포트폴리오의 수익률 과정 추정

금융통계 중간과제

통계학과 2018580028 정세린

• 기간: 2017년 5월 23 ~ 2020년 5월 20일

• 구성 종목 : 하이트진로, 제일기획, 농심, NHN, 한국제지, 모나미 (데이터 출처 : 한국거래소)

• $V_{P,t} = 42 \times S_{1,t} + 52 \times S_{2,t} + 3 \times S_{3,t} + 14 \times S_{4,t} + 34 \times S_{5,t} + 253 \times S_{6,t}$

Series portfolio\$log_return

Series portfolio\$log_return^2

모형 적합

- 포트폴리오의 로그 수익률 과정을
 Garch(1, 1), GJR-Garch(1, 1), E-Garch(1, 1) 모형에 각각 적합한다.
- 먼저 Noise(ϵ_t)가 i.i.d.하게 표준정규분포를 따른다고 가정, 모형을 적합한다.

Garch(1, 1): standard normal distribution

 $R_t = \sigma_t \epsilon_t, \ \epsilon_t \sim i.i.d. \ N(0,1)$

$$\sigma_t^2 = 1.097 \times 10^{-5} + 0.192 R_{t-1} + 0.744 \sigma_{t-1}^2$$

Garch(1, 1): standard normal distribution

Normality test	Statistic	p-value
Kolmogorov-Smirnov	D = 0.043	0.003
Shapiro-Wilk	W = 0.980	2.085×10^{-8}
Jarque-Bera	JB = 139.85	$< 2.2 \times 10^{-16}$
Anderson-Darling	A = 2.341	6.246×10^{-6}

Lag	Statistic	p-value
5	1.323	0.922
10	5.870	0.826
15	12.064	0.674
20	15.646	0.738
25	19.383	0.778
30	21.945	0.856

GJR-Garch(1, 1): standard normal distribution

 $R_t = \sigma_t \epsilon_t, \ \epsilon_t \sim i.i.d. \ N(0,1)$

$$\sigma_t^2 = 1.249 \times 10^{-5} + 0.133(1 + 0.127I_{t-1})R_{t-1} + 0.727\sigma_{t-1}^2$$

GJR-Garch(1, 1): standard normal distribution

* Normality tests on the residuals

Normality test	Statistic	p-value
Kolmogorov-Smirnov	D = 0.040	0.007
Shapiro-Wilk	W = 0.982	7.605×10^{-8}
Jarque-Bera	JB = 123.84	$< 2.2 \times 10^{-16}$
Anderson-Darling	A = 2.070	2.88×10^{-5}

Lag	Statistic	p-value
5	2.211	0.819
10	6.042	0.781
15	12.61	0.632
20	16.792	0.666
25	20.615	0.714
30	23.049	0.813

E-Garch(1, 1): standard normal distribution

 $R_t = \sigma_t \epsilon_t, \ \epsilon_t \sim i.i.d. \ N(0,1)$

 $\log \sigma_t^2 = -0.618 - 0.063\epsilon_{t-1} + 0.334(|\epsilon_{t-1}| - E[|\epsilon_{t-1}|]) + 0.930\log \sigma_{t-1}^2$

E-Garch(1, 1): standard normal distribution

* Normality tests on the residuals

Normality test	Statistic	p-value	
Kolmogorov-Smirnov	D = 0.044	0.002	
Shapiro-Wilk	W = 0.985	5.76×10^{-7}	
Jarque-Bera	JB = 90.586	$< 2.2 \times 10^{-16}$	
Anderson-Darling	A = 2.071	2.86×10^{-5}	

Lag	Statistic	p-value
5	1.753	0.882
10	6.559	0.766
15	11.408	0.723
20	14.444	0.807
25	18.885	0.803
30	21.622	0.867

모형 적합

- Ljung-Box test를 진행한 결과 세 모형 모두에서 귀무가설을 채택한다. 따라서 각각의 모형에서 $\{(R_t/\hat{\sigma}_t)^2\}$ 은 independent sequence이다.
- 정규성 검정을 진행한 결과, 세 모형 모두 $(R_t/\hat{\sigma}_t)$ 가 표준정규분포를 따르지 않는다. 따라서 Noise가 표준정규분포를 따른다는 가정은 잘못되었다.
- Noise (ϵ_t) 가 i.i.d.하게 standardized t분포를 따른다고 가정, 모형을 적합한다.

Garch(1, 1): standardized t distribution

 $R_t = \sigma_t \epsilon_t$, $\epsilon_t \sim i.i.d.$ standardized $t_{6.020}$

$$\sigma_t^2 = 1.175 \times 10^{-5} + 0.207 R_{t-1} + 0.728 \sigma_{t-1}^2$$

Garch(1, 1): standardized t distribution

Lag	Statistic	p-value
5	1.508	0.912
10	5.898	0.824
15	12.264	0.659
20	16.05	0.714
25	19.838	0.755
30	22.393	0.839

GJR-Garch(1, 1): standardized t distribution

 $R_t = \sigma_t \epsilon_t$, $\epsilon_t \sim i.i.d.$ standardized $t_{6.300}$

$$\sigma_t^2 = 1.309 \times 10^{-5} + 0.168(1 + 0.095I_{t-1})R_{t-1} + 0.709\sigma_{t-1}^2$$

GJR-Garch(1, 1): standardized t distribution

Lag	Statistic	p-value
5	2.107	0.834
10	6.343	0.786
15	12.746	0.622
20	16.993	0.653
25	20.87	0.700
30	23.33	0.802

E-Garch(1, 1): standardized t distribution

 $R_t = \sigma_t \epsilon_t$, $\epsilon_t \sim i.i.d.$ standardized $t_{6.144}$

$$\log \sigma_t^2 = -0.624 - 0.031\epsilon_{t-1} + 0.361(|\epsilon_{t-1}| - E[|\epsilon_{t-1}|]) + 0.930\log \sigma_{t-1}^2$$

E-Garch(1, 1): standardized t distribution

Lag	Statistic	p-value
5	1.753	0.882
10	6.599	0.766
15	11.408	0.723
20	14.444	0.807
25	18.885	0.803
30	21.622	0.867

모형 적합

• Noise(ϵ_t)가 i.i.d.하게 standardized t분포를 따른다고 가정했을 때, 세 모형 모두에서 가정이 잘 들어맟는다.

• 따라서 Noise가 i.i.d.하게 standardized t분포를 따른다고 가정한 Garch(1, 1), GJR-Garch(1, 1), E-Garch(1, 1) 중, 모형을 선택한다.

모형 진단

	AIC	BIC	MSE	QLIKE
Garch(1, 1)	-6.199	-6.174	2.70×10^{-7}	1115.501
GJR-Garch(1, 1)	-6.198	-6.167	2.54×10^{-7}	1111.029
E-Garch(1, 1)	-6.189	-6.158	2.77×10^{-7}	1115.296

모형 선택

모형 선택

- 세 모형 중, AIC, BIC 면에서는 Garch(1, 1)이 가장 적합하다.
- MSE, QLIKE를 비교해보았을 때는, GJR-Garch(1, 1)이 가장 적합하다.
- 그래프와 AIC, BIC, MSE, QLIKE를 모두 고려하였을 때, 세 모형 중 GJR-Garch(1, 1)이 가장 실제 수익률과정을 잘 설명한다.