IE 539: Convex Optimization

KAIST, Fall 2022

Lecture #3: Convex functions, first-order and second-order optimality conditions

September 6, 2022 Lecturer: Dabeen Lee

1 Outline

In this lecture, we study

- Convex functions,
- First-order optimality conditions, and
- Second-order optimality condition

2 Convex functions

2.1 Definition

Definition 3.1. A function $f: \mathbb{R}^d \to \mathbb{R}$ is *convex* if the domain dom(f) is convex and for all $x, y \in dom(f)$, we have

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$
 for $0 \le \lambda \le 1$.

In words, f when evaluated at a point between x and y lies below the line segment joining f(x) and f(y).

Figure 3.1: Illustration of a convex function in \mathbb{R}^2

Definition 3.2. We say that $f: \mathbb{R}^d \to \mathbb{R}$ is *concave* if -f is convex.

Definition 3.3. A function $f: \mathbb{R}^d \to \mathbb{R}$ is

• strictly convex if dom(f) is convex and for any distinct $x, y \in dom(f)$, we have

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$$
 for $0 < \lambda < 1$.

• strongly convex if $f(x) - \alpha ||x||^2$ is convex for some $\alpha > 0$ and norm $||\cdot||$.

Note that strong convexity implies strict convexity, and strict convexity implies convexity.

2.2 Examples

Univariate functions (on \mathbb{R})

- Exponential function: e^{ax} for any $a \in \mathbb{R}$.
- Power function: x^a for $a \ge 1$ over \mathbb{R} and x^a for a < 0 over \mathbb{R}_{++} . x^a for $0 \le a < 1$ over \mathbb{R}_+ is concave.
- Logarithm: $\log x$ is concave on \mathbb{R}_{++} .
- Negative entropy: $x \log x$ on \mathbb{R}_{++} .

Multivariate functions (on \mathbb{R}^d)

- Linear function: $a^{\top}x + b$ where $a \in \mathbb{R}^d$ and $b \in \mathbb{R}$ is both convex and concave.
- Quadratic function: $\frac{1}{2}x^{\top}Ax + b^{\top}x + c$ where $A \succeq 0, b \in \mathbb{R}^d$, and $c \in \mathbb{R}$.
- Least squares loss: $||b Ax||_2^2$ for any A.
- Norm: Any norm $\|\cdot\|$ is concex, because a norm is subadditive and homogeneous.
- Maximum eigenvalue of a symmetric matrix.
- Indicator function: When C is convex, its indicator function, given by,

$$I_C(x) = \begin{cases} 0, & x \in C \\ \infty, & x \notin C \end{cases}$$

is convex.

 \bullet Support function: Given a convex set C, its support function is defined as

$$I_C^*(x) = \sup_{y \in C} \left\{ y^\top x \right\}.$$

• Conjugate function: Given an arbitrary function $f: \mathbb{R}^d \to \mathbb{R}$, the conjugate function f^* is defined as

$$f^*(x) = \sup_{y \in \mathbb{R}^d} \left\{ y^\top x - f(y) \right\}.$$

2.3 Properties of convex functions

Definition 3.4. The *epigraph* of a function $f: \mathbb{R}^d \to \mathbb{R}$ is defined as

$$\operatorname{epi}(f) = \{(x, t) \in \operatorname{dom}(f) \times \mathbb{R}: \ f(x) \le t\}.$$

The following is another definition of convex functions with respect to the epigraph.

Exercise 3.5. Prove that f is a convex function if and only if the epigraph is a convex set.

Example 3.6. Recall that the norm cone $\{(x,t) \in \mathbb{R}^d \times \mathbb{R} : ||x|| \le t\}$ is a convex cone. This implies that any norm f(x) = ||x|| is a convex function.

2

Figure 3.2: Convex level sets from a nonconvex function

Remark 3.7. A level set of a function $f: \mathbb{R}^d \to \mathbb{R}$ is defined as

$$\{x \in \text{dom}(f): f(x) \le \alpha\}$$

for any $\alpha \in \mathbb{R}$. If f is convex, then all level sets are covex. However, the converse does not hold as Figure 3.2 demonstrates.

The following results provides first-order characterization of convex functions.

Theorem 3.8. Let $f: \mathbb{R}^d \to \mathbb{R}$ be a differentiable function. Then f is convex if and only if dom(f) is convex and

$$f(y) \ge f(x) + \nabla f(x)^{\top} (y - x)$$

for all $x, y \in dom(f)$.

Proof. (\Rightarrow) We first consider the d=1 case. If f is convex, then for any $x, y \in \text{dom}(f)$ and $\lambda \in [0, 1]$,

 $f(x+\lambda(y-x)) = f((1-\lambda)x+\lambda y) < (1-\lambda)f(x)+\lambda f(y).$

Figure 3.3: Illustration of the first-order characterization

Moving the $(1-\lambda)f(x)$ term to the other side and dividing each side by λ , we obtain

$$f(y) \ge f(x) + \frac{f(x + \lambda(y - x)) - f(x)}{\lambda}.$$

Then

$$f(y) \ge f(x) + \lim_{\lambda \to 0^+} \frac{f(x + \lambda(y - x)) - f(x)}{\lambda} = f(x) + (y - x)f'(x)$$

as f is differentiable and thus the limit exists.

