Introduction to Communications and IOT

Praanesh Balakrishnan Nair

February 4, 2025

Contents

1	Intr	Introduction			
	1.1	What a Signal is	2		
	1.2	Types of Communication	2		
		1.2.1 Wired / Wireless	2		
		1.2.2 Unidirectional / Bidirectional	2		
		1.2.3 Analogue / Digital	2		
			3		
2	Cha	aracteristics of a Signal	3		
_	2.1	0	3		
	$\frac{2.1}{2.2}$	9	3		
	$\frac{2.2}{2.3}$		3		
	$\frac{2.3}{2.4}$	1 0	4		
	2.4	r nase	4		
3	Tin	Time Domain vs Frequency Domain 4			
4	Odo	l Signals vs Even Signals	4		
5	Ene	Energy and Power of a Signal 5			
	5.1	9	5		
	5.2	•	5		
	5.3	30	6		
6	Cor	mplex Sinusoids	6		
7	Son	anling	6		
1	7.1	r o			
	•		6		
	7.2	Sampling Theorem or Nyquist Theorem	7		
8	\mathbf{Filt}		7		
	8.1	Analog Filters	7		
	8.2	Digital Filters	7		
		8.2.1 Finite Impulse Response (FIR)	7		
			8		

9.1 9.2 9.3 9.4 9.5	Amplitude Modulation (AM) 8 Modulation Index (m) 9 Side Band 9 Power of AM 9 AM Demodulation 9 9.5.1 Synchronous/ Coherent demodulation 9 9.5.2 Asynchronous/ Non-Coherent demodulation 9 Frequency Modulation (FM) 9
1 Int	troduction
1.1 W	hat a Signal is
• It's	s a Quantitative Representation of Information
• The	e most basic representation of a signal is in the form of a graph (t on X-axis and $f(t)$ on Y-axis)
1.2 Ty	ypes of Communication
1.2.1 V	Wired / Wireless
1. W i	ired:
•	• Via Coaxial cables or Fibre-Optic Cables
2. W i	ireless:
•	• Via Electromagnetic waves or rays
1.2.2 U	Unidirectional / Bidirectional
1. Si r	mplex:
•	• One-way
•	• Eg. Broadcast, FM
2. Ha	alf-Duplex:
	 Two-way, but only one direction at a time Eg. walkie-talkie
3. D u	ıplex:
•	• Two-way, and both directions are simultaneously possible
1.2.3 A	Analogue / Digital

1. Analog:

• Both t and f(t) are continuous

2. **Digital**:

• Both t and f(t) are discrete

3. Continuous-Time:

• t is continuous, but f(t) is discrete

4. Discrete-Time:

• t is discrete and f(t) is continuous

1.2.4 Transmission Technique

Before knowing this, you must know what bandwidth is:

Bandwidth:

- Range of frequencies a signal operates.
- In other words:

Bandwidth = (Highest Frequency of the Wave/Signal) - (Lowest Frequency of the Wave/Signal)

 \bullet Fast, irregular variations in frequency \propto Bandwidth

1. Baseband:

- Digital Signals which are sent via TDM (Time Division Multiplexing)
- One signal uses the entire bandwidth

2. Broadband:

• (I'll add this later)

2 Characteristics of a Signal

2.1 Standard Notation of a Standard Sinusoidal Signal

- For a graph where X-axis = θ and Y-axis = $sin(\theta)$, the measure of input is θ .
- To actually measure a signal against time, X-axis = t (time) and Y-axis = $sin(\theta)$
- Here's what we do for that: $sin(\theta + \phi) = sin(\omega t + \phi)$

2.2 Angular Frequency

- $\omega = \text{Angular Frequency/Velocity}$
- ullet = $\frac{Angle}{Time}$
- $\bullet = \frac{2\pi}{T}$

2.3 Frequency

- $f = \frac{1}{T}$
- So, $\omega = \frac{2\pi}{T}$ can also be written as $\omega = 2\pi f$

2.4 Phase

- θ or ωt is the X-coordinate.
- Phase ϕ is added to the X-coordinate, so the wave shifts to the left by ϕ
- In a way, it's an offset to a wave. (Check https://www.geogebra.org/m/rzzqtx6q for some Visualization)
- For example, if a sine wave is offset by $\frac{1}{6}th$ of a cycle, then the phase would be $\frac{1}{6}*360^0 \Rightarrow \text{Phase} = 60^0$

