

Unità aritmetica e logica

- Esegue le operazioni aritmetiche e logiche
- Ogni altra componente nel calcolatore serve questa unità
- Gestisce gli interi
- Può gestire anche i numeri reali

Rappresentazione degli interi

- Possiamo solo usare 0 e 1 per rappresentare tutto
- I numeri positivi sono scritti in binario come sappiamo
 - □e.g. 41=00101001
- Non c'è bisogno del segno

Rappresentazione in modulo e segno

- Segno: bit più a sinistra
 - □ 0 significa positivo
 - □ 1 significa negativo
- Esempio:
 - \Box +18 = 00010010
 - ☐ -18 = 10010010
- Problemi
 - □ Per eseguire operazioni aritmetiche bisogna considerare sia i moduli che i segni
 - □ Due rappresentazioni per lo 0: +0 and -0

Complemento a due: in generale

- Positivi: da 0 (n zeri) a 2ⁿ⁻¹ -1 (uno zero seguito da n-1 uni)
- Negativi:
 - ☐ Bit di segno a 1
 - \square I restanti n-1 bit possono assumere 2^{n-1} configurazioni diverse, quindi da -1 a -2^{n-1}
- Se sequenza di bit a_{n-1} a_{n-2} ... a_1 a_0 ,

numero =
$$-2^{n-1} x a_{n-1} + \sum_{(i=0, ..., n-2)} 2^{i} x a_{i}$$

- Numeri positivi: a_{n-1} = 0
- Numeri negativi: positivo 2ⁿ⁻¹

м

Rappresentazione in complemento a due

- Segno nel bit più a sinistra
- Per n bit: possiamo rappresentare tutti i numeri da -2ⁿ⁻¹ a +2ⁿ⁻¹ – 1
- Per i numeri positivi, come per modulo e segno
 - □n zeri rappresentano lo 0, poi 1, 2, ... in binario per rappresentare 1, 2, ... positivi
- Per i numeri negativi, da n uni per il -1, andando indietro

Rappresentazione in complemento a due

- **+**3 = 00000011
- **+**2 = 00000010
- **1** +1 = 00000001
- \blacksquare +0 = 00000000
- -1 = 11111111
- **■** -2 = 11111110
- **■** -3 = 11111101

Complemento a due su 3 e 4 bit

b.	Using	patterns	of	lenath	four
~.		Pattollio	•		

Value represented
3
2
1
0
-1
-2
- 3
-4

Bit pattern	Value represented	
0111	7	
0110	6	
0101	5	
0100	4	
0011	3	
0010	2	
0001	1	
0000	0	
1111	-1	
1110	-2	
1101	- 3	
1100	-4	
1011	- 5	
1010	- 6	
1001	- 7	
1000	-8	

Complemento a due: numeri negativi

- Confrontiamo le rappresentazioni di k e –k
 - □ da destra a sinistra, uguali fino al primo 1 incluso
 - □ poi una il complemento dell'altra
- Esempio (su 4 bit): 2=0010, -2=1110

Complemento a due: decodifica

- Se bit di segno =0 → positivo, altrimenti negativo
- Se positivo, basta leggere gli altri bit
- Se negativo, scrivere gli stessi bit da destra a sinistra fino al primo 1, poi complementare, e poi leggere
- Es.: 1010 è negativo, rappresenta 0110 (6), quindi -6

Complemento a due: altro metodo

- Data la rappresentazione di k (positivo), -k si può anche ottenere così:
 - □ Complemento bit a bit della rappresentazione di k
 - ☐ Somma di 1 al risultato
- Esempio:
 - □ 2=0010
 - □ Complemento: 1101
 - □ 1101 +1 = 1110
 - □ -2=1110

Benefici

- Una sola rappresentazione dello zero
- Le operazioni aritmetiche sono facili
- La negazione è facile
 - $\square 3 = 00000011$
 - □ Complemento Booleano 11111100
 - □ Somma di 1 11111101

