

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ N 3, 2005 Электронный журнал, per. N П23275 от 07.03.97

http://www.neva.ru/journal e-mail: diff@osipenko.stu.neva.ru

управление в нелинейных системах прикладные задачи

Отслеживание квазистратегий в задаче управления с неполной информацией

Д.В. Хлопин

e-mail: khlopin@imm.uran.ru

Россия, 620219, Екатеринбург, ул. С.Ковалевской 16, Институт математики и механики УрО РАН, отдел управляемых систем.

Ченцов Александр Георгиевич
e-mail: chentsov@imm.uran.ru
Россия, 620219, Екатеринбург, ул. С.Ковалевской 16,
Институт математики и механики УрО РАН,
отдел управляемых систем.

Аннотация. Рассматривается задача управления с неполной информацией одной из взаимодействующих систем о поведении другой. При помощи метода программных итераций строится решение в классе многозначных квазистратегий. Далее это решение приближается последовательностью допустимых управлений, построенной с помощью метода экстремального сдвига Н.Н.Красовского и А.И.Субботина.

 $^{^{0}}$ Статья выполнена при частичной финансовой поддержке Φ онда Содействия отечественной науке

1. Введение.

В прикладных задачах управления нередко, наряду с помехами канала наблюдения, присутствуют различные искажения в цепи формирования управляющих взаимодействий. В более сложных случаях возникают помеховые управления и неконтролируемые управления, формируемые целенаправленно для достижения некоторой цели, не совпадающей с интересами решения основной задачи. Вопросы такого рода традиционно рассматриваются в рамках теории дифференциальных игр (в данном случае - дифференциальных игр с неполной фазовой информацией; см. [2],[3]).

При этом в задачах теории управления, осложненных воздействием помех, наиболее естественным способом формирования управляющих воздействий является обратная связь. Последовательная реализация идеи гарантированного управления в условиях неконтролируемых факторов привела, однако, к существенному изменению взгляда на сам характер законов управления по принципу обратной связи. Упомянутое радикальное изменение представлений можно связать с формализацией Н.Н. Красовского [1]-[4], которая, с одной стороны, позволяла проводить глубокие теоретические исследования, а с другой, - определяла широкие возможности инженерной реализации существенно нерегулярных законов управления по принципу обратной связи. Существенность таких (нелинейных, разрывных) законов была убедительно показана Н.Н.Субботиной и А.И.Субботиным [5], [6]. В классе упомянутых законов управления Н.Н. Красовским и А.И. Субботиным была доказана фундаментальная теорема об альтернативе (см. [2],[7]); эта теорема определила существование и структуру решения задач конфликтного управления, объединяемых в дифференциальную игру. Сама реализация позиционных законов управления при этом связывалась с тем или иным вариантом правила экстремального сдвига Н.Н. Красовского. При этом вариант, связанный с прицеливанием на стабильный мост (см. [2], [8]) и используемый в доказательстве теоремы об альтернативе, не обладал устойчивостью к информационным помехам, т.е. к помехам канала измерения.

Однако модификация правила экстремального сдвига, реализованная Н.Н. Красовским и А.И. Субботиным в схеме управления с поводырем (см. [2], [4]), уже обладает требуемым свойством устойчивости к информационным помехам. Экстремальное управление с моделью (поводырем) широко использовалось в процедурах на основе стохастического программного синтеза, концепция которого предложена Н.Н. Красовским; см. [3].

В настоящей работе также используется схема управление с моделью, обладающей, однако, той спецификой, что информация о фазовом состоянии одного из управляемых объектов является неполной. Мы рассматриваем управление одним объектом по сигналу, получаемому при неидеальном наблюдении за другим объектом. Цель управления состоит в гарантированном осуществлении сближения. Для решения данной задачи привлекается вариант (см. [9],[10] [11, гл.6]) известного в теории дифференциальных игр метода программных итераций (МПИ): см. [12], [13], а также [14]-[16]. В данном случае используется упомянутый вариант прямой версии МПИ (см. [17]-[20]), реализуемой в пространстве мультифункций. При этом сигнал, поступающий на вход одного из управляемых объектов, является аргументом упомянутых мультифункций, а предел итерационной процедуры - неупреждающим мультиселектором исходного целевого отображения. В естественном предположении о непустозначности предельной мультифункции мы получаем вариант многозначной квазистратегии [17]-[20], приспособленный для решения задачи управления с неполной информацией.

Отметим, что задачам управления с неполной информацией посвящены многие исследования; ограничимся сейчас ссылками на [2],[21],[22] (в частности, отметим конструкции дифференциальных игр с неполной информацией [2] и важное понятие информационного множества в [22]). Здесь мы исследуем возможность применения управления с моделью, конструируемой на основе МПИ. В связи с реализацией этой возможности отметим [24].

Следует отметить, что построение процедур управления с неполной фазовой информацией представляет не только теоретический, но и серьезный практический интерес; в этой связи отметим, в частности, различные задачи космической навигации, в которых предъявляются достаточно жесткие требования к организации работы каналов измерения с целью последующего управления.

2. Содержательная постановка задачи.

В статье рассматривается игровая задача управления, осложненная неполнотой фазовой информации; см. [11, §6.12]. Сначала рассмотрим более частный, но понятный вариант данной задачи, касающийся управляемого взаимодействия двух динамических систем. Итак, пусть на конечном промежутке $I_0 \stackrel{\triangle}{=} [t_0, \theta_0]$, где $t_0 < \theta_0$ – два числа, рассматривается движение двух управляемых систем Σ_1 и Σ_2 . Системой Σ_1 управляет игрок I, а системой Σ_2 – игрок II. Фазовое пространство каждой из систем есть \mathbf{R}^n , где n - заданное натуральное число. Игрок I знает в каждый момент времени свое фазовое состояние и сигнал, порождаемый текущим состоянием игрока II. Движение систем Σ_1 и Σ_2 задается векторными дифференциальными уравнениями

$$\dot{y}(t) = f(t, y(t), u(t)),$$
 (2.1)

$$\dot{z}(t) = g(t, z(t), v(t)), \tag{2.2}$$

Здесь $u(\cdot) = (u(t), t_0 \le t \le \theta_0)$ - реализация управления игрока I, а $v(\cdot) = (v(t), t_0 \le t \le \theta_0)$ - реализация управления игрока II. Мы полагаем, что эти реализации стеснены условиями: $u(t) \in P$ и $v(t) \in Q$ при всех значениях $t \in I_0$. Здесь P и Q - непустые компакты в конечномерных арифметических пространствах. Условия на f и g будут оговорены ниже, а пока будем считать, что в (2.1) и (2.2) можно использовать любые борелевские функции $u(\cdot), v(\cdot)$ вышеупомянутого типа, и при этом для каждой из систем реализуется единственная траектория при фиксированных начальных условиях (\mathbf{u}, \mathbf{y}) . Для системы Σ_1 (см. (2.1)) н.у. полагаем заданным и известным: $y(t_0) = y_0 \in \mathbf{R}^n$. Относительно Σ_2 (см. (2.2)) полагаем только, что н.у. принадлежит некоторому компакту $Z^0, Z^0 \subset \mathbf{R}^n$. Далее, на отрезке I_0 реализуются движения y и z, причем игрок I стремится к осуществлению ситуации

$$\exists t \in I_0 : ||y(t) - z(t)||_p \le \varkappa, \tag{2.3}$$

где $||\cdot||_n$ - евклидова (для определенности) норма в \mathbf{R}^n ,а $\varkappa>0$. Итак, (2.3) составляет цель игрока І. Он, однако, не располагает полной информацией о положении системы Σ_2 , т.е. о z(t). Вместо этого он располагает в каждый момент времени сигналом $\omega(t)$, про который известно, что для любого момента времени $t\in I_0$

$$||\omega(t) - z(t)||_n \le \gamma \quad \forall t \in I_0, \tag{2.4}$$

где $\gamma>0$ – заданный параметр точности. Игрок I формирует свои траектории с помощью некоторой процедуры \mathcal{P} . Эта процедура должна быть выбрана так, чтобы гарантировать

осуществление (2.3) в информационных условиях (2.4). Разумеется, игрок II имеет право выбора любого вектора $z^0 \in Z^0$ и борелевского управления $v(\cdot)$, стесненного геометрическими ограничением, связанными с Q. Мы допускаем, кроме того, реализацию любого сигнала, удовлетворяющего (2.4) вдоль получающейся траектории z системы II. На самом деле, в дальнейшем, вместо пучка траекторий системы (2.2) будет рассматриваться произвольное непустое ограниченное множество непрерывных на I_0 функций.

Разумеется, процедуру \mathcal{P} мы можем выбирать лишь из некоторого класса \mathbf{P} допустимых процедур управления. Если выбор $\mathcal{P} \in \mathbf{P}$ возможен в условиях гарантированной реализации (2.3), то будем говорить, что наша задача разрешима в классе \mathbf{P} . Мы рассматриваем далее случай, когда \mathcal{P} исчерпывается процедурами управления с поводырем [2] (моделью [3]).

В частности, системы Σ_1 и Σ_2 могут быть (векторными) материальными точками. Множества P и Q могут быть евклидовыми шарами, что соответствует реальным ограничению на силу тяги. Неполнота фазовой информации (см. (2.4)) может при этом соответствовать несовершенству измерительного устройства. Задача, связанная с реализацией (2.3), представляет значительный практический интерес в вопросах управления техническими системами.

Далее мы рассматриваем абстрактную задачу управления, охватывающую, в частности, задачу, которая обсуждалась выше. Именно, мы отказываемся от рассмотрения конкретной управляемой системы (2.2). Вместо этого предполагается заданным некоторое непустое и ограниченное множество \mathcal{Z} непрерывных вектор-функций на промежутке I_0 . Реализация конкретной функции из \mathcal{Z} непредсказуема для стороны, формирующей управление системой (2.1).

3. Общие определения, обозначения.

В дальнейшем кванторы и пропозициональные связки используются только в целях сокращения словесных формулировок; $\stackrel{\triangle}{=}$ используем для обозначения равенства по определению. Семейством называем множество, все элементы которого являются множествами.

Через B^A обозначаем множество всех функций, действующих из множества A в множество B; если, $f \in B^A$ и C есть подмножество (п/м) множества A, то через ($f \mid C$) обозначаем сужение f на множество C; см. [25]. Через $\mathbf R$ обозначаем вещественную прямую, $\mathbf N \triangleq \{1;2;\dots\}$; если $k \in \mathbf N$, то $\mathbf R^k$ есть def k-мерное арифметическое пространство (мы постулируем, что натуральные числа - элементы $\mathbf N$ - не являются множествами), а $comp(\mathbf R^k)$ - семейство всех непустых компактов [26], содержащихся в $\mathbf R^k$; здесь и в дальнейшем предполагаем, что $\mathbf R^k$ оснащается топологией покоординатной сходимости. (Если рассматривается п/м $\mathbf R^k$, то всегда полагается, что оно оснащается топологией подпространства $\mathbf R^k$ при упомянутой стандартной топологизации $\mathbf R^k$). Если $k \in \mathbf N, m \in \mathbf N, A$ - п/м $\mathbf R^k$ и B - п/м $\mathbf R^m$, то через C(A,B) обозначаем множество всех непрерывных функций из A в B. Полагаем $C_n(A) \triangleq C(A,\mathbf R^n)$ для всякого множества A в каком-либо конечномерном арифметическом пространстве.

