Al School 6기 입문반 저작권: Al School

Al School 6기 3주차

파이썬 기초3

딥러닝 학습 방법론

다양한 학습 방법론을 적용한 필기체 인식기 개발

Al School 6기 입문반 저작권: Al School

Al School 6기 3주차

파이썬 기초3

파이썬의 제어문 – for

• 리스트 내포

```
numbers = [1, 2, 3, 4, 5]
result = []
for n in numbers:
    if n % 2 == 1:
        result.append(n*2)
print(result)
```

```
result = [n*2 \text{ for } n \text{ in } n \text{ umbers if } n \% 2 == 1]
print(result)
```

파이썬의 자료형 – tuple

- 불변한 순서가 있는 객체의 집합
- List형과 비슷하지만 한 번 생성되면 값을 변경할 수 없음

```
t1 = (1, 2, 3)
print(t1)
print(len(t1))
print(t1[0])
print(t1[:2])
del t1[0]
t1[0] = 4
t2 = (4,)
print(t2)
print(t1*3)
print(t1 + t2)
```

파이썬의 제어문 – while

• while 반복문

```
count = 0
while count < 10:
    count += 1
    print(count)</pre>
```

```
prompt = """
1. Add
2. Del
3. Quit"""
number = 0
while number != 3:
    print(prompt)
    number = int(input("Enter number:"))
```

파이썬의 제어문 – while

break

```
coffee = 3
while True:
  money = int(input("돈을 넣어 주세요: "))
  if money == 300:
     print("맛있게 드세요.")
    coffee = coffee - 1
  elif money > 300:
     print("거스름돈은 %d원입니다." % (money -300))
     print("맛있게 드세요.")
    coffee = coffee - 1
  else:
     print("%d 더 넣어주세요." % (300 - money))
  if coffee == 0:
     print("커피가 다 떨어졌습니다. 판매를 중지 합니다.")
     break
```

파이썬의 제어문 – while

continue

```
coffee = 3
while coffee > 0:
    print(f'남은 커피: {coffee}')
    money = int(input("돈을 넣어 주세요: "))
    if money < 300:
        continue
    coffee -= 1
    print("맛있게 드세요.")
```

숙제1

- while문을 사용해 1부터 1000까지의 자연수 중 3의 배수의 합을 구하세요.
- While 문을 사용해 다음과 같이 *들을 출력해보세요.

```
**

***

***

***

*numbers = [1, 2, 3,
```

*

numbers = [1, 2, 3, 4, 5]
 result = []
 for n in numbers:
 if n % 2 == 0:
 result.append(n+2)

위 코드를 리스트 내포를 이용해 한줄로 구현해보세요.

파이썬의 파일 입출력

- w: 쓰기모드 파일에 내용을 쓸 때 사용
- a: 추가모드 파일의 마지막에 새로운 내용을 추가할 때 사용

```
f = open("./write.txt", 'w',
encoding='utf-8')
f.write("file write")
f.close()
f = open("./write.txt", 'a',
encoding='utf-8')
for i in range(10, 20):
    data = f'line {i}\municum f.close()

for i in range(1, 10):
    data = f'line {i}\municum f.close()
```

f.close()

f.write(data)

```
with open("./write.txt", 'w', encoding='utf-8') as
f:
    for i in range(1, 10):
        data = f'line {i}\Wn'
        f.write(data)
```

Al School 6기 입문반 저작권: Al School

파이썬의 파일 입출력

• r: 읽기모드 – 파일을 읽기만 할 때 사용

f.close()

```
f = open("./write.txt", 'r',
f = open("./write.txt", 'r',
                                               encoding='utf-8')
encoding='utf-8')
                                                content = f.read()
line = f.readline()
                                                print(content)
print(line)
f.close()
                                                 = open("./write.txt", 'r',
f = open("./write.txt", 'r',
                                                encoding='utf-8')
encoding='utf-8')
                                                content = f.read(6)
line = f.readline()
                                                print(content)
while line:
                                                content = f.read(14)
   print(line)
                                                print(content)
   line = f.readline()
                                                f.seek(0)
f.close()
f = open("./write.txt", 'r',
                                                content = f.read(14)
                                                print(content)
encoding='utf-8')
                                                f.close()
lines = f.readlines()
for line in lines:
   print(line)
```

