

# PRACTICA 3

Jesús Campos Márquez



2018/2019

MODELOS DE BUSQUEDA Y HEURISTICAS DE BUSQUEDA
Universidad de Huelva

## Índice

- 1. Definición teórica de los algoritmos
  - 1.1. Sistema basado en Hormigas (SH)
  - 1.2. Sistema basado en Hormigas Elitistas (SHE)
  - 1.3. Sistema basado en Colonia de Hormigas (SCH)
- 2. Resultados de los algoritmos
  - 2.1. Sistema basado en Hormigas (SH)
  - 2.2. Sistema basado en Hormigas Elitistas (SHE)
  - 2.3. Sistema basado en Colonia de Hormigas (SCH)
- 3. Resultados Globales
- 4. Conclusiones

## Definición teórica de los algoritmos

- Sistema basado en Hormigas (SH)
   Es un método que se basa en la construcción de un camino gracias a un mecanismo probabilístico condicionado por feromonas y distancia de caminos, que se asimila al comportamiento de las hormigas reales. (Figura 1.1)
   El sistema aplicado al TSP, en cada paso estando en una ciudad p1, elige a una ciudad p2 entre todas las posibles sin visitar. Tras esta elección se transita y se da lugar a una evaporación de las feromonas y a un aporte de feromonas a aquellas aristas que se han
- Sistema basado en Hormigas Elitistas (SHE)
   Sigue la heurística del sistema de hormigas normal, pero en su regla de actualización utiliza además de la actualización del sistema anterior, un refuerzo adicional a los buenos arcos, es decir, a los que están en la mejor solución global, con lo que se consigue una convergencia hacia una buena solución más rápida. ( pero cayendo en mas óptimos locales)

visitado.

Sistema basado en Colonia de Hormigas (SCH)
 Su funcionamiento es basado en el SH pero de forma mejorada. La primera mejora que incluye es un mecanismo para hacer una exploración mas amplia a nuevos arcos, para ello se hace una actualización local, para que los arcos visitados sean menos posibles de coger y poder diversificar y, además, se hace una actualización global para generar una solución de calidad.



Figura 1.1

## Resultados de los algoritmos

Se mostrarán tablas gráficas del estudio realizada para cada algoritmo:

#### Sistema basado en Hormigas (SH)

|                   | St70       |            | Ch130    |            | A2        | A280       |            | 54         | Vm1084      |            |
|-------------------|------------|------------|----------|------------|-----------|------------|------------|------------|-------------|------------|
| #Ejecución y Seed | Coste      | #Ev        | Coste    | #Ev        | Coste     | #Ev        | Coste      | #Ev        | Coste       | #Ev        |
| 1                 | 722        | 330160     | 6707     | 153300     | 3219      | 34900      | 53100      | 5020       | 382126      | 1540       |
| 2                 | 716        | 318340     | 6783     | 141940     | 3146      | 35480      | 54311      | 5020       | 379835      | 1560       |
| 3                 | 721        | 330520     | 6691     | 147060     | 3178      | 33780      | 54479      | 4620       | 375955      | 1580       |
| 4                 | 713        | 301200     | 6845     | 150140     | 3244      | 32920      | 52130      | 3880       | 391050      | 1520       |
| 5                 | 723        | 321860     | 6749     | 144960     | 3240      | 32940      | 54612      | 3820       | 381764      | 1520       |
| Media             | 719        | 320416     | 6755     | 147480     | 3205,4    | 34004      | 53726,4    | 4472       | 382146      | 1544       |
| Desviacion Típica | 3,84707681 | 10702,2046 | 55,35341 | 3953,89428 | 37,818514 | 1033,31699 | 962,634011 | 528,787292 | 4961,788831 | 23,3238076 |

Del sistema implementado se puede ver a simple vista que los resultados son bastante buenos, sin embargo, tiene que hacer un gran número de evaluaciones para conseguirlo, esto es por que la convergencia ha estado limitada por tiempo, en el que para el st70.tsp se le ha puesto 5 minutos, aumentando a 5 minutos mas cada fichero respecto el anterior.

