Модель пухлини на основі клітинного автомата

Зміст

1	Вступ	2
2	Теоретичні основи	2
	2.1 Клітинні автомати в моделюванні раку	. 2
	2.2 Ієрархія клітин пухлини	
	2.3 Динаміка росту пухлини	
	2.4 Взаємодія з імунною системою	
3	Реалізація	4
	3.1 Архітектура моделі	. 4
	3.2 Основні параметри	
	3.3 Алгоритм симуляції	
4	Результати симуляції	5
	4.1 Візуалізація та колірна схема	. 5
	4.2 Динаміка росту пухлини без імунної відповіді	
	4.3 Динаміка росту пухлини з імунною відповіддю	
	4.4 Графіки популяцій клітин	
5	Учасники проєкту	7
6	Ментор	7

1 Вступ

Короткий опис мети проєкту, його значущості та обраного підходу моделювання (стохастичний клітинний автомат).

2 Теоретичні основи

2.1 Клітинні автомати в моделюванні раку

Пояснення, чому клітинні автомати підходять для просторово-часового моделювання пухлин.

2.2 Ієрархія клітин пухлини

Опис біологічної структури клітин:

1. Cell (Базова клітина)

Базовий клас для всіх типів клітин.

- Координати: x, y
- Таймер поділу: time_since_division
- Кількість доступних поділів: divisions_left
- Час циклу клітини: cct = 24 годин
- Стан життя: is_alive

Методи:

- can_divide()
- reset_timer()
- update_timer(dt)
- die()
- migrate(free_neighbors)

2. EmptyCell (Порожня клітинка)

- Просто "місце", де немає клітини.
- is_alive = False
- Не ділиться.

3. NecroticCell (Некротична клітина)

- Мертва клітина, яка раніше була живою, але вже не функціонує.
- is_alive = False
- Не ділиться.

4. RegularTumorCell (Звичайна пухлинна клітина)

- Має обмежену кількість поділів.
- divisions_left зменшується з кожним поділом.
- Якщо divisions_left ≤ 2 , перетворюється на NecroticCell при наступному поділі.
- Метод divide() створює нову RegularTumorCell з divisions_left 1.

5. StemTumorCell (Стовбурова пухлинна клітина)

- Необмежена здатність до поділу: divisions_left = ∞ .
- Завжди ділиться у RegularTumorCell.
- Символізує агресивну форму пухлини.

6. TrueStemCell (Істинна стовбурова клітина)

- Найбільш "основна" стовбурова клітина.
- Може створювати:
 - ще одну TrueStemCell з імовірністю ρ
 - або StemTumorCell з імовірністю $1-\rho$
- Має потенціал підтримувати як нормальну, так і пухлинну популяцію.

7. ImmuneCell (Імунна клітина)

- Може атакувати пухлинні клітини.
- Має такі характеристики:
 - **Тривалість життя**: lifespan, напр., 72 год.
 - **Ймовірність вбивства клітини**: kill_probability, напр., 0.3
 - ${f Pisehb}$ активації: activation_level підсилює здатність убивати
 - **Кількість поділів**: обмежена, напр., 3
 - Помирає при досягненні age ≥ lifespan

2.3 Динаміка росту пухлини

Основні події життєвого циклу клітин:

- Поділ
- Міграція
- Смерть
- Вибір шляху диференціації

2.4 Взаємодія з імунною системою

Механізми імунної відповіді:

- Активація
- Знищення клітин пухлини
- Міграція та поділ імунних клітин
- Тривалість життя імунних клітин

3 Реалізація

3.1 Архітектура моделі

- Решітка (Grid)
- Клас клітин (Cell)
- Симулятор (TumorSimulation)

3.2 Основні параметри

У цьому розділі коротко описуються ключові параметри, що використовуються в моделі.

3.3 Алгоритм симуляції

Покроковий опис:

- 1. Оновлення клітин пухлини
- 2. Оновлення імунних клітин (якщо увімкнено)
- 3. Збір статистики

4 Результати симуляції

4.1 Візуалізація та колірна схема

Для інтерпретації результатів симуляції застосовується наступна колірна схема клітин:

- Імунні клітини (Immune cells)
- Некротичні клітини (Necrotic cells)
- Порожні клітини (вільний простір)
- Істинні стовбурові клітини (True Stem Cells)
- Стовбурові пухлинні клітини (Stem Tumor Cells)
- Ввичайні пухлинні клітини (Regular Tumor Cells), з градацією відтінків залежно від кількості поділів

4.2 Динаміка росту пухлини без імунної відповіді

На рисунках нижче показано просторову динаміку росту пухлини без впливу імунної системи. Видно поступове збільшення маси пухлини та утворення некротичного ядра.

4.3 Динаміка росту пухлини з імунною відповіддю

Далі представлено вплив імунної системи на динаміку пухлини. Імунні клітини поступово проникають у пухлину, взаємодіють з нею, зменшуючи кількість активних пухлинних клітин.

4.4 Графіки популяцій клітин

На графіках показано кількісні зміни популяцій клітин протягом симуляції. Це дозволяє оцінити темпи росту пухлини, активність імунної системи, а також частку некротичних клітин.

(а) Динаміка популяцій клітин без імунної відповіді

(б) Динаміка популяцій клітин з імунною відповіддю

5 Учасники проєкту

- Ярина Печененко логіка клітин
- Іван Зарицький візуалізація, CLI
- Михайло Рихальський структура решітки, просторова логіка
- Роман Прохоров движок симуляції

6 Ментор

Максим Жук