

Probability and Stochastic Processes

Lecture 01: Functions, Cardinality, Countability

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

29 July 2024

Functions

Definition (Function)

Given two sets A, B, a function $f: A \to B$ is a rule that maps each element of A to a unique element of B.

• For every $x \in A$,

$$f: x \mapsto f(x) \in B$$

- A is called the domain of f
- *B* is called the co-domain of *f*

Note

While every element of A is mapped to some element of B, the converse may not always be true.

Range of a Function

Definition (Range)

The range of a function $f: A \to B$, denoted by R(f), is the subset of B defined as

$$R(f) = \Big\{ \gamma \in B : \gamma = f(x) \text{ for some } x \in A \Big\}.$$

- Given $x \in A$, if f(x) = y, then y is called the image of x (under f)
- Given $y \in B$, the set $f^{-1}(y) := \{x \in A : f(x) = y\}$ is called the pre-image of y

Image and Pre-Image

- A function $f:A\to B$ is said to be injective if f is one-one, i.e., each element of R(f) has a unique pre-image
- A function $f: A \rightarrow B$ is said to be surjective if it is *onto*, i.e., range = codomain
- A function $f: A \to B$ is said to be bijective if it is both injective and surjective

Note

- If $f: A \to B$ is bijective, then for each $y \in B$, there exists a unique element $x \in A$ such that $f^{-1}(y) = \{x\}$. In this case, we simply write $f^{-1}(y) = x$.
- Alternatively, if $f:A\to B$ is bijective, we have $f^{-1}:B\to A$.

Cardinality

Definition (Cardinality)

Notation: |A| = cardinality of set A

- Two sets A and B are said to be equicardinal (|A|=|B|) if there exists $f:A\to B$ bijective.
- $|B| \ge |A|$ if there exists $f: A \to B$ injective
- |B| > |A| if there exists $f: A \to B$ injective, and A and B are not equicardinal (i.e., no bijective function mapping A to B exists)

Note

|A| is representative of the number of elements in A.

Countability

- A set A is said to be finite if A is empty or $|A|=|\{1,\ldots,n\}|=n$ for some $n\in\mathbb{N}$
- A set A is said to be countably infinite if $|A|=|\mathbb{N}|$, where $\mathbb{N}=\{1,2,\ldots\}$ denotes the set of natural numbers
- A set A is countable if either $|A| < +\infty$ or $|A| = |\mathbb{N}|$

Remark

If *A* is countably infinite, then its elements may be listed as $A = \{a_1, a_2, \ldots\}$.

Examples of Countable Sets

- Set of odd natural numbers, set of even natural numbers
- Set of integers, $\mathbb{Z} = \{0, +1, -1, +2, -2, \ldots\}$
- Set of prime numbers
- Set of rational numbers, $\mathbb Q$

Q is Countable - Proof

Step 1: $\mathbb{Q} \cap [0, 1]$ is countable. Indeed, note that

$$\mathbb{Q} \cap [0,1] = \left\{0, 1, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \frac{1}{6}, \frac{5}{6}, \dots\right\}.$$

Step 2: "Countable union of countable sets is countable."

Lemma

Let \mathcal{I} be a countable index set, and let $\{A_i : i \in \mathcal{I}\}$ be a countable collection of countable sets. Then, $\bigcup_{i \in \mathcal{I}} A_i$ is countable.

Step 3: Complete the proof using the above lemma.

Uncountable Sets

Definition (uncountable sets)

A set *A* is said to be uncountable if it is not countable, i.e., if $|A| > |\mathbb{N}|$.

Some examples of uncountable sets:

- Unit interval, [0, 1]
- Set of all real numbers, ℝ
- Set of all irrational numbers, $\mathbb{R} \setminus \mathbb{Q}$
- Set of all infinite length binary strings, denoted commonly as $\{0,1\}^{\mathbb{N}}$ or $\{0,1\}^{\infty}$
- Power set of \mathbb{N} (collection of all subsets of \mathbb{N}), denoted $2^{\mathbb{N}}$

It suffices to demonstrate that there exists an injective map but no bijective map from \mathbb{N} to $\{0,1\}^{\mathbb{N}}$.

