MAILED 14 OCT 2004

European **Patent Office** Office europeen des brevets

16 04 52012

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application conformes à la version described on the following page, as originally filed.

Les documents fixés à cette attestation sont initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patent application No. Demande de brevet nº Patentanmeldung Nr.

03103760.9

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

> Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets p.o.

R C van Dijk

Anmeldung Nr:

Application no.: 03103760.9

Demande no:

Anmeldetag:

Date of filing: 10.10.03

Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

Koninklijke Philips Electronics N.V. Groenewoudseweg 1 5621 BA Eindhoven PAYS-BAS

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention: (Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung. If no title is shown please refer to the description. Si aucun titre n'est indiqué se referer à la description.)

High pressure discharge lamp

In Anspruch genommene Prioriät(en) / Priority(ies) claimed /Priorité(s) revendiquée(s) Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/Classification internationale des brevets:

H01J61/82

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR LI

5

10

15

20

25

High pressure discharge lamp

The invention relates to a high-pressure discharge lamp, which is in particular suited for use in plant growing irradiation.

The absorption of green leaves is strongest in the blue and the red part of the spectrum. Photons (quanta) between 400 and 700 nm are determining the rate of photosynthesis. As absorption of these photons is the driving force for photosynthesis, a spectral quantum yield of photosynthesis has been derived by MCree et al. and refined by Sager et al. The yield is highest in the blue and maximal in the red part of the spectrum. High intensity discharge lamps with Na or NaI efficiently emit radiation in particular in the region of the NaD-line at 589 nm, where the absorption of the chlorophyll is strong. Particularly, high-pressure sodium (called SON or alternatively HPS) lamps are therefore presently used for assimilation lighting in green houses. SON lamps reach luminous efficacies between 100 and 150 lm/W and photon flux sensitivity up to 1.9 µmol/(Ws). High intensity discharge lamps with comparable luminous efficacies are lamps on the basis of NaI and CeI₃ fillings. In EP 0 896 733 a metal-halide system with NaI and CeI₃ is described, which can reach efficacies between 130 and 174 lm/W. The luminous efficacy decreases when Li is added. In US 6,147,453 a lamp with NaI, CeI₃, and LiI filling is described, which only reaches luminous efficacies between 100 and 135 lm/W.

For an efficient support of plant growth, lamps must generate light very efficiently in the region where the photosynthetic yield is maximal.

The main drawback of the known lamp with the filling comprising the combination of NaI, CeI₃, and LiI is that it emits a considerable amount of light in the green region of the spectrum, where the photosynthetic yield is lowest. Although it has a high luminous efficacy, it is less suitable for stimulation of plant growth than lamps on the basis of Na or NaI, which emit more efficiently in the red part of the spectrum. Both the lamp with a filling comprising NaI/CeI₃ and the one comprising Na, Ce and Li halides have the drawback of being susceptible to demixing phenomena of the filling during lamp operation.

The main disadvantage of SON lamps is that they emit mainly around 589 nm although the plants still absorb photons very efficiently up to approximately 700 nm. The conversion of electrical power into photons of SON lamps is therefore not optimal with respect to the plant absorption spectrum.

5

10

15

25

30

According to the invention the high-pressure discharge lamp has a discharge vessel, which besides a buffer gas comprises substantially LiI as metal halide or a mixture of LiI and NaI. As buffer gas Hg is frequently used. Besides the discharge vessel may comprise a rare gas like Ar, Kr and Xe or a mixture of thereof, which promotes starting and can also have a buffer gas capacity. The discharge vessel can be made of ceramic or made of quartz or quartz glass. Ceramic is meant in this respect to be translucent mono or densely sintered poly crystalline metal oxide, like Al₂O₃, Y₂O₃, Y₃Al₅O₁₂ (YAG) and densely sintered metal nitride, like AIN. A 150 W LiI-lamp with mercury as buffer gas and a ceramic alumina discharge vessel, for instance, emits 15 - 20 % of its radiation in the blue region between 400 and 500 nm and about 75 % in the red region between 600 and 700 nm, which are surprisingly high percentages. The emission of the lamp thus matches the absorption spectrum of green plants surprisingly very well, which match is much better than that of a high-pressure sodium lamp, where only up to 10 % is emitted in the blue region and at most about 40 % in the red region. The high percentage of blue light was in itself unexpected because the main lines of Li are at 611 and 671 nm, respectively. 20

