

EMICOHOLOTEURS

The EF6809 is a revolutionary high-performance 8-bit microprocessor which supports modern programming techniques such as position indepen dence, reentrancy, and modular programming.

This third-generation addition to the 6800 Family has major architectural improvements which include additional registers, instructions, and addressing modes

The basic instructions of any computer are greatly enhanced by the presence of powerful addressing modes. The EF6809 has the most complete set of addressing modes available on any 8-bit microprocessor today

The EF6809 has nardware and software features which make it an ideal processor for higher level language execution or standard controller applica-

EF6800 COMPATIBLE

- Hardware Interfaces with All 6800 Peripherals
- Software Upward Source Code Compatible Instruction Set and Addressing Modes

ARCHITECTURAL FEATURES

- Two 16-Bit Index Registers
- Two 16-Bit Indexable Stack Pointers
- Two 8-Bit Accumulators can be Concatenated to Form One 16-Bit Accumulator
- Direct Page Register Allows Direct Addressing Throughout Memory

HARDWARE FEATURES

- On-Chip Oscillator (Crystal Frequency = 4 x E)
- DMA/BREQ Allows DMA Operation on Memory Refresh
- Fast Interrupt Request Input Stacks Only Condition Code Register and Program Counter
- MRDY Input Extends Data Access Times for Use with Slow
- Interrupt Acknowledge Output Allows Vectoring by Devices
- Sync Acknowledge Output Allows for Synchronization to External Event
- Single Bus-Cycle RESET
- Single 5-Volt Supply Operation
- NMI Inhibited After RESET Until After First Load of Stack Pointer
- Early Address Valid Allows Use with Slower Memories
- Early Write Data for Dynamic Memories

SOFTWARE FEATURES

- 10 Addressing Modes
 - 6800 Upward Compatible Addressing Modes
 - Direct Addressing Anywhere in Memory Map
 - Long Relative Branches
 - Program Counter Relative
 - True Indirect Addressing
 - Expanded Indexed Addressing.
 - 0-, 5-, 8-, or 16-Bit Constant Offsets
 - 8- or 16-8it Accumulator Offsets
 - Auto Increment/ Decrement by 1 or 2
- Improved Stack Manipulation
- 1464 Instructions with Unique Addressing Modes
- 8 x 8 Unsigned Multiply
- 16-Bit Arithmetic
- Transfer, Exchange All Registers
- Push, Pull Any Registers or Any Set of Registers
- Load Effective Address

HMOS

(HIGH DENSITY N-CHANNEL, SILICON-GATE)

8-BIT MICROPROCESSING UNIT

F	PIN ASSIGNMENT	
VSSI ПМП ПРО С ЕПРО С 85 С 84 С VCC С 40 С 41 С	1 • 40 2 39 3 38 4 37 5 36 6 35 7 34 8 33 9 32	IMACT INTAL IENTAL IMPOY IQ IE IOMA, BREQ IR:W
A2 (A3 (A5 (A5 (A7 (A8 (A9 (A11 (A12 (11 30 12 29 13 28 14 27 15 26 16 25 17 24 19 23	100 101 102 103 104 105 106 107 1415 1414

NOVEMBER 1986 1/39

FIGURE 4 - PROGRAMMING MODEL OF THE MICROPROCESSING UNIT

S - Hardware Stack Pointer U - User Stack Pomilier Y Indea Register X - Index Register

Accomplates Prairies Brajectors

FIGURE 3 - BUS TIMING TEST LOAD

C = 30 pF for BA, BS 130 pF for 00 D7, E, O 90 pF for AO A15, R/W

R = 11 7 kB for 00 07 16 5 kB for A0 A15, E. Q. B/W 24 kB for BA, BS

PROGRAMMING MODEL

As shown in Figure 4, the EF6809 adds three registers to the set available in the EF6800. The added registers include a direct page register, the user stack pointer, and a second index register

ACCUMULATORS (A. B. D)

which are used for authmetic calculations and manipulation The A and B registers are general purpose accumulators

register, and is formed with the A register as the most signifiform a single 16 bit accumulator. This is referred to as the D Certain instructions concalenate the A and B registers to

DIRECT PAGE REGISTER (DP)

The direct page register of the EF6809 serves to enhance the direct addressing mode. The content of this register atmass at the higher address outputs (AB-A15) during direct addressing instruction execution. This allows the digrain control. To ensure 6800 compatibility, all bits of rect mode to be used at any place in memory, under prothis register are cleared during processor reset

INDEX REGISTERS (X, Y)

ing. The 16 list address in this register takes part in the ed to point to the rest item of tabular type data. All four constant or register offset. During some indexed market, the to point to data directly or may be madded by an infinited colculation of effective addresses. This address may be used pointer registers (X, Y, U, S) may be used as nake registers contents of the midex righster aim incremented or ekstrement The index registers are used in individe totals of addition

STACK POINTER (U,S)

the processor thring subrording calls and interrupts. The stack pointers of the EF6B09 point to the top of the stack, in ciently as a stack processor, greatly enhancing its ability to controlled exclusively by the pringrammin. This allows contrast to the EF6800 stack pointer, which pointed to the support higher level languages and modular productional and Pull instructions. This allows the EF6809 to last real officapabilities as the X and Y registers, but also surport Push Both stack pointers have the same nukered made with event next free location on the stack. The user stack pointer diff is arguments to be passed to and from subroutings with rever The hardwarn stack pointer (S) is used antenuelically by

PROGRAM COUNTER

the address of the next instruction to be executed by the pro counter to be used like an index register in some situations cessor. Relative addressing is provided allowing the program The program counter is used by the processor to point to

CONDITION CODE REGISTER

cessor at any given time. See Figure 5 The condition code register defines the state of the pro

FIGURE 5 CONDITION CODE REGISTER FORMAT

CC - Quantition Could Beapster

Data I P.ap. Brapater

CONDITION CODE REGISTER DESCRIPTION

BIT 0 (C)

complement of the entry from the houry AUD binary ALU. C. is also need to expressed a Tamore from substant like instructions (CMP, NLC, SUB, SUC, and is the This O is the carry flag, and is awardly the carry born the

BIT 1 IVI

tion which causes a superf type's complement and orders to overflow. This overflow is detected in an operation in which the earry from the MSD in the ALU does not match the corre from Ilx; MSB 1 Bit his the genethan that, and ease this a rate for an edeca-

BIT 2 (Z)

privious operation was electrically zero Bit 2 is the zero flag, and is sold to a most differential the

171117717171717177

FIGURE 9 - IRO AND NMI INTERRUPT TIMING

NOTE: Waveform measurements for all inputs and outputs are specified at logic high = 2.0 V and logic low = 0.8 V unless otherwise specified.

E clock shown for reference only.

THOMEON CEMICONDINCTELING

11/39

NOTE. Waveform measurements for all induts and dutduts are specified at logic high = 2.0 V and logic low = 0.8 V unless atherwise specified in Ecology shown for reference grily.

