6. 0011	5. 9970 5. 9981 6. 0000 6. 0011
6-12	UN	2A 3A	5. 9850 5. 9841 5. 9871 5. 9862	5, 9979 5, 9988 6, 0000 6, 0009	5. 9438 5. 9435 5. 9459 5. 9456	5. 9730 5. 9721 5. 9768 5. 9759	5, 9979 5, 9988 6, 0000 6, 0009	5, 9369 5, 9372 5, 9407 5, 9410	5. 9369 5. 9366 5. 9407 5. 9404	5. 9979 5. 9988 6. 0000 6. 0009	5. 9979 5. 9988 6. 0000 6. 0009
6-16	UN	$\left\{\begin{array}{c} 2A \\ 3\Lambda \end{array}\right $	5. 9876 5. 9867 5. 9895 5. 9886	5. 9981 5. 9990 6. 0000 6. 0009	5, 9575 5, 9572 5, 9594 5, 9591	5. 9784 5. 9775 5. 9818 5. 9809	5. 9981 5. 9990 6. 0000 6. 0009	5. 9513 5. 9516 5. 9547 5. 9550	5. 9513 5. 9510 5. 9547 5. 9544	5. 9981 5. 9990 6. 0000 6. 0009	5, 9981 5, 9990 6, 0000 6, 0000

¹ Pitch diameter limits of W basic-crest setting plug gages are given in column 6 of this table. Pitch diameter limits of X basic-crest setting plug gages are given in column 4 of table III. 12.

² Pitch diameter limits of W basic-crest setting plug gages are given in columns 9 and 10 of this table. Pitch diameter limits of X basic-crest setting plug gages are given in columns 6 and 7 of table III. 12.

8. SIZES OF TAP DRILLS

When it is important that the minor diameter of an internal thread conform to specified limits it may be necessary to use a reamer to finish the hole. However, a drill often can be made to cut sufficiently accurately for this requirement. A variety of factors enter into the production of a clean, round, straight hole of the correct diameter. For a discussion of these and other data on drilling and tapping reference should be made to "Drilled Holes for Tapping," published by the Drill and Reamer Division and the Tap and Die Division of the Metal Cutting Tool Institute.

Table III.14 gives minor diameter limits and corresponding percentages of basic thread height, $\frac{3}{4}H$, for all standard series threads to and including $\frac{3}{4}$ in. diameter, classes 1B and 2B. Table III.15 is a similar table for class 3B. These tables also list sizes of drills that may be expected to drill holes within or near the specified minor

diameter limits. The diameter of the drill, the probable hole size, and the corresponding percentages of basic thread height are tabulated.

As a drill may normally be expected to cut oversize, probable hole sizes are tabulated that are derived from probable mean oversizes, also tabulated. The following is quoted from the above-mentioned report: "These oversizes were determined from a series of tests conducted by a number of drill manufacturers. Using six sizes of drills ranging from 1/16 to 1 in. a total of 2,808 holes were drilled in cast iron and steel. Commercial high speed drills were used and the drilling equipment was of the same type and condition that is normally encountered in metal working shops. The average depth of hole drilled was equal to 1½ times the drill diameter, and the measurement of the hole was made at the midpoint of the depth drilled. . . . With good drilling practices and with reasonable care in the resharpening of drills the average user may expect to drill oversize in the same manner."

⁶ Address: 3114 Chrysler Bldg., 405 Lexington Ave., New York 17, N. Y.

	Threads	Desig-	Classes 1	B and 2B mi thre		r, internal		Tap drills	and percent	basic threa	l height	
Thread size	per inch	nation	Minimum	Percent basic thread height	Maximum	Percent basic thread height	Nominal size	Diameter	Theoreti- cal percent of thread	Probable oversize, mean	Probable hole size	Percent of thread
No. in.			in.		in.		∫#56	in. 0.0465	83	in. 0.0015	in. 0.0480	74
9 0.060	80	NF	0.0465	83. 1	0.0514	52. 9	\364 in.	. 0469	81	. 0015	.0484	71
. 073	64	NC	. 0561	83. 3	. 0623	52. 7	\$#54 \$#53	. 0595	67	.0015	.0610	59
. 073	72	NF	. 0580	83.1	. 0635	52.7	}#53 \½6 in.	. 0625	58	.0015	. 0610	50
2 .086	56	NC	, 0667	83. 2	. 0737	53.0	#51 #50 #49	.0670	82 69	.0017	.0687	75 62
2 .086	64	NF	. 0691	83. 3	. 0753	52. 7	(#49 ∫#50 \#49 ∫#48	0469 0550 0595 0595 0625 0670 0700 0730 0730 0760 0781	56 79 64 85	in. 0.0015 .0015 .0015 .0015 .0015 .0015 .0017 .0017 .0017 .0017 .0019 .0019	.0747 .0717 .0747	49 70 56 78
3 .099	48	NC	. 0764	83. 5	.0845	53.6	564 in. #47 #46 #45	. 0781 . 0785 . 0810 . 0820	77 76 67 63	.0019 .0019 .0019	. 0484 . 0565 . 0610 . 0640 . 0687 . 0717 . 0747 . 0779 . 0800 . 0839 . 0839 . 0839 . 0839 . 0879 . 0955 . 0958 . 0958 . 0958 . 0958 . 0958 . 0958	70 69 60 56
3 .099	56	NF	. 0797	83. 2	. 0865	53.9	#46 #45 #44	.0810 .0820 .0860	78 73 56	. 0019 . 0019 . 0019 . 0019 . 0019	. 0829 . 0839 . 0879	69 65 48
4 . 112	40	NC	. 0849	83. 4	. 0939	55. 7	#44 #43 #42 3/32 in.	. 0860 . 0890 . 0935 . 0938	57 56	. 0019 . 0020 . 0020 . 0020 . 0020	.0879 .0910 .0955 .0958	65 51 50
4 . 112	48	NF	. 0894	83. 5	. 0968	56. 2	#43 #42 }32 in. #41	. 0890 . 0935 . 0938 . 0960	85 68 67 59	. 0020 . 0020 . 0020	.0910 .0955 .0958 .0980	78 61 60 52
5 .125	40	NC	. 0979	83. 4	. 1062	57. 9	#40 #39 #38 #37	.0980 .0995 .1015	83 79 72 65	. 0023 . 0023 . 0023	. 1003 . 1018 . 1038	76 71 65
5 .125	44	NF	. 1004	83. 3	. 1079	57.9	#38 #37 #36	. 1015 . 1040 . 1065	80 71 63	.0023 .0023 .0023	. 1018 . 1038 . 1063 . 1063 . 1088 . 1063 . 1088 . 1120	72 63 55
6 .138	32	NC	. 104	83.8	. 114	59. 1	#37 #36 7%4 in. #35 #34 #33	. 0990 . 0995 . 0995 . 1015 . 1040 . 1015 . 1040 . 1065 . 1044 . 1100 . 1110 . 1130 . 1110 . 1380 . 1360 . 1460 . 1460 . 1440 . 1470 . 1495 . 1520 . 1540	89 67 75 58 69 67 79 64 85 76 67 63 78 78 78 56 80 71 57 56 85 80 79 72 65 80 67 67 83 78 84 78 69 67 68 68 78 80 67 80 67 80 67 80 67 80 67 80 80 80 80 80 80 80 80 80 80 80 80 80	. 0023 . 0023 . 0023 . 0023 . 0023 . 0023 . 0023 . 0023 . 0023 . 0026 . 0026 . 0026 . 0026 . 0026 . 0026 . 0029 . 0029 . 0029 . 0029 . 0032 . 0032 . 0032 . 0032 . 0032 . 0032 . 0035 . 0035 . 0035 . 0035 . 0035	. 1065 . 1088 . 1120 . 1126 . 1136	74 71 74 71 81 59 67 60 75 62 49 96 60 56 68 70 69 60 56 68 71 62 63 60 65 65 72 63 60 65 65 66 67 77 77 77 78 66 66 67 77 77 77 77 78 78 78 78 78 78 78 78 78
6 . 138	40	NF	.111	83. 1	. 119	58. 5	J#34 #33	.1110	83	. 0026	.1136	75
8 . 164	32	NC	. 130	83. 8	. 139	61. 6	#32	.1160	68	. 0026	.1186	60
8 .164	36	NF	. 134	83. 1	. 142	61. 0	#34 #33 #32 #29 #29 #28	. 1360	78 65	. 0029	. 1389	70
0 .101	00	111	. 101	00.1		01.0	1964 in. (#27	. 1406	65	. 0029	. 1435	57
10 . 190	24	NC	. 145	83. 1	. 156	62. 8	#26 #25 #24 #23	. 1470 . 1495 . 1520 . 1540	79 75 70 66	. 0032 . 0032 . 0032 . 0032	1126 1136 1136 1136 1136 1146 1389 1389 1434 1435 1472 1502 1527 1527 1528 1642 1662 1642 1754 1765	74 69 64 61
10 . 190	32	NF	.156	83.8	. 164	64. 1	5/32 in. #22 #21 #20	. 1562 . 1570 . 1590	83 81 76 71	. 0032 . 0032 . 0032 . 0032	. 1594 . 1602 . 1622 . 1642	75 73 68 64
12 . 216	24	NC	. 171	83.1	. 181	64. 7	11/64 in. #17 #16 #15	. 1719 . 1730 . 1770 . 1800	82 79 72 67	.0035 .0035 .0035	. 1835	75 73 66 60
12 . 216	28	NF	. 177	84.1	. 186	64. 7	#16 #15 #14 #13	. 1770 . 1800 . 1820 . 1850	67	.0035 .0035 .0035 .0035	. 1805 . 1835 . 1855 . 1885	66
12 . 216	32	NEF	. 182	83. 8	. 190	64. 0	#14 #13 3/16 in. #12	. 1820 . 1850 . 1875 . 1890	70 67	. 0035 . 0035 . 0035 . 0035	. 1855 . 1885 . 1910 . 1925	75 68 62 58
1,4	20	UNC	. 196	83.1	. 207	66. 2	13/64 in. #6	. 1960 . 1990 . 2010 . 2031 . 2040	83 79 75 72 71	.0038 .0038 .0038 .0038 .0038	. 1998 . 2028 . 2048 . 2069 . 2078	59 75 68 62 55 77 72 66 63 72 55 67 62 72 66 67 75 67 67 67 67 67 67 67 67 67 67 67 67 67
1,4	28	UNF	. 211	84.1	, 220	64. 7	#5 {#3 7⁄32 in.	. 2055 . 2130 . 2188 . 2188 . 2210 . 2210	69 80 67	. 0038 . 0038 . 0038	. 2093 . 2168 2226	63 72
1/4	32	NEF	. 216	83.8	. 224	64. 1	{7/32 in. {#2	.2188	80 67 77 71	.0038	. 2226 . 2226 . 2248 . 2248	67
1/4	36	UNS	. 220	83. 1	, 226	66. 5	#2 {F	. 2210	80	. 0038	. 2248	70
5/16	18	UNC	. 252	83. 8	. 265	65. 8	∖G	. 2570 . 2610 . 2660	80 77 71 86	.0038	. 2608	66
5/16	24	UNF	. 267	84.1	. 277	65.6	$\left\{egin{matrix} \mathbf{H} \\ \mathbf{I} \\ \mathbf{J} \end{array}\right.$. 2720	86 75 66	. 0041 . 0041 . 0041	. 2701 . 2761 . 2811	67
5/16	32	NEF	. 279	82. 5	. 286	65. 3	K 9/32 in.	. 2810		. 0041	. 2852	67
5/16	36	UNS	. 282	84. 5	. 289	65. 1	$7.25 \mathrm{mm}$. 2854	75	. 0042	. 2854	63
3/8	16	UNC	. 307	83. 8	. 321	66. 5	{5/16 in. O	. 3125	78 77 75 77 73 79	. 0044	. 3169 . 3204	67
3/8	24	UNF	. 330	83. 1	. 340	64.7	$\left\{ egin{matrix} \mathbf{Q} \\ \mathbf{R} \end{array} \right.$. 3320	67	.0044	. 3364	71 58
3/8	32	NEF	. 341	83. 8	. 349	64. 1	${}_{S}^{11/32}$ in.	. 3438	77	.0045	. 3483	66

	Thursday	Dorto	Classes 1	B and 2B mi thre	nor diameter ads	r, internal		Tap drills	and percent	basic thread	l height	
Thread size	Threads per inch	Desig- nation	Minimum	Percent basic thread height	Maximum	Percent basic thread height	Nominal size	Diameter	Theoreti- cal percent of thread	Probable oversize, mean	Probable bole size	Percent of threa
No. in.	36	UNS	in. 0. 345	83. 1	in. 0.352	63.7	s	in. 0. 3480	75	in. 0. 9045	in, 0. 3525	
3/8 Ví 6	14	UNC	. 360	83. 5	. 376	66. 3	T 23/64 in.	. 3580	86	. 0046	. 3626	8
	0					65. 4	\{\begin{aligned} \begin{aligned} align	. 3594 . 3860	84 79	. 0046	. 3640	
7/16 7/16	20 28	UNF UNEF	. 383	83. 9 83. 0	. 395	65. 7	V	. 3906	84 79 72 72 80	. 0046	. 3952	1
3/2	12	N	. 410	83.1	. 428	66. 5	$ \begin{cases} Z \\ ^{27}64 \text{ in.} \\ ^{27}64 \text{ in.} \end{cases} $. 4130 . 4219	80	. 0047	0. 3525 . 3626 . 3640 . 3906 . 3952 . 4086 . 4177 . 4266	
1/2 1/2	13	UNC	. 417	83. 1	. 434	66. 1	27/64 in.	. 4219	72 78 72 67 87 72 87 78 87	. 0047 . 0047	. 4200	
12 12	$\frac{20}{28}$	UNF UNEF	. 446 . 461	83. 1 84. 1	. 457 . 470	66. 2 64. 7	²⁹ 64 in.	. 4531 . 4688	72 67	. 0047	. 4578 . 4736	
9/16	12	UNC	. 472	83. 6	. 490	67. 0	$\begin{cases} ^{15}32 \text{ in.} \\ ^{31}64 \text{ in.} \end{cases}$. 4688	87	.0048	. 4736 . 4892	
9/16	18	UNF	. 502	83. 8	. 515	65. 8	15½ in.	. 5000	87	. 0048	. 5048	
			1				$\binom{0.5062 \text{ in.}}{3364 \text{ in.}}$. 5062	78 87	. 0048	. 5110 . 5204	
%16	24	NEF	. 517	84.1	. 527	65. 6	\(0.5203 in. ∫¹¼32 in.	. 5203 . 5312	78 67	.0048	. 5251 . 5361	
9/16	28	UNS	. 524	83. 0	. 532	65. 7	(0.5263 in.	. 5263	78 79	. 0049	. 5312	
5/8 5/8	17 12	UNC	. 527 . 535	83. 0 83. 1	. 546	66. 9 66. 5	¹⁷ / ₃₂ in. ³⁵ / ₆₄ in.	. 5312	79 72 87	. 0049	. 5362	
96	18	UNF	. 565	83. 1	. 578	65. 1	{% 6 in. {0.5687 in.	. 5625 . 5687	87	. 0049 . 0049	. 5674	
5/8	24	NEF	. 580	83.1	. 590	64. 7	37/64 in.	. 5781	78 87	. 0049	. 5830	
5/8	28	UNS	. 586	84. 1	. 595	64. 7	19/32 in.	. 5828 . 5938	67	. 0049 . 0049	. 5877 . 5987	
11/16	12	N	. 597	83. 6	. 615	67.0	1932 in.	. 5938 . 6094	78 67 87 72 87	. 0049 . 0049	. 5987 . 6143	
¹ 1∕1 6	24	NEF	. 642	84. 1	. 652	65. 6	(39 ₆₄ in. 41 ₆₄ in. (41 ₆₄ in.	. 6406	87	. 005(. 6456	
3/4	10	UNC	. 642	83. 1	. 663	67. 0	11 2 1/20 in	. 6406	72	. 0050 . 0050	. 6456 . 6613	1
3/4	12	N	. 660	83. 1	. 678	66. 5		. 6562	87 72	.0050	. 6612 . 6769	
3/4	16	UNF	. 682	83. 8	. 696	66. 5	11/16 in.	. 6875	77	. 0050	. 6925	
3/4 3/4 3/4 13/16	20 28	UNEF UNS	. 696 . 711	83. 1 84. 1	. 707 . 720	66. 2 64. 7	⁴ / ₆₄ in. ² / ₃₂ in. ⁴ / ₆₄ in.	. 7031 . 7188	67	. 0051 . 0051	. 7082 . 7239	
13/16 13/16	12 16	N UN	.722	83. 6 83. 1	. 740 . 759	67. 0 65. 9	47/64 in.	. 7344	72	.0051 .0052	. 7395 . 7552	
13/16	20	UNEF	.758	83. 9	. 770	65.4	34 in. 4964 in.	. 7656	72	. 0052	. 7708	
7/8 7/8	12	UNC N	. 755	83. 1 83. 1	. 778 . 803	00.5	4964 in. 525/32 in. 51/64 in.	. 7656 . 7812	87	. 0052 . 0052	. 7708 . 7864	
78 78	14	UNF	.798	83. 0	. 814	65. 7	\$354 in. \$154 in. \$156 in. \$10, 8024 in. \$1376 in. \$1376 in. \$2752 in. \$2752 in. \$2752 in. \$2752 in. \$2564 in. \$2564 in. \$2564 in. \$2952 in. \$364 in. \$364 in. \$364 in. \$1576 in. \$2954 in. \$364 in. \$1576 in. \$2754 in. \$364 in. \$364 in. \$364 in. \$364 in. \$364 in. \$364 in.	. 7969 . 7969 . 8024	84 727 727 727 727 727 727 727 727 727 877 728 877 728 877 728 877 728 877 728 877 728 877 728 877 728 877 728 877 728 877 728 877 728 877 728 877 728 877 728 877 728 877 728 877 728 728	. 0052 . 0052 . 0052	. 8021 . 8021 . 8076 . 8177	
	16	UN	. 807	83. 8	. 821	66. 5	13/16 in. 13/16 in.	. 8024 . 8125 . 8125 . 8281 . 8438 . 8438	67	. 0052 . 0053		
7/8 7/8 7/8	20	UNEF	. 821	83.1	. 821 . 832	66. 2	55/64 in.	. 8281	72	. 0054	. 8335	
%8 15/16	28 12	UNS	. 836	84. 1 83. 6	. 845 . 865	67.0	∫ ²⁷ / ₃₂ in.	. 8438	87	. 0055	. 8493	1
15/16	16	UN	. 870	83. 1	. 884	65. 9	7% in.	. 8594 . 8750	72 77	. 0056 . 0057	. 8335 . 8493 . 8493 . 8650 . 8807	
15/16	20	UNEF	. 883	83. 9	. 895	65. 4	57/64 in.	. 8906 . 8594	72	. 0059	. 8965	
1	8	UNC	. 865	83. 1	. 890	67. 7	7% in.	8750 . 9062	77	. 0059	. 8809	
1	12	UNF	. 910	83. 1	. 928	66. 5	59%4 in.	. 9219	72	. 0060	. 8807 . 8965 . 8653 . 8809 . 9123 . 9279 . 9279 . 9335 . 9437	
1	14	NS	. 923	83. 0	. 938	66. 8	0. 9274 in.	. 9274	78	.0061	. 9335	
1	16 20	UN UNEF	.932	83. 8 83. 1	. 946 . 957	66. 5 66. 2	15/16 in. 61/64 in.	. 9375 . 9531	77 72	. 0062		
i	28	UNS	. 961	84. 1	. 970	64. 7	31/32 in.	. 9688	67	. 0065	. 9753 . 9753	
11/16	12	UN	. 972	83. 6	. 990	67. 0	16364 in.	. 9844	72	. 0067	. 9911	
1½16 1½16	16 18	UN NEF	. 995 1. 002	83. 1 83. 8	1. 009 1. 015	65, 9 65, 8	1 in. 1 in.	1.0000 1.0000	77 87	. 0069	1. 0069 1. 0069	
11/8	7	UNC	. 970	83. 5	. 998	68. 4	$\begin{cases} {}^{31}/{}_{32} \text{ in.} \\ {}^{63}/{}_{64} \text{ in.} \end{cases}$. 9688	84 76	. 0062	. 9750 . 9911	
11/8	8	N	. 990	83.1	1.015	67. 7	1 in.	1.0000	77	.0069	1.0069	0
11/8	12	UNF	1.035	83. 1	1.053	66. 5	{1⅓2 in. {1¾4 in.	1. 0312 1. 0469	87 72 77	. 0071 . 0072	1. 0384 1. 0541	
138	16	UN	1. 057	83.8	1. 071	66. 5	1¼6 in. ∫1¼6 in.	1.0625 1.0625	77 87	. 0074	1.0699	
138 138	18 20	NEF UNS	1. 065 1. 071	83. 1 83. 1	1. 078 1. 082	65. 1 66. 2	1 ⁵ 64 in. 1 ⁵ 64 in.	1.0781 1.0781	65 72			
11/8	28	UNS	1.086	84.1	1.095	64.7	13/32 in.	1.0938	67			
$\frac{13}{16}$	12 16	UN UN	1, 097 1, 120	83. 6 83. 1	1. 115 1. 134	67. 0 65. 9	13⁄32 in. 11⁄8 in.	1. 0938 1. 1250	87 77			
13/16	18	NEF	1. 127	83. 8	1. 140	65. 8	{1½ in. 1% in.	1. 1250 1. 1406	87			
114	7	UNC	1. 095	83. 5	1. 123	68. 4	13/32 in.	1. 0938 1. 1250	84			
114 114	8 12	N UNF	1. 115 1. 160	83. 1 83. 1	1. 140 1. 178	67. 7 66. 5	11/8 in. ∫15/32 in.	1. 1562	87			
134	16	UN	1. 182	83. 8	1. 178	66. 5	111/64 in. 13/16 in.	1. 1719 1. 1875				
114	18	NEF	1. 190	83.1	1. 203	66. 5	∫1¾6 in.	1. 1875 1. 2031	87			
11/4	20	UNS	1. 196	83. 1	1. 207		11364 in. 11364 in.	1. 2031	72			
15/16	12	UN	1. 222	83.6	1. 240	67. 0	117/32 in. 115/64 in.	1. 2188 1. 2344	87 72			
1%6	16	UN	1. 245	83. 1	1. 259	65. 9	1¼ in.	1. 2500 1. 2500	77			
15/16	18	NEF	1. 252	83. 8	1. 265	65. 8	{1¼ in. 11764 in.	1. 2656				

TVb man d nime	m -	D /		tbre		, internal		rap ums a	ind percent	basic tbread	beight	
Tbread size	Tbreads per inch	Desig- nation	Minimum	Percent basic tbread beight	Maximum	Percent basic thread height	Nominal size	Diameter	Theoreti- cal percent of thread	Probable oversize, mean	Probable hole size	Percent of thread
No. in.			in.		in.		424	in.		in.	in.	
13/8	6	UNC	1. 195	83. 1	1. 225	69. 3	$\begin{cases} 1\frac{3}{16} \text{ in.} \\ 1\frac{13}{64} \text{ in.} \end{cases}$	1. 1875 1. 2031	87 79			
							17⁄32 in. 11 5⁄64 in.	1. 2188 1. 2344	72 87			
13/8	8	N	1. 240	83. 1	1. 265	67. 7	(1¼ in.	1. 2500	77			
13/8	12	UNF	1. 285	83. 1	1. 303	66. 5	{1%2 in. 11%4 in.	1. 2812 1. 2969	87 72			
13/8	16	UN	1. 307	83. 8	1. 321	66. 5	15/16 in. \$15/16 in.	1. 3125 1. 3125	77 87			
13/8	18	NEF	1. 315	83. 1	1. 328	65. 1	121/64 in.	1. 3281	65			
17/16	12	UN	1. 347	83. 6	1.360	71. 6	{1 ¹ / ₃₂ in. 1 ² / ₃₆₄ in.	1. 3438 1. 3594	87 72			
17/16 17/16	16 18	$_{ m NEF}^{ m UN}$	1. 370 1. 377	83. 1 83. 8	1, 384 1, 390	65. 9 65. 8	13% in. 13% in.	1. 3750	77 87			
11/2	6	UNC	1. 320	83.1	1. 350	69.3	11516 in.	1. 3750 1. 3125	87			
							12364 in.	1. 3281 1. 3594	79 87			
11/2	8	N	1. 365	83. 1	1. 390	67. 7	13% in. 113%2 in.	1. 3750 1. 4062	87 77 87			
11/2	12	UNF	1. 410	83. 1	1. 428	66. 5	12764 in.	1. 4219	72			
1½ 1½	16 18	$^{\circ}$ UN NEF	1. 432 1. 440	83. 8 83. 1	1, 446 1, 452	66. 5 66. 5	17/16 in. 17/16 in.	1. 4375 1. 4375	77 87			
$\frac{1\frac{1}{2}}{1\frac{9}{16}}$	20 16	$_{\rm N}^{\rm UNS}$	1. 446 1. 495	83. 1 83. 1	1. 457 1. 509	66. 2 65. 9	1 ² 9 ₆₄ in. 1 ¹ / ₂ in.	1. 4531 1. 5000	77 87 72 77			
1%6	18	NEF	1. 502	83.8	1. 515	65. 8	$11\frac{1}{2}$ in.	1. 5000	87			
							133/64 in. 1131/64 in.	1. 5156 1. 4844	65 87			
15/8	8	N	1.490	83. 1	1. 515	67. 7	11½ in. 11732 in.	1, 5000 1, 5312	87 77 87			
15%	12	UN	1. 535	83. 1	1. 553	66. 5	13564 in.	1. 5469	87 72 77			
15/8	16	UN	1. 557	83.8	1. 571	66. 5	1% 6 in. 11% 6 in.	1. 5625 1. 5625	87			
15/8 111/16	18 16	NEF N	1. 565 1. 620	83. 1 83. 1	1. 578 1. 634	65. 1 65. 9	1 ³⁷ 64 in. 1 ⁵ 8 in.	1 5781	65 77			
111/16	18	NEF	1. 627	83. 8	1. 640	65. 8	(15% in.	1. 6250 1. 6250 1. 6406	87			
· ·							1^{41}_{64} in. 1^{17}_{32} in. 1^{35}_{64} in.	1. 6406 1. 5312	65 84			
1¾	5	UNC	1. 534	83. 1	1. 568	70. 1	13564 in. 13964 in.	1. 5469 1. 6094	78 87			
1¾	8	N	1. 615	83. 1	1. 640	67. 7	₹15% in.	1. 6250 1. 6406	77 67			
13/	10	TINT	1 000	00.1	1 070	00.5	141/64 in. 1121/32 in.	1. 6562	87			
1¾ 1¾	12 16	UN UNEF	1. 660 1. 682	83. 1 83. 8	1. 678 1. 696	66. 5 66. 5	114364 in. 11116 in. 14564 in.	1. 6719 1. 6875	72 77 72 77 77 77 87			
13/4	20	UNS	1.696	83. 1	1. 707 1. 759	66. 2	14564 in.	1. 7031 1. 7500	72			
113/16 17/8	16 8	UNS N N	1. 745 1. 740	83. 1 83. 1	1. 759 1. 765	65. 9 67. 7	1¾ in. 1¾ in.	1, 7500	77			
17/8	12	UN	1. 785	83. 1	1. 803	66. 5	12532 in.	1. 7812 1. 7969	87			
17/8	16	$_{\rm N}^{\rm UN}$	1.807	83. 8	1.821	66. 5	113/16 in.	1.8125	72 77 77 76 77			
1 ¹⁵ / ₁₆	16 4½	UNC	1.870 1.759	83. 1 83. 5	1. 884 1. 795	65. 9 71. 0	17/8 in. 125/32 in.	1. 8750 1. 7812	77			
2	8	N	1.865	83.1	1.890	67. 7	17% in. (1 ²⁹ 32 in.	1. 8750 1. 9062	77 87			
2	12	UN	1. 910	83.1	1. 928	66. 5	15964 in.	1. 9219	72			
2 2	16 20	UNEF UNS	1. 932 1. 946	83. 8 83. 1	1. 946 1. 957	66. 5 66. 2	1 ¹⁵ / ₁₆ in. 1 ⁶ / ₆₄ in.	1. 9375 1. 9531	72 77 72 77 77			
2 2½16 2½8	16 8	UNS N N UN	1. 995 1. 990	83. 1 83. 1	2.009 2.015	65. 9 67. 7	2 in. 2 in.	2. 0000 2. 0000	77			
21/8	12	UN	2.035	83.1	2.053	66. 5	2 ½32 in.	2.0312	87			
$\frac{2\frac{1}{8}}{2\frac{3}{16}}$	16 16	UN N	2.057 2.120	83. 8 83. 1	2. 071 2. 134	66. 5 65. 9	2 ½ 6 in. 2 ½ in.	2. 0625 2. 1250	77 77			
21/4	41/2	UNC	2.009	83. 5	2.045	71.0	{2 in. 2½32 in.	2.0000 2.0312	87 76			
$2\frac{1}{4}$	8	N	2. 115	83. 1	2.140	67. 7	21/8 in.	2. 1250	77			
$\frac{2\frac{1}{4}}{2\frac{1}{4}}$	12 16	UN UN	2. 160 2. 182	83. 1 83. 8	2. 178 2. 196	66. 5 66. 5	25/32 in. 23/16 in.	2. 1562 2. 1875	87 77			
21/4 25/16	20 16	$_{\rm N}^{\rm UNS}$	2. 196 2. 245	83. 1 83. 1	2. 207 2. 259	66. 2 65. 9	2 ³ / ₁₆ in. 2 ¹ / ₄ in.	2. 1875 2. 2500	96 77			
23/8	12	UN	2. 285	83.1	2. 303	66. 5						
23/8 27/16	16 16	UN N	2. 307 2. 370	83. 8 83. 1	2. 321 2. 384	66. 5 65. 9	23/6 in.	2. 3125 2. 3750	77 77			
21/2	4	UNC	2. 229	83. 4	2, 267	71. 7	27/32 in. 121/4 in.	2. 2188 2. 2500	87 77			
21/2	8	N	2.365	83. 1	2. 390	67. 7	23% in.	2. 3750	77			-)
$\frac{2\frac{1}{2}}{2\frac{1}{2}}$	12 16	UN UN	2. 410 2. 432	83. 1 83. 8	2. 428 2. 446	66. 5 66. †	27/16 in.	2. 4375	77			
25/8 25/8	12 16	UN UN	2. 535 2. 557	83. 1 83. 8	2. 553 2. 571	66 5 66, 5	2% 6 in.	2. 5625	77			
23/4	4	UNC	2. 479	83. 4	2. 517	71. 7	2½ in.	2, 5000	77			
2 ³ / ₄ 2 ³ / ₄	8 12	N UN	2. 615 2. 660	83. 1	2. 640 2. 678	67. 7 66. 5	258 in.	2. 6250	77			
23/4	16	UN	2.682	83. 1 83. 8	2.696	66. 5	211/16 in.	2. 6875	77			
27/8 27/8	12 16	UN UN	2. 785 2. 807	83. 1 83. 8	2.803 2.821	66. 5 66. 5	2 ³ 4 in. 2 ¹ 3/16 in.	2. 7500 2. 8125	115 77			
3	4	UNC	2.729	83. 4	2. 767	71.7	2¾ in.	2.7500	77			
3 3	8 12	N UN	2. 865 2. 910	83. 1 83. 1	2. 890 2. 928	67. 7 66. 5	27/s in.	2.8750	77			
3	16	UN	2. 932	83.8	2.946	66. 5	215/16 in.	2. 9375	77			
$\frac{3\frac{1}{4}}{3\frac{1}{2}}$	4 4 4	UNC UNC UNC	2. 979 3. 229 3. 479	83. 4 83. 4 83. 4	3. 017 3. 267 3. 517	71. 7 71. 7 71. 7	3 in. 3¼ in. 3½ in.	3. 0000 3. 2500 3. 5000	77 77 77			

				Class 3B	minor diam	eter, internal	threads		Tap drills	and percen	t hasic threa	l height	
Thre	ad size	Threads per inch	Designa- tion	Minimum	Percent hasic thread height	Maximum	Percent hasic thread height	Nominal size	Diameter	Theoretical percent of thread	Prohable oversize, mean	Prohable hole size	Percen of threa
N_0 .	in.		NE	in.	02.1	in.	50.0	f#56	in. 0.0465	83	in. 0. 0015	in. 0.0480	
	0.060	80	NF	0.0465	83. 1	0.0514	52. 9	{#56 364 in. }#54	. 0469	81 89	. 0015 . 0015	.0484	
1	.073	64	NC	. 0561	83. 3	.0623	52, 7	\#53 }#53	0595	67 75	.0015	.0610 .0610	
1	. 073	72	NF	. 0580	83. 1	. 0635	52. 7	(½6 in. #51	.0595 .0625 .0670	58 82	.0015	.0640	
2	. 086	56	NC	. 0667	83. 2	. 0737	53.0	₹50 ₩49	. 0700	69 56	.0017 .0017	.0717 .0747	
2	. 086	64	NF	. 0691	83. 3	. 0753	52.7	{#50 (#49 (#48	.0700 .0730	79 64	. 0017 . 0017 . 0019	. 0717 . 0747 . 0779	
3	. 099	48	NC	.0764	83. 5	. 0845	53. 6	564 in. #47 #46 #45	. 0700 . 0730 . 0700 . 0730 . 0760 . 0781 . 0785 . 0810	85 77 76 67 63	.0019 .0019 .0019 .0019	. 0800 . 0804 . 0829 . 0839	
3	. 099	56	NF	. 0797	83. 2	. 0865	53. 9	#46 #45 #44	. 0810 . 0820 . 0810 . 0820 . 0860	63 78 73 56	. 0019 . 0019 . 0019	. 0829 . 0839 . 0879	
4	. 112	40	NC	. 0849	83. 4	. 0939	55.7	#44 #43 #42 3/32 in.	.0860 .0890 .0935 .0938	80 71 57 56	. 0019 . 0020 . 0020 . 0020	. 0879 . 0910 . 0955 . 0958	
4	. 112	48	NF	. 0894	83. 5	. 0968	56. 2	∫#43 #42 3∕32 in. #41	. 0860 . 0860 . 0890 . 0935 . 0938 . 0890 . 0935 . 0938 . 0960 . 0980 . 0995 . 1015	85 68 67 59	. 0020 . 0020 . 0020 . 0020	. 0910 . 0955 . 0958	
5	. 125	40	NC	. 0979	83. 4	. 1062	57.9	#40 #39 #38 #37	. 0980 . 0995 . 1015	83 79 72 65	.0023 .0023 .0023 .0023	. 0980 . 1003 . 1018 . 1038 . 1063	
5	. 125	44	NF	. 1004	83. 3	. 1079	57. 9	(#38 {#37 #36 {#37	. 1040 . 1015 . 1049 . 1065	80 71 63	. 0023	. 1038 . 1063 . 1088 . 1063	
6	. 138	32	NC	. 1040	83.8	. 1140	59. 1	#36	. 1065 . 1040 . 1065 . 1094 . 1100 . 1110	84 78 70 69 67	.0023 .0023 .0026 .0026 .0026 .0026	. 1088 . 1120 . 1126 . 1136 . 1156	
6	. 138	40	NF	. 1110	83. 1	. 1186	59.7	#34 #33 #32	.1110	83 77	1 0026	. 1136 . 1156	
8	. 164	32	NC	. 1300	83.8	. 1389	61. 8	#32 #29	. 1160	68	. 0026 . 0026 . 0029	. 1186 . 1389 . 1389	
8	. 164	36	NF	. 1340	83. 1	. 1416	62. 1	#29 #29 #29 #28 %4 in.	. 1160 . 1360 . 1360 . 1405 . 1406 . 1440	65 65	.0029 .0029 .0029	. 1389 . 1434 . 1435 . 1472	
10	. 190	24	NC	. 1450	83. 1	. 1555	63. 7	#27 #26 {#25 #24	. 1440 . 1470 . 1495 . 1520	62 83 77 68 69 78 65 65 85 79 75	. 0032 . 0032 . 0032 . 0032	. 1472 . 1502 . 1527 . 1552	
10	. 190	32	NF	. 1560	83.8	. 1641	63. 8	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	. 1470 . 1495 . 1520 . 1540 . 1562 . 1570 . 1590 . 1610	66 83 81 76 71	.0029 .0029 .0032 .0032 .0032 .0032 .0032 .0032 .0032 .0032 .0035 .0036	. 1472 . 1502 . 1527 . 1552 . 1572 . 1594 . 1602 . 1622	
12	. 216	24	NC	. 1710	83, 1	. 1807	65. 2		. 1719 . 1730 . 1770 . 1800 . 1770	83 81 76 71 82 79 72 67 84 78 73	.0035 .0035 .0035 .0035	. 1754 . 1765 . 1805 . 1835 . 1805	
12	. 216	28	NF	. 1770	84. 1	. 1857	65. 3	#13	. 1800	67	. 0035 . 0035 . 0035 . 0035	. 1835 . 1855 . 1885	
12	. 216	32	NEF	. 1820	83. 8	. 1895	65, 3	#14 #13 3/16 in. #12 (#9	. 1850 . 1820 . 1850 . 1875 . 1890 . 1960	84 76 70 67 83	. 0035 . 0035 . 0035 . 0035 . 0038	. 1855 . 1885 . 1910 . 1925 . 1998	
	14	20	UNC	. 1960	83. 1	. 2067	66, 7	#8 #7 ¹³ 64 in. #6	. 1990 . 2010 . 2031 . 2040	83 79 75 72 71	.0038 .0038 .0038 .0038	. 2028 . 2048 . 2069 . 2078	
	14	28	UNF	. 2110	84. 1	. 2190	66.8	\#5 {#3	. 2055 . 2130	69 80	.0038	. 2093 . 2168	
	14	32	NEF	. 2160	83. 8	. 2229	66. 8	√362 in. √362 in. 1#9	. 2188 . 2188 . 2210	67 77 71	.0038	. 2226 . 2226 . 2248	
	5/16	18	UNC	. 2520	83. 8	. 2630	68. 6	\\ F \{G	. 2210 . 2570 . 2610	77 71 77 77	. 0038	. 2608	
	516	24	UNF	. 2670	84. 1	. 2754	68. 5	HI II	. 2660	86	. 0041	. 2651 . 2701	
	5/16	32	NEF	. 2790	82. 5	. 2847	68. 5	K %2 in.	. 2720 . 2810	86 75 78 77 77	.0041	. 2761 . 2852	
	3/8	16	UNC	. 3070	83. 8	. 3182	70.0	15/16 in.	. 2812 . 3125	77	. 0042	. 2854	
	3/8	24	UNF	. 3300	83. 1	. 3372	69. 8	g Q	. 3160	73 79 • 77	.0044	. 3204	
	3/8	32	NEF	. 3410	83.8	. 3469	69, 2 70, 9	¹ 1⁄32 in. ∫T	. 3438 . 3580	86	. 0045	. 3483 . 3626	
	7/16 7/16	20	UNC	. 3600	83. 5 83. 9	. 3717	70.9	(2364 in. (W) (2564 in.	. 3594 . 3860	84 79 72	. 0046	. 3640 . 3906 . 3952	

			Class 3B	minor diam	eter, internal	threads		Tap drills a	and percent	t basic thread	l height	
Thread size	Threads per inch	Designa- tion	Minimum	Percent basic thread height	Maximum	Percent basic thread height	Nominal size	Diameter	Theoretical percent of thread	Probable oversize, mean	Probable hole size	Percent of thread
No. in. 7/16 1/2 1/2 1/2	28 12 13 20	UNEF N UNC UNF	in. 0.3990 .4100 .4170 .4460	83. 0 83. 1 83. 1 83. 1	in. 0.4051 .4223 .4284 .4537	69. 8 71. 8 71. 7 71. 3	Y {Z, 2764 in. 2764 in. 2964 in.	in. 0.4040 .4130 .4219 .4219 .4531	72 80 72 78 72	in. 0.0046 .0047 .0047 .0047 .0047	in. 0.4986 4177 4266 4266 4578	62 76 68 73 63
9/16 9/16 9/16 9/16 5/8	28 12 18 24 11	UNEF UNC UNF NEF UNC	. 4610 . 4720 . 5020 . 5170 . 5270	84. 1 83. 6 83. 8 84. 1 83. 0	. 4676 . 4843 . 5106 . 5244 . 5391	69. 8 72. 2 71. 9 70. 4 72. 7	15/32 in. 13/64 in. 1/2 in. 10.5062 in. 63/64 in. (0.5203 in. 17/32 in.	. 4688 . 4844 . 5000 . 5062 . 5156 . 5203 . 5312	87 72 87 78 87 78 77 78	.0048 .0048 .0048 .0048 .0048 .0048	. 4736 . 4892 . 5048 . 5110 . 5204 . 5251 . 5362	8 6 8 7 7 6 7
5/8 5/8 11/16 11/16	12 18 24 12 24 10	N UNF NEF N	. 5350 . 5650 . 5800 . 5970 . 6420	83. 1 83. 1 83. 1 83. 6 84. 1	. 5463 . 5730 . 5869 . 6085 . 6494	72. 7 72. 1 70. 4 73. 0 70. 4	35/64 in. 5/16 in. 10.5687 in. 37/64 in. 10.5828 in. 19/32 in. 41/64 in.	. 5469 . 5625 . 5687 . 5781 . 5828 . 5938 . 6406	72 87 78 87 78 87 78	. 0049 . 0049 . 0049 . 0049 . 0049 . 0049	. 5518 . 5674 . 5736 . 5830 . 5877 . 5987 . 6456	8 77 76 68 87 76 68 76 68 76 76 68 76 76 76 76 76 76 76 76 76 76 76 76 76
3/4 3/4 3/4 3/4 3/4 13/16	10 12 16 20 12 12 16	UNC N UNF UNEF	. 6420 . 6600 . 6820 . 6960 . 7220 . 7450	83. 1 83. 1 83. 8 83. 1 83. 6 83. 1	. 6545 . 6707 . 6908 . 7037 . 7329 . 7533	73. 5 73. 3 72. 9 71. 3 73. 5 72. 9	4½4 in. 2½2 in. 1½6 in. 4564 in. 18.5 mm 34 in.	. 6406 . 6562 . 6875 . 7031 . 7283 . 7500	84 87 77 72 78 77 72	. 0050 . 0050 . 0050 . 0051 . 0051 . 0052	.6456 .6612 .6925 .7082 .7334 .7552	
13/6 7/8 7/8 7/8 7/8 7/8 7/8 7/8 15/16 15/16	20 9 12 14 16 20 12 16 20 8	UNEF UNC N UNF UN UNEF UN UNEF UNC	. 7580 . 7550 . 7850 . 7980 . 8070 . 8210 . 8470 . 8700 . 8830	83. 9 83. 1 83. 1 83. 0 83. 8 83. 1 83. 6 83. 1 83. 9	. 7662 . 7681 . 7952 . 8068 . 8158 . 8287 . 8575 . 8783 . 8912	71. 3 74. 1 73. 7 73. 5 72. 9 71. 3 73. 9 72. 9 71. 3 74. 1	4964 in. 4364 in. 2552 in. (5364 in. 0.8024 in. 1376 in. 5364 in. 2782 in. 78 in. 5764 in. (5564 in. (76 in.	. 7656 . 7656 . 7812 . 7969 . 8024 . 8125 . 8281 . 8438 . 8750 . 8906	76 87 84 78 77 72 87 77 72 87	. 0052 . 0052 . 0052 . 0052 . 0053 . 0053 . 0054 . 0055 . 0057 . 0059	.7552 .7708 .7708 .7864 .8021 .8076 .8178 .8335 .8493 .8807 .8965	7766 77777766 8777777668 877777668
1 1 1 1/16 1/16 1/16 1/16 1/16	12 14 16 20 12 16 18 7 8	UNF NS UN UNEF UN UN UN UN NEF UN NEF	. 9100 . 9230 . 9320 . 9460 . 9720 . 9950 1. 0020 . 9700	83. 1 83. 0 83. 8 83. 1 83. 6 83. 1 83. 8 83. 5	. 9198 . 9315 . 9408 . 9537 . 9823 1. 0033 1. 0105 . 9875 1. 0047	74. 1 73. 8 72. 9 71. 3 74. 1 72. 9 72. 1 74. 1	1/8 III. 23/32 in. 5/9/4 in. 10.9274 in. 15/16 in. 6/164 in. 3/3/22 in. 1 in. 1 in. 6/3/64 in. 6/3/64 in. 1 in. 1 in.	. 8750 . 9062 . 9219 . 9274 . 9375 . 9531 . 9688 1. 0000 1. 0000 . 9688 . 9844	77 87 84 78 77 72 87 77 87 84 76	. 0060 . 0060 . 0061 . 0062 . 0063 . 0065 . 0069 . 0069 . 0069 . 0067 . 0069	.8809 .3123 .9279 .9335 .9437 .9594 .9753 1.0069 .9750 .9911	87 77 66 86 77 87
178 118 118 118 136 136 136	12 16 18 12 16 18	UNF UN NEF UN UN NEF	1. 0350 1. 0570 1. 0650 1. 0970 1. 1200 1. 1270	83. 1 83. 8 83. 1 83. 6 83. 1 83. 8	1, 0448 1, 0658 1, 0730 1, 1073 1, 1283 1, 1355	74. 1 74. 1 72. 9 72. 1 74. 1 72. 9 72. 1	1½2 in. 1½2 in. 1¼6 in. 1¼6 in. 1¾2 in. 1½8 in. 1½ in.	1. 0312 1. 0625 1. 0625 1. 0938 1. 1250 1. 1250	84 76 77 87 77 87 87 87 77 87	.0071	1. 0384 1. 0699	-
11/4 11/4 11/4 11/4 11/4 15/16 15/16 15/16	7 8 12 16 18 12 16 18	UNC N UNF UN NEF UN UN UN NEF	1. 0950 1. 1150 1. 1600 1. 1820 1. 1900 1. 2220 1. 2450 1. 2520 1. 1950	83. 5 83. 1 83. 8 83. 1 83. 6 83. 1 83. 8	1. 1125 1. 1297 1. 1698 1. 1908 1. 1980 1. 2323 1. 2533 1. 2605 1. 2146	74. 1 74. 1 72. 9 72. 1 74. 1 72. 9 72. 1 74. 1	1¼ in.	1. 0938 1. 1250 1. 1562 1. 1875 1. 1875 1. 2188 1. 2500 1. 2500 1. 1875 1. 2031	84 77 87 77 87 87 77 87 77 87			
13/8 13/8 13/8 13/8 13/16 13/16 13/16	8 12 16 18 12 16 18 6	N UNF UN NEF UN UN UN NEF UNC	1. 2400 1. 2850 1. 3070 1. 3150 1. 3470 1. 3770 1. 3200	83. 1 83. 8 83. 1 83. 6 83. 1 83. 8	1. 2547 1. 2948 1. 3158 1. 3230 1. 3573 1. 3783 1. 3855 1. 3396	74. 1 74. 1 72. 9 72. 1 74. 1 72. 9 72. 1	\$\begin{align*} 11564 in. \\ 1144 in. \\ 1952 in. \\ 1566 in. \\ 1156 in. \\ 1152 in. \\ 138 in. \end{align*}	1. 2344 1. 2500 1. 2812 1. 3125 1. 3125 1. 3438 1. 3750 1. 3750 1. 325 1. 3281	87 77 87 77 87 87 87 77 87 87 79			
1½ 1½ 1½ 1½ 1½ 1½ 1½ 1½ 1% 6 1% 15%	8 12 16 18 16 18 16 18	N UNF UN NEF N NEF	1. 3650 1. 4100 1. 4320 1. 4400 1. 4950 1. 5020 1. 4900	83. 1 83. 8 83. 1 83. 1 83. 1 83. 8	1. 3797 1. 4198 1. 4408 1. 4480 1. 5033 1. 5105 1. 5047	74. 1 74. 1 72. 9 72. 1 72. 9 72. 1 74. 1	{12364 in. 138 in. 1332 in. 176 in. 176 in. 176 in. 172 in. 1344 in. {1344 in. {1152 in.	1. 3594 1. 3750 1. 4062 1. 4375 1. 4375 1. 5000 1. 5000 1. 4844 1. 5000	87 77 87 77 87 77 87 87 87 87			
158 158 158 111/16 111/16	12 16 18 16 18	UN UN NEF N	1. 5350 1. 5570 1. 5650 1. 6200 1. 6270	83. 1 83. 8 83. 1 83. 1 83. 8	1. 5448 1. 5658 1. 5730 1. 6283 1. 6355	74. 1 72. 9 72. 1 72. 9 72. 1	1 ¹ 7/ ₃₂ in. 19/ ₁₆ in. 19/ ₁₆ in. 15/ ₈ in. 15/ ₈ in.	1. 5312 1. 5625 1. 5625 1. 6250 1. 6250	87 77 87 77 87			

			Class 3B	minor diam	eter, internal	threads		Tap drills a	nd percent	basic thread	height	
Thread size	Threads per inch	Designa- tion	Minimum	Pereent basic thread height	Maximum	Percent basic thread height	Nominal size	Diameter	Theoretical percent of thread	Probable oversize, mean	Probable hole size	Percent of threa
No. in.			in.		in.		(1 ¹ 7%2 in.	in. 1. 5312	0.4	in.	in.	
13/4	5	UNC	1. 5340	83. 1	1. 5575	74. 1	13564 in.	1. 5312 1. 5469	84 78			
13/4	8	N	1. 6150	83. 1	1. 6297	74.1	13% in.	1. 6094 1. 6250	87 77			
13/4	12	UN	1,6600	83.1	1, 6698	74. 1	121/32 in.	1. 6562	87			
13/4	16	UNEF	1.6820	83.8	1.6908	72. 9	111/16 in.	1.6875	77			
1 ¹³ / ₁₆ 1 ⁷ / ₈	16 8	N	1. 7450 1. 7400	83. 1 83. 1	1. 7533 1. 7547	72. 9 74. 1	1¾ in. 1¾ in.	1. 7500 1. 7500	77 77			
17/8	12	ÜN	1.7850	83. 1	1. 7948	74. 1	125/32 in.	1.7812	87			
17/8	16	UN	1.8070	83.8	1. 8158	72.9	1 ¹³ / ₁₆ in.	1.8125	77			
115/16	16	N	1.8700	83. 1	1.8783	72.9	1% in.	1.8750	77			
2	41/2	UNC	1.7590	83. 5	1. 7861	74.1	125/32 in.	1.7812	76			
$\frac{\bar{2}}{2}$	8 12	UN	1. 8650 1. 9100	83. 1 83. 1	1. 8797 1. 9198	74. 1 74. 1	17% in. 129%2 in.	1.8750 1.9062	77 87			
$\bar{2}$	16	UNEF	1. 9320	83. 8	1. 9408	72. 9	1 ¹⁵ / ₁₆ in.	1. 9375	77			
2½6 2½	16	N	1.9950	83.1	2.0033	72. 9	2 in.	2.0000	77			
21/8 21/8	8 12	N UN	1. 9900 2. 0350	83. 1 83. 1	2.0047 2.0448	74. 1 74. 1	2 in. 2½2 in.	2. 0000 2. 0312	77 87			
21/8	16	UN	2.0570	83. 8	2.0658	72.9	2½16 in.	2.0625	77			
23/16	16	N	2. 1200	83.1	2. 1283	72.9	2½ in.	2. 1250	77			
21/4	41/2	UNC	2.0090	83. 5	2.0361	74. 1	$\begin{cases} 2 \text{ in.} \\ 2\frac{1}{3} \text{ 2 in.} \end{cases}$	2.0000 2.0312	87 76			
21/4	8	N	2. 1150	83.1	2.1297	74.1	21/8 in.	2. 1250	77			
21/4	12	UN	2. 1600	83. 1	2. 1698	74. 1	2532 in.	2. 1562	87			
21/4 25/16	16 16	UN N	2. 1820 2. 2450	83. 8 83. 1	2. 1908 2. 2533	72. 9 72. 9	2 ³ / ₁₆ in. 2 ¹ / ₄ in.	2. 1875 2. 2500	77			
23/8	12	UN	2. 2850	83. 1	2. 2948	74.1	58.0 mm	2. 2835	85			
23/8 21/16	16	UN N	2. 3070	83.8	2. 3158	72. 9 72. 9	25/16 in. 23/8 in.	2. 3125 2. 3750	77			
	16		2. 3700	83.1	2. 3783		127/32 in.	2. 3750	77 87			
21/2	4	UNC	2. 2290	83. 4	2. 2594	74.1	(21/4 in.	2. 2500	77			
21/2	8 12	UN UN	2. 3650 2. 4100	83. 1 83. 1	2. 3797 2. 4198	74. 1 74. 1	23% in. 61.0 mm	2. 3750 2. 4016	77 91			
21/2 21/2	16	UN	2. 4320	83.8	2. 4198	72. 9	27/16 in,	2. 4375	77			
25/8	12	UN	2. 5350	83.1	2. 5448	74.1	64.0 mm	2. 5197	97			
25/8 23/4	16 4	UNC	2. 5570 2. 4790	83. 8 83. 4	2. 5658 2. 5094	72. 9	2% in. 2½ in.	2. 5625 2. 5000	77			
23/4	8	N	2. 4190	83. 1	2. 6297	74. 1 74. 1	25% in.	2. 6250	77			
2 ³ / ₄ 2 ³ / ₄	12	UN	2. 6600	83. 1	2.6698	74.1						
$2\frac{3}{4}$	16	UN	2. 6820	83.8	2. 6908	72.9	2 ¹ ½ 6 in.	2. 6875	77			
27/8	12	UN	2. 7850	83. 1	2. 7948	74. 1						
27/8	16	UN	2. 8070	83.8	2.8158	72.9	2 ¹³ / ₁₆ in. 2 ³ / ₄ in.	2. 8125 2. 7500	77			
3	8	UNC	2. 7290 2. 8650	83. 4 83. 1	2. 7594 2. 8797	74, 1 74, 1	2% in.	2. 7500 2. 8750	77			
3	12	UN	2.9100	83. 1	2. 9198	74.1	74.0 mm	2.9134	80			
3 3 3 4	16 4	UNC	2. 9320 2. 9790	83. 8 83. 4	2. 9408 3. 9094	72. 9 74. 1	2 ¹⁵ / ₁₆ in. 3 in.	2, 9375 3, 0000	77			
31/2	4	UNC	3. 2290	83. 4 83. 4	3, 2594	74. 1	31/4 in.	3. 0000 3. 2500	77			
334	4	UNC	3. 4790	83. 4	3. 5094	74. 1	3½ in.	3. 5000	77			

SECTION IV. UNIFIED THREADS OF SPECIAL DIAMETERS, PITCHES, AND LENGTHS OF ENGAGEMENT

1. INTRODUCTION

The thread series, tolerances, and allowances specified in section III of this Handbook apply in general to bolts, nuts, and tapped holes of standard pitches and diameters. In addition, there are large quantities of threaded parts produced where the relations of diameter to pitch are necessarily different from those of the standard thread series, and the lengths of engagement either shorter or longer than for bolt and nut practice. Such threads are designated "threads of special diameters, pitches, and lengths of engagement."

There are various degrees of specialization in the design of special threads that may be classified as follows: (1) A standard thread that is modified by the inclusion of some nonstandard feature as discussed in section III, p. 26. (2) A thread of a standard diameter such as is found in one or more of the thread series in section III associated

with a standard pitch as listed in table IV.1, forming a diameter-pitch combination that is not in a standard thread series; for example, 1 in.-10 NS. (3) A diameter of odd size such as 11 %4 in. or 1.137 in. associated with a standard pitch. (4) A thread of either standard or nonstandard diameter associated with a nonstandard pitch; for example 1"-15 NS or 0.895"-26 NS. (5) A thread of any of the first four degrees of specialization to which special tolerances are applied. (6) A completely special thread that deviates from the standard Unified thread form.

In the interest of economy, the designer should adhere to standard threads or to thread features conforming as closely as possible to established standards. It should be remembered that special threads entail the design and manufacture of special threading tools and gages with consequent greater costs, increase in inventories, and difficulties in procuring spare parts when replacements are necessary.

In this section, standards for special threads are presented, including thread form, preferred di-

ameters and pitches, allowances and tolerances, and detailed directions for specifying special threads on drawings. A discussion of factors affecting the design of special threads is presented in appendix 5, p. 200.

2. UNIFIED FORM OF THREAD

The Unified form of thread profile as specified in section III shall be used.

3. PREFERRED DIAMETERS AND PITCHES

The use, wherever possible, of the standard thread series in section III is recommended for all applications. Whenever sizes and pitches in the Unified or American Standard coarse, fine, or extra-fine, or the 8-, 12-, 16-thread series are not suitable, the designer can usually select a diameter or pitch from a preferred list. See table IV. 12, p. 99.

1. Preferred Diameters.—Whenever possible, the basic diameter should be selected from

series of diameter increments as follows:

Range	Diameter increments							
	First choice	Second choice						
in. 1/4 to 5/8 5/8 to 1/2 1/2 to 6 6 to 16 16 to 24	in. 116 1/6 1/6 1/4 1/2 1	in.						

It is recommended that diameters less than ¼ inch conform to the numbered sizes of screws as there is virtually no necessity for the selection of a diameter not included in the numbered sizes. Furthermore, the coarse and fine thread series provide ample choice as to diameter-pitch combinations.

2. Preferred Pitches.—Whenever possible, the pitch should be selected from the series 40, 36, 32, 28, 24, 20, 16, 12, 10, 8, 6, and 4 threads per inch. Intermediate pitches should be used only when absolutely necessary. Pitches coarser than 4 threads per inch are not recommended.

There are practical limits to both the largest and smallest diameters suitable for any pitch. The curves of figure 5.2, p. 202, stop at such limits.

3. Basic Thread Data.—Basic thread data for standard pitches are given in table IV.1. These are to be used in conjunction with the directions for specifying special threads on drawings, as given on p. 98.

4. CLASSIFICATION AND TOLERANCES

There are established for general use six distinct classes of screw-thread tolerances and two classes of allowances, as specified in the following brief outline. These classes, together with the accompanying specifications are for the purpose of insuring the interchangeable manufacture of screw-

thread parts. This standard includes Unified classes 1A, 2A, and 3A, applied to external threads only, and classes 1B, 2B, and 3B applied to internal threads only. In addition, it includes American class 1AR, applied to external threads only, 16 threads per inch and coarser, produced by combining the American National class 1 allowances with class 1A tolerances. The requirements for a screw thread fit for specific applications can be met by specifying the proper combinations of classes for the components. For example, an external thread made to class 2A limits can be used with tapped holes made to classes 1B, 2B, or 3B limits for specific applications.

(a) GENERAL

The following general specifications apply to all classes specified for applications of the Unified form of thread.

1. Uniform Minimum Internal Thread.—The minimum major, pitch, and minor diameters of the internal thread are, respectively, the same for classes 1B, 2B, and 3B.

2. Direction and Scope of Tolerances.—
(a) The tolerance on the internal thread is plus, and is applied from the basic size to above basic size.

(b) The tolerance on the external thread is minus, and is applied from the maximum (or design) size to below the maximum size.

(c) The tolerances specified represent the ex-

treme variations permitted on the product.

3. Basic Formula for Allowances and Tolerances.—The basic formula, from which allowances on all diameters and tolerances on pitch diameter are derived, is

Tolerance (or allowance)= $C(0.0015 \sqrt[3]{\overline{D}} + 0.0015 \sqrt{L_e} + 0.015 \sqrt[3]{p^2}),$

where

C—a factor which differs for the allowance or tolerance for each class

D=basic major diameter

 L_e =length of engagement p=pitch

This formula is based on the accuracy of present day threading practice, and is applicable to all reasonable combinations of diameter, pitch, and length of engagement. Numerical values of the increments in the formula for standard diameters, pitches, and lengths of engagement are given in table III.9, p. 20.

4. Allowances.—Allowances are applied only to external threads. The values of the factor C (par. 3 above) for allowances are as follows:

Class	Factor C
1 A	0. 300
2 A	. 300
3 A	. 000

Threads per ineh,	Piteb,	Flat at internal thread crest,	Flat at internal thread root and external thread crest,	Height of sharp v- thread,	Trunca- tion of internal thread root and external thread crest,	Trunea- tion of external thread root,	Half adden- dum of external thread,	Trunca- tion of internal thread crest,	Adden- dum of external thread,	Height of internal thread and depth of thread engagement,	Height of ex- ternal thread,	Twice the cx- ternal thread adden- dum,•	Difference hetween max, major and pitch diameters of internal	Double height of in- ternal thread,	Double height of external thread,
n	p	$F_{cn} = p/4 = 0.25p$	$F_{rn} = F_{es} = p/8 = 0.125p$	H= 0.866025 p	$f_{rn} = f_{es} = H/8 = 0.10825p$	$s_{\tau s} = H/6 = 0.14434 p$	³ / ₁₆ H= 0.16238p	$ \begin{array}{c} f_{cn} = \\ H/4 = \\ 0.21651p \end{array} $	$h_{as} = 3\% II = 0.32476 p$	$h_n = h_e = 58II = 0.54127p$	$h_{\epsilon} = 17/24H = 0.61343p$	$h_b = 2h_{as} = 34H = 0.649519p$	thread, ¹ / ₁ 2H= 0.79386p	$2h_n = 11/4H = 1.08253p$	$15/_2H = 1.22687p$
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
80 72 64 56 48 44 40 36 32 28 27 24 20 18	in. 0.012500 .013889 .015625 .017857 .020833 .022727 .025000 .027778 .035714 .037037 .041667 .055556 .062500	in. 0.00312 .00347 .00391 .00446 .00521 .00568 .00625 .00694 .00781 .00893 .00926 .01359 .01359	in. 0.00156 .00174 .00195 .00223 .00260 .00284 .00312 .00347 .00391 .00446 .00463 .00521 .00625 .00694 .00781	in. 0.010825 .012028 .013532 .015465 .018042 .019682 .021651 .024056 .027063 .030929 .032075 .036084 .043301 .048113 .054127	in. 0.00135 .00150 .00169 .00193 .00226 .00246 .00271 .00301 .00338 .00387 .00401 .00541 .00641 .00661	in. 0.00180 .00200 .00226 .00258 .00301 .00328 .00361 .00451 .00515 .00535 .00601 .00722 .00802 .00902	in. 0.00203 .00226 .00254 .00290 .00338 .00369 .00406 .00507 .00580 .00601 .00677 .00812 .00902 .01015	in. 0.00271 .00301 .00388 .00387 .00451 .00492 .00541 .00607 .00773 .00802 .00902 .01083 .01203 .01353	in. 0.00406 .00451 .00507 .00580 .00677 .00580 .00812 .00902 .01015 .01160 .01203 .01353 .01624 .01804 .02030	in. 0.00677 00752 00846 00967 01128 01230 01353 01504 01691 01933 02005 02255 02706 03007 03383	in. 0.00767 .00852 .00958 .01095 .01278 .01394 .01534 .01704 .01917 .02191 .02272 .02556 .03667 .03408 .03834	in. 0.008119 .009021 .010149 .011599 .013532 .014762 .016238 .018042 .020297 .023197 .023197 .024056 .027063 .032476 .036084 .040595	in. 0.00992 01103 01240 01418 01654 .01804 .01985 .02205 .02481 .02835 .02940 .03308 .03969 .04410 .04962	im. 0.01353 .01504 .01691 .01933 .02255 .02460 .02706 .03803 .03866 .04009 .04511 .05413 .06014 .06766	in. 0.01534 01704 01917 02191 02556 02788 03067 03408 03834 04382 045112 06134 06816 07668
14 12 10 8 6 4	.071429 .083333 .100000 .125000 .166667 .250000	. 01786 . 02083 . 02500 . 03125 . 04167 . 06250	. 00893 . 01042 . 01250 . 01562 . 02083 . 03125	.061859 .072169 .086603 .108253 .144338 .216506	. 00773 . 00902 . 01083 . 01353 . 01804 . 02706	. 01031 . 01203 . 01443 . 01804 . 02406 . 03608	. 01160 . 01353 . 01624 . 02030 . 02706 . 04059	.01546 .01804 .02165 .02706 .03608 .05413	. 02320 . 02706 . 03248 . 04059 . 05413 . 08119	. 03866 . 04511 . 05413 . 06766 . 09021 . 13532	.04382 .05112 .06134 .07668 .10224 .15336	.046394 .054127 .064952 .081190 .108253 .162380	.05670 .06615 .07939 .09923 .13231 .19846	.07732 .09021 .10825 .13532 .18042 .27063	. 08763 . 10224 . 12269 . 15336 . 20448 . 30672

a Equivalent to the "hasic height" h of the original American National form.

NOTE.
$$h_{an} = f_{en} = \frac{H}{4}$$
.
 $h_{dn} = h_{aa} = \frac{3}{8}H$.

The formula on p. 75 is not applicable to class 1AR as this class is produced by combining the American National class 1 allowances with class 1A tolerances. These allowances are larger than those for classes 1A and 2A and provide for ready assembly under adverse conditions. Numerical values of allowances for each pitch are given in tables IV.2 and IV.2A.

5. Major Diameter Tolerances.—(a) External threads.—The tolerance on major diameter for special threads is not specified, as it must be determined in relation to the requirements of a given design in accordance with the procedure outlined on p. 201. Preferred tolerances equal to $0.060\sqrt[3]{p^2}$ for classes 2A and 3A, and equal to $0.090\sqrt[3]{p^2}$ for classes 1A and 1AR are given in table IV.3.

(b) Internal threads.—The tolerance on major diameter is for reference only. It is equal to H/6 plus the pitch diameter tolerance of the class of thread involved. The maximum major diameter of the internal thread may be determined by adding 0.7939p(=11/12H, table IV.1) to the maximum pitch diameter of the internal thread. In dimensioning internal threads the maximum major diameter is not specified, being established

by the crest of an unworn tool. In practice, the major diameter of an internal thread is satisfactory when accepted by a gage or gaging method that represents the maximum material condition of an external thread which has no allowance.

6. Minor Diameter Tolerances.—(a) External threads.—The tolerance on minor diameter of external threads is for reference only. At the nominal minor diameter, that is at the intersection of the rounded root with its center line (see figure III.1, p. 11) it equals the pitch diameter tolerance plus H/12 and applies only where the rounded root is a requirement of the design. Otherwise the tolerance shall be H/4 plus the pitch diameter tolerance. The minimum minor diameter of the external thread may be determined by subtracting 0.6495p = 3/4H, table IV.1) from the minimum pitch diameter of the external thread. In dimensioning external threads the minimum minor diameter is not specified, being established by the crest of an unworn tool. In practice, the minor diameter of an external thread is satisfactory when accepted by a gage or gaging method that represents the maximum material condition of the internal thread less the allowances, if any.

	(Major, pitch, and minor diameter allowances ^a												
Threads per inch	1/16 0.0600 to 0.0781	3/32 0.0782 to 0.1094	0.1095 to 0.1563	316 0.1564 to 0.2188	1/4 0.2189 to 0.3125	0.3126 to 0.4375	0.4376 to 0.5625	9/8 0.5626 to 0.6875	0,6876 to 0,8750	1 0.8751 to 1.1250	1.1251 to 1.3750	1½ 1.3751 to 1.6250		
80	in. 0,0006	in. 0.0006	in. 0,0006	in . 0, 0007	in. 0,0007	in.	in.	in.	in.	in.	in.	in.		
72 64 56 48 44	. 0006	. 0006 . 0007 . 0007 . 0007 . 0008	. 0006 . 0007 . 0007 . 0008 . 0008	. 0007 . 0007 . 0007 . 0008 . 0008	. 0007 . 0007 . 0008 . 0008 . 0008	0.0007 .0008 .0008 .0009 .0009	0,0008 .0008 .0009 .0009	0.0009 .0009 .0009	0.0009 .0009 .0010	0. 0010				
40 36 32 28 27 24			.0008	. 0009 . 0009 . 0009 . 0010 . 0010 . 0011	.0009 .0009 .0010 .0010 .0010	. 0009 . 0010 . 0010 . 0011 . 0011	. 0010 . 0010 . 0010 . 0011 . 0011 . 0012	. 0010 . 0010 . 0011 . 0011 . 0011 . 0012	$\begin{array}{c} .0010 \\ .0010 \\ .0011 \\ .0012 \\ .0012 \\ .0012 \\ .0012 \end{array}$. 0010 . 0011 . 0011 . 0012 . 0012 . 0013	0. 0011 . 0012 . 0012 . 0012 . 0013	0.0012 .0012 .0013 .0013 .0013		
20 18 16 14 12					. 0012	.0012 .0013 .0014	. 0013 . 0013 . 0014 . 0015 . 0016	. 0013 . 0014 . 0014 . 0015 . 0016	. 0013 . 0014 . 0015 . 0015 . 0017	. 0014 . 0014 . 0015 . 0016 . 0017	. 0014 . 0015 . 0015 . 0016 . 0017	. 0014 . 0015 . 0016 . 0017 . 0018		
10 8 6 4									.0018	. 0018	. 0019	. 0019 . 0021 . 0024		

				Majo	or, pitch, and	l minor diam	neter allowan	ces a			
Threads per inch	134 1.6251 to 1.8750	1.8751 to 2.2500	2½ 2.2501 to 2.7500	3 2.7501 to 3.2500	3½ 3,2501 to 3,7500	3.7501 to 4.5000	5 4.5001 to 5.5000	6 5.5001 to 7.0000	8 7.0001 to 9.0000	10 9.0001 to 11.0000	12 11.0001 to 13.0000
80 72	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.
64 56 48 44					Classes 1A tolerances ment of ni	(computed to	vances are det o six decimal	places) by 0.3	multiplying of and are base	class 2A pitch ed on lengths	diameter of engage-
36 32 28 27 24 20 18	0.0012 .0013 .0013 .0014	0. 0013 . 0013 . 0013 . 0014 . 0015	0. 0013 . 0014 . 0014 . 0014 . 0015 . 0016	0.0013 .0014 .0014 .0015	0.0014 .0014 .0015	0.0015 .0015 .0015	0.0015 .0016 .0017	0.0016 .0016 .0017 .0018			
16 14 12	.0016 .0017 .0018	.0016 .0017 .0018	.0017 .0017 .0019	. 0017 . 0018 . 0019	.0017 .0018 .0019	. 0018 . 0018 . 0020	. 0018 . 0019 . 0020	. 0019 . 0020 . 0021	. 0019 . 0020 . 0021	0.0020 .0021 .0022	0. 0022 . 0023
10 8 6 4	. 0019 . 0021 . 0025	.0020 .0022 .0025 .0030	. 0020 . 0022 . 0025 . 0031	. 0020 . 0023 . 0026 . 0031	. 0021 . 0023 . 0026 . 0031	.0021 .0023 .0026 .0032	. 0022 . 0024 . 0027 . 0032	. 0022 . 0024 . 0027 . 0033	. 0023 . 0025 . 0028 . 0034	. 0024 . 0026 . 0029 . 0034	. 0024 . 0026 . 0029 . 0035

a Allowances are based on diameters given in common fractions, which are the means of the diameter ranges expressed in decimals.

Table IV.2A.—Allowances, class 1AR

Threads per inch,	Allowance, G, classes 1 and 1AR ¹
	in.
40	(0.0010)
36	(.0011)
32	(. 0011)
28	(.0012)
24	(.0013)
20	(,0015)
18	(.0016)
16	.0018
14	. 0021
12	.0024
10	. 0028
8	. 0034
6	. 0044
4	. 0064

 $^{^1\,\}mathrm{For}$ values in parentheses there is no class $1A\,\mathrm{R}$ as these are identical with those for class 1A .

(b) Internal threads.—Internal thread minor diameter tolerances specified in tables IV.10 and IV.11 are based on the use of materials of equal tensile strength for screw or bolt and nut or tapped hole and a length of engagement equal to the nominal diameter. See p. 5. For general applications these tolerances are suitable for lengths of engagement up to 1½ diameters. They are based on formulas as follows:

Classes 1B and 2B:

All special threads in sizes less than ¼ in., tolerance=0.05 $\sqrt[3]{p^2}+0.03p/D-0.002$ in., within the following limitations:

Tolerances shall not be greater than 0.394p. (This corresponds to 53 percent of the basic thread height and applies in the range of the smallest number sizes of the NC and NF thread series.)

Table 1V.3.—Major diameter tolerances for external threads of special diameters, pitches, and lengths of engagement, classes 1A, 1AR, 2A, and 3A

(UNS and NS threads, see subsection 5, p. 98)

Threads	Major diame	eter tolerance
per inch	Classes 1A and 1AR, $0.090\sqrt[3]{p^2}$	
	in.	in.
80		0.0032
72		. 0035
64		.0038
56		. 0041
48		. 0045
44		. 0048
		1
40	0.0077	. 0051
36	. 0083	.0055
32	.0089	.0060
28	. 0098	.0065
27	. 0100	.0067
24	. 0108	.0072
20	. 0122	. 0081
18	. 0131	.0087
16	. 0142	. 0094
14	. 0155	. 0103
12	. 0172	. 0114
10	. 0194	. 0129
8	.0225	.0150
6	.0273	.0182
4	. 0357	. 0238

Tolerances shall not be less than $0.25p-0.4p^2$. (This corresponds to a thread height of 65 percent for 80 to 24 threads per inch.)

The formulas are suitable for general applications having lengths of engagement up to $1\frac{1}{2}$ diameters. For specific applications within this range or for longer lengths of engagement see table IV.10, p. 92, and table 3.1, p. 187.

All special threads ¼ in. and larger, 80 to 4

threads per inch, inclusive,⁷

tolerance= $0.25p - 0.4p^2$.

(This corresponds to a thread height of 64.5 percent for 80 threads per inch graduating to 71.8 percent for 4 threads per inch.) Class 3B, all special threads:

Tolerance= $0.05\sqrt[3]{p^2} + 0.03 p/D - 0.002$ in.,

within the following limitations:

Tolerance shall not be greater than 0.394p. (This corresponds to 53 percent of the basic thread height and applies in the range of the smallest numbered sizes of the UNC, UNF, NC and NF thread series.)

Tolerance shall not be less than:

For 80 to 13 threads per inch, inclusive, $0.23p-1.5p^2$. (This corresponds to a thread height of 67 percent for 80 threads per inch, graduating to 74 percent for 13 threads per inch.)

For 12 threads per inch and coarser, tolerance = 0.120p. (This corresponds to a thread height of 74 per cent and is the tolerance for all sizes 12 threads and coarser and 1 in. and larger.)

The formulas are suitable for general applications having lengths of engagement up to 1½ diameters. For specific applications within this range or for longer lengths of engagement see table IV.11, p. 94 and table 3.2, p. 190.

Some thread applications have lengths of engagement which are greater than 1½ diameters or less than 1 diameter. For applications having shorter or longer lengths of engagement it may be advantageous to decrease or increase the tolerance, respectively, as explained below.

The principal practical factors that govern these tolerances are tapping difficulties, particularly tap breakage in the small sizes, availability of standard drill sizes in the medium and large sizes, and depth of engagement. Depth of engagement correlates with the stripping strength of the thread assembly, and thus also with the length of engagement. It also correlates with the tendency toward disengagement of the threads on one side when assembly is eccentric. The amount of possible eccentricity is one half of the sum of the pitch diameter allowance and tolerance on both mating threads. For a given pitch or height of thread this sum increases with the diameter, and accordingly this factor would require a decrease in minor diameter tolerance with increase in diameter. However, such decrease in tolerance often is not feasible without requiring special drill sizes; therefore, to be able to use as many as possible of the available standard drill sizes listed in ASA B5.12, the minor diameter tolerance for classes 1B and 2B of a given pitch for ¼ in. diameter and larger is constant, in accordance with a formula given above.

There may be applications where the lengths of engagement of the mating threads or the combination of materials used for mating threads are such that the maximum tolerance may not provide the desired strength of the fastening. Experience has shown that for lengths of engagement less than $\frac{2}{3}D$ (the minimum thickness of standard nuts) the minor diameter tolerance may be reduced without causing tapping difficulties.

In other applications the length of engagement of mating threads may be long because of design considerations or the combination of materials used for mating threads. As the threads engaged increase in number, their depth of engagement may be shallower and still develop stripping strength greater than the external thread breaking strength. In these cases the maximum tolerance should be increased to reduce the possibility of tapping difficulties.

To reduce the number of minor diameter tolerances to a practical minimum, tolerances for all recommended diameters, lengths of engagement, and selected pitches are given in table IV.10 for classes 1B and 2B and in table IV.11 for class 3B.

In these tables, the tolerances for lengths of engagement less than $\frac{1}{3}D$ are $\frac{1}{2}$ the formula values. For lengths of engagement from $\frac{1}{3}D$ to $\frac{3}{3}D$, the tolerances are three quarters of the formula values; for lengths of engagement from $\frac{3}{3}D$ to $1\frac{1}{2}D$, the tolerances are equal to the formula values; and for lengths of engagement over $1\frac{1}{2}D$, the tolerances are $1\frac{1}{4}$ times the formula values. Where the tolerance value so computed is more than 0.394p,

 $^{^7}$ Formula is not applicable to threads coarser than 4 tpi. For such threads use tolerance = 0.15 p.

which corresponds to a resulting minimum thread height of 53 percent, the value is adjusted to

equal 0.394p.

7. PITCH DIAMETER TOLERANCES.—(a) Values of factor C.—The values of factor C (par. 3 above) for pitch diameter tolerances are as follows:

Class	Factor C
1A and 1AR	1. 500
1B 2A	1. 950 1. 000
2B 3A	1. 300 0. 750
3B	. 975

It will be noted that the factor C is 30 percent greater for internal than for external threads of a given class number on account of the relative

difficulties of manufacture.

(b) Limits of size.—With respect to the pitch diameter limits of size, it is intended, except as hereinafter qualified, that no portion of the complete thread be permitted to project beyond the envelope defined by the maximum material limits on the one hand, or beyond that defined by the minimum-material limits on the other, and thus be outside of the tolerance zone as illustrated in figures III.3 and III.4, pp. 24 and 25.7a Also, the diameter equivalent of the variation in any given element except pitch diameter shall not exceed one-half of the pitch diameter tolerance. Deviations from specified size and profile include variations in lead, uniformity of helix, flank angle, taper, out-of-roundness, and surface defects.

The diameter equivalents of variations in lead, uniformity of helix, and flank angle are always in the direction toward maximum material, that is they increase the virtual diameter of the external thread and decrease that of the internal thread. Thus, the maximum-material pitch diameter limits are a limitation of the virtual diameter (effective size) and are so specified herein for all

thread classes.

Variations in taper and roundness of the pitch diameter, together with variations of the pitch diameter as a whole, may be in the direction of minimum material, and thus the minimum-material pitch diameter limit may be specified as a limitation of the pitch diameter as a single element. However, in view of the interrelation of the pitch diameter, variation in lead and flank angle, etc., together with practical considerations relating to established production processes, product application, and inspection procedures, it is

7ª The full tolerance cannot, therefore, be used on pitch diameter unless deviations in other thread elements are zero.

customary to interpret the minimum pitch diameter of the external thread and the maximum pitch diameter of the internal thread as virtual diameters (effective sizes) in classes 1A, 2A, 1B, 2B, and 3B, for application to various mass-produced bolts, nuts, screws, and other similar threaded fasteners, and to some custom threaded parts where design requirements are fulfilled. See "Limit gages" and "Acceptability of threads," section VI, pp. 108 and 118.

(c) Tables of pitch diameter tolerances.—Numerical values of pitch diameter tolerances for classes 1A, 1AR, 1B, 2A, 2B, 3A, and 3B arc given in tables IV.4 to IV.9, inclusive. Two sets of tolerances are given: Those for 5 to 15 pitches length of engagement, based on lengths of 9 pitches, and those for 16 to 30 pitches length of engagement, based on lengths of 20 pitches. If excessively small or large lengths of engagement are encountered, the thread tolerances may be calculated from the formulas, if considered advisable. Also, for threads per inch not included in the tables, tolerances should be calculated by applying the formulas.

(b) SCREW THREAD CLASSES

1. Classes 1A, 1AR, and 1B.—(a) Definition.— The combinations of classes 1A or 1AR and 1B are intended to cover the manufacture of threaded parts where quick and easy assembly is necessary, and where an allowance is required to permit ready assembly, even when the threads are slightly

bruised or dirty.

Maximum diameters of class 1A (external) threads are less than basic by the amount of the same allowance as applied to class 2A. For the intended applications in American practice the allowance is not available for plating or coating. Where the thread is plated or coated, special provisions are necessary. The minimum diameters of class 1B (internal) threads, whether or not plated or coated, are basic, affording no allowance or clearance for assembly with maximum metal external thread components having maximum diameters which are basic.

(b) Allowances and tolerances.—Allowances for all diameters and pitch diameter tolerances are specified in table IV.2, IV.2A, IV.4, and IV.7, and their application is shown in figure III.3 p. 24.

2. Classes 2A and 2B.—(a) Definition.—Classes 2A for external threads and 2B for internal threads are designed for general use. A moderate allowance is provided for class 2A threads.

The maximum diameters of class 2A (external) uncoated threads are less than basic by the amount of the allowance. The allowance minimizes galling and seizing in high-cycle wrench assembly, or it can be used to accommodate plated finishes or other coating. However, for threads with additive finish, the maximum diameters of class 2A may be exceeded by the amount of the allowance; i.e., the 2A maximum diameters apply to an unplated part or

eviations in other thread elements are zero.

§ In accordance with this requirement, values are given in table III.11, p.
32, for the standard thread series and classes, of one-half of the pitch diameter
tolerances and the deviations in lead and flank angle which are equivalent
thereto. Flank angle equivalents are based on a depth of thread engagement of 5H/8. For formulas see section III, p. 22. For aeronautical applications, practices may deviate from those here specified. See Military Specification MIL-S-7742.

.0075

. 0083

.0080

. 0076

.0085

.0082

.0077

.0086

.0083

.0092

.0090

. 0101

.0079

.0088

.0085

. 0094

. 0103

. 0103

.0114

Lengths of engagement Pitch diameter tolerances a Threads per inch Number of 0.0600 to 3/16 0.1564 to 5/8 0.5626 to 0.4376 to 0.6876 to Inches 0.0782 to 0.1095 to 0.2189 to 0.3126 to 0.8751 to pitches 0.07810.10940.15630.21880.31250.43750.56250.68750.87501.1250 in.in.in. in. inin.in. in.in. 5 to 15 0.06 to 0.19 80 16 to 30 0.191 to 0.38 0.07 to 0.21 7216 to 30 0.211 to 0.42 5 to 15 0.08 to 0.23 0.231 to 0.46 16 to 30 0.09 to 0.27 0.271 to 0.54 5 to 15 56 16 to 30 0. 10 to 0. 31 0. 311 to 0. 62 5 to 15 48 16 to 30 0.11 to 0.34 0.00380.00390.00410.00420.00475 to 15 44 .0049 16 to 30 0.341 to 0.68 .0043.0044 .0046.0047 .0051 .0052.0054 .00565 to 15 0. 12 to 0. 38 0. 381 to 0. 76 $0041 \\ 0046$.0043 .0044 . 0046 0048 0053.0049 . 0050 .0052 16 to 30 .0051 . 0048 .0056 .00585 to 15 0.14 to 0.42 .0043. 0045 . 0046 . 0048 . 0050 . 0051 .00520054 36 16 to 30 0. 421 to 0. 84 . 0050 .0054 . 0055 . 0057 . 0058 .0060 0.16 to 0.47 .0045. 0047 . 0048 . 0050 . 0052 . 0053 . 0055 . 0057 5 to 15 32 16 to 30 0.471 to 0.94 .0053 .0054.0056 . 0058 .0059 .0063 0.18 to 0.54 . 0050 . 0051 . 0053 .0055 .0056 . 0060 28 16 to 30 0,541 to 1.08 .0056 .0058 .0060 .0061 .0063 .0064 .0066 . 0056 5 to 15 0.19 to 0.56 .0051 .0052. 0054 . 0057 .0058 .0060 0, 561 to 1, 12 16 to 30 . 0057 .0059 .0061.0062 . 0064 .0065 .0067 0.21 to 0.62 . 0054 . 0055 .0057.0059. 0060 . 0061 . 0063 5 to 15 24 16 to 30 0.621 to 1.24 . 0062 .0064 .0065 .0067 .0068 .0070 0, 25 to 0, 75 .0060 .0062 .0063 . 0065 . 0066 .0068 5 to 15 20 16 to 30 0.751 to 1.50 .0071 .0072 .0073 5 to 15 0.28 to 0.83 . 0065 .0068 . 0069 .0071 18 16 to 30 0.831 to 1.66 .0073 0074.0076.0077 .0079 5 to 15 0.31 to 0.94 0.941 to 1.88 . 0069 . 0070 .0072. 0073 .0075 16 16 to 30 .0076. 0077 .0079.0080 .0082

5 to 15 16 to 30

5 to 15

16 to 30

5 to 15

16 to 30

16 to 30

5 to 15

16 to 30 5 to 15

16 to 30

14

12

10

8

6

4

0.36 to 1.07 1.071 to 2.14

0.42 to 1.25

1. 251 to 2. 50

0.50 to 1.50

1.501 to 3.00

0.62 to 1.88

1.881 to 3.76

0.83 to 2.50 2.501 to 5.00

1. 25 to 3. 75 3. 751 to 7. 50

Tolerances are based on diameters given in common fractions, which are the means of the diameter ranges expressed in decimals.

				Pite	b diameter	tolerances a	-Continue	d							
1¼ 1.1251 to 1.3750	1½ 1.3751 to 1.6250	1¾ 1.6251 to 1.8750	2 1.8751 to 2.2500	2½ 2.2501 to 2.7500	3 2.7501 to 3.2500	3½ 3.2501 to 3.7500	3.7501 to 4.5000	5 4.5001 to 5.5000	6 5.5001 to 7.0000	8 7.0001 to 9.0000	10 9.0001 to 11.0000	12 11.0001 to 13.0000	Thread: per incl		
in.	in.	in.]	LEGENDS					1			
			1. These v	ese values do not agree with and shall not be used in place of any tabulated values for the UNC, UNF, 8N thread series, in table III.10.											
			2. Formul Class	ormula: Class 1A tolerances for external threads are determined by multiplying class 2A tolerances (computed to											
			3. Length	s decimal places) by 1.500. See legend 2, table IV.5, for formula for class 2A tolerances, ength of engagement increments included in the tabulated tolerances for lengths of engagement of from 5 to											
			based or applied.	pitches are based on lengths of 9 pitches; those for lengths of engagement greater than 15 to 30 pitches are sed on lengths of 20 pitches. For lengths of engagement not tabulated, the formula in legend 2 should be iplied. It is the listed are those used most commonly and are recommended. Where intermediate pitches are specified,											
			the form	ıula in legen	d 2 should 1	be applied.					•		56 48		
			sidered p. 200.	Colerances are tabulated only for combinations of diameter, pitch, and length of engagement which are con- idered to be generally used. For other combinations encountered, see Design of Special Threads, appendix 5, . 200.											
			in.												
													} 40		
0.0056 .0062	0.0058 .0063												} 36		
. 0058 . 0064	.0060	0.0061 .0067	0.0063 .0068	0.0065 .0071	0.0067 .0073								} 32		
.0061	. 0063	.0064 .0071	.0066	.0068	.0070	0.0071 .0078	0.0073 .0079						} 28		
.0061	.0064	. 0065 . 0071	. 0066 . 0073	. 0069 . 0075	. 0070 . 0077	.0072 .0079	. 0074 . 0080	0.0076 .0083	0. 0079 . 0085				} 27		
0065 0072	.0067	.0068 .0075	. 0069 . 0076	. 0071 . 0078	. 0073 . 0080	.0075 .0082	. 0077 . 0083	.0079 .0086	.0082				} 24		
.0070 .0077	. 0071 . 0079	. 0073 . 0080	. 0074 . 0081	. 0076 . 0084	.0078 .0085	. 0080 . 0087	.0081 .0089	. 0084 . 0092	. 0087 . 0094				} 20		
.0073 .0081	. 0074 . 0082	.0076	.0077	.0079 .0087	.0081	.0083	.0084	. 0087 . 0095	. 0090 . 0097	0. 0094 . 0101			} 18		
.0077 .0084	. 0078 . 0085	. 0079 . 0086	.0081 .0088	. 0083 . 0090	.0085 .0092	. 0086 . 0093	.0088	.0091 .0098	. 0093 . 0100	.0097	0.0101 .0108		} 16		
. 0081 . 0090	. 0083 . 0091	.0084	. 0085 . 0094	.0087 .0096	. 0089 . 0098	. 0091 . 0100	. 0092 . 0101	.0095 .0104	. 0098 . 0107	.0102 .0111	. 0105 . 0114	0.0108 .0117	} 14		
. 0087 . 0096	.0088	. 0090	.0091	.0093	. 0095 . 0104	. 0097 . 0106	. 0098 . 0108	.0101 .0110	. 0103 . 0113	.0107	.0111	.0114	} 12		
. 0094 . 0105	. 0096 . 0106	.0097	.0098	.0100 .0111	. 0102 . 0113	. 0104 . 0114	. 0106 . 0116	. 0108 . 0119	. 0111 . 0121	. 0115 . 0125	.0118	. 0121	} 10		
$.0104 \\ .0116$.0106 .0118	. 0107 . 0119	.0108 .0120	. 0111 . 0122	.0113	.0114 .0126	.0116 .0128	. 0119 . 0130	. 0121 . 0133	. 0125 . 0137	.0129 .0140	.0132	} 8		
	.0121	. 0123 . 0136	. 0124 . 0138	. 0126 . 0140	.0128 .0142	. 0130 . 0143	. 0131 . 0145	. 0134 . 0148	. 0137 . 0150	. 0141 . 0154	.0144 .0158	. 0147	} 6		
			.0151	. 0154 . 0170	.0155 .0172	. 0157 . 0174	. 0159 . 0175	. 0162 . 0178	.0164 .0180	. 0168 . 0185	.0172 .0188	. 0175 . 0191			

	Lengths o	f engagement				Pi	tch diamete	er tolerances	; a			
Threads per inch	Number of pitches	Inches	0.0600 to 0.0781	3/32 0.0782 to 0.1094	0.1095 to 0.1563	3/16 0.1564 to 0.2188	0.2189 to 0.3125	3/8 0.3126 to 0.4375	0.4376 to 0.5625	0.5626 to 0.6875	3/4 0.6876 to 0.8750	1 0.8751 to 1.1250
80	5 to 15 16 to 30	0.06 to 0.19 0.191 to 0.38	in 0.0019 .0022	in. 0.0020 .0022	in. 0.0021 .0023	in. 0.0022 .0024	in. 0.0023 .0025	in.	in.	in.	in.	in.
72	5 to 15 16 to 30	0.07 to 0.21 0.211 to 0.42	. 0020	.0021	. 0021	. 0023	. 0023	0.0025 .0027				
64	5 to 15 16 to 30	0.08 to 0.23 0.231 to 0.46	. 0021	.0022	.0022	.0024	.0024	.0026	0.0027 .0030			
56	5 to 15 16 to 30	0. 09 to 0. 27 0. 271 to 0. 54		. 0023	.0024	. 0025	.0026	.0027	.0028	0.0029 .0032	0.0030 .0033	
48	5 to 15 16 to 30	0. 10 to 0. 31 0. 311 to 0. 62		. 0025	.0025	.0026	.0027	. 0029	. 0030	.0031	.0031	
44	5 to 15 16 to 30	0.11 to 0.34 0.341 to 0.68		. 0026	.0026 .0030	. 0027 . 0031	. 0028 . 0032	.0030	. 0031 . 0034	.0032 .0035	. 0032 . 0036	0.0034 .0037
40	5 to 15 16 to 30	0.12 to 0.38 0.381 to 0.76			. 0027 . 0031	.0029	. 0029 . 0033	.0031	.0032 .0035	. 0033 . 0036	. 0034 . 0037	.0035
36	5 to 15 16 to 30	0.14 to 0.42 0.421 to 0.84			. 0029	. 0030 . 0034	. 0031 . 0034	.0032 .0036	.0033	. 0034	.0035	. 0036 . 0040
32	5 to 15 16 to 30	0.16 to 0.47 0.471 to 0.94			. 0030	. 0031	. 0032 . 0036	. 0034	. 0035	.0036	.0036	. 0038 . 0042
2 £	5 to 15 16 to 30	0.18 to 0.54 0.541 to 1.08				.0033	.0034	.0036 .0040	.0037	.0038	. 0038	.0040
27	{ 5 to 15 16 to 30	0. 19 to 0. 56 0. 561 to 1. 12				.0034	. 0035	. 0036 . 0040	.0037 .0041	.0038	. 0039	. 004 0 . 0045
24	5 to 15 16 to 30	0. 21 to 0. 62 0. 621 to 1. 24				. 0036	.0037 .0041	.0038	. 0039	.0040	.0041	.0042 .0047
20	5 to 15 16 to 30	0. 25 to 0. 75 0. 751 to 1. 50					.0040	.0041	.0042 .0047	.0043	.0044	. 0045 . 0050
18	5 to 15 16 to 30	0. 28 to 0. 83 0. 831 to 1. 66						. 0043 . 0048	.0044	. 0045	.0046	.0047 .0053
16	{ 5 to 15 16 to 30	0.31 to 0.94 0.941 to 1.88						. 0046 . 0050	.0047 .0051	. 0048 . 0052	.0049	. 0050 . 0 055
14	5 to 15 16 to 30	0. 36 .to 1. 07 1. 071 to 2. 14							. 0050 . 0056	.0051 .0057	. 0051 . 0057	. 0053 . 0059
12	{ 5 to 15 16 to 30	0. 42 to 1. 25 1. 251 to 2. 50							. 0054 . 0060	. 0054 . 0061	. 0055 . 0062	. 0057
10	{ 5 to 15 16 to 30	0.50 to 1.50 1.501 to 3.00									.0060	. 0062 . 0069
8	5 to 15 16 to 30	0.62 to 1.88 1.881 to 3.76										.0068 .0076
6	{ 5 to 15 16 to 30	0.83 to 2.50 2.501 to 5.00										
4	{ 5 to 15 16 to 30	1. 25 to 3. 75 3. 751 to 7. 50										

^a Tolerances are based on diameters given in common fractions, which are the means of the diameter ranges expressed in decimals.

				Pite	b diameter	tolerances a	-Continue	d							
1¼ .1251 to 1.3750	1½ 1.3751 to 1.6250	134 1.6251 to 1.8750	2 1.8751 to 2.2500	2½ 2.2501 to 2.7500	3 2.7501 to 3.2500	3½ 3.2501 to 3.7500	3.7501 to 4.5000	5 4.5001 to 5.5000	6 5,5001 to 7,0000	7.0001 to 9.0000	9.0001 to 11.0000	12 11.0001 to 13.0000	Threa per in		
	in.		8N thre 2. Formula Class $D = L_{\epsilon} = 0$ Length 15 pitch based of applied. 4. Pitcbes iffed, tb	Class 2A tolerances=0.0015 $\sqrt[3]{D}$ +0.0015 $\sqrt[3]{L_\epsilon}$ +0.015 $\sqrt[3]{p^2}$ where D = basic major diameter L_ϵ = length of engagement p = pitch constituted in the tabulated tolerances for lengths of engagement of from 5 to 5 pitches are based on lengths of 9 pitches; those for lengths of engagement greater than 15 to 30 pitches are sased on lengths of 20 pitches. For lengths of engagement not tabulated, the formula in legend 2 should be pplied. Pitches listed are those used most commonly and are recommended. Where intermediate pitches are specified, the formula in legend 2 should be applied. Olerances are tabulated only for combinations of diameter, pitch and length of engagement which are condicted to be generally used. For other combinations encountered, see Design of Special Threads, appendix 5, 200. 1. 10. 10. 10. 10. 10. 10. 10. 10. 10. 1											
			p. 200.												
0. 0037 . 0041	0. 0038 . 0042												} 40 } 36		
.0039	. 0040 . 0044	0.0041 .0045	0.0042 .0046	0. 0043 . 0047	0.0044 .0048								} 32		
0.0041 0.0045	.0042	.0043	. 0044	. 0045 . 0049	. 0046 . 0051	0. 0048 . 0052	0.0049 .0053						} 28		
.0041 .0045	. 0042 . 0047	. 0043 . 0048	.0044	. 0046 . 0050	. 0047 . 0051	. 0048 . 0052	. 0049 . 0053	0. 0051 . 0055	0. 0053 . 0057				} 27		
0043 0048	.0044	. 0045	. 0046	. 0048 . 0052	. 0049	. 0050 . 0054	. 0051 . 0056	. 0053 . 0057	. 0054 . 0059				} 24		
. 0047 . 0052	.0048	.0048	. 0049	. 0051 . 0056	. 0052 . 0057	. 0053	. 0054	. 0056	.0058				} 20		
.0049	. 0050 . 0055	. 0051	. 0051 . 0057	. 0053 . 0058	. 0054	. 0055	.0056	. 0058	. 0060	0.0062			} 18		
.0051	. 0052	. 0053	. 0054	. 0055	.0056	.0058	. 0059	.0061	.0062	. 0065	0.0067 .0072		} 16		
.0054	.0055	.0056	.0057	.0058	.0059	. 0061	. 0062	.0064	.0065	. 0068	.0070	0.0072	} 14		
.0058	. 0059	.0060	.0061	. 0062	.0063	. 0064	.0065	.0067	. 0069	.0072	.0074	.0076	} 12		
.0063	.0064	.0065	.0065	. 0067 . 7074	. 0068 . 0075	. 0069 . 0076	.0070	.0072	.0074	.0077	. 0079	.0081	} 10		
. 0070	.0071	. 0071 . 0079 . 0082	.0072	.0074	. 0075	.0076	. 0085	.0087	.0081	.0091	.0094	.0096	} 8		
	.0090	.0091	. 0092	.0093	. 0094	. 0096	. 0097	.0098	.0100	.0103	. 0105	.0107	} 6		

	Lengths of	f engagement				Pi	tch diamete	er tolerances	а			
Threads per inch	Number of pitches	Inches	0.0600 to 0.0781	0.0782 to 0.1094	0.1095 to 0.1563	3/16 0.1564 to 0.2188	0.2189 to 0.3125	3/8 0.3126 to 0.4375	0.4376 to 0.5625	5/8 0.5626 to 0.6875	3/4 0.6876 to 0.8750	1 0.8751 to 1.1250
80	5 to 15 16 to 30	0.06 to 0.19 0.191 to 0.38	in. 0.0014 .0016	in. 0. 0015 . 0017	in. 0. 0015 . 0017	in. 0.0016 .0018	in. 0. 0017 . 0019	in.	in.	in.	in.	in.
72	{ 5 to 15 16 to 30	0. 07 to 0. 21 0. 211 to 0. 42	. 0015	.0016	.0016 .0018	. 0017 . 0019	.0018 .0020	0.0019 .0021				
64	{ 5 to 15 16 to 30	0. 08 to 0. 23 0. 231 to 0. 46	. 0016	. 0016 . 0018	. 0017 . 0019	.0018	. 0018 . 0020	. 0019 . 0021	0. 0020 . 0022			
56	{ 5 to 15 16 to 30	0.09 to 0.27 0.271 to 0.54		. 0017 . 0020	. 0018 . 0020	.0019	.0019 .0021	.0020	. 0021 . 0023	0.0022 .0024	0.0022 .0025	
48	5 to 15 16 to 30	0. 10 to 0. 31 0. 311 to 0. 62		. 0019	. 0019 . 0021	.0020 .0022	. 0020 . 0023	.0022 .0024	.0022	. 0023 . 0025	. 0024 . 0026	
44	{ 5 to 15 16 to 30	0.11 to 0.34 0.341 to 0.68		, 0019	. 0020 . 0022	.0021	0.0021 0.0024	. 0022 . 0025	. 0023 . 0026	. 0024 . 0026	. 0024 . 0027	0. 0025 . 0028
40	5 to 15 16 to 30	0. 12 to 0. 38 0. 381 to 0. 76			. 0021 . 0023	. 0021 . 0024	.0022 $.0025$.0023	. 0024 . 0027	. 0025 . 0027	. 0025 . 0028	. 0026 . 0029
36	5 to 15 16 to 30	0. 14 to 0. 42 0. 421 to 0. 84			.0022	. 0022 . 0025	.0023 .0026	.0024 .0027	. 0025 . 0028	.0026 .0028	.0026 .0029	. 0027 . 0030
32	{ 5 to 15 16 to 30	0.16 to 0.47 0.471 to 0.94			. 0023	.0024	.0024 $.0027$.0025 .0028	. 0026	. 0027	.0027 .0030	. 0028 . 0031
28	{ 5 to 15 16 to 30	0. 18 to 0. 54 0. 541 to 1. 08				. 0025 . 0028	. 0026 . 0029	. 0027 . 0030	. 0028 . 0031	. 0028 . 0031	0029 0032	. 0030
27	5 to 15 16 to 30	0. 19 to 0. 56 0. 561 to 1. 12				. 0025 . 0029	. 0026 . 0029	.0027	. 0028 . 0031	.0029	. 0029 . 0032	.0030
24	{ 5 to 15 16 to 30	0. 21 to 0. 62 0. 621 to 1. 24				. 0027	. 0028 . 0031	. 0029 . 0032	.0029	. 0030 . 0033	. 0031 0034	.0032 .0035
20	{ 5 to 15 16 to 30	0. 25 to 0.75 0.751 to 1.50					.0030 .0034	.0031 .0035	.0032	. 0032 . 00 3 3	. 0033 . 0037	.0034
18	{ 5 to 15 16 to 30	0, 28 to 0, 83 0, 831 to 1, 66						.0032 .0036	. 0033 . 0037	.0034 .0038	. 0035 . 0038	.0036
16	{ 5 to 15 16 to 30	0.31 to 0.94 0.941 to 1.88						.0034 .0038	.0035	.0036	.0036 .0040	.0037
14	{ 5 to 15 16 to 30	0. 36 to 1. 07 1. 071 to 2. 14							.0037 .0042	. 0038 . 0042	. 0039 . 0043	.0040
12	{ 5 to 15 16 to 30	0.42 to 1.25 1.251 to 2.50							.0040 .0045	. 0041 . 0046	.0041 .0046	.0042
10	{ 5 to 15 16 to 30	0.50 to 1.50 1.501 to 3.00									.0045	.0046
8	{ 5 to 15 16 to 30	0.62 to 1.88 1.881 to 3.76										.0051 .0057
6	{ 5 to 15 16 to 30	0.83 to 2.50 2.501 to 5.00										
4	$\left\{\begin{array}{c} 5\text{ to }15\\ 16\text{ to }30 \end{array}\right.$	1, 25 to 3, 75 3, 751 to 7, 50										

a Tolerances are based on diameters given in common fractions, which are the means of the diameter ranges expressed in decimals.

				Pite	h diameter	tolerances a	-Continue	d					
1½ 1.1251 to 1.3750	1½ 1.3751 to 1.6250	134 1.6251 to 1.8750	2 1.8751 to 2.2500	2½ 2.2501 to 2.7500	3 2.7501 to 3.2500	3½ 3.2501 to 3.7500	3.7501 to 4.5000	5 4.5001 to 5.5000	6 5.5001 to 7.0000	8 7.0001 to 9.0000	9.0001 to 11.0000	12 11.0001 to 13.0000	Thread per ind
in.	in.	in.					LEGE	NDS			'		
			2. Formula Class decimal 3. Length pitches: on lengt 4. Pitches fied, the 5. Toleran	ad serics, in a: 3.A tolerance places) by 0 of engagements of 20 pite listed are the formula in lees are tabu	agree with a table III.10 es for extern 1.750. Sec le ent increme le lengths of 9 hcs. For le oose used me legend 2 shouldated only felly used. F	al threads a gend 2, table ats included pitches; the ngths of engost common ald he applie or comhina	re determin e IV.5, for fo in the tabu se for length ageinent no ly and are red. tions of diar	ed by multi rmula for cla ulated tolera as of engage at tabulated, recommended	plying class ass 2A tolera necs for leng ment greate , the formula ed. Where	2A toleran nces. gths of enga r than 15 to a in legend intermedia	ces (compu- agement from 30 pitches 2 should bute pitches ment whice	om 5 to 15 are hased e applied. are speci-	80 72 64 56 48
			in.		in.				in.	in.	in.	in.	44
0.0028 .0031	0.0029 .0032												36
.0029 .0032	.0030	0.0031 .0034	0.0031 0034	0.0032 .0035	0.0033 .0036								} 32
.0031	. 0031 . 0035	.0032	. 0033 . 0036	.0034	.0035	0.0036 .0039	0.0036 .0040						} 28
.0031 .0034	.0032 .0035	.0033	. 0033	. 0034 . 0037	. 0035 . 0038	.0036	. 0037 . 0040	0.0038 .0041	0.0039 .0043				} 27
.0033	.0033	. 0034 . 0037	.0035	.0036	. 0037 . 0040	.0037 .0041	.0038 .0042	.0040	. 0041 . 0044				} 24
.0035	.0036	.0036 .0040	.0037 .0041	.0038	.0039	. 0040 . 0044	.0041 .0044	.0042	. 0043 . 0047				20
.0036	. 0037 . 0041	.0038 .0042	.0039	.0040	.0041 .0044	. 0041	.0042	.0044	.0045	0.0047 .0051			} 18
0038 0042	.0039	.0040	.0040	.0041	.0042 .0046	. 0043	.0044 .0048	.0045	.0047 .0050	.0049	0.0050 .0054		} 16
.0041 .0045	. 0041 . 0046	.0042 .0046	. 0043 . 0047	.0044	.0045	.0045 .0050	.0046 .0051	.0048 .0052	. 0049 . 0053	. 0051 . 0055	. 0053 . 0057	0.0054 .0059	} 14
.0043	.0044	. 0045 . 0050	. 0045	. 0046 . 0051	.0047 .0052	.0048	. 0049 . 0054	. 0050 . 0055	. 0052 . 0056	.0054	.0055	.0057 .0062	} 12
.0047	.0048	.0048	. 0049 . 0054	. 0050 . 0055	.0051 .0056	.0052 .0057	. 0053 . 0058	.0054	. 0055 . 0061	.0057 .0063	. 0059	.0061	} 10
.0052 .0058	. 0053 . 0059	.0054 .0059	. 0054 . 0060	. 0055 . 0061	. 0056 . 0062	. 0057 . 0063	. 0058 . 0064	.0059	. 0061 . 0066	.0063	.0064	.0066	} 8
	. 0061 . 0067	.0061 .0068	. 0062 . 0069	.0063	.0064 .0071	.0065 .0072	. 0066 . 0072	.0067 .0074	.0068 .0075	.0070 .0077	.0072	.0074	} 6
			.0076 .0084	. 0077 . 0085	.0078 .0086	.0079	. 0079 . 0088	.0081	.0082	.0084	.0086 .0094	.0087	} 4

	Lengths of	engagement				Pi	tch diamete	er tolerances	; a			
Threads per inch	Number of pitches	Inches	0.0600 to 0.0781	0.0782 to 0.1094	1/8 0.1095 to 0.1563	316 0.1564 to 0.2188	0.2189 to 0.3125	36 0.3126 to 0.4375	0.4376 to 0.5625	56 0,5626 to 0,6875	0.6876 to 0.8750	0.8751 to 1.1250
80	{ 5 to 15 16 to 30	0.06 to 0.19 0.191 to 0.38		in.	in.	in.	in.	in.	in.	in.	in.	in.
72	{ 5 to 15 16 to 30	0.07 to 0.21 0.211 to 0.42										
64	{ 5 to 15 16 to 30	0.08 to 0.23 0.231 to 0.46										
56	{ 5 to 15 16 to 30	0. 09 to 0. 27 0. 271 to 0. 54										
48	{ 5 to 15 16 to 30	0. 10 to 0. 31 0. 311 to 0. 62										
44	{ 5 to 15 16 to 30	0. 11 to 0. 34 0. 341 to 0. 68		0.0050 .0056	0.0051 .0058	0.0053 .0060	0.0055 .0062	0.0058 .0064	0.0060 .0066	0.0062 .0068	0.0063 .0070	0.0066 .0072
40	{ 5 to 15 16 to 30	0. 12 to 0. 38 0. 381 to 0. 76			. 0054	. 0056 . 0062	. 0057 . 0064	.0060	. 0062	. 0064 . 0071	. 0065	. 0068 . 0075
36	5 to 15 16 to 30	0. 14 to 0. 42 0. 421 to 0. 84			. 0056	. 0058 . 0065	. 0060 . 0067	.0063	. 0065 . 00 72	. 0066 . 0074	.0068	.0071 .0078
32	{ 5 to 15 16 to 30	0. 16 to 0. 47 0. 471 to 0. 94			. 0059	.0061	. 0063 . 0071	.0066	.0068	.0070	.0071	. 0074 . 0081
28	{ 5 to 15 16 to 30	0. 18 to 0. 54 0. 541 to 1. 08				. 0065	. 0067 . 0075	. 0069	. 0072 . 0080	. 0073 . 0081	. 0075 . 0083	. 0078 . 0086
27	{ 5 to 15 16 to 30	0. 19 to 0. 56 0. 561 to 1. 12				.0066	.0068	. 0070	. 0073 . 0081	. 0074 . 008 3	. 0076 . 0084	.0079 .0087
24	} 5 to 15 16 to 30	0. 21 to 0. 62 0. 621 to 1. 24				. 0070	. 0072 . 0080	.0074	.0076	. 0078 . 0087	. 0080 . 0088	.0082 .0091
20	{ 5 to 15 16 to 30	0. 25 to 0. 75 0. 751 to 1. 50					.0078 .0087	.0080	.0083	. 0084	.0086	.0089
18	{ 5 to 15 16 to 30	0. 28 to 0. 83 0. 831 to 1. 66						. 0084	.0087	. 0088 . 0098	. 0090	. 0093 . 0103
16	{ 5 to 15 16 to 30	0.31 to 0.94 0.941 to 1.88							.0091	. 0093	. 0095 . 0104	.009 7 .0106
14	{ 5 to 15 16 to 30	0.36 to 1.07 1.071 to 2.14							.0097	. 0099 . 0110	. 0100 . 0112	.0103
12	{ 5 to 15 16 to 30	0. 42 to 1. 25 1. 251 to 2. 50							. 0104 . 0117	. 0106	.0108 .0120	.0110
10	{ 5 to 15 16 to 30	0.50 to 1.50 1.501 to 3.00									.0117	.0120 .0134
8	{ 5 to 15 16 to 30	0.62 to 1.88 1.881 to 3.76										. 0133 . 0149
6	{ 5 to 15 16 to 30	0.83 to 2.50 2.501 to 5.00										
4	{ 5 to 15 16 to 30	1. 25 to 3. 75 3. 751 to 7. 50										

[•] Tolerances are based on diameters given in common fractions, which are the means of the diameter ranges expressed in decimals.

				Pito	h diameter	toleranees •	Continue	d								
134 1.1251 to 1.3750	13/2 1.3751 to 1.6250	134 1.6251 to 1.8750	2 1.8751 to 2.2500	2½ 2.2501 to 2.7500	3 2.7501 to 3.2500	3½ 3.2501 to 3.7500	3.7501 to 4.5000	5 4.5001 to 5.5000	6 5.5001 to 7.0000	8 7.0001 to 9.0000	10 9.0001 to 11.0000	12 11.0001 to 13.0000	Threads per inch			
in.	in.	in.					LEGE	NDS								
			8N three 2. Formul Class 2A to 2A to 3. Length	ad series, in a: 1B tolerance lerances (colerances, of engageme	es for internomputed to	al threads a six decimal nts included	re 1.5 times places) by	class 2B tole 1.950. See l	erances and Legend 2, to nces for len	are determable IV.5,	ined by motor for formula	altiplying for class	80 72 64			
			on lengt 4. Pitches ified, th 5. Toleran	ths of 20 pite listed are the e formula in ces are tabu to be genera	thes. For le nose used m n legend 2 sl dated only f	pitches; the engths of eng ost common ould be app or combinat for other cor	gagement no dy and are a plied. tions of diar	ot tabulated recommend neter, pitch.	, the formuled. Where and length	a in legend intermedia of engager	2 should b ate pitches nent whiel	e applied. are spec-	56 48 44			
			in.	in.	in.	in.	in.	in.	in.	in.	in.	in.				
0.0073	0.0075												40			
. 0080	. 0082												36			
. 0076 . 0084	. 0078 . 0086	0.0080 .0087	0.0081	0.0081 0.0084 0.0087												
.0080	. 0082	. 0084 . 0092	. 0085 . 0093	. 0088	. 0090	0. 0093 . 0101	0. 0095 . 0103						} 28			
.0080	. 0083	. 0085	. 0085 . 0095	. 0089 . 0097	. 0092 . 0100	. 0094	. 0096 . 0104	0.0099 .0108	0. 0103 . 0111				} 27			
.0085	. 0087	. 0088	. 0090	. 0093	. 0095 . 0104	. 0097 . 0106	. 0100 . 0108	. 0103 . 0112	. 0106				} 24			
.0091	. 0093	. 0095 . 0104	. 0096	. 0099	.0101	. 0104 . 0113	. 0106 . 0115	. 0109 . 0119	.0112				} 20			
. 0095	. 0097	. 0099	.0100	. 0103 . 0113	. 0105	. 0108 . 0118	. 0110	. 0113	. 0116	0. 0122 . 0132			} 18			
.0100	. 0101	. 0103	. 0105	.0108	.0110	.0112	. 0114	.0118	. 0121	.0126	0. 0131		} 16			
.0105	. 0107	.0109	.0111	. 0114	. 0116	. 0118	. 0120 . 0132	. 0124	. 0127	.0132	. 0137	0. 0141 . 0152	} 14			
.0113	.0115	.0116	.0118	. 0121	. 0123	.0126 .0138	. 0128	. 0131	.0134	.0140	.0144	.0148) } 12			
.0123	.0124	.0129	.0128	.0130	.0133	.0135	. 0137	. 0141	.0144	.0149	.0154	.0158	} 10			
. 0136	.0138 .0138 .0153	. 0139	.0141	. 0144	.0146	. 0149	. 0151	. 0154	.0157	. 0163	. 0167	.0171	} 8			
.0131	.0158	. 0160	.0161	.0164	.0162 .0167 .0184	.0169	.0171	. 0174	.0178	.0183	.0187	.0191	} 6			
			.0197	. 0200	. 0202	.0204	. 0206	. 0210	. 0213	. 0218	. 0223	. 0227	} 4			

	Lengths of	f engagement				Pi	tch diamete	er tolerances	a			
Threads per inch	Number of pitches	Inches	0.0600 to 0.0781	0.0782 to 0.1094	0.1095 to 0.1563	3/16 0.1564 to 0.2188	0.2189 to 0.3125	3/8 0.3126 to 0.4375	0.4376 to 0.5625	5/8 0.5626 to 0.6875	3/4 0.6876 to 0.8750	0.8751 to 1.1250
80	{ 5 to 15 16 to 30	0.56 to 0.19 0.191 to 0.38	in. 0.0025 .0028	in. 0.0026 .0029	in. 0.0027 .0030	in. 0.0028 .0031	in. 0.0029 .0033	in.	in.	in.	in.	in.
72	{ 5 to 15 16 to 30	0.07 to 0.21 0.211 to 0.42	. 0026	. 0027 . 0030	. 0028 . 0031	. 0029 . 0033	. 0030 . 0034	0.0032 .0036				
64	5 to 15 16 to 30	0.08 to 0.23 0.231 to 0.46	. 0027	. 0028 . 0032	. 0029	. 0031 . 0034	. 0032 . 0035	. 0034	0.0035 .0039			
56	{ 5 to 15 16 to 30	0.09 to 0.27 0.271 to 0.54		. 0030 . 0034	. 0031 . 0035	. 0032 . 0036	. 0033 . 0037	. 0035	. 0037 . 0040	0.0038 .0042	0.0039 .0043	
48	{ 5 to 15 16 to 30	0. 10 to 0. 31 0. 311 to 0. 62		. 0032	.0033	. 0034 . 0039	.0036	. 0037	. 0039	. 0040	. 0041 . 0045	
44	{ 5 to 15 16 to 30	0.11 to 0.34 0.341 to 0.68		. 0033	. 0034	. 0036 . 0040	. 0037 . 0041	. 0039	.0040	. 0041	. 0042 . 0047	0.0044 .0048
40	{ 5 to 15 16 to 30	0. 12 to 0. 38 0. 381 to 0. 76			. 0036	. 0037 . 0042	.0038 .0043	. 0040 . 0045	.0041	. 0043	. 0044	. 0045
36	{ 5 to 15 16 to 30	0.14 to 0.42 0.421 to 0.84			. 0037	. 0039 . 0044	. 0040 . 0045	. 0042	. 0043 . 0048	. 0044	. 0045	. 0047 . 0052
22	{ 5 to 15 16 to 30	0. 16 to 0. 47 0. 471 to 0. 94			. 0039	.0041	.0042	. 0044	. 0045	. 0046	. 0047 . 0052	. 0049 . 0054
28	{ 5 to 15 16 to 30	0.18 to 0.54 0.541 to 1.08				. 0043 . 0049	. 0044 . 0050	. 0046	. 0048	. 0049 . 0054	. 0050	. 0052 . 0057
27	{ 5 to 15 16 to 30	0. 19 to 0. 56 0.561 to 1. 12				. 0044	.0045	. 0047	. 0048	. 0050	.0051	. 0052 . 0058
24	5 to 15 16 to 30	0. 21 to 0. 62 0. 621 to 1. 24				.0047	. 0048 . 0054	. 0049	. 0051 . 0057	. 0052 . 0058	. 0053 . 0059	. 0055 . 0061
20	{ 5 to 15 16 to 36	0. 25 to 0. 75 0. 751 to 1. 50					. 0052 . 0058	. 0054	. 0055 . 0061	. 0056	. 0057 . 0064	. 0059 . 0065
18	{ 5 to 15 16 to 30	0. 28 to 0. 83 0. 831 to 1. 66						. 0056	. 0058 . 0064	. 0059	. 0060	.0062
16	{ 5 to 15 16 to 30	0. 31 to 0. 94 0. 941 to 1. 88						. 0059	. 0061 . 0067	.0062	. 0063	. 0065 . 0071
14	{ 5 to 15 16 to 30	0. 36 to 1. 07 1. 071 to 2. 14							. 0065 . 0072	. 0066	. 0067	. 0069 . 0076
12	{ 5 to 15 16 to 30	0. 42 to 1. 25 1. 251 to 2. 50							. 0070	.0071	.0072	. 0074
10	{ 5 to 15 16 to 30	0.50 to 1.50 1.501 to 3.00									. 0078 . 0087	.0080
8	{ 5 to 15 16 to 30	0. 62 to 1. 88 1. 881 to 3. 76										.0089
6	{ 5 to 15 16 to 30	0.83 to 2.50 2.501 to 5.00										
4	{ 5 to 15 16 to 30	1. 25 to 3. 75 3. 751 to 7. 50										

a Tolerances are based on diameters given in common fractions, which are the means of the diameter ranges expressed in decimals.

