

CS208 Ch. 8: NP-Completeness

Yang Xu, Ph.D.

Email: xuyang@sustech.edu.cn

Easy vs. hard problems

- Shortest vs. longest simple paths:
- shortest paths from a single source in a graph G = (V, E) in O(VE) time.
- However, finding a <u>longest</u> simple path between two vertices is difficult.
- Merely determining whether G contains a simple path with at least a given number of edges is hard.

Easy vs. hard problems

- Euler tour vs. Hamiltonian cycle:
- A Euler tour (or, Eulerian path) of a graph is a cycle that traverses each edge exactly once.

• We can determine whether a graph has a Euler tour in O(E) time

 Determine whether a graph has a Hamiltonian cycle is hard

A polyhedron and its Hamiltonian cycle

A Hamiltonian cycle of a graph is a simple cycle that visits each <u>vertex</u> exactly once.

Easy vs. hard problems

(合取范式)

- Conjunctive normal form (CNF): 2-CNF satisfiability vs. 3-CNF satisfiability
- A Boolean formula contains variables whose values are 0 or 1;
- Boolean connectives: ∧ (AND), ∨ (OR), and ¬ (NOT);
- A Boolean formula is <u>satisfiable</u> if there exists some assignment of the values 0 and 1 to its variables that causes it to evaluate to 1.
- A Boolean formula is in k-conjunctive normal form, or k-CNF, if it is the AND of clauses of ORs of exactly k variables or their negations.
- For example, the Boolean formula $(x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (\neg x_2 \lor \neg x_3)$ is in 2-CNF.
- It has the satisfying assignment $x_1 = 1, x_2 = 0, x_3 = 1$
- A 2-CNF satisfiability problem can be solved in polynomial time.
- However, a <u>3-CNF satisfiability problem cannot</u>.
- E.g., $(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_3)$.

Three classes of problems

- Class P: Those problems that are <u>solvable</u> in polynomial time.
 - They can be solved in $O(n^k)$ time, for some constant k, where n is the input size.
- Class NP: Those problems that are "<u>verifiable</u>" in polynomial time.
 - If we are somehow given a solution to the problem, then we could verify if it is correct in polynomial time.
- Class NP-complete: If a problem is in NP, and is as "hard" as any problem in NP (<u>N</u>ondeterministic <u>P</u>olynomial-time)
 - The term "as hard as" can be formally defined.
 - NP-complete problems are those "hardest" among NP problems.
- The status of this class is unknown:
- **No** polynomial-time algorithm has yet been discovered for an NP-complete problem, **nor** has anyone yet been able to prove that no polynomial-time algorithm can exist for any one of them.

Intuitive relationship between P and NP

- Class P consists of problems that can be solved quickly.
- Class NP consists of problems that can be verified quickly.
- It is often more difficult to solve a problem from scratch than to verify a clearly presented solution.
- Therefore, it makes sense that P ≠ NP, i.e., there exists problems that are "NP-complete".

All the problems so far ...

- Are in the class P.
- E.g., Sorting problems.
- E.g., Optimization problems: rod-cutting, matrix-chain multiplication etc.
- E.g., graph problems: minimal spanning tree, single-source shortest paths etc.

Relationship of the three classes

- Any problem in P is also in NP.
 - If we can solve it in polynomial time, then we also can verify a solution in polynomial time.
- For now, we can **believe** that $P \subseteq NP$
- It is still an *open* question.
- If any NP-complete problem can be solved in polynomial time, then every problem in NP has a
 polynomial algorithm
- Most theoretical computer scientists believe that NP-complete problems are intractable
 - No one has ever discovered a polynomial time solution to any of them.
 - Yet, <u>no one has found evidence</u> to completely rule out the possibility that NP-complete problems are solvable in polynomial time.

Guesses about the relationship

Here, co-NP is the class of problems for which there is a polynomial-time algorithm that can verify "no" solution (i.e., counterexample).

- (a) P = NP = co-NP. Most researchers regard this possibility as the most *unlikely*.
- (d) $P \neq NP \cap co-NP$, and $NP \neq co-NP$. Most researchers regard this possibility as the most *likely*.

Guesses about the relationship (cont.)

A brief summary

Both P and NP-complete are wholly contained in NP

 $P \cap NP$ -complete = \emptyset

Why such a classification

(难解性; 不可解性)

- If a problem is NP-complete, it is good evidence for its intractability.
- From an engineering perspective, we prefer developing an <u>approximation</u> algorithm or solving a tractable <u>special case</u>,
- Rather than searching for a fast algorithm that solves the problem exactly.

Traveling-salesman problem (TSP)

- A salesman must visit n cities, represented by a graph of n vertices. (A simple undirected graph in which every pair of distinct vertices is connected by a unique edge)
- The salesman wishes to make a tour (or Hamiltonian cycle), visiting each city exactly once and finishing at the city he starts from.
- The cost to travel from city i to city j is c(i,j), and the salesman wishes to **minimize** the total cost of the tour.

Given a sequence of n vertices in the tour, the verification algorithm checks that this sequence contains each vertex exactly once; sums up the edge costs, and checks whether the sum is at most k.

This process can be done in polynomial time. Which shows TSP is in NP.

- The subset-sum problem (SUBSET-SUM)
- Given a finite set S of positive integers and an integer t > 0. Whether there exists a subset $S' \subseteq S$ whose elements sum to t.
- For example: if $S=\{1,2,7,14,49,98,343,686,2409,2793,16808,17206,117705,117993\}$ and t=138457, then the subset $S'=\{1,2,7,98,343,686,2409,17206,117705\}$ is a solution.
- To show that SUBSET-SUM is in NP, let S' be the solution, and a verification algorithm can check whether $t = \sum_{s \in S'} s$ in polynomial time.

(团)

The clique problem (CLIQUE)

- A clique in an undirected graph G = (V, E) is a subset $V' \subseteq V$ of vertices, each pair of which is connected by an edge in E.
- Define the size of a clique by the number of vertices it contains.
- The clique problem: find a clique of maximum size (最大团)

To show CLIQUE is in NP, given a solution V', we can check if V' is a clique in polynomial time by checking whether each edge belongs to E.

The vertex-cover problem (VERTEX-COVER)

- A vertex-cover of an an undirected graph G = (V, E) is a subset $V' \subseteq V$ of vertices, such that if $(u, v) \in E$, then $u \in V'$ or $v \in V'$ (or both).
- Define the size of a vertex cover by the number of vertices it contains
- The vertex-cover problem: find a vertex cover of **minimum size**.

vertex-cover of $\bar{G} = \{w, z\}$

How to prove NP-completeness

- Use the technique *polynomial-time reduction*.
- It shows one problem is at least as hard as another, within a polynomial-time factor.
- A problem L_1 is **polynomial-time reducible** to another problem L_2 , written $L_1 \leq_P L_2$.
- It means L_1 is not more than a polynomial factor harder than L_2 .
- Now, we can first prove the NP-completeness of L_2 . If we can prove $L_1 \leq_P L_2$, then the NP-completeness of L_1 naturally follows.

TSP is reducible to HAM-CYCLE

All problems in the figure can be reducible to a CIRCUIT-SAT problem

Knowing about NP-complete problems

- Many problems that on the surface seem no harder than sorting, graph searching, or network flow are in fact NP-complete.
- NP-completeness is a statement about how hard a problem is, rather than how easy it is.
- We are not trying to prove the existence of an efficient algorithm, but instead that no efficient algorithm is likely to exist.