Problem 1.

1(a) Show by explicit computation the Lorentz invariance of the Dirac Lagrangian, by considering a Lorentz transformation of the fields.

Solution. The Dirac Lagrangian is given by Eq. (3.34) in Peskin & Schroder:

$$\mathcal{L}_{\text{Dirac}} = \bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi.$$

According to their Eq. (3.33), $\bar{\psi}$ transforms as $\bar{\psi} \to \bar{\psi} \Lambda_{\frac{1}{2}}^{-1}$; also, $\psi \to \Lambda_{\frac{1}{2}} \psi$. For the divergence, we refer to their Eq. (3.3): $\partial_{\mu} \phi(x) \to (\Lambda^{-1})^{\nu}{}_{\mu} (\partial_{\nu} \phi) (\Lambda^{-1} x)$.

The Lorentz transformation of the Dirac Lagrangian is then [1, p. 42]

$$\begin{split} \bar{\psi}(x)(i\gamma^{\mu}\partial_{\mu} - m)\psi(x) &\to \bar{\psi}(\Lambda^{-1}x)\Lambda_{\frac{1}{2}}^{-1}[i\gamma^{\mu}(\Lambda^{-1})^{\nu}{}_{\mu}\partial_{\nu} - m)]\Lambda_{\frac{1}{2}}\psi(\Lambda^{-1}x) \\ &= \bar{\psi}(\Lambda^{-1}x)[i\Lambda_{\frac{1}{2}}^{-1}\gamma^{\mu}\Lambda_{\frac{1}{2}}(\Lambda^{-1})^{\nu}{}_{\mu}\partial_{\nu} - m]\Lambda_{\frac{1}{2}}^{-1}\Lambda_{\frac{1}{2}}\psi(\Lambda^{-1}x) \\ &= \bar{\psi}(\Lambda^{-1}x)[i\Lambda^{\mu}{}_{\sigma}\gamma^{\sigma}(\Lambda^{-1})^{\nu}{}_{\mu}\partial_{\nu} - m]\psi(\Lambda^{-1}x), \end{split}$$

where we have used Peskin & Schroeder (3.29), $\Lambda_{\frac{1}{2}}^{-1}\gamma^{\mu}\Lambda_{\frac{1}{2}}=\Lambda^{\mu}{}_{\nu}\gamma^{\nu}$. Then

$$\bar{\psi}(x)(i\gamma^{\mu}\partial_{\mu}-m)\psi(x)\to \bar{\psi}(\Lambda^{-1}x)[i\Lambda^{\mu}{}_{\sigma}\gamma^{\sigma}(\Lambda^{-1})^{\nu}{}_{\mu}\partial_{\nu}-m)]\psi(\Lambda^{-1}x)=\bar{\psi}(\Lambda^{-1}x)(i\gamma^{\nu}\partial_{\nu}-m)\psi(\Lambda^{-1}x),$$

which has the same form as \mathcal{L}_{Dirac} . So we have shown that the Dirac Lagrangian is Lorentz invariant.

1(b) Consider the chiral rotation of a massless Dirac field $\psi' = e^{i\alpha\gamma^5}\psi$. Find the corresponding Noether current. Show that the corresponding Noether charge measures the total helicity of a collection of massless Dirac particles, and that the addition of a mass term to the Lagrangian violates the symmetry. Find an equation that expresses the violation of current conservation by the mass.

Solution. The conserved charge is given in general by Peskin & Schroeder (2.12) and (2.13),

$$Q \equiv \int_{\text{all space}} j^0 d^3 x, \qquad \text{where } j^{\mu}(x) = \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \Delta \phi - J^{\mu}, \qquad (1)$$

where J^{μ} is a 4-divergence that arises when transforming the Lagrangian as in Peskin & Schroeder (2.10):

$$\mathcal{L}(x) \to \mathcal{L}(x) + \alpha \partial_{\mu} J^{\mu}(x).$$
 (2)

Under the rotation $\psi \to e^{i\alpha\gamma^5}\psi$, $\psi^{\dagger} \to \psi^{\dagger}e^{-i\alpha\gamma^5}$. Then, using $\bar{\psi} = \psi^{\dagger}\gamma^0$ as defined in Peskin & Schroeder (3.32),

$$\bar{\psi} \rightarrow \psi^\dagger e^{-i\alpha\gamma^5} \gamma^0 = -\psi^\dagger \gamma^0 e^{-i\alpha\gamma^5} = -\bar{\psi} e^{-i\alpha\gamma^5},$$

since $\{\gamma^{\mu}, \gamma^{5}\} = 0$ from Peskin & Schroeder (3.70). Then, using m = 0 in the Dirac Lagrangian, we have

$$\mathcal{L}_{\text{Dirac}} = i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi \to -i\bar{\psi}e^{-i\alpha\gamma^{5}}\gamma^{\mu}\partial_{\mu}e^{i\alpha\gamma^{5}}\psi = i\bar{\psi}\gamma^{\mu}e^{-i\alpha\gamma^{5}}\partial_{\mu}e^{i\alpha\gamma^{5}}\psi = i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi,$$

so the Dirac Lagrangian is indeed invariant under chiral transformations, and $J^{\mu}=0$.

The infinitesimal transformations associated with $\psi \to e^{i\alpha\gamma^5}\psi$ are

$$\alpha \Delta \psi = i\alpha \gamma^5 \psi, \alpha \Delta \bar{\psi} = i\alpha \bar{\psi} \gamma^5$$

Then we have the Noether current [1, p. 50]

$$j^{\mu} = -\left[\frac{\partial \mathcal{L}_{\text{Dirac}}}{\partial (\partial_{\mu} \psi)} \Delta \psi + \frac{\partial \mathcal{L}_{\text{Dirac}}}{\partial (\partial_{\mu} \bar{\psi})} \Delta \bar{\psi}\right] = \bar{\psi} \gamma^{\mu} \gamma^{5} \psi,$$

where we have multiplied by an arbitrary constant [1, p. 18].

