Chapter 4 Convex optimization problems

Last update on 2022-03-23 10:04

Table of contents

Optimization problems

Convex optimization

Linear optimization

Quadratic optimization

Geometric programming

Generalized inequality constraints

Vector optimization

Optimization problems

Convex optimization

Linear optimization

Quadratic optimization

Geometric programming

Generalized inequality constraints

Vector optimization

Optimization problem in standard form

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \cdots, m$
 $h_i(x) = 0, \quad i = 1, \cdots, p$
 $x \in \mathbb{R}^n$ optimization variable
 $f_0 \colon \mathbb{R}^n \to \mathbb{R}$ objective function (cost function)
 $f_i \colon \mathbb{R}^n \to \mathbb{R}$ inequality constraint functions
 $h_i \colon \mathbb{R}^n \to \mathbb{R}$ equality constraint functions

Optimal value

$$p^* = \inf \left\{ f_0(x) \middle| \begin{array}{l} f_i(x) \le 0 \text{ for } 1 \le i \le m \\ h_i(x) = 0 \text{ for } 1 \le i \le p \end{array} \right\}$$

- $p^* = \infty$ if problem is infeasible (no x satisfies the constraints)
- $ho^* = -\infty$ if problem is unbounded below

(Locally) optimal points

- \triangleright x is **feasible** if $x \in \text{dom } f_0$ and it satisfies the constraints
- \triangleright x is **optimal** if it is feasible and $f_0(x) = p^*$; set of optimal points X_{opt}
- \triangleright x is **locally optimal** if there exists R > 0 such that x is optimal for

minimize
$$f_0(z)$$
 subject to $f_i(z) \leq 0, \qquad i=1,\cdots,m$ $h_i(z)=0, \qquad i=1,\cdots,p$ $\|z-x\|_2 \leq R$

Examples

$$f_0(x)=1/x$$
 dom $f_0=\mathbb{R}_{++}$ $p^*=0$ no optimal point $f_0(x)=-\log x$ dom $f_0=\mathbb{R}_{++}$ $p^*=-\infty$ no optimal point $f_0(x)=x\log x$ dom $f_0=\mathbb{R}_{++}$ $p^*=-1/e$ $x=1/e$ is optimal $f_0(x)=x^3-3x$ $p^*=-\infty$ $x=1$ is locally optimal $(n=1,\ m=p=0\ \text{in the above examples})$

Implicit constraints

explicit constraints

$$f_i(x) \le 0$$
 for $1 \le i \le m$ and $h_i(x) = 0$ for $1 \le i \le p$

implicit constraints

$$x \in \mathcal{D} = \left(\bigcap_{i=0}^{m} \operatorname{dom} f_{i}\right) \cap \left(\bigcap_{i=1}^{p} \operatorname{dom} h_{i}\right)$$

- $ightharpoonup \mathcal{D}$ is called the **domain** of the problem
- **Problem** is **unconstrained** if it has no explicit constraints (m = p = 0)

example

minimize
$$f_0(x) = -\sum_{i=1}^k \log(b_i - a_i^T x)$$

is an unconstrained problem with implicit constraints $a_i^T x < b_i$ for $1 \le i \le k$

Feasibility problem

find
$$x$$
 subject to $f_i(x) \leq 0, \quad i=1,\cdots,m$ $h_i(x)=0, \quad i=1,\cdots,p$

can be considered as an optimization problem

minimize 0 subject to
$$f_i(x) \leq 0, \quad i=1,\cdots,m$$
 $h_i(x)=0, \quad i=1,\cdots,p$

- $ightharpoonup p^* = 0$ if constraints are feasible; any feasible x is optimal
- $p^* = \infty$ if constrains are infeasible

Optimization problems

Convex optimization

Linear optimization

Quadratic optimization

Geometric programming

Generalized inequality constraints

Vector optimization

Convex optimization problem in standard form

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \qquad i = 1, \cdots, m$
 $a_i^T x = b_i, \qquad i = 1, \cdots, p$

