Introduction to Statistical Machine Learning

Introduction to Statistical Machine Learning

© 2019
Ong & Walder & Webers
Data61 | CSIRO
The Australian National

Cheng Soon Ong & Christian Walder

Machine Learning Research Group
Data61 | CSIRO
and
College of Engineering and Computer Science
The Australian National University

Canberra February – June 2019

(Many figures from C. M. Bishop, "Pattern Recognition and Machine Learning")

Part VII

Mixture Models and EM 1

Introduction to Statistical Machine Learning

Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Review

Motivation

K-means Cluster

K-means Applications

Review

Motivatio

K-means Clustering

K-means Applications

- Sum rule $p(A, B) = \sum_{C} p(A, B, C)$
- Product rule p(A, B) = p(A|B)p(B)
- Why do we optimize the log likelihood?

© 2019
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

- Review
- Motivation
- x-means chastering
 - 11
- Mixture of Gaussians

- Estimate best predictor = training = learning Given data $(x_1, y_1), \dots, (x_n, y_n)$, find a predictor $f_{\mathbf{w}}(\cdot)$.
 - Identify the type of input x and output y data
 - **2** Propose a (linear) mathematical model for $f_{\mathbf{w}}$
 - Design an objective function or likelihood
 - Calculate the optimal parameter (w)
 - Model uncertainty using the Bayesian approach
 - Implement and compute (the algorithm in python)
 - Interpret and diagnose results

We will study unsupervised learning this week

Review

Motivation

it means emstering

K-means Applications

- Complex marginal distributions over observed variables can be expressed via more tractable joint distributions over the expanded space of observed and latent variables.
- Mixture Models can also be used to cluster data.
- General technique for finding maximum likelihood estimators in latent variable models: expectation-maximisation (EM) algorithm.

Introduced very recently to show . . .

©2019
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Motivation

K-means Clusteri

K-means Applications

... that already a mixture of three Gaussian can be fun.

$$p(x) = \frac{3}{10} \mathcal{N}(x \mid 5, 0.5) + \frac{3}{10} \mathcal{N}(x \mid 9, 2) + \frac{4}{10} \mathcal{N}(x \mid 2, 20)$$

Introduction to Statistical Machine Learning

Ong & Walder & Webers Data61 | CSIRO The Australian National

Motivation

• Use μ, σ as latent variables and define a distribution

$$p(\mu,\sigma) = \begin{cases} \frac{3}{10} & \text{if } (\mu,\sigma) = (5,0.5) \\ \frac{3}{10} & \text{if } (\mu,\sigma) = (9,2) \\ \frac{4}{10} & \text{if } (\mu,\sigma) = (2,20) \\ 0 & \text{otherwise}. \end{cases}$$

$$p(x) = \int_{-\infty}^{\infty} \int_{0}^{\infty} p(x, \mu, \sigma) d\mu d\sigma$$

$$= \int_{-\infty}^{\infty} \int_{0}^{\infty} p(x | \mu, \sigma) p(\mu, \sigma) d\mu d\sigma$$

$$= \frac{3}{10} \mathcal{N}(x | 5, 0.5) + \frac{3}{10} \mathcal{N}(x | 9, 2) + \frac{4}{10} \mathcal{N}(x | 2, 20)$$

Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Motivation

K-means Clustering

means Application.

Review

Motivation

K-means Clustering

C-means Applications

- Given a set of data $\{\mathbf{x}_1,\ldots,\mathbf{x}_N\}$ where $\mathbf{x}_n\in\mathbb{R}^D$, $n=1,\ldots,N$.
- Goal: Partition the data into K clusters.

- Review
- Motivation
- K-means Clustering
- K-means Appacations
- Mixture of Gaussians

- Given a set of data $\{\mathbf{x}_1,\ldots,\mathbf{x}_N\}$ where $\mathbf{x}_n \in \mathbb{R}^D$, $n=1,\ldots,N$.
- Goal: Partition the data into K clusters.
- Each cluster contains points close to each other.
- Introduce a prototype $\mu_k \in \mathbb{R}^D$ for each cluster.
- Goal: Find
 - **1** a set prototypes μ_k , k = 1, ..., K, each representing a different cluster.
 - an assignment of each data point to exactly one cluster.

