SeqSeies

Score: 0/260 0/26 answered Progress saved Done

Instructor Preview of All Questions

Show All Answers

Hide Intro and Between-Question Text Settings Questions

Question 1

☑ 0/10 pts ⑤ 3 ⇄ 19

Consider the series $\sum_{n=1}^{\infty} \frac{4n^4}{5n^3+5}$

Based on the Divergence Test:

Theorem. If $\lim_{n \to \infty} \, a_n$ is not convergent to 0, $\sum_{n=1}^\infty a_n$ is divergent.

does this series Diverge?

- Inconclusive
- Diverges

Which statement(s) is(are) right?		
Sum of an infinite convergent sequence is also convergent.		
☐ Harmonic series is convergent.		
Alternating harmonic series is convergent.		
\square Suppose that a_n is the n -th term of a convergent series. Then $\left\{a_n ight\}_n$ is converg	ent.	
\square Suppose that a_n is the n -th term of a divergent series. Then $\left\{a_n\right\}_n$ is always di	vergent.	
Alternating harmonic series is convergent. Suppose that a_n is the n -th term of a convergent series. Then $\{a_n\}_n$ is convergent. Submit Question		
Question 3	☑ 0/10 pts 幻 3 ជ 19	

Suppose that

$$a_0 = 0.6$$
,

$$a_{n+1}=\stackrel{,}{2}a_n$$
 , if $a_n<0.5$

$$a_{n+1}=2a_n-1$$
 if $a_n>0.5$

Which statement(s) is(are) right?

- $\square \left\{a_n\right\}_{n=0}^{\infty}$ is convergent.
- $\square \left\{a_n\right\}_{n=0}^{\infty}$ is divergent.
- $\square \left\{a_{4n}\right\}_{n=0}^{\infty}$ is convergent.
- $\square \left\{a_{2n}\right\}_{n=0}^{\infty}$ is convergent.

O^o

 $\overline{\{a_n\}}_{n=0}^{\infty}$ is divergent. $\overline{\{a_{4n}\}}_{n=0}^{\infty}$ is convergent.

Consider the resursive series, $\sum_{n=0}^{\infty}a_n$, where a_b is defined as follows:

$$a_0=rac{1}{4}, a_n=igg(1+rac{1}{n}igg)a_{n-1}, n=1,2,3,\cdots,$$

Answer the following about $\{a_n\}$ in explicit form but not in recursive formula:

- 1. $a_7 = \boxed{ \qquad \qquad }$
- 2. a_n =
- 3, series is
 - Divergent
 - Convergent

Which one is(are) convergent?

$$\square\sum_{n=1}^{\infty}rac{n^3-n+1}{n^1\cdot\left(\left(\ln(n^2+1)
ight)
ight)^2}$$

$$\Box \sum_{n=1}^{\infty} \frac{n^1}{(n^3 - n + 1) \cdot (\ln(n^2 + 1))}$$

$$\square \sum_{n=1}^{\infty} \frac{\left(\ln\left(n^2+1\right)\right)^2}{n^1 \cdot (n^3-n+1)}$$

$$\square \sum_{n=1}^{\infty} rac{n^1 \cdot \left(\ln \left(n^2 + 1
ight)
ight)}{n^3 - n + 1}$$

$$\square \sum_{n=1}^{\infty} \frac{n^3 - n + 1}{n^1 \cdot (\ln(n^2 + 1))}$$

$$egin{aligned} egin{aligned} a & 1 & 1 \\ \hline egin{aligned} \lambda & 1 & 1 \\ \hline \lambda & 1$$

Suppose that
$$\sum_{n=1}^{\infty} \frac{x^n (n+1)^{3n}}{(3n+1)!}$$

It is convergent if $x \in \left[-\frac{3^3}{\exp(3)}, \frac{3^3}{\exp(3)}\right]$

Note:

- 1. Euler number, input by e, for example: $e^2 = e^2$ input by exp(2),
- 2. Open interval, $\{x \in \mathbb{R} \mid a < x < b\}$, input by (a,b),
- 3. closed interval, $\{x \in \mathbb{R} \mid a \leq x \leq b\}$, input by [a,b],

