

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANEARE (1997)

OFFICE OF NAVAL RESEARCH

Contract NOOO14-81-K-0605

Task No. NR 056-768

TECHNICAL REPORT No. 11

THIN FILMS PROPERTIES OF SPUTTERED NIOBIUM SILICIDE

ON SiO_2 , Si_3N_4 and on N+ Poly-Si

by

T. P. Chow, W.-J. Lu, A. J. Steckl, B. J. Baliga

Prepared for Publication

in the

Journal of the Electrochemical Society

Rensselaer Polytechnic Institute Center for Integrated Electronics Troy, NY 12181

March 1985

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.

*General Electric Corporate Research & Development, Schenectady, NY, 12301

VIIC FILE COPY

- Course of Course of the State of the Course of the Cours				
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM			
Report No. 11	NO. 3. RECIPIENT'S CATALOG NUMBER			
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED			
Thin Films Properties of Sputtered Niobs Silicide on SiO2, Si3N4 and on N+ Poly-	ium Interim Technical Report			
7. AUTHOR(a)				
T. P. Chow, WJ. Lu, A. J. Steckl and B. J. Baliga	8. CONTRACT OR GRANT NUMBER(*)			
	N00014-81-K-0605			
PERFORMING ORGANIZATION NAME AND ADDRESS Center for Integrated Electronics Rensselaer Polytechnic Institute Troy, New York 12181	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS			
OFFICE OF Nove 1 Demand	12. REPORT DATE			
Office of Naval Research Department of the Navy	March 1985			
800 N. Quincy Street	13. NUMBER OF PAGES			
Arlington, Virginia 22217	10			
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office				
	unclassified			
	154. DECLASSIFICATION DOWNGRADING SCHEDULE			
16. DISTRIBUTION STATEMENT (at this Report)				
This document has been approved for public release and sale;				

its distribution is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

Prepared for Publication in the Journal of Electrochemical Society

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

niobium silicide, structural properties, compositional properties.

20 ABSTRACT (Continue on reverse side if necessary and identify by block number)

The thin film properties of sputtered niobium silicide on SiO2, Si₃N₄ and n⁽⁺⁾ doped poly-Si have been investigated. The structural and compositional properties were studied with X-ray diffraction, Rutherford backscattering spectrometry and secondary ion mass spectrometry.

THIN FILM PROPERTIES OF SPUTTERED NIOBIUM SILICIDE ON SiO_2 , Si_3N_4 AND ON N^+ POLY-SI

T.P. Chow⁺, W.J. Lu^{*}, A.J. Steckl^{*}, and B.J. Baliga⁺
+General Electric Corporate Research and Development,

Schenectady, NY 12345

*Rensselaer Polytechnic Institute,

Center for Integrated Electronics,

Troy, NY 12181

Accession For		
NTIS GRAMI DTIC TAB Unannounced Justification	7	
By		
Availability Cod Avail and/or Dist Special	les r	
A-2		

ABSTRACT

The thin film properties of sputtered niobium silicide on SiO₂, Si₃N₄ and n⁺ doped poly-Si have been investigated. The structural and compositional properties were studied with X-ray diffraction, Rutherford backscattering spectrometry and secondary ion mass spectrometry.

I. INTRODUCTION

Refractory metal silicides have become a key part of VLSI silicon device technology as MOS gates and interconnects due to their low resistivity, oxidation resistance and compatibility with MOS processes [1,2]. Among the silicides, the most widely used ones are MoSi_2 , TaSi_2 , WSi_2 and TiSi_2 . Recently, NbSi_2 was also reported [3] to have similar properties as the other refractory silicides. In that study, slightly metal-rich (Si/Nb ~1.8) silicide films obtained from a hot-pressed composite target in rf sputtering system were investigated. Those films were shown to contain NbSi_2 as well as a significant amount of hexagonal Nb_5Si_3 . Also, a resistivity of ~ 100 $\mu\Omega$ -cm was measured after annealing at elevated temperatures.