Peskin & Schroeder (3.76) defines

$$j_L^\mu = \bar{\psi} \gamma^\mu \frac{1-\gamma^5}{2} \psi, \qquad \qquad j_R^\mu = \bar{\psi} \gamma^\mu \frac{1+\gamma^5}{2} \psi,$$

as the electric current densities of left- and right-handed particles. Note that $j^{\mu} = j_R^{\mu} - j_L^{\mu}$. Then we have the conserved charge

$$Q = \int d^3x \, \bar{\psi} \gamma^0 \gamma^5 \psi = \int d^3x \, (j_R^0 - j_L^0),$$

which tells us the total helicity of a collection of massless Dirac particles.

If $m \neq 0$ in the Dirac Lagrangian, then it transforms as

$$\mathcal{L}_{Dirac} = \bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi \rightarrow -\bar{\psi}e^{-i\alpha\gamma^{5}}(i\gamma^{\mu}\partial_{\mu} - m)e^{i\alpha\gamma^{5}}\psi = \bar{\psi}(\gamma^{\mu}e^{-i\alpha\gamma^{5}}\partial_{\mu} + e^{-i\alpha\gamma^{5}}m)e^{i\alpha\gamma^{5}}\psi = \bar{\psi}(i\gamma^{\mu}\partial_{\mu} + m)\psi,$$

which is not of the same form. So the symmetry is violated for nonzero m.

In order for the current to be conserved, we need the divergence $\partial_{\mu}j^{\mu}=0$. Note that

$$\partial_{\mu}j^{\mu} = (\partial_{\mu}\bar{\psi})\gamma^{\mu}\gamma^{5}\psi + \bar{\psi}\gamma^{\mu}\gamma^{5}\partial_{\mu}\psi.$$

Since ψ satisfies the Dirac equation, we can make use of the Dirac equation and its conjugate, given by Eqs. (3.31) and (3.35) in Peskin & Schroeder:

$$(i\gamma^{\mu}\partial_{\mu} - m)\psi = 0, \qquad -i\partial_{\mu}\bar{\psi}\gamma^{\mu} - m\bar{\psi} = 0.$$

So the divergence can be written [1, p. 51]

$$\partial_{\mu}j^{\mu} = (\partial_{\mu}\bar{\psi})\gamma^{\mu}\gamma^{5}\psi - \bar{\psi}\gamma^{5}\gamma^{\mu}\partial_{\mu}\psi = im\bar{\psi}\gamma^{5}\psi + \bar{\psi}\gamma^{5}im\psi = 2im\bar{\psi}\gamma^{5}\psi,$$

which is zero only if m is zero.

1(c) Find the Noether current related to charge conservation by considering a phase rotation of a Dirac field (of arbitrary mass) $\psi' = e^{i\alpha}\psi$.

Solution. We will once again use Eqs. (1) and (2). Under the rotation $\psi \to e^{i\alpha}\psi$, $\bar{\psi} \to \bar{\psi}e^{-i\alpha}$. Then the Dirac Lagrangian transforms as

$$\mathcal{L}_{\rm Dirac} \to \bar{\psi} e^{i\alpha} (i\gamma^{\mu}\partial_{\mu} - m) e^{-i\alpha} \psi = \bar{\psi} (i\gamma^{\mu}\partial_{\mu} - m) \psi,$$

so again $J^{\mu} = 0$.

The infinitesimal translations are

$$\alpha \Delta \psi = i\alpha \psi, \alpha \Delta \bar{\psi} \qquad \qquad = -i\alpha \bar{\psi},$$

and the Noether current is [1, p. 50]

$$j^{\mu} = -\left[\frac{\partial \mathcal{L}_{\text{Dirac}}}{\partial(\partial_{\mu}\psi)}\Delta\psi + \frac{\partial \mathcal{L}_{\text{Dirac}}}{\partial(\partial_{\mu}\bar{\psi})}\Delta\bar{\psi}\right] = \bar{\psi}\gamma^{\mu}\psi.$$

Problem 2. Lorentz group (Peskin & Schroeder 3.1) Recall from Eq. (3.17) the Lorentz commutation relations,

$$[J^{\mu\nu},J^{\rho\sigma}]=i(g^{\nu\rho}J^{\mu\sigma}-g^{\mu\rho}J^{\nu\sigma}-g^{\nu\sigma}J^{\mu\rho}+g^{\mu\sigma}J^{\nu\rho}).$$

2(a) Define the generators of rotations and boosts as

$$L^{i} = \frac{1}{2} \epsilon^{ijk} J^{jk}, \qquad K^{i} = J^{0i},$$

where i, j, k = 1, 2, 3. An infinitesimal Lorentz transformation can then be written

$$\Phi \to (1 - i\boldsymbol{\theta} \cdot \mathbf{L} - i\boldsymbol{\beta} \cdot \mathbf{K})\Phi. \tag{3}$$

Write the commutation relations of these vector operators explicitly. (For example, $[L^i, L^j] = i\epsilon^{ijk}L^k$.) Show that the combinations

$$\mathbf{J}_{+} = \frac{1}{2}(\mathbf{L} + i\mathbf{K}), \qquad \qquad \mathbf{J}_{-} = \frac{1}{2}(\mathbf{L} - i\mathbf{K})$$

commute with one another and separately satisfy the commutation relations of angular momentum.