Submit Question

Question 7

☑ 0/10 pts ⑤ 3 ⇄ 19

Find all the Truths:

$$\square$$
 If $\displaystyle\sum_{n=1}^{\infty}a_n$ diverges, $\displaystyle\lim_{n o\infty}\,a_n
eq 0$;

$$\Box$$
 The series, $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots$, converges;

$$\square \sum_{n=1}^{\infty} a_n$$
 diverges if $\lim_{n o \infty} \, a_n
eq 0$;

$$\Box$$
 The geometric series, $a+ar+ar^2+\cdots+ar^n+\cdots$, is convergent only for $|r|<1$ and for any $a\in\mathbb{R}$;

$$\square \sum_{n=1}^{\infty} a_n$$
 converges if $\lim_{n o \infty} \, a_n = 0;$

$$oxed{\Box}$$
 If $a_{n+2}=a_{n+1}+a_n$ where $a_1=a_1=2$, then $\sum_{n=1}^{\infty}rac{1}{a_{n+1}a_{n+2}}$ is convergent and equal to 1,

$$\square$$
 The series, $1-1+1-1+1-1\cdots$, converges,

$$\Box$$
 The series, $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \cdots$, converges;

If
$$\sum_{n=1}^{\infty} a_n$$
 converges, then $\lim_{n o \infty} \, a_n = 0$;

$$\sum_{n=1}^{\infty} a_n$$
 diverges if $\lim_{n o\infty} \, a_n
eq 0$;

The series,
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \cdots$$
, converges;

Question 8

☑ 0/10 pts ᠑ 3 ⇄ 19

Find out all the series which are convergent:

$$\square \sum_{n=1}^{\infty} \frac{n}{3^n + 2}$$

$$\square \sum_{n=1}^{\infty} a_n^2$$
 where $\sum_{n=1}^{\infty} a_n$ is convergent;

$$\square \sum_{n=1}^{\infty} a_n$$
 where $\sum_{n=1}^{\infty} a_n^2$ is convergent;

$$\square \sum_{n=1}^{\infty} \frac{n}{\sqrt{n^2 + 2n + 1}}$$

$$\square \sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$$

$$\sum_{n=1}^{\infty} \frac{n}{3^n+2}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$$

$$\sum_{n=1}^{\infty} \frac{\log n}{n^2}$$

Question 9

☑ 0/10 pts ⑤ 3 ⇄ 19

Finall all the Truth(s):

$$\square 1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \cdots$$
 is convergent;

$$\square$$
 If $0 \leq a_n \leq b_n$ for $n=1,2,3,\cdots$, $\sum_{n=1}^\infty a_n$ is divergent if $\sum_{n=1}^\infty b_n$ is divergent;

$$\square$$
 If $0\leq a_n\leq b_n+c_n$ for $n=1,2,3,\cdots$, $\sum_{n=1}^\infty a_n$ is divergent if both $\sum_{n=1}^\infty b_n$ and $\sum_{n=1}^\infty c_n$ are divergent;

$$\square$$
 If $0\leq a_n+b_n\leq c_n$ for $n=1,2,3,\cdots$, both $\sum_{n=1}^\infty a_n$ and $\sum_{n=1}^\infty b_n$ are convergent if $\sum_{n=1}^\infty c_n$ is convergent;

$$\square$$
 Suppose that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are positive series and

$$\lim_{n o\infty}\,rac{a_n}{b_n}=0$$

then
$$\sum_{n=1}^{\infty} a_n$$
 is divergent if $\sum_{n=1}^{\infty} b_n$ is divergent;

$$\square$$
 Suppose that $\displaystyle\sum_{n=1}^{\infty}a_n$ and $\displaystyle\sum_{n=1}^{\infty}b_n$ are positive series and

$$\lim_{n o\infty}\;rac{a_n}{b_n}=\infty$$

then
$$\sum_{n=1}^{\infty} a_n$$
 is divergent if $\sum_{n=1}^{\infty} b_n$ is divergent;

$$\square$$
 If $0 < a_{n+7} \le b_n$ for $n=1,2,3,\cdots$, $\sum_{n=1}^\infty a_n$ is convergent if $\sum_{n=1}^\infty b_n$ is convergent;

$$\sum_{n=1}^{\infty} \frac{x_i}{10^n}$$
 is convergent where x_i is one of the numbers, $0, 1, 2, \dots, 9$;

If
$$0 < a_{n+7} \le b_n$$
 for $n=1,2,3,\cdots$, $\sum_{n=1}^\infty a_n$ is convergent if $\sum_{n=1}^\infty b_n$ is convergent;

$$\sum_{n=1}^{\infty} rac{\log(n)}{n^p}$$
 is divergent if $p \leq 1$;

Suppose that
$$\displaystyle \sum_{n=1}^{\infty} a_n$$
 and $\displaystyle \sum_{n=1}^{\infty} b_n$ are positive series and

$$\lim_{n o\infty}\,rac{a_n}{b_n}=\infty$$

then
$$\sum_{n=1}^{\infty} a_n$$
 is divergent if $\sum_{n=1}^{\infty} b_n$ is divergent;