숙제2

• 주어진 fileIO.txt 파일을 읽어 Key는 성이고 Value는 나이인 딕셔너리 name_age에 정보들을 할당한 후 출력하세요.

```
입력 파일 예시:
Kim 32
Lee 34
Park 39
Choi 28
Cho 25
```

결과: {'Kim':32, 'Lee':34...}

Al School 6기 입문반 저작권: Al School

Al School 6기 3주차

딥러닝 학습 방법론

Back-Propagation

AdaGrad[1]

- 개별 가중치에 적응적으로 (adaptive) 학습률을 조정하면서 학습을 진행
- 현재까지 따라서 많이 갱신된 가중치는 학습률을 낮아짐
- 즉, 학습률 감소가 개별 가중치 마다 다르게 적용

RMSProp

- AdaGrad의 단점을 해결하기 위한 방법
- AdaGrad의 식에서 gradient의 제곱값을 더하는 방식이 아니라 지수평균으로 대체
- Gradient가 무한정 커지는 것을 방지

Momentum

- 가중치의 업데이트 값에 **이전 업데이트 값의 일정 비율을 더해줌**
- 즉, Gradient decent를 통해 이동하는 과정에 관성을 주는 것
- Adam[1]: AdaGrad (RMSProp) 와 Momentum을 융합한 기법

$$w^{t+1} = w^t - \varepsilon \nabla E_t + \mu \triangle w^{t-1}$$

[1] Diederik Kingma and Jimmy Ba, Adam: A Method for Stochastic Optimazation, ICLR 2015

Early Stopping

Training, Test, Validation (development) set MADE AL School

Training, Test, Validation set

Training Validation Test Set Set

cross validation

AI School 6기 입문반 저작권: AI School

Early Stopping

Weight Initialization

- 기존에는 가중치의 초깃값을 정규분포를 따르는 임의 값으로 정함 (예 평균: 0 , 표준편차 0.1)
 (가중치의 초깃값을 모두 0으로 할 경우 backpropagation 시 모든 가중치의 값이 똑같이 갱신되기 때문에 학습이 제대로 이뤄지지 않음)
- Xavier[1] 초깃값 (activation function이 sigmoid일 때), He 초기값 (activation function이 ReLU일 때)

Xavier : 표준편차가 $\frac{1}{\sqrt{n}}$ 인 정규분포로 초기화 (n은 앞 층의 노드 수)

He : 표준편차가 $\sqrt{\frac{2}{n}}$ 인 정규분포로 초기화 (n은 앞 층의 노드 수)

Weight Initialization (sigmoid)

표준편차: 0.01

Xavier

Weight Initialization (ReLU)

Xavier

He

He 초깃값을 사용한 경우

Dropout

- Background
 - When the network has enough hidden units to model it accurately
 - When there is only a limited amount of labeled training data

→ Overfitted

- Main Idea: averaging many models is always good
 - → How a single model can learn as if it's averaging many models

Dropout

- How it works
 - Each time we present a training example, we randomly omit each hidden unit with a probability of 0.5
 - So we are randomly sampling from 2^n different architectures
 - Efficient way of performing model averaging with neural networks

Dropout

AI School 저작권: Al School

Weight decay, Weight restriction (Parameter Norm Penalties)[1]

자유도가 높을수록 오버피팅 될 가능성이 높음

Weight decay:
$$E_t = \frac{1}{N_t} \sum_{n \in D_t} E_n + \frac{\lambda}{2} \frac{||w||^2}{\text{L2-norm}}$$

$$w^{t+1} = w^t - \epsilon (\frac{1}{N_t} \sum \nabla E_n + \lambda w^t)$$
 Weight restriction:
$$||w||^2 < c$$

[1] Ian Goodfellow, Yoshua Bengio, and Aaron Courville, DEEP LEARNING, Chapter 7

Orthogonality

 They introduce orthogonality constraints, which penalize redundant latent representations.

