Midterm Write-Up

<u>Introduction</u>

According to our textbook, tidy data is a "standard way of mapping the meaning of a dataset to its structure" (Aragon et al., 2022). So rows are unique observations, columns are unique variables, and cells are unique units of measurement. More specifically, there are five main principles of tidy data: (Wickham, 2014):

- **Principle 1:** Column headers should be variables, not values
- Principle 2: Each column should only have one variable stored in it
- **Principle 3:** Each row should be a unique observation
- Principle 4: Different kinds of observational units should be stored in their own tables
- **Principle 5:** Observational units of the same kind should be stored together, rather than spread across separate tables

With these principles in mind, I completed various steps to clean the UN Migrant Stock Total dataset from 2015.

Methods and Results

Steps 1 and 2 – Renaming Columns and Melting (For Sex and Year)

After uploading each table as an individual dataframe (ex. "Table 1" = "df1"), I noticed that the column headers were double layered (Figure 1). Considering Jupyter Notebook only reads the top column as the header, there was information that was being lost when the dataframe was created. The years did not show up as column headings, but as the first row in the dataset (Figure 2).

	International migrant stock at mid-year (male)								
1990	1995	2000	2005	2010	2015				
77 747 510	81 737 477	87 884 839	97 866 674	114 613 714	126 115 435				
40 263 397	45 092 799	50 536 796	57 217 777	64 081 077	67 618 619				
37 484 113	36 644 678	37 348 043	40 648 897	50 532 637	58 496 816				
5 843 107	6 142 712	5 361 902	5 383 009	5 462 714	6 463 217				
31 641 006	30 501 966	31 986 141	35 265 888	45 069 923	52 033 599				
7 745 306	8 036 824	7 210 452	7 444 048	8 188 581	10 099 486				
8 279 564	8 616 931	7 856 358	8 231 437	9 039 314	11 123 423				
3 071 189	2 585 053	2 480 584	2 529 460	2 366 216	3 109 176				

Figure 1 - Format of columns in Table 1 (Excel version)

	Sort\norder	Major area, region, country or area of destination	Notes	Country code	Type of data (a)	International migrant stock at mid-year (both sexes)	Unnamed: 6	Unnamed: 7	Unnamed: 8	Unnamed: 9	
0	NaN	NaN	NaN	NaN	NaN	1990	1995	2000	2005	2010	
1	1.0	WORLD	NaN	900.0	NaN	152563212	160801752	172703309	191269100	221714243	
2	2.0	Developed regions	(b)	901.0	NaN	82378628	92306854	103375363	117181109	132560325	

Figure 2 - Format of the Table 1 column headers when uploaded as a dataframe to Jupyter

Also, in each table, the main variable of interest (ex. "International migrant stock at mid-year") was separated into columns based on sex and year. This violates **Principle 1** of Tidy Data, which states that column headers must be variables, not values. The column headers are currently all values of "Year" or "Sex", rather than representing one variable. Therefore, to remedy this violation, I decided to rename the columns and melt them so that the dataset became longer.

To begin, I renamed each column so that it combined the Sex and Year represented in that column. This allowed me to drop the first row of the table, which was empty except for some of the original column header information. After this, the dataframe looked like this (*Figure 3*):

	Sort\norder	Major area, region, country or area of destination	Notes	Country code	Type of data (a)	Both sexes - 1990	Both sexes - 1995	Both sexes - 2000	Both sexes - 2005	Both sexes - 2010	
1	1.0	WORLD	NaN	900.0	NaN	152563212	160801752	172703309	191269100	221714243	
2	2.0	Developed regions	(b)	901.0	NaN	82378628	92306854	103375363	117181109	132560325	
3	3.0	Developing regions	(c)	902.0	NaN	70184584	68494898	69327946	74087991	89153918	
4	4.0	Least developed countries	(d)	941.0	NaN	11075966	11711703	10077824	9809634	10018128	

Figure 3 - Table 1 (as a dataframe) once the columns are renamed to Sex and Year

The next step was to *melt* these column headers, so that they became one general "Demographic" column. This way the values that were initially inside the columns could given a header that represents what kind of measurement they are (ex. "International migrant stock at mid-year"). I used the **df.melt()** function to accomplish this, and the resulting dataframes looked like this (*Figure 4*):

Soi	Sort\norder Major area, region, co		Notes	Country code	Type of data (a)	demographic	Internatonal migrant stock at mid- year
0	1.0	WORLD	NaN	900.0	NaN	Both sexes - 1990	152563212
1	2.0	Developed regions	(b)	901.0	NaN	Both sexes - 1990	82378628
2	3.0	Developing regions	(c)	902.0	NaN	Both sexes - 1990	70184584

Figure 4 - Table 1 (as a dataframe) with a "Demographic" column and a column representing the variable of interest

I completed this step for each of the Tables after that. For Table 5 and part of Table 6, I needed to switch my process slightly, as they use year *ranges* rather than years. Table 6 required extra work before melting, as it had multiple variables of interest, and two different time units (years and year ranges) (*Figure 5*). These are different kinds of observations, so I could not just melt the columns and have the variables in the same rows. That would violate **Principle 4**, which states that each table should only have one type of observational unit.

