Homework 1 for Physics 531

Ashok M. Rao

September 18, 2017

Problem 1

(a) Expand the operator as $\langle (AB)^{\dagger}a'|a''\rangle = \langle a'|((AB)^{\dagger})^{\dagger}|a''\rangle$ then conclude

$$\langle a'|AB|a''\rangle = \langle B^{\dagger}A^{\dagger}a'|a''\rangle$$

So $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$.

(b) Likewise

$$\operatorname{Tr} AB = \sum_{a'} \langle a' | AB | a' \rangle$$

$$= \sum_{a',a''} \langle a' | A | a'' \rangle \langle a'' | B | a' \rangle$$

$$= \sum_{a',a''} \langle a'' | B | a' \rangle \langle a' | A | a'' \rangle$$

$$= \sum_{a''} \langle a'' | BA | a'' \rangle$$

which evaluates to $\operatorname{Tr} BA$.

(c) Using either of the above

$$\operatorname{Tr} U^{\dagger} A U = \operatorname{Tr} U U^{\dagger} A$$
$$= \operatorname{Tr} A$$

(d) Express the operator function as $f(A) = \sum_{a'} f(a') |a\rangle \langle a|$ using completeness.

Problem 2

- (a) By inspection it is clear that $\operatorname{Tr} \sigma_i = 0$ and $\det \{\sigma_i\} = -1$ for each Pauli matrix σ_i . Given that each is two-dimensional it is easy to conclude that all eigenvalues are like $\lambda_{ii} = \pm 1$.
- (b) Compute that

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} + \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = 2 \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = -2 \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = 0$$

Directly, $\sigma_i \sigma_j = \delta_{ij} + i \epsilon_{ijk} \sigma_k$ follows To find the commutator and anticommutator compute that

$$\begin{split} \left[\sigma_{i},\sigma_{j}\right] &= \delta_{ij} + i\epsilon_{ijk}\sigma_{k} - \delta_{ji} + i\epsilon_{ijk}\sigma_{k} \\ &= 2i\epsilon_{ijk}\sigma_{k} \\ \left\{\sigma_{i},\sigma_{j}\right\} &= \delta_{ij} + i\epsilon_{ijk}\sigma_{k} + \delta_{ji} - i\epsilon_{ijk} \\ &= 2I\delta_{ij} \end{split}$$

(c) Expand and calculate

$$\begin{split} \exp\{i\mathbf{a}\cdot\vec{\sigma}\} &= \sum_{n=0}^{\infty} \frac{(-1)^n (\mathbf{a}\cdot\vec{\sigma})^{2n}}{(2n)!} + i\sum_{n=0}^{\infty} \frac{(-1)^n (\mathbf{a}\cdot\vec{\sigma})^{2n} \cdot (\mathbf{a}\cdot\vec{\sigma})}{(2n+1)!} \\ &= \sum_{n=0}^{\infty} \frac{(-1)^n |\mathbf{a}|^{2n}}{(2n)!} + i\sum_{n=0}^{\infty} \frac{(-1)^n |\mathbf{a}|^{2n+1}}{(2n+1)!} \left(\frac{\mathbf{a}\cdot\vec{\sigma}}{|\mathbf{a}|}\right) \\ &= \cos|\mathbf{a}| + i\frac{\mathbf{a}\cdot\vec{\sigma}}{|\mathbf{a}|} \sin|\mathbf{a}| \end{split}$$

wherein (b) is used to simplify $(\mathbf{a} \cdot \vec{\sigma})^{2n}$ since the cross term in $(\mathbf{a} \cdot \vec{\sigma})^2 = \sum_{i,j} \mathbf{a}_i \mathbf{a}_j \sigma_i \sigma_j = \sum_{i,j} \delta_{ij} \mathbf{a}_i \mathbf{a}_j$ due to the fact that $\sigma_i \sigma_j + \sigma_j \sigma_i = 0$

Problem 3

(a) Simply decomposing H (without assuming anything further), note that

$$H = \frac{1}{2} \left[(h_{11} + h_{22})I + (h_{12} + h_{21})\sigma_x + i(h_{12} - h_{21})\sigma_y + (h_{11} - h_{22})\sigma_z \right]$$

Since we have not assumed anything about H, the coefficients may be complex. Noting that the trace of $\sigma_i = 0$ and for convenience letting $\sigma_0 = I$,

$$a_k = \frac{1}{2} \operatorname{Tr} \left(\sigma_k H \right)$$

Yet comparing this with the decomposition above, it's clear that Hermiticity of H is one and the same as requiring real a_0 and a.

