01) Определение алгебры кватернионов. Векторное произведение. Сопряжённый кватернион. Норма кватерниона. Мультипликативность нормы. Сумма четырёх квадратов.

 $uv = -\langle u, v \rangle + [u, v]; ||x|| = \sqrt{\det x}; n_1 n_2 = ||a||^2 ||b||^2 = ||ab||^2.$

- 02) Свойства сопряжения и векторного произведения. Определение \overline{x} . Важные выражения: [v,v],[v,u]+[u,v], для чисто мнимых: $u^2,u[u,v],||[u,v]||$.
 - 03) Кватернионы и вращения R^3

 $H_1; t = a + bu$, условия на $u, a^2 + b^2; xy = [x, y]; x^{-1}, \overline{x}; x^2, ||x||; ||a + bx||$. Определение угла, поворота.

04) Максимум квадратичной формы на сфере. Теорема Куранта-Фишера.

Норма и матанализ. Собственные числа. Подпространства размерности k.

- 05) Оценка на собственные числа ограничения. Оценка на след.
- 1. С.ч. операторов A и B. По К Φ , мин/макс для μ_i берется по подпр. внутри соотв. подпр. для λ (NB: λ_{i+n-m}). 2. Это след: взять матрицу A в ортонорм. базисе u_i . $v_i = (0, \dots, 1, \dots, 0)^T$ $A_{i,i} = v_i^T A v_i = q(u_i)$. Оценка: почленные нер-ва из 1.
 - 06) Метод главных компонент.

$$a_0 = \frac{1}{s} \sum x_i$$
: $\langle u_1, \dots, u_k \rangle = L_0$, ортонорм, доп. до базиса, $\sum_j ||pr_{L_0^\perp}(x_j - a)||^2 = \sum_j (\sum_{i=k+1}^n (x_{j,i} - a_i)^2)$, произв. L_0 : $S = \sum_j (\sum_{i=k+1}^n (x_{j,i} - a_i)^2)$

$$\sum_{i=1}^{s} ||pr_{L_0}(x_i)||^2 \to \max; \ X = (x_1, \dots, x_s)^T. \ S = \sum_{i=1}^{k} q(u_i) = Tr \ q(x)|_{L_0}, \ q(u) = u^T X^T X u. \ \text{Макс. по K} \Phi \ \text{на} \ \langle v_1, \dots, v_k \rangle$$

07) Сингулярные значения и SVD-разложение.

$$X^* = X^\top, \langle X^*e_i, e_j \rangle = \langle e_i, Xe_j \rangle, \sigma_i = \sqrt{d_i} > 0$$
 с.ч. A^*A . SVD $A \colon U \to V \exists$ о/н $u_i, v_j \colon$ матр $A = \Sigma(\sigma_{1..r}$ на диаг) $(X = L\Sigma R)$. e_i – о/н с.в. $\langle Ae_i, Ae_j \rangle = \langle A^*Ae_i, e_j \rangle = \langle d_ie_i, e_j \rangle$, $f_i = \frac{Ae_i}{\sqrt{d_i}}$ доп до базиса. $R = C^{-1} = C^\top, C$ столбцы e_i .

08) Приближение матрицей указанного ранга и SVD-разложение. Возможность применения к сжатию изображе-

рг из Б6
$$\Leftrightarrow$$
 ближ по $||X||_F = \sqrt{\text{Tr}\,X^\top X}$. $X = L\Sigma R$. рг на $\left\langle v_1^\top..v_k^\top \right\rangle$. v_i базис $X^\top X$ и строки R . рг a на $V^{(k)} = \sum a v_i v_i^\top$. $X^{(k)} = L\Sigma(\sum R v_i v_i^\top) = L\Sigma R^{(k)} = L\Sigma^{(k)} R$. Сж $L^{(k)}\Sigma^{(k)}R^{(k)}$. $2kn + k \to 2kn$ при $k < \frac{n}{2}$. Минор $k^2 + 2k(n-k) + 2k$.

09) Положительные матрицы. Теорема Перрона.

