Assignment-2

S. RITHVIK REDDY- cs20btech11049

Download all python codes from here

https://github.com/rithvikreddy6300/Assignment-2/tree/main/code

and latex-tikz codes from

https://github.com/rithvikreddy6300/ Assignment-2/blob/main/Assignment-2. tex

Gate Problem-77

If a random variable X assumes only positive integral values, with the probability

$$P(X = x) = \frac{2}{3} \left(\frac{1}{3}\right)^{x-1}, x = 1, 2, 3, \dots$$

(A)
$$\frac{2}{9}$$
 (C) 1

(B)
$$\frac{2}{3}$$
 (D) $\frac{3}{2}$ Then E(X) is ?

SOLUTION

Let $Y=\{0,1\}$ be a set of random variables of a Bernoulli's distribution with 0 representing a loss and 1 a win and let $Y_i \in Y$ for $i=1,2,3...,Y_i$ is the outcome of i^{th} try of choosing 0 or 1 from Y.

So the Random variable X is generated by assigning value of i to X where $Y_i = 1$ for the first time.

$$X = \{x : Y_{i=x} = 1, Y_{i < x} = 0\}$$

 $\implies X = \{Y_1 = 0, Y_2 = 0, Y_3 = 0, ..., Y_x = 1\}$

For given bernouli's trail $p = \frac{2}{3}$ and $q = 1 - p = \frac{1}{3}$. The given probability distribution is

$$P(X = x) = P(Y_{i=x} = 1)P(Y_{i < x} = 0)$$

$$\implies P(X = x) = p(1 - p)^{x - 1}$$

$$\implies P(X = x) = \frac{2}{3} \left(\frac{1}{3}\right)^{x - 1}$$

The expectation value of X represented by E(X) is given by

$$E(X) = \sum_{i=1}^{\infty} Pr(x=i) \times i$$

Let S=E(X),

$$\implies E(X) = S = \sum_{i=1}^{\infty} Pr(x=i) \times i$$
 (1)

$$\implies S = \sum_{i=1}^{\infty} \frac{2}{3} \left(\frac{1}{3}\right)^{i-1} \times i \tag{2}$$

$$\implies S = \frac{2}{3} + \sum_{i=2}^{\infty} \frac{2}{3} \left(\frac{1}{3}\right)^{i-1} \times i \tag{3}$$

Multiplying (2) with $\frac{1}{3}$ on both sides gives

$$\frac{1}{3}S = \sum_{i=1}^{\infty} \frac{2}{3} \left(\frac{1}{3}\right)^i \times i \tag{4}$$

In (3)
$$\sum_{i=1}^{\infty} \frac{2}{3} \left(\frac{1}{3}\right)^i \times i$$
 can be written as $\sum_{i=2}^{\infty} \frac{2}{3} \left(\frac{1}{3}\right)^{i-1} \times (i-1)$

$$\implies \frac{1}{3}S = \sum_{i=2}^{\infty} \frac{2}{3} \left(\frac{1}{3}\right)^{i-1} \times (i-1)$$

(3)-(5) gives
$$:\frac{2}{3}S = \frac{2}{3} + \sum_{i=2}^{\infty} \frac{2}{3} \left(\frac{1}{3}\right)^{i-1} \times (i - (i-1))$$

$$\implies \frac{2}{3}S = \frac{2}{3} + \sum_{i=2}^{\infty} \frac{2}{3} \left(\frac{1}{3}\right)^{i-1}$$
 (7)

$$\implies S = 1 + \sum_{i=1}^{\infty} \left(\frac{1}{3}\right)^{i} \tag{8}$$

$$\implies S = 1 + \frac{1/3}{1 - \frac{1}{3}} \tag{9}$$

$$\implies S = \frac{3}{2} \tag{10}$$

The Variance $\operatorname{Var}(\mathbf{X})$ is given by $\sum x^2 P(x) - E(X)$ for the given distribution,

$$Var(X) = \sum_{i=1}^{\infty} i^2 P(x=i) - E(X)$$
 (11)

let
$$S = \sum_{i=1}^{\infty} i^2 P(x=i) = \sum_{i=1}^{\infty} i^2 \frac{2}{3} \left(\frac{1}{3}\right)^{i-1}$$
 (12)

$$S/3 = \sum_{i=1}^{\infty} i^2 \frac{2}{3} \left(\frac{1}{3}\right)^i = \sum_{i=0}^{\infty} i^2 \frac{2}{3} \left(\frac{1}{3}\right)^i \tag{13}$$

$$= \sum_{i=1}^{\infty} (i-1)^2 \frac{2}{3} \left(\frac{1}{3}\right)^{i-1} \tag{14}$$

(12)-(14) gives us

$$\frac{2S}{3} = \sum_{i=1}^{\infty} (i^2 - (i-1)^2) \frac{2}{3} \left(\frac{1}{3}\right)^{i-1}$$
 (15)

$$S = \sum_{i=1}^{\infty} (2i - 1) \left(\frac{1}{3}\right)^{i-1} \tag{16}$$

$$\implies S = 3\sum_{i=1}^{\infty} \frac{2}{3} \left(\frac{1}{3}\right)^{i-1} i - \sum_{i=1}^{\infty} \left(\frac{1}{3}\right)^{i-1} \tag{17}$$

$$\implies S = 3E(X) - \frac{1}{1 - 1/3}$$
 (18)

$$\implies S = \frac{9}{2} - \frac{3}{2} = 3 \tag{19}$$

From (19) and (11) we can write

$$Var(X) = 3 - \frac{3}{2} = \frac{3}{2}$$

From (10) we can say that the expectation value of X given by $E(X)=S=\frac{3}{2}$ and $Var(X)=\frac{3}{2}$ (Option D).

The theoretical vs simulated probabilities are as follows,

