Total No.	of Qu	estions	:	81
-----------	-------	---------	---	----

SEAT No. :	
------------	--

P5118

[Total No. of Pages: 2

[5560]-552

T.E. (E & TC) (Semester - VI) DIGITAL SIGNAL PROCESSING (2015 Pattern)

Time : 2½ *Hours*]

[Max. Marks: 70]

Instructions to the candidates:

- 1) Neat diagrams must be drawn wherever necessary.
- 2) Figures to the right indicate full marks.
- 3) Assume suitable data, if necessary.
- Q1) a) Discuss the merits, demerits and application of digital signal processing.

 [6]
 - b) Find the output y(n) of a filter whose impulse response is $h(n) = \{1,1,1\}$ and input signal $x(n) = \{3, -1, 0, 1, 3, 2, 0, 1, 2, 1\}$ using Overlap add method. [7]
 - c) State and prove the Differentiation and scaling properties of z-transform.

[7]

OR

- **Q2)** a) If $x(t) = \sin(70\pi) + \cos(55\pi)$ is sampled by fs = 200Hz frequency. Then find out Nyquist rate, Nyquist interval and Nyquist frequency. [6]
 - b) If $x(n) = \{1,2,1,2\}$ and $h(n) = \{1,-1,2,1\}$, compute the circular convolution using DFT-IDFT method. [7]
 - c) Compute the z-transform and ROC of the following sequence: [7]

$$x(n) = \left(\frac{1}{2}\right)^n u(n+2) + (3)^n u(-n-1)$$
.

Q3) a) For a given specifications of the desired low pass filter given below.

$$0.707 \le |H(\omega)| \le 1.0,$$
 $0 \le \omega \le 0.2\pi$
 $|H(\omega)| \le 0.08,$ $0.4\pi \le \omega \le \pi$

design a Butterworth filter using bilinear transfomation.

[8]

b) Draw cascade and parallel realization for the system given by

[9]

[8]

$$H(z) = \frac{1 - z^{-1}}{1 - 0.2z^{-1} - 0.15z^{-2}}$$

Design a digital low pass Butterworth IIR filter using bilinear **Q4)** a) transformation for following specifications: [8]

$$f_c = 1 \text{kHz}$$
, $f_s = 3 \text{kHz}$, $F_s = 8 \text{kHz}$, $R_p = 2 \text{dB}$, and $A_s = 15 \text{dB}$

- Apply Bilinear Transformation to $H(s) = \frac{2}{(s+2)(s+3)}$ with T = 0.1 sec. [9] b)
- Explain Gibbs Phenomenon observed in FIR filter design. What are the **Q5)** a) desired features of window functions to improve frequency response?[8]
 - Realize a linear phase FIR filter structure having following impulse **b**) response: $h(n) = \delta(n) + \frac{1}{2}\delta(n-1) - \frac{1}{4}\delta(n-2) + \frac{1}{2}\delta(n-3) + \delta(n-4)$ [9]
 OR

- What is the use of windowing? Explain the features of Kaiser Window. [8] **Q6)** a)
 - Design a linear phase FIR band filter using hamming window with cut **b**) off frequencies 0.2 rad/sec & 0.3 rad/sec, M=7.
- Discuss the interference cancellation in ECG using DSP. **Q7**) a)
 - Explain two band digital crossover in detail. **b**)

OR

- Draw a block diagram of Digital crossover audio systems. Explain in *Q8*) a) brief. [8]
 - Explain Compact disc recording system in detail. [8] **b**)

