

Project - Time Series Forecasting

INDEX

SL.NO	PARTICULARS	PAGE N	IO.
	SPARKLING, ROSE	Sparkling	Rose
1	Reading Dataset	3	4
2	EDA, Decomposition	5	8
3	Data split	11	12
4	Smoothening, Regression, Naïve, SA, MA models	13	18
5	Stationarity check	23	24
6	AUTOMATED ARIMA/SARIMA	25	28
7	MANUAL ARIMA/SARIMA	30	32
8	RMSE Table	33	34
9	Optimum Model	34	35
10	INSIGHTS	36	36

SL.NO	PARTICULARS	PAGE N	Ю.
	SPARKLING, ROSE Figures	Sparkling	Rose
1	Reading Dataset	3	4
2	EDA, Decomposition	5-7	8-10
3	Data split	11	12
4	Smoothening, Regression, Naïve, SA, MA models	13-17	18-22
5	Stationarity check	23	24
6	AUTOMATED ARIMA/SARIMA	25-28	28-30
7	MANUAL ARIMA/SARIMA	30-32	32
8	RMSE Table	33	34
9	Optimum Model	34	35

Problem: Sparkling and Rose

For this particular assignment, the data of different types of wine sales in the 20th century is to be analysed. Both of these data are from the same company but of different wines. As an analyst in the ABC Estate Wines, you are tasked to analyse and forecast Wine Sales in the 20th century.

1. Read the data as an appropriate Time Series data and plot the data.

Sparkling:

Data	columns (t	otal 2 columns):	
#	Column	Non-Null Count	Dtype
0	YearMonth	187 non-null	datetime64[ns]
		187 non-null	
dtype	es: datetim	e64[ns](1), int6	4(1)

	Sparkling
YearMonth	
1980-01-01	1686
1980-02-01	1591
1980-03-01	2304
1980-04-01	1712
1980-05-01	1471

1.1. Sparkling data info, Dataset

The dataset is read as a time series data. The dataset contains two columns Yearmonth with datetime datatype and the Sparkling column with integer datatype. The dataset is having 187 rows in it.

1.2. Sparkling data plot

The Sparkling dataset is plotted, and it is observed that there is some form of seasonality present in it.

Rose:

Data	columns (t	otal 2 columns):	
#	Column	Non-Null Count	Dtype
0	YearMonth	187 non-null	datetime64[ns]
1	Rose	185 non-null	float64
dtype	es: datetim	e64[ns](1), floa	t64(1)

	Rose
YearMonth	
1980-01-01	112.0
1980-02-01	118.0
1980-03-01	129.0
1980-04-01	99.0
1980-05-01	116.0

1.3. Rose Data info, Dataset

The dataset is read as a time series data. The dataset contains two columns Yearmonth with datetime datatype and the Rose column with float datatype. The dataset is having 187 rows in it.

1.4. Rose data plot

The Rose dataset is plotted, and it is observed that there is some form of seasonality present in it. The sales trend for Rose wine is negative.

2. Perform appropriate Exploratory Data Analysis to understand the data and also perform decomposition.

Sparkling wine:

2.1. Sparkling data Summary, Null value check

From the data summary, it is observed that over the period of 1980 to 1995 the maximum sparkling units sold is 7242 and the minimum units sold is 1070.

The average sale is about 2402 units with a standard deviation of 1295 units. The dataset is checked for null values and no null values are present in it.

2.2. Sparkling Yearly Boxplot

From the yearly boxplot, the yearly sales are good from year 1984 to 1989. Outliers are present in the dataset in all the sale years except the year 1995. These outliers are not treated, and further analysis is carried out with outliers present in the dataset.

2.3. Sparkling Monthly Boxplot

From the monthly boxplot, the monthly sales are good during the December, November, October months. The sales are low during the period from January to August. The indicates the sales is good during the holiday seasons and new year.

YearMonth	April	August	December	February	January	July	June	March	May	November	October	September
YearMonth												
1980	1712.0	2453.0	5179.0	1591.0	1686.0	1966.0	1377.0	2304.0	1471.0	4087.0	2596.0	1984.0
1981	1976.0	2472.0	4551.0	1523.0	1530.0	1781.0	1480.0	1633.0	1170.0	3857.0	2273.0	1981.0
1982	1790.0	1897.0	4524.0	1329.0	1510.0	1954.0	1449.0	1518.0	1537.0	3593.0	2514.0	1706.0
1983	1375.0	2298.0	4923.0	1638.0	1609.0	1600.0	1245.0	2030.0	1320.0	3440.0	2511.0	2191.0
1984	1789.0	3159.0	5274.0	1435.0	1609.0	1597.0	1404.0	2061.0	1567.0	4273.0	2504.0	1759.0
1985	1589.0	2512.0	5434.0	1682.0	1771.0	1645.0	1379.0	1846.0	1896.0	4388.0	3727.0	1771.0
1986	1605.0	3318.0	5891.0	1523.0	1606.0	2584.0	1403.0	1577.0	1765.0	3987.0	2349.0	1562.0
1987	1935.0	1930.0	7242.0	1442.0	1389.0	1847.0	1250.0	1548.0	1518.0	4405.0	3114.0	2638.0
1988	2336.0	1645.0	6757.0	1779.0	1853.0	2230.0	1661.0	2108.0	1728.0	4988.0	3740.0	2421.0
1989	1650.0	1968.0	6694.0	1394.0	1757.0	1971.0	1406.0	1982.0	1654.0	4514.0	3845.0	2608.0
1990	1628.0	1605.0	6047.0	1321.0	1720.0	1899.0	1457.0	1859.0	1615.0	4286.0	3116.0	2424.0
1991	1279.0	1857.0	6153.0	2049.0	1902.0	2214.0	1540.0	1874.0	1432.0	3627.0	3252.0	2408.0
1992	1997.0	1773.0	6119.0	1667.0	1577.0	2076.0	1625.0	1993.0	1783.0	4096.0	3088.0	2377.0
1993	2121.0	2795.0	6410.0	1564.0	1494.0	2048.0	1515.0	1898.0	1831.0	4227.0	3339.0	1749.0
1994	1725.0	1495.0	5999.0	1968.0	1197.0	2031.0	1693.0	1720.0	1674.0	3729.0	3385.0	2968.0
1995	1862.0	NaN	NaN	1402.0	1070.0	2031.0	1688.0	1897.0	1670.0	NaN	NaN	NaN

2.4. Sparkling monthly sales across years

Decomposition of Sparkling Data

The decomposition of the dataset helps us to better understand the trend, seasonality, and residual present in it. Let's perform both the additive and multiplicative decomposition of our dataset.

