Математика

Мы

17 октября 2022 г.

Оглавление

1	Примечания	2
2	Логика	3
3	Алгебраические выражения	5
4	Измерения	7
5	Последовательности	8
6	Функции	13
7	Числа 7.1 Натуральные числа (N) 7.2 Целые числа (Z) 7.3 Рациональные числа (Q) 7.4 Иррациональные числа (I) 7.5 Действительные числа (R) 7.6 Комплексные числа (C)	23 23 25 25
8	Матрицы	31

Примечания

Чтобы понять, что означают '<', '>', попробуйте их убрать.

Логика

$$\forall A,\; B \; \left(A \longrightarrow B \Leftrightarrow egin{cases} \mbox{Из посылки A вытекает вывод B.} \ A - \mbox{достаточное условие для B.} \ B - \mbox{необходимое условие для A.} \end{cases} \right)$$

$$\forall A,\ B\ \left(egin{cases} A \longrightarrow B \\ B \longrightarrow A \end{cases} \Leftrightarrow A$$
 и B — логически эквивалентные утверждения. $\right)$

$$\forall A,\ B\ ((A\longrightarrow B)\ -\$$
прямое утверждение. $\Leftrightarrow (B\longrightarrow A)\ -\$ обратное утверждение.)

$$\forall A,\ B\ ((A\longrightarrow B)\ -\$$
 прямое утверждение. $\Leftrightarrow (\overline{A}\longrightarrow \overline{B})\ -\$ противоположное утверждение.)

$$\forall A,\ B\ ((A\longrightarrow B)\ -\$$
прямое утверждение. $\Leftrightarrow (\overline{B}\longrightarrow \overline{A})\ -\$ противоположное обратному утверждение.)

$$\forall A,\ B\ \left(egin{cases} A-\text{прямое утверждение.} \\ B-\text{противоположное обратному утверждение.} \end{matrix} \longrightarrow A \Leftrightarrow B \right)$$

ГЛАВА 2. ЛОГИКА

4

Доказательство от противного:

$$\forall A \; \exists B \; (B \wedge (\overline{A} \longrightarrow \overline{B}) \longrightarrow A)$$

Метод математической индукции:

$$\forall F \left(\forall n \ \begin{cases} n \in N \\ F(1) \\ F(n) \longrightarrow F(n+1) \end{cases} \longrightarrow \forall n F(n) \right)$$

Алгебраические выражения

Алгебраическое выражение - это выражение, состоящее из чисел, буквенных величин и алгебраических операций над ними.

Область допустимых значений (ОДЗ) - это множество всех наборов числовых значений букв, входящих в данное алгебраическое выражение.

Тождественно равные алгебраические выражения - это алгебраические выражения, имеющие равные ОДЗ и равные числовые значения на этом ОДЗ.

Одночлен - это алгебраическое выражение, состоящее из произведения числового коэффициента и буквенных величин.

Стандартный вид одночлена:

- 1. Один числовой коэффициент.
- 2. Нет повторяющихся буквенных величин.

Подобные одночлены - это одночлены, отличающиеся только числовыми коэффициентами.

Многочлен (полином) - это алгебраическое выражение, состоящее из суммы одночленов.

Стандартный вид многочлена:

- 1. Все одночлены стандартного вида.
- 2. Нет подобных одночленов.

Формулы сокращённого умножения:

- 1. Квадрат суммы. $(a+b)^2 = a^2 + 2ab + b^2$
- 2. Разность квадратов. $a^2 b^2 = (a b)(a + b)$
- 3. Куб суммы. $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$
- 4. Сумма кубов. $a^3 + b^3 = (a+b)(a^2 ab + b^2)$
- 5. Бином Ньютона. $(a+b)^n = \sum_{i=0}^n \frac{a^{n-i}b^in!}{i!(n-i)!} = \sum_{i=0}^n \frac{a^{n-i}b^i\prod\limits_{k=0}^{i-1}n-k}{i!}$

Неполный квадрат разности:

$$a^2 - ab + b^2$$

Многочлен Q(x) является частным и многочлен R(x) является остатком при делении многочлена $P_n(x)$ на $S_m(x)$, если $P_n(x) = S_m(x)Q(x) + R(x)$ и степень R(x) меньше степени $S_m(x)$.

Если степень $P_n(x)$ больше степени $S_m(x)$, степень частного от деления $P_n(x)$ на $S_m(x)$ равна разности степеней $P_n(x)$ и $S_m(x)$, иначе частное равно нулю.

Остаток от деления многочлена $P_n(x)$ на двучлен вида $x-\alpha$ равен значению многочлена при $x=\alpha$.

Теорема Безу:

Многочлен $P_n(x)$ делится без остатка на двучлен $x-\alpha$, только если α - корень многочлена.

Измерения

Величина - это объект, который может быть охарактеризован числом в результате измерения.

Постоянная величина - это величина, множество значений которой состоит из одного элемента.

