# PROBLEMS ON MOMENT RESISTANT BOLTED CONNECTION

# Type I - Beam to column connections

**Problem 1)**: Two framing (Framed connections) angles ISA  $150 \times 150 \times 10$  mm are use to make Beam to column connections. One angle is placed on either side of the web of beam. Bolts of 16 mm  $\emptyset - 03$  No. grade 4.6 are used to connect the angle legs to the beam web. Determine the reaction that can be transferred to the joint?

Given; column section ISHB 300 @ 618.03 N/m

Beam section ISMB 350 @ 514.04 N/m

#### **Answer:**



Fig: Isometric Veiw

Fig: Front View

Fig: Side View

#### Given:

Thick. Of web  $t_w = 8.1 \text{ mm}$ 

diameter of Bolt (d) = 16 mm

- ∴ Bolt hole Diameter  $(d_0) = 16 + 2 = 18$  mm
- ∴ Edge Distance (e) =  $1.5 \times d_0 = 27$  mm say 30 mm
- $\therefore$  Pitch (p) = 2.5 × d = 40 mm

Take  $F_e$  250 Grade of steel;  $f_{y=}$  250  $N/_{mm^2}$ 

For bolts 4.6 grade, as per IS 1367,  $F_u = F_{ub} = 400 \ ^{N}/_{mm^2}$ 

# Step 1) Design Strength of one Bolts connecting angle legs to the beam web;

i) Design Strength of bolt in Shear  $(V_{ds})$  ... (Double shear)

$$V_{ds} = \{ \text{ 1/ y } [\frac{F_u}{\sqrt{3}} (n_n A_{nb})] \}$$
.....cl 10.3.3, pg 75

Where 
$$F_u = F_{ub} = 400 \text{ }^{N}/\text{mm}^2$$

 $n_n = \text{No. of shear planes with threads intercepting shear planes.} = 2$ 

γ = Partial safety factor for Bolt Material = 1.25 ...... IS 800-2007 ; Table 5; pg. 30

$$A_{nb} = 0.78 \ to \ 0.80 \times \frac{\pi}{4} \times d^2 = 160.84 \ mm^2$$

: 
$$V_{ds} = 59.43$$
 KN

ii) Design Strength of Bolt in Bearing  $(V_{bs})$ 

$$V_{bs} = 1/\gamma$$
 (2.5  $K_b d t F_u$ ) ......IS 800-2007; cl. 10.3.4; pg. 75

Where, 
$$F_u = F_{ub} = 400 \, N/_{mm^2}$$

$$d = 16 \text{ mm}$$
;

$$t = t_w = 8.1 \text{ mm}$$

γ = Partial safety factor for Bolt Material = 1.25 ...... IS 800-2007 ;Table 5 ; pg. 3

 $K_b$ = Least of the following

iii) 
$$\frac{e}{3 \times d_0} = \frac{30}{3 \times 18} = 0.555$$

iv) 
$$\frac{p}{3 \times d_0} - 0.25 = \frac{40}{3 \times 18} - 0.25 = 0.490$$

$$v) \quad \frac{F_{ub}}{F_{uP}} = \frac{400}{410} = 0.975$$

vi) 1.00

$$K_b = 0.490$$

$$V_{bs} = \{ 1/1.25 \ (2.5 \times 0.490 \times 16 \times 8.1 \times 400) \}$$
  
= 50.88 KN

∴ Bolt value = Least value from above = 50.88 KN

Maximum end reaction that can be transferred =  $3 \times 50.88 = 152.64$  KN

**Problem 2)**: An I- Beam ISMB 400 @ 735.75 N/m Carrying A Factored Load Of 220 KN Is To Be Supported On column section ISHB 300 @ 618.03 N/m. Bolts of 20 mm Ø of grade 4.6 are used to connect the angle legs to the beam web. Design the connection?