Док-во Перрона: полож-ть $(A|x|\geq |x|\Rightarrow Ay>\varepsilon z, z=A|x|\Rightarrow A|x|<\frac{A^n}{(1+\varepsilon)^n}A|x|\to 0$ противореч.), ед-ть (сонапр. коорд. $v\Leftarrow\sum_j A_{kj}|v_j|=|\sum_j A_{kj}v_j|)$ и некратность (Жорд. клетки; либо $\exists c,i:|x_1-cx_2|_i=0$, либо $Ax_2=x_2+x_1$)

- 10) Единственность положительного собственного вектора. Применение к случайному блужданию. 1. См. $\lambda x^{\top}y$. 2. Знаем предел $\lim_{k\to\infty}A^kv$, если у A макс по модулю с. ч. $\lambda=1$ кратности 1. P(G): $P_{\alpha}(G)=(1-\alpha)P(G)+\alpha\frac{1}{n}J,\ \alpha\in(0,1),\ \forall i,j\ J_{ij}=1$ – а это норм, Перрон гарантирует (см. $(1,\ldots,1)$).
- 11) Неориентированные графы. Собственные числа связного графа. Два примера. Шпаргалка: $(A + \varepsilon I)^l > 0$ при $l \ge diam(G)$ и понятны с.ч. Применим т. Перрона. Примеры: $A(K_n) = J - I$, $A(\mu \kappa \pi)$ $= C + C^{-1}$
- 12) Сильно регулярные графы. Граф Петерсона и его спектр. Двудольность и спектр. $A^2 + (\mu - \lambda)A + (\mu - k)E = \mu J, \ A_{|U}^2 + (\mu - \lambda)A_{|U} + (\mu - k)E = 0$ для $U = <(1, \cdots, 1)>^\perp$ След степени == количество циклов == сумма собственных чисел с учетом кратности. λ для $(v, w), -\lambda$ для (v, -w)
- 13) Две оценки на размер максимального независимого множества.

Натянуть подпространство на множество, следствие из КФ, нулевая квадратичная форма Характеристический вектор множества, разложить по ортонорм. базису регулярного(!) графа с $u_1 = (1, \dots, 1) \frac{1}{\sqrt{n}}$

14) K_{10} не покрывается тремя Петерсонами.

 $\sum\limits_{i=1}^3 A_i = B$. Все рег \Rightarrow общий с.в. $(1,\dots,1)$ для P с.ч. 3, для полного с.ч. 9. Сузим. Для A_1 и A_2 подпр. порожд. с.в. с с.ч. 1 \cap . Распишем для u из \cap . Bu = -u (натянуто на с.в. с с.ч. -1). \Rightarrow с.в. для A_3 с с.ч. -3. Такого с.ч. нет.

15) Тензорное произведение. Существование.

$$\cong K \langle V_1 \times \cdots \times V_n \rangle / K\{(..\lambda v + u..) - \lambda(..v..) - (..u..)\} = T. \ \forall h \colon K \langle \times V_i \rangle \to U \ \exists ! \hat{h} \colon \otimes V_i \to U, \ \hat{h} \circ i = h, \ \hat{h}((v_1,..)) = h(v_1,..)$$
 однозначно и пропускается через T , т. к. все соотн в ядре (проверить). $\hat{h}(v_1 \otimes ..) = \hat{h}((v_1,..))$. h – полилин, h – лин.

