

# Guía I : Herramientas matemáticas Mecánica Cuántica I (FIS 321)

Licenciatura en Física mención Astronomía - 2014  $IPGG \label{eq:figure}$ 

Contenido :  $\widehat{\mathbf{O}}$ peradores y  $\overrightarrow{\mathbf{V}}$ ectores : kets, bras, ketbras, brackets y matrices

#### Matrices de Pauli

Las matrices de Pauli están dadas por las siguientes identidades:

$$oldsymbol{\sigma}_1 = \left(egin{array}{cc} 0 & 1 \ 1 & 0 \end{array}
ight), \qquad oldsymbol{\sigma}_2 = \left(egin{array}{cc} 0 & -i \ i & 0 \end{array}
ight), \qquad oldsymbol{\sigma}_3 = \left(egin{array}{cc} 1 & 0 \ 0 & -1 \end{array}
ight).$$

• Muestre que las cuatro matrices  $\{\widehat{1}, \sigma_1, \sigma_2, \sigma_3\}$ , constituyen una base para las matrices de  $2 \times 2$ . Muestre que la siguiente matriz:

$$\widehat{\mathbf{A}} = \left( \begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right)$$

puede ser escrita como  $\hat{\mathbf{A}} = z_0 \hat{\mathbf{1}} + z_1 \boldsymbol{\sigma}_1 + z_2 \boldsymbol{\sigma}_2 + z_3 \boldsymbol{\sigma}_3$ . Halle las fórmulas para los coeficientes  $z_i$  en términos de las cantidades  $a_{ij}$ .

• Demostrar que:

a).- 
$$\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = \hat{1}^2 = \hat{1}$$
.

b).- 
$$\sigma_i \sigma_j = -\sigma_j \sigma_i$$
, para  $i \neq j$ .

c).- 
$$\sigma_1 \sigma_2 = i \sigma_3$$
,  $\sigma_2 \sigma_3 = i \sigma_1$ ,  $\sigma_3 \sigma_1 = i \sigma_2$ .

• Mostrar que para el conjunto de números complejos  $c_1, c_2, c_3$  se cumple que:

$$(c_1 \boldsymbol{\sigma}_1 + c_2 \boldsymbol{\sigma}_2 + c_3 \boldsymbol{\sigma}_3)^2 = (c_1^2 + c_2^2 + c_3^2) \, \hat{\mathbf{1}}.$$

### Más de las matrices de Pauli

- Hallar los autovalores y los correspondientes autovectores (normalizados) para las las tres matrices de Pauli.
- Definamos la exponenciación de matrices via:

$$\exp\left(\widehat{\mathbf{M}}\right) = \sum_{n=0}^{\infty} \frac{\widehat{\mathbf{M}}^n}{n!}.$$

Muestre que:

$$\exp(\boldsymbol{\sigma}_i) = \cosh(1) \hat{\mathbf{1}} + \sinh(1) \boldsymbol{\sigma}_i$$
, para  $i = 1, 2, 3$ .

y que:

$$\exp\left(oldsymbol{\sigma}_1+oldsymbol{\sigma}_3
ight)=\cosh\left(\sqrt{2}
ight)\widehat{\mathbf{1}}+rac{1}{\sqrt{2}}\sinh\left(\sqrt{2}
ight)\left(oldsymbol{\sigma}_1+oldsymbol{\sigma}_3
ight).$$

(Hint: Revise las expansiones en serie de las funciones sinh y cosh).

• Probar que  $\exp(\sigma_1 + \sigma_3) \neq \exp(\sigma_1) \exp(\sigma_3)$ .

# Operadores Hermitianos

- Mostrar que si  $\hat{\mathbf{A}}$  es un operador lineal y  $\langle a | \hat{\mathbf{A}} | a \rangle$  es real para todo vector  $|a\rangle$ , entonces  $\hat{\mathbf{A}}$  es Hermitiano.
- Muestre que para un operador de la forma:

$$\widehat{\mathbf{A}} = c_a |a\rangle \langle a| + c_b |b\rangle \langle b| + \dots + c_z |z\rangle \langle z|$$

donde los coeficientes  $c_n$  son constantes reales, es Hermitiano.

• Ud. sabe que si un operador es *Hermitiano*, entonces todos sus autovalores son reales. Muestre que lo opuesto es falso a través de un contraejemplo. (**Hint**: Intente con una matriz 2 × 2 triangular superior).

