HYDROGEN STORAGE MATERIAL CONTAIN <u>TITANIUM@ CHROMIUM@ VANADIUM@</u> ZIRCONIUM@ MANGANESE@ HYDROGEN@ ABSORB CAPACITY

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平7-252560

(43)公開日 平成7年(1995)10月3日

(51) Int.CL*	識別記号 庁内整理番号	ΡI	I 技術表示箇所	
C 2 2 C 14/00	A			
C01B 3/00	В			
C 2 2 C 1/00	N			
		審査請求	未請求 請求項の数2 FD (全 5 頁)	
(21) 出願番号 特顯平6-68103		(71)出題人	(71)出版人 000004215	
			株式会社日本製鋼所	
(22)出顧日	平成6年(1994)3月14日		東京都千代田区有楽町一丁目1番2号	
	·	(72)発明者	(72)発明者 兜森 俊樹	
			北海道室蘭市茶津町4番地 株式会社日本	
			製鋼所内	
		(72)発明者	高橋 俊男	
			北海道室蘭市茶津町 4番地 株式会社日本	
			製鋼所内	
		(72)発明者	路坂 裕一	
			北海道室蘭市茶津町4番地 株式会社日本	
			製鋼所内	
		(74)代理人	力理士 模井 幸喜	

(54) 【発明の名称】 水素貯蔵材料

(57)【要約】

【目的】 常温で有効に水素吸収、放出することができ、しかも優れた水素吸蔵量を示す水素貯蔵材料を提供する。

【構成】 一般式Ti100-x-y-xCrxAyBxで表され、AがV,Nb,Mo,Ta,Wの一種以上、BがZr,Mn,Fe,Co,Ni,Cuの二種以上からなり、x、y、zが、0<x<70、0<y<80、0<z<20、ただし0<x+y+z<100の範囲内にあり、結晶構造が体心立方構造である。さらに結晶の格子定数aを、2.95A<a<3.10Aの範囲内にし、さらに、隣接する単位格子の体心にある2個の金属と、この体心間の近接する隅点にある2個の金属にそれぞれ接する仮想球の大きさを半径で0.33A以上にする。【効果】 常温で優れた水素吸蔵量を得ることができ、水索の貯蔵、輸送などを経済的に実用化できる。

【特許請求の範囲】

【請求項1】 一般式Ti100-x-y-xCrxAyBxで表さ れ、AがV、Nb、Mo、Ta、Wの一種以上、BがZ r, Mn, Fe, Co, Ni, Cuの二種以上からな y, x, y, zh, 0 < x < 70, 0 < y < 80, 0 < x < 70, 0 < y < 80, 0 < x < 70, 0 < y < 80, 0 < x < 70, 0 < y < 80, 0 < x < 70, 0 < y < 80, 0 < x < 70, 0 < y < 80, 0 < x < 70, 0 < y < 80, 0 < x < 70, 0 < y < 80, 0 < x < 70, 0 < y < 80, 0 < x < 70, 0 < y < 80, 0 < x < 70, 0 < y < 80, 0 < x < 70, 0 < y < 80, 0 < x < 70, 0 < y < 80, 0 < x < 70, 0 < y < 80, 0 < x < 70, 0 < y < 80, 0 < x < 70, 0 < y < 80, 0 < x < 70, 0 < y < 80, 0 < x < 70, 0 < y < 80, 0 < x < 70, 0 < y < 80, 0 < x < 70, 0 < y < 80, 0 < x < 70, 0 <z<20、ただし0<x+y+z<100の範囲内にあ り、かつ結晶構造が体心立方構造であることを特徴とす る水素貯蔵材料

【請求項2】 結晶の格子定数aが、2.95Å<a< 体心にある2個の金属と、この体心間の近接する隅点に ある2個の金属にそれぞれ接する仮想球の大きさが、半 径で0.33 A以上であることを特徴とする請求項1記 趙の水素貯蔵材料

