Caracterização textural de sólidos Textural characterization of solids

A textura de um catalisador é definida pela geometria dos espaços vazios nos grãos do catalisador e determina a porosidade.

The texture of a catalyst is defined by the geometry of the empty spaces within the catalyst grains and determines the porosity.

A caracterização textural é essencial para compreender o comportamento do catalisador, nomeadamente:

The **textural characterization** is essential for understanding the behavior of the catalyst, namely:

Área específica (S) Volume especifico de poros (V_p) Porosidade (e) Distribuição de tamanho de poros Specific surface area (S) Specific pore volume (V_p) Porosity (e) Pore size distribution

Medição da Porosidade / Measurement of Porosity

Há três parâmetros que são usados para medir a porosidade: área superficial específica, volume específico de poros ou porosidade e tamanho dos poros e sua distribuição

There are three parameters used to measure the porosity: specific surface área, **specific pore volume** or **porosity**, and por **size** and its **distribution**.

- porosidade (%) = $\frac{\text{volume de poros}}{\text{volume de sólido (incluindo poros)}}$ porosity (%) = $\frac{\text{volume of pores}}{\text{volume of solido (including pores)}}$
- volume específico de poros (cm³/g) = $\frac{\text{volume total de poros (cm}^3)}{\text{massa de sólido (g)}}$ specific pore volume (cm³/g) = $\frac{\text{total pore volume(cm}^3)}{\text{mass of solid (g)}}$

Porosidade / Porosity

Diferentes tamanhos de poros / Different pore sizes

Segundo a **IUPAC**, os poros classificam-se em três grupos diferentes, de acordo com o seu diâmetro:

Microporos: 0 < d < 2 nm (zéolitos, carvões, silica,...)

Mesoporos: 2 < d < 50 nm (alumina, polímeros, catal.)

Macroporos: 50 < d < ... nm (pedras, cimentos, solos, ...)

Existem ainda **poros finos**: 0.01 < d < ... micron (pigmentos, Produtos farmacêuticos, ...)

According to IUPAC, pores can be classified into three differente groups, according to their diameter:

Micropores: 0 < d < 2 nm (zeolites, carbons, silica,...)

Mesopores: 2 < d < 50 nm (alumina, polymers, catal.)

Macropores: 50 < d < ... nm (rocks, cements, soils, ...)

There are also **fine pores**: 0.01 < d < ... micron (pigments, pharmaceutical products, ...)

Adsorção

Acumulação de uma substância (adsorbato), presente num líquido ou num gás numa superfície sólida (adsorvente)

Adsorption

Accumulation of a substance (adsorbate) from a liquid or gas onto a solid surface (adsorbent).

Dois tipos de adsorção

Física (fisissorção): Reversível

As moléculas do adsorvente e do adsorbato interagem por interações fracas (van der Waals), não se formam ligações químicas.

Química (quimissorção): Irreversível, Há formação de ligações químicas (em geral covalentes) onde seja possível o maior número de coordenação com o substrato.

Two types of adsorption

Physical (physisorption): Reversible

The molecules of adsorbent and adsorbate interact through weak forces (van der Waals), with no formation of chemical bonds.

Chemical (chemisorption): Irreversible

Chemical bonds are formed (typically covalent) at sites that provide the highest possible coordination number with the substrate.

Caracterização textural de sólidos por adsorção física de gases Textural characterization of solids by physical adsorption of gases

Determinar a área interna dos sólidos, assim como o volume e o tamanho dos poros.

Adsorção de gás inerte (geralmente N_2) a 77 K (o krípton usa-se para determinar áreas muito baixas (< 1 m²/g).

Determining the internal surface area of solids, as well as the volume and size of pores

Adsorption of an inert gas (usually N_2) at 77 K (krypton is used to determine very low areas, <1 m²/g).

A área determina-se calculando o número de moléculas depositadas na superfície (monocamada).

O tamanho dos poros determina-se à pressão a que ocorre a condensação.

The surface area is determined by calculating the number of molecules deposited on the surface (monolayer).

The pore size is determined at the pressure at which condensation occurs.

Isotérmica de adsorção

quantidade de gás adsorvida em função da pressão relativa a uma dada temperatura

Adsorption isotherm

amount of adsorbed gas as a function of the relative pressure at a given temperature

Tipos de isotérmica, Classificação IUPAC Types of isotherms, IUPAC Classification

- As isotérmicas podem ser de vários tipos:
- I sólidos microporosos
- II sólidos não porosos ou macroporosos
- III sólidos macroporosos (baixo calor de adsorção)
- IV sólidos mesoporosos, condensação capilar, histerese
- V sólidos mesoporosos, condensação capilar, histerese (baixo calor de adsorção)
- VI sólidos não porosos com superfícies uniformes, adsorção camada a camada
- The isotherms can have various forms:
- I Microporous solids
- II Non-porous or macroporous solids
- **III** Macroporous solids (low heat of adsorption)
- **IV** Mesoporous solids capillary condensation, hysteresis
- V Mesoporous solids capillary condensation, hysteresis (low heat of adsorption)
- VI Non-porous solids with uniform surfaces, layer-bylayer adsorption

Isotérmicas do tipo IV e V Type IV and V isotherms

A histerese está associada com diferentes pressões de saturação durante a condensação do vapor e durante a evaporação do líquido nos poros.

The **hysteresis** is associated with different saturation pressures during vapor condensation and during liquid evaporation within the pores.

M. Schmitt, Universidade Federal de Santa Catarina, 2009

HI H2 **H3** H4 Relative pressure.

Figueiredo, Ramôa Ribeiro, Catálise Heterogénea, Fundação Calouste Gulbenkian, 1987

Tipos de histerese – Formas de poros Types of hytheresis – Pore shapes

H1 – mesoporos em forma de cilindros abertos nas duas extremidades.

H2 – poros com um gargalo estreito e corpo largo (em forma de tinteiro).

