Andrew Fowlie

Associate Prof. in high-energy physics

Specialize in computational methods and statistical analysis of experimental data. Over 60 papers with over 2000 citations, including first-author papers in the most prestigious and best-ranked journals. Delivered over 50 seminars and presentations.

andrew.fowlie@xjtlu.edu.cn ■
andrewfowlie.github.io ♠
A.Fowlie.1 ├
github.com/andrewfowlie ♀

Areas of specialization

- International reputation in high-energy physics for innovative Bayesian statistical analyses, including parameter fitting, model selection and software
- Beyond the Standard Model physics, including dark matter, supersymmetry, Higgs and collider phenomenology
- Fine-tuning, naturalness and the hierarchy problem

Experience

Associate Professor, School of Maths and Physics, XJTLU, Suzhou, China
 Assistant Professor, School of Maths and Physics, XJTLU, Suzhou, China
 Associate Professor, Nanjing Normal University, Nanjing, China
 Post-doctoral researcher, Monash University, Melbourne, Australia Particle phenomenology with a focus on Bayesian statistics with Prof. Csaba Balázs
 Post-doctoral researcher, KBFI, Tallinn, Estonia Particle phenomenology under Prof. Martti Raidal
 Ph.D., University of Sheffield, UK Supervised by Prof. Leszek Roszkowski

Research

GRANTS

2024

2023

- 560 000 RMB [PI; NSFC] + 180 000 RMB [PI; internal] NSFC RFIS-II (W2432006), Percolation of first-order cosmological phase transitions in the early Universe, Fowlie, A. (PI), 1 January 2025 31 December 2026
- 180 000 RMB [PI; internal] Post-graduate Research Scholarship (PGRS FOSA2406017), Bayes factor surface for searches for new physics, Fowlie, A. (PI)
- 100 000 RMB [PI; internal] Research Development Fund (RDF-22-02-079), Exact-Approximate methods for searches for new physics at the Large Hadron Collider, Fowlie, A. (PI), 1 July 2023 30 June 2025
- 550 000 RMB [CI; NSFC] NSFC General Program (12275134), 暗物质粒子及其相关的新物理唯象学研究, Wu, L. (PI), Fowlie, A. (CI), et al, 1 January 2023 31 December 2026
- \$449 659 AUD [CI; ARC] Australian Research Council Discovery Project (DP210101636), *Electroweak phase transition: A cosmological window to new particle physics*, Kobakhidze, A. (Primary

- Chief Investigator), Balázs, C. (Chief Investigator), Ramsey-Musolf, M.J. (Partner Investigator), Fowlie, A. (Partner Investigator), 13 December 2021 12 December 2024
- 350 000 RMB [PI; NSFC] NSFC RFIS-I (11950410509), Discovering dark matter with Bayesian and frequentist statistics, Fowlie, A. (PI), 1 January 2020 31 December 2021

