Lecture 5: Panel data analysis (II)

Prof. dr. Wolter Hassink Utrecht University School of Economics w.h.j.hassink@uu.nl

These lecture notes are for your own use. It is not allowed to distribute the notes further by posting them on the Internet or on platforms without explicit and prior permission of the author.

© Utrecht University School of Economics 2024

Contents:

- Least Squares Dummy Variable estimator
- Within estimator (or fixed effect estimator)
- Fixed effects versus first differences
- Pooled OLS
- Random-effects estimator
- Random effects or fixed effects: Hausman test
- Line of reasoning with panel data: final example

Material:

Wooldridge:

Chapter 14: 14.1, 14.2, 14.3

MOTIVATION

- Example: panel information of 900 international businesses (firms). Years: 2019, 2020, 2021.
- Variable of interest: Profits of these international firms. Research question: can we explain the volume of profits by the country of origin (= location of headquarter)? E.g., firm has its headquarter in UK, The Netherlands, Germany or France (4 options).
- For one year (cross section)? Answer: **YES** (reference group: Germany)

$$profits_i = \beta_0 + \beta_1 UK_i + \beta_2 France_i + \beta_3 Netherlands_i + u_i$$

 $i = 1, ..., 900$

- For three years? Answer: **IT DEPENDS**. Week 4:
- Regression equation is specified as:

$$profits_{it} = a_i + \beta_1 UK_i + \beta_2 France_i + \beta_3 Netherlands_i + u_{it}$$

 $i = 1,...,900; t = 2019,2020,2021$

$$UK$$
, $France$, $Netherlands$ and $Germany$ are 0-1 indicators: $UK_i + France_i + Netherlands_i + Germany_i = 1$

• Can we estimate the regression parameters by the first difference estimator? Answer: **NO**, because $\Delta UK_i = 0$, $\Delta France_i = 0$ and $\Delta Netherlands_i = 0$

$$\Delta profits_{it} = \beta_1 \Delta UK_i + \beta_2 \Delta France_i + \beta_3 \Delta Netherlands_i + \Delta u_{it}$$
$$i = 1, ..., 900; t = 2019, 2020, 2021$$

• Can we estimate the parameters by the Pooled OLS estimator? Answer: **YES**

$$profits_{it} = \beta_0 + \beta_1 UK_i + \beta_2 France_i + \beta_3 Netherlands_i + v_{it}$$

 $v_{it} = a_i + u_{it}$ $i = 1,...,900; t = 2019,2020,2021$

THIS WEEK: THREE QUESTIONS

QUESTION 1: Can we apply alternative estimators, next to first difference estimator? This week: **LSDV estimator** and **fixed effects estimator**

QUESTION 2: Can we have a panel data estimator that includes country of headquarter? This week: **random effects estimator**

QUESTION 3: Is there any road map for the preferred estimator? Five options: 1. first difference estimator, 2. pooled OLS (both in week 4), 3. LSDV estimator, 4. fixed effects estimator, 5. random effects estimator (this week). These week: several testing procedures.

These lecture notes are for your own use. It is not allowed to distribute the notes further by posting them on the Internet or on platforms without explicit and prior permission of the author.

© Utrecht University School of Economics 2024

Remember the table of week 4

Table A: Estimation methods under different assumptions of strict exogeneity and on the correlation between the individual effect and RHS-variables:

	$E(a_i \mid x_{1it},,x_{1iT},,x_{ki1},x_{kiT}) \neq 0$	$E(a_{i} x_{1it},,x_{1iT},,x_{ki1},x_{kiT}) = 0$		
	Correlation between a_i and all	A zero correlation between a_i		
	of the explanatory variables	and all of the explanatory		
	is allowed to be nonzero	variables is assumed.		
All x_{it}	1. First differences	4. Random effects		
strictly	2. LSDV procedure			
exogenous	3. Within estimation			
Some x_{it}	Instrumental Variables (IV)	5. Pooled OLS (no lagged		
not		dependent variables)		
strictly		6. Instrumental variables (IV)		
exogenous		(lagged dep. vars. Included)		

$$y_{ij} = a_i + \beta_1 x_{1ij} + ... + \beta_k x_{kij} + u_{ij}$$
 $i = 1,...,N; t = 1,...,T$

Previous week:

- First-difference estimator (here only one explanatory variable) $\Delta y_{ii} = \Delta x_{ii} \beta + \Delta u_{ii}$ i = 1,...,N; t = 2,...,T
- Pooled OLS $y_{ii} = \beta_0 + \beta_1 x_{1ii} + ... + \beta_k x_{kii} + v_{ii} \text{ for which } v_{ii} = a_i + u_{ii}$

This week we will consider the following three estimators:

- LSDV estimator (least square dummy variable estimator)
- Within estimator (also referred to as the fixed-effects estimator)
- Random effects estimator

Estimation method 2: Least Squares Dummy Variable estimator (LSDV-method)

Aim: to introduce the LSDV-method.

The LSDV method is straightforward. In the regression equation we include a full set of dummy variables a_i indicating the crosssectional unit. The OLS estimator is used to estimate the parameters of the equation, which thus includes all the parameters of the dummy variables

$$y_{it} = \underbrace{\beta_{1} x_{1it} + ... + \beta_{k} x_{kit}}_{k \text{ explanatory variables}} + a_{i} + u_{it} \qquad i = 1, ..., N; t = 1, ..., T$$
 (1)

Each individual of the panel data set (e.g. firm, person, country) gets a separate dummy variable. Consequently:

- The correlation between the explanatory variable a_i and the other explanatory variables $x_{i1},...x_{iT}$: $E(a_i \mid x_{1i},...,x_{1iT},...,x_{ki1},...x_{kiT}) \neq 0.$
- Strict exogeneity (in simple words: which means that equation (1) has no lagged dependent variables (y_{i-1}) , there is no feedback mechanism)

In the case of a country data set with a limited set of individual firms, this is not a problem (not too many cross-sectional units). But in a panel data set this may be hard (too many dummy variables) because of computational issues. For instance, a panel data set of about 1.5 million households (which is not uncommon nowadays), requires the inclusion of as many dummy variables in the regression equation.

• An application of the LSDV estimator in Stata will be given below.

Some useful Stata commands (I)

LSDV

- id-firm is the name of the variable indicating the cross sectional unit (e.g the firm indicator)
- important command to create dummies (it creates df1, df2,..., dfN for each of the units):
 - o quietly tab id_firm, gen(df)
- An OLS regression of y on x and the set of dummies df* (you need to include the asterisk)
 - o reg y x df*
- testparm df*
- reg y x df*, cluster(id_firm)

Example: leveragedata.dta

LSDV:

. reg leverage i.year cashflow_assets net_income_MV capex_MV volatility gdp_growth inflation df* $\,$

note: df4453 omitted because of collinearity

Source	SS	df MS	5		mber of obs = 481, 33536) =	38018 32.54
	2304.23662 4 529.969924 33			Pro R-s	bb > F = squared = R-squared =	0.0000 0.8130
Total	2834.20655 38	017 .074551	L031	_	ot MSE =	.12571
leverage	 Coef. +	Std. Err.	t	P> t	[95% Conf.	Interval]
year	I					
1991	0071953	.0128123	-0.56	0.574	0323079	.0179173
1992	.0063964	.012046	0.53	0.595	0172141	.030007
1993	0500511	.0120103	-4.17	0.000	0735917	0265104
1994	0187898	.0118235	-1.59	0.112	0419643	.0043847
1995	0041872	.0115466	-0.36	0.717	026819	.0184446
1996	0273106	.0114664	-2.38	0.017	0497853	004836
1997	0383464	.011436	-3.35	0.001	0607614	0159314
1998	0394148	.0115158	-3.42	0.001	0619861	0168435
1999	0286589	.0115514	-2.48	0.013	0513	0060179
2000	0048752	.0112476	-0.43	0.665	0269209	.0171704
2001	0107868	.0111608	-0.97	0.334	0326624	.0110889
2002	.0005191	.0112197	0.05	0.963	0214719	.0225102
2003	02291	.0112636	-2.03	0.042	044987	000833
2004	0283002	.0112057	-2.53	0.012	0502636	0063367
2005	0476214	.0111731	-4.26	0.000	0695211	0257217
2006	0417042	.0111741	-3.73	0.000	0636059	0198025
2007	0310703	.0111437	-2.79	0.005	0529123	0092282
2008	.0297393	.0110511	2.69	0.007	.0080788	.0513997
2009	0450109	.0120865	-3.72	0.000	0687009	021321
2010	.0212174	.0112624	1.88	0.060	0008573	.043292
2010	.0361837	.0112024	3.26	0.000	.014422	.0579454
2012	.007615	.0112974	0.67	0.500	0145283	.0297583
2012	0082831	.0115645	-0.72	0.300	0309498	.0143837
2013	0082831	.0113643	-0.72	0.4/4	0309496	.0143037
cashflow_assets	3282559	.0119771	-27.41	0.000	3517314	3047804
net_income_MV	0717367	.0022064	-32.51	0.000	0760613	0674121
capex MV		.0048738	57.74	0.000	.2718552	.2909609
volatility	.0016269	.0001371	11.86	0.000	.0013581	.0018957
gdp growth	0095725	.0004607	-20.78	0.000	0104755	0086695
inflation	0027681	.0009939	-2.78	0.005	0047163	00082
df1	0250849	.0537778	-0.47	0.641	1304912	.0803215
df2		.0557651	7.83	0.000	.3273353	.5459384
df3		.0636731	7.76	0.000	.3691422	.6187452
df4452	.3410562	.0440643	7.74	0.000	.2546886	.4274237
df4453	0	(omitted)				
_cons	0390907	.0361524	-1.08	0.280	1099506	.0317692
+						

F-test:

```
. testparm df*

(1) df1 = 0
(2) df2 = 0
(3) df3 = 0
(4) df4 = 0
(5) df5 = 0
...
(4452) df4452 = 0

F(4452, 33536) = 22.42
Prob > F = 0.00000
```

Within estimator (also referred to as fixed effect estimator)

These lecture notes are for your own use. It is not allowed to distribute the notes further by posting them on the Internet or on platforms without explicit and prior permission of the author.