In this paper, we report on improved thin film properties of niobium silicide on SiO_2 and on n^+ poly-Si.

II. EXPERIMENTAL PROCEDURE

Silicon-rich (Si/Nb ~ 2.3) silicide films were deposited at room temperature from a cold-pressed composite target (99.6%) in a dc magnetron sputtering system (Varian 3140). Rutherford Backscattering Spectrometry (RBS) was done with a 2 MeV ⁴He⁺ beam from a linear accelerator, Secondary Ion Mass Spectrometry with a Cameca IMS 3-f ion microscope and X-ray diffraction with a Siemens D-500 automated diffractometer.

III. RESULTS

(a) Structure and Composition -

The as-deposited films were essentially amorphous but after annealing at elevated temperatures, they exhibited a predominantly NbSi₂ structure. Fig. 1a and b show X-ray diffraction patterns for an as-sputtered film and the same film after annealing in hydrogen at 1000°C for 60 min. The major niobium disilicide peaks are at 20 of 21.4, 25.4, 40.1, 41.2 and 47.0°, corresponding to the (100), (101), (111), (003) and (112) planes repectively. Trace amounts of carbon-stabilized, hexagonal Nb₅Si₃ components were also detected at 27.2, 29.2 and 36.4°. Pure Nb₅Si₃ is stable in two tetragonal structures (D8₁ (tI32) and D8_m (tI32)) while impurities, such as carbon, tends to stabilize it into the hexagonal structure (D8₈) [4]. In fact, many of the other metal silicides (Mo₅Si₃, W₅Si₃, and others) have the same characteristic and the detection of such a hexagonal silicide phase is indicative of the presence of carbon or other impurities.

(b) Resistivity -

The thin film resistivity of these NbSi₂ films after annealing was observed to be consistently lower than the previously reported films. In Fig. 2, the sheet resistance of 5600Å niobium silicide on oxidized silicon substrates is shown as a function of annealing time at 800, 900 and 1000° C in hydrogen. As deposited, the films have a R_s of ~11 Ω /square. The resistivity decreases rapidly within the first 15 min and changes only slightly for longer times. After annealing for 1 hr, the sheet resistance dropped to 2.8, 2.0 and 1.3 Ω /square for 800, 900 and 1000° C respectively. For the silicide film on SiO₂, the sheet resistance dropped from 10.5 Ω /square to 1.4 Ω /square (78 μ 0-cm) after 15 min and to 1.3 Ω /square (72 μ 0-cm) after 60 min. The lowest NbSi₂ resistivity measured after annealing at 1000° C was ~ 70 μ 0-cm which represents a ~ 30% improvement over previous data on rf sputtered films and is

close to the value of ~ 50 $\mu\Omega$ -cm reported for niobium on poly-Si films annealed under vacuum [1]. The bulk values, for comparison, range from 6.3 to 50 $\mu\Omega$ -cm, with the lower values probably erroneous [4]. Similar dependence on annealing time has been observed for niobium silicide on silicon nitride and on n^+ poly-Si (polycide) and is shown in Fig. 3 and 4. For the polycide stack, the sheet resistance was decreased from 13.7 to 2.8 Ω /square after 30 min but increased to 3.0 Ω /square after 60 min. The rapid decrease in resistivity followed by a saturation-like characteristic when annealed at high temperatures (>700°C) has also been observed for other silicides, such as TiSi₂ [5,6], MoSi₂ [7,8] and WSi₂ [8,9,10]. Also, when these niobium silicide films were annealed at different temperatures, similar dependence of sheet resistace on time was observed but higher saturation values were obtained for lower temperatures.

approx. microchno

IV. SUMMARY

Niobium silicide thin films deposited on SiO, Si3N4 and n poly-Si have been characterized. Similar to the other refractory silicides, annealing at high temperatures resulted in structural recrystallization and a sharp decrease in resistivity. After annealing at 1000°C, a resistivity of ~70µQ-cm was obtained. For a 2500Å NbSi2/2500Å N /poly-Si stack, a sheet resistance of 2.5 Q/square after annealing at the same temperature.

