

APL/JHU TG 1298D JANUARY 1977

2

ADA 040320

Technical Memorandum

EXPERIMENTAL RESEARCH ON THE PROPAGATION OF LORAN-C SIGNALS

VOLUME D: DATA AND ANALYSIS

L. F. FEHLNER

T. W. JERARDI

T. A. McCARTY

R. G. ROLL

R. R. SMITH

COPY AVAILABLE TO DOG DOES NOT PERMIT FULLY LEGISLE PRODUCTION

THE JOHNS HOPKINS UNIVERSITY - APPLIED PHYSICS LABORATORY

Approved for public release; distribution unlimited.

NO.

APL/JHU TG 1298D JANUARY 1977

Technical Memorandum

EXPERIMENTAL RESEARCH ON THE PROPAGATION OF LORAN-C SIGNALS VOLUME D: DATA AND ANALYSIS

L. F. FEHLNER

T. W. JERARDI

T. A. McCARTY

R. G. ROLL

R. R. SMITH

with the terms of the terms of

THE JOHNS HOPKINS UNIVERSITY ■ APPLIED PHYSICS LABORATORY
Johns Hopkins Road, Laurel, Maryland 20810
Operating under Contract N00017-72-C-4401 with the Department of the Navy

Approved for public release; distribution unlimited.

REPORT DOCUMENT	ATION PAGE	
1. REPORT NUMBER APL/JHU-TG-1298D	2. GOVT ACCESSION NO	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) EXPERIMENTAL RESEARCH ON THE PROPAGA VOLUME D. DATA AND ANALYSIS.	ATION OF LORAN-C SIGNALS.	5. TYPE OF REPORT & PERIOD COVERED Technical Memorandum 6. PERFORMING ORG. REPORT NUMBER
L. F. Fehlner, T. W. Jerardi, T. A. and R. R. Smith 9. PERFORMING ORGANIZATION NAME & ADDRESS The Johns Hopkins University Applied Johns Hopkins Rd. Laurel, MD 20810 11. CONTROLLING OFFICE NAME & ADDRESS	d Physics Laboratory	8. CONTRACT OR GRANT NUMBER(s) N00017-72-C-4401 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Task Z832 12. REPORT DATE
ESD/DCL, R. V. Gressang, Hanscom AF. DARPA/TTO, P. Worch, 1400 Wilson Bl.		January 1977 13. NUMBER OF PAGES 391
14. MONITORING AGENCY NAME & ADDRESS Naval Plant Representative Office Johns Hopkins Rd. Laurel, MD 20810		15. SECURITY CLASS. (of this report) Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release; distri	bution unlimited.	
17. DISTRIBUTION STATEMENT (of the abstract entered 18. SUPPLEMENTARY NOTES	in Block 20, if different from Report)	
19. KEY WORDS (Continue on reverse side if necessary and Loran-C Radio frequency propagation Group velocity Phase velocity	Groundwave Time transfer Satellite surveys	
data that were recorded and the ana ducted by The Johns Hopkins Univers Defense Advanced Research Projects groundwave propagation at 100 kHz. tions, and Volume C describes the magnetic This goal of the experiment was operational use that relates second position can be computed, accurated were collected and analyzed. They functional relationship exists, at	dentify by block number) This reporting the state of the summary resources that were performed by Applied Physics Labora Agency to determine the various Volume A is the summary resourcement system. It is to determine if an analy lary phase factor to envelous and in real time, from L show trends that tend to seleast under certain conditions.	rt (Volume D of TG 1298) documents to in conjunction with an experiment contory for the U.S. Air Force and the lidity of one facet of the theory of eport, Volume B describes test operation to cycle difference so that geode oran—C coordinates. Field test data upport the hypothesis that the desirions. Additional analysis and perhale conclusively the existence of such

DD FOR

relationship.

ORM 1473

031 650

ar to be a second to the secon

Unclassified

CONTENTS

	List	o f	111	ust	ra	ti	ons										4
	List	o f	Tab	1es	3 .												15
	List	o f	Pro	gra	a m	Li	st	ing	s								17
	List	o f	F1c	w C	ha	rt	s										20
1.	Intro	duc	tic	n													23
2.	Overv	iew															25
3.	Discu	ssi	on.										•				26
	Rec	ord	e d	Dat	a												26
	Data	a P	roc	ess	in	g											31
	Ana					Ū				•			•		•		33
4.	Conc1	ud 1	ng	Ren	nar	ks	•										42
5.	Refer	enc	е .		•.		•	•							•		43
	Appen	dix	Α,	Da	ata	P	roc	ces	si	ng	Com	pute	er				
	Pro	gra	ms.														45
	Appen																
	and																185
	Appen				Paris 1/0 0									•		•	
																	214
														•	•	•	229
	Appen													•	•	•	229
	Appen												d				
	Pu1												•			•	242
	Appen												ment			•	318
	Appen											y					
	Fil:	ter	ing	3			•			•						•	339

The state of the s

ILLUSTRATIONS

1	Raw I	Da	ta	1	T a	pe	.]	Fo	rm	a	t	f	01	r	Ea	ch	F	310	ock	C				
																				•	•	•	•	28
2	Typi	ca	1	L	or	an	1-	C	Pu	1	se	2	SI	ho	wi	ng	t	he	2					
																				•				29
3	Proc	e s	s	in	g	an	d	A	na	1	y	s i	s	D	at	a	F1	Lot	J					32
A-1	Proc	es	s	Ĺn	g	ar	ıd	A	na	1	y:	s i	s	D	at	a	F]	Lot	J					48
A-2	Freq	ue	no	2 у	F	i 1	t	er		a	ta	a	F	10	w									49
B-1	Obse:	rv	at	: i	on	s	0	f	Lo	r	aı	n –	С	P	u 1	se		at	W:	ilmi	ngto	n.		
																				•			. 2	01
B-2	Obse	rv	at	t i	on	s	0	f	Lo	r	aı	n –	C	P	u	se	: 8	at	Er	npor	ia,			
	VA	,	ar	nd	N	AV	70	BS	Y		•			•		•		•		•		•	. 2	02
B-3	Obse:	rv	at	i	on	s	0	f	Lo	r	aı	n ~	С	P	ul	se		at	T	owan	da,			
	PA	,	ar	nd	N	AV	10	BS	Y		•			•		•		•		•	•	•	. 2	03
B-4	Obse																							
	NY	,	ar	nd	N	AV	10	BS	Y		•			•		•		•		•	•	٠	. 2	04
B-5	Obse:	rv	at	t i	on	s	0	f	Lo	r	aı	n -	·C	P	u I	se	: 8	at	Da	anvi	11e,			
	IN	,	ar	nd	N	AV	10	BS	Y		•			•		•		•		•	•	•	. 2	0.5
B-6	Obset																							
	ОН	,	ar	n d	N	AV	70	BS	Y		•			•		•		•		•	•	•	. 2	06
B-7	Obset	rv	at	i	on	s	0	f	Lo	r	aı	n –	С	P	u 1	se	: 8	ı t	Ge	eorg	etow	n,		
	DE	,	ar	ıd	N	AV	70	BS	Y		•		1	•		•		•			•	•	. 2	07
B-8	Obse	rv	at	i	o n	s	0	f	Lo	r	aı	n –	C	P	u1	se	: 8	at	To	oms l	Rive	r,		
	NJ	,	ar	ı d	N	AV	70	BS	Y		•			•		•		•		•	•	•	. 2	0.8
B-9	Obse																							
	VA	,	ar	n d	N	AV	70	BS	Y		•			•		•		•		•	•	•	. 2	09
B-10	Obse:	rv	at	ti	o n	s	0	f	Lo	r	aı	n-	C	P	u]	se	: 8	at	В	luef	ield	,		
	WV	,	ar	1 d	N	AV	70	BS	Y		•			•		•		•		•	•	•	. 2	10
B-11	Obse																							
	on	1	9	/5	D	ay	7	Nu	mb	е	r	1	5	4		•		•		•	•	•	. 2	11
B-12	Obse	rv	at	i	on	s	0	f	Lo	r	aı	n –	C	P	u I	se	: 8	at	NA	AVOB	SY			
	on	1	9	75	D	ay	7	Nu	mb	e	r	1	8	8									. 2	112

or to provide the state of the

E-1	Sine and Cosine Modulations O			
	Simultaneously at Wilmingto	n, NC, a	nd	
	NAVOBSY; Data Segment 1 .			.243
E-2	Sine and Cosine Modulations O	bserved		
	Simultaneously at Wilmingto	n. NC. a	nd	
	NAVOBSY; Data Segment 2 .			.244
E-3	Sine and Cosine Modulations O	hserved		
	Simultaneously at Wilmingto		nd	
	NAVOBSY; Data Segment 3 .			. 245
	MAVOBOT, Data Degment 5 .		•	. 243
E-4	Sine and Cosine Modulations O	hearved		
E-4	Simultaneously at Emporia,			
				. 246
	NAVOBSY; Data Segment 1 .			. 240
	04 1 04 W-1-14 0			
E-5	Sine and Cosine Modulations O			
	Simultaneously at Emporia,			
	NAVOBSY; Data Segment 2 .			. 247
E-6	Sine and Cosine Modulations O			
	Simultaneously at Emporia,			
	NAVOBSY; Data Segment 3 .			. 248
E-7	Sine and Cosine Modulations O			
	Simultaneously at Towanda,			
	NAVOBSY; Data Segment 1 .			. 240
E-8	Sine and Cosine Modulations O	bserved		
	Simultaneously at Towanda,	PA, and		
	NAVOBSY; Data Segment 2 .			. 250
E-9	Sine and Cosine Modulations O	bserved		
	Simultaneously at Towanda,			
	NAVOBSY; Data Segment 3 .			. 251
	, and a comment of			
E-10	Sine and Cosine Modulations O	hserved		
	Simultaneously at Dexter, N			
	NAVOBSY; Data Segment 1 .			. 252
	MAVOBSI, Data Segment 1 .		• •	. 232
F-11	Sine and Cosine Modulations O	haarwad		
2-11	Simultaneously at Dexter, N			
				. 253
	NAVOBSY; Data Segment 2 .	•		. 23.
F 10	64 1 64 W-1-1 1			
E-12	Sine and Cosine Modulations O			
	Simultaneously at Dexter, N			25
	NAVOBSY; Data Segment 3 .			. 254

THE RESERVE THE PROPERTY OF TH

E - 13	Sine and Cosine Modulations Observed
	Simultaneously at Danville, IN, and
	NAVOBSY; Data Segment 1
E-14	Sine and Cosine Modulations Observed
	Simultaneously at Danville, IN, and
	NAVOBSY; Data Segment 2
E-15	Sine and Cosine Modulations Observed
2 13	Simultaneously at Danville, IN, and
	NAVOBSY; Data Segment 3
	, , , , , , , , , , , , , , , , , , , ,
E-16	Sine and Cosine Modulations Observed
	Simultaneously at Marietta, OH, and
	NAVOBSY; Data Segment 1
E-17	Sine and Cosine Modulations Observed
	Simultaneously at Marietta, OH, and
	NAVOBSY; Data Segment 2
E-18	Sine and Cosine Modulations Observed
	Simultaneously at Marietta, OH, and
	NAVOBSY; Data Segment 3
E-19	Sine and Cosine Modulations Observed
	Simultaneously at Georgetown, DE, and
	NAVOBSY; Data Segment 1
E-20	Sine and Cosine Modulations Observed
	Simultaneously at Georgetown, DE, and
	NAVOBSY; Data Segment 2
E-21	Sine and Cosine Modulations Observed
	Simultaneously at Georgetown, DE, and
	NAVOBSY; Data Segment 3 26
E-22	Sine and Cosine Modulations Observed
	Simultaneously at Toms River, NJ, and
	NAVOBSY; Data Segment 1
E-23	Sine and Cosine Modulations Observed
	Simultaneously at Toms River, NJ, and
	NAVOBSY; Data Segment 2
E-24	Sine and Cosine Modulations Observed
	Simultaneously at Toms River, NJ, and
	NAVORSY: Data Segment 3

The transfer of the second of

E-25	ine and Cosine Modulations Observed	
	Simultaneously at Grottoes, VA, and	
	NAVOBSY; Data Segment 1	7
	Antobol, bata beginner 1	,
E-26	ine and Cosine Modulations Observed	
	Simultaneously at Grottoes, VA, and	
	NAVOBSY; Data Segment 2	3
F-27	ine and Cosine Modulations Observed	
	Simultaneously at Grottoes, VA, and	_
	NAVOBSY; Data Segment 3	1
E - 28	ine and Cosine Modulations Observed	
	Simultaneously at Bluefield, WV, and	
	NAVOBSY; Data Segment 1	1
	NAVODSI; Data segment I	,
E-29	ine and Cosine Modulations Observed	
	Simultaneously at Bluefield, WV, and	
	NAVOBSY; Data Segment 2	1
F-30	ine and Cosine Modulations Observed	
E-30		
	Simultaneously at Bluefield, WV, and	
	NAVOBSY; Data Segment 3	2
E-31	ine and Cosine Modulations Observed	
	Simultaneously at NAVOBSY by the Fixed	
	and Field Site Equipment on 1975	
		_
	Day No. 154; Data Segment 1	3
E-32	ine and Cosine Modulations Observed	
	Simultaneously at NAVOBSY by the Fixed	
	and Field Site Equipment on 1975	
	Day No. 154; Data Segment 2	4
	Day No. 194, Data beginent 2	•
F 22		
E-33	ine and Cosine Modulations Observed	
	Simultaneously at NAVOBSY by the Fixed	
	and Field Site Equipment on 1975	
	Day No. 154; Data Segment 3	5
F-34	sine and Cosine Modulations Observed	
1-34		
	Simultaneously at NAVOBSY by the Fixed	
	and Field Site Equipment on 1975	
	Day No. 188; Data Segment 1	5
E-35	ine and Cosine Modulations Observed	
	Simultaneously at NAVOBSY by the Fixed	
	and Field Site Equipment on 1975	_
	Day No. 188: Data Segment 2	1

The second of th

E-36	Sine and Cosine Modulations Obser	rved	
	Simultaneously at NAVOBSY by th	ne Fixed	
	and Field Site Equipment on 197		
	Day No. 188; Data Segment 3 .		278
	buy not root, but a beginner 5		- , 0
F 27	The Carolina Beach Pulse Envelope		
E-3/			
	at Wilmington, NC, and NAVOBSY		
	Data Segment 1		279
E - 38	The Carolina Beach Pulse Envelope	2	
	at Wilmington, NC, and NAVOBSY		
	Data Segment 2		280
F-30	The Carolina Beach Pulse Envelope		
E-39			
	at Wilmington, NC, and NAVOBSY		
	Data Segment 3		281
E-40	The Carolina Beach Pulse Envelope	e	
	at Emporia, VA, and NAVOBSY;		
	Data Segment 1		282
F-/.1	The Carolina Beach Pulse Envelope		
E-41			
	at Emporia, VA, and NAVOBSY;		202
	Data Segment 2	• • • • • • • • • • • • • • • • • • • •	283
E-42	The Carolina Beach Pulse Envelope	9	
	at Emporia, VA, and NAVOBSY;		
	Data Segment 3		284
F-43	The Carolina Beach Pulse Envelope	•	
1 43			
	ar Towanda, PA, and NAVOBSY;		285
	Data Segment 1		200
E-44	The Carolina Beach Pulse Envelope	e	
	at Towanda, PA, and NAVOBSY;		
	Data Segment 2		286
E-45	The Carolina Beach Pulse Envelope	9	
L 43	at Towanda, PA, and NAVOBSY;		
			287
	Data Segment 3		201
E-46	The Carolina Beach Pulse Envelope	e	
	at Dexter, NY, and NAVOBSY;		
	Data Segment 1		288
E-47	The Carolina Beach Pulse Envelope	e	
,	at Dexter, NY, and NAVOBSY;		
			289
	Data Segment 2		209

AT THE RESIDENCE OF THE PARTY O

E-48														0	рe				
		D						an	d	NA	VC	BS	Υ;						
	Da	ta	Se	egm	en	t	3		•		•		•		•		•	•	.290
E-49	The	Ca	ro1	in	2	Re	20	h	P 11	115	20	En	ve 1	0	n e				
													BSY		P -				
		ta												,					.291
			-	.6		-													• 2 7 1
E-50	The	Ca	ro1	in	a	Ве	ас	h	Pu	118	e	En	ve1	0	pe				
	at	D	anv	11	1e	,	IN	,	an	d	NA	VO	BSY	;					
	Da	ta	Se	gm	en	t	2										•		.292
E-51																			
									an	d	NA	vo	BSY	;					
	Da	ta	Se	gm	en	t	3		•		•		•		•	•	•	•	.293
E-52	The	Ca	ro1	lin	•	Ra	20	h	P	1 0		Fn	17 A 1	•	n				
E-32													BSY						
		ta						,	an	u	112		<i>D D D</i>	,					.294
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	La	56	. B	en	_	1		•		•		•		•	•	•	•	• - / -
E-53	The	Ca	ro1	lin	a	Ве	ас	h	Pu	115	se	En	ve1	0	pe				
													BSY						
		ta																	.295
E-54																			
										d	NA	VO	BSY	;					
	Da	ita	Se	gm	en	t	3		•		•		•		•	•	•		.296
	m1					n -			n			_							
E-55																			
										ar	ıd	NA	VOB	5	Υ;				.297
	שמ	ita	26	gm	en	τ	1		•		•		•		•	•	•	•	.297
E-56	The	Ca	ro1	in	а	Вe	ас	h	Pu	115	se	En	ve1	0	p e				
													VOB						
		ta																	.298
E-57	The	Ca	rol	lin	а	Вe	ac	h	Pu	115	se	En	ve1	.0	pe				
	at	: G	eoi	ge	to	wn	,	DE	,	ar	1 d	NA	VOB	S	Υ;				
	Da	ta	Se	egm	en	t	3												.290
E-58																			
											1 d	NA	VOE						
	Da	ta	Se	egm	en	t	1		•		•		•		•	•	•	•	.300
E-59	The	Ca		1 4	•	R -		h	p.,	. 1 -		F-	1	_					
5-29													VOB						
		1 1											VUE	0	٠,				301

I see to go it would be to the term of the second of the second of the second of the second of

E - 60	The	Ca	arc	01	ina	a i	Вe	a	ch	P	ul	S	e	En	ve	1	op	е				
	a	t ?	rol	ns	R	iv	er	,	NJ	,	a	n	d	NA	V O	B	SY	;				
	D	ata	a 5	Se	gm	en	t	3														.302
E-61																		e				
		t (Α,	a	n d		NΑ	VO	BS	Y	;					
	D	ata	a 5	Se	gme	en	t	1		•							•			•	•	.303
E-62																		e				
		t (a	n d		NA	VO	BS	Y	;					
	D	ata	a :	S e	gm	en	t	2		•			•		•		•	•		•	•	.304
		_		_			_			_												
E-63																						
		t (;					
	D	ata	a :	Se	gm	en	t	3		•			•		•		•	•		•	•	.305
- (1	m.			,			_			_				_								
E-64																						
		t 1										d	N	ΑV	OB	S	Υ;					201
	Ъ	ata	a	s e	gm	e n	t	1		•			•		•		•	•		•	•	.306
F (F	m 1	_								-	-			_								
E-65																						
		t :									an	ıa	N	ΑV	OE	55	Υ;					207
	D	ata	a	s e	gm	en	C	4		•			•		•		•	•		•	•	.307
E-66	T1.	C		- 1			D -		- 1-	т	1			г.		,						
E-00		t :																				
		ati															1 ;					.308
	D	ali	4	0 6	8 m	en	L	J		•			•		•		•	•		•	•	. 500
E-67	The	C	a r /	o 1	ín	2	R a	•	ch	P	11 1	0	_	Fn	37.0	. 1	0.0					
2-07																		gment	1			.309
	a		n A	VO	טע	1	OII		Day	'	13	7	,	Da	La		36	gment	1	•	•	. 309
E-68	The	C	ar	0.1	in	2	Re	2	ch	P	11 7	0	0	Fn	37.6	1	0.0					
2 00																		gment	2			.310
	۵.	٠.					011		- 4			7	,	Da			-	- B.m.C.II.C	-			
E-69	The	C	ar	01	ín	a	Be	а	ch	P	u1	S	e	En	ve	1	o n	e				
																		gment	3			.311
													,					0				
E-70	The	C	ar	01	in	а	Вe	а	ch	P	ul	s	e	En	ve	1	οr	e				
																		gment	1			.312
													•	-				0				
E-71	The	C	ar	01	in	a	Ве	a	ch	P	u1	s	e	En	ve	1	op	e				
																		gment	2			.313
E - 72	The	C	ar	01	in	a	Вe	a	ch	P	u1	s	e	En	ve	1	op	e				
																		gment	3			.314
F-1	Loc	at	io	ns	0	f	Le	a	din	18	E	d	ge	S	o f	-	Pu	lses				
	W	it	h	St	an	da	rd		Zei	0	C	r	os	si	ng	S	A	ligned				
	-	+	30	11		Tal	11	m	inc	* +	0.5		N	C	-		4	MAVORS	v			310

or to get a second to the seco

F-2	Locations of Leading Edges of Pulses with Standard Zero Crossings Aligned	
	at 30 $\mu s;$ Emporia, VA, and NAVOBSY	.320
F-3	Locations of Leading Edges of Pulses with Standard Zero Crossings Aligned	
	at 30 µs; Towanda, PA, and NAVOBSY	.321
F-4	Locations of Leading Edges of Pulses with Standard Zero Crossings Aligned at 30 µs; Dexter, NY, and NAVOBSY	.322
F-5	Locations of Leading Edges of Pulses	. 322
	with Standard Zero Crossings Aligned at 30 $\mu s;$ Danville, IN, and NAVOBSY	. 323
F-6	Locations of Leading Edges of Pulses	
	with Standard Zero Crossings Aligned at 30 μs ; Marietta, OH, and NAVOBSY	. 324
F-7	Locations of Leading Edges of Pulses with Standard Zero Crossings Aligned	
	at 30 μs ; Georgetown, DE, and NAVOBSY .	. 325
F-8	Locations of Leading Edges of Pulses with Standard Zero Crossings Aligned	. 326
F_0	at 30 $\mu s;$ Toms River, NJ, and NAVOBSY . Locations of Leading Edges of Pulses	. 320
1-,	with Standard Zero Crossings Aligned at 30 µs; Grottoes, VA, and NAVOBSY	. 327
F-10	Locations of Leading Edges of Pulses	
	with Standard Zero Crossings Aligned at 30 $\mu\text{s};$ Bluefield, WV, and NAVOBSY	. 328
F-11	Locations of Leading Edges of Pulses with Standard Zero Crossings Aligned	
	at 30 μ s; NAVOBSY, 1975 Day No. 154	. 329
F-12	Locations of Leading Edges of Pulses with Standard Zero Crossings Aligned	2.20
V-12	at 30 μs ; NAVOBSY, 1975 Day No. 188 The Relationship Between SPM and ECM	. 330
	The Change in SPM with Path Length	. 551
	Measured from NAVOBSY	. 332

The transfer of the second second

F - 15	The C	har	ige	in	EC	M W	itl	n P	ath	Ler	igth				
											•				.333
F-16	Atter											to t	he		
											each				
	ОЪя	serv	ved	at	Wí	1mi	ng	ton	, N	С.	•	•	•		.334
G-1	Histo	gra	am o	of 1	Fir	st-	Sta	age	Ed	ited	1 Dat	а			
											ding				
										ment					.340
G-2	Histo	or	a m	of 1	Fir	c+_	St	200	Fd	ita	1 Dat	•			
G-2												nt 1			.341
							•	,							
G-3	Power														
										ken					
									ng	at I	Danvi	11e,			2/2
	IN:	; Da	ata	Se	gme	nt	1		•	•	•	•	•	•	.343
G-4	Power	Sı	pec	tra	l D	ens	it	v S	how	ing					
										ken	at				
	NAV	OBS	SY	Dur	ing	Re	co	rdi	ng	at I	Danvi	11e,			
	IN	, Da	ata	Se	gme	nt	1					•			.345
G-5	Power			+ + 0	ח ו	000	i + -	, ,	hor	ina					
6-5										ken	at				
										t 1					.347
				•	,										
G-6	Power														
										ken	at				
	Dar	ıvi.	11e	, I	Ν;	Dat	а	Seg	men	t 1		•		•	.349
G - 7	Histo	ogr	am .	of :	Fir	st-	St	age	Ed	ite	d Dat	a			
											rding				
	at	Dan	nvi	11e	, I	N,	Αf	ter	Fr	eque	ency				
	Fi	lte	rin	g;	Dat	a S	eg	men	t 1	•		•			.351
G-8	Histo	oar	a m	of.	Fir	ct-	S+	200	Fd	ita	d Dat				
0 0												uenc	v		
									t 1						.352
G-9	Histo														
											rding	at			252
	Geo	orge	eto	wn,	DE	; D	at.	a S	egm	ent	1.	•	•		.353
G-10	Power	r Si	pec	tra	1 D	ens	it	y S	how	ing	Inte	rfer	ence		
											uring				
											Data	ı			
	Seg	gmen	nt	1.											.355

AT TO BE THE RESIDENCE TO BE THE THE THE THE SECOND STATE OF THE S

G-11	Power Spectral Density Showing Interference in I Data Taken at	
	NAVOBSY During Recording at Georgetown, DE; Data Segment 1	.35
G-12	Histogram of First-Stage Edited Data Taken at NAVOBSY During Recording at	
	Georgetown, DE, After Frequency Filtering; Data Segment 1	.35
G-13	Histogram of First-Stage Edited Data Taken at NAVOBSY During Recording at	26
G-14	Georgetown, DE; Data Segment 2	.360
	Interference in Q Data Taken at NAVOBSY During Recording at Georgetown,	
G-15	DE; Data Segment 2	.361
G-13	Interference in I Data Taken at NAVOBSY During Recording at	
C-16	Georgetown, DE; Data Segment 2	.363
G-10	Taken at NAVOBSY During Recording at Georgetown, DE, After Frequency	
C-17	Filtering; Data Segment 2	.365
G-17	Histogram of First-Stage Edited Data Taken at NAVOBSY During Recording at Georgetown, DE; Data Segment 3	.366
G-18	Power Spectral Density Showing Interference in Q Data Taken at	
	NAVOBSY During Recording at Georgetown, DE; Data Segment 3	367
G-19	Power Spectral Density Showing Interference in I Data Taken at	
	NAVOBSY During Recording at Georgetown, DE; Data Segment 3	. 36
G-20	Histogram of First-Stage Edited Data Taken at NAVOBSY During Recording at	
	Georgetown, DE, After Frequency Filtering; Data Segment 3	371
G-21	Histogram of First-Stage Edited Data Taken at Georgetown, DE; Data Segment 1 .	372

THE TOP I CHARLES THE TANK THE

G-22	Power Spectral Density Showing Interference in Q Data Taken at			
	Georgetown, DE; Data Segment 1.			373
G-23	Power Spectral Density Showing			
	Interference in I Data Taken at Georgetown, DE; Data Segment 1.			375
0.01				
G-24	Histogram of First-Stage Edited Data Taken at Georgetown, DE, After Frequence	c v		
	Filtering; Data Segment 1			377
G-25	Histogram of First-Stage Edited Data			
	Taken at Georgetown, DE; Data Segment 2	2 .		378
G-26	Power Spectral Density Showing			
	Interference in Q Data Taken at			379
	Georgetown, DE; Data Segment 2			3/4
G - 27	Power Spectral Density Showing			
	Interference in I Data Taken at Georgetown, DE; Data Segment 2.			381
	Georgetown, DE; Data Segment 2.	•	•	301
G-28	Histogram of First-Stage Edited Data			
	Taken at Georgetown, DE, After Frequence	: y		200
	Filtering; Data Segment 2		•	383
G-29	Histogram of First-Stage Edited Data			
	Taken at Georgetown, DE; Data Segment :	3.	•	384
G-30	Power Spectral Density Showing			
	Interference in Q Data Taken at			
	Georgetown, DE; Data Segment 3			385
G-31	Power Spectral Density Showing			
	Interference in I Data Taken at			
	Georgetown, DE; Data Segment 3		•	387
G - 32	Histogram of First-Stage Edited Data			
	Taken at Georgetown, DE, After Frequence			
	Filtering: Data Segment 3			389

THE TOP IN THE PARTY AND THE TABLE TABLE TO SEE THE PERFORMANCE AND A SECOND SE

TABLES

1	Taped Data						. 27
2	Test Field	Sites V	Visited				. 30
3		ard Thin	cy Filter rd-Cycle 2	Zero Cro	ssing	, a1	. 40
4	Effect of I	Frequenc 2th Samp	cy Filter ple Point	on Ampl	itude s		. 41
B-1	Voltage Mea	asuremen	nts and O	ther Dat	a	•	.187
B-2	Nominal Tir from Star		easurementulse .				. 200
B-3	Signal-to-1 from Meas		atio of the			nt	. 213
D-1	Polynomial at NAVOBS		cients for				. 230
D-2	Polynomial at Field	Coeffic Sites	cients for	r Q Data	Taken .	•	. 231
D-3	Polynomial at NAVOBS	Coeffic	cients for	r I Data	Taken .	•	. 232
D-4	Polynomial at Field		cients for				. 233
D-5	Polynomial at NAVOBS		cients for			•	. 234
D-6	Polynomial at Field	Coeffic Sites	cients for	r Q Data	Taken • •		. 235
D-7	Polynomial at NAVOBS	Coeffic SY .	cients for	r I Data	Taken .		. 236
D-8	Polynomial at Field	Coeffic Sites	eients for	r I Data	Taken		. 237
D-9	Polynomial at NAVOBS	Coeffic SY .	cients for	r Q Data	Taken .	•	. 238
	Polynomial			r I Data	Taken		230

TO BE THE RESIDENCE TO BE THE TABLE TO SEE THE PROPERTY OF THE PARTY O

D-11	Polynomial Coefficients for at NAVOBSY		24	0
D-12	Polynomial Coefficients for at Field Sites		24	¥ 1
E-1	The Time of Zero Crossings R Time of the 11th Sample Po the Pulse, NAVOBSY	int on	he 31	15
E-2	The Time of Zero Crossings R Time of the 11th Sample Po the Pulse, Field Sites .	int on	he 3	16
E-3	Key to Labels That Denote th of the Instrumented Van .		3	17
F-1	The Time of Zero Crossings R Time of the 11th Sample Po Pulse, NAVOBSY	int on the		35
F-2	The Time of Zero Crossings R Time of the 11th Sample Po Pulse, Field Sites	int on the		36
F-3	Values of Distance, SPM, and in Figs. F-13, F-14, and F		3	37
F-4	Adjusted Values of Attenuation Fig. F-16		3	38

1 197 TO TO THE OWNER OF THE PARTY OF THE PA

PROGRAM LISTINGS

A-1	Preprocessor	Drive	r.				•	•	•	•	50
A-2	Preprocessor	Short	Re	cord	Sk	ip					50
A-3	Preprocessor	Initi	a11:	zatio	on .					•	5 1
A-4	Preprocessor	Heade	r I	nfor	mat	ion	Chec	k		•	51
A-5	Preprocessor Decommutato		r II	nfor:	mat	ion •					5 2
A-6	Preprocessor	Data	For	mat (Conv	vert	er				5 3
A-7	Preprocessor	BCD t	о В	inar	у С	onve	rter				5 3
A-8	Preprocessor	Title	Pag	ge P	rint	ter					5 4
A-9	Preprocessor	Date	Con	vert	er.						55
A-10	Preprocessor	Title	Pag	ge Da	ate	For	matt	er			5 5
A-11	Preprocessor	Heade	r Pa	age 1	Prin	nter					56
A-12	Preprocessor	Main	Data	а Наз	nd1e	er					5 7
A-13	Preprocessor	Data	B10	cker		•		•			58
A-14	Preprocessor	Pulse	Ti	me L	ocat	tor					58
A-15	Preprocessor	Time	Dec	oder							5 9
A-16	Preprocessor	Data	B10	ck I	nit:	iali	zer				5 9
A-17	Preprocessor	Measu	rem	ent 1	Dec	oder					59
A-18	Preprocessor	Inter	med	iate	Sta	atis	tics				60
A-19	Preprocessor	Array	Res	set.							61
A-20	Preprocessor	First	-Sta	age 1	Edit	tor					61
A-21	Preprocessor	Final	Sta	atis	tics	s					62
A-22	Preprocessor	Recor	ding	g Mo	de I	Deco	der				62
A-23	Preprocessor	Plott	er.								63

1 of the production of the state of the stat

A-24	Preprocess	or File	Skip					. 63
A-25	Preprocess Calculat		p Pha		sureme	ent.		. 64
A-26	Preprocess	or Log:	ical S	hift C	aller			. 65
A-27	Preprocess Caller.	or Clea	ar and	Logic .	al Sh	lft		. 65
A-28	Preprocess	or Arit	thmeti	c Shif	t Call	er.		. 65
A-29	Editor Dr	lver						. 98
A-30	Editor Hea	der Pag	ge Pri	nter				.100
A-31	Second-Sta	age Edit	tor.					.101
A-32	Editor Ari	ay Rese	et .					.101
A-33	Editor Gro	oup Phas	se Mea	sureme	nt Ca	lculat	or	.101
A-34	Frequency	Filter	Drive	r.				.111
A-35	Frequency	Filter	Card	Input				.112
A-36	Frequency	Filter	Initi	alizer				.112
A-37	Frequency Decommut		Heade	r Info	rmatio	on .		.113
A-38	Frequency	Filter	Pulse	Phase	Code	Decod	ler	.114
A-39	Frequency	Filter	Phase	Code	Genera	ator		.114
A-40	Frequency	Filter	Heade	r Page	Prin	ter.		.115
A-41	Frequency	Filter	Main	Data H	andle			.116
A-42	Frequency	Filter	Lock-	On Con	firma	tion		.117
A-43	Frequency	Filter	Data	Blocke	r.	•		.117
A-44	Frequency	Filter	Time	Decode	r.			.117
A-45	Frequency	Filter	Array	Reset				.118
A-46	Frequency	Filter	Measu	rement	Deco	der.		.118
A-47	Frequency	Filter	Outpu	t Tape	Write	er.		.118

THE TOP IN THE PROPERTY OF THE

A-48	Freque	ency	Filte	r Ed:	itor					. 119
A-49	Freque	ency	Filte	r Sta	atist	ics				. 119
A-50	Freque	ency	Filte	r I/0	Q Plo	tter				. 120
A-51	Freque	ency	Filte	r Fi	le Sk	ip				. 120
A-52	Freque	ency	Filte	r En	velop	e Pl	otter			. 121
A-53	Freque	ency	Filte	r His	stogr	am P	rinte	r.		. 122
A-54	Freque	ency	Filte	r TO	A Dis	trib	ution	Plotte	er	. 123
A-55	Freque		Filte tion			de				. 124
A-56	Freque	ency	Filte	r No	tch					. 125
A-57	Freque	ency	Filte	r Dat	ta Se	lect	or .			. 125
A-58	Freque Fiel		Filte rengt					and •		. 125
A-59	Group	Phas	e Lib	rary	Raw	Data	Tape	Reade	r	. 160
A-60	Group	Phas	e Lib	rary	Logi	cal	Shift	Routin	ne	. 162
A-61	Group Rout	Phas ine	e Lib	rary •	Arit	hmet	ic Sh	ift		. 163
A-62	Group Tran	Phas sfor		rary		Fou.				. 164
A-63	Group	Phas	e Lib	rary	Tit1	e Pa	ge Pr	inter		. 167
A-64	Group	Phas	e Lib	rary	Date	Con	verte	r.		. 168
A-65	Group	Phas	e Lib	rary	Date	For	matte	r.		. 169
A-66	Group Conv	Phas erte		rary	BCD.	to B	inary			. 170
A-67	Group	Phas	e Lib	rary	Arra	y Re	set .			. 170

TO PROPERTY OF THE PARTY OF THE

FLOW CHARTS

A – 1	Preprocessor	Driver						66
A-2	Preprocessor	Short R	lecord Sk	ip .				67
A-3	Preprocessor	Initial	ization					68
A-4	Preprocessor	Header	Informat	ion C	heck			69
A-5	Preprocessor Decommutate		Informat	ion .	,			70
A-6	Preprocessor	Data Fo	rmat Cor	verte	r.			73
A-7	Preprocessor	BCD to	Binary C	Conver	ter.		•	74
A-8	Preprocessor	Title F	age Prin	iter .				75
A- 9	Preprocessor	Date Co	nverter					76
A-10	Preprocessor	Title F	age Date	Form	atter			77
A-11	Preprocessor	Header	Page Pri	inter.				78
A-12	Preprocessor	Main Da	ta Handl	er .				80
A-13	Preprocessor	Data B1	ocker		•			83
A-14	Preprocessor	Pulse T	ime Loca	ator .				84
A-15	Preprocessor	Time De	coder					85
A-16	Preprocessor	Data B1	ock Init	ializ	er.			86
A-17	Preprocessor	Measure	ement Dec	oder.				87
A-18	Preprocessor	Interme	ediate St	atist	ics.			88
A-19	Preprocessor	Array F	Reset.					89
A-20	Preprocessor	First-S	Stage Edi	itor .				90
A-21	Preprocessor	Final S	Statistic	s .		•		91
A-22	Preprocessor	Recordi	ing Mode	Decod	er.			92
A-23	Preprocessor	Platter						03

TO TO TO THE TOTAL TO THE TAX SALES DESCRIPTION OF THE PARTY OF THE PA

A-24	Preprocess	sor File	e Skip		•	•	•	•	94
A-25	Preprocess Calculat		p Phase	Measur	ement				95
A-26	Preprocess	sor Log:	ical Sh	ift Call	er				97
A-27	Preprocess Caller.	sor Clea	ar and I	Logical	Shift.				97
A-28	Preprocess	sor Ari	thmetic	Shift C	aller				97
A-2 9	Editor Dr	iver .							102
A-30	Editor Hea	ader Pag	ge Print	ter .		•			106
A-31	Second-Sta	age Edi	tor.						108
A-32	Editor Ar	ray Rese	et .			•			109
A-33	Editor Gra	oup Phas	se Meast	urement	Calcu	lato	r		110
A-34	Frequency	Filter	Driver		•	•	•		126
A-35	Frequency	Filter	Card In	iput .	•		•		128
A-36	Frequency	Filter	Initial	lizer.		•		•	129
A-37	Frequency Decommun		Header	Informa	tion .				130
A-38	Frequency	Filter	Pulse I	hase Co	de De	code	r		132
A-39	Frequency	Filter	Phase (Code Gen	erato	r			134
A-40	Frequency	Filter	Header	Page Pr	inter				135
A-41	Frequency	Filter	Main Da	ata Hand	1er	•			137
A-42	Frequency	Filter	Lock-Or	n Confir	matio	n			140
A-43	Frequency	Filter	Data Bi	locker					141
A-44	Frequency	Filter	Time De	ecoder		•			142
A-45	Frequency	Filter	Array F	Reset.	•	•			143
A-46	Frequency	Filter	Measure	ement De	coder				144
A-47	Frequency	Filter	Output	Tape Wr	iter				145

The state of the s

A-48	Frequenc	7 F	il	te	r	Εd	li	to	r											146
A-49	Frequenc	, F	i1	te	r	St	a	t í	st	í	c s									147
A-50	Frequency	7 F	11	te	r	I/	'Q	P	10	o t	te	r								148
A-51	Frequency	F	il	te	r	Fi	11	e	SI	c i	p									149
A-52	Frequenc	F	il.	te	r	Er	v	e 1	01	ре	P	1	ot	te	r					150
A-53	Frequenc	y F	il	te	r	Н	is	to	g	ra	m	P	ri	n t	er					151
A-54	Frequenc	y F	í I	te	r	TC) A	Г	1:	st	ri	ь	ut	ic	n	P 1	otte	r		153
A-55	Frequenc									ıd.	e									155
A-56	Frequenc	y F	íl	te	r	No	t	c ł	1											157
A-57	Frequenc	y F	il	te	r	Da	a t	a	Se	e 1	ec	t	or							158
A-58	Frequency Field													se	. a	n d				159
A-59	Group Ph.	ase	L	ib	ra	ry	,	Ra	w	D	at	a	Т	аp	е	Re	ader			171
A-60	Group Ph	ase	L	ib	ra	ry	7	Lc	g	ic	a 1		Sh	if	t	Ro	utin	е		173
A-61	Group Ph. Routin		L ·		ra	ry	7	A 1	ii	th.	me	t	ic.	S	hi.	ft			•	174
A-62	Group Ph Transf			ib	ra	ry	7	Fa	s	t.	Fo	u	ri •	er			•	•		175
A-63	Group Ph	ase	L	ib	ra	ry	,	T i	Lt:	l e	P	a	ge	P	ri	nt	er		•	180
A-64	Group Ph	ase	L	ib	ra	ry	7	Da	ate	2	Со	n	ve	rt	er			•		181
A-65	Group Ph	ase	L	ib	ra	ry	7	Da	ate	9	Fo	r	ma	t t	er			•		182
A-66	Group Ph. Conver			ib	ra	ry	,	B C	D	t.	0	В	in	ar	у .				•	183
A-67	Group Ph.	350	T.	ib	ra	r	,	Ar	· r :	a v	R	0	SP	+						184

THE TO PERSON AND THE PERSON AND THE PERSON AND ADMINISTRATION AND ADMINISTRATION OF THE PERSON AND ADMINISTRATION AND ADMINIST

1. INTRODUCTION

The Applied Physics Laboratory (APL) has conducted an experiment for the U.S. Air Force (USAF) and the Defense Advanced Research Projects Agency (DARPA) to determine the validity of one facet of the theory of groundwave propagation at 100 kHz. The theory indicates that, if proper account is taken of group and phase velocities in the propagation of pulses of the Loran-C radionavigation service, geodetic position should be computable using the vacuum speed of light and the times of arrival of the pulse and the carrier. Specifically, the test goal was to determine if an analytic function can be developed for operational use that relates secondary phase factor (SPF) to envelope-to-cycle difference (ECD) so that geodetic position can be computed accurately and in real time.

Test data were obtained in the eastern United States using the East Coast Loran-C chain and two identical measurement systems, one in a mobile test van and the other at a fixed site at the U.S. Naval Observatory (NAVOBSY). The van occupied 10 field sites during the course of the test. APL was assisted in this test by NAVOBSY and the Defense Mapping Agency Topographic Center (DMATC). The positions of all sites were precisely surveyed by DMATC using the Navy Navigation Satellite System. The sites are on ray paths from Loran-C stations through NAVOBSY. A team from NAVOBSY executed time transfers to each field site during the collection of loran data. The collected data include very accurate measurements of the Loran-C signal voltage and the absolute time at which they were made at each of the 10 pairs of sites.

The test operations, including site selection and surveys, acquisition of Loran-C and time transfer data, and a Loran-C receiver response test, were initiated in April 1974 and completed in November 1975. This report (Volume D of TG 1298) documents the data, its analysis, and findings. Volume A is the summary report, Volume B describes the test operations, and Volume C describes the measurement system. All volumes are written under the assumption that the reader is reasonably familiar with the Loran-C system of radionavigation. Reference 1 is suggested reading for those who are not.

As a result of extensive data analysis, it was possible to establish statistically significant

Commence of the state of the st

measures SPF and ECD for each of the 12 tests conducted at the field sites and at NAVOBSY. voltage measurements were used also to isolate the modulations of the carrier that give the pulses from the Carolina Beach, Dana, and Nantucket Stations their unique characteristics. The pulses from each station contain both in-phase and in-quadrature modulations of the carrier that make it impossible to make direct observations of the carrier. Largely because of this, the functional relationship between ECD and SPF that, it was hoped, would be derived from the data is presently not well defined. However, trends are observed in the data that tend to support the hypothesis that the desired functional relationship exists, at least under certain conditions. Additional analysis and perhaps tests will be necessary to define these conditions or to prove conclusively the existence of such a relationship.

