Convex Optimization (I)

Lecture 6, Nonlinear Programming

National Taiwan University

October 25, 2016

Table of contents

- Conjugate functions and Other Related Topics
 - Conjugate functions
 - Quasiconvex functions
 - Log-convex and log-concave functions
- Optimization Problems
 - Basic Terminologies
 - Standard Forms
 - Equivalent Problems
- 3 Convex Optimization
 - Standard Form
 - Optimality criterion for differentiable objectives
 - Quasiconvex optimization

Conjugate functions

Conjugate functions

Let $f: \mathbb{R}^n \to \mathbb{R}$. The function $f^*: \mathbb{R}^n \to \mathbb{R}$, defined as

$$f^*(y) = \sup_{x \in \mathbf{dom} \ f} \left(y^T x - f(x) \right),$$

is called the **conjugate** of the function f. The domain of f^* is

$$\mathbf{dom} \ f^* = \Big\{ y \in \mathbf{R}^n \ \big| \ \exists z \in \mathbf{R} \ \text{s.t.} \ \forall x \in \mathbf{dom} \ f, \ y^T x - f(x) < z \Big\}$$

Example:

$$f: \mathsf{R}^{\dot{\mathsf{1}}} \to \mathsf{R}, f^*: \mathsf{R}^{\mathsf{1}} \to \mathsf{R}$$

Example - Revenue and Profit Functions

- Let $r = (r_1, ..., r_n)$ denote the vector of resource quantities consumed, S(r) denote the sales revenue derived from the product produced, $p = (p_1, ..., p_n)$ denote the vector of unit prices of resources.
- Then the profit is

$$S(r) - p^T r$$
.

• Given the price vector p, the maximum profit is given by

$$M(p) = \sup_{r} \left(S(r) - p^{T} r \right),$$

or

$$M(p) = (-S)^*(-p).$$

Conjugate functions

Conjugate functions

$$f^*(y) = \sup_{x \in \mathbf{dom} \ f} \left(y^T x - f(x) \right)$$

are convex.

- : it is the pointwise supremum of a family of convex (indeed, affine) functions of y.
- This is true whether or not f is convex.
- Note that when f is convex, the subscript $x \in \operatorname{dom} f$ is not necessary since $y^Tx f(x) = -\infty$ for $x \notin \operatorname{dom} f$.

Conjugate Functions – Examples for $f: \mathbf{R} \to \mathbf{R}$

- Affine function f(x) = ax + b. The function, yx ax b is bounded if and only if y = a. Therefore **dom** $f^* = \{a\}$, and $f^*(a) = -b$.
- Negative logarithm. $f(x) = -\log x$, with dom $f = R_{++}$. The function $xy + \log x$ is unbounded above if $y \ge 0$ and reaches its maximum at x = -1/y otherwise. Therefore, dom $f^* = \{y \mid y < 0\} = -R_{++}$ and $f^*(y) = -\log(-y) 1$ for y < 0.
- Exponential. $f(x) = e^x$. $xy e^x$ is unbounded if y < 0. It can be shown that $\operatorname{dom} f^* = \mathbb{R}_+$ and

$$f^*(y) = \begin{cases} y \log y - y, & y > 0 \\ 0, & y = 0 \end{cases}.$$

Conjugate Functions – Examples for $f: \mathbb{R} \to \mathbb{R}$

- Negative entropy. $f(x) = x \log x$, with dom $f = \mathbb{R}_+$ (and f(0) = 0). The function $xy - x \log x$ is bounded above on \mathbb{R}_+ for all y, hence dom $f^* = R$. It attains its maximum at $x = e^{y-1}$, and substituting we find $f^*(y) = e^{y-1}$.
- Inverse. f(x) = 1/x on \mathbb{R}_{++} . For y > 0, yx 1/x is unbounded above. For y = 0 this function has supremum 0; for y < 0 the supremum is attained at $x = (-y)^{-1/2}$. Therefore we have $f^*(y) = -2(-y)^{1/2}$, with dom $f^* = -\mathbf{R}_+$.

Conjugate Functions – Examples for $f: \mathbb{R}^n \to \mathbb{R}$

• Strictly convex quadratic function. Consider $f(x) = \frac{1}{2}x^T Qx$, with $Q \in \mathbf{S}_{++}^n$. The function $y^Tx - \frac{1}{2}x^T Qx$ is bounded above as a function of x for all y. It attains its maximum at $x = Q^{-1}y$, so

$$f^*(y) = \frac{1}{2} y^T Q^{-1} y.$$

• Log-sum-exp function. Consider

$$f(x) = \log\left(\sum_{i=1}^n e^{x_i}\right).$$

Then, **dom** $f^* = \{ y \mid \mathbf{1}^T y = 1, y \succeq 0 \}$ and

$$f^*(y) = \begin{cases} \sum_{i=1}^n y_i \log y_i, & \text{if } y \succeq 0 \text{ and } \mathbf{1}^T y = 1 \\ \infty & \text{otherwise} \end{cases}$$