© Utrecht University School of Economics 2024

Estimation method 3: within estimator

Aim: to introduce the within estimator (or fixed-effect estimator)

- It produces identical estimates for β as the LSDV method of above (see the example 1 below)
- It requires the following steps:

Model:
$$y_{it} = \underbrace{\beta_1 x_{1it} + ... + \beta_k x_{kit}}_{k \text{ explanatory variables}} + a_i + u_{it} \quad i = 1,...,N; t = 1,...,T$$
 (2)

• First, average equation (2) over *t*=1,...,*T* to get the following cross-sectional equation:

•
$$\overline{y}_i = \underbrace{\beta_1 \overline{x}_{1i} + ... + \beta_k \overline{x}_{ki}}_{k \text{ explanatory variables}} + a_i + \overline{u}_i$$
 $i = 1,...,N$ (3)

where
$$\overline{y}_{i} = \frac{1}{T} \sum_{t=1}^{T} y_{it}$$
; $\overline{x}_{i} = \frac{1}{T} \sum_{t=1}^{T} x_{it}$; $\overline{u}_{i} = \frac{1}{T} \sum_{t=1}^{T} u_{it}$

Furthermore, we include a_i in (3), since it is equal to the average

of
$$a_i$$
: $\bar{a}_i = \frac{1}{T} \sum_{t=1}^{T} a_i = \frac{1}{T} \cdot T a_i = a_i$

• Subtracting equation (3) from equation (2) yields:

$$\ddot{y}_{it} = \underbrace{\beta_1 \ddot{x}_{1it} + \dots + \beta_k \ddot{x}_{kit}}_{k \text{ explanatory variables}} + \ddot{u}_{it} \qquad i = 1, \dots, N; t = 1, \dots, T$$

$$(4)$$

where

$$\ddot{y}_{ii} = y_{ii} - y_{ij}; \ \ddot{x}_{ii} = x_{ii} - x_{ii}; \ \ddot{u}_{ii} = u_{ii} - u_{ii}$$

- Time demeaning removes the individual effect a_i .
- The within estimator $\hat{\beta}_{within}$ can be obtained by applying OLS on equation (4).
- Estimate of the individual effect:

$$\bullet \quad \hat{a}_{i} = \overline{y}_{i} - \hat{\beta}_{1} \overline{x}_{1i} - \dots - \hat{\beta}_{k} \overline{x}_{ki}$$

- If the following assumptions about u_{it} hold:
 - $E(u_{i}) = 0$; $Var(u_{i}) = \sigma^2$ (expected value of zero; constant variance)
 - u_{ii} is independent over time and across individuals (i.i.d.)

Then it is possible to show that:

- $\bullet \quad \hat{u}_{it} = \ddot{y}_{it} \hat{\beta}_1 \ddot{x}_{1it} \dots \hat{\beta}_k \ddot{x}_{kit}$
- $\hat{\sigma}^2 = \frac{\sum_{i=1}^N \sum_{t=1}^T \hat{u}_{it}^2}{N(T-1)-k}$
- Consistent estimates of $Var(\hat{\beta}_{within})$ (using $\hat{\sigma}^2$)
- The within R^2 can be obtained by applying OLS on equation (4).
- Note: $\hat{\sigma}^2$ has a slightly different denominator than what would be expected when running an OLS regression on equation (4). N(T-1)-k instead of NT-k (as used by OLS)
- Suppose that there is autocorrelation and heteroskedasticity in u_{ii} . In that case, $Var(\hat{\beta}_{within})$ is incorrect, because $\hat{\sigma}^2$ is incorrect: robust Newey-West standard errors are needed.
 - Note that it is a different estimator for $Var(\hat{\beta}_{within})$ than the robust standard error (that only corrects for heteroskedasticity)
 - Stata: cluster option: xtreg y x, fe cluster(id)
 - The cluster option corrects for both autocorrelation and heteroskedasticity.

Within-estimation procedure: further remarks

Aim: to discuss issues about the within estimator.

$$y_{it} = \underbrace{\beta_{1} x_{1it} + ... + \beta_{k} x_{kit}}_{k \text{ explanatory variables}} + a_{i} + u_{it}$$

$$\ddot{y}_{it} = \underbrace{\beta_{1} \ddot{x}_{1it} + ... + \beta_{k} \ddot{x}_{kit}}_{k \text{ explanatory variables}} + \ddot{u}_{it} \qquad i = 1, ..., N; t = 1, ..., T$$

$$(4)$$

where

$$\ddot{y}_{ii} = y_{ii} - y_{i}; \ \ddot{x}_{ii} = x_{ii} - x_{i}; \ \ddot{u}_{ii} = u_{ii} - u_{ii}$$

- The parameter vector β is identified ('can be estimated') due to time-variation in x_{ii} for each individual: the variables differ across time at the level of the individual.
- Individual-specific variables that are constant over time (e.g. gender, year of birth) cannot be included in (4). Their parameters are not identified, as they are incorporated in the individual effect a_i .
- Estimator $\hat{\beta}_{within}$ and \hat{a}_i are consistent if T and N are large.
- If T is small and N is large, then $\hat{\beta}_{within}$ is still consistent. \hat{a}_i is inconsistent because of the small number of observations (T).
- Why is $\hat{\beta}_{within}$ a consistent estimator? Let's assume for simplicity we have a bivariate model: $y_{it} = x_{it}\beta + a_i + u_{it}$ or

$$\ddot{y}_{ii} = \ddot{x}_{ii}\beta + \ddot{u}_{ii} \tag{5}$$

• Consistency requires that the error term is uncorrelated with the explanatory variable: In (5):

$$Corr(\ddot{x}_{i}, \ddot{u}_{i}) = Corr(x_{i} - \bar{x}_{i}, u_{i} - \bar{u}_{i}) = 0$$

- It means that u_{ii} is uncorrelated with \overline{x}_{i}
- It means that u_{ii} is uncorrelated with $x_{i1},....,x_{iT}$
- Our Uncorrelated with x in the past, present and future.... Conclusion: strict exogeneity is needed (this excludes lagged dependent variables and feedback effects).

• Contemporaneous exogeneity is too weak to prove consistency of the fixed effects estimator $\hat{\beta}_{within}$ because it does not exclude correlation between u_{it} and $x_{i1},....,x_{iT}$.

Some useful Stata commands (II)

Fixed effects (do not forget the subcommand fe which says Stata should apply the FE estimator:

- xtreg y x, fe
- xtreg y x, fe cluster(id_firm)

