Performance-Portable Implicit Scale-Resolving Compressible Flow Using libCEED

SIAM CSE 2023

James Wright, Jed Brown, Kenneth Jansen, Leila Ghaffari February 27, 2023

Ann and H.J. Smead Department of Aerospace Engineering Sciences

Outline

- 1. libCEED Overview
- 2. Compressible Fluid Equations in libCEED
- 3. Efficient Implicit Timestepping
- 4. Performance and Results of Flat Plate Boundary Layer Simulation

libCEED Overview

- · C library for element-based discretizations
 - · Bindings available for Fortran, Rust, Python, and Julia

- · C library for element-based discretizations
 - · Bindings available for Fortran, Rust, Python, and Julia
- Designed for matrix-free operator evaluation

- · C library for element-based discretizations
 - · Bindings available for Fortran, Rust, Python, and Julia
- Designed for matrix-free operator evaluation
- Portable to different hardware via computational backends
 - Code that runs on CPU also runs on GPU without changes
 - · Computational backend selectable at runtime, using runtime compilation

- C library for element-based discretizations
 - · Bindings available for Fortran, Rust, Python, and Julia
- Designed for matrix-free operator evaluation
- Portable to different hardware via computational backends
 - · Code that runs on CPU also runs on GPU without changes
 - · Computational backend selectable at runtime, using runtime compilation
- Geared toward high-order finite element discretizations

- · C library for element-based discretizations
 - · Bindings available for Fortran, Rust, Python, and Julia
- Designed for matrix-free operator evaluation
- Portable to different hardware via computational backends
 - Code that runs on CPU also runs on GPU without changes
 - · Computational backend selectable at runtime, using runtime compilation
- · Geared toward high-order finite element discretizations
- Performance demonstrated for solids in Brown et al. 2022¹
 - · Want to apply those methods and lessons-learned to fluids

¹Performance Portable Solid Mechanics via Matrix-Free p-Multigrid, Brown et al., arXiv:2204.01722

$$A = \mathcal{P}^T \mathcal{E}^T B^T D B \mathcal{E} \mathcal{P}$$

global domain all (shared) dofs

T-vector

$$A = \mathcal{P}^T \mathcal{E}^T B^T D B \mathcal{E} \mathcal{P}$$

$$A = \mathcal{P}^T \mathcal{E}^T B^T D B \mathcal{E} \mathcal{P}$$

$$A = \mathcal{P}^T \mathcal{E}^T B^T DB \mathcal{E} \mathcal{P}$$

$$A = \mathcal{P}^T \mathcal{E}^T B^T DB \mathcal{E} \mathcal{P}$$

$$A = \mathcal{P}^T \mathcal{E}^T B^T DB \mathcal{E} \mathcal{P}$$

Compressible Fluid Equations in libCEED

Compressible Navier-Stokes

$$\mathbf{A_0}\mathbf{Y}_{.t} + \mathbf{F}_{i.i}(\mathbf{Y}) - S(\mathbf{Y}) = 0$$

for

$$\mathbf{A_0} \underbrace{\begin{bmatrix} p \\ u_i \\ T \end{bmatrix}}_{\mathbf{Y}} = \begin{bmatrix} \rho \\ \rho u_i \\ \rho e \end{bmatrix}, \quad \mathbf{F}_i(\mathbf{Y}) = \underbrace{\begin{pmatrix} \rho u_i \\ \rho u_i u_j + p \delta_{ij} \\ (\rho e + p) u_i \end{pmatrix}}_{\mathbf{F}_i^{\text{adv}}} + \underbrace{\begin{pmatrix} 0 \\ -\sigma_{ij} \\ -\rho u_j \sigma_{ij} - kT_{,i} \end{pmatrix}}_{\mathbf{F}_i^{\text{diff}}}, \quad S(\mathbf{Y}) = -\begin{pmatrix} 0 \\ \rho \mathbf{g} \\ 0 \end{pmatrix}$$

Find $oldsymbol{Y} \in \mathcal{S}^h$, $orall oldsymbol{v} \in \mathcal{V}^h$

$$\int_{\Omega} \boldsymbol{v} \cdot \left[\boldsymbol{A_0} \boldsymbol{Y}_{,t} - \boldsymbol{S}(\boldsymbol{Y}) \right] d\Omega + \int_{\Omega} \boldsymbol{v} \cdot \boldsymbol{F}_{i,i}(\boldsymbol{Y}) d\Omega$$