Knowledge distillation

Al School 6기 입문반 저작권: Al School

Al School 6기 3주차

다양한 학습 방법론을 적용한 필기체 인식기 개발

MNIST data


```
# MNIST data image of shape 28 * 28 = 784
X = tf.placeholder(tf.float32, [None, 784])
# 0 - 9 digits recognition = 10 classes
Y = tf.placeholder(tf.float32, [None, nb_classes])
```

AI School 저작권: Al School

MNIST data

```
import matplotlib.pyplot as plt
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True,
validation_size=5000)
print(np.shape(mnist.validation.images))
print(np.shape(mnist.validation.labels))
print(np.shape(mnist.train.images))
print(np.shape(mnist.train.labels))
print(np.shape(mnist.test.images))
print(np.shape(mnist.test.labels))
plt.imshow(
      mnist.train.images[1].reshape(28, 28),
      cmap="Greys",
      interpolation="nearest",
plt.show()
```

Feedforward

Al School 6기 입문반 저작권: Al School

Softmax

 y_1

Loss **function**

$$y_2$$

$$E = -\sum_{k} t_k \log y_k$$

Sigmoid

ReLU

$$h(x) = \begin{cases} x & (x > 0) \\ 0 & (x \le 0) \end{cases}$$

Affine, Activation

```
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True,
validation size=5000)
X = tf.placeholder(tf.float32, [None, 784], name="X")
Y = tf.placeholder(tf.float32, [None, 10], name="Y")
W1 = tf.Variable(tf.random_normal([784, 256]))
b1 = tf.Variable(tf.random_normal([256]))
L1 = tf.nn.relu(tf.matmul(X, W1) + b1)
W2 = tf.Variable(tf.random_normal([256, 256]))
b2 = tf.Variable(tf.random_normal([256]))
L2 = tf.nn.relu(tf.matmul(L1, W2) + b2)
W3 = tf.Variable(tf.random_normal([256, 10]))
b3 = tf.Variable(tf.random_normal([10]))
hypothesis = tf.nn.xw_plus_b(L2, W3, b3, name="hypothesis")
correct_prediction = tf.equal(tf.argmax(hypothesis, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
```

Al School 6기 입문반 저작권: Al School

Epoch, Batch size, Iterations

Example: MNIST data

- number of training data: N=55,000
- Let's take batch size of **B=100**

- How many iteration in each epoch? 55000/100 = 550

1 epoch = 550 iteration

Early Stopping

Early Stopping

```
training_epochs = 100

batch_size = 100

timestamp = str(int(time.time()))
out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", timestamp))
checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
checkpoint_prefix = os.path.join(checkpoint_dir, "model")
if not os.path.exists(checkpoint_dir):
    os.makedirs(checkpoint_dir)
saver = tf.train.Saver(tf.global_variables(), max_to_keep=3)
```

```
print('Epoch:', '%04d' % (epoch + 1), 'training cost =', '{:.9f}'.format(avg_cost))
val_accuracy= sess.run(accuracy, feed_dict={X: mnist.validation.images, Y:
mnist.validation.labels})
print('Validation Accuracy:', val_accuracy)
if val_accuracy > max:
    max = val_accuracy
    early_stopped = epoch + 1
    saver.save(sess, checkpoint_prefix, global_step=early_stopped)

print('Learning Finished!')
```

print('Validation Max Accuracy:', max)

print('Farly stopped time:', early stopped)

