Europäisches Patentamt **European Patent Office**

Office européen des brevets

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein. The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr.

Patent application No. Demande de brevet nº

04024691.0

Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets p.o.

R C van Dijk

Europäisches Patentamt European Patent Office Office européen des brevets

PCT/EP2004/011867

01.02.05

Anmeldung Nr:

Application no.:

04024691.0

Demande no:

Anmeldetag:

Date of filing:

15.10.04

Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

Behr GmbH & Co. KG Mauserstrasse 3 70469 Stuttgart ALLEMAGNE

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention: (Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung. If no title is shown please refer to the description. Si aucun titre n'est indiqué se referer à la description.)

Wärmetauscher

In Anspruch genommene Prioriät(en) / Priority(ies) claimed /Priorité(s) revendiquée(s) Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

DE/20.10.03/DE 10349259

Internationale Patentklassifikation/International Patent Classification/Classification internationale des brevets:

B60H/

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR LI

03-B-186-A 14.10.2004

→ EPA

BEHR GmbH & Co. KG Mauserstraße 3, 70469 Stuttgart

10

5

i/10 2004 08:34 FAX +49 711 8963549

Wärmetauscher

Die Erfindung betrifft einen Wärmetauscher, insbesondere für ein Kraftfahrzeug, gemäß dem Oberbegriff des Anspruchs 1.

15

20

25

30

35

Um die zunehmenden Anforderungen an moderne Motoren bezüglich Emissionsreduzierung und Kraftstoffverbrauch erfüllen zu können, sind umfangreiche Maßnahmen, wie zum Beispiel erhöhte Aufladung, genauere Beeinflussung der Verbrennungsbedingungen, erforderlich. Dies führt auch bei Kraftfahrzeug-Wärmetauschem zu härteren Einsatzbedingungen, nämlich höheren Gas- und Kühlmitteldrücken, erhöhten Temperaturen und größeren Volumendurchsätzen. Gleichzeitig wachsen die Anforderungen an die Leistungsdichte und Lebensdauer. Teilweise sind daher neue Kühlkonzepte erforderlich. So werden bei Ladeluft-Kühlern die herkömmlicher Weise verwendeten Luft/Luft-Kühler zumindest teilweise durch Luft/Flüssigkeits-Kühler ersetzt, um die geforderten Leistungen und Leistungsdichten zu erzielen, die auf Grund der hohen Motoraufladung erforderlich sind. Bei Abgas-Wärmetauschern sind immer höhere Abgasrückführraten erforderlich bei ebenfalls immer härteren Betriebsbedingungen bezüglich Drücken, Temperaturen und Leistungsdichten. Somit treten bei modernen Wärmetauschem immer höhere mechanische Belastungen auf, insbesondere in Hinblick auf Druck und Schwingungen.

Hohe Temperaturunterschiede des zu kühlenden Primärmediums (in der Regel gasförmig) und des kühlenden Sekundärmediums (hier in der Regel

15

25

03-B-186-A 14.10.2004

-2-

flüssig) führen zu unterschiedlichen Bauteilerhitzungen auf der Primär- und Sektundärseite. Bei Abgas-Wärmetauschern kann die Temperaturdifferenz bis zu über 700K, bei Ladeluft-Kühlern bis zu 300K betragen. Dabei kommt es zu in Folge unterschiedlicher thermischer Längenausdehnungen zwischen Primär- und Sekundärseite zu starken Thermospannungen. Bei schnellen Wechseln des Betriebszustands können diese Thermospannungen durch ungleichmäßige Temperaturverteilungen noch verstärkt werden (Thermoschock).

Auf Grund höherer Leistungsdichten der Wärmetauscher erhöht sich zudem 10 die Gefahr des Siedens des Kühlmittels, was zu starken Leistungs- und Lebensdauereinbußen führen kann.

Schließlich sind die verwendeten Prozesse und Materialien wegen des Auftretens stark korrosiver Medium, z.B. Kondensat aus dem Abgas beim Abgas-Wärmetauscher, stark eingeschränkt, was bei weiter zunehmenden Anforderungen an die Leistungsdichte zu immer größeren Problemen führt, eine dauerfeste technische Lösung zur Verfügung zu stellen, eine ausreichende Innen- und Außendruckfestigkeit der Strömungskanäle, ein Vermeiden des Siedens und ausreichende Festigkeit gegen Schwingungsanregungen 20 und Thermospannungen miteinander zu vereinen.

