$$r_{m}^{i} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} r\cos\theta \\ r\sin\theta \end{bmatrix} = \begin{bmatrix} r\sin\theta\cos\theta \\ r\sin\theta\sin\theta \\ r\cos\theta \end{bmatrix}$$

$$C_{r}^{i} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}, \quad C_{g}^{i} = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}, \quad C_{z}^{i} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$S_{r}^{i} = \begin{bmatrix} \text{ning cos} \theta \\ \text{ning nin} \theta \end{bmatrix}$$
, $S_{g}^{i} = \begin{bmatrix} \text{cos} g \cos \theta \\ \text{cos} g \sin \theta \end{bmatrix}$, $S_{g}^{i} = \begin{bmatrix} -\text{nin} \theta \\ \text{cos} \theta \end{bmatrix}$

This is rimply a rotation about the Z-axis, which is right-handed.

$$R_{s}^{i} = \begin{bmatrix} S & S & S & S & S & S & S & J \end{bmatrix} = \begin{bmatrix} \text{mingring cosgring cosgring cosgring cosgring cosgring cosgring cosgring cosgring cosgring } \\ \text{cosgring } \end{bmatrix}$$

$$S_{r}^{i} \times S_{g}^{i} = \begin{bmatrix} -\sin^{2}g \sin \theta - \cos^{2}g \sin \theta \\ \cos^{2}g \cos \theta + \sin^{2}g \cos \theta \\ -\sin g \cos g \sin \theta \cos \theta - \sin g \cos g \sin \theta \cos \theta \end{bmatrix} = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix} = S_{\theta}^{i}$$

Since SixSig=Si the reference frame is right-honded.

$$\begin{array}{ll}
\bullet \quad \dot{C}_{r}^{i} = \begin{bmatrix} -nin\theta \\ Cop\theta \\ 0 \end{bmatrix} \dot{\theta}, \quad \dot{C}_{\theta}^{i} = \begin{bmatrix} -co\theta \\ -nin\theta \\ 0 \end{bmatrix} \dot{\theta}, \quad \dot{C}_{z}^{i} = 0$$

$$\dot{C}_{r}^{i} = C_{\theta}^{i} \dot{\theta}, \quad \dot{C}_{\theta}^{i} = -C_{r}^{i} \dot{\theta}, \quad \dot{C}_{z}^{i} = 0$$

$$\begin{array}{l} \ddot{R} \stackrel{i}{\sim} = R \stackrel{i}{\sim} (\omega_{ic})^{\times} \\ (\omega_{ic})^{\times} = R \stackrel{i}{\sim} \stackrel{1}{R} \stackrel{i}{\sim} = \begin{bmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} -\sin\theta & -\sin\theta & 0\\ \cos\theta & -\sin\theta & 0\\ 0 & 0 & 0 \end{bmatrix} \cdot \stackrel{e}{\epsilon} \end{array}$$

$$(wid)^{*} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \dot{\theta} < = > \quad (wid) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$(wid)^{*} = \begin{bmatrix} \dot{g} \cos g \cos \theta - \dot{\theta} \sin g \sin \theta \\ \dot{g} \cos g \sin \theta + \dot{\theta} \sin g \cos \theta \end{bmatrix} = 5 \dot{g} \dot{g} + \begin{bmatrix} -\dot{\theta} \sin g \sin \theta \\ \dot{\theta} \sin g \cos \theta \end{bmatrix}$$

$$(xid)^{*} = \begin{bmatrix} -\dot{g} \cos g \sin \theta + \dot{\theta} \cos g \sin \theta \\ -\dot{g} \sin g \sin \theta + \dot{\theta} \cos g \cos \theta \end{bmatrix} = -5 \dot{g} \dot{g} + \begin{bmatrix} -\dot{\theta} \cos g \sin \theta \\ \dot{\theta} \cos g \cos \theta \end{bmatrix}$$

$$(xid)^{*} = \begin{bmatrix} -\dot{g} \cos g \cos \theta - \dot{\theta} \cos g \sin \theta \\ -\dot{g} \cos g \cos \theta \end{bmatrix} = -5 \dot{g} \dot{g} + \begin{bmatrix} -\dot{\theta} \cos g \cos \theta \\ -\dot{\theta} \cos g \cos \theta \end{bmatrix}$$

