Bayesian model averaging

Dr. Merlise Clyde

model uncertainty

```
kid_score ~ hs + iq + work + age
```

- ppredictors (4)
- ▶ 2^p possible models (16)

visualizing model uncertainty

Bayesian model averaging

 \blacktriangleright let Δ be a quantity of interest

 Y^* , β_j , γ_j indicator variable j is included, $p(\beta_j \mid data)$

$$p(\Delta \mid \text{data}) = \sum_{m}^{2^{p}} p(\Delta \mid \mathcal{M}_{m}, \text{data}) p(\mathcal{M}_{m} \mid \text{data})$$

$$\mathsf{E}[\Delta \mid \mathrm{data}] = \sum_{m}^{2^{r}} \mathsf{E}[\Delta \mid \mathcal{M}_{m}, \mathrm{data}] p(\mathcal{M}_{m} \mid \mathrm{data})$$

- weighted average of model specific quantities
- BMA predictions $\hat{Y}^* = \sum \hat{Y}_m^* p(\mathcal{M}_m \mid \text{data})$

coefficient summaries

R

> cog_coef

Marginal Posterior Summaries of Coefficients:

THE STHAT I OPOSTICE PARMICE TOP OF COCTATIONS.			
	post mean	post SD	post p(B != 0)
Intercept	86.79724	0.87287	1.00000
hs	3.59494	3.35643	0.61064
iq	0.58101	0.06363	1.00000
work	0.36696	1.30939	0.11210
age	0.02089	0.11738	0.06898

$$P(\beta_{age} = 0 \mid data) = 0.931$$

plausible values of coefficients

spikerepresentsprobabilitycoefficient is 0

distribution of coefficient if it is not 0

summary

- BMA accounts for model uncertainty
- software
- use BIC and reference prior

next:

prior sensitivity