

CSC-257 Theory Of Computation (BSc CSIT, TU)

Ganesh Khatri kh6ganesh@gmail.com

Finite Automata and Regular expressions

- The regular expression approach for describing language is fundamentally different from the finite automaton approach.
- However, these two notations turn out to represent exactly the same set of languages, which we call regular languages
- In order to show that the RE define the same class of language as Finite automata, we must show that:
 - Any language defined by one of these finite automata is also defined by RE.
 - Every language defined by RE is also defined by any of these finite automata
- We can proceed as:

- **Theorem**: Every language defined by a regular expression is also defined by a finite automaton. [For any regular expression r, there is an E-NFA that accepts the same language represented by r]
- Proof: Let L =L(r) be the language for regular expression r, now we have to show there is an E-NFA E such that L (E) =L
- The proof can be done through structural induction on r, following the recursive definition of regular expressions
- Basis: For this we know
 - a) Φ represents language $\{\Phi\}$: an empty language
 - b) ε represents language $\{\varepsilon\}$: language for empty strings
 - c) 'a' represents language {a}

 The E-NFA accepting these languages can be constructed as;

• a)
$$r = \Phi$$

• c)
$$r = a$$

This forms the basis steps

- **Induction**: Let r be a regular expression representing language L(r) and r1,r2 be regular expressions for languages L(r1) and L(r2) respectively.
- There are for cases :
- 1. For union(+): From basis step we can construct E-NFA's for r1 and r2. Let the E-NFA's be
 M1 and M2 respectively

- Then, r=r1+r2 can be constructed as:
- The language of this automaton is L(r1) U L(r2) which is also the language represented by expression r1+r2

• 2. For concatenation(.): Now, r = r1.r2 can be constructed as;

- Here, the path from starting to accepting state go first through the automaton for r1, where it must follow a path labeled by a string in L(r1), and then through the automaton for r2, where it follows a path labeled by a string in L(r2).
- Thus, the language accepted by above automaton is L(r1).L(r2).

• 3. For Kleene closure(*): Now, r* Can be constructed as;

- Clearly language of this ∈-NFA is L(r*) as it can also just ∈ as well as string in L(r), L(r)L(r), L(r)L(r) and so on.
- Thus covering all strings in L(r*).

• 4. Finally, for regular expression (r): the automaton for r also serves as the automaton for (r), since the parentheses do not change the language defined by the expression

This completes the proof.

Convert the regular expression (0+1) into E-NFA

Convert the regular expression (0+1)* into
 E-NFA

- Convert the regular expression (0+1)*1(0+1) into €-NFA
- Here, \in -NFA for (0+1) is

• And E-NFA for (0+1)* is

- Convert the regular expression (0+1)*1(0+1) into €-NFA
- Now final E-NFA of given RE is
- Note: Union, Concatenation, and Kleene closure used.

Conversion of RE to E-NFA: Exercises

- 1. Convert the regular expression 01[∗] into €-NFA
- 2. Convert the regular expression (0+1)01 into E-NFA
- 3. Convert the regular expression $00(0+1)^*$ into ε -NFA
- 4. Convert the regular expression 0*10* into E-NFA
- 5. Convert the regular expression 1*(01*01*) into E-NFA
- 6. Convert the regular expression 0*10*10* into E-NFA
- 7. Convert the regular expression (1+0)*11 into \in -NFA