Example 1 (continued): fixed effects

```
. xtreg leverage i.year i.ncountry cashflow assets net income MV capex MV volatility
gdp growth inflation, fe
note: 2.ncountry omitted because of collinearity
note: 3.ncountry omitted because of collinearity
note: 4.ncountry omitted because of collinearity
note: 5.ncountry omitted because of collinearity
note: 6.ncountry omitted because of collinearity
note: 7.ncountry omitted because of collinearity
note: 8.ncountry omitted because of collinearity
note: 9.ncountry omitted because of collinearity
note: 10.ncountry omitted because of collinearity
note: 11.ncountry omitted because of collinearity
note: 12.ncountry omitted because of collinearity
note: 13.ncountry omitted because of collinearity
note: 14.ncountry omitted because of collinearity
note: 15.ncountry omitted because of collinearity
note: 16.ncountry omitted because of collinearity
note: 17.ncountry omitted because of collinearity
note: 18.ncountry omitted because of collinearity
                                                                                       38018
Fixed-effects (within) regression
                                                           Number of obs
                                                          Number of groups =
Group variable: id firm
                                                                                          4453
R-sq: within = 0.2635
                                                         Obs per group: min =
        between = 0.1852
                                                                                          8.5
                                                            avg =
        overall = 0.2094
                                                                            max =
                                                          F(29,33536) = 413.74
corr(u i, Xb) = 0.1416
                                                          Prob > F
        leverage | Coef. Std. Err. t P>|t| [95% Conf. Interval]
______
             vear |
            1991 | -.0071953 .0128123 -0.56 0.574 -.0323079 .0179173

    1992 | .0063964
    .012046
    0.53
    0.595
    -.0172141

    1993 | -.0500511
    .0120103
    -4.17
    0.000
    -.0735917

    1994 | -.0187898
    .0118235
    -1.59
    0.112
    -.0419643

    1995 | -.0041872
    .0115466
    -0.36
    0.717
    -.026819

                                                                                         .030007
                                                                                       -.0265104
                                                                                       .0043847
            1996 | -.0273106 .0114664 -2.38 0.017 -.0497853 -.004836
            1997 | -.0383464 .011436 -3.35 0.001 -.0607614 -.0159314
            1998 | -.0394148 .0115158 -3.42 0.001 -.0619861 -.0168435

    1999 | -.0286589
    .0115514
    -2.48
    0.013
    -.0513

    2000 | -.0048752
    .0112476
    -0.43
    0.665
    -.0269209

    2001 | -.0107868
    .0111608
    -0.97
    0.334
    -.0326624

                                                                                      -.0060179
                                                                                      .0110889
            2002 | .0005191 .0112197
                                                    0.05 0.963 -.0214719 .0225102
                                                                         -.044987
            2003 | -.02291 .0112636 -2.03 0.042
                                                                                        -.000833
                                                                                      -.0063367
            2004 | -.0283002 .0112057 -2.53 0.012 -.0502636
2005 | -.0476214 .0111731 -4.26 0.000 -.0695211
            2005 | -.0476214
2006 | -.0417042
                                    .0111731
.0111741

      -4.26
      0.000
      -.0695211

      -3.73
      0.000
      -.0636059

                                                                                        -.0257217
                                                                                      -.0198025
            2007 | -.0310703 .0111437 -2.79 0.005 -.0529123
                                                                                        -.0092282
            2008 | .0297393 .0110511 2.69 0.007 .0080788 .0513997
2009 | -.0450109 .0120865 -3.72 0.000 -.0687009 -.021321

      2010 | .0212174
      .0112624
      1.88
      0.060
      -.0008573
      .043292

      2011 | .0361837
      .0111027
      3.26
      0.001
      .014422
      .0579454

      2012 | .007615
      .0112974
      0.67
      0.500
      -.0145283
      .0297583

            2013 | -.0082831 .0115645 -0.72 0.474 -.0309498
                                                                                        .0143837
        ncountry |
                              0 (omitted)
0 (omitted)
0 (omitted)
              2
                   3
                   0 (omitted)
```

```
0 (omitted)
0 (omitted)
                 7 |
8 |
                                 0 (omitted)
0 (omitted)
0 (omitted)
                 9
                     10
                                 0 (omitted)
                11
               12 |
                                 0 (omitted)
                                 0 (omitted)
0 (omitted)
0 (omitted)
               13 |
                14
                15
                                  0 (omitted)
                16 |
                17 |
                                  0 (omitted)
                18 |
                                   0 (omitted)
                                       .0119771 -27.41 0.000 -.3517314 -.3047804
.0022064 -32.51 0.000 -.0760613 -.0674121
.0048738 57.74 0.000 .2718552 .2909609
.0001371 11.86 0.000 .0013581 .0018957
cashflow_assets | -.3282559
  net_income_MV | -.0717367
capex_MV | .281408
volatility | .0016269
      gdp growth | -.0095725
                                       .0004607 -20.78 0.000 -.0104755 -.0086695
inflation | -.0027681 .0009939 -2.78 0.005 -.0047163 -.00082

_cons | .3082911 .0121223 25.43 0.000 .2845309 .3320513
                                                                                                .3320513
         sigma_u | .23427663
sigma_e | .12571004
           rho | .77644166 (fraction of variance due to u i)
F test that all u_i=0: F(4452, 33536) = 22.42 Prob > F = 0.0000
```

Fixed effects versus first differences

These lecture notes are for your own use. It is not allowed to distribute the notes further by posting them on the Internet or on platforms without explicit and prior permission of the author. © Utrecht University School of Economics 2024

Fixed effects versus first differences (I)

Similarities and differences

What do the estimators have in common?

- They allow for correlation between a_i and the explanatory variables $x_{i_1},...x_{i_t}$: $E(a_i \mid x_{1it},...,x_{lit},...,x_{ki1},...x_{kit}) \neq 0$
- The assumption of strict exogeneity (which means that the regression equation contains no feedback mechanism; there is no lag of dependent variable)

Consequence:

• The parameter estimates of both estimators should be about the same (if the assumption of strict exogeneity is true).

How do they differ?

- Assumption about the error term *u*:
 - Fixed effects estimator: u_{ii} is independent over time and across individuals
 - First difference estimator (see week 4): $u_{ii} = u_{ii-1} + e_{ii}$
 - e_{ii} is independent over time and across individuals
 - Thus Δu_{ii} is independent over time and across individuals
 - Thus it is assumed that u_{ij} follows a random walk, i.e.:

$$u_{it} = u_{it-1} + e_{it}$$

 $E(e_{it}) = 0$; $Var(e_{it}) = \sigma_e^2$ (expected value of zero; constant variance)

Consequence:

• Fixed-effect estimator gives smaller standard errors if the specification is correct and there is strict exogeneity. This estimator is more efficient.

• First-difference estimator is preferred if there is a unit root in the error terms: $u_{ii} = u_{ii-1} + e_{ii}$

Issue: First differences or fixed effects? (II)

Aim: to discuss whether to apply first differences or fixed effects

• If the regression equation is correctly specified,

$$y_{it} = \underbrace{\beta_1 x_{1it} + ... + \beta_k x_{kit}}_{k \text{ explanatory variables}} + a_i + u_{it}$$

the within estimation procedure and the 'first-difference estimation procedure should yield similar estimates for the parameter vector β .

• Question: which of the two estimation procedures is preferable? Answer: It depends on the time series behaviour of u_{i} . If it is a white noise error term, use the within estimation procedure $\hat{\beta}_{within}$. If it follows a random walk $(u_{i} = u_{i-1} + e_{i})$, use the first-difference procedure $\hat{\beta}_{fdif}$.

Issue: First differences or fixed effects? (III)

Motivation for the procedure

Assumption: strict exogeneity (no feedback, no lagged dependent variables).

For ease of exposition here we take one explanatory variable x

Fixed-effects estimator: u_{ii} is identically and independently distributed.

First-difference estimator: Δu_{ii} is identically and independently distributed. In other words, u_{ii} has a unit root.

As will be shown and derived in exercise 14.1, the correlation between the error terms of a first-difference estimator is as follows.

Assumption: u_{i} is identically and independently distributed:

$$Cov(u_{it}, u_{is}) = 0$$
 for $t \neq s$ (same individual *i*)
 $Cov(u_{it}, u_{is}) = \sigma_{it}^2$ for $t = s$

Next, we estimate the model:

$$\Delta y_{ii} = \Delta x_{ii} \beta + \Delta u_{ii} \qquad i = 1, ..., N; t = 2, ..., T$$

The correlation between Δu_{ii} and Δu_{ii-1} is:

$$Corr(\Delta u_{i}, \Delta u_{i-1}) = Corr(u_{i} - u_{i-1}, u_{i-1} - u_{i-2}) = -0.5.$$

Hence, the intertemporal correlation of the FD-estimator is -0.5 if u_{ij} is i.i.d.

Motivation:

Covariance for the same individual across time:

$$Cov[aX + bY, cW + dZ] = acCov[X, W] +$$

$$adCov[X, Z] + bcCov[Y, W] + bdCov[Y, Z]$$

$$\begin{aligned} &Cov(u_{it} - u_{it-1}, u_{it-1} - u_{it-2}) = \\ &= \underbrace{Cov(u_{it}, u_{it-1})}_{=0} + \underbrace{Cov(u_{it}, -u_{it-2})}_{=0} + \underbrace{Cov(-u_{it-1}, u_{it-1})}_{\neq 0} + \underbrace{Cov(-u_{it-1}, -u_{it-2})}_{=0} \\ &= 0 + 0 - Var(u_{it-1}) + 0 \\ &= -\sigma_{-}^{2} \end{aligned}$$

$$Var(u_{it} - u_{it-1}) = \underbrace{Var(u_{it})}_{=\sigma_u^2} + \underbrace{Var(-u_{it-1})}_{=\sigma_u^2} + 2\underbrace{Cov(u_{it}, -u_{it-1})}_{=0}$$
$$= 2\sigma_u^2 + 0 = 2\sigma_u^2$$

$$Corr(\Delta u_{ii}, \Delta u_{ii-1}) = \frac{Cov(\Delta u_{ii}, \Delta u_{ii-1})}{\sqrt{Var(\Delta u_{ii})} \cdot \sqrt{Var(\Delta u_{ii-1})}} = \frac{-\sigma_u^2}{2\sigma_u^2} = -0.5$$

(the derivation will be discussed in further detail at the tutorial)

Fixed effects or first differences? (IV)

- To check for FE versus FD, follow the below procedure:
 - Step 1: Run a first-difference regression equation of Δy_{ii} on Δx_{ii}
 - Step 2: Predict the residuals (which gives $\Delta \hat{u}_{i}$) and run a Breusch-Godfrey test for autocorrelation of $\Delta \hat{u}_{i}$ on $\Delta \hat{u}_{i-1}$ and Δx_{i} .
 - Step 3A: If the estimated coefficient on $\Delta \hat{u}_{i-1}$ is about -0.5 (i.e. -0.5 is within the 95% confidence interval) then there is an indication that u_{i} is an independent error term (u_{i} is i.i.d.). Conclusion: prefer within-estimates (fixed effects).
 - Step 3B: If the estimated coefficient on $\Delta \hat{u}_{i-1}$ is not equal to -0.5 (i.e. -0.5 is outside the 95% confidence interval) then there is an indication that u_{i} is not an independent error term. Conclusion: prefer first-differences.
- If the two procedures yield dramatically different estimates for β , the two conclusions are possible, either:
 - For some RHS-variables, the assumption of strict exogeneity does not hold.
 - The regression model is incorrectly specified. Some important time-varying regressors are missing in the equation.
- It is useful to compare the results of both regression procedures.