#### **Answer:**



Fig : Side Veiw

## Given:

- - ∴ Bolt hole Diameter  $(d_0) = 20 + 2 = 22$  mm
  - $\therefore$  Edge Distance (e) = 1.5 ×  $d_0$  = 40 mm
  - $\therefore$  Pitch (p) = 2.5 × d = 50 mm say 60 mm

Take  $F_e$  250 Grade of steel;  $f_y = 250 \text{ N/}_{mm^2}$ 

For bolts 4.6 grade, as per IS 1367,  $F_u = F_{ub} = 400 \ N/_{mm^2}$ 

# Step 1) Check for size of web clip angles;

- i) Factored load = v = 220 KN

where, 
$$A_v = h(2t)$$

h = depth of connecting angle = 2(60) + 2(40) = 200 mm

t = thickness of connecting angle = ?

equating, 
$$\frac{250 \times 200 (2t)}{\sqrt{3} \times 1.10} = 220 \times 10^{3}$$
  
 $\therefore t = 4.19 \text{ say } 8 \text{ mm}$ 

Providing 2ISA  $110 \times 110 \times 8$  Web clip (Stiffener) angles. (Two equal angle back to back)

# Step 2) Design of connection of web clip angles to the web of Beam;

i) Design Strength of bolt in Shear  $(V_{ds})$  ...(Double shear)

 $n_n = \text{No. of shear planes with threads intercepting shear planes.} = 2$ 

γ = Partial safety factor for Bolt Material = 1.25 ...... IS 800-2007 ;Table 5 ; pg. 30

$$A_{nb} = 0.78 \text{ to } 0.80 \times \frac{\pi}{4} \times d^2 = 251.327 \text{ } mm^2$$

: 
$$V_{ds} = 92.866$$
 KN

ii) Design Strength of Bolt in Bearing  $(V_{bs})$ 

$$V_{bs} = 1/\ {\rm y} \ (2.5\ K_b\ d\ t\ F_u)$$
 ......IS 800-2007; cl. 10.3.4 ; pg. 75

Where, 
$$F_u = F_{ub} = 400 \frac{N}{mm^2}$$
  
 $d = 20 \text{ mm}$ ;  
 $t = t_w = 8.9 \text{ mm}$ 

γ = Partial safety factor for Bolt Material = 1.25 ...... IS 800-2007 ;Table 5 ; pg. 3

 $K_b$ = Least of the following

iii) 
$$\frac{e}{3 \times d_0} = \frac{40}{3 \times 22} = 0.606$$

iv) 
$$\frac{p}{3 \times d_0} - 0.25 = \frac{60}{3 \times 22} - 0.25 = 0.659$$

v) 
$$\frac{F_{ub}}{F_{up}} = \frac{400}{410} = 0.975$$

$$K_b = 0.606$$

$$V_{bs} = \{ 1/1.25 \ (2.5 \times 0.606 \times 20 \times 8.9 \times 400) \}$$
  
= 86.294 KN

- ∴ Bolt value = Least value from above = 86.294 KN
- $\therefore$  No. of Bolts Required =  $\frac{140}{86.294}$  = 1.62 Say 03 no

## Step 3) Design of connection of web clip angles to the Flange of Column;

i) Design Strength of bolt in Shear  $(V_{ds})$  ... $(single\ shear)$ 

$$V_{ds} = \frac{92.866}{2} = 46.43$$
 KN

ii) Design Strength of Bolt in Bearing  $(V_{bs})$ 

$$V_{bs} = 1/\gamma \ (2.5 \ K_b \ d \ t \ F_u)$$
 ......IS 800-2007; cl. 10.3.4 ; pg. 75

Where, 
$$F_u = F_{ub} = 400 N / mm^2$$
  
 $d = 20 \text{ mm}$ ;  
 $t = t_f = 10.6 \text{ mm}$ 

γ = Partial safety factor for Bolt Material = 1.25 ...... IS 800-2007 ;Table 5 ; pg. 3

 $K_b$ = Least of the following

iii) 
$$\frac{e}{3 \times d_0} = \frac{40}{3 \times 22} = 0.606$$

iv) 
$$\frac{p}{3 \times d_0} - 0.25 = \frac{60}{3 \times 22} - 0.25 = 0.659$$

v) 
$$\frac{F_{ub}}{F_{up}} = \frac{400}{410} = 0.975$$

vi) 1.00

$$K_h = 0.606$$

$$V_{bs} = \{ 1/1.25 \ (2.5 \times 0.606 \times 20 \times 10.6 \times 400) \}$$
  
= 102.77 KN

 $\therefore$  Bolt value = Least value from above = 46.43 KN

$$\therefore$$
 No. of Bolts Required =  $\frac{140}{46.43}$  = 03 no.