If
$$0 \leq a_n \leq b_n$$
 for $n=1,2,3,\cdots$, $\sum_{n=1}^\infty b_n$ is divergent if $\sum_{n=1}^\infty a_n$ is divergent;

Question 10

☑ 0/10 pts ᠑ 3 ⇄ 19

Find all the Truth(s):

- $\square \sum_{n=1}^{\infty} \frac{n!}{xn!}$ is convergent if x is positive integer greater than 1;
- \square Suppose that $a_1=rac{1}{2}, a_{n+1}=igg(1+rac{1}{n}igg)a_n$, then $\sum_{n=1}^\infty a_n$ is convergent;

$$\square$$
 Suppose that $a_1=rac{1}{9}, a_{n+1}=rac{3n-1}{4n+1}a_n$, then $\sum_{n=1}^{\infty}a_n$ is convergent;

$$\square$$
 Suppose that $a_1=rac{1}{9}, a_{n+1}=rac{\sin(n)}{n}a_n$, then $\sum_{n=1}^{\infty}a_n$ is convergent;

$$\square\sum_{n=0}^{\infty} {(-1)^n} \Biggl(rac{{(-1)^n}}{\sqrt{2n+1}} + rac{{(-1)^{n+1}}}{{(2n)}^2}\Biggr)$$
 is convergent;

$$\square$$
 If $\sum_{n=1}^{\infty} \frac{3^n}{4^n + 2}$ is convergent;

$$\square$$
 Suppose that $a_1=1, a_2=rac{1\cdot 2}{1\cdot 3}, \cdots, a_{n+1}=rac{n+1}{2n+1}a_n, \sum_{n=1}^\infty a_n$ is divergent;

$$\sum_{n=1}^{\infty} \left(\frac{1}{2^n} - \frac{1}{3^n} \right)$$
 is convergent and equal to $\frac{1}{2}$;

Suppose that
$$a_1=rac{1}{9},$$
 $a_{n+1}=rac{3n-1}{4n+1}a_n,$ then $\sum_{n=1}^{\infty}a_n$ is convergent;

Suppose that
$$a_1=rac{1}{9}, a_{n+1}=rac{\sin(n)}{n}a_n$$
, then $\sum_{n=1}^{\infty}a_n$ is convergent;

$$\sum_{n=2}^{\infty} \frac{1}{(\log n)^n} \text{ is convergent;}$$

$$\sum_{n=1}^{\infty} \frac{n}{9^n} \text{ is divergent;}$$

$$\sum_{n=1}^{\infty} \frac{n}{9^n}$$
 is divergent;

$$\sum_{n=1}^{\infty} \frac{n!}{xn!}$$
 is convergent if x is positive integer greater than 1;

If
$$\sum_{n=1}^{\infty} \frac{3^n}{4^n + 2}$$
 is convergent;

Question 11

☑ 0/10 pts ⑤ 3 ⇄ 19

- 1. Suppose that $e^{2x}=\sum_{n=0}^{\infty}a_nx^n$.
 - \circ coefficient, a_n , is
 - \circ the series is convergent if x in interval, I, and I=

- 2. Suppose that $e^x = \sum_{n=0}^{\infty} a_n (x+4)^n$.
 - \circ coefficient, a_n , is $e^{-4} \cdot rac{(-1)^n}{n!}$;
 - \circ the series is convergent if x in interval, I , and $I=igg(\sigma^{m{s}}\ |\ (-\infty,\infty)igg)$.
- 3. Suppose that $x^2e^x=\sum_{n=2}^\infty a_nx^n$.
 - \circ coefficient, a_n , is $\dfrac{1}{(n-2)!}$
- 4. Suppose that $(x-4)e^x=\sum_{n=0}^\infty a_nx^n$.
 - \circ coefficient, a_n where $n \geq 1$, is $\dfrac{n-4}{n!}$
 - \circ the series is convergent if x in interval, I , and I= $\boxed{ \sigma^{\!\!\!\! ullet} \left(-\infty, \infty \right) } \quad .$
- 5. Suppose that $e^{-rac{x^2}{2}}=\sum_{n=0}^{\infty}a_nx^{2n}.$
 - \circ coefficient, a_n , is $\boxed{ \left(\frac{(-1)^n}{(2)^n n!} \right)^n}$
 - \circ the series is convergent if x in interval, I, and I=

Note:

1. Euler number, e, input by e, for example: $e^2 = e^2 = \exp(2)$, 2. Open interval, $\{x \in mathb\{R\} \mid a < x < b\}$, input by (a,b),

3. closed interval, $\{x \in \mathbb{R} \mid a \leq x \leq b\}$, input by [a,b],

4. n!, factorial of n, input by n!.

