${\mathfrak l}_{1^-}^{\#2}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$-\frac{i\sqrt{2}}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4(r_1+r_5)+2k^2t_1}{(t_1+2k^2t_1)^2}$
$\tau_{1^-}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^-\alpha}^{\#2}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{-2 k^2 (r_1 + r_5) + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$\frac{i\sqrt{2}}{(t_1+2k^2t_1)^2}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
${\tau_1^{\#1}}_{+\alpha\beta}$	$\frac{i}{\sqrt{2} (k+k^3) (2 r_1 + r_5)}$	$\frac{i(6k^2(2r_1+r_5)+t_1)}{2k(1+k^2)^2(2r_1+r_5)t_1}$	$\frac{6k^2(2r_1+r_5)+t_1}{2(1+k^2)^2(2r_1+r_5)t_1}$	0	0	0	0
$\sigma_1^{\#_2^2}$	$\frac{1}{\sqrt{2} \; (k^2 + k^4) (2 r_1 + r_5)}$	$\frac{6k^2(2r_1+r_5)+t_1}{2(k+k^3)^2(2r_1+r_5)t_1}$	$-\frac{i(6k^2(2r_1+r_5)+t_1)}{2k(1+k^2)^2(2r_1+r_5)t_1}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{k^2 (2 r_1 + r_5)}$	$\frac{1}{\sqrt{2} (k^2 + k^4) (2 r_1 + r_5)}$	$-\frac{i}{\sqrt{2}\;(k\!+\!k^3)(2r_1\!+\!r_5)}$	0	0	0	0
	$\sigma_{1}^{\#1} + ^{lphaeta}$	$\sigma_{1+}^{#2} + \alpha \beta$	$\tau_1^{#1} + \alpha \beta$	$\sigma_{1^{\text{-}}}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$t_1^{\#2} + ^{\alpha}$

Source constraints	
SO(3) irreps	#
$\sigma_0^{\#1} == 0$	1
$\tau_{0^{+}}^{\#2} == 0$	1
$\tau_{0^{+}}^{\#1} - 2 \bar{\imath} k \sigma_{0^{+}}^{\#1} == 0$	1
$\tau_1^{\#2\alpha} + 2 i k \sigma_1^{\#2\alpha} == 0$	3
$\tau_{1}^{\#1\alpha} == 0$	3
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3
$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$	5
Total #:	17

П.					
O#1) (0	0
T#2			>	0	0
$ au_{\circ,+}^{\#1}$	1 1/2 k	$\frac{(1+2k^2)^2 t_1}{2k^2}$	$(1+2k^2)^2t_1$	0	0
$\sigma_{o+1}^{\#1}$	1	$\frac{(1+2k^{-})^{-}t_{1}}{i\sqrt{2}k}$	$(1+2k^2)^2t_1$	0	0
	σ_{c+}^{*1}	, t	, 0 ₊ 1	τ"‡ Τ	$\sigma_{0}^{\#1}$ \dagger

$\sigma_{2^{-}}^{\#1}\alpha\beta\chi$	0	0	$\frac{2}{2k^2r_1+t_1}$	
$\tau_{2}^{\#1}_{\alpha\beta}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	
$\sigma_{2}^{\#1}{}_{\alpha\beta}$		$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	
	$\sigma_2^{\#1} + \alpha \beta$	$\tau_2^{\#1} + ^{\alpha\beta}$	$\sigma_{2^-}^{\#1} +^{lphaeta\chi}$	

$\omega_{0}^{\#1}$	0	0	0	0
$f_{0}^{\#2}$	0	0	0	0
$f_0^{\#1}$	$i\sqrt{2}\ kt_1$	$-2 k^2 t_1$	0	0
$\omega_{0}^{\#1}$	$-t_1$	$-i \sqrt{2} k t_1$	0	0
	$\omega_{0}^{\#1}\dagger$	$f_{0}^{\#1}$ \dagger	$f_0^{#2} +$	$\omega_{0^-}^{\#1} \dotplus$

