Augmenting NMT Architecture with Linguistic Features

Part of the EAMT 2024 Tutorial Linguistically Motivated Neural Machine Translation

Hour Kaing https://hour.github.io

Agenda

- Linguistic features, tools and datasets
- Augmented input feature NMT
- Tree encoder
- Syntax-aware representation
- Syntax-aware self-attention

Agenda

- Linguistic features, tools and datasets
- Augmented input feature NMT
- Tree encoder
- Syntax-aware representation
- Syntax-aware self-attention

Lemma

A lemma is the canonical form, or dictionary form of a set of word forms. [Wikipedia]

For examples

- In English, break, breaks, broke, broken and breaking have the same lemma as break.
- In French, aller, vais, va, allait, and ira have the same lemma as aller (go).

- Part-Of-Speech (POS)
 - A POS is a word class or grammatical category of words that have similar grammatical properties. [Wikipedia]

For examples

- Noun: home, house, and television.
- Verb : walk, happen, or to be.
- Universal POS tags used by the Universal Dependency project.
 - ADJ: adjective
 - ADP: adposition
 - ADV: adverb
 - <u>AUX</u>: auxiliary
 - **CCONJ**: coordinating conjunction
 - **DET**: determiner
 - <u>INTJ</u>: interjection
 - NOUN: noun
 - NUM: numeral

- <u>PART</u>: particle
- PRON: pronoun
- PROPN: proper noun
- **PUNCT**: punctuation
- **SCONJ**: subordinating conjunction
- SYM: symbol
- **VERB**: verb
- X: other

- More specific grammatical properties or morphological features
 - Pronominal type (PronType)
 - Personal/possessive pronoun (Prs): he, she, his, her, ...
 - Article (Art) : a, an, the
 - Tense (Tense)
 - Past (Past) : went, gone, ...
 - Present/non-past tense (Pre): goes, going, ...

Lexical features*	Inflectional features*				
	Nominal*	Verbal*			
PronType	<u>Gender</u>	<u>VerbForm</u>			
<u>NumType</u>	<u>Animacy</u>	<u>Mood</u>			
Poss	NounClass	<u>Tense</u>			
Reflex	Number	<u>Aspect</u>			
<u>Foreign</u>	<u>Case</u>	<u>Voice</u>			
Abbr	<u>Definite</u>	<u>Evident</u>			
<u>Typo</u>	<u>Deixis</u>	<u>Polarity</u>			
	<u>DeixisRef</u>	Person			
	<u>Degree</u>	<u>Polite</u>			
		Clusivity			

- Dependency grammars
 - The grammars are based on the dependency relation between words.
 - A dependency is a directed link from a head word to a dependent word.

Example generated by Stanza

- Constituency/phrase structure grammars
 - The grammars are based on the constituency relation between words
 - A constituent is a word or a group of words that function as a single unit within a hierarchical structure. [Wikipedia]
- Constituency is a hypergraph problem
 - An edge can join any number of vertices

Analysis Tools

Lemma, POS, morphological features, and dependency

- Stanza : https://stanfordnlp.github.io/stanza
 - Support 66 languages
- SpaCy : https://spacy.io
 - Support 75+ languages
- UDPipe : https://lindat.mff.cuni.cz/services/udpipe
 - Support 100+ languages

Analysis Tools

Constituency parsing tools

- Stanza
 - Support 10 languages
- Berkeley parser : https://github.com/nikitakit/self-attentive-parser
 - Support 11 languages
- SuPar : https://github.com/yzhangcs/parser
 - Support 11 languages

Linguistic Datasets

- Universal Dependencies : https://universaldependencies.org
 - Features: lemma, POS, morphological features, dependency.
 - Contains 200 treebanks in over 100 languages
- Consitunecy Treebanks
 - Penn Treebank : https://catalog.ldc.upenn.edu
 - English, Chinese, Korean, and Arabic.
 - SPMRL2013/2014: https://www.spmrl.org/spmrl2014-sharedtask.html
 - Arabic, Basque, English, French, German, Hebrew, Hungarian, Korean, Polish, and Swedish
 - Asian Language Treebank : https://www2.nict.go.jp/astrec-att/member/mutiyama/ALT
 - English, Japanese, and Myanmar.

