10. LITTLE - OH NOTATION

DEFINITION: Let f and g be two functions that map a set of natural numbers to a set of positive real numbers, $f: \mathbb{N} \to \mathbb{R}$. Let o(g) be the set of all functions with a similar rate of growth. The relation f(n) = o(g(n)) holds good, if there exist two positive constants c and n_0 such that $f(n) < c \times g(n)$.

Some points over little-oh notion:

- The little-oh notion is used very rarely.
- Here the value of *c* is very small.
- The *little oh* notation can be used instead of the big-Oh notation as the little-oh notation represents a *loose* upper bound.

LITTLE OH DEFINITION IN LIMITS - LITTLE OH RATIO THEOREM

DEFINITION: The function
$$f(n) = o(g(n))$$
 if $\lim_{n \to \infty} \frac{f(g)}{g(n)} = 0$, which implies that $f(n) = o(g(n))$.

EXAMPLES OF LITTLE OH

Example

Let f(n) = 7n + 6. Show that f(n) is in $o(n^2)$.

Solution

As we know,
$$f(n) = o(n^2)$$
 as $\lim_{n \to \infty} \frac{7n+2}{n^2}$

$$\lim_{n\to\infty}\frac{7n+2}{n^2}$$

$$\lim_{n\to\infty}\frac{7n}{n^2}+\frac{2}{n^2}$$

$$\lim_{n\to\infty}\frac{7}{n}+\frac{2}{n^2}$$

As per infinity theory of limit $\lim_{n\to\infty}\frac{c}{x^a}=0$

$$\lim_{n\to\infty}\frac{7}{n}+\lim_{n\to\infty}\frac{2}{n^2}$$

$$0+0$$

0

Therefore, we can say that $7n + 6 \in o(n^2)$.
