ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Пример. Найти изображение оригинала t^n , $n \in N$.

Решение:

Известно, что $1 \div \frac{1}{p}$. Тогда по правилу дифференцирования изображения

находим:
$$-t \cdot 1 \div \frac{d}{dp} \left(\frac{1}{p} \right) = -\frac{1}{p^2}$$
, т.е. $t \div \frac{1}{p^2}$, $-t \cdot t \div \frac{d}{dp} \left(\frac{1}{p^2} \right) = \frac{2}{p^3}$, т.е. $t^2 \div 2 / p^3$. Так как $\frac{d^{(n)}}{dp^n} \left(\frac{1}{p} \right) = (-1)^n \frac{n!}{p^{n+1}}$, то $t^n \div \frac{n!}{p^{n+1}}$.

Пример. Найти изображение оригинала $f(t) = t \cos 2t$.

Решение:

Зная изображение f(t), из теоремы о дифференцировании изображения получаем:

$$\cos 2t \div \frac{p}{p^2 + 4}, -t \cos 2t \div \frac{d}{dp} \left(\frac{p}{p^2 + 4} \right) = \frac{4 - p^2}{(p^2 + 4)^2}, \text{ r.e. } t \cos 2t \div \frac{4 - p^2}{(p^2 + 4)^2}.$$

Пример. Найти изображение оригинала $f(t) = t^2 e^{3t}$.

Решение:

$$e^{3t} \div \frac{1}{p-3}, \ te^{3t} \div -\frac{d}{dp} \left(\frac{1}{p-3} \right) = \frac{1}{(p-3)^2}, \ t^2 e^{3t} = t(te^{3t}) =$$
$$= -\frac{d}{dp} \left(\frac{1}{(p-3)^2} \right) = \frac{2}{(p-3)^3}.$$

Восстановление оригиналов по изображению – обратное преобразование

<u>Лапласа</u> (символическая запись $F(p) \div f(t)$).

1 Восстановление оригиналов с помощью таблиц.

Этот способ является самым простым, но удобен в применении только, если изображение легко сводится к табличному виду элементарными преобразованиями.

Фрагмент таблицы

No	Оригинал $f(t)$	Изображение $F(p) = \int_{0}^{\infty} f(t) \cdot e^{-pt} dt$
1	1	$\frac{1}{p}$
2	e^{at}	$\frac{1}{p-a}$
3	t^n	$\frac{n!}{p^{n+1}}$

4	$t^n e^{at}$.	$\frac{n!}{(p-a)^{n+1}}$
5	$\sin \beta t$	$\frac{\beta}{p^2 + \beta^2}$
6	$\cos \beta t$	$\frac{p}{p^2 + \beta^2}$
7	$\operatorname{sh} \beta t$	$\frac{\beta}{p^2 - \beta^2}$

Пример. Найти оригинал изображения $F(p) = 5/(p^2 - 4)$.

Решение.

Приведем F(p) к табличному виду

$$F(p) = 5 \cdot \frac{1}{2} \cdot \frac{2}{p^2 - 4} = \frac{5}{2} \cdot \frac{2}{p^2 - 4} \Rightarrow$$
 по таблице $f(t) = 2.5 sh2t$. У

Пример. Найти оригинал изображения $F(p) = \frac{3p+2}{p^2-10p+26}$

Решение.

Приведем F(p) к табличному виду

$$F(p) = \frac{3p+2}{p^2 - 10p + 26} = \frac{3(p-5) + 17}{(p-5)^2 + 1} = 3 \cdot \frac{p-5}{(p-5)^2 + 1} + 17 \cdot \frac{1}{(p-5)^2 + 1}$$

Учитывая свойство линейности, по таблице получаем, что

$$f(t) = 3e^{5t} \cos t + 17e^{5t} \sin t$$
.