Es ist Aufgabe der Erfindung, einen verbesserten Wärmetauscher zur Verfügung zu stellen.

Diese Aufgabe wird gelöst durch einen Wärmetauscher mit den Merkmalen des Anspruchs 1. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche.

Erfindungsgemäß ist ein Wärmetauscher vorgesehen, mit einem Gehäuse 30 und mindestens einem in dem Gehäuse angeordneten Rohr, wobei Strukturen zwischen den Rohren und dem Gehäuse und/oder den Rohren vorgesehen sind: Das Primärmedium durchströmt die Rohre. Das Sekundärmedium wird in den Zwischenräumen zwischen den Rohren und/oder zwischen den Rohren und dem Gehäuse geführt, in denen auch die Strukturen angeordnet 35

10

15

20

25

30

03-B-186-A 14.10.2004 G-IP/

-3-

sind. Die Strukturen erhöhen die Festigkeit durch eine Versteifung bezüglich Innen- und Außendruckbeanspruchungen der Rohre. Durch die Koppelung zwischen Rohren und Gehäuse erfolgt zudem ein kontinuierlicher Ausgleich der Thermospannungen zwischen Primär- und Sekundärseite über die gesamte Kühlerlänge, so dass die Spannungen an den Enden der Rohre deutlich reduziert werden. Die Strukturen dienen zudem der Fluidleitung und verteilung im Wärmetauscher. Dabei ermöglichen die Rippenbleche ferner einen besseren Wärmeübergang, so dass durch die verbesserte Wärmeübertragung Thermospannungen reduziert werden können. Durch die erhöhte Übertragungsfläche werden die Rohre besser gekühlt und ein Sleden kann vermieden werden. Insgesamt ergibt sich somit eine erhebliche Steigerung der Leistungsdichte des Wärmetauschers gegenüber herkömmlichen Wärmetauschem ohne Strukturen. Bevorzugt werden als Strukturen Blechstrukturen in Form von separaten Rohren, Rippenblechen, Noppenblechen, o.ä. eingeschoben. Der Wärmetauscher kann insbesondere ein Abgas-Wärmetauscher oder Ladeluft-Kühler, jedoch auch ein anderer Wärmetauscher, beispielsweise ein anderer Gas-Flüssigkeits-Wärmetauscher, bei dem heißes Gas in Rohren den Wärmetauscher (Kühler) zur Kühlung durchströmt, ein Flüssigkeits-Gas-Wärmetauscher, bei dem kaltes Gas in Rohren den Wärmetauscher (Heizer) zum Erwärmen durchströmt, oder ein Flüssigkeits-Flüssigkeits-Wärmetauscher sein. Anstelle der Verwendung von Blechstrukuren können auch die Rohre und/oder das Gehäuse entsprechend mit Strukturen ausgebildet sein, d.h. insbesondere kann die Rohroberfläche rippenartig und/oder noppenartige ausgebildet sein. Die Strukturen weisen bevorzugt eine Höhe von 1 mm bis 5 mm, vorzugsweise 1 mm bis 3 mm, insbesondere bevorzugt 1,5 mm auf. Die Teilung L der Strukturen beträgt bevorzugt das 0,1- bis 6fache, besonders bevorzugt das 0,5- bis 4fache der Strukturhöhe h. Die Querteilung Q beträgt bevorzugt das 0,15- bis 8fache, besonders bevorzugt das 0,5- bis 5fache der Strukturhöhe h. Das Verhältnis von Kanalhöhe zwischen den Rohren und Kanalhöhe im Rohr beträgt im Bereich von Strukturen bevorzugt 0,1 bis 1, vorzugsweise 0,2 bis 0,7. Der hydraulische Durchmesser zwischen den Rohren beträgt im Bereich mit Strukturen bevorzugt 0,5 mm bis 10 mm, vorzugsweise 1 mm bis 5 mm.

_ - ----- 0.10

-4-

Bevorzugt sind die Strukturen mit dem Gehäuse und/oder den Rohren fest verbunden, insbesondere verlötet. Dabei ist insbesondere eine feste Verbindung über einen Großteil Länge des Wärmetauschers ohne oder mit Unterbrechungen, beispielsweise zur besseren Kühlmittelverteilung, vorgesehen. Durch die feste Verbindung wird sehr effizient die Außendruckfestigkeit (Überdruck auf der Sekundärseite) erhöht, da die Strukturen Zuganker bereitstellen, die das Einfallen des Rohres verhindem. Weiterhin werden Schwingungen der bei herkömmlichen Wärmetauschem relativ labilen Rohre durch die Strukturen gedämpft, sowie ein sehr effizienter Ausgleich der Thermospannungen herbeigeführt. Ferner unterstützt die feste Verbindung den Wärmeübergang von den Rohren zu den Strukturen, so dass eine bessere Kühlung der Rohre erfolgt. Durch einen verbesserten Wärmeübergang lässt sich außerdem die Zahl der Rohre reduzieren, so dass die Herstellungskosten gesenkt werden können.