A CONTRACT OF THE PARTY OF THE

2. OVERVIEW

Volume D of TG 1298 describes the processes that were applied to the portion of the field data that pertains to the primary goal of the experiment. It also records the processed data, a number of intermediate results, and findings regarding the attainment of the goal. We have chosen not to publish the raw field data and the rather voluminous computer output that was generated in developing an understanding of the data and their statistical characteristics.

The field data are recorded on approximately 100 10-in. reels of magnetic tape and will be stored indefinitely. Some of the reels of tape contain recordings of ancillary data. From one set of these data, the time difference coordinates of the satellite survey monuments at the various field sites could be determined. A second set was recorded to quantify any diurnal effect on Loran-C emissions. The ancillary data have not been processed, and at the present time there are no plans to do so.

The complete report is in four volumes. Volume A is a summary report that touches on all aspects of the experiment. It includes excerpts from this volume and discusses the findings of the experiment. Volume B describes test operations, and Volume C is a description of the measurement systems used to gather data. Volume D starts at the point in the experiment where all the observations of the Loran-C signals, along with other pertinent information, are available as recordings on magnetic tape.

If the reader wishes to understand this volume in relation to the complete experiment, it is suggested that Volume A should be read first. Otherwise, the reader will be exposed only to the collected data, its processing, and analysis.

A TOTAL TOTAL TOTAL STATE AND STATE

3. DISCUSSION

RECORDED DATA

The data recorded on the magnetic tape are identified in Table 1. These data were recorded in blocks that were limited in size to 512 8-bit words (bytes). The format within each block is shown in Fig. 1.

The analog to digital (A to D) converters were adjusted such that 1 V produced the largest binary output number, i.e., 2 to the 13th power minus 1. Since each voltage measurement consisted of 13 bits plus a sign bit, two bytes were required for each measurement.

The locations of the voltage measurements on the Loran-C pulse are shown in Fig. 2. The odd-numbered measurements are shown as "x" bits and the even as "y" bits in Fig. 1. The block size accommodated all the voltage measurements on seven pulses, the Universal Time Coordinated (UTC) time of the first x sample in the block, and all the "header" data read from the Interface Unit (IU) of the measurement system. Four hundred seventy-seven bytes were used in each block.

The locations of the field sites and the days on which data were taken are given in Table 2. The exact geodetic positions of the survey monuments over which the antenna was placed at each field site and NAVOBSY are given in Volume B. are given in Volume B. At each field site and simultaneously at NAVOBSY, primary data were recorded on the magnetic tape in three files, each containing a 20-min segment of the data. The first file was started at 3:30 PM, the second at 3:51 PM, and the third at 4:12 PM EDT. No changes were made among recordings other than to indicate, if necessary, a change in the temperature of other environmental conditions on the IU control panel. Recordings of primary data were made with the voltage sample points located in time as shown in Fig. 2, with two exceptions. At Marietta, OH, the back side of the antenna was inadvertently pointed toward the Dana Station, and the voltage measurements were made 5 µs later than shown in Fig. 2. Later measurements made specifically for the purpose (5 μs earlier than shown in Fig. 2) showed that the effect of reverse pointing was limited to an inversion of the phase.

The state of the s

Table 1

Taped Data

Parameter	Digits/Bits	Units
Voltage at Odd Samples, x	13 bits + sign	V
Voltage at Even Samples, y	13 bits + sign	V
Attenuation	2 digits	dB ,
Time	13 digits	h, min, 10^{-7} s
Day Number	3 digits	-
Year	1 digit	- ,
Group Repetition Interval	3 digits	10 ⁻⁴ s
Station Code	1 digit	
Site Code	2 digits	-
Weather Code	2 digits	- 2
Atmospheric Pressure	5 digits	10 ⁻³ in. Hg
Wet Bulb Temperature	3 digits	10 1°C
Dry Bulb Temperature (outside)	3 digits	10 1°C
Dry Bulb Temperature (inside)	3 digits	10 ⁻³ in. Hg 10 ⁻¹ °C 10 ⁻¹ °C 10 ⁻¹ °C
Data Recording Mode	1 digit	
Predicted Time Calibration	9 digits + sign	10 ⁻⁹ s
Note Code	1 digit	

y the same of the

Byte	MSB	LSB	(most/least significant bit)
1	± ± ± x	x x x x	
2	x x x x	x x x x	
3	± ± ± y	y y y y	(112 pairs of x, y samples, 7 GRI's,
4	y y y y	y y y y	in 2's complement binary)
	± ± ± y	y y y y	
448	y y y y	y y y y	}
449	Hour (10 ¹)	Hour (100)	
	Minute (101)	Minute (100)	
	Second (10 ¹) Second (10 ⁻¹)	Second (10 ⁰) Second (10 ⁻²)	UTC time of first x sample in block)
	Second (10-3)	Second (10-4)	
	Second (10 ⁻⁵)	Second (10 ⁻⁶)	
455	Second (10-7) 1		
	!	Atten. (10 ¹)	
	Atten. (100)	PTC (±)	
	PTC (10 ⁻¹)	PTC (10 ⁻²)	
	PTC (10 ⁻³)	PTC (10 ⁻⁴)	(PTC = predicted time calibration)
460	PTC (10 ⁻⁵)	PTC (10 ⁻⁶)	
	PTC (10 ⁻⁷)	PTC (10 ⁻⁸)	
	PTC (10 ⁻⁹)	Day (10 ²)	
	Day (10 ¹) Year	Day (10 ⁰) Xmitter	
	Mode I	Site (10 ¹)	
	Site (100)	Wx (10 ¹)	(Wx = weather code)
	Wx (10 ⁰)	Note	(DDT) = in ide day by the terranscripture)
	DBTI (10 ¹) DBTI (10 ⁻¹)	DBTI (10 ⁰) WBT (10 ¹)	(DBTI = inside dry bulb temperature) (WBT = wet bulb temperature)
470	WBT (100)	WBT (10-1)	(DBT = outside dry bulb temperature)
470	DBT (10 ¹)	DBT (10 ⁰)	(BB) Outside any balls temperature,
	DBT (10-1) !	BARO (10 ¹)	
	BARO (100)	BARO (10-1)	(BARO = barometric pressure)
	BARO (10-2)	BARO (10-3)	
475	i	GRI (10 ⁻¹)	
	GRI (10 ⁻²) I	GRI (10 ⁻³)	
	GRI (10-4) I		(= zero-filled characters)
	!	-,-	
512	<u> </u>	<u> </u>	

Fig. 1 Raw Data Tape Format for Each Block of Recording

The same of the sa

A STATE OF THE STA

Table 2

Test Field Sites Visited

Site	Location T	est Da	te (1975)
Nantucket 1	Toms River, NJ	29	May
Baseline	NAVOBSY, DC	3	June
Dana 3	Georgetown, DE	5	June
Dana 2	Marietta, OH	10	June
Dana 1	Danville, IN	12	June
Nantucket 3	Bluefield, WV	17	June
Nantucket 2	Grottoes, VA	19	June
Carolina 2	Emporia, VA	24	June
Carolina 1	Wilmington, NC	26	June
Carolina 4	Dexter, NY	30	June
Carolina 3	Towanda, PA	2	July
Baseline	NAVOBSY, DC	7	July

TO BE THE RESIDENCE OF THE PARTY OF THE PART

During each recording session at each field site and at NAVOBSY, calibration data were also recorded in separate files on the tape. These data showed that the measurement systems retained their calibrations throughout the test. The calibration method is discussed in Volume B.

DATA PROCESSING

Refer to Fig. 3. The format of the data recorded on the tapes labeled "Field Site" and "Fixed Site" is shown in Fig. 1. The data from both of these tapes, together with job control cards, were subjected to preprocessing immediately upon the return of the tapes to the Laboratory on data-taking days (see Volume B). The preprocessor disregarded all voltage measurements over 1 V (first-stage editing). Its printed output consisted of the means and standard deviations of groups of 50 contiguous pulses and the grand means and standard deviations of the voltage measurements on all the pulses accepted from each 20-min segment of data. The data taken during calibration recordings were processed in the same way as those for pulses. printed output of the preprocessor was used to assess the quality of the data prior to moving to the next site. The output also included a condensed data tape containing these grand means and standard deviations, as well as all the acceptable pulse data in a revised format. A deck of punched cards was also produced that recorded an editing criterion, taken to be twice the average of the standard deviations at each sample point along the pulse for use in further editing of the data. The second-stage editor rejected all the data for any pulse if any voltage sample of that pulse deviated from the mean by more than the editing criterion. printed output of the second-stage editor was the same as that out of the preprocessor. The punched card output recorded the means of the accepted voltage samples taken during each 20-min data segment.

The processing shown in Fig. 3 up to the tape of condensed data was done in two stages on the IBM 360/91 computer. In the first stage, the first 16 voltage samples of the pulse were processed; in the second stage, the last 16. The computer programs for the data processing are documented in Appendix A.

There is one reel of tape of condensed data for each site and one for each recording of baseline data. There are 12 files of data on each of these tapes.

to be the state of the state of

The sale of the sa

The top of the second s

Files 1 through 6 contain all the edited data for sample points 1 through 16, and files 7 through 12 for sample points 17 through 32. Files 1, 2, and 3 and 7, 8, and 9 contain 20-min segments of data recorded at NAVOBSY; files 4, 5, and 6 and 10, 11, and 12 contain the simultaneous recordings at the field site. Each file is organized into a succession of records. The first record is the header data, i.e., the data recorded from the front panel of the IU (see Volumes B and C). There are as many more records as there are pulses that survived first-stage editing. Each of these records contains the following data in the order mentioned: the UTC of the first voltage sample in the record, 16 mean voltages, 16 standard deviations of these voltages, and 800 voltage measurements, i.e., 16 measurements on 50 pulses. The preprocessor, in organizing the condensed data, correlated the time of sampling each pulse so that samples with the same index number on corresponding records for NAVOBSY and the field site are samples of the same pulse. requires that both records be of the same length. This was done by making the field site data record the same length as NAVOBSY, either by truncating it or filling it with obviously false data (flags). Subsequently, the second-stage editor recognized these flags and processed only those data for which there were two observations of the same pulse.

ANALYSIS

Reduced Data

Analysis of the experimental results was performed on the mean values of voltage measured during each 20-min segment of data. These are the mean voltages recorded on the punched card output of the second-stage editor (Fig. 3). Appendix B contains a table of these data (Table B-1). Also included in Table B-1 are "Other Data," namely, the date, the time of the first data record in each 20-min segment, the difference in UTC time between NAVOBSY and the field site, the distance from the transmitting station to the recording site, and the attenuation setting of the attenuator (see Volume B). Appendix B also includes a table of the signal-to-noise ratios computed on a per-pulse basis for the first segment of data. signal-to-noise ratios are indicative of the quality of edited data.

works Tolker Tolker Tolker and South Sand Sand Sand Sand State All & here I see

Polynomial Fits

The first step in the analysis was polynomial fitting of the mean voltages. The times of the voltage measurements along the pulse were very accurately timed at 2.5- and 7.5- μs intervals in synchronism with the output of the cesium standards. The odd- and even-numbered voltage measurements, therefore, are exactly in quadrature to each other when sampling a 100-kHz signal. To sample a loran pulse, the odd-numbered samples were taken near zero crossings, and the even near the peaks, i.e., in phase. In anticipation of the advantages of such orthogonality, the mean in-phase (I) voltages were fitted separately from the mean quadrature (Q) voltages. Although most difficult to confirm experimentally, it is assumed that the loran pulse starts with zero voltage and zero slope. To accommodate this assumption, it was decided to fit the I and Q mean voltages with polynomials with the coefficients of the first two terms (ascending order of degree) set to zero. After considerable experimentation, it was found that 10th degree polynomials fitted the mean voltages such that the maximum residuals were the same order of magnitude as the standard deviation of the voltages themselves. Because of the constraint imposed on the first two coefficients, these fittings required an iterative procedure to determine the difference in time between the time reference of the voltage samples and the start of the polynomials. Then, to realign the sample points in time, the polynomials were translated by this difference in time. The first two coefficients of the resulting polynomials are no longer zero. These polynomials were judged to be adequate representations of the measured data for use in later illustrations of the pulses and subsequent analyses. The computer program used for the polynomial fits is listed in Appendix C. The coefficients of all the fitted polynomials are presented in Appendix D.

Carrier Modulations and Pulse Shape

Initial plots of the I and Q polynomials indicated that the quadrature component was quite substantial in all of the observations. Since this could have been the result of misalignment between the zero crossings in the pulse and the Q (odd-numbered) sample points, the I and Q polynomials were jointly manipulated to determine whether or not there was a position on the pulse for the sample points where all the Q voltages

would be zero. This was done by developing an analytic solution for the sample point locations for which the energy in the quadrature component of the pulse was a minimum. The algebraic development of this solution, as well as the computer program to execute it, are described in Appendix C.

Appendix E contains plots of the I and Q components of the signal after adjustment for minimum energy in Q between 10 and 70 μs . Since the I and Q components are orthogonal at the 100-kHz frequency of the Loran-C carrier, the I component can be considered to be the modulation of the sine of the carrier, and Q the modulation of the cosine of the carrier; that is,

 $V(t-t0)=I(t-t0)\sin(\omega(t-t0)+\phi)+Q(t-t0)\cos(\omega(t-t0)+\phi),(1)$

where V is the signal voltage, t is the time, t0 is the reference time, I(t-t0) is the I polynomial, Q(t-t0) is the Q polynomial, ω is the angular frequency corresponding to 100 kHz, and φ is the phase angle measured at t0.

The shape of the pulse envelope was computed as the square root of the sum of the squares of voltages evaluated from the I and Q polynomials (see Appendix C). The envelope shapes are shown in Appendix E.

The Correction Function

The envelope shapes of Appendix E are presented in such a way that a comparison can be made between the shapes observed at the field sites and the shapes observed simultaneously at NAVOBSY. The purpose of these comparisons was to disclose the differences between observations of the pulses at the field sites and at NAVOBSY, and to quantify the difference in pulse arrival times by one number, which we called ECM (envelope-to-cycle measure).

An inspection of the envelope shapes presented in Appendix E indicates that ECM is many-valued; that is, it depends on the location on the pulse where the time comparison is made. This is a consequence of very complicated propagation effects acting on both the sine and cosine components of the signal. It was decided, therefore, that ECM would be evaluated as it would be

in a receiver that was perfectly phase tracking the Loran-C signal at the standard track point, that is, at the zero crossing at the end of the third cycle in the pulse, and also had the capability of measuring the envelope voltage at the same time as the phase track point.

The inferred locations of the zero crossings computed using Eq. (1) are presented in Tables F-1 and F-2 in Appendix F. Note that none of the zero crossings are 5 $\,\mu s$ apart, as they would be if the carrier were only amplitude modulated. Note also in these tables that the zero crossing at the end of the third cycle is not at 30 µs under the condition of minimum energy in Q(t) over the leading edge. To align the standard track point of all the observed pulses at 30 us, energy was shifted from I(t) to Q(t) such that the fractional parts of the "30.xxx-us" columns of Tables F-1 and F-2 were removed (to about three decimal places). Using these revised polynomials for I(t) and Q(t), the zero crossings were recomputed using Eq. (1), and the pulse envelope shapes were also recomputed (see Appendix C for computing programs). These zero crossings are presented in Tables F-3 and F-4. Appendix F also presents expanded views of the leading edges of the envelopes as they appear, having aligned the standard track points at 30 us.

An inspection of Figs. F-1 through F-12 indicates that the repositioning of the zero crossings does not resolve the problem of multivalued ECM. We continued, therefore, to approach the problem as our hypothetical receiver would. ECM was computed relative to NAVOBSY by computing the voltage difference between the field site and NAVOBSY observations and converting this voltage to time using the average slope of the two envelopes at 30 μs . The resulting values of ECM are presented in Table F-3.

SPF has usually been defined as it pertains to the propagation of a 100-kHz continuous wave (CW) groundwave. Since the 100-kHz carrier cannot be observed in pulses when they are transmitted with cosine modulation, this definition lacks application to the problem at hand (see Volume A for further discussion on this point). Therefore, we are faced with a new concept, namely, a secondary phase measure (SPM) defined with respect to the arrival time of the standard third-cycle zero crossing as follows:

The transfer of the second of

SPM = (D/C) - T3

(2)

- where D is the distance over which the loran pulse propagates,
 - C is the vacuum speed of light, and
 - T3 is the time of arrival of the zero crossing at the end of the third cycle.

The vacuum speed of light used in computations was 299 792 456.2 m/s. The distance, D, and the time of arrival, T3, are computed from the basic data relative to their values that apply at NAVOBSY. The values of D and T3 used in Eq. (2) and the resulting values of SPM are included in Table F-3 of Appendix F. The value of T3 was computed as follows:

$$T3 = BTV - BTO - \Delta T + \Delta \Delta T, \tag{3}$$

where BTV is the block time at the field site, i.e., the time of the first voltage sample in a 20-min data segment,

BTO is the block time at NAVOBSY,

 ΔT is the time transfer result, and

 $\Delta\Delta T$ is the difference in time adjustments. computed relative to NAVOBSY, required to align all the standard third-cycle tracking points at 30 µs.

The values of BTV, BTO, and ΔT are tabulated as part of Table B-1 of Appendix B. The value of $\Delta\Delta T$ is obtained as an output of the computer programs used to align the standard third-cycle zero crossings.

The values computed for SPM are plotted against ECM in Fig. F-13 of Appendix F and in Fig. 26 of Volume A. This figure is a representation of the correction function that was sought as the principal goal of the experiment. SPM is plotted against distance from NAVOBSY in Fig. F-14, and ECM against distance from NAVOBSY in Fig. F-15. The attenuation of the signal is plotted against distance from the transmitters in Fig. F-16 of Appendix F and in Fig. 27 of Volume A. The significance of Figs. F-13 and F-16 is discussed in Volume A.

Frequency Filtering

As noted in Volume A, Fig. F-13 tends to describe a low-order functional relationship between SPM and ECM for only four of the twelve possible triads of points plotted in Fig. F-13. These four are connected by a straight line in Fig. F-13. In an attempt to understand why the remaining points appear to be in disarray, histograms were plotted initially of the data taken at NAVOBSY and simultaneously at Danville, IN, during the first 20-min recording. These histograms are shown in Appendix G as Figs. G-1 and G-2, respectively. Contours of equal frequency of occurrence are reasonably circular and concentric in Fig. G-2, indicating that the dominant interference is random. The marginal distributions are reasonably This is not true in Fig. G-1. The inclined normal. barbell contours indicate the presence of an interference that bears a coherent relationship with the loran signal. The distribution is double humped in spite of the fact that the marginal distributions are reasonably normal.

The recorded data were then subjected to a Fourier analysis to identify the coherent interference, if any, and to subsequently remove it. The results of the Fourier analysis are shown in Figs. G-3 through G-6 in Appendix G. Each point plotted in these figures is the sum of the squares of 16 adjacent Fourier coefficients. The plots, therefore, display the power spectral density at reduced frequency resolution. Figure G-3 is the power spectral density of the quadrature data, and Fig. G-4, the in-phase data, taken at NAVOBSY. Figures G-5 and G-6 show the power spectral densities for the simultaneous Danville, IN, data. Note that at Danville, IN, there is an interference at frequency number 124 and at NAVOBSY at frequency number 154. These interferences were removed by detecting those frequencies observable in the plots that had power levels that exceeded K times the average power level of all frequencies. Effective filtering was accomplished with K=128. Then all 16 Fourier coefficients associated with each detected frequency and 32 additional coefficients, i.e., 16 on each side, were set to zero. The resulting sets of coefficients were then subjected to the inverse Fourier transform, which reconstitutes the data set. Figures G-7 and G-8 show the histograms of the frequency filtered data.

are the second of the second o

Because of the difficulties with the Georgetown, DE, data that are obvious in Figs. F-13 and F-15, this same frequency filtering process was applied to the first-stage edited data of all three segments of the Georgetown data. Figures G-9 through G-32 show the results.

The "before" and "after" filtering times of arrival of the standard third-cycle zero crossing and the voltage at the 12th sample point were computed also. Their values, along with their standard deviations based on 8192 individual pulses, are presented in Tables 3 and 4.

A comparison of the mean values of the second-stage edited data after filtering in Tables 3 and 4 with the corresponding mean values computed for the unfiltered data indicates that both processes obtained the same result. We conclude, therefore, that the Georgetown problem is not the result of the coherent interference shown by the histograms. It now appears more likely that any measure of pulse arrival time is so sensitive a function of observed shape that even more sophisticated methods must be used to quantify it. Unfortunately, program plans did not permit further development of the analysis.

of the second se

Table 3

APPL IN NO.

Effect of Frequency Filter on Time of Arrival of Standard Third-Cycle Zero Crossing in Microseconds

			Before	Before Filtering			After F	After Filtering	
		E4	First-	Se	Second-	FI	First-	Second-	-puo
		N F	Stage	SA	Stage	St	Stage	Stage	
Site	Segment	Mean	Mean Std. Dev.	Mean	Mean Std.Dev.	Mean	Mean Std. Dev.	Mean S	Std.Dev.
Danville, IN	1	0.0006	0.0006 0.0372	0.0004	0.0358	0.0006	0.0343	0.0003	0.0330
NAVOBSY	-	0.1375	0.6639	0.1332	0.1332 0.6475	0.0095	0.3842	0.0095 0.3842 -0.0100 0.3216	0.3216
Georgetown, DE	-	0.2808		0.2715	0.7813	0.2270	0.2270 0.8812		0.6634
NAVOBSY	1	0.2015	0.9777	0.2051	0.2051 0.8192	0.0850	0.0850 0.8007		0.0823 0.5774
Georgetown, DE	2	0.2621	0.9889	0.2675	0.8008	0.2003	0.9089	0.2010	0.6896
NAVOBSY	2	0.1870	1.0039	0.1943	0.1943 0.8393	0.0635	0.0635 0.8505	0.0702	0.0702 0.6068
Georgetown, DE	3	0.2554	0.2554 0.9482	0.2659	0.2659 0.7728	0.1955	0.1955 0.8543	0.2051	0.6553
NAVOBSY	3	0.2083	0.9709	0.2022	0.8155	0.0838	0.7914	0.0815	0.0815 0.5691

Market Block to the Total Committee and the Secret Market Block Block to have the

Table 4

Effect of Frequency Filter on Amplitude of the 12th Sample Point in Volts

				Before F	filtering			After	Filtering	
			Fil	First-	Second	-puc	F11	First-	Sec	Second-
		Data	Stag	Stage	Stage	e 25 47	St	Stage	Sta	Stage
Site		Segment	Mean	Std.Dev.	Mean	Std.Dev.	Mean	Std.Dev.	Mean	Std.Dev.
Danville, IN	Z	1	0.29079	0.00727		0.29078 0.00713	0.29071	96900.0	0.29070	0.00682
NAVOBSY		1	0.13209	0.04558		0.04221	0.12204	0.02887	0.12213	0.02462
Georgetown, DE	DE	1	0.11268	0.07499	0.10545	0.04206	0.09178	0.06516	0.09136	0.04059
NAVOBSY		1	0.14652	0.08069	0.13995	0.05444	0.12239	0.07112	0.12214	0.04615
Georgetown,	DE	2	0.11423	0.07377	0.10716	0.04373	0.09151	0.06785	0.09209	0.04183
NAVOBSY		2	0.14861	0.08541	0.14087		0.12110	0.07928	0.12232	0.04798
Georgetown,	DE	3	0.11238	0.07054	0.10666	0.04103	0.09256	0.06169	0.09293	0.03842
NAVOBSY		3	0.14755	0.08004	0.14132		0.12317	0.06951	0.12376	0.04400

4. CONCLUDING REMARKS

We hope that we have shed some light on the intricacies of Loran-C pulse propagation. However, much still remains to be understood. If there are others who wish to contribute their expertise, the recorded data can be made available to them. For copies of the data tapes, contact the Loran System Program Office of the U.S. Air Force Electronic Systems Division at Hanscom AFB, MA 01731.

5. REFERENCE

 Anon., "Loran-C System Characterization," Wild Goose Association Report, WGA Publication No. 1/1976, September 1976.

197 TO THE RESIDENCE TO THE THE THE PARTY OF THE PARTY OF

Appendix A

DATA PROCESSING COMPUTER PROGRAMS

The fundamental data processing was accomplished in two stages, as shown in Fig. A-1. The first stage, referred to as the preprocessor, accepts the raw data tape as input, along with certain control parameters punched on IBM computer cards. The data on this tape were formatted by a Kennedy Model 9232 buffered formatter. The data from the fixed site were treated as the master system and were normally processed first, followed by field site data, which were time correlated, by program control, with the master system. Data fill of zeroes was output, when necessary, to flag missing simultaneous data at the beginning or end of the field site recording. Other than time correlation, both sets of data were processed in the same way.

The output of the preprocessor includes (a) a 9-track magnetic tape (condensed data) collated with all data from each mission, (b) a punched card deck of control parameters, and (c) a tabulation with means and standard deviations of the first 16 measurements of all 50 pulse blocks and the total 20-min data run.

A first-stage edit function is performed by removing all data that may have reached the limiting values of the A to D converter. These data are flagged and not included in any subsequent calculations. When it is found necessary to edit any measurement, the entire set of 32 readings of that pulse is eliminated.

Finally, a plot of the absolute mean values is presented showing the approximate shape of the loran pulse envelope and behavior of the zero crossing points.

The programs used for preprocessing the data are documented in Program Listings A-1 through A-28 and Flow Charts A-1 through A-28.

The second stage of processing starts with the second-stage editor. It accepts, as input, the output tape of the preprocessor and the punched card deck that contains the editing criteria. It then performs a 2 sigma editing on each data point in the 50 pulse blocks. Again, the entire pulse is removed from the computation of new means and standard deviations if any

The state of the s

)

The same of the sa

one measurement exceeds the threshold. Intermediate means of each page are printed at the bottom of each page, and at the end of each data set the final mean and standard deviation about the block mean are printed.

The final page of printout contains certain group/phase measurement (GPM) computations. The first four values in the row labeled T10 through T16 describe the distance from the zero crossing to the measurement point for the 9th, 11th, 13th, and 15th sample of the pulse. The last three values, labeled GPM12 through GPM16, are intercept points of a straight line fit of successive five point sets of amplitude means surrounding the third cycle. All of the GPM calculations use the "page" means, A, made up of 14 block averages.

$$T(N) = -3.18 \times A_{N-1}/(A_N - A_{N-2})$$

$$GPM(N) = 10 \sum_{i} |A_i|/(2(|A_N| - |A_{N-8}|) + |A_{N-2}| - |A_{N-6}|)$$

The programs used for second-stage editing are documented in Program Listings A-29 through A-33 and Flow Charts A-29 through A-33.

i = N-8, N-6, N-4, N-2, N

system, secondary data processing group/phase frequency filter (Fig. A-2), accepts, as input, the original raw data tape and control parameters from punched cards. Although several options are available in the program, only histograms and frequency filtering of one pair of measurements were of interest. A specified amount of data is reduced, and the 11th sample, which is near a zero crossing, and the 12th sample of the pulse, which is near a peak, are presented both as a two-dimensional histogram (in pairs) and respective marginal histograms. Means and standard deviations are also computed. Both sets of data are then independently subjected to a Fast Fourier Transform. Any unwanted energy spectra are then notch filtered (coefficients set zero) and then returned to the time domain by use of the inverse transform. The reconstructed, filtered data are then redisplayed in

The state of the second second

the initial histogram format, along with new means and standard deviations.

The programs used for frequency filtering are documented in Program Listings A-34 through A-58 and Flow Charts A-34 through A-58.

The three sets of programs described above call subroutines from a library. These subroutines are documented in Program Listings A-59 through A-67 and Flow Charts A-59 through A-67.

or to get a second of the seco

Trecord water the special and the second second second second

Fig. A-2 Frequency Filter Data Flow

BEST AVAILABLE COPY

09/28/76	THPUT LISTING	AUTOFLOW CHART SET - LORAN 1	GPOUP PHASE PREPROCESSOR
FORTRAN METULE	(LIST.NAMSO)		
CARD NO		CONTENTS	••••
1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	DIMENSION GRD	MK(51, 140 (401, 140 (128)) MC(2, 101, 140 (2, 74)) MC(2, 101, 140 (2, 74)) MC(2, 101, 140 (2, 74)) MC(3, 140 (2, 74)) MC(4, 14	

Program Listing A-1 Preprocessor Driver

09/28/75	INPUT LISTING	AUTOFLOW CHART SET - LORAN I	GROUP PHASE PREPROCESSOR
FORTRAN TOULF	(LIST-NAMS 3)		
CARD NO	****	CONTENTS	••••
1 2 3 4 5	C SUBSOUTIVE SKIP C SUB IS SKIP FLOST SHORT S OTHER TID IBUE(178) COMMON/SEIDST/181,18UF LALL SEISEC ETURY END	RECORD IN THE FILE	

Program Listing A-2 Preprocessor Short Record Skip

AT THE RESIDENCE OF THE PARTY O

09/2:/76	INPUT LISTING	AUTOFLOW CHART SET - LORAN 1	GROUP PHASE PREPROCESSOR
FORTEIN MODULE	(LIST, NAMSO)		
CARD NO	••••	CONTENTS	••••
1 2 3 4 5 7 8 9 10 11 12	COMMON/GETOAT/IPTFIBUE COMMON/BIAS/IBIAS C IMP(20) IS USED FOR IN IRD=5 IPFE=0	(128), [HO(40) (2,25) (1(3,16) (1,786) (1,7866)	
15 16 17 18	11-0(21) 15(1H0(12))2-1-3 2 TRESB=TRESE(1,1H0(13)) TRESES=TRESE(2,1H0(13))	,K=1,5),(HO(I),I=12,14),I81A5,IHD(20),	
19 20 21 22 23	IHD(12)=ITMR(1,IHD(12) IHD(14)=ITMR(3,IHD(13) IHD(13)=ITMR(2,IHD(13) IKRE=1 GO TO 1		
24 25 26 27 28 29	3 % EAD(PD. 1002) TREEB, TR IREE 1 1 % TTUPN 1000 FCKWAT(1116) 1002 FCKWAT(2F15.7) END	cet	

Program Listing A-3 Preprocessor Initialization

09/35/76	INPUT LISTING	AUTOFLOW CHART SET - LOGAN 1	Count bhaze botboccesson
FCRTRIN MCDULF	(LIST, VAMSE	1	
C#3 NO	****	CONTENTS	••••
1	SUBROUT	INE MUCHK (JCHK)	
2	DIMENSI	CN ICHK(5), JCHK(1), IHD(40), IBUF(128)	
3	COMMON	CHI	
4	CCAACNY	GETTAT/IPT, IPHF	
5	CATA IC	HK/ DAY , 'YEAR , 'XMTR , 'SITE , 'MODE !/	
	[27=5		
7	Mo I LE (I	PT.10031	
	C PEAD HE	ACEP AND DECODE	
4	CALL RE	HD	
10	20 1 1=	1.5	
11	1=(1+0)	1).EQ.JCHK(1)) GC TO 1	
12	WRITE(1	PT.1000)1CHK(1).1HD(1)	
13	MOITE(I	PT.1001)	
14	JCHK (1)	= IHO(I)	
15	1 CONTINU	£	
16	RETURN		
17	1000 F7244T6	ZOX, A4, * DOES NOT MATCH: . *13. * IS ON TAPE !)	
18	1001 FORMATI	ZOX. "HILL USE CODE ON TAPE")	
19	1003 FORMATI	111)	
20	END		
			,

Program Listing A-4 Preprocessor Header Information Check

INPUT LISTING

09/28/75

(LIST. NAMSO) FORTRAN HOULE SUBROUTING ROWD

DIMENSION THRESTORY, THOSE PROCESSION RENTOTICE, 10 P. 19 FER, TREEF COMMON, THOSE PROCESSION RENTOTICE, 10 P. 19 FER, TREEF COMMON, THOSE PROCESSION RENTOTICE, 10 P. 19 FER, TREEF COMMON, THOSE PROCESSION RENTOTICE, 10 P. 19 FER, TREEF COMMON, THOSE PROCESSION R.

CHASTE NO.

CHASTE NO.

CHASTE NO.

CHASTE NO.

CHASTE NO.

CHASTE PROCESSION RET THREE COMMON START THREE TO FRENCH SCOWN START THREE TH CONTENTS CALL SHETI(IHT(1), I, A)

SET PUTE(IHT(1), I, A)

SET PUTE(IHT(1), I)

SITE CODE
CALL SHETI(IH, I)
CALL SCOTE(IHT(1), I, I)
JETUE(IZO)
CALL SHETI(I, I, IA)
JETUE(IZO)
CALL SHETI(I, IA)
CALL SHETI(I, IA)
JETUE
CALL SHETI(I, IA)
CALL SHETI(II)
CALL SHETI(III)
CALL SHETI(III)
C c C TEMP PATCH TO START ON GOOD RECORD IF(IHD(2)+IHD(17).NE.998) GO TO 3 [HO(18)=[HO(12)*3600*[HO(13)*60*[HO(14) PETURN 10 WRITE(IPT.1000) GO TO 3 11 WRITE(IPT.1001) STOP

AUTOFLEM CHART SET - LORAN 1 GROUP PHASE PREFETCESSOR

Program Listing A-5 Preprocessor Header Information Decommutator

09/28/76	INPUT LISTING	AUTOFLOW CHART SET - LOR	AN L GROUP PHASE PREPROCESSOR
CARD NO		CONTENTS	••••
109 110 111	1000 FORMATE EOF ENC 1001 FORMATE NO DO C	COUNTERED, TRY AGAIN*,///) ARD THIS FILE*)	

Program Listing A-5 Preprocessor Header Information Decommutator (concluded)

09/28/76	INPUT LISTING	AUTOFLOW CHART SET - LOF	RAN 1 GROUP PHASE PREPROCESSOR
FORTRAN MODULE	(LIST, VA*SC)		
CARD NO	••••	CONTENTS	
1	SUBSCUTINE DATEOR		
2		CT FOR MIRING ERROR IN CONTROL PANEL	
3		WERE INSERTED AFTER TIME OF DAY	
4	DIMENSION INUF(128	1.IHD(40)	
•	COMMON IND		
6	COMMEN/GETDAT/IRT.	IRUF	
7	I=189=(114)		
E	J≈I≘U=(115)		
9	CALL SHFT(I,J,-4)		
10	CALL SEFT(1.K4)		
11	CALL SHET(1,J.8)		
12	190F(114)=I		The state of the s
13	I=13J=(115)		
14	DO 1 L=115,120		
15	J=13UF(L)		
16	CALL SHET(I.J.4)		
17	19UF(L-1)=1		
18	CALL SHFT([,J,28)		
19	1 CONTINUE		
20	RETURN		
21	ENO		

Program Listing A-6 Preprocessor Data Format Converter

09/28/76	INPUT LISTING	AUTOFLOW CHART SET - LORAN	1 GROUP PHASE PREPROCESSOR
FORTRAN MODULE	(LIST, NAWSC)		
CAPD NO	****	CONTENTS	
1	SUBROUTINE BODTR(1.J.K)		
2	M=0		
3	I=0		
4	L=-K=4		
5	CALL SHFT(J,M,L)		
6	DO 1 N=1,K		
7	I=I*10		
8	CALL SHFT1(J.M.4)		
9	1 1=1+J		
10	RETURN		
11	ENO		

Program Listing A-7 Preprocessor BCD to Binary Converter

BEST AVAILABLE COPY

INPUT LISTING

AUTOFLOW CHART SET - LORAN 1 GROUP PHASE PREPROCESSOR

FORTRAN MODULE	(LIST, NAMSQ

CAPD NO	• • • •	CONTENTS	***
1	SUBBOU	UTING PRNITL	
2	IPT=6		
3		(IPT,2000)	
4		[PT.2002]	
5		(IPT,1636)	
6		(IPT,1001)	
7		(IPT,1002) (IPT,1003)	
8		(IPT,1004)	
10		(IPT.1005)	
11	WRITE	(IPT,2001)	
12	WRITE	(IPT,1006)	
13		(IPT, 1007)	
14		(IPT,100e)	
15		(1PT,1010)	
16		(1PT,1011)	
16		(IPT,2001)	
19		(IPI,1012)	
20	WRITE	(IPT,1013)	
21		(IPT, 1014)	
22		(IPT,1015)	
2.3		(101,1016)	
24		(IPT,1017) (IPT,2001)	
25 26	RETURN		
27	1000 FORMAT	T(32X, 'JJ',4X, 'DB',4X, 'DB',4X, 'UU',4X, 'UU',9X,'//',5X,	
28	1 * 4 4 4 4 4	44'.5x.*PPFPPPP'.5x.*[[')	
29	1001 FORMAT	1(32x, JJ , 4x, HH, 4x, HH, 4x, HU, 4x, HU, 8x, 1/1, 5x,	
30	1'44',4	4X, 1A1, 4X, 1PD1, 4X, 1PP1, 4X, 1LL1)	
31	1002 FORMAT	T(32x,'JJ',4x,'HUHHHHHHH',4x,'UU',4x,'UU',7x,'//',6x,	
32	1007 50044	\$\$\$\$.,4X,*PPPPPPP9.,5X,*[[.]] T(32X,*JJ*,4X,*HH:,4X,*HH:,4X,*UU*,4X,*UU*,6X,*//*,7X,	
33 34	11003 FURMA	4X, 'AA', 4X, 'PP', 10X, 'LL')	
35	1004 FORMAT	T(26x, 'JJ', 4x, 'JJ', 4x, 'HH', 4x, 'HH', 4x, 'UU', 4x, 'UU', 5x, '//',	
36	18x. * A 4	A*.4X.*AA*.4X.*PP*.10X.*LL*)	
37		T(27x,'JJJJJJ',5x,'HH',4x,'HH',5x,'UUUUUU',5x,'//',9X,	
38	1'44',4	4X,'4A',4X,'PP',10X,'LLLLLLL'I	
39	1006 FDRMAT	T(3x, 'GGGGGG', 5x, 12222222 . 6x, 'DDDCCD', 5x, 'UU', 4x, 'UU', 4x, 'PPPP, 10x, '//', 4x, 'PPPPPPPPP, 5x, 'HH', 4x, 'HH', 5x, 'AAAAAA', 6x,	
40		SS'.5X', EEEEEEEE.)	
42	1007 F09MA1	T(GG', 5X, 'C', 4X, 'RR', 4X, 'RR', 4X, 'DD', 4X, 'DD', 4X, 'UU', 4X,	
43	1.00.	4X, *PP*, 4X, *PD*, 9Y, *//*, 5X, *PP*, 4X, *DD*, 4X, *HH*, 4X, *HH*, 4X,	
44	21441.6	4x. 1441. 4x. 151. 5x. 151. 4y. 1551)	
45	1008 FORMAT	T(GG', 10x, 1000000001, Ex, 100', 4x, 100', 4x, 100', 4x, 100', 4x,	
46		PPP',8X,1//,AY,1PPPPPPPP',5X, "HPPHPPHH",4X, "ASIAAAAA",5X,	
47	2.2222	\$\$',5X,'EFFEEE') T(' GG',3X,'GGC',4X,'RR',2X,'RR',6X,'DD',4X,'DD',4X,'UU',	
48	1009 FERMA	U',4X, 'PP',12Y, '//',7X, 'PP',10X, 'HH',4X, 'HH',4Y, 'AA',4X,	
50	21111	10V 1551 AV 15511	
51	1010 FORMA	T(: GG : ,4x, :GG : ,4x, :qr : ,3x, :qq : ,5x, :CD : ,4x, :CD : ,4x, :UU : ,4x,	
52 .	1.00.	4x, pp. 11x, // .ex, pp. 10x, H, 4x, H, 4x, A, Ax, Ax, Ax,	
53		S',4X,'SS',4X,'EE')	
54	1011 FORMA	T(' GGGGGG',5x,'RR',4x,'RR',5x,'QCQQQQ',6X,'UUUUUU',5X,	
55 56	1 · pp · .	10x, '/', 9x, 'PP', 10x, 'HH', 4x, 'HH', 4x, 'AA', 4x, 'AA', 5x, SS', 5x, 'Ecferer')	
57	1012 FORMA	T(44x, 'TTTTTTTT', 4x, 'EFFFFEFF', 5x, 'SSSSSS', 5x, 'TTTTTTT')	
58	1013 FORMA	T(47x, 'TT', 7x, 'EE', 10x, 'SC', 5x, 'S', 7x, 'TT')	
59	1014 FORMA	T(47x, "TT", 7x, "CEEEEEE", 7x, "SSSSSS", 8x, "TT")	
50	1015 FCOMA	T(47x, 'TT', 7x, 'EF', 16x, 'SS', 7x, 'TT')	
61	1016 FORMA	T(47x, 'TT', 7x, 'EE', 10x, 'SS', 4x, 'SS', 7x, 'TT')	
62		T(47x, 'TT', 7x, 'FFFFFFFF ',5x, 'SSSSSS', 8x, 'TT')	
63	2000 FORMA 2001 FORMA		
65	2002 FORMA		
56	END		

Program Listing A-8 Preprocessor Title Page Printer

BEST AVAILABLE COPY

01	9/28/76	INPUT LIS	TING		AUTOFLOW CHART SET	- LORAN 1 GR	OUP PHACE	PREPROCESSOR
F	DRTRAN MONULE	(LIST	,NAMSQ1					
	CARD NO	••••		cor	ITENTS		****	
	1	s	UBROUTINE DATE(JCHK)				
	2	0	IMENSION IBUF(1	29). IHD(40)				
	3	D	IMENSION A(6,8)	.MO(12).JCHK(1)				
	4	D	OUBLE PRECISION	A				
	5		DMMON IHD					
	6		DMMON/GETDAT/IR					
	7			,120,151,191,212	243,273,304,334,365	/		
	8		PT=6					
	9		=JCHK(1)					
	10		Y=JCHK(2)					
	11		0 1 J=1,12					
	12		FII.GT.MO(JI) G	0 10 1				
	13		M=J					
	14		HD (23)=IM					
	15		D = I					
	16		F(J.EQ.1) GO TO	4				
	17		D= I-MO(J-1)					
	18		HD(22)=ID					
	19		0 TO 2					
	20		ONTINUE					
	21		ETURN					
	22		ALL DOTOBIA, IM,	ID, IY)				
	23		O 3 K=1,6					
	24		21TE(IPT, 1000)(A(K.J).J=1.8)				
	25		ETURN					
	26		ORMAT(15X,8(4X,	A8))				
	27	E	ND					

The state of the second second

Program Listing A-9 Preprocessor Date Converter

Program Listing A-10 Preprocessor Title Page Date Formatter

the state of the same of the s

CONTENTS

[F([HD(5).NF.0) GO TO 1 WP[TE(21)[HD

Program Listing A-11 Preprocessor Header Page Printer

The transfer of the transfer o

AUTOFLOW CHART SET - LORAN 1 GROUP PHASE PREPROCESSOR 04/28/76 INPUT LISTING CONTENTS

SURROUTINE MALINE
OHEMSION IMPORTANDAL DATERNO), IND(40)
OHEMSION IMPORTANDAL DATERNO), IND(40)
OHEMSION GROUNT, THE PART OF THE PROCESSION OF THE PART (LIST, NAMSQ) FORTRAN MODULE