Whereas the use of LiI as a filling component generally means a reduction of the luminous efficacy (see above), it surprisingly turns out that the energy conversion of a lamp according to the invention is at least comparable or even better than that of a comparable known lamp. For a 150W lamp with a filling comprising Na or NaI the energy conversion efficacy is about 27 %, which value increases to almost 30 % for the invented 150 W lamp described above. This increase is surprising and unexpected. Despite the higher blue fraction of the Li spectrum, the photon flux per input power (in µmol/(W*s)) of the invented lamp turned out to be even 10% higher than is the case with the comparable lamp having a

The new lamp therefore provides a higher energy and higher photon efficiency filling of Na or NaI. as well as a spectrum, which is better adapted to the plant absorption and photosynthetic quantum yield.

The above and further aspects of the invention will be explained in more detail below with reference to a drawing, in which

Fig. 1 schematically shows a lamp according to the invention,

Fig. 2 shows in detail the discharge vessel of the lamp in accordance with fig.

Fig. 3 shows a spectrum of a lamp according to the invention compared with a 1, and non-invented lamp.

10

15

20

25

5

Fig 1 shows a discharge lamp according to the invention having a ceramic wall. Fig. 1 shows a metal halide lamp provided with a discharge vessel 3 having a ceramic wall, which encloses a discharge space 11 containing an ionizable filling. Two electrodes whose tips are at a mutual distance EA are arranged in the discharge space, and the discharge vessel has an internal diameter Di at least over the distance EA. The discharge vessel is closed at one side by means of a ceramic projecting plug 34, 35 which encloses a current lead-through conductor (Fig. 2: 40, 41, 50, 51) to an electrode 4, 5 positioned in the discharge vessel with a narrow intervening space and is connected to this conductor in a gastight manner by means of a melting-ceramic joint (Fig. 2: 10) at an end remote from the discharge space. The discharge vessel is surrounded by an outer bulb 1, which is provided with a lamp cap 2 at one end. A discharge will extend between the electrodes 4, 5 when the lamp is operating. The electrode 4 is connected to a first electrical contact forming part of the lamp cap 2 via a current conductor 8. The electrode 5 is connected to a second electrical contact forming part of the lamp cap 2 via a current conductor 9. The discharge vessel, shown in more detail in Fig. 2 (not true to scale), has a ceramic wall and is formed from a cylindrical part with an internal diameter Di which is bounded at either end by a respective end wall portion 32a, 32b, each end wall portion 32a, 32b forming an end surface 33a, 33b of the discharge space. The end wall portions each have an opening in which a ceramic projecting plug 34, 35 is fastened in a gastight manner in the end wall portion 32a, 32b by means of a sintered joint S. The ceramic projecting plugs 34, 35 each narrowly enclose a current leadthrough conductor 40, 41, 50, 51 of a relevant electrode 4, 5 having a tip 4b, 5b. The current 30 lead-through conductor is connected to the ceramic projecting plug 34, 35 in a gastight manner by means of a melting-ceramic joint 10 at the side remote from the discharge space. The electrode tips 4b, 5b are arranged at a mutual distance EA. The current lead-through

5

10

15

20

25

30

conductors each comprise a halide-resistant portion 41, 51, for example in the form of a Mo-Al₂O₃ cermet and a portion 40, 50 which is fastened to a respective end plug 34, 35 in a gastight manner by means of the melting-ceramic joint 10. The melting-ceramic joint extends over some distance, for example approximately 1 mm, over the Mo cermet 40, 41. It is possible for the parts 41, 51 to be formed in an alternative manner instead of from a Mo-Al₂O₃ cermet. Other possible constructions are known, for example, from EP-0 587 238. A particularly suitable construction was found to be a halide-resistant coil applied around a pin of the same material. Mo is very suitable for use as a highly halide-resistant material. The parts 40, 50 are made from a metal whose coefficient of expansion corresponds very well to that of the end plugs. Nb, for example, is for this purpose a highly suitable material. The parts 40, 50 are connected to the current conductors 8, 9 in a manner not shown in any detail. The lead-through construction described renders it possible to operate the lamp in any burning position as desired.

