

CS1231(S) Tutorial 5: Mathematical Induction

National University of Singapore

2019/20 Semester 1

- 1. Prove by induction that $n^3 + 11n$ is divisible by 3 for all $n \in \mathbb{Z}^+$.
- 2. Prove by induction that every positive integer can be written as a sum of *distinct* non-negative integer powers of 2, i.e.

$$\forall n \in \mathbb{Z}^+ \ (\exists k \in \mathbb{Z}^+ \ \exists i_1, i_2, \dots, i_k \in \mathbb{Z}_{\geq 0} \ (i_1 < i_2 < \dots < i_k) \land (n = 2^{i_1} + 2^{i_2} + \dots + 2^{i_k}))$$

- 3. Let a_0, a_1, a_2, \ldots be the sequence such that $a_0 = 0$, $a_1 = 2$ and $a_2 = 7$, and $a_n = a_{n-1} + a_{n-2} + a_{n-3}$ for all $n \in \mathbb{Z}_{\geqslant 3}$. Prove by induction that $a_n < 3^n$ for all $n \in \mathbb{Z}_{\geqslant 0}$.
- 4. Prove by induction on n the following statement:

$$\forall n \in \mathbb{Z}_{\geqslant 8} \ (\exists x, y \in \mathbb{Z}_{\geqslant 0} \ (n = 3x + 5y)).$$

- 5. Let a be an odd integer. Prove that $a^{2^n} 1$ is divisible by 2^{n+2} for all $n \in \mathbb{Z}^+$.
- 6. Prove by induction on n the following statement:

$$\forall n \in \mathbb{Z}_{\geq 0} \ (\exists x, y \in \mathbb{Z}_{\geq 0} \ (n = \frac{1}{2}(x+y)(x+y+1) + y)).$$

- 7. I need to climb a flight of stairs of n steps. I can go up 1 or 2 steps with every stride. Let s_n be the number of ways that I have to climb n steps (so $s_2 = 2$ since I can climb 2 steps in 1 stride going up 2 steps, or in 2 strides each going up 1 step).
 - (a) Find a recurrence relation for s_n .
 - (b) What is the name of the sequence s_1, s_2, \ldots ?
- 8. (D.R. Hofstadter) The following rules govern which strings of letters you can write down.

 x, y can also be empty strings
 - (I) You can write down MI.
 - (II) After writing down xI for some string x, you can write down xIU.
 - (III) After writing down Mx for some string x, you can write down Mxx.
 - (IV) After writing down xIIIy for some strings x, y, you can write down xUy.
 - (V) After writing down xUUy for some strings x, y, you can write down xy.
 - (VI) You cannot write down a string unless it is allowed by one of the rules above.
 - (a) According to these rules, can you write down MUIIU? Prove that your answer is correct.
 - (b) According to these rules, can you write down MU? Prove that your answer is correct. (Hint: count the number of I's in the strings you can write down.)