## Sistema basado en Hormigas Elitista (SHE)

|                   | St70 Ch130 A280 |           | p654       |            | Vm1084     |            |            |      |             |            |
|-------------------|-----------------|-----------|------------|------------|------------|------------|------------|------|-------------|------------|
| #Ejecución y Seed | Coste           | #Ev       | Coste      | #Ev        | Coste      | #Ev        | Coste      | #Ev  | Coste       | #Ev        |
| 1                 | 723             | 362000    | 6658       | 157340     | 3214       | 30580      | 55969      | 4020 | 391393      | 1480       |
| 2                 | 716             | 351780    | 6720       | 154620     | 3192       | 30480      | 53472      | 4020 | 394205      | 1880       |
| 3                 | 722             | 366880    | 6657       | 157860     | 3336       | 30660      | 54606      | 3860 | 371310      | 1420       |
| 4                 | 720             | 367300    | 6806       | 156120     | 3263       | 30680      | 55176      | 4020 | 390715      | 1660       |
| 5                 | 720             | 351300    | 6833       | 157460     | 3221       | 30680      | 55484      | 4020 | 380184      | 2120       |
| Media             | 720,2           | 359852    | 6734,8     | 156680     | 3245,2     | 30616      | 54941,4    | 3988 | 385561,4    | 1712       |
| Desviacion Típica | 2,4             | 7039,5068 | 73,3250298 | 1182,67493 | 50,8936145 | 77,3563184 | 857,559701 | 64   | 8570,855327 | 259,414726 |

Da resultados muy buenos, mejorando en algunos casos al sistema de hormigas tradicional, pero en otros casos empeorándolo, la diferencia radica en que este sistema alcanza más rápidamente una buena solución, pero al mejorarse los buenos arcos no se capaz de diversificar por lo que es muy propenso a caer en óptimos locales, y solo debería de utilizarse para ver que se alcanza más rápidamente una buena solución, en el caso de no estar limitado por tiempo si no por evaluaciones.

Sistema basado en Colonia de Hormigas (SCH)

|                   | St70 Ch130 |            | A280       |            | p654       |            | Vm1084     |            |             |            |
|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------|------------|
| #Ejecución y Seed | Coste      | #Ev        | Coste      | #Ev        | Coste      | #Ev        | Coste      | #Ev        | Coste       | #Ev        |
| 1                 | 676        | 651480     | 6309       | 308200     | 3050       | 57260      | 42745      | 7040       | 308332      | 2540       |
| 2                 | 700        | 697920     | 6251       | 308140     | 2931       | 57280      | 40771      | 7180       | 312175      | 2620       |
| 3                 | 682        | 653640     | 6779       | 325380     | 2976       | 63040      | 41153      | 7240       | 290897      | 2460       |
| 4                 | 678        | 653580     | 6222       | 324660     | 3036       | 62260      | 38213      | 7520       | 293594      | 2440       |
| 5                 | 682        | 653880     | 6216       | 310540     | 2919       | 60300      | 38199      | 7680       | 298831      | 2440       |
| Media             | 683,6      | 662100     | 6355,4     | 315384     | 2982,4     | 60028      | 40216,2    | 7332       | 300765,8    | 2500       |
| Desviacion Típica | 8,5229103  | 17930,9074 | 214,344209 | 7918,50895 | 53,1887206 | 2422,44835 | 1769,86625 | 233,786227 | 8246,073087 | 70,4272674 |

Sus resultados son extraordinariamente buenos, con un numero de evaluaciones mayor a los anteriores sistemas. La diferencia entonces, es que hace una actualización local de la feromona permitiendo a las demás hormigas poder buscar por otros lados, diversificando la transición a nodos no visitados, y con ello a la obtención de buenos resultado cayendo menos en óptimos locales, y además, su cálculo de la transición a otro nodo es más rápido por su nueva heurística implementada, y por ello consigue evaluar más.

