Homework #1

Jonathan McFadden

TCSS - 580 : Winter 2018
Information Theory

Problem 2.3): Let \mathbb{P}^n be the set of all *n*-dimensional probability vectors, with elements $\vec{p} \in \mathbb{P}^n$ defined as $\vec{p} = (p_1, p_2, \dots, p_i, \dots, p_n)$ for $i \in \mathbb{Z}^+ \ni i \le n$. By the definition of a probability space, we must have

$$\vec{p} \cdot \vec{1} = \sum_{i=1}^{n} \{p_i\} = 1 , \quad \forall \vec{p} \in \mathbb{P}^n,$$
 (2.3-1)

where vector $\vec{1}$ is defined as $\vec{1} = (q_1, q_2, \dots, q_k, \dots, q_n) \in \mathbb{Z}^n$ with $q_k = 1, \forall k \in [1, n]$ (where the interval [1, n] is defined such that $[1, n] \subseteq \mathbb{Z}^+$). Futhermore, the definition of a probability space also requires that, for any $\vec{p} \in \mathbb{P}^n$, the elements of \vec{p} (the $p_i \in \vec{p}$ such that $i \in \mathbb{Z}^+ \ni i \leq n$) satisfy the condition

$$p_i \ge 0 \tag{2.3-2}$$

for all $i \in \mathbb{Z}^+ \ni i \leq n$.

The expression in 2.3-1 guarantees that the p_i of any $\vec{p} \in \mathbb{P}^n$ satisfy the bound $0 \le p_i \le 1$ where $i \in \mathbb{Z}^+ \ni i \le n$. Therefore, the relation

$$p_i \log_2 [p_i] \ge 0 \tag{2.3-3}$$

holds for all p_i of any $\vec{p} \in \mathbb{P}^n$. Moreover, for the cases where $p_i = 0$ or $p_i = 1$, it is clear that the expression in 2.3-3 reduces to equality. Specifically, the realation $p_i \log_2 [p_i]$ becomes

$$p_i \log_2 \left[p_i \right] = 0 \tag{2.3-4}$$

for the case where $p_i = 0$ or $p_i = 1$. Moreover, the relation in 2.3-4 also represents the **smallest** possible value/result for the expression $p_i \log_2 [p_i]$. That is to say, that when $p_i = 0$ or $p_i = 1$, then $p_i \log_2 [p_i]$ is at a minimum.

The result in 2.3-1, makes it is clear that only **ONE** p_i in each $\vec{p} \in \mathbb{P}^n$ may have the value $p_i = 1$; therefore the probability vectors $\vec{p} \in \mathbb{P}^n$ which result in a minimum value for $p_i \log_2 [p_i]$ all have exactly one non-zero element with the non-zero element having a value of one. This implies that there are only n such probability vectors, \vec{p}^* within any \mathbb{P}^n . Furthermore, the value of $H(X) = \sum_{i=1}^n \{p_i \log_2 [p_i]\}$ for any such \vec{p}^* is also zero.

Problem 2.4 a): Recall the chain-rule for conditional entropies of X given Y,

$$H(X \mid Y) = H(X, Y) - H(Y)$$
 (2.4-1)

We apply the expression in 2.4-1 to the case of g(X) given X to obtain

$$H(g(X) | X) = H(g(X), X) - H(X)$$
 (0.0.1)

by rearranging the expression in the previous result as follows,

$$H(g(X), X) = H(X) + H(g(X) | X)$$
 (2.4-2)

we obtain the desired result.

Problem 2.4 b): For any given value of X, we automatically know g(X). Therefore, the expression for H(g(X), X) in 2.4-2 becomes

$$H(g(X), X) = H(X)$$

which is the desired result.

<u>Problem 2.4 c):</u> Recalling the expression for the conditional entropy chain rule in 2.4-1 and using it for the case where X = X and Y = g(X) yields the result

$$H\left(X\mid g\left(X\right)\right) = H\left(X,g\left(X\right)\right) - H\left(g\left(X\right)\right)$$

rearranging the above expression yields

$$H(X, g(X)) = H(g(X)) + H(X \mid g(X))$$
 (2.4-3)

we obtain the desired result.

