第29章 大地线长度计算

(作者: 王同合, 主题分类: 大地测量)

根据指定椭球元素, 计算椭球面上的两点 $P_1(B_1, L_1)$ 、 $P_2(B_2, L_2)$ 间的大地线长度, 其中两点坐标为大地经纬度。

一、数据文件读取

编程读取"数据.txt"文件,数据内容和相应的说明见表 29-1。

表 29-1

数据的内容及说明

数据内容	数据说明
47. 46526470 35. 49363300	第 1 行: B ₁ , L ₁ (单位为 dd. mmss)
48. 04096384 36. 14450004	第 2 行: B ₂ , L ₂ (单位为 dd. mmss)

二、椭球基本参数

详见本书《三、进阶篇》"第 25 章 高斯投影正反算及换带/邻带坐标换算"的"二、椭球基本参数"相关内容。

三、大地线长度计算

已知:大地线起点 P_1 的大地坐标 (B_1, L_1) 、终点 P_2 的大地坐标 (B_2, L_2) ;

计算:大地线长度S。

1. 辅助计算

$$\begin{cases} u_1 = \arctan(\sqrt{1 - e^2} \tan B_1) \\ u_2 = \arctan(\sqrt{1 - e^2} \tan B_2) \end{cases}$$
(29-1)

$$l = L_2 - L_1 \tag{29-2}$$

$$\begin{cases} a_1 = \sin u_1 \sin u_2 \\ a_2 = \cos u_1 \cos u_2 \\ b_1 = \cos u_1 \sin u_2 \\ b_2 = \sin u_1 \cos u_2 \end{cases}$$

$$(29-3)$$

2. 计算起点大地方位角

用逐次趋近法同时计算起点大地方位角 A_1 和经差 $\lambda = \iota + \delta$ 。第一次趋近时,取 $\delta = 0$, A_1 计算公式如下:

$$\begin{cases} p = \cos u_2 \sin \lambda \\ q = b_1 - b_2 \cos \lambda \\ A_1 = \arctan(p/q) \end{cases}$$
 (29-4)

p 符号	+	+		-
q 符号	+	_		+
$A_1 =$	1 A ₁ I	180°- A ₁	180°+ A ₁	360°- A ₁

若
$$A_1 < 0$$
, $A_1 = A_1 + 360^\circ$; 若 $A_1 > 360^\circ$, $A_1 = A_1 - 360^\circ$ 。
$$\begin{cases} \sin \sigma = p \sin A_1 + q \cos A_1 \\ \cos \sigma = a_1 + a_2 \cos \lambda \end{cases}$$

$$\sigma = \arctan(\sin \sigma, \cos \sigma)$$
(29-5)

$\cos\sigma$ 符号	+	_
σ =	ΙσΙ	180°-Ι σ Ι

其中, $|A_1|$ 、 $|\sigma|$ 是第一象限角。

$$\begin{cases} \sin A_0 = \cos u_1 \sin A_1 \\ \sigma_1 = \arctan \left(\frac{\tan(u_1)}{\cos(A_1)} \right) \\ \delta = (\alpha \sigma + \beta \cos(2\sigma_1 + \sigma) \sin(\sigma) + \gamma \sin(2\sigma) \cos(4\sigma_1 + 2\sigma)) \sin A_0 \end{cases}$$
(29-6)

其中 α , β , γ 按照下式计算:

$$\begin{cases} \alpha = \left(\frac{e^2}{2} + \frac{e^4}{8} + \frac{e^6}{16}\right) - \left(\frac{e^4}{16} + \frac{e^6}{16}\right) \cos^2 A_0 + \left(\frac{3e^6}{128}\right) \cos^4 A_0 \\ \beta = \left(\frac{e^4}{16} + \frac{e^6}{16}\right) \cos^2 A_0 - \left(\frac{e^6}{32}\right) \cos^4 A_0 \\ \gamma = \left(\frac{e^6}{256}\right) \cos^4 A_0 \end{cases}$$
(29-7)

用求得的 δ 计算 $\lambda_1 = \iota + \delta$,依此,按上述步骤重新计算得 δ_2 ,再用 δ_2 计算 λ_2 ,依此一

直迭代,直到最后两次 δ 相同或差值小于给定的允许值(编程时取 1.0×10^{-10})。 λ 、 A_1 、 σ 及 $\sin A_0$ 均采用最后一次计算的结果。

3. 计算大地线长度 S

$$\begin{cases} \sigma_1 = \arctan\left(\frac{\tan(u_1)}{\cos(A_1)}\right) \\ x_s = C\sin(2\sigma)\cos(4\sigma_1 + 2\sigma) \\ S = \frac{\sigma - B\sin(\sigma)\cos(2\sigma_1 + \sigma) - x_s}{A} \end{cases}$$
(29-8)

其中, A, B, C按照下式计算:

$$\cos^{2}A_{0} = 1 - \sin^{2}A_{0}, \quad k^{2} = e'^{2}\cos^{2}A_{0}$$

$$\left\{A = \left(1 - \frac{k^{2}}{4} + \frac{7k^{4}}{64} - \frac{15k^{6}}{256}\right) \middle| b\right\}$$

$$\left\{B = \left(\frac{k^{2}}{4} - \frac{k^{4}}{8} + \frac{37k^{6}}{512}\right)\right\}$$

$$C = \left(\frac{k^{4}}{128} - \frac{k^{6}}{128}\right)$$
(29-9)

四、用户界面设计

要求实现: (1)包括菜单、表格显示、文本显示等功能。要求功能正确,可正常运行,布局合理、美观大方、人性化; (2)计算报告的显示与保存,将相关统计信息、计算报告在用户界面中显示,并保存为文本文件(*.txt)。

五、参考源程序

源程序、可执行文件和样例数据在 https://github.com/ybli/bookcode/tree/master/Part2-ch08/目录下。图 29.1 是用户界面示例。

图 29.1 用户界面