XTAL. EXTAL

CONTRACT ter because should be observed in the layout of printed circuit an external parallel resonant crystal. Alternately, the pin times the hos frequency. See Enjoye 7. Proper RE layout by grounding XTAL. The crystal or external frequency is four EXTAL may be used as a FIL level input for external turing These inputs are used to con. If the on thip oscillator to

... O

E is similar to the EF6800 bits timing signal phase 2. O is a quadrature clock signal which leads E=0 has no parrallel on hading edge of O. Data is latched on the falling edge of E the EF6800. Addresses from the MPU will be valid with the timing for E and O is shown in Figure 11

YORM.

crissor during "don't care" bus necesses. MIIOY may also be no effect on stretching (and O, this inhibits slowing the pro During rum valid minimory access (VMA cycles), MRDY has ing interface to slow memories, as shown in Figure 12tal ed in integral multiples of quarter (%) bus cycles, thus allow MRDY is high. When MRDY is low, E and O may be stretchextend data access time. E and O operate normally while This input control signal allows stretching of E and O to

> has been transferred to an external device (through the use of FIACT and $\overline{DMA/BILEO}$). used to stretch clocks flor slow memory) when bus control

OMYLBUEO.

memory refresh shown in Figure 13. Typical uses include DMA and dynamic execution and acquiring the MPU bus for another use, as The DMAZBREO input provides a method of suspending

cycles dead cycle. See Figure 14. The self-refresh counter is only cleared if DMA/BREO is inactive for two or more MPU Self-refresh requires one bus cycle with a leading and trailing bus cycles before the MPU retrieves the bus for self-refresh. BS to a one. The requesting device will now have up to 15 and of the current cycle unless pre-empted by self-refresh The MPU will acknowledge DMA/BREO by setting BA and A low level on this pin will stop instruction execution at the

the DMA controller cycle will be a dead cycle used to transfer bus mastership to When the MPU replies by setting BA and BS to a one, that by asserting UMA/BREO pin low on the leading edge of E Typically, the DMA controller will request to use the bus

LOW in any cycle when BA has changed cycles by developing a system DMAVMA signal which is f also normary accesses may be prevented during any dead

NOTE Waveform measurements for all inputs and outputs are specified at logic high 2.0 V and logic low 0.8 V unless otherwise specified

accesses memory to allow transfer of bus mastership without contention off the hus. Another dead cycle will clapse helore the MPU HIGH or MPU self refreshl, the DMA device should be taken When BA goes low leither as a result of OMA/BREO =

During normal operation, the MPU telches an instruction

tion are SWI, SWI2, SWI3, CWAI, RTI, and SYNC. An interrupt, HALT, or BMA/BREO can also after the normal rely unless aftered by a special instruction or hardware occur rence. Software instructions that after normal MPU operaecution of instructions. Figure 15 illustrates the flowchart for the EF6809 This sequence begins after RESET and is repeated indefinite

MPU OPERATION

from memory and then executes the requested function

MAIOY FIGURE 12 - MRDY TIMING AND SYNCHRONIZATION (e) Thring · trcs

^{*} The on-board clock generator furnishes E and O to both this system and the MPU. When MRDY is pulled low, both the system clocks and the minimal MPU clocks are stretched. Assertion of DMA/BRFD input stops the internal MPU clocks while allowing the external system clocks to mutifice, refersee the bus to a DMA controlled. The internal MPU clocks require operation after DMA/BRFD is refersed or after 16 bus cycles (14 DMA, 1904 dead). Whichever occurs first While DMA/BRFD is asserted it is sometimes increasing to pull MRDY low to allow DMA for from stow memory (peripherals As both MRDY and DMA/BRFD control the internal MPU clocks, care must be exercised not to violate the maximum love specification for MRDY or DMA/BRFD in MAXIMED and DMA/BRFD in MAXIMED and DMA/BRFD is 18 ps.)

ADDRESSING MODES

ed by the presence of powerful addressing modes. The ETG009 has the most complete set of addressing modes available on any microcomputer today. For example, the ming techniques. The following addressing modes are avail-LEGBOY has 59 hasic instructions, however, it recognites modes. The addressing modes support modern program able on the EF6809 : ldfol different variations of instructions and addressing The basic instructions of any computer are greatly enhance

Inherent (includes accumulator) Immediate

paparol : 3

[vinded indirect

Duect parapal Helsiban

Constant Offset Zero Ollsel

Accumulator Offset Auto Increment/Decrement

Independ Induced

Helative

Frogram Counter Relative Addressing Short/Long Relative Branching

INHERENT (INCLUDES ACCUMULATOR)

inherent addressing are: ABX, DAA, SWI, ASRA, and contains all the address information necessary. Examples of in this addressing mode, the opende of the instruction

IMMEDIATE ADDRESSING

data to be used in the instruction immediately following the in immediate addressing. The effective address of the data is the location immediately following the opcode file. The opende of the instruction. The EF6809 uses both 8: and mediate addressing are specified by the opcode. Examples of instructions with im-16 bit immediate values depending on the size of argument

(Dx /srood 00 1320

LDY /CAT

NOTE

decimal value I signifies immediate addressing. S signifies hexa-

EXTENDED ADDRESSING

mediately following the opcode fully specify the 16-bit effectended addressing include address and is not position independent. Examples of ex generated by an extended instruction defines an absolute tive address used by the instruction. Note that the address In extended addressing, the contents of the two bytes im-

<u>(</u>0 CA **MOUSE**

> contain the address of the data. addressing ldiscussed below), one level of indirection may be added to extended addressing. In extended indirect, the two tivies following the positivite of an indexed instruction EXTENDED INDIRECT - As in the special cash of indexed

STU Š DOGI SEFFE CAI

DIRECT ADDRESSING

addrossing are. direct addressing. This mode requires less memory and executes faster than extended addressing. Of course, only page register. Since only one byte of address is required in upper eight bits of the address are supplied by the direct that only one byte of address follows the opcode. This byte specifies the lower eight bits of the address to be used. The allowed in direct addressing. Some examples of direct ble with direct addressing on the 6800. Indirection is not to 500 on reset, direct addressing on the EF 6000 is compatithe contents of the DP register. Since the DP register is set 756 locations tone pagel can be accessed without redefining Direct addressing is similar to extended addressing except

Š

SETUP \$10 (assembler directive) \$ 1030 < CAT

d = Offset Bit 1 = Indirect

addressing < is an assembler directive which forces direct

REGISTER ADDRESSING

is called a positivite. Some examples of register addressing... register or set of registers to be used by the instruction. This -Some opcodes are followed by a byte that defines a

SHS EXG × 0. × × 0. × × 0. × Exchanges A with B
Push Y, X, B and A onto S Pull D. X. and Y from U Transfers X into Y

INDEXED ADDRESSING

mats for the postbyte. Table 2 gives the assembler form and indexed addressing for each variation. the number of cycles and bytes added to the basic values for the pointer register to be used. Figure 16 lists the legal forhasic type and variation of the addressing mode as well as below. The posibyte of an indexed instruction specifies the Five basic types of indexing are available and are discussed lective address of the operand to be used by the instruction. Y, U. S. and sometimes PCI is used in a calculation of the ef-In all indexed addressing, one of the pointer registers (X

x = Don't Care

' similar to constant offert indexed except that the two's coexplainent value in one of the accumulators (A, B, or D) and the contents of one of the pointer registers are added to ACCUMULATOR OFFSET INDEXED This mode is

> x = \$1000 A = XX (don't care) Before Execution

LOA 1510.XI EA is now \$F010

50100

FIGURE 16 - INDEXED ADDRESSING POSTBYTE REGISTER BIT ASSIGNMENTS

be used by the instruction. This is the fastest indexing mode pointer register contains the effective address of the data to

