Operation Scheduling, Binding and Data Routing for Run-Time Reconfigurable Architecture

E. Raffin - C. Wolinski – F. Charot – K. Kuchcinski – S. Guyetant – S. Chevobbe – E. Casseau

The ROMA reconfigurable processor Coarse Grain Reconfigurable Architecture

✓ Main features

- Two reconfigurable interconnection networks
- Up to 8 complex low power reconfigurable operators
- Up to 14 local memories
- Reconfiguration in 1 cycle
- Multimedia dedicated address generators and operators

✓ Physical features

- 250 MHz (TSMC 90nm)
- 1mm²

Outline

- ROMA reconfigurable processor & its tool chain
- Architecture model
- Constraint model for scheduling, binding and routing
- Results
- Conclusion and future work

Constraint model for scheduling, binding and routing

- > Timing constraints
 - How to ensure the precedence constraints of the application graph?
 - How to adapt precedence constraints according to the network used?

Constraint model for scheduling, binding and routing

- ➤ Resource sharing constraints
 - How to ensure that memory and computation resources are not used at the same time?
 - How to ensure that we do not exceed the memory size limit?

Cost function

➤ Minimization of the global computation time

$$CostFunc = max(..., n_{i_{end}}, ...)$$

Results – Applications from Mediabench

ightarrow In 78% of cases, our system provides results that are proved optimal

Application	DFG	nodes	edges	input nodes	output nodes	Cycles	Optimal	Runtime (ms)	Time Out (s)
JPEG IDCT (col)	1	35	40	13	4	16	yes	7693	30
-//-	2	57	65	22	5	26	yes	15117	30
Total DFGs for JPEG IDCT (col	1+2	92	105	35	9	42	yes	22810	30
JPEG IDCT (row)	3	106	127	34	17	29	no	TO	30
Write BMP Header	4	73	72	29	16	13	yes	875	10
-//-	5	19	18	8	4	5	yes	15	10
-//-	6	27	26	12	4	9	yes	47	10
-//-	7	27	26	12	4	9	yes	46	10
-//-	8	9	8	4	2	5	yes	0	10
Total DFGs for Write BMP Header	4++8	155	150	65	30	41	yes	983	10
sobel 7x7 (unrolled 2x2)	9	52	54	24	2	24	yes	360	10
MESA Matrix Mul	10	52	60	20	4	16	no	TO	30
IIR biquad N sections (unrolled x4)	11	66	73	29	1	55	no	TO	30
Roma H filter	12	43	42	21	2	28	ves	297	10

Application Graph Characteristics

Application	AG	nodes	edges	IO nodes
Auto Regression Filter	1	56	58	28
gost	2	21	21	11
Write BMP Header	3	71	70	43
-	4	19	18	12
-	5	27	26	16
	6	27	26	16
-	7	9	8	6
total	3+7	153	148	93
sobel 7x7	8	14	13	8
(unrolled 2x2)	9	49	51	24
MESA Matrix Mul	10	52	60	24
(unrolled x2)	11	88	120	32
(unrolled x3)	12	124	180	40
(unrolled x4)	13	160	240	48
IIR biquad N sections	14	18	19	9
(unrolled x4)	15	65	72	30
Roma H filter	16	42	41	22
(unrolled)				

Pipelined Execution Model

Latency and power consumption results for the pipelined architecture model with the ROMA operator patterns based library