5. ∞ , positive infinty, input by oo.

Submit Question

Question 12

☑ 0/10 pts ⑤ 3 ⊋ 19

1. Suppose that $\sin x = \sum_{n=0}^{\infty} a_n x^{2n+1}$.

- \circ coefficient, a_n , is
- \circ the series is convergent if x in interval, I, and I=

2. Suppose that $\cos x = \sum_{n=0}^{\infty} a_n x^{2n}$.

- \circ coefficient, a_n , is
- \circ the series is convergent if x in interval, I, and I=

$$oldsymbol{\sigma}$$
 $(-\infty,\infty)$

- 3. Suppose that $\cos(\sqrt{x}) = \sum_{n=0}^{\infty} a_n x^n$.
 - \circ coefficient, a_n , is $\dfrac{\left(-1
 ight)^n}{\left(2n
 ight)!}$
 - \circ the series is convergent if x in interval, I, and $I=igg[0,\infty)$
- 4. Consider the taylor series of $\sin(x)$ is expanded at $x=\frac{\pi}{2}$; the series could be represented as follows $\sin(x)=\sum_{n=0}^{\infty}a_n\Big(x-\frac{\pi}{2}\Big)^{2n}.$
 - \circ coefficient, a_n where $n \geq 1$, is $\cfrac{\left(-1
 ight)^n}{(2n)!}$;
 - \circ the series is convergent if x in interval, I, and I= $\boxed{ \sigma^{\!\!\!\!\! \circ} \mid (-\infty,\infty) \quad . }$
- 5. Consider the taylor series of $\sin(x) \cos$ is expanded at $x = \frac{\pi}{4}$; the series could be represented as follows

$$\sin x - \cos x = \sum_{n=0}^\infty a_n \Big(x - rac{\pi}{4}\Big)^{2n}.$$

- \circ coefficient, a_n , is $\sqrt{2}\cdotrac{{(-1)}^n}{{(2n+1)}!}$
- $\circ \hspace{0.1cm}$ the series is convergent if x in interval, I, and I=

$$oxed{\sigma} \left(-\infty, \infty
ight)$$

Note:

- 1. Euler number, e, input by e, for example: $e^2 = e^2 = \exp(2)$,
- 2. Open interval, $\{x \in mathb\{R\} \mid a < x < b\}$, input by (a,b),

- 3. closed interval, $\{x \in \mathbb{R} \mid a \leq x \leq b\}$, input by [a,b],
- 4. n!, factorial of n, input by n!.
- 5. ∞ , positive infinty, input by oo.

Question 13

☑ 0/10 pts ⑤ 3 ⇄ 19

As well known result:

$$rac{1}{1-x}=\sum_{n=0}^{\infty}x^n ext{ for } |x|<1.$$

Consider the following questions:

- 1. Consider $\dfrac{3}{1+x}$, expandeded at x=0 , is $\displaystyle\sum_{n=0}^{\infty}a_nx^n$.
 - \circ coefficient, a_n , is $\boxed{ \sigma^{\! m{\delta}} \ 3 \cdot rac{\left(-1
 ight)^n}{1^{n+1}} }$
 - $\circ \;\;$ the series is convergent if x in interval, I , and I=

$$race{\sigma} (-1,1)$$

- 2. Consider $\frac{1}{x}$, expandeded at x=5, is $\sum_{n=0}^{\infty}a_n(x-5)^n$.
 - \circ coefficient, a_n , is $\dfrac{\left(-1
 ight)^n}{5^{n+1}}$
 - $\circ~$ the series is convergent if x in interval, I, and I=

$$oxed{\sigma} \left[\left. (0, 2 \cdot 5) \,
ight.
ight]$$

3. Consider
$$\dfrac{1}{\left(3+x\right)^2}$$
 , expandeded at $x=0$, is $\displaystyle\sum_{n=0}^{\infty}a_nx^n$.

$$\circ$$
 the series is convergent if x in interval, I , and $I=iggl[$

$$oxed{\sigma} (-3,3)$$

4. Infinite series,
$$(1+x)^p$$
 where $p<0$, is called binary series,

$$\circ$$
 the binary series is convergent if x in interval, I , and $I=$

$$oldsymbol{\circ}$$
 $(-1,1)$

$$\circ$$
 For $p=rac{1}{2}$, and the series is expandand at $x=0$ is

$$\sum_{n=0}^{\infty} {(-1)^n} rac{a_n}{2^{2n-1}{(n\,!)}^2} x^n$$
 where a_n is $\boxed{ \sigma^{\!\!\!\!/} n(2\cdot n-2)! }$.