0

0

0

 $\frac{t_1}{\sqrt{2}}$

0

0

0

 $\omega_1^{\#2} +^{\alpha}$

0

0

0

0

0

0

0

 $f_{1^{-}}^{\#1} +^{\alpha}$

0

0

0

$\omega_{1}^{\#1}{}_{lphaeta} \qquad \omega_{1}^{\#2}{}_{lphaeta} \ f_{1}^{\#1}{}_{lphaeta}$	$^{2}(2r_{1}+r_{5})+\frac{t_{1}}{6}\left -\frac{t_{1}}{3\sqrt{2}} \right -$	$-\frac{t_1}{3\sqrt{2}} \qquad \frac{t_1}{3}$	$f_1^{\#1} + \alpha \beta \qquad \frac{ikt_1}{3\sqrt{2}} \qquad -\frac{1}{3}ikt_1 \stackrel{k}{=}$	$\omega_{1}^{*1} + \alpha$ 0 0
$^{+}_{lphaeta}$ $\omega_{1}^{\#1}$	$\frac{ikt_1}{3\sqrt{2}} \qquad 0$	$\frac{i k t_1}{3}$ 0	$\frac{k^2t_1}{3}$ 0	$0 k^2 (r_1 + r_5) - \frac{t_1}{2}$
$\omega_{1}^{\#2}{}_{lpha}f_{1}^{\#1}{}_{lpha}$	0	0	0	¹ 2
$f_{1^-}^{\#1} \alpha$	0	0	0	0
$_{\chi}$ $f_{1}^{#2}$	0	0	0	0 <i>i</i> k t ₁

$-ikt_1$					
0					
0					
0			$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	
	$\omega_{2}^{\#1} \dagger^{0}$	αβ	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	
-5 +α	$f_{2}^{#1} \dagger^{6}$		$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	
$f_1^{\#2}$	$\omega_2^{#1} \dagger^{\alpha_l}$	βχ	0	0	

 $\omega_{2}^{\#1}{}_{\alpha\beta\chi}$

0

0

 $k^2 r_1 + \frac{t_1}{2}$

O		
(₁ -		

 $-t_{1}\;\omega_{,}^{\;\alpha_{'}}\;\omega_{\kappa\alpha}^{\;\;\kappa}-\tfrac{1}{3}\,t_{1}\;\omega_{,\kappa\lambda}^{\;\;\kappa\lambda}\;\omega_{\kappa\lambda}^{\;\;\prime}+\tfrac{1}{3}\,t_{1}\;\omega_{\kappa\lambda}^{\;\;\prime}\;\omega_{\kappa\lambda}^{\;\;\prime}-r_{5}\,\partial_{i}\omega_{\kappa\lambda}^{\;\;\kappa\lambda}\,\partial^{i}\omega_{\lambda}^{\;\;\alpha} \frac{1}{3}\,t_1\,\partial^\alpha f^\lambda_{k}\,\partial^\kappa f_{\lambda} + t_1\,\,\omega_{\kappa\alpha}^{\alpha}\,\partial^\kappa f'_{\prime} + t_1\,\,\omega_{\kappa\lambda}^{\lambda}\,\,\partial^\kappa f'_{\prime} + 2\,t_1\,\partial^\alpha f_{\kappa\alpha}\,\partial^\kappa f'_{\prime}$ $\frac{2}{3}r_1\partial^\beta\omega^{\theta\alpha}_{\kappa}\partial_\theta\omega_{\alpha\beta}^{\kappa} - \frac{2}{3}r_1\partial_\theta\omega_{\alpha\beta}^{\kappa}\partial_\kappa\omega^{\alpha\beta\theta} + \frac{2}{3}r_1\partial_\theta\omega_{\alpha\beta}^{\kappa}\partial_\kappa\omega^{\theta\alpha\beta}$ $r_5 \, \partial_\alpha \omega_\lambda^{\ \alpha}_{\ \ \theta} \, \partial_\kappa \omega^{\theta \kappa \lambda} + r_5 \, \partial_\theta \omega_\lambda^{\ \alpha}_{\ \ \alpha} \, \partial_\kappa \omega^{\theta \kappa \lambda} - r_5 \, \partial_\alpha \omega_\lambda^{\ \alpha}_{\ \ \theta} \, \partial_\kappa \omega^{\kappa \lambda \theta} +$ $2\,r_5\,\partial_\theta\omega_\lambda^{\alpha}\partial_\kappa\omega^{\kappa\lambda\theta} - \tfrac{1}{3}\,t_1\,\partial^\alpha f_{\theta\kappa}\,\partial^\kappa f_{\alpha}^{\theta} - \tfrac{2}{3}\,t_1\,\partial^\alpha f_{\kappa\theta}\,\partial^\kappa f_{\theta}^{\theta} -$ Lagrangian density

