Aufgabe 1. (3 Punkte)

Man beweise, unter Verwendung des Hauptzweiges des Logarithmus, für $\alpha \in \mathbb{R}_{>0}$ und $z \in \mathbb{C}$ die folgenden beiden Gleichungen:

$$\log |z| = \operatorname{Re}(\log(z)), \quad \operatorname{Re}(\alpha^z) = \alpha^{\operatorname{Re}(z)} \cdot \cos(\operatorname{Im}(z)\log(\alpha)).$$

Wie verändern sich die beiden Seiten der ersten Gleichung bei einer anderen Wahl des Logarithmus? Gilt die zweite Gleichung auch für $\alpha \in \mathbb{C}$?

Lösung. Wir haben $z=e^{\log z}=e^{\operatorname{Re}(\log z)}e^{i\operatorname{Im}(\log z)}$. Es folgt, dass $|z|=e^{\operatorname{Re}(\log z)}$, und weiterhin $\log |z|=\log e^{\operatorname{Re}(\log z)}=\operatorname{Re}(\log z)$. Die letzte Gleichung gilt nur für den Hauptzweig des Logarithmus. Für andere Zweige wird aus $\log |z|$ der Ausdruck $\log |z|+2\pi in,\ n\in\mathbb{Z}$. Der Realteil des Logarithmus und mithin die rechte Seite der ersten Gleichung bleiben unverändert..

Für die zweite Gleichung bemerken wir, dass $\log(\alpha) \in \mathbb{R}$ und $\alpha^{\text{Re}(z)} \in \mathbb{R}$. Dann gilt

$$\operatorname{Re}(\alpha^z) = \operatorname{Re}(e^{z\log(\alpha)}) = \operatorname{Re}(e^{\operatorname{Re}(z)\log(\alpha)}e^{i\operatorname{Im}(z)\log(\alpha)}) = \alpha^{\operatorname{Re}(z)}\operatorname{Re}(e^{i\operatorname{Im}(z)\log(\alpha)}) = \alpha^{\operatorname{Re}(z)}\operatorname{cos}(\operatorname{Im}(z)\log(\alpha)).$$

Für $\alpha \in \mathbb{C}$ ist die linke Seite der zweiten Gleichung reell, aber nicht die rechte Seite. Also gilt die zweite Gleichung für $\alpha \in \mathbb{C}$ nicht.

Aufgabe 2. (5 Punkte)

Man zeige, dass die Funktion $f(z) = z^4 + z/8 - 1$ genau eine Nullstelle in $D_{1/2}(1)$ hat. Man finde ähnliche Abschätzung für die anderen Nullstellen von f(z).

Lösung. Wir setzen $g(z)=z^4-1$ und bekommen die folgenden Abschätzungen. Sei $z\in \partial D_{1/2}(1)$, also |z-1|=1/2. Dann $|z|\leq 3/2$, $|z+1|\geq 3/2$ und $|z\pm i|\geq \sqrt{2}-1/2$. Daraus folgt, dass $|f(z)-g(z)|=|z/8|\leq 3/16$ und $|g(z)|=|z-1|\cdot |z+1|\cdot |z-i|\cdot |z+i|\geq (3/4)(\sqrt{2}-1/2)^2>3/16$.

Wir erhalten die Ungleichung |f(z)-g(z)| < |g(z)| auf $\partial D_{1/2}(1)$. Da f und g ganze Funktionen sind, dürfen wir den Satz von Rouché verwenden. Er lautet, dass f und g gleichviele Nullstellen mit Vielfachheit in $D_{1/2}(1)$ haben. Die Nullstellen von g sind ± 1 , $\pm i$. Genau eine Nullstelle von g liegt in $D_{1/2}(1)$. Somit hat f genau eine Nullstelle dort.

Analog behandelt man die Kreisscheiben $D_{1/2}(-1)$, $D_{1/2}(\pm i)$, die der anderen drei Nullstellen von g entsprechen.

Aufgabe 3. (5 Punkte)

Man bestimme den Typ aller Singularitäten und die Ordnung aller Pol- und Nullstellen der Funktionen $f(z) = \frac{\cos(\pi z)}{(z-1/2)^2}$ und $g(z) = \frac{1}{\sin(1/z)}$ für $z \in \mathbb{C} \cup \{\infty\}$.

Lösung. Wir betrachten die Funktion f. Nullstellen des Zählers: $z_n = n+1/2, n \in \mathbb{Z}$, alle mit Vielfachheit 1. Nullstelle des Nenners: 1/2, Vielfachheit 2. Nullstellen von f: $z_n = n + 1/2$, $n \in \mathbb{Z}, n \neq 0$, Ordnung 1. Polstellen von f: z = 1/2, Ordnung 1. Für $z = \infty$ setzen wir w = 1/z. Dann sind $w_n = 1/(n+1/2)$ die Nullstellen von f, und $w_n \to 0$ für $n \to \infty$. Somit ist w = 0 der Häufungspunkt der Nullstellen von f. Es folgt, dass f eine wesentliche Singularität in w = 0 (also $z = \infty$) hat.

Wir betrachten g. Nullstellen des Nenners: $z_n = \frac{1}{\pi n}$, Ordnung 1. Also sind z_n einfachen Polstellen von g. Da z=0 der Häufungspunkt von z_n ist, hat g in z=0 wesentliche Singularität. Wir setzen w=1/z. Dann $g(w)=1/\sin(w)$. Der Nenner hat einfache Nullstelle in w=0. Somit ist $z=\infty$ einfache Polstelle von g. Die Funktion g hat keine Nullstellen.

Aufgabe 4. (4 Punkte)

Sei $f: \mathbb{C} \to \mathbb{C} \setminus \{z \mid \operatorname{Im}(z) = 0, \operatorname{Re}(z) \geq 0\}$ eine holomorphe Funktion. Man bestimme das Bild der Funktion.

