# Algebra 1

Vid Drobnič

## Kazalo

| 1 | Vektorji v trirazsežnem prostoru |                      |   |
|---|----------------------------------|----------------------|---|
|   | 1.1                              | Operacije z vektorji | 3 |
|   | 1.2                              | Linearna neodvisnost | 4 |
|   | 1.3                              | Skalarni produkt     | 8 |

### 1 Vektorji v trirazsežnem prostoru

 ${\mathcal P}$  - prostor

 $T \in \mathcal{P}$  - točka

 $A, B \in \mathcal{P}$ 

 $\overrightarrow{AB}$  - usmerjena daljica

Formalno:  $\overrightarrow{AB} = (A, B) \in \mathcal{P} \times \mathcal{P}$  (urejen par)

#### Ekvivalentnost usmerjenih daljic:

 $\overrightarrow{CD} \sim \overrightarrow{AB}$ , kadar je  $\overrightarrow{AB}$  z vzporednim premikom mogoče premakniti v  $\overrightarrow{CD}$ .

- |AB| = |CD| (dolžini daljic sta enaki)
- $\bullet\,$ ista smer (če potegnemo premico čez izhodišca daljic (AC), morata biti točki B in D na istem "bregu" te premice)
- AB || CD

$$\overrightarrow{CD} \sim \overrightarrow{AB} \Rightarrow \overrightarrow{AB} \sim \overrightarrow{CD}$$

 $\underline{\text{Def:}}$  Vektor  $\overrightarrow{AB}$  je množica  $\overrightarrow{AB}=\{\overrightarrow{XY}:\overrightarrow{XY}\sim\overrightarrow{AB}\}$  (usmerjene daljice ekvivalentne daljici  $\overrightarrow{AB}$ )

- ničelni vektor:  $\vec{AA} = \vec{0}$
- $\bullet$ nasprotni vektor<br/> vektorja  $\vec{AB}$ je  $\vec{BA}~(\vec{BA}=-\vec{AB})$

Dodatna oznaka:  $\vec{a}$ ,  $-\vec{a}$  nasprotni vektor

 $V = \{\vec{v} : \vec{v} \text{ vektor}\}$  - vektorski prostor.

 $O \in \mathcal{P}$ ; O fiksiramo

$$f: \mathcal{P} \to V$$

$$f(T) = \vec{OT}$$

fje bijekcija (vsaki točki priredi natanko en vektor).  $\vec{a} = \vec{OT}$ 

#### 1.1 Operacije z vektorji

Seštevanje:

$$\vec{a}, \vec{b} \in V$$
 
$$\vec{a} = \vec{AB}, \vec{b} = \vec{BC}$$
 
$$\vec{a} + \vec{b} = \vec{AC}$$
 
$$\vec{AB} + \vec{BC} = \vec{AC}$$

Lastnosti:<sup>1</sup>

- (1)  $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$  asociativnost
- (2)  $\vec{a} + \vec{b} = \vec{b} + \vec{a}$  komutativnost
- $(3) \vec{a} + \vec{0} = \vec{a}$
- (4)  $\vec{a} + (-\vec{a}) = \vec{0}$

Za lastnosti od (1) do (4) = (V,+) Abelova grupa.

$$\vec{a} - \vec{b} := \vec{a} + (-\vec{b})$$

#### Množenje s skalarjem

Skalar je realno število.

$$\vec{a}, \alpha \in \mathbb{R}$$

 $\alpha \vec{a}$  je vektor.

- ima isto smer kot  $\vec{a}$  za  $\alpha > 0$
- $\bullet\,$ ima nasprotno smer kot $\vec{a}$  za  $\alpha<0$
- $|\alpha \vec{a}| = |\alpha||\vec{a}|$

<sup>&</sup>lt;sup>1</sup>Dokaz lastnosti (1) in (2) s skico.

$$\vec{a} = \vec{OA} \neq \vec{0}$$
 
$$\alpha \vec{a} = \vec{OT}, O, A, T \text{ so na isti premici}$$

S tem uvedemo koordinatni sistem na premici OA.