				Pito	ch diameter	tolerances a	-Continue	d									
1½ 1.1251 to 1.3750	1½ 1.3751 to 1.6250	134 1.6251 to 1.8750	2 1.8751 to 2.2500	2½ 2.2501 to 2.7500	3 2.7501 to 3.2500	3½ 3.2501 to 3.7500	3.7501 to 4.5000	5 4.5001 to 5.5000	6 5.5001 to 7.0000	8 7.0001 to 9.0000	10 9.0001 to 11.0000	12 11.0001 to 13.0000	Threads per inch				
in.	in.	in.					LEGE	NDS									
			8N thro 2. Formul Class 1.300. 8 3. Length pitches on lengt 4. Pitches fied, the 5. Tolcran	ead series, in a: 2B tolerance See legend 2, of engageme are hased on this of 20 pitce listed are the formula in ees are tahu to be gener	es are deter , table IV.5, ent increme ; lengths of 9 ches. For le hese used m legend 2 sh llated only	and shall no 10. mined hy n for formula nts included pitches; the ngths of eng ost common ould be app for combina For other c	nultiplying for class 2A in the tabu see for lengt agement no aly and are lied. tions of dia	class 2A tole tolerances. ulated tolera hs of engage t tahulated, recommend meter, pitch	erances (com nces for leng ment greate the formula ed. Where	aputed to sights of engage than 15 to a in legend intermedian to of engage	x decimal agement from 30 pitches 2 should hate pitches	places) by om 5 to 15 are based e applied. are speci-	80 72 64 56 48				
			in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	44 } 40				
0.0049 .0053	0.0050 .0055												} 36				
.0051 .0056	.0052 .0057	0.0053 .0058	0.0054 .0059	.0059 .0061 .0063													
.0053 .0059	.0055 .0060	.0056 .0061	.0057 .0062	.0059 .0064	.0060	0.0062 .0067	0.0063 .0069						} 28				
.0053 .0059	.0055 .0061	.0056 .0062	.0057 .0063	.0059	.0061	.0063	. 0064 . 0069	0.0066 .0072	0.0068 .0074				} 27				
. 0056 . 0062	. 0058	.0059 .0065	.0060	.0062 .0068	. 0064	.0065	.0066 .0072	.0069	.0071				} 24				
. 0061 . 0067	.0062	.0063	.0064	.0066	.0068	.0069	. 0070 . 0077	.0073	. 0075 . 0081				} 20				
.0063	.0065	.0066	.0067	.0069	.0070	.0072	.0073	.0076	.0078 .0084	0.0081			} 18				
.0066	.0068	.0069	.0070	.0072 .0078	.0073	. 0075	. 0076 . 0082	.0079	.0081	.0084	0.0087 .0093		} 16				
.0070	.0072	.0073	.0074	.0076	.0077	.0079	.0080	. 0083	.0085	.0088	.0091	0.0094	} 14				
. 0075	.0076	.0078	.0079	.0081	.0082	.0084	. 0085	.0087	.0090	.0093	.0096	.0099	} 12				
.0082	.0083	.0084	.0085	.0087	.0089	.0090	. 0091	.0094	.0096	.0100	.0103	.0105	} 10				
.0090	.0092	.0093	.0094	.0096	.0098	.0099	. 0100 . 0111	.0103 .0113	.0105 .0115	.0108	.0111 .0122	.0114 .0124 .0128	} 8				
	. 0105	.0106	.0108 .0119	.0109 .0121	.0111	.0113	.0126	.0128	.0130	.0122	.0125	.0139	} 6				
			.0146	.0133	.0135	.0151	.0152	.0154	.0142	.0160	.0163	.0166	} 4				

	Lengths of	f engagement	1			Pite	h diameter	tolerances a				
Threads per inch	Number of pitches	Inches	0.0600 to 0.0781	352 0.0782 to 0.1094	1/8 0.1095 to 0.1563	316 0.1564 to 0.2188	0.2189 to 0.3125	3/8 0.3126 to 0.4375	0.4376 to 0.5625	5% 0.5626 to 0.6875	3/4 0.6876 to 0.8750	1 0.8751 to 1.1250
80	{ 5 to 15 16 to 30	0.06 to 0.19 0.191 to 0.38	in. 0.0019 .0021	in. 0.0019 .0022	in. 0.0020 .0023	in. 0.0021 .0024	in. 0.0022 .0024	in.	in.	in.	in.	in.
72	{ 5 to 15 16 to 30	0.07 to 0.21 0.211 to 0.42	. 0019	.0020	. 0021 . 0023	. 0022 . 0025	. 0023	0.0024 .0027				
64	{ 5 to 15 16 to 30	0.08 to 0.23 0.231 to 0.46	. 0020	. 0021 . 0024	. 0022 . 0025	.0023	.0024	. 0025 . 0028	0. 0026 . 0029			
56	5 to 15 16 to 30	0.09 to 0.27 0.271 to 0.54		.0023	. 0023	. 0024	.0025	. 0026	. 0027	0.0028 .0031	0. 0029 . 0032	
48	{ 5 to 15 16 to 30	0.10 to 0.31 0.311 to 0.62		. 0024	. 0025 . 0028	. 0026	. 0027	. 0028	. 0029	.0030	. 0031	
44	5 to 15 16 to 30	0. 11 to 0. 34 0. 341 to 0. 68		. 0025	. 0026	. 0027	.0028	. 0029	. 0030	.0031	. 0032	0.0033 .0036
40	{ 5 to 15 16 to 30	0.12 to 0.38 0.381 to 0.76			. 0027	.0028	.0029	. 0030	. 0031 . 0034	. 0032	. 0033	.0034
36	{ 5 to 15 16 to 30	0. 14 to 0. 42 0. 421 to 0. 84			.0028	.0029	. 0030	.0031	. 0032	. 0033	.0034	. 0035
32	{ 5 to 15 16 to 30	0.16 to 0.47 0.471 to 0.94			. 0030	. 0031	.0031	. 0033 . 0037	.0034	. 0035	.0036	.0037
28	5 to 15 16 to 30	0. 18 to 0. 54 0. 541 to 1. 08				. 0033	. 0033	. 0035	.0036	. 0037	.0037	. 0039
27	5 to 15 16 to 30	0. 19 to 0. 56 0. 561 to 1. 12				.0033	. 0034	. 0035	. 0036	.0037	. 0038	.0039
24	5 to 15 16 to 30	0. 21 to 0. 62 0. 621 to 1. 24				. 0035	. 0036	.0037	. 0038	. 0039	.0040	.0041
20	5 to 15 16 to 30	0. 25 to 0. 75 0. 751 to 1. 50					. 0039	. 0040	. 0041	. 0042	. 0043	. 0044
18	5 to 15 16 to 30	0. 28 to 0. 83 0. 831 to 1. 66						.0042	.0043	.0044	.0045	. 0046
16	5 to 15 16 to 30	0. 31 to 0. 94 0. 941 to 1. 88						.0045	.0046	. 0046	.0047	. 0049
14	5 to 15 16 to 30	0.36 to 1.07 1.071 to 2.14							.0049	. 0049	. 0050	. 0052
12	5 to 15 16 to 30	0. 42 to 1. 25 1. 251 to 2. 50							. 0052 . 0058	. 0053	.0054	. 0055
10	5 to 15 16 to 30	0.50 to 1.50 1.501 to 3.00									. 0059	. 0060
8	{ 5 to 15 16 to 30	0. 62 to 1. 88 1. 881 to 3. 76										. 0067
6	{ 5 to 15 16 to 30	0.83 to 2.50 2.501 to 5.00										
4	{ 5 to 15 16 to 30	1. 25 to 3. 75 3. 751 to 7. 50										

a Tolerances are based on diameters given in common fractions, which are the means of the diameter ranges expressed in decimals.

				Pite	h diameter	tolerances 4	-Continue	d								
134 1.1251 to 1.3750	1½ 1.3751 to 1.6250	134 1.6251 to 1.8750	2 1.8751 to 2.2500	2½ 2.2501 to 2.7500	3 2.7501 to 3.2500	3½ 3.2501 to 3.7500	3.7501 to 4.5000	5 4,5001 to 5,5000	6 5.5001 to 7.0000	8 7.0001 to 9.0000	10 9.0001 to 11.0000	12 11.0001 to 13.0000	Threads per inch			
in.	in.	in.			······		LEGE	NDS				,				
			8N thre 2. Formul Class	ad series, in a: 3B tolerance	table III.10 es for intern). al threads ar	e 0.75 times	place of any class 2B tole 0.975. See 1	erances and	are determ	ined by m	ultiplying	80 72			
			pitches on lengt 4. Pitches the forn 5. Toleran	of engageme are based on hs of 20 pite listed are the rula in legen ces are tabu	lengths of 9 hes. For le osc used mo id 2 should lated only f	pitches; the ngths of eng st commonl be applied. or combinat	ose for lengt agement no y and are re- tions of dian	ulated tolera hs of engages t tabulated, commended neter, pitch ncountered,	ment greater the formula . Where in , and length	r than 15 to in legend t itermediate i of engage	30 pitches 2 should be e pitcbes ar ment whic	are based e applied. e specified th are con-	64 56 48			
		p. 200. in.														
0.0036 .0040	0.0037	0037 0041														
.0038	.0039	0.0040 .0044	0.0041 .0044	0.0041 0.0042 0.0043												
. 0040 . 0044	. 0041 . 0045	. 0042 . 0046	.0043	.0044	. 0045	0, 0046 . 0050	0. 0047 . 0051						} 28			
.0040	. 0041 . 0046	. 0042 . 0046	. 0043 . 0047	.0045	. 0046 . 0050	. 0047 . 0051	. 0048 . 0052	0. 0050 . 0054	0.0051 .0055				} 27			
.0042	. 0043 . 0048	. 0044	. 0045 . 0049	. 0046 . 0051	. 0048 . 0052	. 0049 . 0053	. 0050 . 0054	. 0052 . 0056	. 0053 . 0058				} 24			
. 0045	. 0046	. 0047 . 0052	.0048	. 0050 . 0054	. 0051 . 0056	. 0052 . 0057	. 0053 . 0058	. 0055 . 0059	. 0056 . 0061				} 20			
. 0047 . 0052	. 0048	. 0049	. 0050 . 0055	. 0051 . 0057	. 0053 . 0058	. 0054 . 0059	. 0055 . 0060	. 0057 . 0062	.0058	0. 0061 . 0066			} 18			
. 0050 . 0054	. 0051	. 0052 . 0056	. 0052 . 0057	. 0054	. 0055 . 0060	. 0056 . 0061	. 0057 . 0062	.0059	. 0061 . 0065	. 0063 . 0068	0.0066 .0070		} 16			
. 0053 . 0058	. 0054	. 0055	. 0055 . 0061	. 0057 . 0063	. 0058	. 0059 . 0065	.0060	. 0062	. 0063 . 0069	. 0066 . 0072	. 0068	0. 0070 . 0076	} 14			
. 0056 . 0063	. 0057 . 0064	. 0058	. 0059	. 0060	. 0062	. 0063	. 0064	. 0066	. 0067	.0070	.0072	. 0074	} 12			
. 0061	. 0062	. 0063	. 0064	.0065	. 0066	.0068	. 0069	. 0070	. 0072	. 0075	. 0077	. 0079	} 10			
.0068	. 0069 . 0076	. 0070 . 0077	. 0071 . 0078	. 0072 . 0080 . 0082	. 0073 . 0081	. 0074 . 0082 . 0084	. 0075 . 0083 . 0085	. 0077 . 0085	. 0079 . 0086 . 0089	. 0081	. 0084	. 0086	8			
••••••	. 0079	. 0089	.0081	. 0082	. 0083	.0084	. 0085	. 0087	.0089	.0100	. 0103	.0104	} 6			
•••••			.0109	. 0111	. 0112	.0113	. 0114	.0116	.0107	.0120	. 0122	. 0124	} 4			

Table IV.10.—Minor diameter tolerances for internal special screw threads, classes 1B and 2B (UNS and NS threads. See subsection 5, p. 98.)

		Lengths of ment in of dian	1 terms		:	Minor diar	meter tolers	ances b for	thread size	s having h	asic major	diameters:		
Threads	Toler- ance	Toleranc	es hased →	0.060	0.073	0. 086	0. 099	0. 112	0. 125	0. 138	0. 164	0. 190	0, 216	
per inch	ratios	↓ Ahove→		0.053	0.066	0.079	0.092	0. 105	0. 118	0. 131	0. 151	0. 177	0. 203	All larger diameters
			to→ and in- cluding	0.066	0. 079	0. 092	0. 105	0.118	0. 131	0. 151	0. 177	0. 203	0, 233	
80	$ \left\{ \begin{array}{c} $	1/3 D 2/3 D 1/2 D	1/3 D 2/3 D 11/2 D 3 D	in. 0.0035 .0049 .0049 .0049	in. 0.0029 .0044 .0049 .0049	in. 0.0025 .0038 .0049 .0049	in. 0.0022 .0034 .0045 .0049	in. 0.0020 .0030 .0040 .0049	in. 0.0018 .0028 .0037 .0046	in. 0.0017 .0026 .0034 .0043	in. 0.0016 .0023 .0031 .0039	in. 0.0016 .0023 .0031 .0039	in. 0.0016 .0023 .0031 .0039	in. 0.0016 .0023 .0031 .0039
72	$ \left\{ \begin{array}{c} \frac{1}{2} \\ \frac{3}{4} \\ 1 \\ 1\frac{1}{4} \end{array} \right. $	1/3 D 2/3 D 11/2 D	1/3 D 2/3 D 1/2 D 3 D	. 0039 . 0055 . 0055 . 0055	.0033 .0049 .0055 .0055	. 0029 . 0043 . 0055 . 0055	. 0026 . 0038 . 0051 . 0055	.0023 .0035 .0046 .0055	.0021 .0032 .0042 .0053	.0020 .0029 .0039 .0049	.0017 .0026 .0034 .0043	.0017 .0026 .0034 .0042	.0017 .0026 .0034 .0042	.0017 .0026 .0034 .0042
64	$ \begin{cases} \frac{1}{2} \\ \frac{3}{4} \\ 1 \\ 1 \\ 1 \\ 1 \\ 4 \end{cases} $	1/3 D 2/3 D 1/2 D	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 0045 . 0062 . 0062 . 0062	. 0038 . 0057 . 0062 . 0062	. 0033 . 0049 . 0062 . 0062	.0029 .0044 .0059 .0062	.0027 .0040 .0053 .0062	.0024 .0037 .0049 .0061	.0023 .0034 .0045 .0057	.0020 .0030 .0040 .0050	.0019 .0028 .0038 .0048	.0019 .0028 .0038 .0048	.0019 .0028 .0038 .0048
56	$ \begin{cases} \frac{1}{3} \frac{2}{3} \\ \frac{3}{4} \\ 1 \\ 1 \frac{1}{4} \end{cases} $	1/3 D 2/3 D 1/2 D	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.0044 .0066 .0070 .0070	.0038 .0057 .0070 .0070	.0034 .0051 .0068 .0070	.0031 .0046 .0062 .0070	.0029 .0043 .0057 .0070	.0026 .0040 .0053 .0066	.0023 .0035 .0047 .0059	. 0022 . 0032 . 0043 . 0054	.0022 .0032 .0043 .0054	.0022 .0032 .0043 .0054
48	$ \left\{ \begin{array}{c} \frac{1}{2} \\ \frac{3}{4} \\ 1 \\ 1\frac{1}{4} \end{array} \right. $	1/3 D 2/3 D 1/2 D	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0045 .0068 .0082 .0082	.0040 .0061 .0081 .0082	.0037 .0055 .0074 .0082	.0034 .0051 .0068 .0082	.0032 .0047 .0063 .0079	.0028 .0042 .0056 .0070	. 0025 . 0038 . 0051 . 0063	. 0025 . 0038 . 0050 . 0062	.0025 .0038 .0050 .0062
44	$ \begin{cases} $	1/3 D 2/3 D 1/2 D	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0050 .0074 .0089 .0089	.0044 .0067 .0089 .0089	.0040 .0061 .0081 .0089	.0038 .0056 .0075 .0089	. 0035 . 0052 . 0070 . 0088	.0031 .0046 .0062 .0078	. 0028 . 0042 . 0056 . 0070	. 0028 . 0041 . 0055 . 0069	.0028 .0041 .0055 .0069
40	$ \left\{ \begin{array}{c} \frac{1}{2} \\ \frac{3}{4} \\ 1 \\ 1\frac{1}{4} \end{array} \right. $	1/3 D 2/3 D 1/2 D	1/3 D 2/3 D 11/2 D 3 D				.0049 .0074 .0098 .0098	.0045 .0067 .0090 .0098	.0041 .0062 .0083 .0098	.0039 .0058 .0077 .0096	.0034 .0051 .0068 .0086	.0031 .0047 .0062 .0078	. 0030 . 0045 . 0060 . 0075	.0030 .0045 .0060 .0075
36	$ \begin{cases} \frac{1}{2} \\ \frac{3}{4} \\ 1 \\ 1\frac{1}{4} \end{cases} $	1/3 D 2/3 D 1/2 D	1/3 D 2/3 D 11/2 D 3 D					.0050 .0075 .0100 .0109	.0046 .0069 .0093 .0109	.0043 .0065 .0086 .0108	.0038 .0058 .0077 .0096	. 0035 . 0052 . 0070 . 0087	. 0033 . 0050 . 0066 . 0082	. 0033 . 0050 . 0066 . 0082
32	$ \begin{cases} \frac{1}{2} \\ \frac{1}{34} \\ 1 \\ 1\frac{1}{4} \end{cases} $	1/3 D 2/3 D 1/2 D	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0049 .0073 .0098 .0122	.0043 .0065 .0087 .0108	. 0039 . 0059 . 0079 . 0099	. 0037 . 0056 . 0074 . 0092	.0037 .0056 .0074 .0092
28	$ \begin{cases} \frac{1/2}{3/4} \\ 1 \\ 1/4 \end{cases} $	1/3 D 2/3 D 11/2 D	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 0045 . 0068 . 0091 . 0113	. 0042 . 0063 . 0084 . 0105	. 0042 . 0063 . 0084 . 0105

^a Tolerances for lengths of engagement in terms of pitch should be selected from equivalent lengths of engagement in terms of diameter ranges. ^b Revised minor diameter tolerances for classes 1B and 2B are in process of ratification as Unified Standard.

Note.—If the minor diameter tolerance as selected from this table is less than the pitch diameter tolerance, use the latter. See "Design of Special Threads," appendix 5.

Table IV.10.—Minor diameter tolerances for internal special screw threads, classes 1B and 2B—Continued (UNS and NS threads. See subsection 5, p. 98.)

					(0110 a	nd ave tim	caus. Dec	sabsection	o, p. 56.)					
		ment in	of engage- n terms meter ^a			Minor dia	meter toler	ances ^b for t	thread size:	s having ba	asic major (liameters:		
Threads	Toler- ance		es based i→	0.060	0.073	0.086	0. 099	0.112	0. 125	0. 138	0. 164	0. 190	0.216	
per inch	ratios	↓ Above—	·	0.053	0.066	0.079	0.092	0. 105	0.118	0. 131	0.151	0. 177	0. 203	All larger diameters
			to→ and in- cluding	0.066	0.079	0.092	0. 105	0.118	0. 131	0. 151	0. 177	6. 203	0. 233	
27	$ \begin{cases} \frac{16}{34} \\ 1 \\ 1\frac{1}{4} \end{cases} $	1/3 D 2/3 D 11/4 D	1/3 D 2/3 D 11/2 D 3 D									in. 0.0047 .0071 .0094 .0118	in. 0.0044 .0065 .0087 .0109	in. 0.0044 .0065 .0087 .0109
24	$ \begin{cases} \frac{1}{2} \\ \frac{3}{4} \\ 1 \\ 1\frac{1}{4} \end{cases} $	1/3 D 2/3 D 1/2 D	13 D 23 D 112 D 3 D									. 0053 . 0079 . 0106 . 0132	. 0049 . 0073 . 0098 . 0122	. 0048 . 0073 . 0097 . 0121
20	$ \begin{cases} \frac{16}{34} \\ 1 \\ 114 \end{cases} $	1/3 D 2/3 D 1/2 D	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 0058 . 0086 . 0115 . 0144
18	$ \left\{ \begin{array}{c} \frac{1}{2} \\ \frac{3}{4} \\ 1 \\ 1\frac{1}{4} \end{array} \right. $	1/3 D 2/3 D 1/2 D	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 0064 . 0095 . 0127 . 0159
16	$ \begin{cases} \frac{12}{34} \\ 1 \\ 114 \end{cases} $	$ \begin{vmatrix} \frac{1}{3} & D \\ \frac{2}{3} & D \\ \frac{1}{2} & D \end{vmatrix} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0070 .0106 .0141 .0176
14	$ \left\{ \begin{array}{c} \frac{12}{34} \\ \hline 1 \\ \hline 114 \end{array} \right. $	$\begin{array}{c c} & \frac{1}{4} & D \\ & \frac{2}{3} & D \\ & \frac{1}{4} & D \\ & 1 \\ & 1 \end{array}$	1/3 D 2/3 D 1/2 D 3 D											. 0079 . 0118 . 0158 . 0198
12	$ \left\{ \begin{array}{c} \frac{16}{34} \\ \frac{1}{114} \end{array} \right. $	1/3 D 2/3 D 1/2 D	$^{1/3}_{2/3} \stackrel{D}{D}_{D}$ $^{1/2}_{3} \stackrel{D}{D}_{D}$					\						.0090 .0135 .0180 .0225
10	$ \begin{cases} \frac{1}{3} \frac{2}{3} \\ \frac{3}{4} \\ 1 \\ 1\frac{1}{4} \end{cases} $	1/3 D 2/3 D 1/2 D	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 0105 . 0158 . 0210 . 0262
8	$ \begin{cases} \frac{12}{34} \\ 1 \\ 114 \end{cases} $	1/3 D 2/3 D 1/2 D	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0125 .0188 .0250 .0312
6	$ \begin{cases} \frac{12}{34} \\ 1 \\ 1\frac{1}{4} \end{cases} $	1/3 D 2/3 D 1/2 D	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 0153 . 0230 . 0306 . 0382
4	$ \begin{cases} \frac{1/2}{34} \\ 1 \\ 1/4 \end{cases} $	$\begin{array}{c} 1/3 \ D \\ 2/3 \ D \\ 1/2 \ D \end{array}$	1/3 D 2/3 D 11/2 D 3 D											.0188 .0281 .0375 .0469

^a Tolerances for lengths of engagement in terms of pitch should be selected from equivalent lengths of engagement in terms of diameter ranges. b Revised minor diameter tolerances for Classes 1B and 2B are in process of ratification as Unified Standard.

Note.—If the minor diameter tolcrance as selected from this table is less than the pitch diameter tolcrance, use the latter. See "Design of Special Threads," appendix 5.

		Lengths of er terms of d			Minor	liameter tol	erances for t	thread sizes	having basi	e major dia	meters:	
Threads	Tolerance	Tolerances	based on →	0.060	0. 073	0.086	0.099	0. 112	0. 125	0. 138	0. 164	0. 190
per inch	ratios	↓ Above →		0.053	0.066	0.079	0.092	0.105	0.118	0. 131	0. 151	0. 177
			$ \begin{array}{c} \text{to} \rightarrow \\ \text{and in-} \\ \text{eluding} \end{array} $	0.066	0. 079	0.092	0. 105	0. 118	0. 131	0. 151	0. 177	0. 203
80	$ \begin{cases} $	1/3 D 2/3 D 1/2 D	$^{1/3}_{2/3} \frac{D}{D}$ $^{1/2}_{1/2} \frac{D}{D}$ $^{3}_{2/3} \frac{D}{D}$	in. 0.0035 0.0049 0.0049 0.0049	$in. \\ 0.0029 \\ .0044 \\ .0049 \\ .0049$	in. 0.0025 .0038 .0049 .0049	in. 0.0022 $.0034$ $.0045$ $.0049$	in. 0.0020 .0030 .0040 .0049	in. 0.0018 .0028 .0037 .0046	in. 0. 0017 . 0026 . 0034 . 0043	in. 0.0015 .0022 .0030 .0037	in. 0.0013 $.0020$ $.0027$ $.0033$
72	$ \begin{cases} $	1/3 D 2/3 D 11/2 D	$egin{array}{cccccccccccccccccccccccccccccccccccc$. 0039 . 0055 . 0055 . 0055	. 0033 . 0049 . 0055 . 0055	. 0029 . 0043 . 0055 . 0055	. 0026 . 0038 . 0051 . 0055	. 0023 . 0035 . 0046 . 0055	. 0021 . 0032 . 0042 . 0053	. 0020 . 0029 . 0039 . 0049	. 0017 . 0026 . 0034 . 0043	. 0015 . 0023 . 0031 . 0039
64	$ \left\{ \begin{array}{c} \frac{1}{2} \\ \frac{3}{4} \\ 1 \\ 1\frac{1}{4} \end{array} \right. $	1/3 D 2/3 D 1/2 D	$egin{array}{cccccccccccccccccccccccccccccccccccc$. 0045 . 0062 . 0062 . 0062	. 0038 . 0057 . 0062 . 0062	. 0033 . 0049 . 0062 . 0062	. 0029 . 0044 . 0059 . 0062	. 0027 . 0040 . 0053 . 0062	. 0024 . 0037 . 0049 . 0061	. 0023 . 0034 . 0045 . 0057	. 0020 . 0030 . 0040 . 0050	. 0018 . 0027 . 0036 . 0045
56	$ \begin{cases} $	1/3 D 2/3 D 11/2 D	1/3 D 2/3 D 11/2 D 3 D		.0044 .0066 .0070 .0070	. 0038 . 0057 . 0070 . 0070	. 0034 . 0051 . 0068 . 0070	. 0031 . 0046 . 0062 . 0070	. 0029 . 0043 . 0057 . 0070	. 0026 . 0040 . 0053 . 0066	. 0023 . 0035 . 0047 . 0059	. 0021 . 0032 . 0042 . 0053
48	$ \begin{cases} \frac{1}{34} \\ \frac{3}{4} \\ 1 \\ 1\frac{1}{4} \end{cases} $	1/3 D 2/3 D 1/2 D	1/3 D 2/3 D 11/2 D 3 D			.0045 .0068 .0082 .0082	. 0040 . 0061 . 0081 . 0082	. 0037 . 0055 . 0074 . 0082	. 0034 . 0051 . 0068 . 0082	. 0032 . 0047 . 0063 . 0079	. 0028 . 0042 . 0056 . 0070	. 0025 . 0038 . 0051 . 0063
44	$ \begin{cases} \frac{1/2}{3/4} \\ 1 \\ 1/4 \end{cases} $	1/3 D 2/3 D 11/2 D	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 0050 . 0075 . 0090 . 0090	. 0044 . 0067 . 0088 . 0090	. 0041 : 0061 . 0081 . 0090	.0037 .0056 .0075 .0090	. 0035 . 0052 . 0070 . 0087	. 0031 . 0046 . 0062 . 0077	. 0028 . 0042 . 0056 . 0070
40	$ \left\{ \begin{array}{c} \frac{1}{2} \\ \frac{3}{4} \\ 1 \\ 1\frac{1}{4} \end{array} \right. $	1/3 D 2/3 D 1/4 D	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. 0049 . 0074 . 0098 . 0098	. 0045 . 0067 . 0090 . 0098	. 0041 . 0062 . 0083 . 0098	. 0039 . 0058 . 0077 . 0096	. 0034 . 0051 . 0068 . 0086	. 0031 . 0047 . 0062 . 0078
s 6	$ \begin{cases} $	1/3 D 2/3 D 1/2 D	$\begin{array}{c c} 1/3 & D \\ 2/3 & D \\ 11/2 & D \\ 3 & D \end{array}$. 0050 . 0075 . 0100 . 0109	. 0046 . 0069 . 0093 . 0109	.0043 .0065 .0086 .0108	. 0038 . 0058 . 0077 . 0096	. 0035 . 0052 . 0070 . 0087
32	$ \left\{ \begin{array}{c} \frac{1}{2} \\ \frac{3}{4} \\ 1 \\ 1\frac{1}{4} \end{array} \right. $	1/3 D 2/3 D 1/2 D	$\begin{array}{c c} & \frac{1}{3} & D \\ & \frac{2}{3} & D \\ & \frac{1}{3} & D \\ & 3 & D \end{array}$. 0049 . 0073 . 0098 . 0122	. 0043 . 0065 . 0087 . 0108	. 0039 . 0059 . 0079 . 0099
28	$ \left\{ \begin{array}{c} \frac{1}{2} \\ \frac{3}{4} \\ 1 \\ 1\frac{1}{4} \end{array} \right. $	1/3 D 2/3 D 11/2 D	$\begin{array}{c c} & 1/3 & D \\ & 2/3 & D \\ & 1/2 & D \\ & 3 & D \end{array}$. 0045 . 0068 . 0091 . 0113
27	$ \begin{cases} \frac{1}{2} \\ \frac{3}{4} \\ 1 \\ 1\frac{1}{4} \end{cases} $	1/3 <i>D</i> 2/3 <i>D</i> 1/2 <i>D</i>	$\begin{array}{c c} & 1/3 & D \\ & 2/3 & D \\ & 11/2 & D \\ & 3 & D \end{array}$. 0047 . 0071 . 0094 . 0118
24	$ \left\{ \begin{array}{c} \frac{1}{2} \\ \frac{3}{4} \\ 1 \\ 1\frac{1}{4} \end{array} \right. $	1/3 D 2/3 D 11/2 D	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 0053 . 0079 . 0106 . 0132

a Toleranees for lengths of engagement in terms of pitch should be selected from equivalent lengths of engagement in terms of diameter ranges.

Note.—If the minor diameter tolerance as selected from this table is less than the pitch diameter tolerance, use the latter. See Design of Special Threads, appendix 5.

				or diameter										
	0. 250	0.3125	0.375	0. 4375	0. 500	0.5625	0. 625	0.6875	0.750	0.8125	0.875	0. 9375		Thread
	0, 233	0. 281	0.344	0.406	0. 469	0, 531	0.594	0. 656	0. 719	0.781	0.844	0, 906	All larger diameters	per inc
	0. 281	0.344	0.406	0.469	0. 531	0. 594	0. 656	0.719	0.781	0.844	0.906	0. 969		
-	in. 0.0013	in. 0.0013	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.)
	. 0020 . 0026 . 0033	. 0020 . 0026 . 0033												80
	. 0015 . 0022 . 0029 . 0036	. 0015 . 0022 . 0029 . 0036	0.0015 .0022 .0029 .0036	0.0015 .0022 .0029 .0036										72
	.0016 .0024 .0032 .0040	.0016 .0024 .0032 .0040	.0016 .0024 .0032 .0040	.0016 .0024 .0032 .0040	0.0016 .0024 .0032 .0040	0.0016 .0024 .0032 .0040								64
	.0018 .0027 .0036 .0045	.0018 .0027 .0036 .0045	.0018 .0027 .0036 .0045	.0018 .0027 .0036 .0045	.0018 .0027 .0036 .0045	.0018 .0027 .0036 .0045	0.0018 .0027 .0036 .0045	0. 0018 . 0027 . 0036 . 0045	0.0018 .0027 .0036 .0045	0.0018 .0027 .0036 .0045	0.0018 .0027 .0036 .0045			56
	. 0021 . 0032 . 0043 . 0054	.0021 .0031 .0041 .0052	. 0021 . 0031 . 0041 . 0052	.0021 .0031 .0041 .0052	. 0021 . 0031 . 0041 . 0052	. 0021 . 0031 . 0041 . 0052	. 0021 . 0031 . 0041 . 0052	. 0021 . 0031 . 0041 . 0052			48			
	. 0024 . 0036 . 0047 . 0059	.0022 .0033 .0045 .0056	. 0022 . 0033 . 0045 . 0056	. 0022 . 0033 . 0045 . 0056	. 0022 . 0033 . 0045 . 0056	.0022 .0033 .0045 .0056	. 0022 . 0033 . 0045 . 0056	. 0022 . 0033 . 0045 . 0056	.0022 .0033 .0045 .0056	. 0022 . 0033 . 0045 . 0056	. 0022 . 0033 . 0045 . 0056	0.0022 .0033 .0045 .0056		4
	. 0026 . 0040 . 0053 . 0066	.0024 .0036 .0048 .0062	.0024 .0036 .0048 .0062	. 0024 . 0036 . 0048 . 0060	.0024 .0036 .0048 .0060	. 0024 . 0036 . 0048 . 0060	. 0024 . 0036 . 0048 . 0060	. 0024 . 0036 . 0048 . 0060	0.0024 .0036 .0048 .0060	} 4				
	. 0030 . 0044 . 0059 . 0074	. 0026 . 0039 . 0053 . 0066	. 0026 . 0039 . 0052 . 0065	. 0026 . 0039 . 0052 . 0065	.0026 .0039 .0052 .0065	. 0026 . 0039 . 0052 . 0065	. 0026 . 0039 . 0052 . 0065	. 0026 . 0039 . 0052 . 0065	} 3					
	. 0034 . 0050 . 0067 . 0084	. 0030 . 0045 . 0060 . 0075	. 0029 . 0043 . 0057 . 0072	. 0029 . 0043 . 0057 . 0072	.0029 .0043 .0057 .0072	. 0029 . 0043 . 0057 . 0072	. 0029 . 0043 . 0057 . 0072	. 0029 . 0043 . 0057 . 0072	} 3					
	. 0039 . 0058 . 0077 . 0096	. 0034 . 0051 . 0069 . 0086	. 0032 . 0047 . 0063 . 0079	.0032 .0047 .0063 .0079	. 0032 . 0047 . 0063 . 0079	.0032 .0047 .0063 .0079	. 0032 . 0047 . 0063 . 0079	. 0032 . 0047 . 0063 . 0079	. 0032 . 0047 . 0063 . 0079	} 2				
	.0040 .0060 .0080 .0100	. 0036 . 0053 . 0071 . 0089	. 0032 . 0048 . 0065 . 0081	.0032 .0048 .0065 .0081	. 0032 . 0048 . 0065 . 0081	. 0032 . 0048 . 0065 . 0081	.0032 .0048 .0065 .0081	. 0032 . 0048 . 0065 . 0081	. 0032 . 0048 . 0065 . 0081	. 0032 . 0048 . 0065 . 0081	. 0032 . 0048 . 0065 . 0081	. 0032 . 0048 . 0065 . 0081	. 0032 . 0048 . 0065 . 0081	} 2
	.0045 .0068 .0090 .0113	. 0040 . 0060 . 0080 . 0100	. 0037 . 0055 . 0073 . 0092	. 0035 . 0052 . 0070 . 0087	.0035 .0052 .0070 .0087	. 0035 . 0052 . 0070 . 0087	. 0035 . 0052 . 0070 . 0087	. 0035 . 0052 . 0070 . 0087	.0035 .0052 .0070 .0087	} 2				

		Lengths of er terms of d	ngagement in Hameter •		Minor	diameter to	crances for	thread sizes	having bas	ic major dia	meters:	
		Tolerançes	based on \rightarrow	0.060	0. 073	0.086	0.099	0, 112	0. 125	0. 138	0. 164	0. 190
Threads per inch	Tolerance ratios	↓ Above →		0, 053	0.066	0. 079	0, 092	0. 105	0. 118	0. 131	0. 151	0. 177
			to → and including	0. 066	0. 079	0.092	0. 105	0. 118	0, 131	0. 151	0. 177	0. 203
20	$ \left\{ \begin{array}{c} $	1/3 D 2/3 D 11/2 D	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*	*							
18	$ \left\{ \begin{array}{c} \frac{1}{2} \\ \frac{3}{4} \\ 1 \\ 1\frac{1}{4} \end{array} \right. $	1/3 D 2/3 D 11/2 D	$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
16	$ \left\{ \begin{array}{c} \frac{1}{2} \\ \frac{3}{4} \\ 1 \\ 1\frac{1}{4} \end{array} \right. $	1/3 D 2/3 D 11/2 D	$^{1/3}_{2/3} \stackrel{D}{D}$ $^{11/2}_{2/2} \stackrel{D}{D}$ 3					-				
14	$ \left\{ \begin{array}{c} \frac{1}{2} \\ \frac{3}{4} \\ 1 \\ 1\frac{1}{4} \end{array} \right. $	1/3 D 2/3 D 11/2 D	$\begin{array}{cccc} {}^{1}\!\!/_{\!3} & D & \\ {}^{2}\!\!/_{\!3} & D & \\ {}^{1}\!\!/_{\!2} & D & \\ {}^{3} & D & \end{array}$									
12	$ \left\{ \begin{array}{c} $	1/3 D 2/3 D 1/2 D	$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
10	$ \left\{ \begin{array}{c} \frac{1}{3} & \frac{1}{4} \\ 3 & \frac{1}{4} \\ 1 & \frac{1}{4} & \frac{1}{4} \end{array} \right. $	1/3 D 2/3 D 11/2 D	$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
8	$ \begin{cases} \frac{1}{2} \\ \frac{3}{4} \\ 1 \\ 1\frac{1}{4} \end{cases} $	1/3 D 2/3 D 11/2 D	$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
7	$ \left\{ \begin{array}{c} \frac{1}{2} \\ \frac{3}{4} \\ 1 \\ 1\frac{1}{4} \end{array} \right. $	1/3 D 2/3 D 11/2 D	$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
6	$ \left\{ \begin{array}{c} $	1/3 D 2/3 D 1/2 D	$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
4	$ \left\{ \begin{array}{c} \frac{1}{3} \\ \frac{3}{4} \\ 1 \\ 1 \\ $	1/3 D 2/3 D 11/2 D	1/3 D 2/3 D 11/2 D 3 D									

[•] Tolerances for lengths of engagement in terms of pitch should be selected from equivalent lengths of engagement in terms of diameter ranges.

Note.—If the minor-diameter tolerance as selected from the table is less than pitch-diameter tolerance, use the latter. See "Design of Special Threads," appendix 5.

0. 216 0. 203 0. 233	0, 250	0.3125	0.375	0. 4375 0. 406 0. 469	0. 500 0. 469 0. 531	0. 5625 0. 531 0. 594	0. 625 0. 594 0. 656	0. 6875	0.750 0.719 0.781	0. 8125 0. 781 0. 844	0.875	0. 9375 0. 906 0. 969	All larger diameters	Threads per inch															
																in. 0.0054 .0081 .0108 .0135	in. 0.0048 .0072 .0096 .0120	in. 0.0044 .0066 .0088 .0110	in. 0.0041 .0062 .0082 .0103	in. 0.0039 .0058 .0078 .0097	in. 0.0039 .0058 .0078 .0097	in. 0.0039 .0058 .0078 .0097	in. 0.0039 .0058 .0078 .0097	in. 0.0039 .0058 .0078 .0097	in. 0,0039 .0058 .0078 .0097	in. 0.0039 .0058 .0078 .0097	in. 0.0039 .0058 .0078 .0097	in. 0.0039 .0058 .0078 .0097	} 20
																	.0053 .0080 .0106 .0133	.0049 .0073 .0097 .0122	.0045 .0068 .0091 .0114	.0043 .0065 .0086 .0108	.0041 .0062 .0082 .0103	.0041 .0061 .0081 .0102	} 18						
			.0054 .0082 .0109 .0136	. 0051 . 0076 . 0102 . 0127	.0048 .0072 .0096 .0120	.0046 .0069 .0092 .0115	.0044 .0067 .0089 .0111	. 0043 . 0064 . 0086 . 0108	. 0043 . 0064 . 0085 . 0106	.0043 .0064 .0085 .0106	.0043 .0064 .0085 .0106	.0043 .0064 .0085 .0106	.0043 .0064 .0085 .0106	} 16															
				.0058 .0086 .0115 .0144	.0054 .0082 .0109 .0136	. 0052 . 0078 . 0104 . 0130	.0050 .0075 .0100 .0125	. 0049 . 0073 . 0097 . 0122	.0047 .0071 .0095 .0118	.0046 .0069 .0092 .0116	.0045 .0068 .0091 .0113	. 0044 . 0067 . 0089 . 0111	.0044 .0066 .0088 .0110	14															
					.0063 .0094 .0125 .0157	.0060 .0090 .0120 .0150	.0058 .0087 .0115 .0144	.0056 .0084 .0112 .0140	.0054 .0082 .0109 .0136	. 0053 . 0080 . 0106 . 0133	.0052 .0078 .0104 .0130	.0051 .0077 .0102 .0128	.0050 .0075 .0100 .0125	} 12															
								.0066 .0099 .0131 .0164	.0064 .0096 .0128 .0160	.0062 .0093 .0125 .0156	.0061 .0092 .0122 .0153	.0060 .0090 .0120 .0150	.0060 .0090 .0120 .0150	} 10															
										.0075 .0112 .0150 .0188	.0075 .0112 .0150 .0188	.0075 .0112 .0150 .0188	.0075 .0112 .0150 .0188	8															
												. 0086 . 0129 . 0171 . 0214	. 0086 . 0129 . 0171 . 0214	} 7															
													.0100 .0150 .0200 .0250	6															
													.0150 .0225 .0300 .0375	4															

to a part before plating, whereas the basic diameters (the 2A maximum diameter plus allowance) apply to a part after plating. The minimum diameters of class 2B (internal) threads, whether or not plated or coated, are basic, affording no allowance or clearance in assembly at maximum material limits.

(b) Allowances and tolerances.—Allowances for all diameters and pitch diameter tolerances are specified in tables IV.2, IV.2A, IV.5, and IV.8, and their application is shown in figure III.3,

p. 24.

3. Classes 3A and 3B.—(a) Definition.—Classes 3A for external threads and 3B for internal threads provides for applications where closeness of fit and accuracy of lead and angle of thread are important. They are obtainable consistently only by the use of high quality production equipment supported by a very efficient system of gaging and inspection. The maximum diameters of class 3A (external) threads and the minimum diameters of class 3B (internal) threads, whether or not plated or coated, are basic, affording no allowance or clearance for assembly of maximum metal components.

(b) Allowances and tolerances.—No allowance is provided, but since the tolerances on "go" gages are within the limits of size of the product, the gages will assure a slight clearance between product made to the maximum-metal limits. Pitch diameter tolerances are specified in tables IV.6 and IV.9 and their application is shown in

figure III. 4, p. 25.

4. Selection of Class of Thread.—Consideration should first be given to the use of a class 2A external thread with a class 2B internal thread since these classes are designed for general use. The use of class 2A provides that there will always be a small clearance between maximum-material parts except when the external thread is plated. Plated parts are intended to be gaged with basic-size "go" gages. In either case, it is expected that parts will assemble readily without galling or seizing. Tolerances are sufficiently large so that ordinary production methods are generally applicable.

Past experience with similar designs may indicate that a more accurately made or closer fitting thread is required than that which is permitted by classes 2A and 2B tolerances. In such cases consideration should be given to the use of classes 3A and 3B. If these tolerances are not sufficiently close, it may be necessary to apply the American National class 3 tolerances. The necessary increase in cost should not be overlooked.

In some designs there may be advantages in providing for greater average looseness of fit than that obtained with classes 2A and 2B. Such greater average looseness is provided by classes 1A and 1B or the assembly of class 1A external threads with class 2B internal threads. The minimum looseness, however, is the same as for classes 2A and 2B except that a positive allowance is provided

for plated parts. When a greater minimum looseness is requisite to provide for adverse conditions of assembly, class 1AR is available, which is not a Unified class and is based on the American National class 1 allowance combined with class 1A tolerance. These classes also provide larger tolerances to the manufacturer, which may be of advantage if the thread is difficult to produce.

It should be noted that any class of external thread may be associated with any class of internal thread, there being no requirement to combine

classes of like number.

5. METHOD OF DESIGNATING

1. Standard Method of Designating.—The method of designating a special thread is by the use of the letters UNS or NS, as indicated in tables IV. 2 to IV. 11, inclusive, preceded by the diameter in inches and the number of threads per inch, all in Arabic characters, and followed by the tolerance classification, with or without pitch diameter tolerances or limits of size. See "Method of designating a screw thread," p. 26.

The symbol "UNS" is applicable to each of 69 Unified special diameter-pitch combinations listed in table IV.12 which are common to the lists of preferred combinations of the American, British,

and Canadian standards.

An example of an external thread designation and its meaning is given as follows:

The designation "NS" applies only to threads not listed in table III.2 or IV.12 for which the limits of size are computed from the tables of this section, or increment tables (table III.2), or threads derived from the Unified formulations for all elements.

For all "NS" threads, specifications of the thread class and the pitch diameter limits are required. In addition the specification of the length of engagement is required.

Example:

1/4—24NS—3A (Required) PD 0.2229—0.2198 (Required) Length of engagement 0.875 (Required)

2. Modified Threads.—It is occasionally necessary to modify the limits of size of the major diameter of an external thread or the minor diameter of an internal thread from the limits established for special threads in order to fit a specific purpose but without change in class of thread or pitch diameter limits. Such threads should be specified with the established thread designation followed by a statement of the modified diameter limits and the designation "MOD."

 $\begin{array}{c} \textbf{Table IV.12.--} \textit{Unified special diameter-pitch combinations} \\ \textbf{UNS} \end{array}$

Preferred		Preferre	ed pitches,	threads pe	er inch	
Preferred diameters	36	28	20	8	6	4
1/	36					
5/4	36					
916	36					
1/4 5/16 3/8 9/16 5/8	. 36	28				
216		28				
%		28				
3/4 7/8		28 28				
7/8		28		l		l
1		28				
11/8		28	20			
11/8 11/4			20			
12/			1			
198				8		
1 1/2			20	8		
138 112 158 134 178			20	8 8 8 8	6	
194			20	8	6	
11/8			20	8	6	
2			20	8	6	
21/8				8	l	_
214			20	8	6	
212			20	8	6	
$2 \\ 2\frac{1}{8} \\ 2\frac{1}{4} \\ 2\frac{1}{2} \\ 2\frac{3}{4}$				8 8 8 8	6	
3 3!4 3!2 334				8 8 8 8	6	
314				8	6	
31/2				8	6	
33/4				8	6	
4				8	6	
41/4				8	6	4
41/2				8	6	4
434				8	6	4
5				8 8 8	6	4
F1/					0	
$\frac{51/4}{51/2}$				8 8 8	6	4
5 1/2				8	6	4
53/4				8	6	4 4 4
6				8	6	4

Figure IV.1.—Thread dimensions to be determined for a special thread.

Table IV.13.—Consolidated method for the calculation of dimensions of special threads

Thread element		Exteri	nal thread			Internal thread			
	Class 1A	Class 1AR	Class 2A	Class 3A	Class 1B	Class 2B	Class 3B		
1	2	3	4	5	6	7	8		
	Nomi	inal size minus all	owance						
Major diameter	Table IV. 2	Table IV. 2A	Table IV. 2	Nominal size	Nominal size				
Tolcrance on major diameter	Use value in tab desig	de IV. 3 or comp ning special threa	ute in accordance wads p. 200. Apply i	ith directions for ninus	None specified as the maximum is established by the crest of an unworn tool				
Pitch diameter	Suhtract 3/4H,	table IV. 1, col.	13 from maximum	major diameter	Subtract $3/4H$, table IV. 1, col. 13 from basic m diameter				
Tolerance on pitch diameter	Table IV. 4 Apply minus	Table IV. 4 Apply minus	Table IV. 5 Apply minus	Table IV. 6 Apply minus	Table IV. 7 Apply plus	Table IV. 8 Apply plus	Table IV. 9 Apply plus		
Minor diameter	Suhtract 1 5/12F		. 16 from maximum nce dimension only	major diameter.	Subtract 1 1/4F	I, table IV. 1, col. 1 major diameter	5 from the basic		
Tolerance on minor diameter	None specified		n is established by orn tool	the crest of an	length of enga for specific ar length of eng	olications use value agement from table oplications use value agement or compu is for designing speci	IV. 10 or IV. 11; es for applicable te in accordance		

EXAMPLES:

External thread: 2—14 NS—2A MOD. Major diameter 1.995–1.985 MOD. Internal thread: 1½—10 NS—3 MOD. Minor diameter 1.398–1.408 MOD.

3. Threads Otherwise Altered—If a standard series or special thread is altered in any respect other than major or minor diameter, as above stated, it is designated in accordance with the following examples:

Special external thread:

%6—24 Am. Nat. form—SPECIAL
Major diameter 0.4340–0.4280 SPL.
Pitch diameter 0.4065–0.4025 SPL.
Length of engagement ¾ in. min.
Special form external thread:

%—18 SPECIAL FORM
Thread angle 60°
Major diameter 0.8750–0.8668
Pitch diameter 0.8384–0.8343
Max. minor diameter 0.8068 (as gaged)
Length of engagement ½6 in. min.

6. DIRECTIONS FOR DETERMINING LIMITS OF SIZE OF SPECIAL THREADS

The following directions are intended to simplify the task of the designer or specification writer in preparing the specification for a special thread:

The procedure to be followed in determining values for the essential thread elements, as shown in figure IV.1, and the associated tolerances, is outlined in table IV.13. The application of this and other tables is illustrated by the following example:

Internal thread, 1½–28UNS–2B Length of engagement, 1 inch

The dimensions of the above internal thread may be stated on the drawing as follows:

Major diameter, 1.5000 minPitch diameter, $1.4768 {+0.0060} \atop -0.0000$ Minor diameter, $1.461 {+0.0063} \atop -0.0000$

External thread, 1½–28UNS–2A To mate with the above thread

 The dimensions of the above external thread may be stated on the drawing as follows:

 $\begin{array}{l} {\rm Major\ diameter,\ 1.4987 + 0.0000} \\ {\rm Pitch\ diameter,\ 1.4755 + 0.0000} \\ {\rm Minor\ diameter,\ 1.4549\ nominal.} \end{array}$

The design of a special thread usually requires that consideration be given to various factors in order that the thread assembly will function properly. These factors are discussed in appendix 5. It is to be noted particularly that deviations from the preferred tolerances for major diameter of the external thread and for minor diameter of the internal thread may be necessary in order to arrive at the optimium design.

7. GAGES

The specifications for gages as presented in section VI apply also to gages for special threads. With regard to the marking of gages, each gage shall be plainly marked, for identification, with the diameter, number of threads per inch, and class of thread. Note: No class is put on marking for "go" thread plug gages (all classes) and "go" thread ring gages, classes 2, 3, and 3A, because these are basic gages.

SECTION V. NATIONAL MINIATURE SCREW THREADS

1. INTRODUCTION

This standard presents a new thread series to be known as National Miniature Screw Threads and is intended for general purpose fastening screws and similar uses in watches, instruments, and miniature mechanisms. The series covers a diameter range from 0.30 to 1.40 mm (0.0118 to 0.0551 in.) and thus supplements the Unified and American thread series that begin at 0.060 in. (No. 0 of the machine screw series).

The 14 sizes are systematically distributed, providing a uniformly proportioned selection over the entire range. They are alternately separated into two categories. The sizes shown in italics are selections made in the interest of simplification and are those to which it is recommended that usage be confined wherever the circumstances of design permit. For more restrictive conditions the intermediate sizes shown in light type are available.

The diameter-pitch combinations have been determined to provide both maximum strength against stripping and optimum conditions for manufacture on an interchangeable basis.

⁹ This standard is identical in all technical features with the current draft standard developed by subcommittee No. 4 of ASA Sectional Committee B1 on the Standardization and Unification of Screw Threads. The thread sizes are those endorsed by the American-British-Canadian Conference as the basis for a unified standard among the inch-using countries and coincide with the corresponding range of sizes in ISO (International Organization for Standardization) Recommendation No. 84. Additionally, it utilizes thread forms which are compatible in all significant respects with both the Unified and ISO basic thread profiles. Thus, this thread series is in both the American-British-Canadian and the ISO standardization programs.

The values of all dimensions are supplied in both metric and inch units. The standard being basically metric, only the metric values of the nominal diameters and pitches are rational. Consequently, metric units are stipulated for all formulas and the inch dimensions derived by conversion of the unrounded metric values, using the conversion factor 25.4 mm/in.¹⁰

Use of this series is recommended on all new products in place of the many improvised and unsystematized sizes now in existence that have never arrived at broad acceptance nor recognition

by any standardization bodies.

2. FORM OF THREAD

1. Basic Thread Form.—The theoretical profile on which the design forms of the threads covered by this standard are based is, except for one element, the Unified and American basic thread form as specified in section III and shown in figure V. 1. In exception is thread height, for which a basic value of 0.52p is used instead of 0.54127p (=5 H/8). Selection of this value is based on the extensive simplification that it

affords throughout the calculations for this standard. Resulting coefficients in the formulas for many of the other thread dimensions derived from this property thereby become simple, finite multiples of the lowest common denominator (40) of the fractional equivalents of all but two of the metric pitches, thus yielding values for the majority of metric dimensions that are finite within the decimal place limits of the tables. Also, the calculation of inch equivalents from the terminal metric values is thereby simplified and discrepancies between the metric and inch tables kept to a minimum. This modification will not affect interchangeability with product made to any other standards retaining 0.54127p, as the resulting difference is negligible and completely offset by practical considerations in tapping, full internal thread heights being invariably avoided in these small sizes to escape excessive tap breakage.

2. Design Forms of Threads.—The design forms (maximum material condition) of external and internal National Miniature threads are

shown in figure V.2.

3. Basic Thread Data.—(a) Thread form.—The formulas for the various features of the thread form are as follows:

Figure V.1.—Basic thread form, National Miniature threads.

¹⁰ American Standard ASA B48.1-1933.

Dimension	Symbol	Formula ^a
Basic th	read forn	1
Angle of thread	2α	60°.
Half angle of thread	α	30°.
Pitch of thread	p	05.4/
No. of threads per inch Height of sharp-V thread	H	$egin{array}{c} 25.4/p. \ 0.866025p. \end{array}$
Addendum of basic thread_	h_{ab}	0.32476 p
Height of basic thread	h_h	0.52470p. $0.54127p$.
(Unified and ISO) ^b .		0.011 2. p.
Height of basic thread (NM series).	h_{b}	0.52p.
Design th	read form	
Addendum of external	h_{as}	0.32476p.
thread. Height of external thread	h_s	0.60p.
Flat at crest of external	$F_{c}^{n_s}$	0.125p.
thread.	- 00	F
Radius at root of external	r_{rs}	0.158p (approx.).
thread.	, ,	0.50
Depth of thread engage-	$h_e = h_b$	0.52p.
ment. Height of internal thread	h_n	0.556p.
Flat at crest of internal	F_{cn}^{n}	0.27456 p.
411	- cn	0.2. 100p.

 $^{^{\}rm o}$ The formulas are applied to the metric values of p. Tahulated inch dimensions are derived from the unrounded metric dimensions. $^{\rm b}$ This item is listed for reference only. For the present standard all dependent details of thread form and dimensions are hased on a height of 0.52p.

The corresponding thread data for the various standard pitches are shown in table V.1.

(b) Thread sizes.—The formulas for basic and design thread sizes are as follows:

Dimension	Symbol	Formula
Major diameter, nominal and basic.	D	
Major diameter of external thread.	D_s	D.
Major diameter of internal thread.	D_n	$\begin{array}{c} D - 2h_b + 2h_n = \\ D + 0.072p. \end{array}$
Pitch diameter, basic	\boldsymbol{E}	$D-2h_{ab}= D-0.64952p$
Pitch diameter of external thread.	E_s	E. 0.01302p.
Pitch diameter of internal thread.	E_n	E.
Minor diameter, basic	K	$D-2h_b = D-1.04$
Minor diameter of external thread.	K_s	$D - 2h_s = D - 1.20$
Minor diameter of internal thread.	K_n	<i>K</i> .

Table V.1.—Thread form data, National Miniature screw threads

0.072p (approx.).

		Basic				Exte	rnal thread			I	nternal threa	d
Threads per inch o	Pitch,	Height of sharp V thread, $H=$ 0.866025 p	Height, h _b = 0.52 p	Addendum, $h_{ab} = h_{as} = 0.32476p$	Height, $h_e = 0.60 p$	Flat at crest, $F_{cs} = 0.125p$	Radius at root, $\tau_{rs} = 0.158p$	Basis for minimum flat at root, 0.64p	Min. flat at root, $F_{rs} = 0.136p$	Height, $h_n = 0.556 p$	Flat at crest, $F_{cn}=0.27456p$	Radius at root, r _{rn} = 0.072p
1	2	3	4	5	6	7	8	9	10	11	12	13
	mm 0.080 .090 .100 .125 .150	mm 0.0693 .0779 .0866 .1083 .1299	mm 0. 0416 . 0468 . 0520 . 0650 . 0780	mm 0. 0260 . 0292 . 0325 . 0406 . 0487	mm 0.048 .054 .060 .075 .090	mm 0.0100 .0112 .0125 .0156 .0188	mm 0.0126 .0142 .0158 .0198 .0237	mm 0.0512 .0576 .0640 .0800 .0960	mm 0.0109 .0122 .0136 .0170 .0204	mm 0.0445 .0500 .0556 .0695 .0834	mm 0.0220 .0247 .0275 .0343 .0412	mm 0.0058 .0065 .0072 .0090 .0108
	. 175 . 200 . 225 . 250 . 300	. 1516 . 1732 . 1949 . 2165 . 2598	. 0910 . 1040 . 1170 . 1300 . 1560	. 0568 . 0650 . 0731 . 0812 . 0974	. 105 . 120 . 135 . 150 . 180	. 0219 . 0250 . 0281 . 0312 . 0375	.0277 .0316 .0356 .0395 .0474	. 1120 . 1280 . 1440 . 1600 . 1920	. 0238 . 0272 . 0306 . 0340 . 0408	. 0973 . 1112 . 1251 . 1390 . 1668	. 0480 . 0549 . 0618 . 0686 . 0824	. 0126 . 0144 . 0162 . 0180 . 0216
317½ 282¾ 254 203½ 169⅓	in. 0.003150 .003543 .003937 .004921 .005906	in. 0.00273 .00307 .00341 .00426 .00511	in. 0.00164 .00184 .00205 .00256 .00307	in. 0.00102 .00115 .00128 .00160 .00192	in. 0.00189 .00213 .00236 .00295 .00354	in. 0.00039 $.00044$ $.00049$ $.00062$ $.00074$	in. 0,00050 .00056 .00062 .00078 .00093	in. 0.00202 .00227 .00252 .00315 .00378	in. 0.00043 00048 00054 00067 00080	in. 0.00175 .00197 .00219 .00274 .00328	in. 0.00086 .00097 .00108 .00135 .00162	in. 0.00023 .00026 .00028 .00035 .00043
145½ 127 11286 101¾5 844⁄3	.006890 .007874 .008858 .009843 .011811	. 00597 . 00682 . 00767 . 00852 . 01023	.00358 .00409 .00461 .00512 .00614	. 00224 . 00256 . 00288 . 00320 . 00384	. 00413 . 00472 . 00531 . 00591 . 00709	.00086 .00098 .00111 .00123 .00148	.00109 .00124 .00140 .00156 .00187	. 00441 . 00504 . 00567 . 00630 . 00756	. 00094 . 00107 . 00120 . 00134 . 00161	.00383 .00438 .00493 .00547 .00657	.00189 .00216 .00243 .00270 .00324	.00050 .00057 .00064 .00071 .00085

[•] In all subsequent tables these values are rounded to the nearest whole number.

thread.

thread.

Radius at root of internal

 $\begin{tabular}{ll} Figure V.2. -National Miniature internal and external screw thread design forms \\ (maximum material condition). \\ \end{tabular}$

3. NATIONAL MINIATURE THREAD SERIES

The diameter-pitch combinations which constitute the National Miniature thread series, and the design sizes, are those shown in table V.2, p. 104. All threads are of the single (single-start) type.

4. CLASSIFICATION AND TOLERANCES

1. Classification.—There is established herein only one class of thread, with zero allowance on all diameters.

2. Tolerances.—All tolerances governing limits of size are based on functions of the pitch only and apply to lengths of engagement from \% to 1\% times the nominal diameter. (See note, table V.3, p. 107.) The limits of size resulting from the application of the specified tolerances are illustrated in figure V.3, p. 106. Length of engagement and nominal diameter have not been incorporated in any of the tolerance formulas in view of the following: (1) In the small thread sizes covered by this standard, lengths of engagement appreciably below or above the range covered by the formulas are seldom employed. (2) Functional fitness in these small sizes is dependent principally upon the properties of the thread rather than the size of the threaded member. (3) Total tolerances are too small to permit the imposition of minor order modifications.

(a) Tolerances on external threads.—Tolerances on external threads are applied to the design sizes in the minus direction. They are tabulated in table V.3, p. 105, and are based on the following formulas:

Tolerances on major diameter are equal to 0.12p+0.006.11 Tolerances on pitch diameter are equal to 0.08p+0.008.11 Tolerances on minor diameter are equal to 0.16p+0.008.11

The third formula is for reference only. In practice, the form of the threading tool is relied upon for controlling the minimum minor diameter, and this limit is not gaged, except in confirming new tools.

(b) Tolerances on internal threads.—Tolerances on internal threads are applied to the design sizes in the plus direction. They are tabulated in table V.3, p. 105.

Tolerances on major diameter are equal to 0.168p+0.008. This formula is for reference only and is comprised of the pitch diameter tolerance and an extension of the thread form of 0.08p beyond the basic major diameter. In practice, this limit is applied to the threading tool (tap) and is not gaged on the product.

Tolerances on pitch diameter are equal to 0.08p + 0.008.11 Tolerances on minor diameter are equal to 0.32p + 0.012.11

Table V.2.—Basic and design sizes, National Miniature thread series

Size designation	Piteh, p	Basic major diameter, D	Basie pitch diameter, $E=D-0.64952p$	Minor diameter external threads, $K_s = D-1.20p$	Minor diameter internal threads, $K_n = K = D - 1.04p$	Major diameter internal threads, $D_n = D + 0.072p$	Lead angle at basic pitch diameter, λ	Sectional area at miner di- ameter at D-1.28p
1	2	3	4	5	6	7	8	9
\$0NM 35NM 40NM 45NM 60NM	mm 0.080 .090 .100 .100 .125	mm 0, 300 . 350 . 400 . 450 . 500	mm 0. 248 . 292 . 335 . 385 . 419	mm 0, 204 , 242 , 280 , 330 , 350	mm 0. 217 . 256 . 296 . 346 . 370	mm 0.306 .356 .407 .457 .509	deg min 5 52 5 37 5 26 4 44 5 26	mm ² 0. 0307 . 0433 . 0581 . 0814 . 0968
55NM 60NM 70NM 80NM 90NM	$\begin{array}{c} .125 \\ .150 \\ .175 \\ .200 \\ .225 \end{array}$. 550 . 600 . 700 . 800 . 900	. 469 . 503 . 586 . 670 . 754	. 400 . 420 . 490 . 560 . 630	. 420 . 444 . 518 . 592 . 666	. 559 . 611 . 713 . 814 . 916	4 51 5 26 5 26 5 26 5 26 5 26	. 1195 . 1307 . 1780 . 232 . 294
100 NM 110 NM 120 NM 140 NM	. 250 . 250 . 250 . 300	1, 000 1, 100 1, 200 1, 400	. 838 . 938 1. 038 1. 205	.700 .800 .900 1.040	. 740 . 840 . 940 1. 088	1. 018 1. 118 1. 218 1. 422	$\begin{array}{ccc} 5 & 26 \\ 4 & 51 \\ 4 & 23 \\ 4 & 32 \end{array}$. 363 . 478 . 608 . 811
30 NM 35 NM 40 NM 45 NM 50 NM	threads per inch 318 282 254 254 203	in. 0.0118 $.0138$ $.0157$ $.0177$ $.0197$	in. 0.0098 .0115 .0132 .0152 .0165	in. 0.0080 .0095 .0110 .0130 .0138	in. 0.0085 .0101 .0117 .0136 .0146	in. 0. 0120 . 0140 . 0160 . 0180 . 0200	$\begin{array}{cccc} deg & min \\ 5 & 52 \\ 5 & 37 \\ 5 & 26 \\ 4 & 44 \\ 5 & 26 \end{array}$	$\begin{array}{c} sq~in.~\times 10 \dashv \\ 0.~475\\ .671\\ .901\\ 1.~262\\ 1.~407\\ \end{array}$
55NM 60NM 70NM 80NM 90NM	203 169 145 127 113	. 0217 . 0236 . 0276 . 0315 . 0354	. 0185 . 0198 . 0231 . 0264 . 0297	. 0157 . 0165 . 0193 . 0220 . 0248	. 0165 . 0175 . 0204 . 0233 . 0262	$\begin{array}{c} .0220 \\ .0240 \\ .0281 \\ .0321 \\ .0361 \end{array}$	4 51 5 26 5 26 5 26 5 26 5 26	1. 852 2. 03 2. 76 3. 60 4. 56
$100NM \\ 110NM \\ 120NM \\ 140NM$	102 102 102 85	. 0394 . 0433 . 0472 . 0551	. 0330 . 0369 . 0409 . 0474	. 0276 . 0315 . 0354 . 0409	. 0291 . 0331 . 0370 . 0428	. 0401 . 0440 . 0480 . 0560	5 26 4 51 4 23 4 32	5, 62 7, 41 9, 43 12, 57

¹¹ Metric units (millimeters) apply in these formulas. Inch tolerances are not derived by direct conversion of the metric values but are the differences between the rounded-off limits of size in inch units.

3. Root Flats.—The width of flat at the root of external threads, F_{rs} , at the minimum-material condition is 0.136p, corresponding to a thread height of 0.64p. Values for the various pitches

are given in table V.1, page 102.

4. Coated Threads.—It is not within the scope of this standard to make recommendations for thicknesses of, or to specify limits for, coatings. However, it is obvious that in these small sizes any coatings applied must be kept thin because of the smallness of the threads. Generally, the coatings employed in practice are confined to those of the electroplated or oxide types and are limited to a flash thickness. For applications where these coatings are inadequate the product is usually made of a corrosion-resistant material, thereby avoiding the problems attendant to providing for heavier coatings. However, where coatings of a measurable thickness are required, it is essential that they be included within the maximummaterial limits since no allowance is provided between these limits of the external and internal thread. In other words, the maximum material limits given in this standard apply to both uncoated and coated threads.

5. THREAD DESIGNATIONS

Screw threads of this series shall be designated on engineering drawings, in specifications, and on tools and gages (when space permits) by the size designations shown in the first column of table V.2, in which the symbol "NM" designates the National Miniature series. To these designations may be affixed, in parentheses, the inch equivalent of the basic major diameter, but this addition is optional. Thus, for example, the thread size identified by the designation 80 NM may also be designated 80 NM (0.0315).

6. LIMITS OF SIZE

The limits of size of both external and internal threads, resulting from the application of the specified tolerances, are given in table V.3, p. 105, in both the metric and English systems and are illustrated in figure V. 3. For hole size limits before tapping, see appendix 3, table 3.3 and figure 3.2, pp. 186, 193.

Table V.3.—Limits of size and tolerances, National Miniature thread series

					Externa	l threads							Interna	l threads			
Size des- ignation a	Piteh	Major	diamete:	r limits	Pitch	diameter	limits		liameter aits	Minor	diamete	r limits	Pitch	diameter	limits	Major diameter limits	
		Max.	Min.	Tol.	Max.	Min.	Tol.	Max.	Min.c	Min.	Max.	Tol.	Min.	Max.	Tol.	Min.d	Max.
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
30NM 35NM 40NM 45NM 50NM	mm 0.080 .090 .100 .100 .125	mm 0.300 .350 .400 .450 .500	mm 0. 284 . 333 . 382 . 432 . 479	mm 0. 016 . 017 . 018 . 018 . 021	mm 0. 248 . 292 . 335 . 385 . 419	mm 0. 234 . 277 . 319 . 369 . 401	mm 0.014 .015 .016 .016 .018	mm 0, 204 , 242 , 280 , 330 , 350	mm 0. 183 . 220 . 256 . 306 . 322	mm 0. 217 . 256 . 296 . 346 . 370	mm 0. 254 . 297 . 340 . 390 . 422	mm 0.037 .041 .044 .044 .052	mm 0.248 .292 .335 .385 .419	mm 0. 262 .307 .351 .401 .437	mm 0.014 .015 .016 .016 .018	mm 0.306 .356 .407 .457 .509	mm 0.327 .380 .432 .482 .538
55NM 60NM 70NM 80NM 90NM	. 125 . 150 . 175 . 200 . 225	. 550 . 600 . 700 . 800 . 900	. 529 . 576 . 673 . 770 . 867	.021 .024 .027 .030 .033	. 469 . 503 . 586 . 670 . 754	. 451 . 483 . 564 . 646 . 728	.018 .020 .022 .024 .026	. 400 . 420 . 490 . 560 . 630	. 372 . 388 . 454 . 520 . 586	.420 .444 .518 .592 .666	. 472 . 504 . 586 . 668 . 750	. 052 . 060 . 068 . 076 . 084	. 469 . 503 . 586 . 670 . 754	. 487 . 523 . 608 . 694 . 780	.018 .020 .022 .024 .026	. 559 . 611 . 713 . 814 . 916	. 588 . 644 . 750 . 856 . 962
100NM 110NM 120NM 140NM	. 250 . 250 . 250 . 300	1. 000 1. 100 1. 200 1. 400	. 964 1. 064 1. 164 1. 358	. 036 . 036 . 036 . 042	. 838 . 938 1. 038 1. 205	. 810 . 910 1. 010 1. 173	.028 .028 .028 .032	.700 .800 .900 1.040	. 652 . 752 . 852 . 984	.740 .840 .940 1.088	. 832 . 932 1. 032 1. 196	.092 .092 .092 .108	. 838 . 938 1. 038 1. 205	. 866 . 966 1. 066 1. 237	. 028 . 028 . 028 . 032	1. 018 1. 118 1. 218 1. 422	1. 068 1. 168 1. 268 1. 480
30NM 35NM 40NM 45NM 50NM	threads per in, 318 282 254 254 203	in. 0.0118 .0138 .0157 .0177 .0197	in. 0. 0112 .0131 .0150 .0170 .0189	in. 0.0006 .0007 .0007 .0007 .0008	in. 0.0098 .0115 .0132 .0152 .0165	in. 0.0092 .0109 .0126 .0145 .0158	in. 0.0606 .0006 .0007	in. 0,0080 .0095 .0110 .0130 .0138	in. 0.0072 .0087 .0101 .0120 .0127	in. 0.0085 .0101 .0117 .0136 .0146	in. 0.0100 .0117 .0134 .0154 .0166	in. 0.0015 .0016 .0017 .0018 .0020	in. 0.0098 .0115 .0132 .0152 .0165	in. 0.0104 .0121 .0138 .0158 .0172	in. 0.0006 .0006 .0006 .0006 .0007	in. 0.0120 .0140 .0160 .0180 .0200	in, 0.0129 .0149 .0170 .0190 .0212
55NM 60NM 70NM 80NM 90NM	203 169 145 127 113	.0217 .0236 .0276 .0315 .0354	.0208 .0227 .0265 .0303 .0341	.0009 .0009 .0011 .0012 .0013	.0185 .0198 .0231 .0264 .0297	.0178 .0190 .0222 .0254 .0287	.0007 .0008 .0009 .0010	.0157 .0165 .0193 .0220 .0248	.0146 .0153 .0179 .0205 .0231	. 0165 . 0175 . 0204 . 0233 . 0262	.0186 .0198 .0231 .0263 .0295	.0021 .0023 .0027 .0030 .0033	.0185 .0198 .0231 .0264 .0297	.0192 .0206 .0239 .0273 .0307	. 0007 . 0008 . 0008 . 0009 . 0010	.0220 .0240 .0281 .0321 .0361	. 0231 . 0254 . 0295 . 0337 . 0379
100NM 110NM 120NM 140NM	102 102 102 85	.0394 .0433 .0472 .0551	.0380 .0419 .0458 .0535	.0014 .0014 .0014 .0016	. 0330 . 0369 . 0409 . 0474	.0319 .0358 .0398 .0462	.0011 .0011 .0011 .0012	.0276 .0315 .0354 .0409	. 0257 . 0296 . 0335 . 0387	.0291 .0331 .0370 .0428	. 0327 . 0367 . 0406 . 0471	. 0036 . 0036 . 0036 . 0043	. 0330 . 0369 . 0409 . 0474	. 0341 . 0380 . 0420 . 0487	.0011 .0011 .0011 .0013	. 0401 . 0440 . 0480 . 0560	. 0420 . 0460 . 0499 . 0583

<sup>Sizes sbown in italics are preferred. It is recommended that selections be confined to these sizes insofar as possible,
This limit, in conjunction with root form shown in figure V.2, is advocated for use when optical projection methods of gaging are employed. For mechanical gaging the minimum minor diameter of the internal thread is applied.
This limit is provided for reference only. In practice, the form of the threading tool is relied upon for this limit. Control by gaging is not imposed.
This limit is provided for reference only, and is not gaged. For gaging, the maximum major diameter of the external thread is applied.</sup>

⁻Inch limits in this table have been determined by direct conversion of corresponding metric dimensions prior to rounding off. are the differences between the inch limits and, consequently, differ in some instances by 0,0001 inch from the inch equivalent of the metric tolerance.

Figure V.3.—Disposition of tolerances and crest clearances, National Miniature threads.

7. GAGES AND GAGING

The development of a gaging standard for National Miniature threads is anticipated after the accumulation of more experience with this new standard. The following procedures are at present being successfully used by some producers:

1. Gaging of External Threads.—The major diameter of the external thread is inspected by either contact gaging or optical projection. All other dimensions, such as pitch diameter, lead, thread form, and minor diameter are inspected by optical projection methods. There is presented in figure V.4 an illustration of a chart which has been found very satisfactory for the optical projection method of inspection of external threads. Inspection at a magnification of 100 is recommended and at this scale the charts should be accurate to within ± 0.01 in. on all diameters and

on pitches cumulatively up to six.
2. Gaging of Internal Threads.—The minor diameter of the internal thread is gaged with "go" and "not go" plain cylindrical plug gages. All other elements are checked only for assembleability limits by means of a "go" thread plug gage. For the minimum-material limit of the internal thread the accuracy and performance of the tap is relied upon. This implies that the major and pitch diameters of the tap do not exceed the maximum internal thread limits for these elements and disregards overcutting, which is rarely incurred because of the flexibility of these small taps and the manner in which they are generally fluted.

SECTION VI. GAGES AND GAGING FOR UNIFIED, AMERICAN, AND AMERICAN NATIONAL THREADS

1. INTRODUCTION

Gaging of screw threads is the process of investigating or determining the extent to which they conform dimensionally to prescribed limits of size. Dimensional gages are the means applied

for that purpose.

This standard for gages and gaging practice is supplementary to sections III and IV, and appendixes 1 and 2, and is intended to facilitate adherence to the limits of size specified therein without in any sense restricting the requirements more severely than those specified. Adherence to the gaging principles laid down, which have been tested by many years of practical use, will assure assembleability of threads interchangeably, the acceptance of satisfactory threads, and segregation or rejection of threads that are significantly outside of prescribed limitations.

There are two general methods of approach to the dimensional inspection of threads, namely inspection by attributes and inspection by variables. Inspection by attributes involves the application of limit gages to assure that the product is within the prescribed limits of size, whereas inspection by variables involves the application of indicating gages or measuring instruments to measure the extent of deviation of the elements of screw threads from prescribed

Figure V.4.—Suggested chart for projection inspection of external National Miniature

limits of size. Inspection by variables is primarily useful in the control of production tools and processes. Such inspection may be applied, when necessary, to enforce the limits on deviations of individual thread elements, stated on pp. 22, 79, and 130, or to collect data for the analysis of screw thread defects. However, inspection by attributes generally forms the basis for the acceptance or rejection of threads with respect to conformity to specified limits of size.

2. FUNDAMENTALS

1. Gage Classification.—The limits of size of the threads to be produced should be represented in: (1) Gages used in checking the threads as they are produced, known as "working gages"; (2) gages for use in the acceptance of the product, known as "inspection gages"; and (3) gages used to determine the accuracy of the two preceding classes of gages, known as "master" and "setting gages."

2. Gages for Reference.—(a) Master gage.— The master gage is a thread plug gage which represents the physical dimensions of the basic size of the part. It clearly establishes the minimum size of the internal thread and the maximum size of the external thread at the point at which interference between mating parts begins when no allowance is provided. A master gage shall be accompanied by a record of its measurement.

(b) Setting gage (check gage).—(1) Threaded setting gages.—A setting gage is a thread plug gage to which adjustable thread ring gages, thread snap gages, and other thread comparators are set to Threaded setting plug gages are of two standard designs, which are designated as "basiccrest setting plugs" and "truncated setting plugs."

The basic-crest setting plug is one having a width of flat at the crest equal to p/8. It is commonly used for setting thread snap gages and is also used for setting adjustable thread ring gages to size, when adequate facilities are available for checking the thread form and clearance at the major diameter. (See "procedure," p. 118.)

The truncated setting plug of standard design 12 is the same as the basic-crest setting plug except that the crest of the thread is truncated for onehalf of the length of the gage, giving a full-form portion and a truncated portion, as specified in par. 2 (a) p. 111. In setting thread gages to size, the truncated portion controls the pitch diameter, and the full-form portion assures that proper clearance is provided at the major diameter of the ring gage. Also, the use of the full-form portion in conjunction with the truncated portion checks to some degree the flank angle of the thread gage.

(2) Plain cylindrical plug acceptance check gages.— "Go" and "not go" plain cylindrical plug acceptance check gages are required to check the minor diameter limits of thread ring gages of the smaller sizes, after the gage has been properly set to the thread setting plug gage. Standard measuring equipment is usually employed in lieu of plain cylindrical plug gages for sizes larger than \% in. nominal diameter thread.

3. Limit Gages.—Limit gages are of two categories, namely (1) maximum-metal-limit gages. designated "go" gages, and (2) minimum-metal-limit gages, designated "not go" gages.

(a) Maximum-metal or "go" gages.—The maximum-metal-limit or "go" gages check or control the extent of the tolerance, as applied to a specific screw thread, in the direction of the limit of maximum material and represent the maximum limit of external threads and the minimum limit of internal threads. The ideal maximum-metal-limit or "go" gage is a threaded counterpart of the thread, made exactly to its prescribed maximummaterial limits and in length equal to the length of engagement of the thread with its mating thread. Such gages would most nearly duplicate the assembly conditions of threads. They control the virtual diameter (or effective size) at the maximum-material limit. See "Acceptability of Threads," p. 118.

(b) Minimum-metal or "not go" gages.—The minimum-metal gages control the extent of the tolerance in the direction of the limit of minimum material and represent the minimum limit of external threads and the maximum limit of in-

ternal threads.

As stated on p. 22, the minimum-material pitch diameter limits are necessarily a limitation of the pitch diameter as a single thread element. Also, it is a principle of limit gaging that each element or dimension can be checked only singly by a minimum-metal-limit gage. Accordingly, separate gages are required to check pitch, major, and minor diameters at minimum-material limits. That is, for external threads two gages are necessary, one to check the major diameter and the other, pitch diameter; internal threads require a gage to check the pitch diameter and the other, minor diameter. A third factor in minimummaterial-limit gaging is nontechnical but of practical importance, namely the economics of the gaging means and procedures, as thorough checking of a thread requires several individual gaging operations along and around the thread. It is not feasible, therefore, to establish an ideal gage design for gaging pitch diameter and approach that ideal closely in practice, as is done for maximum-metal-limit gages.

As a result, two distinct gaging practices are widely used, as follows:

(1) The use of "not go" thread plug and ring gages provides a satisfactory means of gaging when proper functioning of the thread assembly only requires control of the virtual diameter (or effective size) of the threads at the minimum material limits. The use of such gages is referred to as "virtual diameter (or effective size) gaging practice." See "Acceptability of Threads," p. 118.

¹² See Commercial Standard CS8, for sale by the Superintendent of Docu-nents, U. S. Government Printing Office, Washington 25, D. C. The latest revision should be consulted when referring to such standards.

(2) The use of "not go" thread snap or indicating gages conforming to the thread length requirements stated on p. 114, controls to a close degree the pitch diameter at the minimum-material limit as a single element. Thus, without further checking, their use provides an economical means of control over such other variables as lead, uniformity of helix, flank angle, taper, roundness, and surface condition. The use of such gages, however, is referred to as "single element gaging practice." See "Acceptability of Threads," p. 118.

4. Direction of Tolerances on Gages.—

The dimensions of all gages used for the production of screw threads and "go" gages used for inspection shall be within the extreme limits of size of the product. The limits of size specified for screw threads represent the extreme limitation of an acceptable product. The tolerances are those necessary to include all errors or variations in the sizes of production tools, gages, and all other manufacturing variations. However, in order to avoid needless controversy on parts close to the minimum-material sizes or "not go" limits, because of possible small differences in sizes of the gages used, the pitch diameter tolerances on all "not go" gages used for final inspection and for inspection of purchased product may be outside the product limits if specifically authorized.

5. Temperature at Which Gages Shall be Standard.—The nominal dimensions of gages and product shall be correct at a temperature of 68° F (20° C). As gages and products are ordinarily checked at room temperature, whatever it may happen to be, it is desirable that the coefficient of thermal expansion of gages be the same as that of the product on which they are used. Inasmuch as the majority of threaded products consist of iron and steel, and as screw-thread gages are ordinarily made of hardened steel, this condition is ordinarily fulfilled without giving it special

attention.

6. Measuring Pressure for Wire Measurements. 13—In measuring the pitch diameter of hardened screw-thread gages by means of wires, and in measuring the wires themselves, the same contact load should be used. A contact load of 1 lb is recommended for pitches finer than 20 threads per inch and 2½ lb for 20 threads per inch and coarser. It is also recommended as standard practice that wires be measured between a flat contact and a cylindrical contact 0.750 in. in diameter. The contacts shall be of hardened steel, accurately ground and lapped.

3. SPECIFICATIONS FOR GAGE ELEMENTS

The design of gages is specified in this section only to the extent that it affects the results obtained in the gaging of threads. Other details of design and dimensions are left to the discretion

¹³ Methods of measuring pitch diameter of thread plug gages are described, and specifications for wires are given in appendix 4, p. 194.

of individual departments and agencies of the Government. However, to serve their intended purposes satisfactorily, thread gages should be produced by employing only the latest and best manufacturing techniques. The type of steel or wear-resistant material selected, together with the heat-treating and stabilization processes, should provide for maximum wear life and reduce the dimensional instability to a minimum, thereby insuring that the gages will remain within the tolerances specified over a maximum period. Thread gages should be precision plug or ring lapped to insure adequate refinement of surface finish, removal of amorphous or smear metal after grinding, and uniformity of thread form over the entire length of the gaging member.

(a) GENERAL DESIGN

1. Design of Gage Blanks.—Designs of standard blanks for thread plug and ring gages, setting plug gages, plain cylindrical plug and ring gages, and plain snap gages have been developed by the American Gage Design Committee. The designs have proved satisfactory in many years of use and have been published in Commercial Standard CS8, Gage Blanks (see footnote 12).

2. Removal of Sharp End Threads.—To avoid feather edges on "go" and "not go" thread plug and ring gages and thread setting plug gages, the partial thread at both ends of the gage shall be removed to a blunt start (see definition 26, p. 4). Not more than one complete turn of the thread shall be removed to the point where the full thread form is obtained. On thread ring gages less than ½ in. in nominal size, and on all thread plug gages of 20 threads per inch and finer and on all ring gages of 28 threads per inch and finer, a 60° chamfer from the axis of the gage is permitted in lieu of removal of the partial thread. On truncated thread setting plugs of 28 threads per inch or coarser, where the truncated portion meets the full portion, the feather edge

shall be completely removed.

3. Chip Grooves in "Go" Thread Plug Gages.—Each "go" thread plug gage, except in sizes 0.150 in. and smaller, shall be provided with a chip groove at the entering end. On reversible gages a chip groove is required at each end. Chip grooves are acceptable that are in accordance with general commercial practice such as a longitudinal groove cut parallel with the axis and extending the complete length of the gaging member, or a groove cut at an angle with the The groove shall be located circumferentially at the start of the full thread and in all cases the depth shall extend below the root of the first full thread space. The widths recommended for chip grooves are as follows: Over 0.150 to 0.385 in. nominal diameter, ½ in.; above 0.385 to and including 2.010 in. nominal diameter, $\frac{1}{16}$ in.; and above 2.010 in. nominal diameter, 3/2 in. "Go" thread ring gages of the adjustable type (AGD standard) do not require chip grooves as the adjusting slots serve this purpose.

(b) SPECIFICATIONS FOR THREAD FORM

- 1. Thread Form of "Go" and "Not Go" Thread Gages.—The specifications for thread form of thread gages applicable to both external and internal threads, as exemplified by thread plug and ring gages, are stated in detail below, and are summarized in table VI.1 and figure VI.1. These specifications for thread form apply over the entire circumference and length of the gaging element.
- (a) "Go" thread gages.—(1) Thread crests.—The major diameter of the "go" thread plug gage shall be the same as the minimum (basic) major diameter of the internal thread, with a plus gage tolerance. The minor diameter of the "go" thread ring gage shall be equal to the maximum pitch diameter of the external thread minus H/2, with a minus gage tolerance. The thread crests of plug and ring gages shall be flat in an axial section and parallel to the axis.
- (2) Thread roots.—The minor diameter of the "go" thread plug gage shall be cleared beyond a p/8 width of flat either by an extension of the sides of the thread toward a sharp V or by an undercut to any dimension no wider than the width resulting from p/8 maximum width either side of the centerline of the thread space (see fig. VI.1). The major diameter of the "go" thread ring gage shall be cleared by a clearance cut of substantially p/8 width and approximately central.
- (3) Concentricity of pitch and major or minor diameters.—The pitch and major diameters of "go" thread plug gages, and the pitch and minor diameters of "go" thread ring gages shall be concentric. On thread plug gages an eccentric condition produces an oversize effective major diameter, having a width of flat less than p/8, which may encroach on the minimum permissible limit for the root profile of the internal thread. Similarly, on thread ring gages an eccentric condition produces an undersize effective minor diameter,

Figure VI.1.—Thread form of gages for external and internal threads.

having a width of flat less than p/4, which may encroach on the maximum permissible limit for the root profile of the external thread. The following are the permissible maximum effective major and minimum effective minor diameters as determined by measurements of runout (total indicator reading) with respect to the pitch cylinder:

"Go" thread plug gage: maximum effective major diameter=maximum major diameter specified

"Go" thread ring gage: minimum effective minor diameter=measured minor diameter ¹⁴ - (pitch diameter

gage tolerance+minor diameter gage tolerance)

(b) "Not go" thread gages.—(1) Thread crests.— The maximum major diameter of the "not go" thread plug or equivalent gage shall be equal to the maximum pitch diameter of the internal thread plus H/2. This corresponds to a width of flat at the crest of the gage equal to one-fourth of the pitch. However, the maximum major diameter of the "not go" thread plug gage shall not exceed 15 the minimum major diameter of the internal thread minus $0.0375H (= 0.05 h_b)$.

The minimum minor diameter of the "not go" thread ring or equivalent gage shall be equal to the minimum pitch diameter of the external thread minus H/4. This corresponds to a width of flat at the crest of the gage equal to threeeighths of the pitch. However, the minimum minor diameter of the "not go" thread ring gage shall not be less than the minimum minor diameter of the "go" thread ring gage plus 0.0375H $(=0.05h_b)$. This requirement is necessary to insure that the minor diameter of the "not go" thread ring gage is not less than the minor diameter of the "go" ring gage, which may occur with a three-eighths pitch flat on the "not go" thread ring crest when there is a pitch diameter allowance on the external thread combined with a large pitch diameter tolerance. 15

(2) Thread roots.—The minor diameter of the "not go" thread plug gage shall be cleared beyond a p/4 width of flat by an undercut to any dimension no wider than the width resulting from p/8 maximum width either side of the centerline of the thread space (see fig. VI.1). In small diameters and fine pitches this relief may be an extension of the sides of the thread from the position corresponding to this approximate width toward a sharp V. The major diameter of the "not go" thread ring gage shall be cleared by a clearance cut of substantially p/4 width and approximately central. The "not go" thread ring gage shall clear the maximum major diameter of the external thread or the maximum major diameter of the full-form portion of the truncated thread setting plug for the "not go" thread ring gage, whichever is the greater.

Thus contact of the thread gage can occur on the sides of the threads, but not on the crest or root. Also the effect of angle deviation on the fit of the gage with the thread is minimized.

(3) Concentricity of pitch and major or minor diameters.—The pitch and major diameters of "not go" thread plug gages, and the pitch and minor diameters of "not go" thread ring gages shall be concentric. On thread plug gages an eccentric condition produces an oversize effective major diameter, having a width of flat less than p/4, which may encroach on the minimum permissible limit for the root profile of the internal thread. Similarly, on thread ring gages an eccentric condition produces an undersize effective minor diameter, having a width of flat less than 3p/8, which may encroach on the maximum permissible limit for the root profile of the external thread. The following are the permissible maximum effective major and minimum effective minor diameters as determined by measurements of runout (total indicator reading) with respect to the pitch cylinder:

"Not go" thread plug gage: maximum effective major diameter=maximum major diameter specified.

'Not go" thread ring gage: minimum effective minor diameter=measured minor diameter 14-2 (pitch diameter gage tolerance+minor diameter gage tolerance).

2. Thread Form of Setting Plug Gages.— The specifications for thread form of setting plug gages are stated in detail below, and are summarized in table VI.2 and figures VI.2 and VI.3.

(a) Truncated and basic-crest maximum-metallimit ("go") thread setting plugs.—(1) Thread crests.—The major diameter of the basic-crest setting plug, and of the full-form portion of the truncated maximum-metal-limit thread setting plug shall correspond to the maximum major diameter of the external thread (one-eighth pitch flat).

The major diameter of the truncated portion of the truncated maximum-metal-limit setting plug is equal to the maximum major diameter of the external thread (or the minimum major diameter of the full-form portion of the plug)

minus $(0.060\sqrt[3]{p^2} + 0.017p)$.

(2) Thread roots.—The minor diameter of maximum-metal-limit ("go") thread setting plug shall be cleared beyond a p/8 width of flat either by an extension of the sides of the thread toward a sharp V or by an undercut no wider than a width obtained from p/8 maximum width either side of the centerline of the thread space (see figs. VI.2 and VI.3.).

(b) Truncated and basic-crest minimum-metallimit ("not go") thread setting plugs.—(1) Thread crests.—The major diameter of the truncated portion of the minimum-metal-limit ("not go") thread setting plug shall be equal to the minimum pitch diameter of the external thread plus H/2. The major diameter of the basic-crest setting

Required to be within the specified tolerance.
 This condition occurs in connection with small sizes of class 1 coarse and fine series threads and may occur for extreme combinations of large diameter and fine pitch of class 1 threads of special diameters, pitches, and lengths of engagement.

Figure VI.2.—Thread form of truncated thread setting plug gages.

Note,—See table VI.2, column 13.

Figure VI.3.—Thread form of basic-crest thread setting plug gages.

Note.—See table VI.2, column 13.

	Nominal	size and threads			21							
		Series desig- nation			20							
		Class			19							
	Plain gages for minor	eter	Z to Z	0.00	18	Max. minor diameter of internal thread. Gage tolerance minus.						
	Plain	dian		G ₀	17	Min, minor diameter of internal thread. Gage tolerance plus.						
ls			Pitch diameter	Plus tol. gage	16	Max, pitch diameter of internal thread. Gage tolerance plus, (optional), see par. 4, p. 109.						
rnal threac		Not go	Pitch d	Minus tol. gage	15	Max, pitch diameter of internal thread. Gage tolerance minus.						
Gages for internal threads	Thread gages		Major	diameter	14	Max, pitch diameter of internal thread plus $H/2$, but not to exceed min, major diameter of 'go" thread gage for internal thread minus $0.0375H(=0.05h_b)$. Gage tolerance minus.						
0	Т	Go	Piteh	diameter	13	Min, pitch diameter of internal thread. Gage tolerance plus. When wear allowance is required, add the applicable wear allowance to the min, pitch diameter and then apply the gage tolerance plus.						
			Major	diameter	12	Min, major diameter of internal thread, Gage tolerance plus.						
	for major ter	Not go	Unfinished		111	Min, major diameter of external thread of hot-rolled mate- rial in UNC-2A, NC-2A, NC-2, 8N-2A, and 8N-2. Gage tolerance plus.						
	Plain gages for major diameter	Z			Semi- t						10	Min. major diameter of external thread. Gage tolerance plus,
	Pl		G		6	Max. major diameter of external thread. Gage tolerance minus,						
1 threads			Minor	diameter	œ	Min. pitelt diameter of external thread minus $H/4$ but not less than min. minor diameter of "go" thread gage for external thread plus $0.0375H(=0.05h_b)$. Gage toler ance plus.						
ages for external threads		Not go	Pitch diameter	Minus tol. gage	2	Min. pitch diameter of external thread. Gage tolerance minus, (optional), see par. 4, p. 109.						
Gages	Thread gages		Pitch d	Plus tol. gage	9	Min. pitch diameter of external thread. Gage tolerance plus,						
	Th	0	Minor	diameter	5	Max, pitch diameter of external thread minus H/2. Gage tolerance minus.						
		Go	Pitch	diameter	4	Max, pitch diameter of external thread. Gage tolerance minus. When wear allowance is required, subtract the applicable wear allowance from the max, pitch diameter and then apply the gage tolerance minus.						
		Class			ಣ							
		Series desig- nation			2							
	Nominal	size and threads per inch	•		1							

TABLE VI.1.—Specifications and format for tables of limits of size of threaded and plain gages for Unified, American, and American National external and internal threads

Table VI.2.—Specifications and formal for tables of limits of size of threaded setting plug gages for Unified, American, and American National external threads

					Truneat	ted setting	plugs				Bas	sic-erest settin	g plugs	
Nominal size and	Series		P	lug for G	ło		Plug fo	or Not go		Plug	for Go	Plu	g for Not go)
threads per inch	desig- nation	Class	Major dia	meter	Piteh	Major d	liameter	Pitch o	Pitch diameter		Pitch	Major	Pitch d	iameter
			Truncated	Full- form	diameter	Trun- cated	Full- form	Plus tol.	Minus tol.	Major diame- ter	diame- ter	diameter	Plus tol.	Minus tol. gage
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
			Max, major diameter of external thread (=min. major diameter of full portion of "90" setting plug, see col. 5) minus $(0.060\sqrt[3]{p^2}+0.017p)$. Gage tolerance minus,	Max, major diameter of external thread. Gage tolerance plus.	Max. pitch diameter of external thread. Gage tolerance minus. When wear allowance is required, subtract the applicable wear allowance from the max, pitch diameter and then apply the gage tolerance minus.	Min. pitch diameter of external thread plus $H/2$, Gage tolerance minus,	Same as column 13.	Min, pitch diameter of external thread. Gage tolerance plus,	Min. pitch diameter of external thread, Gage tolerance minus, (optional), see par. 4, p. 109.	Max, major diameter of external thread. Gage tolerance plus.	Same as column 6.	Max. major diameter of external thread provided that, after applying the X major diameter tolerance, the max. major diameter of the gage corresponds to a truncation of not less than 0.067H or 0.0009 in., whichever is the greater. Gage tolerance plus. See footnote 16, p. 114.	Min, pitch diameter of external thread. Gage tolerance plus.	Min. pitch diameter of external thread. Gage tolerance minus (optional), see par. 4, p. 109.

plug and of the full-form portion of the truncated minimum-metal-limit ("not go") thread setting plug is equal to the maximum major diameter of the external thread (equals that of the maximummetal-limit ("go") thread setting plug for the same external thread), provided that the maximum major diameter of the gage, after applying the X gage tolerance plus, corresponds to a truncation of not less than 0.067H or 0.0009 in., whichever is the greater (width of flat equals 0.067p or 0.001 in.).16

(2) Thread roots.—The minor diameter of the minimum-metal-limit ("not go") thread setting plug shall be cleared beyond a p/8 width of flat either by an extension of the sides of the thread toward a sharp V or by an undercut no wider than a width obtained from p/8 maximum width either side of the centerline of the thread space (see figs. VI.2 and VI.3).

(c) Pitch diameter straightness.—To effect proper setting of a thread gage, the pitch cylinder 17 of the setting plug is required to be straight. The maximum permissible taper over the entire length of the setting plug shall be within the following limits: For sizes to and including 4 in. nominal diameter maximum taper equals 0.0001

in., except that for threads coarser than 16 threads per inch the maximum taper equals 0.00015 in. For sizes larger than 4 in. nominal diameter, maximum taper equals 0.0002 in. The permissible taper should be back taper (largest diameter at entering end) and shall be confined within the pitch diameter limits.

3. Specifications for Limits of Size.—The specifications and format for tables of limits of size of thread gages and setting plugs are summarized in tables VI.1 and VI.2 (see tables III.12, III.13, 1.16, and 1.17).

Constants for the various standard thread pitches which are required to determine gage dimensions are tabulated in table VI.3.

(c) SPECIFICATIONS FOR THREAD LENGTH

1. "Go" Gages.—The ideal "go" thread gage, as stated in par. 3 (a), p. 108, should have a length equal to the length of engagement of the thread with its mating thread. The proper control of deviations from correct lead and zero taper requires (1) a length equal to the length of engagement and (2) that the gage should assemble its full length with the thread under inspection. In practice, the lengths of "go" gages made from standard blanks are usualty about as long as the length of engagement, but exceptionally long engagements, or short engagements as for fine-pitch threads, may require modifications of the gage length. In specifying "go" thread gages, reference should be made to Commercial Standard CS8 (see footnote

¹⁶ The procedure for computing the major diameter is as follows: Maximum major diameter of X setting plug equals maximum major diameter of external thread vlus X major diameter gage tolerance, but not greater than the lesser of; (a) Minimum pitch diameter of external thread plus 3p/4 plus X major diameter gage tolerance, or (b) minimum pitch diameter of external thread plus H minus 0.00173 in. After selecting the proper maximum diameter, subtract the X tolerance to obtain the minimum diameter of both the X and W setting plugs. Then apply W tolerance plus for the W setting plug and the X tolerance plus for the X setting plug.

17 See definition 17, p. 4.

Table VI.3.—Constants for computing thread gage dimensions

Threads per inch, n	Pitch,	$^{34}p = 0.75p$	p/4 = 0.25p	p/8 = 0.125p	0 067p	0.10048p	$0.060\sqrt[3]{p^2}$	0.017p	$\begin{vmatrix} 0.060\sqrt[3]{p^2} \\ +0.017p \end{vmatrix}$	Height of sharp V-thread, $H=$ 0.866025 p	$^{3}4H= 0.649519p$	H/2 = 0.43301p	H/4 = 0.21651p	0.13395 H = $0.116p$ = $(2 \times 0.058p)$	0.0375 H = $0.05h_b$ = $0.03248p$
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
80 72 64 56 48	in, 0. 012500 . 013889 . 015625 . 017857 . 020833	in. 0. 00938 . 01042 . 01172 . 01339 . 01562	in. 0.00312 .00347 .00391 .00446 .00521	in. 0.00156 .00174 .00195 .00223 .00260	in. 0.00084 .00093 .00105 .00120 .00140	in. 0.00126 .00140 .00157 .00179 .00209	in. 0.00323 .00347 .00375 .00410 .00454	in. 0.00021 .00024 .00027 .00030 .00035	in. 0.0034 .0037 .0040 .0044 .0049	in. 0. 010825 . 012028 . 013532 . 015465 . 018042	in. 0.008119 .009021 .010149 .011599 .013532	in. 0.00541 .00601 .00677 .00773 .00902	in. 0.00271 .00301 .00338 .00387 .00451	in. 0. 00145 . 09161 . 00181 . 00207 . 00242	in. 0.00041 .00045 .00051 .00058 .00068
44	$\begin{array}{c} .022727 \\ .025000 \\ .027778 \\ .031250 \\ .035714 \end{array}$. 01705	.00568	. 00284	. 00152	. 00228	. 00482	. 00039	. 0052	. 019682	. 014762	. 00984	. 00492	. 00264	. 00074
40		. 01875	.00625	. 00312	. 00168	. 00251	. 00513	. 00042	. 0056	. 021651	. 016238	. 01083	. 00541	. 00290	. 00081
36		. 02083	.00694	. 00347	. 00186	. 00279	. 00550	. 00047	. 0060	. 024056	. 018042	. 01203	. 00601	. 00322	. 00090
32		. 02344	.00781	. 00391	. 00209	. 00314	. 00595	. 00053	. 0065	. 027063	. 020297	. 01353	. 00677	. 00362	. 00101
28		. 92679	.00893	. 00446	. 00239	. 00359	. 00651	. 00061	. 0071	. 030929	. 023197	. 01546	. 00773	. 00414	. 00116
27	. 037037	.02778	. 00926	. 00463	. 00248	.00372	.00667	.00063	. 0073	. 032075	. 024056	. 01604	. 00802	. 00430	. 00120
24	. 041667	.03125	. 01042	. 00521	. 00279	.00419	.00721	.00071	. 0079	. 036084	. 027063	. 01804	. 00902	. 00483	. 00135
20	. 050000	.03750	. 01250	. 00625	. 00335	.00502	.00814	.00085	. 0090	. 043301	. 032476	. 02165	. 01083	. 00580	. 00162
18	. 055556	.04167	. 01389	. 00694	. 00372	.00558	.00874	.00094	. 0097	. 048113	. 036084	. 02406	. 01203	. 00644	. 00180
16	. 062500	.04688	. 01562	. 00781	. 00419	.00628	.00945	.00106	. 0105	. 054127	. 040595	. 02706	. 01353	. 00725	. 00203
$ \begin{array}{c} 14 \\ 13 \\ 12 \\ 11 \\ 11 \end{array} $. 071429	. 05357	. 01786	. 00893	. 00479	.00718	. 01033	. 00121	. 0115	. 061859	. 046394	. 03093	. 01546	.00829	. 00232
	. 076923	. 05769	. 01923	. 00962	. 00515	.00773	. 01085	. 00131	. 0122	. 066617	. 049963	. 03331	. 01665	.00892	. 00250
	. 083333	. 06250	. 02083	. 01042	. 00558	.00837	. 01145	. 00142	. 0129	. 072169	. 054127	. 03608	. 01804	.00967	. 00271
	. 086957	. 06522	. 02174	. 01087	. 00583	.00874	. 01178	. 00148	. 0133	. 075307	. 056480	. 03765	. 01883	.01009	. 00282
	. 090909	. 06818	. 02273	. 01136	. 00609	.00913	. 01213	. 00155	. 0137	. 078730	. 059047	. 03936	. 01968	.01055	. 00295
10	. 100000	. 07500	. 02500	. 01250	. 00670	.01005	.01293	. 00170	. 0146	. 086603	. 064952	. 04330	. 02165	. 01160	. 00325
9	. 111111	. 08333	. 02778	. 01389	. 00744	.01116	.01387	. 00189	. 0158	. 096225	. 072169	. 04811	. 02466	. 01289	. 00361
8	. 125000	. 09375	. 03125	. 01562	. 00838	.01256	.01500	. 00212	. 0171	. 108253	. 081190	. 05413	. 02706	. 01450	. 00406
7	. 142857	. 10714	. 03571	. 01786	. 00957	.01435	.01640	. 00243	. 0188	. 123718	. 092788	. 06186	. 03093	. 01657	. 00464
6	. 166667	.12500	. 04167	.02083	.01117	. 01675	.01817	. 00283	. 0210	. 144338	. 108253	. 07217	. 03608	. 01933	. 00541
5	. 200000	.15000	. 05000	.02500	.01340	. 02010	.02052	. 00340	. 0239	. 173205	. 129904	. 08660	. 04330	. 02320	. 00650
4½	. 222222	.16667	. 05556	.02778	.01489	. 02233	.02201	. 00378	. 0258	. 192450	. 144338	. 09623	. 04811	. 02578	. 00722
4	. 250000	.18750	. 06250	.03125	.01675	. 02512	.02381	. 00425	. 0281	. 216506	. 162380	. 10825	. 05413	. 02900	. 00812

Table VI.4.—Lengths of standard taperlock and trilock thread plug gage blanks

	Three	ad sizes		Thread lengths							
Nomina inclu	l range, isive	Decim	ecimal range Thread plus				Fine-j instru thread gag	ment plug			
From—	То—	Above-	To and includ-ing—	Go (see 1	Not go	Go	Not go				
1	2	3	4	5 in. 14 516 1352 12		6	7	8			
#0 #4 #8 #8	#3 #6 #12 ⁵ /16	in. 0.059 .105 .150 .240	in. 0. 105 . 150 . 240 . 365			in. 3/16 7/32 9/32 5/16	in. 3/16 7/32 9/32 5/16	in. 1/8 5/32 7/32 1/4			
38 916 78 114	1½ 3¼ 1½ 1½	. 365 . 510 . 825 1. 135	. 510 . 825 1. 135 1. 510	34 78 1 1 1 2 1	134	3/8 1/2 5/8 3/4	3/8 1/2 5/8 3/4	5/16 3/8 7/16 1/2			
$1\frac{1}{2}$ 2 $2\frac{1}{2}$ 3	2 2½ 3 12	1. 510 2. 010 2. 510 3. 010	2. 010 2. 510 3. 010 12. 010	3 2 4 1 3 21/8 4 1	1 14	7,8 7,8 1 1	3/4 3/4	5/8 5/8			

Table VI.5.—Lengths of standard thread ring gage blanks and total thread lengths of standard truncated setting plug $gage\ blanks$

	Threa	ed sizes		Lengths	of thread		lengths ncated		
Nomina inclu		Decima	al range	ring	gages	thread setting plugs			
From—	То-	Above—	To and includ-ing—	Thin ring 1	Thick ring	For thin ring	For thick ring		
1	2	3	4	5	6	7	8		
#0 #3 #4 #8	#2 #3 #6 #12	in. 0.059 .090 .105 .150	in. 0.090 .105 .150 .240	$in.$ $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	in.	in. 7/32 3/8 3/8 13/32	in.		
14 38 916 78 1316	5/16 1/2 3/4 11/8 11/2	. 240 . 365 . 510 . 825 1. 135	. 365 . 510 . 825 1. 135 1. 510	11/32 7/16 9/16 11/16 3/4	3/4 15/16 13/8	34 1 11/4 11/2 15/8	178 218 238		
1½2 2 2½2 3 3½4 6¼4	2 2½ 3 3½ 4 6¼ 12¼	1.510 2.010 2.510 3.010 3.510 4.010 6.260	2.010 2.510 3.010 3.510 4.010 6.260 12.260	13/16 7/8 7/8 15/16 15/16	11/4 15/16 13/8 17/16 11/2 11/2 11/2	17/8 2 17/8 2 2 2 21/8	27/8 3 3 31/8 31/4 31/4		

For 12 threads per inch and finer.
 For threads coarser than 12 per inch.
 For 7 threads per inch and coarser.
 For threads finer than 7 and coarser than 16 per inch.
 For threads per inch and finer.

 $^{^1}$ Also applicable to fine-pitch instrument thread ring gages in the range from $\frac{1}{4}$ to $\frac{21}{2}$ in., inclusive. 2 These sizes of thread ring gages have counterbored ends, so that the thread length of Nos. 0 to 2 is $\frac{1}{2}$ in. and of Nos. 3 to 6 is $\frac{3}{2}$ in.

12) which gives lengths of standard gage blanks. If such lengths are not satisfactory, the required lengths of gages should be specified. Tables VI.4 and VI.5 are the pertinent tables taken from the current edition of CS8.

Similarly, the lengths of plain "go" gages, used to check major and minor diameters, should be such that the thread may be checked for taper

throughout its length.

Where indicating gages are used as either threaded or plain "go" gages, the contact elements should engage the thread both along and around the thread over an area approximately equivalent

to that of the "go" plug or ring gages.

2. "Not Go" Gages.—(a) Thread plug and ring gages.—As "not go" gages are intended to check only the pitch diameter at the minimum-material limit, the length of the "not go" thread plug gage need be no more than the number of threads required to obtain an accurate three-wire measurement of pitch diameter—about three full threads. The lengths of standard blanks for "not go" gages, as in tables VI.4 and VI.5, are less than those for "go" gages.

As "not go" thread plug and ring gages normally check only the end threads of the threads under inspection, and as such end threads are not usually representative of the entire thread, a standard practice has been adopted with respect to permissible entry when plug and ring gages are

used, as follows:

Threads are acceptable as within the minimum material limits if, when using plug and ring thread gages, the "not go" plug gage does not enter or the "not go" ring gage is not entered. Threads may be accepted if all complete threads can enter in, or be entered by the "not go" gage, provided that a definite drag results from metal to metal contact on or before the third turn of entry. Neither working nor final inspection "not go" gages should be forced after the drag is definite. The requirements of extreme applications such as exceptionally thin or ductile material, small number of threads, etc., may necessitate modification of this practice, and in such cases the "not go" gaging practice shall be as specified by the responsible department or agency of the Government.

(b) Thread snap gages.—Thread snap gages are generally adjustable and have contact anvils consisting of cone-points, wedge-shaped prisms with rounded edges, serrated or grooved plates, or grooved or threaded cylinders adjustably mounted and suitably spaced in a U-shaped frame. The positions of the anvils are set to a threaded setting plug gage, and the anvils are then clamped in position and sealed. The foregoing specifications for thread form are applicable to contact anvils, but the permissible eccentricity of the pitch and minor diameters of thread ring gages is not applicable to the anvils or rolls of thread snap gages.

"Not go" thread snap gages shall engage the thread over a length of two pitches. They permit checking the thread at various positions along and around the thread. Thus, their use provides a more critical check than that of thread ring gages and definite information regarding other than the end threads.

(c) Indicating thread gages.—Indicating gages, having contact elements corresponding to the anvils specified for "not go" thread snap gages, provide an approximately equivalent check of the minimum-material pitch diameter limit. Indicating gages measure by electrical, optical, mechanical, or other indicating and amplifying means the dimensions or deviations in the dimensions of threads. Indicating gages are also extensively

used as limit gages.

3. Setting Plug Gages.—The lengths of truncated setting plugs shall be such as to provide engagement of the full length of thread of the ring or other gage being checked with the truncated threads and with the full threads. The lengths of basic-crest setting plugs shall similarly provide for full engagement. Lengths of standard blanks for truncated setting plugs are given in Commercial Standard CS8. (See footnote 12.) Table VI.5 is taken from the current edition of CS8.

(d) MARKING OF GAGES

Each gage shall be plainly and permanently marked with the minimum marking essential for positive identification. In the cases of thread plug and thread setting plug gages it may be desirable to identify both the gaging element and the handle. Recommended marking practices are as follows:

1. Thread Plug Gages.—The "go" thread plug gage members are common to all classes of threads, both standard and special, and are identified by the nominal size, threads per inch, "GO," and pitch diameter. Example: "1/20, GO, PD .2175." The "not go" thread plug gage members may be marked with: Nominal size, threads per inch, class, "NOT GO" and pitch diameter. Example: "4-20-2B, NOT GO, PD .2223."

2. Plain Plug Gages for Minor Diameter.— The "go" plain plug gage members are common to all classes of threads and as such may be marked with: Nominal size, threads per inch, "GO," and minor diameter. Example: "4-20, GO, .1960."

The "not go" plain plug gage member may be marked with: Nominal size, threads per inch, "NOT GO," and minor diameter. Example: "4-20, NOT GO, .2067."

3. Thread Ring Gages and Setting Plugs.— The "go" thread ring gages, and setting plug gage members therefor, may be marked with: Nominal size, threads per inch, "GO," and pitch diameter. Example: "¼–20, GO, PD .2175." Gages for classes 2, 3, and 3A are basic. Gages for classes 1A, 2A, and in some instances class 1, are common.

The "not go" thread ring or snap gages, and setting plug gage members therefor, may be marked with: Nominal size, threads per inch,

"NOT GO," and pitch diameter. Example:

"¼-20, NOT GO, PD .2127."

4. Plain Gages for Major Diameter.—The "go" gages for major diameter of external threads may be marked with: Nominal size, threads per inch, "GO," and diameter. Example: "¼–20, GO, .2500."

The "not go" gages for major diameters may be marked with: Nominal size, threads per inch "NOT GO," and diameter. Example: "4–20,

NOT GO, .2408."

5. Plain Plug Acceptance Check Gages.— The "go" plain plug acceptance check gage members may be marked: "GO ACCEPT CHK FOR DIA. XXXX."

The "not go" plain plug acceptance check gage members may be marked: "NOT GO ACCEPT

CHK FOR ĎIA. XXXX."

4. GAGE TOLERANCES AND WEAR ALLOWANCES

1. Standard Tolerance Classes.—Standard tolerances for thread plug and ring gages and threaded setting plugs are of three classes: (1) W tolerances, shown in table VI.6, which represent the highest commercial grade of accuracy or workmanship and which are required especially for truncated setting plugs, (2) X tolerances, shown in table VI.7, which are larger than W

tolerances and are an economical compromise among such factors as gage cost, amount of product tolerance consumed by gage tolerances, and possible observational errors in the measurement of gages with generally available measuring equipment ¹⁸; and (3) Y tolerances, shown in table VI.8, which include a wear allowance and are applicable only to UNS and NS threads in classes 1, 1A, 1B, 2A, and 2B.