Для произвольных $m \in \mathbb{N}$ и множества $K \subset \mathbb{R}^m$, через $\mathcal{B}[K]$ обозначаем σ -алгебру борелевских п/м K (см. [27]); если \mathcal{L} есть σ -алгебра п/м K, то через $(\sigma - add)_+[\mathcal{L}]$ обозначаем множество всех неотрицательных счетно-аддитивных мер на \mathcal{L} ; в качестве \mathcal{L} обычно ис-

пользуем $\mathcal{B}[K]$ и применяем \rightarrow для обозначения *-слабой сходимости: при выборе каждой последовательности $(\mu_i)_{i \in \mathbb{N}}$ в $(\sigma - add)_+[\mathcal{B}[K]]$ и меры $\mu \in (\sigma - add)_+[\mathcal{B}[K]]$

$$((\mu_i)_{i \in \mathbf{N}} \rightharpoonup \mu) \iff ((\int_K h d\mu_i)_{i \in \mathbf{N}} \rightarrow \int_K h d\mu \ \forall h \in C(K, \mathbf{R}))$$

Для краткости полагаем $\mathcal{B}_0 \stackrel{\triangle}{=} \mathcal{B}[I_0]$, получая в виде (I_0, \mathcal{B}_0) стандартное измеримое пространство (ИП) с борелевским оснащением; пусть $\lambda_0 \in (\sigma - add)_+[\mathcal{B}_0]$ есть def мера Лебега-Бореля, т.е. σ -аддитивное продолжение функции длины.

Среди всех прочих версий K для нас наиболее существенными будут варианты типа $K = \Gamma \times P$, где $\Gamma \in \mathcal{B}_0$. В частности, допускаем вариант $\Gamma = I_0$. Если же $\Gamma \in \mathcal{B}_0$, то $\Gamma \times P \in \mathcal{B}[I_0 \times P]$, а потому $\mathcal{B}[\Gamma \times P] = \{\Lambda \in \mathcal{B}[I_0 \times P] | \Lambda \subset \Gamma \times P\}$ есть непустое подсемейство $\mathcal{B}[I_0 \times P]$; стало быть, для $\mu \in (\sigma - add)_+[\mathcal{B}[I_0 \times P]]$ имеем $(\mu | \mathcal{B}[\Gamma \times P]) \in (\sigma - add)_+[\mathcal{B}[\Gamma \times P]]$.

Заметим, что $\mathcal{B}[I_0 \times P]$ совпадает с естественной σ -алгеброй произведения следующих двух ИП $(I_0, \mathcal{B}[I_0]), (P, \mathcal{B}[P]);$ см. [28, III.1.1]. Это означает, что для $\Gamma \in \mathcal{B}[I_0]$ всегда $\Gamma \times P \in \mathcal{B}[I_0 \times P]$. Тогда, при $\mu \in (\sigma - add)_+[\mathcal{B}[I_0 \times P]]$ отображение

$$\Gamma \longmapsto \mu(\Gamma \times P) \colon \mathcal{B}[I_0] \mapsto [0, \infty[$$

определяет соответствующее маргинальное распределение μ ; нас будет особенно интересовать случай, когда это отображение совпадает с λ_0 .

Если $m \in \mathbb{N}$, то через \mathbb{D}_m условимся обозначать множество всех кортежей

$$(\tau_i)_{i\in\overline{0,m}}\colon \overline{0,m}\to I_0$$

таких, что $(\tau_0 = t_0)\&(\tau_m = \theta_0)\&(\tau_i < \tau_{i+1} \ \forall i \in \overline{0,m-1})$. Для каждых $m \in \mathbf{N}$ и кортежа $\Delta = (\tau_i)_{i \in \overline{0,m}} \in \mathbf{D}_m$ полагаем

$$\mathbf{d}_m(\Delta) \stackrel{\triangle}{=} \max(\{\tau_{i+1} - \tau_i : i \in \overline{0, m-1}\}).$$

Далее, через **D** обозначаем объединение всех множеств \mathbf{D}_m , $m \in \mathbf{N}$. Заметим, что $\mathbf{D}_i \cap \mathbf{D}_j = \emptyset$ при любых $i \in \mathbf{N}, \ j \in \mathbf{N} \setminus \{i\}$. Стало быть, $(\mathbf{D}_k)_{k \in \mathbf{N}}$ есть счетное разбиение множества **D**. Мы полагаем теперь, что для каждого $\Delta \in \mathbf{D}$ число $\mathbf{m}(\Delta) \in \mathbf{N}$ def таково, что $\Delta \in \mathbf{D}_{\mathbf{m}(\Delta)}$; в этом случае, конечно,

$$\Delta: \overline{0, \mathbf{m}(\Delta)} \to I_0.$$

Стало быть, определено отображение $\mathbf{m} \colon \mathbf{D} \to \mathbf{N}$ такое, что

$$\Delta \in \mathbf{D}_{\mathbf{m}(\Delta)} \ \forall \Delta \in \mathbf{D}$$

С учетом последнего свойства вводим отображение $\mathbf{d} \colon \mathbf{D} \to]0, \infty[$, для которого

$$\mathbf{d}(\Delta) \stackrel{\triangle}{=} \mathbf{d}_{\mathbf{m}(\Delta)}(\Delta).$$

Если $\delta \in]0,\infty[$, то через $\mathbf{D}[\delta]$ обозначаем множество всех $\Delta \in \mathbf{D}$ таких, что $\mathbf{d}(\Delta) < \delta$.

4. Управление в условиях неполной информации: идеализированные и реализуемые процедуры.

Мы возвращаемся к абстрактной игровой задаче управления системой Σ_1 в условиях непредсказуемого выбора из \mathcal{Z} , осложненной неполнотой информации. Будем исходить из идеи построения процедуры управления с моделью (поводырем). При этом для построения траекторий модели будем использовать идеализированную процедуру управления многозначную квазистратегию в форме, подобной [11, гл. 6]. Реализуемое движение будем конструировать, исходя из идеи отслеживания движения модели, действуя в духе подхода Н.Н.Красовского, А.И.Субботина [2, 4]. Однако будем допускать в отношении (2.1) некоторые менее традиционные условия. Именно, мы не будем предполагать, вообще говоря, что правая часть (2.1) удовлетворяет известному условию Липшица по фазовой переменной. Это приводит к необходимости некоторой модификации правила экстремального сдвига Н.Н.Красовского. Именно, будем использовать вариант конструкции с использованием т.н. квазидвижений, которая была применена А.В.Кряжимским [30] при доказательстве теоремы об альтернативе для управляемых систем, не удовлетворяющих условию Липшица (в [30] постулировалось условие обобщенной единственности). При этом логика продвижения модели в пространстве позиций определяется выбранной квазистратегией. Последнюю предлагается определить по схеме [11, §6.12], [9], [10], которая сводится к построению конкретного варианта т.н. прямой версии метода программных итераций (МПИ); см. [17, 18, 19]. Это построение реализуется в виде итерационной процедуры в пространстве мультифункций, пределом которой является наибольший в смысле поточечного порядка (по вложению) неупреждающий мультиселектор некоторой целевой мультифункции, определяемой соображениями, связанными с реализацией (2.3). Эта целевая мультифункция определяется достаточно просто, но вообще говоря, она не удовлетворяет условию неупреждаемости по отношению к развивающемуся сигналу ω . Итерационный процесс определяется последовательным действием "программного" оператора, идея построения которого связана с выделением у ранее построенной мультифункции "неупреждающей составляющей что, вообще говоря, не означает, однако, что получающийся при этом образ сам будет неупреждающей мультифункцией; требуется построение последовательности итераций.

Возвращаясь к описанию системы Σ_1 , отметим некоторые условия. Будем полагать, что в (2.1)

$$f: I_0 \times \mathbf{R}^n \times P \longmapsto \mathbf{R}^n$$

есть непрерывная функция: $f \in C_n(I_0 \times \mathbf{R}^n \times P)$. Если $Y \in C_n(I_0)$, то

$$(f(t, Y(t), u))_{(t,u)\in I_0\times P} \in C_n(I_0\times P)$$
 (4.1)

С учетом (4.1) представляется естественным использование (стратегических) мер в форме, принятой в [12],[13],[23],[24] (в [2] используется эквивалентное представление в виде мерозначных функций), которая использует теорему Рисса [29, с.288] и, на ее основе, факт представимости неотрицательных линейных непрерывных функционалов на $C(I_0 \times P)$ в терминах мер из $(\sigma - add)_+[\mathcal{B}[I_0 \times P]]$. А именно, через

$$\mathcal{R}_0 \stackrel{\triangle}{=} \{ \mu \in (\sigma - add)_+ [\mathcal{B}[I_0 \times P]] \mid \mu(\Gamma \times P) = \lambda_0(\Gamma) \ \forall \Gamma \in \mathcal{B}[I_0] \};$$

обозначим множество всех обобщенных программных управлений на отрезке I_0 . Интегралы вектор-функций далее определяются покомпонентно; в частности (см. (4.1)),

 $\forall \mu \in \mathcal{R}_0 \ \forall Y \in C_n(I_0) \ \forall t \in I_0$

$$\int_{[t_0,t]\times P} f(\tau,Y(\tau),u)\mu(d(\tau,u)) = \int_{[t_0,t]\times P} f(\tau,Y(\tau),u)(\mu|\mathcal{B}[[t_0,t]\times P])(d(\tau,u)) \in \mathbf{R}^n.$$
 (4.2)

В этих терминах, следуя в идейном отношении [30], введем т.н. квазидвижения, порожденные обобщенными программными управлениями. Если $\mu \in \mathcal{R}_0$ и $Y \in C_n(I_0)$, то через $\Xi[\mu;Y]$ обозначаем функцию из I_0 в \mathbb{R}^n , для которой

$$\Xi[\mu; Y](t) \stackrel{\triangle}{=} y_0 + \int_{[t_0, t] \times P} f(\tau, Y(\tau), u) \mu(d(\tau, u)) \ \forall t \in I_0;$$

$$(4.3)$$

легко видеть, что $\Xi[\mu;Y] \in C_n(I_0)$. В терминах квазидвижений (4.3) определяем движения: при $\mu \in \mathcal{R}_0$ и $t \in I_0$ в виде

$$\Phi_{\mu}[t] \stackrel{\triangle}{=} \{ Y \in C_n([t_0, t]) \mid Y(\tau) = y_0 + \int_{[t_0, \tau[\times P]} f(\xi, Y(\xi), u) \mu(d(\xi, u)) \ \forall \tau \in [t_0, t] \};$$
(4.4)

имеем интегральную воронку, отвечающую на промежутке $[t_0,t]$ "управлению" μ . Полагаем в дальнейшем выполненным следующее:

Условие (ω .1). Для всяких $\mu \in \mathcal{R}_0$ и $\theta \in]t_0, \theta_0]$ множество $\Phi_{\mu}[\theta]$ одноэлементно.

