Thesis Title

Thesis Subtitle

Author Name

Dissertation for MSc Data Science

School of Computing and Communications Lancaster University Lancaster, UK December 5, 2019

My abstract goes here...

Contents

A	Acknowledgements			
1	Introduction 1.1 Background information	1 1		
2	Methods2.1 Important main method2.2 Additional method	2 2 2		
3	Results 3.1 Main results	3		
4	Discussion 4.1 What I found	5 5		
5	References	6		
A	ppendix of R code	7		

List of Tables

3.1 Parameter estimates from regression of mpg on weight	3.1	rameter estimates from regression of mpg on weight	3
--	-----	--	---

List of Figures

3.1	An example figure	4
3.2	Another example figure	4

Acknowledgements

I would like to thank ...

Introduction

1.1 Background information

- text 1
- \bullet text 2
- text 3
- more text
- more text

1.2 Literature review

One important development was made by Abrams, Gillies, and Lambert (2005).

Methods

2.1 Important main method

Initial modelling was performed using linear regression as defined in equation (2.1).

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \ \varepsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$$
 (2.1)

2.2 Additional method

- text 6
- text 7

Results

3.1 Main results

And here is an example table of regression coefficients in Table 3.1.

Table 3.1: Parameter estimates from regression of mpg on weight.

	Estimate	95% CI lower limit	95% CI upper limit
(Intercept)	37.29	33.61	40.97
wt	-5.34	-6.44	-4.25

Example text example text.

An example of a figure is shown in Figure 3.1.

```
plot(pressure, pch = 19, type = "b")
```


Figure 3.1: An example figure.

And we can include image files directly, such as Figure 3.2.

knitr::include_graphics("img/mtcars-scatter.png")

Figure 3.2: Another example figure.

To figure code chunks add the chunk option fig.pos="H" to use the LaTeX float package to try and position the figure where the code appears.

Also, this is how to reference a section, e.g. the Introduction was chapter 1 and the Literature Review was section 1.2.

Discussion

4.1 What I found

- text 1
- text 2
- text 3
- more text
- more text

4.2 What it means

- text 6
- text 7

References

Abrams, K. R., C. L. Gillies, and P. C. Lambert. 2005. "Meta-Analysis of Heterogeneously Reported Trials Assessing Change from Baseline." *Statistics in Medicine* 24: 3823–44.

Appendix of R code

```
model <- lm(y ~ x1 + x2, data = df)
summary(model)</pre>
```