$$\circ$$
 For $p=-rac{1}{2}$, and the series is expandand at $x=0$ is

$$\sum_{n=0}^{\infty} {(-1)^n} rac{a_n}{2^{2n} {(n\,!)}^2} x^n$$
 where a_n is $\boxed{\sigma^o \ (2n)\,!}$

$$\circ$$
 Consider the $f(x)=rac{1}{(6+x)^{rac{1}{3}}}.$ Its binaray series is convergent for $x\in I$, i.e. I =

Note:

1. Euler number, e, input by e, for example: $e^2 = e^2 = \exp(2)$,

- 2. Open interval, $\{x \in \mathbb{R} \mid a < x < b\}$, input by (a,b),
- 3. closed interval, $\{x \in \mathbb{R} \mid a \leq x \leq b\}$, input by [a,b],
- 4. n!, factorial of n, input by n!.
- 5. ∞ , positive infinty, input by oo.

Question 14

☑ 0/10 pts ᠑ 3 ⇄ 19

As well known result:

$$rac{1}{1-x}=\sum_{n=0}^{\infty}x^n$$
 for $|x|<1$.

Consider the following questions:

the infinite series, $\left(1+x\right)^{p}$ where p<0, is called binary series,

1. The binary series, for any p<0, is convergent if x in interval, I, and I=

$$oxed{ \left[egin{array}{c} oldsymbol{\sigma^s} \ \end{array} \left(-1,1
ight) } \;\;.$$

2. For $p=rac{1}{2}$, and the series is expandand at x=0 is

$$\sum_{n=0}^{\infty} {(-1)^n} rac{a_n}{2^{2n-1}{(n\,!)}^2} x^n$$
 where a_n is $\boxed{ egin{array}{c} \sigma & n(2n-2)\,! \end{array}}$

3. For $p=-rac{1}{2}$, and the series is expandand at x=0 is

$$\sum_{n=0}^{\infty} {(-1)^n} rac{a_n}{2^{2n} {(n\,!)}^2} x^n$$
 where a_n is $\boxed{ \sigma^{\!\!\! s} \ (2n)! }$

4. Suppose that

$$f(x) = \frac{1}{\left(6+x\right)^{\frac{1}{3}}}.$$

This function is also a binaray series and is convergent for $x \in I$, i.e. I =

$$| \sigma^{\hspace{-.2em} s} | (-6,6) |$$

5. The convergent radius of binary series is

Note:

- 1. Euler number, e, input by e, for example: $e^2 = e^2$ input by $\exp(2)$, 2. Open interval, $\{x \in \mathbb{R} \mid a < x < b\}$, input by (a,b),
- 3. closed interval, $\{x \in \mathbb{R} \mid a < x < b\}$, input by [a,b],
- 4. n!, factorial of n, input by n!.
- 5. ∞ , positive infinty, input by oo.

Submit Question

Question 15

☑ 0/10 pts ⑤ 3 ☑ 19

Follows the following steps to determine convergence of the series: $S=\sum^{\infty}\left(5^{\frac{1}{n}}-4^{\frac{1}{n}}\right)^2$

1. Suppose that $f(x)=x^{rac{1}{n}}$ for $x\in [4,5].$ By Mean Value Theorem, we have

$$5^{rac{1}{n}} - 4^{rac{1}{n}} = A \cdot c^{rac{1}{n} - 1} \cdot (5 - 4) = rac{1}{rac{1}{A} \cdot c^{1 - rac{1}{n}}},$$

where A=

2. For $n \neq 1$,

$$5^{\frac{1}{n}} - 4^{\frac{1}{n}} \le A \cdot \frac{1}{4^{1 - \frac{1}{1}}} = \frac{1}{n^p}$$

where p=

ර 1

3. To determinae S whether is convergent or not, S is compared to the following p-series:

$$\sum_{n=1}^{\infty} \left(\frac{1}{n^C} \right)$$

where C =

o* 2

- 4. Therefore, the series, S, is
 - Divergent
 - Convergent

Q

Note:

- 1. Euler number, e, input by e, for example: $e^x = e^x$ input by exp(x),
- 2. Open interval, $\{x \in \mathbb{R} \mid a < x < b\}$, input by (a,b),
- 3. closed interval, $\{x \in \mathbb{R} \mid a \leq x \leq b\}$, input by [a,b],
- 4. n!, factorial of n, input by n!.
- 5. ∞ , positive infinty, input by oo.