Conjugate Functions – Examples for $f: \mathbf{S}_{++}^n \to \mathbf{R}$

• Log-determinant. We consider $f(X) = \log \det X^{-1}$ on \mathbf{S}_{++}^n . The conjugate function is defined as

$$f^*(Y) = \sup_{X \succ 0} (\operatorname{tr} (YX) + \log \det X),$$

since $\mathbf{tr}(YX)$ is the standard inner product on \mathbf{S}^n . It can be shown that $\mathbf{dom}\ f^* = -\mathbf{S}^n_{++}$ and

$$f^*(Y) = \log \det(-Y)^{-1} - n.$$

Quasiconvex functions

Quasiconvex functions

A function $f: \mathbb{R}^n \to \mathbb{R}$ is called **quasiconvex** if its domain and all its sublevel sets

$$S_{\alpha} = \{ x \in \text{dom } f \mid f(x) \leq \alpha \},$$

for $\alpha \in \mathbf{R}$, are convex sets.

Quasiconcave and quasilinear functions

Quasiconcave and quasilinear functions

- A function is quasiconcave if -f is quasiconvex, i.e., every superlevel set $\{x|f(x) \ge \alpha\}$ is convex.
- A function that is both quasiconvex and quasiconcave is called quasilinear.
- If a function f is quasilinear, then its domain, and every level set $\{x \mid f(x) = \alpha\}$ is convex.

Convex functions are quasiconvex functions

- For a function on R, quasiconvexity requires that each sublevel set be an interval (including an infinite interval).
- Convex functions have convex sublevel sets, and so are quasiconvex. But the converse is not true.

Quasiconvex functions – Examples

Some examples on R:

- Logarithm. log x on R₊₊ is quasiconvex (and quasiconcave, hence quasilinear).
- Ceiling function. $\operatorname{ceil}(x) = \inf \{z \in Z | z \ge x\}$ is quasiconvex (and quasiconcave).

An example on \mathbb{R}^n :

• The length of $x \in \mathbb{R}^n$, defined as the largest index of a nonzero component, i.e.,

$$f(x) = \begin{cases} \max\{i \mid x_i \neq 0\} & x \neq 0 \\ 0 & x = 0 \end{cases},$$

is quasiconvex.

Quasiconvex functions – Examples

• Consider $f: \mathbb{R}^2 \to \mathbb{R}$, with dom $f = \mathbb{R}^2_+$ and $f(x_1, x_2) = x_1 x_2$. Then, f is neither convex nor concave since

$$\nabla^2 f(x) = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right]$$

has eigenvalues ± 1 (not definite).

• But f is quasiconcave on \mathbb{R}^2_+ , since the superlevel sets

$$\left\{x \in \mathbf{R}_+^2 \mid x_1 x_2 \ge \alpha\right\}$$

are convex sets for all α .

Quasiconvex functions – Basic Properties

Jensen's inequality for quasiconvex functions

A function f is quasiconvex if and only if $\operatorname{dom} f$ is convex and for any $x,y\in\operatorname{dom} f$ and $0\leq\theta\leq1$,

$$f(\theta x + (1 - \theta)y) \le \max\{f(x), f(y)\}.$$

Quasiconvex functions – Basic Properties

Continuous quasiconvex functions on R

A continuous function $f : \mathbf{R} \to \mathbf{R}$ is quasiconvex if and only if at least one of the following conditions holds:

- f is nondecreasing.
- f is nonincreasing.
- there is a point $c \in \operatorname{dom} f$ such that for $t \le c$ (and $t \in \operatorname{dom} f$), f is nonincreasing, and for $t \ge c$ (and $t \in \operatorname{dom} f$), f is nondecreasing.

Differentiable quasiconvex functions

First-Order Conditions

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable. Then f is quasiconvex if and only if $\operatorname{dom} f$ is convex and for all $x,y \in \operatorname{dom} f$

$$f(y) \le f(x) \Rightarrow \nabla f(x)^T (y - x) \le 0.$$

Proof Idea: It suffices to prove the result for a function on R; the general result follows by restriction to an arbitrary line.

Representation via family of convex functions

Representation via family of convex functions

We can always find a family of convex functions $\phi_t: \mathbf{R}^n \to \mathbf{R}$, indexed by $t \in \mathbf{R}$, with

$$f(x) \leq t \iff \phi_t(x) \leq 0,$$

i.e., the t-sublevel set of the quasiconvex function f is the 0-sublevel set of the convex function ϕ_t .

- Evidently ϕ_t must satisfy the property that for all $x \in \mathbb{R}^n$, $\phi_t(x) \le 0 \Rightarrow \phi_s(x) \le 0$ for $s \ge t$. This is satisfied if for each x, $\phi_t(x)$ is a nonincreasing function of t, i.e., $\phi_s(x) \le \phi_t(x)$ whenever $s \ge t$.
- One (straightforwards) example:

$$\phi_t(x) = \left\{ \begin{array}{ll} 0 & f(x) \le t \\ \infty & \text{otherwise,} \end{array} \right.$$

Another example: if the sublevel sets of f are closed, we can take

$$\phi_t(x) = \text{dist } (x, \{z | f(z) \le t\}).$$

We are usually interested in a family ϕ_t with nice properties, such as differentiability.