## Resultados globales y comparacion entre algoritmos

|        | St70 (675) |       |                   | Ch130 (6110) |        |       |                   | A280 (2579) |        |       |                   |          |
|--------|------------|-------|-------------------|--------------|--------|-------|-------------------|-------------|--------|-------|-------------------|----------|
| Modelo | Media      | Mejor | Desviacion Típica | Ev-Media     | Media  | Mejor | Desviacion Típica | Ev-Media    | Media  | Mejor | Desviacion Típica | Ev-Media |
| Greedy | 847,1      | 815   | 473,4996938       | 1            | 7752,2 | 7358  | 473,4996938       | 1           | 3128,9 | 2975  | 94,44622809       | 1        |
| SH     | 719        | 713   | 3,847076812       | 320416       | 6755   | 6691  | 55,35341001       | 147480      | 3205,4 | 3146  | 37,81851398       | 34004    |
| SHE    | 720,2      | 716   | 2,4               | 359852       | 6734,8 | 6657  | 73,32502983       | 156680      | 3245,2 | 3192  | 50,89361453       | 30616    |
| SCH    | 683,6      | 676   | 8,522910301       | 662100       | 6355,4 | 6216  | 214,3442092       | 315384      | 2982,4 | 2919  | 53,18872061       | 60028    |

|        |         | P654  | (34.643)          |          | Vm1084 (239.297) |        |                   |          |  |
|--------|---------|-------|-------------------|----------|------------------|--------|-------------------|----------|--|
| Modelo | Media   | Mejor | Desviacion Típica | Ev-Media | Media            | Mejor  | Desviacion Típica | Ev-Media |  |
| Greedy | 45616,6 | 43210 | 1570,208088       | 1        | 426730,4         | 413657 | 8117,460862       | 1        |  |
| SH     | 53726,4 | 52130 | 962,6340114       | 4472     | 382146           | 375955 | 4961,788831       | 1544     |  |
| SHE    | 54941,4 | 53472 | 857,5597005       | 3988     | 385561,4         | 371310 | 8570,855327       | 1712     |  |
| SCH    | 40216,2 | 38199 | 1769,866255       | 7332     | 300765,8         | 290897 | 8246,073087       | 2500     |  |

Las tablas anteriores muestran los resultados globales, con los mejores resultados tras 5 ejecuciones de cada algoritmo y con cada fichero, para poder hacer una buena comparación se utilizarán resultados del algoritmo Greedy de la práctica 1, y que se ha utilizado en esta práctica como uno de lo parámetro para inicializar la feromona.

Los resultados muestran un claro 'Vencedor' el cuál es el Sistema basado en Colonias de Hormigas (SCH), y es gracias a su capacidad de diversificar y buscar por todo el problema de forma más eficiente, y además gracias a que su convergencia a estado limitada por tiempo, con 5 minutos para el fichero más pequeño y sumándole 5 a cada fichero siguiente.

Debido a lo anterior, el algoritmo es capaz de mejorar al que en la práctica 2 se consideraba como el mejor algoritmo que se había implementado (GRASP Extendido) en prácticas hasta la fecha.

Primero de todo, y viendo sus resultados, no podemos considerar que el algoritmo SH sea malo debido a que la solución dada ya es mejor que todos los algoritmos anteriores implementados, y que puede ser mejorada dado un tiempo de convergencia mayor.

Por otra parte, el algoritmo SHE tampoco es malo, ya que mejora también a todos los anteriores, aunque está por debajo de los otros dos implementados en esta práctica, debido a que su actualización de feromonas lo que hace es mejorar y darle más importante a los arcos buenos, por lo que la siguiente hormiga tiende a pasar por ahí más que por otra, esto desde el punto de vista biológico es lo normal, pero algorítmicamente hace que no se diversifique, por lo que capa la solución a los mejores nodos, como ocurría con el Greedy, pero con una probabilidad de salto hacia algunos peores, lo que hace que la solución sea buena e incluso mejor que el Greedy, pero no la mejor.

Por lo tanto, podemos decir que por ahora el problema se resuelve de buena forma mediante Hormigas, pero cuyos resultados podrían verse aun más mejorados con mayores tiempos de ejecución o mayor número de Hormigas.

Puede verse que, en los resultados globales, la mejor solución obtenida en el fichero más pequeño es 676, a 1 del optimo global conocido, por lo que se puede decir que el SCH da capacidad de alcanzar óptimos globales, saltando óptimos locales, pero que pueden mejorarse estos resultados con mayor tiempo de ejecución, ya que se realizarían mayores evaluaciones y con ello se podría diversificar más.

Otra opción sería probarlo en una maquina más potente para que haya más evaluaciones en el mismo tiempo de ejecución, consiguiendo mejores resultados posiblemente si el número de evaluaciones es mucho mayor.