(b) Without loss of generality express H as

$$H = \begin{pmatrix} a_0 + a_3 & a_1 - ia_2 \\ a_1 + ia_2 & a_0 - a_3 \end{pmatrix}$$

Solving the characteristic polynomial,

$$\det\{H - \lambda I\} = \lambda^2 - 2a_0\lambda + \left[(a_0 + a_3)(a_0 - a_3) - a_1^2 - a_2^2 \right]$$
$$= \lambda^2 - \lambda \operatorname{Tr} H + \det\{H\}$$

Solving the quadratic,

$$\lambda = \frac{1}{2} \left(\operatorname{Tr} H \pm \sqrt{\operatorname{Tr} H^2 - 4 \det\{H\}} \right)$$
$$= a_0 \pm \sqrt{\mathbf{a} \cdot \mathbf{a}}$$

(c) In the additive form $H=a_0I+\mathbf{a}\cdot\vec{\sigma}$, it is clear that the eigenvectors of H are the same as those for $\mathbf{a}\cdot\vec{\sigma}$ since the first term is just an additive shift. The magnitude on $\sqrt{\mathbf{a}\cdot\mathbf{a}}$ may be similarly disregarded for convenience so that the norm goes to unity. We solve for

$$|H;\pm\rangle=\pm\begin{pmatrix}a_3&a_1-ia_2\\a_1+ia_2&a_3\end{pmatrix}|H;\pm\rangle$$

Solve the problem and this may be written as

$$|H;\pm\rangle = \left(\pm\sqrt{a_1^2 + a_2^2}, a_1 + ia_2\right)$$

$$= \left(\pm\sqrt{(1+a_3)(1-a_3)}, a_1 + ia_2\right)$$

$$= \frac{1}{\sqrt{2}} \left(\sqrt{1\pm a_3}, \pm\sqrt{1\mp a_3} \cdot (a_1 + ia_2)\right)$$

$$= \frac{1}{\sqrt{2}} \left(\sqrt{1\pm a_3}, \pm\sqrt{1\mp a_3} \exp\{i\alpha\}\right)$$

Further, from the eigenvalue condition we have that $a_3=\pm(1+\sqrt{a_1^2+a_2^2})$ or equivalently $a_1^2+a_2^2=(1-a_3^2)\cos^2\beta+(1-a_3^2)\sin^2\beta$ giving

$$|H;+\rangle = \begin{pmatrix} \cos{(\beta/2)} \\ \sin{(\beta/2)} \cdot \exp\{i\alpha\} \end{pmatrix}, \quad |H;-\rangle = \begin{pmatrix} \sin{(\beta/2)} \\ -\cos{(\beta/2)} \cdot \exp\{i\alpha\} \end{pmatrix}$$

Clearly these are orthogonal and stated both in terms of a_k as well as angles to the axes.

(d) This was done above simply to handle automatically the singularity case where $1+a_3=0$ though as $\beta=\theta$ and $\alpha=\phi$. The eigenvalues are as before though by a shift,

$$\lambda = a_0 \pm \sqrt{A^2(\hat{\mathbf{n}} \cdot \hat{\mathbf{n}})} = a_0 \pm A$$

Problem 4

- (a) The set of eigenvalues is $\{-1,0,1\}$ which are the only observable measurements.
- (b) Calculate that

$$\langle L_x \rangle = \langle L_z = 1 | L_x | L_z = 1 \rangle = 0$$

$$\langle L_x^2 \rangle = \frac{1}{2} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}^T \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}^2 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$= \frac{1}{2} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}^T \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 01 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$= \frac{1}{2}$$

This gives a calculation for the variance

$$\langle (\Delta L_x)^2 \rangle = \langle L_x^2 \rangle - \langle L_x \rangle^2 = \frac{1}{2}$$

so that the standard deviation is $\Delta L_x = \frac{1}{\sqrt{2}}$.