# Álgebra de conmutadores

Pruebe las siguientes relaciones:

$$\bullet \ \left[ \widehat{\mathbf{A}}, b\widehat{\mathbf{B}} + c\widehat{\mathbf{C}} \right] = b \left[ \widehat{\mathbf{A}}, \widehat{B} \right] + c \left[ \widehat{\mathbf{A}}, \widehat{\mathbf{C}} \right]$$

• 
$$\left[a\widehat{\mathbf{A}} + b\widehat{\mathbf{B}}, \widehat{\mathbf{C}}\right] = a\left[\widehat{\mathbf{A}}, \widehat{\mathbf{C}}\right] + b\left[\widehat{\mathbf{B}}, \widehat{\mathbf{C}}\right]$$

$$\bullet \ \left[\widehat{\mathbf{A}},\widehat{\mathbf{B}}\widehat{\mathbf{C}}\right] = \widehat{\mathbf{B}}\left[\widehat{\mathbf{A}},\widehat{\mathbf{C}}\right] + \left[\widehat{\mathbf{A}},\widehat{\mathbf{B}}\right]\widehat{\mathbf{C}}$$

$$\bullet \ \left[\widehat{\mathbf{A}}\widehat{\mathbf{B}},\widehat{\mathbf{C}}\right] = \widehat{\mathbf{A}}\left[\widehat{\mathbf{B}},\widehat{\mathbf{C}}\right] + \left[\widehat{\mathbf{A}},\widehat{\mathbf{C}}\right]\widehat{\mathbf{B}}$$

• Identidad de 
$$Jacobi: \left[\widehat{\mathbf{A}}, \left[\widehat{\mathbf{B}}, \widehat{\mathbf{C}}\right]\right] + \left[\widehat{\mathbf{C}}, \left[\widehat{\mathbf{A}}, \widehat{\mathbf{B}}\right]\right] + \left[\widehat{\mathbf{B}}, \left[\widehat{\mathbf{C}}, \widehat{\mathbf{A}}\right]\right] = 0 \cdot \widehat{\mathbf{1}}$$

### Más operadores

La ecuación de valores propios  $\widehat{\mathbf{A}} | m \rangle = a_m | m \rangle$  define cierta base  $\{ | m \rangle \}$ , siendo  $a_m$  una cantidad real. Se define el operador  $\widehat{\mathbf{U}} (m,n) = | m \rangle \langle n |$ . A partir de esto:

- Demuestre que  $\widehat{\mathbf{U}}^{\dagger}\left(m,n\right)=\widehat{\mathbf{U}}\left(n,m\right)$
- Pruebe la relación  $\widehat{\mathbf{U}}\left(m,n\right)\widehat{\mathbf{U}}^{\dagger}\left(p,q\right)=\delta_{nq}\widehat{\mathbf{U}}\left(m,p\right)$
- $\bullet$  Sea  $\widehat{\mathbf{B}}$  un operador con elementos de matriz definidos por la expresión

$$B_{mn} = \left\langle m \left| \widehat{\mathbf{B}} \right| n \right\rangle$$

Demuestre que:

$$\widehat{\mathbf{B}} = \sum_{m} \sum_{n} B_{mn} \widehat{\mathbf{U}}(m, n)$$

• Muestre que:

$$A_{pq} = \mathbf{tr}\left(\widehat{\mathbf{A}}\widehat{\mathbf{U}}^{\dagger}\left(p,q\right)\right)$$

# Hermiticidad de operadores

Determine cual de los siguientes operadores son hermíticos considerando que  $\hat{\mathbf{x}}^{\dagger} = \hat{\mathbf{x}} \ y \ \hat{\mathbf{p}}^{\dagger} = \hat{\mathbf{p}}$ :

- $\hat{\mathbf{x}} \hat{\mathbf{x}} \hat{\mathbf{p}}$
- $\bullet \ \widehat{\mathbf{x}} \, \widehat{\mathbf{p}} \, \widehat{\mathbf{x}}$
- $\widehat{\mathbf{x}}\widehat{\mathbf{p}}\widehat{\mathbf{p}} + \widehat{\mathbf{p}}\widehat{\mathbf{p}}\widehat{\mathbf{x}}$
- $e^{\widehat{\mathbf{p}}}$

# Operadores lineales

Determine cuales de los siguientes operadores son lineales:

