

INTRODUCTION

RW1073 is a dot matrix LCD driver & controller LSI which is fabricated by low power CMOS technology. It is capable of displaying 1, 2, or 4-lines with 5×8 or 6×8 dots format.

■ FUNCTIONS

- Character type dot matrix LCD driver & controller
- Internal driver: 34 common and 60 segment signal output
- Easy interface with 4-bit or 8-bit MPU and SPI interface
- Clock synchronized serial Interface
- 5x8 or 6x8 dot matrix possible
- Extension driver interface possible
- · Bidirectional shift function
- All character reverse display
- Display shift per line
- · Various instruction functions
- Automatic power on reset
- Voltage converter for LCD drive voltage: 8V max (2 times/ 3 times)

■ FEATURES

- Internal Memory
 - Character Generator ROM (CGROM): 9600 bits. (240 characters x 5 x 8 dot)
 - Character Generator RAM (CGRAM): 64×8 bits. (8 characters × 5 × 8 dot)
 - Segment Icon RAM (SEGRAM): 16x8 bits.(96 icons max.)
 - Display Data RAM (DDRAM): 80x8 bits. (80 characters max.)
- Low power operation
 - Power supply voltage range: 2.7 to 5.5 V (VDD)
 - LCD Drive voltage range: 3.0 to 7.2V (V0 to VSS)
- CMOS process
- Programmable duty cycle: 1/17, 1/33 (Referto Table 1.)
- Internal oscillator with an external resistor
- Low power consumption
- · Bare chip available

	R	W1073 Revision History
Version	Date	Description
0.0	2012/10/29	First edition

◆ Table 1 Programmable duty cycles

1) 5-dot font width

Display	Duty	Single-chip	operation	With Extension Driver		
Line	ratio	Displayable	Possible	Displayable	Possible	
Numbers	TallO	characters		characters	icons	
1	1/17	1 line of 24	60	1 line of 52	80	
ı	1/17	characters	60	characters	60	
2	1/33	2 line of 24	60	2 line of 32	80	
2	1/33	characters	60	characters	80	
4	1/33	4 line of 12	60	4 line of 20	80	
4	1/33	characters	00	characters		

2) 6-dot font width

Display	Duty	Single-chip	operation	With Extension Driver		
Line	ratio	Displayable	Possible	Displayable	Possible	
Numbers	Tallo	characters	icons	characters	icons	
1	1/17	1 line of 20	60	1 line of 50	96	
1	1/17	characters	00	characters		
2	1/33	2 line of 20	60	2 line of 30	96	
2	1/33	characters	00	characters	90	
4	1/33	4 line of 10	60	4 line of 20	00	
4	1/33	characters	00	characters	96	

3

BLOCK DIAGRAM

PAD CONFIGURATION

■ PAD COORDINATE

Pad No.	Pad	Х	Υ	Pad No.	Pad	Х	Υ
1 44 110.	Name	Α	•	1 44 110.	Name	/ \	•
1	S[45]	-1523	1715	33	ICON[2]	-1523	-1454
2	S[46]	-1523	1577	34	VDD	-1523	-1577
3	S[47]	-1523	1454	35	OSC2P	-1523	-1715
4	S[48]	-1523	1346	36	OSC1P	-1385	-1715
5	S[49]	-1523	1248	37	CL1	-1262	-1715
6	S[50]	-1523	1152	38	CL2	-1154	-1715
7	S[51]	-1523	1056	39	DOUT	-1056	-1715
8	S[52]	-1523	960	40	FRM	-960	-1715
9	S[53]	-1523	864	41	XRESET	-864	-1715
10	S[54]	-1523	768	42	PSB	-768	-1715
11	S[55]	-1523	672	43	VR	-672	-1715
12	S[56]	-1523	576	44	VSS	-576	-1715
13	S[57]	-1523	480	45	RS	-480	-1715
14	S[58]	-1523	384	46	RW	-384	-1715
15	S[59]	-1523	288	47	Е	-288	-1715
16	S[60]	-1523	192	48	DB0	-192	-1715
17	C[9]	-1523	96	49	DB1	-96	-1715
18	C[10]	-1523	0	50	DB2	0	-1715
19	C[11]	-1523	-96	51	DB3	96	-1715
20	C[12]	-1523	-192	52	DB4	192	-1715
21	C[13]	-1523	-288	53	DB5	288	-1715
22	C[14]	-1523	-384	54	DB6	384	-1715
23	C[15]	-1523	-480	55	DB7	480	-1715
24	C[16]	-1523	-576	56	VCI	576	-1715
25	C[25]	-1523	-672	57	FOFF	672	-1715
26	C[26]	-1523	-768	58	C2P	768	-1715
27	C[27]	-1523	-864	59	C2N	864	-1715
28	C[28]	-1523	-960	60	C1P	960	-1715
29	C[29]	-1523	-1056	61	C1N	1056	-1715
30	C[30]	-1523	-1152	62	VOUT	1154	-1715
31	C[31]	-1523	-1248	63	V0	1262	-1715
32	C[32]	-1523	-1346	64	V1	1385	-1715

Pad No.	Pad Name	Х	Υ	Pad No.	Pad Name	Х	Υ
65	V2	1523	-1715	97	S[13]	1523	1454
66	V3	1523	-1577	98	S[14]	1523	1577
67	V4	1523	-1454	99	S[15]	1523	1715
68	C[24]	1523	-1346	100	S[16]	1385	1715
69	C[23]	1523	-1248	101	S[17]	1262	1715
70	C[22]	1523	-1152	102	S[18]	1154	1715
71	C[21]	1523	-1056	103	S[19]	1056	1715
72	C[20]	1523	-960	104	S[20]	960	1715
73	C[19]	1523	-864	105	S[21]	864	1715
74	C[18]	1523	-768	106	S[22]	768	1715
75	C[17]	1523	-672	107	S[23]	672	1715
76	C[8]	1523	-576	108	S[24]	576	1715
77	C[7]	1523	-480	109	S[25]	480	1715
78	C[6]	1523	-384	110	S[26]	384	1715
79	C[5]	1523	-288	111	S[27]	288	1715
80	C[4]	1523	-192	112	S[28]	192	1715
81	C[3]	1523	-96	113	S[29]	96	1715
82	C[2]	1523	0	114	S[30]	0	1715
83	C[1]	1523	96	115	S[31]	-96	1715
84	ICON[1]	1523	192	116	S[32]	-192	1715
85	S[1]	1523	288	117	S[33]	-288	1715
86	S[2]	1523	384	118	S[34]	-384	1715
87	S[3]	1523	480	119	S[35]	-480	1715
88	S[4]	1523	576	120	S[36]	-576	1715
89	S[5]	1523	672	121	S[37]	-672	1715
90	S[6]	1523	768	122	S[38]	-768	1715
91	S[7]	1523	864	123	S[39]	-864	1715
92	S[8]	1523	960	124	S[40]	-960	1715
93	S[9]	1523	1056	125	S[41]	-1056	1715
94	S[10]	1523	1152	126	S[42]	-1154	1715
95	S[11]	1523	1248	127	S[43]	-1262	1715
96	S[12]	1523	1346	128	S[44]	-1385	1715

