

Manipulating the Squeezing Properties of a Degenerate Parametric Amplifier with Coherent, Time-Delayed Feedback

Nikolett Német*, Scott Parkins

University of Auckland,

The Dodd-Walls Centre for Photonic and Quantum Technologies

CLEO 10/06/16

Dutline

- * Degenerate Parametric Amplifier
 - * Classical dynamics
 - * Quantum treatment below threshold
 - * Squeezing characteristics
- * DPA with time-delayed coherent feedback
 - * Model
 - * Squeezing spectrum
 - * Change in the dynamics
 - * Effects of loss

DPA dynamics & squeezing

- Classical dynamics:
 - * Saturation of pump: threshold behaviour
 - * Bifurcation of steady state solutions at $x = \frac{|\epsilon|}{\kappa} = 1$
- * Quantum mechanical behaviour^[1]:
 - * Parametric pump approximation $(\epsilon = |\epsilon|e^{i\theta})$

$$\widehat{H} = \hbar \Delta \widehat{a}^{\dagger} \widehat{a} + \frac{1}{2} i \hbar \left(\epsilon (\widehat{a}^{\dagger})^{2} + \epsilon^{*} (\widehat{a})^{2} \right)$$

DPA dynamics & squeezing

- Classical dynamics:
 - * Saturation of pump: threshold behaviour
 - * Bifurcation of steady state solutions at $x = \frac{|\epsilon|}{\kappa} = 1$
- * Quantum mechanical behaviour^[1]:

$$\widehat{H} = \hbar \Delta \widehat{a}^{\dagger} \widehat{a} + \frac{1}{2} i \hbar \left(\epsilon (\widehat{a}^{\dagger})^{2} + \epsilon^{*} (\widehat{a})^{2} \right) \frac{\widehat{b}_{out}(t)}{\widehat{b}_{in}(t)}$$

One-sided cavity quadrature variance:

$$\mathcal{X}_{out,\theta+\pi}(0) = \int \left\langle \widetilde{X}_{out,\theta'}(0), \widetilde{X}_{out,\theta'}(\nu') \right\rangle d\nu' = \frac{1}{4} \frac{(\kappa - |\epsilon|)^2}{(\kappa + |\epsilon|)^2}$$

* Symmetric cavity squeezing on resonance at threshold

$$\mathcal{X}_{out,\theta+\pi}(0) = \frac{1}{4} \frac{\kappa^2 + |\epsilon|^2}{(\kappa + |\epsilon|)^2}$$

DPA & time-delayed coherent feedback

- * Uncomplicated setup
 - * Time-delay τ , overall phase-shift ϕ , overall loss, decoherence: $L, \hat{\xi}$

DPA & time-delayed coherent feedback

- * Uncomplicated setup
 - * Time-delay τ , overall phase-shift ϕ , overall loss, decoherence: $L, \hat{\xi}$

* Equation of motion of the subharmonic mode:

$$\frac{d\hat{a}}{dt} = i[\hat{H}, \hat{a}(t)] - \kappa \hat{a}(t) - \sqrt{2\kappa} \hat{a}_{in}(t) - e^{i\phi} k \hat{a}(t - \tau)$$

$$\hat{H} = \hbar \Delta \hat{a}^{\dagger} \hat{a} + \frac{1}{2} i\hbar \left(\epsilon (\hat{a}^{\dagger})^{2} + \epsilon^{*} (\hat{a})^{2} \right)$$

$$\kappa = \kappa_{b} + \kappa_{c}, k = 2\sqrt{\kappa_{b}\kappa_{c}(1 - L)}$$

* Quadrature variance without delay:

$$\mathcal{X}_{out,\theta+\pi}(0) = \frac{1}{4} \frac{((\kappa + k\cos\phi) - |\epsilon|)^2}{((\kappa + k\cos\phi) + |\epsilon|)^2}$$

Emerging side-peaks

Enhanced squeezing on resonance

New setup with time-delay

- * Transcendental equations
- * Enhanced squeezing with feedback

New setup with time-delay

- * Transcendental equations
- * Enhanced squeezing with feedback
- * Pyragas-type feedback:

$$\frac{d\hat{a}}{dt} = i[\hat{H}, \hat{a}(t)] - (\kappa - k)\hat{a}(t) - \sqrt{2\kappa}\hat{a}_{in}(t) + k(\hat{a}(t-\tau) - \hat{a}(t))$$

- * Transcendental equations
- * Enhanced squeezing with feedback

$$\phi = 0, \kappa_b = \kappa_c = 0.5\kappa, |\epsilon| = 0.5\kappa,$$
 $\kappa \tau = 2.3, L = 0 \& 5\%$

- * Limit cycle is reached on threshold
- * Persistent oscillations with the characteristic frequency

$$k = 0, \phi = 0, \kappa \tau = 0$$
 $k = \kappa, \phi = 0, \kappa \tau = 1.57$

Effects of loss

- * With loss wider range of tunability
- * Quadrature variance at the critical point: $\mathcal{X}_{out,\theta'}(\nu_{s,\Delta}) = \frac{1}{4} \frac{L\kappa_c}{|\epsilon_{\Delta}|}$

Summary

- * Coherent feedback:
 - backaction-free way of enhancing useful quantum mechanical behaviours
- * Time-delay:
 - tunable changes in the stability range
- * Time-delayed one-loop setup with a DPA: enhanced squeezing
 - * On and off-resonant squeezing as well
 - * Result of the changing dynamics of the system
- * Loss in the feedback loop:
 - * Decreased squeezing
 - * BUT! wider range of tunability

Thank you for Your attention!