The state of the s

Program Listing A-12 Preprocessor Main Data Handler

The state of the s

13.6

The transfer of the same of th

Program Listing A-13 Preprocessor Data Blocker

Program Listing A-14 Preprocessor Pulse Time Locater

The same of the sa

09/28/76	INPUT LISTING	AUTOFLOW CHAPT SET - LORA	N 1 GROUP PHASE PREPROCESSOR
FORTRAN MODULE	(LIST, NAMSQ)		
CAPO NO		CONTENTS	••••
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	SUBROUTINE TIME(TA) DIMENSION INUF(129), HO(40) DOUBLE PRECISION TO COMMON HOD COMMON/STUBITIAT, THE CALL SHETICL, K. 8)		
19 20 21 22	CALL FCDIR(M,L,5) TB=TB+X*.0000001P0+1R1a< PETUPN END		

Program Listing A-15 Preprocessor Time Decoder

09/28/76	INPUT LISTING	AUTOFLOW CHAPT SET - LORA	N 1 GROUP PHASE PREPROCESSOR
FORTRAN MODULE	(LIST, NAMSQ)		
CARD NO	••••	CONTENTS	
1 2	SUPRCUITING SETIDAT)		
3	DO 1 I=1.800		
4	1 DAT(I)=9999.		
5	RETURN		
6	ENO		

Program Listing A-16 Preprocessor Data Block Initializer

09/28/76	INPUT LISTING	AUTOFLOW CHART SET - LO	DRAN 1 GROUP PHASE PREPROCESSOR
FOR TRAN MODULE	(LIST.NAMSQ)		
CARD NO	••••	CONTENTS	••••
1 2 3 4 5 6 7 8 9 10 11 12 13	SUBROUTINE XY(IDC DIMENSION DAT(1), COMMON HOD COMMON/GETDAT/IRT I=IBUE(X) CALL SHETI(J,I,32 CALL SHETI(J,I,32 CALL SHETI(J,I,32 CALL SHETI(J,I,32 CALL SHETI(J,I,32 CALL SHETI(J,I,32 CALL SHETI(J,I,32) CALL SHETI(J,I,32) CALL SHETI(J,I,32) CALL SHETI(J,I,32) CALL SHETI(J,I,32) CALL SHETI(J,I,32)		

Program Listing A-17 Preprocessor Measurement Decoder

the second of the total the transfer of the second of the

Program Listing A-18 Preprocessor Intermediate Statistics

04/28/75	INPUT LISTING	AUTOFLOW CHART SET - LORAN	1 GROUP PHASE PREPROCESSOR
FOR TRAN MODULE	(LIST, NAMSO)		
CAPD NO	••••	CONTENTS	••••
1	SURROUTINE CLEAR (Y.N)		
	DOUGLE PRECISION X(N)		
3	00 1 I=1.N		
4	1 X(I)=0.000		
5	PETURY		
	f 1 - 0		

Program Listing A-19 Preprocessor Array Reset

09/28/76	INPUT LISTING	AUTOFLOW CHA	RT SET - LORAN 1	GROUP PHASE PREPROCESSOR
FOR TRAN MODULE	(LIST, 12450)			
CAPD NO	••••	CONTENTS		••••
1	SUBBOUTINE EDITION TO	JI		
2	DIMENSION 1-7-(128), 140(4			
3	DIMENSION CAT(1)			
4	COMMON THO			
5	COMMON/GETDAT/IRT. IRIE			
6	IFIA9SIDATIDCT-1)1.GT.10	.1 GO TO 1		
7	IF(ABS(DAT(IDCT)).GT.10.)	GO TO I		
8	RETURN			
9	1 10CT=InCT-2*J			
10	IHD(40)=IHD(40)+1			
11	DO 2 J=1.8			
12	IDCT=10CT+2			
13	DAT (IDCT-1)=9399.			
14	DAT(IDCT)=9499.			
15	2 CONTINUE			
16	DETURN			
17	END			

Program Listing A-20 Preprocessor First-Stage Editor

The Tolke Tolke Tolke Tolke South So

Program Listing A-21 Preprocessor Final Statistics

O9/28/76 INPUT LISTING AUTOFLOW CHART SET - LORAN 1 GROUP PHASE PREPROCESSOR

FOR TRAN MODULE (LIST, NAMSC)

CARD NO **** CONTENTS

SUBROUTINE MODESR (MNSV)
DIMENSION LEUG(128), THO (40)
COMMON THD

Program Listing A-22 Preprocessor Recording Mode Decoder

Program Listing A-23 Preprocessor Plotter

AUTOFLOW CHART SET - LOPAN 1 GROUP PHASE PREPROCESSOR INPUT LISTING 09/28/76 (LIST, NAMSO) FORTRAN MODULE CONTENTS CAPD NO SUBPOUTINE SKIPFL
DIMENSION IBUF(120)
COMMON/GETOAT/10T,18UF
1 CALL GETPEC
GO TO(1,13,2),1RT
2 WRITE(6,1000)
3 RETURN
1000 FORMAT(1X,'NO DO CAPO THIS FILE (<<!>>C|>>C|);
ENO

Program Listing A-24 Preprocessor File Skip

TO THE RESIDENCE AND ASSESSMENT OF THE PROPERTY OF THE PROPERT

Program Listing A-25 Preprocessor Group Phase Measurement Calculator

O9/28/76 INPUT LISTING AUTOFLOW CHART SET - LORAN 1 GROUP PMASE PREPROCESSOR

FORTRAN HOUSE (LIST.NAMSQ)

CARD NO **** CONTENTS ****

1 SUBROUTINE SHFT(I,J,K)
2 CALL SHFT((I,J,K,L)
3 RETURN
4 END

Program Listing A-26 Preprocessor Logical Shift Caller

O9/28/76 INPUT LISTING AUTOFLOW CHART SET - LORAN 1 GROUP PMASE PREPROCESSOR

FORTRAM MYDULE (LIST, NAMSC)

CAPO MY) **** CONTENTS ****

1 SUBROUTINE SHETI(I, J, K)
2 1:0
3 CALL SHETL(I, J, K, L)
5 END

Program Listing A-27 Preprocessor Clear and Logical Shift Caller

09/28/76 INPUT LISTING AUTOFLOW CHART SET - LORAN 1 GROUP PHASE PREPROCESSOR

FC9 19 AN MODULE (LIST, NAMSQ)

CAPO NO **** CONTENTS ****

1 SURROUTING SHF12(1, J, K)
2 CALL SHF14(1, J, K, L)
3 RETURN FUND
FND

Program Listing A-28 Preprocessor Arithmetic Shift Caller

A. Billiot Later, T. Commission and Society Sauce America Silver & Contract Contract

CHART TITLE - PROCEDURES

Flow Chart A-1 Preprocessor Driver

- 66 -

09/28/76

THE PERSON WINDS TO SELECT THE PERSON OF THE

AUTOFLOW CHART SET - LORAN 1 GROUP PHACE PREPROCESSOR

PAGE 03

CHART TITLE - SUBROUTINE SKIP

Flow Chart A-2 Preprocessor Short Record Skip

CHART TITLE - SUPPOUTING CROINTUCHE)

Flow Chart A-3 Preprocessor Initialization

1 107 to go to the second to the telephone to the second desired the second to the sec

CHART TITLE - SUSPICUTINE HOCHKIJCHK)

Flow Chart A-4 Preprocessor Header Information Check

- 69 -

Flow Chart A-5 Preprocessor Header Information Decommutator

or trap of the work of the factor of the transfer of the same than the first of the form

CHART TITLE - SURROUTINE ROHD

Flow Chart A-5 Preprocessor Header Information Decommutator (continued)

- 71 -

To the fact of the second second second to the second seco

CHART TITLE - SUPRCUITINE ROAD

Flow Chart A-5 Preprocessor Header Information Decommutator (concluded)

The state of the s

MAN THE LOW

/ DATCOR /

09.11--->

ADDED SUR TO CORRECT
FOR ATTENT FOUR BITS
WERE INSCRIPT AFTER
AN EXTEX FOUR BITS
WERE INSCRIPT

Flow Chart A-6 Preprocessor Data Format Converter

The transfer was the transfer to the transfer

CHART TITLE - SURSCUTINE SCOTS(1,J.K)

Flow Chart A-7 Preprocessor BCD to Binary Converter

TO THE RESIDENCE OF THE PROPERTY OF THE PROPER

CHART TITLE - SUBSCUTINE PENTIL

Flow Chart A-8 Preprocessor Title Page Printer

1 1 TO THE RESIDENCE OF THE PARTY OF THE PAR

CHART TITLE - SUBSCUTINE DATELICHE

Flow Chart A-9 Preprocessor Date Converter

TO THE RESIDENCE OF THE PARTY O

Flow Chart A-10 Preprocessor Title Page Date Formatter

The transfer of the transfer o

Flow Chart A-11 Preprocessor Header Page Printer

Flow Chart A-11 Preprocessor Header Page Printer (concluded)

TO BE THE STATE OF THE PARTY TO SEE THE STATE OF THE SECOND STATE OF THE SECOND SECOND

CHART TITLE - SUPERCUTINE MAINE

Flow Chart A-12 Preprocessor Main Data Handler

TO THE RESIDENCE AND A STATE OF THE PARTY OF

CHART TITLE - SUSSECUTIVE MAINE

Flow Chart A-12 Preprocessor Main Data Handler (continued)

The state of the s

* HALT *

CHART TITLE - SURRCUTINE MAINE

Flow Chart A-12 Preprocessor Main Data Handler (concluded)

The state of the same of the s

CHART TITLE - SURPCUTINE BLOCKTOUT, INCT. INCT. 1500)

Flow Chart A-13 Preprocessor Data Blocker

The state of the s

The state of the s

04/28/76

I TOFLOW CHIRT SET - LORAN 1 GROUP PHASE PREPROCESSOR

PAGE 32

CHART TITLS - SUBSCUTINE FINCTOTAL FIRE (CS. 1201, 1201, 1201)

Flow Chart A-14 Preprocessor Pulse Time Locater

The stage of the second section of the second secon

The state of the s

09/28/76

AUTOFLOW CHART SET - LORAN 1 GROUP PHASE PREPROCESSOR

PAGE 34

CHASE ILLE - Shed COLLNE LINE (14)

Flow Chart A-15 Preprocessor Time Decoder

The transfer of the transfer o

09/28/76

AUTOFLOW CHART SET - LORAN 1 GOOUP PHASE PREPROCESSOR

DACE 34

CHAPT TITLE - SUSPECUTIVE SETIDATE

The same of the sa

Flow Chart A-16 Preprocessor Data Block Initializer

The state of the s

THE PROPERTY OF THE PARTY OF TH

09/28/76

AUTOFLOW CHART SET - LORAN 1 GOOLIP PHASE PREPROCESSOR

PAGE 38

CHART TITLE - SUPPCUTINE AYLIDET, K, DAT, L)

Flow Chart A-17 Preprocessor Measurement Decoder

or the second of the second of

PAGE 40

CHART TITLE - SURPOSITING STATISTICAL

To go the work of the total the transfer which want amount have a first the

Flow Chart A-18 Preprocessor Intermediate Statistics

1 to the second of the second

04/28/76

AUTOFLOW CHART SET - LORAN 1 GROUP PHACE PREPROCESSOR

PAGE 42

CHART TITLE - SUBROUTINE CLEAR(X,N)

Flow Chart A-19 Preprocessor Array Reset

The transfer of the transfer o

PAGE 44

CHART TITLE - SUBROUTINE FOIT(1701,041,J)

Flow Chart A-20 Preprocessor First-Stage Editor

19 TO THE RESIDENCE TO THE TENED OF THE PARTY OF THE PART

APPLY TO

CHART TITLE - SUPERSITING STATE

Flow Chart A-21 Preprocessor Final Statistics

THE TO SEE THE TANK THE TELEVISION OF THE PERSON OF THE PE

10/76/70

AUTOFLOW CHAPT SET - LORAN 1 GOOUP PHASE PREPROCESSOR

PAGE 48

CHART TITLE - SUPPOUTINE MODESH (405V)

Flow Chart A-22 Preprocessor Recording Mode Decoder

The same of the sa

CHART TITLE - SUBROUTINE PLOT

Flow Chart A-23 Preprocessor Plotter

I BY TO BE A CONTROL TO THE TAKE THE SEASON SEASON

09/25/74

AUTOFLOW CHART SET - LORAN 1 GROUP PHASE PREPROCESSOR

PAGE 52

CHART TITLE - STOROUTINE SKIPEL

Flow Chart A-24 Preprocessor File Skip

To go to the transfer to the total to the total and the second to the total to the total t

CHART TITLE - SUSPICUTINE CPM

Flow Chart A-25 Preprocessor Group Phase Measurement Calculator

The state of the s

CHART TITLE - SUPPCUTINE CAM

Flow Chart A-25 Preprocessor Group Phase Measurement Calculator (concluded)

The state of the s

040320

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-4

CHART TITLS - STRENUTINE SHET(1,J,K)

Flow Chart A-26 Preprocessor Logical Shift Caller

09/28/76

AUTOFLOW CHART SET - LOSAN 1 GROUP PHACE PREPROCESSOR

ACE 50

CHART TITLE - SUSPECUTINE SHETI(I, J.K)

Flow Chart A-27 Preprocessor Clear and Logical Shift Caller

04/28/75

STATESTER CHEST SET - LOSAN 1 GOODS PHASE DEEDENCESSOR

PAGE 59

CHAPT TITLE - SUSPICUTINE SHETZETIJIKI

Flow Chart A-28 Preprocessor Arithmetic Shift Caller

THE RESERVE THE PARTY OF THE PA

FORTRAN MODULE

(LIST . NAMSQ)

```
| INPUTCET REALES (A-C-E-HO-Z) | OHEASION ATTIGUES ATTIGUES (A-C-E-HO-Z) | OHEASION ATTIGUES ATTIGUES (A-C-E-HO-Z) | OHEASION ATTIGUES ATTIGUES (A-C-E-HO-Z) | OHEASION OUTSTALL) | OHEASION OUTSTALL)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ....
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CONTENTS
CARD NO
                                                                                                                                                                                                                                                                                                                                 ....
```

Program Listing A-29 Editor Driver

THE RESERVE THE PROPERTY OF TH

09/27/76	IMPUT LISTING	AUTOFLOW CHART SET - LORAN 2	GROUP PHASE EDITOR		
CARD NO	••••	CONTENTS	••••		
109	210x . TOTAL PUI	SES EDITED #1+131			
110	1003 FORMAT (1X-10FA-4)				
111	1004 FORMAT(2x.16FA.4./)				
112	1005 FORMATI TOTAL NO. OF PULSES USED " . 16.				
113	110x. TOTAL NO. OF AVERAGES USED *1.15)				
114	1006 FORMAT (PARITY ERROR AT TIME = . FIZ.7)				
115	1007 FORMAT (859.4/859.4)				
116	1008 FORMAT (*0", 34x . EDITING WINDOW "".F4.2." VOLTS")				
117	1009 FORMAT(:0 34x . EDITING AVERAGES USED / . 20x . 8F9 . 5 . / . 25x . 8F9 . 5)				
119	1010 FORMAT(2x,12. 9LOCK AVG. = 1.14F8.4)				
119	1011 FORMAT (4(6X.'T '.T2).3(4X.'GPM '.T2))				
120	1012 FORMAT (7F10-3)				
121	1013 FORMAT (1M1)				
122	1014 FORMAT(1H0)				
	1015 FORMAT (8F9.4-)-8F9.41				
123	ENO				
124	ENU				

Program Listing A-29 Editor Driver (concluded)

FORTRAN MODULE

(LIST . NAMSQ)

```
CARD NO
                                                                                               ....
                                                                                                                                                                                                                                                                                                                      CONTENTS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ....
                                                                                                                         C
                                                                                                                             3'TEST '/ DATA AMONE/PPIMARY '- DATA '-'
1' '- CALIBOAT' - ION RUN '-'
2'ST '- VAN EQUI' - PMENT TE' - ST
3' '- SXYWAVE '- TO IUHNAL '-'
1'
                                                                                                                                                                                                                                                                                                                                                                                J=IHD(4)+1
WRITE(IPT.1002)(ASITE(I.J).[=1.3)
                                                                                                                                    WRITE (INT) IHO
                                                                                           TRETUPN

1 RETUPN

1000 FORMAT(35x, 'GOOIP/PHASE TEST PREPROCESSING', 2x, 12, 2(''', 12))

1011 FORMAT(10, 34x, 'Unit IAN DAY NO, ', 14, YX, 'YEAR NO, ', 15)

1001 FORMAT(10, 34x, 'DIA RECORDED ATI', 3X, 3A8)

1002 FORMAT(10, 34x, 'TIDANSMITTER LOCATED ATI', 3X, 2A8)

1003 FORMAT(10, 34x, 'ATINANSMITTER LOCATED ATI', 3X, 3A8)

1004 FORMAT(10, 34x, 'ATINANSMITTER LOCATED ATI', 3X, 3A8)

1005 FORMAT(10, 34x, 'ATINANSMITTER LOCATED ATI', 1, 'RILLIRARS')

1006 FORMAT(10, 34x, 'ATINANSMITTER LOCATED ATI', 1, 'RILLIRARS')

1007 FORMAT(45x, 'DOY RULR', '5, 1)

1008 FORMAT(45x, 'DOY RULR', '5, 1)

1010 FORMAT(10, 34x, 'ATINANAL TEMPERATURE (DEGREES CENTIGRADE)')

1010 FORMAT(10, 34x, 'ATINANAL TEMPERATURE (DEGREES CENTIGRADE)')

1011 FORMAT(11, '////)

1012 FORMAT(10, 34x, 'ATIRNUATION IN ORI'13)

1013 FORMAT(10, 34x, 'ATIRNUATION IN ORI'13)

1014 FORMAT(45x, 'C, OUC ORERI ', 24A)

1015 FORMAT(45x, AA, ', GOOUND WINDS')

1016 FORMAT(45x, AA, ', GOOUND WINDS')

1017 FORMAT(45x, 'AA, ', GOOUND WINDS')

1018 FORMAT(45x, 'AA, ', GOOUND WINDS')

1017 FORMAT(45x, 'AA, ', GOOUND WINDS')

1018 FORMAT(45x, 'AA, ', GOOUND WINDS')

1019 FORMAT(45x, 'AA, ', GOOUND WINDS')

1010 FORMAT(45x, 'AA, ', GOOUND WINDS')
```

Program Listing A-30 Editor Header Page Printer

THE TOP OF THE PARTY THE P

09/27/76	INPUT LISTING	AUTOFLOW CHART SET - L	ORAN 2 GROUP PHASE EDITOR		
FORTRAN MODULE	(LIST.NAMSQ)				
CARD NO	••••	CONTENTS	••••		
1	SUBPOUTINE EDIT (DATA-AY+TH+1-IFLG)				
2	IMPLICIT REAL+8 (A-C+E-H+0-Z)				
3	DIMENSION XY(16).DATA(16.50)				
	IFLG=0				
5	DO 1 J=1+16 IF(DARS(DATA(J+1)-XY(J)),GT.TH) GO TO 2				
6		-XY(J)).GI.IH) GO IO Z			
,	1 CONTINUE				
	RETURN				
. 9	2 IFLG=1 00 3 J=1-16				
10	3 DATA (J.1) =9999.				
11	RETURN				
12	END				
13	END				

Program Listing A-31 Second-Stage Editor

09/27/76	INPUT LISTING		AUTOFLOW CHART SET - L	ORAN 2 GROUP PHASE EDITOR
FORTRAN HODULE	(LIST . NAMS	11		
CARD NO	••••		CONTENTS	••••
1	SUBHOUTINE CLEAR (1.J)			
5		T REAL (A-H.O-Z)		
•	00 1 11	-1-1		
1	1 ACTI.J.			
•	END			

Program Listing A-32 Editor Array Reset

09/27/76	INPUT LISTING	AUTOFLOW CHART SET - LOS	RAN 2 GROUP PHASE EDITOR
FOHTRAN MODULE	(L151+44M50)		
CARD NO		CONTENTS	••••
1 2 3 4 5 6 7 8	SUBPOUTING GPU(S IMPLICIT PEAL=A(OTMENSION SHIP(IA OD 1 I=1-4 J=2=(I=4) 1 OUT([-+NT]=-SHIP(DO 2 I=1-3 J=1-4 OUT(J+NT)=0-000	(4-+,0-2) \1-0UT(7+100) (U-1)*3.18/(SUM(U)-SUM(U-2))	
10 11 12 13 14 15 16 17	DO 3 #=1+5 {=7+{1+x} 3 OUT(J+xNT)=OUT(J K=2+(1+1) TEMP=2+(DABS(SUM	J+KNT1+DAH5 (5UM(L)) H(K+R) -DAH5 (5UM(K))) KUM(K+6) -DAH5 (5UM(K+2))	

Program Listing A-33 Editor Group Phase Measurement Calculator

CHART TITLE - PROCEDURES

Flow Chart A-29 Editor Driver

CHART TITLE - PROCEDURES

Flow Chart A-29 Editor Driver (continued)

THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS O

CHART TITLE - PROCEDURES

Flow Chart A-29 Editor Driver (continued)

CHART TITLE - PROCEDURES

Flow Chart A-29 Editor Driver (concluded)

The same of the sa

CHART TITLE - SUBROUTINE PRATHO

Flow Chart A-30 Editor Header Page Printer

4.4

CHART TITLE - SUBROUTINE PRINTHD

Flow Chart A-30 Editor Header Page Printer (concluded)

THE TOP A SHOULD BE THE TEXT OF THE PARTY AND ADMITTANCE ABOUT A LINE AS A SHOULD BE A SHOULD BE AS A SHOULD BE

CHART TITLE - SUBROUTINE EDIT(DATA.XY.TH. [. IFLG)

Flow Chart A-31 Second-Stage Editor

The transfer of the transfer o

CHART TITLE - SUBROUTINE CLEAR(1.J)

Flow Chart A-32 Editor Array Reset

CHART TITLE - SUBROUTINE GPM (SUM. OUT. KNT)

Flow Chart A-33 Editor Group Phase Measurement Calculator

J. A. T. T. Market Market St. T. Committee and Market Same and Market Market St. C. Market Market St. C. Market Ma

(LIST, NAMSQ)

CARD NO		CONTENTS	••••	
1		IMPLICIT REAL+8(A-C,E-H,O-Z)		
2		DIMENSION 8(256.2), AVGP #8 (2)		
3		DIMENSION JCHK(5) . [HD(40) . [BUF (128)		
		DIMENSION GROTOT(3,32), APR(8194,2)		
5		DIMENSION OCI (8192)		
6		COMMON IND.GROTOT.ARR.DQI.8		
7		COMMON/ GETCAT/ IRT . I BUF		
8		COMMON/CARD/TTA.SDTOA.SN.FS		
9		COMMON/PR INT/IPT		
10		IPT=6		
11		IRC=0		
12		1FL G=0		
13		TP=62.5		
14		PHI =0.0		
15		ECD=3.0		
16	1	CALL CROINIJCHK, AEF)		
17		[F(JC4K(1).EQ.999) GO TC 4		
16		CALL INIT		
19		ITRY-0		
20	. 2	CALL RIM		
21		CALL COCF (ITRY)		
22		IFILITAY.EC.0) GO TO A		
23		IF(1774.E.7) GO TO 2		
24		CALL SKIPFL		
26		60 10 1		
27		CALL PONTILIHO, IPTI		
28	•	CALL PRINTHO		
29		CALL MAINE		
30		CALL CENFERADII		
31		CALL STATI		
32	5	CALL HIST		
33		CALL PLOT		
34		[F(JCHK(2).EQ.0) GO TO 3		
35		IFIJCHK (31.54.01 GO TO 6		
16		CALL TOA		
31		CALL AMP		
38		CALL DEFT ALARP, (HD(25), 0)		
39		CALL DE FT A(ARR(1,2), 1HD (25),0)		
40		IF(JCHK(3).°C.0) GO TO 7		
41		CALL EDITFIAVGPARI		
43		CALL PLOTICAVOPIRI		
44	,	CALL DEFT ACARR, THOUSES, 21		
45	•	CALL DEFTALARRELIST, 180 (251 .21		
46		1F(JC+K (3).EQ.Q) GO TO 3		
47		CALL HIST		
44		CALL MYAMP		
49	,	CALL PRATTLEINO, IPTI		
50		CALL PRATHO		
51		CALL SYES (JCHK , AFF , 1)		
52		CALL TOA		
53		CALL AMP		
14		IF (JC (* (3).45.0) 60 to 1		
55		CALL SYFS (JCHK, AFF, 2)		
56		WPITE(7.10))) HO(1),TTA,SOTOA,SN.FS		
57		WRITE(7.1032) TP.PHI,ECO.TADJ		
59		RFW100 21		
60		WPITE(7,1col)		
61		STOP		
62	1000	FORMAT (16,4716.9)		
63		F 78 MAT (3x . ' 979')		
64		FORMAT (4F 15.5)		
65		ENO		

Program Listing A-34 Frequency Filter Driver

THE RESERVE THE PARTY OF THE PA

09/28/76	INPUT L	ISTING	AUTOFLOW CHART SET - LORAN 3	GROUP PHASE FILTER
FORTRAN MODULE	(LI	ST.NAMSQ)		
CARD NO	••••		CONTENTS	••••
1		SUSPCUTINE CROINCICHE, A		
2		IMPLICIT REAL-BIA-C,E-H		
3		DIMENSION JCHK(5). IBUF(1281, [HC(40)	
•		COMMON IND		
,		COMMON/GE TOAT/19T.18UF		
6		COMPON PRINT/IPT		
!	c	1 - POWER CF THO (999 S		
•	C	2 = FOURTER (1=YES,O=N) 3 = FILTER LEVEL(NOT EQ		
10	c	4 - T REACING FOR AMPLI		
11	č	IHO(29) - PPOCESS DAY "		
12	č	AEF . ANT EFFECTIVE HEL		
13		IPD=5	GH1	
14		REACTIRD, 100011 JCHK(1).	1=1-51-1H2(29)-AFF	
15		IF(JC4K (11.63.0) JC4K(1		
16		IFIJCHK (41.E3.0) JCHK(4		
17		IFIJCHK (51.50.21 JCHK(5		
18		IF (AE EQ . 0) AFF 007		
19		1HD(26)=JC+K(5)		
20		[HD (27) +JCHK(3)		
21		[HD(24) +2++ JCHK(1)		
22		IF(JCHK (3).45.01 1H9(26	1-12	
23		RETURN		
24	1000	FORMATICIE.F6.21		
25		END		

Program Listing A-35 Frequency Filter Card Input

09/28/76	INPUT L	ISTING	AUTOFLOW CHART S	FT - LORAN 3	GROUP PHASE FILTEP
FORTRAN MODULE	m	ST. NAMSU)			
CARD NO	••••		CONTENTS		••••
1		SURPOUT INE INIT			
2		IMPLICIT REAL OR (A-H,)-Z			
,		DIMENSION INCIANT, GROTT	f(3, 32)		
•		COMMON INC.GRETOT			
•		[H0 (25) •0			
•	c	INCISSI PULSE COUNT			
,		IHD(35) =0			
		CALL CLEARIGEDTOT . 1921			
•	c	THOTAY IS TOTAL NO. OF	REJECTED PILSES		
10 11		[HD(37) +0			
11	c	INDESS IS TOTAL NO OF	HISSING RECOLDS		
12		140(34) -0			
13		RETURY			
14		END			

Program Listing A-36 Frequency Filter Initializer

CARD NO	••••	CONTENTS	••
1 2		DIMENSION IBUF(128),IMC(40)	
3		DOUBLE PRECISION GROTOT (3,32)	
3		OMMON/GETDAT/IRT, IBUF	
7	5 1	= JULIAN DAY =YEAR-1970	
9		S-XMTR NO.	
10	C 5	SITE NJ.	
13	i i	SEATMOS PRESS PROUTSICE WET BULB	
14	6 8	PECUTSIDE DRY BULB	
16 17	C 1	O=INSIDE DRY BULB	
18	2 1	12=HOURS START TIME	
20	C 1	IS=MINUTES START TIME I4=SECCHOS START TIME	
21	c 1	S=WEATHER CODE	
23	C 1	17=GR1 18=START TIME IN SECONDS AFTER MIDNIGHT	
25 26	C 1	9=MODE OF RUN .	
27	c 2	LERUN NJMHER	
29	c 2	S-FFT POINT FLAGISUR XY)	
30		PARAMP CALC CN 380 CYCLE OF PEAK OF PULSE ST IN CROIN	
32	c 2	PARTITER LEVEL MULTIPLIER USED IN EDITFSET IN CADIN	
35	C 3	ED-PULSE NIMBER	
36	C :	BI-PULSE CODE TABLE START	
3A 39	c 3	9-MISSING RECORD COUNT NO-BAD PULSE PER BLOCK COUNT	
40	c s	KIP FIRST RECORD	
41	0	O 10(3.2.12.900).181	
*1	G	ALL GETREC O TO(4.3.10,111,14T	
45	• 0	IME TO EVEN SECOND ALL BOOTBILLS, L, Z, IRUF, LZB, IMP(12))	
49		ALL BCDTB1113,3,2,19UF,128,1HD113)) (ALL BCDTB(113,5,2,18UF,128,1HD(14))	
50	C A	ALL SCOTPILLA, A, Z, IBUF, LZA, IHD(9);	
51	c 0	OBJECT ALL MCOTECLES, 3, 2, IAUF, 12A, IMOCLE)	
53	c *	MODE ALL MCOFF(115,5,2,1MUF,128,1MO(191)	
55	C *	155134 ALL ACOTB(115,7,2,19(F,128,1HD(20))	
57	C .	UN NUMBER ALL BIOTR(116,1,1,1AUF,128,1HO(21))	
59	C P	ULSE NUMBER ALL MCDTH(116,2,2,1AUF,128,1MN(3)))	
60	C J	ULIAN DAY AND YEAR	
63	1	ALL BCCT B(116,4,3,1RUF,128,1HC(1)) F(1HC(29).EQ.D)	
64	c x	ALL ACCTALLES, T.L. ESUF .LZA .LHO(ZI)	
66		ALL BOOTP(116.8,1,190F,128,(HD(3))	
66		ALL BCCTP(117,1,1,190F,128,140(5))	
70		ALL RCOTECLIT, 2, 2, LAUF, 128, LHC(4);	
72	(ALL 8C019(117, 4, 2, 19UF . 128 . 1HO(15))	
14		ALL 80018(117.6.1.1905.12#.[MD(16)]	
75 16		ALL 8COT 8(117,7,3,1805,128,140(101)	
77		DITSIDE TEMP(#51,044) ALL BCDT8(114,2,3,14UF,128,140(7))	
80	CP	ALL BODTERLIB.5.3.THUF, 128.THURNI	
81	: G	ALL BCOTE(119,9,5,180F,120,140(6))	
83	,	ALL BC 07 81119, 5, 5, 19UF, 128, 140(17))	
65	c		
87	1	HD(18)*[FD(12)*3600+[HD(13)*60+[HD(14)	
89	10 W	RITE(IPT.1000)	
91	. 11 *	0 TO 3	
92	12 4	TOP RITE(IPT .1002)	
94	900 M	S OT C: S OT C: TPT - 2000)	
96	1000 F	TOP OPMAT(' EOF ENCOUNTERED, TRY AGAIN ///)	
98	1001 F	ORMATI' NO DO CAPO THIS FILE') JRMATI' EOF FIRST REC SKIP'I	
100	2000 F	OPMAT(NO DO CARD FOR FIRST FILE SKIP!)	
	71-17		

Program Listing A-37 Frequency Filter Header Information Decommutator

A STATE OF THE THE THE THE STATE OF THE STAT

Program Listing A-38 Frequency Filter Pulse Phase Code Decoder

AUTOFLOW CHART SET - LORAN 3 GROUP PHASE FILTER INPUT LISTING 09/28/16 FORTRAN MODULE ILIST, NAMSOI CONTENTS CARD NO SUPPOITINF GETTAR(NTAB)
DIMENSION NTABETH, IND(60) + PUF(12A)
COMMON IND
COMMON/OFTONT/IRT + IPUF
COMMON/OFTONT/IRT + IPUF
DO 1 +-1.7
J=16*(1-1)*10
L=149*(J)
CALL SHEFICK*(+,4A,M)
CALL SHEFICK*(+,4A,M)
I NTABE[J=K/IABS(K)
RETURN
END

Program Listing A-39 Frequency Filter Phase Code Generator

A THE RESERVE THE PROPERTY OF THE PROPERTY OF

IL IST, NAMSQ 1

```
SUBROUTINE PRNTHO
OIMENSION ANDDERS, B, IHOL40 J, 19UF(128)
OIMENSION WENTHICZ, 5) - WEATHZZ, 2101
OIMENSION WENTHICZ, 5) - WEATHZZ, 2101
OIMENSION WENTHICZ, 5) - WEATHZZ, 2101
OIMENSION WEATHZZ, 5) - WEATHZZ, 2101
OIMENSION WENTHICZ, 5) - WEATHZZ, ANDTE, TB
OUTA WIND/ LOW, "HIGH!/
OATA WEATHZ/CTHINDESS", "TOPS ", "RAIN SHI", "EPS
''DAIZALE ', "FREEZING', DRIZZLE', "SNOW ", "Z'HAIL ", "GROUND F: "OB COVE', "R
''STRILL ', "GROUND F: "OB (", "FOG COVE', "R
''STRILL ', "GROUND F: "OB (", "FOG COVE', "R
''STRILL ', "GROUND F: "OB (", "FOG COVE', "R
''STRILL ', "GROUND F: "OB (", "FOG COVE', "R
''STRILL ', "GROUND F: "OB (", "FOG COVE', "R
''STRILL ', "GROUND F: "OB (", "FOG COVE', "R
''STRILL ', "GROUND F: "OB (", "FOG COVE', "R
''STRILL ', "GROUND F: "OB (", "FOG COVE', "R
''STRILL ', "GROUND F: "OB (", "FOG COVE', "R
''STRILL ', "GROUND F: "OB (", "FOG COVE', "R
''STRILL ', "GROUND F: "OB (", "FOG COVE', "R
''STRILL ', "GROUND F: "OB (", "FOG COVE', "R
''STRILL ', "GROUND F: "OB (", "FOG COVE', "R
''STRILL ', "GROUND F: "OB (", "FOG COVE', "R
''STRILL ', "GROUND F: "OB (", "FOG COVE', "R
''STRILL ', "GROUND F: "OB (", "FOG COVE', "R
''STRILL ', "GROUND F: "OB (", "FOG COVE', "R
''STRILL ', "GROUND F: "OB (", "FOG COVE', "R
''STRILL ', "GROUND F: "OB (", "FOG COVE', "R
''STRILL ', "GROUND F: "OB (", "FOG COVE', "R
''STRILL ', "GROUND F: "OB (", "FOG COVE', "R
''STRILL ', "GROUND F: "OB (", "FOG COVE', "R
''STRILL ', "GROUND F: "OB (", "FOG COVE', "R
''STRILL ', "GROUND F: "OB (", "FOG COVE', "R
''STRILL ', "GROUND F: "OB (", "FOG COVE', "R
''STRILL ', "GROUND F: "OB (", "FOG COVE', "R
''STRILL ', "GROUND F: "OB (", "FOG COVE', "R
''STRILL ', "GROUND F: "OB (", "FOG COVE', "R
''STRILL ', "GROUND F: "OB (", "FOG COVE', "R
''STRILL ', "GROUND F: "OB (", "FOG COVE', "R
''STRILL ', "GROUND F: "OB (", "FOG COVE', "R
''STRILL ', "GROUND F: "OB (", "FOG COVE', "R
''STRILL ', "GROUND F: "OB (", "FOG COVE', "R
''STRILL ', "GROUND F: "OB (", "FOG COVE', "R
''STRILL ', "GROUND F: "OB (", "FOG COVE', "R
''STRILL ', "GROUND F: 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  CONTENTS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ....
WP (TE(21) 100
CALL TIME (TB)
WR (TE(1PT , 1021) TB
```

Program Listing A-40 Frequency Filter Header Page Printer

(LIST , NAMSQ)

FORTRAN MODULE	(LIST	(LIST. NAMSQ)				
CARD NO	••••	CONTENTS	••••			
1	5	UBROUT INE MAINE				
2	0	IMENSICN IBUF(128), CAT(1600), IHO(40)				
3		DIMENSION GROTOT(3,32)				
•		DOUBLE PRECISION TB.TB2.TO.GP I				
5		OUBLE PRECISION GROTOT				
7		OMMON THO, GROTOT				
		OMMON/GE TOAT/IRT.IBUF OMMON/PR INT/IPT				
		R (=[HD(17]*.000100				
10		PCT=0				
ii	1	ERR=O				
12		ALL TIME (TB)				
13		TBP=TB				
14		ALL SETIOATI				
15		HD(39) IS USED TO COUNT MISSING RECORDS				
17		HD(39) = 0				
18		HOLGO IS USED TO COUNT BAD PULSES IN A BLOCK				
19		40(40) =0				
20		D-T8P+ IP CT +GR I				
21		CALL ALOCKIDAT, IDCT, IPCT, IERRI				
22		F(10CT.LT.1600) GO TO 11				
23		ALL DITPUT (TG, CAT)				
24		HD(3H) =[HD(3H) +[HD(39]				
26		F([H0(25].GE.[H0(28]) GO TO 30				
21		F(IPCT.LT.7) GO TO 9				
29		18P - TRP +7 -GR 1				
29		IPCT=0				
10		FITER .NE. 31 GO TO 14				
31		ALL GE PREC				
32		TO TOLE 1, 12, 17, 18), LET				
34		CALL ACOT HILLT, I, I, I AUF, 128, MOSVI				
35		F(1H0(5) .NE. MOSV) GO TO 17				
36		ALL TIME (TO)				
37		FST FOR MISSING RECOPD				
34	14 1	F1119-18P1.GT.60GR11 GC TO 16				
39		EST FOR INTERMEDIATE RECORD				
40		F((T8P-T8).GT001) GO TO 12				
42		RP-TB				
43		F(16)0-10CT)7,9,10				
44	16 1	FRR-1				
45		[HD(39]=[+D(39]+]				
46		RITE (IPT . LOOL) TRP				
47		O TO 15 ARITE(1PT,1002)TO				
49		(•13				
50		F([HD(25] -GE -2 **1] GO TO 24				
51		1-1-1				
92		F(1.FQ.O) RETURN				
53		50 10 23				
**		H0(25) •1				
55		NOFILE 21 RETURN				
56		ALL SKIPFL				
**		71 07 07				
19		ALTELIPT ,1000)				
60		STOP				
61		FORMATI . NO DO CAPD THIS FILE!				
62		FORMATI' RECORD MISSING AT TIME', F14.7) FORMATI'O',44X, 'TIME OF LAST BLOCK IN SFCS:',F12.7.//)				
63		•••				
••		ENO				

Program Listing A-41 Frequency Filter Main Data Handler

Commence of the Control of the Contr

09/28/76	INPUT LI	IST ING		AUTOFLOW CHART	SET - LORAN 3	GROUP PHASE FILTER
FORTRAN MODULE	(115	ST, NAMSQ1				
CARD NO	••••			CONTENTS		••••
1 2 3 4 5		SUBROUTINE CON IMPLICIT REAL* DIMENSION INCO- COMMON INCOGRO COMMON/PRINT/II AMAX=0.0	401.GROTOT(3, 3	32),4RR(8194,2)		
7 8 9 10 11 12 13 14	ı	DO 1 1 = 2.32.2 A=DASS(GROTOT) IF(A=LE.APAX) AMAX=4 II=1 CENTINUE AMIN=9999. DO 2 1=2.20.2 A=DASS(.5-7ASS	GO TO 1	AMAX I I		
16 17 18 19 20 21 22 23 24 25	1000	IF(A.GE.AMIN) AMIN=A I2=I CONTINUE WRITE(IPT, 1000 WRITE(IPT, 1001 RETURN FORMATIS).**A FORMATISO.**A	GO TO 2			-

Program Listing A-42 Frequency Filter Lock-On Confirmation

09/28/16	INPUT L	ISTING	AUTOFL	ON CHART SET .	- LORAN 3	GROUP PHASE FILTER
FORTRAN MCDULE	n.t	ST.NAMSQ)				
CARD NO	••••		CONTENTS			••••
			UCAT. DCT. IFCT. IEPR)			
2		DIMENSION DATELL	. 1 SUF(128), [HD(40)			
3		CCHMON 140				
•		COMMON/GE TOAT/IR				
5		COMMENT PRINT/IPT				
6		IP-IPCT+L				
1		00 2 1 - 10 . 7				
		[HC(35)+[+C(35)+				
9		N+MOD(1 HO (351+3 .	41-31			
10		00 1 J-1, 16				
11		1001-1001 +2				
12		IF (IERR . NE . O) GC	10 1			
13		K+16+11-11+J				
. 14		CALL XY (I CCT . K. C	(A, J, N)			
15		SUPTINCS				
16		IF (10CT .E C. 1600)	Gn th 3			
17		CONTINUE				
18	3	IPCT+I				
19		RETURN				
20	1000	FCRMAT (16 F8.4)				
21		ENO				

Program Listing A-43 Frequency Filter Data Blocker

10/14/76	INPUT LISTING	AUTOFLOW CHART SET -	LORAN 3 GROJP PHASE FILTER
FORTRAN MODULE	(L [ST.NA45Q]		
CARD NO	••••	CONTENTS	
1	SUBROUTINE TIME!		
2	DIMENSION IBUF(1)		
,	DOUBLE PRECISION	18	
	COMMON 140 COMMON/CETDAT/18	10	
	COMMON/ PRINT/IPT	. 1001	
,	TH=0.000		
	00 1 1-1-3		
9	J-1-11		
10	K-1-2-1		
11	CALL BC CT B(113,K	2.18UF.128.M)	
12	1 T8=(M-1HD(J))*60		
13	CALL BCCT RILLS. 7.		
14	T8-T8+M*. 0000001	10	
15	RETURN		
16	END		

Program Listing A-44 Frequency Filter Time Decoder

TO THE RESIDENCE OF THE PARTY O

10/14/76	INPUT LISTING	AUTOFLOW CHART SET - LORA	N 3 GROUP PHASE FILTER
FORTRAN MODULE	E (LIST, MANSQ)		
CARD NO	••••	CONTENTS	••••
1	SUBROUTINE SETEDATE		
:	00 1 (-1,1600		
1	1 047(1) = 9959.		
•	RETURY		
	END		

Program Listing A-45 Frequency Filter Array Reset

09/28/16	INPUT LISTING	AUTOFLOW CHART SET - LORAN 3 GROUP PHASE FILTE
FORTRAN MODULE	(LIST, NAMS)	
CARD NO	••••	CONTENTS
1		E RYLIDCT,K.DAT.L.N) GI(A192)
		041(1), IRUF(12H), IHO(4))
:		ECISION ARRICAL 94.21.550 TOT(3.32)
1		ECISION A
		D.GROTCT.ARR.QI
,		TOAT/IRE. 18UF
•		INT/IPT
9	1.0	
10	1-18050	
ii		L(J,1,32,4)
12		A(J.1,-16.4)
13		11-Jef .2238175E-30 [H3(N]
14	1.0	
15	CALL SH	L(J.1.32.4)
16		11.:,-16.41
17	DATEIDO	*J*1.2208375E-3*[HD(N)
19	1 F (1 HO (1.GE .41921 GO TO 10
19	1F (MOO)	CT,321.NE.121 GO TO 1
20	140(25)	1+165)0H
21	ARRITH	5), [] - CAT ([DCT - [])
22		51,21-CAT(10CT)
23	C 1HD1261	S SET IN CROIN AS 300 CYCLE UR PEAK PULSE AMP PLOT
24	1 IF1=001	CT.321.NE.1H0126)) GO TO 10
25	4-041(1	T-11**2*DAT(10CT1**2
26	21(110)	11-DSQRT(A)
21	10 CALL ED	(ICCT,CAT,L)
28	RETURN	
29	END	

