Rechenarchitektur Blatt 5 Lösung

Andrea Colarieti Tosti May 20, 2018

1 Aufgabe 23

1.1 a

3+2 = 5 Bit

1.2 b

х3	x2	x1	f2	f1
1	1	1	1	1
1	1	0	1	1
1	0	1	1	1
1	0	0	1	1
0	1	1	1	1
0	1	0	1	1
0	0	1	1	1
0	0	0	1	1

O1 = x1 x OR f1	ü1 = x1 AND f1	O2 =((x2 XOR f1) XOR (x1 XOR f2)) xor ü1)	
1	1	0	
0	0	1	
1	1	1	
0	0	0	
1	1	0	
0	0	1	
1	1	1	
0	0	0	
Ú2 = ((x2 and f1) and (x1 and f2)) and ü1	O3 =((x3 XOR f1) XOR (x2 XOR f2)) xor ü2)	Ū3 = ((x3 and f1) and (x2 and f2)) and ū2	
1	1	1	
0	0	1	
0	1	0	
0	1	0	
1	0	0	
0	1	0	
0	0	0	
0	0	0	
O4 = (x3 XOR f2) xor ü3)	Ü4 = (x3 and f2) and ü3	O5 = Ü4	transponiert o5o4o3o2o1
0	1	1	10101
0	1	1	10010
1	0	0	1111
1	0	0	1100
1	0	0	1001
0	0	0	110
0	0	0	11
U			

1.3 c

$$\begin{split} o_1 &= x_1 \oplus f_1 \\ \ddot{\mathbf{U}} \mathrm{bertrag1} = x_1 \wedge f_1 \\ o_2 &= (x_2 \oplus f_1) \oplus (x_1 \oplus f_2) \oplus \ddot{\mathbf{U}} \mathrm{bertrag1} \\ \ddot{\mathbf{U}} \mathrm{bertrag2} = o_2 &= (x_2 \wedge f_1) \wedge (x_1 \wedge f_2) \wedge (x_1 \wedge f_1) \\ o_2 &= (x_3 \oplus f_1) \oplus (x_2 \oplus f_2) \oplus \ddot{\mathbf{U}} \mathrm{bertrag2} \\ \ddot{\mathbf{U}} \mathrm{bertrag3} = (x_3 \wedge f_1) \wedge (x_2 \wedge f_2) \wedge \ddot{\mathbf{U}} \mathrm{bertrag2} \\ \ddot{\mathbf{U}} \mathrm{bertrag3} = (x_3 \wedge f_1) \wedge (x_3 \oplus f_2) \oplus \ddot{\mathbf{U}} \mathrm{bertrag3} \\ \ddot{\mathbf{U}} \mathrm{bertrag4} = (x_4 \wedge f_1) \wedge (x_3 \wedge f_2) \wedge \ddot{\mathbf{U}} \mathrm{bertrag3} \\ \ddot{\mathbf{U}} \mathrm{bertrag4} = (x_5 \oplus f_1) \oplus (x_4 \oplus f_2) \oplus \ddot{\mathbf{U}} \mathrm{bertrag4} \\ \ddot{\mathbf{U}} \mathrm{bertrag} = (x_5 \wedge f_1) \wedge (x_4 \wedge f_2) \wedge \ddot{\mathbf{U}} \mathrm{bertrag5} \end{split}$$

Zum vereinfachen müssen wir erst wissen, dass $a \oplus b = (\overline{a} \cdot b) + (a \cdot \overline{b})$.

1.4 d

 $o_5 = \ddot{\mathbf{U}}$ bertrag5

Um eine dualzahl zu verdoppeln muss diese mal 2 gerechnet werden: Binär
Zahl * 10 (Binär 2)

Alternativ könnten wir sagen, dass diese um eine stelle nach Links verschoben werden muss.

2 Aufgabe 26

- a): i
- b): ii
- c): iv
- d): ii
- e): iii