#### <u>Lastnosti:</u>

(5) 
$$\alpha(\beta \vec{a}) = (\alpha \beta) \vec{a}$$

(6) 
$$(\alpha + \beta)\vec{a} = \alpha\vec{a} + \beta\vec{a}$$

(7) 
$$\alpha(\vec{a}\vec{b}) = \alpha\vec{a} + \alpha\vec{b}$$

(8) 
$$1\vec{a} = \vec{a}$$

V, + in množenje s skalaji je **vektorski prostor**: veljajo lastnosti od (1) do (8).

#### 1.2 Linearna neodvisnost

$$\vec{a}, \vec{b} \in V$$

 $\vec{a}, \vec{b}$  sta linearno odvisna kadar je: bodisi  $\vec{b} = \alpha \vec{a}$  za ustrezen  $\alpha \in \mathbb{R}$ ,

bodisi  $\vec{a} = \beta \vec{b}$  za ustrezen  $\beta \in \mathbb{R}$ .

V nasprotnem primeru sta  $\vec{a}$  in  $\vec{b}$  linearno neodvisna.

$$\vec{a} = \vec{OA}, \vec{b} = \vec{OB}$$

- 1.  $\vec{OA}$  in  $\vec{OB}$  sta linearno odvisna  $\Leftrightarrow O, A, B$  kolinearne (ližijo na isti premici).
- 2.  $\vec{a}, \vec{b}$  sta linearno neodvisna  $\Leftrightarrow (\alpha \vec{a} + \beta \vec{b} = \vec{0} \Rightarrow \alpha = \beta = 0)$

Privzamemo da sta $\vec{a}, \vec{b}$  linearno neodvisna:

$$\{T: \vec{OT} = \alpha \vec{a} + \beta \vec{b}, \alpha, \beta \in \mathbb{R}\} = \mathcal{R}$$

 $\alpha \vec{a} + \beta \vec{b}$  - linearna kombinacija  $\mathcal{R}$  - ravnina določena z O, A, B (z vektorji  $\vec{a}, \vec{b}$ ) in točko O.

$$\vec{r} = \vec{OT}, T \in \mathcal{R}$$

$$\exists \alpha, \beta \in \mathbb{R} : \vec{r} = \alpha \vec{a} + \beta \vec{b}$$

Pri tem sta  $\alpha$  in  $\beta$  enolična določena skalarja.

V  $\mathcal{R}$  smo z vektorjema  $\vec{a}, \vec{b}$  vpeljali koordinatni sistem.

 $\vec{a}, \vec{b}, \vec{c} \in V$  so linearno odvisni, kadar je vsaj eden od njih linearna kombinacija drugih dveh.

$$\text{npr: } \vec{c} = \alpha \vec{a} + \beta \vec{b}$$

V nasprotnem primeru so  $\vec{a}, \vec{b}, \vec{c}$  linearno neodvisni.

- 1.  $\vec{a} = \vec{OA}, \vec{b} = \vec{OB}, \vec{c} = \vec{OC}$  so linearno odvisni  $\Leftrightarrow O, A, B, C$  koplanarne (ležijo na isti ravnini)
- 2.  $\vec{a}, \vec{b}, \vec{c}$  so linearno neodvisni  $\Leftrightarrow (\alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} = \vec{0} \Rightarrow \alpha = \beta = \gamma = 0)$

 $\vec{a}, \vec{b}, \vec{c}$  linearno neodvisni

$$\vec{a} = \vec{OA} \\ \vec{b} = \vec{OB}$$

$$\vec{b} = \vec{OB}$$

$$\vec{c} = \vec{OC}$$

$$V = \{\alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} : \alpha, \beta, \gamma \in \mathbb{R}\}\$$

 $\alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}$ je linearna kombinacija vektorjev $\vec{a}, \vec{b}, \vec{c}.$ 

V - množica vseh vektorjev prostora  $\mathcal{P}$ 

$$\mathcal{P} = \{ R \in \mathcal{P} : \vec{OR} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}, \alpha, \beta, \gamma \in \mathbb{R} \}$$

<u>Dodatek:</u> V zapisu vektorja  $\vec{r} \in V$ :  $\vec{r} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}$ , so koeficienti  $\alpha, \beta, \gamma$ enolično določeni.