Program Listing A-46 Frequency Filter Measurement Decoder

09/28/76	INPUT LISTING	AUTOFLOW CHART SET - L	OHAN 3 GROJP PHASE FILTER
FORTRAN MODULE	(LIST.NAMSQ)		
CARD NO	••••	CONTENTS	••••
	SUBROUT INE QUIPU	T(TD.DAT)	
2	DIMENSION DATELL		
3	DIMENSION GROTOT	(3.32)	
•	DIMENSION IBUFUL	281. [HD(40)	
,	DOUBLE PRECISION	TO.XY.XYZ.XYSD.XYN	
6	DOUBLE PRECISION	GROTOT	
7	DOUBLE PRECISION	TEMP	
	COMMON IND.GROTO	T	
9	COMMON/GE TOAT/IR	T.18UF	
10	COPPON/ PRINT/ IPT		
11	00 1 1-1,1600		
12	IF (DAT (1) .GT .900	0.1 GO TO 1	
13	J-MOD(1,32)		
14	[F(J.F0.0) J=32		
15	GROTOT (1. J) - GROT		
16	GRDTOT (2. J) -GRDT	10T(2.J)+0AT([]++2	
17	GROTOTI 3. JI-GROT	70713.31+1	
18	1 CONTINUE		
19	WR [TE (2 1) TD , (DA)	(11.1-1.1600)	
20	3 RETURN		
51	END		

Program Listing A-47 Frequency Filter Output Tape Writer

TO TO THE RESIDENCE OF THE PARTY OF THE PART

09/28/16	INPUT LISTING	AUTOFLOW CHART SET -	LORAN 3 GROUP PHASE FILTER
FORTRAN MODULE	(LIST, NAMSO)		
CARD NO	••••	CONTENTS	••••
	SUBROUTINE EDITE		
2	DIMENSION IBUFIL		
3	DIMENSION CATILI		
•	COMMON IND		
5	PI/TAGT 30 / NCPMOD		
6	COMMON/ PRINT/ IPT		
7		111.67.10.1 63 70 1	
		11.GT.10.1 GG TO 1	
9	RETURN		
10	1 10CT=10CT-2+J		
11	140(43)=1+0(40)	1	
12	DO 2 J=1.16		
13	1001-1001-2		
14	DAT ([DC T - 1] = 9999).	
15	DAT([DC T) =9999.		
16	2 CONTINUE		
17	RETURN		
18	END		

Program Listing A-48 Frequency Filter Editor

09/28/76	[45.14.7	1571%		AUTOFLOW CH	APT SET - I	LUGAN 3	GODIO PHASE FILTER
FORTRAL MODULE	tt i	ST , MAMS 21					
CARD NO	••••			OUTENTS			••••
1		SUPPORT INE STATE					
ż		DIMENSION THUFLE					
,		DIMENSION GOD TOT					
		DOUBLE PRECISION	GROTUT.AMAX				
,		COMMEN INC.GRETE	.1				
		COMM IN/ GE TOAT/10	T. IPUF				
7		COMMON/ PRINT/ IPT					
•		00 1 1 • 1 • 32					
9		1 F (GROT OT (3. 1). F	0.01 60 10 1				
10		GROTOTEL. IL-GHOT	of (1, 1)/Gentet	3, 11			
11		GROTITE Z. II . GROT	101(2.11/G+D1)101	3.11			
12		GPOTOT (2. 11-0504	T (GPOTOT(2.11-0	POT 1111.11007	1		
1)		CONTINUE					
14		1.GPDT711 3.11.5	5				
15		## ITECIPT .190711					
16		WALLETIBE . 1 3001					
17		WA ITE (191 . 1000) (GPOTOTILI. 11.1-1-1	. 321			
18		WHITE(1PT .1107)					
19		WELTECTPT . LOOLI C	GEOTOTC2.11.1.1	. 121			
20		WR ITE (1PT . 100 1) [HC(37)				
21		WRITE(197 . 1004) 1	[HD(39)				
22		W2 17617,100H)					
23	1004	EGSAVL(19x',10.)					
24		W# 1 15 (7 . 1 CO5) (GP					
25		WRITE17,10351169	otot(2.1).1-1.	121			
26		RETURN					
27		FORMATI IX . 16FE. 4					
24		FURMATIZX . 1AFd. 4					
29		FORMATI'I GRAND T				.,	
30		FORMATI // . LOX . ' T					
31		FORMATI//,10x,"T	TOTAL NIMBER OF	MIZZING ON SH	ORT RECORD	2	
12		FORMAT(PF 9.4)					
33		FORMAT (// " MEANS					
14	1007	FORMATIN' STANC	AND DEVIATIONS	ABOUT THE MEA	42.1		
35		END					

Program Listing A-49 Frequency Filter Statistics

09/28/76	INPUT LISTING	AUTOFLOW CHART SET - LIRAN 3 GROUP PHASE FILTER
FORTRAN HODULE	(LIST, NAMSQ)	
CARD NO	•••	CONTENTS
1	SUBROUTINE PLOT	
2	014ENS 104 1HD (40) . 18	AUF (128)
3	DIMENSION GROTOT (3.	
4	DOUBLE PRECISION GRE	otot
5	COMMON THE GROTOT	
6	COMMON/ GE TOAT/ IRT . 1	B. I.F.
7	COMMON/PRINT/IPT	
8	WRITE(1PT . 1000)	
9	AMX =0	
10	00 1 1-1.32	
11		OT(1.1))) AMX=DABS(GRDTOT(1.1))
12	1 CONTINUE	
13	MX=AMX+1	
14	MD=55/MX	
15	00 10 1 -1 -55	
16	L = 55-1	
17	10=1078657024	
18		IC=(L/MC)+65536+1089470464
19	00 20 J=1.32	
20	V-DABS (CRCTOT (1.J))	
21	MARK(J) -1 C73741 924	
22	K=55-MD .V	
23	IF(1.NE.K) GO TO 20	
24	MARK (11 =- 922746 190+	4004 1- 21 62 61 4 6 42 40
25	20 CONTINUE	3121-231630240
26	10 WRITE (1PT . 1001) 1C.	ADV
27	WR ITE (IPT . 1002)	
29	WELTELIPT . 1003)	
29	RETURY	
30	1000 FORMATI'L', 3x, 141 11	- NY 14444 3415
31	1001 FORMATILE . AZ . 14 . 32 1 A	1 211
32	1002 FORMAT (4x . 16(1 3x)	16000 1000
1)	1003 FORMAT (24 Y . 12 . 55-4 S	FCS PER DIVISION*. 40x. 17.55-6 SECS PER DIVISIO
34	IN')	See States in
35	END	

Program Listing A-50 Frequency Filter I/Q Plotter

Program Listing A-51 Frequency Filter File Skip

FORTRAN MODULE

(LIST, NAMSQ)

CARD NO	• • • CONTENTS	••••
1	SUBROUTINE PLOTICAVOPHRI	
2	DIMENSION DOLIGISE)	
3	DIMENSION ICH(128)	
•	DIMENSION MARKEZI, IHO (401, ETITEZ)	
5	DOUBLE PRECISION AVGPHR (2), GAP	
6	DOUBLE PRECISION APRIBLISH . 2) GROTOT (3.32) . 3(256, 21, 844X, 841V	
1	COURLE PRECISION TOTPHO	
8	COMMEN THE GROTOT APR . DO I . P	
10	DATA IT IT / 'QQQO', 'IIII'/	
11	COMMON/ PRINT/ IPT	
12	00 6 M=1, 2	
13	L=0	
14	TOTPWR = 0.000	
15	DCPWR=4RR (1,M)**2+4PR(2,M)**2	
16	WRITE(1PT . 1001) IT IT (4). OCPWR	
17	NPNT=2001HC(25)	
18	L1=NPYT/256	
19	L2 = NPNT -L 1 +2	
20	13-11/2	
21	00 2 1-2-12-11	
22	L-L+1	
23	8(L,M) = G. COO	
24	00 1 3-1.11.2	
25	K-I+J	
26 27	1 8(L, M) = A(L, M) + AQR (K, M) * # 2 + AFR (K+1, M) * * 2	
28	TOTPWH+TOTPWR+B(L,M) 2 CONTINUE	
29	344x-4999.	
30	BM(N=2)99.	
11	D1 3 1-1-256	
32	BMAX-DMAX1(H(I, M), MAX)	
33	84[N-04[N[(8([,4),84[N]	
34	3 CONTINUE	
35	SPD=RMAX-RMIN	
36	GAP=127/SPO	
37	00 4 (-1.124	
38	4 [CH(I)-MARK(I)	
19	00 5 1-1,256	
•0	K = (B(I, M) - OMIN) *GAP + 1, OL	
41 42	1CH(K)-MARK(Z) WRITE(IPT,1000)1,1CH	
43	1CH(K) = MA FK(1)	
**	5 CONTINUE	
45	AVGPHO(M) -TCTPHOOLLYMPNT	
46	MATTECIPI . 1002) HMI Y . HMA X . TO TPH2 . A VGP NO (M)	
47	6 CONTINUE	
48	RETUPN	
49	1000 FORMAT (1x.13.12MA1)	
50	1001 FCHMAT(*1*,48x,*10TAL DC POWER [4*,1x,AL,* -*,F7.4]	
51	1002 FRRMATELH , "MIN VALUE .", ELO.4, -K, "MAX VALUE .", ELO.4, 4X,	
52	1 TOTAL AC POWER FT. 4.4X, 'AVG AC POWER FT. 41	
53	END	

Program Listing A-52 Frequency Filter Envelope Plotter

INPUT LISTING

CARD NO	· · · · CONTENTS
1	SUBROUTINE HIST
2	
3	OTHERSION AFREE 194.21, GROTOTE 3, 321, THO (40) DIMENSION JIS (20,20), TBUC (2,20)
;	COMMON IND, GROTET, ARR
6	COMMON/ PRINT/ IPT
7	\$166=3 * (GROTOT(2.11) + GROTOT(2.12))
8	\$1G=\$1G 6/ 6
9	IS IG=6 AI NC=2+SI G6/20
11	- BNDQ=GROTOT(1,11)-SIG6
12	UBNOQ=GPDTCT(1,11)+SIG6
13	8ND1=GP OTOT(1.12)-SIG6
14	UBNDI=GRDTOTEL.121+SIG6 CALL CLFAR(JIS,400)
15	CALL CLEAR(IBUC.40)
17	10.0
18	1A+0
19	1AQ = 0 AV Q = 0 = 0
20	AVI =0.0
22	11.20.01.0(25)
23	00 20 1-1-11
24	KFLG*0
25 26	DO 3 K-1.20
27	40-414C-(x-1)-000
29	[F(APP(1,1).GE.AQ) GO TO 2
29	GD 10 4 2 [F(APRILLELLELLAGONALNOTE GC TO 5
30	3 CONTINE
12	• 10-10-1
33	KFEG+1
34	5 00 / (*1.20
35	41-4140-(L-1)-8-M1 [F(422(1,2)-GF-41) GO TO 6
36	60 10 8
38	6 IFEARETT, 21. LE. TAT-ATHOTT GC TO 9
39	7 CONTINIE
40	8 [A-1A+1 LFLG-1
41	9 1F(KFLG+LFLG-1)11,20,10
43	10 [0-10-1
44	[4 - [4 -]
45	140-140-1 GO 70 20
47	11 315(4,6)-315(4,6)+1
4.9	446-440-404(1.1)
49	18UC(1,K) = [AUC(1,K)+]
50	180C(5*f) *130C(5*f) *1
52	[CM1+1CM1+1
53	20 CONTINUE
5.	17-20-110 (25)-10-1A-1A0 AVG-AVG/12
55	AVI-AVI/12
57	WRITE(IPT, 1701)
58	0.0 30 1-1-20
59	30 WRITE([PT.1000] (JIS(21~1.J).J-1.20).IB()C(1.21-1)
61	WRITE(IPT .1003)([BUC(2,K],K=1,20)
62	WRITE(1PT .1004)11
63	#P (TE(IPT . 1013)51G
64	#RITE(IPT +1010) ISIG
65	WRITE(IPT . 1006) IA
67	WRITE(IPT .1007) IAQ
68	WRITE(IPT . 13081AV
69	WP ITE (IPT , 1009) AV I
70	1000 FORMATI 14 × 1015 4× 15 //)
12	1001 FORWART("1", 56x, "T11-T12 HISTOGRAM", 48x, "TIL", /) 1002 FORWART("1", 54x, "T12 DISTRIBUTION")
73	LOOP FORMATE 11.54x. TIZ DISTRIBUTION
74	1003 FORMAT (16 K. 2015///) 1004 FORMAT (53 K. TOTAL NO. PAIRS **.15./)
15 76	1005 FORMAT (53x.*T11 EDIT PAIRS -*.14./1
77	100: FORMATIES V. 1712 EDIT PAIRS "16./)
76	
79	1000 FORMAT(53X, 'TIL AVERAGE "'.FT.4./)
80	
82	1013 FORMAT (53x, T11,12 EDIT SIGMA . FT.4./)
03	END

Program Listing A-53 Frequency Filter Histogram Printer

ILIST, NAMS Q1

CARD NO	••••	CONTENTS	••••
1		SUBROUT INE TOA	
2		IMPLICIT REAL*8(A-C,E-H,O-Z)	
•		DIMENSION DAT(8192) DIMENSION [HC(40), GRDTOT(3, 32), ARR(8194, 2), TITLE(2)	
5		DIMENSION IBUC(24), LINE(24), MAPK(2), JBUC(24)	
6		DATA TITLE ! BEFORE ", AFTER "/	
1		DATA MARK/' ','****'/	
		COMMON IND,GROTCT,ARR COMMON/CARD/AVG,STO,SN.FS	
10		CCMMON/ PRINT/IPT	
11		CALL CLEAR (DAT, BL92)	
12		DO 100 J= 1.2	
14		30 T0(8,3),J	
15		AN[N=9999.	
16	9	\$10.0.0	
17		AYG=0.0 ICNT=0	
19		CALL CLEAR(IBUC,24)	
20		NPNT=2**[HO(25)	
21		00 1 [=1, APAT	
22		IF (DAT(1).GT.9000.) GC TO 1	
24		30 10(6,71,J	
25	6	IF (ARR(1,2),Gf.0.0) GO TO 2	
26		APR(1,1) - APR(1,1)	
27 28	,	AFR(1,2) - AFR(1,2) OAT((1-04 T4~2(4PR(1,11,40=(1,21)*1,591549	
29		IF (DAT (1) . CT . AMAX) AMAX = DAT (1)	
30		IF (DAT(I) . LT. AMIN) AMIN . DAT (I)	
21	7	AVG-AMG+GAT([]	
32	1	STO-STO-OAT([]**2 CONTINUE	
34	•	AVG-AVG/1C4T	
15		STO-STO/I CNT	
36 37		\$TO=0\$PRT(\$TO-A WG==2) A1%C=(AMAX-AM[N)/24	
38		ICNT-0	
19		DC 5 1-1, NENT	
40		IF (CAT(1) .GT .9000.) GO TO 5	
42		ICNT-[CNT-] 00 3 (-1, 24	
43		BUC - 441 N+ K - 414C	
**		IF(DAT(1).LE.AUC) GC TO 4	
45	,	CONTINUE K*K-1	
4.7	4	IBUC(*) + IBUC(*) + 1	
48	5	CONTINIE	
49 50		4A x • 0	
51		00 to 1-1,24 IF(180C(1),GT,-4x) -4x+(80C(1)	
.2		23 11 1-1-25	
53	11	J-1-11-11100(11)-44./***********************************	
54		WE ITE(IPT .1000) TITLE(J)	
56		00 20 1-1.50 00 12 x-1.24	
57		FINE(K) *MAUK(I)	
58		TELEST- IL . EQ. JAIK (KI) LINE(K) . MARY (2)	
60		CONTINUE WEITECOPT, LOOLILLINE	
61	20	CONTINUE	
62		METTE (TPT . 1002) TBUC	
63		WRITELIPT, 130 114VG, STO, ICNT	
65		ADAY = (AT(1)	
66		IF (DASS (A CAT-AVG) .GT. 3.5TD) DAT((1.2999.	
67	21	CENTINUE	
69		CONTINUE	
10	1000	FORMATILMINASX, TOA AA FOITING (3RD CYCLE) /)	
71	1001	FCPMAT(5x,24(4x,4())	
72	1002	F09MAT (5x,2415,/)	
74	1003	FJRMAT(24x, "AVERAGE TOA "", FB.4." MICROSECONOS", 4x, "S.O. TOA "", FB.4,4x, "NO. OF POINTS "", 15)	
75		END	

Program Listing A-54 Frequency Filter TOA Distribution Plotter

```
FORTRAN MODULE
                                                                                                                                                                                                                                                                                                                                       (LIST, NAMS Q)
                                                                                                                                                                                                                                                                                                        SURROUT INE AMP

IMPLICIT REAL-B(A-C, S-H, O-Z)

OIMENSION INOIGOUS OPOTOTICS, 321, ARR(8194, 2), TITLE(2), OQI(8192)

OIMENSION INOIGOUS OPOTOTICS, 321, ARR(8194, 2), TITLE(2), OQI(8192)

OATA TITLE/BEFORE ", AFTER "/

COMMON INC, GROTOT, ARR, OQI
COMMON PRINT/DT

OO TOTO, 91, 1,

A MAX-9099,

AMINA 9099,

9 SIDDO.0

AVG-0.0

ICAN-0

CALL CLAR(1816, 24)

OO TOTO, 91, 1,

OF TOTO, 1, 1,

OF TOTO, OCCUPANT

IF TOTO (C), GT, 9000.1 SC TO 1

CANTAINT

IF TOTO (C), GT, 9000.1 SC TO 1

CANTAINT

IF TOTO (C), GT, 9000.1 SC TO 1

CANTAINT

AVG-AVG/ICAN

SID-SSDP(ISTC-AVG-2)

AINC-(AFAR-ARINI/2)

CONTINUE

AVG-AVG/ICAN

IF TOTO (C), GT, 9000.1 GO TO 5

ICAN-1, NACT

IF TOTO (C), GT, 9000.1 GO TO 5

ICAN-1, CANTAIN PAK-18UCC1)

OO 3 K-1, 28

OF TOTO (C), GT, 9000.1 GO TO 5

ICAN-1, CANTAIN PAK-18UCC1)

OO 12 I-1, 29

ID 11 I-1, 29

ID 12 I-1, 29

ID 13 I-1, 29

ID 14 I-1, 29

ID 15 I-1, 29

ID 17 I-1, 29

ID 17 I-1, 29

ID 18 I-1, 29

ID 18 I-1, 29

ID 18 I-1, 29

ID 19 I-1, 
                                                                                                                                                                                                                                                                                                ....
                           CARD NO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         CONTENTS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ....
                                                                                         67 8 9 10 112 134 156 178 190 123 222 22 22 23 31 23 3 3 5 6 7 8 9 10 112 134 156 178 190 123 22 22 22 23 31 23 3 3 5 6 7 8 4 4 5 6 7 8 4 9 0 1 2 3 5 5 5 7 8 9 0 6 6 6 6 6 6 7 7 1
```

Program Listing A-55 Frequency Filter Amplitude Distribution Plotter

I AT TO THE THE PARTY OF THE PA

09/28/16	INPUT LISTING	AUTOFLOW CHART SET - LORAN 3	GROUP PHASE FILTER
FORTRAM MODULE	(LIST, NAMS Q)		
CARD NO	••••	CONTENTS	••••
1	SUBROUTINE EDITE	(AVGPWR)	
2	IMPLICIT REAL-BIA	A-C.E-H.O-Z1	
3		21,AVGP NR(2),DQ1(8192)	
•	DIMENSION 452 (819	94,21,1H0(40),GROTTT(3,32)	
5	COMMON THE . PROTE	T.APR.DGI.B	
6	COMMON/PRINT/IPT		
7	NPNT = 2 = 1 + 01251		
6	WRITE(IPT .1000)		
9	00 100 1-1-2		
10	cat =0		
11	L1=NPYT/255		
12	00 10 J=1.256		
13	[F(8(J. 1) .LT . 140)	(27)*AVGPWR (1)) GO TO 10	
14	L2*(J-31*L1+3		
15	L3=L2+5 *L 1-1		
16	1F(L2.LT. 3) L2=3		
17	DO 5 K-L2.L3		
16	IF(K.GT.A1941 GO		
19	IF (ARR(K. []. E). 0]	1 GC TO 5	
20	ARRIK. [1- 0.330		
21	CML= CVL +!		
22	5 CONTINUE		
23	13 CONTINUE		
24	11 •10 • 1		
25	M311E(1) T41) 371 FM	CNT-II	
26	100 CONTINUE		
21	RETURY		
28		ALL JUTPUT DATA" . / . 46x . " FOLLOWING THIS SECTION	
29		DILE CY SOX. "FILTERED". ///I	
10	1001 FORMATI 40 x.14."	POINTS FILTERED OUT ON T'. 12./1	

Program Listing A-56 Frequency Filter Notch

09/28/16	INDUT ETSTING	ASTOFLOW CHAPT SET - LORAN	A 3 CHOSE SHASE ELLTER
FORTPER MODULE	(L157.NAM5Q)		
CARD NO	••••	CONTENTS	••••
	SUPPOUTINE -VIMP		
ż	IMPLICIT PEAL +BIA	-(.5-11.0-1)	
,		(50181100.15.20181254.156.6110107020.	
•	COMMON THO . SERTOT		
5	CCMMCN/ PHINT/1PT		
6	NPNT = 2 [HT [25]		
7	00 1 1-1. 4547		
	DQ1 (1) . AP F (: . 2)		
9	1 CONTINUE		
10	RETURY		
11	END		

Program Listing A-57 Frequency Filter Data Selector

09/24/76	INPUT EISTING	AUTOFLOW CHART SET - LO	RAY & GROUP PHASE FILTER		
FORTPAN MODULE	(C 151,NAM5))				
C490 NO	••••	CONTENTS	••••		
	SURPOUTINE SNESLUC	CHK , 45 F . 1)			
2	IMPLICIT PEAL	-C.E-H.Q-L1			
3	DIMENSION JEHRISI	.[HO(+0).GPDTOT(3.32).F[T(2)			
	DATA TIT/ PEFTRE	"," AFTER "/			
3	COMMON THE SPECT CT				
6	COMMON/CAPO/TTA.SOTCA.SN.FS				
7	COMMON/ PRINT/ IPT				
	AMP -DABSEGROTOTEL.	.1+0(261))			
9	\$D-GROTOT (2. 140(26))				
10	SN-20. PL CGLOLAMP	/501			
11	PWR + ([HD(9) - JCHK(4	1.100.1/20.00			
12	F5 70 7 10 7 - 1 - 2 - 10 1	••P#R/AEF			
13	WP17E(CC1, T01)3T10W				
14	MP I TE (IPT . 1201) SN.	.FS, [HD(26)			
15	RETURN				
16	1000 FORMAT (52 1.46. E	DITING'I			
17	1001 FORMATI 35 x. "SIGNAL	TO NOISE RATIO . ".F5.L." 08"./.			
10	135x. "FIELD STRENGTH . ".FT.O." MICROVOLTS PER METER"./.				
19		MENTS BASED ON T'. 121			
20	END				

Program Listing A-58 Frequency Filter Signal-to-Noise and Field Strength Calculator

CHART TITLE - PROCEDURES

Flow Chart A-34 Frequency Filter Driver

AND AND THE PROPERTY OF THE PR

CHART TITLE - PROCEDURES

Flow Chart A-34 Frequency Filter Driver (concluded)

THE TOP I WAS A PROPERTY OF THE PARTY OF THE

CHART TITLE - SUBROUTINE CROINLICHK. AEF I

Flow Chart A-35 Frequency Filter Card Input

CHART TITLE - SUBROUTINE INIT

Flow Chart A-36 Frequency Filter Initializer

The transfer of the second of

CHART TITLE - SUBROUTINE ROHD

Flow Chart A-37 Frequency Filter Header Information Decommutator

THE TO THE RESIDENCE AND ADDRESS OF THE PARTY OF THE PARTY AND ADDRESS OF THE PARTY OF THE PARTY

CHART TITLE - SUBROUTINE ROHO

Flow Chart A-37 Frequency Filter Header Information Decommutator (concluded)

The transfer to the transfer t

CHART TITLE - SUBROUTINE CODE (ITRY)

Flow Chart A-38 Frequency Filter Pulse Phase Code Decoder

AT TO THE RESIDENCE AND ADDRESS OF THE SHARE AND ADDRESS OF THE AD

CHART TITLE - SUBROUTINE CODE (ITRY)

Flow Chart A-38 Frequency Filter Pulse Phase Code Decoder (concluded)

A TOTAL TO A TOTAL TO

CHART TITLE - SUBROUTINE GETTAB (NTME)

Flow Chart A-39 Frequency Filter Phase Code Generator

TO THE RESIDENCE AND A SECRETARIAN TO A SECRETARIAN AND ASSECTION ASSECTION ASSECTION AND ASSECTION ASSE

CHART TITLE - SUBROUTINE PRATHO

Flow Chart A-40 Frequency Filter Header Page Printer

CHART TITLE - SUBROUTINE PRATHO

The state of the s

Flow Chart A-40 Frequency Filter Header Page Printer (concluded)

TO THE RESIDENCE OF THE PARTY O

CHART TITLE - SUBROUTINE MAINE

Flow Chart A-41 Frequency Filter Main Data Handler

The state of the s

- 137 -

CHART TITLE - SUBROUTINE MAINE

Flow Chart A-41 Frequency Filter Main Data Handler (continued)

1 10 TO TO THE RESIDENCE OF THE PROPERTY OF THE STATE OF THE PROPERTY OF THE STATE OF THE STATE

- 138 -

09/28/76

AUTOFLOW CHART SET - LORAN 3 GROUP PHASE FILTER

PASE 21

CHART TITLE - SUBROUTINE MAINE

Flow Chart A-41 Frequency Filter Main Data Handler (concluded)

The same of the same of the same

CHART TITLE - SUBROUTINE CONFITADAL

Flow Chart A-42 Frequency Filter Lock-On Confirmation

J. P. T. T. T. T. C. T.

CHART TITLE - SUBROUTINE BLOCKEDAT, LOCT, LPCT, LERP 1

Flow Chart A-43 Frequency Filter Data Blocker

- 141 -

The transfer of the second sec

CHART TITLE - SUBROUTINE TIME (TE)

Flow Chart A-44 Frequency Filter Time Decoder

THE TO SELECT A SECURITY OF THE PARTY OF THE

09/28/76

AUTOFLOW CHART SET - LORAN 3 GROUP PHASE FILTER

PAGE 29

CHART TITLE - SUBROUTINE SETIOATI

Flow Chart A-45 Frequency Filter Array Reset

THE THE PARTY OF T

CHART TITLE - SUBROUTINE XYILOCT, K, CAT, L, N)

Flow Chart A-46 Frequency Filter Measurement Decoder

1 97 TO THE RESIDENCE OF THE PARTY OF THE PA

CHART TITLE - SUBROUTINE GUTPUT (TO ,DAT)

Flow Chart A-47 Frequency Filter Output Tape Writer

The transfer of the second second

CHART TITLE - SUBROUTINE EDIT (ICCT, CAT, J)

Flow Chart A-48 Frequency Filter Editor

Flow Chart A-49 Frequency Filter Statistics

10/08/76

Flow Chart A-50 Frequency Filter I/Q Plotter

10/08/76

CONTRACTOR OF THE STATE OF THE

AUTOFLOW CHART SET - LORAN 3 GROUP PHASE FILTER

PAGE

CHART TITLE - SUBROUTINE SKIPFL

Flow Chart A-51 Frequency Filter File Skip

I BY TO THE RESIDENCE OF THE PARTY OF THE PA

- Sept

Flow Chart A-52 Frequency Filter Envelope Plotter

The transfer of the second of

CHART TITLE - SUBROUTINE HIST

Flow Chart A-53 Frequency Filter Histogram Printer

The state of the s

CHART TITLE - SUBSCUTINE HIST

Flow Chart A-53 Frequency Filter Histogram Printer (concluded)

1 or my the second of the seco

The state of the s

CHART TITLE - SUBROUTINE TOA

Flow Chart A-54 Frequency Filter TOA Distribution Plotter

1 97 TO BE THE RESIDENCE OF THE THE THE THE STATE OF THE WAR WELL THE WAR AND A SECOND OF THE SECOND

CHART TITLE - SUBROUTINE TOA

Flow Chart A-54 Frequency Filter TOA Distribution Plotter (concluded)

APPLY THE NO.

CHART TITLE - SUBRCUTINE AMP

Flow Chart A-55 Frequency Filter Amplitude Distribution Plotter

THE TO SEE THE PROPERTY OF THE PARTY OF THE

THE WALL SA

CHART TITLE - SUBROUTINE AMP

Flow Chart A-55 Frequency Filter Amplitude Distribution Plotter (concluded)

AT THE RESIDENCE AND THE THE THE SAME NAME OF THE PARTY O

The to the

CHART TIFLE - SURRCUTINE EDITF(AVGFAR)

Flow Chart A-56 Frequency Filter Notch

10/08/76

AUTOFLOW CHART SET - LORAN 3 GROUP PHASE FILTER

PAGE 24

CHART TITLE - SUBROUTINE MYAMP

Flow Chart A-57 Frequency Filter Data Selector

TO THE RESIDENCE AND A SECRETARY TO A SECRETARY AND A SECRETARY ASSESSMENT OF A SECRETARY ASSESS

The second second second

PAGE 26

CHART TITLE - SURRCUTINE SNES (JCHK, ASE, 1)

Flow Chart A-58 Frequency Filter Signal-to-Noise and Field Strength Calculator

TO THE RESIDENCE AND A SECOND OF THE PARTY O

Albert In Land

IL IST , NAMSO I ASSEMBLY MODULE CONTENTS CARD NO MACRO
SAVE SALEA, SC
EXTENDED SAVE MACRO
EXTENDED SAVE MACRO
ITHIS MACRO PROVIDES THE FOLLOWING:
ISSUES A STANDARD SAVE MACRO
GENERATES AN 14-WIND SAVE AREA
PERFORMS LINKACE OF HIGHER AND LOWER SAVE AREAS
INSENTS CURRENT SAVE AREA ADDRESS IN REG 13
DOES NOT ALTER OTHER PEGISTERS
WHEN USING SAVER, EXIT MAY BE ACCOMPLISHED BY:
L 13-5113
ETURN (N.M.)
LCCC EXES
SETC "AUXX"-165YSMDX"
CS OC JUST AS TH C.P.S. MANUAL
IR 11-13 HOLD 13 HIGHER SAVE AREAS
CNDP 0.4 ALIGN SAVE AREA S NAME NEED & NAME TO COUNT FROM JUST AS IN C.P.S. MANJAL HOLD IS (HIGHER SAVE AREA) ALLON SAVE AREA JUMP PAST SAVE AREA PLATED HER NOW PUT LIMEN ADDRESS IN HIGHER SAVE A. RESTORE FROM HIGHER SAVE A. RESTORE FROM HIGHER SAVE A. 18 11.13 CNOP 0.4 SAL 13.4-CXQ5-76(151 DC 18F-0' ST 13-8(11) ST 11-4(13) L MENO SPACE 2 USAGE: GET 00005
GET 00105
GET 00105
GET 00105
GET 00105
GET 00205
GET 00205
GET 00205
GET 00306
GET 00405
GET 01006
GET 01 CALL GETL,

WHERE USER HAS DEFINED A LABELLED COMMON/GETDAT/ERR, DATAHARDE EAR IS A FULL MORD AND DATA HAS A LENGTH DE

AT LEAST 'LRECL' BYTES.
SPACE 2
CSECT

GU

ENTRY GET
SPACE 2
SAVEM (14,12)...

R

10,15
USING GETREC, 10
L

11,44/GETDAT)
USING GETGAT, LL

L

12,000
USING HADCA:12
SPACE
TH

0080FLGS.X*10*
0080FLGS.X*10*
0080FLGS.X*10*
0080FLGS.X*10*
0080FLGS.X*10*
0080FLGS.X*10* SETREC GET1 SET ERROR FLAG TO NO MORE TAPES GET CCB. INCY SPACE 2 EQU * t 13.4(13) RETURN 114.12).T EJECT EQU * RTN ERROR O.AOFSSI CONTAINS ADDRESS OF STANDARD
STATUS INDICATORS AND A DISPLACEMENT
VALUE TO REAGHT HE CCM
L.AOFGCB
ERMICH. **XL4*2' SET TO 1/0 ERROR
1.0 PUT IDB ADDRESS INTO RI
SAVIDA(201,011) **HOVE 1970 LOCAL AREA FOR
REFERENCE IF CALLING PROGRAM TERMINATES
WITH A DUMP
14 PETURN TO SYSTEM, WHICH WILL
RETURN TO SYSTEM, WHICH WILL
RETURN TO SYSTEM A STANDARD COTTON 88 EQF GET 0281 GET 0282 SET 0283 GET 0284 GET 0285 GET 0286 GET 0287 GET 0287 GET 0300 SET 0300 GET 0310 GET 0315 GET 0315 LESS 8 RTN
SPACE 2
EQU **
NYC ERW(4).**XL4*4* SET TO NO DD CARD
NYC RTN
8 RTN N000 NVC ENM(4).*XL4** DENY A PACE
BYN
SPACE C
ENTRY TO CLOSE A FILE AND INCREMENT THE DONAME.
SETS UP THE MASE RECISTER SO THAT IT WILL MAVE THE
SETS UP THE MASE RECISTER SO THAT IT WILL MAVE THE
SETS UP THE MASE RECISTER SO THAT IT WILL MAVE THE
SETS UP THE MASE RECISTER SO THAT IT WILL MAVE THE
SETS UP THE MASE RECISTER SO THAT IT WILL MAVE THE
SAME VALUE THEOLOGY OF THE MASE RECOUNTERED
SPACE Z
SAVEW (14,12).*
ENTRY CFILE
USING CFILE-15
L 0.**4(SFTREC)
DROP 15
USING GETPEC*10
L 11.**VISETCAT) CFILE

Program Listing A-59 Group Phase Library Raw Data Tape Reader

09/28/76	INPUT LISTING		AUTOFLOW CHART SET - LORAN	GROUP PHASE LIBRARY	
CARD NO	****		CONTENTS	••••	
109		LA	12,008	GET 1332 SET 0331	
110		8	EOF .	251 0331	
111		E JEC T			
112	AOFSSI	DC	F.O.	GET 0333	
113	AOFOCB	CC	t.O.	GET 0335	
114	SAVIDB	DC	20x*00*	GET 0340	
115		SPACE	2	GET 0345	
116	208	DCB	DSCRG = PS . MACRE = (GM) . DONAME = [NPUTO] .	XGE T 0350	
117			EDDAD=EDF . SYNAD =ER RCR . EROPT =ACC	GET 0355	
118		SPACE		GFT 0360	
119	GETDAT	DSECT		GET 0365	
120	ERW	DS.	·	GET 0370	
		DS		GET 0375	
121	INCY				
122		0230	DSORG=(QS).JEVD=(TA)	GET 0380	
123		END		GET 0385	

Program Listing A-59 Group Phase Library Raw Data Tape Reader (concluded)

(LIST. NAMSQ)

```
....
                                                                                                                              CONTENTS
                              FORTRAN CALLABLE ROUTINE TO CONCATENATE THO FULL WORDS, SHIFT
LOGICALLY LEFT OP RIGHT A SPECIFIED NUMBER OF PLACES, AND STORE
LO-ORDER AND HI-ORDER RESULT BACK IN ORIGINAL WINDSS.
CALLING SEQUENCE: CALL SHFILLAR, F, FC) WHERE A AND B ARE ORIGINAL
THO WORDS, C IS NUMBER OF SHIFTS AND SIGN BIT + FOR LEFT SHIFT
AND - FOR RIGHT SHIFT, AND RC IS RETJAN CODE. RC-16 IF ICI >64.
8 9 10 11 12 13 14 15 16 7 18 19 19 22 12 22 32 25 26 7 28 29 0 31 2 23 33 33 5 36 7 38 9 40 41 2 43 4 45 6 46 7 48 9 50 51 2 53 54
                               SHETL CSECT
SAVE
USING
                                                                 (14,12)...*
SHFTL.12
12.15
13,SAVE+4
2.13
13,SAVE
13.812)
2.1 PARAMETER LIST POINTER
10.0 SET RC=0
                                                   LR
ST
LR
                                                 ST
LR
LA
                               PICK UP FIRST AND SECOND PARAMETERS IN REGS 6 AND 7

t 6.0(0,2) ADDR OF A

t 4.0(6) A

t 7.4(2)

t 5.0(7) B
                                . PICK UP 3RD PARAMETER AND GET NB OF SHIFTS
                                                       LR
                               POS
                              * STORE RC AND EXIT

STORE ST 4,0661 A

ST 5,0(7) B

EXIT L 11,12(2) ADDR OF RC

ST 10,0(11) STOPE RETURN CODE IN RC

L 13,54VE44

RETURN (14,12)
                                3R64
                                 SAVE
                                                         DS 18F
END SHFTL
```

Program Listing A-60 Group Phase Library Logical Shift Routine

ar to be a second of the secon

Program Listing A-61 Group Phase Library Arithmetic Shift Routine

SAVE

SALL LAR

The.

DS 18F END SHFTA

The sec

13.6

...

CAR NO CONTENTS DC DC SAVE DROP BAL? USING LR LA ST ST MVC MVI STANCARD PROGRAM BASE REGISTER OLD SAVE AFEA ADDRESS NEW SAVE APEA ADDRESS ADDRESS OF NEW SAVE AREA INTO DLD AREA ADDRESS OF NEW SAVE AREA INTO DLD AREA ADDRESS OF NEW SAVE AREA PARAMETER ADDRESSES *,10 3,13 13,805 13,806,31 3,460,131 30,407,007 4,407,407 4,507,407 4,507,407 4,507,407 4,607,407 5,60 ADDRESS OF 4 TO R4 EXIT : N<3 ADDRESS OF A TO RZ ADDRESS OF A - ONE WORD DEFTAD STORE KOPT
FILL INSTRUCTION FOR + LMAGINARY PART
L TO R5
LTO R5
STORE NUMBER ELEMENTS IN A 49RAY N/2 PLOATING POINT FOR FT FACTOR CURRENT ADDRESS OF 5 TO 83 DO NOT GENERATE S STORAGE IF EQUAL. Deta 7
Deta 8
Deta 9
Deta 101
Deta 103
Deta 104
Deta 105
Deta 105 NO STORAGE TO RELEASE IF OLDMED. CORRECT S ADDRESS TO RELEASE N/4+1 - 8 BYTE MORDS - REQUIPED FOR S

Program Listing A-62 Group Phase Library Fast Fourier Transform

The transfer of the second of

09/28/76	INPUT LIST	t NG		AUTOFLOW CHART SET - LORAN UNI	uu .	
CARD NO	••••			CONTENTS		••••
109		STD	0.5+16	SIN(RI) TO S(2)	DF TA	109
110		LA	9,24	INDE X	DETA	110
111		LA	14.8	INCREMENT	DF TA	112
113		SRA	15.3		DFTA	
114		CNOP	15,=F'8'	COMPARAND N/8+1 FOR 8 BYTE WORDS ALIGN LCOP ON DOUBLE-WORD BOUNDARY	DE TA	
116	DEFTAS	53	8.14	L-I TO INDEX REGISTER - 4 BYTE MORDS	DETA	116
117		LD MDR	0.00		DF TA	118
118		LOR	2.0		DETA	119
120		SDR	2,4		DFT4	
121		ADR	0.2		OF TA	122
123		LDR	6.0		DFTA	123
124		STO	0.05	FR2 TO S(L-I)	DF TA	125
126		STO	0.5(9) 9.14.DEFTA4	FRO TO S(1) SIN(2*P[/N*J], J=0,1,N/4 [N S(1),	OF TA	
127	DEFTAS	BXLE	KOPT + 3 . X . 02 .		DE TA	128
129		BC BC	8.DFF TA17 2.DFFT A7	REAL SYNTHESIS IF KSPT=2 PUT ARRAY IN BIT REVERSED FORM IF KOPT=3	DE TA	129
130		LD	4.=0'1.F+0"		DETA	131
132		MVC	OFFT AL 3. MS	I/N TO FP4 FILL INSTRUCTION FOR - IMAGINARY PART	DF TA	132
133		La	0,8	1 - 8 BYTE KORDS - TO INDEX FEGISTER 2 - 8 BYTE KORDS - TO INCREMENT REGISTER	DETA	134
135		LA	14,16 15,N	2 - 8 BYTE WORDS - TO INCPEMENT REGISTER N WORDS FOR COMPARIND REGISTER	DF TA	135
136		CADS	0,8	ALIGN LOOP ON DOUBLE-MOPD BOUNDARY	DFTA	137
138	DEFTAE	LD	0,A(9) 2,A+8(9)		D= T4	138
140		HOR	0.4		DETA	140
141		MDR STO	2.4 0.4(9)		DF TA	142
143		STD	2.4.8(9)		DETA	143
144	DEFTA 7	BXLE	9.14.DFFT 46 7.8	MULTIPLY A APRAY BY 1/N	DFTA	145
146		LR	1.7	1 TO J - 8 SYTE WORDS 1 TO INCEX I - 8 SYTE WORDS 2 TO INCREMENT REGISTER - 8 SYTE WORDS	D= T4	146
147		LA	4.16 5.N	N TO RS	DETA	148
149	DEETAR	CNOP	0.8	ALIGN LODP ON DOUBLE-WORD BOUNDARY COMPARE J TO 1	DF TA	149
150	DFF 148	LD	7.1 0.A(7)	REAL A(J)	DETA	151
152		LO	2,4+8(7) 4,4(1)	IMAG A(J)	DFT4	152
153		LD	6.4+8(1)	REAL A(1) IMAG A(1) - ALL TO REGISTERS	OF TA	154
155		BC	12.DFFTA9	JC=1. DO NOT SHAP	DETA	155
156		STO	0.A(1) 2.A+8(1)		OF TA	157
158		STO STO	4.A(7) 6.A+8(7)	SWAP A(II AND A(J) - BOTH REAL AND IMAGINARY PARTS	DFTA DFTA	158
160	DEFTAS	LR	8,5	N (OR ZENH) TO K	DF TA	160
16t 162	DFFTA 10	SRA	d. 1 7.8	K,2 TJ K J-K TO J	DETA DETA	162
163		80	2.DEFTALO	IF J>K, GO BACK	DF TA	163
154		AR	7.8	J-K+K+K OR J+K TO J	DF TA	165
156		BXLE	1.4.DEFTAB	GO BACK IF IC=N	DETA DETA	166
167		LA	8.16	2 - 8 BYTE WORDS - TO RB 2 TO I	DETA	168
169		LR	6.NH 7.6	NH TO ID	DF TA	170
171		SRA	7.1		DETA	171
172		ST	7,=F'8' 7,NH2P1	NH/2+1 TO RT - 8 BYTE WORDS	DF TA	173
174		L	15 . N	N TO 815	DETA DETA	174
175	DEFTAIL	LR	0.15	N TO IS	DETA	176
177		SLA	14.1	2*1 TO 1ST	DF TA	177
178		C 3	7.NH2P1 14,15	NH/2+1 TO ER COMPARE EST TO N	DETA	179
180		L	4, = F . 8 .	1 TO IND - 8 BYTE #3ºDS	DE TA	180
182		LR BC	1.4 2.0FFT416	I TO J FINISHED IF IST>N	DETA	182
1 83	DEFTA12	LD DS	0,5(4) H	SCINCI TO FRO	DE TA	183
1 85	UFFIALS	LNR	11.4	LOR O.O OR LNDP O.O - POSSIPLE SIGN CHANGE -IND TO RLI	DETA	185
186		LO	11.40	SING-INDI TO FRE	DF TA	186
188		BXLS	2.5(11) 4.6.DFFTA14	BRANCH IF IND+IDC+IR	D= TA	188
189		SR	7.7	0 TO 19 IND-IS COR 2*ID) TO IND	DETA	190
191		BC	4 , OFFT 41 4	DO NOT CHANGE STON FIRST LOOP CHANGE STON OF SING-IND! STORE IMAGINARY PART OF CURRENT W	DETA	191
192	DFFTA14	STO	2.2	STORE IMAGINARY PART OF CURRENT W	DETA	193
194		STD	2.00	STORE REAL PART OF CURRENT W	DETA	194
1 95		LR	5.1	J 70 K	DETA	196
197		AR	11,9	K+1 10 L	DETA	
198	DEFTA15	LD	4.51		DETA	199
200		FD4	2.0		DETA	200
201		L DR	0.4	CO-A(L) TO FRO	DF TA	202
203 204		MO 5.08	4.4+8(11)	\$1*4(1+1) TO FR4 CO*4(1-5(*4(1+1) TO FRO DR AAR	DETA	203
205		MO	2.4+8(11)	CO+A(L+L) TO FRZ	DFTA	205
206 207		MD ADR	6.4(11)	\$1 * & (L) TO FRS CO * & (L + L) * \$1 * & (L) TO FRZ OR A& I	DF TA	207
208		LCD3	4.0	-AAR TO FR4	DETA	208
209		LCDR	0.4(5)	-AAI TO FRO A(K)+AAR TO FRO	DF TA	210
211		AD	2.A+8(5)	ALK+11+AAL TO FP2	DETA	211
212		AD	4,4(5) 6,4+8(5)	A(K)-AAR TO FR4 A(K+1)-AAR TO FR6	DETA	213
214		510	0.4151	FRO TO ALKI	DETA	214
215		510	2.4.8(5)	FR2 TO A(*+1) FR4 TO A(L)	DETA	216
217		STO	6.A.B(11)	FRE TO ALL-LY	DETA	217
			11.14		DF TA	619
218		BXLE	5,14,0FF TA15	STOP IF K+1ST>N	DETA	514

Program Listing A-62 Group Phase Library Fast Fourier Transform (continued)

THE STATE OF THE PARTY OF THE STATE OF THE S

THE SAL SALL SALL

Program Listing A-62 Group Phase Library Fast Fourier Transform (concluded)

you was the second to the total the second of the second the second to the second to

Marie State Contract Contract

TAR.