■ PIN DESCRIPTION

		TION		
Pin(No)	Input/ Output	Name	Description	Interface
VDD			For logical circuit(+3V,+5V)	
VSS			0V (GND)	
V0~V4		Power Supply	Bias voltage level for LCD driving	Power Supply
VCI	Input	Fower Suppry	Input voltage to the voltage regulator to Generate LCD drive voltage.	1 ower duppry
S1~S60	Output	Segment Output	Segment signal output for LCD drive.	LCD
C1~C32 ICON1, ICON2	Output	Common Output	Common signal output for LCD drive.	LCD
OSC1, OSC2	Input (OSC1) Output (OSC2)	Oscillator	When using internal oscillator Rf resistor, If external clock is used, connect it to OSC1	External resistor/ Oscillator (OSC1)
CL1,CL2	Input	Latch(CL1)/Shift(CL2) Clock	Output latch clock and shift clock for extension driver	Extension driver
C1P,C1N C2P,C2N	Input	External capacitance input	To use the voltage converter (2 times/ 3 times), these pins must be connected to the external capacitance.	External capacitance
FRM	Output	Alternated signal for LCD driver output	The alternating signal to converter LCD driver waveform to AC for Extension driver.	Extension driver
DOUT	Output	Display data interface	Outputs extension driver data . (the 61th dot's data)	Extension driver
FOFF	Input	Internal Voltage Follower enable control	When FOFF="high", disable internal voltage follower When FOFF="Low", enable internal voltage follower	-
PSB	Input	Interface mode selection	When PSB="High": 8/4 bit bus mode. When PSB="Low": Serial mode.	-
XRESET	Input	Reset Pin	Initialized to Low	-

8

Pin(No)	Input/ Output	Name	Description	Interface	
VOUT	Output	Converter output	Voltage converter output voltage	-	
VR	Input	Reference input voltage	Reference voltage input to generate V0	-	
RS/CS	Input	Register select/ Chip select	In bus mode, used as register selection input. When RS/CS="High", Data register is selected. When RS/CS="Low", instruction register is selected. In serial mode, used as chip selection input. When RS/CS="Low", selected. When RS/CS="High", not selected. (Low access enable)	MPU	
RW/SID	Input	Read, Write/ Serial input data	In bus mode, used as read/ write selection input. When RW/SID="High", read operation. When RW/SID="Low", write operation. In serial mode used as serial clock input pin	MPU	
E/SCLK	Input	Read, Write enable/ Serial clock	In bus mode, used as read/ write enable signal. In serial mode, used as serial clock input pin.	MPU	
DB0/SOD	Input Output/ Output	Data bus 0 bit/ Serial output data	In 8-bit bus mode, used as low order bidirectional data bus. During 4-bit bus mode or serial mode, open these pins.	LCD	
DB1~DB3	Input	But I and T	In 8-bit bus mode, used as low order bidirectional data bus. During 4-bit bus mode or serial mode, open these pin.		
DB4~DB7	Output	Data bus 1~7	In 8-bit bus mode, used as high order bidirectional data bus. In 4-bit bus mode, used as both high and low order. DB7 used for Busy Flag output. During serial mode, open these pins.	MPU	

9

■ FUNCTION DESCRIPTION

♦ System Interface

This chip has all three kinds of interface type with MPU: serial, 4-bit and 8-bit bus.

Serial and bus (4-bit/8-bit) are selected by PSB input, and 4-bit bus and 8-bit bus are selected by the DL bit in the instruction register.

During read or write operation, two 8-bit registers are used. one is the data register (DR), the other is the instruction register(IR).

The data register (DR) is used as a temporary data storage place for being written into or read from DDRAM/CGRAM/SEGRAM. Target RAM is selected by RAM address setting instruction. Each internal operation, reading from or writing into RAM, is done automatically.

Hence, after MPU reads the DR data, the data in the next DDRAM/CGRAM/SEGRAM address is transferred into DR automatically. Also, after MPU writes data to DR, the data in DR is transferred into DDRAM/CGRAM/ SEGRAM automatically.

The Instruction register (IR) is used only to store instruction code transferred from MPU. MPU cannot use it to read instruction data.

To select register, use the RS/CS input pin in 4-bit/8-bit bus mode (PSB="High") or the RS bit in serial mode (PSB = "Low").

Table 2.	Various	kinds	of	operations	according	to	RS	and R/W bits.

RS	R/W	Operatio
0	0	Instruction Write operation (MPU writes Instruction code into IR)
0	1	Read Busy flag (DB7) and address counter (DB0 ~ DB6)
1	0	Data Write operation (MPU writes data into DR)
1	1	Data Read operation (MPU reads data from DR)

◆ Busy Flag (BF)

When BF = "High", it indicates that the internal operation is being processed. So during this time the next instruction cannot be accepted. BF can be read, when RS = "Low" and R/W = "High" (Read Instruction Operation), through the DB7 port. Before executing the next instruction, be sure that BF is not high.

Display Data RAM (DDRAM)

DDRAM stores display data of maximum 80x8 bits (80 characters).

DDRAM address is set in the address counter (AC) as a hexadecimal number (Refer to Fig-1).

MSB						LSB
AC6	AC5	AC4	AC3	AC2	AC1	AC0

Fig-1 DDRAM Address

1) Display of 5-dot font width character

(1) 5-dot 1 line display

In the case of a 1-line display with 5-dot font, the address range of DDRAM is $00H \sim 4FH$ (Refer to Fig-2). When EXT= "High", extension driver will be used.

Fig3 shows the example with 40 segment extension drivers added.

Fig-2. 1-line x 24 ch. display (5-dot font width)

Fig-3. 1-line x 32 ch. display with 40 SEG. Extension driver (5-dot font width)

(2) 5-dot 2-line display

In the case of a 2-line display with 5-dot font, the address range of DDRAM is 00H–27H, and 40H–67H (Refer to Fig-4). When EXT = "High", the extension driver will be used.

Fig-5 shows the example with 40 segment extension drivers added.

Fig-4. 2-line x 24 ch. display (5-dot font width)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 27 28 29 30	32
COM1 COM8 OO 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E	1F COM9 COM16
COM17 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 - 58 59 5A 5B 5C 5D 5E	5F COM25
SEG1 RW1073 SEG60 SEG1 RW1073 SEG60 SEG1 SEC Extension Driver (40SEC	<i>3</i> 40
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 27 28 29 30	32
$\frac{\text{COM1}}{\text{COM8}} - 01 \ 02 \ 03 \ 04 \ 05 \ 06 \ 07 \ 08 \ 09 \ 0A \ 0B \ 0C \ 0D \ 0E \ 0F \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17 \ 18 - 19 \ 1A \ 1B \ 1C \ 1D \ 1E \ 1F$	20 <u>COM9</u> COM16
COM17 COM24 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F	60 <u>CO</u> M25 COM32
(After Shift Left)	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 27 28 29 30	32
COM1 COM8 27 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D	1E COM9 COM16
COM17 67 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D	
(After Shift Right)	

Fig-5. 2-line x 32 ch. display with 40 SEG. Extension driver (5-dot font width)

(3) 5-dot 4-line display

In the case of a 4-line display with 5-dot font, the address range of DDRAM is 00H–13H, 20H–33H, 40H–53H,60H–73H (Refer to Fig-6).