Numeri rappresentabili

- Complemento a 2 su 8 bit
 - □ Numero più grande: $+127 = 011111111 = 2^7 -1$
 - □ Numero più piccolo: $-128 = 10000000 = -2^{7}$
- Complemento a 2 su 16 bit
 - \square +32767 = 0111111111 11111111 = 2^{15} 1
 - \Box -32768 = 100000000 00000000 = -2¹⁵

Esercizi

- Da complemento a 2 a base 10:
 - □ 00011, 01111, 11100, 11010, 00000, 10000
- Da base 10 a complemento a 2 su 8 bit:
 - **□**6, -6, 13, -1, 0
- Numero più grande e più piccolo per la notazione in complemento a 2 su 4, 6, 8 bit

Conversione tra diverse lunghezze

- Da una rappresentazione su n bit ad una rappresentazione dello stesso numero su m bit (m > n)
- Modulo e segno: facile
 - □ Bit di segno nel bit più a sinistra
 - □m-n zeri aggiunti a sinistra
 - □ Esempio (da 4 a 8 bit): 1001 → 10000001

Conversione tra diverse lunghezze

- Complemento a 2: stessa cosa del modulo e segno per numeri positivi
- Per numeri negativi: replicare il bit di segno dalla posizione attuale alla nuova
- Esempi:
 - \Box +18 (8 bit) = 00010010
 - \Box +18 (16 bit) = 00000000 00010010
 - □-18 (8 bit) = 11101110
 - □-18 (16 bit) = 11111111 11101110

Opposto su numeri in complemento a 2

- Due passi:
 - □ Complemento
 - □Somma 1

Opposto: caso speciale 1

• 0 = 00000000

■ Complemento: 11111111

■ Somma 1: +1

■ Risultato: 1 00000000

■ L'uno più a sinistra è un overflow, ed è ignorato. Quindi - 0 = 0

Opposto: caso speciale 2

■ -128 = 10000000

■ Complemento: 01111111

■ Somma 1: +1

■ Risultato: 10000000

■ Quindi, -(-128) = -128 !

■ 2ⁿ stringhe su n bit, un numero positivo in più di quelli negativi: -2ⁿ si può rappresentare, ma +2ⁿ no → -2ⁿ non può essere complementato

Somma e sottrazione

- Per la somma: normale somma binaria
 - ☐ Controllare il bit di segno per l'overflow
- Per la sottrazione: basta avere i circuiti per somma e complemento
 - \square Es. (4 bit): 7-5 = 7 +(-5) = 0111 + 1011 = 0010
 - □5 = 0101 **→** -5 = 1011

Problem in base ten		Problem in two's complement		Answer in base ten	
3 + 2	→	$0011 \\ + 0010 \\ \hline 0101$	\rightarrow	5	
-3 +-2	→	$ \begin{array}{r} 1101 \\ +1110 \\ \hline 1011 \end{array} $	\rightarrow	- 5	
7 <u>+ -5</u>	→	$0111 \\ + 1011 \\ \hline 0010$	\rightarrow	2	

Overflow

- Overflow: quando si sommano due numeri positivi tali che il risultato è maggiore del massimo numero positivo rappresentabile con i bit fissati (lo stesso per somma di due negativi)
- Se la somma dà overflow, il risultato non è corretto
- Come si riconosce? Basta guardare il bit di segno della risposta: se 0 (1) e i numeri sono entrambi negativi (positivi) → overflow

Esempi di somme

- \blacksquare -4 (1100) + 4 (0100) = 10000 (0)
 - □ Riporto ma non overflow
- **-**4 (1100) 1 (1111): 11011 (-5)
 - □ Riporto ma non overflow
- -7 (1001) -6 (1010) = 10011 (non è -13, ma 3)
 - □ Overflow
- + 7 (0111) + 7 (0111) = 1110 (non è 14, ma -2)
 - □ Overflow

Ŋ.