ZENO-OFFSET INDEXED . In this made, the selected

	$\overline{}$				_		_		r-	_	_	_	_	_		\Box
	上	_	_	-	-	-	-	-	_	-	_	-	-	٥	7	
_ (=	-	×	=	3	33	R	n	3	3	æ	7	7	=	3	
_ ([=	×	×	3	3	3	7	B	2	2	æ	73	2	3	5	Postbyle
{	E	-	-	-	-	-	-	-	-	-	0	-	0	2	-	7
1	-	-	-	-	-	-	0	0	0	0	0	0	0	۵	į	egis
	-	-	-	0	0	0	-	-	-	٥	0	0	c	1	2	Negister Bit
\cap	-	0	0	-	0	o	-	o	0	-	-	0	0	a.	-	-
(-	-	0		-	0	0	-	0		0	-	0	a.	0	
Arkinssina Maria Field	EA = 1.Addiess!	EA + FC + 16 Bit Offer	EA - FC + B Bi Offset	EAR + D Olisei	EA - ,A . 18 Bit Ollset	EA = .R + 8 R+ O!!set	EA - , IT + ACCA Ollsel	EA = , N + ACCB Offset	EA R + O Ollsel	A		,,,,,,,	יחי	[A N + 5 Bit Ollset	Mode	Indexed

by the addition operand. The pointer register's initial content is unchanged registers are added to form the effective address of the complement offset and the contents of one of the printer CONSTANT OFFSET INDEXED - In this mode, a two's Examples are Three sizes of offsets are available 5 bit (- 16 to + 15) 8 bit ! - 128 to + 1271 g ٥. ×

Size automatically. size of this offsat since the essembler will select the optimal most casos the programmer need not be conserred with the 10-bit offset is in the two bytes following the positiving in single byte following the postbyte. The two scomplement cycles. The two's complement 8 bit offect is contained in a byte and, therefore, is most efficient in use of hytes and The two's complement 5-bit offert is included in the rost 16 bit 1 - 32769 to + 327671

Examples of constant-offset indexing are

(Sign bit when by = 0) Indusct Field

Register Field 20 4 X

3

בפלמ 707 23.X - 2.S 300.×

	TABLE 2 -	TABLE 2 - INDEXED ADDRESSING MODE	RESSING MODE						
		Non Indirect	rdrect			indirect	80		لــا
1,770	Forme	Amembler	Posibyia	•	•	Assembler	Posibyie	<u>-</u>	-
		Form	Opcode	1	-	Form	Ope ods	1	_
Consient Offset From R	No Offset		100100101	0	٥	[.n.	1771 10100	ات	0
(2s Complement Offsets)	5-Bit Offset		ORRIMONO	_	0	defaults to 8 bit	10 B bil		
	8 Bit Offset		18801000	-	-	(n, F)	COLLBUI	ا۔	_
	16 Bit Offset	э. Я	1001001		~	(n. R)	10011991	-	~
Accumulator Offset From R	A Register Offset	А. П	18700110	-	0	[A, R]	011011111	_	0
12s Complement Olisetsi	B Register Offset	ย. ก	19100191	_	0	[8, A]	10101 1111	-	0
	D Register Offset	0, 7	11010111	_	0	10, A)	110114111	,	0
Auto increment/Decrement R	increment By 1	.71+	1,000000	~	0	nc1 al	not allowed		
`	Increment By 2	,R · ·	100001	3 0	0	[.4.4]	ומשומשו	о ъ	9
	Decrement By 1	, - A	171700010	~	7 0	pawone lou	pawor		
	Decrement By 2	, Ā	INNOCOII	J	0	l nj	110011111	ĵ,	0
Constant Offset From PC	8 Dit Offset	n, PCR	1x+01100	_	1	In, FCRI	1,,11100	4	_
12s Complement Offsets)	16 Bit Offset	n, FCR	1xx01101	5	7	in, PCRI	14.11101	8	~
Extended Indirect	16 Bit Address	-	1	,	١	ĺn	10011111	5 2	~
R = X, Y, U, or S RR:									
3	•								

EF6809

INSTRUCTION SET

the 6800 and is upward compatible at the source code level he number of opcodes has been reduced from 72 to 59, but The instruction set of the EF6009E is similar to that of

Transfer/Euchange Posityle

Source Destination

offert can be calculated by a program at run time advantage of an accumulator offset is that the value of the to use as an offset and no additional bytes are required. The by the addition. The positivie specifies which accumulator both the accumulator and the pointer register are unchanged form the effective address of the operand. The contents of complement value in one of the accumulators (A. B. or DI similar to constant offset indexed except that the two's and the contents of one of the pointer registers are added to ACCUMULATOR OFFSET INDEXED

Some examples are (OA Č 9.4

. Э. х

to be accessed and is selectable by the programmer. The pre-decrement, post-increment nature of these modes low addresses. The size of the increment/ decrement can be increment, but the tables, etc., are scanned from the high to tains the address of the operand. Then, after the pointer that techanolidentically to the U and S stacks allows them to be used to create additional software stacks either one or two to allow for tables of either 8- or 16-bit data the data. The use of auto degreenent is similar to that of auto pointer register is decremented prior to use as the address of or for the creation of software stacks. In auto decrement, the ing mode is useful in Stripping through tables, moving data, ingister is used it is incremented by one or two. This address auto increment addressing mode, the pointer register con AUTO INCREMENT/DECREMENT INDEXED .. In the

dressing modes are Some examples of the auto increment/decrement ad

510 9 . - Y . - - S .Y++

(0)

to calculate the effective address. Care should be taken in performing operations on 16-bit pointer registers (X. Y. U. S.) where the same register is used

Consider the following instruction:

STX 0,X + + 1X initialized to 01

following occurs: SOXXII then increment X to point to \$0002. In reality, the The desired result is to store zero in locations \$0000 and

0 -- lemp X - (lempl X - 7 - X do store operation perform auto increment calculate the EA; temp is a holding register

the exception of auto increment/decrement by one or a ± 4 bit offset, may have an additional level of indirection cumulator is loaded indirectly using an effective address calculated from the index register and an offsot tained at the location specified by the contents of the index specified in indirect addressing, the effective address is conregister plus any offset. In the example below, the A ac-INDEXED INDIRECT - All of the indexing modes, with

	Belore Execution A = XX Idon't care!	· •
\$0100	x = \$1000 LDA \$10,X1	EA is now \$F010
\$1010	SF 1	SF150 is now the
\$1011	\$50	new EA
\$1 150	\$^^	
	Affer Execution	
	$\Lambda = $\Lambda\Lambda \text{ Actual Data Loaded}$ X = \$F000	ia Loaded
All mor	des of indexed indire	All modes of indexed indirect are included except which are meaningless to g., auto increment/decreme
	and managers to g	roto incrementy decreme

one induce! Some examples of indexed inducet are: ent by

70. 00) 18.41 .×+ + 110.51 ×

RELATIVE ADDRESSING

a signed offset which may be added to the program counter memory can be reached in long relative addressing as an elective address is interpreted modulo 216. Some examples of bytes offsett relative addressing modes are evailable. All of If the branch condition is true, then the calculated address relative addressing are: Program execution continues at the new location as in-dicated by the PC; short fone byte offsett and long tiwo IPC is gived offself is loaded into the program counter The bytelst following the branch opcode is farel treated as

HABBIT	RAI	-			DOG	CAT			
NOP	NOP	•	•	•	(BG1	CBEO	BGT	030	
					RABBIT	RAT	DOG	CAT	
					(long)	(long)	(short)	(short)	

programs. Lables related to a particular routine will maintain as the pointer register with 8- or 16-bit signed offsets. As in the same relationship after the routine is moved. relative addressing is used for writing position independent used as the address of the operand or data. Program counter create the effective address. The effective address is then relative addressing. The offset is added to the current PC to referenced refative to the program counter. Examples are: PROGRAM COUNTER RELATIVE - The PC can be used