Log-convex and log-concave functions

Log-convex and log-concave functions

- A function $f: \mathbb{R}^n \to \mathbb{R}$ is logarithmically concave or log-concave if f(x) > 0 for all $x \in \operatorname{dom} f$ and $\log f$ is concave.
- It is said to be logarithmically convex or log-convex if log f is convex.
- f is log-convex if and only if 1/f is log-concave.

Log-concavity

A function $f: \mathbf{R}^n \to \mathbf{R}$, with convex domain and f(x) > 0 for all $x \in \mathbf{dom}\ f$, is **log-concave** if and only if $\forall x, y \in \mathbf{dom}\ f$ and $0 \le \theta \le 1$, we have

$$f(\theta x + (1 - \theta)y) \ge f(x)^{\theta} f(y)^{1-\theta}$$

• The value of a log-concave function at the average of two points is at least the geometric mean of the values at the two points.

Log-convex and log-concave functions – Some Properties

- A log-convex function is convex (since e^h is convex if h is convex).
- A nonnegative concave function is log-concave.
- A log-convex function is quasiconvex; a log-concave function is quasiconcave (since the logarithm is monotone increasing).

Optimization Problems

The notation

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1,...,m$
 $h_i(x) = 0, \quad i = 1,...,p$

is used to describe an optimization problem of finding an x that minimizes $f_0(x)$ among all x that satisfy the conditions $f_i(x) \le 0, i = 1, ..., m$ and $h_i(x) = 0, i = 1, ..., p$.

- $x \in \mathbb{R}^n$: the optimization variables.
- $f_0: \mathbb{R}^n \to \mathbb{R}$: the objective function.
- $f_i: \mathbb{R}^n \to \mathbb{R}$: the inequality constraint functions.
 - $f_i(x) \le 0$: the inequality constraints.
- $h_i: \mathbb{R}^n \to \mathbb{R}$: the equality constraint functions.
 - $h_i(x) = 0$: the equality constraints.

Optimization Problems

Optimization Problems

Consider the problem

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, ..., m$
 $h_i(x) = 0, \quad i = 1, ..., p.$

The set

$$\mathcal{D} = \bigcap_{i=0}^m \mathsf{dom} \ f_i \cap \bigcap_{i=1}^p \mathsf{dom} \ h_i$$

is called the domain of the problem.

- A point $x \in \mathcal{D}$ is **feasible** if $f_i(x) \leq 0$ for all i = 1, ..., m and $h_i(x) = 0$ for all i = 1, ..., p.
- The problem is called **feasible** if there exists $x \in \mathcal{D}$ that is **feasible**; the problem is called **infeasible** if there is no feasible point in \mathcal{D} .
- The set of all feasible points is called the feasible set.
- If there are no constraints (i.e., m = p = 0), then the feasible set equals $\mathcal{D} = \operatorname{dom} f_0$, and the problem is called unconstrained.

Optimization Problems – Optimal Values

Optimal Values

In the problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$,

• the **optimal value** p^* is defined as

$$p^* = \inf \{ f_0(x) \mid f_i(x) \le 0, i = 1, ..., m, h_i(x) = 0, i = 1, ..., p \}.$$

- If the problem is infeasible, we have $p^* = \infty$.
- If there are feasible points x_k with $f_0(x_k) \to -\infty$ as $k \to \infty$, then $p^* = -\infty$, and the problem is said to be **unbounded below**.

Optimization Problems - Optimal Points

Optimal Point

Suppose the optimal value of the problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

is p^* . Then we say x^* is an optimal point if

- x* is feasible, and
- $f_0(x^*) = p^*$.
- The set of all optimal points is the optimal set, denoted

$$X_{opt} = \{x \mid f_i(x) \le 0, i = 1, ..., m, h_i(x) = 0, i = 1, ..., p, f_0(x) = p^*\}.$$

Optimization Problems - Optimal Points

- If there exists an optimal point for an optimal problem, we say the optimal value is attained or achieved, and the problem is solvable.
- If X_{opt} is empty, we say the optimal value is not attained or not achieved.
 - e.g., this always occurs when the problem is unbounded below.
- A feasible point x with $f_0(x) \le p^* + \epsilon$ (where $\epsilon > 0$) is called ϵ -suboptimal.
 - The set of all ϵ -suboptimal points is called the ϵ -suboptimal set for the optimization problem.

Optimization Problem

 We say a feasible point x is locally optimal if there exists an R > 0 such that

$$f_0(x) = \inf \{ f_0(z) \mid f_i(z) \le 0, i = 1, ..., m, h_i(z) = 0, i = 1, ..., p, ||z - x||_2 \le R \}.$$

- This means x minimizes f₀ over nearby points in the feasible set.
- If x is feasible and $f_i(x) = 0$, we say the ith inequality constraint $f_i(x) \le 0$ is active at x.
- If $f_i(x) < 0$, we say the constraint $f_i(x) \le 0$ is inactive.
- We say that a constraint is redundant if deleting it does not change the feasible set.

