Type *Markdown* and LaTeX: α^2

In [4]: #import libraries
 import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns

Out[5]:

	Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	Blood Pressure	Heart Rate	Daily Steps	S Disc
0	1	Male	27	Software Engineer	6.1	6	42	6	Overweight	126/83	77	4200	1
1	2	Male	28	Doctor	6.2	6	60	8	Normal	125/80	75	10000	1
2	3	Male	28	Doctor	6.2	6	60	8	Normal	125/80	75	10000	1
3	4	Male	28	Sales Representative	5.9	4	30	8	Obese	140/90	85	3000	ξ A
4	5	Male	28	Sales Representative	5.9	4	30	8	Obese	140/90	85	3000	ξ A
	•••							•••				•••	
369	370	Female	59	Nurse	8.1	9	75	3	Overweight	140/95	68	7000	Ę A
370	371	Female	59	Nurse	8.0	9	75	3	Overweight	140/95	68	7000	ξ A
371	372	Female	59	Nurse	8.1	9	75	3	Overweight	140/95	68	7000	ξ A
372	373	Female	59	Nurse	8.1	9	75	3	Overweight	140/95	68	7000	ξ A
373	374	Female	59	Nurse	8.1	9	75	3	Overweight	140/95	68	7000	Ę A

374 rows × 13 columns

```
In [6]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 374 entries, 0 to 373
        Data columns (total 13 columns):
            Column
                                    Non-Null Count Dtype
            Person ID
         0
                                    374 non-null int64
        1
            Gender
                                    374 non-null object
                                   374 non-null int64
         2
            Age
         3
            Occupation
                                  374 non-null object
            Sleep Duration
                                  374 non-null float64
            Quality of Sleep 374 non-null int64
            Physical Activity Level 374 non-null int64
         7
            Stress Level
                                   374 non-null int64
            BMI Category
                                  374 non-null
         8
                                                   object
                                 374 non-null
374 non-null
            Blood Pressure
                                                   object
         9
         10 Heart Rate
                                                   int64
        11 Daily Steps
                                   374 non-null
                                                   int64
        12 Sleep Disorder
                                   374 non-null
                                                   object
        dtypes: float64(1), int64(7), object(5)
        memory usage: 38.1+ KB
In [7]: #to display top 5 rows
        df.head()
Out[7]:
```

	Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	Blood Pressure	Heart Rate	Daily Steps	Sle Disord
0	1	Male	27	Software Engineer	6.1	6	42	6	Overweight	126/83	77	4200	No
1	2	Male	28	Doctor	6.2	6	60	8	Normal	125/80	75	10000	No
2	3	Male	28	Doctor	6.2	6	60	8	Normal	125/80	75	10000	No
3	4	Male	28	Sales Representative	5.9	4	30	8	Obese	140/90	85	3000	Sle Apn
4	5	Male	28	Sales Representative	5.9	4	30	8	Obese	140/90	85	3000	Sle Apn
4													-

Data cleaning and Pre-Processing

```
In [8]: #To find null values
       df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 374 entries, 0 to 373
       Data columns (total 13 columns):
            Column
                                   Non-Null Count Dtype
        0
            Person ID
                                    374 non-null
                                                  int64
            Gender
                                   374 non-null object
        1
                                   374 non-null int64
        2
            Age
        3
            Occupation |
                                   374 non-null object
            Sleep Duration
                                  374 non-null
                                                  float64
            Quality of Sleep 374 non-null
                                                  int64
        5
            Physical Activity Level 374 non-null int64
        6
        7
            Stress Level
                                   374 non-null
                                                  int64
                                   374 non-null
        8
            BMI Category
                                                   object
                                 374 non-null
            Blood Pressure
                                                   object
        9
        10 Heart Rate
                                   374 non-null
                                                  int64
        12 Sleep Disorder 374 non mill
                                                   int64
                                                   object
       dtypes: float64(1), int64(7), object(5)
       memory usage: 38.1+ KB
In [9]: # To display summary of statistics
       df.describe()
```

Out[9]:

	Person ID	Age	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	Heart Rate	Daily Steps
count	374.000000	374.000000	374.000000	374.000000	374.000000	374.000000	374.000000	374.000000
mean	187.500000	42.184492	7.132086	7.312834	59.171123	5.385027	70.165775	6816.844920
std	108.108742	8.673133	0.795657	1.196956	20.830804	1.774526	4.135676	1617.915679
min	1.000000	27.000000	5.800000	4.000000	30.000000	3.000000	65.000000	3000.000000
25%	94.250000	35.250000	6.400000	6.000000	45.000000	4.000000	68.000000	5600.000000
50%	187.500000	43.000000	7.200000	7.000000	60.000000	5.000000	70.000000	7000.000000
75%	280.750000	50.000000	7.800000	8.000000	75.000000	7.000000	72.000000	8000.000000
max	374.000000	59.000000	8.500000	9.000000	90.000000	8.000000	86.000000	10000.000000

```
In [10]: #To Display column heading
         df.columns
Out[10]: Index(['Person ID', 'Gender', 'Age', 'Occupation', 'Sleep Duration',
                 'Quality of Sleep', 'Physical Activity Level', 'Stress Level',
                 'BMI Category', 'Blood Pressure', 'Heart Rate', 'Daily Steps',
                 'Sleep Disorder'],
                dtype='object')
```

EDA and VISUALIZATION

In [11]: sns.pairplot(df)

Out[11]: <seaborn.axisgrid.PairGrid at 0x29aa6a8f490>


```
In [12]: sns.distplot(df["Daily Steps"])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distp lot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axe s-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[12]: <AxesSubplot:xlabel='Daily Steps', ylabel='Density'>

Plot Using Heat Map

```
In [19]: sns.heatmap(df1.corr())
```

Out[19]: <AxesSubplot:>

To Train The Model-Model Building

we are uning to train Linera Regression Model: We need to enlit out data into two variables v and v where v is

To Split my dataset into training and test data

```
In [21]:
          from sklearn.model_selection import train_test_split
          x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [22]: from sklearn.linear_model import LinearRegression
          lr= LinearRegression()
          lr.fit(x_train,y_train)
Out[22]: LinearRegression()
In [23]: |lr.intercept_
Out[23]: 12854.703857844714
In [24]: | coeff = pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
Out[24]:
                              Co-efficient
                     Person ID
                                -3.029367
                         Age
                                36.306371
                 Sleep Duration -470.142893
                Quality of Sleep
                             408.372612
           Physical Activity Level
                               66.197846
                   Stress Level 575.512361
                    Heart Rate -194,492959
In [25]:
          prediction = lr.predict(x_test)
          plt.scatter(y_test,prediction)
Out[25]: <matplotlib.collections.PathCollection at 0x29aac0be220>
           9000
           8000
```

Accuracy

```
In [26]: lr.score(x_test,y_test)
Out[26]: 0.8131063167014344
In [27]: lr.score(x_train,y_train)
Out[27]: 0.7991990965726312
In [28]: from sklearn.linear_model import Ridge,Lasso
In [29]: rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
Out[29]: Ridge(alpha=10)
In [30]: rr.score(x_test,y_test)
Out[30]: 0.8146601630043693
In [31]: la =Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[31]: Lasso(alpha=10)
In [32]: la.score(x_test,y_test)
Out[32]: 0.8139528507351983
In [ ]:
```