

Mid Term Exam Sep2022

Class & Batch ...B.Tech 5th Sem......Subject Name& Code ...Theory of Computation (CSL0516)...... Time 01:30 Hours Maximum Marks: 30 All Questions are Compulsory:

Q. No.	Questions	Marks	CO	BL
21				
.1	Define Moore Machine.	1	1,2	1,2
1.2	Construct a DFA accepting all strings over {a,b}. Having the set of all strings start with ab. Having the set of all strings of length atleast '2'. OR Construct a DFA which accepts set of all strings over {a, b} in which number of a's are even and number of b's are also even.	5	1,2	1,2
Q2		1	1.2	1,2
2.1 /	Write down any one Identity of Regular Expression.	1	1,2	
2.2	Define Finite Automata? What are its different tuples? Also explain the difference between DFA and NFA. OR "Every DFA is NFA". Prove it.	5	1,2,3	1,2,3
Q3				
3.1	Define Regular Expression.	1	1,2	1,2
3.2	Consider the following deterministic finite state automaton M.	5	1,2,3	3,4
	Let S denote the set of seven bit binary strings in which the first, the fourth, and the last bits are 1. What are the maximum possible strings in S that are accepted by M? Explain. OR Let $M = \{Q, \sum, \delta, q0, F\}$ be a given DFA that accepts a language L. What will be the complement (L') of the given DFA. Explain it.			
Q4				
4.1	Define DFA.	1	1,2	1,2
4.2	Determine the DFA for the given NFA transition table. Present State Next State B Present State Next State Q1 Q2 Q2 Q2 Q2 Q2 Q2 Q2 Q2 Q2	5	1,2	2,3,4

		3	q0 q0 q0 q1 q2 q3 q0 q4 q0 q8 q1 q6 q1	Q3 Q4 Q5 Q6 Q4					
Q 5 5.1 5.2	1277			C	1 1	0	1	112	122
1.1	What is the purpose of pumping lemma for regular languages? Construct a Moore Machine equivalent to given Mealy Machine.						5	1,2	1,2,3
	3	State	0	91 q3 q2	Output 1 0				
	OR Conversion of FSM into a regular expression using Arden's theorem.								