A Comparison of Sparse and EBE Storage Schemes on the Efficiency of Parallel Conjugate Gradient Iterative Methods for Finite Element Analysis.

Shivaraju Gowda

Date: July 18, 2002

Advisor: **Dr. Lonny L Thompson**

Department of Mechanical Engineering, Clemson University

Summary

- ➤ Preconditioned conjugate gradient iterative method for FEA in parallel on distributed memory machines using MPI and Fortran90.
- Comparing two types of matrix storage schemes
 - **EBE Element-By-Element**
 - **CSR Compressed Sparse Row**
- Implemented Jacobi Preconditioner.
- Scalability analysis on two type of parallel machines.
- ➤ Applied to structured and unstructured mesh for 2D and 3D problems.

Outline

- 1. Introduction
 - Motivation
- 2. Formulation and Implementation
 - Finite Element Formulation
 - Matrix Storage Schemes
 - Conjugate Gradient Algorithm
 - Preconditioners
- 3. Parallel Implementation
 - Domain Decomposition
 - Parallel CG Algorithm
 - Implementation
- 4. Numerical Examples
 - Poisson's Equation with Dirchlet BC
 - Scalability Analysis
 - Unstructured Mesh
- 5. Conclusions

Introduction

Why Parallel?

Use of Multiple Processors to process single application simultaneously

- Reduce total wall clock simulation time
- > Solve large complex problems which do not fit into the local memory of a single system

Architectures:

Shared Memory (OpenMP, HPF)

Distributed memory(MPI)

Interconnection Network

Introduction

Why Iterative Methods?

- ▶ **Direct Methods**, robust and predictable. For 3D problems, Computational time and memory requirements increase with $O(n^3)$.
- ➤ **Iterative methods**, suitable for such problems, especially for sparse matrices from finite element descretization.
- ➤ Iterative methods use the knowledge of the problem for better convergence
- > Suitable for parallel implementation.
- ➤ With good preconditioner can match the performance of Direct methods.

- ➤ No general purpose routine for all problems.
- ➤ Knowledge of problems is required on the part of the end user to select the best method, preconditioner and initial value.

Finite Element Formulation

Second order linear elliptic partial differential equation

$$-\underline{\nabla}\cdot(a(\underline{x})\underline{\nabla}u)=f(\underline{x}), \qquad \underline{x}\in\Omega\subset\Re^{-2}$$

subject to Dirichlet Boundary Condition

$$u|_{\partial\Omega}=0$$

The domain Ω is discretized into a non-overlapping set of elements.

Piecewise linear finite element approximation,

$$u = \sum_{i=1}^{N} u_i N_i(\underline{x}), \qquad v = \sum_{i=1}^{N} v_i N_i(\underline{x})$$

where $N_i(\underline{x})$ are piecewise linear basis functions for i = 1,...,N

$$\int_{\Omega} a \underline{\nabla} v \cdot \underline{\nabla} u d\underline{x} = \int_{\Omega} f v d\underline{x}$$

Matrix Problem

The set of equations may be written in matrix notation as

$$A\underline{u} = \underline{b}$$

Where,

$$\underline{u} = (u_1, ..., u_N)^T$$

$$A_{ji} = \int_{\Omega} a \underline{\nabla} N_j \cdot \underline{\nabla} N_i d\underline{x},$$

$$b_j = \int_{\Omega} f N_j d\underline{x}$$

General solution Procedure:

- Calculate the stiffness coefficients of all the elements.
- Assemble the global stiffness matrix A.
- Solve the system of equations using an iterative algorithm.

Matrix Storage

Full storage

Skyline storage

Sparse storage

torage EBE storage

Skyline Storage

- Stores all coefficients within skyline, including zeros
- Requires renumbering to minimize skyline
- Efficient for direct solvers on shared-memory machines

Sparse Storage

- Stores nonzero coefficients only
- Predominantly indirect access patterns
- Efficient for iterative methods on distributed memory architectures

Element by Element storage

- Retains only element-level matrices, no global assembly
- Efficient for iterative methods on distributed memory
- Matrix-vector product done in 3 stages, gather to element local, matrix-vector product at element level and scatter to global
- Element matrices can be recalculated as needed minimal storage but slower

Matrix Storage Schemes

Element by Element (EBE)

- Originally developed to reduce memory.
- Provides significant opportunities for finegrained (vectorized) parallel computation.
- > Simpler data structure.
- Requires the preconditioners to be expressed in element level calculation, limiting choices.

$$AA = [1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.]$$

$$JA = [1 \ 4 \ 1 \ 2 \ 4 \ 1 \ 3 \ 4 \ 5 \ 3 \ 4 \ 5]$$

$$IA = [1 \ 3 \ 6 \ 10 \ 12 \ 13]$$

Compressed Sparse Row (CSR)

