Prima Esercitazione SPICE utilizzo opamp

Luca Fantin - matricola: 2000156

Esercizio 1: amplificatore audio per auricolari

Dato il circuito in figura, utilizzando per R_2 un valore pari al vostro numero di matricola diviso per 10:

Valori				
C_2	100 nF			
R_2	$200015, 6 \Omega$			
R_3	100 Ω			
R_4	$100 k\Omega$			

1.1 Calcolare analiticamente il guadagno in tensione a centro banda considerando l'amplificatore operazionale ideale.

Possiamo analizzare il circuito in figura come un amplificatore non invertente, con un'impedenza che diminuisce la tensione in ingresso all'opamp v_i dal valore di v_{in} . Per calcolare il valore di v_{in} , osserviamo che in questo circuito l'opamp ha guadagno infinito, in quanto è ideale, ed è un presente un feedback negativo lineare. Queste due condizioni fanno valere il principio di massa virtuale. Pertanto, nell'opamp non entra corrente, e possiamo considerare la sequenza $v_1 - C_2 - v_+ - R_2$ come un partitore di tensione simbolico.

$$v_{1} \bullet \qquad \qquad v_{i} = v_{in} \cdot \frac{Z_{R_{2}}}{Z_{R_{2}} + Z_{C_{2}}} = v_{in} \cdot \frac{R_{2}}{R_{2} + \frac{1}{s \cdot C_{2}}} = v_{in} \cdot \frac{sR_{2}C_{2}}{1 + sR_{2}C_{2}}$$

A questo punto, possiamo calcolare la funzione di trasferimento del circuito, moltiplicando v_i per la funzione di trasferimento dell'amplificatore non invertente:

$$W(s) = \frac{sR_2C_2}{1 + sR_2C_2} \cdot (1 + \frac{R_4}{R_3})$$

Abbiamo un solo polo: consideriamo quello come polo a bassa frequenza ed esprimiamolo nella forma $(s + \omega)$ per trovare il guadagno a centro banda:

$$\omega_1 = \frac{1}{R_2 C_2} \longrightarrow W(s) = \frac{sR_2 C_2}{1 + sR_2 C_2} \cdot \left(1 + \frac{R_4}{R_3}\right) = \frac{sR_2 C_2}{sR_2 C_2 \left(\frac{1}{sR_2 C_2} + s\right)} \cdot \left(1 + \frac{R_4}{R_3}\right) = \frac{1}{s + \omega_1} \cdot \left(1 + \frac{R_4}{R_3}\right)$$

$$A_0 = 1 + \frac{R_4}{R_3} = 1001$$

1.2 Calcolare la frequenza di taglio inferiore considerando l'amplificatore operazionale ideale.

$$\omega_{inf} = \omega_1 = \frac{1}{R_2 C_2} = 50 rad/s \longrightarrow f_{inf} = \frac{\omega_1}{2\pi} = 8 Hz$$

1.3 Disegnare il diagramma di Bode dell'ampiezza tra 1 Hz e 1 MHz.

1.4 Simulare con SPICE il diagramma di Bode. Qual è la differenza rispetto al diagramma calcolato? A cosa è dovuta?

Ricreiamo il circuito in figura su LTspice:

* nome / percorso file * componenti del circuito istruzioni varie * generatore di tensione: va a massa, OV in * analisi in frequenza del circuito, * DC, segnale sinusoidale in AC: ampiezza * per le frequenze da 1Hz a 1MHz, * di 100mV, frequenza di 10 kHz, * 10 punti per decade * no ritardo o fase iniziale .ac dec 10 1 1MEG V1 N001 0 100mV DC 0 AC 1 sin(0 100mV 10kHz * istruzione per importare sottocircuito $0 \ 0 \ 0)$ * dell'opamp C2 N002 N001 100n .lib opamp.sub R2 N002 0 200015.6 .backanno * opamp "ideale": guadagno di 100K e prodotto .end * guadagno-larghezza di banda di 10M XU1 N002 N004 N003 opamp Aol=100K GBW=10Meg R3 N004 0 100 R4 N003 N004 100k

100mV DC 0 AC 1 sin(0 100mV 10kHz 0 0 0) .ac dec 10 1 1MEG .lib opamp.sub

Questo diagramma è notevolmente diverso da quello determinato analiticamente: presenta due poli al posto del polo unico trovato precedentemente. Questo si può spiegare controllando il prodotto guadagno-larghezza di banda (GBW) del modello di opamp ideale di LTspice.