Moltiplicazione

- Più complessa
- Calcolare il prodotto parziale per ogni cifra
- Sommare i prodotti parziali

Esempio di moltiplicazione

- 1011 Moltiplicando (11 decimale)
- x 1101 Moltiplicatore (13 decimale)
- 1011 Prodotto parziale 1
- 0000 Prodotto parziale 2
- 1011 Prodotto parziale 3
- 1011 Prodotto parziale 4
- 10001111 Prodotto (143 decimale)
- Nota: da due numeri di n bit potremmo generare un numero di 2n bit

Implementazione

- Se Q_0 = 0, traslazione di C, A e Q
- Se Q₀ = 1, somma di A e M in A, overflow in C, poi traslazione di C, A, e Q
- Ripetere per ciascun bit di Q
- Prodotto (2n bit) in A e Q

Moltiplicare numeri in complemento a 2

- Per la somma, i numeri in complemento a 2 possono essere considerati come numeri senza segno
- Esempio:
 - $\square 1001 + 0011 = 1100$
 - □ Interi senza segno: 9+3=12
 - □ Complemento a 2: -7+3=-4

Moltiplicare numeri in complemento a 2

- Per la moltiplicazione, questo non funziona!
- Esempio: 11 (1011) x 13 (1101)
 - □ Interi senza segno: 143 (10001111)
 - Se interpretiamo come complemento a 2: -5 (1011) x
 -3 (1101) dovrebbe essere 15, invece otteniamo
 10001111 (-113)
- Non funziona se almeno uno dei due numeri è negativo

Moltiplicare numeri in complemento a 2

Bisogna usare la rappresentazione in complemento a due per i prodotti parziali:

1001 (9)	1001 (-7)
<u>×0011</u> (3)	<u>×0011</u> (3)
00001001 1001 × 2°	$111111001 (-7) \times 2^0 = (-7)$
00010010 1001×2^{1}	$11110010 (-7) \times 2^1 = (-14)$
00011011 (27)	11101011 (-21)

- (a) Unsigned integers
- (b) Twos complement integers
- Problemi anche se moltiplicatore negativo
- Una possibile soluzione:
 - 1. convertire I fattori negativi in numeri positivi
 - 2. effettuare la moltiplicazione
 - 3. se necessario (-+ o +-), cambiare di segno il risultato
- Soluzione utilizzata: algoritmo di Booth (più veloce)

Divisione

- Più complessa della moltiplicazione
- Basata sugli stessi principi generali
- Utilizza traslazioni, somme e sottrazioni ripetute

٠,

Numeri reali

- Numeri con frazioni
- Posso essere rappresentati anche in binario
 - Es.: $1001.1010 = 2^4 + 2^0 + 2^{-1} + 2^{-3} = 9.625$
- Quante cifre dopo la virgola?
- Se numero fisso, molto limitato
- Se mobile, dobbiamo saper specificare dove si trova la virgola

Notazione scientifica (decimale)

- 976.000.000.000.000 viene rappresentato come 9.76 x 10¹⁴
- 0,0000000000000976 viene rappresentato come 9,76 x 10⁻¹⁴
- Vantaggio: numeri molto grandi e molto piccoli con poche cifre
- Lo stesso per numeri binari: +/- S x B^{+/-E}
 - S = significando o mantissa (come 976)
 - Si assume la virgola dopo una cifra della mantissa
 - B = base

М

Floating Point

Significando o Mantissa

- Numero rappresentato:
 - +/- 1.mantissa x 2^{esponente}
- Esponente polarizzato: una valore fisso viene sottratto per ottenere il vero esponente k bit per esponente polarizzato → 2^{k-1} -1

$$e = ep - (2^{k-1} - 1)$$

Es.: 8 bit → valori tra 0 e 255 → 2⁷-1=127 → esponente da -127 a +128

Normalizzazione

- I numeri in virgola mobile di solito sono normalizzati
- L'esponente è aggiustato in modo che il bit più significativo della mantissa sia 1
- Dato che è sempre 1 non c'è bisogno di specificarlo
- Numero: +/- 1.mantissa x 2^{esponente}
- L'1 non viene rappresentato nei bit a disposizione → se 23 bit per la mantissa, posso rappresentare numeri in [1,2)
- Se non normalizzato, aggiusto l'esponente
 - Es.: $0.1 \times 2^0 = 1.0 \times 2^{-1}$