Problem 2.4 c): Recalling the expression for the conditional entropy chain rule in 2.4-1 and using it for

the case where X = X and Y = g(X) yields the result

$$H\left(X\mid g\left(X\right)\right) = H\left(X,g\left(X\right)\right) - H\left(g\left(X\right)\right)$$

rearranging the above expression yields

$$H(X, g(X)) = H(g(X)) + H(X \mid g(X))$$
 (2.4-3)

we obtain the desired result.

Problem 2.4 d): For any arbitrary function, g(X), of a random variable X, the entropy $H(X \mid g(X))$ satisfies the condition

$$H\left(X\mid g\left(X\right)\right) \ge 0\tag{2.4-4}$$

for the case where g(X) is one-to-one, the relation in 2.4-4 simplifies to

$$H\left(X\mid g\left(X\right)\right)=0$$

Applying the relation in 2.4-4 to the expression in 2.4-3 yields

$$\begin{split} H\left(X,g\left(X\right)\right) &= H\left(g\left(X\right)\right) + H\left(X\mid g\left(X\right)\right) \\ &\geq H\left(g\left(X\right)\right) + H\left(X\mid g\left(X\right)\right) - H\left(X\mid g\left(X\right)\right) \\ &\geq H\left(g\left(X\right)\right) \end{split}$$

Problem 2.9 a): Let $\rho(X,Y)$ be a function which is defined according to

$$\rho(X,Y) = H(X \mid Y) + H(Y \mid X) \tag{2.9-1}$$

for all x and y. Since conditional probabilites are always non-zero (for arbitrary X and Y we have $H(X \mid Y) \geq 0$), we can say that $H(X \mid Y)$ has the property

$$H(X \mid Y) \ge 0$$

and that $H(Y \mid X)$ has the property

$$H(Y \mid X) \ge 0$$

Applying these properties of $H(X \mid Y) \ge 0$ and $H(Y \mid X) \ge 0$ to the expression in 2.9-1 yields

$$\rho(X,Y) = H(X \mid Y) + H(Y \mid X) \ge 0 \tag{2.9-2}$$

which indicates that $\rho(X,Y)$ satisfies the first property of a metric over all x and y. By its definition in 2.9-1, we can say that $\rho(X,Y)$ is symmetric; therefore, we can additionally say that $\rho(X,Y)$ satisfies the second condition of a metric over all x and y.

Now, consider three random variables, X, Y, and Z. Then write

$$\rho(X,Y) = H(X \mid Y) + H(Y \mid X) \tag{2.9-3}$$

and

$$\rho(Y, Z) = H(Y \mid Z) + H(Y \mid Z) \tag{2.9-4}$$

and

$$\rho\left(X,Z\right) = H\left(X\mid Z\right) + H\left(Z\mid X\right) \tag{2.9-5}$$

We now add the expression in 2.9-3 and 2.9-4 to obtain

$$H(X \mid Y) + H(Y \mid X) + H(Y \mid Z) + H(Z \mid Y)$$

$$\left[H(X \mid Y) + H(Y \mid Z)\right] + \left[H(Z \mid Y) + H(Y \mid X)\right]$$
(2.9-6)

By the chain rule for conditional entropies, we have $H\left(X\mid Y\right)+H\left(Y\mid Z\right)=H\left(X,Y\mid Z\right)$ and $H\left(Z\mid Y\right)+H\left(Y\mid X\right)=H\left(Z,Y\mid X\right)$ so the expression in 2.9-6 becomes

$$H(X, Y \mid Z) + H(Z, Y \mid X)$$

Again appling the chain rule for conditional entropies to the previous result, we have

$$\left[H\left(X\mid Z\right) +H\left(Y\mid X,Z\right) \right] +\left[H\left(Z\mid X\right) +H\left(Y\mid Z,X\right) \right]$$