H3 – agregados não rígidos de partículas em forma de placa, originando poros em fenda.

H4 – poros estreitos em fenda; o caracter tipo I da isotérmica é indicativo da presença de microporos.

H1 - open-ended cylindrical mesopores

H2 - narrow neck and wide body (ink bottle shaped) pores

H3 - non-rigid aggregates of plate-like particles, resulting in slit-shaped pores.

H4 - **narrow slit-like pores**; the type I isotherm indicates the presence of **micropores**.

Equação de Brunauer, Emmett e Teller (B.E.T.) Brunauer, Emmett, and Teller (B.E.T.) equation

$$\frac{P/P_0}{n^a (1 - P/P_0)} = \frac{1}{n_m^a C} + \frac{C-1}{n_m^a C} \frac{P}{P_0}$$

Válida entre $0.05 < P/P_0 < 0.30$ Valid between $0.05 < P/P_0 < 0.30$

Figueiredo, Ramôa Ribeiro, Catálise Heterogénea,

Fundação Calouste Gulbenkian, 1987

 P/P_0 = pressão relativa

 $P_0 = 760 \text{ mm Hg} = 1 \text{ atm}$

 n^a = número de moles de adsorbato por grama de adsorvente

 $\mathbf{n}_{\mathbf{m}}^{\mathbf{a}}$ = número de moles de adsorbato por grama de sólido necessários para formar uma monocamada sobre a superfície (capacidade da monocamada)

C – constante de B.E.T. ≈ exp(E₁ – E⌊/ R T) em que E₁ é o calor de adsorção na primeira camada e E⌋ é o calor de condensação, R é a constante dos gases perfeitos (8.314 J mol⁻¹⋅K⁻¹) e T a temperatura

 P/P_0 = relative pressure

P = 760 mm Hg = 1 atm

 n^a = number of moles of adsorbate per gram of adsorbent

 $\mathbf{n}_{\mathbf{m}}^{\mathbf{a}}$ = number of moles of adsorbate per gram of solid required to form a monolayer on the surface (monolayer capacity)

C - B.E.T. constant $\approx \exp(E_1 - E_L / R T)$ where E_1 is the heat of adsorption in the first layer, and E_L is the heat of condensation, R is the constant for perfect gases (8.314 J mol⁻¹·K⁻¹) and T is the temperature

Equação de Brunauer, Emmett e Teller (B.E.T.) Brunauer, Emmett, and Teller (B.E.T.) equation

$$\frac{P/P_0}{n^a (1 - P/P_0)} = \frac{1}{n_m^a C} + \frac{C-1}{n_m^a C} \frac{P}{P_0}$$

Representando $(P/P_0)/(n^a(1-P/P_0))$ em função de P/P_0 obtém-se uma reta de declive $(C-1)/(n_m^aC)$ e ordenada na origem $1/(n_m^aC)$, logo $n_m^a = 1/(declive+ordenada)$

Plotting $(P/P_0)/(n^a(1-P/P_0))$ versus P/P_0 we obtain a line with slope $(C-1)/(n_m^aC)$ and intercept $1/(n_m^aC)$, thus $\mathbf{n_m^a} = 1/(slope+intercept)$

Equação de Brunauer, Emmett e Teller (B.E.T.) Brunauer, Emmett, and Teller (B.E.T.) equation

$$\frac{P/P_0}{n^a (1 - P/P_0)} = \frac{1}{n_m^a C} + \frac{C - 1}{n_m^a C} \frac{P}{P_0}$$

Uma vez que n_m representa a quantidade de adsorvido necessário para cobrir a superfície com uma camada monomolecular, a área específica do sólido será:

Since n_m represents the amount of adsorbate required to cover the surface with a monomolecular layer, the specific surface area of the solid will be:

Onde:

A_m = área ocupada por molécula de adsorvido (16.2×10⁻²⁰ m²/molecule N₂, 77K) N = n^o Avogadro = 6.023×10²³ moléculas/mol

Where:

 A_m = area occupied by one adsorbate molecule (16.2×10⁻²⁰ m²/molecule N₂, 77K) N = Avogadro's number = 6.023×10²³molecules/mol

Simplificação da equação de B.E.T. (para C > 100) Simplification of B.E.T. equation (for C > 100)

$$\frac{P/P_0}{n^a (1 - P/P_0)} = \frac{1}{n_m^a C} + \frac{C - 1}{n_m^a C} \frac{P}{P_0}$$
 Equação total Total equation

Figueiredo, Ramôa Ribeiro, Catálise Heterogénea, Fundação Calouste Gulbenkian, 1987

$$C > 100 \implies (C-1)/C \approx 1 \implies 1/n_m^a C \approx 0 \implies \frac{P/P_0}{n^a (1 - P/P_0)} = \frac{1}{n_m^a} \frac{P}{P_0}$$

Representando $(P/P_0)/(n^a(1-P/P_0))$ em função de P/P_0 obtém-se uma reta passando pela origem de declive $1/n_{\rm m}^a$ e basta um só ponto para definir a reta.

Plotting $(P/P_0)/(n^a(1-P/P_0))$ versus P/P_0 we obtain a line that passes by the origin with slope $1/n_m^a$ thus we only need a single point to define the line.

Pode usar-se esta **simplificação** para determinar a área específica do sólido a partir da quantidade adsorvida a $P/P_0 \approx 0.3 - Método do Ponto Único.$

This **simplification** can be used to determine the specific surface area of the solid from the amount adsorbed at $P/P_0 \approx 0.3 - Single Point Method.$

Determinação do volume de poros Determination of pore volume

O volume específico de poros V_p (cm³/g) pode ser obtido a partir de isotérmicas do tipo IV pela Regra de Gurvitsch que converte a quantidade máxima adsorvida, lida no patamar, em volume de líquido.