2. Tolerance Specifications.—(a) Direction of tolerances ¹⁹.—The directions of tolerances for the individual elements of the various types of gages are specified in tables VI.1 and VI.2.

(b) Tolerances on lead.—Tolerances on lead (pitch and helix) are specified as an allowable variation between any two threads not farther apart than the length of the standard gage, shown in CS8, Gage Blanks (see footnote 12), omitting one full turn at each end of the gage, except that in the case of setting plugs, the length shall be that of the thread in the mating ring gage. On truncated setting plugs, the sign of any lead error present shall be the same on the full-form portion

Table VI.6.—Tolerances for W "go" and "not go" thread gages

	Teleranee	on lead ¹	Tolerance	Toleranee on	major or mir	or diameters		Toleran	ce on pitch di	ameter	
Threads per inch	To and including ½ in. diam	Above ½ in. diam	on half angle of thread	To and including ½ in. diam	Above $\frac{1}{2}$ in. to 4 in. diam	Above 4 in. diam	To and including ½ in. diam	Above $\frac{1}{2}$ in. to $\frac{1}{2}$ in. diam	Above 1½ in. to 4 in. diam	Above 4 in. to 8 in. diam	Above 8 in. to 12 in. diam ²
1	2	3	4	5	6	7	8	9	10	11	12
80 72 64 56	in. ± 0.0001 .0001 .0001 .0001	$\begin{array}{c} in.\\ \pm\\ 0.00015\\ .00015\\ .00015\\ .00015\\ \end{array}$	$\begin{array}{c c} deg & min \\ & \pm \\ 0 & 20 \\ 0 & 20 \\ 0 & 20 \\ 0 & 20 \end{array}$	in. 0.0003 .0003 .0003 .0003	in. 0.0003 .0003 .0004 .0004	in.	in. 0.0001 0.0001 0.0001 0.0001	in. 0.00015 .00015 .00015 .00015	0,0002	in.	in.
48 44 40 36 32 28	. 0001 . 0001 . 0001 . 0001 . 0001 . 00015	. 00015 . 00015 . 00015 . 00015 . 00015 . 00015	$ \begin{vmatrix} 0 & 18 \\ 0 & 15 \\ 0 & 15 \\ 0 & 12 \\ 0 & 12 \\ 0 & 8 \end{vmatrix} $. 0003 . 0003 . 0003 . 0003 . 0003 . 0005	. 0004 . 0004 . 0004 . 0004 . 0005 . 0005	0.0007 .0007	.0001 .0001 .0001 .0001 .0001	.00015 .00015 .00015 .00015 .00015	. 0002 . 0002 . 0002 . 0002 . 0002 . 0002	0. 00025 . 00025	0.0003
27 24 20 18 16	. 00015 . 00015 . 00015 . 00015 . 00015	. 00015 . 00015 . 00015 . 00015 . 00015	0 8 0 8 0 8 0 8 0 8	. 0005 . 0005 . 0005 . 0005 . 0006	. 0005 . 0005 . 0005 . 0005 . 0006	. 0007 . 0007 . 0007 . 0007 . 0009	. 0001 . 0001 . 0001 . 0001 . 0001	. 00015 . 00015 . 00015 . 00015 . 0002	. 0002 . 0002 . 0002 . 0002 . 00025	. 00025 . 00025 . 00025 . 00025 . 0003	. 0003 . 0003 . 0003 . 0004
$\begin{array}{c} 14 \\ 13 \\ 12 \\ 11\frac{1}{2} \\ 11 \end{array}$.0002 .0002 .0002 .0002 .0002	. 0002 . 0002 . 0002 . 0002 . 0002	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.0006 .0006 .0006 .0006	. 0006 . 0006 . 0006 . 0006	. 0009 . 0009 . 0009 . 0009	. 00015 . 00015 . 00015 . 00015 . 00015	. 0002 . 0002 . 0002 . 0002 . 0002	.00025 .00025 .00025 .00025 .00025	.0003 .0003 .0003 .0003 .0003	. 0004 . 0004 . 0004 . 0004
10 9 8 7		. 00025 . 00025 . 00025 . 0003	0 6 0 6 0 5 0 5		. 0006 . 0007 . 0007 . 0007	. 0009 . 0011 . 0011 . 0011		.0002 .0002 .0002 .0002	$\begin{array}{c} .00025 \\ .00025 \\ .00025 \\ .00025 \end{array}$. 0003 . 0003 . 0003 . 0003	. 0004 . 0004 . 0004 . 0004
$\begin{array}{c} 6 \\ 5 \\ 4 \frac{1}{2} \\ 4 \end{array}$. 0003 . 0003 . 0003 . 0003	$\begin{bmatrix} 0 & 5 \\ 0 & 4 \\ 0 & 4 \\ 0 & 4 \end{bmatrix}$.0008 .0008 .0008 .0009	. 0013 . 0013 . 0013 . 0015			. 00025 . 00025 . 00025 . 00025	.0003 .0003 .0003 .0003	.0004 .0004 .0004 .0004

Allowable variation in lead between any 2 threads not farther apart than the length of the standard gage, shown in CS8, omitting 1 full thread at each end of the gage.

² Above 12 in. the tolerance is directly proportional to the tolerance in this column, in the ratio of the diameter to 12 in.

 $^{^{18}}$ While X tolerances on gages are generally acceptable, occasionally a combination of gage and tool errors may cut seriously into product limits, especially in the finer threads. When trouble is encountered in securing class 3 limits on 20 threads per inch or finer, a eareful inspection of tools and gages is suggested. A change to "W" gages may be economical as the closer tolerance gage may leave enough more of the working tolerance to ease the problem. 19 See par. 4, p. 109.

and the truncated portion, and such error shall be uniform within 0.0001 in. over any portion equivalent to the length of the thread ring gage.

(c) Tolerances on flank angle.—Tolerances are specified for the flank angles rather than the included angle to assure that the bisector of the included angle will be perpendicular to the axis of the thread within proper limits. The equivalent of the deviation from the true thread form caused by such irregularities as convex or concave flanks, rounded crests, or slight projections on the thread form, should not exceed the tolerances permitted on flank angle.

(d) Tolerances not cumulative.—Tolerances on lead, flank angle, and pitch diameter are not cumulative; that is, the tolerance on any one element may not be exceeded even though the errors in the other two elements are smaller than

the respective tolerances.

(e) Tolerances for plain gages.—Standard tolerances for plain plug gages for minor diameter of internal threads and for gages for major diameter of external threads are Z tolerances, as shown in table VI.9.

Table VI.7.—Tolerances for X "go" and "not go" thread aaaes

Threads	Toler-	Toler- anee on	Tolera major o diam	r minor	Tolera	nce on p	iteh dia	meter
per ineh	anee on lead ¹	half angle of thread	To and includ- ing 4 in. diam	Above 4 in. diam	To and including 1½ in. diam	Above 1½ to 4 in.diam	Above 4 to 8 in, diam	Above 8 to 12 in. diam
1	2	3	4	5	6	7	8	9
	in.	deg min	in.	in.	in.	in.	in.	in.
80	0.0002	0 30	0.0003		0.0002			
72	.0002	0 30	. 0003		.0002			
64	.0002	0 30	. 0004		.0002			
56	. 0002	0 30	.0004		.0002	0.0003		
48	.0002	0 30	.0004		.0002	.0003		
44	.0002	0 20	.0004		.0002	.0003		
40	.0002	0 20	.0004		.0002	.0003		
36	.0002	0 20	. 0004		.0002	.0003		
32	. 0003	0 15	.0005	0.0007	. 0003	. 0004	0.0005	0.000
28	.0003	0 15	.0005	.0007	.0003	.0004	.0005	.000
27	.0003	0 15	. 0005	. 0007	. 0003	. 0004	.0005	. 000
24	. 0003	0 15	.0005	. 0007	.0003	. 0004	. 0005	. 000
20	. 0003	0 15	.0005	. 0007	. 0003	.0004	. 0005	. 000
18	.0003	0 10	.0005	.0007	. 0003	. 0004	.0005	. 000
16	.0003	0 10	.0006	.0009	.0003	. 0004	. 0006	. 000
14	.0003	0 10	. 0006	.0009	. 0003	. 0004	. 0006	. 000
13	. 0003	0 10	. 0006	.0009	. 0003	.0004	.0006	. 000
12	. 0003	0 10	. 0006	.0009	.0003	. 0004	. 0006	. 000
111/2	. 0003	0 10	. 0006	.0009	.0003	.0004	. 0006	. 000
11	.0003	0 10	. 0006	.0009	.0003	.0004	.0006	. 000
10	.0003	0 10	.0006	. 0009	.0003	.0004	.0006	. 000
9	.0003	0 10	.0007	.0011	.0003	. 0004	.0006	. 000
8 7	.0004	0 5	.0007	. 0011	. 0004	. 0005	.0006	.000
7	.0004	0 5	.0007	.0011	.0004	. 0005	.0006	. 000
6	. 0004	0 5	.0008	.0013	. 0004	. 0005	.0006	. 000
5	. 0004	0 5	.0008	.0013		.0005	.0006	.000
41/2	. 0004	0 5	.0008	.0013		.0005	. 0006	. 000
4	.0004	0 5	.0009	. 0015		.0005	.0006	. 000

¹ Allowable variation in lead between any two threads not farther apart than the length of the standard gage, shown in CS8, omitting one full thread

at each end of the gage. 2 Above 12 in, the tolerance is directly proportional to the tolerance in this column, in the ratio of the diameter to 12 in.

Note.—When a wear allowance is wanted on "go" gages, it is recommended that the X pitch diameter tolerance be divided, one-half for wear and one-half for tolerance.

5. RECOMMENDED GAGE PRACTICES

1. Acceptability of Threads.—(a) At maximum-material limits.—In case of question, the acceptability of threads at the maximum-material limits shall be based on gaging with "go" thread plug and ring gages conforming as closely as practicable to the limits of size of the thread and to the thread form and length specified for such gages (see par. 3(a), Maximum-metal or "go" gages, p. 108.)

(b) At minimum-material limits.—A choice of either of two gaging practices is available, as outlined under par. 3(b), p. 108. The practice to be chosen and applied will depend on whether virtual diameter (or effective size) gaging is specified for the particular application, or whether single element gaging practice is required.

Virtual diameter gaging practice, as previously noted, involving the use of thread plug and ring gages, is specified for all "go" limits of size. Virtual diameter gaging practice is customary for the "not go" limits of classes 1, 1A, 1B, 2, 2A, 2B, and 3B, and 3 internal threads. Single element gaging practice involving the use of thread snap gages, indicating type gages, or their equivalent, is recommended for the "not go" limits of size of all classes 3A and 3 external threads. However, for technical and economical reasons, all classes of external and internal threads larger than 6-in. nominal diameter shall be subject to measurement of the thread elements for acceptance. This is not to preclude the use of gages where economically feasible and acceptable to the producer and consumer.

- 2. Uses of W and X Thread Gages. (-a)"Go" and "not go" thread gages.—It is recommended that W tolerances be applied to "go" and "not go" inspection and working thread gages for class 4. X tolerances are recommended as applicable to all inspection and working thread gages for classes 1, 1A, 1AR, 1B, 2, 2A, 2B, 3, 3A, and 3B, except as follows: Y tolerances, which include a wear allowance are applicable to UNS and NS threads in classes 1, 1A, 1B, 2A,
- (b) Setting plugs for "go" and "not go" gages.— It is recommended that W tolerances be applied on lead and angle to all setting plugs regardless of class. The pitch diameter tolerances shall be W or X as specified.
- 3. Basic-Size "GO" Thread Gages.—Basic size "go" thread gages for internal threads are applicable to all internal thread classes. Basic size "go" thread ring gages and setting plugs are applicable to class 2A when coated. They are also applicable to external thread classes 2, 3A, and 3.
- 4. Procedure in Setting Adjustable Thread Ring Gages.—In setting an adjustable thread ring gage the sealing compound should be removed and the locking screw loosened. Turning the adjusting screw to the right enlarges the ring so

		Tolerance on half angle		e on major diameters			Lin	nits on pit	ch diamete	r		
Threads per inch	Tolerance on lead ¹		To and including	Above 4	To and 1½ in. d		Above 1½ in, diam	in. to 4 meter	Above 4 is diam	n. to 8 in. neter		n, to 12 in. eter²
			4 in. diameter	eter	From—	То—	From-	То-	From-	То	From-	То
1	2	3	4	5	6	7	8	9	10	11	12	13
	in. ±	deg min	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.
80	0.0002	0 45	0.0003		0.0001	0.0003						
72	.0002	0 45	. 0003		.0001	. 0003						
64 56	. 0002	0 45 0 45	.0004		. 0001	. 0004	0.0001	0, 0006				
48	. 0002	0 45	.0004		. 0001	. 0004	. 0001	. 0006				
44	. 0002	0 30	, 0004		. 0001	,0004	0001	. 0006				
40	. 0002	0 30	.0004		. 0001	. 0004	. 0001	.0006				
36	.0002	0 30	. 0004		. 0001	.0004	. 0001	. 0006				
32	. 0003	0 20	. 0005	0.0007	. 0001	. 0004	. 0001	. 0006	0.0001	0.0008	0.0001	0.0010
28	. 0003	0 20	. 0005	. 0007	. 0002	. 0005	. 0002	. 0007	. 0002	. 0009	.0002	. 0011
27	. 0003	0 20	. 0005	. 0007	.0002	. 0005	. 0002	. 0007	. 0002	. 0009	.0002	. 0011
24	. 0003	0 20	. 0005	. 0007	. 0002	. 0005	. 0002	. 0007	. 0002	. 0009	.0002	. 0011
20	. 0003	0 20	. 0005	. 0007	.0002	. 0005	. 0002	. 0007	. 0002	. 0009	. 0002	.0011
18 16	.0003	0 15 0 15	. 0005 . 0006	.0007	. 0002	. 0005	. 0002	. 0007	. 0002	. 0009	. 0002	.0011
10	. 0003	0 15	. 0006	.0009	. 0002	. 0000	. 0002	.0008	.0002	. 0010	. 0002	. 0011
14	. 0003	0 15	.0006	. 0009	, 0002	. 0006	.0002	.0008	. 0002	. 0010	. 0002	. 0012
13	. 0003	0 15	.0006	. 0009	.0002	. 0006	. 0002	. 0008	. 0002	. 0010	. 0002	. 0012
12 11½	.0003	0 10 0 10	.0006	.0009	.0002	. 0006	. 0002	. 0008	.0002	. 0010	. 0002	. 0012
1172	.0003	0 10	.0006	.0009	.0002	.0006	.0002	. 0008	. 0002	. 0010	.0002	. 0612
į			0									
10	.0003	0 10 0 10	.0006	. 0009	. 0002	. 0006	.0002	.0008	. 0002	. 0010	. 0002	. 0012
8	.0003	0 5	.0007	. 0011	. 0002	.0007	. 0002	. 0009	. 0002	. 0011	,0002	. 0013
7	. 0004	0 5	.0007	.0011	. 0002	. 0007	.0002	.0009	. 0002	. 0011	.0002	. 0613
c	0004	0 5	. 0008	. 0013	. 0003	. 0008	. 0003	0010	0000	0010	0000	0014
6 5	. 0004	0 5 5	.0008	. 0013	. 0003	. 0008	. 0003	. 0010	. 0003	.0012	.0003	.0014
41/2	.0004	0 5	.0008	. 0013			. 0003	. 0010	. 0003	. 0012	.0003	. 0014
4	.0004	0 5	. 0009	.0015			. 0003	. 0011	. 0003	. 0013	.0003	. 0015

¹ Allowable variation in lead between any two threads not farther apart than the length of the standard gage, shown in CSS, omitting one full thread at each end of the gage.

² Above 12 in. the tolerance is directly proportional to the tolerance in this column, in the ratio of the diameter to 12 in.

Table VI.9.—Tolerances for plain gages

Size	range			Tolerances		
Above—	To and in- cluding—	XX	X	Y	Z	ZZ
1	2	3	4	5	6	7
in, 0.029 .825 1.510 2.510	in. 0.825 1.510 2.510 4.510	in. 0.00002 .00003 .00004 .00005	in. 0.00004 .00006 .00008 .00010	in_{\star} 0.00007 0.0009 0.00012 0.00015	$\begin{array}{c} in,\\ 0.00010\\ .00012\\ .00016\\ .00020\\ \end{array}$	in, 0.00020 .00024 .00032 .00040
4.510 6.510 9.010	6. 510 9. 010 12. 010	. 000065 . 00008 . 00010	. 00013 . 00016 . 00020	. 00019 . 00024 . 00030	. 00025 . 00032 . 00040	. 00050 . 00064 . 00080

that it turns freely onto the setting plug. Alternately adjusting the adjusting screw and tightening the locking screw, a firm fit on the smallest portion of the thread in the ring should result. While making the adjustment the knurled outside diameter and both sides of the ring should be lightly tapped with a soft-tip or plastic hammer to permit the threads of the ring to wrap themselves around the thread of the setting plug. After satisfactory adjustment has been obtained, the ring is to be removed from the plug and the same procedure of tapping is repeated with slightly

greater emphasis to the sides. If the thread ring gage possesses proper rigidity, the same feel should be still there when the setting gage again is turned into the ring. A tighter fit or inability to reenter the setting gage denotes a fault of the locking device, that should then be taken apart and checked for dimensional conformity to CS8. It is often advisable to do this before even attempting to adjust the thread ring gage. When proper adjustment has been obtained the gage should be sealed.

In setting to a truncated setting plug the ring

gage may be set to either the full or the truncated It is common practice to set slightly freer than a snug fit to the truncated portion and then to cheek the root elearance and wear of flank angle by screwing the ring onto the full portion. Extreme eaution is required when this practice is followed to prevent damage to the thread crest of the setting plug. The opposite practice is to adjust and set the ring to the full portion and then determine the fit of the gage on the truncated portion. If the thread form of the ring gage is satisfactory, there will be a slight or no change of fit. In the ease of a worn thread ring gage, the presence of shake or play when on the truncated portion indicates that the sides of the thread are no longer straight near the root, and the gage should be relapped or discarded.

In order to provide maximum wear life of a setting plug, the plug should be threaded into a ring as few times as possible. This will prevent uneven wear and a taper on the truneated end of the plug. When setting plugs are thus used properly they do not wear unevenly. However, when setting plugs are applied repeatedly to eheek thread ring gages, the criteria for acceptability will vary with the type and application of the ring. A "not go" ring, for example, should be a snug fit at full engagement and provide some resistance to turning at one or two turns engagement. "Go" thread ring gages should also be a snug fit at full engagement. When the length of the product thread permits engagement with the full length of the "go" ring, the requirement as to partial engagement may be relaxed to permit a slightly freer fit. However, there should be no relaxation in the requirements when short product threads, that only partly engage the "go" ring, are being engaged.

If a basic-erest setting plug is used to set a thread ring gage, root elearance of the thread in the ring should be determined by the procedure

outlined below.

The ring gage should be given further inspection to determine whether or not the minor diameter is within the specified limits. The minor diameter may be inspected by means of "go" and "not go" plain cylindrical plug acceptance check gages or

by direct measurement.

5. Procedure for Determining the Clearance in Thread Ring Gages.—The roots of
threads of ring gages, particularly "not go" ring
gages, frequently do not clear the maximum major
diameter of the external thread. To assist the
gage maker and gage inspector, the recommended
procedure for determining the elearance at root
of thread of ring gages is given to supplement, or
substitute for, the use of truneated setting plugs
described in paragraph 4, above. For this purpose an optical examination of a sulfur-graphite,
plaster of Paris, copper-amalgam, or other suitable
east of the thread is made by means of a projection
comparator, toolmaker's microscope, or universal

measuring microscope. The actual magnification of the instrument as used must be known.

(a) Methods of making sulfur-graphite casts.—Sulfur-graphite easts are made from a thorough mixture of finely powdered graphite and crushed lump sulfur which is heated in a ladle until the sulfur is completely melted and becomes viseous. This mixture may be used repeatedly by erushing and remelting. The graphite should constitute about 7 percent of the mixture by weight, although in the practice of various users, the proportion varies from 4 to 20 percent. The graphite is added to eliminate reflections that would be produced by a plain sulfur cast, and to reduce the tendency to shrink upon cooling.

The casting mold may be formed by holding the ring gage between thin plates in the jaws of a vise, the top edge of the plate on one side being well below the thread axis. For small sizes of threads, a convenient arrangement is to use a taper mandrel that is provided with a lengthwise groove having smooth surfaces and an included angle of about 90°, into which the mixture is poured, and in which the cast is later mounted for examination. The bottom of the slot has a slight taper toward the axis at the small end. A square metal stop clamped in the groove serves as a wall in easting. The mandrel is also useful in making copper-amalgam easts, in which case the casting mixture is pressed in.

The sulfur-graphite easting mixture is poured into the mold when the temperature is from 260° to 266° F, and allowed to solidify with slow cooling. The east may be marked with an identification number with a steel stylus. Sulfur-graphite easts warp considerably after a few

hours.

(b) Method of making plaster of Paris casts.— A plaster of Paris east is usually made to determine errors in thread angle, and this east can usually be used to determine elearance. Such a east is made by mixing 5 parts (28 g, or 1 oz) of a good grade of dental plaster of Paris with from 4 to 5 (26 ml) parts by weight of potassiumbiehromate solution made by dissolving 40 g in 1 liter of water. The potassium bichromate inhibits rusting of the gage. This mixture is applied to the threads inside a mold which may be fashioned from cardboard or a strip of eopper, with modeling clay pressed into the threads along the outside bottom edges of the mold. It should be allowed to harden completely before removal. Plaster of Paris easts have less shrinkage than sulfur-graphite, but do not retain dimensions over extended periods of time. They are difficult to remove from rough finish threads without damage.

(c) Determining clearance of "go" thread ring gages.—The flat at crest of the maximum external thread is one-eighth of the pitch, therefore, if the root of thread of the "go" ring is relieved to a width of one-eighth the pitch, the ring

threads clear the maximum major diameter of the thread. If the roots of the "go" ring gage threads are not relieved, they must be to a sharp enough V to clear a flat of one-eighth the pitch. The flanks of the thread should be straight to the point where the \%-pitch flat will make contact with the flanks of the thread. The width of flat on the chart, or template, used should be oneeighth of the pitch times the magnification of the comparator.

(d) Determining clearance of "not go" thread ring gages.—The flat at the crest of a screw with maximum major diameter and minimum pitch

diameter is determined by the formula:

Flat=
$$\frac{p}{2}$$
-h'tan 30°= $\frac{p}{2}$ -0.57735h'

for Unified or American National form of thread, where, h'=maximum major diameter minus

minimum pitch diameter.

If the "not go" ring gage has a relief of ¼ pitch, as recommended, it is necessary to determine whether or not the relief is deep enough. To do this, make a chart, or template, representing a 60° thread with a flat at crest equal to the flat, as determined by the above formula, times the magnification of the comparator. This chart, or template, should fit the image of the thread and contact the flanks of the thread image without contacting in the relief. If ring threads are not relieved, they must be sharp enough to permit the chart, or template, to contact on the flanks of the image rather than in the root.

APPENDIX 1. AMERICAN NATIONAL OF THREAD AND THREAD SERIES FOR BOLTS, MACHINE SCREWS, NUTS, TAPPED HOLES, AND GENERAL APPLICATIONS

1. INTRODUCTION

The American National standards for thread form and thread series as published in previous editions of this Handbook are republished here in condensed form. Except for class 5 threads they are largely superseded by the Unified and American threads as specified in section III. They are thus made available for continued use in existing design and for applications where Unified threads are considered to be less suitable, or where the applica-tion is not covered by Unified and American threads. If American National threads are specified, they shall conform to the requirements herein.

2. AMERICAN NATIONAL FORM OF THREAD

The form of thread profile specified herein, known previously as the "United States standard or Sellers' profile," is known as the "American National form of thread."

(a) SPECIFICATIONS

1. Angle of Thread.—The basic angle of thread (2α) between the sides of the thread measured in an axial plane is 60°. The line bisecting this 60° angle is perpendicular to the axis of the screw thread.

2. FLAT AT CREST AND ROOT.—The flat at the root and crest of the basic thread form is $\frac{1}{2} \times p$, or $0.125 \times p$.

3. Depth of Thread.—The depth of the basic thread form is

$$h\!=\!0.649519\!\times\!p,\, {
m or}\,\,h\!=\!\!\frac{0.649519}{n}$$

where

p = pitch in inches

n = number of threads per inch

h = basic depth of thread

4. Clearance at Minor Diameter.—A clearance shall be provided at the minor diameter of the internal thread by removing from the crest of the basic thread form an amount such as to provide a depth of thread not less than 53 to 75 percent (depending on the size), and not more than 831/3 percent of the basic thread depth.

5. CLEARANCE AT MAJOR DIAMETER.—A clearance shall be provided at the major diameter of the internal thread by making the thread form such that the width of flat

shall be less than $\frac{1}{8} \times p$ but not less than $\frac{1}{24} \times p$.

(b) ILLUSTRATION

There are indicated in figure 1.1 the relations as specified herein for the American National form of thread for the minimum internal thread and maximum external thread, classes 2 and 3. These relations are further shown in figures 1.3 and 1.4.

(c) BASIC THREAD DATA

The basic thread data for this form of thread and for all standard pitches are given in table 1.1.

Figure 1.1.—American National form of thread.

Note.—No allowance is shown. This condition exists in classes 2 and 3 where both the minimum internal thread and the maximum external thread are basic.

NOTATION

 $2\alpha = 60^{\circ}$

 $a=30^{\circ}$ n=number of threads per inch H=0.886025~p=depth of 60° sharp V thread h=0.649519~p=depth of American National form of thread 56h=0.541266~p=maximum depth of engagement

17/18h = 0.613435 pF=0.125000 p=width of fiat at crest and root of American National form $f = 0.108253 \ p$

edepth of truncation

3. THREAD SERIES

It was the aim of the Committee, in establishing thread systems, to eliminate all unnecessary sizes and, in addition, to utilize, as far as possible existing predominating sizes. The coarse-thread and fine-thread series are maintained, the coarse-thread series being the "United States standard" threads, supplemented in the sizes below ¼-in. by sizes taken from the standard established by The American Society of Mechanical Engineers (ASME). The fine-thread series is composed of standards that have been found necessary, and consists of sizes taken from the standards of the Society of Automotive Engineers (SAE) and the fine-thread series of The American Society of Mechanical Engineers.

(a) AMERICAN NATIONAL COARSE-THREAD SERIES

In table 1.2 are specified the nominal sizes and basic dimensions of the "American National coarse-thread series."

The American National coarse-thread series is recommended for general use in engineering work, in machine construction where conditions are favorable to the use of bolts, screws, and other threaded components where quick and easy assembly of the parts is desired, and for all work where conditions do not require the use of fine-pitch threads.

(b) AMERICAN NATIONAL FINE-THREAD SERIES

In table 1.3 are specified the nominal sizes and basic dimensions of the "American National fine-thread series."

Figure 1.2.—Disposition of tolerances, allowance (neutral space), and crest clearances for class 1.

The American National fine-thread series is recommended for general use in automotive and aircraft work, and where special conditions require a fine thread.

(c) AMERICAN NATIONAL EXTRA-FINE-THREAD SERIES

In table 1.4 are specified the nominal sizes and basic discounts of the "American National extra-fine-thread carriers"

series.

The American National extra-fine-thread series is intended for special uses where (1) thin-walled material is to be threaded, (2) thread depth of nuts clearing ferrules, coupling flanges, etc., must be held to a minimum, and (3) a maximum practicable number of threads are required within a given thread length. This thread series is the same as the SAE extra-fine-thread series, but it includes additional sizes.

(d) AMERICAN NATIONAL 8-THREAD SERIES

In table 1.5 are specified the nominal sizes and basic dimensions of the "American National 8-thread series."

Bolts for high-pressure pipe flanges, cylinder-head studs, and similar fastenings against pressure require that an initial tension be set up in the fastening, by elastic deformation of the fastening and the components held together, such that the joint will not open up when the steam or other pr ssure is applied. To secure a proper initial tension it is not practicable that the pitch should increase with the diameter of the thread, as the torque required to assemble the fastening would be excessive. Accordingly, for such purposes the 8-thread series has come into general use.

(e) AMERICAN NATIONAL 12-THREAD SERIES

The nominal sizes and basic dimensions of the "American National 12-thread series" are specified in table 1.6. Sizes of the 12-thread series from ½ in. to and including 1¾ in. are used in boiler practice, which requires that worn stud holes be retapped with a tap of the next larger size, the increment being ¾6 in. throughout most of the range. Die-head chasers for sizes up to 3 in. are stocked by manufacturers.

Figure 1.3.—Disposition of tolerances and crest clearances for class 2.

The 12-thread series is also widely used in machine construction as for thin nuts on shafts and sleeves. It also allows the specification of shoulder diameters in steps of $\frac{1}{8}$ in., as from the standpoints of good design and simplification of practice, it is desirable to limit shoulder diameters to $\frac{1}{8}$ in. steps. Twelve threads per inch is the coarsest pitch in general use, which will permit a threaded collar which screws onto a threaded shoulder to slip over a shaft, the difference in diameter between shoulder and shaft being $\frac{1}{8}$ in.

(f) AMERICAN NATIONAL 16-THREAD SERIES

The nominal sizes and basic dimensions of the "American National 16-thread series" are specified in table 1.7.

The 16-thread series is a uniform pitch series for such applications as require a relatively fine thread. It is intended primarily for use on threaded adjusting collars and bearing retaining nuts.

4. CLASSIFICATION AND TOLERANCES

Thread classes are distinguished from each other by the amounts of tolerance and allowance. There are established herein for general use four distinct classes of threads as specified in the following brief outline. These four classes, together with the accompanying specifications, are for the purpose of assuring the interchangeable manufacture of screw-thread parts throughout the country.

It is not the intention of the Committee arbitrarily to place a general class or grade of work in a specific class. Each manufacturer and user of screw threads is free to select the class best adapted to his particular needs. The limits of size and tolerances for four classes of threads are given in tables 1.8 to 1.13, inclusive.

Class 1______ {Includes screw-thread work in which the threads must assemble readily. Includes the major portion of interchangeable screw-thread work, finished and semifinished bolts and nuts, machine screws, etc.

FIGURE 1.4.—Disposition of tolerances and crest clearances for class 3.

It should be noted that, in the classification of screw threads, the class number designates the permissible limits of looseness or tightness. It has no connotations of quality in any other sense. Class 1 provides for the greatest permissible looseness between minimum external thread and maximum internal thread; class 4 provides for the smallest permissible looseness. Classes 2 and 3 are between classes 1 and 4 as regards looseness. Each class has its proper place and none should be regarded as superior or inferior provided that there is compliance with specification requirements under which it is manufactured and sold.

An examination of the dimensional specifications for the various classes shows that an external thread made to the tolerances and allowances of one class may be used with an internal thread of some other class. Thus, the requirements for a screw-thread fit for specific applications can be met by specifying the proper combination of classes for the components. For example, an external thread made to class 2 limits can be used with internal threads made to classes 1, 2, or 3 limits for specific applications. It is not the purpose of this standard to limit applications of the various standard classes.

(a) GENERAL SPECIFICATIONS

The following general specifications apply to the four classes of threads specified for applications of the American National form of thread.

1. Uniform Minimum Internal Thread.—The pitch diameter of the minimum internal thread corresponds to the basic size. The minimum major diameter of the

Figure 1.5.—Disposition of tolerances, allowance (interference), and crest clearances for class 4.

internal thread is the basic major diameter and is the same for all classes. In no case should the minimum major diameter of the internal thread, as results from a worn tap or cutting tool, be less than specified. The minimum minor diameter of the internal thread is the same for all classes.

2. Maximum External Thread.—The major and pitch diameters of the maximum external thread are equal to the respective basic diameters minus the allowance, if any. The maximum minor diameter of an external thread of a given pitch may be such as results from the use of a worn or rounded threading tool, when the pitch diameter is at its maximum value. In no case, however, should the maximum minor diameter of the thread, as results from tool wear, be greater than that corresponding to a p/4 width of flat.

3. DIRECTION AND SCOPE OF TOLERANCES.—(a) The tolerance on the internal thread is plus, and is applied from

the basic size to above basic size.

(b) The tolerance on the external thread is minus, and is applied from the maximum (or design) size to below the maximum size.

(c) The tolerances specified represent the extreme varia-

tions permitted on the product.
4. Major Diameter To DIAMETER Tolerances.—(a) -Externalthreads.—The tolerances on the major diameters of class 1 or class 2 external threads are twice the tolerance values allowed on the pitch diameters of the same respective classes and pitches with the following exception: On class 2, American National coarse-thread series, externally threaded parts of unfinished, hot-rolled material, the same tolerances on major diameter are applied as on class 1 external threads.

The tolerances on the major diameters of classes 3 and 4 external threads American National coarse-thread series, are the same as those on class 2 finished screws of the same thread series; and for the American National fine-thread series are the same as those on class 2 of that series.

FIGURE 1.6.—Relation of maximum and minimum pitch diameters of classes 1, 2, 3, and 4 to basic pitch diameters.

Table 1.1.—Basic thread data, American National form of thread

Depth of sharp-V thread, $H=$ 0.866025 p	16	in. 0.010825 0.012028 0.013532 0.015465 0.015405	. 019682 . 021651 . 024056 . 027063	. 036084 . 043301 . 048113 . 054127	. 066617 . 072169 . 075307 . 078730	$\begin{array}{c} .086603 \\ .096225 \\ .108253 \\ .123718 \end{array}$	$\begin{array}{c} .144338 \\ .173205 \\ .192450 \\ .216506 \end{array}$
h/18 = 0.036084p	15	in. 0.00045+ 0.00050 0.00056 0.00054 0.00054	. 00082 . 00100 . 00113 . 00129	. 00150 . 00180 . 00200 . 00226	. 00278 . 00301 . 00314 . 00328	. 00361 . 00401 . 00451 . 00515+	.00601 .00722 .00802
h/9 = 0.072169p	14	in. 0.00090 .00100 .00113 .00129	. 00164 . 00180 . 00200 . 00226	. 00301 . 00361 . 00401 . 00451	. 00555+ . 00601 . 00628 . 00656	. 00722 . 00802 . 00902 . 01031	. 01203 . 01443 . 01604 . 01804
h/6 = 0.108253p	13	in. 0.00135+ 0.00169 0.00169 0.00193	. 00246 . 00271 . 00301 . 00387	. 00451 . 00541 . 00601 . 00773	. 00833 . 00902 . 00941 . 00984	. 01083 . 01203 . 01353	01804 $02615+$ 02406 02706
h/3 = 0.216506p	12	in. 0.00271 .00301 .00338 .00387 .00451	. 00492 . 00541 . 00601 . 00677	. 00902 . 01083 . 01203 . 01353	.01665+ .01804 .01883 .01968	. 02165+ . 02406 . 02706 . 03093	. 03608 . 04330 . 04811
5h/12 = 0.270633p	11	in. 0.00338 .00376 .00423 .00483	. 00615+ . 00677 . 00752 . 00846	. 01128 . 01353 . 01504 . 01691	$\begin{array}{c} .02082 \\ .02355 + \\ .02353 \\ .02460 \end{array}$. 02706 . 03007 . 03383	. 04511 . 05413 . 06014 . 06766
h/2 = 0.324760p	10	in. 0.00406 0.00451 0.00507 0.00580 0.00580	. 00738 . 00812 . 00902 . 01015—	. 01353 . 01624 . 01804 . 02030	. 02498 . 02706 . 02824 . 02952	. 03248 . 03608 . 04059	05413 $06495+$ 07217 08119
2h/3 = 0.433013p	6	in. 0.00541 0.0057 0.00677 0.00773	. 00984 . 01083 . 01203 . 01353	. 02165+ . 02165+ . 02706 . 03093	. 03331 . 03608 . 03765+ . 03936	. 04330 . 04811 . 05413 . 06186	$\begin{array}{c} .17217 \\ .18660 \\ .19623 \\ .10825 + \end{array}$
3h/4 = 0.487139p	œ	in. 0.00609 0.00677 0.00761 0.00870 0.00870	. 01107 . 01218 . 01353 . 01522 . 01740	. 02030 . 02436 . 02706 . 03045—	. 03747 . 04059 . 04236 . 04429	. 04871 . 05413 . 06089 . 06959	$\begin{array}{c} .08119 \\ .09743 \\ .10825 + \\ .12178 \end{array}$
5h/6 = 0.541266p	7	in. 0.00677 0.00752 0.00846 0.00967 0.0128	. 01230 . 01353 . 01504 . 01691	. 02255+ . 02706 . 03007 . 03383	. 04164 . 04511 . 04707 . 04921	. 05413 . 06014 . 06766 . 07732	. 09021 . 10825+ . 12028 . 13532
Depth of thread, $h=0.649519p$	9	in, 0.008119, 0.009021, 0.011599, 0.015332	. 014762 . 016238 . 018042 . 020297	. 027056 . 032476 . 036084 . 040595	. 049963 . 054127 . 056480 . 059047	. 064952 . 072169 . 081190 . 092788	.108253 .129904 .144338 .162380
Minimum width of flat at minor diameter of nut, p/4	5	in. 0.00312 0.00347 0.00391 0.00446 0.00521	. 00568 . 00625 . 00694 . 00781	. 01250 . 01250 . 01389 . 01562	. 01923 . 02083 . 02174 . 02273	. 02500 . 02778 . 03125 . 03571	. 04167 . 05000 . 05556 . 06250
Minimum width of flat at major diameter of nut, p/24	4	in. 0.00052 0.00058 0.00065+ 0.00074 0.00087	. 00095— . 00104 . 00116 . 00130	. 00174 . 00208 . 00231 . 00260	. 00321 . 00347 . 00362 . 00379	. 00417 . 00463 . 00521 . 00595+	. 00694 . 00833 . 00926 . 01042
Basie width of flat, p/8	3	in. 0.00156 0.00174 0.00195+ 0.0023 0.00260	. 00284 . 00312 . 00347 . 00391	. 00521 . 00625 . 00694 . 00781	. 00962 . 01042 . 01087 . 01136	. 01250 . 01389 . 01562 . 01786	. 02083 . 02500 . 02778 . 03125
Pitch, p	2	in. 0.012500 0.013889 0.015625 0.017857 0.020833	. 022727 . 025000 . 027778 . 031250	. 041667 . 050000 . 055556 . 062500	. 076923 . 083333 . 086957 . 090909	.100000 .111111 .125000 .142857	. 166667 . 200000 . 222222 . 250000
Threads per inch, n	1	86 45 86 84	48888	25 18 16 17 17	13 12 113/2 11	10 , 9 8 7	6 5 44}⁄2

	Identif	ication	В	asic diamete	ers				TI	aread data			
S	izes	Threads per inch,	Major diameter, D	Pitch diameter, E	Minor diameter, K		Pitch, p	Depth of thread, h	Basic width of flat, p/8	Minimum width of flat at major di- ameter of nut, p/24	Lead angle at basic pitch di- ameter, \(\lambda\)	Sectional area at minor diameter at $D-2h$, $=\frac{\pi K^2}{4}$	Tensile stress area, $\pi \left(\frac{E}{2} - \frac{3H}{16}\right)^2$
	1	2	3	4	5	6	7	8	9	10	11	12	13
No. 1 2 3 4 5	in. 0.073 .086 .099 .112 .125	64 56 48 40 40	in. 0.073 .086 .099 .112 .125	in. 0. 0629 . 0744 . 0855 . 0958 . 1088	in. 0.0527 .6628 .6719 .0795 .0925	mm 1. 854 2. 184 2. 515 2. 845 3. 175	in. 0,01562 .01786 .02083 .02500 .02500	in. 0,01015 .01160 .01353 .01624 .01624	in. 0,00195 .00223 .00260 .00312 .00312	in. 0.00065 .00074 .00087 .00104 .00104	deg min 4 31 4 22 4 26 4 45 4 11	in. ² 0.00218 .00310 .00406 .00496 .00672	in,2 0,00263 .00370 .00487 .00604 .00796
$\begin{array}{c} 6 \\ 8 \\ 10 \\ 12 \end{array}$. 138 . 164 . 190 . 211	32 32 24 24	. 138 . 164 . 190 . 216	. 1177 . 1437 . 1629 . 1889	. 0974 . 1234 . 1359 . 1619	3. 505 4. 166 4. 826 5. 486	. 03125 . 03125 . 04167 . 04167	. 02030 . 02030 . 02706 . 02706	.00391 .00391 .00521 .00521	.00130 .00130 .00174 .00174	4 50 3 58 4 39 4 1	. 00745 . 01196 . 01450 . 0206	.00909 .0140 .0175 .0242
	1/4 5/16 3/8 7/16 1/2	20 18 16 14 13	. 2500 . 3125 . 3750 . 4375 . 5000	. 2175 . 2764 . 3344 . 3911 . 4500	. 1850 . 2403 . 2938 . 3447 . 4001	6, 350 7, 938 9, 525 11, 113 12, 700	.05000 .05556 .06250 .07143 .07692	.03248 .03608 .04059 .04639 .04996	.00625 .00694 .00781 .00893 .00962	. 00208 . 00231 . 00260 . 00298 . 00321	4 11 3 40 3 24 3 20 3 7	. 0269 . 0454 . 0678 . 0933 . 1257	. 0318 . 0524 . 0775 . 1063 . 1419
	9/16 5/8 3/4 7/8	12 11 10 9 8	. 5625 . 6250 . 7500 . 8750 1, 0000	. 5084 . 5660 . 6850 . 8028 . 9188	. 4542 . 5069 . 6201 . 7307 . 8376	14. 288 15. 875 19. 050 22. 225 25. 400	.08333 .09091 .10000 .11111 .12500	.05413 .05905 .06495 .07217 .08119	.01042 .01136 .01250 .01389 .01562	. 00347 . 00379 . 00417 . 00463 . 00521	2 59 2 56 2 40 2 31 2 29	. 162 . 202 . 302 . 419 . 551	. 182 . 226 . 334 . 462 . 606
	$1\frac{1}{4}$ $1\frac{1}{4}$ $1\frac{3}{8}$ $1\frac{1}{2}$ $1\frac{3}{4}$	7 7 6 6 5	1, 1250 1, 2500 1, 3750 1, 5000 1, 7500	1, 0322 1, 1572 1, 2667 1, 3917 1, 6201	. 9394 1. 0644 1. 1585 1. 2835 1. 4902	28, 575 31, 750 34, 925 38, 100 44, 450	.14286 .14286 .16667 .16667 .20000	.09279 .09279 .10825 .10825 .12990	.01786 .01786 .02083 .02083 .02500	. 00595 . 00595 . 00694 . 00694 . 00833	2 31 2 15 2 24 2 11 2 15	. 693 . 890 1. 054 1. 294 1. 744	. 763 . 969 1. 155 1. 405 1. 90
	$2 \\ 2\frac{1}{4} \\ 2\frac{1}{2} \\ 2\frac{3}{4} \\ 3$	4½ 4½ 4 4 4	2, 0000 2, 2500 2, 5000 2, 7500 3, 0000	1, 8557 2, 1057 2, 3376 2, 5876 2, 8376	1, 7113 1, 9613 2, 1752 2, 4252 2, 6752	50, 800 57, 150 63, 500 69, 850 76, 200	. 22222 . 22222 . 25000 . 25000 . 25000	. 14434 . 14434 . 16238 . 16238 . 16238	.02778 .02778 .03125 .03125 .03125	. 00926 . 00926 . 01042 . 01042 . 01042	2 11 1 55 1 57 1 46 1 36	2, 30 3, 02 3, 72 4, 62 5, 62	2, 50 3, 25 4, 00 4, 93 5, 97
	3½ 3½ 3¾ 4	4 4 4 4	3, 2500 3, 5000 3, 7500 4, 0000	3,0876 3,3376 3,5876 3,8376	2, 9252 3, 1752 3, 4252 3, 6752	82, 550 88, 900 95, 250 101, 600	. 25000 . 25000 . 25000 . 25000	.16238 .16238 .16238 .16238	.03125 .03125 .03125 .03125	. 01042 . 01042 . 01042 . 01042	$\begin{array}{cccc} 1 & 29 \\ 1 & 22 \\ 1 & 16 \\ 1 & 11 \end{array}$	6.72 7.92 9.21 10.61	7, 10 8, 33 9, 66 11, 08

(b) Internal threads.—No tolerance is specified, as the maximum major diameter is established by the crest of an unworn tool. See footnote, tables 1.8 to 1.13, inclusive.

5. Basis for Pitch Diameter Tolerances.—(a) NC and NF series, classes 1, 2, 3, and 4.—The tolerances for screw threads specified for the coarse- and fine-thread series were arrived at by combining two factors, known as the net pitch diameter tolerance and the gage tolerance. The theoretical net tolerances for all threads of a given class bear a definite mathematical relationship to each other, and it was intended that these should in no way be reduced by permissible manufacturing tolerances for master gages; that is, gages within the original gage tolerances in the 1921 NSTC Progress Report, which were approximately equivalent to class X tolerances. Consequently the net tolerances were increased by the equivalent diametrical space required to provide for the gage tolerances on diameter, lead, and angle, to produce the extreme tolerances specified for the product. In practice, the actual net tolerances will depend upon the method of gaging and upon the accuracy of the gages used.

The net pitch diameter tolerances for the various classes are based on the following series for a pitch of ½0 in.:

	in.
Class 1	0.0045
Class 2	. 0030
Class 3	. 0020
Class 4	. 0010

Pitch diameter tolerances for pitches finer than $\frac{1}{20}$ in. are to each other and to the tolerance for $\frac{1}{20}$ in. as the 0.6th power of their respective pitches.

Pitch diameter tolerances for pitches coarser than $\frac{1}{20}$ in. are to each other and to the tolerance for $\frac{1}{20}$ in. as the 0.9th power of their respective pitches.

The exponent 0.6 was chosen for pitches finer than $\frac{1}{20}$ in because the resulting tolerances, except in two instances, do not vary more than 0.0001 in from the pitch diameter tolerances specified in the original ASME Machine Screw Standard.

The tolerances on pitch diameter for the coarse- and fine-thread series are based on a length of engagement equal to the nominal diameter, but may be used for lengths of engagement up to $1\frac{1}{2}$ diameters.

(b) NEF, 8N, 12N, and 16N series, classes 2 and 3.— The class 2 pitch diameter tolerances for the extra-fine-, 8-, 12-, and 16-thread series are equal to $0.002\sqrt{D}+0.00133L_e+0.010\sqrt{p}$, and the class 3 tolerances are 70 percent of the class 2 tolerances. The tolerances for the 8-thread series are based on a length of engagement equal to the nominal diameter and for the extra-fine-, 12-, and 16-thread series on a length of engagement of 9 pitches.

(c) Limits of size.—With respect to the pitch diameter limits of size, it is intended, except as hereinafter qualified, that no portion of the complete thread be permitted to project beyond the envelope defined by the maximum-material limits on the one hand, or beyond that defined

_													
	Identif	ication	В	asic diamet	ers				Tł	oread data			
	Sizes	Threads per inch,	Major diameter, D	Pitch diameter, E	Minor diameter, K	Metric equivalent of major diameter	Pitch, p	Depth of thread, h	Basic width of flat, p/8	Minimum width of flat at major di- ameter of nut, p/24	Lead angle at basic pitch di- ameter, \(\lambda\)	Sectional area at minor diameter at $D=2h$, $=\frac{\pi K^2}{4}$	Tensile stress area, $\pi \left(\frac{E}{2} - \frac{3H}{16}\right)^2$
	1	2	3	4	5	6	7	8	9	10	11	12	13
No 0 1 2 3 4	. in. 0.660 .673 .086 .099 .112	80 72 64 56 48	in. 0. 060 . 073 . 086 . 099 . 112	in. 0. 0519 . 0640 . 0759 . 0874 . 0985	in. 0. 0438 . 0550 . 0657 . 0758 . 0849	mm 1, 524 1, 854 2, 184 2, 515 2, 845	in. 0.01250 .01389 .01562 .01786 .02083	in. 0.00812 .00902 .01015 .01160 .01353	in. 0.00156 .00174 .00195 .00223 .00260	in, 0.00352 .00058 .00065 .00074 .00087	deg min 4 23 3 57 3 45 3 43 3 51	in. ² 0.00151 .00237 .00339 .00451 .00566	in. ² 0,00180 00278 00394 00523 00661
$\begin{array}{c} 5 \\ 6 \\ 8 \\ 10 \\ 12 \end{array}$. 125 . 138 . 164 . 190 . 216	44 40 36 32 28	. 125 . 138 . 164 . 190 . 216	.1102 .1218 .1460 .1697 .1928	. 0955 . 1055 . 1279 . 1494 . 1696	3. 175 3. 505 4. 166 4. 826 5. 486	.02273 .02500 .02778 .03125 .03571	.01476 .01624 .01804 .02030 .02320	.00284 .00312 .00347 .00391 .00446	. 00095 . 00104 . 00116 . 00130 . 00149	3 45 3 44 3 28 3 21 3 22	. 60716 . 00874 . 01285 . 0175 . 0226	. 00830 . 01015 . 01474 . 0200 . 0258
	1/4 5/16 3/8 7/16 1/2	28 24 24 20 20	. 2500 . 3125 . 3750 . 4375 . 5000	. 2268 . 2854 . 3479 . 4050 . 4675	. 2036 . 2584 . 3209 . 3725 . 4350	6,350 7,938 9,525 11,113 12,700	.03571 .04167 .04167 .05000 .05000	.02320 .02706 .02706 .03248 .03248	.00446 .00521 .00521 .00625 .00625	. 00149 . 00174 . 00174 . 00208 . 00208	2 52 2 40 2 11 2 15 1 57	. 0326 . 0524 . 0209 . 1090 . 1486	. 0364 . 0580 . 0878 . 1187 . 1599
	9/15 5/8 3/4 7/8	18 18 16 14 14	. 5625 . 6250 . 7500 . 8750 1. 0000	. 5264 . 5889 . 7094 . 8286 . 9536	. 4903 . 5528 . 6633 . 7822 . 9072	14. 288 15. 875 19. 050 22. 225 25. 400	.05556 .05556 .06250 .07143 .07143	.03608 .03608 .04059 .04639 .04639	.00694 .00594 .00781 .00893 .00893	. 00231 . 00231 . 00260 . 00298 . 00298	1 55 1 43 1 36 1 34 1 22	. 189 . 240 . 351 . 480 . 625	. 203 . 256 . 373 . 509 . 663
	$1\frac{1}{8}$ $1\frac{1}{4}$ $1\frac{3}{8}$ $1\frac{1}{2}$	12 12 12 12	1, 1250 1, 2500 1, 3750 1, 5000	1, 0709 1, 1959 1, 3209 1, 4459	1. 0167 1. 1417 1. 2667 1. 3917	28. 575 31. 750 34. 925 38. 100	. 08333 . 08333 . 08333 . 08333	. 05413 . 05413 . 05413 . 05413	.01042 .01042 .01042 .01042	.00347 .00347 .00347 .00347	1 25 1 16 1 9 1 3	.812 1.024 1.260 1.521	. 856 1. 073 1. 315 1. 581

^a The designation of this size has been changed from "NF" to "NS."

 ${\it Table 1.4.--American \ National \ extra-fine-thread \ series, \ NEF}$

Identif	ication	В	asi c diamete	ers				Tì	read data			
Sizes	Threads per inch,	Major diameter, D	Pitch di- ameter, E	Minor diameter, K	Metric equivalent of major diameter	${\rm Pitch}, p$	Depth of thread, h	Basic width of flat, $p/8$	Minimum width of flat at major diameter of nut, p/24	Lead angle at basic pitch di- ameter, \(\lambda\)	Sectional area at minor diameter at $D=2\hbar$, $=\frac{\pi K^2}{4}$	Tensile stress area, $\pi \left(\frac{E}{2} - \frac{3H}{16}\right)^2$
1	2	3	4	5	6	7	8	9	10	11	12	13
in. 1/4 5/16 3/8 7/16 1/2	32 32 32 32 28 28	in. 0. 2500 . 3125 . 3750 . 4375 . 5000	in. 0. 2297 . 2922 . 3547 . 4143 . 4768	in. 0. 2094 2719 3344 3911 4536	mm 6.350 7.928 9.525 11.113 12.700	in. 0. 03125 . 03125 . 03125 . 03571 . 03571	in. 0.02030 .02030 .02030 .02030 .02320 .02320	in. 0.00391 .00391 .00391 .00446 .00446	in. 0.00130 .00130 .00130 .00149 .00149	deg min 2 29 1 57 1 36 1 34 1 22	in. ² 0.0344 .0581 .0878 .1201 .162	in. ² 0. 0379 0. 0625 0932 1274 170
9/16 5/8 11/16 3/4 13/16	24 24 24 20 20	. 5625 . 6250 . 6875 . 7500 . 8125	. 5354 . 5979 . 6604 . 7175 . 7800	. 5084 . 5709 . 6334 . 6850 . 7475	14, 288 15, 875 17, 463 19, 050 20, 638	.04167 .04167 .04167 .05000 .05000	. 02706 . 02706 . 02706 . 03248 . 03248	.00521 .00521 .00521 .00625 .00625	. 00174 . 00174 . 00174 . 00208 . 00208	1 25 1 16 1 9 1 16 1 10	. 203 . 256 . 315 . 369 . 439	. 214 . 268 . 329 . 386 . 458
$^{\frac{7}{6}}_{15/6}$ $^{1}_{146}$	20 20 20 20 18	. 8750 . 9375 1. 0000 1. 0625	. 8425 . 9050 . 9675 1. 0264	. 8100 . 8725 . 9350 . 9903	22, 225 23, 813 25, 400 26, 988	. 05000 . 05000 . 05000 . 05556	. 03248 . 03248 . 03248 . 03608	. 00625 . 00625 . 00625 . 00694	. 00208 . 00208 . 00208 . 00231	$\begin{bmatrix} 1 & 4 \\ 1 & 0 \\ 0 & 57 \\ 0 & 59 \end{bmatrix}$. 515 . 598 . 687 . 770	.536 .620 .711 .799
$1\frac{1}{8}$ $1\frac{3}{16}$ $1\frac{1}{4}$ $1\frac{5}{16}$	18 18 18 18	1, 1250 1, 1875 1, 2500 1, 3125	1, 0889 1, 1514 1, 2139 1, 2764	1, 0528 1, 1153 1, 1778 1, 2403	28, 575 30, 163 31, 750 33, 338	. 05556 . 05556 . 05556 . 05556	. 03608 . 03608 . 03608 . 03608	. 00694 . 00694 . 00694 . 00694	. 00231 . 00231 . 00231 . 00231	0 56 0 53 0 50 0 48	. 871 . 977 1, 690 1, 208	.901 1,009 1,123 1,244
136 1746 112 1946	18 18 18 18	1.3750 1.4375 1.5000 1.5625	1.3389 1.4014 1.4639 1.5264	1.3028 1.3653 1.4278 1.4903	34, 925 36, 513 38, 100 39, 688	. 05556 . 05556 . 05556 . 05556	. 03608 . 03608 . 03608 . 03608	. 00694 . 00694 . 00694 . 00694	. 00231 . 00231 . 00231 . 00231	0 45 0 43 0 42 0 40	1. 333 1. 464 1. 60 1. 74	1, 370 1, 503 1, 64 1, 79
$1\frac{15}{8}$ $1\frac{11}{16}$ $1\frac{3}{4}$ 2	18 18 16 16	1. 6250 1. 6875 1. 7500 2. 0000	1. 5889 1. 6514 1. 7094 1. 9594	1, 5528 1, 6153 1, 6688 1, 9188	41, 275 42, 863 44, 450 50, 800	. 05556 . 05556 . 06250 . 06250	. 03608 . 03608 . 04059 . 04059	. 00694 . 00694 . 00781 . 00781	. 00231 . 00231 . 00260 . 00260	0 38 0 37 0 40 0 35	1, 89 2, 05 2, 19 2, 89	1. 94 2. 10 2. 24 2. 95

Identif	ication		Basic diameters	3		Thre	ad data	
Sizes	Threads per inch	$\begin{array}{c} \text{Major} \\ \text{diameter,} \\ D \end{array}$	$egin{array}{c} ext{Pit}ch \ ext{diameter,} \ E \end{array}$	Minor diameter, K	Metric equiv- alent of major diameter	Lead angle at basic pitch diameter, \(\lambda\)	Sectional area at minor diameter at $D-2h$, $=\frac{\pi K^2}{4}$	Tensile-stress area, $\pi \left(\frac{E}{2} - \frac{3H}{16}\right)^2$
1	2	3	4	5	6	7	8	9
in. 11/8 11/4 13/8 11/2	8 8 8 8	in. 1. 0000 1. 1250 1. 2500 1. 3750 1. 5000	in. 0. 9188 1. 0438 1. 1688 1. 2938 1. 4188	in. 0. 8376 . 9626 1. 0876 1. 2126 1. 3376	mm 25. 400 28. 575 31. 750 34. 925 38. 100	deg min 2 29 2 11 1 57 1 46 1 36	in. ² 0. 551 . 728 . 929 1. 155 1. 405	in.2 0.606 .790 1.000 1.233 1.492
158 134 176 2 218	8 8 8 8	1. 6250 1. 7500 1. 8750 2. 0000 2. 1250	1. 5438 1. 6688 1. 7938 1. 9188 2. 0438	1. 4626 1. 5876 1. 7126 1. 8376 1. 9626	41. 275 44. 450 47. 625 50. 800 53. 975	$\begin{array}{cccc} 1 & 29 \\ 1 & 22 \\ 1 & 16 \\ 1 & 11 \\ 1 & 7 \end{array}$	1. 68 1. 98 2. 30 2. 65 3. 03	1. 78 2. 08 2. 41 2. 77 3. 15
$2\frac{1}{4}$ $2\frac{1}{2}$ $2\frac{3}{4}$ 3 $3\frac{1}{4}$	8 8 8 8	2. 2500 2. 5000 2. 7500 3. 0000 3. 2500	2. 1688 2. 4188 2. 6688 2. 9188 3. 1688	2. 0876 2. 3376 2. 5876 2. 8376 3. 0876	57. 150 63. 500 69. 850 76. 200 82. 550	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3. 42 4. 29 5. 26 6. 32 7. 49	3. 56 4. 44 5. 43 6. 51 7. 69
3½ 3¾ 4 4¼ 4½	8 8 8 8 8	3. 5000 3. 7500 4. 0000 4. 2500 4. 5900	3. 4188 3. 6688 3. 9188 4. 1688 4. 4188	3. 3376 3. 5876 3. `376 4. 0876 4. 3376	88. 900 95. 250 101. 600 107. 950 114. 300	0 40 0 37 0 35 0 33 0 31	8. 75 10. 11 11. 57 13. 12 14. 78	8, 96 10, 34 11, 81 13, 38 15, 06
43/4 5 51/4 51/2 53/4	8 8 8 8 8	4. 7500 5. 0000 5. 2500 5. 5000 5. 7500	4. 6688 4. 9188 5. 1688 5. 4188 5. 6688	4. 5876 4. 8376 5. 0876 5. 3375 5. 5876	120, 650 127, 000 133, 350 139, 700 146, 050	$\begin{array}{ccc} 0 & 29 \\ 0 & 28 \\ 0 & 26 \\ 0 & 25 \\ 0 & 24 \\ \end{array}$	16. 53 18. 38 20. 33 22. 38 24. 52	16. 82 18. 69 20. 66 22. 72 24. 88
6	8	6.0000	5. 9188	5, 8376	152. 400	0 23	26. 76	27. 14

Standard size of the American National coarse-thread series.

Note.—Pitch, p=0.12500 in.; depth of thread, h=0.08119 in.; basic width of flat, p/8=0.01562 in.; minimum width of flat at major diameter of nut, p/24=0.00521 in.

by the minimum-material limits on the other, and thus be outside of the tolerance zone as illustrated in figures 1.2 to 1.5 inclusive. Also, the diameter equivalent of the variation in any given element except pitch diameter shall not exceed one-half of the pitch diameter tolerance. (The full tolerance cannot, therefore, be used on pitch diameter unless deviations in other thread elements are zero.) Deviations from specified size and profile include variations in lead, uniformity of helix, flank angle, taper, out-of-roundness, and surface defects. Accordingly, values are given in tables 1.14 and 1.15, for the standard thread series and classes, of one-half of the pitch diameter tolerances and the deviations in lead and flank angle which are equivalent thereto. Flank angle equivalents are based on a depth of thread engagement of 5H/8.

The diameter equivalents of variations in lead, uniformity of helix, and flank angle are always in the direction toward maximum material, that is they increase the virtual diameter of the external thread and decrease that of the internal thread. Thus, the maximum material pitch diameter limits are a limitation of the virtual diameter (effective size) and are so specified herein for all thread classes.

Variations in taper and roundness of the pitch diameter, together with variations of the pitch diameter as a whole, may be in the direction of minimum material, and thus the minimum-material pitch diameter limit may be specified as a limitation of the pitch diameter as a single element. However, in view of the interrelation of the pitch diameter, variation in lead and flank angle, etc., together with practical considerations relating to established production processes, product application, and inspection procedures, it is customary to interpret the minimum pitch diameter of the external thread and the maximum pitch diameter of the internal thread as virtual diameters (effective sizes) in classes 1 and 2, and classes

3 and 4 internal threads, for application to various massproduced bolts, nuts, screws, and other similar threaded fasteners, and to some custom threaded parts where design requirements are fulfilled. See "Limit gages" and "Acceptability of threads," section VI, pp. 108 and 118. 6. MINOR DIAMETER TOLERANCES.—(a) External

6. MINOR DIAMETER TOLERANCES.—(a) External threads.—No tolerance is specified, as the minimum minor diameter is established by the crest of an unworn tool. See footnote, tables 1.8 to 1.13, inclusive.

(b) Internal threads.—The tolerance on minor diameter

(b) Internal threads.—The tolerance on minor diameter for a given size and pitch of thread is the same for all classes. For sizes 1 in. and larger the tolerance is equal to 0.10825p. For most sizes less than 1 in., tolerances have been made arbitrarily larger than 0.10825p to minimize tapping difficulties.

(b) SCREW THREAD CLASSES

- 1. Class 1.—(a) Definition.—Class 1 is intended to cover the manufacture of threaded parts where quick and easy assembly is necessary, and where an allowance is required.
- (b) Limits of size and tolerances.—Limits of size and tolerances for the respective thread pitches are specified in tables 1.8 and 1.9, and their application is shown in figure 1.2.
- 2. Class 2.—(a) Definition.—Class 2 is intended to apply to the major portion of threaded work in interchangeable manufacture, where no allowance is required.
- (b) Limits of size and tolerances.—No allowance is provided, but since the tolerances on "go" gages are within the limits of size of the thread, the gages will assure a slight clearance between external and internal threads made to the maximum-material limits. Limits of size and tolerances for the respective thread pitches

Identifi	ication		Basic diameters		1	Thre	ad data	
Sizes	Threads per inch	Major diameter, D	$egin{aligned} & ext{Pitch} \ & ext{diameter,} \ & E \end{aligned}$	$egin{array}{c} ext{Minor} \ ext{diameter,} \ ext{K} \end{array}$	Metric equiv- alent of major diameter	Lead angle at basic pitch diameter, λ	Sectional area at minor diameter at $D-2h$, $=\frac{\pi K^2}{4}$	Tensile-stress area, $\pi \left(\frac{E}{2} - \frac{3H}{16}\right)$
1	2	3	4	5	6	7	8	9
in. 1/2 2 9/16 5/8 11/16 3/4	12 12 12 12 12	in. 0. 5000 . 5625 . 6250 . 6875 . 7500	in. 0. 4459 . 5084 . 5709 . 6334 . 6959	in. 0.3917 .4542 .5167 .5792 .6417	mm 12. 700 14. 288 15. 875 17. 463 19. 050	$\begin{array}{cccc} deg & min \\ 3 & 24 \\ 2 & 59 \\ 2 & 40 \\ 2 & 24 \\ 2 & 11 \\ \end{array}$	in.² 0. 121 . 162 . 210 . 264 . 323	$in.^2$ 0. 138 . 182 . 232 . 289 . 351
13/ ₆	12	. 8125	. 7584	. 7042	20, 638	2 0	. 390	. 420
7/8	12	. 8750	. 8209	. 7667	22, 225	1 51	. 462	. 495
15/ ₁₆	12	. 9375	. 8834	. 8292	23, 813	1 43	. 540	. 576
1	12	1. 0000	. 9459	. 8917	25, 400	1 36	. 625	. 663
1/ ₁₆	12	1. 0625	1. 0084	. 9542	26, 988	1 30	. 715	. 756
611/8	12	1. 1250	1. 0709	1. 0167	28. 575	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 812	. 856
13/16	12	1. 1875	1. 1334	1. 0792	30. 163		. 915	. 961
611/4	12	1. 2500	1. 1959	1. 1417	31. 750		1. 024	1. 073
15/16	12	1. 3125	1. 2584	1. 2042	33. 338		1. 139	1. 191
613/8	12	1. 3750	1. 3209	1. 2667	34. 925		1. 260	1. 315
17/16	12	1. 4375	1. 3834	1. 3292	36. 513	1 6	1. 388	1. 445
b11/2	12	1. 5000	1. 4459	1. 3917	38. 100	1 3	1. 52	1. 58
15/8	12	1. 6250	1. 5709	1. 5167	41. 275	0 58	1. 81	1. 87
13/4	12	1. 7500	1. 6959	1. 6417	44. 450	0 54	2. 12	2. 19
17/8	12	1. 8750	1. 8209	1. 7667	47. 625	0 50	2. 45	2. 53
2	12	2, 0000	1, 9459	1. 8917	50, 800	$\begin{array}{cccc} 0 & 47 \\ 0 & 44 \\ 0 & 42 \\ 0 & 39 \\ 0 & 37 \end{array}$	2. 81	2.89
21/8	12	2, 1250	2, 0709	2. 0167	53, 975		3. 19	3.28
21/4	12	2, 2500	2, 1959	2. 1417	57, 150		3. 60	3.69
23/8	12	2, 3750	2, 3209	2. 2667	60, 325		4. 04	4.13
21/2	12	2, 5000	2, 4459	2. 3917	63, 500		4. 49	4.60
258	12	2. 6250	2. 5709	2. 5167	66. 675	0 35	4. 97	5. 08
234	12	2. 7500	2. 6959	2. 6417	69. 850	0 34	5. 48	5. 59
278	12	2. 8750	2. 8209	2. 7667	73. 025	0 32	6. 01	6. 13
3	12	3. 0000	2. 9459	2. 8917	76. 200	0 31	6. 57	6. 69
318	12	3. 1250	3. 0709	3. 0167	79. 375	0 30	7. 15	7. 28
31/4	12	3. 2500	3. 1959	3. 1417	82, 550	0 29	7. 75	7, 89
33/8	12	3. 3750	3. 3209	3. 2667	85, 725	0 27	8. 38	8, 52
31/2	12	3. 5000	3. 4459	3. 3917	88, 900	0 26	9. 03	9, 18
35/8	12	3. 6250	3. 5709	3. 5167	92, 075	0 26	9. 71	9, 86
33/4	12	3. 7500	3. 6959	3. 6417	95, 250	0 25	10. 42	10, 57
37/8	12	3. 8750	3. 8209	3. 7667	98. 425	$\begin{array}{cccc} 0 & 24 \\ 0 & 23 \\ 0 & 22 \\ 0 & 21 \\ 0 & 19 \\ \end{array}$	11. 14	11. 30
4	12	4. 0000	3. 9459	3. 8917	101. 600		11. 90	12. 06
4 1/4	12	4. 2500	4. 1959	4. 1417	107. 950		13. 47	13. 65
4 1/5	12	4. 5000	4. 4459	4. 3917	114. 300		15. 1	15. 3
4 3/4	12	4. 7500	4. 6959	4. 6417	120. 650		16. 9	17. 1
5	12	5. 0000	4. 9459	4. 8917	127. 000	0 18	18. 8	19. 0
51/4	12	5. 2500	5. 1959	5. 1417	133. 350	0 18	20. 8	21. 0
51/2	12	5. 5000	5. 4459	5. 3917	139. 700	0 17	22. 8	23. 1
53/4	12	5. 7500	5. 6959	5. 6417	146. 050	0 16	25. 0	25. 2
6	12	6. 0000	5. 9459	5. 8917	152, 400	0 15	27. 3	27. 5

Standard size of the American National coarse-thread series.
 Standard size of the American National fine-thread series.

are specified in tables 1.8 to 1.13, inclusive, and their application is shown in figure 1.3.

3. Class 3.—(a) Definition.—Class 3 is intended for applications where closeness of fit and accuracy of lead and angle of thread are important. It is obtainable consistently only by the use of high quality production equipment supported by a very efficient system of gaging and inspection. It is the same in every particular as class 2, except that the tolerances are smaller.

(b) Limits of size and tolerances.—No allowance is provided, but since the tolerances on "go" gages are within the limits of size of the thread, the gages will assure a slight clearance between external and internal threads made to the maximum-material limits. Limits of size and tolerances for the respective thread pitches are

specified in tables 1.8 to 1.13, inclusive, and their application is shown in figure 1.4.

4. Class 4.—(a) Definition.—Class 4 is intended for threaded work requiring a fine snug fit, and where a screwdriver or wrench may be necessary for assembly. In the manufacture of screw-thread products belonging in this class it will be necessary to use precision tools, 20 gages made to special tolerances for this class, and other refinements. This class should, therefore, be used only in cases where requirements of the mechanism being produced are exacting, or where special conditions require screws having a precision fit. In order to secure the fit desired it may be necessary in some cases to select the parts when the product is being assembled.

Note.—Pitch, p=0.08333 in.; depth of thread, h=0.05413 in.; basic width of flat, p/8=0.01042 in.; minimum width of flat at major diameter of nut, $p/24\approx0.00347$ in.

²⁰ Including positive control of taps and dies by means of a lead screw.

Identif	ication		Basic diameters			Thre	ad data	
Sizes	Threads per inch	$\begin{array}{c} \text{Major} \\ \text{diameter,} \\ D \end{array}$	Pitch diameter, E	$\begin{array}{c} \text{Minor} \\ \text{diameter,} \\ K \end{array}$	Metric equiv- alent of major diameter	Lead angle at basic pitch diameter, λ	Sectional area at minor diameter at $D-2h$, $=\frac{\pi K^2}{4}$	Tensile-stress area, $\pi \left(\frac{E}{2} - \frac{3H}{16}\right)^2$
1	2	3	4	5	6	7	8	9
in. 434 13/16 7/6 15/16	16 16 16 16 16	in. 0.7500 .8125 .8750 .9375	in. 0.7094 .7719 .8344 .8969 .9594	in. 0.6688 .7313 .7938 .8563 .9188	mm 19. 050 20. 638 22. 225 23. 813 25. 400	$\begin{array}{ c c c c c }\hline deg & min \\ 1 & 36 \\ 1 & 29 \\ 1 & 22 \\ 1 & 16 \\ 1 & 11 \\ \hline \end{array}$	in.² 0.351 420 .495 .576 .663	in.² 0.373 .444 .521 .604 .693
$1\frac{1}{16}$ $1\frac{1}{16}$ $1\frac{3}{16}$ $1\frac{1}{14}$ $1\frac{5}{16}$	16 16 16 16 16	1. 0625 1. 1250 1. 1875 1. 2500 1. 3125	1. 0219 1. 0844 1. 1469 1. 2094 1. 2719	. 9813 1. 0438 1. 1063 1. 1688 1. 2313	26, 988 28, 575 30, 163 31, 750 33, 338	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. 756 . 856 . 961 1. 073 1. 191	.788 .889 .997 1.111 1.230
138 1746 114 1946 158	16 16 16 16 16	1. 3750 1. 4375 1. 5000 1. 5625 1. 6250	1. 3344 1. 3969 1. 4594 1. 5219 1. 5844	1. 2938 1. 3563 1. 4188 1. 4813 1. 5438	34. 925 36. 513 38. 100 39. 688 41. 275	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1. 315 1. 445 1. 58 1. 72 1. 87	1. 356 1. 488 1. 63 1. 77 1. 92
$1^{11}/16$ 1^{34} $1^{13}/16$ $1^{7}/8$ $1^{15}/16$	16 16 16 16 16	1. 6875 1. 7500 1. 8125 1. 8750 1. 9375	1. 6469 1. 7094 1. 7719 1. 8344 1. 8969	1. 6063 1. 6688 1. 7313 1. 7938 1. 8563	42. 863 44. 450 46. 038 47. 625 49. 213	$\begin{array}{ccc} 0 & 42 \\ 0 & 40 \\ 0 & 39 \\ 0 & 37 \\ 0 & 36 \\ \end{array}$	2. 03 2. 19 2. 35 2. 53 2. 71	2. 08 2. 24 2. 41 2. 58 2. 77
2 2½6 2½6 2¾6 2¼	16 16 16 16 16	2,0000 2,0625 2,1250 2,1875 2,2500	1. 9594 2. 0219 2. 0844 2. 1469 2. 2094	1. 9188 1. 9813 2. 0438 2. 1063 2. 1688	50, 800 52, 388 53, 975 55, 563 57, 150	0 35 0 34 0 33 0 32 0 31	2. 89 3. 08 3. 28 3. 48 3. 69	2. 95 3. 15 3. 35 3. 55 3. 76
$2\frac{5}{6}$ 6 2 $\frac{23}{6}$ 2 $\frac{7}{16}$ 6 2 $\frac{1}{2}$	16 16 16 16	2. 3125 2. 3750 2. 4375 2. 5000	2. 2719 2. 3344 2. 3969 2. 4594	2. 2313 2. 2938 2. 3563 2. 4188	58. 738 60. 325 61. 913 63. 500	0 30 0 29 0 29 0 28	3. 91 4. 13 4. 36 4. 60	3.98 4.21 4.44 4.67
25% $23%$ $27%$ 3	16 16 16 16	2. 6250 2. 7500 2. 8750 3. 0000	2. 5844 2. 7094 2. 8344 2. 9594	2. 5438 2. 6688 2. 7938 2. 9188	66. 675 69. 850 73. 025 76. 200	$\begin{array}{ccc} 0 & 26 \\ 0 & 25 \\ 0 & 24 \\ 0 & 23 \end{array}$	5. 08 5. 59 6. 13 6. 69	5. 16 5. 68 6. 22 6. 78
3½ 3½ 3¾ 3½ 3½	16 16 16 16	3. 1250 3. 2500 3. 3750 3. 5000	3. 0844 3. 2094 3. 3344 3. 4594	3.0438 3.1688 3.2938 3.4188	79. 375 82. 550 85. 725 88. 900	$\begin{array}{ccc} 0 & 22 \\ 0 & 21 \\ 0 & 21 \\ 0 & 20 \\ \end{array}$	7. 28 7. 89 8. 52 9. 18	7. 37 7. 99 8. 63 9. 29
35/8 33/4 37/8 4	16 16 16 16	3. 6250 3. 7500 3. 8750 4. 0000	3. 5844 3. 7094 3. 8344 3. 9594	3. 5438 3. 6688 3. 7938 3. 9188	92. 075 95. 250 98. 425 101, 600	0 19 0 18 0 18 0 17	9. 86 10. 57 11. 30 12. 06	9, 98 10, 69 11, 43 12, 19

Standard size of the American National fine-thread series.

Note.—Pitch, p=0.06250 in.; depth of thread, h=0.04059 in.; hasic width of flat, p/8=0.00781 in.; minimum width of flat at major diameter of nut, p/24=0.00260 in.

(b) Limits of size and tolerances.—A small negative allowance is provided. Limits of size and tolerances for the respective thread pitches are specified in tables 1.8 and 1.9, and their application is shown in figure 1.5.

5. Class 5.—This is a wrench fit class intended for studs and tapped holes which are to be assembled permanently. As the earlier specifications have proved to be not entirely satisfactory this class is in process of revision. Reference should be made to previous editions of this handbook for the earlier specifications.

5. METHOD OF DESIGNATING AN AMERICAN NATIONAL THREAD

1. STANDARD AMERICAN NATIONAL THREADS.—The standard method of designating a screw thread is given in section III, p. 26. For all standard threads listed in tables 1.2 to 1.7, inclusive, only the thread designations need be placed on a drawing, it being understood that

the limits of size shall be in accordance with tables 1.8 to 1.13, inclusive, or the corresponding table in ASA B1.1.

Examples: 0.250-28NF-3

2.000- 8N -2

2. Modified American National Threads.—It is occasionally necessary to modify the limits of size of the major diameter of an external thread or the minor diameter of an internal thread from the limits established for standard series and special threads in order to fit a specific purpose but without change in class of thread or pitch diameter limits. Such threads should be specified with the established thread designation followed by a statement of the modified diameter limits and the designation "MOD."

External thread:

%-24NF-3 MOD.

Major diameter .3720-.3648 MOD.

Internal thread:

%-24NF-2 MOD.

Minor diameter .330-.336 MOD. For further examples see section III, p. 26.

Table 1.8.—Limits of size and tolerances, classes 1, 2, 3, and 4, American National coarse-thread series, NC

						Mac	hine ser	ew nun	ber or 1	ıominal	size					
Limits of size and tolerances	1	2	3	4	5	6	8	10	12	1/4	5/16	3/8	7/16	1/2	%6	5/8
Diameter of the day to the day							7	Chreads	per inc	h						
	64	56	48	40	40	32	32	24	24	20	18	16	14	13	12	11
EXTERNAL THREADS	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.
Class 1, major diameter $ \begin{cases} $	0.0723 .0671	0. 0852 . 0796 . 0056	0. 0981 . 0919 . 0062	0, 1110 . 1042 . 0068	0, 1240 . 1172 . 0068	0, 1369 , 1293 , 0076	0.1629 .1553 .0076	0. 1887 . 1795 . 0092	0. 2147 . 2055 . 0092		0.3109 .2995 .0114	0, 3732 . 3606 . 0126	0. 4354 . 4214 . 0140	0. 4978 . 4830 . 0148	0.5601 .5443 .0158	0. 6224 . 6054 . 0170
Classes 2, 3, and 4, major $\begin{cases} Max & \\ Min & \\ Tol & \end{cases}$. 0730 . 0692 . 0038	. 0860 . 0820 . 0040	. 0990 . 0946 . 0044	. 1120 . 1072 . 0048	.1250 .1202 .0048	.1380 .1326 .0054	.1640 .1586 .0054	.1900 .1834 .0066	. 2160 . 2094 . 0066	. 2500 . 2428 . 0072	.3125 .3043 .0082	.3750 .3660 .0090	.4375 .4277 .0098	.5000 .4896 .0104	.5625 .5513 .0112	.6250 .6132 .0118
Class 2, major diameter (threaded parts of unfinished, hot-rolled material) $ -$.0730 .0678 .0052	.0860 .0804 .0056	. 0990 . 0928 . 0062	.1120 .1052 .0068	.1250 .1182 .0068	. 1380 . 1304 . 0076	. 1640 . 1564 . 0076	.1900 .1808 .0092	. 2160 . 2068 . 0092	. 2500 . 2398 . 0102	.3125 .3011 .0114	.3750 .3624 .0126	. 4375 . 4235 . 0140	.5000 .4852 .0148	. 5625 . 5467 . 0158	. 6250 . 6080 . 0170
Class 1, minor diameter Max 1	. 0531	. 0633	. 0725	. 0803	. 0933	. 0986	. 1246	. 1376	. 1636	. 1872	. 2427	. 2965	. 3478	. 4034	. 4579	. 5109
Classes 2, 3, and 4, minor diameter Max 1	. 0538	, 0641	. 0734	. 0813	. 0943	. 0997	. 1257	. 1389	. 1649	. 1887	. 2443	. 2983	. 3499	.4056	. 4603	. 5135
Class 1, pitch diameter $-$ { $\begin{bmatrix} Max^3 \\ Min \\ Tol \end{bmatrix}$.0736 .0708 .0028	.0846 .0815 .0031	.0948 .0914 .0034	. 1078 . 1044 . 0034	.1166 .1128 .0038	.1426 .1388 .0038	.1616 .1570 .0046	.1876 .1830 .0046	. 2160 . 2109 . 0051	. 2748 . 2691 . 0057	. 3326 . 3263 . 0063	.3890 .3820 .0070	. 4478 . 4404 . 0074	.5060 .4981 .0079	. 5634 . 5549 . 0085
Class 2, pitch diameter $\begin{bmatrix} \mathbf{Max}^3 & \\ \mathbf{Min} & \\ \mathbf{Tol} & \end{bmatrix}$.0610	.0744 .0724 .0020	. 0855 . 0833 . 0022	.0958 .0934 .0024	.1088 .1064 .0024	.1177 .1150 .0027	. 1437 . 1410 . 0027	. 1629 . 1596 . 0033	. 1889 . 1856 . 0033	. 2175 . 2139 . 0036	. 2764 . 2723 . 0041	.3344 .3299 .0045	.3911 .3862 .0049	. 4500 . 4448 . 0052	. 5084 . 5028 . 0056	. 5660 . 5601 . 0059
Class 3, pitch diameter $ \begin{cases} $. 0615	.0744 .0729 .0015	.0855 .0839 .0016	. 0958 . 0941 . 0017	. 1088 . 1071 . 0017	.1177 .1158 .0019	.1437 .1418 .0019	. 1629 . 1605 . 0024	. 1889 . 1865 . 0024	. 2175 . 2149 . 0026	. 2764 . 2734 . 0030	.3344 .3312 .0032	.3911 .3875 .0036	.4500 .4463 .0037	. 5084 . 5044 . 0040	.5660 .5618 .0042
Class 4, pitch diameter $-$ $\begin{cases} Max^3 - Min - Min - Tol_{} - Tol_{} \end{cases}$. 2178 . 2165 . 0013	. 2767 . 2752 . 0015	.3348 .3332 .0016	.3915 .3897 .0018	. 4504 . 4485 . 0019	. 5089 . 5069 . 0020	. 5665 . 5644 . 0021
INTERNAL THREADS																
Classes 1, 2, 3, and 4, major diameter Min 2	. 0730	. 0860	. 0990	, 1120	. 1250	, 1380	. 1640	, 1900	. 2160	. 2500	.3125	. 3750	.4375	. 5000	. 5625	. 6250
Classes 1, 2, 3, and 4, Max minor diameter Tol_{Max}	. 0561 . 0623 . 0062	.0667 .0737 .0070	.0764 .0841 .0077	. 0849 . 0938 . 0089	. 0979 . 1062 . 0083	. 1042 . 1145 . 0103	. 1302 . 1384 . 0082	. 1449 . 1559 . 0110	. 1709 . 1801 . 0092	. 1959 . 2060 . 0101	. 2524 . 2630 . 0106	.3073 .3184 .0111	.3602 .3721 .0119	. 4167 . 4290 . 0123	.4723 .4850 .0127	.5266 .5397 .0131
Classes 1, 2, 3, and 4, pitch diameter Min 3	. 0629	. 0744	. 0855	. 0958	. 1088	. 1177	. 1437	.1629	. 1889	. 2175	. 2764	. 3344	.3911	. 4500	. 5084	. 5660
Class 1, pitch diameter ${\rm Max}_{\rm Tol}$. 0655	.0772	. 0886 . 0031	. 0992	.1122 .0034	.1215 .0038	.1475 .0038	.1675 .0046	. 1935 . 0046	. 2226 . 0051	. 2821 . 0057	.3407	.3981 .0070	.4574 .0074	.5163	. 5745 . 0085
Class 2, pitch diameter ${\rm Max}_{\rm Tol}$. 0648	.0764	. 0877	.0982	. 1112 . 0024	. 1204	. 1464 . 0027	. 1662 . 0033	. 1922 . 0033	. 2211	. 2805	. 3389	. 3960	. 4552 . 0052	.5140	.5719 .0059
Class 3, pitch diameter ${\rm Max}_{\rm Tol}$. 0643	. 0759 . 0015	.0871	. 0975 . 0017	.1105 .0017	.1196 .0019	. 1456 . 0019	. 1653 . 0024	. 1913 . 0024	. 2201 . 0026	. 2794	. 3376	.3947	. 4537 . 0037	. 5124	.5702 .0042
Class 4, pitch diameter ${Max \{Max \} \}}$.2188	. 2779 . 0015	. 3360	. 3929 . 0018	. 4519 . 0019	. 5104 . 0020	. 5681

See footnotes on p. 134.

Table 1.8.—Limits of size and tolerances, classes 1, 2, 3, and 4, American National coarse-thread series, NC—Continued

								Siz	Size (inehes)								
Limits of size and tolerances	8	2%		11/8	11/4	13%	11/2	134	63	21/4	21/2	23/4	en	31/4	31/2	33,4	4
								Thre	Threads per in	ineh							
	10	6	×	2	1-	9	9	2	41/2	41%	4	4	₩.	4	4	4	4
EXTERNAL THREADS (Max	in. 0.7472 .7288 .0184	$\begin{array}{c c} & in. \\ & in. \\ & 0.8719 \\ & .8519 \\ & .0200 \end{array}$	in. 9 0.9966 9 .9744 . 0222	in. 1. 1211 1. 0963 . 0248	in. 1. 2461 1. 2213 . 0248	in. 1.3706 1.3416 .0290	in. 1, 4956 1, 4666 . 0290	in. 1. 7448 1. 7110 . 0338	in. 1. 9943 1. 9575 . 0368	in. 2. 2413 2. 2075 . 0368	in. 2. 4936 2. 2. 4528 2. . 0408	in. 7436 7028 0408	in. 2. 9936 2. 9528 3. 0408	in. 3. 2436 3. 2028 . 0408	in. 3. 4936 3. 4528 . 0408	in. 3. 7436 3. 7028 . 0408	in. 3, 9936 3, 9528 . 0408
Classes 2, 3, and 4, major diameter ${\rm Min.}$ [Tol		2 .8550 28 .0140	1.0000 9.9848 0.0152	1. 1259 1. 1080 . 0170	1.2500 1.2330 .0170	1, 3750 1, 3548 , 0202	1. 5000 1. 4798 . 0202	1, 7500 1, 7268 1, 0232	2.0000 1.9746 .0254	2. 2500 2. 2246 . 0254	2. 5000 2. 4720 2. 0280	2. 7220 3 2. 7220 2 . 0280	3. 0000 3 2. 9720 3 . 0280	3. 2500 3. 2220 . 0280	3. 5000 3. 4720 . 0280	3. 7500 3. 7220 . 0280	4. 0000 3. 9720 . 0280
Class 2, major diameter (threaded parts of unfinished, $\begin{cases} Maxhot-rolled \ material). \end{cases}$	7500 7316 .0184	. 8750 (6 . 8550 84 . 0200	1.0000 0.9778 0.0222	1, 1250 1, 1002 0248	1, 2500 1, 2252 0248	1.3750 1.3460 .0290	1. 5000 1. 4710 . 0290	1. 7500 1. 7162 . 0338	2. 0000 1. 9632 . 0368	2, 2500 2, 2132 . 0368	2. 5000 2. 4592 2. 0408	2. 7500 3 2. 7092 2 . 0408	3. 0000 3 2. 9592 3 . 0408	3. 2500 3. 2092 . 0408	3. 5000 3. 4592 . 0408	3. 7500 3. 7092 . 0408	4.0000 3.9592 .0408
Class 1, minor diameter Max 1_	1	. 7356	8 . 8432	. 9458	1.0708	1, 1661	1. 2911	1. 4994	1.7217	1. 9717	2, 1869 2.	4369	2. 6869	2, 9369	3, 1869	3, 4369	3,6869
Classes 2, 3, and 4, minor diameter Max 1.	11	73 . 7387	7 . 8466	. 9497	1.0747	1.1705	1, 2955	1.5046	1.7274	1, 9774	2. 1933 2	2, 4433 2	2. 6933	2. 9433	3, 1933	3, 4433	3, 6933
Class 1, pitch diameter ${\rm Max}^3$. ${\rm Class}$ 1, ${\rm Pitch}$ diameter ${\rm Tol}$	3 6822 6730 .0092	22 . 7997 10 . 7897 20 . 0100	7 . 9154 7 . 9043 0 . 0111	1, 0283 1, 0159 0124	1, 1533 1, 1409 1, 0124	1. 2623 1. 2478 . 0145	1, 3873 1, 3728 1, 0145	1. 6149 1. 5980 . 0169	1.8500 1.8316 .0181	2. 1000 2. 0816 . 0184	2. 3312 2. 3108 . 0204	2. 5812 2. 5608 2. 0204	2.8312 2.8108 .0204	3. 0812 3. 0608 . 0204	3. 3312 3. 3108 . 0204	3. 5512 3. 5608 . 0204	3, 8312 3, 8108 , 0204
Class 2, pitch diameter	3 6850 6786 .0064	. 8028 86 . 7958 34 . 0070	8 .9188 9 .9112 0 .0076	$\begin{array}{c} 1.0322 \\ 1.0237 \\ .0085 \end{array}$	1. 1572 1. 1487 . 0085	1, 2667 1, 2566 1, 0101	1.3917 1.3816 .0101	1. 6201 1. 6985 . 0116	1. 8557 1. 8430 . 0127	2. 1057 2. 0930 . 0127	2. 3376 2. 3236 2. 0140 .	5876 5736 0140	2.8376 2.8236 3.0110	3. 0876 3. 0736 . 0140	3. 3376 3. 3236 . 0140	3. 5876 3. 5736 . 0140	3.8376 3.8236 .0140
Class 3, pitch diameter	36850 6805 .0045	. 8028 15 . 7979 15 . 0049	8 .9188 9 .9134 9 .0054	1. 0322 1. 0263 . 0059	1. 1572 1. 1513 . 0059	1. 2667 1. 2596 . 0071	1, 3917 1, 3846 . 0071	1. 6201 1. 6119 . 0082	1. 8557 1. 8468 . 0089	2. 1057 2. 0968 . 0089	2. 3376 2. 3279 2. 0097	2. 5876 2. 5779 2. 0097	2.8376 2.8279 .0097	3. 0876 3. 0779 . 0097	3. 3376 3. 3279 . 0097	3. 5876 3. 5779 . 0097	3.8376 3.8279 .0097
Class 4, pitch diameter	6856	. 8034 3 . 8010 3 . 0024	1 .9195 3 .9168 4 .0027	1,0330 1,0300 0,0030	1. 1580 1. 1550 . 0030	1. 2676 1. 2640 . 0036	1, 3926 1, 3890 1, 0036	1. 6211 1. 6170 . 0041	1. 8568 1. 8524 . 0044	2. 1068 2. 1024 . 0044	2. 3389 2. 3341 2. 0048	2. 5889 2. 2. 5841 2. . 0048	8389 8341 0048	3.0889 3.0841 .0048	3. 3389 3. 3341 . 0048	3. 5889 3. 5841 . 0048	3. 8389 3. 8341 . 0048
INTERNAL THREADS																	
Classes 1, 2, 3, and 4, major diameter Min ² .	27500	00 8750	0 1.0000	1.1250	1.2500	1,3750	1, 5000	1, 7500	2, 0000	2, 2500	2. 5000 2	2,7500 3	3.0000	3, 2500	3. 5000	3. 7500	4.0000
Classes I, 2, 3, and 4, minor diameter $\{Max\{Tol\}\}$	6417 6553 .0136	7 . 7547 33 . 7689 86 . 0142	7 .8647 9 .8795 2 .0148	. 9704 . 9858 . 0154	1. 0954 1. 1108 . 0154	1. 1946 1. 2126 . 0180	1. 3196 1. 3376 . 0180	1, 5335 1, 5551 1, 0216	1, 7594 1, 7835 1, 0241	2. 0094 2. 0335 . 0211	2. 2294 2. 2564 2. 0270	4794 5064 0270	2. 7294 2. 7564 3. 0270	2. 9794 3. 0064 . 0270	3. 2294 3. 2564 . 0270	3. 4794 3. 5064 . 0270	3. 7294 3. 7564 . 0270
Classes 1, 2, 3, and 4, pitch diameter Min 3	3	90 8028	8 . 9188	1.0322	1.1572	1. 2667	1.3917	1.6201	1.8557	2, 1057	2. 3376 2	2. 5876 2.	8376	3.0876	3.3376	3. 5876	3.8376
Class 1, pitch diameter $\{Max.\}$	6942	28 . 8128 20 . 0100	9299	1.0446	1.1696	1. 2812	1.4062	1. 6370 . 0169	1.8741	2, 1241	2.3580 2.0204	2. 6080 2. . 0204 .	8580 0204	3.1080 8	3.3580 3	3. 6080 . 0204	3.8580 .0204
Class 2, pitch diameter $\{Max\{Tol\}\}$	6914	. 8098	3 . 9264 0 . 0076	1.0407	1.1657	1, 2768	1.4018	1.6317	1.8684	2.1184	2.3516 2.0140	2. 6016 2. . 0140 .	8516 0140	3.1016	3.3516 3	3.6016 .0140	3.8516 0.0140
Class 3, pitch diameter $\left\{ \mathrm{Max}_{-} \right\}$. 6895	.8077 .5 .0049	9242	1,0381	1. 1631	1. 2738	1.3988	1.6283	1.8646	2.1146	2.3473 2	2. 5973 2 . 0097	. 8473 3	. 0973	3.3473	3. 5973 . 0097	3.8473
Class 4, pitch diameter $\{$ Tol $\{$ Tol $\}$	6873	.8052 .3 .0024	2 .9215 4 .0027	1.0352	1.1602	1. 2703	1.3953	1. 6242 . 0041	1.8601	2.1101	2.3424 2 .0048	2. 5924 2 . 0048	2.8424 3	3.0924	3.3424 :	3. 5924 . 0048	3.8424 0.0048
	-	-	-						-		-	-	-	-	- .	- ,	

Dimensions given for the maximum minor diameter of the external thread are figured to the intersection of the worn tool are with a center line through evest and root. The minimum minor diameter of the minimum external thread equal to \$18 \times p\$, and may be determined by subtracting the basic thread depth, \$(0.0.6499 p), from the minimum pitch diameter of the external thread.

2 Dimensions for the minimum major diameter of the internal thread correspond to the basic flat \$(18 \times p)\$ and the profile at the major diameter produced by a worn tool must not fall below the basic outline. The maximum major diameter of the internal thread shall be that corresponding to a flat at the major diameter of the internal thread by adding \$158 \times p\$ (0.0.7399 p) to the maximum pitch diameter of the internal thread by adding \$150 \times p\$ (0.0.7399 p).

3 These dimensions are the maximum material or "go" size and are those which should be placed on the component drawing with the tolerances.

Table 1.9.—Limits of size and tolerances, classes 1, 2, 3, and 4, American National fine-thread series, NF

					M	achine so	erew nun	nber or n	ominal s	ize				
Limits of size and tolerances	0	1	2	3	4	5	6	8	10	12	1/4	5/16	3/8	7/16
							Threads	per inch						
	80	72	64	56	48	44	40	36	32	28	28	24	24	20
EXTERNAL THREADS	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.
Class 1, major diameter $-$ $\begin{cases} Max & \\ Min & \\ Tol & \end{cases}$.0545	0, 0723 . 0673 . 0050	0.0853 .0801 .0052	0.0982 .0926 .0056	0. 1111 . 1049 . 0062	0.1241 .1177 .0064	0. 1370 . 1302 . 0068	0, 1629 , 1557 , 0072	0, 1889 , 1813 , 0076	0.2148 .2062 .0086	0. 2488 . 2402 . 0086	0.3112 .3020 .0092	0.3737 .3645 .0092	0. 4360 . 4258 . 0102
Classes 2, 3, and 4, major Min Tol.	. 0600 . 0566 . 0034	. 0730 . 0694 . 0036	. 0860 . 0822 . 0038	.0990 .0950 .0040	. 1120 . 1076 . 0044	. 1250 . 1204 . 0046	. 1380 . 1332 . 0048	. 1640 . 1590 . 0050	. 1900 . 1846 . 0054	. 2160 . 2098 . 0062	. 2500 . 2438 . 0062	.3125 .3059 .0066	. 3750 . 3684 . 0066	. 4375 . 4303 . 0072
Class 1, minor diameter Max.1	. 0440	. 0553	. 0661	. 0763	.0855	. 0962	. 1063	. 1288	, 1506	. 1710	, 2050	. 2601	. 3226	. 3747
Classes 2, 3, and 4, minor diameter Max. ¹	. 0447	. 0560	. 0668	.0771	. 0864	. 0971	. 1073	. 1299	. 1517	. 1722	. 2062	. 2614	. 3239	. 3762
Class 1, pitch diameter $\left\{\begin{array}{ll} \text{Max.}^3\\ \text{Min.}\\ \text{Tol.}\end{array}\right\}$. 0488	. 0633 . 0608 . 0025	. 0752 . 0726 . 0026	. 0866 . 0838 . 0028	.0976 .0945 .0031	. 1093 . 1061 . 0032	.1208 .1174 .0034	. 1449 . 1413 . 0036	.1686 .1648 .0038	. 1916 . 1873 . 0043	. 2256 . 2213 . 0043	. 2841 . 2795 . 0046	. 3466 . 3420 . 0046	. 4035 . 3984 . 0051
Class 2, pitch diameter $\begin{bmatrix} Max^3 - \\ Min - \\ Tol - \end{bmatrix}$. 0502	. 0640 . 0622 . 0018	. 0759 . 0740 . 0019	. 0874 . 0854 . 0020	. 0985 . 0963 . 0022	. 1102 . 1079 . 0023	.1218 .1194 .0024	. 1460 . 1435 . 0025	. 1697 . 1670 . 0027	. 1928 . 1897 . 0031	. 2268 . 2237 . 0031	. 2854 . 2821 . 0033	.3479 .3446 .0033	. 4050 . 4014 . 0036
Class 3, pitch diameter $\begin{bmatrix} Max.^3 \\ Min \\ Tol \end{bmatrix}$. 0506	.0640 .0627 .0013	. 0759 . 0745 . 0014	. 0874 . 0859 . 0015	.0985 .0969 .0016	.1102 .1086 .0016	. 1218 . 1201 . 0017	. 1460 . 1442 . 0018	.1697 .1678 .0019	. 1928 . 1906 . 0022	. 2268 . 2246 . 0022	. 2854 . 2830 . 0024	. 3479 . 3455 . 0024	. 4050 . 4024 . 0026
Class 4, pitch diameter $-$ $\begin{cases} Max.^3 - Min - Min - Tol_{} \end{cases}$. 2270 . 2259 . 0011	. 2857 . 2845 . 0012	.3482 .3470 .0012	. 4053 . 4040 . 0013
INTERNAL THREADS														
Classes 1, 2, 3, and 4, major diameter Min.²	, 0600	. 0730	. 0860	. 0990	. 1120	. 1250	. 1380	. 1640	, 1900	, 2160	. 2500	.3125	, 3750	. 4375
Classes 1, 2, 3, and 4, minor $\begin{cases} Min &\\ Max &\\ Tol_{} & \end{cases}$. 0580 . 0634 . 0054	. 0691 . 0746 . 0055	. 0797 . 0856 . 0059	. 0894 . 0960 . 0066	.1004 .1068 .0064	.1109 .1179 .0070	. 1339 . 1402 . 0063	. 1562 . 1624 . 0062	. 1773 . 1835 . 0062	. 2113 . 2173 . 0060	. 2674 . 2739 . 0065	.3299 .3364 .0065	.3834 .3906 .0072
Classes 1, 2, 3, and 4, pitch diameter Min. ³	. 0519	. 0640	. 0759	. 0874	. 0985	. 1102	. 1218	. 1460	. 1697	. 1928	. 2268	. 2854	.3479	. 4050
Class 1, pitch diameter $$ Max Tol	. 0543	, 0665 . 0025	. 0785 . 0026	. 0902 . 0028	. 1016 . 0031	. 1134	. 1252 . 0034	. 1496	. 1735 . 0038	. 1971	. 2311	. 2900 . 0046	.3525 .0046	. 4101 . 0051
Class 2, pitch diameter ${Tol}$. 0536	.0658	. 0778	. 0894 . 0020	. 1007 . 0022	.1125	. 1242	. 1485 . 0025	. 1724	. 1959 . 0031	. 2299	, 2887 , 0033	.3512	. 4086 . 0036
Class 3, pitch diameter ${Tol}$.0532	.0653	. 0773	. 0889	. 1001	.1118	. 1235 . 0017	. 1478 . 0018	. 1716 . 0019	. 1950 . 0022	. 2290 . 0022	. 2878 . 0024	. 3503 . 0024	. 4076 . 0026
Class 4, pitch diameter $$ ${Max Tol}$. 2279	. 2866 . 0012	. 3491 . 0012	. 4063 . 0013

See footnotes on p. 136.

Table 1.9.—Limits of size and tolerances, classes 1, 2, 3, and 4, American National fine-thread series, NF—Continued

						Size (in	nehes)				
Limits of size and tolerances		1/2	%16	5/8	3/4	7/8	1	11/8	11/4	13/8	11/2
						Threads	per inch			·········	
		20	18	18	16	14	14NS	12	12	12	12
EXTERNAL THREADS Class 1, major diameter	Max Min Tol	in. 0.4985 .4883 .0102	in. 0.5609 .5495 .0114	in. 0.6234 .6120 .0114	in. 0.7482 .7356 .0126	in. 0. 8729 . 8589 . 0140	in. 0. 9979 . 9839 . 0140	in. 1. 1226 1. 1068 . 0158	in. 1.2476 1.2318 .0158	in. 1.3726 1.3568 .0158	in. 1, 4976 1, 4818 , 0158
Classes 2, 3, and 4, major diameter	{Max Min Tol	.5000 .4928 .0072	. 5625 . 5543 . 0082	. 6250 . 6168 . 0082	.7500 .7410 .0090	. 8750 . 8652 . 0098	1.0000 .9902 .0098	1. 1250 1. 1138 . 0112	1. 2500 1. 2388 . 0112	1.3750 1.3638 .0112	1,5000 1,4888 ,0112
Class 1, minor diameter	Max 1	. 4372	. 4927	. 5552	. 6715	. 7853	. 9103	1.0204	1, 1454	1. 2704	1, 3954
Classes 2, 3, and 4, minor diameter	Max 1	. 4387	. 4943	. 5568	. 6733	. 7874	. 9124	1.0228	1.1478	1, 2728	1, 3978
Class 1, pitch diameter	Max ³ Min Tol	. 4660 . 4609 . 0051	. 5248 . 5191 . 0057	. 5873 . 5816 . 0057	. 7076 . 7013 . 0063	. 8265 . 8195 . 0070	. 9515 . 9445 . 0070	1.0685 1.0606 .0079	1. 1935 1. 1856 . 0079	1,3185 1,3106 ,0079	1,4435 1,4356 ,0079
Class 2, pitch diameter	{Max 3 Min Tol	. 4675 . 4639 . 0036	. 5264 . 5223 . 0041	. 5889 . 5848 . 0041	. 7094 . 7049 . 0045	. 8286 . 8237 . 0049	. 9536 . 9487 . 0049	1, 0709 1, 0653 , 0056	1. 1959 1. 1903 . 0056	1. 3209 1. 3153 . 0056	1, 4459 1, 4403 , 0056
Class 3, pitch diameter	{Max 3 Min Tol	. 4675 . 4649 . 0026	. 5264 . 5234 . 0030	. 5889 . 5859 . 0030	. 7094 . 7062 . 0032	. 8286 . 8250 . 0036	. 9536 . 9500 . 0036	1, 0709 1, 0669 . 0040	1, 1959 1, 1919 , 0040	1, 3209 1, 3169 , 0 040	1, 4459 1, 4419 , 0049
Class 4, pitch diameterInternal Threads	{Max ³ Min Tol	. 4678 . 4665 . 0013	. 5267 . 5252 . 0015	. 5892 . 5877 . 0015	. 7098 . 7082 . 0016	. 8290 . 8272 . 0018	. 9540 . 9522 . 0018	1. 0714 1. 0694 . 0020	1. 1964 1. 1944 . 0020	1. 3214 1. 3194 . 0020	1, 4464 1, 4444 . 0020
Classes 1, 2, 3, and 4, major diameter	Min 2	. 5000	. 5625	. 6250	. 7500	. 8750	1.0000	1, 1250	1, 2500	1, 3750	1, 5000
Classes 1, 2, 3, and 4, minor diameter	$-\begin{cases} \text{Min}_{} \\ \text{Max}_{} \\ \text{Tol}_{} \end{cases}$. 4459 . 4531 . 0072	. 5024 . 5100 . 0076	. 5649 . 5725 . 0076	. 6823 . 6903 . 0080	.7977 .8062 .0085	. 9227 . 9312 . 0085	1.0348 1.0438 .0090	1, 1598 1, 1688 , 0090	1, 2848 1, 2938 , 0090	1, 4098 1, 4188 , 0090
Classes 1, 2, 3, and 4, pitch diameter	Min 3	. 4675	. 5264	. 5889	.7094	. 8286	. 9536	1.0709	1, 1959	1, 3209	1.4459
Class 1, pitch diameter	{Max	. 4726 . 0051	. 5321 . 0057	. 5946 . 0057	. 7157 . 0063	. 8356 . 0070	.9606	1.0788 .0079	1. 2038 . 0079	1.3288 .0079	1. 4538 . 0079
Class 2, pitch diameter	{Max Tol	. 4711 . 0036	. 5305 . 0041	. 5930 . 0041	. 7139 . 0045	. 8335 . 0049	. 9585 . 0049	1.0765 .0056	1. 2015 . 0056	1,3265 .0056	1, 4515 . 0056
Class 3, pitch diameter	{Max Tol	. 4701 . 0026	. 5294 . 0030	. 5919 . 0030	. 7126 . 0032	. 8322 . 0036	. 9572 . 0036	1.0749 .0040	1. 1999 . 0040	1.3249 .0040	1.4499 .0040
Class 4, pitch diameter	{Max Tol	. 4688 . 0013	. 5279 . 0015	. 5904 . 0015	.7110 .0016	. 8304 . 0018	. 9554 . 0018	1,0729 ,0020	1. 1979 . 0020	1, 3229 , 0020	1, 4479 , 0020

1 Dimensions given for the maximum minor diameter of the external thread are figured to the intersection of the worn tool are with a center line through crest and root. The minimum minor diameter of the external thread shall be that corresponding to a flat at the minor diameter of the minimum external thread equal to ⅓\$\pi\$, and may he determined by subtracting the hasic thread depth, h (or 0.649\$\pi\$), from the minimum pitch diameter of the external thread.

2 Dimensions for the minimum major diameter of the internal thread correspond to the hasic flat (⅓\$\pi\$) and the profile at the major diameter produced hy a worn tool must not fall helow the hasic outline. The maximum major diameter of the internal thread shall be that corresponding to a flat at the major diameter of the maximum internal thread equal to ⅓\$\pi\$. A (or 0.7399\pi\$) to the maximum pitch diameter of the internal thread.

3 These dimensions are the maximum material or "go" size, and are those which should he placed on the component drawing with the tolerances.

Table 1.10.—Limits of size and tolerances, classes 2 and 3, American National extra-fine-thread series, NEF

						Si	ize (in c he	es)					
Limits of size and tolerances 1	1,4	5/16	36	7/16	1/2	%16	5/8	11/16	34	13/16	7/8	15/16	1
						Thre	eads per	inch					
	32	52	32	28	28	24	24	24	20	20	20	20	20
EXTERNAL THREADS Classes 2 and 3, major diameter [Max Tol	in. 0. 2500 . 2446 . C054	in. 0.3125 .3071 .0054	in. 0.3750 .3696 .0054	in. 0. 4375 . 4313 . 0062	in. 0.5000 .4938 .0662	in. 0.5625 .5559 .0066	in. 0.6250 .6184 .0066	in. 0.6875 .6809 .0066	in. 0.7500 .7428 .0072	in. 0.8125 .8053 .0072	in. 0.8750 .8578 .0072	in. 0, 9375 , 9303 , 0072	in. 1,0000 .9928 .0072
Classes 2 and 3, minor diameter Max 2	. 2117	. 2742	. 3367	.3937	. 4562	.5114	. 5739	. 6364	. 6887	.7512	. 8137	. 8762	. 9387
Class 2, pitch diameter $\left\{ egin{array}{ll} \operatorname{Max}^4 & & \operatorname{Min} & & \operatorname{Tol} & & \operatorname{Tol} & & \operatorname{Min} & & \operatorname{Tol} & & \operatorname{Min} & -$. 2297 . 2265 . 0032	. 2922 . 2889 . 0033	.3547 .3513 .0034	. 4143 . 4107 . 0036	. 4768 . 4731 . 0037	. 5354 . 5314 . 0040	.5979 .5938 .0041	. 6604 . 6563 . 0041	.7175 .7129 .0046	.7800 .7754 .0046	. 8425 . 8378 . 0047	. 9050 . 9003 . 0047	. 9675 . 9627 . 0048
Class 3, pitch diameter	. 2297 . 2275 . 0022	. 2922 . 2899 . 0023	. 3547 . 3523 . 0024	.4143 .4118 .0025	.4768 .4742 .0026	.5354 .5326 .0028	. 5979 . 5950 . 0029	. 6604 . 6575 . 0029	.7175 .7143 .0032	.7800 .7768 .0032	.8425 .8392 .0033	. 9050 . 9017 . 0033	. 9675 . 9641 . 0034
Classes 2 and 3, major diameter Min 3	. 2500	.3125	. 3750	. 4375	. 5600	. 5625	. 6250	. 6875	.7500	. 8125	. 8750	, 9375	1, 0000
Classes 2 and 3, minor diameter $\left\{ egin{array}{ll} \operatorname{Min} & \operatorname{Min} & \operatorname{Max} & \operatorname{Tol} & \operatorname{Tol} & \operatorname{Tol} & \operatorname{Tol} & \operatorname{Min} & M$. 2162 . 2210 . 0048	. 2787 . 2835 . 0648	. 3412 . 3460 . 0048	.3988 .4044 .0056	. 4613 . 4669 . 0056	. 5174 . 5239 . 0065	. 5799 . 5864 . 0065	. 6424 . 6489 . 0065	. 6959 . 7031 . 0072	. 7584 . 7656 . 0072	.8209 .8281 .0072	. 8834 . 8906 . 0072	. 9459 . 9531 . 0072
Class 2, pitch diameter $\begin{array}{c} \left\{ \begin{array}{ll} \operatorname{Min} \ ^{4} - \\ \operatorname{Max} \\ \operatorname{Tol} - \end{array} \right\} \end{array}$. 2297 . 2329 . 0032	. 2922 . 2955 . 0033	. 3547 . 3581 . 0034	. 4143 . 4179 . 0036	. 4768 . 4305 . 6037	. 5354 . 5394 . 0040	.5979 .6020 .0041	. 6604 . 6645 . 0041	.7175 .7221 .0046	.7800 .7846 .0046	.8425 .8472 .0047	. 9050 . 9097 . 0047	. 9675 . 9723 . 0948
Class 3, pitch diameter $ \begin{cases} $. 2297 . 2319 . 0022	. 2922 . 2945 . 0023	. 3547 . 3571 . 0024	. 4143 . 4168 . 0025	. 4768 . 4794 . 0626	.5354 .5332 .0928	.5979 .6008 .0029	. 6604 . 6633 . 0029	.7175 .7297 .0032	.7800 .7832 .0032	. 8425 . 8458 . 0033	. 9050 . 9083 . 0033	. 9675 . 9709 . 00 3 4
						Si	ize (inche	es)					
Limits of size and tolerances ¹	11/16	11/8	13/16	134	15/16	13/8	17/16	11/2	1916	15/8	111/16	13/4	2
						Thre	eads per	inch					
	18	18	18	18	18	18	18	18	18	18	18	16	16
	in. 1.0625 1.0543 .0082	in. 1.1250 1.1168 .0082	in. 1.1875 1.1793 .0082	in. 1, 2500 1, 2418 , 0082	in. 1.3125 1.3043 .0082	in, 1,3750 1,3668 ,0082	in. 1. 4375 1. 4293 . 0082	in. 1.5000 1.4918 .0082	in. 1, 5625 1, 5543 . 0082	in. 1. 6250 1. 6168 . 0082	in. 1,6875 1,6793 ,6082	in. 1.7500 1.7410 .0090	in. 2.0000 1.9910 .0090
Classes 2 and 3, minor diameter Max 2	. 9943	1.0568	1, 1193	1, 1818	1. 2443	1,3068	1.3693	1. 4318	1.4943	1, 5568	1, 6193	1, 6733	1,9233
Class 2, pitch diameter $ \begin{cases} Max & 4 \\ Min & Tol_{} \end{cases} $	1,0264 1,0213 ,0051	1,0889 1,0837 ,0052	1, 1514 1, 1462 , 0052	1, 2139 1, 2986 , 0053	1, 2764 1, 2711 , 0053	1, 3389 1, 3335 , 0054	1,4014 1,3980 ,0054	1, 4639 1, 4584 , 0055	1, 5264 1, 5209 , 0055	1. 5889 1. 5833 . 0056	1. 6514 1. 6458 . 0056	1,7094 1,7035 .0059	1, 9594 1, 9533 , 0061
Class 3, pitch diameter $ \begin{cases} $	1.6264 1.0228 .0036	1.0889 1.0853 .0036	1.1514 1.1478 .0036	1. 2139 1. 2102 . 0037	1. 2764 1. 2727 . 0037	1,3389 1,3351 ,0038	1. 4014 1. 3976 . 0038	1. 4639 1. 4601 . 6038	1, 5264 1, 5225 , 6039	1, 5889 1, 5850 . 0039	1, 6514 1, 6475 , 0039	1, 7694 1, 7053 , 0041	1, 9594 1, 9551 , 0043
Classes 2 and 3, major diameter Min 3	1,0625	1, 1250	1, 1875	1,2500	1, 3125	1,3750	1, 4375	1, 5000	1,5625	1. 6250	1. 6875	1.7500	2. 0000
Classes 2 and 3, minor diameter $\left\{\begin{array}{ll} Min & \dots \\ Max & \dots \\ Tol & \dots \end{array}\right\}$	1,0024 1,0100 .0076	1, 0649 1, 0725 , 0076	1, 1274 1, 1350 , 0076	1, 1899 1, 1975 , 0076	1, 2524 1, 2600 , 0076	1,3149 1,3225 .0076	1. 3774 1. 3350 . 0076	1. 4399 1. 4475 . 0073	1. 5024 1. 5100 . 0075	1, 5649 1, 5725 , 0076	1, 6274 1, 6350 , 0076	1,6823 1,6903 ,0080	1. 9323 1. 9403 . 0080
Class 2, pitch diameter $ \begin{cases} $	1.0264 1.0315 .0051	1.0889 1.0941 .0052	1.1514 1.1566 .0052	1, 2139 1, 2192 , 0053	1, 2764 1, 2817 , 0053	1, 3589 1, 3443 , 0054	1. 4014 1. 4068 . 0054	1, 4639 1, 4694 , 0055	1,5264 1,5319 ,0055	1. 5889 1. 5945 . 0056	1. 6514 1. 6570 . 0056	1. 7094 1. 7153 . 0059	1, 9594 1, 9655 , 0061
Class 3, pitch diameter $\begin{cases} M & \text{in } 4 \\ Max \\ Tol \end{cases}$	1.0300	1. 0889 1. 0925 . 0036	1, 1514 1, 1550 , 0036	1. 2139 1. 2176 . 0037	1. 2764 1. 2801 . 0037	1.3389 1.3427 .0038	1. 4014 1. 4052 . 0038	1,4639 1,4677 ,0038	1, 5264 1, 5303 , 0039	1, 5889 1, 5928 , 0639	1, 6514 1, 6553 , 0039	1, 7094 1, 7135 , 0041	1, 9594 1, 9637 , 0043

¹ Pitch diameter tolerances include deviations of lead and angle. The class 2 tolerances are hased on the formulas in table 2.2 and a length of engagement of 9 threads. The class 3 tolerances are 70 percent of the class 2 tolerances.

