NYPD Shooting incident data analysis

5/21/2021

Introduction

purpose

In this article, I will **clean**, **visualize** and **analyze** NYPD Shooting incident data to make it easier to see the trend of cumulative shooting incidents and murder cases per boroughs.

contents

- 1. Data Cleaning
 - i. Extract only the data needed for analysis
 - ii. Date format conversion
 - iii. Replace logical boolean data with integer type
 - iv. Add the number of shooting occurrences and the cumulative number of it as columns.
 - v. Add the cumulative number of murders as a column.
- 2. Visualization
 - a. Cumulative number of shooting events according to the flow of the date by borough
 - b. Cumulative number of murder according to the flow of the date by borough
 - c. Percentage of murders in total number of shootings by borough
- 3. Analysis
 - Compare the total number of shooting cases and murder ones by borough.
 - Calculate the percentage of murders in shootings by borough
 - BROOKLYN
 - BRONX
 - QUEENS
 - MANHATTAN
 - STATEN ISLAND
- 4. Model
 - Compare the actual trend of shooting incidents with the predictive linear model
- 5. Conclusion and Bias Identification
 - Conclude the project report
 - Identify personal bias and mitigation method

1.Data Cleaning

Data used in this project is every shooting incident data list occurred in NYC from Jan. 1, 2006 to Dec. 31, 2020.

Data Importing Here you can see the original dataset below.

```
library(knitr)
library(tidyr)
library(tidyverse)
## -- Attaching packages ------ 1.3.1 --
## v ggplot2 3.3.3
                    v dplyr 1.0.6
                  v stringr 1.4.0
## v tibble 3.1.2
## v readr 1.4.0
                 v forcats 0.5.1
## v purrr 0.3.4
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                  masks stats::lag()
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
##
      date, intersect, setdiff, union
nypd <- read_csv("https://data.cityofnewyork.us/api/views/833y-fsy8/rows.csv?accessType=DOWNLOAD")
##
## -- Column specification ------
## cols(
##
    INCIDENT_KEY = col_double(),
##
    OCCUR_DATE = col_character(),
    OCCUR_TIME = col_time(format = ""),
##
##
    BORO = col_character(),
    PRECINCT = col_double(),
##
##
    JURISDICTION_CODE = col_double(),
##
    LOCATION_DESC = col_character(),
    STATISTICAL_MURDER_FLAG = col_logical(),
##
    PERP_AGE_GROUP = col_character(),
##
##
    PERP_SEX = col_character(),
##
    PERP_RACE = col_character(),
    VIC_AGE_GROUP = col_character(),
##
    VIC_SEX = col_character(),
##
##
    VIC_RACE = col_character(),
    X_COORD_CD = col_number(),
```

```
## Y_COORD_CD = col_number(),
## Latitude = col_double(),
## Longitude = col_double(),
## Lon_Lat = col_character()
## )
knitr::kable(head(nypd))
```

NCH OEXCID<u>BIC</u>EMPIR H	aura	SEOC	ZASHOASIN 6	RCHO8		XPEESI		AIME	AGSCRRACTORDOMINICATION Lat
015 768/123/2009 UEENS	0	NA	FALSE	NA	NA	NA	25-	Μ	BLACIN374190B5640.69781 POINT (-
							44		73.80 83 .808140716999
									40.697805308000
0574 85407/5264B)RONX	0	NA	FALSE	<18	Μ	BLA	215-	\mathbf{F}	BLACIM067289755490.81870 POINT (-
							44		73.91 83. 918570617999
									40.818699730000
9311 03 9 62 /92 00M (AN 2 BAT	TANN	NA	FALSE	18-	Μ	WHI	11B-	\mathbf{M}	BLAC99342777950.79192 POINT (-
				24		HIS-	24		HIS- 73.94 7329 45479659999
						PAN	[C]		PANIC 40.791916091000
419 26004)(2629) DAT E2N	0	PVI	TRUE	25-	Μ	BLA	215-	\mathbf{F}	BLAC9838149717840.63806 POINT (-
IS-		HOU	JSE	44			44		74.16 $\overline{6}4$ 1166108301999
LAND									40.638063982000
0148 08682/8203B)RONK	0	NA	FALSE	25-	Μ	BLA	II 8-	\mathbf{M}	BLACIM08225406240.85455 POINT (-
				44		HIS-	24		73.91 73 .£013339443999
						PAN	[C]		40.854547349000
0825 64607/7260B)ROOK LY	YN0	NA	FALSE	45-	Μ	WHI	25-	\mathbf{M}	BLAC I 10096150696160.67983 POINT (-
				64		HIS-	44		73.90 %3 308425238999
						PAN	$^{\mathrm{IC}}$		40.679827016000