$$(xid)^{*} = \begin{bmatrix} -\dot{\theta} \cos \theta \\ -\dot{\theta} \sin \theta \end{bmatrix} = \dot{\theta} \begin{bmatrix} -\cos \theta \\ -\sin \theta \\ 0 \end{bmatrix}$$

$$(xid)^{*} = \begin{bmatrix} -\dot{\theta} \cos \theta \\ -\dot{\theta} \sin \theta \end{bmatrix} = \dot{\theta} \begin{bmatrix} -\cos \theta \\ -\sin \theta \\ 0 \end{bmatrix}$$

$$(xid)^{*} = \begin{bmatrix} -\dot{\theta} \cos \theta \\ -\dot{\theta} \sin \theta \end{bmatrix} = \dot{\theta} \begin{bmatrix} -\cos \theta \\ -\sin \theta \\ 0 \end{bmatrix}$$

$$(xid)^{*} = \begin{bmatrix} -\dot{\theta} \cos \theta \\ -\dot{\theta} \sin \theta \end{bmatrix} = \dot{\theta} \begin{bmatrix} -\cos \theta \\ -\sin \theta \\ 0 \end{bmatrix}$$

$$(xid)^{*} = \begin{bmatrix} -\dot{\theta} \cos \theta \\ -\dot{\theta} \sin \theta \end{bmatrix} = \dot{\theta} \begin{bmatrix} -\cos \theta \\ -\sin \theta \\ 0 \end{bmatrix}$$

$$(xid)^{*} = \begin{bmatrix} -\dot{\theta} \cos \theta \\ -\dot{\theta} \sin \theta \end{bmatrix} = \dot{\theta} \begin{bmatrix} -\cos \theta \\ -\sin \theta \end{bmatrix}$$

$$(xid)^{*} = \begin{bmatrix} -\dot{\theta} \cos \theta \\ -\dot{\theta} \sin \theta \end{bmatrix} = \dot{\theta} \begin{bmatrix} -\cos \theta \\ -\sin \theta \end{bmatrix}$$

$$(xid)^{*} = \begin{bmatrix} -\dot{\theta} \cos \theta \\ -\dot{\theta} \sin \theta \end{bmatrix} = \dot{\theta} \begin{bmatrix} -\cos \theta \\ -\sin \theta \end{bmatrix}$$

Let
$$R_{s}^{i} = [S_{g}^{i} - S_{r}^{i} \ 0]g + [SgS_{e}^{i} cgS_{e}^{i} - S_{o}^{e}]e$$
 $(w_{s}^{i})^{x} = R_{s}^{i} R_{s}^{i} = R_{s}^{i} Ag + R_{s}^{i} Be$
 $R_{s}^{i} A = [Sgc\theta SgS\theta cg] [cgc\theta - Sgc\theta 0]$
 $= [Sgcg - Sgcg - Sg] [cgs\theta - SgS\theta 0]$
 $= [Sgcg - Sgcg - Sg^{2} - cg^{2} 0]$
 $= [Sgcg - Sgcg - Sgcg - Sg^{2} - cg^{2} 0]$
 $= [O - IG]$

$$\begin{array}{lll}
R_{s}^{i} T_{s} &= \begin{bmatrix} syc\theta & sys\theta & cg \\ cgc\theta & cgs\theta & -sg \end{bmatrix} \cdot \begin{bmatrix} sys\theta & -cgs\theta & -c\theta \\ syc\theta & cgc\theta & -s\theta \end{bmatrix} \\
&= \begin{bmatrix} 0 & 0 & -sg \\ 0 & 0 & -cg \\ sgc\theta & 0 \end{bmatrix}$$

$$(w\dot{s}s)^{x} = \begin{bmatrix} 0 & -659 \\ \dot{g} & 0 & -659 \\ \dot{g}sy \dot{g}sg & 0 \end{bmatrix} = \times \omega\dot{s}s = \begin{bmatrix} \dot{g} \\ -659 \\ \dot{g} \\ \dot{g}sy \dot{g}sg \end{bmatrix}$$

$$V_{m} = \begin{bmatrix} r\cos\theta \\ r\sin\theta \end{bmatrix} = r\begin{bmatrix} \cos\theta \\ r\sin\theta \end{bmatrix} + Z\begin{bmatrix} 0 \\ 1 \end{bmatrix} = rc_{r} + Zc_{z}$$

