Phys 111: Lecture 15

Ross Miller

University of Idaho

October 15, 2019

"The 15th Day: 3 Blue Rupees"

Homework Wk #8 Due Thursday 10/17/19

Exam #2 Tuesday 10/29/19

Today's Topics

- 1. Rotational Quantities
- 2. Rotational Kinematics
- 3. Examples

Motivational Thoughts

You may have been thinking about the following:

- 1. What if an object speeds up and moves in a circle?
- 2. How can we approximate rotational motion?
- 3. We've ignored some rolling motion in previous examples.
- 4. How do forces affect rotation?
- 5. How does rotational energy and momentum work?

Uniform Circular Motion (UCM)

Figure: 15.1 Full revolution at constant rate: $v=2\pi r/T$

Spin Rotation

Figure: 15.2 Figure skating spins

Orbital Rotation

Figure: 15.3 Synchronous or "stationary" satellites

So Many: Symbols vs Sentences?

Rotational Motion	Quantity	Linear Motion
θ	Displacement	х
ω_o	Initial Velocity	v_o
ω	Final Velocity	v
α	Acceleration	a
t	Time	t

Translational vs Rotational Motion

Rotational Motion	Linear Motion
,	,
t	t
heta	s
$\omega = \frac{\Delta \theta}{\Delta t}$	$v = \frac{\Delta s}{\Delta t}$
$\alpha = \frac{\Delta\omega}{\Delta t}$	$a = \frac{\Delta v}{\Delta t}$

Constant Acceleration

Rotational Motion	Linear Motion
$\omega = \omega_o + \alpha t$	$v = v_o + at$
$\theta = \frac{1}{2} (\omega + \omega_o) t$	$x = \frac{1}{2} (v + v_o) t$
$\theta = \omega_o t + \frac{1}{2}\alpha t^2$	$x = v_o t + \frac{1}{2}at^2$
$\omega^2 = \omega_o^2 + 2\alpha\theta$	$v^2 = v_o^2 + 2ax$

C&J FOC 8.4 A rotating object has an angular acceleration of $\alpha=0\ rad/s^2$. Which one or more of the following three statements is consistent with a zero angular acceleration?

- A. The angular velocity is $\omega = 0 \ rad/s$ at all times.
- B. The angular velocity is $\omega = 10 \; rad/s$ at all times.
- C. The angular displacement θ has the same value at all times.

C&J FOC 8.4 A rotating object has an angular acceleration of $\alpha=0\ rad/s^2$. Which one or more of the following three statements is consistent with a zero angular acceleration?

- A. The angular velocity is $\omega = 0 \ rad/s$ at all times.
- B. The angular velocity is $\omega = 10 \; rad/s$ at all times.
- C. The angular displacement θ has the same value at all times.
- 1. A, B, and C
- 2. A and B, but not C
- 3. A only
- 4. B only
- 5. C only

C&J FOC 8.6 A rotating wheel has a constant angular acceleration. It has an angular velocity of 5.0~rad/s at time t = 0~s, and 3.0~s later has an angular velocity of 9.0~rad/s. What is the angular displacement ($\Delta\theta$) of the wheel during the 3.0~s interval?

- a. 15 rad
- b. 21 rad
- c. 27 rad
- d. There is not enough information given to determine the angular displacement.

Reasoning Strategy¹

Applying the Equations of Rotational Kinematics

- Make a drawing to represent the situation being studied, showing the direction of rotation.
- Decide which direction of rotation is positive and which is negative.
 Do not change your decision during the course of a calculation.
- Identify and write down known and unknown values and explicitly write down a note of what variables you are being asked to determine. Be careful about implied data such as reading "starts from rest".
- 4. Identify which physical relationships you are going to make use of and write down the relevant equations.
- 5. Simplify your equations by plugging int zeros and then solve.
- There may be two possible answers to a kinematics problem. Try to visualize the different physical situations to which the answers correspond.

¹More detailed set in section 8.3 from C&J.

Satellite Coverage (Collecting)

C&J 8.1 Example 1 Two adjacent synchronous satellites have an angular separation of $\theta=2.00^\circ$ and both have a radius of $r=4.23\times 10^7~m$. Find the arc length s that separates the satellites and think about the coverage of signal from the satellites.

Satellite Coverage (Collecting)

C&J 8.1 Example 1 Two adjacent synchronous satellites have an angular separation of $\theta=2.00^\circ$ and both have a radius of $r=4.23\times 10^7~m$. Find the arc length s that separates the satellites and think about the coverage of signal from the satellites.

Need To Know Converting degrees to radians

$$\pi \ rad = 180^{\circ}$$

$$2.00^{\circ} = 2.00^{\circ} \left(\frac{\pi \ rad}{180^{\circ}} \right)$$

$$\theta = 0.0349 \ rad$$

Satellite Coverage Answer

C&J 8.1 Example 1 $r = 4.23 \times 10^7 \ m$, $\theta = 0.0349 \ rad$. Find the arc length s between the two satellites from the definition relationship:

$$s = r\theta$$

$$s = (4.23 \times 10^7 \ m)(0.0349 \ rad)$$

$$s = 1.48 \times 10^3 \ km$$

$$s = 920 \ mi$$

C&J 8.9 A Ferris wheel operates at an angular velocity of $0.24 \ rad/s$. Starting from rest, it reaches its operating speed with an average angular acceleration of $0.030 \ rad/s^2$. How long does it take the wheel to come up to operating speed?

C&J 8.20 A figure skater is spinning with an angular velocity of $+15\ rad/s$. She then comes to a stop over a brief period of time. During this time, her angular displacement is $+5.1\ rad$. Determine

- a. her average angular acceleration and
- b. the time during which she comes to rest.

The End

Thanks for your time and attention!

Any questions?

C&J 8.3 The earth spins on its axis once a day and orbits the sun once a year (365.25 days). Determine the average angular velocity (in rad/s) of the earth as it

- a. spins on its axis and
- b. orbits the sun. In each case, take the positive direction for the angular displacement to be the direction of the earth's motion.

C&J 8.3 The earth spins on its axis once a day and orbits the sun once a year (365.25 days). Determine the average angular velocity (in rad/s) of the earth as it

- a. spins on its axis and
- b. orbits the sun. In each case, take the positive direction for the angular displacement to be the direction of the earth's motion.

$$1 \ day = (24)(3600) \ s$$

C&J 8.13 Two people start at the same place and walk around a circular lake in opposite directions. One walks with an angular speed of $1.7 \times 10^3 \ rad/s$, while the other has an angular speed of $3.4 \times 10^3 \ rad/s$. How much time does it take for them to meet?

C&J 8.17 A stroboscope is a light that flashes on and off at a constant rate. It can be used to illuminate a rotating object, and if the flashing rate is adjusted properly, the object can be made to appear stationary.

- a. What is the shortest time between flashes of light that will make a three-bladed propeller appear stationary when it is rotating with an angular speed of $16.7\ rev/s$?
- b. What is the next shortest time?