С учетом этого условия имеем, что при каждом $\mu \in \mathcal{R}_0$ существует такая функция $\tilde{\varphi}_{\mu} \in C_n(I_0)$, что $\Phi_{\mu}[\theta] = \{(\tilde{\varphi}_{\mu}|[t_0,\theta])\}$ для любого $\theta \in]t_0,\theta_0]$. Тем самым введена обобщенная траектория, порожденная "управлением" μ из позиции (t_0,y_0) . В связи с условием $(\omega.1)$ отметим работы [30] и [24].

Условие (ω .2). Множество $\tilde{\mathcal{Y}}_0 \stackrel{\triangle}{=} \{\tilde{\varphi}_\mu \mid \mu \in \mathcal{R}_0\}$ ограничено в $C_n(I_0)$ с метрикой равномерной сходимости.

Заметим, что каждое (обычное) кусочно-постоянное и непрерывное справа управление $U: I_0 \mapsto P$ порождает единственное обобщенное управление $\mu = \mu_U \in \mathcal{R}_0$, по правилу

$$\int_{I_0 \times P} h(t, u) \mu_U(d(t, u)) = \int_{I_0} h(t, U(t)) dt \quad \forall h \in C(I_0 \times P),$$

при этом для μ_U в соответствии с нашими условиями реализуется единственная траектория

$$\varphi_U \stackrel{\triangle}{=} \tilde{\varphi}_{\mu}|_{\mu=\mu_U};$$

эту траекторию называем, как обычно, порожденной управлением U из позиции (t_0, x_0) .

Заметим, что \mathcal{R}_0 с относительной *-слабой топологией является метризуемым компактом. Поясним сказанное. В силу известной теоремы Рисса [29, с.288] при наших условиях пространство

$$(\sigma - add)[\mathcal{B}[I_0 \times P]] \stackrel{\triangle}{=} \{\mu - \nu \mid \mu \in (\sigma - add)_+[\mathcal{B}[I_0 \times P]], \nu \in (\sigma - add)_+[\mathcal{B}[I_0 \times P]]\}$$

всех вещественнозначных счетно-аддитивных борелевских мер на $\mathcal{B}[I_0 \times P]$ изометрически изоморфно пространству $C^*(I_0 \times P)$; в этой связи $(\sigma - add)[\mathcal{B}[I_0 \times P]]$ оснащаем "обычной" *-слабой топологией (C-топология пространства C^* ; $C = C(I_0 \times P)$). В этой топологии \mathcal{R}_0 является компактом [29, с.459], т.к. множество \mathcal{R}_0 сильно ограничено и *-слабо замкнуто.

Более того, поскольку банахово пространство $C(I_0 \times P)$ сепарабельно, то данный компакт метризуем; см. [29, с.461]. В этих терминах отображение

$$\mu \longmapsto \tilde{\varphi}_{\mu} \colon \mathcal{R}_0 \mapsto C_n(I_0)$$

оказывается непрерывным: \mathcal{R}_0 оснащается упомянутой относительной *-слабой топологией, а $C_n(I_0)$ - (метризуемой) топологией равномерной сходимости; см., например [24, с.19-20] (отметим, что для систем, удовлетворяющих локальному условию Липшица по фазовой переменной, это свойство непрерывности использовалось очень давно в работах Н.Н.Красовского и его школы; см. [2]). Тогда $\tilde{\mathcal{Y}}_0$ - компакт в $C_n(I_0)$ как непрерывный образ компакта \mathcal{R}_0 .

Напомним, что в своих построениях имеем дело с некоторым непустым ограниченным множеством в пространстве $C_n(I_0)$. Роль такого множества может, в частности, играть пучок траекторий системы (2.2) при переборе "возможных" управлений и н.у. в пределах компакта Z^0 . Однако сейчас мы просто зафиксируем некоторое множество $\mathcal{Z}, \mathcal{Z} \subset C_n(I_0)$, полагаемое непустым и ограниченным, играющее роль вышеупомянутого пучка траекторий системы Σ_2 .

Реализация условия (2.3) составляет цель игрока I; добиваться этой реализации мы будем, в отличие от [9],[10],[11], в классе реализуемых пошаговых процедур управления. Как и в разделе 2, полагаем, что процесс наблюдения искажается аддитивной помехой, в результате чего получается сигнал (функция ω в (2.4)).

Если $z \in \mathcal{Z}$, то через $\mathbf{K}(z)$ обозначим множество всех вектор-функций $\omega \colon I_0 \mapsto \mathbf{R}^n$ таких, что выполнено (2.4). Данное множество непусто. Стало быть, мы определили мультифункцию \mathbf{K} из \mathcal{Z} в $\{I_0 \to \mathbf{R}^n\}$. Кроме того, полагаем, что

$$\Omega \stackrel{\triangle}{=} \bigcup_{z \in \mathcal{Z}} \mathbf{K}(z),$$

получая непустое множество возможных сигналов (см. множество ${\bf B}^0$ в [11, с.359]). На этой основе конструируются функциональные информационные множества: если $\omega \in \Omega$, то

$$\Lambda[\omega] \stackrel{\triangle}{=} \{ z \in \mathcal{Z} | ||z(t) - \omega(t)||_n \le \gamma \ \forall t \in I_0 \} = \{ z \in \mathcal{Z} | \omega \in \mathbf{K}(z) \}.$$
 (4.5)

С множествами (4.5) связываем программный (и, вообще говоря, "упреждающий") способ гарантированного управления: как и в [11, с.359], введем мультифункцию α^0 из Ω в $\tilde{\mathcal{Y}}_0$ по правилу

$$\alpha^{0}(\omega) \stackrel{\triangle}{=} \{ y \in \tilde{\mathcal{Y}}_{0} \mid \forall z \in \Lambda[\omega] \ \exists t \in I_{0} \colon ||y(t) - z(t)||_{n} \le \varkappa \} \ \forall \omega \in \Omega.$$
 (4.6)

Следуя [11, с.337], введем топологию θ поточечной сходимости множества $\tilde{\mathcal{Y}}_0$. Через \mathcal{K} обозначим семейство всех компактных в топологическом пространстве $(\tilde{\mathcal{Y}}_0,\theta)$ п/м $\tilde{\mathcal{Y}}_0$. Тогда \mathcal{K}^Ω есть множество всех компактнозначных мультифункций из Ω в $\tilde{\mathcal{Y}}_0$. Для использования основных положений [11, гл. 6] нам следует проверить, что $\alpha^0 \in \mathcal{K}^\Omega$. Для этого мы заметим, что топология \mathbf{t} равномерной сходимости в множестве $\tilde{\mathcal{Y}}_0$ сильнее θ , т.е. $\theta \subset \mathbf{t}$. Тогда компактность множества $H, H \subset \tilde{\mathcal{Y}}_0$, в смысле \mathbf{t} автоматически означает компактность H в смысле θ . С другой стороны $(\tilde{\mathcal{Y}}_0, \mathbf{t})$ - метризуемый компакт.

Пусть $\omega \in \Omega$, $(y_i)_{i \in \mathbb{N}}$ - последовательность в $\alpha^0(\omega)$ и $y \in \tilde{\mathcal{Y}}_0$, причем $(y_i)_{i \in \mathbb{N}}$ сходится к y в топологии \mathbf{t} , т.е. равномерно. Покажем, что $y \in \alpha^0(\omega)$. Для этого выберем и зафиксируем

 $z \in \Lambda[\omega]$. Тогда можно указать последовательность $(t_i)_{i \in \mathbb{N}}$ в I_0 такую, что

$$||y_i(t_i) - z(t_i)||_n \le \varkappa \, \forall i \in \mathbf{N}. \tag{4.7}$$

Имеем свойство равномерной сходимости $(y_i)_{i \in \mathbf{N}}$; тогда

$$(||y_i - y||_{C_n(I_0)})_{i \in \mathbf{N}} \to 0,$$

где $||\cdot||_{C_n(I_0)}$ - норма равномерной сходимости в $C_n(I_0)$; поскольку I_0 - компакт, без ограничения общности полагаем, что $(t_i)_{i\in\mathbb{N}}$ сходится к $t^*\in I_0$. В результате

$$(y(t_i))_{i \in \mathbf{N}} \to y(t^*), \ (z(t_i))_{i \in \mathbf{N}} \to z(t^*).$$
 (4.8)

Вместе с тем, при $i \in \mathbf{N}$ имеем цепочку оценок:

$$||y(t^*) - z(t^*)||_n \le ||y(t^*) - y(t_i)||_n + ||y(t_i) - y_i(t_i)||_n + ||y_i(t_i) - z(t_i)||_n + ||z(t_i) - z(t^*)||_n \le ||y(t^*) - y(t_i)||_n + ||y(t_i) - y_i(t_i)||_n + ||y(t_i) - z(t_i)||_n + ||z(t_i) - z(t^*)||_n \le ||y(t^*) - y(t_i)||_n + ||y(t_i) - y_i(t_i)||_n + ||y(t_i) - z(t_i)||_n + ||z(t_i) - z(t^*)||_n \le ||y(t^*) - y(t_i)||_n + ||y(t_i) - y_i(t_i)||_n + ||y(t_i) - z(t_i)||_n + ||z(t_i) - z(t^*)||_n \le ||y(t^*) - y(t_i)||_n + ||y(t_i) - y_i(t_i)||_n + ||y(t_i) - z(t_i)||_n + ||z(t_i) - z(t^*)||_n \le ||y(t^*) - y(t_i)||_n + ||y(t_i) - y(t_i)||_n + ||y(t_i) - z(t_i)||_n + ||z(t_i) - z(t^*)||_n \le ||y(t^*) - y(t_i)||_n + ||y(t_i) - z(t^*)||_n \le ||y(t^*) - y(t^*)||_n + ||y(t_i) - z(t^*)||_n \le ||y(t^*) - y(t^*)||_n + ||y(t^*) - y(t^*)||_n \le ||y(t^*) - y(t^*)||_n + ||y(t^*) - y(t^*$$

$$\leq ||y(t_i) - y(t^*)||_n + ||y_i - y||_{C_n(I_0)} + \varkappa + ||z(t_i) - z(t^*)||_n. \tag{4.9}$$