Solution. Firstly, using Eq. (3.18),

$$\begin{split} [L^i,L^j] &= \left[\frac{1}{2}\epsilon^{i\mu\nu}J^{\mu\nu},\frac{1}{2}\epsilon^{j\rho\sigma}J^{\rho\sigma}\right] = \frac{1}{4}\epsilon^{i\mu\nu}\epsilon^{j\rho\sigma}[J^{\mu\nu},J^{\rho\sigma}] = \frac{i}{4}\epsilon^{i\mu\nu}\epsilon^{j\rho\sigma}(g^{\nu\rho}J^{\mu\sigma} - g^{\mu\rho}J^{\nu\sigma} - g^{\nu\sigma}J^{\mu\rho} + g^{\mu\sigma}J^{\nu\rho}) \\ &= \frac{i}{4}(\epsilon^{i\mu\nu}\epsilon^{j\rho\sigma}g^{\nu\rho}J^{\mu\sigma} - \epsilon^{i\mu\nu}\epsilon^{j\rho\sigma}g^{\mu\rho}J^{\nu\sigma} - \epsilon^{i\mu\nu}\epsilon^{j\rho\sigma}g^{\nu\sigma}J^{\mu\rho} + \epsilon^{i\mu\nu}\epsilon^{j\rho\sigma}g^{\mu\sigma}J^{\nu\rho}) \\ &= \frac{i}{4}(\epsilon^{i\mu\nu}\epsilon^{j\rho\sigma}g^{\nu\rho}J^{\mu\sigma} - \epsilon^{i\nu\mu}\epsilon^{j\rho\sigma}g^{\nu\rho}J^{\mu\sigma} - \epsilon^{i\mu\nu}\epsilon^{j\sigma\rho}g^{\nu\rho}J^{\mu\sigma} + \epsilon^{i\nu\mu}\epsilon^{j\sigma\rho}g^{\nu\rho}J^{\mu\sigma}) \\ &= \frac{i}{4}(\epsilon^{i\mu\nu}\epsilon^{j\rho\sigma}g^{\nu\rho}J^{\mu\sigma} + \epsilon^{i\mu\nu}\epsilon^{j\rho\sigma}g^{\nu\rho}J^{\mu\sigma} + \epsilon^{i\mu\nu}\epsilon^{j\rho\sigma}g^{\nu\rho}J^{\mu\sigma}) \\ &= i\epsilon^{i\mu\nu}\epsilon^{j\rho\sigma}g^{\nu\rho}J^{\mu\sigma}, \end{split}$$

where we have simply relabeled indices. Then, using $g^{ij} = -\delta^{ij}$ and $\epsilon^{ijk}\epsilon^{pqk} = \delta^{ip}\delta^{jq} - \delta^{iq}\delta^{jp}$ [3],

$$\begin{split} [L^i,L^j] &= -i\epsilon^{i\mu\nu}\epsilon^{j\rho\sigma}\delta^{\nu\rho}J^{\mu\sigma} = -i\epsilon^{i\mu\nu}\epsilon^{j\nu\sigma}J^{\mu\sigma} = i\epsilon^{i\mu\nu}\epsilon^{j\sigma\nu}J^{\mu\sigma} = i(\delta^{ij}\delta^{\mu\sigma} - \delta^{i\sigma}\delta^{\mu j})J^{\mu\sigma} = i(\delta^{ij}J^{\mu\mu} - \delta^{i\sigma}J^{j\sigma}) \\ &= -iJ^{ji} = iJ^{ij}, \end{split}$$

where we have used the antisymmetry of J^{ij} . From $L^i = \frac{1}{2} \epsilon^{ijk} J^{jk}$, we can write

$$\epsilon^{i\rho\sigma}L^i = \frac{1}{2}\epsilon^{ijk}\epsilon^{i\rho\sigma}J^{jk} = \frac{1}{2}(\delta^{j\rho}\delta^{k\sigma} - \delta^{j\sigma}\delta^{k\rho})J^{jk} = \frac{1}{2}(\delta^{j\rho}J^{j\sigma} - \delta^{j\sigma}J^{j\rho}) = \frac{1}{2}(J^{\rho\sigma} - J^{\sigma\rho}) = J^{\rho\sigma}.$$

Then we see that

$$[L^i, L^j] = i\epsilon^{ijk}L^k$$

Secondly,

$$[K^i,K^j] = [J^{0i},J^{0j}] = i(g^{i0}J^{0j} - g^{00}J^{ij} - g^{ij}J^{00} + g^{0j}J^{i0}) = -iJ^{ij} = -i\epsilon^{ijk}L^k,$$

and thirdly,

$$\begin{split} [K^i,L^j] &= \left[J^{0i},\frac{1}{2}\epsilon^{j\rho\sigma}J^{\rho\sigma}\right] = \frac{1}{2}\epsilon^{j\rho\sigma}[J^{0i},J^{\rho\sigma}] = \frac{i}{2}\epsilon^{j\rho\sigma}(g^{i\rho}J^{0\sigma} - g^{0\rho}J^{i\sigma} - g^{i\sigma}J^{0\rho} + g^{0\sigma}J^{i\rho}) \\ &= \frac{i}{2}(\epsilon^{j\rho\sigma}g^{i\rho}J^{0\sigma} - \epsilon^{j\rho\sigma}g^{i\sigma}J^{0\rho}) = \frac{i}{2}(\epsilon^{j\rho\sigma}g^{i\rho}J^{0\sigma} - \epsilon^{j\sigma\rho}g^{i\rho}J^{0\sigma}) = i\epsilon^{j\rho\sigma}g^{i\rho}J^{0\sigma} = -i\epsilon^{j\rho\sigma}\delta^{i\rho}J^{0\sigma} = i\epsilon^{ij\sigma}J^{0\sigma} \\ &= i\epsilon^{ijk}K^k. \end{split}$$

