Frequency Domain Methodto Search for the Deuteron Electric Dipole Moment in a Storage Ring Environment

Alexander Aksentev^{e,f,g,*}, Yury Senichev^f, Eremey Valetov^h

^aInstitut für Kernphysik (IKP-2), Forschungszentrum Jülich, Jülich, Germany ^bInstitute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia ^cNational Research Nuclear University "MEPhI," Moscow, Russia ^dDepartment of Physics and Astronomy, Michigan State University, MI 48824, USA

Abstract

^{*}Corresponding author

Email addresses: alexaksentyev@gmail.com (Alexander Aksentev), y.senichev@inr.ru (Yury Senichev), eremey@valetov.com (Eremey Valetov)

Frequency Domain Methodto Search for the Deuteron Electric Dipole Moment in a Storage Ring Environment

Alexander Aksentev^{e,f,g,*}, Yury Senichev^f, Eremey Valetov^h

^eInstitut für Kernphysik (IKP-2), Forschungszentrum Jülich, Jülich, Germany
^fInstitute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
^gNational Research Nuclear University "MEPhI," Moscow, Russia
^hDepartment of Physics and Astronomy, Michigan State University, MI 48824, USA

Keywords: electric dipole moment; storage ring; frozen spin; Frequency Domain Method.

Contents

1	Introduction 1.1 General spin rotation matrices	4
2	Preliminary analytic of the Spin Wheel method	3
3	Assumptions of the Spin Wheel method	6
4	Argumument against the SW method	6
5	Absence of the a_y^2 term in SW equations	7

1 1. Introduction

Spin rotations belong to the Spin(3) group, which is isomorphic to SU(2).

^{*}Corresponding author

 $[\]label{lem:email:com:email:com:alexaksentyev@gmail.com} Email \ addresses: \verb|alexaksentyev@gmail.com| (Alexander Aksentev), \\ \verb|y.senichev@inr.ru| (Yury Senichev), eremey@valetov.com| (Eremey Valetov)$

³ Rotations in SU(2). Rotation by angle ψ about direction \bar{n}

$$R_{\bar{n}}(\psi) = \exp\left[-i\frac{\psi}{2}(\bar{n}\cdot\vec{\sigma})\right],$$

- where $\vec{\sigma}$ is the Pauli matrix vector.
- 5 1.1. General spin rotation matrices
- 6 Denote
- $(\Theta^{mi}, \bar{n}_{mi})$ from machine imperfections;
- $(\Theta^+, \bar{n}_{sol})$ for the $+\Delta$ solenoidal field;
- $(\Theta^-, -\bar{n}_{sol})$ for the $-\Delta$ solenoidal field.

$$R^{+\Delta} = \exp\left[-i\left(\frac{\Theta^{mi}}{2}(\bar{n}_{mi}\cdot\vec{\sigma}) + \frac{\Theta^{+}}{2}(\bar{n}_{sol}\cdot\vec{\sigma})\right)\right]$$

$$= \exp\left[-\frac{i}{2}\left(\Theta^{mi}\bar{n}_{mi} + \Theta^{+}\bar{n}_{sol}\right)\cdot\vec{\sigma}\right], \qquad (1)$$

$$R^{-\Delta} = \exp\left[-\frac{i}{2}\left(\Theta^{mi}\bar{n}_{mi} - \Theta^{-}\bar{n}_{sol}\right)\cdot\vec{\sigma}\right], \qquad (2)$$

2. Preliminary analytic of the Spin Wheel method

In SW we posit

$$\left(\vec{\Omega}_{MDM}^{+\Delta} \cdot \hat{x}\right) = -\left(\vec{\Omega}_{MDM}^{-\Delta} \cdot \hat{x}\right). \tag{3}$$

The spin precession angular velocity vector can be expressed via spin tune and invariant spin axis as

$$\vec{\Omega}_{spin} = \frac{2\pi}{\tau_{ring}} \cdot \nu \cdot \bar{n},$$

14 hence

$$\nu^{+\Delta}(\bar{n}_{+\Delta} \cdot \hat{x}) + \nu^{-\Delta}(\bar{n}_{-\Delta} \cdot \hat{x}) = 0 \tag{4}$$

From $\Delta\Theta = \tau\Delta\Omega$ and $\Delta\Omega_x^{MDM} = \frac{q}{m}GB_x$, and assuming

$$B_{sol}^{\pm} \tau_{sol} = \langle B_{sol}^{\pm} \rangle \tau_{ring} :$$
 (5)

 $\begin{cases}
\Theta^{+} = \tau_{sol} \frac{q}{m} G B_{sol}^{+} \stackrel{(5)}{=} \tau_{ring} \frac{q}{m} G \langle B_{sol}^{+} \rangle, \\
\Theta^{-} = \tau_{sol} \frac{q}{m} G B_{sol}^{-} \stackrel{(5)}{=} \tau_{ring} \frac{q}{m} G \langle B_{sol}^{-} \rangle.
\end{cases}$ (6)

Remark 1. Assumption (5) is required if we want to obtain B_{sol}^{\pm} from equations of group (11).