Optimization Problems – Examples

We consider the following unconstrained problems as examples, with $f_0 : R \to R$ and dom $f_0 = R_{++}$. Recall that

$$p^* = \inf \{ f_0(x) \mid x \text{ is feasible} \}.$$

- $f_0(x) = 1/x$: $p^* = 0$, but the optimal value is not achieved.
- $f_0(x) = -\log x : p^* = -\infty$, so this problem is unbounded below.
- $f_0(x) = x \log x$: $p^* = -1/e$, achieved at the (unique) optimal point $x^* = 1/e$.

Feasibility problems

- If the objective function is identically zero, the optimal value is either
 - 0, if the feasible set is nonempty, or
 - $\bullet \infty$, if the feasible set is empty.
- We call this the feasibility problem, and will sometimes write it as

find
$$x$$

subject to $f_i(x) \le 0, i = 1, ..., m$
 $h_i(x) = 0, i = 1, ..., p$.

 The feasibility problem is thus to determine whether the constraints are consistent, and if so, find a point that satisfies them.

Expressing Problems in Standard Forms

• An optimization problem in the form of

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, ..., m$
 $h_i(x) = 0, \quad i = 1, ..., p,$

is called in the **standard form**, i.e., the righthand side of the inequality and equality constraints are zeros.

- An equality constraint in a non-standard form $g_i(x) = \tilde{g}_i(x)$ can be reformulated as $h_i(x) = 0$ where $h_i(x) = g_i(x) \tilde{g}_i(x)$.
- An inequality constraint of the form $f_i(x) \ge 0$ can be rewritten as $-f_i(x) \le 0$.

Expressing Problems in Standard Forms – Examples

The optimization problem

minimize
$$f_0(x)$$

subject to $l_i \le x_i \le u_i, i = 1, ..., n$

can be expressed in standard form as

minimize
$$f_0(x)$$

subject to $l_i - x_i \le 0$ $i = 1, ..., n$
 $x_i - u_i \le 0$ $i = 1, ..., n$

There are 2n inequality constraint functions:

$$f_i(x) = I_i - x_i$$
 $i = 1, ..., n,$

and

$$f_i(x) = x_{i-n} - u_{i-n}$$
 $i = n+1, ..., 2n$.

Expressing Problems in Standard Forms – Examples

The maximization problem

maximize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

can be solved by minimizing the function $-f_0(x)$ subject to the same constraints.

Equivalent Problems

We call two problems **equivalent** (informally) if from a solution of one, a solution of the other is readily found, and vice versa.

Example

 $h_i(x) = 0, \quad i = 1, ..., p$

are equivalent problems.

Change of Variables

- Suppose $\phi: \mathbb{R}^n \to \mathbb{R}^n$ is one-to-one, with image covering the problem domain \mathcal{D} , i.e., $\mathcal{D} \subseteq \phi(\operatorname{dom} \phi)$.
- Now consider the problem

minimize
$$ilde{f_0}(z)$$
 subject to $ilde{f_i}(z) \leq 0, i=1,...,m$ $ilde{h_i}(z)=0, i=1,...,p,$

with variable z, where we define functions \tilde{f}_i and \tilde{h}_i as $\tilde{f}_i(z) = f_i(\phi(z)), i = 0, ..., m, \tilde{h}_i(z) = h_i(\phi(z)), i = 1, ..., p$.

• Then, we say that the problem and the standard form problem are equivalent and related by the change of variable or substitution of variable $x = \phi(z)$.

Transformation of objective and constraint functions

- Suppose that
 - $\phi_0: \mathbf{R} \to \mathbf{R}$ is monotone increasing,
 - $\phi_1,...,\phi_m: \mathbf{R} \to \mathbf{R}$ satisfy $\phi_i(u) \leq 0$ if and only if $u \leq 0$, and
 - $\phi_{m+1},...,\phi_{m+p}: \mathbf{R} \to \mathbf{R}$ satisfy $\phi_i(u) = 0$ if and only if u = 0.
- We define functions \tilde{f}_i and \tilde{h}_i as the compositions
 - $\tilde{f}_i(x) = \phi_i(f_i(x)), i = 0, ..., m,$
 - $\hat{h}_i(x) = \phi_{m+i}(h_i(x)), i = 1, ..., p.$
- Then, the associated problem

minimize
$$ilde{f_0}(x)$$

subject to $ilde{f_i}(x) \leq 0, i = 1, ..., m$
 $ilde{h_i}(x) = 0, i = 1, ..., p$

and the standard form problem are equivalent.

Slack variables

- Observation: $f_i(x) \le 0$ if and only if there is an $s_i \ge 0$ that satisfies $f_i(x) + s_i = 0$.
- Based on the observation we obtain the transformed problem

minimize
$$f_0(x)$$

subject to $s_i \geq 0, i = 1,...,m$
 $f_i(x) + s_i = 0, i = 1,...,m$
 $h_i(x) = 0, i = 1,...,p,$

where the variables are $x \in \mathbb{R}^n$ and $s \in \mathbb{R}^m$.

