

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

имени М.В.Ломоносова

Факультет вычислительной математики и кибернетики

Компьютерный практикум по учебному курсу «ВВЕДЕНИЕ В ЧИСЛЕННЫЕ МЕТОДЫ»

3АДАНИЕ № 2_2

Численные методы решения дифференциальных уравнений

ОТЧЕТ

о выполненном задании

студента 203-ей учебной группы факультета ВМК МГУ Кудисова Артёма Аркадьевича

гор. Москва

Цель работы

Освоить метод прогонки решения краевой задачи для дифференциального уравнения второго порядка.

Постановка задачи

Рассматривается линейное дифференциальное уравнение второго порядка вида

$$y'' + p(x)y' + q(x)y = -f(x), \ 0 < x < 1, \tag{1}$$

с дополнительными условиями в граничных точках

$$\begin{cases} \sigma_1 y(0) + \gamma_1 y'(0) = \delta_1, \\ \sigma_2 y(1) + \gamma_2 y'(1) = \delta_2. \end{cases}$$
 (2)

Основные цели

- 1. Решить краевую задачу (1)-(2) методом конечных разностей, аппроксимировав ее разностной схемой второго порядка точности (на равномерной сетке); полученную систему конечно-разностных уравнений решить методом прогонки;
- 2. Найти разностное решение задачи и построить его график;
- 3. Найденное разностное решение сравнить с точным решением дифференциального уравнения (подобрать специальные тесты, где аналитические решения находятся в классе элементарных функций, при проверке можно использовать ресурсы on-line системы http://www.wolframalpha.com или пакета Maple и т.п.)

Решение краевой задачи

Рассмотрим линейное дифференциальное уравнение второго порядка

$$y'' + p(x)y' + q(x)y = -f(x)$$

на отрезке (a,b) с дополнительными условиями в граничных точках

$$\begin{cases} \sigma_1 y(a) + \gamma_1 y'(a) = \delta_1, \\ \sigma_2 y(b) + \gamma_2 y'(b) = \delta_2. \end{cases}$$

Зададим на [a,b] равномерную сетку с шагом $h=\frac{b-a}{n}$. Сетка состоит из n+1 узла вида $x_i=a+ih,\ i=\overline{0,n}$.

Аппроксимируем наши производные через центральные разностные производные:

$$y_i' \approx \frac{y_{i+1} - y_{i-1}}{2h}, \ y_i'' \approx \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2}, \ i = \overline{1, n-1}$$

Тогда наше дифференциальное уравнение примет следующий вид

$$\frac{y_{i+1}-2y_i+y_{i-1}}{h^2}+p(x_i)\frac{y_{i+1}-y_{i-1}}{2h}+q(x_i)y_i=-f(x_i),\ i=\overline{1,n-1}$$

Теперь перегруппируем коэффициенты при соответствующих y и получим

$$A_iy_{i-1}+B_iy_i+C_iy_{i+1}=D_i,\ i=\overline{1,n-1}$$
 где $A_i=h^{-2}-rac{p(x_i)}{2h},\ B_i=-2h^{-2}+q(x_i),\ C_i=h^{-2}+rac{p(x_i)}{2h},\ D_i=-f(x_i)$

Вернемся к условиям в граничных точках и аппроксимируем y'(a) справа и y'(b) слева:

$$y'(a) \approx \frac{y_1 - y_0}{h}, \ y'(b) \approx \frac{y_n - y_{n-1}}{h}$$

Тогда мы имеем следующую систему

$$\begin{cases} \sigma_1 y_0 + \gamma_1 \frac{y_1 - y_0}{h} = \delta_1, \\ \sigma_2 y_n + \gamma_2 \frac{y_n - y_{n-1}}{h} = \delta_2. \end{cases}$$

И, перегруппировав слагаемые, получим

$$\begin{cases} B_0y_0 + C_0y_1 = D_0 \\ A_ny_{n-1} + B_ny_n = D_n \end{cases}$$
 где $B_0 = \sigma_1 - \gamma_1/h, \ C_0 = \gamma_1/h, \ D_0 = \delta_1$ $A_n = -\gamma_2/h, \ B_n = \sigma_2 + \gamma_2/h, \ D_n = \delta_2$

В итоге у нас есть n+1 неизвестных $y_0,y_1,...,y_n$ и СЛАУ с трехдиагональной матрицей, которую можно решить методом прогонки.

$$\begin{bmatrix} B_0 & C_0 & 0 & 0 & \dots & 0 & 0 & 0 \\ A_1 & B_1 & C_1 & 0 & \dots & 0 & 0 & 0 & 0 \\ 0 & A_2 & B_2 & C_2 & \dots & 0 & 0 & 0 & 0 \\ \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & A_{n-1} & B_{n-1} & C_{n-1} \\ 0 & 0 & 0 & 0 & \dots & 0 & A_n & B_n \end{bmatrix} \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ \dots \\ y_{n-1} \\ y_n \end{bmatrix} = \begin{bmatrix} D_0 \\ D_1 \\ D_2 \\ \dots \\ D_{n-1} \\ D_n \end{bmatrix}$$