Example 1 (continued): first differences, autocorrelation, and fixed effects

leveragedata.dta

• Estimate the first-difference equation:

. reg d.leverage i.year d.cashflow_assets d.net_income_MV d.capex_MV d.volatility d.gdp_growth d.inflation

Source	SS	df MS	3		nber of obs = 28, 32636) =	
Model Residual			1291	R-s	bb > F = squared = R-squared =	0.2291
Total	433.68032 32				ot MSE =	.10121
D.leverage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
year 1992 1993 1994	 .0248175 0551676 .0062496	.0102758 .0096015 .0096471		0.016 0.000 0.517	.0046764 0739868 0126591	.0449585 0363484 .0251583
1995	.0139463 0269879 0234538	.0093621 .0090235 .0089761	1.49	0.136	0044038 0446742 0410472	.0322964 0093015 0058603
1998 1999 2000	0061028 .0087492 .0150779	0088369	-0.69 0.99 1.69	0 490	0234234 0085615 002442	.0112178 .02606 .0325978
2001 2002 2003	.0046464 .0115113 .031665	.0087413 .0087246 .0086835	0.53 1.32	0.595 0.187 0.000	0124869 0055892 048685	.0217797 .0286118 014645
2004 2005 2006	0240877 0259071 0125877	.008755 .0086258 .0087022	-1.45	0.006 0.003 0.148	0412479 042814 0296443	0069276 0090003 .004469
2007 2008 2009 2010	.0048807 .0802273 0450363 .0138347	.0086034 .0086554 .0089832 .0092961	0.57 9.27 -5.01 1.49	0.571 0.000 0.000 0.137	0119823 .0632625 0626437 004386	.0217438 .0971922 027429 .0320553
2011 2012 2013	.0132293 0247699 0260382	.0086416 .0085823 .0086973	1.53	0.126 0.004 0.003	0037086 0415916 0430852	.0301672 0079482 0089913
cashflow_assets D1.		.0086324	-18.26	0.000	1745493	1407096
net_income_MV D1.		.0015237	-29.97	0.000	0486512	0426784
capex_MV D1.	.1665012	.0034578	48.15	0.000	.1597238	.1732786
volatility D1.	.0005507	.0002147	2.57	0.010	.00013	.0009715
gdp_growth D1.	0043542 	.0003905	-11.15	0.000	0051196	0035888
inflation D1.	•	.0007924	3.73	0.000	.0014037	.0045101
_cons	.0072149	.0083321	0.87	0.387	0091162	.023546

. predict uhat, resid(5353 missing values generated)

• Breusch-Godfrey after first-difference estimate:

. reg uhat l.uhat i.year d.cashflow_assets d.net_income_MV d.capex_MV d.volatility d.gdp_growth d.inflation

Source	SS	df MS			ber of obs =	
	2.74238351 274.433137 280	28 .097942)73 .009775		F(28, 28073) = 10.02 Prob > F = 0.0000 R-squared = 0.0099		
Total	277.175521 281	.009863	547	_	R-squared = t MSE =	0.0089
uhat	 Coef. +	Std. Err.	t	P> t	[95% Conf.	Interval]
uhat L1.	·	.0059722	-16.29	0.000	1089937	085582
1994 1995	.0118092 .014257 .01849	.0101402 .009538 .0092818	1.99	0.244 0.135 0.046	008066 004438 .0002973	.0316845 .0329519 .0366827
1996 1997 1998 1999 2000	.0115234	.0091525 .008873 .0087537 .0086718 .0088124	1.52	0.127 0.128 0.188 0.056 0.104	0039766 0038717 0056341 0004467 0029257	.0319021 .0309113 .028681 .0335475 .0316198
2001 2002 2003 2004	.0150142 .0162071 .018279 .0163362	.0087248 .0086254 .0085907 .0085818	1.72 1.88 2.13	0.085 0.060 0.033 0.057	0020869 0006991 .0014408 0004847	.0321152 .0331133 .0351172 .033157
2005 2006 2007 2008	.0155979 .016494 .0165834 .0137903	.0085044 .0085168 .0084451 .0085929		0.067 0.053 0.050 0.109	0010712 0001993 .0000306 0030522	.032267 .0331874 .0331361 .0306327
2009 2010 2011 2012 2013	.0178115 .0149909 .0157722 .0160332 .017986	.0089722 .0090753 .0085215 .0084817	1.99 1.65 1.85 1.89 2.12	0.047 0.099 0.064 0.059 0.034	.0002257 0027972 0009304 0005914 .0013629	.0353974 .032779 .0324748 .0326579 .0346091
cashflow_assets D1.	 0198735	.00956	-2.08	0.038	0386116	0011355
net_income_MV D1.		.0016652	0.82	0.412	001899	.0046288
capex_MV D1.		.0037537	0.64	0.519	0049369	.0097779
volatility D1.		.000237	2.17	0.030	.0000492	.0009781
gdp_growth D1.		.0004156	0.46	0.647	0006241	.0010053
inflation D1.		.0008525	0.46	0.643	0012754	.0020662
_cons	0162629	.0081466	-2.00	0.046	0322306	0002951

- Conclusion: -0.5 is not included in the 95% confidence interval of the parameter on l.uhat
- Implication: we prefer the first-difference estimator.
- We re-estimate the equation with clustered standard errors (which also corrects for heteroskedasticity).

. reg d.leverage i.year d.cashflow_assets d.net_income_MV d.capex_MV d.volatility
d.gdp growth d.inflation, cluster(id firm)

Linear regression

Number of obs = 32665 F(28, 4033) = 151.44 Prob > F = 0.0000 R-squared = 0.2291 Root MSE = .10121

(Std. Err. adjusted for 4034 clusters in id firm)

D.leverage	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Intorvall
D. Teverage	+					
year						
1992	.0248175	.009056	2.74	0.006	.0070627	.0425722
1993	0551676	.0079563	-6.93	0.000	0707664	0395688
1994	.0062496	.0080243	0.78	0.436	0094825	.0219816
1995	.0139463	.007127	1.96	0.050	0000266	.0279192
1996	0269879	.0072956	-3.70	0.000	0412912	0126845
1997	0234538	.0073051	-3.21	0.001	0377758	0091317
1998	0061028	.0073293	-0.83	0.405	0204722	.0082666
1999	.0087492	.0071142	1.23	0.219	0051985	.0226969
2000	.0150779	.0073423	2.05	0.040	.0006829	.0294729
2001	.0046464	.0071457	0.65	0.516	0093631	.0186559
2002	.0115113	.0070606	1.63	0.103	0023313	.0253539
2003	031665	.0069352	-4.57	0.000	0452619	0180681
2004	0240877	.0070915	-3.40	0.001	037991	0101845
2005	0259071	.0069892	-3.71	0.000	0396098	0122045
2006	0125877	.0070929	-1.77	0.076	0264936	.0013183
2007	.0048807	.0068994	0.71	0.479	0086459	.0184073
2008	.0802273	.007301	10.99	0.000	.0659133	.0945414
2009	0450363	.0075672	-5.95	0.000	0598722	0302004
2010	.0138347	.0078845	1.75	0.079	0016232	.0292925
2011	.0132293	.0069604	1.90	0.057	0004168	.0268755
2012	0247699	.006876	-3.60	0.000	0382506	0112892
2013	0260382	.0070397	-3.70	0.000	03984	0122365
cashflow_assets						
D1.	1576294	.0134112	-11.75	0.000	1839227	1313362
net_income_MV						
D1.	0456648	.0030126	-15.16	0.000	0515712	0397584
capex_MV						
D1.	.1665012	.0064726	25.72	0.000	.1538114	.179191
volatility						
D1.	.0005507	.000276	2.00	0.046	9.54e-06	.0010919
gdp_growth						
D1.	0043542	.0004465	-9.75	0.000	0052295	0034789
inflation			_			
D1.	.0029569	.0009011	3.28	0.001	.0011903	.0047236
_cons	.0072149	.0065703	1.10	0.272	0056664	.0200963

Pooled OLS (again!)