Find $\boldsymbol{Y} \in \mathcal{S}^h$, $\forall \boldsymbol{v} \in \mathcal{V}^h$

$$\int_{\Omega} \boldsymbol{v} \cdot \left[\boldsymbol{A_0} \boldsymbol{Y}_{,t} - \boldsymbol{S}(\boldsymbol{Y}) \right] d\Omega - \int_{\Omega} \boldsymbol{v}_{,i} \cdot \boldsymbol{F}_i(\boldsymbol{Y}) d\Omega + \int_{\partial \Omega} \boldsymbol{v} \cdot \boldsymbol{F}_i(\boldsymbol{Y}) \cdot \widehat{\boldsymbol{n}}_i d\partial \Omega$$

Find $oldsymbol{Y} \in \mathcal{S}^h$, $orall oldsymbol{v} \in \mathcal{V}^h$

$$\int_{\Omega} \boldsymbol{v} \cdot \left[\boldsymbol{A_0} \boldsymbol{Y}_{,t} - \boldsymbol{S}(\boldsymbol{Y}) \right] d\Omega - \int_{\Omega} \boldsymbol{v}_{,i} \cdot \boldsymbol{F}_i(\boldsymbol{Y}) d\Omega + \int_{\partial \Omega} \boldsymbol{v} \cdot \boldsymbol{F}_i(\boldsymbol{Y}) \cdot \widehat{\boldsymbol{n}}_i d\partial \Omega$$

$$+ \int_{\Omega} \mathcal{L}^{\text{adv}}(\boldsymbol{v}) \boldsymbol{\tau} \left[\boldsymbol{A_0} \boldsymbol{Y}_{,t} + \boldsymbol{F}_{i,i}(\boldsymbol{Y}) - \boldsymbol{S}(\boldsymbol{Y}) \right] d\Omega = 0$$
SUPG

Find $\boldsymbol{Y} \in \mathcal{S}^h$. $\forall \boldsymbol{v} \in \mathcal{V}^h$

$$\int_{\Omega} \boldsymbol{v} \cdot \left[\boldsymbol{A_0} \boldsymbol{Y}_{,t} - \boldsymbol{S}(\boldsymbol{Y}) \right] d\Omega - \int_{\Omega} \boldsymbol{v}_{,i} \cdot \boldsymbol{F}_i(\boldsymbol{Y}) d\Omega + \int_{\partial \Omega} \boldsymbol{v} \cdot \boldsymbol{F}_i(\boldsymbol{Y}) \cdot \hat{\boldsymbol{n}}_i d\partial \Omega$$

$$+ \int_{\Omega} \mathcal{L}^{\text{adv}}(\boldsymbol{v}) \boldsymbol{\tau} \left[\boldsymbol{A_0} \boldsymbol{Y}_{,t} + \boldsymbol{F}_{i,i}(\boldsymbol{Y}) - \boldsymbol{S}(\boldsymbol{Y}) \right] d\Omega = 0$$
SUPG

Simplify into residual form:

$$\mathcal{G}(\boldsymbol{Y}_{,t},\boldsymbol{Y})=0$$

Find $oldsymbol{Y} \in \mathcal{S}^h$, $orall oldsymbol{v} \in \mathcal{V}^h$

$$\int_{\Omega} \boldsymbol{v} \cdot \left[\boldsymbol{A_0} \boldsymbol{Y}_{,t} - \boldsymbol{S}(\boldsymbol{Y}) \right] d\Omega - \int_{\Omega} \boldsymbol{v}_{,i} \cdot \boldsymbol{F}_i(\boldsymbol{Y}) d\Omega + \int_{\partial \Omega} \boldsymbol{v} \cdot \boldsymbol{F}_i(\boldsymbol{Y}) \cdot \hat{\boldsymbol{n}}_i d\partial \Omega$$

$$+ \int_{\Omega} \mathcal{L}^{\text{adv}}(\boldsymbol{v}) \boldsymbol{\tau} \left[\boldsymbol{A_0} \boldsymbol{Y}_{,t} + \boldsymbol{F}_{i,i}(\boldsymbol{Y}) - \boldsymbol{S}(\boldsymbol{Y}) \right] d\Omega = 0$$
SUPG

Simplify into residual form:

$$\mathcal{G}(\mathbf{Y}_{,t}, \mathbf{Y}) = 0$$

$$\Rightarrow \quad \mathcal{P}^{T} \mathcal{E}^{T} B^{T} G B \mathcal{E} \mathcal{P} \begin{bmatrix} \mathbf{Y}_{,t} \\ \mathbf{Y} \end{bmatrix} = 0$$

