Chapitre 10. Algèbre générale

1 Conjugaison dans un groupe. Théorème de Lagrange

1.1 Morphisme de conjugaison

Définition 1.1. Soit H un groupe, $h \in G$ Alors

$$\varphi_h: \begin{cases} G \to G \\ g \mapsto hgh^{-1} \end{cases}$$

est un morphisme de conjugaison (ou encore un automorphisme intérieur).

Proposition 1.2. ϕ_h est bien un automorphisme et

$$\Phi: \begin{cases} G \to \operatorname{Aut} G = \{f: G \to G \mid f \text{ automorphisme}\} \\ h \mapsto \varphi_h \end{cases}$$

est un morphisme de groupes.

Définition 1.3. Soit *G* un groupe, $g, g' \in G$

On dit que g et g' sont conjugués s'il existe $h \in G$ tel que $g' = hgh^{-1}$

Proposition 1.4. Sur un groupe, la relation "être conjugué" est une relation d'équivalence. On appelle classe de conjugaison les classes pour cette relation.

1.2 Classe à gauche, classe à droite selon un sous-groupe

Définition 1.5. Soit *G* un groupe, *H* un sous-groupe.

On définit la congruence à gauche modulo H par

$$x \sim y \iff y \in xH \iff \exists h \in H, y = xh$$

Proposition 1.6. La congruence à gauche modulo H est une relation d'équivalence et la classe de x est $\overline{x} = xH$

Théorème 1.7 (Théorème de Lagrange).

Soit *G* un groupe fini. Le cardinal d'un sous-groupe de *G* divise celui de *G*

1.3 Relations compatibles avec une loi. Groupe quotient

Définition 1.8. Soit (M, *) un monoïde, \equiv une relation d'équivalence sur M

On dit que * et
$$\equiv$$
 sont compatibles si $\forall a, x, y \in M$, $x \equiv M \implies \begin{cases} a * x \equiv a * y \\ x * a \equiv y * a \end{cases}$

Théorème 1.9. Soit (G,+) un groupe abélien. On note $G_{|H}$ le quotient de G par la congruence modulo H sur lequel on définit une loi quotient $+: \overline{x} + \overline{y} = \overline{x+y}$

1

Alors $(G_{|H}, +)$ est un groupe (abélien) appelé groupe quotient de G par H

Définition 1.10. Un sous-groupe H de G tel que $\forall x \in G$, $xHx^{-1} \subset H$ est dit distingué.

Proposition 1.11. Si H est distingué de G alors \equiv (congruence modulo H) et \times sont compatibles.

Théorème 1.12. $G_{|H}$ peut être muni d'une loi quotient qui en fait un groupe.

Théorème 1.13 (Théorème d'isomorphisme). Soit $f: G \to G'$ un morphisme de groupes. On pose

$$\overline{f}: \begin{cases} G_{|\ker f|} \to \operatorname{im} f \\ \overline{x} \mapsto \overline{f}(\overline{x}) = f(x) \end{cases}$$

 \overline{f} est bien définie et c'est un isomorphisme (canoniquement associé à f)

$$G_{|\ker f} \simeq \operatorname{im} f$$

1.4 Ordre d'un élément dans un groupe

Définition 1.14. Soit G un groupe, $a \in G$

L'ordre de a dans G est le "cardinal" du sous-groupe engendré par a

Proposition 1.15. Si a est d'ordre fini n dans un groupe G alors n est le plus petit entier $k \ge 1$ avec $a^k = 1$

Théorème 1.16 (Théorème de Largange). Soit G un groupe fini de cardinal n, $a \in G$

- * L'ordre de a divise n
- $* a^n = 1$

1.5 Le groupe symétrique

Définition 1.17. Soit $a_1, ..., a_n \in E$ 2 à 2 distincts, $p \ge 2$

On note

$$(a_1, a_2, ..., a_p) : x \mapsto \begin{cases} a_{i+1} \text{ si } x = a_i \text{ avec } i \in [1, p-1] \\ a_1 \text{ si } x = a_p \\ x \text{ si } x \notin \{a_1, ..., a_p\} \end{cases}$$

 $(a_1, ..., a_p)$ est appelé p-cycle, de support $\{a_1, ..., a_p\}$ de longueur p Si p = 2 on parle de transpositions.

