CRYPTOGRAPHY HANDOUT 12

PRIMITIVE ROOTS

Based on Number Theory Through Inquiry (Marshall, Odell, and Starbird).

1. Review

Fermat's Little Theorem. Let p be a prime number and let a be an integer such that gcd(a, p) = 1. Then $a^{p-1} \equiv 1 \mod p$.

Euler's Theorem. Let a and n be integers with n > 0 such that gcd(a, n) = 1. Then $a^{\varphi(n)} \equiv 1 \mod n$.

2. Primitive Roots

Definition. Let p be a prime. An integer g such that $\operatorname{ord}_p(g) = p - 1$ is called a primitive root modulo p.

Theorem 1. Let p be a prime and suppose g is a primitive root modulo p. Then the set $\{0, g, g^2, g^3, \dots, g^{p-1}\}$ forms a complete residue system modulo p.

Question 1. For each of the primes p less than 20, find a primitive root and make a chart showing what powers of the primitive root gives each of the natural numbers less than p. Note any observations.

You might observe the following:

Theorem 2. Every prime p has a primitive root.

This is another example of an existence theorem.

Question 2. Consider the prime p = 13. For each divisor d = 1, 2, 3, 4, 6, 12 of 12 = p - 1, mark which of the natural numbers in the set $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$ have order d.

You might have observed that there are $\varphi(d)$ numbers of order d for each d. So in the case of 12, we have

$$\varphi(1) + \varphi(2) + \varphi(3) + \varphi(4) + \varphi(6) + \varphi(12) = 12 = \sum_{d|12} \varphi(d) = 12.$$

In general, the more compact way of writing this is

$$\sum_{d|n} \varphi(d)$$

which means the sum of the Euler- φ function of the natural number divisors of the natural number n. There is a more general relationship between the Euler- φ function and divisors, which we'll explore next.

3. Euler- φ and the sums of divisors

Question 3. Compute the following sums, and make any conjectures based on the patterns you notice. (In particular, notice which numbers n are primes, powers of primes, or products of primes).

1.
$$\sum_{d|6} \varphi(d)$$

2.
$$\sum_{d|7} \varphi(d)$$

3.
$$\sum_{d|24} \varphi(d)$$

4.
$$\sum_{d|36} \varphi(d)$$

$$5. \sum_{d|27} \varphi(d)$$

It turns out that we have a series of theorems based on these:

Lemma 3. If p is a prime, then
$$\sum_{d|p} \varphi(d) = p$$
.

Lemma 4. If p is a prime, then
$$\sum_{d|p^k} \varphi(d) = p^k$$
.

Lemma 5. If p and q are two different primes, then $\sum_{d|pq} \varphi(d) = pq$.

Theorem 6. If n is a natural number, then
$$\sum_{d|n} \varphi(d) = n$$
.

Using the previous theorem, we can prove the following statement:

Theorem 7. Every prime p has $\varphi(p-1)$ primitive roots.

Example.