2 Dimensions given for the maximum minor diameter of the external thread are figured to the intersection of the worn tool arc with a center line through crest and root. The minimum minor diameter of the external thread and the that corresponding to a flat at the minor diameter of the minimum external thread equal to $\frac{1}{2} \times p$, and may be determined by subtracting the hasic thread depth, h (or 0.6495 p), from the minimum pitch diameter of the external thread.

3 Dimensions for the minimum major diameter of the internal thread correspond to the hasic flat $(\frac{1}{2} \times p)$, and the profile at the major diameter of the internal thread equal to $\frac{1}{2} \times p$, and may be determined by a worn tool must not fall below the hasic outline. The maximum major diameter of the internal thread shall be that corresponding to a flat at the major diameter of the maximum internal thread equal to $\frac{1}{2} \times p$, and may be determined by adding $\frac{1}{2} \times h$ (or 0.7939 p) to the maximum pitch diameter of the internal thread

thread.

4 These dimensions are the maximum material or "go" size, and are those which should be placed on the component drawing with the tolerances.

Table 1.11.—Limits of size and tolerances, classes 2 and 3, American National 8-thread series, 8N

Limits of size and tolerances ¹					Si	ze (inehes)				
		1 2	11/8	134	13/8	11/2	15%	134	17/8	2
EXTERNAL THREADS Classes 2 and 3, major diameter	$\begin{cases} \text{Max} \dots \\ \text{Min} \dots \\ \text{Tol} \dots \end{cases}$	in. 1.0000 .9848 .0152	in. 1, 1250 1, 1098 , 0152	in. 1. 2500 1. 2348 .0152	in. 1.3750 1.3598 .0152	in. 1,5000 1,4848 ,0152	in. 1. 6250 1. 6098 . 0152	in. 1.7500 1.7348 .0152	in. 1.8750 1.8598 .0152	in. 2.0000 1.9848 .0152
Classes 2 and 3, minor diameter		. 8466	. 9716	1,0966	1, 2216	1.3466	1.4716	1, 5966	1.7216	1,8466
Class 2, pitch diameter (for general use)	Max 5	. 9188 . 9112 . 0076	1, 0438 1, 0359 , 0079	1, 1688 1, 1605 , 0083	1, 2938 1, 2852 , 0086	1.4188 1.4098 .0090	1,5438 1,5345 ,0093	1. 6688 1. 6591 . 0097	1, 7938 1, 7838 , 0100	1, 9188 1, 9084 , 0104
Class 3, pitch diameter	Max 5 Min Tol	. 9188 . 9134 . 0054	1. 0438 1. 0383 . 0055	1. 1688 1. 1630 . 0058	1. 2938 1. 2877 . 0061	1. 4188 1. 4125 . 0063	1, 5438 1, 5373 , 0065	1, 6698 1, 6620 , 0068	1. 7938 1. 7868 . 0070	1, 9188 1, 9115 , 0073
Classes 2 and 3, major diameter	Min 4	1. 0000	1. 1250	1, 2500	1.3750	1.5000	1.6250	1.7500	1, 8750	2,0000
Classes 2 and 3, minor diameter	$$ ${f Min \atop Max \atop Tol}$. 8647 . 8795 . 0148	. 9897 1. 0045 . 0148	1, 1147 1, 1295 , 0148	1, 2397 1, 2545 , 0148	1, 3647 1, 3795 , 0148	1, 4897 1, 5045 , 0148	1. 6147 1. 6295 . 0148	1, 7397 1, 7545 , 0148	1, 8647 1, 8795 , 0148
Classes 2 and 3, pitch diameter	Min 5	. 9188	1.0438	1, 1688	1, 2938	1.4188	1, 5438	1, 6688	1,7938	1,9188
Class 2, pitch diameter (for general use)	{Max Tol	. 9264 . 0076	1. 0517 . 0079	1. 1771 . 0083	1.3024 .0086	1,4278 ,0090	1, 5531 , 0093	1.6785 .0097	1.8038 .0100	1, 9292 , 0104
Class 3, pitch diameter	{Max Tol	. 9242 . 0054	1. 0493 . 0055	1, 1746 , 0058	1, 2999 , 0061	1, 4251 . 0063	1, 5503 , 0065	1, 6756 , 0068	1.8098 .0070	1. 9261 . 0073
Limits of size and toleranees 1					1	Size (inehe	s)			
Innesot size and contrances	-	21/8	21/4	21/2	23/4	3	31/4	31/2	3¾	4
EXTERNAL THREADS Classes 2 and 3, major diameter	$\max_{\substack{\text{Min} \dots \\ \text{Tol} \dots}}$	in. 2. 1250 2. 1098 . 0152	in. 2. 2500 2. 2348 . 0152	in. 2.5000 2.4848 .0152	in. 2.7500 2.7348 .0152	in. 3,0000 2,9848 .0152	in. 3, 2500 3, 2348 , 0152	in. 3, 5000 3, 4848 , 0152	in. 3.7500 3.7348 .0152	in. 4. 0000 3. 9848 , 0152
Classes 2 and 3, minor diameter	Max 3	1.9716	2,0966	2.3466	2, 5966	2.8466	3. 0966	3.3466	3, 5966	3.8466
Class 2, pitch diameter (for general use)	$ \begin{cases} \text{Max } ^5 \\ \text{Min} \\ \text{Tol} \end{cases}$	2.0438 2.0331 .0107	2, 1688 2, 1578 , 0110	2.4188 2.4071 .0117	2. 6688 2. 6564 . 0124	2, 9188 2, 9058 , 0130	3, 1688 3, 1556 , 0132	3. 4188 3. 4055 .0133	3, 6688 3, 6554 , 0134	3, 9188 3, 9053 , 0135
Class 3, pitch diameter	$ \begin{cases} $	2,0438 2,0363 ,0075	2. 1688 2. 1611 . 0077	2.4188 2.4106 .0082	2. 6688 2. 6601 . 0087	2.9188 2.9096 .0092	3. 1688 3. 1595 . 0093	3, 4188 3, 4095 , 0093	3. 6688 3. 6594 . 0094	3, 9188 3, 9093 , 0095
Classes 2 and 3, major diameter	Min 4	2, 1250	2, 2500	2, 5000	2, 7500	3,0000	3, 2500	3, 5000	3, 7500	4, 0000
Classes 2 and 3, minor diameter	1	1. 9897 2. 0045 . 0148	2. 1147 2. 1295 . 0148	2, 3647 2, 3795 . 0148	2. 6147 2. 6295 . 0148	2, 8647 2, 8795 , 0148	3. 1147 3. 1295 . 0148	3, 3647 3, 3795 , 0148	3. 6147 3. 6295 . 0148	3, 8647 3, 8795 , 0148
Classes 2 and 3, pitch diameter	i	2,0438	2. 1688	2,4188	2,6688	2, 9188	3, 1688	3, 4188	3, 6688	3, 9188
Class 2, pitch diameter (for general use)	{Max Tol	2.0545 .0107	2.1798 .0110	2. 4305 . 0117	2, 6812 . 0124	2, 9318 . 0130	3, 1820 , 0132	3, 4321 , 0133	3. 6822 . 0134	3, 9323 , 0135
Class 3, pitch diameter	{Max Tol	2,0513 ,0075	2, 1765 , 0077	2.4270 .0082	2. 6775 . 0087	2.9280 .0092	3.1781 .0093	3.4281 .0093	3.6782 .0094	3, 9283 , 0095

Table 1.11.—Limits of size and tolerances, classes 2 and 3, American National 8-thread series, 8N—Continued

Limits of size and teleranees 1				Size (in	nches)			
	41/4	41/2	43/4	5	51/4	5½	53/4	6
	in. 4. 2500 4. 2348 .0152	in. 4. 5600 4. 4848 . 0152	in. 4,7509 4,7348 .0152	in. 5,0000 4,9848 .0152	in. 5, 2500 5, 2348 , 0152	in. 5, 5000 5, 4848 , 0152	in. 5. 7500 5. 7348 . 0152	in. 6,0000 5,9848 .0152
Classes 2 and 3, minor diameter Max. 3	4.0966	4. 3466	4.5966	4,8466	5, 0966	5, 3466	5, 5966	5, 8466
Class 2, pitch diameter (for general use) $ \begin{cases} \text{Max.}^{5}\\ \text{Min.}\\ \text{Tol.} \end{cases} $	4. 1683 4. 1551 . 0137	4.4188 4.4050 .0138	4. 6688 4. 6549 . 0139	4. 9188 4. 9048 . 0140	5, 1688 5, 1547 , 0141	5, 4188 5, 4046 , 0142	5. 6688 5. 6545 . 0143	5, 9188 5, 9044 , 0144
Class 3, pitch diameter $Max.^{5}$ Min Internal Threads	4, 1688 4, 1592 , 0096	4. 4188 4. 4091 . 0097	4, 6688 4, 6590 , 0098	4, 9188 4, 9089 , 0099	5. 1688 5. 1589 . 0099	5, 4183 5, 4088 , 0400	5, 6688 5, 6587 , 0101	5, 918 8 5, 9086 , 0102
Classes 2 and 3, major diameter	4. 2500	4, 5000	4,7500	5, 0000	5, 2500	5, 5000	5, 7500	6, 0000
Classes 2 and 3, minor diameter $\begin{array}{c} Min & \\ Max & \\ Tol & \end{array}$	4. 1147 4. 1295 . 0148	4. 3647 4. 3795 . 0148	4. 6147 4. 6295 . 0148	4.8647 4.8795 .0148	5, 1147 5, 1295 , 0148	5, 3647 5, 3795 , 0148	5. 6!47 5. 6295 . 0148	5, 8647 5, 8795 , 0148
Classes 2 and 3, pitch diameter Min.5	4.1688	4.4188	4, 6688	4.9188	5, 1688	5,4188	5, 5688	5, 9188
Class 2, pitch diameter (for general use) ${\rm Max}_{\rm Tol}$	4. 1825 . 0137	4.4326 .0138	4.6827 .0139	4. 9328 . 0140	5, 1829 . 0141	5, 4330 , 0142	5, 6831 , 0143	5, 9532 , 0144
Class 3, pitch diameter	4. 1784 . 0096	4, 4285 . 0097	4.6786 .0098	4.9287 .0099	5.1787 .0099	5. 4288 . 0100	5, 6789 , 0101	5, 9290 , 0102

¹ Pitch diameter tolerances include deviations of lead and angle. The class 2 tolerances are based on the formulas in table 2.2 and a length of engagement equal to the basic major diameter for sizes from 1½ to 3 inches, inclusive, and a length of engagement of 3 inches for sizes over the 3-inch. The class 2 tolerances are 70 percent of the class 2 tolerances. The 1-inch size being in the American National coarse-thread series, the tolerances for this size correspond to that series.

2 Standard size of the American National coarse-thread series.

3 Dimensions given for the maximum minor diameter of the external thread are figured to the intersection of the worn tool are with a center line through crest and root. The minimum minor diameter of the external thread shall be that corresponding to a flat at the minor diameter of the minimum external thread equal to ½× p, and may be determined by subtracting 0.0812 inch from the minimum pitch diameter of the external thread thread.

4 Dimer sines for the minimum major diameter of the internal thread correspond to the basic flat (½×p), and the profile at the major diameter produced by a worn tool must not fall below the hasic outline. The maximum major diameter of the internal thread shall be that corresponding to a flat at the major diameter of the maximum internal thread equal to ½4×p, and may be determined by adding 0.092 inch to the maximum pitch diameter of the internal thread.

5 These dimensions are the maximum material or "go" size, and are those which should be placed on the component drawing with the tolerances.

Table 1.12.—Limits of size and tolerances, classes 2 and 3, American National 12-thread series, 12N

Limits of size and tolerances ¹				Size (ine	ehes)			
	1/2	916 2	5/8	11/16	3/4	13/16	7/8	15/16
$\begin{array}{c} \text{External Threads} \\ \text{Classes 2 and 3, major diameter} \\ \end{array} \\ \begin{array}{c} \text{Max} \\ \text{Min} \\ \text{Tol} \end{array}$	in. 0.5900 .4888 .0112	in. 0. 5625 . 5513 . 0112	in. 0. 6250 . 6138 . 0112	in. 0, 6875 . 6763 . 0112	in. 0.7500 .7388 .0112	in. 0. 8125 . 8013 . 0112	in. 0. 8750 . 8638 . 0112	in. 0.9375 .9263 .0112
Classes 2 and 3, minor diameter Max 4	. 3978	. 4603	. 5228	. 5853	. 6478	. 7103	.7728	. 8353
Class 2, pitch diameter (for general use) $ \begin{cases} $. 4459 . 4403 . 0056	. 5084 . 5028 . 0056	. 5709 . 5653 . 0056	. 6334 . 6278 . 0056	. 6959 . 6903 . 0056	. 7584 . 7528 . 0056	. 8209 . 8153 . 0056	. 8834 . 8778 . 0056
Class 3, pitch diameter $ \begin{cases} $. 4459 . 4419 . 0040	. 5084 . 5044 . 0040	. 5709 . 5669 . 0040	. 6334 . 6294 . 0040	.6959 .6919 .0040	. 7584 . 7544 . 0040	. 8209 . 8169 . 0040	.8834 .8794 .0040
Classes 2 and 3, major diameter Min 5	. 5000	. 5625	. 6250	. 6875	.7500	.8125	. 8750	. 9375
Classes 2 and 3, minor diameter $ \begin{array}{c} \text{Min}\\ \text{Max}\\ \text{Tol} \end{array} $. 4098 . 4225 . 0127	. 4723 . 4850 . 0127	. 5348 . 5438 . 0090	. 5973 . 6063 . 0090	. 6598 . 6688 . 0090	.7223 .7313 .0090	.7848 .7938 .0090	. 8473 . 8563 . 0090
Classes 2 and 3, pitch diameter Min 6	. 4459	. 5084	. 5709	. 6334	. 6959	. 7584	. 8209	. 8834
Class 2, pitch diameter (for general use)	. 4515 . 0056	. 5140 . 0056	. 5765 . 0056	. 6390 . 0056	. 7015 . 0056	. 7640 . 0056	. 8265 . 0056	.8890 .0056
Class 3, pitch diameter $ \begin{cases} $. 4499	. 5124 . 0040	. 5749	. 6374 . 0040	. 6999 . 0040	. 7624 . 0040	. 8249 . 0040	. 8874 . 0040
Limits of size and tolerances ¹				S	ize (inches)			
		1	11/16	11/8 3	13/16	11/4 3	15/16	1363
EXTERNAL THREADS Classes 2 and 3, major diameter	Max Min Tol	in. 1.0000 .9888 .0112	in. 1.0625 1.0513 .0112	in. 1.1250 1.1138 .0112	in. 1. 1875 1. 1763 . 0112	in. 1. 2500 1. 2388 . 0112	in. 1, 3125 1, 3013 , 0112	in. 1.3750 1.3638 .0112
Classes 2 and 3, minor diameter	·	.8978	. 9603	1, 0228	1,0853	1.1478	1, 2103	1. 2728
Class 2, pitch diameter (for general use)	$-\begin{cases} \text{Max } ^6 \\ \text{Min} \\ \text{Tol} \end{cases}$. 9459 . 9403 . 0056	1,0084 1,0028 ,0056	1. 0709 1. 0653 . 0056	1, 1334 1, 1278 , 0056	1. 1959 1. 1903 . 0056	1, 2584 1, 2528 , 0056	1.3209 1.3153 .0056
Class 3, pitch diameter	{Max 6 Min	. 9459	1,0084	1,0709 1,0669	1, 1334 1, 1294	1, 1959 1, 1919	1, 2584 1, 2544	1.3209 1.3169
INTERNAL THREADS	Tol	. 9419	1.0044 .0040	. 0040	.0040	.0040	.0040	. 0040
INTERNAL THREADS Classes 2 and 3, major diameter	[Tol	.0040	.0040	.0040	.0040		.0040	
INTERNAL THREADS Classes 2 and 3, major diameter Classes 2 and 3, minor diameter	[Tol] Min 5					1. 2500 1. 1598 1. 1688 . 0090		1, 3750 1, 2848 1, 2938 , 0090
Classes 2 and 3, major diameter	Tol 	. 0040 1. 0000 . 9098 . 9188	. 0040 1. 0625 . 9723 . 9813	1. 1250 1. 0348 1. 0438	1. 1875 1. 0973 1. 1063	1. 2500 1. 1598 1. 1688	1, 3125 1, 2223 1, 2313	1, 3750 1, 2848 1, 2938
Classes 2 and 3, major diameter	Tol Min 5 Min Max Tol	. 0040 1. 0000 . 9098 . 9188 . 0090	. 0040 1. 0625 . 9723 . 9813 . 0090	1. 1250 1. 0348 1. 0438 . 0090	1.1875 1.0973 1.1063 .0090	1, 2500 1, 1598 1, 1688 1, 0090	1. 3125 1. 2223 1. 2313 . 0090	1, 3750 1, 2848 1, 2938 , 0090
Classes 2 and 3, major diameter Classes 2 and 3, minor diameter Classes 2 and 3, pitch diameter	Tol Min 5 Min Tol Max Tol Tol Min 6 Min 7 min 7 min 7 min 8 min	. 0040 1. 0000 . 9098 . 9188 . 0090 . 9459 . 9515	. 0040 1. 0625 . 9723 . 9813 . 0090 1. 0084 1. 0140	1. 1250 1. 0348 1. 0438 . 0090 1. 0709 1. 0765	. 0040 1. 1875 1. 0973 1. 1063 . 0090 1. 1334 1. 1390	1. 2500 1. 1598 1. 1688 . 0090 1. 1959 1. 2015	. 0040 1. 3125 1. 2223 1. 2313 . 0090 1. 2584 1. 2640	1, 3750 1, 2848 1, 2938 .0090 1, 3209 1, 3265

Table 1.12.—Limits of size and tolerances, classes 2 and 3, American National 12-thread series, 12N—Continued

Limits of size and tolerances ¹	T			Size (in	ches)			
Diane of the dia total dec	17/16	1½ 3	15%	13/4	11//8	2	21/8	21/4
EXTERNAL THREADS Classes 2 and 3, major diameter Max Min Tol	in. 1. 4375 1. 4263 . 0112	in. 1.5000 1.4888 .0112	in. 1. 6250 1. 6138 . 0112	in. 1.7500 1.7388 .0112	in. 1. 8750 1. 8638 .0112	in. 2.6000 1.9888 .0112	in. 2. 1250 2. 1138 . 0112	in. 2. 2500 2. 2388 . 0112
Classes 2 and 3, minor diameter Max 4	1. 3353	1. 3978	1. 5228	1. 6478	1.7728	1. 8978	2. 0228	2. 1478
Class 2, pitch diameter (for general use) $ \begin{cases} $	1. 3834 1. 3778 . 0056	1. 4459 1. 4403 . 0056	1. 5709 1. 5645 . 0064	1. 6959 1. 6894 . 0065	1.8209 1.8143 .0066	1. 9459 1. 9392 . 0067	2,0709 2,0641 .0068	2. 1959 2. 1890 . 0069
Class 3, pitch diameter $ \begin{cases} $	1. 3834 1. 3794 . 0040	1. 4459 1. 4419 . 0040	1. 5709 1. 5664 . 0045	1. 6959 1. 6913 . 0046	1.8209 1.8163 .0046	1. 9459 1. 9412 . 0047	2.0709 2.0661 .0048	2. 1959 2. 1911 . 0048
Classes 2 and 3, major diameter Min 5	1. 4375	1.5000	1. 6250	1. 7500	1, 8750	2.0000	2, 1250	2, 2500
Classes 2 and 3, minor diameter $ \begin{cases} $	1. 3473 1. 5563 . 0090	1. 4098 1. 4188 . 0090	1. 5348 1. 5438 . 0090	1. 6598 1. 6638 . 0090	1. 7848 1. 7938 . 0090	1. 9098 1. 9188 . 0090	2. 0348 2. 0438 . 0090	2.1598 2.1688 .0090
Classes 2 and 3, pitch diameter Min 6	1. 3834	1. 4459	1.5709	1.6959	1.8209	1. 9459	2. 0709	2, 1959
Class 2, pitch diameter (for general use) ${\rm Max}$ - ${\rm Tol}$	1.3890 .0056	1. 4515 . 0056	1.5773 .0064	1.7024 .0065	1.8275 .0066	1. 9526 . 0067	2. 0777 . 0068	2, 2028 . 0069
Class 3, pitch diameter $ Max_{Tol}$	1.3874 .0940	1. 4499 . 0040	1. 5754 . 0045	1.7005 .0046	1.8255 .0046	1. 9506 - 0047	2.0757 .0048	2. 2007 . 0048
Limits of size and tolerances ¹				S	ize (inches)			
Limits of size and tolerances.		23/8	21/2	25/8	23/4	27/8	3	31/8
EXTERNAL THREADS Classes 2 and 3, major diameter	$-\begin{cases} \mathrm{Max}_{} \\ \mathrm{Min}_{} \\ \mathrm{Tol}_{} \end{cases}$	in. 2. 3750 2. 3638 . 0112	in. 2.5000 2.4888 .0112	in. 2. 6250 2. 6138 . 0112	in. 2.7500 2.7388 .0112	in. 2. 8750 2. 8638 . 0112	in. 3.0000 2.9888 .0112	in. 3. 1250 3. 1138 . 0112
Classes 2 and 3, minor diameter	Max 4	2, 2728	2.3978	2. 5228	2.6478	2. 7728	2.8978	3.0228
Class 2, pitch diameter (for general use)	$-\begin{cases} \operatorname{Max}^6 & & \\ \operatorname{Min} & & \\ \operatorname{Tol} & & & \end{cases}$	2. 3209 2. 3139 . 0070	2. 4459 2. 4388 . 0071	2, 5709 2, 5638 . 0071	2.6959 2.6887 .0072	2.8209 2.8136 .0073	2. 9459 2. 9385 . 0074	3.0709 3.0635 .0074
Class 3, pitch diameter Internal Threads	\mathbf{Max}^{6} \mathbf{Min} \mathbf{Tol}	2. 3209 2. 3160 . 0049	2. 4459 2. 4410 . 0049	2. 5709 2. 5659 . 0050	2. 6959 2. 6909 . 0050	2.8209 2.8158 .0051	2. 9459 2. 9408 . 0051	3. 0709 3. 0657 . 0052
Classes 2 and 3, major diameter	Min ⁶	2, 3750	2. 5000	2. 6250	2. 7500	2,8750	3.0000	3.1250
Classes 2 and 3, minor diameter	$-\begin{cases} ext{Min} & - \\ ext{Max} & - \\ ext{Tol} & - \end{cases}$	2. 2848 2. 2938 . 0090	2. 4098 2. 4188 . 0090	2. 5348 2. 5438 . 0090	2.6598 2.6688 .0090	2. 7848 2. 7938 . 0090	2. 9098 2. 9188 . 0090	3. 0348 3. 0438 . 0090
Classes 2 and 3, pitch diameter	Min 6	2. 3209	2. 4459	2. 5709	2, 6959	2. 8209	2. 9459	3, 0709
Class 2, pitch diameter (for general use)	{Max Tol	2.3279 .0070	2.4530 .0071	2, 5780 . 0071	2. 7031 . 0072	2. 8282 . 0073	2, 9533 - 0074	3. 0783 . 0074
Class 3, pitch diameter	{Max Tol	2.3258 .0049	2. 4508 . 0049	2. 5759 . 0050	2. 7009 . 0050	2,8260 .0051	2, 9510 . 0051	$3.0761 \\ .0052$

Table 1.12.—Limits of size and tolerances, classes 2 and 3, American National 12-thread series, 12N—Continued

Timite of the and telepopee				Size (ir	nches)			
Limits of size and tolerances ¹	334	33%	31/2	35%	3¾	37/8	4	41/4
$\begin{array}{c} \text{External Threads} \\ \text{Classes 2 and 3, major diameter} \\ \text{Tol.} \end{array}$	in. 3. 2500 3. 2388 . 0112	in. 3.3750 3.3638 .0112	in. 3. 5000 3. 4888 .0112	in. 3. 6250 3. 6138 . 0112	in. 3.7500 3.7388 .0112	in. 3. 8750 3. 8638 . 0112	in. 4.0000 3.9888 .0112	in. 4. 2500 4. 2388 . 0112
Classes 2 and 3, minor diameter Max 4	3.1478	3. 2728	3.3978	3.5228	3.6478	3.7728	3.8978	4. 1478
Class 2, pitch diameter (for general use) $ \begin{cases} \text{Max }^6 \\ \text{Min} \\ \text{Tol} \end{cases} $	3.1959 3.1884 .0075	3. 3209 3. 3133 . 0076	3. 4459 3. 4383 . 0076	3. 5 ⁷ 09 3. 5632 . 0077	3. 6959 3. 6881 . 0078	3. 8209 3. 8131 . 0078	3, 9459 3, 9380 , 0079	4. 1959 4. 1879 . 0080
Class 3, pitch diameter	3. 1959 3. 1907 . 0052	3. 3209 3. 3156 . 0053	3. 4459 3. 4406 . 0053	3. 5709 3. 5655 . 0054	3. 6959 3. 6905 . 0054	3. 8209 3. 8154 . 0055	3. 9459 3. 9404 . 0055	4. 1959 4. 1903 . 0056
Classes 2 and 3, major diameter Min 5	3. 2500	3.3750	3. 5000	3. 6250	3. 7500	3.8750	4.0000	4.2500
Classes 2 and 3, minor diameter $\begin{tabular}{c} Min\\ Max.\\ Tol. \end{tabular}$	3.1598 3.1688 .0090	3. 2848 3. 2938 . 0090	3. 4098 3. 4188 . 0090	3. 5348 3. 5438 . 0090	3. 6598 3. 6688 . 0090	3.7848 3.7938 .0090	3. 9098 3. 9188 . 0090	4. 1598 4. 1688 . 0090
Classes 2 and 3, pitch diameter Min 6	3. 1959	3. 3209	3.4459	3. 5709	3. 6959	3.8209	3.9459	4. 1959
Class 2, pitch diameter (for general use) ${Tol_{}}$	3. 2034 . 0075	3,3285 .0076	3. 4535 . 0076	3. 5786 . 0077	3. 7037 . 0078	3.8287 .0078	3. 9538 . 0079	4. 2039 . 0080
Class 3, pitch diameter $\{ \begin{array}{c} Max \\ Tol \end{array} \}$	3. 2011 . 0052	3,3262 .0053	3,4512 .0053	3. 5763 . 0054	3. 7013 . 0054	3. 8264 . 0055	3.9514 .0055	4. 2015 . 0056
					Size (inches)			
Limits of size and tolerances ¹		41/2	43/4	5	51/4	51/2	53/4	6
EXTERNAL THREADS Classes 2 and 3, major diameter	$\mathbf{Max}_{\mathbf{Min}_{\mathbf{II}}}$	in. 4. 5000 4. 4888 . 0112	in. 4.7500 4.7388 .0112	in. 5. 0000 4. 9888 . 0112	in. 5. 2500 5. 2388 . 0112	in. 5. 5000 5. 4888 . 0112	in. 5. 7500 5. 7388 . 0112	in. 6.0000 5.9888 .0112
Classes 2 and 3, minor diameter	Max 4	4. 3978	4. 6478	4. 8978	5. 1478	5. 3978	5. 6478	5. 8978
Class 2, pitch diameter (for general use)	$$ $ \begin{cases} Max ^{6} \\ Min \\ Tol \end{cases} $	4. 4459 4. 4378 . 0081	4, 6959 4, 6876 , 0083	4. 9459 4. 9375 . 0084	5, 1959 5, 1874 , 0085	5. 4459 5. 4373 . 0086	5. 6959 5. 6872 . 0087	5.9459 5.9371 .0088
Class 3, pitch diameterInternal Threads	{\begin{max & \text{\$\text{\$Max \$\text{\$\frac{\text{\$\frac{\text{\$\text{\$Min}}{\$\text{\$\ext{\$\text{\$\text{\$\text{\$\ext{\$\exitit{\$\ext{\$\text{\$\text{\$\exitit{\$\ext{\$\ext{\$\ext{\$\exitit{\$\ext{\$\exitit{\$\ext{\$\ext{\$\exitit{\$\ext{\$\ext{\$\ext{\$\exitit{\$\ext{\$\ext{\$\exitit{\$\ext{\$\exitit{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\exitit{\$\ext{\$\ext{\$\ext{\$\ext{\$\exitit{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\ext{\$\exitit{\$\ext{\$\exitit{\$\ext{\$\ext{\$\ext{\$\exitit{\$\ext{\$\ext{\$\exitit{\$\ext{\$\exitit{\$\ext{\$\exitit{\$\ext{\$\exitit{\$\ext{\$\exitit{\$\ext{\$\exitit{\$\ext{\$\exitit{\$\ext{\$\exitit{\$\ext{\$\exitit{\$\ext{\$\exitit{\$\ext{\$\exitit{\$\exitit{\$\exitit{\$\ext{\$\exititt{\$\exitit{\$\exitit{\$\exitit{\$\exitit{\$\exitit{\$\exitit{\$\exititt{\$\exitit{\$\exitit{\$\exitit{\$\exitit{\$\exitit{\$\exitit{\$\exitit{\$\exitit{\$\exitit{\$\exitit{\$\exitit{\$\exitit{\$\exitit{\$\exititit{\$\exitit{\$\exitit{\$\exitit{\$\exitit{\$\exitit{\$\exititit{\$\exitit{\$\exitit{\$\exitit{\$\exitit{\$\exitit{\$\exitit{\$\exitit{\$\exitit{\$\exitit{\$\exitit{\$\exitit{\$\exititit{\$\exitit{\$\exititit{\$\exititit{\$\exitit{\$\exititit{\$\exitit{\$\exitit{\$\exitit{\$\exitit{	4. 4459 4. 4402 . 0057	4, 6959 4, 6901 , 0058	4.9459 4.9400 .0059	5. 1959 5. 1900 . 0059	5. 4459 5. 4399 . 0060	5. 6959 5. 6898 . 0061	5. 9459 5. 9397 . 0062
Classes 2 and 3, major diameter	Min 5	4. 5000	4.7500	5. 0000	5. 2500	5, 5000	5. 7500	6.0000
Classes 2 and 3, minor diameter	$$ $ \begin{cases} Min\\ Max\\ Tol \end{cases} $	4. 4098 4. 4188 . 0090	4.6598 4.6688 .0090	4. 9098 4. 9188 . 0090	5. 1598 5. 1688 . 0090	5. 4098 5. 4188 . 0090	5. 6598 5. 6688 . 0090	5, 9098 5, 9188 , 0090
Classes 2 and 3, pitch diameter		4. 4459	4. 6959	4. 9459	5. 1959	5, 4459	5. 6959	5, 9459
Class 2, pitch diameter (for general use)		4. 4540 . 0081	4.7042 .0083	4. 9543 . 0084	5. 2044 . 0085	5, 4545 . 0086	5. 7046 . 0087	5.9547 .0088
Class 3, pitch diameter		4. 4516	4, 7017	4.9518	5, 2018	5. 4519		5, 9521

¹ Pitch diameter tolerances include deviations of lead and angle. The class 2 tolerances for sizes above 1½ in. are based on the formulas in table 2.2 and a length of engagement of 9 threads or ¾ in. The class 3 tolerances are 70 percent of the class 2 tolerances. For lengths of engagement of 1 in., 0.0010 in. may be added to these tolerances. As certain sizes up to 1½ in. are included in the American National coarse or fine thread series, the tolerances to and including 1½ in. correspond to those series.

² Standard size of the American National coarse thread series.

³ Standard size of the American National fine thread series.

¹ Dimensions given for the maximum minor diameter of the external thread are figured to the intersection of the worn tool are with a center line through crest and root. The minimum minor diameter of the external thread shall be that corresponding to a flat at the minor diameter of the minimum external thread equal to ½×p, and may be determined by subtracting 0.0541 in. from the minimum pitch diameter of the external thread.

⁵ Dimensions for the minimum major diameter of the internal thread correspond to the basic flat (⅓×p) and the profile at the major diameter of the maximum internal thread equal to ½½×p, and may be determined by adding 0.0662 in. to the maximum pitch diameter of the internal thread.

⁶ These dimensions are the maximum material or "go" size, and are those which should be placed on the component drawing with the tolerances.

Table 1.13.—Limits of size and tolerances, classes 2 and 3, American National 16-thread series, 16N

Limits of size and tolerances 1					Size (in	nches)				
Minutes of the daily continues	3/4 2	13/16	7/8	15/16	1	11/16	11/8	13/16	11/4	15/16
	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.
	0. 7500	0.8125	0. 8750	0. 9375	1.0000	1. 0625	1. 1250	1. 1875	1. 2500	1. 3125
	. 7410	.8035	. 8660	. 9285	.9910	1. 0535	1. 1160	1. 1785	1. 2410	1. 3035
	. 0090	.0090	. 0090	. 0090	.0090	. 0090	. 0090	. 0090	. 0090	. 0090
Classes 2 and 3, minor diameter Max.3	. 6733	. 7358	. 7983	. 8608	. 9233	. 9858	1.0483	1.1108	1, 1733	1. 2358
Class 2, pitch diameter (for general use) $ \begin{cases} Max.^5 \\ Mim \\ Tol \end{cases} $.7094	. 7719	. 8344	. 8969	. 9594	1. 0219	1, 0844	1.1469	1. 2094	1. 2719
	.7049	. 7668	. 8293	. 8917	. 9542	1. 0166	1, 0790	1.1415	1. 2039	1. 2664
	.0045	. 0051	. 0051	. 0052	. 0052	. 0053	, 0054	.0054	. 0055	. 0055
Class 3, pitch diameter $ \begin{cases} $. 7094	.7719	. 8344	. 8969	. 9594	1.0219	1. 0844	1. 1469	1. 2094	1, 2719
	. 7062	.7684	. 8308	. 8933	. 9557	1.0182	1. 0806	1. 1431	1. 2056	1, 2680
	. 0032	.0035	. 0036	. 0036	. 0037	.0037	. 0038	. 0038	. 0038	, 0039
Classes 2 and 3, major diameter Min.4	. 7500	. 8125	. 8750	. 9375	1.0000	1.0625	1. 1250	1. 1875	1. 2500	1.3125
Classes 2 and 3, minor diameter $ \begin{array}{c} M \text{ in} \\ M \text{ ax} \\ Tol_{} \end{array} $. 6823	. 7448	.8073	. 8698	. 9323	. 9948	1. 0573	1,1198	1, 1823	1, 2448
	. 6903	. 7528	.8153	. 8778	. 9403	1. 0028	1. 0653	1,1278	1, 1903	1, 2528
	. 0080	. 0080	.0080	. 0080	. 0080	. 0080	. 0080	.0080	, 0080	. 0080
Class 2, pitch diameter (for general use) – $ \begin{cases} Min.^5 \\ Max \\ Tol \end{cases} $. 7094	.7719	. 8344	. 8969	. 9594	1. 0219	1, 0844	1. 1469	1. 2094	1. 2719
	. 7139	.7770	. 8395	. 9021	. 9646	1. 0272	1, 0898	1. 1523	1. 2149	1. 2774
	. 0045	.0051	. 0051	. 0052	. 0052	. 0053	, 0054	. 0054	. 0055	. 0055
Class 3, pitch diameter $ \begin{cases} $.7094	.7719	. 8344	. 8969	. 9594	1,0219	1. 0844	1.1469	1. 2094	1, 2719
	.7126	.7754	. 8380	. 9005	. 9631	1,0256	1. 0882	1.1507	1. 2132	1, 2758
	.0032	.0035	. 0036	. 0036	. 0037	,0037	. 0038	.0038	. 0038	, 0039
Limits of size and tolerances ¹					Size (ii	nches)				
Marie of Size and political	13/8	17/16	11/2	1%6	158	111/16	13/4	113/16	17/8	115/16
$\begin{array}{c} \textbf{External Threads} \\ \textbf{Classes 2 and 3, major diameter.} \\ \end{array} \begin{bmatrix} \textbf{Max} \\ \textbf{Min} \\ \textbf{Tol} \\ \end{array}$	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.
	1. 3750	1.4375	1, 5000	1.5625	1. 6250	1.6875	1,7500	1. 8125	1.8750	1,9375
	1. 3660	1.4285	1, 4910	1.5535	1. 6160	1.6785	1,7410	1. 8035	1.8660	1,9285
	. 0090	.0090	, 0090	.0090	. 0090	.0090	.0090	. 0090	.0090	.0090
Classes 2 and 3, minor diameter Max.3	1. 2983	1.3608	1. 4233	1, 4858	1,5483	1,6108	1, 6733	1.7358	1.7983	1.8608
Class 2, pitch diameter (for general use) = $ \begin{cases} Max.^5 & -1 \\ Min. & -1 \\ Tol. & -1 \end{cases} $	1. 3344	1. 3969	1. 4594	1. 5219	1. 5844	1. 6469	1.7094	1.7719	1. 8344	1, 8969
	1. 3288	1. 3913	1. 4537	1. 5161	1. 5786	1. 6411	1.7035	1.7660	1. 8284	1, 8909
	. 0056	. 0056	. 0057	. 0058	. 0058	. 0058	.0059	.0059	. 0060	, 0060
Class 3, pitch diameter $ \begin{cases} $	1. 3344	1. 3969	1. 4594	1. 5219	1.5844	1.6469	1.7094	1.7719	1.8344	1, 8969
	1. 3305	1. 3929	1. 4554	1. 5179	1.5803	1.6428	1.7053	1.7677	1.8302	1, 8927
	. 0039	. 0040	. 0040	. 0040	.0041	.0041	.0041	-0042	.0042	, 0042
Classes 2 and 3, major diameter Min.4	1. 3750	1. 4375	1.5000	1,5625	1.6250	1,6875	1.7500	1.8125	1.8750	1. 9375
Classes 2 and 3, minor diameter	1. 3073	1. 3698	1, 4323	1. 4948	1.5573	1.6198	1.6823	1.7448	1.8073	1. 8698
	1. 3153	1. 3778	1, 4403	1. 5028	1.5653	1.6278	1.6903	1.7528	1.8153	1. 8778
	. 0080	. 0080	, 0080	. 0080	.0080	.0080	.0080	.0080	.0080	. 0080
Class 2, pitch diameter (for general use) = $\begin{cases} Min.^5 \\ Max \\ Tol \end{cases}$	1.3344	1.3969	1, 4594	1. 5219	1.5844	1.6469	1. 7094	1.7719	1.8344	1. 8969
	1.3400	1.4025	1, 4651	1. 5277	1.5902	1.6527	1. 7153	1.7778	1.8404	1. 9029
	.0056	.0056	, 0057	. 0058	.0058	.0058	. 0059	.0059	.0060	. 0060
Class 3, pitch diameter $ \begin{cases} M & \text{in.}^5 - \\ M & \text{ax} \\ Tol - \dots \end{cases} $	1.3344	1.3969	1.4594	1. 5219	1.5844	1.6469	1. 7094	1. 7719	1.8344	1, 8969
	1.3383	1.4009	1.4634	1. 5259	1.5885	1.6510	1. 7135	1. 7761	1.8386	1, 9011
	.0039	.0040	.0040	. 0040	.0041	.0041	. 0041	. 0042	.0042	, 0042

Table 1.13.—Limits of size and tolerances, classes 2 and 3, American National 16-thread series, 16N—Continued

Limits of size and tolerances ¹					Si	ize (inches	s)				
	2	21/16	21/8	23/16	2	1/4	25/16	23/8	27/16	21/2	25/8
EXTERNAL THREADS (Max Min Tol	in. 2.0000 1.9910 .0090	in. 2.0625 2.0535 .0090	in. 2. 1250 2. 1160 . 0090	2. 178	35 2.2	2500 2. 2410 2.	n. 3125 3035 0090	in. 2.3750 2.3660 .0090	in. 2. 4375 2. 4285 . 0090	in. 2.5000 2.4910 .0090	in. 2.6250 2.6160 .0090
Classes 2 and 3, minor diameter Max 3	1, 9233	1. 9858	2, 0483	2.110	08 2. 1	733 2.	2358	2. 2983	2.3608	2. 4233	2.5483
Class 2, pitch diameter (for general use) $-\begin{cases} Max & 5 \\ Min \\ Tol & \end{cases}$	1. 9594 1. 9533 . 0061	2.0219 2.0158 .0061	2. 0844 2. 0782 . 0062	2.140	07 2. 2	2032 2.	2719 2656 0063	2. 3344 2. 3281 . 0063	3. 3969 2. 3905 . 0064	2. 4594 2. 4530 . 0064	2, 5844 2, 5779 , 0065
Class 3, pitch diameter $\begin{array}{c} {\rm Max}^{\delta} \dots \\ {\rm Min} \dots \\ {\rm Tol} \dots \end{array}$	1. 9594 1. 9551 . 0043	2. 0219 2. 0176 . 0043	2. 0844 2. 0801 . 0043	2. 143	26 2. 2	2050 2.	2719 2675 0044	2, 3344 2, 3300 . 0044	2, 3969 2, 3924 , 0045	2. 4594 2. 4549 . 0045	2. 5844 2. 5799 . 0045
INTERNAL THREADS									- 1	1	
Classes 2 and 3, major diameter Min 4	2.0000	2, 0625	2. 1250	2.18	75 2. 2	2500 2.	3125	2.3750	2. 4375	2. 5000	2.6250
Classes 2 and 3, minor diameter $\{MinTol\}$	1. 9323 1. 9403 . 0080	1. 9948 2. 0028 . 0080	2. 0573 2. 0653 . 0080	2. 12	78 2.1	1903 2.	2448 2528 0080	2.3073 2.3153 .0080	2.3698 2.3778 .0080	2. 4323 2. 4403 . 0080	2. 5573 2. 5653 . 0080
Class 2, pitch diameter (for general use) -1 Min^{δ} -1 Max -1 $Tol_{}$	1. 9594 1. 9655 . 0061	2, 0219 2, 0280 , 0061	2, 0844 2, 0906 , 0062	2.15	31 2.2	2156 2.	2719 2782 0063	2. 3344 2. 3407 . 0063	2, 3969 2, 4033 . 0064	2, 4594 2, 4658 . 0064	2, 5844 2, 5909 , 0065
Class 3, pitch diameter $\min_{T \text{ ol.}} \{ \substack{\text{Min }^{\delta} \\ \text{Max.} \\ \text{Tol.} \ldots \} }$	1. 9594 1. 9637 . 0043	2. 0219 2. 0262 . 0043	2. 0844 2. 0887 . 0043	2.15	12 2.5	2138 2.	2719 2763 0044	2.3344 2.3388 .0044	2, 3969 2, 4014 , 0045	2. 4594 2. 4639 . 0045	2. 5844 2. 5889 . 0045
Limits of size and tolerances $^{\mathrm{1}}$					S	ize (inche	s)			1	
`	23/4	27/8	3	31/8	31/4	33/8	31/2	35/8	3¾	37/8	4
EXTERNAL THREADS ${ m Max}_{ m Classes~2~and~3,~major~diameter} = { m Min}_{ m Tol}_{ m Tol}$	in. 2. 7500 2. 7410 . 0090	in. 2. 8750 2. 8660 . 0090	in. 3.0000 2.9910 .0090	in. 3. 1250 3. 1160 . 0090	in. 3.2500 3.2410 0.090	1n. 3.3750 3.3660 .0090	in. 3.5000 3.4910 .0090	3.6160	3.7410	in. 3. 8750 3. 8660 . 0090	in. 4.0000 3.9910 .0090
Classes 2 and 3, minor diameter Max 3	2. 6733	2.7983	2. 9233	3.0483	3, 1733	3. 2983	3, 4233	3, 5483	3. 6733	3. 7983	3, 9233
Class 2, pitch diameter (for general use) -1 Max^{6} Min Tol	2. 7094 2. 7028 . 0066	2. 8344 2. 8278 . 0066	2. 9594 2. 9527 . 0067	3. 0844 3. 0776 . 0068	3. 2094 3. 2025 . 0069	3.3344 3.3275 .0069	3. 4594 3. 4524 . 0070	3. 5773	3.7023	3.8344 3.8272 .0072	3. 9594 3. 9522 . 0072
Class 3, pitch diameter $\begin{array}{c} \operatorname{Max}^{\delta} - \\ \operatorname{Min} - \\ \operatorname{Tol} - \end{array}$	2. 7094 2. 7048 . 0046	2. 8344 2. 8298 . 0046	2. 9594 2. 9547 . 0047	3. 0844 3. 0797 . 0047	3. 2094 3. 2046 . 0048	3.3344 3.3296 .0048	3. 4594 3. 4545 . 0049	3.5795	3.7044	3.8294	3, 9594 3, 9543 , 0051
INTERNAL THREADS								1			
Classes 2 and 3, major diameter Min 4	2. 7500	2. 8750	3.0000	3.1250	3. 2500	3.3750	3. 5000	3, 6250	3. 7500	3.8750	4,0000
Classes 2 and 3, minor diameter $ -$	2.6823 2.6903 .0080	2.8073 2.8153 .0080	2. 9323 2. 9403 . 0080	3. 0573 3. 0653 . 0080	3. 1823 3. 1903 . 0080	3. 3073 3. 3153 . 0080	3. 4323 3. 4403 . 0080	3.5653	3.6903		3. 9323 3. 9403 . 0080
Class 2, pitch diameter (for general use) -1 Min^{δ} Max Tol	2. 7094 2. 7160 . 0066	2.8344 2.8410 .0066	2. 9594 2. 9661 . 0067	3. 0844 3. 0912 . 0068	3. 2094 3. 2163 . 0069	3.3344 3.3413 .0069	3. 4594 3. 4664 . 0070	3.5915	3. 7165		3, 9594 3, 9666 , 0072
Class 3, pitch diameter	2.7094 2.7140 .0046	2.8344 2.8390 .0046	2. 9594 2. 9641 . 0047	3. 0844 3. 0891 . 0047	3. 2094 3. 2142 . 0048	3. 3344 3. 3392 . 0048	3, 4594 3, 4643 , 0049	3.5893	3.7144	3. 8344 3. 8394 . 0050	3. 9594 3. 9645 . 0051

¹ Pitch-diameter tolerances include deviations of lead and angle. The class 2 tolerances are based on formulas in table 2.2, p. 180, and a length of engagement of 9 threads or \$\gamma_{16}\$ in. The class 3 tolerances are 70 percent of the class 2 tolerances. The \$\gamma_{1}\$-in, size being in the American National fine-thread series, the tolerance for this size corresponds to that series.

2 Standard size thread of the American National fine-thread series.

3 Dimensions given for the maximum minor diameter of the external thread are figured to the intersection of the worn-tool arc with a center line through creat and root. The minimum minor diameter of the external thread shall be that corresponding to a flat at the minor diameter of the minimum external thread equal to \$\frac{1}{2} \times \times

			Class 1					Class 2	
Threads per inch	Allowances	Major diameter tolerances, external thread	Pitch- diameter tolerances	Lead deviations consuming one-half of pitch-diameter tolerances ¹	Deviations in half- angle consuming one-half of pitch-diameter tolerances	Major diameter tolerances,² external thread	Pitch- diameter tolerances	Lead deviations consuming one-half of pitch-diameter tolerances ¹	Deviations in half- angle consuming one-half of pitch- diameter toler- ances
1	2	3	4	5	6	7	8	9	10
80 72 64 56 48 44 40 36 32 28 24 20 18	#n. 0.0007 .0007 .0007 .0007 .0008 .0009 .0009 .0010 .0011 .0011 .0012 .0013 .0015 .0016 .0018	im. 0.0048 .0050 .0052 .0056 .0062 .0064 .0068 .0072 .0076 .0086 .0092 .0102 .0114 .0126	im. 0.0024 .0025 .0026 .0028 .0031 .0032 .0034 .0036 .0038 .0043 .0046 .0051 .0057 .0063	in. 0.0007 .0007 .0008 .0008 .0009 .0009 .0010 .0010 .0011 .0012 .0013 .0015 .0016 .0018	deg min 3 40 3 26 3 10 3 0 2 50 2 41 2 36 2 28 2 19 2 18 2 6 1 57 1 58 1 55	in. 0.0034 .0036 .0038 .0040 .0044 .0046 .0048 .0050 .0054 .0062 .0066 .0072 .0082 .0090	in. 0.0017 0018 0019 0020 0022 0023 0024 0025 0027 0031 0033 0036 0041	in 0.0005 .0005 .0005 .0005 .0006 .0006 .0006 .0007 .0007 .0007 .0008 .0009 .0010 .0010 .0012 .0013	deg min 2 36 2 28 2 19 2 8 2 1 1 56 1 50 1 43 1 39 1 31 1 22 1 25 1 22
14 13 12 11	.0018 .0021 .0022 .0024 .0026	. 0140 . 0148 . 0158 . 0170	. 0070 . 0074 . 0079 . 0085	. 0020 . 0021 . 0023 . 0025	1 52 1 50 1 49 1 47	. 0090 . 0098 . 0104 . 0112 . 0118	. 0049 . 0052 . 0056 . 0059	.0013 .0014 .0015 .0016 .0017	1 19 1 17 1 17 1 17
10 9 8 7	.0028 .0031 .0034 .0039	.0184 .0200 .0222 .0248	.0092 .0100 .0111 .0124	. 0027 . 0029 . 0032 . 0036	1 45 1 43 1 42 1 39	.0128 .0140 .0152 .0170	.0064 .0070 .0076 .0085	.0018 .0020 .0022 .0025	1 13 1 12 1 10 1 8
6 5 4½ 4	.0044 .0052 .0057 .0064	. 0290 . 0338 . 0368 . 0408	. 0145 . 0169 . 0184 . 0204	. 0042 . 0049 . 0053 . 0059	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 0202 . 0232 . 0254 . 0280	.0101 .0116 .0127 .0140	. 0029 . 0033 . 0037 . 0040	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 1.15.—Allowances and tolerances, classes 3 and 4

			LABLE 1.10	. 11ttowanece	dha toterance	o, crasses o			
			Class 3				Class 4		
Threads per inch	Major diameter tolerances, external thread	Pitch- diameter tolerances	Lead devia- tions consum- ing one-half of pitch-diam- eter toler- ances ¹		Major diam-	Interferences or negative allowances	Pitch-diam- eter toler- ances	Lead deviations consuming one-half of pitch-diameter tolerances ¹	Deviations in half angle consuming one-half of pitch- diameter tol- erances
1	2	3	4	5	6	7	8	9	10
80 72 64 56 48 44 40 36 32 28 24 20 18 16 14 13 12 11	in. 0.0034 0.0036 0.0038 0.0040 0.0044 0.0048 0.0050 0.0054 0.0062 0.0066 0.0072 0.0082 0.0090 0.0098 0.1012 0.118 0.0128	in. 0.0013 .0013 .0013 .0014 .0015 .0016 .0016 .0017 .0018 .0019 .0022 .0024 .0026 .0030 .0032 .0036 .0037 .0040 .0042 .0042	in. 0.0004 .0004 .0004 .0004 .0005 .0005 .0005 .0005 .0006 .0007 .0008 .0009 .0010 .0011 .0012 .0013	deg min 1 59 1 47 1 43 1 36 1 28 1 21 1 18 1 14 1 10 1 11 1 6 1 0 1 2 0 59 0 58 0 55 0 55 0 55 0 53	in	0.0002 .0003 .0003 .0004 .0004 .0004 .0005	in	in	deg min
9 8 7	.0128 .0140 .0152 .0170	. 0045 . 0049 . 0054 . 0059	.0013 .0014 .0016 .0017	0 51 0 50 0 47	.0128 .0140 .0152 .0170	. 0006 . 0006 . 0007 . 0008	.0024 .0027 .0030	.0007 .0007 .0008 .0009	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} 6 \\ 5 \\ 41/2 \\ 4 \end{array}$. 0202 . 0232 . 0254 . 0280	.0071 .0082 .0089 .0097	.0020 .0024 .0026 .0028	$\begin{array}{ccc} 0 & 49 \\ 0 & 47 \\ 0 & 46 \\ 0 & 44 \end{array}$. 0202 . 0232 . 0254 . 0280	.0009 .0010 .0011 .0013	.0036 .0041 .0044 .0048	.0010 .0012 .0013 .0014	$\begin{array}{ccc} 0 & 25 \\ 0 & 23 \\ 0 & 23 \\ 0 & 22 \end{array}$

¹ Between any 2 threads not farther apart than the length of engagement.

6. LIMITS OF SIZE OF GAGES

The limits of size of plain and thread gages applicable to the standard series of American National screw threads are presented in table 1.16. In this table X tolerances are applied to thread gages for classes 1, 2, and 3, W tolerances to thread gages for class 4, and Z tolerances to plain gages. The limits of size of W truncated thread setting plug gages, and of both W and X basic-crest thread setting plug gages, are presented in table 1.17 or as indicated in the footnotes to table 1.17. These limits are developed in accordance with the requirements for gages and gaging stated in section VI, p. 107.

Between any 2 threads not farther apart than the length of engagement.
 The tolerances in column 3 apply to class 2 unfinished hot rolled material, NC and 8N series.

Table 1.16.—Gages for standard thread series, American National screw threads

		Nominal size and threads	per inch		21	08-0	1-64	1-72	2-56	2-64	3-48	3-56	4-40
		Series desig- nation			50	Z	NG NG	Z	NO NO	NE	NG	Z	NG
		Class			19	3 2 1	H 61 65	3 2 3	3 2 1	3 2 3	3 2 1	3 2 1	- 8 8
				Not go	18	in. 0.0514 .0513 .0514 .0514 .0513	. 0623 . 0623 . 0623 . 0623 . 0623	. 0634 . 0633 . 0633 . 0633 . 0633	. 0737 . 0736 . 0737 . 0736 . 0737	. 0746 . 0745 . 0746 . 0745 . 0745	. 0841 . 0840 . 0841 . 0841	0855 0855 0855 0855 0855 0855 0855	. 0938 . 0937 . 0937 . 0937 . 0938
		Z plain gages for minor diameter		Go	17	in. 0.0465 .0466 .0465 .0465 .0466	. 0561 . 0562 . 0562 . 0561 . 0561	0580 0581 0580 0581 0581 0580	. 0667 . 0668 . 0667 . 0668 . 0667	. 0691 . 0692 . 0691 . 0691	. 0764 . 0765 . 0764 . 0765	. 0797 . 0798 . 0797 . 0798	. 0849 . 0850 . 0849 . 0850 . 0849
hreads			ameter	Plus tol. gage	16	in. 0.0543 .0545 .0536 .0538 .0532	0655 0657 0658 0650 0643	. 0665 . 0667 . 0658 . 0660 . 0653	. 0772 . 0774 . 0764 . 0766 . 0759	. 0785 . 0787 . 0778 . 0780 . 0773	. 0886 . 0888 . 0877 . 0879 . 0873	. 0902 . 0904 . 0894 . 0889 . 0889	. 0992 . 0994 . 0982 . 0975 . 0975
Gages for internal threads	Si	Not go	Pitch diameter	Minus tol. gage	15	in. 0. 0543 0. 0541 0. 0536 0. 0534 0. 0532 0. 0532	0655 0653 0648 0646 0646	. 0665 . 0663 . 0658 . 0656 . 0653	. 0772 . 0770 . 0764 . 0762 . 0759	. 0785 . 0783 . 0778 . 0776 . 0773	. 0886 . 0884 . 0877 . 0875 . 0869	0902 0900 0894 0892 0889	. 0992 . 0990 . 0982 . 0980 . 0975
Gages for	Thread gages		Major	diameter	14	in. 0, 0596 0593 0590 0587 0586	. 0723 . 0719 . 0716 . 0712 . 0711	. 0725 . 0722 . 0718 . 0715 . 0713	. 0849 . 0845 . 0841 . 0837 . 0836	. 0853 . 0849 . 0846 . 0842 . 0841	0976 0972 0967 0963 0961 0951	. 0979 . 0975 . 0967 . 0966 . 0966	. 1100 . 1096 . 1090 . 1086 . 1083
	T		Pitch	diameter	13	in. 0.0519 0.0519 0.0519 0.0519 0.0519 0.0519 0.0519	. 0629 . 0631 . 0639 . 0631 . 0631	. 0640 . 0642 . 0642 . 0642 . 0642 . 0642	. 0744 . 0746 . 0744 . 0746 . 0746	. 0759 . 0761 . 0759 . 0761 . 0761	0855 0855 0855 0855 0855 0855 0855	. 0874 . 0876 . 0874 . 0876 . 0876	. 0958 . 0960 . 0960 . 0960 . 0958
		Go	Major	liameter	12	in. 0.0600 .0690 .0690 .0603 .0600	. 0730 . 0734 . 0730 . 0734 . 0734	.0730 .0733 .0733 .0733 .0733	. 0860 . 0864 . 0860 . 0864 . 0860	. 0860 . 0864 . 0864 . 0864 . 0860	. 0990 . 0994 . 0990 . 0990 . 0990	. 0990 . 0994 . 0990 . 0994 . 0990	. 1120 . 1124 . 1126 . 1124 . 1126
	diameter	go	Unfin- ished	hot-rolled material	11	in.	0.0678		. 0804		. 0928		1052
	Z plain gages for major diameter	Notgo		finished	10	in. 0.0545 .0546 .0566 .0567 .0567	. 0671 . 0672 . 0692 . 0693 . 0692	. 0673 . 0674 . 0694 . 0695 . 0694	. 0796 . 0797 . 0820 . 0821 . 0820	. 0801 . 0802 . 0822 . 0823 . 0822 . 0822	. 0919 . 0920 . 0946 . 0947 . 0946	. 0926 . 0927 . 0950 . 0951 . 0950	1042 1043 1072 1073 1072 1072
ls	Z plain gag	Go			6	in. 0.0593 .0592 .0600 .0599 .0599	. 0723 . 0722 . 0730 . 0729 . 0730	. 0723 . 0722 . 0730 . 0729 . 0730	. 0852 . 0851 . 0860 . 0859 . 0860	. 0853 . 0860 . 0859 . 0859 . 0859	1860 0860 0660 0660	. 0982 . 0981 . 0990 . 0990 . 0989	. 1110 . 1120 . 1120 . 1120
for external threads			Minor	diameter	× ×	in. 0.0469 .0472 .0475 .0475 .0478	. 0562 . 0566 . 0576 . 0580 . 0581	. 0585 . 0588 . 0592 . 0595 . 0597	. 0669 . 0685 . 0689 . 0690	. 0696 . 0700 . 0706 . 0710 . 0711	. 0770 . 0774 . 0788 . 0792 . 0794	. 0803 . 0807 . 0815 . 0820 . 0824	. 0860 . 0864 . 0880 . 0884 . 0887
Gages for exte	Si	Not go		Minus tol. gage	7	in. 0.0488 .0486 .0502 .0500 .0506	. 0596 . 0594 . 0610 . 0608 . 0615	. 0608 . 0606 . 0622 . 0627 . 0627	. 0708 . 0706 . 0724 . 0722 . 0727	. 0726 . 0724 . 0740 . 0738 . 0745	. 0815 . 0813 . 0831 . 0831 . 0839	0838 0836 0854 0852 0859	. 0914 . 0912 . 0934 . 0931 . 0941
Ga	Thread gages		Pitch diameter	Plus tol. gage	9	in. 0.0488 0.0490 0.0502 0.0504 0.0506	. 0596 . 0598 . 0610 . 0612 . 0615	. 0608 . 0622 . 0624 . 0627	. 0708 . 0710 . 0724 . 0726 . 0729	. 0726 . 0728 . 0740 . 0742 . 0745	. 0815 . 0817 . 0833 . 0835 . 0839	$\begin{array}{c} .0838 \\ .0840 \\ .0854 \\ .0856 \\ .0859 \\ .0861 \end{array}$. 0914 . 0916 . 0934 . 0936 . 0941
	T		Minor	diameter	5	in. 0.0458 .0455 .0465 .0462 .0462	. 0554 . 0550 . 0561 . 0557 . 0561	. 0573 . 0570 . 0580 . 0577 . 0580	. 0659 . 0655 . 0667 . 0663 . 0667 . 0667	. 0684 . 0680 . 0691 . 0687 . 0691	. 0756 . 0752 . 0765 . 0761 . 0765	. 0785 . 0785 . 0797 . 0793	. 0840 . 0836 . 0850 . 0850 . 0850
		Go	Pitch	diameter	4	in. 0.0512 .0510 .0519 .0517 .0519	. 0622 . 0620 . 0629 . 0627 . 0629	. 0633 . 0640 . 0640 . 0640 . 0640	. 0736 . 0734 . 0744 . 0742 . 0744	. 0752 . 0750 . 0759 . 0757 . 0757	. 0846 . 0844 . 0855 . 0853 . 0855	. 0866 . 0864 . 0874 . 0872 . 0874	. 0948 . 0946 . 0958 . 0956 . 0958
		Class			8	3 5 -	3 3	3 5 1	3 2 1	3 5 1	- 23 E	3 5 -	3 5 1
		Series desig- nation			2	N	NO	NF	NC	NF	NO	NF	NC
		Nominal size and threads	per inch		1	0-80	1-64	1-72	2-56	2-64	3-48	3-56	4-40

4-48	5-40	5-44	6-32	07-9	8-32	8-36	10-24	10-32	12-24	12-28
Z	o Z	Z Fi	NG	Z	NG	Z E	Z Z	N	NC	Z
3 5 -	4 2 1	3 2 2	- 6 8	- 61 %	3 2 1	- 67 89	3 2 1	3 2 1	3 5 1	- 62 %
. 0960 . 0959 . 0959 . 0959 . 0960	. 1062 . 1061 . 1062 . 1061 . 1062	. 1068 . 1067 . 1068 . 1067 . 1068	. 1145 . 1146 . 1146 . 1146	1179 1178 1179 1179 1179	. 1384 . 1383 . 1384 . 1384 . 1383	. 1402 . 1401 . 1402 . 1402 . 1402	. 1559 . 1559 . 1559 . 1559 . 1559	. 1624 . 1623 . 1624 . 1624 . 1624	. 1801 . 1800 . 1800 . 1801 . 1801	1835 1834 1835 1834 1835 1835
.0894 .0895 .0894 .0895 .0894	. 0979 . 0980 . 0980 . 0979	1004 1005 1004 1005 1004	. 1042 . 1043 . 1043 . 1043 . 1043	. 1109 . 1109 . 1109 . 1109	1302 1303 1303 1303 1303	.1339 .1340 .1339 .1339 .1339	. 1449 . 1450 . 1449 . 1450 . 1419	.1562 .1563 .1562 .1562 .1563	. 1709 . 1710 . 1709 . 1710 . 1709	1773 1774 1773 1774 1774
. 1016 . 1018 . 1007 . 1009 . 1003	. 1122 . 1124 . 1112 . 1112 . 1105	. 1134 . 1136 . 1125 . 1127 . 1118	1215 1218 1204 1207 1196	.1252 .1254 .1242 .1244 .1235	. 1475 . 1478 . 1464 . 1467 . 1456	.1496 .1498 .1485 .1487 .1478	.1675 .1678 .1662 .1665 .1653	. 1735 . 1738 . 1724 . 1727 . 1716	. 1935 . 1938 . 1922 . 1925 . 1913	. 1971 . 1974 . 1959 . 1962 . 1950
. 1016 . 1014 . 1007 . 1001 . 0999	. 1122 . 1120 . 1112 . 1110 . 1105	. 1134 . 1132 . 1125 . 1123 . 1118	. 1215 . 1212 . 1204 . 1201 . 1196	1252 1250 1242 1240 1233	.1475 .1472 .1464 .1461 .1456	.1496 .1494 .1485 .1483 .1478	.1675 .1672 .1662 .1659 .1653	. 1735 . 1732 . 1724 . 1721 . 1716	. 1935 . 1932 . 1922 . 1919 . 1913	. 1971 . 1968 . 1959 . 1956 . 1956
.1106 .1102 .1097 .1093 .1091	. 1230 . 1226 . 1220 . 1216 . 1213	1232 1228 1223 1223 1219 1216	. 1350 . 1345 . 1339 . 1331 . 1326	.1360 .1356 .1350 .1346 .1343	. 1610 . 1605 . 1599 . 1594 . 1591	. 1616 . 1612 . 1605 . 1601 . 1598	.1855 .1850 .1842 .1837 .1833	, 1870 , 1865 , 1859 , 1854 , 1851	. 2115 . 2110 . 2102 . 2097 . 2093	2126 2121 2114 2109 2105
.0985 .0987 .0985 .0985	. 1088 . 1090 . 1088 . 1090 . 1098	. 1102 . 1104 . 1102 . 1104 . 1102	1177 1180 1177 1180 1177	. 1218 . 1220 . 1218 . 1220 . 1218	. 1437 . 1440 . 1437 . 1440 . 1437	.1460 .1462 .1460 .1460 .1460	. 1629 . 1632 . 1632 . 1632 . 1632 . 1632	.1697 .1700 .1697 .1700 .1697	. 1889 . 1892 . 1889 . 1892 . 1889	1928 1931 1928 1931 1928 1928
. 1120 . 1124 . 1126 . 1126	. 1250 . 1254 . 1254 . 1254 . 1256	. 1250 . 1254 . 1250 . 1254 . 1254	. 1380 . 1385 . 1385 . 1386	. 1384 . 1384 . 1384 . 1384 . 1384	. 1640 . 1645 . 1640 . 1645 . 1640	.1640 .1644 .1640 .1644 .1644	. 1900 . 1905 . 1900 . 1900 . 1900	.1900 .1905 .1900 .1900 .1900	. 2160 . 2165 . 2160 . 2165 . 2160	. 2160 . 2165 . 2160 . 2165 . 2165
	. 1182		.1304		. 1564		.1808		2068	
. 1049 . 1050 . 1076 . 1077 . 1076	. 1172 . 1173 . 1202 . 1203 . 1203	. 1177 . 1178 . 1204 . 1205 . 1204	. 1293 . 1294 . 1326 . 1327 . 1326	.1302 .1303 .1332 .1333 .1333	.1553 .1554 .1586 .1587 .1586	.1557 .1558 .1590 .1591 .1591	. 1795 . 1796 . 1834 . 1835 . 1835	.1813 .1814 .1846 .1847 .1846	. 2055 . 2094 . 2094 . 2094	2062 2098 2098 2099 2099
. 11110 . 1120 . 1120 . 1120 . 1120	. 1240 . 1239 . 1250 . 1249 . 1250	. 1241 . 1240 . 1250 . 1249 . 1250	. 1369 . 1368 . 1380 . 1379 . 1380	. 1370 . 1369 . 1380 . 1379 . 1379	. 1629 . 1628 . 1640 . 1639 . 1640	.1629 .1628 .1640 .1639 .1640	. 1885 . 1900 . 1900 . 1900 . 1899	. 1889 . 1900 . 1999 . 1999	2147 2146 2160 2159 2159 2159	. 2148 . 2147 . 2160 . 2159 . 2160
. 0901 . 0905 . 0918 . 0922 . 0924 . 0924	. 0990 . 0994 . 1010 . 1014 . 1017	. 1012 . 1016 . 1030 . 1034 . 1037	.1060 .1065 .1082 .1087 .1090	. 1120 . 1124 . 1140 . 1144 . 1147	.1325 .1325 .1342 .1347 .1350	.1353 .1357 .1375 .1375 .1382 .1386	.1485 .1506 .1511 .1511 .1515	.1580 .1585 .1602 .1607 .1610	1740 1745 1766 1771 1775	1796 1801 1820 1825 1829 1834
. 0945 . 0943 . 0963 . 0961 . 0967	.1044 .1042 .1064 .1064 .1071	. 1061 . 1059 . 1079 . 1086 . 1086	.1128 .1125 .1150 .1147 .1158	. 1174 . 1172 . 1194 . 1201 . 1201	. 1388 . 1385 . 1410 . 1407 . 1418	. 1413 . 1435 . 1435 . 1433 . 1442	. 1570 . 1567 . 1596 . 1593 . 1605	. 1648 . 1645 . 1670 . 1667 . 1678 . 1678	. 1830 . 1827 . 1856 . 1853 . 1865	. 1873 . 1870 . 1897 . 1906 . 1906
. 0945 . 0947 . 0963 . 0965 . 0969	. 1044 . 1046 . 1064 . 1066 . 1071	. 1061 . 1063 . 1079 . 1081 . 1086	. 1128 . 1131 . 1150 . 1153 . 1158	. 1174 . 1176 . 1194 . 1201 . 1203	1388 1391 1410 1413 1418	1413 1415 1435 1437 1442	. 1570 . 1573 . 1596 . 1599 . 1605	. 1648 . 1651 . 1670 . 1673 . 1678	1830 1833 1856 1856 1865 1865	. 1873 . 1876 . 1897 . 1900 . 1906
. 0882 . 0882 . 0895 . 0895 . 0895	0970 . 0966 . 0980 . 0980 . 0980	. 0995 . 0991 . 1004 . 1004	. 1031 . 1026 . 1042 . 1042 . 1037	. 1100 . 1096 . 1110 . 1106	. 1291 . 1286 . 1302 . 1302 . 1297	. 1329 . 1325 . 1340 . 1340 . 1336	1436 1431 1449 1444 1444 1444	.1551 .1546 .1562 .1557 .1562	.1696 .1691 .1799 .1704 .1709	. 1761 . 1756 . 1773 . 1768 . 1773
. 0976 . 0974 . 0985 . 0983 . 0985	. 1078 . 1076 . 1088 . 1086 . 1088	. 1093 . 1102 . 1102 . 1102	1166 1163 1177 1174 1177	1208 1206 1218 1216 1218 1218	1428 1423 1437 1437 1437 1437	1449 1447 1460 1458 1460 1458	. 1616 . 1613 . 1629 . 1626 . 1626 . 1629	. 1686 . 1683 . 1697 . 1694 . 1697	1876 1873 1889 1886 1889	1916 1913 1928 1925 1926
3 5 1	3 3	3 2 3	3 2 3	3 62	3 2 1	3 2 3	3 2 1	3 5 1	3 5 1	3 2 1
Z	NG	Z	NG	Z	NC	N	NC	Z	NC	NF
4-48	5-40	44.	6-32	6-40	8-32	8-36	10-24	10-32	12-24	12-28

Table 1.16.—Gages for standard thread series, American National screw threads—Continued

		Nominal size and	per ineh		21	12-32	14-20	1,4-28	14-32	5/6-18	5/6-24	5/16-32
		Series desig- nation			20	NEF	NG	Ž	NEF	NG	ž Z	NEF
		Class			19	61 60	1 2 8 4	H 62 85 44	67 89	- 2 8 4	L 2 & 4	C1 60
	rees for			Not go	18	in. 0.1875 .1874 .1875 .1875	. 2060 . 2059 . 2059 . 2059 . 2050 . 2050 . 2050	. 2173 2712 2712 2712 2712 2713 2713 2713	. 2210 . 2209 . 2210 . 2209	2629 2629 2629 2629 2629 2629 2629 2629	. 2738 . 2738 . 2738 . 2738 . 2738 . 2738 . 2738	2835 2834 2835 2835
	Z plain g	minor diameter		G ₀	17	in. 0.1822 .1823 .1822 .1822	. 1959 . 1960 . 1959 . 1959 . 1950 . 1950	2113 2114 2113 2113 2113 2113 2113 2113	. 2162 . 2163 . 2162 . 2163	2524 2524 2525 2524 2525 2524 2525 2525	2674 2675 2674 2674 2675 2675 2675 2675	. 2787 . 2788 . 2787 . 2788
hreads			ameter	Plus tol. gage	16	0.1988 0.1988 0.1979 0.1982	. 2226 . 2229 . 2211 . 2214 . 2201 . 2204 . 2188	. 2314 . 2314 . 2299 . 2290 . 2290 . 2293 . 2279	. 2329 . 2332 . 2319	. 2821 . 2824 . 2805 . 2808 . 2794 . 2779 . 2779	. 2900 . 2903 . 2887 . 2887 . 2881 . 2881 . 2881	. 2955 . 2958 . 2945 . 2948
Gages for internal threads	S	Not go	Pitch diameter	Minus tol. gage	15	in. 0.1988 .1985 .1979	. 2226 . 2223 . 2221 . 2211 . 2208 . 2198 . 2188	. 2311 . 2308 . 2230 . 2230 . 2230 . 2287 . 2279	. 2329 . 2326 . 2319 . 2316	. 2821 . 2818 . 2805 . 2802 . 2794 . 2779	. 2900 . 2887 . 2887 . 2878 . 2875 . 2866	. 2955 . 2952 . 2945 . 2942
Gages fo	Thread gages		Maior	diameter	14	in. 0.2123 .2118 .2114 .2109	. 2443 . 2428 . 2423 . 2418 . 2418 . 2413 . 2405	. 2466 . 2461 . 2415 . 2415 . 2415 . 2410 . 2434 . 2434	. 2464 . 2459 . 2454	. 3062 . 3057 . 3046 . 3044 . 3031 . 3030 . 3020 . 3015	. 3080 . 3075 . 3067 . 3067 . 3068 . 3058 . 3058 . 3016	. 3090 . 3085 . 3080
	L	0	Piteh	diameter	13	in. 0. 1957 1960 1957 1957	2175 2178 2175 2175 2178 2175 2175 2175	. 2268 . 2271 . 2276 . 2271 . 2278 . 2278 . 2268 . 2268	. 2297 . 2300 . 2297 . 2300	2764 2767 2764 2764 2764 2767 2767 2767	2854 2857 2857 2857 2857 2857 2857 2854	. 2922 . 2925 . 2922 . 2925
		Go	Major	diameter diameter	12	in. 0. 2160 . 2165 . 2166 . 2165	2500 2500 2500 2500 2500 2500 2500	2500 2500 2500 2500 2500 2500 2500 2500	. 2500 . 2505 . 2500	.8125 .8125 .8126 .8126 .8126 .8126	. 3125 . 3125 . 3125 . 3125 . 3125 . 3125 . 3125	. 3125 . 3130 . 3125 . 3130
	r diameter	80	Unfin- ished	hot-rolled material	11	in.	0.2398			.3011		
	es for majo	Not go		finished	10	in. 0. 2106 2107 2107 2106 2106	. 2383 . 2428 . 2429 . 2429 . 2429 . 2429 . 2428	. 2402 . 2403 . 2439 . 2439 . 2439 . 2439 . 2438	. 2446 . 2447 . 2446 . 2447	. 2995 . 2996 . 3044 . 3044 . 3043 . 3044 . 3044	. 3020 . 3021 . 3059 . 3059 . 3059 . 3059	. 3071 . 3072 . 3071 . 3072
ls	Z plain gages for major diameter		G ₀		6	in. 0.2160 .2159 .2160 .2160	2484 2484 2500 2499 2500 2500 2500	. 2488 . 2489 . 2500 . 2500 . 2499 . 2499 . 2499	. 2500 . 2499 . 2500 . 2499	.3109 .3108 .3125 .3124 .3124 .3124 .3125	. 3112 . 3121 . 3125 . 3125 . 3125 . 3125 . 3125	.3125 .3124 .3125 .3125
Gages for external threads			Minor	diameter	∞	in. 0.1858 .1863 .1867 .1872	2001 2006 2036 2036 2041 2046 2046 2057	2136 2141 2165 2165 2169 2174 2182	. 2202 . 2207 . 2207 . 2212	. 2571 . 2576 . 2608 . 2608 . 2619 . 2619 . 2632	. 2705 2710 2731 2736 . 2740 . 2745 . 2755	. 2821 . 2826 . 2831 . 2836
ges for exte	es	80	er	Minus tol. gage	7	in. 0. 1926 1923 1935 1935	. 2109 . 2136 . 2138 . 2149 . 2146 . 2165	. 2213 . 2210 . 2237 . 2234 . 2243 . 2243 . 2259	. 2265 . 2262 . 2275 . 2272	. 2691 . 2688 . 2723 . 2720 . 2734 . 2731	2795 2792 2821 2818 2838 2827 2827 2845	. 2889 . 2896 . 2896
Ga	Thread gages	Not go	Pitch diamet	Plus tol. gage	9	in. 0.1926 .1929 .1935	. 2102 . 2112 . 2132 . 2142 . 2149 . 2152 . 2165	. 2213 . 2216 . 2240 . 2246 . 2249 . 2259	. 2265 . 2268 . 2275 . 2278	2691 2694 2728 2726 2734 2737 2737 2752	. 2795 . 2798 . 2821 . 2821 . 2830 . 2833 . 2845 . 2845	. 2889 . 2892 . 2899
	Į.	0	Minor	diameter	rĊ	in. 0.1822 .1817 .1822 .1817	. 1944 . 1939 . 1954 . 1959 . 1959 . 1962 . 1962	. 2101 . 2096 . 2113 . 2113 . 2113 . 2115	. 2162 . 2157 . 2162 . 2157	. 2507 . 2502 . 2523 . 2523 . 2523 . 2523 . 2526 . 2526	. 2661 . 2656 . 2674 . 2669 . 2674 . 2677	. 2787 . 2782 . 2787 . 2787
		Go	Pitch	diameter	4	in. 0.1957 .1954 .1957 .1957	2160 2157 2175 2175 2175 2175 2172 2178	. 2256 . 2253 . 2268 . 2265 . 2265 . 2265 . 2265 . 2265	. 2294 . 2294 . 2297 . 2294	. 2748 . 2745 . 2764 . 2761 . 2761 . 2761 . 2761	2841 2838 2854 2851 2851 2851 2857 2857	. 2922 . 2919 . 2922 . 2919
		Class			65	2 8	2 8 4	1 2 8 4	9 7	1 2 8 4	1 2 8 4	3 2
		Series desig- nation			2	NEF	ž	Z	NEF	$^{ m C}_{ m N}$	N	NEF
		Nominal size and threads	per inch		-	12-32	1,4-20	1,4-28	14-32	\$/16-18	\$/16-24	\$1e-32

38-16	3/8-24	3,8-32	7/6-14	7/13-20	7/16-28	1/2-12	1/2-13	1/2-20	1/2-28
NO	Ä	NEF	NG	N H	NEF	Z	Ö Z	N	NEF
1 2 8 4	1 3 5 4	63 69	1 2 8 4	1 2 8 4	61 69	64 89	1 2 8 4	1 2 8 4	2 %
3183 3183 3183 3183 3184 3184 3183	.3364 .3363 .3364 .3364 .3364 .3364 .3363	. 3460 . 3459 . 3459	. 3721 . 3720 . 3721 . 3721 . 3720 . 3721 . 3720 . 3721	3906 3905 3905 3905 3905 3905 3905	. 4044 . 4043 . 4044 . 4043	. 4225 . 4224 . 4225 . 4225	4289 4289 4289 4289 4289 4289 4289 4289	.4531 .4530 .4531 .4530 .4530 .4530 .4530	. 4669 . 4669 . 4669
3073 3074 3073 3073 3073 3073	. 3299 . 3200 . 3299 . 3299 . 3299 . 3299	.3412 .3413 .3412 .3413	3602 3603 3603 3603 3603 3603 3603	3834 3835 3835 3835 3835 3835 3835 3835	. 3988 . 3989 . 3988	. 4098 . 4099 . 4099 . 4099	.4167 .4168 .4167 .4168 .4168 .4168 .4168	. 4459 . 4460 . 4459 . 4450 . 4450 . 4460 . 4460	. 4613 . 4614 . 4613 . 4614
. 3407 . 3410 . 3389 . 3392 . 3376 . 3376 . 3360	3525 3528 3512 3512 3515 3508 3506 3491	. 3581 . 3571 . 3574	3981 3984 3960 3963 3947 3950 39290	4101 4104 4086 4089 4089 4076 4079 4063	. 4179 . 4182 . 4168 . 4171	. 4515 . 4518 . 4502	. 4574 . 4577 . 4552 . 4555 . 4537 . 4540 . 45190	. 4726 . 4729 . 4711 . 4714 . 4704 . 4704 . 4688 . 4689	. 4805 . 4794 . 4797
.3404 .3389 .3386 .3386 .3376 .3373	3525 3522 3512 3509 3509 3500 3490	. 3581 . 3578 . 3571 . 3568	3981 3978 3960 3957 3947 3944 39290	.4101 .4098 .4086 .4083 .4073 .4063	. 4179 . 4176 . 4168	. 4515 . 4512 . 4499 . 4496	4574 45571 45552 4554 4537 4534 45190	. 4726 . 4723 . 4711 . 4708 . 4698 . 4688	. 4805 . 4802 . 4794 . 4791
. 3672 . 3672 . 3660 . 3654 . 3641 . 3641 . 3631	. 3705 . 3700 . 3692 . 3683 . 3683 . 3671 . 3671	. 3716 . 3711 . 3706 . 3701	. 4290 . 4284 . 4269 . 426 . 4256 . 4250 . 4238	. 4318 . 4313 . 4293 . 4293 . 4288 . 4280	. 4334 . 4329 . 4323 . 4318	. 4876 . 4870 . 4860 . 4854	. 4907 . 4901 . 4885 . 4879 . 4870 . 4864 . 4852	. 4943 . 4938 . 4928 . 4918 . 4913 . 4913 . 4905	4960 4955 4949 4944
3347 3347 3347 3347 3347 3347 3347	3479 3482 3479 3479 3479 3482 3482 3482	. 3547 . 3550 . 3547 . 3550	. 3911 . 3914 . 3911 . 3914 . 3911 . 3910 . 39125	.4050 .4053 .4053 .4053 .4050 .4050	. 4143 . 4143 . 4143	. 4459 . 4462 . 4459 . 4462	.4500 .4503 .4503 .4503 .4500 .4500 .45015	4675 4675 4678 4678 4675 4675 4675	. 4768 . 4771 . 4768
. 3750 . 3750 . 3750 . 3750 . 3750 . 3750 . 3750	. 3750 . 3755 . 3755 . 3755 . 3755 . 3755 . 3755	. 3750 . 3755 . 3750 . 3755	. 4375 4331 4337 4337 4337 4375 4381 4381	4375 4380 4375 4380 4375 4375 4380 4380	. 4375 . 4380 . 4375 . 4380	5000	\$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200	5000 5000 5000 5000 5000 5000 5000	. 5000 . 5005 . 5000
. 3624			. 4235				4852		
.3606 .3607 .3660 .3661 .3661 .3661 .3660	3645 3645 3686 3685 3685 3685 3685 3685 3685	. 3696 . 3697 . 3696	4.124 4.2124 4.2124 5.724 7.724 7.724 7.724 7.724 7.724 7.724	4258 4259 4304 4303 4304 4304 4304 4304	.4313 .4314 .4313 .4314	4888 4889 4888 4888	. 4830 . 4897 . 4897 . 4897 . 4897 . 4897 . 4896	4883 4884 4928 4928 4929 4929 4929	. 4938 . 4939 . 4938
3732 3730 3750 3749 3749 3750 3750 3749	.3737 .3736 .3750 .3750 .3750 .3750	. 3750 . 3749 . 3750 . 3749	4354 4355 4375 4375 4375 4375 4575 4784 4784	4360 4359 4375 4375 4375 4375 4375 4375	. 4375 . 4374 . 4375	. 5000 . 4999 . 5000 . 4999	. 4978 . 5000 . 4999 . 5000 . 5000 . 5000 . 5000	. 4985 . 4984 . 5000 . 5000 . 5000 . 5000 . 4999	. 5000 . 4999 . 5000 . 4999
3128 3134 3164 3170 3177 3183 3197	. 3330 . 3356 . 3356 . 3356 . 3370 . 3380 . 3380	. 3445 . 3450 . 3455 . 3460	3665 3671 3707 3713 3720 3726 3742 3742	3876 3881 3906 3911 3916 3921 3932	. 4030 . 4035 . 4041 . 4046	. 4223 . 4229 . 4239 . 4245	. 4238 . 4284 . 4282 . 4288 . 4297 . 4319 . 4325	.4501 .4506 .4536 .4531 .4541 .4546 .4557	. 4654 . 4659 . 4665
. 3263 . 3260 . 3299 . 3296 . 3312 . 3332 . 3332	. 3420 . 3417 . 3446 . 3443 . 3455 . 3452 . 3450	. 3513 . 3510 . 3523 . 3520	. 3820 . 3817 . 3862 . 3859 . 3875 . 3872 . 38970	3984 3981 4014 4021 4021 4021 4020 4039	.4104 .4118 .4118	. 4403 . 4400 . 4419 . 4416	. 4404 . 44401 . 4445 . 4445 . 4463 . 4460 . 44850	.4609 .4606 .4639 .4636 .4649 .4646 .4665	. 4731 . 4728 . 4742
.3263 .3266 .3299 .3302 .3312 .3315	. 3420 . 3446 . 3446 . 3455 . 3455 . 3470	. 3513 . 3516 . 3523 . 3526	. 3820 . 3862 . 3862 . 3865 . 3875 . 38970 . 38970	3984 3987 4014 4017 4027 4027 4040	.4107 .4110 .4118 .4121	. 4403 . 4406 . 4419 . 4422	. 4404 . 4448 . 4451 . 4463 . 4463 . 4460 . 4486	. 4609 . 4612 . 4639 . 4649 . 4652 . 4665	. 4731 . 4734 . 4742 . 4745
.3055 .3049 .3073 .3073 .3067 .3067	.3286 .3281 .3299 .3299 .3294 .3302	.3412 .3407 .3412 .3407	. 3581 . 3575 . 3602 . 3502 . 3506 . 3506 . 3506	3818 3813 3824 3834 3837 3837 3837	3988 3988 3988	. 4098 . 4092 . 4098	. 4145 . 4139 . 4161 . 4161 . 4161 . 4165	. 4443 4453 4455 4454 . 4459 . 4454 . 4463 . 4463 . 4463	. 4613 . 4608 . 4613 . 4608
. 3328 . 3328 . 3344 . 3344 . 3344 . 3348 . 3348	3466 3463 3479 3476 3476 3476 3482	. 3547 . 3544 . 3547 . 3544	3887 3887 3911 3908 3911 3918 39150 39135	. 4035 . 4032 . 4050 . 4047 . 4057 . 4053 . 4053	.4143 .4140 .4143	. 4459 . 4456 . 4459 . 4456	.4478 .4475 .4500 .4497 .4500 .45040	. 4660 . 4675 . 4675 . 4675 . 4672 . 4678	. 4768 . 4765 . 4768
1 2 2 4 3 3	1 2 8 4	3 3	1 2 8 4	2 2 4 4 3	3 5	3 5	2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 2 8 4	3 2
NG	N	NEF	O Z	N	NEF	z	NG	N	NEF
38-16	3/6-24	38-32	716-14	7/6-20	7/16-28	1/2-12	½ -13	¥2-20	1/2-28

Table 1.16.—Gages for standard thread series, American National screw threads—Continued

		Nominal size and threads	per inch		21	9/6-12	9/6-18	9/16-24	58-11	58-12	58-18	58-24	11/16-12
		Series desig- nation			20	NG	Z Z	Z E E	N O	\Z _i	Z	NEF	z
		Class			19	1 2 8 4	- 01 to 4	63 65	- C1 80 41	61 69	H 63 65 44	61 69	61 80
	ages for	ameter		Not go	18	in. 0.4850 .4849 .4850 .4849 .4860 .4850 .4850	. 5100 . 5093 . 5100 . 5100 . 5100 . 5100	. 5239 . 5233 . 5239 . 5238	. 5397 . 5396 . 5397 . 5396 . 5397 . 5396	. 5438 . 5437 . 5438	5725 57224 57225 57225 57224 5724 5725	. 5864 . 5863 . 5864 . 5863	. 6063 . 6063 . 6063
	Z plain g	minor diameter		OD OD	17	in. 0.4723 4724 4724 4723 4724 4724 4724 4724	. 5024 . 5025 . 5024 . 5025 . 5025 . 5025 . 5025	. 5174 . 5175 . 5174 . 5175	. 5266 . 5267 . 5266 . 5267 . 5266 . 5266 . 5267	. 5348 . 5349 . 5348	. 5649 . 5650 . 5650 . 5649 . 5649 . 5649	. 5799 . 5800 . 5799 . 5800	. 5973 . 5974 . 5973
hreads			ameter	Plus tol. gage	16	\$\$\text{in}\$, \$\$\text{in}\$, \$\$\text{in}\$, \$\$\text{5163}\$, \$\$\text{5166}\$, \$\$\text{5143}\$, \$\$\text{5124}\$, \$\$\text{5104}\$, \$\$\text{5106}\$, \$\text{5106}\$, \$5	. 5321 . 5324 . 5305 . 5308 . 5294 . 5297 . 5297	5394 5397 5382 5385	. 5745 . 5748 . 5719 . 5722 . 5702 . 5705 . 5681	. 5765 . 5768 . 5749 . 5752	. 5946 . 5949 . 5930 . 5933 . 5919 . 5922 . 59040	. 6020 . 6023 . 6008	. 6390 . 6393 . 6374
Gages for internal threads	, w	Not go	Pitch diameter	Minus tol. gage	15	##. 0.5163 5160 .5140 .5137 .5124 .5121 .5104	. 5321 . 5318 . 5305 . 5302 . 5294 . 5291 . 52790	. 5394 . 5391 . 5379	. 5745 . 5742 . 5719 . 5716 . 5699 . 5681 . 5679	. 5765 . 5762 . 5749 . 5746	. 5946 . 5943 . 5930 . 5927 . 5919 . 5916 . 59040	. 6020 . 6017 . 6008	. 6390 . 6374 . 6374
Gages for	Thread gages		Major	Ŀ	14	in. 0.5524 . 5518 . 5501 . 5495 . 5485 . 5479 . 5465	. 5562 . 5546 . 5546 . 5541 . 5535 . 5530 . 5520	. 5574 . 5569 . 5562 . 5557	. 6139 . 6133 . 6113 . 6107 . 6096 . 60975	. 6126 . 6120 . 6110	. 6187 . 6182 . 6171 . 6166 . 6165 . 6155	. 6200 . 6195 . 6188 . 6183	. 6751 . 6745 . 6735 . 6729
	I			H	13	in. 0.5084 5084 5084 5084 5087 5084 5084 5084 5084	. 5264 . 5267 . 5264 . 5267 . 5264 . 5267 . 52640 . 52655	. 5354 . 5357 . 5357 . 5357	. 5660 . 5663 . 5663 . 5663 . 5663 . 5663	. 5709 . 5712 . 5709 . 5712	5889 5889 5889 5889 5889 5889 5889 5889	. 5979 . 5982 . 5979 . 5982	. 6334 . 6337 . 6334 . 6337
		Go	Major		12	in. 0.5625 5631 5625 5625 5631 5625 5631 5625	. 5625 . 5630 . 5630 . 5630 . 5630 . 5630 . 5630	. 5625 . 5630 . 5625 . 5630	. 6256 . 6256 . 6256 . 6256 . 6256 . 6256 . 6256	. 6250 . 6256 . 6250 . 6250	. 6255 . 6255 . 6255 . 6255 . 6255 . 6255 . 6255	. 6250 . 6255 . 6250 . 6250	. 6875 . 6881 . 6875 . 6881
	diameter	go	Unfin- ished	not-rolled c material	11	in. 0.5467 .5468			. 6080				
	Z plain gages for major diameter	Not go	Semi-		10	in. 0.54443 55444 5513 5514 5514 5514 5513 5514	5495 5496 5543 5543 5544 5544 5544 5543	5559 5560 5559 5560	6054 6055 6132 6132 6132 6133 6133	. 6138 . 6139 . 6138	6168 6168 6168 6169 6169 6168	. 6184 . 6185 . 6184 . 6185	. 6763 . 6764 . 6763 . 6763
ls	Z plain gage		Go		6	7n. 0,5601 5600 5625 5625 5624 5624 5625 5625	. 5609 . 5608 . 5625 . 5624 . 5625 . 5625 . 5625	. 5625 . 5624 . 5625 . 5624	. 6224 . 6223 . 6250 . 6249 . 6249 . 6249 . 6250	. 6250 . 6249 . 6250 . 6249	.6234 .6233 .6250 .6249 .6249 .6249	. 6250 . 6249 . 6250 . 6249	. 6875 . 6874 . 6875
Gages for external threads			Minor	diameter	∞	\$\line{n}\$. 0.4801 4807 4848 4854 4854 4864 4870 4889	5071 5076 5108 5108 5114 5119 5132	. 5224 . 5229 . 5236 . 5241	. 5352 . 5358 . 5404 . 5410 . 5421 . 5427 . 5447	. 5473 . 5479 . 5489 . 5495	. 5696 . 5701 . 5728 . 5733 . 5739 . 5744 . 5762	. 5848 . 5853 . 5860 . 5865	. 6098 . 6104 . 6114
ges for exte	Se	go		Minus tol. gage	2	in. 0.4981 4978 5028 5025 5044 5041 5061	. 5191 . 5188 . 5223 . 5220 . 5234 . 5231 . 5250	. 5314 . 5311 . 5326 . 5323	. 5549 . 5546 . 5601 . 5598 . 5618 . 5614	. 5653 . 5650 . 5669 . 5666	.5816 .5813 .5848 .5845 .5856 .5856 .58770	. 5938 . 5935 . 5950 . 5947	. 6278 . 6294 . 6291
Ga	Thread gages	Not go	Pitch diameter	Plus tol. gage	9	##. 0.4981 4984 5028 5028 5044 5047 5069	.5191 .5194 .5223 .5226 .5234 .5237 .5237	. 5314 . 5317 . 5326	. 5549 . 5552 . 5601 . 5604 . 5618 . 5621 . 5644 . 5646	. 5653 . 5656 . 5669 . 5672	. 5816 . 5819 . 5848 . 5851 . 5859 . 5862 . 58770 . 58785	. 5938 . 5941 . 5950	. 6278 . 6281 . 6294
			Minor		5	in. 0.4699 .4693 .4723 .4717 .4723 .4717 .4723 .4717 .4723	. 5002 . 5002 . 5023 . 5023 . 5023 . 5018 . 5026	. 5174 . 5169 . 5174 . 5169	. 5240 . 5234 . 5286 . 5266 . 5266 . 526 . 5271	. 5348 . 5342 . 5342 . 5342	. 56.48 . 56.48 . 56.48 . 56.48 . 56.48 . 56.43 . 56.43	. 5799 . 5794 . 5799 . 5794	. 5973 . 5967 . 5973 . 5967
		Go	Piteh	diameter	4	#n. 0.5060 5057 5084 5081 5084 5081 5081 5089 5089	. 5248 . 5245 . 5245 . 5264 . 5261 . 5261 . 5267 . 5267 . 5265	. 5354 . 5351 . 5354 . 5351	. 5634 . 5631 . 5660 . 5657 . 5657 . 5665	. 5709 . 5706 . 5709 . 5706	. 5873 . 5870 . 5889 . 5886 . 5886 . 5886 . 58920	. 5979 . 5976 . 5979 . 5976	. 6334 . 6331 . 6331
		Class			က	4 3 2	1 2 8 4	2 %	7 2 3 4 4 3	3 2	1 2 8 4	3 %	2 %
					2	NG	A Z	NEF	$_{ m NC}$	Z	NF	NEF	Z
	Nominal Series size and designation per inch				1	9/16-12	9/16-18	9/16-24	⁶ 8-11	\$8-12	58-18	58-24	11/16-12

11/16-24	34-10	34-12	34-16	3,4-20	13/16-12	13/10-16	13/16-20	6-8/2	7,8-12	7/8-14	7/8-16	7,8-20
NEF	NC	Z	Ž.	NEF	z	z	NEF	NG	z	Z	Z	NEE
8 8	1 2 8 4	3 8	1 2 8 4	63 65	c1 &	8 8	2 8	1 2 8 4	3 6	1 2 8 4	2 %	2, 80
. 6489 . 6489 . 6489	. 6553 . 6552 . 6553 . 6552 . 6552 . 6553 . 6553	. 6688 . 6687 . 6688	6903 6902 6903 6903 6903 6903 6903	. 7031 . 7030 . 7031 . 7030	. 7313 . 7312 . 7313 . 7312	. 7528 . 7527 . 7528 . 7527	. 7656 . 7655 . 7656 . 7655	76890 76878 76890 76830 76830 76878 76878 76878 76890	. 79380 . 79338 . 79380 . 79368	80628 80638 83628 80668 80608 80620 80620	. 81530 . 81518 . 81530 . 81518	. 82810 . 82798 . 82810 . 82798
. 6424 . 6425 . 5424 . 6425	. 6417 . 6418 . 6418 . 6418 . 6417 . 6418	. 6598 . 6599 . 6598 . 6599	6824 6824 6824 6824 6824 6824 6824 6824	. 6959 . 6960 . 6959 . 6960	. 7223 . 7224 . 7223 . 7224	. 7448 . 7449 . 7448	. 7584 . 7585 . 7584 . 7585	. 75470 . 75482 . 75470 . 75482 . 75470 . 75482 . 75482	. 78480 . 78480 . 78492	79770 79782 79770 77970 77970 77970 77970	. 80733 . 80742 . 80730	. 82590 . 82102 . 82090 . 82102
. 6645 . 6633 . 6636	. 6942 . 6945 . 6917 . 6917 . 6895 . 6898 . 6873	. 7015 . 7018 . 6999 . 7002	7157 7160 7142 7142 7126 7129 7110	. 7221 . 7224 . 7207 . 7210	. 7640 . 7643 . 7624 . 7627	. 7770 . 7773 . 7754 . 7754	. 7846 . 7849 . 7832 . 7835	. 8128 . 8131 . 8098 . 8101 . 8077 . 8080 . 8052	. 8265 . 8268 . 8249 . 8252	8356 8335 8335 8335 8328 8325 8304 8304	. 8295 . 8398 . 8380 . 5383	. 8472 . 8475 . 8458 . 8461
. 6642 . 6633 . 6630	. 6942 . 6939 . 6914 . 6911 . 6895 . 6873 . 6873	. 7015 . 7012 . 6999 . 6996	7157 7154 7139 7136 7126 7123 7100	. 7221 . 7218 . 7207 . 7204	. 7640 . 7637 . 7624 . 7621	. 7770 . 7767 . 7754 . 7754	. 7846 . 7843 . 7832 . 7829	8128 8125 8098 8095 8077 8077 8052	. 8265 . 8262 . 8249 . 8246	8358 8358 8335 8332 8322 8322 8319 8304	. 8395 . 8392 . 8380	. 8472 . 8469 . 8455
. 6825 . 6820 . 6813 . 6808	. 7375 . 7369 . 7341 . 7341 . 7328 . 7328 . 7326 . 7306	. 7376 . 7370 . 7360	7428 7422 7410 7410 7397 7391 7381	. 7438 . 7433 . 7424 . 7419	. 8001 . 7995 . 7985 . 7979	. 8041 . 8035 . 8025 . 8019	. 8063 . 8058 . 8049 . 8044	. 8609 . 8602 . 8579 . 8572 . 8558 . 8551 . 8533	. 8626 . 8620 . 8610 . 8604	. 8659 . 8659 . 8644 . 8638 . 8631 . 8625 . 8613	. 8666 . 8360 . 8651 . 8645	. 8689 . 8675 . 8670
. 6604 . 6607 . 6607	. 6850 . 6853 . 6853 . 6853 . 6853 . 6853 . 6853	. 6959 . 6962 . 6959 . 6962	7094 7097 7094 7094 7097 7097 7097	7175 7178 7175 7175	. 7584 . 7587 . 7584 . 7584	. 7719 . 7722 . 7719 . 7723	. 7800 . 7803 . 7800 . 7803	8028 8031 8028 8033 8028 8033 8028 8033	. 8209 . 8212 . 8209 . 8212	828 8289 8289 8286 8286 8286 8286 8288 8288	. 8344 . 8347 . 8344 . 8344	. 8425 8428 . 8425 . 8428
. 6875 . 6875 . 6875	. 7500 . 7506 . 7506 . 7506 . 7506 . 7506 . 7506 . 7506	. 7500 . 7506 . 7500 . 7506	. 7506 . 7506 . 7506 . 7506 . 7506 . 7506 . 7506 . 7506	. 7500 . 7505 . 7500 . 7505	. 8125 . 8131 . 8125 . 8131	. 8125 . 8131 . 8125 . 8131	. 8125 . 8130 . 8125 . 8130	. 8750 . 8757 . 8750 . 8750 . 8750 . 8750 . 8750	. 8750 . 8756 . 8750 . 8756	. 8750 . 8756 . 8756 . 8756 . 8756 . 8756 . 8756 . 8756	. 8750 . 8756 . 8750 . 8756	. 8750 . 8755 . 8750
	7316							.85512				
.6809 .6810 .6809	. 7288 . 7372 . 7373 . 7373 . 7373 . 7373	7388 7389 7388 7389	. 7356 . 7357 . 7410 . 7411 . 7411 . 7410 . 7410	. 7428 . 7429 . 7428	. 8013 . 8014 . 8013	. 8035 . 8036 . 8035	. 8053 . 8054 . 8053	. 85190 . 85202 . 86100 . 86110 . 86100 . 86100 . 86100	. 86392 . 86392 . 86392	. 85890 . 85902 . 86520 . 86532 . 86520 . 86520 . 86520 . 86532	. 86600 . 86612 . 86600 . 86612	. 86780 . 86792 . 86780
. 6875 . 6874 . 6875	7472 7471 7500 7499 7500 7500 7500	. 7500 . 7499 . 7500 . 7499	. 7482 . 7481 . 7500 . 7499 . 7500 . 7499 . 7500	. 7500 . 7499 . 7500 . 7499	. 8125 . 8124 . 8125 . 8124	. 8125 . 8124 . 8125 . 8124	. 8125 . 8124 . 8125	. 87190 . 87178 . 87500 . 87488 . 87500 . 87488	. 87500 . 87488 . 87500 . 87488	. 87290 . 87278 . 87540 . 87580 . 87500 . 87580 . 87580	. 87500 . 87488 . 87500 . 87488	. 87500 . 87488 . 87500 . 87488
. 6473 . 6485 . 6490	. 6514 . 6520 . 6570 . 6576 . 6589 . 6595 . 6617	. 6723 . 6729 . 6739	. 6878 . 6884 . 6914 . 6920 . 6927 . 6933 . 6947 . 6947	. 7021 . 7026 . 7035 . 7040	. 7348 . 7354 . 7364	. 7533 . 7539 . 7549	. 7646 . 7651 . 7660 . 7665	. 7656 . 7663 . 7717 . 7724 . 7738 . 7745 . 7769	7973 7979 7989 7995	. 8040 . 8046 . 8082 . 8088 . 8095 . 8101 . 8117	. 8158 . 8164 . 8173	. 8270 . 8275 . 8284 . 8289
. 6563 . 6560 . 6575 . 6572	. 6730 . 6727 . 6783 . 6805 . 6802 . 6833 . 6833	. 6903 . 6919 . 6916	. 7013 . 7010 . 7049 . 7046 . 7062 . 7082	. 7129 . 7126 . 7143 . 7140	. 7528 . 7525 . 7544 . 7541	. 7668 . 7665 . 7684 . 7681	. 7754 . 7751 . 7768 . 7765	7897 7894 7958 7955 7979 7976 8010	. 8153 . 8150 . 8169 . 8166	8195 8192 8237 8234 8250 8247 8272	. 8293 . 8290 . 8308 . 8305	. 8378 . 8375 . 8392 . 8389
. 6563 . 6566 . 6575 . 6578	. 6730 . 6733 . 6733 . 6789 . 6805 . 6808 . 6833 . 6833	. 6903 . 6919 . 6922	. 7013 . 7016 . 7049 . 7052 . 7062 . 7062 . 7082	. 7129 . 7132 . 7143 . 7146	. 7528 . 7531 . 7544 . 7547	. 7668 . 7671 . 7684 . 7687	. 7754 . 7757 . 7768 . 7771	. 7897 . 7958 . 7958 . 7961 . 7979 . 7979 . 8010	. 8153 . 8156 . 8169 . 8172	. 8195 . 8198 . 8237 . 8240 . 8250 . 8253 . 8272	. 8293 . 8296 . 8308	. 8378 . 8381 . 8392 . 8395
. 6424 . 6419 . 6424 . 6419	. 6383 . 6383 . 6417 . 6411 . 6417 . 6417 . 6423	. 6598 . 6592 . 6592	. 6805 . 6799 . 6823 . 6817 . 6823 . 6817 . 6827	. 6959 . 6954 . 6959	. 7223 . 7217 . 7223 . 7217	. 7448 . 7442 . 7448 . 7448	. 7584 . 7579 . 7584	. 7516 . 7547 . 7547 . 7540 . 7547 . 7553	7848 7842 7848 7848	7956 7950 7977 7977 7977 7971 7981	. 8073 . 8967 . 8073 . 8067	. 8209 . 8204 . 8209
. 6604 . 6601 . 6601 . 6601	. 6822 . 6819 . 6850 . 6847 . 6850 . 6847 . 6856	. 6959 . 6956 . 6959	. 7076 . 7073 . 7094 . 7091 . 7094 . 7094 . 7096	. 7175 . 7172 . 7175	. 7584 . 7581 . 7584 . 7584	7719 7716 7719 7716	. 7800 . 7797 . 7800 . 7797	. 7997 . 7994 . 8028 . 8025 . 8025 . 8025 . 8034 . 8032	. 8209 . 8206 . 8209	8283 8283 8283 8283 8283 8283 8283 8283	. 8344 . 8344 . 8344	. 8425 . 8425 . 8425
3 %	1 2 8 4	3 8	2 8 4	3 8	2 52	3 2	3 5	2 8 4	8 6	2 8 4	21 88	3 2
NEF	S Z	Z	Z	NEF	Z	Z	NEF	NG	Z	Z	Z	NEF
11/16-24	94-10	34-12	94-16	84-20	13/ ₆ -12	13/16-16	13×6-20	9%-9	7%-12	78-14	2%-16	7,8-20

Table 1.16.—Gages for standard thread series, American National screw threads—Continued

		Nominal size and threads	per inch		21	15/16-12	15/16-16	15/16-20	1-8	1-12	1-14	1–16	1-20	1146-12	11/16-16
		Series desig- nation			20	z	z	NEF	NC	z ——	NS NS	z	NEF	z	z
	,	Class			19	64 89	63 69	61 W	H 03 10 44	C1 00	H 01 to 4	61 65	C1 60	61 65	21 m
	ages for			Not go	18	$\begin{array}{c} in. \\ 0.85630 \\ .85618 \\ .85630 \\ .85638 \end{array}$.87780 .87768 .87780 .87768	. 89060 . 89048 . 89060 . 89048	. 87950 . 87938 . 87938 . 87938 . 87930 . 87938 . 87938	. 91880 . 91868 . 91880 . 91868	93120 93108 93108 93120 93108 93108 93108	. 94030 . 94018 . 94030 . 94018	. 95310 . 95298 . 95310 . 95298	. 98130 . 98118 . 98130 . 98118	1, 00280 1, 00268 1, 00280 1, 00268
	Z plain gages for	minor di		Go	17	in. 0.84730 .84742 .84730 .84742	. 86980 . 86932 . 86980 . 86992	.88340 .88352 .88340 .88352	.86470 .86482 .86482 .86482 .86482 .86482 .86482 .86482	. 90980 . 90992 . 90980 . 90992	92270 92282 92270 92270 92282 92270 92270	. 93230 . 93242 . 93230 . 93242	. 94590 . 94602 . 94590 . 94602	. 97230 . 97242 . 97230 . 97242	. 99480 . 99492 . 99480 . 99492
hreads			ameter	Plus tol. gage	16	$in. \\ 0.8890 \\ .8833 \\ .8874 \\ .8874$. 9021 . 9024 . 9005	. 9097 . 9100 . 9083 . 9086	. 9299 . 9303 . 9268 . 9268 . 9242 . 9246 . 9215	. 9515 . 9518 . 9499 . 9502	9609 9585 9588 9572 9572 9575	. 9646 . 9649 . 9631 . 9634	. 9723 . 9726 . 9709 . 9712	1.0140 1.0143 1.0124 1.0127	1. 0272 1. 0275 1. 0256 1. 0259
Gages for internal threads	so	Not go	Pitch diameter	Minus tol. gage	15	in. 0.8890 .8887 .8874 .8874	. 9021 . 9018 . 9005 . 9002	. 9097 . 9094 . 9083	. 9299 . 9295 . 9261 . 9261 . 9242 . 9242 . 9238	. 9515 . 9512 . 9499 . 9496	9606 9603 9582 9582 9572 9572 9569	. 9646 . 9643 . 9631 . 9628	. 9723 . 9720 . 9709	1. 0140 1. 0137 1. 0124 1. 0121	1. 0272 1. 0269 1. 0256 1. 0253
Gages for	Thread gages		Major	diameter	14	in. 0, 9251 . 9245 . 9235	. 9292 . 9286 . 9276 . 9270	. 9314 . 9309 . 9295	. 9840 . 9833 . 9805 . 9798 . 9776 . 9776	. 9876 . 9870 . 9860	9915 9909 9884 9888 9881 9875 9875 9863	. 9917 . 9911 . 9902	. 9940 . 9935 . 9926 . 9921	1.0501 1.0495 1.0485 1.0479	1. 0543 1. 0537 1. 0527 1. 0521
	T			diameter	13	in. 0.8834 .8837 .8837 .8834	. 8969 . 8972 . 8969	. 9050 . 9053 . 9050	9188 9192 9192 9192 9193 9193 9193	. 9459 . 9462 . 9459	9536 9536 9536 9536 9536 9536 9538	. 9594 . 9597 . 9594	. 9675 . 9678 . 9675	1.0084 1.0087 1.0084 1.0087	1. 0219 1. 0222 1. 0219 1. 0222
		Go	Major	liameter	12	in. 0.9375 .9381 .9375	. 9375 . 9381 . 9375 . 9381	. 9375 . 9380 . 9375 . 9380	1,0000 1,0007 1,0000 1,0000 1,0000 1,0000 1,0000	1,0000 1,0006 1,0000 1,0006	1, 0000 1, 0006 1, 0000 1, 0000 1, 0000 1, 0000	1. 0000 1. 0006 1. 0000	1, 0000 1, 0005 1, 0000 1, 0005	1. 0625 1. 0631 1. 0625 1. 0631	1.0625 1.0631 1.0625 1.0631
	diameter	go	Unfin- ished	hot-rolled material	11	in.			0.97780						
	Z plain gages for major diameter	Not go		finished	10	$\begin{array}{c} in. \\ 0.92630 \\ .92642 \\ .92632 \\ .92642 \end{array}$. 92850 . 92862 . 92850 . 92862	. 93030 . 93042 . 93030 . 93042	97410 97452 98480 98492 98480 98492 98480	. 98880 . 98832 . 98880 . 98892	. 98390 . 98402 . 99020 . 99030 . 99030 . 99030	. 99100 . 99112 . 99100 . 99112	. 99280 . 99292 . 99280 . 99292	1. 0 5 130 1. 05142 1. 05130 1. 05142	1. 05350 1. 05362 1. 05350 1. 05362
Is	Z plain gage		Go		6	in. 0, 93750 . 93738 . 93738	. 93750 . 93738 . 93750 . 93738	. 93750 . 93738 . 93750 . 93738	. 99660 . 99648 1. 00000 . 99988 1. 00000 1. 00000	1,00000 .99988 1,00000 .99988	. 99790 . 99778 1. 00000 . 99988 1. 00000 1. 00000	1.00000 99988 1.00000	1. 00000 . 99988 1. 00000 . 99988	1.06250 1.06238 1.06250 1.06238	1.06250 1.06238 1.06250 1.06238
Gages for external threads			Minor	diameter	80	in. 0.8598 .8604 .8614 .8620	.8782 .8788 .8798 .8804	.8895 .8900 .8909 .8914	.8772 .8871 .8841 .88548 .8863 .8870 .8897	. 9223 . 9229 . 9239 . 9245	. 9290 . 9296 . 9332 . 9335 . 9345 . 9351 . 9357	. 9407 . 9413 . 9422 . 9428	. 9519 . 9524 . 9533 . 9538	. 9848 . 9854 . 9864 . 9870	1.0031 1.0037 1.0047 1.0053
ges for extc	SS	go	er	Minus tol. gage	7	in. 0.8778 .8775 .8794	. 8917 . 8914 . 8933 . 8930	. 9003 . 9000 . 9017 . 9014	. 9043 . 9039 . 9112 . 9118 . 9134 . 9130 . 9168	. 9403 . 9400 . 9419 . 9416	9445 9442 9487 9487 9500 9500 9497 9522	. 9542 . 9539 . 9557 . 9554	. 9627 . 9624 . 9641 . 9638	1.0028 1.0025 1.0044 1.0041	1. 0166 1. 0163 1. 0182 1. 0179
Ga	Thread gages	Not go	Pitch diamet	Plus tol. gage	9	in. 0.8778 .8781 .8794	. 8917 . 8920 . 8933 . 8936	. 9003 . 9006 . 9017 . 9020	. 9043 . 9047 . 9112 . 9116 . 9134 . 9138 . 9138	. 9403 . 9406 . 9419 . 9422	. 9445 . 9448 . 9480 . 9480 . 9500 . 9522 . 9522	. 9542 . 9545 . 9557 . 9560	. 9627 . 9630 . 9641 . 9644	1.0028 1.0031 1.0044 1.0047	1.0166 1.0169 1.0182 1.0185
	L		Winor	diameter	25	in. 0.8473 .8467 .8473 .8467	. 8698 . 8692 . 8698	.8834 .8829 .8834 .8829	.8613 .8606 .8647 .8647 .8647 .8640 .8647	. 9098 . 9092 . 9098	. 9206 . 9200 . 9221 . 9221 . 9221 . 9221 . 9231	. 9323 . 9317 . 9323 . 9317	. 9459 . 9454 . 9459	. 9723 . 9717 . 9723 . 9717	9948 9948 9948
		Go	Pitch	diameter	4	in. 0.8834 .8831 .8831	8968 8969 8969 8969	. 9050 . 9047 . 9050 . 9047	9154 9150 9188 9188 9188 9184 9195	. 9459 . 9456 . 9459 . 9456	. 9515 . 9512 . 9536 . 9533 . 9536 . 9536	. 9594 . 9591 . 9594 . 9591	. 9675 . 9672 . 9675	1. 0084 1. 0081 1. 0084 1. 0084	1.0219 1.0216 1.0219 1.0216
		Class			89	3 2	3 3	3 2	1 2 8 4	2 8	1 2 8 4	23 83	2 %	3 2	3 8
					5	Z	Z	NEF	NC	z	$^{ m N}_{ m S}$	Ż	NEF	Ż	z
			.,	-	15/16-12	15/16-16	15/16-20	1-8	1-12	1-14	1-16	1–20	11/16-12	11/16-16	