$$V_{m} = \dot{r}C_{r} + \dot{r}C_{r} + \dot{z}C_{z} + Zc_{z}$$

$$V_{m} = \dot{r}C_{r} + \dot{c}\dot{g}sr + \dot{z}C_{z} + Zc_{z}$$

$$V_{m} = \dot{r}C_{r} + \dot{c}\dot{g}sr + \dot{c}\dot{g}sr$$

Scanned by CamScanner

10 pane) & -

There I to min y Sh =

-84- 4) = KN C=

```
rm = [rning coo] = rsi
rcoy ] = rsi
          Vm = rsi + rsi = rsi + r ( Sig + oring si)
          Vm = rsi + rýsig + róningsig
         am = rs+ rs+ rgs+ rgs+ r(gs+ gs)
                                + rônings ; + r ( ënings ; + 0 ( ig cos ys ; + mings ; ))
                              = ドラデナドラテナ (ドダナアダ 横) ラダナアダラダ
                             + (rowing + rowing + rogicosy) Sé + rowing Sé
                         = rsr+r(sig + 6nin ysi) + (rg+rg)sig
                                 + rig (6 cos 9 5 ; - 9 5 ;) + (ring + ring + rig cos) 5;
               + ronnysi
                       = (\ddot{r} - r\dot{g}^2) S \dot{r} + (r\ddot{g} + 2\dot{r}\dot{g}) S \dot{g}
                                + (röning + 2 röning + 2 rédicosy) sét rôning sé
        Now observe that:
              Si =- \( \begin{array} \cos \text{ \long} & \cos \t
                                 = - \therefore \left[ \cong \text{(ring y + cong y)} \ring \text{ = - \therefore \left[ \cong \text{ ring } \text{ ring } \text{ \text{ ring } \text{ \text{ ring } \text{ \text{ ring } \text{ ring } \text{ \text{ ring } \text{ ring }
               Such that:
     $ = - B (ming 8 + cog 5 )
                                                            rémigsé = -réznings = rézning cosysé
=> am = (r-rg²-r6²xin²g)Si+(rig+2rg-rôxingcoy)Sg)
                                                                + (résing + 2 résing + 2 réd cog) Sé
```

$$\oint ma_{m} = N - mge_{3}$$
Let r be fixed at $r = R$.

$$=> \dot{r} = 0$$

$$=> ma_{m} = \left((-R\dot{g}^{2} - Rnin^{2}g\dot{\theta}^{2})s_{n}^{2} + (R\ddot{g} - Rnin^{2}g\dot{\theta}^{2})s_{n}^{2}\right)$$

$$+ (R\ddot{g} - Rnin^{2}g\cos g\dot{\theta}^{2})s_{n}^{2} + (Rnin^{2}g\dot{\theta} + 2R\dot{g}\cos g\dot{\theta})s_{n}^{2}$$

$$+ (s_{n}^{2} - Rnin^{2}g\dot{\theta}^{2})s_{n}^{2} + (R\ddot{g} - Rnin^{2}g\cos g\dot{\theta}^{2})s_{n}^{2}$$

$$+ (Rnin^{2}g\dot{\theta} + 2R\dot{g}\cos g\dot{\theta})s_{n}^{2} + \left[\frac{g\cos g}{g\cos g}\right]$$

(9)
$$V_m = R(\dot{y} S \dot{g} + m n y \dot{\theta} S \dot{e})$$
 $T = \frac{1}{2} m V_m V_m = \frac{1}{2} m (\dot{y}^2 + m n^2 y \dot{\theta}^2) R^2$
 $V = M g h M = m g R m n g$
 $L = \frac{1}{2} m R^2 (\dot{y}^2 + m n^2 y \dot{\theta}) = m g R m n g$
 $\frac{2L}{2g} = m R^2 m g \cos y \dot{\theta}^2 = m g R \cos y$
 $\frac{2L}{2g} = m R^2 m g \cos y \dot{\theta}^2 = m R^2 \dot{y}$
 $\frac{2L}{2g} = m R^2 \dot{g}, \quad \frac{d}{dt} \frac{2L}{2\dot{y}} = m R^2 \dot{y}$
 $\frac{2L}{2g} = m R^2 m R^2 m g \dot{\theta}, \quad \frac{d}{dt} \frac{2L}{2\dot{\theta}} = m R^2 (2 \sin y \cos y \dot{y} \dot{\theta})$
 $\frac{dL}{dt} = \frac{1}{2} m R^2 m g \dot{\theta}, \quad \frac{d}{dt} \frac{2L}{2\dot{\theta}} = m R^2 (2 \sin y \cos y \dot{y} \dot{\theta})$

