5주차(1/3)

기계학습 작업 흐름 1

파이썬으로배우는기계학습

한동대학교 김영섭교수

기계학습 작업 흐름 1

- 학습 목표
 - 기계학습의 전체 과정을 이해하여 단계별 작업에 필요한 흐름을 이해한다.
- 학습 내용
 - 기계학습 작업 과정에 대한 이해
 - 학습 자료 준비
 - 학습 자료 읽기
 - 학습 자료에서 노이즈

1. 기계학습 작업 흐름: 자료준비단계

1) 자료 준비 단계: 자료 수집과 전처리

1. 기계학습 작업 흐름: 학습단계

- 1) 자료 준비 단계: 자료 수집과 전처리
- 2) 학습 단계: 모델 훈련과 완성

1. 기계학습 작업 흐름 : 검증단계

1. 기계학습 작업 흐름 : 검증단계

- 1) 자료 준비 단계: 자료 수집과 전처리
- 2) 학습 단계: 모델 훈련과 완성
- 3) 검증 단계: 하이퍼 파라미터 조정

1. 기계학습 작업 흐름 : 평가단계

- 1) 자료 준비 단계: 자료 수집과 전처리
- 2) 학습 단계: 모델 훈련과 완성
- 3) 검증 단계: 하이퍼 파라미터 조정
- 4) 평가 단계: 최종 실전 배치 여부 결정

1. 기계학습 작업 흐름: 예측단계

- 1) 자료 준비 단계: 자료 수집과 전처리
- 2) 학습 단계: 모델 훈련과 완성
- 3) 검증 단계: 하이퍼 파라미터 조정
- 4) 평가 단계: 최종 실전 배치 여부 결정
- 5) 예측 단계: 실전 배치

2. 학습 자료 준비 단계: 자료 내용

joydata.txt

!cat data/joydata.txt			
-1.72	-3.12	1	
0.31	1.85	1	
1.56	2.85	1	
2.64	2.41	1	
1.23	2.54	1	
1.33	2.03	1	
1.26	2.68	1	
2.58	1.79	1	
2.40	0.91	1	
0.51	2.44	1	

- 입력: **x** 혹은 **X** $x^1, x^2, ..., x^{(i)}, ..., x^m$
- 입력의 각 특성: $x_1^i, x_2^i, ..., x_j^i, ..., x_n^i$
- 입력 특성 개수: n (혹은 m)
- 클래스 레이블: **y** y⁽¹⁾, y⁽²⁾, ... y⁽ⁱ⁾, ..., y^(m)
- $x_i^{(i)}$: i번째 샘플의 j번째 특성 자료

샘플 sample example

- 입력: **x** 혹은 **X** $x^1, x^2, ..., x^{(i)}, ..., x^m$
- 입력의 각 특성: $x_1^i, x_2^i, ..., x_j^i, ..., x_n^i$
- 입력 특성 개수: n (혹은 m)
- 클래스 레이블: **y** y⁽¹⁾, y⁽²⁾, ... y⁽ⁱ⁾, ..., y^(m)
- $x_j^{(i)}$: i번째 샘플의 j번째 특성 자료

- 입력: **x** 혹은 **X** $x^1, x^2, ..., x^{(i)}, ..., x^m$
- 입력의 각 특성: $x_1^i, x_2^i, ..., x_j^i, ..., x_n^i$
- 입력 특성 개수: n (혹은 m)
- 클래스 레이블: **y** y⁽¹⁾, y⁽²⁾, ... y⁽ⁱ⁾, ..., y^(m)
- $x_j^{(i)}$: i번째 샘플의 j번째 특성 자료

- 퀴즈: $x_1^{(3)}$ = ?

!cat data/joydata.txt				
-1.72	-3.12	1		
0.31	1.85	1		
1.56	2.85	1		
2.64	2.41	1		
1.23	2.54	1		
1.33	2.03	1		
1.26	2.68	1		
2.58	1.79	1		
2.40	0.91	1		
0.51	2.44	1		

- 입력: **x** 혹은 **X** $x^1, x^2, ..., x^{(i)}, ..., x^m$
- 입력의 각 특성: $x_1^i, x_2^i, ..., x_j^i, ..., x_n^i$
- 입력 특성 개수: n (혹은 m)
- 클래스 레이블**: y** y⁽¹⁾, y⁽²⁾, ... y⁽ⁱ⁾, ..., y^(m)
- $x_j^{(i)}$: i번째 샘플의 j번째 특성 자료

취조: $x_1^{(3)} = 1.56$

3. 학습 자료 읽기: 파일 데이터 셋

3. 학습 자료 읽기: 어떻게 읽을 것인가?