- 16) Единственность тензорного произведения. Размерность тензорного произведения. Единств: рассм полилин отобр i_1 и i_2 для \otimes_1 и \otimes_2 из опр. $\exists ! \hat{i}_1, \hat{i}_2 \colon \hat{i}_1 \circ i_2 = i_1, \hat{i}_2 \circ i_1 = i_2$. Д-ть, что $\hat{i}_1 \hat{i}_2 = \operatorname{Id}$. Разм: $e_{1j_1} \otimes \cdots \otimes e_{1j_n}$ порожд (раскр по полилин). $\operatorname{Hom}(V_1, \ldots, V_n, K) \cong \operatorname{Hom}(V_1 \otimes \cdots \otimes V_n, K) \cong V_1 \otimes \cdots \otimes V_n$.
- 17) Тензорное произведение линейных отображений. Кронекерово произведение. Тензорное произведение операторов и его собственные числа. Категорное произведение графов. Единств: определено на тензорятах; \exists : отобразить $U_1 \times \dots \times U_k$ в $V_1 \otimes \dots \otimes V_K$ полилин. (композ полилин.) \Rightarrow (опр. тенз.) \exists !. Наше правило подходит. Матрица: расписать $(\sum\limits_k A_{k,i} f_k) \otimes (\sum\limits_l B_{l,j} f_l')$. С.ч. $A \otimes B$: жорданов базис.
- 18) Канонические изоморфизмы для тензорного произведения. 3. $\operatorname{Hom}(U,V)\cong V\otimes U^*\colon v\times f\to (u\to f(u)v)$. 4. $\operatorname{Hom}(\tilde{U}\otimes V,W)\cong \operatorname{Hom}(U,\operatorname{Hom}(V,W))\colon L_1\colon L\to (u\to (v\to L(u\otimes v))),$ $L_2\colon L\to (u\otimes v\to (L(u))(v)),$ они обратны. 5. $U^*\otimes V^*\to (U\otimes V)^*\colon f\otimes g\to (u\otimes v\to f(u)g(v))$ базис в базис
- 19) Тензоры. Примеры. Координаты тензора. Замена переменной случай тензора валентности (1,0). (p,0) — полилин. форма, (1,1) — лин. оп-р, (2,1) — структ. алгебры. Переход: $x_{new} = Cx_{old}$. $e_i = \sum_{j=1}^n C_{ji}\hat{e}_j$, хотим $D: e^i = \sum D_{ii}\hat{e}^j. \ e^k(e_i) = \delta_{ki}.$ Расписать δ_{ki} через $\hat{e^j}$ и $\hat{e_l}$, раскрыть скобки. 20) Замена переменной – общий случай.
- , эммень переменной оощий случай. $\sum_{\substack{i_1',\dots,i_q'\in\overline{1,n}\\j_1',\dots,j_p'\in\overline{1,n}}}T_{j_1',\dots,j_p'}^{i_1',\dots,i_q'}e_{i_1',\dots,i_q'}^{j_1',\dots,j_p'}.\ e_i=\sum_{j=1}^nC_{ji}\hat{e}_j$ и $e^i=\sum D_{ji}\hat{e}^j.$ Раскрыть скобки, поменять суммирование. Должно

получиться
$$\hat{T}_{j_1,\ldots,j_p}^{i_1,\ldots,i_q} = \sum_{\substack{i_1',\ldots,i_q'\in\overline{1,n}\\j_1',\ldots,j_p'\in\overline{1,n}}} \prod_{t\in\overline{1,p}} D_{j_t,j_t'} \prod_{s\in\overline{1,q}} C_{i_s,i_s'} \, T_{j_1',\ldots,j_p'}^{i_1',\ldots,i_q'}.$$

- 21) Тензорная алгебра. Свёртка и след.
- Для (1,1) $T=\sum_{i,j}T_j^ie^j\otimes e_i$. Тогда $Conv(T)=\sum_{i,j}T_j^ie^j(e_i)=\sum_iT_i^i$.. $V^*\otimes V\cong \mathrm{Hom}(V,V)\Rightarrow$ это след. 22) Внешняя и симметрическая степень. Примеры. Лемма о проекторе для внешней степени. Формулировка для симметрической степени.

Примеры: (косо)симметрические билинейные формы, формы объёма, однородные многочлены.