The specific pore volume V_p (cm³/g) can be estimated from type IV isotherms using Gurvitsch's rule, that converts the maximum adsorbed quantity, read at the plateau, into liquid volume.

$$V_p = n_{sat}^a V_M^L$$

- n^a_{sat} = quantidade adsorvida na saturação(mol/g) amount adsorbed at saturation (mol/g)
- V_{M}^{L} = volume molar do adsorvido no estado liquido (cm³/g) molar volume of the adsorbate in the liquid state (cm³/g)

O volume de poros também se pode determinar por picnometria de He e Hg The pore volume can also be determined through He and Hg picnometry

- ✓ O sólido é imerso em Hg a 1 atm (Hg não penetra em poros de diâmetro <14 mm)</p>
- ✓ A molécula de He é suficientemente pequena para penetrar nos poros mais finos
- ✓ Medindo sucessivamente os volumes de He (V_{He}) e de Hg (V_{Hg}) deslocados por imersão da amostra:

V_{He} = volume de sólido

V_{Ha} = volume total (sólido+poros)

Volume de poros = $V_p = V_{Hg} - V_{He}$

 ρ_s = m/V_{He} = densidade real do sólido ρ_p = m/V_{Hg} = densidade aparente do sólido

Porosidade =
$$\varepsilon = V_p/V_{total} = (V_{Hg}-V_{He})/V_{Hg} = \rho_p V_p$$

- ✓ The solid is immersed in Hg at 1 atm (Hg does not penetrate pores with a diameter <14 nm)
 </p>
- ✓ The He molecule is small enough to penetrate the finer pores
- ✓ By successively measuring the volumes of He (V_{He}) and Hg (V_{Hg}) displaced by immersing the sample:

V_{He} = solid volume

V_{Hg} = total volume (solid+pores)

Pore volume = $V_p = V_{Hg} - V_{He}$

 ρ_s = m/V_{He} = real density of the solid

 $\rho_p = m/V_{Hq} = apparent density of the solid$

Porosity =
$$\varepsilon = V_p/V_{total} = (V_{Hg}-V_{He})/V_{Hg} = \rho_p V_p$$

Distribuição de tamanho de poros Pore size distribution

V_p/S

dá uma indicação da estrutura porosa provides an indication of the porous structure

Se todos os poros fossem cilíndricos: If all pores were cylindrical:

$$V_p/S = \pi r^2 h / 2 \pi r h = r/2$$

Para poros de outras geometrias, r será um raio equivalente. For pores of other geometries, r will be an equivalent radius.

S grande, Vp pequeno S large, Vp small

r pequeno r small

S pequeno, Vp grande S small, Vp large r é grande r is large

Cálculo do tamanho de poros

Calculation of pore size

Condensação e evaporação capilar

Capillary Condensation and Evaporation

Equação de Kelvin (relaciona a curvatura do menisco líquido no poro com P/P₀ para a qual se verifica a condensação). Para **poros cilíndricos abertos em ambas as extremidades**:

Kelvin Equation (relates the curvature of the liquid meniscus in the pore to P/P0 at which condensation occurs). For **open ended cylindrical pores**:

$$\ln(\frac{P}{P_0}) = \frac{-2 \gamma \cos \phi \ V_M^L}{R \ T \ r_K} \qquad \text{(dessorção)} \\ \text{(desorption)} \qquad r_K = \frac{-2 \gamma \cos \phi \ V_M^L}{R \ T \ln(\frac{P}{P_0})}$$

Onde:

 $\mathbf{r}_{\mathbf{K}}$ = raio médio de curvatura do menisco líquido no poro (unidade de comprimento)

 γ = tensão superficial (unidades de força/unidade de comprimento)

 V_{M}^{L} = volume molar do adsorvido no estado líquido (cm³/mol)

 \mathbf{R} = constante dos gases perfeitos (8.314 JK⁻¹mol⁻¹)

 ϕ = ângulo de contacto (considera-se nulo)

T = temperatura (K)

P/P₀ = pressão relativa

Where:

r_K = average radius of curvature of the liquid meniscus in the pore (length unit)

γ = surface tension (force per length unit)

 V_{M}^{L} = molar volume of the adsorbate in the liquid state (cm³/mol)

R = universal gas constant (8.314 JK⁻¹mol⁻¹)

 ϕ = contact angle (considered to be zero)

T = temperature (K)

P/P_n = relative pressure

r opedebsado

Determinação do valor de *t* Determination of *t* value

Harkins & Jura
$$t = \left| \frac{13.99}{0.034 - \log(\frac{P_0}{P})} \right|^{1/2}$$

Halsey
$$t = 3.54 \times \left| \frac{-5}{\ln(\frac{P_0}{P})} \right|^{1/3}$$

Para relacionar o raio do menisco (r_K) com o raio dos poros maiores (r_D), temos que levar em conta que a condensação capilar ocorre em poros já cobertos por um filme adsorvido, cuja espessura t é determinada pela pressão relativa P/P₀. O líquido condensa não no poro, mas num núcleo interno de raio r_K . Considerando poros cilíndricos $r_p = r_K + t$.

To relate the radius of the meniscus (r_K) to the radius of the larger pores (r_p), we must take into account that capillary condensation occurs in pores already covered by an adsorbed film, whose thickness t is determined by the relative pressure P/P₀. The liquid condenses not in the pore itself but in an inner core with a radius rK. Considering cylindrical pores $r_p = r_K + t$.