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、水素を高密度でしかも 常温にて可逆的に水素を吸蔵・放出することができる水 素貯蔵材料に関する。

[0002]

【従来の技術】水素貯蔵材料は、常温、常圧下で液体水 素の水素密度と同等かあるいはそれ以上の密度で水素を 貯蔵できる材料であることから、これまでの液化水素あ るいは高圧ボンベ方式のように極低温あるいは高圧力を 必要としない優れた水素貯蔵方式を可能にする。さら に、水素貯蔵材料は、水素と可逆的に反応して、反応熱 の出入りを伴って水素を吸蔵、放出する性質を有してい る。この反応を利用して水素を貯蔵、運搬する技術の実 用化が図られており、さらに反応熱を利用して水素を熱 貯蔵、熱輸送システムを構築する技術の開発、実用化が 30 進められている。

【0003】これらの水素貯蔵合金を用いたシステムが 実用化されるか否かは、その水素貯蔵合金の性能、とり わけ経済性の観点から水素吸蔵量の大小が問題になる。 これまでに、水素貯蔵材料として、La-Ni, Mg-Ni, Ti-Fe, Mm-Ni, Ti-Mn、およびこ れらの多元化した合金が開発、提唱されており、上記し た各種用途への応用、実用化が図られている。

[0004]

【発明が解決しようとする課題】しかし、上記した水素 40 貯蔵材料のうち、Mg-Ni合金を除き、いずれもその 水素吸蔵量は最大で200cc/g程度である。この程 度の水素吸蔵量は、高圧水素ボンベの水素貯蔵密度と同 程度であり、また反応熱を利用するシステムにおいても この材料から得られる熱量としては、従来の水素貯蔵合 金を用いないシステムから得られる熱量と同程度であ る。しかし、水素貯蔵合金の合金コストがまだ高いこと もあり、上記程度の水素吸蔵量では、水素貯蔵合金を用 いたシステムは経済性から考えて必ずしも優位であると は言い難い。一方、Mg-Ni合金は、400cc/g 50 中の圧力-組成-等温曲線におけるプラトー性の改善や

と優れた水素吸蔵量を示す。しかし、水素吸蔵・放出反 応が遅く、350℃以上の高温でなければスムーズに水

素の吸収・放出ができないなどの欠点を有しており、実 用化は難しい。本発明は、上記事情を背景としてなされ たものであり、常温で可逆的に速やかに水素を吸収・放 出でき、しかも従来材に比べて優れた水素吸蔵量を示す

[0005]

【課題を解決するための手段】すなわち、本発明のう

水素貯蔵材料を提供することを目的とする。

ち、第1の発明の水素貯蔵材料は、一般式T i 100-x-yzCrxAyBzで表され、AがV, Nb, Mo, Ta, W の一種以上、BがZr, Mn, Fe, Co, Ni, Cu の二種以上からなり、x、y、zが、0<x<70、0 < y < 80, 0 < z < 20, ttlo < x + y + z < 100の範囲内にあり、かつ結晶構造が体心立方構造であ ることを特徴とする。

【0006】第2の発明は、上記発明において、結晶の 格子定数aが、2.95Å<a<3.10Åの範囲内に あり、かつ、隣接する単位格子の体心にある2個の金属 20 と、この体心間の近接する隅点にある2個の金属にそれ ぞれ接する仮想球の大きさが、半径で0.33 Å以上で あることを特徴とする。

[0007]

【作用】本発明の合金は、五元系以上の組成から構成さ れる合金であり、その結晶構造が体心立方構造であるこ とを特徴としている。体心立方構造とすることによっ て、従来の水素吸蔵量を飛躍的に増大させることが可能 となった。ここで、Crの組成比xを限定した理由を述 べると、xが70以上では水素吸蔵量そのものがH/M =1よりも低下し、従来合金よりも水素吸蔵量が低下す る。xが70未満では、従来合金よりもおおきな水素吸 蔵量を示すが、特にxが10<x<60の範囲では、H /M=1.4以上となり、従来合金と比べて著しく大き な水素吸蔵量を示すようになる。このため、xの組成範 囲を、0<x<70に定めた。望ましくは、10<x< 60である。