Additive Decomposition

Multiplicative Decomposition

2.5. Sparkling Data Decomposition

From the decomposition it is observed a clear seasonality is present in the dataset with repetitive patterns. Trend however is positive till 1988 and becomes negative after that year. From the two methods multiplicative decomposition looks better after observing the residual pattern.

Rose wine:

	Rose	Rose 2	arMonth	Rose
count	185.000000	dtype: int64	94-01-01	30.000000
mean	90.394595			35.000000 42.000000
std	39.175344			48.000000
min	28.000000	199	4-05-01	44.000000
	20.000000			45.000000
25%	63.000000			45.333333 45.666667
50%	86.000000			46.000000
75%	112.000000	199	94-10-01	51.000000
15%	112.000000	199	94-11-01	63.000000
max	267.000000	199	94-12-01	84.000000

2.6. Sparkling data Summary, Null value check

From the data summary, it is observed that over the period of 1980 to 1995 the maximum Rose units sold is 267 and the minimum units sold is 28.

The average sale is about 90 units with a standard deviation of 39 units. The dataset is checked for null values and 2 null values are present in the year 1994.

The null values are filled with the value of 45.6 after using the interpolation method.

2.7. Rose Yearly Boxplot

From the yearly boxplot, the yearly sales of Rose wine are good from year 1980 to 1984. Outliers are present in the dataset. These outliers are not treated, and further analysis is carried out with outliers present in the dataset. We get an idea that the yearly sales are on a negative trend from the above plot.

2.8. Rose Monthly Boxplot

From the monthly boxplot, the monthly sales of rose are good during the December, November months. The sales are comparatively low during the period from January to September. The indicates the sales is good during the holiday seasons and new year time.

YearMonth	April	August	December	February	January	July	June	March	May	November	October	September
YearMonth												
1980	99.0	129.0	267.0	118.0	112.0	118.0	168.0	129.0	116.0	150.0	147.0	205.0
1981	97.0	214.0	226.0	129.0	126.0	222.0	127.0	124.0	102.0	154.0	141.0	118.0
1982	97.0	117.0	169.0	77.0	89.0	117.0	121.0	82.0	127.0	134.0	112.0	106.0
1983	85.0	124.0	164.0	108.0	75.0	109.0	108.0	115.0	101.0	135.0	95.0	105.0
1984	87.0	142.0	159.0	85.0	88.0	87.0	87.0	112.0	91.0	139.0	108.0	95.0
1985	93.0	103.0	129.0	82.0	61.0	87.0	75.0	124.0	108.0	123.0	108.0	90.0
1986	71.0	118.0	141.0	65.0	57.0	110.0	67.0	67.0	76.0	107.0	85.0	99.0
1987	86.0	73.0	157.0	65.0	58.0	87.0	74.0	70.0	93.0	96.0	100.0	101.0
1988	66.0	77.0	135.0	115.0	63.0	79.0	83.0	70.0	67.0	100.0	116.0	102.0
1989	74.0	74.0	137.0	60.0	71.0	86.0	91.0	89.0	73.0	109.0	87.0	87.0
1990	77.0	70.0	132.0	69.0	43.0	78.0	76.0	73.0	69.0	110.0	65.0	83.0
1991	65.0	55.0	106.0	55.0	54.0	96.0	65.0	66.0	60.0	74.0	63.0	71.0
1992	53.0	52.0	91.0	47.0	34.0	67.0	55.0	56.0	53.0	58.0	51.0	46.0
1993	45.0	54.0	77.0	40.0	33.0	57.0	55.0	46.0	41.0	48.0	52.0	46.0
1994	48.0	45.6	84.0	35.0	30.0	45.6	45.0	42.0	44.0	63.0	51.0	46.0
1995	52.0	NaN	NaN	39.0	30.0	62.0	40.0	45.0	28.0	NaN	NaN	NaN

2.9. Rose monthly sales across years

Decomposition of Rose Data

Additive Decomposition

Multiplicative Decomposition

From the decomposition it is observed a clear seasonality is present in the dataset with repetitive patterns. Trend however is negative over the period of years, the sales has decreased significantly. From the two methods multiplicative decomposition looks better after observing the residual pattern.

3. Split the data into training and test. The test data should start in 1991.

Sparkling (Data split)

	Sparkling	
YearMonth		Yea
1980-01-01	1686	199
1980-02-01	1591	199
1980-03-01	2304	199
1980-04-01	1712	199
1980-05-01	1471	199
1980-06-01	1377	199
1980-07-01	1966	199
1980-08-01	2453	199
1980-09-01	1984	199
1980-10-01	2596	199
1980-11-01	4087	199
1980-12-01	5179	199

	Carablian
	Sparkling
YearMonth	
1990-01-01	1720
1990-02-01	1321
1990-03-01	1859
1990-04-01	1628
1990-05-01	1615
1990-06-01	1457
1990-07-01	1899
1990-08-01	1605
1990-09-01	2424
1990-10-01	3116
1990-11-01	4286
1990-12-01	6047
7 1	

Sparkling
1902
2049
1874
1279
1432
1540
2214
1857
2408
3252
3627
6153

	Sparkling
YearMonth	
1994-08-01	1495
1994-09-01	2968
1994-10-01	3385
1994-11-01	3729
1994-12-01	5999
1995-01-01	1070
1995-02-01	1402
1995-03-01	1897
1995-04-01	1862
1995-05-01	1670
1995-06-01	1688
1995-07-01	2031