	Estimated refugee stock at mid-year (both sexes)				s)	Refugees as a percentage of the international migrant stock					Annual rate of change of the refugee stock					
1990	1995	2000	2005	2010	2015	1990	1995	2000	2005	2010	2015	1990-1995	1995-2000	2000-2005	2005-2010	2010-2015
10 000 01	1 17 000 040	10 021 000	13 210 133	10 010 100	19 9/11 4/14	IZIU	1111	J.2	0.0	0.5	0.0	-2.112	-3.04	-3,50	-0.00	2,00
2 014 56	4 3 609 670	2 997 256	2 361 229	2 046 917	1 954 224	2.4	3.9	2.9	2.0	1.5	1.4	9.39	-5.98	-7.28	-5.32	-2.09
16 822 00	7 14 244 170	12 830 547	10 915 504	13 323 838	17 623 250	24.0	20.8	18.5	14.7	14.9	17.1	-2.84	-2.33	-4.56	0.29	2.66

Figure 5 - The column headers in Table 6 (Excel version)

Therefore, I used the **df.iloc()** function to split Table 6 into three separate dataframes, one for each variable of interest. This way, I could melt the individual variables without having to worry about contrasting time units or accidentally doubling the rows by melting a dataset twice.

Step 3 – Merging Tables

Once I melted all the datasets individually, I realized that there was overlap between the columns. Each dataset had a country/major area/region column, notes, country code, and (usually) type of data. This means that there were single observational units stored across multiple tables, which violates **Principle** 5 of tidy data (observational units of the same kind should be stored in one dataframe). Therefore, I decided to merge the unique columns from Table 2, Table 3, Table 4 (see Note 1) and part of Table 6 (see Note 2) into Table 1, as these were all variables that were measured per year. In the end, I had a dataframe with the following columns (Figure 6):

	Sort\norder	Major area, region, country or area of destination	Notes	Country code	Type of data (a)	demographic	Internatonal migrant stock at mid- year	Total population at mid-year (in thousands)	as percentage	Percentage of international migrant stock	Estimated refugee stock at mid-year	Refugees as a percentage of the international migrant stock
0	1.0	WORLD	NaN	900.0	NaN	Both sexes - 1990	152563212	5.30967e+06	2.87331	NA	18836571	12.3467
1	2.0	Developed regions	(b)	901.0	NaN	Both sexes - 1990	82378628	1.14446e+06	7.19802	NA	2014564	2.44549

Figure 6 – Table 1 after combined with columns from Table 2, 3, 4 and 6

Note 1: Table 4 (measuring "Percentage of international migrant stock") only listed information for female migrants. This means that it had less rows than Table 1, which prevented me from simply merging the two. Therefore, I made a list of values to represent the Table 4 column, and used a **for-loop** to make it the same length as Table 1. For any values that would be in a "Both sexes" or "Male" row in Table 1, I filled the space with NA. Then I was able to add the list as a new column in Table 1, without worrying about length.

Note 2: Table 6 only listed information for both sexes. Therefore, when migrating the two columns from it ("Estimated refugee stock at mid-year" and "Refugees as a percentage of the international migrant stock") I used the same strategy as with Table 4, but filled any "Male" or "Female" row with NA.

Both Table 5 and part of Table 6 had variables that were measured in ranges of years. In line with Principle 5 again, I merged the two of those into Table 5, with columns as seen below (*Figure 7*). Again, Table 6 only had information for both sexes combined, so I again needed to fill in the empty cells when merging it into Table 5, which had information for all categories of sex.

	Sort\norder	Major area, region, country or area of destination	Notes	Country code	Type of data (a)	demographic	Annual rate of change of the migrant stock	Annual rate of change of the refugee stock
0	1.0	WORLD	NaN	900.0	NaN	Both Sexes - 1990- 1995	1.05186	-2.1235
1	2.0	Developed regions	(b)	901.0	NaN	Both Sexes - 1990- 1995	2.27585	9.38842

Figure 7 – Table 5 after combined with column from Table 6

Step 4 and 5 – Splitting columns with multiple variables

The original "Type of Data" column in Table 1 (and others) breaks **Principle 2** of tidy data, which states that only variable can be stored in a column. As can be seen from the "Notes" tab in the Excel file, the "Type of Data" column actually houses three variables. It describes the following information:

- Whether the data used to produce the estimates refer to *foreign-born* population (B) or *foreign citizens* (C)
- Whether the number of refugees was added to the estimate of international migrants (R)
- Whether the estimates for countries/areas with no data on international migrants were obtained by imputation (I)

So in both Table 1 and Table 5, I split this column into three separate ones that each represent a different variable. To do this, I created three empty columns called "Born or Citizen", "Refugees Added" and "Imputation". Then for each of these columns, I used a **for-loop** to run through the "Type of Data" column and pull out relevant information. For example, if a "B" was found in the "Type of Data" column, then the value of "Born" was added to the "Born or Citizen" column. Once all the columns were full, I was able to drop the original "Type of Data" column from the table. In the end, it looked like *Figure 8*.

