

nano33 BLE sensor Final Project

Visualization of Signals using Arduino, Node.js & storing signals in MongoDB & mining iot data using Python

Drone-IoT-Comsi, INJE University

2nd semester, 2023

Email: chaos21c@gmail.com

My ID

ID를 확인하고 github에 repo 만들기

ID	성명
AA01	강동하
AA02	고서진
AA03	김민재
AA04	김예원
AA05	김주호
AA06	김창욱
AA07	김현서
AA08	박종혁
AA09	서명진
AA10	유동기
AA11	
AA12	이근보
AA13	정호기

위의 id를 이용해서 github에 repo를 만드시오.

Option: ^{아두이노}응용 실습 과제 – AAnn

Public, README.md check

Arduino: serial monitor

npm install

found 0 vulnerabilities

D:\aann\aann-rpt12\nano33>

db33rgb.js

```
// Schema
24
25  var iotSchema = new Schema({
26
       date : String,
       temperature : String,
27
       humidity : String,
28
       luminosity : String,
29
      pressure : String,
30
      r_ratio : String,
31
      g_ratio : String,
32
      b ratio : String
33
34
    });
```


db33rgb.js

```
// process data using parser
 87
     parser.on('data', (data) => { // call back when data is received
         readData = data.toString(); // append data to buffer
 88
         firstcommaidx = readData.indexOf(',');
 89
         secondcommaidx = readData.indexOf(',',firstcommaidx+1);
 90
         thirdcommaidx = readData.indexOf(',',secondcommaidx+1);
91
         fourthcommaidx = readData.indexOf(',',thirdcommaidx+1);
 92
         fifthcommaidx = readData.indexOf(',',fourthcommaidx+1);
93
         sixthcommaidx = readData.indexOf(',',fifthcommaidx+1);
 94
 95
         // parsing data into signals
 96
         if (readData.lastIndexOf(',') > firstcommaidx && firstcommaidx > 0) {
 97
             temp = readData.substring(firstcommaidx + 1, secondcommaidx);
 98
             humi = readData.substring(secondcommaidx + 1, thirdcommaidx);
 99
             lux = readData.substring(thirdcommaidx + 1, fourthcommaidx);
100
101
             pres = readData.substring(fourthcommaidx + 1, fifthcommaidx);
             rr = readData.substring(fifthcommaidx + 1, sixthcommaidx);
102
             gg = readData.substring(sixthcommaidx + 1, readData.indexOf(',',sixthcommaidx+1));
103
             bb = readData.substring(readData.lastIndexOf(',')+1);
104
```


db33rgb.js

```
108 dStr = getDateString();
109 mdata[0]=dStr; // Date
110 mdata[1]=temp; // temperature data
111 mdata[2]=humi; // humidity data
112 mdata[3]=lux; // luminosity data
113 mdata[4]=pres; // pressure data
114 mdata[5]=rr; // r_ratio
115 mdata[6]=gg;  // g_ratio
116 mdata[7]=bb; // b_ratio
    //console.log(mdata);
117
118 var iotData = new Sensor({date:dStr, temperature:temp, humidity:humi, luminosity:lux, pressure:pres,
119
      r ratio:rr, g ratio:gg, b ratio:bb});
   // save iot data to MongoDB
    iotData.save(function(err,data) {
121
122
        if(err) return handleEvent(err);
        data.info(); // Display the information of iot data on console.
123
124
    1)
```