В силу (4.7) и (4.8) из (4.9) мы получаем, что

$$||y(t^*) - z(t^*)||_n < \varkappa + \varepsilon \ \forall \varepsilon \in]0, \infty[.$$

Это означает, что

$$||y(t^*) - z(t^*)||_m \le \varkappa.$$

Стало быть, $\exists t \in I_0: ||y(t)-z(t)||_m \leq \varkappa$. Поскольку выбор z был произвольным, установлено, что

$$\forall z \in \Lambda[\omega] \ \exists t \in I_0 : ||y(t) - z(t)||_m \le \varkappa. \tag{4.10}$$

С учетом (4.10) имеем по выбору y свойство $y \in \alpha^0(\omega)$. Мы установили (коль скоро выбор $(y_i)_{i \in \mathbb{N}}$ и y был произвольным) секвенциальную замкнутость, а стало быть, и замкнутость $\alpha^0(\omega)$. Поэтому $\alpha^0(\omega)$ - замкнутое п/м компакта $\tilde{\mathcal{Y}}_0$ и, как следствие, само является компактом в топологии \mathbf{t} . С учетом сравнимости θ, \mathbf{t} имеем теперь свойство $\alpha^0(\omega) \in \mathcal{K}$. Поскольку выбор ω был произвольным, установлено

$$\alpha^0 \in \mathcal{K}^{\Omega}. \tag{4.11}$$

Мы используем α^0 в качестве начального элемента соответствующей итерационной процедуры, целью которой является построение в пределе неупреждающего мультиселектора мультифункции α^0 . Если же этот мультиселектор будет иметь в качестве своих значений только непустые множества, то он автоматически будет квазистратегией, разрешающий данную задачу. В ином случае наша задача неразрешима. Напомним конструкцию итерационной процедуры на пространстве мультифункций, ориентируясь на [11], [9, с.149-153],[17], [18]. В условиях настоящей работы эта общая процедура упрощается.

Если $t \in I_0$, то полагаем:

$$\tilde{\mathbf{Y}}_t(y) \stackrel{\triangle}{=} \{ \tilde{y} \in \tilde{\mathcal{Y}}_0 | (y | [t_0, t]) = (\tilde{y} | [t_0, t]) \} \ \forall y \in \tilde{\mathcal{Y}}_0;$$

$$\tilde{\Omega}_t(\omega) \stackrel{\triangle}{=} \{ \tilde{\omega} \in \Omega | (\omega | [t_0, t]) = (\tilde{\omega} | [t_0, t]) \} \ \forall \omega \in \Omega.$$

В терминах данных ростков мы определяем оператор Γ , действующий в пространстве мультифункций из Ω в $\tilde{\mathcal{Y}}_0$ по правилу, соответствующему конкретизации [17]. Именно, пусть

$$\mathbf{M}(\Omega, \tilde{\mathcal{Y}}_0) \stackrel{\triangle}{=} \mathcal{P}(\tilde{\mathcal{Y}}_0)^{\Omega};$$

Тогда

$$\Gamma \colon \mathbf{M}(\Omega, \tilde{\mathcal{Y}}_0) \to \mathbf{M}(\Omega, \tilde{\mathcal{Y}}_0)$$

есть по определению оператор, для которого при $\alpha \in \mathbf{M}(\Omega, \tilde{\mathcal{Y}}_0)$ мультифункция $\Gamma(\alpha) \in \mathbf{M}(\Omega, \tilde{\mathcal{Y}}_0)$ такова, что

$$\Gamma(\alpha)(\omega) \stackrel{\triangle}{=} \{ y \in \alpha(\omega) | \tilde{\mathbf{Y}}_t(y) \cap \alpha(\nu) \neq \emptyset \ \forall t \in I_0 \ \forall \nu \in \tilde{\Omega}_t(\omega) \} \ \forall \omega \in \Omega.$$

Теперь в $\mathbf{M}(\Omega, \tilde{\mathcal{Y}}_0)$ определяем следующую последовательность итераций:

$$(\alpha_0 \stackrel{\triangle}{=} \alpha^0) \& (\alpha_k \stackrel{\triangle}{=} \Gamma(\alpha_{k-1}) \ \forall k \in \mathbf{N}). \tag{4.12}$$

Подчеркнем, что (4.12) в общем случае может не стабилизироваться при каком-либо значении индекса $k \in \mathbb{N}$, см. в этой связи пример в [32]. С процедурой (4.12) можно связать ее монотонный (по убыванию) предел

$$\alpha_{\infty} \in \mathbf{M}(\Omega, \tilde{\mathcal{Y}}_0),$$
 (4.13)

определяемый по следующему правилу:

$$\alpha_{\infty}(\omega) \stackrel{\triangle}{=} \bigcap_{k \in \mathbf{N}} \alpha_k(\omega) \ \forall \omega \in \Omega.$$
 (4.14)

В отношении свойств α_{∞} (4.13), (4.14) см., в частности, [11, §6.6]. Далее мы используем известное [17]-[20] свойство α_{∞} ; см. также следствие 6.10.4 в [11]. Из (4.11) в силу [11, с.344] имеем, что мультифункция $\alpha_{\infty} \in \mathcal{K}^{\Omega}$, как "неподвижная точка" оператора Γ , обладает свойством неупреждаемости, то есть

$$\alpha_{\infty} = \Gamma(\alpha_{\infty}),$$

и, более того, среди всех неупреждающих мультиселекторов α^0 мультифункция α_{∞} является наибольшей в смысле поточечного порядка, определенного вложениями.

Итак, мультифункция α_{∞} из Ω в $\mathcal K$ обладает, в частности, свойством $\forall \omega_1 \in \Omega \ \forall \omega_2 \in \Omega \ \forall t \in I_0$

$$((\omega_1 \mid [t_0, t]) = (\omega_2 \mid [t_0, t])) \Longrightarrow (\{(y \mid [t_0, t]) : y \in \alpha_{\infty}(\omega_1)\} = \{(y \mid [t_0, t]) : y \in \alpha_{\infty}(\omega_2)\}). \tag{4.15}$$

В случае, когда задача разрешима в классе квазистратегий, имеет место

$$\alpha_{\infty}(\omega) \neq \emptyset \ \forall \omega \in \Omega. \tag{4.16}$$

Далее мы всюду предполагаем это свойство выполненным.

Из (4.15), (4.16) фактически следует, что α_{∞} есть многозначная квазистратегия, гарантирующая на своих траекториях y осуществление события (4.10). В самом деле по построению последовательности (4.12) и предела (4.14) имеем, что

$$\alpha_{\infty}(\omega) \subset \alpha^0(\omega) \ \forall \omega \in \Omega.$$

Тогда из (4.6) следует, что α_{∞} является квазистратегией, гарантированно (в классе своих траекторий) разрешающей задачу о \varkappa -сближении к моменту θ_0 .

Для дальнейшего нам потребуется следующее

Утверждение 1 Для любых меры $\mu_0 \in \mathcal{R}_0$, траектории $x \in \tilde{\mathcal{Y}}_0$ и момента $\tau \in]t_0, \theta_0]$ из равенства

$$(x|[t_0,\tau]) = (\tilde{\varphi}_{\mu_0}|[t_0,\tau]) \tag{4.17}$$

следует, что существует такая мера $\mu_1 \in \mathcal{R}_0$, для которой $x = \tilde{\varphi}_{\mu_1}$ и

$$(\mu_0 \mid \mathcal{B}[[t_0, \tau[\times P])] = (\mu_1 \mid \mathcal{B}[[t_0, \tau[\times P])]$$
(4.18)

Доказательство Зафиксируем μ_0 , x и τ в соответствии с условиями, включая требование (4.17). Пусть $\mu' \in \mathcal{R}_0$ - мера, порождающая траекторию x. Обозначим $\mathcal{B}_1 = \mathcal{B}[[t_0, \tau[\times P], \ \mathcal{B}_2 = \mathcal{B}[[\tau, \theta_0] \times P]$ Введем $\mu_1 \in \mathcal{R}_0$ по правилу: если $B \in B[I_0 \times P]$, то $\mu_1(B) \stackrel{\triangle}{=} \mu_0(B \cap ([t_0, \tau[\times P)) + \mu'(B \cap ([\tau, \theta_0] \times P))$ Тогда, помимо (4.18), выполнено

$$(\mu_1 | \mathcal{B}_2) = (\mu' | \mathcal{B}_2)$$
 (4.19)

В силу (4.17), с учетом совпадения сужений мер μ_0 и μ_1 имеем $\forall \theta \in [t_0, \tau]$

$$x(\theta) \stackrel{(4.17)}{=} \tilde{\varphi}_{\mu_0}(\theta) \stackrel{(4.3)}{=} x_0 + \int_{[t_0,\theta[\times P]} f(t,x(t),u) \mu_0(d(t,u)) \stackrel{(4.2)}{=}$$

$$x_0 + \int_{[t_0,\theta[\times P]} f(t,x(t),u) (\mu_0 \mid \mathcal{B}_1) (d(t,u)) \stackrel{(4.18)}{=}$$

$$\stackrel{(4.18)}{=} x_0 + \int_{[t_0,\theta[\times P]} f(t,x(t),u) (\mu_1 \mid \mathcal{B}_1) (d(t,u)) \stackrel{(4.2)}{=} x_0 + \int_{[t_0,\theta[\times P]} f(t,x(t),u) \mu_1(d(t,u))$$

Аналогично, из совпадения сужений мер μ_1 и μ' согласно (4.19) по свойству (4.2) имеем $\forall \theta \in]\tau, \theta_0]$

$$x(\theta) \stackrel{(4.17)}{=} x_0 + \int_{[t_0, \theta[\times P]} f(t, x(t), u) \mu'(d(t, u)) \stackrel{(4.3)}{=}$$

$$\stackrel{(4.3)}{=} x(\tau) + \int_{[\tau, \theta[\times P]} f(t, x(t), u) \mu'(d(t, u)) \stackrel{(4.2)}{=} x(\tau) + \int_{[\tau, \theta[\times P]} f(t, x(t), u) (\mu' \mid \mathcal{B}_2) (d(t, u)) \stackrel{(4.19)}{=}$$

$$x(\tau) + \int_{[\tau, \theta[\times P]} f(t, x(t), u) (\mu_1 \mid \mathcal{B}_2) (d(t, u)) \stackrel{(4.2)}{=}$$

$$\stackrel{(4.2)}{=} x_0 + \int_{[t_0, \tau[\times P]} f(t, x(t), u) \mu_1(d(t, u)) + \int_{[\tau, \theta[\times P]} f(t, x(t), u) \mu_1(d(t, u)).$$

Из двух последних цепочек равенств следует

$$x(\theta) = x_0 + \int_{[t_0, \theta] \times P} f(t, x(t), u) \mu_1(d(t, u)) \ \forall \theta \in I_0$$

Тогда в силу (4.4) имеем свойство $x \in \Phi_{\mu_1}[\theta_0]$, следовательно по условию (ω .1) $x = \tilde{\varphi}_{\mu_1}$. С учетом (4.18) имеем требуемое утверждение. \square

5. Управление с моделью в условиях неполной информации

В настоящем разделе, при условии (4.16), конструируется потенциально реализуемая процедура управления, подобная в логическом отношении схеме управления с поводырем (моделью); см. [2]-[4]. Траектории, соответствующие квазистратегии α_{∞} , приближенно воспроизводятся при помощи траекторий, порожденных экстремальными управлениями. Речь идет фактически о приближенном воспроизведении траекторий, соответствующих квазистратегии α_{∞} , посредством экстремальных пошаговых порций управления, формируемых в темпе реального времени.