Next we want to show that $[\mathbf{J}_+, \mathbf{J}_-] = 0$. Note that

$$\begin{split} [J^i_+,J^j_-] &= \left[\frac{1}{2}(L^i+iK^i),\frac{1}{2}(L^j-iK^j)\right] = \frac{1}{4}\left([L^i,L^j]-i[L^i,K^j]+i[K^i,L^j]+[K^i,K^j]\right) \\ &= \frac{1}{4}\left(i\epsilon^{ijk}L^k-\epsilon^{jik}K^k-\epsilon^{ijk}K^k-i\epsilon^{ijk}L^k\right) \\ &= 0, \end{split}$$

so
$$[\mathbf{J}_+, \mathbf{J}_-] = 0$$
.

The angular momentum commutation relations are given by Peskin & Schroeder Eq. (3.12): $[J^i, J^j] = i\epsilon^{ijk}J^k$. We have

$$\begin{split} [J_{\pm}^{i}, J_{\pm}^{j}] &= \left[\frac{1}{2} (L^{i} \pm iK^{i}), \frac{1}{2} (L^{j} \pm iK^{j}) \right] = \frac{1}{4} \left([L^{i}, L^{j}] \pm i[L^{i}, K^{j}] \pm i[K^{i}, L^{j}] - [K^{i}, K^{j}] \right) \\ &= \frac{1}{4} \left(i\epsilon^{ijk} L^{k} \pm \epsilon^{jik} K^{k} \mp \epsilon^{ijk} K^{k} + i\epsilon^{ijk} L^{k} \right) = \frac{1}{2} \left(i\epsilon^{ijk} L^{k} \mp \epsilon^{ijk} K^{k} \right) = \frac{1}{2} i\epsilon^{ijk} \left(L^{k} \pm iK^{k} \right) \\ &= i\epsilon^{ijk} J_{+}^{k}, \end{split}$$

as desired. \Box

2(b) The finite-dimensional representations of the rotation group correspond precisely to the allowed values for angular momentum: integers or half-integers. The result of 2(a) implies that all finite-dimensional representations of the Lorentz group correspond to pairs of integers or half integers, (j_+, j_-) , corresponding to pairs of representations of the rotation group. Using the fact that $\mathbf{J} = \boldsymbol{\sigma}/2$ in the spin-1/2 representation of angular momentum, write explicitly the transformation laws of the 2-component objects transforming according to the $(\frac{1}{2},0)$ and $(0,\frac{1}{2})$ representations of the Lorentz group. Show that these correspond precisely to the transformations of ψ_L and ψ_R given in (3.37).

Solution. Equation (3.37) is

$$\psi_L \to \left(1 - i\boldsymbol{\theta} \cdot \frac{\boldsymbol{\sigma}}{2} - \boldsymbol{\beta} \cdot \frac{\boldsymbol{\sigma}}{2}\right) \psi_L, \qquad \qquad \psi_R \to \left(1 - i\boldsymbol{\theta} \cdot \frac{\boldsymbol{\sigma}}{2} + \boldsymbol{\beta} \cdot \frac{\boldsymbol{\sigma}}{2}\right) \psi_R,$$

where ψ_L and ψ_R are the left- and right-handed Weyl spinors, respectively.

We can rewrite Eq. (3) in terms of J_{+} and J_{-} :

$$\Phi \rightarrow [1 - i\boldsymbol{\theta} \cdot (\mathbf{J}_+ + \mathbf{J}_-) - \boldsymbol{\beta} \cdot (\mathbf{J}_+ - \mathbf{J}_-)]\Phi = [1 - (i\boldsymbol{\theta} + \boldsymbol{\beta}) \cdot \mathbf{J}_+ + (i\boldsymbol{\theta} - \boldsymbol{\beta}) \cdot \mathbf{J}_-)]\Phi.$$

From the final expression, we associate \mathbf{J}_{+} and \mathbf{J}_{-} with $\boldsymbol{\sigma}/2$ in turn, with $\mathbf{J}_{+} = \boldsymbol{\sigma}/2$ corresponding to the $(\frac{1}{2}, 0)$ representation and $\mathbf{J}_{-} = \boldsymbol{\sigma}/2$ corresponding to the $(0, \frac{1}{2})$ representation. The transformation laws are

$$\Phi \to \begin{cases} \left(1 - i\boldsymbol{\theta} \cdot \frac{\boldsymbol{\sigma}}{2} - \boldsymbol{\beta} \cdot \frac{\boldsymbol{\sigma}}{2}\right) \Phi & (\frac{1}{2}, 0) \text{ representation,} \\ \left(1 - i\boldsymbol{\theta} \cdot \frac{\boldsymbol{\sigma}}{2} + \boldsymbol{\beta} \cdot \frac{\boldsymbol{\sigma}}{2}\right) \Phi & (0, \frac{1}{2}) \text{ representation.} \end{cases}$$

Comparing to Eq. (3.37), we see that Φ transforms as ψ_L under the $(\frac{1}{2},0)$ representation and as ψ_R under the $(0,\frac{1}{2})$ representation.

