Problemes tema: 6. Introducció a la química dels compostos inorgànics

Tema 6.1. Eines i conceptes per entendre la química dels elements de grups principals

6.1.1. Un element determinat en el seu estat fonamental té la següent configuració electrònica

 $1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}4f^{14}5s^25p^65d^76s^2$

- a) Indiqueu si és un element d'un grup principal, de transició o de transició interna, i a quin període pertany
- b) Determineu la configuració electrònica fonamental del seu dicatió.

Resposta: a) transició, 6è període; b) [Xe]6s04f145d7

6.1.2. Ordena segons la mida del seu radi iònic, els ions isoelectrònics O²⁻,F⁻ i Mg²⁺. Els nombres atòmics respectius són O: Z=8, F: Z=9, Mg, Z=12.

Resposta: $R(O^{2})>R(F)>R(Mg^{2+})$

- **6.1.3.** Utilitzant les *regles de Slater* calcula l'increment de la càrrega nuclear efectiva sobre un electró 2*p* al passar del carboni al nitrogen i del nitrogen a l'oxigen.
- a) Compara el resultat amb l'obtingut utilitzant les càrregues nuclears efectives calculades mitjançant mètodes mecanoquàntics (SCF). Que és el que no té en compte el mètode aproximat d'Slater?
- b) Segons el resultat de l'apartat anterior, com creus que serà l'increment de la càrrega nuclear efectiva sobre un electró 2*p* al passar del bor al carboni en comparació amb el produït sobre un electró 2*s* al passar del liti al beril·li?

Dades: $Z_{Li} = 3$, $Z_{Be} = 4$, $Z_B = 5$, $Z_C = 6$, $Z_N = 7$, $Z_O = 8$; $Z_{2p_C(SCF)}^* = 3.14$; $Z_{2p_N(SCF)}^* = 3.83$; $Z_{2p_C(SCF)}^* = 4.45$.

Resposta: $\Delta Z^*_{2p(SCF, C \to N)} = 0.69$, $\Delta Z^*_{2p(SCF, N \to O)} = 0.62$; a) energia de repulsió interelectrònica; b) major.

- **6.1.4.** Explica la disminució en el potencial de ionització que es presenta entre Mg (737 KJ.mol⁻¹) i Al (577 KJ.mol⁻¹) malgrat l'increment de càrrega nuclear. Resposta: Al⁺ i Mg⁰ configuració esfèrica.
- **6.1.5.** a) Comenta raonadament com varia de forma general la primera l'energia de ionització dels elements en moure's d'esquerra a dreta en un període i de d'alt a baix en un grup.
- b) Com serà la variació de la primera energia de ionització entre el fòsfor (Z = 15) i el sofre (Z = 16)? I entre el fluor (Z = 9) i el clor (Z = 17)? Les dades necessàries les trobareu als apunts del capítol 2.

Resposta: a) augmenten en avançar en un període capa la dreta i disminueixen en baixar en un grup; b) Del P al S disminueix (P⁰ i S⁺ configuració esfèrica). Del F al Cl disminueix massa (principi de singularitat).

6.1.6. Ordena els següents elements en ordre creixent de la seva primera energia de ionització: Na, F, I, Cs, Ne.

Resposta:
$$EI_{Cs} < EI_{Na} < EI_{I} < EI_{F} < EI_{Ne}$$

6.1.7. Explica els valors de les següents energies de ionització successives per al bor, on $\Delta_{\text{ionit}}H(N)$ es correspon amb l'n-èssima entalpia de ionització:

N	1	2	3	4	5	
$\Delta_{\text{ionit}}H(N)/(MJ.\text{mol}^{-1})$	0,807	2,433	3,666	25,033	32,834	

Resposta: B^+ i B^{3+} configuració esfèrica (B^{3+} capa tancada). $B^{5+} = H^+$.

- **6.1.8.** a) Comenta raonadament com varia de forma general la primera afinitat electrònica dels elements en moure's d'esquerra a dreta en un període i de d'alt a baix en un grup.
- b) Utilitzant les *regles d'Slater*, calcula la carrega nuclear efectiva sobre la primera posició vacant pel liti (Z = 3) i pel beril·li (Z = 4). Comenta si aquests resultats estan d'acord amb els valors de la primera afinitat electrònica de tots dos elements.
- c) El fòsfor (Z=15) que té configuració electrònica [Ne] $3s^23p^3$, té una afinitat electrònica més gran o més petita que el silici (Z=14)? Per què?

