Mathematical Finance

Winter term 2023/2024

S. Christensen

P. Le Borne, B. Schroeter, B. Schultz

Sheet MF07

Mathematical Finance: MF

Exercises (for discussion on Monday, 18.12.2023)

Exercise 1. We consider a market $S = (S^0, S^1)$ with time horizon N = 1 and deterministic starting value $S_0 = (S_0^0, S_0^1)$. Furthermore let X be a random payoff. Show that the strategy $\varphi = (\varphi^0, \varphi^1)$ with

$$\left(\varphi_0^1 = \right) \varphi_1^1 = \frac{Cov(\hat{X}, \hat{S}_1^1)}{Var(\hat{S}_1^1)}, \qquad \left(\varphi_0^0 = \right) \varphi_1^0 = E(\hat{X}) - \varphi_1^1 E(\hat{S}_1^1)$$

minimizes the expression $E\left(\left(\hat{X} - \hat{V}_1(\varphi)\right)^2\right)$.

Exercise 2. In CRR model let S^2 be the fair price process of a Forward-Start-Option on S^1 . This is an option such that for an M < N the payoff at the end time $N \in \mathbb{N}$ resembles the payoff of a call with strike price S_M^1 , hence is

$$S_N^2 = (S_N^1 - S_M^1)^+.$$

Find S_0^2 .

Exercise 3. We consider the CRR model form the lecture with interest rate r = 0.05, the initial values $S_0^0 = S_0^1 = 100$ and time-horizon N = 2. Moreover we assume that the one-period relative value increase and decrease of the stock are given by u = 1.2 and d = 0.9 which occur with probability p and 1 - p, respectively. We consider a lookback-option with payoff

$$H := \left(\max_{k=0,\dots,N} S_k^1 - 105\right)^+$$

at time N.

- (a) Calculate the fair price process S^2 of the lookback-option.
- (b) Calculate the perfect hedge φ for the lookback-option.

Exercise 4. Consider a market with price process $S = (S^0, S^1)$ and time horizon N = 1 given by the following tree.

- (a) Compute the upper and the lower price of a call option on S^1 with maturity 1 and strike 110.
- (b) Determine a cheapest superhedge for the call option, that is, a self-financing strategy ϕ with $V_0(\phi) = \pi_U(X)$ and $V_N(\phi) \geq X$..