

Flexible Memory Controller (FMC)

CONTENTS 2

- FMC features
- SDRAM protocol
- SDRAM FMC controller

OBJECTIVES

- Overview of FMC interface
- Usage of high capacity RAM storage SDRAM
 - For frame buffer
 - For picture storage and preparation
 - For animations

FMC Features (1/2)

- 6 Banks to support External memories
- FMC external access frequency is up 90MHz when HCLK is at 180MHz
- Independent chip select control for each memory bank
- Independent configuration for each memory bank
- Programmable timings to support a wide range of devices
- 8/16/32 bits data bus
- External asynchronous wait control
- Interfaces with Synchronous DRAM (SDRAM) memory-mapped

FMC Features (2/2) 5

- Interfaces with static memory-mapped devices including:
 - static random access memory (SRAM)
 - read-only memory (ROM)
 - NOR/ OneNAND Flash memory
 - PSRAM
- Interfaces parallel LCD modules: Intel 8080 and Motorola 6800
- Interfaces with NAND Flash and 16-bit PC Cards
 - With ECC hardware up to 8 Kbyte for NAND memory
 - 3 possible interrupt sources (Level, Rising edge and falling edge)
- Supports burst mode access to synchronous devices (NOR Flash and PSRAM)

SDR SDRAM protocol overview

SDRAM memory organization _____

- Example of DRAM array with 12-bits row and 10-bits column
- A row width is $2\exp(10) = 1024 \text{ column}$
- Column width is 8-bit, 16-bit or 32-bit (Cw)

SDRAM memory read operation

Read operation step 1(*):

• On Row Access Strobe (RAS), selected row is copied to "Row Buffer" (a full row is

transferred at once to the Row Buffer Row decoder 12-bits row address Row Access Strobe (RAS)

Read operation step 2:

• On Column Access Strobe (CAS), column is selected from "Row Buffer" and presented on the memory interface

SDRAM memory read characteristics

(1/2)

SDRAM read characteristics

- Reads are destructive: contents are erased after reading
- Row buffer
 - read a full row at once (a set of bits all at once), and then break down them based on different column addresses

SDRAM memory write characteristics

 The SDRAM controller always checks the next write access destination,

Two cases:

- If the next write access is in the same row or in another active row (in a different bank)
 - The write operation is carried out
- If the next write access targets another row (not active), the SDRAM controller
 - · Generates a precharge command
 - Activates the new row
 - Initiates a write command

STM32 FMC controller

FMC SDRAM main features (1/4)

 Up to 512MB continues memory range split into two banks, can be seen as a single device.

SDRAM main features (2/4)

- Fully programmable SDR (single data rate) SDRAM interface
- Configurable SDRAM clock speed
 - Half AHB speed (HCLK /2),
 - One-third AHB speed (HCLK /3)
- Programmable Timing parameters for different SDRAM devices requirements
 - Row to column delay (TRCD)
 - Self refresh time
 - CAS latency of 1,2,3
- Memory data bus width: 8-bit, 16-bit and 32-bit
- Up to 4 internal banks with configurable Row and Column sizes :
 - up to 13-bits Address Row,
 - up to 11-bits Address Column.

SDRAM main features (3/4)

- Optimized initialization sequence by software
 - The initialization command sequence are executed simultaneously for the two banks. Initialization time can be divided by 2.
- Automatic Refresh operation with programmable Refresh rate
- Energy-saving capabilities: two low power modes are supported:
 - Self-refresh Mode
 - Power-down Mode

SDRAM main features (4/4)

- Multibank ping-pong access (FMC SDRAM controller keeps track of the active row in each bank)
- Automatic row and bank boundary management
- Optimized Read access:
 - Cacheable Read FIFO with depth of 6 lines x 32-bit
 - With 6x 14-bit Address Tag to identify each FIFO line content
 - Configurable Read Burst (to anticipate next read accesses during CAS latencies)
- Buffered write access
 - Write Data FIFO with depth of 16
 - With 16x Write Address FIFO to identify each FIFO line destination

SDRAM controller benefits

AHB Slave interface up to 180MHz

Grant more RAM resources for user application

- Accessible by all AHB masters
 - CPU can execute code from SDRAM

Reduce RAM memory cost (SDRAM vs. SRAM)