2(c) The identity $\sigma^T = -\sigma^2 \sigma \sigma^2$ allows us to rewrite the ψ_L transformations in the unitarily equivalent form

$$\psi' \to \psi' \left(1 + i\boldsymbol{\theta} \cdot \frac{\boldsymbol{\sigma}}{2} + \boldsymbol{\beta} \cdot \frac{\boldsymbol{\sigma}}{2} \right),$$

where $\psi' = \psi_L^T \sigma^2$. Using this law, we can represent the object that transforms as $(\frac{1}{2}, \frac{1}{2})$ as a 2×2 matrix that has the ψ_R transformations law on the left and, simultaneously, the transposed ψ_L transformation on the right. Parametrize this matrix as

$$\begin{pmatrix} V^0 + V^3 & V^1 - iV^3 \\ V^1 + iV^2 & V^0 - V^3 \end{pmatrix}.$$

Show that the object V^{μ} transforms as a 4-vector.

Solution. Peskin & Schroeder (3.19) shows an infinitesimal Lorentz transformation:

$$V^{\alpha} \rightarrow \left[\delta^{\alpha}{}_{\beta} - \frac{i}{2} \omega_{\mu\nu} (\mathcal{J}^{\mu\nu})^{\alpha}{}_{\beta} \right] V^{\beta},$$

where V is a 4-vector, $\omega_{\mu\nu}$ is an antisymmetric tensor that gives the infinitesimal angles, and $(\mathcal{J}^{\mu\nu})_{\alpha\beta} = i(\delta^{\mu}{}_{\alpha}\delta^{\nu}{}_{\beta} - \delta^{\mu}{}_{\beta}\delta^{\nu}{}_{\alpha})$ from Peskin & Schroeder (3.18). Using this definition, the transformation is

$$V^{\alpha} \to \left[\delta^{\alpha}{}_{\beta} + \frac{1}{2} \omega_{\mu\nu} (\delta^{\mu\alpha} \delta^{\nu}{}_{\beta} - \delta^{\mu}{}_{\beta} \delta^{\nu\alpha}) \right] V^{\beta} = \left[\delta^{\alpha}{}_{\beta} + \frac{1}{2} \omega_{\mu\nu} g_{\beta\gamma} (\delta^{\mu\alpha} \delta^{\nu\gamma} - \delta^{\mu\gamma} \delta^{\nu\alpha}) \right] V^{\beta}$$

$$= \left[\delta^{\alpha}{}_{\beta} + \frac{1}{2} g_{\beta\gamma} (\omega^{\alpha\gamma} - \omega^{\gamma\alpha}) \right] V^{\beta} = (\delta^{\alpha}{}_{\beta} + g_{\beta\gamma} \omega^{\alpha\gamma}) V^{\beta}$$

$$= (\delta^{\alpha}{}_{\beta} + \omega^{\alpha}{}_{\beta}) V^{\beta}, \tag{4}$$

where we have used the antisymmetry of $\omega^{\mu\nu}$.

For the problem at hand, note that

$$V_{\mu}\sigma^{\mu} = \begin{pmatrix} V^0 & 0 \\ 0 & V^0 \end{pmatrix} - \begin{pmatrix} 0 & V^1 \\ V^1 & 0 \end{pmatrix} - \begin{pmatrix} 0 & -iV^2 \\ iV^2 & 0 \end{pmatrix} - \begin{pmatrix} V^3 & 0 \\ 0 & -V^3 \end{pmatrix} = \begin{pmatrix} V^0 + V^3 & V^1 - iV^3 \\ V^1 + iV^2 & V^0 - V^3 \end{pmatrix}.$$

Then the transformation is

$$V_{\mu}\sigma^{\mu} \to \left(1 - i\boldsymbol{\theta} \cdot \frac{\boldsymbol{\sigma}}{2} + \boldsymbol{\beta} \cdot \frac{\boldsymbol{\sigma}}{2}\right) V_{\mu}\sigma^{\mu} \left(1 + i\boldsymbol{\theta} \cdot \frac{\boldsymbol{\sigma}}{2} + \boldsymbol{\beta} \cdot \frac{\boldsymbol{\sigma}}{2}\right) = \left(1 + (\boldsymbol{\beta} - i\boldsymbol{\theta}) \cdot \frac{\boldsymbol{\sigma}}{2}\right) V_{\mu}\sigma^{\mu} \left(1 + (\boldsymbol{\beta} + i\boldsymbol{\theta}) \cdot \frac{\boldsymbol{\sigma}}{2}\right)$$
$$= V_{\mu}\sigma^{\mu} + V_{\mu}\sigma^{\mu}(\boldsymbol{\beta} + i\boldsymbol{\theta}) \cdot \frac{\boldsymbol{\sigma}}{2} + (\boldsymbol{\beta} - i\boldsymbol{\theta}) \cdot \frac{\boldsymbol{\sigma}}{2} V_{\mu}\sigma^{\mu},$$

where we note that θ and β are infinitesimal angles and drop terms of $\mathcal{O}(\theta^2) = \mathcal{O}(\beta^2) = \mathcal{O}(\theta\beta)$. Then

