University Physics with Modern Physics

Fifteenth Edition

Chapter 3

Motion in Two or Three Dimensions

Learning Goals for Chapter 3

Looking forward at ...

- how to use vectors to represent the position and velocity of a particle in two or three dimensions.
- how to find the vector acceleration of a particle, and how to interpret the components of acceleration parallel to and perpendicular to a particle's path.
- how to solve problems that involve the curved path followed by a projectile.

Learning Goals for Chapter 3

Looking forward at ...

- •how to analyze motion in a circular path, with either constant speed or varying speed.
- •how to relate the velocities of a moving body as seen from two different frames of reference.

Introduction

- What determines where a batted baseball lands?
- How do you describe the motion of a roller coaster car along a curved track or the flight of a circling hawk?
- We need to extend our description of motion to two and three dimensions.

Position vector

The position vector from the origin to point P has components x, y, and z.

Position P of a particle at a given time has coordinates x, y, z.

has components x, y, z:

 $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}.$

Velocity

• We define the **average velocity** as the displacement divided by the time interval and it has the same direction as the displacement.

Average velocity

Velocity

• Instantaneous velocity (a.k.a. "velocity") is the instantaneous rate of change of position with time:

The instantaneous velocity
$$\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d\vec{r}}{dt}$$
 ... equals the limit of its average velocity vector as the time interval approaches zero ... of change of its position vector.

Instantaneous velocity

• The components of the instantaneous

velocity are
$$v_x = dx/dt$$
, $v_y = dy/dt$, and $v_z = dz/dt$.

• The instantaneous velocity of a particle is always tangent to its path.

The instantaneous velocity vector \vec{v} is always tangent to the path. Particle's path in the xy-plane v_x and v_y are the x- and ycomponents of \vec{v} .

Acceleration

 Acceleration describes how the velocity changes.

Average acceleration

- The change in velocity between two points is determined by vector subtraction.
- We define the **average acceleration** as the change in velocity divided by the time interval:

Average acceleration

To find the car's average acceleration between P_1 and P_2 , we first find the change in velocity $\Delta \vec{v}$ by subtracting \vec{v}_1 from \vec{v}_2 . (Notice that $\vec{v}_1 + \Delta \vec{v} = \vec{v}_2$.)

Average acceleration

The average acceleration has the same direction as the change in velocity, $\Delta \vec{v}$.

Figure 3.5

Instantaneous acceleration

- The velocity vector is always tangent to the particle's path, but the instantaneous acceleration vector does *not* have to be tangent to the path.
- Instantaneous acceleration (a.k.a. "acceleration") is the instantaneous rate of change of velocity with time:

The instantaneous
$$\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt}$$
 of a particle ...

... equals the limit of its average acceleration vector as the time interval approaches zero ...

The instantaneous $\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt}$... and equals the instantaneous rate of change of its velocity vector.

Instantaneous acceleration

• If the path is curved, the acceleration points toward the concave side of the path.

Instantaneous acceleration

Components of acceleration

Each component of a particle's instantaneous acceleration vector ...

$$a_x = \frac{dv_x}{dt}$$
 $a_y = \frac{dv_y}{dt}$ $a_z = \frac{dv_z}{dt}$

... equals the instantaneous rate of change of its corresponding velocity component.

• Shooting an arrow is an example of an acceleration vector that has both *x*- and *y*-components.

(a) Acceleration parallel to velocity

Changes only magnitude of velocity: speed changes; direction doesn't. \vec{v}_1 $\vec{v}_2 = \vec{v}_1 + \Delta \vec{v}$

(b) Acceleration perpendicular to velocity

Changes only direction of velocity: particle follows curved path at constant speed. $\vec{\boldsymbol{v}}_2 = \vec{\boldsymbol{v}}_1 + \Delta \vec{\boldsymbol{v}}$

Parallel and perpendicular components of acceleration

Velocity and acceleration vectors for a particle moving through a point P on a curved path with constant speed

Parallel and perpendicular components of acceleration

Velocity and acceleration vectors for a particle moving through a point P on a curved path with increasing speed (v₂ speed >' v_1 speed)

Parallel and perpendicular components of acceleration

Velocity and acceleration vectors for a particle moving through a point P on a curved path with decreasing $speed (v_2 speed <$ v_1 speed)

Projectile motion

- A **projectile** is any body given an initial velocity that then follows a path determined by the effects of gravity and air resistance.
- Begin by neglecting resistance and the curvature and rotation of the earth.

