Grade 10 Science

Chemical Reactions
Class 1

Overall Expectations

- Analyse a variety of safety and environmental issues associated with chemical reactions, including the ways in which chemical reactions can be applied to address environmental challenges
- Investigate, through inquiry, the characteristics of chemical reactions
- Demonstrate an understanding of the general principles of chemical reactions, and various ways to represent them

Physical and Chemical Properties

- Physical Property does not involve forming a new substance
 - Colour
 - Texture
 - Density
 - Smell
 - Melting Point

- Chemical Property changes into one or more new substances
 - Flammability
 - Bleaching
 - Corrosion
 - Rusting

Checkpoint

Classify the following as a physical or chemical property:

- a) Liquid nitrogen boils at -196°C
- b) Propane, leaking from a tank, ignites easily
- c) Silver jewelry tarnishes in air
- d) Spilled oil floats on the surface of water
- e) Meat darkens when it is heated on a grill
- f) Sulfur trioxide changes to sulfuric acid in the atmosphere

Patterns in the Periodic Table

- Group/Family column in the periodic table
- Period row in the periodic table

Atomic Structure

• An atom consists of:

	Proton	Neutron	Electron
Electrical Charge	+	0	-
Relative Mass	1	1	1/2000
Symbol	p⁺	n ⁰	e ⁻
Location	Nucleus	Nucleus	Outside Nucleus

Mass Number/Atomic Number

$$\overset{\text{mass}}{\underset{\text{number}}{\text{atomic}}}\overset{\text{---}>}{\underset{\text{number}}{\text{---}>}}}\overset{4}{\text{He}}\overset{\text{Element}}{\underset{\text{Symbol}}{\text{Symbol}}}$$

- **Atomic number** = Protons OR Electrons (if neutral)
 - Ex: Helium has 2 protons and 2 electrons
- Mass number = Protons + Neutrons
 - Ex: Helium has 2 neutrons

Terms to Know

- Isotope elements with the same number of protons but a different number of neutrons; different mass
 - Ex: Carbon-12 and Carbon-14
- Ion elements with the same number of protons but a different number of electrons; different charge
 - Ex: Be and Be²⁺
 - Cations = ions with a positive charge
 - Anions = ions with a negative charge
 - Note: Atoms become ions when there is a loss/gain of electrons NOT protons

List the number of p⁺, n⁰, and e⁻ for:

- a) Beryllium
- b) Phosphorus
- c) Neon
- d) Fluorine ion (F-)

Bohr-Rutherford Diagrams

- 1. Draw the nucleus and write the number of protons and neutrons inside
- 2. Add the electrons to the outer shells
 - -1st = 2 electrons
 - $-2^{nd} = 8$ electrons
 - $-3^{rd} = 8$ electrons
 - -4th = 18 electrons

NOBLE GASES

Very stable due

to complete

valence shell

Draw the Bohr-Rutherford Diagrams for:

- a) Lithium-6 isotope
- b) Potassium ion (K+)

Reactivity

- Valence electrons determine the reactivity of an element and how compounds are formed
- Elements lose or gain valence electrons to achieve stability

Lewis Dot Diagrams

- 1. Write the element symbol
- 2. Find the number of valence electrons by looking at the Roman Numeral above the element's group
- 3. Put dots representing the electrons on the four sides of the element singly before pairing up

Checkpoint

Draw the Lewis Dot Diagram of:

- a) Boron
- b) Silicon
- c) Argon
- d) Mg²⁺
- e) O²⁻

Ionic Compounds

- Ionic compound formed between a metal and a non-metal; a cation and an anion
 - Metal loses electron(s)
 - Non-metal gains electron(s)

- Properties of Ionic Compounds:
 - Form Crystal-Like Structures
 - Hard, Brittle
 - High Melting Points
 - Electrolytes (dissolve in water to conduct electricity)

Chemical Formulas

What is the chemical formula for sodium chloride?

- 1) Write the element symbol (metal+nonmetal)
- 2) Look at the periodic table and find their ionic charge
- 3) Criss-cross the ionic charge
- 4) If subscripts have a common factor, they should be simplified

Common Ionic Charges

What is the formula for:

- a) Calcium bromide
- b) Boron nitride
- c) Aluminum chloride

Chemical Names

What is the chemical name of CaBr₂?