Now we consider the general case. We take a function $g(\lambda) := f(x + \lambda(y - x))$ for $\lambda \in [0, 1]$. Then g is differentiable as $g'(\lambda) = (y-x)^{\top} \nabla f(x+\lambda(y-x))$. If f is convex, then g is convex. By the d=1 case, $g(1) \geq g(0) + g'(0)$, which implies that $f(y) \geq f(x) + \nabla f(x)^{\top} (y-x)$.

 (\Leftarrow) Let $x, y \in \text{dom}(f)$ and $\lambda \in [0, 1]$. Take $z = \lambda x + (1 - \lambda)y$. Then

$$f(x) \ge f(z) + \nabla f(z)^{\top} (x - z), \quad f(y) \ge f(z) + \nabla f(z)^{\top} (y - x).$$

Multiplying the first and second by λ and $(1-\lambda)$, respectively, and adding the resulting inequalities, it follows that

$$\lambda f(x) + (1 - \lambda)y) \ge f(z) + \nabla f(z)^{\top} (\lambda x + (1 - \lambda)y - z) = f(\lambda x + (1 - \lambda)y),$$

so f is convex. What follows is another first-order characterization.

Theorem 3.9. Let $f : \mathbb{R}^d \to \mathbb{R}$ be a differentiable function. Then f is convex if and only if dom(f) is convex and

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge 0$$

for all $x, y \in dom(f)$.

Proof. (\Rightarrow) By Theorem 3.8, we have

$$f(y) \ge f(x) + \nabla f(x)^{\top} (y - x), \quad f(x) \ge f(y) + \nabla f(y)^{\top} (x - y).$$

Add these two to obtain $(\nabla f(x) - \nabla f(y))^{\top}(x - y) \ge 0$.

(⇐) By the fundamental theorem of calculus, we obtain

$$\int_0^1 \nabla f(x+\lambda(y-x))^\top (y-x) d\lambda = \int_0^1 \left(\frac{d}{d\lambda} f(x+\lambda(y-x)) \right) d\lambda$$
$$= f(x+\lambda(y-x)) \Big|_{\lambda=0}^1$$
$$= f(y) - f(x).$$

Moreover, for any $\lambda > 0$, we have

$$\nabla f(x + \lambda(y - x))^{\top}(y - x) - \nabla f(x)^{\top}(y - x) = \frac{1}{\lambda} \langle \nabla f(x + \lambda(y - x)) - \nabla f(x), \lambda(y - x) \rangle \ge 0,$$

implying in turn that

$$\nabla f(x + \lambda(y - x))^{\top}(y - x) \ge \nabla f(x)^{\top}(y - x)$$

for any $\lambda > 0$. Note that this inequality trivially holds when $\lambda = 0$. Therefore,

$$f(y) - f(x) = \int_0^1 \nabla f(x + \lambda (y - x))^\top (y - x) d\lambda \ge \nabla f(x)^\top (y - x).$$

Then f is convex by Theorem 3.8.

Next, we consider the second-order characterization.

Theorem 3.10. Let $f : \mathbb{R}^d \to \mathbb{R}$ be a twice differentiable function¹. Then f is convex if and only if dom(f) is convex and

$$\nabla^2 f(x) \succeq 0.$$

for all $x \in dom(f)$.

Proof. (\Rightarrow) We first consider the d=1 case. By Theorem 3.8, we have $f(x) \geq f(y) + f'(y)(x-y)$ and $f(y) \geq f(x) + f'(x)(y-x)$. Adding these up and dividing each side by $(y-x)^2$, we obtain

$$\frac{f'(y) - f'(x)}{y - x} \ge 0.$$

Taking the limit as $y \to x$, we obtain $f''(x) \ge 0$.

Next, let us consider the general case. Let $x \in \text{dom}(f)$ and $v \in \mathbb{R}^d$. As dom(f) is open, we have a sufficiently small $\epsilon > 0$ such that $x + \lambda v \in \text{dom}(f)$ for any $\lambda \in (-\epsilon, \epsilon)$. Let $g(\lambda) = f(x + \lambda v)$

 $^{1\}nabla^2 f$ exists at any point in dom(f), and dom(f) is open.

for $\lambda \in (-\epsilon, \epsilon)$. Since f is convex, g is also convex. Note that $g'(\lambda) = v^{\top} \nabla f(x + \lambda v)$ and that $g''(\lambda) = v^{\top} \nabla^2 f(x + \lambda v)v$. By the d = 1 case,

$$g''(0) = v^{\top} \nabla^2 f(x) v \ge 0.$$

Therefore, we have proved that $\nabla^2 f(x)$ is positive semidefinite.

(⇐) By the fundamental theorem of calculus, we obtain

$$\int_0^1 (y-x)^\top \nabla^2 f(x+\lambda(y-x)) d\lambda = \int_0^1 \left(\frac{d}{d\lambda} \nabla f(x+\lambda(y-x)) \right) d\lambda$$
$$= \left. \nabla f(x+\lambda(y-x)) \right|_{\lambda=0}^1$$
$$= \left. \nabla f(y) - \nabla f(x) \right.$$

Then

$$\langle \nabla f(y) - \nabla f(x), y - x \rangle = \int_0^1 (y - x)^\top \nabla^2 f(x + \lambda (y - x))(y - x) d\lambda \ge 0$$

where the inequality follows because $\nabla^2 f$ is positive semidefinite. Then f is convex by Theorem 3.9.