Gradient Flows for Sampling

Energy Functionals, Invariance and Gaussian Approximation

Yifan Chen

Applied and Computational Mathematics, Caltech

Illinois Institute of Technology, July 2023

The Paper

[Chen, Huang, Huang, Reich, Stuart 2023]

Gradient flows for sampling:

Mean-field models, Gaussian approximations and affine invariance

Daniel Huang Caltech

Jiaoyang Huang University of Pennsylvania

Sebastian Reich University of Potsdam

Andrew Stuart Caltech

Link: https://arxiv.org/abs/2302.11024.

Outline

- 1 The Sampling Problem
- 2 The Methodology: Dynamics and Gradient Flows
- 3 On Choosing Energy Functionals: KL is Special
- 4 On Choosing Metrics: Fisher-Rao is Special
- 5 On Gaussian Approximation: Convergence and Numerics
- 6 Conclusions

Outline

- 1 The Sampling Problem
- 2 The Methodology: Dynamics and Gradient Flows
- 3 On Choosing Energy Functionals: KL is Specia
- 4 On Choosing Metrics: Fisher-Rao is Specia
- 5 On Gaussian Approximation: Convergence and Numerics
- 6 Conclusions

Context

The sampling problem

Goal: draw (approximate) samples from

$$\rho^{\star}(\theta) \propto \exp(-V(\theta))$$

Context

The sampling problem

Goal: draw (approximate) samples from

$$\rho^{\star}(\theta) \propto \exp(-V(\theta))$$

Set-up: assuming $V(\theta)$ available, in contrast to generative modeling

Context

The sampling problem

Goal: draw (approximate) samples from

$$\rho^{\star}(\theta) \propto \exp(-V(\theta))$$

Set-up: assuming $V(\theta)$ available, in contrast to generative modeling

Many applications in

- Uncertainty quantification
- Bayes inverse problems
- Filtering
- Active learning
- ...

Outline

- 1 The Sampling Problem
- 2 The Methodology: Dynamics and Gradient Flows
- 3 On Choosing Energy Functionals: KL is Special
- 4 On Choosing Metrics: Fisher-Rao is Special
- 5 On Gaussian Approximation: Convergence and Numerics
- 6 Conclusions

Dynamics for sampling

Idea: construct a dynamics of ρ_t that gradually converges to

$$\rho^{\star}(\theta) \propto \exp(-V(\theta))$$

Note: for simplicity we consider continuous-time

Dynamics for sampling

Idea: construct a dynamics of ρ_t that gradually converges to

$$\rho^{\star}(\theta) \propto \exp(-V(\theta))$$

Note: for simplicity we consider continuous-time

- Finite time dynamics $\rho_1 = \rho^*$, from a given ρ_0 (e.g. prior)
 - Sequential Monte Carlo, e.g., $\rho_t \propto \exp(-tV(\theta))$, ...

Dynamics for sampling

Idea: construct a dynamics of ρ_t that gradually converges to

$$\rho^{\star}(\theta) \propto \exp(-V(\theta))$$

Note: for simplicity we consider continuous-time

- Finite time dynamics $\rho_1 = \rho^*$, from a given ρ_0 (e.g. prior)
 - Sequential Monte Carlo, e.g., $\rho_t \propto \exp(-tV(\theta))$, ...
- Infinite time dynamics $\rho_{\infty} = \rho^{\star}$, from arbitrary ρ_0
 - MCMC, Langevin's dynamics, ...

Dynamics for sampling

Idea: construct a dynamics of ρ_t that gradually converges to

$$\rho^{\star}(\theta) \propto \exp(-V(\theta))$$

Note: for simplicity we consider continuous-time

- Finite time dynamics $\rho_1 = \rho^*$, from a given ρ_0 (e.g. prior)
 - Sequential Monte Carlo, e.g., $\rho_t \propto \exp(-tV(\theta))$, ...
- Infinite time dynamics $\rho_{\infty} = \rho^{\star}$, from arbitrary ρ_0
 - MCMC, Langevin's dynamics, ...