Agenda

- Linguistic features, tools and datasets
- Augmented input feature NMT
 - Input features embedding
 - Multiple and mixed encoder
 - Syntax distance
- Tree encoder
- Syntax-aware representation
- Syntax-aware self-attention

Motivations

Word form ambiguity

- 1. We thought a win like this might be close. adjective
- 2. Wir dachten, dass ein solcher Sieg nah sein könnte.
- 3. *Wir dachten, ein Sieg wie dieser könnte schließen.

Solution: give a POS tag as a hint to disambiguate the word that shares the same form across word types.

Word order discrepancy

- 4. Gefährlich ist die Route aber dennoch . dangerous is the route but still .
- 5. However the route is dangerous.
- 6. *Dangerous is the route, however.

4. in German have a verb-second (V2) order. But English is generally SVO.

Solution: give a syntactic annotation as a hint to guide the model which words to attend and translate first.

e.g., where is root, nsubj, etc.

Other Features

- Lemma
 - Share information between words with the same base form

- Morphological features
 - Like POS tags but with more detail properties

- Word boundary or subword tags
 - Give models clues which symbols to attend to, and when to forget the information

Examples of Features

words	Le:	oni:	das	beg:	ged	in	the	arena	
lemmas	Leonidas	Leonidas	Leonidas	beg	beg	in	the	arena	
subword tags	В	I	E	В	E	O	O	O	О
POS	NNP	NNP	NNP	VBD	VBD	IN	DT	NN	
dep	nsubj	nsubj	nsubj	root	root	prep	det	pobj	root

How To Integrate Into NMT?

Features Relevance

- Some features are more relevant to the translation than the others
- Intuition: weighting the features would give better translation

		German→English				English→German				
system	ppl↓	BLE	EU 🕇	CHR	F3 ↑	ppl↓	BLE	EU 🕇 🔠	CHR	F3 ↑
	dev	test15	test16	test15	test16	dev	test15	test16	test15	test16
baseline	47.3	27.9	31.4	54.0	58.0	54.9	23.0	27.8	52.6	56.0
all features	46.2	28.7*	32.9*	54.8	58.5	52.9	23.8*	28.4*	53.9	57.2
	' I					' I .	l	'		
lemmas	47.1	28.4	32.3*	54.6	58.7	53.4	23.8*	28.5*	53.7	56.7
subword tags	47.3	27.7	31.5	54.0	58.1	54.7	23.6*	28.1	53.2	56.4
morph. features	47.1	28.2	32.4*	54.3	58.4	_	_	-	_	-
POS tags	46.9	28.1	32.4*	54.1	57.8	53.2	24.0*	28.9*	53.3	56.8
dependency labels	46.9	28.1	31.8*	54.2	58.3	54.0	23.4*	28.0	53.1	56.5

Features Relevance Weighting

Figure 1: Self relevance of a feature.

Features Relevance

Extremly low-resource languages

		en-bg	en-fi	en-hi	en-id	en-khm	en-ms	en-my	en-vi
	Base	4.97	25.59	18.54	27.93	22.88	32.40	13.93	24.99
Dagalina madala	Concat	5.56	23.75	20.69	27.99	23.53	32.92	14.92	26.50
Baseline models	Add	4.66	22.02	15.45	24.78	21.65	30.45	11.86	22.78
	Linear	4.89	24.26	20.65	27.17	23.42	32.64	13.79	25.36
Duanagad madala	Self-rel	6.10	26.26	21.27	30.41	24.76	34.71	16.53	27.74
Proposed models	Word-rel	6.25	26.01	21.63	26.53	25.13	33.20	15.62	27.66

Table 3: BLEU scores of the models for all reference language pairs.