Les dades necessàries les trobareu als apunts del capítol 2.

Resposta: a) en avançar en un període, la primera afinitat electrònica augmenta i en baixar en un grup disminueix; b) $Z_{2s}^{Li}=0.95; Z_{2p}^{Be}=1.60;$ No (Li⁻ i Be⁰ configuració esfèrica; $E_{2p}>E_{2s}$); c) més petita (P⁰ i Si⁻ configuració esfèrica).

6.1.9. Representeu la suma de la primera energia de ionització i la primera afinitat electrònica en front de l'electronegativitat de *Pauling* pels elements dels blocs s i p (del 1r al 6è període, excepte gasos nobles). Quin comportament global s'observa? Proposeu una explicació raonada. Preveieu la electronegativitat de *Pauling* dels gasos nobles.

Les dades necessàries les trobareu als apunts del capítol 2.

Resposta: Lineal;
$$\chi_{P(He)} = 4.50$$
; $\chi_{P(Ne)} = 3.96$; $\chi_{P(Ar)} = 2.94$; $\chi_{P(Kr)} = 2.62$; $\chi_{P(Xe)} = 2.29$; $\chi_{P(He)} = 2.05$

6.1.10. L'element 117 ha estat descobert recentment, i ha estat batejat amb el nom de Tennessi (IUPAC i IEC-Societat Catalana de Química). Quines propietats podem predir que tindrà?

Resposta: grup 17; caràcter metàl·lic; no formarà anions; estat d'oxidació més estable +3; El₁, P. Fus. I eb. Seguiran la tendència dels halògens.

6.1.11. Compara la duresa de l'àtom de Na amb la del Na⁺. Raona la resposta.

Dades en eV: $EI_{1(Na)} = 5.14$; $EI_{2(Na)} = 47.29$; $AE_{1(Na)} = 0.548$.

Resposta: $\eta_{Na} = 2.30 \ eV$; $\eta_{Na^+} = 26.22 \ eV$; $EI_{2(Na)} \gg EI_{1(Na)}$; Na⁺ capa complerta.

6.1.12. Entre el trifluorur d'alumini i el triiodur d'alumini, quin tindrà un punt de fusió més elevat? Per què?

Resposta: $P_{f(Al_{s_3})} = 1290$ °C; $P_{f(Al_{s_1}l_{s_1})} = 190$ °C; polaritzabilitat \leftrightarrow covalència

- **6.1.13.** L'òxid de manganès (II) té un punt fe fusió de 1785°C, mentre que l'òxid de manganès (VII) és líquid a temperatura ambient. Explica aquesta diferència. Resposta: poder polaritzant ↔ covalència
- **6.1.14.** Per la reacció: $CH_3Hg(H_2O)^+ + B^- \rightleftarrows CH_3HgB + H_2O$, s'han obtingut els següents valors d'equilibri:

B-	CI ⁻	- -	OH-	SCN⁻	N_3^-	CN⁻
log K _{eq}	12.3	18.1	-6.3	6.7	1.3	5.0

Determina l'ordre de duresa de les bases.

Resposta: $OH^- > N_3^- > OH^- > CN^- > SCN^- > Cl^- > l^-$

6.1.15. Comenta raonadament les següents dades de punt de fusió dels fluorurs de diferents elements.

Producte	NaF	MgF ₂	AIF ₃	SiF ₄	PF ₅	SF ₆	InF ₃	SnF ₄	SbF ₅	TeF ₆
p. f. (°C)	988	1266	1291	-90	-94	-50	1170	705	8	-36

Resposta: NaF, MgF₂, AlF₃ InF₃, SnF₄ \rightarrow substancies iòniques (U₀, poder polaritzant). SiF₄, SF₆, SbF₅, TeF₆ \rightarrow substancies covalents (forces intermoleculars).