When EXT="High", extension driver will be used. Fig-7 shows the example with 40 segment extension drivers added.

Fig-6. 4-line x 12 ch. display (5-dot font width)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ← Display position
COMI COMB 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13
COMD COM16 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33
COM17 10 11 12 13 14 15 16 17 18 19 14 18 17 17 18 19 14 18 15 15 15 25 3
COM24 - W + 1 - 42 + 5 + 1 + 5 + 6 + 7 + 6 + 7 + 5 + 7 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
COMB2 EG 01 02 05 05 05 05 05 05 05
Extension Driver (40SEG)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
COMB 01 02 03 01 03 00 07 08 09 04 0B 0C 03 03 03 03 132 131 131 131 131 131 131 131 131 13
$\frac{\text{COM16}}{\text{COM16}} = \frac{21}{22} \frac{22}{24} \frac{23}{24} \frac{23}{24} \frac{24}{24} \frac{23}{24} \frac{24}{24} $
COM24 +1 +2 +3 +4 +3 +0 +7 +6 +3 +7 +12 +C +12 +12 +12 +12 +12 +12 +12 +12 +12 +12
COM25 61 62 63 64 65 66 67 68 69 6A 6B 6C - 6D 6E 6F 70 71 72 73 74
(After Shift Left)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
COM1
COM9 33 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32
COM17 53 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52
COM25 73 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72
(After Shift Right)
(=52 % 24.5)

Fig-7. 4-line x 20 ch. display with 40 SEG. Extension driver (5-dot font width)

14

2) Display of 6-dot font width character

(1) 6-dot 1-line display

In the case of a 1-line display with 6-dot font, the address range of DDRAM is 00H–4FH (Refer to Fig-8) When EXT = "High", extension driver will be used.

Fig-9 shows the example with 40 segment extension driver added.

Fig-8. 1-line x 20 ch. display (6-dot font width)

Fig-9. 1-line x 26 ch. display with 40 SEG. Extension driver (6-dot font width)

15

(2) 6-dot 2-line display

In the case of a 2-line display with 6-dot font, the address range of DDRAM is 00H–27H, and 40H–67H (Refer to Fig-10). When EXT = "High", extension driver will be used.

Fig-11 shows an example with 40 segment extension drivers added.

Fig-10. 2-line x 20 ch. display (6-dot font width)

Fig-11. 2-line x 26 ch. display with 40 SEG. Extension driver (6-dot font width)

(3) 6-dot 4-line display

In the case of a 4-line display with 6-dot font, the address range of DDRAM is 00H-13H, 20H-33H, 40H-53H,60H-73H (Refer to Fig-12)

When EXT = "High", the extension driver will be used.

Fig-13 shows the example with 40 segment extension drivers added.

Fig-12. 4-line x 10 ch. display (6-dot font width)

Fig-11. 2-line x 26 ch. display with 40 SEG. Extension driver (6-dot font width)

◆ Timing Generation Circuit

The timing generation circuit generates clock signals for internal operations.

◆ Address Counter (AC)

The address Counter (AC) stores DDRAM/CGRAM/SEGRAM address, transferred from IR.

After writing into (reading from) DDRAM/CGRAM/SEGRAM, AC is automatically increased (decreased) by 1. When RS ="Low" and R/W = "High", AC can be read through DB0–DB6 ports.

♦ Cursor/Blink Control Circuit

It controls cursor/blink ON/OFF and black/white inversion at cursor position.

LCD Driver Circuit

The LCD Driver circuit has 34 common and 60 segment signals for LCD driving.

Data from SEGRAM/CGRAM/CGROM is transferred to a 60-bit segment latch serially, which is then stored to a 60-bit shift latch. When each common is selected by a 34-bit common register, segment data also outputs through a segment driver from a 100-bit segment latch.

In 1-line display mode, COM1 – COM16 have a 1/17 duty ratio, and in 2-line or 4-line mode, COM1 – COM32 have a 1/33 duty ratio.

■ CGRAM (Characters Generator RAM)

CGRAM has up to eight 5x8-dot characters. By writing data to CGRAM, user defined character can be use (Refer to Table 4)

1)5x8 dot Characters pattern

	Chara	acter	Code	(DD	RAN	/Idat	at)		Œ	RAN	Tadd	ress			(CGF	RAM	data				Patt	em
D7	D6	D5	D4	D3	D2	D1	D0	A5	A4	A3	A2	A1	AO	P7	P6	P5	P4	P3	P2	P1	R)	Nur	nber
0	0	0	0	X	0	0	0	0	0	0	0 0 0 0 1 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1	Bl	В0	X	0 1 1 1 1 1 1 0	① 0 0 0 0 0 0 0 0 0 0 0				Patte	an 1
0	0	0	0	X	1	1	1	1	1	1	0 0 0 0 1 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1	B1	ВО	X		0 0 0 1 0 0 (1) 0	0 0 0 1 1 0 0	0 0 0 1 0 0 (1)		Patti	em 8

2)6x8 dot Characters pattern

	Chara	acter	Code	(DD	RAN	/Idata	at)		CG	RAN	Tadd	ress				CGF	RAM	data	l			Pattern
D7	D6	D5	D4	\mathbb{D}_{3}	D2	D1	D0	A5	A4	A3	A2	A1	A0	P7	P6	P5	P4	P3	P2	P1	P0	Number
0	0	0	0	X	0	0	0	0	0	0	0 0 0 0 1 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1	B1	В0	0 0 0 0 0 0 0		① 0 0 0 0 0 0 0 0 0 0	① 0 0 0 0 0 0	① 0 0 ① 0 ① 0 0 0		Pattern 1
0	0	0	0	X	1	1	1	1	1	1	0 0 0 0 1 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0	B1	ВО	0 0 0 0 0 0		0 0 0 1 0 0 (1) 0	0 0 0 0 0 0 0	0 0 0 1 0 0 0		Pattern 8

NOTE: 1. When BE (Blink Enable bit) = "High", blink is controlled by B1 and B0 bit.

In displaying 5-dot font width, when B1 = "1", enabled dots in P0 – P4 ports will blink, and when B1 = "0" and B0 = "1", enabled dots in P4 port will blink.

When B1 = "0" and B0 = "0", blinking will not occur.

In displaying 6-dot font width, when B1 = "1", enabled dots of P0 – P5 ports will blink, and when B1 = "0" and B0 = "1", enabled dots of P5 port will blink.

When B1 = "0" and B0 = "0", blinking will not occur.

2. "X": Don't care

■ SEGRAM (Segment Icon RAM)

SEGRAM has segment control data and segment pattern data. There are 2 ICON pins act as the COM line to display the icon SEGRAM data. The outputs of these 2 ICON pins are exactly the same. The higher 2-bits enable the data of SEGRAM to display icons. When used in 2/4-line display mode ICON1 & ICON2 do that.