M

Numeri rappresentabili (32 bit)

- Complemento a due: da -2³¹ a + 2³¹ -1
- Virgola mobile (con 8 bit per esponente):

Esponente: da -127 (tutti 0) a 128 (tutti 1)

Mantissa: 1.0 (tutti 0) a 2-2-23 (tutti 1, cioè 1.

1...1, cioè 1 + 2^{-1} + 2^{-2} + ... + 2^{-23} = $2-2^{-23}$)

Negativi: Da -2128 x (2-2-23) a -2-127

Positivi: da 2⁻¹²⁷ a 2¹²⁸ x (2-2⁻²³)

(b) Floating-Point Numbers

Numeri non rappresentabili (32 bit)

- Negativi minori di -2¹²⁸ x (2-2⁻²³) [overflow negativo]
- Negativi maggiori di -2⁻¹²⁷ [underflow negativo]
- Positivi minori di 2⁻¹²⁷ [underflow positivo]
- Positivi maggiori di 2¹²⁸ x (2-2⁻²³) [overflow positivo]
- Non c'è una rappresentazione per lo 0
- I numeri positivi e negativi molto piccoli (valore assoluto minore di 2⁻¹²⁷) possono essere approssimati con lo 0
- Non rappresentiamo più numeri di 232, ma li abbiamo divisi in modo diverso tra positivi e negativi
- I numeri rappresentati non sono equidistanti tra loro: più densi vicino allo 0 (errori di arrotondamento)

Densità dei numeri in virgola mobile

Precisione e densità

- Nell'esempio, 8 bit per esponente e 23 bit per mantissa
- Se più bit per l'esponente (e meno per la mantissa), espandiamo l'intervallo rappresentabile, ma i numeri sono più distanti tra loro → minore precisione
- La precisione aumenta solo aumentando il numero dei bit
- Di solito, precisione singola (32 bit) o doppia (64 bit)

Densità

- Numero (positivo) = 1,m x 2e
- Fissato e, i numeri rappresentabili sono tra 2e (mantissa tutta a 0) e 2e x (2-2-23)
 - Quanti numeri? 2²³
- Consideriamo adesso e+1 → i numeri rappresentabili sono tra 2x2e e 2x2e x (2-2-23)
 - Intervallo grande il doppio
 - Quanti numeri? Sempre 2²³

Esempio con 4 bit (+ segno)

fe (due bit per esponente), ab (due bit per mantissa)

Numero= $2^{fx^2+e-1}x(1+ax^2-1+bx^2-2)$

f	е	а	b	numero	
0	0	0	0	0.5	
0	0	0	1	0.625	
0	0	1	0	0.75	
0	0	1	1	0.875	
0	1	0	0	1	
0	1	0	1	1.25	
0	1	1	0	1.5	
0	1	1	1	1.75	
1	0	0	0	2	
1	0	0	1	2.5	
1	0	1	0	3	
1	0	0	1	3.5	
1	1	0	0	4	
1	1	0	1	5	
1	1	1	0	6	
1	1	1	1	7	

 Numeri positivi rappresentati con 2 bit esponente e 2 bit mantissa

Standard IEEE 754

- Standard per numeri in virgola mobile
- Formato singolo a 32 bit e doppio a 64 bit
- Esponente con 8 e 11 bit
- 1 implicito a sinistra della virgola
- Formati estesi (più bit per mantissa ed esponente) per risultati intermedi
 - Più precisi → minore possibilità di risultato finale con eccessivo arrotondamento