- In most cases:
 name of metal + name of nonmetal
 (change ending of nonmetal to –ide)
- CaBr₂ = calcium bromine calcium bromine
 calcium bromide

Multivalent Elements

- Some transition metals are multivalent (more than one ionic charge)
- Use Roman Numerals to distinguish between the two charges

1A	1																8A
	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	
Li+													C4-	N ³⁻	O ²⁻	F-	
Na ⁺	Mg ²⁺	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 	10	11 1B	12 2B	Al ³⁺		P ³ -	S ²⁻	CI-	
K+	Ca ²⁺				Cr ²⁺ Cr ³⁺	Mn ²⁺ Mn ³⁺	Fe ²⁺ Fe ³⁺	Co ²⁺ Co ³⁺	Ni ²⁺ Ni ³⁺	Cu ⁺ Cu ²⁺	Zn ²⁺				Se ²⁻	Br-	
Rb ⁺	Sr ²⁺									Ag ⁺	Cd ²⁺		Sn ²⁺ Sn ⁴⁺		Te ²⁻	I-	
Cs+	Ba ²⁺									Au ⁺ Au ³⁺	Hg ₂ ²⁺ Hg ²⁺		Pb ²⁺ Pb ⁴⁺				

Element	Ionic Charge	Chemical Name
Chromium (Cr)	2+ 3+	Chromium (II) Chromium (III)
Manganese (Mn)	2+ 3+	Manganese (II) Manganese (III)
Iron (Fe)	2+ 3+	Iron (II) Iron (III)
Cobalt (Co)	2+ 3+	Cobalt (II) Cobalt (III)
Nickel (Ni)	2+ 3+	Nickel (II) Nickel (III)
Copper (Cu)	1+ 2+	Copper (I) Copper (II)
Tin (Sn)	2+ 4+	Tin (II) Tin (IV)
Lead (Pb)	2+ 4+	Lead (II) Lead (IV)
Gold (Au)	1+ 3+	Gold (II) Gold (III)

What is the chemical formula for:

- a) Copper (II) chloride
- b) Iron (III) bromide
- c) Nickel (II) oxide

What is the chemical name for:

- d) Fe_2O_3
- e) Cu₂S
- f) FeN

Polyatomic Ions

- Polyatomic Ion an ion made of more than one atom but acts as a single particle
 - The charge is shared over the entire ion rather than each element

• Ex: PO_4^{3-} = phosphate

OH = hydroxide

 CO_3^{2-} = carbonate

TIP: It may be helpful to keep the elements in brackets and the charge outside the brackets. Ex: $(PO_4)^{3-}$ or $(OH)^{-}$

Table 1 Formulas and Charges of Common Polyatomic Ions

Name of polyatomic ion	Ion formula	lonic charge
nitrate ion	NO ₃ -	-1
nitrite ion	NO ₂ -	-1
hydroxide ion	OH-	-1
hydrogen carbonate ion (also called bicarbonate ion)	HCO ₃ -	-1
chlorate ion	CIO ₃ -	-1
carbonate ion	CO ₃ 2-	-2
sulfate ion	SO ₄ 2-	-2
phosphate ion	PO ₄ 3-	-3
ammonium	NH ₄ +	+1

Naming Polyatomic Ions

Write the name of Na₂CO₃

- 1. Un-criss cross the charges
- 2. Write the name of the metal and check its ionic charge
- 3. Write the name of the polyatomic ion and check its ionic charge

= sodium carbonate

Naming Polyatomic Ions

Write the chemical formula for iron(III) nitrate

- 1. Write the metal and its charge
- 2. Write the polyatomic ion and its charge
- 3. Criss-cross the charges
- 4. Simplify the subscripts

Checkpoint

Name the following:

- a) KNO₃
- b) $(NH_4)_3PO_4$
- c) PbCO₃

Write the chemical formula:

- d) Calcium sulfate
- e) Calcium chlorate
- f) Iron(III) phosphate