- $ightharpoonup f_0, f_1, \cdots, f_m$ are convex
- equality constraints are affine, often written as Ax = b
- ▶ important property: feasible set of a convex problem is convex
- **problem is quasiconvex** if f_0 is quasiconvex (and f_1, \dots, f_m convex)

Example

minimize
$$f_0(x) = x_1^2 + x_2^2$$

subject to $f_1(x) = x_1/(1 + x_2^2) \le 0$
 $h_1(x) = (x_1 + x_2)^2 = 0$

- $ightharpoonup f_0$ is convex
- feasible set $\{(x_1, x_2) \mid x_1 = -x_2 \le 0\}$ is convex
- ▶ not a convex problem: f_1 is not convex, h_1 is not affine
- equivalent (but not identical) to the convex problem

minimize
$$x_1^2 + x_2^2$$

subject to $x_1 \le 0$
 $x_1 + x_2 = 0$

Local and global optima

any locally optimal point of a convex optimization problem is globally optimal

proof

- **>** suppose x is locally optimal, but there exists feasible y with $f_0(y) < f_0(x)$
- ▶ there exists R > 0 such that $f_0(z) \ge f_0(x)$ for all feasible z with $||z x||_2 < R$
- consider $z = \theta y + (1 \theta)x$ with $\theta = R/(2\|y x\|_2)$, then $\|z x\|_2 = R/2$
- $\|y-x\|_2 > R$ implies $0 < \theta < 1/2$, hence z is feasible by convexity of domain
- ▶ by convexity of objective $f_0(z) \le \theta f_0(y) + (1-\theta)f_0(x) < f_0(x)$, contradiction

Optimality criterion for differentiable objective

suppose f_0 is differentiable, then

either $\nabla f_0(x) = 0$ or it defines a supporting hyperplane to feasible set X at x

unconstrained problem

minimize
$$f_0(x)$$

x is optimal
$$\iff$$
 $x \in \operatorname{dom} f_0, \ \nabla f_0(x) = 0$

equality constrained problem

minimize
$$f_0(x)$$

subject to $Ax = b$

$$x ext{ is optimal} \iff x \in \operatorname{dom} f_0, \quad Ax = b,$$

there exists ν such that $\nabla f_0(x) + A^T \nu = 0$

minimization over nonnegative orthant

minimize
$$f_0(x)$$
 subject to $x \succeq 0$

$$x ext{ is optimal } \iff x \in \operatorname{dom} f_0, \quad x \succeq 0, \quad \begin{cases} \nabla f_0(x)_i \geq 0, & \text{if } x_i = 0 \\ \nabla f_0(x)_i = 0, & \text{if } x_i > 0 \end{cases}$$

Equivalent convex problem

two problems are (informally) **equivalent** if the solution of one is readily obtained from the solution of the other, and vice-versa

some common transformations that preserve convexity

- eliminating equality constraints
- introducing equality constraints
- introducing slack variables for linear inequalities
- epigraph form
- minimizing over some variables

eliminating equality constraints

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \qquad i = 1, \cdots, m$
 $Ax = b$

is equivalent to

minimize
$$f_0(Fz + x_0)$$
 (over z)
subject to $f_i(Fz + x_0) \le 0$, $i = 1, \dots, m$

where F and x_0 are such that

$$Ax = b \iff x = Fz + x_0 \text{ for some } z$$

introducing equality constraints

minimize
$$f_0(A_0x + b_0)$$

subject to $f_i(A_ix + b_i) \le 0, \quad i = 1, \dots, m$

is equivalent to

minimize
$$f_0(y_0)$$
 (over x, y_i)
subject to $f_i(y_i) \le 0$, $i = 1, \dots, m$
 $y_i = A_i x + b_i$, $i = 0, 1, \dots, m$

introducing slack variables for linear inequalities

minimize
$$f_0(x)$$

subject to $a_i^T x \le b_i, \quad i = 1, \dots, m$

is equivalent to

minimize
$$f_0(x)$$
 (over x, z)
subject to $a_i^T x + s_i = b_i$, $i = 1, \dots, m$
 $s_i \ge 0$, $i = 1, \dots, m$