MNIST_eval.py

```
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True,validation_size=5000)
tf.flags.DEFINE_string("checkpoint_dir", "./runs/1570920722/checkpoints", "Checkpoint
directory from training run")
FLAGS = tf.flags.FLAGS
checkpoint_file = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
graph = tf.Graph()
with graph.as_default():
  sess = tf.Session()
   with sess.as_default():
      saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
      saver.restore(sess, checkpoint_file)
```

MNIST_eval.py

```
X = graph.get_operation_by_name("X").outputs[0]
      Y = graph.get_operation_by_name("Y").outputs[0]
      keep_prob = graph.get_operation_by_name("keep_prob").outputs[0]
      hypothesis = graph.get_operation_by_name("hypothesis").outputs[0]
      correct_prediction = tf.equal(tf.argmax(hypothesis, 1), tf.argmax(Y, 1))
      accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
      test_accuracy = sess.run(accuracy, feed_dict={X: mnist.test.images, Y:
mnist.test.labels, keep_prob: 1.0})
      print('Test Max Accuracy:', test_accuracy)
```

Weight Initialization

- 기존에는 가중치의 초깃값을 정규분포를 따르는 임의 값으로 정함 (예 평균: 0 , 표준편차 0.1) (가중치의 초깃값을 모두 0으로 할 경우 backpropagation 시 모든 가중치의 값이 똑같이 갱신되기 때문에 학습이 제대로 이뤄지지 않음)
- Xavier[1] 초깃값 (activation function이 sigmoid일 때), He 초기값 (activation function이 ReLU일 때)

Xavier : 표준편차가 $\frac{1}{\sqrt{n}}$ 인 정규분포로 초기화 (n은 앞 층의 노드 수)

He : 표준편차가 $\sqrt{\frac{2}{n}}$ 인 정규분포로 초기화 (n은 앞 층의 노드 수)

Weight Initialization

```
W1 = tf.get_variable("W1", shape=[784, 256], initializer=tf.contrib.layers.xavier_initializer())
b1 = tf.Variable(tf.random normal([256]))
L1 = tf.nn.relu(tf.matmul(X, W1) + b1)
W2 = tf.get_variable("W2", shape=[256, 256],initializer=tf.contrib.layers.xavier_initializer())
b2 = tf.Variable(tf.random_normal([256]))
L2 = tf.nn.relu(tf.matmul(L1, W2) + b2)
W3 = tf.get_variable("W3", shape=[256, 10],initializer=tf.contrib.layers.xavier_initializer())
b3 = tf.Variable(tf.random_normal([10]))
hypothesis = tf.matmul(L2, W3) + b3
```

Dropout

- How it works
 - Each time we present a training example, we randomly omit each hidden unit with a probability of 0.5
 - So we are randomly sampling from 2^n different architectures
 - Efficient way of performing model averaging with neural networks

Dropout

```
keep_prob = tf.placeholder(tf.float32, name="keep_prob")
W1 = tf.get_variable("W1", shape=[784, 256], initializer=tf.initializers.he_normal())
b1 = tf.Variable(tf.random_normal([256]))
L1 = tf.nn.relu(tf.matmul(X, W1) + b1)
L1 = tf.nn.dropout(L1, keep_prob=keep_prob)
W2 = tf.get_variable("W2", shape=[256, 256],initializer=tf.initializers.he_normal())
b2 = tf.Variable(tf.random_normal([256]))
L2 = tf.nn.relu(tf.matmul(L1, W2) + b2)
L2 = tf.nn.dropout(L2, keep_prob=keep_prob)
feed_dict = {X: batch_xs, Y: batch_ys, keep_prob: 0.8}
print('Accuracy:', sess.run(accuracy, feed_dict={
    X: mnist.test.images, Y: mnist.test.labels, keep_prob:1.0}))
```

AI School 저작권: Al School

Weight decay, Weight restriction (Parameter Norm Penalties)[1]