From eqs (1) and (2):

16

$$\begin{cases}
\Theta^{mi}\bar{n}_{mi} + \Theta^{+}\bar{n}_{sol} = \nu^{+\Delta}\bar{n}_{+\Delta}, \\
\Theta^{mi}\bar{n}_{mi} - \Theta^{-}\bar{n}_{sol} = \nu^{-\Delta}\bar{n}_{-\Delta}.
\end{cases}$$
(7)

Substituting eq (7) into (4), and assuming $\bar{n}_{sol} = \hat{x}$:

$$2\Theta^{mi}(\bar{n}_{mi} \cdot \hat{x}) + (\Theta^{+} - \Theta^{-}) = 0.$$
 (8)

Assuming 1

$$\Theta^{mi} = \tau_{ring} \cdot \frac{q}{m} G \cdot \langle B_x \rangle^{mi}, \tag{9}$$

22 from (8) and (5) obtain:

$$2\langle B_x \rangle^{mi} + \left(\langle B_{sol}^+ \rangle - \langle B_{sol}^- \rangle \right) = 0. \tag{10}$$

From eq (9) in Koop2015, assuming in the $+\Delta$ case the machine imperfections and solenoid fields are co-aligned, in the $-\Delta$ anti-aligned:

$$\begin{cases}
\Delta^{+} &= \frac{\beta_{1} - \beta_{2}}{\langle G_{z} \rangle} \langle B_{x} \rangle = \frac{\beta_{1} - \beta_{2}}{\langle G_{z} \rangle} \left(\langle B_{x} \rangle^{mi} + \langle B_{sol}^{+} \rangle \right), \\
&\Rightarrow \langle B_{sol}^{+} \rangle = \frac{\langle G_{z} \rangle}{\beta_{1} - \beta_{2}} \Delta^{+} - \langle B_{x} \rangle^{mi}; \\
\Delta^{-} &= \frac{\beta_{1} - \beta_{2}}{\langle G_{z} \rangle} \langle B_{x} \rangle = \frac{\beta_{1} - \beta_{2}}{\langle G_{z} \rangle} \left(\langle B_{x} \rangle^{mi} - \langle B_{sol}^{-} \rangle \right), \\
&\Rightarrow -\langle B_{sol}^{-} \rangle = \frac{\langle G_{z} \rangle}{\beta_{1} - \beta_{2}} \Delta^{-} - \langle B_{x} \rangle^{mi}.
\end{cases} (11)$$

¹This is a generous assumption implying that $\bar{n}_{mi} = \hat{x}$; i.e., this is **not** a non-commutativity-based argument; we assume all spin rotations commute.

Substituting this into (10):

$$2\langle B_x \rangle^{mi} + \left(\frac{\langle G_z \rangle}{\beta_1 - \beta_2} \left[\Delta^+ - \Delta^- \right] - 2\langle B_x \rangle^{mi} \right) = 0.$$

In the original method, we are to make

$$\Delta^{-} = -\Delta^{+},\tag{12}$$

27 so the term in the square brackets is zero, and we are left with

$$(1-1)\langle B_x \rangle^{mi} = 0. (13)$$

So, seems that SW works, but we did two important assumptions here:
(a) commutativity (in order to get eq (9)), and (b) "averaging" of B_{sol} over
the ring (in order to get eq (5) and remove the τ_{sol}/τ_{ring} from (10)).

Remark 2. If we don't use (9) (but still use (5) in order to obtain B_{sol}^{\pm} from group (11)), then eq (13) becomes

$$\Theta^{mi}\left(\bar{n}_{mi}\cdot\hat{x}\right) - \frac{q}{m}G\cdot\tau_{ring}\langle B_x\rangle^{mi} = 0, \tag{14}$$

which is not very informative.