correct Pon & know

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{\theta}} - \frac{\partial L}{\partial \dot{\theta}} = mR^2(2 \operatorname{ring} \operatorname{csg} \dot{g} \dot{\theta} + \operatorname{rin}^2 g \dot{\theta}) = 0$$

$$\frac{d}{dt}\frac{\partial d}{\partial \dot{g}} - \frac{\partial f}{\partial g} = mR^2 \ddot{g} + mgR\cos g - mR^2 ring \cos g \dot{g}^2 = 0$$

$$\frac{\ddot{\theta} = \frac{-2\cos\theta}{\sin\theta} = -\frac{2\dot{\theta}\dot{\theta}}{\tan\theta}$$

$$\frac{\dot{g}}{g} = \frac{1}{R} \left(R \operatorname{mig} \cos g \dot{g}^2 - g \cos g \right) = \operatorname{mig} \cos g \dot{g}^2 - \frac{9}{R} \cos g$$

$$\begin{array}{ll}
\Theta V_{m} = \begin{bmatrix} R \cos \theta / \sqrt{1 + a^{2} \theta^{2}} \\ R \sin \theta / \sqrt{1 + a^{2} \theta^{2}} \end{bmatrix} = \begin{bmatrix} R \sin \theta \cos \theta \\ R \sin \theta \sin \theta \end{bmatrix} \\
R \cos \theta
\end{array}$$

=>
$$g = averin \left(\frac{1}{\sqrt{1+a^2\theta^2}} \right)$$

(i)
$$ring = \frac{1}{\sqrt{1+a^2\theta^2}}$$
, $ces g = \frac{a\theta}{\sqrt{1+a^2\theta^2}}$, $tang = \frac{1}{a\theta}$
 $\frac{d}{dt} ring = g ces g = \frac{a\theta g}{\sqrt{1+a^2\theta^2}} = -\frac{1}{2}(1+a^2\theta^2)^{\frac{3}{2}} \cdot 2a^2\theta \theta$
 $=> g = \frac{-\alpha\theta}{1+a^2\theta^2}$, $g = \frac{-\alpha\theta(1+a^2\theta^2) + \alpha\theta \cdot 2a^2\theta \theta}{(1+a^2\theta^2)^2}$

Assuming the equations above are correct we get:

$$\frac{\dot{\theta}}{\dot{\theta}} = -2\dot{g}\dot{\theta} \ a\theta = \frac{2a^2\theta\dot{\theta}^2}{1+a^2\theta^2}$$

Which con't parilly be correct. Don't know what's wrong tho...

Blank & WE = 3

(i)
$$T = \frac{1}{2}m(\dot{g}^2 + \sin^2 g \dot{\theta}^2)R^2$$
,
 $U = mgR \sin g$
Constraint:
 $f(\theta, g) = \sin g - \frac{1}{\sqrt{1+a^2\theta^2}} = 0$

$$\frac{\partial f}{\partial \theta} = a^2 \theta \left(1 + a^2 \theta^2 \right)^{-\frac{3}{2}}, \quad \frac{\partial f}{\partial g} = \cos g$$

$$\int_{0}^{\infty} = \frac{1}{2} m R^{2} (\dot{g}^{2} + \dot{g}^{2} n i n^{2} g) - m g R n i n g$$

All the calculations one the rame, but me use Lagrangian of first kind:

(*)
$$\frac{d}{dt} \frac{\partial \dot{f}}{\partial \dot{\theta}} - \frac{\partial \dot{g}}{\partial \theta} - \lambda \frac{\partial \dot{f}}{\partial \theta} = mR^2 m^2 g \dot{\theta} + 2mR^2 m g cos g \dot{\theta}$$
$$- \lambda a^2 \theta (1 + a^2 \theta^2)^{-\frac{3}{2}} = 0$$

$$\int_{-x}^{(**)} \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{g}} - \frac{\partial \mathcal{L}}{\partial g} - \lambda \frac{\partial f}{\partial g} = mR^2 \ddot{g} + mgR \cos g - mR^2 \sin g \cos g \dot{g}^2$$

$$- \lambda \cos g = 0$$

$$\Rightarrow^{(x)} \frac{mR^{2}\ddot{\theta}}{1+a^{3}\theta^{2}} + \frac{2mR^{2}a\theta \dot{g}\dot{\theta}}{1+a^{3}\theta^{2}} - \frac{\chi a^{2}\theta}{\sqrt{1+a^{3}\theta^{2}}(1+a^{3}\theta^{2})} = 0$$

$$\frac{-3(xx)}{\sqrt{1+a^26^2}} - \frac{mR^2\dot{6}^2a\theta}{1+a^26^2} - \frac{\lambda a\theta}{\sqrt{1+a^26^2}} = 0$$

$$\lambda = \frac{1}{a\Theta} \left(mR^2 \ddot{g} \sqrt{1 + a^2 \theta^2} + mgRa\theta - \frac{mR^2 \ddot{G}^2 a\theta}{\sqrt{1 + a^2 \theta^2}} \right)$$

$$mR^{2}\sqrt{1+a^{2}\theta^{2}}(\dot{\theta}+2a\theta\dot{g}\dot{\theta})-Xa^{2}\theta=0$$

$$\ddot{\theta}+2a\theta\dot{g}\dot{\theta}-\frac{\lambda a^{2}\theta}{mR^{2}\sqrt{1+a^{2}\theta^{2}}}=0$$

$$\frac{\dot{\theta} + 2a\theta\dot{\theta} \cdot \frac{-a\dot{\theta}}{1 + a^2\theta^2} - \frac{a^2\dot{\theta}}{MR^2\sqrt{1 + a^2\theta^2}} \cdot \frac{1}{A\dot{\theta}} \left(MR^2\ddot{g}\sqrt{1 + a^2\theta^2} + MgKa\theta - \frac{M}{\sqrt{1 + a^2\theta^2}} \right) = 0$$

$$\frac{\partial \mathbf{a}}{\partial t} - \frac{2a^{2}\theta\dot{\theta}^{2}}{1 + a^{2}\theta^{2}} - \frac{\alpha}{\sqrt{1 + a^{2}\theta^{2}}} \left(\frac{-a\theta(1 + a^{2}\theta^{2}) + a^{3}\dot{\theta}^{2}}{2\theta\sqrt{1 + a^{2}\theta^{2}}} + \frac{9}{R}a\theta \right) - \frac{a\theta\dot{\theta}^{2}}{\sqrt{1 + a^{2}\theta^{2}}} = 0$$

$$\dot{\theta} \left(1 + \frac{a^2}{1 + a^2 \theta^2} \right) = \frac{2a^2 \theta \dot{\theta}^2}{1 + a^2 \theta^2} + \frac{2a^4 \theta \dot{\theta}^2}{(1 + a^2 \theta^2)^2} + \frac{9}{R} \frac{a^2 \theta}{\sqrt{1 + a^2 \theta^2}} + \frac{a^2 \theta \dot{\theta}^2}{1 + a^2 \theta^2} = \frac{a^2 \theta}{1 + a^2 \theta^2}$$

$$\frac{\dot{\theta}}{\theta} = \frac{(1+\alpha^2+\alpha^2\theta^2)}{2} = \frac{2\alpha^2\theta\dot{\theta}^2 - 2\alpha^4\theta\dot{\theta}^2}{(1+\alpha^2\theta^2)} - \frac{9}{R}\alpha^2\theta\sqrt{1+\alpha^2\theta^2} + \alpha^2\theta\dot{\theta}^2$$

$$\ddot{\theta} = \frac{3a^{2}\theta\dot{G}^{2}(1+a^{2}\theta^{2}) - 2a^{4}\theta\dot{G}^{2}}{(1+a^{2}\theta^{2})(1+a^{2}+a^{2}\theta^{2})} - \frac{9}{R} \frac{a^{2}\theta\sqrt{1+a^{2}\theta^{2}}}{1+a^{2}+a^{2}\theta^{2}} = \frac{3a^{2}\theta\dot{\theta}^{2} + 3a^{4}\theta^{3}\dot{\theta}^{2} - 2a^{4}\theta\dot{\theta}^{2}}{(1+a^{2}\theta^{2})(1+a^{2}+a^{2}\theta^{2})} = \frac{9}{R} \frac{a^{2}\theta\sqrt{1+a^{2}\theta^{2}}}{1+a^{2}+a^{2}\theta^{2}}$$