These lecture notes are for your own use. It is not allowed to distribute the notes further by posting them on the Internet or on platforms without explicit and prior permission of the author. © Utrecht University School of Economics 2024

Estimators for a zero correlation between a_i and the explanatory variables

- Now we assume that there is no correlation between a_i and x_{ii} .
- Consider the following methods:
 - Pooled OLS (method 5; previous week; next example)
 - Random effects (method 4; this week)

Example 1: Pooled OLS and autocorrelation

Pooled OLS (with clustered standard errors):

. reg leverage	_	try cashflow	_assets	net_incom	e_MV capex_MV	volatility
gdp_growth infla		df Mo	,	Marm	ber of obs =	20010
· ·	SS df MS					
	812.032429				46, 37971) = b > F =	
Residual					quared =	
					R-squared =	
	2834.20655 38			Roo	t MSE =	.23077
1					 [95% Conf.	
leverage					[95% CONI.	
year	1					
1991	.0029504	.0232836	0.13	0.899		.0485868
1992	.0000561	.0217867	0.00	0.998	0426463	.0427586
1993	036609	.0216375	-1.69	0.091	0790191	.0058011
1994	.0008144	.0213076	0.04	0.970	040949	.0425779
1995	.0095802	.0206564	0.46	0.643	0309068	.0500672
1996	0102466	.0204811	-0.50	0.617	0503902	.029897
1997	0179961	.0204068	-0.88 -0.85	0.378 0.393	057994	.0220018
1998 1999	017542 0105355	.0205455 .0206114	-0.51	0.609	0578118 0509343	.0227278
2000	0044244	.0200114	0.22	0.826	034924	.0437728
2001	1 .000975	.0199214	0.00	0.020	038949	.0391441
2002	.0149194	.019984	0.75	0.455	0242498	.0540887
2002	0042183	.020029	-0.21	0.833	0434757	.0350391
2004	0159808	.019941	-0.80	0.423	0550657	.0231042
2005	0366836	.0198668	-1.85	0.065	0756231	.0022558
2006	0384295	.0198872	-1.93	0.053	0774089	.0005499
2007	0290793	.0198382	-1.47	0.143	0679627	.009804
2008	.0201234	.0196752	1.02	0.306	0184406	.0586874
2009	0335673	.0212667	-1.58	0.114	0752506	.008116
2010	.0173953	.0199924	0.87	0.384	0217904	.0565811
2011	.0278749	.0197154	1.41	0.157	0107678	.0665176
2012	.0049275	.0200135	0.25	0.806	0342996	.0441545
2013	006493	.0204539	-0.32	0.751	0465832	.0335972
ncountry						
2	0445892	.0081852	-5.45	0.000	0606325	0285459
3	.0603322	.0212166	2.84	0.004	.018747	.1019173
4	048074	.0287972	-1.67	0.095	1045173	.0083692
5	0455876	.0081123	-5.62	0.000	0614879	0296872
6	0490725	.0066374	-7.39	0.000	062082	0360631
7	0895072	.0066424	-13.48	0.000	1025264	076488
8	0.0499154	.008389	5.95	0.000	.0334726	.0663581
9	0513545 .057862	.0100213	-5.12	0.000	0709965 .0434175	0317125
10 11	057862	.0073695 .021772	7.85 -2.62	0.000	0996307	.0723064 0142834
12	0598471	.0133481	-4.48	0.009	0860097	0336845
13	0964434	.0302854	-3.18	0.000	1558035	0370832
14	10768503	.0076046	-10.11	0.000	0917555	0619452
15		.0102683			.0974307	
16	.0016017	.0240471	0.07	0.947	0455312	.0487347
17	.0071014	.0145235	0.49	0.625	0213651	.035568
18	.0154778	.0079679	1.94	0.052	0001395	.0310952
		•00,30,3	1.01	0.002	.0001030	.0010302
cashflow assets	7094728	.0148948	-47.63	0.000	738667	6802787
net income MV	0686996	.0033831	-20.31	0.000	0753304	0620687
capex MV		.0064815	77.83	0.000	.4917501	.517158
volatility		.0001137	-9.47	0.000	0012994	0008536
gdp growth	•	.0007704	-8.81	0.000	0082969	005277
inflation		.0017127	-2.71	0.007	0079934	0012794
cons		.0212779	19.23	0.000	.3674766	.4508872
_						

. predict uhat, resid

. reg uhat l.uhat i.year i.ncountry cashflow_assets net_income_MV capex_MV volatility gdp_growth inflation

Source	SS	df MS	; 		ber of obs = 46, 32618) =	32665 1964 48
Model Residual	1236.9336 446.475075 326		997	Pro R-s	b > F = quared =	0.0000 0.7348
Total	1683.40867 326		126		R-squared = t MSE =	0.7344
uhat	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
uhat L1.	.8681897	.0028916	300.25	0.000	.8625221	.8738573
year 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011	.0054429 0104477 0307748 0178197 0173844 018507 0214503 0178809 0067058 0081796 0142949 0093085 0121306 0203213 025473 025473 025473 025473 025473 0277731 0107624 0164746 0148785 0182539	.0118535 .011141 .011023 .0109172 .0105893 .0105939 .0105839 .010631 .0104137 .0102159 .0102263 .0102263 .0102212 .0101848 .0102126 .0101682 .0099828 .0107814 .010036 .0101256	0.46 -0.94 -2.79 -1.63 -1.64 -1.75 -2.03 -1.68 -0.64 -0.80 -1.40 -0.91 -1.19 -2.00 -2.49 -2.34 -0.78 -1.00 -1.61 -1.48 -1.80	0.646 0.348 0.005 0.103 0.101 0.081 0.043 0.093 0.520 0.423 0.163 0.363 0.235 0.046 0.013 0.019 0.436 0.318 0.107 0.138	0177903 0322845 0523803 0392179 0381399 0392715 0421951 0282031 0282031 0282031 0343778 0293523 0321646 0402839 0454901 0437449 0273397 0318944 0364947 0345494 0345494 0381004	.0286761 .0113891 -0091693 .0035786 .0033711 .0022575 -0007055 .0029562 .0137054 .0118439 .005788 .0107353 .0079033 -0003586 -0054559 -0038847 .0117935 .0103697 .0035454 .0047924 .0015927
4 5 6 7 8 9 10 11	023887 01281240025386020778401640430113643011278400932601735920023790164220147346020781901301390091127013258500277980080106	.0103999 .0044356 .0162013 .0167837 .0043752 .0036 .0036052 .0046566 .0054397 .0039989 .0130029 .0074554 .0178103 .0041147 .0055611 .0137125 .0081756 .004312	-2.30 -2.89 -0.16 -1.24 -3.75 -3.16 -3.13 2.00 -3.19 -0.59 0.90 -1.98 -1.17 -3.16 1.64 -0.97 0.34 -1.86	0.022 0.004 0.875 0.216 0.000 0.002 0.002 0.045 0.001 0.552 0.371 0.048 0.243 0.002 0.101 0.334 0.734 0.063	0442711 021506403429370536751024979901842040183448 .0001989028021201021690138440293475055690702107880017872040135601324460164622	0035028 0041184 .0292165 .012118200782870043082004212 .01845310066972 .005459 .03712830001217 .01412680049489 .0200127 .0136186 .0188043 .000441
cashflow_assets net_income_MV	0964637 .0002336 .0014666 0001985	.008489 .0019354 .0037497 .0000651 .0004292 .0009722	11.95 6.97 -25.73 3.59 3.42 -0.20 2.13	0.000 0.000 0.000 0.000 0.001 0.838 0.033	.0847983 .0097023 1038133 .000106 .0006253 0021041 .001888	.1180758 .0172891 0891141 .0003611 .0023079 .001707