It suffices to demonstrate that there exists an injective map but no bijective map from \mathbb{N} to $\{0,1\}^{\mathbb{N}}$.

Injective map: Define $f: \mathbb{N} o \{0,1\}^\mathbb{N}$ by

f(n) = infinite binary string with '1' in the n th index.

It suffices to demonstrate that there exists an injective map but no bijective map from \mathbb{N} to $\{0,1\}^{\mathbb{N}}$.

Injective map: Define $f: \mathbb{N} o \{0,1\}^\mathbb{N}$ by

f(n) = infinite binary string with '1' in the n th index.

No bijective map: Suppose there exists a bijective map $g:\mathbb{N} o \{0,1\}^\mathbb{N}$. Let

$$g: n \mapsto a_{n1} a_{n2} a_{n3} \cdots,$$

where $a_{nj} \in \{0, 1\}$ for all n, j.

It suffices to demonstrate that there exists an injective map but no bijective map from \mathbb{N} to $\{0,1\}^{\mathbb{N}}$.

Injective map: Define $f: \mathbb{N} o \{0,1\}^\mathbb{N}$ by

f(n) = infinite binary string with '1' in the n th index.

No bijective map: Suppose there exists a bijective map $g:\mathbb{N} o \{0,1\}^\mathbb{N}$. Let

$$g: n \mapsto a_{n1} a_{n2} a_{n3} \cdots,$$

where $a_{nj} \in \{0, 1\}$ for all n, j.

Cantor's diagonalisation argument: Consider the binary string

$$b = \bar{a}_{11} \, \bar{a}_{22} \, \bar{a}_{33} \cdots$$

where $\bar{a}_{jj}=1-a_{jj}$ for all $j\in\mathbb{N}$. Then, $\nexists\,n\in\mathbb{N}$ such that g(n)=b. Thus, g is not a bijection.

[0, 1] is Uncountable - Proof

Let

$$\mathcal{D}=\left\{d_1=rac{1}{2},d_2=rac{1}{4},d_3=rac{3}{4},d_4=rac{1}{8},\dots
ight\} \ - \ ext{set of dyadic rational numbers}$$

[0, 1] is Uncountable - Proof

Let

$$\mathcal{D}=\left\{d_1=rac{1}{2},d_2=rac{1}{4},d_3=rac{3}{4},d_4=rac{1}{8},\dots
ight\} \ - \ ext{set of dyadic rational numbers}$$

Define $g: \{0,1\}^{\mathbb{N}} \to [0,1]$ defined as

$$g:b=(b_1\,b_2\,\cdots)\mapsto egin{cases} \sum_{k=1}^\infty rac{b_k}{2^k}, & b
otin\mathcal{D},\ d_1, & b=(100\,\cdots)\ d_2, & b=(011\,\cdots)\ d_3, & b=(0100\,\cdots)\ d_4, & b=(0011\,\cdots)\ dots \end{cases}$$

Prove that *g* is a bijection!

- $2^{\mathbb{N}}$ is uncountable exercise!
- ullet R is uncountable Consider the function $f:[0,1] o\mathbb{R}$ defined via

$$f(x) = \tan\left(\pi x - \frac{\pi}{2}\right), \quad x \in [0, 1].$$

• $\mathbb{R} \setminus \mathbb{Q}$ is uncountable Write \mathbb{R} as

$$\mathbb{R} = (\mathbb{R} \setminus \mathbb{Q}) \cup \mathbb{Q}.$$

Reading Exercise

To be acquainted with the formal proof of the lemma introduced on slide 7, see [Royden and Fitzpatrick, 2010, Section 1.3].

Royden, H. and Fitzpatrick, P. M. (2010). *Real Analysis*. China Machine Press