Universidade da Beira Interior

Departamento de Informática

Licenciatura em **Engenharia Informática** Unidade Curricular: **Computação Gráfica**

Projeto Solar System

Elaborado por:

Tiago Almeida - a48278 João Rainha - a48506

Orientador:

Professor Doutor Abel Gomes

Covilhã, 8 de janeiro de 2024

Agradecimentos

Queremos expressar nossos agradecimentos ao Professor Doutor Abel Gomes, o nosso orientador, pela constante justiça e lealdade às suas convicções ao propor o tema deste projeto. A sua orientação desempenhou um papel crucial no desenvolvimento deste trabalho, assim como as abordagens compartilhadas em sala de aula, tanto nas aulas práticas como nas teóricas. A forma eficaz de como esses conhecimentos foram transmitidos teve um impacto significativo no nosso crescimento. Sentimos que evoluímos bastante e isso se deve em grande parte à valiosa contribuição do Professor Doutor Abel Gomes.

Resumo

O propósito deste projeto é a concepção de um sistema solar virtual, empregando tecnologias com três dimensões. Buscamos forjar uma experiência genuína, envolvente e participativa do nosso sistema solar, perimitindo aos usuários a oportunidade de explorar e imergir nas maravilhas do universo. Para além disso, será integrado uma componente educativa que abrange informações sobre os distintos planetas e outras características do sistema solar. Deste modo, temos como objetivo oferecer uma experiência singular e estimulante, não apenas para os professores, mas também para os demais estudantes.

Conteúdo

Co	nteú	do	V
1	Intr	odução	9
	1.1	Âmbito e Enquadramento	9
	1.2	Motivação UBI	9
	1.3	Objetivos	10
	1.4	Abordagem	10
	1.5	Organização do documento	11
2	Esta	ndo de arte, desenvolvimento e aplicações	13
	2.1	Introdução	13
	2.2	Overleaf	13
	2.3	Discord	14
	2.4	GitHub	14
	2.5	Visual Studio Code	14
3	Feri	ramentas e Tecnologias utilizadas	17
	3.1	Introdução	17
	3.2	OpenGL	17
	3.3	GLM	18
	3.4	GLFW	18
	3.5	Glad	18
	3.6	Freetype	18
4	Etap	oas de desenvolvimento	19
	4.1	Introdução	19
	4.2	Divisão das tarefas	19
	4.3	Procedimentos	20
5	Imp	elementação	21
	5.1	Introdução	21
	5.2	Dependências	21
	5.3	Implementações	22

v i	CONTEÚDO

		5.3.2	Planet Céu/S Orbita	kybo	х.		 								22
6	Con	clusões	e Traba	alho	Futi	uro									25
	6.1	Concl	usões .				 								25
	6.2	Trabal	ho Futu	ıro .			 								25
	63	Riblio	grafia .												26

Lista de Figuras

Lista de Tabelas

Tabela 5.1 - imports utilizados

Palavras-Chave

3D, Computação Gráfica, Projeto, OpenGL, Sistema Solar

Acrónimos

UC - Unidade Curricular

CG - Computação Gráfica CAD - Computer Aided Design EI - Engenharia Informática IDE - Integrated Development Environment OpenGL - Open Graphics Library UBI - Universidade da Beira Interior

1

Introdução

1.1 Âmbito e Enquadramento

O presente relatório foi elaborado por alunos do terceiro ano da Licenciatura de Engenharia Informática (EI) da Universidade da Beira Interior (UBI). O mesmo foi desenvolvido no contexto da Unidade Curricular (UC) de Computação Gráfica (CG) da UBI, através de pesquisas por parte dos alunos e material disponibilizado pelo professor da própria UC.

1.2 Motivação UBI

A UC de Computação Gráfica constitui um campo de estudo que viabiliza a produção de imagens e animações de alta qualidade, oferecendo a capacidade de representar objetos e cenários de maneira minuciosa. O Sistema Solar, por sua vez, é um tema cativante, e a possibilidade de visualizá-lo em três dimensões amplia significativamente a nossa compreensão e conhecimento acerca deste conjunto celestial. Além do fascínio proporcionado, a criação de um modelo de três dimensões do sistema solar também se revela como uma valiosa ferramenta educacional. Tal abordagem permite que as pessoas tenham uma representação mais exata e clara do funcionamento do nosso sistema solar. Desta forma, a realização deste projeto de Computação Gráfica dedicado ao Sistema Solar em 3D não apenas representa uma oportunidade perfeita para aprofundar nosso entendimento sobre este tema, mas também contribui para enriquecer o conhecimento e a compreensão do público em relação ao mesmo.