15

20

25

30

5

10

Die Rohre werden vorzugsweise zumindest teilweise durch Flachrohre gebildet. Dabei sind Flachrohre thermodynamisch wesentlich leistungsfähiger als Rundrohre, haben jedoch eine geringere Druckfestigkeit, weshalb bei Flachrohren druckfestigkeitssteigemde Maßnahmen erforderlich sind, wie erfindungsgemäß eine Stützstruktur auf der Rohraußenseite. Dabei haben die Flachrohre insbesondere einen etwa rechteckförmigen Querschnitt mit gerundeten Ecken. Ferner können einteilige Rechteckrohre vorgesehen sein. Diese können eine Längsnaht aufweisen, die geschweißt, bspw. lasergeschweißt, reibgeschweißt, induktionsgeschweißt, oder verlötet sein kann. Die Rechteckrohre können auch aus Schalen aufgebaut sein, die verschweißt oder verlötet sind. Die Rohre können auch eine beliebige andere Form, bspw. oval, aufweisen und/oder seitliche Laschen aufweisen, die verlötet oder verschweißt werden. Femer können die Rohre zum Toleranzausgleich zwischen Gehäuse und Rohren sowle den dazwischen angeordneten Strukturen leicht ballig ausgebildet sein. In und/oder an den Rohren können auch Turbulatoren (Winglets) vorgesehen sein. Die Rohroberfläche (innen und/oder außen) kann zur Turbulenzerzeugung auch strukturiert ausgebildet sein.

-5-

Bevorzugt weisen die Strukturen zumindest teilweise einen inhomogenen Aufbau auf, wodurch gezielt Kühlmittel kritischen Bereichen zugeleitet werden kann, so dass ein Überhitzen oder Sieden vermieden werden kann. Eine entsprechende erhöhte Zuleitung von Kühlmittel kann auch durch das teilwelse Weglassen von Strukturen erreicht werden. Durch diese Maßnahmen lässt sich der Druckverlust des Wärmetauschers und die Querverteilung des Kühlmittel im Wärmetauscher optimieren. Die Bereiche mit inhomogenen Strukturen liegen vorzugsweise im Bereich des Ein- und/oder Auslaufs des Fluids. Sie dienen insbesondere der Strömungslenkung und um den Druckverlust möglichst gering zu halten.

Durch eine zumindest teilweise Verzahnung lässt sich die Stabilität der Strukturen erhöhen und ferner die Strömungswege des Kühlmittels optimieren.

15

5

10

Zum vereinfachten Bau des Wärmetauschers ist das Gehäuse bevorzugt zwei- oder mehrteilig ausgebildet, insbesondere als U-förmige Schale mit einem Deckel, wobei ein Wasserkasten im Deckel integriert ausgebildet sein kann. Prinzipiell ist jedoch auch ein einteiliger Aufbau, beispielsweise mit einem angeformten Wasserkasten, möglich.

25

30

20

Strukturen können auch in den Rohren selbst vorgesehen sein, wobei alle o.g. Strukturen, die zwischen den Rohren vorgesehen sein können, auch in die Rohre integriert werden können. Die Strukturen werden bevorzugt durch Rippenbleche oder Noppenbleche gebildet, die beispielsweise durch Verschweißen, Verlöten oder Verklemmen mit dem Rohr verbunden sind. Die Strukturen weisen bevorzugt eine Höhe von 1 mm bis 5 mm, vorzugsweise 1 mm bis 3 mm, insbesondere bevorzugt 1,5 mm auf. Die Teilung L der Strukturen beträgt bevorzugt das 0,5- bis 6fache der Strukturhöhe h. Die Querteilung Q beträgt bevorzugt das 0,5- bis 8fache der Strukturhöhe h. Der hydraulische Durchmesser im Rohr beträgt im Bereich mit Strukturen bevorzugt 0,5 mm bis 10 mm, vorzugsweise 1 mm bis 5 mm.