? \	$\xrightarrow{k^{\mu}}$?	?
		?	

?		
k^{μ}	Quadratic pole	2
	Pole residue:	$\frac{1}{(2r_1+r_5)t_1^2p^2} > 0$
	Polarisations:	2
?		

 $t_1 \, \partial_{\kappa} f^{\lambda}_{\ \ \lambda} \, \partial^{\kappa} f'_{\ \ \prime} + frac{1}{3} \, t_1 \, \, \omega_{\prime \, \theta \kappa} \, \, \partial^{\kappa} f'^{\, \theta} + frac{4}{3} \, t_1 \, \, \omega_{\prime \, \kappa \theta} \, \, \partial^{\kappa} f'^{\, \theta} - frac{1}{3} \, t_1 \, \, \omega_{\theta \prime \, \kappa} \, \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac{1}{3} \, \omega_{\sigma \kappa} \, \partial^{\kappa} f'^{\, \theta} + frac^{\kappa} f'^{\, \theta} + frac^{\kappa} f'^{\, \theta} + frac^{\kappa} f'^{\, \theta} + frac^$

 $\frac{2}{3}t_{1}\ \omega_{\theta\kappa\prime}\ \partial^{\kappa}f^{\prime\theta} - t_{1}\ \omega_{/\alpha}^{\ \alpha}\ \partial^{\kappa}f^{\prime}_{\ \kappa} - t_{1}\ \omega_{/\lambda}^{\ \lambda}\ \partial^{\kappa}f^{\prime}_{\ \kappa} + \frac{1}{3}t_{1}\ \partial^{\alpha}f^{\lambda}_{\ \kappa}\ \partial^{\kappa}f_{\lambda\alpha} + \frac{1}{3}t_{1}\ \partial^{\alpha}f^{\lambda}_{\ \kappa} +$

 $\frac{2}{3} r_1 \partial_\kappa \omega^{\alpha\beta\theta} \partial^\kappa \omega_{\alpha\beta\theta} - \frac{2}{3} r_1 \partial_\kappa \omega^{\theta\alpha\beta} \partial^\kappa \omega_{\alpha\beta\theta} + \frac{2}{3} r_1 \partial^\beta \omega_{\alpha}^{\ \alpha\lambda} \partial_\lambda \omega_{\alpha\beta}^{\ \prime} -$

 $r_1 \partial^{\beta} \omega_{\lambda}^{\lambda \alpha} \partial_{\lambda} \omega_{\alpha \beta}^{\ \ \prime} + r_5 \partial_{\alpha} \omega_{\lambda}^{\ \ \alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\ \ \kappa} - r_5 \partial_{\theta} \omega_{\lambda}^{\ \ \alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\ \ \kappa}$

Added source term: $f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}$

	Massive particle		
? $J^P = 2^-$?	Pole residue:	$-\frac{1}{r_1} > 0$	
J ² ≡ 2 ?	Polarisations:	5	
k^{μ}	Square mass:	$-\frac{t_1}{2r_1} > 0$	
?	Spin:	2	
	Parity:	Odd	

 $r_1 < 0 && r_5 > -2 r_1 && t_1 > 0$ Unitarity conditions