epigraph form

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \qquad i=1,\cdots,m$
 $Ax=b$

is equivalent to

minimize
$$t$$
 (over x, t) subject to $f_0(x) - t \le 0$ $f_i(x) \le 0, \quad i = 1, \cdots, m$ $Ax = b$

minimizing over some variables

minimize
$$f_0(x_1, x_2)$$

subject to $f_i(x_1) \leq 0, \quad i = 1, \dots, m$

is equivalent to

$$\begin{array}{ll} \text{minimize} & \quad \tilde{f_0}(x_1) \\ \text{subject to} & \quad f_i(x_1) \leq 0, \qquad i=1,\cdots,m \end{array}$$

where

$$\tilde{f}_0(x_1) = \inf_{x_2} f_0(x_1, x_2)$$

Quasiconvex optimization

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \qquad i=1,\cdots,m$
 $Ax=b$

with $f_0\colon \mathbb{R}^n \to \mathbb{R}$ quasiconvex, f_1, \cdots, f_m convex locally optimal points may not be globally optimal

convex representation of sublevel sets of f_0

for quasiconvex f_0 there exists a family of functions ϕ_t such that

- $ightharpoonup \phi_t(x)$ is convex in x for each fixed t
- ▶ t-sublevel set of f_0 is 0-sublevel set of ϕ_t , namely $f_0(x) \le t \iff \phi_t(x) \le 0$
- $\phi_t(x)$ is nonincreasing in t for each fixed x, namely $\phi_s(x) \leq \phi_t(x)$ if $s \geq t$

example

$$f_0(x) = \frac{p(x)}{q(x)}$$

with p convex, q concave, and $p(x) \ge 0$, q(x) > 0 on **dom** f_0

we can choose

$$\phi_t(x) = p(x) - tq(x)$$

- $ightharpoonup \phi_t(x)$ convex in x for $t \ge 0$
- $ightharpoonup p(x)/q(x) \le t \iff \phi_t(x) \le 0$

quasiconvex optimization via convex feasibility problems

$$\phi_t(x) \leq 0, \qquad f_i(x) \leq 0, \quad i = 1, \cdots, m, \qquad Ax = b$$

- convex feasibility problem in x for each fixed t
- ▶ if feasible, then $t \ge p^*$; if infeasible, then $t \le p^*$

bisection method

given
$$l \le p^*$$
, $u \ge p^*$, tolerance $\epsilon > 0$ repeat

- 1. t := (I + u)/2
- 2. solve the above convex feasibility problem
- 3. **if** feasible, u := t; **else** l := t

until
$$u - l \le \epsilon$$

requires exactly $\lceil \log_2((u-l)/\epsilon) \rceil$ iterations

Optimization problems

Convex optimization

Linear optimization

Quadratic optimization

Geometric programming

Generalized inequality constraints

Vector optimization

Linear program (LP)

minimize
$$c^T x + d$$

subject to $Gx \leq h$
 $Ax = b$

- convex problem with affine objective and constraint functions
- feasible set is a polyhedron

Examples

diet problem: choose quantities x_1, \dots, x_n of n kinds of food

- ightharpoonup one unit of food j costs c_j , contains amount a_{ij} of nutrient i
- healthy diet requires nutrient i in quantity at least bi

to find cheapest healthy diet

minimize
$$c^T x$$

subject to $Ax \succeq b$
 $x \succeq 0$

piecewise-linear minimization

minimize
$$\max\{a_i^Tx + b_i \mid i = 1, \dots, m\}$$

equivalent to the LP

minimize
$$t$$

subject to $a_i^T x + b_i \le t, \quad i = 1, \dots, m$

Chebyshev center of a polyhedron

Chebyshev center of

$$\mathcal{P} = \{x \mid a_i^T x \leq b_i, \ i = 1, \cdots, m\}$$

is center of largest inscribed ball

$$\mathcal{B} = \{x_c + u \mid ||u||_2 \le r\}$$

 $a_i^T x \leq b_i$ for all $x \in \mathcal{B}$ if and only if

$$\sup\{a_i^T(x_c+u) \mid ||u||_2 \le r\} = a_i^T x_c + r||a_i||_2 \le b_i$$

hence x_c and r can be determined by solving the LP

maximize
$$r$$
 subject to $a_i^T x_c + r \|a_i\|_2 \le b_i, \qquad i = 1, \cdots, m$