AKNOWLEDGMENT

One of us (AJS) would like to acknowledge the Office of Naval Research for its partial support of this work.

REFERENCES

- [1] S.P. Murarka, Silicides for VLSI Applications, Academic Press (1983).
- [2] T.P. Chow and A.J. Steck1, IEEE Trans. Electron Devices, ED-30, 1480 (1983).
- [3] C.D. Rude, T.P. Chow, and A.J. Steckl, J. Appl. Phys., 53, 5703 (1982).
- [4] W.B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press (1958); W.B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, Vol. 2, Pergamon Press (1967).
- [5] S.P. Murarka, M.H. Read, C.J. Doherty, and D.B. Fraser, J. Electrochem. Soc., 129, 293 (1982).
- [6] S.P. Murarka and D.B. Fraser, J. Appl. Phys., 51, 350 (1980).
- [7] K.L. Wang, T.C. Holloway, R.F. Pinizzotto, Z.P. Sobczak, W.R. Hunter, and A.F. Tasch, Jr., IEEE Trans. Electron Devices, ED-29, 547 (1982).
- [8] T. Mochizuki, K. Shibata, T. Inoue, and K. Ohuchi, Jpn. J. Appl. Phys., 17, Supp. 17-1, 37 (1978).
- [9] T.P. Chow, "The Development of Refractory Gate Metallization for VLSI,"
 Ph.D. Thesis, (Rensselear Polytechnic Institute), 43 (1983).
- [10] B.L. Crowder and S. Zirinsky, IEEE Trans. Electron Devices, ED-26, 369 (1979).
- [11] H.J. Geipel, Jr., N. Hsieh, M. H. Ishaq, C.W. Koburger, and F.R. White,

 M.A. Nicelet and S. S. Lan, & VLSI Flectionis, Vel 6

 Let 14.6 Ingline and J. B. Larrafue, 39 (1883).

IEEE Trans. Electron Devices, ED-27, 1417 (1980).

[12] M.Y. Tsai, F.M. d'Heurle, C.S. Petersson, and R.W. Johnson, J. Appl. Phys., <u>52</u>, 5350 (1981).

LIST OF FIGURES AND TABLES

- Fig. 1 X-ray diffraction patterns of niobium silicide film on SiO_2/Si substrate: (a) as-sputtered and (b) after annealing at 1000° C for 30 min in H_2 .
- Fig. 2 Sheet resistance of 5600\AA -thick NbSi₂ on oxidized silicon substrate as a function of annealing time at various annealing temperatures (800-1000°C) in hydrogen.
- Fig. 3 Sheet resistance of 5600\AA -thick NbSi_2 on $\text{Si}_3\text{N}_4/\text{SiO}_2/\text{Si}$ substrate as a function of annealing time at various annealing temperatures (700-1000°C) in hydrogen.
- Fig. 4 Sheet resistance of 2500\AA -thick NbSi₂ and 2500\AA -thick n⁺ doped poly-Si on SiO_2/Si substrate as a function of annealing time at various annealing temperatures (700-1000°C) in hydrogen.
- Fig. 5 Sheet resistance of 2500Å- and 3500Å-thick NbSi₂ on 2500Å-thick n⁺ doped poly-Si on SiO₂/Si substrate as a function of annealing time at 900°C in hydrogen.
- Fig. 6 Resistivity of various refractory metal silicides (TiSi2, TaSi2, MoSi2 and NbSi2) as a function of annealing temperatures.
- Table I Various silicide phases that are formed for Group IV, V and VIA metals.
- Table II Impurity contents of NbSi₂ films sputtered from hot-pressed and cold-pressed targets as determined from RBS and SIMS.