10 Introdução

1.3 Objetivos

Este projeto visa desenvolver um sistema solar interativo, abrangendo tanto representações em 2D quanto em 3D. Para concretizar essa proposta, a linguagem escolhida é o C++, com o suporte das bibliotecas OpenGL, GLFW, GLEW. Algumas características essenciais da aplicação gráfica incluem:

- Criar modelos tridimensionais para o Sol, os planetas e seus satélites, incluindo a Lua em relação à Terra;
- Implementar menus interativos que ofereçam informações detalhadas sobre os elementos do sistema solar;
- Aplicar texturas aos planetas para aprimorar o seu realismo;
- Permitir movimento livre da câmera em qualquer posição do sistema solar, afetando a incidência de luz sobre os elementos;
- Incorporar zoom e ajuste de perspectiva utilizando o teclado;
- Calcular e representar as sombras geradas pelos planetas e satélites em relação uns aos outros.

1.4 Abordagem

De maneira a abordar este tema em Computação Gráfica, decidimos propor os seguintes passos:

- 1. Pesquisar informações sobre órbitas e movimentos, constituição e caracteristicas sobre os planetas, etc;
- 2. Realizar a criação dos planetas e dos corpos celestes, usando as informações recolhidas na pesquisa realizada anteriormente;
- 3. Aplicar as texturas dos vários corpos celestes, de maneira a torná-los realistas;
- 4. Criar animações das órbitas e dos movimentos dos planetas em redor do Sol;
- 5. Realizar testes e experiências de maneira a confirmar o seu funcionamento e posteriormente realizar um relatório, apresentando uma descrição pormenorizada sobre a criação deste projeto.

1.5 Organização do documento

- Introdução Introduz o tema do projeto realizado e que nos foi proposto, bem como os objetivos e a organização do documento em questão;
- 2. **Estado de arte, desenvolvimento e aplicações** descreve as aplicações e ferramentas utilizadas para fazer e construir este projeto;
- Ferramentas e Tecnologias utilizadas É descrita as bibliotecas e funcionalidades externas que froam utilizadas para a realização deste projeto;
- Etapas de desenvolvimento Descreve as etapas minunciosamente que foram feitas para contruir o programa e também inclui detalhes sobre a implementação de código;
- 5. **Testes e Validação** Apresenta os testes realizados durante a implementação do programa;
- 6. **Conclusões e Trabalho Futuro** Faz uma breve conclusão sobre este tema e sobre o projeto que foi trabalhado.

2

Estado de arte, desenvolvimento e aplicações

2.1 Introdução

Este capitulo descreve as aplicações e ferramentas que foram usadas para realizar e desenvolver este projeto, fornecendo uma descrição detalhada sobre cada uma das ferramentas abordadas nesta parte do relatório:

- secção 2.2 **Overleaf**, ferramenta utilizada para produzir o relatório;
- secção 2.3 Discord, plataforma que serviu como meio de comunicação;
- secção 2.4 -Visual Studio Code, aplicação fundamental para o desenvolvimento do programa;
- secção 2.5 **Github**, plataforma de partilha de código.

2.2 Overleaf

O overleaf é uma ferramenta online que usamos como base para elaborar este relatório e para a escrita deste documento. Disponibiliza recursos e opções de maneira a facilitar a criação deste relatório e existe uma enorme diversidade de opções que permitem melhorar o texto. Oferece imensas opções para o utulizador, sendo que uma das principais é a possibilidade de trabalhar em conjunto ao mesmo tempo. é bastante útil devido ao facto de possibitar a

partilha de ideias e uma maior reentabiização don tempo pois podem estar a trabalhar mais que uma pessoa no documento. Podemos atualizar constantemente o projeto em que trabalhamos, desta forma podemos detetar erros e melhores opções para melhorar a parte estética do documento produzido.