- $\sqrt{(\cdot)}$
- $\sin(\cdot)$
- $\bullet \ x\frac{d}{dx}\left( \cdot \right)$
- $\bullet \ \frac{d}{dx}x\left( \cdot \right)$

# Más respecto a operadores

Muestre que:

$$\left(\frac{d}{dx} + x\right)\left(\frac{d}{dx} - x\right) = \frac{d^2}{dx^2} - x^2 - 1$$

Pruebe en general que:

- Si  $\widehat{\mathbf{A}}\widehat{\mathbf{A}}^\dagger=\widehat{\mathbf{1}}$ , entonces  $\det\left(\widehat{\mathbf{A}}\right)\det\left(\widehat{\mathbf{A}}\right)^*=1$
- Si  $\widehat{\mathbf{U}}^{\dagger}\widehat{\mathbf{O}}\widehat{\mathbf{U}} = \widehat{\mathbf{\Omega}}$  y  $\widehat{\mathbf{U}}^{\dagger}\widehat{\mathbf{U}} = \widehat{\mathbf{1}}$ , entonces  $\det\left(\widehat{\mathbf{O}}\right) = \det\left(\widehat{\mathbf{\Omega}}\right)$
- Muestre que la traza de una matriz es invariante bajo una transformación unitaria, esto es, si  $\widehat{\Omega} = \widehat{\mathbf{U}}^{\dagger} \widehat{\mathbf{O}} \widehat{\mathbf{U}}$  para  $\widehat{\mathbf{U}}^{\dagger} \widehat{\mathbf{U}} = \widehat{\mathbf{1}}$ , entonces muestre que  $\mathbf{tr} \left( \widehat{\mathbf{O}} \right) = \mathbf{tr} \left( \widehat{\mathbf{O}} \right)$

Si  $\widehat{\mathbf{A}}$  es una matriz  $N \times M$  y  $\widehat{\mathbf{B}}$  es una matriz  $M \times K$ , muestre que  $(\widehat{\mathbf{A}}\widehat{\mathbf{B}})^{\dagger} = \widehat{\mathbf{B}}^{\dagger}\widehat{\mathbf{A}}^{\dagger}$ .

Si el producto  $\hat{\mathbf{C}} = \hat{\mathbf{A}}\hat{\mathbf{B}}$  de dos matrices hermitianas es también hermitiana, demuestre que  $\hat{\mathbf{A}}$  y  $\hat{\mathbf{B}}$  conmutan.

Contenido : Problemas de valores propios y  $\overrightarrow{\mathbf{V}}$  ectores propios

Muestre que  $xe^{-x^2}$  es una eigenfunción del operador lineal  $\frac{d^2}{dx^2} - 4x^2$ . ¿Cuál es el valor propio asociado?

3

Demuestre que los operadores  $\left(x\frac{d}{dx}\right)$  y  $\left(\frac{d}{dx}x\right)$  son lineales.

Se tiene dos funciones reales normalizadas f(x) y g(x) las cuales no son ortogonales. Muestre que su suma f(x) + g(x) y su diferencia f(x) - g(x) son ortogonales.

Verifique los siguientes commutadores, para ello suponga una función arbitraria sobre la cual operar:

- $\bullet \left[ x, \frac{d}{dx} \right] = -1$
- $\bullet \left[ x^2, \frac{d}{dx} \right] = -2x$

Halle los casos generales  $\left[x^{n}, \frac{d}{dx}\right]$ ,  $\left[\mathcal{L}\left(x\right), \frac{d}{dx}\right]$ , siendo  $\mathcal{L}\left(x\right)$  una función arbitraria de x.

Muestre que  $\alpha \left[ \widehat{\mathbf{A}}, \widehat{\mathbf{B}} \right] = \left[ \alpha \widehat{\mathbf{A}}, \widehat{\mathbf{B}} \right] = \left[ \widehat{\mathbf{A}}, \alpha \widehat{\mathbf{B}} \right]$ , siendo  $\alpha$  un escalar arbitrario.

Los autovectores del operador  $\widehat{\mathbf{A}}$  son  $|1\rangle$  y  $|2\rangle$ , los cuales son linealmente independientes (pero no son ortogonales) y están normalizados, ambos están asociados al mismo autovalor  $\alpha$  (hay degenerancia!!!).