PUBLICATIONS

2019

2025

- *h*-index of 27, over 2,300 citations, and over 50 publications
- Published as first or corresponding author in *Nature Comm*. [97%; Q1; CS: 24.9], *Nature Reviews Methods Primers* [98%; Q1; CS: 46.1], *Rept. Prog. Phys.* [98%; Q1; CS: 31.9] and twice in *Phys. Rev. Lett.* [94%; Q1; CS: 16.5]; published in *Prog. Part. Nucl. Phys.* [99%; Q1; CS: 24.5]
- Six papers with over 100 citations & ten papers with over 50 citations
- Journal bibliometrics percentile, quartile and Cite Score (CS) from Scopus & corresponding author publications marked by star (the author lists in my fields are alphabetical)
- See http://inspirehep.net/author/profile/A.Fowlie.1
- [1] Antusch, S. *et al.* New Physics Search at the CEPC: a General Perspective. Accepted at *Chin. Phys. C* (2025). [arXiv:2505.24810], *6 cites*
 - ★ Q1 [2] FOWLIE, A. PolyStan: PolyChord nested sampling and Bayesian evidences for Stan models. Under review at J. Stat. Softw. [98%; Q1; CS: 12.3] (2025). [arXiv:2505.17620]
- ★ Q1 [3] FOWLIE, A. stanhf: HistFactory models in the probabilistic programming language Stan. *Eur. Phys. J. C* [91%; Q1; CS: 8.1] 85, 923, DOI: 10.1140/epjc/s10052-025-14495-1 (2025). [arXiv:2503.22188], 1 cite
- ★ Q1 [4] Chang, C., Farmer, B., Fowlie, A. & Kvellestad, A. Bring the noise: exact inference from noisy simulations in collider physics. Under review at *Phys. Rev. D* [91%; Q1; CS: 8.3] (2025). [arXiv:2502.08157]
 - [5] Athron, P., Balazs, C., Fowlie, A., Morris, L., Searle, W., Xiao, Y. & Zhang, Y. PhaseTracer2: from the effective potential to gravitational waves. *Eur. Phys. J. C* [91%; Q1; CS: 8.1] (2024). [arXiv:2412.04881], 10 cites
- [6] Albert, J., Balazs, C., Fowlie, A., Handley, W., Hunt-Smith, N., de Austri, R. R. & White, M. A comparison of Bayesian sampling algorithms for high-dimensional particle physics and cosmology applications. *Comput. Phys. Commun.* [93%; Q1; CS: 12.1] 315, 109756, DOI: 10.1016/j.cpc.2025.109756 (2025). [arXiv:2409.18464], 7 cites
- ★ Q1 [7] **FOWLIE**, **A**. & Herrera, G. Precise interpretations of traditional fine-tuning measures. *Phys. Rev.* D [91%; Q1; CS: 8.3] 111, 015020, DOI: 10.1103/physrevd.111.015020 (2025). [arXiv:2406.03533]
- ★ Q1 [8] FOWLIE, A. The Bayes factor surface for searches for new physics. *Eur. Phys. J. C* [91%; Q1; CS: 8.1] 84, 426, DOI: 10.1140/epjc/s10052-024-12792-9 (2024). [arXiv:2401.11710], 8 cites
- 2023 [9] Abdallah, W. et al. CEPC Technical Design Report: Accelerator. Radiat. Detect. Technol. Methods [42%; Q3; CS: 1.5] 8, 1–1105, DOI: 10.1007/s41605-024-00463-y (2024). [arXiv:2312.14363], 156 cites TOPCITE 100+
 - ★ Q1 [10] Athron, P., Fowlie, A., Lu, C.-T., Morris, L., Wu, L., Wu, Y. & Xu, Z. Can Supercooled Phase Transitions Explain the Gravitational Wave Background Observed by Pulsar Timing Arrays? *Phys. Rev. Lett.* [94%; Q1; CS: 16.5] 132, 221001, DOI: 10.1103/physrevlett.132.221001

- (2024). [arXiv:2306.17239], 85 cites TOPCITE 50+
- ★ Q1 [11] FowLie, A. & Li, Q. Modeling the *R*-ratio and hadronic contributions to *g* − 2 with a Treed Gaussian process. *Eur. Phys. J. C* [91%; Q1; CS: 8.1] 83, 943, DOI: 10.1140/epjc/s10052-023-12110-9 (2023). [arXiv:2306.17385], *3 cites*
 - [12] Athron, P., Balázs, C., Fowlie, A., Morris, L. & Wu, L. Cosmological phase transitions: From perturbative particle physics to gravitational waves. *Prog. Part. Nucl. Phys.* [99%; Q1; CS: 24.5] 135, 104094, DOI: 10.1016/j.ppnp.2023.104094 (2024). [arXiv:2305.02357], 214 cites TOPCITE 100+
 - [13] Ananyev, V. et al. Collider constraints on electroweakinos in the presence of a light gravitino. Eur. Phys. J. C [91%; Q1; CS: 8.1] 83, 493, DOI: 10.1140/epjc/s10052-023-11574-z (2023). [arXiv:2303.09082], 23 cites
- ★ Q1 [14] FOWLIE, A. Origins of Parameters in Adimensional Models. *Int. J. Theor. Phys.* [80%; Q1; CS: 2.5] 62, 198, DOI: 10.1007/s10773-023-05456-z (2023). [arXiv:2302.04076]
- 2022 QI [15] Athron, P., Balázs, C., Fowlie, A., Morris, L., White, G. & Zhang, Y. How arbitrary are perturbative calculations of the electroweak phase transition? JHEP [94%; Q1; CS: 10] 01, 050, DOI: 10.1007/jhep01(2023)050 (2023). [arXiv:2208.01319], 48 cites

