Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 12

Version 2

Math 237 – Linear Algebra

Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard V1.

Mark:

Let V be the set of all polynomials with the operations, for any $f, g \in V$, $c \in \mathbb{R}$,

$$f \oplus g = f' + g'$$
$$c \odot f = cf'$$

(here f' denotes the derivative of f).

- (a) Show that this scalar multiplication \odot distributes over vector addition \oplus .
- (b) Determine if V is a vector space or not. Justify your answer.

Solution: Let $f, g \in \mathcal{P}$, and let $c \in \mathbb{R}$.

$$c \odot (f \oplus g) = c \odot (f' + g') = c(f' + g')' = cf'' + cg'' = cf' \oplus cg' = c \odot f \oplus c \odot g.$$

However, this is not a vector space, as there is no zero vector. Additionally, $1 \odot f \neq f$ for any nonzero polynomial f.

Standard V3. $\begin{bmatrix}
\mathbf{Standard V3.} & & & \\
& & \\
\mathbf{Does span} \left\{ \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix}, \begin{bmatrix} 3 \\ 12 \\ -9 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} -4 \\ 2 \\ -8 \end{bmatrix} \right\} = \mathbb{R}^3?$

Solution: Since

$$\text{RREF} \begin{bmatrix} 2 & 3 & 1 & -4 \\ -1 & 12 & 2 & 2 \\ 4 & -9 & 3 & -8 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

lacks a zero row, the vectors span \mathbb{R}^3 .

Standard V4.

Mark:

Determine if the set of all lattice points, i.e. $\{(x,y) \mid x \text{ and } y \text{ are integers}\}$ is a subspace of \mathbb{R}^2 .

Solution: This set is closed under addition, but not under scalar multiplication so it is not a subspace.

|--|