**Problem 3)**: A Factored load of 175 KN along with factored moment of 15 KNm are transmitted by an ISLB 325 @ 422.8 N/m beam to a ISHB 300 @ 576.8 N/m column in framed construction. Design connection?

#### **Answer:**



#### Given:

- - ∴ Bolt hole Diameter  $(d_0) = 20 + 2 = 22$  mm
  - ∴ Edge Distance (e) =  $1.5 \times d_0 = 33$  say 40 mm
  - $\therefore \quad \text{Pitch (p)} = 2.5 \times d = 50 \text{ mm}$

Let us assume guage distance (g) = 50 mm



## Step 1)

i) Design Strength in single Shear  $(V_{ds})$ 

 $n_n$  = No. of shear planes with threads intercepting shear planes. = 1

γ = Partial safety factor for Bolt Material = 1.25 ...... IS 800-2007 ;Table 5 ; pg. 30



$$V_{ds} = 464.33$$
 KN

- ii) Design Strength in Double Shear  $(V_{ds}) = 2 \times 464.33 = 928.66$  KN
- i) Design Strength of Bolts in web clip angles to web of beam (t = 7 mm)

= 
$$V_{bs}$$
 = 1/  $\gamma$  (2.5  $K_b d t F_u$ ) ......IS 800-2007; cl. 10.3.4 ; pg. 75

 $K_b$ = Least of the following

i) 
$$\frac{e}{3 \times d_0} = \frac{40}{3 \times 22} = 0.606$$

ii) 
$$\frac{p}{3 \times d_0} - 0.25 = \frac{50}{3 \times 22} - 0.25 = 0.5075$$

iii) 
$$\frac{F_{ub}}{F_{uP}} = \frac{400}{410} = 0.975$$

iv) 1.00

$$K_b = 0.606$$

$$V_{bs}$$
 = 1/1.25 (2.5 × 0.606 × 20 × 7 × 400) = 67.872 KN

ii) Design Strength of Bolts in web clip angles to column Flange (t = 10.6 mm)

$$V_{bs} = 1/1.25 \ (2.5 \times 0.606 \times 20 \times 10.6 \times 400) = 102.778 \ \text{KN}$$

iii) Design tensile Strength of the bolt

γ = Partial Safety Factor for failure by Rupture = 1.25

 $A_n$  = Net effective area of the member = 251.327  $mm^2$ 

Where, 
$$F_u = F_{ub} = 400 \ N/_{mm^2}$$

$$T_d = 70.573$$
 KN

Let us provide angle of  $120 \text{ mm} \times 100 \text{ mm} \times 12 \text{ mm}$  cleat and seat angles provided with guage distance of 50 mm

The bolt of one of the cleat angle and seat angle will be subjected to a tension T and force of P The restoring couple P(50 + 325 + 50) will resist the moment so that

Moment (M) = 
$$P(50 + 325 + 50)$$

Lever arm = (Distance from center of top bolts to Bottom Bolts)

$$= 50 + 325 + 50 = 425 \text{ mm}$$

$$\therefore$$
 Horizontal pull =  $P = \frac{Moment}{425}$ 

$$P = \frac{15 \times 10^6}{425} = 35294.11 \quad \text{N}$$

For design purpose, the Tension for the angle taken as

Tension in the Bolt = T = P { 1 + 0.75 
$$\left[ \begin{array}{c} g - \frac{t}{2} \\ e \end{array} \right]$$
 }

where, 
$$t = 12 \text{ mm}$$
  
 $\therefore T = 61517 \text{ N}$ 

No. of bolts require in cleat angle and seat angle;

$$=\frac{61517}{70573}$$
 = 0.87 say 02 no.

Provide 02 bolts for cleat and seat angles which are connected to column Flange.