Переменная величина - это величина, множество значений которой состоит более чем из одного элемента.

Область изменения - это множество значений, принимаемых переменной величиной.

Последовательности

```
\forall \{x_n\} \ (\forall k,\ l\ (k < l \longrightarrow x_k < x_l) \Leftrightarrow \{x_n\} - \text{возрастающая последовательность.}) \forall \{x_n\} \ (\forall k,\ l\ (k < l \longrightarrow x_k \geq x_l) \Leftrightarrow \{x_n\} - \text{невозрастающая последовательность.}) \forall \{x_n\} \ (\forall k,\ l\ (k < l \longrightarrow x_k > x_l) \Leftrightarrow \{x_n\} - \text{убывающая последовательность.}) \forall \{x_n\} \ (\forall k,\ l\ (k < l \longrightarrow x_k \leq x_l) \Leftrightarrow \{x_n\} - \text{неубывающая последовательность.}) \forall \{x_n\},\ M\ (\forall k\ |x_k| \leq M \Leftrightarrow \{x_n\} - \text{ограниченная последовательность значением }M.)
```

 $\forall \left\{ x_{n} \right\},\ M\ (\forall k\ x_{k} \geq M \Leftrightarrow \left\{ x_{n} \right\}$ — ограниченная снизу последовательность значением M.)

 $\forall \{x_n\},\ a\ (\{x_n\} \rightrightarrows a \Leftrightarrow \{x_n\} - \text{последовательность, стабилизирующаяся к } a.)$

$$\forall \{x_n\}, \ a \left(\exists k \ \forall m, \ l \begin{cases} x_m \in \mathbb{Z} \\ l > k \\ x_l = a \end{cases} \right)$$

$$\forall \left\{ x_n \right\}, \ M \ \left\{ \begin{aligned} x_m &\in \mathbb{Z} \\ \left\{ x_n \right\} - \text{неубывающая последовательность.} \\ \left\{ x_n \right\} - \text{ограниченная сверху последовательность значением } M. \end{aligned} \right. \longrightarrow \exists a \ \left\{ \begin{aligned} a &\in \mathbb{Z} \\ a &\leq M \\ \left\{ x_n \right\} &\rightrightarrows a \end{aligned} \right\}$$

$$\forall \{x_n\} \,,\; M,\; a \ \begin{cases} x_m \in \mathbb{R} \\ \{x_n\} - \text{ограниченная сверху последовательность значением } M. \\ \text{каждая соответствующая цифра } \{x_n\} \\ \Rightarrow \\ \text{каждая соответствующая цифра } a \end{cases} \longrightarrow \{x_n\} \Rightarrow a$$

$$\forall \{x_n\}, \ a, \ b \left(\begin{cases} a \in \mathbb{R} \\ b \in \mathbb{R} \\ \{x_n\} = \left\{ a^{(n)} + b^{(n)} \right\} \end{cases} \longrightarrow \{x_n\} \Rightarrow a + b \right)$$

$$\forall \{x_n\}, \ a, \ b \left\{ \begin{cases} a \in \mathbb{R} \\ b \in \mathbb{R} \\ a > b > 0 \\ \{x_n\} = \left\{ a^{(n)} - (b^{(n)} + 10^{-n}) \right\} \end{cases} \longrightarrow \{x_n\} \rightrightarrows a - b \right\}$$

$$\forall \{x_n\}, \ a, \ b \left(\begin{cases} a \in \mathbb{R} \\ b \in \mathbb{R} \\ \{x_n\} = \left\{ a^{(n)} b^{(n)} \right^{(n)} \right\} \end{cases} \longrightarrow \{x_n\} \rightrightarrows ab \right)$$

$$\forall a, b \left\{ \begin{cases} a \in \mathbb{R} \\ b \in \mathbb{R} \\ \{x_n\} = \left\{ \left(\frac{a^{(n)}}{b^{(n)} + 10^{-n}} \right)^{(n)} \right\} \longrightarrow \{x_n\} \stackrel{a}{\Rightarrow} \frac{a}{b} \right\}$$

 $\forall \{x_n\}\,,\; a\; \left(\lim_{n\longrightarrow\infty}x_n=a\Leftrightarrow \{x_n\}\;$ стремится к a как к своему пределу. $\right)$

$$\forall \{x_n\}, \ a \ \left(\lim_{n \to \infty} x_n = a \Leftrightarrow \forall e \ \exists l \ \forall k \ \begin{cases} |a - x_k| < e \\ k > l \end{cases} \right)$$

$$\forall \left\{x_n\right\}, \ M \left\{ \begin{cases} x_m \in \mathbb{R} \\ x_m > 0 \\ \left\{x_n\right\} - \text{неубывающая последовательность.} \longrightarrow \exists a \ \begin{cases} a \leq M \\ \lim_{n \to \infty} x_n = a \end{cases} \right.$$
 последовательность значением M .