- This problem has n + m variables, m inequality constraints (the nonnegativity constraints on s_i), and m + p equality constraints.
- The new variable s_i is called the slack variable associated with the original inequality constraint $f_i(x) \le 0$.

Eliminating equality constraints

- Suppose the function $\phi: \mathbf{R}^k \to \mathbf{R}^n$ is such that x satisfies $h_i(x) = 0, i = 1, ..., p$ if and only if there is some $z \in \mathbf{R}^k$ such that $x = \phi(z)$.
- Then, the optimization problem

minimize
$$ilde{f_0}(z) = f_0(\phi(z))$$

subject to $ilde{f_i}(z) = f_i(\phi(z)) \leq 0, i = 1,...,m$

is then equivalent to the original standard form problem.

- This transformed problem has variable $z \in \mathbb{R}^k$, m inequality constraints, and no equality constraints.
- If z is optimal for the transformed problem, then $x = \phi(z)$ is optimal for the original problem.
- Conversely, if x is optimal for the original problem, then any z that satisfies $x = \phi(z)$ is optimal for the transformed problem.

Eliminating linear equality constraints

Consider the standard form problem with linear equality constraints

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1, ..., m$
 $Ax = b.$

- Suppose Ax = b is consistent. Then the solution set of Ax = b can be parametrized as $\{Fz + x_0 \mid z \in \mathbf{R}^k\}$ where $F \in \mathbf{R}^{n \times k}$ is chosen to be any full rank matrix with $\mathcal{R}(F) = \mathcal{N}(A)$ (i.e., k = n rank A), and x_0 is any particular solution of Ax = b.
- Then we can eliminate these linear constraints and create an equivalent problem, as in

minimize
$$f_0(Fz + x_0)$$

subject to $f_i(Fz + x_0) \le 0, i = 1, ..., m$,

where we introduced new variables $z \in \mathbf{R}^k$.

Introducing equality constraints (1/2)

- We can also introduce equality constraints and new variables into a problem.
- As a typical example, consider the problem

minimize
$$f_0(A_0x + b_0)$$

subject to $f_i(A_ix + b_i) \le 0, i = 1, ..., m$
 $h_i(x) = 0, i = 1, ..., p,$

where $x \in \mathbb{R}^n$, $A_i \in \mathbb{R}^{k_i \times n}$, and $f_i : \mathbb{R}^{k_i} \to \mathbb{R}$. In this problem the objective and constraint functions are given as compositions of the functions f_i with affine transformations defined by $A_i x + b_i$.

Introducing equality constraints (2/2)

• We introduce new variables $y_i \in \mathbb{R}^{k_i}$, as well as new equality constraints $y_i = A_i x + b_i$, for i = 0, ..., m, and form the equivalent problem

minimize
$$f_0(y_0)$$

subject to $f_i(y_i) \le 0, i = 1,..., m$
 $y_i = A_i x + b_i, i = 0,..., m$
 $h_i(x) = 0, i = 1,..., p.$

- This problem has $k_0 + ... + k_m$ new variables, $y_0 \in \mathbb{R}^{k_0}, ..., y_m \in \mathbb{R}^{k_m}$, and $k_0 + ... + k_m$ new equality constraints, $y_0 = A_0x + b_0, ..., y_m = A_mx + b_m$.
- The objective and inequality constraints in this problem are independent, i.e., involve different optimization variables.

Optimizing over some variables (1/2)

• Note that we always have

$$\inf_{x,y} \{f(x,y)\} = \inf_{x} \tilde{f}(x)$$

where
$$\tilde{f}(x) = \inf_{y} f(x, y)$$
.

 Therefore, we can always minimize a function by first minimizing over some of the variables, and then minimizing over the remaining ones.

Optimizing over some variables (2/2)

• Suppose the variable $x \in \mathbb{R}^n$ is partitioned as $x = (x_1, x_2)$, with $x_1 \in \mathbb{R}^{n_1}$, $x_2 \in \mathbb{R}^{n_2}$, and $n_1 + n_2 = n$. Consider the problem

minimize
$$f_0(x_1, x_2)$$

subject to $f_i(x_1) \le 0, i = 1, ..., m_1$
 $\tilde{f}_i(x_2) \le 0, i = 1, ..., m_2,$

in which the constraints are independent, in the sense that each constraint function depends on x_1 or x_2 .

• We first minimize over x_2 . Define the function \tilde{f}_0 of x_1 by

$$\tilde{f}_0(x_1) = \inf \left\{ f_0(x_1, z) \mid \tilde{f}_i(z) \leq 0, i = 1, ..., m_2 \right\}.$$

Then the problem is equivalent to

minimize
$$\tilde{f}_0(x_1)$$

subject to $f_i(x_1) \leq 0, i = 1, ..., m_1$.