Пример. Найти оригинал изображения $F(p) = \frac{9-p}{(p-3)^3}$

Решение. Приведем F(p) к табличному виду:

$$F(p) = \frac{9-p}{(p-3)^3} = \frac{3-p+6}{(p-3)^3} = \frac{3-p}{(p-3)^3} + \frac{6}{(p-3)^3} = -\frac{1}{(p-3)^2} + 3 \cdot \frac{2!}{(p-3)^3} = 3 \cdot \frac{2!}{(p-3)^2} - \frac{1}{(p-3)^3} \Rightarrow \text{по таблице} \quad f(t) = (3t^2 - t)e^{3t}.$$

2 Восстановление оригиналов с помощью свертки

Напомним, сверткой двух функций-оригиналов $f_1 * f_2$ называется интеграл

$$\int_{0}^{t} f_1(\tau) f_2(t-\tau) d\tau.$$

Теорема об изображении свертки.

Если
$$f_1(t) \div F_1(p)$$
 и $f_2(t) \div F_2(p)$, то $f_1(t) * f_2(t) \div F_1(p)F_2(p)$.

Примеры. Восстановить оригинал, используя теорему об изображении свертки.

1)
$$F(p) = \frac{1}{p^2(p-1)}$$

Решение.

$$\frac{1}{p^{2}(p-1)} = \frac{1}{p^{2}} \cdot \frac{1}{p-1} \div t * e^{t};$$

$$t * e^{t} = \int_{0}^{t} \tau e^{t-\tau} d\tau = -\tau e^{t-\tau} \Big|_{0}^{t} + \int_{0}^{t} e^{t-\tau} d\tau = -t - e^{t-\tau} \Big|_{0}^{t} = e^{t} - t - 1 = f(t).$$

2)
$$F(p) = \frac{p}{(p^2 + 1)^2}$$

Решение.

$$\frac{1}{(p^2+1)^2} = \frac{1}{p^2+1} \cdot \frac{p}{p^2+1} \div \sin t * \cos t;$$

$$\sin t * \cos t = \int_0^t \sin \tau \cos(t-\tau) d\tau = \frac{1}{2} \int_0^t (\sin t + \cos(2\tau - t)) d\tau =$$

$$= \frac{1}{2} \left(\tau \sin t - \frac{1}{2} \cos(2\tau - t) \right) \Big|_0^t = \frac{1}{2} \left(t \sin t - \frac{1}{2} \cos t + \frac{1}{2} \cos t \right) = \frac{t}{2} \sin t = f(t).$$

3 Нахождение оригиналов с помощью разложения дроби на сумму простейших.

Если изображение является правильной дробью, то методом неопределенных коэффициентов эту дробь можно представить в виде суммы простейших дробей I-IV типов так, как это делалось при интегрировании рациональных дробей.

При этом дробь 1-го типа $1/(p-\alpha)$ соответствуют оригиналу $e^{\alpha t}$, дробь 2-го типа $1/(p-\alpha)^k$ соответствует оригиналу $t^{k-1}e^{\alpha t}/(k-2)!$, дробь 3-го типа сначала преобразовывается к виду:

$$\frac{M(p-\alpha)+N}{(p-\alpha)^2+\omega^2} = \frac{M(p-\alpha)}{(p-\alpha)^2+\omega^2} + \frac{N}{\omega} \cdot \frac{\omega}{(p-\alpha)^2+\omega^2}, \quad \text{а затем по таблице}$$

определяется оригинал: $f(t) = Me^{\alpha t} \cos \omega t + \frac{N}{\omega} e^{\alpha t} \sin \omega t$.

Выполнив аналогичные преобразования для дробей 4-го типа, можно найти для них оригиналы или по таблицам, или с помощью свертки.

Пример. Найти оригинал следующего изображения:
$$F(p) = \frac{2p^2 - 4p + 8}{(p-2)^2(p^2 + 4)}$$

Решение.

