Programming Assignment CL 202 Spring 2021 Due Date: April 21, 2021

This assignment must be solved using a software and concerns the real estate industry. You can do calculations from first principles but all statistical software have in-built commands. Please use these commands. To enable use of an autograder the final answer to the question posed should be assigned to a specific variable name provided in the question itself.

From existing data, we would like to build a regression model that relates the size of an apartment and its ready reckoner value to the selling price of the apartment. The Table below gives data for 20 houses:

Total dwelling size (100 ft ²)	Assessed value (\$1000)	Y Selling price (\$1000)
15.31	57.3	74.8
15.20	63.8	74.0
16.25	65.4	72.9
14.33	57.0	70.0
14.57	. 63.8	74.9
17.33	63.2	76.0
14.48	60,2	72.0
14.91	57.7	73.5
15.25	56.4	74.5
13.89	55.6	73.5
15.18	62.6	71.5
14.44	63.4	71.0
14.87	60.2	78.9
18.63	67.2	86.5
15.20	57.1	68.0
25.76	89.6	102.0
19.05	68.6	84.0
15.37	60.1	69.0
18.06	66.3	88.0
16.35	65.8	76.0

- a) Find correlation coefficient between i) Selling Price and Dwelling size (call this variable $corr_coeff_Y_ZI$), and ii) Selling Price and Assessed Value ($corr_coeff_Y_ZI$)
- b) Find a linear model between Y = a*Z1 + b*Z2 + c. Please make sure your code assigns results to a, b, c
- c) Provide a 95% confidence interval for the three parameters. Please assign the lower value bounds to ci_l_a , ci_l_b , ci_l_c and upper bounds to ci_u_a , ci_u_b , ci_u_c .
- d) Provide a 95% prediction interval for the selling price of an apartment of size 12,00 ft2 and an assessed value of \$60,000. Please assign the lower value bound to pi_l_Y and upper bound to pi_u_Y .
- e) Find mean and variannce of residuals. Please assign your answers to variables *mean_resid*, *var_resid*
- f) Find R^2 of the fit. Please assign answer to Rsq