CDA CEAX TABLE, PCR CAT, PCR

additional level of indirection is available. Since program counter relative is a type of indexing, an

IDOG, PCR (CAT, PCR)

INSTRUCTION SET

the 6000 and is upward compatible at the source code level dressing modes, the number of available opcodes (with different addressing modes) has usen from 197 to 1464 The number of opcodes has been reduced from 72 to 59, but because of the expanded architecture and additional ad-Some of the new instructions are described in detail The instruction set of the EF6809E is similar to that of

> Somer transfer/[whange Posibyte

Orstination

Register Field

1000 - A 1010 - CCN

PSHU/PSHS

either the hardware stack ISE or user stack IUI any single register or set of registers with a single instruction The push instructions have the capability of pushing onto

LEAX/LEAY/LEAU/LEAS

All other combinations are undefined and INVALID

NOTE

0101 - PC 0100-5 0-100 W - DICK x - 1000 0000 - 01 V BI

The LEA fload effective address) works by calculating the

PULU/PULS

instruction, in reverse order. The byte immediately following the push or pull opcode determines which register or pull, as shown below quenco is lixed, each bit defines a unique register to push or registers are to be pushed or pulled. The actual push/pull se The pull instructions have the same capability of the push

and tables in a position independent manner. For example

<u>~</u>

MSGI, FCII

LBSR FUNIA (print message roution)

The LEA instruction also allows the user to access data

the implications of this instruction are illustrated in Table 3 addressing hardware available to the programmer pointer register. This makes all the leatures of the internal that address value, rather than the data at that address, in a effective address used in an indexed instruction and stores

TFR/EXG

Within the EF6809E, any register may be transferred to or exchanged with another of like size i.e., 8 bit to 8 bit or 16 bit to 16 bit. Bits 4-7 of postbyte define the source register, while bits 0.3 mpresent the destination register. These are denoted as follows:

•	MSGI
•	FCC
	SS3W.

pointer register. This code is totally position independent This sample program prints "MESSAGE". By writing MSG1, PCR, the assembler computes the distance between the present address and MSG1. This result is placed as a from the PC will put the absolute address of MSG1 into the x the code is located when it is executed, the computed offsol from the PC value at the time of execution. No matter where constant into the LEAX instruction which will be indexed

holding register (temp). Card must be exercised when using the LEA instructions with the auto increment and auto LEV8 'P+ operations. The LEA internal spaurnca is outlined as follows decrement addressing modes due to the sequence of internal The LEA instructions are very powerful and use an internal lany of the 18 bit pointer registers X, Y,

2 b+1-b 1. b - temp U. or S may be substituted for a and bi tcatculate the (A) Imodily b, postincrement)

LEAM . - b

lemp - a

3. lemp - a 2 6-1-6 I. b - I - Iemp fload at Icalculate EA with predecigment Imodify b. predecrement)

TABLE 3 - LEA EXAMPLES

The section of the section	Operation	Comment
LEAX 10. X	LEAX 10. X + 10 - X	Adds 5-Bit Constant 10 to X
LEAX 500, X	LEAX 500. X X + 500 - X	Adds 16 Bit Constant 500 to X
LEAY A. Y	A. Y + A - Y	Adds 8. Bit A Accomplator to Y
LEAY D.Y	D.Y Y+D -Y	Adds 16-Bit D Accumulator to Y
(EAU - 10, U	(EAU - 10. U U - 10 U	Substracts 10 from U
LEAS - 10. S	5 - 10 - 5	Used to Reserve Area on Stack
LEAS 10. S	S + 10 - S	Used to 'Clean Up' Stack
EAX 5. S	LEAX 5.5 5 - X	Transfers As Well As Adds

ELOOOA

Auto increment by two and auto discrement by two instruc-tions work similarly. Note that LEAX: X+ does not change X-howner, LEAX: - X does decrement, LEAX-1, X should he used to increment X by one

3

procesion multiplications Multiplies the unsigned binary numbers in the A and B accumulator and places the unsigned result into the 16-bit D $_{\rm c}$ accumulator. The unsigned multiply also allows multiple

LONG AND SHORT RELATIVE BRANCHES

anywhere in the 64X memory map. Position indispendent code can be easily generated through the use of relative branching. Both short (8 bill and long (16 bill branches are if the branch is to be taken, the B. or 16 bit signed offset is available effective address. This allows the program to branch added to the value of the program counter to be used as the branching throughout the entire memory map. In this mode, h EF 6809 has the capability of program counter relative

SYNC

maskable (EIRO, IRO) with its mask bit (F or I) clear, the prointerrupt. If the pending interrupt is non-maskable (NMI) or sens state, stops processing instructions, and waits for an instruction state and continue processing by executing the next in line with its mask bit (F or I) set, the processor will clear the sync he taken. If the pending interrupt is maskable (FIRO, IRO) three bus cycles is required to assure that the interrupt will not edge triggered, a low level with a minimum duration of rupt stacking and service routine. Since FIRO and IRO are cossor will clear the sync state and perform the normal inter After encountering a sync instruction, the MPU enters a Figure 17 depicts sync timing

SOFTWARE INTERRUPTS

dehugging, trace operations, memory mapping, and soft-ware development systems. Three levels of SVVI are available on the EF (8009), and are prioritized in the following order: SWI, SWIZ, SWIZ A software interrupt is an instruction which will cause an interrupt and its associated vector fetch. These software informpts are useful in operating system calls, software

CYCLE-BY-CYCLE OPERATION

subtracts, transfers, exchanges, pushes, and pulls these instructions include loads, stores, compares, adds

The EF 6809, has the capability of processing 16 bit data

bus, $\Pi/\overline{M} = 1$ and $\theta S = 0$. The following examples illustrate the use of the chart. put I Next, the operation of each opcode will follow the flewchart $\nabla M \tilde{\Lambda}$ is an indication of EFFF16 on the address next byte, so this technique considerably speeds through gram byte is always fetched. (Most instructions will use the While that opcode is being internally decoded, the next pro-EF0309, Each instruction begins with an opcode fetch (8) illustrates the memory-access sequence corresponding to each possible instruction and addressing mode in the The address bus cycle by cycle performance chart (Figure

Example 1: LOSR (Branch Taken) Before Execution SP = F000

2000			\$8000	
CAT				
•	•	•	LBSM	
			CAT	

CYCLE-BY-CYCLE FLOW

-	777	à	# À	4 1 1 NO 1	# 78 7
•	_				
	•	• •	• • •	8	8
_	_			0	0
VMX Cycle	VIXIX Cycle	VMX Cycle Computed Branch Address	VMA Cycle Computed Branch Address VMA Cycle	VXIX Cycle Computed Branch Addres VXIX Cycle Stock High Order Byta of	VMA Cycle Computed Branch Address VMA Cycle Stack High Order Byta of Return Address

Example 2: DEC (Extended)

5000 OEC \$A000

\$V6000

ŝ

CYCLE-BY-CYCLE FLOW

Store the Occiomented Data	0	7F	8	7
VMA Cycle	_	•	1111	œ
Read the Date	_	3	â	5
VMX Cycle	_	•	1111	_
Operand Address, Low Byte	_	8	8002	ب
Operand Address, High Byle	_	۵	800	~
Opcode Faich	-	7^	8000	_
R/W Description	3	Date	Address	Cycle