11/16-18	1,18-7	13,8-8	11/8-12	1,58-16	81-8/1	13/16-12	13/18-16	13/16-18	134-7	154-8	11/4-12	11/4-16
NEF	NG	Ż	NF	z	NEF	z	NEF 1	NEF 1	NC	Z	NF	z
21 80	1 2 2 4	3 8	1 2 8 4	21 %	23 65	21 %	21 %	21 %	1 2 8 4	21 60	1 2 8 4	3 8
1. 01000 1. 00988 1. 01000 1. 00988	98580 98568 98568 98568 98580 98580 98568	1. 00450 1. 00438 1. 00450 1. 00438	1, 04380 1, 04368 1, 04388 1, 04388 1, 04388 1, 04388 1, 04388	1, 06530 1, 06518 1, 06530 1, 06518	1, 07250 1, 07238 1, 07250 1, 07238	1, 10630 1, 10618 1, 10630 1, 10618	1, 12780 1, 12768 1, 12780 1, 12768	1, 13500 1, 13488 1, 13500 1, 13488	1, 11088 1, 11068 1, 11080 1, 11080 1, 11080 1, 11080 1, 11080	1, 12950 1, 12938 1, 12950 1, 12938	1, 16880 1, 16868 1, 16880 1, 16880 1, 16880 1, 16868 1, 16868 1, 16868	1, 19030 1, 19018 1, 19030 1, 19018
1. 00240 1. 00252 1. 00240 1. 00252	97040 97052 97040 97040 97052 97040 97052	. 98970 . 98982 . 98970 . 98982	1, 03480 1, 03492 1, 03480 1, 03492 1, 03480 1, 03480 1, 03480 1, 03480	1, 05730 1, 05742 1, 05730 1, 05742	1.06490 1.06502 1.06490 1.06502	1. 09730 1. 09742 1. 09730 1. 09742	1, 11980 1, 11992 1, 11980 1, 11992	1. 12740 1. 12752 1. 12740 1. 12752	1, 09540 1, 09552 1, 09540 1, 09540 1, 09540 1, 09540 1, 09540 1, 09540	1, 11470 1, 11482 1, 11470 1, 11482	1, 15980 1, 15992 1, 15992 1, 15990 1, 15990 1, 15990 1, 15990 1, 15990	1, 18230 1, 18242 1, 18230 1, 18242
1. 0315 1. 0318 1. 0300 1. 0303	1.0446 1.0450 1.0407 1.0401 1.0381 1.0385 1.0352	1, 0517 1, 0521 1, 0493 1, 0497	1, 0788 1, 0791 1, 0765 1, 0768 1, 0752 1, 0729 1, 0729	$\begin{array}{c} 1.0898 \\ 1.0901 \\ 1.0882 \\ 1.0885 \end{array}$	1. 0941 1. 0944 1. 0925 1. 0928	1, 1390 1, 1393 1, 1374 1, 1377	1, 1523 1, 1526 1, 1507 1, 1510	1, 1566 1, 1569 1, 1550 1, 1553	1, 1696 1, 1700 1, 1657 1, 1661 1, 1631 1, 1635 1, 1602 1, 1604	1, 1771 1, 1775 1, 1746 1, 1750	1, 2038 1, 2041 1, 2015 1, 2018 1, 1999 1, 2002 1, 1979 1, 1979	1, 2149 1, 2152 1, 2132 1, 2135
1. 0315 1. 0312 1. 0300 1. 0297	1. 0446 1. 0442 1. 0407 1. 0403 1. 0381 1. 0352 1. 0350	1, 0517 1, 0513 1, 0493 1, 0489	1, 0788 1, 0785 1, 0762 1, 0762 1, 0749 1, 0746 1, 0729	1. 0898 1. 0895 1. 0882 1. 0879	1,0941 1,0938 1,0925 1,0922	1, 1390 1, 1387 1, 1374 1, 1371	1, 1523 1, 1520 1, 1507 1, 1504	1, 1566 1, 1563 1, 1550 1, 1547	1, 1696 1, 1692 1, 1653 1, 1653 1, 1631 1, 1602 1, 1602 1, 1600	1, 1771 1, 1767 1, 1746 1, 1742	1, 2038 1, 2035 1, 2015 1, 1999 1, 1996 1, 1979 1, 1979	1, 2149 1, 2146 1, 2132 1, 2129
1. 0556 1. 0551 1. 0541 1. 0536	1, 1065 1, 1058 1, 1026 1, 1019 1, 1000 1, 0993 1, 0971 1, 0964	1, 1058 1, 1051 1, 1034 1, 1027	1. 1149 1. 1148 1. 1120 1. 1120 1. 1110 1. 1104 1. 1090 1. 1084	1, 1169 1, 1163 1, 1153 1, 1147	1, 1182 1, 1177 1, 1166 1, 1161	1, 1751 1, 1745 1, 1735 1, 1729	1.1794 1.1788 1.1778 1.1772	1. 1807 1. 1802 1. 1791 1. 1786	1, 2315 1, 2308 1, 226 1, 226 1, 226 1, 2243 1, 2214 1, 2214	1, 2312 1, 2305 1, 2287 1, 2280	1, 2399 1, 2393 1, 2370 1, 2370 1, 2354 1, 2354 1, 2334	1, 2420 1, 2414 1, 2403 1, 2397
1. 0264 1. 0267 1. 0264 1. 0264	1. 0322 1. 0326 1. 0326 1. 0322 1. 0326 1. 0326 1. 0322 1. 0324	1. 0438 1. 0442 1. 0438 1. 0442	1, 0709 1, 0712 1, 0709 1, 0709 1, 0709 1, 0709 1, 0709	1, 0844 1, 0847 1, 0844 1, 0844	1, 0889 1, 0892 1, 0889 1, 0892	1, 1334 1, 1337 1, 1334 1, 1337	1. 1469 1. 1472 1. 1469 1. 1472	1. 1514 1. 1517 1. 1514 1. 1514	1, 1572 1, 1576 1, 1576 1, 1576 1, 1572 1, 1576 1, 1576 1, 1572	1, 1688 1, 1692 1, 1688 1, 1692	1, 1959 1, 1962 1, 1959 1, 1963 1, 1959 1, 1951 1, 1961	1. 2094 1. 2097 1. 2094 1. 2097
1.0625 1.0630 1.0625 1.0630	1. 1250 1. 1257 1. 1257 1. 1250 1. 1257 1. 1250 1. 1250 1. 1250	1. 1250 1. 1257 1. 1250 1. 1250	1, 1250 1, 1256 1, 1256 1, 1256 1, 1256 1, 1256 1, 1256 1, 1256	1, 1250 1, 1256 1, 1250 1, 1256	1, 1250 1, 1255 1, 1250 1, 1255	1, 1875 1, 1881 1, 1875 1, 1881	1, 1875 1, 1881 1, 1875 1, 1881	1, 1875 1, 1880 1, 1875 1, 1880	1, 2500 1, 2507 1, 2507 1, 2507 1, 2507 1, 2507 1, 2507 1, 2507	1, 2500 1, 2507 1, 2500 1, 2507	1, 2500 1, 2506 1, 2506 1, 2500 1, 2500 1, 2500 1, 2500 1, 2500	1, 2500 1, 2506 1, 2506 1, 2506
	1.10020	1, 10280							1, 22520	1, 22780		
1. 05430 1. 05442 1. 05430 1. 05442	1, 09630 1, 09642 1, 10830 1, 10812 1, 10800 1, 10812 1, 10800 1, 10812	1, 10980 1, 10992 1, 10930 1, 10992	1, 10680 1, 10692 1, 11380 1, 11380 1, 11380 1, 11380 1, 11380	1. 11600 1. 11612 1. 11600 1. 11612	1. 11680 1. 11692 1. 11680 1. 11692	1. 17630 1. 17642 1. 17630 1. 17632	1, 17850 1, 17862 1, 17850 1, 17862	1, 17930 1, 17942 1, 17930 1, 17942	1, 22130 1, 22142 1, 23300 1, 23300 1, 23300 1, 23312 1, 23312 1, 23312	1, 23480 1, 23492 1, 23480 1, 23480	1, 23180 1, 23192 1, 23892 1, 23892 1, 23892 1, 23892 1, 23892 1, 23892 1, 23892	1. 24100 1. 24112 1. 24100 1. 24112
1. 06250 1. 06238 1. 06250 1. 06238	1. 12110 1. 12530 1. 12530 1. 12488 1. 12530 1. 12488 1. 12500 1. 12500	1. 12500 1. 12488 1. 12500 1. 12488	1, 12260 1, 12248 1, 12500 1, 12488 1, 12500 1, 12488 1, 12500 1, 12488	1. 12500 1. 12488 1. 12500 1. 12488	1, 12500 1, 12488 1, 12500 1, 12488	1, 18750 1, 18738 1, 18750 1, 18738	1, 18750 1, 18738 1, 18750 1, 18738	1, 18750 1, 18738 1, 18750 1, 18738	1, 24610 1, 24588 1, 25000 1, 24988 1, 25000 1, 24988 1, 25000 1, 24988	1, 25000 1, 24988 1, 25000 1, 24988	1, 24760 1, 24748 1, 25000 1, 24988 1, 25000 1, 24988 1, 25000 1, 24988	1, 25000 1, 24988 1, 25000 1, 24988
1. 0093 1. 0098 1. 0108 1. 0113	. 9850 . 9857 . 9928 . 9935 . 9954 . 9961 . 9991	1, 0088 1, 0095 1, 0112 1, 0119	1, 0426 1, 0432 1, 0473 1, 0473 1, 0489 1, 0495 1, 0520	1, 0655 1, 0661 1, 0671 1, 0677	1. 0717 1. 0722 1. 0733 1. 0738	1, 1098 1, 1104 1, 1114 1, 1120	1, 1280 1, 1286 1, 1296 1, 1302	1. 1342 1. 1347 1. 1358 1. 1363	1,1100 1,1107 1,1185 1,1185 1,1204 1,1211 1,1241 1,1241	1, 1334 1, 1341 1, 1359 1, 1366	1.1676 1.1682 1.1723 1.1729 1.1739 1.1745 1.1745	1, 1904 1, 1910 1, 1921 1, 1927
1. 0213 1. 0210 1. 0228 1. 0225	1. 0159 1. 0155 1. 0237 1. 0233 1. 0263 1. 0269 1. 0300 1. 0298	1, 0359 1, 0355 1, 0383 1, 0379	1, 0606 1, 0603 1, 0653 1, 0659 1, 0669 1, 0666 1, 0694 1, 0694	1. 0790 1. 0787 1. 0806 1. 0803	1. 0837 1. 0834 1. 0853 1. 0850	1. 1278 1. 1275 1. 1294 1. 1291	1, 1415 1, 1412 1, 1431 1, 1428	1. 1462 1. 1459 1. 1478 1. 1475	1, 1409 1, 1487 1, 1487 1, 1483 1, 1513 1, 1509 1, 1550 1, 1548	1. 1605 1. 1601 1. 1630 1. 1626	1, 1856 1, 1853 1, 1903 1, 1900 1, 1919 1, 1916 1, 1944 1, 1944	1, 2039 1, 2036 1, 2056 1, 2053
1. 0213 1. 0216 1. 0228 1. 0231	1. 0159 1. 0163 1. 0237 1. 0241 1. 0263 1. 0267 1. 0300	1, 0359 1, 0363 1, 0383 1, 0387	1.0606 1.0659 1.0653 1.0656 1.0656 1.0672 1.0694 1.0694	1. 0790 1. 0793 1. 0806 1. 0809	1, 0837 1, 0840 1, 0853 1, 0856	1. 1278 1. 1281 1. 1294 1. 1297	1. 1415 1. 1418 1. 1431 1. 1434	1, 1462 1, 1465 1, 1478 1, 1481	1, 1409 1, 1413 1, 1487 1, 1491 1, 1513 1, 1517 1, 1550 1, 1550	1, 1605 1, 1609 1, 1630 1, 1634	1.1856 1.1859 1.1903 1.1919 1.1922 1.1944 1.1946	1, 2039 1, 2042 1, 2056 1, 2059
1. 0023 1. 0018 1. 0023 1. 0018	. 9664 . 9657 . 9703 . 9703 . 9703 . 9696 . 9711	. 9897 . 9897 . 9897	1, 0324 1, 0318 1, 0348 1, 0348 1, 0342 1, 0342 1, 0343 1, 0353	1. 0573 1. 0567 1. 0573 1. 0567	1. 0648 1. 0643 1. 0648 1. 0648	1. 0973 1. 0967 1. 0973 1. 0967	1. 1198 1. 1192 1. 1198 1. 1192	1. 1273 1. 1268 1. 1273 1. 1268	1, 0914 1, 0907 1, 0953 1, 0946 1, 0946 1, 0961 1, 0961	1. 1147 1. 1140 1. 1147 1. 1140	1, 1574 1, 1568 1, 1598 1, 1592 1, 1592 1, 1603 1, 1603 1, 1597	1. 1823 1. 1817 1. 1823 1. 1817
1. 0264 1. 0261 1. 0264 1. 0264	1. 0283 1. 0279 1. 0322 1. 0318 1. 0328 1. 0332 1. 0338	1. 0438 1. 0434 1. 0438 1. 0434	1. 0685 1. 0682 1. 0709 1. 0706 1. 0706 1. 0714 1. 0712	1, 0844 1, 0841 1, 0844 1, 0841	1, 0889 1, 0886 1, 0889 1, 0886	1, 1334 1, 1331 1, 1334 1, 1331	1. 1469 1. 1466 1. 1469 1. 1466	1, 1514 1, 1511 1, 1514 1, 1514	1, 1533 1, 1529 1, 1572 1, 1568 1, 1568 1, 1568 1, 1580 1, 1580	1, 1688 1, 1684 1, 1688 1, 1684	1, 1935 1, 1932 1, 1959 1, 1956 1, 1956 1, 1956 1, 1964 1, 1964	1. 2094 1. 2091 1. 2094 1. 2091
23 82	1 2 8 4	3 5	1 2 8 4 4	21 89	3 2	21 %	3 %	23 88	1 2 8 4	3 2	1 2 8 4	3 5
NEF	NC	z	Ě	z	NEF	Z	z	NEF	NC	Z	Z	Z
11/16-18	138-7	11/8-8	11/8-12	11,8–16	11/8-18	13/6-12	13/6-16	13/6-18	11/4~7	114-8	11/4-12	11/4-16
												153

Table 1.16.—Gages for standard thread series, American National screw threads—Continued

		Nominal size and threads	per inch		21	11/4-18	15/16-12	15/16-16	15/6-18	138-6	138-8	138-12	138-16	136-18
		Series desig- nation			20	NEF	z	z	NEF	NO	z	Z	Z	NEE
		Class			19	61 60	c1 m	61 20	c1 m	= c1 c2 d 4	61 66	H 01 10 4	2 %	21 80
	ages for			Not go	18	in. 1. 19750 1. 19738 1. 19738 1. 19738	1, 23130 1, 23118 1, 23130 1, 23130	1. 25280 1. 25268 1. 25280 1. 25280	1. 26000 1. 25988 1. 26000 1. 25988	1. 21260 1. 21248 1. 21260 1. 21248 1. 21246 1. 21248 1. 21260 1. 21248	1, 25450 1, 25438 1, 25450 1, 25438	1, 29380 1, 29368 1, 29380 1, 29388 1, 29380 1, 29388 1, 29388 1, 29388	1. 31530 1. 31518 1. 31530 1. 31518	1. 32250 1. 32238 1. 32250 1. 32238
	Z plain g	minor diameter		Go	17	in. 1. 18990 1. 19002 1. 18990 1. 19002	1. 22230 1. 22242 1. 22230 1. 22242	1. 24480 1. 24492 1. 24480 1. 24492	1. 25240 1. 25252 1. 25240 1. 25252	1. 19460 1. 19472 1. 19460 1. 19472 1. 19460 1. 19472 1. 19472	1. 23970 1. 23982 1. 23970 1. 23982	1, 28480 1, 28492 1, 28480 1, 28492 1, 28490 1, 28490 1, 28490 1, 28490 1, 28490 1, 28490	1.30730 1.30742 1.30730 1.30742	1.31490 1.31502 1.31490 1.31502
threads			ameter	Plus tol. gage	16	in. 1.2192 1.2195 1.2176 1.2179	1. 2640 1. 2643 1. 2624 1. 2627	1, 2774 1, 2777 1, 2758 1, 2761	1. 2817 1. 2820 1. 2801 1. 2804	1, 2812 1, 2816 1, 2738 1, 2772 1, 2772 1, 2742 1, 2703 1, 2703	1. 3024 1. 3028 1. 2999 1. 3003	1, 3288 1, 3291 1, 3265 1, 3268 1, 3249 1, 3252 1, 3229 1, 3231	1, 3400 1, 3403 1, 3383 1, 3386	1. 3443 1. 3446 1. 3427 1. 3430
Gages for internal threads	Se	Not go	Pitch diameter	Minus tol. gage	15	in. 1. 2192 1. 2189 1. 2176 1. 2173	1. 2640 1. 2637 1. 2624 1. 2621	1. 2774 1. 2771 1. 2758 1. 2755	1. 2817 1. 2814 1. 2801 1. 2798	1. 2812 1. 2808 1. 2768 1. 2764 1. 2734 1. 2703 1. 2703	1. 3024 1. 3020 1. 2999 1. 2995	1, 3288 1, 3285 1, 3265 1, 3262 1, 3249 1, 3229 1, 3227	1. 3400 1. 3397 1. 3383 1. 3380	1. 3443 1. 3440 1. 3427 1. 3424
Gages fo	Thread gages		Major	diameter	14	in. 1. 2433 1. 2428 1. 2417 1. 2412	1, 3001 1, 2995 1, 2985 1, 2979	1. 3045 1. 3039 1. 3029 1. 3023	1. 3058 1. 3053 1. 3042 1. 3037	1. 3534 1. 3526 1. 3490 1. 3482 1. 3460 1. 3452 1. 3417	1. 3565 1. 3558 1. 3540 1. 3533	1.3649 1.3626 1.3626 1.3620 1.3610 1.3504 1.3590 1.3590	1. 3671 1. 3665 1. 3654 1. 3648	1. 3684 1. 3679 1. 3668 1. 3663
	l l	0	Pitch	<u>L</u>	13	in. 1.2139 1.2142 1.2139 1.2142	1, 2584 1, 2587 1, 2584 1, 2587	1. 2719 1. 2722 1. 2719 1. 2722	1. 2764 1. 2767 1. 2764 1. 2767	1. 2667 1. 2671 1. 2667 1. 2671 1. 2667 1. 2667 1. 2667	1. 2938 1. 2942 1. 2938 1. 2942	1, 3209 1, 3212 1, 3209 1, 3212 1, 3209 1, 3212 1, 3209 1, 3212	1. 3344 1. 3347 1. 3344 1. 3344	1. 3389 1. 3392 1. 3389 1. 3392
		Go	Major	diameter	12	in. 1. 2500 1. 2505 1. 2506 1. 2506	1. 3125 1. 3131 1. 3125 1. 3131	1.3125 1.3131 1.3125 1.3131	1. 3125 1. 3130 1. 3125 1. 3130	1, 3750 1, 3758 1, 3758 1, 3758 1, 3758 1, 3758 1, 3758	1. 3750 1. 3757 1. 3750 1. 3757	1, 3750 1, 3756 1, 3756 1, 3756 1, 3756 1, 3756 1, 3756 1, 3756	1. 3750 1. 3756 1. 3756 1. 3756	1. 3750 1. 3755 1. 3755 1. 3755
	r diameter	80	Unfin- ished	hot-rolled material	11	in.				1.34612	1.35280			
	plain gages for major diameter	Not go		finished	10	in. 1. 24192 1. 24192 1. 24192 1. 24192	1. 30130 1. 30142 1. 30130 1. 30142	1.30350 1.30352 1.30350 1.30362	1. 30430 1. 30442 1. 30430 1. 30442	1. 34160 1. 34172 1. 35490 1. 35490 1. 35480 1. 35480 1. 35480	1. 35980 1. 35992 1. 35992 1. 35992	1, 35680 1, 35692 1, 36392 1, 36392 1, 36392 1, 36392 1, 36392 1, 36392	1. 35600 1. 35612 1. 36600 1. 36612	1. 36680 1. 36692 1. 36692 1. 36692
ds	Z plain gag		G ₀	:	6	in. 1. 25000 1. 24988 1. 25000 1. 24988	1.31250 1.31238 1.31250 1.31238	1. 31250 1. 31238 1. 31250 1. 31238	1. 31250 1. 31238 1. 31250 1. 31238	1. 37060 1. 37048 1. 37500 1. 37488 1. 37500 1. 37488 1. 37500 1. 37488	1. 37500 1. 37488 1. 37500 1. 37488	1. 37260 1. 37248 1. 37500 1. 37500 1. 37500 1. 37488 1. 37500 1. 37488	1. 37500 1. 37488 1. 37500 1. 37488	1.37500 1.37488 1.37500 1.37488
external threads			Minor	diameter	∞	in. 1. 1966 1. 1971 1. 1982 1. 1987	1. 2348 1. 2354 1. 2364 1. 2370	1, 2529 1, 2535 1, 2545 1, 2551	1, 2591 1, 2596 1, 2607 1, 2612	1. 2117 1. 2125 1. 2205 1. 2213 1. 2235 1. 2243 1. 2243 1. 2243	1, 2581 1, 2588 1, 2606 1, 2613	1, 2926 1, 2932 1, 2973 1, 2979 1, 2995 1, 3014 1, 3020	1.3153 1.3159 1.3170 1.3176	1, 3215 1, 3220 1, 3231 1, 3236
Gages for ext	sə	Not go	ameter	Minus tol. gage	7	in. 1. 2086 1. 2083 1. 2102 1. 2099	1, 2528 1, 2525 1, 2544 1, 2541	1. 2664 1. 2661 1. 2680 1. 2677	1, 2711 1, 2708 1, 2727 1, 2724	1, 2478 1, 2474 1, 2566 1, 2566 1, 2596 1, 2592 1, 2640 1, 2638	1, 2852 1, 2848 1, 2877 1, 2873	1.3106 1.3103 1.3153 1.3150 1.3169 1.3166 1.3194	1. 3288 1. 3285 1. 3305 1. 3302	1. 3335 1. 3332 1. 3351 1. 3348
Ga	Thread gages	Not	Pitch diam	Plus tol. gage	9	in. 1. 2086 1. 2089 1. 2102 1. 2105	1, 2528 1, 2531 1, 2544 1, 2547	1, 2664 1, 2667 1, 2680 1, 2683	1, 2711 1, 2714 1, 2727 1, 2730	1, 2478 1, 2482 1, 2566 1, 2576 1, 2596 1, 2640 1, 2640	1, 2852 1, 2856 1, 2877 1, 2881	1, 3106 1, 3153 1, 3153 1, 3156 1, 3169 1, 3172 1, 3194 1, 3196	1, 3288 1, 3291 1, 3305 1, 3308	1, 3335 1, 3338 1, 3351 1, 3354
		0	Minor	diameter	2	in. 1.1898 1.1893 1.1898 1.1898	1, 2223 1, 2217 1, 2223 1, 2217	1. 2448 1. 2442 1. 2448 1. 2442	1, 2523 1, 2518 1, 2523 1, 2518	1, 1901 1, 1893 1, 1945 1, 1945 1, 1945 1, 1954 1, 1954	1, 2397 1, 2390 1, 2397 1, 2390	1, 2824 1, 2848 1, 2848 1, 2848 1, 2848 1, 2848 1, 2848 1, 2853 1, 2853	1. 3073 1. 3067 1. 3073 1. 3067	1. 3148 1. 3143 1. 3148 1. 3143
		Go	Pitch	diameter	4	in 1. 2139 1. 2136 1. 2139 1. 2136	1. 2584 1. 2581 1. 2584 1. 2581	1, 2719 1, 2716 1, 2719 1, 2716	1, 2764 1, 2761 1, 2764 1, 2764	1, 2623 1, 2619 1, 2667 1, 2667 1, 2663 1, 2676 1, 2674	1. 2938 1. 2934 1. 2938 1. 2934	1, 3185 1, 3182 1, 3209 1, 3209 1, 3209 1, 3214 1, 3214	1. 3344 1. 3341 1. 3344 1. 3341	1. 3389 1. 3386 1. 3389 1. 3386
		Class			က	2 8	3 6	2 6	3 8	L 01 86 4	3 2	1 2 8 4	3 2	3 8
		Series desig- nation			2	ZEF	Z	Z	NEF	NC	Z	N	Z	NEF
		Nominal size and threads	per inch		1	114-18	15/16-12	15/46-16	15/6-18	136-6	13,8-8	13%-12	13%-16	13,6-18

17/6-12	17/6-16	17/6-18	11/2-6	11½-8	1½-12	1½-16	11/2-18	19/16-16	19/16-18	15%-8	15,6-12	15,8–16	158-18
z	z	NEF	NC	z	Ä Z	Z	NEF	z	NEF	z	Z	Z	NEF
27 88	0, 10	21 85	H 01 80 4	63 63	H 01 80 4	61 89	63 65	C1 70	21 89	C1 C5	21 89	21 89	63 65
1. 35630 1. 35618 1. 35630 1. 35618	1. 37780 1. 37768 1. 37780 1. 37768	1. 38500 1. 38488 1. 38500 1. 38488	1. 33760 1. 33760 1. 33760 1. 33760 1. 3378 1. 3378 1. 3378	1. 37950 1. 37938 1. 37950 1. 37938	1. 41880 1. 41888 1. 41880 1. 41880 1. 41880 1. 41880 1. 41880	1. 44030 1. 44018 1. 44030 1. 44018	1. 44750 1. 44738 1. 44750 1. 44738	1. 50280 1. 50264 1. 50280 1. 50264	1. 51000 1. 50984 1. 51000 1. 56984	1. 50450 1. 50434 1. 50450 1. 50434	1. 54380 1. 54364 1. 54380 1. 54364	1, 56530 1, 56514 1, 56530 1, 56514	1. 57250 1. 57234 1. 57250 1, 57234
1. 34730 1. 34742 1. 34730 1. 34742	1. 36980 1. 36992 1. 36980 1. 36992	1. 37740 1. 37752 1. 37740 1. 37752	1, 31960 1, 31972 1, 31960 1, 31960 1, 31972 1, 31972 1, 31972	1. 36470 1. 36482 1. 36470 1. 36482	1. 40980 1. 40992 1. 40992 1. 40992 1. 40992 1. 40992 1. 40992	1. 43230 1. 43242 1. 43230 1. 43242	1. 43990 1. 44002 1. 43990 1. 44002	1. 49480 1. 49496 1. 49480 1. 49496	1. 50240 1. 50256 1. 50240 1. 50256	1. 48970 1. 48986 1. 48970 1. 48986	1. 53480 1. 53496 1. 53480 1. 53496	1. 55739 1. 55746 1. 55739 1. 55736	1. 56490 1. 565(6 1. 56490 1. 56506
1.3890 1.3893 1.3874 1.3877	1. 4025 1. 4028 1. 4009 1. 4012	1. 4068 1. 4071 1. 4052 1. 4055	1. 4062 1. 4016 1. 4018 1. 3988 1. 3992 1. 3953 1. 3955	1. 4278 1. 4282 1. 4251 1. 4255	1. 4538 1. 4541 1. 4515 1. 4518 1. 4499 1. 4502 1. 4479 1. 4481	1. 4651 1. 4654 1. 4634 1. 4637	1. 4694 1. 4697 1. 4677 1. 4680	1. 5277 1. 5281 1. 5259 1. 5263	1. 5319 1. 5323 1. 5303 1. 5307	1, 5531 1, 5536 1, 5503 1, 5508	1, 5773 1, 5777 1, 5754 1, 5758	1. 5902 1. 5906 1. 5885 1. 5889	1. 5945 1. 5940 1. 5928 1. 5932
1.3890 1.3887 1.3874 1.3871	1. 4025 1. 4022 1. 4009 1. 4006	1. 4068 1. 4065 1. 4052 1. 4049	1. 4062 1. 4058 1. 4018 1. 4014 1. 3984 1. 3984 1. 3953	1. 4278 1. 4274 1. 4251 1. 4247	1, 4538 1, 4515 1, 4515 1, 4519 1, 4499 1, 4496 1, 4479 1, 4477	1. 4651 1. 4648 1. 4634 1. 4631	1. 4694 1. 4691 1. 4677 1. 4674	1. 5277 1. 5273 1. 5259 1. 5255	1. 5319 1. 5315 1. 5303 1. 5299	1. 5531 1. 5526 1. 5503 1. 5498	1. 5773 1. 5769 1. 5754 1. 5750	1. 5902 1. 5898 1. 5885 1. 5881	1. 5945 1. 5941 1. 5928 1. 5924
1. 4251 1. 4245 1. 4235 1. 4229	1. 4296 1. 4290 1. 4280 1. 4274	1. 4309 1. 4304 1. 4293 1. 4288	1, 4784 1, 4776 1, 4730 1, 4710 1, 4702 1, 4675 1, 4667	1. 4819 1. 4812 1. 4792 1. 4785	1. 4899 1. 4876 1. 4876 1. 4860 1. 4854 1. 4854 1. 4834	1, 4922 1, 4916 1, 4905 1, 4899	1. 4935 1. 4930 1. 4918 1. 4913	1. 5548 1. 5542 1. 5530 1. 5524	1, 5560 1, 5555 1, 5544 1, 5539	1. 6072 1. 6065 1. 6044 1. 6037	1. 6134 1. 6128 1. 6115 1. 6109	1. 6173 1. 6167 1. 6156 1. 6150	1. 6186 1. 6181 1. 6169 1. 6164
1. 3834 1. 3837 1. 3834 1. 3834	1. 3969 1. 3972 1. 3969 1. 3972	1. 4014 1. 4017 1. 4014 1. 4017	1. 3917 1. 3921 1. 3917 1. 3921 1. 3917 1. 3917 1. 3919	1, 4188 1, 4192 1, 4188 1, 4192	1. 4459 1. 4462 1. 4463 1. 4462 1. 4459 1. 4462 1. 4462	1. 4594 1. 4597 1. 4594 1. 4597	1. 4639 1. 4642 1. 4639 1. 4642	1. 5219 1. 5223 1. 5219 1. 5223	1. 5264 1. 5268 1. 5264 1. 5268	1. 5438 1. 5443 1. 5438 1. 5443	1. 5709 1. 5713 1. 5709 1. 5713	1. 5844 1. 5848 1. 5844 1. 5844	1. 5889 1. 5893 1. 5889 1. 5893
1. 4375 1. 4381 1. 4375 1. 4381	1. 4375 1. 4381 1. 4375 1. 4381	1. 4375 1. 4380 1. 4375 1. 4380	1.5000 1.5008 1.5000 1.5000 1.5000 1.5000 1.5000	1. 5000 1. 5007 1. 5000 1. 5000	1, 5000 1, 5006 1, 5006 1, 5006 1, 5006 1, 5006 1, 5006	1. 5000 1. 5006 1. 5000 1. 5006	1. 5000 1. 5005 1. 5000 1. 5000	1. 5625 1. 5631 1. 5625 1. 5631	1. 5625 1. 5630 1. 5625 1. 5630	1. 6250 1. 6257 1. 6250 1. 6250	1. 6250 1. 6256 1. 6250 1. 6250	1. 6250 1. 6256 1. 6250 1. 6256	1. 6250 1. 6255 1. 6250 1. 6255
			1.47100	1. 47780						1.60280			
1. 42630 1. 42642 1. 42630 1. 42642	1. 42850 1. 42862 1. 42850 1. 42862	1. 42930 1. 42942 1. 42930 1. 42942	1, 46660 1, 46672 1, 47980 1, 47992 1, 47992 1, 47992 1, 47992	1. 48480 1. 48492 1. 48480 1. 48492	1. 48180 1. 48192 1. 48880 1. 48890 1. 48892 1. 48892 1. 48890 1. 48890	1. 49100 1. 49112 1. 49100 1. 49112	1. 49180 1. 49192 1. 49180 1. 49192	1. 55350 1. 55366 1. 55350 1. 55366	1. 55430 1. 55446 1. 55430 1. 55430	1. 60980 1. 60996 1. 60980 1. 60996	1. 61380 1. 61396 1. 61380 1. 61396	1. 61600 1. 61616 1. 61600 1. 61616	1. 61680 1. 61696 1. 61680 1. 61696
1. 43750 1. 43738 1. 43750 1. 43738	1. 43750 1. 43738 1. 43750 1. 43738	1. 43750 1. 43738 1. 43750 1. 43738	1. 49560 1. 49548 1. 50000 1. 49988 1. 50000 1. 49988 1. 50000	1. 50000 1. 49988 1. 50000 1. 49988	1. 49760 1. 49748 1. 50000 1. 49988 1. 50000 1. 49988 1. 50000	1. 50000 1. 49988 1. 50000 1. 49988	1. 50000 1. 49988 1. 50000 1. 49988	1. 56250 1. 56234 1. 56250 1. 56234	1. 56250 1. 56234 1. 56234 1. 56234	1. 62500 1. 62484 1. 62500 1. 62484	1. 62500 1. 62484 1. 62500 1. 62484	1. 62500 1. 62484 1. 62500 1. 62484	1. 62500 1. 62484 1. 62500 1, 62484
1. 3598 1. 3604 1. 3614 1. 3620	1. 3778 1. 3784 1. 3794 1. 3800	1. 3840 1. 3845 1. 3856 1. 3861	1, 3367 1, 3375 1, 3455 1, 3463 1, 3483 1, 3493 1, 3529 1, 3537	1. 3827 1. 3834 1. 3854 1. 3861	1, 4176 1, 4182 1, 4223 1, 4229 1, 4239 1, 4245 1, 4264 1, 4264	1. 4402 1. 4408 1. 4419 1. 4425	1. 4464 1. 4469 1. 4481 1. 4486	1. 5026 1. 5032 1. 5044 1. 5050	1. 5089 1. 5094 1. 5105 1. 5110	1. 5074 1. 5081 1. 5102 1. 5109	1. 5465 1. 5471 1. 5484 1. 5490	1. 5651 1. 5657 1. 5668 1. 5674	1. 5713 1. 5718 1. 5730 1. 5735
1. 3778 1. 3775 1. 3794 1. 3791	1. 3913 1. 3910 1. 3929 1. 3926	1.3960 1.3957 1.3976 1.3973	1, 3728 1, 3724 1, 3816 1, 3816 1, 3846 1, 3842 1, 3890 1, 3888	1. 4098 1. 4094 1. 4125 1. 4121	1, 4356 1, 4353 1, 4403 1, 4410 1, 4419 1, 4444 1, 4442	1. 4537 1. 4534 1. 4554 1. 4551	1. 4584 1. 4581 1. 4601 1. 4598	1. 5161 1. 5157 1. 5179 1. 5175	1. 5209 1. 5205 1. 5225 1. 5225	1. 5345 1. 5340 1. 5373 1. 5368	1. 5645 1. 5641 1. 5664 1. 5660	1, 5786 1, 5782 1, 5803 1, 5799	1. 5833 1. 5829 1. 5850 1. 5846
1. 3778 1. 3781 1. 3794 1. 3797	1. 3913 1. 3916 1. 3929 1. 3932	1. 3960 1. 3963 1. 3976 1. 3979	1. 3728 1. 3732 1. 3816 1. 3820 1. 3846 1. 3850 1. 3890 1. 3892	1. 4098 1. 4102 1. 4125 1. 4129	1, 4356 1, 4403 1, 4410 1, 4410 1, 4410 1, 4422 1, 4444 1, 4446	1. 4537 1. 4540 1. 4554 1. 4557	1. 4584 1. 4587 1. 4601 1. 4604	1. 5161 1. 5165 1. 5179 1. 5183	1. 5209 1. 5213 1. 5225 1. 5229	1. 5345 1. 5350 1. 5373 1. 5378	1. 5645 1. 5649 1. 5664 1. 5668	1. 5786 1. 5790 1. 5803 1. 5807	1, 5833 1, 5837 1, 5850 1, 5854
1. 3473 1. 3467 1. 3473 1. 3467	1.3698 1.3692 1.3698 1.3692	1. 3773 1. 3768 1. 3773 1. 3768	1. 3151 1. 3143 1. 3195 1. 3195 1. 3195 1. 3187 1. 3204 1. 3196	1. 3647 1. 3640 1. 3647 1. 3640	1, 4074 1, 4068 1, 4098 1, 4092 1, 4092 1, 4103 1, 4097	1. 4323 1. 4317 1. 4323 1. 4317	1. 4398 1. 4393 1. 4398 1. 4393	1. 4948 1. 4942 1. 4948 1. 4942	1, 50 23 1, 5018 1, 5023 1, 5018	1. 4897 1. 4890 1. 4897 1. 4890	1. 5348 1. 5342 1. 5348 1. 5342	1, 5573 1, 5567 1, 5573 1, 5567	1. 5648 1. 5643 1. 5648 1, 5648
1.3834 1.3831 1.3834 1.3831	1. 3969 1. 3966 1. 3969 1. 3966	1. 4014 1. 4011 1. 4014 1. 4014	1, 3873 1, 3869 1, 3917 1, 3913 1, 3917 1, 3926 1, 3926 1, 3926	1. 4188 1. 4184 1. 4188 1. 4188	1. 4435 1. 4432 1. 4456 1. 4456 1. 4456 1. 4464 1. 4464	1. 4594 1. 4591 1. 4594 1. 4591	1. 4639 1. 4636 1. 4639 1. 4636	1. 5219 1. 5215 1. 5219 1. 5215	1. 5264 1. 5260 1. 5264 1. 5264	1. 5438 1. 5433 1. 5438 1. 5433	1. 5709 1. 5705 1. 5709 1. 5705	1. 5844 1. 5840 1. 5844 1. 5844	1. 5889 1. 5885 1. 5889 1. 5885
3 2	21 .80	2 %	1 2 8 4		1 2 8 4	2 %	C1 80	21 80	C1 m	C1 m	21 %	23 8	24 80
Z	z	NEF	NC	z	Z	Z	NEF	Z	NEF	z	z	Z	NEF
17/10-12	17.6-16	17.6–18	1½-6	11/2-8	11½-12	1½-16	11/2-18	19/16-16	19/6-18	158-8	156-12	15/8-16	15/8-18

Table 1.16.—Gages for standard thread series, American National screw threads—Continued

		Nominal size and threads	per ineh	,	21	111/16-16	111/16-18	134-5	134-8	134-12	134-16	113/6-16	17/8-8	17/8-12	178 16
		Series desig- nation			20	z	ZEF	NG NG	z	z	NEF	z	z	z	z
		Class			19	c) m	61 69	H 63 86 44	C1 00	C1 00	C1 00	C1 80	C1 00	C1 m	C1 m
	ges for			Not go	18	in. 1. 62780 1. 62764 1. 62780 1. 62784	1. 63500 1. 63484 1. 63500 1. 63484	1. 55510 1. 55494 1. 55510 1. 55494 1. 55510 1. 55494 1. 55510 1. 55510	1. 62950 1. 62934 1. 62950 1. 62934	1. 66880 1. 66864 1. 66880 1. 66864	1. 69030 1. 69014 1. 69030 1. 69014	1, 75280 1, 75264 1, 75280 1, 75264	1. 75450 1. 75434 1. 75450 1. 75434	1. 79380 1. 79364 1. 79380 1. 79364	1. 81530 1. 81514 1. 81530 1. 81530
	Z plain gages for	minor di		Go	17	1. 61980 1. 61996 1. 61980 1. 61980	1. 62740 1. 62756 1. 62740 1. 62756	1. 53350 1. 53366 1. 53366 1. 53366 1. 53360 1. 53360 1. 53360	1. 61470 1. 61486 1. 61470 1. 61486	1, 65980 1, 65996 1, 65996 1, 65996	1. 68230 1. 68246 1. 68230 1. 68246	1. 74480 1. 74496 1. 74480 1. 74496	1. 73970 1. 73986 1. 73970 1. 73986	1. 78496 1. 78496 1. 78480 1. 78496	1. 80730 1. 80746 1. 80730 1. 80746
hreads			meter	Plus tol. gage	16	in. 1. 6527 1. 6531 1. 6510 1. 6514	1. 6570 1. 6574 1. 6553 1. 6557	1. 6370 1. 6375 1. 6317 1. 6322 1. 6283 1. 6288 1. 62420 1. 62445	1. 6785 1. 6790 1. 6756 1. 6761	1, 7024 1, 7028 1, 7005 1, 7009	1. 7153 1. 7157 1. 7135 1. 7139	1, 7778 1, 7782 1, 7761 1, 7765	1. 8038 1. 8043 1. 8008 1. 8013	1, 8275 1, 8279 1, 8255 1, 8259	1.8404 1.8408 1.8386 1.8390
Gages for internal threads	so	Not go	Pitch diameter	Minus tol. gage	15	in. 1. 6527 1. 6523 1. 6510 1. 6506	1. 6570 1. 6566 1. 6553 1. 6549	1. 6370 1. 6365 1. 6317 1. 6312 1. 6283 1. 6278 1. 62420 1. 62395	1. 6785 1. 6780 1. 6756 1. 6751	1. 7024 1. 7020 1. 7005 1. 7001	1. 7153 1. 7149 1. 7135 1. 7131	1. 7778 1. 7774 1. 7761 1. 7757	1. 8038 1. 8033 1. 8008 1. 8003	1. 8275 1. 8271 1. 8255 1. 8251	1.8404 1.8400 1.8386 1.8382
Gages for	Thread gages		Major		14	in. 1.6798 1.6792 1.6781 1.6775	1. 6811 1. 6806 1. 6794 1. 6789	1, 7236 1, 7228 1, 7123 1, 7175 1, 7149 1, 7141 1, 7108 1, 7108	1. 7326 1. 7319 1. 7297 1. 7290	1. 7385 1. 7379 1. 7366 1. 7360	1. 7424 1. 7418 1. 7406 1. 7400	1. 8049 1. 8043 1. 8032 1. 8026	1, 8579 1, 8572 1, 8549 1, 8542	1. 8636 1. 8630 1. 8616 1. 8610	1. 8675 1. 8669 1. 8657 1. 8651
	Œ			diameter	13	in. 1. 6469 1. 6473 1. 6469 1. 6473	1, 6514 1, 6518 1, 6514 1, 6518	1, 6201 1, 6206 1, 6206 1, 6201 1, 6206 1, 6201 1, 6201 1, 6201 1, 62010	1. 6688 1. 6693 1. 6693 1. 6693	1. 6959 1. 6953 1. 6959 1. 6963	1. 7094 1. 7098 1. 7094 1. 7098	1, 7719 1, 7723 1, 7719 1, 7723	1. 7938 1. 7943 1. 7938 1. 7943	1. 8209 1. 8213 1. 8209 1. 8213	1.8344 1.8348 1.8344 1.8348
		Go	Major	diameter	12	in. 1.6875 1.6881 1.6875 1.6881	1. 6875 1. 6880 1. 6875 1. 6880	1,7500 1,7508 1,7500 1,7500 1,7500 1,7500 1,7500 1,7500	1, 7500 1, 7507 1, 7500 1, 7507	1. 7500 1. 7506 1. 7500 1. 7506	1. 7500 1. 7506 1. 7500 1. 7506	1. 8125 1. 8131 1. 8125 1. 8331	1. 8750 1. 8757 1. 8750 1. 8757	1, 8750 1, 8756 1, 8750 1, 8756	1, 8750 1, 8756 1, 8750 1, 8756
	diameter	go	Unfin- ished	hot-rolled material	11	m.		1.71620	1.72780				1.85280		
	s for major	Not		finished	10	1. 67850 1. 67866 1. 67866 1. 67850 1. 67866	1. 67930 1. 67946 1. 67930 1. 67946	1, 7110 1, 71116 1, 72680 1, 72696 1, 72696 1, 72696 1, 72696	1. 73480 1. 73496 1. 73480 1. 73496	1. 73880 1. 73896 1. 73880 1. 73896	1, 74100 1, 74116 1, 74100 1, 74116	1. 80350 1. 80366 1. 80350 1. 80366	1. 85980 1. 85996 1. 85980 1. 85996	1.86380 1.86396 1.86380 1.86399	1. 86600 1. 86616 1. 86600 1. 86616
ss.	Z plain gages for major diameter		Go		6	in. 1.68750 1.68734 1.68750 1.68734	1. 68750 1. 68734 1. 68750 1. 68734	i. 74480 1. 74464 1. 75000 1. 74984 1. 75000 1. 74984 1. 75000 1. 74984	1. 75000 1. 74984 1. 75000 1. 74984	1. 75000 1. 74984 1. 75000 1. 74984	1. 75000 1. 74984 1. 75000 1. 74984	1. 81250 1. 81234 1. 81250 1. 81234	1. 87500 1. 87484 1. 87500 1. 87484	1. 87500 1. 87484 1. 87500 1. 87484	1.87500 1.87484 1.87500 1.87500
external threads			Minor	diameter	- x	ti. 6276 1. 6282 1. 6293 1. 6299	1, 6338 1, 6343 1, 6355 1, 6360	1, 5547 1, 5555 1, 5652 1, 5660 1, 5686 1, 5694 1, 5737 1, 5745	1. 6320 1. 6327 1. 6349 1. 6356	1. 6714 1. 6720 1. 6733 1. 6739	1. 6900 1. 6906 1. 6918 1. 6924	1. 7525 1. 7531 1. 7542 1. 7548	1. 7567 1. 7574 1. 7597 1. 7604	1. 7963 1. 7969 1. 7983 1. 7989	1. 8149 1. 8155 1. 8167 1. 8173
Gages for exte	Si	go		Minus tol. gage	2	in. 1.6411 1.6407 1.6428 1.6428	1. 6458 1. 6454 1. 6475 1. 6471	1. 5980 1. 5975 1. 6085 1. 6080 1. 6119 1. 6114 1. 61700 1. 61675	1. 6591 1. 6586 1. 6620 1. 6615	1. 6894 1. 6890 1. 6913 1. 6909	1. 7035 1. 7031 1. 7053 1. 7049	1. 7660 1. 7656 1. 7677 1. 7673	1. 7838 1. 7833 1. 7868 1. 7863	1. 8143 1. 8139 1. 8163 1. 8159	1. 8284 1. 8280 1. 8302 1. 8298
Gag	Thread gages	Not	Pitch diameter	Plus tol. gage	9	in. 1.6411 1.6415 1.6428 1.6428	1. 6458 1. 6462 1. 6475 1. 6479	1. 5980 1. 5985 1. 6085 1. 6090 1. 6119 1. 6124 1. 61725	1. 6591 1. 6596 1. 6620 1. 6625	1. 6894 1. 6898 1. 6913 1. 6917	1. 7035 1. 7039 1. 7053 1. 7057	1. 7660 1. 7664 1. 7677 1. 7681	1, 7838 1, 7843 1, 7868 1, 7873	1. 8143 1. 8147 1. 8163 1. 8167	1, 8284 1, 8288 1, 8302 1, 8306
	T		Minor	diameter	2	in. 1. 6198 1. 6192 1. 6198 1. 6199	1. 6273 1. 6268 1. 6273 1. 6268	1, 5283 1, 5275 1, 5335 1, 5337 1, 5337 1, 5327 1, 5327 1, 5345 1, 5334	1. 6147 1. 6140 1. 6147 1. 6140	1. 6598 1. 6592 1. 6598 1. 6592	1. 6823 1. 6817 1. 6823 1. 6817	1. 7448 1. 7442 1. 7448 1. 7442	1, 7397 1, 7390 1, 7397 1, 7390	1. 7848 1. 7842 1. 7848 1. 7842	1. 8073 1. 8067 1. 8073 1. 8067
		Go	Pitch	diameter	4	in. 1. 6469 1. 6465 1. 6465 1. 6465	1. 6514 1. 6510 1. 6514 1. 6510	1. 6149 1. 6144 1. 6201 1. 6196 1. 6201 1. 6196 1. 62110 1. 62085	1. 6688 1. 6683 1. 6688 1. 6683	1. 6959 1. 6955 1. 6959 1. 6955	1. 7094 1. 7090 1. 7094 1. 7090	1, 7719 1, 7715 1, 7719 1, 7715	1, 7938 1, 7933 1, 7938 1, 7933	1.8209 1.8205 1.8209 1.8205	1.8344 1.8340 1.8344 1.8340
		Class			m	3 3	63 69	1 2 8 4	63 %	3 2	3 8	3 2	3 2	3 5	3 5
					2	Z	ZEF	NC	Z	Z	NEF	Ż	z	z	z
	Nominal Series size and designations per inch				П	11146-16	111/16-18	134-5	134-8	134-12	134-16	113/16-16	178-8	17,6-12	17%-16

115/16-16	2-4%	28	2-12	2-1	21/16-1	2)8-8	21,8-12	21,8-1	23/16-1	2),4-4)/2	2).4-8	21,4-12	254-16
z	NC	Z	Z	NEF	Z	z	Z	Z	Z	NG	Z	Z	Z
3 8	c) to 4	27 89	69 69	3 8	2 8	61 65	3 8	63 69	23 25	- c1 c0 4	64 m	61 20	61 60
1.87780 1.87764 1.87780 1.87780	1, 78350 1, 78334 1, 78350 1, 78350 1, 78350 1, 78350 1, 78334 1, 78334	1. 87950 1. 87934 1. 87950 1. 87934	1.91880 1.91864 1.91880 1.91864	1, 94030 1, 94014 1, 94030 1, 94014	2, 00280 2, 00264 2, 00280 2, 00264	2. 00450 2. 00434 2. 00450 2. 00434	2. 04380 2. 04364 2. 04380 2. 04364	2. 06530 2. 06514 2. 06530 2. 06514	2. 12780 2. 12764 2. 12780 2. 12764	2, 03350 2, 03334 2, 03334 2, 03330 2, 03330 2, 03334 2, 03334 2, 03330	2, 12950 2, 12934 2, 12950 2, 12934	2, 16880 2, 16864 2, 16880 2, 16864	2. 19030 2. 19014 2. 19030 2. 19014
1, 86980 1, 86996 1, 86980 1, 86996	1, 75940 1, 75956 1, 75940 1, 75940 1, 75940 1, 75956 1, 75956	1.86470 1.86486 1.86470 1.86486	1. 90980 1. 90996 1. 90980 1. 90996	1, 93230 1, 93246 1, 93230 1, 93246	1, 99480 1, 99496 1, 99480 1, 99496	1. 98970 1. 98986 1. 98970 1. 98986	2. 03480 2. 03496 2. 03480 2. 03496	2. 05730 2. 05746 2. 05730 2. 05746	2. 11980 2. 11996 2. 11980 2. 11996	2, 00940 2, 00956 2, 00940 2, 00940 2, 00956 2, 00940 2, 00956 2, 00956	2, 11470 2, 11486 2, 11470 2, 11486	2, 15980 2, 15996 2, 15980 2, 15996	2, 18230 2, 18246 2, 18230 2, 18246
1, 9029 1, 9033 1, 9011 1, 9015	1.8741 1.8746 1.8684 1.8689 1.8646 1.8651 1.86010	1, 9292 1, 9297 1, 9261 1, 9266	1, 9526 1, 9530 1, 9506 1, 9510	1, 9655 1, 9659 1, 9637 1, 9641	2, 0280 2, 0284 2, 0262 2, 0266	2. 0545 2. 0550 2. 0513 2. 0518	2. 0777 2. 0781 2. 0757 2. 0761	2. 0906 2. 0910 2. 0887 2. 0891	2, 1531 2, 1535 2, 1512 2, 1512 2, 1516	2, 1241 2, 1246 2, 1184 2, 1189 2, 1146 2, 1151 2, 11010 2, 11035	2, 1798 2, 1803 2, 1765 2, 1770	2, 2028 2, 2032 2, 2007 2, 2011	2, 2156 2, 2160 2, 2138 2, 2142
1. 9029 1. 9025 1. 9011 1. 9007	1.8741 1.8736 1.8684 1.8679 1.8646 1.8641 1.8610 1.85985	1. 9292 1. 9287 1. 9261 1. 9256	1. 9526 1. 9522 1. 9506 1. 9502	1. 9655 1. 9651 1. 9637 1. 9633	2, 0280 2, 0276 2, 0262 2, 0258	2. 0545 2. 0540 2. 0513 2. 0508	2. 0777 2. 0773 2. 0757 2. 0753	2, 0906 2, 0902 2, 0887 2, 0883	2, 1531 2, 1527 2, 1512 2, 1508	2, 1241 2, 1236 2, 1134 2, 1179 2, 1146 2, 1141 2, 11010 2, 10985	2. 1798 2. 1793 2. 1765 2. 1760	2. 2028 2. 2024 2. 2007 2. 2003	2, 2156 2, 2152 2, 2138 2, 2134
1. 9300 1. 9294 1. 9282 1. 9276	1, 9703 1, 9695 1, 9646 1, 9638 1, 9608 1, 9503 1, 9563	1. 9833 1. 9826 1. 9802 1. 9795	1. 9887 1. 9881 1. 9867 1. 9861	1. 9926 1. 9920 1. 9908 1. 9902	2, 0551 2, 0545 2, 0533 2, 0527	2. 1086 2. 1079 2. 1054 2. 1047	2, 1138 2, 1132 2, 1118 2, 1112	2, 1177 2, 1171 2, 1158 2, 1152	2. 1802 2. 1796 2. 1783 2. 1777	2, 2203 2, 2195 2, 2146 2, 2138 2, 2100 2, 2063 2, 2063	2, 2339 2, 2332 2, 2306 2, 2299	2, 2389 2, 2383 2, 2368 2, 2362	2, 2427 2, 2421 2, 2409 2, 2403
1. 8969 1. 8973 1. 8969 1. 8973	1.8557 1.8562 1.8557 1.8562 1.8557 1.8562 1.8562 1.8550	1. 9188 1. 9193 1. 9188 1. 9193	1. 9459 1. 9463 1. 9459 1. 9463	1. 9594 1. 9598 1. 9594 1. 9598	2. 0219 2. 0223 2. 0219 2. 0223	2. 0438 2. 0443 2. 0438 2. 0443	2. 0709 2. 0713 2. 0709 2. 0713	2. 0844 2. 0848 2. 0844 2. 0848	2. 1469 2. 1473 2. 1469 2. 1473	2, 1057 2, 1062 2, 1057 2, 1062 2, 1057 2, 1062 2, 10570 2, 10595	2, 1688 2, 1693 2, 1688 2, 1693	2. 1959 2. 1963 2. 1959 2. 1963	2, 2094 2, 2098 2, 2094 2, 2098
1, 9375 1, 9381 1, 9375 1, 9381	22.22.22.22.22.22.22.22.22.22.22.22.22.	2. 0000 2. 0007 2. 0000 2. 0000	2. 0000 2. 0006 2. 0000 2. 0006	2, 0000 2, 0006 2, 0000 2, 0006	2. 0625 2. 0631 2. 0625 2. 0631	2, 1250 2, 1257 2, 1250 2, 1250 2, 1257	2, 1250 2, 1256 2, 1256 2, 1256	2, 1250 2, 1256 2, 1250 2, 1256	2. 1875 2. 1881 2. 1875 2. 1881	25.500 25.500 25.500 25.500 25.500 25.500 25.500 25.500 25.500 25.500 25.500	2, 2500 2, 2507 2, 2500 2, 2507	2, 2500 2, 2506 2, 2506 2, 2500	2, 2500 2, 2506 2, 2500 2, 2500
	1. 96320	1.97780				2, 10280				2, 21320	2, 22780		
1, 92850 1, 92866 1, 92850 1, 92866	1, 95750 1, 95766 1, 97460 1, 97460 1, 97460 1, 97460 1, 97476	1. 98480 1. 98496 1. 98480 1. 98496	1. 98880 1. 98896 1. 98880 1. 98896	1. 99100 1. 99116 1. 99100 1. 99116	2. 05350 2. 05366 2. 05350 2. 05366	2. 10980 2. 10996 2. 10980 2. 10996	2.11380 2.11396 2.11380 2.11396	2. 11600 2. 11616 2. 11600 2. 11616	2.17850 2.17866 2.17850 2.17866	2, 20750 2, 20766 2, 22460 2, 22460 2, 22460 2, 22476 2, 22476 2, 22476	2, 23480 2, 23496 2, 23480 2, 23496	2, 23880 2, 23896 2, 23880 2, 23896	2. 24100 2. 24116 2. 24100 2. 24116
1. 93750 1. 93734 1. 93750 1. 93734	1, 99430 1, 99414 2, 00000 1, 99984 2, 00000 1, 99984 2, 00000 1, 99984	2. 00000 1. 99984 2. 00000 1. 99984	2. 00000 1. 99984 2. 00000 1. 99984	2. 00000 1. 99984 2. 00000 1. 99984	2, 06250 2, 06234 2, 06250 2, 06234	2. 12500 2. 12484 2. 12500 2. 12484	2, 12500 2, 12484 2, 12500 2, 12484	2, 12500 2, 12484 2, 12500 2, 12484	2, 18750 2, 18734 2, 18750 2, 18750	2. 24430 2. 24414 2. 25000 2. 24984 2. 25000 2. 24984 2. 25000 2. 24984 2. 25000	2, 25000 2, 24984 2, 25000 2, 24984	2. 25000 2. 24984 2. 25000 2. 24984	2, 25000 2, 24984 2, 25000 2, 24984
1. 8774 1. 8780 1. 8792 1. 8798	1, 7835 1, 7843 1, 7949 1, 7957 1, 7987 1, 7995 1, 8043	1.8813 1.8820 1.8844 1.8851	1. 9212 1. 9218 1. 9232 1. 9238	1. 9398 1. 9404 1. 9416 1. 9422	2. 0023 2. 0029 2. 0041 2. 0047	2, 0060 2, 0067 2, 0092 2, 0099	2. 0461 2. 0467 2. 0481 2. 0487	2. 0647 2. 0653 2. 0666 2. 0672	2, 1272 2, 1278 2, 1291 2, 1297	2, 0335 2, 0343 2, 0449 2, 0457 2, 0487 2, 0495 2, 0543 2, 0551	2, 1307 2, 1314 2, 1340 2, 1347	2. 1710 2. 1716 2. 1731 2. 1737	2. 1897 2. 1903 2. 1915 2. 1921
1. 8909 1. 8905 1. 8927 1. 8923	1.8316 1.8311 1.8425 1.8425 1.8468 1.8463 1.85240 1.85240	1, 9084 1, 9079 1, 9115 1, 9110	1. 9392 1. 9388 1. 9412 1. 9408	1, 9533 1, 9529 1, 9551 1, 9547	2. 0158 2. 0154 2. 0176 2. 0172	2. 0331 2. 0326 2. 0363 2. 0358	2. 0641 2. 0637 2. 0661 2. 0657	2, 0782 2, 0778 2, 0801 2, 0797	2, 1407 2, 1403 2, 1426 2, 1422	2, 0816 2, 0811 2, 0930 2, 0925 2, 0963 2, 10240 2, 10240	2, 1578 2, 1573 2, 1611 2, 1606	2, 1890 2, 1886 2, 1911 2, 1907	2, 2032 2, 2028 2, 2050 2, 2046
1. 8909 1. 8913 1. 8927 1. 8931	1.8316 1.8321 1.8430 1.8435 1.8468 1.8473 1.85240 1.85265	1. 9084 1. 9089 1. 9115 1. 9120	1. 9392 - 1. 9396 1. 9412 1. 9416	1.9533 1.9537 1.9551 1.9555	2. 0158 2. 0162 2. 0176 2. 0180	2, 0331 2, 0336 2, 0363 2, 0368	2. 0641 2. 0645 2. 0661 2. 0665	2. 0782 2. 0786 2. 0801 2. 0805	2, 1407 2, 1411 2, 1426 2, 1430	2. 0816 2. 0821 2. 0930 2. 0935 2. 0968 2. 0973 2. 10240 2. 10265	2. 1578 2. 1583 2. 1611 2. 1616	2. 1890 2. 1894 2. 1911 2. 1915	2, 2032 2, 2036 2, 2050 2, 2054
1. 8698 1. 8692 1. 8698 1. 8692	1, 7538 1, 7530 1, 7595 1, 7595 1, 7595 1, 7597 1, 7598	1.8647 1.8640 1.8647 1.8640	1. 9098 1. 9092 1. 9098 1. 9092	1, 9323 1, 9317 1, 9323 1, 9317	1. 9948 1. 9942 1. 9948 1. 9942	1, 9897 1, 9890 1, 9897 1, 9890	2, 0348 2, 0342 2, 0348 2, 0348	2. 0573 2. 0567 2. 0573 2. 0567	2, 1198 2, 1192 2, 1198 2, 1192	2, 0038 2, 0030 2, 0035 2, 0055 2, 0095 2, 0106 2, 0098	2. 1147 2. 1140 2. 1147 2. 1140	2, 1598 2, 1592 2, 1592 2, 1592	2. 1823 2. 1817 2. 1823 2. 1817
1. 8969 1. 8965 1. 8969 1. 8965	1.8500 1.8495 1.8557 1.8557 1.8552 1.8552 1.8552 1.85680 1.85685	1, 9188 1, 9183 1, 9188 1, 9183	1.9459 1.9455 1.9459 1.9455	1, 9594 1, 9590 1, 9594 1, 9590	2, 0219 2, 0215 2, 0219 2, 0215	2. 0438 2. 0433 2. 0433 2. 0433	2. 0709 2. 0705 2. 0709 2. 0705	2. 0844 2. 0840 2. 0844 2. 0840	2, 1469 .2, 1465 2, 1469 2, 1465	2, 1000 2, 0995 2, 1057 2, 1057 2, 1057 2, 10680 2, 10686	2, 1688 2, 1683 2, 1688 2, 1683	2, 1959 2, 1955 2, 1959 2, 1955	2, 2094 2, 2090 2, 2094 2, 2090
3 3	1 2 8 4	27 88	2 %	2 %	2 %	2 %	27 .50	21 25	C1 F0	1 2 8 4	21 80	21 %	3 2
z	NC	Z	Z	NEE	Z	Z	Z	Z	×	NG	Z	Z	Z
115/16-16	2-41/2	2-8	2-12	2–16	21/46-16	21/8-8	21/8-12	21/8-16	23/6-16	234-455	214-8	21/4-12	2½-16

Table 1.16.—Gages for standard thread series, American National screw threads—Continued

		Nominal size and threads	per inch		21	25/16-16	23/8-12	23,8-16	27/16-16	2)5-4	21/5-8	21/6-12	21/2-16	258-12	258-16
		Series desig- nation			20	7.	z	z	Z	N O N	Z	z	z	z	z
		Class			19	64 66	63 65	03 60	63 69	- 0	61 66	C1 89	63 65	01 69	63 69
	ages for	- 1		Not go	18	in. 2. 25280 2. 25264 2. 25264 2. 25280	2, 29380 2, 29364 2, 29380 2, 29364	2. 31530 2. 31514 2. 31530 2. 31514	2. 37780 2. 37764 2. 37780 2. 37764	2, 25640 2, 25624 2, 25624 2, 25624 2, 25640 2, 25640 2, 25640 2, 25640 2, 25640	2. 37950 2. 37934 2. 37950 2. 37934	2. 41880 2. 41864 2. 41880 2. 41864	2. 44030 2. 44014 2. 44030 2. 44014	2. 5438 2. 5436 2. 5438 2. 5438	2. 5653 2. 5651 2. 5653 2. 5 65 1
	Z plain gages for	minor di		Go	17	in. 2.24480 2.24496 2.24496 2.24496	2, 28480 2, 28496 2, 28480 2, 28496	2, 30730 2, 30746 2, 30746 2, 30746	2. 36980 2. 36996 2. 36980 2. 36996	2, 22940 2, 22956 2, 22940 2, 22940 2, 22940 2, 22940 2, 22940 2, 22940 2, 22940	2. 36470 2. 36486 2. 36470 2. 36486	2. 40980 2. 40996 2. 40980 2. 40996	2. 43230 2. 43246 2. 43246 2. 43246	2. 5348 2. 5350 2. 5348 2. 5350	2. 5573 2. 5575 2. 5573 2. 5573
hreads			ameter	Plus tol. gage	16	in. 2. 2782 2. 2786 2. 2763 2. 2767	2, 3279 2, 3283 2, 3258 2, 3262	2. 3407 2. 3411 2. 3388 2. 3392	2. 4033 2. 4037 2. 4014 2. 4018	2, 3580 2, 3585 2, 3516 2, 3521 2, 3473 2, 3478 2, 34240 2, 34265	2. 4305 2. 4310 2. 4270 2. 4275	2. 4530 2. 4534 2. 4508 2. 4512	2, 4658 2, 4662 2, 4639 2, 4643	2, 5780 2, 5784 2, 5759 2, 5763	2. 5909 2. 5913 2. 5889 2. 5893
Gages for internal threads	Si	Not go	Pitch diameter	Minus tol. gage	15	in. 2, 2782 2, 2778 2, 2763 2, 2769	2, 3279 2, 3275 2, 3258 2, 3254	2. 3407 2. 3403 2. 3388 2. 3384	2. 4033 2. 4029 2. 4014 2. 4010	2, 3580 2, 3575 2, 3516 2, 3473 2, 3473 2, 3468 2, 34240 2, 34215	2. 4305 2. 4300 2. 4270 2. 4265	2. 4530 2. 4526 2. 4508 2. 4504	2. 4658 2. 4654 2. 4639 2. 4635	2. 5780 2. 5776 2. 5759 2. 5755	2. 5909 2. 5905 2. 5889 2. 5885
Gages fo	Thread gages		Major	diameter	14	in. 2, 3053 2, 3047 2, 3034 2, 3028	2, 3640 2, 3634 2, 3619 2, 3613	2. 3678 2. 3672 2. 3659 2. 3653	2. 4304 2. 4298 2. 4285 2. 4279	2. 4663 2. 4654 2. 4599 2. 4590 2. 4547 2. 4547 2. 4597	2. 4846 2. 4839 2. 4811 2. 4804	2. 4891 2. 4885 2. 4869 2. 4863	2. 4929 2. 4923 2. 4910 2. 4904	2. 6141 2. 6135 2. 6120 2. 6114	2. 6180 2. 6174 2. 6160 2. 6154
	T	0		diameter	13	in. 2, 2719 2, 2723 2, 2719 2, 2723	2, 3209 2, 3213 2, 3209 2, 3213	2. 3344 2. 3348 2. 3344 2. 3348	2. 3969 2. 3973 2. 3969 2. 3973	2, 3376 2, 3381 2, 3381 2, 3381 2, 3381 2, 3376 2, 3376 2, 33785	2. 4188 2. 4193 2. 4193 2. 4193	2. 4459 2. 4463 2. 4459 2. 4463	2. 4594 2. 4598 2. 4594 2. 4598	2. 5709 2. 5713 2. 5709 2. 5713	2. 5844 2. 5848 2. 5844 2. 5848
		Go	Major	diameter	12	$i\pi$. 2. 3125 2. 3125 2. 3125 2. 3131	2, 3750 2, 3756 2, 3756 2, 3756	2. 3750 2. 3756 2. 3750 2. 3756	2. 4375 2. 4381 2. 4375 2. 4381	25 25 25 25 25 25 25 25 25 25 25 25 25 2	2. 5000 2. 5007 2. 5000 2. 5007	2, 5000 2, 5006 2, 5000 2, 5000	2. 5000 2. 5006 2. 5000 2. 5006	2. 6250 2. 6256 2. 6250 2. 6250 2. 6256	2, 6250 2, 6256 2, 6250 2, 6250 2, 6256
	diameter.	g0	Unfin- ished	hot-rolled material	11	in.				2. 45920 2. 45936	2. 47780 2. 47796				
	es for major	Not		finished	10	in. 2. 30350 2. 30366 2. 30366 2. 30366	2. 36380 2. 36396 2. 36380 2. 36396	2. 36500 2. 36616 2. 36600 2. 36616	2, 42850 2, 42866 2, 42850 2, 42866	2, 45280 2, 45296 2, 47200 2, 47216 2, 47200 2, 47216 2, 47216	2, 48480 2, 48496 2, 48480 2, 48496	2. 48880 2. 48896 2. 48880 2. 48896	2. 49100 2. 49116 2. 49100 2. 49116	2. 6138 2. 6140 2. 6138 2. 6140	2. 6160 2. 6162 2. 6160 2. 6162
ls	Z plain gages for major diameter		Go	- 1	6	in. 2, 31250 2, 31234 2, 31234 2, 31234	2. 37500 2. 37481 2. 37500 2. 37500	2. 37500 2. 37484 2. 37500 2. 37484	2. 43750 2. 43734 2. 43750 2. 43734	2. 49360 2. 49344 2. 50000 2. 49984 2. 50000 2. 49984 2. 50000	2. 50000 2. 49984 2. 50000 2. 49984	2. 50000 2. 49984 2. 50000 2. 49984	2. 50000 2. 49984 2. 50000 2. 49984	2. 6250 2. 6248 2. 6250 2. 6248	2. 6250 2. 6248 2. 6250 2. 6248
external threads			Minor	diameter	œ	in. 2, 2521 2, 2527 2, 2540 2, 2546	2, 2959 2, 2965 2, 2980 2, 2986	2. 3146 2. 3152 2. 3165 2. 3171	2. 3770 2. 3776 2. 3789 2. 3795	2, 2567 2, 2576 2, 2576 2, 2704 2, 2738 2, 2747 2, 2800 2, 2800	2. 3800 2. 3807 2. 3835 2. 3842	2. 4208 2. 4214 2. 4230 2. 4236	2. 4395 2. 4401 2. 4414 2. 4420	2. 5458 2. 5464 2. 5479 2. 5485	2. 5644 2. 5650 2. 5664 2. 5670
Gages for exte	es	go	ter	Minus tol. gage	7	in. 2. 2656 2. 2652 2. 2675 2. 2675	2. 3139 2. 3135 2. 3160 2. 3156	2. 3281 2. 3277 2. 3300 2. 3296	2. 3905 2. 3901 2. 3924 2. 3920	2. 3108 2. 3103 2. 3236 2. 3231 2. 3279 2. 3274 2. 33410 2. 3385	2. 4071 2. 4066 2. 4106 2. 4101	2. 4388 2. 4384 2. 4410 2. 4406	2, 4530 2, 4526 2, 4549 2, 4545	2, 5638 2, 5634 2, 5659 2, 5655	2. 5779 2. 5775 2. 5799 2. 57 95
Ga	Thread gages	Not go	Pitch diame	Plus tol. gage	9	in. 2, 2656 2, 2660 2, 2675 2, 2675	2.3139 2.3143 2.3160 2.3164	2, 3281 2, 3285 2, 3300 2, 3304	2. 3905 2. 3909 2. 3924 2. 3928	2, 3108 2, 3113 2, 3236 2, 3241 2, 3249 2, 3284 2, 3384 2, 33410	2. 4071 2. 4076 2. 4106 2. 4111	2. 4388 2. 4392 2. 4410 2. 4414	2. 4530 2. 4534 2. 4549 2. 4553	2. 5638 2. 5642 2. 5659 2. 5663	2. 5779 2. 5783 2. 5799 2. 5803
		۰	Minor	diameter	10	in. 2. 2448 2. 2442 2. 2442 2. 2442	2. 2848 2. 2848 2. 2848 2. 2842	2. 3073 2. 3067 2. 3073 2. 3067	2. 3698 2. 3692 2. 3698 2. 3692	2. 2230 2. 2221 2. 2294 2. 2294 2. 2294 2. 2294 2. 2307 2. 2307	2. 3647 2. 3640 2. 3647 2. 3640	2. 4098 2. 4092 2. 4098 2. 4092	2. 4323 2. 4317 2. 4323 2. 4317	2. 5348 2. 5342 2. 5348 2. 5342	2. 5573 2. 5567 2. 5573 2. 5567
		Go	Pitch	diameter	4	in. 2, 2719 2, 2715 2, 2715 2, 2719	2, 3209 2, 3205 2, 3209 2, 3205	2. 3344 2. 3340 2. 3344 2. 3340	2. 3969 2. 3965 2. 3969 2. 3965	2. 3312 2. 3307 2. 3376 2. 3371 2. 3371 2. 3371 2. 33890 2. 33865	2. 4188 2. 4188 2. 4188	2. 4459 2. 4455 2. 4459 2. 4455	2. 4594 2. 4590 2. 4594 2. 4599	2. 5709 2. 5705 2. 5709 2. 5705	2. 5844 2. 5840 2. 5844 2. 5844
		Class			8	2 %	3 2	3 2	3 8	1 2 8 4	3 2	2 8	3 5	3 2	3 2
		Series desig- nation			2	Z	Z	z	Z	NC	z	Z	z	Z	z
		Nominal size and	per inch		-	2%6-16	23/8-12	23,8-16	27/6-16	21/2-4	21,5-8	21,5-12	21,5-16	258-12	238-16

234-4	23,4-8	234-12	234-16	27/8-12	27/8-16	3-4	3-8	3-12	3-16	31/8-12	31/8-13	314-4
NC	Z	Z	Z	Z	Z	Ö Z	Z	Z	Z	Z	Z	NC
1 2 8 4	8 8	6, 89	63 68	81 89	8 88	- 2 8 4	81 82	8 8	8 8	8 8	8 63	4 3 5
22.53064 22.53064 22.53064 22.53064 22.53064 23.664 23.664	2. 6295 2. 6293 2. 6295 2. 6295	2. 6688 2. 6686 2. 6688 2. 6688	2. 6903 2. 6901 2. 6903 2. 6901	2. 7938 2. 7936 2. 7938 2. 7936	2. 8153 2. 8151 2. 8153 2. 8153	2, 7564 2, 7562 2, 7564 2, 7564 2, 7564 2, 7562 2, 7562 2, 7562	2, 8795 2, 8793 2, 8795 2, 8793	2, 9188 2, 9188 2, 9188 2, 9186	2. 9403 2. 9401 2. 9403 2. 9401	3. 0438 3. 0436 3. 0438 3. 0436	3. 0653 3. 0651 3. 0653 3. 0651	5. 0064 3. 0062 3. 0064 3. 0064 3. 0064 3. 0064 3. 0062
2. 4794 2. 4794 2. 4794 2. 4794 2. 4794 2. 4794	2. 6147 2. 6149 2. 6147 2. 6149	2. 6598 2. 6600 2. 6598 2. 6600	2. 6823 2. 6825 2. 6823 2. 6823	2, 7848 2, 7850 2, 7848 2, 7850	2, 8073 2, 8075 2, 8075 2, 8075	2, 7294 2, 7296 2, 7296 2, 7296 2, 7296 2, 7296 2, 7296 2, 7296	2. 8647 2. 8649 2. 8647 2. 8649	2, 9098 2, 9100 2, 9098 2, 9100	2. 9325 2. 9325 2. 9523 2. 9325	3, 0348 3, 0350 3, 0348 3, 0250	3, 0573 3, 0575 3, 0575 3, 0575	2, 9/94 2, 9796 2, 9794 2, 9794 2, 9794 2, 9794 2, 9794
2. 6080 2. 6085 2. 6085 2. 6016 2. 5973 2. 5978 2. 59240 2. 59265	2. 6812 2. 6817 2. 6775 2. 6780	2, 7031 2, 7035 2, 7009 2, 7013	2. 7160 2. 7164 2. 7140 2. 7144	2. 8282 2. 8286 2. 8260 2. 8264	2.8410 2.8414 2.8390 2.8394	2.8586 2.8586 2.8586 2.8531 2.8531 2.8473 2.84240 2.84240	2, 9318 2, 9323 2, 9280 2, 9285	2, 9523 2, 9537 2, 9510 2, 9514	2. 9661 2. 9665 2. 9641 2. 9645	3. 0783 3. 0787 3. 9761 3. 0765	3. 0912 3. 0916 3. 0891 3. 0895	5, 1080 3, 1085 3, 1016 5, 1021 3, 9973 3, 6978 3, 69240 3, 09265
2. 6080 2. 6075 2. 6016 2. 5973 2. 5973 2. 5988 2. 59240 2. 59240	2. 6812 2. 6807 2. 6775 2. 6770	2. 7031 2. 7027 2. 7009 2. 7005	2. 7160 2. 7156 2. 7140 2. 7136	2.8282 2.8278 2.8260 2.8256	2.8410 2.8406 2.8390 2.8386	2.8580 2.8575 2.8575 2.8511 2.8473 2.8473 2.84240 2.84240	2, 9318 2, 9313 2, 9280 2, 9275	2, 9533 2, 9529 2, 9510 2, 9506	2, 9661 2, 9657 2, 9641 2, 9637	3. 0783 3. 0779 3. 0761 3. 0757	3, 0912 3, 0908 3, 0891 3, 0887	3, 1080 3, 1075 3, 1016 3, 1011 3, 0973 3, 0968 3, 09240 3, 09215
22 7163 27 7154 22 7090 22 7090 22 7047 29 7007	2. 7353 2. 7346 2. 7316 2. 7309	2. 7392 2. 7386 2. 7370 2. 7364	2. 7431 2. 7425 2. 7411 2. 7405	2, 8643 2, 8637 2, 8621 2, 8615	2, 8681 2, 8675 2, 8661 2, 8655	22 9663 22 9654 22 959 22 959 22 9556 22 9557 22 9507 23 9507	2, 9859 2, 9852 2, 9321 2, 9814	2, 9894 2, 9888 2, 9871 2, 9865	2, 9932 2, 9926 2, 9912 2, 9906	3, 1144 5, 1138 3, 1122 3, 1116	3. 1183 3. 1177 3. 1162 3. 1156	3, 2163 3, 2154 3, 209 9 3, 209 0 3, 2090 3, 2097 3, 2007 3, 1998
2.5876 2.5881 2.5881 2.5881 2.5881 2.5881 2.5881 2.58760	2. 6688 2. 6693 2. 6693 2. 6693	2. 6959 2. 6963 2. 6959 2. 6963	2. 7094 2. 7098 2. 7094 2. 7098	2, 8209 2, 8213 2, 8209 2, 8213	2. 8344 2. 8348 2. 8344 2. 8344	22.8376 22.8376 22.8376 22.8376 22.8376 22.8376 23.8376	2. 9188 2. 9193 2. 9188 2. 9193	2. 9459 2. 9463 2. 9459 2. 9463	2, 9594 2, 9598 2, 9594 2, 9598	3. 0709 3. 0713 3. 0709 3. 0713	3, 0844 3, 0848 3, 0844 3, 0848	3. 0876 3. 0881 3. 0881 3. 0876 3. 0876 3. 0876 3. 08760 3. 08760
22.7500 22.7509 22.7509 22.7509 22.7509 27.7509 27.7509	2, 7500 2, 7507 2, 7500 2, 7507	2, 7500 2, 7506 2, 7506 2, 7506	2.7500 2.7506 2.7506 2.7506	2, 8750 2, 8756 2, 8756 2, 8756	2, 8750 2, 8756 2, 8750 2, 8756	3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3	3. 0000 3. 0007 3. 0007 3. 0007	3. 0000 3. 0006 3. 0000 3. 0006	3. 6000 3. 0006 3. 0000	3, 1250 3, 1256 3, 1250 3, 1256	3, 1250 3, 1256 3, 1250 3, 1256	3, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25
2.7092	2. 7278					2. 9592 2. 9592 2. 9594	2, 9778					3.2092
2, 7028 2, 7030 2, 7220 2, 7222 2, 7222 2, 7220 2, 7220	2. 7348 2. 7350 2. 7348 2. 7350	2. 7388 2. 7390 2. 7388 2. 7390	2. 7410 2. 7412 2. 7412 2. 7412	2. 8638 2. 8640 2. 8638 2. 8640	2. 8662 2. 8662 2. 8660 2. 8662	2, 9528 2, 9528 2, 9720 2, 9720 2, 9720 2, 9720 3, 9720	2, 9848 2, 9850 2, 9848 2, 9850	2, 9888 2, 9890 2, 9888 2, 9890	2, 9910 2, 9912 2, 9910 2, 9912	3, 1138 3, 1140 3, 1138 3, 1140	3, 11,60 3, 1162 3, 1160 3, 1162	3, 2028 3, 2028 3, 2220 3, 2222 3, 2222 3, 2222 3, 2222 3, 2222
2. 7436 2. 7434 2. 7500 2. 7500 2. 7500 2. 7500 2. 7498	2. 7500 2. 7498 2. 7500 2. 7498	2. 7500 2. 7498 2. 7500 2. 7498	2. 7500 2. 7498 2. 7500 2. 7498	2. 8750 2. 8748 2. 8750 2. 8748	2. 8750 2. 8748 2. 8750 2. 8748	2. 9936 2. 9934 2. 9934 2. 9998 3. 0000 3. 0000 2. 9998	3. 0000 2. 9998 3. 0000 2. 9998	3, 0000 2, 9998 3, 0000 2, 9998	3, 0000 2, 9998 3, 6000 2, 9998	3, 1250 3, 1248 3, 1250 3, 1258	3, 1250 3, 1248 3, 1250 3, 1248	3, 2436 3, 2434 3, 2530 3, 2530 3, 2500 3, 2500 3, 2500 3, 2500
2. 5067 2. 5076 2. 5195 2. 5204 2. 5287 2. 5247 2. 5300 2. 5309	2. 6293 2. 6300 2. 6330 2. 6337	2. 6707 2. 6713 2. 6729 2. 6735	2. 6893 2. 6899 2. 6913 2. 6919	2, 7956 2, 7962 2, 7978 2, 7984	2. 8143 2. 8149 2. 8163 2. 8169	2, 7567 2, 7576 2, 7576 2, 7704 2, 7747 2, 7800 2, 7800	2.8787 2.8794 2.8825 2.8832	2, 9205 2, 9211 2, 9228 2, 9234	2, 9392 2, 9398 2, 9412 2, 9418	3. 0455 3. 0461 3. 0477 3. 0433	3. 0641 3. 0547 3. 0662 3. 0668	3, 0067 3, 0076 3, 0195 3, 0204 3, 0238 3, 0247 3, 0300 3, 0300
2.5608 2.5603 2.5731 2.5773 2.5774 2.5774 2.5810	2. 6564 2. 6559 2. 6601 2. 6596	2. 6887 2. 6883 2. 6909 2. 6905	2. 7028 2. 7024 2. 7048 2. 7044	2. 8136 2. 8132 2. 8158 2. 8158	2. 8278 2. 8274 2. 8298 2. 8294	2.8108 2.8236 2.8236 2.8231 2.8279 2.8274 2.83410 2.8385	2. 9058 2. 9053 2. 9096 2. 9091	2, 9385 2, 9381 2, 9408 2, 9404	2, 9527 2, 9523 2, 9547 2, 9543	3.0655 3.0631 5.0657 3.0653	3. 0776 3. 0772 3. 0797 3. 0793	3.0608 3.0603 3.0756 3.0731 3.0779 3.08410 3.08410
2. 5608 2. 5613 2. 5736 2. 5741 2. 5779 2. 5784 2. 58410 2. 58435	2. 6564 2. 6569 2. 6601 2. 6606	2. 6887 2. 6891 2. 6909 2. 6913	2. 7028 2. 7032 2. 7048 2. 7052	2. 8136 2. 8140 2. 8158 2. 8162	2. 8278 2. 8282 2. 8298 2. 8302	2.8108 2.8113 2.8236 2.8241 2.8241 2.8279 2.8284 2.83410 2.83410	2. 9058 2. 9063 2. 9096 2. 9101	2, 9385 2, 9389 2, 9408 2, 9412	2, 9527 2, 9531 2, 9547 2, 9551	3. 0635 3. 0639 3. 9657 3. 0661	3. 0776 3. 0780 3. 0797 3. 0801	3.0608 3.0613 3.0736 3.0741 3.0779 3.0779 3.08410 3.08435
2.2 4730 2.2 4721 2.2 4734 2.2 4734 2.2 4734 2.2 4735 2.2 4735 2.4 735	2. 6147 2. 6140 2. 6147 2. 6140	2. 6598 2. 6592 2. 6598 2. 6592	2. 6823 2. 6817 2. 6823 2. 6817	2, 7848 2, 7842 2, 7848 2, 7848	2, 8073 2, 8067 2, 8073 2, 8067	2, 7230 2, 7221 2, 7224 2, 7234 2, 7234 2, 7235 2, 7235 2, 7307 2, 7307	2.8647 2.8640 2.8647 2.8640	2, 9098 2, 9092 2, 9098 2, 9092	2. 9323 2. 9317 2. 9323 2. 9317	3. 0348 3. 0342 3. 0348 3. 0342	3. 0573 3. 0567 3. 0573 3. 0567	2. 9730 2. 9721 2. 9734 2. 9734 2. 9734 2. 9735 2. 9807 2. 9807
2. 5812 2. 5807 2. 5876 2. 5871 2. 5876 2. 5871 2. 58890 2. 58890	2. 6688 2. 6683 2. 6683 2. 6683	2. 6959 2. 6955 2. 6959 2. 6955	2, 7094 2, 7090 2, 7094 2, 7090	2, 8209 2, 8205 2, 8209 2, 8205	2. 8344 2. 8340 2. 8344 2. 8340	2.8312 2.8307 2.8371 2.8371 2.8371 2.8376 2.8376 2.83890 2.83890	2. 9188 2. 9183 2. 9183 2. 9183	2, 9459 2, 9455 2, 9459 2, 9455	2, 9594 2, 9590 2, 9594 2, 9590	3. 0709 3. 0705 3. 0709 3. 0705	3. 0844 3. 0840 3. 0844 3. 0844	3.0812 3.0807 3.0876 3.0871 3.0876 3.0871 3.08890 3.08890
- 2 8 4	2, %	23 85	£1 60	21 88	3 2	1 2 8 4	21 8	3 2	23 &	23 65	63 65	1 2 8 4
N	Z	Z	Z	Z	Z	NO	Z	z	Z	Z	Z	NC
234-4	234-8	234-12	234-16	27,8-12	27,8-16	¥.	3-8	3-12	3–16	3½8-12	3/8-16	3%4

Table 1.16.—Gages for standard thread series, American National screw threads—Continued

		Nominal size and threads	per inch		21	31,4-8	31/4-12	31/4-16	338-12	33,8-16	3/5-4	3/2-8	3½2-12	3/2-16	358-12
		Series desig- nation			20	z	z —	z	z	z	NG	z	z	z	Z
		Class			61	61 65	C1 60	C1 m	c) w	C1 00	H 01 to 4	C1 00	C1 60	C1 00	c1 m
	ages for			Not go	18	in. 3. 1295 3. 1293 3. 1295 3. 1295	3. 1688 3. 1686 3. 1688 3. 1686	3, 1903 3, 1901 3, 1903 3, 1901	3. 2938 3. 2936 3. 2938 3. 2938	3. 3153 3. 3151 3. 3153 3. 3153	3, 2564 3, 2564 3, 2564 3, 2564 3, 2564 3, 2564 3, 2562 3, 2562	3, 3795 3, 3793 3, 3795 3, 3795	3, 4188 3, 4186 3, 4188 3, 4188	3, 4403 3, 4401 3, 4403 3, 4403	3. 5438 3. 5436 3. 5438 3. 5438
	Z plain g	mînor diameter		G ₀	17	<i>in.</i> 3. 1147 3. 1149 3. 1147 3. 1147	3, 1598 3, 1600 3, 1598 3, 1600	3, 1823 3, 1825 3, 1823 3, 1823	3, 2848 3, 2850 3, 2848 3, 2850	3. 3073 3. 3075 3. 3073 3. 3075	3. 2234 3. 2235 3. 2235 3. 2295 3. 2295 3. 2296 3. 2296 3. 2296	3.3647 3.3649 3.3647 3.3349	3. 4098 3. 4100 3. 4098 3. 4100	3. 4323 3. 4325 3. 4323 3. 4323	3, 5348 3, 5350 3, 5348 3, 5350
hreads			ameter	Plus tol. gage	16	in. 3. 1820 3. 1825 3. 1781 3. 1786	3, 2034 3, 2038 3, 2011 3, 2015	3. 2163 3. 2167 3. 2142 3. 2146	3, 3285 3, 3289 3, 3262 3, 3266	3, 3413 3, 3417 3, 3392 3, 3396	3, 3580 3, 3585 3, 3516 3, 3516 3, 3473 3, 3478 3, 34240 3, 34265	3. 4321 3. 4326 3. 4231 3. 4286	3, 4535 3, 4539 3, 4512 3, 4516	3. 4664 3. 4568 3. 4543 3. 4647	3, 5786 3, 5790 3, 5763 3, 5767
Gages for internal threads	SS	Not go	Pitch diameter	Minus tol. gage	15	in. 3. 1820 3. 1815 3. 1781 3. 1776	3, 2034 3, 2030 3, 2011 3, 2007	3. 2163 3. 2159 3. 2142 3. 2138	3, 3285 3, 3281 3, 3262 3, 3258	3. 3413 3. 3409 3. 3392 3. 3388	3.3580 3.3575 3.3575 3.3516 3.3473 3.3468 3.34240 3.34240	3. 4321 3. 4316 3. 4281 3. 4276	3, 4535 3, 4531 3, 4512 3, 4508	3, 4664 3, 4660 3, 4643 3, 4639	3. 5786 3. 5782 3. 5763 3. 5759
Gages fo	Thread gages		Major	diameter	14	in. 3. 2361 3. 2354 3. 2322 3. 2315	3, 2395 3, 2389 3, 2372 3, 2366	3, 2434 3, 2428 3, 2413 3, 2407	3. 3646 3. 3640 3. 3523 3. 3617	3. 3684 3. 3578 3. 3563 3. 3657	3, 4663 3, 4654 3, 4590 3, 4590 3, 4556 3, 4547 3, 4547 3, 4598	3, 4862 3, 4855 3, 4822 3, 4815	3. 4896 3. 4890 3. 4873 3. 4867	3, 4935 3, 4929 3, 4914 3, 4908	3.6147 3.6141 3.6124 3.6124
	T			diameter	13	in. 3, 1658 3, 1693 3, 1688 3, 1693	3, 1959 3, 1963 3, 1959 3, 1963	3, 2094 3, 2093 3, 2094 3, 2094	3, 3209 3, 3213 3, 3203 3, 3213	3. 3344 3. 3348 3. 3348 3. 3348	3.3376 3.3331 3.3331 3.3331 3.3331 3.3331 3.3331 3.3331 3.3334 3.3376 3.3378 3.3378	3. 4188 3. 4193 3. 4193 3. 4193	3, 4459 3, 4463 3, 4459 3, 4463	3, 4594 3, 4598 3, 4598 3, 4598	3, 5709 3, 5713 3, 5709 3, 5713
		Go	Major	diameter	12	in. 3. 2500 3. 2507 3. 2500 3. 2507	3, 2500 3, 2506 3, 2500 3, 2500	3. 2500 3. 2506 3. 2506 3. 2506	3. 3750 3. 3756 3. 3756 3. 3756	3, 3750 3, 3756 3, 3756 3, 3756	8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3. 5000 3. 5007 3. 5000 3. 5000	3. 5000 3. 5006 3. 5006 3. 5006	3. 5000 3. 5000 3. 5000 3. 5000	3. 6250 3. 6256 3. 6256 3. 6250
	diameter	go	Unfin- ished	hot-rolled material	11	in. 3, 2278 3, 2280					3. 4592	3. 4778			
į.	Z plain gages for major diameter	Not go		finished	10	in. 3, 2348 3, 2350 3, 2348 3, 2350	3, 2388 3, 2390 3, 2388 3, 2390	3, 2410 3, 2412 3, 2410 3, 2412	3, 3638 3, 3540 3, 3538 3, 3640	3. 3660 3. 3360 3. 3360 3. 3662	3. 4528 3. 4528 3. 4720 3. 4720 3. 4720 3. 4720 4720 4720 4720	3. 4848 3. 4850 3. 4848 3. 4850	3. 4888 3. 4890 3. 4898 3. 4899	3. 4910 3. 4912 3. 4912 3. 4912	3. 6138 3. 6140 3. 6138 3. 6140
sı	Z plain gage		Go		6	in. 3. 2500 3. 2498 3. 2500 3. 2498	3, 2500 3, 2498 3, 2500 3, 2498	3, 2500 3, 2498 3, 2500 3, 2498	3, 3750 3, 3748 3, 3750 3, 3748	3. 3750 3. 3748 3. 3750 3. 3748	3. 4936 4.934 4.934 3. 5000 3. 5000 3. 4998 3. 5000 4.998	3, 5000 3, 4998 3, 5000 3, 4998	3, 5000 3, 4998 3, 5000 3, 4998	3. 5000 3. 4998 3. 5000 3. 4998	3. 6250 3. 6248 3. 6250 3. 6248
for external threads			Minor	diameter	∞	in. 3. 1285 3. 1292 3. 1324 3. 1324	3, 1704 3, 1710 3, 1727 3, 1733	3, 1890 3, 1896 3, 1911 3, 1917	3, 2953 3, 2959 3, 2976 3, 2982	3. 3140 3. 3146 3. 3161 3. 3167	3. 2567 3. 2567 3. 2695 3. 2704 3. 2738 3. 2747 3. 2800	3. 3784 3. 3791 3. 3824 3. 3831	3, 4203 3, 4209 3, 4226 3, 4232	3, 4339 3, 4335 3, 4410 3, 4416	3. 5452 3. 5458 3. 5475 3. 5481
ges for exter	SS	g0		Minus tol. gage	7	in. 3. 1556 3. 1551 3. 1595 3. 1590	3. 1884 3. 1880 3. 1907 3. 1903	3, 2025 3, 2021 3, 2046 3, 2042	3. 3133 3. 3129 3. 3156 3. 3155	3. 3275 3. 3271 3. 3296 3. 3292	3.3108 3.3103 3.3236 3.3236 3.3279 3.3274 3.3374	3. 4055 3. 4050 3. 4095 3. 4090	3. 4383 3. 4479 3. 4406 3. 4402	3. 4524 3. 4520 3. 4545 3. 4541	3. 5632 3. 5628 3. 5655 3. 5651
Gages	Thread gages	Not go	Pitch diameter	Plus tol. gage	9	<i>in.</i> 3. 1556 3. 1561 3. 1595 3. 1600	3. 1884 3. 1888 3. 1907 3. 1911	3, 2025 3, 2029 3, 2046 3, 2050	3.3133 3.3137 3.3156 3.3160	3. 3275 3. 3279 3. 3296 3. 3300	3 3108 3 3113 3 3236 3 3241 3 3279 3 3284 3 3284 3 3384	3. 4055 3. 4060 3. 4095 3. 4100	3. 4383 3. 4387 3. 4405 3. 4410	3. 4524 3. 4528 3. 4545 3. 4549	3. 5632 3. 5636 3. 5655 3. 5659
	T		Minor		5	in. 3. 1147 3. 1140 3. 1147 3. 1140	3, 1598 3, 1592 3, 1598 3, 1592	3, 1823 3, 1817 3, 1823 3, 1817	3, 2848 3, 2842 3, 2848 3, 2842	3, 3073 3, 3067 3, 3073 3, 3067	3. 2230 3. 2221 3. 2224 3. 2234 3. 2234 3. 2234 3. 2307 3. 2307	3, 3647 3, 3640 3, 3647 3, 3640	3, 4098 3, 4092 3, 4098 3, 4092	3, 4323 3, 4317 3, 4323 3, 4317	3, 5348 3, 5342 3, 5348 3, 5342
		Go	Pitch	diameter	4	in. 3. 1688 3. 1683 3. 1683 3. 1683	3. 1959 3. 1955 3. 1959 3. 1955	3. 2094 3. 2090 3. 2094 3. 2090	3. 3209 3. 3205 3. 3209 3. 3205	3. 3344 3. 3340 3. 3344 3. 3340	3 3312 3 3307 3 3376 3 3371 3 3371 3 3371 3 33890 3 33865	3. 4188 3. 4188 3. 4188 3. 4188	3. 4459 3. 4455 3. 4459 3. 4455	3. 4594 3. 4590 3. 4594 3. 4590	3. 5709 3. 5705 3. 5709 3. 5705
		Class			89	3 2	2 8	23 85	2 8	61 88	1 2 8 4	63 65	2 8	63 8	3 2
		Series desig- nation			2	Z	Z	z	z	Z	NC	Z	Z	z	z
		Nominal size and threads	per inch		1	31/4-8	34-12	31,4-16	33,8-12	33%-16	3)2-4	3,2-8	352-12	3½-16	358-12

358-16	33,4-4	334-8	334-12	334-16	37,8–12	374-16	रे - रे	<u>*-</u>	-15 -15	4-16	4/4-8	41/4-12	4½-16
Z	NG	×	Z	×	Z	×	NC	×	7.	Z	Z	Z	z
21 80	- 6) to 4	61 65	c) m	c1 m	61 m	61 65	H 01 50 4	61 65	01 89	61 B	67 %	61 89	63 65
3, 5653 3, 5651 3, 5653 3, 5653	3. 5064 3. 5062 3. 5062 3. 5062 3. 5064 3. 5064 3. 5064 3. 5064	3. 6295 3. 6293 3. 6295 3. 6295	3, 6688 3, 6686 3, 6688 3, 6688	3. 6903 3. 6901 3. 6903 3. 6901	3, 7938 3, 7936 3, 7938 3, 7936	3. 8153 3. 8151 3. 8153 3. 8153	3, 7564 3, 7562 3, 7564 3, 7564 3, 7564 3, 7562 3, 7562	3, 8795 3, 8793 3, 8795 3, 8795	3, 9188 3, 9186 3, 9188 3, 9188	3. 9403 3. 9401 3. 9403 3. 9401	4. 1295 4. 1293 4. 1295 4. 1293	4. 1688 4. 1688 4. 1688 4. 1686	4. 1903 4. 1901 4. 1903 4. 1901
3. 5573 3. 5575 3. 5573 3. 5573	3, 4794 3, 4796 3, 4796 3, 4796 3, 4796 3, 4796 3, 4796 4, 4796	3. 6147 3. 6149 3. 6147 3. 6149	3. 6598 3. 6600 3. 6598 3. 6600	3. 6823 3. 6825 3. 6823 3. 6823	3, 7848 3, 7850 3, 7848 3, 7850	3, 8073 3, 8075 3, 8073 3, 8073	3, 7294 3, 7296 3, 7296 3, 7294 3, 7294 3, 7294 3, 7296	3. 8647 3. 8649 3. 8647 3. 8647	3, 9098 3, 9100 3, 9098 3, 9100	3, 9323 3, 9325 3, 9323 3, 9325	4, 1147 4, 1149 4, 1147 4, 1149	4, 1598 4, 1600 4, 1598 4, 1600	4, 1823 4, 1825 4, 1823 4, 1823
3, 5915 3, 5919 3, 5893 3, 5897	3, 6080 3, 6085 3, 6016 3, 5973 3, 5978 3, 5924 3, 5924 3, 5924	3. 6822 3. 6827 3. 6782 3. 6787	3. 7037 3. 7041 3. 7013 3. 7017	3. 7165 3. 7169 3. 7144 3. 7148	3. 8287 3. 8291 3. 8264 3. 8268	3. 8416 3. 8420 3. 8394 3. 8398	3, 8580 3, 8585 3, 8516 3, 8516 3, 8473 3, 8478 3, 84240 3, 84265	3. 9323 3. 9328 3. 9283 3. 9288	3, 9538 3, 9512 3, 9514 3, 9514	3, 9666 3, 9670 3, 9645 3, 9649	4, 1825 4, 1831 4, 1784 4, 1790	4, 2039 4, 2045 4, 2015 4, 2021	4, 2168 4, 2174 4, 2146 4, 2152
3, 5915 3, 5911 3, 5893 3, 5889	3. 6075 3. 6075 3. 6016 3. 6011 3. 5973 3. 5928 3. 59240 3. 59215	3. 6822 3. 6817 3. 6782 3. 6777	3, 7037 3, 7033 3, 7013 3, 7009	3. 7165 3. 7161 3. 7144 3. 7140	3, 8287 3, 8283 3, 8264 3, 8260	3.8416 3.8412 3.8394 3.8390	3, 8580 3, 8575 3, 8516 3, 8511 3, 8473 3, 8468 3, 84240 3, 84240	3, 9323 3, 9318 3, 9283 3, 9278	3, 9538 3, 9534 3, 9514 3, 9510	3, 9666 3, 9662 3, 9645 3, 9641	4. 1825 4. 1819 4. 1784 4. 1778	4, 2039 4, 2033 4, 2015 4, 2009	4. 2168 4. 2162 4. 2146 4. 2140
3, 6186 3, 6180 3, 6164 3, 6158	3, 7163 3, 7154 3, 7099 3, 7099 3, 7096 3, 7047 3, 7007 3, 6988	3, 7363 3, 7356 3, 7323 3, 7316	3, 7398 3, 7392 3, 7374 3, 7368	3. 7436 3. 7430 3. 7415 3. 7409	3. 8648 3. 8642 3. 8625 3. 8619	3, 8687 3, 8681 3, 8665 3, 8659	3, 9663 3, 9654 3, 9590 3, 9590 3, 9556 3, 9547 3, 9507	3, 9864 3, 9857 3, 9824 3, 9817	3, 9899 3, 9893 3, 9875 3, 9869	3, 9937 3, 9931 3, 9916 3, 9910	4, 2366 4, 2355 4, 2325 4, 2314	4, 2400 4, 2391 4, 2376 4, 2367	4, 2439 4, 2430 4, 2417 4, 2408
3, 5844 3, 5848 3, 5844 3, 5848	3, 5876 3, 5881 3, 5881 3, 5886 3, 5881 3, 5876 3, 5881 3, 5881 3, 5881	3, 6688 3, 6693 3, 6688 3, 6993	3, 6959 3, 6963 3, 6959 3, 6963	3, 7094 3, 7098 3, 7094 3, 7098	3. 8209 3. 8213 3. 8209 3. 8213	3. 8344 3. 8348 3. 8344 3. 8344	3.8376 3.8381 3.8381 3.8376 3.8376 3.8376 3.83760 3.83760	3. 9188 3. 9193 3. 9188 3. 9193	3. 9459 3. 9463 3. 9459 3. 9463	3, 9594 3, 9598 3, 9594 3, 9598	4. 1688 4. 1694 4. 1688 4. 1694	4. 1959 4. 1959 4. 1959 4. 1965	4, 2094 4, 2100 4, 2094 4, 2100
3. 6250 3. 6256 3. 6256 3. 6250	3, 7500 3, 7509 3, 7509 3, 7509 3, 7509 3, 7509 3, 7509 3, 7509	3. 7500 3. 7507 3. 7500 3. 7500	3, 7500 3, 7506 3, 7506 3, 7500	3. 7500 3. 7506 3. 7506 3. 7500	3. 8750 3. 8756 3. 8756 3. 8750	3.8750 3.8756 3.8756 3.8750	4, 4, 4, 0000 4, 4, 4, 0000 4, 0000 4, 0000 4, 0000 6, 0000 6, 0000 7, 0000 7, 0000	4. 0000 4. 0007 4. 0000 4. 0007	4. 0000 4. 0006 4. 0000 4. 0006	4. 0000 4. 0006 4. 0000 4. 0006	4. 2500 4. 2511 4. 2500 4. 2511	4. 2500 4. 2509 4. 2509 4. 2509	4. 2500 4. 2509 4. 2500 4. 2509
	3. 7092 3. 7094	3, 7278					3, 9592 3, 9594	3.9778			4. 2278		
3, 6160 3, 6162 3, 6160 3, 6162	3, 7028 3, 7028 3, 7030 3, 7220 3, 7220 8, 7220 8, 7220 8, 7220	3, 7348 3, 7350 3, 7348 3, 7348	3. 7388 3. 7390 3. 7388 3. 7390	3. 7410 3. 7412 3. 7410 3. 7412	3. 8638 3. 8640 3. 8638 3. 8640	3. 8660 3. 8662 3. 8660 3. 8662	3, 9528 3, 9530 3, 9720 3, 9722 3, 9720 3, 9720 3, 9722 3, 9722	3. 9848 3. 9850 3. 9848 3. 9848	3, 9888 3, 9890 3, 9888 3, 9888	3. 9910 3. 9912 3. 9910 3. 9912	4, 2348 4, 2350 4, 2348 4, 2350	4, 2388 4, 2390 4, 2388 4, 2388	4. 2410 4. 2412 4. 2410 4. 2412
3, 6250 3, 6248 3, 6250 3, 6250	3, 7436 3, 7434 3, 7434 3, 7500 3, 7500 3, 7500 3, 7500 3, 7498 3, 7500	3, 7500 3, 7498 3, 7500 3, 7498	3, 7500 3, 7498 3, 7500 3, 7500	3. 7500 3. 7498 3. 7500 3. 7500	3.8750 3.8748 3.8750 3.8748	3.8750 3.8748 3.8750 3.8750	3, 9936 3, 9934 4, 0000 4, 0000 3, 9998 4, 0000 3, 9998	4. 0000 4. 0000 4. 0000 3. 9998	4.0000 3.9998 4.0000 3.9998	4. 0000 3. 9998 4. 0000 3. 9998	4, 2500 4, 2498 4, 2500 4, 2500	4, 2500 4, 2498 4, 2500 4, 2498	4. 2500 4. 2498 4. 2500 4. 2500 4. 2498
3, 5638 3, 5644 3, 5660 3, 5666	3, 5067 3, 5076 3, 5195 3, 5284 3, 5287 3, 5247 3, 5309	3. 6283 3. 6290 3. 6323 3. 6330	3. 6701 3. 6707 3. 6725 3. 6731	3, 6888 3, 6894 3, 6909 3, 6915	3, 7951 3, 7957 3, 7974 3, 7980	3.8137 3.8143 3.8159 3.8165	3, 7567 3, 7576 3, 7695 3, 7704 3, 7738 3, 7747 3, 7800 3, 7809	3. 8782 3. 8789 3. 8822 3. 8829	3, 9200 3, 9206 3, 9224 3, 9230	3. 9387 3. 9393 3. 9408 3. 9414	4. 1280 4. 1291 4. 1321 4. 1332	4. 1699 4. 1708 4. 1723 4. 1732	4, 1885 4, 1894 4, 1907 4, 1916
3, 5773 3, 5769 3, 5795 3, 5791	3, 5608 3, 5503 3, 5736 3, 5731 3, 5774 3, 58410 3, 58385	3. 6554 3. 6549 3. 6594 3. 6589	3. 6881 3. 6877 3. 6905 3. 6901	3. 7023 3. 7019 3. 7044 3. 7040	3.8131 3.8127 3.8154 3.8150	3. 8272 3. 8268 3. 8294 3. 8290	3. 8108 3. 8103 3. 8236 3. 8231 3. 8279 3. 8274 3. 83110 3. 83385	3, 9053 3, 9048 3, 9093 3, 9088	3, 9380 3, 9376 3, 9404 3, 9400	3, 9522 3, 9518 3, 9543 3, 9539	4, 1551 4, 1515 4, 1592 4, 1586	4. 1879 4. 1873 4. 193 4. 1897	4, 2020 4, 2014 4, 2042 4, 2036
3. 5773 3. 5777 3. 5795 3. 5799	3. 5608 3. 5613 3. 5736 3. 5741 3. 5779 3. 58410 3. 58435	3. 6554 3. 6559 3. 6594 3. 6599	3. 6881 3. 6885 3. 6905 3. 6909	3. 7023 3. 7027 3. 7044 3. 7048	3. 8131 3. 8135 3. 8154 3. 8158	3. 8272 3. 8276 3. 8294 3. 8298	3. 8108 3. 8113 3. 8236 3. 8241 3. 8279 3. 8284 3. 83 110 3. 83 135	3. 9053 3. 9058 3. 9098 3. 9098	3, 9380 3, 9384 3, 9404 3, 9408	3. 9522 3. 9526 3. 9543 3. 9547	4. 1551 4. 1557 4. 1592 4. 1598	4, 1879 4, 1885 4, 1903 4, 1009	4. 2020 4. 2026 4. 2042 4. 2048
3, 5573 3, 5567 3, 5573 3, 5567	3, 4730 3, 4721 3, 4724 3, 4785 3, 4785 3, 4785 3, 4785 3, 4785 3, 4785	3.6147 3.6140 3.6147 3.6140	3, 6598 3, 6592 3, 6598 3, 6592	3. 6823 3. 6817 3. 6823 3. 6817	3. 7848 3. 7842 3. 7848 3. 7848	3.8073 3.8067 3.8073 3.8067	3, 7230 3, 7221 3, 7224 3, 7294 3, 7285 3, 7285 3, 7307	3.8647 3.8640 3.8640 3.8640	3. 9098 3. 9092 3. 9098 3. 9092	3. 9323 3. 9317 3. 9323 3. 9317	4. 1147 4. 1136 4. 1147 4. 1147	4.1598 4.1589 4.1589 4.1589	4. 1823 4. 1814 4. 1823 4. 1814
3. 5844 3. 5840 3. 5844 3. 5844	3, 5812 3, 5807 3, 5876 3, 5876 3, 5876 3, 5887 3, 5889 3, 5889	3. 6688 3. 6688 3. 6688	3, 6959 3, 6955 3, 6955 3, 6955	3. 7094 3. 7090 3. 7094 3. 7090	3. 8209 3. 8205 3. 8206 3. 8209	3.8344 3.8340 3.8344 3.8344	3. 8312 3. 8307 3. 8376 3. 8376 3. 8371 3. 8371 3. 83890 3. 83890 3. 83865	3. 9188 3. 9183 3. 9188 3. 9183	3, 9459 3, 9455 3, 9455 3, 9455	3.9594 3.9590 3.9594 3.9599	4. 1688 4. 1682 4. 1688 4. 1682	4. 1959 4. 1953 4. 1959 4. 1953	4. 2094 4. 2094 4. 2094 4. 2088
61 80	1 2 8 4	3 2	2 8	£1 &8	2 %	3 .8	7 2 7	27 %	61 %	3 2	3 8	3 8	3 2
Ż	NG	Z	z	Ż	Z	Z	NG	Z	Z	Z	Ż	Ż	z
358-16	334-4	334-8	334-12	33,4-16	37/8-12	37/8-16	1	8-4	4-12	4-16	41,4-8	41/4-12	4½-16

Table 1.16.—Gages for standard thread series, American National screw threads—Continued

		Nominal size and threads	per inch		21	41/2-8	41/2-12	41/2–16	43,4-8	434-12	434-16	2-8	5-12	5–16	514-8	51,4-12
		Series desig- nation			50	z	z	z	z	z	z	z	z	z	z	z
		Class			19	c) es	61 65	61 65	01 m	61 89	61 65	61 69	61 65	61 65	61 65	81 89
	ages for			Not go	18	in. 4, 3795 4, 3793 4, 3795 4, 3795	4. 4188 4. 4186 4. 4188 4. 4186	4. 4403 4. 4401 4. 4403 4. 4401	4. 62950 4. 62925 4. 62950 4. 62925	4. 66880 4. 66855 4. 66880 4. 66855	4. 69030 4. 69005 4. 69030 4. 69005	4.87950 4.87925 4.87950 4.87925	4. 91880 4. 91855 4. 91880 4. 91855	4, 94030 4, 94005 4, 94030 4, 94005	5. 12950 5. 12925 5. 12950 5. 12925	5. 16880 5. 16855 5. 16880 5. 16855
	Z plain g	minor diameter		Go	17	in. 4. 3647 4. 3649 4. 3647 4. 3649	4. 4098 4. 4100 4. 4098 4. 4100	4, 4323 4, 4325 4, 4323 4, 4325	4. 61470 4. 61495 4. 61470 4. 61495	4. 65980 4. 66005 4. 65980 4. 66005	4, 68230 4, 68255 4, 68230 4, 68255	4. 86470 4. 86495 4. 86470 4. 86495	4. 90980 4. 91005 4. 90980 4. 91005	4, 93230 4, 93255 4, 93230 4, 93255	5. 11470 5. 11495 5. 11470 5. 11495	5. 15980 5. 16005 5. 15980 5. 16005
threads			ameter	Plus tol. gage	16	in. 4, 4326 4, 4332 4, 4285 4, 4291	4, 4540 4, 4546 4, 4516 4, 4522	4. 4669 4. 4675 4. 4647 4. 4653	4. 6827 4. 6833 4. 6786 4. 6792	4. 7042 4. 7048 4. 7017 4. 7023	4. 7170 4. 7176 4. 7147 4. 7153	4. 9328 4. 9334 4. 9287 4. 9293	4. 9543 4. 9549 4. 9518 4. 9524	4. 9671 4. 9677 4. 9648 4. 9654	5. 1829 5. 1835 5. 1787 5. 1793	5, 2044 5, 2050 5, 2018 5, 2024
Gages for internal threads	Se	Not go	Pitch diameter	Minus tol. gage	15	in. 4. 4326 4. 4320 4. 4285 4. 4279	4, 4540 4, 4534 4, 4516 4, 4510	4. 4669 4. 4663 4. 4647 4. 4641	4. 6827 4. 6821 4. 6786 4. 6780	4. 7042 4. 7036 4. 7017 4. 7011	4. 7170 4. 7164 4. 7147 4. 7141	4. 9328 4. 9322 4. 9287 4. 9281	4. 9543 4. 9537 4. 9518 4. 9512	4. 9671 4. 9665 4. 9648 4. 9642	5. 1829 5. 1823 5. 1787 5. 1781	5. 2044 5. 2038 5. 2018 5. 2012
Gages fo	Thread gages		Major	diameter	14	in. 4. 4867 4. 4856 4. 4826 4. 4815	4. 4901 4. 4892 4. 4877 4. 4868	4. 4940 4. 4931 4. 4918 4. 4909	4, 7368 4, 7357 4, 7327 4, 7316	4. 7403 4. 7394 4. 7378 • 4. 7369	4. 7441 4. 7432 4. 7418 4. 7409	4. 9869 4. 9858 4. 9828 4. 9817	4. 9904 4. 9895 4. 9879 4. 9870	4, 9942 4, 9933 4, 9919 4, 9910	5, 2370 5, 2359 5, 2328 5, 2317	5, 2405 5, 2396 5, 2379 5, 2370
	1	Go	Pitch	diameter	13	in. 4. 4188 4. 4194 4. 4188 4. 4194	4. 4459 4. 4465 4. 4459 4. 4465	4, 4594 4, 4600 4, 4594 4, 4600	4. 6688 4. 6694 4. 6688 4. 6694	4. 6959 4. 6965 4. 6959 4. 6965	4. 7094 4. 7100 4. 7094 4. 7100	4. 9188 4. 9194 4. 9198 4. 9194	4. 9459 4. 9465 4. 9459 4. 9465	4. 9594 4. 9600 4. 9594 4. 9600	5. 1688 5. 1694 5. 1688 5. 1694	5. 1959 5. 1965 5. 1959 5. 1965
		ð	Major	diameter	12	in. 4.5000 4.5011 4.5010 4.5011	4. 5000 4. 5009 4. 5000 4. 5009	4. 5000 4. 5009 4. 5000 4. 5009	4, 7500 4, 7511 4, 7500 4, 7511	4. 7500 4. 7509 4. 7509 4. 7509	4. 7500 4. 7509 4. 7500 4. 7509	5, 0000 5, 0011 5, 0000 5, 0011	5, 0000 5, 0009 5, 0009 5, 0009	5. 0000 5. 0009 5. 0009 5. 0009	5, 2500 5, 2511 5, 2500 5, 2511	5, 2500 5, 2509 5, 2500 5, 2500
	r diameter	Not go	Unfin- ished	hot-rolled material	11	in. 4. 4778 4. 4780			4, 72780			4. 97780			5. 22780 5. 22805	
	es for majo	Not	Semi-		10	in. 4. 4848 4. 4850 4. 4850 4. 4850	4. 4888 4. 4890 4. 4888 4. 4890	4. 4910 4. 4912 4. 4910 4. 4912	4. 73480 4. 73505 4. 73480 4. 73505	4. 73880 4. 73905 4. 73880 4. 73905	4. 74100 4. 74125 4. 74100 4. 74125	4. 98480 4. 98505 4. 98480 4. 98505	4. 98880 4. 98905 4. 98880 4. 98905	4. 99100 4. 99125 4. 99100 4. 99125	5. 23480 5. 23505 5. 23480 5. 23505	5. 23880 5. 23905 5. 23880 5. 23905
ds	Z plain gages for major diameter		Go		6	<i>in.</i> 4. 5000 4. 4998 4. 5000 4. 4998	4. 5000 4. 4998 4. 5000 4. 4998	4. 5000 4. 4998 4. 5000 4. 4998	4. 75000 4. 74975 4. 75000 4. 74975	4, 75000 4, 74975 4, 75000 4, 74975	4. 75000 4. 74975 4. 75000 4. 74975	5,00000 4,99975 5,00000 4,99975	5.00000 4.99975 5.00000 4.99975	5. 00000 4. 99975 5. 00000 4. 99975	5. 25000 5. 24975 5. 25000 5. 24975	5. 25000 5. 24975 5. 25000 5. 24975
for external threads			Minor	diameter	8	in. 4. 3779 4. 3790 4. 3820 4. 3831	4. 4198 4. 4207 4. 4222 4. 4231	4, 4384 4, 4393 4, 4406 4, 4415	4. 6278 4. 6289 4. 6319 4. 6330	4. 6696 4. 6705 4. 6721 4. 6730	4. 6883 4. 6892 4. 6906 4. 6915	4. 8777 4. 8818 4. 8829	4. 9195 4. 9204 4. 9220 4. 9229	4. 9382 4. 9391 4. 9405 4. 9414	5. 1276 5. 1287 5. 1318 5. 1329	5. 1694 5. 1703 5. 1720 5. 1729
Gages for ext	ses	Not go	Pitch diameter	Minus tol. gage	7	in. 4. 4050 4. 4044 4. 4091 4. 4085	4. 4378 4. 4372 4. 4402 4. 4396	4, 4519 4, 4513 4, 4541 4, 4535	4. 6549 4. 6543 4. 6590 4. 6584	4. 6876 4. 6870 4. 6901 4. 6895	4, 7018 4, 7012 4, 7041 4, 7035	4. 9048 4. 9042 4. 9089 4. 9083	4, 9375 4, 9369 4, 9400 4, 9394	4. 9517 4. 9511 4. 9540 4. 9534	5, 1547 5, 1541 5, 1589 5, 1583	5.1874 5.1868 5.1900 5.1894
ğ	Thread gages	No		Plus tol. gage	9	in. 4. 4050 4. 4056 4. 4091 4. 4097	4, 4378 4, 4384 4, 4402 4, 4408	4, 4519 4, 4525 4, 4541 4, 4547	4. 6549 4. 6555 4. 6590 4. 6596	4. 6876 4. 6882 4. 6901 4. 6907	4, 7018 4, 7024 4, 7041 4, 7047	4. 9048 4. 9054 4. 9089 4. 9095	4. 9375 4. 9381 4. 9400 4. 9406	4. 9517 4. 9523 4. 9540 4. 9546	5. 1547 5. 1553 5. 1589 5. 1595	5. 1874 5. 1880 5. 1900 5. 1906
		Go	Minor	diameter	2	in. 4. 3647 4. 3636 4. 3647 4. 3647	4. 4098 4. 4089 4. 4098 4. 4089	4, 4323 4, 4314 4, 4323 4, 4314	4. 6147 4. 6136 4. 6147 4. 6136	4. 6598 4. 6589 4. 6598 4. 6589	4. 6823 4. 6814 4. 6823 4. 6814	4. 8647 4. 8636 4. 8647 4. 8636	4. 9098 4. 9089 4. 9098 4. 9089	4. 9323 4. 9314 4. 9323 4. 9314	5. 1147 5. 1136 5. 1147 5. 1136	5. 1598 5. 1589 5. 1588 5. 1589
			Pitch	diameter	4	in. 4. 4188 4. 4182 4. 4188 4. 4182	4. 4459 4. 4453 4. 4459 4. 4459	4. 4594 4. 4588 4. 4594 4. 4588	4. 6688 4. 6682 4. 6688 4. 6682	4. 6959 4. 6953 4. 6959 4. 6953	4. 7094 4. 7088 4. 7094 4. 7088	4. 9188 4. 9182 4. 9188 4. 9182	4. 9459 4. 9453 4. 9459 4. 9459	4. 9594 4. 9588 4. 9594 4. 9588	5.1688 5.1682 5.1688 5.1688	5. 1959 5. 1953 5. 1959 5. 1953
		Class			3	3	3 5	3 8	3 8	23 &	3 8	3 2	2 %	3 2	3 8	3 2
		Series desig- nation			2	Z	z	z	z	z	z	Z	z	Z	Z	z
		Nominal size and threads	per inch		1	41/2-8	41/2-12	412-16	434-8	434-12	434-16	5- 8-	5-12	5-16	5¼-8	5¼-12

