西南交大《电路分析一》、《电路分析二》考研全套视频,真题、考点、典型题、命题规律独家视频讲解! 详见: 网学天地 (www.e-studysky.com); 咨询QQ: 2696670126

§ 5-1 运算放大器的电路模型

多端元件、有源元件。

一、运算放大器的电路符号

a、b为输入端, c为输出端

$$u_0 = Au_i = A(u_b - u_a)$$

A—放大倍数

b端接地,则 $u_0 = -Au_a$

a为倒向输入端。

a端接地,则 $u_0 = Au_b$ b为非倒向输入端。

 $\boldsymbol{\mathcal{C}}$

 \mathcal{U}_0

西南交大《电路分析一》、《电路分析二》考研全套视频,真题、考点、典型题、命题规律独家视频讲解! 详见: 网学天地(www.e-studysky.com); 咨询QQ: 2696670126

二、运放的特性

运放有两个工作区: 放大区和饱和区。

西南交通大学

西南交大《电路分析一》、《电路分析二》考研全套视频,真题、考点、典型题、命题规律独家视频讲解! 详见: 网学天地(www.e-studysky.com); 咨询QQ: 2696670126

运放工作在放大区时: 其等效的电路模型为

运放为单方向的差动放大器。

受控源为
$$A(u_b - u_a) = Au_i$$

 R_i 一输入电阻,很大

 R_0 — 输出电阻,较小

西南交大《电路分析一》、《电路分析二》考研全套视频,真题、考点、典型题、命题规律独家视频讲解! 详见: 网学天地(www.e-studysky.com),咨询QQ: 2696670126

当
$$A=\infty$$
 $R_i=\infty$ $R_0=0$ 时,

称为理想运放。

"开环"应用、"闭环"应用。

§ 5-2 具有理想运放的电路分析

理想运放的特征:

- ① 倒向端和非倒向端的输入电流均为零,称为"虚断"。
- ② 倒向端和非倒向端为等位点, 称为"虚短"。

例5-1: 求 u_0 与 u_i 之间的关系

解:
$$u_0 = R_2 i_{R2} + R_1 i_{R1}$$

结点①处 $i_{R2} = i_{R1}$

$$u_0 = (R_1 + R_2)i_{R1}$$

$$u_i = u_1 = R_1 i_{R1}$$

得
$$i_{R1} = \frac{1}{R_1} u_1$$

$$u_0 = \frac{R_1 + R_2}{R_1} u$$

$$\frac{R_1 + R_2}{R_1} \ge 1$$

为非倒向放大器(又称比例器)。

西南交大《电路分析一》、《电路分析二》考研全套视频,真题、考点、典型题、命题规律独家视频讲解! 详见: 网学天地(www.e-studysky.com); 咨询QQ: 2696670126

称电压跟随器。前后段的隔离作用。

比较下列两图:

例5—2: 加法器

西南交大《电路分析一》、《电路分析二》考研全套视频,真题、考点、典型题、命题规律独家视频讲解! ——————详见: 网学天地(www.e-studysky.com); 咨询QQ: 2696670126

微分电路

积分电路

例5—3: 求
$$\frac{u_0}{u_i}$$

解:结点电压法。但运放的输出端不能列KCL方程。

结点① $u_1 = u_i$

结点②
$$\frac{u_2 - u_1}{R_1} + \frac{u_2 - u_4}{R_5} + \frac{u_2 - u_0}{R_4} = 0$$

结点③
$$\frac{u_3 - u_4}{R_5} + \frac{u_3 - u_1}{R_2} + \frac{u_3 - u_0}{R_3} = 0$$

利用"虚短"列辅助方程:

$$u_2 = 0$$
 $u_3 = 0$

$$u_0(\frac{1}{R_4} - \frac{1}{R_3}) = (\frac{1}{R_2} - \frac{1}{R_1})u_i$$

$$\frac{u_0}{u_i} = \frac{G_2 - G_1}{G_4 - G_3}$$