3.1. Training data

3.1. Test data

3.1.1. Sparkling data split

Rose (Data split)

	Rose		Rose
YearMonth		YearMonth	
1980-01-01	112.0	1990-01-01	43.0
1980-02-01	118.0	1990-02-01	69.0
1980-03-01	129.0	1990-03-01	73.0
1980-04-01	99.0	1990-04-01	77.0
1980-05-01	116.0	1990-05-01	69.0
1980-06-01	168.0	1990-06-01	76.0
1980-07-01	118.0	1990-07-01	78.0
1980-08-01	129.0	1990-08-01	70.0
1980-09-01	205.0	1990-09-01	83.0
1980-10-01	147.0	1990-10-01	65.0
1980-11-01	150.0	1990-11-01	110.0
1980-12-01	267.0	1990-12-01	132.0

	Rose] [Rose
YearMonth			YearMonth	
1991-01-01	54.0		1994-08-01	45.6
1991-02-01	55.0		1994-09-01	46.0
1991-03-01	66.0		1994-10-01	51.0
1991-04-01	65.0		1994-11-01	63.0
1991-05-01	60.0		1994-12-01	84.0
1991-06-01	65.0		1995-01-01	30.0
1991-07-01	96.0		1995-02-01	39.0
1991-08-01	55.0		1995-03-01	45.0
1991-09-01	71.0		1995-04-01	52.0
1991-10-01	63.0		1995-05-01	28.0
1991-11-01	74.0		1995-06-01	40.0
1991-12-01	106.0		1995-07-01	62.0

3.2. Training data

3.2. Test data

3.2.1. Rose data split

For building our forecasting models the dataset is split into train and test datasets. For both the Sparkling and Rose dataset the split is made for the training data from the year 1980 to 1990, the test data is from the year 1991 to 1995. The first and last 12 months of the training and test dataset is provided above for both the Sparkling and Rose datasets.

4. Build all the exponential smoothing models on the training data and evaluate the model using RMSE on the test data. Other additional models such as regression, naïve forecast models, simple average models, moving average models should also be built on the training data and check the performance on the test data using RMSE.

The train and test data of the sparkling and rose datasets are used to build the following forecasting models. Each model is built separately for both datasets,

Linear Regression

4.1. Linear Regression (Sparkling)

The forecast is a flat line, let's try to build other models and observe if we can a better forecast. The model is evaluated by using the RMSE value and it is shown below,

Test RMSE
RegressionOnTime 1389.135175

4.2. RMSE Linear Regression

Naïve forecast

4.3. Naïve forecast (Sparkling), RMSE

Simple Average forecast

4.4. Simple average forecast (Sparkling), RMSE

Moving Average (MA)

	Test RMSE
RegressionOnTime	1389.135175
NaiveModel	3864.279352
SimpleAverageModel	1275.081804
2pointTrailingMovingAverage	813.400684
4pointTrailingMovingAverage	1156.589694
6pointTrailingMovingAverage	1283.927428
9pointTrailingMovingAverage	1346.278315

4.5. Moving Average (MA-Sparkling), RMSE

	Test RMSE
RegressionOnTime	1389.135175
NaiveModel	3864.279352
SimpleAverageModel	1275.081804
2pointTrailingMovingAverage	813.400684
4pointTrailingMovingAverage	1156.589694
6pointTrailingMovingAverage	1283.927428
9pointTrailingMovingAverage	1346.278315

4.6. Model comparison, RMSE

From the model comparison plot and the RMSE model evaluation it is observed that the 2-point trailing MA model is having an optimum performance (RMSE-813.4) among the Regression, Naïve forecast, Simple average models.

The Smoothening model for the sparkling dataset is also built and its performance is discussed below,

Simple Exponential Smoothing (Sparkling)

Double Exponential Smoothing (Sparkling)

4.8. SES and DES plot-optimum parameters

The optimum parameters for the SES, DES models are found using the python and they are used to build the models.

Triple Exponential Smoothing (Sparkling)

4.9. SES and DES, TES plot-optimum parameters

4.10. SES and DES, TES plot-Alternative parameters

RMSE of smoothening models (Sparkling)

	Test RMSE
Alpha=0.99,SES	1338.000861
Alpha=1,Beta=0.0189:DES	5291.879833
Alpha=0.25,Beta=0.0,Gamma=0.74:TES	378.625883
Alpha=0.74,Beta=2.73e-06,Gamma=5.2e-07,Gamma=0:TES	402.936179

From the RMSE values it is observed that the TES model with RMSE (378.6) is the optimum smoothening model for forecasting. This TES model is even better that the 2-point trailing MA model (RMSE-813.4).

Forecast models for Rose wine:

Linear Regression

4.11. Linear Regression (Rose), RMSE

Naïve forecast

4.12. Naïve Forecast (Rose), RMSE

Simple Average

4.13. Simple Average (Rose), RMSE

Moving Average

4.14. Moving Average (Rose), RMSE

The Models are built for the Rose wine dataset and the respective model evaluations are made using the RMSE values. Let us make a comparison of the above models using a comparison plot.

	Test RMSE
RegressionOnTime	15.267514
NaiveModel	79.714824
SimpleAverageModel	53.456520
2pointTrailingMovingAverage	11.529314
4pointTrailingMovingAverage	14.451239
6pointTrailingMovingAverage	14.564591
9pointTrailingMovingAverage	14.726926

4.15. Model comparison (Rose)

From the model comparison plot and the RMSE model evaluation it is observed that the 2-point trailing MA model is having an optimum performance (RMSE-11.5) among the Regression, Naïve forecast, Simple average models.