- **6.1.16.** Digueu quines de les següents parelles d'elements presenten efecte diagonal. Raoneu la resposta. Li-Mg, Ca-Al, F-S, Ga-Si, Be-Al, N-S, As-Sn, Na-Ca. Resposta: Li-Mg, Be-Al; posició a la taula periòdica.
- **6.1.17.** Quan es crema estany a l'aire es forma òxid d'estany (IV). Si fem el mateix amb el plom, es forma òxid de plom (II). Tot i que es pot obtenir òxid d'estany (II), aquest s'oxida ràpidament a òxid d'estany (IV). Dóna una explicació raonada a aquesta observació experimental.

Resposta: Exemple d'efecte del parell inert. Raons veure apunts.

6.1.18. Dels següents elements, identifiqueu quins presenten l'efecte del parell inert i escriviu el símbol dels ions que formen: Sb, As, Tl, Ba.

Resposta: Sb i Tl; Sb³⁺ i Sb⁵⁺, Tl⁺ i Tl³⁺.

- **6.1.19.** Dels següents criteris, quin és el millor per definir un metall? Raona la resposta.
- que tingui lluïssor metàl·lica
- que sigui un bon conductor tèrmic
- que sigui un bon conductor elèctric en una o dues dimensions
- que sigui un bon conductor elèctric en tres dimensions

Resposta: bon conductor elèctric en tres dimensions; lluïssor metàl·lica veure silici, iode, pirita o galena; conductivitat tèrmica veure diamant; conductivitat elèctrica en una o dues dimensions veure grafit.

6.1.20. Dels següents elements, quins òxids es formaran? Quin caràcter àcid-base tindran? Na, S, C, Al, Ca, P, Pb.

Resposta: Na₂O bàsic; SO₂ àcid; CO₂ àcid; Al₂O₃ amfòter; CaO bàsic; P₄O₁₀ àcid; PbO amfòter.

6.1.21 Ordena segons el seu caràcter àcid, els següents compostos ternaris formats per un element del tercer període, oxigen i hidrogen: NaOH, $Mg(OH)_2$, $Al(OH)_3$, H_2SO_4 i $HClO_4$.

Resposta: acidesa: NaOH < Mg(OH)₂ < Al(OH)₃ < H₂SO₄ < HClO₄

6.1.22. Ordena els següents elements segons el seu caràcter red-ox: K , F, Mg, I, Zn, Sn. Raona la resposta.

Per fer aquest exercici et pots ajudar d'una taula de potencials de reducció standard.

Resposta: Reductor: K-Mg-Zn-Sn-F₂: Oxidant

Tema 6.2. Introducció als compostos de coordinació.

- **6.2.1.** Dels següents compostos de coordinació, identifiqueu els seus lligands, l'àtom central, l'estat d'oxidació de l'àtom central i el nombre de coordinació:
- a) $[CrBr_2(NH_3)_2(OH_2)_2]^+$; b) $[Co(C_2O_4)_2Cl_2]^{3-}$; c) $K_3[Au(CN)_4]$; d) $[MoBr_2(CO)_4]$; e) $[Co(CN)_5(OH)]^{3-}$.

Resposta: àtom central: Cr(III) NC=6; Co(III) NC=6; Au(I) NC=4; Mo(II) NC=6; Co(III) NC=6; Lligands: Br, NH₃, H₂O; Cl⁻, C₂O₄²⁻(oxalat); CN⁻; Br, CO; CN⁻, OH⁻.

6.2.2. Pels lligands poliatòmics dels complexos de l'exercici anterior, identifiqueu per quin àtom s'uneixen al centre metàl·lic. Raoneu-lo.

Resposta:NH₃ (N), H_{2O} (O), C₂O₄²⁻ (O, O), CN⁻ (C), CO (C), OH⁻ (O)

- **6.2.3.** Identifiqueu el període i el tipus de metall (transició, transició interna, principal) al que pertanyen les següents configuracions electròniques. a) $[Xe]6s^24f^75d^1$ b) $[kr]5s^23d^{10}5p^2$ c) $[Ar]4s^13d^{10}$ d) $[Rn]7s^25f^7$ e) $[Rn]7s^1$ Resposta:a) 6, f. b) 5, f. c) 4, f. d. d) 7, f. e) 7, s.
- **6.2.4.** Identifiqueu quines de les següents afirmacions són correctes. Raoneu-les
- a) Els metalls dels grups fronterers són els dels grups 9 i 10
- b) En el 6è període, a partir del La els orbitals 4f resulten més estables que els 5d
- c) Els metalls de la segona sèrie de transició acostumen a actuar amb l'estat d'oxidació +3
- d) Els complexos dels metalls de transició mostren una major característica covalent que els dels metalls de transició interna
- e) Els elements de la primera i segona sèrie de transició mostren propietats similars i molt diferents dels metalls de la tercera sèrie de transició.