 - ★ Q1 [17] Athron, P., Fowlie, A., Lu, C.-T., Wu, L., Wu, Y. & Zhu, B. Hadronic uncertainties versus new physics for the W boson mass and Muon g − 2 anomalies. *Nature Commun.* [97%; Q1; CS: 24.9] 14, 659, DOI: 10.1038/s41467-023-36366-7 (2023). [arXiv:2204.03996], 112 cites TOPCITE 100+
 - [18] Athron, P., Balázs, C., Fowlie, A., Lv, H., Su, W., Wu, L., Yang, J. M. & Zhang, Y. Global fits of SUSY at future Higgs factories. *Phys. Rev. D* [91%; Q1; CS: 8.3] 105, 115029, DOI: 10.1103/physrevd.105.115029 (2022). [arXiv:2203.04828], 7 cites
- 2021 ★ Q2 [19] FowLie, A. Neyman-Pearson lemma for Bayes factors. Commun. In Stat. Theory Method [51%; Q2; CS: 2.0] 1-8, DOI: 10.1080/03610926.2021.2007265 (2021). [arXiv:2110.15625],

 8 6 cites
 - ★ Q1 [20] Fowlie, A. Comment on "Accumulating evidence for the associate production of a neutral scalar with mass around 151 GeV". *Phys. Lett. B* [92%; Q1; CS: 9.1] 827, 136936, DOI: 10.1016/j.physletb.2022.13693 (2022). [arXiv:2109.13426], 7 cites
 - [21] Cranmer, K. *et al.* Publishing statistical models: Getting the most out of particle physics experiments. *SciPost Phys.* [87%; Q1; CS: 8.2] 12, 037, DOI: 10.21468/scipostphys.12.1.037 (2022). [arXiv:2109.04981], 49 cites
 - Q1 [22] Athron, P. *et al.* Thermal WIMPs and the scale of new physics: global fits of Dirac dark matter effective field theories. *Eur. Phys. J. C* [91%; Q1; CS: 8.1] 81, 992, DOI: 10.1140/epjc/s10052-021-09712-6 (2021). [arXiv:2106.02056], 44 cites
 - ★ Q1 [23] Fowlie, A., Hoof, S. & Handley, W. Nested Sampling for Frequentist Computation: Fast Estimation of Small p-Values. *Phys. Rev. Lett.* [94%; Q1; CS: 16.5] 128, 021801, DOI: 10.1103/physrevlett.128.021801 (2022). [arXiv:2105.13923], 7 cites
 - ★ [24] FOWLIE, A. Comment on "Reproducibility and Replication of Experimental Particle Physics

- Results". *Harvard Data Science Review* DOI: 10.1162/99608f92.b9bfc518 (2021). [arXiv:2105.03082], 3 cites
- Q1 [25] Balázs, C. *et al.* A comparison of optimisation algorithms for high-dimensional particle and astrophysics applications. *JHEP* [94%; Q1; CS: 10] 05, 108, DOI: 10.1007/jhep05(2021)108 (2021). [arXiv:2101.04525], 27 cites
- - ★ Q1 [27] AbdusSalam, S. S. *et al.* Simple and statistically sound recommendations for analysing physical theories. *Rept. Prog. Phys.* [98%; Q1; CS: 31.9] 85, 052201, DOI: 10.1088/1361-6633/ac60ac (2022). [arXiv:2012.09874], 28 cites
 - ★ Q1 [28] Fowlie, A., Handley, W. & Su, L. Nested sampling with plateaus. *Mon. Not. Roy. Astron. Soc.* [87%; Q1; CS: 9.1] 503, 1199–1205, DOI: 10.1093/mnras/stab590 (2021). [arXiv:2010.13884], 10 cites
 - ★ Q1 [29] Athron, P. *et al.* Global fits of axion-like particles to XENON1T and astrophysical data. *JHEP* [94%; Q1; CS: 10] 05, 159, DOI: 10.1007/jhep05(2021)159 (2021). [arXiv:2007.05517], 64 cites TOPCITE 50+
 - ★ Q1 [30] Fowlie, A., Handley, W. & Su, L. Nested sampling cross-checks using order statistics. *Mon. Not. Roy. Astron. Soc.* [87%; Q1; CS: 9.1] 497, 5256-5263, DOI: 10.1093/mnras/staa2345 (2020). [arXiv:2006.03371], 21 cites
 - ★ Q1 [31] Athron, P., Balázs, C., Fowlie, A. & Zhang, Y. PhaseTracer: tracing cosmological phases and calculating transition properties. *Eur. Phys. J. C* [91%; Q1; CS: 8.1] 80, 567, DOI: 10.1140/epjc/s10052-020-8035-2 (2020). [arXiv:2003.02859], 39 cites
- 2019 Q1 [32] Athron, P., Balázs, C., Fowlie, A., Pozzo, G., White, G. & Zhang, Y. Strong first-order phase transitions in the NMSSM a comprehensive survey. JHEP [94%; Q1; CS: 10] 11, 151, DOI: 10.1007/jhep11(2019)151 (2019). [arXiv:1908.11847], 50 cites TOPCITE 50+
 - ★ Q2 [33] FOWLIE, A. Bayesian and frequentist approaches to resonance searches. JINST [59%; Q2; CS: 2.4] 14, P10031, DOI: 10.1088/1748-0221/14/10/p10031 (2019). [arXiv:1902.03243], 8 cites
 - Q1 [34] Athron, P., Balázs, C., Bardsley, M., Fowlie, A., Harries, D. & White, G. BubbleProfiler: finding the field profile and action for cosmological phase transitions. *Comput. Phys. Commun.* [93%; Q1; CS: 12.1] 244, 448–468, DOI: 10.1016/j.cpc.2019.05.017 (2019). [arXiv:1901.03714], 68 cites TOPCITE 50+
- 2018 ★ Q1 [35] FowLie, A. Non-parametric uncertainties in the dark matter velocity distribution. *JCAP* [88%; Q1; CS: 10.2] 01, 006, DOI: 10.1088/1475-7516/2019/01/006 (2019). [arXiv:1809.02323], 11 cites
 - Q1 [36] Athron, P. *et al.* Combined collider constraints on neutralinos and charginos. *Eur. Phys. J. C* [91%; Q1; CS: 8.1] 79, 395, DOI: 10.1140/epjc/s10052-019-6837-x (2019). [arXiv:1809.02097], 107 cites TOPCITE 100+
 - [37] Athron, P. et al. Global analyses of Higgs portal singlet dark matter models using GAM-BIT. Eur. Phys. J. C [91%; Q1; CS: 8.1] 79, 38, DOI: 10.1140/epjc/s10052-018-6513-6 (2019). [arXiv:1808.10465], 141 cites TOPCITE 100+