2) Para caracterizar um catalisador de Ni/Al_2O_3 (1% Ni), fizeram-se vários ensaios, tendo-se obtido os seguintes resultados:

Por microscopia eletrónica, verificou-se que as cristalites de Ni são esféricas e têm um diâmetro de 20 Å. A distribuição de tamanho de poros superiores a 20 Å é dada por:

To characterize a Ni/Al_2O_3 catalyst (1% Ni), several tests were performed, and the following results were obtained:

Under electron microscopy, it was observed that the Ni crystallites are spherical and have a diameter of 20 Å. The pore size distribution larger than 20 Å is given by:

- A quantidade de N₂ adsorvida a 77K é:
- The amount of N₂ adsorbed at 77K is:

P (mm Hg)	152	722	750
$n^a imes 10^3$ (mol/g _{cat})	2.30	10.30	10.30

- a) Calcule a área total.
- b) Calcule o volume de poros.
- c) Calcule a área metálica e a dispersão metálica.
- d) Calcule o volume e a área de meso e microporos.

- a) Calculate the total surface area.
- b) Calculate the pore volume.
- c) Calculate the metallic area and metallic dispersion.
- d) Calculate the volume and area of meso and micropores

Dados/Data:

 A_m = área ocupada por molécula de adsorvido = 16.2 $Å^2$ /molécula (para N_2 a 77K)

 $A_{\rm m}$ = Area occupied by an adsorbed molecule = 16.2 Å²/molecule (for N₂ at 77K)

 n_s = número de átomos na superfície por unidade de área (valor tabelado) = 1.54 $\times 10^{19}$ m⁻²

 n_s = number of atoms on the surface per unit area (tabulated value) = 1.54 ×10¹⁹ m⁻²

N = número de Avogadro = 6.023×10²³ mol⁻¹

 $N = Avogadro's number = 6.023 \times 10^{23} \text{ mol}^{-1}$

M.M. $N_2 = 28$ g/mol

M.M. Ni = 58.7 g/mol

 $\rho_{N2} = 0.8 \text{ g/cm}^3$

 $\rho_{Ni} = 8.9 \text{ g/cm}^3$

 $P_0 = 760 \text{ mm Hg} = 1 \text{ atm}$

- a) Calcule a área total.
- a) Calculate the total área.

Single point BET (P/P₀ ≈ 0.3):
$$\frac{P/P_0}{n^a (1 - P/P_0)} = \frac{1}{n_m^a} \frac{P}{P_0}$$

Equação simplificada Simplified equation

ou seja:
$$\frac{P}{n^a (P_0 - P)} = \frac{1}{n_m^a} \frac{P}{P_0}$$
 that is:

dividindo por P:
$$\frac{1}{n^a (P_0 - P)} = \frac{1}{n_m^a P_0}$$

ou seja:
$$\frac{P_0}{n^a (P_0 - P)} = \frac{1}{n_m^a}$$

Logo:
$$n_m^a = \frac{n^a (P_0 - P)}{P_0}$$

Sendo:	P (mm Hg)	152	722	750
As:	$n^a imes 10^3$ (mol/g _{cat})	2.30	10.30	10.30

$$\frac{P}{P_0} = \frac{152}{760} = 0.2 \text{ (único ponto mais próximo de 0.3)}$$
(the only closest value to 0.3)

Logo:
$$n_m^a = n^a (1 - \frac{P}{P_0}) = 2.30 \times 10^{-3} \times (1 - \frac{152}{760}) = 1.84 \times 10^{-3} \text{ mol/g}_{cat}$$

$$n_{\rm m}^{\rm a} = 1.84 \times 10^{-3} \, {\rm mol/g_{cat}}$$

Área total:

Total área:

$$S_{BET} = n_{m}^{a} N A_{m} = 1.84 \times 10^{-3} \text{ mol/g}_{cat} \times 6.023 \times 10^{23} \text{ mol}^{-1} \times 16.2 \times 10^{-20} \text{ m}^{2} = 179 \text{ m}^{2}/\text{g}_{cat}$$

Dados/Data:

 A_m = área ocupada por molécula de adsorvido = 16.2 Å²/molécula (para N₂ a 77K)

 A_m = Area occupied by an adsorbed molecule = 16.2 Å²/molecule (for N₂ at 77K)

N = número de Avogadro = 6.023×10²³ mol⁻¹

 $N = Avogadro's number = 6.023 \times 10^{23} \text{ mol}^{-1}$

 n_m^a - número de moles de adsorbato por grama de sólido necessários para formar uma monocamada à superfície

 n_m^a - number of moles of adsorbate per gram of solid required to form a monolayer on the surface

- b) Calcule o volume de poros.
- b) Calculate the pore volume.

Regra de Gurvitsh (para isotérmicas do tipo IV)
Gurvitsch Rule (for type IV isotherms)

Onde/where:

 V_p = volume (total) de poros (cm³/g_{cat})

 $V_p = \text{(total)} \text{ volume of pores (cm}^{3/}g_{cat})$

 n_{sat} = quantidade adsorvida na saturação (mol/g_{cat})

 n_{sat} = amount adsorbed at saturation (mol/g_{cat})

 $V_{\rm M}^{\rm L}$ = volume molar do adsorvido no estado líquido (cm³/mol)

 $V_{\rm M}^{\rm L}$ = molar volume of the adsorbate in the liquid state (cm³/mol)

P (mm Hg)	152	722	750
$n^a \times 10^3$ (mol/g _{cat})	2.30	10.30	10.30

Saturação Saturation

$$n_{sat} = 10.30 \times 10^{-3} \text{ mol/g}_{cat}$$

 $n_{sat} = 10.30 \times 10^{-3} \text{ mol/g}_{cat}$

 n_{sat} = quantidade adsorvida na saturação (mol/ g_{cat})

 n_{sat} = amount adsorbed at saturation (mol/ g_{cat})

como: $\rho = m/V$

temos:

 $V = m/\rho$

as:

we have:

logo: thus: V_M^L (N₂ liq) = M/ ρ = $\frac{28 \text{ g/mol}}{0.80 \text{ g/cm}^3}$ = 35 cm³/mol

V_M^L = volume molar do adsorvido no estado líquido (cm³/mol)

 $V_{\rm M}^{\rm L}$ = molar volume of the adsorbate in the liquid state (cm³/mol)

Dados/Data: M.M. $N_2 = 28$ g/mol $\rho_{N2} = 0.8$ g/cm³

$$V_p = n_{sat} V_M^L = 10.30 \times 10^{-3} \text{ mol/g}_{cat} \times 35 \text{ cm}^3/\text{mol} = 0.36 \text{ cm}^3/\text{g}_{cat}$$

- c) Calcule a área metálica e a dispersão metálica.
- c) Calculate the metallic area and metallic dispersion.

