Домашнее задание №3

Дедлайн: 3 марта 2019 г., 23:00

Основные задачи

- 1. (1 балл) Докажите, что следующие язык двудольных графов, содержащих не менее 2019 треугольников (трех попарно смежных вершин) принадлежит классу \mathcal{P} . Можно считать, что графы кодируются соответствующими матрицами смежности.
- 2. (1+2 балла) **Полиномиальность метода Гаусса.** Рассмотрим систему линейных уравнений Ax=b с целыми коэффициентами, имеющую m уравнений и n неизвестных, причем максимальный модуль целых коэффициентов A,b равен h.
 - (i) Оцените сверху числители и знаменатели чисел, которые могут возникнуть при непосредственном применении алгоритма Гаусса

Из решения этой задачи следует, что при прямом использовании алгоритма исключения Гаусса промежуточные результаты могут в принципе расти дважды экспоненциально, и потому, в частности, метод исключений не является полиномиальным по входу в битовой арифметике. Но оказывается, что метод Гаусса можно модифицировать так, что получится полиномиальный алгоритм. Модификация заключается в эмуляции рациональной арифметики. Для этого каждый (рациональный) коэффициент $\frac{p}{q}$ представляется парой (p',q') взаимно простых чисел $\frac{p}{q}=\frac{p'}{q'}$. Все арифметические действия над коэффициентами моделируются действиями над соответствующими парами, а в конце каждой операции, используя алгоритм Евклида, мы принудительно добиваемся взаимной простоты числителя и знаменателя. Скажем, эмуляция сложения коэффициентов, заданных парами (7,10) и (5,6), состоит в вычислении пары $(7\cdot6+5\cdot10=92,\ 6\cdot10=50)$, определении HOD(92,60)=2 и записи ответа (23,15).

Полиномиальность указанной модификации вытекает из следующего утверждения: все элементы матриц, возникающих в методе Гаусса, являются отношением каких-то миноров исходной расширенной матрицы системы.

Докажем это. Без ограничения общности будем считать, что ведущие элементы расположены на главной диагонали, и обозначим $(a_{ij}^{(k)})$ матрицу, полученную после k-го исключения. Также обозначим d_1,\ldots,d_n элементы главной диагонали результирующей верхнетреугольной матрицы, так что $d_i=a_{ii}^{(n)}$. Пусть $D^{(k)}$ — подматрица, образованная первыми k столбцами и сто

Ключом является следующая формула: $a_{ij}^{(k)} = \frac{d_{ij}^{(k)}}{\det(D^{(k)})}$, поскольку, в соответствии с процедурой исключений $d_{ij}^{(k)} = d_1 \dots d_k a_{ij}^{(k)}$ и $\det(D^{(k)}) = d_1 \dots d_k$. Таким образом, можно все время работать с дробями, числители и знаменатели которых *являются мипорами* исходной матрици, так что длина записи остается полиномиальной 1 , а все вычисления по методу Гаусса (включая, конечно, вычисления НОД получаемых дробей) будут также полиномиальными.

- (ii) Оцените трудоемкость модифицированного метода Гаусса в виде формулы от $m, n \log h$. Трудоемкость алгоритма Евклида считайте линейной по длине входа. Покажите, что модифицированный алгоритм будет полиномиальным по входу.
- 3. (2 балла) Покажите, что класс $\mathcal P$ замкнут относительно *-операции Клини $(L^* = \varepsilon \cup L \cup L^2 \cup \ldots)$.
- 4. (1+1 балл) Докажите, что следующие задачи лежат в \mathcal{NP} :
 - (i) язык описаний графов, у которых максимальная клика 2 имеет размер не меньше k;
 - (ii) задача проверки того, что два графа являются изоморфными.

Замечание. По задаче нужно сформулировать определение языка, а затем показать, что этот язык лежит в \mathcal{NP} .

5. (1 балл) Покажите, что два определения класса \mathcal{NP} , которые были даны на семинаре, эквивалентны.

¹ Контрольные вопросы: почему? Можете ли вы привести оценки?

²Клика — полный подграф.

- 6. (1 балл) Покажите, что класс \mathcal{NP} замкнут относительно *-операции Клини. Укажите, как построить для результирующего языка L^* , $L \in \mathcal{NP}$ соответствующий сертификат y и проверяющий алгоритм R(x,y). Приведем теперь пример языка, принадлежность которого классу \mathcal{NP} совершенно не очевидна.
 - Сначала вспомним кое-какие элементарные сведения о поле вычетов (mod p) Просто понять, что в \mathcal{NP} лежит язык составных чисел $A=\{1,4,6,8,9,10,\ldots\}$ (сертификатом служат предъявляемые сомножители). Но оказывается, что в \mathcal{NP} лежит и язык $B=\mathbb{N}\setminus A=\{2,3,5,7,11,\ldots\}$ простых чисел 3 . Полиномиальный сертификат устроен хитро. Как мы знаем, $p\in B\Leftrightarrow\exists g:\{g^i\pmod p,\ i=1,2,\ldots,p-1\}=\{1,2,\ldots,p-1\}$ (написано равенство множеств). Поскольку длина записи числа p составляет $\log p$, то длина сертификата должна быть $poly(\log p)$. И если быстро возводить числа (mod p) в степень мы еще умеем 4 , то все равно массив $\{g^i\pmod p\}$ слишком длинный. Но, как мы помним, вычет g с нужными свойствами существует тогда и только тогда, когда выполнено $p^{p-1}=1\pmod p,\ p^{\frac{p-1}{p_1}}\neq 1\pmod p,\ p^{\frac{p-1}{p_1}}\neq 1\pmod p,$ где p_1,\ldots,p_k это все простые делители числа $p-1=p_1^{l_1}\ldots p_k^{l_k}$. Число проверок действительно уменьшилось и стало полиномиальным (их заведомо не больше $\log p$), но, кажется, что мы ничего не выиграли: нам ведь нужно решить **ту же задачу построения сертификата простоты** для всех $p_j,\ j=1,2,\ldots,k$. Хитрость заключается в том, что нужно применить ту же идею рекурсивно, поскольку длина сертификатов для всех p_i сильно уменьшилась! Фактически сертификатом будет дерево с нужными пометками в вершинах, и нам нужно показать, что суммарная длина всех участвующих в описании дерева компонентов останется полиномиальной по $\log p$.
- 7. (2 балла) Постройте \mathcal{NP} -сертификат простоты для числа p=3911, g=13. Простыми в рекурсивном построении считаются только числа 2,3,5 (они сами являются своими сертификатами).
- 8. (1 балл) Покажите, что язык разложения на множители (факторизации) $L_{factor} = \{(N, M) \in \mathbb{Z}^2 \mid 1 < M < N \text{ и } N \text{ имеет делитель } d, 1 < d \leq M \}$ принадлежит $\mathcal{NP} \cap \text{co-}\mathcal{NP}$.

 $^{^3}$ В 2002 году появилась сенсационная работа, показывающая, что $B \in \mathcal{P}$. Если вы будете ссылаться на ее результаты, то обязаны привести доказательство.

⁴Вспомните индийский алгоритм возведения в степень