Resposta: a) F. b) C,. c) F. d) C. e) F.

- **6.2.5.** Dels següents complexos, indica si els lligands són monodentats, bidentats o polidentats: $Na_3[Fe(C_2O_4)_3]$, $[Co(dien)_3](NO_3)_2$, $[Pd(en)_2]Cl_2$, $[CuCl_2(bipy)(PPh_3)_2]$. Resposta: bidentat; polidentat (tridentat); bidentat; monodentat, bidentat, monodentat.
- **6.2.6.** Identifiqueu quines de les següents afirmacions són correctes. Raoneu-les
- Els complexos amb nombre de coordinació 2 acostumen a presentar una geometria angular
- b) Els complexos octaèdrics presenten el mateix nombre de coordinació que els plano-quadarats
- c) Les geometries de bipiràmide trigonal i de piràmide de base quadrada com parteixen el nombre de coordinació 4
- d) La geometria de prisma trigonal correspon al nombre de coordinació 6
- e) La geometria tetraèdrica és una distorsió de la trigonal plana

Resposta: a) C. b) F,. c) F. d) C. e) F

6.2.7. Formuleu els següents compostos de coordinació:

Bisamminadicloruroplatí(II)

pentaaquarsenatoiridi(III)

heptafluorurotantalat(V) de cesi.

tetrahidroxidozincat de rubidi

amminabromurocloruronitritoplatinat(-1) de plata

Clorur de pentaamminatiocianatomolibdè(III)

nitrat de diamminatriaquahidroxidocrom(II)

tris(carbonato)cromat(III) d'hexaamminacobalt(III)

 $\label{eq:continuous} \begin{array}{lll} Resposta: & [PtCl_2(NH_3)_2]; & [Ir(AsO_4)(OH_2)_5]; & Cs_2[TaF_7]; & Rb_2[Zn(OH)_4]; \\ Ag[PtBrCl(NH_3)(ONO)]; & [Mo(NH_3)_5(SCN)]Cl_2; & [Cr(NH_3)_2(OH)(OH_2)_3]NO_3; \\ [Co(NH_3)_6][Cr(CO_3)_3]. & \\ \end{array}$

6.2.8. Anomeneu els següents compostos de coordinació:

[Fe(CO)₅]

[PdBrCIFI]

 $[Ru(NH_3)_5(N_2)]Br_2$

 $[Ni(NH_3)_6](NO_3)_2$

 $[Rh(NH_3)_5(NO_3)](CIO_3)_2$

Ca₂[MoCl₈]

 $Sn_3[NbF_6O]_2$

 $K_3[Fe(CN)_5(NO)]$

[Cr(NH₃)₆][Co(CO₃)₃]

Resposta: pentacarbonilferro(0); bromuroclorurofluoruroioduropal·ladi(IV); bromur de pentaamminanitrogenruteni(2+); dinitrat d'hexaamminaniquel; clorat de pentaamminanitratorodi(III); octacloruromolibdat(4-) de calci; bis(hexafluorurooxidoniobiat) de triestany; pentacianuronitrosilferrat(II) de potassi; tris(carbonato)cobaltat(3-) d'hexaamminacrom(3+).