Per quanto possa essere grande, il GBW è finito, come in qualunque opamp reale. A causa di questo, alle alte frequenze il guadagno inizia a decrescere al di sopra di un certo valore di frequenza. Nel caso precedente ciò non accade, grazie al GBW infinot dell'opamp ideale.

Open Symbo	l: C:\Users\ferra\OneDrive\Documenti\LTspi	ceXVII\lib\sym\OpAr
Attribute	Value	Vis
Prefix	X	
InstName	U1	X
SpiceModel		
Value	opamp	
Value2		
SpiceLine	AoI=100K	
SpiceLine2	GBW=10Meg	
•		

1.5 In che modo è possibile ampliare la larghezza di banda dell'amplificatore audio?

Supponendo di non poter cambiare il modello di opamp utilizzato, abbiamo un GBW fisso; ciò ci impedisce di aumentare direttamente il valore di quel parametro. Abbiamo tuttavia altri modi per raggiungere l'obiettivo. Uno di questi è diminuire la frequenza di taglio inferiore:

$$\omega_{inf} = \omega_1 = \frac{1}{R_2 C_2} = 50 rad/s \longrightarrow f_{inf} = \frac{\omega_1}{2\pi} = 8 Hz$$

 f_{inf} diminuisce all'aumentare del prodotto R_2C_2 . Possiamo quindi ampliare la larghezza di banda aumentando il valore di R_2 o C_2 , senza modificare A_0 .

Un altro metodo è sfruttare il GBW per aumentare la larghezza di banda diminuendo il guadagno, in particolare A_0 :

$$A_0 = 1 + \frac{R_4}{R_3} = 1001$$

Possiamo farlo rendendo $\frac{R_4}{R_3}$ più piccolo, diminuendo R_4 o aumentando R_3 .

Esercizio 1: amplificatore audio per auricolari (variante)

Utilizzando il modello LT1115 della libreria di LTSpice, come mostrato sopra e utilizzando per R_2 un valore pari al vostro numero di matricola diviso per 10:

1.6 Simulare la forma d'onda di uscita per un segnale sinusoidale di ingresso di 1mV, a 1kHz.

* nome / percorso file *	
componenti del circuito	* * istruzioni varie
VIN NOO1 0 1mV DC 0 AC 1 sin(0 1mV 1kHz 0 0 0) C2 NOO2 NOO1 100n R2 NOO2 0 200015.6 R3 NOO4 0 100 R4 NOO3 NOO4 100k * opamp LT1028 (dalla libreria di LTspice) CU1 NOO2 NOO4 +Vcc -Vcc NOO3 LT1028 V1 +Vcc 0 +10V V2 -Vcc 0 -10V	* analisi del transitorio: tra gli istant * t=0s e t=3ms, prendendo misure ogni * microsecondo, ignorando il calcolo * iniziale del punto di riposo in DC .tran 0 3m 0 1u uic .lib LTC.lib .backanno .end

1mV DC 0 AC 1 sin(0 1mV 1kHz 0 0 0)
.tran 0 3m 0 1u uic

Notiamo che v_0 ha un'ampiezza di circa 1V, a differenza dell'1mV di v_{in} ; ne deduciamo che il guadagno è di circa 1000. Questo fatto risulta plausibile se consideriamo che f=1kHz si trova a centro banda; pertanto: $A=A_o=1001$.

1.7 Simulare il diagramma di Bode dell'ampiezza tra 1Hz e 1MHz. Sostituiamo il tipo di simulazione da effettuare:

* -----

* istruzioni varie

* -----

- * analisi in frequenza del circuito, per le frequenze
- * da 1Hz a 1MHz, 10 punti per decade

.ac dec 10 1 1MEG

1.8 Per quale ampiezza del segnale di ingresso l'uscita satura? Simulare la forma d'onda di uscita per un segnale di ingresso di ampiezza pari a 2 volte il valore trovato.

