Matematika 4 — Logika pre informatikov 1. sada teoretických úloh

Riešenie hodnotenej časti tejto úlohy **odovzdajte** najneskôr v pondelok **22. februára 2020 o 11:30** cez odovzdávací formulár pre tu01¹. Riešenia odovzdané po termíne sa považujú za opravy neodovzdaných riešení s príslušnými dôsledkami podľa pravidiel².

Odovzdávajte jeden dokument vo formáte PDF s dodatočnými obmedzeniami uvedenými vo formulári. Dokument musí obsahovať **celé riešenie** v textovej forme. Odovzdané riešenia musia byť **čitateľné** a mať primerane **malý** rozsah. Na riešenie sa vzťahujú všeobecné **pravidlá**².

Ak pri riešení použijete prieskumník štruktúr³, odovzdajte (povinne) **aj export** z neho. **Pozor!** Informácie nachádzajúce sa **iba v exporte**, ale nie v PDF **nepovažujeme za súčasť riešenia**. Export však výrazne urýchli hodnotenie riešenia.

Čísla úloh v zátvorkách odkazujú do zbierky⁴, kde nájdete riešené príklady a ďalšie úlohy na precvičovanie.

Pri riešení niektorých úloh vám môže pomôcť prieskumník štruktúr³.

Cvičenie 1.1. (1.1.1, 1.1.5) Uvažujme jazyk \mathcal{L} logiky prvého rádu s množinami symbolov $\mathcal{C}_{\mathcal{L}} = \{\text{Alex, Beáta, Cyril, Dana, Edo, Gabika, oco}\}$ a $\mathcal{P}_{\mathcal{L}} = \{\text{žena}^1, \text{rodič}^2, \text{dieťa}^3, \text{starší}^2\}$, pričom zamýšľaný význam predikátových symbolov je:

Predikát	Význam
žena(x) $ rodič(x, y) $ $ dieťa(u, x, y) $ $ starši(x, y)$	x je žena x je rodičom y u je dieťaťom matky x a otca y x je starší ako y

Preložte nasledujúce atomické formuly do čo najprirodzenejších výrokov v slovenčine:

¹ https://forms.gle/X97j2FkqdfssPm1C6

² https://dai.fmph.uniba.sk/w/Course:Mathematics_4/sk#pravidla-uloh

³ https://bl96.github.io/structure-explorer/

⁴ https://github.com/FMFI-UK-1-AIN-412/lpi/blob/master/teoreticke/zbierka.pdf

Cvičenie 1.2. (1.1.2, 1.1.6) Koľko atomických formúl môžeme zostrojiť v jazyku \mathcal{L} z úlohy 1.1?

Cvičenie 1.3. (1.1.3, 1.1.7) Uvažujme jazyk \mathcal{L} a atomické formuly z úlohy 1.1. Rozhodnite, ktoré z formúl $A_1, \ldots, A_7, B_1, \ldots, B_6$ sú pravdivé v štruktúre $\mathcal{M} = (D, i)$, kde

$$D = \{1, 2, 3, 4, 5, 6, 7, 8, 9\},$$

$$i(\mathsf{Alex}) = 1, \quad i(\mathsf{Be\acute{a}ta}) = 2, \quad i(\mathsf{Cyril}) = 3, \quad i(\mathsf{Dana}) = 4,$$

$$i(\mathsf{Edo}) = 9, \quad i(\mathsf{Gabika}) = 7, \quad i(\mathsf{oco}) = 3,$$

$$i(\check{\mathsf{zena}}) = \{1, 2, 3, 8\},$$

$$i(\mathsf{rodi}\check{\mathsf{c}}) = \{(4, 1), (9, 9), (2, 3), (3, 4), (8, 7)\},$$

$$i(\mathsf{die\'{ta}}) = \{(3, 7, 9), (2, 7, 3), (8, 9, 1)\},$$

$$i(\mathsf{star\check{s}}\check{\mathsf{i}}) = \{(2, 1), (2, 2), (2, 3), (2, 7), (3, 4), (7, 3), (8, 7)\}.$$

- Všimnite si, že hoci každá indivíduová konštanta musí byť interpretovaná ako niektorý objekt domény (teda pomenúvať ho), nie všetky objekty musia byť pomenované a viacero indivíduových konštánt môže pomenúvať ten istý objekt.
- Lepšiu predstavu o štruktúre často získate, keď si ju znázorníte ako graf, v ktorom sú uzlami prvky domény. Pomôcť vám pritom môže prieskumník štruktúr.