Речь идет о разыгрывании партий дифференциальной игры в рамках следующих правил. Игрок II непредсказуемым образом выбирает траекторию $z \in \mathcal{Z}$. Информация о траектории z поступает к игроку I последовательно по времени в виде сигнала ω , зависящего от z. Это дает возможность формировать управление $u(t) \in P$ системой (2.1) последовательно во времени, используя порции сигнала. В принципе такую же работу выполняет и квазистратегия α_{∞} , но только в идеализированном режиме, стесненным, однако, требованием неупреждаемости. Мы ставим своей целью переход от идеальной (нереализуемой практически) схемы к процедуре формирования траектории системы (2.1) порциями, обусловленными поступающими порциями сигнала, связанного с z. С этой целью, учитывая возможную нелипшицевость f (см. (2.1)) по фазовому состоянию, мы реализуем не только движение системы (2.1), но и квазидвижение в духе [30]. Рассмотрим схему аппроксимативной реализации траекторий, порожденных α_{∞} .

Для этого, при выборе того или иного разбиения $\Delta = (\tau_i)_{i \in \overline{0,m}} \in \mathbf{D}$, где $m = \mathbf{m}(\Delta) \geq 3$, будем формировать три пошаговых "движения зависящих от развивающейся во времени траектории $z \in \mathcal{Z}$.

В начальный момент $t_0 = \tau_0$ "начинается" движение $z \in \mathcal{Z}$, которое искажается аддитивной γ -ограниченной помехой до сигнала $\omega = (\omega(t) \in \mathbf{R}^n, t_0 \le t \le \theta_0)$. Мы выбираем произвольное постоянное на I_0 управление $u_0 \in P$, что позволяет построить постоянное управление $U^{(0)}: I_0 \to P$ по правилу $U^{(0)}(t) = u_0 \ \forall t \in I_0$, а, следовательно, и порожденное им движение $y^{(0)} \in C_n(I_0)$ системы (2.1) на I_0 с н.у. $y^{(0)}(t_0) = y_0$.

В момент τ_1 мы помним реализацию $y^{(0)}$ вплоть до момента τ_1 . Формируем $u_1 \in P$, исходя из идеи нацеливания из точки $y^{(0)}(\tau_1) \in \mathbf{R}^n$ на точку $y_0 = y^{(0)}(t_0) \in \mathbf{R}^n$,

$$(y_0 - y^{(0)}(\tau_1))' f(\tau_1, y^{(0)}(\tau_1), u_1) = \max_{u \in P} (y_0 - y^{(0)}(\tau_1))' f(\tau_1, y^{(0)}(\tau_1), u).$$
 (5.1)

В соответствии с действием пары u_0 , u_1 строим функцию $y^{(1)} \in C_n(I_0)$ на I_0 , полагая, что у нас кусочно-постоянное управление $U^{(1)}:I_0\to P$ получается склеиванием $U^{(0)}$ и константы u_1 в момент τ_1 (следуем принципу непрерывности справа при построении кусочно-постоянного программного управления), а начальная позиция есть (t_0,y_0) . Разумеется, в силу условия $(\omega.1)$, имеем

$$(y^{(1)}|[t_0,\tau_1]) = (y^{(0)}|[t_0,\tau_1]).$$

Далее мы используем сужение $(y^{(1)}|[t_0,\tau_2])$ функции $y^{(1)}.$

Еще до момента τ_2 мы располагаем информацией о сигнале $\omega_1 = (\omega|[t_0, \tau_1])$. Продолжая его до произвольной функции $\omega^{(1)} \in \Omega$ и воспользовавшись (4.16), строим произвольное движение $\tilde{y}^{(1)} \in \alpha_{\infty}(\omega^{(1)})$ и меру $\mu^{(1)} \in \mathcal{R}_0$ со свойством: $\tilde{y}^{(1)} = \tilde{\varphi}_{\mu^{(1)}}$. Располагая информацией о $y^{(1)}$ на промежутке $[t_0, \tau_1[$, мы в темпе реального времени конструируем квазидвижение по формуле

$$\tilde{\xi}^{(1)} = \Xi[\mu^{(1)}; y^{(1)}].$$

Таким образом к моменту τ_2 нами построены функции:

- 1) движение $y^{(1)} \in \tilde{\mathcal{Y}}_0$, порожденное кусочно-постоянным и непрерывным справа управлением $U^{(1)}: I_0 \to P;$
- 2) модель $\omega^{(1)} \in \Omega$ помехи ω со свойством $(\omega^{(1)}|[t_0, \tau_1]) = (\omega|[t_0, \tau_1])$, некоторое движение $\tilde{y}^{(1)} \in \tilde{\mathcal{Y}}_0$ и обобщенное управление $\mu^{(1)} \in \mathcal{R}_0$, для которых $\tilde{y}^{(1)} = \tilde{\varphi}_{\mu^{(1)}} \in \alpha_{\infty}(\omega^{(1)})$.

Пусть $k \in \mathbb{N}, \ 1 \le k < m-1$, и уже построены функции:

- 1) движение $y^{(k)} \in \tilde{\mathcal{Y}}_0$, порожденное кусочно-постоянным и непрерывным справа управлением $U^{(k)}: I_0 \to P;$
 - 2) модель $\omega^{(k)} \in \Omega$ помехи ω со свойством

$$(\omega^{(k)}|[t_0, \tau_k]) = (\omega|[t_0, \tau_k]), \tag{5.2}$$

некоторое движение $\tilde{y}^{(k)} \in \tilde{\mathcal{Y}}_0$ и обобщенное управление $\mu^{(k)} \in \mathcal{R}_0$, для которых

$$\tilde{y}^{(k)} = \tilde{\varphi}_{\mu^{(k)}} \in \alpha_{\infty}(\omega^{(k)}) \tag{5.3}$$

3) квазидвижение

$$\tilde{\xi}^{(k)} = \Xi[\mu^{(k)}; y^{(k)}],$$
(5.4)

причем допустимое управление $U^{(k)}$ удовлетворяет следующим условиям, зависящим от $\tilde{\xi}^{(k)}$: при всяких $i \in \overline{0,k}$ управление $U^{(k)}$ определяется на промежутке $[\tau_i,\tau_{i+1}[$ некоторой константой $u_i \in P$, удовлетворяющей при i>0 следующему условию экстремального сдвига:

$$(\tilde{\xi}^{(k)}(\tau_{i-1}) - y^{(k)}(\tau_i))'f(\tau_i, y^{(k)}(\tau_i), u_i) = \max_{u \in P} (\tilde{\xi}^{(k)}(\tau_{i-1}) - y^{(k)}(\tau_i))'f(\tau_i, y^{(k)}(\tau_i), u).$$
 (5.5)

Заметим, что в силу (4.3) и (5.1), для k=1 условие (5.5) выполнено.

В момент времени τ_{k+1} мы выбираем $u_{k+1} \in P$, нацеливаясь из точки $y^{(k)}(\tau_{k+1}) \in \mathbf{R}^n$ на точку $\tilde{\xi}^{(k)}(\tau_k) \in \mathbf{R}^n$

$$(\tilde{\xi}^{(k)}(\tau_k) - y^{(k)}(\tau_{k+1}))' f(\tau_{k+1}, y^{(k)}(\tau_{k+1}), u_{k+1}) = \max_{u \in P} (\tilde{\xi}^{(k)}(\tau_k) - y^{(k)}(\tau_{k+1}))' f(\tau_{k+1}, y^{(k)}(\tau_{k+1}), u).$$
(5.6)

Конструируем теперь $U^{(k+1)}:I_0\to P$ по правилу

$$(U^{(k+1)}(t) \stackrel{\triangle}{=} U^{(k)}(t) \ \forall t \in [t_0, \tau_{k+1}]) \& (U^{(k+1)}(t) \stackrel{\triangle}{=} u_{k+1} \ \forall t \in [\tau_{k+1}, \theta_0]). \tag{5.7}$$

Строим $y^{(k+1)}$ в виде траектории системы (2.1), порожденной из позиции (t_0, y_0) управлением $U^{(k+1)}$; эта траектория такова, что

$$(y^{(k)}|[t_0,\tau_{k+1}]) = (y^{(k+1)}|[t_0,\tau_{k+1}]). (5.8)$$

Если k=m-1, то требуемое построение завершено. Пусть k< m-1. Тогда к моменту τ_{k+2} мы располагаем реализацией сигнала $\omega_{k+1}=(\omega|[t_0,\tau_{k+1}]),$ которую продолжаем до произвольной функции $\omega^{(k+1)}\in\Omega$, для которой $(\omega^{(k+1)}|[t_0,\tau_{k+1}])=\omega_{k+1}$. Разумеется, при этом имеем аналог (5.2)

$$(\omega^{(k+1)}|[t_0, \tau_{k+1}]) = \omega_{k+1} = (\omega|[t_0, \tau_{k+1}]), \tag{5.9}$$

тогда, в частности,

$$(\omega^{(k+1)}|[t_0, \tau_k]) = (\omega^{(k)}|[t_0, \tau_k]),$$

а тогда по свойству (4.15) мультиселектора α_{∞} можно построить такое движение $\tilde{y}^{(k+1)} \in \alpha_{\infty}(\omega^{(k+1)})$, что

$$(\tilde{y}^{(k)}|[t_0, \tau_k]) = (\tilde{y}^{(k+1)}|[t_0, \tau_k]). \tag{5.10}$$

Далее конструируем такую меру $\mu^{(k+1)} \in \mathcal{R}_0$, что

$$\tilde{y}^{(k+1)} = \tilde{\varphi}_{\mu^{(k+1)}} \in \alpha_{\infty}(\omega^{(k+1)}) \tag{5.11}$$

(свойство - аналог (5.3)) и при этом имеет место:

$$(\mu^{(k)} \mid \mathcal{B}[[t_0, \tau_k[\times P])] = (\mu^{(k+1)} \mid \mathcal{B}[[t_0, \tau_k[\times P])], \tag{5.12}$$

(последнее соотношение может быть реализовано в силу (5.3), (5.10) и приводимого ранее Утверждения).