SInce conditional entropies are always greater or equal to zero, the $H(Y \mid X, Z)$ and $H(Y \mid Z, X)$ terms in the previous result satisfy $H(Y \mid X, Z) \ge 0$ and $H(Y \mid Z, X) \ge 0$. This allows us to rewrite the previous result as

$$\begin{split} \rho\left(X,Y\right) + \rho\left(Y,Z\right) &= H\left(Y\mid Z\right) + H\left(Y\mid Z\right) + H\left(X\mid Y\right) + H\left(Y\mid X\right) \\ &= \left[H\left(X\mid Z\right) + H\left(Y\mid X,Z\right)\right] + \left[H\left(Z\mid X\right) + H\left(Y\mid Z,X\right)\right] \\ &\geq H\left(X\mid Z\right) + H\left(Z\mid X\right) \end{split}$$

Using the definition from 2.9-5, the previous result becomes

$$\rho(X,Y) + \rho(Y,Z) = \left[H(X \mid Z) + H(Y \mid X,Z)\right] + \left[H(Z \mid X) + H(Y \mid Z,X)\right]$$
$$\geq H(X \mid Z) + H(Z \mid X)$$
$$\geq \rho(X,Z)$$

thereby indicating that $\rho(X,Y) + \rho(Y,Z) \ge \rho(X,Z)$ holds and, by extension, that the definition in 2.9-1 satisfies the fourth condition of a metric over all x and y.

Finally, we consider the case where X = Y via a one-to-one mapping. Since H(X,Y) = 0 iff X is a function of Y and H(Y,X) = 0 iff Y is a function of X, $\rho(X,Y)$ can only equal zero if and only if X = Y. This satisfies the third and only remaining condition of a metric over all x and y; therefore, for cases where X and Y are related by a one-to-one mapping, $\rho(X,Y)$ is a metric over all x and y.

Problem 2.9 b): Starting with the expression $I(X;Y) = H(X) - H(X \mid Y)$ we rearrange to obtain

$$H(X \mid Y) = H(X) - I(X;Y)$$
 (2.9-7)

We also obtain

$$H(Y \mid X) = H(Y) - I(Y; X)$$
 (2.9-8)

similarly. We now apply the expressions in 2.9-7 and 2.9-8 to the definition of $\rho(X, Y)$ in 2.9-1 to obtain the result

$$\begin{split} \rho\left(X,Y\right) &= H\left(X\mid Y\right) + H\left(Y\mid X\right) \\ &= H\left(X\right) - I\left(X;Y\right) + H\left(Y\right) - I\left(Y;X\right) \end{split}$$

Noting that I(X;Y) = I(Y;X) the previous result can be simplied to the expression

$$\rho(X,Y) = H(X) - I(X;Y) + H(Y) - I(Y;X)$$

$$= H(X) - I(X;Y) + H(Y) - I(X;Y)$$

$$= H(X) + H(Y) - 2I(X;Y)$$
(2.9-9)

which proves the first line of the problem. Next, we note that I(X;Y) = H(X) + H(Y) - H(X,Y) and apply this relation to the expression in 2.9-9 so that we obtain

$$\rho(X,Y) = H(X) + H(Y) - 2I(X;Y)$$

$$= H(X) + H(Y) - I(X;Y) - I(X;Y)$$

$$= H(X) + H(Y) - I(X;Y) - [H(X) + H(Y) - H(X,Y)]$$

$$= H(X,Y) - I(X;Y)$$
(2.9-10)

as our result and proving the second line of the problem. Finally, we again note I(X;Y) = H(X) + H(Y) - H(X,Y) and then apply it to the expression in 2.9-10 to yield the result

$$\begin{split} \rho\left(X,Y\right) &= H\left(X,Y\right) - I\left(X;Y\right) \\ &= H\left(X,Y\right) - \left[H\left(X\right) + H\left(Y\right) - H\left(X,Y\right)\right] \\ &= 2 H\left(X,Y\right) - H\left(X\right) - H\left(Y\right) \end{split}$$

which proves the third and final line of the problem.