Numeri rappresentati (formato singolo)

- Alcune combinazioni (es.: valori estremi dell'esponente) sono interpretate in modo speciale
- Esponente polarizzato da 1 a 254 (cioè esponente da -126 a +127): numeri normalizzati non nulli in virgola mobile → +/- 2^{e-127} x 1.f
- Esponente 0, mantissa (frazione) 0: rappresenta 0 positivo e negativo
- Esponente con tutti 1, mantissa 0: infinito positivo e negativo
 - Overflow può essere errore o dare il valore infinito come risultato
- Esponente 0, mantissa non nulla: numero denormalizzato
 - Bit a sinistra della virgola: 0, vero esponente: -126
 - Positivo o negativo
 - numero: 2⁻¹²⁶ x 0.f
- Esponente tutti 1, mantissa non nulla: errore (Not A Number)

Aritmetica in virgola mobile

- Allineare gli operandi aggiustando gli esponenti (per somma e sottrazione)
- Possibili eccezioni del risultato:
 - Overflow dell'esponente: esponente positivo che è più grande del massimo
 - Underflow dell'esponente: esponente negativo minore del minimo valore (numero troppo piccolo)
 - Underflow della mantissa: mantissa 0 (allineando, gli 1 sono usciti fuori)
 - Overflow della mantissa: riporto del bit più significativo

Somma e sottrazione

- Quattro fasi:
 - Controllo dello zero
 - Se uno dei due è 0, il risultato è l'altro numero
 - Allineamento delle mantisse
 - Rendere uguali gli esponenti
 - Somma o sottrazione delle mantisse
 - Normalizzazione del risultato
 - Traslare a sinistra finché la cifra più significativa è diversa da 0

М

Allineamento delle mantisse

- Esempio (in base 10):
- $(123 \times 10^{\circ}) + (456 \times 10^{-2})$
- 123 x 4,56 → Non possiamo semplicemente sommare
 123 a 456: il 4 deve essere allineato sotto il 3
- Nuova rappresentazione: (123 x 10⁰) + (4,56 x 10⁰)
- Adesso posso sommare le mantisse (123 + 4,56 = 127,56)
- Risultato: 127,56 x 10⁰

Moltiplicazione e divisione

- Controllo dello zero
- Somma degli esponenti
- Sottrazione polarizzazione
- Moltiplicazione/divisione operandi
- Normalizzazione
- Arrotondamento

Precisione del risultato: bit di guardia

- Di solito operandi nei registri della ALU, che hanno più bit di quelli necessari per la mantissa +1 → i bit più a destra sono messi a 0 e permettono di non perdere bit se i numeri vengono shiftati a destra
- Es.: X-Y, con Y=1,11...11 x 2⁰ e X=1,00...00 x 2¹
- Y va shiftato a destra di un bit, cioè diventa
 0,111...11 x 2¹ → un 1 viene perso senza i bit di guardia
- Risultato:
 - Senza bit di guardia: (1,0...0 – 0,1...1) x 2 = 0,0...01 x 2 = 1,0...0 x 2⁻²²
 - Con bit di guardia: $(1,0...0 0,1...11) \times 2 = 0,0...001 \times 2 = 1,0...0 \times 2^{-23}$

Precisione del risultato: arrotondamento

- Se il risultato è in un registro più lungo, quando lo si riporta nel formato in virgola mobile, bisogna arrotondarlo
- Quattro approcci:
 - Arrotondamento al più vicino (default)
 - Bit aggiuntivi che iniziano con 1 → sommo 1
 - Bit aggiuntivi 10...0 → sommo 1 se l'ultimo bit è 1, altrimenti 0
 - Bit aggiuntivi che iniziano con 0 → elimino
 - Arrotondamento (per eccesso) a +∞ e arrotondamento (per difetto) a -∞
 - Usati nell'aritmetica degli intervalli
 - Arrotondamento a 0 (cioè troncamento dei bit in più)