- ★ Q1 [38] FOWLIE, A. A fast C++ implementation of thermal functions. *Comput. Phys. Commun.* [93%; Q1; CS: 12.1] 228, 264–272, DOI: 10.1016/j.cpc.2018.02.015 (2018). [arXiv:1802.02720], 16 cites
- 2017 ★ Q1 [39] FowLie, A. DAMPE squib? Significance of the 1.4 TeV DAMPE excess. *Phys. Lett. B* [92%; Q1; CS: 9.1] 780, 181–184, DOI: 10.1016/j.physletb.2018.03.006 (2018). [arXiv:1712.05089], 33 cites
 - Q1 [40] Athron, P., Balázs, C., Fowlie, A. & Zhang, Y. Model-independent analysis of the DAMPE excess. JHEP [94%; Q1; CS: 10] 02, 121, DOI: 10.1007/jhep02(2018)121 (2018). [arXiv:1711.11376], 56 cites TOPCITE 50+
 - ★ Q1 [41] Ellis, J., Fowlie, A., Marzola, L. & Raidal, M. Statistical Analyses of Higgs- and Z-Portal Dark Matter Models. *Phys. Rev. D* [91%; Q1; CS: 8.3] 97, 115014, DOI: 10.1103/physrevd.97.115014 (2018). [arXiv:1711.09912], 49 cites
 - [42] Athron, P., Balázs, C., Farmer, B., Fowlie, A., Harries, D. & Kim, D. Bayesian analysis and naturalness of (Next-to-)Minimal Supersymmetric Models. *JHEP* [94%; Q1; CS: 10] 10, 160, DOI: 10.1007/jhep10(2017)160 (2017). [arXiv:1709.07895], 22 cites
 - ★ Q1 [43] FOWLIE, A. Halo-independence with quantified maximum entropy at DAMA/LIBRA. *JCAP* [88%; Q1; CS: 10.2] 10, 002, DOI: 10.1088/1475-7516/2017/10/002 (2017). [arXiv:1708.00181], 13 cites
 - Q1 [44] Di Chiara, S., Fowlie, A., Fraser, S., Marzo, C., Marzola, L., Raidal, M. & Spethmann, C. Minimal flavor-changing Z' models and muon g-2 after the R_{K^*} measurement. Nucl. Phys. B [76%; Q1; CS: 5.5] 923, 245–257, DOI: 10.1016/j.nuclphysb.2017.08.003 (2017). [arXiv:1704.06200], 70 cites TOPCITE 50+
- 2016 Q1 [45] Balázs, C., Fowlie, A., Mazumdar, A. & White, G. Gravitational waves at aLIGO and vacuum stability with a scalar singlet extension of the Standard Model. *Phys. Rev. D* [91%; Q1; CS: 8.3] 95, 043505, DOI: 10.1103/physrevd.95.043505 (2017). [arXiv:1611.01617], 59 cites TOPCITE 50+
 - ★ Q1 [46] Fowlie, A. Bayes factor of the ATLAS diphoton excess: Using Bayes factors to understand anomalies at the LHC. *Eur. Phys. J. Plus* [75%; Q1; CS: 5.4] 132, 46, DOI: 10.1140/epjp/i2017-11340-1 (2017). [arXiv:1607.06608], *5 cites*
 - [47] Bianchini, L., Calpas, B., Conway, J., Fowlie, A., Marzola, L., Veelken, C. & Perrini, L. Reconstruction of the Higgs mass in events with Higgs bosons decaying into a pair of τ leptons using matrix element techniques. *Nucl. Instrum. Meth. A* [56%; Q2; CS: 3.2] 862, 54–84, DOI: 10.1016/j.nima.2017.05.001 (2017). [arXiv:1603.05910], 46 cites
 - ★ Q1 [48] Fowlie, A. & Bardsley, M. H. Superplot: a graphical interface for plotting and analysing Multi-Nest output. *Eur. Phys. J. Plus* [75%; Q1; CS: 5.4] 131, 391, DOI: 10.1140/epjp/i2016-16391-0 (2016). [arXiv:1603.00555], 36 cites
 - ★ Q1 [49] Fowlie, A., Balázs, C., White, G., Marzola, L. & Raidal, M. Naturalness of the relaxion mechanism. JHEP [94%; Q1; CS: 10] 08, 100, DOI: 10.1007/jhep08(2016)100 (2016). [arXiv:1602.03889], 28 cites
- 2015 ★ Q1 [50] FowLie, A. & Marzola, L. Examining a right-handed quark mixing matrix with b-tags at the LHC. Nucl. Phys. B [76%; Q1; CS: 5.5] 894, 588-601, DOI: 10.1016/j.nuclphysb.2015.03.025 (2015). [arXiv:1412.5587], 4 cites
- 2014 \star Q1 [51] FowLie, A. & Marzola, L. Testing quark mixing in minimal left-right symmetric models with b

