Minerals and Mines

or cheap as dirt

Jimmy Jia

jimmy@jimmyjia.com

Last Edit: April 14, 2019

This work is licensed under a <u>Creative Commons</u>
Attribution 4.0 International License

What is a mineral?

What is a rare earth mineral?

Why are rare earth minerals important?

Rare-earth elements (REEs) are used in the components of many devices used daily in our modern society, such as: the screens of smart phones, computers, and flat panel televisions; the motors of computer drives; batteries of hybrid and electric cars; and new generation light bulbs. Lanthanum-based catalysts are employed in petroleum refining. Large wind turbines use generators that contain strong permanent magnets composed of neodymium-iron-boron. Photographs used with permission from PHOTOS.com.

Why are rare earth minerals important?

Table 1. Materials in Clean Energy Technologies and Components

CLEAN ENERGY TECHNOLOGIES AND COMPONENTS

		Solar Cells	Wind Turbines	Vehicles		Lighting	
	MATERIAL	PV films	Magnets	Magnets	Batteries	Phosphors	
Earth Elements	Lanthanum				•	•	
	Cerium				•	•	
	Praseodymium		•	•	•		
	Neodymium		•	•	•		
th E	Samarium		•	•			
	Europium					•	
Rare	Terbium					•	
R	Dysprosium		•	•			
	Yttrium					•	
	Indium	•					
	Gallium	•					
	Tellurium	•					
	Cobalt				•		
	Lithium				•		

What is a *critical* mineral?

How bad is the problem?

Known Reserves:

- US 23K tons
- Congo 3.5M tons
- Australia 1.2M tons
- World 7.1M tons

Potential Reserves:

- 1M tons in US
- 25M tons worldwide

Interesting Cobalt Facts:

- Current design of supply chain makes it difficult to track ethically sourced cobalt.
- Large companies are cutting out the middleman and securing contracts directly with mines
- Rise in price during 2017 and into 2018 due to jet engines and failing metal supplies, not demand of EVs

How running out will impact society:

- DRC Economic Impact | Increased need for cobalt recycling | Increased innovation in energy storage technology
- "...even with a very conservative estimate of 10 million EV sales in 2025, the demand for cobalt that year could reach 330,000 metric tons, whereas the available supply at that time would be at most 290,000 metric tons."

29 **Cu** copper 63.546(3)

Amount Used

2017 - United States 1.85 million metric tons of unmanufactured copper

<u>Cost</u> - \$2.81 (11/15/18)

How do we get it

Known and Potential Reserves

Basiles.	D	Tract extent (km²)	Undiscovered resources (Mt)				Identified
Region	Deposit type		90 %	50 %	10 %	Mean	resources (Mt)
South America	Porphyry	1,200,000	500	730	1,000	750	810
	Sediment-hosted	99,000					0.51
Central America and the Caribbean	Porphyry	540,000	78	150	280	170	42
North America	Porphyry	3,200,000	250	370	540	400	470
	Sediment-hosted	450,000	15	48	110	57	18
Northeast Asia	Porphyry	2,300,000	76	220	500	260	8.8
North Central Asia	Porphyry	3,200,000	210	360	590	440	130
	Sediment-hosted	180,000	22	49	90	53	48
South Central Asia	Porphyry	3,800,000	280	490	770	510	63
and Indochina	Sediment-hosted	29,000					4.5
Southeast Asia Archipelagos	Porphyry	850,000	180	290	430	300	130
Australia	Porphyry	580,000	1.9	14	54	21	15
Eastern Europe and	Porphyry	1,200,000	130	220	370	240	110
Southwestern Asia	Sediment-hosted	4,800	0.052	4.8	36	13	6.4
Western Europe	Porphyry	73,000					1.6
	Sediment-hosted	190,000	38	110	230	120	77
Africa and the Middle East	Sediment-hosted	200,000	81	150	260	160	160
Total copper						3,500	2,100

Where is it from

How is it used? Uses of Copper in the United States During 2017

Consumer Products 12%

Building Construction 43%

Electrical and Electronics 19%

What will happen if we run out?

Fun Fact

Cost per pound: 99.9% pure = \$50/lb | Hyperpure = \$1,600/lb

Where we get it from: 2/3 of global production in 2017 was in China

How we get it: Silica and a carbon material like 'coke' are submerged in an electric arc furnace, causing a reaction where the oxygen is removed, leaving behind silicon

How we use it: Steel, cast iron, superalloys, other alloys, silicones, polymers, polysilicon (for PVs), highly refined silicon electronics and semiconductors

Known reserves: "World and domestic resources for making silicon are abundant... adequate to supply world requirements for many decades" (USGS, 2007)

Potential reserves: "Since the world has an almost limitless supply of both of these (quartz and carbon), in terms of raw materials, the world has an almost limitless silicon supply"

How running out will impact our society: "Scientists find new semiconductor materials that could replace silicon in the future" (2017)

Quite Interesting fact about Silicon: it's the 2nd most common* element in the Earth's crust (1st is Oxygen), 7th most abundant(element in the universe (* = by mass)

Sources

- https://www.statista.com/topics/1959/silicon/
- https://www.statista.com/statistics/573585/global-silicon-production/
- http://www.madehow.com/Volume-6/Silicon.html
- https://minerals.usgs.gov/minerals/pubs/commodity/silicon/silicmcs07.p
 df
- https://www.neowin.net/news/scientists-find-new-semiconductormaterials-that-could-replace-silicon-in-the-future/
- https://seekingalpha.com/article/3322725-silicon-solar-power-provides-huge-potential-for-long-term-growth?page=2

- Global demand has risen to over 8B ft³/year
- \$119/1000 ft³
- Recovered through the extraction of **Natural Gas**
- Primarily used in Cryogenic cooling
- **US National Helium Reserve accounts** for 30% of the worlds's helium

a demand

istory

Neodymium (Nd)

- Amount used per year: ~40,000 tons per year
- **Cost per pound:** \$21.6/lbs —> (\$47.5/kg Q3 2017)
- Where we get it from: "Rare Earth Element" Present in ore minerals; monazite and bastnäsite China produces 80% of the worlds supply
- **How we get it:** Extracted by ion exchange and solvent extraction processes.
- How we use it: Used in alloys for powerful permanent magnets, lasers, and to color glazes and glass (welders goggles)
- Known reserves: China (44 million MT), Brazil (22M MT), Russia (18M MT), India (6.9M MT), Australia (3.4M MT)
- Potential reserves: Greenland, Canada, Sweden, Vietnam, USA, the Amazon, asteroids
- How running out will impact our society: Without rare earth elements, we would lack miniaturization capabilities (i.e. computers the size of classrooms vs. size of smartphone)
- Interesting fact: "For an iPhone to vibrate, for AirPods to play music, for wind turbines to generate power and for a Toyota Prius of Tesla Model 3's motor to spin, they need powerful magnets. If you combine neodymium with iron and boron, you can make a neodymium-iron-boron magnet, which is the most powerful type of permanent magnet ever created"

Where are rare earth minerals located?

95% come from China. No US-plants

MAJOR IMPORT SOURCES OF NONFUEL MINERAL COMMODITIES FOR WHICH THE UNITED STATES WAS GREATER THAN 50% NET IMPORT RELIANT IN 2015

Source: U.S. Geological Survey

What are conflict minerals?

Coltan (For tantalum)

Wolframite (For tungsten)

Democratic Republic of C

Democratic Republic of Congo (sold to perpetuate fighting)

Cassiterite (for tin)

Gold Ore

Rare Earth Copper Gold Coal

Gold

Coal Rare Earth

Thank You