!cat data/joydata.txt				
-1.72	-3.12	1		
0.31	1.85	1		
1.56	2.85	1		
2.64	2.41	1		
1.23	2.54	1		
1.33	2.03	1		
1.26	2.68	1		
2.58	1.79	1		
2.40	0.91	1		
0.51	2.44	1		

4. 학습 자료 다루기: 퀴즈

```
data = np.genfromtxt('data/joydata.txt')
    print(data)
[[-1.72 -3.12 1.
                    data.shape: (100, 3)
  0.31 1.85 1.
  1.56 2.85 1.
  2.64 2.41 1.
  1.23 2.54
  1.33 2.03 1.
  1.26 2.68
  2.58
       1.79
        0.91
  2.4
  0.51
       2.44
```

4. 학습 자료 다루기: Slicing 준비

```
data = np.genfromtxt('data/joydata.txt')
    print(data)
[[-1.72 -3.12
                     data.shape: (100, 3)
  0.31 1.85 1.
                        x.shape: (100,2)
  1.56 2.85 1.
                        y.shape: (100,1)
  2.64 2.41 1.
                                 (100,)
  1.23
       2.54
  1.33
       2.03
  1.26
       2.68
  2.58
       1.79
        0.91
  2.4
        2.44
  0.51
```

4. 학습 자료 다루기: Slicing 방법

```
data = np.genfromtxt('data/joydata.txt')
 print(data)
                  data.shape = (100, 3)
      1.85
            1.
0.31
                            x = data[A, B]
     2.85
1.56
                            y = data[C, D]
      2.41
            1.
2.64
     2.54
1.23
      2.03
1.33
1.26
      2.68
      1.79
2.58
      0.91
2.4
      2.44
```

4. 학습 자료 다루기: Slicing 방법

```
data = np.genfromtxt('data/joydata.txt')
 print(data)
                  data.shape = (100, 3)
      1.85
            1.
0.31
                            x = data[:, :2]
     2.85
1.56
                            y = data[:, 2]
      2.41
            1.
2.64
     2.54
1.23
      2.03
1.33
1.26
      2.68
      1.79
2.58
      0.91
2.4
      2.44
```

4. 학습 자료 다루기: Slicing 코드

```
1 data = np.genfromtxt('data/joydata.txt')
2 x, y = data[:, :2], data[:, 2]
3 y = y.astype(np.int)
4 print(x[:5])
5 print(y[:5])
```

4. 학습 자료 다루기: Slicing 코드

```
data = np.genfromtxt('data/joydata.txt')
    x, y = data[:, :2], data[:, 2]
    y = y.astype(np.int)
    print(x[:5])
    print(y[:5])
```

4. 학습 자료 다루기: Slicing 코드

```
1 data = np.genfromtxt('data/joydata.txt')
2 x, y = data[:, :2], data[:, 2]
3 y = y.astype(np.int)
4 print(x[:5])
5 print(y[:5])
```

4. 학습 자료 다루기: 시각화 코드

```
import numpy as np
import matplotlib.pylab as plt
%matplotlib inline
data = np.genfromtxt('data/joydata.txt')
x, y = data[:, :2], data[:, 2]
y = y.astype(np.int)
plt.scatter(x[y==1, 0], x[y==1, 1], label='class 1', marker='s')
plt.scatter(x[y==0, 0], x[y==0, 1], label='class 2', marker='o')
plt.xlabel('$x_1$', fontsize=18)
plt.ylabel('$x_2$', fontsize=18)
plt.legend()
plt.show()
```

4. 학습 자료 다루기: 시각화 결과

```
import numpy as np
import matplotlib.pylab as plt
%matplotlib inline
                                                  class 1
                                                  class 2
data = np.genfromtxt('data/joydata.txt'
x, y = data[:, :2], data[:, 2]
y = y.astype(np.int)
plt.scatter(x[y==1, 0], x[y==1, 1], lab
                                            -1
plt.scatter(x[y==0, 0], x[y==0, 1], lab
                                            -2
plt.xlabel('$x_1$', fontsize=18)
                                            -3
plt.ylabel('$x_2$', fontsize=18)
plt.legend()
plt.show()
                                                               x_1
```

4. 학습 자료 다루기: 노이즈

```
import numpy as np
import matplotlib.pylab as plt
%matplotlib inline
                                                  class 1
                                                  class 2
data = np.genfromtxt('data/joydata.txt'
x, y = data[:, :2], data[:, 2]
y = y.astype(np.int)
plt.scatter(x[y==1, 0], x[y==1, 1], lab
                                            -1
plt.scatter(x[y==0, 0], x[y==0, 1], lab
                                            -2
plt.xlabel('$x_1$', fontsize=18)
                                            -3
plt.ylabel('$x_2$', fontsize=18)
plt.legend()
plt.show()
                                                               x_1
```

4. 학습 자료 다루기: 노이즈

기계학습 작업 흐름 1

- 학습 정리
 - 기계학습 작업 과정에 대한 이해
 - 학습 자료 준비
 - 학습 자료 읽기/다루기
 - 학습 자료에서 노이즈