【0008】また、Ti-Cr系二元合金は、1000 ℃以上の高温で体心立方晶を示す合金であるが、これに Aの元素を添加することにより、比較的低温にても体心 立方晶が出現しやすくなり、より簡単な処理により体心 立方晶を作り出すことが可能となる。また、単に体心立 方晶が得られやすくなるばかりではなく、その水素吸蔵 量を飛躍的に増加させる効果も有している。特に、Aの 中でもVおよびMoにおいてこの効果が著しい。しかし その組成比yが80以上では、水素吸蔵量は大きいもの の、水素放出がしずらくなり、可逆的な水素吸・放出量 すなわち有効に利用できる水素吸蔵量が低下する。よっ て、yの組成範囲を0くy<80に定めた。

【0009】さらに、Bの元素の添加は、水素化特性の

平衡解離圧特性の制御に効果を示す。とりわけ、Feと 他の元素との複合添加は、平衡解離圧特性を常温常圧付 近に保ったまま、プラト一性の改善に大きく寄与する。 しかし、B元素の組成比zが20以上では、体心立方晶 以外の相が出現しやすくなり、それによって体心立方晶 の有する高吸蔵性の特徴が低下するようになる。このた め、0<z<20の範囲に限定する。

【0010】さらに、本発明の合金が単に体心立方構造 というだけではなく、格子定数aが、2.95 A以上か つ3.10人以下の範囲にあり、かつ結晶格子内の空隙 10 が一定以上の場合に、水素吸蔵量が急激に増大する。す なわち、格子定数が上記範囲にあっても、水素吸蔵量の 大幅な増加は期待されず、結晶格子内の空隙に配置可能 な仮想球の大きさが半径で0.33 人以上の場合に水素 吸蔵量が大幅に増大する。この仮想球は、例えば図1に 示すように、隣接する単位格子1、1の体心にある金属 B1、B2と、体心間の近接する隅点にある金属A1、 A2間の空隙におかれる仮想的なものであり、各金属に 内接するものである。この0.33 A以上確保される空 隙に水素が侵入して占有することによって、水素吸蔵量 20 水素を吸収させて水素吸蔵量を測定した。 が大幅に増大することになる。この大きさが0.33Å 未満であると、空隙への水素の侵入が円滑になされず、 水素吸蔵量の大幅な増大は望めない。

[0011]

【実施例】以下に、この発明の実施例(発明材)を、本 発明の範囲外の比較材と比較しつつ説明する。各成分原 料をそれぞれ秤量して、表1に示す組成となるように配 合した。この配合物を、アーク式真空溶解装置の銅製ル ツボ内に収納し、高純度Arガス雰囲気下でアーク溶解 し、装置内で室温まで冷却して凝固させた。さらに溶解 30 後、合金の組成を均質化させることと、体心立方晶単相

4

とする目的で、Arガス雰囲気下において1200℃か ら1400℃の任意の温度にて、約10時間程度の熱処 理を施した後、直ちに水冷処理を行った。このような処 理を施すことによって、表1に示した本発明材は、いず れも体心立方晶単相であることを、粉末X線回折測定に よる構造解析から確認した。

【0012】これらの合金は、大気中で50~200メ ッシュに粉砕して測定試料とし、各試料5gを、水素吸 収・放出量測定装置内のステンレス鋼製反応容器内に封 入した。なお、上記試料を用いて水素吸収・放出特性を 測定する前処理として、初期活性化処理を行った。すな わち、前記反応容器内を約80℃に保持したまま、約1 時間真空脱ガス処理を行い、その後反応容器温度を20 ℃まで降下させ、約40kgf/cm²の高純度水素を 導入した。本発明材の試料は、このような操作によりた だちに水素を吸収し始めた。水素吸収完了後、容器を8 ○℃に加熱しながら真空排気し、前記試料から水素を放 出させ、初期活性化処理を完了させた。次に、反応容器 を再び20℃に保持し、40kgf/cm²まで加圧し

