Facultad de Ciencias Exactas, Ingeniería y Agrimensura Departamento de Matemática - Escuela de Ciencias Exactas y Naturales Álgebra Lineal - LCC, LM, PM - 2023

Primera evaluación Parcial - 13/04/2023

Apellido y Nombre:

Legajo: Carrera:

1. Sean:

El conjunto
$$D_2 = \left\{ \begin{pmatrix} c_1 & 0 \\ 0 & c_2 \end{pmatrix} \in \mathbb{R}^{2 \times 2} : c_1, c_2 \in \mathbb{R} \right\},$$
La función $T : \mathbb{R}_2[x] \to D_2$ definida por $T(ax^2 + bx + c) = \begin{pmatrix} a+b & 0 \\ 0 & a+2b+3c \end{pmatrix}.$

- (a) Pruebe que D_2 es un espacio vectorial con la suma y producto por escalar habituales y que $\{E_{11}, E_{22}\}$ es un conjunto generador de D_2 . ¿Puede decir algo más?
- (b) Pruebe que T es una transformación lineal.
- (c) Calcule núcleo, imagen, rango y nulidad de T.
- (d) ξ Es T un isomorfismo? Justifique su respuesta.

2. Sean:

El conjunto
$$\mathfrak{B} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right\},$$
Una función $T : \mathbb{R}^{2 \times 2} \to \mathbb{R}^2$ tal que $T(E_{11}) = (1,0), T(E_{12}) = (0,1), T(E_{21}) = (0,-1), T(E_{22}) = (1,0).$

- (a) Pruebe que \mathfrak{B} es base de $\mathbb{R}^{2\times 2}$.
- (b) Halle la matriz $C_{\mathfrak{BB}_c}$ de cambio de base de la base \mathfrak{B} a la base canónica $\mathfrak{B}_c = \{E_{11}, E_{12}, E_{21}, E_{22}\}.$
- (c) Justifique brevemente (sin usar definición ni caracterización) que T define una única transformación lineal. Explicite su ley general para una matriz genérica $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.
- (d) Calcule la matriz $[T]_{\mathfrak{BC}}$ donde \mathcal{C} denota la base canónica de \mathbb{R}^2 .
- 3. Determine si las siguientes afirmaciones son verdaderas o falsas justificando su respuesta.
 - (a) Sea V un espacio vectorial sobre un cuerpo ${\bf F}$ de dimensión n. Sea U un hiperplano de V, esto es, un subespacio de dimensión n-1. Entonces existe $v \in U$ tal que $U \oplus \langle v \rangle = V$.
 - (b) \mathbb{C}^2 como \mathbb{C} -espacio vectorial es isomorfo a \mathbb{R}^2 como \mathbb{R} -espacio vectorial.
 - (c) Si $T \in L(V,W)$ y B_1,B_2 bases de V y C base de W entonces para todo $v \in V$ se tiene que $[T]_{B_1C}[v]_{B_1} = [T]_{B_2C}C_{B_1B_2}[v]_{B_1}$.