Метод прогонки

$$A_{i}y_{i-1} + B_{i}y_{i} + C_{i}y_{i+1} = D_{i}, \ i = \overline{1, n-1}$$

$$\begin{cases} B_{0}y_{0} + C_{0}y_{1} = D_{0} \\ A_{n}y_{n-1} + B_{n}y_{n} = D_{n} \end{cases}$$

Суть метода прогонки заключена в предположении, что искомые неизвестные y_i, y_{i+1} связаны несложным рекуррентным соотношением

$$y_i = \alpha_{i+1}y_{i+1} + \beta_{i+1}, \ i = \overline{0, n-1}$$

Выразим y_{i-1} через y_{i+1}

$$y_{i-1} = \alpha_i y_i + \beta_i = \alpha_i \alpha_{i+1} y_{i+1} + \alpha_i \beta_{i+1} + \beta_i$$

И подставим y_i , y_{i-1} , выраженные через y_{i+1} , в исходное уравнение. В результате получим

$$(A_i\alpha_i\alpha_{i+1} + B_i\alpha_{i+1} + C_i)y_{i+1} + A_i\alpha_i\beta_{i+1} + A_i\beta_i + B_i\beta_{i+1} - D_i = 0,$$

$$i = \overline{1, n-1}$$

Мы можем добиться заведомого выполнения данного соотношения (причем независимо от решения), если потребуем, чтобы при $i=\overline{1,n-1}$ выполнялись следующие равенства:

$$\begin{cases} A_i \alpha_i \alpha_{i+1} + B_i \alpha_{i+1} + C_i = 0 \\ A_i \alpha_i \beta_{i+1} + A_i \beta_i + B_i \beta_{i+1} - D_i = 0 \end{cases}$$

Тогда мы получаем рекуррентные соотношения для наших прогоночных коэффициентов α_{i+1} , β_{i+1}

$$\alpha_{i+1} = \frac{-C_i}{A_i \alpha_i + B_i}, \ \beta_{i+1} = \frac{D_i - A_i \beta_i}{A_i \alpha_i + B_i}, \ i = \overline{1, n-1}$$

Вернемся к левому граничному условию и рекуррентному соотношению

$$B_0 y_0 + C_0 y_1 = D_0$$

$$y_0 = \alpha_1 y_1 + \beta_1$$

Получаем, что $\alpha_1 = -C_0/B_0$, $\beta_1 = D_0/B_0$. Теперь мы можем вычислить остальные прогоночные коэффициенты $\alpha_2, ..., \alpha_n$ и $\beta_2, ..., \beta_n$.

Из правого граничного условия, выразив y_{n-1} через y_n мы получаем, что

$$A_n(\alpha_n y_n + \beta_n) + B_n y_n = D_n$$

$$(A_n \alpha_n + B_n) y_n = D_n - A_n \beta_n$$

$$y_n = (D_n - A_n \beta_n) / (A_n \alpha_n + B_n)$$

Вычислив таким образом y_n мы можем найти и остальные неизвестные $y_0, y_1, ..., y_{n-1}$ через рекуррентные соотношения.

Описание программы

Программа написана на языке python и состоит из следующих функций:

1. def forward_pass(test: dict, n: int)

Вычисляет прогоночные коэффициенты $\alpha_1, \alpha_2, ..., \alpha_n$ и $\beta_1, \beta_2, ..., \beta_n$ и возвращает 2 списка α и β .

Аргументы:

- test словарь, содержащий в себе всю информацию о примере: его описание, границы, краевые условия
- ullet n количество частей, на которые поделен интервал [a,b]
- 2. def backward_pass(test: dict, n: int, alpha: list, beta: list) -> list Вычисляет значения неизвестных $y_0, y_1, ..., y_n$ и возвращает список y.

Аргументы:

- test словарь, содержащий в себе всю информацию о примере: его описание, границы, краевые условия
- ullet n количество частей, на которые поделен интервал [a,b]
- alpha список прогоночных коэффициентов $\alpha_1, \alpha_2, ..., \alpha_n$
- ullet beta список прогоночных коэффициентов $eta_1,eta_2,...,eta_n$
- 3. def main()

Главная функция, считывающая пользовательский ввод, запускающая остальные функции для вычислений и выводящая ответ.