Располагая информацией о $y^{(k+1)}$ на промежутке $[t_0, \tau_{k+1}[$, мы в темпе реального времени конструируем квазидвижение, как и в (5.4) по формуле:

$$\tilde{\xi}^{(k+1)} = \Xi[\mu^{(k+1)}; y^{(k+1)}]. \tag{5.13}$$

При этом, как следует из определения (4.3) и свойств (4.2) и (5.12), выполнено:

$$(\tilde{\xi}^{(k+1)} | [t_0, \tau_k]) = (\tilde{\xi}^{(k)} | [t_0, \tau_k]).$$

Это соотношение, наряду с (5.7), (5.8) и (5.10), дает возможность распространить свойство (5.5) и на k+1 шаг, а именно, объединяя (5.5) с (5.6), считать, что при всяких $i \in \overline{1,k+1}$ управление $U^{(k+1)}$ совпадает на промежутке $[\tau_i,\tau_{i+1}[$ с некоторой константой $u_i \in P$, для которой при i>0 имеет место

$$(\tilde{\xi}^{(k)}(\tau_{i-1}) - y^{(k+1)}(\tau_i))' f(\tau_i, y^{(k+1)}(\tau_i), u_i) = \max_{u \in P} (\tilde{\xi}^{(k)}(\tau_{i-1}) - y^{(k+1)}(\tau_i))' f(\tau_i, y^{(k+1)}(\tau_i), u).$$
(5.14)

Сравнивая (5.2) и (5.9), (5.3) и (5.11), (5.5) и (5.14), (5.4) и (5.13) получаем, что выполнены все утверждения уже для следующего шага. Далее процедура повторяется.

Процесс останавливается, когда k=m-1, в этом случае $\tau_{k+1}=\theta_0$, а полученные движения удовлетворяют следующим соотношениям:

- 1) движение $y^{(m-1)}$ порождено кусочно-постоянным управлением $U^{(m-1)}:I_0\to P;$
- 2) модель $\omega^{(m-1)} \in \Omega$ совпадает с помехой ω вплоть до момента времени τ_{m-1} , а построенные некоторое движение $\tilde{y}^{(m-1)} \in \tilde{\mathcal{Y}}_0$ и обобщенное управление $\mu^{(m-1)} \in \mathcal{R}_0$ удовлетворяют свойству:

$$\tilde{y}^{(m-1)} = \tilde{\varphi}_{u^{(m-1)}} \in \alpha_{\infty}(\omega^{(m-1)}).$$

3) допустимое управление $U^{(m-1)}$ связано с квазидвижением $\tilde{\xi}^{(m-1)} = \Xi[\mu^{(m-1)}; y^{(m-1)}]$ следующим образом: при всяких $i \in \overline{1, m-1}$ управление $U^{(m-1)}$ совпадает на промежутке $[\tau_i, \tau_{i+1}]$ с некоторой константой $u_i \in P$, для которой при i>0 имеет место

$$(\tilde{\xi}^{(m-1)}(\tau_{i-1}) - y^{(m-1)}(\tau_i))'f(\tau_i, y^{(m-1)}(\tau_i), u_i) = \max_{u \in P} (\tilde{\xi}^{(m-1)}(\tau_{i-1}) - y^{(m-1)}(\tau_i))'f(\tau_i, y^{(m-1)}(\tau_i), u).$$

Если $\Delta = (\tau_i)_{i \in \overline{0,\mathbf{m}(\Delta)}} \in \mathbf{D}$ - некоторое разбиение отрезка I_0 , а Y_0 - произвольное подмножество множества $\tilde{\mathcal{Y}}_0$, то через $\mathcal{E}(Y_0,\Delta)$ обозначим множество всех триплетов $(y,\mu,\xi) \in C_n(I_0) \times \mathcal{R}_0 \times C_n(I_0)$ таких, что имеет место

$$\tilde{\varphi}_{\mu} \in Y_0, \ \xi = \Xi[\mu; y], \tag{5.15}$$

и существует кусочно-постоянное и непрерывное справа управление $U\colon I_0\to P$ такое, что $y=\varphi_U$ и, кроме того $\forall i\in\overline{1,\mathbf{m}(\Delta)-1}$

$$(U(t) = U(\tau_i), \forall t \in [\tau_i, \tau_{i+1}]) \&$$

$$\&((\xi(\tau_{i-1}) - y(\tau_i))'f(\tau_i, y(\tau_i), U(\tau_i)) = \max_{u \in P} (\xi(\tau_{i-1}) - y(\tau_i))'f(\tau_i, y(\tau_i), u)).$$
(5.16)

Для всяких $\omega \in \Omega$ и $\Delta = (\tau_i)_{i \in \overline{0,\mathbf{m}(\Delta)}} \in \mathbf{D}$ через $\mathbf{Y}(\omega,\Delta)$ обозначим множество всех $y \in C_n(I_0)$ таких, что существуют мера $\mu \in \mathcal{R}_0$, квазидвижение $\xi \in C_n(I_0)$ и сигнал $\omega' \in \Omega$ такие, что: $((y,\mu,\xi) \in \mathcal{E}(\alpha_\infty(\omega'),\Delta))$ и

$$(\omega'|[t_0, t_{\mathbf{m}(\Delta)-1}]) = (\omega|[t_0, t_{\mathbf{m}(\Delta)-1}]).$$
 (5.17)

Теорема 1 *Если выполнено условие* (4.16), то $\forall \omega \in \Omega \ \forall \Delta \in \mathbf{D}$

$$(\mathcal{E}(\alpha_{\infty}(\omega), \Delta) \neq \emptyset) \& (\mathbf{Y}(\omega, \Delta) \neq \emptyset)$$

Доказательство следует из вышеизложенной процедуры пошагового управления.

Для доказательства основной теоремы нам потребуется оценка, подобная Лемме 3 из [30]. Эта оценка в идейном отношении восходит к полученной в [4], [2] Н.Н.Красовским и А.И.Субботиным экспоненциальной оценке расхождения пошагового движения от стабильного моста.

Пемма 1 Существует такая монотонная функция $\sigma: [0, \theta_0 - t_0] \to [0, \infty[$, что $\sigma(r) \to 0$ при $r \to 0$, и для любого разбиения $\Delta = (\tau_j)_{j \in \overline{0, \mathbf{m}(\Delta)}} \in \mathbf{D}$, для любых $(y, \mu, \xi) \in \mathcal{E}(\mathcal{Y}_0, \Delta)$, $j \in \overline{0, \mathbf{m}(\Delta) - 1}$, для любого $\tau \in]\tau_i, \tau_{i+1}]$

$$||y(\tau) - \xi(\tau)||_n^2 \le ||y(\tau_j) - \xi(\tau_j)||_n^2 + (\tau - \tau_j)\sigma(\mathbf{d}(\Delta)).$$

Доказательство. В силу свойства $(\omega.2)$ множество $\tilde{\mathcal{Y}}_0$ ограничено, тогда существует некоторый компакт K такой, что для любой траектории $y \in \tilde{\mathcal{Y}}_0$ и любого момента времени $t \in I_0$ имеет место $y(t) \in K$. Определим

$$M \stackrel{\triangle}{=} \max_{(t,x,u) \in I_0 \times K \times P} ||f(t,x,u)||_n.$$

Тогда для любых траектории $y \in \tilde{\mathcal{Y}}_0$ и меры $\mu \in \mathcal{R}_0$, для любых моментов времени $t_1, t_2 \in I_0, t_1 < t_2$, имеет место

$$||\Xi(\mu,y)(t_2) - \Xi(\mu,y)(t_1)||_n \le \int_{[t_1,t_2]\times P} ||f(t,y(t),u)||_n \mu(d(t,u)) \le M(t_2 - t_1), \tag{5.18}$$

в частности, поскольку в силу определения (4.4) любая траектория является квазидвижением, $||y(t_2)-y(t_1)||_n \leq M(t_2-t_1)$.

Введем функцию $\psi: [0, \infty[\to [0, \infty[$ по правилу:

$$\psi(r) = \sup_{(t_1, t_2, y, u) \in I_0 \times \tilde{\mathcal{Y}}_0 \times P, |t_1 - t_2| \le r} ||f(t_1, y(t_1), u) - f(t_2, y(t_2), u)||_n.$$
(5.19)

Заметим, что эта функция монотонна и, поскольку на компакте $I_0 \times \tilde{\mathcal{Y}}_0 \times P$ отображение $(t, y, u) \mapsto f(t, y(t), u)$ равномерно непрерывно, имеет место $\lim_{r \to +0} \psi(r) = 0$.

Зафиксируем произвольные разбиение $\Delta = (\tau_j)_{j \in \overline{0,\mathbf{m}(\Delta)}} \in \mathbf{D}$, тройку $(y,\mu,\xi) \in \mathcal{E}(\mathcal{Y}_0,\Delta)$, номер $j \in \overline{0,\mathbf{m}(\Delta)-1}$ и $\tau \in]\tau_j,\tau_{j+1}]$. Обозначим через U управление, порождающее траекторию y, определим также $\delta = \tau - \tau_j$.

Рассмотрим случай, когда j=0. Тогда, из свойств $t_0=\tau_0, \ y(\tau_0)=\xi(\tau_0)=y_0,$ в силу (5.18) имеем $||y(\tau)-\xi(\tau)||_n\leq ||y(\tau)-y_0||_n+||\xi(\tau)-y_0||_n\leq 2M(\tau-t_0),$ то есть

$$||y(\tau) - \xi(\tau)||_n^2 \le ||y(\tau_0) - \xi(\tau_0)||_n^2 + 4M^2\delta^2.$$
(5.20)