Linear-fractional program

minimize
$$f_0(x)$$

subject to $Gx \leq h$
 $Ax = b$

where

$$f_0(x) = \frac{c^T x + d}{e^T x + f},$$
 dom $f_0(x) = \{x \mid e^T x + f > 0\}$

- a quasiconvex optimization problem; can be solved by bisection
- also equivalent to the LP

minimize
$$c^T y + dz$$

subject to $Gy \leq hz$
 $Ay = bz$
 $e^T y + fz = 1$
 $z \geq 0$

Generalized linear-fractional program

minimize
$$f_0(x)$$

subject to $Gx \leq h$
 $Ax = b$

where

$$f_0(x) = \max \left\{ \frac{c_i^T x + d_i}{e_i^T x + f_i} \middle| i = 1, \dots, r \right\}$$

$$\operatorname{dom} f_0(x) = \left\{ x \middle| e_i^T x + f_i > 0, \ i = 1, \dots, r \right\}$$

a quasiconvex optimization problem; can be solved by bisection

Example

Von Neumann model of a growing economy

maximize
$$\min \left\{ x_i^+/x_i \mid i=1,\cdots,n \right\}$$
 (over x,x^+) subject to $x^+\succeq 0$ $Bx^+\preceq Ax$

with domain $\{(x, x^+) \mid x \succ 0\}$

- $x, x^+ \in \mathbb{R}^n$: activity levels of *n* sectors, in current and next period
- $(Ax)_i$, $(Bx^+)_i$: produced resp. consumed amounts of good i
- $\triangleright x_i^+/x_i$: growth rate of sector i

allocate activity to maximize growth rate of slowest growing sector

Optimization problems

Convex optimization

Linear optimization

Quadratic optimization

Geometric programming

Generalized inequality constraints

Vector optimization

Quadratic program (QP)

minimize
$$(1/2)x^T P x + q^T x + r$$

subject to $Gx \leq h$
 $Ax = b$

- ▶ $P \in \mathbb{S}_+^n$ thus objective is convex quadratic
- minimize a convex quadratic function over a polyhedron

Example

least-squares

minimize
$$||Ax - b||_2^2$$

- ▶ analytical solution $x^* = A^{\dagger}b$ (where A^{\dagger} is pseudo-inverse)
- ▶ can add linear constraints such as $I \leq x \leq u$

linear program with random cost

minimize
$$\bar{c}^T x + \gamma x^T \Sigma x$$

subject to $Gx \leq h$
 $Ax = b$

- \triangleright c is random vector with mean \bar{c} and covariance Σ
- hence $c^T x$ is random variable with mean $\bar{c}^T x$ and variance $x^T \Sigma x$

$$\bar{c}^T x + \gamma x^T \Sigma x = \mathbb{E}\left(c^T x\right) + \gamma \operatorname{var}\left(c^T x\right)$$

 $ightharpoonup \gamma > 0$ is risk-aversion parameter, controls the trade-off between expected cost and variance (risk)

Quadratically constrained quadratic program (QCQP)

minimize
$$(1/2)x^T P_0 x + q_0^T x + r_0$$
subject to
$$(1/2)x^T P_i x + q_i^T x + r_i \le 0, \qquad i = 1, \dots, m$$

$$Ax = b$$

- ▶ $P_i \in \mathbb{S}^n_+$ thus objective and constraints are convex quadratic
- lacktriangle feasible region is intersection of m ellipsoids and an affine set if $P_1,\cdots,P_m\in\mathbb{S}^n_{++}$