Data cleaning Date format was converted for easier reading and I replaced logical boolean data, 'STA-TISTICAL_MURDER_FLAG' with integer type like '0' for FALSE and '1' for TRUE. And I added the number of shooting occurrences and the cumulative number of it as columns with the names of 'shooting' and 'cumshooting'. Also a column, 'cummurder', was added for the cumulative number of murders.

```
library(dplyr)
library(ggplot2)

# select only needed data
nypd_test <- drop_na(nypd) %>%
    select(-c(INCIDENT_KEY, LOCATION_DESC, X_COORD_CD, Y_COORD_CD, Latitude, Longitude, Lon_Lat, JURISDIC

# change the date type
nypd_test <- nypd_test %>%
mutate(OCCUR_DATE = mdy(OCCUR_DATE))

#change logical boolean into int.
nypd_test$STATISTICAL_MURDER_FLAG [nypd_test$STATISTICAL_MURDER_FLAG == "TRUE"] <- 1
nypd_test$STATISTICAL_MURDER_FLAG [nypd_test$STATISTICAL_MURDER_FLAG == "FALSE"] <- 0</pre>
```

```
nypd_murder_boro <- nypd_test %>%
    group_by(BORO) %>%

# summarize(STATISTICAL_MURDER_FLAG = sum(STATISTICAL_MURDER_FLAG)) %>%
    select(BORO, OCCUR_DATE, STATISTICAL_MURDER_FLAG) %>%
    ungroup()

nypd_murder_boro_1 <- nypd_murder_boro %>%
    group_by(BORO, OCCUR_DATE) %>%
    summarize(STATISTICAL_MURDER_FLAG = STATISTICAL_MURDER_FLAG) %>%
    select(BORO, OCCUR_DATE, STATISTICAL_MURDER_FLAG) %>%
    ungroup()
```

'summarise()' has grouped output by 'BORO', 'OCCUR_DATE'. You can override using the '.groups' argum

```
# add new columns
nypd_murder_boro_1$cummurder <- ave(nypd_murder_boro_1$STATISTICAL_MURDER_FLAG, nypd_murder_boro_1$BORO
nypd_murder_boro_1['shooting'] = 1
nypd_murder_boro_1$cumshooting <- ave(nypd_murder_boro_1$shooting, nypd_murder_boro_1$BORO, FUN = cumsum
nypd_murder_boro_1$murderpercent <- with(nypd_murder_boro_1, cummurder/cumshooting *100)
# show the data that will be used for analysis
knitr::kable(head(nypd_murder_boro_1))</pre>
```

BORO OCCUR_DATSTATISTICAL	_MURDER_ct	La A Grder	shooting	cumshooting	murderpercent
BRONX 2006-01-01	0	0	1	1	0
BRONX 2006-01-01	0	0	1	2	0
BRONX 2006-01-04	0	0	1	3	0
BRONX 2006-01-05	0	0	1	4	0
BRONX 2006-01-06	0	0	1	5	0
BRONX 2006-01-06	0	0	1	6	0

2. Visualization

Here comes three graphs. The first two shows the cumulative number of murder and of shooting events according to the flow of the date by borough. And the rest shows the percentage of murders in total number of shootings by borough.

```
#Visualization

nypd_murder_boro_1 %>%
    ggplot(aes(x = OCCUR_DATE, y=cummurder, group=BORO, color=BORO))+
    geom_line()
```



```
nypd_murder_boro_1 %>%
   ggplot(aes(x = OCCUR_DATE, y=cumshooting, group=BORO, color=BORO))+
   geom_line()
```



```
nypd_murder_boro_1 %>%
   ggplot(aes(x = OCCUR_DATE, y=murderpercent, group=BORO, color=BORO))+
   geom_line()
```


3. Analysis

Comparing the total number of shooting cases and murder ones by borough I calculated the percentage of murders in shootings and found that in STATEN ISLAND the total number of shootings is the lowest, but the proportion of deaths from shootings is the highest.

```
# analysis
aggregate(nypd_murder_boro_1$STATISTICAL_MURDER_FLAG, by=list(BORO = nypd_murder_boro_1$BORO), FUN=sum)
              BORO
##
                     X
## 1
             BRONX 448
          BROOKLYN 565
## 2
## 3
         MANHATTAN 206
## 4
            QUEENS 217
## 5 STATEN ISLAND 63
aggregate(nypd_murder_boro_1$shooting, by=list(BORO = nypd_murder_boro_1$BORO), FUN=sum)
##
              BORO
                      х
## 1
             BRONX 1903
## 2
          BROOKLYN 2709
## 3
         MANHATTAN 983
            QUEENS
                    992
## 5 STATEN ISLAND
                    256
```

```
city <- "BRONX"
nypd_murder_boro_BRONX <- nypd_murder_boro_1 %>%
    filter(BORO == city) %>%
    group_by(BORO, OCCUR_DATE) %>%
    #summarize(STATISTICAL_MURDER_FLAG = STATISTICAL_MURDER_FLAG) %>%
    select(BORO, OCCUR_DATE, shooting, cumshooting, STATISTICAL_MURDER_FLAG, cummurder, murderpercent)
    ungroup()
knitr::kable(tail(nypd_murder_boro_BRONX))
```

