7 ПРОГРАМУВАННЯ З ВИКОРИСТАННЯМ ФУНКЦІЙ

Мета: навчитись будувати алгоритми та програмувати з використанням підпрограм.

7.1 Короткі теоретичні відомості

Підпрограма — частина програми, яка реалізує певний алгоритм і дозволяє звернення до неї з різних частин загальної (головної) програми. В термінах мов програмування: функції (С), процедури (Pascal), методи (в термінології об'єктно-орієнтованого програмування).

Підпрограма часто використовується для скорочення розмірів програм в тих задачах, в процесі розв'язання яких необхідно виконати декілька разів однаковий алгоритм при різних значеннях параметрів. Інструкції (оператори, команди), які реалізують відповідну підпрограму, записують один раз, а в необхідних місцях розміщують інструкцію виклику підпрограми.

У більшості мов програмування високого рівня, підпрограми називаються процедурами та функціями. В залежності від мови програмування, терміни «процедура» та «функція» можуть розрізнятися (як правило, процедурою називають підпрограму, що не повертає результату, тоді як функція має результат і може використовуватись як частина виразу) чи розглядатись як синоніми (зокрема, в мові С, де в початковому варіанті всі підпрограми могли повертати результат, їх здебільшого називають функціями). У об'єктноорієнтованому програмуванні функції-члени класів називають методами.

7.2 Завдання

Обчислити значення заданого виразу z , використовуючи підпрограмуфункцію.

$$z = \frac{\ln^2(a - x^2)}{b^2 - \ln^2(b - x^2) - \left(\ln^2(a - x^2)\right)^3}$$
(7.1)

7.3 Хід роботи

7.3.1 Постановка задачі

 \mathcal{A} ано: x, a, $b \in \mathbb{R}$;

Визначити: $z \in \mathbb{R}$.

7.3.2 Математична модель інформаційного процесу

Розглянувши функцію (10.1) можна помітити елемент розрахунків, що повторюється декілька разів. Саме таку операцію доцільно винести у оркемий оператор-функцію:

$$ln^2(u-v^2) \tag{7.2}$$

7.3.3 Метод реалізації інформаційного процесу

Створення власної функції обчислення оператора (7.2).

7.3.4 Алгоритм реалізації інформаційного процесу

Рисунок 7.1 — Алгоритм обчислення функції z

7.3.5 Програмування

Побудова таблиці ідентифікаторів.

Таблиця 7.1 — Таблиця ідентифікаторів

№ 3/∏	Змінна або константа	Ідентифікатор	№ 3/П	Змінна або константа	Ідентифікатор
1	x	X		ν	V
2	а	a		и	u
3	b	b		func	func

```
Введення тексту програми:
```

```
#include <cstdlib>
#include <iostream>
#include <math.h>
using namespace std;
double func(double u)
{
      return log(u - v * v) * log(u - v * v);
int main(int argc, char** argv){
      double x, a, b, z;
      cout << "Input x=";</pre>
      cin >> x;
      cout << "Input y=";</pre>
      cin >> y;
      cout << "Input w=";</pre>
      cin >> w;
      z = func(a, x) / (b*b - func(b, x) - pow(func(a, x), 3));
      cout << "z=" << z << endl;</pre>
      system("PAUSE");
      return 0;
}
```

7.3.6 Тестування та виявлення помилок

Для виявлення алгоритмічних помилок та вирішення проблеми достовірності отриманих результатів можна виконати обчислення у електронній таблиці і порвняти отримані розв'язки.

Для цього у електронній книзі "Обчислення функцій" *ЛистЗ* перейменовуємо на ЛР7 та виконуємо обчислення за формою:

			Обчислення функцій
Вхідні дані		ані	Результат
x	a	b	z
2.1	10	5.3	$=LN(B6 - A6^2)^2 / (C6^2 - LN(C6 - A6^2)^2 - (LN(B6 - A6^2)^2)^3)$

Рисунок 7.2 — Обчислення функцій (7.2) — (7.7) у ET

7.3.7 Обчислення, обробка і аналіз результатів

У ході виконання даної роботи отримано наступні результати:

```
Input x=-2.1
Input a=10
Input b=5.3
z=1.41337
sh: PAUSE: command not found
Program ended with exit code: 0
```

Рисунок 7.3 — Результат обчислень

	Об	ислення функцій	
	Вхідні дані		Результат
x	а	b	z
2.1	10	5.3	1.41337

Рисунок 7.4 — Результат обчислень у електронній таблиці

Порівнюючи результати, отримані трьома різними способами з високою вірогідністю можна стверджувати, що обчислення виконано правильно, так як отримані значення співпали.

7.4 Програми та обладнання.

OpenOffice Calc, OpenOffice Draw, Xcode

7.5 Висновки.

Під час выконання цієї практичної роботи були отримані навички будування алгоритмів та програмування з використанням підпрограм.