The Smoothening model for the sparkling dataset is also built and its performance is discussed below,

Simple Exponential Smoothing (Rose)

'smoothing trend': nan, 'smoothing_seasonal': nan, 'damping trend': nan, 'initial_level': 134.38708961485827, 'initial trend': nan, 'initial_seasons': array([], dtype=float64), 'use boxcox': False, 'lamda': None, 'remove bias': False

('smoothing level': 0.09874963957110783,

4.16. SES plot, optimum parameters

Double Exponential Smoothing

==Holt model Exponential Smoothing Estimated Parameters ==
{'smoothing_level': 1.4901247095597348e-08, 'smoothing_trend': 7.3896641488640725e-09, 'smoothing_seasonal': nan, 'damping_trend': nan, 'initial_level': 137.81551313502814, 'initial_trend': -0.4943777717865305, 'initial_seasons': array([], dtype=float6 4), 'use_boxcox': False, 'lamda': None, 'remove_bias': False}

4.16. SES and DES plot, optimum parameters

Triple Exponential Smoothing

==Holt Winters model Exponential Smoothing Estimated Parameters ==

{'smoothing_level': 0.09467987567540882, 'smoothing_trend': 2.31999683285252e-05, 'smoothing_seasonal': 0.0004175285691922314,
'damping_trend': nan, 'initial_level': 146.40142527639352, 'initial_trend': -0.5464913833622084, 'initial_seasons': array([-31.
19268548, -18.833447655, -10.84745053, -21.48718886,

-12.67654312, -7.19154248, 2.65454402, 8.80233514,
4.79913097, 2.91389547, 21.00157004, 63.18716583]), 'use_boxcox': False, 'lamda': None, 'remove_bias': False}

4.17. SES and DES, TES plot-optimum parameters

4.18.SES and DES, TES plot-Alternative parameters

RMSE of smoothening models (Rose)

	Test RMSE
Alpha=0.99,SES	36.792115
Alpha=1,Beta=0.0189:DES	15.267515
Alpha=0.25,Beta=0.0,Gamma=0.74:TES	14.276827
Alpha=0.74,Beta=2.73e-06,Gamma=5.2e-07,Gamma=0:TES	20.185370

From the RMSE values it is observed that the TES model with RMSE (14.27) is the optimum smoothening model for forecasting. But comparatively the 2-point trailing MA model is having a better optimum overall performance (RMSE-11.5) than the smoothening model.

5. Check for the stationarity of the data on which the model is being built on using appropriate statistical tests and also mention the hypothesis for the statistical test. If the data is found to be non-stationary, take appropriate steps to make it stationary. Check the new data for stationarity and comment.

Note: Stationarity should be checked at alpha = 0.05.

The Augmented Dickey-Fuller test is a unit root test which determines whether there is a unit root and subsequently whether the series is non-stationary. The hypothesis in a simple form for the ADF test is:

 H_0 : The Time Series has a unit root and is thus non-stationary.

H₁: The Time Series does not have a unit root and is thus stationary.

We would want the series to be stationary for building ARIMA models and thus we would want the p-value of this test to be less than the α value (0.05).

Stationarity check (Sparkling dataset)

```
DF test statistic is -1.798
DF test p-value is 0.7055958459932692
Number of lags used 12
```

We see that at 5% significant level the Sparkling data series is non-stationary, $(p>\alpha)$.

Let us take one level of differencing to make the series stationary.

```
DF test statistic is -44.912
DF test p-value is 0.0
Number of lags used 10
```

p-value is less than 0.05, the sparkling dataset is now stationary.

5.1. Stationarity of Training data (before & after differencing)

Stationarity check (Rose dataset)

```
DF test statistic is -2.241
DF test p-value is 0.4669327030226468
Number of lags used 13
```

We see that at 5% significant level the Rose data series is non-stationary, $(p>\alpha)$.

Let us take one level of differencing to make the series stationary.

```
DF test statistic is -8.162
DF test p-value is 3.015793288348449e-11
Number of lags used 12
```

p-value is less than 0.05, the Rose dataset is now stationary.

5.2. Stationarity of Training data (before & after differencing)

6. Build an automated version of the ARIMA/SARIMA model in which the parameters are selected using the lowest Akaike Information Criteria (AIC) on the training data and evaluate this model on the test data using RMSE.

Automated ARIMA (Sparkling Dataset)

The combination of different parameters of p and q in the range of 0 and 2 are used. The value of d is kept as 1 as we need to take a difference of the series to make it stationary.

```
Examples of the parameter combinations for the Model
Model: (0, 1, 0)
Model: (0, 1, 1)
Model: (0, 1, 2)
Model: (0, 1, 3)
Model: (1, 1, 0)
Model: (1, 1, 1)
Model: (1, 1, 2)
Model: (1, 1, 3)
Model: (2, 1, 0)
Model: (2, 1, 0)
Model: (2, 1, 1)
Model: (2, 1, 2)
Model: (2, 1, 3)
Model: (3, 1, 0)
Model: (3, 1, 1)
Model: (3, 1, 1)
Model: (3, 1, 3)
```

SARIMAX Results							
Dep. Variable:	Spark	ling No.	Observations:		132		
Model:	ARIMA(2, 1	, 2) Log	Likelihood		-1101.755		
Date: S	un, 11 Dec	2022 AIC			2213.509		
Time:	18:3	6:10 BIC			2227.885		
Sample:	01-01-	1980 HQIC			2219.351		
	- 12-01-	1990					
Covariance Type:		opg					
coef	std err	Z	P> z	[0.025	0.975]		
ar.L1 1.3121	0 016	28 782	0.000	1 223	1.401		
			0.000				
ma.L1 -1.9917			0.000				
			0.000				
sigma2 1.099e+06	1.99e-0/	5.51e+12	0.000	1.1e+06	1.1e+06		
1 dun = Day (14) (0)		0.10	3 B	/3D) -	14.46		
Ljung-Box (L1) (Q):			Jarque-Bera	(18):	14.46		
Prob(Q):		0.67	Prob(JB):		0.00		
Heteroskedasticity (H)	:	2.43			0.61		
Prob(H) (two-sided):		0.00	Kurtosis:		4.08		
=======================================							

	param	AIC
10	(2, 1, 2)	2213.509212
15	(3, 1, 3)	2221.461689
14	(3, 1, 2)	2230.825009
11	(2, 1, 3)	2232.811211
9	(2, 1, 1)	2233.777626

6.1. Auto ARIMA summary, AIC values

The parameters (2, 1, 2) with AIC value 2213.51 is selected for the model.

