Stochastic differential equations (SDEs) -The Skorokhod problem-

El Mehdi Haress - Supervisor : Alexandre Richard

MICS Laboratory

August 6, 2019

Plan

- Introduction
 - Brownian motion
 - Stochastic differential equations
- The Skorokhod problem
 - Definition
 - Interpretation
 - Context
- Resolution
 - Penalization method
 - Results
- 4 Drift estimation
 - Problem
 - Estimators

Brownian motion

 $\{W_t, t \in [0, T]\}$: the only centered guassian process with continuous trajectories that has a covariance : $\mathbb{E}(W_t W_s) = min(s, t)$

Trajectory = for a fixed ω , $t \to W_t(\omega)$

Hurst parameter $h \in (0,1)$

Stochastic differential equations

Stochastic differential equation = Differential equaition + noise.

$$\frac{dx(t)}{dt} = f(x(t), t) + \epsilon$$

SDEs often take the form:

$$\forall t \in [0,T], \ X_t = \int_0^t b(X_s) ds + \int_0^t \sigma(X_s) dB_s.$$

- $\{B_t, t \in [0, T]\}$ is a fractional brownian motion (fbm)
- \bullet σ is the diffusion coefficient
- b is the drift

El Mehdi Haress - Supervisor : Alexandre RicStochastic differential equations (SDEs) -The

Stochastic differential equations

SDEs often take the form:

$$\forall t \in [0,T], \ X_t = \int_0^t b(X_s) ds + \int_0^t \sigma(X_s) dB_s.$$

- B has continuous trajectories, yet they are not differentiable
- Stochastic integrals : Probabilistic and deterministic integrals

Stochastic differential equations

SDEs often take the form:

$$\forall t \in [0, T], \ X_t = \int_0^t b(X_s) ds + \int_0^t \sigma(X_s) dB_s.$$

- ullet Rough integral : we define the integral for every ω
- Stratonovich integral : define as a limit in probability :

$$\lim_{\epsilon \to 0} (2\epsilon)^{-1} \int_0^T u_s(B_{\min((s+\epsilon),T)} - B_{\max((s-\epsilon),0)}) ds.$$

6 / 14

El Mehdi Haress - Supervisor : Alexandre Ric Stochastic differential equations (SDEs) -Th August 6, 2019

Definition of the Skorokhod problem

A couple (Y, K) is a solution of the Skorokhod problem if

$$\forall t \in [0, T], Y_t = \int_0^t \sigma(Y_s) dB_s + K_t$$

and

- $\forall t \in [0, T], Y_t > 0$
- K is non decreasing
- $\forall t \in [0, T], \int_0^t (Y_s) dK_s = 0$, or equivalently, $\int_0^t \mathbf{1}_{Y_s \neq L_s} dK_s = 0$

Interpretation

Let's consider the SDE

$$\forall t \in [0, T], \ Y_t = \int_0^t \sigma(Y_s) dB_s,$$

- b = 0
- $\sigma \in C_b^2(\mathbf{R})$
- $Y_t(\omega) \in \mathbf{R}$

For every ω , we want $t o Y_t$ to be non-negative

El Mehdi Haress - Supervisor : Alexandre RicStochastic differential equations (SDEs) -The

Interpretation

The idea is to introduce a process $\{K_t, t \in [0, T]\}$ such that

$$\forall t \in [0, T], Y_t = \int_0^t \sigma(Y_s) dB_s + K_t$$

El Mehdi Haress - Supervisor : Alexandre Ric Stochastic differential equations (SDEs) -The

Context

Solution of the Skorokhod problem = (Y, K)

- A solution exists when B is a brownian motion [4]
- That solution has a Malliavin derivative. [1]
- We can still prove that a solution exists when considering rough paths
 [2]
- We can prove that the solution has a density with stronger restrictions on the parameters [3]

Penalization method

Penalization : Approximate K_t by a sequence,

$$\forall t \in [0, T], \ Y_t^n = y_0 + \int_0^t \sigma(Y_s^n) dB_s + \int_0^t \psi_n(Y_s^n) ds.$$

$$\psi_n(x) = (nx)_-$$

Results

- For every t in [0, T], Y_t^n converge a.s to a variable Y_t
- $\int_0^t \psi_n(Y_s^n) ds$ converge a.s to a variable K_t
- \bullet (Y, K) is a solution of the Skorokhod problem
- Y_t has a density (Malliavin Calculus) when $\sigma=1$ and B has a Hurst parameter $h>\frac{1}{2}$

The drift estimate problem

- We will consider the following stochastic differential equation : $\forall t \in [0, T], \ Y_t = y_0 + \int_0^t b_{\vartheta_0}(Y_s)ds + \sigma B_t$
- The unkwon parameter ϑ_0 lies in a certain set Θ which will be specified. $\{b_{\vartheta}, \vartheta \in \Theta\}$ is a known family
- Our aim is to get an accurate estimation of ϑ_0 according to some discrete observations of Y

Estimators for the drift estimate problem

- Least squares estimator
- Maximum likelihood estimator
- Strong hypotheses

14 / 14

A note on the malliavin differentiability of one-dimensional reflected stochastic differential equations with discontinuous drift. *arXiv preprint arXiv:1410.0520*, 2014.

Penalisation techniques for one-dimensional reflected rough differential equations.

2019.

S. Tindel et al.

Quasilinear stochastic elliptic equations with reflection: the existence of a density.

Bernoulli, 4(4):445-459, 1998.

T.-S. Zhang.

On the strong solutions of one-dimensional stochastic differential equations with reflecting boundary.

Stochastic processes and their applications, 50(1):135–147, 1994.