The higher 2-bits are blinking control data, and the lower 6-bits are pattern data (Refer to Table 5 and Fig-14).

Table5. Relationship between SEGRAM addresses and display pattern

	SEG	RAM							SE	EGRA	/I data	disp	lay pa	attern					
	add	ress				:	5-dot f	ont w	idth					6	6-dot f	ont wi	dth		
А3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	B1	B0	Χ	S1	S2	S3	S4	S5	B1	B0	S1	S2	S3	S4	S5	S6
0	0	0	1	B1	B0	Χ	S6	S7	S8	S9	S10	В1	B0	S7	S8	S9	S10	S11	S12
0	0	1	0	B1	B0	Χ	S11	S12	S13	S14	S15	B1	B0	S13	S14	S15	S16	S17	S18
0	0	1	1	B1	B0	Χ	S16	S17	S18	S19	S20	B1	B0	S19	S20	S21	S22	S23	S24
0	1	0	0	B1	B0	Χ	S21	S22	S23	S24	S25	B1	В0	S25	S26	S27	S28	S29	S30
0	1	0	1	B1	B0	Χ	S26	S27	S28	S29	S30	B1	В0	S31	S32	S33	S34	S35	S36
0	1	1	0	B1	B0	Χ	S31	S32	S33	S34	S35	B1	В0	S37	S38	S39	S40	S41	S42
0	1	1	1	B1	B0	Χ	S36	S37	S38	S39	S40	B1	В0	S43	S44	S45	S46	S47	S48
1	0	0	0	B1	B0	Χ	S41	S42	S43	S44	S45	B1	В0	S49	S50	S51	S52	S53	S54
1	0	0	1	B1	B0	Χ	S46	S47	S48	S49	S50	B1	В0	S55	S56	S57	S58	S59	S60
1	0	1	0	B1	B0	Χ	S51	S52	S53	S54	S55	B1	В0	S61	S62	S63	S64	S65	S66
1	0	1	1	B1	B0	Χ	S56	S57	S58	S59	S60	B1	В0	S67	S68	S69	S70	S71	S72
1	1	0	0	B1	B0	Χ	S61	S62	S63	S64	S65	B1	В0	S73	S74	S75	S76	S77	S78
1	1	0	1	B1	В0	Χ	S66	S67	S68	S69	S70	B1	В0	S79	S80	S81	S82	S83	S84
1	1	1	0	B1	В0	Χ	S71	S72	S73	S74	S75	В1	В0	S85	S86	S87	S88	S89	S90
1	1	1	1	B1	B0	Χ	S76	S77	S78	S79	S80	B1	B0	S91	S92	S93	S94	S95	S96

NOTE: 1. B1, B0: Blinking control bit

Con	trol Bi	t	Blinkin	g Port
BE	B1	В0	5-dot font width	6-dot font width
0	Χ	Х	No blink	No blink
1	0	0	No blink	No blink
1	0	1	D4	D5
1	1	Х	D4 – D0	D5 – D0

2. S1 - S80: Icon pattern ON/OFF in 5-dot font width

S1 - S96: Icon pattern ON/OFF in 6-dot font width

3. "X": Don't care

Fig-14. Relationship between SEGRAM and segment display

■ INSTRUCTION DESCRIPRION

♦ OUTLINE

To overcome the speed difference between the internal clock of RW1073 and the MPU clock, RW1073 performs internal operation by storing control information to IR or DR. The internal is determined according to the signal from the MPU, composed of read/write and data bus (Refer to Table 6 and Table 10). Instruction can be divided largely into four kinds.

- (1) RW1073 function set instructions (set display methods .etc)
- (2) Address set instruction to internal RAM.
- (3) Data transfer instruction with internal RAM.
- (4) Others.

The address of internal RAM is automatically increased or decreased by 1.

NOTE: During internal operation, Busy Flag (DB7) reads high. Busy Flag check must precede the next instruction.

When an MPU program with Busy Flag (DB7) checking is made, 1/2 Fosc is necessary for executing the next instruction by the falling edge of the "E" signal after the Busy Flag (DB7) goes to "Low".

■ INSTRUCTION DESCRIPTION

Table 6. Instruction Set

					Inst	truction	n Cod	de					Execution
Instruction	RE	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	Time(fosc =270KHz)
Clear Display	х	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM. and set DDRAM address to "00H" from AC.	1.53ms
Return Home	0	0	0	0	0	0	0	0	0	1	Х	Set DDRAM address "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.53ms
Power Down Mode	1	0	0	0	0	0	0	0	0	1	PD	Set power down mode bit PD="1": power down mode set. PD="0": power down mode disable.	39uS
Entry Mode Set	0	0	0	0	0	0	0	0	1	I/D	S	Assign cursor moving direction, I/D="1": increment I/D="0": decrement. and display shift enable bit. S="1": make display shift of the enabled lines by the DS4-DS1 bits in the Shift Enable instruction. S="0": display shift disable.	39uS
	1	0	0	0	0	0	0	0	1	1	BID	Segment bidirectional function. BID="1": Seg60->Seg1. BID="0": Seg1->Seg60.	39uS
Display ON/OFF Control	0	0	0	0	0	0	0	1	D	С	В	Set display/cursor/blink on/off D="1": display on. D="0": display off. C="1": cursor on. C="0": cursor off. B="1": blink on. B="0": blink off.	39uS
Extended Function set	1	0	0	0	0	0	0	1	FW	B/W	NW	Assign font width; black/white inverting of cursor, and 4-line display mode bit. FW="1": 6-dot font width. FW="0": 5-dot font width B/W="1": black/white inverting of cursor enable. B/W="0": black/white inverting of cursor disable. NW="1": 4-line display mode. NW="0": 1-line or 2-line display mode.	39uS

25

					Inst	tructio	n Cod	de				-	Execution
Instruction	RE	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	Time(fosc =270KHz)
Cursor or Display Shift	0	0	0	0	0	0	1	S/C	R/L	Х	Х	Cursor or display shift S/C="1": display shift. S/C="0": cursor shift R/L="1": shift to right. R/L="0": shift to left.	39uS
Shift Enable	1	0	0	0	0	0	1	DS4	DS3	DS2	DS1	(When DH="1") Determine the line for display shift. DS1="1/0": 1 st line display shift enable/disable. DS2="1/0": 2 nd line display shift enable/disable. DS3="1/0": 3 rd line display shift enable/disable. DS4="1/0": 1 th line display shift enable/disable.	39uS
Function Set	0	0	0	0	0	1	DL	N	RE (0)	DH	REV	Set interface data length, (DL="1": 8 bit, DL="0": 4bit), Number of display line when NW="0", (N="1": 2-line, N="0": 1-line), extension register, RE(0), shift enable, (DH="1": display enable, DH="0": display disable), and reverse bit (REV="1": reverse display,, REV="0": normal display)	39uS
	1	0	0	0	0	1	DL	N	RE (1)	BE	0	Set DL,N,RE("1") and CGRAM/SEGRAM blink enable (BE) (BE="1": CGRAM/SEGRAM blink enable, BE="0": CGRAM/SEGRAM blink disable)	39uS

Instruction	חר				Inst	ructio	n Co	de				Decemention	Execution
Instruction	RE	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	Time(fosc =270KHz)
Set CGRAM Address	0	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter.	39uS
Set SEGRAM Address	1	0	0	0	1	Х	Х	AC3	AC2	AC1	AC0	Set SEGRAM address in address counter.	39uS
Set DDRAM Address	0	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter.	39uS
Read Busy Flag and Address	x	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Can be known whether during internal operation or not by reading BF. The contents of address counter can also be read. (BF="1": busy state, BF="0": ready state)	0uS
Write Data	х	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM/ SEGRAM)	43uS
Read Data	X	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data into internal RAM (DDRAM/CGRAM/ SEGRAM)	43uS

*NOTE:

When an MPU program with Busy Flag (DB7) checking is made, 1/2 Fosc is necessary for executing the next instruction by the falling edge of the "E" signal after the Busy Flag (DB7) goes to "Low".

