

Asignatura	Código	Fecha	Hora inicio
Matemáticas II	81.507	22/01/2020	18:30

Espacio para la etiqueta identificativa con el código personal del **estudiante**.

Examen

Ficha técnica del examen

- Comprueba que el código y el nombre de la asignatura corresponden a la asignatura matriculada.
- Debes pegar una sola etiqueta de estudiante en el espacio correspondiente de esta hoja.
- No se puede añadir hojas adicionales, ni realizar el examen en lápiz o rotulador grueso.
- Tiempo total: **2:30 horas** Valor de cada pregunta: **25%**
- En el caso de que los estudiantes puedan consultar algún material durante el examen, ¿cuáles son?: NINGUNO
- En el caso de poder usar calculadora, de que tipo? NO PROGRAMABLE
- En el caso de que haya preguntas tipo test: ¿descuentan las respuestas erróneas? NO ¿Cuánto?
- Indicaciones específicas para la realización de este examen
 LAS RESPUESTAS DEBEN JUSTIFICARSE. NO SE VALORARÁ SI SOLO SE DA EL
 RESULTADO FINAL

Asignatura	Código	Fecha	Hora inicio
Matemáticas II	81.507	22/01/2020	18:30

Enunciados

Problema 1. Considerar la función $f: \mathbb{R} \to \mathbb{R}$ definida por:

$$f(x) = \begin{cases} x^2 + a, & x \le 1\\ b(x-1)^2, & x > 1 \end{cases}$$

- (a) [5 puntos] Calcular su dominio.
- (b) **[5 puntos]** Calcular el valor del parámetro $a \in \mathbb{R}$ que hace que la función sea continua en todo \mathbb{R} .
- (c) **[10 puntos]** Calcular el valor del parámetro $b \in \mathbb{R}$ que hace que la recta tangente en el punto x = 2 tenga pendiente 4. Calcular la recta tangente en este punto (para el valor concreto de b obtenido).
- (d) [5 puntos] Estudiar el crecimiento y decrecimiento de la función para el caso b > 0.

(a) La función f(x) es una función definida a trozos formada por dos polinomios que son funciones continuas a todo \mathbb{R} . Por lo tanto el suyo domine es todo \mathbb{R} .

$$\mathrm{Dom}(f)=\mathbb{R}$$

(b) La función f(x) es una función definida a trozos donde el único punto de salto es el punto x=1. La función es pues continua en todos los puntos $x \neq 1$ porque las dos funciones que la definen son polinomios que son funciones continuas a todo $\mathbb R$. Por lo tanto, solo hay que estudiar la continuidad en el punto de salto x=1. En este punto tenemos que:

$$\begin{cases} f(1) = 1 + a \\ \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} x^{2} + a = 1 + a \\ \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} b(x^{2} - 1) = 0. \end{cases}$$

Por lo tanto la función será también continua en x = 1 si 1 + a = 0, es a decir, sí a = -1.

La función es continua en $\mathbb R$ si a=-1

(c) Teniendo en cuenta que para x > 1 la derivada de la función dada es f'(x) = 2b(x-1), la recta tangente en el punto x = 2 viene dada por

$$y = f'(2)(x-2) + f(2) = 2b(x-2) + b.$$

Por lo tanto, el valor del parámetro $b \in \mathbb{R}$ que hace que la recta tangente en el punto x=2 tenga pendiente 4 es b=2 y en este caso la recta tangente es

$$y = 4(x-2) + 2 = 4x - 6.$$

La recta tangente en x=2 tiene pendiente 4 si b=2 y en este caso es y=4x-6

(d) Para estudiar el crecimiento y decrecimiento de la función estudiaremos el signo de la derivada de la función. En este caso, si $x \neq 1$ tenemos que

$$f'(x) = \begin{cases} 2x, & x < 1\\ 2b(x-1), & x > 1 \end{cases}$$

Por lo tanto, si b>0 tenemos que

$$x<0$$
 $f'(x)=2x<0$ la función es decreciente $0< x<1$ $f'(x)=2x>0$ la función es creciente $x>1$ $f'(x)=2b(x-1)>0$ la función es creciente

Para b>0 la función es decreciente en $(-\infty,0)$ y creciente en $(0,+\infty)$

A continuación se muestra la gráfica de la función para a=-1 y b=4 donde se confirman los resultados obtenidos en los apartados anteriores.