Efficient Implicit Timestepping

Implicit timestepping requires solving:

$$\frac{\mathrm{d}\mathcal{G}(\boldsymbol{Y}_{,t},\boldsymbol{Y})}{\mathrm{d}\boldsymbol{Y}}\Delta\boldsymbol{Y} = -\mathcal{G}(\boldsymbol{Y}_{,t},\boldsymbol{Y})$$

Implicit timestepping requires solving:

$$rac{\mathrm{d}\mathcal{G}(oldsymbol{Y}_{,t},oldsymbol{Y})}{\mathrm{d}oldsymbol{Y}}\Deltaoldsymbol{Y} = -\mathcal{G}(oldsymbol{Y}_{,t},oldsymbol{Y})$$

 \cdot System too large for direct solve \longrightarrow iterative solve

Implicit timestepping requires solving:

$$rac{\mathrm{d}\mathcal{G}(oldsymbol{Y}_{,t},oldsymbol{Y})}{\mathrm{d}oldsymbol{Y}}\Deltaoldsymbol{Y} = -\mathcal{G}(oldsymbol{Y}_{,t},oldsymbol{Y})$$

- \cdot System too large for direct solve \longrightarrow iterative solve
- Krylov subspace methods used most commonly

Implicit timestepping requires solving:

$$\frac{\mathrm{d}\mathcal{G}(\boldsymbol{Y}_{,t},\boldsymbol{Y})}{\mathrm{d}\boldsymbol{Y}}\Delta\boldsymbol{Y} = -\mathcal{G}(\boldsymbol{Y}_{,t},\boldsymbol{Y})$$

- \cdot System too large for direct solve \longrightarrow iterative solve
- Krylov subspace methods used most commonly
- · Krylov solvers form solution basis from $\operatorname{span}\left\{\left[\frac{\mathrm{d}\mathcal{G}(\boldsymbol{Y}_{\!,t},\boldsymbol{Y})}{\mathrm{d}\boldsymbol{Y}}\right]^n\Delta\boldsymbol{Y}\right\}_{n=0}$

Implicit timestepping requires solving:

$$\frac{\mathrm{d}\mathcal{G}(\boldsymbol{Y}_{,t},\boldsymbol{Y})}{\mathrm{d}\boldsymbol{Y}}\Delta\boldsymbol{Y} = -\mathcal{G}(\boldsymbol{Y}_{,t},\boldsymbol{Y})$$

- \cdot System too large for direct solve \longrightarrow iterative solve
- Krylov subspace methods used most commonly
- Krylov solvers form solution basis from $\operatorname{span}\left\{\left[\frac{\mathrm{d}\mathcal{G}(\boldsymbol{Y}_{\!,t},\boldsymbol{Y})}{\mathrm{d}\boldsymbol{Y}}\right]^n\Delta\boldsymbol{Y}\right\}_{n=0}$

Bottom Line

Cost of $\frac{\mathrm{d}\mathcal{G}(Y_{,t},Y)}{\mathrm{d}Y}\Delta Y$ dominates implicit timestepping cost

Jacobian Matrix-Vector Multiply Options

How to compute $\frac{\mathrm{d}\mathcal{G}(\pmb{Y}_{\!,t},\pmb{Y})}{\mathrm{d}\pmb{Y}}\Delta\pmb{Y}$?

Jacobian Matrix-Vector Multiply Options

How to compute
$$\frac{\mathrm{d}\mathcal{G}(\pmb{Y}_{\!,t},\pmb{Y})}{\mathrm{d}\pmb{Y}}\Delta\pmb{Y}$$
?

- Store $\frac{\mathrm{d}\mathcal{G}}{\mathrm{d}\mathbf{Y}}$ directly (sparse matrix representation)
 - Pros: Opens up preconditioning options
 - · Cons: Is large, expensive to store

Jacobian Matrix-Vector Multiply Options

How to compute
$$\frac{\mathrm{d}\mathcal{G}(\boldsymbol{Y}_{\!,t},\boldsymbol{Y})}{\mathrm{d}\boldsymbol{Y}}\Delta\boldsymbol{Y}$$
?