"X": Don't care.

Display Clear

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	0	1

Clear all the display data by writing "20H" (space code) to all DDRAM address, and set DDRAM address to "00H" into AC (address counter). Return cursor to the original status, bringing the cursor to the left edge on first line of the display. Make entry mode increment (I/D = "1").

◆ Return Home (RE=0)

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	1	Х

Return Home is a cursor return home instruction.

Set DDRAM address to "00H" into the address counter. Return cursor to its original site and return display to its original status, if shifted.

Contents of DDRAM does not change.

◆ Power Down Mode Set (RE=1)

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	1	PD

Power down mode enable bit set instruction.

PD = "High", it makes RW1073 suppress current consumption except the current needed for data storage by executing the next three functions.

- 1. Make the output value of all the COM/SEG ports VSS.
- Make the COM/SEG output value of the extension driver VSS by setting D output to "High" and M output to "Low".
- 3. Disable voltage converter to remove the current through the divide resistor of power supply. This instruction can be used as power sleep mode.

When PD = "Low", power down mode becomes disabled.

Entry Mode Set

RE=0:

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	1	I/D	S

Set the moving direction of cursor and display.

I/D: Increment / decrement of DDRAM address (cursor or blink)

When I/D = "High", cursor/blink moves to right and DDRAM address is increased by 1.

When I/D = "Low", cursor/blink moves to left and DDRAM address is decreased by 1.

* CGRAM/SEGRAM operates the same as DDRAM, when reading from or writing to CGRAM/SEGRAM.

When S = "High", after DDRAM write, the display of enabled line by DS1 - DS4 bits in the Shift Enable instruction is shifted to the right (I/D = "0") or to the left (I/D = "1"). But it will seem as if the cursor does not move.

When S = "Low", or DDRAM read, or CGRAM/SEGRAM read/write operation, shift of display as the above function is not performed.

RE=1:

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	1	1	BID

Set the data shift direction of segment in the application set. BID: Data Shift Direction of Segment When BID = "Low", segment data shift direction is set to normal order, from SEG1 to SEG60. When BID = "High", segment data shift direction is set reversely, from SEG60 to SEG1.

By using this instruction, the efficiency of the application board area can be raised.

^{*} The BID setting instruction is recommended to be set at the same time level as the function set instruction.

^{*} DB0 bit must be set to "1".

◆ Display ON/OFF Control (RE=0)

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
0	0	0	0	0	0	1	D	С	В	

Control display/cursor/blink ON/OFF 1 bit register.

D: Display ON/OFF control bit.

When D = "High", entire display is turned on.

When D = "Low", display is turned off, but display data remains in DDRAM.

C: Cursor ON/OFF control bit

When C = "High", cursor is turned on.

When C = "Low", cursor is disappeared in current display, but I/D register preserves its data.

B: Cursor Blink ON/OFF control bit

When B ="High", cursor blink is on, that performs alternately between all the high data and display character at the cursor position. If fosc has a frequency of 270 kHz, blinking has a 370 ms interval. When B ="Low", blink is off.

Extended Function Set (RE=1)

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	1	F/W	B/W	NW

FW: Font Width control

When FW = "High", display character font width is assigned to 6-dot, and the execution time becomes 6/5 times than that of the 5-dot font width.

The user font, specified in CGRAM, is displayed into 6-dot font width, bit-5 to bit-0, including the left space bit of CGRAM (Refer to Fig-15).

When FW = "Low", 5-dot font width is set.

B/W: Black/White Inversion enable bit

When B/W = "High", black/white inversion at the cursor position is set. In this case, C/B bit of display ON/OFF control instruction becomes a "don't care" condition. If fosc has frequency of 270 kHz, inversion has 370 ms intervals.

NW: 4 Line mode enable bit

When NW = "High", 4-line display mode is set. In this case, N bit of function set instruction becomes a "don't care" condition.

Fig-15. 6-dot font width CGROM/CGRAM

◆ Cursor or Display Shift (RE=0)

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	1	S/C	R/L	-	-

Shifts right/left cursor position or display without writing or reading of display data. This instruction is used to correct or search display data (Refer to Table 7).

During 2-line mode display, cursor moves to the 2nd line after the 40th digit of the 1st line. In 4-line mode, cursor moves to the next line, only after every 20th digit of the current line.

Note that display shift is performed simultaneously in all the lines enabled by DS1-DS4 in the Shift Enable instruction.

When displayed data is shifted repeatedly, each line is shifted individually.

When display shift is performed, the contents of the address counter are not changed. During low power consumption mode, display shift may not be performed normally.

Table 7. Shift patterns according to S/C and R/L bits

S/C	R/L	Operation
0	0	Shift cursor to the left, ADDRESS COUNTER is decreased by 1
0	1	Shift cursor to the right, ADDRESS COUNTER is increased by 1
1	0	Shift all the display to the left, cursor moves according to the display
1	1	Shift all the display to the right, cursor moves according to the display

31

◆ Shift Enable (RE=1)

DH=1

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	1	DS4	DS3	DS2	DS1

DS: Display Shift per Line Enable

This instruction selects the line to be shifted according to each line mode in display shift right/left instruction. DS1, DS2, DS3 and DS4 indicate each line to be shifted, and each shift is performed individually in each line.

If DS1 and DS2 are set to "High" (enable) in 2-line mode, only 1st line is shifted, and the 2nd line is not shifted. When only DS1="High", only half of the 1st line is shifted. If all the DS bits (DS1 to DS4) are set to "Low" (disable), no display is shifted.

Table 8. Relationship between DS and COM signal

Enable bit	Enable common signals during shift	Description
DS1	COM1~COM8	The part of display line that
DS2	COM9~COM16	corresponds to enable
DS3	COM17~COM24	common signal can be shifted.
DS4	COM25~COM32	

♦ Function Set

RE=0

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	1	DL	N	RE(0)	DH	REV

DL: Interface data length control bit

When DL = "High", it means 8-bit bus mode with MPU.

When DL = "Low", it means 4-bit bus mode with MPU. Hence, DL is a signal to select 8-bit or 4-bit bus mode. In 4-bit bus mode, it is required to transfer 4-bit data twice.

N: Display line number control bit

It is variable only when NW bit of extended function set instruction is Low.