The focus of this talk: Infinite time dynamics

Dynamics through Gradient Flows (GFs)

Gradient flow dynamics for sampling

Idea: construct a gradient flow dynamics of ρ_t that converges to

$$\rho^{\star}(\theta) \propto \exp(-V(\theta))$$

Namely, dynamics comes from gradient based optimization methods

Dynamics through Gradient Flows (GFs)

Gradient flow dynamics for sampling

Idea: construct a gradient flow dynamics of ρ_t that converges to

$$\rho^{\star}(\theta) \propto \exp(-V(\theta))$$

Namely, dynamics comes from gradient based optimization methods

- Langevin's dynamics and Wasserstein GFs
 [Jordan, Kinderlehrer, Otto 1998], ...
- Stein variational GD and Stein variational GFs
 [Liu, Wang 2016], [Liu 2017], ...
- Interaction between optimization and sampling [Wibisono 2018], ...
- A recent review paper
 [Trillos, Hosseini, Sanz-Alonso 2023]

• ...

Gradient Flows

Ingredients in gradient flows

Formally: (\mathcal{P} is the space of probability densities)

• An energy functional to minimize

$$\mathcal{E}:\mathcal{P}
ightarrow \mathbb{R}$$

A metric for descent direction

$$g_{\rho}: T_{\rho}\mathcal{P} \times T_{\rho}\mathcal{P} \to \mathbb{R}, \quad g_{\rho}(\sigma_{1}, \sigma_{2}) = \langle M(\rho)\sigma_{1}, \sigma_{2}\rangle_{L^{2}}$$

$$\implies \text{Flow:} \quad \frac{\partial \rho_{t}}{\partial t} = -\nabla_{g}\mathcal{E}(\rho_{t}) = -M(\rho_{t})^{-1}\frac{\delta\mathcal{E}}{\delta\rho}|_{\rho = \rho_{t}}$$

- $T_{\rho}\mathcal{P}$ (tangent space) is the space of measures integrated to 0
- $\frac{\delta \mathcal{E}}{\delta \rho}$ is the first variation of \mathcal{E} at ρ
- $M(\rho_t)^{-1}$ can be understood as a preconditioner

Sampling through Numerical Approximation of GFs

Gradient flow equation

$$\frac{\partial \rho_t}{\partial t} = -M(\rho_t)^{-1} \frac{\delta \mathcal{E}}{\delta \rho}|_{\rho = \rho_t}$$

Numerical approximations of GFs lead to sampling methods

Particle methods such as SDEs

$$d\theta_t = f(\theta_t; \rho_t, \rho^*)dt + h(\theta_t; \rho_t, \rho^*)dW_t$$

e.g., Langevin's dynamics
$$\mathrm{d}\theta_t = \nabla_\theta \log \rho^\star(\theta_t) \mathrm{d}t + \sqrt{2} \mathrm{d}W_t$$

 Parametric approximations such as Gaussian approximation e.g., Gaussian variational inference, Kalman filters, ...

The Focus of this Talk

The question:

Any guiding principles for designing ${\mathcal E}$ and $M(\rho)$?

The Focus of this Talk

The question:

Any guiding principles for designing \mathcal{E} and $M(\rho)$?

We approach the question through the perspective of invariance

- In energy functionals: invariance to normalization consts
- In metrics: invariance to transformation of the space

We then discuss numerics of the resulting flow

Outline

- 1 The Sampling Problem
- 2 The Methodology: Dynamics and Gradient Flows
- 3 On Choosing Energy Functionals: KL is Special
- 4 On Choosing Metrics: Fisher-Rao is Special
- 5 On Gaussian Approximation: Convergence and Numerics
- 6 Conclusions

Recap: Gradient flow equation

$$\frac{\partial \rho_t}{\partial t} = -M(\rho_t)^{-1} \frac{\delta \mathcal{E}}{\delta \rho}|_{\rho = \rho_t}$$