Epigraph problem form (1/2)

• The epigraph form of the standard problem is the problem

minimize
$$t$$

subject to $f_0(x) - t \le 0$
 $f_i(x) \le 0, i = 1, ..., m$
 $h_i(x) = 0, i = 1, ..., p$,

with variables $x \in \mathbb{R}^n$ and $t \in \mathbb{R}$.

• It is equivalent to the original problem: (x, t) is optimal for the epigraph form problem if and only if x is optimal for the original problem and $t = f_0(x)$.

Epigraph problem form (2/2)

- Note that the objective function of the epigraph form problem is a linear function of the variables x, t.
- The epigraph form problem can be interpreted geometrically as an optimization problem in the 'graph space' (x, t):

Convex optimization problems in standard form

A convex optimization problem is one of the form

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, i = 1, ..., m$
 $a_i^T x = b_i, i = 1, ..., p,$

where $f_0, ..., f_m$ are convex functions. Compared with the general standard form problem, the convex problem has three additional requirements:

- the objective function must be convex,
- the inequality constraint functions must be convex,
- the equality constraint functions $h_i(x) = a_i^T x b_i$ must be affine.

Convex optimization problems in standard form

- The feasible set of a convex optimization problem is convex, since it is the intersection of
 - the domain of the problem

$$D = \bigcap_{i=0}^m \mathbf{dom} \ f_i,$$

(which is a convex set),

- m (convex) sublevel sets $\{x \mid f_i(x) \leq 0\}$, and
- p hyperplanes $\{x \mid a_i^T x = b_i\}$.
 - W.I.o.g., we assume that $a_i \neq 0$.
- In a convex optimization problem, we minimize a convex objective function over a convex set.

Quasiconvex Optimization Problems

• If f_0 is quasiconvex instead of convex, the problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1, ..., m$
 $a_i^T x = b_i, i = 1, ..., p$

is called a (standard form) quasiconvex optimization problem.

- Since the sublevel sets of a convex or quasiconvex function are convex, we conclude that for a convex or quasiconvex optimization problem the ε-suboptimal sets are convex.
- In particular, the optimal set is convex.

Concave maximization problems

We also refer to

maximize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1, ..., m$
 $a_i^T x = b_i, i = 1, ..., p$

as a convex optimization problem if the objective function f_0 is concave, and the inequality constraint functions $f_1, ..., f_m$ are convex.

- This concave maximization problem is readily solved by minimizing the convex objective function $-f_0$.
 - All of the results, conclusions, and algorithms that we describe for the minimization problem are easily transposed to the maximization case.
- In a similar way the above maximization problem is called quasiconvex if f_0 is quasiconcave.

Definition of Convex Optimization Problem

• Consider the example with $x \in \mathbb{R}^2$,

minimize
$$f_0(x) = x_1^2 + x_2^2$$

subject to $f_1(x) = x_1/(1 + x_2^2) \le 0$
 $h_1(x) = (x_1 + x_2)^2 = 0$,

which is in the standard form.

- This problem is not a convex optimization problem in standard form since the equality constraint function h_1 is not affine, and the inequality constraint function f_1 is not convex.
- Nevertheless the feasible set, which is $\{x \mid x_1 \leq 0, x_1 + x_2 = 0\}$, is convex.
- The problem, although not in a form of convex optimization problem, can be easily transformed to, and be shown to be equivalent to, a convex optimization problem.

Local and global optima (1/2)

- As an important property of convex optimization problems, any locally optimal point is also (globally) optimal.
- To see this, suppose that x is locally optimal for a convex optimization problem, i.e., x is feasible and

$$f_0(x) = \inf \{ f_0(z) \mid z \text{ feasible}, ||z - x||_2 \le R \},$$

for some R > 0.

• Now suppose that x is not globally optimal, i.e., there is a feasible y such that $f_0(y) < f_0(x)$. Evidently $||y - x||_2 > R$, since otherwise $f_0(x) \le f_0(y)$.

Local and global optima (2/2)

• Consider the point z given by

$$z = (1 - \theta)x + \theta y, \theta = \frac{R}{2||y - x||_2}.$$

Then we have $||z - x||_2 = R/2 < R$, and by convexity of the feasible set, z is feasible.

• By convexity of f₀ we have

$$f_0(z) \leq (1-\theta)f_0(x) + \theta f_0(y) < f_0(x),$$

which leads to a contradiction. So, x is globally optimal.

• It is not true that locally optimal points of quasiconvex optimization problems are globally optimal (to be shown later).

An optimality criterion for differentiable f_0

• Suppose that the objective f_0 in a convex optimization problem is differentiable, so that for all $x, y \in \text{dom } f_0$,

$$f_0(y) \ge f_0(x) + \nabla f_0(x)^T (y - x).$$

• Let X denote the feasible set, i.e.,

$$X = \{x \mid f_i(x) \leq 0, i = 1, ..., m, h_i(x) = 0, i = 1, ..., p\}.$$

Then x is optimal if and only if $x \in X$ and

$$\nabla f_0(x)^T(y-x) \geq 0$$

for all $y \in X$.

