Spacecraft Environment

Space System Design, MAE 342, Princeton University Robert Stengel

- Atmospheric characteristics
- Loads on spacecraft
- Near-earth and space environment
- Spacecraft charging
- Orbits and orbital decay

Copyright 2016 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE342.html

Launch Phases and Loading Issues-1

- Liftoff
 - Reverberation from the ground
 - Random vibrations
 - Thrust transients
- Winds and Transonic Aerodynamics
 - High-altitude jet stream
 - Buffeting
- Staging
 - High sustained acceleration
 - Thrust transients

Launch Phases and Loading Issues-2

- Heat shield separation
 - Mechanical and pyrotechnic transients
- Spin stabilization
 - Tangential and centripetal acceleration
 - Steady-state rotation
- Separation
 - Pyrotechnic transients

3

Typical Acoustic and Shock Environment (Delta II)

Transient Loads at Thrusting Cutoff

Figure 8.8 Base axial force launch transient for Ariane 4 first stage cut off (Reproduced by permission of Arianespace)

Fortescue, et al, 2003

Figure 8.9 Base axial force launch transient for Ariane 4 second stage cut off (Reproduced by permission of Arianespace)

Properties of the Lower Atmosphere

Earth's High-Altitude **Atmosphere**

Temperature of the **Atmosphere**

Density of the Atmosphere

Atmosphere not well-represented as a continuum at high altitude

Altitude Sea Level 600 km

2 x 10^19 2 x 10^7

Molecules/cc Mean Free Path 7 x 10^-6 cm 7 10 km

Lower Atmosphere Rotates With The Earth

- Zero wind at Earth's **surface = Inertially** rotating air mass
- · Wind measured with respect to Earth's rotating surface
- Jet stream magnitude typically peaks at 10-15km altitude

Jet Stream Produces High Loads on Launch Vehicle

- Launch vehicle must able to fly through strong wind profiles
- Design profiles assume 95th-99th-percentile worst winds and wind shear

Aerodynamic Forces

$$\begin{bmatrix} \text{Drag} \\ \text{Side Force} \\ \text{Lift} \end{bmatrix} = \begin{bmatrix} C_D \\ C_Y \\ C_L \end{bmatrix} \frac{1}{2} \rho V^2 S$$

- V = air-relative velocity = velocity w.r.t. air mass
- Drag measured opposite to the air-relative velocity vector
- Lift and side force are perpendicular to the velocity vector 10

Aerodynamic Force Parameters

$$\rho = \text{air density}, \text{ function of height, } h$$

$$= \rho_{sealevel} e^{-\beta h}$$

$$\rho_{sealevel} = 1.225 \, kg \, / \, m^3; \quad \beta = 1/9,042 \, m$$

$$V = \left[v_x^2 + v_y^2 + v_z^2 \right]^{1/2} = \left[\mathbf{v}^T \mathbf{v} \right]^{1/2}, m/s$$

$$\mathbf{Dynamic pressure} = \overline{q} = \frac{1}{2} \rho V^2, N/m^2$$

$$S =$$
reference area, m^2

$$C_D$$
 C_Y = non - dimensional aerodynamic coefficients

11

Aerodynamic Drag

$$Drag = C_D \frac{1}{2} \rho V^2 S$$

- Drag components sum to produce total drag
 - Skin friction
 - Base pressure differential
 - Forebody pressure differential (M > 1)

Aerodynamic Moment

Lengthwise lift variation causes bending moment

N'(x) = normal force variation with length \approx lift variation

$$M_{y}(x) = \int_{x_{\min}}^{x_{\max}} N_{y}(x) (x - x_{cm}) dx$$
$$= \int_{x_{\min}}^{x_{\max}} \sum_{x_{\min}}^{x_{\max}} N'_{y}(x) dx (x - x_{cm}) dx$$

13

Typical Velocity Loss due to Drag During Launch

- Aerodynamic effects on launch vehicle are most important below ~50-km altitude
- Maintain angle of attack and sideslip angle near zero to minimize side force and lift
- Typical velocity loss due to drag for vertical launch
 - Constant thrust-to-weight ratio
 - $C_D S/m = 0.0002 m^2/kg$
 - Final altitude above 80 km