Conclusion: there is autocorrelation So: compute clustered standard errors:

```
gdp growth inflation, cluster(id firm)
Linear regression
                                                                                  Number of obs =
                                                                                  F(46, 4452) = 125.91
                                                                                                     = 0.0000
                                                                                  Prob > F
                                                                                  R-squared = 0.2865
Root MSE = .23077
                                              (Std. Err. adjusted for 4453 clusters in id firm)
                                             Robust
                               Coef. Std. Err.
                                                                  t P>|t|
        leverage |
                                                                                         [95% Conf. Interval]
                vear |

    1991
    | .0029504
    .0138055
    0.21
    0.831
    -.0241154

    1992
    | .0000561
    .0150799
    0.00
    0.997
    -.029508

    1993
    | -.036609
    .0159728
    -2.29
    0.022
    -.0679236

                                                                                                            .0300161
                                                                                                             .0296203
                                                                                         -.0679236 -.0052944

    1993 | -.036609
    .0159728
    -2.29
    0.022

    1994 | .0008144
    .0161321
    0.05
    0.960

    1995 | .0095802
    .0166859
    0.57
    0.566

    1996 | -.0102466
    .0167745
    -0.61
    0.541

    1997 | -.0179961
    .0167746
    -1.07
    0.283

    1998 | -.017542
    .0171381
    -1.02
    0.306

    1999 | -.0105355
    .0171958
    -0.61
    0.540

    2000 | .0044244
    .0166613
    0.27
    0.791

    2001 | .000975
    .0168222
    0.01
    0.995

    2002 | .0149194
    .0170239
    0.88
    0.381

    2003 | -.0042183
    .0171922
    -0.25
    0.806

    2004 | -.0159808
    .016918
    -0.94
    0.345

                                                                                         -.0308125 .0324414
                                                                                         -.0231326
                                                                                                             .0422929
                                                                                          -.043133
                                                                                                             .0226397
                                                                                         -.0508826
                                                                                         -.0511413
                                                                                                             .0160573
                                                                                         -.0442477
                                                                                                             .0231767
                                                                                                             .0370889
                                                                                         -.0282401
                                                                                                             .0330774
                                                                                         -.0328823
                                                                                         -.0184558
                                                                                                             .0482947
                                                                                         -.0379236
                                                                                                             .0294869
              2004 | -.0159808 .016918 -0.94 0.345
                                                                                         -.0491486

    2005
    | -.0366836
    .0168973
    -2.17
    0.030

    2006
    | -.0384295
    .016741
    -2.30
    0.022

    2007
    | -.0290793
    .0167073
    -1.74
    0.082

                                                                                         -.0698107
                                                                                                            -.0035565
                                                                                         -.0712502
                                                                                                           -.0056088
                                                                                                            .0036753
                                                                                         -.0618339
              2008 | .0201234 .0168652 1.19 0.233
2009 | -.0335673 .0197538 -1.70 0.089
2010 | .0173953 .0171219 1.02 0.310
2011 | .0278749 .016915 1.65 0.099
                                                                                                           .0531875
                                                                                         -.0129407
                                                                                         -.0722946
                                                                                                              .00516
                                                                                         -.0161721
                                                                                                             .0509628
                                                                                         -.0052869
                                                                                                             .0610368
                           .0049275 .0174995
-.006493 .0179112
                                                               0.28 0.778
-0.36 0.717
                                                                                                             .0392351
                                                                                         -.0293802
              2012 |
              2013
                                                                                         -.0416078
                                                                                                              .0286219
          ncountry |
                                            .0237515 -1.88 0.061
.0456017 1.32 0.186
                           -.0445892
                                                                                         -.0911539
                                                                                                              .0019755
                           .0603322 .0456017 1.32 0.186
-.048074 .0451443 -1.06 0.287
                   3
                                                                                         -.0290698
                                                                                                             .1497342
                                                                                         -.1365792
                                                                                                             .0404312
                  -.0898217
                                                                                                            -.0013534
                                                                                         -.0889795
                                                                                                           -.0091655
                                                                                         -.1298748
                                                                                                          -.0491396

    8 | .0499154
    .02224
    2.24
    0.025

    9 | -.0513545
    .0314302
    -1.63
    0.102

    10 | .057862
    .0231333
    2.50
    0.012

                                                                                          .0063138 .0935169
                                                                                                           .0102642
                                                                                         -.1129733
                  10 |
                                                                                          .0125092
                                                                                                             .1032147
                 11 | -.0569571 .0534926 -1.06 0.287
                                                                                                             .0479151
                                                                                         -.1618292
                 .0219511
                                                                                         -.1416454
                                                                                         -.1926119
                                                                                                            -.0002749
                                                                                         -.1201972
                                                                                                           -.0335035
                 15 | .1175568 .0308953 3.81 0.000
16 | .0016017 .070134 0.02 0.982
17 | .0071014 .0323112 0.22 0.826
18 | .0154778 .0243164 0.64 0.524
                                                                                          .0569867
                                                                                                           .1781269
                                                                                                           .1390992
                                                                                         -.1358958
                                                                                         -.0562445
                                                                                                            .0704474
                                                                                         -.0321944
                                                                                                               . 06315
cashflow_assets | -.7094728 .0364888 -19.44 0.000 -.7810091 -.6379366
  -.0086931 -.0048808
       gdp_growth | -.0067869 .0009723 -6.98 0.000
       inflation | -.0046364 .0019291 -2.40 0.016 -.0084184 
_cons | .4091819 .0276264 14.81 0.000 .3550203
                                                                                                           -.0008544
                                                                                                             .4633434
```

. reg leverage i.year i.ncountry cashflow assets net income MV capex MV volatility

Random-effects estimator

These lecture notes are for your own use. It is not allowed to distribute the notes further by posting them on the Internet or on platforms without explicit and prior permission of the author. © Utrecht University School of Economics 2024

Estimation method 5: random-effects estimator

Aim: to introduce the random-effects estimator.

Consider the static model:

$$y_{it} = \underbrace{\beta_1 x_{1it} + \dots + \beta_k x_{kit}}_{k \text{ explanatory variables}} + a_i + u_{it}$$
(6)

$$i = 1,...,N; t = 1,...,T$$

• The equation (6) does not allow correlation between a_i and all of the right hand side variables $x_1,...x_k$ (over all T periods)

$$E(a_i \mid \underbrace{x_{iit}, ..., x_{iiT}, ..., x_{ki1}, ... x_{kiT}}_{\text{all } k \text{ explanatory variables in all } T \text{ time periods}) = 0$$

• The exogenous time-varying regressors are assumed to be strictly exogenous (conditional on the unobserved effect):

$$E(u_{it} \mid \underbrace{x_{iit}, ..., x_{iiT}, ..., x_{ki1}, ..., x_{kiT}}_{\text{all } k \text{ explanatory variables in all } T \text{ time periods}}, a_i) = 0$$

- In simple words: there are neither lagged dependent variables nor is there any feedback mechanism
- The following is assumed about u_n :
 - $E(u_{ii}) = 0$; $Var(u_{ii}) = \sigma_{ii}^2$ (expected value of zero; constant variance)
 - u_{ij} is independent over time and across individuals
- The following is assumed about a_i :
 - $E(a_i) = 0$; $Var(a_i) = \sigma_a^2$ (expected value of zero; constant variance)
 - a_i is independent over time and across individuals
- Equation (6) can be rewritten as follows:

Model:
$$y_{it} = \underbrace{\beta_1 x_{1it} + ... + \beta_k x_{kit}}_{k \text{ explanatory variables}} + v_{it}$$
 (6)

$$i = 1,...,N; t = 1,...,T$$

where

$$V_{ii} = a_i + u_{ii} \tag{7}$$

• The random effects estimator works as follows. We estimate equation (6), in which the error structure of equation (7) is taken into account.

More on the correlation structure between the error terms

Aim: to discuss the correlation structure of the error terms.

• Error term (see slide above):

$$v_{it} = a_i + u_{it}$$

- Covariance across two individuals *i* and *j*:
 - $Cov(v_{i}, v_{i}) = 0$ $i \neq j$
 - $Cov(v_{it}, v_{is}) = 0$ $i \neq j; t \neq s$
- Covariance for the same individual across time:

$$Cov[aX + bY, cW + dZ] = acCov[X, W] +$$

 $adCov[X, Z] + bcCov[Y, W] + bdCov[Y, Z]$

So that

$$Cov(v_{it}, v_{is}) = Cov(a_{i} + u_{it}, a_{i} + u_{is})$$

$$= \underbrace{Cov(a_{i}, a_{i})}_{=\sigma_{a}^{2}} + \underbrace{Cov(a_{i}, u_{is})}_{=0} + \underbrace{Cov(u_{it}, a_{i})}_{=0} + \underbrace{Cov(u_{it}, u_{is})}_{=0}$$

$$= Var(a_{i}) + 0 + 0 + 0$$

$$= \sigma_{a}^{2}$$

• Variance for an individual:

$$Var[X + Y] = Var[X] + Var[Y] + 2Cov[X,Y]$$

$$Var(v_{it}) = Var(a_i + u_{it}) = \underbrace{Var(a_i)}_{\sigma_a^2} + \underbrace{Var(u_{it})}_{=\sigma_u^2} + 2\underbrace{Cov(a_i, u_{it})}_{=0}$$

$$= \sigma_a^2 + \sigma_u^2$$

• Thus:
$$Corr(v_{it}, v_{is}) = \frac{Cov(v_{it}, v_{is})}{\sqrt{Var(v_{it})}\sqrt{Var(v_{is})}} = \frac{\sigma_a^2}{\sigma_a^2 + \sigma_u^2}$$

• Conclusion: random effects estimator $\hat{\beta}_{re}$ takes account of the autocorrelation structure!

Random effects or fixed effects: Hausman test

These lecture notes are for your own use. It is not allowed to distribute the notes further by posting them on the Internet or on platforms without explicit and prior permission of the author. © Utrecht University School of Economics 2024

Random effects or fixed effects

Aim: to establish when to choose fixed effects or random effects

• Model:
$$y_{it} = \underbrace{\beta_1 x_{1it} + ... + \beta_k x_{kit}}_{k \text{ explanatory variables}} + a_i + u_{it}$$

$$E(a_i \mid \underbrace{x_{1it}, ..., x_{1iT}, ..., x_{ki1}, ... x_{kiT}}_{\text{all } k \text{ explanatory variables in all } T \text{ time periods}}) = 0$$

$$E(u_{it} \mid \underbrace{x_{1it}, ..., x_{1iT}, ..., x_{ki1}, ... x_{kiT}}_{\text{all } k \text{ explanatory variables in all } T \text{ time periods}}$$

$$(8)$$

 x_{ii} is strictly exogenous (in simple words: no lagged dependent variables; no feedback mechanism).

Estimation method: Random effects

- Equation (8) can be estimated with random effects, which requires the assumption $E(a_i | \underbrace{x_{1it}, ..., x_{1iT}, ..., x_{kiT}, ..., x_{kiT}}) = 0$
- $\hat{\beta}_{re}$ is a consistent estimator of β

Estimation method: Fixed effects

- Equation (8) can be estimated with fixed effects, which does NOT assume that $E(a_i \mid \underbrace{x_{1it},...,x_{1iT},...,x_{ki1},...x_{kiT}}) = 0$
 - $\hat{\beta}_{within}$ is a consistent estimator of β
 - $\hat{\beta}_{within}$ is less efficient than $\hat{\beta}_{re}$: It means that $Var(\hat{\beta}_{re}) < Var(\hat{\beta}_{within})$
 - Consequently, random effects yields significant *t*-statistics more easily than fixed effects.

