# Лабораторная работа 2.2.2 Измерение теплопроводности воздуха при разных давлениях

Вячеслав Ждановский, студент 611 группы ФРКТ Шамиль Вагабов, студент 611 группы ФРКТ Станислав Токарев, студент 611 группы ФРКТ

06 марта 2017 г.

**Цель работы:** измерение перегрева нити при фиксированной мощности нагрева в зависимости от давления воздуха; определение коэффициента теплопроводности при атмосферном давлении, оцена длины свободного пробега, сечения рассеяния и диаметра молекул воздуха; определение области теплопроводности и области теплопередачи (температурного скачка); определение коэффициента аккомодации в области теплопередачи.

**В работе используется:** прибор для определения теплопроводности газа; форвакуумный насос; манометр; вакуумметр; одинарно-двойной мост; реостат; гальванометр; милли-амперметр; источник постоянного напряжения 3-4 В.

#### 1 Схема экспериментальной установки



Рис. 1: Схема установки для измерения теплопроводности воздуха



Рис. 2: Схема установки для измерения теплопроводности воздуха

### 2 Теоретическая часть

Перенос тепла описывается уравнением Фурье:

$$q = -\varkappa \cdot \frac{dT}{dx} \tag{1}$$

где q - плотность теплового потока - количество энергии, переносимой через единичную площадку в единицу времени,  $\varkappa$  - коэффициент теплопроводности  $\frac{dT}{dx}$  - градиент температуры в направлении x. Согласно МКТ коэффициент теплопроводности в газах равен:

$$\varkappa = \frac{1}{3} \cdot \lambda \cdot v \cdot n \cdot C_v^1 \tag{2}$$

где  $C_v^1$  - теплоемкость в расчете на одну молекулу ( $C_v^1=\frac{i}{2},\,i$  - количество степеней свободы молекулы),  $v=\sqrt{\frac{8RT}{\pi\mu}}$  - средняя тепловая скорость молекул,  $\lambda$  - длина свободного пробега, а n - концентрация молекул газа. Длина свободного пробега обратно пропорциональна концентрации молекул:  $\lambda=\frac{1}{\sqrt{2\cdot n\cdot \sigma}};\,\sigma$  - сечения рассеяния молекул;  $\sigma=\pi d^2$ . Поэтому коэффициент теплопроводности газа не зависит от давления. Плотность потока тепла в случае сильно разреженного газа (где происходит теплопередача).

$$q = \frac{1}{4} \cdot n \cdot v \cdot C_v^1 (T_1 - T_2) \tag{3}$$

, где n - число молекул, ударяющихся в единицу времени об единичную площадку. Сопротивление металлической нити увеличивается при увеличении температуры по закону:

$$R = R_0(1 + \alpha t) \tag{4}$$

где t - температура в  ${}^{o}C$ ,  $R_{0}$  - сопротивление при  $t=0{}^{o}C$ . Распространение потока тепла Q от горячей нити по радиусу к холодным стенкам:

$$Q = -2\pi \cdot r \cdot L \cdot \varkappa \frac{dT}{dr} \tag{5}$$

где L - высота цилиндра,  $2\pi rL$  - площадь цилиндрической поверхности на расстоянии r от нити. После интегрирования по радиусу получаем формулу для разности температур между нитью и стенкой цилиндра:

$$T_{r_{\rm H}} - T_R = \frac{Q}{2\pi L \varkappa} * \ln \frac{R}{r_{\rm H}} \tag{6}$$

где Q - мощность Джоулева тепла, выделяющегося в нагретой нити,  $T_{\rm H}$  - температура нити,  $T_{\rm R}$  - температура внутренней стенки цилиндра. При низких давлениях закон Фурье нарушается - это область **теплопередачи**. Для этой области поток тепла, согласно (3), будет равен:

$$Q = 2\pi \cdot r_{\scriptscriptstyle H} \cdot L \cdot \frac{1}{4} \cdot n \cdot v \cdot C_v^1 (T_{r_{\scriptscriptstyle H}} - T_R)$$
 (7)

$$T_{r_{\rm H}} - T_R = \frac{4Q}{2\pi L n v C_v^1 r_{\rm H} s} \tag{8}$$

Здесь учтен коэффициент аккомодации s, учитывающий, что температуру нити приобретает только часть молекул, сталкивающихся с нитью. Преобразуем выражение, выразив его через  $\varkappa = const$  при высоком давлении.

$$T_{r_{\mathrm{H}}} - T_{R} = \frac{4Q}{2\pi L n v C_{v}^{1} r_{\mathrm{H}} s} = \frac{4\lambda Q}{3r_{\mathrm{H}} s \cdot 2\pi L \varkappa}$$

$$\tag{9}$$

Учет обоих вкладов дает:

$$T_{r_{\text{H}}} - T_{R} = \frac{Q}{2\pi L \varkappa} \cdot \ln \frac{R}{r_{\text{H}}} \cdot \left[ 1 - \ln \left( 1 + \frac{\lambda}{r_{\text{H}}} \right) / \alpha + \frac{4\lambda}{3r_{\text{H}}s} / \alpha \right]$$
(10)

