

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Matemática Discreta / Complementos de Matemática I - 2025

Práctica Complementaria

Subgrafos

- 1. Sea G = (V, E) un grafo simple con $|V| \ge 2$ tal que todos los subgrafos inducidos de G son conexos. ¿Es posible identificar al grafo G?
- 2. Determine la máxima cantidad de aristas en un subgrafo bipartito de los grafos P_n , C_n y K_n .
- 3. Sea G un grafo simple claw-free. Pruebe que si $\Delta(G) \ge 5$, entonces G tiene a C_4 como subgrafo.
- 4. Sea $k \in \mathbb{N}$. Sea G el subgrafo de Q_{2k+1} inducido por el conjunto de vértices para los cuales la diferencia entre la cantidad de ceros y unos es uno.
 - a) Pruebe que G es regular.
 - b) Determine $|V(G)| \neq |E(G)|$.
- 5. Pruebe que el *n*-cubo Q_n es $K_{2,3}$ -free.
- 6. Consideremos que el conjunto vacío es un conjunto estable de todo grafo. Pruebe que para $n \in \mathbb{N} \cup \{0\}$ la cantidad de conjuntos estables del camino P_n coincide con el (n+1)-ésimo término de la sucesión de Fibonacci. Considere P_0 como el grafo vacío.
- 7. Sea G = (V, E) un grafo con |V| > 2. Pruebe que G verifica exactamente una de las siguientes condiciones:
 - a) Si G no es conexo, $G = G_1 + G_2$ (G_1 y G_2 no vacíos).
 - b) Si \overline{G} no es conexo, $G = G_1 \vee G_2$ ($G_1 \vee G_2$ no vacíos).
 - c) Si G y \overline{G} son conexos, G se dice modular.
- 8. a) Dar una descomposición modular de cada uno de los siguientes grafos.

- b) Para cada grafo G del ítem anterior, calcular $\alpha(G)$ y $\omega(G)$ utilizando la descomposición modular.
- c) Un grafo es un cografo si es P_4 -free. Un grafo es un cografo si y solo si los grafos modulares de su descomposición son triviales. Determine si cada uno de los grafos del ítem (a) son cografos. En caso que no lo sean, encontrar un P_4 inducido.

9. a) Pruebe que cada uno de los siguientes grafos es isomorfo a $K_3 \square K_3$.

- b) Pruebe que $K_3 \square K_3$ es autocomplementario.
- 10. Pruebe que para $n \ge 2$, el n-cubo Q_n es isomorfo al grafo $Q_{n-1} \square K_2$.

Caminos, ciclos y recorridos

- 1. Sea G el grafo cuyo conjunto de vértices es $V(G) = \{1, \dots, 15\}$ donde dos vértices i y j son adyacentes si y solo si su máximo divisor común es mayor a 1.
 - a) ¿Cuántas componentes conexas tiene G?
 - b) Determinar la longitud máxima de un camino simple en G.
- a) Dar un ejemplo de un grafo con seis vértices que tenga exactamente 2 vértices de corte.
 - b) Dar un ejemplo de un grafo con seis vértices que no tenga vértices de corte.
 - c) Demostrar que un vértice v en un grafo conexo G es un vértice de corte si y solo si existen vértices u y w en G tales que todo camino de u a w pasa por v.
- 3. Dar todos los vértices y aristas de corte, si existen, de los grafos P_n , C_n y K_n .
- 4. Determinar para qué valores de $n \in \mathbb{N}$ (o de $n \in \mathbb{N}$ y $m \in \mathbb{N}$ si corresponde) los siguientes grafos admiten un circuito euleriano.
 - a) El grafo completo K_n .
 - b) El grafo completo bipartito $K_{m,n}$.
 - c) El cubo- $n Q_n$.
 - d) El grafo T_n cuyo conjunto de vértices está dado por

$$V(T_n) = \bigcup_{i=0}^n \left\{ v_{ij} : 0 \leqslant j \leqslant i \right\}$$

y dos vértices v_{ij} , $v_{k\ell}$ son adyacentes si y solo si se cumple alguna de las siguientes condiciones:

- $k = i \ v \ \ell = j + 1;$
- $k = i + 1 \text{ y } \ell = j$;
- $k = i + 1 \text{ v } \ell = i + 1$;

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Matemática Discreta / Complementos de Matemática I - 2025

e) El grafo grilla $G_{m,n}$ cuyo conjunto de vértices está dado por

$$V(G_{m,n}) = \{v_{ij} : 1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n\}$$

y dos vértices $v_{ij},\,v_{k\ell}$ son adyacentes si y solo si se cumple alguna de las siguientes condiciones:

- $k = i \text{ y } \ell = j + 1;$
- $k = i + 1 \text{ y } \ell = j;$

5. Probar que el algoritmo de Fleury devuelve un circuito euleriano en G.

Algoritmo de Fleury:

Sea G un grafo conexo par.

- 1. Considerar cualquier vértice $u \in V(G)$, $W \leftarrow u$ (en W asignar u), $x \leftarrow u$, $F \leftarrow G$.
- 2. Mientras $gr_F(x) \ge 1$: seleccionar una arista e = xv (i.e. incidente en x), donde e no es de corte de F, salvo que no exista (en cuyo caso seleccionar cualquiera incidente en x). $W \leftarrow uev, x \leftarrow v, F \leftarrow F \setminus e$.
- 3. W es un circuito euleriano (probar).