HOMEWORK 1 – MATH 4341 DUE DATE: WEDNESDAY 08/30/2023

Problem 1. Let A, B, C be three sets. Use definition to show that

$$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C),$$

$$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C).$$

Problem 2. Let $\{A_i\}_{i\in I}$ and $\{B_i\}_{i\in J}$ be two collections of sets. Show that

$$\left(\bigcup_{i\in I} A_i\right) \cap \left(\bigcup_{j\in J} B_j\right) = \bigcup_{i\in I, j\in J} (A_i \cap B_j),$$

$$\left(\bigcap_{i\in I} A_i\right) \cup \left(\bigcap_{j\in J} B_j\right) = \bigcap_{i\in I, j\in J} (A_i \cup B_j).$$

Problem 3. (a) Suppose C is a subset of $\mathbb{R} \times \mathbb{R}$ such that C is equal to the Cartesian product of two subsets of \mathbb{R} . Show that if two points (a_1, b_1) and (a_2, b_2) are elements in C then two points (a_1, b_2) and (a_2, b_1) are also elements in C.

(b) Determine whether the subset $C = \{(x, y) \mid x^2 + y^3 > 7\}$ of $\mathbb{R} \times \mathbb{R}$ is equal to the Cartesian product of two subsets of \mathbb{R} .

Problem 4. Let $f: A \to B$ be a function. We define a relation C on A by setting xCy if f(x) = f(y). Show that C is an equivalence relation.

Problem 5. Define a relation on \mathbb{Q} by

$$C = \{(x, y) \mid x - y \text{ is an even integer}\}.$$

- (a) Show that C is an equivalence relation.
- (b) Describe the set of equivalence classes of ${\cal C}.$