Proposition 1.18.

- * Un *p*-cycle σ et S_E est un élément d'ordre p de (S_E, \circ)
- * Si $\sigma \in S_E$, $c = (a_1, ..., a_p)$ alors

$$\sigma \circ c \circ \sigma^{-1} = \sigma \circ (a_1, ..., a_p) \circ \sigma^{-1} = (\sigma(a_1), ..., \sigma(a_p))$$

- $* (a_1a_2...a_p) = (a_1a_2) \circ (a_2a_3) \circ ... \circ (a_{p-1}a_p)$
- * Si σ et σ' sont des cycles à support disjoints, alors $\sigma \circ \sigma' = \sigma' \circ \sigma$

Théorème 1.19 (Théorème de décomposition en produit de cycles à support disjoint).

Soit $\sigma \in S_E$ et soit Ω_1 , ..., Ω_n les orbites de E sous l'action de σ

Alors il existe c_1 , ..., c_n cycles à supports disjoints tels que

$$\sigma = c_1 \circ c_2 \circ \dots \circ c_n$$

Corollaire 1.20.

- * Les cycles engendrent S_E
- * Les transpositions engendrent S_E : tout $\sigma \in S_E$ est un produit de transpositions.

1.6 Signature d'une permutation

Lemme 1.21. Soit σ , $\sigma' \in S_n$

On note $N(\sigma) = \operatorname{Card} \{(i,j) \in \llbracket 1,n \rrbracket \mid i < j \text{ et } \sigma(j) < \sigma(i) \} \text{ et } \varepsilon(\sigma) = (-1)^{N(\sigma)}$ $\operatorname{Alors} \varepsilon(\sigma' \circ \sigma) = \varepsilon(\sigma')\varepsilon(\sigma)$

Théorème 1.22. Il existe un unique morphisme de groupes non trivial

$$\varepsilon: \begin{cases} S_n \to \{-1,1\} \\ \sigma \mapsto \varepsilon(\sigma) \end{cases}$$

appelée signature. Si $\sigma = \tau_1 \circ ... \circ \tau_2$ avec τ_i transpositions alors $\varepsilon(\sigma) = (-1)^r$

Définition 1.23. σ est dite paire si $\varepsilon(\sigma) = 1$

ker ε est un sous-groupe de S_n appelé groupe alternée d'ordre n noté \mathfrak{A}_n On a $|\mathfrak{A}_n|=\frac{n!}{2}$

2 Congruence modulo un idéal

2.1 Anneaux quotients

Ici les anneaux sont commutatifs.

Théorème 2.1. Soit A un anneau et I un idéal différent de A $(A_I, +, \times)$ est un anneau commutatif appelé anneau quotient de A par I

Théorème 2.2 (Corps de rupture d'un polynôme irréductible). Soit A = K[X] et Π un polynôme irréductible de K[X]

$$L = \frac{K[X]}{\Pi K[X]}$$

est appelé corps de rupture du polynôme Π et

$$\dim_{K} \frac{K[X]}{\Pi K[X]} = \deg \Pi$$

Théorème 2.3 (Théorème d'isomorphisme). Soit $f:A\to B$ un morphisme d'anneaux. Alors

$$\overline{f}: \begin{cases} A_{|\ker f} \to \operatorname{im} f \\ \overline{x} \mapsto \overline{f}(\overline{x}) = f(x) \end{cases}$$

est un isomorphisme.

$$A_{|\ker f} \simeq \operatorname{im} f$$

On dit que \overline{f} est l'isomorphisme canoniquement associé à f

2.2 Congruences modulo a

Définition 2.4. Soit A un anneau et $a \in A$

La congruence modulo a est la congruence modulo aA. On la note pour $x, y \in A$

$$x \equiv y \mod a \iff y - x \in aA \iff a \mid y - x$$

3

2.3 Le petit théorème de Fermat

Théorème 2.5.