Пусть j > 0. Тогда

$$\begin{aligned} ||y(\tau) - \xi(\tau)||_n^2 &= ||(y(\tau) - \xi(\tau) - (y(\tau_j) - \xi(\tau_j))) + (y(\tau_j) - \xi(\tau_j))||_n^2 = ||y(\tau_j) - \xi(\tau_j)||_n^2 + \\ &+ 2(y(\tau_j) - \xi(\tau_j))'(y(\tau) - \xi(\tau) - (y(\tau_j) - \xi(\tau_j))) + ||y(\tau) - y(\tau_j) - (\xi(\tau) - \xi(\tau_j))||_n^2 \leq \\ &\leq ||y(\tau_j) - \xi(\tau_j)||_n^2 + 2(y(\tau_j) - \xi(\tau_{j-1}))'(y(\tau) - y(\tau_j) - (\xi(\tau) - \xi(\tau_j))) + \\ &+ 2(\xi(\tau_{j-1}) - \xi(\tau_j))'(y(\tau) - y(\tau_j) - (\xi(\tau) - \xi(\tau_j))) + (||y(\tau) - y(\tau_j)||_n + ||\xi(\tau) - \xi(\tau_j)||_n)^2 \overset{(5.18)}{\leq} \\ &\stackrel{(5.18)}{\leq} ||y(\tau_j) - \xi(\tau_j)||_n^2 + 2(y(\tau_j) - \xi(\tau_{j-1}))'(\int_{[\tau_j, \tau[\times P} f(t, y(t), U(\tau_j)) - f(t, y(t), u)\mu(d(t, u))) + \\ &+ 2(\xi(\tau_{j-1}) - \xi(\tau_j))'(y(\tau) - y(\tau_j) - (\xi(\tau) - \xi(\tau_j))) + (2M\delta)^2 \overset{(5.19)}{\leq} \\ &\stackrel{(5.19)}{\leq} ||y(\tau_j) - \xi(\tau_j)||_n^2 + 2(y(\tau_j) - \xi(\tau_{j-1}))'(\int_{[\tau_j, \tau[\times P} f(\tau_j, y(\tau_j), U(\tau_j)) - f(\tau_j, y(\tau_j), u)\mu(d(t, u))) + \\ &+ 2(\xi(\tau_{j-1}) - \xi(\tau_j))'(y(\tau) - y(\tau_j) - (\xi(\tau) - \xi(\tau_j))) + 2||y(\tau_j) - \xi(\tau_{j-1})||_n\delta\psi(\delta) + (2M\delta)^2 \leq \\ &\leq ||y(\tau_j) - \xi(\tau_j)||_n^2 + 2(y(\tau_j) - \xi(\tau_{j-1}))'(\int_{[\tau_j, \tau[\times P} f(\tau_j, y(\tau_j), U(\tau_j)) - f(\tau_j, y(\tau_j), u)\mu(d(t, u))) + \\ &+ 2||\xi(\tau_{j-1}) - \xi(\tau_j)||_n(||y(\tau) - y(\tau_j)||_n + ||\xi(\tau) - \xi(\tau_j)||_n) + 2||y(\tau_j) - \xi(\tau_{j-1})||_n\delta\psi(\delta) + (2M\delta)^2 \overset{(5.18)}{\leq} \\ &\stackrel{(5.18)}{\leq} ||y(\tau_j) - \xi(\tau_j)||_n^2 + 2(\int_{[\tau_j, \tau[\times P} (y(\tau_j) - \xi(\tau_{j-1}))'(f(\tau_j, y(\tau_j), U(\tau_j)) - f(\tau_j, y(\tau_j), u))\mu(d(t, u))) + \\ &+ 4M^2\delta(\tau_j - \tau_{j-1}) + 4M(\theta_0 - t_0)\delta\psi(\delta) + 4M^2\delta^2. \end{aligned}$$

В силу (5.16) подынтегральное выражение не превосходит нуля для любого $u \in U$, а поскольку $\tau_j - \tau_{j-1} \leq \mathbf{d}(\Delta)$, $\delta < \tau_{j+1} - \tau_j \leq \mathbf{d}(\Delta)$, окончательно имеем:

$$||y(\tau) - \xi(\tau)||_n^2 \le ||y(\tau_j) - \xi(\tau_j)||_n^2 + 8M^2 \delta \mathbf{d}(\Delta) + 4M(\theta_0 - t_0)\delta\psi(\mathbf{d}(\Delta)).$$
 (5.21)

Введем функцию $\sigma:[0,\theta_0-t_0]\to]0,\infty[$ по правилу: $\sigma(r)=4M(2Mr+(\theta_0-t_0)\psi(r))$ для любого $r\in[0,\theta_0-t_0]$, заметим, что данная функция, также как и $\psi(r)$, монотонна и стремится к нулю при $r\to+0$. Теперь, воспользовавшись для j=0 неравенством (5.20), а для j>0 неравенством (5.21), в силу соотношения $4M^2\delta<\sigma(\delta)$, имеет место утверждение Леммы 1. \square

Лемма 2 Существует такая функция $\sigma : [0, \theta_0 - t_0] \to [0, \infty[$, что $\sigma(r) \to 0$ при $r \to 0$, и для любого разбиения Δ для любых $(y, \mu, \xi) \in \mathcal{E}(\mathcal{Y}_0, \Delta)$, для любого $t \in I_0$

$$||y(t) - \xi(t)||_n^2 \le (t - t_0)\sigma(\mathbf{d}(\Delta)).$$

Доказательство. В силу Леммы 1 существует такая монотонная функция $\sigma: [0, \theta_0 - t_0] \to [0, \infty[$, что $\sigma(r) \to 0$ при $r \to 0$, и для любого разбиения $\Delta = (\tau_j)_{j \in \overline{0, \mathbf{m}(\Delta)}} \in \mathbf{D}$, для любых $(y, \mu, \xi) \in \mathcal{E}(\mathcal{Y}_0, \Delta)$, для любого $t \in]t_0, \theta_0]$ существует такое $j \in \overline{0, \mathbf{m}(\Delta)}$, что $t \in]\tau_j, \tau_{j+1}]$. Тогда имеет место

$$||y(t) - \xi(t)||_n^2 \le ||y(\tau_j) - \xi(\tau_j)||_n^2 + (t - \tau_j)\sigma(\mathbf{d}(\Delta)).$$

Если j > 0, то применяя Лемму 1 еще j - 1 раз, получаем:

$$||y(t) - \xi(t)||_{n}^{2} \leq ||y(\tau_{j}) - \xi(\tau_{j})||_{n}^{2} + (t - \tau_{j})\sigma(\mathbf{d}(\Delta)) \leq$$

$$\leq ||y(\tau_{j-1}) - \xi(\tau_{j-1})||_{n}^{2} + (\tau_{j} - \tau_{j-1})\sigma(\mathbf{d}(\Delta)) + (t - \tau_{j})\sigma(\mathbf{d}(\Delta)) =$$

$$= ||y(\tau_{j-1}) - \xi(\tau_{j-1})||_{n}^{2} + (t - \tau_{j-1})\sigma(\mathbf{d}(\Delta)) \leq \dots \leq ||y(\tau_{0}) - \xi(\tau_{0})||_{n}^{2} + (t - \tau_{0})\sigma(\mathbf{d}(\Delta)).$$

Воспользовавшись свойствами $\xi(t_0)=y(t_0)=y_0,\,t_0=\tau_0$ имеем: для любого $t\in I_0$

$$||y(t) - \xi(t)||_n^2 \le (t - t_0)\sigma(\mathbf{d}(\Delta)),$$

что и требовалось доказать.

Теорема 2 Если выполнено условие (4.16), то

$$\forall \varepsilon \in]0, \infty[\exists \delta \in]0, \infty[\forall z \in \mathcal{Z} \forall \omega \in \mathbf{K}(z) \forall \Delta \in \mathbf{D}[\delta] \forall y \in \mathbf{Y}(\omega, \Delta) \exists t \in I_0 : ||y(t) - z(t)||_n < \varkappa + \varepsilon.$$

Доказательство. Рассмотрим произвольные последовательности

$$(z_i)_{i \in \mathbf{N}} \in \mathcal{Z}^{\mathbf{N}}, \ (\omega_i)_{i \in \mathbf{N}} \in \prod_{i \in N} \mathbf{K}(z_i), \ (\Delta_i)_{i \in \mathbf{N}} \in \mathbf{D}^{\mathbf{N}}, \ (y_i)_{i \in \mathbf{N}} \in \prod_{i \in N} \mathbf{Y}(\omega_i, \Delta_i).$$
 (5.22)

Тогда по выбору $(y_i)_{i\in\mathbb{N}}$ существуют такие последовательности $(\mu_i)_{i\in\mathbb{N}}\in\mathcal{R}_0^{\mathbb{N}}, (\xi_i)_{i\in\mathbb{N}}\in C_n(I_0)^{\mathbb{N}}$ и $(\omega_i')_{i\in\mathbb{N}}\in\Omega^{\mathbb{N}}$, что

$$(\omega_i|[t_0, \theta_0 - \mathbf{d}(\Delta_i)]) = (\omega_i'|[t_0, \theta_0 - \mathbf{d}(\Delta_i)]) \ \forall i \in \mathbf{N},$$
(5.23)

$$(y_i, \mu_i, \xi_i) \in \mathcal{E}(\alpha_{\infty}(\omega_i'), \Delta_i) \ \forall i \in \mathbf{N}.$$
 (5.24)

Предположим, что имеет место

$$(\mathbf{d}(\Delta_i))_{i \in \mathbf{N}} \to 0, \tag{5.25}$$

и для некоторых траектории $\tilde{y} \in \tilde{\mathcal{Y}}_0$ и меры $\tilde{\mu} \in \mathcal{R}_0$

$$(||y_i - \tilde{y}||_{C_n(I_0)})_{i \in \mathbf{N}} \to 0,$$
 (5.26)

$$(\mu_i)_{i \in \mathbf{N}} \rightharpoonup \tilde{\mu}.$$
 (5.27)

В силу Леммы 2 для любого $i \in \mathbb{N}$, для любого $t \in I_0 ||y_i(t) - \xi_i(t)||_n^2 \le (\theta_0 - t_0)\sigma(\mathbf{d}(\Delta_i))$. Тогда в силу (5.25) и свойства $\sigma(r) \to 0$ при $r \to 0$ следует, что при $i \to \infty$

$$||y_i - \xi_i||_{C_n(I_0)} \to 0.$$

Из (5.26) имеем $||\xi_i-\tilde{y}||_{C_n(I_0)} \to 0$. Из (5.24) и (5.15), в свою очередь, получаем при $i\to\infty$

$$||\Xi[\mu_i; y_i] - \tilde{y}||_{C_n(I_0)} \to 0.$$
 (5.28)

Тогда, поскольку зависимость траектории $\tilde{\varphi}_{\mu}$ от меры μ непрерывна, имеет место при $i \to \infty$

$$||\tilde{\varphi}_{\mu_i} - \tilde{\varphi}_{\tilde{\mu}}||_{C_n(I_0)} \to 0. \tag{5.29}$$

Заметим также, что отображение Ξ из $\mathcal{R}_0 \times C_n(I_0)$ в $C_n(I_0)$ непрерывно по совокупности переменных (это легко следует например из [31, Теорема II.3.10]), но тогда из (5.26) и (5.27) имеем при $i \to \infty$

$$||\Xi[\mu_i; y_i] - \Xi[\tilde{\mu}; \tilde{y}]||_{C_n(I_0)} \to 0.$$

Теперь в силу единственности предела из (5.28) получаем, что $\tilde{y} = \Xi[\tilde{\mu}; \tilde{y}]$. Но тогда по определению (4.4) и свойству (ω .1) имеем $\tilde{y} = \tilde{\varphi}_{\tilde{\mu}}$, следовательно (5.26) можно переписать в виде $||y_i - \tilde{\varphi}_{\tilde{\mu}}||_{C_n(I_0)} \to 0$ при $i \to \infty$. И, наконец, из свойств (5.29) и (5.26) окончательно получаем при $i \to \infty$

$$||\tilde{\varphi}_{\mu_i} - \tilde{y}||_{C_n(I_0)} \to 0.$$
 (5.30)