For design purpose, the maximum Bending moment for the angle taken as

$$M = 0.5 P \left\{ \frac{g - \frac{t}{2}}{e} \right\};$$

where, t = 12 mm





iv) Design bending strength of the angle leg s/c

$$= \frac{1.2 f_y Z}{\gamma} = \frac{1.2 \times 250 \times \frac{(b \times h^2)}{6}}{\gamma}$$
 cl. 8.2.1.2, pg 53
$$Z = \text{plastic section modulus} = \frac{(b \times h^2)}{6}$$

Equating, 
$$\frac{0.2 \times 250 \times 165 \times t^2}{1.10} = 776470.42$$

γ = Partial safety factor for Bolt Material = 1.10 ...... IS 800-2007 ;Table 5 ; pg. 30

# $\therefore$ Thickness of angle provided t = 11 mm say 12 mm

v) Connection of the web clip angles with the flange of the beam;

Horizontal shear = 
$$V_h = \frac{Moment}{\text{height of beam}} = \frac{15 \times 10^6}{325} = 46154$$

Minimum No. of bolts require; = 
$$\frac{46154}{46433}$$
 = 1

Providing 04 no. of bolts

vi) Connection of the web clip angles with the Web of the beam;

Minimum No. of bolts require

$$= \frac{Vertical\ shear}{strengt\ of\ Bolt} = \frac{175 \times 10^3}{67872} = 2.578\ say\ 03\ no.$$

**Problem 4)**: A Factored load of 180 KN along with factored moment of 75 KNm are transmitted by a ISMB 600 @ 1202.7 N/m Beam to an ISHB 400 @ 806.4 N/m column. Design split connection?

## **Answer:**

#### Given:

- - $\therefore$  Bolt hole Diameter  $(d_0) = 22 + 2 = 24 \text{ mm}$
  - ∴ Edge Distance (e) =  $1.5 \times d_0 = 35$  mm
  - $\therefore$  Pitch (p) = 2.5 × d = 55 say 60 mm

Take  $F_e$  250 Grade of steel;  $f_{y=}$  250  $N/_{mm^2}$ 

Moment (75 KNm) on connection will resisted by split beams and load(180 KN) will resisted by web angles and bolts.



# Step 1) Design Strength of Bolts connecting split beams(tee) to flange of beam;

i) Design Strength of bolt in single Shear  $(V_{ds})$ 

$$V_{ds} = \{ 1/\gamma \ [\frac{F_u}{\sqrt{3}} \ (n_n A_{nb})] \}$$
.......l 10.3.3, pg 75  
Where  $F_u = F_{ub} = 400 \ N/mm^2$ 

 $n_n$  = No. of shear planes with threads intercepting shear planes. = 1

y = Partial safety factor for Bolt Material = 1.25 ...... IS 800-2007 ; Table 5 ; pg. 30

$$A_{nb} = 0.78 \ to \ 0.80 \times \frac{\pi}{4} \times d^2$$
  
= 0.78 to  $0.80 \times \frac{\pi}{4} \times 20^2$ 

$$V_{ds} = 54781 \text{ N}$$

ii) Design Strength of Bolt in Bearing  $(V_{bs})$ 

$$V_{bs} = 1/\gamma \ (2.5 \ K_b \ d \ t \ F_u)$$
 ......IS 800-2007; cl. 10.3.4 ; pg. 75

Where, 
$$F_u = F_{ub} = 400 \frac{N}{mm^2}$$
  
 $d = 22 \text{ mm}$ ;  
 $t = t_w = 12 \text{ mm}$ 

γ = Partial safety factor for Bolt Material = 1.25 ...... IS 800-2007 ;Table 5 ; pg. 3

 $K_b$ = Least of the following

i) 
$$\frac{e}{3 \times d_0} = \frac{40}{3 \times 24} = 0.555$$

ii) 
$$\frac{p}{3 \times d_0} - 0.25 = \frac{80}{3 \times 24} - 0.25 = 0.583$$

iii) 
$$\frac{F_{ub}}{F_{uP}} = \frac{400}{410} = 0.975$$

iv) 1.00

$$K_b = 0.555$$

$$V_{bs} = \{ 1/1.25 \ (2.5 \times 0.555 \times 22 \times 12 \times 400) \}$$
  
= 54.781 KN

∴ Bolt value = Least value from above = 54.781 KN

Pull in split beams (tee) = 
$$\frac{Moment in the connection}{depth of Beam}$$

$$P = \frac{75 \times 10^6}{600} = 125$$
 KN

∴ No. of Bolts Required = 
$$\frac{125}{54.781}$$
 = 03 Say 04 no.