Projectile motion (2-D)

- A projectile moves in a vertical plane that contains the initial velocity vector \vec{v}_0 .
- Its trajectory depends only on \vec{v}_0 and on the downward acceleration due to gravity.

The x- and y-motion are separable

- The red ball is dropped at the same time that the yellow ball is fired horizontally. The strobe marks equal time intervals.
- We can analyze projectile motion as horizontal motion with constant velocity and vertical motion with constant acceleration: $a_x = 0$ and $a_y = -g$.

Projectile motion

• If air resistance is negligible, the trajectory of a projectile is a combination of horizontal motion with constant velocity and vertical motion with constant acceleration.

Horizontally, the projectile is in constant-velocity motion: Its horizontal acceleration is zero, so it moves equal x-distances in equal time intervals.

Projectile motion – Initial velocity

The initial velocity components of a projectile (such as a kicked soccer ball) are related to the initial speed and initial angle.

The equations for projectile motion

• If we set $x_0 = y_0 = 0$, the equations describing projectile motion are shown below:

Parabolic trajectories of a bouncing ball

Successive images of the ball are separated by equal time intervals.

For the record: The effects of air resistance

- Calculations become more complicated.
- Acceleration is not constant.
- Effects can be very large.
- Maximum height and range decrease.
- Trajectory is no longer a parabola.

Motion in a circle

• Uniform circular motion is constant speed along a circular path.

Motion in a circle

Car speeding up along a circular path

Component of acceleration parallel to velocity:

© 2016 Pearso

Motion in a circle

Car slowing down along a circular path

Acceleration for uniform circular motion

(a) A particle moves a distance Δs at constant speed along a circular path.

(b) The corresponding change in velocity and average acceleration

$$\frac{|\Delta \vec{v}|}{v_1} = \frac{\Delta s}{R}$$
 or $|\Delta \vec{v}| = \frac{v_1}{R} \Delta s$

$$a_{\rm av} = \frac{\left|\Delta \vec{\boldsymbol{v}}\right|}{\Delta t} = \frac{v_1}{R} \frac{\Delta s}{\Delta t}$$

$$a = \lim_{\Delta t \to 0} \frac{v_1}{R} \frac{\Delta s}{\Delta t} = \frac{v_1}{R} \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t}$$

(c) The instantaneous acceleration

Magnitude of acceleration $a_{rad} = \frac{v_{*}^2 \dots Speed of object}{R}$ an object in an object in Radius of object's circular path

• For uniform circular motion, the instantaneous acceleration always points toward the center of the circle and is called the **centripetal** acceleration.

• The magnitude of the acceleration is $a_{\text{rad}} = v^2/R$.

- The magnitude of the acceleration is $a_{\text{rad}} = v^2/R$.
- The *period T* is the time for one revolution, and as

$$v = 2\pi R/T$$

then

$$a_{\rm rad} = 4\pi^2 R/T^2$$
.

Uniform circular motion

Projectile motion

Velocity and acceleration are perpendicular only at the peak of the trajectory.

Nonuniform circular motion

If the speed varies, the motion is nonuniform circular motion.

Nonuniform circular motion

Nonuniform circular motion

The radial acceleration component is still $a_{\text{rad}} = v^2/R$, but there is also a tangential acceleration component a_{tan} that is *parallel* to the instantaneous velocity.

Q3.9

A pendulum swings back and forth, reaching a maximum angle of 45° from the vertical. Which arrow shows the direction of the pendulum bob's acceleration at P (the far left point of the motion)?

Relative velocity

• The velocity of a moving body seen by a particular observer is called the velocity *relative* to that observer, or simply the **relative velocity**.

• A **frame of reference** is a coordinate system plus a time scale.

• In many situations relative velocity is extremely important.

• If point P is moving relative to reference frame A, we denote the velocity of P relative to frame A as $v_{P/A}$.

• If *P* is moving relative to frame *B* and frame *B* is moving relative to frame *A*, then the *x*-velocity of *P* relative to frame *A* is

$$v_{P/A-x} = v_{P/B-x} + v_{B/A-x}$$

• Recall that velocity is simply the rate of change of displacement with time (a differential v = dx/dt.)

•
$$v_{P/A-x} = v_{P/B-x} + v_{B/A-x}$$
.

• In general, if A and B are any 2 frames of reference

•
$$v_{A/B-x}$$
 = - $v_{B/A-x}$

• We extend relative velocity to two or three dimensions by using vector addition to combine velocities.

(b)

Galilean Velocity Transformation

• Does not apply at relativistic velocities as demonstrated by Einstein and his theory of Relativity