Considerando partículas esféricas: volume area
$$= \frac{V}{S} = \frac{\frac{4}{3}\pi R^3}{4\pi R^2} = \frac{R}{3} = \frac{d}{6}$$
 pois diâmetro = 2×raio as diameter = 2×radius

Logo:
$$S = \frac{6V}{d} = \frac{6 \text{ m}}{\rho \text{ d}}$$
 pois: $\rho = m/V \Leftrightarrow V = m/\rho$

Semelhante a:
$$S_{M} = \frac{6 \text{ y}}{\rho \text{ dp}} = \frac{6 \times 0.01}{8.9 \times 10^{6} \text{ g/m}^{3} \times 20 \times 10^{-10} \text{m}} = 3.37 \text{ m}^{2}/\text{g}$$

$$= 3.37 \text{ m}^{2}/\text{g}$$

$$\frac{6 \times 0.023 \times 10^{23}}{\rho_{Ni} = 8.9 \text{ g/cm}^{3}}$$

$$\frac{6 \times 0.01}{\rho_{Ni} = 8.9 \text{ g/cm}^{3}}$$

$$D_{M} = \frac{S_{M} n_{s}}{N v / M} = \frac{3.37 \text{ m}^{2}/\text{g} \times 1.54 \times 10^{19} \text{m}^{-2}}{6.023 \times 10^{23} \text{ mol}^{-1} \times 0.01/58.7 \text{ g/mol}^{-1}} = 0.51 \text{ (51\%)}$$

$$n_{s} = 1.54 \times 10^{19} \text{ m}^{-2}$$

$$d_{p} = 20 \text{ Å}$$

$$y = 1\% \text{ Ni (0.01)}$$

Dados/Data:

 $N = 6.023 \times 10^{23} \text{ mol}^{-1}$

M.M.(Ni) = 58.7 g/mol

Nota: Fórmulas semelhantes usadas em XRD e quimissorção, mas os diâmetros obtidos pelas duas técnicas não são comparáveis, pois correspondem a médias diferentes (em difração de raios X temos média em volume e em quimisorção temos média em área)

Note: Similar formulas used in XRD and chemisorption, but the diameters obtained by the two techniques are not comparable because they correspond to different averages (in X-ray diffraction, we have a volume average, and in chemisorption, we have an area average)

d) Calcule o volume e a área de meso e microporos.

d) Calculate the volume and area of meso and micropores.

$$\text{vol}_{\text{meso}} = \int_{100}^{200} \frac{\text{dV}}{\text{dR}} \, dR = \frac{(200-100) \, \text{\AA} \times 6 \times 10^{-3} \, \text{cm}^3/\text{g}_{\text{cat}} / \text{\AA}}{2} = 0.30 \, \text{cm}^3/\text{g}_{\text{cat}}$$

Para poros cilíndricos:
$$\frac{V}{S} = \frac{R}{2}$$
 pois: $V = \pi R^2 h$ as: $S = 2 \pi R h$

Logo:
$$S_{meso} = \frac{2 V_{meso}}{R_{meso}} = \frac{2 \times 0.30 \times 10^{-6} \, \text{m}^3/g_{cat}}{150 \times 10^{-10} \, \text{m}} = 40 \, \text{m}^2/g_{cat}$$

$$\text{Vol}_{\text{total}} = \text{Vol}_{\text{meso}} + \text{Vol}_{\text{mic}}$$
 Logo:
 Thus: $\text{Vol}_{\text{mic}} = \text{Vol}_{\text{total}} - \text{Vol}_{\text{meso}} = 0.36 - 0.30 = 0.06 \text{ cm}^3/g_{\text{cat}}$

$$S_{mic} = S_{total} - S_{meso} = 179 - 40 = 139 \text{ m}^2/\text{g}$$

$$R_{\text{mic}} = \frac{2 \text{ V}_{\text{mic}}}{S_{\text{mic}}} = \frac{2 \times 0.06 \text{ cm}^3/\text{g}}{139 \times 10^4 \text{ cm}^2/\text{g}} = 8.6 \times 10^{-8} \text{ cm} = 8.6 \text{ Å}$$

- 6) Um catalisador de Fe suportado com 0.5% do metal em peso foi caraterizado por picnometria, adsorção de azoto e adsorção de hidrogénio.
- Densidade determinada por picnometria de He: 2.82 g/cm³
- Isotérmicas de equilíbrio de adsorção e dessorção de N₂ a 77K:

P/P ₀	Adsorção (mmol/g _{cat})	Dessorção (mmol/g _{cat})
0.03	2.20	-
0.15	5.15	-
0.45	7.15	-
0.65	9.10	9.30
0.75	10.7	12.5
0.80	12.0	15.9
0.85	13.9	17.9
0.90	16.4	17.9
0.95	17.9	17.9
1.00	17.9	17.9

A quantidade de H₂ adsorvido que satura a superfície à temperatura de 50°C é 0.85 cm³ PTN/g_{cat}.

Faça a representação da isotérmica.

Determine, justificando os cálculos:

- a) A área específica do catalisador.
- b) O raio médio dos poros.
- c) A porosidade e as massas específicas real e aparente.
- d) A dimensão máxima dos poros do catalisador.
- e) A área específica do metal, o tamanho médio das cristalites e a sua dispersão.

