X射线的吸收和特征谱测量

摘要:本实验测量了不同X射线在铝中的吸收系数,以特征谱界定了未知元素并验证了莫塞莱定律。

1 实验目的

- 1.了解 X 射线与物质的相互作用,及其在物质中的吸收规律。
- 2.测量不同能量的 X 射线在金属铝中的吸收系数。
- 3.了解元素的特征 X 射线能量与原子序数的关系。

2 实验原理

2.1 X射线的吸收

X 射线的吸收: X 射线是一种电磁波,它的波长在 100Å到 0.01Å之间。如图5-1 所示,当一束单色的 X 射线垂直入射到吸收体上,通过吸收体后,其强度将减弱,即 X 射线被物质吸收。这一过程可分为吸收和散射两部分: 1.光电吸收:入射 X 射线打出原子的内层电子,如 K 层电子,结果在 K 层出现一个空位,接着发生两种可能的过程: (1)当 L 层或高层电子迁移到 K 层空位上时,发出 KX 射线(对重元素发生几率较大); (2)放出俄歇电子(对轻元素发生几率较大)。2.散射:散射是电磁波与原子或分子中的电子发生作用。散射也分为两种。(1)波长不改变的散射,X 射线使原子中的电子发生振动,振动的电子向各方向辐射电磁波,其频率与 X 射线的频率相同,这种散射叫做汤姆逊散射; (2) 波长改变的散射,即康普顿散射。对于铝,当 X 射线的能量低于 0.04 MeV 时光电效应占优势,康普顿散射可以忽略。

图 5-1 X 射线通过物质时的示

如图 5-1 所示,设一厚度及成份均匀的吸收体,其厚度为 R,每立方厘米有N 个原子。若能量为 h v 的准直光 z 束,单位时间内垂直入射到吸收体单位面积上的光子数为 I0,那么通过厚度为 t 的物质后,透射出去的光子数为 I (t)并表示为:

$$I(t) = I_0 e^{-\mu t} \tag{1}$$

其中, μ 为该物质对某一能量 X 射线的线性吸收系数, $\mu=N\cdot\sigma$, σ 为截面,其单位为 $cm^2/atom$, μ 的量纲为 cm^{-1} 。对于原子序数为 Z 的原子,K 层的光电截面为 $\sigma_{ph}(cm^2/atom)$ 。

$$\sigma_{ph} = \varphi_0 Z^5 \alpha^4 2^{5/2} \cdot (m_0 c^2 / h v)^{7/2} \tag{2}$$

其中 $\varphi_0 = \frac{8}{3}\pi r_0^2$, $r_0 = e^2/m_0c^2$, $a = 2\pi e^2/hc \sim \frac{1}{137.04}$ 。 对于汤姆逊散射,每个电子的截面是 $\sigma_T(cm^2/electron)$,

$$\sigma_r = \frac{8\pi}{3} \left(\frac{e^2}{m_0 c^2}\right)^2 = 0.6653 \times 10^{-24} (cm^2/electron)$$
(3)

$$\mu_{ph} = N\sigma_{ph} \tag{4}$$

$$\mu_T = NZ\sigma_T \tag{5}$$

总的线性吸收系数 μ为两者之和,即

$$\mu = \mu_{ph} + \mu_T \tag{6}$$

质量吸收系数为 μ_m

$$\mu_m = \frac{\mu}{\rho}(cm^2/g) = \sigma \frac{N_A}{A} \tag{7}$$

所以(1)式又可表示为

$$I = I_0 e^{-\mu_m \rho t} \tag{8}$$

图 7-2 铅、铜、铝的质量吸收系数与波

(7)式中 N_A 是阿佛加德罗常数,A 是原子量。图 5-2 表示了金属铅、铜、铝的质量吸收系数随波长的变化。在能量低于 0.1MeV 时,随着能量减小截面显示出尖锐的突变。实验表明,吸收系数突然下降的波长(吸收限)与 K 系激发限的波长很接近。在长波长区还有 L 突变与 M 突变存在,由于 L 层和 M 层构造的复杂性,这些突变不如 K 突变那样明显,并且有几个最大值。

各种元素对不同波长入射 X 射线的吸收系数,由实验确定。元素的质量吸收系数与入射 X 射线能量之间的关系,可以用经验公式表示:

对 $E'>E>E_k$

$$\mu_m = C'_K \lambda^n (cm^2/g)
\mu_m = C'_K (12.3981/E)^n$$
(9)

