Tlmené kmity

Elektromagnetické kmity

ANALOGICKÉ PERIODICKÉ FYZIKÁLNE PROCESY

Elektrický sytém

$$\frac{d^2I}{dt^2} + \frac{R}{L}\frac{dI}{dt} + \frac{1}{LC}I = 0$$

Mechanický systém

$$\ddot{x} + \frac{\gamma}{m}\dot{x} + \omega_0^2 x = 0$$

Energia elektrického poľa

Energia magnetického poľa poľa

Kmitavý pohyb postupne zaniká a jeho mechanická energia sa postupne celá premení na vnútornú energiu prostredia

Elektromagnetické kmity

ANALOGICKÉ PERIODICKÉ FYZIKÁLNE PROCESY

$$\frac{d^2I}{dt^2} + \frac{R}{L}\frac{dI}{dt} + \frac{1}{LC}I = 0$$

Mechanický systém

Vynútené kmity

Vynútené kmity

Pohybová rovnica:

$$\left[\omega_0^2 - \omega^2\right] A \sin(\omega t + \varphi) + \left[\frac{\omega}{m}\gamma\right] A \cos(\omega t + \varphi) = \frac{F_0}{m}\sin(\omega t)$$

$$\sin(\alpha + \beta) = \sin\alpha\cos\beta + \sin\beta\cos\alpha$$

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

$$\left[\omega_0^2 - \omega^2\right] A \sin\left(\omega t + \varphi\right) + \left[\frac{\omega}{m}\gamma\right] A \cos\left(\omega t + \varphi\right) = \frac{F_0}{m} \sin\left(\omega t\right)$$

$$\sin(\alpha + \beta) = \sin\alpha\cos\beta + \sin\beta\cos\alpha$$

$$\left[\omega_0^2 - \omega^2\right] A \sin\left(\omega t + \varphi\right) =$$

$$= \left[\omega_0^2 - \omega^2\right] A \left[\sin \omega t \cos \varphi + \sin \varphi \cos \omega t\right]$$

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

$$\left[\frac{\omega}{m}\gamma\right]A\cos(\omega t + \varphi)$$

$$= \left[\frac{\omega}{m}\gamma\right]A\left[\cos\omega t\cos\varphi - \sin\omega t\sin\varphi\right]$$

$$A = \frac{F_0}{m} \frac{1}{\sqrt{\left(\omega_0^2 - \omega^2\right)^2 + \left(\gamma \omega / m\right)^2}}$$

$$tg \varphi = \frac{-\omega \gamma / m}{\omega_0^2 - \omega^2}$$

$$tg\varphi = \frac{-\omega\gamma/m}{\omega_0^2 - \omega^2}$$

$$A = \frac{F_0}{m} \frac{1}{\sqrt{\left(\omega_0^2 - \omega^2\right)^2 + \left(\gamma \omega / m\right)^2}}$$

$$tg\,\varphi = \frac{-\omega\gamma/m}{\omega_0^2 - \omega^2}$$

$$\left[\left(\omega_0^2 - \omega^2 \right) \sin \varphi + \frac{\omega \gamma}{m} \cos \varphi \right] = 0$$

$$\left[\left(\omega_0^2 - \omega^2 \right) \cos \varphi - \frac{\omega \gamma}{m} \sin \varphi \right] A = \frac{F_0}{m}$$

$$x = \frac{F_0}{m} \frac{1}{\sqrt{\left(\omega_0^2 - \omega^2\right)^2 + \left(\gamma \omega / m\right)^2}} \sin\left(\omega t + \arctan \frac{\omega / \tau}{\omega^2 - \omega_0^2}\right)$$