5}4-16	512-8	5½-12	542-16	534-8	534-12	534-16	8-9	6-12	6-16
Z	Z	Z	z	z	Z	Z	Z	Z	Z
3 8	27 89	2 8	67 89	87 00	61 65	8 8	67 m	27 89	2 8
5. 19030	5. 37950	5, 41880	5, 44030	5, 62950	5. 66880	5, 69030	5.87950	5, 91880	5. 94030
5. 19005	5. 37925	5, 41855	5, 44005	5, 62925	5. 66855	5, 69005	5.87925	5, 91855	5. 94005
5. 19030	5. 37950	5, 41880	5, 44030	5, 62950	5. 66880	5, 69030	5.87950	5, 91880	5. 94030
5. 19005	5. 37925	5, 41855	5, 44005	5, 62925	5. 66855	5, 69005	5.87925	5, 91855	5. 94005
5, 18230	5. 36470	5, 40980	5, 43230	5. 61470	5, 65980	5. 68230	5.86470	5, 90980	5, 93230
5, 18255	5. 36495	5, 41005	5, 43255	5. 61495	5, 66005	5. 68255	5.86495	5, 91005	5, 93255
5, 18230	5. 36495	5, 40980	5, 43230	5. 61470	5, 65980	5. 68230	5.86470	5, 90980	5, 93230
5, 18255	5. 36495	5, 41005	5, 43255	5. 61495	5, 66005	5. 68255	5.86495	5, 91005	5, 93255
5. 2172	5, 4330	5. 4545	5, 4673	5.6831	5. 7046	5. 7174	5, 9332	5. 9547	5.9675
5. 2178	5, 4336	5. 4551	5, 4679	5.6837	5. 7052	5. 7180	5, 9338	5. 9553	5.9681
5. 2149	5, 4288	5. 4519	5, 4650	5.6789	5. 7020	5. 7150	5, 9290	5. 9521	5.9651
5. 2155	5, 4294	5. 4525	5, 4656	5.6795	5. 7026	5. 7156	5, 9296	5. 9527	5.9657
5. 2172	5. 4330	5. 4545	5. 4673	5.6831	5. 7046	5.7174	5. 9332	5. 9547	5, 9675
5. 2166	5. 4324	5. 4539	5. 4667	5.6825	5. 7040	5.7168	5. 9326	5. 9541	5, 9669
5. 2149	5. 4288	5. 4519	5. 4650	5.6789	5. 7020	5.7150	5. 9290	5. 9521	5, 9651
5. 2143	5. 4282	5. 4513	5. 4644	5.6783	5. 7014	5.7144	5. 9284	5. 9515	5, 9645
5, 2443 5, 2434 5, 2420 5, 2411	5. 4871 5. 4860 5. 4829 5. 4818	5. 4906 5. 4897 5. 4871	5. 4944 5. 4935 5. 4921 5. 4912	5. 7372 5. 7361 5. 7330 5. 7319	5. 7407 5. 7398 5. 7381 5. 7372	5. 7445 5. 7436 5. 7421 5. 7412	5, 9873 5, 9862 5, 9831 5, 9820	5, 9908 5, 9899 5, 9882 5, 9873	5. 9946 5. 9937 5. 9922 5. 9913
5, 2094	5. 4188	5. 4459	5. 4594	5.6688	5, 6959	5. 7094	5. 9188	5. 9459	5, 9594
5, 2100	5. 4194	5. 4465	5. 4600	5.6694	5, 6965	5. 7100	5. 9194	5. 9465	5, 9600
5, 2094	5. 4188	5. 4459	5. 4594	5.6688	5, 6959	5. 7094	5. 9194	5. 9459	5, 9594
5, 2100	5. 4194	5. 4465	5. 4600	5.6694	5, 6965	5. 7100	5. 9194	5. 9465	5, 9600
5, 2500 5, 2509 5, 2500 5, 2509	5. 5000 5. 5011 5. 5000 5. 5011	5. 5000 5. 5009 5. 5000 5. 5009	5. 5000 5. 5009 5. 5000 5. 5009	5. 7500 5. 7511 5. 7500 5. 7511	5, 7500 5, 7509 5, 7500 5, 7509	5. 7500 5. 7509 5. 7500 5. 7509	6. 0000 6. 0011 6. 0011 6. 0011	6. 0000 6. 0009 6. 0009	6. 0000 6. 0009 6. 0000 6. 0009
	5.47780			5, 72780			5. 97780 5. 97805		
5, 24100	5. 48480	5. 48880	5. 49100	5. 73480	5. 73880	5. 74100	5, 98480	5. 98880	5, 99110
5, 24125	5. 48505	5. 48905	5. 49125	5. 73505	5. 73905	5. 74125	5, 98505	5. 98905	5, 99125
5, 24100	5. 48480	5. 48880	5. 49100	5. 73480	5. 73880	5. 74100	5, 98480	5. 98880	5, 99100
5, 24125	5. 48505	5. 48905	5. 49125	5. 73505	5. 73905	5. 74125	5, 98505	5. 98905	5, 99125
5, 25000	5. 50000	5. 50000	5.50000	5. 75000	5. 75000	5. 75000	6. 00000	6. 00000	6. 99975
5, 24975	5. 49975	5. 49975	5.49975	5. 74975	5. 74975	5. 74975	5. 99975	5. 99975	5. 99975
5, 25000	5. 50000	5. 50000	5.50000	5. 75000	5. 75000	5. 75000	6. 00000	6. 00000	6. 99975
5, 24975	5. 49975	5. 49975	5.49975	5. 74975	5. 74975	5. 74975	5. 99975	5. 99975	5. 99975
5. 1881	5. 3775	5. 4193	5. 4380	5. 6274	5. 6692	5. 6879	5.8773	5. 9191	5. 9378
5. 1890	5. 3786	5. 4202	5. 4389	5. 6285	5. 6701	5. 6888	5.8784	5. 9200	5. 9387
5. 1904	5. 3817	5. 4219	5. 4403	5. 6316	5. 6718	5. 6903	5.8815	5. 9217	5. 9402
5. 1913	5. 3828	5. 4228	5. 4412	5. 6327	5. 6727	5. 6912	5.8826	5. 9226	5. 9411
5, 2016	5. 4046	5, 4373	5, 4515	5. 6545	5.6872	5. 7014	5. 9044	5. 9371	5, 9513
5, 2010	5. 4040	5, 4367	5, 4509	5. 6539	5.6866	5. 7008	5. 9038	5. 9365	5, 9507
5, 2039	5. 4088	5, 4399	5, 4538	5. 6587	5.6898	5. 7038	5. 9086	5. 9397	5, 9537
5, 2033	5. 4082	5, 4393	5, 4532	5. 6581	5.6892	5. 7032	5. 9080	5. 9391	5, 9531
5, 2016	5. 4046	5. 4373	5. 4515	5.6545	5.6872	5. 7014	5. 9044	5. 9371	5, 9513
5, 2022	5. 4052	5. 4379	5. 4521	5.6551	5.6878	5. 7020	5. 9050	5. 9377	5, 9519
5, 2039	5. 4088	5. 4399	5. 4538	5.6587	5.6898	5. 7038	5. 9086	5. 9397	5, 9537
5, 2045	5. 4094	5. 4405	5. 4544	5.6593	5.6904	5. 7044	5. 9092	5. 9403	5, 9543
5. 1823	5. 3647	5. 4098	5. 4323	5. 6147	5. 6598	5.6823	5.8647	5, 9098	5. 9323
5. 1814	5. 3636	5. 4089	5. 4314	5. 6136	5. 6589	5.6814	5.8636	5, 9089	5. 9314
5. 1823	5. 3647	5. 4098	5. 4323	5. 6147	5. 6598	5.6823	5.8647	5, 9098	5. 9323
5. 1814	5. 3636	5. 4089	5. 4314	5. 6136	5. 6589	5.6814	5.8636	5, 9089	5. 9314
5. 2094	5. 4188	5. 4459	5. 4594	5.6688	5. 6959	5. 7094	5. 9188	5. 9459	5, 9594
5. 2088	5. 4182	5. 4453	5. 4588	5.6682	5. 6953	5. 7088	5. 9182	5. 9453	5, 9588
5. 2094	5. 4188	5. 4459	5. 4594	5.6688	5. 6959	5. 7094	5. 9188	5. 9453	5, 9594
5. 2088	5. 4182	5. 4453	5. 4588	5.6688	5. 6953	5. 7088	5. 9182	5. 9453	5, 9588
3 2	2 8	3 5	3 2	3 8	3 2	3 2	3 6	3 2	2 8
Z	Ż	Z	z	Z	Z	Z	Z	Z	Z
514-16	512-8	5½-12	51/2-16	534-8	534-12	534-16	8-9	6-12	91-9

 ${\it Table~1.17.-Setting~plug~gages,~American~National~screw~threads}$

					W trui	ncated settir	ng plugs]	Basic-crest s	etting plugs	
Nominal size and	Series		Pl	ug for "Go	,,		Plug for	"Not go"			Major d	liameter	
threads per inch	designa- tion	Class	Major di	ameter	Pitch	Major di	ameter	Pitch d	iameter	Ge	I.	Not	go ²
			Trun- cated	Full	diameter	Trun- cated	Full	Plus tol.	Minus tol. gage	W toler- ance	X toler- ance	W toler- ance	X toler- ance
1	2	3	4	5	6	7	8	9	10	11 A	11B	12A	12B
0-80	NF	$ \left\{ \begin{array}{c} 1\\2\\3 \end{array}\right. $	in. 0. 0559 . 0556 . 0566 . 0563 . 0566 . 0563	in. 0. 0593 . 0596 . 0600 . 0603 . 0600 . 0603	in, 0.0512 .0511 .0519 .0518 .0519 .0518	in. 0. 0542 . 0539 . 0556 . 0553 . 0560 . 0557	in. 0. 0576 . 0579 . 0590 . 0593 . 0594 . 0597	in. 0.0488 .0489 .0502 .0503 .0506	in. 0.0488 .0487 .0502 .0501 .0506	in. 0. 0593 0. 0596 0. 0600 0. 0603 0. 0600 0. 0603	in. 0.0593 .0596 .0600 .0603 .0600 .0603	in. 0.0576 .0579 .0590 .0593 .0594 .0597	in. 0.057 0.057 0.059 0.059 0.059 0.059
1-64	NC	$\left\{\begin{array}{c}1\\2\\3\end{array}\right.$. 0683 . 0680 . 0690 . 0687 . 0690 . 0687	. 0723 . 0726 . 0730 . 0733 . 0730 . 0733	. 0622 . 0621 . 0629 . 0628 . 0629 . 0628	. 0664 . 0661 . 0678 . 0675 . 0683 . 0680	. 0710 . 0713 . 0724 . 0727 . 0729 . 0732	. 0596 . 0597 . 0610 . 0611 . 0615 . 0616	. 0596 . 0595 . 0610 . 0609 . 0615 . 0614	. 0723 . 0726 . 0730 . 0733 . 0730 . 0733	. 0723 . 0727 . 0730 . 0734 . 0730 . 0734	. 0710 . 0713 . 0724 . 0727 . 0729 . 0732	. 071 . 071 . 072 . 072 . 072 . 073
1-72	NF	$\left\{\begin{array}{c}1\\2\\3\end{array}\right.$. 0686 . 0683 . 0693 . 0690 . 0693 . 0690	. 0723 . 0726 . 0730 . 0733 . 0730 . 0733	. 0633 . 0632 . 0640 . 0639 . 0640 . 0639	. 0668 . 0665 . 0682 . 0679 . 0687 . 0684	. 0708 . 0711 . 0722 . 0725 . 0727 . 0730	. 0608 . 0609 . 0622 . 0623 . 0627 . 0628	. 0608 . 0607 . 0622 . 0621 . 0627 . 0626	. 0723 . 0726 . 0730 . 0733 . 0730 . 0733	. 0723 . 0726 . 0730 . 0733 . 0730 . 0733	. 0708 . 0711 . 0722 . 0725 . 0727 . 0730	. 070 . 071 . 072 . 072 . 072 . 073
2-56	NC	$\left\{\begin{array}{c}1\\2\\3\end{array}\right.$. 0808 . 0805 . 0816 . 0813 . 0816 . 0813	. 0852 . 0855 . 0860 . 0863 . 0860 . 0863	. 0736 . 0735 . 0744 . 0743 . 0744 . 0743	. 0785 . 0782 . 0801 . 0798 . 0806 . 0803	. 0841 . 0844 . 0857 . 0860 . 0860 . 0863	. 0708 . 0709 . 0724 . 0725 . 0729 . 0730	. 0708 . 0707 . 0724 . 0723 . 0729 . 0728	. 0852 . 0855 . 0860 . 0863 . 0860 . 0863	. 0852 . 0856 . 0860 . 0864 . 0860 . 0864	. 0841 . 0844 . 0857 . 0860 . 0860 . 0863	. 084 . 084 . 085 . 086 . 086
2-64	NF	$\left\{\begin{array}{cc} 1\\ 2\\ 3 \end{array}\right.$. 0813 . 0810 . 0829 . 0817 . 0820 . 0817	. 0853 . 0856 . 0860 . 0863 . 0860 . 0863	. 0752 . 0751 . 0759 . 0758 . 0759 . 0758	. 0794 . 0791 . 0808 . 0805 . 0813 . 0810	. 0840 . 0843 . 0854 . 0857 . 0859 . 0862	. 0726 . 0727 . 0740 . 0741 . 0745 . 0746	. 0726 . 0725 . 0740 . 0739 . 0745 . 0744	.0853 .0856 .0860 .0863 .0860 .0863	.0853 .0857 .0860 .0864 .0860 .0864	. 0840 . 0843 . 0854 . 0857 . 0859 . 0862	. 084 . 084 . 085 . 085 . 085
3-48	NC	$ \left\{ \begin{array}{c} 1 \\ 2 \\ 3 \end{array} \right. $. 0932 . 0929 . 0941 . 0938 . 0941 . 0938	. 0981 . 0984 . 0990 . 0993 . 0990 . 0993	. 0846 . 0845 . 0855 . 0854 . 0855 . 0854	. 0905 . 0902 . 0923 . 0920 . 0929 . 0926	. 0971 . 0974 . 0989 . 0992 . 0990 . 0993	. 0815 . 0816 . 0833 . 0834 . 0839 . 0840	. 0815 . 0814 . 0833 . 0832 . 0839 . 0838	. 0981 . 0984 . 0990 . 0993 . 0990 . 0993	. 0981 . 0985 . 0990 . 0994 . 0990 . 0994	. 0971 . 0974 . 0989 . 0992 . 0990 . 0993	. 097 . 097 . 098 . 099 . 099
3-56	NF	$ \left\{ \begin{array}{c} 1 \\ 2 \\ 3 \end{array} \right. $. 0938 . 0935 . 0946 . 0943 . 0946 . 0943	. 0982 . 0985 . 0990 . 0993 . 0990	. 0866 . 0865 . 0874 . 0873 . 0874 . 0873	. 0915 . 0912 . 0931 . 0928 . 0936 . 0933	. 0971 . 0974 . 0987 . 0990 . 0990 . 0933	. 0838 . 0839 . 0854 . 0855 . 0859 . 0860	. 0838 . 0837 . 0854 . 0853 . 0859 . 0858	. 0982 . 0985 . 0990 . 0993 . 0990	. 0982 . 0986 . 0990 . 0994 . 0990 . 0994	. 0971 . 0974 . 0987 . 0990 . 0990 . 0993	. 097 . 097 . 098 . 099 . 099
4-40	NC	$ \left\{ \begin{array}{c} 1 \\ 2 \\ 3 \end{array} \right. $. 1054 . 1051 . 1064 . 1061 . 1064 . 1061	. 1110 . 1113 . 1120 . 1123 . 1120 . 1123	. 0948 . 0947 . 0958 . 0957 . 0958 . 0957	. 1022 . 1019 . 1042 . 1039 . 1049 . 1046	.1102 .1105 .1120 .1123 .1120 .1123	. 0914 . 0915 . 0934 . 0935 . 0941 . 0942	. 0914 . 0913 . 0934 . 0933 . 0941 . 0940	.1110 .1113 .1120 .1123 .1120 .1123	.1110 .1114 .1120 .1124 .1120 .1124	.1102 .1105 .1120 .1123 .1120 .1123	. 110 . 110 . 112 . 112 . 112 . 112
4-48	NF	$ \left\{ \begin{array}{c} 1 \\ 2 \\ 3 \end{array} \right. $. 1062 . 1059 . 1071 . 1068 . 1071 . 1068	. 1111 . 1114 . 1120 . 1123 . 1120 . 1123	. 0976 . 0975 . 0985 . 0984 . 0985 . 0984	. 1035 . 1032 . 1053 . 1050 . 1059 . 1056	. 1101 . 1104 . 1119 . 1122 . 1120 . 1123	. 0945 . 0946 . 0963 . 0964 . 0969	. 0945 . 0944 . 0963 . 0962 . 0969 . 0968	.1111 .1114 .1120 .1123 .1120 .1123	. 1111 . 1115 . 1120 . 1124 . 1120 . 1124	. 1101 . 1104 . 1119 . 1122 . 1120 . 1123	. 110 . 110 . 111 . 112 . 112 . 112
5-40	NC	$ \left\{ \begin{array}{c} 1 \\ 2 \\ 3 \end{array} \right. $. 1184 . 1181 . 1194 . 1191 . 1194 . 1191	. 1240 . 1243 . 1250 . 1253 . 1250 . 1253	. 1078 . 1077 . 1088 . 1087 . 1088 . 1087	. 1152 . 1149 . 1172 . 1169 . 1179 . 1176	. 1232 . 1235 . 1250 . 1253 . 1250 . 1253	. 1044 . 1045 . 1064 . 1065 . 1071 . 1072	. 1044 . 1043 . 1064 . 1063 . 1071 . 1070	. 1240 . 1243 . 1250 . 1253 . 1250 . 1253	. 1240 . 1244 . 1250 . 1254 . 1250 . 1254	. 1232 . 1235 . 1250 . 1253 . 1250 . 1253	. 123 . 123 . 125 . 125 . 125 . 125
5–44	NF	$ \left\{ \begin{array}{c} 1 \\ 2 \\ 3 \end{array} \right. $. 1189 . 1186 . 1198 . 1195 . 1198 . 1195	. 1241 . 1244 . 1250 . 1253 . 1250 . 1253	. 1093 . 1092 . 1102 . 1101 . 1102 . 1101	. 1159 . 1156 . 1177 . 1174 . 1184 . 1181	. 1232 . 1235 . 1250 . 1253 . 1250 . 1253	. 1061 . 1062 . 1079 . 1080 . 1086 . 1087	. 1061 . 1060 . 1079 . 1078 . 1086 . 1085	. 1241 . 1244 . 1250 . 1253 . 1250 . 1253	. 1241 . 1245 . 1250 . 1254 . 1250 . 1254	. 1232 . 1235 . 1250 . 1253 . 1250 . 1253	. 123 . 123 . 125 . 125 . 125 . 125
6–32	NC	$ \left\{ \begin{array}{c} 1\\2\\3 \end{array}\right. $. 1304 . 1301 . 1315 . 1312 . 1315 . 1312	. 1369 . 1372 . 1380 . 1383 . 1380 . 1383	. 1166 . 1165 . 1177 . 1176 . 1177 . 1176	. 1263 . 1260 . 1285 . 1282 . 1293 . 1290	. 1362 . 1365 . 1380 . 1383 . 1380 . 1383	. 1128 . 1129 . 1150 . 1151 . 1158 . 1159	. 1128 . 1127 . 1150 . 1149 . 1158 . 1157	. 1369 . 1372 . 1380 . 1383 . 1380 . 1383	. 1369 . 1374 . 1380 . 1385 . 1380 . 1385	. 1362 . 1365 . 1380 . 1383 . 1380 . 1383	. 136 . 136 . 138 . 138 . 138 . 138

Table 1.17.—Setting plug gages, American National screw threads—Continued

				•	W trun	eated setting	plugs			3	Basic-crest s	etting plugs	3
Nominal size and	Series		P	lug for "G	o"		Plug for	"Not go"			Major d	liameter	
threads per inch	designa- tion	Class	Major di	iameter	Pitch	Major di	ameter	Pitch d	iameter	Ge	0 1	Not	go 2
			Trun- cated	Full	diameter	Trun- cated	Full	Plus tol, gage	Minus tol. gage	W toler- ance	X toler- anee	W toler- ance	X toler- ance
1	2	3	4	5	6	7	8	9	10	11A	11B	12A	12B
6-40	NF	$\left\{\begin{array}{c}1\\2\\3\end{array}\right.$	in. 0. 1314 . 1311 . 1324 . 1321 . 1324 . 1321	in. 0. 1370 . 1373 . 1380 . 1383 . 1380 . 1383	in. 0. 1208 1. 1207 1. 1218 1. 1217 1. 1218 1. 1217	in. 0. 1282 . 1279 . 1302 . 1299 . 1309 . 1306	in. 0. 1362 . 1365 . 1380 . 1383 . 1380 . 1383	in. 0. 1174 . 1175 . 1194 . 1195 . 1201 . 1202	in. 0. 1174 . 1173 . 1194 . 1193 . 1201 . 1200	in. 0. 1370 . 1373 . 1380 . 1383 . 1380 . 1383	in. 0. 1370 . 1374 . 1380 . 1384 . 1380 . 1384	in. 0.1362 .1365 .1380 .1383 .1380 .1383	in. 0.1362 .1366 .1380 .1384 .1380
8-32	NC	$\left\{\begin{array}{c}1\\2\\3\end{array}\right.$. 1564 . 1561 . 1575 . 1572 . 1575 . 1572	. 1629 . 1632 . 1640 . 1643 . 1640 . 1643	. 1426 . 1425 . 1437 . 1436 . 1437 . 1436	. 1523 . 1520 . 1545 . 1542 . 1553 . 1550	. 1622 . 1625 . 1640 . 1643 . 1640 . 1643	. 1388 . 1389 . 1410 . 1411 . 1418 . 1419	. 1388 . 1387 . 1410 . 1409 . 1418 . 1417	. 1629 . 1632 . 1640 . 1643 . 1640 . 1643	. 1629 . 1634 . 1640 . 1645 . 1640 . 1645	. 1622 . 1625 . 1640 . 1643 . 1640 . 1643	. 1622 . 1627 . 1640 . 1645 . 1640 . 1645
8-36	NF	$\left\{\begin{array}{c}1\\2\\3\end{array}\right.$. 1569 . 1566 . 1580 . 1577 . 1580 . 1577	. 1629 . 1632 . 1640 . 1643 . 1640 . 1643	. 1449 . 1448 . 1460 . 1459 . 1460 . 1459	. 1533 . 1530 . 1555 . 1552 . 1562 . 1559	. 1621 . 1624 . 1640 . 1643 . 1640 . 1643	. 1413 . 1414 . 1435 . 1436 . 1442 . 1443	. 1413 . 1412 . 1435 . 1434 . 1442 . 1441	. 1629 . 1632 . 1640 . 1643 . 1640 . 1643	. 1629 . 1633 . 1640 . 1644 . 1640 . 1644	. 1621 . 1624 . 1640 . 1643 . 1640 . 1643	. 1621 . 1625 . 1640 . 1644 . 1640 . 1644
10-24	NC	$\left\{\begin{array}{c}1\\2\\3\end{array}\right.$. 1808 . 1803 . 1821 . 1816 . 1821 . 1816	. 1887 . 1892 . 1900 . 1905 . 1900	. 1616 . 1615 . 1629 . 1628 . 1629 . 1628	. 1750 . 1745 . 1776 . 1771 . 1785 . 1780	. 1882 . 1887 . 1900 . 1905 . 1900 . 1905	. 1570 . 1571 . 1596 . 1597 . 1605 . 1606	. 1570 . 1569 . 1596 . 1595 . 1605 . 1604	. 1887 . 1892 . 1900 . 1905 . 1900 . 1905	. 1887 . 1892 . 1900 . 1905 . 1900 . 1905	. 1882 . 1887 . 1900 . 1905 . 1900 . 1905	. 1882 . 1887 . 1900 . 1905 . 1900
10-32	NF	$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. 1824 . 1831 . 1835 . 1832 . 1835 . 1832	. 1889 . 1892 . 1900 . 1903 . 1900 . 1903	. 1686 . 1685 . 1697 . 1696 . 1697 . 1696	. 1783 . 1780 . 1805 . 1802 . 1813 . 1810	. 1882 . 1885 . 1900 . 1903 . 1900 . 1903	. 1648 . 1649 . 1670 . 1671 . 1678 . 1679	. 1648 . 1647 . 1670 . 1669 . 1678 . 1677	. 1889 . 1892 . 1900 . 1903 . 1900 . 1903	. 1889 . 1894 . 1900 . 1905 . 1900	. 1882 . 1885 . 1900 . 1903 . 1900 . 1903	. 1882 . 1887 . 1900 . 1905 . 1906
12-24	NG	$\left\{\begin{array}{c}1\\2\\3\end{array}\right.$. 2068 . 2063 . 2081 . 2076 . 2081 . 2076	. 2147 . 2152 . 2160 . 2165 . 2160 . 2165	. 1876 . 1875 . 1889 . 1888 . 1889 . 1888	. 2010 . 2005 . 2036 . 2031 . 2045 . 2040	. 2142 . 2147 . 2160 . 2165 . 2160 . 2165	. 1830 . 1831 . 1856 . 1857 . 1865 . 1866	. 1830 . 1829 . 1856 . 1855 . 1865 . 1864	. 2147 . 2152 . 2160 . 2165 . 2160 . 2165	. 2147 . 2152 . 2160 . 2165 . 2160 . 2165	. 2142 . 2147 . 2160 . 2165 . 2160 . 2165	. 2142 . 2147 . 2166 . 2165 . 2166 . 2165
12-28	NF	1 2 3	. 2077 . 2072 . 2089 . 2084 . 2089 . 2084	. 2148 . 2153 . 2160 . 2165 . 2160 . 2165	. 1916 . 1915 . 1928 . 1927 . 1928 . 1927	. 2028 . 2023 . 2052 . 2047 . 2061 . 2056	. 2141 . 2146 . 2160 . 2165 . 2160 . 2165	. 1873 . 1874 . 1897 . 1898 . 1906 . 1907	. 1873 . 1872 . 1897 . 1896 . 1906 . 1905	. 2148 . 2153 . 2160 . 2165 . 2160 . 2165	. 2148 . 2153 . 2160 . 2165 . 2160 . 2165	. 2141 . 2146 . 2160 . 2165 . 2160 . 2165	. 2141 . 2146 . 2166 . 2167 . 2166 . 2168
12-32	NEF	$ \begin{cases} 2 \\ 3 \end{cases} $. 2095 . 2092 . 2095 . 2092	. 2160 . 2163 . 2160 . 2163	. 1957 . 1956 . 1957 . 1956	. 2061 . 2058 . 2070 . 2067	. 2160 . 2163 . 2160 . 2163	. 1926 . 1927 . 1935 . 1936	. 1926 . 1925 . 1935 . 1934	. 2160 . 2163 . 2160 . 2163	. 2160 . 2165 . 2160 . 2165	. 2160 . 2163 . 2160 . 2163	. 2160 . 2167 . 2166 . 2165
1 4-20	NC	$ \left\{ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array} \right. $. 2395 . 2390 . 2410 . 2405 . 2410 . 2405 . 2413 . 2408	. 2485 . 2490 . 2500 . 2505 . 2500 . 2505 . 2503 . 2508	. 2160 . 2159 . 2175 . 2174 . 2175 . 2174 . 2178 . 2177	. 2326 . 2321 . 2356 . 2351 . 2366 . 2361 . 2382 . 2377	. 2484 . 2489 . 2500 . 2505 . 2500 . 2505 . 2503 . 2508	. 2109 . 2110 . 2139 . 2140 . 2149 . 2150 . 2165 . 2166	. 2109 . 2108 . 2139 . 2138 . 2149 . 2148 . 2165 . 2164	. 2485 . 2490 . 2500 . 2505 . 2500 . 2505 . 2500 . 2505	. 2485 . 2490 . 2500 . 2505 . 2500 . 2505 . 2500 . 2505	. 2484 . 2489 . 2500 . 2505 . 2500 . 2505 . 2500 . 2505	. 2484 . 2485 . 2500 . 2507 . 2506 . 2506 . 2500
1/4-28	NF	$ \left\{ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array} \right. $. 2417 . 2412 . 2429 . 2424 . 2429 . 2424 . 2431 . 2426	. 2488 . 2493 . 2500 . 2505 . 2500 . 2505 . 2502 . 2507	. 2256 . 2255 . 2268 . 2267 . 2268 . 2267 . 2270 . 2269	. 2368 . 2363 . 2392 . 2387 . 2401 . 2396 . 2414 . 2409	. 2481 - 2486 - 2500 - 2505 - 2500 - 2505 - 2502 - 2507	. 2213 . 2214 . 2237 . 2238 . 2246 . 2247 . 2259 . 2260	. 2213 . 2212 . 2237 . 2236 . 2246 . 2245 . 2259 . 2258	. 2488 . 2493 . 2500 . 2505 . 2500 . 2505 . 2500 . 2505	. 2488 . 2493 . 2500 . 2505 . 2500 . 2505 . 2500 . 2505	. 2481 . 2486 . 2500 . 2505 . 2500 . 2505 . 2500 . 2505	. 248) . 2486 . 2506 . 2508 . 2508 . 2508 . 2508
1/4-32	NEF		. 2435 . 2432 . 2435 . 2432	. 2500 . 2503 . 2500 . 2503	. 2297 . 2296 . 2297 . 2296	. 2400 . 2397 . 2410 . 2407	. 2499 . 2502 . 2500 . 2503	. 2265 . 2266 . 2275 . 2276	. 2265 . 2264 . 2275 . 2274	. 2500 . 2503 . 2500 . 2503	. 2500 . 2505 . 2506 . 2505	. 2499 . 2502 . 2500 . 2503	. 2499 . 2504 . 2506 . 2505
5∕16-18	NC	$ \left\{ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array} \right. $. 3012 . 3007 . 3028 . 3023 . 3028 . 3023 . 3031 . 3023	. 3109 . 3114 . 3125 . 3130 . 3125 . 3130 . 3128 . 3133	. 2748 . 2747 . 2764 . 2763 . 2764 . 2763 . 2767 . 2766	. 2932 . 2927 . 2964 . 2959 . 2975 . 2970 . 2993 . 2988	. 3108 . 3113 . 3125 . 3130 . 3125 . 3130 . 3128 . 3133	. 2691 . 2692 . 2723 . 2724 . 2734 . 2735 . 2752 . 2753	. 2691 . 2690 . 2723 . 2722 . 2734 . 2733 . 2752 . 2751	. 3109 . 3114 . 3125 . 3130 . 3125 . 3130 . 3125 . 3130	. 3109 . 3114 . 3125 . 3130 . 3125 . 3130 . 3125 . 3130	. 3108 . 3113 . 3125 . 3130 . 3125 . 3130 . 3125 . 3130	. 3108 . 3113 . 3125 . 3130 . 3125 . 3130 . 3125 . 3130

Table 1.17.—Setting plug gages, American National screw threads—Continued

					W trun	eated setting	plugs			1	Basic-crest s	etting plugs	3
Nominal size and	Series		Pl	ug for "Go	,,		Plug for '	'Not go''			Major d	iameter	
threads per inch	designa- tion	Class	Major di	ameter	Piteh	Major di	ameter	Piteh d	iameter	Ge	0 1	Not	go ²
			Trun- cated	Full	diameter	Trun- cated	Full	Plus tol.	Minus tol. gage	W toler- anee	X toler- ance	W toler- anee	X toler- anee
1	2	3	4	5	6	7	8	9	10	11 A	11B	12A	12B
5/16-24	NF	1 2 3 4	in. 0.3033 .3028 .3046 .3041 .3046 .3041 .3049 .3044	in. 0.3112 .3117 .3125 .3130 .3125 .3130 .3128 .3133	in. 0. 2841 . 2840 . 2854 . 2853 . 2854 . 2853 . 2857 . 2856	$\begin{array}{c} in.\\ 0.2975\\ .2970\\ .3001\\ .2996\\ .3010\\ .3005\\ .3025\\ .3020\\ \end{array}$	in. 0.3108 .3113 .3125 .3130 .3125 .3130 .3128 .3138	in. 0. 2795 . 2796 . 2821 . 2822 . 2830 . 2831 . 2845 . 2846	in. 0. 2795 . 2794 . 2821 . 2820 . 2830 . 2829 . 2845 . 2844	$\begin{array}{c} in.\\ 0.3112\\ .3117\\ .3125\\ .3130\\ .3125\\ .3130\\ .3125\\ .3130\\ .3125\\ .3130\\ \end{array}$	in. 0.3112 .3117 .3125 .3130 .3125 .3130 .3125 .3130	in. 0.3108 .3113 .3125 .3130 .3125 .3130 .3125 .3130	in. 0.3108 .3113 .3125 .3130 .3125 .3130 .3125 .3130
516-32	NEF	$ \begin{cases} 2 \\ 3 \end{cases} $. 3060 . 3057 . 3060 . 3057	. 3125 . 3128 . 3125 . 3128	. 2922 . 2921 . 2922 . 2921	. 3024 . 3021 . 3034 . 3031	. 3123 . 3126 . 3125 . 3128	. 2889 . 2890 . 2899 . 2900	. 2889 . 2888 . 2899 . 2898	. 3125 . 3128 . 3125 . 3128	. 3125 . 3130 . 3125 . 3130	.3123 .3126 .3125 .3128	.3125 .3130 .3125 .3130
3 % -16	NC	\begin{cases} 1 & 2 & \\ 3 & 4 & \end{cases}	. 3627 . 3621 . 3645 . 3639 . 3645 . 3639 . 3649 . 3643	. 3732 . 3738 . 3750 . 3756 . 3750 . 3756 . 3754 . 3760	. 3326 . 3325 . 3344 . 3343 . 3344 . 3343 . 3348	. 3534 . 3528 . 3570 . 3564 . 3583 . 3577 . 3603 . 3597	. 3732 . 3738 . 3750 . 3756 . 3756 . 3754 . 3760	. 3263 . 3264 . 3299 . 3300 . 3312 . 3313 . 3332 . 3333	. 3263 . 3262 . 3299 . 3298 . 3312 . 3311 . 3332 . 3331	. 3732 . 3738 . 3750 . 3756 . 3756 . 3756 . 3756	. 3732 . 3738 . 3750 . 3756 . 3756 . 3756 . 3756	. 3732 . 3738 . 3750 . 3756 . 3756 . 3756 . 3756	.3732 .3738 .3750 .3756 .3756 .3756 .3756
3⁄8-24	NF	1 2 3 4	. 3658 . 3653 . 3671 . 3666 . 3671 . 3666 . 3674 . 3669	. 3737 . 3742 . 3750 . 3755 . 3750 . 3755 . 3753 . 3758	. 3466 . 3465 . 3479 . 3478 . 3479 . 3478 . 3482 . 3481	. 3600 . 3595 . 3626 . 3621 . 3635 . 3630 . 3650 . 3645	. 3732 . 3737 . 3750 . 3755 . 3750 . 3755 . 3753 . 3758	. 3420 . 3421 . 3446 . 3447 . 3455 . 3456 . 3470	. 3420 . 3419 . 3446 . 3445 . 3455 . 3454 . 3470 . 3469	. 3737 . 3742 . 3750 . 3755 . 3750 . 3755 . 3750 . 3755	. 3737 . 3742 . 3750 . 3755 . 3750 . 3755 . 3750 . 3755	. 3732 . 3737 . 3750 . 3755 . 3750 . 3755 . 3750 . 3755	. 3732 . 3737 . 3750 . 3755 . 3750 . 3755 . 3750 . 3755
³ /8-32	NEF		. 3685 . 3682 . 3685 . 3682	. 3750 . 3753 . 3750 . 3753	. 3547 . 3546 . 3547 . 3546	. 3648 . 3645 . 3658 . 3655	. 3747 . 3750 . 3750 . 3753	. 3513 . 3514 . 3523 . 3524	. 3513 . 3512 . 3523 . 3522	. 3750 . 3753 . 3750 . 3753	. 3750 . 3755 . 3750 . 3755	. 3747 . 3750 . 3750 . 3753	.3747 .3752 .3750 .3755

Table 1.17.—Setting plug gages, American National screw threads—Continued

					W tru	ncated setting p	plugs			Basic-crest s	etting plugs
Nominal	Camina dan		Pl	ug for "Go"			Plug for '	'Not go''		Major d	iameter
size and threads per inch	Series des- ignation	Class	Major dia	meter	Pitch di-	Major dia	ameter	Pitch d	iameter	Go t	Not go 2
			Truncated	Full	ameter	Truncated	Full	Plus tol.	Minus tol.	W and X tolerances	W and X tolerances
1	2	3	4	5	6	7	8	9	10	11	12
% 6−14	NC	$ \left\{ \begin{array}{c} 1\\2\\3\\4 \end{array}\right. $	in. 0. 4239 . 4233 . 4260 . 4254 . 4260 . 4254 . 4264 . 4268	in. 0. 4354 4360 4375 4381 4379 4385	in. 0. 38900 38885 39110 39095 39110 39095 39150 39135	in. 0. 4129 . 4123 . 4171 . 4165 . 4184 . 4178 . 4206 . 4200	in. 0. 43*4 4360 4375 4381 4375 4381 4379 4385	in, 0. 38200 38215 . 38620 . 38635 . 38770 . 38765 . 38970 . 38985	$\begin{array}{c} in.\\ 0.\ 38200\\ .\ 38185\\ .\ 38620\\ .\ 38605\\ .\ 387\ 0\\ .\ 38735\\ .\ 38970\\ .\ 38955 \end{array}$	in. 0. 43*4 . 4360 . 4375 . 4381 . 4375 . 4381	in. 0.4354 .4360 .4375 .4381 .4375 .4381 .4375 .4381
% 6–20	NF	$ \left\{ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array} \right. $. 4270 . 4265 . 4285 . 4280 . 4285 . 4280 . 4288 . 4288	. 4360 . 4365 . 4375 . 4380 . 4375 . 4380 . 4378 . 4383	. 4035 . 4034 . 4050 . 4049 . 4070 . 4049 . 4073 . 4052	. 4200 . 4195 . 4231 . 4226 . 4241 . 4236 . 42 ⁵ 6 . 4251	. 43 ⁻⁹ . 4364 . 4375 . 4380 . 4375 . 4380 . 4378 . 4383	. 3984 . 3985 . 4014 . 4015 . 4024 . 4025 . 4040 . 4041	. 3984 . 3983 . 4014 . 4013 . 4024 . 4023 . 4040 . 4039	. 4360 . 4365 . 4375 . 4380 . 4375 . 4380 . 4375 . 4380	. 4359 . 4364 . 4375 . 4380 . 4375 . 4380 . 4375 . 4380
¾ 6−28	NEF	$\left\{egin{array}{c} 2 \ 3 \end{array} ight.$. 4304 . 4299 . 4304 . 4299	. 4375 . 4380 . 4375 . 4380	. 4143 . 4142 . 4143 . 4142	. 4262 . 4257 . 4273 . 4268	. 4375 . 4380 . 4375 . 4380	. 4107 . 4108 . 4118 . 4119	. 4107 . 4106 . 4118 . 4117	. 4375 . 4380 . 4375 . 4380	. 4375 . 4380 . 4375 . 4380
1/2-12	N	$\left\{\begin{array}{cc} 2\\ 3 \end{array}\right.$. 4871 . 4865 . 4871 . 4865	. 5000 . 5006 . 5000 . 5006	. 44590 . 44575 . 44590 . 44575	. 4764 . 47*8 . 4780 . 4774	. 5000 . 5006 . 5000 . 5006	. 44030 . 44045 . 44190 . 44205	. 44030 . 44015 . 44190 . 44175	. 5000 . 5006 . 5000 . 5006	. 5000 . 5006 . 5006
½ -13	NC	$ \begin{cases} 1 \\ 2 \\ 3 \\ 4 \end{cases} $. 4856 . 4850 . 4878 . 4872 . 4878 . 4872 . 4882 . 4876	. 4978 . 4984 . 5000 . 5006 . 5006 . 5004 . 5010	. 44780 . 44765 . 45000 . 44985 . 45000 . 44985 . 45040 . 45025	. 4737 . 4731 . 4781 . 4775 . 4796 . 4790 . 4818 . 4812	. 4978 . 4984 . 5000 . 5006 . 5006 . 5004 . 5010	. 44040 . 44055 . 44480 . 44495 . 44630 . 44645 . 44850 . 44865	. 44040 . 44025 . 44480 . 44465 . 44630 . 44615 . 44850	. 4978 . 4984 . £000 . 5006 . 5000 . 5006 . 5000	. 4978 - 4984 - 5000 - 5006 - 5006 - 5006 - 5006
1/2-20	NF	1 2 3 4	. 4895 . 4890 . 4910 . 4905 . 4910 . 4905 . 4913 . 4908	. 4985 . 4990 . 5000 . 5005 . 5005 . 5003 . 5008	. 4660 . 4659 . 4675 . 4674 . 4675 . 4674 . 4678	. 4826 . 4821 . 4856 . 4851 . 4866 . 4861 . 4882 . 4877	. 4984 . 4989 . 5000 . 5005 . 5000 . 5005 . 5003	. 4609 . 4610 . 4639 . 4640 . 4649 . 4650 . 4665	. 4609 . 4608 . 4639 . 4638 . 4649 . 4648 . 4665	. 4985 . 4990 . 5000 . 5005 . 5006 . 5005 . 5000	. 4984 . 4985 . 5000 . 5005 . 5000 . 5000 . 5000
1/2-28	NEF	$ \begin{cases} $. 4929 . 4924 . 4929 . 4924	. 5000 . 5005 . 5000 . 5005	. 4768 . 4767 . 4768 . 4767	. 4886 . 4881 . 4897 . 4892	. 4999 . 5004 . 5000 . 5005	. 4731 . 4732 . 4742 . 4743	. 4731 . 4730 . 4742 . 4741	. 5000 . 5005 . 5000 . 5005	. 4999 . 5004 . 5000 . 5005
%16-12	NC	$ \left\{ \begin{array}{c} 1\\ 2\\ 3\\ 4 \end{array}\right. $. 5472 . 5466 . 5496 . 5490 . 5496 . 5490 . 5501 . 5495	. 5601 . 5607 . 5625 . 5631 . 5625 . 5631 . 5630 . 5636	. 5060 . 5058 . 5084 . 5082 . 5084 . 5082 . 5089	. 5342 . 5336 . 5389 . 5383 . 5405 . 5399 . 5430 . 5424	. 5601 . 5607 . 5625 . 5631 . 5630 . 5636	. 4981 . 4983 . 5028 . 5030 . 5044 . 5046 . 5069	. 4981 . 4979 . 5028 . 5026 . 5044 . 5042 . 5069 . 5067	. 5601 . 5607 . 5625 . 5631 . 5625 . 5631 . 5625	. 5601 . 5607 . 5625 . 5631 . 5627 . 5631 . 5631
% 6-18	NF	$ \left\{ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array} \right. $. 5512 . 5507 . 5528 . 5523 . 5528 . 5528 . 5531 . 5536	. 5609 . 5614 . 5625 . 5630 . 5625 . 5630 . 5628 . 5633	. 52480 . 52465 . 52640 . 52625 . 52640 . 52625 . 52670 . 52655	. 5432 . 5427 . 5464 . 5459 . 5475 . 5470 . 5493 . 5488	. 5608 . 5613 . 5625 . 5630 . 5625 . 5630 . 5628 . 5633	. 51910 . 51925 . 52230 . 52245 . 52340 . 52355 . 52520 . 52535	. 51910 .51895 .52230 .52215 .52340 .52325 .52520 .52505	. 5609 . 5614 . 5625 . 5630 . 5625 . 5630 . 5625 . 5630	. 5608 . 5513 . 5525 . 5630 . 5625 . 5630 . 5630
% 6-24	NEF		. 5546 . 5541 . 5546 . 5541	. 5625 . 5630 . 5625 . 5630	. 53540 . 53525 . 53540 . 53525	. 5494 . 5489 . 5506 . 5501	. 5625 . 5630 . 5625 . 5630	. 53140 . 53155 . 53260 . 53275	. 53140 . 53125 . 53260 . 53245	. 5625 . 5630 . 5625 . 5630	. 5625 . 5630 . 5625 . 5630
5⁄8-11	NO	$ \left\{ \begin{array}{c} 1\\2\\3\\4 \end{array}\right. $. 6087 . 6081 . 6113 . 6107 . 6113 . 6107 . 6118 . 6112	. 6224 . 6230 . 6250 . 6256 . 6250 . 6256 . 6255 . 6261	. 5634 . 5632 . 5660 . 5658 . 5660 . 5658 . 5665	. 5943 . 5937 . 5995 . 5989 . 6012 . 6006 . 6038 . 6032	. 6224 . 6230 . 6250 . 6256 . 6256 . 6256 . 6255 . 6261	. 5549 . 5551 . 5601 . 5603 . 5618 . 5620 . 5644	. 5549 . 5547 . 5601 . 5599 . 5618 . 5616 . 5644	. 6224 . 6230 . 6250 . 6256 . 6250 . 6256 . 6250 . 6256	. 6224 . 6236 . 6256 . 6256 . 6256 . 6256 . 6256

 ${\bf Table~1.17.} {\bf -Setting~plug~gages,~American~National~screw~threads} {\bf -Continued}$

					W tru	ncated setting	plugs			Basic-crest s	setting plugs
Nominal size and	Serics des-		Pl	lug for "Go"			Plug for '	'Not go''		Major d	liameter
threads per inch	ignation	Class	Major dia	ımcter	Pitch di-	Major di	ameter	Pitch d	iameter	Go 1	Not go 2
			Truncated	Full	ameter	Truncated	Full	Plus tol.	Minus tol.	W and X tolerances	W and X tolerances
1	2	3	4	5	6	7	8	9	10	11	12
5%-12	N	$ \begin{cases} 2\\ 3 \end{cases}$	in. 0. 6121 . 6115 . 6121 . 6115	in. 0. 6250 . 6256 . 6250 . 6256	in. 0.5709 .5707 .5709 .5707	in. 0, 6014 . 6008 . 6030 . 6024	in. 0. 6250 . 6256 . 6250 . 6256	in. 0.5653 .5655 .5669 .5671	in. 0. 5653 . 5651 . 5669 . 5667	in. 0. 6250 . 6256 . 6250 . 6256	in, 0, 6256 , 6256 , 6256
5%-18	NF	1 2 3 4	. 6137 . 6132 . 6153 . 6148 . 6156 . 6156	. 6234 . 6239 . 6250 . 6255 . 6250 . 6255 . 6253 . 6258	. 58730 . 58715 . 58890 . 58875 . 58890 . 58875 . 58920 . 58905	. 6057 . 6052 . 6089 . 6084 . 6100 . 6095 . 6118	. 6233 . 6238 . 6250 . 6255 . 6250 . 6255 . 6253 . 6258	. 58160 . 58175 . 58480 . 58495 . 58590 . 58605 . 58770 . 58785	. 58160 . 58145 . 58480 . 58465 . 58590 . 58575 . 58770 . 58755	. 6234 . 6239 . 6250 . 6255 . 6250 . 6255 . 6250 . 6255	. 6233 . 6238 . 6256 . 6257 . 6256 . 6257 . 6256
5/8-24	NEF	$ \begin{cases} 2 \\ 3 \end{cases} $. 6171 . 6166 . 6171 . 6166	. 6250 . 6255 . 6250 . 6255	. 59790 . 59775 . 59790 . 59775	. 6118 . 6113 . 6130 . 6125	. 6250 . 6255 . 6250 . 6255	. 59380 . 59395 . 59500 . 59515	, 59380 , 59365 , 59500 , 59485	. 6250 . 6255 . 6250 . 6255	. 6250 . 6250 . 6250 . 6250
11/16-12	N	$\left\{\begin{array}{cc}2\\3\end{array}\right.$. 6746 . 6740 . 6746 . 6740	. 6875 . 6881 . 6875 . 6881	. 6334 . 6332 . 6334 . 6332	. 6639 . 6633 . 6655 . 6649	. 6875 . 6881 . 6875 . 6881	. 6278 . 6280 . 6294 . 6296	. 6278 . 6276 . 6294 . 6292	. 6875 . 6881 . 6875 . 6881	. 6873 . 6883 . 6873 . 6883
11/16-24	NEF	$ \begin{cases} 2 \\ 3 \end{cases} $. 6796 . 6791 . 6796 . 6791	. 6875 . 6880 . 6875 . 6880	. 66040 . 66025 . 66040 . 66025	. 6743 . 6738 . 6755 . 6750	. 6875 . 6880 . 6875 . 6880	. 65630 . 65645 . 65750 . 65765	. 65630 . 65615 . 65750 . 65735	. 6875 . 6880 . 6875 . 6880	. 687: . 688: . 687: . 688:
34-10	NC	1 2 3 4	. 7326 . 7320 . 7354 . 7348 . 7354 . 7360 . 7354	. 7472 . 7478 . 7500 . 7506 . 7506 . 7506 . 7512	. 6822 . 6820 . 6850 . 6848 . 6850 . 6848 . 6856 . 6854	. 7163 . 7157 . 7219 . 7213 . 7238 . 7232 . 7266	. 7472 . 7478 . 7500 . 7506 . 7506 . 7506 . 7506 . 7512	. 6730 . 6732 . 6786 . 6788 . 6805 . 6807 . 6833	. 6730 . 6728 . 6786 . 6784 . 6805 . 6803 . 6833	.7472 .7478 .7500 .7506 .7500 .7506 .7500 .7506	. 747: . 747: . 7506 . 7506 . 7506 . 7506 . 7506
34-12	N	$\left\{\begin{array}{cc} 2\\ 3 \end{array}\right$. 7371 . 7365 . 7371 . 7365	. 7500 . 7506 . 7500 . 7506	. 6959 . 6957 . 6959 . 6957	. 7264 . 7258 . 7280 . 7274	. 7500 . 7506 . 7500 . 7506	. 6903 . 6905 . 6919 . 6921	. 6903 . 6901 . 6919 . 6917	. 7500 . 7506 . 7500 . 7506	. 750 . 750 . 750 . 750
34-16	NF	\begin{cases} 1 & 2 & \\ 3 & 4 & \end{cases}	. 7377 . 7371 . 7395 . 7389 . 7395 . 7389 . 7399 . 7399	.7482 .7488 .7500 .7506 .7500 .7506 .7504	. 7076 . 7074 . 7094 . 7092 . 7094 . 7092 . 7098 . 7096	. 7284 . 7278 . 7320 . 7314 . 7333 . 7327 . 7353 . 7347	. 7482 . 7488 . 7500 . 7506 . 7500 . 7506 . 7504 . 7510	.7013 .7015 .7049 .7051 .7062 .7064 .7082 .7084	. 7013 . 7011 . 7049 . 7047 . 7062 . 7060 . 7082 . 7080	. 7482 . 7488 7500 7506 7500 7506 . 7500 . 7506	. 748: . 748: . 7500 . 7500 . 7500 . 7500 . 7500
3/4-20	NEF	$\left\{\begin{array}{cc}2\\3\end{array}\right.$. 7410 . 7405 . 7410 . 7405	. 7500 . 7505 . 7500 . 7505	.71750 .71735 .71750 .71735	. 7346 . 7341 . 7360 . 7355	. 7500 . 7505 . 7500 . 7505	.71290 .71305 .71430 .71445	. 71290 . 71275 . 71430 . 71415	. 7500 . 7505 . 7500 . 7505	. 750 . 750 . 750 . 750
13/16-12	N	$\left\{\begin{array}{cc} 2\\ 3 \end{array}\right.$. 7996 . 7990 . 7996 . 7990	. 8125 . 8131 . 8125 . 8131	. 7584 . 7582 . 7584 . 7582	. 7889 . 7883 . 7905 . 7899	. 8125 . 8131 . 8125 . 8131	. 7528 . 7530 . 7544 . 7546	. 7528 . 7526 . 7544 . 7542	. 8125 . 8131 . 8125 . 8131	. 812 . 813 . 812 . 813
13/16-16	N	$\left\{\begin{array}{cc} 2\\ 3 \end{array}\right.$. 8020 . 8014 . 8020 . 8014	. 8125 . 8131 . 8125 . 8131	. 7719 . 7717 . 7719 . 7717	. 7939 . 7933 . 7955 . 7949	. 8125 . 8131 . 8125 . 8131	. 7668 . 7670 . 7684 . 7686	. 7668 . 7666 . 7684 . 7682	, 8125 , 8131 , 8125 , 8131	. 812 . 813 . 812 . 813
13/16-20	NEF	$ \begin{cases} 2 \\ 3 \end{cases} $. 8035 . 8030 . 8035 . 8030	. 8125 . 8130 . 8125 . 8130	. 78000 . 77985 . 78000 . 77985	. 7971 . 7966 . 7985 . 7980	. 8125 . 8130 . 8125 . 8130	. 77540 • 77555 . 77680 . 77695	. 77540 . 77525 . 77680 . 77665	. 8125 . 8130 . 8125 . 8130	. 812: . 8130 . 812: . 8130
7/8-9	NC	$ \left\{ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array} \right. $. 8561 . 8554 . 8592 . 8585 . 8592 . 8585 . 8598	. 8719 . 8726 . 8750 . 8757 . 8750 . 8757 . 8756 . 8763	. 7997 . 7995 . 8028 . 8026 . 8028 . 8026 . 8034 . 8032	. 8378 . 8371 . 8439 . 8432 . 8460 . 8453 . 8491	.8719 .8726 .8750 .8757 .8750 .8757 .8756	. 7897 . 7899 . 7958 . 7960 . 7979 . 7981 . 8010 . 8012	. 7897 . 7895 . 7958 . 7956 . 7979 . 7977 . 8010 . 8008	. 8719 . 8726 . 8750 . 8757 . 8750 . 8757 . 8750 . 8757	. 8719 . 8726 . 8750 . 8755 . 8757 . 8757 . 8750

Table 1.17.—Setting plug gages, American National screw threads—Continued

					W tru	ncated setting p	olugs		- 0	Basic-crest s	etting plugs
Nominal size and	Series des-		P	lug for "Go"			Plug for "	'Not go''		Major d	iameter
threads per inch	ignation	Class	Major dia	nmeter	Pitch di-	Major dia	ameter	Pitch d	iameter	Go 1	Not go ²
			Truncated	Full	ameter	Truncated	Full	Plus tol.	Minus tol.	W and X tolerances	W and X tolerances
1	2	3	4	5	6	7	8	9	10	11	12
7/8-12	N		in. 0.8621 .8615 .8621 .8615	in. 0.8750 .8756 .8750 .8756	in. 0. 8209 . 8207 . 8209 . 8207	in. 0.8514 .8508 .8530 .8524	in. 0. 8750 . 8756 . 8750 . 8756	in. 0.8153 .8155 .8169 .8171	in_* 0. 8153 . 8151 . 8169 . 8167	in. 0. 8750 . 8756 . 8750 . 8756	in. 0, 8750 , 8750 , 8750 , 8750
7/8-14	NF	$ \left\{ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array} \right. $. 8614 . 8608 . 8635 . 8629 . 8635 . 8629 . 8639 . 8639	. 8729 . 8735 . 8750 . 8756 . 8750 . 8756 . 8754 . 8760	. 8265 . 8263 . 8286 . 8284 . 8284 . 8290 . 8288	. 8504 . 8498 . 8546 . 8540 . 8559 . 8553 . 8581 . 8575	. 8729 . 8735 . 8750 . 8756 . 8750 . 8756 . 8754 . 8760	. 8195 . 8197 . 8237 . 8229 . 8250 . 8252 . 8272 . 8274	. 8195 . 8193 . 8237 . 8235 . 8256 . 8248 . 8272 . 8270	. \$729 . 8735 . 8750 . 8756 . 8756 . 8750 . 8750 . 8756	. 8729 . 8739 . 8756 . 8756 . 8756 . 8756 . 8756
7/8-16	N	$\left\{\begin{array}{cc} 2\\ 3 \end{array}\right.$. 8645 . 8639 . 8645 . 8639	. 8750 . 8756 . 8750 . 8756	. 8344 . 8342 . 8344 . 8342	. 8564 . 8558 . 8579 . 3573	. 8750 . 8756 . 8750 . 8756	. 8293 . 8295 . 8308 . 8310	. 8293 . 8291 . 8308 . 8306	. 8750 . 8756 . 8750 . 8756	. 875 . 875 . 875 . 875
3%-20	NEF	$ \begin{cases} 2 \\ 3 \end{cases} $. 8660 . 8655 . 8660 . 8655	. 8750 . 8755 . 8750 . 8755	. 84250 . 84235 . 84250 . 84235	, 8595 , 8590 , 8608 , 8603	. 8750 . 8755 . 8750 . 8755	, 83780 , 83795 , 83920 , 83935	. 83780 . 83765 . 83920 . 83905	. 8750 . 8755 . 8750 . 8755	. 8750 . 8750 . 8750 . 8750
15/16-12	N	$ \begin{cases} 2 \\ 3 \end{cases} $. 9246 . 9240 . 9246 . 9240	. 9375 . 9381 . 9375 . 9381	. 8834 . 8832 . 8834 . 8832	. 9139 . 9133 . 9155 . 9149	. 9375 . 9381 . 9375 . 9381	. 8778 . 8780 . 8794 . 8796	. 8778 . 8776 . 8794 . 8792	. 9375 . 9381 . 9375 . 9381	. 937 . 938 . 937 . 938
¹⁵ / ₁₆ -16	N	$ \begin{cases} & 2 \\ & 3 \end{cases} $. 9270 . 9264 . 9270 . 9264	. 9375 . 9381 . 9375 . 9381	. 8969 . 8967 . 8969 . 8967	. 9188 . 9182 . 9204 . 9198	. 9375 . 9381 . 9375 . 9381	. 8917 . 8919 . 8933 . 8935	. 8917 . 8915 . 8932 . 8931	. 9375 . 9381 . 9375 . 9381	. 937 . 938 . 937 . 938
15/16-20	NEF	$\left\{\begin{array}{cc} 2\\ 3 \end{array}\right.$. 9285 . 9280 . 9285 . 9280	. 9375 . 9380 . 9375 . 9380	. 90500 . 90485 . 90500 . 90485	. 9220 . 9215 . 9234 . 9229	. 9375 . 9380 . 9375 . 9380	. 90030 . 90045 . 90170 . 90185	. 90039 . 90015 . 90170 . 90155	. 9375 . 9380 . 9375 . 9380	. 937 . 938 . 937 . 938
1-8	NC	$\left\{\begin{array}{ccc} & 1 & & \\ & 2 & & \\ & 3 & & \\ & 4 & & \end{array}\right.$. 9795 . 9788 . 9829 . 9822 . 9829 . 9829 . 9836 . 9829	. 9966 . 9973 1. 0000 1. 0007 1. 0007 1. 0007 1. 0014	. 9154 . 9152 . 9188 . 9186 . 9188 . 9186 . 9195 . 9193	. 9584 . 9577 . 9653 . 9646 . 9675 . 9668 . 9709 . 9702	. 9966 . 9973 1. 0000 1. 0007 1. 0007 1. 0007 1. 0014	. 9043 . 9045 . 9112 . 9114 . 9134 . 9136 . 9168 . 9170	. 9043 . 9041 . 9112 . 9119 . 9134 . 9132 . 9168 . 9166	. 9966 . 9973 1. 0000 1. 0007 1. 0090 1. 0007 1. 0000	. 996 . 997 1. 000 1. 000 1. 000 1. 000 1. 000
1-12	N	$\left\{\begin{array}{cc} 2\\ 3 \end{array}\right.$. 9871 . 9865 . 9871 . 9865	1,0000 1,0006 1,0000 1,0006	. 9459 . 9457 . 9459 . 9457	. 9764 . 9758 . 9780 . 9774	1, 0000 1, 0006 1, 0000 1, 0006	. 9403 . 9405 . 9419 . 9421	. 9403 . 9401 . 9419 . 9417	1,0090 1,0006 1,0000 1,9006	1, 000 1, 000 1, 000 1, 000
i-14	NS	$ \left\{ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array} \right. $. 9864 . 9858 . 9885 . 9879 . 9885 . 9879 . 9889	. 9979 . 9985 1. 0000 1. 0006 1. 0000 1. 0006 1. 0004 1. 0010	. 9515 . 9513 . 9536 . 9534 . 9534 . 9534 . 9540 . 9538	. 9754 . 9748 . 9796 . 9790 . 9809 . 9803 . 9831 . 9825	. 9979 . 9985 1, 0000 1, 0006 1, 0000 1, 0006 1, 0004 1, 0010	. 9445 . 9447 . 9487 . 9489 . 9500 . 9502 . 9522 . 9524	. 9445 . 9443 . 9487 . 9485 . 9500 . 9498 . 9522 . 9520	. 9979 . 9985 1. 0000 1. 0006 1. 0000 1. 0000 1. 0000	. 997 . 998 1. 000 1. 000 1. 000 1. 000 1. 000
1-16	N	$\left\{egin{array}{c} 2 \ 3 \end{array} ight.$. 9895 . 9889 . 9895 . 9889	1. 0000 1. 0006 1. 0000 1. 0006	. 9594 . 9592 . 9594 . 9592	. 9813 . 9807 . 9828 . 9822	1. 0000 1. 0006 1. 0000 1. 0006	. 9542 . 9544 . 9557 . 9559	. 9542 . 9540 . 9557 . 9555	1. 0000 1. 0006 1. 0000 1. 0006	1, 000 1, 000 1, 000 1, 000
1-20	NEF		. 9910 . 9905 . 9910 . 9905	1. 0000 1. 0005 1. 0000 1. 0005	. 96750 . 96735 . 96750 . 96735	. 9844 . 9839 . 9858 . 9853	1. 0000 1. 0005 1. 0000 1. 0005	. 96270 . 96285 . 96410 . 96425	. 96270 . 96255 . 96410 . 96395	1,0000 1,0005 1,0000 1,0005	1. 000 1. 000 1. 000 1. 000
11/16-12	N		1. 0496 1. 0490 1. 0496 1. 0490	1. 0625 1. 0631 1. 0625 1. 0631	1. 0084 1. 0082 1. 0084 1. 0082	1. 0389 1. 0383 1. 0405 1. 0399	1. 0625 1. 0631 1. 0625 1. 0631	1. 0028 1. 0030 1. 0044 1. 0046	1. 0028 1. 0026 1. 0044 1. 0042	1. 0625 1. 0631 1. 0625 1. 0631	1, 062 1, 063 1, 062 1, 063
11/16-16	N		1. 0520 1. 0514 1. 0520 1. 0514	1. 0625 1. 0631 1. 0625 1. 0631	1. 0219 1. 0217 1. 0219 1. 0217	1. 0437 1. 0431 1. 0453 1. 0447	1. 0625 1. 0631 1. 0625 1. 0631	1, 0166 1, 0168 1, 0182 1, 0184	1, 0166 1, 0164 1, 0182 1, 0180	1, 0625 1, 0631 1, 0625 1, 0631	1, 062 1, 063 1, 062 1, 063

Table 1.17.—Setting plug gages, American National screw threads—Continued

Nominal size and threads per inch	Series designation	Class	W truncated setting plugs							Basic-crest setting plugs	
			Plug for "Go"			Plug for "Not go"				Major diameter	
			Major diameter		Pitch di-	Major diameter		Pitch diameter		G ₀ ¹	Not go ²
			Truncated	Full	ameter	Truncated	Full	Plus tol.	Minus tol.	W and X tolerances	W and X tolerances
1	2	3	4	5	6	7	8	9	10	11	12
11/16-18	NEF	$ \begin{cases} 2 \\ 3 \end{cases} $	in. 1.0528 1.0523 1.0528 1.0528	in. 1.0625 1.0630 1.0625 1.0630	$\begin{array}{c} in.\\ 1.02640\\ 1.02625\\ 1.02640\\ 1.02625\end{array}$	in. 1.0454 1.0449 1.0469 1.0464	in. 1.0625 1.0630 1.0625 1.0630	in. 1.02130 1.02145 1.02280 1.02295	$\begin{array}{c} in.\\ 1.02130\\ 1.02115\\ 1.02280\\ 1.02265 \end{array}$	in. 1. 0625 1. 0630 1. 0625 1. 0630	in. 1.0625 1.0630 1.0625 1.0630
1}%-7	NC	$ \begin{cases} 1 \\ 2 \\ 3 \\ 4 \end{cases} $	1. 1023 1. 1016 1. 1062 1. 1055 1. 1062 1. 1055 1. 1070 1. 1063	1, 1211 1, 1218 1, 1250 1, 1257 1, 1250 1, 1257 1, 1258 1, 1265	1. 0283 1. 0281 1. 0322 1. 0320 1. 0322 1. 0320 1. 0330 1. 0328	1. 0778 1. 0771 1. 0856 1. 0849 1. 0882 1. 0875 1. 0919 1. 0912	1. 1211 1. 1218 1. 1250 1. 1257 1. 1250 1. 1257 1. 1258 1. 1265	1. 0159 1. 0161 1. 0237 1. 0239 1. 0263 1. 0265 1. 0300 1. 0302	1. 0159 1. 0157 1. 0237 1. 0235 1. 0263 1. 0261 1. 0300 1. 0298	1. 1211 1. 1218 1. 1250 1. 1257 1. 1257 1. 1257 1. 1257	1. 1211 1. 1218 1. 1250 1. 1257 1. 1257 1. 1250 1. 1257 1. 1250
11/8-8	N	$ \begin{cases} & 2 \\ & 3 \end{cases} $	1. 1079 1. 1072 1. 1079 1. 1072	1. 1250 1. 1257 1. 1250 1. 1257	1.0438 1.0436 1.0438 1.0436	1.0900 1.0893 1.0924 1.0917	1. 1250 1. 1257 1. 1250 1. 1257	1. 0359 1. 0361 1. 0383 1. 0385	1. 0359 1. 0357 1. 0383 1. 0381	1. 1250 1. 1257 1. 1250 1. 1257	1. 1250 1. 1257 1. 1250 1. 1257
11/4-12	NF	$ \begin{cases} 1 \\ 2 \\ 3 \\ 4 \end{cases} $	1. 1097 1. 1091 1. 1121 1. 1115 1. 1121 1. 1115 1. 1126 1. 1120	1. 1226 1. 1232 1. 1250 1. 1256 1. 1250 1. 1256 1. 1255 1. 1261	1. 0685 1. 0683 1. 0709 1. 0707 1. 0709 1. 0707 1. 0714 1. 0712	1. 0967 1. 0961 1. 1014 1. 1008 1. 1030 1. 1024 1. 1055 1. 1049	1. 1226 1. 1232 1. 1250 1. 1256 1. 1256 1. 1255 1. 1255 1. 1261	1. 0606 1. 0608 1. 0653 1. 0655 1. 0669 1. 0671 1. 0694 1. 0696	1. 0606 1. 0604 1. 0653 1. 0651 1. 0669 1. 0667 1. 0694	1. 1226 1. 1232 1. 1250 1. 1256 1. 1256 1. 1256 1. 1250 1. 1256	1. 1226 1. 1232 1. 1250 1. 1256 1. 1256 1. 1256 1. 1250 1. 1250
11/4-16	N	$\left\{\begin{array}{cc} 2\\ 3 \end{array}\right.$	1. 1145 1. 1139 1. 1145 1. 1139	1. 1250 1. 1256 1. 1250 1. 1256	1. 0844 1. 0842 1. 0844 1. 0842	1. 1061 1. 1055 1. 1077 1. 1071	1. 1250 1. 1256 1. 1250 1. 1256	1. 0790 1. 0792 1. 0806 1. 0808	1. 0790 1. 0788 1. 0806 1. 0804	1. 1250 1. 1256 1. 1250 1. 1256	1. 1250 1. 1256 1. 1250 1. 1256
11/4-18	NEF	$ \begin{cases} 2 $	1. 1153 1. 1148 1. 1153 1. 1148	1. 1250 1. 1255 1. 1250 1. 1255	1. 08890 1. 08875 1. 08890 1. 08875	1. 1078 1. 1073 1. 1094 1. 1089	1. 1250 1. 1255 1. 1250 1. 1255	1. 08370 1. 08385 1. 08530 1. 08545	1.08370 1.08355 1.08530 1.08515	1. 1250 1. 1255 1. 1250 1. 1255	1. 1250 1. 1255 1. 1250 1. 1255
13/16-12	N	2 3	1. 1746 1. 1740 1. 1746 1. 1740	1. 1875 1. 1881 1. 1875 1. 1881	1. 1334 1. 1332 1. 1334 1. 1332	1. 1639 1. 1633 1. 1655 1. 1649	1, 1875 1, 1881 1, 1875 1, 1881	1. 1278 1. 1280 1. 1294 1. 1296	1. 1278 1. 1276 1. 1294 1. 1292	1. 1875 1. 1881 1. 1875 1. 1881	1. 1875 1. 1881 1. 1875 1. 1881
13/16-16	N	$\left\{\begin{array}{cc} 2\\ 3 \end{array}\right.$	1. 1770 1. 1764 1. 1770 1. 1764	1. 1875 1. 1881 1. 1875 1. 1881	1. 1469 1. 1467 1. 1469 1. 1467	1. 1686 1. 1680 1. 1702 1. 1696	1. 1875 1. 1881 1. 1875 1. 1881	1. 1415 1. 1417 1. 1431 1. 1433	1. 1415 1. 1413 1. 1431 1. 1429	1. 1875 1. 1881 1. 1875 1. 1881	1. 1875 1. 1881 1. 1875 1. 1881
13/16-18	NEF	$\left\{\begin{array}{cc} 2\\ 3 \end{array}\right.$	1. 1778 1. 1773 1. 1778 1. 1773	1. 1875 1. 1880 1. 1875 1. 1880	1. 15140 1. 15125 1. 15140 1. 15125	1. 1703 1. 1698 1. 1719 1. 1714	1, 1875 1, 1880 1, 1875 1, 1880	1. 14620 1. 14635 1. 14780 1. 14795	1. 14620 1. 14605 1. 14780 1. 14765	1. 1875 1. 1880 1. 1875 1. 1880	1. 1875 1. 1880 1. 1875 1. 1880
11/4-7	NC	$ \left\{ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array} \right. $	1. 2273 1. 2266 1. 2312 1. 2305 1. 2312 1. 2305 1. 2320 1. 2313	1. 2461 1. 2468 1. 2500 1. 2507 1. 2500 1. 2507 1. 2508 1. 2515	1. 1533 1. 1531 1. 1572 1. 1570 1. 1572 1. 1570 1. 1580 1. 1578	1. 2028 1. 2021 1. 2106 1. 2099 1. 2132 1. 2125 1. 2169 1. 2162	1, 2461 1, 2468 1, 2500 1, 2507 1, 2500 1, 2507 1, 2508 1, 2515	1. 1409 1. 1411 1. 1487 1. 1489 1. 1513 1. 1515 1. 1550 1. 1552	1. 1409 1. 1407 1. 1487 1. 1485 1. 1513 1. 1511 1. 1550 1. 1548	1. 2461 1. 2468 1. 2500 1. 2507 1. 2507 1. 2500 1. 2507 1. 2507	1. 2461 1. 2468 1. 2500 1. 2507 1. 2507 1. 2507 1. 2507
11/4-8	N	$\left\{egin{array}{ccc} 2 & & \ & 3 & \end{array} ight.$	1. 2329 1. 2322 1. 2329 1. 2322	1. 2500 1. 2507 1. 2500 1. 2507	1. 1688 1. 1686 1. 1688 1. 1686	1. 2146 1. 2139 1. 2171 1. 2164	1. 2500 1. 2507 1. 2500 1. 2507	1. 1605 1. 1607 1. 1630 1. 1632	1. 1605 1. 1603 1. 1630 1. 1628	1. 2500 1. 2507 1. 2500 1. 2507	1. 2500 1. 2507 1. 2500 1. 2507
1½-12	NF	$ \begin{cases} 1 \\ 2 \\ 3 \\ 4 \end{cases} $	1. 2347 1. 2341 1. 2371 1. 2365 1. 2371 1. 2365 1. 2376 1. 2376	1. 2476 1. 2482 1. 2500 1. 2506 1. 2506 1. 2505 1. 2511	1. 1935 1. 1933 1. 1959 1. 1957 1. 1959 1. 1957 1. 1964 1. 1962	1. 2217 1. 2211 1. 2264 1. 2258 1. 2280 1. 2274 1. 2305 1. 2299	1. 2476 1. 2482 1. 2500 1. 2506 1. 2506 1. 2506 1. 2505 1. 2511	1. 1856 1. 1858 1. 1903 1. 1905 1. 1919 1. 1921 1. 1944 1. 1946	1. 1856 1. 1854 1. 1903 1. 1901 1. 1919 1. 1917 1. 1944 1. 1942	1. 2476 1. 2482 1. 2500 1. 2506 1. 2506 1. 2506 1. 2500 1. 2506	1. 2476 1. 2482 1. 2500 1. 2506 1. 2506 1. 2506 1. 2506 1. 2506
11⁄4-16	N	$ \begin{cases} $	1. 2395 1. 2389 1. 2395 1. 2389	1. 2500 1. 2506 1. 2500 1. 2506	1. 2094 1. 2092 1. 2094 1. 2092	1. 2310 1. 2304 1. 2327 1. 2321	1. 2500 1. 2506 1. 2500 1. 2506	1. 2039 1. 2041 1. 2056 1. 2058	1. 2039 1. 2037 1. 2056 1. 2054	1. 2500 1. 2506 1. 2500 1. 2506	1. 2500 1. 2506 1. 2500 1. 2506

Table 1.17.—Setting plug gages, American National screw threads—Continued

					W tru	ncated setting	plugs			Basic-crest s	etting plugs
Nominal size and	Series des-		P	lug for "Go"			Plug for "	'Not go''		Major d	iameter
threads per inch	ignation	Class	Major dia	ımeter	Pitch di-	Major di	ameter	Pitch d	iameter	Go 1	Not go ³
			Truncated	Full	ameter	Truncated	Full	Plus tol.	Minus tol.	W and X tolerances	W and X tolerances
1	2	3	4	5	6	7	8	9	10	11	12
11/4-18	NEF	$ \begin{cases} $	in. 1, 2403 1, 2398 1, 2403 1, 2398	in. 1. 2500 1. 2505 1. 2500 1. 2505	in. 1. 21390 1. 21375 1. 21390 1. 21375	in. 1. 2327 1. 2322 1. 2343 1. 2338	in. 1. 2500 1. 2505 1. 2500 1. 2505	in. 1. 20860 1. 20875 1. 21020 1. 21035	in. 1. 20860 1. 20845 1. 21020 1. 21005	in. 1. 2500 1. 2505 1. 2500 1. 2505	in. 1. 2500 1. 2505 1. 2500 1. 2505
15/16-12	N	$ \begin{cases} & 2 \\ & 3 \end{cases} $	1. 2996 1. 2990 1. 2996 1. 2990	1. 3125 1. 3131 1. 3125 1. 3131	1. 2584 1. 2582 1. 2584 1. 2582	1. 2889 1. 2883 1. 2905 1. 2899	1. 3125 1. 3131 1. 3125 1. 3131	1. 2528 1. 2530 1. 2544 1. 2546	1. 2528 1. 2526 1. 2544 1. 2542	1, 3125 1, 3131 1, 3125 1, 3131	1, 3125 1, 3131 1, 3125 1, 3131
15/16-16	N	$\left\{\begin{array}{cc} 2\\ 3 \end{array}\right.$	1.3020 1.3014 1.3020 1.3014	1, 3125 1, 3131 1, 3125 1, 3131	1. 2719 1. 2717 1. 2719 1. 2717	1. 2935 1. 2929 1. 2951 1. 2945	1. 3125 1. 3131 1. 3125 1. 3131	1. 2664 1. 2666 1. 2680 1. 2682	1. 2664 1. 2662 1. 2680 1. 2678	1, 3125 1, 3131 1, 3125 1, 3131	1, 3125 1, 3131 1, 3125 1, 3131
15/16-18	NEF	$\left\{\begin{array}{cc} 2\\ 3 \end{array}\right.$	1. 3028 1. 3023 1. 3028 1. 3023	1, 3125 1, 3130 1, 3125 1, 3130	1. 27640 1. 27625 1. 27640 1. 27625	1, 2952 1, 2947 1, 2968 1, 2963	1, 3125 1, 3130 1, 3125 1, 3130	1, 27110 1, 27125 1, 27270 1, 27285	1. 27110 1. 27095 1. 27270 1. 27255	1, 3125 1, 3130 1, 3125 1, 3130	1, 3125 1, 3130 1, 3125 1, 3130
136-6	NC	$\left\{\begin{array}{ccc} 1\\ 2\\ 3\\ 4\end{array}\right.$	1. 3496 1. 3488 1. 3540 1. 3532 1. 3540 1. 3532 1. 3541	1. 3706 1. 3714 1. 3750 1. 3758 1. 3750 1. 3758 1. 3759 1. 3767	1. 2623 1. 2621 1. 2667 1. 2665 1. 2667 1. 2665 1. 2676 1. 2674	1. 3200 1. 3192 1. 3288 1. 3280 1. 3318 1. 3310 1. 3362 1. 3354	1. 3706 1. 3714 1. 3750 1. 3758 1. 3750 1. 3758 1. 3759 1. 3767	1. 2478 1. 2480 1. 2566 1. 2568 1. 2596 1. 2598 1. 2640 1. 2642	1. 2478 1. 2476 1. 2566 1. 2564 1. 2596 1. 2594 1. 2640 1. 2638	1. 3706 1. 3714 1. 3750 1. 3758 1. 3750 1. 3758 1. 3750 1. 3758	1, 3706 1, 3714 1, 3756 1, 3758 1, 3758 1, 3758 1, 3758
134-8	N	$ \begin{cases} $	1. 3579 1. 3572 1. 3579 1. 3572	1. 3750 1. 3757 1. 3750 1. 3757	1. 2938 1. 2936 1. 2938 1. 2936	1. 3393 1. 3386 1. 3418 1. 3411	1. 3750 1. 3757 1. 3750 1. 3757	1. 2852 1. 2854 1. 2877 1. 2879	1. 2852 1. 2850 1. 2877 1. 2875	1, 3750 1, 3757 1, 3750 1, 3757	1. 3750 1. 3750 1. 3750 1. 3750
13%-12	NF	$ \left\{ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array} \right. $	1. 3597 1. 3591 1. 3621 1. 3615 1. 3621 1. 3615 1. 3626 1. 3620	1. 3726 1. 3732 1. 3750 1. 3756 1. 3756 1. 3756 1. 3755 1. 3761	1. 3185 1. 3183 1. 3209 1. 3207 1. 3209 1. 3207 1. 3214 1. 3212	1. 3467 1. 3461 1. 3514 1. 3508 1. 3530 1. 3524 1. 3555 1. 3549	1. 3726 1. 3732 1. 3750 1. 3756 1. 3756 1. 3756 1. 3755 1. 3761	1. 3106 1. 3108 1. 3153 1. 3155 1. 3169 1. 3171 1. 3194 1. 3196	1. 3106 1. 3104 1. 3153 1. 3151 1. 3169 1. 3167 1. 3194 1. 3192	1. 3726 1. 3732 1. 3750 1. 3756 1. 3756 1. 3756 1. 3756	1, 3726 1, 3732 1, 3750 1, 3756 1, 3756 1, 3756 1, 3750
13/8-16	N	$ \begin{cases} & 2 \\ & 3 \end{cases} $	1. 3645 1. 3639 1. 3645 1. 3639	1. 3750 1. 3756 1. 3750 1. 3756	1. 3344 1. 3342 1. 3344 1. 3342	1. 3559 1. 3553 1. 3576 1. 3570	1.3750 1.3756 1.3750 1.3756	1. 3288 1. 3290 1. 3305 1. 3307	1. 3288 1. 3286 1. 3305 1. 3303	1. 3750 1. 3756 1. 3750 1. 3756	1. 3750 1. 3750 1. 3750 1. 3750
13/4-18	NEF		1.3653 1.3648 1.3653 1.3648	1. 3750 1. 3755 1. 3750 1. 3755	1. 33890 1. 33875 1. 33890 1. 33875	1. 3576 1. 3571 1. 3592 1. 3587	1, 3750 1, 3755 1, 3750 1, 3755	1, 33350 1, 33365 1, 33510 1, 33525	1. 33350 1. 33335 1. 33510 1. 33495	1, 3750 1, 3755 1, 3750 1, 3755	1. 3750 1. 3750 1. 3750 1. 3750
17/16-12	N	$ \begin{cases} 2 $	1. 4246 1. 4240 1. 4246 1. 4240	1. 4375 1. 4381 1. 4375 1. 4381	1, 3834 1, 3832 1, 3834 1, 3832	1. 4139 1. 4133 1. 4155 1. 4149	1. 4375 1. 4381 1. 4375 1. 4381	1. 3778 1. 3780 1. 3794 1. 3796	1. 3778 1. 3776 1. 3794 1. 3792	1. 4375 1. 4381 1. 4375 1. 4381	1. 4378 1. 4381 1. 4378 1. 4381
17/16-16	N	$\left\{\begin{array}{cc} 2\\ 3 \end{array}\right.$	1. 4270 1. 4264 1. 4270 1. 4264	1. 4375 1. 4381 1. 4375 1. 4381	1. 3969 1. 3967 1. 3969 1. 3967	1. 4184 1. 4178 1. 4200 1. 4194	1. 4375 1. 4381 1. 4375 1. 4381	1, 3913 1, 3915 1, 3929 1, 3931	1. 3913 1. 3911 1. 3929 1. 3927	1. 4375 1. 4381 1. 4375 1. 4381	1, 4378 1, 4381 1, 4378 1, 4381
17/16-18	NEF	$ \begin{cases} 2 \\ 3 $	1. 4278 1. 4273 1. 4278 1. 4273	1. 4375 1. 4380 1. 4375 1. 4380	1. 40140 1. 40125 1. 40140 1. 40125	1. 4201 1. 4196 1. 4217 1. 4212	1. 4375 1. 4380 1. 4375 1. 4380	1, 39600 1, 39615 1, 39760 1, 39775	1. 39600 1. 39585 1. 39760 1. 39745	1. 4375 1. 4380 1. 4375 1. 4380	1. 4378 1. 4380 1. 4378 1. 4380
1½-6	NC	$ \left\{ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array} \right. $	1. 4746 1. 4738 1. 4790 1. 4782 1. 4790 1. 4782 1. 4799 1. 4791	1. 4956 1. 4964 1. 5000 1. 5008 1. 5008 1. 5009 1. 5017	1. 3873 1. 3871 1. 3917 1. 3915 1. 3917 1. 3926 1. 3924	1. 4450 1. 4442 1. 4538 1. 4530 1. 4568 1. 4560 1. 4612 1. 4604	1. 4956 1. 4964 1. 5000 1. 5008 1. 5000 1. 5008 1. 5009 1. 5017	1. 3728 1. 3730 1. 3816 1. 3818 1. 3846 1. 3848 1. 3890 1. 3892	1. 3728 1. 3726 1. 3816 1. 3814 1. 3846 1. 3844 1. 3890 1. 3888	1. 4956 1. 4964 1. 5000 1. 5008 1. 5000 1. 5000 1. 5000 1. 5008	1, 495 1, 496 1, 500 1, 500 1, 500 1, 500 1, 500 1, 500
1½-8	N	$ \begin{cases} $	1. 4829 1. 4822 1. 4829 1. 4822	1. 5000 1. 5007 1. 5000 1. 5007	1, 4188 1, 4186 1, 4188 1, 4186	1. 4639 1. 4632 1. 4666 1. 4659	1.5000 1.5007 1.5000 1.5007	1. 4098 1. 4100 1. 4125 1. 4127	1. 4098 1. 4096 1. 4125 1, 4123	1. 5000 1. 5007 1. 5000 1. 5007	1, 5000 1, 5000 1, 5000 1, 5000

 ${\bf Table~1.17.} - Setting~plug~gages,~American~National~screw~threads -- {\bf Continued}$

					W tru	ncated setting	plugs			Basic-crest	setting plugs
Nominal size and	Series des-		P	lug for "Go"			Plug for '	'Not go"		Major o	liameter
threads per inch	ignation	Class	Major dia	ımeter	Pitch di-	Major di	ameter	Pitch d	iameter	Go 1	Not go 2
			Truncated	Full	ameter	Truncated	Full	Plus tol.	Minus tol.	W and X tolerances	W and X tolerances
1	2	3	4	5	6	7	8	9	10	11	12
112-12	NF	$ \left\{ \begin{array}{ccc} 1 \\ 2 \\ 3 \\ 4 \end{array} \right. $	in. 1. 4847 1. 4841 1. 4871 1. 4865 1. 4871 1. 4865 1. 4876 1. 4870	in. 1, 4976 1, 4982 1, 5000 1, 5006 1, 5006 1, 5005 1, 5011	in. 1. 4435 1. 4433 1. 4459 1. 4457 1. 4459 1. 4457 1. 4464 1. 4462	in. 1. 4717 1. 4711 1. 4764 1. 4758 1. 4780 1. 4774 1. 4805 1. 4799	in. 1. 4976 1. 4982 1. 5000 1. 5006 1. 5000 1. 5006 1. 5005 1. 5011	in. 1. 4356 1. 4358 1. 4403 1. 4405 1. 4419 1. 4421 1. 4444 1. 4446	in. 1. 4356 1. 4354 1. 4403 1. 4401 1. 4419 1. 4447 1. 4444	in. 1. 4976 1. 4982 1. 5000 1. 5006 1. 5006 1. 5006 1. 5006	in. 1. 4976 1. 4982 1. 5000 1. 5000 1. 5000 1. 5000
1½-16	N	$ \begin{cases} 2 $	1. 4895 1. 4889 1. 4895 1. 4889	1. 5000 1. 5006 1. 5000 1. 5006	1. 4594 1. 4592 1. 4594 1. 4592	1. 4808 1. 4802 1. 4825 1. 4819	1. 5000 1. 5006 1. 5000 1. 5006	1. 4537 1. 4539 1. 4554 1. 4556	1. 4537 1. 4535 1. 4554 1. 4552	1.5000 1.5006 1.5000 1.5006	1, 5000 1, 5000 1, 5000 1, 5000
1½-18	NEF	$\left\{\begin{array}{cc} 2\\ 3 \end{array}\right.$	1. 4903 1. 4898 1. 4903 1. 4898	1. 5000 1. 5005 1. 5000 1. 5005	1. 46390 1. 46375 1. 46390 1. 46375	1. 4825 1. 4820 1. 4842 1. 4837	1. 5000 1. 5005 1. 5000 1. 5005	1. 45840 1. 45855 1. 46010 1. 46025	1. 45840 1. 45825 1. 46010 1. 45995	1. 5000 1. 5005 1. 5000 1. 5005	1, 5000 1, 5006 1, 5000 1, 5005
1%6-16	N	$\left\{\begin{array}{cc}2\\3\end{array}\right.$	1. 5520 1. 5514 1. 5520 1. 5514	1. 5625 1. 5631 1. 5625 1. 5631	1. 52190 1, 52165 1. 52190 1. 52165	1. 5432 1. 5426 1. 5450 1. 5444	1. 5625 1. 5631 1. 5625 1. 5631	1. 51610 1. 51635 1. 51790 1. 51815	1. 51610 1. 51585 1. 51790 1. 51865	1,5625 1,5631 1,5625 1,5631	1, 5628 1, 5631 1, 5623 1, 5631
1%16-18	NEF	$\left\{\begin{array}{cc} 2\\ 3 \end{array}\right.$	1. 5528 1. 5523 1. 5528 1. 5523	1, 5625 1, 5630 1, 5625 1, 5630	1. 5264 1. 5262 1. 5264 1. 5262	1. 5450 1. 5445 1. 5466 1. 5461	1. 5625 1. 5630 1. 5625 1. 5630	1. 5209 1. 5211 1. 5225 1. 5227	1. 5209 1. 5207 1. 5225 1. 5223	1. 5625 1. 5630 1. 5625 1. 5630	1, 5625 1, 5630 1, 5625 1, 5630
158-8	N	$\left\{\begin{array}{cc}2\\3\end{array}\right.$	1. 6079 1. 6072 1. 6079 1. 6072	1, 6250 1, 6257 1, 6250 1, 6257	1. 54380 1. 54355 1. 54380 1. 54355	1. 5886 1. 5879 1. 5914 1. 5907	1. 6250 1. 6257 1. 6250 1. 6257	1. 53450 1. 53475 1. 53730 1. 53755	1. 53450 1. 53425 1. 53730 1. 53705	1. 6250 1. 6257 1. 6250 1. 6257	1, 6250 1, 6250 1, 6250 1, 6250
15%-12	N	$\left\{\begin{array}{cc} 2\\ 3 \end{array}\right.$	1. 6121 1. 6115 1. 6121 1. 6115	1. 6250 1. 6256 1. 6250 1. 6256	1. 57090 1. 57065 1. 57090 1. 57065	1. 6006 1. 6000 1. 6025 1. 6019	1. 6250 1. 6256 1. 6250 1. 6256	1. 56450 1. 56475 1. 56640 1. 56665	1. 56450 1. 56425 1. 56640 1. 56615	1. 6250 1. 6256 1. 6250 1. 6256	1. 6250 1. 6250 1. 6250 1. 6250
15/8-16	N	$\left\{\begin{array}{cc}2\\3\end{array}\right.$	1. 6145 1. 6139 1. 6145 1. 6139	1. 6250 1. 6256 1. 6250 1. 6256	1. 58440 1. 58415 1. 58440 1. 58415	1. 6057 1. 6051 1. 6074 1. 6068	1. 6250 1. 6256 1. 6250 1. 6256	1 57860 1.57885 1.58030 1.58055	1. 57860 1. 57835 1. 58030 1. 58005	1, 6250 1, 6256 1, 6250 1, 6256	1. 6250 1. 6250 1. 6250 1. 6250
15%-18	NEF	$\left\{\begin{array}{cc}2\\3\end{array}\right.$	1. 6153 1. 6148 1. 6153 1. 6148	1. 6250 1. 6255 1. 6250 1. 6255	1, 5889 1, 5887 1, 5889 1, 5887	1. 6074 1. 6069 1. 6091 1. 6086	1. 6250 1. 6255 1. 6250 1. 6255	1. 5833 1. 5835 1. 5850 1. 5852	1, 5833 1, 5831 1, 5850 1, 5848	1. 6250 1. 6255 1. 6250 1. 6255	1, 6250 1, 6253 1, 6250 1, 6250
111/16-16	N	$\left\{\begin{array}{cc}2\\3\end{array}\right.$	1. 6770 1. 6764 1. 6770 1. 6764	1. 6875 1. 6881 1. 6875 1. 6881	1. 64690 1. 64665 1. 64690 1. 64665	1. 6682 1. 6676 1. 6699 1. 6693	1. 6875 1. 6881 1. 6875 1. 6881	1. 64110 1. 64135 1. 64280 1. 64305	1. 64110 1. 64085 1. 64280 1. 64255	1. 6875 1. 6881 1. 6875 1. 6881	1. 6878 1. 6881 1. 6888 1. 6888
111/16-18	NEF	$\left\{\begin{array}{cc} 2\\ 3 \end{array}\right.$	1. 6778 1. 6773 1. 6778 1. 6773	1. 6875 1. 6880 1. 6875 1. 6880	1. 6514 1. 6512 1. 6514 1. 6512	1. 6699 1. 6694 1. 6716 1. 6711	1. 6875 1. 6880 1. 6875 1. 6880	1. 6458 1. 6460 1. 6475 1. 6477	1. 6458 1. 6456 1. 6475 1. 6473	1. 6875 1. 6880 1. 6875 1. 6880	1. 6873 1. 6880 1. 6873 1. 6880
134-5	NC	$\left\{\begin{array}{cc} 1\\2\\3\\4\end{array}\right.$	1. 7209 1. 7201 1. 7261 1. 7253 1. 7261 1. 7253 1. 7271 1. 7273	1. 7448 1. 7456 1. 7500 1. 7508 1. 7500 1. 7508 1. 7510 1. 7518	1. 61490 1. 61465 1. 62010 1. 61985 1. 62010 1. 61985 1. 62110 1. 62085	1, 6846 1, 6838 1, 6951 1, 6943 1, 6943 1, 6977 1, 7036 1, 7028	1. 7448 1. 7456 1. 7590 1. 7598 1. 7508 1. 7508 1. 7510 1. 7518	1. 59800 1. 59825 1. 60850 1. 60875 1. 61190 1. 61215 1. 61700 1. 61725	1. 59800 1. 59775 1. 60850 1. 60825 1. 61165 1. 61700 1. 61675	1. 7448 1. 7456 1. 7500 1. 7508 1. 7500 1. 7508 1. 7500 1. 7508	1, 744) 1, 7456 1, 7500 1, 7500 1, 7500 1, 7500 1, 7500
134-8	N		1. 7329 1. 7322 1. 7329 1. 7322	1. 7500 1. 7507 1. 7500 1. 7507	1, 66880 1, 66855 1, 66880 1, 66855	1. 7132 1. 7125 1. 7161 1. 7154	1. 7500 1. 7507 1. 7500 1. 7507	1. 65910 1. 65935 1. 66200 1. 66225	1, 65910 1, 65885 1, 66200 1, 66175	1. 7500 1. 7507 1. 7500 1. 7507	1. 7500 1. 7500 1. 7500 1. 7500
1¾-12	N		1. 7371 1. 7365 1. 7371 1. 7365	1, 7500 1, 7506 1, 7500 1, 7506	1. 69590 1. 69565 1. 69590 1. 69565	1, 7255 1, 7249 1, 7274 1, 7268	1. 7500 1. 7506 1. 7500 1. 7506	1. 68940 1. 68965 1. 69130 1. 69155	1. 68940 1. 68915 1. 69130 1. 69105	1. 7500 1. 7506 1. 7500 1. 7506	1, 7500 1, 7500 1, 7500 1, 7500
134-16	NEF		1, 7395 1, 7389 1, 7395 1, 7389	1. 7500 1. 7506 1. 7500 1. 7506	1. 70940 1. 70915 1. 70940 1. 70915	1, 7306 1, 7300 1, 7324 1, 7318	1. 7500 1. 7506 1. 7500 1. 7506	1. 70350 1. 70375 1. 70530 1. 70555	1, 70350 1, 70325 1, 70530 1, 70505	1. 7500 1. 7506 1. 7500 1. 7506	1. 7506 1. 7506 1. 7506 1. 7506

Table 1.17.—Setting plug gages, American National screw threads—Continued

					W tru	ncated setting p	plugs			Basic-crest s	etting plugs
Nominal size and	Series des-		P	lug for "Go"			Plug for "	'Not go''		Major d	iameter
threads per inch	ignation	Class	Major dia	meter	Pitch di-	Major di	ameter	Pitch d	iameter	Go 1	Not go ²
			Truncated	Full	ameter	Truncated	Full	Plus tol.	Minus tol.	W and X tolerances	W and X tolcrances
1	2	3	4	5	6	7	8	9	10	11	12
1 ¹³ /16-16	N	$ \begin{cases} 2 \\ 3 \end{cases} $	in. 1. 8020 1. 8014 1. 8020 1. 8014	in, 1, 8125 1, 8131 1, 8125 1, 8131	$in. \\ 1.77190 \\ 1.77165 \\ 1.77190 \\ 1.77165$	in. 1. 7931 1. 7925 1. 7948 1. 7942	in. 1. 8125 1. 8131 1. 8125 1. 8131	in. 1.76600 1.76625 1.76770 1.76795	in. 1. 76600 1. 76575 1. 76770 1. 76745	in. 1. 8125 1. 8131 1. 8125 1. 8131	in. 1. 8125 1. 8131 1. 8125 1. 8131
17ś-s	N	$ \begin{cases} 2 \\ 3 \end{cases} $	1. 8579 1. 8572 1. 8579 1. 8572	1. 8750 1. 8757 1. 8750 1. 8757	1. 79380 1. 79355 1. 79380 1. 79355	1.8379 1.8372 1.8409 1.8402	1. 8750 1. 8757 1. 8750 1. 8757	1. 78380 1. 78405 1. 78680 1. 78705	1. 78380 1. 78355 1. 78680 1. 78655	1. 8750 1. 8757 1. 8750 1. 8757	1. 8750 1. 8757 1. 8750 1. 8757
17/s-12	N	$ \begin{cases} $	1. 8621 1. 8615 1. 8621 1. 8615	1. 8750 1. 8756 1. 8750 1. 8756	1. 82090 1. 82065 1. 82090 1. 82065	1. 8504 1. 8498 1. 8524 1. 8518	1. 8750 1. 8756 1. 8750 1. 8756	1. 81430 1. 81455 1. 81630 1. 81655	1. 81430 1. 81405 1. 81630 1. 81605	1. 8750 1. 8756 1. 8750 1. 8756	1. 8750 1. 8756 1. 8750 1. 8756
17ś–16	N	$ \begin{cases} $	1. 8645 1. 8639 1. 8645 1. 8639	1. 8750 1. 8756 1. 8750 1. 8756	1. 83440 1. 83415 1. 83440 1. 83415	1. 8555 1. 8549 1. 8573 1. 8567	1. 8750 1. 8756 1. 8750 1. 8756	1. 82840 1. 82865 1. 83020 1. 83045	1. 82840 1. 82815 1. 83020 1. 82995	1. 8750 1. 8756 1. 8750 1. 8756	1. 8750 1. 8756 1. 8750 1. 8756
$1^{15}/_{6}-16$	N	$\left\{\begin{array}{cc} 2\\ 3 \end{array}\right.$	1. 9270 1. 9264 1. 9270 1. 9264	1, 9375 1, 9381 1, 9375 1, 9381	1. 89690 1. 89665 1. 89690 1. 89665	1. 9180 1. 9174 1. 9198 1. 9192	1. 9375 2. 9381 1. 9375 1. 9381	1. 89090 1. 89115 1. 89270 1. 89295	1. 89090 1. 89065 1. 89270 1. 89245	1. 9375 1. 9381 1. 9375 1. 9381	1. 9375 1. 9381 1. 9375 1. 9381
2-41/2	NC	$\left\{\begin{array}{cc} 1\\ 2\\ 3\\ 4 \end{array}\right.$	1. 9685 1. 9677 1. 9742 1. 9734 1. 9734 1. 9734 1. 9753 1. 9745	1. 9943 1. 9951 2. 0000 2. 0008 2. 0000 2. 0008 2. 0011 2. 0019	1. 85000 1. 84975 1. 85570 1. 85545 1. 85545 1. 85680 1. 85655	1. 9278 1. 9270 1. 9392 1. 9384 1. 9430 1. 9422 1. 9486 1. 9478	1. 9943 1. 9951 2. 0000 2. 0008 2. 0000 2. 0008 2. 0011 2. 0019	1. 83160 1. 83185 1. 84300 1. 84325 1. 84680 1. 84705 1. 85240 1. 85265	1. 83160 1. 83135 1. 84300 1. 84275 1. 84680 1. 84655 1. 85240 1. 85215	1, 9943 1, 9951 2, 0000 2, 0008 2, 0000 2, 0008 2, 0000 2, 0008	1. 9943 1. 9951 2. 0000 2. 0008 2. 0000 2. 0008 2. 0000 2. 0008
2-8	N	$\left\{\begin{array}{cc}2\\3\end{array}\right.$	1. 9829 1. 9822 1. 9829 1. 9822	2.0000 2.0007 2.0000 2.0007	1. 91880 1. 91855 1. 91880 1. 91855	1. 9625 1. 9618 1. 9656 1. 9649	2. 0000 2. 0007 2. 0000 2. 0007	1. 90840 1. 90865 1. 91150 1. 91175	1. 90840 1. 90815 1. 91150 1. 91125	2.0000 2.0007 2.0000 2.0007	2. 0000 2. 0007 2. 0000 2. 0007
2-12	N	$\left\{\begin{array}{cc} 2\\ 3 \end{array}\right.$	1. 9871 1. 9865 1. 9871 1. 9865	2. 0000 2. 0006 2. 0000 2. 0006	1. 94590 1. 94565 1. 94590 1. 94565	1. 9753 1. 9747 1. 9773 1. 9767	2. 0000 2. 0006 2. 0000 2. 0006	1. 93920 1. 93945 1. 94120 1. 94145	1. 93920 1. 93895 1. 94120 1. 95095	2. 0000 2. 0006 2. 0000 2. 0006	2. 0000 2. 0006 2. 0000 2. 0006
2-16	NEF	$\left\{\begin{array}{cc} 2\\ 3 \end{array}\right.$	1. 9895 1. 9889 1. 9895 1. 9889	2. 0000 2. 0006 2. 0000 2. 0006	1. 95940 1. 95915 1. 95940 1. 95915	1. 9804 1. 9798 1. 9822 1. 9816	2.0000 2.0006 2.0000 2.0006	1. 95330 1. 95355 1. 95510 1. 95535	1. 95330 1. 95305 1. 95510 1. 95485	2. 0000 2. 0006 2. 0000 2. 0006	2. 0000 2. 0006 2. 0000 2. 0006
21/16-16	N	$ \begin{cases} & 2 \\ & 3 \end{cases} $	2. 0520 2. 0514 2. 0520 2. 0514	2. 0625 2. 0631 2. 0625 2. 0631	2. 02190 2. 02165 2. 02190 2. 02165	2. 0429 2. 0423 2. 0447 2. 0441	2. 0625 2. 0631 2. 0625 2. 0631	2. 01580 2. 01605 2. 01760 2. 01785	2. 01580 2. 01555 2. 01760 2. 01735	2. 0625 2. 0631 2. 0625 2. 0631	2. 0(25 2. 0(31 2. 0(25 2. 0(31
21/6-8	N	$ \begin{cases} 2 \\ 3 \end{cases} $	2. 1079 2. 1072 2. 1079 2. 1072	2. 1250 2. 1257 2. 1250 2. 1257	2. 04380 2. 04355 2. 04380 2. 04355	2. 0872 2. 0865 2. 0904 2. 0897	2. 1250 2. 1257 2. 1250 2. 1257	2. 03310 2. 03335 2. 03630 2. 03655	2. 03310 2. 03285 2. 03630 2. 03605	2. 1250 2. 1257 2. 1250 2. 1257	2. 1250 2. 1257 2. 1250 2. 1257
21/8-12	N	$ \begin{cases} 2 \\ 3 \end{cases} $	2. 1121 2. 1115 2. 1121 2. 1115	2. 1250 2. 1256 2. 1250 2. 1256	2. 07090 2. 07065 2. 07090 2. 07065	2. 1002 2. 0996 2. 1022 2. 1016	2. 1250 2. 1256 2. 1250 2. 1256	2. 06410 2. 06435 2. 06610 2. 06635	2.06410 2.06385 2.06610 2.06585	2. 1250 2. 1256 2. 1250 2. 1256	2. 1250 2. 1256 2. 1250 2. 1256
21/4-16	N		2. 1145 2. 1139 2. 1145 2. 1139	2. 1250 2. 1256 2. 1250 2. 1256	2. 08440 2. 08415 2. 08440 2. 08415	2. 1053 2. 1047 2. 1072 2. 1066	2. 1250 2. 1256 2. 1250 2. 1256	2. 07820 2. 07845 2. 08010 2. 08035	$\begin{array}{c} 2.07820 \\ 2.07795 \\ 2.08010 \\ 2.07985 \end{array}$	2. 1250 2. 1256 2. 1250 2. 1256	2, 1250 2, 1256 2, 1250 2, 1256
23/16-16	Ñ	$ \begin{cases} $	2. 1770 2. 1764 2. 1770 2. 1764	2. 1875 2. 1881 2. 1875 2. 1881	2. 14690 2. 14665 2. 14690 2. 14665	2. 1678 2. 1672 2. 1697 2. 1691	2. 1875 2. 1881 2. 1875 2. 1881	2. 14070 2. 14095 2. 14260 2. 14285	2. 14070 2. 14045 2. 14260 2. 14235	2. 1875 2. 1881 2. 1875 2. 1881	2. 1875 2. 1881 2. 1875 2. 1881
214-41/2	NC	1 2 3 4	2. 2185 2. 2177 2. 2242 2. 2234 2. 2242 2. 2234 2. 2233 2. 2253 2. 2245	2. 2443 2. 2451 2. 2500 2. 2508 2. 2500 2. 2508 2. 2511 2. 2519	2. 10000 1. 99975 2. 10570 2. 10545 2. 10570 2. 10545 2. 10680 2. 10655	2. 1778 2. 1770 2. 1892 2. 1884 2. 1930 2. 1922 2. 1986 2. 1978	2. 2443 2. 2451 2. 2500 2. 2508 2. 2508 2. 2511 2. 2519	2. 08160 2. 08185 2. 09300 2. 09325 2. 09680 2. 09705 2. 10240 2. 10265	2, 08160 2, 08135 2, 09300 2, 09275 2, 09680 2, 09655 2, 10240 2, 16215	2. 2443 2. 2451 2. 2500 2. 2508 2. 2508 2. 2508 2. 2500 2. 2508	2. 2443 2. 2451 2. 2500 2. 2508 2. 2508 2. 2508 2. 2508

Table 1.17.—Setting plug gages, American National screw threads—Continued

					W tru	ncated setting p	plugs			Basic-crest s	etting plugs
Nominal size and	Series des-		P	lug for "Go"			Plug for '	'Not go''		Major d	iameter
hreads per inch	ignation	Class	Major dia	ameter	Pitch di-	Major di	ameter	Pitch d	iameter	Go 1	Not go ²
			Truncated	Full	ameter	Truncated	Full	Plus tol.	Minus tol.	W and X tolerances	W and X tolerances
1	2	3	4	5	6	7	8	9	10	11	12
21/4-8	N	2 3	in. 2, 2329 2, 2322 2, 2329 2, 2322	in. 2. 2500 2. 2507 2. 2500 2. 2507	in. 2. 16880 2. 16855 2. 16880 2. 16855	in. 2. 2119 2. 2112 2. 2152 2. 2145	in. 2. 2500 2. 2507 2. 2500 2. 2507	in. 2. 15780 2. 15805 2. 16110 2. 16135	in. 2.15780 2.15755 2.16110 2.16085	in. 2.2500 2.2507 2.2500 2.2500 2.2507	in. 2. 250 2. 250 2. 250 2. 250
21/4-12	N	$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$	2. 2371 2. 2365 2. 2371 2. 2365	2. 2500 2. 2506 2. 2500 2. 2506	2. 19590 2. 19565 2. 19590 2. 19565	2. 2251 2. 2245 2. 2272 2. 2266	2. 2500 2. 2506 2. 2500 2. 2506	2. 18900 2. 18925 2. 19110 2. 19135	2. 18900 2. 18875 2. 19110 2. 19085	2. 2500 2. 2506 2. 2500 2. 2506	2. 250 2. 250 2. 250 2. 250
21/4-16	N	3	2. 2395 2. 2389 2. 2395 2. 2389	2. 2500 2. 2506 2. 2500 2. 2506	2. 20940 2. 20915 2. 20940 2. 20915	2. 2303 2. 2297 2. 2321 2. 2315	2. 2500 2. 2506 2. 2500 2. 2506	2. 20320 2. 20345 2. 20500 2. 20525	2. 20320 2. 20295 2. 20500 2. 20475	2. 2500 2. 2506 2. 2500 2. 2506	2. 250 2. 250 2. 250 2. 250
25/16-16	N	$\begin{pmatrix} 2 \\ 3 \end{pmatrix}$	2. 3020 2. 3014 2. 3020 2. 3014	2. 3125 2. 3131 2. 3125 2. 3131	2. 27190 2. 27165 3. 27190 2. 27165	2. 2927 2. 2921 2. 2946 2. 2940	2. 3125 2. 3131 2. 3125 2. 3131	2. 26560 2. 26585 2. 26750 2. 26775	2. 26560 2. 26535 2. 26750 2. 26725	2. 3125 2. 3131 2. 3125 2. 3131	2. 31: 2. 31: 2. 31: 2. 31:
23%-12	N	3	2. 3621 2. 3615 2. 3621 2. 3615	2. 3750 2. 3756 2. 3750 2. 3756	2. 32090 2. 32065 2. 32090 2. 32065	2. 3500 2. 3494 2. 3521 2. 3515	2. 3750 2. 3756 2. 3750 2. 3756	2. 31390 2. 31415 2. 31600 2. 31625	2. 31390 2. 31365 2. 31600 2. 31575	2. 3750 2. 3756 2. 3750 2. 3756	2. 378 2. 378 2. 378 2. 378
236-16	N	3	2. 3645 2. 3639 2. 3645 2. 3639	2. 3750 2. 3756 2. 3750 2. 3756	2. 33440 2. 33415 2. 33440 2. 33415	2. 3552 2. 3546 2. 3571 2. 3565	2. 3750 2. 3756 2. 3750 2. 3756	2. 32810 2. 32835 2. 33000 2. 33025	2. 32810 2. 32785 2. 33000 2. 32975	2. 3750 2. 3756 2. 3750 2. 3756	2. 37. 2. 37. 2. 37. 2. 37.
27/16-16	N	3	2. 4270 2. 4264 2. 4270 2. 4264	2. 4375 2. 4381 2. 4375 2. 4381	2. 39690 2. 39665 2. 39690 2. 39665	2. 4176 2. 4170 2. 4195 2. 4189	2. 4374 2. 4380 2. 4375 2. 4381	2. 39050 2. 39075 2. 39240 2. 39265	2. 39050 2. 39025 2. 39240 2. 39215	2. 4375 2. 4381 2. 4375 2. 4381	2. 43 2. 43 2. 43 2. 43
2}2-4	NC (1 2 3 4	2. 4655 2. 4646 2. 4719 2. 4710 2. 4710 2. 4710 2. 4732 2. 4723	2. 4936 2. 4945 2. 5000 2. 5009 2. 5009 2. 5009 2. 5013 2. 5022	2. 33120 2. 33095 2. 33760 2. 33735 2. 33760 2. 33735 2. 33890 2. 33865	2. 4190 2. 4181 2. 4319 2. 4310 2. 4362 2. 4353 2. 4424 2. 4415	2. 4936 2. 4945 2. 5000 2. 5009 2. 5009 2. 5013 2. 5022	2. 31080 2. 31105 2. 32360 2. 32385 2. 32790 2. 32815 2. 33410 2. 33435	2. 31080 2. 31055 2. 32360 2. 32335 2. 32790 2. 32765 2. 33410 2. 33385	2. 4936 2. 4945 2. 5000 2. 5009 2. 5009 2. 5009 2. 5009 2. 5009	2. 49 2. 49 2. 50 2. 50 2. 50 2. 50 2. 50 2. 50 2. 50
2½-8	N	$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$	2. 4829 2. 4822 2. 4829 2. 4822	2. 5000 2. 5007 2. 5000 2. 5007	2. 41880 2. 41855 2. 41880 2. 41855	2. 4612 2. 4605 2. 4647 2. 4640	2. 5000 2. 5007 2. 5000 2. 5007	2. 40710 2. 40735 2. 41060 2. 41085	2. 40710 2. 40685 2. 41060 2. 41035	2. 5000 2. 5007 2. 5000 2. 5007	2. 50 2. 50 2. 50 2. 50
2½-12	N	3	2. 4871 2. 4865 2. 4871 2. 4865	2. 5000 2. 5006 2. 5000 2. 5006	2. 44590 2. 44565 2. 44590 2. 44565	2. 4749 2. 4743 2. 4771 2. 4765	2. 5000 2. 5006 2. 5000 2. 5006	2. 43880 2. 43905 2. 44100 2. 44125	2. 43880 2. 43855 2. 44100 2. 44075	2. 5000 2. 5006 2. 5000 2. 5006	2. 50 2. 50 2. 50 2. 50
2½ -16	N	$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$	2. 4895 2. 4889 2. 4895 2. 4889	2. 5000 2. 5006 2. 5000 2. 5006	2. 45940 2. 45915 2. 45940 2. 45915	2. 4801 2. 4795 2. 4820 2. 4814	2. 4999 2. 5005 2. 5000 2. 5006	2. 45300 2. 45325 2. 45490 2. 45515	2. 45300 2. 45275 2. 45490 2. 45465	2. 5000 2. 5006 2. 5000 2. 5006	2. 49 2. 50 2. 50 2. 50
25 %-1 2	N	$\begin{pmatrix} 2 \\ 3 \end{pmatrix}$	2. 6121 2. 6115 2. 6121 2. 6115	2. 6250 2. 6256 2. 6250 2. 6256	2. 57090 2. 57065 2. 57090 2. 57065	2. 5999 2. 5993 2. 6020 2. 6014	2. 6250 2. 6256 2. 6250 2. 6256	2. 56380 2. 56405 2. 56590 2. 56615	2. 56380 2. 56355 2. 56590 2. 56565	2. 6250 2. 6256 2. 6250 2. 6256	2. 62 2. 62 2. 62 2. 62
25/8-16	N	$\begin{cases} 2\\ 3 \end{cases}$	2. 6145 2. 6139 2. 6145 2. 6139	2. 6250 2. 6256 2. 6250 2. 6256	2. 58440 2. 58415 2. 58440 2. 58415	2. 6050 2. 6044 2. 6070 2. 6064	2. 6248 2. 6254 2. 6250 2. 6256	2. 57790 2. 57815 2. 57990 2. 58015	2. 57790 2. 57765 2. 57990 2. 57965	2. 6250 2. 6256 2. 6250 2. 6256	2. 62 2. 62 2. 62 2. 62
234-4	NC	1 2 3 4	2. 7155 2. 7146 2. 7219 2. 7210 2. 7210 2. 7210 2. 7210 2. 7232 2. 7232	2. 7436 2. 7445 2. 7500 2. 7509 2. 7509 2. 7513 2. 7522	2, 58120 2, 58095 2, 58760 2, 58735 2, 58760 2, 58735 2, 58890 2, 58865	2. 6690 2. 6681 2. 6819 2. 6810 2. 6862 2. 6853 2. 6924 2. 6915	2. 7436 2. 7445 2. 7500 2. 7509 2. 7509 2. 7509 2. 7513 2. 7522	2. 56080 2. 56105 2. 57360 2. 57385 2. 57790 2. 57815 2. 58410 2. 58435	2, 56080 2, 56055 2, 57360 2, 57335 2, 57765 2, 57765 2, 58410 2, 58385	2. 7436 2. 7445 2. 7500 2. 7509 2. 7500 2. 7509 2. 7500 2. 7509	2, 74 2, 74 2, 75 2, 75 2, 75 2, 75 2, 75 2, 75 2, 75
234-8	N .	2 3	2, 7329 2, 7322 2, 7329 2, 7322	2, 7500 2, 7507 2, 7500 2, 7507	2, 66880 2, 66855 2, 66880 2, 66855	2. 7105 2. 7098 2. 7142 2. 7135	2, 7500 2, 7507 2, 7500 2, 7507	2, 65640 2, 65665 2, 66010 2, 66035	2, 65640 2, 65615 2, 66010 2, 65985	2. 7500 2. 7507 2. 7500 2. 7507	2, 75 2, 75 2, 75 2, 75