Second-order cone program (SOCP)

minimize
$$f^T x$$

subject to $\|A_i x + b_i\|_2 \le c_i^T x + d_i, \quad i = 1, \dots, m$
 $Fx = G$

with $A_i \in \mathbb{R}^{n_i \times n}$ and $F \in \mathbb{R}^{p \times n}$

inequalities are called second-order cone constraints since

$$(A_i x + b_i, c_i^T x + d_i) \in \text{ second-order cone in } \mathbb{R}^{n_i + 1}$$

- ightharpoonup if $n_i = 0$, reduces to LP
- ightharpoonup if $c_i = 0$, reduces to QCQP (with linear objective)

Robust linear program

parameters in optimization problems are often uncertain, e.g. in LP

minimize
$$c^T x$$

subject to $a_i^T x \le b_i$, $i = 1, \dots, m$

there can be uncertainty in c, a_i , b_i two common approaches to handle uncertainty (in a_i for simplicity)

▶ deterministic model: constraints must hold for all $a_i \in \mathcal{E}_i$

minimize
$$c^T x$$

subject to $a_i^T x \le b_i$ for all $a_i \in \mathcal{E}_i$, $i = 1, \dots, m$

lacktriangle stochastic model: a_i is random variable; constraints must hold with probability η

minimize
$$c^T x$$

subject to $\operatorname{prob}(a_i^T x \leq b_i) \geq \eta, \qquad i = 1, \dots, m$

deterministic approach via SOCP

▶ choose ellipsoid as \mathcal{E}_i with $\bar{a}_i \in \mathbb{R}^n$ and $P_i \in \mathbb{R}^{n \times n}$

$$\mathcal{E}_{i} = \{\bar{a}_{i} + P_{i}u \mid ||u||_{2} \le 1\}$$

▶ robust LP

minimize
$$c^T x$$

subject to $a_i^T x \le b_i$ for all $a_i \in \mathcal{E}_i, \qquad i = 1, \cdots, m$

is equivalent to SOCP

minimize
$$c^T x$$

subject to $a_i^T x + ||P_i^T x||_2 \le b_i, \quad i = 1, \dots, m$

which follows from

$$\sup_{\|u\|_2 \le 1} (\bar{a}_i + P_i u)^T x = \bar{a}_i^T x + \|P_i^T x\|_2$$

stochastic approach via SOCP

- \blacktriangleright assume a_i is Gaussian with mean \bar{a}_i and covariance Σ_i , namely $a_i \sim \mathcal{N}(\bar{a}_i, \Sigma_i)$
- $ightharpoonup a_i^T x$ is Gaussian with mean $\bar{a}_i^T x$ and variance $x^T \Sigma x$, hence

$$\mathsf{prob}(a_i^T x \leq b_i) = \Phi\left(\frac{b_i - \bar{a}_i^T x}{\|\Sigma_i^{1/2} x\|_2}\right)$$

with $\Phi(x) = (1/\sqrt{2\pi}) \int_{-\infty}^{x} e^{-t^2/2} dt$ cumulative distribution function of $\mathcal{N}(0,1)$

robust LP

minimize
$$c^T x$$

subject to $\operatorname{prob}(a_i^T x \leq b_i) \geq \eta, \quad i = 1, \dots, m$

with $\eta > 1/2$ is equivalent to SOCP

minimize
$$c^T x$$

subject to $\bar{a}_i^T x + \Phi^{-1}(\eta) \|\Sigma_i^{1/2} x\|_2 \le b_i, \qquad i = 1, \cdots, m$