RMSE MAPE
ARIMA(2,1,2) 1299.979821 47.099974

6.2. Auto ARIMA RMSE, MAPE

6.3. Auto ARIMA diagnostic plot

Automated SARIMA (Sparkling Dataset)

Like the Automated ARIMA model, the parameter combinations are generated for the automated SARIMA model. Here the order of seasonality is taken as 4 based on the observations from the ACF plot.

```
Examples of the parameter combinations for the Model are Model: (0, 1, 1)(0, 0, 1, 4)
Model: (0, 1, 2)(0, 0, 2, 4)
Model: (0, 1, 3)(0, 0, 3, 4)
Model: (1, 1, 0)(1, 0, 0, 4)
Model: (1, 1, 1)(1, 0, 1, 4)
Model: (1, 1, 2)(1, 0, 2, 4)
Model: (1, 1, 3)(1, 0, 3, 4)
Model: (2, 1, 0)(2, 0, 0, 4)
Model: (2, 1, 1)(2, 0, 1, 4)
Model: (2, 1, 1)(2, 0, 1, 4)
Model: (2, 1, 3)(2, 0, 3, 4)
Model: (2, 1, 3)(2, 0, 3, 4)
Model: (3, 1, 0)(3, 0, 0, 4)
Model: (3, 1, 1)(3, 0, 1, 4)
Model: (3, 1, 2)(3, 0, 2, 4)
Model: (3, 1, 3)(3, 0, 3, 4)
```

			SARIMAX	Results							
Dep. Varial	======== ble:		Spark	ling No. 0	======= bservations:		132				
Model:	SARI	[MAX(1, 1, :	3)x(3, 0, 3	, 4) Log L	ikelihood		-844.750				
Date:		Si	at, 10 Dec	2022 AIC			1711.501				
Time:			22:0	1:37 BIC			1741.695				
Sample:			01-01-	1980 HQIC			1723.757				
			- 12-01-	1990							
Covariance	Type:			opg							
	coef	std err	Z	P> z	[0.025	0.975]			param	seasonal	AIC
ar.L1	-0.5053		-1.154	0.248		0.353		63	(0, 1, 3)	(3, 0, 3, 4)	1710.552843
ma.L1	-0.2776	0.444	-0.625	0.532		0.593		407		(0.0.0.4)	4744 500000
ma.L2	-0.5892		-1.884	0.060	-1.202	0.024		12/	(1, 1, 3)	(3, 0, 3, 4)	1711.500926
ma.L3		0.151	0.536	0.592	-0.215	0.376		191	(2, 1, 3)	(3, 0, 3, 4)	1712.736903
ar.S.L4	-0.0072	0.010	-0.747	0.455	-0.026	0.012					
		0.009	-2.782	0.005	-0.042	-0.007		255	(3, 1, 3)	(3, 0, 3, 4)	1714.608407
ar.S.L12	1.0436	0.008	136.816			1.059		251	(3, 1, 3)	(2, 0, 3, 4)	1714.755979
	0.1131	0.253	0.448			0.608			. , , , ,		
	0.0758		0.291			0.586					
	-1.1879		-8.217			-0.905					
sigma2	8.785e+04	7.45e-06	1.18e+10	0.000	8.79e+04	8.79e+04					
							===				
Ljung-Box (Prob(0):	(L1) (Q):			Jarque-Bera Prob(JB):	(JB):		7.06).00				
\ - /	asticity (H):		2.61	Skew:			0.69				
	wo-sided):	•	0.00	Kurtosis:			1.93				

6.4. Auto SARIMA summary, AIC values

The parameters (1, 1, 3), seasonal (3, 0, 3, 4) with AIC value 1711.5 is selected for the auto SARIMA model.

	RMSE	MAPE
ARIMA(2,1,2)	1299.979821	47.099974
SARIMA(1, 1, 3)(3, 0, 3, 4)	596.585216	22.389227

6.5. Auto SARIMA diagnostic plot, RMSE, MAPE

Automated ARIMA (Rose Dataset)

```
Examples of the parameter combinations for the Model
Model: (0, 1, 0)
Model: (0, 1, 1)
Model: (0, 1, 2)
Model: (0, 1, 3)
Model: (1, 1, 0)
Model: (1, 1, 1)
Model: (1, 1, 2)
Model: (1, 1, 3)
Model: (2, 1, 0)
Model: (2, 1, 1)
Model: (2, 1, 2)
Model: (2, 1, 3)
Model: (3, 1, 0)
Model: (3, 1, 1)
Model: (3, 1, 2)
Model: (3, 1, 3)
```

		SAR	IMAX Resul	ts		
Dep. Varia	able:	R	ose No.	Observations:		132
Model:		ARIMA(2, 1,	 Log 	Likelihood		-631.348
Date:	Su	un, 11 Dec 2	022 AIC			1274.695
Time:		20:01	:01 BIC			1291.947
Sample:		01-01-1	980 HQIC			1281.705
		- 12-01-1	990			
Covariance	: Type:		opg			
	coef	std err	z	P> z	[0.025	0.975]
ar.L1	-1.6781	0.084	-19.992	0.000	-1.843	-1.514
ar.L2	-0.7289	0.084	-8.684	0.000	-0.893	-0.564
ma.L1	1.0446	0.628	1.665	0.096	-0.185	2.275
ma.L2	-0.7720	0.133	-5.824	0.000	-1.032	-0.512
ma.L3	-0.9046	0.569	-1.590	0.112	-2.020	0.210
sigma2	860.6996	528.714	1.628	0.104	-175.560	1896.959
Ljung-Box	(L1) (Q):		0.02	Jarque-Bera	(JB):	24.4
Prob(Q):			0.88	Prob(JB):		0.0
Heterosked	dasticity (H):	1	0.40	Skew:		0.7
Prob(H) (t	two-sided):		0.00	Kurtosis:		4.5

	param	AIC
11	(2, 1, 3)	1274.695356
15	(3, 1, 3)	1278.661965
2	(0, 1, 2)	1279.671529
6	(1, 1, 2)	1279.870723
3	(0, 1, 3)	1280.545376

6.6. Auto ARIMA summary, AIC values

The parameters (2, 1, 3) with AIC value 1274.7 is selected for the auto ARIMA model.

