Odds, Sigmoid, Logit, 그리고 Softmax

소프트웨어 꼰대 강의

노기섭 교수 (kafa46@cju.ac.kr)

딥러닝 구조에서 항상 나타나는 것들...

A probability concept – odds

Odds

어학사전

odds

영어사전 단어·숙어 1-5 / 189건

odds 미국식 [aːdz] • 영국식 [vdz] • ★
1. [명사] (어떤 일이 있을) 공산[가능성] **승률?**2. [명사] 역경, 곤란
3. [명사] 배당률

비율을 구하는 가장 간단한 방법 🗲 나눈다!

- 1보다 크면: 분자가 크다
- 1보다 작으면: 분모가 크다
- 1이면: 분자/분모가 같다 (같은 비율)

Odds: 실패와 성공의 비율을 설명하는 값

→ 실패 비율 대비 성공 비율로 정의

어떤 이벤트를 n 번 시행 했을 때 p 번 성공했다면, odds? Let's deal with an example w/ definition in the next slide

$$odds = \frac{성공 횟수}{실패 횟수}$$

간단하게, Odds 용어 정리

Odds (자료 출처: https://en.wikipedia.org/wiki/Odds)

- In probability theory, odds provide a measure of the likelihood of a particular outcome.
- They are calculated as the ratio of the number of events that produce that outcome to the number that do not.
- Bernoulli trials (exactly two outcomes: success or fail)

$$odds = \frac{\text{\#events of the outcome}}{\text{\#events of the opposit outcome}}$$

 $odds = \frac{p}{1-p}$, where p is probability of the outcome

Example

- 게임 10회: 8번 이기고(success), 2번 진 경우

게임에서 이기는 odds:

→
$$odds = \frac{\#events\ of\ the\ outcome}{\#events\ of\ the\ opposit\ outcome} = \frac{8}{2} = 4$$

- 확률로 표시하면...

• 이길 확률
$$p = \frac{8}{10} = 0.8$$
, 질 확률 $(1-p) = 1 - 0.8 = 0.2$
$$odds = \frac{p}{1-p} = \frac{0.8}{0.2} = 4$$

- Odds를 알면 확률을 구할 수 있다!

$$\frac{p}{1-p} = 4$$

$$p = 4 - 4p$$

$$5p = 4$$

$$p = 0.8$$

Odds example - 확률 관점에서 바라보기

Odds example

- Event: a student tries to get up before 11 AM.
 (어떤 학생이 오전 11시 전에 일어나는 도전)
- Experiment: she tries 15 days (그녀는 15일을 도전)!
 - · Success (성공): 10회
 - · Fail (실패): 15 10 = 5회

- 확률로 표현하면,
 - · Success (성공): $\frac{10}{15}$
 - · Fail (실패): $\frac{5}{15}$

$$odds = \frac{\text{성공 확률}}{\text{실패확률}} = \frac{10/15}{5/15} = \frac{10}{5} = 2$$

3번 실행하면 2번은 성공, 1번은 실패한다는 의미 (같은 이야기 → 15번 실행하면 10번 성공, 5번 실패)

Odds의 성공과 실패 판단 기준은 1

Odds 문제점...

■ Odds 값의 범위

- Success 횟수가 fail 보다 많을 때: (1, ∞)
- Success 횟수가 fail 보다 적을 때: (0, 1)

■ Odds 문제점

- 비율을 적용하다 보니 1보다 클 경우의 scale과 1보다 작을 경우의 scale이 다르다.
- 모든 Odds 값에 대한 대칭적 해석이 필요 (직관적으로 이해하기 어려움)

■ 해결책

- Odds 값에 로그(log)를 취해준다.
- 다음 슬라이드로...

Odds를 좀 더 쉽게 해석할 수 있는 방법은?

Odds

$$odds = \frac{ 성공 확률 (p)}{ 실패확률 (1-p)} = \frac{p}{1-p}$$

확률의 공리: 특정 사건에 대한 모든 확률의 합은 1

- Odds는 판단 기준이 1 → 직관적으로 쉽게 0 을 기준으로 판단하고 싶다!
- Odds는 계산이 불편한 곱셈/나눈셈의 결합 → 더하기/빼기로 표현하고 싶다!
- 해결책 → odds에 로그를 취하자!
- Logit (Log + Odds): odds 값에 밑(base)을 자연상수 e 를 취한 것

$$logit = \ln odds = \ln \frac{p}{1 - p}$$

물리적 의미: [0, 1] 사이의 확률값을 [-∞, + ∞]로 변환

- 0보다 큰 값은 성공 확률이 높은 것
- 0보다 작은 값은 실패 확률이 높은 것

Review on Deep Neural Networks

In deep neural network,

How do we interpret the values of neurons in the final layer?

Deep Neural Network와 Logit의 관계????

활성함수(Activation Function)을 통과하면서 성공과 실패의 비율이 누적된 값으로 해석

→ 해당 Layer에 존재하는 각각의 Neureon이 갖는 값은 Logit으로 해석하자!

Okay! But....

- Neuron 값이 클수록 성공 확률이 높다는 의미는 이해할 수 있다.
- 불만
 - 여전히 해석하기 힘들다!
 - 숫자의 범위가 [-∞, +∞] 이므로 상대적 비교가 힘들다 ㅠㅠ
- 해결책: logit으로부터 확률값을 추출해 내자!