FORTRAN MODULE (LIST, NAMS.

CARD NO	••••	CONTENTS	•••
1		SUBROUTINE PRATILITIES, IPT	
2		DOUBLE PRECISION A(6,8) DIMENSION IND(40)	
•		WRITE([PT .2000]	
5		WRITE(IPT.1006)	
6 7		WPITE(IPT.1008)	
		WRITE(IPT, 1009)	
10		WRITE(IPT.1011)	
11		WRITE(1PT,2701)	
12		WRITE(IPT,1012)	
14		WP:TF(:PT.1014)	
15 16		WRITE(IPT.1015)	
17		WRITE([PT.1017)	
18		WRITE(IPT, 2001) WRITE(IPT, 1018)	
20		WRITE(197,1019)	
21		WRITE([PT.1021]	
23		WP (TE ([0 T + 102 /)	
24 25		WR [TE([PT, 1023] WR[TE([PT, 2001]	
26		CALL DATE (IHD(1), ID, IM)	
27 28		IHO(22)=10 IHO(23)=1 #	
28		CALL DCTDB(A.IM.ID.IHD(2)) DO 3 %1,6	
30		00 3 K=1.6	
21 32	3	WR (TE([PT,2002] (A(K,J),J=1,8) WR (TE([PT,2001)	
33		(COC), T91) 3719W	
34 35		WR [TE([PT.100])	
36		WRITE(IPT.1003)	
37 38		WRITE(IPT, 1004) WRITE(IPT, 1005)	
39		05 11/32	
40	1000	FCWAT(32K,"JJ',4X,"HH*,4X,"HH*,4X,"UU",4X,"UU",9X,"//",5X, '4&A644',5X,"PPPPPPP',5X,"tL'" 	
42	1001	FORMAT(32x, 131, 4x, "HH", 4x, "HH", 4x, "UU", 4x, "UU", 8x, "//", 5x,	
41	1002	1'44',4x,'44',4x,'P0',4x,'P0',4x,'LL') FORMAT(32x,'LL',4x,'P00+H00H1',4x,'LL',4x,'LL',7x,'//',6x,	
45		1'AAAA\AA',4x,'PPPPPPPP',5x,'LL')	
46	1003	FOR*AT(32x,'JJ',4x,'HH',4x,'HH',4x,'UU',4x,'UU',6x,'//',7x,	
48	1004	FORMAT (26X.'JJ',4X,'JJ',4X,'HH',4X,'HH',4X,'UU',4X,'UU',5X,'//',	
50	10.15	14A1, 4x, 4A1, 4x, 1991, 4x, 1991, 4x, 1U1, 4x, 1U1, 7x, 1/1, 6x, 14A3AAAA1, 4x, 1999, 1999, 14x, 1U1, 4x, 1U1, 7x, 1/1, 6x, 11A3AAAAA1, 4x, 1999, 1999, 5x, 1U1, 16A3AAAA1, 4x, 1999, 10x, 1U1, 16A3AAAA1, 4x, 1991, 10x, 1U1, 16A3AAAAA1, 4x, 1991, 10x, 1U1, 16A3AAAAA1, 4x, 1991, 10x, 1U1, 16A3AAAAA1, 4x, 1991, 10x, 1U1, 16A3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
51	1007	1'44',4x,'44',4x,'PP',10x,'LLLLLLLL'I	
52	1006	FORMAT(37x,'LL',LLX,'CCCCCC',5x,'RRFRRRR',6x,'AAAAAA',5x,'YN',4x,	
54	1007	11NN') FCPMAT(37X,'LL',10X,'00',4X,'00',4X,'RR',4X,'RR',4X,'AA',4X,'AA',	
55 56	1009	[4x,'\\',3x,'\\'] 500471377, 111, 107, 1001 AV 1001 AV 100000031 5Y 144444441.4Y	
57	1000	1'NN', 1x ,'N', 2x, 'NN')	
58	1009	'RA'''44'',34'',104'',104'',107'',48'',100'',48',188'',188'',58'',1888'',188'', 'PAN'',18',18'',18'',18'',18'',48'',100'',48'',100'',48'',78'',78'',78'',78'',48'',48'',48	
60	1010	FCRMAT(37x,'LL',LOX,'00',4x,'00',4x,'RR',3x,'RR',5x,'AA',4x,'AA',	
61	1011	14X,'NN',3X,'NNN') FORMAT(37X,'LLLLLLL',5X,'GCCCCC',5X,'RR',4X,'RR',4X,'AA',4A',	
63		TOR	
64	1012	FORMAR(32x, 'SSSSSS', 6x, 'TTTTTT', 6x, 'GGGGGG', 5x, 'NN', 6x, 'NN', 5x,	
66	1013	FORMATE 31 x. 'SS'.5x, 'S'.7x, '11',7x, 'GG',5x, 'G',4x, 'NN', 3x, 'VN',	
67	1014	14x, '44', 4x, '44', 4x, '61') FORMAT (32 x, '55555', 4x, '11', 7x, '66', 10x, 'NN', 1x, 'N', 2x, 'NY', 4x,	
69		1'AAAA1: 64', 4x, 'LL')	
70	1015	FORMAT(37x, 'SS', 7x, '11', 7x, '66', 3x, '666', 4x, 'NN', 2x, 'N', 1x, 'NN', 14x, '44', 4x, '4x, '	
72	1015	FOUNDATION (1) (X 155) - 2X 157 17 17 17 17 17 15 15 15 15 15 15 15 15 15 15 15 15 15	
73 74	1017	14x, '44', 4x, '44', 4x, '11' Flameti 32x, '55555', 6x, '11111', 6x, 'GGGGGG', 5x, 'NN', 4x, 'NN', 4x, '14a, '4x, '44', 4x, '111111', 6x, 'GGGGGG', 5x, 'NN', 4x, 'NN', 4x,	
75	1	1'44',4x,'44',4x,'LLLLLLL')	
76 77	1018	FORMAT(X. 'EFFEFFF ',4x,'NN',4X,'NN',4X,'YV',4X,'YV',5X,'[[[[[[]', 15x,'RRRRRR',6x,'000000',5x, 'NN',4x,'NN',4X,'YN',YN',4X,'YN',YN',YN',YN',YN',YN',YN',YN',YN',YN	
78		15x, 18389881, 6x, 1000001, 5x, 1041, 6x, 1041	
79	1019	FORMATE IX, "EE", 10x, "NAN", 3x, "NN", 4x, "VV", 4x, "VV", 7x, "11", 7x, "ER", 14x, "PR", 4x, "OO", 4x, "OO", 4x, "NN", 4x, "NN", 4x, "VV", 4x, "VV", 4x, "VV", 6x, "VV", 4x, "	
81		1'66',10%,	
82	1020	FORMATULX . "EFFEFF" . 6x . "NN" . 1x . "N" . 2x . "NN" . 4x . "VV" . 4x . "VV" . 7x . "[[" .	
84		17x, 'RRPPRRR', 5x, 'CO', 4x, 'CC', 4x, 'NY', 1x, 'N', 2x, 'NY', 4x, '44', 1x,	
85 96			
87	1021	21x,"#4",4x,"EEEEEEE,xx,"%94,1x,"41,2x,"44",2x,"44",7x,"15") FORMAT(1x,"EE",10x,"44",2x,"44",1x,"441,5x,"44",2x,"14",8x,"1U",8x,"1U", 17x,"88",2x,"88",6x,"30",4x, "60",4x,"74",2x,"41,1x,"41,x,"48",48"	
88			
90		24X, "EE ', LOX, 'NN', 2X, 'N', 1X, 'NN', 7X, "TT')	
91 92	1022	22x, **eE*,[0x,*n**,2x,*n*,[x,*n**,7x,*tf*) FCRWAT([x,*EE*,10x,*n**,3x,*n**,*vyvv*,0x,*[[*,7x,*x**,3x, ****,3x,*n**,3x,*n**,3x,*n**,4x,****,4x,****,4x,****,4x,****,4x,****,4x,****,4x,****,4x,**,4x,**,4x,**,4x,***,4x,**,4x,**,4x,***,4x,***,4x,***,4x,***,4x,**,4x,**,4x,**,4x,**,4x,**,4x,**,4x,**,4x,**,4x	
93		1.44.	
94	1021	23x,'NNV',7X,'TT') FORMAT(X,'EFFFFFFF,4x,'NN',4x,'NN',7x,'VV',8x,' ',5x,'P?',	
96	1017	FORMST(IX."EEEEEEEE,4X."\\",4X."\\",4X."\\",7X."\\",\\",\\",\\",\\",\\",\\",\\",\\",\\	
98	2000	2*EEEEEEE(,+x,'NN',+x,'NN', 1x,'TT') FORMAT(H 1,////)	
99	2001	FORWAT(//)	
100	2002	FORMAT (15 x . 8 (4 x . 48)) ENO	

Program Listing A-63 Group Phase Library Title Page Printer

1 197 TO THE RESIDENCE OF THE PARTY TO SEE AND ADDRESS OF THE PARTY OF

09/28/76 INPUT LISTING AUTOFLOW CHART SET - LORAN GROUP PHASE LIBRARY

EGRTRAN MODULE (LIST.NAMSQ)

CARO NO **** CONTENTS

1 SUBSOUTINE DATE([.10.14])
01/48/SICN MOLL2)
0 DATA 3/31/60/9[.121,152,182,213,244,274,305,335,366/
0 DATA NUMBERS ARE SET FOR LEAP YEAR
1 PT-6
0 01 1=1.12
17 IF(1.0.10(1)) GO TO 1
18 IF(1.0.10(1)) GO TO 2
10 10(1-10)(1-1)
10 GO TO 2
11 GO TO 2
12 13 1 CONTINUE
14 2 RETURN END

Program Listing A-64 Group Phase Library Date Converter

TO THE RESIDENCE AND A STORY OF THE STATE OF

AUTOFLOW CHART SET - LORAN GROUP PHASE LIBRARY INPUT LISTING 09/28/76 FORTRAN MODILE (LIST, NAMSQ) CARD NO CONTENTS SUBROUTINE DOTOB(A.I*.10.IY)

DOTALE PRECISION A.B.C.O

DIMENSION A(B.B.IS.HG.III.(C154).0(12)

EQUIVALENCE (BRIATI.5(IX).1*11.0).011)

DATA (/'.000000 '.'00 00'.'00 00'.'00 00'.'00 00'.

1.000000 '.'11 '.'12 '.'13 '

Program Listing A-65 Group Phase Library Date Formatter

To go of the work of the telephone was a will want to be a lost of the second of the second of the second of

09/28/76	INPUT L	STING	AUTOFLOW CHART SET - LORAN	GROUP PHASE LIBRARY	
FORTRAN MODULE	11.1	ST.NAMSQ)			
CARD NO	••••	co	INTENTS	••••	
		SUBROUTIVE SCOTALIN, ICH, NC, IARR,	J.K)		
2		DIMENSION TARREDI			
,		1PT=6			
•		IC-ICN			
5		N=NC			
6		K=0			
,		[BND=[C+N-]			
8		IFILI-INI*8.LT. IRNO-8) GO TO 900			
9		NW=[[BND+7]/8			
10		DO 1 [=1.NW			
11		L*(IC-11*4			
12		11=0			
13		[2=[ARR([W+1-1]			
14		CALL SHFTL(11.12.L,M)			
15		ICF = IBNO			
16		IF(ICF.GT.8) ICF=8			
17		00 2 L=1C,1CF			
18		11=0			
19		CALL SHFTL([1, [2, 4, M]			
20		K=K*10+11			
21	2	CONTINUE			
22		N=N-ICF+1C-1			
23		[8ND=N			
24		IC=1			
25	1	CONTINUE			
26		RETURN			
27	900	WRITE(IPT , 1000)			
28		RETURN			
29	1000	FCRMATI CHAR REQUEST EXCEEDS ARE	4A 215E.1		
30		END			

Program Listing A-66 Group Phase Library BCD to Binary Converter

09/28/76	INPUT LISTING	AUTOFLOW CHART SET - LOGAN	GROUP PHASE LIBRARY
FORTRAN HODULE	(LIST , NAMSQ)		
CARD NO	••••	CONTENTS	••••
1,	SUBROJTINE CLEAR(X,N) DIMENSION X(N)		
3	00 1 I=1.N		
4	1 X(1)=0.0		
5	RETURN		
6	END		

Program Listing A-67 Group Phase Library Array Reset

CHART TITLE -

Flow Chart A-59 Group Phase Library Raw Data Tape Reader

CHART TITLE -

Flow Chart A-59 Group Phase Library Raw Data Tape Reader (concluded)

Flow Chart A-60 Group Phase Library Logical Shift Routine

The transfer of the transfer o

CHART TITLE -

Flow Chart A-61 Group Phase Library Arithmetic Shift Routine

140

The.

CHART TITLE -

Flow Chart A-62 Group Phase Library Fast Fourier Transform

THE TOP I THE RESIDENCE TO SELECT THE SELECT SECURITIES AND SECURI

Flow Chart A-62 Group Phase Library Fast Fourier Transform (continued)

CHART TITLE -

Flow Chart A-62 Group Phase Library Fast Fourier Transform (continued)

The transfer of the transfer o

13.4

CHART TITLE -

Flow Chart A-62 Group Phase Library Fast Fourier Transform (continued)

TO THE RESIDENCE OF THE PARTY O

The same of the sa

CHART TITLE -

Flow Chart A-62 Group Phase Library Fast Fourier Transform (concluded)

The same of the sa

CHART TITLE - SUBROUTINE PRINTIL(THO. 191)

a said of the said

The board of the transfer of t

Flow Chart A-63 Group Phase Library Title Page Printer

The same of the sa

09/28/76

PAGE 24

CHART TITLE - SUBROUTINE CATE(I, ID, IM)

The state of the s

Flow Chart A-64 Group Phase Library Date Converter

or to go to the second to the fact of the second to the se

CHART TITLE - SUBROUTINE DOTOR(A.IM, ID, IV)

Flow Chart A-65 Group Phase Library Date Formatter

or to be a second of the secon

CHART TITLE - SUBROUTINE BOOTH(IN. [CN.NC. [ARR. J.K.)

The transfer of the second of

Flow Chart A-66 Group Phase Library BCD to Binary Converter

The transfer of the second of

09/28/16

PAGE 43

CHAPT TITLE - SUBROUTINE CLEAP(X,N)

Flow Chart A-67 Group Phase Library Array Reset

the state of the s

Appendix B

VOLTAGE MEASUREMENTS AND OTHER DATA

This appendix contains a tabulation of the means of each of 32 voltage measurements made at each field site and simultaneously at NAVOBSY. These means are the averages of second-stage edited data taken over 20-min periods. At each field site and at NAVOBSY data were taken for 1 h. Therefore, the data are conveniently broken into three segments, i.e., the first, second, and third 20-min periods.

The mean voltage measurements in volts are presented in Table B-1. This table also contains "other" data. These data are the year and day number, hour of the day, minute, second, block time, time difference, distance, and attenuation (see the key tabulated on the first page of Table B-1). Time is UTC. The "block time" is the time of the first mean voltage measurement in the data segment in milliseconds modulo 1 s. The "time difference" is the difference in time at the field site relative to NAVOBSY. The "distance" is the distance from the measurement antenna to the transmitting station in kilometers. The "attenuation" is the attenuation in decibels that was introduced into the measurement system to achieve the desired voltage at the A to D converter (see Volume C).

The nominal times of the voltage measurements in microseconds relative to the start of the pulse are given in Table B-2. There are two exceptions. All the measurements made at the field site at Marietta, OH, were made 5 μs later than the nominal values, and the measurements of segment 2 made with the field site equipment at NAVOBSY on 1975 day number 188 were made 5 μs earlier.

All the voltage data of Table B-1 are plotted in Figs. B-1 through B-12. The sample points where the measurements were made were located on the pulse such that the odd-numbered samples were near zero crossings and the even near peaks. Thus, the odd-numbered samples were very nearly in quadrature with the carrier and the even in phase (see Fig. 2 in the main body of the text).

The state of the s

The quality of the data is indicated in Table B-3 by the signal-to-noise ratios of the edited data. These signal-to-noise ratios were computed on a "per pulse" basis. The signal-to-noise ratios shown for stage 2 edited data in Table B-3 apply to the data tabulated in Table B-1 and plotted in Figs. B-1 through B-12.

197 To go to the second of the second of

	her Data
	ts and Oth
lable B-1	Measurements a
	Voltage

Table B-1 (continued)

STATION: CAROLINA BEACH

FIELD SITE: WILMINGTON, NC

.00774		.01532	,05631	2	332	.02975	.16843
.03307		.03254	.33842	H	328	0	.52222
.03263		.10282	.76834	t.	735	10	.42083
.03864	.09162	.12139	-,12748	-	1 9	O	1.09604
975.177	19.00000	30.00000	00000.	0	00000.	544.24396	17.
	250	*	05611	7	727	-	16836
	7 8 7	1 1	2286	. 7	326	1 ~	52186
	0 0	7	0000		0 0		40740
1.03247	707	7 0	0 1 0 1 1	7 5	000	1 0	1
.0342	.07135	11835	14304	135/3	18307	, 000088	10001.
111.678	0	0	00000.	60° 1.30°	000	77	. / ,
.00757		.01503	m	m	019	OI	.16663
.03256	.24566	.03224	.33529	.02497	29	.01174	.51746
.03244		.10213	10	+	627	N	. 40724
. 03442		.11707	0	m	765	-	-,10272
975.177	20.00000	12.00000	00000.	451.43690	00000 .	544.24396	17.
091	-,02496	01671	.05501	m	317		.16346
292	.23799	.02518	.31941	m	335	01	948946
60040.	64429	.10048	.67389	-	737	m	.33714
.03235	.04814	.10064	-13044	.10818	.14214	.04421	.07130
975.177	19.00000	30.00000	00000	O	094	23.57207	. 9 4
.00917	5 0	01670		.02277	018	276	10
.02927	380	2	OI	.01796	1033	001	N
.04015	+	-, 10100	.67343	.11410	573	.05713	.33708
03212	484	03	0	.10804	1417	0 1 1	***
975.177	00	51.00000	00000.	233,40320	1160	720	.94
40600.	5 # 3	01648	7	.02248	011	01	.16219
8	359	.02508	5	.01774	000	.00037	. 47600
.03950	.63918	.09380	.66804	.11272	.56883	.05639	.33467
322	98+	866	32	.1074	3 9 8	.0438	.07013
975.177	20.00000	12.00000	00000.	449.70320	+	23.57207	.94

Table B-1 (continued)

STATION: CAROLINA BEACH

FIELD SITE: EMPORIA, VA

.18180 .55060 .48607 11553	.17371 .52700 .46157 11003	.17633 .53519 .46869 11717	. 52001 . 42662 - 09339	.16968 .49803 .40334 -08562	.17221 .50555 .41037 .08287
н	+	4	7	N	~
. 03573 . 01588 . 13628 . 08304 544. 24396	. 03199 . 00830 . 13994 . 07841 544, 24396	. 03323 . 10069 . 13389 . 09031 544. 24396	. 02992 . 00252 . 13412 . 08050 293.34381		. 02796 . 00803 . 13640 . 07822 293.34381
111347 45541 77559 19493	.10864 .43654 .73934 .18492		7.11240 43413 70123 16522 6.44600	7.10770 -41517 -66575 -15240	7.10937 .42153 .67667 .15249
.02777 .03010 .18091 .14886 343.43710	.02502 .02428 .18388 -14212 559.73710	.02584 .02621 .18169 .15693	.02514 .01588 .18637 .14562 342.60520	.02279 .01104 .19213 -13981 558,90520	.02369 .01306 .19016 -14255 775,20520
85982 115556	.06086 .34216 .82120 .14674	8 8 4 7 3 5 7 1 1 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.06177 .34227 .788361423500000		
	.01823 .03337 .14087 .09817 51.00000	1.01865 1.03526 1.38526 111134	. 01936 . 02547 . 15041 . 10529		1001851 1002293 110317
	7.02861 7.25301 7.74498 7.09314	202895	. 02879 . 25672 . 72233 . 07695	7.02770 7.24581 7.69066 7.07293	7.02824 7.24951 7.70095 0.07471
.01082 .03934 .03878 .02083	.01049 .03496 .04685 .02338	.01060 .03655 .04468 .01367	.01142 .03037 .05972 .01280	.01068 .05670 .06544 .01544	.01097 .02813 .06356 .01445

TO THE RESIDENCE OF THE PARTY O

Table B-1 (continued)

FIELD SITE:	TOWANDA, PA	STAT	STATION: CAROLINA	BEACH	XMTR: 20		
.01175 .03970 .02934 .02418	02400 24184 71883 16145 19.00000	.02036	.05285 .32843 .80186 -12157	.02994 .02781 .13021 08840 924.73660		.03685 .01308 .08986 .07277 544.24396	.1632 .5068 .5146 -1492
.01208 .04113 .02557 .01588	02385 24373 72327 17554	02122 03774 09487 .05451 51.00000	.05318 .33016 .80884 .10727	.03095 .02948 .12516 -09459 750.83660		03821 01508 08246 07685 544,24396	.1645 .5089 .5271 .1396
.01184 .03996 .02947 .02711	. 02439 . 24418 . 72463 . 18781 20.00000	7.02048 7.03625 7.09987 0.04406	.05348 .33087 .81081 .09430	.03012 .02749 .13294 08637 272.03660		- 03731 - 01265 - 09294 - 07176 544.24396	. 1649 . 5089 . 1338
.00454 .00854 .04212 .05362	. 02276 . 19917 . 57326 . 07799		.04751 .26606 .63355 -13237	. 00892 . 00266 . 13586 . 01788	08697 33863 57180 .17867	. 01201 . 01109 . 11305 . 02570 867.73125	.1364 .4067 .3651 .1049
.00475 .01231 .04057 .08368			.04507 .26822 .64353 .11751	.01093 .00179 .14329 .00303			1356
.00616 .00939 .04368 .09089	200000000000000000000000000000000000000	7.00996 7.00713 7.10782 7.04148	.04858 .26857 .64584 .11605	. 00397 . 00223 . 14784 . 00041 273.12550			.1378

the state of the s

Table B-1 (continued)

上 華智 海 100

	.16928 .53300 .42748 -10029	.16885 .52739 -41223 -11014	.16903 .52810 .41464 10988	.06757 .19280 .17264 .03294		.19183
	.02905 .01627 .03583 .05762 544.24396	.02947 .01846 .03465 .05545 544.24396	01578 01578 03364 .06297 544.24396	.00104 .01042 .02071 .01370	.00087 .00996 .01313 .01545	.00125 .01063 .01322 .01550
XMTR: 19		.10315 .43694 .67904 .19395	10340 43757 67980 19177			1.04266 1.16033 1.26292 0.4648
	.02139 .02821 .10026 .13035 561.23680	.02201 .02839 .09944 -12303	.02139 .02615 .10228 .13223	00089 00693 04481 02773 563.14810	. 000093 . 00675 . 03949 169.64810	.00128
ATION: CAROLINA BEACH	.05623 .34397 .78576 .13618	.05559 .34085 .78294 .15359 2.00000	.05595 .34149 .78347 .15110	.02414	2002381	.02393 .12847 .28938 .02317
STATI	03412	01430 03362 08027 12120 51.00000	7.01380 -03210 -08361 12921	000024	00019	
DEXTER.NY	7.02653 7.25181 7.73786 7.08961	7.02579 7.24998 7.73201 0.07457	7.02636 7.25053 7.73307 20.0000		.01136 .09644 .26191 .05511	.01153
IELD SITE:	.00779 .03362 .02372 .05594	.00714 .03350 .01765 .05608	.00727 .03250 .02061 .06112	.00033 .00285 .02112 .02112		

The to go to the second of the total the training of the second of the s

Table B-1 (continued)

STATION: DANA

FIELD SITE: DANVILLE, IN

30.	+62	0880	m	000	0000	000	175,163
219	546	2346	.03091	.16942	0928	1047	1249
9 # 8	231	7125	-	572	0719	6553	0357
68+	165	3714	~	323	0010	217	. 00679
.15132	.01305	09573	.01572	CV	16	236	0119
30.	+62	0880	713	00	000	000	163
.1209	540	2326	0	10	091	.10	.123
.46462	222	7115	124	5 5 8	072	541	036
.44810	168	3706	093	916	000	170	900
.15081	N	0	5	23	4	02351	111
	2	0820	3	0	0000	0	63
.1201	60	.23243	.02970	.16814	94060.	.10429	.12284
62	0	7090	5 3	0	3724	27	0371
694	#	3698	0.1	5	0000	10	0058
.15009	01245	0 4 0	10	.05275	164	02355	0117
• 0	00	000	374	000	000	000	16
OU	0194	4 4 8	192	249	189	199	10
.28157	0252	87	.00739	.38202	01	.31315	-,00542
OU	0039	623	35	236	029	395	00
.05775	033	30	333	132	13	t.	00
. 9	334	000	74	000	000	000	163
552	152	698	128	299	13	131	0040
Pos	.01991	.37650	0	.37974	.00137		.00432
000	030	515	030	223	025	382	0037
.05664	3	20	33	128	H	3	0013
. 9	0834	000	5974	000	000	000	163
CV	.01945	08480.	.04955	-,02712	05946	-,11474	.04822
4	0262	744	0085	.3775	600	101	0039
.19923	0031	000	0032	219	029	379	0036
0	0031	327	0029	141	010	020	0010

Table B-1 (continued)

STATION: DAMA

FIELD SITE: MARIETTA, OR

.00427	002	.0042	0139	110	336	1100	585
0	.08947	.00253	.12288	00	7.16060	.00078	.19680
011	1867	6600.	.3542	203	3372	0341	2278
0511	990	.0532	0633	0368	1044	8400	199
(0)	0000	0000	0000	974	0000	0834	. 9
041	0027	.0038	0132	0051	.0345	0032	573
0035	3892	.0026	1226	0016	1601	0018	977
00	.29783	003	.35360	0	.33583	.03491	.22493
0529	9890	.0562	0657	0386	1052	0062	674
07	000	000	000	974	000	834	
042	0028	0040	0140	0.040	0337	0037	0578
0029	.0891	.0021	1225	0012	07	.0002	1969
0000	2987	0093	3554	0186	.3390	0315	2300
0	.06	.0501	1930	0342	16	.0045	.06554
161	000	12.00000	1.00000	231.29740	00000	903.08343	
.01	0434	.0140	.0788	0126	255	.0091	1807
.0045	452	4000	3118	0055	3813	0124	445
.0285	6063	0584	.6647	0905	.5765	1157	.3234
.11933	.02274	.08366	.16733	.01602	.17949	.03987	0673
10	000	0000	0000	11111	099	9053	
S	0429	0143	0783	0132	250	0100	.1803
0.	.24488	.00104	.31176	.00371	38	010	-,44570
.0260	6072	0564	.6664	0830	.5801	.1147	.3292
1196	0303	0852	1593	.0182	1729	0380	0636
9	0000	0000	0000	11 11 11	099	9053	
.0125	0430	.014	.0784	126	251	.0093	.1803
.0048	448	00	3116	.0055	3810	0125	4452
02873	.60636	.05905	.66564	.09189	.58017	.11887	.33151
.1236	.0346	.089	.1535	.0225	.1671	.0340	.0601
S	000	00	000	1110	0996	9053	12.

Table B-1 (continued)

STATION: DANA

FIELD SITE: GEORGETOWN, DE

76	70 .00191 .01277 .00092 .03243 .00031 .05553 31 .00332 .12239 .00539 .16064 .00632 .19949 96 .02250 .36910 .03672 .35538 .05356 .24794 63 .06872 .04600 .04857 .09671 .01431 .06731 00 51.00000 .00000 138.39730 .00000 903.08343 6.	68	77	94	90
0143 .0132 0392 .1222 2404 .3561 5986 .0766	0191 .0127 0332 .1223 2250 .3691 6872 .0460	0163 .0130 0181 .1236 2535 .3728 7282 .0499	0082 .0169 1033 .0912 4887 .2442 5770 .0000	0111 . 0167 0971 . 0919 5235 . 2467 7184 . 0424	0092 1024 5401 6335
9332	33 51.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30.00	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 11
.00088 .00267 .01163 .06246	.00140 -00146 .01011 .06873 1975.156	.00129 -00221 .01148 .07398	.00127 .00770 .02843 .07373	.00164 .00672 .02861 .08843	.00118

CARE THE CARTES AND ADMINISTRATION AND ADMINISTRATI

Table B-1 (continued)

THE RESIDENCE OF THE PARTY OF T

XMTR: 23

STATION: NANTUCKET

FIELD SITE: TOMS RIVER, NJ

.13051	.14300	.14296	.15087	.16263	.16510
.40363	.42939	.43739	.45998	.49254	.49884
.56035	.62641	.63959	.58558	.64576	.65526
8.20305	.20620	.20931	.75685	-28104	.28205
. 02030 . 00956 . 06865 . 03331	7.02558 0.01481 0.05054 0.03900 657.57608		. 02127 . 00062 . 07183 . 05482	02512 00866 06778 05667	002525 00804 07023 06374 384,34588
. 08269	09097	.09286	09634		10621
. 32948	.35128	.35547	.37738		10621
. 72093	.78227	.79401	.77918		85969
. 13371	.11885	.11643	.18983		119963
.01630 .01562 .06612 -02457 147.65630	.02229 .01873 .05844 -03780	.01988 .02035 .06133 .04352 679.55630	.01933 .01063 .08184 .05870 146.74690	.02224 .01714 .07413 06331	.02248 .01663 .07772 06882 678.64690
.04858	.05163	.05378	.05488	.05980	.06096
.25484	.27452	.27731		.31528	.31953
.73088	.79209	.80107		.86799	.87872
.04455	.07163	.07660		.01121	.01534
.01493	.01910	.01631	.01702	. 01932	
.01943	.02298	.02442	.01676	. 02221	
.03984	.02936	.03462	.06156	. 05625	
.00739	.00281	.00238	.02103	51. 0000	
	.02474 .20438 .65714 .35585	7.02895 20486 66608 36367 20.00000	.02659 -21786 -68445 -28746	7.02946 7.23419 7.73396 7.32561	202989 74253 33231 20.00000
.01104	.01315	.01290	.01172	.01318	.01346
.01914	.02379	.02316	.01993	.02457	.02467
.00736	.00412	.00244	.02056	.01341	.01517
.004692	.03604	.03532	.03433	.02944	.02958

The second secon

Table B-1 (continued)

STATION: NANTUCKET

FIELD SITE: GROTTOES, VA

.1374 42540 63493 .22860	. 14071 43483 - 64890 - 23125	.14031 .42913 .65634 21414	.07625		.23279 .32329 .13162
	.01512 .00664 .07709 .04915		.00289	.00196 .01686 .04800 .01606	.00149 .01565 .03499 .02281
	09086 35412 .81722 .14020	. 09199 . 34816 . 81532 . 11764		1.05154 1.19251 1.42487 0.09003	
.01432 .00204 .08153 .03906 512.75600	.01531 .00276 .08341 .04161 729.05600	.01638 .00204 .08074 04750 250.25600		729.63110	
. 05162 . 26809 . 79603 . 06444	.05280 .27446 .81203 .06896	.05233 .27107 .80501 .09095	.02944 .14732 .42386 .02578		.03031 .14966 .42626 .01451
	001315 000889 006251 000473	- 01367 - 00804 - 05053 - 00961	00147	000215	
	7.02771 7.20348 7.66655 7.36270	7.02754 7.20136 7.65917 7.37932 20.00000		7.01656 1.11287 1.35639 1.16866	7.01620 111165 135241 20.00000
.01011 .01244 .02650 .04683	.01077 .01348 .02720 .04735	.01215 .01212 .02561 .02561 .04229	.00136 .00569 .02755 .02618	.00187 .00608 .02753 .03299	.00180 .00533 .02591 .01683

CAN THE CASE TABLE TO SEE THE SECRETARY CONTRACTOR OF THE SECRETARY OF THE

Table B-1 (continued)

	.13654 .41951 .61410 .21987	.12532 .40111 .62339 .21073	.12394 .40434 .62873 21864	.05148 .14438 .24687 07307		.04807 .13937 .24965 -07783
	7.02263 7.00964 7.03929 7.04285 657.57608	7.01833 7.001224 7.00755 7.004942 657.57608	01731 01410 00522 00522 657.57608	00610 .00166 04717 .00452	00471 00011 04051 .00107	00502 00111 06011 01051
XMTR: 23			. 08024 32524 . 78543 . 13476			03402 11222 29619 03769 5.70200
	.01917 .01633 .04143 04608 738.05610	.01624 .01521 .01346 .05965 954.35610	.01413 .01755 .00807 .05653 475.55610	.00210 .00283 .03404 .00483	.00075 .00299 .02576 .00754	.00120 .00437 .03647 .02954
STATION: NANTUCKET	.05312 .26404 .77767 .05454	.04708 .24739 .76882 .07113	.04762 .24910 .77815 .06565	.02241 .09156 .29096 .04924	.02072 .08618 .28724 .05121	.02048 .08661 .29013 .04628
STATI	.01485 .02079 .02615 .02534				.00144 .00623 .01821 .02117 51.00000	.00106 .00699 .02074 .04892
BLUEFIELD, WV	.02835 .19605 .64473 .33858	.02527 18141 62777 35342	.02584 .18168 .63466 .35327		7.01088 7.22570 1.16250	
FIELD SITE:	.00931 .02318 .00443 .01442	.00726 .01892 .00388 .01450	.00752 .01996 .00760 .01382	00248 .00700 .01232 .04390	.00327 .00580 .00832 .04093	.00270 .00629 .00707 .06721

THE PARTY OF THE P

Table B-1 (continued)

STATION: CAROLINA BEACH

FIELD SITE: NAVOBSY, BASELINE

.09482	. 07914 07914 544.24396	.16031	.19392 -14006 344.34260	.12460	.10581	22.00000	.00594
.15866	.01748	.10029	.01583	.05578	.01230	_ 02725	.00741
16.	544.24396	4.42400	203.64260	00000.	000000.6	21.00000	.01583 975.154
41327	13677	.66564	19796	74904	.16687	.68361	.07966
. 48350	.02523	. 40058	.00574	.31384	.00736	.23341	.01501
15956	-,01713	.10150	.01583	.05614	01228	02809	.00825
16.	544.24396	4.42400	443.94250	00000.	27.00000	19.00000	375.154
.10523	.06677	.17983	.12619	.14600	.09715	.07115	.00027
.39722	.10610	.64871	.15545	.72605	.12391	.65429	.04872
.45739	18100.	.37725	.01020	.29481	.01889	.21796	.02208
.15010	.02159	.09463	. 01799	.05326	01385	.02550	.00842
16.	544.24396	000000.	344.33800	00000.	43.00000	22.00000	175.154
.10087	.08710	.17462	.15325	.13623	.11443	.10536	.00317
	.12242	.74617	.17935	.83491	.13940	-,76215	.04761
.53796	80600.	.44428	.02584	.34531	.03461	.25530	.03754
.17255	03391	-,10778	.02665	.05877	01862	02807	.01036
16.	544.24396	00000.	203.63800	00000.	00000.6	21.00000	175.154
.10648	.07255	.18649	.13803	.14727	.10330	.09767	94600.
. 45771	-,12305	74897	.17635	.83825	.13662	.76478	.04551
.53802	.00915	.44388	.02552	34596	.03509	.25469	.03728
.17276	7.03382	-10743	.02665	.05870	01824	.02855	.01112
16.	544,24396	00000.	443.93800	00000.	27.00000	0	375.154
.11081	.07930	.19116	.14391	.15318	.10562	.08531	47600.
44608		.72157	.17576	.80529	13691	.72699	02000
.50779	.00346	.41844	.02060	.32576	.02978	.23990	.03219
.16388		.10266	.02407	.05700	01738	02715	.01045

THE THE TAX TH

Table B-1 (concluded)

	.16117 .49200 .40220 -08154	.15945 .48332 .40485 07422	.16371 .50004 .42102 .77793	.16146 .49171 .40248 08785	1.10121 1.00470 1.009533	.16429 .50115 .42330 .08525
	04180 .00401 .13200 .10107 544.24396		.04261 .00333 .14044 .09893 544.24396	03801 .00148 .11619 .08930 544.24396	.002588 00715 19350 12364 544.24396	7.03899 7.00008 7.12412 08687 544.24396
XMTR: 19		09665 40294 62382 11845	. 09981 . 41686 . 64902 . 12560	. 09936 . 40927 . 63510 . 14146	.05518 .52128 .66213 -12156	
	.03400 .02153 .20903 -16382	.03357 .01836 .21180 .15721 651.83630	.03481 .02182 .21513 -15885 456.23630	.03114 .02079 .19159 .15546	7.01920 7.01245 7.24595 15674 651.83880	.03195 .02185 .19615 -15121 456.24370
STATION: CAROLINA BEACH	.05206 .32216 .71869 .09265	.05155 .31745 .70646 .07634	.05281 .32767 .73370 .08222	.05309 .32147 .72134 .10489	.02426 .23766 .70006 .03336	.05424 .32759 .73861 .09483
	. 02458 . 03637 . 17612 34. 00000	. 02407 . 03384 .17886 .11622 57.00000	. 02436 . 03757 . 17941 . 11593 23.00000		.01133 .02383 .18260 .08407 57.00000	. 02292 . 03582 . 16379 . 11660
NAVOBSY, BASELINE		.02133 .23360 .65997 .12052	.02253 .24146 .68497 .12296	.02309 .23747 .67463 .09956	.00847 .16360 .61472 .20786	. 02407 . 24183 . 68840 . 11476
FIELD SITE: NAV	.01306 .04288 .07071 .00645	.01292 .04076 .07509 .00149	.01328 .04404 .07212 .00344	.01241 .03940 .06332 .01367	. 00452 . 02753 . 06978 . 05951	.01267 .04060 .06272 .00467

Table B-2

Nominal Time of Measurement Triggers from Start of Pulse

Measurement	Time
Number	(µs)
1	5
	7.5
2 3 4 5 6 7	10
4	12.5
5	15
6	17.5
7	20
8	22.5
9	25
10	27.5
11	30
12	32.5
13	35
14	37.5
15	40
16	42.5
17	50
18	57.5
19	65
20	72.5
21	80
22	87.5
23	95
24	102.5
25	110
26	117.5
27	125
28	132.5
29	140
30	147.5
31	155
32	162.5

THE RESERVE AND THE PARTY OF TH

Fig. B-1 Observations of Loran-C Pulse at Wilmington, NC, and NAVOBSY

The state of the s

Fig. B-2 Observations of Loran-C Pulse at Emporia, VA, and NAVOBSY

Nolt

Fig. B-3 Observations of Loran-C Pulse at Towanda, PA, and NAVOBSY

Fig. B-4 Observations of Loran-C Pulse at Dexter, NY, and NAVOBSY

Top of the same of

Fig. B-5 Observations of Loran-C Pulse at Danville, IN, and NAVOBSY

The state of the s

.... . Albert the sen

Fig. B-6 Observations of Loran-C Pulse at Marietta, OH, and NAVOBSY

-0.7-

1-0.0-

-0.5-

-5.0-

Nolt

-0.3-

-4.0-

-0.1-

0.3-

0.2-

0.1-

10.0

The state of the s

Fig. B-7 Observations of Loran-C Pulse at Georgetown, DE, and NAVOBSY

AND THE PARTY OF T

Fig. B-8 Observations of Loran-C Pulse at Toms River, NJ, and NAVOBSY

THE THE PARTY OF T

Fig. B-9 Observations of Loran-C Pulse at Grottoes, VA, and NAVOBSY

Fig. B-10 Observations of Loran-C Pulse at Bluefield, WV, and NAVOBSY

τloV

A RECORD TO THE TAX THE TAX TO A SECRETARY AND A SECRETARY AND

Fig. B-11 Observations of Loran-C Pulse at NAVOBSY on 1975 Day Number 154

A STATE OF THE PARTY OF THE PAR

Fig. B-12 Observations of Loran-C Pulse at NAVOBSY on 1975 Day Number 188

MAN AND THE THE THE WAY SHOW SELECT AND ASSESSED BY A LINE OF SHOWING SHOWS

Table B-3

Signal-to-Noise Ratio of the Primary Data from Measurements at the 12th Sample Point

		י ביייני מי ביייני	יימסטנימשמונט מו רווע זירוו טמשקות יסוות	1	
1975 Day No.	Site	Transmitting Station	Station to Site (m)	Edited Stage 1 S/N(dB)	Data Stage 2 S/N(dB)
177	Wilmington, NC NAVOBSY	Carolina Beach Carolina Beach	23572	32 21	34
175 175	Emporia, VA NAVOBSY	Carolina Beach Carolina Beach	293344	30	33
183 183	Towanda, PA NAVOBSY	Carolina Beach Carolina Beach	1 867731 544244	10	11 23
181 181	Dexter, NY NAVOBSY	Carolina Beach Carolina Beach	1113946	21 18	23
163 163	Danville, IN NAVOBSY	Dana Dana	85946 903083	32	34
161 161	Marietta, OH NAVOBSY	Dana Dana	526905 903083	30	32
156 156	Georgetown, DE NAVOBSY	Dana Dana	1053517 903083	m 4	∞ ∞
149 149	Toms River, NJ NAVOBSY	Nantucket Nantucket	384346	22	27
170 170	Grottoes, VA NAVOBSY	Nantucket Nantucket	827590 657576	8 13	15
168 168	Bluefield, WV NAVOBSY	Nantucket Nantucket	1063425	14	111

Appendix C

PROGRAMS FOR ANALYSIS OF DATA

This appendix presents the computer programs that were used in the analysis of the data. These programs are written in a computer language known as APL (AProgramming Language). See Refs. C-1 and C-2 for the exact interpretation of the language as executed on the Laboratory's IBM 360/91 computer. The program entitled TFIT fits a polynomial to the data of Appendix B by the least squares criterion. The remaining programs are straightforward algebraic manipulation and plotting routines. One of these, SLEW, requires elaboration.

