기계학습 (2022년도 2학기)

Decision Trees

전북대학교 컴퓨터공학부

Today

- Decision Trees
 - Simple but powerful learning algorithm
 - One of the most widely used learning algorithms in Kaggle competitions
- Useful information theoretic concepts (entropy, mutual information, etc.)

 Decision trees make predictions by recursively splitting on different attributes according to a tree structure.

When to Consider Decision Trees

- Instances describable by attribute-value pairs
- Target function is discrete valued
- Disjunctive hypothesis may be required
- Possibly noisy training data

Examples:

- Equipment or medical diagnosis
- Credit risk analysis
- Modeling calendar scheduling preferences

Example with Discrete Inputs

■ What if the attributes are discrete?

Example		Input Attributes								
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30–60
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0–10
$ \mathbf{x}_4 $	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10–30
\mathbf{x}_{5}	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60
\mathbf{x}_6	No	Yes	No	Yes	Some	<i>\$\$</i>	Yes	Yes	Italian	0–10
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10
\mathbf{x}_8	No	No	No	Yes	Some	<i>\$\$</i>	Yes	Yes	Thai	0–10
\mathbf{x}_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10–30
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0–10
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60

	res	res	res	гин	プ ププ	NO	res	italian	10-30	
	No	No	No	None	\$	No	No	Thai	0–10	
,	Yes	Yes	Yes	Full	\$	No	No	Burger	<i>30–60</i>	
1.	1. Alternate: whether there is a suitable alternative restaurant nearby.									
2.	2. Bar: whether the restaurant has a comfortable bar area to wait in.									
3.	3. Fri/Sat: true on Fridays and Saturdays.									
4.	4. Hungry: whether we are hungry.									
_										

Goal WillWait $y_1 = Yes$ $y_2 = No$ $y_3 = Yes$ $y_4 = Yes$ $y_5 = No$ $y_6 = Yes$ $y_7 = No$ $y_8 = Yes$ $y_9 = No$ $y_{10} = No$ $y_{11} = No$ $y_{12} = Yes$

Attributes:

Fri/Sat: true on Fridays and Saturdays.
Hungry: whether we are hungry.
Patrons: how many people are in the restaurant (values are None, Some, and Full).
Price: the restaurant's price range (\$, \$\$, \$\$\$).
Raining: whether it is raining outside.
Reservation: whether we made a reservation.
Type: the kind of restaurant (French, Italian, Thai or Burger).
WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

Decision Tree: Example with Discrete Inputs

■ The tree to decide whether to wait (T) or not (F)

- Internal nodes test attributes
- Branching is determined by attribute value
- Leaf nodes are outputs (predictions)

Decision Tree: Classification and Regression

- lacktriangle Each path from root to a leaf defines a region R_m of input space
- Let $\{(x^{(m_1)}, t^{(m_1)}), ..., (x^{(m_k)}, t^{(m_k)})\}$ be the training examples that fall into R_m

- discrete output
- leaf value \mathbf{y}_m typically set to the most common value in $\{t^{(m_1)},...,t^{(m_{\mathrm{k}})}\}$

Regression tree:

- continuous output
- leaf value y_m typically set to the mean value in $\{t^{(m_1)},...,t^{(m_{\mathrm{k}})}\}$

Note: We will focus on classification

Expressiveness

- Discrete-input, discrete-output case:
 - Decision trees can express any function of the input attributes
 - E.g., for Boolean functions, truth table row → path to leaf:

- Continuous-input, continuous-output case:
 - Can approximate any function arbitrarily closely
- Trivially, there is a consistent decision tree for any training set with one path to leaf for each example (unless f nondeterministic in x) but it probably won't generalize to new examples

(모든 training data sample들이 별도의 leaf node를 가지도록 decision tree를 만들 수 있으나 general하지 않음)

How do we Learn a Decision Tree?

How do we construct a useful decision tree?

- Learning the simplest (smallest) decision tree is an NP complete problem [if you are interested, check: Hya | & Rivest'76]
 - Resort to a greedy heuristic:
 - Start from an empty decision tree
 - Split on the "best" attribute
 - Recurse
 - Which attribute is the "best"?
 - Choose based on accuracy?

Choosing a Good Split

- Is this split good? Zero accuracy gain. (윗쪽 node만 이용한 분류와 아래쪽 node 2개를 사용한 분류 결과는 모두 1로 동일)
- Instead, we will use techniques from information theory

Idea: Use counts at leaves to define probability distributions, so we can measure uncertainty

Choosing a Good Split

- Which attribute is better to split on, X_1 or X_2 ?
 - Deterministic: good (all are true or false; just one class in the leaf)
 - Uniform distribution: bad (all classes in leaf equally probable)
 - What about distributons in between?

Note: Let's take a slight detour and remember concepts from information theory

We Flip Two Different Coins

■ Sequence 1:

00010000000000100...?

