

CLAIMS

1. Use, as catalyst, of salts of elements of valency μ , with μ at least equal to 3, comprising,
5 as coanions, at least 1 and at most $(\mu-1)$ anions carrying a sulfonyl functional group carried by a perhalogenated atom, preferably a perfluorinated atom, more preferably a perfluoromethylene ($-CF_2-$) group.

2. Use according to Claim 1, characterized
10 in that said salt corresponds to the formula:

- where M represents a μ -valent and at least trivalent element in the cationic form, preferably known to give Lewis acids;
- where Y is a monovalent anion or a monovalent anionic functional group and
- where ξ^- represents an anion or an anionic functional group carrying a sulfonyl functional group carried by a perhalogenated atom, preferably a perfluorinated atom, more preferably a perfluoromethylene ($-CF_2-$) group and
- where q is an integer advantageously chosen within the closed range (comprising the limits) ranging from 1 to $(\mu-1)$ (that is to say, 1 or 2 when μ is 20 25 3).

3. Use according to Claims 1 and 1, characterized in that said ξ^- corresponds to the formula:

- where Z represents an atom from the nitrogen column or a chalcogen;
- where, when Z represents an atom from the nitrogen column, R₁ represents an electron-withdrawing radical;
- where R_x is a radical in which the atom, generally a carbon atom, carrying the sulfonyl functional group is perhalogenated, advantageously R_x is R_f of formula:

in which:

- the X groups, which are alike or different, represent a fluorine or a radical of formula C_nF_{2n+1}, with n an integer at most equal to 5, preferably to 2;
- p represents zero or an integer at most equal to 2, with the proviso that, when p represents zero, EWG is chlorine and especially fluorine;
- EWG represents a hydrocarbonaceous group, advantageously an electron-withdrawing group (that is to say, the Hammett constant σ_p of which is greater than 0, advantageously than 0.1, preferably than 0.2), the possible functional groups of which are inert under the reaction conditions, preferably fluorine or a perfluorinated residue of formula C_nF_{2n+1}, with n an integer at most equal to 8, advantageously to 5.

4. Use according to Claims 1 to 3 of salts of elements of valency μ , with μ at least equal to 3, comprising, as coanions, at least 1 and at most $(\mu-1)$ sulfonate anions in which the sulfonic functional group 5 is carried by a perhalogenated atom, preferably a perfluorinated atom, more preferably a perfluoromethylene ($-CF_2-$) group.

5. Use according to Claim 4, characterized in that said use is the use as catalyst of Lewis acid 10 type.

6. Use according to Claims 1 to 5, characterized in that said salt corresponds to the formula:

15 with M represents an at least trivalent element in the cationic form, preferably known for giving Lewis acids, where Y is a monovalent anion or a monovalent anionic functional group and where R_x is a radical in which the carbon carrying the sulfonic functional group is 20 perhalogenated and where q is an integer advantageously chosen between 1 and 2 (that is to say, 1 or 2).

7. Use according to Claims 1 to 6, characterized in that said salt is a salt of formula:

25 - where M is an element in an at least trivalent cationic form;
 - where μ represents the charge of the cation corresponding to M;

- where Y represents the anion or anions, other than the sulfonates perhalogenated on the carbon carrying said sulfonate functional group;
- where q represents an integer chosen within the closed range from 1 to $\mu-1$.

5 8. Use according to Claims 1 to 7,
characterized in that said element is chosen from rare
earth metals (scandium, yttrium, lanthanum and
lanthanide) and elements forming a square in the
10 Periodic Table composed of gallium, germanium, arsenic,
indium, tin, antimony, thallium, lead and bismuth.

9. Use according to Claims 1 to 8,
characterized in that said salt is a trivalent metal
salt comprising, as coanions, at least 1 and at most 2
15 sulfonate anions in which the sulfonic functional group
is carried by a perhalogenated atom, preferably a
perfluorinated atom, more preferably a
perfluoromethylene ($-CF_2-$) group.

10. Use according to Claims 1 to 9,
20 characterized in that said salt corresponds to the
formula:

with M representing a trivalent metal, preferably known
for giving Lewis acids, where Y is a monovalent anion
25 or a monovalent anionic functional group and where R_x is
a radical in which the carbon carrying the sulfonic
functional group is perhalogenated and where q is an

integer advantageously chosen between 1 and 2 (that is to say, 1 or 2).

11. Catalytic composition, characterized in that it comprises one or more compounds corresponding 5 to the empirical formula:

with M representing an at least trivalent element, preferably known for giving Lewis acids, where Y is a monovalent anion or a monovalent anionic functional 10 group and where R_x is a radical in which the carbon carrying the sulfonic functional group is perhalogenated and where q is between 0.1 and 2.9, advantageously from 0.5 to 2.5, preferably from 1 to 2, inclusive.

15 12. Catalytic composition according to Claim 11, characterized in that it is obtained, advantageously in situ, by introduction of at least one acid ξH onto a salt MY_μ , where M is advantageously chosen from [lacuna] earth metals, gallium, germanium, 20 arsenic, indium, tin, antimony, thallium and lead.

13. Compound of formula:

- where M is an element in an at least trivalent cationic form;
- 25 - where μ represents the charge of the cation corresponding to M;

- where Y represents the anion or anions, other than the sulfonates perhalogenated on the carbon carrying said sulfonate functional group;
- where q represents an integer chosen within the closed range from 1 to μ -1.

5

14. Compound according to Claim 13 of formula:

with M representing a trivalent metal, preferably known

10 for giving Lewis acids, where Y is a monovalent anion or a monovalent anionic functional group and where R_x is a radical in which the carbon carrying the sulfonic functional group is perhalogenated and where q is an integer chosen between 1 and 2 (that is to say, 1 or

15 2).

15. Reactant comprising:

- a catalytic composition according to Claim 11;
 - an agent capable of giving carbocations in the presence of Lewis acid chosen from acid
- 20 anhydrides, in particular carboxylic and sulfonic anhydrides, carbonyls, in particular aldehydes, or conjugated dienes.

16. Reactant comprising:

- a catalytic composition according to Claim 11;
- 25 - an oxygen-comprising heterocycle, chosen in particular from cyclic ethers and lactones.