$$= \frac{3a^{2}\theta\dot{\theta}^{2} + 3a^{4}\theta^{3}\dot{\theta}^{2} - 2a^{4}\theta\dot{\theta}^{2}}{(1+a^{2}\theta^{2})(1+a^{2}+a^{2}\theta^{2})} = \frac{9}{R} \frac{a^{2}\theta\sqrt{1+a^{2}\theta^{2}}}{1+a^{2}+a^{2}\theta^{2}}$$

$$\theta = \frac{a^2 \theta (3 + 3a^2 \theta^2 - 2a^2)}{(1 + a^2 \theta^2)(1 + a^2 \theta^2)} \cdot z = \frac{g}{R} \frac{a^2 \theta \sqrt{1 + a^2 \theta^2}}{1 + a^2 + a^2 \theta^2}$$

Close enough... It is honestly impossible to find algebra errors when you only show the nexult in the last task...

$$\begin{array}{c|c}
\hline
\text{Im} = \begin{bmatrix} \cos \theta \\ \sin \theta \\ a \theta \end{bmatrix} \frac{R}{\sqrt{1 + a^2 \theta^2}}$$

$$V_{m} = \frac{R}{(1+a^{2}\theta^{2})^{3/2}} \begin{bmatrix} -(1+a^{2}\theta^{2}) & \sin \theta \dot{\theta} - \cos \theta a^{2}\theta \dot{\theta} \\ (1+a^{2}\theta^{2}) & \cos \theta \dot{\theta} - \sin \theta a^{2}\theta \dot{\theta} \\ a \dot{\theta} & (1+a^{2}\theta^{2}) - a^{3}\theta^{2} \dot{\theta} \end{bmatrix}$$

$$=\frac{R\theta}{(1+a^2\theta^2)^{3/2}}\begin{bmatrix} -\sin\theta - a^2\sin\theta \theta^2 - \cos\theta a^2\theta \\ \cos\theta + a^2\theta^2\cos\theta - a^2\theta\sin\theta \\ a + a^3\theta^2 - a^3\theta^2 \end{bmatrix}$$

$$\overline{F_f} = \frac{Rk\Theta}{(1+a^2G^2)^{3/2}} \begin{bmatrix} a^2\theta^2 \sinh \theta + a^2\theta \cos \theta + \sin \theta \\ -a^2\theta^2 \cos \theta + a^2\theta \sin \theta - \cos \theta \end{bmatrix}$$

Lograngion is the rome with generalized Jone applied:

$$\frac{\partial}{\partial t} \frac{\partial f}{\partial \dot{\theta}} - \frac{\partial f}{\partial \theta} - \lambda \frac{\partial f}{\partial \theta} = F_{fe}$$

Don't know if this is comeet, but I will try

to find the 6-component in the sphere frame:

$$F_f^s = R_i^s F_f = \begin{bmatrix} sgc6 & sgs6 & cg \\ cgc6 & cgs6 & -sg \end{bmatrix} \cdot \begin{bmatrix} a^2e^2s6 + a^26c6 + s6 \\ -a^2e^2co6 + a^26s6 - c6 \end{bmatrix} \frac{Rk6}{(1+a^26^2)^{3/2}}$$

$$= \frac{Rk6}{(1+a^26^2)^{3/2}} \left[-56(a^26^256+a^26c6+56) + c6(a^2656-a^26^2c6-c6) \right]$$

