M1 - Statistiques bayésiennes

Mini-test 3, le 27/03/2017

Durée 30mn. Les documents ne sont pas autorisés.

- I. Soit $\mathcal{P} = \{P_{\theta}, \ \theta \in \mathbb{R}\}$ un modèle statistique. On dispose de n observations X_1, \ldots, X_n i.i.d. sachant θ de loi P_{θ} . Soit Π une loi a priori sur θ .
 - 1. Donner la définition de la consistance de $\Pi[\cdot | X_1, \dots, X_n]$ au point $\theta_0 \in \mathbb{R}$.
 - 2. Donner un exemple de modèle et de loi a priori pour lesquels la loi a posteriori n'est pas consistante au point $\theta_0 = 0$.
 - 3. On suppose $X_1, \ldots, X_n \mid \lambda \sim \text{i.i.d. } \mathcal{E}(\lambda)$ la loi exponentielle de paramètre $\lambda > 0$, de densité $x \to \lambda e^{-\lambda x} \mathbb{1}_{x>0}$ et on choisit une loi a priori $\mathcal{E}(\mu)$ sur λ , avec $\mu > 0$ fixé.
 - (a) Déterminer la loi a posteriori $\lambda \mid X_1, \dots, X_n$.
 - (b) Calculer la moyenne a posteriori $\bar{\lambda} = E[\lambda \mid X_1, \dots, X_n]$ ainsi que la variance a posteriori $v_X = E[(\lambda \bar{\lambda})^2 \mid X_1, \dots, X_n]$. On pourra utiliser $E[\operatorname{Gamma}(a, b)] = a/b$, $\operatorname{Var}[\operatorname{Gamma}(a, b)] = a/b^2$, pour tous a, b > 0, la densité d'une loi $\operatorname{Gamma}(a, b)$ étant donnée par $x \to b^a \Gamma(a)^{-1} x^{a-1} e^{-bx} \mathbb{1}_{x>0}$.
 - (c) On s'intéresse au comportement de la loi a posteriori $\Pi[\cdot | X_1, \ldots, X_n]$ au point $\theta_0 = 1$. Répondre sans démonstration aux deux questions suivantes : la loi a posteriori est-elle consistante? (oui/non) Quelle est la forme limite de la loi a posteriori? On explicitera cette loi limite.
- II. Soit $\mathcal{P} = \{P_{\theta}, \ \theta \in \mathbb{R}\}$ un modèle statistique. On dispose d'une seule observation X_1 de loi P_{θ} sachant θ . Soit $\Pi = \Pi_{\mu}$ loi a priori sur θ dépendant d'un paramètre réel μ .
 - 1. Rappeler en 1 ou 2 lignes le principe de la détermination de μ par la méthode bayésienne empirique du maximum de vraisemblance marginal.
 - 2. En quoi consiste l'approche bayésienne hiérarchique de détermination de μ dans ce cadre?
 - 3. On se place dans le cas où $P_{\theta} = \mathcal{N}(\theta, 1)$ et $\Pi_{\mu} = \mathcal{N}(\mu, 1)$.
 - (a) Déterminer l'estimateur $\hat{\mu} = \hat{\mu}(X_1)$ de μ correspondant par la méthode bayésienne empirique ci-dessus, ainsi que la loi a posteriori sur θ suggérée par la méthode.
 - (b) Quelle est le loi a priori sur θ suggérée par la méthode bayésienne hiérarchique avec $\mu \sim \mathcal{N}(0,1)$? (on ne demande pas de déterminer la loi a posteriori)
- III. Montrer que pour toute loi a priori Π , le risque de Bayes pour Π minore le risque minimax.