The data bus has the data at that particular address

16 BIT OPERATION

INSTRUCTION SET TABLES

into five different categories. They are as follows: The instructions of the EF6809 have been broken down

8-bit operation (Table 4)

16-bit operation (Table 5) Index register/stack pointer instructions (Table 6)

Relative branches flong or short! (Table Miscellaneous Instructions (Table 8)

Table 9 Hexadecimal values for the instructions are given

PROGRAMMING AID

programming the EF6809. Figure 19 contains a compilation of data that will assist in

- NOTES 1 If the associated
- is when the interrupt is requested, this cycle will be an instruction fetch from pocress location PC = 1. However, if the is unmasked FIAQ or IRQL interrupt processing continues with this cycle as in on Figures 9 and 10 (Interrupt Firming). FIAQ must be haid low for three cycles to guarantee interrupt to be taken, although only one cycle is necessary to brid. terrupt is accepted (NMI) or an II mask bits are clear (RQ and the processor out of SYNC Waveform measurements for a are specified at logic high 2.0 V and logic low 0.3 V

FIGURE 18 - CYCLE-BY-CYCLE PERFORMANCE (Sheet 2 of 9)

FIGURE 18 - CYCLE-RY-CYCLE PERFORMANCE (Short 1 of 9)

CI DODS

EF6809

THORROOM STREETONETIST

The index register is incremented tollowing the indexed access

Indexed Addressing Mocks

Post fivie

NNNN . 121

8 BH Offset

16 Bit Offset

A/B Ollset

From II

NNNN . 7(3)

NNNN + 2131

NNNN . ZIJI

NNNN . 21JI

Unn I Cair

Ollselligh

Don'i Care

01154

F

Don't Care

Oliseilow

Don'l Care

Ξ

ING . NNWN

Ugn'l Care

===

INNN + JIAI

NNNN . 4(5)

NNNN - AISI

Don t Car

===

Don't Care

Don't Care Ξ

Don't Care

FIGURE 18 - CYCLE-BY-CYCLE PERFORMANCE (Sheet 8 of 9)

FIGURE 18 - CYCLE-BY-CYCLE PERFORMANCE (Shiet 7 of 9)

(1)

Ellective Address IEAI

ANDCC. ORCC IImmediate Only) NNNN . 2 Dan'l Care NNNN + 1 Data Ellective Address (All Except (mmediate) ADCA/B. ADDA/B. ANDA/B. BITA/B. CMPA/B. LDA/B. LDA/B. SBCA/B. SBCA/B. V.3 STA/B (All Except Immediate) Register (Wille) 7 Projetice Low Register High 7 facept Immediatel 510 (\$15 510 (\$1x) Register Low (Write) Register High (Write) 7 7

Direct	Constant Offset from PC 8 Bit Offset 16 Bit Offset	Auto Increment/Decrement R Increment by I Increment by 2 Decrement by 1 Decrement by 2	Accumulator Olisel from R A Register Olisel B Register Olisel D Register Olisel	Constant Offset from R No Offset 5 Bit Offset 8 Bit Offset 18 Bit Offset
Direct Fage Register Address Low	Program Counter + Offset Byte Program Counter + Offset High Byte Offset Low Byte	Index Register Index Register Index Register - 1 Index Register - 2	Index Register + A Register Index Register + B Register Index Register + D Register	Inder Register Index Register Index Register + Post Byre Index Register + Post Byre High Post Byre Low

Extended

Address High Address Low

mmediale

The index register is incremented following the indexed access

FIGURE 18 - CYCLE-BY-CYCLE PERFORMANCE (Short 9 of 9)

Effective Address (EA)

Accumulator Offset from R
A Register Offset
B Register Offset
D Register Offset No Offset from R 5 Bit Offset B Bit Offset 16 Bit Offset Index Register + A Register Index Register + B Register Index Register + D Register Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Register
Inde A Registe

Index Register Index Register Index Register - 1 Index Register - 2

Auto Increment/Decrement R
Increment by 1
Increment by 2
Oncrement by 1
Oncrement by 1
Oncrement by 2 Constant Offset from PC

Program Counter + Offset Byte
Program Counter + Offset High Byte Offset Low Byte

Ornce Page Register Address Low

Address High Address Low

Orrect

16 Bit Offset

following the indeed access Trie index register is incremented aleiparuni f alended

TABLE 4 - 8 BIT ACCUMULATOR AND MEMORY INSTRUCTIONS

Mnemonic(s)	Operation
ADCA, ADCO	Add memory to accumulator with carry
4004, 4008	אול ה-פיחסיץ זס אכנעודעיופוסי
ANDA, ANDB	And memory with accumulator
VSL. VSLV. VSLB	Arithmetic shift of accumulator or memory left
ASA, ASAA, ASAB	Anthmetic shift of accumulator or memory right
B118 'V118	Bit tost memory with accumulator
CLM, CLMA, CLMB	Clear accumulator or memory location
CMPA, CMPB	Compare memory from accumulator
сом, сомл, сомв	Complement accumulator or memory location
DAA	Uncomal adjust A accumulator
טנכ, טנכא, טנכנ	Decrement accumulator or memory location
EORA, EORB	Exclusive or memory with accumulator
EXG RI, RZ	Exclunge #1 with #2 (#1, #2 = A, B, CC, ()(1)
INC, INCA, INCB	Increment accumulator or memory lucation
(0A, (08	Load accumulator from memory
LŠL, LŠLÁ, LŠLA	Logical shift left accumulator or memory location
ISM, LSMA, LSMB	Logical shift right accumulator or memory location
MUL	Unsigned multiply IA × B - DI
NEG. NEGA. NEGB	Negate accumulator or memory
ONA, ONB	()r memory with accumulator
NOL, MOLA, MOLB	Philate accumulator or memory will
HUR, MORA, MORB	Hotale accomulates or incorpy right
SOCA, SOCO	Subtract memory from accumulator with borrow
SIA, SIB	Store accumulator to memory
SUBA, SUBB	Subtract memory from accumulator
151, 151A, 151B	Test accumulator or memory location
IFA NI, A2	Transfer R1 to R2 (R1, R2 - A, B, CC, DF)

NOTE: A. B. CC, or DP may be pushed to fouled from stack with either PSHS, PSHU IPULS, PULUI instructions.

TABLE 5 - 16-BIT ACCUMULATOR AND MEMORY INSTRUCTIONS

Mnemonicisi	Operation
מטטא	Add memory to D accumulator
CMPO	Compare memory from D accumulator
EXG D, FI	Exchange D with X, Y, S, U, or PC
נסס	Load D accumulator from memory
SEX	Sign Extend 8 accumulator into A accumulator
SID	Store D accumulator to memory
SUBD	Subtract memory from D accumulator
ITA D. A	Transfer D to X, Y, S, U, or FC
IFN N. D	Transler X, Y, S, U, or PC to D

NOTE: D may be pushed fourfield to stack with either PSHS, PSHU (FULS, PULU) instructions.

105 100

TABLE 7 - BRANCH INSTRUCTIONS SIMPLE BRANCHES

TABLE 9 - HEXADECIMAL VALUES OF MACHINE CODES

٠9

-

2. 2.

~ ~

.

~ ? ? ? ?