- 23) Базис внешней степени. Формулировка для симметрической степени. Смотрим на образ Alt на базисных векторах тензорного произведения.
- 24) Внешняя степень линейного отображения. Универсальное свойство внешней степени. Универсальное свойство: смотрим на линейное из тензорного произведения, огранчиваем на внешнюю степень.
- 25) Внешняя алгебра и её свойства. Формулировка для симметрического случая. $f \wedge g = Alt(f \otimes g)$. Показать, что $Alt(Alt(T_1) \otimes T_2) = Alt(T_1 \otimes T_2) = Alt(T_1 \otimes Alt(T_2))$. Проверить свойства на базисе.
- 27) Лемма Гаусса. Содержание многочлена. Делимость в Q(R)[x] и в R[x]. Лемма: Пусть нет, возьмём $\min a_i, b_j \not / p$, тогда $c_{i+j} \not / p$. Содержание: поделим на $\cot g, h$, убедимся что $\cot f = 1$. Лемма про $Q(R)[x]: d_1, d_2 - HOK$ знаменателей, $c = \frac{d_1}{d_2}$.
- 28) Факториальность кольца многочленов над факториальным кольцом. R[x] факториально и простые в нём: $f = p \in R, f : \text{cont}(f) = 1$ — непр. в Q(R)[x]. 1) Б27 2) в них раскладывается, посмотрим в Q(R), $g = \frac{a_1}{a_2} fq \Rightarrow \frac{a_1}{a_2} q \in R[x]$ (т.к. $\mathrm{cont}(q) : a_2)$ 3) $f = a \prod g_i$
- 29) Редукционный признак неприводимости. Примеры. Признак Эйзенштейна. $1. \ a_n \not/ p, \ f$ - неприводим в $R/p[x] \Rightarrow$ неприводим над $Q(R). \ cont = 1$ и непр-ть над $Q(R) \Rightarrow$ непр-ть над R (см. степени g и h). 2. $a_n \not | p$, все $a_i : p \ i < n$, но $a_0 \not | p^2$, то многочлен f(x) неприводим. Пусть $b_0 \not | p$, см. min $c_s \not | p$ и a_s .
- 30) Алгоритм Кронекера. Сведение для многочленов от нескольких переменных. 1) Перебираем наборы делителей $f(i), 0 \le i \le \frac{degf}{2}$, интерполируем, проверяем. 2) Различным разложениям $f(x_1, \dots, x_n)$ соответствуют различные разложения $f(x, \dots, x^{d^{n-1}})$ для d больших $\max_{i=1}^n \{\deg_{x_i} f\}$. Рассмотреть образ x^{α} .
- 31) Лемма Гензеля. Разложение на множители при помощи леммы Гензеля. Доказательство леммы: Индукция по k. Строим для k+1. Помним, что $\forall f:\ p^kf\equiv p^k\overline{f}\pmod{p^{k+1}}.$ $\overline{h} \equiv \hat{h} + p^k a(x) \Rightarrow \overline{h}\overline{g} \equiv \hat{g}\hat{h} + p^k (a(x)g + b(x)h)$. С другой стороны $f - \hat{g}\hat{h} = p^k c(x) \Rightarrow a, \ b$ берем из лп НОДа g и h
- 32) Степенные суммы. Тождество Ньютона. $0=(-1)^n n\sigma_n+\sum_{k=0}^{n-1}(-1)^k\sigma_k s_{n-k}$, в многочлен подставим корни, просуммируем по всем корням, отдельно случаи

k < n - добавим нулевые переменные, k > n - занулим не входящие в моном переменные