AG	match								
	(1 node	Latency	Nber	Runtime	Optimal	Power	Nber	Runtime	Optima
	match)		of Op	(ms)		(mW)	of Op	(ms)	
1	28	24	28	374	yes	132	28	374	yes
	(28)								
2	10	6	10	78	yes	50	10	78	yes
	(10)								
3	28	11	28	561	yes	180	28	468	yes
	(28)								
4	7 (7)	2	7	16	yes	51	7	31	yes
5	11	5	11	15	yes	75	11	16	yes
	(11)								
6	12	- 5	11	15	yes	75	11	62	yes
	(11)								
7	3 (3)	2	3	0	yes	23	3	0	yes
		25	60	607	yes	404	60	577	yes
3++7									
8	7 (6)	15	5	16	yes	25	5	47	yes
9	25	27	25	280	yes	94	25	249	yes
	(25)				-				
10	28	12	28	375	yes	148	28	452	yes
	(28)								
11	56	12	56	1094	yes	296	56	1139	yes
	(56)								
12	84	12	84	2497	yes	444	84	2638	yes
	(84)								
13	112	12	112	5445	yes	592	112	5820	yes
	(112)								
14	9 (9)	18	9	62	yes	46	9	63	yes
15	36	60	36	515	yes	174	36	390	yes
	(36)	1							'
16	20	34	20	390	yes	84	11	468	yes
	(20)		1		,		l		,

Pipelined Execution Model (cont'd)

Latency and power consumption results for the pipelined architecture model with the UPaK patterns based library.

ſ	AG	match	Latency		Runtime	Optimal			Runtime	Optimal
		(1 node		Nber	(ms)		Power	Nber	(ms)	
		match)		Of			(mW)	Of		
ı				Op				Op		
	1	60	14	12	624	yes	X	X	TO	no
		(28)								
	2	10	6	10	62	yes	52	10	63	yes
ı		(10)								
	3	30	7	27	828	yes	180	26	546	yes
Į.		(28)								
ı	4	7 (7)	2	7	16	yes	51	7	16	yes
	5	- 11	5	-11	16	yes	75	-11	16	yes
Į.		(11)								
	6	12	5	11	16	yes	75	11	32	yes
ı,		(11)								
Į.	7	3 (3)	2	3	0	yes	23	3	0	yes
ı,	3++7		21	59	876	yes	404	58	610	yes
ı	8	7 (6)	- 8	5	15	yes	33	5	31	yes
	9	31	X	X	TO	no	123	19	608	yes
ı,		(25)								
	10	76	6	20	1219	yes	164	12	1156	no
Į.		(28)								
	11	152	6	40	2888	yes	332	24	2404	no
ı		(56)								
	12	228	- 6	60	7007	yes	500	36	5884	no
Į.		(84)								
	13	304	6	80	17475	yes	668	48	13200	no
ļ		(112)								
ļ	14	17 (9)	9	6	109	yes	50	- 6	187	yes
	15	68	27	24	1686	yes	202	24	984	no
I		(36)								
	16	52	13	17	1223	yes	113	20	281	yes
_l		(20)								

Conclusion and futur work

➤ Conclusion

- We have presented a new **CP based system** to **solve simultaneously the scheduling, binding and routing** of a data flow graph on a **generic CGRA model**
- This system has been used to generate configurations for the ROMA processor
- Validation of this approach has been done by simulation at RTL level
- Design space exploration can be done using this system with a higher abstraction of the architecture model

> Future work

- Handle bigger problems thanks to a smart clusterization and a sliding windows
- ...

Questions?

Papers

- Raffin, E., Wolinski, Ch., Charot, F., Kuchcinski, K., Guyetant, S., Chevobbe, S., Casseau, E., Scheduling, binding and routing system for a run-time reconfigurable operator based multimedia architecture, In Proc. of Intl. Conf. on Design and Architectures for Signal and Image Processing (DASIP), Edinburgh, UK, Oct. 26-28, 2010 (Best Paper Award).
- Raffin, E., Wolinski, Ch., Charot, F., Kuchcinski, K., Casseau, E., Floch, A., Chevobbe, S., Guyetant, S., Scheduling, Binding and Routing System for a Run-Time Reconfigurable Operator Based Multimedia Architecture, IJERTCS International Journal of Embedded and Real-Time Communication Systems, vol. 3, no. 1, 2012, pp. 1-30.