codebook

Letitia Downen
July 22, 2017

Getting and Cleaning Data: Project Codebook

Study Design

Experiment Conducted by: Jorge L Reyes-Ortiz, Davide Anguita, Alessandro Ghio, Luca Oneta webaddress: www.smartlab.ws

The experiments for this data were carried out with a group of 30 volunteers within an age bracket of 19-48 years. Each person performed six activities; walking, walking upstairs, walking downstairs, sitting, standing, laying. The performed these activities while wearing a Samsung SII on their waist. Using the phones embedded accelerometer and gyroscope, researchers captured 3-axial linear acceleration and 3-axial angular velocity at a constant rate of 50 Hz. The experiment was video recorded to label the data manually. The obtained dataset was randomly partitioned into 2 sets, where 70% of volunteers were selected for generating training data and 30% to test the data.

The sensor signals(accelerometer and gyroscope) were pre-processed by applying noise filters and then sampled in fixed-width sliding windos of 2.56 sec and 50% overlap. The sensor acceleration signal, which has gravitational and body motion components, was separated using a Butterworth low-pass filter into body acceleration and gravity. The gravitational force is assumed to have only low frequency components, therefore a filter with 0.3 Hz cutoff frequency was used. From each window, a vector of features was obtained by calculating variables form the time and frequency domain. The variable collected are listed below.

For each record it is provided:

- *triaxal acceleration from the accelerometer(total acceleration) and the estimated body acceleration
- *triaxial angular velocity from the gyroscope
- *activity label
- *And identifier of the subject who carried out the experiment.

Variable Codebook

Activityid, identifies the activity being completed by each subject:

- * WALKING: subject was walking
- * WALKING_UPSTAIRS: subject was walking upstairs
- * WALKING_DOWNSTAIRS: subject was walking downstairs
- * SITTING: subject was sitting
- * STANDING: subject was standing
- * LAYING: subject was laying

subjectid, identifies the particular subject being evaluated: [1:180]

Average of measurement Variables

All measurements are floating-point values, normalized and bounded within [-1,1].

• Time-domain signals (variables prefixed by t), resulting from the capture of accelerometer and gyroscope raw signals.

- Frequency-domain signals (variables prefixed by f), resulting from the application of a Fast Fourier Transform (FFT) to some of the time-domain signals.
- Three axial signals denoted with x,y, and z
- Average body acceleration:
 - tbodyaccmeanx
 - tbodyaccmeany
 - tbodyaccmeanz
 - fbodyaccmeanx
 - fbodyaccmeany
 - fbodyaccmeanz
- Standard deviation of body acceleration:
 - tbodyaccstdx
 - tbodyaccstdy
 - tbodyaccstdz
 - fbodyaccstdx
 - fbodyaccstdy
 - fbodyaccstdz
- Average time-domain gravity acceleration:
 - tgravityaccmeanx
 - tgravityaccmeany
 - tgravityaccmeanz
- Standard deviation of the time-domain gravity acceleration:
 - tgravityaccstdx
 - tgravityaccstdy
 - tgravityaccstdz
- Average time-domain and frequency-domain body acceleration jerk:
 - tbodyaccjerkmeanx
 - tbodyaccjerkmeany
 - tbodyaccjerkmeanz
 - fbodyaccjerkmeanx
 - fbodyaccjerkmeany
 - fbodyaccjerkmeanz
- Standard deviation of the time-domain and frequency-domain body acceleration jerk:
 - tbodyaccjerkstdx
 - tbodyaccjerkstdy
 - tbodyaccjerkstdz
 - fbodyaccjerkstdx
 - fbodyaccjerkstdy
 - fbodyaccjerkstdz
- Average time-domain body angular velocity:
 - tbodygyromeanx
 - tbodygyromeany
 - tbodygyromeanz
 - fbodygyromeanx
 - fbodygyromeany
 - fbodygyromeanz

- Standard deviation of the time-domain body angular velocity:
 - tbodygyrostdx
 - tbodygyrostdy
 - tbodygyrostdz
 - fbodygyrostdx
 - fbodygyrostdy
 - fbodygyrostdz
- Average time-domain body angular velocity jerk:
 - tbodygyrojerkmeanx
 - tbodygyrojerkmeany
 - tbodygyrojerkmeanz
- Standard deviation of the time-domain body angular velocity jerk:
 - tbodygyrojerkstdx
 - tbodygyrojerkstdy
 - tbodygyrojerkstdz
- Average and standard deviation of the time-domain magnitude of body acceleration:
 - tbodyaccmagmean
 - tbodyaccmagstd
- Average and standard deviation of the time-domain magnitude of gravity acceleration:
 - tgravityaccmagmean
 - tgravityaccmagstd
- Average and standard deviation of the time-domain magnitude of body acceleration jerk:
 - tbodyaccjerkmagmean
 - tbodyaccjerkmagstd
- Average and standard deviation of the time-domain magnitude of body angular velocity:
 - tbodygyromagmean
 - tbodygyromagstd
- Average and standard deviation of the time-domain magnitude of body angular velocity jerk:
 - tbodygyrojerkmagmean
 - tbodygyrojerkmagstd

Frequency-domain only labels signals

- Weighted average of the frequency components of the frequency-domain body acceleration:
 - fbodyaccmeanfreqx
 - fbodyaccmeanfreqy
 - $\ {\tt fbodyaccmeanfreqz}$
- Weighted average of the frequency components of the frequency-domain body acceleration jerk:
 - fbodyaccjerkmeanfreqx
 - fbodyaccjerkmeanfreqy
 - fbodyaccjerkmeanfregz
- Weighted average of the frequency components of the frequency-domain body angular velocity:
 - fbodygyromeanfreqx
 - fbodygyromeanfreqy

- fbodygyromeanfreqz
- Average, standard deviation, and weighted average of the frequency components of the frequency-domain magnitude of body acceleration:
 - fbodyaccmagmean
 - fbodyaccmagstd
 - fbodyaccmagmeanfreq
- Average, standard deviation, and weighted average of the frequency components of the frequency-domain magnitude of body acceleration jerk (derivation of the acceleration in time):
 - fbodyaccjerkmagmean
 - fbodyaccjerkmagstd
 - fbodyaccjerkmagmeanfreq
- Average, standard deviation, and weighted average of the frequency components of the frequency-domain magnitude of body angular velocity:
 - fbodygyromagmean
 - fbodygyromagstd
 - fbodygyromagmeanfreq
- Average, standard deviation, and weighted average of the frequency components of the frequency-domain magnitude of body angular velocity jerk:
 - fbodygyrojerkmagmean
 - fbodygyrojerkmagstd
 - fbodygyrojerkmagmeanfreq