Recap: Gradient flow equation

$$\frac{\partial \rho_t}{\partial t} = -M(\rho_t)^{-1} \frac{\delta \mathcal{E}}{\delta \rho}|_{\rho = \rho_t}$$

• Most popular choice of $\mathcal{E}(\rho)$: Kullback–Leibler divergence

$$\mathcal{E}(\rho; \rho^{\star}) = \mathrm{KL}[\rho \| \rho^{\star}] = \int \rho \log \left(\frac{\rho}{\rho^{\star}}\right) d\theta$$

Recap: Gradient flow equation

$$\frac{\partial \rho_t}{\partial t} = -M(\rho_t)^{-1} \frac{\delta \mathcal{E}}{\delta \rho}|_{\rho = \rho_t}$$

• Most popular choice of $\mathcal{E}(\rho)$: Kullback–Leibler divergence

$$\mathcal{E}(\rho; \rho^{\star}) = \mathrm{KL}[\rho \| \rho^{\star}] = \int \rho \log \left(\frac{\rho}{\rho^{\star}}\right) d\theta$$

• Property: $\mathcal{E}(\rho; c\rho^\star) = \mathcal{E}(\rho; \rho^\star) - \log c$ for any $c \in \mathbb{R}_+$

Recap: Gradient flow equation

$$\frac{\partial \rho_t}{\partial t} = -M(\rho_t)^{-1} \frac{\delta \mathcal{E}}{\delta \rho}|_{\rho = \rho_t}$$

• Most popular choice of $\mathcal{E}(\rho)$: Kullback–Leibler divergence

$$\mathcal{E}(\rho; \rho^{\star}) = \mathrm{KL}[\rho \| \rho^{\star}] = \int \rho \log \left(\frac{\rho}{\rho^{\star}}\right) d\theta$$

• Property: $\mathcal{E}(\rho; c\rho^*) = \mathcal{E}(\rho; \rho^*) - \log c$ for any $c \in \mathbb{R}_+$ \Rightarrow first variation $\frac{\delta \mathcal{E}}{\delta \rho}$ is independent of c

Recap: Gradient flow equation

$$\frac{\partial \rho_t}{\partial t} = -M(\rho_t)^{-1} \frac{\delta \mathcal{E}}{\delta \rho}|_{\rho = \rho_t}$$

• Most popular choice of $\mathcal{E}(\rho)$: Kullback–Leibler divergence

$$\mathcal{E}(\rho; \rho^{\star}) = \mathrm{KL}[\rho \| \rho^{\star}] = \int \rho \log \left(\frac{\rho}{\rho^{\star}}\right) d\theta$$

- Property: $\mathcal{E}(\rho; c\rho^{\star}) = \mathcal{E}(\rho; \rho^{\star}) \log c$ for any $c \in \mathbb{R}_+$
 - \Rightarrow first variation $rac{\delta \mathcal{E}}{\delta
 ho}$ is independent of c
 - \Rightarrow the gradient flow equation is independent of c

Recap: Gradient flow equation

$$\frac{\partial \rho_t}{\partial t} = -M(\rho_t)^{-1} \frac{\delta \mathcal{E}}{\delta \rho}|_{\rho = \rho_t}$$

• Most popular choice of $\mathcal{E}(\rho)$: Kullback–Leibler divergence

$$\mathcal{E}(\rho; \rho^{\star}) = \mathrm{KL}[\rho \| \rho^{\star}] = \int \rho \log \left(\frac{\rho}{\rho^{\star}}\right) d\theta$$

- Property: $\mathcal{E}(\rho; c\rho^{\star}) = \mathcal{E}(\rho; \rho^{\star}) \log c$ for any $c \in \mathbb{R}_+$
 - \Rightarrow first variation $rac{\delta \mathcal{E}}{\delta
 ho}$ is independent of c
 - \Rightarrow the gradient flow equation is independent of c

Implication: no need to worry about normalization consts of ρ^{\star}

The question

Any other choices of ${\mathcal E}$ that have such invariance property?

