TÉLÉCHARGER EN PDF

SITUATION

Un point $M\left(x;y
ight)$ appartient à C_f , la courbe représentative d'une fonction f, si et seulement si $x\in D_f$ et $f\left(x
ight)=y$.

ÉNONCÉ

On considère une fonction f, définie par :

$$orall x \in \mathbb{R}$$
 , $f\left(x
ight) = \cos\left(x
ight)\sin\left(x
ight)$

Démontrer que le point $A\left(rac{\pi}{4};rac{1}{2}
ight)$ appartient à C_f , la courbe représentative de f.

ETAPE 1

Réciter le cours

On rappelle qu'un point $M\left(x;y
ight)$ appartient à C_{f} si et seulement si $x\in D_{f}$ et $f\left(x
ight)=y$.

APPLICATION

Le point A appartient à $\,C_f\,$ si et seulement si $\,rac{\pi}{4}\in D_f\,$ et $\,f\left(rac{\pi}{4}
ight)=rac{1}{2}\,.$

ETAPE 2

Vérifier que $x \in D_f$ et calculer $f\left(x ight)$

On vérifie que $\,x\in D_{f}\,$ et on calcule $\,f\left(x
ight) .$

APPLICATION

$$D_f=\mathbb{R}$$
 , donc $\,rac{\pi}{4}\in D_f$.

On calcule $f\left(rac{\pi}{4}
ight)$:

$$f\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{4}\right)$$

$$f\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2}$$

$$f\left(\frac{\pi}{4}\right) = \frac{\left(\sqrt{2}\right)^2}{4}$$

$$f\left(\frac{\pi}{4}\right) = \frac{1}{2}$$

ETAPE 3

Conclure

- Si $x\in D_f$ et $f\left(x
 ight)=y$, on en déduit que le point $M\left(x;y
 ight)$ appartient à C_f .
- ullet Si $x\in D_f$ et $f\left(x
 ight)
 eq y$, on en déduit que le point $M\left(x;y
 ight)$ n'appartient pas à C_f .
- ullet Si $x
 otin D_f$, on en déduit que le point $M\left(x;y
 ight)$ n'appartient pas à C_f .

APPLICATION

On a bien
$$\,rac{\pi}{4}\in D_f\,$$
 et $\,f\left(rac{\pi}{4}
ight)=rac{1}{2}\,.$

On en déduit que le point $A\left(rac{\pi}{4};rac{1}{2}
ight)$ appartient à C_f .

Sommaire

- 1 Réciter le cours
- 2 Vérifier que $\,x\in D_f\,$ et calculer $f\left(x
 ight)$
- 3 Conclure

I