3 Time Domain vs Frequency Domain

In both cases, Y-Axis = Amplitude. Only X-Axis changes

Figure 1: Time Domain

Figure 2: Frequency Domain

4 Odd Signals vs Even Signals

- Odd Signals/Functions: y(-x) = y(x)
- Even Signals/Functions: y(-x) = -y(x)

5 Energy and Power of a Signal

5.1 Prerequisite knowledge

- Let's assume we have a sinusoidal voltage and current
- $P = \frac{V^2}{R} = I^2 R$
- This means that the power of a signal is some **constant** times **voltage squared** or **current squared**
- Let us have a general signal x(t) which can either be sinusoidal voltage or sinusoidal current

$$x(t) = V$$
 or $x(t) = I$

• So Instantaneous Power = $P = (x(t))^2$

Figure 3: Green Curve showing V or I and the Red Curve showing P

5.2 Energy

- Energy = Power * time
- But the above formula is only applicable for discrete values.
- So the energy of a signal would be the area of the Power-Time Graph

Figure 4: Area under the Red Curve

Energy =
$$\int Pdt = \int_{-\frac{T}{2}}^{\frac{T}{2}} (x(t))^2 dt$$

• The limits are actually from 0 to T, but having them from $\frac{-T}{2}$ to $\frac{T}{2}$ simplifies calculations.

5.3 Power

- Power is just $\frac{\text{Energy}}{\text{Time}}$.
- Power = $\frac{\int_{-T}^{\frac{T}{2}} (x(t))^2 dt}{T}$

6 Complex Sinusoids

- In phase: Two signals are said to be in phase if they have phase difference 0
- Quadrature: Two signals are said to be in quadrature if they have a phase difference 0
- A complex sinusoid is given as $cos(\theta) + jsin(\theta)$
- $cos(\theta)$ is the real component plotted on
- Now $cos(\theta)$ is taken to be on the Inphase-Time plane, and $sin(\theta)$ is taken to be on the Quadrature-Time plane
- This results in a helical structure.
- Number of rotations about the time axis, per unit time, is the frequency of the complex sinusoid.
- Anti-Clockwise rotation means Positive frequency, so clockwise rotation means negative frequency

7 Sampling

7.1 What it is

- Converting a continuous time signal into a discrete time signal by taking samples of the signals at discrete time intervals
- Say we have a continuous sinusoidal signal:

$$s(t) = A\cos(2\pi Ft + \phi)$$

• In its discrete form, instead of a parameter t, you'd have parameters n and T_s :

$$s[n] = A\cos(2\pi F n T_s + \phi)$$

or

$$s[n] = Acos(2\pi F \frac{n}{F_s} + \phi)$$

Here, $T_s = \text{Sampling Time Period and } F_s = \text{Sampling Frequency}$

7.2 Sampling Theorem or Nyquist Theorem

- F_s is the number of samples taken per second i.e. the **sampling rate**. Likewise, T_s is the time taken to record one sample
- If F_s is too less, you won't be able to capture the wave correctly. You'll end up over-simplifying the wave.
- This is called **aliasing**, and it's where high-frequency components appear as low-frequency components because of insufficient sampling rate.
- Nyquist Theorem states that:

$$F_s > 2B$$

where B is the highest bandwidth present in the signal

Another way of saying this would be:

$$B \le \frac{F_s}{2}$$

8 Filters

8.1 Analog Filters

- 1. Low Pass Filters: Keeps frequencies below a cutoff, and cuts off everything after it
- 2. **High Pass Filters**: Keeps frequencies after a cutoff, and cuts off everything below it
- 3. **Band Pass Filters**: Keeps frequencies inside a range (above a lower cutoff, and below a higher cutoff), and cuts off everything outside
- 4. Band Reject/Stop Fitlers: Keeps frequencies outside a range, and cuts off everything inside

8.2 Digital Filters

- They're mathematical algorithms used on discrete time signals
- Before knowing this, you must know about impulse signals:
 - Impulse Signal $\partial[n]$:
 - $-\partial[n]=1$ if n=0, and $\partial[n]=0$ for any other value of n
 - This function is used for representing frequencies in digital signals
 - Impulse Response h[n]: Output of a system, if the input is an impulse signal.

