Задание 2. Определимость и автоморфизмы

- 1. Докажите, что вещественное число определимо в структуре (\mathbb{R} ; = $,+,\cdot,0,1$) тогда и только тогда, когда оно алгебраическое. Охарактеризуйте вещественные числа, определимые в структуре (\mathbb{R} ; =, +,0,1). (Примите без доказательства, что в упорядеченном поле вещественных чисел любая формула равносильна подходящей бескванторной формуле.)
- 2. Докажите, что комплексное число определимо в структуре (\mathbb{C} ; = $,+,\cdot,0,1$) тогда и только тогда, когда оно рациональное. (Примите без доказательства, что в поле комплексных чисел любая формула равносильна подходящей бескванторной формуле.)
- 3. Докажите, что в стандартной модели арифметики $(\mathbb{N};+,\cdot,=)$ определимы: любое конкретное натуральное число; отношения строгого порядка и делимости; множество всех простых чисел; отношение быть простыми близнецами; множества степеней двойки, тройки, четверки, пятерки.
- 4. Пусть A-k-буквенный алфавит, $k\geq 2$. Определим бинарные отношения $\leq_p, \leq_s, \leq_i, \preceq$ на A^* следующим образом:

```
u \leq_p v, если ux = v для некоторого x \in A^*;
```

 $u \leq_s v$, если xu = v для некоторого $x \in A^*$;

 $u \leq_i v$, если xuy = v для некоторых $x, y \in A^*$;

 $u \prec v$, если u получается из v стиранием некоторых букв.

Докажите, что:

отношение \leq_i определимо в A^* через отношения \leq_p и \leq_s ;

пустое слово определимо через любое из этих отношений;

множество всех слов фиксированной длины определимо через любое из этих отношений;

никакое фиксированное непустое слово не определимо через все эти отношения;

существует двухбуквенное слово, не определимое через отношения \leq_i, \preceq и однобуквенные слова;

опишите все слова, не определимые как в предыдущем вопросе.

5. Докажите, что любой элемент структуры $(A^*; \leq_i)$, обогащенной константами для всех слов длины не более двух, определим. Охарактеризуйте группу автоморфизмов структуры $(A^*; \leq_i)$. Докажите аналогичные результаты для отношения \preceq вместо \leq_i .