Cvičenie 1.4. (1.1.4, 1.1.8) Uvažujme opäť jazyk \mathcal{L} a atomické formuly z úlohy 1.1. Zostrojte štruktúry \mathcal{M}_1 , \mathcal{M}_2 a \mathcal{M}_3 pre jazyk \mathcal{L} tak, aby každá z nich bola modelom všetkých formúl A_1, \ldots, A_7 , ale *súčasne* nebola modelom žiadnej z formúl B_1, \ldots, B_6 a aby *zároveň*:

a) doména štruktúry \mathcal{M}_1 mala aspoň 9 prvkov;

- b) doména štruktúry \mathcal{M}_2 mala najviac 5 prvkov;
- c) doména štruktúry \mathcal{M}_3 mala najviac 2 prvky.

Ak doména s požadovanou kardinalitou neexistuje, detailne zdôvodnite, prečo to tak je, na základe definície štruktúry a pravdivosti atómov v nej.

Cvičenie 1.5. (1.2.1, 1.2.2) Sformalizujte nasledujúce výroky ako atomické formuly v *spoločnom* jazyku logiky prvého rádu \mathcal{L} . Zapíšte množiny symbolov tohto jazyka a vysvetlite zamýšľaný význam jeho predikátových symbolov.

- (A_1) Peter je muž.
- (A_2) Peter je študent.
- (A_3) Lucia je žena a študentka.
- (A_4) Lucia je staršia ako Peter.
- (A₅) Matematiku učí Eugen.
- (A_6) Peter a Lucia sú od neho mladší.
- (A₇) Peter má rád Matematiku.
- (A_8) Peter dostal z Matematiky od Eugena známku A.
- (A₉) Eugen má rád Luciu.
- (A₁₀) Aj keď má Lucia z Matematiky (od neho) známku "dostatočný".
- (A_{11}) Známka "dostatočný" je len iný názov pre E-čko, a podobne "výborný" značí to isté ako A-čko.
- (A_{12}) Lucia má rada Petra.
- (A_{13}) Eugen sa má rád.
- $(A_{14})\,$ Je Učiteľom roka 2020.
- (A_{15}) Matematika je povinný predmet.
- (A_{16}) Telocvik je voliteľný predmet.
- (A_{17}) Všetci vyššie menovaní študenti majú radi Telocvik.
- (A_{18}) Okrem Eugena (a ďalších učiteľov) v škole pracuje aj školník, upratovačka a riaditeľ.

⚠ Na vyjadrenie nezávislých vlastností (napr. byť študentom/študentkou, byť ženou, byť mužom) použite samostatné predikátové symboly a podľa potreby jeden výrok sformalizujte viacerými atómami.

Nezavádzajte zbytočne nové predikátové symboly, ak sa význam výroku dá vyjadriť už použitými.

Hodnotená časť

Úloha 1.6. (1.2.1, 1.2.3)

- a) Sformalizujte nasledujúce výroky ako atomické formuly v *spoločnom*, vhodne zvolenom jazyku logiky prvého rádu \mathcal{L} . Zapíšte množiny symbolov tohto jazyka a vysvetlite zamýšľaný význam jeho predikátových symbolov.
 - Snažte sa o to, aby počet predikátových symbolov bol čo najmenší. Zároveň ale nespájajte vzájomne nezávislé vlastnosti a vzťahy do jedného predikátového symbolu.
 - (A_1) Janko je chlapec.
 - (A_2) Marienka je jeho najlepšia kamarátka.
 - (A_3) Marienka je dievča hoci keď (u nich doma) hovoria o Máriovi, ide v skutočnosti o Marienku. (Poznáte tieto prezývky, vlastne sa už nikto nepamätá, ako to vzniklo.)
 - (A_4) V Čiernom lese stojí chalúpka z perníku.
 - (A_5) Táto chalúpka je obrovská, niektorí jej hovoria aj Perníková veža.
 - $(A_6)\,$ V Perníkovej veži býva zlá a škaredá čarodejnica.
 - (A_7) Čarodejnica má bradavicu na nose.
 - (A_8) Janko sa bojí čarodejnice.
 - (B_1) Marienka je chlapec.
 - $(B_2)\,$ Marienka sa bojí čarodejnice.
 - (B_3) Janko je Marienkin najlepší kamarát.
 - $(B_4)\,$ Čarodejnica Janka zjedla.
 - (C_1) Mário je chlapec.
- b) Vytvorte štruktúru \mathcal{M} pre jazyk \mathcal{L} tak, aby všetky formuly, ktorými ste sformalizovali výroky zo skupiny A, boli v \mathcal{M} pravdivé, ale *súčasne* boli všetky formuly, ktorými ste sformalizovali výroky zo skupiny B, v \mathcal{M} nepravdivé.
- c) Je možné, aby v nejakej štruktúre boli súčasne všetky formuly podľa výrokov zo skupiny A pravdivé, všetky formuly podľa výrokov z B nepravdivé a formula pre výrok (C_1) pravdivá?
 - Svoju odpoveď detailne zdôvodnite na základe definície štruktúry a pravdivosti atómov v nej.