Thrust-to- Weight Ratio	Velocity Loss, m/s
2	336
3	474
4	581

Effects of Gravity and Drag on the Velocity Vector

$$\dot{V}(t) = \frac{Thrust - \left[C_D S \frac{1}{2} \rho(h) V^2(t) + mg \sin \gamma(t)\right]}{m}$$

$$\dot{\gamma}(t) = -g \cos \gamma(t) / V(t)$$

Significant reduction in velocity magnitude Strong curvature of the flight path

Typical Ariane 4 Launch Profile

Ariane 5 Aerothermal Flux

Fortescue, et al, 2011

19

Orbital Lifetime of a Satellite

Aerodynamic drag causes orbit to decay

$$\frac{dV}{dt} = -\frac{C_D \rho V^2 S / 2}{m} \equiv -B * \rho V^2 S / 2$$
$$B^* = C_D S / m$$

 Air density decreases exponentially with altitude

$$\rho = \rho_{SL} e^{-h/h_{scale}}$$

$$\rho_{SL} = \text{air density at sea level}$$

$$h_{scale} = \text{atmospheric scale height}$$

- · Drag is highest at perigee
 - Air drag "circularizes" the orbit
 - Large change in apogee
 - · Small change in perigee
 - · Until orbit is ~circular
 - · Final trajectory is a spiral

Orbital Lifetime of a Satellite

 Aerodynamic drag causes energy loss, reducing semi-major axis, a

$$\frac{da}{dt} = -\sqrt{\mu a} B * \rho_{SL} e^{-(a-R)/h_{scale}}$$

Variation of a over time

$$\int_{a_0}^{a} \frac{e^{-(a-R)/h_s}}{\sqrt{a}} da = -\sqrt{\mu} B * \rho_{SL} \int_{0}^{t} dt$$

• Time, t_{decay} , to reach earth's surface (a = R) from starting altitude, h_0

$$t_{decay} = \frac{h_{scale}}{\sqrt{\mu R} B * \rho_{SL}} \left(e^{h_0/h_{scale}} - 1 \right)$$

21

NRL Starshine 1 Orbital Decay (2003)

http://www.azinet.com/starshine/descript.htm

Diurnal Variations in Earth's Upper Atmosphere

Atmospheric Constituents

- Constituents at minimum and maximum solar activity
- Different scale heights for different species

23

US Std. Atmos., 1976 110

Atmospheric Ionization Profiles

- Scale heights of electrons, ions, and neutrals vary greatly
- ·lonospheric electric field (set by heavy oxygen atoms) dominates gravity field for lighter ions, e.g., hydrogen and helium

US Std. Atmos., 1976

25

Mean Free Path

Altitude (km)	λ_0 (m)	Altitude (km)	λ ₀ (m)
100	0.142	300	2.6×10^{3}
120	3.31	400	16×10^{3}
140	18	500	77×10^{3}
160	53	600	2.80×10^{3}
180	120	700	730×10^{3}
200	240	800	1400×10^{3}

- At high altitude, the mean free path of molecules is greater than the dimensions of most spacecraft
 - Aerodynamic calculations should be based on free molecular flow
 - Heat exchange is solely due to radiation

Fortescue, et al, 2011 26

Orbits About the Sun

Solar System Environment

Low- and high-speed particles

Heliospheric Current Sheet

Solar wind

- Plasma consisting of electrons, protons, and alpha particles
- Variable temperature, density, and speed
- 1.5-10 keV
- Slow (400 km/s) and fast (750 km/s) charged particles
- Geomagnetic storms

Sunspots and Solar Flares

Flux vs. Energy of Electrons and Protons

Fortescue, et al, 2011

The Solar Spectrum

Fortescue, et al, 2011

31

Variability of Solar Radiation

Spectral region	Wavelength	Flux $(J/(m^2 s \mu m))$	Variability	
Radio	λ > 1 mm	$10^{-11} - 10^{17}$	×100	
Far infrared	$1 \text{ mm} \ge \lambda > 10 \mu\text{m}$	10^{-5}	Uncertain	
Infrared	$10 \mu \text{m} \geq \lambda > 0.75 \mu \text{m}$	$10^{-3} - 10^2$	Uncertain	
Visible	$0.75 \mu\mathrm{m} \ge \lambda > 0.3 \mu\mathrm{m}$	10^{3}	<1%	
Ultraviolet	$0.3 \mu \text{m} \ge \lambda > 0.12 \mu \text{m}$	$10^{-1} - 10^2$	1-200%	
Extreme ultraviolet	$0.12 \mu m \geq \lambda > 0.01 \mu m$	10^{-1}	×10	
Soft X-ray	$0.01 \mu \text{m} \ge \lambda > 1 \text{Å}$	$10^{-1} - 10^{-7}$	×100	
Hard X-ray	$1\text{Å} \geq \lambda$	$10^{-7} - 10^{-8}$	$\times 10 - \times 10$	

Fortescue, et al, 2011

Van Allen Belts

Magnetosphere and Van Allen Belts

- Trapped Energetic Ions and Electrons
- •Light ions form the base population of the magnetosphere

Earth's Magnetosphere

35

Earth's Magnetosphere

Fortescue, et al, 2011

Annual Dose of Ionizing Radiation

Annual doses (Si) in Circular equatorial orbits computed with SHIELDOSE and AEBMAX, APBMAX models 4 mm spherical aluminium shielding.