BORO	OCCUR_	DAT hooting	cumshooting	STATISTICAL_MURDER	<u>c</u> timatirder	murderpercent
BRONX	2020-11-15	5 1	1898	0	447	23.55111
BRONX	2020-11-26	$_{0}$ 1	1899	0	447	23.53870
BRONX	2020-12-04	1	1900	0	447	23.52632
BRONX	2020-12-04	1	1901	0	447	23.51394
BRONX	2020-12-14	1	1902	1	448	23.55415
BRONX	2020-12-24	1	1903	0	448	23.54178

```
city <- "BROOKLYN"
nypd_murder_boro_BROOKLYN <- nypd_murder_boro_1 %>%
    filter(BORO == city) %>%
    group_by(BORO, OCCUR_DATE) %>%
    #summarize(STATISTICAL_MURDER_FLAG = STATISTICAL_MURDER_FLAG) %>%
    select(BORO, OCCUR_DATE, shooting, cumshooting, STATISTICAL_MURDER_FLAG, cummurder, murderpercent)
    ungroup()
knitr::kable(tail(nypd_murder_boro_BROOKLYN))
```

BORO	OCCUR_DA	Thooting	cumshooting	STATISTICAL_MURDER	R <u>cu</u> Frin Au Gder	murderpercent
BROOKL	Y № 020-12-07	1	2704	0	565	20.89497
BROOKL	Y M 020-12-07	1	2705	0	565	20.88725
BROOKL	Y M 020-12-07	1	2706	0	565	20.87953
BROOKL	Y M 020-12-09	1	2707	0	565	20.87181
BROOKL	Y M 020-12-11	1	2708	0	565	20.86411
BROOKL	Y M 020-12-25	1	2709	0	565	20.85640

```
city <- "STATEN ISLAND"
nypd_murder_boro_STATENISLAND <- nypd_murder_boro_1 %>%
    filter(BORO == city) %>%
    group_by(BORO, OCCUR_DATE) %>%
    #summarize(STATISTICAL_MURDER_FLAG = STATISTICAL_MURDER_FLAG) %>%
    select(BORO, OCCUR_DATE, shooting, cumshooting, STATISTICAL_MURDER_FLAG, cummurder, murderpercent)
    ungroup()
knitr::kable(tail(nypd_murder_boro_STATENISLAND))
```

BORO	OCCUR_DATM	ooting	cumshooting	STATISTICAL_MURDE	CR <u>ur</u> Fha A cder	murderpercent
STATEN	2020-06-23	1	251	0	62	24.70120
ISLAND						
STATEN	2020-07-13	1	252	0	62	24.60317
ISLAND						

BORO	OCCUR_DATE	Ecoting	cumshooting	STATISTICAL_MURDI	ER <u>ur</u> FilmArGler	murderpercent
STATEN	2020-08-31	1	253	0	62	24.50593
ISLAND						
STATEN	2020-09-27	1	254	1	63	24.80315
ISLAND						
STATEN	2020 - 11 - 27	1	255	0	63	24.70588
ISLAND						
STATEN	2020 - 12 - 27	1	256	0	63	24.60938
ISLAND						

```
city <- "MANHATTAN"
nypd_murder_boro_MANHATTAN <- nypd_murder_boro_1 %>%
    filter(BORO == city) %>%
    group_by(BORO, OCCUR_DATE) %>%
    #summarize(STATISTICAL_MURDER_FLAG = STATISTICAL_MURDER_FLAG) %>%
    select(BORO, OCCUR_DATE, shooting, cumshooting, STATISTICAL_MURDER_FLAG, cummurder, murderpercent)
    ungroup()
knitr::kable(tail(nypd_murder_boro_MANHATTAN))
```