1AB	TABLE 8 - MISCELLANEOUS INSTRUCTIONS
Instruction	Description
ANDCC	AND condition cody register
CMVI	AND condition code register, then wait for interrupt
NOP	Ho operation
OMCC	OR condition code register
JWb	Jump
JSm	Jump to subroutine
71.	Return from mierrupt
N12	Return from subrouting
SWI SWIZ SWIJ	Software microspi tabsolute induecti
SYNC	Synchromie with interrupt hine

Branch never	BAN. LBAN
Branch always	BRA. LBRA
Branch to subrouting	BSM. LBSM
OTHER BRANCHES	
Branch if lower funtigned!	BLO, LBLO
Branch if lower (unsigned)	BCS, LBCS
Branch if lower or same lunsigned?	BLS. LBLS
Branch if not equal	BHE, LANE
Branch il equal	חנט. נחנס
Branch if Ingher or same funsigned!	Birs. Lais
Branch if higher or same funsigned?	BCC. LBCC
Branch il higher lunsigned!	שייוי רשיוו
UNSIGNED BRANCHES	
Branch il less than (signed)	81, 1811
Branch il valid 2s complement result	BVC. LBVC
Branch if less than or equal (signed)	BLE. LBLE
Branch of not equal	BNE, I BNE
Branch il equal	B10, 1810
Branch if greater than or equal largned!	BGE, LBGE
Branch if invalid 23 complement result	BVS. LBVS
Branch if greathr frighest	1081 : 04
SIGHED BRANCHES	
Branch of overflow clear	BYC. LBYC
Branch if overflow set	0v5. 10v5
Branch of carry clear	מככ, נמככ
Branch if carry and	BCS, LBCS
Branch of Phys	771.1771
Dianeh il minus	7W1 10W1
Branch if not equal	Brit That
Branch if equal	AEO, LAEO

	•	œ	-	7	Inherent	CLMB	ů,	~	ت	Relative	BLE	7	
i i	LOX :	9.0		,	-	•	E	~ .	٠	•	861	≈ :	
Tplai.v	357	3	-	7	-	1518	Š	7	ٔ		BC1	70	
1	CMFX	3	-	~		INC#	గ	~	<u>ن</u>		BGE	7	
•	ADDA	3				•	5	7	<u>ت</u>		BMI	20	_
_	ONA	87	-	~		DECB	5>	~	ب	_	971	2>	
_	ADCA	3	-	~			z	~	ت		SvB	3	
	KONA	33	-	~		ASLB. LSLB	8	2	ت		BVC	3	_
	•	9	-	~		Busv	5)	~	.		038	27	
_	(Ox	3	-	~		попв	s	~	٠		BNE	3	_
_	3.	3				•	3 5	~	<u>د</u>		BLO. BCS	3	
	NON	2	-	7		LSRB	ፈ	~	ت			2	
_	5080	2	-	~		COMB	೭	~	<u>د</u>		BLS	23	_
	SBCA	2				•	52	~	.	_	878	2	
-	CMFA	9			>	•	5	~	ن	_	BIN	~	-
l mand	SUBA	8		~	Inherent	NEGB	ន	~	<u>د</u>	Relative	Buv	8	
Extended	CLI	7	-	^	Ulisien	CLAX	=	~	٥	Distutui	17.14	Ŧ	-
*	7.81	: 2		•		:	; #	• •	•	Opening		; ;	-
_	151	÷ 2	_	_	_	. 312	à		• ~	ingient.	SEX.	=	
	20	i 7		. ~		NCA	à	٠ ~		Damer	VANOCC	; ?	·
	•	ď		,		•	â					ã	
_	DEC	7	-	~		DECA	,	~	4	mmed	ONCC	5	
_	not	79	-	~	_	not v	ĝ	-	~	Inherent	DAA	9	
_	151.154	78	-	7		ASIA, ISIA	ŝ				•	ē	
		"	-	7			•	u	9	Relative	(BSB)	; =	
	non	76	-	~		MONA	à	ب	5	Relative	CBNA	ā	
	•	3	•	•		•	ð					: 3	
	150	2	-	1		CSIIA	:				•	;	
	COM	: :		• ~		(C) (A)	: :	-	×	Innerent.	• 31MC	= =	
_		: 2	•	•			: :		` ~		200		_
-	•	: =			_,		: =	٠,	,		rage J	; =	_
[stemded	MEG	8	-	~	Inherent	NEGA	à	,	1	ı	Page 2	: 5	
Districtions.	ccn	q	[1	100	3717	٩	^	٩	0,,657	cen	!	
		3	-	3	-	2	4 %	• ~		' ⊸		3 8	
	151	3	-	1	Inheren!	• •	3 5	٠.			151	3 8	-
_	Tal.	2	. ~	2		CWA	۶	`~	•	_	7	3 8	
_	•	3		6/15		P.T.	4 3	•	•	_	· ·	3	
_	DEC	6>	-	3	>	×8×	3^	~	•		DEC	9	_
	ROL	69	-	5	Interent	RIS	3	7	•		MOL.	8	_
_	151. 151	3			1	•	8	~	•		אצו. נצנ	8	
	ASR	67	~	5 •	Immed	רטנט	37	~	6		ASFI	9	
_	non.	3	~	5 +	bound.	FSIIU	8	~	3		POR	8	_
	• ;	3	~	5	Tanad Tanad	PULS	31				•	8	
	I Sn	2	7	5	T T	FSHS	7	7			(SR	2	
_	COL.	51	2 :	- :	1	FA:	1 %	•	29		COM	2 :	
_	•	9	: `		_,	CEAT	; ;			_,	•	3 5	
Indresd	NEG	8	~	:	Indqued	(Evx	8	2	6	D"/c1	NEG	8	
Mod.	Mnem	9	1	•	Mode	Mnem	g	-	'	Mode	Mnem	9	-

3 4 3 3

::::

LEGEND

Number of MPU cycles fless possible push pull or indexed mode cycles.
 Number of program bytes
 Denotes unused opcode

.

33/39

TABLE 9 - HEXADECIMAL VALUES OF MACHINE CODES ICONTINUEDI

Mnem

Mode

Page 2 and 3 Machine Codes

SUND SUND SUND ANDD ANDD ANDD ANDD

Trans.