- * Si $a \in \mathbb{Z}$ et $p \nmid a \ (p \in \mathbb{P})$ alors $a^{p-1} \equiv 1[p]$ * Si $a \in \mathbb{Z}$ et $p \in \mathbb{P}$ alors $a^p \equiv a[p]$
 - $\overline{a}^p = \overline{a} \text{ dans } \mathbb{F}_p = \mathbb{Z}_{|p\mathbb{Z}|}$

Proposition 2.6. Dans $\mathbb{F}_p[X] = \mathbb{Z}_{|p\mathbb{Z}}[X]$

$$X^{p}-X=X(X-\overline{1})...(X-\overline{p-1})$$

$$X^{p-1}-1=(X-\overline{1})...(X-\overline{p-1})$$

$$\overline{(p-1)!}=-1 \text{ (Th\'eor\`eme de Wilson)}$$

2.4 La caractérisation d'un anneau, d'un corps

Soit A un anneau commutatif et

$$f: \begin{cases} \mathbb{Z} \to A \\ k \mapsto k1_A = (1_A + \dots + 1_A) \end{cases}$$

$$A_0 = \operatorname{im} f = \{k1_A\}_{k \in \mathbb{Z}}$$

 $\ker f = n\mathbb{Z}$ avec $n \in \mathbb{N}^*$ unique car $\ker f$ est un idéal de \mathbb{Z}

Si f est injective, alors n=1 et $A_0\simeq \mathbb{Z}$, on dit que A est de caractéristique nulle

Sinon, $n \ge 2$ et $A_0 \simeq \mathbb{Z}_{|n\mathbb{Z}}$, on dit que A est de caractéristique n

2.5 Complément sur les corps

Proposition 2.7. La caractéristique d'un corps est nulle ou finie égale à un nombre premier.

2.5.1 Complément 1

Théorème 2.8. Soit $P \in K[X]$, $P \neq 0$

Alors il existe un surcorps de *K* sur lequel *P* est scindé.

2.5.2 Complément 2 : construction de corps fini

En utilisant les corps de rupture on peut construire les corps de taille donné.

Par exemple : $\Pi = X^3 + X + 1$ est irréductible dans $\mathbb{F}_2[X]$, ainsi

$$L = \mathbb{F}_8 = \frac{\mathbb{F}_2[X]}{(\Pi)} = \text{ Vect } (1, \alpha, \alpha^2)$$

avec $\alpha^3+\alpha+1=0$ et (Π) l'idéal engendré par Π

3 L'indicatrice d'Euler

3.1 Le théorème chinois

Théorème 3.1 (Théorème chinois). Soit $m, n \ge 1$ premiers entre eux.

$$\overline{f}: \begin{cases} \mathbb{Z}_{|mn\mathbb{Z}} \to \mathbb{Z}_{|m\mathbb{Z}} \to \mathbb{Z}_{|n\mathbb{Z}} \\ \overline{\bar{k}} \mapsto (\dot{k}, \overline{k}) \end{cases}$$

est un isomorphisme d'anneaux :

$$\mathbb{Z}_{|m\mathbb{Z}} \times \mathbb{Z}_{|n\mathbb{Z}} \simeq \mathbb{Z}_{|mn\mathbb{Z}}$$

en tant qu'anneaux.

Extension : Si n_1 , ..., n_r sont premiers 2 à 2 alors

$$\mathbb{Z}_{|n_1\mathbb{Z}} \times ... \times \mathbb{Z}_{|n_r\mathbb{Z}} \simeq \mathbb{Z}_{|n_1...n_r\mathbb{Z}}$$

3.2 Expression de l'indicatrice d'Euler

Définition 3.2. On note $\varphi(1) = 1$ et pour $n \ge 2$ φ est le nombre d'entiers $k \in [\![1,n]\!]$ tels que $k \wedge n = 1$ $\varphi : \mathbb{N}^* \to \mathbb{N}$ est appelée indicatrice d'Euler.