When N = "Low", 1-line display mode is set.

When N = "High", 2-line display mode is set.

When NW = "High", N bit is invalid, 4-line mode independent of N bit.

RE: Extended function registers enable bit

At this instruction, RE must be "Low".

DH: Display shift enable selection bit.

When DH = "High", enables display shift per line.

When DH = "Low", enables smooth dot scroll.

REV: Reverse enable bit

When REV = "High", all the display data are reversed. i.e., all the white dots become black and black dots become white.

When REV = "Low", the display mode is set to normal display.

P	F-	.1

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
0	0	0	0	1	DL	N	RE(1)	BE	0	

DL: Interface data length control bit

When DL = "High", it means 8-bit bus mode with MPU.

When DL = "Low", it means 4-bit bus mode with MPU. Hence, DL is a signal to select 8-bit or 4-bit bus mode.

When 4-bit bus mode, it is required to transfer 4-bit data twice.

N: Display line number control bit

It is variable only when NW bit of extended function set instruction is Low.

When N = "Low", 1-line display mode is set.

When N = "High", 2-line display mode is set.

When NW = "High", N bit is invalid, 4-line mode independent of N bit.

RE: Extended function registers enable bit

When RE ="High", extended function set registers, SEGRAM address set registers, BID bit, DS bits of shift enable instruction and BE bits of function set register can be accessed.

BE: CGRAM/SEGRAM data blink enable bit

BE = "High", makes user font of CGRAM and segment of SEGRAM blinking.

The quantity of blink is assigned the highest 2 bit of CGRAM/SEGRAM.

♦ Set CGRAM Address (RE=0)

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0

34

Set CGRAM address to AC.

This instruction makes CGRAM data available from MPU.

♦ Set SEGRAM Address (RE=1)

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
0	0	0	1	Х	Х	AC3	AC2	AC1	AC0	

Set SEGRAM address to AC.

This instruction makes SEGRAM data available from MPU.

♦ Set DDRAM Address (RE=0)

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0

Set DDRAM address to AC.

This instruction makes DDRAM data available from MPU.

In 1-line display mode (N = 0, NW = 0), DDRAM address is from "00H" to "4FH".

In 2-line display mode (N = 1, NW = 0), DDRAM address in the 1st line is from "00H" to "27H", and DDRAM address in the 2nd line is from "40H" to "67H".

In 4-line display mode (NW = 1), DDRAM address is from "00H" to "13H" in the 1st line, from "20H" to "33H" in the 2nd line, from "40H" to "53H" in the 3rd line and from "60H" to "73H" in the 4th line.

35

♦ Read Busy Flag and Address

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0

This instruction shows whether RW1073 is in internal operation or not. If the resultant BF is High, The internal operation is in progress and should wait until BF to be Low, which by then the next instruction can be performed. In this instruction the value of address counter can also be read.

Write Data to RAM

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	D7	D6	D5	D4	D3	D2	D1	D0

Write binary 8-bit data to DDRAM/CGRAM/SEGRAM.

The selection of RAM from DDRAM, CGRAM, or SEGRAM, is set by the previous address set instruction: DDRAM address set, CGRAM address set, SEGRAM address set.

RAM set instruction can also determine the AC direction to RAM.

After write operation, the address is automatically increased/decreased by 1, according to the entry mode.

Read Data from RAM

RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	1	D7	D6	D5	D4	D3	D2	D1	D0

Read binary 8-bit data from DDRAM/CGRAM/SEGRAM.

The selection of RAM is set by the previous address set instruction. If address set instruction of RAM is not performed before this instruction, the data that is read first is invalid, as the direction of AC is not determined. If RAM data is read several times without RAM address set instructions before read operation, the correct RAM data can be obtained from the second, but the first data would be incorrect, as there is no time margin to transfer RAM data. In DDRAM read operation, cursor shift instruction plays the same role as DDRAM address set instruction: it also transfers RAM data to output data register.

After read operation address counter is automatically increased/decreased by 1 according to the entry mode. After CGRAM/SEGRAM read operation, display shift may not be executed correctly.

^{*} In the case of RAM write operation, AC is increased/decreased by 1 as in read operation after this. In this time, AC indicates the next address position, but the previous data can only be read by read instruction.

■ INTERFACE WITH MPU

RW1073 can transfer data in bus mode (4-bit or 8-bit) or serial mode with MPU. Hence, both types, 4 or 8-bit MPU can be used. In case of 4-bit bus mode, data transfer is performed by twice to transfer 1 byte data.

- (1) When interfacing data length is 4-bit, only 4 ports, from DB4 to DB7, are used as data bus. At first, higher 4-bit (in case of 8-bit bus mode, the contents of DB4 DB7) are transferred, and then lower 4-bit (in case of 8-bit bus mode, the contents of DB0 DB3) are transferred. So transfer is performed by twice. Busy Flag outputs "High" after the second transfer is ended.
- (2) When interfacing data length is 8-bit, transfer is performed at a time through 8 ports, from DB0 to DB7.
- (3) If PSB port is set to "Low", serial transfer mode is set.

■ Interface with MPU in Bus Mode

♦ Interface with 8-bit MPU

If 8-bit MPU is used, RW1073 can connect directly with that. In this case, port E, RS, R/W and DB0 to DB7 need to interface each other. Example of timing sequence is shown below.

Fig-17. Example of 8-bit Bus Mode Timing Sequence

Interface with 4-bit MPU

Fig-18. Example of 4-bit Bus Mode Timing Sequence

■ Interface with MPU in Serial Mode

When PSB pin input is "Low", serial interface mode is started. At this time, all three ports, SCLK (synchronizing transfer clock), SID (serial input data), and SOD (serial output data), are used. If RW1073 is to be used with other chips, chip select port (CS) can be used. By setting CS to "Low", RW1073 can receive SCLK input. If CS is set to "High", RW1073 resets the internal transfer counter.

Before transferring real data, start byte has to be transferred. It is composed of succeeding 5 "High" bits, read write control bit (R/W), register selection bit (RS), and end bit that indicates the end of start byte. Whenever succeeding 5 "High" bits are detected by RW1073, it resets the serial transfer counter and prepares to receive next in formations.

The next input data is the register selection bit which determines which register is to be used, and read write control bit that determines the direction of data. Then end bit is transferred, which must have "Low" value t show the end of start byte. (Refer to Fig 19, Fig 20)

♦ Write Operation (R/W = 0)

After start byte is transferred from MPU to RW1073, 8-bit data is transferred which is divided into 2 bytes, each byte has 4 bit's real data and 4 bit's partition token data. For example, if real data is "10110001" (D0 - D7), then serially transferred data becomes "1011 0000 0001 0000" where 2nd and 4th 4 bits must be "0000" for safe transfer.

To transfer several bytes continuously without changing R/W bit and RS bit, start byte transfer is needed only at first starting time.

i.e., after the first start byte is transferred, real data succeeding can be transferred.

