in a supplied solution of copper Salt by iodometric method.

Name: Nafinur Leo, Id: 20-42195-1, Section: U

Theory:

Methods: Oxidation-Reduction Titration

& Reactions?

1. K2Cm207+14HC1+6KI = 8KC1+2enCl3+

N-) numbers of solution

(1) (022000) 7H20+3I2

told light

2.2 Casoq+4kI-2k2s04+2CaII+I2

3. 2 Na2 S203 + I2 = Na2 Sq 06 + 2 NaI

Half Reactions:

both to mitosylosomes it own

Indicator: -= rollates for 200 10 Alyande out

Starch is a indicator which specify the

presence of I2 but it is not a redox

indicators societais bridges to Apriorite 3 AT

Experimental Rola:

(A) Stardardize sodium thiosulphate solution as Expt. No.4:

Table-1: Standardization of supplied Na25203 Solution against standard kelr207 solution by exidution-reduction titration.

No. Of	Nol. of	161 of Na	Mean (inml)		
reading	K2Cp207	Initial	Final	Pisserence	- Maricin, 19
1	10	0.00	10.30	210.30	10.30+10.20
2	40	10.30	20.50	10.20	= 10.25

The Strength of k2Cr2Oz solution = Weight taken(ingm)x0.1

0.49

The strength of supplied Na2S203 solution(s):

Vthioxinthio = Vdichromate X Ndichromate

(8) Estimation of Car ions's money to truom

Tables: Determination of the amount of copper in a supplied solution of blue vitriol by iodometric method.

	11106	Vol OF N	a25203	burgle (mml)	Main (in my
No. Of reading	Copper Sal	Initial	Firal	Disserence	
Calaria	30	0.00	3.50	3.50	3.80+3.307
2	10	3.60	6.80	3.30	4 2
2	30	6.80	10.20	3,40	- 3.3875
1 3	10	10.20	13.66	3.35	2 3 30 7 7
191	40			and the same of th	

Calculations: $2CuS\alpha_1=I_2=2Na_2S_2O_3$ $1 m11N Na_2S_2O_3=0.06359 gm of$ Amount of copper ons in 20 ml of copper salt solution

= 0.063 59 XVX 5 gm

= 0.06354x3.3875x8 6.127 gm

= 0.0031 0.027 gm = 51.0 = 014546

Amount of copper ions in 500 ml of copper salt solution

10010 6= 0,06369X UX\$ FO 9 m 16,00 motor (sold of

= 0.063 F4X 83838 3.387 FX 0.727 X 50 gm

= 1.367gm

Observe value of Ca2+ (in 600 ml Solution)

08.8 32.0 = 1.367gm

bodfor Dintomobile

known value of Cu2+ Cin 500 ml solution)

63.547 amount ca-salt taken

70 MP PAERO 3 = 63.54X,4.25 10082 gm.

Results: The amount of copper ions in 500 ml of coppers salt solution is 1.367 gm

Percentage of Error:

$$=\frac{1.082-1.367}{1.082}\chi100$$