对铝吸收体, E'为 6.20keV, E_K 为 1.5596keV, C'_K 为 16.16, n 为 2.7345。

2.2 X 射线的特征谱

原子可以通过核衰变过程转换及轨道电子俘获,也可以通过外部射线如 X 射线, β 射线(电子束)、 α 粒子或其他带电粒子与原子中电子相互作用产生内层电子空位,在电子跃迁时产生特征 X 射线。玻耳理论指出电子跃迁时放出的光子具有一定的波长 λ ,它的能量为:

$$hv = Z^2 \frac{2\pi^2 m_0 e^4}{h^2} \left(\frac{1}{n_1^2} - \frac{1}{n_1^2}\right) \tag{10}$$

$$hv = aZ^2 \frac{m_0 c^2}{2} \left(\frac{1}{n_1^2} - \frac{1}{n_1^2}\right) \tag{11}$$

其中 n1, n2 为电子终态、始态所处壳层的主量子数,对 K α 线系,n1=1, n2=2,对La线系,n1=2,n2=3,根据特征 X 射线的能量,可以辨认激发原子的原子序数。

莫塞莱在实验中发现,轻元素的原子序数与 K_{α} 及 L_{α} 系特征X射线的频率 $v^{1/2}$ 之间存在线性关系。 K_{α} 系的关系为:

$$v^{1/2} = k(Z - 1) (12)$$

 L_{α} 线系的关系表示为:

$$v^{1/2} = k(Z - 7.4) (13)$$

3 实验结果

3.1 不同能量的X射线在铝中的吸收系数

查得对应元素密度如下表所示

元素	Ti	Cr	Fe	Cu	Zn	Ge
密度 (g/cm^3)	4.51	7.20	7.87	8.96	7.14	6.24

Ti、Cr、Fe、Cu、Zn、Ge金属膜样品的特征 X 射线强度随片数变化如下表所示

膜片数	0	1	2	3	4	5	6	7
Ti每秒计数	9389	4695	2365	1180	604	303	152	76
Cr每秒计数	9515	6213	4019	2635	1771	1153	768	496
Fe每秒计数	9592	7338	5605	4349	3326	2523	1997	1518
Cu每秒计数	9455	8176	7076	6154	5249	4639	4042	3424
Zn每秒计数	9320	8383	7512	6601	5870	5307	4754	4184
Ge每秒计数	9237	8557	7950	7409	6616	6323	5846	5408

易知,对固定的X射线,光强比等于粒子数比,故可用粒子数进行拟合。考虑到式(8)是一个指数函数,取对数有

$$ln(I_0) - ln(I) = -\mu_m \rho t \tag{14}$$

其中,Ge的四片薄膜数据误差较大,我们绘图时去除。做拟合曲线如下

考虑到单片薄膜 $10\mu m$,利用表中的密度求得 μ_m 如下

元素	Ti	Cr	Fe	Cu	Zn	Ge
$\mu_m(cm^2/g)$	152.3	58.3	33.4	16.0	16.0	12.2

3.2 不同元素的特征X射线谱

Ti、Cr、Fe、Cu、Zn、Ge的X射线峰位如下表

元素	Ti	Cr	Fe	Cu	Zn	Ge
峰位	2755	3287	3925	4860	5169	6002
$K\alpha$	4.51	5.41	6.4	8.04	8.63	9.24

刻度如下图所示

结合三个未知元素的峰位分别为2970,4245,4607。代入刻度公式

$$y = 0.00153x + 0.41356 \tag{15}$$

求得 K_{α} 分别为4.96,6.91,7.46。可知三个元素分别为V,Co, Ni。

3.3 K_{α} 射线拟合

九个元素如下

元素	Ti	Cr	Fe	Cu	Zn	Ge	V	Со	Ni
$(h\nu)^{1/2}$	2.124	2.326	2.530	2.835	2.938	3.040	2.227	2.623	2.731

按最小二乘法作直线拟合如下

可以看出c'=0.1016,d=-1.112。能量采取eV作单位后,斜率扩张微 $10\sqrt{10}$ 倍, c=3.213 。与式(13)比较,发现吻合地还不错。

4 讨论

利用我们求出的 K_{α} 射线拟合公式 $(h\nu)^{1/2}=0.1016(Z-1.112)$,可以求得Ag的 K_{α} 射线的能量为21.74keV,大于²³⁸Pu源的 ULX 射线最大能量,所以应该是不可以激发的。

对于汤姆逊散射,每个电子的截面是 $\sigma_T = 0.6653 \times 10^{-24} (cm^2/electron)$ 。利用式(2),取铝的X射线能量1.49keV,可得铝原子 K 层的光电截面为 $2.98 \times 10^{-18} (cm^2/electron) = 2.98Mb$ 。铝原子光电截面远大于汤姆逊散射截面,所以本实验中汤姆逊散射截面不重要。

当光线以 θ 角斜射入金属膜(厚度为t)时,光线穿过 $\frac{t}{\sin\theta}$ 距离。即有

$$\frac{t}{\cos\theta}\mu = t\mu'$$

其中, μ '为实验测得量,将略大于真实值。发散角为 10° 时,真实值约为实验值的0.9848倍;发散角为 25° 时,真实值约为实验值的0.9063倍;