- ➤ Lower Memory Requirements O(3nze) Stores only the non zero entries.
- ➤ Complicated data structure to assemble the matrix, especially in parallel.
- Can manage to apply different kinds of preconditioners.

$$\begin{bmatrix} 1. & 0. & 0. & 2. & 0. \end{bmatrix}$$

CLEMS N

Conjugate Gradient Iterative Algorithm

1. Choose
$$\underline{x}^0$$
, $\underline{r}^0 = \underline{b} - A\underline{x}^0$

$$A\underline{x} = \underline{b}$$

2. Solve
$$M\underline{z}^0 = \underline{r}^0$$
, $p^0 = \underline{z}^0$

3.
$$\gamma^0 = \text{Inner Product } (\underline{z}^0, \underline{r}^0)$$

Do
$$k = 0, 1, 2, \dots k_{max}$$

4.
$$q^k = \text{Matrix Multiply } (A, p^k)$$
 Matrix-Vector Multiplication (1)

5.
$$\tau^k = \text{Inner Product } (p^k, q^k)$$
 Inner Products (2)

6.
$$\alpha^k = \gamma^k / \tau^k$$

7.
$$\underline{x}^{k+1} = \underline{x}^k + \alpha^k p^k$$
, $\underline{r}^{k+1} = \underline{r}^k - \alpha^k q^k$ Vector update (3)

8. Solve
$$M\underline{z}^{k+1} = \underline{r}^{k+1}$$
 Preconditioner Solve (1)

9.
$$\gamma^{k+1} = \text{Inner Product } (\underline{z}^{k+1}, \underline{r}^{k+1})$$

10. If
$$(\sqrt{\gamma^{k+1}} \le \text{Tolerance})$$
 Exit

11.
$$\beta^k = \gamma^{k+1}/\gamma^k$$
, $\underline{p}^{k+1} = \underline{z}^{k+1} + \beta^k \underline{p}^k$
End Do

Note: Independent of storage format for matrix

Reference: Saad Yousef, Iterative Methods for Sparse Linear Systems

Parallel Solution

To solve the FEA problem in parallel

- Form the system of equations in parallel.
- > Store the matrix in distributed manner.
- > Solve equations using parallel version of CG.

Steps:

- Mesh the domain.
- ➤ Decompose the domain into subdomains (METIS).
- ➤ Assign one processor to each subdomain.
- Each processor performs calculation for local elements (CSR requires assembly).
- > Interior nodes are local to the processor.
- ➤ Interface nodes on subdomain boundaries requires communication (Update).

Domain Decomposition

The interior nodes are numbered first followed by each of the nodes lying on the subdomain interface. The system of equation then becomes:

$$\begin{bmatrix} A_1 & & & & C_1 \\ & A_2 & & & C_2 \\ & & \ddots & & \vdots \\ & & & A_s & C_s \\ C_1^T & C_2^T & \cdots & C_s^T & A_I \end{bmatrix} \begin{pmatrix} \underline{x}_1 \\ \underline{x}_2 \\ \vdots \\ \underline{x}_s \\ \underline{x}_I \end{pmatrix} = \begin{pmatrix} \underline{b}_1 \\ \underline{b}_2 \\ \vdots \\ \underline{b}_s \\ \underline{b}_I \end{pmatrix}$$

Example mesh with 4 subdomains

$$A_I = \bigwedge_{j=1}^s A_{I_j}$$
 and $b_I = \bigwedge_{j=1}^s b_{I_j}$

Block Matrix Structure

For each Process:

$$\begin{bmatrix} A_j & B_j \\ B_j^T & A_{I_j} \end{bmatrix} \begin{Bmatrix} \underline{x}_j \\ \underline{x}_{I_j} \end{Bmatrix} = \begin{Bmatrix} \underline{b}_j \\ \underline{b}_{I_j} \end{Bmatrix}$$

where,

 A_i - Assembled local interior node matrix

 A_{I_i} - Local interface nodes matrix

 B_i - Coupling of the local interior nodes to local interface nodes

 B_i^T - Coupling of the local interface nodes to local interior nodes

 \underline{x}_i - Local interior solution subvector

 \underline{x}_{I_i} - Local interface solution subvector

 \underline{b}_i - Local interior force subvector

 \underline{b}_{I_i} - Local interface force subvector

Subroutine Update (\underline{a})

$$egin{aligned} \operatorname{De} j &= 1, np \ \operatorname{MPLReceive}\left(\operatorname{Buf}, j\right) \ e &= e + \operatorname{Buf} \end{aligned}$$

Ifod do

Find Subroutine Update

Parallel Conjugate Gradient Algorithm

For each process j;

1. $\underline{b}_{I_j} = \text{Update } (\underline{b}_{I_j})$

Requires pt. to pt. Communication (Update).