Random effects: further remarks (II)

• Both random effects and pooled OLS allow for the inclusion of time-invariant individual variables (e.g. gender in a wage equation):

$$y_{it} = a_i + \beta_1 x_{1it} + \dots + \beta_k x_{kit} + \gamma_1 z_{1i} + \dots + \gamma_l z_{li} + u_{it}$$
$$i = 1, \dots, N: t = 1, \dots, T$$

- Where z_i is a vector of individual-specific regressors.
- Remember: the effect of z on y cannot be estimated ('is not identified') in the fixed-effects specification.

Fixed effects of Random effects? Hausman test

Aim: to establish when to choose fixed effects or random effects

• Model:
$$y_{it} = \underbrace{\beta_1 x_{1it} + ... + \beta_k x_{kit}}_{k \text{ explanatory variables}} + a_i + u_{it}$$

$$E(a_i \mid \underbrace{x_{1it}, ..., x_{1iT}, ..., x_{ki1}, ... x_{kiT}}_{\text{all } k \text{ explanatory variables in all } T \text{ time periods}}) = 0$$

$$E(u_{it} \mid \underbrace{x_{1it}, ..., x_{1iT}, ..., x_{ki1}, ... x_{kiT}}_{\text{all } k \text{ explanatory variables in all } T \text{ time periods}}$$

$$(8)$$

Structure:

- Null hypothesis: $H_0: E(a_i \mid \underbrace{x_{iit}, ..., x_{liT}, ..., x_{ki1}, ..., x_{kiT}}) = 0$
- Alternative hypothesis: $H_1: E(a_i \mid \underbrace{x_{1it}, ..., x_{1iT}, ..., x_{ki1}, ..., x_{kiT}}_{\text{all } k \text{ explanatory variables in all } T \text{ time periods}}) \neq 0$
- Under the null hypothesis (H_0), random effects is preferred (because of the zero correlation between the a_i and the explanatory variables).

Equation (8) can be estimated by random effects and fixed effects. **If H₀ is true**, both estimators are unbiased (consistent) However, random effects yields smaller standard errors, so that it is preferred to fixed effects.

If alternative hypothesis (H₁) is true: fixed effects is preferred, because random effects estimator is biased!

Some useful Stata commands (III)

Random effects:

- xtreg y x, re
- xtreg y x, re robust

Hausman test:

- xtreg y x, fe
- est store fixed
- xtreg y x, re
- hausman fixed, force

Example 1 (continued): Pooled OLS and Random effects

Pooled OLS (with clustered standard errors):

. reg leverage i.year i.ncountry cashflow_assets net_income_MV capex_MV volatility gdp growth inflation, cluster(id firm)

(Std. Err. adjusted for 4453 clusters in id firm)

leverage	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
cashflow_assets net_income_MV	7094728 0686996 .5044541 0010765 0067869 0046364 .4091819	.0364888 .0056015 .0132879 .0002885 .0009723 .0019291	-19.44 -12.26 37.96 -3.73 -6.98 -2.40 14.81	0.000 0.000 0.000 0.000 0.000 0.016 0.000	7810091 0796812 .4784033 001642 0086931 0084184 .3550203	6379366 0577179 .5305049 000511 0048808 0008544 .4633434

Random effects:

. xtreg leverage i.year cashflow_assets net_income_MV capex_MV volatility gdp_growth inflation, re

Random-effects GLS regression Group variable: id_firm	Number of obs Number of groups	=	38018 4453
R-sq: within = 0.2629 between = 0.2026 overall = 0.2212	Obs per group: mir avg	=	1 8.5 24
$corr(u_i, X) = 0 $ (assumed)	Wald chi2(29) Prob > chi2	=	12901.32

leverage	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
cashflow_assets net_income_MV capex_MV volatility gdp_growth inflation cons	3440569 0733575 .2973662 .001116 0100331 0012062 .3032823	.0021795 .0047898 .0001244 .000456	-29.51 -33.66 62.08 8.97 -22.00 -1.23 24.17	0.000 0.000 0.000 0.000 0.000 0.000 0.221 0.000	3669048 0776291 .2879783 .0008721 0109269 0031359 .2786923	321209 0690858 .3067541 .0013598 0091392 .0007235 .3278723
sigma u	+					

sigma_e | .12571004 rho | .73703448 (fraction of variance due to u_i)

The Hausman test

. xtreg leverage i.year cashflow_assets net_income_MV capex_MV volatility gdp_growth inflation, fe

Fixed-effects (within) regression Group variable: id_firm	Number of obs = 38018 Number of groups = 4453
R-sq: within = 0.2635 between = 0.1852 overall = 0.2094	Obs per group: min = 1 avg = 8.5 max = 24
corr(u_i, Xb) = 0.1416	F(29,33536) = 413.74 Prob > F = 0.0000
leverage Coef. Std. E	r. t P> t [95% Conf. Interval]
cashflow_assets 3282559 .01197 net_income_MV 0717367 .00220	1 -27.41 0.00035173143047804 4 -32.51 0.00007606130674121
sigma_u .23427663 sigma_e .12571004 rho .77644166 (fract	on of variance due to u_i)

F test that all $u_i=0$: F(4452, 33536) = 22.42 Prob > F = 0.0000

. est store fixed

. xtreg leverage i.year cashflow_assets net_income_MV capex_MV volatility gdp_growth inflation, re

Random-effects GLS regression	Number of obs = 38018
Group variable: id_firm	Number of groups = 4453
R-sq: within = 0.2629	Obs per group: min = 1
between = 0.2026	avg = 8.5
overall = 0.2212	max = 24
$corr(u_i, X) = 0 $ (assumed)	Wald chi2(29) = 12901.32 Prob > chi2 = 0.0000

leverage	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
cashflow_assets net_income_MV capex_MV volatility gdp growth	3440569 0733575 .2973662 .001116	.0116573 .0021795 .0047898 .0001244	-29.51 -33.66 62.08 8.97 -22.00	0.000 0.000 0.000 0.000 0.000	3669048 0776291 .2879783 .0008721 0109269	321209 0690858 .3067541 .0013598 0091392
inflation _cons	0012062 .3032823	.0009845	-1.23 24.17	0.221	0031359 .2786923	.0007235

	Coeffi	cients		
	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
1	fixed		Difference	S.E.
+				
year	0071050	0071565	0000200	
1991	0071953	0071565	0000388	•
1992	.0063964	.0056499	.0007466	•
1993	0500511	0492874	0007636	•
1994	0187898	0147991	0039907	•
1995	0041872	0000976	0040896	•
1996	0273106	0220795	0052312	•
1997	0383464	0315306	0068158	•
1998	0394148	031532	0078828	•
1999	0286589	0208409	007818	•
2000	0048752	.000976	0058512	•
2001	0107868	0065929	0041939	•
2002	.0005191	.0049294	0044103	•
2003	02291	0180144	0048956	
2004	0283002	0230235	0052766	
2005	0476214	0428228	0047987	
2006	0417042	0365223	0051819	•
2007	0310703	0267037	0043666	
2008	.0297393	.0302732	0005339	
2009	0450109	0409076	0041034	
2010	.0212174	.0249711	0037537	
2011	.0361837	.0377859	0016022	
2012	.007615	.0089219	0013069	
2013	0082831	0046373	0036457	
cashflow a~s	3282559	3440569	.015801	.0027492
net income~V	0717367	0733575	.0016208	.0003438
capex MV	.281408	.2973662	0159582	.0009009
volatility	.0016269	.001116	.000511	.0000577
gdp growth	0095725	0100331	.0004606	.0000653
inflation	0027681	0012062	0015619	.0001363
F.				; obtained from xtreg
В	= inconsistent	under Ha, eff	.icient under Ho	; obtained from xtreg

```
Test: Ho: difference in coefficients not systematic
              chi2(29) = (b-B)'[(V_b-V_B)^(-1)](b-B)
= 798.44
Prob>chi2 = 0.0000
              (V_b-V_B is not positive definite)
```

- Conclusion: Reject Ho (thus fixed-effects specification is preferred).
- However, we prefer the first-difference specification to the fixed-effects specification (see the conclusion above with the test on -0.5).
- It means that overall, we conclude that the first-difference specification is preferred.

Line of reasoning with panel data: final example

These lecture notes are for your own use. It is not allowed to distribute the notes further by posting them on the Internet or on platforms without explicit and prior permission of the author. © Utrecht University School of Economics 2024

To wind up: Line of reasoning with panel data (5 steps)

• **Step 1a:** Apply pooled OLS

$$y_{it} = \underbrace{\beta_1 x_{1it} + ... + \beta_k x_{kit}}_{k \text{ explanatory variables}} + v_{it}$$

• **Step 1b:** Test for autocorrelation of error term with Breusch-Godfrey. Estimated parameter on lagged v_{ii} is

$$Corr(v_{it}, v_{is}) = \frac{\sigma_a^2}{\sigma_a^2 + \sigma_u^2}$$

• Step 1c: Re-estimate pooled OLS with clustered standard errors

Step 2a: Apply first-differences estimator (FD):

$$\Delta y_{it} = \beta_1 \Delta x_{1it} + ... + \beta_1 \Delta x_{kit} + \Delta u_{it}$$

- **Step 2b:** Compute autocorrelation: is the parameter on Δu_{i-1} of Breusch-Godfrey equal to -0.5?
- Step 2c: Re-estimate FD with clustered standard errors
- **Step 3a:** Apply LSDV/ fixed-effects estimator (FE): $\ddot{y}_{it} = \beta_1 \ddot{x}_{1it} + ... + \beta_k \ddot{x}_{kit} + \ddot{u}_{it}$
- Step 3b: Compute autocorrelation
- **Step 3c:** Compare the outcome of the FD estimator with the outcome of the FE estimator
- Step 4a: Apply random effects estimator (RE)
- Step 4b: Test for autocorrelation
- **Step 4c:** Compare the outcome of the Random effects estimator and Pooled OLS estimator
- Step 5: Test for Random effects versus fixed effects using the Hausman test.

