Занятие № 4

Расчёт интенсивности шума Исследование звукоизоляции ограждающих конструкций

Цель работы

Определение интенсивности шума и изучение эффективности звукоизоляции ограждающих конструкций с целью обеспечения комфортных условий труда и охраны здоровья работников.

Теоретические сведения

Шум - беспорядочные звуковые колебания воздуха различной частоты и силы, не соответствующие обстоятельствам и времени.

Звук бывает:

- стабильный;
- импульсный.

вибрация Шум представляют собой И профессиональную вредность, если ИХ интенсивность превосходит определенный уровень. Для борьбы с шумом применяются общие и индивидуальные средства защиты. Большое значение правильная имеют планировка И предприятий и их отдельных размещение отношению к другим шумным предприятиям. Шум в онжом производственных помещениях значительно уменьшить облицовкой стен И потолков звукопоглощающими материалами. При проектировании и установке различных механизмов аппаратуры необходимо предусматривать возможность уменьшения вибрации и шума за счет установки оборудования на специальных амортизаторах, уменьшения эксцентриситета вращающихся деталей, замены ударного взаимодействия безударными и т.д.

Нижний порог восприятия 5 дБ.

Стрельба из пушки 32 дБ стабильного тона или 140 дБ импульсного создают болевой порог восприятия. Комфортные условия для органов слуха - 40 дБ.

Возможные последствия от воздействия шума: повышается утомляемость, прыгает давление, разрыв барабанной перепонки, развивается тугоухость, снижается умственная и физическая работоспособность, ухудшается качество восприятия. Шумное производство может привести к возникновению следующих производственных заболеваний:

- ✓ тугоухость;
- ✓ гипертония;
- ✓ ухудшение зрения.

Защита то шума:

- устраняют причину шума в источнике;
- ослабление вибраций при передаче;
- непосредственная защита человека от шума с помощью наушников, закладок.

Для сравнения между собой различных звуков по громкости используют параметр уровня громкости - фон.

Фон численно равен уровню звукового давления в 1 дБ для чистого тона с частотой в 1 кГц, воспринимаемый как равногаммный с данным звуком.

Каждый диапазон частот разбит на октавы таким образом, что верхняя граничная частота в два раза выше нижней граничной частоты: $f_B = 2f_H$.

Характеристикой октавы является среднегеометрическая

частота
$$f_{\mathit{C}\mathit{\Gamma}} = \sqrt{f_{\mathit{B}} f_{\mathit{H}}}$$
 .

Звуковое давление Р, Па.

Недопустимо нахождение человека в зоне со звуковым давлением 115 дБ.

Рисунок 4.1.Инфразвук и ультразвук

Область звукового восприятия

Рисунок 4.2. Звук, звуковая волна

Интенсивность звука определяется энергией, переносимой за 1с звуковой волной через поверхность площадью 1 см2, перпендикулярно направлению распространения звуковой волны.

Рисунок 4.3. Законы звукоизоляции

Единица измерения Вт/м2

Вибрацией называются механические колебания упругих тел, механизмов или машин с частотой от 10 Гц и выше.

Причины возникновения вибраций:

- неправильная балансировка вращающих частей машин;
- близость частоты собственных колебаний конструкции к частоте динамических нагрузок на неё;
 - неправильные условия работы механизмов.

Вибрация характеризуется следующими параметрами:

- частотой;
- амплитудой;
- скоростью и ускорением колебательных движений.
- Тяжесть воздействия на организм зависит от параметров вибрации.

Вибрация вызывает болевые ощущения, когда её ускорение составляет 4-5% от нормального ускорения вибрации.

Оценка степени вибрации производится по спектру скорости вибрации в диапазоне частот от 11 Гц до 2,8 кГц. Этот диапазон делится на 8 октав. Санитарными нормами установлен предел скорости вибраций инструментов и оборудования.

Исходные данные

Таблица

4.1.

Исходные данные			Последняя цифра номера студенческого Билета									
	1	2	3	4	5	6	7	8	9	0		
Источн	R,m	2,5	2,0	3	3,5	4	4,5	5	5,5	6	6,5	
ик шума 1	L1,дБ	80	90	95	100	100	110	100	90	90	100	
	№ преграды	1	2	3	4	5	6	7	8	9	10	
Источн	R,m	7	7,5	8	8,5	9	9,5	8,5	8,5	8	7,5	
ик шума 2	L1,дБ	110	100	90	80	80	80	90	90	100	110	
	№ преграды	11	12	13	14	15	15	14	13	12	11	
Источн	R , м	7	6,5	6	5,5	5	4,5	4	3,5	3	2.5	
ик	L1,дБ	95	90	95	100	105	110	105	100	95	90	
шума 3	№ преграды	10	9	8	7	6	5	4	3	2	1	

Таблица 4.2.