Optimization problems

Convex optimization

Linear optimization

Quadratic optimization

Geometric programming

Generalized inequality constraints

Vector optimization

Monomials and posynomials

monomial function

$$f(x) = cx_1^{a_1} \cdots x_n^{a_n}, \quad \text{dom } f = \mathbb{R}_{++}^n$$

with c > 0 and $a_i \in \mathbb{R}$

posynomial function

$$f(x) = \sum_{k=1}^K c_k x_1^{a_{1k}} \cdots x_n^{a_{nk}}, \quad \text{dom } f = \mathbb{R}^n_{++}$$

sum of monomials

change variables to $y_i = \log x_i$ and take logarithm

• monomial $f(x) = cx_1^{a_1} \cdots x_n^{a_n}$ transforms to

$$\log f(e^{y_1}, \dots, e^{y_n}) = a^T y + b, \qquad (b = \log c)$$

• posynomial $f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} \cdots x_n^{a_{nk}}$ transforms to

$$\log f(e^{y_1}, \cdots, e^{y_n}) = \log \left(\sum_{k=1}^K e^{a_k^T y + b_k} \right), \qquad (b_k = \log c_k)$$

Geometric program (GP)

geometric program in standard form

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 1, \qquad i=1,\cdots,m$ $h_i(x)=1, \qquad i=1,\cdots,p$

with f_i posynomial, h_i monomial

geometric program in convex form

change variables to $y_i = \log x_i$ and take logarithm of objective and constraints

minimize
$$\log \left(\sum_{k=1}^K e^{a_{0k}^T y + b_{0k}} \right)$$
 subject to
$$\log \left(\sum_{k=1}^K e^{a_{ik}^T y + b_{ik}} \right) \le 0, \qquad i = 1, \cdots, m$$

$$Gv + d = 0$$

Design of cantilever beam

- \triangleright N segments with unit length, rectangular cross-sections of width w_i and height h_i
- given vertical force F applied at the right end

design problem

variables w_i , h_i for $i = 1, \dots N$

minimize total weight

subject to upper & lower bounds on w_i and h_i

upper & lower bounds on aspect ratios h_i/w_i

upper bound on stress in each segment

upper bound on vertical deflection at the end of the beam

objective and constraint functions

- ▶ total weight $w_1h_1 + \cdots + w_Nh_N$ is posynomial
- ▶ aspect ratio h_i/w_i and inverse aspect ratio w_i/h_i are monomials
- ▶ maximum stress in segment *i* given by $6iF/(w_ih_i^2)$ is monomial
- \triangleright vertical deflection y_i and slope v_i of central axis at the right end of segment i defined recursively as (constant E is Young's modulus)

$$v_{i} = 12\left(i - \frac{1}{2}\right) \frac{F}{Ew_{i}h_{i}^{3}} + v_{i+1}$$

$$y_{i} = 6\left(i - \frac{1}{3}\right) \frac{F}{Ew_{i}h_{i}^{3}} + v_{i+1} + y_{i+1}$$

for $i = N, N - 1, \dots, 1$, with $v_{N+1} = y_{N+1} = 0$, are posynomial functions

formulation as GP

minimize
$$w_1 h_1 + \cdots + w_N h_N$$
 subject to $w_{\max}^{-1} w_i \leq 1$, $w_{\min} w_i^{-1} \leq 1$, $i = 1, \cdots, N$ $h_{\max}^{-1} h_i \leq 1$, $h_{\min} h_i^{-1} \leq 1$, $i = 1, \cdots, N$ $S_{\max}^{-1} w_i^{-1} h_i \leq 1$, $S_{\min} w_i h_i^{-1} \leq 1$, $i = 1, \cdots, N$ $6iF\sigma_{\max}^{-1} w_i^{-1} h_i^{-2} \leq 1$, $i = 1, \cdots, N$ $y_{\max}^{-1} y_1 \leq 1$

first two lines of constraints equivalent to

$$w_{\min} \le w_i \le w_{\max}$$
 and $h_{\min} \le h_i \le h_{\max}$

third line of constraints equivalent to

$$S_{\min} \leq h_i/w_i \leq S_{\max}$$

Optimization problems

Convex optimization

Linear optimization

Quadratic optimization

Geometric programming

Generalized inequality constraints

Vector optimization

Convex problem with generalized inequality constraints

minimize
$$f_0(x)$$

subject to $f_i(x) \leq_{K_i} 0, \qquad i = 1, \cdots, m$
 $Ax = b$

- ▶ $f_0: \mathbb{R}^n \to \mathbb{R}$ is convex
- ▶ f_i : $\mathbb{R}^n \to \mathbb{R}^{k_i}$ is K_i -convex, where K_i is a proper cone
- same properties as standard convex problem (convex feasible set, local optimum is global, etc)

