附加疑 1

1.
$$i^{n}_{x} \omega_{k} = e^{i\frac{2k\pi}{m}} \xi_{k} = e^{i\frac{(2k+1)\pi}{m}} K=0,1,...,m-1$$
.

记用: (1)
$$\chi^{m}_{-1} = \prod_{k=0}^{m-1} (\chi - \omega_{k}), \quad \chi^{m}_{+1} = \prod_{k=0}^{m-1} (\chi - \frac{\xi_{k}}{\xi_{k}}).$$

(2)
$$\cos \frac{\pi}{2n+1} \cos \frac{2\pi}{2n+1} \cdots \cos \frac{n\pi}{2n+1} = \frac{1}{2^n}$$
.

(花水: 令
$$\omega = e^{i\frac{\pi}{2n+1}}, x^{2n} + x^{2n+1} + x + 1 = (x - \omega)(x - \omega^2) - \cdots (x - \omega^{2n})$$
)

2. 已知一个对应
$$C \xrightarrow{\Phi} M_{2}(\mathbb{R})$$
 定义为 $\Phi(a+bi) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$.
治定 $\Phi(\Xi_{1}\Xi_{2}) = \Phi(\Xi_{1}) \cdot \Phi(\Xi_{2})$

$$[P]$$
.①是否存在映射 Ψ . $M_n(\mathbb{C}) \longrightarrow M_{2n}(\mathbb{R})$ 定义为 $A \cdot B \cdot A \cdot B \cdot A$

$$\Psi(A+iB) = \begin{pmatrix} A & -B \\ B & A \end{pmatrix}, A, B \in M_n(\mathbb{R})$$

$$\underline{\mathbb{I}} \quad \underline{\mathbb{I}} \quad (M_1 M_2) = \underline{\mathbb{I}} (M_1) \cdot \underline{\mathbb{I}} (M_2) \qquad M_1, M_2 \in M_n(\mathbb{C})?$$

$$\mathcal{Z} \longmapsto f^{\mathcal{Z}_0}(\mathcal{Z}) = \mathcal{Z}^0 \cdot \mathcal{Z}$$

 $f_{Z_0}(1) = Z_0 \cdot 1 = a_0 + b_0 i$ — $\rightarrow E_{1,i}$ 下坐标($a_0 \choose b_0$) $f_{Z_0}(i) = Z_0 \cdot i = a_0 i - b_0$ — $\rightarrow E_{1,i}$ 下坐标(a_0)
总结: $\forall Z_0 \in \mathbb{C}$, Z_0 可看作 C 上线性变换,在基 1, i 不 完毕 = $a_0 - b_0 \choose b_0 a_0$

按此原理,考虑 $F = Q(\sqrt{z}) = \{a + b\sqrt{z} \mid a, b \in Q\}$ 试定义 - 个对应: $F \xrightarrow{\Phi} M_z(Q)$,满足 $\Phi(ab) = \Phi(ab) = \Phi(ab)$

③ 四元数集H² $\{a+bi+cj+dk \mid a,b,c,d\in\mathbb{R}\}$ 其中 $i^2=j^2=k^2=-1$, ij=k=-ji, jk=-kj=i, ki=-ik=j. i,j,k的乘法该军了两四元数乘法:

(ai+bii+Cij+dik) (az+bzi+Czj+dzk)

 $= (a_1 a_2 - b_1 b_2 - C_1 C_2 - d_1 d_2) + (a_1 b_2 + a_2 b_1 + C_1 d_2 - C_2 d_1) i$ $+ (a_1 C_2 + a_2 C_1 + b_2 d_1 - b_1 d_2) j + (a_1 d_2 + a_2 d_1 + b_1 C_2 - b_2 C_1) k.$

按上述原理,能否定义一个对应 H ---- M4(R)?

3. (Partial fraction decomposition)

一般地,设 α , $b + 0 \in \mathbb{N}$, $b = P_i^{n_i} \dots P_s^{n_s}$ P_i 素数,则存在自然数c, $a_{ij} < P_i$

$$\frac{a}{b} = c + \sum_{i=1}^{s} \frac{a_{ij}}{j^{-1}} \frac{a_{ij}}{p_i^{s}}$$

我们类比上述结果到多项式.

证明: (1) 读 f(x), $g(x) \in F(x)$ 且 deg f(x) < deg g(x) 证为 $g(x) = g_1(x) g_2(x)$, 且 $(g_1(x), g_2(x)) = 1$

$$\frac{f(x)}{g(x)} = \frac{f_i(x)}{g_i(x)} + \frac{f_i(x)}{g_i(x)}$$

$$\frac{f}{g_i(x)} = \frac{f_i(x)}{g_i(x)} + \frac{f_i(x)}{g_i(x)}$$

(2) iR f(x), $g(x)^0 \in F[x]$, $k > 1 \in IN$, deg f(x) < kdeg g(x), IR g(x) = F[x]

$$\frac{f(x)}{g^{k}(x)} = \frac{h_{k}(x)}{g^{k}(x)} + \frac{f_{k-1}(x)}{g^{k-1}(x)}$$

deg $h_k(x) < \text{deg } g(x)$ # $h_k(x) = 0$ deg $f_k(x) < \text{deg } g_{k}^{k+1}$ # $f_{b-1}(x) = 0$

(3) 没 f(x), $g(x) \in F(x)$, $f(x) \neq 0$, $g(x) \neq 0$. 设 $g(x) = \prod_{i=1}^{k} P_i(x)$, $P_i(x)$,..., $P_k(x)$ 是否不相同的不可约多项式, $P_i(x)$ i=1,..., k.

则存在(唯一)多项式 b(x)和 aij(x)满足 deg aij(x) < deg Pi(x) 或 aij(x)=0

$$\frac{A}{g(x)} = b(x) + \sum_{i=1}^{k} \frac{n_i}{j=1} \frac{a_{ij}}{P_i^j}$$

注:① 量如 可迭代使用(2)继续拆分.

(2)
$$|x| \int \frac{\chi^4 + \chi^3 + \chi^2 + 1}{\chi^2 + \chi - 2} dx$$

$$= \int (\chi^2 + 3 + \frac{-3\chi + 7}{(\chi + 2)(\chi - 1)}) dx = \int (\chi^2 + 3 + \frac{-13/3}{(\chi + 2)} + \frac{4/3}{(\chi - 1)}) dx$$