- 33) Целые алгебраические элементы. Замкнутость относительно операций. а алгебраический $==\exists f\in\mathbb{Z}[x]:f(a)=0.$ Замкнуто: $\prod(x-(a_i+b_j))$ симметрично по i, тогда коэффициенты выражаются через симметрические, симметрический по b_i все коэффициенты целые.
- 34) Результант. Совпадение двух определений (без лемм). Общий множитель $\leftrightarrow fk_2 gk_1 = 0$, $\deg k_2$ меньше $\deg g$. Построить матрицу $(k(x), l(x)) \to k(x)f(x) + l(x)g(x)$. Оба опр. многочлены от коэф. \leftrightarrow симм. многочлены от корней. $DetS \stackrel{.}{:} a_n^m b_m^n$ и $(x_i y_j)$ (взимно просты). Применяем \downarrow
- 35) Леммы про результант. Дискриминант, его смысл. Вычисление через результант. $a_n^m b_m^n \prod_{i,j} (x_i y_j) = (-1)^{mn} b_m^n \prod f(y_j) = a_n^m \prod g(x_i)$, дает, что Res однородный многочлен степени m по a и n по b. $D(f) = a_n^{2n-2} \prod_{i < j} (x_i x_j)^2$. $Res(f, f') = (-1)^{\frac{n(n-1)}{2}} a_n D(f)$. (т.к. $f'(x_i) = a_n \prod_{j < i} (x_i x_j)$. + лемма).
- 36) Степень расширения. Теорема о башне полей. Степень расширения размерность L как вект. пр. над K. [M:K]=[M:L][L:K]. Взять базисы u_i и v_j : M над L и L над K. Новый базис u_iv_j .
- 37) Описание наименьшего подрасширения, содержащего данный элемент. $K(\alpha) \cong K[\alpha] \cong K[x]/p(\alpha)$, рассмотрим $K[x] \to L$, переводящий $x \to \alpha$ и $K[x]/p(x) \to L$. Следствия про равенство степеней расширения над K и изоморфность расширений для корней неприводимого многочлена.
- 38) Построение при помощи циркуля и линейки. Пример неразрешимого построения. x построимо \Rightarrow оно алгебраическое и лежит в расширении L/\mathbb{Q} степени 2^n . Докажем индукцией по числу построений, рассмотрим уравнение пересечения с новым объектом степени 2. $\cos \frac{\pi}{9}$ корень уравнения $4x^3 3x = \frac{1}{2}$.
- 39) Конечные поля. Число элементов. Основное уравнение. Эндоморфизм Фробениуса. Корни $x^{p^n}-x$ образуют подполе.
- 1. Содержит Z/p 2. p^n эл-тов (см. как п/г по +) 3. См. на мультипл. группу. Теорема Ферма для групп. 4. Биномиальный коэф. делится на p почти всегда. 5. Аккуратно всё проверить.
- 40) Основная теорема про конечные поля. Поле разложения $x^{p^n}-x \to$ подполе из p^n элементов. Взять образующий группы, найти мин. многочлен, найти его корень в другом поле (через делимость). И проверить на изоморфизм "образующий группы в корень" техника.
- 41) Подполя данного конечного поля. Описание автоморфизмов F_p^n . 1. $\mathbb{F}_{p^n} \in \mathbb{F}_{p^m}$: а) Башня б) см. $\{x \in \mathbb{F}_{p^m} | x^{p^n} - x = 0\}$, это подполе, p^n эл-тов, т.к. $x^{p^m} - x \vdots x^{p^n} - x$ и первый раскладывается на лин. множители. 2. $\mathbb{F}_q = F_p[\alpha]$, где степень мин. f для α равна n, а авт-м задаётся образом корня.
- 42) Расширения поля F_q . Неприводимые многочлены как делители $x^{q^d}-x$. 1. $q^{[L:\mathbb{F}_q]}$, существ. по Б41. Изоморф-м L_1 и L_2 : знаем для \mathbb{F}_p (Б40), $\varphi(\mathbb{F}_q)=\mathbb{F}_q\Rightarrow$ это степень Frob, см. обратный к нему над L_2 . 2. а) $\mathbb{F}_q[\alpha]\in\mathbb{F}_{q^m}$ (т.к. есть корень), Башня. б) см. $\mathbb{F}_{q^{\deg f}}\cong\mathbb{F}_q[x]/f\Rightarrow$ общий α (NB: f – неприводим).
- 43) Лемма про производную. Лемма про эффективное извлечение корня степени p. 1. $f = \prod g_i^{n_i}$, смотрим $f = g_i^{n_i}g$, берём произв., см. на степень вхождения в f и f'. 2. $h' = 0 \Leftrightarrow h = g(x^p)$, коэфф. g: a_i , см. $b_i^p = a_i$ (можно, т.к. Frob), см. f с коэфф. b_i и распиши $f^p = g(x^p) = h$. Для извлечения см. обратный Frob.
- 44) Лемма про разделение на сомножители, чьи неприводимые множители имеют одинаковую степень. См. Б42 про критерий для степени. Инд-ция: пусть на шаге у f нет мн-лей степени < l. $g(x) = x^{q^l} x$, HOД(g, f) состоит из мн-лей f степени = l, т.к. делит, а меньше нет. HOД(g, f)=HOД(r, f). Значит нужно x^{q^l} mod f (см. в $\mathbb{F}_q[x]/f$).
- 45) Алгоритм Берлекэмпа. $R = \mathbb{F}_q[x]/f \cong \prod \mathbb{F}_q[x]/h_i$. Хотим дел-ли 0. Смотрим на $\{y \in \mathbb{F}_q[x]/f|y^q-y=0\}$ (покомпонентно удовл-т). Это линейное \Rightarrow есть матрица, её решаем, получаем l-ку коэфф. Перебираем константы, обнуляем координату, см. на НОД с f.
- 46) Вероятностный алгоритм Кантора-Цассенхауза. 1. Про кв-ты: $x^{\frac{q^d-1}{2}}=\pm 1.$ 2. Как в Б45, такое же R, оттуда случ-й $h\to h^{\frac{q^d-1}{2}}-1.$ Попадём в $\{0,-1,-2\}$. Худший случай: $\mathbb{F}_3\times\mathbb{F}_3$. Считаем вероятность получить среди первых двух комп-т квадрат и не квадрат $(p\geq \frac{4}{9})$.