Requires Update

communication

Requires one collective

2.
$$\underline{x}_{j}^{0} = \underline{0}, \qquad \underline{x}_{I_{j}}^{0} = \underline{0}; \qquad \underline{r}_{j}^{0} = \underline{b}_{j}, \qquad \underline{r}_{I_{j}}^{0} = \underline{b}_{I_{j}}$$

3. Solve
$$M(\underline{z}_j^0,\underline{z}_{I_j}^0)=(\underline{r}_j^0,\underline{r}_{I_j}^0); \qquad \underline{p}_j^0=\underline{z}_j^0, \qquad \underline{p}_{I_i}^0=\underline{z}_{I_j}^0$$

4.
$$\gamma^0 = \text{Inner Product } (\underline{z}_j^0, \underline{z}_{I_j}^0; \underline{r}_j^0, \underline{r}_{I_j}^0)$$

Do $k = 0, 1, 2, \dots$, Maximum Iterations

5.
$$(\underline{q}_j^k, \underline{q}_{I_i}^k) = \text{Matrix Multiply } (A, (\underline{p}_j^k, \underline{p}_{I_i}^k))$$

6. $\tau^k = \text{Inner Product } (\underline{p}_j^0, \underline{p}_{I_j}^0; \underline{q}_j^0, \underline{q}_{I_j}^0) \blacktriangleleft$

7.
$$\alpha^k = \gamma^k/\tau^k$$

8.
$$\underline{x}_j^{k+1} = \underline{r}_j^k + \alpha^k \underline{p}_j^k; \qquad \underline{x}_{I_j}^{k+1} = \underline{x}_{I_j}^k + \alpha^k \underline{p}_{I_j}^k$$

9.
$$\underline{r}_j^{h+1} = \underline{r}_j^k - \alpha^k \underline{q}_i^h; \qquad \underline{r}_{I_i}^{h+1} = \underline{r}_{I_i}^k - \alpha^k \underline{q}_{I_i}^h$$

10. Solve
$$M(\underline{z}_{i}^{k+1}, \underline{z}_{I_{i}}^{k+1}) = (\underline{r}_{i}^{k+1}, \underline{r}_{I_{i}}^{k+1})$$

11.
$$\gamma^{k+1} = \text{Inner Product } (\underline{z}_j^{k+1}, \underline{z}_{I_j}^{k+1}; \underline{r}_j^{k+1}, \underline{r}_{I_j}^{k+1})$$

12. If
$$(\sqrt{\gamma^{k+1}} \leq \text{Tolerance})$$
 End

13.
$$\beta^k = \gamma^{k+1}/\gamma^k; \qquad \underline{p}_j^{k+1} = \underline{z}_j^{k+1} + \beta^k \underline{p}_j^k, \qquad \underline{p}_{I_j}^{k+1} = \underline{z}_{I_j}^{k+1} + \beta^k \underline{p}_{I_j}^k$$

End Do

Reference: **Jimack P.K, Touheed N,** Developing Parallel Finite Element Software Using MPI

Computational Mechanics Laboratory

Matrix-by-Vector Multiply

For each process j:

1.
$$\underline{q}_j = A_j \underline{p}_j + B_j \underline{p}_{I_j}$$

2.
$$\underline{q}_{I_j} = B_j^T \underline{p}_j + A_{I_j} \underline{p}_{I_j}$$

3. Update
$$(\underline{q}_{t_i})$$

Subroutine EBE matimul $(Ke, p_j, p_{i_j}, q_j, q_{i_j})$ Do e=1, elDo i=1, nenIf (Interior node) Assemble the contributions to q_j Else If (Interface node) Assemble the contributions to q_{i_j} End If End do End do Update (q_{i_j}) End Subroutine EBE matimul

Subroutine CSR
neathnul
$$(Acsr, \underline{p}_{g}, \underline{p}_{i_{g}}, \underline{q}_{g}, \underline{q}_{i_{g}})$$

$$q_{g} = A_{g}, p_{g} + B_{g}, p_{i_{g}}$$

$$\underline{q}_{i_{g}} = B_{g}^{F}, \underline{p}_{g} + A_{i_{g}}, \underline{p}_{i_{g}}$$
 Send $\underline{q}_{i_{g}}$ using MPI Send Receive $q_{i_{g}}$ using MPI Recv
Add $\underline{q}_{i_{g}}$