Dokaz:

$$\vec{r} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}$$

$$\vec{r} = \alpha_1 \vec{a} + \beta_1 \vec{b} + \gamma_1 \vec{c}$$

$$\Rightarrow \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} = \alpha_1 \vec{a} + \beta_1 \vec{b} + \gamma_1 \vec{c}$$

$$(\alpha - \alpha_1) \vec{a} + (\beta - \beta_1) \vec{b} + (\gamma - \gamma_1) \vec{c} = \vec{0}$$

$$\vec{a}, \vec{b}, \vec{c} \text{ linearno neodvisni } \Rightarrow \alpha - \alpha_1 = \beta - \beta_1 = \gamma - \gamma_1 = 0$$

$$\alpha = \alpha_1, \beta = \beta_1, \gamma = \gamma_1$$

 $\{\vec{a}, \vec{b}, \vec{c}\}$  je **baza** vektorskega prostora V.  $\vec{a}, \vec{b}, \vec{c}$  so linearno neodvisni.

$$R \in \mathcal{P}$$
 (O - fiksirana točka)  $\vec{OR} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}$  
$$R \mapsto (\alpha, \beta, \gamma) \in \mathbb{R}^3 = \{(x, y, z) : x, y, x \in \mathbb{R}\}$$

 $\alpha, \beta, \gamma$  je z R enolično določena.

 $\alpha, \beta, \gamma$  so koordinate točke R glede na koordinaten sistem, ki je določen z bazo  $\{\vec{a}, \vec{b}, \vec{c}\}$  in točko O (izhodišče koordinatnega sistema).

Imena koordinat: dfabscisa, ordinata, aplikata

$$\varphi: V \to \mathbb{R}$$
 
$$\vec{r} \mapsto (\alpha, \beta, \gamma); \vec{r} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}$$

 $\varphi$  je bijekcija.

S $\varphi$  prenesemo operaciji seštevanja vektorjev in množenja vektorjev s skalarji iz V v $\mathbb{R}^3.$ 

$$\vec{r_1}, \vec{r_2} \in V$$

$$\vec{r_1} = \alpha_1 \vec{a} + \beta_1 \vec{b} + \gamma_1 \vec{c}$$

$$\vec{r_2} = \alpha_2 \vec{a} + \beta_2 \vec{b} + \gamma_2 \vec{c}$$

$$\varphi(\vec{r_1}) = (\alpha_1, \beta_1, \gamma_1)$$

$$\varphi(\vec{r_2}) = (\alpha_2, \beta_2, \gamma_2)$$

$$\vec{r_1} + \vec{r_2} = (\alpha_1 + \alpha_2) \vec{a} + (\beta_1 + \beta_2) \vec{b} + (\gamma_1 + \gamma_2) \vec{c}$$

$$\varphi(\vec{r_1} + \vec{r_2}) = (\alpha_1 + \alpha_2, \beta_1 + \beta_2, \gamma_1 + \gamma_2)$$

Torej velja:

$$(\alpha_1, \beta_1, \gamma_1) + (\alpha_2, \beta_2, \gamma_2) = (\alpha_1 + \alpha_2, \beta_1 + \beta_2, \gamma_1 + \gamma_2)$$

seštevanje je definirano po komponentah.

Podobno velja za množenje s skalarji:

$$\lambda(\alpha, \beta, \gamma) = (\lambda \alpha, \lambda \beta, \lambda \gamma)$$

 $\mathbb{R}^3$ je za te operaciji **vektorski prostor** (zadošča A1-A8).

$$\varphi(\vec{a}) = (1, 0, 0)$$

$$\varphi(\vec{b}) = (0, 1, 0)$$

$$\varphi(\vec{c}) = (0, 0, 1)$$

$$\{(1,0,0),(0,1,0),(0,0,1)\}$$

je standardna baza vektorskega prostora  $\mathbb{R}^3$ .

$$(\alpha, \beta, \gamma) = \alpha(1, 0, 0) + \beta(0, 1, 0) + \gamma(0, 0, 1)$$

Oznake:

$$\vec{i} = (1, 0, 0)$$

$$\vec{j} = (0, 1, 0)$$

$$\vec{k} = (0, 0, 1)$$

Dodatna zahteva za standardno bazo vektorskega prostora  $\mathbb{R}^3$ : baza je **ortonormirana**, torej:

- $|\vec{i}| = |\vec{j}| = |\vec{k}| = 1$
- $\bullet \ \, \vec{i}, \vec{j}, \vec{k}$ so paroma pravokotni.