L'opamp è soggetto a saturazione quando la tensione in uscita è maggiore di quella fornita dall'alimentazione: a causa della conservazione dell'energia, la crescita di v_o si blocca al valore dettato dall'alimentazione negli intervalli in cui dovrebbe superare tale valore.

$$|v_o| \ge 10V \longrightarrow A \cdot |v_{in}| \ge 10V$$

La frequenza del segnale considerato, 1kHz, è nel centro banda; possiamo quindi considerare $A=A_0$. Ponendo infine $v_{in}>0$:

$$1001 \cdot v_{in} \ge 10V \longrightarrow v_{in} \ge \frac{10V}{1001} = 9.99mV$$

Testiamo quindi il circuito applicando un segnale sinusoidale v_{in} di ampiezza $2 \cdot 9.99mV = 19.98mV$, ed effettuiamo la stessa simulazione del punto 1.6:

VIN NOO1 0 19.98mV DC 0 AC 1 sin(0 19.98mV 1kHz 0 0 0)

Come previsto, il segnale d'uscita satura oltre un certo valore. Tuttavia tale valore risulta essere 8V, anzichè i 10V dell'alimentazione: questa discrepanza si può imputare all'utilizzo di un modello reale di opamp nello schema LTspice, quando nei calcoli è stato utilizzato un opamp ideale con alimentazione.

Esercizio 2: sensore resistometrico

Dato il circuito in figura, considerando l'amplificatore operazionale ideale:

2.1 Calcolare analiticamente la relazione tra v_o e δ per una v_{ref} data.

Date l'idealità dell'opamp e la presenza di un feedback negativo lineare, in questo circuito vale il principio di massa virtuale. Partiamo considerando la sequenza $v_{ref} - R_1 - v_+ - R$ come un partitore di tensione resistivo:

$$v_{ref} \bullet - \bigvee \bigvee_{\bullet} V_{+} = v_{-} = v_{ref} \cdot \frac{R}{R_{1} + R}$$

Consideriamo ora l'altra parte del circuito:

$$\begin{split} I_1 &= \frac{v_{ref} - v_-}{R_1} = \frac{1}{R_1} \cdot (v_{ref} - v_{ref}) \cdot \frac{R}{R_1 + R} = \frac{v_{ref}}{R_1} \cdot (1 - \frac{R}{R_1 + R}) = \frac{v_{ref}}{R_1} \cdot \frac{R_1 + R - R}{R_1 + R} = \frac{v_{ref}}{R_1 + R} \\ v_o &= v_- - R(1 + \delta)I_1 = v_{ref} \cdot \frac{R}{R_1 + R} - R(1 + \delta) \cdot \frac{v_{ref}}{R_1 + R} = \frac{v_{ref}}{R_1 + R} \cdot [R - R(1 + \delta)] = \frac{v_{ref}}{R_1 + R} \cdot (R - R - R\delta) = \\ &= -v_{ref} \cdot \frac{R}{R_1 + R} \cdot \delta \end{split}$$

2.2 Dimensionare il circuito in modo da ottenere approssimativamente $v_o=12.5\delta$, utilizzando per (almeno) una delle resistenze il vostro numero di matricola o un suo (sotto)multiplo.

$$v_o = 12.5\delta \longrightarrow -v_{ref} \cdot \frac{R}{R_1 + R} = 12.5V$$

Notiamo che ciò è possibile solo per $v_{ref} < 0$.

$$R = 1k\Omega, \quad R_1 = 20.00156\Omega, \quad v_{ref} = -12.75V \longrightarrow -v_{ref} \cdot \frac{R}{R_1 + R} = 12.49998088V$$

2.3 Simulare con Spice la corrente che attraversa $R(1+\delta)$ al variare di v_{ref} e δ .

.step param delta 200 1800 400 .dc Vref -0.5 0.5 0.1 .lib opamp.sub

Simulazione		δ
1/10		200
2/10		600
3/10		1K
4/10		1.4K
5/10		1.8K

Come vediamo dai risultati della simulazione, la corrente è negativa per $v_{ref} > 0$ e positiva per $v_{ref} < 0$: guardando come sono stati indicati i nodi nel listato Spice, scorre verso l'uscita per $v_{ref} > 0$ e verso l'entrata per $v_{ref} < 0$. In generale, cresce al diminuire di v_{ref} e al crescere di δ .