LMD Tipo A

LÓGICA Y MÉTODOS DISCRETOS

19 de Mayo de 2014

APELLIDOS Y NOMBRE:	
DNI:	GRUPO:

GRADO EN INGENIERÍA INFORMÁTICA

RESPUESTAS A LAS PREGUNTAS TEST

	1	2	3	4
Pregunta 1				
Pregunta 2				
Pregunta 3				
Pregunta 4				
Pregunta 5				
Pregunta 6				

Nota Importante: Todas las casillas hay que marcarlas con S/N (Si/No) o con V/F (Verdadero/Falso). Una casilla no marcada se contará como una respuesta incorrecta.

19 de Mayo de 2014 (1)

Tipo A

EJERCICIO PARA DESARROLLAR

Ejercicio

Sean

- $\alpha_1 = \forall x (P(x, f(a)) \to \exists y Q(y, x)),$
- $\alpha_2 = R(f(a)) \to \neg \exists x R(x),$
- $\alpha_3 = \neg \exists x (\exists y \neg P(y, x) \land \neg R(x)),$
- $\beta = \exists x (\exists y Q(y, x) \land \neg R(x)).$

Estudia si

$$\{\alpha_1, \ \alpha_2, \ \alpha_3\} \vDash \beta$$

Si en el desarrollo del ejercicio se emplea el método de resolución hay que indicar claramente las sustituciones realizadas en cada paso.

(2) 19 de Mayo de 2014

LMD Tipo A

PREGUNTAS TEST

Pregunta Test 1: De entre las siguientes fórmulas señala las que sean universalmente válidas.

- (1) $\forall x[Q(x) \lor \neg Q(x)]$
- (2) $\exists x Q(x) \land \exists x \neg Q(x)$
- (3) $\forall x Q(x) \rightarrow \neg \forall x \neg Q(x)$
- $(4) \exists x Q(x) \rightarrow \exists x \neg Q(x)$

Pregunta Test 2: Sean $\alpha = \forall x \exists y (P(x) \to Q(x,y))$ y $\beta = \forall x (P(x) \to Q(x,g(x)))$. Entonces:

- (1) $\alpha \vDash \beta$.
- (2) $\beta \vDash \alpha$.
- (3) $\alpha \to \beta$ es satisfacible y refutable.
- (4) $\neg \beta \vDash \neg \alpha$.

Pregunta Test 3: Señala las consecuencias lógicas que sean ciertas.

- (1) $\{\forall x P(x)\} \models \exists y P(y)$.
- (2) $\{\forall x P(x) \to Q(a)\} \models Q(a) \lor \neg P(b)$.
- (3) $\{ \forall x P(x) \to Q(a) \} \models \exists x Q(x) \land \neg P(b).$
- (4) $\{Q(a) \to \forall x P(x)\} \models \forall x Q(x) \to P(b)$.

Pregunta Test 4: Dada la fórmula

$$\exists y \forall x R(x,y) \rightarrow \forall y \exists x P(x,y)$$

¿Cuáles de las siguientes son lógicamente equivalentes con ella?

- (1) $\forall y \exists x (\neg R(x,y) \lor P(x,y))$
- (2) $\forall y \forall z \exists x (\neg R(x,y) \lor P(x,z))$
- (3) $\forall y \exists x \exists z (\neg R(x,y) \lor P(z,y))$
- (4) $\forall y \forall z (\neg R(f(y,z),y) \lor P(g(y,z),z))$

Pregunta Test 5: Señala las fórmulas que sean verdaderas bajo la siguiente interpretación:

$$D = \mathbb{Z}_5$$

$$P = \{(0,0), (0,1), (1,2), (2,3), (3,4), (4,4)\}$$

$$a = 0; \qquad f(x) = x+1; \qquad v(x) = 1.$$

- (1) $\exists x P(x,x)$
- (2) $\forall x P(x, f(x))$
- (3) $\forall y \exists x [P(x,y) \lor \neg P(y,x)]$
- (4) $\forall x [P(x,a) \lor \neg P(a,x)]$

Pregunta Test 6: ¿Cuáles de los siguientes pares de literales son unificables?

- (1) $\{Q(g(h(a)),z),Q(z,g(x))\},\$
- (2) $\{Q(f(x,y),z),Q(z,x)\}.$
- (3) $\{Q(g(x),z),Q(z,x)\},\$
- (4) $\{Q(g(x),z),Q(z,a)\}.$

19 de Mayo de 2014 (3)