Modele Liniowe. Lista 1

Fakty:

- Dla wektora losowego $X = (X_1, \dots, X_p)^T$ definiujemy wektor wartości oczekiwanych $\mu^X = (EX_1, \dots, EX_p)^T$ i macierz kowariancji $\Sigma_{p \times p}^X$, gdzie $\Sigma^X(i,j) = Cov(X_i,X_j) = E(X_iX_j) EX_iEX_j$.
- Dla dowolnej ustalonej macierzy $A_{k \times p}$ i wektora $B \in \mathbb{R}^k$ definiujemy wektor losowy Y = AX + B. Zachodzi $\mu^Y = A\mu^X + B$ i $\Sigma^Y = A\Sigma^X A^T$.
- Niech X ma rozkład wielowymiarowy normalny $N(\mu, \Sigma)$. Wtedy jego gęstość wyraża się wzorem

$$f(x) = det(2\pi\Sigma)^{-1/2} exp((x-\mu)^T \Sigma^{-1}(x-\mu)/2)$$
.

• Operacje liniowe zachowują normalność rozkładu.

Zadania:

- 1) Korzystając z funkcji rnorm w R wygeneruj 100 wektorów losowych z rozkładu dwuwymiarowego normalnego N(0,I) i zaznacz je na płaszczyźnie.
- 2) Wyznacz przekształcenia liniowe, które przekształcą wyżej otrzymaną chmurę punktów w chmurę z rozkładu $N(\mu, \Sigma)$, gdzie

$$\Sigma = \begin{pmatrix} 1 & 0.9 \\ 0.9 & 1 \end{pmatrix} .$$

$$-\mu = (4, 2),$$

$$\Sigma = \begin{pmatrix} 1 & -0.9 \\ -0.9 & 1 \end{pmatrix} .$$

$$-\mu = (4, 2),$$

$$\Sigma = \begin{pmatrix} 9 & 0 \\ 0 & 1 \end{pmatrix} .$$

Narysuj chmury punktów po takich przekształceniach.

3) Korzystając z funkcji rnorm w R wygeneruj 200 wektorów losowych z rozkładu wielowymiarowego normalnego $N(0, I_{100\times100})$. Uzyskane dane zapisz w macierzy $X_{200\times100}$, której wiersze zawierają kolejne wygenerowane wektory losowe. Następnie wyznacz macierz A tak, aby macierz $\tilde{X}=XA$ zawierała 200 wektorów z rozkładu wielowymiarowego normalnego $N(0,\Sigma_{100\times100})$, gdzie $\Sigma(i,i)=1$ i $\Sigma(i,j)=0.9$ dla $i\neq j$. Zweryfikuj wyniki wyliczając średnią i rysując histogram próbkowych wariancji współrzędnych wektora \tilde{X} a także próbkowych kowariancji między różnymi współrzędnymi tego wektora.