3-1: Scoring, Term Weighting and the Vector Space Model

Relevance = Similarity

- Assumptions
 - Query and document are represented similarly
 - ► A query can be regarded as a "document"
 - ▶ Relevance(d,q) \(\infty \) similarity(d,q)
- $R(q) = \{d \in C \mid f(d,q) > \theta\}, f(q,d) = \Delta(Rep(q), Rep(d))$
- Key issues
 - ► How to represent query/document?
 - ▶ How to define the similarity measure Δ ?

Vector Space Model

- Represent a doc/query by a term vector
 - ► Term: basic concept, e.g., word or phrase
 - Each term defines one dimension
 - ▶ N terms define a high-dimensional space
 - ▶ Element of vector corresponds to term weight
 - \triangleright E.g., d=(x₁,...,x_N), x_i is "importance" of term i
- Measure relevance by the distance between the query vector and document vector in the vector space

VS Model: illustration

What the VS model doesn't say

- How to define/select the "basic concept"
 - Concepts are assumed to be orthogonal
- How to assign weights
 - Weight in query indicates importance of term
 - Weight in doc indicates how well the term characterizes the doc
- How to define the similarity/distance measure

How to Assign Weights?

- Very very important!
- Why weighting
 - Query side: Not all terms are equally important
 - ▶ Doc side: Some terms carry more information about contents
- ► How?
 - Two basic heuristics
 - ► TF (Term Frequency) = Within-doc-frequency
 - ► IDF (Inverse Document Frequency)
 - ► TF normalization

Score for a document given a query

$$Score(q,d) = \sum_{t \in q \cap d} tf.idf_{t,d}$$

- ► There are many variants
 - ► How "tf" is computed (with/without logs)
 - ▶ Whether the terms in the query are also weighted

...

Binary → count → weight matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
Antony	5.25	3.18	0	0	0	0.35	
Brutus	1.21	6.1	0	1	0	0	
Caesar	8.59	2.54	0	1.51	0.25	0	
Calpurnia	0	1.54	0	0	0	0	
Cleopatra	2.85	0	0	0	0	0	
mercy	1.51	0	1.9	0.12	5.25	0.88	
worser	1.37	0	0.11	4.15	0.25	1.95	

Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$

Documents as vectors

- So we have a |V|-dimensional vector space
- Terms are axes of the space
- Documents are points or vectors in this space
- Very high-dimensional: tens of millions of dimensions when you apply this to a web search engine
- These are very sparse vectors most entries are zero.

Queries as vectors

- Key idea 1: Do the same for queries: represent them as vectors in the space
- Key idea 2: Rank documents according to their proximity to the query in this space
- proximity = similarity of vectors
- ▶ proximity ≈ inverse of distance
- ► Recall: We do this because we want to get away from the you're-either-in-orout Boolean model.
- ► Instead: rank more relevant documents higher than less relevant documents

Formalizing vector space proximity

- First cut: distance between two points
 - (= distance between the end points of the two vectors)
- Euclidean distance?
- Euclidean distance is a bad idea . . .
- . . . because Euclidean distance is large for vectors of different lengths.

Formalizing vector space proximity

- First cut: distance between two points
 - (= distance between the end points of the two vectors)
- Euclidean distance?
- Euclidean distance is a bad idea . . .
- . . . because Euclidean distance is large for vectors of different lengths.

Why distance is a bad idea

The Euclidean distance between q and $\frac{\partial}{\partial z}$ is large even though the distribution of terms in the query q and the distribution of terms in the document d_2 are

very similar.

Use angle instead of distance

- Thought experiment: take a document d and append it to itself. Call this document d'.
- "Semantically" d and d' have the same content
- ► The Euclidean distance between the two documents can be quite large
- The angle between the two documents is 0, corresponding to maximal similarity.
- Key idea: Rank documents according to angle with query.

From angles to cosines

- The following two notions are equivalent.
 - Rank documents in <u>decreasing</u> order of the angle between query and document
 - ► Rank documents in <u>increasing</u> order of cosine(query,document)
- Cosine is a monotonically decreasing function for the interval [0°, 180°]

From angles to cosines

▶ But how - and why - should we be computing cosines?

