Mardi 3 novembre 2015; Durée: 13h30 à 15h20 Aucune documentation permise; aucune calculatrice permise

Problème 1 (20 points sur 100)

- A. (10 points) Quelle est la transformée de Fourier de la fonction $f(t) = \frac{1}{1+t^2}$.
- B. (5 points) Quelle est l'énergie entre $-1 < \omega < 1$ pour la fonction $f(t) = \frac{1}{1+t^2}$.
- C. (5 points) Quelle est l'énergie à DC pour la fonction $f(t) = \frac{1}{1+t^2}$.

Problème 2 (20 points sur 100)

Voici le spectre d'amplitude, le spectre de phase de $f\left(t\right)=e^{-t}U\left(t\right)$,

- A. (10 points) Trouvez la transformée de Fourier de $\cos(25t) f(t)$.
- B. (10 points) Tracez le spectre d'amplitude et le spectre de phase de $\cos(25t) f(t)$.

Problème 3 (30 points sur 100)

En sachant que $\, \omega_{\!\scriptscriptstyle 0} T_{\!\scriptscriptstyle 0} = 2\pi \,$

A. (10 points) Trouvez la transformée de Fourier de la fonction $f(t) = \cos(\omega_0 t) \delta_{T_0}(t)$.

B. (20 points) Trouvez la transformée de Fourier de la fonction $g(t) = \cos(\omega_0 t) \delta_{T_0}(t - T_0/8)$.

	$x = -\pi/4$	x = 0	$x = \pi/4$	$x = \pi/2$	$x = 3\pi/4$	$x = \pi$	$x = 5\pi/4$	$x = 3\pi/2$
$\cos x$	$1/\sqrt{2}$	1	$1/\sqrt{2}$	0	$-1/\sqrt{2}$	-1	$-1/\sqrt{2}$	0

Problème 4 (30 points sur 100)

Trouvez la transformée de Fourier de la fonction suivante.

$$g(t) = t^{2} \operatorname{Rect}\left(\frac{t+1}{2}\right) = \begin{cases} t^{2} & -2 < t < 0 \\ 0 & \text{ailleurs} \end{cases}$$

Examen Partiel

Fonction	Transformée de Fourier				
f(t)	$F(\omega)$				
F(t)	$2\pi f(-\omega)$				
f(t+a)	$e^{ja\omega}F(\omega)$				
f(at)	$\frac{1}{ a }F\left(\frac{\omega}{a}\right)$				
$e^{jbt}f(t)$	$F(\omega - b)$				
$t^n f(t)$	$(j)^n \frac{d^n}{d\omega^n} F(\omega)$				
$\frac{d^n}{dt^n}f(t)$	$\left(j\omega\right)^nF(\omega)$				
$\operatorname{Rect}(t/\tau)$ (1)	$ au\operatorname{Sa}\left(\omega au/2 ight)$				
$\operatorname{Tri}(t/\tau)$ (2)	$ au \operatorname{Sa}^2\left(\omega au/2\right)$				
$\delta(t)$	1				
1	2πδ(ω)				
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$				
U(<i>t</i>)	$1/j\omega + \pi\delta(\omega)$				
Sgn(t)	$2/j\omega$				
$\delta_{T_0}(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT_0)$	$\omega_0 \sum_{n=-\infty}^{+\infty} \delta(\omega - n\omega_0)$				
$e^{-eta t} \mathrm{U}(t)$	$\frac{1}{\beta + j\omega}$				
$e^{-eta t }$	$\frac{2\beta}{\beta^2 + \omega^2}$				

rectangle de hauteur un, centré $_2$ Tri $\left(\frac{t-t_0}{\tau}\right)$ sur $t=t_0$, et de $longueur \ \tau.$

$$_{2} \operatorname{Tri}\left(\frac{t-t_{0}}{\tau}\right)$$

triangle de hauteur un, centré sur $t=t_0$, avec un base de longueur 2τ .

Examen Partiel

Formules

$$\int e^{ax} \quad dx = \frac{1}{a} e^{ax}$$

$$\int xe^{ax} \quad dx = \left(\frac{x}{a} - \frac{1}{a^2}\right)e^{ax}$$

$$\int x^2 e^{ax} \quad dx = \left(\frac{x^2}{a} - \frac{2x}{a^2} + \frac{2}{a^3}\right)e^{ax}$$

$$\int e^{bx} \sin ax \quad dx = \frac{1}{a^2 + b^2} e^{bx} \left(b \sin ax - a \cos ax\right)$$

$$\int e^{bx} \cos ax \quad dx = \frac{1}{a^2 + b^2} e^{bx} \left(a \sin ax + b \cos ax\right)$$

$$\int x \cos ax \quad dx = \frac{1}{a^2} \cos ax + \frac{x}{a} \sin ax$$

$$\cos \theta = \sin(\pi/2 - \theta)$$

$$e^{inx} = (-1)^n \qquad x_0 \sum_{n = -\infty}^{\infty} \delta(x - nx_0) = \sum_{n = -\infty}^{\infty} e^{-i2\pi nx/x_0}$$

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$

$$\sin x = \frac{e^{ix} - e^{-ix}}{2j}$$
aux points de discontinuité :

$$e^{jx} = \cos x + j\sin x$$

$$f'(a) = \left[\lim_{t \to a^{+}} f(t) - \lim_{t \to a^{-}} f(t)\right] \delta(t - a)$$