BIEN 500 Systems Physiology

Blood cell, immunity and blood clotting Chapter 37 in 14th Edition (and Prior)

Dr. DeCoster
Part 2
Fall 2023
Lecture 07

Hemostasis

- Definition: the arrest of bleeding
- Primary hemostasis
 - Formation of <u>platelet</u> plugs
 - Blood vessels (endothelium)
- Secondary hemostasis
 - Formation of fibrin through the coagulation cascade
- Tertiary hemostasis
 - Formation of plasmin for the breakdown of the clot

Anatomy of a Blood Vessel (Artery and Vein differences)

Extracellular Matrix Proteins

Fibronectin

- An important protein in terms of cell adhesion and matrix stability
- Has binding sites (e.g., <u>RGD peptide</u>) for integrins, as well as other ECM molecules such as collagen and fibrin

Laminin

- A large group of cross-shaped glycoproteins
- Serves primarily a structural role in basement membranes, <u>anchoring</u>
 cells to the basal lamina
- Important in cell migration, especially in neuron outgrowth

Collagen

- A large family of proteins that represent the majority of proteins in mammalian tissue (\sim 25%)
- Many different types of collagen: fibrillar, fibril-associated, and network forming collagen types

Global Scheme of Hemostasis

Platelet system

Vascular system

Coagulation system

Balance Between Hemostasis, Bleeding and Thrombosis

(Heparin)

↓ Coagulation

↑ Fibrinolysis

↑ Coag. inhibitors

↑ Primary hemostasis

↓ Coag. inhibitors

↑ Primary hemostasis

Bleeding disorder

Hemostasis

Thrombotic disorder

Coagulation Cascade

1. Extrinsic pathway begins with a traumatized vascular wall or traumatized extravascular tissues that come in contact with the blood. This includes a tissue factor composed of phospholipids from the membranes of the tissue.

2. The intrinsic pathway begins with trauma to the blood itself or exposure of the blood to collagen from a traumatized blood vessel wall.

Activation of Coagulation Pathway

- Intrinsic pathway
 - Initiated in the absence of Ca²⁺
 - Initiated by the exposure of blood to material surface (subendothelium, polymers) and <u>negatively</u> charged surfaces (glass, clay)
- fXII adheres to negatively charged surfaces (other cells?) and undergoes conformational changes
- Highly susceptible to cleavage by trace amount of fXIIa
- Extrinsic pathway
 - Thromboplastin (Tissue Factor)
 - Transmembrane protein
 - Found in high levels in brain, lung and placenta
 - Found in blood vessel intima
 - fVII

Clotting Factors

Ι	Fibrinogen
II	Prothrombin
III	Thromboplastin
IV	Calcium
V	Labile factor
VI	Proconvertin
VIII	Anti-hemophilic factor (AHF)
IX	Christmas factor
X	Stuart-Prower factor
XI	Plasma thromboplastin antecendent (PTA)
XII	Hageman factor
XIII	Fibrin stabilizing factor

9

***Origin of Christmas Factor???

Fibrin Assembly

Fibrinolysis: Breakdown of Fibrin Clots

Control Mechanisms

- Required to prevent massive clotting throughout body
- Blood flow reduces local concentration of activated factors
- Rate increases with surface area
- Natural coagulation inhibitors and feedback proteins remove activated proteins
 - antithrombin; protein C system; <u>heparin</u>; thrombomodulin
- Fibrinolysis
 - Activation of plasmin from plasminogen; catalyzed by plasminogen activators such as tissue plasminogen activator (tPA) and urokinase
 - Plasmin in turn cleaves fibrin into different degradation products

Platelets- 1

- Non-nucleated, disk-shaped cells having a diameter 3-4 microns
- •Platelets are formed in the bone marrow from megakaryocytes; the megakaryocytes fragment into minute platelets either in the bone marrow or soon after entering the blood, especially as they squeeze through the capillaries.
- Functions
 - -Bleeding arrest and stabilize blood clots by
 - catalyzing thrombin production from prothrombin
 - forming rapid assembly

• <u>3</u> types of cytoplasmic storage granules whose contents are released upon platelet

activation (shown below)

Receptors and Binding Proteins

: heparin binding proteins, platelet factor 4 (PF4), b-thromboglobulin, platelet derived growth factor (PDGF), coagulation proteins such as fibrinogen, von Willebrand factor, factor V and factor VIII, and ECM proteins such as fibronectin

Platelets- 2

- Dense granules: adenosine diphosphate (ADP), serotonin, and Ca²⁺
- <u>Lysosomal</u> granules: enzymes such as acid hydrolase
- Platelets have a short half-life= 8-12 days.
- Activated by ADP, thrombin, fibrinogen binding etc

Mitochondrion Adhesion, aggregation and activation Surface Connected Glycogen Canalicular System Dense Tubular System Platelet Receptors. (GPIb and Microtubules GPIIb/IIIa) Lysosomal Granule Microtubules a Granule Dense Granule