Logit 으로부터 확률값 $oldsymbol{p}$ 뽑아내기

$$L = \ln \frac{p}{1 - p}$$

$$y = \ln x$$
$$x = e^y \iff e^y = x$$

로그 함수의 정의를 그대로 적용

$$e^L = \frac{p}{1 - p}$$

$$e^{L}(1-p) = p$$

$$e^{L} - e^{L}p = p$$

$$e^{L} = p + e^{L}p$$

$$e^{L} = p(1 + e^{L})$$

양변을 $(1 + e^L)$ 로 나눠주기

$$\frac{e^L}{1+e^L} = p \quad \to \quad p = \frac{e^L}{1+e^L}$$

오른쪽 분자, 분모를 e^L 로 나눠주기

$$p = \frac{\frac{e^{L}}{e^{L}}}{\frac{1+e^{L}}{e^{L}}} = \frac{1}{e^{-L}+1} \rightarrow p = \frac{1}{e^{-L}+1}$$

Logit으로부터 뽑아낸 확률 p 의 정체!

$$p = \frac{e^L}{1+e^L} = \frac{1}{e^{-L}+1}$$

[0, 1] 사이의 확률로 변환!

어디서 많이 본 함수 형태?

Logit에서 뽑아낸 확률은 정확히 시그모이드 함수의 정의와 일치

ightharpoonup 시그모이드(Sigmoid, σ)는 Logit 함수와 역함수 관계!

$$y = \sigma(x)$$
$$x = logit(y)$$

Logit은 왜 필요한가?

Logistic Regression

- Classification Task → 이진 분류의 경우 0과 1로 판정해야 함
- 단순 선형 함수로 해석이 어려움 → 입력의 값이 커지면 더 난감해짐 (해석이 더 어려움)

- 확률의 범위 [0, 1] → odds 범위 [0, +∞] → Logit 범위 [-∞, +∞] 순으로 변환한 것으로 해석

$$p=wx+b$$

확률범위 $[0,1]$ vs. 뉴런값 $[-\infty,+\infty]$
 $odds(p)=wx+b$
 $Odds$ 범위 $[0,+\infty]$ vs. 뉴런값 $[-\infty,+\infty]$
 $\ln(odds(p))=wx+b$
Logit 범위 $[-\infty,+\infty]$ vs. 뉴런값 $[-\infty,+\infty]$

각 Neuron 값을 Logit으로 해석

최종 Layer에서 판단할때는 다시 확률로 전환하면 간단히 해결! (Odds 역함수인 Sigmoid함수로 간단히 계산)

이진 분류 문제에서 Logit & Sigmoid

Multi-class Classification Task?

교수님.... 이진 분류는 알겠는데.... 분류해야 할 class가 여러개면 어떻하나요?

소프트맥스를 사용하면 쉽게 해결할 수 있습니다!

소프트맥스 (Softmax) 함수

■ 어떤 분포에서 각각의 비중을 구하려면?

- 어떤 분포가 [3, 5, 2]과 같다고 가정하면
- 각 값이 갖는 비중은 어떻게 구할까?

소프트맥스 (Softmax) 함수

앞 슬라이드를 일반화하면?

- 어떤 값의 분포를 일반화 하여 표현하면?

[
$$x_1$$
, x_2 , \cdots , x_n]

- 각 값이 갖는 비중은 구하면?

$$\left| \frac{x_1}{x_1 + x_2 + \dots + x_n}, \frac{x_2}{x_1 + x_2 + \dots + x_n}, \dots, \frac{x_n}{x_1 + x_2 + \dots + x_n} \right|$$

$$\frac{x_2}{x_1 + x_2 + \dots + x_n}, \qquad \dots,$$

$$\frac{x_n}{x_1 + x_2 + \dots + x_n}$$

- 지저분한 더하기를 일일이 쓰기 귀찮음 → 수학기호 ∑ 로 간단하게

$$\left[\frac{x_1}{\sum_{i=1}^n x_i}, \frac{x_2}{\sum_{i=1}^n x_i}, \dots, \frac{x_n}{\sum_{i=1}^n x_i}\right]$$

- 좀 더 간단하게 표현하고,
- 일단 softmax로 생각하자

$$Softmax(x_i) = \frac{x_i}{\sum_{i=1}^{n} x_i}, i = 1, 2, ..., n$$

소프트맥스 (Softmax) 함수

■ 앞 슬라이드를 신경망으로 일반화하면?

- Logit 값의 분포로 생각

$$[L_1, L_2, \cdots, L_n] \rightarrow [x_1, x_2, \cdots, x_n]$$

- Logit 값을 이용해 지수함수 통과

[
$$L_1$$
, L_2 , \cdots , L_n]

$$\rightarrow [x_1, x_2, \dots, x_n]$$

$$\rightarrow$$
 $[e^{x_1}, e^{x_2}, \dots, e^{x_n}]$

- 최종 Softmax함수

$$Softmax(x_i) = \frac{e^{x_i}}{\sum_{j=1}^{n} e^{x_j}}, i = 1, 2, ..., n$$

Logistic Regression with Softmax

수고하셨습니다 ..^^..