I. Notion de vecteur

A. Translations et vecteurs

Définition

Soient M et M' deux points distincts du plan.

La **translation qui transforme** M **en** M' associe à tout point N du plan, l'unique point N' tel que MM'N'N soit un parallélogramme.

Remarques:

- On dit que N' est l'image de N par la translation qui transforme M en M'.
- La translation qui transforme M en M' est un déplacement caractérisé par une direction (celle de la droite (MM')); un sens (celui de M vers M'); une longueur (la longueur MM').

Définitions

La translation qui transforme M en M' est appelée la **translation de vecteur** MM'. Le point M est appelé **origine** du vecteur $\overrightarrow{MM'}$; le point M' est appelé **extrémité**.

Remarques:

- Lorsque les points M et M' sont distincts, le vecteur $\overline{MM'}$ est représenté par une flèche allant de M vers M'. Il est défini par sa direction, son sens et sa longueur (aussi appelée norme).
- Par convention, on appelle **vecteur nul**, noté $\overrightarrow{0}$, tout vecteur dont l'origine et l'extrémité sont confondues, par exemple \overrightarrow{MM} , ou encore \overrightarrow{AA} .

B. Égalité de deux vecteurs

Définition

Deux vecteurs non nuls \overrightarrow{AB} et \overrightarrow{CD} sont égaux s'ils ont la même direction, le même sens et la même norme.

On écrit alors : $\overrightarrow{AB} = \overrightarrow{CD}$

Remarque: Dire que les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont égaux revient à dire que D est l'image de C par la translation de vecteur \overrightarrow{AB} .

Propriété (admise)

Deux vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont égaux si et seulement si le quadrilatère ABDC est un parallélogramme (éventuellement aplati).

Exemple: On considère la figure donnée ci-dessous, ABDC et ABFE sont des parallélogrammes.

- On a \overrightarrow{AB} =
- *ABFE* est un parallélogramme, donc *AEFB* est aussi un parallélogramme. Donc
- L'image du point *B* par la translation qui transforme *A* en *E* est le point

Remarque : La propriété précédente donne une méthode pour montrer qu'un quadrilatère est un parallélogramme.

Soit \overrightarrow{AB} un vecteur.

À partir de n'importe quel point du plan, on peut construire un vecteur qui lui est égal, par exemple \overrightarrow{CD} ou \overrightarrow{EF} sur la figure ci-contre.

Ce vecteur peut être noté avec une seule lettre, sans préciser d'origine et d'extrémité : $\overrightarrow{u} = \overrightarrow{AB} = \overrightarrow{CD} = \overrightarrow{EF}$.

On dit que les vecteurs \overrightarrow{AB} , \overrightarrow{CD} et \overrightarrow{EF} sont **des représentants** du vecteur \overrightarrow{u} .

Propriété (admise)

Le point K est le milieu du segment AB si et seulement si $\overrightarrow{AK} = \overrightarrow{KB}$.

Exercice : on considère le parallélogramme *GHFE* donné ci-contre.

- 1. Construire le point I, image de H, par la translation de vecteur \overrightarrow{EF} .
- 2. Démontrer que le point *H* est le milieu du segment [*GI*].

II. Opérations sur les vecteurs

A. Somme de deux vecteurs

Définition

La somme de deux vecteurs \overrightarrow{u} **et** \overrightarrow{v} est le vecteur \overrightarrow{w} associé à la translation qui résulte de l'enchainement des translations de vecteurs \overrightarrow{u} et \overrightarrow{v} . On écrit $\overrightarrow{w} = \overrightarrow{u} + \overrightarrow{v}$.

Remarques : L'ordre n'a pas d'importance. Autrement dit, $\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{v} + \overrightarrow{u}$.

De plus, il est possible d'enchaîner trois translations ou plus.

Exemple: Construire le vecteur $\overrightarrow{u} + \overrightarrow{v}$ puis placer le point E tel que $\overrightarrow{AE} = \overrightarrow{u} + \overrightarrow{v}$.

Propriété (admise) - Relation de Chasles

Pour tous points A, B et C du plan, on a

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

Exemple: simplifier les écritures suivantes :

- 1. $\overrightarrow{MN} + \overrightarrow{NP} = \dots$
- $2. \overrightarrow{AD} + \overrightarrow{CA} = \dots$
- 3. $\overrightarrow{MP} + \overrightarrow{PN} + \overrightarrow{NM} = \dots$

Définition

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs.

- L'**opposé du vecteur** \overrightarrow{v} , que l'on note $-\overrightarrow{v}$, est le vecteur qui vérifie la relation suivante : $\overrightarrow{v} + (-\overrightarrow{v}) = \overrightarrow{0}$.
- Le vecteur $\overrightarrow{u} \overrightarrow{v}$ est le vecteur défini par $\overrightarrow{u} \overrightarrow{v} = \overrightarrow{u} + (-\overrightarrow{v})$.

Remarque : Si \overrightarrow{A} et \overrightarrow{B} sont deux points, alors le vecteur opposé à \overrightarrow{AB} est le vecteur \overrightarrow{BA} . On a alors : $-\overrightarrow{AB} = \overrightarrow{BA}$.

Exemple: sur la figure donnée ci-dessous, construire le vecteur $\overrightarrow{u} - \overrightarrow{v}$, puis placer le point E tel que $\overrightarrow{AE} = \overrightarrow{u} - \overrightarrow{v}$.

B. Produit d'un vecteur par un réel

Définition

Soient \overrightarrow{AB} un vecteur non nul du plan et k un nombre réel non nul.

Le vecteur kAB est le vecteur qui :

- a la même direction que \overrightarrow{AB} ;
- si k > 0, a le même sens que \overrightarrow{AB} et a pour norme $k \times AB$;
- si k < 0, a le sens opposé au vecteur \overrightarrow{AB} et a pour norme $-k \times AB$.

De plus, pour tout réel k, on a : $k\overrightarrow{0} = \overrightarrow{0}$; et pour tout vecteur \overrightarrow{u} , on a : $0\overrightarrow{u} = \overrightarrow{0}$.

Exercice: on considère la figure ci-dessous:

- 1. Construire le point A' tel que $\overrightarrow{AA'} = 2\overrightarrow{u}$
- 2. Construire le point B' tel que $\overrightarrow{BB'} = -\frac{1}{4}\overrightarrow{u}$.
- 3. Construire le point C' tel que $\overrightarrow{CC'} = \frac{1}{2} \overrightarrow{u}$.