Features in Other NMT Settings

- Features in pretraining stage of BART [Chakrabarty+22]
 - Both content tokens/spans and features are masked.
 - Improvement was observed in an extremely low-resource settings
- Features in multilingual settings [Chakrabarty+23]
 - Language ID and dummy features are important in multilingual setting.
 - Dummy features
 - Each sentence have two representation, w/ dummy or w/ linguistic features

Grammar Relations for Augmented Input Features

- Grammars (dependency or constituency) are relations between two or multiple words instead grammatical properties for individual words.
- Approaches to integrate the grammars more effectively
 - Multiple encoders
 - Mixed encoder
 - Transformation to syntactic distance

Multiple Encoders

Linearized tree

	Example Sentence
sequential	history is a great teacher.
lexicalized parse	(ROOT (S (NP (NN history)) (VP (VBZ is) (NP (DT a) (JJ great) (NN teacher))) ())
unlexicalized parse	(ROOT (S (NP (NN)) (VP (VBZ) (NP (DT) (JJ) (NN))) ())
target sentence	die Geschichte ist ein großartiger Lehrmeister.

Multiple-Encoder NMT

- Length-agnostic between tree and input
- RNN NMT with hierarchical attention

Length of Source Sentence

Multiple Encoders

- Use only the output vectors of terminal nodes
- len(terminal nodes) == len(sentences)

Mixed Encoder

- Encode the linear lexicalized tree
- Take only output vectors of words for decoding

#	System	#Params	Time	MT06	MT02	MT03	MT04	MT05	All
1	cdec	-	-	33.4	34.8	33.0	35.7	32.1	34.2
2	RNNSearch	60.6M	153m	34.0	36.9	33.7	37.0	34.1	35.6
3	Parallel RNN	+1.1M	+9m	34.8†	37.8‡	34.2	38.3‡	34.6	36.6‡
4	Hierarchical RNN	+1.2M	+9m	35.2‡	37.2	34.7†	38.7‡	34.7†	36.7‡
5	Mixed RNN	+0	+40m	35.6‡	37.7†	34.9 ‡	38.6 ‡	35.5 ‡	37.0 ‡

Mixed Encoder

- Data augmentation
 - Combine source parses and sentences
 - Shuffle so that two-sentence pairs are not seen together during traning

```
(_{ROOT} (_{S} (_{NP} you) (_{VP} have not (_{VP} been (_{VP} elected))))))))) \rightarrow no ha sido elegido. you have not been elected. \rightarrow no ha sido elegido.
```

Table 2: Example of English→Spanish training data for the mixed encoder system.

EN→*	base	mixed enc.
LV	26.5	28.1 (+1.6)
LT	23.5	24.6 (+1.1)
DA	39.5	40.1 (+0.6)

System	newstest2017	newstest2018
baseline	9.6	8.8
mixed enc.	9.6 (==)	9.3 (+0.5)

Small scale

Large scale

NMT with Syntactic Distance

Syntax distances

- Constituency
 - d_S(w_i) is the height of the lowest common ancestor between w_i and w_{i+1}
 - \blacksquare d_G(w_i) is the number of common ancestors between w_i and w_{i+1}
 - $d_R(w_i) = d_G(w_i) d_G(w_{i-1})$ if i > 1 else $d_G(w_i)$
- Dependency
 - $\mathbf{d}_{D}(\mathbf{w}_{i}) = \mathbf{i} \mathbf{h}(\mathbf{i})$
 - h(i) is the index of the head of w_i

/		VP	P	
NP			NP	
PRP	VBZ	VBG	NN	
She	enjoys	playing	tennis	•
4	2	1	3	5
1	3	4	2	0
1	2	1	-2	-2

- Integration
 - Input features
 - Positional encoding

Agenda

- Linguistic features, tools and datasets
- Augmented input feature NMT
- Tree encoder
- Syntax-aware representation
- Syntax-aware self-attention

Tree Encoder

- Linguistic distance languages
 - Different syntax construction
 - Different lexical units such as words/phrase
 - E.g., if '緑茶' only align with 'green' and 'tea',
 - Then 'a cup of' will align with 'null'.

Figure 2: Attentional Encoder-Decoder model.

Figure 3: Proposed model: Tree-to-sequence attentional NMT model.