Table 1.17.—Setting plug gages, American National screw threads—Continued

					W tru	ncated setting p	plugs			Basic-crest s	etting plugs
Nominal size and	Series des-		P	lug for "Go"			Plug for "	'Not go''		Major d	iameter
hreads per inch	ignation	Class	Major dia	meter	Pitch di-	Major dia	ameter	Pitch d	iameter	Go 1	Not go 2
			Truncated	Full	ameter	Truncated	Full	Plus tol.	Minus tol.	W and X tolerances	W and X tolerances
1	2	3	4	5	6	7	8	9	10	11	12
234-12	N	$ \begin{cases} $	in. 2. 7371 2. 7365 2. 7371 2. 7365	in. 2, 7500 2, 7506 2, 7500 2, 7506	in. 2. 69590 2. 69565 2. 69590 2. 69565	in. 2.7248 2.7242 2.7270 2.7264	in. 2, 7500 2, 7506 2, 7506 2, 7506 2, 7506	in. 2. 68870 2. 68895 2. 69090 2. 69115	in. 2, 68870 2, 68845 2, 69090 2, 69065	in. 2, 7500 2, 7506 2, 7500 2, 7506	in. 2, 750 2, 750 2, 750 2, 750 2, 750
2¾-16	N	$ \begin{cases} 2 \\ 3 \end{cases} $	2. 7395 2. 7389 2. 7395 2. 7389	2,7500 2,7506 2,7500 2,7506	2. 70940 2. 70915 2. 70940 2. 70915	2. 7299 2. 7293 2. 7319 2. 7313	2. 7497 2. 7503 2. 7500 2. 7506	2. 70280 2. 70305 2. 70480 2. 70505	2, 70280 2, 70255 2, 70480 2, 70455	2, 7500 2, 7506 2, 7500 2, 7506	2, 749 2, 750 2, 750 2, 750
27/8-12	N	$ \begin{cases} 2 $	2. 8621 2. 8615 2. 8621 2. 8615	2. 8750 2. 8756 2. 8750 2. 8756	2, 82090 2, 82065 2, 82090 2, 82065	2.8497 2.8491 2.8519 2.8513	2. 8750 2. 8756 2. 8750 2. 8756	2, 81360 2, 81385 2, 81580 2, 81605	2, 81360 2, 81335 2, 81580 2, 81555	2, 8750 2, 8756 2, 8750 2, 8756	2, 875 2, 875 2, 875 2, 875
27/8-16	N	$ \begin{cases} & 2 \\ & 3 \end{cases} $	2. 8645 2. 8639 2. 8645 2. 8639	2, 8750 2, 8756 2, 8750 2, 8756	2, 83440 2, 83415 2, 83440 2, 83415	2.8549 2.8543 2.8569 2.8563	2. 8747 2. 8753 2. 8750 2. 8756	2. 82780 2. 82805 2. 82980 2. 83005	2. 82780 2. 82755 2. 82980 2. 82955	2, 8750 2, 8756 2, 8750 2, 8756	2, 874 2, 875 2, 875 2, 875
3-4	NC	$ \begin{pmatrix} & 1 & \\ & 2 & \\ & 3 & \\ & 4 & \end{pmatrix} $	2. 9655 2. 9646 2. 9719 2. 9710 2. 9710 2. 9710 2. 9732 2. 9723	2, 9936 2, 9945 3, 0000 3, 0009 3, 0000 3, 0009 3, 0013 3, 0022	2. 83120 2. 83095 2. 83760 2. 83735 2. 83760 2. 83735 2. 83890 2. 83865	2, 9190 2, 9181 2, 9319 2, 9310 2, 9362 2, 9353 2, 9424 2, 9415	2, 9936 2, 9945 3, 0000 3, 0009 3, 0000 3, 0009 3, 0013 3, 0022	2. 81080 2. 81105 2. 82360 2. 82385 2. 82790 2. 82815 2. 83410 2. 83435	2. 81080 2. 81055 2. 82360 2. 82535 2. 82790 2. 82790 2. 83410 2. 83385	2, 9936 2, 9945 3, 0000 3, 0009 3, 0009 3, 0009 3, 0009	2, 993 2, 994 3, 000 3, 000 3, 000 3, 000 3, 000
3 –8	N	$ \begin{cases} 2 \\ 3 \end{cases} $	2. 9829 2. 9822 2. 9829 2. 9822	3, 0000 3, 0007 3, 0000 3, 0007	2. 91880 2. 91855 2. 91880 2. 91855	2, 9599 2, 9592 2, 9637 2, 9630	2, 9996 3, 0003 3, 0000 3, 0007	2, 90580 2, 90605 2, 90960 2, 90985	2, 90580 2, 90555 2, 90960 2, 90935	3, 0000 3, 0007 3, 0000 3, 0007	2, 999 3, 000 3, 000 3, 000
3-12	N	$ \begin{cases} $	2. 9871 2. 9865 2. 9871 2. 9865	3, 0000 3, 0006 3, 0000 3, 0006	2, 94590 2, 94565 2, 94590 2, 94565	2. 9746 2. 9730 2. 9769 2. 9763	3, 0000 3, 0006 3, 0000 3, 0006	2, 93850 2, 93875 2, 94080 2, 94105	2, 93850 2, 93825 2, 94080 2, 94055	3, 0620 3, 0606 3, 0000 3, 0006	3, 00 3, 00 3, 00 3, 00
3–16	N	$ \begin{cases} 2 \\ 3 \end{cases} $	2. 9895 2. 9889 2. 9895 2. 9889	3,0000 3,0006 3,0000 3,0006	2, 95940 2, 95915 2, 95940 2, 95915	2. 9798 2. 9792 2. 9818 2. 9812	2, 9996 3, 0002 3, 0000 3, 0006	2, 95270 2, 95295 2, 95470 2, 95495	2, 95270 2, 95245 2, 95470 2, 95445	3, 0000 3, 0006 3, 0000 3, 9006	2, 999 3, 000 3, 000 3, 000
31/8-12	N	$ \begin{cases} & 2 \\ & 3 \end{cases} $	3, 1121 3, 1115 3, 1121 3, 1115	3, 1250 3, 1256 3, 1250 3, 1256	3. 07090 3. 07065 3. 07090 3. 07665	3. 0996 3. 0990 3. 1018 3. 1012	3. 1250 3. 1256 3. 1250 3. 1250	3, 06350 3, 06375 3, 06570 3, 06595	3, 06350 2, 06325 3, 06570 3, 06545	3, 1250 3, 1256 3, 1250 3, 1256	3. 12. 3. 12. 3. 12. 3. 12.
31/8-16	N	$ \begin{cases} 2 \\ 3 \end{cases} $	3. 1145 3. 1139 3. 1145 3. 1139	3. 1250 3. 1256 3. 1250 3. 1256	3. 08440 3. 08415 3. 08440 3. 08415	3. 1047 3. 1041 3. 1068 3. 1062	3. 1245 3. 1251 3. 1250 3. 1256	3. 07760 3. 07785 3. 07970 3. 07995	3, 07760 3, 07735 3, 07970 3, 07945	3, 1250 3, 1256 3, 1250 3, 1256	3, 12 3, 12 3, 12 3, 12
31⁄4-4	NC	$ \begin{cases} & 1 \\ & 2 \\ & 3 \\ & 4 \end{cases} $	3. 2155 3. 2146 3. 2219 3. 2210 3. 2210 3. 2210 3. 2232 3. 2232	3. 2436 3. 2445 3. 2500 3. 2509 3. 2509 3. 2513 3. 2522	3. 08120 3. 08095 3. 08760 3. 08735 3. 08760 3. 08735 3. 08890 3. 08865	3. 1690 3. 1681 3. 1819 3. 1810 3. 1862 3. 1853 3. 1924 3. 1915	3. 2436 3. 2445 3. 2500 3. 2509 3. 2509 3. 2513 3. 2522	3. 06080 3. 06105 3. 07360 3. 07385 3. 07790 3. 07815 3. 08410 3. 08435	3, 06080 3, 06055 3, 07360 3, 07335 3, 07795 3, 08410 3, 08385	2. 2436 3. 2445 3. 2500 3. 2509 3. 2500 3. 2500 3. 2500 3. 2509	3, 24: 3, 24: 3, 25: 3, 25: 3, 25: 3, 25: 3, 25:
31/4-8	N	$ \begin{cases} 2 \\ 3 \end{cases} $	3. 2329 3. 2322 3. 2329 3. 2322	3. 2500 3. 2507 3. 2500 3. 2507	3. 16880 3. 16855 3. 16880 3. 16855	3. 2097 3. 2090 3. 2136 3. 2129	3. 2494 3. 2501 3. 2500 3. 2507	3, 15560 3, 15585 3, 15950 3, 15975	3. 15560 3. 15535 3. 15950 3. 15925	3. 2500 3. 2507 3. 2500 3. 2507	3. 24! 3. 250 3. 2 50 3. 250
31/4-12	N	$\left\{ egin{array}{c} 2 \\ 3 \end{array} ight.$	3. 2371 3. 2365 3. 2371 3. 2365	3. 2500 3. 2506 3. 2506 3. 2506	3. 19590 3. 19565 3. 19590 3. 19565	3. 2245 3. 2239 3. 2268 3. 2262	3, 2500 3, 2506 3, 2500 3, 2506	3. 18840 3. 18865 3. 19070 3. 19095	3. 18840 3. 18815 3. 19070 3. 19045	3. 2500 3. 2506 3. 2500 3. 2506	3, 25 3, 25 3, 25 3, 25 3, 25
31/4-16	N	$\left\{ egin{array}{c} 2 \\ 3 \end{array} ight.$	3. 2395 3. 2389 3. 2395 3. 2389	3. 2500 2. 2506 3. 2500 3. 2506	3. 20940 3. 20915 3. 20940 3. 20915	3. 2296 3. 2290 3. 2317 3. 2311	3. 2494 3. 2500 3. 2500 3. 2506	3. 20250 3. 20275 3. 20460 3. 20485	3, 20250 3, 20225 3, 20460 3, 20435	3. 2500 3. 2506 3. 2500 3. 2506	3. 24 3. 25 3. 25 3. 25 3. 25
33/8-12	N	$ \begin{cases} $	3. 3621 3. 3615 3. 3621 3. 3615	3. 3750 3. 3756 3. 3750 3. 3756	3, 32090 3, 32065 3, 32090 3, 32065	3. 3494 3. 3488 3. 3517 3. 3511	3, 3750 3, 3756 3, 3750 3, 3756	3, 31330 3, 31355 3, 31560 3, 31585	3, 31330 3, 31305 3, 31560 3, 31535	3. 3750 5. 3756 3. 3750 3. 3756	3, 373 3, 373 3, 373 3, 373

 ${\it Table 1.17.--Setting~plug~gages,~American~National~screw~threads} -- {\it Continued}$

					W tru	ncated setting [olugs			Basic-crest s	etting plugs
Nominal size and	Scries des-		P	lug for "Go"			Plug for "	Not go"		Ma jo r d	iameter
threads per inch	ignation	Class	Major dia	meter	Pitch di-	Ma jor dia	ımcter	Pitch d	iameter	Go 1	Not go ²
			Truncated	Full	ameter	Truncated	Full	Plus tol. gage	Minus tol.	W and X tolerances	W and X tolerances
1	2	3	4	5	6	7	8	9	16	11	12
3 ³ s-16	N	$ \begin{cases} 2 \\ 3 \end{cases} $	<i>in</i> . 3, 3645 3, 3639 3, 3645 3, 3639	in. 3. 3750 3. 3756 3. 3750 3. 3756	in. 3. 33440 3. 33415 3. 33440 3. 33415	in. 3, 3546 3, 3540 3, 3567 3, 3561	in. 3, 3744 3, 3750 3, 3756	in. 3. 32750 3. 32775 3. 32960 3. 32985	$in. \\ 3.32750 \\ 3.32725 \\ 3.32960 \\ 3.32935$	in. 3, 3750 3, 3756 3, 3750 3, 3756	in. 3. 3744 3. 3750 3. 3750 3. 3756
312-4	NC	$ \begin{cases} 1 \\ 2 \\ 3 \\ 4 \end{cases} $	3. 4655 3. 4646 3. 4719 3. 4710 3. 4710 3. 4710 3. 4732 3. 4732	3. 4936 3. 4945 3. 5000 3. 5009 3. 5009 3. 5013 3. 5022	3. 33120 3. 33095 3. 33760 3. 33735 3. 33735 3. 33890 3. 33865	3, 4190 3, 4181 3, 4319 3, 4310 3, 4362 3, 4353 3, 4424 3, 4415	3, 4936 3, 4945 3, 5000 3, 5009 3, 5000 3, 5013 3, 5022	3.31080 3.31105 3.32360 3.32385 3.32790 3.32815 3.33410 3.33435	3. 31080 3. 31055 3. 32360 3. 32335 3. 32790 3. 32765 3. 33410 3. 33385	3. 4936 3. 4945 3. 5000 3. 5009 3. 5000 3. 5000 3. 5000 3. 5009	3. 4936 3. 4945 3. 5000 3. 5009 3. 5009 3. 5000 3. 5000
$3\mathrm{L}_2^\prime - 8$	N	$ \begin{cases} & 2 \\ & 3 \end{cases} $	3, 4829 3, 4822 3, 4829 3, 4822	3, 5000 3, 5007 3, 5000 3, 5007	3, 41880 3, 41855 3, 41880 3, 41855	3. 4596 3. 4589 3. 4636 3. 4629	3. 4992 3. 4999 3. 5000 3. 5007	3, 40550 3, 40575 3, 40950 3, 40975	3. 40550 3. 40525 3. 40950 3. 40925	3, 5000 3, 5007 3, 5000 3, 5007	3, 4992 3, 4999 3, 5000 3, 5007
3½-12	N	$ \begin{cases} 2 \\ 3 \end{cases} $	3, 4871 3, 4865 3, 4871 3, 4865	3, 5000 3, 5006 3, 5000 3, 5006	3, 44590 3, 44565 3, 44590 3, 44565	3. 4744 3. 4738 3. 4767 3. 4761	3, 5000 3, 5006 3, 5000 3, 5006	3. 43830 3. 43855 3. 44060 3. 44085	3. 43830 3. 43805 3. 44060 3. 44035	3, 5000 3, 5006 3, 5000 3, 5006	3, 5000 3, 5000 3, 5000 3, 500€
31/2-16	N	$ \begin{cases} $	3, 4895 3, 4889 3, 4895 3, 4889	3, 5000 3, 5006 3, 5000 3, 5006	3. 45940 3. 45915 3. 45940 3. 45915	3, 4795 3, 4789 3, 4816 3, 4810	3. 4993 3. 4999 3. 5000 3. 5006	3, 45240 3, 45265 3, 45450 3, 45475	3. 45240 3. 45215 3. 45450 3. 45425	3, 5000 3, 5006 3, 5000 3, 5006	3, 4993 3, 4999 3, 5000 3, 5006
35%-12	N	$ \begin{cases} 2 \\ 3 \end{cases} $	3. 6121 3. 6115 3. 6121 3. 6115	3. 6250 3. 6256 3. 6250 3. 6256	3, 57090 3, 57065 3, 57090 3, 57065	3, 5993 3, 5987 3, 6016 3, 6010	3, 6250 3, 6256 3, 6250 3, 6256	3, 56320 3, 56345 3, 56550 3, 56575	3, 56320 3, 56295 3, 56550 3, 56525	3, 6250 3, 6256 3, 6250 3, 6256	3, 6250 3, 6256 3, 6256 3, 6256
358-16	N	$ \begin{cases} 2 \\ 3 \end{cases} $	3. 6145 3. 6139 3. 6145 3. 6139	3, 6250 3, 6256 3, 6250 3, 6256	3, 58440 3, 58415 3, 58440 3, 58415	3, 6044 3, 6038 3, 6066 3, 6060	3, 6242 3, 6248 3, 6250 3, 6256	3. 57730 3. 57755 3. 57950 3. 57975	3. 57730 3. 57705 3. 57950 3. 57925	3. 6250 3. 6256 3. 6250 3. 6256	3, 6242 3, 6248 3, 6250 3, 6250
334-4	NC	$ \left\{ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array} \right. $	3, 7155 3, 7146 3, 7219 3, 7210 3, 7219 3, 7210 3, 7232 3, 7232	3, 7436 3, 7445 3, 7500 3, 7509 3, 7509 3, 7513 3, 7522	3, 58120 3, 58095 3, 58760 3, 58760 3, 58760 3, 58735 3, 58890 3, 58865	3. 6690 3. 6681 3. 6819 3. 6810 3. 6862 3. 6853 3. 6924 3. 6915	3, 7436 3, 7445 3, 7500 3, 7500 3, 7500 3, 7509 3, 7513 3, 7522	3, 56080 3, 56105 3, 57360 3, 57385 3, 57790 3, 57815 3, 58410 3, 58435	3, 56080 3, 56055 3, 57360 3, 57335 3, 57790 3, 57765 3, 58410 3, 58385	3, 7436 3, 7445 3, 7500 3, 7509 3, 7500 3, 7500 3, 7509	3, 7436 3, 7448 3, 7500 3, 7500 3, 7500 3, 7500 3, 7500
33/4-8	N	$ \begin{cases} 2 \\ 3 \end{cases} $	3, 7329 3, 7322 3, 7329 3, 7322	3, 7500 3, 7507 3, 7500 3, 7507	3, 66880 3, 66855 3, 66880 3, 66855	3, 7095 3, 7088 3, 7135 3, 7128	3, 7492 3, 7499 3, 7500 3, 7507	3, 65540 3, 65565 3, 65940 3, 65965	3, 65540 3, 65515 3, 65940 3, 65915	3, 7500 3, 7507 3, 7500 3, 7507	3, 7492 3, 7499 3, 7500 3, 7507
334-12	N	$ \begin{cases} 2 \\ 3 \end{cases} $	3, 7371 3, 7365 3, 7371 3, 7365	3, 7500 3, 7506 3, 7500 3, 7506	3, 69590 3, 69565 3, 69590 3, 69565	3, 7242 3, 7236 3, 7266 3, 7260	3, 7500 3, 7506 3, 7500 3, 7506	3, 68810 3, 68835 3, 69050 3, 69075	3, 68810 3, 68785 3, 69050 3, 69025	3, 7500 3, 7506 3, 7500 3, 7506	3, 7500 3, 7500 3, 7500 3, 7500
334-16	N	$ \begin{cases} 2 \\ 3 \end{cases} $	3, 7395 3, 7389 3, 7395 3, 7389	3, 7500 3, 7506 3, 7500 3, 7506	3, 70940 3, 70915 3, 70940 3, 70915	3, 7294 3, 7288 3, 7315 3, 7309	3, 7492 3, 7498 3, 7500 3, 7506	3, 70230 3, 70255 3, 70440 3, 70465	3, 70230 3, 70205 3, 70440 3, 70415	3, 7500 3, 7506 3, 7500 3, 7506	3, 7492 3, 7498 3, 7500 3, 7500
374-12	N	$ \begin{cases} $	3, 8621 3, 8615 3, 8621 3, 8615	3, 8750 3, 8756 3, 8750 3, 8756	3. 82090 3. 82065 3. 82090 3. 82065	3. 8492 3. 8486 3. 8515 3. 8509	3, 8750 3, 8756 3, 8750 3, 8756	3, 81310 3, 81335 3, 81540 3, 81565	3. 81310 3. 81285 3. 81540 3. 81515	3.8750 3.8756 3.8750 3.8756	3, 8750 3, 8750 3, 8750 3, 8750
374-16	N		3, 8645 3, 8639 3, 8645 3, 8639	3, 8750 3, 8756 3, 8750 3, 8756	3, 83440 3, 83415 3, 83440 3, 83415	3. 8543 3. 8537 3. 8565 3. 8559	3. 8741 3. 8747 3. 8750 3. 8756	3, 82720 3, 82745 3, 82940 3, 82965	3, 82720 3, 82695 3, 82940 3, 82915	3, 8750 3, 8756 3, 8750 3, 8756	3, 8741 3, 8747 3, 8750 3, 8750
4-4	NC	$ \left\{ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array} \right. $	3, 9655 3, 9646 3, 9719 3, 9710 3, 9719 3, 9719 3, 9732 3, 9732	3. 9936 3. 9945 4. 0000 4. 0009 4. 0009 4. 0013 4. 0022	3, 83120 3, 83095 3, 83760 3, 83735 3, 83735 3, 83735 3, 83890 3, 83865	3. 9190 3. 9181 3. 9319 3. 9310 3. 9362 3. 9353 3. 9424 3. 9415	3.9936 3.9945 4.0000 4.0009 4.0009 4.0009 4.0013 4.0022	3, 81080 3, 81105 3, 82360 3, 82385 3, 82790 3, 82815 3, 83410 3, 83435	3, 81080 3, 81055 3, 82360 3, 82335 3, 82790 3, 82765 3, 83410 3, 8385	3, 9936 3, 9945 4, 0000 4, 0009 4, 0000 4, 0009 4, 0009	3, 9936 3, 9944 4, 0000 4, 0000 4, 0000 4, 0000 4, 0000

Table 1.17.—Setting plug gages, American National screw threads—Continued

					W tru	ncated setting p	olugs			Basie-crest s	etting plugs
Nominal size and	Series des-		P	lug for "Go"			Plug for "	'Not go''		Major d	iameter
hreads per inch	ignation	Class	Major dia	meter	Pitch di-	Major dia	imeter	Pitch d	iameter	Go 1	Not go ²
			Truncated	Full	ameter	Truncated	Full	Plus tol.	Minus tol.	W and X tolerances	W and X tolerances
1	2	3	4	5	6	7	8	9	10	11	12
4-8	N	$ \begin{cases} $	in. 3, 9829 3, 9822 3, 9829 3, 9829	in. 4.0000 4.0007 4.0000 4.0007	in. 3, 91880 3, 91855 3, 91880 3, 91855	in. 3, 9594 3, 9587 3, 9534 3, 9627	in. 3, 9990 3, 9997 4, 0000 4, 0007	in, 3, 90530 3, 90555 3, 90930 3, 90955	in. 3, 90530 3, 90505 3, 90930 3, 90905	in. 4,0000 4,0007 4,0000 4,0007	in. 3, 999 3, 999 4, 000 4, 000
4-12	N	$ \begin{cases} 2 \\ 3 \end{cases} $	3, 9871 3, 9865 3, 9871 3, 9865	4.0000 4.0006 4.0000 4.0006	3, 94590 3, 94565 3, 94590 3, 94565	3, 9741 3, 9735 3, 9765 3, 9759	4, 0000 4, 0006 4, 0000 4, 0006	3, 93800 3, 93825 3, 94040 3, 94065	3, 93800 3, 93775 3, 94040 3, 94015	4, 0000 4, 0006 4, 6060 4, 0006	4, 000 4, 000 4, 000 4, 000
4-16	N	$ \begin{cases} $	3, 9895 3, 9889 3, 9895 3, 9889	4.0000 4.0006 4.0000 4.0006	3, 95940 3, 95915 3, 95940 3, 95915	3, 9793 3, 9787 3, 9814 3, 9808	3. 9991 3. 9997 4. 0000 4. 0006	3, 95220 3, 95245 3, 95430 3, 95455	3, 95220 3, 95195 3, 95430 3, 95405	4,0000 4,0006 4,0000 4,0006	3, 999 3, 999 4, 000 4, 000
414-8	N	$ \begin{cases} & 2 \\ & 3 \end{cases} $	4. 2329 4. 2318 4. 2329 4. 2318	4, 2500 4, 2511 4, 2500 4, 2511	4, 1688 4, 1685 4, 1688 4, 1685	4, 2092 4, 2081 4, 2133 4, 2122	4, 2488 4, 2499 4, 2500 4, 2511	4. 1551 4. 1554 4. 1592 4. 1595	4. 1551 4. 1548 4. 1592 4. 1589	4, 2500 4, 2511 4, 2500 4, 2511	4. 248 4. 249 4. 250 4. 251
414-12	N	$ \begin{cases} 2 \\ 3 \end{cases} $	4. 2371 4. 2362 4. 2371 4. 2362	4, 2500 4, 2509 4, 2500 4, 2509	4, 1959 4, 1956 4, 1959 4, 1956	4. 2240 4. 2231 4. 2264 4. 2255	4, 2500 4, 2509 4, 2500 4, 2509	4. 1879 4. 1882 4. 1903 4. 1906	4. 1879 4. 1876 4. 1903 4. 1900	4, 2500 4, 2509 4, 2500 4, 2509	4. 250 4. 250 4. 250 4. 250
41⁄4-16	N	$ \begin{cases} 2 \\ 3 \end{cases} $	4. 2395 4. 2386 4. 2395 4. 2386	4, 2500 4, 2509 4, 2500 4, 2509	4, 2094 4, 2091 4, 2094 4, 2091	4. 2291 4. 2282 4. 2313 4. 2304	4. 2489 4. 2498 4. 2500 4. 2509	4, 2020 4, 2023 4, 2042 4, 2045	4, 2020 4, 2017 4, 2042 4, 2039	4. 2500 4. 2509 4. 2500 4. 2509	4. 248 4. 249 4. 250 4. 250
4½-8	N	$\left\{\begin{array}{cc} 2\\ 3 \end{array}\right.$	4. 4829 4. 4818 4. 4829 4. 4818	4. 5000 4. 5011 4. 5000 4. 5011	4. 4188 4. 4185 4. 4188 4. 4185	4. 4591 4. 4580 4. 4632 4. 4621	4. 4988 4. 4999 4. 5000 4. 5011	4. 4050 4. 4053 4. 4091 4. 4094	4. 4050 4. 4047 4. 4091 4. 4088	4. 5000 4. 5011 4. 5000 4. 5011	4, 498 4, 499 4, 500 4, 501
4½-12	N	$ \begin{cases} 2 \\ 3 \end{cases} $	4. 4871 4. 4862 4. 4871 4. 4862	4. 5000 4. 5009 4. 5000 4. 5009	4. 4459 4. 4456 4. 4459 4. 4456	4. 4739 4. 4730 4. 4763 4. 4754	4. 5000 4. 5009 4. 5000 4. 5009	4, 4378 4, 4381 4, 4402 4, 4405	4. 4378 4. 4375 4. 4402 4. 4399	4. 5000 4. 5009 4. 5000 4. 5009	4. 500 4. 500 4. 500 4. 500
4½-16	N	$\left\{\begin{array}{cc} 2\\ 3 \end{array}\right.$	4, 4895 4, 4886 4, 4895 4, 4886	4. 5000 4. 5009 4. 5000 4. 5009	4. 4594 4. 4591 4. 4594 4. 4591	4. 4790 4. 4781 4. 4812 4. 4803	4. 4988 4. 4997 4. 5000 4. 5009	4. 4519 4. 4522 4. 4541 4. 4544	4. 4519 4. 4516 4. 4541 4. 4538	4. 5000 4. 5009 4. 5000 4. 5009	4, 498 4, 499 4, 500 4, 500
43/4-8	N	$ \begin{cases} 2 \\ 3 $	4. 7329 4. 7318 4. 7329 4. 7318	4. 7500 4. 7511 4. 7500 4. 7511	4. 6688 4. 6685 4. 6688 4. 6685	4. 7090 4. 7079 4. 7131 4. 7120	4. 7486 4. 7497 4. 7500 4. 7511	4. 6549 4. 6552 4. 6590 4. 6593	4. 6549 4. 6546 4. 6590 4. 6587	4. 7500 4. 7511 4. 7500 4. 7511	4. 748 4. 749 4. 750 4. 751
43/4-12	N	$\left\{\begin{array}{cc} 2\\ 3 \end{array}\right.$	4. 7371 4. 7362 4. 7371 4. 7362	4. 7500 4. 7509 4. 7500 4. 7509	4. 6959 4. 6956 4. 6959 4. 6956	4. 7237 4. 7228 4. 7262 4. 7253	4. 7500 4. 7509 4. 7500 4. 7509	4. 6876 4. 6879 4. 6901 4. 6904	4, 6876 4, 6873 4, 6901 4, 6898	4. 7500 4. 7509 4. 7500 4. 7509	4. 750 4. 750 4. 750 4. 750
434-16	N	$ \begin{cases} 2 \\ 3 \end{cases} $	4. 7395 4. 7386 4. 7395 4. 7386	4. 7500 4. 7509 4. 7500 4. 7509	4. 7094 4. 7091 4. 7094 4. 7091	4. 7289 4. 7280 4. 7312 4. 7303	4. 7487 4. 7496 4. 7500 4. 7509	4. 7018 4. 7021 4. 7041 4. 7044	4. 7018 4. 7015 4. 7041 4. 7038	4. 7500 4. 7509 4. 7500 4. 7509	4, 748 4, 749 4, 750 4, 750
5-8	N	$ \begin{cases} 2 \\ 3 \end{cases} $	4. 9829 4. 9818 4. 9829 4. 9818	5. 0000 5. 0011 5. 0000 5. 0011	4. 9188 4. 9185 4. 9188 4. 9185	4. 9589 4. 9578 4. 9630 4. 9619	4. 9986 4. 9997 5. 0000 5. 0011	4. 9048 4. 9051 4. 9089 4. 9092	4. 9048 4. 9045 4. 9089 4. 9086	5, 0000 5, 0011 5, 0000 5, 0011	4. 998 4. 999 5. 000 5. 001
5-12	N	$ \begin{cases} $	4. 9871 4. 9862 4. 9871 4. 9862	5. 0000 5. 0009 5. 0000 5. 0009	4. 9459 4. 9456 4. 9459 4. 9456	4. 9736 4. 9727 4. 9761 4. 9752	5, 0000 5, 0009 5, 0000 5, 0009	4. 9375 4. 9378 4. 9400 4. 9403	4. 9375 4. 9372 4. 9400 4. 9397	5. 0000 5. 0009 5. 0000 5. 0009	5. 000 5. 000 5. 000 5. 000
5–16	N	$ \begin{cases} $	4, 9895 4, 9886 4, 9895 4, 9886	5. 0000 5. 0009 5. 0000 5. 0009	4. 9594 4. 9591 4. 9594 4. 9591	4. 9788 4. 9779 4. 9811 4. 9802	4. 9986 4. 9995 5. 0000 5. 0009	4. 9517 4. 9520 4. 9540 4. 9543	4. 9517 4. 9514 4. 9540 4. 9537	5. 0000 5. 0009 5. 0000 5. 0009	4. 999 4. 999 5. 000 5. 000
51/4-8	N	$ \begin{cases} 2 \\ 3 \end{cases} $	5. 2329 5. 2318 5. 2329 5. 2318	5. 2500 5. 2511 5. 2500 5. 2511	5, 1688 5, 1685 5, 1688 5, 1685	5. 2088 5. 2077 5. 2130 5. 2119	5, 2484 5, 2495 5, 2500 5, 2511	5. 1547 5. 1550 5. 1589 5. 1592	5. 1547 5. 1544 5. 1589 5. 1586	5, 2500 5, 2511 5, 2500 5, 2511	5. 249 5. 249 5. 250 5. 25

Table 1.17.—Setting plug gages, American National screw threads—Continued

					W tru	neated setting p	plugs			Basic-crest	setting plugs
Nominal size and	Scries des-		P	lug for "Go"			Plug for '	'Not go''		Major	liameter
threads per inch	ignation	Class	Major dia	ameter	Pitch di-	Major dia	ameter	Pitch d	iameter	Go 1	Not go 2
			Truncated	Full	ameter	Truncated	Full	Plus tol.	Minus tol.	W and X tolerances	W and X tolerances
1	2	3	4	5	6	7	8	9	10	11	12
51,4-12	N	$ \begin{cases} 2 \\ 3 \end{cases} $	in. 5. 2371 5. 2362 5. 2371 5. 2362	in. 5. 2500 5. 2509 5. 2500 5. 2509	in, 5, 1959 5, 1956 5, 1959 5, 1956	in. 5. 2235 5. 2226 5. 2261 5. 2252	in. 5. 2499 5. 2508 5. 2500 5. 2509	in. 5. 1874 5. 1877 5. 1900 5. 1903	in. 5. 1874 5. 1871 5. 1900 5. 1897	in. 5. 2500 5. 2509 5. 2500 5. 2509	in. 5. 249 5. 250 5. 250 5. 250
51/4-16	N	$ \begin{cases} 2 \\ 3 \end{cases} $	5. 2395 5. 2384 5. 2395 5. 2384	5. 2500 5. 2509 5. 2500 5. 2509	5. 2094 5. 2091 5. 2094 5. 2091	5. 2287 5. 2278 5. 2310 5. 2301	5. 2485 5. 2494 5. 2500 5. 2509	5. 2016 5. 2019 5. 2039 5. 2042	5. 2016 5. 2013 5. 2039 5. 2036	5. 2500 5. 2509 5. 2500 5. 2509	5. 248 5. 249 5. 250 5. 250
51/2-8	N	$ \begin{cases} 2 \\ 3 \end{cases} $	5. 4829 5. 4818 5. 4829 5. 4818	5. 5000 5. 5011 5. 5000 5. 5011	5. 4188 5. 4185 5. 4188 5. 4185	5. 4587 5. 4576 5. 4629 5. 4618	5. 4984 5. 4995 5. 5000 5. 5011	5. 4046 5. 4049 5. 4088 5. 4091	5. 4046 5. 4043 5. 4088 5. 4085	5. 5000 5. 5011 5. 5000 5. 5011	5. 498 5. 499 5. 500 5. 501
5½-12	N	$ \begin{cases} 2 \\ 3 \end{cases} $	5. 4871 5. 4862 5. 4871 5. 4862	5. 5000 5. 5009 5. 5000 5. 5009	5. 4459 5. 4456 5. 4459 5. 4456	5. 4734 5. 4725 5. 4760 5. 4751	5. 4998 5. 5007 5. 5000 5. 5009	5. 4373 5. 4376 5. 4399 5. 4402	5. 4373 5. 4370 5. 4399 5. 4396	5. 5000 5. 5009 5. 5000 5. 5009	5. 499 5. 500 5. 500 5. 500
5 1/2-16	N	$ \begin{cases} 2 \\ 3 \end{cases} $	5. 4895 5. 4886 5. 4895 5. 4886	5. 5000 5. 5009 5. 5000 5. 5009	5. 4594 5. 4591 5. 4594 5. 4591	5. 4786 5. 4777 5. 4809 5. 4800	5. 4984 5. 4993 5. 5000 5. 5009	5. 4515 5. 4518 5. 4538 5. 4541	5. 4515 5. 4512 5. 4538 5. 4535	5. 5000 5. 5009 5. 5000 5. 5009	5. 498 5. 499 5. 500 5. 500
53/4-8	N	$ \begin{cases} 2 \\ 3 \end{cases} $	5. 7329 5. 7318 5. 7329 5. 7318	5. 7500 5. 7511 5. 7500 5. 7511	5, 6688 5, 6685 5, 6688 5, 6685	5. 7086 5. 7075 5. 7128 5. 7117	5. 7482 5. 7493 5. 7500 5. 7511	5. 6545 5. 6548 5. 6587 5. 6590	5. 6545 5. 6542 5. 6587 5. 6584	5. 7500 5. 7511 5. 7500 5. 7511	5. 748 5. 749 5. 750 5. 751
53/4-12	N	$ \left\{ \begin{array}{c} 2\\ 3 \end{array} \right. $	5. 7371 5. 7362 5. 7371 5. 7362	5. 7500 5. 7509 5. 7500 5. 7509	5. 6959 5. 6956 5. 6959 5. 6956	5. 7233 5. 7224 5. 7259 5. 7250	5. 7497 5. 7506 5. 7500 5. 7509	5, 6872 5, 6875 5, 6898 5, 6901	5. 6872 5. 6869 5. 6898 5. 6895	5. 7500 5. 7509 5. 7500 5. 7509	5. 749 5. 750 5. 750 5. 750
534-16	N	$\left\{\begin{array}{cc}2\\3\end{array}\right.$	5. 7395 5. 7386 5. 7395 5. 7386	5. 7500 5. 7509 5. 7500 5. 7509	5. 7094 5. 7091 5. 7094 5. 7091	5. 7285 5. 7276 5. 7309 5. 7300	5. 7483 5. 7492 5. 7500 5. 7509	5. 7014 5. 7017 5. 7038 5. 7041	5. 7014 5. 7011 5. 7038 5. 7035	5. 7500 5. 7509 5. 7500 5. 7509	5, 748 5, 749 5, 750 5, 750
6-8	N	$ \begin{cases} 2 \\ 3 \end{cases} $	5. 9829 5. 9818 5. 9829 5. 9818	6. 0000 6. 0011 6. 0000 6. 0011	5. 9188 5. 9185 5. 9188 5. 9185	5. 9585 5. 9574 5. 9627 5. 9616	5. 9982 5. 9993 6. 0000 6. 0011	5. 9044 5. 9047 5. 9086 5. 9089	5. 9044 5. 9041 5. 9086 5. 9083	6.0000 6.0011 6.0000 6.0011	5. 998 5. 999 6. 000 6. 001
6-12	N	$ \begin{cases} 2 \\ 3 \end{cases} $	5. 9871 5. 9862 5. 9871 5. 9862	6. 0000 6. 0009 6. 0000 6. 0009	5. 9459 5. 9456 5. 9459 5. 9456	5. 9732 5. 9723 5. 9758 5. 9749	5. 9996 6. 0005 6. 0000 6. 0009	5. 9371 5. 9374 5. 9397 5. 9400	5. 9371 5. 9368 5. 9397 5. 9394	6. 0000 6. 0009 6. 0000 6. 0009	5. 999 6. 000 6. 000 6. 000
6–16	N	$\left\{\begin{array}{cc} 2\\ 3 \end{array}\right.$	5. 9895 5. 9886 5. 9895 5. 9886	6. 0000 6. 0009 6. 0000 6. 0009	5. 9594 5. 9591 5. 9594 5. 9591	5. 9784 5. 9775 5. 9808 5. 9799	5. 9982 5. 9991 6. 0000 6. 0009	5. 9513 5. 9516 5. 9537 5. 9540	5. 9513 5. 9510 5. 9537 5. 9534	6. 0000 6. 0009 6. 0000 6. 0009	5. 998 5. 999 6. 000 6. 000

Pitch diameter limits of W basic-crest setting plug gages are given in column 6 of this table. Pitch diameter limits of X basic-crest setting plug gages are given in column 4 of table 1.16.

Pitch diameter limits of X basic-crest setting plug gages are given in columns 9 and 10 of this table. Pitch diameter limits of X basic-crest setting plug gages are given in columns 6 and 7 of table 1.16.

APPENDIX 2. AMERICAN NATIONAL SCREW THREADS OF SPECIAL DIAM-ETERS, PITCHES, AND LENGTHS OF **ENGAGEMENT**

The American National standards for screw threads of special diameters, pitches, and lengths of engagement are republished here as useful information. They are largely superseded by the Unified and American standards which are specified in section IV. If American National threads are specified, they shall conform to the requirements

The tolerances specified in appendix 1 of this handbook apply in general to bolts, nuts, and tapped holes of standard pitches and diameters. They are based on the pitch of the thread and a length of engagement equal to the basic major diameter, but are used for lengths of engage-

ment up to 11/2 diameters.

In addition to the foregoing threaded components, there are large quantities of threaded parts produced, such as hub and radiator caps in the automotive industry, threaded collars on machine tools, etc., where the diameters are larger, the pitches finer, and the lengths of engagement shorter than for bolt and nut practice. The following specifications have been adopted for such threaded parts, and the tolerances are based on the diameter, pitch, and length of engagement of the components.

1. FORM OF THREAD

The American National form of thread profile as specified in appendix 1 shall be used.

2. STANDARD PITCHES

In appendix 1 there are given the limits of size for standard thread series. The use of these series, wherever possible, is recommended for all applications.

Whenever sizes and pitches in the American National coarse, fine, or extra-fine, or the 8-, 12-, or 16-thread series are not suitable, it is recommended that one of the following pitches be selected: 4, 6, 8, 10, 12, 14, 16, 18, 20, 24, 28, 32, 36, 40, 48, 56, or 64 threads per inch.

Basic thread data for these pitches are given in table

2.1, and also in table 1.1.

3. CLASSIFICATION AND TOLERANCES

There are established herein for general use four classes of screw-thread tolerances and allowances, which are named and numbered to correspond to the regular classification given in appendix 1. These four classes, together with the accompanying specifications, are intended to assure a uniform practice for screw threads not included in the American National coarse, fine, or extra-fine thread series, nor in the 8-, 12-, or 16-thread series.

It is not the intention of the Committee arbitrarily to place a general class or grade of work in a specific class of thread. Each manufacturer and user of screw threads is free to select the class best adapted to his particular

needs.

(a) GENERAL SPECIFICATIONS

The following general specifications apply to all classes of thread specified for screw threads of special diameters, pitches, and lengths of engagement.

1. Uniform Minimum Internal Thread.—The pitch diameter of the minimum internal thread corresponds to the basic size.21

2. Tolerances.—(a) The tolerances specified represent the extreme variations allowed on the product.

(b) The tolerance on the internal thread is plus and is applied from the basic size to above basic size.

(c) The tolerance on the external thread is minus and

is applied from the maximum size to below the maximum

(d) The pitch diameter tolerances for an external and an internal thread of a given class are the same.

(e) The pitch diameter tolerances are obtained by adding three values, or increments; one dependent upon the basic major diameter, another upon the length of engagement, and the third upon the pitch of the thread. These increments are based on formulas given in table 2.2. However, where tolerance values so obtained exceed those given in appendix 1 for corresponding pitches of the American National coarse or fine thread series, and for any diameters equal to or less than these standard sizes and lengths of engagement equal to or less than one diameter, the tolerances given in appendix 1 are used. (See rules for using tolerance tables on p. 180.)

(f) Pitch diameter limits of size are interpreted in

accordance with appendix 1, par. 5 (c), p. 128.

(g) The tolerances on the major diameters of the external threads and minor diameters of the internal threads are based on the pitch of the thread, as these control the depth of engagement; they are, therefore, based on the pitch alone.

(h) The minimum minor diameter of an external thread of a given pitch is such as to result in a basic flat $(\frac{1}{8} \times p)$ at the root when the pitch diameter of the external thread is at its minimum value. When the maximum external thread is basic, the minimum minor diameter of the external thread will be below the basic minor diameter by the amount of the specified pitch diameter tolerance.

(i) The maximum minor diameter of an external thread of a given pitch may be such as results from the use of a worn or rounded threading tool, when the pitch diameter is at its maximum value. In no case, however, should the form of the external thread, as results from tool wear, be such as to cause the external thread to be rejected on the maximum minor diameter by a "go" thread ring gage, the minor diameter of which is equal to the minimum minor diameter of the internal thread.

(j) The maximum major diameter of the internal thread of a given pitch is such as to result in a flat equal to one-third of the basic flat $(\frac{1}{24} \times p)$ when the pitch diameter of the internal thread is at its maximum value. When the minimum internal thread is basic, its maximum major diameter will be above the basic major diameter by the amount of the specified pitch diameter tolerance plus

two-ninths of the basic thread depth.

(k) The nominal minimum major diameter of an internal thread is the basic major diameter. In no case, however, should the minimum major diameter of the internal thread, as results from a worn tap or cutting tool, be such as to cause the internal thread to be rejected on the minimum major diameter by a "go" plug gage made to the maximum major diameter of the external thread.

(l) The tolerance on the minor diameter of an internal thread of a given pitch is one-sixth of the basic thread

height regardless of the class of thread.²²

(b) CLASSIFICATION OF THREADS

1. Class 1.—This class is intended to cover the manufacture of threaded parts where quick and easy assembly is necessary and where an allowance is required.

This class is made with an allowance on the external thread, so as to permit ready assembly, even when the threads are slightly bruised or dirty, in conformity with the practice in appendix 1.23

to make the minor diameter of the internal thread less than the inhimining specified in order to give the necessary depth of engagement.

On the other hand, when the length of engagement is exceptionally long the minor diameter of the internal thread may be greater than the maximum specified without impairing the strength of the fastening.

23 See footnote 21.

²¹ Special cases will arise, however, when a class 1 thread is required on finished drawn tubing with thin walls, and in such cases, the allowance should be made in the internal thread.

²² Special threads having a length of engagement considerably less than one diameter will not develop the full strength of the external thread. The minimum minor diameter of the internal thread of the American National form of thread is such as to provide a minimum clearance on diameter at the minor diameter equal to two-ninths of the hasic thread depth. If this clearance is reduced by providing a greater percentage of thread depth in the internal thread, the strength of such a fastening is increased. In such cases when the external thread is subject to considerable tension, it is permissible to make the minor diameter of the internal thread less than the minimum specified in order to give the necessary denth of engagement.

Tables 2.3 and 2.4 give the limits of size and tolerances for major, pitch, and minor diameters of threads of special

diameters, pitches, and lengths of engagement.

2. Class 2.—This class is intended to apply to the major portion of threaded work in interchangeable manufacture, where no allowance is required. It is the same in every particular as class 1 except that it has no allowance and the tolerances are smaller.

Tables 2.3 and 2.5 give the limits of size and tolerances for major, pitch, and minor diameters of threads of special

diameters, pitches, and lengths of engagement.

3. Class 3.—This class is intended to apply to the higher grade of interchangeable screw thread work. It is the same as class 2 in every particular except that the tolerances are smaller.

Tables 2.3 and 2.6 give the limits of size and tolerances for major, pitch, and minor diameters of threads of special

diameters, pitches, and lengths of engagement.

4. Class 4.—This class is intended for threaded work requiring a fine, snug fit, and where a screwdriver or

wrench may be necessary for assembly.

In the manufacture of screw-thread products belonging to this class it may be necessary to use precision tools, gages made to special tolerances for this class (see table VI.6, p. 117), and other refinements. This quality of work should, therefore, be used only in cases where requirements of the mechanism being produced are exacting. In order to secure the fit desired, it may be necessary in some cases to select the parts when the product is being assembled.

The maximum pitch diameters of the external threads are slightly larger than the minimum pitch diameters of

the internal threads determined from table 2.3.

Tables 2.3 and 2.7 give the limits of size and tolerances for major, pitch, and minor diameters of threads of special diameters, pitches, and lengths of engagement.

4. TABLES OF DIMENSIONS

In order to simplify the specification of dimensions of special fastening screw threads, tables 2.2, 2.4, 2.5, 2.6, and 2.7 are arranged herein, and are intended to cover all practical combinations of diameter, pitch, length of engagement, and class of thread. The use of these tables instead of the application of formulas te determine limits of size of a special thread facilitates placing dimensions on drawings. Also, in cases of special threads of the same diameter, pitch, and class of thread, but slightly different lengths of engagement, the threads may be gaged by a single set of gages, as identical pitch diameter tolerances will be applied.

1. Arrangement of Tables.—The arrangement of dimensions and tolerances given in these tables has the

following features:

All thread dimensions of threads of special diameters, pitches, and lengths of engagement, except pitch diam-

eter tolerances are derived from table 2.3.

Pitch diameter tolerances are taken from tables 2.4, 2.5, 2.6, or 2.7, depending upon the class required. These pitch diam ter tolerances were obtained by adding increments, in accordance with table 2.2, corresponding to the major diameters at the top, the threads per inch at the side of the table, and mean lengths of engagement of 1/4, 1, and 21/4 inches for pitches from 64 to 12 threads per inch, inclusive, and ½, 2, and 4½ inches for pitches from 10 to 4 threads per inch, inclusive. Thus, the increments of the pitch diameter tolerances based on length of engagement and on dismeter vary by definite steps instead of continuously. However, in order that the tolerances given in these tables might be wholly consistent with those given in appendix 1, certain values as listed are greater or less than those yielded by the above method. This medification was made by inserting in the tables, in the positions corresponding to standard sizes, pitches, and lengths of engagement of the American National coarse- and finethread series, the pitch diameter tolerances listed in appendix 1. Then, wherever necessary, all values above and to the left of these inserted values were reduced so that none of them should exceed these standard values, and those below and to the right were increased so that none

should be less than the standard values. This has the important advantage that in a series of sizes, frequently occurring in practice, consisting partly of standard sizes and partly of special sizes, there will be no undue irregularity in the progression of the pitch diameter tolerance, with consequent difficulties in securing gages, etc.

The maximum pitch diameter tolerances listed are equal to the tolerances on the major diameter of the external

threads of the same pitch, as given in table 2.3.

2. Rules for Use of Tables.—For consistent application of the pitch diameter tolerance tables to all cases, adherence to the following rules relative to the use of the tables is necessary:

1. Tolerances on pitch diameter corresponding to major diameters between those for which values are given in the

tables shall be those of the next larger diameter.

2. Tolerances on pitch diameter for pitches between those for which values are given in the tables shall be those of the next coarser pitch, except that for screws having 80, 72, 44, 13, 11, 9, 7, 5, or 4½ threads per inch, lengths of engagement of one and one-half diameters or less, and diameters less than the standard diameters for the respective pitches as given in appendix 1, the tolerances given in appendix 1 shall be used.

3. Tolerances on pitch diameter for pitches coarser than 4 threads per inch shall be the same as those for 4

threads per inch.

4. Tolerances on pitch diameter when the length of engagement is exactly ½ or 1½ in. for 12 threads per inch and finer, or 1 or 3 in. for pitches coarser than 12 threads per inch, shall correspond to the interval of which these are the upper limits.

5. Tolerances on pitch diameter for lengths of engagement greater than those for which values are given shall be the maximum values listed for the pitch concerned.

Table 2.1.—Thread data for recommended pitches for threads of special diameters, pitches, and lengths of engagement

Threads per inch, $\it n$	Pitch, p	Depth of thread, h	Basic width of flat, p/8	Minimum width of flat at major diameter of nut, p/24
1	2	3	4	5
	in.	in.	in.	in.
64	0. 01562 . 01786	0, 01015	0.00195 .00223	0.00065
56	. 02023	. 01160	. 00223	.00074
48	. 02063	.01624	. 00200	.00087
36	. 02778	. 01804	. 00312	.00116
32	. 03125	. 02030	. 00391	.00130
28	. 03571	. 02320	. 00446	. 00149
24	. 04167	. 02706	. 00521	. 00174
20	. 05000	. 03248	. 00625	.00208
18	. 05556	. 03608	.00694	. 00231
16	. 06250	. 04059	. 00781	. 00260
14	. 07143	. 04639	. 00893	. 00298
12	. 08333	. 05413	. 01042	. 00347
10	. 10000	. 06495	. 01250	.00417
8	, 12500	. 08119	. 01562	. 00521
6	. 16667	. 10825	. 02083	. 00694
4	. 25000	. 16238	. 03125	. 01042

Table 2.2.—Schedule of tolerance increments for threads of special diameters, pitches, and lengths of engagement

Class of thread	Diameter increment	Length of engagement increment	Pitch increment
1	2	3	4
Class 1. Class 2. Class 3. Class 4.	$\begin{array}{c} 0.002 \sqrt{D} \\ .002 \sqrt{D} \\ .002 \sqrt{D} \\ .001 \sqrt{D} \end{array}$	0.002 <i>Q</i> .002 <i>Q</i> .002 <i>Q</i> .001 <i>Q</i>	$\begin{array}{cccc} 0.020 & \sqrt{p} \\ .010 & \sqrt{p} \\ .005 & \sqrt{p} \\ .0025 & \sqrt{p} \end{array}$

6. For pitches finer than 64 threads per inch, apply the formulas in table 2.2. If the resulting tolerance is greater than that for 64 threads per inch as given in tables 2.4 to 2.7, for the same diameter and class, apply the tolerance for 64 threads.

3. Examples.—The following examples illustrate the

use of these tables:

Example: 3½-in., 16-thread, class 1, with allowance on external threads, ½ in. length of engagement:

From table 2.4:

Pitch diameter tolerance_____ =0.0095

Also from table 2.3, for the external thread:

Maximum major diameter=3.2500-0.0018=3.2482 Minimum major diameter = 3.2482 - .0126 = 3.2356Maximum minor diameter=3.2500 - .0785=3.1715
Maximum pitch diameter=3.2500 - .0424=3.2076
Minimum pitch diameter=3.2076 - .0095=3.1981

And for the internal thread:

Minimum major diameter___ =3.2500Minimum minor diameter=3.2500-0.0677=3.1823 Maximum minor diameter=3.1823 + .0068=3.1891 Minimum pitch diameter=3.2500 - .0406=3.2094 Maximum pitch diameter=3.2094+ .0095=3.2189

Example: 3-in., 24-thread, class 2, % in. length of engagement:

From table 2.5:

Pitch diameter tolerance = 0. 0066 In this instance the pitch diameter tolerance is printed in italics. In accordance with the footnote under table 2.5 it is desirable to avoid the use of tolerances set in italics as the combination of class of thread, length of engagement, pitch, and diameter is disproportionate. If it is decided to use a closer class, class 3 or class 4 may be chosen. Assuming the choice of class 3, the following dimensions are obtained:

From table 2.6:

Pitch diameter tolerance = 0. 0065 From table 2.3 for the external thread:

Maximum minor diameter=3.0000-.0511=2.9489 Maximum pitch diameter=3.0000-.0271=2.9729 Minimum pitch diameter=2.9729-.0065=2.9664

And for the internal thread:

Minimum major diameter___ Minimum minor diameter=3. 0000-0. 0451=2. 9549 Maximum minor diameter=2.9549+ .0045=2.9594 Minimum pitch diameter=3.0000 - .0271=2.9729 Maximum pitch diameter=2.9729 + .0065=2.9794

If, instead, it is decided to reduce the length of engagement to ½ in., the following dimensions are obtained:

From table 2.5:

Pitch diameter tolerance_____ =0.0060

From table 2.3 for the external thread:

Maximum major diameter____ = 3.0000 Minimum major diameter=3.0000-0.0066=2.9934 Maximum minor diameter=3. 0000 - . 0511=2. 9489 Maximum pitch diameter=3. 0000 - . 0271=2. 9729 Minimum pitch diameter=2. 9729 - . 0060=2. 9669

And for the internal thread:

Minimum major diameter____ Minimum minor diameter=3, 0000-0, 0451=2, 9549 Maximum minor diameter=2.9549+ .0045=2.9594 Minimum pitch diameter=3.0000-.0271=2.9729 Maximum pitch diameter=2.9729+.0060=2.9789

Table 2.3.—Values for obtaining thread dimensions of screw threads of special diameters, pitches, and lengths of engagement, classes 1, 2, 3, and 4

Threads per inch	in the "m Apply t	aximum'' tolerances i	columns fr minus.		sic major d	and minor iameter.	diameters,	, subtract t	hc values	To ob minor, p tract the umns fro Apply See tab	tain minin itch, and r values in t m the hasi tolerances	najor diam the "minin c major dia plus. , 2.6, and 2	ensions for neters, sub- mum'' col-
- monar por		Major d	iameter		Pitch di	ameter, m	avimum	Minor d	iameter 1	Minor	liameter	Pitch	Major
	Maxi	inum	Toler	rance	T ROB CI	ameter, m	aamum	maxi		Minimum	Tolerance		diameter,² minunum
	Class 1	Classes 2, 3, 4	Class 1	Classes 2, 3, 4	Class 1	Classes 2, 3	Class 4	Class 1	Classes 2, 3, 4		Classes 1,	2, 3, and 4	
1	2	3	4	5	6	7	8	9	10	11	12	13	14
64	in. 0.0007 .0008 .0009 .0010 .0011 .0011 .0012 .0013 .0015	in. 0.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000	in. 0.0052 .0056 .0062 .0068 .0072 .0076 .0086 .0092 .0102	in. 0.0038 .0040 .0044 .0048 .0050 .0054 .0062 .0066 .0072 .0082	in. 0.0108 .0124 .0144 .0172 .0191 .0214 .0244 .0284 .0340 .0377 .0424	in. 0.0101 .0116 .0135 .0162 .0180 .0203 .0232 .0271 .0325 .0361 .0406	in. 0.0100 .0114 .0133 .0160 .0178 .0201 .0230 .0268 .0322 .0358 .0402	in. 0.0199 .0227 .0265 .0317 .0352 .0394 .0450 .0524 .0628	in. 0.0192 0219 0256 0307 0341 0383 0438 0511 0613	in. 0.0169 .0193 .0226 .0271 .0301 .0338 .0387 .0451 .0541 .0601 .06677	in. 0.0017 .0019 .0023 .0027 .0030 .0034 .0039 .0045 .0054 .0060 .0068	in. 0.0101 .0116 .0135 .0162 .0180 .0203 .0232 .0271 .0325	in. 0.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
14 12 10 8 6 4	. 0021 . 0024 . 0028 . 0034 . 0044 . 0064	. 0000 . 0000 . 0000 . 0000 . 0000	. 0140 . 0158 . 0184 . 0222 . 0290 . 0408	.0098 .0112 .0128 .0152 .0202 .0280	. 0485 . 0565 . 0678 . 0846 . 1127 . 1688	. 0464 . 0541 . 0650 . 0812 . 1083 . 1624	. 0460 . 0536 . 0644 . 0805 . 1074 . 1611	. 0897 . 1046 . 1255 . 1568 . 2089 . 3131	. 1022 . 1227 . 1534 . 2045 . 3067	. 1083 . 1353 . 1804 . 2706	. 0077 . 0090 . 0109 . 0135 . 0180 . 0270	. 0464 . 0541 . 0650 . 0812 . 1083 . 1624	. 0000 . 0000 . 0000 . 0000 . 0000 . 0000

Dimensions given for the maximum minor diameter of the external thread are figured to the intersection of the worn tool are with a center line through

Plinensions given for the maximum minor diameter of the external thread are figured to the intersection of the worn tool are with a center line through crest and root. The minimum minor diameter of the external thread sequal to $\frac{1}{2} \times p$, and may be determined by subtracting the basic thread depth, h (or 0.6495p) from the minimum pitch diameter of the external thread equal to $\frac{1}{2} \times p$, and may be determined by subtracting the basic thread depth, h (or 0.6495p) from the minimum pitch diameter of the external thread.

2 Dimensions for the minimum major diameter of the internal thread correspond to the basic flat $(\frac{1}{2} \times p)$, and the profile at the major diameter produced by a worn tool must not fall helow the hasic outline. The maximum major diameter of the internal thread shall be that corresponding to a flat at the major diameter of the maximum internal thread equal to $\frac{1}{2} \times p$, and may be determined by adding $\frac{1}{2} \times p$ (or 0.7939p) to the maximum pitch diameter of the internal thread.

Table 2.4.—Pitch diameter tolerances for screw threads of special diameters, pitches, and lengths of engagement, class 1

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	%16 ineh ineh 0.0034																		
1	im. 0, 0034	½ inch	3/8 inch i	1/2 inch	34 inch ir	ı ineh ir	1),2 inches in	2 inches in	3 inches	4 inches i	6 inches i	8 inches i	10 inches	12 inches in	14 inches in	16 inches i	18 inches	20 inches	24 inches
1, 2, 0.028 0.004 0.005		in. 0. 0038	$\frac{in.}{0.0042}$ 0.	in. 0.0044 0.	in. 0.0047 0.	ia. 0.0050 0.	in. 0, 0052	in.	in.	in.	in.	in.	in.						
1,52 1,0031 1,0034 1,0	. 0034	. 0038	. 0044	. 0040	. 0049	0052	.0056										1 1		
75 0034 1 0037 1 0034 1 0037 1	. 0034	. 0038	. 0046	0048	. 0051	0054	00058 0	0,0062											
1	. 0034	. 0038	. 0046	0051	. 0054	0057	.0001	. 0065											
24 24 24 24 24 24 24 24 24 24 24 24 24 2	. 0030	. 0038	. 0045	0051	0056	0058	. 9063	0067	6.0072										
	. 0038	. 0038	. 0046	0051	. 0057	0000	. 0065	9200	.0075										
	. 0043 2.	2.0043	. 0046	0051 .	. 0057	0.063	. 0067	. 0071	. 0077), 0083 . 0086									
24 24 24 24 24 24 24 24 24 24 24 24 24 2	. 0046	. 0057	. 0046	. 0051	0057	0000	. 0070	. 0074	. 0030	9800									
22 22 22 22 18	. 0051 . 0057 . 0098	1,0051 ,0057 ,0100	. 0051 2. . 0557	. 0051 . 0057 . 0102	.0057 .0057 .0102	0070 0070 0102	. 0074 . 0079	.0078 .0093 .0102	.0084 .0099 .0102	. 0090 . 0102 . 0102	. 0102								
22 22 22 22 22 22 22 22 22 22 22 22 22		. 0057 . 0557 . 0102	. 0057	0057 0057 0106	0057	0070 0070 0112	. 0077	. 0080	. 0087 . 0102 . 0114	. 0092 . 0107 . 0114	. 0101 (0109 0	0.0114						
31 122 122		. 0063 1. . 0363	. 0063	. 0063 2.	. 0003	0070 0070 0115	. 0079 . 0079 . 0120	. 0083 . 0098 . 0123	. 0090 . 0105 . 0126	.0095	. 0104 . 0119 . 0126	. 0112 . 0126 . 0126	0118 0.0126	0. 0124 . 0126 . 0126					
327			. 00700	0070 0070 0113	. 0070 . 0070 . 0110	2.0070 2.0070 .0119	. 0079 . 0079 . 0123	. 0087 . 0102 . 0127	. 0093 . 0108 . 0133	. 0099 . 0114 . 0139	. 0108 . 0123 . 0140	. 0115 . 0130 . 0140	. 0122	. 0128 . 0140 . 0140	0.0133 0 .0140 .0140	0.0138 .0140 .0140			
8			. 0075	0077 0079 0117	. 0079	(0079 2. 0079 2. 0123 .	. 0079 . 0079 . 0127	. 0106	. 0097 . 0112 . 0137	. 0103 . 0118 . 0143	. 0112 . 0127 . 0152	. 0119 . 0134 . 0158	. 0126 . 0141 . 0158	. 0132 . 0147 . 0158	. 0138 . 0153 . 0158	. 0143 . 0158 . 0158	0.0148 .0158 .0158	0, 0152 . 0158 . 0158	-
				. 0087 1. . 0117 .	. 0092 . 0120 . 0171	. 0098 . 0123 . 0173	. 0102 . 0128 . 0178	. 0106 . 0132 . 0181	. 0112 . 0138 . 0184	. 0118 . 0143 . 0184	. 0127 . 0152 . 0184	. 0134 . 0160 . 0784	. 0141 . 0166 . 0784	. 0147 . 0172 . 0184	.0153 .0178 .0184	. 0158 . 0183 . 0784	. 0158 . 0184 . 0184	.0163 .0184 .0184	$\begin{array}{c} 0.0171 \\ 0.0184 \\ 0.0184 \end{array}$
				0095 0125 0175	0098 1. 0128 0178	. 0111 . 0131 . 0181	. 01111 . 0135 . 0185	. 01111	. 0115 . 0145 . 0195	. 0121 . 0151 . 0201	. 0130 . 0160 . 0210	. 0137 . 0167 . 0217	. 0144 . 0174 . 0222	. 0150 . 0180 . 0222	. 0156 . 0222	. 0161 . 0191 . 0222	. 0166 . 0196 . 0222	. 0200	0179 0209 0222
6 1 3					0109	0112 0142 0192	. 0116 . 0145 . 0196	. 0120 . 0150 . 0200	. 0126 . 0156 . 0206	. 0132 . 0102 . 0212	. 0141 . 0171 . 0221	.0148 .0178 .0228	. 0155 . 0185 . 0235	. 0161 . 0191 . 0241	. 0166 . 0196 . 0246	. 0172 . 0202 . 0252	. 0176 . 0206 . 0256	. 0211 . 0261	$ \begin{array}{c} .0190 \\ .0220 \\ .0270 \end{array} $
4 3 1 6						0130 0160 0210	. 0134 . 0164 . 0215	. 0138 . 0168 . 0218	. 0145 . 0204 . 0225	. 0150 . 0204 . 0230	. 0159 . 0204 . 0239	. 0167 . 0204 . 0247	. 0204 . 0253	. 0179 . 0209 . 0259	. 0215 . 0215 . 0265	. 0190 . 0220 . 0270	. 0195 . 0225 . 0275	. 0199 . 0229 . 0279	$\begin{array}{c} .0208 \\ .0238 \\ .0288 \end{array}$

Nore.—It is preferable to avoid the use of tolerances set in italies by choosing a closer class, shorter length of engagement, coarser pitch, or smaller diameter. When the length of engagement exceeds one diameter tolerance exceeds 90 percent of the major diameter tolerance, table 2.3 column 4, the major diameter tolerance exceeds 90 percent of the pitch diameter tolerance. 1 Standard size of the American National coarse-thread series. 2 Standard size of the American National fine-thread series.

Table 2.5.—Pitch diameter tolerances for screw threads of special diameters, pitches, and lengths of engagement, class 2 (see note 2)

Threads		Lengths of engage- ment							Pit	ch diam	cter tole	ranees for	Pitch diameter toleranees for diameters up to and ineluding-	rs up to	and inelt	nding—							
per inch	From—	To and in- eluding—	118 ineh	1/8 inch	316 ineh	1/4 inch	3/8 inch	1/2 inch	34 inch	inch i	1½ inches	2 inehes	3 inches	inches i	6 inches 1	8 inches i	10 inches i	12 inches i	14 inches in	16 inches i	18 inches	20 inches	24 inches
64	in.	in. 12.	in. 0.0019	im. 0.0019	in. 0.0024	in. 0.0027	in. 0.0030	in. 0. 0032	in. 0.0035	<i>in.</i> 0. 0038	in.	in.	in.	in.	rin.	iù.	in.	in.	in.	in.	in.	in.	in.
26	1/2	7272	. 0020	. 0020	. 0024	. 0027	. 0031	. 0033	0036	0038 0	0.0040												
48	1/2	11/2	. 0022	. 0022	. 0024	. 0027	. 0032	. 0034	. 0037	. 0039	.0044												
40	1/2	7,27,2	. 0024	1,0024	. 0024	. 0027	. 0033	. 0035	. 0038	. 0041	. 0045	0.0048											
36	1/2	75,75		. 0025	. 0025	. 0027	. 0033	. 0036	. 0039	. 0042	. 0046	. 0050											
32		70,70		. 0027	. 0027	. 0027	. 0033	. 0036	. 0040	. 0043	. 0047	. 0051	0.0054										
83	1/2	7277			. 0031	2. 0031 . 0041	. 0033	. 0036	. 0041	. 0044	. 0048	. 0052	. 0058	0.0062									
24		11,2,			. 0033	. 0033	2.0033 .0041	. 0036	. 0041	. 0045	. 0050	. 0054	9900.	. 0065									
20	{	7272			. 0036	1.0036	. 0036	2. 0036 . 0041	. 0041	. 0047	. 0052	. 0056	. 0062	.0067	0.0072								
28	11/2	3,112				. 0039 . 0041 . 0079	. 0041 . 0041 . 0081	. 0041 . 0041 . 0082	. 0041 . 0041 . <i>0082</i>	. 0049	. 0053	. 0057	. 0063 . 0078 . 0082	. 0082	.0078	0.0082							
16	11/2	3,11,2				. 0040	1. 0045 . 0045 . 0082	. 0045 . 0045 . 0084	2. 0045 2. 0045 . 0087	. 0049	. 0054 . 0056 . 0090	. 0058	.0000.	. 0000	. 0090	0000.	0.0090						
14	11/2	3 2/2/					. 0045 . 0049 . 0084	. 0048 . 0049 . 0086	. 0049 . 0089	. 0049 2. 0049 . 0092	. 0056 . 0056 . 0096	. 0000.	.0066	. 0072 . 0087 . 0098	. 0081 . 0096 . 0098	.0088 .0098 .0098	. 0095	0.0098					
12	11/2	1,11,00 /a/a					. 0046 . 0056 . 0086	. 0048 . 0056 . 0088	. 0051 . 0056 . 0091	. 0054 . 0056 . 0094	. 0056 2. 0056 . 0098	. 0062	. 0068 . 0083 . 0108	. 0074 . 0089 . 0112	. 0083	. 0105	. 0112	. 0103	0. 0109 . 0112 . 0112	0. 0112 . 0112 . 0112			
10	3 1	1 6 9 1						. 0056 . 0088 . 0128	. 0064 . 0091 . 0128	. 0069 . 0094 . 0128	. 0073 . 0098 . 0128	. 0077 . 0100 . 0128	. 0083 . 0108 . 0128	. 0112	. 0121	. 0105 . 0128 . 0128	. 0112 . 0128 . 0128	. 0112 . 0128 . 0128	. 0116 . 0128 . 0128	0122 0.0128	. 0126	0. 0128 . 0128 . 0128	
æ	3	1 6 9 1						. 0060	. 0064 . 0143	1, 0076 . 0095 . 0145	. 0076 . 0100 . 0150	. 0077 . 0104 . 0152	. 0110 . 0152	. 0115	. 0124 . 0152	. 0105 . 0132 . 0152	. 0112 . 0139 . 0152	. 0115 . 0145 . 0162	. 0120 . 0150 . 0152	. 0125 . 0152 . 0152	. 0130	.0135	$\begin{array}{c} 0.\ 0143 \\ .\ 0162 \\ .\ 0152 \end{array}$
9	3	-89							. 0068 . 0098 . 0148	. 0076 . 0101 . 0151	. 0076 1. 0101 . 0155	. 0079	. 0085 . 0115 . 0165	. 0121	. 0100 . 0130 . 0180	. 0107 . 0137 . 0187	. 0114	. 0120 . 0150 . 0200	. 0126 . 0156 . 0202	0131	. 0136 . 0166 . 0202	. 0140	$.0149 \\ .0179 \\ .0202$
	3	63.1				* 				. 0110	. 0164	. 0088 . 0118 . 0168	. 0095 1. 0140 . 0175	. 0100 . 0140 . 0180	. 0109 . 0140 . 0189	. 0117 . 0147 . 0197	. 0123 . 0153 . 0203	. 0129 . 0159 . 0209	. 0135 . 0165 . 0215	0140 0170 0220	. 0145 . 0175 . 0225	. 0149 . 0179 . 0229	. 0158 . 0188 . 0238
Stan	derd size o	1 Standard size of the American National coarse-thread ser	an Natio	nal eosts	o-flucad	corios	2 Stan	Standard size of the American National fine-thread series	of the A	morioan	Nationa	J fine-thi	oines beer		1								

2 Standard size of the American National fine-thread series. ¹ Standard size of the American National eoarse-thread series.

NOTE 1.—It is preferable to avoid the use of tolerances set in italies by choosing a closer class, shorter length of engagement, coarser pitch, or smaller diameter. When the length of engagement exceeds one diameter and the pitch diameter tolerance exceeds 90 percent of the major diameter tolerance, table 2.3, column 5, the major diameter tolerance shall be 110 percent of the pitch diameter tolerance. Nore 2.—When it is expedient to apply class 2 to new design, the piteh and minor diameter toleranees published in tables 12 and 15 of ASA B1.1-1957, Unified and American Screw Threads, should be applied.

Table 2.6.—Pitch diameter tolerances for screw threads of special diameters, pitches, and lengths of engagement, class 3 (sec note 2)

Threads		Lengths of engage- ment							P	teh diam	eter tole	Pitch diameter toleranees for diameters up to and including-	r diamete	rs up to	and incl	nding—		,					
per men	From—	To and in- cluding—	1/16 inch	1/8 inch	3/16 inch	14 inch	3,8 inch	1/2 inch	34 inch	1 inch	1½ inches i	inches i	3 inches	4 inches i	6 inches i	8 inches i	10 inches ii	12 inches i	14 inches in	16 inches i	18 inches i	20 inches i	24 inches
64	in. { _{1/2}	in . $\frac{in}{1/2}$. $11/2$	in. 0.0014	in. 0.0014	in. 0.0017	in. 0.0019	<i>in.</i> 0.0023 .0030	in. 0.0025 .0030	in. 0.0028 .0030	<i>in.</i> 0. 0031 . 0036	in. 0.0036 .0038	in. 0.0038 .0038	in.	in.	iñ.	in.	in.	in.	in.	in.	in.	in.	in.
56	34	11/2	.0015	. 0015	. 0017	. 0019	. 0024	. 0026	.0029	. 0032	. 0036	.0040	1 1										
48	{	1/2 11/2	.0016	.0016	. 0017	. 0019	. 0024	. 0036	. 0029	. 0032	. 0040	. 0041	0.0044										
40		1,5	. 0030	1,0017	. 0017	. 0019	. 0024	. 0026	. 0030	. 0033	. 0040	.0041	.0048										
36	{ <u>1</u> 52	2,27		.0018	. 0018	. 0019	. 0024	. 0026	. 0030	. 0033	. 0040	. 0042	. 0048	0.0050									
32	<u>3</u>	1,5		. 0019	. 0019	. 0019	. 0024	. 0036	. 0030	. 0034	. 0038	. 0042	.0048	.0054									
88	<u>\$f</u> }	1,2			. 0022	2, 0022 . 0030	. 0024	. 0026	. 0030	. 0034	. 0039	. 0043	. 0062	.0054	0.0062								
24		1,52			. 0024	. 0024	2, 0024 . 0030	. 0026	. 0030	. 0035	. 0040	. 0044	. 0050	. 0055	.0064								
50	11/2	33 3			.0025	1, 0026 . 0030 . 0066	. 0026	2, 0026 . 0030 . 0070	. 0030	. 0036 . 0036 . 0071	.0040	. 0045	. 0051 . 0066 . 0072	.0056	.0065	0.0072 .0072 .0072							
18	13/2	3 3 3				. 0027	. 0030	. 0030	. 0030	. 0036 . 0036 . 0071	. 0040	.0045	.0051	. 0057 . 0072 . 0082	.0066	.0082	0.0080						
16	13/2	1 1/2 3				.0028	1, 0032 . 0032 . 0070	. 0032	2.0032 2.0032 .0071	. 0036 . 0036 . 0071	.0040	. 0046 . 0061 . 0084	.0052	.0058	.0066 .0081 .0090	.0059	0000.	0.0087					
14	13/2	15 115 3					.0032	. 0036	. 0036	2. 0036 2. 0036 . 0071	.0040	.0047	. 0053 . 0068 . 0092	. 0058 . 0073 . 0098	.0067 .0082 .0098	.0075	. 0082 . 0097 . 0098	0.088 0.098 8600	0.0093 0.0098 0.0098	0.0098			
12	135	3 3 3					.0032	.0036	. 0040	.0040	2.0040 2.0040 .0071	. 0048 . 0063 . 0084	. 0054 . 0069 . 0092	. 0059 . 0074 . 0099	.0068 .0083 .0108	.0076 .0091 .0112	.0083 .0098 .0112	.0089	.0094	0099 (0.0112)	$0.0104 \ 0.0112 \ 0.0112$	0.0109	
10	3 1	33						.0040	1, 0045 . 0071 . 0123	.0054	.0059	. 0063 . 0084 . 0128	.0069	. 0074 . 0099 . 0128	.0083	. 0112	. 0098 . 0119 . 0128	.0104 .0125 .0128	. 0109 . 0128 . 0128	. 0112 . 0128 . 0128	. 0112 . 0128 . 0128	0115 ($\begin{array}{c} 0.0124 \\ .0128 \\ .0128 \end{array}$
∞	3.1	33				1 1		.0042	.0045	1, 0054 . 0071 . 0128	.0059	.0086	. 0069	. 0074 . 0099 . 0148	. 0083 . 0108 . 0152	. 0114	. 9098 . 0121 . 0152	.0104 .0127 .0152	. 0109 . 0132 . 0152	. 0112 . 0138 . 0152	. 0113 . 0143 . 0152	0117 0147 0152	$\begin{array}{c} .0126 \\ .0152 \\ .0152 \\ .0152 \end{array}$
9	3 3 1	1 3			1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			. 0048	.0054	. 0059 1. 0071 . 0135	.0063	.0069	. 0074 . 0100 . 0150	. 0083 . 0109 . 0159	. 0091	. 9098 . 9124 . 9174	. 0104 . 0130 . 0180	. 0109 . 0135 . 0185	. 0112 . 0140 . 0190	. 0115 . 0145 . 0195	. 0120 . 0150 . 0200	0128 0158 0202
4	3	331								. 0055	.0059	.0063	. 0070 1. 0097 . 0150	. 0075 . 0105 . 0155	. 0084 . 0114 . 0164	.0092	. 0128	.0104 .0134 .0184	. 0110	. 0115 . 0145 . 0195	. 0120 . 0150 . 0200	. 0124 . 0154 . 0204	0133 0163 0213
1 Stan	idard size o	1 Standard size of the American National coarse-thread seri	san Natio	onal coar	se-thread	d series.	2 Sta	ndard et	ze of the	Standard size of the American National fine-thread series	Notion	ol 6no.th	200						-			-	1

² Standard size of the American National fine-thread series. Standard size of the American National coarse-thread series.

NOTE 1.—It is preferable to avoid the use of tolerances set in italics by choosing a closer class, shorter length of engagement, coarser pitch, or smaller diameter. When the length of engagement exceeds 90 percent of the major diameter tolerance, table 2.3, column 5, the major diameter tolerance shall be 110 percent of the pitch diameter tolerance.

Note 2.—When it is expedient to apply class 3 to new design, the pitch and minor diameter tolerances published in tables 13 and 15 of ASA B1.1-1957, Unified and American Serew Threads, should he applied.

Table 2.7.—Pitch diameter tolerances for screw threads of special diameters, pitches, and lengths of engagement, class 4

Pitch diameter tolerances for diameters up to and including-

	20 inehes	in. 6. 0052 . 0059 . 0062	. 0052 . 0060 . <i>0066</i>	. 0053 . 0060 . 0072	. 0053 . 0061 . 0073	0053 0061	0054 0061 0074	. 0054 . 9062 . 0074	. 0062 . 0074 . 0098	. 0062 . 0074 . 0089	. 0062 . 0075 . 9100	. 9062 . 0677 . 0102
	18 inehes	$im. \\ 0.0050 \\ 0.0057 \\ 0.0062$.0050	.0050	.0051	. 0059	. 0059	. 0052	.0060	.0060	.0000	.0005
	16 inches	in. 0.0047 .0055 .0062	.0048	.0043	.0048	.0049	.0049	. 0050	.0057	.0057	.0057	. 0058
	14 inehes	in. 0.0045 .0052	.0045	.0046	.0046	. 9046	. 0047 . 0054 . 0067	. 0047	. 9067	. 0055	. 0055	. 0055
	12 inebes	in. 0.0042 0.049	. 0042	.0043	. 0043 . 0050 . 0063	.0043	.0044	.0044	. 0052	0052 0064 0088	. 0052	. 0052
	10 inebes	in. 0.0039 .0046 .0050	. 0039	.0040	.0040	. 0040	. 0041	. 0049	.0049	. 0049	. 0049	. 00649
	8 inehes	in. 0.0036 0.0043	.0036	.0036	.0037	. 0037	. 0038 . 0045 . 0058	. 0038 . 0046 . 0058	.0046	.0046	.0046	.0046
	6 inches	in. 0.0032 0.0039	.0032	.0033	.0033	. 0033 . 0041 . 0053	. 0034 . 0041 . 0054	.0034 .0042 .0054	. 0042	.0042	.0042	. 0042
	4 inches	in. 0.0027 0.0035 0.0047	.0028 .0035 .0048	.0028 .0036 .0048	.0028	.0029	.0029	.0030	.0037	.0037	.0037	.0053
	3 inehes	in. 0.0024 0.0032 0.0044	. 0025 . 0032 . 0045	.0025 .0033 .0045	. 0026 . 0033 . 0046	. 0026 . 0033 . 0046	.0026	.0027	. 0034	. 0034	.0034	2.0035 2.0048 .0075
	2 inches	in. 0.0021 .0029 .0041	. 0022	.0022	. 0023	. 0023	. 0023	.0024	. 0031	. 0031 . 0043 . 0068	. 0031 . 0044 . 0069	. 0032 . 0047 . 0072
	$1\frac{1}{2}$ inches	in. 0.0019 0.0020 0.0036	.0020	.0020	. 0020 . 0020 . 0036	.0020	. 0020	. 0020 1, 0020 . 0036	. 0023	.0027	. 0027 2. 0036 . 0037	. 0030
	1 ineh	in. 0.0017 0.0018 .0036	. 0018 . 0018 . 0036	.0018 .0018 .0036	. 0018 . 0018 . 0036	. 0018 . 0018 . 0036	. 0018 1, 0018 . 0036	.0020	. 0023	2: 0027 . 0036 . 0064	.0027	. 0028
	% inch	in. 0.0015 0.0036	.0015 .0015 .0036	0015 0015 0036	.0015	. 0016 1, 0016 . 0036	.0018	.0020	2, 0023 . 0036 . 0062	. 0023	. 0024	
	1/2 Inch	in. 0.0013 0.0015	. 0013 . 0015 . 0035	1,0013 .0015 .0035	.0015	. 0016 . 0016 . 0036	. 0018 . 0018 . 0036	.0018	.0020	.0021		
	% inch	in. 0.0012 0.0015 0.0033	1.0012 .0015 .0034	.0013	.0015	2.0016 .0016 .0035	.0016	.0016	1 1			
	14 inch	in. 10.0011 .0015	.0012	2.0013 .0015 .0033	.0013	.0014						
	To and in- eluding—	žŽŽ°	3,2,2	3,7,7,8	3,72	3,7,7	3,17,2	2777	681	6 3 1	6 8 1	
	From-	in. 1727	11/2/2	7,77	11,27	11/2/2	11/2	7177	3	3 - 1	3 1	3
preads	per inch	88	24	20	18	16	14	12	10	00	9	4

NOTE.—It is preferable to avoid the use of tolerances set in Italies by choosing a shorter length of engagement, coarser pitch, or smaller diameter. When the length of engagement exceeds one diameter tolerance, table 2.3, column 5, the major diameter tolerance shall be 110 percent of the pitch diameter tolerance. ² Standard size of the American National coarse-thread series. ¹ Standard size of the American National fine-thread series.

Lengths of engagement

5. GAGES

The classification of gages as presented in section VI

applies also to gages for special threads.

In ordering gages for a special thread, the length of engagement of the component thread (as distinct from the length of the gage), and the diameter, pitch, and class of thread, should be stated, in order that the minimum material product limit, (pitch diameter of "not go" gage) may be determined correctly. With regard to the length of the "go" gage, and gage tolerances, for threads of exceptionally long lengths of engagement, the following practices ary rong renders of classes I or 2, use the standard length of "go" gage as given in Commercial Standard CS8, and apply X tolerances; (2) for threads of classes 3 or 4, make the length of the "go" gage equal to the length of engagement and apply W tolerances.

With regard to the marking of gages, each gage shall be plainly marked, for identification, with the diameter, threads per inch, thread series—that is, "NS" to indicate a special thread of American National form—and class of

thread.

APPENDIX 3. HOLE SIZE LIMITS

Recommended hole size limits before threading and the corresponding tolerances are derived, to provide for optimum strength of fastenings and tapping conditions, from the minimum and maximum minor diameters of the internal thread, using the following rules, as illustrated in figure 3.1:

For the range to and including 1/3 D the minimum hole size is equal to the minimum minor diameter of the internal thread and the maximum hole size is larger by one-half the minor diameter tolerance.

For the range from 1/3 D to 1/3 D the minimum and maximum hole sizes are each one quarter of the minor diameter tolerance larger than the corresponding limits for the length of engagement to and including $\frac{1}{3}$ D.

For the range from $\frac{2}{3}$ D to $\frac{1}{2}$ D the minimum hole size is larger than the minimum minor diameter of the internal thread by one-half the minor diameter tolerance, and the maximum hole size is equal to the maximum minor diameter.

Figure 3.1.—Distribution of hole size limits before tapping, Unified and American threads.

For the range from $1\frac{1}{2}$ D to 3 D the minimum and maximum hole sizes are each one quarter of the minor diameter tolerance of the internal thread larger than the corresponding limits for the $\frac{2}{3}$ D to $\frac{1}{2}$ D length of engagement.

From the foregoing it will be seen that the difference between limits in each range is the same and equal to one-half of the minor diameter tolerance. This is a general rule. However, the minimum differences for sizes below ¼ in. are equal to the minor diameter tolerances given in tables IV.10 and IV.11 for lengths of engagement to and including $\frac{1}{3}$ D. For lengths of engagement greater than 1/3 D and for sizes 1/4 in. and larger the values are adjusted so that the difference between limits is never less than 0.0040 in.

For diameter-pitch combinations other than those given in tables 3.1 and 3.2, the tolerances given in table III.10, or the tolerance derived from the formula, should be similarly applied to determine the hole size limits.

Internal threads requiring modified minor diameters for lengths of engagement less than $\frac{2}{3}$ D to develop the optimum strength of the fastening, or longer than 11/2 \overrightarrow{D} to reduce tapping difficulties, should be designated in accordance with par. 3, p. 26.

For National Miniature threads the distribution of hole size limits differs from the above, to accord with conditions peculiar to miniature threads, and is shown in figure 3.2. The maximum limits are based on providing a functionally adequate fastening for the most common applications, where the material of the externally threaded member is of a strength essentially equal to or greater than that of its mating part. In applications where, because of considerations other than the fastening, the screw is made of an appreciably weaker material, the use of smaller hole sizes is usually necessary to extend thread engagement to a greater depth on the external thread. However, hole sizes down to the minimum limit of the minor diameters must be avoided to allow for the spin-up developed as the result of the negative rake with which these small taps are ground.

Recommended hole size limits are tabulated in tables 3.1, 3.2, and 3.3.

Figure 3.2.—Distribution of hole size limits before tapping, National Miniature threads.

Table 3.1.—Recommended hole size limits before threading for different lengths of engagement, UNC, UNF, UNEF, UN, UNS, NC, NF, NEF, and N series, classes 1B and 2B

(Based on table IV.10 °)

Desig	nation	Mino	r diameter,	internal th	reads		Recommen	nded hole siz	e limits for	different ler	gths of en	gagement	
Thread size	Threads per inch	Minimum	Percent of basic	Maxi-	Percent of basic	To and incl	luding ⅓ D	Above 1/3 I	D to 33 D	Above ¾ L	to 1½ D	Above 1½.	D to 3 D
			thread height ^b	mum ¢	thread height b	Min	Max	Min	Max	Min	Max	Min	Max
No. in. 0 .060 1 .073 1 .073	80 64 72	in. 0.0465 .0561 .0580	83. 1 83. 3 83. 1	$in. \\ 0.0514 \\ .0623 \\ .0635$	52. 9 52. 7 52. 7	$in. \\ 0.0465 \\ .0561 \\ .0580$	in. 0.0500 .0599 .0613	in. 0.0479 .0585 .0596	in. 0.0514 .0623 .0629	in. 0.0479 .0585 .0602	$in. \\ 0.0514 \\ 0.0623 \\ 0.0635$	$in. \\ 0.0479 \\ .0585 \\ .0602$	in. 0.051 .032 .063
2 .086	56	. 0667	83. 2	. 0737	53. 0	. 0667	. 0705	.0686	.0724 $.0740$ $.0825$ $.0848$. 0699	. 0737	. 0699	. 073
2 .086	64	. 0691	83. 3	. 0753	52. 7	. 0691	. 0724	.0707		. 0720	. 0753	. 0720	. 075
3 .099	48	. 0764	83. 5	. 0845	53. 6	. 0764	. 0804	.0785		. 0805	. 0845	. 0806	. 084
3 .099	56	. 0797	83. 2	. 0865	53. 9	. 0797	. 0831	.0814		. 0821	. 0865	. 0833	. 086
$\begin{array}{ccc} 4 & .112 \\ 4 & .112 \\ 5 & .125 \\ 5 & .125 \end{array}$	40	. 0849	83. 4	. 0939	55. 7	. 0849	. 0894	. 0871	. 0916	. 0894	. 0939	. 0902	. 094
	48	. 0894	83. 5	. 0968	56. 2	. 0894	. 0931	. 0912	. 0949	. 0931	. 0968	. 0939	. 097
	40	. 0979	83. 4	. 1062	57. 9	. 0979	. 1020	. 1000	. 1041	. 1021	. 1062	. 1036	. 107
	44	. 1004	83. 3	. 1079	57. 9	. 1004	. 1042	. 1023	. 1060	. 1042	. 1079	. 1060	. 108
6 .138	32	. 104	83. 8	. 114	59. 1	. 104	. 109	. 106	. 112	. 109	. 114	. 112	. 117
6 .138	40	. 111	83. 1	. 119	58. 5	. 111	. 115	. 113	. 117	. 115	. 119	. 117	. 121
8 .164	32	. 130	83. 8	. 139	61. 6	. 130	. 134	. 132	. 137	. 134	. 139	. 137	. 141
8 .164	36	. 134	83. 1	. 142	61. 0	. 134	. 138	. 136	. 140	. 128	. 142	. 140	. 144
10 .190	24	. 145	83. 1	. 156	62. 8	. 145	. 150	. 148	. 154	. 150	. 156	. 152	. 159
10 .190	32	. 156	83. 8	. 164	64. 1	. 156	. 160	. 158	. 162	. 160	. 164	. 162	. 166
12 .216	24	. 171	83. 1	. 181	64. 7	. 171	. 176	. 174	. 179	. 176	. 181	. 178	. 184
12 .216	28	. 177	84. 1	. 186	64. 7	. 177	. 182	. 179	. 184	. 182	. 185	. 184	. 188
12 .216	32	. 182	83. 8	. 190	64. 1	. 182	. 186	. 184	. 188	. 186	. 190	. 188	. 192
1/4	20	. 196	83. 1	. 207	66. 2	. 196	. 202	. 199	. 204	$\begin{array}{c} .202 \\ .216 \\ .220 \\ .224 \end{array}$. 207	. 204	. 210
1/4	28	. 211	84. 1	. 220	64. 7	. 211	. 216	. 213	. 218		. 220	. 218	. 222
1/4	32	. 216	83. 8	. 224	64. 1	. 216	. 220	. 218	. 222		. 224	. 222	. 226
1/4	36	. 220	83. 1	. 226	66. 5	. 220	. 224	. 221	. 225		. 226	. 225	. 228
5/16	18	. 252	83. 8	. 265	65. 8	. 252	. 259	. 255	. 262	. 259	. 265	. 262	. 268
5/16	24	. 267	84. 1	. 277	65. 6	. 267	. 272	. 270	. 275	. 272	. 277	. 275	. 280
5/16	32	. 279	82. 5	. 286	65. 3	. 279	. 283	. 281	. 285	. 283	. 286	. 285	. 289
5/16	36	. 282	84. 5	. 289	65. 1	. 282	. 286	. 284	. 288	. 285	. 289	. 287	. 291
3/8	16	. 307	83. 8	. 321	66. 5	. 307	. 314	. 311	. 318	. 314	321 340 349 352	. 318	. 325
3/8	24	. 330	83. 1	. 340	64. 7	. 330	. 335	. 233	. 338	. 335		. 328	. 343
3/8	32	. 341	83. 8	. 349	64. 1	. 341	. 345	. 343	. 347	. 345		. 347	. 351
3/8	36	. 345	83. 1	. 352	63. 7	. 345	. 349	. 346	. 350	. 347		. 349	. 353
7/16 7/16 7/16 7/16 1/2 1/2 1/2 1/2 9/16 9/16	14 20 28 13 12 20 28 12 18 24	. 360 . 383 . 399 . 417 . 410 . 446 . 461 . 472 . 502 . 517	83. 5 83. 9 83. 0 83. 1 83. 1 84. 1 83. 6 83. 8 84. 1	. 376 . 395 . 407 . 434 . 428 . 457 . 470 . 490 . 515 . 527	66. 3 65. 4 65. 7 66. 1 66. 5 66. 2 64. 7 67. 0 65. 8 65. 6	. 360 . 383 . 369 . 417 . 410 . 446 . 461 . 472 . 502 . 517	. 368 . 389 . 403 . 426 . 414 . 452 . 467 . 476 . 509 . 522	. 364 . 386 . 401 . 421 . 414 . 449 . 463 . 476 . 505	. 372 . 391 . 406 . 420 . 424 . 454 . 468 . 486 . 512 . 525	. 368 . 389 . 403 . 426 . 414 . 452 . 466 . 476 . 509 . 522	. 376 . 395 . 407 . 434 . 428 . 457 . 470 . 490 . 515 . 527	. 372 . 391 . 406 . 430 . 424 . 454 . 468 . 486 . 512 . 525	. 380 . 397 . 410 . 438 . 433 . 460 . 472 . 495 . 518
916 58 58 58 58 58 58 58 11/16	28 11 12 18 24 28 12 24	. 524 . 527 . 535 . 565 . 580 . 586 . 597 . 642	83. 0 83. 1 83. 1 83. 1 84. 1 83. 6	. 532 . 546 . 553 . 578 . 590 . 595 . 615	65. 7 67. 0 66. 5 65. 1 64. 7 64. 1	. 524 . 527 . 535 . 565 . 580 . 586 . 597	. 528 . 536 . 544 . 572 . 585 . 591 . 606	. 526 . 532 . 540 . 568 . 583 . 588	. 531 . 541 . 549 . 575 . 588 . 593	. 528 . 536 . 544 . 572 . 585 . 591	. 532 . 546 . 553 . 578 . 590 . 595	. 531 . 541 . 549 . 575 . 588 . 593 . 611	. 535 . 551 . 558 . 581 . 593 . 597
11/16 34 34 34 34 34 34 34	10 12 16 20 28	. 642 . 660 . 682 . 696 . 711	84. 1 83. 1 83. 1 83. 8 83. 1 84. 1	. 652 . 663 . 678 . 696 . 707 . 720	65. 6 67. 0 66. 5 66. 5 66. 2 64. 7	. 642 . 642 . 660 . 682 . 696 . 711	. 647 . 653 . 669 . 689 . 702 . 716	. 645 . 647 . 665 . 686 . 699 . 713	. 650 . 658 . 674 . 693 . 704 . 718	. 647 . 653 . 669 . 689 . 702 . 716	. 652 . 663 . 678 . 696 . 707 . 720	. 650 . 658 . 674 . 693 . 704 . 718	. 658 . 668 . 683 . 700 . 710 . 722
13/16 13/16 13/16	12 16 20 9	. 722 . 745 . 758 . 755	83. 6 83. 1 83. 9 83. 1	. 740 . 759 . 770	67. 0 65. 9 65. 4 67. 2	. 722 . 745 . 758 . 755	. 731 . 752 . 764 . 767	. 727 . 749 . 761	. 736 . 756 . 766 . 773	. 731 . 752 . 764 . 767	. 740 . 759 . 770 . 778	. 736 . 756 . 766	. 745 . 763 . 772
7/8	12	. 785	83. 1	. 803	66. 5	. 785	. 794	. 790	. 799	. 794	. 803	. 799	. 808
7/8	14	. 798	83. 0	. 814	65. 7	. 798	. 806	. 802	. 810	. 806	. 814	. 810	. 818
7/8	16	. 807	83. 8	. 821	66. 5	. 807	. 814	. 811	. 818	. 814	. 821	. 818	. 829
7/8	20	. 821	83. 1	. 832	66. 2	. 821	. 827	. 824	. 829	. 827	. 832	. 829	. 833
7/8	28	. 836	84. 1	. 845	64. 7	. 836	. 840	. 838	. 843	. 840	. 845	. 843	. 844
7/8	12	. 847	83. 6	. 865	67. 0	. 847	. 856	. 852	. 861	. 856	. 865	. 861	. 870
15/16	16	. 870	83. 1	. 884	65. 9	. 870	. 877	. 874	. 881	. 877	. 884	. 881	. 888
15/16	20	. 883	83. 9	. 895	65. 4	. 883	. 889	. 886	. 891	. 889	. 895	. 891	. 89
1	8	. 865	83. 1	. 890	67. 7	. 865	. 878	. 871	. 884	. 878	. 890	. 884	. 89
1	12	. 910	83. 1	. 928	66. 5	. 910	. 919	. 915	. 924	. 919	. 928	. 924	. 93
1	14	. 923	83. 0	. 938	66. 8	. 923	. 931	. 927	. 934	. 931	. 938	. 934	. 94
1	16	. 932	83. 8	. 946	66. 5	. 932	. 939	. 936	. 943	. 939	. 946	. 943	. 95
1	20	. 946	83. 1	. 957	66. 2	. 946	. 952	. 949	. 954	. 952	. 957	. 954	. 96
1	28	. 961	84. 1	. 970	64. 7	. 961	. 966	. 963	. 968	. 966	. 970	. 968	. 97
$1\frac{1}{1}$ 6 $1\frac{1}{1}$ 6 $1\frac{1}{1}$ 6	12 16 18	. 972 . 995 1. 002 t end of tal	83. 8 83. 1 83. 8	. 990 1. 009 1. 015	67. 0 65. 9 68. 8	. 972 . 995 1. 002	. 981 1. 002 1. 009	. 977 . 999 1. 005	. 986 1. 055 1. 012	. 981 1. 002 1. 009	. 990 1. 009 1. 015	. 986 1. 055 1. 012	. 998 1. 018 1. 018

187

Table 3.1.—Recommended hole size limits before threading for different lengths of engagement, UNC, UNF, UNEF, UN, UNS, NC, NF, NEF, and N series, classes 1B and 2B—Continued

Desig	nation	Mino	r diameter,	internal thi	reads		Recomme	nded hole siz	ze limits for	different le	ngths of eng	gagement	
Thread size	Threads per inch	Minimum	Percent of basic	Maxi-	Percent of basic	To and inclu	uding ½ D	Above 1/3	D to 3/3 D	Above 33 I	D to 1½ D	Above 1½	D to 3 D
			thread height b	mum ¢	thread height b	Min	Max	Min	Max	Min	Max	Min	Max
No. in. 11/8 11/8 11/8 11/8 11/8 11/8 11/8	7 8 12 16 18 20 28	in. 0. 970 . 990 1. 035 1. 057 1. 065 1. 071 1. 086	83. 5 83. 1 83. 1 83. 8 83. 1 83. 1 84. 1	in. 0.998 1.015 1.053 1.071 1.078 1.082 1.095	68. 4 67. 7 66. 5 66. 5 65. 1 66. 2 64. 7	in. 0.970 .990 1.035 1.057 1.065 1.071 1.086	in. 0. 984 1. 003 1. 044 1. 064 1. 072 1. 077 1. 091	in. 0.977 .996 1.040 1.061 1.068 1.074 1.088	in. 0.991 1.009 1.049 1.068 1.075 1.079 1.093	in. 0.984 1.003 1.044 1.064 1.072 1.077 1.091	in. 0. 998 1. 015 1. 053 1. 071 1. 078 1. 082 1. 095	in. 0.991 1.009 1.049 1.068 1.075 1.079 1.093	in. 1.00 1.02 1.05 1.07 1.08 1.08
$1\frac{3}{16}$ $1\frac{3}{16}$ $1\frac{3}{16}$	12 16 18	1. 097 1. 120 1. 127	83. 6 83. 1 83. 8	1. 115 1. 134 1. 140	67. 0 65. 9 65. 8	1. 097 1. 120 1. 127	1. 106 1. 127 1. 134	1. 102 1. 124 1. 130	1. 111 1. 131 1. 137	1. 106 1. 127 1. 134	1. 115 1. 134 1. 140	1. 111 1. 131 1. 137	1. 12 1. 13 1. 14
11/4 11/4 11/4 11/4 11/4 11/4	7 8 12 16 18 20	1. 095 1. 115 1. 160 1. 182 1. 190 1. 196	83. 5 83. 1 83. 1 83. 8 83. 1 83. 1	1. 123 1. 140 1. 178 1. 196 1. 203 1. 207	68. 4 67. 7 66. 5 66. 5 65. 1 66. 2	1. 095 1. 115 1. 160 1. 182 1. 190 1. 196	1. 109 1. 128 1. 169 1. 189 1. 197 1. 202	1. 102 1. 121 1. 165 1. 186 1. 193 1. 199	1. 116 1. 134 1. 174 1. 193 1. 200 1. 204	1. 109 1. 128 1. 169 1. 189 1. 197 1. 202	1. 123 1. 140 1. 178 1. 196 1. 203 1. 207	1. 116 1. 134 1. 174 1. 193 1. 200 1. 204	1. 13 1. 14 1. 18 1. 20 1. 20 1. 21
15/16 15/16 15/16	12 16 18	1. 222 1. 245 1. 252	83. 6 83. 1 83. 8	1. 240 1. 259 1. 265	67. 0 65. 9 65. 8	1. 222 1. 245 1. 252	1. 231 1. 252 1. 259	1. 227 1. 249 1. 256	1. 236 1. 256 1. 262	1, 231 1, 252 1, 259	1. 240 1. 259 1. 265	1. 236 1. 256 1. 262	1. 24 1. 26 1. 26
138 138 138 138 138	6 8 12 16 18	1. 195 1. 240 1. 285 1. 307 1. 315	83. 1 83. 1 83. 1 83. 8 83. 1	1. 225 1. 265 1. 303 1. 321 1. 328	69. 3 67. 7 66. 5 66. 5 65. 1	1. 195 1. 240 1. 285 1. 307 1. 315	1. 210 1. 253 1. 294 1. 314 1. 322	1. 203 1. 246 1. 290 1. 311 1. 318	1. 221 1. 259 1. 299 1. 318 1. 325	1. 210 1. 253 1. 294 1. 314 1. 322	1. 225 1. 265 1. 303 1. 321 1. 328	1. 221 1. 259 1. 299 1. 318 1. 325	1. 23 1. 27 1. 30 1. 32 1. 33
17/16 17/16 17/16	12 16 18	1. 347 1. 370 1. 377	83. 6 83. 1 83. 8	1. 365 1. 384 1. 390	67. 0 65. 9 65. 8	1. 347 1. 370 1. 377	1. 354 1. 377 1. 384	1. 350 1. 374 1. 380	1. 361 1. 381 1. 387	1. 354 1. 377 1. 384	1. 365 1. 384 1. 390	1. 361 1. 381 1. 387	1. 37 1. 38 1. 39
11/2 11/2 11/2 11/2 11/2 11/2	6 8 12 16 18 20	1. 320 1. 365 1. 410 1. 432 1. 440 1. 446	83. 1 83. 1 83. 1 83. 8 83. 1 83. 1	1. 350 1. 390 1. 428 1. 446 1. 452 1. 457	69. 3 67. 7 66. 5 66. 5 66. 5 66. 2	1. 320 1. 365 1. 410 1. 432 1. 440 1. 446	1. 335 1. 378 1. 419 1. 439 1. 446 1. 452	1. 328 1. 371 1. 415 1. 436 1. 443 1. 449	1. 346 1. 384 1. 424 1. 443 1. 450 1. 454	1. 335 1. 378 1. 419 1. 439 1. 446 1. 452	1. 350 1. 390 1. 428 1. 446 1. 452 1. 457	1. 346 1. 384 1. 424 1. 443 1. 450 1. 454	1. 36 1. 39 1. 45 1. 46 1. 46
1%16 1%16	16 18	1. 495 1. 502	83. 1 83. 8	1. 509 1. 515	65, 9 65, 8	1. 495 1. 502	1. 502 1. 509	1. 499 1. 505	1, 506 1, 512	1. 502 1. 509	1. 509 1. 515	1. 506 1. 512	1. 5: 1. 5:
$1\frac{5}{8}$ $1\frac{5}{8}$ $1\frac{5}{8}$ $1\frac{5}{8}$	8 12 16 18	1. 490 1. 535 1. 557 1. 565	83. 1 83. 1 83. 8 83. 1	1. 515 1. 553 1. 571 1. 578	67. 7 66. 5 66. 5 65. 1	1. 490 1. 535 1. 557 1. 565	1. 498 1. 544 1. 564 1. 572	1. 494 1. 540 1. 561 1. 568	1. 509 1. 549 1. 568 1. 575	1. 498 1. 544 1. 564 1. 572	1. 515 1. 553 1. 571 1. 578	1, 509 1, 549 1, 568 1, 575	1. 55 1. 55 1. 55 1. 58
11½16 11½16	16 18	1, 620 1, 627	83. 1 83. 8	1. 634 1. 640	65. 9 65. 8	1. 620 1. 627	1. 627 1. 634	1. 624 1. 630	1. 631 1. 637	1. 627 1. 634	1. 634 1. 640	1. 631 1. 637	1. 60 1. 60
134 134 134 134 134 134	5 8 12 16 20	1. 534 1. 615 1. 660 1. 682 1. 696	83. 1 83. 1 83. 1 83. 8 83. 1	1. 568 1. 640 1. 678 1. 696 1. 707	70. 1 67. 7 66. 5 66. 5 66. 2	1, 534 1, 615 1, 660 1, 682 1, 696	1. 551 1. 628 1. 669 1. 689 1. 702	1. 543 1. 621 1. 665 1. 686 1. 699	1, 560 1, 634 1, 674 1, 693 1, 704	1. 551 1. 628 1. 669 1. 689 1. 702	1. 568 1. 640 1. 678 1. 696 1. 707	1. 560 1. 634 1. 674 1. 693 1. 704	1. 5 1. 6 1. 6 1. 7 1. 7
113/16		1,745	83.1	1, 759	65, 9	1.745	1.752	1.749	1, 756	1. 752	1,759	1. 756	1. 7
$\frac{17}{8}$ $\frac{17}{8}$ $\frac{17}{8}$	8 12 16	1,740 1,785 1,807	83. 1 83. 1 83. 8	1, 765 1, 803 1, 821	67, 7 66, 5 66, 5	1,740 1,785 1,807	1, 752 1, 794 1, 814	1, 746 1, 790 1, 810	1, 759 1, 799 1, 818	1. 752 1. 794 1. 814	1, 765 1, 803 1, 821	1, 759 1, 799 1, 818	1, 7 1, 8 1, 8
115/16	16	1.870	83. 1	1, 884	65, 9	1.870	1. 877	1.874	1. 881	1. 877	1.884	1. 881	1.8
2 2 2 2 2 2	$\begin{array}{c} 4\frac{1}{2} \\ 8 \\ 12 \\ 16 \\ 20 \\ \end{array}$	1, 759 1, 865 1, 910 1, 932 1, 946	83. 5 83. 1 83. 1 83. 8 83. 1	1. 795 1. 890 1. 928 1. 946 1. 957	71. 0 67. 7 66. 5 66. 5 66. 2	1, 759 1, 865 1, 910 1, 932 1, 946	1,777 1,878 1,919 1,939 1,952	1, 768 1, 871 1, 915 1, 936 1, 949	1, 786 1, 884 1, 924 1, 943 1, 954	1, 777 1, 878 1, 919 1, 939 1, 952	1. 795 1. 890 1. 928 1. 946 1. 957	1. 786 1. 884 1. 924 1. 943 1. 954	1. 8 1. 8 1. 9 1. 9 1. 9
21/16	16	1. 995	83, 1	2.009	65. 9	1. 995	2.002	2, 000	2.006	2,002	2,009	2,006	2, 0
$2\frac{1}{8}$ $2\frac{1}{8}$ $2\frac{1}{8}$	8 12 16	1, 990 2, 035 2, 057	83. 1 83. 1 83. 8	2, 015 2, 053 2, 071	67. 7 66. 5 66. 5		2.003 2.044 2.064	1. 996 2. 040 2. 061	2,009 2,049 2,068	2, 003 2, 044 2, 064	2. 015 2. 053 2. 071	2, 009 2, 049 2, 068	2, 0; 2, 0; 2, 0;
$2\frac{3}{16}$	16	2. 120	83.1	2. 134	65. 9	2, 120	2, 127	2. 124	2.131	2.127	2.134	2. 131	2.1
21/4 21/4 21/4 21/4 21/4	$\begin{array}{c} 4\frac{1}{2} \\ 8 \\ 12 \\ 16 \\ 20 \end{array}$	2, 009 2, 115 2, 160 2, 182 2, 196	83. 5 83. 1 83. 1 83. 8 83. 1	2. 045 2. 140 2. 178 2. 196 2. 207	71. 0 67. 7 66. 5 66. 5 66. 2	2. 115 2. 160	2.027 2.128 2.169 2.189 2.202	2. 018 2. 121 2. 165 2. 186 2. 199	2. 036 2. 134 2. 174 2. 193 2. 204	2. 027 2. 128 2. 169 2. 189 2. 202	2, 045 2, 140 2, 178 2, 196 2, 207	2. 036 2. 134 2. 174 2. 193 2. 204	2. 0 2. 1 2. 1 2. 2 2. 2
25/16 23/8 23/8 27/16 See f	16 12 16 16	2, 245 2, 285 2, 307 2, 370 at end of ta	83. 1 83. 1 83. 8 83. 1	2. 259 2. 303 2. 321 2. 384	65. 9 66. 5 66. 5 65. 9	2, 245 2, 285 2, 307 2, 370	2. 252 2. 294 2. 314 2. 377	2, 249 2, 290 2, 311 2, 374	2, 256 2, 299 2, 318 2, 381	2. 252 2. 294 2. 314 2. 377	2. 259 2. 303 2. 321 2. 384	2, 256 2, 299 2, 318 2, 381	2. 26 2. 30 2. 32 2. 38

Table 3.1.—Recommended hole size limits before threading for different lengths of engagement, UNC, UNF, UNEF, UN, UNS, NC, NF, NEF, and N series, classes 1B and 2B—Continued (Based on table IV.10 a)

Desig	nation	Mino	r diameter,	internal th	reads	(Dated on	Recomme		ze limits for	different le	ngths of eng	gagement	
Thread size	Threads per inch	Minimum	Percent of basic	Maxi-	Percent of basic	To and inc	luding ½ D	Above 1/3	D to 3/3 D	Above 33	D to 1½ D	Above 11/2	D to 3 D
Size	per men	, minimum	thread height b	mum c	thread height b	Min	Max	Min	Max	Min	Max	Min	Max
$No. in.$ $2\frac{1}{2}$ $2\frac{1}{2}$ $2\frac{1}{2}$ $2\frac{1}{2}$ $2\frac{1}{2}$ $2\frac{1}{2}$	4 8 12 16 20	in. 2.229 2.365 2.410 2.432 2.446	83. 4 83. 1 83. 1 83. 8 83. 1	in. 2. 267 2. 390 2. 428 2. 446 2. 457	71. 7 67. 7 66. 5 66. 5 66. 2	in. 2, 229 2, 365 2, 410 2, 432 2, 446	in. 2. 248 2. 378 2. 419 2. 439 2. 452	in. 2, 238 2, 371 2, 415 2, 436 2, 449	in. 2, 258 2, 384 2, 424 2, 443 2, 454	in. 2.248 2.378 2.419 2.439 2.452	in. 2. 267 2. 390 2. 428 2. 446 2. 457	in. 2, 258 2, 384 2, 424 2, 443 2, 454	in. 2.277 2.396 2.433 2.450 2.460
$\frac{25\%}{25\%}$	12	2, 535	83. 1	2, 553	66, 5	2. 535	2, 544	2, 540	2, 549	2, 544	2, 553	2, 549	2, 558
	16	2, 557	83. 8	2, 571	66, 5	2. 557	2, 564	2, 561	2, 568	2, 564	2, 571	2, 568	2, 575
$2\frac{3}{4}$ $2\frac{3}{4}$ $2\frac{3}{4}$ $2\frac{3}{4}$	4	2. 479	83. 4	2, 517	71. 7	2. 479	2. 498	2. 489	2, 508	2, 498	2. 517	2. 508	2, 527
	8	2. 615	83. 1	2, 640	67. 7	2. 615	2. 628	2. 621	2, 634	2, 628	2. 640	2. 634	2, 644
	12	2. 660	83. 1	2, 678	66. 5	2. 660	2. 669	2. 665	2, 674	2, 669	2. 678	2. 674	2, 683
	16	2. 682	83. 8	2, 696	66. 5	2. 682	2. 689	2. 686	2, 693	2, 689	2. 696	2. 693	2, 700
$\frac{27/8}{27/8}$	12 16	2.785 2.807	$83.1 \\ 83.8$	2, 803 2, 821	66, 5 66, 5	2. 785 2. 807	2.794 2.814	2, 790 2, 811	2.809 2.818	2. 794 2. 814	2, 803 2, 821	2,809 2,818	2, 808 2, 825
3	4	2.729	83. 4	2. 767	71. 7	2. 729	2, 748	2, 739	2, 758	2.748	2, 767	2. 758	2, 777
3	8	2.865	83. 1	2. 890	67. 7	2. 865	2, 878	2, 871	2, 884	2.878	2, 890	2. 884	2, 896
3	12	2.910	83. 1	2. 928	66. 5	2. 910	2, 919	2, 915	2, 924	2.919	2, 928	2. 924	2, 933
3	16	2.932	83. 8	2. 946	66. 5	2. 932	2, 939	2, 936	2, 943	2.939	2, 946	2. 943	2, 950
3½8	12	3, 035	83.1	3, 053	66. 5	3.035	3. 044	3, 040	3.049	3.044	3, 053	3, 049	3, 058
3½8	16	3, 057	83.8	3, 071	66. 5	3.057	3. 064	3, 061	3.068	3.064	3, 071	3, 068	3, 075
$ \begin{array}{r} 314 \\ 314 \\ 314 \\ 314 \end{array} $	4	2. 979	83.4	3. 017	71. 7	2, 979	2, 998	2, 989	3.008	2.998	3, 017	3. 008	3. 027
	8	3. 115	83.1	3. 140	67. 7	3, 115	3, 128	3, 121	3.134	3.128	3, 140	3. 134	3. 146
	12	3. 160	83.1	3. 178	66. 5	3, 160	3, 169	3, 165	3.174	3.169	3, 178	3. 174	3. 183
	16	3. 182	83.8	3. 196	66. 5	3, 182	3, 189	3, 186	3.193	3.189	3, 196	3. 193	3. 200
33/8	12	3. 285	83.1	3. 303	66. 5	3. 285	3, 294	3. 290	3, 299	3, 294	3, 303	3. 299	3, 299
33/8	16	3. 307	83.8	3. 321	66. 5	3. 307	3, 314	3. 311	3, 318	3, 314	3, 321	3. 317	3, 325
$ \begin{array}{r} 3\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{1}{2} \end{array} $	4	3. 229	83. 4	3, 267	71.7	3, 229	3. 248	3, 239	3. 258	3, 248	3, 267	3. 258	3, 277
	8	3. 365	83. 1	3, 390	67.7	3, 365	3. 378	3, 371	3. 384	3, 378	3, 390	3. 384	3, 396
	12	3. 410	83. 1	3, 428	66,5	3, 410	3. 419	3, 415	3. 424	3, 419	3, 428	3. 424	3, 433
	16	3. 432	83. 8	3, 446	66,5	3, 432	3. 439	3, 436	3. 443	3, 439	3, 446	3. 443	3, 450
$\frac{35\%}{35\%}$	12	3, 535	83. 1	3, 553	66, 5	3, 535	3, 544	3, 544	3. 549	3, 544	3, 553	3, 549	3, 553
	16	3, 557	83. 8	3, 571	66, 5	3, 557	3, 564	3, 561	3. 568	3, 567	3, 571	3, 568	3, 575
3¾ 3¾ 3¾ 3¾ 3¾	4 8 12 16	3. 479 3. 615 3. 660 3. 682	83. 4 83. 1 83. 1 83. 8	3, 517 3, 640 3, 678 3, 696	71. 7 67. 7 66. 5 66. 5	3. 479 3. 615 3. 660 3. 682	3, 498 3, 628 3, 669 3, 689	3. 489 3. 615 3. 665 3. 686	3, 508 3, 634 3, 674 3, 693	3.498 3.628 3.669 3.689	3. 517 3. 640 3. 678 3. 696	3, 508 3, 634 3, 674 3, 693	3, 527 3, 646 3, 683 3, 760
37/8	12	3. 785	· 83. 1	3, 803	66, 5	3, 785	3, 794	3. 790	3.799	3.794	3.803	3, 799	3, 808
37/8	16	3. 807	83. 8	3, 821	66, 5	3, 807	3, 814	3. 811	3.818	3.814	3.821	3, 818	3, 825
4 4 4	4 8 12 16	3. 729 3. 865 3. 910 3. 932	83. 4 83. 1 83. 1 83. 8	3.767 3.890 3.928 3.946	71. 7 67. 7 66. 5 66. 5	3. 729 3. 865 3. 910 3. 932	3, 748 3, 878 3, 919 3, 939	3, 739 3, 871 3, 915 3, 936	3, 758 3, 884 3, 924 3, 943	3, 748 3, 878 3, 919 3, 939	3, 767 3, 890 3, 928 3, 946	3. 758 3. 884 3. 924 3. 943	3, 777 3, 896 3, 953 3, 950
414	4	3, 979	83. 4	4, 017	71.7	3. 979	3. 998	3. 989	4. 008	3, 998	4.017	4. 008	4. 027
414	8	4, 115	83. 1	4, 140	67.7	4. 115	4. 128	4. 121	4. 134	4, 128	4.140	4. 134	4. 146
414	12	4, 160	83. 1	4, 178	66.5	4. 160	4. 169	4. 165	4. 174	4, 169	4.178	4. 174	4. 183
414	16	4, 182	83. 8	4, 196	66.5	4. 182	4. 189	4. 186	4. 193	4, 189	4.196	4. 193	4. 200
4½ 4½ 4½ 4½ 4½	4 8 12 16	4. 229 4. 365 4. 410 4. 432	83. 4 83. 1 83. 1 83. 8	4, 267 4, 390 4, 428 4, 446	71. 7 67. 7 66. 5 66. 5	4. 229 4. 365 4. 410 4. 432	4. 248 4. 378 4. 419 4. 439	4. 239 4. 371 4. 419 4. 437	4. 258 4. 384 4. 424 4. 444	4, 248 4, 378 4, 419 4, 439	4. 267 4. 390 4. 428 4. 446	4, 258 4, 384 4, 424 4, 444	4. 277 4. 396 4. 433 4. 455
434	8	4. 615	83.1	4. 640	67. 7	4. 615	4. 628	4. 621	4. 646	4. 628	4. 640	4. 646	4. 646
434	12	4. 660	83.1	4. 678	66. 5	4. 660	4. 669	4. 665	4. 674	4. 669	4. 678	4. 674	4. 683
434	16	4. 682	83.8	4. 696	66. 5	4. 682	4. 689	4. 686	4. 693	4. 689	4. 696	4. 693	4. 700
5	8	4. 865	83. 1	4. 890	67. 7	4.865	4. 878	4. 871	4. 884	4. 878	4. 890	4. 884	4.896
5	12	4. 910	83. 1	4. 928	66. 5	4.910	4. 919	4. 915	4. 924	4. 919	4. 928	4. 924	4.933
5	16	4. 932	83. 8	4. 946	66. 5	4.932	4. 939	4. 936	4. 943	4. 939	4. 946	4. 943	4.950
51/4	8	5. 115	83. 1	5. 140	67. 7	5. 115	5. 128	5. 121	5. 134	5. 128	5. 140	5. 134	5. 146
51/4	12	5. 160	83. 1	5. 178	66. 5	5. 160	5. 169	5. 165	5. 174	5. 169	5. 178	5. 174	5. 183
51/4	16	5. 182	83. 8	5. 196	66. 5	5. 182	5. 189	5. 186	5. 193	5. 189	5. 196	5. 193	5. 200
5½ 5½ 5½ 5½	8 12 16	5. 365 5. 410 5. 432	83.1 83.1 83.8	5. 390 5. 428 5. 446	67. 7 66. 5 66. 5	5.365 5.410 5.432	5. 378 5. 419 5. 439	5. 371 5. 415 5. 436	5. 384 5. 424 5. 442	5. 378 5. 419 5. 439	5. 390 5. 428 5. 446	5. 384 5. 424 5. 442	5. 396 5. 433 5. 450
53/4 53/4 53/4	8 12 16	5. 615 5. 660 5. 682	83.1 83.1 83.8	5. 640 5. 678 5. 696	67. 7 66. 5 66. 5	5. 615 5. 660 5. 682 5. 865	5. 628 5. 669 5. 689	5. 621 5. 665 5. 686	5. 634 5. 674 5. 693 5. 896	5, 628 5, 669 5, 689 5, 878	5. 640 5. 678 5. 696 5. 890	5. 634 5. 674 5. 693	5. 646 5. 683 5. 700
6 6 6	8 12 16	5, 865 5, 901 5, 932	83. 1 83. 1 83. 8	5. 890 5. 928 5. 946	67. 7 66. 5 66. 5	5. 910 5. 932	5, 878 5, 919 5, 939	5. 871 5. 915 5. 935	5. 924 5. 943	5. 878 5. 919 5. 939 engagement	5. 928 5. 946	5. 896 5. 924 5. 943	5, 896 5, 933 5, 950

[•] The differences between limits are equal to the minor-diameter tolerances given in table IV.10 for lengths of engagement to and including ½ D. However, the minimum values for lengths of engagement greater than ½ D in sizes ¼ in. and larger are adjusted so that the difference between limits is never less than 0.0040 in. For diameter-pitch combinations other than those given in this table, the tolerances given in table IV.10 should be similarly applied to determine hole size limits.