$$\forall \{x_n\}, \ a, \ m \begin{cases} x_m \in \mathbb{R} \\ \{x_n\} = a^{(n)} \\ \lim_{n \to \infty} x_n = a \end{cases}$$

$$\forall \{x_n\} \left(\exists a \lim_{n \longrightarrow \infty} x_n = a \longrightarrow \{x_n\} - \text{ограниченная последовательность.}\right)$$

$$\forall \{x_n\}, \ a \left(\lim_{n \to \infty} x_n = a \longrightarrow \exists l \ \forall k \ \begin{cases} k > l \\ a > 0 \\ x_k > \frac{a}{2} \\ a < 0 \\ x_k < \frac{a}{2} \end{cases} \right)$$

$$\forall \{x_n\}, \{y_n\}, a, b \left(\forall k \begin{cases} \lim_{n \to \infty} x_n = a \\ \lim_{n \to \infty} y_n = b \end{cases} \to a \le b \right)$$

$$\forall \{x_n\}, \{y_n\}, \{z_n\}, a \left(\forall k \begin{cases} \lim_{n \to \infty} x_n = a \\ \lim_{n \to \infty} z_n = a \end{cases} \longrightarrow \lim_{n \to \infty} y_n = a \right)$$

$$\forall \{x_n\}, \ a \ \left(\lim_{n \to \infty} x_n = a \longrightarrow \lim_{n \to \infty} |x_n| = |a|\right)$$

$$\forall a, b \begin{cases} a \in \mathbb{R} \\ b \in \mathbb{R} \\ |a+b| \le |a| + |b| \end{cases}$$

$$\forall a, b \begin{cases} a \in \mathbb{R} \\ b \in \mathbb{R} \\ |a - b| \ge ||a| - |b|| \end{cases}$$

 $\forall A, M \ (M = \sup A \Leftrightarrow M - \text{точная верхняя граница } A.)$

 $\forall A,\ M\ (M=\inf A\Leftrightarrow M$ — точная нижняя граница A.)

$$\forall A, \ M \left(\forall x, \ M' \ \exists y \ \begin{cases} x \in A \\ x \le M \\ y \in A \\ M' < y \le M \end{cases} \Leftrightarrow M = \sup A \right)$$

$$\forall A, \ M \left(\forall x, \ M' \ \exists y \ \begin{cases} x \in A \\ x \ge M \\ y \in A \\ M' > y \ge M \end{cases} \Leftrightarrow M = \inf A \right)$$

Функции

 $\forall X, \ Y \ X \times Y$ — декартово произведение X и Y.

$$\forall X, \ Y \ \left(X \times Y \Leftrightarrow \forall {<} x{>}, \ {<} y{>} \ \left\{ \begin{aligned} x \in X \\ y \in Y \\ X \times Y = \{(x,y)\} \end{aligned} \right. \right)$$

$$\forall \langle x \rangle, \ \langle y \rangle, \ f, \ X, \ Y \left(\begin{cases} X = \{x\} \\ Y = \{y\} \\ z \in X \\ w \in Y \\ x = z \longrightarrow y = w \\ f = X \times Y \end{cases} \right)$$

 $\forall f \ D(f)$ — область определения f.

 $\forall f \ E(f)$ — область значений f.

$$orall < x>, \ f, \ X \ \left(f(x) \Leftrightarrow egin{cases} < x> - \ ext{apryment (независимая переменная)} \ f. \ f-\ ext{функция от } < x>. \end{cases} \right)$$

$$\forall \langle x \rangle, f, X (f(x) \Leftrightarrow X = \{x\} \longrightarrow X = D(f))$$

$$\forall < y>, \ f, \ x \ (y=f(x) \Leftrightarrow < y> -$$
 функция (зависимая переменная) $f.$)

$$\forall \langle y \rangle, f, Y, x \ (y = f(x) \Leftrightarrow Y = \{y\} \longrightarrow Y = E(f))$$

$$\forall < y>, \ < x>, \ f \ \left(y = f(x) \Leftrightarrow \begin{cases} y - \text{образ } x. \\ x - \text{прообраз } y. \end{cases}\right)$$

$$\forall f, \ X, \ Y \ \left(f: X \longrightarrow Y \Leftrightarrow \begin{cases} X = D(f) \\ Y = E(f) \end{cases} \right)$$

$$\forall f,\ X,\ Y\ \left(f:X\longrightarrow Y\Leftrightarrow \begin{cases} Y-\text{ofpas }X.\\ X-\text{прообраз }Y.\end{cases}\right)$$

$$\forall f, \ A \ \left(\forall y \begin{cases} A = \{y\} \\ y \in E(f) \end{cases} \Leftrightarrow f$$
 – сюръекция (накрытие).

$$\forall f \ (\forall x, \ y \ (f(x) = f(y) \longrightarrow x = y) \Leftrightarrow f$$
 – инъекция (вложение).)