Example 2 (for the entire procedure)

We apply the five steps on the dataset wagepan.dta

. xtset nr year

. xtsum lwage married educ union

Variable		Mean	Std. Dev.	Min	Max	Observ	vations
lwage	overall between	1.649147 	.5326094 .3907468	-3.579079 .3333435	4.05186 3.174173	N = n =	4360 545
	within	 	.3622636	-2.467201	3.204687	T =	8
married	overall	.4389908	.4963208	0	1	N =	4360
	between		.3766116	0	1	n =	545
	within	 	.3236137	4360092	1.313991	T =	8
educ	overall	11.76697	1.746181	3	16	N =	4360
	between		1.747585	3	16	n =	545
	within	 	0	11.76697	11.76697	Т =	8
union	overall	.2440367	.4295639	0	1	N =	4360
	between		.3294467	0	1	n =	545
	within		.2759787	6309633	1.119037	T =	8

Step 1a: Apply pooled OLS

. reg lwage married educ union

Source	SS	df	MS		Number of obs F(3, 4356)	
Model Residual	151.850323	3 50.6 4356 .249	5167742 9008108		Prob > F R-squared Adi R-squared	= 0.0000 = 0.1228
Total	1236.52964	4359 .283	3672779		Root MSE	= .49901
lwage	Coef.	Std. Err.		P> t		Interval]
married educ union _cons	.2090758 .0760449 .1710456 .6208054	.0152444 .0043292 .0176107 .051991	13.71 17.57 9.71 11.94	0.000 0.000 0.000 0.000	.179189 .0675574 .1365197 .5188766	.2389626 .0845324 .2055716 .7227343

Step 1b: Test for autocorrelation of error term with Breusch-Godfrey.

- . predict uhat, resid
- . reg uhat l.uhat married educ union

Source	SS	df	MS		Number of obs F(4, 3810)	= 3815 = 511.61
Model Residual	315.938702 588.20123		.9846754 54383525		Prob > F R-squared Adj R-squared	= 0.0000 = 0.3494
Total	904.139931	3814 .2	37058189		Root MSE	= .39292
uhat	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
uhat L1. married educ union _cons	.5733121 0441766 .0033008 0400586 .0355483	.0126968 .0127575 .0036449 .0148631	-3.46 0.91 -2.70	0.365	.5484188 0691889 0038453 069199 0502461	.5982053 0191644 .010447 0109182 .1213428

Conclusion: there is autocorrelation

• Step 1c: Re-estimate pooled OLS with clustered standard errors

. reg lwage married educ union, cluster(nr)

(Std. Err. adjusted for 545 clusters in nr)

lwage	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
married	.2090758	.0243617	8.58	0.000	.1612213	.2569303
educ	.0760449	.0088779	8.57	0.000	.0586057	.093484
union	.1710456	.0282567	6.05	0.000	.1155399	.2265513
_cons	.6208054	.1060566	5.85	0.000	.4124747	.8291361

- **Step 2a:** Apply first-differences estimator (FD):
- . reg d.lwage d.married d.educ d.union, nocons

Source	SS	df	1	MS 		Number of obs F(2, 3813)		3815 8.92
Model Residual	3.57932445 765.033676		1.789			Prob > F R-squared Adj R-squared	=	0.0001 0.0047 0.0041
Total	768.613001	3815	.2014	71298		Root MSE	=	
D.lwage	Coef.	Std.	Err.	t	P> t	[95% Conf.	Int	terval]
married D1. educ D1.	.0820425	.0226	819	3.62	0.000	.0375727	•	1265123
union D1.	.0430192	.0198	737	2.16	0.030	.004055	. (0819833

- **Step 2b:** Compute autocorrelation: is the parameter on Δu_{i-1} of Breusch-Godfrey equal to -0.5?
 - . predict uhat, resid(545 missing values generated)
 - Breusch-Godfrey after first-difference estimate:
- . reg uhat l.uhat d.married d.educ d.union

Source	SS	df 		MS		Number of obs F(3, 3266)		3270 242.68
Model Residual	104.390207			967355 383778		Prob > F R-squared	=	0.0000 0.1823
Total	572.681626	3269	.175	185569		Adj R-squared Root MSE		.37866
uhat	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
uhat								
L1. married	3950886	.0146	761	-26.92	0.000	4238638	:	3663134
D1. educ	0280538	.0214	986	-1.30	0.192	0702059	- (0140983
D1. union	(dropped)							
D1.	.0155607	.0185	722	0.84	0.402	0208536		.051975
_cons	.0806243	.0067	844	11.88	0.000	.0673222	. (0939265

- Conclusion: -0.5 is not within interval of parameter on l.uhat
- Thus we prefer first-difference estimator above the fixed-effects estimator

• **Step 2c:** Re-estimate FD with clustered standard errors

. reg d.lwage d.married d.educ d.union, nocons cluster(nr)

Linear regressi	on				Number of obs F(2, 544) Prob > F R-squared Root MSE	= 6.91 = 0.0011 = 0.0047
		(Std.	Err.	adjusted	for 545 clust	ers in nr)
D.lwage	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
married D1. educ	.0820425	.0239245	3.43	0.001	.0350467	.1290383
D1. union D1.	(dropped) .0430192	.022077	1.95	0.052	0003474	.0863857

• **Step 3a:** Apply LSDV/fixed-effects estimator (FE):

LSDV:

. reg lwage married educ union dnum*

Source	SS	df		MS		Number of obs F(546, 3813)		4360 8.90
Model Residual	692.98604 543.543602	546 3813		692052 550118		Prob > F R-squared Adj R-squared	=	0.0000 0.5604 0.4975
Total	1236.52964	4359	.283	672779		Root MSE	=	.37756
lwage	Coef.	Std.	 Err.	t	P> t	[95% Conf.	In	terval]
married educ union	.2416845 .0328052 .0700438	.0176 .0145 .020	304	13.67 2.26 3.38	0.000 0.024 0.001	.2070341 .0043171 .0294127		2763348 0612934 1106749

F-test:

. testparm dnum*

Constraint 209 dropped Constraint 395 dropped

F(543, 3813) = 6.99Prob > F = 0.0000

Fixed-effects, within regression

. xtreg lwage married educ union, fe i(nr)

Fixed-effects (was Group variable: 1	Number of Number of	obs = groups =	= 4360 = 545			
R-sq: within = between = overall =	0.0573			Obs per g	roup: min = avg = max =	= 8.0
corr(u_i, Xb) =	-0.0035			F(2,3813) Prob > F		100.00
lwage	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
married educ		.0176735	13.67	0.000	.2070341	.2763348
union	.0700438					
_cons	1.525957	.010825 	140.97	0.000	1.504733	1.54718
sigma_u sigma_e rho		(fraction	of varian	ce due to 1	u_i)	
F test that all w	u_i=0:	F(544, 3813	3) = 6	.98	Prob >	F = 0.0000

• Step 4a: Apply random effects estimator

Random effects:

. xtreg lwage married educ union, re i(nr)

3					of obs = of groups =	
R-sq: within = 0.0493 between = 0.1791 overall = 0.1191					group: min = avg = max =	8.0
Random effects corr(u_i, X)	_				12(3) = chi2 =	317.44
	Coef.				[95% Conf.	Interval]
married educ union	.2328783 .0758092 .0991208 .6306824	.0161908 .0086334 .0189042	14.38 8.78 5.24	0.000 0.000 0.000	.058888 .0620693	.0927303 .1361723
sigma_u	.32508679 .3775581	(fraction	of variar	nce due to	o u_i)	

• Step 5: Test for Random effects versus fixed effects using Hausman test.

. xtreg lwage married educ union, fe i(nr)

Fixed-effects Group variable	Number of Number of						
betweer	= 0.0498 $n = 0.0573$ $L = 0.0538$			Obs per g	roup: min avg max	=	
corr(u_i, Xb)	= -0.0035			F(2,3813) Prob > F			
lwage	Coef.	Std. Err.	t	P> t	[95% Con	 f.	Interval]
married educ	.2416845 (dropped)						
	.0700438			0.001			
sigma_e	.37939434 .3775581 .50242582	(fraction	of variar	nce due to	u_i)		
F test that al	ll u i=0:	F(544, 3813	3) = 6	 5.98	Prob	 > E	r = 0.0000

- . est store fixed
- . xtreg lwage married educ union, re i(nr)

Random-effects Group variable	Number of Number of						
R-sq: within between overall	Obs per g	a	in = lvg = lax =				
Random effects corr(u_i, X)	_						317.44
lwage	Coef.	Std. Err.	z	P> z	[95% C	onf.	Interval]
educ union	.2328783 .0758092 .0991208 .6306824	.0086334 .0189042	8.78 5.24	0.000	.0588	88 93	
sigma_e	.32508679 .3775581 .42573728	(fraction	of varian	ce due to	u_i) 		

. hausman fixed, force

Conclusion: Reject Ho (Thus fixed-effect specification is preferred)