Remark 3. To check that eq (14) is correct, assume (9). Then

$$\frac{q}{m}G\tau_{ring}\langle B_x\rangle^{mi}\left(\bar{n}_{mi}\cdot\hat{x}\right) - \frac{q}{m}G\tau_{ring}\langle B_x\rangle^{mi} = 0,$$

and hence

$$\bar{n}_{mi} \cdot \hat{x} = 1$$
,

- which is implied by machine imperfection spin rotations adding up commutatively.
- 38 Remark 4. In general, since

$$\Theta^{mi} = \tau_{ring} \cdot \frac{q}{m} G \sqrt{\langle B_x^{mi} \rangle^2 + \langle B_y^{mi} \rangle^2 + \langle B_z^{mi} \rangle^2},$$

eq (14) implies that

$$(\bar{n}_{mi} \cdot \hat{x}) = \frac{\frac{q}{m} G \tau_{ring} \langle B_x \rangle^{mi}}{\Theta^{mi}}$$

$$= \frac{\langle B_x^{mi} \rangle}{\sqrt{\langle B_x^{mi} \rangle^2 + \langle B_y^{mi} \rangle^2 + \langle B_z^{mi} \rangle^2}}.$$
(15)

Which is correct.

$$\begin{array}{c}
(8) \xrightarrow{(9)+(5)} (10) \xrightarrow{(11)} (13) \\
\downarrow^{(6)+} \\
\downarrow^{(5)+} \\
\downarrow^{(11)} \\
(14)
\end{array}$$

Figure 1: Argument diagram.

Conclusion. In view of Remark 4, since eq (14) implies a valid statement, our conclusion is that the SW method resists the argument from noncommutativity.

3. Assumptions of the Spin Wheel method

Orbital dynamics. Koop2015 eq (7) (henceforth referred to as K(7)) and

$$\langle E_z \rangle = \langle E_z(0) \rangle + \langle G_z \rangle \cdot z$$
 (K\langle E_z\rangle)

$$\rightarrow \langle z \rangle = \frac{\langle E_z(0) \rangle}{\langle G_z \rangle} - \frac{\beta}{\langle G_z \rangle} \cdot \langle B_x \rangle \tag{16}$$

$$\to \Delta = \frac{\beta_1 - \beta_2}{\langle G_z \rangle} \langle B_x \rangle. \tag{17}$$

This is as far as the argument from the non-linearity of the closed orbit shift dependence on the magnetic field is concerned. So long as we believe K(7) and $K\langle E_z \rangle$, we must believe K(9), and hence we cannot use that argument.

Spin dynamics. This is the argument from non-commutativity. For this argument cf. eq (14) and Remark 4, and the following conclusion.

51 4. Argumument against the SW method

The three-fold argument against the SW method is as follows (in the order of strength):

- 1) The possibility of measuring the vertical orbit separation of two cocirculating beams at the sensitivity level of 10^{-12} m has not been shown by experiment. **Counter-argument**: there's reference [1] to commercially-available SQUIDs capable of detecting magnetic fields on the order of fT, which is equivalent to the beam separation of 10^{-12} m.
- (2) Even if a SQUID-based BPM is capable of measuring orbit separation to such precision *locally*, the evaluation of the *mean* orbit separation requires multiple local measurements, and is not identical to the local measurement precision.
 - (3) Orbital and spin dynamics are idependent of each other, meaning that the observables $\vec{\Omega}$ and Δ are not directly related.
- Regarding part (1): a counter to the counter-argument could be that the SQUID magnetic field measurements aren't linearly related to the beam orbit separation.
 - Regarding part (3) of the above argument (argument from statistics): we did a simulation, and confirmed that

$$\sigma[\langle \Delta \rangle] = \frac{a_y}{\sqrt{N_{BPM}}},$$

where a_y is the amplitude of betatron oscillaitons, N_{BPM} is the number of local BPM measurements.

5. Absence of the a_y^2 term in SW equations

59

64

65

Koop stats from the T-BMT equation K(3), which is a differential equation, defining

$$\Omega_x = \frac{q}{m}GB_x$$

⁷⁶ locally. Then, in K(8) he transitions to the average

$$\langle \Omega_x \rangle = \frac{q}{m} G \langle B_x \rangle.$$

I think this is where he performes an invalid operation, by just formally including the LHS and RHS into the angle-brackets.

In our formalism,

$$\langle \Omega_x \rangle \propto G \gamma;$$
 (18)

80 and since

$$\gamma \propto \frac{\langle B_x \rangle}{Q_y} + \kappa \cdot a_y^2,$$

so is $\langle \Omega_x \rangle$.

However, eq (18) is obtained from

$$\begin{split} \Omega_x &= \frac{q}{m} G B_x, \\ \Omega_v &= \frac{qB}{m\gamma}, \\ \frac{\Omega_x}{\Omega_v} &= \frac{qGB}{m} \frac{m\gamma}{qB} = \gamma G. \end{split}$$

82 References

83 [1] D. Kawal, "Relative Beam Position Monitors for the pEDM Experiment." https://apps.fz-juelich.de/pax/paxwiki/images/a/ a9/DKawal_longapp_dmk_20110621.pdf