## репозиторий

```
Обзор ☑ Терминал ▼

Ortin-paler@mercury: ~/Paбочий стол/5_semester/open_mp/lab/lab_4$ ./omp_lab_4

OpenMP supported! Version 201511

Sum: 1498425601

Time: 0.0278951

Timer accuracy: 1e-09

Ortin-paler@mercury: ~/Paбочий стол/5_semester/open_mp/lab/lab_4$ g++ -fopenmp omp_lab_4.cpp -o omp_lab_4

Ortin-paler@mercury: ~/Paбочий стол/5_semester/open_mp/lab/lab_4$ ./omp_lab_4

OpenMP supported! Version 201511

Sum: 1498425601

Time: 0.0118353

Timer accuracy: 1e-09
```

Программа из лабораторной работы 3. Сначала узнаем время выполнения нераспараллеленной программы, затем распараллеленной программы с помощью редукции.



Программа из лабораторной работы 4. Сначала узнаем время выполнения распараллеленной программы с помощью атомика, затем распараллеленной программы с помощью критической секции.

## Вопрос 1. Что понимается под атомарной (неделимой) операцией?

Операция директивы atomic выполняется как неделимое действие над указанной общей переменной, и, как результат, никакие другие потоки не могут получить доступ к этой переменной в этот момент времени.

## Вопрос 2. Как определяется критическая секция?

Действия над общими переменными могут быть организованы в виде критической секции, т.е. как блок программного кода, который может выполняться только одним потоком в каждый конкретный момент времени. При попытке входа в критическую секцию, которая уже исполняется одним из потоков, все другие потоки приостанавливаются (блокируются). Как только критическая секция

освобождается, один из приостановленных потоков (если они имеются) активизируется для выполнения критической секции.

#pragma omp critical [(name)] <block>