Vynútené kmity

Pohybová rovnica:

$$\left[\omega_0^2 - \omega^2\right] A \sin(\omega t + \varphi) + \left[\frac{\omega}{m}\gamma\right] A \cos(\omega t + \varphi) = \frac{F_0}{m} \sin(\omega t)$$

$$\left[\omega_0^2 - \omega^2\right] A \sin(\omega t + \varphi) + \left[\frac{\omega}{m}\gamma\right] A \cos(\omega t + \varphi) = \frac{F_0}{m} \sin(\omega t)$$

$$\left[\frac{\omega}{m} \gamma \right] A \cos(\omega t + \varphi) = \frac{F_0}{m} \sin(\omega t)$$

$$\omega_0 \approx \omega$$

$$\left[\frac{\omega}{m} \gamma \right] A \cos(\omega t + \varphi) = \frac{F_0}{m} \sin(\omega t)$$

$$\varphi = -\frac{\pi}{2} \Rightarrow \cos\left(\omega t - \frac{\pi}{2}\right) = \sin\left(\omega t\right)$$

$$\left[\frac{\omega}{m}\gamma\right]A\sin\left(\omega t\right) = \frac{F_0}{m}\sin\left(\omega t\right)$$

$$A = \frac{F_0}{\omega\gamma}$$

$$A = \frac{F_0}{\omega \gamma}$$

Ak frekvencia vynucujúcej sily sa blíži k vlastnej frekvencii systému, potom fázový posun medzi silou a výchylkou je $-\pi/2$

Rezonancia

Vynucujúca sila - harmonická

$$\left| \ddot{x} + \frac{\gamma}{m} \dot{x} + \omega_0^2 x = \frac{F_0}{m} \sin \omega t \right|$$

$$x = A_1 e^{-bt} \cos(\omega t + \alpha_1) + A \sin(\omega t + \varphi)$$

$$A = \frac{F_0}{m} \frac{1}{\sqrt{\left(\omega_0^2 - \omega^2\right)^2 + \left(\gamma \omega / m\right)^2}}$$

$$tg\varphi = \frac{\omega\gamma/m}{\omega_0^2 - \omega^2}$$

Amplitúda závisí od frekvencie budiacej sily

Pre akú frekvenciu bude rozkmit systému najväčší ????

$$\frac{dA}{d\omega} = 0$$

Rezonancia

$$A = \frac{F_0}{m} \frac{1}{\sqrt{\left(\omega_0^2 - \omega^2\right)^2 + \left(\gamma \omega / m\right)^2}}$$

Amplitúda vynútených kmitov A dosahuje maximum pri frekvencii:

$$\omega_{rez} = \sqrt{\omega_0^2 - \frac{\gamma^2}{2m^2}}$$

Čím je tlmenie intenzívnejšie, tým menej sa prejaví maximum amplitúdy pri rezonacii

Rezonancia – veľké rozkmitanie systému periodickou vonkajšou silou s malou amplitúdou F₀

Práca zvyšuje mechanickú energiu systému

Prenos energie do systému vplyvom vonkajšej sily je najefektívnejší, ak vektory F a v sú súhlasne orientované

$$\delta W = \vec{F} \bullet d\vec{l} = \vec{F} \bullet \vec{v} dt$$

$$F = F_0 \sin \omega t$$

$$x = A \sin \left[\omega t - \frac{\pi}{2}\right] = -A \cos \left[\omega t\right] \approx v = \frac{dx}{dt} = A\omega \sin \left[\omega t\right]$$

$$\sin(\alpha - \beta) = \sin\alpha\cos\beta - \sin\beta\cos\alpha$$

$$\sin\left(\omega t - \frac{\pi}{2}\right) = \sin \omega t \cos \frac{\pi}{2} - \sin \frac{\pi}{2} \cos \omega t$$

Škodlivé účinky rezonancie

 Motor upevnený na podložke – pri otáčaní pôsobí motor na podložku periodickou silou a privádza ju do ustálených vynútených kmitov. Pri rezonancii by mohla amplitúda týchto kmitov dosiahnuť nebezpečné hodnoty pre pevnosť podložky

Most

Figure 13.23 (a) In 1940 turbulent winds set up torsional vibrations in the Tacoma Narrows Bridge, causing it to oscillate at a frequency near one of the natural frequencies of the bridge structure. (b) Once established, this resonance condition led to the bridge's collapse.