No	Материалы и конструкции	Толщина	Macca
	преграды	конструкции, м	1/м2
			преграды,
			ΚΓ

1	Стена кирпичная	0,12	250
2	Стена кирпичная	0,25	470
3	Стена кирпичная	0,38	690
4	Стена кирпичная	0,52	934
5	Картон в несколько слоев	0,02	12
6	Картон в несколько слоев	0,04	24
7	Войлок	0,025	8
8	Войлок	0,05	16
9	Железобетон	0,1	240
10	Железобетон	0,2	480
11	Стена из шлакобетона	0,14	150
12	Стена из шлакобетона	0,28	300
13	Перегородка из досок толщиной	0,06	70
	0,02 м, отштукатуренная с двух		
	сторон		
14	Перегородка из стоек толщиной	0.18	95
	0,1 м, отштукатуренная с двух		
	сторон		
15	Гипсовая перегородка	0,11	117

Таблица 4.3.

	Предпоследняя цифра номера										
		студенческого билета									
	1 2 3 4 5 6 7 8 9										
Snm, м2	100	150	200	250	300	350	400	450	500	550	
Sc ,m2	160	180	200	220	250	260	280	300	320	340	
α1,10-3	20	25	30	35	40	45	40	35	30	25	
α2 10-2	95	90	85	80	75	70	75	80	85	90	
β1,10-3	34	33	32	31	30	31	32	33	34	35	
β2,10-2	75	80	85	90	95	90	85	80	75	70	

4. Методика решения

1. Расчёт изменения уровня интенсивности шума с изменением расстояния R от источника шума производится по формуле:

$$L_R = L_1 - 20\lg R - 8[\partial E] \qquad (4.1.)$$

где L_R и L_1 - уровни интенсивности шума источника на расстоянии R метров и одного метра соответственно.

Если между источником шума и рабочим местом есть стена-преграда, уровень интенсивности шума снижается на N дБ

$$N = 14,5\lg G + 15|\partial B| \qquad (4.2.)$$

где G - масса одного м² стены-преграды, кг.

Уровень интенсивности шума на рабочем месте с учётом влияния стены-преграды определяется как

$$L_{R}' = L_{R} - N[\partial E], \quad (4.3.)$$

Суммарная интенсивность шума двух источников с уровнями L_A и L_B , определяется как

$$L_{\Sigma} = L_{A} + \Delta L [\partial B], \qquad (4.4.)$$

$$L_{A} = L_{R \max} - L_{R \min} \quad (4.5.)$$

где L_A - наибольший из двух суммируемых уровней, дБ;

 ΔL - поправка, зависящая от разности уровней, определяется по таблице 2.4.

Таблица 4.4.

Разность													
уровней	0	1	2	3	4	5	6	7	8	9	10	15	20
источни													
ков La-													
Lв, дБ													
Поправк	3,0	2,5	2,0	1,8	1,5	1,2	1	0,8	0,6	0,5	0,4	0,2	0
a, ΔL, дБ													

В таблице 4.4. рассматриваем уровень интенсивности шума, с учетом влияния преграды.

Рисунок 4.4. Звукоизоляция

При определении суммарной мощности нескольких источников суммирование следует проводить последовательно, начиная с наиболее интенсивных.

Следует учесть, что L_{Σ} определяется для трех источников шума и каждый источник рассматривается с соответствующей стеной-преградой.

Параметры (тип материала, толщину и массу 1 м³⁾ преграды взять из таблицы 4.4.

Рисунок 4.5. Решения для звукоизоляции стен

2. При определении интенсивности шума после покрытия стен и потолка шумопоглощающим материалом для простоты допускается пренебречь действием прямых звуковых лучей, считать, что стены- преграды находятся внутри помещения и на звукопоглощение влияния не оказывают.

Суммарное звукопоглощение стен и потолка определяется как

$$M = S_{nm} \cdot \alpha + S_c \cdot \beta + S_{nm} \cdot \gamma$$
, ед. погл. (4.6.)

где S_{nm} , S_c - соответственно площади потолка и стен помещения, M^2 ;

 α , β , γ - соответственно коэффициенты поглощения материалов, которыми покрыты потолок, стены и пол.

В задаче принято, что площади пола и потолка помещения равны. Снижение интенсивности шума составит

$$K = 10 \lg \frac{M_2}{M_1} [\partial B], \quad (4.7.)$$

где M_1, M_2 ,- соответственно звукопоглощения без покрытия стен и потолка специальными звукопоглощающими материалами (M_1) и после покрытия такими материалами (M_2) , ед. погл.

Значение M_1 , вычисляется с использованием коэффициентов a_1 и β_1 , а M_2 - с использованием a_2 , и β_2 . Пол обычно звукопоглощающим материалом не покрывается и при расчётах принять, что пол паркетный ($\gamma = 0.061$).

Уровень интенсивности шума на рабочем месте с учётом покрытия стен и потолка звукопоглощающими материалами составит

$$L_{\Sigma} = L_{\Sigma} - K[\partial E],$$
 (4.8.)

Контрольные вопросы

- 1. Объясните действие шума на человека, назовите допустимые уровни шума по нормам и меры защиты.
- 2. Что такое интенсивность шума, уровень интенсивности?
 - 3. Что такое порог слышимости, болевой порог?
- 4. Как определяется общий уровень шума нескольких источников?
- 5. Какие инженерные решения применяются по снижению уровня шума?
- 6. Какие меры защиты применяют от воздействия, вибрации?
- 7. Какие применяют средства защиты от производственного шума и сотрясений?
- 8. Как устраивается виброизоляция фундаментов под оборудование?
 - 9. Что такое постоянный шум?
 - 10. Что такое непостоянный шум?