8.2.1 Finite Impulse Response (FIR)

- 1. What it is
 - Output depends only on current and past input
 - Output does NOT depend on past output

$$y[n] = \sum_{i=0}^{M} b_i x[n-i]$$

where y[n] = output of filter, x[n] = input signal, $b_i = \text{filter coefficients}$, M = filter order = numberof taps

- Eg. y[n] = 0.25x[n] + 0.5x[n-1] + 0.25x[n-2]
 - This is called a 3-tap FIR Filter
 - The impulse response for this filter would be
 - * h[n] = [y[0], y[1], y[2], y[3], ..., y[n]]
 - * h[n] = [0.25, 0.5, 0.25, 0, 0, 0, ...]

2. Characteristics

- Stable (Phase response is linear, and can be good for image/audio processing)
- Phase Accurate
- Computationally expensive
- Impulse response decays to 0

8.2.2 Infinite Impulse Response (IIR)

- 1. What is is
 - Output depends on past input AND past output i.e. it uses feedback.

$$y[n] = \sum_{i=0}^{N} a_i y[n-i] + \sum_{i=0}^{M} b_i x[n-i]$$

Here, it's just whatever FIR was, but you're also doing the same thing for the previous outputs too.

2. Characteristics

- If order is low, frequency cutoffs will be sharp (Phase response is non-linear) (Can be good for real-time communication)
- Computationally efficient (you'll need less parameters)
- Can cause phase distortion
- Impulse response never decays to 0 (hence, it's infinite)

9 Modulation

Base Signal / Message + Carrier Signal = Modulated Signal

9.1 Amplitude Modulation (AM)

- Amplitude of carrier signal is changed
- Say the message signal is:

$$m(t) = A_m sin(2\pi f_m t)$$

And the original carrier signal is:

$$c(t) = A_c sin(2\pi f_c t)$$
8

• The modulated signal i.e. the new carrier signal is

$$s(t) = (A_c + A_m sin(2\pi f_m t)) sin(2\pi f_c t)$$

9.2 Modulation Index (m)

$$m = \frac{\text{Amplitude of Message Signal}}{\text{Amplitude of Carrier Signal}} = \frac{A_m}{A_c}$$

- If $m < 1 \Rightarrow$ Under Modulated (Not Using full bandwidth)
- If $m = 1 \Rightarrow$ Uses full bandwidth and is 100% Modulated
- If $m > 1 \Rightarrow$ OverModulated, causes distortion

9.3 Side Band

- We already know that $s(t) = (A_c + A_m sin(2\pi f_m t)) sin(2\pi f_c t)$
- $s(t) = A_c sin(2\pi f_c t) + A_m sin(2\pi f_m t) sin(2\pi f_c t)$ (:: Multiply the $sin(2\pi f_c t)$ term inside)
- $s(t) = A_c \sin 2\pi f_c t + \frac{A_m}{2} \cos 2\pi t (f_c f_m) \frac{A_m}{2} \cos 2\pi t (f_c + f_m)$ (:: $\sin A \sin B = \frac{\cos(A B)}{2} \frac{\cos(A + B)}{2}$)
- $f_c + f_m = \text{upper band}$
- $f_c f_m = \text{lower band}$
- Band width = (upper band) (lower band) = $2f_m$

9.4 Power of AM

$$Power_{AM} = Power_{Carrier}(1 + \frac{m^2}{2}) = Power_{Carrier} + 2 * Power_{1Sideband}$$

9.5 AM Demodulation

9.5.1 Synchronous/ Coherent demodulation

• Multiply recieved signal with a sine wave of same frequency and phase

9.5.2 Asynchronous/ Non-Coherent demodulation

- Doesn't need frequency or phase matching
- Uses diode, resistor, capacitor

9.6 Frequency Modulation (FM)

• We change frequency of carrier signal

$$s(t) = A_c cos(2\pi f_c t + \beta sin(2\pi f_m t))$$

where $\beta = \frac{\Delta f}{f_m}$, $\Delta f = \text{Frequency Deviation}$

• Bandwidth of FM is given by:

Bandwidth =
$$2(\Delta f + f_m)$$