	Sort\norder	Major area, region, country or area of destination	Notes	Country code	Born or Citizen	Refugees Added	Imputation	demographic	Annual rat change of migrant st
10	11.0	Djibouti	NaN	262.0	Born	Yes		Both Sexes - 1990-1995	-4.05
11	12.0	Eritrea	NaN	232.0			Yes	Both Sexes - 1990-1995	0.910
12	13.0	Ethiopia	NaN	231.0	Born	Yes		Both Sexes - 1990-1995	-7.17
13	14.0	Kenya	NaN	404.0	Born	Yes		Both Sexes - 1990-1995	14.6

Figure 8 - Table 5 with the "Type of data" split into three separate columns

After Steps 1 and 2, the "Demographic" column also violated Principle 2, as it had information both about the sex and year. Therefore, I created functions to pull the Sex and Year (or Year Range) out of the column and into their own respective columns. For the Sex, it pulled everything out of the cell minus the year and any extra spaces or dashes. For the Year, it pulled the last four characters in the cell (or last nine in the case of year ranges). Once the functions ran, I dropped the "Demographic" column, leaving tables that looked like *Figure 9*.

	Sort\norder	Major area, region, country or area of destination	Notes	Country code	Born or Citizen	Refugees Added	Imputation	Sex	Year	Internator migra stock mid-ye
0	1.0	WORLD	NaN	900.0		No	No	Both sexes	1990	1525632
1	2.0	Developed regions	(b)	901.0		No	No	Both sexes	1990	823786

Figure 9 - Table 1 with new Sex and Year columns

Step 6 – Splitting Datasets

Earlier I mentioned situations where one observational unit was spread across multiple tables. The opposite problem also exists in this dataset: there are multiple observational units within the tables (*Figure 10*). For example, measuring the variables based on the world is very different than measuring within a specific country. Having the various levels of country, major area, region, and more within one column violates **Principle 4**, where different kinds of observational units must be in separate tables.

Major area, region, country or area of destination
WORLD
Developed regions
Developing regions
Least developed countries
Less developed regions excluding least developed countries
Sub-Saharan Africa
Africa
Eastern Africa
Burundi
Comoros
Djibouti

Figure 10 - The column from the Excel version of the Tables

My first idea was to create a column in the table that specifies which major area and region each

country falls under, so pivoting the table and removing those rows. However, that would result in losing the information about each of those observations. Plus, the ANNEX table already explains the relationships between countries, regions, and major areas (as well as whether they are developed or not). I believe it would be redundant and repetitive to also include those columns in the main tables.

Instead, I decided to split the table into multiple smaller tables. This way I could keep the important information, but in a way that is tidier. To start the splitting process, I created a "Level" column to help me determine what kind of observational unit each row was. As a reference, I uploaded the ANNEX table as its own dataframe, as it outlines which areas count as a country, region, etc.

Just as in earlier steps, I used a self-defined function that used **for-loops** and conditionals to add to this column. I ran through each row in Table 1 – "Major area, region, country or area of destination", and assessed which column it fell under in the ANNEX. For example, if the cell is also in the "Country or area" column of the ANNEX, it is labelled as *Country* in the new "Level" column. For the unique categories (Ex. *WORLD*, *Developed regions, developing regions*, etc.), I left them blank, as I could pull them out just using their unique value. The result was a table with a "Level" column such as in *Figure 11*. The same process was completed for Table 5.

	Original Sort Order	Major area, region, country or area of destination	Level
0	1.0	WORLD	
1	2.0	Developed regions	Developed or not
2	3.0	Developing regions	Developed or not
3	4.0	Least developed countries	
4	5.0	Less developed regions excluding least develop	
5	6.0	Sub- Saharan Africa	
6	7.0	Africa	Major area

Figure 11 - Table 1 with the "Level" column

From there, I created smaller datasets for each kind of observation unit in the original datasets. For example, I created a "df1_world" dataset out of rows in Table 1 that provided information at the world level. While completing this task, I noticed that there were some columns that were very repetitive (ex. "Country Code") or irrelevant (ex. none of the Type of Data columns I made apply to the World observations). To save space and reduce repetition, I created an "Extra Annex" dataset that housed identifying information for the unique observations that were not listed in the original ANNEX table. Below shows the rows and columns included in the Extra Annex (Figure 12):