- Store $\frac{d\mathcal{G}}{d\mathbf{v}}$ directly (sparse matrix representation)
 - · Pros: Opens up preconditioning options
 - · Cons: Is large, expensive to store
- Finite difference matrix-free approximation:

$$\frac{\mathrm{d}\mathcal{G}(\boldsymbol{Y}_{,t},\boldsymbol{Y})}{\mathrm{d}\boldsymbol{Y}}\Delta\boldsymbol{Y}\approx\frac{\mathcal{G}(\boldsymbol{Y}_{,t},\boldsymbol{Y}+\epsilon\Delta\boldsymbol{Y})-\mathcal{G}(\boldsymbol{Y}_{,t},\boldsymbol{Y})}{\epsilon}$$

- · Pros: Just need a residual evaluation, cheap (in programming and computation)
- Cons: Accuracy limited to $\sqrt{\epsilon_{\text{machine}}}$, preconditioning require partial assembly

$$\frac{\mathrm{d}\mathcal{G}}{\mathrm{d}\boldsymbol{Y}}\Delta\boldsymbol{Y} = \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{Y}} \left[\mathcal{P}^T \mathcal{E}^T B^T G B \mathcal{E} \mathcal{P} \right] \Delta \boldsymbol{Y}$$
$$= \left[\mathcal{P}^T \mathcal{E}^T B^T \frac{\mathrm{d}G}{\mathrm{d}\boldsymbol{Y}} B \mathcal{E} \mathcal{P} \right] \Delta \boldsymbol{Y}$$

$$\frac{\mathrm{d}\mathcal{G}}{\mathrm{d}\boldsymbol{Y}}\Delta\boldsymbol{Y} = \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{Y}} \left[\mathcal{P}^{T} \mathcal{E}^{T} B^{T} G B \mathcal{E} \mathcal{P} \right] \Delta \boldsymbol{Y}$$
$$= \left[\mathcal{P}^{T} \mathcal{E}^{T} B^{T} \frac{\mathrm{d}G}{\mathrm{d}\boldsymbol{Y}} B \mathcal{E} \mathcal{P} \right] \Delta \boldsymbol{Y}$$

$$\frac{\mathrm{d}\mathcal{G}}{\mathrm{d}\boldsymbol{Y}}\Delta\boldsymbol{Y} = \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{Y}} \left[\mathcal{P}^T \mathcal{E}^T B^T G B \mathcal{E} \mathcal{P} \right] \Delta \boldsymbol{Y}$$
$$= \left[\mathcal{P}^T \mathcal{E}^T B^T \frac{\mathrm{d}G}{\mathrm{d}\boldsymbol{Y}} B \mathcal{E} \mathcal{P} \right] \Delta \boldsymbol{Y}$$

$$\frac{\mathrm{d}\mathcal{G}}{\mathrm{d}\mathbf{Y}}\Delta\mathbf{Y} = \frac{\mathrm{d}}{\mathrm{d}\mathbf{Y}} \left[\mathcal{P}^{T} \mathcal{E}^{T} B^{T} G B \mathcal{E} \mathcal{P} \right] \Delta\mathbf{Y}$$

$$= \left[\mathcal{P}^{T} \mathcal{E}^{T} B^{T} \frac{\mathrm{d}G}{\mathrm{d}\mathbf{Y}} B \mathcal{E} \mathcal{P} \right] \Delta\mathbf{Y}$$

$$\underbrace{\begin{array}{c} \mathbf{Y}_{t}, \mathbf{Y} \\ \text{op_residual} \\ \text{op_residual} \\ \text{op_store at quad points} \end{array}}_{\text{intermediate data}} \underbrace{\begin{array}{c} \Delta\mathbf{Y} \\ \text{op_jacobian} \\ \text{op_jacobian} \\ \text{op_store at quad points} \end{array}}_{\text{op_jacobian}}$$

- **Pros:** Exact Jacobian matrix-vector product²
- · Cons: Preconditioning requires partial assembly, requires coding Jacobian

$$\frac{\mathrm{d}\mathcal{G}}{\mathrm{d}\boldsymbol{Y}}\Delta\boldsymbol{Y} = \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{Y}} \underbrace{\left[\mathcal{P}^T \mathcal{E}^T B^T G B \mathcal{E} \mathcal{P}\right]}_{(p_{-})} \Delta \boldsymbol{Y}$$

$$= \underbrace{\left[\mathcal{P}^T \mathcal{E}^T B^T \frac{\mathrm{d}G}{\mathrm{d}\boldsymbol{Y}} B \mathcal{E} \mathcal{P}\right]}_{(p_{-})} \Delta \boldsymbol{Y}$$

$$= \underbrace{\left[\mathcal{P}^T \mathcal{E}^T B^T \frac{\mathrm{d}G}{\mathrm{d}\boldsymbol{Y}} B \mathcal{E} \mathcal{P}\right]}_{(p_{-})} \Delta \boldsymbol{Y}$$

$$\underbrace{\left[\mathcal{P}^T \mathcal{E}^T B^T \frac{\mathrm{d}G}{\mathrm{d}\boldsymbol{Y}} B \mathcal{E} \mathcal{P}\right]}_{(p_{-})} \Delta \boldsymbol{Y}$$

$$\underbrace{\left[\mathcal{P}^T \mathcal{E}^T B \mathcal{E}^T B \mathcal{E} \mathcal{P}\right]}_{(p_{-})} \Delta \boldsymbol{Y}$$

$$\underbrace{\left[\mathcal{P}^T \mathcal{E}^T B \mathcal{E}^T B \mathcal{E} \mathcal{P}\right]}_{(p_{-})} \Delta \boldsymbol{Y}$$

