Linguagens Formais e Autômatos

Aula 06 - NFA com transições vazias

Prof. Dr. Daniel Lucrédio Departamento de Computação / UFSCar Última revisão: ago/2015

Referências bibliográficas

- Introdução à teoria dos autômatos, linguagens e computação / John
 E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman; tradução da 2.ed.
 original de Vandenberg D. de Souza. Rio de Janeiro: Elsevier, 2002
 (Tradução de: Introduction to automata theory, languages, and computation ISBN 85-352-1072-5)
 - Capítulo 2 Seção 2.5
- Introdução à teoria da computação / Michael Sipser; tradução técnica Ruy José Guerra Barretto de Queiroz; revisão técnica Newton José Vieira.
 São Paulo: Thomson Learning, 2007 (Título original: Introduction to the theory of computation. "Tradução da segunda edição norte-americana" -ISBN 978-85-221-0499-4)
 - Capítulo 1 Seção 1.2

- Transições espontâneas
 - Isto é, sem nenhuma entrada
- É uma forma de não-determinismo
 - o Facilita a "programação"
- Ex: números decimais

Ex: busca por palavras-chave

- Definição formal
 - A mesma que NFA
 - Muda somente a função de transição
 - $\bullet \quad \delta: Q \times \Sigma \ \cup \ \{\epsilon\} \to Q^*$
 - Uma coluna extra na tabela, ou transições vazias no diagrama

	ε	+,-		0,1,,9
→ q0	{q1}	{q1}	Ø	Ø
q1	Ø	Ø	{q2}	{q1,q4}
q2	Ø	Ø	Ø	{q3}
q3	{q5}	Ø	Ø	{q3}
q4	Ø	Ø	{q3}	Ø
* q5	Ø	Ø	Ø	Ø

- Essa nova característica não aumenta o poder do NFA
 - Ainda reconhece linguagens regulares
- Conceito de épsilon-fechamento
 - ECLOSE(q)
 - Conjunto de todos os estados alcançáveis espontaneamente a partir de q
 - Incluindo os vizinhos diretos e indiretos
 - Analisando-se os arcos rotulados com ε
- Função de transição estendida
 - Deve considerar sempre o ECLOSE

 Dado o seguinte autômato (que reconhece números decimais)

- Calcule a função estendida e mostre, passo a passo, as configurações instantâneas para a seguinte cadeia:
 - o 5.6
 - o 67.1.2
 - (Use notação de árvore ou conjuntos)
- Passo 1: calcule ECLOSE(q0)
- Passos seguintes: mesmo que NFA
 - Porém, para cada estado alcançado, inclua o seu ECLOSE também

- Resposta:
 - o {q0,q1}5.6
 - 5{q1,q4}.6
 - 5.{q2,q3,q5}6
 - 5.6{q3,q5}
- Conjunto de estados finais contém q5, portanto o autômato aceita a cadeia

Dado o seguinte autômato

- Calcule a função estendida e mostre, passo a passo, as configurações instantâneas para as seguintes cadeias:
 - 3 0
 - \circ a
 - baba
 - baa
 - b
 - o bb
 - babba
 - (Use notação de árvore ou conjuntos)

Dado o seguinte autômato

- Calcule a função estendida e mostre, passo a passo, as configurações instantâneas para as seguintes cadeias:
 - 0 1111
 - 0 11
 - 0 101
 - 00010
 - (Use notação de árvore ou conjuntos)

Projetando ε-NFAs

- Ex:
 - \circ $\Sigma = \{0,1\}$
 - Linguagem = cadeias que contém a sequência 010 ou 101 como subcadeia

Projetando ε-NFAs

- Ex:
 - \circ $\Sigma = \{a,b,c\}$
 - Linguagem = cadeias onde b e c sempre aparecem depois de uma ocorrência de a

Equivalência ε-NFAs e DFAs

- Transições vazias não adicionam poder ao autômato
 - Ainda reconhece as mesmas linguagens
 - Linguagens regulares
- Teorema:
 - Uma Linguagem L é aceita por algum DFA se e somente se L é aceita por algum ε-NFA
 - Prova por construção dos dois lados:
 - "Se": um processo que constrói um DFA a partir de um ε-NFA
 - "Somente se": um processo que constrói um ε-NFA a partir de um DFA

