1. zárthelyi dolgozat – 2023-04-19 – B

27 pur 2

Felhasználható idő: 100 perc, használható segédeszközök: üres papír és toll vagy digitális változatuk. Gyorssegély, ne ezen múljon: $\cos 30^\circ = \sin 60^\circ = \sqrt{3}/2$, $\cos 45^\circ = \sin 45^\circ = \sqrt{2}/2$, $\cos 60^\circ = \sin 30^\circ = 1/2$, $180^\circ = \pi$, $i^2 = -1$

1. feladat 6 pont

- (a) Döntse el, hogy a következő állítások igazak vagy hamisak (helyes válasz: fél pont, nincs válasz/helytelen válasz: 0 pont). 2 pont
- \emptyset (1) Ha a, b valósak, és a + bi = a bi, akkor a + bi is valós. I H
- 1/2 (2) Ha egy reláció nem szimmetrikus, akkor antiszimmetrikus. I H
- $\frac{1}{2}$ (3) Egy ekvivalencia
relációnál az ekvivalenciaosztályok uniója a reláció értékkészlete. I H
- $\Tilde{\circ}$ (4) Hafinjektív, és gszürjektív függvények, akkor $f\circ g$ bijektív. I H
- (b) Határozza meg az $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x + 2y = 7\} \subset \mathbb{Z} \times \mathbb{Z}$ reláció értelmezési tartományát és az $R^{-1}(\{-10\})$ inverz képet. **2 pont**
- (c) Adjunk meg az {1,2,3} halmazon olyan relációt, mely nem szimmetrikus, nem reflexív, de tranzitív
 2 pont

2. feladat 10 pont

- (a) Igazolja, hogy az $R \subset \mathbb{Z} \times \mathbb{Z}$, $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid y = x \text{ vagy } y x > 5\}$ reláció részbenrendezés Adjunk meg 3 olyan egészet, melyek közül bármelyik kettő relációban áll. **5 pont**
 - (b) Adjon meg olyan páronként különböző nemüres A, B és C halmazokat, amelyekre teljesül a következő összefüggés: $(A \setminus B) \setminus C = A \setminus (B \setminus C)$. 2 pont
 - (c) Igazolja, hogy tetszőleges A, B és C halmazok esetén igaz a következő összefüggés: $A \setminus (B \cap C) = (A \setminus B) \cup ((A \cap B) \setminus C)$. 3 pont

3. feladat 5 pont

Legyen $H=\mathbb{Q},\ R,S\subset H\times H,\ R=\{(x,y)\in H\times H\mid 3y-14=-2x\}$ és $S=\{(x,y)\in H\times H\mid 2x=1,y=1,0\}$. Határozza meg az $S\circ R$ és $R\circ S$ kompozíciót.

4. feladat 5 pont

- (a) Döntse el, hogy az $f: \mathbb{R}_0^+ \to \mathbb{R}$, $f(x) := 2\sqrt{x^2 + 3}$ függvény injektív-, illetve szürjektív-e. 2 pont
- ð (b) Tekintsük a következő relációt: $R = \{(x,y) \mid x,y \in \mathbb{N}, |x+2| = |y-5|\}$. Ez a reláció nem függvény. Távolítsunk el R-ből a lehető legkevesebb rendezett párt úgy, hogy a kapott reláció már függvény legyen. **3 pont**

5. feladat 7 pont

A trigonometrikus alak segítségével számítsa ki z értékét trigonometrikus és algebrai alakban is, majd adja meg az összes olyan w komplex számot trigonometrikus alakban, melyekre $w^3=z$, ahol $z=\frac{\left(\sqrt{3}+i\right)^{12}}{\left(1+i\right)^{30}}$.

A 6. feladat választható az alábbiak közül:

6G. feladat 7 pont

Ábrázolja a Gauss-számsíkon a következő halmazokat:

- (a) $\{z \in \mathbb{C} \mid \operatorname{Re} z \operatorname{Im} z \ge 2 \wedge \operatorname{Im} z > 5\}$ 3 pont
- (b) $\{z \in \mathbb{C} \mid |z 1| \ge 6 \land \text{Re } z < 8\}$ 4 pont

6E. feladat 7 pont

Oldja meg a következő egyenletet a komplex számok halmazán:

$$\frac{z+6-i-2\overline{z}}{z+i}=5$$

NEMETH DOMINIK KRISTOF FUZ5W7 (1) 0) 1 H b) X+2y=7 R-7({-10}) X=7-2.(-70) x = 7-29 ET X=7+20 3 MI V X=27 C 4 I/ 9 {7,2,3} hem rimpetriles ; nem reflects, de tronsités R={[7,2);[2,3);[1,3)} (ay) réorbemenderes réflexió; tronsitió, de assimilying X=X of iguz tehot xflexir y - x > 5 y - x > 5 teljesid y > y + 5 + 2 y - 5 + 2 > 5 x > 5 + 2 y - 5 + 2 > 57-x mx y-x>5 47x X-Z>5 X > Z y-2 >5 Exteligil tehåt reflering! 4>2 assinetales y=x 1 x=y coast val egenlist stented televilin 3 dylin egén, melyek hözül bajmelyik kető relaliában áll: (b) (AIB) (= AI (BIC) A={ a, b, c, d} $A\{d\} = \{d\}$ B= {0,6,6,8} C= { f, y } lets. ABC holomorph seten igns ABCORC AIBNC ANB (ANB) C (AIB) U (AND) (C) (r) A((Bnc) = (A1B) V ((ANB) 1C). hall

3)
$$R = 73 \% - 74 = -2x$$

$$S = 2x = |-\frac{1}{3}y| + 70$$

$$3u - 14 = -2x + 79$$

$$2u = |-\frac{1}{3}| + 70 \rightarrow u = |-\frac{1}{3}| + 70$$

$$3|+\frac{1}{3}|+\frac{1}{70}| - 74 = -2x$$

$$-3|+\frac{1}{3}|+\frac{1}{70}| = x$$

$$\frac{|x,u|}{|x|} = \frac{|x|}{|x|} = \frac{|x|}{|x|}$$

(a)
$$2N = 2N^{2} + 3^{2}$$

New properties raisely raisel as a $2N^{2} + 3^{2}$ used roughly stelland on the Roberts of the Ro

x = y - 7

NEMETH DOMINIK KEISTOF 5, (B+1)12

(1+i)30

$$\frac{\sqrt{3}+i}{r=\sqrt{3}+1^2} = \sqrt{4} = \frac{2}{2}$$

$$\cos \theta = \frac{\sqrt{3}}{2} \rightarrow 30^{\circ} \rightarrow \frac{\pi}{6}$$

$$(r, \theta) = (2, \frac{\pi}{6})$$

$$(2, \frac{\pi}{6})^{12} = (2^{12}, \frac{12\pi}{6})$$

$$\frac{\left(2^{n}; + 0^{\circ}\right)}{\left(2^{15}; \frac{30\pi}{4}\right)} = \left(\frac{3}{2}; 0\right)$$

NA.

$$\begin{pmatrix} 2^{-3}; 0 \end{pmatrix} = W^3 = \begin{pmatrix} 8^3; 34 \end{pmatrix} = \begin{pmatrix} 8^3;$$

6 a) Rez-Jmz≥21 JmzN>5

5 5 7

2-) ~+ &+ a+ &v

X-1+4/26

F=6

 $(x-7+y)^{2} \ge 6$ $(x-7)^{2}+y^{2} \ge 6$

(x-1) +y = 36

Re7 < 8