As mentioned in the main text under "Analysis," the polynomials fitted to the I and Q data were jointly adjusted so that the Q polynomial represented a condition of minimum energy. This adjustment is arrived at as follows:

$$V(t) = I(t) \sin \omega t + Q(t) \cos \omega t, \qquad (C-1)$$

where V(t) is the voltage function,

I(t) is the in-phase modulation,

Q(t) is the in-quadrature modulation,

 ω is the angular frequency corresponding to 100 kHz, and

t is time.

The problem is to find an adjustment, Δt , of the sample points in time that results in minimum energy in Q(t).

Introduce At into Eq. (C-1).

 $V(t+\Delta t)=I(t+\Delta t)$ sin ω $(t+\Delta t)+Q(t+\Delta t)$ cos ω $(t+\Delta t).(C-2)$

Rewrite Eq. (C-2) as

 $V(t+\Delta t) = I(t+\Delta t)(\sin \omega t \cos \omega \Delta t + \cos \omega t \sin \omega \Delta t)$

The state of the s

+ $Q(t+\Delta t)(\cos \omega t \cos \omega \Delta t - \sin \omega t \sin \omega \Delta t)$. (C-3)

Rearranging terms, Eq. (C-3) becomes

The energy proportional to that of the cosine modulation is observed to be

$$EQ(t + \Delta t) = \int_{t_1 + \Delta t}^{t_2 + \Delta t} Q^2(t + \Delta t) \cos^2 \omega \Delta t dt$$

+ 2
$$\int_{t_1+\Delta t}^{t_2+\Delta t}$$
 Q(t + Δt) I(t + Δt) cos $\omega \Delta t$ sin $\omega \Delta t$ dt

$$+ \int_{t_1 + \Delta t}^{t_2 + \Delta t} I^2(t + \Delta t) \sin^2 \omega \Delta t dt . \qquad (C-5)$$

Since the energy in the sine modulation as measured is large with respect to the cosine due to the locations of the samples on the pulse, it can be expected that a solution for Δt will produce very small values. By comparison, the interval over which Eq. (C-5) is to be integrated is arbitrarily large. Therefore, a reasonably accurate solution for Δt corresponding to minimum energy in the cosine modulation can be obtained by letting t+ Δt =t in Eq. (C-5), and then taking the partial derivative of EQ(t) with respect to Δt and setting it equal to zero. Thus,

$$\sin 2 \omega \Delta t \int_{t_1}^{t_2} I^2(t) dt - \sin 2 \omega \Delta t \int_{t_1}^{t_2} Q^2(t) dt$$

$$+ 2 \cos 2 \omega \Delta t \int_{t_1}^{t_2} Q(t) I(t) dt = 0 , \qquad (C-6)$$

and

$$\Delta t = \frac{1}{2\omega} \tan^{-1} \frac{t_2}{\int_{t_1}^{t_2} Q(t) dt - \int_{t_1}^{t_2} I^2(t) dt} .$$
 (C-7)

SLEW executes Eq. (C-7) to find Δt .

APL PROGRAMS

The program CASES calls the program TFIT to fit polynomials to sets of data identified by JMIN through JMAX.

\[\nabla CASES[] \right] \nabla CASES \\
[1] \| J+JMIN \\
[2] \| +CLEAR \times \nabla HICH = \nabla Q \\
[3] \| ICT \(((D-1), 0) \times 0 \\
[4] \| STARTI \(+SDI \) +BIGI \(+MUI \) \(10) \\
[5] \| +DO \\
[6] \| CLEAR \(:QCT \(((D-1), 0) \times 0 \\
[7] \| STARTQ \(+SDQ \) +BIGQ \(+MUQ \) \(10) \\
[8] \| DO \(: \times 0 \times 1 \) J = JMAX \\
[9] \| J \(+J \) \\
[10] \| TFIT \\
[11] \| +SAVQ \(\times 1 \) \(\times 1 \) \(\times 1 \) \\
[12] \| SAVEI \\
[13] \| \(+DO \\
[14] \| SAVQ \(:SAVEQ \\
[15] \| \(+DO \\
\]

CASES also calls SAVEQ or SAVEI, depending on whether Q or I data are fitted. SAVEQ and SAVEI arrange the results of TFIT in suitable arrays.

VSAVEQ[[]]V
V SAVEQ
[1] QCT+QCT,QC
[2] MUQ+MUQ, 1+MEAN
[3] BIGQ+BIGQ, 1+MAX
[4] SDQ+SDQ, 1+SIG
[5] STARTQ+STARTQ,TO

VSAVEI[[]]V
V SAVEI
[1] ICT+ICT,IC
[2] MUI+MUI, 1+MEAN
[3] BIGI+BIGI, 1+MAX
[4] SDI+SDI, 1+SIG
[5] STARTI+STARTI,TO

A THE RESERVE AND A STATE OF THE PARTY SAME PARTY AND A STATE OF THE PA

The program TFIT fits a polynomial by least squares to a set of either Q or I data identified by J. The degree of the polynomial, D, must be at least 2. The first two coefficients of the polynomial (ascending order of degree) are set to zero.

```
\nabla TFIT[[]]\nabla
      V TFIT
         \Delta T \leftarrow T \circ \leftarrow K \leftarrow LL \leftarrow NN \leftarrow \circ
[1]
[2]
         L+2
[3]
         N+1
[4]
         MAX+MEAN+SIG+10
[5]
       DO: \to 0 \times i(L > 12) + (N > 11)
        K+K+1
[6]
[7]
         +Q×1WHICH='Q'
[8]
         IT+0.1\times(-T0)+(2.5+5\times18),
         42.5+15×18
         IC \leftarrow ID[;,J] \oplus IT \circ . \star 1 + \iota D
[9]
[10] RES+((IT \circ . \star 1 + \iota D) + . \times , IC) - ID[; J]
[11] →MORE
[12] Q:QT+0.1\times(-T0)+(5\times18),35+15\times18
[13] QC+QD[;,J] \oplus QT \circ . \star 1 + \iota D
[14] RES+((QT \circ . \star 1 + \iota D) + . \star , QC) - QD[;J]
[15] MORE: MAX \leftarrow MAX, 1 \leftarrow RES[V|RES]
        MEAN + MEAN, (+/RES) \div \rho RES
[16]
[17] SIG \leftarrow SIG, ((+/(RES-MEAN[K]) \star 2) \div ((\rho RES) - D - 1)) \star
          0.5
[18]
          \rightarrow SKIP \times 1K \neq 1
[19] T0+T0+\Delta T+1
[20]
        →D0
[21] SKIP: +(SKIP1 \times SIG[K-1 \times \Delta T > 0] > SIG[K-1 \times \Delta T < 0]) +
          SKIP2 \times SIG[K-1 \times \Delta T > 0] < SIG[K-1 \times \Delta T < 0]
[22] SKIP1:N+N+LL
[23] LL+0
[24] NN+2
[25] T0+T0+\Delta T+1 \div 2*L
[26] +DO
[27] SKIP2:L+L+NN
[28] NN+0
[29] LL+2
[30] T0 \leftarrow T0 + \Delta T \leftarrow -1 \div 2 \star N
[31] +DO
```

The program TRANS1 translates the polynomials produced by TFIT to rereference time by a time increment, TO, which is determined iteratively by TFIT to obtain the best fit.

```
VTRANS1[]]V
     V TRANS1
[1]
      K+0
[2] D0: \rightarrow 0 \times 1K = ELE
     K + K + 1
[3]
[4]
     ITVP[;K] \leftarrow (-0.1 \times (VAN/STARTI)[K]) TRP ITVP[;K]
     QTVP[;K] \leftarrow (-0.1 \times (VAN/STARTQ)[K]) TRP QTVP[;K]
[5]
     ITOP[;K]+(-0.1×(OBS/STARTI)[K]) TRP ITOP[;K]
[7]
     QTOP[;K]+(-0.1\times(OBS/STARTQ)[K]) TRP QTOP[;K]
[8]
       →D0
```

The program TRANS2 translates the polynomials produced by SLEW to rereference time by the time increments, ΔTV and $\Delta T0$, which is determined by SLEW to achieve minimum energy in Q.

```
∇TRANS2[□]∇
∇ TRANS2

[1] K+0
[2] DO:+0×1K=ELE
[3] K+K+1
[4] ITVS[;K]+(ΔTV[K]÷10) TRP ITVR[;K]
[5] QTVS[;K]+(ΔTV[K]÷10) TRP QTVR[;K]
[6] ITOS[;K]+(ΔTO[K]÷10) TRP ITOR[;K]
[7] QTOS[;K]+(ΔTO[K]÷10) TRP QTOR[;K]
[8] →DO
```

The program SLEW executes Eq. (C-7) to produce polynomials that describe the condition of minimum energy in the cosine modulation.

```
VSLEW[[]]V
     V SLEW
       L+ 1 7
[1]
[2]
       QCO+QTOP
[3]
       ICO+ITOP
[4]
       QCV+QTVP
[5]
       ICV+ITVP
[6]
       ELE+1+pQCO
[7]
      ROW+1+0QCO
[8] \Delta TH \leftarrow THO \leftarrow THV \leftarrow 10
[9]
       J+0
[10] DO: \rightarrow END \times iJ = ELE
[11] J+J+1
[12] INT1+L PI ICO[;J] PP QCO[;J]
[13] INT2 \leftarrow L PI ICO[;J] PP ICO[;J]
      INT3+L PI QCO[;J] PP QCO[;J]
[14]
      THO+THO,0.5× 30(2×INT1) : INT3-INT2
[15]
[16]
       INT1+L PI ICV[;J] PP QCV[;J]
       INT2+L PI ICV[;J] PP ICV[;J]
[17]
       INT3+L PI QCV[;J] PP QCV[;J]
[18]
       THV \leftarrow THV, 0.5×30(2 \times INT1) \div INT3 - INT2
[19]
[20]
      →D0
[21] END: QTVR+(QCV×(ROW, ELE) p 20THV)+ICV×(ROW, ELE) p 10THV
[22] ITVR+(-QCV×(ROW, ELE) p 10THV)+ICV×(ROW, ELE) p 20THV
[23] QTOR+(QCO×(ROW, ELE)p 20THO)+ICO×(ROW, ELE)p 10THO
[24] ITOR \leftarrow (-QCO \times (ROW, ELE) \rho 10 THO) + ICO \times (ROW, ELE) \rho 20 THO
[25] \Delta TV \leftarrow THV \times 10 \div 02
[26] ATO+THO×10:02
[27] \Delta T \leftarrow \Delta T V - \Delta T O
```

The program ZEROS computes the time of the zero crossings in pulses described by the polynomials produced by TRANS1.

```
VZEROS[[]]V
      ∇ ZEROS
        T+2.25+0.25×1321
[1]
       DT+T[2]-T[1]
[2]
[3]
        T+T:10
        RO+RV+\Delta ZTO+\Delta ZTV+ZTO+ZTV+10
[4]
[5]
        J+0
[6]
      DO: →0×1 J=36
[7]
      J+J+1
[8]
      CMO \leftarrow (((\rho T), 1)\rho T) \perp \Phi QTOP[;J]
[9]
        SMO \leftarrow (((\rho T), 1)\rho T) \perp \phi ITOP[;J]
[10] CMV \leftarrow (((\rho T), 1)\rho T) \perp \Phi QTVP[;J]
[11] SMV+(((\rho T),1)\rho T)\perp \phi ITVP[;J]
[12]
       S+1002×T
[13]
        C+2002×T
[14] LO+(S\times SMO)+C\times CMO
[15]
       LV+(S\times SMV)+C\times CMV
[16]
       ZCTO+ZCTV+10
[17]
        JJ+0
[18] DO3:\rightarrow SKIP3\times iJJ=(\rho T)-1
[19] JJ+JJ+1
[20] \rightarrow SKIP \times 1((\times LO[JJ]) + \times LO[JJ+1]) \neq 0
[21] ZCTO+ZCTO, 2.25+(JJ\times DT)+(DT\times LO[JJ])+LO[JJ]-LO[JJ+1]
[22] SKIP:\rightarrow DO3\times1((\times LV[JJ])+\times LV[JJ+1])\neq0
[23] ZCTV \leftarrow ZCTV, 2.25+(JJ \times DT)+(DT \times LV[JJ])÷LV[JJ]-LV[JJ+1]
[24] +D03
[25] SKIP3: \rightarrow SAVE \times 1(\rho ZCTO) < 17
[26] ZCTO+1+ZCTO
[27] SAVE: \Delta ZTO + \Delta ZTO, ZCTO - 5 \times 10 ZCTO
[28] ZTO+ZTO, ZCTO
[29] \Delta ZTV + \Delta ZTV, ZCTV - 5 \times 10 ZCTV
       ZTV+ZTV, ZCTV
[30]
[31]
       →DO
```

The P in lines 8 through 11 was changed to 3 to compute zero crossings in pulses described by polynomials produced by TRANS3.

THE RESIDENCE OF THE PARTY OF T

The program SLEWZ produces polynomials that describe pulses that have the zero crossing at the end of the third cycle aligned with the $30-\mu s$ sample point.

```
VSLEWZ[[]]V
     V SLEWZ
[1]
       \Delta TV + \Delta ZTV[;6]
[2]
     \Delta TO \leftarrow \Delta ZTO[;6]
[3]
       THV+∆TV:10:02
[4]
       THO+∆TO:10:02
       QCO+QTOP
[5]
[6]
       ICO+ITOP
[7]
       QCV+QTVP
[8]
       ICV + ITVP
       ROW+1 to QCO
[9]
[10] ELE+1+pQCO
[11] QTVR+(QCV×(ROW, ELE) p 20THV)+ICV×(ROW, ELE) p 10THV
      ITVR+(-QCV×(RON, ELE) p 10THV)+ICV×(RON, EL ) p 20THV
[12]
[13] QTOR \leftarrow (QCO \times (ROW, ELE) \rho 2 \circ THO) + ICO \times (ROW, ELE) \rho 1 \circ THO
[14] ITOR+(-QCO×(RON,ELE)p10THO)+ICC×(RON,ELE)p20THO
[15] \Delta T + \Delta T V - \Delta T O
```

TRANS3 translates the polynomials produced by SLEWZ to rereference time by the time increments, ΔTV and ΔTO .

```
VTRANS3[]]V
      V TRANS3
        K+0
[1]
[2] DO: \rightarrow 0 \times 1 K = ELE
[3]
        K+K+1
[4]
       ITV3[;K] \leftarrow (\Delta TV[K] \div 10) TRP ITV?[;K]
      QTV3[;K] \leftarrow (\Delta TV[K] \div 10) TRP QTVR[;K]
[5]
[6]
       ITO3[;K] \leftarrow (\Delta TO[K] \div 10) TRP ITOR[;K]
[7]
        QTO3[;K] \leftarrow (\Delta TO[K] \div 10) TRP QTOR[;K]
[8]
        →D0
```

The program LORAN evaluates the slewed polynomials that describe the sine and cosine modulation, normalizes the results to unit energy, adjusts the attenuation of the received signal by the amount of the normalization factor, computes the pulse envelope, and plots the results.

```
VLORAN[[]]V
     V LORAN
[1]
       ROT+0
[2]
        T+0.1\times2.5+2.5\times163
[3]
       EQO \leftarrow (((\rho T), 1)\rho T) \perp \Phi QTOS[;J]
[4]
       EIO \leftarrow (((\rho T), 1)\rho T) \perp \phi ITOS[;J]
[5]
       EQV \leftarrow (((\rho T), 1)\rho T) \perp \Phi QTVS[;J]
[6]
       EIV \leftarrow (((\rho T), 1)\rho T) \perp \Phi ITVS[;J]
[7]
       NO+(+/(EQO*2)+EIO*2)*0.5
[8]
       NV+(+/(EQV*2)+EIV*2)*0.5
[9]
       EQO+EQO:NO
[10] EIO+EIO:NO
[11] EQV + EQV : NV
[12] EIV \leftarrow EIV \div NV
[13] EO \leftarrow ((EQO \times 2) + EIO \times 2) \times 0.5
[14] EV \leftarrow ((EQV \times 2) + EIV \times 2) \times 0.5
[15] BELO+DBO[J]+20\times10 NO
[16]
       BELV \leftarrow DBV[J] + 20 \times 10 \oplus NV
[17]
       →
[18] ONE: K+0
[19] DO:WAIT+[
[20]
       'LORAN-C SIGNAL VOLTAGE PLOTTED AGAINST TIME IN MICROS
                              1975 DAY NO.:', 4 0 ▼DAY[J]
        <u>ECONDS</u>
       'FIELD SITE: ',SITE[J;],'
[21]
                                            STATION: ',STA[J;],'
        TR: ',(2 \ 0 \ \P XMTR[J]),' DATA SEGMENT: ',SEG[J;]
[22]
       'ATTENUATION: ',(6 3 TBELO),' DB AT NAVOBSY,
        6 3 TBELV), DB AT FIELD SITE'
[23]
        'SECONDARY PHASE FACTOR: ',(6 3 ▼SPF[J]),' MICROSECON
       DS'
[24]
       1 1
        '. ←→NAVOBSY + ←→FIELD SITE'
[25]
[26] WAIT+
[27]
       +SKIP \times \iota K = 1
[28]
       50 120 FPLOT(EIO, EIV, EQO AND EQV) VS T×10
[29] TWO:K+1
[30]
[31] SKIP: 50 120 FPLOT(EO AND EV) VS T×10
```

The program EDGE evaluates the polynomials produced by TRANS3 over the leading edge of the pulses, normalizes them to unit energy, and plots the leading edge of the envelope of the pulses.

```
\nabla EDGE[\Box]\nabla
      V EDGE L
      <u>ROT+0</u>
[1]
[2]
        T+9+176
[3]
      E0+EV+10
[4]
       K \leftarrow 0
[5] D0: \rightarrow END \times 1K = 3
       J+L+K
[6]
[7]
       K \leftarrow K + 1
[3]
       '3' EVAL T
       NVE \leftarrow ((EQV \times 2) + EIV \times 2) \times 0.5
[9]
[10] NOE \leftarrow ((EQO \times 2) + EIO \times 2) \times 0.5
[11]
        EO \leftarrow EO, NOE \div NOE [1 + \forall NOE]
[12]
        EV \leftarrow EV, NVE \div NVE[1 \land \forall NVE]
[13]
        +D0
[14] END:WAIT+[
                   LORAN-C SIGNAL VOLTAGE PLOTTED AGAINST TIME IN
[15]
                                           1975 DAY NO .: ', 4 0 *DAY[J]
         MICROSECONDS
                   FIELD SITE: ',SITE[J;],' STATION: ',STA[J;],'
[16]
            XMTR: ',(2 0 \forallXMTR[J]),' DATA SEGMENT:
                                                                          ALL!
[17]
[18]
         1
                   . ++NAVOBSY + ++FIELD SITE!
[19]
         WAIT+
[20]
         S+OT
[21]
         40 120 FPLOT((S \uparrow EO), (S \uparrow EV), (S \downarrow (2 \times S) \uparrow EO), (S \downarrow (2 \times S) \uparrow EV), (
         (-S) \uparrow EO) AND(-S) \uparrow EV) VS T, T, (10+T), (10+T), (20+T) AND
         20 + T
```

EVAL evaluates polynomials identified by \underline{A} and J at times specified by T.

```
VEVAL[□]∇

∇ <u>A</u> EVAL T

[1] EQO+(((ρT),1)ρT÷10)⊥Φ(1'QTO',Λ)[;J]

[2] EIO+(((ρT),1)ρT÷10)⊥Φ(1'ITO',Λ)[;J]

EQV+(((ρT),1)ρT÷10)⊥Φ(1'QTV',Λ)[;J]

[4] EIV+(((ρT),1)ρT÷10)⊥Φ(1'ITV',Λ)[;J]
```

TO THE RESIDENCE OF THE PARTY O

The program TRP translates any polynomial, P, by a time increment, Δ .

PI integrates any polynomial, P, between limits given by the two-element vector, L.

∇PI[[]]∇ ∇ R+L PI P [1] P+P÷ιρP [2] R++/P×((1+L)*ιρP)-(1+L)*ιρP ∇

PP multiplies two polynomials, P1 and P2. They need not be of the same degree.

∇PP[□]∇ ∇ P+P1 PP P2;D [1] P+P1 •.×P2 [2] D+1↑ρP [3] P+(1-1D)ΦP,((D,D-1)ρ0) [4] P++/[1] P

These programs require P to be arranged in ascending order of degree starting with 0 and all terms must be accounted for.

THE TAX TAX TAX TO SELECT AND SELECT AND A SECOND SELECT AND SELECT ASSESSMENT AND A SECOND SELECT ASSESSMENT ASSESSMENT

The program ECM computes the change in ECM, Δ ECM, between the field site and NAVOBSY from the polynomials produced by TRANS3.

```
VECM[ [] V
      V ECM
[1]
          AECM+10
[2]
          T+64+121
[3]
         J + JMIN
[4] DO: \rightarrow 0 \times 1 J = JMAX
        J+J+1
[5]
         '3' EVAL T
[6]
[7]
        NVE \leftarrow ((EQV \star 2) + EIV \star 2) \star 0.5
[8]
        NOE \leftarrow ((EQO \times 2) + EIO \times 2) \times 0.5
[9]
         NV \leftarrow \pm NVE[1 \uparrow \Psi NVE]
[10] NO \leftrightarrow NOE[1 \uparrow VNOE]
        '3' EVAL 30
[11]
[12] EV+NV\times(((QV+EQV)*2)+(IV+EIV)*2)*
[13] EO \leftarrow NO \times (((QO \leftarrow EQO) \times 2) + (IO \leftarrow EIO) \times 2) \times
[14] QTOD[;J]+1 PD QTO3[;J]\times NO
[15] ITOD[;J]+1 PD ITO3[;J]\times NO
[16] QTVD[;J] \leftarrow 1 PD QTV3[;J] \times NV
[17] ITVD[;J] \leftarrow 1 PD ITV3[;J] \times NV
[18] 'D' EVAL 30
[19] DEV \leftarrow ((IV \times EIV) + QV \times EQV) \div EV
[20] DEO+((IO\times EIO)+QO\times EQO)\div EO
[21] \Delta ECM \leftarrow \Delta ECM, (EV - EO) \div -0.05 \times DEV + DEO
[22] +DO
```

PD computes the Dth derivative of the polynomial, P. P must be arranged in ascending order of degree starting with zero and all terms must be accounted for.

```
∇PD[∏]∇
∇ R+D PD P;K;L

[1] K+0
[2] L+ρP
[3] DO:→0×1K=D[L
[4] R+P+1+P× 1+1ρP
[5] K+K+1
[6] →DO
∇
```

The program DBEL computes the adjusted attenuation that is plotted in Fig. F-16 of Appendix F.

```
\nabla DBEL[]]\nabla
     ∇ DBEL
[1]
      M+10
[2]
       LOSS \leftarrow ATTEN[;2] + 1
[3]
      NDB+LOSS[112]
[4]
     K+0
[5]
      J + 13
[6] DO: \rightarrow END \times i K = 2
[7]
      K+K+1
[8]
      N+20\times10 \bullet DIST[J] \div DIST[1]
[9]
       NN+LOSS[1]-N
[10]
      M+M,NNN+NN-LOSS[J]
[11]
       NDB+NDB, LOSS[J+0, 18]+NNN
[12]
       J+22
[13]
      →DO
[14] END: N \leftarrow +/N \div \rho N \leftarrow LOSS[30+16], ATTEN[(112);1], ATTEN[(30+16);1]
[15] NN++/NN+\rho NN+ATTEN[(12+i9);1]
[16] NNN++/NNN \div \rho NNN+ATTEN[(21+19);1]
[17] NDB+NDB, (3\rho N), (3\rho NN+M[1]), 3\rho NNN+M[2]
[18] DIST+DIST[130],(3pCARB),(3pDANA),3pNANT
```

TO THE RESIDENCE AND ADDRESS OF THE PARTY OF

REFERENCES

- C-1 Anon., "APL Language," IBM Corporation Publication GC26-3847-0, March 1975.
- C-2 Anon., "Graphs and Histograms in APL/360-370," IBM Corporation Publication SB21-0415-0, 1972.

THE TO THE THE PARTY OF THE PAR

Appendix D

POLYNOMIAL COEFFICIENTS

This appendix records the values of the coefficients of the polynomials that were used in the analysis of data. Tables D-1 through D-12 tabulate these coefficients. The coefficients are presented in ascending order of degree from the top to the bottom of each column of eleven coefficients. The groups of three columns under the name of each field site are coefficients for data segments 1, 2, and 3 from left to right.

The tables contain the following labels:

QTOP and QTVP are the labels for 10th degree polynomials fitted to Q data taken at NAVOBSY and data taken simultaneously at the field site, i.e., the van. P denotes polynomials of more permanent interest; i.e., they represent the data as taken.

ITOP and ITVP are defined the same, except the data fitted are I data.

QTOS, QTVS
ITOS, and ITVS are the labels for polynomials slewed to achieve minimum energy in Q.

QT03, QTV3, IT03, and ITV3 are the labels for polynomials slewed so that the third-cycle zero crossings align at 30 $\mu s. \\$

197 To the Committee State Committee of the Committee of

Table D-1 Polynomial Coefficients for Q Data Taken at NAVOBSY

	11.2551198 0.355	Н	13737 15087 101087 073187 073187 073187 073187	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A	V W W Z W M W W W M W W W	188	4118844884488989898989898989898989898989
owanda, PA	2355 2225 2225 2225 2225 2225 233 233 23	rietta, O	1.39848 5.12428 7.12428 7.16118 5.66088 6.6188 7.03	1.23308 1.23308 1.235088 1.22508 1.22	ottoes, V	66599 0052567 00525	eline, Day	11.2 11.2
To	11.00000000000000000000000000000000000	Ma	1.47378 03 5.20008 03 1.03868 03 5.44358 03 5.54588 03	1.09098 03 1.92078 04 2.01758 05 1.25028 06 4.21878 08	Gr	24114 2000	Base	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	25.00 20	7	3608 04 3378 03 0078 02 3358 02	19638 03 20608 04 03098 05 13808 06 54518 08	NJ	13 13 15 15 15 15 15 15 15 15 15 15	154	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Emporia, VA	66.93459991 13.855487 13.855487 14.925487 12.1225487 13.459487 11.45948	nville, Il	3553	1.4028F 09 2.1533F 04 2.0503F 08 1.1818F 06 3.7690F 08 5.0958F 10	ms River,	11.468498	line, Day	5.36128 03 2.99328 03 2.99338 04 2.99338 04 3.74328 04 3.74328 04 1.75158 05 1.2938 06 4.28438 06
ā	12154 12154 12164 12164 12164 12164 12164 12164 12164 12164 1216 1216	Da	573E 04 573E 04 921E 03 089E 03	7.63787 04 1.14587 04 1.09377 05 6.24297 07 2.00027 08	Tom	7. 629023 2. 456602 2. 456602 5. 05203 6. 05203 7. 49303 7. 49303 7. 5050 7. 5	Base	56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NC	1,00498708870388703887038870388703870387038703		177E	2.50048 03 4.40168 04 4.50378 05 2.66218 06 8.42518 09	DE	4 47138 03 47138 03 47138 03 47138 03 03 03 03 04 04 04 04 04 04 04 04 04 04 04 04 04	WV	2.377657 1.025467 2.125467 1.025467 2.146767 2.146767 3.405567 3.405567 3.29767 3.29
Wilmington.	9999999999999	exter, NY	7070P -3.4954R -5.5930R -2.01105-02 1.7502E-02 8.4464R-03	2.55088 4.50408 2.74948 0.75388 0.75388 1.6128	sorgetown,	204004460450	luefield,	7 0 70 P 2 4 4 7 7 2 8 4 7 7 8 9 8 8 9 8 8 9 8 8 8 9 8 8 8 9 9 8 8 8 9 9 8 8 9 9 9 8 9
W11	1.12235 03	De	10 PRNT 2.58388 03 9.09918 03 4.60248 03 1.77338 03	8.84855 04 2.19085 04 2.70275 05 1.79725 06 6.20775 08	35	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	B)	13.2091218

THE TAREST ASSESSMENT AND ASSESSMENT ASSESSM

Table D-2 Polynomial Coefficients for Q Data Taken at Field Sites

```
Georgetown, DE Toms River, NJ Grottoes, VA 19.6882E 04 7.8688704 5.6228704 5.6228704 5.6228704 5.23548704 5.6228704 5.23548704 5.6228704 5.23548704 5.6228704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548704 5.23548
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Bluefield, WV

28 FRNT QTVP

7.2755504 1.2794503 9.1799504 4.35677503 3.75235703 5.4294503 3.7251503 1.4941505 3.9514503
3.9907503 5.0908703 4.2901503 7.5338503 1.8535703 6.4224503 1.41035702 1.0844505 1.41025702
3.9907503 5.0908703 5.9396704 2.0811503 1.8535703 5.3435703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005703 1.23005705 1.23005703 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.23005705 1.
Wilmington, NC Emporia, VA Towanda, PA Tow
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Dexter, NY

Lord Corrections

Dexter, NY

Substitute Corrections

Substitute C
```

at NAVOBSY Polynomial Coefficients for I Data Taken

Georgetown, DE Tome River, NJ Grottoes, VA 1.5522E of 1 Dexter, NY 10 PRATIGO 10 Danville, IN Marietta, OH 25.33715 03 5.33715 03 5.33715 03 5.33715 03 5.33715 03 5.33715 03 5.33715 03 5.33715 03 5.33715 03 5.33715 03 5.33715 03 5.33715 03 5.33715 02 5.2375 03 5.33715 02 5.33715 03 5.33715 02 5.33715 03 5.33715 02 5.33715 03 5.33715 02 5.33715 03 5.33715 02 5.33715 03 5.33715 02 5.33715 03 5.33715 02 5.33715 03 5.33715 02 5.33715 03 5.33

The second of th

Table D-4

THE RESIDENCE OF THE PARTY OF T

Field Sites Towanda, PA		1.84838 03 8.45078 04 2.09128 03 1.34028 02 6.53568 03 1.43598 02 0 43088 02 0.13988 02	E 03 1.0176F 02 9.1250	F 00 3. 4826E 03 3.478	F 05 6.9870F 05 7.1040	F-07 1.4130F-07 1.455	Marietta, OH	02 7.06738 02 7.0713	04 2.05498 03	03 7.4811E 03 7.4787	04 3.85157 04 3.9160	04 1.34455 04 1.3550	06 1.30757 06 1.3118	4,61657 08 4,7383% 08 4,74725 08 - 6,748057 10 6,89875 10 6,90437 10	Grottoes, VA		3.8315F 03 3.7320F 03 3.9559E 03	7.74178 63 8.74338 03 8.81783	3.2265K 03 2.9589K 03 2.81978 5.11378 04 5.4401K 04 5.3175E	1.05948 04 6.61988 05 5.79728	3.9746E 05 2.9839E 05 2.6873E	4,00357707 3,1863777 2,95058	2.34058740 1.22225 08 1.134928 2.34058740 1.87838740 1.74928	Baseline, Day 188	1.19487 03 3.05487 03 1.40005 0	1.1849£ 02 2.6910£ 02 1.2940£ 0	1.1304F 02 5.4693F 02 1.2199F 0	1.17187 02 3.04778 02 1.25628 0	8.5582E 04 1.4247E 03 9.1291E 0	9.1048E70S 1.3684E704 9.7167E	1. 62 WINT 07 2. 3010M 07 1. 94 88 M	2, 48475 09 3,09806 09 2,65486
Taken at		1163E 03	7.00278 03	3,76798 03	3,14887705	1.7250E 07 2.4044E 09	NI	14838 03 1.11372 03	1778F 02 1.1730F 02	83727 03 1.03597 02	1547E 03 8.3548E 03 0247E 03 3.0735E 03	74268 04 5.81258 04 25078 05 6.31348 05	93148 06 3.96588 06	3244E 07 1.3348E 07 8465E 09 1.8600E 09	Toms River, NJ		03 5.2197E 03 02 1.9261E 02	T02 1.5812E 02	04 4.6367E 04	1.57718 03 1.62078 03	10 3 11008E 04	2.0898K 06 2.1381K 06	9.86588 10	seline, Day 154	3135R_03 3.5212E_0	3269E 02 1.0275E 0	1668 02 1.93538 0	13338 02 9.92068 0	2478E 03 3.9289E 0	38588 05 8.01678 0	7.6902E 07 1.6349F 07	31425 09 2,24585 0
Polynomial Coefficients for I Data	Em	SE 03 2.7156E 03	15E 02 2.4762E 02	1E 03 9.4557E 03	16E 04 7.68028 04	21E 06 5.3208E 06 21E 07 1.7909E 07	I	SF_03 1.24168_03	48 03 1.21118 02	2E 03 9.5333E 03	34E 08 8.0772E 03	388 04 5.71238 04	33E 05 3.9073E 06	00E 08 1.3157E 07			522 03 4.6542E 03	858 03 1.48348 02	86E 03 1.4237E 03	26E 04 2.54438 03 26E 05 1.3476E 03	338 05 2.65958 04	55E 05 2.8554E 05	038 5.88988 08 648 10 8.12578 10	Ba	E 04 2,42478 03	E 03 1.6293E 02	E 02 2.3187E 02	E 03 1.0655E 02	E 05 3.9095E 03	N 06 7.65528 05	7.1890Z 07 4.6979E 06 2.7408F 08 1.5525E 07	75 10 2,13435 09
	11	2,99705 03 3.08145 03 2.8 1,52056 02 1.53015 02 1.5	2 1.71718 02 3 1.47518 03	3 6,9515R 03 3 3,3190R 03	4 6.77107 04 5 7.49738 05	910	Dexter. NY	10 PRNT ITUE	8394E 03 4.6221E 03	98038 03 5.02198 03 82248 03 3.87368 03	19157 05 5.68617 05	3716F 04 1.3553F 04	74652 05 1.73322 05	14.26502 09 14.24672 08 14.466	motown 1	50 comity	3.32165 03	1.39226 US	2.56988 03	4.2703E 04	4,57122 05	6.5944E 06	7.66508 08 7.84988 08 7.58	field, V	28 PRNT ITVP	8701E 03 5,5455E 03	5008E 02 1.4677E 02	2424E 03 5.61966 03 8954E 03 1.7025E 03	79258 05 4.75508 05	2987E 05 9.6275F 06	00 3	45018 10 4,44518 10

Polynomial Coefficients for Q Data Taken at NAVOBSY Table D-5 Wilmington, NC

APPEAR THE SOUTH

....

Towanda, PA

Marietta, OH	1	Grottoes, VA	5.21377 03 5.98577 03 5.82268 03 8.13288 7 02 1.25578 02 1.422678 03 2.42578 04 1.256778 03 3.24576 04 1.25677 04 1.25678 03 1.25578 03 1.728878 03 1.728878 03 1.25578 04 1.25678 04 1.25678 05 1.25678 06 1.256	Baseline, Day 188	7 1 4 9 19 9 8 7 0 3
Danville, IN	5.916.87 04 2.228.8 05 18428 04 7.978 08 5.0508 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Toms River, NJ	7.03578 03 1.45755 03 3.224195 04 1.2240 05 1.	Baseline, Day 154	6. 442932
Dexter, NY	03 6.02468 04 4.88598 04 03 6.02468 03 6.09528 03 03 2.1190948 02 1.770558 02 03 8.9328 03 1.770558 03 04 9.928 03 4.9788 03 04 9.9268 03 2.72488 03 04 9.9568 03 2.72488 03 05 5.05548 03 4.95058 05 06 2.96528 05 2.92898 05 06 2.5258 05 2.2268 05 07 25528 05 2.2268 05 08 1.26518 09 1.22678 05	Georgetown, DE	40100000000000000000000000000000000000	Bluefield, WV	3 94918 FATT 47058 8 96528 03 7.69008 03 6.09208 03 4 45028 03 1.1518 03 5.69208 03 1.75638 03 4.1518 03 5.69208 03 3.29138 04 3.08308 04 5.00408 04 5.40198 04 5.64908 05 5.00408 04 6.25668 05 2.41008 05 1.05218 05 6.47548 05 2.41098 06 3.06218 05 1.12618 08 3.49278 05 1.13308 07 1.17602 10 2.89228 11 2.69138 11

AVOBSY	Towanda, PA	000000000000000000000000000000000000000	Marietta, OH	14.2960F-03 3.3230F-03 2.8399F-03 2.9340F-02 3.4318F-02 2.5015F-02 3.4318F-02 8.0790F-03 6.9231F-03	71927703 3.3054.703 2.9503.70 7755.703 9.8056.704 3.0056.07 0.003.704 1.7056.704 3.5005.07	20 20 20 20 20 20 20 20 20 20 20 20 20 2	Grottoes, VA	7.35108 03 7.11357 03 3.71158 02 4.02567 03 1.57408 02 1.71428 02 4.02568 03 1.0358 02 1.71428 02 1.71428 02 1.71428 02 1.71428 02 1.71428 02 1.71428 02 1.71428 02 1.71428 02 1.71428 02 1.71428 03 1	Baseline, Day 188	5.60908704 6.55028704 8.48498703 2.2018702 3.20508703 3.45488703 3
Table D-7 Coefficients for I Data Taken at NAVOBSY	Emporia, VA	702 1.564278 02 1.6509378 03 1.51978 02 1.5509370 02 1.5509370 02 1.5509370 02 1.5509370 03 1.55	Danville, IN	103 6.6 102 3.0 102 4.2	703 6.30538703 8.4971870 703 1.60088703 2.0334870 704 2.51048704 3.0474870	7 05 2.45108 05 2.87338 0 7 06 1.44498 06 1.64738 0 7 08 4.66958 08 5.21168 0 7 10 6.32368 10 6.94638 1	Toms River, NJ	987 02 1.52778 03 4.011228 02 778 02 1.2708 02 1.92708 02 1.92708 02 1.92708 02 02 02 02 02 02 02 02 02 02 02 02 02	Baseline, Day 154	99.87 02 1.514238 03 1.43908 05 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Polynomial Coeff	NC NC	## 103 1	NY	3 3.61628 03 5. 2 1.67868 02 2. 2 1.52668 03 4.	3 9.64035 03 7. 3 4.14835 03 1. 4 8.05467 04 3.	12 05 6 6 44 3 16 05 2, 9 0 6 7 18 06 18 18 18 18 18 18 18 18 18 18 18 18 18	own. DE		ld, WV	9651287 03 1.115128 03 1.25.28 03 1.73 03 1.73 03 1.73 03 1.73 03 1.73 03 03 03 03 03 03 03 03 03 03 03 03 03
	Wilmingt	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Dexter.	10 PRHT ITOS 1.24865 03 3.36665 0 1.62965 02 1.61975 0 2.38495 02 1.56745 0			reet	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		00000000000000

Table D-8 Polynomial Coefficients for I Data Taken at Field Sites

A	20000000000000000000000000000000000000	но	1.4920	3.3672	1.7707F 05 1.26715 06 1.6025F 08 6.7056F 10	VA	3 7.19438703 3 8.43018703 3 8.64038703 3 9.16108703	7.1840 3.0080 1.7479 2.9484	2.3758 19.4772 1.4911	Day 188	6.730550	2.61455 02	1.25625 0	8.9221F	9.4162E 0	1.87075 0
Towanda, PA	6.789 6.055 6.	Marietta,	1.0571E 02 1.4095E 03	1.3524E 03 3.1534F 04	1.74115 1.25223 4.56253 6.66158	Grottoes,	7.63568 3.15677 8.36577 0.58537	3.00148 0 1.34328 0 7.65088 0	2.2496F 9.1981F 1.4669F	seline,	3.82105 03	7.0694E 02	3.0307R_02	1.37637 03	7.36635 06	2.26148 07
Н	444 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1.16445 02 1.63125 04 1.20318 02	1. 4480F 03 2.7690F 04	1.67%1F 08		7.36458 03 3.34448 03 7.52948 03	E 22 E 7	5,40	Ba	5.07875 04 8 865 4 F 0 3	2.59088 02	1.17188 02	8.3075F 09	8.7626F 05 5.3262F 06	1.73925 07
	24 25 25 25 25 25 25 25 25 25 25 25 25 25	IN	6.83158 04 9.89668 03 2.84968 02	7.9475E 03 2.9513E 03	3.022933 0.092933 1.288235 0.00	N.	# + + H W	3.34428 03 1.59468 03 3.12148 04	2.0875F 06 6.9447F 08 9.5901F 10	y 154	2.4890203	1.93725 02	1.032117_02	3.96797 03 7.4348E 04	7.89148 05	1 59528 07
Emporia, VA	000000000000000000000000000000000000000	Danville, 1	100 100 100 100 100	111	5.52808 04 6.02673 05 3.79228 06 1.27718 07	ive	1.8273E 02 1.6127E 02 1.6127E 02	3.20037 03 1.55377 03 3.05257 04	2.04448 06 6.80048 08 9.33778 10	eline, Day	1.99508 03	2.31938 02	1.15298 02	7.73155 04	0.1103F 05	1 61705 07
E .	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Ä	8.0026.E 04 1.0275E 02 2.7090E 02	0333	5.4991E 04 5.9932E 05 3.7694E 06 1.2689E 07		1.28818703 1.59018702 1.46668702	2.53115 03 1.30755 03 2.57877 04	1.71198 06 1.71198 06 5.67358 08 7.80938 10	Bas	1.6840203	2.34225 02	1.0904E 02	7.18975 04	7.56278 05	4.62478 00
UN	388928 388928 764118 76		1458 03 1988 03	1305 03 5035 04 3745 04	1.19805 1.19805 1.111887 1.021187 1.021187	DE DE	0000	1.2209E 03 1.3128E 04 1.5440E 06	4404	Δ.	S.2014E 04	1.4034E 02	1,82805 03	1.15205 04	7.92718 06	6.54397 07
nington	55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	exter. NY	1775 3.20758 03 5.86618 03 2.53268 03	5.6567E 03 P.0532E 04 2.9316E 04	1.04718 04 1.01938 05 1.01938 06	s.4513E 10	1775 3.09795 6.02078 9.65326	9.29588 04 1.79268 05.	3.69557 06 3.12448 07 1.25558 08 1.96387 10	nefield. W	ITVS 5.02148_04	1.4822E 02	1.99228 03	1.20598 04	8.46555.06 8.46555.06	7.00368.07
	6 4 7 2 7 4 4 4 6 6 7 4 4 4 4 6 6 7 4 4 4 4 4 4		10 PRUT 2.9109X 03 7.1631X 03	6.59152 03 1.12748 03 2.2265E 04	9.48743 05. 1.34858 05. 9.73928 67		2, 16,198 03 2,04628 03 4,59068 03	6.8058R 04 6.8055R 06 7.1532R 06	3.6873E 06 2.9357E 07 1.3459E 08	113	3 PRN 3E 04	5E 03	98 03	2.2030F 04	2F 05	38 07