Asignatura	Código	Fecha	Hora inicio
Matemáticas II	81.507	22/01/2020	18:30

Problema 2.

- (a) [10 puntos] Calcular la integral $\int (x-3) e^{2x} dx$.
- (b) **[15 puntos]** Hacer un dibujo aproximado del área comprendida entre la recta y=17 y la curva $y=x^4+1$ y calcular su valor.

(a) Por el método de integración por partes tenemos:

Entonces:

$$\int (x-3)e^{2x}dx = (x-3)\frac{1}{2}e^{2x} - \int \frac{1}{2}e^{2x}dx = \frac{x-3}{2}e^{2x} - \frac{1}{4}e^{2x} + C$$

(b) Calculamos los puntos de corte entre las dos gráficas:

$$x^4 + 1 = 17 \rightarrow x^4 = 16 \rightarrow x^2 = 4 \rightarrow x = \pm 2$$

así podemos expresar el área de la región como la integral definida de la diferencia:

$$\int_{-2}^{2} 17 - (x^4 + 1) dx = \int_{-2}^{2} 16 - x^4 dx = \left[16x - \frac{x^5}{5} \right]_{-2}^{2} =$$

$$= 32 - \frac{2^5}{5} - \left(-32 + \frac{2^5}{5} \right) = \frac{256}{5}$$

Asignatura	Código	Fecha	Hora inicio
Matemáticas II	81.507	22/01/2020	18:30

Problema 3.

(a) [15 puntos] Calcular la antitransformada de Laplace de la función siguiente:

$$F(s) = \frac{-s^2 + 2}{s^2 (s+2)}$$

(b) [10 puntos] Considerar el problema de valor inicial siguiente:

$$\frac{dy}{dx} - 2y = 0, \quad y(0) = 5$$

Justificar cual de las siguientes funciones

$$y_1(x) = e^{2x},$$

 $y_2(x) = 5e^x,$
 $y_3(x) = 5e^{2x},$

es solución del problema de valor inicial.

$$\begin{aligned} & \text{INDICACIÓN:} \\ & \mathcal{L}\left\{1\right\} = \frac{1}{s}, \mathcal{L}\left\{t^n\right\} = \frac{n!}{s^{n+1}}, \mathcal{L}\left\{e^{at}\right\} = \frac{1}{s-a}, \mathcal{L}\left\{\cos(at)\right\} = \frac{s}{s^2+a^2} \text{ y } \mathcal{L}\left\{\sin(at)\right\} = \frac{a}{s^2+a^2} \end{aligned}$$

(a) Para calcular el antitransformada de Laplace de la función F(s) hay que expresar F(s) como suma de fracciones simples. En este caso,

$$F(s) = \frac{-s^2 + 2}{s^2(s+2)} = \frac{A}{s} + \frac{B}{s^2} + \frac{C}{s+2} = \frac{As(s+2) + B(s+2) + Cs^2}{s^2(s+2)}$$

Cómo los numeradores tienen que ser iguales, lo tienen que ser para cualquier valor de la variable s

$$-s^{2} + 2 = As(s+2) + B(s+2) + Cs^{2}$$
 $\forall s \in \mathbb{R}$.