(c) Since L_x and L_z are compatible operators, they share eigenvalues. The corresponding eigenvectors, in the order of $\{-1,0,1\}$ can be found by inspection, and then normalizing gives:

$$\lambda_1 = (1/2, -1/\sqrt{2}, 1/2), \quad \lambda_2 = (1/\sqrt{2}, 0, -1/\sqrt{2}), \quad \lambda_3 = (1/2, 1/\sqrt{2}, 1/2)$$

(d) The probability of each outcome would be given by $|\langle L_x|L_z\rangle|^2$. By symmetry we can conclude that

$$\left| \langle L_x = -|L_z = -\rangle \right|^2 = \left| \langle L_x = +|L_z = -\rangle \right| = \left(\frac{1}{2}\right)^2$$

Thus measuring the positive and negative state both have probability (1/4) and the remaining density falls on measuring $L_x = 0$ which has probability (1/2).

(e) L_x^2 is diagonal and can be multiplied by inspection, and also it is straightforward that it has eigenvalues $\{0,1\}$. Thus it must be that the state after the state is $|L_z=\pm 1\rangle$. Calculate the operator as

(f)
$$\left(\ket{L_z=1}\bra{L_z=1}+\ket{L_z=-1}\bra{L_z=-1}\right)\cdot\ket{\psi}$$

Using the solution from (b) calculate the result to be as $\left(1/2,0,1/\sqrt{2}\right)$ or which normalizes to $|\psi\rangle=\left(2/2\sqrt{3},0,2/\sqrt{6}\right)$. Thus the probability of measuring the two possibilities $L_z=1$ and $L_z=-1$ is 1/3 and 2/3 respectively.

- (g) Let $|\langle L_z|\psi\rangle|$ be coefficients based on the stipulated probabilities. In particular, $\psi=\sum_{a'}a'|L_z\rangle$ so that we can write the coefficients respectively as $|a_-|^2=|a_+|^2=1/4$ (as from above) and likewise $|a_0|^2=1/2$. Taking square roots as in $\sqrt{|a_{+,-,-}|^2}$ yields the coefficients for the expansion on the problem set as required. Finally calculate that
- (h) Resubstitute from (b) into (g) so that

$$\left| \langle L_x = 0 | \psi \rangle \right|^2 = \frac{1}{2} \left(\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}^T \begin{pmatrix} (1/2) \exp\{i\delta_1\} \\ (1/\sqrt{2}) \exp\{i\delta_2\} \\ (1/2) \exp\{i\delta_3\} \end{pmatrix} \right)^2$$
$$= \frac{1}{8} \left| \exp\{i\delta_i\} - \exp\{i\delta_3\} \right| 2$$

Apply the identity that $\left|e^{ix}-e^{iy}\right|^2=\left[\operatorname{Im}\left\{e^{ix}\right\}-\operatorname{Im}\left\{e^{iy}\right\}\right]^2+\left[\operatorname{Re}\left\{e^{ix}\right\}-\operatorname{Re}\left\{e^{iy}\right\}\right]^2$ to conclude:

$$P(L_x = 0) = \frac{1}{4} \left(1 + \text{Re} \left\{ \exp \left\{ i(\delta_1 - \delta_3) \right\} \right\} \right) = \frac{1 + \cos(\delta_1 - \delta_3)}{4}$$

where the middle result follows from applying the Pythagorean identity on the squared terms, and double-angle identities on the cross terms. In fact, δ_2 is irrelevant though the phase difference between δ_1 and δ_3 affects the final outcome. In particular, the probability $P(L_x=0)=1/2$ is the maximum and attained when $\delta_1=\delta_3$. Contrarily when $\delta_1=\delta_3+\frac{\pi}{2}$ the probability is minimized to $P(L_x=0)=0$, thus the result is entirely determined by relative not absolute phase.