- **6.2.9.** Proposa les estructures dels següents complexos: cis-[Rh(CO)₂Cl(HOCH₂CH₂NH₂- κ O)], trans-[Rh(CO)₂Cl(HOCH₂CH₂NH₂- κ N)] i [Rh(CO)₂Cl(HOCH₂CH₂NH₂- κ ²N,O)].
- **6.2.10.** De les parelles de compostos de coordinació següents, identifica la seva geometria i digues quin tipus d'isomeria presenten:
- a) Sulfat de pentaamminabromurocobalt (III) i bromur de pentaamminasulfatocobalt (III)
- b) Hexacianurocromat (III) d'hexaamminacobalt (III) i hexacianurocobaltat (III) d'hexaammincrom (III)
- c) cis-tetraamminadiclorurocobalt (III) i trans-tetraamminadiclorurocobalt (III)
- d) *A cis*-diamminadicloruroetilendiaminacrom (III) i *C cis*-diamminadicloruroetilendiaminacrom (III)
- e) pentaamminaisotiociatocobalt (III) i pentaamminatiociatocobalt (III)
- f) cis-diamminadicloruroplatí (II) i trans-diamminadiclorurpplatí (II)

Resposta: a) octaèdrics isòmers de ionització; b) octaèdrics catió i anió isòmers de coordinació; c) Pla-quadrats isòmers geomètrics (cis/trans); d) octaèdrics enantiòmers; e) octaèdrics isòmers d'enllaç; f) pla-quadrats isòmers geomètrics.

- **6.2.11.** Dibuixa els següents complexos. Dibuixa i formula amb la corresponent notació estereoquímica un isòmer configuracional de cadascun d'ells amb la mateixa geometria.
- a) (*TS*-3-2)-[CoCl(en- $\kappa^2 N$)]
- b) (TP-3)-[Co(CO) $(H_2N(CH_2)_2COO-\kappa^2N, O)$]
- c) (T-4)-[CoCl₂(PMe₃)(PPh₃)]
- d) (SP-4-3)-[PdCl₂(NH₃)((PPh₃)]
- e) (TBPY-5-12)-[Fe(CO)₂Cl₂(PPh₃)]
- f) $(SPY-5-12)-[Pd(CO)_2Cl_2(PPh_3)]$
- g) $(OC-6-32)-[Ru(CO)Cl_2(PPh_3)_3]$

Resposta: a, b, c) No hi ha. d) $(SP-4-1)-[PdCl_2(NH_3)((PPh_3)]$: e) $(TBPY-5-23)-[Fe(CO)_2Cl_2(PPh_3)]$ f) $(SPY-5-13)-[Pd(CO)_2Cl_2(PPh_3)]$ g) $(OC-6-13)-[Ru(CO)Cl_2(PPh_3)]$

- **6.2.12.** Dibuixeu els dos primers complexos i anomeneu amb la corresponent notació estereoquímica el tercer i el quart.
- a) (T-4-R)-[CoClBr(OH₂)(ONO)]
- b) $(SPY-5-14-A)-TI[Mo(CO)_2CI(N--N'-k^2N,N')]$ on N—N' = 2-(2-Aminoetil)piridina

Resposta: c) (TBPY-5-15-C)-carbonil(2-dimetilfosfinoetantiolat- $\kappa^2 P, S$)hidruro(trifenilfosfina)platí(II) d) (OC-6-55-A)-carbonil(2-dimetilfosfinoetantiolat- $\kappa^2 P, S$)dihidruro(trifenilfosfina)rodi(III).

- **6.2.13.** Dibuixeu els dos primers complexos i anomeneu, amb la corresponent notació estereoquímica el tercer i el quart (el lligand S--N és el 2-aminoetantiolat: $H_2NCH_2CH_2S^-$).
- a) $(OC-6-32-\Lambda)-Cs[CoCl_2(S--N-\kappa^2N,S)_2]$
- b) $(OC-6-22-\Delta)$ -Cs $[CoCl_2(S-N-\kappa^2N,S)_2]$

Resposta: c) (OC-6-22- Δ)-tris(2-aminoetantiolato- $\kappa^2 N$, S)cobalt(III) d) (OC-6-21- Δ)-tris(2-aminoetantiolaot- $\kappa^2 N$, S)cobalt(III)

6.2.14. Pel complex de l'exercici 6.2.11 a) dibuixa i anomena el conformer λ .

Resposta: (TS-3-2)-cloruro $((\lambda)-1,2$ -etilendiamina- $\kappa^2 N)$ cobalt(I)

6.2.15. Formula, amb la corresponent notació estereoquímica el següent complex

Resposta: $(OC-6-32-A)-[Ru((S_a)-BINAP-\kappa^2P)(BPY-\kappa^2N)((\delta,S,S)-DACH-\kappa^2N)]$