- Mostrar que  $c_1 |1\rangle + c_2 |2\rangle$ , donde  $c_1$  y  $c_2$  son escalares arbitrarios, es también un autovector de  $\widehat{\mathbf{A}}$  con autovalor  $\alpha$ .
- Construya dos combinaciones lineales  $\left|\widetilde{1}\right\rangle$  y  $\left|\widetilde{2}\right\rangle$  en términos de  $\left|1\right\rangle$  y  $\left|2\right\rangle$  que sean ortonormales  $\implies \left\langle \widetilde{i} \left|\widetilde{j}\right\rangle = \delta_{ij}$

Demuestre que si el operador  $\hat{\mathbf{A}}$  es Hermitiano, entonces el adjunto de:

$$\exp\left(i\widehat{\mathbf{A}}\right) = \sum_{n} \frac{i^n}{n!} \widehat{\mathbf{A}}^n$$

es  $\exp\left(-i\widehat{\mathbf{A}}\right)$ .

Un operador unitario  $\widehat{\mathbf{U}}$  es definido como:

$$\widehat{\mathbf{U}}\widehat{\mathbf{U}}^\dagger = \widehat{\mathbf{U}}^\dagger\widehat{\mathbf{U}} = \widehat{\mathbf{1}}$$

4

Demuestre que para un vector  $|k\rangle$  ya normalizado, el vector  $|\hat{\mathbf{U}}k\rangle = \hat{\mathbf{U}}|k\rangle$  también está normalizado.

Un operador unitario arbitrario  $\widehat{\mathbf{U}}$  siempre puede ser descompuesto de la siguiente forma:

$$\widehat{\mathbf{U}} = \frac{\widehat{\mathbf{U}} + \widehat{\mathbf{U}}^\dagger}{2} + i \frac{\widehat{\mathbf{U}} - \widehat{\mathbf{U}}^\dagger}{2i} = \widehat{\mathbf{V}}_1 + i \widehat{\mathbf{V}}_2$$

- Muestre que  $\hat{\mathbf{V}}_1$  y  $\hat{\mathbf{V}}_2$  son operadores hermitianos.
- Muestre que  $\left[\widehat{\mathbf{V}}_{1}, \widehat{\mathbf{V}}_{2}\right] = \left[\widehat{\mathbf{U}}, \widehat{\mathbf{V}}_{1}\right] = \left[\widehat{\mathbf{U}}, \widehat{\mathbf{V}}_{2}\right] = 0$ , esto significa que los tres operadores tienen los mismos autovectores.
- ullet Utilizando lo anterior demuestre que el módulo de los valores propios de  $\widehat{\mathbf{U}}$  son igual a la unidad.

Se conoce que dos operadores  $\widehat{\mathbf{A}}_1$  y  $\widehat{\mathbf{A}}_2$  no conmutan, esto es:

$$\left[\widehat{\mathbf{A}}_1, \widehat{\mathbf{A}}_2\right] \neq 0$$

sin embargo ambos conmutan con el operador  $\hat{\mathbf{H}}$ :

$$\left[\widehat{\mathbf{A}}_{1}, \widehat{\mathbf{H}}\right] = 0, \qquad \left[\widehat{\mathbf{A}}_{2}, \widehat{\mathbf{H}}\right] = 0$$

Con esta información demuestre que los autovalores de  $\hat{\mathbf{H}}$  son en general degenerados.

Obtenga las funciones propias de los siguientes operadores:

- $\bullet \ -\frac{\hbar^2}{2m}\frac{d^2}{dx^2}$
- $\bullet \ \frac{d^2}{dx^2} + k^2$

Para cada una de las siguientes funciones:  $\exp(x)$ ,  $x^2 \exp(-x)$ ,  $x^2 \exp(x^2)$ ,  $\exp(-x^2)$ ,  $x \exp(-x^2)$  indique si es o no función propia del operador

$$\widehat{\mathbf{D}} = 4x^2 - \frac{d^2}{dx^2}$$

en caso afirmativo, obtenga el valor propio.

### Más de matrices de Pauli

• Muestre que una matriz Hermitiana que conmuta con todas las matrices de Pauli:

$$oldsymbol{\sigma}_1 = \left(egin{array}{cc} 0 & 1 \ 1 & 0 \end{array}
ight), \qquad oldsymbol{\sigma}_2 = \left(egin{array}{cc} 0 & -i \ i & 0 \end{array}
ight), \qquad oldsymbol{\sigma}_3 = \left(egin{array}{cc} 1 & 0 \ 0 & -1 \end{array}
ight)$$

y descritas en la base de  $\sigma_3$  (por algo esta es diagonal) debe ser un múltiplo de la matriz Identidad  $\hat{1}_{2\times 2}$ 

• Muestre que una matriz hermitiana que anticonmute con las tres matrices de Pauli no existe.