Layout [H S C]

```
D:\aann\aann-rpt12\nano33>node -v
v16.17.0
D:\aann\aann-rpt12\nano33>node db33rgb
mongo db connection OK.
iotInfo: Current date: 2022-11-14 20:18:48.836, Temp: 25.1, Humi: 55.9, Lux: 112, Pres: 1007.6, R: 27.7, G: 46.1, B: 26.2
iotInfo: Current date: 2022-11-14 20:18:53.882, Temp: 25.2, Humi: 55.9, Lux: 113, Pres: 1007.6, R: 27.5, G: 45.8, B: 26.8
iotInfo: Current date: 2022-11-14 20:18:58.926, Temp: 25.2, Humi: 56.0, Lux: 115, Pres: 1007.6, R: 27.6, G: 45.5, B: 26.9
iotInfo: Current date: 2022-11-14 20:19:03.969, Temp: 25.2, Humi: 56.0, Lux: 114, Pres: 1007.6, R: 27.3, G: 46.2, B: 26.6
iotInfo: Current date: 2022-11-14 20:19:09.013, Temp: 25.2, Humi: 56.0, Lux: 113, Pres: 1007.6, R: 27.5, G: 45.8, B: 26.8
iotInfo: Current date: 2022-11-14 20:19:14.059, Temp: 25.1, Humi: 56.0, Lux: 114, Pres: 1007.6, R: 27.3, G: 46.2, B: 26.6
iotInfo: Current date: 2022-11-14 20:19:19.103, Temp: 25.2, Humi: 56.1, Lux: 113, Pres: 1007.6, R: 27.5, G: 45.8, B: 26.8
iotInfo: Current date: 2022-11-14 20:19:24.145, Temp: 25.3, Humi: 56.4, Lux: 113, Pres: 1007.6, R: 27.5, G: 45.8, B: 26.8
iotInfo: Current date: 2022-11-14 20:19:29.192, Temp: 25.3, Humi: 56.4, Lux: 115, Pres: 1007.6, R: 27.8, G: 45.1, B: 27.1
iotInfo: Current date: 2022-11-14 20:19:34.238, Temp: 25.3, Humi: 56.3, Lux: 11, Pres: 1007.6, R: 36.4, G: 36.4, B: 27.3
iotInfo: Current date: 2022-11-14 20:19:39.281, Temp: 25.3, Humi: 56.2, Lux: 112, Pres: 1007.5, R: 27.3, G: 46.0, B: 26.6
iotInfo: Current date: 2022-11-14 20:19:44.326, Temp: 25.3, Humi: 56.1, Lux: 111, Pres: 1007.6, R: 27.3, G: 46.0, B: 26.6
iotInfo: Current date: 2022-11-14 20:19:49.370, Temp: 25.3, Humi: 56.4, Lux: 113, Pres: 1007.6, R: 27.5, G: 45.8, B: 26.8
iotInfo: Current date: 2022-11-14 20:19:54.413, Temp: 25.3, Humi: 56.2, Lux: 93, Pres: 1007.5, R: 27.1, G: 46.6, B: 26.3
iotInfo: Current date: 2022-11-14 20:19:59.459, Temp: 25.5, Humi: 59.6, Lux: 110, Pres: 1007.6, R: 27.5, G: 45.7, B: 26.8
iotInfo: Current date: 2022-11-14 20:20:04.506, Temp: 25.3, Humi: 60.6, Lux: 96, Pres: 1007.5, R: 27.3, G: 46.3, B: 26.4
iotInfo: Current date: 2022-11-14 20:20:09.548, Temp: 25.5, Humi: 63.0, Lux: 110, Pres: 1007.6, R: 27.0, G: 46.0, B: 27.0
iotInfo: Current date: 2022-11-14 20:20:14.593, Temp: 25.4, Humi: 63.1, Lux: 113, Pres: 1007.5, R: 27.0, G: 46.1, B: 27.0
iotInfo: Current date: 2022-11-14 20:20:19.638, Temp: 25.4, Humi: 62.1, Lux: 113, Pres: 1007.5, R: 27.1, G: 45.7, B: 27.1
iotInfo: Current date: 2022-11-14 20:20:24.683, Temp: 25.4, Humi: 61.5, Lux: 111, Pres: 1007.6, R: 27.3, G: 46.0, B: 26.6
```


express33rgb.js

```
// Schema
   var iotSchema = new Schema({
25
    date : String,
26
   temperature : String,
27
   humidity : String,
28
     luminosity : String,
29
      pressure : String,
30
      r_ratio : String,
31
      g_ratio : String,
      b_ratio : String
32
33
   var Sensor = mongoose.model("Sensor", iotSchema); // sensor data model
```