Lösung. Da das Gebiet $U = \mathbb{C} \setminus \{z \mid \operatorname{Im}(z) = 0, \operatorname{Re}(z) \geq 0\}$ einfach zusammenhängend ist, und $U \neq \mathbb{C}$ gilt, dürfen wir den Riemannschen Abbildungssatz verwenden. Damit finden wir eine biholomorphe Abbildung $g \colon U \to D_1(0)$. Wir erhalten eine ganze beschränkte Funktion $h = g \circ f$. Laut dem Satz von Liouville ist h konstant. Es folgt, dass $f = g^{-1} \circ h$ auch konstant ist und dass das Bild von f ein Punkt ist.

Aufgabe 5. (5 Punkte)

Sei $f: U \to \mathbb{C}$ eine nicht-konstante holomorphe Funktion auf einem Gebiet U, welches $\overline{D_R(z_0)}$ enthält. Man nehme an, dass |f(z)| für $z \in \partial D_R(z_0)$ konstant ist, und zeige, dass dann f eine Nullstelle in $D_R(z_0)$ besitzt.

Lösung. Sei $K = \overline{D_R(z_0)}$. Wir verwenden das Maximumprinzip:

$$\sup_{z \in K} |f(z)| = \sup_{z \in \partial K} |f(z)|.$$

Wir setzen $a=\sup_{z\in\partial K}|f(z)|$. Falls a=0 gilt, ist $f\equiv 0$ auf K. Insbesondere hat f eine Nullstelle in $D_R(z_0)$. Tatsächlich kann dieser Fall nach dem Identitätssatz nicht auftreten, dann sonst f auf U konstant wäre. Also a>0. Da die Abbildung f nicht-konstant und mithin offen ist, existiert ein Punkt $z_1\in D_R(z_0)$, so dass $|f(z_1)|< a$ gilt.

Wir nehmen an, dass f keine Nullstellen in $D_R(z_0)$ besitzt. Dann gibt es keine Nullstellen von f in eine Umgebung von K. Die Funktion g(z) = 1/f(z) ist dann auf dieser Umgebung holomorph. Nach dem Maximumprinzip gilt

$$|g(w)| \le \sup_{z \in \partial K} |g(z)| = 1/a$$

für alle $w \in K$. Aber $|g(z_1)| = 1/|f(z_1)| > 1/a$ für $z_1 \in D_R(z_0)$. Widerspruch. Wir schließen, dass f eine Nullstelle in $D_R(z_0)$ hat.

Aufgabe 6. (5 Punkte)

Bestimmen Sie die Laurentreihe der Funktion $f(z) = \sin^2(1/z)$ in $0 \in \mathbb{C}$.

Lösung. Für $w \in \mathbb{R}$ haben wir die Gleichungen

$$e^{2iw} = (\cos(w) + i\sin(w))^2 = \cos^2(w) - \sin^2(w) + 2i\cos(w)\sin(w).$$

Es folgt, dass $\cos(2w) = \operatorname{Re}(e^{2iw}) = \cos^2(w) - \sin^2(w) = 1 - 2\sin^2(w)$ und damit $\sin^2(w) = (1/2)(1-\cos(2w))$ für $w \in \mathbb{R}$ gilt. Da die beiden Seiten der letzten Gleichung ganze Funktionen sind, gilt diese Gleichung auch für alle $w \in \mathbb{C}$.

Wir haben:

$$\cos(2w) = \sum_{n \ge 0} \frac{(-1)^n}{(2n)!} (2w)^{2n} = 1 + \sum_{n \ge 1} \frac{(-1)^n 2^{2n}}{(2n)!} w^{2n}.$$

Dann

$$\sin^2(w) = \sum_{n>1} \frac{(-1)^{n+1} 2^{2n-1}}{(2n)!} w^{2n},$$

und schließlich

$$\sin^2(1/z) = \sum_{n \ge 1} \frac{(-1)^{n+1} 2^{2n-1}}{(2n)!} z^{-2n}.$$

Aufgabe 7. (5 Punkte)

Man berechne das Integral $\int_{\partial D_5(0)} f(z) dz$ für die folgenden Funktionen

$$f(z) = \frac{\sin(z)}{e^z - e^{\pi}}$$
 und $f(z) = \frac{1}{z^4 + i}$.

Lösung. Wir benutzen den Residuensatz:

$$\int_{\partial D_5(0)} f(z)dz = 2\pi i \sum_{w \in P(f)} \operatorname{res}_w(f).$$

Hierbei ist P(f) die Menge der Polstellen von f, die in $D_5(0)$ liegen.

Der Nenner der ersten Funktion hat Nullstellen der Ordnung 1 in $z_n = \pi + 2\pi i n$, $n \in \mathbb{Z}$. Da der Zähler eine Nullstelle in z_0 hat, gibt es kein Pol in z_0 . Wir berechnen: $|z_n| = \pi \sqrt{1 + 4n^2} > 2\pi > 5$ für $n \neq 0$. Es folgt, dass f keine Polstellen in $D_5(0)$ besitzt, und dass das Integral gleich Null ist.

Sei w=1/z. Dann schreibt man die zweite Funktion als $f(w)=\frac{w^4}{1+iw^4}$. Sie ist holomorph in w=0. Der Nenner dieser Funktion hat allen Nullstellen auf dem Einheitskreis. Also gibt es keine Polstellen von f in der Menge $\{w\in\mathbb{C}\,|\,|w|<1/5\}$. Nach dem Residuensatz folgt dann, dass das Integral von f entlang des Kreises $\{w\in\mathbb{C}\,|\,|w|=1/5\}$ verschwindet.