	84448834444		######################################		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		10000000000000000000000000000000000000
	44444 44	ОН	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	VA	2 4 4 7 4 4 6 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	y 188	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Towanda, PA	11111111111111111111111111111111111111	rietta, C	4 8 9 4 4 4 4 4 5 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ottoes,	5. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	line, Day	4. 256 9.
Tol	22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ma	2. 119715 2. 11878 3. 11878 3. 11878 1. 08707 1. 21678 2. 11878 2. 11	Gr	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Base	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
	20000000000000000000000000000000000000	IN	4	LN	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 154	11.02.03 11.02.03 11.02.03 11.03.
Emporia, VA	8888 03 8888 03 8888 03 6588 03 6588 03 8688 05 8688 05 8688 05 8688 05	anville, I	4,165777 05 1,1194677 05 1,119467 02 1,119467 02 1,119467 03 1,119467 03 1,119847 05 1,119847 05 1,119847 05 1,119847 05 1,03787 03	Toms River,	733777 03 22267 02 22267 02 22367 02 26327 03 85527 03 85527 03 85527 03 85527 03 85527 03	eline, Day	2 2 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Ā	4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Ď	1.016787004 6.42418703 6.82418703 7.026778704 1.05558704 5.73404 1.03058704 2.5097870	Ē	5.325410 5.325410 5.325410 1.359403 1.359403 1.359403 1.35963	Bas	22.23.66.20.23.66.23.66.20.23.66.20.23.66.20.23.66.20.23.66.20.23.66.20.20.23.66.20.20.20.20.20.20.20.20.20.20.20.20.20.
NC NC	0.72287 0.72287 222667 0.03 222667 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.0		2.62288 03 1.70698 02 1.67228 02 7.05288 03 7.05288 03 3.47558 04 3.47558 04 2.00948 06 6.50048 06	DE	11.43247 03 7.43247 03 7.43247 03 7.43247 03 1.273617 03 1.273617 04 1.273687 04 1.273687 04 1.273687 04 1.273687 04 1.273687 04 1.273687 04 1.273687 04 1.273687 04 1.273687 06 1.273687 06	Λ	2.7 0 4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 noton	90.000 90.0000 90.000 90.000 90.000 90.000 90.000 90.000 90.000 90.00	exter, NY	2093 20932 20932 72912 72912 64456 03 18788 03 18788 03 18788 04 04 18788 04 04 18788 04 04 18788 04 0	rgetown,	4703 1.229777 04 1.229777 04 1.31277 03 1.31277 03 1.32277 04 1.32277 06 1.32277 06 1.32277 06 1.32277 06 1.32277 06 1.32277 06		2.55998 03 1.98598 03 1.98598 03 1.98598 03 2.55908 03 2.55908 03 5.25908 03 5.25908 03 1.00598 10
W+ 1	7.222 7.225 7.225 7.225 7.249 7.249 7.249 7.249 7.249 7.259	D	10 PRAY 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Geo		111	10.00000000000000000000000000000000000

The state of the s

The the test of the second

A

Field Sites	Towanda, PA	1.14992704 1.32612704 1.03492703 1.67222703 1.26658702 8.29832703 1.67222702 1.56658702 8.29738703 2.91562702 1.572170 3.7.20768703 2.9156703 2.792170 3.7.20768703 4.60118703 4.62727704 3.74238704 4.60118705 4.62728705 3.778038705 2.64807870 8.48278706 2.19988705 8.25008708 8.48278708 6.88538708	Marietta, OH	2.09228703 1.42988703 2.39528702 6.64218703 9.45558703 5.42468703 5.44648703 6.42578703 1.45468703 1.39558703 1.57678703 1.75498703 1.9958703 1.57678703 1.16308704 1.9958703 2.32548704 1.71378704 1.9258703 2.72548704 1.56528704 1.15308708 1.17448708 8.66558707 3.12598708 3.66968708 2.67948708 4.09738710 4.69128710 3.51828710	Grottoes, VA	1.1910E 03 1.0722E 03 1.3067E 03 3.0804E 03 3.2372E 03 3.1486E 03 03 3.2372E 03 3.1486E 03 03 3.2425E 03 7.4099E 04 2.5648E 03 7.4099E 04 2.5648E 03 7.4099E 04 2.5648E 03 7.4099E 04 1.0492E 04 1.0492E 04 1.6878E 04 1.0923E 05 1.577E 08 2.1412E 08 2.5572E 08 2.5572E 08 2.1412E 08 2.5572E 08 2.5572	Baseline, Day 188	3.79758703 2.55858704 4,00518703 5.84578703 1.25518703 5.847702 1.25518703 1.25518703 1.25518703 1.25518703 1.25518703 1.25518703 1.25518703 1.25518703 1.25518703 1.25518703 1.25518703 1.25518704 1.25518704 1.25518704 1.25518704 1.25518704 1.25518704 1.25518704 1.27758705 1.27758705 1.27758705 1.27758705 1.27758705 1.25758705 1.
Table D-10 ial Coefficients for I Data Taken at	Emporia, VA	10000000000000000000000000000000000000	Danville, IN	1,13848 03 4,24448 03 1,23117 02 2,54608 02 1,57208 02 1,57208 02 1,57208 02 1,57108 02 1,57108 02 1,74948 02 1,74948 03 1,9768 03 1,9748 08 1,9748 08 1,9748 08 1,9748 08 1,574	Toms River, NJ	1,94798 03 6,39568 03 6,57988 05 1,20608 02 1,21968 02 1,24018 02 1,21208 03 4,5598 04 5,55938 04 3,15538 03 2,51948 03 2,58838 04 1,7118 04 1,65208 04 8,5978 04 1,7118 04 1,65208 04 1,7918 04 1,2758 06 1,2308 06 1,30778 06 4,20228 08 4,45588 08 4,62308 08 6,01748 10 6,55108 10 6,79098 10	Baseline, Day 154	14.24478 03 3.70318 03 5.75688 03 6.35688 03 7.79418 03 5.86378 03 2.6688 04 1.79728 03 7.73418 03 5.86378 04 5.6588 04 5.6588 04 5.2588 04 5.2588 05 5.6588 05 5.2588 05 5.6580
Polynomial	ington, NC	3.76418 03 3.77008 03 3.74188 03 3.27278 03 3.27008 03 7.29348 03 7.27008 03 7.08128 03 3.27278 03 3.27278 03 3.27278 03 3.27278 03 3.27278 04 3.27278 04 3.27428 03 3.27278 04 3.24968 04 3.554968 04 3.554968 05 3.554968 05 3.554968 06		6.28318 03 3.42438 03 1.30558 03 2.21938 02 3.42438 02 5.75508 03 3.42438 02 5.75508 03 3.52508 02 5.75508 03 3.52508 02 5.75508 03 2.52508 02 2.75598 03 2.75598 03 2.75598 03 2.75598 03 2.7558 04 2.1558 04 3.1548 04 2.47788 04 3.2558 03 2.5458 03 2.2458 03 2.2458 03 2.2458 03 2.2458 03 2.2458 03 2.2458 03 2.2458 03 2.2458 03 2.2458 03 2.2458 03 2.2458 03 2.2458 03 2.2458 03 2.2558 03 2.2458 0	Georgetown, DE		B11	2777 137777 137777 137777 137777 137777 137777 1377

Polynomial Coefficients for Q Data Taken at NAVOBSY

Towanda, PA	03 1.6872E 03 1.9336E 02 02 1.6625E 02 1.5383E 02 02 1.2135E 02 1.15034E 02 02 1.2035E 02 1.15034E 02 03 4.6618E 03 4.6652E 03 04 6518E 03 9.0552E 03 05 5.555E 04 05 05 05 05 05 05 05 05 05 05 05 05 05	Marietta, OH	## 03 3.2684# 703 2.8232# 02 2.87878 02 2.7878 02 2.7878 02 2.7878 03 3.04278	Grottoes, VA	8803 7.89978703 4.47948703 8703 1.70448702 1.883948702 8703 1.05048702 1.71518702 8704 1.39508704 1.65598703 8704 1.39508704 1.65598703 8704 1.39598704 1.65598704 8704 1.39598704 1.79588706 8706 1.38598706 1.79588706 8706 1.71818708 1.79588706	Baseline, Day 188	## 03 2.2768# 03 2.5874# 02 2
	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		6 t 1 2 2 1 t 1 3 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	В	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
VA	2 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	IN	8 3438 3438 3438 3438 3438 3438 3438 34	, NJ	# 68967 2.15228 6.59238 7.20488 7.20488 7.304348 3.304348 2.17418 6.71018 6.71018 6.71018	y 154	2 89994 2 899994 3 899994 3 899994 3 899994 3 899994 3 89999 4 1017237 6 101999 6 1019999 6 101999 6 1
Emporia, V	3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Danville,	6,5347E 03 4,0551F 02 1,6695E 02 6,3756E 02 1,6196F 03 2,4820F 04 4,7283F 05 4,7283F 05 6,4050E 10	Toms River	11.00000000000000000000000000000000000	Baseline, Da	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
щ	0.000000000000000000000000000000000000	ı	25.2051 27.205	Т	7,51933 9,20193 9,20193 1,50193 1,50193 1,010193 0,3102 1,1102 1,1102 1,1103 1,103	Bas	21.0044488 02.002 02.00
NC	2,33258 2,723487 02 2,723487 02 1,570387 02 1,570387 1,1407187 03 1,1407187 03 1,270387 03 2,27587 3,099487 03		1,839985 02 1,839985 02 1,039438 02 1,039438 03 1,039438 03 1,18948 04 1,18788 04 1,18788 05 1,18788 05 1,18788 05 1,18788 05	, DE	1 24 16 2 2 4 16 2 3 2 4 16 2 3 2 4 16 2 3 2 4 16 2 3 2 4 16 2 3 2 4 16 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	WV	6.000000000000000000000000000000000000
mington,	2010210210210210210210210210210210210210	+35	6 2 4 4 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	orgetown	0.06118 0.04 0.074309 0.04 0.074309 0.04 0.074309 0.04 0.074309 0.04 0.074309 0.04 0.074309 0.04 0.074309 0.04 0.0809 0.04 0.0	luefield,	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Will	2 2 2 5 4 9 5 7 1 1 2 5 7 1 1 1 2 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	10 PRAT	2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Ge BRAG 61	000000000000000000000000000000000000000	B1	

TO THE RESIDENCE AND A SHEET OF THE PARTY OF

Table D-12 Polynomial Coefficients for I Data Taken at Field Sites

		2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ОН	2.5.58428 1.2.58428 1.2.58488 1.2.58488 1.2.58488 1.3.5888 1.3.5888 1.3.3888 1	VA	29 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 1508 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	owanda, PA	99 11 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	larietta, C	23.000 00 00 00 00 00 00 00 00 00 00 00 00	rottoes, 1	25 5 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
ובות סוובי	T	11. 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	N	111 12224 12	0	7, 40 70 70 70 70 70 70 70 70 70 7	1.085737 03 1.085737 03 1.1111107 02 1.111107 02 1.111107 02 1.111107 02 1.111107 02 1.111107 03 1.111107 03 1.111107 03 1.111107 03 1.111107 03 1.111107 03
ומ ומעבוו מו		24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	IN	11114000 1111400 1111400 1111400 1111400 1111400 1111400 1111400 1111400 1111400 1111400 114000 11400 11400 11400 114000 114000 11400 114000 114000 114000 1	N.	5.99318703 2.07038703 2.50808703 3.508087703 3.508087703 3.508087703 7.499987709 7.49998709	3.72358 03 3.72358 03 7.556138 03 7.556138 03 3.90938 03 7.46998 03 4.04988 05 4.04938 05 4.54938 05 4.54938 05 4.54938 05 4.54938 05 7.5598 05 7.
101 511	Emporia, VA	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	Danville,	11.11391187 0.03 8. 0.000 0.03 8. 0.000 0.03 9. 0.000 0.03 9. 0.000 0.03 9. 0.000 0.03 1.	Toms River	6.032187 2.035587 3.359887 3.359887 3.55887 7.355887 7.35287 7.35287 7.35287	13.193.67 13.193.67 14.12.68 14.12.68 14.12.68 14.12.68 15.69.68 16.69.68 17.69.68 18.6
ומו כסבווורובוווו	占	2 x x 2 x 8 x 9 x 9 x 9 x 9 x 9 x 9 x 9 x 9 x 9	ı	444 24 24 24 24 24 24 24 24 24 24 24 24	L	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.92468703 1.29348702 1.29358702 1.09358702 1.0428702 1.0428702 1.0428702 1.47488702 1.4748702 1.4748702 1.4748702 1.4748702
LOINIGINIA	NC	1 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2	9921787 992178 992178 992178 992178 992178 992	DE	20000000000000000000000000000000000000	5.130937 03 1.20937 03 1.20937 03 1.20937 03 1.1109425
	mington,	3 653587 1 72478 03 1 124748 03 6 64218 03 3 24558 03 6 6528 05 1 7528 05 1 7528 05 2 1759 05 2 1759 05	Dexter, N	7779 50 4999 60 49999 60 49999 60 49999 60 49999 60 499999 60 49999 60 499999 60 49999 60 499999 60 49999 60 40 40 40 40 40 40 40 40 40 40 40 40 40	orgetown,	10000000000000000000000000000000000000	4,5072704 5,50094703 5,971218703 1,24928703 7,18118705 7,181048705 8,58238708
	W11	10000000000000000000000000000000000000		23.33.33.33.33.33.33.33.33.33.33.33.33.3	0	2 2 2 2 3 5 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5.932249 2.35703704 3.35703703 3.35703703 3.35703703 3.35703703 3.2655370 4.884870 4.2655370 4.2

Appendix E

CARRIER MODULATIONS AND PULSE ENVELOPES

This appendix presents graphical representations of the measured pulses. The plots are constructed from values of voltage evaluated from the polynomials of Tables D-5 through D-8. Figures E-1 through E-36 present the sine and cosine modulations for all the sites and all data segments. Figures E-37 through E-72 present the corresponding pulse envelopes. The voltages plotted on these figures are those associated with pulses that have the same energy. Tables E-1 and E-2 present the times of the zero crossings in the pulses relative to the reference time of the voltage samples. The vertical groups of three rows are for the three data segments. The labels C1, C2 ... C0 on the left denote the location of the instrumented van during data recordings (see Table E-3).

The same of the sa

LORAY-C SIGNAL VOLTAGE PLOTTED AGAINST TIME IN MICROSECONDS FIELD SITE: WILMINGTON, NC ATTENDATION: 28,229 DB AT NAVOBSY, 56,094 DB AT FIELD SITE

THE PERSON NAMED IN THE PE

Fig. E-1 Sine and Cosine Modulations Observed Simultaneously at Wilmington, NC, and NAVOBSY; Data Segment 1

The transfer was the second of the second of

Fig. E-2 Sine and Cosine Modulations Observed Simultaneously at Wilmington, NC, and NAVOBSY; Data Segment 2

The transfer of the second of

Fig. E-3 Sine and Cosine Modulations Observed Simultaneously at Wilmington, NC, and NAVOBSY; Data Segment 3

The transfer of the second of the transfer of the transfer of the second of the second

The said of the said that said .

Fig. E-4 Sine and Cosine Modulations Observed Simultaneously at Emporia, VA, and NAVCLSY; Data Segment 1

TO THE RESIDENCE OF THE THE THE PARTY OF THE

The second of th

The state

The state of the s

Fig. E-5 Sine and Cosine Modulations Observed Simultaneously at Emporia, VA, and NAVOBSY; Data Segment 2

The state of the s

THE THE PROPERTY AND A SECOND SECOND

Sine and Cosine Modulations Observed Simultaneously at Emporia, VA, and NAVOBSY; Data Segment 3 Fig. E-6

1 or the transfer with the transfer to the tra

THE STATE OF THE PERSON OF THE

Sine and Cosine Modulations Observed Simultaneously at Towanda, PA, and NAVOBSY; Data Segment 1 Fig. E-7

The state of the s

Fig. E-8 Sine and Cosine Modulations Observed Simultaneously at Towanda, PA, and NAVOBSY; Data Segment 2

The state of the s

The same of the same of the same of

Spend

SERVINE

The state of the second of the second

A

Fig. E-9 Sine and Cosine Modulations Observed Simultaneously at Towanda, PA, and NAVOBSY; Data Segment 3

Fig. E-10 Sine and Cosine Modulations Observed Simultaneously at Dexter, NY, and NAVOBSY; Data Segment 1

The state of the s

CHONGO CONTRACT BOATED ACATED AND TAKENDED

Fig. E-11 Sine and Cosine Modulations Observed Simultaneously at Dexter, NY, and NAVOBSY; Data Segment 2

1 19 To go of the second of the teles of the second of

Fig. E-12 Sine and Cosine Modulations Observed Simultaneously at Dexter, NY, and NAVOBSY; Data Segment 3

The state of the s

THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON

Fig. E-13 Sine and Cosine Modulations Observed Simultaneously at Danville, IN, and NAVOBSY; Data Segment 1

THE TOP A STATE OF THE PARTY OF

1975 DAY NO.: 163 DATA SEGMENT: TWO LORAN-C SIGNAL VOLTAGE PLOTTED AGAINST TIME IN MICROSECONDS FIELD SITE: DANVILLE,IN ATTENUATION: 11.089 DB AT NAVOBSY, 41.082 DB AT FIELD SITE

++NAVOBSY + ++FIELD SITE

Fig. E-14 Sine and Cosine Modulations Observed Simultaneously at Danville, IN, and NAVOBSY; Data Segment 2

The state of the s

LORAN-C SIGNAL VOLTAGE PLOTTED AGAINST TIME IN MICROSECONDS
SITE: DANVILLE,IN
STATION: DANA
ATTENUATION: 11,196 DB AT NAVOBSY, 41,101 DB AT FIELD SITE

The state of the s

Sine and Cosine Modulations Observed Simultaneously at Danville, IN, and NAVOBSY; Data Segment 3 Fig. E-15

The state of the s

Fig. E-16 Sine and Cosine Modulations Observed Simultaneously at Marietta, OH, and NAVOBSY; Data Segment 1

TO THE RESIDENCE OF THE PARTY O

The second of th

Fig. E-17 Sine and Cosine Modulations Observed Simultaneously at Marietta, OH, and NAVOBSY; Data Segment 2

160

140

120

100

9

-0:10-

Fig. E-18 Sine and Cosine Modulations Observed Simultaneously at Marietta, OH, and NAVOBSY; Data Segment 3

The state of the s

The second

Fig. E-19 Sine and Cosine Modulations Observed Simultaneously at Georgetown, DE, and NAVOBSY; Data Segment 1

THE SAL SECTION

Fig. E-20 Sine and Cosine Modulations Observed Simultaneously at Georgetown, DE, and NAVOBSY; Data Segment 2

The state of the s

The county of selected that have

The sale of the sale of

Fig. E-21 Sine and Cosine Modulations Observed Simultaneously at Georgetown, DE, and NAVOBSY; Data Segment 3

The state of the s

The rate of the same of the same of

Fig. E-22 Sine and Cosine Modulations Observed Simultaneously at Toms River, NJ, and NAVOBSY; Data Segment 1

1 PT TO THE THE PROPERTY AND THE TABLE TO SHEET AND THE PROPERTY AND THE PARTY AND THE

Sine and Cosine Modulations Observed Simultaneously at Toms River, NJ, and NAVOBSY; Data Segment 2 Fig. E-23

The state of the s

Fig. E-24 Sine and Cosine Modulations Observed Simultaneously at Toms River, NJ, and NAVOBSY; Data Segment 3

The state of the s

日本の一大学の一大学の一大学の一大学

The said of the said

Sine and Cosine Modulations Observed Simultaneously at Grottoes, VA, and NAVOBSY; Data Segment 1 Fig. E-25

10 TO THE RESIDENCE AND THE PARTY OF THE SHAPE AND A SHAPE AND A SHAPE AS A S

Fig. E-26 Sine and Cosine Modulations Observed Simultaneously at Grottoes, VA, and NAVOBSY; Data Segment 2

the state of the s

Fig. E-27 Sine and Cosine Modulations Observed Simultaneously at Grottoes, VA, and NAVOBSY; Data Segment 3

The transfer of the second of

The county of the same of the county

Charles of the same of the control of

Sine and Cosine Modulations Observed Simultaneously at Bluefield, WV, and NAVOBSY; Data Segment 1 Fig. E-28

The transfer of the second of

The state of

Sine and Cosine Modulations Observed Simultaneously at Bluefield, WV, and NAVOBSY; Data Segment 2 Fig. E-29

The state of the second second

THE STATE SENTENCE OF THE PERSON

Sine and Cosine Modulations Observed Simultaneously at Bluefield, WV, and NAVOBSY; Data Segment 3 Fig. E-30

The state of the s

Fig. E-31 Sine and Cosine Modulations Observed Simultaneously at NAVOBSY by the Fixed and Field Site Equipment on 1975 Day No. 154; Data Segment 1

AT THE PROPERTY AND ASSESSED ASSESSED ASSESSED AND ASSESSED ASSESS

The said that the soft

ne.

The the the sent

Fig. E-32 Sine and Cosine Modulations Observed Simultaneously at NAVOBSY by the Fixed and Field Site Equipment on 1975 Day No. 154; Data Segment 2

They I would be supported to the later of th

The same with the same of the

Fig. E-33 Sine and Cosine Modulations Observed Simultaneously at NAVOBSY by the Fixed and Field Site Equipment on 1975 Day No. 154; Data Segment 3

The second of the the transfer was more than the second of the second

LORAN-C SIGNAL VOLTAGE PLOTTED AGAINST TIME IN MICROSECONDS FIELD SITE: NAVOBSY, BASELINE STATION: CAROLINA BEACH XMTR: 19 DATA SEGMENT: ONE ATTENUATION: 27.849 DB AT NAVOBSY, 26.837 DB AT FIELD SITE

The second of th

Fig. E-34 Sine and Cosine Modulations Observed Simultaneously at NAVOBSY by the Fixed and Field Site Equipment on 1975 Day No. 188; Data Segment 1

or the second second to the second second

The state of the solution

Fig. E-35 Sine and Cosine Modulations Observed Simultaneously at NAVOBSY by the Fixed and Field Site Equipment on 1975 Day No. 188; Data Segment 2

1 18 To go to the late of the total of the t

1975 DAY NO.: 188 DATA SEGMENT: THREE LORAN-C SIGNAL VOLTAGE PLOTTED AGAINST TIME IN MICROSECONDS FIELD SITE: NAVOBSY, BASELINE STATION: CAROLINA BEACH XMIR: 19 ATTENUATION: 28,035 DB AT NAVOBSY, 27,047 DB AT FIELD SITE

THE THE TANK THE

Fig. E-36 Sine and Cosine Modulations Observed Simultaneously at NAVOBSY by the Fixed and Field Site Equipment on 1975 Day No. 188; Data Segment 3

The state of the same of the s

The same was the same that the same was the same that the

Fig. E-37 The Carolina Beach Pulse Envelope at Wilmington, NC, and NAVOBSY; Data Segment 1

The state of the same of the s

The take the transfer was the business and the same and the same

Fig. E-38 The Carolina Beach Pulse Envelope at Wilmington, NC, and NAVOBSY; Data Segment 2

The transfer of the second of

LORAY-C SIGNAL VOLTAGE PLOTIED AGAINST TIME IN MICROSECONDS FIELD SITE: WILMINGTON,NC STATION: CAROLINA BEACH XMIR: 19 DATA SEGMENT: THREE ATTENUATION: 28,133 DB AT NAVOBSY, 56,018 DB AT FIELD SITE

Fig. E-39 The Carolina Beach Pulse Envelope at Wilmington, NC, and NAVOBSY; Data Segment 3

The second of th

THE SECTION

The Carolina Beach Pulse Envelope at Emporia, VA, and NAVOBSY; Data Segment 1 Fig. E-40

THE THE PROPERTY OF THE PARTY O

1975 DAY NO.: 175 DATA SEGMENT: TWO LORAN-C SIGNAL VOLTAGE PLOTTED AGAINST TIME IN MICROSECONDS FIELD SITE: EMPORIA, VA ATTENDATION: 27.807 DB AT NAVOBSY, 34.076 DB AT FIELD SITE

The same of the sa

++NAVOBSY + ++FIELD SITE

Fig. E-41 The Carolina Beach Pulse Envelope at Emporia, VA, and NAVOBSY; Data Segment 2

TO BE THE RESIDENCE OF THE PARTY OF THE PART

LORAN-C SIGNAL VOLTAGE PLOTTED AGAINST TIME IN MICROSECONDS FIELD SITE: EMPORIA.VA STATION: CAROLINA BEACH XMTR: 19 DATA SEGMENT: THREE ATTENUATION: 27.953 DB AT NAVOBSY, 34.200 DB AT FIELD SITE

Fig. E-42 The Carolina Beach Pulse Envelope at Emporia, VA, and NAVOBSY; Data Segment 3

The state of the state of the same was the desired than the state of the same of the same

LORAN-C SIGNAL VOLTAGE PLOTTED AGAINST TIME IN MICROSECONDS.
FIELD SITE: TOWANDA,PA STATION: CAROLINA BRACH XMTR: 20 DATA SEGMENT: ONE ATTERNUATION: 27.692 DB AT NAVOBSY, 15.577 DB AT FIELD SITE

4

The state of the sent

Fig. E-43 The Carolina Beach Pulse Envelope at Towanda, PA, and NAVOBSY; Data Segment 1

The transfer of the second of

1975 DAY NO.: 183 DATA SEGMENT: TWO LORAY-C SIGNAL VOLTAGE PLOTTED AGAINST TIME IN MICROSECONDS FIELD SITE: TOWANDA, PA ATTENUATION: 27.765 DB AT NAVOBSY, 15.763 DB AT FIELD SITE

THE DESTRUCTION

1,

The Carolina Beach Pulse Envelope at Towanda, PA, and NAVOBSY; Data Segment 2 Fig. E-44

The state of the second second

1975 DAY NO.: 183 DATA SEGMENT: THREE LORAN-C SIGNAL VOLTAGE PLOTTED AGAINST TIME IN MICROSECONDS FIELD SITS: TOWANDA, PA ATTENUATION: 27.804 DB AT NAVOBSY, 15.809 DB AT FIELD SITE

The the territory

The Carolina Beach Pulse Envelope at Towanda, PA, and NAVOBSY; Data Segment 3 Fig. E-45

LORAY-C ÉIGUAL YOLTAGE PLOTTED AGAINST TIME IN MICROSECONDS FIELD SITE: DEXTER,NY ATTENNATION: 28.393 DB AT NAVOBSY, 8.755 DB AT FIELD SITE

64

The said of the said that the said of the

The Carolina Beach Pulse Envelope at Dexter, NY, and NAVOBSY; Data Segment 1 Fig. E-46

520

THE RESIDENCE OF THE PROPERTY OF THE PROPERTY

The Carolina Beach Pulse Envelope at Dexter, NY, and NAVOBSY; Data Segment 2 Fig. E-47

A TO THE RESIDENCE AND A SHEET OF THE SHEET AND A SHEET ASSESSMENT ASSESSMENT

The said of the said the said of the said

Fig. E-48 The Carolina Beach Pulse Envelope at Dexter, NY, and NAVOBSY; Data Segment 3

LORAN-C SIGNAL VOLTAGE PLOTTED AGAINST TIME IN MICROSECONDS FIELD SITE: DANVILLE,IN ATTENDATION: 11.072 DB AT NAVOBSY, 41.057 DB AT FIELD SITE

THE RESERVE OF THE PARTY OF THE

The Carolina Beach Pulse Envelope at Danville, IN, and NAVOBSY; Data Segment 1 Fig. E-49

A ST TO THE RESERVE TO SELECT A STATE OF THE PARTY OF THE

1975 DAY NO.: 163 DATA SEGMENT: TWO LORAY-C SIGNAL VOLTAGE PLOTTED AGAINST TIME IN MICROSECONDS FIRED SITE: DANVILLE,IN ATTENUATION: 11.089 DB AT NAVOBSY, 41.082 DB AT FIELD SITE

The same of the sa

Fig. E-50 The Carolina Beach Pulse Envelope at Danville, IN, and NAVOBSY;
Data Segment 2

The transfer of the same of th

1975 DAY NO.: 163 DATA SEGMENT: THREE LORAN-C SIGNAL VOLTAGE PLOTTED AGAINST TIME IN MICROSECONDS FIELD SITE: DANVILLE,IN ATTENUATION: 11.196 DB AT NAVOBSY, 41.101 DB AT FIELD SITE

160 14 14 1++1 140 PULSE ENVELOPES 120 100 141 141 1. 30-T.L. 9 + ++FIELD SITE 10-÷ . ++NAVOBSY 0.25-0.20-0.15-0.10-0.05-0.00

The Carolina Beach Pulse Envelope at Danville, IN, and NAVOBSY; Data Segment 3 Fig. E-51

1975 DAY NO.: 161 DATA SEGMENT: ONE LORAN-C SIGNAL VOLTAGE PLOITED AGAINST TIME IN MICROSECONDS FIRED SITE: MARIETTA, OH ATTENNATION: 10.400 DB AT NAVOBSY, 21.880 DB AT FIELD SITE

The state of the s

Fig. E-52 The Carolina Beach Pulse Envelope at Marietta, OH, and NAVOBSY; Data Segment 1

A CONTRACTOR OF THE PARTY OF TH

LORAN-C SIGNAL VOLTAGE PLOTTED AGAINST TIME IN MICROSECONDS FIELD SITE: MARIETTA, OH ATTENUATION: 10.381 DB AT NAVOBSY, 21.897 DB AT RIELD SITE

The Carolina Beach Pulse Envelope at Marietta, OH, and NAVOBSY; Data Segment 2 Fig. E-53

AT TO PERSONAL PROPERTY AND THE PROPERTY AND ADDRESS OF THE PERSON OF TH

The same of the sa

Fig. E-54 The Carolina Beach Pulse Envelope at Marietta, OH, and NAVOBSY;
Data Segment 3

AT TO PERSONAL PROPERTY OF THE PERSON NAMED AND ADDRESS OF THE

LORAN-C SIGNAL VOLTAGE PLOTTED AGAINST TIME IN MICROSECONDS

**STELD SITE: GEORGETOWN, DE STATION: DANA XMTR: 19 DATA SEGMENT: ONE ATTENUATION: 10.414 DB AT NAVOBSY, 7.474 DB AT FIELD SITE

The Carolina Beach Pulse Envelope at Georgetown, DE, and NAVOBSY; Data Segment 1 Fig. E-55

THE TO THE RESIDENCE AND A SERVICE THE PARTY AND A SERVICE AND A SERVICE

Fig. E-56 The Carolina Beach Pulse Envelope at Georgetown, DE, and NAVOBSY; Data Segment 2

I TO TO THE RESIDENCE OF THE PARTY OF THE PA

1975 DAY NO.: 156 DATA SEGMENT: THREE LORAN-C SIGNAL VOLTAGE PLOITED AGAINSI IIME IN MICROSECONDS FIELD SITE: GEORGETOWN, DE ATTENNATION: 10.928 DB AT NAVOBSY, 7.472 DB AT FIELD SITE

Fig. E-57 The Carolina Beach Pulse Envelope at Georgetown, DE, and NAVOBSY; Data Segment 3

the stilled the training and the state of the state of the state of

Fig. E-58 The Carolina Beach Pulse Envelope at Toms River, NJ, and NAVOBSY; Data Segment 1

1975 DAY NO.: 149 DATA SEGMENT: TWO LORAN-C SIGNAL VOLTAGE PLOITED ACAINST TIME IN MICROSECONDS. FIELD SITE: TOMS RIVER,NJ STATION: NANTUCKET XMTR: 23 ATTENNATION: 19.701, DB AT NAVOBSY, 25.463 DB AT FIELD SITE

Fig. E-59 The Carolina Beach Pulse Envelope at Toms River, NJ, and NAVOBSY; Data Segment 2

The transfer of the second of

1975 DAY NO.: 149 DATA SEGMENT: THREE LORAY-C SIGNAL VOLTAGE PLOITED AGAINST TIME IN MICROSECONDS FIELD SITE: TOMS RIVER,NJ ATTENNATION: 19,837 DB AT NAVOBSY, 25,576 DB AT FIELD SITE

The said the said

The Carolina Beach Pulse Envelope at Toms River, NJ, and NAVOBSY; Data Segment 3 Fig. E-60

THE TANK THE PARTY OF THE PARTY

LOBAU-C SIGNAL VOLTAGE PLOTTED AGAINST TIME IN MICROSECONDS FIELD SITE: GROTTOES,VA ATTENDATION: 19.799 DB AT NAVOBSY, 9.219 DB AT RIELD SITE

THE PARTY OF THE PROPERTY OF THE PARTY OF TH

+ ++FIELD SITE . **NAVOBSY

The Carolina Beach Pulse Envelope at Grottoes, VA, and NAVOBSY; Data Segment 1 Fig. E-61

I are to go to the second to the transfer of the second to the second to

1975 DAY NO.: 170 DATA SEGMENT: TWO LORAY-C SIGNAL VOLTAGE PLOITED AGAINST TIME IN MICROSECONDS FIELD SITE: GROTTOES,VA ATTENUATION: 19.982 DB AT NAVOBSY, 9.366 DB AT FIELD SITE

The same of the sa

The Carolina Beach Pulse Envelope at Grottoes, VA, and NAVOBSY; Data Segment 2 Fig. E-62

The transfer of the second of

The said the said to the said

Fig. E-63 The Carolina Beach Pulse Envelope at Grottoes, VA, and NAVOBSY; Data Segment 3

THE TOP IN THE PROPERTY AND THE TAXABLE THE PARTY AND THE

LORAN-C SICUAL VOLTAGE PLOTTED AGAINST TIME IN MICROSECONDS 1975 DAY NO.: 168 FIELD SITE: BLUEFIELD, WY STATION: NANTUCKET XMIR: 23 DATA SEGMENT: ONE ATTENUATION: 19.556, DB AT NAVOBSY, 6.211 DB AT FIELD SITE

Fig. E-64 The Carolina Beach Pulse Envelope at Bluefield, WV, and NAVOBSY; Data Segment 1

TO PERSONAL PROPERTY AND ASSESSMENT OF THE PARTY OF THE PARTY AND ASSESSMENT ASSESSMENT OF THE PARTY OF THE P

Fig. E-65 The Carolina Beach Pulse Envelope at Bluefield, WV, and NAVOBSY; Data Segment 2

The state of the s

The same of the sa

LORAN-C SIGNAL VOLTAGE PLOTTED AGAINST TIME IN MICROSECONDS FIELD SITE: BLUEFIELD, WY ATTENUATION: 19.577 DB AT NAVOBSY, 6.276 DB AT FIELD SITE

The Carolina Beach Pulse Envelope at Bluefield, WV, and NAVOBSY; Data Segment 3 Fig. E-66

140

120

100

09

-

00.0

LORAN-C SIGNAL VOLTAGE ELOTTED AGAINST TIME IN MICROSECONDS
FIELD SITE: NAVOBSY, BASELINE STATION: CAROLINA BRACH XMTR: 19 DATA SEGMENT: ONE ATTENUATION: 27.590 DB AT NAVOBSY, 26.674 DB AT FIELD SITE

The said of the said said of the said

The Carolina Beach Pulse Envelope at NAVOBSY on Day 154; Data Segment 1 Fig. E-67

The transfer of the second of

Fig. E-68 The Carolina Beach Pulse Envelope at NAVOBSY on Day 154; Data Segment 2

Fig. E-69 The Carolina Beach Pulse Envelope at NAVOBSY on Day 154; Data Segment 3

are to go a sure of the second of the second

The same of the sa

LORAN-C SIGNAL VOLTAGE PLOTTER AGAINST TIME IN MICROSECONDS FIELD SITE: MAVOBSY, BASELINE STATION: CAROLINA BEACH XMTR: 19 DATA SEGMENT: ONE ATTENNATION: 27.849 DB AT NAVOBSY, 26.837 DB AT FIELD SITE

The Carolina Beach Pulse Envelope at NAVOBSY on Day 188; Data Segment 1 Fig. E-70

1975 DAY NO.: 188 DATA SEGMENT: TWO LORAY-C SIGNAL VOLTAGE PLOTTED AGAINST TIME IN MICROSECONDS FIELD SITE: NAVOBSY, BASELINE STATION: CAROLINA BEACH XMTR: 19 ATTENUATION: 27.724 DB AT NAVOBSY, 26.772 DB AT FIELD SITE

The sale of the sale should be the

Fig. E-71 The Carolina Beach Pulse Envelope at NAVOBSY on Day 188; Data Segment 2

1 19 To go of the late of the

Fig. E-72 The Carolina Beach Pulse Envelope at NAVOBSY on Day 188; Data Segment 3

The state of the s

Table E-1
The Time of Zero Crossings Relative to the Time of the 11th Sample Point on the Pulse NAVORSY

						of	the 11th	Sample	Point on	n the Pulse,	Š	VOBSY					
	Cl	5.706 5.685 5.702	10.57 10.57 10.56	4 15.44 5 15.45 2 15.44	7 20.338 1 20.340 0 20.335	25.249 25.249 25.248	30.171	35.102 35.102 35.102	40.039 40.038 40.039	44.978 44.978 44.978	49.922 49.921 49.921	54.869 54.869 54.869	59.823 59.823.	64.785 64.784 64.785	69.757 69.756 69.756	74.742 74.739 74.740	79
	C2	5.845	10.62	4 15.48 1 15.45 1 15.46	4 20.372 8 20.352 7 20.360	25.278 25.260 25.267	30.194 30.175 30.182	35.097 35.097 35.103	40.045 40.024 40.030	44.977 44.954 44.961	49.912 49.888 49.895	54.851 54.828 54.835	59.797 59.773 59.781	64.726 64.726 64.734	69.711 69.688 69.697	74.682 74.660 74.669	79
	C3	6.028	10.79 10.82 10.79	9 15.59 6 15.60 9 15.53	0 20.424 7 20.433 0 20.422	25.297 25.303 25.295	30.198 30.204 30.195	35.116 35.123 35.115	40.047	44.984 44.992 44.983	49.936 49.936 49.927	54.876 54.885 54.876	59.832 59.841 59.832	64.796 64.806 64.796	69.770 69.780 69.769	74.753 74.764 74.752	79
	C4	5.677	10.53 10.56 10.55	5 15.42 7 15.44 2 15.44	4 20.333 4 20.333 2 20.322	25.250 3 25.246 25.237	30.177 30.176 30.167	35.112 35.116 35.107	40.053 40.061 40.053	44.996 45.009 45.001	49.943 49.958 49.951	54.896 54.911 54.904	59.855	64.834 64.834 64.827	69.800 69.809 69.802	74.789 74.795 74.789	79
	D1	6.321 6.631 6.454	10.42	6 15.20 6 15.24 2 15.22	5 20.113 5 20.122 4 20.121	25.069 25.068 25.073	30.047	35.036 35.034 35.040	40.030 40.030 40.036	45.026 45.027 45.033	50.023 50.024 50.030	55.018 55.019 55.025	60.012 60.014 60.018	65.004 65.007 65.009	69.994 69.999 69.998	74.982 74.989 74.984	79
- 315	D2	6.847 6.841 6.819	10.77	1 15.29 8 15.29 4 15.28	9 20.130 2 20.126 0 20.121	25.065 25.064 25.059	30.038 30.038 30.031	35.021 35.025 35.016	40.010 40.015 40.005	45.006 45.006 44.995	49.989 49.995 49.985	54.983 54.983 54.975	59.965 59.970 59.965	64.953 64.957 64.955	69.941 69.943 69.945	74.927	79 79
-	D3	6.582	10.28 10.41 10.35	3 15.03.7 7 15.084 2 15.056	2 19,963 4 19,989 0 19,969	24.942 24.956 24.945	29.938 29.947 29.940	34.937	39.936 39.944 39.939	44.931 44.941 44.935	49.924 49.934 49.926	54.914 54.924 54.915	59.902 59.912 59.902	64.889 64.898 64.898	69.874 69.883 69.869	74.857 74.865 74.850	7979
	N1	5.855	10.58 10.75 10.62	8 15.400 3 15.490 6 15.42	6 20.283 6 20.318 5 20.289	25.197 25.208 25.204	30.133	35.083 35.099 35.108	40.043 40.067 40.073	45.008 45.038 45.039	49.977 50.010 50.006	54.951 54.982 54.974	59.927 59.956 59.946	64.933 64.933 64.923	69.889 69.914 69.905	74.873	79
	N2	5.758 5.758 5.864	10.49	6 15.31 6 15.33 7 15.32	4 20.191 0 20.204 9 20:193	25.109 25.118 25.108	30.052 30.058 30.053	35.010 35.013 35.013	39.975 39.977 39.980	44.946 44.946 44.951	49.921 49.921 49.926	54.900 54.900 54.900	59.883 59.882 59.885	64.869 64.868 64.870	69.858 69.857 69.859	74.850 74.849 74.852	79
	N3	5.702	10.55 10.50	3 15.42 8 15.38 8 15.36	5 20.310 5 20.280 8 20.275	25.215 25.194 25.198	30.140 30.131 30.139	35.084 35.085 35.095	40.042 40.053 40.064	45.011 45.030 45.041	49.987 50.013 50.025	54.968 55.001 55.012	59.954	64.942 64.985 64.997	69.932	74.924 74.976 74.988	7 9 9 7 9
(Day	(Day 154)	5.849	10.60 10.63 10.63	2 15.46 2 15.49 3 15.49	3 20.351 1 20.372 4 20.374	25.253 25.272 25.273	30.163 30.182 30.182	35.083 35.101 35.101	40.010 40.028 40.026	44.941 44.958 44.956	49.878 49.894	54.821 54.835 54.830	59.770 59.783 59.777	64.726 64.739 64.732	69.691 69.703 69.696	74.666 74.678 74.671	79
(Da)	C0 (Day 188)	6.207 6.207 6.180	10.90	8 15.67 8 15.66 0 15.67	3 20.484 9 20.477 3 20.487	25.329 25.320 25.332	30.200 30.189 30.202	35.088 35.076 35.090	39.989 39.976 39.990	44.898 44.884 44.898	49.815 49.801 49.815	54.740 54.726 54.739	59.673 59.660 59.673	64.618 64.604 64.618	69.575 69.562 69.575	74.547 74.534 74.546	79

Table E-2
The Time of Zero Crossings Relative to the Time of the 11th Sample Point on the Pulse, Field Sites

					- 316	5 -				(Day	(Day
C1	C2	C3	C4	D1	D2	D3	N1	N2	N3	C0 Day 154)	(Day 188)
5.831 5.826 5.826	5.883	5.484 5.597 5.610	5.087	6.030	5.756	5.390	5.893	5.251	4.148 4.297	5.664	6.122 6.435 6.100
10.613 10.611 10.607	10.610 10.589 10.596	10.375	10.000	10.609 10.618 10.616	10.587 10.587 10.584	10.051 10.119 10.088	10.612	10.078	9.913	10.454	10.834 10.976 10.826
15.45	15.44 15.42 15.43	15.24 15.30 15.26	14.98 14.98 14.97	15.32 15.33	15.35 15.36 15.35	14.87	15.40	14.97	15.13 15.06 15.09	15.38 15.31 15.31	15.61
4 20.327 2 20.327 0 20.326	4 20.323 4 20.303 2 20.311	7 20.148 0 20.193 4 20.159	8 19.964 6 19.966 1 19.952	7 20.153 3 20.158 4 20.160	0 20.191 2 20.202 2 20.193	H J M	4 20.264 3 20.288 9 20.285	5 19.917 0 19.939 0 19.954	8 20.212 8 20.171 0 20.186	2 20.277 3 20.205 8 20.215	4 20.442 7 20.494 5 20.446
7 25.227 7 25.227 6 25.226	2 25.223 3 25.204 1 25.212	8 25.083 3 25.119 9 25.090	4 24.947 6 24.951 2 24.942	3 25.053 8 25.056 0 25.059	1 25.094 2 25.103 3 25.096	1 24.792 1 24.811 3 24.803	4 25.168 8 25.195 5 25.192	7 24.889 9 24.904 4 24.919	2 25.192 1 25.171 6 25.185	5 25.118 5 25.118 5 25.127	2 25.303 4 25.321 6 25.308
7 30.142 7 30.142 6 30.142	3 30.137 4 30.117 2 30.125	3 30.035	7 29.935 1 29.939 2 29.933	3 29.994 6 29.998 9 30.000	4 30.036 3 30.044 6 30.037	2 29.787 1 29.799 3 29.791	8 30.100 5 30.127 2 30.124	9 29.876 4 29.887 9 29.900	2 30.126 1 30.120 5 30.136	0 30.114 8 30.043 7 30.050	3 30.188 1 30.183 8 30.192
2 35.069 2 35.070 2 35.069	7 35.060 7 35.039 5 35.047	5 34.993 4 35.017 0 34.996	5 34.923 9 34.926 3 34.922	4 34.957 8 34.960 0 34.962	35.007	34.78 34.79 34.78	0 35.049 7 35.075 4 35.072	34.868	6 35.048 0 35.055 6 35.073	35.046 3 34.975 0 34.980	8 35.087 3 35.069 2 35.092
40.004	39.988 39.966 7 39.974	3 39.953 7 39.970 6 39.953	39.907 39.908 39.905	7 39.931 39.934 2 39.936	39.972 39.980 39.972	3 39.775 2 39.780 3 39.771	40.00	39.862 39.87I	8 39.979 5 39.996 3 40.014	39.982 39.910 39.914	7 39.997 9 39.969 2 40.001
44.945	44.919 44.896 44.904	3 44.910 3 44.908	44.886 44.886 44.883	1 44.911 4 44.914 5 44.915	44.952 44.959 44.951	44.7	# # # # # # # # # # # # # # # # # # #	44.85 44.86	44.952 44.952	# # # # # # # # # # # # # # # # # # #	44.912 44.878 144.917
49.891 49.890 49.891	49.855 49.830 49.839	49.867 49.863	49.860 49.859 49.857	49.893 49.895 49.897	49.933 49.941 49.933	49.7 49.7	# # #	49.850 49.855 49.862	49.893 49.924 49.935	49.865 49.791 49.794	0 0 0
54.842 54.842 54.842	54.796 54.770 54.779	54.822 54.825 54.816	54.832 54.832 54.830	54.876 54.878 54.879	54.916 54.922 54.915	54.723 54.715 54.702	54.914 54.935 54.931	54.843 54.845 54.855	54.873 54.908 54.913	54.813 54.737 54.740	54.763 54.716 54.768
59.799	59.743 59.715 59.725	59.779 59.778 59.772	59.803 59.806 59.805	59.858 59.860 59.861	59.838 59.904 59.897	59.699 59.686 59.671	59.891 59.912 59.908	59.837 59.836 59.848	59.862	59.766 59.688 59.691	59.700 59.644 59.704
64.765 64.764 64.765	64.697 64.669 64.679	64.740 64.735 64.730	64.778 64.785 64.785	64.841 64.843 64.843	64.879 64.884 64.878	64.675 64.655 64.638	64.873 64.894 64.889	64.832 64.827 64.843	64.854 64.894 64.880	64.726 64.647 64.650	64.647 64.580 64.652
69.740 69.738 69.739	69.661 69.632 69.642	69.706 69.699 69.694	69.761 69.773 69.773	69.824 69.825 69.826	69.858 69.863 69.857	69.649 69.622 69.603	69.858 69.880 69.875	69.828 69.820 69.841	69.846 69.887 69.861	69.693 69.614 69.618	69.608 69.528 69.612
74.725 74.723 74.724	74.635	74.679 74.670 74.664	74.753 74.772 74.772	74.805 74.807 74.807	74.836 74.840 74.834	74.621 74.537 74.566	74.848 74.870 74.865	74.825 74.814 74.840	74.834 74.876 74.837	74.670 74.591 74.595	74.583
79.722	79.620 79.589 79.600	79.660 79.649 79.640	79.757 79.783 79.784	79.785 79.786 79.786	79.809	79.589 79.547 79.524	79.840 79.864 79.859	79.824 79.810 79.841	79.817	79.657 79.579	79.573

The second second and the second second

Table E-3

Key to Labels That Denote the Location of the Instrumented Van

CO	NAVOBSY
C1	Wilmington, NC
C 2	Emporía, VA
C3	Towanda, PA
C4	Dexter, NY
DO	NAVOBSY
D1	Danville, IN
D 2	Marietta, OH
D 3	Georgetown, DE
NO	NAVOBSY
N 1	Toms River, NJ
N 2	Grottoes, VA
N 3	Bluefield, WV

To go of the second second

Appendix F

RESULTS OF PULSE ALIGNMENT

This appendix assembles the illustrative material associated with pulse alignment at the 11th sample point on the pulse, i.e., nominally 30 $\,\mu s$ from the start of the pulses. Figures F-1 through F-12 present the leading edges of pulses so aligned. The voltages plotted in these figures result from evaluations of the polynomials of Tables D-9 through D-12 and normalized to a peak value of 1.