As well-known result, the sum of alternating harmonic series is:

As well-known result, the sum of alternating harmon
$$\sum_{i=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} \dots = \log 2.$$

Then

1.
$$\frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} \dots = \boxed{ \frac{\log(2)}{2} }$$

Note

1 Natural logarithm inputs by log(x).

Submit Question

Question 17

☑ 0/10 pts ⑤ 3 ⊋ 19

Although only real series are considered in our course, but also could be applied in complex field. The Euler formula is the most famous one

$$e^{i\theta} = \cos\theta + i\sin\theta,$$

where $i=\sqrt{-1}$ is the pure unitary imaginary number.

1. The Mclaurin's series of e^x is

$$e^x = \sum_{n=0}^{\infty} \frac{A_n}{n!},$$

where
$$A_n = \boxed{ egin{array}{c|c}
odd & x^n \end{array} }$$

2. By Euler formula, $e^{in} = B + C \cdot i$,

where
$$B = \boxed{ egin{array}{c|c} { extstyle of } & \cos(n) \end{array}}$$

and
$$C = \boxed{ egin{array}{c|c} \sigma^{m{s}} & \sin(n) \end{array} }$$

3. Consider

$$E = igg[egin{picture} iggledown & igg$$

$$F = igg| egin{aligned} oldsymbol{\sigma} & \sin(n) \ \end{pmatrix}$$
 ,

4. On the other hand,

$$e^i = \cos(1) + G \cdot i$$
 , where $G = egin{bmatrix} \emph{o}^{m{s}} & \sin(1) \end{pmatrix}$,

implies

$$e^{e^i} = e^{\cos{(1)}} \cdot (H + i \cdot I)$$
 where

$$H = egin{bmatrix} \sigma^{m{s}} & \cos(\sin(1)) \ \sigma^{m{s}} & \sin(\sin(1)) \ \end{pmatrix}$$
 , and $I = egin{bmatrix} \sigma^{m{s}} & \sin(\sin(1)) \ \sigma^{m{s}} & \sin(\sin(1)) \ \end{pmatrix}$,

5. Finally, we get the result:

$$\sum_{n=0}^{\infty} \frac{\sin(n)}{n!} = \boxed{ \qquad \qquad } \boxed{ \sigma^{\hspace{-0.2em} \bullet} \left[\exp(\cos(1)) \sin(\sin(1)) \right] }$$

Note

1 The unitary imaginary number, $\sqrt{-1}$ inputs by i or sqrt(-1).

Submit Question

Question 18

☑ 0/10 pts ᠑ 3 ⇄ 19

Geometric series is covergent as follows:

[I],
$$\dfrac{1}{1+x}=\sum_{n=0}^{\infty}\left(\,-\,1
ight)^{n}x^{n},\;\mathsf{for}\;|x|<1.$$

1.
$$\frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n A$$
, for $|x| < B$, where

$$A=igcite{igcomulation a} A=igcomulation A$$

2. Integrating both sides of [I] above from x=0 to $x=1^-$ gets

a.
$$\int_0^1 \frac{dx}{1+x^2} = \boxed{ \qquad \qquad \boxed{\sigma^{\hspace{-0.05cm} \bullet} \frac{\pi}{4}} }$$

b.
$$\int_0^1 \left(\sum_{n=0}^\infty (-1)^n A\right) dx = \sum_{n=0}^\infty (-1)^n \int_0^1 A dx = \sum_{n=0}^\infty (-1)^n C,$$
 where $C=$ of $\frac{1}{2n+1}$,

And concludes the following:

Now consider to evaluate the sum of convergent series sum:

$$S = \sum_{n=1}^{\infty} rac{{(-1)}^n}{(2n-1)(2n+1)}$$

1.
$$S = D \sum_{n=1}^{\infty} \left(\frac{\left(-1\right)^n}{2n-1} - E \right)$$
,

2. From above result,
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n}{2n-1} = \boxed{ \boxed{ } \boxed{ } \boxed{ \boxed{ } \boxed{ } -\frac{\pi}{4} } }$$

Finally,

$$S = \begin{bmatrix} o^{\bullet} & -0.28539816339745 \end{bmatrix}$$

Note

1 Natural logarithm inputs by $\log(x)$.

Submit Question

Question 19

☑ 0/10 pts ᠑ 3 ⇄ 19

Consider the following series:

$$S = \sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+5)}$$

1. Find all the true statements about S?

_		
	convergent	
	CONVENE	

- absolute convergent
- divergent
- \square convergent by limit comparison test and p-series test
- conditional convergent
- divergent by partal sum test
- \square convergent by p-series test
- convergent by comparison test
- \square divergent by n-term test
- convergent by integral test

o^s

convergent absolute convergent conditional convergent

convergent by limit comparison test and p-series test

$$\mathsf{2.}\ S = \Big|$$

of 0.2555555555556

Note

If S is divergent, input DNE.