$$\forall f \left(\begin{cases} f-\text{сюръекция (накрытие}). \\ f-\text{инъекция (вложение}). \end{cases} \Leftrightarrow f-\text{биекция (взаимно-однозначное соответствие}). \right)$$

$$\forall A, \ B \ (A \sim B \Leftrightarrow A \ и \ B$$
 — равномощные.)

$$\forall f,\ A,\ B\ \left(egin{cases} f:A\longrightarrow B\\ f-\text{биекция.} \end{cases}\Leftrightarrow A\sim B \right)$$

$$\forall AA \sim A$$

$$\forall A, B, C \ (A \sim B \Leftrightarrow B \sim A)$$

$$\forall A, \ B \ \left(\begin{cases} A \sim B \\ B \sim C \end{cases} \longrightarrow A \sim C \right)$$

$$\forall A \ (A \sim \mathbb{N} \Leftrightarrow A - \text{счётное множество.})$$

$$\forall A,\ B \left(\forall a,\ b \ \left\{ egin{aligned} a \in A \\ b \in B \Leftrightarrow A \ \text{лежит левее} \ B. \\ a \leq b \end{aligned}
ight)$$

$$\forall A,\ B,\ c \ \left(\forall a,\ b \ \begin{cases} a \in A \\ b \in B \\ c \geq a \\ c \leq b \end{cases} \Leftrightarrow c \ \text{разделяет} \ A \ \text{и} \ B. \right)$$

Если разделяющих элементов в полном множестве больше одного, то их бесконечно много.

$$\forall f,\ g\ \left(\forall x\ \begin{cases} D(f) = D(g) \\ f(x) = g(x) \end{cases} \Leftrightarrow f$$
 и g — совпадающие функции. $\right)$

$$\forall f, \ x \ (f(x) = 0 \Leftrightarrow x -$$
нуль (корень) функции f.)

$$orall f$$
 $\left(orall x \left\{ egin{aligned} f(-x) &= f(x) \\ \exists a & D(f) &= (-a;a) \Leftrightarrow f - \mbox{чётная функция.} \\ D(f) &= [-a;a] \end{aligned}
ight)$

$$\forall f \left(\forall x \begin{cases} f(-x) = -f(x) \\ \exists a \begin{bmatrix} D(f) = (-a; a) \Leftrightarrow f - \text{нечётная функция.} \\ D(f) = [-a; a] \end{cases} \right)$$

$$\forall f \; \left(\left\{ rac{\overline{f} - \mbox{чётная функция.}}{\overline{f} - \mbox{нечётная функция.}} \Leftrightarrow f - \mbox{общего вида функция.}
ight)$$

$$\forall f,\ A \ \left(\forall x_1,\ x_2 \ \begin{cases} x_1 \in A \\ x_2 \in A \\ x_1 < x_2 \longrightarrow f(x_1) < f(x_2) \end{cases} \Leftrightarrow f$$
— возрастающая функция на A .

$$\forall f, \ A \ \left(\forall x_1, \ x_2 \ \begin{cases} x_1 \in A \\ x_2 \in A \\ x_1 < x_2 \longrightarrow f(x_1) \geq f(x_2) \end{cases} \Leftrightarrow f$$
 — невозрастающая функция на A .

$$\forall f,\ A \ \left(\forall x_1,\ x_2 \ \begin{cases} x_1 \in A \\ x_2 \in A \\ x_1 < x_2 \longrightarrow f(x_1) > f(x_2) \end{cases} \Leftrightarrow f$$
 — убывающая функция на A .

$$\forall f,\ A \ \left(\forall x_1,\ x_2 \ \begin{cases} x_1 \in A \\ x_2 \in A \\ x_1 < x_2 \longrightarrow f(x_1) \leq f(x_2) \end{cases} \Leftrightarrow f$$
— неубывающая функция на A .

$$\forall f,\ A\ \left(egin{bmatrix} f-\ \mbox{функция убывающая на }A.\ f-\ \mbox{функция возрастающая на }A. \end{cases}\Leftrightarrow A-$$
 интервал монотонности $f.$

$$\forall f, \ x_0 \ \left(\exists A \ \forall x \ \begin{cases} x \in A \\ x_0 \in A \\ f(x_0) \leq f(x) \end{cases} \Leftrightarrow x_0 - \text{точка минимума } f. \right)$$

$$\forall f, \ x_0 \ \left(\exists A \ \forall x \ \begin{cases} x \in A \\ x_0 \in A \\ f(x_0) \geq f(x) \end{cases} \Leftrightarrow x_0 - \text{точка максимума } f. \right)$$

$$\forall f, \ x \ \left(\begin{bmatrix} x - \text{точка минимума } f. \\ x - \text{точка минимума } f. \end{cases} \Leftrightarrow x - \text{экстремум } f. \right)$$

Асимптота - это прямая линия, к которой график функции неограниченно приближается при удалении точки графика в бесконечность.