Conic form problem (cone program)

special case of above with affine objective and constraints

minimize
$$c^T x$$

subject to $Fx + g \leq_K 0$
 $Ax = b$

extends linear programming $(K=\mathbb{R}^m_+)$ to nonpolyhedral cones

Semidefinite program (SDP)

minimize
$$c^T x$$

subject to $x_1 F_1 + \cdots + x_n F_n + G \leq 0$
 $Ax = b$

with $F_i, G \in \mathbb{S}^k$

- inequality constraint is called linear matrix inequality (LMI)
- includes problems with multiple LMI constrains:

$$x_1F_1' + \dots + x_nF_n' + G' \leq 0$$
 and $x_1F_1'' + \dots + x_nF_n'' + G'' \leq 0$

is equivalent to single LMI

$$x_1\begin{bmatrix} F_1' & 0 \\ 0 & F_1'' \end{bmatrix} + \cdots + x_n \begin{bmatrix} F_n' & 0 \\ 0 & F_n'' \end{bmatrix} + \begin{bmatrix} G' & 0 \\ 0 & G'' \end{bmatrix} \leq 0$$

LP as equivalent SDP

LP

minimize
$$c^T x$$

subject to $Ax \leq b$

equivalent SDP

minimize
$$c^T x$$

subject to $\operatorname{diag}(Ax - b) \leq 0$

note different interpretation of generalized inequality

SOCP as equivalent SDP

SOCP

minimize
$$f^T x$$

subject to $||A_i x + b_i||_2 \le c_i^T x + d_i, \quad i = 1, \dots m$

equivalent SDP

minimize
$$f^T x$$

subject to
$$\begin{bmatrix} (c_i^T x + d_i)I & A_i x + b_i \\ (A_i x + b_i)^T & c_i^T x + d_i \end{bmatrix} \succeq 0, \qquad i = 1, \dots, m$$

Eigenvalue minimization

minimize
$$\lambda_{\mathsf{max}}(A(x))$$

where
$$A(x) = A_0 + x_1 A_1 + \cdots + x_n A_n$$
 with given $A_i \in \mathbb{S}^k$

equivalent SDP

minimize
$$t$$

subject to $A(x) \leq tI$

- ▶ variables $x \in \mathbb{R}^n$ and $t \in \mathbb{R}$
- ► follows from

$$\lambda_{\sf max}(A) \le t \qquad \Longleftrightarrow \qquad A \le tI$$

Matrix norm minimization

minimize
$$\|A(x)\|_2 = \left(\lambda_{\max}\left(A(x)^TA(x)\right)\right)^{1/2}$$
 where $A(x) = A_0 + x_1A_1 + \dots + x_nA_n$ with given $A_i \in \mathbb{R}^{p \times q}$

equivalent SDP

minimize
$$t$$
 subject to
$$\begin{bmatrix} tI & A(x) \\ A(x)^T & tI \end{bmatrix} \succeq 0$$

- ▶ variables $x \in \mathbb{R}^n$ and $t \in \mathbb{R}$
- ▶ follows from

$$||A||_{2} \le t \qquad \Longleftrightarrow \qquad A^{T}A \le t^{2}I, \quad t \ge 0$$

$$\iff \qquad \begin{bmatrix} tI & A \\ A^{T} & tI \end{bmatrix} \succeq 0$$

Optimization problems

Convex optimization

Linear optimization

Quadratic optimization

Geometric programming

Generalized inequality constraints

Vector optimization

Vector optimization

general vector optimization problem

minimize (with respect to
$$K$$
) $f_0(x)$ subject to $f_i(x) \leq 0, \qquad i=1,\cdots,m$ $h_i(x)=0, \qquad i=1,\cdots,p$