Suppose that $P = \{2, 3, 5, 7, 11, \dots\}$ is the set of ordered prime number, and p_n is th n-th prime number in P; for instance: $p_4 = 7$. Suppose that

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

Multipling with $\left(-\frac{1}{2^s}\right)$ on both sides gets:

$$\left(1 - \frac{1}{2^s}\right)\zeta(s) = \left(1 - \frac{1}{2^s}\right)\left(\frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \frac{1}{5^s} + \cdots\right)
= \left(\frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \frac{1}{5^s} + \cdots\right) - \left(\frac{1}{2^s} + \frac{1}{4^s} + \frac{1}{6^s} + A + B \cdots\right)
= \frac{1}{1^s} + \frac{1}{3^s} + \frac{1}{5^s} + C + D + \cdots$$

Next, multipling with $\left(-\frac{1}{3^s}\right)$ on both sides above gets:

$$\left(1 - \frac{1}{2^s}\right) \left(1 - \frac{1}{3^s}\right) \zeta(s) = \left(1 - \frac{1}{3^s}\right) \left(\frac{1}{1^s} + \frac{1}{3^s} + \frac{1}{5^s} + C + D + \cdots\right)
= \left(\frac{1}{1^s} + \frac{1}{3^s} + \frac{1}{5^s} + C + D + \cdots\right) - \left(\frac{1}{3^s} + \frac{1}{9^s} + \frac{1}{15^s} + \cdots\right)
= \frac{1}{1^s} + \frac{1}{5^s} + E + F + \cdots$$

Next multipling with $\left(-\frac{1}{5^s}\right)$, at which 5 is the third prime in P, and proceed similar steps for other primes in P, and so on; if the series is convergent, we can conclude the following:

$$\zeta(s)\prod_{p_n\,\in\,P}(1-p_n^s)=G$$

After all, we have the result

$$\zeta(s) = rac{G}{\prod_{p_n \in P} \left(1 - p_n^s
ight)}$$

where

$$B = \boxed{ \qquad \qquad \boxed{ o^{\bullet} \quad \frac{1}{(10)^{s}} } }$$

$$C = \boxed{ \qquad \qquad \boxed{ \sigma^s \quad \frac{1}{7^s} } }$$

$$D = \boxed{ \qquad \qquad \boxed{ \sigma^s \quad \frac{1}{9^s} } }$$

$$E =$$
 $\sigma^{\bullet} \frac{1}{7^s}$

$$F = \boxed{ \qquad \qquad \boxed{ o^{\bullet} \quad \frac{1}{11^{s}} } }$$

$$G = \begin{bmatrix} \sigma^{s} & 1 \end{bmatrix}$$

Submit Question

Question 21

☑ 0/10 pts ᠑ 3 ⇄ 19

Binary is defined as followd: $\left(1+x\right)^m=1+\sum_{n=1}^{\infty}C_n^mx^n$

where m is a real but not nonpositive integer,

$$C_n^m=rac{m(m-1)\cdots(m-n+1)}{n!},\,(n!)=1\cdot 2\cdot 3\cdot \cdots n$$

and is convergent for |x|<1. Consider the following binary series, $m=-\frac{1}{2}$:

$$(1+x)^{-rac{1}{2}}=1+\sum_{n=1}^{\infty}C_{n}^{-rac{1}{2}}x^{n}$$

$$=1+\sum_{n=1}^{\infty}\frac{1\cdot 3\cdot 5\cdot \cdot \cdot A}{n!}B^{n}$$

Thus let $x=-\frac{1}{2}$, which its abosulte value is smaller than 1, we have:

$$1+rac{1}{4}+rac{1 imes 3}{4 imes 8}+rac{1 imes 3 imes 5}{4 imes 8 imes 12}+\cdots=D$$

where

Submit Question

Question 22

☑ 0/10 pts ⑤ 3 ⇄ 19

Suppose the Fibonicci sequences is defined as follows:

$$a_1 = a_2 = 1$$
,

 $a_{n+2} = a_{n+1} + a_n$ where $n \ge 1$.