- -tags at the LHC. *Nucl. Phys. B* [76%; Q1; CS: 5.5] **889**, 36–45, DOI: 10.1016/j.nuclphysb.2014.10.009 (2014). [arXiv:1408.6699], *15 cites*
- ★ Q1 [52] FOWLIE, A. Is the CNMSSM more credible than the CMSSM? *Eur. Phys. J. C* [91%; Q1; CS: 8.1] 74, 3105, DOI: 10.1140/epjc/s10052-014-3105-y (2014). [arXiv:1407.7534], 21 cites
- ★ Q1 [53] Fowlie, A. CMSSM, naturalness and the "fine-tuning price" of the Very Large Hadron Collider. *Phys. Rev. D* [91%; Q1; CS: 8.3] 90, 015010, DOI: 10.1103/physrevd.90.015010 (2014). [arXiv:1403.3407], 41 cites
- ★ Q1 [54] FowLie, A. & Raidal, M. Prospects for constrained supersymmetry at $\sqrt{s} = 33 \,\text{TeV}$ and $\sqrt{s} = 100 \,\text{TeV}$ proton-proton super-colliders. *Eur. Phys. J. C* [91%; Q1; CS: 8.1] 74, 2948, DOI: 10.1140/epjc/s10052-014-2948-6 (2014). [arXiv:1402.5419], 32 cites
- 2013 Q1 [55] FOWLIE, A., Kowalska, K., Roszkowski, L., Sessolo, E. M. & Tsai, Y.-L. S. Dark matter and collider signatures of the MSSM. *Phys. Rev. D* [91%; Q1; CS: 8.3] 88, 055012, DOI: 10.1103/physrevd.88.055012 (2013). [arXiv:1306.1567], 93 cites TOPCITE 50+
- 2012 Q1 [56] FOWLIE, A., Kazana, M., Kowalska, K., Munir, S., Roszkowski, L., Sessolo, E. M., Trojanowski, S. & Tsai, Y.-L. S. The CMSSM Favoring New Territories: The Impact of New LHC Limits and a 125 GeV Higgs. *Phys. Rev. D* [91%; Q1; CS: 8.3] 86, 075010, DOI: 10.1103/physrevd.86.075010 (2012). [arXiv:1206.0264], 185 cites TOPCITE 100+
- 2011 [57] Fowlie, A., Kalinowski, A., Kazana, M., Roszkowski, L. & Tsai, Y. L. S. Bayesian Implications of Current LHC and XENON100 Search Limits for the Constrained MSSM. *Phys. Rev. D* [91%; Q1; CS: 8.3] 85, 075012, DOI: 10.1103/physrevd.85.075012 (2012). [arXiv:1111.6098], 63 cites TOPCITE 50+