◆ Read Operation (R/W = 1)

After start byte is transferred to RW1073, MPU can receive 8-bit data through the SOD port at a time from the LSB. Waiting time is needed to insert between start byte and data reading, as internal reading from RAM requires some delay. Continuous data reading is possible such as serial write operation. It also needs only one start bytes, only if some delay between reading operations of each byte is inserted. During the reading operation, RW1073 observes succeeding 5 "High" from MPU. If detected, RW1073 restarts serial operation at once and prepares to receive RS bit. So in continuous reading operation, SID port must be "Low".

♦ Serial Write operation

◆ Serial Read operation

Fig-19. Timing Diagram of Serial Data Transfer

Fig-20. Timing Diagram of Continuous Data Transfer

■ APPLICATION INFORMATION ACCORDING TO LCD

1) LCD Panel: 24 characters × 1-line format (5-dot font, 1/17 duty)

2) LCD Panel: 24 character × 2-line format (5-dot font, 1/33 duty)

3) LCD Panel: 12 character × 4-line format (5-dot font, 1/33 duty) COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 RW1073 ICON1(ICON2) SEG1 SEG2 SEG3 SEG4 SEG5 SEG26 SEG27 SEG28 SEG29 SEG30 SEG30 SEG32 SEG33 SEG34 SEG35

SEG58 SEG59 SEG60

4) LCD Panel: 10 characters × 4-line format (6-dot font, 1/33 duty)

■ INITIALIZING

1) Initializing by Internal Reset Circuit

When the power is turned on, RW1073 is initialized automatically by power on reset circuit. During the initialization, the following instructions are executed, and BF (Busy Flag) is kept "High" (busy state) to the end of initialization.

- (1) Clear Display instruction Write "20H" to all DDRAM
- (2) Functions Set instruction
 - DL = 1: 8-bit bus mode
 - N = 1: 2-line display mode
 - RE = 0: Extension register disable
 - BE = 0: CGRAM/SEGRAM blink OFF
 - DH = 0: display shift disable
 - REV = 0: Normal display mode (Not reversed display)
- (3) Display ON/OFF Control instruction
- D = 0: Display OFF, C = 0: Cursor OFF, B = 0: Blink OFF
- (4) Entry Mode set instruction
- I/D = 1: Increment by 1
- S = 0: No entire display shift
- BID = 0: Normal direction segment port
- (5) Extension Function Set instruction
- FW = 0: 5-dot font width character display
- B/W = 0: Normal cursor (8th line)
- NW = 0: Not 4-line display mode, 2-line mode is set because of N ("1")
- (6)Shift Enable instruction
- DS = 0000: Shift per line disable.

2) Initializing by Hardware RESET input

When RESET pin = "Low", RW1073 can be initialized as in the case of power on reset. During the power on reset operation, this pin is ignored.

INITIALIZING BY INSTRUCTION

■ FRAME FREQUENCY

VDD=5V

Item	Normal Display Mode						
item	5-dot width	6-dot width					
1-line selection period	200 clocks	240 clocks					
Frame frequency	79.4 Hz	66.2 Hz					

^{*}fosc= 270 Khz (1 clock=3.7uS)

VDD=5V

Item	Normal Display Mode						
item	5-dot width	6-dot width					
1-line selection period	100 clocks	120 clocks					
Frame frequency	81.8 Hz	68.2 Hz					

*fosc= 270 Khz (1 clock=3.7uS)

POWER SUPPLY FOR DRIVING LCD PANEL

♦ Booster Circuit:

Booster efficiency is around 80%

When VDD=5V, select 2-time booster, VOUT voltage is around 10V*0.8=8V When VDD=3.3V, select 3-time booster, VOUT voltage is around 10V*0.8=7.9V VOUT voltage 8V Max (2-time/3-time)

RV resistor is protection and discharge resistor: RV resistor use: 200K ohms.

♦ <u>V0 Circuit: (FOFF=VDD)</u>

V0 voltage 7.2V Max

V0 = ((VDD*0.5)/RB)*(RA+RB)

♦ VCI Input Voltage Circuit (FOFF=VSS)

VCI input voltage just can positive voltage only V0 voltage 7.2V Max

$$V 0 = ((V C I/R B) * (R A + R B))$$

RV resistor is protection and discharge resistor:
RV resistor use: 200K ohms

Ex: When VDD=5V, 2X, RA=100K, RB=62K, external VCI voltage input

VCI voltage input	V0 output Voltage
1.0V	3.4V
1.1V	3.5V
:	:
:	:
1.9V	6.5V
2.0V	6.8V
2.1V	7.2V

◆ When an external bias used (FOFF=VDD)

(a)Use internal V0 and VOUT circuit, external bias circuit

R: 5.1K ohm <u>RV: 1M~1.5M ohms</u>

(b)External bias circuit: C1N/P, C2N/P, VOUT, V0, VRAB is floating R: 5.1K ohm

Table13. Duty Ratio and Power Supply for LCD Driving

	Item	Data	а
Numb	er of lines	1	2 and 4
Du	ty ratio	1/17	1/33
	Bias	1/6.7	1/6.7
Divided	R	R	R
resistance	R0	2.7*R	2.7*R

■ Absolute Maximum Ratings

Characteristics	Symbol	Value
Power Supply Voltage	Vcc	-0.3 to +5.5
LCD Driver Voltage	VLCD	Vss+7.2 to Vss-0.3
Input Voltage	Vin	-0.3 to Vcc+0.3
Operating Temperature	TA	-30°C to + 85°C
Storage Temperature	Тѕто	-55°C to + 125°C

^{*} Voltage greater than above may do damage to the circuit (V0, V1, V2, V3, V4, VSS)

■ DC Characteristics

 $(TA = 25^{\circ}C, VCC = 2.7 V - 4.5 V)$

Symbol	Characteristics	Test Condition	Min.	Тур.	Max.	Unit
Vcc	Operating Voltage	-	2.7	-	4.5	V
VLCD	LCD Voltage	V0-VSS	3.0	-	7.2	V
ldd	Power Supply Voltage	Fosc=270KHz Vcc=3.0V	-	0.25	0.6	mA
VIH1	Input High Voltage(Except OSC1)	-	0.7Vcc	-	Vcc	V
VIL1	Input Low Voltage (Except OSC1)	-	-0.3	-	0.6	V
VIH2	Input High Voltage(OSC1)	-	0.7Vcc	-	Vcc	V
VIL2	Input Low Voltage(OSC1)	-	-	-	0.2Vcc	V
Vон1	Output High Voltage(DB0~DB7)	IOH=-0.1mA	0.75Vcc	-	-	V
VOL1	Output Low Voltage(DB0~DB7)	IOL=-0.1mA	-	-	0.2Vcc	V
VOH2	Output High Voltage(Except DB0~DB7)	IOH=-0.04mA	0.8Vcc	-	Vcc	V
VOL2	Output Low Voltage(Except DB0~DB7)	IOL=-0.04mA	-	-	0.2Vcc	V
Rcoм	Common Resistance (Sink)	VLCD=4V, Id=0.05mA	-	1.5	30	ΚΩ
Rseg	Segment Resistance (Sink)	VLCD=4V, Id=0.05mA	-	1.5	30	ΚΩ
ILEAK	Input Leakage	VIN=0Vto VCC	-1	-	1	uA
IPUP	Pull Up Mos Current	VCC=3V	10	50	120	uA