The question

Any other choices of $\mathcal E$ that have such invariance property?

The answer is $\overline{\mathsf{NO}}$ among a large class of $\mathcal E$

KL Divergence is Special

Theorem [Chen, Huang, Huang, Reich, Stuart 2023]

Among all f-divergence with continuously differentiable f, KL divergence is the only one, up to scaling, whose first variation is invariant to the normalization consts of ρ^*

KL Divergence is Special

Theorem [Chen, Huang, Huang, Reich, Stuart 2023]

Among all f-divergence with continuously differentiable f, KL divergence is the only one, up to scaling, whose first variation is invariant to the normalization consts of ρ^*

• f-divergence: for f(0) = 1 and f convex

$$D_f[\rho \| \rho^*] = \int \rho^* f\left(\frac{\rho}{\rho^*}\right) d\theta$$

- Kullback–Leibler divergence: $f(x) = x \log x$
- χ^2 divergence: $f(x) = (x-1)^2$
- Hellinger distance: $f(x) = (\sqrt{x} 1)^2$
- ...

KL Divergence is Special

Theorem [Chen, Huang, Huang, Reich, Stuart 2023]

Among all f-divergence with continuously differentiable f, KL divergence is the only one, up to scaling, whose first variation is invariant to the normalization consts of ρ^*

• f-divergence: for f(0) = 1 and f convex

$$D_f[\rho \| \rho^*] = \int \rho^* f\left(\frac{\rho}{\rho^*}\right) d\theta$$

- Kullback–Leibler divergence: $f(x) = x \log x$
- χ^2 divergence: $f(x) = (x-1)^2$
- Hellinger distance: $f(x) = (\sqrt{x} 1)^2$
- ...

Use KL divergence from now on

Outline

- 1 The Sampling Problem
- 2 The Methodology: Dynamics and Gradient Flows
- 3 On Choosing Energy Functionals: KL is Special
- 4 On Choosing Metrics: Fisher-Rao is Special
- 5 On Gaussian Approximation: Convergence and Numerics
- 6 Conclusions

Two Metrics

Wasserstein metric [Jordan, Kinderlehrer, Otto 1998]

Metric: $M(\rho)^{-1}\psi = -\nabla \cdot (\rho \nabla \psi)$

Flow: $\frac{\partial \rho_t}{\partial t} = -\nabla_{\theta} \cdot (\rho_t \nabla_{\theta} \log \rho^*) + \nabla \cdot (\nabla \rho_t)$

SDEs: $d\theta_t = \nabla_\theta \log \rho^* dt + \sqrt{2} dW_t$

Optimal transport [Villani 2003, 2008]

Fisher-Rao metric [Rao 1945]

Metric: $M(\rho)^{-1}\psi = \rho(\psi - \mathbb{E}_{\rho}[\psi])$

Flow: $\frac{\partial \rho_t}{\partial t} = \rho_t (\log \rho^* - \log \rho_t) - \rho_t \mathbb{E}_{\rho_t} [\log \rho^* - \log \rho_t]$

Information geometry [Amari 2016], [Ay, Jost, Lê, Schwachhöfer, 2017]

Convergence Property of Wasserstein Gradient Flow

Theorem [Markowich, Villani 2000]

Assume $\exists \lambda > 0$ such that

$$-D^2 \log \rho^{\star}(\cdot) \succeq \lambda I$$

Then, for all $t \geq 0$,

$$\mathrm{KL}[\rho_t \| \rho^{\star}] \leq \mathrm{KL}[\rho_0 \| \rho^{\star}] e^{-2\lambda t}$$

