Singular holomorphic foliations by curves whose canonical rings have infinitely generated section rings

Takayuki KOIKE (the University of Tokyo)

We are interested in

minimal singular metrics h_{min} of Zariski-type line bundles.

X: smooth projective variety /C

L: pseudo-effective line bundle /X

 h_{min} is a Hermitian metric on L admitting the value ∞ and satisfying the L^2 condition, with semi-positive curvature. h_{min} has the smallest singularities among such metrics.

- h_{min} : exists $\iff_{[DPS]} L$: pseudo-effective.
- L: semi ample $\Rightarrow \exists$ smooth h_{min} .
- L : big $\underset{[Bou]}{\Longrightarrow} B_{-}(L) = \{x \in X \mid \nu(h_{min}, x) > 0\}.$

Where ν is Lelong number, an analytic counterpart of the multiplicity. h_{min} can take ∞ even on a point x with $\nu(h_{min}, x) = 0$.

The following question is closely related to some important problems about the structure of **section rings** of **nef** line bundles.

Question 1 When L is nef and big, can we take a continuous h_{min} ?

In order to answer this question, we study **Zariski-type line bundles**.

We say L is **of Zariski-type** w.r.t. $D \subset X$ when $D \subset Bs(mL)$ and |mL - D|: free for all $m \in Z$

- In this case, *L* is **nef** and the section ring of *L* is **infinitely generated**.
- Zariski constructed such an example by blowing up 12 points of projective plane.

We are trying to

construct h_{min} expricitly on

such L by using the theory of

hyperbolic foliations by curves.

According to the theory of Brunella, Lins Neto, and so on, **the leafwise Poincaré** metric of a singular hyperbolic foliation F by curves glues up to define a singular metric h_F of K_F .

Question 2 For a Zariski-type big line bundle L on X, are there (\tilde{X}, \tilde{L}) and m satisfying the following conditions?

- $\tilde{X} \supset X$ and $\tilde{L}|_{X} = L$.
- There exists a singular hyperbolic foliation F by curves with $K_F = m\tilde{L}$.

Question 3 In this case, does $h_F|_X = h_{min}^m$ hold?

Example

E: smooth elliptic curve,

 $p, q \in E$: general points

 $X := \mathbb{P}(\mathcal{O}(-q) \oplus \mathcal{O}(p))$

 $\pi \colon X \to E$: canonical map

 $L := \mathcal{O}_X(1) \otimes \pi^* \mathcal{O}_E(p)$

 $C := \mathbb{P}(\mathcal{O}(-q)) \subset X$

Then (L, C) is of Zariski-type. Now let us set

 $\tilde{X} := \mathbb{P}(\mathcal{O}(-q) \oplus \mathcal{O}(p) \oplus \mathcal{O}(-5p) \oplus \mathcal{O}(-p-q))$

 $\tilde{\pi}\colon X\to E$

 $L := \mathcal{O}_{\tilde{X}}(1) \otimes \pi^* \mathcal{O}_E(p)$

 $D_0 := \mathbb{P}(\mathcal{O}(p) \oplus \mathcal{O}(-5q) \oplus \mathcal{O}(-p-q))$

 $D_1 := \mathbb{P}(\mathcal{O}(-q) \oplus \mathcal{O}(-5q) \oplus \mathcal{O}(-p-q))$

 $D_2 := \mathbb{P}(\mathcal{O}(-q) \oplus \mathcal{O}(p) \oplus \mathcal{O}(-p-q))$

 $D_3 := \mathbb{P}(\mathcal{O}(-q) \oplus \mathcal{O}(p) \oplus \mathcal{O}(-5q))$

and set "canonical local coordinate" (x, y, z, t) on $X - D_0$ where t is a coordinate on E and $D_1 = \{x = 0\}, D_2 = \{y = 0\}, D_3 = \{z = 0\}$ holds.

Then $X = \{y = z = 0\}$ and $\tilde{L}|_X = L$ holds.

We can construct F with $K_F = 3L$, whose leaves can be written in the form $\{t = t_0, x = x_0, f(t_0)y + g(t_0)z^4 = c\}_{t_0,x_0,c}$ with $f \in H^0(E, 4p - 3q)$ and $g \in H^0(E, q)$. From this construction, we can show that we can take a continuous h_{min} .