## iii) Design of the tee (Split Beam);





# Calculation of thickness of flange for split beam $(t_f)$ Required;

Let us assume the guage distance (g) = 140 mm and  $t_w = 12 \text{ mm}$ 



Max. Bending moment for flange of tee = 
$$M_t = \frac{P}{4} \times (140 - 12)$$

$$=\frac{125000}{4}\times(140-12)$$

$$M_t = 3.75 \times 10^6 \frac{N}{mm}$$

$$= \frac{0.2 \ f_y \ l \ t^2}{\gamma} = \frac{0.2 \times 250 \times 250 \times t^2}{1.10}$$

Where , l = flange width of column = 250 mm

y = Partial safety factor for Bolt Material = 1.10 ...... IS 800-2007 ; Table 5 ; pg. 30

$$\therefore \frac{0.2 \times 250 \times 250 \times t^2}{1.10} = 3.75 \times 10^6$$

(thickness of flange for split beam) $t_f = 18.16$  mm

Referring steel table, let us consider ISWB 600 @ 1311.6 N/m I – section having

$$(t_f) = 21.3 \text{ mm} \text{ and } t_w = 11.2 \text{ mm}$$

iv) Design of web Angles;

The connecting bolts are in double shear

- a) The design strength of bolts in double shear =  $2 \times 54.781 = 109.56$  KN
- b) Design Strength of Bolt in Bearing  $(V_{bs})$

$$V_{bs} = 1/\gamma \ (2.5 \ K_b \ d \ t \ F_u)$$
 ......IS 800-2007; cl. 10.3.4 ; pg. 75

Where, 
$$F_u = F_{ub} = 400 \frac{N}{mm^2}$$
  
 $d = 22 \text{ mm}$ ;  
 $t = t_w = 12 \text{ mm}$ 

γ = Partial safety factor for Bolt Material = 1.25 ...... IS 800-2007 ;Table 5 ; pg. 3

 $K_b$ = Least of the following

v) 
$$\frac{e}{3 \times d_0} = \frac{40}{3 \times 24} = 0.555$$

vi) 
$$\frac{p}{3 \times d_0} - 0.25 = \frac{80}{3 \times 24} - 0.25 = 0.583$$

vii) 
$$\frac{F_{ub}}{F_{uP}} = \frac{400}{410} = 0.975$$

$$K_h = 0.555$$

$$V_{bs} = \{ 1/1.25 \ (2.5 \times 0.555 \times 22 \times 12 \times 400) \}$$
  
= 54.781 KN

 $\therefore$  Bolt value = Least value from above = 109.56 KN

∴ No. of Bolts Required = 
$$\frac{125}{109.56}$$
 = 02 say 03 no.

The outspread legs of these angles are connected to the flange of column with 03 no. of bolts on each leg.

# **Type II - Beam to Beam connections**

**Problem 1)**: A secondary beam ISLB 400@558.2 N/m is to be connected to the web of main beam ISLB 550@846.6 N/m. The factored end reaction is 220 KN. Design the connection. Use 20 mm diameter bolt of grade 4.6.?

#### **Answer:**



Given:

- - ∴ Bolt hole Diameter  $(d_0) = 20 + 2 = 22$  mm
  - ∴ Edge Distance (e) =  $1.5 \times d_0 = 40$  mm
  - $\therefore$  Pitch (p) = 2.5 × d = 50 mm say 60 mm

Take  $F_e$  250 Grade of steel;  $f_y = 250 \text{ N/}_{mm^2}$ 

For bolts 4.6 grade, as per IS 1367,  $F_u = F_{ub} = 400 \ N/_{mm^2}$ 

# Step 1) Check for size of web clip angles ;

- i) Factored load = v = 220 KN

t = thickness of connecting angle = ?

equating, 
$$\frac{250 \times 200 \ (2t)}{\sqrt{3} \times 1.10} = 220 \times 10^{3}$$
  
