Backpropagation Mechanism

The Learning Algorithm of Neural Networks

Outline

- Introduction
- Error Calculation
- Gradient Computation Basics
- Chain Rule of Calculus
- Weight Update Mechanism
- Computational Process
- Challenges
- Optimization Techniques

Introduction

- Short for backward propagation of errors
 - Calculate the error
 - Compute the gradient of the error with respect to each parameter and propagate the error backward through the layers.

Hidden Layers (1 ~ (L-1))

Output Layer (L)

Introduction

Purpose

- Modify the weights and biases to make the output closely match the ground truth (real output).
- It enables neural networks to learn patterns in the data by updating parameters in the direction of decreasing error, iteratively improving predictions.

Hidden Layers (1 ~ (L-1))

Output Layer (L)

Key Components of Learning

- Loss function
- Gradients
- Chain Rule
- Optimization Algorithm
- Learning Rate
- Weight Updates

Hidden Layers (1 ~ (L-1))

Activation = Relu, g(z)

Output Layer (L)

Activation = Sigmoid, $\sigma(z)$

Loss Function

- Quantifies the difference between prediction and the ground truth.
- Common Loss Functions
 - Mean Squared Error:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

• Cross-Entropy Loss:

$$H = -\frac{1}{n} \sum_{i=1}^{n} Y_i \cdot log(p(\hat{Y}_i))$$

Mean Absolute Error:

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |Y_i - \hat{Y}_i|$$

• \underline{Y} is the ground truth, and $\hat{\underline{Y}}$ is the prediction.

Gradients

- Represent the sensitivity of the loss function to changes in each parameter
- It is done using chain rule during backpropagation

Hidden Layers (1 ~ (L-1))

Output Layer (L)

Chain Rule

- Error = Output GT
- Loss = MSE(Error)

$$\frac{\delta \ Loss}{\delta x_1} = \frac{\delta \ Loss}{\delta f} \cdot \frac{\delta f}{\delta z} \cdot \frac{\delta z}{\delta \omega_1} \cdot \frac{\delta \omega_1}{\delta x_1}$$

Weight Update and Learning Rate

- Learning Rate (η)
 - Determines the step size when updating the parameters
 - Balances the convergence speed and stability

Weight Update

$$\omega = \omega - \eta \cdot \frac{\delta Loss}{\delta \omega}$$

- Purpose:
 - Find the local optimum of the loss

Optimizers

- Optimization algorithms are used to handle the backpropagation for us
- Each optimization algorithms has it own way of updating weights and biases.
- Some Famous Optimizers:
 - Stochastic Gradient Descent (SGD)
 - Adaptive Moment estimation (ADAM)
 - Adaptive Gradient (AdaGrad)

PipeLine

Repeat for *N* rounds/Epochs

