Math 532: Homework 5 Due 10/02/19

Everyone turns in an individual copy.

Notes

Remember that an open disc $D_R(z)$ is defined by

$$D_R(z) = \{ w \in \mathbb{C} : |w - z| < R \}$$

= $\{ (\tilde{x}, \tilde{y}) \in \mathbb{R}^2 : \sqrt{(\tilde{x} - x)^2 + (\tilde{y} - y)^2} < R \}$

where we have let z = x + iy and $w = \tilde{x} + i\tilde{y}$. Similarly, we define a closed disc $\bar{D}_R(z)$ so that

$$\bar{D}_R(z) = \{ w \in \mathbb{C} : |w - z| \le R \}$$

Thus we think of discs in \mathbb{C} or \mathbb{R}^2 interchangeably, and we will write $D_R(z)$ and $D_R((x,y))$ interchangeably. Similarly, when we define a domain $D \subset \mathbb{C}$, we are implicitly defining a domain $D \subset \mathbb{R}^2$.

As to differentiability requirements involving the real and imaginary parts of analytic functions, for a domain $D \subset \mathbb{C}$, a bit of notation honestly makes this so much easier. First define the set of continuous functions over D which we denote as C(D) or

$$C(D) = \{g : D \to \mathbb{R} \text{ such that } g(x,y) \text{ is continuous for } (x,y) \in D\}.$$

In the same vein, we can define $C^1(D)$ so that

$$C^1(D) = \{g: D \to \mathbb{R} \text{ such that } g_x, \ g_y \in C(D)\}.$$

For now, we state without proof that if f(z) = u + iv is analytic for $z \in D$, then $u, v \in C^2(D)$, where

$$C^2(D) = \{g : D \to \mathbb{R} \text{ such that } g_{xx}, \ g_{yy}, \ g_{xy}, \ g_{yx} \in C(D)\}.$$

Note, if $u \in C^2(D)$, then $u_{xy} = u_{yx}$. Also keep in mind that continuity of second derivatives ensures the continuity of first derivatives and so forth, which is to say that

$$C^2(D) \subset C^1(D) \subset C(D)$$
.

Likewise, over closed discs $\bar{D}((x,y))$, keep in mind that $u \in C(\bar{D}((x,y)))$ implies there is some positive real value M > 0 such that

$$|u(\tilde{x}, \tilde{y})| \le M, \ (\tilde{x}, \tilde{y}) \in \bar{D}((x, y)),$$

i.e. continuous functions are bounded over closed and bounded sets, though we only need the result over discs right now. Note, this implies that if $u \in C^2(\bar{D}((x,y)))$, then not only is u bounded on $\bar{D}((x,y))$, but every derivative up to the second ones are as well.

Problems

- 1. (2pts each) 2.26.4
- 2. (5pts) 2.26.6
- 3. (5pts) 2.27.1. Note, for f(z) = u + iv analytic in $z \in D$, we again take for granted that $u, v \in C^2(D)$, which is what makes 2.27.1 work. Moreover, we see that by defining the Laplacian $\Delta u = u_{xx} + u_{yy}$, we have that

$$\Delta u = 0$$
.

Using an identical argument, we can show that $\Delta v = 0$. A function with zero Laplacian is called *harmonic*. Thus 2.27.1 shows us that in polar coordinates

$$\Delta u = r^2 u_{rr} + r u_r + u_{\theta\theta} = 0.$$

4. (5pts) Suppose $u(\tilde{x}, \tilde{y})$ is harmonic, or $\Delta u = 0$, on the closed disc $\bar{D}_R((x,y))$ for some R > 0. For $(\tilde{x}, \tilde{y}) \in \bar{D}_R((x,y))$, if we let

$$\tilde{x} = x + r\cos(\theta)$$
, $\tilde{y} = y + r\sin(\theta)$, $0 \le r \le R$,