1 2 3 4 5 6 7 8 9

Thank you for Your attention!

Characteristic frequency range

 $0 \le \nu_s \le \sqrt{|\epsilon|(2\kappa - |\epsilon|)}, 0 \le |\epsilon| \le |\kappa + ke^{i\phi}|$

Detuning and quadrature angle

* Local oscillator phase:

$$\theta' = \theta - \pi + \arcsin\left(\frac{\Delta}{|\epsilon_{\Delta}|}\right)$$

$$|\epsilon|=rac{\kappa}{2}, \kappa_b=\kappa_c=rac{\kappa}{2},$$
 $\kappa au=2.418,$
 $v_{c,\Delta}=0.866\kappa,$
 $L=5\%,$
 $\Delta=0~(solid),$
 $0.1\kappa~(dashed)$
 $0.2\kappa~(dotted)$

$$k = \kappa, \phi = \pi/2$$

 ε_p : real (blue), imag (green)

ε: real (brown), imag (yellow)

Gravitational waves

* Adding π to the local oscillator phase in our case gives the required characteristics

- * Frequency of the best squeezing: changing with the local oscillator phase
- * With a π phase shift
 - * Lower frequencies: around $\theta' \theta = 0$
 - * Higher frequencies: around $\theta' \theta = \pi$

Coherent feedback with DPA

* Single DPA

- * Feedback via beam splitter^[1]
- * Enhanced, tunable squeezing at a given driving strength

$$\mathcal{X}_{out,\theta+\pi}(0) = \frac{1}{4} \frac{(\kappa(r) - |\epsilon|)^2}{(\kappa(r) + |\epsilon|)^2}$$

- * Modified threshold
- * Experiment^[2] agrees with theory^[1]
- * BUT! Performance is limited
 - * efficient $|\epsilon|$ range under 0.6κ
 - * losses through the "perfectly reflecting mirror"

Comparison with previous results [1,2]

Comparison with previous results [1,2]

^[1]PRA, **30**:1386 (1984), ^[2]IEEE Trans. Auto. Contr., **57**:2045 (2012)

New setup with time-delay

- * Transcendental equations
- * Enhanced squeezing with feedback
- * Properties:
 - * Best squeezing is on resonance
 - * Effects of time-delay:
 - * Narrower spectrum
 - * Emerging small side-peaks
 - * Perfect squeezing at stability change
 - * Condition: $\kappa k = |\epsilon_{\Delta}| = \sqrt{|\epsilon|^2 \Delta^2}$
 - * Local phase: $\theta' = \theta \pi + \arcsin\left(\frac{\Delta}{|\epsilon_{\Delta}|}\right)$
 - * Variance: $X_{out,\theta'}(v_{s,\Delta}) = \frac{1}{4} \frac{L\kappa_c}{|\epsilon_{\Delta}|}$

$$\phi = \pi, \kappa_b = 0.93\kappa, |\epsilon| = 0.49\kappa,$$
 $\kappa \tau = 3, L = 0 \& 5\%$

New setup with time-delay

- Transcendental equations
- * Enhanced squeezing with feedback

$$\phi = 0, \kappa_b = \kappa_c = 0.5\kappa, |\epsilon| = 0.5\kappa, \\ \kappa \tau = 2.3, L = 0 \& 5\%$$

* Properties:

- * Best squeezing is off-resonant
- * Perfect squeezing at stability change

* Local phase:
$$\theta' = \theta - \pi + \arcsin\left(\frac{\Delta}{|\epsilon_{\Delta}|}\right)$$

* Time-delay:
$$\tau_{s,n,\Delta} = \frac{\arccos\left(\frac{|\epsilon_{\Delta}| - \kappa}{k}\right) + 2n\pi}{\nu_{s,\Delta}}$$

* Frequency:
$$v_{s,\Delta} = \pm \sqrt{k^2 - (|\epsilon_{\Delta}| - \kappa)^2}$$

* Variance:
$$\mathcal{X}_{out,\theta'}(\nu_{s,\Delta}) = \frac{1}{4} \frac{L\kappa_c}{|\epsilon_{\Delta}|}$$

Classical analysis

- * Originally: pitchfork bifurcation
- * Time-delay: Changing stability of steady state solutions

Hopf Difurcation

Imaginary eigenvalue becomes the frequency of persistent oscillations