6.7. Auto ARIMA diagnostic plot, RMSE, MAPE

Automated SARIMA (Rose Dataset)

```
Examples of the parameter combinations for the Model are Model: (0, 1, 1)(0, 0, 1, 4)

Model: (0, 1, 2)(0, 0, 2, 4)

Model: (0, 1, 3)(0, 0, 3, 4)

Model: (1, 1, 0)(1, 0, 0, 4)

Model: (1, 1, 1)(1, 0, 1, 4)

Model: (1, 1, 2)(1, 0, 2, 4)

Model: (1, 1, 3)(1, 0, 3, 4)

Model: (2, 1, 0)(2, 0, 0, 4)

Model: (2, 1, 1)(2, 0, 1, 4)

Model: (2, 1, 2)(2, 0, 2, 4)

Model: (2, 1, 3)(2, 0, 3, 4)

Model: (3, 1, 3)(3, 0, 0, 4)

Model: (3, 1, 1)(3, 0, 1, 4)

Model: (3, 1, 2)(3, 0, 2, 4)

Model: (3, 1, 3)(3, 0, 3, 4)
```

				Results			
Dep. Varia					Observations:		
Model:	SAR	IMAX(2, 1, 3)x(3, 0, 3	, 4) Log	Likelihood		-50
Date:				2022 AIC			102
Time:			20:3	0:29 BIC			105
Sample:			01-01-	1980 HQIC			103
			- 12-01-	1990			
Covariance	Type:			opg			
	coef	std err	Z	P> z	[0.025	0.975]	
					-0.747		
					-0.914		
					-39.084		
					-62.772		
					-93.927		
ar.S.L4	0.0106	0.032	0.336	0.737	-0.051	0.073	
ar.S.L8	-0.0420	0.026	-1.591	0.112	-0.094	0.010	
ar.S.L12	0.8998	0.025	35.727	0.000	0.850	0.949	
ma.S.L4	-0.0370	211.473	-0.000	1.000	-414.517	414.443	
ma.S.L8	0.0370	204.619	0.000	1.000	-401.009	401.083	
ma.S.L12	-1.0002	247.684	-0.004	0.997	-486.451	484.451	
sigma2	261.5209	6.51e+04	0.004	0.997	-1.27e+05	1.28e+05	
					4		
Ljung-Box ((L1) (Q):			Jarque-Bera	a (JB):	_	8.96
Prob(Q):				Prob(JB):			0.00
	asticity (H):		0.38				0.50
Prob(H) (to	wo-sided):		0.00	Kurtosis:			4.72

	param	seasonal	AIC
191	(2, 1, 3)	(3, 0, 3, 4)	1026.408988
254	(3, 1, 3)	(3, 0, 2, 4)	1034.712742
63	(0, 1, 3)	(3, 0, 3, 4)	1040.705448
127	(1, 1, 3)	(3, 0, 3, 4)	1041.926683
255	(3, 1, 3)	(3, 0, 3, 4)	1046.087758

6.8. Auto SARIMA summary, AIC values

The parameters (2, 1, 3), seasonal (3, 0, 3, 4) with AIC value 1026.41 is selected for the auto SARIMA model.

	RMSE	MAPE
ARIMA(2,1,3)	36.809369	75.824713
SARIMA(2, 1, 3)(3, 0, 3, 4)	21.501007	43.054333

6.9. Auto SARIMA diagnostic plot, RMSE, MAPE

7. Build ARIMA/SARIMA models based on the cut-off points of ACF and PACF on the training data and evaluate this model on the test data using RMSE.

Manual ARIMA (Sparkling Dataset)

7.1. ACF and PACF plots

		SAI	RIMAX Resul	ts			
Dep. Variab		Snank'	ling No	Observations:		132	
Model:		ARIMA(4, 1				-1097.624	
Date:		in. 11 Dec		LIKEIINOOU		2213.248	
Time:	٥,		5:02 BIC			2239.125	
Sample:		01-01-				2223.763	
Jampie.		- 12-01-				2223.703	
Covariance	Type:	- 12-01-	opg				
	.,,		-ro				
	coef	std err	Z	P> z	[0.025	0.975]	
ar.L1		0.400		0.000			
ar.L2	-0.4492			0.000			
ar.L3	-0.4463			0.000	-0.618		
ar.L4	0.5500			0.000			
ma.L1		7.181			-14.079		
ma.L2		14.247		0.999			
ma.L3	-0.0328			0.996			
ma.L4				0.000			
sigma2	9.083e+05	3.05e-05	2.986+10	0.000	9.08e+05	9.086+05	
Ljung-Box ((L1) (0):		0.11	Jarque-Bera	(JB):		0.68
Prob(0):	() (2).		0.74		(/-		0.71
	asticity (H):		2.83	(/ -			0.17
Prob(H) (to				Kurtosis:			3.06

7.2. MANUAL ARIMA summary and diagnostic plot

	RMSE	MAPE
ARIMA(2,1,2)	1299.979821	47.099974
SARIMA(1, 1, 3)(3, 0, 3, 4)	596.585216	22.389227
ARIMA(4,1,4)	1212.918076	40.214639

7.3. MANUAL ARIMA RMSE, MAPE

Manual SARIMA (Sparkling Dataset)

7.4. ACF and PACF plots

7.5. MANUAL SARIMA summary and diagnostic plot

9.979821	47 000074
	41.000014
6 585216	22.389227
	6.585216 2.918076 2.716993

7.6. MANUAL SARIMA RMSE, MAPE

Manual ARIMA (Rose Dataset)