Исследование функции:

- 1. Область определения функции.
- 2. Область значений функции.
- 3. Нули функции.
- 4. Чётная, или нечётная, или общего вида функция.
- 5. Интервалы монотонности функции.
- 6. Экстремумы функции.
- 7. Асимптоты функции.

$$\forall < y >, f, g (\forall x y = f(g(x)) \Leftrightarrow < y > -$$
 сложная функция.)

$$\forall f, \ g \ (\forall x \ f(g(x)) = x \Leftrightarrow f - \text{обратная} \ g \ функция.)$$

Алгебраическая функция - это функция, закон соответствия которой определяется алгебраическим выражением. (**трансцендентная функция**)

Элементарные функции - это основные элементарные функции и сложные функции, образованные из основных элементарных.

Основные элементарные функции:

1.

$$\forall < x>, \ f, \ a \ \left(egin{cases} f(x) = x^a \\ a \in R \end{cases} \Leftrightarrow f$$
 — степенная функция. $ight)$

2.

$$\forall < x>, \ f, \ a \left(egin{cases} f(x) = a^x \\ a \in R \\ a > 0 \\ a
eq 1 \end{cases} \Leftrightarrow f$$
 — показательная функция.

3.

$$\forall < x>, \ f, \ a \left(egin{cases} f(x) = \log_a^x \\ a \in R \\ a > 0 \\ a
eq 1 \end{cases} \Leftrightarrow f$$
 — логарифмическая функция. $begin{cases}$

4.

$$\forall < x>, \ f \left(egin{aligned} f(x) &= \sin x \\ f(x) &= \cos x \\ f(x) &= \tan x \end{aligned} \Leftrightarrow f$$
 — тригонометрическая функция.
$$f(x) &= \cot x \end{aligned} \right)$$

5.

$$\forall < x>, \ f \left(egin{aligned} f(x) = rcsin x \\ f(x) = rccos x \\ f(x) = \arctan x \end{aligned} \Leftrightarrow f - ext{обратная тригонометрическая функция.} \right)$$

$$\forall < y>, \ < x>, \ P_i, \ n, \ \left(\begin{cases} y=P_n(x)=\sum_{i=0}^n a_i x^{n-i} \\ a_0, \ a_1, \ \dots, \ a_n \end{cases} \Leftrightarrow \begin{matrix} < y>-\text{ целая рациональная функция} \\ \text{(многочлен от переменной } < x>) \ (\mathbf{ЦР}\Phi) \ \text{степени } n. \end{cases}\right)$$

$$\forall < y>, \ < x>, \ f, \ a \ \left(\begin{cases} y = f(x) = ax \\ a \neq 0 \end{cases} \Leftrightarrow \begin{cases} < y> \text{ прямо пропорционально } < x>. \\ \text{между } < y> \text{ и } < x> \text{ прямо пропорциональная зависимость.} \end{cases} \right)$$

$$\forall < y>, \ < x>, \ f, \ a, \ b \ \left(egin{cases} y = f(x) = ax + b \\ a \neq 0 \end{cases} \Leftrightarrow < y> -$$
 линейная ЦРФ (линейная функция). $ight)$

$$\forall < y>, \ < x>, \ f, \ a, \ b \ \left(egin{cases} y = f(x) = ax^2 + bx + c \\ a \neq 0 \end{cases} \Leftrightarrow egin{cases} < y> - \ \text{квадратичная ЦР}\Phi \\ (\ \text{квадратный (квадратичный) трёхчлен}). \end{cases} \right)$$

$$\forall < y>, \ x \ \left(y = \frac{P_n(x)}{Q_m(x)} \Leftrightarrow < y> -$$
 дробно-рациональная функция (ДР Φ). $\right)$

$$\forall < y>, \ < x>, \ a, \ b, \ c, \ d \left(\begin{cases} y = f(x) = \frac{ax+b}{cx+d} = \frac{a}{c} + \frac{\frac{bc-ad}{c^2}}{x+\frac{d}{c}} \\ c \neq 0 \\ ad-bc \neq 0 \end{cases} \right)$$

Алгебраическая иррациональная функция - это функция, закон соответствия которой содержит извлечение корня целой степени из алгебраического выражения, содержащего аргумент.

Числа

Числовое кольцо - это множество чисел, результат суммы, разности, произведения любых чисел которого принадлежит ему тоже.

Числовое поле - это множество чисел, результат выполнения рациональных действий над любыми числами которого принадлежит ему тоже.

7.1 Натуральные числа (N)

Целочисленная переменная - это величина, принимающая только натуральные значения.

Свойства сложения и умножения:

1. Переместительное.

$$a + b = b + a$$

$$ab = ba$$

2. Сочетательное (ассоциативное).

$$(a+b) + c = a + (b+c)$$

$$(ab)c = a(bc)$$

3. Распределительное.

$$c(a+b) = ac + cb$$

q является частным и г является остатком при делении а на b, если a = bq + r и r < b .

