Homework 5

Problem 1. Fill in the blanks with either true (\checkmark) or false (\times)

f(n)	g(n)	f = O(g)	$f = \Omega(g)$	$f = \Theta(g)$
$2n^3 + 3n$	$100n^2 + 2n + 100$	×	✓	×
$50n + \log n$	$10n + \log \log n$	✓	✓	✓
$50n \log n$	$10n \log \log n$	×	✓	×
$\log n$	$\log^2 n$	✓	×	×
n!	5 ⁿ	×	✓	×

Problem 2. 1. Find two functions f(x) and g(x) such that $f(x) \neq O(g(x))$ and $g(x) \neq O(f(x))$.

2. Furthermore, we say a function $h : \mathbb{R} \to \mathbb{R}$ is monotonically increasing if it satisfies the property ' $x \le y \implies h(x) \le h(y)$ '.

Find two monotonically increasing functions f(x) and g(x) such that $f(x) \neq O(g(x))$ and $g(x) \neq O(f(x))$.

(Please give the detailed proof that your functions satisfy the requirements.)

Solution.

1.
$$\begin{cases} f(x) = \sin(x); \\ g(x) = \cos(x). \end{cases}$$

2.
$$\begin{cases} f(x) = x^{\sin(x)+x}; \\ g(x) = x^{\cos(x)+x}. \end{cases}$$

The detailed proof are omitted. Just stick to the definition of O(-).

Problem 3. Prove that

(a)
$$\left(1+\frac{1}{n}\right)^n \le e \text{ for all } n \ge 1.$$

(b)
$$\left(1+\frac{1}{n}\right)^{n+1} \geq e \text{ for all } n \geq 1.$$

(c) Using (a) and (b), conclude that
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$$
.

Solution.

(a)
$$\left(1 + \frac{1}{n}\right)^n \le \left(e^{\frac{1}{n}}\right)^n = e$$
.

(b)
$$\left(1 + \frac{1}{n}\right)^{n+1} = \left(\frac{n+1}{n}\right)^{n+1} = \left(\frac{1}{\frac{n}{n+1}}\right)^{n+1} = \left(\frac{1}{1 - \frac{1}{n+1}}\right)^{n+1} \ge \left(e^{\frac{1}{n+1}}\right)^{n+1} = e$$
.

(c)
$$:\lim_{n\to\infty} \frac{\left(1+\frac{1}{n}\right)^n}{\left(1+\frac{1}{n}\right)^{n+1}} = 1 :\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n+1}.$$

While
$$e^{(b)} \le \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+1} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \left(1 + \frac{1}{n} \right)^{(a)} \le e \cdot \lim_{n \to \infty} \frac{1}{n} = e$$
.

Problem 4. Prove Bernoulli's inequality: for each natural number n and for every real $x \ge -1$, we have $(1 + x)^n \ge 1 + nx$.

Solution. Apply binomial theorem to the left.

Problem 5. Prove that for n = 1, 2, ..., we have

$$2\sqrt{n+1}-2 < 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} \le 2\sqrt{n} - 1.$$

Solution. Proof by induction.

Problem 6.

- a) Show that the product of all primes p with $m is at most <math>\binom{2m}{m}$.
- b) Using a), prove the estimate $\pi(x) = O(\frac{x}{\ln x})$, where $\pi(x)$ denote the number of primes not exceeding the number x.

Solution.

- 1. $B = \binom{2m}{m} = \frac{(m+1)\times(m+2)\times\cdots\times(2m)}{1\times2\times\cdots\times m}$. It is easy to find that if p is a prime number and $p \in (m, 2m]$ then p|B. Thus $\prod_{m . It follows that the upper bound of the products of prime numbers between <math>m$ and 2m is B.
- 2. There are several ways to prove the second problem.

First proof: Combing a), w.l.o.g. assume n is even and n = 2m. It is obvious that

$$B \le \sum_{i=0}^{2m} \binom{2m}{i} = 4^m$$

With *a*) we have $\prod_{m ($ *p*is prime, as above). It follows that

$$\sum_{m$$

Then count the number of primes between m and 2m, i.e. the number of $p \in (m, 2m]$,

$$\pi(2m) - \pi(m) = \sum_{m$$

For any given x, there exists $k \ge 1$ such that $x \in (2^{k-1}, 2^k]$. Finally with the above analysis

$$\pi(x) \le \pi(2^k) = \sum_{i=1}^k \left(\pi(2^i) - \pi(2^{i-1}) \right) = O\left(\sum_{j=1}^k \frac{2^j}{j}\right) = O\left(\frac{2^k}{k}\right) = O\left(\frac{x}{\ln x}\right).$$

Second proof: Proof by contradiction