자유도가 높을수록 오버피팅 될 가능성이 높음

Weight decay:
$$E_t = \frac{1}{N_t} \sum_{n \in D_t} E_n + \frac{\lambda}{2} \frac{||w||^2}{\text{L2-norm}}$$

$$w^{t+1} = w^t - \epsilon (\frac{1}{N_t} \sum \nabla E_n + \lambda w^t)$$
 Weight restriction:
$$||w||^2 < c$$

[1] Ian Goodfellow, Yoshua Bengio, and Aaron Courville, DEEP LEARNING, Chapter 7

Weight decay, Weight restriction (Parameter Norm Penalties)[1]

```
12 loss = 0.0
W1 = tf.Variable(tf.random_normal([784, 256]))
b1 = tf.Variable(tf.random_normal([256]))
L1 = tf.nn.relu(tf.matmul(X, W1) + b1)
12 loss += tf.nn.12 loss(W1)
12_{loss} += tf.nn.12_{loss}(b1)
W2 = tf.Variable(tf.random_normal([256, 256]))
b2 = tf.Variable(tf.random_normal([256]))
L2 = tf.nn.relu(tf.matmul(L1, W2) + b2)
12\_loss +=tf.nn.12\_loss(W2)
12 loss += tf.nn.12 loss(b2)
W3 = tf.Variable(tf.random_normal([256, 10]))
b3 = tf.Variable(tf.random_normal([10]))
hypothesis = tf.matmul(L2, W3) + b3
12 loss += tf.nn. 12 loss(W3)
12_{loss} += tf.nn.12_{loss}(b3)
12 loss lambda = 0.001
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
   logits=hypothesis, labels=Y)) + I2_loss_lambda * I2_loss
```

Tensorboard

http://localhost:60年: AI s

```
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
summary_op = tf.summary.scalar("accuracy", accuracy)
timestamp = str(int(time.time()))
out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", timestamp))
train_summary_dir = os.path.join(out_dir, "summaries", "train")
train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph)
val_summary_dir = os.path.join(out_dir, "summaries", "dev")
val_summary_writer = tf.summary.FileWriter(val_summary_dir, sess.graph)
checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
checkpoint_prefix = os.path.join(checkpoint_dir, "model")
if not os.path.exists(checkpoint_dir):
  os.makedirs(checkpoint_dir)
saver = tf.train.Saver(tf.global_variables(), max_to_keep=10)
max = 0
```

Tensorboard

http://localhost:60064:

```
for i in range(total_batch):
      batch_xs, batch_ys = mnist.train.next_batch(batch_size)
      feed_dict = {X: batch_xs, Y: batch_ys, keep_prob: 0.8}
      c, _, a = sess.run([cost, optimizer, summary_op], feed_dict=feed_dict)
      avg_cost += c / total_batch
   print('Epoch:', '%04d' % (epoch + 1), 'training cost =', '{:.9f}'.format(avg_cost))
   train_summary_writer.add_summary(a, early_stopped)
  val_accuracy, summaries = sess.run([accuracy, summary_op], feed_dict={X:
mnist.validation.images, Y: mnist.validation.labels, keep_prob: 1.0})
  val_summary_writer.add_summary(summaries, early_stopped)
print('Validation Accuracy:', val_accuracy)
   if val_accuracy > max:
      max = val_accuracy
      early_stopped = epoch + 1
      saver.save(sess, checkpoint_prefix, global_step=early_stopped)
```

Tensorboard

(aischool) C:\Users\82102\Anaconda3\envs\aischool>tensorboard --logdir=C:\Users\82102\PycharmProjects\aischool\MNIST\runs\1570923483

숙제3

오늘 만든 코드에서

- 1) He 초기화 적용해보기 (모든 weight)
- 2) Dropout 적용해보기 (keep_prob:0.8)
- 3) Weight decay 반영해보기 (모든 weight)

과제 제출: dha8102@naver.com