TALKS & SEMINARS

- See all slides at https://andrewfowlie.github.io/talk/
- Over 50 presentations and talks

Invited

2025

- [1] Are axion solutions to the CP problem fine-tuned?, The Fourth International Conference on Axion Physics and Experiment, 29 July
 - [2] Fitting —statistical modeling and analysis for physics, Lecture, Third New Physical Numerical Numerical Computing and Simulation Frontier Workshop, Xinxiang, 3 July
 - [3] A cry of distress from Nature? Fine-tuning in scientific theories, XJTLU CHIPS Wisdom Forum, 9 October
 - [4] Cosmological phase transitions: From perturbative particle physics to gravitational waves, XJTLU SMP Research Excellence Workshop, 29 May
 - [5] Testing fundamental theories with global fits, Seminar, Duke Kunshan, 10 May
 - [6] Testing fundamental theories with global fits, Seminar, Suzhou Universtiy, 26 April
 - [7] The Bayes factor surface for searches for new physics, NANOGrav New Physics Working Group, 20 Febuary

- 2023 [8] Origins of parameters in adimensional models, Seminar, Fudan University, 20 October
 - [9] From first order phase transitions to gravitational waves, The 2023 Shanghai Symposium on Particle Physics and Cosmology, Tsung-Dao Lee Institute, 23 September
 - [10] New physics in the garden of forking paths, Mini-Workshop on Anomalies at the LHC, Tsung-Dao Lee Institute, 21 September
 - [11] Opening up Nested Sampling, MaxEnt 2023, 6 July
 - [12] Origins of parameters in adimensional models, Seminar, Zhejiang University, 2 June
 - [13] Origins of parameters in adimensional models, Seminar, Shandong University, 24 May
- [14] Herding cats? Bayesian and frequentist methods and compromises, University of Goettingen CATs seminar, 14 May
 - [15] Nested sampling for frequentist computation: fast estimation of small *p*-values, ATLAS statistics forum, 29 July
 - [16] Nested sampling for frequentist computation: fast estimation of small p-values, Purple Mountain Observatory, 9 July
 - [17] Evidence for axion-like particles from XENON1T and astrophysical data, NCBJ, Warsaw, 12 January
- 2020 [18] Nested sampling cross-checks using order statistics, Monash University, 21 July
 - [19] Nested sampling cross-checks using order statistics, Cambridge University, 15 July
- [20] Strong first-order phase transitions in the NMSSM and methods for finding them, SJTU-U. Sydney Workshop on the Electroweak Phase Transition, Tsung-Dao Lee Institute, 19 December
 - [21] Bayesian and frequentist approaches to discoveries, PASCOS, July 2
 - [22] Bayesian and frequentist approaches to resonance searches, Purple Mountain Observatory, 16 April
- [23] Statistical Analyses of Higgs- and Z-Portal Dark Matter Models, Nanjing Normal University, 25 June
 - [24] Statistical Analyses of Higgs- and Z-Portal Dark Matter Models, Melbourne University, 8 March
 - [25] Relative plausibility of scientific theories: WIMP dark matter, Fundamental Physics, Symmetry and Life, University of Sydney, 30 November
 - [26] Halo-independence with quantified maximum entropy, NCTS Workshop on Dark Matter, Particles and Cosmos, Taiwan, 14 October
 - [27] Halo-independence with quantified maximum entropy, NTU, Taiwan, 12 October
 - [28] Halo-independence with quantified maximum entropy, IPMU, Tokyo, 4 October

Other talks

2021

2017

2024

- [29] The status of fine-tuning arguments in the CEPC era, CEPC New Physics Workshop, 31 August
 - [30] Origins of parameters in adimensional models, Colloqium, XJTLU, School of Maths and Physics, 28 September
 - [31] Origins of parameters in adimensional models, MaxEnt 2023, 7 July