©2019
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Review

Motivation

K-means Clustering

x-means Applications

- Start with arbitrary chosen prototypes μ_k , k = 1, ..., K.
 - Assign each data point to the closest prototype.
 - Calculate new prototypes as the mean of all data points assigned to each of them.
- In the following, we will formalise this introducing a notation which will be useful later.

Review

Motivation

K-means Clustering

**

Mixture of Gaussians

Binary indicator variables

$$r_{nk} = \begin{cases} 1, & \text{if data point } \mathbf{x}_n \text{ belongs to cluster } k \\ 0, & \text{otherwise} \end{cases}$$

using the 1-of-K coding scheme.

Define a distortion measure

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_{n} - \boldsymbol{\mu}_{k}\|^{2}$$

• Find the values for $\{r_{nk}\}$ and $\{\mu_k\}$ so as to minimise J.

• Find the values for $\{r_{nk}\}$ and $\{\mu_k\}$ so as to minimise J. • But $\{r_{nk}\}$ depends on $\{\mu_k\}$, and $\{\mu_k\}$ depends on $\{r_{nk}\}$.

K-means Clustering

- DATA |
- Review
- Motivation
- K-means Clustering
- K-means Application
- Mixture of Gaussians

- Find the values for $\{r_{nk}\}$ and $\{\mu_k\}$ so as to minimise J.
- But $\{r_{nk}\}$ depends on $\{\mu_k\}$, and $\{\mu_k\}$ depends on $\{r_{nk}\}$.
- Iterate until no further change
 - **1** Minimise J w.r.t. r_{nk} while keeping $\{\mu_k\}$ fixed,

$$r_{nk} = \begin{cases} 1, & \text{if } k = \arg\min_{j} \|\mathbf{x}_{n} - \boldsymbol{\mu}_{j}\|^{2} \\ 0, & \text{otherwise.} \end{cases}$$

 $\forall n=1,\ldots,N$

Expectation step

② Minimise J w.r.t. $\{\mu_k\}$ while keeping r_{nk} fixed,

$$0 = 2 \sum_{n=1}^{N} r_{nk} (\mathbf{x}_n - \boldsymbol{\mu}_k)$$
$$\boldsymbol{\mu}_k = \frac{\sum_{n=1}^{N} r_{nk} \mathbf{x}_n}{\sum_{n=1}^{N} r_{nk}}$$

Maximisation step

Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

otivation

K-means Clustering

neans Applicatio

© 2019
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

lotivation

K-means Clustering

neans Application

K-means Clustering - Cost Function

Cost function *J* after each E step (blue points) and M step (red points).

Introduction to Statistical Machine Learning

© 2019
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Review

Motivation

K-means Clustering

means Appucation:

- Initial condition crucial for convergence.
- What happens, if at least one cluster centre is too far from all data points?
- Complex step: Finding the nearest neighbour. (Use triangle inequality; build K-D trees, ...)
- Generalise to non-Euclidean dissimilarity measures $\mathcal{V}(\mathbf{x}_n, \boldsymbol{\mu}_k)$ (called *K*-medoids algorithm),

$$\widetilde{J} = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \mathcal{V}(\mathbf{x}_n, \boldsymbol{\mu}_k).$$

- Online stochastic algorithm
 - **①** Draw data point \mathbf{x}_n and locate nearest prototype $\boldsymbol{\mu}_k$.
 - **②** Update only μ_k using decreasing learning rate η_n

$$oldsymbol{\mu}_k^{\mathsf{new}} = oldsymbol{\mu}_k^{\mathsf{old}} + \eta_n (\mathbf{x}_n - oldsymbol{\mu}_k^{\mathsf{old}}).$$

Ong & Walder & Webers Data61 | CSIRO The Australian National University

Review

Motivation

K-means Clustering

K-means Applications

© 2019
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Review

Motivation

K-means Applications

10.