An optimality criterion for differentiable f_0

• The optimality criterion can be understood geometrically: If $\nabla f_0(x) \neq 0$, it means that $-\nabla f_0(x)$ defines a supporting hyperplane to the feasible set at x.

Proof of optimality condition

- The "if" part is obvious.
- For the "only if" part, suppose x is optimal, but the optimality condition $\nabla f_0(x)^T(y-x) \ge 0$ does not hold, i.e., for some $y \in X$ we have

$$\nabla f_0(x)^T(y-x)<0.$$

• Consider the point z(t) = ty + (1 - t)x, where $t \in [0, 1]$ is a parameter. Since z(t) is on the line segment between x and y, and the feasible set is convex, z(t) is feasible. Note that

$$\left[\frac{d}{dt}f_0(z(t))\right]\bigg|_{t=0} = \nabla f_0(x)^T(y-x) < 0,$$

so for small positive t, we have $f_0(z(t)) < f_0(x)$, which proves that x is not optimal.

Unconstrained problems

• For an unconstrained problem (i.e., m = p = 0), the optimality condition

$$\nabla f_0(x)^T(y-x) \geq 0$$

reduces to the well known necessary and sufficient condition

$$\nabla f_0(x) = 0$$

for x to be optimal.

Unconstrained problems

- To see this, suppose x is optimal, which means here that $x \in \operatorname{dom} f_0$, and for all feasible y we have $\nabla f_0(x)^T(y-x) \ge 0$. Since f_0 is differentiable, its domain is (by definition) open, so all y sufficiently close to x are feasible.
- Let us take $y = x t \nabla f_0(x)$. Then for t small and positive, y is feasible, and so

$$|\nabla f_0(x)^T(y-x) = -t||\nabla f_0(x)||_2^2 \ge 0,$$

from which we conclude $\nabla f_0(x) = 0$.

- If $\nabla f_0(x) = 0$ has no solutions, then there are no optimal points, possibly
 - the problem is unbounded below, or
 - the optimal value is finite, but not attained.
- On the other hand, $\nabla f_0(x) = 0$ can have multiple solutions.
 - In this case, each such solution is a minimizer of f_0 .

Example – Unconstrained quadratic optimization.

Consider the problem of minimizing the quadratic function

$$f_0(x) = (1/2)x^T P x + q^T x + r,$$

where $P \in \mathbf{S}_{+}^{n}$ (which makes f_0 convex).

• The necessary and sufficient condition for x to be a minimizer of f_0 is

$$\nabla f_0(x) = Px + q = 0.$$

- Several cases can occur, depending on whether this (linear) equation has no solutions, one solution, or many solutions.
 - If $q \notin \mathcal{R}(P)$, then there is no solution. In this case f_0 is unbounded below.
 - If P > 0 (which is the condition for f_0 to be strictly convex), then there is a unique minimizer, $x^* = -P^{-1}q$.
 - If P is singular, but $q \in \mathcal{R}(P)$, then the set of optimal points is the (affine) set $X_{opt} = -P^{\dagger}q + \mathcal{N}(P)$, where P^{\dagger} denotes the pseudo-inverse of P.

Problems with equality constraints only (1/2)

 Consider the case where there are equality constraints but no inequality constraints, i.e.,

minimize
$$f_0(x)$$
 subject to $Ax = b$.

Here the feasible set is affine. We assume that it is nonempty.

• The optimality condition for a feasible x is that

$$\nabla f_0(x)^T(y-x) \geq 0$$

must hold for all y satisfying Ay = b.

• Since x is feasible, every feasible y has the form y = x + v for some $v \in \mathcal{N}(A)$. The optimality condition can therefore be expressed as: $\nabla f_0(x)^T v \ge 0$ for all $v \in \mathcal{N}(A)$.

Problems with equality constraints only (2/2)

- If a linear function is nonnegative on a subspace, then it must be zero on the subspace, so it follows that $\nabla f_0(x)^T v = 0$ for all $v \in \mathcal{N}(A)$. In other words, $\nabla f_0(x) \perp \mathcal{N}(A)$.
- Using the fact that $\mathcal{N}(A)^{\perp} = \mathcal{R}(A^T)$, this optimality condition can be expressed as $\nabla f_0(x) \in \mathcal{R}(A^T)$, i.e., there exists a $\nu \in \mathbb{R}^p$ such that

$$\nabla f_0(x) + A^T \nu = 0.$$

Together with the requirement Ax = b (i.e., that x is feasible), this is the classical Lagrange multiplier optimality condition.

Minimization over the nonnegative orthant (1/2)

We consider the problem

minimize
$$f_0(x)$$

subject to $x \succeq 0$,

where the only inequality constraints are nonnegativity constraints on the variables. The optimality condition is then

$$x \succeq 0$$
, $\nabla f_0(x)^T (y - x) \ge 0$ for all $y \succeq 0$.

• The term $\nabla f_0(x)^T y$, which is a linear function of y, is unbounded below on $y \succeq 0$, unless we have $\nabla f_0(x) \succeq 0$.