Rate of exponential convergence depends on ρ^*

Two Metrics

Wasserstein metric [Jordan, Kinderlehrer, Otto 1998]

$$\begin{split} & \text{Metric: } M(\rho)^{-1}\psi = -\nabla \cdot (\rho \nabla \psi) \\ & \text{Flow: } \frac{\partial \rho_t}{\partial t} = -\nabla_\theta \cdot (\rho_t \nabla_\theta \log \rho^\star) + \nabla \cdot (\nabla \rho_t) \end{split}$$

SDEs: $d\theta_t = \nabla_{\theta} \log \rho^* dt + \sqrt{2} dW_t$

Optimal transport [Villani 2003, 2008]

Fisher-Rao metric [Rao 1945]

Metric:
$$M(\rho)^{-1}\psi = \rho(\psi - \mathbb{E}_{\rho}[\psi])$$

Flow: $\frac{\partial \rho_t}{\partial t} = \rho_t (\log \rho^* - \log \rho_t) - \rho_t \mathbb{E}_{\rho_t}[\log \rho^* - \log \rho_t]$

Information geometry [Amari 2016], [Ay, Jost, Lê, Schwachhöfer, 2017]

A Closer Look at Fisher-Rao

Fisher-Rao gradient flow

$$\frac{\partial \rho_t}{\partial t} = \rho_t (\log \rho^* - \log \rho_t) - \rho_t \mathbb{E}_{\rho_t} [\log \rho^* - \log \rho_t]$$

Apply transformation of any diffeomorphism $\varphi: \mathbb{R}^{d_{\theta}} \to \mathbb{R}^{d_{\theta}}$

- $\tilde{\rho}_t = \varphi \# \rho_t$ is the transformed distribution at time t
- $\tilde{\rho}^{\star} = \varphi \# \rho^{\star}$ is the transformed target distribution

Then, the form of the flow equation remains invariant

$$\frac{\partial \tilde{\rho}_t}{\partial t} = \tilde{\rho}_t \left(\log \tilde{\rho}^* - \log \tilde{\rho}_t \right) - \tilde{\rho}_t \mathbb{E}_{\tilde{\rho}_t} [\log \tilde{\rho}^* - \log \tilde{\rho}_t]$$

Why Care About Invariance?

Implication of invariance

Convergence rates of the gradient flow are the same for general ρ^* and Gaussian ρ^*

Why Care About Invariance?

Implication of invariance

Convergence rates of the gradient flow are the same for general ρ^* and Gaussian ρ^*

ullet Assume there exists a diffeomorphism arphi such that

$$\tilde{\rho}^{\star} = \varphi \# \rho^{\star} = \text{Gaussian}$$

Recall the property of the KL divergence

$$\mathrm{KL}[\rho_t \| \rho^{\star}] = \mathrm{KL}[\varphi \# \rho_t \| \varphi \# \rho^{\star}] = \mathrm{KL}[\tilde{\rho}_t \| \tilde{\rho}^{\star}]$$

Thus, a general ho^\star problem \sim a simpler Gaussian ho^\star problem

Theoretical Results of Fisher-Rao

Convergence of Fisher-Rao gradient flows

[Chen, Huang, Huang, Reich, Stuart 2023]

Let ρ_t satisfy the Fisher-Rao gradient flow. Assume

• there exist constants K, B > 0 such that ρ_0 satisfies

$$e^{-K(1+|\theta|^2)} \le \rho_0(\theta)/\rho^*(\theta) \le e^{K(1+|\theta|^2)}$$

• the second moments of ρ_0, ρ^* are both bounded by B

Then, for any $t \ge \log((1+B)K)$,

$$KL[\rho_t \| \rho^*] \le (2 + B + eB)Ke^{-t}$$

See also: [Lu, Slepčev, Wang 2022]

Theoretical Results of Fisher-Rao

Convergence of Fisher-Rao gradient flows

[Chen, Huang, Huang, Reich, Stuart 2023]

Let ρ_t satisfy the Fisher-Rao gradient flow. Assume

• there exist constants K, B > 0 such that ρ_0 satisfies

$$e^{-K(1+|\theta|^2)} \le \rho_0(\theta)/\rho^*(\theta) \le e^{K(1+|\theta|^2)}$$