【0013】表1は、本発明材および比較材の、結晶構 造と上記水素吸蔵量の測定結果を示す。表から明らかな ように、本発明材はいずれも体心立方構造を有してお り、比較材と比較して優れた水素吸蔵量を有していた。 次に、図2は、Ti-Cr-V-Fe-Cu五元合金に おけるTi、Cr、Vの組成比と格子定数および水素吸 蔵量の関係を示す。この図から、格子定数が2.95Å 以上かつ3.10人の場合に、水素吸蔵量が200cc /g以上の優れた値を示している。

[0014]

【表1】

6

試験材の結晶構造と水素吸蔵量

No.		組成	結晶構造	水素吸蔵量(H/M)
	(1)	Ti ₃₃ Cr ₁₃ V ₄₀ Fe ₁₂ Mn ₂	всс	1. 7
本発明材	2	Ti ₃₃ Cr ₁₃ V ₄₀ Fe ₁₂ Cu ₂	ВСС	1. 8
	3	Ti ₄₅ Cr ₂₀ Mo ₂₀ Fe ₁₀ Mn ₅	всс	1. 7
	4	Ti ₄₅ Cr ₂₀ Mo ₂₀ Fe ₁₀ Cu ₅	всс	1. 7
	5	Ti ₄₅ Cr ₂₀ Mo ₂₀ Fe ₁₀ Zr ₅	всс	1. 6
	6	Ti ₃₅ Cr ₁₅ V ₃₅ Mo ₅ Fe ₅ Cu ₅	BCC	1. 5
	0	Ti ₃₅ Cr ₁₅ V ₃₅ Nb ₅ Fe ₅ Cu ₅	всс	1. 4
比較材	8	Ti ₃₃ Cr ₆₇	BCC	0. 9
	9	TiCr ₂	C14	0. 8
	(E)	Ti ₃₀ Cr ₆₀ V ₅ Fe ₅	ВСС	1. 0
	11	Ti ₃₆ Cr ₅₇ Mo ₇	C 1 4	1. 0
	12	LaNi ₅	CaCu ₅ 型	1. 1

注) BCC:体心立方晶

【0015】しかし、格子定数がこの範囲にあっても必 ずしも水素吸蔵量が大きな値を示しているわけではな い。さらに、格子定数がこの範囲にある合金で、図1の B1、B2の2個の金属と、A1、A2の2個の金属間 の空隙に配置可能な仮想球の大きさと、水素吸蔵量との 30 が増大する効果がある。 関係を図3に示す。この図からわかるように、水素が反 応することによって水素が占有すると考えられる上記空 隙の大きさと水素吸蔵量とは相関関係があり、大きな水 素吸蔵量を示すためには、上記した格子間空隙の大きさ が0.33 A以上なければならないことがわかる。

[0016]

【発明の効果】以上説明したように、本発明の水素貯蔵 材料によれば、特定組成の五元系以上の材料の結晶構造* *を体心立方構造に限定したので、水素吸蔵量が向上し、 水素の貯蔵等のシステムを経済的に実用化することが可 能になる。また、結晶の格子定数および格子位置の金属 間空隙大きさを限定することにより、さらに水素吸蔵量

【図面の簡単な説明】

【図1】図1は、体心立方晶の結晶構造を示す模式図で

【図2】図2は、格子定数と水素吸蔵量との関係を示す グラフである

【図3】図3は、格子位置の金属間空隙大きさと水素吸 蔵量との関係を示すグラフである。