$$\begin{split} V_{\mu}\sigma^{\mu} &\rightarrow V_{\mu}\sigma^{\mu} + \frac{1}{2}V_{\mu}\sigma^{\mu}(\beta_{i}\sigma^{i} + i\theta_{j}\sigma^{j}) + \frac{1}{2}V_{\mu}(\beta_{k}\sigma^{k} - i\theta_{l}\sigma^{l})\sigma^{\mu} \\ &= V_{\mu}\sigma^{\mu} + \frac{1}{2}V_{\mu}\left(\beta_{i}\sigma^{\mu}\sigma^{i} + i\theta_{j}\sigma^{\mu}\sigma^{j} + \beta_{k}\sigma^{k}\sigma^{\mu} - i\theta_{l}\sigma^{l}\sigma^{\mu}\right) \\ &= V_{\mu}\sigma^{\mu} + \frac{1}{2}V_{\mu}\left[\beta_{i}(\sigma^{\mu}\sigma^{i} + \sigma^{i}\sigma^{\mu}) + i\theta_{j}(\sigma^{\mu}\sigma^{j} - \sigma^{j}\sigma^{\mu})\right] = V_{\mu}\sigma^{\mu} + \frac{1}{2}V_{\mu}\left(\beta_{i}\{\sigma^{\mu}, \sigma^{i}\} + i\theta_{j}[\sigma^{\mu}, \sigma^{j}]\right) \\ &= V_{\mu}\sigma^{\mu} + \frac{1}{2}V_{0}\left(\beta_{i}\{\sigma^{0}, \sigma^{i}\} + i\theta_{j}[\sigma^{0}, \sigma^{j}]\right) + \frac{1}{2}V_{k}\left(\beta_{i}\{\sigma^{k}, \sigma^{i}\} + i\theta_{j}[\sigma^{k}, \sigma^{j}]\right) \\ &= V_{\mu}\sigma^{\mu} + \beta_{i}V_{0}\sigma^{i} + V_{k}\left(\beta_{i}\delta^{ik} - \theta_{j}\epsilon^{kji}\sigma^{i}\right) = V_{\mu}\sigma^{\mu} + \beta_{i}V_{0}\sigma^{i} + V_{k}\theta_{j}\epsilon^{ijk}\sigma^{i} \\ &= V_{\mu}\sigma^{\mu} + V_{0}\beta^{i}\sigma_{i} - V_{i}\beta^{i} - V_{j}\epsilon^{ijk}\theta^{i}\sigma^{k} \end{split}$$

where we have used $\{\sigma^i, \sigma^j\} = 2\delta^{ij}$ and $[\sigma^i, \sigma^j] = 2i\epsilon^{ijk}\sigma^k$ [4, p. 165], as well as $\{\sigma^0, \sigma^i\} = 2\sigma^i$ and $[\sigma^0, \sigma^i] = 0$.

Referring to Eq. (3.19), we define

$$\omega^{0j} = \beta^j, \qquad \qquad \omega^{ij} = \epsilon^{ijk} \theta^k.$$

Then we have

$$V_{\mu}\sigma^{\mu} \to V_{\mu}\sigma^{\mu} + V_{0}\omega^{0i}\sigma_{i} - V_{i}\omega^{0i} - V_{j}\omega^{ij}\sigma^{j} = V_{\mu}\sigma^{\mu} + V^{0}\omega_{0i}\sigma^{i} - V^{i}\omega_{0i}\sigma^{0} + V^{j}\omega_{ij}\sigma^{j}$$
$$= V_{\mu}\sigma^{\mu} + V^{0}\omega_{0\mu}\sigma^{\mu} + V^{i}\omega_{i0}\sigma^{0} + V^{j}\omega_{ij}\sigma^{j} = V_{\mu}\sigma^{\mu} + V^{\nu}\omega_{\nu\mu}\sigma^{\mu} = (\delta^{\nu}_{\mu} + \omega^{\nu}_{\mu})V_{\nu}\sigma^{\mu}$$

or

$$V^{\alpha}\sigma_{\alpha} \to (\delta^{\alpha}{}_{\beta} + \omega^{\alpha}{}_{\beta})V^{\beta}\sigma_{\alpha} \implies V^{\alpha} \to (\delta^{\alpha}{}_{\beta} + \omega^{\alpha}{}_{\beta})V^{\beta},$$

since σ^{μ} forms a complete basis. This is identical to Eq. (4), so we have shown that V^{μ} transforms as a 4-vector.

Problem 3. Majorana fermions (Peskin & Schroeder 3.4) Recall from Eq. (3.40) that one can write a relativistic equation for a massless 2-component fermion field that transforms as the upper two components of a Dirac spinor (ψ_L). Call such a 2-component field $\chi_a(x)$, a = 1, 2.

3(a) Show that it is possible to write an equation for $\chi(x)$ as a massive field in the following way:

$$i\bar{\sigma} \cdot \partial \chi - im\sigma^2 \chi^* = 0. \tag{5}$$

That is, show, first, that this equation is relativistically invariant and, second, that it implies the Klein-Gordon equation, $(\partial^2 + m^2)\chi = 0$. This form of the fermion mass is called a Majorana mass term.

Solution. Using the result of 2(b), let

$$\Lambda_{\frac{1}{2},0} = \exp\Bigl(-i\boldsymbol{\theta} \cdot \frac{\boldsymbol{\sigma}}{2} - \boldsymbol{\beta} \cdot \frac{\boldsymbol{\sigma}}{2}\Bigr), \qquad \qquad \Lambda_{0,\frac{1}{2}} = \exp\Bigl(-i\boldsymbol{\theta} \cdot \frac{\boldsymbol{\sigma}}{2} + \boldsymbol{\beta} \cdot \frac{\boldsymbol{\sigma}}{2}\Bigr).$$

We are told that χ transforms as ψ_L , so we know $\chi \to \Lambda_{\frac{1}{2},0}\chi$. So

$$\begin{split} \sigma^2 \chi^* &\to \sigma^2 (\Lambda_{\frac{1}{2},0} \chi)^* \\ &= \sigma^2 \left[\exp \left(-i \boldsymbol{\theta} \cdot \frac{\boldsymbol{\sigma}}{2} - \boldsymbol{\beta} \cdot \frac{\boldsymbol{\sigma}}{2} \right) \chi \right]^* = \sigma^2 \left[\exp \left(i \boldsymbol{\theta} \cdot \frac{\boldsymbol{\sigma}^*}{2} - \boldsymbol{\beta} \cdot \frac{\boldsymbol{\sigma}^*}{2} \right) \right] \chi^* = \left[\exp \left(-i \boldsymbol{\theta} \cdot \frac{\boldsymbol{\sigma}}{2} + \boldsymbol{\beta} \cdot \frac{\boldsymbol{\sigma}}{2} \right) \right] \sigma^2 \chi^* \\ &= \Lambda_{0,\frac{1}{2}} \sigma^2 \chi^*, \end{split}$$

where we have used Peskin & Schroeder (3.38), $\sigma^2 \sigma^* = -\sigma \sigma^2$.

