Study of Diode Rectifier Circuits EEE-2302

Mohammad Zakaria

February 11, 2021

Date Performed: January 31, 2021 Instructor: Lokman Hossain

1 Objective:

To understand principle of diode in converting ac into dc and to study different diode rectifier circuits.

2 Objective:

To understand principle of diode in converting ac into dc and to study different diode rectifier circuits.

3 Theory:

The diode rectifier converts the input sinusoidal voltage V_s to a uni-polar output V_o . There are two types of rectifier circuits: (i) Half-wave rectifier and (ii) Full-wave rectifier.

PIV is the peak inverse voltage that appears across the diode when it is reverse-biased. For half wave rectifier $PIV = V_m$

Ripple factor: A rectifier converts alternating currents into a unidirectional current, periodically fluctuating components still remaining in the output wave. A measure of the fluctuating component is given by the ripple factor r, which is defined as r = RMS value of alternating components of wave/Average value of wave For a half-wave rectifier, r = 1.21 and for a full wave rectifier r = 0.482

Filter: The rectifier with a filter is shown in Fig 1. When capacitor charges to Vp(12V p-p), input voltage decreases immediately but capacitor will not charge its voltage instantaneously. As a result diode will be reverse biased and stop conducting. The stored charges on the capacitor will be released through R.

4 Equipments:

Trainer board Multimeter Resistor Capacitor 1 μ F, 47 μ F, 220 μ F, 1000 μ F Diode 4 pieces

5 Circuit Diagram:

Figure 1: Circuit diagram for half-wave rectifier.

The input and output of the rectifier are drawn in fig. 1. Diode conducts only when it is forward biased. For $V_s = V_m sin\omega t$, DC voltage of a half wave rectifier is $V_{DC} = (V_m - V_T)/\pi$; where $V_T \approx 0.7$

 $\label{eq:Figure 2} Figure~2:$ Output voltage, when no capacitor is connected. Output is pulsating dc.

Figure 3: Output voltage when $1\mu F$ capacitor is connected in parallel with the load. Ripple is decreasing, still this is not pure dc.

 $\label{eq:Figure 4:} Figure \ 4:$ This is almost nearer to pure dc.

Figure~5: Input and output voltage curve for half-wave rectifier. Here we connected 220 μF capacitor. From the simulation graph the output seems to pure dc.

Figure 6: Circuit diagram for bridge rectifier.

Figure 7: Output voltage for full wave bridge rectifier when no capacitor is connected.

Figure 8: Output voltage curve, when 1 $\upmu{\rm F}$ capacitor is connected in parallel with the load.

Figure 9: Output voltage curve, when 47 $\upmu F$ capacitor is connected in parallel with the load.

Figure 10: Output voltage for full wave bridge rectifier when 220 $\upmu{\rm F}$ capacitor is connected.