--- - ---

- 6 -

Im Folgenden wird die Erfindung anhand eines Ausführungsbeispiels unter Bezugnahme auf die Zeichnung im Einzelnen erläutert. In der Zeichnung zeigen:

- 5 Fig. 1 einen Schnitt durch einen Abgas-Wärmetauscher,
 - Fig. 2 eine perspektivische Ansicht des Wärmetauschers von Fig. 1,
- 10 Fig. 3 eine schematische perspektivische Ansicht eines Rippenblechs,
 - Fig. 4 eine schematische perspektivische Ansicht eines Rippenblechs gemäß einer Variante, und

Fig. 5a-d verschiedene Varianten von Einlaufbereichen.

Ein Abgas-Wärmetauscher 1 weist ein zweiteiliges Gehäuse 2 und eine Mehrzahl in diesem Gehäuse 2 angeordnete Rohre 3 auf. Zwischen den einzelnen Rohren 3 sowie zwischen dem Gehäuse 2 und den Rohren 3 sind als Strukturen Rippenbleche 4 vorgesehen, wobei diese Rippenbleche 4 gemäß dem vorliegenden Ausführungsbeispiel verzahnt ausgebildet sind, wie in Fig. 3 dargestellt und an späterer Stelle näher beschrieben. Bei den Rohren 3 handelt es sich vorliegend um Flachrohre.

25

30

35

15

20

Durch die einzelnen Rohre 3 wird das vom Motor kommende, zu kühlende Abgas (gasförmiges Primärmedium) geleitet, wobei in Fig. 2 die Strömungsrichtung durch zwei durchgehende Pfeile angedeutet ist. Das Gehäuse 2, in dem die Rohre 3 angeordnet sind, besteht aus einem U-förmigen ersten Gehäuseteil 2' und einem Gehäusedeckei 2", welcher von oben auf das erste Gehäuseteil 2' gesetzt ist. Zum Ein- und Auslass des Kühlmittels (flüssiges Sekundärmedium) sind zwei Kühlmittelstutzen 5 im Gehäusedeckei 2" vorgesehen, wobei die Strömungsrichtung des Kühlmittels im Gleichstrombetrieb in Fig. 2 durch gestrichelte Pfeile dargestellt ist. Es ist ebenfalls ein Durchströmen im Gegenstrombetrieb möglich, wozu die Strömungsrichtung

10

20

25

03-B-186-A 14.10.2004 G-IP/

-7-

umgekehrt ist. Da das Kühlmittel durch das Gehäuse 2 und um die Rohre 3 geleitet wird, sind die Rippenbleche 4 kühlmittelseitig angeordnet.

Die gerade verzahnt ausgebildeten Rippenbleche 4 weisen in Richtung des in Fig. 3 mit einer durchgehenden Linie dargestellten Pfeils einen leichten Durchgang und in der mit einer gestrichelten Linie dargestellten Pfeil einen schwereren Durchgang für das Kühlmittel auf. Durch Veränderungen der Längsteilung L und der Querteilung Q sowie der Rippenhöhe h kann die Strömung beeinflusst werden. Neben einer geraden Verzahnung ist auch eine Schrägverzahnung möglich. Bei entsprechender Ausgestaltung der einzelnen Rippenbleche 4 können diese auch gezielt die Kühlmittelförderung zu besonders kritischen Stellen unterstützen, wozu die Rippenbleche 4 zumindest bereichsweise inhomogen ausgebildet sind.

In Fig. 4 ist eine einfache Variante eines Rippenblechs mit einer in gerader Richtung verlaufenden Rippe dargestellt, das eine Längstellung L von 2,4 mm und eine Rippen- oder Strukturhöhe h von 1,5 mm aufweist. Dabei kann das Rippenblech auch aus einem Lochblech gebogen sein, so dass die einzelnen Wellenflanken auf Grund der Lochung durchlässig sind.

Gemäß einer nicht in der Zeichnung dargestellten Variante ist ein entsprechender Aufbau für einen Ladeluft-Kühler verwendet.

Fig. 5a-d zeigen verschiedene inhomogene Bereiche der die Rippenbleche 4 bildenden Strukturen. Diese bewirken eine bessere Verteilung des Fluids bei der Zuströmung. Gemäß der ersten Variante, die in Fig. 5a dargestellt ist, sind Querverteilungskanäle durch Umformen oder Stanzen vorgesehen. Gemäß den Varianten von Fig. 5b und 5c wurden die Rippenbleiche 4 teilweise abgeschnitten. Fig. 5d zeigt eine Variante mit eine speziellen am Rippenblech 4 ausgebildeten Verteilerstruktur. Ein den Figuren 5a bis 5d entsprechender inhomogener Bereich kann auch auf der Ausströmselte vorgesehen seln.