Dados (Fe):

$$\rho = 7.6 \text{ g/cm}^3$$

 $n_s = 1.63 \times 10^{19} \text{ átomos/m}^2$
 $M.M.(Fe) = 55.85 \text{ g/mol}$

Dados (N_2 a 77 K):

M.M.(N) = 14 g/mol;

$$\rho = 0.80$$
 g/cm³
 $A_m = 16.2$ Å²/molécula
 $\gamma = 8.95$ mN/m (tensão superficial)

- 6) A 0.5% by weight iron-supported catalyst was characterized through helium pycnometry, nitrogen adsorption, and hydrogen adsorption.
- Density determined by He pycnometry: 2.82 g/cm³
- Equilibrium adsorption and desorption isotherms of N₂ at 77K:

P/P ₀ Adsorption (mmol/g _{cat}) Desorption (mmol/g _{cat}) 0.03 2.20 - 0.15 5.15 - 0.45 7.15 - 0.65 9.10 9.30 0.75 10.7 12.5 0.80 12.0 15.9 0.85 13.9 17.9 0.90 16.4 17.9 0.95 17.9 17.9			
0.15 5.15 - 0.45 7.15 - 0.65 9.10 9.30 0.75 10.7 12.5 0.80 12.0 15.9 0.85 13.9 17.9 0.90 16.4 17.9	P/P ₀	· ·	
0.45 7.15 - 0.65 9.10 9.30 0.75 10.7 12.5 0.80 12.0 15.9 0.85 13.9 17.9 0.90 16.4 17.9	0.03	2.20	-
0.65 9.10 9.30 0.75 10.7 12.5 0.80 12.0 15.9 0.85 13.9 17.9 0.90 16.4 17.9	0.15	5.15	-
0.75 10.7 12.5 0.80 12.0 15.9 0.85 13.9 17.9 0.90 16.4 17.9	0.45	7.15	-
0.80 12.0 15.9 0.85 13.9 17.9 0.90 16.4 17.9	0.65	9.10	9.30
0.85 13.9 17.9 0.90 16.4 17.9	0.75	10.7	12.5
0.90 16.4 17.9	0.80	12.0	15.9
	0.85	13.9	17.9
0.95 17.9 17.9	0.90	16.4	17.9
	0.95	17.9	17.9
1.00 17.9 17.9	1.00	17.9	17.9

The amount of H₂ adsorbed that saturates the surface at a temperature of 50°C is 0.85 cm³ PTN/g_{cat}.

Make the representation of the isotherm.

Calculate, justifying the calculations:

- a) The specific surface area of the catalyst.
- b) The average pore radius.
- c) Porosity and real and apparent specific masses.
- d) The maximum pore size of the catalyst
- e) The specific surface area of the metal, the average size of the crystallites, and their dispersion.

Data (Fe):

$$\rho = 7.6 \text{ g/cm}^3$$

 $n_s = 1.63 \times 10^{19} \text{ atoms/m}^2$
 $M.M.(Fe) = 55.85 \text{ g/mol}$

Data $(N_2 \text{ at } 77 \text{ K})$:

M.M.(N) = 14 g/mol;

$$\rho = 0.80$$
 g/cm³
 $A_m = 16.2$ Å²/molecule
 $\gamma = 8.95$ mN/m (surface tension)

Faça a representação da isotérmica.

Make the representation of the isotherm.

P/P ₀	Adsorção	Dessorção
	Adsorption	Desorption
	(mmol/g _{cat})	(mmol/g _{cat})
0.03	2.20	-
0.15	5.15	-
0.45	7.15	-
0.65	9.10	9.30
0.75	10.7	12.5
0.80	12.0	15.9
0.85	13.9	17.9
0.90	16.4	17.9
0.95	17.9	17.9
1.00	17.9	17.9

Tipo IV com histerese

a) Determine a área específica do catalisador. a) Calculate the specific surface area of the catalyst.

Single point BET (P/P₀ ≈ 0.3):
$$\frac{P/P_0}{n^a (1 - P/P_0)} = \frac{1}{n_m^a} \frac{P}{P_0}$$
 ou seja: $\frac{P}{n^a (P_0 - P)} = \frac{1}{n_m^a} \frac{P}{P_0}$

 P/P_0

0.03

0.15

0.45

0.65

0.75

0.80

0.85

0.90

0.95

1.00

Ads.

 $(mmol/g_{cat})$

2.20

7.15

9.10

10.7

12.0

13.9

16.4

17.9

17.9

5.15

Des.

 $(mmol/g_{cat})$

9.30

12.5

15.9

17.9

17.9

17.9

17.9

dividindo por P:
$$\frac{1}{n^a (P_0 - P)} = \frac{1}{n_m^a P_0} \quad \text{ou seja:} \quad \frac{P_0}{n^a (P_0 - P)} = \frac{1}{n_m^a} \quad \text{Logo:} \quad n_m^a = \frac{n^a (P_0 - P)}{P_0} = n^a (1 - \frac{P}{P_0})$$
 dividing by P:

 $P/P_0 = 0.15$ é o único ponto possível (abaixo de 0.3)

$$P/P_0 = 0.15$$
 is the only possible point (below 0.3)

Assim/Thus:
$$n_m^a = 5.15 \times (1 - 0.15) = 4.38 \text{ mmol/g}_{cat}$$

$$\mathbf{S} = \mathbf{n_m^a} \ \mathbf{N} \ \mathbf{A_m} = 4.38 \times 10^{-3} \ \text{mol/g}_{cat} \times 6.023 \times 10^{23} \ \text{mol}^{-1} \times 16.2 \times 10^{-20} \ \text{m}^2$$

$$S = 427 \text{ m}^2/g_{cat}$$

Dados/Data: N = número de Avogadro = Avogadro's number = 6.023×10^{23} mol⁻¹ $A_m =$ área ocupada por molécula de adsorvido = Area occupied by an adsorbed molecule = $16.2 \text{ Å}^2/\text{molecule}$ (for N_2 at 77K) $n^a = \text{moles}$ adsorbato/grama adsorvente = moles adsorbate/ gram adsorbent $n_m^a = \text{moles}$ adsorbato/grama de sólido necessários para formar uma monocamada à

superfície = moles of adsorbate per gram of solid needed to form a surface monolayer

- b) Determine o raio médio dos poros.
- b) Calculate the average pore radius.

