CycleMLP

A MLP-like Architecture for Dense Prediction

Marco Benelli

University of Florence

February 14, 2022

Outline

- Introduction
- 2 Method
 - Cycle Fully-Connected Layer
 - Overall Architecture
- Classification Experiments
 - CIFAR10
 - STL10
 - ImageNet-1K

Paradigm Shifts

Recent paradigm shifts:

2012 AlexNet

2020 ViT

2021 MLP-Mixer

MLP-Mixer

Mixer Layer

$$\mathbf{U}_{*,i} = \mathbf{X}_{*,i} + \mathbf{W}_2 \sigma(\mathbf{W}_1 \operatorname{LayerNorm}(\mathbf{X})_{*,i}), \quad \text{for } i = 1 \dots C$$

$$\mathbf{Y}_{i,*} = \mathbf{U}_{i,*} + \mathbf{W}_4 \sigma(\mathbf{W}_3 \operatorname{LayerNorm}(\mathbf{U})_{i,*}), \quad \text{for } j = 1 \dots S$$

Challenges

MLP-like models are facing these challenges:

- non-hierarchical architectures
- flexible input scales
- quadratic costs

Cycle FC

Stepsize Example

Comparison Of MLP Blocks

Hierarchy

Instantiation

	Output Size	Layer Name	B1	
		Overlapping	$C_1 = 64$	
Stage 1	$\frac{H}{4} \times \frac{W}{4}$	Patch Embedding	$C_1 = 04$	
		CycleMLP	$E_1 = 4$	
		Block	$L_1 = 2$	
Stage 2	$\frac{H}{8} \times \frac{W}{8}$	Overlapping	$C_2 = 128$	
		Patch Embedding		
		CycleMLP	$E_2 = 4$	
		Block	$L_2 = 2$	
	$\frac{H}{16} \times \frac{W}{16}$	Overlapping	C - 220	
Stage 3		Patch Embedding	$C_3 = 320$	
		CycleMLP	$E_3 = 4$	
		Block	$L_3 = 4$	
Stage 4	$\frac{H}{32} \times \frac{W}{32}$	Overlapping	C _ E10	
		Patch Embedding	$C_4 = 512$	
		CycleMLP	$E_4 = 4$	
		Block	$L_4 = 2$	

Experimental Setup

- optimizer AdamW
- $\lambda = 5 \times 10^{-2}$
- cosine annealing learning rate schedule
- $\eta_{\text{max}} = 1 \times 10^{-3}$
- $T_{\text{max}} = 100$
- batch size = 256

Experiments

Model	STL10	CIFAR10
ResNet	64.9%	77.1%
ViT	44.4%	53.4%
MLP-Mixer	51.4%	55.5%
CycleMLP	49.8%	66.5%

Loss Plot (CIFAR10)

Accuracy Plot (CIFAR10)

Loss Plot (STL10)

Accuracy Plot (STL10)

ImageNet-1K Comparison

Model	Accuracy
ResNet	69.8%
ViT	77.9%
MLP-Mixer	61.4%
CycleMLP	79.1%

Summary

- CycleMLP is built upon the Cycle FC.
- Cycle FC is capable of dealing with variable input scales.
- The computational cost of Cycle FC is $O(HWC^2)$.