 $\therefore t = 4.19 \ say \ 8 \ mm$ 

Providing 2ISA  $110 \times 110 \times 8$  Web clip (Stiffener) angles. (Two equal angle back to back)

## Step 2) connection between the angles and the web of secondary beam;

i) Design Strength of bolt in Shear  $(V_{ds})$ ..... $(Double\ shear)$ 

$$V_{ds} = \{ 1/\gamma \ [\frac{F_u}{\sqrt{3}} \ (n_n A_{nb})] \}$$
.......l 10.3.3, pg 75  
Where  $F_u = F_{ub} = 400 \ N/mm^2$ 

 $n_n = \text{No. of shear planes with threads intercepting shear planes.} = 2$ 

y = Partial safety factor for Bolt Material = 1.25 ...... IS 800-2007 ; Table 5 ; pg. 30

$$A_{nb} = 0.78 \ to \ 0.80 \times \frac{\pi}{4} \times d^2$$
  
= 0.78 to 0.80 \times \frac{\pi}{4} \times 20^2 = 251.32 \ mm^2  
 $V_{ds} = 90548 \ \mathrm{N}$ 

ii) Design Strength of Bolt in Bearing  $(V_{bs})$ 

$$V_{bs} = 1/\gamma \ (2.5 \ K_b \ d \ t \ F_u)$$
 ......IS 800-2007; cl. 10.3.4 ; pg. 75

Where, 
$$F_u = F_{ub} = 400 \frac{N}{mm^2}$$
  
 $d = 20 \text{ mm}$ ;  
(ISLB 400)  $t = t_w = 8 \text{ mm}$ 

γ = Partial safety factor for Bolt Material = 1.25 ...... IS 800-2007 ;Table 5 ; pg. 3

 $K_b$ = Least of the following

ix) 
$$\frac{e}{3 \times d_0} = \frac{40}{3 \times 22} = 0.606$$

x) 
$$\frac{p}{3 \times d_0} - 0.25 = \frac{80}{3 \times 22} - 0.25 = 0.659$$

xi) 
$$\frac{F_{ub}}{F_{up}} = \frac{400}{410} = 0.975$$

$$K_b = 0.606$$

$$V_{bs} = \{ 1/1.25 \ (2.5 \times 0.606 \times 22 \times 8 \times 400) \}$$
  
= 77567 KN

- $\therefore$  Bolt value = Least value from above = 77.567 KN
- ∴ No. of Bolts Required =  $\frac{220}{77.567}$  2.83 Say 03 no.

## Step 3) Connection between the angles and the web of main beam;

i) Design Strength of bolt in Shear  $(V_{ds})$ ..... $(single\ shear)$ 

$$V_{ds} = \frac{90548}{2} = 45274$$
 N

iii) Design Strength of Bolt in Bearing  $(V_{bs})$ 

$$V_{bs} = 1/\gamma \ (2.5 \ K_b \ d \ t \ F_u)$$
 ......IS 800-2007; cl. 10.3.4 ; pg. 75

Where, 
$$F_u = F_{ub} = 400 \, \text{N}/\text{mm}^2$$
  
 $d = 20 \, \text{mm}$ ;  
(ISLB 550)  $t = t_w = 9.9 \, \text{mm}$ 

γ = Partial safety factor for Bolt Material = 1.25 ...... IS 800-2007 ;Table 5 ; pg. 3

 $K_b$ = Least of the following

ii) 
$$\frac{e}{3 \times d_0} = \frac{40}{3 \times 22} = 0.606$$

iii) 
$$\frac{p}{3 \times d_0} - 0.25 = \frac{80}{3 \times 22} - 0.25 = 0.659$$

iv) 
$$\frac{F_{ub}}{F_{uP}} = \frac{400}{410} = 0.975$$

v) 1.00

$$K_b = 0.606$$

$$V_{bs}$$
 = { 1/1.25 (2.5 × 0.606 × 22 × 9.9 × 400)}  
= 105589.44 KN

 $\therefore$  Bolt value = Least value from above = 45274 N

∴ No. of Bolts Required =  $\frac{220}{45274}$  = 4.85 Say 06 no.; Provide 06 Bolts with 03 no. bolts in each angle.