- Segment an image into regions of reasonable homogeneous appearance.
- Each pixel is a point in \mathbb{R}^3 (red, blue, green). (Note that the pixel intensities are bounded in the range [0,1] and therefore this space is strictly speaking not Euclidean).
- Run K-means on all points of the image until convergence. Replace all pixels with the corresponding mean μ_k .
- Results in an image with a palette only *K* different colours.
- There are much better approaches to image segmentation (but it is an active research topic), this here serves only to illustrate K-means.

Illustrating K-means Clustering - Segmentation

Introduction to Statistical Machine Learning

© 2019
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

1011011

Motivation

K-means Applications

Illustrating K-means Clustering - Segmentation

Introduction to Statistical Machine Learning

© 2019
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Motivation

K-means Chistering

K-means Applications

© 2019 Ong & Walder & Webers Data61 | CSIRO The Australian National University

Reviev

Motivation

K-means Applications

- Lossy data compression: accept some errors in the reconstruction as trade-off for higher compression.
- Apply K-means to the data.
- Store the code-book vectors μ_k .
- Store the data in the form of references (labels) to the code-book. Each data point has a label in the range [1,..., K].
- New data points are also compressed by finding the closest code-book vector and then storing only the label.
- This technique is also called vector quantisation.

Illustrating K-means Clustering - Compression

4.2%

16.7%

8.3%

100 %

Introduction to Statistical Machine Learning

© 2019
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Review

Motivation

K-means Ciustering

K-means Applications

© 2019 Ong & Walder & Webers Data61 | CSIRO The Australian National University

Review

Motivation

K-means Clusterin

K-means Applications

- We have already seen a mixture of two Gaussians for linear classification
- However in the clustering scenario, we do not observe the class membership
- Strategy (this is vague)
 - We have a difficult distribution $p(\mathbf{x})$
 - \bullet We introduce a new variable \mathbf{z} to get $p(\mathbf{x},\mathbf{z})$
 - Model $p(\mathbf{x}, \mathbf{z}) = p(\mathbf{x}|\mathbf{z})p(\mathbf{z})$ with easy distributions

ix-means constering

ve - - - - - -

Mixture of Gaussians

 A Gaussian mixture distribution is a linear superposition of Gaussians of the form

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \, \mathcal{N}(\mathbf{x} \,|\, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k).$$

- As $\int p(\mathbf{x}) d\mathbf{x} = 1$, if follows $\sum_{k=1}^{K} \pi_k = 1$.
- Let us write this with the help of a latent variable z.

Definition (Latent variables)

Latent variables (as opposed to observable variables), are variables that are not directly observed but are rather inferred (through a mathematical model) from other variables that are observed and directly measured. They are also sometimes called hidden variables, model parameters, or hypothetical variables.

- Mixture of Gaussians

 $p(\mathbf{x}, \mathbf{z}) = p(\mathbf{z}) p(\mathbf{x} \mid \mathbf{z})$

There are exactly K different possible vectors z depending

• Define the joint distribution $p(\mathbf{x}, \mathbf{z})$ in terms of a marginal distribution $p(\mathbf{z})$ and a conditional distribution $p(\mathbf{x} \mid \mathbf{z})$ as

• Let $\mathbf{z} \in \{0,1\}^K$ and $\sum_{k=1}^K z_k = 1$. In words, \mathbf{z} is a K-dimensional vector in 1-of-K representation.

on which of the K entries is 1.

Review

Motivation

Mixture of Gaussians

Set the marginal distribution to

$$p(z_k=1)=\pi_k$$

where $0 \le \pi_k \le 1$ together with $\sum_{k=1}^K \pi_k = 1$.