#### Ход работы 3

Параметры установки

$$L = 220 \pm 2 \text{ mm}$$
 (11)

$$2r = 0.05 \text{ mm}$$
 (12)

$$2R = 10 \text{ mm} \tag{13}$$

$$\rho_{\text{масла}} = 0,885 \Gamma/\text{см}^3 \tag{14}$$

$$T = 295K, P_0 = 746, 2 \text{ Topp}$$
 (15)

$$\alpha = 3,83 \cdot 10^{-3} \, {}^{o}C^{-1} \tag{16}$$

- 1. Ознакомимся со схемами установки.
- 2. Включим приборы, впустим воздух в установку.
- 3. Снимем зависимость напряжения U от величины тока I. 4.Используя (4), найдем сопро-

| І, мА  | U, мВ  | $Q, 10^{-6} B_T$ | R, Ом    |
|--------|--------|------------------|----------|
| 70,744 | 889,2  | 62905,56         | 12,56926 |
| 66,573 | 825,3  | 54942,7          | 12,39692 |
| 59,36  | 722,63 | 42895,32         | 12,17369 |
| 50,927 | 607,9  | 30958,52         | 11,93669 |
| 45,461 | 537,4  | 24430,74         | 11,82112 |
| 39,473 | 462,29 | 18247,97         | 11,71155 |
| 31,202 | 361,79 | 11288,57         | 11,59509 |
| 26,772 | 309,12 | 8275,761         | 11,54639 |

тивление при комнатной температуре  $R_0=11.36~{
m Om}\,5$ . Произведем аналогичные измерения при разных давлениях и построим график зависимости t(Q)

| І, мА  | U, мВ      | $Q, 10^{-6} B_T$ | R, Ом        |
|--------|------------|------------------|--------------|
| 71,845 | 873,17     | 62732,9          | $12,\!15352$ |
| 65,345 | 785,15     | 51305,63         | 12,01546     |
| 55,196 | 653,38     | 36063,96         | 11,83745     |
| 43,707 | 510,27     | 22302,37         | 11,67479     |
| 36,126 | 418,9      | 15133,18         | 11,59553     |
| 30,77  | $355,\!55$ | 10940,27         | 11,55509     |
| 26,785 | 309,06     | 8278,172         | 11,53855     |

Таблица 1: P=95,403 Па

- 6. Построим зависимость t от Q. 7. Построим зависимость t от  $\frac{1}{P}$  и найдем из него  $\varkappa=2,53\cdot 10^{-2}\frac{B}{\text{M}\cdot K}.$

| І, мА  | U, мВ   | $Q, 10^{-6} B_T$ | R, Ом    |
|--------|---------|------------------|----------|
| 72,46  | 879,95  | $63761,\!18$     | 12,14394 |
| 65,798 | 791,55  | 52082,41         | 12,03    |
| 58,55  | 697,81  | 40856,78         | 11,91819 |
| 43,845 | 514,75  | $22569,\!21$     | 11,74022 |
| 36,209 | 422,51  | $15298,\!66$     | 11,66865 |
| 30,825 | 358,4   | 11047,68         | 11,62693 |
| 26,826 | 311,225 | 8348,922         | 11,60162 |

Таблица 2: P=130,095 Па

| І, мА  | U, мВ   | $Q, 10^{-6} B_T$ | R, Ом    |
|--------|---------|------------------|----------|
| 72,615 | 877,533 | 63722,06         | 12,08473 |
| 60,276 | 717,91  | 43272,74         | 11,91038 |
| 43,85  | 514,61  | $22565,\!65$     | 11,73569 |
| 36,202 | 422,7   | 15302,59         | 11,67615 |
| 30,817 | 358,73  | 11054,98         | 11,64065 |
| 26,817 | 311,57  | 8355,373         | 11,61838 |
| 23,737 | 275,43  | 6537,882         | 11,6034  |

Таблица 3: P=225,498 Па

| І, мА  | U, мВ   | $Q, 10^{-6} B_T$ | R, Ом    |
|--------|---------|------------------|----------|
| 72,865 | 872,36  | $63564,\!51$     | 11,97228 |
| 64,017 | 761,03  | 48718,86         | 11,88794 |
| 43,84  | 514,436 | $22552,\!87$     | 11,7344  |
| 36,186 | 423,07  | $15309,\!21$     | 11,69154 |
| 30,799 | 359,313 | 11066,48         | 11,66639 |
| 26,802 | 312,246 | 8368,817         | 11,6501  |
| 23,725 | 276,14  | 6551,422         | 11,6392  |

Таблица 4: P=780,57 Па

| І, мА  | U, мВ   | $Q, 10^{-6} B_T$ | R, Om    |
|--------|---------|------------------|----------|
| 72,789 | 873,63  | $63590,\!65$     | 12,00223 |
| 63,985 | 761,8   | 48743,77         | 11,90592 |
| 55,52  | 656,68  | $36458,\!87$     | 11,82781 |
| 43,83  | 514,52  | 22551,41         | 11,73899 |
| 36,182 | 493,026 | 17838,67         | 13,62628 |
| 26,8   | 312,125 | 8364,95          | 11,64646 |
| 23,722 | 275,993 | 6547,106         | 11,63447 |

