Série3 de Série Chronologique2:

Processus VAR

EX1:

Soit le processus bivarié suivant

$$\begin{pmatrix} Y_{1,t} \\ Y_{2,t} \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 0.7 & 0.4 \\ 0.2 & 0.3 \end{pmatrix} \begin{pmatrix} Y_{1,t-1} \\ Y_{2,t-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_{1,t} \\ \varepsilon_{2,t} \end{pmatrix}.$$

- 1) Ce processus est-il stationnaire? (Donner la forme compacte).
- 2) Calculer l'espérance de ce processus.
- 3) Donner la forme $VMA(\infty)$. Calculer les 4 premiers coefficients.

EX2:

I) En prenant:

$$X_t = \varepsilon_t, \ Y_t = \varepsilon_{t-1} + \eta_t \text{ et } Z_t = \eta_{t-1},$$

où ε_t et η_t sont des BB indépendants.

Montrer que la relation de causalité n'est pas transitive.

II) En prenant:

$$X_t = Z_{t-1} = \varepsilon_t \text{ et } Y_t = \eta_t,$$

où ε_t et η_t sont des BB indépendants.

Montrer que la relation de non causalité n'est pas transitive.

EX3:

Soit le VAR(1) suivant

$$Y_t = \begin{pmatrix} Y_{1,t} \\ Y_{2,t} \\ Y_{3,t} \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} + \begin{pmatrix} 0.5 & 0 & 0 \\ 0.1 & 0.1 & 0.3 \\ 0 & 0.2 & 0.3 \end{pmatrix} \begin{pmatrix} Y_{1,t-1} \\ Y_{2,t-1} \\ Y_{3,t-1} \end{pmatrix} + \varepsilon_t.$$

$$\operatorname{avec}\ \varepsilon_t \sim BB\left(0,\Sigma\right)\ \text{où}\ \Sigma = \begin{pmatrix} 2.25 & 0 & 0 \\ 0 & 1 & 0.5 \\ 0 & 0.5 & 0.74 \end{pmatrix}.$$

- 1) Ce processus est-il stationnaire?
- 2) Donner la forme $VMA\left(\infty\right)$.
- 3) Sachant que $Y_t = \begin{pmatrix} -6 \\ 3 \\ 5 \end{pmatrix}$, calculer les prévisions de Y_{t+1} et Y_{t+2} et les matrices d'erreur

moyenne quadratique (EMQ) correspondantes. En déduire les intervalles de confiances à 95% pour $Y_{1,t+h}$, $Y_{2,t+h}$ et $Y_{3,t+h}$ pour h=1,2.

1

4) En posant
$$X_t = \begin{pmatrix} Y_{2,t} \\ Y_{3,t} \end{pmatrix}$$
 et $Z_t = Y_{1,t}$, X_t cause t-il Z_t ? Z_t cause t-il X_t ?

EX4:

Soit le processus

$$\left\{ \begin{array}{l} Y_{1,t} = 1 + 0.5Y_{1,t-1} + 0.1Y_{2,t-1} + \varepsilon_{1,t} \\ Y_{2,t} = 4 + 0.4Y_{1,t-1} + 0.5Y_{2,t-1} + \varepsilon_{2,t} \end{array} \right.$$

où
$$E\left(\varepsilon_{t}\varepsilon_{t}'\right) = \begin{pmatrix} 0.09 & 0\\ 0 & 0.04 \end{pmatrix}$$
.

- 1) Ce processus est-il stationnaire?
- 2) Donner la prévision en fonction de Y_t et l'erreur prévisionnelle à l'horizon h.
- 3) Calculer $E(Y_{1,t+h} E(Y_{1,t+h}/I_t))^2$, en déduire la fraction ou la contribution due à $\varepsilon_{1,t}$ et $\varepsilon_{2,t}$ pour h = 1, ..., 4. (Faire la décomposition de la variance pour $Y_{1,t}$).

EX5:

Soit le processus

$$\begin{cases} Y_{1,t} = 7 + 1.2Y_{1,t-1} - 0.5Y_{2,t-1} + \varepsilon_{1,t} \\ Y_{2,t} = 2 + 0.6Y_{1,t-1} + 0.3Y_{2,t-1} + \varepsilon_{2,t} \end{cases}$$

où
$$E\left(\varepsilon_{t}\varepsilon_{t}'\right)=\begin{pmatrix}1&0.5\\0.5&1\end{pmatrix}$$
.

- 1) Ce processus est-il stationnaire?
- 2) Donner la forme $VMA(\infty)$. Prendre les 4 premiers coefficients.
- 3) Faire le graphe de l'ARI pour $Y_{1,t}$ et $Y_{2,t}$.
- 4) Donner la prévision et l'erreur prévisionnelle, $\forall h.$
- 5) Faire la décomposition de la variance de l'erreur prévisionnelle pour $Y_{1,t}$ et $Y_{2,t}$.