Tree-LSTM

$$egin{align} oldsymbol{h}_k^{(phr)} &= f_{tree}(oldsymbol{h}_k^l,oldsymbol{h}_k^r), \ oldsymbol{s}_1 &= g_{tree}(oldsymbol{h}_n,oldsymbol{h}_{root}^{(phr)}), \ \end{align*}$$

Context vector

$$oldsymbol{d}_j = \sum_{i=1}^n oldsymbol{lpha}_j(i) oldsymbol{h}_i + \sum_{i=n+1}^{2n-1} oldsymbol{lpha}_j(i) oldsymbol{h}_i^{(phr)}.$$

Bidirectional Tree Encoder

- The node representation is based on its nodes only
- And contains no information from the higher nodes

Agenda

- Linguistic features, tools and datasets
- Augmented input feature NMT
- Tree encoder
- Syntax-aware representation
- Syntax-aware self-attention

Syntax-aware representation

- Generated linguistic features could be irrelevant or errors.
- Linguistic features are always generated alongside the translation.
- Implicit integration
 - Syntax-aware representation injection
 - Multi-task learning

Syntax-Aware Representation Injection

- First stage: pretrained linguistic model
- Second stage: inject the linguistic encoder output into the input embedding

Multi-Task Learning

- Training a model to perform two tasks jointly
 - Translation
 - Linguistic prediction
- Task adaptation
 - Train on both tasks
 - Finetune on the main task

Agenda

- Linguistic features, tools and datasets
- Augmented input feature NMT
- Tree encoder
- Syntax-aware representation
- Syntax-aware self-attention

Multi-Granularity Self-Attention

3 steps

- Phrase partition
 - N-gram or constituents
- Phrase composition
 - CNN, RNN, or selft-attention network
- Phrase interaction
 - LSTM or tree-like LSTM

(b) Multi-Granularity Self-Attention

Dependency-Aware Self-Attention

- Guide the attention weights using the dependency distance
- Great improvement for long sentences

- (1) Emanuele Bugliarello, et al., Enhancing Machine Translation with Dependency-Aware Self-Attention, 2020
- (2) Dongqi Pu, et al., Passing Parser Uncertainty to the Transformer: Labeled Dependency Distributions for NMT, 2020

Summary

	Augmented Input	Tree Encoder	Representation	Self Attention
Morphological features	✓		✓	
Grammar relations	~	✓	✓	✓

- Linguistic features are usually useful for low-resource setting.
- Grammar relation tend to beneficial long sentences.
- However, the quality of the linguistic features is crucial.
 - This may hurt the translation performance
 - Soft/implicit integration such as data augment or representation learning, would reduce the constraint.

References

- Abhisek Chakrabarty, et al., FeatureBART: Feature Based Sequence-to-Sequence Pre-Training for Low-Resource NMT, 2022
- Abhisek Chakrabarty, et al., Improving Low-Resource NMT through Relevance Based Linguistic Features Incorporation, 2020
- Abhisek Chakrabarty, et al., Low-resource Multilingual Neural Translation Using Linguistic Feature-based Relevance Mechanisms, 2023
- Akiko Eriguchi, et al., Tree-to-Sequence Attentional Neural Machine Translation, 2016
- Anna Currey, et al., Incorporating Source Syntax into Transformer-Based Neural Machine Translation, 2019
- Anna Currey, et al., Multi-Source Syntactic Neural Machine Translation, 2018
- Bei Li, et al., Does Multi-Encoder Help? A Case Study on Context-Aware Neural Machine Translation, 2020
- Chunpeng Ma, et al., Improving Neural Machine Translation with Neural Syntactic Distance, 2019
- Dongqi Pu, et al., Passing Parser Uncertainty to the Transformer: Labeled Dependency Distributions for NMT, 2020
- Emanuele Bugliarello, et al., Enhancing Machine Translation with Dependency-Aware Self-Attention, 2020
- Huadong Chen, et al., Improved Neural Machine Translation with a Syntax-Aware Encoder and Decoder, 2017
- Jan Niehues, et al., Exploiting Linguistic Resources for Neural Machine Translation Using Multi-task Learning, 2017
- Jie Hao, et al., Multi-Granularity Self-Attention for Neural Machine Translation, 2019
- Jindřich Libovický, et al., Attention Strategies for Multi-Source Sequence-to-Sequence Learning, 2017
- Junhui Li, et al., Modeling Source Syntax for Neural Machine Translation, 2017
- Meishan Zhang, et al., Syntax-Enhanced Neural Machine Translation with Syntax-Aware Word Representations, 2019
- Rico Sennrich et al., Linguistic Input Features Improve Neural Machine Translation, 2016