2.3 Discord

O Discord é uma plataforma online amplamente adotada por grupos de amigos, equipas e diversas comunidades. A sua utilidade reside na capacidade dos utilizadores poderem criar canais para comunicação via texto e voz, proporcionando interações eficientes. Além disso, a plataforma oferece ferramentas de moderação e configurações de privacidade, possibilitando aos administradores manterem o controle sobre o conteúdo e comportamento. A flexibilidade do Discord se destaca com uma variedade de integrações, sendo que se conecta a diferentes plataformas e serviços, como jogos, música e streaming. Esta diversidade torna o Discord num recurso valioso para comunidades em geral. A funcionalidade de partilha de ecrã adiciona outro nível de interatividade, contribuindo para uma comunicação mais rica. O aplicativo é uma escolha popular para comunicação tanto por voz quanto por texto, oferecendo a vantagem adicional de ser gratuito, sem limitações de tempo para as chamadas de voz. Essa acessibilidade promove interações sem interrupções entre os utilizadores.

2.4 GitHub

O GitHub desempenha um papel fundamental como um serviço online dedicado à gestão do código-fonte e colaboração. A sua função principal é proporcionar um ambiente para armazenar e administrar projetos, tanto de código público quanto privado. Os utilizadores têm a capacidade de criar repositórios de código, realizar o controlo de versões, adicionar colaboradores aos projetos e monitorar os problemas e tarefas associadas. Além disso, o GitHub oferece uma gama de ferramentas que incluem a revisão de código e integração contínua. Esta abordagem integrada facilita o processo de desenvolvimento, promovendo eficiência e qualidade nos projetos.

2.5 Visual Studio Code

Trata-se de um m Integrated Development Environment (IDE) que proporciona uma extensa gama de recursos e ferramentas, agilizando o processo de

15

criação, depuração e publicação de aplicativos para os programadores. Em resumo, algumas das características suas caracteristicas principais incluem um suporte abrangente para várias linguagens de programação, funcionalidades robustas de depuração e teste e ferramentas de design integradas, facilitando a criação de interfaces atrativas e intuitivas para os desenvolvedores.

3

Ferramentas e Tecnologias utilizadas

3.1 Introdução

Neste capítulo serão apresentadas e listadas as diversas ferramentas que desempenharam um papel crucial ao longo do nosso projeto. Estas foram fundamentais para o desenvolvimento do código que viabilizou a criação do Sistema Solar.

3.2 OpenGL

A Open Graphics Library (OpenGL) é uma interface de programação de aplicações (API) que opera em diversas plataformas e suporta várias linguagens. Ela é dedicada à renderização de gráficos vetoriais em 2D e 3D, utilizada para interagir com a unidade de processamento gráfico (GPU) e obter renderização acelerada por hardware. Amplamente usada em áreas como Computer Aided Design (CAD), realidade virtual, visualização científica e jogos virtuais, o OpenGL é especialmente valioso para programadores de jogos, pois aproveita a renderização acelerada por hardware. Esta API oferece aos desenvolvedores um conjunto diversificado de comandos para renderizar uma ampla gama de objetos gráficos, incluindo pontos, linhas, triângulos e quadrados.

3.3 **GLM**

A OpenGL Mathematics (GLM) é uma implementação em C++ destinada a proporcionar eficiência e facilidade no uso na programação de gráficos 3D. Projetada para oferecer uma ampla gama de objetos e funções matemáticas, a GLM permite a criação e manipulação de objetos tridimensionais. As suas funcionalidades abrangem operações em vetores e matrizes, entre outras. Um aspeco que distingue a GLM é sua compatibilidade com a API OpenGL, o que a torna aplicável em qualquer software baseado em OpenGL.

3.4 GLFW

A Framework de Biblioteca Gráfica (GLFW) é uma biblioteca gratuita e de código aberto que opera em diversas plataformas. A sua API simplificada possibilita a criação e gestão de janelas, contextos (OpenGL) e superfícies, além de lidar com entradas e eventos. Desenvolvida em linguagem C, a GLFW é compatível com os sistemas operativos Windows, MacOS e Linux. Essa versatilidade torna a GLFW uma escolha viável em diversas aplicações, incluindo jogos, realidade virtual e em outras áreas.