vector objective $f_0 \colon \mathbb{R}^n \to \mathbb{R}^q$ minimized with respect to proper cone $K \subseteq \mathbb{R}^q$

convex vector optimization problem

minimize (with respect to
$$K$$
) $f_0(x)$ subject to $f_i(x) \leq 0, \qquad i=1,\cdots,m$ $Ax=b$

where f_0 is K-convex and f_1, \dots, f_m are convex

Optimal and Pareto optimal points

set of achievable values

$$\mathcal{O} = \{ f_0(x) \mid x \text{ feasible} \}$$

- feasible x is optimal if $f_0(x)$ is the minimum value of \mathcal{O} (optimal value)
- feasible x is Pareto optimal if $f_0(x)$ is a minimal value of \mathcal{O} (Pareto optimal value)

Multicriterion optimization

vector optimization problem with $K=\mathbb{R}^q_+$

$$f_0(x) = (F_1(x), \cdots, F_q(x))$$

- \triangleright q different objectives F_i , we want all of them to be small
- feasible x* is optimal if

$$y \text{ feasible} \implies f_0(x^*) \leq f_0(y)$$

if there exists an optimal point, the objectives are noncompeting

• feasible x^{po} is Pareto optimal if

$$y$$
 feasible, $f_0(y) \leq f_0(x^{po}) \implies f_0(x^{po}) = f_0(y)$

if multiple Pareto optimal values exist, there is a trade-off between the objectives

Regularized least-squares

minimize (with respect to
$$\mathbb{R}^2_+$$
) $(\|Ax - b\|_2^2, \|x\|_2^2)$

the optimal trade-off curve, shown darker, is formed by Pareto optimal points

Risk-return trade-off in portfolio optimization

minimize (with respect to
$$\mathbb{R}^2_+$$
)
$$\left(-\bar{p}^T x, x^T \Sigma x \right)$$
 subject to
$$\mathbf{1}^T x = 1$$

$$x \succeq 0$$

- $\mathbf{x} \in \mathbb{R}^n$ investment portfolio; x_i fraction invested in asset i
- $ightharpoonup p \in \mathbb{R}^n$ relative asset price changes, random variable with mean \bar{p} and covariance Σ
- $ightharpoonup \mathbb{E}r = \bar{p}^T x$ expected return; $\mathbf{var} \, r = x^T \Sigma x$ return variance

Scalarization

to find Pareto optimal points, choose $\lambda \succ_{K^*} 0$ and solve scalar problem

minimize
$$\lambda^T f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p$

- ightharpoonup if x is optimal for scalar problem, then it is Pareto optimal for vector optimization problem
- ▶ for convex vector optimization problem, can find (almost) all Pareto optimal points by varying $\lambda \succ_{K^*} 0$

example

- Pareto optimal values $f_0(x_1)$ and $f_0(x_2)$ can both be obtained by scalarization: $f_0(x_1)$ minimizes $\lambda_1^T u$ and $f_0(x_2)$ minimizes $\lambda_2^T u$ over all $u \in \mathcal{O}$
- $ightharpoonup f_0(x_3)$ is Pareto optimal, but cannot be found by scalarization

Scalarization for multicriterion problems

to find Pareto optimal points, minimize positive weighted sum (since $K=\mathbb{R}^q_+$)

$$\lambda^T f_0(x) = \lambda_1 F_1(x) + \dots + \lambda_q F_q(x)$$

examples

regularized least-square problem: take $\lambda = (1, \gamma)$ with $\gamma > 0$

minimize
$$||Ax - b||_2^2 + \gamma ||x||_2^2$$

least-square problem for fixed $\gamma > 0$

lacktriangledown risk-return trade-off problem: take $\lambda=(1,\gamma)$ with $\gamma>0$

minimize
$$-\bar{p}^T x + \gamma x^T \Sigma x$$
 subject to
$$\mathbf{1}^T x = 1$$

$$x \succeq 0$$

quadratic program for each fixed $\gamma>0$