	Linear Regression vs Logistic Regression Whenever we have a continuos values, the linear regression performs well. While linear regression don't when our target is discrete. Logistic Regression works with sigmoid function. Sigmoid Function or Logit Function: Sigmoid function is used to map the entire number line into a small range such as between 0 & 1. Sigmoid function draw a S shape curve.
	Formula for Sigmoid Function
	$S(x)=rac{1}{1+e^{-x}}$ for logistic regression we would be using x = wa + b This is nothing but a formula of linear regression. We would be converting linear equation between 0 & 1.
	Linear Regression Y=1 Six V-1 Six V-
r 1.	Y=0 X-Axis X-Axis
[]: [2]:	<pre>import pandas as pd import matplotlib.pyplot as plt from sklearn.linear_model import LogisticRegression</pre> Reading csv file
[5]: [5]:	<pre>df = pd.read_csv("insurance_data.csv") df.sample(5) age bought_insurance 9 61</pre>
[6]:	26 23 0 18 19 0 Drawing Scatter of dataset plt.scatter(df.age, df.bought_insurance, marker='+', color='red')
[6]:	<pre><matplotlib.collections.pathcollection 0x20340701130="" at=""> 10</matplotlib.collections.pathcollection></pre>
[7]:	0.4 - 0.2 - 0.0 - ++ +++ ++++ + + + + + + + + + + + +
[7]: [8]:	Train test split technique is used to estimate the performance of machine learning algorithms which are used to make predictions on data not used to train the mower we just divide our dataset into training and testing part. For general we used 20 percent as test size and 80 percent as test size. from sklearn .model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split(df[['age']], df.bought_insurance, test_size=0.2)
[9]: [9]:	X_test age 22
11]:	10 18 16 25 19 18 Y_test
	22 1 18 0 14 1 10 0 16 1 19 0 Name: bought_insurance, dtype: int64 Applying logistic Regression
12]: []: 14]:	<pre>model = LogisticRegression() model.fit(X_train, Y_train) Geting an overall score of test set. Score tell use the performance of model on test data model.score(X_test, Y_test)</pre>
14]: 15]: 15]:	
16]:	Y_test 22 1 18 0 14 1 10 0 16 1 19 0 Name: bought_insurance, dtype: int64
	Logistic Regression on Multiclass
	Load Digit Data: The load digit data contain hand writtern images of digits. The dataset contains 1797 images of 8X8.
	from sklearn.datasets import load_digits digits = load_digits() Lets show the shape of our images dataset by using shape function. Here it shows that total number of images are 1797 and the size of images is 8X8.
	digits.images.shape (1797, 8, 8) Our images are already transformed into numpy array. Lets see the images in numpy array. Here we are just displaying our first image digits.data[1]
	array([0., 0., 0., 12., 13., 5., 0., 0., 0., 0., 0., 11., 16., 9., 0., 0., 0., 0., 15., 16., 6., 0., 0., 0., 7., 15., 16., 16., 2., 0., 0., 0., 0., 1., 16., 16., 3., 0., 0., 0., 0., 1., 16., 16., 6., 0., 0., 0., 0., 1., 16., 16., 16., 16., 16., 16., 16.
24]:	<pre>digits.target[1] 1 Through matplotlib matshow function, we can display the images into orignal form. plt.gray() for i in range(5): plt.matshow(digits.images[i])</pre>
	<pre> <pre> <pre> <pre> <pre> <pre></pre></pre></pre></pre></pre></pre>
	3 - 4 - 5 - 6 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7
	0 1 2 3 4 5 6 7 0-11-12-13-13-13-13-13-13-13-13-13-13-13-13-13-
	5 - 6 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7
	3 - 4 - 5 - 6 - 7 - 4 - 4 - 7 - 4 - 4 - 4 - 4 - 4 - 4
26]:	<pre>X_train, X_test, Y_train, Y_test = train_test_split(digits.data, digits.target, test_size= 0.2)</pre>
26]: 27]:	<pre>Type</pre>
	<pre>X_train, X_test, Y_train, Y_test = train_test_split(digits.data,digits.target, test_size= 0.2) model.fit(X_train, Y_train) C:\Users\User\anaconda3\lib\site-packages\sklearn\linear_model_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in:</pre>
27]: 27]: 28]: 28]:	X_train, X_test, Y_train, Y_test = train_test_split(digits.data,digits.target, test_size= 0.2) model.fit(X_train, Y_train) C:\Users\User\anaconda3\lib\site-packages\sklearn\linear_model_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression n.iter_i = _check_optimize_result(LogisticRegression() model.score(X_test, Y_test) 0.975 Here our model perform 97.5 percent well but still it lacks the accuracy of 2.5 percent. So it identify where our model makes mistakes, we can draw a confusion matrix. Confusion Matrix
27]: 27]: 28]:	Train, X_test, Y_train, Y_test = train_test_split(digits.data,digits.target, test_size= 0.2) model.fit(X_train, Y_train) C:\Users\User\anaconda3\lib\site-packages\sklearn\linear_model_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-laearn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-laearn.org/stable/modules/linear_model.html#logistic-regression n.iter_i = _check.optimize_result(LogisticRegression() model.score(X_test, Y_test) 0.975 Here our model perform 97.5 percent well but still it lacks the accuracy of 2.5 percent. So it identify where our model makes mistakes, we can draw a confusion matrix. Confusion Matrix Confusion matrix is a performance measurement for machine learning classification problem where output can be two or more classes. It is a table with 4 different combinations of predicted and actual values.