Представим эту дробь в виде суммы простейших дробей:

$$\frac{2p^2 - 4p + 8}{(p-2)^2(p^2 + 4)} = \frac{A}{p-2} + \frac{B}{(p-2)^2} + \frac{Cp + D}{p^2 + 4}.$$

Найдем A, B, C, D методом неопределенных коэффициентов.

$$2p^2$$
- $4p$ + 8 = $A(p$ - $2)(p^2$ + $4)$ + $B(p^2$ + $4)$ + $(p$ - $2)^2(Cp$ + $D)$ При

$$p=2 \qquad 8=8B \text{ ,m.e. } B=1$$

$$p^{3}: \qquad 0=A+C$$

$$p^{2}: \qquad 2=-2A+B+D-4C$$

$$p^{1}: \qquad -4=4A+4C-4D \qquad D=1(A+C=0)$$

$$\begin{cases} A+C=0 \\ -2A-4C=0 \end{cases} \qquad A=0, C=0$$

Имеем $F(p) = \frac{1}{\left(p-2\right)^2} + \frac{1}{p^2+4}$. Применяя теоремы линейности и затухания,

находим оригинал: $f(t) = te^{2t} + 0.5 \sin 2t$.

Пример. Найти оригинал следующего изображения:
$$F(p) = \frac{p^2 + 14}{(p^2 + 4)(p^2 + 9)}$$

Решение.

Представим F(p) в виде суммы простейших дробей:

$$\frac{p^2 + 14}{(p^2 + 4)(p^2 + 9)} = \frac{Ap + B}{p^2 + 4} + \frac{Cp + D}{p^2 + 9}, \text{ r.e.}$$
$$p^2 + 14 = (Ap + B)(p^2 + 9) + (Cp + D)(p^2 + 4).$$

Приравниваем коэффициенты при равных степенях:

$$p^0$$
: $14=9B+4D$ p^1 : $0=9A+4C$ p^2 : $1=B+D$ p^3 : $0=A+C$. Решая соответствующие системы, получаем, что $A=0$; $C=0$; $B=2$; $D=-1$. $F(p)=\frac{2}{p^2+4}-\frac{1}{p^2+9}$, т.е. $f(t)=\sin 2t-\frac{1}{3}\sin 3t$.

При решении этих задач использовались теоремы единственности, линейности, затухания, таблица оригиналов и изображений.

4. Нахождение оригиналов с помощью теоремы запаздывания.

Если изображение имеет вид рациональной дроби, умноженной на $e^{-p\, au}$, где $\tau > 0$, то сначала находят оригинал от рациональной дроби, а затем применяют теорему запаздывания.

Пример. Найти оригинал следующего изображения:
$$F(P) = \frac{e^{-2p}}{(p-3)(p^2-25)}$$

Найдем сначала оригинал для дроби

$$\frac{1}{(p-3)(p-5)(p+5)}$$

Разложим эту дробь на простейшие и найдем коэффициенты методом неопределенных коэффициентов

$$\frac{1}{(p-3)(p-5)(p+5)} = \frac{A}{p-3} + \frac{B}{p-5} + \frac{C}{p+5}$$

$$1 = A(p-5)(p^2+5) + B(p-3)(p+5) + C(p-3)(p-5)$$
При $p=3$ получим $1 = -16AA = -1/16$
При $p=5$ получим $1 = 20BB = \frac{1}{20}$
При $p=5$ получим $1 = 80CC = 1/80$

$$\frac{1}{(p-3)(p-5)(p+5)} = -\frac{1/16}{p-3} + \frac{1/20}{p-5} + \frac{1/80}{p+5},$$
оригинал равен $-\frac{1}{16}e^{3t} + \frac{1}{20}e^{5t} + \frac{1}{80}e^{-5t}$, а оригинал данного $f(t) = -\frac{1}{16}e^{3(t-2)} + \frac{1}{20}e^{5(t-2)} + \frac{1}{80}e^{-5(t-2)}$.