We also need to know how to manipulate $\bar{\sigma}$. From Eqs. (3.36) and (3.37), we can write a finite Lorentz transformation as

$$\Lambda \psi = \begin{pmatrix} \Lambda_{\frac{1}{2},0} & 0 \\ 0 & \Lambda_{0,\frac{1}{2}} \end{pmatrix} \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix} = \begin{pmatrix} \Lambda_{\frac{1}{2},0} \psi_L \\ \Lambda_{0,\frac{1}{2}} \psi_R \end{pmatrix}.$$

Then using Peskin & Schroeder (3.42),

$$\gamma^{\mu} = \begin{pmatrix} 0 & \sigma^{\mu} \\ \bar{\sigma}^{\mu} & 0 \end{pmatrix},$$

we can rewrite their Eq. (3.29), $\Lambda^{\mu}_{\ \nu}\gamma^{\nu}=\Lambda^{-1}_{\frac{1}{2}}\gamma^{\mu}\Lambda_{\frac{1}{2}}$, in matrix form. The left side is

$$\begin{pmatrix} \Lambda_{\frac{1}{2}} & 0 \\ 0 & \Lambda_{\frac{1}{2}} \end{pmatrix} \begin{pmatrix} 0 & \sigma^{\mu} \\ \bar{\sigma}^{\mu} & 0 \end{pmatrix} = \begin{pmatrix} 0 & \Lambda^{\mu}{}_{\nu} \sigma^{\nu} \\ \Lambda^{\mu}{}_{\nu} \bar{\sigma}^{\nu} & 0 \end{pmatrix},$$

and the right side is

$$\begin{pmatrix} \Lambda_{\frac{1}{2},0}^{-1} & 0 \\ 0 & \Lambda_{0,\frac{1}{2}}^{-1} \end{pmatrix} \begin{pmatrix} 0 & \sigma^{\mu} \\ \bar{\sigma}^{\mu} & 0 \end{pmatrix} \begin{pmatrix} \Lambda_{\frac{1}{2},0} & 0 \\ 0 & \Lambda_{0,\frac{1}{2}} \end{pmatrix} = \begin{pmatrix} \Lambda_{\frac{1}{2},0}^{-1} & 0 \\ 0 & \Lambda_{0,\frac{1}{2}}^{-1} \end{pmatrix} \begin{pmatrix} 0 & \sigma^{\mu}\Lambda_{\frac{1}{2},0} \\ \bar{\sigma}^{\mu}\Lambda_{0,\frac{1}{2}} & 0 \end{pmatrix} = \begin{pmatrix} 0 & \Lambda_{\frac{1}{2},0}^{-1} \sigma^{\mu}\Lambda_{0,\frac{1}{2}} \\ \Lambda_{0,\frac{1}{2}}^{-1} \bar{\sigma}^{\mu}\Lambda_{\frac{1}{2},0} & 0, \end{pmatrix}$$

So we have

$$\Lambda^{\mu}{}_{\nu}\bar{\sigma}^{\nu}=\Lambda^{-1}_{0,\frac{1}{2}}\bar{\sigma}^{\mu}\Lambda_{\frac{1}{2},0}, \qquad \qquad \bar{\sigma}^{\nu}(\Lambda^{-1})^{\nu}{}_{\mu}=\Lambda_{0,\frac{1}{2}}\bar{\sigma}^{\mu}\Lambda^{-1}_{\frac{1}{2},0}.$$

Then Eq. (5) transforms as

$$\begin{split} i\bar{\sigma}^{\mu}\partial_{\mu}\chi(x) - im\sigma^{2}\chi^{*}(x) &\to i\bar{\sigma}^{\mu}(\Lambda^{-1})^{\nu}{}_{\mu}\partial_{\nu}\Lambda_{\frac{1}{2},0}\chi(\Lambda^{-1}x) - im\Lambda_{0,\frac{1}{2}}\sigma^{2}\chi^{*}(\Lambda^{-1}x) \\ &= i\Lambda_{0,\frac{1}{2}}\bar{\sigma}^{\mu}\Lambda_{\frac{1}{2},0}^{-1}\Lambda_{\frac{1}{2},0}\partial_{\nu}\chi(\Lambda^{-1}x) - im\Lambda_{0,\frac{1}{2}}\sigma^{2}\chi^{*}(\Lambda^{-1}x) \\ &= \Lambda_{0,\frac{1}{2}}\left[\bar{\sigma}^{\mu}\partial_{\nu}\chi(\Lambda^{-1}x) - im\sigma^{2}\chi^{*}(\Lambda^{-1}x)\right] \\ &= 0, \end{split}$$

so this equation is relativistically invariant.