■ Sequence 2:

010101110100110101...?

Impurity/Entropy (informal)

Measures the level of impurity in a group of examples

Quantifying Uncertainty

■ Entropy is a measure of expected "surprise":

(정보이론(Information theory)에서 나옴. Entropy가 클수록 또는 불확실성이 큰 이벤트 일수록 많은 정보를 가지고 있음)

$$H(X) = -\sum_{x \in X} p(x) \log_2 p(x)$$

- Measures the information content of each observation
- Unit = bits
- A fair coin flip has 1 bit of entropy

Quantifying Uncertainty

■ **Entropy** is a measure of expected "surprise":

(정보이론(Information theory)에서 나옴. Entropy가 클수록 또는 불확실성이 큰이벤트 일수록 많은 정보를 가지고 있음)

- Measures the information content of each observation
- Unit = bits
- A fair coin flip has 1 bit of entropy (앞뒤 확률이 동일함: 가장 불확실성이 큼)

What does Entropy mean for learning from examples?

2-Class Cases

Entropy
$$H(x) = -\sum_{i=1}^{n} P(x=i) \log_2 P(x=i)$$

- What is the entropy of a group in which all examples belong to the same class?
 - entropy = $-(1 \times \log_2 1 + 0 \times \log_2 0) = 0$ not a good training set for learning
- What is the entropy of a group with 50% in either class?
 - entropy = $-(0.5 \times \log_2 0.5 + 0.5 \log_2 0.5) = 1$ good training set for learning

Minimum impurity

Very impure group

Quantifying Uncertainty

$$H(X) = -\sum_{x \in X} p(x) \log_2 p(x)$$

Entropy

- "High Entropy":
 - Variable has a uniform like distribution
 - Flat histogram
 - Values sampled from it are less predictable
- "Low Entropy"
 - Distribution of variable has many peaks and valleys
 - Histogram has many lows and highs
 - Values sampled from it are more predictable

Entropy of a Joint Distribution

■ Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

$$H(X,Y) = -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 p(x,y)$$

$$= -\frac{24}{100} \log_2 \frac{24}{100} - \frac{1}{100} \log_2 \frac{1}{100} - \frac{25}{100} \log_2 \frac{25}{100} - \frac{50}{100} \log_2 \frac{50}{100}$$

$$\approx 1.56 \text{bits}$$

Specific Conditional Entropy

Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

	Cloudy	Not Cloudy	
Raining	24/100	1/100	
Not Raining	25/100	50/100	

What is the entropy of cloudiness Y, given that it is raining?

$$H(Y|X = x) = -\sum_{y \in Y} p(y|x) \log_2 p(y|x)$$

$$= -\frac{24}{25} \log_2 \frac{24}{25} - \frac{1}{25} \log_2 \frac{1}{25}$$

$$\approx 0.24 \text{bits}$$

■ We used: $p(y|x) = \frac{p(x,y)}{p(x)}$, and $p(x) = \sum_{y} p(x,y)$ (sum in a row)

Conditional Entropy

Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

■ The expected conditional entropy:

$$H(Y|X) = \sum_{x \in X} p(x)H(Y|X = x)$$
$$= -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 p(y|x)$$

Conditional Entropy

Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

What is the entropy of cloudiness, given the knowledge of whether or not it is raining?

$$H(Y|X) = \sum_{x \in X} p(x)H(Y|X = x)$$

$$= \frac{1}{4}H(\text{cloudy}|\text{is raining}) + \frac{3}{4}H(\text{cloudy}|\text{not raining})$$

$$\approx 0.75 \text{ bits}$$

Some useful properties of Conditional Entropy

■ *H* is always non-negative

■ Chain rule:

$$H(X,Y) = H(X|Y) + H(Y) = H(Y|X) + H(X)$$

■ If X and Y independent, then X doesn't tell us anything about Y:

$$H(Y|X) = H(Y)$$

But X tells us everything about Y

$$H(Y|X) = 0$$

 \blacksquare By knowing X, we can only decrease uncertainty about Y

$$H(Y|X) \le H(Y)$$

Information Gain

■ Example: $X = \{\text{Raining, Not raining}\}, Y = \{\text{Cloudy, Not cloudy}\}$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

- How much information about cloudiness do we get by discovering whether it is raining? IG(Y|X) = H(Y) H(Y|X)
 - \approx 0.25 bits
- This is called the **information gain** in Y due to X, or the **mutual information** of Y and X
- If X is completely uninformative about Y: IG(Y|X) = 0
- If X is completely informative about Y: IG(Y|X) = H(Y)

Revisiting Our Original Example

- Information Gain = entropy(parent) [average entropy(children)]
- Information gain measures the informativeness of a variable, which is exactly what we desire in a decision tree attribute!
- What is the information gain of this split?

