Course Information

```
Logic Design Lab.
Fall 2019
```

Prof. Sungjoo Yoo

(yeonbin@snu.ac.kr)

TA. Hyunsu Kim

(gustnxodjs@gmail.com)

TA. Hyunyoung Jung

(gusdud1500@gmail.com)

Notification

For the report

No sample form

Put today's results and homework altogether and make it as one file

pdf

Submit your report on eTL assignment

Lab computer account

Use designated lab account on lab class

Contact

Check your e-mail address on eTL Feel free to contact TA

About lectures, labs, schedule, etc.

Contents

Combinational logic practice

- Lab 1 review
- Tactile switches
- LEDs
- Pull-up & pull-down resistors
- Practice: Half-adder implementation

Homework

Logic Gates

NOT		AND		NAND		OR			NOR			XOR			XNOR				
	Ā		AB		\overline{AB}		A + B		$\overline{A+B}$		$A \oplus B$		$\overline{A \oplus B}$						
<u>A</u> x		<u>A</u> <u>B</u> x		□		→		\rightarrow											
A	X	B	A	X	B	A	X	B	A	X	B	A	X	B	A	X	B	A	X 1
1	0	0	1	0	0	1	1	0	1	1	0	1	0	0	1	1	0	1	0
		1	0	0 1	1	0	0	1	0	1	1	0 1	0	1	0	1 0	1	0 1	0
	A 0	A X A X 0 1	$ \begin{array}{c cccc} \hline \overline{A} & & \\ \hline A & X & B \\ \hline 0 & 1 & 0 \end{array} $	$ \begin{array}{c cccc} \hline A & & & & & & & \\ \hline A & & & & & & \\ \hline A & & & & & & \\ \hline A & & & & & \\ \hline A & & & & & \\ \hline 0 & & & & \\ \hline 0 & & & & \\ \hline \end{array} $ $ \begin{array}{c cccc} \hline A & & & & \\ \hline B & & & \\ \hline 0 & & & \\ \hline 0 & & & \\ \hline \end{array} $	A X A X B A A X 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A AB A X B A X B 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												

Logic Gates on IC chip

Computer Simulation

Schematic Design

Hardware Description Language

```
module seq_test_module(data, clk, reset, q);
  input data, clk, reset;
  output q;
  reg q;

  always @ (posedge clk)
  begin
    if (reset == 1)
        q <=0;
    else
        q <= data;
  end
endmodule</pre>
```


Prototyping

Prototyping

Evaluation Circuit Board

You can build your own board of your logic design with logic gates and electronic parts.

This is SNU's logic design evaluation circuit board. You will make a computer with this for the term project.

You can construct testing the circuit using the bread board, before soldering or wrapping.

LED SERIES CIRCUIT

SYSRECON.COM

LED PARALLEL CIRCUIT

Tactile switches

Tactile Switch

Circuit Diagram

Usage

LEDs

- LEDs emit colored light when passed through by forward current
- To protect LED from excessive current flow, using an appropriate resistor(around 3~400Ω) is

Pull-up & pull-down resistors

Pull-up Resistor

Pull-down Resistor

Pull-up & pull-down resistors

Pull-up Resistor

Switch off

Pull-down Resistor

Pull-up & pull-down resistors

Pull-up Resistor

Pull-down Resistor

15

Switch off

Pull-up & pull-down resistors

Pull-Up Resistor

Pull-Down Resistor

Practice: Half-adder implementation

Let's implement half-adder on breadboard.

Inp	out	Output					
Α	В	Sum	Carry				
0	0	0	0				
0	1	1	0				
1	0	1	0				
1	1	0	1				

Homework

- 1. Draw a circuit schematic for the below formula using ONLY NOR gates and NOT gates. You can draw it by hand or using any of a computer program.
 - Y = A(B+CD)
- 2. Y = AB + ABC + A'B + AB'C
 - (1) Make a truth table
 - (2) Minimize # of gates
 - (3) Draw a circuit schematic

Homework

- 3. Implement simple combinational logic circuits **1-1** and **1-2** using breadboard. (Take pictures to prove it's working)
- 3-1. Implement a full adder using 2-input NAND gates only
- 3-2. Implement LM1 & RM1 using NOR gates only
 - 4-bit input, 2-bit LM1 output, 2-bit RM1 output

```
Position (2-bit): 00 01 10 11 Input (4-bit):
```

- LM1 (RM1) outputs position of leftmost (rightmost) 1 in input
- E.g. LM1(1010) = 00, RM1(1010) = 10 LM1(0100) = 01, RM1(0100) = 01LM1(0000) = XX, RM1(0000) = XX (don't care)

Homework

- Write a report
 - Either in Korean or in English
 - Must include the result and discussion of the practice
 - # of pages doesn't matter
 - Due: 23 Sep., 7:00 pm (Before class, on eTL)