Para demostrar esto último, se ha creado una tabla que resume un pequeño estudio de las mejoras propuestas, mediante la ejecución en una máquina más potente de sobremesa, en la que se han realizado 5 ejecuciones del algoritmo y con dos ficheros, el

más pequeño y el más grande, utilizando el algoritmo SCH para poder ver si se podría alcanzar el óptimo global en problemas de mayor envergadura. (Figura 2.1 y 2.2)

| Fichero | St70        |              |          |                  |  |  |  |
|---------|-------------|--------------|----------|------------------|--|--|--|
|         | Coste-Medio | Evaluaciones | Hormigas | Tiempo (minutos) |  |  |  |
| SCH     | 675,4       | 730360       | 20       | 5                |  |  |  |
|         | 680,1       | 294920       | 40       | 2                |  |  |  |

Figura 2.1

| Fichero | Vm1084      |              |          |                  |  |  |  |  |
|---------|-------------|--------------|----------|------------------|--|--|--|--|
|         | Coste-Mejor | Evaluaciones | Hormigas | Tiempo (minutos) |  |  |  |  |
|         | 296619      | 3420         | 20       | 25               |  |  |  |  |
| SCH.    | 296120      | 8340         | 20       | 50               |  |  |  |  |
| SCH     | 291963      | 1560         | 40       | 12               |  |  |  |  |
|         | 290891      | 6920         | 40       | 50               |  |  |  |  |
|         | 285146      | 3360         | 80       | 25               |  |  |  |  |

Figura 2.2

En la *Figura 2.1* puede verse que con poco tiempo y un buen numero de hormigas, el sistema es capaz de encontrar casi un optimo con un tiempo de ejecución de 2 minutos, y que con una máquina más potente y con el mismo numero de Hormigas y tiempo de ejecución, se puede llegar al óptimo, y esto se debe a la cantidad de evaluaciones hechas.

Por último, en la Figura 2.2, se ha creado mediante un estudio basado en si es mejor mas tiempo solamente, o si las hormigas influyen en la solución de un problema grande, y vemos que el mejor resultado lo da un numero de hormigas de 80, con el mismo tiempo de ejecución, quedándose a 40000 del optimo, lo cuál no está mal viendo sus soluciones predecesoras.

En definitiva, el problema está en ajustar el problema a un numero de hormigas bueno dependiendo del problema al que se va a enfrentar, y ajustando su tiempo de ejecución a ese numero de hormigas y a su complejidad, para intentar minimizar el gasto en computo y en tiempo, es decir, intentar minimizar los tiempos de ejecución gracias a un estudio de los parámetros propuestos para alcanzar mejores soluciones.

## Maquina usada: Portátil Asus

SO: Windows 10 x64

o Procesador: Intel Core i7-5500U. 2.4GHz

o **RAM**: *8GB* 

o Gráfica: NVIDIA GEFORCE 820M

Ventiladores: Default

### Máquina más potente usada: Ordenador de sobremesa

SO: Windows 7 x64

o **Procesador:** *Intel Core i5-4460. 3.2GHz* 

o **RAM**: 8GB

o Gráfica: NVIDIA GTX 690 2GB RAM

Ventiladores: Nox x3

o **Disipador:** Cooler Master Hyper 12 TX3 EVO

## **Conclusiones**

Tras el estudio de los algoritmos con los distintos data sets, tras el estudio de las mejoras, y tras ver la comparativa global de los algoritmos con Greedy de la práctica 1, puede decirse que el sistema basado en hormigas es mejor que Greddy, ya que tiene probabilidades de saltar a los mejores locales, que conlleven a la consecución de la mejor solución, aunque para ello necesita de bastantes evaluaciones (cuya convergencia está limitada por tiempo), y con las que los algoritmos van bastante bien en cuanto a soluciones, alcanzándose incluso caso el mejor global en el fichero más pequeño.

Para conseguir esto en los ficheros mas grandes y por lo cual, problemas más complejos, necesitarían de un mayor tiempo de ejecución, una máquina más potente y/o un mayor número de hormigas, por lo cual la dificultad para resolver este problema reside en la capacidad del programador para minimizar los costes de computo gracias a la definición de buenos parámetros.