רשככ רשככ

223333333333333

SUPPA SUPPA

22222222222

FIGURE 19 - FROGRAMMING AID

Color Colo	• • • • • • • • • • • • • • • • • • •		- Numb	2	Š				6	ASL	JMP	Ž	EXG	ton.		DEC	CWAI	сом						(,MP	ctu	9	Ş	VSI VSI	DMG	700	2	VBC XBX	Instruction
1	Arithmetic Plus	of Prog	iian Cade I		נבאא רבאא רבאא	101	ăĕ	So	9 6			N. C. S.	F1. F2	Buo3	01C#	OFCA		COMB	CWIT	CMPX	CMPU	CMPS	CMPD	CNIPA	CL W CL W	9118	USV Busy	15V 15V V 15V	VANDA VANDA	ADDB	ADC8	^DC^	forms
	•	1 5	Cycl			% a	# # #	2 = 2	23				ī.	C 8		1	ĸ		ಗೆ ಕ	72	= 2	= 3	5 3	2 =		8 3			25 E	888	G	3	8
Op - 7 Op Op Op Op Op Op Op	3	ž (ع ع			1		ب 🕳	~ ~				•	7		I	2		J	-	5	J.	، می	, ~		~~			u ~ ~	7		,	Ī
-			3				ں ں	ب.	~ ~				~	7			7		•		-	-		, ,		~~			~ ~ ~	٠	. ~	-	-
1						پر ۾	9.0	2 6 8	38	9	2	8		3 3	3			2	గిశ	2 %	= 8	: : :	5	2	đ	33	9	8	2.5	234	8	3	श्च
1	. ~ :	z :	z :	2		9		a 5		7	3	g.			a	\top		œ	-		~	-	~ .		3		3	•			-	-[
5 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7				ſ		-	~ ~	٠, ٧	~ ~	7	~	~		?	~	T		2	<u>_</u>	~	J	٠	٠.		7	~~	~	~	~~	~ ~ ~	. ~	<u>-آ</u>	
5 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	3	Ĩ		3	2322	à ā	2=:	= a ?	: 3 3	ò	35	ŝ		S &	5	Τ		£	åa	25	= 2	:= 3	3 :	: ≥	3	33	67	3	2 ≥	253	: 3	2	8
5 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	į	3	1	1	::::	3			::	3	-	9			•	T		5.	:		-	:	= :		•	::	3 0	3	::	7 • •	:1:	:	1
5 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	•		i d	1	~~~~	-	~ ~ ~	٠.	~~	?	~	~		?:	~	T		7.	-	~	3	١.	<u>.</u>		~	77	7.	7:	~ ~	? ? ?	: -	-	-1
5 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1	I	3 2:			2 a	22.	- 6	33	8	=	č		33	>	T		23	7 4	23	= =	= 3	5	: 3	=	7.7	3	3	2 2	33	3	2	8
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		٩	=	1		١.				1	_	~	П	5.5	-	Ť	П	-	2	_	•	3	39 12	مر. ه		· ·	-	-	ۍ می	~ 00	. من	-	$\overline{\cdot}$
1 1 1 1 1 1 1 1 1 1				Ì		-		ب د		-	ت	u		u u	u	T	П	u u	-		-	-	.		_		<u>.</u>	.				-	\Box
1 1 1 1 1 1 1 1 1 1				Ì		T				П		గోన			3,	÷ =		53							₹ =		57 2	3 3			T	Ž,	श
1 1 1 1 1 1 1 1 1 1				Ì		T				П		~ ~	П		~		Π	~~							~ ~		~~	~~			T	u	\Box
Description A I M - M - M - M - M - M - M - M - M - M				Ì						П			П		_	- -									_								
	V Logical or	Concatenation	Not Affected	l	4 x C x	1 1	7.7	W:W - 1 - 5	2 2 2	Jump to Subrouline	[A]-FC	Z 37 >	תו-תץ	B ★ ¼ >	M - 1 - 8	Oremal Adjust A	CC V IMM - CC Mart for judgereds	G - 3 >	ie M M · 1 linen	M t.l + 1 frgm	M M · I lipm	M M . 1 from	Compare M.M. (From D.	Crardines M leren A	23>	Bit Test & IM A AT		3	1 .	ī		A : M : C = A	
				017		1 -				1.			1.	!		-1-	1			-	-	-		• - !	233	1	!				1-	- -	ZI.

	رو	LEGEND	Ø	Complement of M	-
_	q	OP Operation Code (Hexadecimal)	ı	Transfer Into	•
	,	Number of MPU Cycles	I	Half-carry ffrom bit 3)	CC
_	_	Number of Program Byles	z	Negative Isign bill	
_	•	Arithmetic Plus	~	Zero result	<
		Arithmetic Minus	<	Overflow, 2's complement	>
Į	•	Multiply	C	C Carry from ALU	<

THOMSON SEMICONDINCTEINS

All universit abcodes are both undefined and illegal Extended Interned Ourse! Ourse! Ourse! Ourse! Indexed Indexed Indexed Extended Indexed Immed Ourse! Immed Immediate Interned Immediate Interned Immediate Interned Immediate I

SUBCA SUBCA

1101

FIGURE 19 - PROGRAMMING AID (CONTINUED)

	-+	2 0 2	 		6		•	 0 0 ^	• •				•	~	•	==	0		= =	-	•	0 0	-	_	==	•	:	<u>:</u>	- -	•		5
	-	z		000	•		ŀ		• •	••		_	\rightarrow	4	٠		-	=		_		=:		_	==	:	÷	÷	+	<u>:</u>	_	-
	5	=	• • •	• • •	<u> •</u>		ŀ	• •	· · ·	• •	• • •	<u> </u>	-	4	•	∞ ≈	·	Ŀ	• •	<u>.</u>	<u>.</u>	• •		9	•	ŀ	÷	<u> </u>	+	+-	-	_
		Description			A + B - D IUnsigned!	A · 1 · A 6 · 1 · · · · · · · · · · · · · · · · ·	No Operation	8 × M-A 8 × M-B CC v MM-CC	Push Registers on S Stack Push Registers on U Stack	Pull Registers from S Stack Pull Registers from U Stack			14	Return From Interrupt	Return from Subroutine	A - M - C - A 8 - M - C - B	Sign Extend B mio A	N-4	N: N:	S-W:W . 1	U-M:M - 1	1 · M:M · x	- w:w = 1	A - M - A	8 - M - 8	_	Software Interrupt	Sultware Interrupt 3	Synchionie to Interiopi	_	7	_est &
П		-			 -		i-					1	.	-	-		-									-	~	-	-	-		_
	loheren.	•	~~	~~	=	~~	~				~ ~	1~	• [6.15	2		~									5	8	2	A		~ :	~
	٤	οo	55	2.2	la	3 	=	\vdash	<u> </u>	 	<u>ئ</u> و ق	14 3		_	25		10	Γ						Γ		Ä	2 ;	, = ;	, =	Г	9 9	ž
		,	-		+-	-	+	177		-	<u> </u>	i	-	_	Н	- n	T	-	<u> </u>	•	_			-	~ -	·			T	Ī	Γ	
	Extended	Н	 _	_	!_	-	╁	50 sC	├-		-	+	-	_	Н	~ ~	t	5	<u> </u>	_	٠			5	<u>د</u> د	+			Ť	T	İ	_
	3	o O	80	-	+-		+-	₹	-		1 2	:	2	_	Н	22	t	18	2 9	9	: :	10 5	2 %	2	2 2	:			Ť	T	Ħ	-
	4	٥	<u> </u>	<u> </u>	_	├	╀			-	ļ	<u> </u>	•	_	Н		╁	-				-		١	-	+			十	t	╁	_
Addressing Modes	2				_	_ ^	<u>'L</u>	\.\.\.\.\	<u> </u>			<u> </u>	~		Н	~ ~	╀	_	~ `							-			+	╁	-	_
i,	perspu	Ż	ءَ	:	4	-	-	-:	<u> </u>		-	a !	۰	_	Н	= =	╀	٠.		_	_		<u>.</u>	_	• •				+	╁	┼	_
	-	ဝီ	3	2	L	8		₹ ≤			3	5	ક્ર		Ц	₹ ⊇	L	P	_	-	: ::		? ₹	┞-	2 7	+-			Ļ	 	<u> </u>	
1 1		-	~	,	·	^	1	~ ~			1 -	1	`			~ ~	L	<u></u>	~ `		~	~	<u> </u>	~	~ `	1			1	<u></u>	<u> </u>	
	Dieci	•	۰		·I	-	·				•	• <u>†</u>	•				L	ـــ	~ 4			٠.	•	-		1			_	Ļ	<u> </u>	_
		å	8	· 2		8		40			8	5	8			6 G	1	6	6 8	2	ã ĉ	6	5 £	8	8 8	3						•
		-	 		Ť	 	i	~~~	~~	~~	i	ī		i		~ ~								~	~ -	·			\perp	7		
	eq.				T		T	~~-	7.7	3.5		Ţ				~ ~	Τ							~	~ -	-				-		
İ	Ę	00 - 1	 	-	╁		+	505			 	i		-	Н	a 5	+	İ						8	8:	3			i	=	Г	_
\vdash	_	_	 		+		+	-	-	-		1			-	-	╁╴	t						Ť		Ť		-	+	T	⇈	
		Forms	4 E 3	LSAA LSAB		40 JN	,	ORA	PSHS	PUIS	A 10 A	1- 0	NON N			SRCA SBCB		4	818	~	2	×IS	<u>-</u>	SUBA	SUBB	3	Sw. 26	Swija	1	R1 R2	1514	2.0
		_	5 7 3	2 8 2	:	2 2 2	1	ORA	25	55	ءِ جَ عَ	112 8	٤ ٢	L	1	2 2	╀	v	ŭ Ū	Š	Š	S	_	12	<u>ت</u> ت	1/5	Ś	<u>~</u>	+	æ	1= 1	=
		formucion	151	I S.A	Mill	S I	40k	ОЯ	PSH	rut	AOI	AUA		-14	ATS	SBC	X IS	31						SUB		iw.s			JAX	1. A	181	