Demostrar las siguientes identidades

•  $\{\boldsymbol{\sigma}_i, \boldsymbol{\sigma}_j\} = 2\delta_{ij}\hat{\mathbf{1}}$ 

• 
$$[\boldsymbol{\sigma}_i, \boldsymbol{\sigma}_j] = 2i\epsilon_{ijk}\boldsymbol{\sigma}_k$$

 $oldsymbol{\sigma}_i^2 = \widehat{\mathbf{1}}$ 

Si  $\overrightarrow{A}$  y  $\overrightarrow{B}$  son dos vectores que conmutan con las tres matrices de Pauli, pero no necesariamente entre ellos, demuestre que:

 $\left(\overrightarrow{\boldsymbol{\sigma}}\cdot\overrightarrow{A}\right)\left(\overrightarrow{\boldsymbol{\sigma}}\cdot\overrightarrow{B}\right)=\overrightarrow{A}\cdot\overrightarrow{B}+i\overrightarrow{\boldsymbol{\sigma}}\left(\overrightarrow{A}\times\overrightarrow{B}\right)$ 

siendo  $\overrightarrow{\boldsymbol{\sigma}} = (\boldsymbol{\sigma}_1, \boldsymbol{\sigma}_2, \boldsymbol{\sigma}_3).$ 

Asuma que  $\overrightarrow{A}, \overrightarrow{B}$  y  $\overrightarrow{C}$  son dos vectores que conmutan con las tres matrices de Pauli, entonces:

- Muestre que  $tr\left(\overrightarrow{\sigma} \cdot \overrightarrow{A}\right) = 0$
- Evalúe  $tr\left[\left(\overrightarrow{\sigma}\cdot\overrightarrow{A}\right)\left(\overrightarrow{\sigma}\cdot\overrightarrow{B}\right)\left(\overrightarrow{\sigma}\cdot\overrightarrow{C}\right)\right]$

Asuma como base aquella donde  $\sigma_3$  es diagonal (ver problema Más de matrices de Pauli).

$$\begin{array}{c} \mathbf{Contenido}: \ \textit{Ecuación de Schrödinger} \\ \widehat{\mathbf{H}} \left| \Psi_E \left( t \right) \right\rangle = i \hbar \frac{d}{dt} \left| \Psi_E \left( t \right) \right\rangle \implies \widehat{\mathbf{H}} \left| \phi_E \right\rangle = E \left| \phi_E \right\rangle \implies \left| \Psi_E \left( 0 \right) \right\rangle = \left| \phi_E \right\rangle \end{array}$$

En un sistema de dos niveles energéticos, el Hamiltoniano puede ser escrito como:

$$\widehat{\mathbf{H}} = E_1 \ket{1} \bra{1} + E_2 \ket{2} \bra{2} + V \ket{1} \bra{2} + \widetilde{V} \ket{2} \bra{1}$$

donde los estados  $|1\rangle$  y  $|2\rangle$  son estados ortonormales con autoenergías  $E_1$  y  $E_2$  respectivamente. Además V y  $\widetilde{V}$  representan interacciones.

- Demostrar que  $\hat{\mathbf{H}}$  es hermitiano si  $V = \tilde{V}$ .
- Investigar el efecto de la actuación de Hamiltoniano sobre los estados  $|1\rangle$  y  $|2\rangle$ . ¿Son éstos autoestados de  $\hat{\mathbf{H}}$ ?.
- Especificar para el caso en que V es una constante. Encontrar los valores propios y estados propios del Hamiltoniano. Especialmente considere el límite de  $V \ll E_i$  (i=1,2).

Si 
$$\widehat{\mathbf{H}} = \frac{\widehat{\mathbf{p}}^2}{2m} + \widehat{\mathbf{V}}(\widehat{\mathbf{x}})$$
, evalúe  $\left[\widehat{\mathbf{H}}, \widehat{\mathbf{x}}\right]$ . Utilice el resultado anterior para demostrar que:

$$-i\frac{\hbar}{m} \langle k | \widehat{\mathbf{p}} | l \rangle = (E_k - E_l) \langle k | \widehat{\mathbf{x}} | l \rangle$$

donde el conjunto  $\{|k\rangle\}$  son autoestados del Hamiltoniano.