Each of the electrodes 4, 5 comprises an electrode rod 4a, 5a which is provided with a coiling 4c, 5c near the tip 4b, 5b. The projecting ceramic plugs are fastened in the end wall portions 32a and 32b in a gastight manner by means of a sintered joint S.

In a practical embodiment the ceramic wall is made from alumina and the thus formed discharge vessel has a diameter of 4 mm and a length of 36 mm. In fig 3 the spectrum of a lamp, of which the metal halide filling substantially comprises LiI is shown with curve 1. Of a comparable non-invented lamp, which filling comprises NaI instead of LiI the spectrum is shown with curve 2. In both lamps the filling of the discharge vessel also comprises 3.8mg Hg as buffer gas and 300mbar Ar/Kr. The spectrum of the non-invented lamp is equivalent to the spectrum of an ordinary HSP lamp. From the shown spectra it is clear that the blue fraction in the spectrum 1 of the LiI comprising lamp is much higher than in the HPS spectrum 2. It is also clearly shown that the spectrum 1 emits much more radiation in the region from 600 to 700nm than the spectrum 2. An further advantage of the lamp according to the invention is that its visible lumens are more than a factor 2 lower than in case of a HPS or of a NaI comprising lamp of comparable wattage. Thus lighting for plant growing, so called assimilation lighting, results in less illumination of the surroundings.

The invented lamp described above is used in assimilation lighting in green houses. In an experiment the effect on tomato plants, chrysanthemum plants and potted roses is investigated. In a first area plants were illuminated with lamps according to the invention having a total flux input per unit area of 118 μ mol/s. As comparison in a second area plants were illuminated with an HSP lamp having a total flux output of 122 μ mol/s. After an

5

illumination period of only 18 hours there was an equal or even a slightly better growing of the plants in the first area, in particular with respect to the tomato plants. As the photon efficiency of a lamp comprising the filling of LiI is about 15% higher than the photon efficiency of a comparable HPS lamp, the assimilation lighting through the invented lamp requires less nominal lamp power for achieving equal growing results.

Comparison of some lamp characteristics of a lamp according to the invention with lamps not according to the invention is given below.

The lamp according to the invention has a filling of 3.8mg Hg and LiI. The lamp has a nominal power of 150W. The photon flux per unit power of this lamp is 1.5 μ mol/(W*s).

For a comparable lamp in which the halide is NaI the phton flux per unit power is 1.35 µmol/(W*s).

A HPS lamp with a nominal power of 150W has a photon flux per unit power of 1.29 µmol/(W*s).

CLAIMS:

1. A high-pressure discharge lamp having a discharge vessel with an ionisable filling comprising a buffer gas and a metal halide, which is substantially formed by LiI.

6

- A lamp according to claim 1 wherein the metal halide is substantially a
 mixture of LiI and NaI.
 - 3. A lamp according to claim 2 wherein the ionisable filling comprises substantially equal amounts of LiI and NaI.
- 10 4. A lamp according to claim 1 wherein the buffer gas comprises Hg.
 - 5. A lamp according to claim 4 wherein the buffer gas also comprises Xe.
 - 6. A lamp according to claim 1 wherein the discharge vessel is made of ceramic.

ABSTRACT:

The invention relates to a high pressure discharge lamp intended for use in assimilation lighting.

According to the invention the high-pressure discharge lamp has a discharge vessel, which besides a buffer gas comprises substantially LiI as metal halide or a mixture of LiI and NaI.

Fig. 3

5

Figure 2: outline of a ceramic burner.

Figure 3: spectrum of a aluminium oxide burner with LiI or NaI and Hg as buffer gas.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.