Regra de Gurvitsh (isotérmica tipo IV) $V_p = n_{sat} V_M^L$ Gurvitsch Rule (type IV isotherm)

P/P ₀	Ads. (mmol/g _{cat})	Des. (mmol/g _{cat})
0.03	2.20	-
0.15	5.15	-
0.45	7.15	-
0.65	9.10	9.30
0.75	10.7	12.5
0.80	12.0	15.9
0.85	13.9	17.9
0.90	16.4	17.9
0.95	17.9	17.9
1.00	17.9	17.9

 V_p =volume (total) de poros = (total) pores volume (cm³/g_{cat}) n_{sat}= quant. adsorvida na saturação=amount adsorbed at saturation (mol/g_{cat}) $V_{\rm M}^{\rm L}$ = volume molar do adsorvido (est. líq.) = molar volume of adsorbate in the liquid state (cm³/mol)

como / as:
$$\rho = m/V$$
 temos / we have: $V = m/\rho$ logo / thus:

$$V_p = n_{sat} V_M^L = n_{sat} \frac{M}{\rho} = 17.9 \times 10^{-3} \text{ mol/g}_{cat} \times 28 \text{ g/mol/0.80 g/cm}^3 = 0.626 \text{ cm}^3/g_{cat}$$

Para poros cilíndricos:
$$\frac{V}{S} = \frac{R}{2}$$
 pois: $V = \pi R^2 h$ as: $S = 2 \pi R h$

Logo:
$$R_p = \frac{2 V_p}{S} = \frac{2 \times 0.626 \times 10^{-6} \text{ m}^3/\text{g}_{cat}}{427 \text{ m}^2/\text{g}_{cat}} = 2.93 \times 10^{-9} \text{ m} = 29.3 \text{ Å}$$

 $n_{sat} = 17.9 \times 10^{-3} \text{ mol/g}_{cat}$

saturação

saturation

Dados/Data: (N₂ at 77 K): ρ N₂ = 0.80 g/cm³; M.M. N₂ = 28 g/mol

- c) Determine a porosidade e as massas específicas real e aparente.
- c) Calculate the porosity and real and apparent specific masses.

Picnometria de Hélio e Mercúrio Helium and mercury picnometry

- ✓ Medição sucessiva dos volumes de hélio (V_{He}) e de mercúrio (V_{Hg}) deslocados por imersão da amostra
- ✓ Successive measurement of the volumes of He (V_{He}) and Hg (V_{Hg}) displaced by immersing the sample
- ✓ O sólido é imerso em Hg a 1 atm; o Hg não pode penetrar em poros de diâmetro inferior a 14 mm
- ✓ The solid is immersed in Hg at 1 atm; and Hg cannot penetrate pores with a diameter below14 mm
- ✓ A molécula de hélio é suficientemente pequena para penetrar nos poros mais finos.
- ✓ The helium molecule is small enough to penetrate even the finest pores.

Densidade determinada por picnometria de Hélio = densidade (massa específica) real do sólido Density determined by helium picnometry = Real density (specific mass) of the solid =

$$= \rho_s = 2.82 \text{ g/cm}^3$$

$$\rho_{s} = \frac{m}{V_{He}} = \frac{m}{\text{volume de s\'olido}} = \frac{m}{\text{volume of solid}} = \frac{m}{V_{s}} \qquad \text{Logo} \\ \text{thus:} \quad V_{s} = \frac{1}{\rho_{s}} = \frac{1}{2.82 \text{ g/cm}^{3}} = 0.355 \text{ cm}^{3}/g_{cat}$$

$$\rho_p$$
 = Densidade aparente do sólido = Apparent density of the solid = $\frac{m}{V_{Hg}}$ = $\frac{m}{V_p + V_s}$ =

$$= \frac{m}{\text{vol. total (poros+sólido)}} = \frac{m}{\text{total vol. (pores+solid)}} = \frac{1}{0.626 \text{ cm}^3/g_{\text{cat}} + 0.355 \text{cm}^3/g_{\text{cat}}} = 1.02 \text{ g/cm}^3$$

$$V_p \text{ (b)}$$

Porosidade = Porosity =
$$\varepsilon = \frac{V_p}{V_p + V_s} = \frac{0.626 \text{ cm}^3/g_{cat}}{(0.626 + 0.355) \text{ cm}^3/g_{cat}} = 0.638 (63.8\%)$$

(considerando / considering m = 1 g amostra / sample)

- d) Determine a dimensão máxima dos poros do catalisador.
- d) Calculate the maximum pore size of the catalyst.

Equação de Kelvin (relaciona a **curvatura do menisco líquido** no poro com a pressão relativa P/P₀ para a qual se verifica a condensação). Para **poros cilíndricos**:

Kelvin equation (relating the **curvature of the liquid meniscus** in the pore to the relative pressure P/P0 at which condensation occurs). For **cylindrical pores**:

$$\mathbf{r_K} = \frac{-2 \, \gamma \, \mathbf{V_M^L}}{\mathbf{RT} \, \mathbf{ln}(\frac{\mathbf{P}}{\mathbf{P_0}})}$$

 $\mathbf{r}_{\mathbf{K}}$ = raio médio de curvatura do menisco líquido no poro (unidade de comprimento)

 γ = tensão superficial (unidades de força/unidade de comprimento)

 V_{M}^{L} = volume molar do adsorvido no estado liquido (cm³/mol)

R = constante dos gases perfeitos (8.314 JK⁻¹mol⁻¹)

