Assignment-5

Pooja H AI20MTECH14003

Abstract—In this work, we estimate the area of triangle with vector representation.

Download all latex-tikz codes from

1 Problem Statement

Prove that the triangles on the same base (or equal bases) and between the same parallels are equal in area.

2 Solution

Let ABC and ABD are the given triangles with the same base AB and between the same parallel lines AB and CD.

Fig. 1: Triangles on same base

Let $AB = \mathbf{a}$ and $AC = \mathbf{b}$. Also the lines AB and CD are parallel, which implies that $CD = \mathbf{k} \times AB$. Here, the area of \triangle ABC is given by

$$Area(\triangle ABC) = \frac{1}{2}(\mathbf{a} \times \mathbf{b}) \tag{2.0.1}$$

And, the area of \triangle ABD is given by

$$\frac{1}{2}(AB \times AD) = (\mathbf{a} \times (AC + CD)) \tag{2.0.2}$$

$$= \frac{1}{2}(\mathbf{a} \times (\mathbf{b} + k\mathbf{a})) \tag{2.0.3}$$

$$= \frac{1}{2}(\mathbf{a} \times \mathbf{b}) + (\mathbf{a} \times k\mathbf{a}) \tag{2.0.4}$$

$$= \frac{1}{2}(\mathbf{a} \times \mathbf{b}) + k(\mathbf{a} \times \mathbf{a}) \tag{2.0.5}$$

$$Area(\triangle ABD) = \frac{1}{2}(\mathbf{a} \times \mathbf{b}) \quad [\because \mathbf{a} \times \mathbf{a} = 0] \quad (2.0.6)$$

From (2.0.1) and (2.0.6), we can infer that the area of two triangles are one and the same. Hence, it is proved that the triangles on the same base and between the same parallels are equal in area.