Network socket/DB server : port=3000

Express server : port=3030

node db33rgb

node express33rgb

```
r □ node
                                                                                                                                                        L on node
D:\aann\aann-rpt12\nano33>node db33rgb
                                                                                                    D:\aann\aann-rpt12\nano33>node express33rgb
                                                                                                    Express IOT is running at port:3030, CORS power
mongo db connection OK.
iotInfo: Current date: 2022-11-14 20:52:35.126, Temp: 25.9, Humi: 54.5, Lux: 109, Pres: 1007.6,
                                                                                                    mongo db connection OK.
 R: 27.2, G: 46.3, B: 26.5
iotInfo: Current date: 2022-11-14 20:52:40.170, Temp: 26.0, Humi: 54.5, Lux: 111, Pres: 1007.6,
 R: 27.3, G: 46.0, B: 26.6
iotInfo: Current date: 2022-11-14 20:52:45.214, Temp: 26.0, Humi: 54.5, Lux: 109, Pres: 1007.6,
 R: 27.2, G: 46.3, B: 26.5
iotInfo: Current date: 2022-11-14 20:52:50.259, Temp: 26.0, Humi: 54.5, Lux: 109, Pres: 1007.5,
 R: 27.0, G: 46.0, B: 27.0
iotInfo: Current date: 2022-11-14 20:52:55.302, Temp: 26.0, Humi: 54.6, Lux: 110, Pres: 1007.6,
 R: 27.2, G: 46.3, B: 26.5
iotInfo: Current date: 2022-11-14 20:53:00.349, Temp: 26.0, Humi: 54.6, Lux: 108, Pres: 1007.6,
 R: 27.4, G: 45.9, B: 26.7
iotInfo: Current date: 2022-11-14 20:53:05.390, Temp: 26.0, Humi: 54.5, Lux: 111, Pres: 1007.6,
 R: 27.3, G: 46.0, B: 26.6
iotInfo: Current date: 2022-11-14 20:53:10.434, Temp: 26.0, Humi: 54.5, Lux: 110, Pres: 1007.6,
 R: 27.0, G: 46.0, B: 27.0
iotInfo: Current date: 2022-11-14 20:53:15.479, Temp: 26.0, Humi: 54.5, Lux: 108, Pres: 1007.5,
 R: 27.2, G: 46.3, B: 26.5
```

http://127.0.0.1:3030/client_33.html

Real-time Weather Station from nano 33 BLE sensors

on Time: 2023-12-13 20:38:31,063

→ 기압 스트리밍 그래프를 4번째 axis로 추가! → 평가

A5.9.8 MongoDB management

[DIY]

- 1. iot33 db의 최근 데이터 1500개를 csv 파일 (aann_iot33_800.csv)로 저장하시오.
- 저장된 aann_iot33_800.csv 파일을 public/data 폴더에 복사.
- csv 파일을 이용하는 Rangeslider가 포함된 웹 클라이언트 client_33csv.html 파일을 완성하시오.
- localhost:3030/client 33csv.html 로 실행하고 확인.

[hint] iot33 db의 최근 데이터 500개를 csv 파일 (iot_500.csv)로 저장할 때,

mongoexport /db:iot33 /collection:sensors /sort:"{ id: -1}" /limit:500 /fields:date,temperature,humidity,luminosity/type:csv/out:iot 500.csv

client 33csv.html

코드를 와성하시오.

public ^{폴더에 저}장

Save AAnn THLP db.png

작업 폴더 구조 [2023-nano33-project]

[Practice]

- ◆ [wk15]
- > IoT Project: nano33ble
- Multi-sensor circuits: T,H,L,P
- Complete your project
- Upload folder: aann-rpt14
- Use repo "aann" in github

wk15: Final Project: aann-rpt14

- [Target of this week]
 - Complete your works
 - Save your outcomes and upload outputs in github

제출폴더명: aann-rpt14

- 제출할 파일들
 - Arduino code
 - 2 nano33 folder
 - 3 aann_THLP.png
 - 4 aann_THLP_iot.png
 - ⑤ nano33/public/ *.html
 - 6 nano33/public/data/aann_iot33_800.csv
 - 7 node_modules 폴더는 삭제