Таблица 5: Р=745,878 Па

## 4 Контрольные вопросы

1. Основное изменение температуры происходит в области прилежащей к нити, практически - на расстояниях порядка нескольких её радиусов. Поэтому наиболее резкие изменения характера процесса теплопроводности лежат в том диапазоне давлений, когда длина сво-

| І, мА  | U, мВ       | $Q, 10^{-6} B_T$ | R, Ом    |
|--------|-------------|------------------|----------|
| 72,763 | 874,2       | 63609,41         | 12,01435 |
| 63,975 | 762,13      | $48757,\!27$     | 11,91293 |
| 58,632 | $695,\!265$ | 40764,78         | 11,85812 |
| 45,776 | 537,755     | $24616,\!27$     | 11,74753 |
| 37,504 | 438,5       | $16445,\!5$      | 11,69209 |
| 31,752 | 370,23      | $11755,\!54$     | 11,66005 |
| 27,522 | 320,352     | 8816,728         | 11,63985 |

Таблица 6: Р=581,091 Па

| І, мА  | U, мВ       | $Q, 10^{-6} B_T$ | R, Ом    |
|--------|-------------|------------------|----------|
| 72,675 | 875,26      | 63609,52         | 12,04348 |
| 60,275 | 716,73      | 43200,9          | 11,891   |
| 55,501 | 657,22      | 36476,37         | 11,84159 |
| 43,837 | 514,6       | $22558,\!52$     | 11,73894 |
| 36,191 | $422,\!895$ | 15304,99         | 11,68509 |
| 30,806 | 359,009     | 11059,63         | 11,65387 |
| 26,808 | 311,885     | 8361,013         | 11,63403 |

Таблица 7: P=312,228 Па

бодного пробега молекул газа приближается к радиусу нити. 2. Молекулы, отстоящие от стенки больше чем на несколько лямбд (длин свободного пробега молекул), с ней не соударяются и сталкиваются только между собой. Теплопередача на таких расстояниях ничем не отличается от теплопередачи в ещё более удаленных от стенки областях и подчиняется закону Фурье (лабник стр 119 формула (1)). Поэтому можно ожидать, что величина температурного скачака будет пропорциональна ширине аномальной области, т.е. лямбде,и,следовательно, обратно пропорциональна давлению Р

|                      | 0.40-6.5             |
|----------------------|----------------------|
| t, K                 | $Q, 10^{-6} B_T$     |
| 27,79355             | 62905,56             |
| 23,83237             | 54942,7              |
| 18,70164             | 42895,32             |
| 13,25465             | 30958,52             |
| 10,59835             | 24430,74             |
| 8,079967             | 18247,97             |
| 5,403276             | $11288,\!57$         |
| 4,284001             | 8275,761             |
| 18,23826             | 62732,9              |
| 15,06492             | 51305,63             |
| 10,97369             | 36063,96             |
| 7,235064             | 22302,37             |
| 5,413313             | 15133,18             |
| 4,483831             | 10940,27             |
| 4,103715             | 8278,172             |
| 18,018               | 63761,18             |
| 15,3992              | 52082,41             |
| 12,82935             | 40856,78             |
| 8,73895              | 22569,21             |
| 7,093873             | 15298,66             |
| 6,134993             | 11047,68             |
| 5,55331              | 8348,922             |
| 16,65719             | 63722,06             |
| 12,64983             | 43272,74             |
| 8,634802             | 22565,65             |
| 7,266357             | 15302,59             |
| 6,450486             | 11054,98             |
| 5,938486             | 8355,373             |
| 5,594362             | 6537,882             |
| 14,0725              | 63564,51             |
| 12,13401             | 48718,86             |
| 8,605105             | 22552,87             |
|                      | 15309,21             |
| 7,620025<br>7,041915 |                      |
|                      | 11066,48             |
| 6,667634<br>6,417073 | 8368,817             |
|                      | 6551,422<br>63590,65 |
| 14,76082             |                      |
| 12,54724             | 48743,77             |
| 10,75207             | 36458,87             |
| 8,710687             | 22551,41             |
| 52,08781             | 17838,67             |
| 6,583846             | 8364,95              |
| 6,308478             | 6547,106             |
| 15,03944             | 63609,41             |
| 12,70857             | 48757,27             |
| 11,4486              | 40764,78             |
| 8,906967             | 24616,27             |
| 7,632621             | 16445,5              |
| 6,896373             | 6 11755,54           |
| 6,432072             | 8816,728             |
| 15,70903             | 63609,52             |
| 12,20442             | 43200,9              |
| 11,06876             | 36476,37             |
| 8,709548             | 22558,52             |
| 7,471763             | 15304,99             |
| 6,754177             | 11059,63             |
| 6,298201             | 8361,013             |
|                      |                      |

Таблица 8: Зависимость t от Q



Рис. 3: Зависимость R от Q



Рис. 4: Зависимость t от Q для первых трех давлений



Рис. 5: Зависимость температуры нити от давления воздуха