Делитель а - это число, на которое а делится без остатка.

Кратное а - это всякое число, которое делится на а без остатка.

Простое число - это число, не имеющее никаких других делителей, кроме единицы и себя. ($\overline{\text{составное число}}$)

Простых чисел имеется бесконечное множество.

Разложение числа на простые множители взаимно однозначно.

Взаимно простые числа - это числа, не имеющие общих делителей.

Чётное число - это число, кратное 2. (нечётное число)

Число 2 - единственное чётное простое число.

Признаки делимости в 10-й системе счисления:

- 1. Признак делимости на 2: последняя цифра в записи числа выражает чётное число.
- 2. Признак делимости на 3: сумма цифр записи числа делится на 3.
- 3. Признак делимости на 4: последние две цифры в записи числа выражают число, делящееся на 4.
- 4. Признак делимости на 5: последняя цифра в записи числа является 0 или 5.
- 5. Признак делимости на 9: сумма цифр записи числа делится на 9.

Наибольший общий делитель (НОД) а и b:

(a,b)

Наименьшее общее кратное (НОК) а и b:

$$(a,b)[a,b] = ab$$

7.2 Целые числа (Z)

$$N \in \mathbb{Z}$$

Целое алгебраическое выражение - это алгебраическое выражение, в котором используют только сложение, вычитание, умножение.

Положительное число - это число, большее нуля.

Отрицательное число - это число, меньшее нуля.

Противоположные числа - это числа, отличающиеся знаком.

$$a - b = a + (-b)$$

$$a(-b) = -ab$$

$$\begin{cases}
|x| = x \\
x \ge 0 \\
|x| = -x \\
x < 0
\end{cases}$$

7.3 Рациональные числа (Q)

$$Z \in Q$$

Рациональное число - это число, представимое в виде $\frac{a}{b}$, где числитель $a \in Z$, а знаменатель $b \in N$.

Рациональные числа образуют поле.

Арифметические (рациональные) действия: сложение, вычитание, умножение, деление.

Рациональное алгебраическое выражение - это алгебраическое выражение, в котором используют только рациональные действия.

Дробное алгебраическое выражение - это рациональное алгебраическое выражение, в записи которого используют деление на буквенные выражения.

Алгебраическая дробь - это это алгебраическое выражение, имеющее вид частного от деления двух целых алгебраических выражений.

Дробное число - это рациональное число, числитель которого не делится на знаменатель нацело.

Целая часть числа - это наибольшее целое число, не превосходящее данного ([x]) .

Дробная часть числа - это разность между данным числом и его целой частью ((x))

$$x - [x] \ge 0$$

$$x - [x] < 1$$

Разложение рационального числа на сумму целой и дробной частей взаимно однозначно.

Десятичная дробь - это дробь, у которой знаменатель представляет собой натуральную степень числа 10.

Всякое рациональное число может быть представленно бесконечной десятичной периодической дробью взаимно однозначно.

7.4 Иррациональные числа (I)

Всякое иррациональное число может быть представленно бесконечной десятичной непериодической дробью взаимно однозначно.

Иррациональные алгебраические выражения - это алгебраическое выражение, в записи которого используются знаки радикала из буквенного выражения.

Корень находится в простейшей форме, если:

- 1. Он не содержит иррациональности в знаменателе.
- 2. Нельзя сократить его показатель с показателем подкоренного выражения.
- 3. Все возможные множители вынесены из-под корня.

Подобные корни - это корни, отличающиеся только коэффициентами.

7.5 Действительные числа (R)

 $Q \in R$

 $I \in R$

Действительные числа образуют поле.

Множество действительных чисел упорядочено.

Множество действительных чисел непрерывно.

 \mathbb{R} — полное.

Аксиома Архимеда:

$$\forall a \exists n \begin{cases} a \in \mathbb{R} \\ n \in \mathbb{N} \\ na \ge 1 \end{cases}$$

$$\forall x, \ y \left(\begin{cases} x < y \\ x \in \mathbb{R} \longrightarrow \exists z, \ w \\ y \in \mathbb{R} \end{cases} \right. \begin{cases} z \in \mathbb{Q} \\ w \in \mathbb{I} \\ x < z < y \\ x < w < y \end{cases}$$

Всякое десятичное число определяет действительное число взаимно однозначно.

Многочлен с действительными коэффициентами разлагается в произведение линейных двучленов вида x-a и квадратных трёхчленов вида x^2+px+q .

n-ая степень числа а - это произведение n сомножителей, равных а. (a^n) а - основание степени.

n - показатель степени.

Возведение отрицательного числа в иррациональную степень не определено.

Возведение нуля в не положительную степень не определено.

$$a^x = a^y \longrightarrow x = y$$

Корень n-ой степени из числа a - это число, n-ая степень которого равна a. ($\sqrt[n]{a}$)

Извлечение корня степени из а - это отыскание корня из а.