Minimization over the nonnegative orthant (2/2)

• The condition then reduces to $-\nabla f_0(x)^T x \ge 0$. But $x \succeq 0$ and $\nabla f_0(x) \succeq 0$, so we must have $\nabla f_0(x)^T x = 0$, i.e.,

$$\sum_{i=1}^n [\nabla f_0(x)]_i x_i = 0.$$

• Therefore, $[\nabla f_0(x)]_i x_i = 0$ for i = 1, ..., n. The optimality condition can therefore be expressed as

$$x \succeq 0$$
, $\nabla f_0(x) \succeq 0$, $x_i [\nabla f_0(x)]_i = 0$, $i = 1, ..., n$.

• The last condition is called **complementarity**, since it means that the set of indices corresponding to nonzero components of the vectors x and $\nabla f_0(x)$ are complementary (i.e., have empty intersection).

Quasiconvex optimization

Recall that a quasiconvex optimization problem has the standard form

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$,

where the inequality constraint functions $f_1, ..., f_m$ are convex, and the objective f_0 is quasiconvex (instead of convex).

- Some basic differences between convex and quasiconvex optimization problems will be studied.
 - It would be shown that how solving a quasiconvex optimization problem can be reduced to solving a sequence of convex optimization problems.

Locally optimal solutions and optimality conditions

- The most important difference between convex and quasiconvex optimization is that a quasiconvex optimization problem can have locally optimal solutions that are not (globally) optimal.
- This phenomenon can be seen even in the simple case of unconstrained minimization of a quasiconvex function on R.

Locally optimal solutions and optimality conditions

- Nevertheless, a variation of the optimality condition for convex problems $(\nabla f_0(x)^T(y-x) \ge 0$ for all $y \in X)$ does hold for quasiconvex optimization problems with differentiable objective function.
- Let X denote the feasible set for the quasiconvex optimization problem described in a previous page.
- We first recognize that

$$f(y) \le f(x) \Rightarrow \nabla f(x)^T (y - x) \le 0$$

for any quasiconvex differentiable function f.

It then follows that x is optimal if

$$x \in X$$
, $\nabla f_0(x)^T (y - x) > 0$ for all $y \in X \setminus \{x\}$.

Quasiconvex optimization via convex feasibility problems

- One general approach to quasiconvex optimization relies on the representation of the sublevel sets of a quasiconvex function via a family of convex inequalities.
- Let $\phi_t: \mathbf{R}^n \to \mathbf{R}, t \in \mathbf{R}$, be a family of convex functions that satisfy

$$f_0(x) \leq t \iff \phi_t(x) \leq 0,$$

and also, for each x, $\phi_t(x)$ is a nonincreasing function of t, i.e., $\phi_s(x) \le \phi_t(x)$ whenever $s \ge t$.

 Let p* denote the optimal value of the quasiconvex optimization problem. If the feasibility problem

find
$$x$$
 subject to $\phi_t(x) \leq 0$ $f_i(x) \leq 0, i = 1, ..., m$ $Ax = b,$

is feasible, then we have $p^* \le t$. Otherwise, we have $p^* \ge t$.

Bisection for Quasiconvex Optimization (1/2)

Algorithm 4.1 Bisection method for quasiconvex optimization.

- given $l \le p^*$, $u \ge p^*$, tolerance $\epsilon > 0$. repeat
 - 0 t := (I + u)/2.
 - Solve the convex feasibility problem

find
$$x$$
 subject to $\phi_t(x) \leq 0$ $f_i(x) \leq 0, i = 1,...,m$ $Ax = b.$

3 If the previous problem is feasible, u:=t; else l:=t. until $u-l < \epsilon$.

Bisection for Quasiconvex Optimization (2/2)

- The interval [I, u] is guaranteed to contain p^* , i.e., we have $I \le p^* \le u$ at each step.
- In each iteration the interval is divided in two, i.e., bisected, so the length of the interval after k iterations is $2^{-k}(u-l)$, where u-l is the length of the initial interval.
- It follows that exactly $\lceil \log_2((u-l)/\epsilon) \rceil$ iterations are required before the algorithm terminates.
- Each step involves solving the convex feasibility problem

find
$$x$$
 subject to $\phi_t(x) \leq 0$ $f_i(x) \leq 0, \quad i = 1,...,m$ $Ax = b.$

Quasiconvex Optimization Problem – An Example

Consider the problem

minimize
$$f_0(x)$$

subject to $||Ax - b|| \le \epsilon$,

where $f_0(x) = \operatorname{length}(x) = \min \{k \mid x_i = 0 \text{ for } i > k\}$. The problem variable is $x \in \mathbb{R}^n$; the problem parameters are $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $\epsilon > 0$.

- This is to find the minimum number of columns of A, taken in order, that can approximate the vector b within ϵ .
- It can be shown to be a quasiconvex optimization problem.
- The bisection algorithm can be applied by finding an appropriate family of functions $\phi_t(x)$ that satisfies

$$f_0(x) \leq t \iff \phi_t(x) \leq 0.$$