

Informatica e Laboratorio di Programmazione

algebra di Boole

Alberto Ferrari

- o l'algebra di Boole è un *formalismo* che opera su variabili (dette variabili booleane)
- o le *variabili booleane* possono assumere due soli valori: *vero*, *falso*
- o sulle variabili booleane è possibile definire delle funzioni (dette funzioni booleane)
- o le *funzioni booleane* possono assumere solo i due valori *vero, falso*

- o una *tabella di verità definisce* una funzione booleana
 - o valore risultante per ciascuna *combinazione* dei valori in ingresso
- a volte, specifica incompleta
 (certe combinazioni di ingressi non possono verificarsi) → non è specificato alcun valore

#	w	X	у	Z	f
0	0	0	0	0	0
1	0	0	0	1	1
1 2 3	0	0	1	0	1 0
3	0	0	1	1	0
4	0	1	0	0	0
4 5 6 7 8	0	1	0	1	1 0
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	0 1
9 10	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	1
11 12 13 14	1	1	1	0	1
15	1	1	1	1	1

Name	N	OT		ANI)	1	NAN	D		OR		1	NOI	₹.		XOI	3	N	NO	R
Alg. Expr.		Ā		AB			\overline{AB}			A + L	3		A + B	3		$A \oplus B$	3		$A \oplus I$	B
Symbol	<u>A</u>	>> <u>×</u>	A B) <u> </u>)o—			<u> </u>			>> <u></u>	13 		<u>></u>			> -
Truth	A	X	В	A	X	В	A	X	В	A	X	В	A	X	В	A	X	В	A	2
Table	0	0	0	0	0	0	0	1 1	0	0	0	0	0	1 0	0	0	0	0	0	
		1 0	1	0	0	1	0	1	1	0	1	1	0	0	1	0	1	1	0	
			1	1	1	1	1	0	1	1	1	ī	1	0	1	1	0	1	1	3

- o operatori possono essere *combinati* in espressioni
 - o altra forma di definizione di funzioni booleane

$$\circ$$
 es. $F_2(A, B, C) = A \cdot B + C$

Operatore	Simbolo
And	· (^)
Or	+ (\(\))
Not	٦
Xor	\oplus
Nand	↑
Nor	↓

proprietà degli operatori

Proprietà	Not
Complemento	$\neg\neg A = A$

Proprietà	And	Or
Commutativa	$A \cdot B = B \cdot A$	A + B = B + A
Associativa	$(A \cdot B) \cdot C = A \cdot (B \cdot C)$	(A+B) + C = A + (B+C)
Distributiva	$A + (B \cdot C) = (A+B) \cdot (A+C)$	$A \cdot (B+C) = (A \cdot B) + (A \cdot C)$
Idempotenza	$A \cdot A = A$	A + A = A
Identità	$A \cdot 1 = A$	A + 0 = A
Del limite	$A \cdot 0 = 0$	A + 1 = 1
Assorbimento	$A \cdot (A + B) = A$	$A + (A \cdot B) = A$
Inverso	$A \cdot \neg A = 0$	$A + \neg A = 1$
De Morgan	$\neg(A \cdot B \cdot C) = \neg A + \neg B + \neg C$	$\neg(A+B+C) = \neg A \cdot \neg B \cdot \neg C$

Attenzione a De Morgan: errore comune!

- o somma di prodotti (SP): si considerano le righe a 1
 - $\circ \ \ F1(A,\,B,\,C) = (\neg A \cdot \neg B \cdot \neg C) + (\neg A \cdot B \cdot C) + (A \cdot \neg B \cdot C) + (A \cdot B \cdot \neg C) + (A \cdot B \cdot C)$
- o prodotto di somme (PS): si considerano le righe a θ

$$\circ$$
 F1(A, B, C) = (A + B + \neg C) \cdot (A + \neg B + C) \cdot (\neg A + B + C)

Α	В	С	F ₁	→ Forma canonica
0	0	0	1	\rightarrow SP
0	0	1	0	\rightarrow PS
0	1	0	0	\rightarrow PS
0	1	1	1	\rightarrow SP
1	0	0	0	\rightarrow PS
1	0	1	1	\rightarrow SP
1	1	0	1	\rightarrow SP
1	1	1	1	\rightarrow SP

python – operatori binari

$\circ x \leq \text{shift}$	$\# x = x * (2^shift)$
$\circ x >> $ shift	$\# x = x / (2^shift)$, con segno
o x & y	# AND applicato bit a bit
$\circ x \mid y$	# OR applicato bit a bit
\circ $x \wedge y$	# XOR bit a bit
o ~x	# complemento di ogni bit

Da non confondere con operatori logici (and, or, not)