Код программы

```
import math
test1 = {
    "description": "y', - xy' + 2y = x - 1 \ln"
                    "y(0.9) - 0.5y'(0.9) = 2 \ln(1.2) = 1 \ln",
    "p": lambda x: -x,
    "q": lambda x: 2,
    "f": lambda x: 1 - x,
    "a": 0.9, "b": 1.2,
    "s1": 1, "g1": -0.5, "d1": 2,
    "s2": 1, "g2": 0, "d2": 1
}
test2 = {
    "description": "y'', - 0.5y', - 3y = 2x^2\n"
                    "y(1) - 2y'(1) = 0.6 \ln y(1.3) = 1 \ln",
    "p": lambda x: -0.5,
    "q": lambda x: -3,
    "f": lambda x: -2 * x * x,
    "a": 1, "b": 1.3,
    "s1": 1, "g1": -2, "d1": 0.6,
    "s2": 1, "g2": 0, "d2": 1
}
test3 = {
    "description": "y'' + y' = 1 \setminus ny'(0) = 0 \setminus ny(1) = 1 \setminus n",
    "p": lambda x: 1,
    "q": lambda x: 0,
    "f": lambda x: -1,
    "a": 0, "b": 1,
    "s1": 0, "g1": 1, "d1": 0,
    "s2": 1, "g2": 0, "d2": 1
}
test4 = {
    "description": "y'', + y = 1 \ln y'(0) = 0 \ln"
                    "y(0.5 * pi) - y'(0.5 * pi) = 2\n",
    "p": lambda x: 0,
    "q": lambda x: 1,
    "f": lambda x: -1,
    "a": 0, "b": math.pi/2,
    "s1": 0, "g1": 1, "d1": 0,
    "s2": 1, "g2": -1, "d2": 2
}
```

```
def forward_pass(test: dict, n: int):
    h = (test["b"] - test["a"]) / n
    C = test["g1"] / h
    B = test["s1"] - C
    D = test["d1"]
    alpha = [-C/B]
    beta = [D/B]
    x = test["a"] + h
    for i in range(n - 1):
        A = 1 / h / h - test["p"](x) / 2 / h
        B = -2 / h / h + test["q"](x)
        C = 1 / h / h + test["p"](x) / 2 / h
        D = -test["f"](x)
        alpha.append(-C / (A * alpha[i] + B))
        beta.append((D - A * beta[i]) / (A * alpha[i] + B))
        x += h
    return alpha, beta
def backward_pass(test: dict, n: int, alpha: list, beta: list) -> list:
    h = (test["b"] - test["a"]) / n
    A = -test["g2"] / h
    B = test["s2"] - A
    D = test["d2"]
    y = [(D - A * beta[n-1]) / (A * alpha[n-1] + B)]
    for i in range(n):
        y.append(alpha[n - i - 1] * y[i] + beta[n - i - 1])
    y.reverse()
    return y
def main():
    tests_dict = [test1, test2, test3, test4]
    for ind, test in enumerate(tests_dict):
        print(f'Test {ind + 1}:')
        print(test["description"])
    test_num = int(input("\nChoose the test (1, 2, 3 or 4): "))
    if test_num > len(tests_dict):
```

```
print("Wrong input")
        return
    test = tests_dict[test_num - 1]
    try:
        n = int(input("Enter the count of steps: "))
        if n \le 0:
            raise ValueError
    except ValueError:
        print("Wrong input")
        return
    alpha, beta = forward_pass(test, n)
    y = backward_pass(test, n, alpha, beta)
    h = (test["b"] - test["a"]) / n
    x = test["a"]
   print("x\t\ty")
    for i in y:
        print(f'{x:.5f}\t\t{i:.10f}')
        x += h
if __name__ == '__main__':
   main()
```

Тестирование

Вариант 9

Для проверки решений использовался ресурс www.wolframalpha.com

1.
$$\begin{cases} y'' + y = 1 \\ y(0) = 0 \\ y(\frac{\pi}{2}) - y'(\frac{\pi}{2}) = 2 \end{cases}$$

Аналитическое решение: $y(x) = 1 + \cos(x)$

2.
$$\begin{cases} y'' + y' = 1\\ y'(0) = 0\\ y(1) = 1 \end{cases}$$

Аналитическое решение: $y(x) = x + e^{-x} - e^{-1}$

3.
$$\begin{cases} y'' + 0.5y' - 3y = 2x^2 \\ y(1) - 2y'(1) = 0.6 \\ y(1.3) = 1 \end{cases}$$

Аналитическое решение: $y(x) \approx -\frac{2}{3}x^2 - \frac{2}{9}x + 3.31053e^{-2x} + 0.37719e^{1.5x} - 0.481481$

Выводы

В ходе работы был рассмотрен с теоретической точки зрения и реализован на практике метод прогонки, применяемый для решения краевой задачи ОДУ 2-ого порядка, разрешенного относительно старшей производной. На конкретных примерах была показана корректность реализации данного метода.

Стоит заметить, что точность вычислений напрямую зависит от числа разбиений отрезка, так с увеличением числа разбиений точность увеличивается. Реализация метода на практике не является сложной, однако требует крайней внимательности из-за достаточно большого числа промежуточных значений.