* Based on values as rounded off in the preceding column.

* Based on a length of engagement equal to the nominal diameter.

Table 3.2.—Recommended hole size limits before threading for different lengths of engagement, UNC, UNF, UNEF, UN, UNS, NC, NF, NEF, and N series, class 3B

Desig	gnation	Mino	or diameter,	internal th	reads		Recomme	nded hole siz	e limits for	r different lei	ngths of eng	gagement	
Thread size	Threads per inch	Mini- mum	Percent of basic thread	Maxi- mum ^c	Percent of basic thread	To and in	icluding D	Above 13	D to 3/3 D	Above 33 L	O to 1½ D	Above 1½	D to 3 D
SIZE	per men	mum	height b	indin ,	height b	Min	Max	Min	Max	Min	Max	Min	Max
No. in. 0 0.060 1 .073 1 .073	80 64 72	in. 0.0465 .0561 .0580	83. 1 83. 3 83. 1	in. 0.0514 .0623 .0635	52. 9 52. 7 52. 7	in. 0.0465 .0561 .0580	in. 0.0500 .0599 .0613	in. 0.0479 .0585 .0596	in. 0.0514 .0623 .0629	in. 0.0479 .0585 .0602	in. 0.0514 .0623 .0635	in. 0.0479 .0585 .0602	in. 0.0514 .0623 .0635
2 .086	56	. 0667	83. 2	.0737	53. 0	. 0667	. 0705	. 0686	.0724	. 0699	. 0737	. 0699	. 0737
2 .086	64	. 0691	83. 3	.0753	52. 7	. 0691	. 0724	. 0707	.0740	. 0720	. 0753	. 0720	. 0753
3 .099	48	. 0764	83. 5	.0845	53. 6	. 0764	. 0804	. 0785	.0825	. 0805	. 0845	. 0806	. 0846
3 .099	56	. 0797	83. 2	.0865	53. 9	. 0797	. 0831	. 0814	.0848	. 0831	. 0865	. 0833	. 0867
4 .112	40	.0849	83. 4	.0939	55. 7	.0849	. 0894	. 0871	. 0916	. 0894	. 0939	.0902	. 0947
4 .112	48	.0894	83. 5	.0968	56. 2	.0894	. 0931	. 0912	. 0949	. 0931	. 0968	.0939	. 0976
5 .125	40	.0979	83. 4	.1062	57. 9	.0979	. 1020	. 1000	. 1041	. 1021	. 1062	.1036	. 1077
5 .125	44	.1004	83. 3	.1079	57. 9	.1004	. 1042	. 1023	. 1060	. 1042	. 1079	.1060	. 1097
6 .138	32	. 1040	83. 8	. 1140	59. 1	. 1040	. 1091	. 1066	. 1115	. 1091	. 1140	. 1115	. 1164
6 .138	40	. 1110	83. 1	. 1186	59. 7	. 1110	. 1148	. 1128	. 1167	. 1147	. 1186	. 1166	. 1205
8 .164	32	. 1300	83. 8	. 1389	61. 8	. 1300	. 1345	. 1324	. 1367	. 1346	. 1389	. 1367	. 1410
8 .164	36	. 1340	83. 1	. 1416	62. 1	. 1340	. 1377	. 1359	. 1397	. 1378	. 1416	. 1397	. 1435
10 . 190	24	$\begin{array}{c} .1450 \\ .1560 \\ .1710 \\ .1770 \\ .1820 \end{array}$	83. 1	. 1555	63. 7	. 1450	. 1502	. 1475	. 1528	. 1502	. 1555	. 1528	. 1581
10 . 190	32		83. 8	. 1641	63. 8	. 1560	. 1601	. 1581	. 1621	. 1601	. 1641	. 1621	. 1661
12 . 216	24		83. 1	. 1807	65. 2	. 1710	. 1758	. 1733	. 1782	. 1758	. 1807	. 1782	. 1831
12 . 216	28		84. 1	. 1857	65. 3	. 1770	. 1815	. 1794	. 1836	. 1815	. 1857	. 1836	. 1878
12 . 216	32		83. 8	. 1895	65. 3	. 1820	. 1858	. 1837	. 1877	. 1855	. 1895	. 1873	. 1913
1/4	20	. 1960	83. 1	. 2067	66. 7	. 1960	. 2013	. 1986	. 2040	. 2013	. 2067	. 2040	. 2094
1/4	28	. 2110	84. 1	. 2190	66. 8	. 2110	. 2152	. 2131	. 2171	. 2150	. 2190	. 2169	. 2209
1/4	32	. 2160	83. 8	. 2229	66. 8	. 2160	. 2196	. 2172	. 2212	. 2189	. 2229	. 2206	. 2246
1/4	36	. 2200	83. 1	. 2258	67. 1	. 2200	. 2243	. 2199	. 2243	. 2214	. 2258	. 2229	. 2273
5/16	18	. 2520	83. 8	. 2630	68. 6	. 2520	. 2577	. 2551	. 2604	. 2577	. 2630	. 2604	. 2657
5/16	24	. 2670	84. 1	. 2754	68. 5	. 2670	2714	. 2694	. 2734	. 2714	. 2754	. 2734	. 2774
5/16	32	. 2790	82. 5	. 2847	68. 5	. 2790	. 2817	. 2792	. 2832	. 2807	. 2847	. 2822	. 2862
5/16	36	. 2820	84. 5	. 2877	68. 7	. 2820	. 2863	. 2824	. 2863	. 2837	. 2877	. 2850	. 2890
3/8	16	.3070	83. 8	. 3182	70. 0	. 3070	. 3127	. 3101	. 3155	. 3128	. 3182	. 3155	. 3209
3/8	24	.3300	83. 1	. 3372	69. 8	. 3300	. 3336	. 3314	. 3354	. 3332	. 3372	. 3351	. 3391
3/8	32	.3410	83. 8	. 3469	69. 2	. 3410	. 3441	. 3415	. 3455	. 3429	. 3469	. 3444	. 3484
3/8	36	.3450	83. 1	. 3501	69. 0	. 3450	. 3488	. 3449	. 3488	. 3461	. 3501	. 3474	. 3514
7/16	14	.3600	83. 5	. 3717	70. 9	. 3600	. 3660	. 3630	. 3688	. 3659	. 3717	. 3688	. 3746
7/16	20	.3830	83. 9	. 3916	70. 7	. 3830	. 3875	. 3855	. 3896	. 3875	. 3916	. 3896	. 3937
7/16	28	.3990	83. 0	. 4051	70. 0	. 3990	. 4020	. 3995	. 4035	. 4011	. 4051	. 4017	. 4067
1/2 1/2 1/2 1/2 1/2	13 12 20 28	. 4170 . 4100 . 4460 . 4610	83. 1 83. 1 83. 1 84. 1	. 4284 . 4223 . 4537 . 4676	71. 7 71. 8 71. 3 70. 0	. 4170 . 4100 . 4460 . 4610	. 4225 . 4161 . 4498 . 4645	. 4196 . 4129 . 4477 . 4620	. 4254 . 4192 . 4517 . 4660	. 4226 . 4160 . 4497 . 4636	. 4284 . 4223 . 4537 . 4676	. 4255 . 4192 . 4516 . 4652	. 4313 . 4255 . 4556 . 4692
9/16	12	. 4720	83. 6	. 4843	72. 2	. 4720	. 4783	. 4753	. 4813	. 4783	. 4843	. 4813	. 4873
9/16	18	. 5020	83. 8	. 5106	71. 9	. 5020	. 5065	. 5045	. 5086	. 5065	. 5106	. 5086	. 5127
9/16	24	. 5170	84. 1	. 5244	70. 4	. 5170	. 5209	. 5186	. 5226	. 5204	. 5244	. 5221	. 5261
9/16	28	. 5240	83. 0	. 5301	69. 8	. 5240	. 5270	. 5245	. 5285	. 5261	. 5301	. 5277	. 5317
5/8	11	. 5270	83. 0	. 5391	72. 7	. 5270	. 5328	. 5298	. 5360	. 5329	. 5391	. 5360	. 5422
5/8	12	. 5350	83. 1	. 5463	72. 7	. 5350	. 5406	. 5377	. 5435	. 5405	. 5463	. 5434	. 5492
5/8	18	. 5650	83. 1	. 5730	72. 1	. 5650	. 5690	. 5670	. 5711	. 5690	. 5730	. 5711	. 5752
5/8	24	. 5800	83. 1	. 5869	70. 4	. 5800	. 5834	. 5811	. 5851	. 5829	. 5869	. 5846	. 5886
5/8	28	. 5860	84. 1	. 5926	69. 8	. 5860	. 5895	. 5870	. 5910	. 5886	. 5926	. 5902	. 5942
$\frac{11}{16}$	12	. 5970	83. 6	. 6085	73. 0	. 5970	. 6029	. 6001	. 6057	. 6029	. 6085	. 6057	. 6113
	24	. 6420	84. 1	. 6494	70. 4	. 6420	. 6459	. 6436	. 6476	. 6454	. 6494	. 6471	. 6511
3/4	10	. 6420	83. 1	. 6545	73. 5	. 6420	. 6481	. 6449	. 6513	. 6481	. 6545	. 6513	. 6577
3/4	12	. 6600	83. 1	. 6707	73. 3	. 6600	. 6652	. 6626	. 6680	. 6653	. 6707	. 6680	. 6734
3/4	16	. 6820	83. 8	. 6908	72. 9	. 6820	. 6866	. 6844	. 6887	. 6865	. 6908	. 6886	. 6929
3/4	20	. 6960	83. 1	. 7037	71. 3	. 6960	. 6998	. 6977	. 7017	. 6997	. 7037	. 7016	. 7056
3/4	28	. 7110	84. 1	. 7176	69. 8	. 7110	. 7145	. 7120	. 7160	. 7136	. 7176	. 7152	. 7192
13/16 $13/16$ $13/16$	12	.7220	83. 6	. 7329	73.5	.7220	. 7276	. 7250	. 7303	. 7276	. 7329	. 7303	. 7356
	16	.7450	83. 1	. 7533	72.9	.7450	. 7491	. 7469	. 7512	. 7490	. 7533	. 7511	. 7554
	20	.7580	83. 9	. 7662	71.3	.7580	. 7623	. 7602	. 7642	. 7622	. 7662	. 7641	. 7681
7/8 7/8 7/8 7/8 7/8	9 12 14 16 20 28	. 7550 . 7850 . 7980 . 8070 . 8210 . 8360	83. 1 83. 1 83. 0 83. 8 83. 1 84. 1	. 7681 . 7952 . 8068 . 8158 . 8287 . 8426	74. 1 73. 7 73. 5 72. 9 71. 3 69. 8	.7550 .7850 .7980 .8070 .8210 .8360	. 7614 . 7900 . 8022 . 8116 . 8248 . 8395	.7580 .7874 .8000 .8094 .8227 .8370	.7647 .7926 .8045 .8137 .8267 .8410	. 7614 . 7900 . 8023 . 8115 . 8247 . 8386	.7681 .7952 .8068 .8158 .8287	. 7647 . 7926 . 8045 . 8136 . 8266 . 8402	.7714 .7978 .8090 .8179 .8306
15/16	12	. 8470	83. 6	.8575	73. 9	.8470	. 8524	. 8499	. 8550	. 8524	. 8575	. 8550	. 8601
15/16	16	. 8700	83. 1	.8783	72. 9	.8700	. 8741	. 8719	. 8762	. 8740	. 8783	. 8761	. 8804
15/16	20	. 8830	83. 9	.8912	71. 3	.8830	. 8873	. 8852	. 8892	. 8872	. 8912	. 8891	. 8931

Table 3.2.—Recommended hole size limits before threading for different lengths of engagement, UNC, UNF, UNEF, UN, UNS, NC, NF, NEF, and N series, class 3B—Continued

Doo!-	nation	Min	or diameter,	internal th	reads		Recommo	nded hole siz	o limite for	different len	athe of one	ragement	
Desig	nation	Mino		internal til		m 11-				T T		Ī	
Thread size	Threads per inch	Mini- mum	Percent of basic thread	Maxi- mum ¢	Percent of basic thread	To and in	cluding D	Above 13 I) to 38D	Above 33 D	to 1½ D	Above 1½ I	to 3 D
			height b		height b	Min	Max	Min	Max	Min	Max	Min	Max
No. in. 1 1 1 1 1 1 1	8 12 14 16 20 28	$\begin{array}{c} in. \\ 0.8650 \\ .9100 \\ .9230 \\ .9320 \\ .9460 \\ .9610 \end{array}$	83. 1 83. 0 83. 8 83. 1 84. 1	in 0.8797 .9198 .9315 .9408 .9537 .9676	74. 1 74. 1 73. 8 72. 9 71. 3 69. 8	in. 0.8650 .9100 .9230 .9320 .9460 .9610	in. 0.8722 .9148 .9271 .9366 .9498 .9645	in. 0.8684 .9123 .9249 .9344 .9477 .9620	in. 0.8759 .9173 .9293 .9387 .9517	$\begin{array}{c} in.\\ 0.8722\\ .9148\\ .9271\\ .9365\\ .9497\\ .9636\end{array}$	in. 0. 8797 9198 9315 9408 9537	in. 0.8760 .9173 .9293 .9386 .9516 .9652	in. 0. 8835 . 9225 . 9337 . 9429 . 9556 . 9692
11/16	12	. 9720	83. 8	. 9823	74. 1	. 9720	. 9773	. 9748	. 9798	. 9773	. 9823	. 9798	. 9848
11/16	16	. 9950	83. 1	1. 0033	72. 9	. 9950	. 9991	. 9969	1. 0012	. 9990	1. 0033	1. 0011	1. 005-
11/16	18	1. 0020	83. 8	1. 0105	72. 1	1. 0020	1. 0065	1. 0044	1. 0085	1. 0064	1. 0105	1. 0085	1. 0126
11/8 11/8 11/8 11/8 11/8 11/8	7 8 12 16 18 20 28	. 9700 . 9900 1. 0350 1. 0570 1. 0650 1. 0710 1. 0860	84. 0 83. 1 83. 1 83. 8 83. 1 83. 1 84. 1	. 9875 1, 0047 1, 0448 1, 0658 1, 0730 1, 0787 1, 0926	74. 1 74. 1 74. 1 72. 9 72. 1 71. 3 69. 8	. 9700 . 9900 1. 0350 1. 0570 1. 0650 1. 0710 1. 0860	. 9790 . 9972 1. 0398 1. 0616 1. 0690 1. 0748 1. 0895	. 9747 . 9934 1. 0373 1. 0594 1. 0669 1. 0 72 7 1. 0870	. 9833 1. 0009 1. 0423 1. 0637 1. 0710 1. 0767 1. 0910	. 9789 . 9972 1. 0398 1. 0615 1. 0689 1. 0747 1. 0886	. 9875 1, 0047 1, 0448 1, 0658 1, 0730 1, 0787 1, 0926	. 9832 1. 0010 1. 0423 1. 0636 1. 0710 1. 0766 1. 0902	. 9918 1. 008 1. 047; 1. 067; 1. 075; 1. 080;
$1\frac{3}{16}$ $1\frac{3}{16}$ $1\frac{3}{16}$	12	1. 0970	83, 6	1. 1073	74. 1	1. 0970	1. 1023	1. 0998	1. 1048	1, 1023	1. 1073	1. 1048	1. 1098
	16	1. 1200	83, 1	1. 1283	72. 9	1. 1200	1. 1241	1. 1219	1. 1262	1, 1240	1. 1283	1. 1261	1. 1304
	18	1. 1270	83, 8	1. 1355	72. 1	1. 1270	1. 1315	1. 1294	1. 1335	1, 1314	1. 1355	1. 1335	1. 1376
114	7	1. 0950	83. 5	1. 1125	74. 1	1. 0950	1. 1040	1. 0997	1. 1083	1, 1039	1. 1125	1. 1082	1, 116
114	8	1. 1150	83. 1	1. 1297	74. 1	1. 1150	1. 1222	1. 1184	1. 1259	1, 1222	1. 1297	1. 1260	1, 133
114	12	1. 1600	83. 1	1. 1698	74. 1	1. 1600	1. 1648	1. 1623	1. 1673	1, 1648	1. 1698	1. 1673	1, 172
114	16	1. 1820	83. 8	1. 1908	72. 9	1. 1820	1. 1866	1. 1844	1. 1887	1, 1865	1. 1908	1. 1886	1, 192
114	18	1. 1900	83. 1	1. 1980	72. 1	1. 1900	1. 1940	1. 1919	1. 1960	1, 1939	1. 1980	1. 1960	1, 200
114	20	1. 1960	83. 1	1. 2037	71. 3	1. 1960	1. 1998	1. 1977	1. 2017	1, 1997	1. 2037	1. 2016	1, 205
$1\frac{5}{16}$ $1\frac{5}{16}$ $1\frac{5}{16}$	12	1. 2220	83. 6	1. 2323	74. 1	1. 2220	1, 2273	1. 2248	1, 2298	1. 2273	1. 2323	1. 2298	1. 234
	16	1. 2450	83. 1	1. 2533	72. 9	1. 2450	1, 2491	1. 2469	1, 2512	1. 2490	1. 2533	1. 2511	1. 255
	18	1. 2520	83. 8	1. 2605	72. 1	1. 2520	1, 2565	1. 2544	1, 2585	1. 2564	1. 2605	1. 2585	1. 262
138	6	1. 1950	83. 1	1. 2146	74. 1	1. 1950	1. 2046	1. 1996	1. 2096	1. 2046	1. 2146	1. 2096	1. 219
138	8	1. 2400	83. 1	1. 2547	74. 1	1. 2400	1. 2472	1. 2434	1. 2509	1. 2472	1. 2547	1. 2510	1. 258
138	12	1. 2850	83. 1	1. 2948	74. 1	1. 2850	1. 2898	1. 2873	1. 2923	1. 2898	1. 2948	1. 2923	1. 297
138	16	1. 3070	83. 8	1. 3158	72. 9	1. 3070	1. 3116	1. 3094	1. 3137	1. 3115	1. 3158	1. 3136	1. 317
138	18	1. 3150	83. 1	1. 3230	72. 1	1. 3150	1. 3190	1. 3169	1. 3210	1. 3189	1. 3230	1. 3210	1. 325
17/16	12	1, 3470	83. 6	1.3573	74. 1	1. 3470	1. 3523	1.3498	1. 3548	1. 3523	1, 3573	1. 3548	1. 359
17/16	16	1, 3700	83. 1	1.3783	72. 9	1. 3700	1. 3741	1.3719	1. 3762	1. 3740	1, 3783	1. 3761	1. 380
17/16	18	1, 3770	83. 8	1.3855	72. 1	1. 3770	1, 3815	1.3794	1. 3835	1. 3814	1, 3855	1. 3835	1. 387
136	6	1. 3200	83. 1	1, 3396	74. 1	1. 3200	1, 3296	1. 3246	1. 3346	1, 3296	1. 3396	1. 3346	1. 344
136	8	1. 3650	83. 1	1, 3797	74. 1	1. 3650	1, 3722	1. 3684	1. 3759	1, 3722	1. 3797	1. 3760	1. 383
136	12	1. 4100	83. 1	1, 4198	74. 1	1. 4100	1, 4148	1. 4123	1. 4173	1, 4148	1. 4198	1. 4173	1. 422
136	16	1. 4320	83. 8	1, 4408	72. 9	1. 4320	1, 4366	1. 4344	1. 4387	1, 4365	1. 4408	1. 4386	1. 442
136	18	1. 4400	83. 1	1, 4480	72. 1	1. 4400	1, 4440	1. 4419	1. 4460	1, 4439	1. 4480	1. 4460	1. 450
136	20	1. 4460	83. 1	1, 4537	71. 3	1. 4460	1, 4498	1. 4477	1. 4517	1, 4497	1. 4537	1. 4516	1. 455
19/16	16	1. 4950	83. 1	1. 5033	72. 9	1. 4950	1. 4991	1. 4969	1. 5012	1. 4990	1. 5033	1. 5011	1. 505
19/16	18	1. 5020	83. 8	1. 5105	72. 1	1. 5020	1. 5065	1. 5044	1. 5085	1. 5064	1. 5105	1. 5085	1. 512
15/8	8	1. 4900	83. 1	1. 5047	74. 1	1. 4900	1. 4972	1. 4934	1. 5009	1. 4972	1. 5047	1. 5010	1. 508
15/8	12	1. 5350	83. 1	1. 5448	74. 1	1. 5350	1. 5398	1. 5373	1. 5423	1. 5398	1. 5448	1. 5423	1. 547
15/8	16	1. 5570	83. 8	1. 5658	72. 9	1. 5570	1. 5616	1. 5594	1. 5637	1. 5615	1. 5658	1. 5636	1. 567
15/8	18	1. 5650	83. 1	1. 5730	72. 1	1. 5650	1. 5690	1. 5669	1. 5710	1. 5689	1. 5730	1. 5710	1. 575
1 ¹¹ / ₁₆	16	1. 6200	83. 1	1. 6283	72. 9	1. 6200	1. 6241	1. 6219	1. 6262	1. 6240	1. 6283	1. 6261	1. 630
1 ¹¹ / ₁₆		1. 6270	83. 8	1. 6355	72. 1	1. 6270	1. 6315	1. 6294	1. 6335	1. 6314	1. 6355	1. 6335	1. 637
134	5	1. 5340	83. 1	1, 5575	74. 1	1. 5340	1. 5455	1. 5395	1, 5515	1. 5455	1. 5575	1. 5515	1. 563
134	8	1. 6150	83. 1	1, 6297	74. 1	1. 6150	1. 6222	1. 6184	1, 6259	1. 6222	1. 6297	1. 6260	1. 633
134	12	1. 6600	83. 1	1, 6698	74. 1	1. 6600	1. 6648	1. 6623	1, 6673	1. 6648	1. 6698	1. 6673	1. 672
134	16	1. 6820	83. 8	1, 6908	72. 9	1. 6820	1. 6866	1. 6844	1, 6887	1. 6865	1. 6908	1. 6886	1. 692
134	20	1. 6960	83. 1	1, 7037	71. 3	1. 6960	1. 6998	1. 6977	1, 7017	1. 6997	1. 7037	1. 7016	1. 705
113/16	16	1.7450	83.1	1.7533	72. 9	1.7450	1.7491	1.7469	1, 7512	1.7490	1.7533	1. 7511	1. 755
17/8	8	1.7400	83. 1	1. 7547	74. 1	1, 7400	1. 7472	1. 7434	1.7509	1. 7472	1, 7547	1. 7510	1. 758
17/8	12	1.7850	83. 1	1. 7948	74. 1	1, 7850	1. 7898	1. 7873	1.7923	1. 7898	1, 7948	1. 7923	1. 797
17/8	16	1.8070	83. 8	1. 8158	72. 9	1, 8070	1. 8116	1. 8094	1.8137	1. 8115	1, 8158	1. 8136	1. 817
115/16	16	1.8700	83. 1	1.8783	72. 9	1.8700	1.8741	1. 8719	1,8762	1. 8740	1. 8783	1. 8761	1. 880
2	$\begin{array}{c c} 4\frac{1}{2} \\ 8 \\ 12 \\ 16 \\ 20 \end{array}$	1.7590	83. 5	1. 7861	74. 1	1. 7590	1. 7727	1. 7661	1.7794	1. 7728	1. 7861	1.7794	1, 792
2		1.8650	83. 1	1. 8797	74. 1	1. 8650	1. 8722	1. 8684	1.8759	1. 8722	1. 8797	1.8600	1, 883
2		1.9100	83. 1	1. 9198	74. 1	1. 9100	1. 9148	1. 9123	1.9173	1. 9148	1. 9198	1.9173	1, 922
2		1.9320	83. 8	1. 9408	72. 9	1. 9320	1. 9366	1. 9344	1.9387	1. 9365	1. 9408	1.9386	1, 942
2		1.9460	83. 1	1. 9537	71. 3	1. 9460	1. 9498	1. 9477	1.9517	1. 9497	1. 9537	1.9516	1, 955
21/16	16	1.9950	83.1	2,0033	72. 9	1. 9950	1. 9991	1. 9969	2.0012	1. 9990	2.0033	2.0011	2.005
2½8	8	1, 9900	83. 1	2.0047	74. 1	1. 9900	1. 9972	1. 9934	2. 0009	1. 9972	2. 0047	2. 0010	2. 008
2½8	12	2, 0350	83. 1	2.0448	74. 1	2. 0350	2. 0398	2. 0373	2. 0423	2. 0398	2. 0448	2. 0423	2. 047
2½8	16	2, 0570	83. 8	2.0658	72. 9	2. 0570	2. 0616	2. 0594	2. 0637	2. 0615	2. 0658	2. 0636	2. 067

Table 3.2.—Recommended hole size limits before threading for different lengths of engagement, UNC, UNF, UNEF, UN, UNS, NC, NF, NEF, and N series, class 3B—Continued

Desig	nation	Mine	or diameter,	internal th	reads		Recomme	nded bole siz	ze limits for	different ler	ngtbs of eng	gagement	
Thread size	Threads per inch	Mini- mum	Percent of basic thread	Maxi- mum ¢	Percent of basic thread	To and in	D	Above 1/3	D to 33 D	Above 33 I	O to 1½ D	Above 1½	D to 3 D
Size	per men	mum	height b	mum -	height b	Min	Max	Min	Max	Min	Max	Min	Max
No. in. 23/16	16	in. 2. 1200	83. 1	in. 2. 1283	72. 9	in. 2. 1200	in. 2. 1241	in. 2. 1219	in. 2. 1262	in. 2. 1240	in. 2. 1283	in. 2. 1261	in. 2. 1304
$\begin{array}{c} 2 \frac{1}{4} \\ 2 \frac{1}{4} \end{array}$	$egin{array}{c} 4\frac{1}{2} \\ 8 \\ 12 \\ 16 \\ 20 \\ \end{array}$	2. 0090 2. 1150 2. 1600 2. 1820 2. 1960	83. 5 83. 1 83. 1 83. 8 83. 1	2. 0361 2. 1297 2. 1698 2. 1908 2. 2037	74. 1 74. 1 74. 1 72. 9 71. 3	2. 0090 2. 1150 2. 1600 2. 1820 2. 1960	2. 0227 2. 1222 2. 1648 2. 1866 2. 1998	2. 0161 2. 1184 2. 1623 2. 1844 2. 1977	2. 0294 2. 1259 2. 1673 2. 1887 2. 2017	2. 0228 2. 1222 2. 1648 2. 1865 2. 1997	2. 0361 2. 1297 2. 1698 2. 1908 2. 2037	2. 0294 2. 1260 2. 1673 2. 1886 2. 2016	2. 0427 2. 1335 2. 1723 2. 1929 2. 2056
2516	16	2. 2450	83. 1	2. 2533	72. 9	2. 2450	2. 2491	2. 2469	2, 2512	2, 2490	2. 2533	2. 2511	2. 2554
$\frac{236}{238}$	12 16	2. 2850 2. 3070	83. 1 83. 8	2. 2948 2. 3158	74. 1 72. 9	2. 2850 2. 3070	2. 2898 2. 3116	2, 2873 2, 3094	2, 2923 2, 3137	2. 2898 2. 3115	2.2948 2.3158	2. 2923 2. 3136	2. 2973 2. 3179
27/16		2. 3700	83.1	2. 3783	72.9	2. 3700	2. 3741	2. 3719	2. 3762	2. 3740	2.3783	2. 3761	2. 3804
$\begin{array}{c} 2\frac{1}{2} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	4	2. 2290	83. 4	2. 2594	74. 1	2. 2290	2. 2444	2. 2369	2. 2519	2. 2444	2. 2594	2. 2519	2. 2669
	8	2. 3650	83. 1	2. 3797	74. 1	2. 3650	2. 3722	2. 3684	2. 3759	2. 3722	2. 3797	2. 3760	2. 3835
	12	2. 4100	83. 1	2. 4198	74. 1	2. 4100	2. 4148	2. 4123	2. 4173	2. 4148	2. 4198	2. 4173	2. 4223
	16	2. 4320	83. 8	2. 4408	72. 9	2. 4320	2. 4366	2. 4344	2. 4387	2. 4365	2. 4408	2. 4386	2. 4429
	20	2. 4460	83. 1	2. 4537	71. 3	2. 4460	2. 4498	2. 4478	2. 4517	2. 4497	2. 4537	2. 4516	2. 4556
25%	12	2. 5350	83. 1	2. 5448	74. 1	2. 5350	2. 5398	2. 5373	2. 5423	2. 5398	2, 5448	2. 5423	2. 5473
25%	16	2. 5570	83. 8	2. 5658	72. 9	2. 5570	2. 5616	2. 5594	2. 5637	2. 5615	2, 5658	2. 5636	2. 5679
$2\frac{3}{4}$ $2\frac{3}{4}$ $2\frac{3}{4}$ $2\frac{3}{4}$	4	2. 4790	83. 4	2. 5094	74. 1	2. 4790	2. 4944	2. 4869	2. 5019	2. 4944	2. 5094	2. 5019	2. 5169
	8	2. 6150	83. 1	2. 6297	74. 1	2. 6150	2. 6222	2. 6184	2. 6259	2. 6222	2. 6297	2. 6260	2. 6335
	12	2. 6600	83. 1	2. 6698	74. 1	2. 6600	2. 6648	2. 6623	2. 6673	2. 6648	2. 6698	2. 6673	2. 6723
	16	2. 6820	83. 8	2. 6908	72. 9	2. 6820	2. 6866	2. 6844	2. 6887	2. 6865	2. 6908	2. 6886	2. 6929
27.8	12	2. 7850	83. I	2. 7948	74. 1	2. 7850	2.7898	2. 7873	2. 7923	2.7898	2. 7948	2. 7923	2. 7973
27.8	16	2. 8070	83. 8	2. 8158	72. 9	2. 8070	2.8116	2. 8094	2. 8137	2.8115	2. 8158	2. 8136	2. 8179
3	4	2, 7290	83. 4	2, 7594	74. 1	2, 7290	2, 7444	2, 7369	2, 7519	2. 7444	2. 7594	2. 7519	2. 7669
3	8	2, 8650	83. 1	2, 8797	74. 1	2, 8650	2, 8722	2, 8684	2, 8759	2. 8722	2. 8797	2. 8760	2. 8835
3	12	2, 9100	83. 1	2, 9198	74. 1	2, 9100	2, 9148	2, 9123	2, 9173	2. 9148	2. 9198	2. 9173	2. 9223
3	16	2, 9320	83. 8	2, 9408	72. 9	2, 9320	2, 9366	2, 9344	2, 9387	2. 9365	2. 9408	2. 9386	2. 9429
31/8	12	3, 0350	83. 1	3, 0448	74. 1	3, 0350	3, 0398	3, 0373	3. 0423	3.0398	3.0448	3. 0423	3. 0473
31/8	16	3, 0570	83. 8	3, 0658	72. 9	3, 0570	3, 0616	3, 0594	3. 0637	3.0615	3.0658	3. 0636	3. 0679
314	4	2, 9790	83. 4	3, 0094	74. 1	2, 9790	2. 9944	2, 9869	3, 0019	2. 9944	3, 0094	3, 0019	3. 0169
314	8	3, 1150	83. 1	3, 1297	74. 1	3, 1150	3. 1222	3, 1184	3, 1259	3. 1222	3, 1297	3, 1260	3. 1335
314	12	3, 1600	83. 1	3, 1698	74. 1	3, 1600	3. 1648	3, 1623	3, 1673	3. 1648	3, 1698	3, 1673	3. 1723
314	16	3, 1820	83. 8	3, 1908	72. 9	3, 1820	3, 1866	3, 1844	3, 1887	3. 1865	3, 1908	3, 1886	3. 1929
338 338	12	3. 2850 3. 3070	83, 1	3, 2948 3, 3158	74. 1 72. 9	3. 2850 3. 3070	3. 2898 3. 3116	3, 2873 3, 3094	3, 2923 3, 3137	3, 2898 3, 3115	3, 2948 3, 3158	3, 2923 3, 3136	3, 2973 3, 3179
$ \begin{array}{r} 3\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{1}{2} \end{array} $	16 4 8 12 16	3, 2290 3, 3650 3, 4100 3, 4320	83. 8 83. 4 83. 1 83. 1 83. 8	3, 2594 3, 3797 3, 4198 3, 4408	74. 1 74. 1 74. 1 74. 1 72. 9	3, 2290 3, 3650 3, 4100 3, 4320	3, 2444 3, 3722 3, 4148 3, 4366	3. 2369 3. 3684 3. 4123 3. 4344	3. 2519 3. 3759 3. 4173 3. 4387	3. 2444 3. 3722 3. 4148 3. 4365	3. 2594 3. 3797 3. 4198 3. 4408	3, 2519 3, 3760 3, 4173 3, 4386	3, 2669 3, 3835 3, 4223 3, 4429
358	12	3, 5350	83. 1	3, 5448	74. 1	3, 5350	3, 5398	3, 5373	3. 5423	3. 5398	3. 5448	3, 5423	3. 5473
358	16	3, 5570	83. 8	3, 5658	72. 9	3, 5570	3, 5616	3, 5594	3. 5637	3. 5615	3. 5658	3, 5636	3. 5679
334	4	3, 4790	83. 4	3, 5094	74. 1	3, 4790	3, 4944	3. 4869	3, 5019	3, 4944	3, 5094	3, 5019	3, 5169
334	8	3, 6150	83. 1	3, 6297	74. 1	3, 6150	3, 6222	3. 6184	3, 6259	3, 6222	3, 6297	3, 6260	3, 6335
334	12	3, 6600	83. 1	3, 6698	74. 1	3, 6600	3, 6648	3. 6623	3, 6673	3, 6648	3, 6698	3, 6673	3, 6723
334	16	3, 6820	83. 8	3, 6908	72. 9	3, 6820	3, 6866	3. 6844	3, 6887	3, 6865	3, 6908	3, 6886	3, 6929
37/8	12	3. 7850	83. 1	3, 7948	74. 1	3, 7850	3, 7898	3.7873	3, 7923	3.7898	3, 7948	3, 7923	3. 7973
37/8	16	3. 8070	83. 8	3, 8158	72. 9	3, 8070	3, 8116	3.8094	3, 8137	3.8115	3, 8158	3, 8136	3. 8179
4 4 4 4	4 8 12 16	3. 7290 3. 8650 3. 9100 3. 9320	83. 4 83. 1 83. 1 83. 8	3. 7594 3. 8797 3. 9198 3. 9408	74. 1 74. 1 74. 1 74. 1 72. 9	3, 7290 3, 8650 3, 9100 3, 9320	3, 7444 3, 8722 3, 9148 3, 9366	3. 7369 3. 8684 3. 9123 3. 9344	3. 7519 3. 8759 3. 9173 3. 9387	3. 7444 3. 8722 3. 9148 3. 9365	3, 7594 3, 8797 3, 9198 3, 9408	3. 7519 3. 8760 3. 9173 3. 9386	3. 7669 3. 8835 3. 9223 3. 9429
414 414 414 414	4 8 12 16	3, 9790 4, 1150 4, 1600 4, 1820	83. 4 83. 1 83. 1 83. 8	4. 0094 4. 1297 4. 1698 4. 1908	74. i 74. 1 74. 1 74. 1 72. 9	3. 9790 4. 1150 4. 1600 4. 1820	3. 9944 4. 1222 4. 1648 4. 1866	3. 9869 4. 1184 4. 1623 4. 1844	4. 0019 4. 1259 4. 1673 4. 1887	3. 9944 4. 1222 4. 1648 4. 1865	4. 0094 4. 1297 4. 1698 4. 1908	4.0019 4.1260 4.1673 4.1886	4. 0169 4. 1335 4. 1723 4. 1929
$4\frac{1}{2}$ $4\frac{1}{2}$ $4\frac{1}{2}$ $4\frac{1}{2}$	4	4. 2290	83. 4	4. 2594	74. 1	4. 2290	4. 2444	4. 2369	4. 2519	4. 2444	4. 2594	4. 2519	4. 2669
	8	4. 3650	83. 1	4. 3797	74. 1	4. 3650	4. 3722	4. 3684	4. 3759	4. 3722	4. 3797	4. 3760	4. 3835
	12	4. 4100	83. 1	4. 4198	74. 1	4. 4100	4. 4148	4. 4123	4. 4173	4. 4148	4. 4198	4. 4173	4. 4223
	16	4. 4320	83. 8	4. 4408	72. 9	4. 4320	4. 4366	4. 4344	4. 4387	4. 4365	4. 4408	4. 4386	4. 4429
4 3/4	8	4, 6150	83. 1	4, 6297	74. 1	4. 6150	4. 6222	4. 6184	4. 6259	4. 6222	4, 6297	4, 6260	4. 6335
4 3/4	12	4, 6600	83. 1	4, 6698	74. 1	4. 6600	4. 6648	4. 6623	4. 6673	4. 6648	4, 6698	4, 6673	4. 6723
4 3/4	16	4, 6820	83. 8	4, 6908	72. 9	4. 6820	4. 6866	4. 6844	4. 6887	4. 6865	4, 6908	4, 6886	4. 6929
5	8	4, 8650	83. 1	4, 8797	74. 1	4. 8650	4. 8722	4. 8684	4. 8759	4. 8722	4, 8797	4, 8760	4. 8835
5	12	4. 9100	83. 1	4. 9198	74. 1	4. 9100	4. 9148	4, 9123	4. 9173	4. 9148	4. 9198	4, 9173	4, 9223
5	16	4. 9320	83. 8	4. 9408	72. 9	4. 9320	4. 9366	4, 9344	4. 9387	4. 9365	4. 9408	4, 9384	4, 9429

Table 3.2.—Recommended hole size limits before threading for different lengths of engagement, UNC, UNF, UNEF, UN, UNS, NC, NF, NEF, and N series, class 3B—Continued

Desig	gnation	Mine	or diameter,	internal th	reads		Recomme	nded hole si	ze limits for	r different le	ngths of en	gagement	
Thread size	Threads per inch	Mini- mum	Percent of basic thread	Maxi-	Percent of hasic thread	To and in		Above 1/3	D to 3/3 D	Above 34	D to 1½ D	Above 1½	D to 3 D
			height b		height b	Min	Max	Min	Max	Min	Max	Min	Max
No. in. 51/4 51/4 51/4	8 12 16	in. 5, 1150 5, 1600 5, 1820	83. 1 83. 1 83. 8	in. 5. 1297 5. 1698 5. 1908	74. 1 74. 1 72. 9	in. 5, 1150 5, 1600 5, 1820	in. 5, 1222 5, 1648 5, 1866	in. 5. 1184 5. 1623 5. 1844	in. 5, 1259 5, 1673 5, 1887	in. 5. 1222 5. 1648 5. 1865	in. 5, 1297 5, 1698 5, 1908	in. 5, 1260 5, 1673 5, 1886	in. 5, 1335 5, 1723 5, 1929
$ 5\frac{1}{2} $ $ 5\frac{1}{2} $ $ 5\frac{1}{2} $	8 12 16	5, 3650 5, 4100 5, 4320	83. 1 83. 1 83. 8	5, 3797 5, 4198 5, 4408	74. 1 74. 1 72. 9	5, 3650 5, 4100 5, 4320	5, 3722 5, 4148 5, 4366	5, 3684 5, 4123 5, 4344	5, 3759 5, 4173 5, 4387	5. 3722 5. 4148 5. 4365	5, 3797 5, 4198 5, 4408	5, 3760 5, 4173 5, 4386	5, 3835 5, 4223 5, 4429
$5\frac{3}{4}$ $5\frac{3}{4}$ $5\frac{3}{4}$	8 12 16	5, 6150 5, 6600 5, 6820	83. 1 83. 1 83. 8	5, 6297 5, 6698 5, 6908	74. 1 74. 1 72. 9	5, 6150 5, 6600 5, 6820	5, 6222 5, 6648 5, 6866	5, 6184 5, 6623 5, 6844	5, 6259 5, 6673 5, 6887	5, 6222 5, 6648 5, 6865	5, 6297 5, 6698 5, 6908	5, 6260 5, 6673 5, 6886	5,6335 5,6723 5,6929
6 6 6	8 12 16	5, 8650 5, 9100 5, 9320	83, 1 83, 1 83, 8	5, 8797 5, 9198 5, 9408	74. 1 74. 1 72. 9	5, 8650 5, 9100 5, 9320	5, 8722 5, 9148 5, 9366	5, 8684 5, 9123 5, 9344	5, 8759 5, 9173 5, 9387	5, 8722 5, 9148 5, 9365	5, 8797 5, 9198 5, 9408	5, 8760 5, 9173 5, 9386	5, 8835 5, 9223 5, 9429

 $^{^{\}circ}$ The differences between limits are equal to the minor-diameter tolerances given in table IV.11 for lengths of engagement to and including $\frac{1}{2}$ D. However, the minimum values for lengths of engagements greater than $\frac{1}{2}$ D in sizes $\frac{1}{2}$ in, and larger are adjusted so that the difference between limits is never less than 0.0040 in. For diameter-pitch combinations other than those given in this table, the tolerances given in table IV.11 should be similarly applied to determine 0.0040 in. For diameter-pitch combinations other than those 5...

blased on values as rounded off in the preceding column.

Based on a length of engagement equal to the nominal diameter.

Table 3.3.—Recommended hole size limits before threading for different lengths of engagement, National Miniature thread

Design	ation	Miı	nor diameter	r internal thre	ads	Recom	imended hole	size limits for	different leng	ths of engage	ment b
Thread	Pitch	Minimum	Percent basic	Maximum	Percent hasic	To and inch	uding ¾ D	Above ¾ 1	D to 1½ D	Above 1½	D to 3 D
designation a			thread height		thread height	Min.	Max.	Min.	Мах.	Min.	Max.
30NM 35NM 40NM 45NM	mm 0.080 .090 .100	mm 0. 217 . 256 . 296 . 346	100 100 100 100	mm 0. 254 . 297 . 340 . 390	54. 8 56. 4 57. 7 57. 7	mm 0. 226 . 267 . 307 . 357	mm 0. 240 . 282 . 324 . 374	mm 0.236 .277 .318 .368	mm 0. 254 . 297 . 340 . 390	mm 9. 245 . 287 . 329 . 379	mm 0.264 .307 .351
50NM 55NM 60NM 70NM 80NM	. 125 . 125 . 150 . 175 . 200	. 370 . 420 . 444 . 518 . 592	100 100 100 100 100	. 422 . 472 . 504 . 586 . 668	60, 0 60, 0 61, 5 62, 6 63, 5	. 383 . 433 . 459 . 535 . 611	. 402 . 452 . 482 . 560 . 640	. 396 . 446 . 474 . 552 . 630	. 422 . 472 . 504 . 586 . 668	. 409 . 459 . 489 . 569 . 649	. 435 . 485 . 519 . 603
90NM 100NM 110NM 120NM 140NM	. 225 . 250 . 250 . 250 . 300	. 666 . 740 . 840 . 940 1. 088	100 100 100 100 100	. 750 . 832 . 932 1. 032 1. 196	64. 1 64. 6 64. 6 64. 6 65. 4	. 687 . 763 . 863 . 963 1. 115	.718 .798 .898 .998 1.156	. 708 . 786 . 886 . 986 1. 142	. 750 . 832 . 932 1. 032 1. 196	. 729 . 809 . 909 1. 009 1. 169	.771 .855 .955 1,055 1,223
30NM 35NM 40NM 45NM	Threads per inch 318 282 254 254	in. 0.0085 .0101 .0117 .0136	100 100 100 100	in. 0.0100 .0117 .0134 .0154	54. 8 56. 4 57. 7 57. 7	in. 0.0089 .0105 .0121 .0141	in. 0.0095 .0111 .0127 .0147	in. 0.0093 .0109 .0125 .0145	in. 0.0100 .0117 .0134 .0154	ia. 0.0096 .0113 .0130 .0149	in. 0.0104 .0121 .0138 .0158
50NM 55NM 60NM 70NM 80NM	203 203 169 145 127	.0146 .0165 .0175 .0204 .0233	100 100 100 100 100	. 0166 . 0186 . 0198 . 0231 . 0263	60. 0 60. 0 61. 5 62. 6 63. 5	. 0150 . 0170 . 0181 . 0211 . 0240	. 0158 . 0178 . 0190 . 0221 . 0252	.0156 .0176 .0187 .0217 .0248	. 0166 . 0186 . 0198 . 0231 . 0263	. 0161 . 0181 . 0193 . 0224 . 0256	. 0171 . 0191 . 0204 . 0237 . 0270
90NM 100NM 110NM 120NM 140NM	113 102 102 102 85	. 0262 . 0291 . 0331 . 0370 . 0428	100 100 100 100 100	. 0295 . 0327 . 0367 . 0406 . 0471	64. 1 64. 6 64. 6 64. 6 65. 4	.0270 .0300 .0340 .0379 .0439	. 0283 . 0314 . 0354 . 0393 . 0455	. 0279 . 0309 . 0349 . 0388 . 0450	.0295 .0327 .0367 .0406 .0471	.0287 .0319 .0358 .0397 .0460	. 0304 . 0337 . 0376 . 0415

[•] Sizes shown in italics are preferred. It is recommended that selections he confined to these sizes insofar as possible.
• The limits recommended in this table are subject to further exploration. Limited experience with this new standard to date indicates these sizes to be suitable for easily machineahle materials (brass, nickel-silver, etc.). For materials more difficult to machine, hole size limits in the next larger category are suggested. In instances where hole sizes in excess of the maximum minor diameter are necessary, the excess is usually recovered in the thread form by the spin-up resulting from the negative rake with which these small taps must be ground.

APPENDIX 4. WIRE METHODS OF MEAS-UREMENT OF PITCH DIAMETER OF 60° THREADS

Pitch diameter is defined in section II, p. 4, as follows: "On a straight thread, the pitch diameter is the diameter of the coaxial cylinder, the surface of which would pass through the thread profiles at such points as to make the width of the groove equal to one-half of the basic pitch. On a perfect thread this occurs at the points where the widths of the thread and groove are equal.

"On a taper thread, the pitch diameter at a given position on the thread axis is the diameter of the pitch cone

at that position.

The degree of accuracy to which the pitch diameter can be measured will depend on the accuracy of lead, helix, and form of thread. As thread plug gages and thread setting plug gages have highly accurate threads, their pitch diameters may be measured to a correspondingly high degree of accuracy by applying the methods described in this appendix. In turn, the virtual diameters (or effective sizes) of thread ring, snap, and indicating gages may be determined by fitting or comparison with such plug gages.

As most threads of mechanical fasteners and components are made to a lesser degree of accuracy than that of gage threads, their pitch diameters are not susceptible to accurate determination by direct measuring methods. On such threads the pitch diameter is to be regarded as the pitch cylinder or cone which would bound, on the maximum material side, the approximately cylindrical or conical surface which would pass through the thread profiles at all points such that the widths of the thread and groove are equal. Accordingly, the conformity of such threads with specified pitch diameter limits is determined by gaging means and methods specified in section VI.

The accurate measurement of pitch diameter of a thread, which may be perfect as to form and lead, presents certain difficulties which result in some uncertainty as to its true value. The adoption of a standard uniform practice in making such measurements is, therefore, desirable in order to reduce such uncertainty of measurement to a minimum. The so-called "three-wire method" of measuring pitch diameter, as here outlined, has been found to be the most generally satisfactory method when properly carried out, and is recommended for universal use in the direct measurement of thread plug and thread setting plug gages. (See fig. 4.1.)

FIGURE 4.1.—Three-wire method of measuring pitch diameter of thread plug gages.

1. SIZE OF WIRES

In the three-wire method of measuring pitch diameter small hardened steel cylinders or wires of correct size are placed in the thread space, two on one side of the screw and one on the opposite side, as shown in figure 4.1. contact face of the comparator, measuring machine, or micrometer anvil or spindle over the two wires must be sufficiently large in diameter to touch both wires; that is, the diameter must be greater than the pitch of the thread. It is best to select wires of such a size that they touch the sides of the thread at the midslope, for the reason that the measurement of pitch diameter is least affected by any error in thread angle that may be present when such size is used. The size of wire that touches exactly at the midslope of a perfect thread of a given pitch is termed the "best-size" wire for that pitch. Any size, however, may be used that will permit the wires to rest on the sides of the thread and also project above the crest of the thread.

The depth at which a wire of given diameter will rest in a thread space depends primarily on the pitch and included angle of the thread; and secondarily, on the angle made by the helix, at the point of contact of the wire and the thread, with a plane perpendicular to the axis of the thread. Inasmuch as variation in the lead angle has a very small effect in determining the diameter of the wire that touches at the midslope of the thread, and as it is desirable to use one size of wire to measure all threads of a given pitch and included angle, the best size wire is taken as that size which will touch at the midslope of a groove cut around a cylinder perpendicular to the axis of the cylinder, and of the same angle and depth as the thread of the given pitch. This is equivalent to a thread of zero lead angle. The size of wire touching at the midslope, or "best-size" wire, is given by the formula:

$$G = \frac{p}{2} \sec \alpha$$

in which

G=diameter of wire p=pitch $\alpha=\frac{1}{2}$ included angle of thread.

This formula reduces to—

 $G=0.57735\times p$, for 60° threads.

It is frequently desirable, as, for example, when a bestsize wire is not available, to measure pitch diameter by means of wires of other than the best size. The minimum size that may be used is limited to that permitting the wire to project above the crest of the thread, and the maximum to that permitting the wire to rest on the sides of the thread just below the crest, and not ride on the crest of the thread. The diameters of the best size, maximum, and minimum wires for Unified and American, American National, hosecoupling, and pipe threads are given in tables 4.1 and 4.2.

2. METHODS OF MEASURING AND USING WIRES

The computed value for the pitch diameter of a screw thread gage obtained from readings over wires will depend upon the accuracy of the measuring instrument used, the contact load, and the value of the diameter of the wires used in the computations. In order to measure the pitch diameter of a screw-thread gage to an accuracy within 0.0001 in. by means of wires, it is necessary to know the wire diameters to 0.00002 in. If the diameters of the wires are known only to an accuracy of 0.0001 in., an accuracy better than 0.0003 in. in the measurement of pitch diameter cannot be expected. Accordingly, it is necessary to use a measuring instrument that reads accurately to 0.00001 in.

Variations in diameter around the wire should be determined by rotating the wire between a measuring contact and an anvil having the form of a V-groove cut on a cylinder. The V-groove may be the thread space in a hardened and well-finished thread plug gage. Variations in

Table 4.1.—Wire sizes and constants, Unified and American, American National, hose-coupling, and pipe threads (60°)

Threads	Pitch,	$\frac{\text{Pitch}}{2}$,	Depth of V thread,		Wire sizes	1
per inch,	$p=\frac{1}{n}$	$\frac{p}{2} = \frac{1}{2n}$	$\underbrace{\cot 30^{\circ}}_{2n}$	Best, 0.577350p	Maximum, 1.010363 <i>p</i>	$\begin{array}{c} \text{Minimum,} \\ 0.505182p \end{array}$
1	2	3	4	5	6	7
	in.	in.	in.	in.	in.	in.
80	0.012500	0.00625	0.010825	0.00722	0, 01263	0.00631
72	.013889	.00694	.012028	. 00802	. 01403	. 00702
64	. 015625	.00781	. 013532	.00902	.01579	.00789
56	.017857	.00893	.015465	. 01031	. 01804	.00902
50	.020000	.01000	.017321	.01155	. 02021	. 01010
48	. 020833	.01042	.018042	. 01203	. 02105	. 01052
44	. 022727	.01136	.019682	. 01312	. 02296	. 01148
40	.025000	. 01250	.021651	. 01443	. 02526	. 01263
36	. 027778	.01389	. 024056	. 01604	. 02807	.01403
32	. 031250	. 01562	.027063	. 01804	. 03157	. 01579
30	. 033333	. 01667	.028868	. 01924	. 03368	. 01684
28 27	. 035714	. 01786	. 030929	. 02062	. 03608	.01804
27	. 037037	. 01852	. 032075	. 02138	. 03742	.01871
26	. 038462	. 01923	.033309	. 02221	. 03886	. 01943
24	. 041667	. 02083	.036084	. 02406	. 04210	. 02105
22	. 045445	. 02273	. 039365	.02624	. 04592	. 02296
20	. 050000	. 02500	. 043301	.02887	. 05052	. 02526
18	. 055556	. 02778	. 048113	. 03208	. 05613	. 02807
16	.062500	. 03125	. 054129	.03608	. 06315	. 03157
14	.071429	. 03571	.061859	. 04124	. 07217	. 03608
13	. 076923	. 03846	. 066617	. 04441	. 07772	. 03886
12	. 083333	. 04167	. 072169	. 04811	. 08420	. 04210
111/2		. 04348	. 075307	. 05020	. 08786	. 04393
11	. 090909	. 04545	.078730	. 05249	. 09185	. 04593
10	. 100000	. 05000	.086603	.05774	. 10104	. 05052
9	. 1111111	. 05556	. 096225	. 06415	. 11226	. 05613
8	. 125000	. 06250	. 108253	. 07217	. 12630	. 06315
71/2	. 133333	. 06667	. 115470	. 07698	. 13472	. 06736
7	. 142857	. 07143	. 123718	. 08248	. 14434	. 07217
6	. 166667	. 08333	. 144338	. 09623	. 16839	. 08420
$5\frac{1}{2}$. 09091	. 157459	. 10497	. 18370	. 09185
5	. 200000	. 10000	. 173205	. 11547	. 20207	. 10104
41/2	. 222222	. 11111	. 192450	. 12830	. 22453	. 11226
4	. 250000	. 12500	. 216506	. 14434	. 25259	. 12630

 $^{^1}$ These wire sizes are based on zero lead angle. Also maximum and minimum sizes are based on a width of flat at the crest equal to $\frac{1}{3}\times p$. The width of flat of American Standard pipe thread gages is slightly less than this, so that the minimum size listed is slightly too small for such gages. In any case the use of wires of either extreme size is to be avoided.

diameter along the wire should be determined by measuring between a flat contact and a cylindrical anvil.

A wire presses on the sides of a 60° thread with the load that is applied to the wire by the measuring instrument. This fact would indicate that the diameter of the wire should be determined by readings made on the wire over a hardened and lapped cylinder having a radius equal to the radius of curvature of the helical surface of the thread at the point of contact, using the load to be used in determining the pitch diameter of the gage. However, it is not practical to employ such a variety of cylinders as would be required, and it is recommended for standard practice that diameters of wires be measured between a flat contact and a 0.750-in. hardened and accurately ground and lapped steel cylinder with the load used in measuring the pitch diameter of the gage. The plane of the flat contact should be parallel to the contact element of the cylinder within 0.00001 in.

To avoid a deformation of the material of the wires and gages it is necessary to limit the contact load, and for consistent results a standard practice as to contact load in making wire measurements of hardened screw thread gages is necessary. Such a standard practice is included in the specifications below, and in section VI, p. 109. The use of different contact loads will cause a difference in the readings over the wires, and such errors can be compensated only by the use of a value for the diameter of the wires depending on the contact load used. The effect of variation in contact load in measuring threads of fine pitches is indicated by the difference in readings obtained with 2

Table 4.2.—Relation of best wire diameters and pitches 1—wires for Unified and American, American National, hose-coupling, and pipe threads (60°)

Best wire																	Th	reads	per	inch														
(in inches)	80	72	64	56	50	48	44	40	36	32	30	28	27	26	24	22	20	18	16	14	13	12	11½	11	10	9	8	71/2	7	6	51/2	5	41/2	4
0.00722	8	×																																
0.00802 0.00902	X	8	X																															
0.01031		\Diamond	8	8	X																													
0. 01155	XXX	××	×	×	8	X	×																											
0.01203	×	×	×	×	×	8	×																											
0.01312		X	××	×××	XXXX	× × × ×	×	X																										
0. 01443 0. 01604			X	X	X	X	X X	××	X																									
0.01804				^		I 🗘		1	X	X	×																							
0.01924					X	X	X	X	XXXX	XXXX	××××	X X X X	X × × ×																					
0.02062 0.02138						X	×	X	I 💸	X	I 🌣	8	X	×																				
0.02138 0.02221						1	Ŷ	X	1 x	I 🗘	Ŷ	Ŷ	×	8	×						1111			1000										
0.02406								X	X	X	X	X	X	×	8	×																		
0.02624									X	×	×	×	×	××××	×	8	×																	
0.02887										X	××	×	X	X	X	X	8	×																
0.03208 0.03608											X	. X	×××	X	X	X	X	\otimes	×															
0.04124	1									111					××××	××××	X × ×	×	X	8	X													
0. 04441																×	×	×	×	×	8	×	×											
0.04811					100												×	×	×××	×	X	8	X	X										
0.05020																	X	×	X	X	X	X	8	X										
$0.05249 \\ 0.05774$																		X	X	××××	⊗××××	X × X	XX &X	8	X									
0.00774																			X	X	X	X		X	8	X								
0.06415																				X	×	X	X	X	X	8	X							
0.07217																					X	X	X	X	X	×	8	X						
0.07698																					×	×××	××××	×××	X	X	X	8	X					
$\begin{array}{c} 0.08248 \\ 0.09623 \end{array}$																						X	X	X	××××	X	× × ×	× ×	×	⊗	×			1
0. 10497		Į																								×			×		8	×		
0.11547																											X	×××	×	×	X	X	X	
0.12830																												X	X	X	X	×	8	>
0.14434																														X	X	X	X	(8

 1 The crosses (\times) indicate those wire diameters which can be used for each pitch. An encircled cross (\otimes) indicates the "best wire" diameter for that pitch which heads the column.

and 5 lb loads on a 24-pitch thread plug gage. The reading over the wires with 5 lb load was 0.00013 in, less than with 2 lb load. The common shop practice of holding the wires in contact with the thread by means of elastic bands has a tendency to prevent the wires from adjusting themselves to the proper position in the thread spaces; thus a false measurement is obtained. In some cases it has also been the practice to support the gage being measured on two wires, which are in turn supported on a horizontal surface, and measuring from this surface to the top of a wire placed in a thread over the gage. If the gage is of large diameter, its weight causes a distortion of the wires and an inaccurate reading is obtained. For these reasons these practices should be avoided.

Measurements of a thread plug gage made in accordance with these instructions, with wires that conform to the following specifications, should be accurate to within 0.0001 in.

STANDARD SPECIFICATION FOR WIRES AND STANDARD PRACTICE IN MEASUREMENT OF WIRES

The following specifications represent present practice relative to thread measuring wires:

1. Composition.—The wires shall be accurately finished hardened steel cylinders of the maximum possible hardness without being brittle. The hardness shall not be less than that corresponding to a Knoop indentation number of 630. A wire of this hardness can be cut with a file only with difficulty. The surface shall not be rougher than the equivalent of one measuring 3 microinches average deviation from a true cylindrical surface, as measured with a tracer instrument.

2. Construction.—The working surface shall be at least 1 in. in length. The wire may be provided with a suitable means of suspension.

3. Container and Marking.—A suitable container shall be provided for each set of wires, and the pitch for which the wires are the best size and the diameter of the working part of the wires, as determined by measurements under standard conditions as specified below, shall be marked on the container.

4. Diameter of Wires.—One set of wires shall consist of three wires that shall have the same diameter within 0.00002 in., and this common diameter shall be within 0.0001 in. of that corresponding to the best size for the pitch for which the wire is to be used. Wires shall be measured between a flat contact and a 0.750-in. hardened and accurately ground and lapped steel cylinder with contact loads as follows: Wires for 60° threads and pitches finer than 20 threads per inch, 1 lb; wires for pitches of 20 threads per inch and coarser, 2½ lb. It is recommended that wires, which are to be used where the contact of the wire is a line contact, be measured between flat, parallel measuring contacts under a 1-lb load.

5. Variations in Diameter.—Variations in diameter around the wire (roundness) shall not exceed 0.00002 in., as determined by measuring between a measuring contact and a hardened and well-finished 60° V-groove cut on a cylinder. Variations in diameter along the wire (taper), over the ½ in. interval at the center of its length, shall not exceed 0.00002 in., as determined by measuring between a flat contact and a cylindrical contact.

Tests for compliance of thread-measuring wires with the above specifications are made by the National Bureau of Standards for a stated fee.

4. GENERAL FORMULA FOR MEASUREMENT OF PITCH DIAMETER

The general formula for determining the pitch diameter of any thread whose sides are symmetrical with respect to a line drawn through the vertex and perpendicular to the axis of the thread, in which the slight effect of lead angle is taken into account, is

$$E = M_w + \frac{\cot \alpha}{2n} - w[1 + (\csc^2 \alpha + \cot^2 \alpha \tan^2 \lambda')^{15}], \quad (1)$$

in which

E = pitch diameter

 M_{ω} =measurement over wires

 α =half angle of thread

n = number of threads per inch = 1/p

w = mean diameter of wires

 λ' = angle between axis of wire and plane perpendicular to axis of thread.

This formula is a very close approximation, being based on certain assumptions regarding the positions of the points of contact between the wire and the thread.

Formula 1 can be converted to the following simplified form, which is particularly useful when measuring threads of large lead angle:

$$E = M_w + \frac{\cot \alpha}{2n} - w(1 + \csc \alpha'), \tag{2}$$

in which α' = the angle whose tangent = tan $\alpha \cos \lambda'$.

When formula 1 is used, the usual practice is to expand the square root term as a series, retaining only the first and second terms, which gives the following:

$$E = M_w + \frac{\cot \alpha}{2n} - w \left(1 + \csc \alpha + \frac{\tan^2 \lambda' \cos \alpha \cot \alpha}{2} \right).$$
(3)

For large lead angles it is necessary to measure the wire angle, λ' , but for lead angles of 5° or less, if the "best-size" wire is used, this angle may be assumed to be equal to the lead angle of the thread at the pitch line, λ . The value of $\tan \lambda$, the tangent of the lead angle, is given by the formula

$$\tan \lambda = \frac{l}{3.1416E} = \frac{1}{3.1416NE},$$

in which

l = lead

N = number of turns per inch

E=nominal pitch diameter, or an approximation of the measured pitch diameter.

5. MEASUREMENT OF PITCH DIAMETER OF UNIFIED, AMERICAN, AND AMERICAN NA-TIONAL STRAIGHT THREADS

For threads of the Unified, American, and American National coarse, fine, extra-fine, 8-, 12-, and 16-thread series, the term

$$\frac{w \tan^2 \lambda' \cos \alpha \cot \alpha}{2}$$

is neglected, as its value is small, being in all cases less than 0.00015 in. for standard fastening screws when the best-size wire is used, and the above formula 3 takes the simplified form

$$E = M_w + \frac{\cot \alpha}{2n} - w \ (1 + \csc \alpha). \tag{4}$$

The practice is permissible provided that it is uniformly followed, and in order to maintain uniformity of practice, and thus avoid confusion, the National Bureau of Standards uses formula 4 for such threads. The Bureau also uses formula 4 for special 60° threads, except when the value of the term

$$\left(\frac{w \tan^2 \lambda' \cos \alpha \cot \alpha}{2}\right)$$

exceeds 0.00015 in., as in the case of multiple threads, or other threads having exceptionally large lead angles. For 60° threads this term exceeds 0.00015 when $NE\sqrt{n}$ is less than 17.1.

For a 60° thread of correct angle and thread form the formula 4 simplifies to

$$E = M_w + \frac{0.86603}{n} - 3w. \tag{5}$$

For a given set of best-size wires

$$E = M_w - C$$

when

$$C = w (1 + \csc \alpha) - \frac{\cot \alpha}{2n}$$

The quantity \mathcal{C} is a constant for a given thread angle, and, when the wires are used for measuring threads of the pitch and angle for which they are the best size, the pitch diameter is obtained by the simple operation of subtracting this constant from the measurement taken over the wires. In fact, when best-size wires are used, this constant is changed very little by a moderate deviation or error in the angle of the thread. Consequently, the constants for the various sets of wires in use may be tabulated, thus saving a considerable amount of time in the inspection of gages. However, when wires of other than the best size are used, this constant changes appreciably with a deviation in the angle of the thread.

It has been shown that, with the exception of coarse pitch screws, variation in angle from the basic size causes no appreciable change in the quantity C for the best-size wires. On the other hand, when a wire near the maximum or minimum allowable size is used, a considerable change occurs, and the values of the cotangent and cosecant of the actual measured half angle are to be used. It is apparent, therefore, that there is a great advantage in using wires very closely approximating the best size. For convenience in carrying out computations, the values of $\cot \alpha/2n$ for standard pitches are given in table 4.1, p. 195.

6. MEASUREMENT OF PITCH DIAMETER OF AMERICAN STANDARD TAPER THREADS

The pitch diameter of a taper thread plug gage is measured in much the same manner as that of a straight thread gage, except that a definite position at which the measurement is to be made must be located. A point at a known distance L from the reference end of the gage is located by means of a combination of precision gage blocks and the cone point furnished as an accessory with these blocks, as shown in the inset in figure 4.2. The gage is set vertically on a surface plate, the cone point is placed with its axis horizontal at the desired height, and the plug is turned until the point fits accurately into the thread. The position of this point is marked carefully with a pencil or a bit of prussian blue.

1. Two-Wire Methop.—Assuming that the measure-

1. Two-Wire Method.—Assuming that the measurement is to be made with a horizontal comparator, the gage is set in the comparator with its axis vertical, that is, the line of measurement and the thread axis are perpendicular to each other. The measurement is made with two wires, as shown in figure 4.2, one of which is placed in the thread to make contact at the same axial section of the thread as was touched by the cone point. This wire is designated the fixed wire. The second wire is placed in the thread space, on the the opposite side of the gage, which is next above the fixed wire, and the measurement over the wires is made. The second wire is then placed in the thread space next below the fixed wire, and a second measurement is made. The average of these two measurements is M_w , the measurement over the wires at the position of the fixed wire.

The general formula for a taper thread, corresponding to formula 3 is

$$E = M_w + \frac{\cot \alpha - \tan^2 \beta \tan \alpha}{2n}$$
$$-w \left(1 + \csc \alpha + \frac{\tan^2 \lambda' \cos \alpha \cot \alpha}{2}\right), \tag{6}$$

Figure 4.2.—Measurement of pitch diameter of taper thread gages by the 2-wire method.

in which

E= pitch diameter $M_w=$ measurement over wires $\beta=$ half angle of taper of thread n= number of threads per inch=1/p $\alpha=$ half angle of thread w= mean diameter of wires $\lambda'=$ wire angle.

The term

$$\frac{\cot \alpha - \tan^2 \beta \tan \alpha}{2n}$$

is the exact value of the depth of the fundamental triangle of a taper thread, which is less than that of the same-pitch thread cut on a cylinder. For steep-tapered thread gages, having an included taper larger than ¾ in./ft this more

accurate term should be applied. For such a thread, which has a small lead angle, formula 6 takes the form

$$E = M_w + \frac{\cot \alpha - \tan^2 \beta \tan \alpha}{2n} - w(1 + \csc \alpha)$$
 (7)

Otherwise, as for American standard taper pipe threads having an included taper of % in./ft, the simplified formula 5

$$E = M_w + \frac{0.86603}{n} - 3w$$

for 60° threads may be used. This simplified formula gives a value of E that is 0.00005 in. larger than that given by the above general formula 6 for the $2\frac{1}{2}$ in.-8 American Standard taper pipe thread, the worst case in this thread series.

The pitch diameter at any other point along the thread, as at the gaging notch, is obtained by multiplying the distance parallel to the axis of the thread, between this point and the point at which the measurement was taken, by the taper per inch, then adding the product to or subtracting it from the measured pitch diameter according to the direction in which the second point is located with respect to the first.

to the first.

2. Three-Wire Method.—Depending on the measuring facilities available or other circumstances, it is sometimes more convenient to use three wires. In such cases measurement is made in the usual manner, but care must be taken that the measuring contacts touch all three wires, as the line of measurement is not perpendicular to the axis of the screw when there is proper contact (see fig. 4.3).

On account of this inclination, the measured distance between the axes of the wires must be multiplied by the secant of the half angle of the taper of the thread. The formula for the pitch diameter of any taper thread plug gage, the threads of which are symmetrical with respect to a line perpendicular to the axis, then has the form corresponding to formula 4:

$$E = (M_w - w) \sec \beta + \frac{\cot \alpha}{2n} - w \csc \alpha,$$
 (8)

in which β =half-angle of taper of thread. Thus the pitch diameter of an American Standard pipe-thread gage having correct angle (60°) and taper ($\frac{3}{4}$ in./ft.) is then given by the formula

$$E = 1.00049(M_w - w) + 0.86603 \ p - 2w. \tag{9}$$

An adaption of the three-wire method is frequently used to reduce the time required when the pitch diameter of a

Figure 4.3.—Measurement of pitch diameter of taper thread gages by the 3-wire method.

number of gages of the same size is to be measured. Only light gages, up to about 2 in., can be measured accurately by this method. The gage is supported on two wires placed several threads apart, which are in turn supported on a taper thread testing fixture. The third wire is placed in the threads at the top of the gage and measurement is made from the top of this wire to the bottom of the fixture with a vertical comparator having a flat anvil, using a gage block combination as the standard. The fixture consists of a block, the upper surface of which is at an angle to the base plane equal to the nominal angle of taper of the thread, 28. Thus the element of the cone at the top of the thread gage is made parallel to the base of the instrument. The direction of measurement is not perpendicular to the axis of the gage but at an angle, β , from perpendicularity. A stop is provided at the thick end of the block with respect to which the gage is positioned on the fixture. the plane of the end of the gage may not be perpendicular to the axis, a roll approximately equal to the diameter of the gage should be inserted between the stop and the gage to assure contact at the axis of the gage. For a given fixture and roll, a constant is computed which, when subtracted from the measured distance from the top of the upper wire to the base plane, gives M corresponding to the pitch diameter, E_0 , at the small end of the gage. E_0 is then determined by applying formula 8 or 9.

3. Four-Wire Method.—A four-wire method of measurement that yields measurements of the pitch diameter, E_0 , at the small end of the gage, and the half-angle of taper, β , is also sometimes used. This method is illustrated in figure 4.4 and requires four thread wires of equal diameter, a pair of gage blocks of equal thickness, and two pairs of rolls of different diameters, the rolls of each pair being equal in diameter. Two measurements, M_1 and M_2 , are made over the rolls and formulas are applied as follows:

$$\cot \frac{90-\beta}{2} = \frac{M_2 - M_1 + d_1 - d_2}{d_2 - d_1},\tag{10}$$

$$M_w = M_2 - d_2 \left(1 + \cot \frac{90^\circ - \beta}{2} \right) - 2g \sec \beta,$$
 (11)

Figure 4.4.—Measurement of pitch diameter of taper thread gages by the 4-wire method.

in which

 M_2 =measurement over larger rolls M_1 =measurement over smaller rolls

 d_2 = diameter of larger rolls

 d_1 =diameter of smaller rolls

 β =actual half-angle of taper of thread

g=thickness of each gage block.

To determine E_0 , the pitch diameter at the small end of the gage, M_w , as determined from formula 11, is substituted in formula 6 or 7.

The errors of measurement by this method may be slightly but not significantly larger than by the other methods described, on account of elastic deformations of the rolls and gage blocks under the measuring load, and differing conditions of loading of the thread wires.

7. MEASUREMENT OF PITCH DIAMETER OF THREAD RING GAGES

The application of direct methods of measurement to determine the pitch diameter of thread ring gages presents serious difficulties, particularly in securing proper contact load when a high degree of precision is required. The usual practice is to fit the ring gage to a threaded setting plug. When the thread ring gage is of correct lead, angle, and thread form, within close limits, this method is satisfactory and represents standard American practice. It is the only method available for small sizes of threads. For the larger sizes, various more or less satisfactory methods have been devised, but none of these have found wide application.

APPENDIX 5. DESIGN OF SPECIAL THREADS

1. GENERAL

In general, any given problem in thread design may be susceptible to several more or less satisfactory solutions based on the preliminary selection of certain elements of the design and the proper adjustment of the other elements. In other words, thread design is to a large extent empirical and is partially based on previous experience with similar designs and the judgment of the designer. Accordingly, it is not practicable to present a definite system of approach to the design of a threaded assembly but merely to present a discussion of various design factors.

The interrelation of length of engagement, minimum major diameter of the external thread, maximum minor diameter of the internal thread, and the strength of the assembled thread needs to be understood and carefully considered in order to produce the optimum design of a special thread. It is not economical to use either a length of thread engagement which is longer than required or shorter than that which will develop the full strength of the externally threaded member. Other factors, such as control of tap breakage, proper seating of a threaded part on a shoulder, the prevention of cross threading, conditions of loading when the assembled parts are not concentric, and possible collapse of a hollow externally threaded member, require careful analysis and adjustment of the design with respect to selection of the diameter-pitch combination, the class of thread, length of engagement, and major and minor diameter tolerances.

In redesigning threads from American National to Unified standards, it should be remembered that exact correspondence between the old and new class numbers does not exist. For most, but not all, diameter-pitch combinations, the combined tolerances and allowances of the Unified classes are somewhat larger than American National classes of corresponding number. Recommended procedure is to convert the thread to the corresponding class of Unified thread, compare the new major, pitch, and minor diameter tolerances with the old tolerances, and then give careful consideration to the desirability of the new limits of size.

Taking, for example, the conversion of a class 1 thread to classes 1A and 1B: Under ordinary conditions where the thread is being used only as a simple fastener and the length of engagement is normal, such substitution may be made. If, for any reason, the previously specified tolerances may not be exceeded, it may be necessary to specify class 2A or 2B or both. Also, if the thread must carry a high axial stress or if concentricity of the two mating parts is a factor, the conversion should be from class 1 to classes 2A and 2B.

A close fitting thread assembly under some conditions may fail, whereas the cause of failure may be eliminated by providing a looser fit. A cap screw that seats only on one side of the bearing surface under the head may break off when the screw is tightened. When a screw has a large bearing surface under the head or when the head must be square with a projecting pin, sufficient pitch diameter clearance must be provided to allow for any out-of-squareness of the screw axis with the bearing surface under the head. Thus, as large a pitch diameter tolerance as possible, together with providing proper tolerances on squareness of face with the thread axis where seating is required, may avoid the necessity for specifying a heat treated bolt.

2. ECCENTRICITY OF ASSEMBLY AND CROSS THREADING

In assembly and use, the combined tolerances and allowances on both mating parts should not allow threads to disengage on one side when assembly is eccentric. axis of the internal thread can be displaced radially from coincidence with the axis of the external thread by an amount equal to the sum of the pitch diameter tolerances and the allowance. This radial displacement may be sufficient so that the flank contact is entirely on one side and on the opposite side the crest of the external thread will be in line with the crest of the internal thread with the following results when the screw is constrained in such a position in a tapped hole: (1) There will be danger of crossing the threads in starting, and (2) the screw may pull out of the hole when tension is exerted in this constrained position. The minimum amount of overlap is arbitrary and controversial, but the following general rule can be used in lieu of more specific data:

As the first step to assure the minimum safe overlap on both sides when the assembly is concentric, the difference between the minimum major diameter of the ex-

ternal thread and the maximum minor diameter of the internal thread should not be less than twice the addendum of the external thread ($\frac{3}{4}$ H, table III. 1, p. 12). (Otherwise stated, the sum of the major-diameter tolerance and allowance, if any, of the external thread and the minordiameter tolcrance of the internal thread should not be greater than 4/3 the addendum of the external thread, H/2, table III. 1. This provides for a minimum of 50 percent thread engagement. As the second step, to assure the minimum safe overlap on one side when the assembly is eccentric, the difference between the maximum pitch diameter of the internal thread and the minimum pitch diameter of the external thread should not be greater than twice the addendum of the external thread ($\frac{3}{4}$ H, table III. 1). Otherwise stated, the sum of the pitch-diameter tolerances of both threads and the allowance, if any, should not be greater than twice the addendum of the external thread, ¾ H, table III. 1). This provides for an eccentric assembly condition equal to the addendum of external thread (¾ H, table III. 1) and zero minimum overlap on one side. If the results from the limits of size selected violate the above rules, the tolerances should be reduced by using a closer class of tolerance, assuming tolerances consistent with manufacturing possibility, or a coarser pitch should be used to increase the amount of overlap. The major-diameter tolerance of the external thread or minor-diameter tolerance of the internal thread should not be less than the pitch-diameter tolerance of the respective thread to maintain thread form.

It should be noted that, if the tolerance on the minor diameter of the internal thread must necessarily be large, the major diameter of the external thread must be held close to the maximum major diameter and vice versa.

3. STRENGTH FACTORS

1. Critical Areas.—The critical areas of mating threads, as related to the tensile strength of the thread assembly, are: The effective cross-sectional area, or stress area, of the external thread, (2) the shear area of the external thread that depends principally on the minor diameter of the tapped hole, and (3) the shear area of the internal thread that depends principally on the major diameter of the external thread. The formulas for tensile stress area and thread shear area are given in section II, p. 5, and these areas are indicated in figure 5.1.

Figure 5.1.—Critical sections in a thread assembly.

See table 5.1 for formulas corresponding to item numbers.

If failure of a thread assembly should occur it is desirable that the external thread (screw) will break rather than that either the external or internal thread will strip. In other words, the length of thread engagement shall be sufficient to develop the full strength of the screw. Thus, the length of internal thread and the dimensions of this thread, particularly its minor diameter, should be such that, taking into account a possible difference in strength of material of the internal and external threads, the threaded portion of the external thread will break before either the external or internal threads strip.

2. Length of Thread Engagement.—The length of engagement of a threaded unit, which will develop maximum strength of assembled threads with external and internal threads manufactured of materials of equal tensile strength, is computed from the following formula:

$$L_e = \frac{2 \times \text{stress area}}{3.1416nK_n \max \left[\frac{1}{2n} + 0.57735(E_s \min - K_n \max)\right]}$$

The factor 2 used in the numerator of this formula means that it is assumed that the area in shear must be twice the tensile stress area to develop the full strength of the screw. This assumption is based on experiments made by the National Bureau of Standards in 1929, in which it was found that for hot-rolled and cold-rolled steel, and brass screws and nuts, this factor varied from 1.7 to 2.0. Taking the factor as 2 provides in general a small factor of safety against stripping of the threads.

To facilitate the application of this formula various notations, constants, and formulas applicable to the determination of the relation of critical areas to thread dimensions are given in table 5.1 and are discussed below.

(a) Length of engagement determined by shear area of

external thread.—Formula 8, table 5.1, gives the length of engagement required to develop the full strength of the screw when the strength of the material in which the hole is tapped is the same as, or slightly less than, the strength of the material of the screw. The value of L_c thus obtained is sufficient for a permanently-fastened connection. If, however, the screw is an adjusting or lead screw, or if the connection will be frequently unscrewed, L_c should be increased to allow for the expected wear on the flanks of the threads during the useful life of the components.

For tapped holes in sheet metal, the maximum size of the screw to be specified should be such that the thickness of sheet equals the L_c required to develop full strength. In order to use the largest possible screw, it is necessary that the tolerance, T_{Kn} , on the minor diameter of the hole should be the practical minimum. If it should prove to be impracticable to reduce the minor diameter tolerance to such a value, it may be necessary to decrease the minimum minor diameter of the internal thread and to increase the minor diameter tolerance by the same amount. If this is done, the maximum minor diameter of the screw must be reduced by the same amount to prevent interference, and the minor diameter of the "go" thread ring gage must likewise be decreased, as this is the only control of the minor diameter of the screw. In all such cases, where dimensions are altered from those calculated according to the standard, the method of designation for modified threads, stated in section III, p. 26, should be followed.

(b) Length of engagement determined by shear area of internal thread.—The ratio of the area in shear in the screw and the area in shear in the tapped hole is given by formula 12, table 5.1. This ratio, R_1 , will usually be less than 1 and the strength of the material of the tapped hole can be less than the strength of the material of the screw by this ratio with no indicated increase in

Figure 5.2.—Chart for determining minimum length of thread engagement.

 L_{ϵ} by formula 8. If, however, the ratio

$$R_2 = rac{ ext{tensile strength of the material}}{ ext{tensile strength of the material of the screw}}$$

is less than R_1 , then L_e should be multiplied by R_1/R_2 to provide sufficient length of thread to prevent stripping of the threads in the tapped hole.

For retaining collars on shafts where the expected axial force resisted by the collar is appreciably less than the tensile force that the shaft itself is capable of resisting, L_c need only be long enough to withstand the expected axial force on the collar. If F_c is the axial force to be carried by the collar and uts is the tensile strength of the material of the shaft in pounds per square inch, then the length of thread engagement required on the shaft is equal to $2F_c/(uts \times S_s \text{ min})$, where S_s min is given by formula 7, when the strength of material of the collar is the same or slightly less than the strength of material of the shaft. Ratios R_1 and R_2 should be computed as previously explained to determine whether or not a greater length is

required to prevent stripping of the threads in the collar.

(c) Hollow externally threaded parts.—For screws with through axial holes, the length of engagement required is of course less than if the screw is solid. For this condition, formula 8 becomes

$$L_{\epsilon} \max = \frac{2(A_s \max - A_n \max)}{S_s \min \text{ per inch}},$$

where A_n is the cross-sectional area of the hole.

However, as the wall thickness of either or both the internal and external members becomes thin, the tendency of the external member to enlarge and the internal member to neck down in the thread means that an L_e greater than given by the above formula must be used, also that the tolerances on minor diameter of the internal thread and major diameter of the external thread, T_{Kn} and T_{Ds} , must be small to obtain the maximum practicable depth of thread engagement. For components having threads on thin-wall tubing, tests under actual working conditions should be made to determine proper selection of wall thicknesses, length of engagement, and pitch of thread.

Table 5.1.—Data for determining strength factors in special thread design

NOTATION

D=basic major diameter. D_s =major diameter of external thread. K_n =minor diameter of internal thread. T_{Kn} =tolerance on minor diameter of internal thread. T_{B_s} =tolerance on pitch diameter of external thread.

G=allowance on all diameters of external thread. L_e =length of thread engagement. A_s =stress area of external thread. S_i =area in shear on external thread in line with K_n . S_n =area in shear in internal thread in line with D_s .

CONSTANTS

$C_1 = \frac{3}{4}\pi = 2.356$	Threads per inch, n														
4	40	36	32	28	27	24	20	18	16	14	12	10	8	6	4
$C_2 = \frac{5}{8} \frac{\cot 30^{\circ}}{n} = \frac{1.08253}{n} = \dots$	0. 0271	0, 0301	0.0338	0. 0387	0. 0401	0. 0451	0. 0541	0. 0601	0.0677	0. 0773	0. 0902	0. 1083	0. 1353	0. 1804	0. 02706
$C_3 = \frac{9}{16} \frac{\cot 30^{\circ}}{n} = \frac{0.974279}{n} = \dots$. 0244	. 0271	. 0304	. 0348	. 0361	. 0406	. 0487	. 0541	. 0609	. 0696	. 0812	. 0974	. 1218	.1624	. 2436
$C_4 = n \tan 30^{\circ} = 0.57735 n = \dots$	23, 09	20. 78	18. 48	16.17	15. 59	13.86	11.55	10. 39	9. 328	8. 083	6. 928	5. 774	4. 619	3.464	2. 309
$C_5 = \pi n \tan 30^{\circ} = 1.8138 n = \dots$	72. 55	65. 30	58. 04	50. 79	48.97	43. 53	36. 25	32. 65	29. 02	25, 39	21. 76	18. 14	14. 51	10.88	7. 255

FORMULAS

MAXIMUM MATERIAL FOR BOTH EXTERNAL AND INTERNAL THREADS

Item

- 1. $K_n \min = D C_2$.
- 2. Max area in shear of external thread per inch = S_s max per inch = C_1K_n min.
- 3. Min length of thread engagement, $L_e \min = \frac{L_e}{D} \times D_e \max$, with $\frac{L_e}{D}$ taken from graph, figure 5.2.
- 4. Area in shear of external thread in length $L_e \min = S_e \max \text{ per inch} \times L_e \min (= \text{item } 2 \times \text{item } 3)$
- 5. Max stress area of external thread = A_s max = $\frac{S_s \max \text{ per inch} \times L_s \min}{2} \left(= \frac{1}{2} \text{ item } 4 \right) = \frac{C_1 K_n \min \times \frac{L_s}{\overline{D}} \times D_s \max}{2}$

MAXIMUM MATERIAL EXTERNAL THREAD, K_n MAXIMUM

- 6. $K_n \max = K_n \min + T_{K_n}$
- 7. Min area in shear of external thread per inch = S_t min per inch = K_n max $(C_1 C_5 T_{K_n})$.
- 8. L_{e} required to develop full strength of external thread for T_{Kn} selected = $\frac{2 A_{s} \max}{S_{s} \min \text{ per inch}} = \frac{2 \times \text{item } 5}{\text{item } 7}$ or = $\left(\frac{\text{item } 4}{\text{item } 7}\right)$.

MINIMUM MATERIAL FOR BOTH EXTERNAL AND INTERNAL THREADS

- 9. Min stress area of external thread = $A_s \min = 0.7854 [D C_3 (T_{Es} + G)]^2$.
- 10. Min area in shear of external thread in length $L_s = S_s \min = K_n \max [C_1 C_5 (T_{Kn} + T_{Bs} + G)] L_s$, or $= \pi K_n \max [0.75 C_4 (T_{Kn} + T_{Bs} + G)] L_s$.
- 11. Min area in shear of internal thread in length $L_e = S_n \min = \pi D_e \min [0.875 C_4 (T_{De} + T_{En} + G)] L_e$.

minimum tapped hole, D_s minimum, when tapped material is weaker than screw material

- 12. $R_1 = \frac{\text{area in shear of screw in length } L_s}{\text{area in shear of tapped hole in length } L_s} = \left(\frac{\text{item 4}}{\text{item 11}}\right) = \frac{0.75 \ K_n \min \left[0.875 C_4 \ (T_{Ds} + T_{En} + G)\right]}{(T_{Ds} + T_{En} + G)}$
- 13. $R_2 = \frac{\text{ultimate tensile strength of tapped material}}{\text{ultimate tensile strength of screw material}}$
- 14. If $R_2 < R_1$, then L_ϵ required = L_ϵ for T_{Kn} selected $\times \frac{R_1}{R_2} = \left(\frac{\text{item 8} \times \text{item 12}}{\text{item 13}}\right)$.

4. THREAD PROPORTIONS IN RELATION TO TAPPING

In the production of threads it is considered impractical to tap a thread unless its diameter is greater than six times the basic thread height; therefore, when the ratio of D to H is less than 4.5, the use of a larger diameter, a finer pitch of thread, or both, should be considered.

The size of K_n is a factor in controlling tap breakage. Tap breakage is infrequent if the diameter of the tap is over ½ in. or if the length of thread to be tapped is less than $\frac{1}{2}D$. For sizes less than $\frac{1}{2}$ in. and length of thread over $\frac{1}{2}D$, tap breakage can be minimized by use of a large K_n , that is T_{Kn} maximum. However, this means that L_{\bullet} may have to be increased to develop the full strength of the screw.

5. EXAMPLES OF THREAD DESIGN

The design of special threads for particular purposes

is illustrated by the following examples:

Example: A gun barrel is subjected to an internal explosive pressure that produces a tensile stress in the threaded end. The length of engagement of the threads should be sufficient to produce a minimum area in shear on the threads of the screw in line with the minor diameter of the tapped hole threads equal to twice the maximum stress area of the threaded portion of the barrel.

Assume that the thread on the barrel is 1.5-8N-2A and the minimum internal diameter of the barrel at the

threaded end is 0.792 in.

In table III.10 will be found the following maximum dimensions of the external thread:

$$D_s \max = 1.4978 \text{ in.}$$

 $E_s \max = 1.4166 \text{ in.}$
 $K_s \max = 1.3444 \text{ in.}$

From table III.10, K_n min=1.365 in. If we select the tolerance for minor diameter of hole $T_{Kn} = 0.0250$ in., K_n max will equal 1.365 + 0.025 = 1.390, which will permit the use of a 1% (1.375)-in. tap drill.

The minimum area in shear per inch can be computed,

using formula 7, table 5.1:

$$S_s \min = K_n \max (C_1 - C_\delta T_{Kn})$$

= 1.390 (2.356 - 14.51 × 0.025)
= 2.7703 in.²

The maximum stress area of the external thread, if solid, using formula 5, table 5.1, is

$$A_s \max = \frac{C_1 K_n \min \times \frac{L_e}{D} \times D_s \max}{2},$$

$$\frac{L_e}{D} \text{from chart} = 0.622,$$

$$= \frac{2.356 \times 1.365 \times 0.622 \times 1.4978}{2} = 1.4977$$

Area of minimum center hole $=(\pi/4)\times0.792^2=0.4926$

Max stress area of external threaded member

Length of thread engagement required
$$=L_{\epsilon}\!=\!\frac{2\!\times\!\max A_s}{S_s\min}$$

$$=\!\frac{2\!\times\!1.005}{2.7703}$$

$$=\!0.726 \text{ in.}$$

If a length of engagement of 0.73 in. cannot be obtained, the tolerance on minor diameter, T_{Kn} , of the internal thread should be reduced. If a space for a longer length of engagement is available, T_{Kn} can be increased.

Example: The dimension is required of the largest

steel cap screw that can be used to hold a bracket on a cast iron body. The tensile strength of the steel is 60,000 lbs/in.², the tensile strength of the cast iron 20,000 lb./in.2, and the thickness of the cast iron is such that the length of thread engagement cannot exceed 1.750 in. The screws on the top side of the bracket will be in tension. From the ratio of the tensile strengths of the two materials, R_2 =20,000/60,000=0.333, it is evident that the length of the tapped hole thread must be considerably longer than the length of thread engagement required to develop the full strength of the screw. R_1 will be of the order of 0.85 and the length of thread in the tapped hole will be approximately $R_1/R_2 = 0.85/0.333 = 2.55$ times as long as the length required to develop the full strength of the screw. L_e required to develop the full strength of the screw must be of the order of 1.750/2.55 = 0.686 in.

Inasmuch as the hole is tapped in cast iron, a relatively Inasmuch as the hole is tapped in cast iron, a relatively coarse thread would be required, that is UNC or coarser. For such threads L_e/D , as shown on the chart, figure 5.2, varies between 0.57 and 0.61. Taking L_e/D =0.59, the approximate diameter required is 0.686/0.59=1.163. Try $D=1\frac{1}{16}=1.0625$ in. The selected pitch could be either 10 or 8 threads per inch with 8 threads per inch preferred. For a bracket screw, class 2A would be the preferred class. Thus, the screw is $1\frac{1}{16}=8NS-2A$ and the hole $1\frac{1}{16}=8NS-2B$

the hole $1\frac{1}{16}$ -8NS-2B.

Next, compute the dimensions of the screw and hole to determine whether or not the above selection is correct.

Max major diameter of screw, D_s max, table IV.2, =basic D-G=1.0625-0.0021=1.0604

Min major diameter of screw, D_s min, table IV.3, $=D_s \max - T_{Ds} = 1.0604 - 0.0150 = 1.0454$

Min minor diameter of tapped hole, K_n min, table IV.1, $=D-1\frac{1}{4}H=1.0625-0.1353=0.9272$

The number of 1½6-8 screws required will depend on the torque that may develop on the bracket that will produce tension in the screws. It should be possible to tighten these screws to the yield strength of the steel without stripping the cast iron threads.

The complete table of dimensions of the tapped hole and screw is

Internal thread, 1½6–8NS–2B

Min major diameter =1.0625Min pitch diameter, table IV.1, 1.0625-0.0812=0.9813 Max pitch diameter, table IV.8, 0.9813+0.0089=0.9902 Min minor diameter, table IV.1, 1.0625-0.1353=0.9272 Max minor diameter, table IV.10, 0.9272+0.0312=0.9584

External thread, 1%6-8NS-2A

Max major diameter, table IV.2, 1.0625-0.0021=1.0604 Min major diameter, table IV.3, 1.0604-0.0150=1.0454 Max pitch diameter, table IV.1, 1.0604-0.0812=0.9792 Min pitch diameter, table IV.5, 0.9792-0.0068=0.9724 Max minor diameter, table IV.1, 1.0604-0.1534=0.9070

 L_e/D from chart, figure 5.2=0.5990

$$L_e \min = L_e/D \times D_s \max = 0.5990 \times 1.0604 = 0.6352$$

 T_{En} (table IV.8)=0.0089

$$R_1$$
, table 5.1, formula $12 = \frac{0.75 \ K_n \text{ min}}{D_s \text{ min} \left[0.875 - C_4(T_{En} + T_{Ds} + G)\right]}$

$$= \frac{0.75 \times 0.9272}{1.0454 \left[0.875 - 4.619(0.0089 + 0.0150 + 0.0021)\right]}$$

=0.8812

 L_e required in hole= $L_e \min \times \frac{R_1}{R_2} = 0.6352 \times 0.8812/0.3333 = 1.6794$ in.,

which is less than the L_e (1.750 in.) permitted.

APPENDIX 6. REFERENCES

The following Federal Specifications may be obtained at the prices indicated upon application, accompanied by check, money order, cash, or Government Printing Office coupons to the Business Service Center, General Services Administration, Regional Office Building, Seventh and D Streets SW., Washington 25, D. C.

Federal Specifications: FF-B-561. Bolts, Lag (10 cents).

FF-W-92.

FF-W-00100.

FF-B-575. Bolts, Hexagon and Square (15 cents). Bolts (Square Neck, Machine, Ribbed Neck, Finned Neck, Tee Head, Key FF-B-00584. Head) (Round Head). FF-B-588. Bolts, Toggle (5 cents). FF-D-00200. Devices, Anchoring, Masonry. Nuts, Hexagon and Square (25 cents). FF-N-836. FF-N-845. Nut, Plain, Wing. FF-S-85. Screws, Cap, Slotted and Hexagon Head (15 cents).Screws, Cap, Socket Head (25 cents). FF-S-86. Screw Eyes (10 cents).
Screws, Machine; Slotted or Cross-Recessed (25 cents). FF-S-88. FF-S-92. FF-S-103. Screws, Set (10 cents). FF-S-107. Screws, Tapping, Slotted and Plain Head (Sheet Metal, Machine, and Drive) (20 cents).
Screws, Wood; Cross-Recessed Head.
Screws, Wood; Slotted-Head (10 cents).
Thumbscrews (10 cents). FF-S-00109. FF-S-111. FF-T-305. FF-W-84. Washers, Lock (Spring) (15 cents). Washers, Metal, Flat (Plain) (15 cents). Washers, Tooth Lock.

The following standards and specifications may be purchased from the Superintendent of Documents, Government Printing Office, Washington 25, D. C.

Commercial Standards of the U.S. Department of Commerce, Office of Technical Services: CS8. Gage Blanks (40 cents).

Simplified Practice Recommendations of the U. S. Department of Commerce, Business and Defense Services Administration:

R23. Bolts, plow (5 cents).

Chasers for Self-opening and Adjustable Die R51. Heads (10 cents)

Bolts, Carriage, Machine and Lag; Packaging of (5 cents). R60.

Machine, Carriage, and Lag Bolts (Steel), (Stock Production Sizes (10 cents)). R169.

The following standards have been approved and promulgated by the American Standards Association, and issued by The American Society of Mechanical Engineers, 29 West 39th Street, New York 18, N. Y.:

B1.1. Unified and American Screw Threads for Screws, Bolts, Nuts, and Other Threaded Products (\$3.00).

B1.2. Screw Thread Gages and Gaging (\$4.00).

B1.5. Acme Screw Threads (\$2.25).

B1.7. Nomenclature, Definitions, and Letter Symbols for Screw Threads (50 cents).

Stub Acme Screw Threads (\$1.25). Buttress Screw Threads (\$1.50). Pipe Threads (\$1.50). B1.8.

B1.9.

B2.1.

Taps, Cut and Ground Threads (\$1.50). B5.4.

B5.12. Twist Drills, Straight Shank and Taper Shank (75 cents).

Square and Hexagon Bolts and Nuts (\$2.00). B18.2. B18.3. Socket Head Cap Screws and Socket Set Screws (\$1.00).

B18.5. Round Head Bolts (\$1.00).

B18.6.1. Slotted and Recessed Head Wood Screws (\$1.00).

Tapping Screws. B18.6.2.

Slotted and Recessed Head Machine Screws. B18.6.3. High-Strength, High-Temperature Internal B18.8.

Wrenching Bolts (50 cents). B18.9. Plow Bolts (55 cents).

B18.10. Track Bolts and Nuts (\$1.00).

INDEX

A	_	E	
ANA CANADA AND A Changai	Page	Effective size, definition (see Virtual diameter)	Page
Abhreviations, screw thread	7, 10 118	Effective thread, definition Eight-thread series.	
Actual fit, definition		Eight-thread series	14, 17, 123, 130, 138
Actual size, definition	2	Engagement, depth of, definition	22.128
Addendum, definitionAllowance, definition		Engagement, depth of, definition Engagement, length of Definition	5
Allowances (see Tolerances and allowances)		External thread, definition External thread tolerances	2
Altered threads	100	Major diameter	21. 76
American National screw threads	121	Minor diameter	21, 76
Form of thread	121	Pitch diameter Extra-fine-thread scries	
Limits of gage sizes Limits of thread sizes		Hatia int thread our of the second	11, 11, 120, 123, 131
Method of designating	132	F	
Thread classes		Fine-thread series	14 16 100 100
Thread form Thread series	122	Fit, definition	14, 10, 122, 120
Coarse	122, 128, 133	Flank, definition	3
Extra-fine Fine	123, 128, 137	Flank angle, definitionFollowing flank, definition	3
8-thread	123, 130, 138	Form of thread, definition	
16-thread 12-thread		Fundamental triangle, definition	3
Tolerances and allowances	124, 128, 131, 145		
American National special screw threads	179	G	
Form of threadGages for		Gage classification	108
Recommended pitches	179	Gage tolerances and wear allowances	
Thread classes Selection of		Gage sizes, limits of Gage tolerances and wear allowances Gages	38, 100, 107
Tolerances and allowances.	126	Constants for computing dimensions of Direction of tolerance on	115
American Standard screw threads (see under Unified and	American)	For reference	
Angle deviations, diameter equivalent of Angle, included, of thread, definition	4	Master	108
Axis of thread, definition		Plain plug acceptance check Setting (check)	108 108
_		General design	109
B B		Limit	
Base of thread, definition Basic form of thread, definition	3	Maximum-metal (''go'') Minimum-metal (''not go'')	108
Basic hole system, definition	3	Limits of size Plain and thread	38, 113
Basic size, definition Basic shaft system, definition	2 3	Setting plug	
Bilateral tolerance, definition	2 I	Marking of	116
Bilateral tolerance system, definition		Standard temperature	109 110
Blunt start, definition	4	Thread form. "Go" and "Not go" thread gages. Setting plug gages.	110
C	Ì	Setting plug gages Thread length	
Classes of threads	18	Gages, ring	114 118
1 1A	23 79	Measurement of pitch diameter of	199
1A R	75, 79	Gaging practices, recommended Procedure in setting adjustable thread ring gages	118 118
1B		Procedure for determining clearance in thread ring gage	s 120
2A		Uses of W and X thread gages	118 107
2B		Practices	
3		Virtual (or effective size)	118
3B	23, 98	Single element	118
4		7.7	
Classes of threads, definition	18	Н	
Clearance fit, definition Clearance (or trailing) fiank, definition		Height of fundamental triangle, definition	4
Coarse-thread series	13, 16, 122	Height of thread, definition High-temperature, high-strength applications	4
Coated threads	23	Hole size limits	
Complete thread, definition Core diameter (see Minor diameter)	3		*30
Crest, definition	3	I	
Crest clearance, definitionCrest truncation, definition	5 4	Incomplete thread, definition	2
Cross threading	201	Included angle, definition	4
		Interference fit, definition Internal thread, definition	
Dedendum, definition		Internal thread tolerances	19. 75
Definitions	2	Major diameter	21, 76
Depth of thread engagement, definition	5	Minor diameter Pitch diameter	21,77
Design forms of thread, definition Design forms of threads	3	I TOM CHARLET	21,75,125
American National	122-125	L	
National miniature	103	-	
Unified	pitches, and	Lead, definition Lead angle, definition	4
lengths of engagement	200	Lead deviations, diameter equivalent of	23. 32
American National Unified	180	Lead, variations in Leading flank, definition	32
Design size, definition		Left-hand thread, definition	2
	2 l	and the state of t	
Designating screw threads	2	Length of engagement	22, 128
Method of. Method of, special thread.	2	Length of engagement	22, 128
Method of	2 8 26 98 8, 26	Length of engagement	22, 128
Method of	2 8 26 98 8, 26 22, 32	Length of engagement Length of thread engagement, definition. Limit gages, maximum-metal or "go" Minimum-metal or "not go" Limits of size.	22, 128 5 108 108 26, 79, 128
Method of Method of, special thread Designations, identification, screw thread Diameter equivalent Of angle deviations Of lead deviations	2 8 26 98 8, 26 22, 32 22, 32 23, 32	Length of engagement Length of thread engagement, definition. Limit gages, maximum-metal or "go". Minimum-metal or "not go". Limits of size. Definition. Gages (see Gage sizes)	22, 128 5 108 108 26, 79, 128 2
Method of	2 8 26 98 8, 26 22, 32 22, 32 23, 32 23, 32	Length of engagement Length of thread engagement, definition Limit gages, maximum-metal or "go" Minimum-metal or "not go" Limits of size Definition	22, 128 5 108 108 26, 79, 128 2

M	_
	Page 6
Major cone, definition Major diameter, definition	4
Major cylinder or cone, definition	3
Major cone, definition Major diameter, definition Major cylinder or cone, definition Maximum material limit, definition Measuring pressure Measuring pressure	2 109
Measurement of pitch diameter. Wire method of. Method of designating threads. 26,8	194
Wire method of	19 1 98. 132
Miniature screw threads (see National Miniature screw threads)	
Minimum material limit, definition	2 6
Minor cone, definition Minor cylinder or cone, definition	3
Minor diameter, definition Modified threads	26. 98
Multiple thread, definition	2
NT.	
N	
National Miniature screw threads	$\frac{100}{105}$
Limits of thread size Thread designations	105
Thread form	101 104
Net tolerances, basis of	128
Nomenclature (see Definitions)	2
Nominal size, definition	2
P	
Personnel of the Committee	1
Pipe thread	9
Symbols Designations	9 10
Plating, screw thread (see Coated threads)	
Pitch, definition	4 6
Pitch cone, definitionPitch cylinder or cone, definition	3
Pitch diameter (simple effective diameter), definition	4 3
Pitch line, definition Preferred diameters and pitches	75, 179
Pressure flank, definition	3
R	
Recommended gage practices	118
References	$\frac{205}{2}$
Root, definition	3
Right-hand thread, definition Root, definition Root truncation, definition Rules for use of tahles, special threads	180
reaction due of tames, special vincade	
S	
Screw thread	20, 170
Classes 18, 75, 1 Definition	2
Designating, method of26,	98, 132
Elements, definitions 12, 1	01, 121
American National (see American National screw threads) National Miniaturc (see National Miniature screw threads) Unified (see Unified and American screw threads)	
Limits of size	05, 128 04, 122
Definition	13
Shear area Definition Formula	5, 202 5
r or midia	
Symbols	7 2
Types, definitions Sharp crest (or crest apex), definition Sharp major cone, definition.	3
Sharp major cone, definition	6 7
Sharp root (or root apex), definition. Shear area, thread (see Screw thread shear area)	3
Single thread definition	2
Sixteen-thread series 14, 19, 1	24, 143
Sixteen-thread series 14, 19, 1 Size, actual, basic, design, etc. definitions Special serew threads (see Unified and American special serew threads)	2
American National special screw threads)	
	900
Design Standoff, definition	~
Standoff, definition Strength factors in thread design.	7
Standoff, definition Strength factors in thread design Stress area (see Tensile stress area) Symbols	7 201 9, 13
Standoff, definition Strength factors in thread design.	7 201 9, 13

	Page
Tap drill sizes	68
Paper screw thread elements, definitions	6
Caper threads, measurement of	197
Capping, thread proportions in relation to Comperature at which gages shall he standard	204
Censile stress area	109
Definition	5
Formula	5
Terminology (see Definitions). Thickness of thread, definition	
Chickness of thread, definition	4
Chroad (see Serow throads)	
Thread design, examples of	204
Thread engagement 5, 2 Depth of, definition 5, 2	2, 128
Depth of, definition	5
Eccentric	201
Length of, definition	5
Fhreads per inch, definition Fhread shear area, definition	4 5
Polerance definition	2
Colerance limit, definition	2 2 2
Folerance, definition Folerance limit, definition Folerance, unilateral, bilateral, definitions	
Γolerances and allowances	20
Basic formula for	20
Definition of	2
Direction and scope of 19, 75, 104, 12	5, 179
Direction on gages	109
Gages Major diameter	117 21
Minor diameter	21 21
Pitch diameter.	21
Serew thread classes	
Total thread, definition	3
Pransition fit, definition	3
Turns per inch, definition	4
Twelve-thread series 14, 18, 12	3, 140
Ŭ	
Unified and American screw threads	10
Applications	13
Limits of gage sizes	38
Limits of thread sizes	22, 79
Method of designating	26
Tap drill sizes	68
Thread classes	18, 75
Thread form	12
Thread series	13
Coarse	13, 16
Extra-fine	14, 17
Fine 8-thread	14, 16 14, 17 14, 19 14, 18
16-thread	14 10
12-thread	14.18
12-thread Tolerances and allowances	18
Variations in	22
Unified and American special screw threads.	74
Diameter-pitch combinations	13, 15
Directions for determining limits of size of	100
Tolerances and allowances Variations in Unified and American special screw threads Diameter-pitch combinations Directions for determining limits of size of Method for calculation of dimensions_ Method of designating_ Preferred diameters and pitches Thread classes	99
Method of designating	98
Preferred diameters and pitches Thread classes	75 75, 79
Selection of	75, 79
Thread form	75
Thread form	79
Unified form of thread	12
Unified thread series (see under Unified and American)	
Uniform pitch seriesUniform pitch series	1.4
Unilateral tolerance, definition	$\frac{14}{2}$
Unilateral tolerance system, definition	2
o minute at total action of one and desired to the first of the second o	~
V	
·	
Vanish conc, definition	4
Vanish point, definition	4
Variations in lead and angle	32
virtual quameter (of enective Size), quimition	5
W	
VV	
Wire methods of measurement of pitch diameter	194
Measuring pressure for	109
Wires, thread measuring	195
Methods of measuring	195
Methods of using	195
Size of	195
Specifications for	196

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards at its headquarters in Washington, D. C., and its major field laboratories in Boulder, Colorado, is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section carries out specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant publications, appears on the inside front cover.

WASHINGTON, D. C.

Electricity and Electronics. Resistance and Reactance. Electron Devices. Electrical Instruments. Magnetic Measurements. Dielectrics. Engineering Electronics. Electronic Instrumentation. Electrochemistry.

Optics and Metrology. Photometry and Colorimetry. Optical Instruments. Photographic Technology. Length. Engineering Metrology.

Heat and Power. Temperature Physics. Thermodynamics. Cryogenic Physics. Rheology. Engine Fuels. Free Radicals Research.

Atomic and Radiation Physics. Spectroscopy. Radiometry. Mass Spectrometry. Solid State Physics. Electron Physics. Atomic Physics. Neutron Physics. Nuclear Physics. Radioactivity. X-rays. Betatron. Nucleonic Instrumentation. Radiological Equipment. AEC Radiation Instruments.

Chemistry. Organic Coatings. Surface Chemistry. Organic Chemistry. Analytical Chemistry. Inorganic Chemistry. Electrodeposition. Gas Chemistry. Physical Chemistry. Thermochemistry. Spectrochemistry. Pure Substances.

Mechanics. Sound. Mechanical Instruments. Fluid Mechanics. Engineering Mechanics. Mass and Scale. Capacity, Density, and Fluid Meters. Combustion Controls.

Organic and Fibrous Materials. Rubber. Textiles. Paper. Leather. Testing and Specifications. Polymer Structure. Plastics. Dental Research.

Metallurgy. Thermal Metallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corrosion. Metal Physics.

Mineral Products. Engineering Ceramics. Glass. Refractories. Enameled Metals. Concreting Materials. Constitution and Microstructure.

Building Technology. Structural Engineering. Fire Protection. Air Conditioning, Heating, and Refrigeration. Floor, Roof, and Wall Coverings. Codes and Specifications. Heat Transfer. Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Mathematical Physics.

Data Processing Systems. SEAC Engineering Group. Components and Techniques. Digital Circuitry. Digital Systems. Analog Systems. Application Engineering.

• Office of Basic Instrumentation

• Office of Weights and Measures

BOULDER, COLORADO

Cryogenic Engineering. Cryogenic Equipment. Cryogenic Processes. Properties of Materials. Gas Liquefaction.

Radio Propagation Physics. Upper Atmosphere Research. Ionospheric Research. Regular Propagation Services. Sun-Earth Relationships.

Radio Propagation Engineering. Data Reduction Instrumentation. Modulation Systems. Navigation Systems. Radio Noise. Tropospheric Measurements. Tropospheric Analysis. Radio Systems Application Engineering.

Radio Standards. High Frequency Electrical Standards. Radio Broadcast Service. High Frequency Impedance Standards. Calibration Center. Microwave Physics. Microwave Circuit Standards.