• the second moments of ρ_0, ρ^* are both bounded by B

Then, for any $t \ge \log((1+B)K)$,

$$KL[\rho_t \| \rho^*] \le (2 + B + eB)Ke^{-t}$$

See also: [Lu, Slepčev, Wang 2022]

"Unconditional" uniform exponential convergence

• In sharp contrast to Wasserstein gradient flows whose convergence rates depend on ρ^*

Further Thoughts

Simulating the Fisher-Rao GF takes extra efforts

- Particle methods
 Birth-death dynamics, Wasserstein-Fisher-Rao gradient flow
 [Lu, Lu, Nolen 2019], [Lu, Slepčev, Wang 2022]
- Parametric approximation
 Gaussian approximation [Chen, Huang, Huang, Reich, Stuart 2023]
 Derivative-free Kalman method [Huang, Huang, Reich, Stuart 2022]

We will talk about it later ...

Further Thoughts

Simulating the Fisher-Rao GF takes extra efforts

- Particle methods
 Birth-death dynamics, Wasserstein-Fisher-Rao gradient flow
 [Lu, Lu, Nolen 2019], [Lu, Slepčev, Wang 2022]
- Parametric approximation
 Gaussian approximation [Chen, Huang, Huang, Reich, Stuart 2023]
 Derivative-free Kalman method [Huang, Huang, Reich, Stuart 2022]

We will talk about it later ...

At first, let's ask a basic question

The question:

Any other choices of metric having such invariance property?

Further Thoughts

Simulating the Fisher-Rao GF takes extra efforts

- Particle methods
 Birth-death dynamics, Wasserstein-Fisher-Rao gradient flow
 [Lu, Lu, Nolen 2019], [Lu, Slepčev, Wang 2022]
- Parametric approximation
 Gaussian approximation [Chen, Huang, Huang, Reich, Stuart 2023]
 Derivative-free Kalman method [Huang, Huang, Reich, Stuart 2022]

We will talk about it later ...

At first, let's ask a basic question

The question:

Any other choices of metric having such invariance property?

The answer is again, NO

Fisher-Rao Metric is Special

Unique property of Fisher-Rao metric

[Cencov 2000], [Ay, Jost, Lê, Schwachhöfer 2015], [Bauer, Bruveris, Michor 2016]

The Fisher-Rao metric is the **only Riemannian metric on smooth positive densities** (up to scaling) that is invariant under any diffeomorphism of the parameter space.

Fisher-Rao Metric is Special

Unique property of Fisher-Rao metric

[Cencov 2000], [Ay, Jost, Lê, Schwachhöfer 2015], [Bauer, Bruveris, Michor 2016]

The Fisher-Rao metric is the **only Riemannian metric on smooth positive densities** (up to scaling) that is invariant under any diffeomorphism of the parameter space.

No other alternatives if we ask for diffeomorphism invariance!

Fisher-Rao Metric is Special

Unique property of Fisher-Rao metric

[Cencov 2000], [Ay, Jost, Lê, Schwachhöfer 2015], [Bauer, Bruveris, Michor 2016]

The Fisher-Rao metric is the **only Riemannian metric on smooth positive densities** (up to scaling) that is invariant under any diffeomorphism of the parameter space.

No other alternatives if we ask for diffeomorphism invariance!