Арифметический корень (арифметическое значение корня) - это положительный корень чётной степени из положительного числа.

Корень чётной степени по умолчанию арифметический.

$$\begin{cases} \sqrt[n]{a^n} = a \\ n - \text{нечётное.} \end{cases}$$
$$\begin{cases} \sqrt[n]{a^n} = |a| \\ n - \text{чётное.} \end{cases}$$

Квадратный корень:

$$\sqrt[2]{x} = \sqrt{x}$$

Кубический корень:

$$\sqrt[3]{x}$$

$$\sqrt[b]{x^a} = x^{\frac{a}{b}}$$

Логарифм числа N по основанию а - это показатель степени, в которую нужно возвести a, чтобы получить N.

$$\begin{cases} a^{\log_a N} = N \\ N > 0 \\ a > 0 \\ a \neq 1 \end{cases}$$

Если число и основание логарифма лежат по одну сторону от единицы, то этот логарифм положителен, и наоборот.

Потенцирование - это возведение числа, от которого взят логарифм, в этот логарифм.

Если основание больше единицы, то большее число имеет больший логарифм.

Если основание меньше единицы, то большее число имеет меньший логарифм.

Десятичный логарифм - это логарифм по основанию 10.

$$\log_{10} N = \lg N$$

Характеристика - это целая часть десятичного логарифма.

Мантиса - это дробная часть десятичного логарифма.

Открытый интервал (a; b) - это множество действительных чисел x, удовлетворяющих неравествам $a < x \le b$.

Окрестность точки \mathbf{x_0}~(\mathbf{x_0}-\mathbf{h};\mathbf{x_0}+\mathbf{h}) - это интервал длины 2h серединой x_0 .

Замкнутый интервал [a; b] - это множество действительных чисел x, удовлетворяющих неравенствам $a \le x \le b$.

Полуоткрытый интервал [a; b) или (a; b] - это множество действительных чисел x, удовлетворяющих неравенствам $a \le x < b$ или $a < x \le b$ соответственно.

Бесконечный интервал $(\mathbf{a};\infty)$, или $[\mathbf{a};\infty)$, или $(\infty;\mathbf{b})$, или $(\infty;\mathbf{b})$, или $(\infty;\mathbf{b})$, или $(\infty;\infty)$ - это множество действительных чисел x, удовлетворяющих a < x , или $a \le x$, или x < b , или $x \le b$, или $x \in B$ соответственно.

7.6 Комплексные числа (С)

 $R \in C$

Комплексные числа образуют поле.

Комплексное число:

$$z = a + bi$$

а - действительная часть

b - мнимая часть или коэффициент при мнимой единице.

$$i^2 = -1$$

Алгебраические действия: рациональные действия и извлечение корня.

$$z_1 = z_1$$
, если $a_1 = a_2$ и $b_1 = b_2$.

$$a_1 = a_2$$
 и $b_1 = b_2$, если $z_1 = z_2$.

Чисто мнимое число - это комплексное число, у которого действительная часть равна нулю.

 $\Gamma \Pi ABA$ 7. $UUC\Pi A$

Комплексно сопряжённые числа z и \overline{z} - это два комплексных числа, действительные части которых равны, а мнимые противоположны.

$$z = \overline{\overline{z}}$$

$$z\overline{z} = a^2 + b^2$$

$$\overline{z_1} + \overline{z_2} = \overline{(z_1 + z_2)}$$

$$\overline{z_1 z_2} = \overline{(z_1 z_2)}$$

Значения многочлена при комплексного сопряжённых значениях комплексно сопряжены между собой.

Если многочлен имеет комплексный корень, то и сопряжённое число является его корнем.

Если $P_n(z)=(z-\alpha)^kP_{n-k}(z)$, P_{n-k} не делится на $z-\alpha$ нацело, то k - кратность корня α .

Сумма кратности корней равна степени многочлена.

Если $P_n(z)=(z-\alpha)^kP_{n-k}(z)$, P_{n-k} не делится на $z-\alpha$ нацело и k=1 , то корень α однократный (простой).

Если $P_n(z)=(z-\alpha)^kP_{n-k}(z)$, P_{n-k} не делится на $z-\alpha$ нацело и k>1 , то корень α кратный.

Абсолютная величина (модуль) z:

$$|z| = \sqrt{z\overline{z}}$$

Алгебраическая форма комплексного числа:

$$z = a + bi$$

30

Тригонометрическая форма комплексного числа:

$$z = r(\cos\phi + i\sin\phi)$$

 $\begin{array}{l} {\bf r} \text{ - модуль.} \\ \phi \text{ - аргумент.} \end{array}$

Главное значение аргумента:

argz

$$\begin{cases} argz \ge 0 \\ argz < 2\pi \end{cases}$$

$$z_1 z_2 = r_1 r_2 (\cos(\phi_1 + \phi_2) + i \sin(\phi_1 + \phi_2))$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} (\cos(\phi_1 - \phi_2) + i\sin(\phi_1 - \phi_2))$$

Формула Муавра:

$$z^n = r^n(\cos n\phi + i\sin n\phi)$$

Матрицы

Матрица $A_{m \times n}$:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a1n \\ a_{21} & a_{22} & \dots & a2n \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

 $[{f A}]_{ij}$ - это элемент матрицы с индексами і и ј.