T = temperatura (K)

 P/P_0 = pressão relativa

Where:

 r_K = average radius of curvature of the liquid meniscus in the pore (length unit)

 γ = surface tension (force per length unit)

 V_{M}^{L} = molar volume of the adsorbate in the liquid state (cm³/mol)

 \mathbf{R} = universal gas constant (8.314 JK⁻¹mol⁻¹)

T = temperature (K)

 P/P_0 = relative pressure

$$\mathbf{r_{K}} = \frac{-2\gamma V_{M}^{L}}{RT \ln(\frac{P}{P_{0}})} = \frac{-2 \times 8.95 \times 10^{-3} \text{ Nm}^{-1} \times 28 \text{ g/mol}^{-1} / 0.80 \times 10^{6} \text{ g/m}^{-3}}{8.314 \text{ J/K}^{-1} \text{ m/ol}^{-1} \times 77 \text{ K} \times \ln(0.85)} = 6.02 \times 10^{-9} \text{ m} = 60.2 \text{ Å}$$

P/P ₀	Ads. (mmol/g _{cat})	Des. (mmol/g _{cat})
0.03	2.20	-
0.15	5.15	-
0.45	7.15	-
0.65	9.10	9.30
0.75	10.7	12.5
0.80	12.0	15.9
0.85	13.9	17.9
0.90	16.4	17.9
0.95	17.9	17.9
1.00	17.9	17.9

t (Halsey)
$$t = 3.54 \times \left| \frac{-5}{\ln(\frac{P_0}{P})} \right|^{1/3} = 3.54 \times \left| \frac{-5}{\ln(\frac{1}{0.85})} \right|^{1/3} = 11.1 \text{ Å}$$

 $r_p = r_K + t = 60.2 + 11.1 = 71.3 \text{ Å}$ raio dos poros raio do espes

maiores (r_p) menisco (r_K) radius of the larger pores (r_p) meniscus (r_K)

espessura do
filme adsorvido
thickness of the
adsorbed film

Filme adsorvido / Adsorbed film

Condensed

condensed

Parede do poro / Pore wall

Não há evaporação até $P/P_0 = 0.85$ No evaporation until $P/P_0 = 0.85$

Dados / Data (N₂, 77 K): $\rho = 0.80$ g/cm³; M.M.(N₂) = 28 g/mol γ = tensão superficial = surface tension= 8.95 mN/m

- e) Determine a área específica do metal, o tamanho médio das cristalites e a sua dispersão.
- e) Calculate metal specific surface area, average size of crystallites and their dispersion.

Área metálica: $S_M = n_m^a N n/n_s$ (Quimissorção/Chemisorption)

Onde/where:

 \mathbf{n}_{m}^{a} = moles adsorbato/grama de sólido necessários para formar uma monocamada à superfície = moles of adsorbate per gram of solid needed to form a surface monolayer

N = número de Avogadro = Avogadro's number = 6.023 × 10²³ mol⁻¹

 \mathbf{n} = número de átomos por molécula adsorvida = number of atoms per adsorbed molecule (n=2, N₂)

 $\mathbf{n_s}$ = número de átomos na superfície por unidade de área (valor tabelado) = 1.63×10¹⁹ átomos Fe/m²

= number of atoms on the surface per unit area (tabulated value) = 1.63×10¹⁹ atoms Fe/m²

Dados: Quantidade de H₂ adsorvido que satura a superfície à temperatura de 50°C é 0.85 cm³ PTN/g_{cat}. **Data**: Quantity of H₂ adsorbed that saturates the surface at a temperature of 50°C is 0.85 cm³ PTN/g_{cat}.

$$\mathbf{S_M} = \mathbf{n_m^a} \ \mathbf{N} \ \mathbf{n/n_s} = \frac{0.85 \ \text{cm}^3/\text{g}_{\text{cat}}}{22400 \ \text{cm}^3 \ \text{mol}^{-1}} \times 6.023 \times 10^{23} \ \text{mol}^{-1} \times \frac{2 \ \text{átomos}}{1.63 \times 10^{19} \ \text{átomos/m}^2} = 2.8 \ \text{m}^2/\text{g}_{\text{cat}}$$

1 mol --- 22400 cm³ (volume molar gás perfeito = molar volume of perfect gas = 22.4 dm³ mol⁻¹) \times -----0.85 cm³

$$\frac{\text{volume}}{\text{area}} = \frac{V}{S} = \frac{\frac{4}{3}\pi R^3}{4\pi R^2} = \frac{R}{3} = \frac{d}{6}$$
 pois diâmetro = 2×raio as diameter = 2×radius

Logo:
$$S = \frac{6V}{d} = \frac{6 \text{ m}}{\rho \text{ d}}$$

pois:
$$\rho = m/V \Leftrightarrow V = m/\rho$$
 as:

Ou seja:
$$S_M = \frac{6 \text{ y}}{\rho \text{ d}_p} \Leftrightarrow d_p = 6 \text{ y} / \rho S_M = \frac{6 \times 0.005}{7.6 \text{ g/cm}^3 \times 2.8 \times 10^4 \text{ cm}^2/\overline{g}} 1.36 \times 10^{-7} \text{ cm} = 13.6 \text{ Å}$$

$$D_{M} = \frac{S_{M} n_{S}}{N y / M} = \frac{2.8 \text{ m}^{2}/\text{g} \times 1.63 \times 10^{19} \text{ m}^{-2}}{6.023 \times 10^{23} \text{ mol}^{-1} \times 0.005 / 55.85 \text{ gmol}^{-1}} = 0.847 (84.7\%)$$

M.M.

Dados/Data:

$$\rho = 7.6 \text{ g/cm}^3$$

 $n_s = 1.63 \times 10^{19} \text{ atoms/m}^2$
 $y = 0.5 \% \text{ Fe}$
M.M.(Fe) = 55.85 g/mol