The Klein-Gordon equation does not include χ^* , so we want to eliminate it from the Majorana equation. From Eq. (5),

$$i\bar{\sigma}\cdot\partial\chi=im\sigma^2\chi^*\quad\Longrightarrow\quad\chi^*=\frac{\sigma^2}{m}\bar{\sigma}\cdot\partial\chi,$$

since $\sigma^i \sigma^i = 1$ [4, p. 164]. We also need a ∂^2 term in the Klein-Gordon equation, so we can feed this expression into the complex conjugate of the Majorana equation:

$$0 = -i\bar{\sigma}^* \cdot \partial \chi^* + im\sigma^{*2}\chi = -i\bar{\sigma}^{*\mu}\partial_\mu \left(\frac{\sigma^2}{m}\bar{\sigma} \cdot \partial \chi\right) + im\sigma^{*2}\chi = -i\bar{\sigma}^{*\mu}\frac{\sigma^2}{m}\bar{\sigma}^\nu\partial_\mu\partial_\nu\chi + im\sigma^{*2}\chi$$
$$= \bar{\sigma}^{*\mu}\sigma^2\bar{\sigma}^\nu\partial_\mu\partial_\nu\chi - m^2\sigma^{*2}\chi. \tag{6}$$

Since $\bar{\sigma}^{\mu} = (\sigma^0, -\sigma^1, -\sigma^2, -\sigma^3)$, then $\bar{\sigma}^{*\mu} = (\sigma^0, -\sigma^1, \sigma^2, -\sigma^3)$, and so

$$\bar{\sigma}^{*\mu}\sigma^2=(\sigma^2,-\sigma^1\sigma^2,\sigma^2\sigma^2,\sigma^3\sigma^2)=(\sigma^2,\sigma^2\sigma^1,\sigma^2\sigma^2,-\sigma^2\sigma^3)=\sigma^2\sigma^\mu,$$

where we have used $\{\sigma^i, \sigma^j\} = 2\delta^{ij}$ [4, p. 165]. Using this in Eq. (6),

$$0 = \sigma^2 \sigma^{\mu} \bar{\sigma}^{\nu} \partial_{\mu} \partial_{\nu} \chi - m^2 \sigma^{*2} \chi = \sigma^2 \sigma^2 \sigma^{\mu} \bar{\sigma}^{\nu} \partial_{\mu} \partial_{\nu} \chi - m^2 \sigma^2 \sigma^{*2} \chi = \sigma^{\mu} \bar{\sigma}^{\nu} \partial_{\mu} \partial_{\nu} \chi + m^2 \chi \tag{7}$$

since $\sigma^{*2} = -\sigma^2$. The anticommutation relation also implies that $\sigma^{\mu}\bar{\sigma}^{\nu} + \sigma^{\nu}\bar{\sigma}^{\mu} = 2g^{\mu\nu}$. Note that

$$\sigma^{\mu}\bar{\sigma}^{\nu}\partial_{\mu}\partial_{\nu} = \frac{1}{2}(\sigma^{\mu}\bar{\sigma}^{\nu}\partial_{\mu}\partial_{\nu} + \sigma^{\mu}\bar{\sigma}^{\nu}\partial_{\mu}\partial_{\nu}) = \frac{1}{2}(\sigma^{\mu}\bar{\sigma}^{\nu}\partial_{\mu}\partial_{\nu} + \sigma^{\nu}\bar{\sigma}^{\mu}\partial_{\nu}\partial_{\mu}) = \frac{1}{2}(\sigma^{\mu}\bar{\sigma}^{\nu} + \sigma^{\nu}\bar{\sigma}^{\mu})\partial_{\mu}\partial_{\nu} = g^{\mu\nu}\partial_{\mu}\partial_{\nu} = \partial_{\mu}\partial^{\mu},$$

where we have just relabeled indices. Then we have

$$0 = \partial_{\mu} \partial^{\mu} \chi + m^2 \chi,$$

which is the Klein-Gordon equation.

3(b) Does the Majorana equation follow from a Lagrangian? The mass term would seem to be the variation of $(\sigma^2)_{ab}\chi_a^*\chi_b^*$; however, since σ^2 is antisymmetric, this expression would vanish if $\chi(x)$ were an ordinary c-number field. When we go to quantum field theory, we know that $\chi(x)$ will become an anticommuting quantum field. Therefore, it makes sense to develop its classical theory by considering $\chi(x)$ as a classical anticommuting field, that is, as a field that takes as values $Grassmann\ numbers$ which satisfy

$$\alpha\beta = -\beta\alpha$$
, for any α, β .

Note that this relation implies that $\alpha^2 = 0$. A Grassmann field $\xi(x)$ can be expanded in a basis of functions as

$$\xi(x) = \sum_{n} \alpha_n \phi_n(x),$$

where the $\phi_n(x)$ are orthogonal c-number functions and the α_n are a set of independent Grassmann numbers. Define the complex conjugate of a profuct of Grassmann numbers to reverse the order:

$$(\alpha\beta)^* = \beta^*\alpha^* = -\alpha^*\beta^*.$$

This rule imitates the Hermitian conjugation of quantum fields. Show that the classical action,

$$S = \int d^4x \left[\chi^{\dagger} i \bar{\sigma} \cdot \partial \chi + \frac{im}{2} \left(\chi^T \sigma^2 \chi - \chi^{\dagger} \sigma^2 \chi^* \right) \right],$$

(where $\chi^{\dagger} = (\chi^*)^T$) is real $(S^* = S)$, and that varying this S with respect to χ and χ^* yields the Majorana equation.

References

- [1] M. E. Peskin and D. V. Schroeder, "An Introduction to Quantum Field Theory". Perseus Books Publishing, 1995.
- [2] E. W. Weisstein, "Metric Tensor." From MathWorld—A Wolfram Web Resource. https://mathworld.wolfram.com/MetricTensor.html.
- [3] E. W. Weisstein, "Permutation Symbol." From MathWorld—A Wolfram Web Resource. https://mathworld.wolfram.com/PermutationSymbol.html.
- [4] J. J. Sakurai, "Modern Quantum Mechanics". Addison-Wesley Publishing Company, revised edition, 1994.