But can ask for a relaxed affine invariance

- Affine invariant MCMC [Goodman, Weare 2010]
- Kalman-Wasserstein gradient flows [Garbuno-Inigo, Hoffmann, Li, Stuart 2020]
- Other affine invariant gradient flow examples in our paper
 - e.g., affine invariant Stein gradient flow

Outline

- 1 The Sampling Problem
- 2 The Methodology: Dynamics and Gradient Flows
- 3 On Choosing Energy Functionals: KL is Special
- 4 On Choosing Metrics: Fisher-Rao is Special
- 5 On Gaussian Approximation: Convergence and Numerics
- 6 Conclusions

Numerical Approximation of the Fisher-Rao Gradient Flow

Related literature:

- Particle methods
 Birth-death dynamics, Wasserstein-Fisher-Rao gradient flow
 [Lu, Lu, Nolen 2019], [Lu, Slepčev, Wang 2022]
- Parametric approximation
 Gaussian approximation [Chen, Huang, Huang, Reich, Stuart 2023]
 Derivative-free Kalman method [Huang, Huang, Reich, Stuart 2022]

The focus of this talk: Gaussian approximation

Gaussian Approximation by Moment Closures

The general procedures:

Consider any dynamics in the density space

$$\frac{\partial \rho_t(\theta)}{\partial t} = \sigma_t(\theta, \rho_t)$$

Write down the dynamics of the mean and covariance

$$\frac{dm_t}{dt} = \int \sigma_t(\theta, \rho_t)\theta d\theta$$

$$\frac{dC_t}{dt} = \int \sigma_t(\theta, \rho_t)(\theta - m_t)(\theta - m_t)^T d\theta$$

• Closure: replace ρ_t in the above RHS by $\rho_{a_t} = \mathcal{N}(m_t, C_t)$ Notation: $a_t = (m_t, C_t)$

References: Moment closure in variational Kalman filtering [Särkkä, 2007], and in Wasserstein gradient flow [Lambert, Chewi, Bach, Bonnabel, Rigollet 2022]

Gaussian Approximation by Moment Closures

Gaussian approximate Fisher-Rao gradient flow

$$\frac{\mathrm{d}m_t}{\mathrm{d}t} = C_t \mathbb{E}_{\rho_{a_t}} [\nabla_{\theta} \log \rho^*],$$

$$\frac{\mathrm{d}C_t}{\mathrm{d}t} = C_t + C_t \mathbb{E}_{\rho_{a_t}} [\nabla_{\theta} \nabla_{\theta} \log \rho^*] C_t$$

Derived using Stein's lemma

Gaussian Approximation by Moment Closures

Gaussian approximate Fisher-Rao gradient flow

$$\frac{\mathrm{d}m_t}{\mathrm{d}t} = C_t \mathbb{E}_{\rho_{a_t}} [\nabla_{\theta} \log \rho^*],$$

$$\frac{\mathrm{d}C_t}{\mathrm{d}t} = C_t + C_t \mathbb{E}_{\rho_{a_t}} [\nabla_{\theta} \nabla_{\theta} \log \rho^*] C_t$$

- Derived using Stein's lemma
- Equivalent to natural gradient flow [Amari 1998] for

Gaussian variational inference:
$$\min_{m,C} \ \mathrm{KL}[\mathcal{N}(m,C) \| \rho^\star]$$

Key: Fisher information matrix is used for preconditioning

$$\frac{\mathrm{d}}{\mathrm{d}t}(m_t, C_t) = -\mathrm{FI}(m_t, C_t)^{-1} \nabla_{m_t, C_t} \mathrm{KL}$$

Convergence Guarantee [Chen, Huang, Huang, Reich, Stuart 2023]

Gaussian target

If
$$ho^\star = \mathcal{N}(m_\star, C_\star)$$
, and $C_0 = \lambda_0 I, \lambda_0 > 0$, then

$$||m_t - m_\star||_2 = \mathcal{O}(e^{-t}), \quad ||C_t - C_\star||_2 = \mathcal{O}(e^{-t})$$

• Same story, due to invariance property

Convergence Guarantee [Chen, Huang, Huang, Reich, Stuart 2023]

Logconcave target

Assume

- $\alpha I \leq -\nabla_{\theta} \nabla_{\theta} \log \rho^{\star} \leq \beta I$
- $\lambda_{0,\min}I \leq C_0 \leq \lambda_{0,\max}I$

