ПРОЛЕТ 2017

Задача 1. Ако	$10^2 \times \sqrt{0.0121} = 11^M,$	пресметнете M .	
A) 1	B) 4	C) 6	D) друг отговор
Задача 2. Ако	$a+b=\sqrt{2}$ и $a\times b=$	= 0, пресметнете числе	ната стойност на израза
	$(a-\sqrt{2})\times(b)$	$(b-\sqrt{2})-(a+\sqrt{2})\times(a+\sqrt{2})$	$b+\sqrt{2}$).
A) 4	B) 2	C) – 4	D) – 2
Задача 3. Ако	p, q и r са прости чис	ла, такива че $51 + p = 6$	+ q = 22 + r, пресметнете
		p+q+r.	
A) 80	B) 81	C) 100	D) не може да се определи
Задача 4. Кол	ко са равнобедренит	е триъгълници със стр	ани цели числа сантиметри и
обиколка 10 см	1?		
A) 0	B) 1	C) 2	D) повече от 2
Задача 5. Чети	ириъгълникът <i>АВСО</i>	е трапец с основи АВ	и CD ($AB > CD$). Диагоналите
AC и BD се пр	есичат в точка O, а л	ицата на триъгълници	те AOD и COD са съответно б
<i>cm</i> ² и 4 <i>cm</i> ² . К	Солко cm^2 е лицето на	а трапеца?	
A) 19	B) 25	C) 36	D) 49
Задача 6. Коя в	е най-голямата стойн	ост на израза $2x - x^2$?
A) 10	B) 11	C) 1	D) 2
Задача 7. Колк	со най-много са пресе	чните точки на 10 прав	и в равнината?
A) 25	B) 30	C) 35	D) 45
Задача 8. Ако	0 < x - 1 < 9, onpe,	делете броя на целите	отрицателни стойности, които
приема израза	$2 - \frac{x}{2}$.		
A) 0	B) 1	C) 2	D) повече от 2
Задача 9. За к	солко цели стойности	и на параметъра <i>а</i> ураг	внението $ax^2 - 6x + 1 = 0$ се
удовлетворява	само за едно число х	?	
A) 0	B) 1	C) 2	D) повече от 2
Задача 10. Да	се пресметне лице	го на фигурата, която	е заградена от графиката на
функцията $y =$	x-2 и координати	ните оси.	
A) 1	B) 2	C) 4	D) 6
Задача 11. Ак	о всеки участник в е	един шахматен турнир	изиграе по 1 партия с всички
участници, ще	бъдат изиграни общо	66 партии. Колко са уч	настниците?
Задача 12. Кой	и са корените на урав	нението $x^2 \times x-3 $ —	$2 \times 6 - 2x = 0?$
Задача 13. То	чките M , N , P и Q с	а среди съответно на с	страните AB, BC, CD и DA на
четириъгълник	а <i>ABCD</i> . Ако четири	иъгълникът MNPQ е пр	оавоъгълник и диагоналите на

четириъгълника ABCD са равни на 4 cm и 8 cm, да се пресметне лицето на правоъгълника MNPQ.

Задача 14. Числата a, b, c, d, e и f са различни цели положителни числа, а числото x е такова, че x = a + b + c = d + e + f.

Пресметнете a + b + c + d + e + f за най-малката възможна стойност на x.

Задача 15. Ако $a \neq b$ и $a \times b > 0$, пресметнете стойността на израза

$$\frac{\sqrt{a^2} - \sqrt{b^2}}{\sqrt{(a-b)^2}}.$$

Задача 16. Ако разделим 98765432 на 8, кои цифри няма да използваме при записване на частното?

Задача 17. На дъската са записани естествените числа от 1 до 11 включително. Учениците в класа играят на следната игра: един ученик излиза на дъската, изтрива две от числата и на тяхно място записва сбора им, намален с 1. След това излиза втори ученик и прави същото с числата на дъската. После излиза трети ученик и т.н. Играта продължава, докато на дъската остане едно число. Кое е числото, което е останало на дъската?

Задача 18. Два от корените на биквадратното уравнение $x^4 - ax^2 + b = 0$, където a и b са параметри, са $\sqrt{2}$ и (- $\sqrt{3}$). Да се пресметне a - b.

Задача 19. За колко цели стойности на параметъра a, уравнението $x^2 + 10 - a^2 = 0$ няма решение?

Задача 20. Даден е триъгълник *ABC*. През два негови върха са построени прави, пресичащи противоположнате страни. По този начин триъгълникът е разделен на 12 непресичащи се части. Ако построим 99 прави през единия връх и 999 прави през друг връх на колко части ще разделим триъгълника?