- Pros: Exact Jacobian matrix-vector product²
- Cons: Preconditioning requires partial assembly, requires coding Jacobian

²Affect of specific terms may be ignored from the Jacobian. This is done for $d\tau/dY$

Performance and Results of Flat Plate Boundary Layer Simulation

Problem Description

- Flat plate boundary layer with zero pressure gradient
 - $Re_{\theta} \approx 970$ boundary layer at inflow, $M \approx 0.1$
 - · Synthetic turbulence generation (STG) used for inflow structures
 - · Run at implicit large eddy simulation (ILES) resolution for linears (higher orders may be DNS level, tbd)
- Test 3 different order elements, Q_1, Q_2, Q_3 tensor-product hexes
- Maintain DOF resolution (DoFs per physical length/ global DoF count)
- Performance results shown for two nodes of ALCF's Polaris (4× NVIDIA A100 per node)

 \cdot Sparse $\mathrm{d}\mathcal{G}/\mathrm{d}oldsymbol{Y}\Deltaoldsymbol{Y}$ significantly slower than matrix-free

- Sparse $\mathrm{d}\mathcal{G}/\mathrm{d}m{Y}\Deltam{Y}$ significantly slower than matrix-free
- \cdot Time to assemble $\mathrm{d}\mathcal{G}/\mathrm{d}oldsymbol{Y}$ quite large

- Sparse $d\mathcal{G}/dY\Delta Y$ significantly slower than matrix-free
- Time to assemble $d\mathcal{G}/dY$ quite large
- Associated costs rise with element order

Fluids Performance Analysis

Fluids Performance Analysis

 \cdot Time of $\mathrm{d}\mathcal{G}/\mathrm{d}oldsymbol{Y}\Deltaoldsymbol{Y}$ decreases as order increases

Fluids Performance Analysis

- Time of $\mathrm{d}\mathcal{G}/\mathrm{d}\boldsymbol{Y}\Delta\boldsymbol{Y}$ decreases as order increases
- $\mathrm{d}\mathcal{G}/\mathrm{d}\boldsymbol{Y}$ setup time increases with order
 - · Dominant cost is partial matrix assembly for preconditioning

Results of Flat Plate Boundary Layer

- Spanwise statistics implemented to verify scale-resolving results
- · Results not converged, but show realistic stress profiles

Zaki et al., 2013, From Streaks to Spots and on to Turbulence: Exploring the Dynamics of Boundary Layer Transition Schlatter et al., 2010, Assessment of direct numerical simulation data of turbulent boundary layers Wu et al., 2017, Transitional-turbulent spots and turbulent-turbulent spots in boundary layers

Support and References

- · Research supported by US Department of Energy through DE-SC0021411 FASTMath SciDAC Institute
- Argonne Leadership Computing Facility resources used for this research
- We thank PETSc and libCEED developers, especially Jeremy Thompson and Junchao Zhang among many others

Appendix Slides

James Wright · SIAM CSE 2023 |

Performance Exact Matrix-Free Jacobian via CeedOperator

Matrix-Free Application Comparison (Reproduced from Brown et al. 2022). Not from fluids code, but representative of libCEED matrix-free

Performance Exact Matrix-Free Jacobian via CeedOperator

Matrix-Free Application Comparison (Reproduced from Brown et al. 2022). Not from fluids code, but representative of libCEED matrix-free

- Significant differences with performance implications
 - Fluids run over 2 nodes → network latency present
 - · Solids code lower in FLOPs and storage per DoF

Performance Exact Matrix-Free Jacobian via CeedOperator

Matrix-Free Application Comparison (Reproduced from Brown et al. 2022). Not from fluids code, but representative of libCEED matrix-free

- · Significant differences with performance implications
 - Fluids run over 2 nodes → network latency present
 - · Solids code lower in FLOPs and storage per DoF
- · Significant increase in efficiency for $Q_1, Q_2 \rightarrow Q_3$