7.7. ACF and PACF plots

		SAR	IMAX Resul	ts			
Dep. Variab	le:	R	ose No.	Observations:		132	
Model:		ARIMA(0, 1,	 Log 	Likelihood		-636.273	
Date:	S	un, 11 Dec 2	022 AIC			1280.545	
Time:		22:12	:30 BIC			1292.046	
Sample:		01-01-1	980 HQIC			1285.219	
		- 12-01-1	990				
Covariance	Type:		opg				
				P> z		0.975]	
ma.L1				0.000		-0.567	
ma.L2	-0.2887	0.103	-2.807	0.005	-0.490	-0.087	
ma.L3	0.0939	0.084	1.122	0.262	-0.070	0.258	
sigma2				0.000	779.043	1134.975	
====== Ljung-Box (0.05		(JB):	:	5.24
Prob(Q):	/ (4).			Prob(JB):	\/·		0.00
Heteroskeda	sticity (H)	:	0.37				0.81
Prob(H) (tw		-		Kurtosis:			4.96

ARIMA(0,1,3) 36.715834 75.712739

7.8. MANUAL ARIMA summary and diagnostic plot

Manual SARIMA (Rose Dataset)

			SARIM	AX Results				
Dep. Varia	 bla:			Rose	No. Observat	 ions:		13
Model:		MAX(0, 1, 3)v/a a [Log Likeliho			567.42
Date:	JAKI	MAX(0, 1, 1		Dec 2022		ou		146.84
Time:			3un, 11		BIC			163.51
Sample:			0		HOIC		_	153.61
Jumpic.			_	2-01-1990	HQIC		-	155.01
Covariance	Type		- 1	2-01-1990 opg				
COVAL TALLCE	Type.			opg				
	coef	std err	z	P> z	[0.025	0.975]		
ma.L1	-0.6577	0.085	-7.708	0.000	-0.825	-0.490		
ma.L2	-0.2539	0.098	-2.584	0.010	-0.447	-0.061		
ma.L3	0.0285	0.084	0.341	0.733	-0.135	0.192		
ma.S.L4	-0.3374	0.083	-4.047	0.000	-0.501	-0.174		
ma.S.L8	0.4610	0.116	3.960	0.000	0.233	0.689		
sigma2	791.7344	106.423	7.439	0.000	583.148	1000.320		
Ljung-Box	(L1) (Q):		0.30	Jarque-Ber	a (JB):		0.45	
Prob(Q):			0.59	Prob(JB):			0.80	
Heterosked	asticity (H):		0.47	Skew:			0.10	
Prob(H) (t	wo-sided):		0.02	Kurtosis:			3.22	

SARIMA(0,1,3)(0,0,2,4) 34.496181 70.201699

7.9. MANUAL SARIMA summary and diagnostic plot

8. Build a table with all the models built along with their corresponding parameters and the respective RMSE values on the test data.

RMSE values of models on test data as follows,

Sparking dataset (RMSE values)

Regression, Naïve, Sin	nple Avg , MA	Models	Smoothing models (SES,	DES, TES)	
RegressionOnTime	1389	.135175	Alpha=0.99, SES	1338.000861	
NaiveModel	3864	.279352	Alpha=1, Beta=0.0189: DES	5291.879833	
SimpleAverageModel	1275	.081804	Alpha=0.25, Beta=0.0, Gamma=0.74:	378.625883	
2pointTrailingMovingAvg	813	.400684	TES	370.023003	
4pointTrailingMovingAvg	1156	5.589694	Alpha=0.74, Beta=2.73e-06, Gamma=5.2e-07, Gamma=0:TES	402.936179	
6pointTrailingMovingAvg	1283	.927428			
9pointTrailingMovingAvg	1346	.278315			
ARIMA, SARIMA mo	dels (RMSE, M	APE)	Parameters		
AUTO ARIMA (2,1,2)	1299.979821	47.099974	The optimal parameters for each more respective model sec		
AUTO SARIMA (1, 1, 3) (3, 0, 3, 4)	596.585216	22.389227			
MANUAL ARIMA (4,1,4)	1212.918076	40.214639			
MANUAL SARIMA (1,1,3) (0,0,2,4)	1252.716993	38.122371			

Rose dataset (RMSE values)

Regression, Naïve, Simp	Regression, Naïve, Simple Avg , MA models				ES, DES, TES)
RegressionOnTime	15.267514		Alpha=0.99, SES	36.792115	
NaiveModel	79.714824		Almha		
SimpleAverageModel	53.456520		Alpha=1, Beta=0.0189: DES	15.267515	
2pointTrailingMovingAvg	11.529314		Alpha=0.25, Beta=0.0, Gamma=0.74:	14.276827	
4pointTrailingMovingAvg	14.451239		TES		
6pointTrailingMovingAvg	14.564591		Alpha=0.74, Beta=2.73e- 06, Gamma=5.2e-	20.185370	
9pointTrailingMovingAvg	14.726926		07, Gamma=0: TES		
ARIMA, SARIMA mode	Is (RMSE, MAPE	Ξ)		Parameter	s
() , , , ,	80937 75.82471		The optimal p	arameters fo	or each model are
(3, 0, 3, 4)	50101 43.05433		shown in the	e respective	model sections.
MANUAL SARIMA (0.1.3)	71583 75.71274 49618 70.2017				

9. Based on the model-building exercise, build the most optimum model(s) on the complete data and predict 12 months into the future with appropriate confidence intervals/bands.