From these values of voltage, ECM was calculated as explained in the main body of text. The result of this calculation is plotted against SPM in Fig. F-13. SPM and ECM are plotted against SPM in Fig. F-13. SPM and ECM are plotted against the distance from NAVOBSY to the field site in Figs. F-14 and F-15. Figure F-16 presents the observed attenuation of the signal at each site relative to the field strength of Carolina Beach observed at Wilmington, NC. Tables F-1 and F-2 tabulate the times of zero crossings relative to the time of the 11th sample point. The vertical groups of three rows are for the three data segments. Table F-3 records the values of the distance from the transmitting station to the site, ECM and SPM plotted in Figs. F-13, F-14, and F-15. Table F-4 records the values of attenuation plotted in Fig. F-16. The labels Cl, C2 ... NO in these tables refer to the location of the van during data recordings (see Table E-3 of Appendix E).

The second of th

LORAY-C SIGNAL VOLTAGE PLOTTED AGAINST TIME IN MICROSECONDS FIELD SITE: WILMINGTON, NC STATION: CAROLINA BRACH XMTR: 19 DATA SEGMENT: ALL

Locations of Leading Edges of Pulses with Standard Zero Crossings Aligned at 30 µs; Wilmington, NC, and NAVOBSY Fig. F-1

TO THE RESIDENCE OF THE PARTY O

Fig. F-2 Locations of Leading Edges of Pulses with Standard Zero Crossings Aligned at 30 μ s; Emporia, VA, and NAVOBSY

-05

30

20

10

100

The second of th

LORAN-C SICNAL VOLTAGE PLOTTED AGAINST TIME IN MICROSECONDS FIELD SITE: TOWANDA, PA STATION: CAROLINA BEACH XMTR: 20 DATA SEGMENT: ALL

Fig. F-3 Locations of Leading Edges of Pulses with Standard Zero Crossings Aligned at 30 μ s; Towanda, PA, and NAVOBSY

Fig. F-4 Locations of Leading Edges of Pulses with Standard Zero Crossings Aligned at 30 μ s; Dexter, NY, and NAVOBSY

TO THE RESIDENCE OF THE PARTY O

LORAY-C SIGNAL VOLTAGE PLOTTED AGAINST TIME IN MICROSECONDS

XMTR: 19 DAYA SEGMENT: ALL
FIRLD SITE: DANVILLE,IN

Fig. F-5 Locations of Leading Edges of Pulses with Standard Zero Crossings Aligned at 30 μ s; Danville, IN, and NAVOBSY

At Billion with The server and who was a server about the best to be

Fig. F-6 Locations of Leading Edges of Pulses with Standard Zero Crossings Aligned at 30 μ s; Marietta, OH, and NAVOBSY

The state of the s

The same of the same

LORAN-C SIGNAL VOLTAGE PLOTTED AGAINST TIME IN MICROSECONDS

FIRED SITE: GEORGETOWN, DE STATION: DAWA XMTR: 19 DATA SEGMENT: ALL

The same of the sa

Locations of Leading Edges of Pulses with Standard Zero Crossings Aligned at 30 µs; Georgetown, DE, and NAVOBSY Fig. F-7

Fig. F-8 Locations of Leading Edges of Pulses with Standard Zero Crossings Aligned at 30 μ s; Toms River, NJ, and NAVOBSY

The transfer of the second of

Fig. F-9 Locations of Leading Edges of Pulses with Standard Zero Crossings Aligned at 30 μ s; Grottoes, VA, and NAVOBSY

The second of th

The same of the same of

Fig. F-10 Locations of Leading Edges of Pulses with Standard Zero Crossings Aligned at 30 μs ; Bluefield, WV, and NAVOBSY

The state of the same

*

Fig. F-11 Locations of Leading Edges of Pulses with Standard Zero Crossings Aligned at 30 $\mu s_{\rm i}$ NAVOBSY, 1975 Day No. 154

20-

0.0

The sales to sell the sell to

Fig. F-12 Locations of Leading Edges of Pulses with Standard Zero Crossings Aligned at 30 μs ; NAVOBSY , 1975 Day No. 188

Note: The straight line is drawn through points for which both the field site and NAVOBSY are close to the inverse distance line in Fig. F-16.

Fig. F-13 The Relationship Between SPM and ECM

Miller Table To Sent Server Swift South Sent Allen All to his

Fig. F-14 The Change in SPM with Path Length Measured from NAVOBSY

TO THE RESIDENCE AND ASSESSED TO SEE AND ASSESSED ASSESSE

Fig. F-15 The Change in ECM with Path Length Measured from NAVOBSY

Attenuation of the Signal Relative to the Field Strength of Carolina Beach Observed at Wilmington, NC Fig. F-16

ar top of the late of the late

Table F-1
The Time of Zero Crossings Relative to the Time of the 11th Sample Point on the Pulse, NAVOBSY

C1	5.536 5.517 5.532	703 10.403 10.404 10.391	15.277 15.281 15.271	20.167 20.170 20.165	25.077 25.078 25.077	30.001	34.932 34.931 34.931	39.868 39.868	44.808 44.808 44.808	49.751 49.751 49.751	54.699 54.699 54.699	59.652 59.652 59.652	64.614 64.614 64.614	69.587 69.586 69.586	74.571 74.569 74.570	79.
C2	5.651	10.430 10.416 10.419	15.290 15.284 15.286	20.178 20.177 20.178	25.084 25.084 25.085	30.001	34.923 34.922 34.922	39.851 39.848 39.849	44.783 44.779 44.780	49.718 49.713 49.714	54.657 54.653 54.654	59.603 59.598 59.599	64.555 64.552 64.553	69.517 69.513 69.515	74.488 74.485 74.488	7 9 9 7 9
C3	5.829	10.601 10.622 10.603	15,393 15,403 15,395	20.227 20.230 20.228	25.099 25.099 25.099	30.001 30.001 30.001	34.919 34.919 34.919	39.849 39.851 39.850	44.786 44.789 44.788	49.729 49.732 49.731	54.678 54.681 54.680	59.634 59.638 59.636	64.599 64.602 64.600	69.572 69.576 69.574	74.556 74.561 74.557	79
C4	5.502	10.357 10.391 10.384	15.249 15.263 15.266	20.153 20.157 20.155	25.072 25.070 25.070	30.001 30.001 30.001	34.935	39.875 39.885 39.886	44.833 44.833 44.834	49.767 49.783 49.784	54.719 54.735 54.737	59.677 59.693 59.695	64.645 64.658 64.660	69.622 69.633 69.635	74.612 74.619 74.622	111
D1	6.588	10.378 10.514 10.410	15.157 15.200 15.173	20.066 20.078 20.072	25.022 25.024 25.023	30.001	34.989 34.990 34.991	39.983 39.986 39.986	44.979 44.983 44.983	49.975 49.980 49.980	54.971 54.975 54.975	59.965 59.970 59.967	64.957 64.963 64.958	69.947 69.955 69.948	74.934 74.945 74.934	~~~
D2	6.841 6.804 6.788	10.735 10.719 10.702	15.263 15.255 15.250	20.094 20.088 20.090	25.029 25.026 25.028	30.000	34.985 34.987 34.985	39.974 39.977 39.973	44.963 44.967 44.963	49.952 49.956 49.954	54.941 54.944 54.944	59.929 59.932 59.934	64.917 64.919 64.924	69.905 69.905 69.914	74.891 74.891 74.902	~~~
D3	6.644	10.343 10.472 10.412	15.093 15.137 15.109	20.026 20.041 20.029	25.005 25.009 25.006	30.001	35.000 34.999 35.001	39.998 39.998	44.994 44.994 44.995	49.986 49.987 49.986	54.976 54.977 54.975	59.964 59.965 59.965	64.951 64.951 64.946	69.936 69.936 69.929	74.919 74.918 74.910	7 9 9 7 9
N1	5.723 5.913 5.719	10.456 10.609 10.478	15.274 15.353 15.277	20.150 20.175 20.139	25.064 25.066 25.055	30.001	34.950 34.958 34.959	39.909 39.925 39.923	44.875 44.896 44.889	49.845 49.867 49.856	54.818 54.840 54.825	59.795 59.814 59.797	64.774 64,792 64.774	69.756 69.773 69.756	74.741 74.758 74.744	~~~
NZ	5.667 5.812	10.442 10.457 10.494	15.263 15.272 15.277	20.139 20.145 20.140	25.057 25.060 25.056	30.001	34.957 34.954 34.959	39.922 39.918 39.926	44.8994 44.89894	49.869 49.863 49.873	54.848 54.841 54.851	59.831 59.824 59.832	64.817 64.810 64.818	69.806 69.799 69.806	74.797 74.791 74.799	~~~
N3	5.562 5.516 5.423	10.412 10.376 10.329	15.285 15.256 15.230	20.170 20.148 20.136	25.075 25.064 25.059	30.001	34.944 34.954 34.957	39.901 39.922 39.925	44.870 44.898 44.902	49.846 49.882 49.886	54.870 54.870 54.874	59.813 59.861 59.865	64.802 64.854 64.858	69.792 69.849 69.853	74.784 74.846 74.849	111
C0 (Day 154)	5.686	10.439 10.451 10.452	15.300 15.308	20.187 20.191 20.193	25.089 25.089 25.090	30.001	34.920 34.919 34.919	39.846 39.845 39.844	44.778 44.776 44.774	49.714 49.712 49.708	54.657 54.653 54.648	59.606 59.601 59.595	64.563 64.557 64.550	69.528 69.521 69.514	74.503 74.496 74.488	111
C0 (Day 188)	6.008	10.710 10.720 10.698	15.474	20.284 20.288 20.284	25.129 25.131 25.129	30.001	34.888 34.887 34.887	39.789 39.787 39.787	44.698 44.696 44.696	49.615 49.612 49.612	54.540 54.537 54.537	59.474 59.471 59.471	64.418 64.416 64.415	69.375 69.373 69.372	74.347 74.345 74.344	

Table F-2

The said of the said of the said

The Time of Zero Crossings Relative to the Time of the 11th Sample Point on the Pulse, Field Sites

Table F-3

Values of Distance, SPM, and ECM Plotted in Figs. F-13, F-14, and F-15

1975			NAVOBSY to		
Day	Field	Transmitting	Field Site	SPM	ECM
No.	Site	Station	(m)	(µs)	(µs)
177	Wilmington, NC	Carolina Beach	520672	-3.600	-1.653
1//	wilmington, NC	Carolina beach	520672	-3.600	-1.656
			520672	-3.600	-1.673
175	Emporia, VA	Carolina Beach	-250900	-1.490	-0.772
			250900	1.491	0.829
			250900	1.489	-0.831
183	Towanda, PA	Carolina Beach	323487	2.713	-0.223
			323487	2.736	0.049
			323487	2.720	-0.032
181	Dexter, NY	Carolina Beach	569702	3.894	-0.105
			569702	3.901	0.355
			569702	3.904	-0.369
163	Danville, IN	Dana	817137	-5.562	-5.301
			817137	5.555	-5.367
			817137	5.558	-5.346
161	Marietta, OH	Dana	-376178	-3.172	-2.272
101	naraceta, on	Dana	-376178	-3.165	-2.120
			-376178	-3.165	-2.353
156	Georgetown, DE	Dana	150434	0.677	-3.759
	coorgovan, cz	24.14	150434	0.680	-5.212
			150434	0.679	7.223
149	Toms River, NJ	Nantucket	-273230	-2.092	-1.053
. 4 /	roms kriver, no	Mancacket	-273230	-2.074	-1.014
			273230	-2.084	-1.100
170	Grottoes, VA	Nantucket	170013	1.891	-0.689
			170013	1.896	-0.985
			170013	1.914	1.256
168	Bluefield, WV	Nantucket	405849	3.019	2.272
			405849	3.023	1.897
			405849	3.031	1.879
154	NAVOBSY	Carolina Beach	0	0.026	-0.010
			0	0.037	0.149
			0	0.044	0.153
188	NAVOBSY	Carolina Beach	0	0.046	0.053
			0	0.048	0.048

TO THE RESIDENCE AND A STREET OF THE PARTY AND A STREET ASSESSMENT ASSESSMENT

	Distance		
	Station	Adjusted	Measured
	to Site	Attenuation	Attenuation (dB)
Site	(m)	(dB)	(db)
C 1	23572	0.000	43.762
		-0.005	43.757
		0.075	43.687
C2	293344	-21.584	22.178
		21.964	21.798
		21.841	21.921
С3	867731	-40.541	3.222
		40.390	3.372
		-40.340	3.422
C 4	1113946	-47.354	-3.592
		47.442	3.680
		47.431	-3.669
D1	85946	-11.237	32.526
		11.215	32.547
		11.199	32.563
D2	526905	30.403	13.359
		30.384	13.378
		30.391	13.371
D3	1053517	-44.861	-1.099
		44.700	0.938
		-44.940	1.178
N1	384346	-24.246	19.516
		23.575	20.187
		23.467	20.295
N2	827590	-39.701	4.061
		39.592	4.170
		39.695	4.067
N3	1063425	42.921	0.841
		42.996	0.766
		42.867	0.895
CO	544244	29.140	14.622
DO	903083	42.485	1.277
NO	657576	30.380	13.382

TO BE THE RESIDENCE OF THE PART OF THE PAR

Appendix G

RESULTS OF FREQUENCY FILTERING

This appendix assembles the histograms and the plotted Fourier coefficients that were used in an attempt to understand the data taken at Georgetown, DE, and simultaneously at NAVOBSY.

Figures G-1 through G-8 are derived from data taken at Danville, IN, and NAVOBSY during the first 20-min recording. Figures G-1 and G-2 are histograms of first-stage edited data taken at NAVOBSY and Danville, respectively. Figures G-3 and G-4 present the Fourier coefficients derived from Q and I data, respectively, taken at NAVOBSY simultaneously with recording at Danville. The Danville coefficients are shown in Figs. G-5 and G-6. Figures G-7 and G-8 are the histograms of frequency filtered data taken at NAVOBSY and Danville, respectively.

Figures G-9 through G-12 present histograms and Fourier coefficients derived from data taken at NAVOBSY during recordings at Georgetown, DE, during the first 20-min data recording, i.e., data segment 1. Figure G-9 is the histogram of first-stage edited data. Figures G-10 and G-11 present the Fourier coefficients for Q and I data, respectively. Figure G-12 is the histogram of the frequency filtered data.

Figures G-13 through G-16 are the same as Figs. G-9 through G-12 but for data segment 2, and Figures G-17 through G-20 are for data segment 3.

Figures G-21 through G-32 are the same as Figs. G-9 through G-20 except that the data were recorded at Danville, IN.

TII-TIZ HISTUGRAM U U 27: D

T12 DISTRIBUTION
0 0 0 0 3 34 601 1754 1696 1635 1721 637 43 5 3 1 1 1 0

TOTAL NO. PAIRS = 8192

T11.12 EDIT SIGMA = 0.5234

ECITING LEVEL = 6 SIGMA

T11 EDIT PAIRS = 3

T12 EDIT PAIRS = 1

T11.12 EDIT PAIRS = 3

T11 AVERAGE =-0.0293

T12 AVERAGE = 1.2225

Fig. G-1 Histogram of First-Stage Edited Data Taken at NAVOBSY During Recording at Danville, IN; Data Segment 1

A TO THE RESIDENCE OF THE PARTY OF THE PARTY

T 11 227 264 :14 0 . C

T12 DISTRIBUTION
0 0 0 1 13 54 221 700 1287 1731 1749 1443 655 260 57 18 2 0 0 0

TCTAL NO. PAIRS = 8192

T11,12 EDIT SIGMA = 0.0705

ECITING LEVEL = 6 SIGMA

T11 EDIT PAIRS = 0

T12 EDIT PAIRS = 1

T11,12 EDIT PAIRS = 0

T11 AVERAGE = 0.0012

T12 AVERAGE = 2.9070

Fig. G-2 Histogram of First-Stage Edited Data Taken at Danville, IN; Data Segment 1

ar trap of the company of the transfer of the company of the compa

TOTAL DC POWER IN Q . 0.0007

19 the table to be the same was said to be a second

10 ALVE #0.24660-3) MAX VALUE #0.19930 00 TOTAL AC POLES * 0.4750 AVA AC AC POLES * 0.4019

Fig. G-3 Power Spectral Density Showing Interference in Q Data Taken at NAVOBSY During Recording at Danville, IN; Data Segment 1

TOTAL DC POWER IN 1 = 1.4894

The transfer of the second of

Fig. G-4 Power Spectral Density Showing Interference in I Data Taken at NAVOBSY During Recording at Danville, IN; Data Segment 1

TO THE RESIDENCE OF THE PARTY O

The state of the s

TOTAL DC POWER IN Q . 0.0000

4

Fig. G-5 Power Spectral Density Showing Interference in Q Data Taken at Danville, IN; Data Segment 1

TOTAL DC POWER IN 1 . 8.4512

The state of the s

20.75

100

IN VALUE -0.1740D-04 MAX VALUE -0.6460D-03 TOTAL AC POMER - 0.0106 AVG AC POMER - 0.0000

Fig. G-6 Power Spectral Density Showing Interference in I Data Taken at Danville, IN; Data Segment 1

the second of the total the training of the second second to the second second

T11-T12 HISTOGRAM 256 1894 1094 44 1091 1856 11?

T12 DISTRIBUTION
0 0 0 1 2 5 84 663 3306 3349 648 110 11 2 1 3 0 0 0

TCTAL NO. PATRS = 8192

T11.12 EDIT SIGMA = 0.5234

ECITING LEVEL = 6 SIGMA

T11 EDIT PATRS = 3

T12 EDIT PATRS = 1

T11.12 EDIT PATRS = 3

T11 AVERAGE =-0.0293

T12 AVERAGE = 1.2225

Fig. G-7 Histogram of First-Stage Edited Data Taken at NAVOBSY During Recording at Danville, IN, After Frequency Filtering; Data Segment 1

or trap of the second second to the transfer of the second second

T11-T12 HISTOGRAM 1 3 О

T12 DISTRIBUTION
0 0 0 11 36 178 679 1310 1735 1910 1425 623 221 54 8 1 0 0 0

TCTAL NO. PAIRS = 8192

T11.12 EDIT SIGMA = 0.0705

ECITING LEVEL = 6 SIGMA

T11 EDIT PAIRS = 0

T12 EDIT PAIRS = 1

T11.12 EDIT PAIRS = 0

T11 AVERAGE = 0.0012

T12 AVERAGE = 2.9070

Fig. G-8 Histogram of First-Stage Edited Data Taken at Danville, IN, After Frequency Filtering; Data Segment 1

T11 T11-T12 HISTUGRAM 462 1078 463 503 1076

T12 DISTRIBUTION
1 7 6 9 22 40 70 259 1369 2295 2292 1349 248 86 36 22 8 5 8 5

TCTAL NO. PAIRS = 8192

T11.12 EDIT SIGMA = 0.7757

ECITING LEVEL = 6 SIGMA

T11 EDIT PAIRS = 22

T12 EDIT PAIRS = 24

T11.12 EDIT PAIRS = 9

T11 AVERAGE = 0.0385

T12 AVERAGE = 1.2246

Tark!

Fig. G-9 Histogram of First-Stage Edited Data Taken at NAVOBSY During Recording at Georgetown, DE; Data Segment 1

TOTAL DC POWER IN U . 0.0018

Fig. G-10 Power Spectral Density Showing Interference in Q Data Taken at NAVOBSY During Recording at Georgetown, DE; Data Segment 1

The same services with the same same same same same and the same same same

the title take the transfer and the surface of the title to be a first

TOTAL DC PUNER IN [= 1.497

100

TO SECURE THE STATE STAT

Fig. G-11 Power Spectral Density Showing Interference in I Data Taken at NAVOBSY During Recording at Georgetown, DE; Data Segment 1

TIL TIL-TIZ HISTOGRAM 11 23 151 39 653 3 202 258 1579 1097 22 168 10 140 1082 1582 3119 104 633 126 19 0

T12 DISTRIBUTION
3 2 11 6 17 30 70 119 648 3156 3194 611 139 58 33 17 7 12 2 2

TCTAL NO. PAIRS = 8192

T11,12 EDIT SIGMA = 0.7757

EDITING LEVEL = 6 SIGMA

T11 EDIT PAIRS = 22

T12 EDIT PAIRS = 25

T11,12 EDIT PAIRS = 8

T11 AVERAGE = 0.039J

T12 AVERAGE = 1.2245

Fig. G-12 Histogram of First-Stage Edited Data Taken at NAVOBSY During
Recording at Georgetown, DE, After Frequency Filtering; Data Segment 1

TO THE RESIDENCE OF THE PARTY O

T11 TIL-TIZ HISTOGRAM 467 1016 533 502 1015 C

T12 DISTRIBUTION
5 7 3 14 26 32 62 270 1363 2222 2324 1409 243 71 21 21 11 5 7 2

TOTAL NO. PAIRS = 8192

T11.12 EDIT SIGMA = 0.7815

ECITING LEVEL = 6 SIGMA

T11 EDIT PAIRS = 22

T12 EDIT PAIRS = 36

T11.12 EDIT PAIRS = 11

T11 AVERAGE = 0.0352

T12 AVERAGE = 1.2161

Fig. G-13 Histogram of First-Stage Edited Data Taken at NAVOBSY During Recording at Georgetown, DE; Data Segment 2

Fig. G-14 Power Spectral Density Showing Interference in Q Data Taken at NAVOBSY During Recording at Georgetown, DE; Data Segment 2

DC POWER IN 1 . 1.4666 TCTAL 1 at the grant of the total the total the total and the same was to the same the form to the same to t

AND TO THE STATE OF THE STATE O

Fig. G-15 Power Spectral Density Showing Interference in I Data Taken at NAVOBSY During Recording at Georgetown, DE; Data Segment 2

of the second of

T12 DISTRIBUTION
6 6 6 12 28 30 66 126 636 3139 3125 677 150 53 27 15 10 4 4 3

TCTAL NO. PAIRS = 8192

T11.12 EDIT SIGMA = 0.7815

ECITING LEVEL = 6 SIGMA

T11 EDIT PAIRS = 22

T12 EDIT PAIRS = 36

T11.12 EDIT PAIRS = 11

T11 AVERAGE = 0.0331

T12 AVERAGE = 1.2156

Fig. G-16 Histogram of First-Stage Edited Data Taken at NAVOBSY During Recording at Georgetown, DE, After Frequency Filtering; Data Segment 2

the transfer of the second that we have the second the

									111-1	12 HI	STOGR	۸м									rec
0		0	0	0	0	0	0	1	2	0	0	0	0	0	0	0	0	0	0	0	3
0		0	0	1	0	0	0	2	3	1	0	0	0	э	1	o	0	0	0	0	8
0		0	0	0	1	1	0	1	0	2	0	0	1	0	0	0	0	o	o	0	6
0		0	0	0	2	1	3	0	1	1	2	0	o	o	1	1	0	0	о	0	12
0		0	1	1	2	1	2	2	0	4	1	2	6	2	0	1	1	0	0	1	27
0		1	1	2	ı	0	2	4	5	7	8	3	2	3	1	0	1	0	1	1	43
1		0	0	0	3	4	3	9	18	13	10	4	7	0	1	1	0	1	. 0	0	75
ı		0	1	0	0	2	8	40	104	63	29	12	7	9	2	0	0	0	0	0	278
1		1	0	1	5	6	13	113	599	501	108	30	18	9	2	3	1	1	0	1	1413
1		1	2	2	1	1	16	56	486	951	500	104	25	13	2	1	3	0	0	0	2165
1		1	2	2	1	9	8	28	117	488	937	524	62	16	5	4	0	0	2	0	2 2 0 7
1		1	1	2	3	1	4	14	23	110	517	618	98	16	3	1	1	1	0	0	1415
0		0	1	1	5	ı	3	8	14	33	01	: 26	41	,	5	1	1	0	0	0	308
0	(0	0	0	3	2	3	3	10	10	12	13	7	6	3	1	٥	0	1	0	74
2		0	0	1	0	0	2	4	4	1	7	6	7	3	3	0	1	0	0	1	42
0		0	0	2	0	1	0	0	3	1	0	1	0	0	2	0	1	0	0	0	11
0		0	0	0	1	0	3	1	0	0	0	0	2	2	1	0	1	1	1	0	13
0		0	1	0	0	0	0	1	0	1	1	1	0	0	0	0	1	0	0	0	6
0	(0	0	1	0	0	0	1	3	0	0	0	1	0	0	0	0	0	1	0	7
0		С	0	1	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

T12 DISTRIBUTION 8 5 10 17 26 30 70 288 1392 2187 2213 1444 284 88 32 14 12 4 6 4

TCTAL NO. PAIRS = 8192

T11.12 EDIT SIGMA = 0.7445

ECITING LEVEL = 6 SIGMA

T\$1 EDIT PAIRS = 26

T12 EDIT PAIRS = 25

T11.12 EDIT PAIRS = 7

T11 AVERAGE = 0.0430

T12 AVERAGE = 1.2269

Fig. G-17 Histogram of First-Stage Edited Data Taken at NAVOBSY During Recording at Georgetown, DE; Data Segment 3

THE STREET STREET, AND STREET, THE STREET, SALES SALES SALES AND SALES AND A SECOND STREET, AND A SECOND SALES AND A SECOND SAL

The transfer of the second of DC PUNER IN Q * 0.0023 TOTAL the second of the late of the contract of the second of th

Fig. G-18 Power Spectral Density Showing Interference in Q Data Taken at NAVOBSY During Recording at Georgetown, DE; Data Segment 3

Commence of the Table To the Tolling of the South State of the South S

PRECEDING PAGE BLANK-NOT FILMED

The state of the s

The transfer of the factor of

VALUE #0.14460-02 MAX VALUE #0.17250 00 TOTAL AC POWER # 1.3006 AVG AC POWER # 0.0051

Fig. G-19 Power Spectral Density Showing Interference in I Data Taken at NAVOBSY During Recording at Georgetown, DE; Data Segment 3

the state of the training of the same was the same of the same of

TIL-TIZ HISTOGRAM													T11							
0	0	0	٥	0	o	0	0	0	0	0	0	0	ı	1	0	0	o	o	1	3
0	0	С	0	1	0	0	0	3	ı	0	o	0	0	0	o	0	o	0	o	5
0	0	0	0	1	1	0	0	1	3	o	o	o	٥	1	ι	0	o	٥	0	8
0	o	o	1	1	0	0	1	2	1	2	2	o	2	0	0	0	٥	0	0	12
0	o	0	0	0	0	3	1	1	1	2	3	. 0	1	1	0	0	1	0	0	14
0	1	0	3	o	0	2	1	4	4	5	4	2	6	2	1	0	3	0	0	38
1	1	o	1	3	2	5	6	8	11	9	9	7	4	0	0	0	o	0	0	67
0	0	0	1	0	6	2	5	30	38	31	17	10	5	3	2	1	٥	1	0	152
2	1	0	0	4	3	8	21	134	288	171	35	24	7	2	3	0	1	0	o	704
1	1	o	1	1	4	8	46	270	1359	1051	164	24	6	5	ı	0	1	0	0	2943
0	2	1	3	1	5	6	27	147	1141	1527	258	29	10	1	1	0	1	0	1	3 2 0 1
0	0	1	3	1	3	2	18	43	163	297	134	21	6	2	2	1	0	0	0	697
0	1	1	ż	1	5	j	8	21	33	45	28	14	S	2	3	Э	2	0	0	172
1	0	0	0	2	4	4	7	3	10	13	3	6	4	1	0	1	0	0	0	59
0	0	0	1	2	0	2	4	1	1	1	8	1	1	0	1	0	0	0	0	23
1	0	0	0	o	0	3	0	2	0	2	1	2	1	3	1	1	1	0	0	18
0	1	0	1	1	1	0	1	1	0	0	0	1	o	2	0	0	٥	1	0	10
0	0	0	0	0	0	0	1	2	1	0	2	0	0	0	0	0	0	0	0	6
0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	3
0	0	0	0	0	0	c	ı	0	0	1	0	О	0	0	0	0	0	0	0	2

T12 OISTRIBUTION 6 9 3 18 19 32 50 148 673 3055 3157 708 141 60 26 13 4 10 3 2

TCTAL NO. PAIRS = 8192

T11.12 EDIT SIGMA = 0.7445

EDITING LEVEL = 6 SIGMA

T11 EDIT PAIRS = 25

T12 EDIT PAIRS = 23

T11.12 EDIT PAIRS = 7

T11 AVEPAGE = 0.0435

T12 AVERAGE = 1.2272

Fig. G-20 Histogram of First-Stage Edited Data Taken at NAVOBSY During Recording at Georgetown, DE, After Frequency Filtering; Data Segment 3

TO THE RESIDENCE OF THE PROPERTY OF THE PARTY OF THE PART

T 11 T11-T12 HISTOGRAM 41 330 58 433 1263 27 152 754 1310 1.2

T12 DISTRIBUTION
1 3 6 13 19 33 70 190 1057 2691 2676 983 210 61 38 25 11 15 2 4

TCTAL NO. PAIRS = 8192

T11,12 EDIT SIGMA = 0.6249

EDITING LEVEL = 6 SIGMA

T11 EDIT PAIRS = 35

T12 EDIT.BARS = 37

T11,12 EDIT PAIRS = 12

T11 AVERAGE = 0.1042

T12 AVERAGE = 0.9175

Fig. G-21 Histogram of First-Stage Edited Data Taken at Georgetown, DE; Data Segment 1

TOTAL DC PONER IN Q . 0.0133

The state of the s

- 12 C

255 * 256 256 HI VALUE =0.16830-02 MAX VALUE =0.41720-01 TOTAL AC POWER = 0.4949 AVG AC POWER = 0.0039

Fig. G-22 Power Spectral Density Showing Interference in Q Data Taken at Georgetown, DE; Data Segment 1

The transfer of the transfer o

Fig. G-23 Power Spectral Density Showing Interference in I Data Taken at Georgetown, DE; Data Segment 1

A THE THE THE THE PARTY OF THE

T11 T11-T12 HISTOGRAM ? 334 1389 1035 159 1105 1435

TCTAL NO. PAIPS = 8192

T11.12 EDIT SIGMA = 0.6249

ECITING LEVEL = 6 SIGMA

T11 EDIT PAIRS = 37

T12 EDIT PAIRS = 35

T11.12 EDIT PAIRS = 10

T11 AVERAGE = 0.1046

T12 AVERAGE = 0.9185

Fig. G-24 Histogram of First-Stage Edited Data Taken at Georgetown, DE, After Frequency Filtering; Data Segment 1

THE TOTAL PROPERTY OF THE PROPERTY OF THE PARTY OF THE PA

TLI-TIZ HISTOGRAM 33 295 439 1355

T12 DISTRIBUTION 3 5 7 17 21 28 76 180 1003 2743 2692 996 192 72 31 22 9 5 5 6

TCTAL NO. PAIRS = 8192

T11.12 EDIT SIGMA = 0.6575

ECITING LEVEL = 6 SIGMA

T11 EDIT PAIRS = 29

T12 EDIT PAIRS = 39

T11.12 EDIT PAIRS = 11

T11 AVEPAGE = 0.0942

T12 AVERAGE = 0.9173

Fig. G-25 Histogram of First-Stage Edited Data Taken at Georgetown, DE; Data Segment 2

The state of the s

TOTAL DC POWER IN 0 = 0.0079

Fig. G-26 Power Spectral Density Showing Interference in Q Data Taken at Georgetown, DE; Data Segment 2

A STATE OF THE PARTY OF THE PAR

The state of the s

Fig. G-27 Power Spectral Density Showing Interference in I Data Taken at Georgetown, DE; Data Segment 2

ANNAL PROPERTY OF THE PARTY OF

T11 T11-T12 HISTOGRAM 285 1485 1107 162 1025 1428

T12 DISTRIBUTION
4 6 5 14 23 22 58 168 690 3077 3097 661 149 65 36 15 9 3 8 5

TCTAL NO. PAIRS = 8192

T11.12 EDIT SIGMA = 0.6575

EDITING LEVEL = 6 SIGMA

T11 EDIT PAIRS = 33

T12 EDIT PAIRS = 35

T11.12 EDIT PAIRS = 9

T11 AVERAGE = 0.0966

T12 AVERAGE = 0.9170

Fig. G-28 Histogram of First-Stage Edited Data Taken at Georgetown, DE, After Frequency Filtering; Data Segment 2

All the state of t

T11 416 1189 750 1158

T12 DISTRIBUTION 5 5 6 16 24 24 56 150 1041 2715 2661 1057 196 69 32 14 11 8 2 2

TCTAL NO. PAIRS = 8192

T11.12 EDIT SIGMA = 0.6278

EDITING LEVEL = 6 SIGMA

T11 EDIT PAIRS = 25

T12 EDIT PAIRS = 19

T11.12 EDIT PAIRS = 14

T11 AVERAGE = 0.0976

T12 AVERAGE = 0.9247

Fig. G-29 Histogram of First-Stage Edited Data Taken at Georgetown, DE; Data Segment 3

TO PERSONAL PROPERTY OF THE PARTY OF THE PAR

2 15

TO PERSON AND THE TAXABLE PROPERTY OF THE PROP

160-02 NAX VALUE =0.64570-01 TOTAL AC POWER = 0.9315 AVG AC POWER = 0.0036

Fig. G-30 Power Spectral Density Showing Interference in Q Data Taken at Georgetown, DE; Data Segment 3

THE RESERVE THE TAXABLE PROPERTY OF THE PROPER

The The Table To t

T12 DISTRIBUTION 3 7 5 18 19 23 47 133 755 3045 3070 750 129 70 30 10 10 9 1 4

0 0

TCTAL NO. PAIRS = 8192

T11,12 EDIT SIGMA = 0.6278

ECITING LEVEL = 6 SIGMA

T11 EDIT PAIRS = 22

T12 EDIT PAIRS = 18

T11,12 EDIT PAIRS = 14

T11 AVERAGE = 0.0984

T12 AVERAGE = 0.9253

Fig. G-32 Histogram of First-Stage Edited Data Taken at Georgetown, DE, After Frequency Filtering; Data Segment 3

The state of the s

INITIAL DISTRIBUTION EXTERNAL TO THE APPLIED PHYSICS LABORATORY*

The work reported in TG 1298D was done under Navy Contract NO0017-72-C-4401. This work is related to Task Z832, which is supported by USAF and DARPA.

ORGANIZATION	LOCATION	ATTENTION	No. o Copi
DEPARTMENT OF DEFENSE			
DDC	Alexandria, VA		12
HQ, DCA/Code 960	Arlington, VA 20350	W. D. DeHart	1
DMATC/G52320	Washington, DC 20315	R. P. Peat	1
JAN 10,7 032320		J. W. Walker	2
		C. B. Sharp	2
HQ, DMA/PPS	Washington, DC 20305	P. Schwimmer	2
DMAAC/PRRS	St. Louis AFS, MO 63718		1
Department of the Army			
USAECOM/AMSEL-VL	Ft. Monmouth, NJ 07703		1
OPM NAVCON/AMCPM-NC-TM	Ft. Monmouth, NJ 07703		1
Department of the Navy			
NAVAIRSYSCOM	Washington, DC	AIR-50174	2
NAVSEASYSCOM	Washington, DC	SEA-09G3	2
NAVPRO	Laurel, MD 20810	W. J. Klepczynski	2
U.S. Naval Observatory, Time Service Div.	Washington, DC 20390	G. M. R. Winkler	l i
		Tech. Lib.	1
Department of the Air Force			
HQ, USAFE/DORO/DOQ/DOB/INC/INTM	APO New York 09012		5
HQ, PACAF/DOO/DOOF	APO San Francisco 96553		2
ESD/DCL, Stop 43	Hanscom AFB, MA 01731	H. Cotton	1
		G. J. Samos	1
		R. V. Gressang	10
ATGG /GDTG	Andrews AFB, MD 20334	L. D. Higginbotham R. Cronquist	1
AFSC/SDEC	Washington, DC 20380	C. Ewald	li
USAF HQ/CSAF/RDPA/XOOF	washington, be 20000	R. Herr	1 î
ADTC/TGYZ	Eglin AFB, FL 32542	J. Graydon	1
	,	E. L. Ener	1
AGMC/MLTE	Newark AFS, OH 43055	J. Ostrowski	1
HQ TAC/DRA	Langley AFB, VA 23365		1
HQ USAF, AFIS/INTB	Washington, DC 20330		1
HQ, Space and Missile Systems		S. P. Richard	1
Organization (AFSC) 497 RTG/INTM	Los Angeles, CA 90009 APO New York 09633	S. F. Kichard	1
U.S. GOVERNMENT AGENCIES			
DARPA/TTO	Arlington, VA 22209	P. Worch	10
Department of Transportation,			
U.S. Coast Guard			
USCG/G-E, HQ	Washington, DC 20590	A. Manning	1
USCG/G-EEE, HQ	Washington, DC 20590	J. Culbertson	1
USCG/G-EEE-4, HQ	Washington, DC 20590	W. Ferm	1
		W. Schor E. Bregstone	1 1
USCC/C-FAF-//63 NO	Washington, DC 20590	R. Wehr	1
USCG/G-EAE-4/63, HQ USCG Loran Station	Carolina Beach, NC 28428	P. Kies	1
DOT/Loran-C Proj. Off. (TST), DOT HQ	Washington, DC 20590	W. Mohin	1
Off. of Telecommunications, DOT HQ	Washington, DC 20590	A. Goldsmith	1
Coast Guard Electronic Engineering Ctr.	Wildwood, NJ 08260	W. F. Roland	1
12th Coast Guard Dist. (EEE)	San Francisco, CA 94126	R. Winn	1

Requests for copies of this report from DoD activities and contractors should be directed to DDC, Cameron Station, Alexandria, Virginia 22314 using DDC Form 1 and, if necessary, DDC Form 55.

AND AND THE THE PARTY OF THE PA

^{*}Initial distribution of this document within the Applied Physics Laboratory has been made in accordance with a list on file in the APL Technical Publications Group.