BORO	OCCUR_	DATECooting	cumshooting	STATISTICAL_MURDER	R <u>cu</u> lFilmAuGder	murderpercent
MANHAT	Γ Α2N 20-11-26	5 1	978	0	206	21.06339
MANHAT	Γ Α2N 20-12-03	3 1	979	0	206	21.04188
MANHAT	Γ Α2N 20-12-03	3 1	980	0	206	21.02041
MANHAT	Γ Α2N 20-12-04	1	981	0	206	20.99898
MANHAT	Γ Α2N 20-12-09) 1	982	0	206	20.97760
MANHAT	Γ Α210 20-12-25	5 1	983	0	206	20.95626

```
city <- "QUEENS"
nypd_murder_boro_QUEENS <- nypd_murder_boro_1 %>%
    filter(BORO == city) %>%
    group_by(BORO, OCCUR_DATE) %>%
    #summarize(STATISTICAL_MURDER_FLAG = STATISTICAL_MURDER_FLAG) %>%
    select(BORO, OCCUR_DATE, shooting, cumshooting, STATISTICAL_MURDER_FLAG, cummurder, murderpercent)
    ungroup()
knitr::kable(tail(nypd_murder_boro_QUEENS))
```

BORO	OCCUR_I	DATE hooting	cumshooting	STATISTICAL_MURDER	<u>c</u> Endanderder	murderpercent
QUEENS	S 2020-11-05	1	987	0	216	21.88450
QUEENS	8 2020-11-05	1	988	0	216	21.86235
QUEENS	8 2020-11-30	1	989	0	216	21.84024
QUEENS	8 2020-12-20	1	990	0	216	21.81818
QUEENS	82020-12-21	1	991	0	216	21.79617
QUEENS	8 2020-12-21	1	992	1	217	21.87500

4. Model

I made a linear model to predict the shooting incident of boroughs and compared it to the actual trend of shooting incidents. In graph below, the blue line represents the actual trend of shooting incidents and the

red does the predictive model prediction.

```
# Modeling Data
mod <- lm(cumshooting ~ cummurder, data = nypd_murder_boro_1)</pre>
summary(mod)
##
## Call:
## lm(formula = cumshooting ~ cummurder, data = nypd_murder_boro_1)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -344.44 -41.04
                    -6.85
                             52.37
                                    205.41
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.086018 1.911421
                                    1.615
## cummurder 4.951257
                          0.008042 615.697
                                             <2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 94.14 on 6841 degrees of freedom
## Multiple R-squared: 0.9823, Adjusted R-squared: 0.9823
## F-statistic: 3.791e+05 on 1 and 6841 DF, p-value: < 2.2e-16
nypd_murder_boro_1 %>% slice_min(cumshooting)
## # A tibble: 5 x 7
    BORO OCCUR_DATE STATISTICAL_MUR~ cummurder shooting cumshooting murderpercent
     <chr> <date>
                                 <dbl>
                                           <dbl>
                                                     <dbl>
## 1 BRONX 2006-01-01
                                               0
                                     0
                                                         1
                                                                     1
                                                                                   0
## 2 BROO~ 2006-01-02
                                     1
                                               1
                                                         1
                                                                     1
                                                                                 100
## 3 MANH~ 2006-01-01
                                     1
                                               1
                                                         1
                                                                     1
                                                                                 100
## 4 QUEE~ 2006-01-01
                                     1
                                               1
                                                         1
                                                                     1
                                                                                 100
## 5 STAT~ 2006-01-02
                                     0
                                                                     1
                                                                                   0
nypd_murder_boro_1 %>% slice_max(cumshooting)
## # A tibble: 1 x 7
    BORO OCCUR_DATE STATISTICAL_MUR~ cummurder shooting cumshooting murderpercent
     <chr> <date>
                                 <dbl>
                                           <dbl>
                                                    <dbl>
                                                                 <dbl>
                                                                               <dbl>
## 1 BROO~ 2020-12-25
                                     0
                                             565
                                                                  2709
                                                                                20.9
x_{grid} < - seq(0, 3000)
new_df <- tibble(cumshooting = x_grid)</pre>
nypd_pred <- nypd_murder_boro_1 %>% mutate(pred = predict(mod))
# nypd_pred
nypd_pred %>% ggplot() +
```

```
geom_point(aes(x = OCCUR_DATE, y=cumshooting), color= "blue")+
geom_point(aes(x = OCCUR_DATE, y = pred), color = "red")
```


5. Conclusion and Bias Identification

The analysis shows that BROOKLYN is the place where the most shootings occurred in the data. However, STATEN ISLAND has the highest rate of deaths from shooting. If social policy is established based on this data, I think that prevention education for shootings should be approached in a different way in BROOKLYN and STATEN ISLAND. Born in a country in which possession of firearms itself is illegal, I have great fear of shooting itself and distrust of the society in which it is carried out. So, rather than seeing and understanding the data of citizens who can legally own firearms as an important part of society and thinking about countermeasures, the fact that there are many gunshots is just bad. However, while doing science, it has changed that I try to accept the phenomenon itself and recognize the value of research. Not making judgments about certain facts but trying to accept and understand the phenomenon in a neutral way is a way for me to step into a bigger world, and for our society to make the rules fairer.