ZAD. 1.

Uzasadnić poniższe stwierdzenia, albo bezpośrednim argumentem, albo opierając się na poznanych faktach:

Funkcja niemalejąca $h: \mathbb{R} \to \mathbb{R}$ jest borelowska.

Niech a $\in \mathbb{R}$ oraz y = f(a), wtedy zbiór

$$\{x \in \mathbb{R} : f(x) \le f(a)\} = f^{-1}[(-\infty, y]]$$

przy czym $(-\infty, y] \in Bor(\mathbb{R})$, a wiemy, że to pociąga mierzalność funkcji.

Jeżeli zbiory A_n , $A \subseteq \mathbb{R}$ są borelowskie i $\lambda(A_n \Delta A) < \frac{1}{n}$ dla $n \in \mathbb{N}$, to istnieje ciąg $n_1 < n_2 < ...$ taki, że funkcje charakterystyczne $\chi_{A_{n_k}}$ zbiegają do χ_A prawie wszędzie.

Zbieganie $\chi_{A_{n_k}}$ prawie wszędzie do χ_A oznacza, że zbiór gdzie się nie zgadzają jest miary zero. Nie zgadzają się na zbiorze $A\Delta A_{n_k}$, którego miara zbiega do zera. Koniec?

Jeżeli A $\subseteq \mathbb{R}$ jest zbiorem mierzalnym i $\lambda(A) = 1$, to istnieje r > 0 takie, że $\lambda(A \cap (-r, r)) = \frac{3}{4}$.

Może najpierw zróbmy funkcje $f: \mathbb{R}_+ \to \mathbb{R}$ $f(x) = \lambda(A \cap (-x,x))$, gdzie dla x = 0 przypisujemy 0. Oczywiście taka funkcja jest zawsze nieujemna. Łatwo zobaczyć, że jest to funkcja ciągła oraz, że jej wartość nie może przekraczać 1, bo $A \cap (-x,x) \subseteq A \implies \lambda(A \cap (-x,x)) \le \lambda(A) = 1$. Dodatkowo, funkcja ta jest niemalejąca, bo dla x < y mamy $A \cap (-x,x) \subseteq A \cap (-y,y)$. Czyli w pewnym miejscu musi przyjąć wartość $\frac{3}{4}$.

ZAD. 2.

Niech $f_n, f: (0,1) \to \mathbb{R}$ będą funkcjami mierzalnymi, takimi, że $|f_(x)| \le \frac{1}{\sqrt(x)}$ dla $x \in (0,1)$. Udowodnić, że jeżeli $f_n \xrightarrow{\lambda} f$, to $\lim_n \in_{[0,1]} |f_n - f| d\lambda$.