Then

$$\mathrm{KL}[\rho_{a_t} \| \rho^{\star}] - \mathrm{KL}[\rho_{a_{\star}} \| \rho^{\star}] \le e^{-Kt} (\mathrm{KL}[\rho_{a_0} \| \rho^{\star}] - \mathrm{KL}[\rho_{a_{\star}} \| \rho^{\star}])$$

where

- $a_t = (m_t, C_t), \rho_{a_t} = \mathcal{N}(m_t, C_t)$
- $a_{\star} = \operatorname{argmin}_{a} \operatorname{KL}[\rho_{a} \| \rho^{\star}]$
- $K = \alpha \min\{1/\beta, \lambda_{0,\min}\}$
- See also the proof for the case of Wasserstein gradient flow in Gaussian variational inference for logconcave target

Local Convergence Rates: Linearized Analysis

Theorem [Chen, Huang, Huang, Reich, Stuart 2023]

Assume $\alpha I \leq -\nabla_{\theta}\nabla_{\theta}\log\rho^{\star} \leq \beta I$. For $N_{\theta}=1$, let $\lambda_{\star,\max}<0$ denote the largest eigenvalue of the linearized Jacobian matrix of the flow around a_{\star} . Then we have

$$-\lambda_{\star,\max} \ge \frac{1}{(7 + \frac{4}{\sqrt{\pi}})(1 + \log(\frac{\beta}{\alpha}))}$$

Moreover, the bound is sharp: it is possible to construct a sequence of triplets ρ_n^\star , α_n and β_n , where $\lim_{n\to\infty}\frac{\beta_n}{\alpha_n}=\infty$, such that, if we let $\lambda_{\star,\max,n}$ denote the corresponding largest eigenvalues of the linearized Jacobian matrix for the n-th triple, then, it holds that

$$-\lambda_{\star,\max,n} = \mathcal{O}\left(1/\log\frac{\beta_n}{\alpha_n}\right)$$

Convergence rates only depend on log(condition number)

Numerical Examples

• 2D Convex Potential: $\theta = (\theta^{(1)}, \theta^{(2)})$

$$V(\theta) = \frac{(\sqrt{\lambda}\theta^{(1)} - \theta^{(2)})^2}{20} + \frac{(\theta^{(2)})^4}{20} \quad \text{with} \quad \lambda = 0.01, \ 0.1, \ 1$$

- Method: Gaussian approximation of Fisher-Rao GF, Wasserstein GF and vallina GF
- Configuration: we initialize the Gaussian at

$$\mathcal{N}\Big(\begin{bmatrix}0\\0\end{bmatrix},\begin{bmatrix}4&0\\0&4\end{bmatrix}\Big)$$

We integrate the mean and covariance dynamics to t=15

Numerical Examples

Figure: x axis is from t=0 to 15. Convergence rate of Gaussian approximate Fisher-Rao gradient flows not influenced by values of λ

Outline

- 1 The Sampling Problem
- 2 The Methodology: Dynamics and Gradient Flows
- 3 On Choosing Energy Functionals: KL is Specia
- 4 On Choosing Metrics: Fisher-Rao is Special
- 5 On Gaussian Approximation: Convergence and Numerics
- 6 Conclusions

Summary

Gradient flows for sampling

- Energy functional: KL divergence is special
 - Invariance to normalization consts.
- Metric: Fisher-Rao metric is special
 - Invariance to any diffeomorphism of the parameter space
 unconditional uniform exponential convergence
 - Relaxed to affine invariance and many constructions

Gaussian approximation via moment closures

- Equivalent to natural gradient in Gaussian VI
- Convergence guarantee for Gaussian and logconcave targets
- Further directions
 - Prove optimal convergence rates in Gaussian VI
 - Gaussian mixture approximations for multimodal targets
 - Derivative free approximations via Kalman's methodology

Thank You

[Chen, Huang, Huang, Reich, Stuart 2023]

Gradient flows for sampling:

Mean-field models, Gaussian approximations and affine invariance

Link: https://arxiv.org/abs/2302.11024.