Homework 4: Morley sequences and the order property

Advanced Model Theory

Due March 24, 2022

1. Find a set A and a relation $R \subseteq A \times A$ such that

$$\exists^{\infty} x \in A \ \exists^{\infty} y \in A : (x, y) \in R$$
$$\neg \exists^{\infty} y \in A \ \exists^{\infty} x \in A : (x, y) \in R.$$

- 2. Consider the structure $(\mathbb{R}, +, -, \cdot, 0, 1, \leq)$. Let $\varphi(x, y)$ be the formula $y 1 \leq x \land x \leq y + 1$. Show that $\varphi(x, y)$ has the order property (in a monster model $\mathbb{M} \succeq \mathbb{R}$). Hint: you don't really need to go to the elementary extension.
- 3. Let \mathbb{M} be a monster model of DLO. Let $\tau \in S_1(\mathbb{M})$ be the type at $+\infty$ as in last week's homework. Consider the Morley product $\tau \otimes \tau \in S_2(\mathbb{M})$. Show that $(\tau \otimes \tau)(x,y)$ is the unique completion of $\tau(x) \cup \tau(y) \cup \{x < y\}$. Hint: in one approach to this problem, you first show that $\tau(x) \cup \tau(y) \cup \{x < y\}$ has a unique completion, which is similar to the proof that τ is well-defined on last week's homework. Then you only need to show that $(\tau \otimes \tau)(x,y) \vdash \tau(x) \cup \tau(y) \cup \{x < y\}$, which isn't that hard.
- 4. Let \mathbb{M} be a monster model of a complete theory T. Suppose \mathbb{M} is an expansion of a linear order. (This means that there is a binary relation symbol \leq in the language, and (\mathbb{M}, \leq) is a linear order.) Let $p \in S_1(\mathbb{M})$ be a global A-invariant 1-type. Suppose that p commutes with itself. Show that p is a constant/realized type, meaning that $p = \operatorname{tp}(c/\mathbb{M})$ for some $c \in \mathbb{M}$. Hint: take (a, b) realizing p over a small set and compare a with b.