	Original Sort Order	Major area, region, country or area of destination	Notes	Country code
0	1.0	WORLD	NaN	900.0
1	2.0	Developed regions	(b)	901.0
2	3.0	Developing regions	(C)	902.0
3	4.0	Least developed countries	(d)	941.0
4	5.0	Less developed regions excluding least develop	NaN	934.0
5	6.0	Sub-Saharan Africa	(e)	947.0

Figure 12 - The "Extra Annex" made for the unique kinds of observations not included in the original ANNEX sheet

Now that the information was housed elsewhere, I could remove these columns from the individual datasets. I also renamed the "Major area..." column to reflect the kind of observational unit that was in each dataset. Here is an example of one of the smaller datasets, specifically the information for "WORLD" from Table 1 (*Figure 13*):

	Level	Sex	Year	Internatonal migrant stock at mid-year	Total population at mid-year (in thousands)	International migrant stock as percentage of total population	Percentage of international migrant stock	Estimated refugee stock at mid-year	Refugees as a percentage of the international migrant stock
0	WORLD	Both sexes	1990	152563212	5.30967e+06	2.87331	NA	18836571	12.3467
265	WORLD	Both sexes	1995	160801752	5.73512e+06	2.80381	NA	17853840	11.103
530	WORLD	Both sexes	2000	172703309	6.12662e+06	2.8189	NA	15827803	9.16474
795	WORLD	Both sexes	2005	191269100	6.51964e+06	2.93374	NA	13276733	6.94139
1060	WORLD	Both sexes	2010	221714243	6.92973e+06	3.19947	NA	15370755	6.93269

Figure 13 - "df1_world" - A table of only the "World" rows from Table 1, with the irrelevant or redundant columns removed

In the end, I ended up with the following smaller datasets:

Table 1 Version	Table 5 Version	Content		
df1_world	df5_world	All of the "World" rows		
df1_dev	df5_dev	Rows about either the "Developed Regions" or the "Developing Regions"		
df1_least_dev	df5_least_dev	All rows about the "Least developed countries"		
df1_less	df5_less	All rows about the "Less developed regions minus the least developed countries"		
df1_subsaharan	df5_subsaharn	All rows about "Sub-Saharan Africa"		
df1_countries	df5_countries	Any rows that have a country (as defined by the "Level" column)		
df1_regions	df1_regions	Any rows that have a region (as defined by the "Level" column)		
df1_major_areas	df5_major_areas	Any rows that have a major area (as defined by the "Level" column)		

Gabrielle Woodside 1009676780

Discussion

Through the process of cleaning this dataset, I discovered a few things:

First, as has been mentioned in our class, I can understand why people may choose to make their datasets untidy. In this case, I don't blame the creators of the UN Dataset for including all kinds of observations (countries, regions, worlds, etc.) in one table at a time, with the years and genders spread out through the columns. Visually, it is easier to view all the data together (compared to my solution which has sixteen different datasets).

However, I can also understand why the initial organization would make it difficult to analyze the information. For example, if someone wanted to run a test or create a visualization that showed the relationship between years and international migrant stock at mid-year, it would have been difficult for them to do this with the years spread out over columns. They would have needed to pull the years out of the headers anyway to use them in the analysis/visualization. Plus, by having the countries/regions/major areas in their own datasets, it will be easier to compare units within the dataset. You will only have to worry about comparing information of the same observational unit, rather than of different levels.

I do wonder though what other solutions exist, rather than completely splitting the observations as I did. As mentioned before, I ended up with sixteen different tables. I still think that it might not have worked to pivot the rows into columns, as I would have lost valuable information. However, it would not be easy to keep track of sixteen separate datasets when doing an analysis. So, if I were to continue moving forward with this project, I would try to find a way to make the information more manageable.

As well, I would try to make the *splitting* process more manageable. For each dataset I created, it required at least 3-4 lines of code. And it was usually the same code each time, with very small changes. I did attempt to create a function that could be applied to any table and pull out whichever information I chose (like I did when adding the "Level" columns or splitting the "Demographic" columns). Unfortunately, I kept receiving error messages during the process. So again, going forward I would keep trying to simplify the process and reduce the redundant code when splitting the datasets.

References

Aragon, C., Guha, S., Kogan, M., Muller, M., & Neff, G. (2022). *Human-Centered Data Science: An Introduction*. MIT Press.

Wickham, Hadley. 2014. "Tidy Data." Journal of Statistical Software 59 (1): 1–23. doi:10.18637/jss.v059.i10. – also accessible via https://cran.r-project.org/web/packages/tidyr/vignettes/tidy-data.html