Length normalization

- A vector can be (length-) normalized by dividing each of its components by its length for this we use the L₂ norm: $\|\vec{x}\|_2 = \sqrt{\sum_i x_i^2}$
- Dividing a vector by its L₂ norm makes it a unit (length) vector (on surface of unit hypersphere)
- ► Effect on the two documents d and d' (d appended to itself) from earlier slide: they have identical vectors after length-normalization.
 - ► Long and short documents now have comparable weights

Similarity

This is a measure of the angle between two unit vectors:

```
[Definition: if a = (a1,a2,...,an) and b = (b1,b2,...,bn) then a.b = Sum(a1*b1 + a2*b2 + ... + an*bn) and ||a|| = sqrt(a1^2 + a2^2 + ... + an^2) and ||b|| = sqrt(b1^2 + b2^2 + ... + bn^2).]
```

The smaller the angle, the more similar are the two vectors.

cosine(query,document)

 q_i is the tf-idf weight of term i in the query d_i is the tf-idf weight of term i in the document

 $\cos(\vec{q}, \vec{d})$ is the cosine similarity of \vec{q} and \vec{d} ... or, equivalently, the cosine of the angle between \vec{q} and \vec{d} .

Cosine similarity illustrated

RICH

Cosine similarity amongst 3 documents

How similar are

the novels

SaS: Sense and

Sensibility

PaP: Pride and

Prejudice, and

WH: Wuthering

Heights?

term	SaS	PaP	WH
affection	115	58	20
jealous	10	7	11
gossip	2	0	6
wuthering	0	0	38

Term frequencies (counts)

Note: To simplify this example, we don't do idf weighting.

3 documents example contd.

				A C 4			•	
Log fre	term	SaS	PaP	After	l€ term	SaS	PaP	WH
	affection	3.06	2.76	2.30	affection	0.789	0.832	0.524
	jealous	2.00	1.85	2.04	jealous	0.515	0.555	0.465
	gossip	1.30	0	1.78	gossip	0.335	0	0.405
	wuthering	0	0	2.58	wuthering	0	0	0.588

```
cos(SaS,PaP) \approx 0.789 \times 0.832 + 0.515 \times 0.555 + 0.335 \times 0.0 + 0.0 \times 0.0 \approx 0.94

cos(SaS,WH) \approx 0.79

cos(PaP,WH) \approx 0.69
```

Why do we have cos(SaS,PaP) > cos(SaS,WH)?

Computing cosine scores

```
CosineScore(q)
     float Scores[N] = 0
     float Length[N]
  3 for each query term t
     do calculate w_{t,q} and fetch postings list for t
         for each pair(d, tf<sub>t,d</sub>) in postings list
         do Scores[d] += w_{t,d} \times w_{t,a}
     Read the array Length
     for each d
     do Scores[d] = Scores[d]/Length[d]
     return Top K components of Scores[]
```

tf-idf weighting has many variants

Term f	requency	Docum	ent frequency	Normalization			
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1		
I (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{df_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2+w_2^2}}$	<u>L</u> 2++w _M	
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log\frac{N-\mathrm{d}f_t}{\mathrm{d}f_t}\}$	u (pivoted unique)	1/u		
b (boolean)	$\begin{cases} 1 & \text{if } \operatorname{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/\mathit{Charl}$ $lpha < 1$	Length lpha ,	
L (log ave)	$\frac{1 + \log(\operatorname{tf}_{t,d})}{1 + \log(\operatorname{ave}_{t \in d}(\operatorname{tf}_{t,d}))}$						

Columns headed 'n' are acronyms for weight schemes.

Why is the base of the log in idf immaterial?

Weighting may differ in queries vs documents

- Many search engines allow for different weightings for queries vs. documents
- ► SMART Notation: denotes the combination in use in an engine, with the notation *ddd.qqq*, using the acronyms from the previous table
- A very standard weighting scheme is: lnc.ltc
- Document: logarithmic tf (l as first character), no idf and cosine normalization
- Query: logarithmic tf (l in leftmost column), idf (t in second column), no normalization ...

A bad idea?

tf-idf example: lnc.ltc

Document: car insurance auto insurance

Query: best car insurance

Term	Query						Document				Pro d
	tf- raw	tf-wt	df	idf	wt	n'liz e	tf-raw	tf-wt	wt	n'liz e	
auto	0	0	5000	2.3	0	0	1	1	1	0.52	0
best	1	1	50000	1.3	1.3	0.34	0	0	0	0	0
car	1	1	10000	2.0	2.0	0.52	1	1	1	0.52	0.27
insurance	1	1	1000	3.0	3.0	0.78	2	1.3	1.3	0.68	0.53

Exercise: what is *N*, the number of docs?

Doc length =
$$\sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92$$

Score =
$$0+0+0.27+0.53 = 0.8$$

Summary - vector space ranking

- ▶ Represent the query as a weighted tf-idf vector
- Represent each document as a weighted tf-idf vector
- Compute the cosine similarity score for the query vector and each document vector
- Rank documents with respect to the query by score
- Return the top K (e.g., K = 10) to the user

Resources for this lecture

- Introduction to Information Retrieval, chapter 6
- Lecture slides of Christopher Manning, Prabhakar Raghavan and Hinrich Schütze