- (2) Decidir en cada caso si el conjunto dado es un subespacio vectorial de $M_{n\times n}(\mathbb{K})$.
 - a) El conjunto de matrices invertibles.
 - b) El conjunto de matrices A tales que AB = BA, donde B es una matriz fija.
 - c) El conjunto de matrices triangulares superiores.
 - a) En general la suma de matrices invertibles no es invertible. Un contraejemplo sencillo es sumar a una matriz identidad su opuesto, por ejemplo Id-Id=0.

Veames que si $A_1, A_2 \in W$ y $\lambda \in K$, entonces $A_1 + \lambda A_2 \in W$:

$$(A_4 + \lambda A_2)B = A_1B + \lambda A_2B$$
$$= BA_1 + \lambda BA_2$$

=
$$B(\Delta_1 + \lambda \Delta_2)$$

luego,
$$A_1+\lambda A_2 \in W$$
. Por Lo tento, was subsequent vectorial de $M_{man}(K)$.

Dados A,B EW y LEIK, debemos probar que A+ 28 EW:

Le sume de metrices y el producto por escalares es coordenada a coordenada, entonces se cumple $[A+\lambda B]_{ij}=[A]_{ij}+\lambda [B]_{ij}$.