Sparkling dataset (Optimum model)

				Results				
Dep. Varia			 Spark		bservations:		187	
Model:		ΓΜΛΥ/1 1 3		, 4) Log l			-1247.401	
Date:	JAK.			2022 AIC	IKCIIIIOUU		2516.803	
Time:		30		6:15 BIC			2551.297	
Sample:				1980 HOIC			2530.800	
Jampie.			- 07-01-				2550.000	
Covariance	Type:		0. 01	opg				
	coef	std err	z	P> z	[0.025	0.975]		
ar.L1	-0.3005	0.844	-0.356	0.722	-1.956	1.355		
ma.L1	1.0418	2.655	0.392	0.695	-4.163	6.246		
					-9.636			
ma.L3	0.1619	1.046	0.155	0.877	-1.888	2.212		
ar.S.L4	0.0002	0.011	0.017	0.986	-0.021	0.022		
ar.S.L8	-0.0093	0.008	-1.207	0.227	-0.025	0.006		
ar.S.L12	1.0119	0.009	111.612	0.000	0.994	1.030		
ma.S.L4	-0.1467	0.427	-0.344	0.731	-0.983	0.690		
ma.S.L8	-0.1550	0.352	-0.441	0.659	-0.844	0.534		
ma.S.L12	-0.6849	0.298	-2.296	0.022	-1.269	-0.100		
		5.67e+04		0.702		1.33e+05		
Ljung-Box	(L1) (0):			Jarque-Bera			0.63	
				Prob(JB):	· · · · · ·	0.00		
			1.39			0.79		
			0.21				5.46	
========								

9.1. Summary

RMSE of the Full Model 525.16

Sparkling	mean	mean_se	mean_ci_lower	mean_ci_upper
1995-08-01	1833.267312	360.917909	1125.881208	2540.653415
1995-09-01	2551.740052	366.467319	1833.477305	3270.002798
1995-10-01	3234.758932	366.780249	2515.882853	3953.635011
1995-11-01	4102.430636	368.956037	3379.290092	4825.571181
1995-12-01	6304.313240	369.225281	5580.644987	7027.981492
1996-01-01	1289.950498	370.131586	564.505919	2015.395076
1996-02-01	1503.641886	371.517527	775.480913	2231.802860
1996-03-01	1917.365597	372.667274	1186.951162	2647.780031
1996-04-01	1863.795064	373.437475	1131.871063	2595.719066
1996-05-01	1681.442981	373.946373	948.521558	2414.364404
1996-06-01	1518.082227	374.953827	783.186230	2252.978223
1996-07-01	2066.054172	375.716258	1329.663839	2802.444506

9.2. Model predictions

Rose dataset (Optimum model)

			SARIMAX	Results			
====== Dep. Variab	:======: :le:		=======	Rose No. (Observations:		18
Model:		IMAX(2, 1, 3)x(3, 0, 3	. 4) Log I	Likelihood		-719.51
Date:				2022 AIC			1463.02
Time:			23:0	2:27 BIC			1500.64
Sample:			01-01-	1980 HOIC			1478.28
			- 07-01-	1995			
Covariance	Type:			opg			
	coef	std err	z	P> z	[0.025	0.975]	
ar.L1	-1.3153	0.035	-37.567	0.000	-1.384	-1.247	
ar.L2					-0.901		
ma.L1	0.5383	0.067			0.407		
ma.L2	-0.3194	0.077	-4.129	0.000	-0.471	-0.168	
					-0.994		
ar.S.L4					-0.008		
					-0.046		
					0.889		
ma.S.L4			-0.000		-432.571		
ma.S.L8		218.350	0.000		-427.914		
					-619.463		
sigma2	225.7910	7.13e+04	0.003	0.997	-1.39e+05	1.4e+05	
Liung-Box ('L1) (0):		0.92	Jarque-Bera	======== a (JB):	6	1.91
				Prob(JB): 0.0			
Heteroskedasticity (H):		0.14			0.56		
Prob(H) (two-sided):			0.00			5.74	

9.3. Summary

RMSE of the Full Model 26.8

Rose	mean	mean_se	mean_ci_lower	mean_ci_upper
1995-08-01	45.756424	15.524812	15.328351	76.184497
1995-09-01	42.689788	15.907865	11.510947	73.868630
1995-10-01	44.472443	15.951391	13.208290	75.736595
1995-11-01	53.323918	15.968752	22.025740	84.622096
1995-12-01	71.570373	16.268907	39.683901	103.456844
1996-01-01	34.172715	16.272239	2.279714	66.065717
1996-02-01	38.021251	16.401244	5.875403	70.167100
1996-03-01	41.433995	16.564480	8.968210	73.899780
1996-04-01	43.085396	16.593262	10.563200	75.607592
1996-05-01	35.028295	16.818313	2.065007	67.991584
1996-06-01	36.616906	16.874588	3.543321	69.690491
1996-07-01	41.675068	16.925436	8.501823	74.848313

9.4. Model predictions

10. Comment on the model thus built and report your findings and suggest the measures that the company should be taking for future sales.

Steps involved:

- 1. The dataset is read as a proper time series data and EDA is done in it.
- 2. Visualization of the data is performed for understanding the data distribution, sales over the years and monthly sales.
- 3. The data is decomposed to understand the seasonality and trend in it.
- 4. Data is split into train and test datasets; this train data is used to build different forecasting models and the model with the optimum RMSE value is selected for forecasting.
- 5. From the RMSE values the optimum model for forecasting the sparkling dataset are Alpha=0.25, Beta=0.0, Gamma=0.74: TES and Auto SARIMA models. For the Rose dataset it is 2pointTrailingMovingAvg and Alpha=0.25, Beta=0.0, Gamma=0.74: TES.
- 6. The optimum model is selected, and the predictions are made for the next 12 months using it.

INSIGHTS:

SPARKLING WINE: The sparkling wine sales is high during the December and November months; the company can provide offers during these months and increase the production of this type of wine for sale during this period.

- The sale of the sparkling wine will follow the same seasonality pattern as previous years.
- The sparkling wine is forecasted to sell over 6000 units.
- Sparkling wine sales is comparatively higher than rose wine.

ROSE WINE: The rose wine sales is high during the December and November months; the company can provide offers during these months. The sale of this type of wine is declining over the years and the company have to perform marker surveys to decide upon the demand for this wine for next year production.

- The sale of the rose wine will follow the same seasonality pattern as previous years.
- The sparkling wine is forecasted to sell between 50 to 100 units.
- The rose wine is losing its popularity among people. The company may look for producing a different type of wine.
- The introduction of a new wine type may boost sales.