$$= \frac{2ke}{(1+a^2\theta^2)^{3/2}} \left[-a^26^2 - 1 \right]$$

In the prior calculations we multiplied $\frac{1}{mR^2} = \frac{1}{1+a^2+a^26^2}$ I think we need to do this first the: mR2g+ mgRa6 - mR26a6 - Xa6 = & Tfg $F_{fg} = \frac{Rk\theta}{(1+a^{2}6^{2})^{3/2}} \left((gc\theta (a^{2}6^{2}s\theta + a^{2}Gc\theta + s\theta) + (gs\theta (-a^{2}6^{2}c\theta + a^{2}Gs\theta - c\theta) - scg\alpha) \right)$ $=\frac{RkG}{(1+a^2G^2)^{3/2}}\left(a^2G(g-sga)=\frac{RkG(a^3G^2-a)}{(1+a^2G^2)^2}\right)$ $= \lambda = \frac{1}{a\theta} \left(mR^2 \dot{g} \sqrt{1 + a^2 \theta^2} + mgRa\theta - \frac{mR^2 \dot{g}^2 a\theta}{\sqrt{1 + a^2 \theta^2}} - \frac{Rk \dot{g} (a^3 \dot{\theta}^2 - a)^3}{(1 + a^2 \dot{\theta}^2)^{3/2}} \right)$ $\dot{\mathcal{E}} + 2a6\dot{\mathcal{G}}\dot{\mathcal{E}} - \frac{\chi a^2 6}{mR^2\sqrt{1+a^26^2}} = \frac{-Rk\dot{\mathcal{E}}}{(1+a^26^2)^3/2} (a^26^2+1) \cdot (a^26^2+1)$ $= -\frac{k \theta}{R m} \sqrt{1 + a^2 \theta^2}$ 0 +2 a00 · \frac{-a6}{1+a^26^2} - \frac{a^26}{mR^2\sqrt{1+a^26^2}} \cdot \frac{1}{a6} \left(mR^2\sqrt{g\sqrt{1+a^26^2}} + mgRa6 = 0 4 - 2 a 2 6 6 2 - 0 mR2 \(\text{mR2} \) \(\text{mR2 $-\frac{mR^2a\theta\theta^2}{\sqrt{1+a^2\theta^2}} + \frac{Rka\theta(1-a^2\theta^2)}{(1+a^2\theta^2)^2} = -\frac{k\theta}{Rm}\sqrt{1+a^2\theta^2}$ $\frac{3(1+a^{2}+a^{2}6^{2})}{(1+a^{2}6^{2})} = (1+a^{2}6^{2})\left(\frac{2a^{2}66^{2}}{1+a^{2}6^{2}} + \frac{2a^{4}66^{2}}{(1+a^{2}6^{2})^{2}} - \frac{9a^{2}\theta}{R\sqrt{1+a^{2}6^{2}}}\right) + \frac{a^{2}66^{2}}{1+a^{2}\theta^{2}} = \frac{8ka^{2}6(1-a^{2}\theta^{2})}{mR(1+a^{2}6^{2})^{5/2}} - \frac{k6}{Rm}\sqrt{1+a^{2}6^{2}}$

B = \frac{a^26(3+3a^26^2-2a^2)}{(1+a^26^2)(1+a^2+a^26^2)} \frac{\ta^2}{R} \frac{a^26}{1+a^2+a^26^2} - ka26 (1-a262) Year this is obviously incorrect so will throw in the towel.

(1 - 20%) = 4 + (20%) = (1 + 4 + 5) = (1 + 4

10,25 " 100 (NE, 3 /110,65) " " 3150 E

20011 04 - (C350 1) 6 0x 30 30 31 30 31

(b = 711) = 2 (5 m 1) = 2 (5 m 1) + 3 (

136° 577 8 1 = =

· ma 6 12 | Rh3 (x'8'-1) &

2a Since we have discontinuities at v = 0 the variable step solver uses very small time steps in the beginning, as the Coulomb model is not defined at v=0. When using a fixed step solver we still have the problem with discontinuities at v=0.

2b Observe how we longer have nasty discontinuities at v=0. Furthermore the velocity stays at zero until we pass the threshold where the ramp force is larger than the friction force, and then we start to accelerate.

2c We get the same results. When v(0) = -2 we hit v = -1 for 0.5 seconds until the ramp force is larger than the friction force and we continue to accelerate again.

2d Now we observe how we get viscosity as the friction increases with speed, as well as a dip in the viscous friction from the Stribeck effect.

2e Interestingly the results look exactly the same as with linear viscosity and Stribeck. By adding a nonzero sigma_1 we get oscillations, with a frequency determined also by sigma_0. sigma_2 determine how hard the linear viscosity is.