Because z uses 1-of-K coding, we can also write

$$p(\mathbf{z}) = \prod_{k=1}^K \pi_k^{z_k}.$$

ullet Set the conditional distribution of x given a particular z to

$$p(\mathbf{x} | z_k = 1) = \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k),$$

or

$$p(\mathbf{x} \mid \mathbf{z}) = \prod_{k=1}^K \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_k},$$

Mixture of Gaussians

 The marginal distribution over x is now found by summing the joint distribution over all possible states of z

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x} \mid \mathbf{z}) = \sum_{\mathbf{z}} \prod_{k=1}^{K} \pi_k^{z_k} \prod_{k=1}^{K} \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_k}$$
$$= \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

- The marginal distribution of x is a Gaussian mixture.
- For several observations $\mathbf{x}_1, \dots, \mathbf{x}_N$ we need one latent variable \mathbf{z}_n per observation.
- What have we gained? Can now work with the joint distribution $p(\mathbf{x}, \mathbf{z})$. Will lead to significant simplification later, especially for EM algorithm.

Review

Motivation

--

11 means reprietations

Mixture of Gaussians

Conditional probability of z given x by Bayes' theorem

$$\gamma(z_k) = p(z_k = 1 \mid \mathbf{x}) = \frac{p(z_k = 1) p(\mathbf{x} \mid z_k = 1)}{\sum_{j=1}^{K} p(z_j = 1) p(\mathbf{x} \mid z_j = 1)}$$
$$= \frac{\pi_k \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

• $\gamma(z_k)$ is the responsibility of component k to 'explain' the observation \mathbf{x} .

One & Walder & Webers Data61 | CSIRO The Australian National

- Goal: Generate random samples distributed according to the mixture model.
 - **1** Generate a sample $\hat{\mathbf{z}}$ from the distribution $p(\mathbf{z})$.
 - ② Generate a value $\hat{\mathbf{x}}$ from the conditional distribution $p(\mathbf{x} \mid \hat{\mathbf{z}})$.
- Example: Mixture of 3 Gaussians, 500 points.

0.5 Original states of z. Marginal $p(\mathbf{x})$.

(R, G, B) - colours mixed according to $\gamma(z_{nk})$.

Mixture of Gaussians - Maximum Likelihood

- Given N data points, each of dimension D, we have the data matrix $\mathbf{X} \in \mathbb{R}^{N \times D}$ where each row contains one data point.
- Similarly, we have the matrix of latent variables $\mathbf{Z} \in \mathbb{R}^{N \times K}$ with rows \mathbf{z}_n^T .
- Assume the data are drawn i.i.d., the distribution for the data can be represented by a graphical model.

Introduction to Statistical Machine Learning

© 2019 Ong & Walder & Webers Data61 | CSIRO The Australian National University

.....

Motivation

c-means Applications

Keview

мопуаноп

Mixture of Gaussians

The log of the likelihood function is then

$$\ln p(\mathbf{X} \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_{k} \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right\}$$

• Significant problem: If a mean μ_j 'sits' directly on a data point \mathbf{x}_n then

$$\mathcal{N}(\mathbf{x}_n \,|\, \mathbf{x}_n, \sigma_j^2 \mathbf{I}) = \frac{1}{(2\pi)^{1/2}} \frac{1}{\sigma_j}.$$

- Here we assumed $\Sigma_k = \sigma_k^2 \mathbf{I}$. But problem is general, just think of a main axis transformation for Σ_k .
- Overfitting (in disguise) occurring again with the maximum likelihood approach.
- Use heuristics to detect this situation and reset the mean of the corresponding component of the mixture.

A K component mixture has a total of K! equivalent

when the parameters discovered by a model are

© 2019
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Review

Motivation

x-means Clustering

Mixture of Gaussians

 Maximising the log likelihood of a Gaussian mixture is more complex then for a single Gaussian. Summation over all K components inside of the logarithm make it harder.

Also called identifiability problem. Needs to be considered

solutions corresponding to the *K*! ways of assigning *K* sets

- Setting the derivatives of the log likelihood to zero does not longer result in a closed form.
- May use gradient-based optimisation.
- Or EM algorithm. Stay tuned.

of parameters to K solutions.

interpreted.

272of 232