- [32] Nested sampling for frequentist computation: fast estimation of small *p*-values, Computational Tools for High Energy Physics and Cosmology, 26 November
 - [33] Getting the most out of particle physics experiments, Workshop on Hadron Structure at High-Energy, High-Luminosity Facilities 2021, 27 October
 - [34] Pitfalls in likelihood land, (Re)interpreting the results of new physics searches at the LHC, 18 February
- [35] Nested sampling cross-checks using order statistics, First International Symposium on the Interdisciplinary Frontiers of Gravity, Matter and Quantum Information, 28 December
- [36] Strong first-order phase transitions in the NMSSM and methods for finding them, SJTU-U. Sydney Workshop on the Electroweak Phase Transition, 19 December
 - [37] Combined collider constraints on neutralinos and charginos, The tenth Weihai New Physics Workshop, Shandong University, 14 August
 - [38] Bayesian and frequentist approaches to resonance searches, Fourteenth workshop on TeV physics, Nanjing, 21 April
 - [39] Bayesian and frequentist approaches to resonance searches, Nanjing Normal University, 17 April
- [40] Non-parametric uncertainties in the dark matter velocity distribution, Auckland University, 10 December
 - [41] Statistical Analyses of Higgs- and Z-Portal Dark Matter Models, Seoul, ICHEP 2018, 6 July
 - [42] Potential applications of machine learning in particle physics, Machine Learning Symposium, National Centre for Synchrotron Science, 19 March
- [43] <u>Using Bayes factors to understand anomalies at the LHC</u>, Energy Frontier in Particle Physics: LHC and Future Colliders, NTU, Taiwan, 30 September
- 2016 [44] The Jeffreys-Lindley's Paradox, CompStats Meeting, Monash University, 1 November
 - [45] Bayesian approach to naturalness, Fine-tuning, the Multiverse and Life, Sydney, 24 November
 - [46] Naturalness of the relaxion mechanism, CosPA, Sydney, 29 November
 - [47] Bayesian naturalness of Next-to-Minimal and Minimal Supersymmetric Models, SUSY 2016, Melbourne, 5 July
 - [48] Naturalness of the relaxion mechanism, SUSY 2016, Melbourne, 7 July
 - [49] Naturalness of the relaxion mechanism, CoEPP Annual Theory Meeting, Melbourne, 16 Febuary
- [50] Prospects for constrained supersymmetry at $\sqrt{s}=33$ TeV and $\sqrt{s}=100$ TeV proton-proton super-colliders, Deep Inelastic Scattering, Warsaw, 29 April
- [51] Bayesian reconstruction of SUSY parameters via the golden decay, Theory Meets Experiment, Warsaw, 6 October
 - [52] Status of CMSSM after LHC Run-I, HEP IOP, Liverpool, 9 April
- 2012 [53] The CMSSM after 2 years of the LHC, Consortium for Fundamental Physics, Sheffield, 9 April
- [54] Bayesian Implications of Current LHC Limits for the Constrained MSSM, Young Theorists' Forum, Durham, 13 December
 - [55] Supersymmetry and the LHC, Seminar, University of Sheffield, 1 October

Teaching & Supervision

PROFESSIONAL DEVELOPMENT

■ Instructional Skills Workshop at XJTLU, 24 hours of training

CURRICULUM DEVELOPMENT

2023 - 2024 School Curriculum Review Panel (SCRP) representative for Department of Physics

SUPERVISION

XJTLU postgraduate

2025 - Supervising MSc Data Science student, Qiao Wen

Supervising second-year physics Phd student, Hao Yang

XJTLU undergraduate

- AY25 26 Supervised five SURF summer project students SURF-2025-0055 Interacting with PASCO Smart Cars using Python
- AY24 25 Supervised two FYP students on statistical computation MTH301–2425 Final Year Project
 - Supervised four SURF summer project students SURF-2024-0040 Building a Galton board
- Supervised four FYP students on topics in probability & statistics MTH301-2324 Final Year Project 5 (4.84)
 - Supervised four SURF summer project students SURF-2023-0030 Building a Lorenz wheel

Other

- 2022 2024 Supervised student for three-year Master's project, Qiao Li, on measuring contributions to precision observables using Gaussian processes [2306.17385]
- 2017 − 2018 Supervised undergraduate project about the bounce equation and its connection to phase transitions and baryogenesis
- Supervised (10%) Ph.D. student, Giancarlo Pozzo, on baryogensis in next-to-minimal supersymmetric models. My role included QFT tutorials
- 2015 2016 Supervised undergraduate Michael Bardsley's summer project. We developed statistical software resulting in a publication [1603.00555]

TEACHING

- AY25 26 Taught MTH101-2526-S1 Engineering Mathematics I 5 credits 70 students
- Taught PHY001-2425-S2 Classical Physics for Engineers 2.5 credits 115 students 4.90 (4.91)
 - [■] Taught MTH101-2425-S1 Engineering Mathematics I 5 credits 196 students 4.38 (4.43)
- AY23 24 Taught PHY002-2324-S2 Physics 5 credits 217 students 4.57 (4.51)
 - Taught MTH101-2324-S1 Engineering Mathematics I 5 credits 140 students 3.77 (4.36)
- AY22 23 Taught PHY002-2223-S2 Physics 5 credits 123 students 4.42 (4.43)
- 2022 2023 Led statistics and machine learning study group for about 10 talented undergraduates