138.93 2.00SEC , 10- 4-83 DIF 27657 PAUL CHOW 1X.6 50/20 T/2T AL 2THETA= 20.000 DELTA 2THETA= 0.100 TIME INTERVAL= 115.17 67.65 43.89 2 THETA INITIAL 20 13 12.61 19.3 9 ロエトの下の国の -- W

Table I

Various silicide phases that are formed for Group IV, V and VIA metals

IA V	V. A	
Ti ₃ Si	V ₃ Si	Cr.Si
3	3	Cr. Si
	V ₅ Si ₃	Cr ₃ Si Cr ₂ Si Cr ₅ Si ₃ Cr ₅ Si ₃ Cr ₅ Si ₂
Ti ₅ Si ₃ (C)	$V_5^3 Si_3^3(C)$	$Cr_{\bullet}^{5}Si_{\bullet}^{3}(C)$
5-3	5 3	Cr.Si.
Ti ₅ Si ₄	V ₅ Si ₄	3-2
3 4	$V_6^5 Si_5^4$	
TiSi	0 3	CrSi
fco-TiSi2	VSi ₂	CrSi ₂
bco-TiSi2		2
Zr Si	Nh Si	
Zr-Si	Nb ₄ Si Nb ₃ Si	Mo Si
Zr ₄ Si Zr ₃ Si Zr ₂ Si	3	Mo ₃ Si
2	a-Nb_Si_(D8)	Mo Si
	$\begin{array}{c} a-Nb_5Si_3(D8_1) \\ \beta-Nb_5Si_3(D8_1) \\ \lambda B_1Si_2(D8_1) \end{array}$	Mo ₅ Si ₃
$Zr_5Si_3(C)$	Nb Si (C)	Mo ₅ Si ₃ (C)
Zr.Si.	5-3.0,	Mo ₃ Si ₂
$Zr^3.Si^2$		3 2
Zr ₃ Si ₂ Zr ₄ Si ₃ Zr ₅ Si ₄ Zr ₅ Si ₅ ZrSi		
Zr ⁵ Si ⁴		
ZrŠi ³		
ZrSi ₂	NbSi ₂	h-MoSi ₂
2	2	t-MoSi ²
	Ta ₄ Si Ta ₄ Si Ta ₃ Si Ta ₂ Si Ta ₅ Si ₃ (D8) 8-Ta ₅ Si ₃ (D8)	
	Ta ₄ Si	· .
uf C:	18351	₩ ₃ Si
Hf ₂ Si	18 ₂ 51	m 0: /50 \
	185 ³¹ 3	W ₅ Si ₃ (D8 _m)
	a-185313 (D81)	
Hf,Si,(C)	p-125013(D8)	w c: /a\
nf5 513 (C)	β -Ta ₅ Si ₃ (D8 ¹) Ta ₅ Si ₃ (C)	$W_5Si_3(C)$ W_3Si_2
Hf3Si3 Hf3Si2 Hf4Si3 Hf5Si4 HfSi HfSi2		73³¹2
Hf 813		
HfSi 4		
RESI	TaSi ₂	1-A61
2	2	h-WSi ₂ t-WSi ₂
		2

Table II

Impurity contents of NbSi, films sputtered from hot-pressed and cold-pressed targets as determined from RBS and SIMS.

	Hot-Pressed	Cold=Pressed_	Hot-Pressed/Cold-Pressed
c	1.8	1.0	1.8
0	8	10	0.8
Ar	20	8	2.5
SiN	25	5.5	4.5
(From SIMS)			
Si/Nb	1.7-1.8	2.1	
	2.0(Target)	2.3(Target)	
Ar	3%	3%	
Ta	0.2%	0.2%	
(From RBS)			
Target	99 .6%	99.6%	
Purity			

END

FILMED

5-85

DTIC