Inner Product and Diagonal Preconditioner

```
Function InnerProduct (\underline{a}_{j}, \underline{a}_{I_{j}}; \underline{b}_{j}, \underline{b}_{I_{j}})

\operatorname{sum} = \operatorname{Dot\_Product}\ (\underline{a}_{j}, \underline{b}_{j})

\operatorname{n} = \operatorname{size}(\underline{b}_{I_{j}})

\operatorname{sum} = \operatorname{sum} + \sum_{i=1}^{n} [\underline{a}_{I_{j}}(i) \times \underline{b}_{I_{j}}(i)] / \operatorname{Shared}(i)

\operatorname{MPI\_AllReduce}(\operatorname{sum}, \operatorname{InnerProduct}, \operatorname{MPI\_SUM})

End Function InnerProduct
```

```
For all process j; Subroutine SetupPreconditioner()

Do e=1,\ldots,el
Assemble diagonal of A_j to \underline{di}_j
Assemble diagonal of A_{l_j} to \underline{d}_{l_j}
Update (\underline{d}_{l_j})
Invert the diagonal vectors \underline{d}_j = 1/\underline{d}_j; \underline{d}_{l_j} = 1/\underline{d}_{l_j}
End Subroutine SetupPreconditioner
```

Subroutine Solve $(\underline{z}_j, \underline{z}_{I_j}; \underline{r}_j, \underline{r}_{I_j})$ $\underline{z}_j = \underline{d}_j * \underline{r}_j$ $\underline{z}_{I_j} = \underline{d}_{I_j} * \underline{r}_{I_j}$ End Subroutine Solve

Implementation

IDEAS, Pro-E,

In-House

METIS

Utility program to read in the partitioned mesh and creates N number of files. N = no of processors

Fortran90 and MPI

Tecplot, Matlab

Numerical Examples

Poisson's Equation with Dirchlet BC

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0,$$

 $0 < x < 1, \qquad 0 < y < 1$

Subject to Dirchlet boundary condition

$$T(x=0) = 0$$
$$T(x=1) = 0$$

Exact solution is: $T(x, y) = \frac{\sin \pi x \cdot \sinh \pi y}{\sinh \pi}$

$$T(y=0)=0$$

ation is:
$$T(x, y) = \frac{\sin \pi x + \sin \pi y}{\sin \pi}$$
 $T(y)$

Code Validation

Dimension of the mesh: 200 x 400

Number of DOF: 79,800

Tolerance: 1e-06

Analysis

2D structured mesh: 600 x 600 4-node Quads, 359,400 DOF

Convergence of CG and PCG.

Implemented on

➤ Sun HPC

14 UltraSPARCII CPU's

336MHz

4MB cache

4GB shared memory

➤ SGI Onyx2 Infinite Reality system

8 MIPS R12000 CPU's

400 MHz

8MB cache

8GB shared memory

Communication & Computation Time SUN Machine

- Communication time increases with increase in number of processors.
- Computation time decreases with the increase in number of processors.

SGI Machine

• Communication time is virtually nil.

CLEMS N U N I V E R S I T Y

Solution Timings

Sun Machine

SGI Machine

CSR format better than EBE on both machines by almost 30%.

CLEMS I TY

Speedup

Sun Machine

Weight (f) and the first of processors, N

SGI machine

- Sun machine scales well up to 10 processors.
- SGI shows super-linear speedup for CSR.

CLEMS NY

Comparison of Blocking and Nonblocking Communication

Nonblocking saves some communication time as the number of processors increase.

Subroutine CSRMatmul

$$\underline{q}_{I_j} = B_j^T \underline{p}_j + A_{I_j} \underline{p}_{I_j}$$

Send \underline{q}_{I_j} using MPLISend

$$\underline{q}_j = A_j \underline{p}_j + B_j \underline{p}_l$$

 $\widetilde{\operatorname{Receive}} \, \underline{\widetilde{q}}_{I_i} \, \operatorname{using'} \operatorname{MPLRecv}$

Add q_{I_i}

Subroutine CSRMatmul

SIDIOUCHE OSIGMACI

Parallel code validation for unstructured Meshes – 2D

Unstructured Triangular Mesh generated In I-DEAS

The Mesh is Partitioned using METIS

Solved in Parallel using 4 Processor and Visualized using Tecplot

I-DEAS SOLUTION

Parallel code validation for unstructured Meshes – 3D

Unstructured Tetrahedra Mesh generated In I-DEAS

The Mesh is Partitioned using METIS

Solved in Parallel using 4 Processor and Visualized using Tecplot

I-DEAS SOLUTION

Conclusions

- > CSR format takes 30% less CPU time than EBE.
- > SGI with optimized vendor supplied MPI, shows super-linear speedup for the problem tested.
- > Sun machine scales well up to 10 processors.
- ➤ By overlapping communication and computation total solution time can be reduced.
- Diagonal preconditioner moderately accelerates the convergence of the CG solver.

Future Work

- > Perform scalability analysis on large 3D problems.
- > Scalability analysis on Beowulf cluster.
- > Implement Schur Complement method.
- > Implement better preconditioner.
- ➤ Generalize to non-symmetric and non positive definite systems. Other iterative methods such as Bi-Conjugate Gradient Stabilized(Bi-CGS), QMR and GMRES.