3.5 Glad

A Glad representa uma biblioteca essencial para os programadores, possibilitando o uso eficiente do OpenGL em múltiplas plataformas. Ao utilizar a biblioteca Glad, os desenvolvedores têm a capacidade de estabelecer contextos OpenGL, administrar ponteiros de funções relacionadas ao OpenGL, carregar funções específicas e gerir estados associados ao OpenGL. Esses atributos são particularmente valiosos, dada a natureza independente da plataforma do OpenGL, simplificando assim a tarefa de escrever código que funcione de maneira consistente em várias plataformas.

3.6 Freetype

O FreeType é uma biblioteca que possibilita que as aplicações realizem a renderização de texto em fontes bitmap e vetoriais. Amplamente usado por diversos sistemas operativos e aplicações, o FreeType desempenha um papel essencial na exibição de fontes na tela. Além disso, é frequentemente utilizado por editores de fontes para diversas finalidades.

4

Etapas de desenvolvimento

4.1 Introdução

Neste capítulo, abordaremos o processo de criação do programa em OpenGL dedicado à visualização em três dimensões do sistema solar. Vamos explorar a divisão das várias tarefas entre os membros da equipa e detalharemos as fases cruciais do desenvolvimento do programa.

4.2 Divisão das tarefas

A divisão de tarefas foi realizada da seguinte forma:

- Criação de Planetas João Rainha
- Órbitas Tiago Almeida
- FreeType João Rainha
- Transição da Câmara Tiago Almeida
- Texturas João Rainha
- SkyBox Tiago Almeida
- Relatório João Rainha e Tiago Almeida

4.3 Procedimentos

Na criação deste projeto foi preciso seguir as seguintes etapas/procedimentos:

- 1. Estabelecer as dimensões e proporções do sistema solar, abrangendo a definição do tamanho dos planetas em relação ao Sol e as distâncias entre eles.
- 2. Criar representações visuais dos planetas, optando por formas geométricas simples como esferas;
- Enriquecer a aparência dos planetas adicionando texturas realistas através do uso de imagens disponíveis no link fornecido no enunciado do projeto.
- 4. Incorporar a Lua ao planeta Terra, seguindo o mesmo procedimento utilizado para desenhar os próprios planetas.
- 5. Introduzir movimento ao cenário, utilizando rotações e translações para simular os deslocamentos dos planetas em torno do Sol e o movimento lunar ao redor do planeta Terra.
- Aprimorar a visualização do cenário com iluminação e sombras, aplicando técnicas como o Phong shading e utilizando fontes de luz adequadas.
- 7. Permitir uma variedade de posições para a câmera, incluindo a capacidade de ampliação e redução para uma experiência mais dinâmica.
- 8. Inserir texto informativo para tornar o cenário mais interativo e para aumentar compreensão do usuário.
- Realizar testes no programa do Sistema Solar para assegurar seu funcionamento adequado, realizando os ajustes necessários na escala, iluminação e movimentos planetários.

5

Implementação

5.1 Introdução

Assegurar a qualidade gráfica é crucial, uma vez que melhora a experiência do utilizador, previne problemas e erros, reforça a segurança, confiabilidade e otimiza o retorno do investimento. Este capítulo retrata de forma fiel o ambiente desenvolvido, dividindo-se da seguinte forma:

- A secção 5.2, Dependências, explana as dependências do projeto;
- A secção 5.3, Detalhes de Implementação, caracteriza e descreve cada ambiente gráfico desenvolvido.

5.2 Dependências

```
#include <glad/glad.h> // Gerencia funcoes de
   ponteiros para o OpenGL, utilizado para
   iluminacao.
#include <GLFW/glfw3.h> // Usado para criar janelas
   , contextos e receber inputs, eventos.
#include <glm/glm.hpp> // Biblioteca do OpenGL para
   funcoes matematicas.
#include <iostream> // Implementa recursos de
   entrada/saida baseados em fluxo.
#include <vector> // Biblioteca que contem um tipo
   de array que pode mudar o seu tamanho.
```

```
#include <math.h> // Fornece funcoes e valores
   matematicos.
#include <stb_image.h> // Inclui as funcoes
   necessarias para obter uma imagem e usa-la para
   as texturas.
#include <ft2build.h> // Biblioteca para a escrita
   de palavras no ecra.
#include <shader_m.h> // Usado para fazer a leitura
   dos ficheiros shaders, criando assim um objeto
   Shader.
#include <camera.h> // Fornece um objeto Camera com
   funcionalidades para a camara navegar no espaco
   .
```

