where C is a $(p+q) \times (n+1)$ matrix C and $d \in \mathbb{R}^{p+q}$ is the vector given by

$$C = \begin{pmatrix} -u_1^\top & 1 \\ \vdots & \vdots \\ -u_p^\top & 1 \\ v_1^\top & -1 \\ \vdots & \vdots \\ v_q^\top & -1 \end{pmatrix}, \quad d = \begin{pmatrix} -1 \\ \vdots \\ -1 \end{pmatrix} = -\mathbf{1}_{p+q}.$$

If we let X be the $n \times (p+q)$ matrix given by

$$X = \begin{pmatrix} -u_1 & \cdots & -u_p & v_1 & \cdots & v_q \end{pmatrix},$$

then

$$C = \begin{pmatrix} X^{\top} & \mathbf{1}_p \\ -\mathbf{1}_q \end{pmatrix}$$

and so

$$C^\top = \begin{pmatrix} X \\ \mathbf{1}_p^\top & -\mathbf{1}_q^\top \end{pmatrix}.$$

Step 2: Write the objective function in matrix form.

The objective function is given by

$$J(w,b) = \frac{1}{2} \begin{pmatrix} w^{\top} & b \end{pmatrix} \begin{pmatrix} I_n & 0_n \\ 0_n^{\top} & 0 \end{pmatrix} \begin{pmatrix} w \\ b \end{pmatrix}.$$

Note that the corresponding matrix is symmetric positive semidefinite, but it is not invertible. Thus the function J is convex but not strictly convex.

Step 3: Write the Lagrangian in matrix form.

As in Example 50.7, we obtain the Lagrangian

$$L(w, b, \lambda, \mu) = \frac{1}{2} \begin{pmatrix} w^{\top} & b \end{pmatrix} \begin{pmatrix} I_n & 0_n \\ 0_n^{\top} & 0 \end{pmatrix} \begin{pmatrix} w \\ b \end{pmatrix} - \begin{pmatrix} w^{\top} & b \end{pmatrix} \begin{pmatrix} 0_{n+1} - C^{\top} \begin{pmatrix} \lambda \\ \mu \end{pmatrix} \end{pmatrix} + \begin{pmatrix} \lambda^{\top} & \mu^{\top} \end{pmatrix} \mathbf{1}_{p+q},$$

that is,

$$L(w, b, \lambda, \mu) = \frac{1}{2} \begin{pmatrix} w^{\top} & b \end{pmatrix} \begin{pmatrix} I_n & 0_n \\ 0_n^{\top} & 0 \end{pmatrix} \begin{pmatrix} w \\ b \end{pmatrix} + \begin{pmatrix} w^{\top} & b \end{pmatrix} \begin{pmatrix} X \begin{pmatrix} \lambda \\ \mu \end{pmatrix} \\ \mathbf{1}_p^{\top} \lambda & -\mathbf{1}_q^{\top} \mu \end{pmatrix} + \begin{pmatrix} \lambda^{\top} & \mu^{\top} \end{pmatrix} \mathbf{1}_{p+q}.$$

Step 4: Find the dual function $G(\lambda, \mu)$.

In order to find the dual function $G(\lambda, \mu)$, we need to minimize $L(w, b, \lambda, \mu)$ with respect to w and b and for this, since the objective function J is convex and since \mathbb{R}^{n+1} is convex