Esercizio 1

Si consideri l'equazione quadratica $x^2+2px-q=0$ con $p=10^5$ e $q=10^{-i}$ i=0,...,10

Si stabilisca se il problema relativo al calcolo della soluzione x== $-p + \sqrt{p^2 + q}$ risulta essere ben condizionato per tutti i valori di q assegnati

 $x==-p+\sqrt{p^2+q}$ può essere considerato come l'output di una funzione di q, essendo p fisso.

$$f(q) = -p + \sqrt{p^2 + q}$$

Ricordiamo la formula dell'indice di condizionamento del problema di valutare una funzione in un punto q:

$$K \approx \left| \frac{f'(q)}{f(q)} q \right|$$

Nel nostro caso:

$$f'(q) = \frac{1}{2\sqrt{p^2 + q}}$$

Studiamo come si comporta l'indice di condizionamento per $q \to 0$

$$\frac{f'(q)}{f(q)} \ q = \frac{1}{2\sqrt{p^2 + q}} \frac{1}{-p + \sqrt{p^2 + q}} q$$

Moltiplicando numeratore e denominatore per $\frac{p+\sqrt{p^2+q}}{p+\sqrt{p^2+q}}$

$$\frac{f'(q)}{f(q)} q = \frac{1}{2\sqrt{p^2 + q}} \frac{1}{-p + \sqrt{p^2 + q}} \frac{p + \sqrt{p^2 + q}}{p + \sqrt{p^2 + q}} q =$$

$$= \frac{1}{2\sqrt{p^2 + q}} \frac{1}{-p + \sqrt{p^2 + q}} \frac{p + \sqrt{p^2 + q}}{p + \sqrt{p^2 + q}} q$$

$$= \frac{1}{2\sqrt{p^2 + q}} \frac{p + \sqrt{p^2 + q}}{p^2 + q - p^2} q = \frac{1}{2\sqrt{p^2 + q}} \frac{p + \sqrt{p^2 + q}}{q} q =$$

$$= \frac{p + \sqrt{p^2 + q}}{2\sqrt{p^2 + q}}$$

$$K \approx \left| \frac{p + \sqrt{p^2 + q}}{2\sqrt{p^2 + q}} \right|$$

$$\lim_{q \to 0} \left| \frac{p + \sqrt{p^2 + q}}{2\sqrt{p^2 + q}} \right| = \frac{p + \sqrt{p^2}}{2\sqrt{p^2}} = \frac{p + p}{2p} = 1$$

Il problema della valutazione della funzione

$$f(q) = -p + \sqrt{p^2 + q}$$

è **ben condizionato**, in quanto $K \to 1$ quando $q \to 0$