48) Коды, исправляющие ошибки. Минимальное расстояние. Линейные коды. Вычисление минимального расстояния для линейных кодов.

Хэмминг, код, кодовое расстояние, обнаруживает, исправляет, n-k-q-код, линейному соответствует матрица, систематический, проверочная матрица (образ – её ядро), мин. число ненулевых координат x = кол-во нез. столбцов.

49) Циклические коды. Эквивалентное описание. Коды БЧХ. Пример.

$$q=p^s,\ m,n$$
 такие, что q^m-1 : $n,\ 2\leq d\leq n,\ l_0\leq n.\ \alpha$ — образующая $\mathbb{F}_{q^m}^*,\ \beta=\alpha^{(q^m-1)/n}$ Пример: $q=2,m=4,l_0=1,n=15,d=5,f=x^4+x^3+1.$

- 50) Основная теорема про коды БЧХ.
- 1. Делится \Leftrightarrow обнуляется на корнях, определитель $p(x) \to p(\beta^i)$. 2. $d_{min} \ge d$. Пусть плохо \mathbb{F}_q , тогда плохо в \mathbb{F}_{q^m} , обнуляет $H \Longrightarrow$ у неё есть d-1 зависимый столбец, выделим их, сведём к Вандермонду, не вырождено.
 - 51) Алгоритм декодирования Питерсона-Горенштейна-Цирлера.
- $e(x) = \sum e_{i_j} x^{i_j}$. Расписать через $Y_j X^{l_0+k-1}$. Хотим Y_j , значит нужны X. См. $\Lambda(x) = \prod (1-xX_j)$. Хотим Λ_i , тогда найдём корни и обратим. См. $0 = \Lambda(X_j^{-1})$, домножаем на $Y_j X_j^{\nu+t}$, суммируем $(l_0..l_0+t-1)$, меняем на $S_{t+1}..S_{2t}$.
- 54) Обратная функция относительно свёртки. Её мультипликативность. Функция Мёбиуса. Формула обращения. 1. f(1) – обратимо, выкидываем n, см. $0 = \sum_{d|n} f(\frac{n}{d})g(d)$. 2. Инд-ция по (n,m): $g(nm) = -\sum_{d|nm,d < nm} \frac{nm}{d})g(d) = e(n)e(m) + g(n)g(m)$. 3. Пишем дзета-ф-цию, суммируем как БУГП, см. обратную. 4. $f = g * 1 \Leftrightarrow g = f * 1^{-1} = f\mu$.
- 55) Вероятность встретить два взаимно простых числа. Считаем $\sum \varphi(i), \varphi(n) = \sum \mu(d) \frac{n}{d}$. Дальше аккуратно считаем, разбиваем на две суммы (по $\mu(d)$ и d'), в конце $\frac{n^2}{2} \sum \frac{\mu(d)}{d^2} = \frac{3n^2}{\pi}$