

Andrea Lesavourey

al880@uowmail.edu.au

(+61) 401 193 085

Education

PhD Student

October 2017 - present, University of Wollongong, Australia.

• Lattices for a post-quantum cryptography, supervised by Pr Willy Susilo and Dr Thomas Plantard

Master 1 in Cryptology

2015 - 2016, University of Bordeaux, France

- Master Research thesis supervised by Christophe Negre and Thomas
 Plantard: Randomization in RNS and Leak Resistant Arithmetic
 Abstract: The Leak Resistant Arithmetic proposed to randomize an
 exponentiation procedure in RNS via Montgomerys multiplication.
 We study a modification of this approach by not clearing the mask
 during the procedure in order to save two Montgomerys multiplications at each loop and improve the level of randomization.
- Teaching followed: Programming (C), Arithmetic, Complexity Theory, Information Theory, Elliptic Curves (use of Pari/GP), Cryptology, Algorithmic Calculus (use of SageMaths), Introduction to Diophantine Approximations

Master Degree in Pure Mathematics

2015, University of Bordeaux, France

- Master Thesis supervised by Pierre Parent : *Théorème de Chabauty* et version effective de Coleman
 - <u>Abstract</u>: Faltings proved in 1983 that every curve of genus strictly greater than 1 has only a finite number of rational points. Sadly, his proof cannot be made efficient. But Coleman improved the intermediate result of Chabauty (40s), which use some padic argument, to obtain a good bound for the number of rational points in special cases.
- Teaching followed: Algebraic Geometry, Introduction to p-adic numbers, Computational Number Theory (use of Pari/GP), Group cohomology, Geometry

2012, University of Bordeaux, France

• Master Thesis supervised by Valentin Féray : Formalisation de la jonglerie et concepts mathématiques liés

<u>Abstract</u>: We study siteswaps, which can be defined as one way to juggle and can be described mathematically. In particular, we use different representations of these objects and study them from a combinatorial point of view.

Master Degree in Teaching of Mathematics

2012 - 2014, University of Bordeaux, France

• Agrégation de Mathématiques, option Probabilités et Statistiques

Bachelor Degree in Pure Mathematics

2008 - 2011, University of Bordeaux, France

Experience

Tutoring in Computer Science

Autumn Session 2020, University of Wollongong Knowledge and Information Engineering (ISIT219)

Tutoring in Computer Science

Autumn Session 2019, University of Wollongong Problem Solving (CSIT113)

Highschool Mathematics Teacher

Septembre 2016 - June 2017, Lyce Malherbe of Caen, France Year 10 and Year 11 with specialisation in science

Internship supervised by Christophe Negre and Thomas Plantard

June 2016 - July 2016, Laboratoire DALI, UPVD Work on Hermite Normal Form and Side Channel Analysis

Tutoring in Mathematics

2015-2016, University of Bordeaux General Mathematics for Bachelor students (50 hours)

Tutoring in Mathematics

2014-2015, University of Bordeaux General Mathematics for Bachelor students (35 hours)

Preparatory School Examiner

2014-2015, Camille Jullian Highschool, Bordeaux Oral Examiner for students training to enter Engineering Schools Linear Algebra, Real Analysis (60 hours)

Private tutoring

From secondary school to bachelor students

Publications

Journals

 Andrea Lesavourey, Thomas Plantard, and Willy Susilo. "Short Principal Ideal Problem in multicubic fields". *Journal of Mathematical Cryptology* 14.1 (2020): 359-392. https://doi.org/10.1515/jmc-2019-0028

International Conferences

- Andrea Lesavourey, Thomas Plantard, Willy Susilo: *On ideal lattices in multicubic fields*, Accepted to Number-Theoretic Methods in Cryptology 2019, Paris, France, June 24-27, 2019.
- Andrea Lesavourey, Christophe Negre, Thomas Plantard: *Efficient Leak Resistant Modular Exponentiation in RNS*. ARITH 2017: 156-163.
- Lesavourey, Christophe Negre, Thomas Plantard: Efficient Randomized Regular Modular Exponentiation using Combined Montgomery and Barrett Multiplications. SECRYPT 2016: 368-375

References

University of Wollongong

Dr Thomas Plantard

Senior Research Fellow School of ComputinFg and Information Technology thomaspl@uow.edu.au

Pr Willy Susilo

Professor and Head of School School of Computing and Information Technology wsusilol@uow.edu.au