Tabela 5.1 - imports utilizados

5.3 Implementações

5.3.1 Planetas

Para criar os planetas, utilizou-se uma esfera como base para quase todos os planetas. Em seguida, as texturas dos planetas foram carregadas em variáveis. Quando era necessário criar um planeta específico, obtinha-se a esfera base e aplicava-se a textura do planeta correspondente. Posteriormente, era criada uma matriz de modelo para o planeta. Calculava-se a posição do planeta, transladava-se a matriz de modelo para essa posição, e o planeta era então rotacionado em torno de seu próprio eixo (eixo Y). A escala da esfera base era ajustada para se adequar ao tamanho do planeta. Por fim, a nova matriz de modelo era passada para os shaders, permitindo que o planeta fosse desenhado na tela.

Para criar os satélites, como no caso da lua, utilizou-se o modelo da Terra como base. Em seguida, aplicava-se uma translação ao redor da Terra para posicionar o satélite em sua órbita.

5.3.2 Céu/Skybox

Para criar uma skybox em OpenGL, começamos por criar um cubo gigante e carregar as imagens para as texturas das faces do cubo. Em seguida, criamos uma estrutura de dados para armazenar as informações da skybox, fazemos o

upload dos vértices do cubo para o VBO e fundamos uma estrutura de dados para armazenar a textura da skybox, fazendo também o upload das imagens para a textura da skybox.

Posteriormente, desenvolvemos um programa de shader específico para a skybox. Desenhamos o cubo utilizando o programa de shader da skybox e a textura da skybox. Além disso, atualizamos a transformação de visualização e desenhamos o cubo novamente quando o observador se move, criando assim a ilusão de um espaço infinito.

5.3.3 Orbitas dos Planetas

Primeiramente, criamos um vetor com os valores das órbitas que serão armazenados no buffer. Durante o ciclo while, procuramos os valores armazenados no buffer, percorremos os 8 planetas e realizamos a translação da órbita para a posição do planeta. Em seguida, enviamos os dados para os shaders e desenhamos na tela. Posteriormente, para a órbita da Lua, efetuamos a translação de forma a que a Terra seja o centro da órbita, e enviamos os dados para os shaders para desenhar no ecrã.

6

Conclusões e Trabalho Futuro

6.1 Conclusões

Este projeto possibilitou a criação de uma representação em três dimensões do Sistema Solar, caracterizada pelo seu realismo, detalhe e natureza educativa. Ao aplicar técnic as de Computação Gráfica e realizar uma pesquisa aprofundada sobre o Sistema Solar, conseguimos desenvolver modelos 3D precisos para os planetas, para a lua e para o Sol. A implementação de texturas e materiais realistas, juntamente com animações que ilustram os movimentos dos planetas, aprimorando ainda mais a autenticidade e o detalhe das suas representações. A utilização de recursos interativos, como informações sobre cada elemento do sistema solar, desempenhou um papel crucial na transformação do sistema solar numa ferramenta educacional eficaz. Em suma, a representação do sistema solar criada neste projeto revela-se uma excelente ferramenta para enriquecer o conhecimento e a compreensão das pessoas sobre o nosso Sistema Solar.

6.2 Trabalho Futuro

É fundamental ter em mente que o entendimento sobre o Sistema Solar está em constante evolução, e descobertas adicionais podem ser realizadas no futuro. Assim, é possivel que surjam mais detalhes e informações que possam ser incorporados na representação desenvolvida deste projeto. Adicionalmente, outras vertentes da Computação Gráfica podem ser exploradas no futuro, como a criação de visualizações em realidade virtual ou aumentada. Em suma, há uma variedade de oportunidades para a realização de futuros projetos relacionados com este tema.

6.3 Bibliografia

https://www.di.ubi.pt/ agomes/cg/ https://www.opengl.org/