- É o mesmo procedimento da construção de subconjuntos dado anteriormente
 - Porém incorporando o cálculo de ε-fechamento após cada passo
 - Similar à implementação do ε-NFA

- Passo a passo com exemplo
- Dado o NFA:

	ε	а	b	C
→ p	Ø	{p}	{q}	{r}
q	{p}	{q}	{r}	Ø
* r	{q}	{r}	Ø	{p}

- Passo 1 (auxiliar): calcule o ECLOSE de todos os estados
- ECLOSE(p) = {p}
- $ECLOSE(q) = \{p,q\}$
- ECLOSE(r) = $\{p,q,r\}$

	ε	a	b	С
→ p	Ø	{p}	{q}	{r}
q	{p}	{q}	{r}	Ø
* r	{q}	{r}	Ø	{p}

 Passo 2: faça uma tabela "vazia" com as entradas (sem a coluna ε)

a	b	C

 Passo 3: Crie um novo estado inicial no DFA, um conjunto que contém o ECLOSE do estado inicial do NFA

	a	b	C
→ {p}			

Passo 4:

 Para cada entrada, insira no DFA um conjunto que contém o ECLOSE da união de todos os resultados da transição NFA daquela entrada para todos os estados do conjunto à esquerda

	a	b	C
→ {p}	{p}	{p,q}	{p,q,r}

Passo 5:

 Para cada novo conjunto de estados que aparecer, insira uma nova linha na tabela do DFA e volte para o passo 4

	а	b	c	
→ {p}	{p}	{p,q}	{p,q,r}	
{p,q}	{p,q}	{p,q,r}	{p,q,r}	
{p,q,r}	{p,q,r}	{p,q,r}	{p,q,r}	

 Passo 6: Quando não houver mais novos estados, marque como estado de aceitação os conjuntos que contém ao menos um estado de aceitação do NFA

	а	b	С
→ {p }	{p}	{p,q}	{p,q,r}
{p,q}	{p,q}	{p,q,r}	{p,q,r}
* {p,q,r}	{p,q,r}	{p,q,r}	{p,q,r}

 Passo 7: "Renomeie" os conjuntos para estados, de forma a facilitar a leitura do DFA

	a	b	С
\rightarrow A	А	В	С
В	В	С	С
* C	С	С	С

- Dado o seguinte ε-NFA
 - Converta para um DFA que aceita a mesma linguagem

	ε	a	b	С
→ p	{q,r}	Ø	{q}	{r}
q	Ø	{p}	{r}	{p,q}
* r	Ø	Ø	Ø	Ø

Resposta

	а	b	С
→ * {p,q,r}	{p,q,r}	{q,r}	{p,q,r}
* {q,r}	{p,q,r}	{r}	{p,q,r}
* {r}	{}	{}	{}
0	{}	{}	{}

- Dado o seguinte ε-NFA
 - Converta para um DFA que aceita a mesma linguagem

	ε	а	b
→ * 1	{3}	Ø	{2}
2	Ø	{2,3}	{3}
3	Ø	{1}	Ø

Resposta

	а	b
→ * {1,3}	{1,3}	{2}
{2}	{2,3}	{3}
{2,3}	{1,2,3}	{3}
{3}	{1,3}	{}
* {1,2,3}	{1,2,3}	{2,3}
O	{}	0

Conversão DFA → ε-NFA

- "Resto" da prova
- Parte fácil
 - Mesmo caso da conversão de DFA para NFA
 - Mas fazendo com que δ(q, ε) = Ø para todo estado q do DFA
 - Ou seja, não existem transições espontâneas (mas poderia ter)

Resumo

- Definições X Linguagens X Problemas
- Autômatos Finitos
 - o DFA
 - NFA
 - ε-NFA
- Aceitam as mesmas linguagens (regulares)

Resumo

Resumo

- Simular direto vs converter para DFA
 - Depende da aplicação
 - Padrões de busca voláteis (ex: grep)
 - Melhor simular NFA
 - Padrões fixos (ex: análise léxica)
 - Melhor converter para DFA

Fim

Aula 06 - NFA com transições vazias