

Mitigating Semantic Leakage in Cross-lingual Embeddings via Orthogonality Constraint

Dayeon Ki¹ C

Cheonbok Park²

Hyunjoong Kim²

¹ University of Maryland, College Park
² NAVER Cloud
<u>dayeonki@umd.edu</u>

Motivation

- Accurately aligning contextual representations in cross-lingual sentence embeddings is key for effective parallel mining.
- One prevalent strategy is disentanglement of semantics and language in sentence embeddings.
- Previous methods suffer from semantic leakage substantial amount of language-specific information is unintentionally leaked into semantic representations

Semantic Leakage

Our Approach (ORACLE)

Experiment Setup

• Dataset - OPUS / 12 languages in En-XX direction

Language	Family	ISO Code	Similarity	Resource level
English	Germanic	en	-	high
German	Germanic	de	0.81	high
Portuguese	Romance	pt	0.84	high
Italian	Romance	it	0.85	high
Spanish	Romance	es	0.86	high
French	Romance	fr	0.86	high
Chinese	Sino-Tibetan	zh	0.81	high
Arabic	Semitic	ar	0.91	high
Japanese	Japonic	ja	0.69	high
Dutch	Germanic	nl	0.80	medium
Romanian	Romance	ro	0.88	medium
Guaraní	Tupi-Guaraní	gn	0.25	low
Aymara	Andean	ay	0.18	low

- Baseline
 - LASER
 - InfoXLM
 - LaBSE

Visualization

Ablations

Combining both components of ORACLE yields the most balanced performance.

Objective	Tatoeba-14	Tatoeba-36	STS
À	Semantic Embe	edding (†)	
ORACLE	96.11	95.53	74.21
- $\mathcal{L}_{ ext{IC}}$	95.89	95.38	74.13
- $\mathcal{L}_{ ext{IS}}$	96.11	95.54	72.81
1	Language Emb	edding (\downarrow)	
ORACLE	7.74	9.17	16.47
- $\mathcal{L}_{ ext{IC}}$	37.78	39.15	30.14
- $\mathcal{L}_{ ext{IS}}$	8.07	9.59	18.20

ORACLE

- How well are the semantic representations aligned?
- How well are the language-specific representations separated?

(1) Intra-class Clustering

: bring related components closer in embedding space

$$\mathcal{L}_{ ext{IC}} = rac{1}{N} \sum_{i=1}^{N} \left(2 - \phi(\mathbf{\hat{s}}_l^i, \mathbf{\hat{s}}_l^j) - \phi(\mathbf{\hat{t}}_l^i, \mathbf{\hat{t}}_l^j)
ight)$$

(2) Inter-class Separation

: ensure unrelated components to be distant

$$\mathcal{L}_{ ext{IS}} = rac{1}{N} \sum_{i=1}^{N} \max(0, \phi(\mathbf{\hat{s}}_m^i, \mathbf{\hat{s}}_l^i)) + \max(0, \phi(\mathbf{\hat{t}}_m^i, \mathbf{\hat{t}}_l^i))$$

Results

Cross-lingual Sentence Retrieval

- Optimal representation (towards upper left corner)
 - Higher semantic retrieval accuracy
 - Lower language retrieval accuracy

Semantic Textual Similarity

Spearman's rank correlation coefficient higher for semantic (\bullet) and lower for language-specific (\star) representation with ORACLE.