#### 1.3 Skalarni produkt

 $\vec{a}, \vec{b} \in V$ 

Kot med njima je  $\varphi$ ,  $0 \le \varphi \le \pi$ 

 $\underline{\mathrm{Def:}}\ \vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cos \varphi$ 

Videntificiramo z $\mathbb{R}^3$  (glede na standardno bazo in dano izhodišče O).

$$O = (0, 0, 0)$$
  
 $\vec{i} = (1, 0, 0)$ 

$$\vec{j} = (0, 1, 0)$$

$$\vec{k} = (0, 0, 1)$$

$$\vec{a} = (a_1, a_2, a_3) \in \mathbb{R}^3$$
  
 $\vec{b} = (b_1, b_2, b_3) \in \mathbb{R}^3$ 

$$\vec{a} \cdot \vec{b} = ?$$

$$\vec{a} = (a_1, a_2, a_3) = \vec{OA}$$

$$|\vec{a}| = |OA| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

$$d(A, B) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2 + (a_3 - b_3)^2}$$

Kosinusni izrek:

$$(\vec{a} - \vec{b})^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2|\vec{a}||\vec{b}|\cos\varphi$$

$$(a_1 - b_1)^2 + (a_2 - b_2)^2 + (a_3 - b_3)^2 = a_1^2 + a_2^2 + a_3^2 + b_1^2 + b_2^2 + b_3^2 - 2|\vec{a}||\vec{b}|\cos\varphi$$
  

$$\Rightarrow |\vec{a}||\vec{b}|\cos\varphi = a_1b_1 + a_2b_2 + a_3b_3$$

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

Lastnosti:

(1) 
$$\vec{a}\vec{a}=|\vec{a}|^2\geq 0$$
 (enačaj le za  $\vec{a}=\vec{0})$ 

(2) 
$$(\vec{a} + \vec{b})\vec{c} = \vec{a}\vec{c} + \vec{b}\vec{c}$$

(3) 
$$(\alpha \vec{a})\vec{b} = \alpha(\vec{a}\vec{b})$$

$$(4) \ \vec{a}\vec{b} = \vec{b}\vec{a}$$

$$\begin{split} \vec{a} \bot \vec{b} &\Leftrightarrow \varphi \frac{\pi}{2}, \vec{a} \neq \vec{0}, \vec{b} \neq \vec{0} \\ \varphi &= \frac{\pi}{2} \Leftrightarrow \cos \varphi = 0 (0 \leq \varphi \leq \pi) \\ \vec{a} \bot \vec{b} &\Leftrightarrow \vec{a} \cdot \vec{b} = 0 \end{split}$$

Primer:

$$\mathbb{R}^3 \equiv \mathbb{R}^2 \times \{0\}$$

$$\vec{a} = (a_1, a_2, 0)$$

$$\vec{a} \vee \mathbb{R}^2 : \vec{a} = (a_1, a_2)$$

$$\vec{a}\vec{b} = a_1b_1 + a_2b_2$$

p - ploščina paralelograma pizraziti z $a_1,a_2,b_1,b_2$ 

$$p=|\vec{a}||\vec{b}|\sin\varphi$$

$$\vec{a'} \perp \vec{a}$$

$$|\vec{a'}| = |\vec{a}|$$

 $\vec{a}, \vec{a'}$  pozitivno orientirana

$$\vec{a'} = (-a_2, a_1)$$

 $\psi = \frac{\pi}{2} - \varphi$  ali  $\varphi - \frac{\pi}{2}$  če je orienacija  $(\vec{a}, \vec{b})$  pozitivna.

$$|\vec{a}||\vec{b}|\sin\varphi = |\vec{a}||\vec{b}|\cos\theta = \vec{a'}\vec{b} = (-a2, a_1) \cdot (b_1, b_2) = a_1b_2 - a_2b_1$$

 $p=a_1b_2-a_2b_1,$ če je orientacija  $\vec{a},\vec{b}$  pozitivna, če pa je negativna velja:  $p=-(a_1b_2-a_2b_1)$