Dynamics 2 (MECE08009)

Particle Motion in Polar Coordinates (Dynamics of Single Particles)

Particle Motion in a Plane in Polar Coordinates

- describe motion with x(t), y(t) [Cartesian Coords]
- may be better to use Polar Coordinates r(t), $\theta(t)$

- use complex numbers
 - temporarily call the plane of motion the Complex Plane

instantaneous position of a particle is

$$z = x + i y = r e^{i\theta}$$

where (de Moivre's theorem)
 $i = \sqrt{-1}$
and r and θ are $f(t)$

- differentiate z with respect to (w.r.t.) time
 - velocity

$$\dot{z} = \dot{r}e^{i\theta} + (r\dot{\theta})ie^{i\theta}$$

note

$$\dot{z} = \frac{dz}{dt} \qquad \qquad \ddot{z} = \frac{d^2z}{dt^2}$$

now

 $e^{i\theta} = \cos \theta + i \sin \theta$ = a radial unit vector along OA

now

$$e^{i\theta} = \cos \theta + i \sin \theta$$

= a radial unit vector along OA

• \dot{z} has two components

$$\dot{z} = \dot{r}e^{i\theta} + (r\dot{\theta})ie^{i\theta}$$

• now

$$e^{i\theta} = \cos \theta + i \sin \theta$$

= a radial unit vector along OA

• \dot{z} has two components - radially outwards: \dot{r}

$$\dot{z} = \dot{r}e^{i\theta} + (r\dot{\theta})ie^{i\theta}$$

• now

$$e^{i\theta} = \cos \theta + i \sin \theta$$

= a radial unit vector along OA

- \dot{z} has two components
 - radially outwards:

r

- tangentially

$$r\dot{\theta}$$

$$\dot{z} = \dot{r}e^{i\theta} + (r\dot{\theta})ie^{i\theta}$$

• differentiate \dot{z} w.r.t. time again (acceleration)

$$\ddot{z} = (\ddot{r} - r\dot{\theta}^2)e^{i\theta} + (r\ddot{\theta} + 2\dot{r}\dot{\theta})ie^{i\theta}$$

• differentiate \dot{z} w.r.t. time again (acceleration)

$$\ddot{z} = (\ddot{r} - r\dot{\theta}^2)e^{i\theta} + (r\ddot{\theta} + 2\dot{r}\dot{\theta})ie^{i\theta}$$

- again two components
 - radially outwards:

$$\ddot{r}-r\dot{\theta}^2$$

• differentiate \dot{z} w.r.t. time again (acceleration)

$$\ddot{z} = (\ddot{r} - r\dot{\theta}^2)e^{i\theta} + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\dot{i}e^{i\theta}$$

- again two components
 - radially outwards:

$$\ddot{r}-r\dot{\theta}^2$$

- tangentially:

$$r\ddot{\theta} + 2\dot{r}\dot{\theta}$$

Velocity Components

Acceleration Components

Notes on Acceleration Components

$$\ddot{z} = (\ddot{r} - r\dot{\theta}^2)e^{i\theta} + (r\ddot{\theta} + 2\dot{r}\dot{\theta})ie^{i\theta}$$

- in radial component
 - $-r\dot{ heta}^2$ is the centripetal acceleration
 - in simpler case of circular motion (r = constant), and the minus sign indicates it is acting inwards

Notes on Acceleration Components

$$\ddot{z} = (\ddot{r} - r\dot{\theta}^2)e^{i\theta} + (r\ddot{\theta} + 2\dot{r}\dot{\theta})ie^{i\theta}$$

- in radial component
 - $-r\dot{ heta}^2$ is the centripetal acceleration
 - in simpler case of circular motion (r = constant), and the minus sign indicates it is acting inwards
- in tangential component
 - $2\dot{r}\dot{\theta}$ is the Coriolis acceleration

- Gaspard de Coriolis described it in 1835
- inertial force must be included where Newtonian laws are used in a rotating frame of reference
- force acts to the right of the direction of body motion for anti-clockwise rotation of the reference frame or to the left for clockwise rotation
- effect is an apparent deflection of object's path within the rotating system
 - no actual deviation, but apparent
 - arises from the motion of the coordinate system

- most obvious in longitudinal paths
- on Earth an object moving North-South will deflect
 - to the right in the Northern Hemisphere
 - to the left in the South
- why?
 - Earth rotates from West to East
 - tangential velocity varies with latitude greatest at equator)

Coriolis Example

• fire a projectile from near to North Pole at target near the equator

Coriolis Example

- fire a projectile from near to North Pole at target near the equator
 - mostly N-S motion but (some) tangential velocity

Coriolis Example

- target has greater tangential velocity
 - so the projectile lands to the right of the initial target

- of major use in
 - astronomy
 - dynamics of the atmosphere (winds)
 - oceanography (currents)

Summary

• Considered the use of polar coordinates to describe general plane motion

Dynamics 2 (MECE08009)

Particle Motion in Polar Coordinates (Dynamics of Single Particles)

Worked Example

Example 1.8

- horizontal disc with radial slot spins at constant 480 rpm. Mass A (0.48 kg) moved inwards by actuator rod B at a constant 18 m/s
- calculate radial & tangential accelerations of mass
- if slot walls have negligible friction, what force is applied to the mass by the actuator?
- show the magnitude and direction of the force applied by the mass to the slot wall