Proposition 3.3. Soit $n \ge 2$. On a :

- * $\varphi(n) = \text{Card}\{k \in [0, n-1] \mid k \land n = 1\}$
- $* \varphi(n) = \operatorname{Card}(\mathbb{Z}_{|n\mathbb{Z}})^{\times}$
- * $\varphi(n) = \operatorname{Card}\{x \in \mathbb{Z}_{|n\mathbb{Z}} \mid x \text{ engendre } (\mathbb{Z}_{|n\mathbb{Z}}, +)\}$
- * $\varphi(n)$ = nombre de racines n-ièmes primitives de l'unité.
- * $\varphi(n)$ = nombre de générateurs de (\mathbb{U}_n , \times)

Théorème 3.4 (Théorème d'Euler-Fermat). Soit $n \ge 2$

Si a est premier avec n alors

$$a^{\varphi(n)} \equiv [n]$$

Théorème 3.5. Si $m, n \in \mathbb{N}^*$

$$m \wedge n = 1 \implies \varphi(mn) = \varphi(m)\varphi(n)$$

Lemme 3.6. Si *A* et *B* anneaux, alors $(A \times B)^{\times} = A^{\times} \times B^{\times}$

Théorème 3.7. Soit $n = p_1^{\alpha_1} ... p_r^{\alpha_r}$ sa décomposition en facteurs premiers.

$$\varphi(n) = \left(p_1^{\alpha_1} - p_1^{\alpha_1 - 1}\right) \dots \left(p_r^{\alpha_r} - p_r^{\alpha_r - 1}\right)$$

$$\varphi(n) = n\left(1 - \frac{1}{p_1}\right) \dots \left(1 - \frac{1}{p_r}\right)$$

3.3 Complément La formule sommatoire d'Euler

Théorème 3.8 (formule sommatoire d'Euler). Pour $n \ge 1$ on a

$$n = \sum_{d|n} \varphi(d)$$

5

4 Exercices classiques

4.1 Théorème de Wilson

- 1. Montrer que si p est premier alors $(p-1)! \equiv -1[p]$
- 2. Si $n \ge 2$ et $(n-1)! \equiv -1[n]$ montrer que n est premier.

4.2 Groupes tels que $x^2 = 1$

Soit (G, \times) un groupe tel que $\forall x \in G, x^2 = 1_G$

- 1. Montrer que *G* est abélien.
- 2. Si G est fini, montrer que $G \simeq \left((\mathbb{Z}_{|2\mathbb{Z}})^n, + \right)$

4.3 Carrés de \mathbb{F}_p

Soit p un nombre premier impair.

- 1. Dénombrer les carrés de $(\mathbb{Z}_{|p\mathbb{Z}})^*$
- 2. Montrer que si $x \in (\mathbb{Z}_{|p\mathbb{Z}})^*$ alors x carré $\iff x^{\frac{p-1}{2}} = 1$
- 3. Montrer que -1 carré dans $\mathbb{Z}_{|p\mathbb{Z}} \iff p \equiv 1[4]$
- 4. En déduire qu'il existe une infinité de nombres premiers $\equiv 1[4]$

4.4 Groupe diagonal \mathbb{D}_{2n}

On note \mathbb{D}_n le groupe des isométries affines du plan complexe qui laissent \mathbb{U}_n globalement invariant.

- 1. Préciser les éléments de \mathbb{D}_{2n} et son cardinal.
 - \mathbb{D}_{2n} est appelé le groupe diédral d'ordre 2n
- 2. Montrer que \mathbb{D}_{2n} est engendré par deux éléments : R d'ordre n, S d'ordre n tels que $SR=R^{-1}S$
- 3. Réciproquement, si un groupe G, $G = \langle R, S \rangle$ avec R d'ordre n et S d'ordre S et S et S et S montrer que $S \simeq \mathbb{D}_{2n}$
- 4. Montrer que tout sous-groupe fini du groupe des isométries du plan complexe est isomorphe à $(\mathbb{Z}_{|n\mathbb{Z}})$ (cyclique) ou à \mathbb{D}_{2n} (avec $n \geq 3$)