11.1 Simulation of the SIR model.

c)d) Showing limited disease spreading with doubling the recovery rate and halving the infection rate.

11.2 Dependence of the final number of recovered agents on the infection rate

 $R\infty$ depends strongly on the infection rate $\beta.$ This dependence is demonstrated in figure

11.3 SIR model with mortality.

11.4 SIR model with temporary immunity.

1000

Code

I had 4 scripts but will only insert the two for the firsts to exercises because the other two scripts were a combination of the two.

```
% Homework 3: Disease Spreading, Simulation of Complex Systems FFR120
% Nicole Adamah 2022
%11.1
clear all;
close all;
clc;
%% Parameters:
N=1000;
n=100:
infect=10;
d=0.8; % Probability of random walk
g=0.01; % Recovery rate
B=0.6; % Infection rate
trials = 1;
for m = 1:trials
disp(m);
t = 0;
x=randi(n,1,N)-1;
                               % Random location along x
y=randi(n,1,N)-1;
                               % Random location along y
[\sim,I]=sort((x-n/2).^2+(y-n/2).^2); % Find closest ones to the center
preI=zeros(1,N);
preI(I(1:infect))=1;
I=logical(preI);
                             % Infection status array
R=false(1,N);
                             % Recovered status array
                             % Susceptible status array
S=logical(1-I);
for h = 1:1000
%% SIMULATION
   dx=2*(round(rand(1,N))-0.5).*(rand(1,N)< d); % Random Walks along x
   dy=2*(round(rand(1,N))-0.5).*(rand(1,N)< d); % Random Walks along x
   x = mod(x + dx, n);
                               % Performing walks, Periodic Boundary Conditions
   y=mod(y+dy,n);
   for i=1:N
    if(I(i)==true)&&(rand \le B)
                                  % Only infected agents can infect others,roll the dice for infection
      infection=(x==x(i))&(y==y(i)); % Determine the indices for the agents who sit at the site of infection
      S(infection)=false;
                                % There are no longer any susceptibles at infection area
     I(infection)=not(R(infection)); % the not recovered agents will turn infected at infection site
    end
   end
   recovery=(rand(1,N) < g);
                                 % Recovery array
   R = R \mid (I\&recovery);
                               % Recovery operation, the output is true if either or both of the inputs are true
   I = I & not(recovery);
                               % The recovered are no longer infected, the output is true when both inputs are true
   nrI(t+1)=sum(I);
   nrR(t+1)=sum(R);
   nrS(t+1)=sum(S);
   finalR = nrR(end);
   t=t+1;
  end
end
%% PLOT 11.1
set(h,'Color','w','Units','Pixels');
a1=axes('Units','Pixels');
box on:
hold on;
xlabel('$x$','FontSize',20,'Interpreter','Latex');
ylabel('$y$','FontSize',20,'Interpreter','Latex');
plot(x(I),y(I),'r.','MarkerSize',7);
plot(x(R),y(R),'g.','MarkerSize',7);
plot(x(S),y(S),'b.','MarkerSize',7);
title(['t=' num2str(t)]);
xlim([-1 n]);
ylim([-1 n]);
h1=figure; set(h,'Color','w','Units','Pixels')
```

```
set(h1,'Color','w','Units','Pixels');
a2=axes('Units','Pixels');
box on;
hold on;
xlabel('Time Steps','FontSize',18,'Interpreter','Latex');
ylabel('Number of agents', 'FontSize', 18, 'Interpreter', 'Latex');
title([\bf{$d=\$' num2str(g)'}, \beta=\$' num2str(g)', \beta=\$' num2str(g)'], FontSize', 12, Interpreter', Latex')
plot(nrS,'b','LineWidth',2);
plot(nrI,'r','LineWidth',2);
plot(nrR,'g','LineWidth',2);
y1 = linspace(0,1000,6);
ylim([0 1000]);
legend('susceptible', 'infected', 'recovered');
% Homework 3: Disease Spreading, Simulation of Complex Systems FFR120
% Nicole Adamah 2022
% 11.2
clear all;
close all;
clc;
%% Parameters:
N=1000;
n=100;
infect=10;
d=0.8;
b_list=linspace(0.05,1,12);
g_list=[0.01,0.02];
trials = 4;
data1 = zeros(trials,length(b_list));
data2 = zeros(trials,length(b_list));
for m = 1:trials
disp(m);
a = 1;
for k =1:length(g_list)
  g = g_list(1,k);
for j = 1:length(b_list)
  B = b \operatorname{list}(1,j);
  t = 0;
  x=randi(n,1,N)-1;
                                   % Random Location along x
  y=randi(n,1,N)-1;
                                   % Random Location along y
  \label{eq:continuous} \hbox{$[\sim,I]$=sort((x-n/2).^2+(y-n/2).^2);} \qquad \% \ \hbox{$F$ ind closest ones to the center}
  preI=zeros(1,N);
  preI(I(1:infect))=1;
  I=logical(preI);
                                 % Infection status array
  R=false(1,N);
                                 % Recovered status array
  S=logical(1-I);
                                 % Susceptible status array
  for h = 1:1000
%% SIMULATION
   dx=2*(round(rand(1,N))-0.5).*(rand(1,N)< d); % Random Walks along x
    dy=2*(round(rand(1,N))-0.5).*(rand(1,N)< d); % Random Walks along x
    x=mod(x+dx,n);
   y=mod(y+dy,n);
                                % Performing walks, Periodic Boundary Conditions, Alternative -solid walls- would be x(x>n)=n;
    for i=1:N
     if(I(i)==true)&&(rand \le B)
                                   % Only infected agents can infect others, and we also roll the dice for infection
      infection=(x==x(i))&(y==y(i)); % Determine the indices for those who sit at the site of infection
      S(infection)=false:
                                 % There are no longer any susceptibles at infection area
      I(infection)=not(R(infection)); % All non-recovered agents will turn infected at infection site
     end
    \quad \text{end} \quad
    recovery=(rand(1,N)<g);
                                   % Recovery array
    R = R \mid (I\&recovery);
                                % Recovery operation
    I = I & not(recovery);
                                % The ones recovered are no longer infected
    nrI(t+1)=sum(I);
   nrR(t+1)=sum(R);
   nrS(t+1)=sum(S);
    finalR = nrR(end);
   t=t+1:
   end
```

```
if k == 1
     data1(a,j) = data1(a,j) + finalR;
  else
     data2(a,j) = data2(a,j) + finalR;
  end
end
end
if (m == 1)
  avgData1 = data1;
  avgData2 = data2;
else
  avgData1 = data1/trials;
  avgData2 = data2/trials;
end
end
%% PLOT 11.2 a & b
h1=figure; set(h1,'Color','w','Units','Pixels') set(h1,'Color','w','Units','Pixels');
a2=axes('Units','Pixels');
box on;
hold on;
scatter(b_list, avgData1(1,:), 'b')
scatter(b_list, avgData2(1,:),'g')
xlabel('Beta','FontSize',18,'Interpreter','Latex');
ylabel('Rinf','FontSize',18,'Interpreter','Latex');
legend('g = 0.01', 'g=0.02');
```

%% PLOT 11.2 c