then 2.27.1 tells us that

$$\Delta u = r^2 u_{rr} + r u_r + u_{\theta\theta} = 0.$$

Defining

$$u_a(x, y, r) = \int_0^{2\pi} u(x + r\cos(\theta), y + r\sin(\theta))d\theta,$$

by integrating $\Delta u = 0$ in θ from 0 to 2π , show that

$$u_a(x, y, r) = c(x, y),$$

i.e. $u_a(x,y,r)$ does not depend on the radius r. Note, for

$$g \in C^1\left(\bar{D}_R((x,y))\right)$$
,

you will need to use the general identity

$$\int_0^{2\pi} \partial_r g(x + r\cos(\theta), y + r\sin(\theta)) d\theta =$$

$$\partial_r \int_0^{2\pi} g(x + r\cos(\theta), y + r\sin(\theta)) d\theta,$$

which says that one can move a derivative through an integral when the integral is along a different coordinate. Also remember that if

$$u \in C^2\left(\bar{D}((x,y))\right),$$

then

$$u \in C\left(\bar{D}((x,y))\right)$$
,

and thus $u(\tilde{x}, \tilde{y})$ must be bounded on $\bar{D}((x, y))$.

5. (5pts) So, harmonic functions are interesting for a variety of reasons. Suppose that u(x,y) is a harmonic function over some domain D. Show then that

$$\begin{split} u(x,y) = & \frac{1}{\pi R^2} \iint_{\bar{D}_R((x,y))} u(\tilde{x},\tilde{y}) \ dA \\ = & \frac{1}{\pi R^2} \int_0^R \int_0^{2\pi} u(x + r\cos(\theta), y + r\sin(\theta)) r d\theta dr, \end{split}$$

or that the average of u(x,y) over any closed disc $\bar{D}_R(z) \subset D$ is exactly itself. To do this

• Using the previous problem, show that the function $u_A(x, y, R)$ where

$$u_A(x, y, R) = \frac{1}{\pi R^2} \int_0^R \int_0^{2\pi} u(x + r\cos(\theta), y + r\sin(\theta)) r d\theta dr$$

does not depend on R and thus show the identity

$$u_A(x, y, R) = u_A(x, y, 0).$$

• Given that u is harmonic, we have that $u \in C^2(\bar{D}((x,y)))$. Thus we have the Mean-Value Theorem result that

$$u(x+r\cos(\theta), y+r\sin(\theta)) = u(x,y) + u_x(\xi,\eta)r\cos(\theta) + u_y(\xi,\eta)r\sin(\theta),$$

where $(\xi, \eta) \in D_r((x, y))$. Moreover, since u must have bounded derivatives on the closed disc, we have that there exist two positive constants M_x and M_y such that

$$|u_x(\xi,\eta)r\cos(\theta)| \le M_x r, |u_y(\xi,\eta)r\sin(\theta)| \le M_y r.$$

Using this show that

$$\lim_{R\to 0} u_A(x,y,R) = u(x,y),$$

and thus that we have $u(x,y) = u_A(x,y,R)$ for any R such that $\bar{D}_R((x,y)) \subset D$.

6. (5pts) Let D be a bounded domain with boundary ∂D , and let u be harmonic on D, and let u be continuous on $\bar{D} = D \cup \partial D$, i.e. u is continuous on the closure of the bounded domain D. Define

$$M = \max_{(x,y)\in \bar{D}} u(x,y).$$

Using the previous problem, show that if u(x,y) = M for (x,y) an interior point of \bar{D} , then u is a constant on \bar{D} . Likewise, show that for

$$m = \min_{(x,y) \in \bar{D}} u(x,y).$$

if u(x,y) = m for (x,y) an interior point of \bar{D} , then u is a constant on \bar{D} . Using this, show that if u is not constant, then it must attain its maximum and minimum on the boundary ∂D .

Note, your argument will need to go something like this. Suppose u(x,y) = M for an interior point (x,y). Then for any closed disc

$$\bar{D}_R((x,y)) \subset D, \ R > 0,$$

from the previous problem we must have that

$$u(x,y) = \frac{1}{\pi R^2} \iint_{\bar{D}_R((x,y))} u(\tilde{x},\tilde{y}) \ dA.$$

But then

$$\frac{1}{\pi R^2} \iint_{\bar{D}_R((x,y))} (u(x,y) - u(\tilde{x},\tilde{y})) \ dA = 0,$$

while $u(x,y) - u(\tilde{x},\tilde{y}) \ge 0$, and thus we must have

$$u(\tilde{x}, \tilde{y}) = u(x, y) = M.$$

Now, cover \bar{D} by a finite number of discs and use path-connectivity in the domain and you have the maximum part of the proof. You can do the rest.