2019 - 2022

Post-graduate course on physics beyond the Standard Model — about 20 students and about 25 hours

2015

■ Lectures on statistics for physicists at the University of Tartu — six hours and about 5 students

2012 - 2013

• First-year physics tutor, weekly tutorials — about 20 sessions with about 10 students

2010 - 2012

■ Undergraduate physics weekly problem class assistant — about 30 students

Service

Media

Articles in international news outlets, blogs and our University Marketing and Communications (UMC). Coauthored article about *Phys. Rev. Lett.* that was syndicated in 212 non-Chinese media outlets in 7 languages with a total of about 700 000 unique readers per month. The media exposure for this alone corresponds to an advertising value equivalency of about \$1.4 million USD. For more details see the UMC 30 day media report.

Selected internal news articles

- Dr. Andrew Fowlie joins NANOGrav
- Dr. Andrew Fowlie publishes a high-level review
- Nanohertz gravitational waves are cool but not supercool
- SMP wins 8 NSFC grants in 2024
- 28 projects approved

Selected external news articles

- Phys.org and Monash University press about Prog. Part. Nucl. Phys.
- Phys.org about *Phys. Rev. Lett.* paper
- Big Think about *Nature Commun.* paper
- ABC News (Norway) about *Eur. Phys. J. C* paper

DEPARTMENTAL

2024 -

Departmental Events Officer. Organizing regular seminars despite limited budget – see Seminars
 @ Department of Physics. Growing connections to other academic units. More than 10 seminars in 2024 and 9 seminars so far in 2025, e.g., Prof. John Dennis

2023 -

■ *Departmental IT Officer*. Initiated and leading department webpage update to raise departmental profile — see Department of Physics

2019 - 2023

- Built and maintained group webpage
- Organized online seminar series, including event with Nobel Laureate with audience of over 3,500

COLLABORATIONS

- CIRCULAR ELECTRON-POSITRON COLLIDER (CEPC) A proposed next-generation world-leading experiment in fundamental science Gambit International collaboration preforming statistical analyses of models of new physics
- 2024 2025 NANOGRAV World-leading pulsar-timing array search for gravitational waves to contribute towards data analysis BAYESFIT Bayesian analyses of supersymmetric models in light of first run of LHC, lead by Prof. Roszkowski

EDITORIAL

Referee for physics journals: *Nature Commun.* [97%; Q1; CS: 24.9], *Phys. Rev. Lett.* [94%; Q1; CS: 16.5], *Phys. Rev. D* [91%; Q1; CS: 8.3], *Eur. Phys. J. C* [91%; Q1; CS: 8.1], *J. Phys. G* [87%; Q1; CS: 7.6], *Ann. Phys.* [68%; Q2; CS: 4.5], *Metrologia* [58%; Q2; CS: 2.8], *Nucl. Phys. B* [76%; Q1; CS: 5.5], *SciPost Physics* [88%; Q1; CS: 9.0], and *Int. J. Mod. Phys. A* [51%; Q2; CS: 3.0]

Referee for statistics journal Stat. Pap. [67%; Q2; CS: 2.8]

Editor for Journal of Nanjing Normal University, Physical Sciences

University

2024

- Participated in Internal Peer Review for 2025 NSFC RFIS candidates, June 9
 - Presented at Experience Sharing for Research Fund for International Scientists, 11th December
- Jiangsu CEAA Interviewer at XJTLU − 2 days
- 2023 Coordinate University staff social football & tennis clubs

Education and other relevant experience

2009 - 2013 Ph.D., University of Sheffield, UK

Bayesian Approach to Investigating Supersymmetric Models. Supervised by Prof. Roszkowski. Viva passed with minor corrections, examined by Prof. King (University of Southampton) and Prof. van de Bruck (University of Sheffield)

- 2009 2010 Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy Six-month placement studying advanced topics in particle physics and related subjects
- 2005 2009 M. Phys, University of Durham, UK First-class four-year undergraduate Master's in Physics. Final-year modules included Advanced Theoretical Physics (82%) and Particle Theory (90%). Master's project, *The Search for Dark Matter* at the Linear Collider, supervised by Prof. Moortgat-Pick (73%)
- Summer placement at electricity supplier E-ON about numerical simulation of atmosphere with parallel computing