- see Pisacane for discussion of mechanics and dynamics
 - plasma frequency
 - Debye length
 - spacecraft charging and ram-wake effects
 - motion of charged particles in a dipole field
 - trapped radiation

Spacecraft That Defined the Magnetosphere and Van Allen Belts

Spacecraft Charging

Interaction of sunlight, space plasma, and spacecraft materials and electronics

NASA-HDBK-4002A, 2011

Spacecraft Charging Damage

Interaction of space plasma and spacecraft materials and electronics

(a) Failure caused by in-flight ESD arcing

SCATHA Satellite, 1979

NASA-HDBK-4002A, 2011

41

Spacecraft Charging Hazard Zones

Integral Flux Contours at Earth, Jupiter, and Saturn

43

Space Debris

Ring of objects in geosynchronous orbit (GEO) altitudes Cloud of objects in low-Earth orbit (LEO) altitudes

Micrometeoroids and Space Debris

- · Nuts, bolts, and other fragments in orbit
- · July 2013 estimate
 - 170 million objects {< 1cm}
 - 670,000 objects {1 10 cm}
 - 29,000 objects (> 10 cm)
- January 2007: Chinese anti-satellite test destroyed old satellite and added >1,335 remnants larger than a golf ball
- · U.S. shot down a failed spy satellite in 2008 -- more debris

45

Space Debris Density after 2009

Satellites for Detecting Micrometeoroids and Space Debris

Pressurized-cell penetration detectors, impact and other detectors, Scout launch vehicle

47

Growth Estimate of Low-Earth-Orbit Debris Population

Fortescue, et al, 2011

Mass Influx Rates of Micrometeoroids

Space Debris/Micrometeoroid Damage to the Space Shuttle

Distribution of Micrometeoroids and Space Debris (from LDEF)

51

Effect of Impact Angle on Relative Specific Energy

Impact	Satellite	Debris	Relative	Relative
Angle,	Velocity,	Velocity,	Velocity,	Specific
deg	km/s	km/s	km/s	Energy, km
180	7.5	7.5	0	0
45	7.5	7.5	10.6	5734
0	7.5	7.5	15	11468

Atmospheric Composition of the Planets

Planet/ Moon	Composition %	Surface pressure (Bar)	Surface temperature (K)	Temperature @ 200 km (K)	Ionosphere (Electrons/ cm ³)
Mercury	None	-	-	_	
Venus	CO ₂ (96); N ₂ (3.5)	92	750	100-280	$\sim 10^{6}$
Earth	N ₂ (77); O ₂ (21); H ₂ (1)	1	285	800-1100	$\sim 10^{6}$
Mars	CO ₂ (95); Ar (1.6); N ₂ (2.7)	0.006	220	310	$\sim 10^{5}$
Jupiter	H ₂ (89); CH ₄ (0.2); He (11)	Gaseous planet	165 ¹		$\sim 10^{5}$
Saturn	H ₂ (93); CH ₄ (0.2); He (7)	Gaseous planet	130^{1}		
Titan	N2 (90-99); CH2 (1-5); Ar (0-6)	1.5	95	150	$\sim 10^{3}$
Uranus	H_2 (85); CH_4 (< 1); He (15)	Gaseous planet	80^{1}		
Neptune	e H ₂ (90); CH ₄ (< 1); He (10)	Gaseous planet	701		
Pluto	N ₂ CH ₄ /CO (traces only)		40	-	-

 $^{^{1}}$ Temperature quoted where pressure is the same as Earth sea level (P = 1 Bar). See also Tables 2.5, 2.7 and 4.1.

Fortescue, et al, 2011

53

The Atmosphere of Mars

The Atmospheres of Jupiter and Saturn

55

The Atmosphere and Surface of Venus

Venus Landings

57

Next Time: Chemical/Nuclear Propulsion Systems