Матрица строка - это матрица $A_{1 \times n}$.

Матрица столбец - это матрица $A_{m \times 1}$.

Квадратная матрица - это матрица $A_{n \times n}$.

Нулевая матрица - это матрица $A_{m\times n}$, в которой $\forall i\wedge i\in N \wedge i\leq m \wedge \forall j\wedge j\in N \wedge j\leq n$ $[A]_{ij}=0$.

Единичная матрица (Е):

$$AE = EA = A$$

У единичной матрицы элементы главной диагонали - единицы, а остальные - нули.

Матричная единичка E_{ij} - это матрица, у которой на i j месте расположена единица, а всё остальное - нули.

Скалярная (диагональная) матрица А:

$$A = \lambda E$$

Нильпотентная матрица - это матрица, для которой существует степень, в которую её надо возвести, чтобы получить нулевую матрицу.

$$\begin{cases} A_{m \times n} \\ B_{m \times n} \\ \forall i \land i \in N \land i \leq m \land \forall j \land j \in N \land j \leq n \ [A]_{ij} = [B]_{ij} \end{cases} \longrightarrow A = B$$

Транспонированная матрица А^t:

$$\forall i \wedge i \in N \wedge i \leq m \wedge \forall j \wedge j \in N \wedge j \leq n \ [A^t]_{ij} = [A]_{ji}$$

$$(AB)^t = B^t A^t$$

$$\forall i \land i \in N \land i \leq m \land \forall j \land j \in N \land j \leq n \ [A+B]_{ij} = [A]_{ij} + [B]_{ij}$$

Свойства сложения матриц:

1. Переместительное.

$$A + B = B + A$$

2. Сочетательное (ассоциативное).

$$(A+B) + C = A + (B+C)$$

$$\forall i \land i \in N \land i \leq m \land \forall j \land j \in N \land j \leq n \ [\lambda A]_{ij} = \lambda [A]_{ij}$$

Свойства умножения матрицы на число:

1. Сочетательное (ассоциативное).

$$(\lambda \mu)A = \lambda(\mu A)$$

2. Распределительное относительно чисел.

$$(\lambda + \mu)A = A(\lambda + \mu)$$

3. Распределительное относительно матриц.

$$(A+B)\lambda = \lambda(A+B)$$

$$\forall i \wedge i \in N \wedge i \leq m \wedge \forall j \wedge j \in N \wedge j \leq n \ [AB]_{ij} = \sum_{k=1}^{r} [A]_{ik} [B]_{kj}$$

Свойства умножения матриц:

1. Переместительное.

$$(AB)C = A(BC)$$

Диагональные матрицы умножаются покомпонентно.

Элементарные преобразования матриц:

- 1. Перестановка местами любых двух строк или столбцов матрицы.
 - (a) Переставить местами і и ј строки это единичную матрицу, где переставили местами і и ј строки или столбцы, умножить на матрицу.
 - (b) Переставить местами і и ј столбцы это умножить матрицу на единичную матрицу, где переставили местами і и ј строки или столбцы.

- 2. Умножение любой строки или столбца матрицы на константу, отличную от нуля.
 - (а) Умножить строку і на константу, отличную от нуля, это единичную матрицу, где і строку или столбец умножили на эту константу, умножить на матрицу.
 - (b) Умножить столбец і на константу, отличную от нуля, это умножить матрицу на единичную матрицу, где і строку или столбец умножили на эту константу.
- 3. Прибавление к любой строке или столбцу матрицы этой матрицы другой строки или столбца, умноженной на некоторую константу.
 - (a) Прибавить к строке і строку ј, умноженную на константу, это единичную матрицу, где прибавили к і строке строку ј, умноженную на константу, умножить на матрицу.
 - (b) Прибавить к столбцу і столбец j, умноженный на константу, это умножить матрицу на единичную матрицу, где прибавили к i столбцу столбец j, умноженный на константу.

Ведущий элемент - это первый ненулевой элемент строки.

Ступенчатый вид матрицы - это матрица, номера столбцов ведущих элементов которой возрастают, а нулевые строки, если они есть, расположены внизу.

Улучшенный (приведённый, канонический) ступенчатый вид матрицы - это ступенчатый вид матрицы, в котором все ведущие элементы - единицы, над которыми в столбце все элементы - нули.

Любую прямоугольную матрицу элементарными преобразованиями можно привести к ступенчатому виду.