(TA = 25 $^{\circ}\!\!\mathrm{C}$, VCC = 4.5 V - 5.5 V)

Symbol	Characteristics	Test Condition	Min.	Тур.	Max.	Unit
Vcc	Operating Voltage	-	4.5	-	5.5	V
VLCD	LCD Voltage	V0-VSS	3.0	-	7.2	V
IDD	Power Supply Voltage	Fosc=270KHz Vcc=5.0V	-	0.33	0.7	mA
VIH1	Input High Voltage(Except OSC1)	-	2.5	-	Vcc	V
VIL1	Input Low Voltage (Except OSC1)	-	-0.3	-	0.6	V
VIH2	Input High Voltage(OSC1)	-	Vcc-1	-	Vcc	V
VIL2	Input Low Voltage(OSC1)	-	-	-	1.0	V
Voн1	Output High Voltage(DB0~DB7)	IOH=-0.1mA	3.9	-	VCC	V
VOL1	Output Low Voltage(DB0~DB7)	IOL=-0.1mA	-	-	0.4	V
Voн2	Output High Voltage(Except DB0~DB7)	IOH=-0.04mA	0.9Vcc	-	Vcc	V
VOL2	Output Low Voltage(Except DB0~DB7)	IOL=-0.04mA	-	-	0.1Vcc	V
Rсом	Common Resistance (Sink)	VLCD=4V, Id=0.05mA	-	1.5	20	ΚΩ
Rseg	Segment Resistance (Sink)	VLCD=4V, Id=0.05mA	-	1.5	30	ΚΩ
ILEAK	Input Leakage	VIN=0Vto VCC	-1	-	1	uA
IPUP	Pull Up Mos Current	VCC=5V	90	200	330	uA

■ AC Characteristics

 $(V_{DD} = 4.5 \text{ to } 5.5V, Ta = -30 \text{ to } +85 \,^{\circ}C)$

Mode	Item	Symbol	Min	Тур	Max	Unit		
	E Cycle Tim	tc	500	-	-			
	E Rise / Fall Time	tr,tf	-	-	20			
	E Pulse Width (High, Low)	tw	230	-	-			
(1) Write Mode	R/W and RS Setup Time	tsu1	40	ı	-	ns		
(Refer to Fig-21)	R/W and RS Hold Time	th1	10	-	-			
	Data Setup Time	tsu2	60	-	-			
	Data Hold Time	th2	10	-	-			
	E Cycle Tim	tc	500	-	-			
	E Rise / Fall Time	tr,tf	-	-	20			
	E Pulse Width (High, Low)	tw	230	-	-			
(2) Read Mode	R/W and RS Setup Time	tsu	40	-	-	ns		
(Refer to Fig-22)	R/W and RS Hold Time	th	10	-	-			
	Data Output Delay Tim	tD	-	-	160			
	Data Hold Time	^t DH	5	-	-			
	Serial Clock Cycle Time	tc	0.5	-	20	s		
	Serial Clock Rise/Fall Time	tr,tf	-	-	50			
	Serial Clock Width (High, Low)	tw	200	-	-			
(2) Carial Interfere	Chip Select Setup Time	tsu1	60	-	-			
(3) Serial Interface	Chip Select Hold Time	th1	20	-	-			
Mod	Serial Input Data Setup Tim	tsu2	100	-	-	ns		
(Refer to Fig-23)	Serial Input Data Hold Time	th2	100	-	-			
	Serial Output Data Delay Time	t _D	-	- 160				
	Serial Output Data Hold Time	5	-	-				

 $(V_{DD} = 2.7 \text{ to } 4.5V, Ta = -30 \text{ to } +85 \,^{\circ}C)$

Mode	Item	Symbol	Min	Type	Max	Unit
	E Cycle Tim	tc	100	-	-	
	E Rise / Fall Time	tr,tf	-	-	25	
	E Pulse Width (High, Low)	tw	450	-	-	
(4) Write Mode	R/W and RS Setup Time	tsu1	60	-	-	ns
(Refer to Fig-21)	R/W and RS Hold Time	th1	20	-	-	
	Data Setup Time	tsu2	195	ı	ı	
	Data Hold Time	th2	10	ı	ı	
	E Cycle Tim	tc	100	ı	ı	
	E Rise / Fall Time	tr,tf	-	ı	25	
	E Pulse Width (High, Low)	tw	450	-	-	
(5) Read Mode	R/W and RS Setup Time					
(Refer to Fig-22)	R/W and RS Hold Time	th	20	-	-	
	Data Output Delay Tim	t _D	-	-	360	
	Data Hold Time	^t DH	5	-		
	Serial Clock Cycle Time	tc	1	-	20	s
	Serial Clock Rise/Fall Time	tr,tf	-	-	50	
	Serial Clock Width (High, Low)	tw	400	-	-	
(C) Corial Interfere	Chip Select Setup Time	tsu1	60	-	-	
(6) Serial Interface	Chip Select Hold Time	th1	20	-	-	
Mod	Serial Input Data Setup Tim	tsu2	200	-	-	ns
(Refer to Fig-23)	Serial Input Data Hold Time	th2	200	-	-	
	Serial Output Data Delay Time	t _D	-	-	360	
	Serial Output Data Hold Time	^t DH	5	-	-	

 $(V_{DD} = 2.7 \text{ to } 4.5V, Ta = -30 \text{ to } +85 \,^{\circ}C)$

Mode	Item	Symbol	Min	Тур	Max	Unit
	Clock Pulse Width (High, Low)	tw	800	-	-	
	Clock Rise / Fall Time	tr,tf	-	-	100	
(7) Interface	Clock Setup Tim	tsu1	500	-	-	
Mode with	Data Setup Time	tsu2	300	-	-	ns
Extension Driver	Data Hold Time	t _{DH}	300	-	-	
(Refer to Fig-24)	M Delay Time	t _{DM}	-1000	-	1000	

Fig-21. Write Mode

Fig-22. Read Mod

Fig-23. Serial Interface Mode

Fig-24. Interface Mode with Extensive Driver

■ RESET TIMING

 $(V_{DD} = 2.7 \text{ to } 5.5V, Ta = -30 \text{ to } +85 \,^{\circ}C)$

Item	Symbol	Min.	Тур.	Max.	Unit
Reset Low level width (Refer to Fig-25)	tRES	1	-	-	ms

Fig-25. Reset TimingDiagram

RW1073 Code Bank (0B-002)

<u>57~4</u>	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
<u>Б3~0</u>	CG				J.00											
0000	RAM [00]															
0001	CG RAM [01]															
0010	CG RAM [02]															
0011	CG RAM [03]															
0100	CG RAM [04]															
0101	CG RAM [05]															
0110	CG RAM [06]															
0111	CG RAM [07]															
1000	CG RAM [00]															
1001	CG RAM [01]															
1010	CG RAM [02]															
1011	CG RAM [03]															
1100	CG RAM [04]															
1101	CG RAM [05]															
1110	CG RAM [06]															
1111	CG RAM [07]															