27]: 27]: 28]:	Terrain, X_test, Y_train, Y_test = train_test_split(digits.data,digits.target, test_size= 0.2) model.fit(X_train, Y_train) C:\Users\User\anaconda\Uib\site-packages\sklearn\linear_model\logistic.py:763: Convergence\u00farning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT. Increase the number of iterations (max_iter) or scale the data as shown in: https://scklkt-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scklkt-learn.org/stable/modules/linear_model.html#logistic-regression
27]: 27]: 28]:	model.fit(X_train, Y_train) C:\text{Nuser}Nuser
27]: 27]: 28]:	The production make is a performance measurement for machine learning classification problem where output can be two or more classes. It is a lable with 4 different combinations of predicted and actual by Actual Actual Actual Actual Actual Actual Predicted TN FR Predicted TN FR Predicted
27]: 27]: 28]: 30]:	*** *** *** *** *** *** ** ** ** ** **
27]: 27]: 28]: 30]:	**************************************
27]: 27]: 28]: 28]: 33]:	Concession matrix to application assessed classifiers for medical states and
27]: 27]: 28]: 28]: 30]:	ACTUAL ACTUAL PLANT, VICES = STATE RECT_SELECTION CONTRIBUTED STATE STATE ACTUAL PLANT ACTUAL PL
27]: 27]: 28]: 38]: 33]:	ACTION, ACTION, TUTANT, TUTANT, TUTANT - Trainpless_collificing to data, alignitus compared to the contract of
27]: 27]: 28]: 38]: 33]:	Size A. State. A train. A cost. A train. A cost. A train. A cost. A co
27]: 27]: 28]: 38]: 33]: 34]:	A cross. A cross Cross y cost Cross. cost. (political place data data data cost.) ***Math A fact A fact Cross Cross. cost. (political place data data data data data data data dat
27]: 27]: 28]: 38]: 33]: 33]:	Special Control Contro
27]: 27]: 27]: 28]: 38]: 33]: 33]:	Common Extract Contract Contra
27]: 27]: 28]: 38]: 33]: 33]: 33]:	Extract - cont. Turns - cont. = trans to containing the content of
27]: 27]: 28]: 38]: 33]: 33]: 33]:	Control Contro
27]: 27]: 27]: 28]: 38]: 38]: 38]: 38]:	Control Service Across Annual Control Service
27]: 27]: 27]: 28]: 38]: 38]: 38]: 38]:	Communication Section (Communication Communication Communi
27]: 27]: 27]: 28]: 38]: 38]: 38]: 38]:	Source Control
27]: 27]: 28]: 38]: 38]: 38]: 38]:	Source Control of the
27]: 27]: 28]: 38]: 38]: 38]: 38]: 38]:	The control of the co
27]: 27]: 27]: 27]: 28]: 38]: 38]: 38]: 38]: 38]:	A STATE OF A STATE OF A STATE OF THE STATE OF THE STATE OF A STATE
27]: 27]: 27]: 30]: 31]: 33]: 33]: 33]: 33]:	**Part of the Company
27]: 27]: 30]: 31]: 33]: 33]: 33]: 33]: 33]:	Countries of Parties and Parties and Countries of Parties and Countries
27]: 27]: 27]: 33]: 34]: 34]: 37]: 38]: 37]:	Color of the Color
27]: 27]: 27]: 28]: 31]: 33]: 33]: 33]: 33]:	Control of the Contro
27]: 27]: 28]: 38]: 38]: 38]: 38]: 38]: 38]:	Control Contro
27]: 27]: 27]: 28]: 33]: 33]: 33]: 36]: 37]:	Control Contro

Logistic Regression