NO1ES

1 This column gives a base cycle and byte count. To obtain total count, add the values obtained from the INDEXED ADDRESSING MODE table, Table 2

2. At and 82 may be any pair of 8 bit or any pair of 16 bit registers.
The 8 bit registers are A. B. CC. DP
The 16 bit registers are X. Y. U. S. D. PC

EA is the effective address

The PSH and PUL instructions require 5 cycles plus 1 cycle for each byte pushed or pulled

5(6) means 5 cycles if branch not taken, 6 cycles if taken (Branch instructions). SWI sets I and F bits SWI2 and SWI3 do not affect I and F.

Conditions Codes set as a direct result of the instruction

Vaue of half carry liag is undefined

Special Case - Carry set if b7 is SET

FIGURE 19 - PROGRAMMING AID (CONTINUED)

L1 0003

Branch Instructions

			_	Ē	S				ž	_		ž			ž			Ē			BAA		Z E			5			2			848	
			۰	Ü	•	•		•	•		•	•		•	•	_	١.	•		•	•		١.	_	•			•					_
		_	_	1	٠	•		١٠	٠		Ŀ	•	_	ŀ	٠		١.	•	_	٠	•	_	٠	_	$\overline{\cdot}$			٠		•	•		
	_	_		-	1 .	•		Ŀ	•	_		•		:	•		•	٠		Ŀ	٠		·		•	_	•	•		•	·		
_	_	_		Z	ŀ	÷		Ŀ	<u>:</u>		!:	÷	_	Ŀ	•	_	١٠	÷	_	٠	÷		Ŀ		:	_	:	÷	_	•	•		
_	_	_	_	=	ŀ	÷	_	۲	•	_	٠	•		Ŀ	:		٠	•	_	٠	•	_	!•	_	<u>.</u>		•	<u>:</u>	_	:	<u>.</u>		_
				Description	Branch C . 0	Long Branch	9.5	Branch C - 1	Long Branch	ī	Brank 2 . 1	Long Branch	0-7	Bigir h & Pris	Long Branch & Zen		Biarch > len	Long Branch > Zero		Branch Higher	Long Branch Higher		Branch Higher	a Same	I nough Brain h blaploon	Dr Same	Branch s Imo	long Branch s len		Branch Inwer	tong Branch Lower		
	7			1	~	•		~	•		~	•		~	7		~	•		~	-		~		•		~	-		~			
	Abdiesem	Mode	9481748	-	-	ŝ		3	ž		-	ŝ		-	ŝ		-	ž			ŝ		-		ş		-	ş	Ī	-	ş		_
•	₹			ò	~	2	ž	ĸ	2	۶	11	2	~	×	2	×	≂	2	*	~	2	~	×		2	Σ;	=	2	~	£	2	ĸ	
				Forms	328	2261		RC S	1803		810	1810	,	198	1901		PG!	1901		314	181		BitS		S IN S		1	1816		F10	910		
-			_	Instruction	229			SCS.		,	019			156	-		198			Ī			BHS			-	316			2			_

Raigh Always Lord Raigh Always Reach Never

RAN

Pate In Para Frong Righar Para Ord Branch

187

Z E

Arm de ten Sedmenglund

NSN 1858

٦ <u>ڏ</u> 7 5 KSR PS

AVC 1 AVC 2 S V S

Pranch Manus Living Rivers Monus

and Branch & fren

1 1 5 == 3

_		
-1		
_		
7		
-		
┥		
4		
1		
1		
1		
_ [
1		
٦		
1		
4		
:		
7		
ı		
1		
7		
1		
1		
1		
١		

	-	~	C	~	-	7	3
CHES	,		2		ۍ	~	6
LE BRAN	o	20	2	=	1051	90	-
SIMP		BRA	LBRA	BRN	LBAN	BSA	LBSR

SIMPLE CONDITIONAL BRANCHES INOTE: 141

Total OP Fahs OP

N=1 BMI 28 BFI 2A

Z=1 BEG 27 BNC AS

C=1 BCS 25 BCC AS

1 41	ò	2	ĸ	æ	~	*
BRANCHES (Notes 1.4)	F. 55	BLS	810	BNE	B.:	BHS
AL BRAN	9	æ	7.	~	2	£
CONDITIONAL	True	8111	BHS	950	BLS	810
UNSIGNED	Test	£ ^:	E	E	. s.	EV

₽ ≈ ≈ ≈ ×

BLE BRIT BRE BGT BGE

T™ BGT BGE BEE BLE BLE

7 7 7 7 7 E E E E E

SIGNED CONDITIONAL BRANCHES INDIES 1:4)

=

8

Teat

NOTES

All Short branches have both short and long variations
 All Short branches are two bytes and require three cycles
 All conditional long branches are formed by pretiving the short branch epicode with \$10 and using a 16 bit destination utfset
 All conditional long branches require four bytes and six cycles if the branch is taken or five cycles if the branch is not taken

These specifications are subject to change without notice. Please inquire with our sales offices about the evaliability of the different packages.

CB-708

ORDERING INFORMATION

EF68A09

C M B/B

Device

Screening level

(111W 0 E. 6088913

•

•

•

•

Examples: EF6809C, EF6809CV, EF6809CM

Packaga: C: Ceremic DIL J: Cerdip DIL P: Mastic DIL, E: LCCC, FN: PLCC.

Oper, temp., L*: 0°C to + 70°C, V: -40°C to +85°C, M: -55°C to +125°C, *: may be omitted.

Screening level: Std: Ino end stiffel, D: NTC 96883 level D.

OIB: NTC 96893 level G, BIB: NTC 96883 level B and MILSTD 883C level B.

Erman II.B MHI

E2800 [1.0 MHz]

• • •

•

DEVICE

c

PACKAGE

OPER TEMP

SCHEENING LEVEL

3

814

9 8/8

•

C

FN SUFFIX

CB-521

J SUFFIX

C SUFFIX

ALSO AVAILABLE CB-182 P SUFFIX PLASTIC PACKAGE

PHYSICAL DIMENSIONS

PHYSICAL DIMENSIONS

W/bl