. n n14

30

03-B-186-A 14.10.2004 G-IP/

-8-

Patentansprüche

- Wärmetauscher, insbesondere für Kraftfahrzeuge, mit einem Gehäuse
 (2) und mindestens einem in dem Gehäuse (2) angeordneten Rohr (3), dadurch gekennzeichnet, dass Strukturen in dem Bereich zwischen den Rohren (3) und dem Gehäuse (2) und/oder zwischen den Rohren (3) vorgesehen sind.
- Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, dass die Strukturen aus zwischen den Rohren (3) und dem Gehäuse (2) und/oder zwischen den Rohren (3) angeordneten Blechstrukturen gebildet sind.
- Wärmetauscher nach Anspruch 2, dadurch gekennzeichnet, dass die Blechstrukturen Rippenbleche (4), Noppenbleche oder separate Rohre sind.
- Wärmetauscher nach Anspruch 1, dadurch gekennzelchnet, dass die Strukturen direkt am Gehäuse (2) und/oder an den Rohren (3) ausgebildet sind.
- Wärmetauscher nach Anspruch 4, dadurch gekennzeichnet, dass die
 Strukturen mittels Prägen hergestellt sind.
 - 6. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Strukturen mit dem Gehäuse (2) und/oder den Rohren (3) fest verbunden, insbesondere verlötet, sind.

35

200 5 015

30

03-B-186-A 14.10.2004 G-IP/

-9-

- Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzelchnet, dass die Rohre (3) zumindest teilweise durch Flachrohre gebildet sind.
- Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Rohre (3) Stütznoppen auf der Rohraußenselte aufweisen.
- 9. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Rohre (3) eine Rohroberfläche innen und/oder außen aufweisen, die zur Turbulenzerzeugung strukturiert ausgebildet ist.
- 10. W\u00e4rmetauscher nach einem der vorhergehenden Anspr\u00fcche, dadurch gekennzeichnet, dass die Strukturen (4) zumindest teilweise eine inhomogene Struktur aufweisen.
 - Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Strukturen (4) zumindest teilweise verzahnt ausgebildet sind.
 - 12. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Gehäuse (2) zwei- oder mehrteilig ausgebildet ist.
- 25 13. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in den Rohren (3) ein zu kühlendes Medium und im Zwischenraum zwischen dem Gehäuse (2) und den Rohren (3) und Strukturen (4) ein Kühlmittel strömt.
 - 14. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Strukturen (4) im Gehäuse (2) des Wärmetauschers (1) kühlmittelseitig angeordnet sind.

- ----- n n10

03-B-186-A 14.10.04

- 10 -

- 15. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Strukturen im Inneren mindestens eines Rohres angeordnet sind.
- 16. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch 5 gekennzeichnet, dass die Strukturen als zumindest eine Rippe ausgebildet ist, die insbesondere gerade oder tiefengewellt ausgebildet ist und/oder insbesondere Kiemen aufweist.
- 17. Verwendung eines Wärmetauschers nach einem der Ansprüche 1 bis 10 16 als Abgas-Wärmetauscher oder Ladeluft-Kühler eines Kraftfahrzeugs.

-11-

Zusammenfassung

Die Erfindung betrifft einen Wärmetauscher (1), insbesondere für Kraftfahrzeuge, mit einem Gehäuse (2) und mindestens einem in dem Gehäuse (2) angeordneten Rohr (3), wobei Strukturen (4) in dem Bereich zwischen den Rohren (3) und dem Gehäuse (2) und/oder zwischen den Rohren (3) vorgesehen sind.

Fig. 1

15

5

10

20

. _ _ _ _

03-B-186

03-B-186

03-B-186

Document made available under the **Patent Cooperation Treaty (PCT)**

International application number: PCT/EP04/011867

International filing date:

20 October 2004 (20.10.2004)

Document type:

Certified copy of priority document

Document details:

Country/Office: EP

Number:

04024691.0

Filing date: 15 October 2004 (15.10.2004)

Date of receipt at the International Bureau: 17 February 2005 (17.02.2005)

Priority document submitted or transmitted to the International Bureau in Remark:

compliance with Rule 17.1(a) or (b)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
$ abla^{\prime} $ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.