- Root entropy: $H(Y) = -\frac{49}{149} \log_2(\frac{49}{149}) \frac{100}{149} \log_2(\frac{100}{149}) \approx 0.91$
- Leafs entropy: H(Y|left) = 0, $H(Y|right) \approx 1$
- $IG(split) \approx 0.91 (\frac{1}{3} \cdot 0 + \frac{2}{3} \cdot 1) \approx 0.24 > 0$

■ Information Gain = entropy(parent) – [average entropy(children)]

Entire population (30 instances)

Information Gain = entropy(parent) – [average entropy(children)]

Information Gain = entropy(parent) – [average entropy(children)]

• (Weighted) Average Entropy of Children = $\left(\frac{17}{30} \times 0.787\right) + \left(\frac{13}{30} \times 0.391\right) = 0.615$

Information Gain = entropy(parent) – [average entropy(children)]

- (Weighted) Average Entropy of Children = $\left(\frac{17}{30} \times 0.787\right) + \left(\frac{13}{30} \times 0.391\right) = 0.615$
- Information gain = 0.996 0.615 = 0.38

Constructing Decision Trees

- At each level, one must choose:
 - 1. Which variable to split.
 - 2. Possibly where to split it.
- Choose them based on how much information we would gain from the decision! (choose attribute that gives the best gain)

Decision Tree Construction Algorithm

Simple, greedy, recursive approach, builds up tree node-by-node

- 1. pick an attribute to split at a non-terminal node
- 2. split examples into groups based on attribute value
- 3. for each group:
 - if no examples return majority from parent
 - else if all examples in same class return class
 - else loop to step 1

Back to Our Example

Example		Input Attributes								
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30–60
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0–10
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10–30
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60
\mathbf{x}_6	No	Yes	No	Yes	Some	<i>\$\$</i>	Yes	Yes	Italian	0–10
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10
\mathbf{x}_8	No	No	No	Yes	Some	<i>\$\$</i>	Yes	Yes	Thai	0–10
\mathbf{x}_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	ltalian	10–30
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0–10
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60

Alternate: whether there is a suitable alternative restaurant nearby.

GoalWillWait $y_1 = Yes$ $y_2 = No$ $y_3 = Yes$ $y_4 = Yes$ $y_5 = No$ $y_6 = Yes$ $y_7 = No$ $y_8 = Yes$ $y_9 = No$ $y_{10} = No$ $y_{11} = No$ $y_{12} = Yes$

Attributes:

Fri/Sat: true on Fridays and Saturdays.
Hungry: whether we are hungry.
Patrons: how many people are in the restaurant (values are None, Some, and Full).
Price: the restaurant's price range (\$, \$\$, \$\$\$).
Raining: whether it is raining outside.
Reservation: whether we made a reservation.
Type: the kind of restaurant (French, Italian, Thai or Burger).
WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

Attribute Selection

$$IG(Y) = H(Y) - H(Y|X)$$

$$IG(type) = 1 - \left[\frac{2}{12}H(Y|Fr.) + \frac{2}{12}H(Y|It.) + \frac{4}{12}H(Y|Thai) + \frac{4}{12}H(Y|Bur.)\right] = 0$$

$$IG(Patrons) = 1 - \left[\frac{2}{12}H(0,1) + \frac{4}{12}H(1,0) + \frac{6}{12}H(\frac{2}{6}, \frac{4}{6})\right] \approx 0.541$$

What Makes a Good Tree?

- Not too small: need to handle important but possibly subtle distinctions in data
- Not too big:
 - Computational efficiency (avoid redundant, spurious attributes)
 - Avoid over-fitting training examples
 - Human interpretability
- "Occam's Razor": find the simplest hypothesis that fits the observations
 - Useful principle, but hard to formalize (how to define simplicity?)
 - See Domingos, 1999, "The role of Occam's razor in knowledge discovery"
- We desire small trees with informative nodes near the root

Decision Tree Miscellany

Problems:

- You have exponentially less data at lower levels
- Too big of a tree can overfit the data
- Greedy algorithms don't necessarily yield the global optimum
- Handling continuous attributes
 - Split based on a threshold, chosen to maximize information gain
- Decision trees can also be used for regression on real-valued outputs.
 Choose splits to minimize squared error, rather than maximize information gain.

Comparison to k-NN

- Advantages of decision trees over k-NN
 - Good with discrete attributes
 - Easily deals with missing values (just treat as another value) (예: nominal feature, 즉 categorical feature인 경우 새로운 class로 취급)
 - Robust to scale of inputs
 - Fast at test time
 - More interpretable
- Advantages of k-NN over decision trees
 - Able to handle attributes/features that interact in complex ways (e.g. pixels)
 - Can incorporate interesting distance measures (e.g. shape contexts)
 - Typically make better predictions in practice
 - As we'll see next lecture, ensembles of decision trees are much stronger. But they lose many of the advantages listed above.