De este modo, escogiendo tres valores de s podemos plantear un sistema de tres ecuaciones con tres incógnitas. En efecto,

$$\begin{split} s &= -2 \iff -2 = 4C \iff C = -1/2 \\ s &= 0 \iff 2 = 2B \iff B = 1 \\ s &= -1 \iff 1 = -A + B + C \iff A = B + C - 1 = -1/2 \end{split}$$

Una vez resuelto el sistema de ecuaciones obtenemos

$$A = -1/2, B = 1, C = -1/2$$

Por lo tanto,

$$F(s) = -\frac{1}{2}\frac{1}{s} + \frac{1}{s^2} - \frac{1}{2}\frac{1}{s+2}$$

de forma que:

$$f(t) = \mathcal{L}^{-1}\left\{F(s)\right\} = -\frac{1}{2}\mathcal{L}^{-1}\left\{\frac{1}{s}\right\} + \mathcal{L}^{-1}\left\{\frac{1}{s^2}\right\} - \frac{1}{2}\mathcal{L}^{-1}\left\{\frac{1}{s+2}\right\} = -\frac{1}{2} + t - \frac{1}{2}e^{-2t}.$$

(b) La función $y_1(x)$ no puede ser solución del problema de valor inicial ya que no satisface la condición inicial, puesto que $y_1(0)=1\neq 5$. Las funciones $y_2(x)$ y $y_3(x)$ si que satisfacen la condición inicial,

$$y_2(0) = y_3(0) = 5.$$

Miramos ahora si $y_2(x)$ satisface la ecuación diferencial:

$$y_2(x) = 5e^x$$
, $y_2'(x) = 5e^x \implies y_2' - 2y_2 = 5e^x - 10e^x = -5e^x \neq 0$,

por lo tanto, $y_2(x)$ no satisface la ecuación diferencial. Finalmente, $y_3(x)$ si verifica la ecuación diferencial, ya que:

$$y_2(x) = 5e^{2x}, \ y_2'(x) = 10e^{2x} \ \Rightarrow \ y_2' - 2y_2 = 10e^{2x} - 10e^{2x} = 0,$$

Por lo tanto, solo $y_3(x)$ es solución del problema de valor inicial.

Asignatura	Código	Fecha	Hora inicio
Matemáticas II	81.507	22/01/2020	18:30

Problema 4. Considerar $f(x) = \ln(2+x)$.

- (a) [15 puntos] Calcular su polinomio de Taylor de orden 3 alrededor de a=0.
- (b) [10 puntos] Según la expresión del residuo de Taylor, ¿qué error cometeríamos si aproximásemos $\ln(2.5)$ con el polinomio del apartado anterior?

(a) Para calcular el polinomio de Taylor de orden 3 alrededor de a=0, necesitamos las derivadas de la función hasta orden 3:

$$f'(x) = \frac{1}{2+x} = (2+x)^{-1}, \ f''(x) = -(2+x)^{-2}, \ f'''(x) = 2(2+x)^{-3}.$$

Así pues, $f(0)=\ln(2),$ $f'(0)=\frac{1}{2},$ $f''(0)=-\frac{1}{4}$ y $f'''(0)=\frac{1}{4}.$ El polinomio de Taylor de orden tres será:

$$p_3(x) = f(0) + f'(0)x + \frac{1}{2}f''(0)x^2 + \frac{1}{6}f'''(0)x^3 = \ln(2) + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{24}x^3.$$

(b) Puesto que $f(x) = \ln(2+x)$ y nos piden calcular $\ln(2.5)$, tendremos que usar x = 0.5. Según el apartado 2.4 del módul del polinomio de Taylor, alrededor de a=0, el residuo correspondiente al polinomio p_3 en el punto 0.5 es

$$R_3(0.5) = \frac{f^{(4)}(z)}{4!}(0.5 - 0)^4,$$

donde $z\in(0,0.5)$ es un valor desconocido. Tenemos que calcular la derivada cuarta:

$$f''''(x) = -\frac{6}{(2+x)^4}$$

que, en valor absoluto, es una función decreciente cuando x > 0, por lo tanto, podem acotarla por su valor en 0:

$$|R_3(0.5)| < \frac{3}{8 * 24} 0.5^4 = 0.015625 \cdot 0.5^4 = 9.8 \cdot 10^{-4}.$$

Y éste es el error máximo que cometeríamos si aproximásemos $\ln(2.5)$ con $p_3(0.5)$.