Then

- of 8 1. the 6-term of this sequence is
- 2. Following steps below to represent a_n as closed form, i.e. a_n is in the form ar^n where a, r are constants to be determined as follows:

 $a_{n+2} = a_{n+1} + a_n$

$$\Rightarrow ar^{n+2} = ar^{n+1} + ar^n$$

 $\Rightarrow r^2 + A - 1 = 0$

 $\Rightarrow r = r_1$ or r_2 , where $r_2 < 0 < r_1$

a. A=

b. r_1 =

c. Thus we can represent the closed form of a_n as follows:

 $a_n = Cr_1^n + Dr_2^n$ for $n \geq 1$

where

C, D =

d. Evaluate the following limit:

 $\lim_{n o\infty}\;rac{a_{n+2}}{2^n}=\;\lim_{n o\infty}\;rac{1}{\sqrt{5}}\Bigl(E\Bigl(rac{r_1}{2}\Bigr)^n+F\Bigl(rac{r_2}{2}\Bigr)^n\Bigr)=G$

where

E=

F=

o[¢] G= 0 Question 23

☑ 0/10 pts ᠑ 3 ⇄ 19

Given the sequence, $\{a_n\}$ where $a_n=1-{(-1)}^n$, determine at which statement(s) is(are) right?

Sequence is bounded above,

☐ Sequence is bounded below,

Sequence is divergent,

☐ Sequence is monotonic,

☐ Sequence is convergent and the limit of sequence is 0,

☐ Sequence is convergent since sequence is bounded and monotonic,

Sequence is bounded above, Sequence is bounded below, Sequence is divergent,

Submit Question

Question 24

☑ 0/10 pts ⑤ 3 ⇄ 19

Given the sequence, $\{a_n\}$ where $a_n=\left(1+rac{2}{n}
ight)^n$, determine at which statement(s) is(are) right?

- ☐ Sequence is bounded below,
- ☐ Sequence is divergent,
- ☐ Sequence is bounded above,
- Sequence is monotonic and decreasing,
- Sequence is monotonic and increasing,
- \square Sequence is convergent and the limit of sequence is e^{-2} ,

Sequence is monotonic and increasing, Sequence is bounded above, Sequence is bounded below,

Submit Question

Question 25

☑ 0/10 pts ᠑ 3 ⇄ 19

Find out all the statement(s) at which is(are) TRUE:

- \square Sequences diverge that approaches either ∞ or $-\infty$,
- \square If $a_{n+2}=a_{n+1}+a_n$ where $a_0=a_1=1$, define $\{b_n\}=rac{a_{n+1}}{a_n}$ for $n\geq 1$; $\{b_n\}$ is convergent to $rac{1+\sqrt{5}}{a_n}$,

The limit of sequences of irrational numbers is irrational if exists,

The limit of sequences of rational numbers can not be irrational if exists,

 $oxed{\Box}$ If $a_{n+2}=a_{n+1}+a_n$ where $a_0=a_1=1$, define $\{b_n\}=rac{a_{n+1}}{a_n}$ for $n\geq 1$; $\{b_n\}$ is convergent to 1,

 $\hfill\Box$ If $\{a_n\}$ converges and $\{b_n\}$ diverges, then $\{a_n-b_n\}$ converges,

 \square If $a_{n+2}=a_{n+1}+a_n$ where $a_0=a_1=1$, define $\{b_n\}=rac{a_{n+1}}{a_n}$ for $n\geq 1$; $\{b_n\}$ is divergent,

o⁶

If $\{a_n\}$ converges, then $\lim_{n o\infty}\;(a_n-a_{n+1})=0,$

If $\{a_n\}$ converges, then $\lim_{n\to\infty}\frac{a_n}{n}=0$,

If $a_{n+2}=a_{n+1}+a_n$ where $a_0=a_1=1$, define $\{b_n\}=rac{a_{n+1}}{a_n}$ for $n\geq 1$; $\{b_n\}$ is convergent to

 $\frac{1+\sqrt{5}}{2}$

The limit of sequences of $\left\{\sqrt{4},\sqrt{4+\sqrt{4}},\ +\sqrt{4+\sqrt{4}+\sqrt{4}},\cdots\right\}$ exists and is irrational,

Define the following recursive sequences, $\{a_n\}$, as follows:

$$a_0 = \sqrt{x} \ a_1 = \sqrt{x + 2\sqrt{a_0}}$$

. . .

$$a_{n+1}=\sqrt{x+2\sqrt{a_n}}$$
, where $n\geq 1$

and this sequences is convergent for $\left|x\right|<1$ by The Completed Axiom.

In other words, suppose that y is the limit of sequences:

$$y=\lim_{n
ightarrow\infty}\,a_n=\sqrt{x+2\sqrt{x+2\sqrt{x+2\sqrt{...}}}}$$

1. For |x| < 1, find the closed form of y, i.e. y = f(x) where

2. Evaluate the following definite integration:

$$\int_{0}^{1} y dx = \boxed{ \qquad \qquad \boxed{ o^{s} \quad 2.2189514164975 } }$$

Note

1. \sqrt{x} , square root of x, input by sqrt(x).

2. x^r , r-power of x, input y x r