14

Platelet Adhesion, Aggregation and Activation

- Adhere to both artificial (implants) and natural surfaces (ECM, vascular injuries)
- Interaction of surface receptors
 - GPIIb/IIIa (most abundant) to RGD of fibrinogen, fibronectin, vitronectin, von
 Willebrand factor etc
 - GP1b to von Willebrand factor
 - GPII/I to collagen
 - Mediated by Ca²⁺
- Aggregation through the binding with "bridging molecules" such as fibrinogen

 Recruitment of more platelets by cytokines and other mediators such as thromboxane A2, arachidonic acid (Aspirin?) and epinephrine

- Activation
 - Initiation of contractile processes lead to shape change; from discoid to pseudopodium formation
 - Release of granule contents
- ADP, thrombin: platelet activators
- <u>TxA2</u>: recruitment of more platelets
- Ca²⁺

Platelet Activation

Resting

Activated

Platelet-Fibrinogen Bridging

Drugs that Inhibit Platelet Functions

- Inhibitors of prostaglandin and thromboxane synthesis
 - Inhibit phospholipase activity: hydrocortisone
 - Cyclo-oxygenase inhibitors: <u>aspirin</u> (irreversible)
 - Ibuprofen (reversible)
- Substances that decrease Ca²⁺ availability
 - Inhibit phosphoesterase: diphyridamole
 - Activate adenylate cyclase: iloprost
- Drugs that act on biological membranes
 - Ticlopidine (Ticlid), Clopidogrel: unknown mechanism
- Drugs that block platelet aggregation
 - Antibody against GPIIb-IIIa
 - RGD peptide analogs (non)peptide-based: Block GPIIb-IIIa

Effect of Blood Flow on Endothelial Cell Shape

Functions of Endothelial Cell

- A semipermeable barrier for the transfer of substances between blood and surrounding tissues (tight junctions in brain make a tighter barrier = blood brain barrier [BBB]).
- Mediation of vascular repair processes
- Processing of antigen immunity
- Maintenance of thromboresistance
- Synthesis of mediators that regulate interactions between vessel wall and blood components
 - Factor VIII, von Willebrand's factor
 - Fibronectin
 - Collagen
 - Thrombomodulin
 - Tissue plasminogen activator (tPA)
 - Plasminogen activation inhibitor (PAI-1)

Thromboresistance of Endothelial Cell

- Antiplatelet
 - Prostacyclin (PGI₂): inhibits platelet adhesion and aggregation
 - Degradation of <u>ADP</u>, a platelet activator
- Anticoagulant
 - Thrombomodulin
 - Uptake, inactivation and clearance of thrombin
 - Participate in Protein <u>C</u> activation
 - Heparan sulfate
 - Antithrombin III binding
- Profibrinolytic
 - Plasminogen activators: plasmin production for fibrin degradation
 (e.g., tissue plasminogen activator (tPA))

Thromboresistant Role of Endothelium

Consequences of Endothelial Disruption

- Vasoconstriction
- Platelet adhesion to subendothelium
 - Aggregation and activation
- Initiation of coagulation
 - Coagulation factor released from endothelium
 - fV, fVIII, von Willebrand factor, tissue factor
- Fibrinolysis follows the release of tissue plasminogen (tPA) from endothelium

Stimuli that Change Endothelium to Procoagulant State

- Endotoxin
- Cytokines
 - TNFa, IL-1
- Thrombin
- Others
 - Substrates

Prothrombotic Roles of Endothelium

- Procoagulatant
 - Increase procoagulant (vWf/fVIII)
 - Decrease inhibitors
- Anti-fibrinolytic
 - Increase plasminogen activator inhibitor (PAI-1)
 - Decrease tissue plasminogen activator (tPA)
- ***Use of tPA after stroke***?
- Pro-platelet activating
 - Platelet activating factor (PAF)
- Increase leukocyte adhesion

Prothrombotic Role of Endothelium

Antithrombotic Agents

- Anticoagulants
 - Heparin
 - Coumadin
 - Hirudins (produced by the <u>leech</u>)
 - Sodium citrate
 - Recombinant proteins of thrombomodulin, antithrombin III, tissue factor pathway inhibitor
- Antiplatelet agents
 - Inhibitors of prostaglandin and thromboxane synthesis (e.g., aspirin, ibuprofen)
 - Decrease the availability of intracellular <u>Ca²⁺</u>
 - Block platelet aggregation (e.g., anti-GPIIb-IIIa antibodies)
 - Act on biological membrane

Mechanism of Heparin Action

- 1. Heparin binding to antithrombin III (What charge is Heparin?)
- 2. Conformational changes of antithrombin III
- 3. Enhances binding of Antithrombin with thrombin (makes Antithrombin 100-1,000 x more effective). *So what effect on blood clotting*?
- 4. Reuse of heparin

Warfarin (Coumadin) Therapy

- Vitamin <u>K</u> exists in two forms:
 - K1: from leafy vegetables and oils
 - K2: from bacteria of gut
- Absorbed in the presence of bile salts
- No significant body storage
- Necessary for full function of coagulation factors (II, VII, IX, X, Pro C)
- Warfarin/Coumadin competes with Vitamin K— so is proor anticoagulant?

Weblinks

 ***Coagulation cascade (text is there, but couldn't see plugin)

www.mhhe.com/biosci/esp/2002 general/Esp/folder structure/tr/m1/s7/trm1s7 3.htm

End!