Вернемся к квазистратегиям. Заметим, что для любого $i \in \mathbb{N}$ из (5.24) и (5.15) следует, что $\tilde{\varphi}_{\mu_i} \in \alpha_{\infty}(\omega_i')$. Из непустоты α_{∞} следует, что для каждого $i \in \mathbb{N}$ существует некоторая обобщенная траектория $y_i' \in \alpha_{\infty}(\omega_i')$. В силу свойств (5.23) и (4.15) каждую траекторию y_i' можно выбрать так, что имеет место

$$(y_i'|[t_0,\theta_0-\mathbf{d}(\Delta_i)])=(\tilde{\varphi}_{\mu_i}|[t_0,\theta_0-\mathbf{d}(\Delta_i)])\ \forall i\in\mathbf{N}.$$

Но тогда в силу (5.30) и (5.25) последовательности $(y_i')_{i\in\mathbb{N}}$ поточечно сходятся к \tilde{y} на $[t_0, \theta_0[$, а из непрерывности всех траекторий поточечная сходимость имеет место на всем отрезке I_0 . С другой стороны, из компактности $\tilde{\mathcal{Y}}_0$ следует, что последовательность $(y_i')_{i\in\mathbb{N}}$ имеет предельную точку в топологии равномерной сходимости, а в силу единственности предела эта точка обязана совпадать с поточечным пределом. Итак, при $i \to \infty$

$$||y_i' - \tilde{y}||_{C_n(I_0)} \to 0,$$

в частности из (5.26), при $i \to \infty$

$$||y_i - y_i'||_{C_n(I_0)} \to 0.$$
 (5.31)

Напомним, что по построению последовательности $(y_i')_{i\in\mathbb{N}}$, для любого $i\in\mathbb{N}$ имеет место $y_i'\in\alpha_\infty(\omega_i')$. Из (4.12) следует вложение $\alpha_\infty(\omega_i')\subset\alpha^0(\omega_i')$ $\forall i\in\mathbb{N}$, тогда $y_i'\in\alpha^0(\omega_i')$ $\forall i\in\mathbb{N}$. Теперь из определения (4.6) следует, в свою очередь, что

$$\forall i \in \mathbf{N} \ \forall z \in \Lambda[\omega_i'] \ \exists t \in I_0: \ ||y_i'(t) - z(t)||_n \le \varkappa.$$
 (5.32)

С другой стороны, по определению $\mathbf{K}(\cdot)$ из (5.22) имеем, что $||\omega_i'(t) - z_i(t)||_n \le \gamma \ \forall i \in \mathbf{N} \ \forall t \in I_0$, что, в силу (4.5), эквивалентно $z_i \in \Lambda[\omega_i'] \ \forall i \in \mathbf{N}$. С учетом (5.32) мы получили

$$\forall i \in \mathbf{N} \ \exists t^0 \in I_0 : ||y_i'(t^0) - z_i(t^0)||_n \le \varkappa. \tag{5.33}$$

С другой стороны, из (5.31) следует, что для произвольного $\varepsilon \in]0,\infty[$ существует такой, достаточно большой номер $i_0=i_0(\varepsilon)\in {\bf N},$ что

$$\forall t \in I_0 : ||y_{i_0}(t) - y'_{i_0}(t)||_n \le \varepsilon.$$
(5.34)

Складывая (5.33) и (5.34), окончательно получаем: для любых последовательностей (5.22), удовлетворяющих условиям (5.25), (5.26) и (5.27), имеет место

$$\forall \varepsilon \in]0, \infty[\exists i_0 \in \mathbf{N} \exists t^0 \in I_0 : ||y_{i_0}(t^0) - z_{i_0}(t^0)||_n \le \varepsilon + \varkappa.$$
 (5.35)

Для завершения доказательства допустим противное утверждению теоремы, т.е. предположим, что существует такое $\varepsilon \in]0, \infty[$, что

$$\forall \delta \in]0, \infty[\exists z \in \mathcal{Z} \exists \omega \in \mathbf{K}(z) \exists \Delta \in \mathbf{D}[\delta] \exists y \in \mathbf{Y}(\omega, \Delta) \forall t \in I_0 : ||y(t) - z(t)||_n > \varkappa + \varepsilon.$$

Тогда существуют такие последовательности (5.22), что помимо (5.25) имеет место

$$||y_i(t) - z_i(t)||_n > \varkappa + \varepsilon \ \forall i \in \mathbf{N} \ \forall t \in I_0.$$
 (5.36)

Заметим также, что последовательность $(y_i, \mu_i)_{i \in \mathbb{N}}$ вложена в компакт $\tilde{\mathcal{Y}}_0 \times \mathcal{R}_0$, а следовательно имеет в этом компакте предельную точку $(\tilde{y}, \tilde{\mu}) \in \mathcal{Y}_0 \times \mathcal{R}_0$. Переходя от последовательностей (5.22) к соответствующим подпоследовательностям, обеспечиваем помимо (5.25) свойства (5.26) и (5.27). Тогда имеет место (5.35), что противоречит (5.36). Полученное противоречие завершает доказательство теоремы. \square

Тем самым, установлена принципиальная возможность реализации эффектов, достигаемых в [9],[10] посредством использования квазистратегий, в классе пошаговых движений, формируемых с использованием принципа экстремального сдвига Н.Н.Красовского в условиях искажений фазовой информации об одной из взаимодействующих систем (см. (2.2)), а также и для более общей ситуации, в задаче о сближении с функцией из "пучка" $\mathcal Z$ не позднее θ_0 . При этом трудности в решении исходной игровой задачи естественным образом переносятся на процедуру построения квазистратегии, гарантированно решающей исходную задачу управления по сигналу; в данной работе для этой цели используется вариант прямой версии МПИ (см., например, [17],[18]). Упомянутая версия реализует в общем случае построение наследственного мультиселектора многозначного отображения, заданного априори. В [9]-[11], как и в настоящей работе, упомянутая абстрактная процедура применена для решения достаточно интересной, в практическом отношении задачи управления с помехами.

Литература

- [1] Красовский Н.Н. Игровые задачи о встрече движений. М.:Наука. 1970.
- [2] Красовский Н.Н., Субботин А.И. Позиционные дифференциальные игры. М.: Наука, 1974.
- [3] Красовский Н.Н. Управление динамической системой. Задача о минимуме функционала. М.: Наука, 1985.

- [4] *Красовский Н.Н., Субботин А.И.* Аппроксимация в дифференциальных играх // ПММ, 1970, 34, № 6.
- [5] *Барабанова Н.Н., Субботин А.И.* О классах стратегий в дифференциальных играх уклонения от встречи // ПММ, 1971, 35, № 3.
- [6] *Красовский Н.Н., Субботин А.И.* Аппроксимация в дифференциальной игре. // Прикладная математика и механика. 1973, т.37, №2.
- [7] *Красовский Н.Н.* Дифференциальная игра сближения-уклонения, I // Изв. АН СССР (Техн. киберн.), 1973, №2.
- [8] Красовский Н.Н., Субботин А.И. Альтернатива для игровой задачи сближения. // ПММ, 1970, 34, № 6.
- [9] Ченцов А.Г. Абстрактные аналоги квазистратегий и итерационные методы. // В сб. "Методы построения множеств достижимости и конструкции расширений" сб. науч. трудов. Екатеринбург, УГТУ-УПИ, 2004, стр.115–156.
- [10] Ченцов A.Г. Метод программных итераций в абстрактных задачах управления // ПММ, 2004, 68, №4.
- [11] A.G. Chentsov and S.I. Morina Extensions and relaxatons. Kluwer Academic Publishers, Dordrecht, 2002.
- [12] Субботин А.И., Ченцов А.Г. Оптимизация гарантии в задачах управления. М.: Наука, 1977.
- [13] Ченцов A.Г. Об игровой задаче наведения в заданному моменту времени // Изв. АН СССР. Серия Математика, 1978, т. 42.
- [14] Чистяков С.В. К решению игровых задач преследования // ПММ, 1977, т. 41, вып.5.
- [15] Mеликян A.A. Цена игры в линейной дифференциальной игре сближения // Докл. AH СССР, 1977, т.237, №3.
- [16] Ухоботов В.И. Построение стабильного моста для одного класса линейных игр // ПММ, 1977, т.41, №2.
- [17] Ченцов $A.\Gamma$. Неупреждающие многозначные отображения и их построение с помощью метода программных итераций. I// Дифференциальные уравнения, 2001, Т. 37, N4, с.470–480.
- [18] Ченцов $A.\Gamma$. Неупреждающие многозначные отображения и их построение с помощью метода программных итераций. II// Дифференциальные уравнения, 2001, Т. 37, N5, с.679-688.
- [19] Chentsov. A.G. To the question about the duality of different versions of the programmed ierations method, 1// Functional Differential Equations, Vol.9, 2002, N3-4, pp. 289–314
- [20] Chentsov A.G. On duality of different versions of the programmed iterations method, 2 (the sequential approach) // Functional Differential Equations, Vol.10, N 1-2, 2003, pp.121–161.

- [21] Osipov Yu.S. An informational game problem // Lecture Notes in Computer Science. Berlin: Springer, 1975. V.27., pp.482–486.
- [22] *Курэканский А.Б.* Управление и наблюдение в условиях неопределённости. М.: Наука, 1977.
- [23] *Ченцов А.Г.* Об игровой задаче сближения в заданный момент времени // Мат. сборник, 1976, т.99, N 3
- [24] *Кряжимский А.В., Ченцов А.Г.* О структуре игрового управления в задачах сближения и уклонения. Свердловск. 1979. (Рукоп. деп. в ВИНИТИ;№ 1729-80 Деп.)
- [25] Куратовский К., Мостовский А. Теория множеств. М. Мир, 1970.
- [26] Энгелькинг Р. Общая топология. М.: Мир, 1986.
- [27] Богачев В.И. Основы теории меры. Том 1. Москва-Ижевск: НИЦ "Регулярная и хаотическая динамика 2003.
- [28] Неве Ж. Математические основы теории вероятностей. М.: Мир, 1969.
- [29] Данфорд Н., Шварц Дж. Т. Линейные операторы: Общая теория. М.: Изд-во иностр. лит., 1962.
- [30] Кряжимский А.В. К теории позиционных дифференциальных игр сближенияуклонения. // ДАН СССР, 1978, т.239, № 4, с. 779–782.
- [31] Варга Дж. Оптимальное управление дифференциальными и функциональными уравнениями. М.: Наука, 1977.
- [32] Корляков К.В., Ченцов А.Г. Об одном примере построения многозначной квазистратегии итерационными методами. // ПММ, 2002, т.66, вып.5