EDEXCEL - LONDON EXAMINATIONS

Stewart House 32 Russell Square London WC1B 5DN

FINAL

January 2001

HMK

Advanced Supplementary/Advanced Level

17-01-01

General Certificate of Education

Subject MECHANICS 6677

Question number	Scheme	Marks
1.(0)	Resolving vertically e.g. $R_p + R_Q = 70$ $R_p = 20 \implies R_Q = 50$	M ₁ A ₁ (2)
િલ્	A valid moments equation e.g. $R_{p} \times 0.5 + R_{Q} \times \times = 70 \times \frac{3}{2}$	M _I
	$\begin{array}{l} 20 \times 0.5 + 50 \times 2 = 70 \times \frac{3}{2} \\ \text{Completing method to finh } AQ \\ AQ = 1.9 \end{array}$	DM1 A1 cao (4)
2	T ISN	
(a)	ONE Modulin equation e.g. Tond = 15 ORTSind = 29 are most likely but T=15 code + 29 sind, 29 cod=15 sind also provide as is also Lami's cheren.	Mi
	One equation correct; second independent equi, correct	AI +AI MI AIFE
To a second seco	Answer for 4 as 53 OR 52.6	A1 (6)
(4)	Using valid equition (live 1 M1 required) to extract value of T (or eliminating & from valid equi	M1 A1 (2)
	"Over accurate" answers in (a) or (b) or bot which round	

EDEXCEL - LONDON EXAMINATIONS

Stewart House 32 Russell Square London WC1B 5DN

January 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6677

Question number	Scheme	Marks
3.(a)	For norticle A T-3mg = 3ma	MI
	Note T-mg=ma or 1-m=ma erc scores "11)	$A1 \rightarrow A1(3)$
(4)	T - 3 mg = 3m ($\frac{2}{5}g$) \rightarrow T = $\frac{21}{5}$ mg String is inextensible	B1 (1)
		MI
	For particle B kmg - T = km a $ \left[(\text{or system}) \text{ kmg} - 3 \text{ mg} = (\text{km} + 3 \text{ m}) \text{ a} \right] $	
	$kq - \frac{21}{5}q = \frac{2}{5}kq$ (or equivalent equation in k)	Alf.t.
	Solving DMI dependent on fist MI in (0)	DMI AI cas (4)
(d)	Tension is of some magnitude throughout the strong	B1 (1)
	At t=0 tp = 2i-j; Att=2, tp = 6i+j	
	Velocity of P constant \Rightarrow $VP = (bi+j)-(2i-j)$	MIAL
	Up = 2i+j (one ship in i or j only)	AIRt. (3)
(4)	arctan 1 (or arctan 2 about for MI)	M
	26.6° only	A1 (2)
(c)	$\overrightarrow{OC} = 2\underline{i} - \underline{j} + 5(2\underline{i} + \underline{j}) OR 6\underline{i} + \underline{j} + 3(2\underline{i} + \underline{j})$	Mi
	OC = 12i + 4j	AI 4t Mi
	$ (\vec{0}\vec{c}) = (12^2 + 4^2) $	AI et.
	OC = 12.6 only or equivalent fit. anner given to I decimal place also depends or MI+MI	[[-]]
L	They was they	<u> </u>

EDEXCEL - Physics And Maths Tutor Common Tutors

Stewart House 32 Russell Square London WC1B 5DN

January 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6677

Question number	Scheme	Marks	
5.(a)	Before $\rightarrow 4.5$ $\leftarrow 3$ Momentum conserved on system Alter $\frac{1}{2} \rightarrow V \rightarrow V \rightarrow V = 4.2$ Solving for $V \rightarrow V = 4.2$	MI AI	(4)
	Change in Momentum of A of B attempted 0.2(3+4.2) OR 0.6 (4.5-2.1) $\rightarrow 1.44$ units NS	AIFE BI	(3)
(0)	R = mg uR = µmg = retarding force or decalleration µg 2 2	BI -MI	
	$V^2 = U + 2a5$ applied $0 = 4\cdot2 - 2\mu g \times 2$ (or equipment unit) $\mu = \frac{4\cdot2^2}{4\cdot9} = 0.45$ $\mu = \frac{4\cdot2^2}{4\cdot9} = 0.45$	MI AIFE DMI AI	(6)
6 (%) 	GI 2 stayes V shope G 2 3 stayes V shope +G1 hr 2,7,4 on ones.	G3,2,50	(3)
(H)	Using V= u+at -> V= 9.8 x2 = 19.6	MIAI BIFE	(2)
(c)	Stage 2 distance 1 (19.6+4) x5 (or equivalent two	WIFITE	ļ
	= 59 (acceleption = 3.12 M1A1,59 A1) Minum high for H = 59 + 19.6 = 78.6 m	Alcan Alf.t.	(5)
(4)	From a height of 125m, there are 46.4m to fell at 4 ms to fer stage 3 = 46.4 s -> (11.6 s) Total time = 2+5+(11.6) -> 18.65	MI MIAIFT AI COO	(4)
(e)	Air mistance is (a) or equipment sound reason	Ві	(1)

EDEXCEL - LONDONHEXAMINATIONS

Stewart House 32 Russell Square London WC1B 5DN

January 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6677

Question number	Scheme		Marks
7. (0)	a - areian T	d 22.6 st st.d 923 , 38 4	MI AI
	R = 789 cnd F = 789 cnd (0.25) F = 789 sid	T T	BI MI AI F.E. BI
	Newton II along slape attempted with T - F - G = 78 (0:5) Solving for T (dependent T = 509.4 (accept this the 25.4 35.4	an MI)	-MI SMI
(4)	Accelerating force draw slage is G - for Friding reversed and T no longe Newton II $G - F = 76 a$ $a = g \sin d - \mu g \cos d$ $= 9.8 \left(\frac{5}{13} - \frac{3}{13}\right)$ $= 1.5, 1.50, 1.51 / scarce$	t country)	M1 A1 A2550(6)
	oter answer which round to		