

Normal Forms

Normal Forms

- » Chomsky Normal Form (CNF)
- » Def.: A context-free grammar $G = (V, \Sigma, R, S)$ is said to be in Chomsky Normal Form (CNF), iff every rule in R is of one of the following forms:
- $X \rightarrow a$ where $a \in \Sigma$, or
- » $X \rightarrow BC$ where B and $C \in V$

Example1

» Which one is Chomsky Normal Form? Why?

$$S \rightarrow AS$$

$$S \rightarrow a$$

$$A \rightarrow SA$$

$$A \rightarrow b$$

$$S \rightarrow AS$$

$$S \rightarrow AAS$$

$$A \rightarrow SA$$

$$A \rightarrow aa$$

$$S \rightarrow AS$$

$$S \rightarrow a$$

$$A \rightarrow SA$$

$$A \rightarrow b$$

Chomsky Normal Form

$$S \rightarrow AS$$

$$S \rightarrow AAS$$

$$A \rightarrow SA$$

$$A \rightarrow aa$$

Not Chomsky Normal Form

Converting to Chomsky Normal Form

- » There exists 5-steps algorithm to convert a CFG G into a new grammar Gc such that: $L(G) = L(Gc) \{\epsilon\}$
- » convertChomsky(G:CFG) =
- $^{\circ}$ 1- G' = removeEps(G:CFG) S → ε
- $^{\circ}$ 2- G'' = removeUnits(G':CFG) A → B
- \Rightarrow 3- G''' = removeMixed(G'':CFG) A → aB
- » 4- G'' = removeLong(G''':CFG) S → ABCD
- » 5- G' v : L(G) = L(G' v) { ϵ } G v = atmostoneEps(G' v :CFG) S* \rightarrow S, S \rightarrow ϵ

Remove Epsilon

- » Find the set N of nullable variables in G.
- » X is nullable iff either $X \rightarrow \varepsilon$ or

$$(X \rightarrow A, A \rightarrow \epsilon) : X \rightarrow \epsilon$$

- \rightarrow Ex1: G: S \rightarrow aACa
- $A \rightarrow B \mid a$
- \rightarrow B \rightarrow C | c
- » $C \rightarrow cC \mid \varepsilon$
- » Now, since $C \rightarrow \varepsilon$, C is nullable
- » since $B \rightarrow C$, B is nullable
- » since $A \rightarrow B$, A is nullable
- » Therefore N = { A,B,C}

Remove Epsilon

- » According to N, the rules will be:
- \rightarrow S \rightarrow aACa
- $A \rightarrow B \mid a \mid \varepsilon$
- $B \rightarrow C \mid c \mid \varepsilon$
- \sim C \rightarrow cC | ϵ
- » Now, removeEps returns G':
- \rightarrow S \rightarrow aACa | aAa | aCa | aa
- $A \rightarrow B \mid a$
- \rightarrow B \rightarrow C | c
- \sim C \rightarrow cC | c

Remove Unit Productions

- » Def.: unit production is a rule whose right hand side consists of a single nonterminal symbol. Ex: $A \rightarrow B$
- » Remove any unit production from G'.
- » Ex1(continue), G':
- » $S \rightarrow aACa \mid aAa \mid aCa \mid aa$
- $A \rightarrow B \mid a$
- \rightarrow B \rightarrow C | c
- \rightarrow C \rightarrow cC | c

Remove Unit Productions

- » Now by Appling removeUnits(G':CFG):
- » Remove $A \rightarrow B$ But $B \rightarrow C \mid c$, so Add $A \rightarrow C \mid c$
- » Remove $B \rightarrow C$ Add $B \rightarrow cC$ (B \rightarrow c, already there)
- » Remove A \rightarrow C Add A \rightarrow cC (A \rightarrow c, already there)
- » So removeUnits returns G":
- » $S \rightarrow aACa \mid aAa \mid aCa \mid aa$
- $A \rightarrow a \mid c \mid cC$
- $B \rightarrow c \mid cC$
- $\sim C \rightarrow cC \mid c$

Remove Mixed

- » Def.: mixed is a rule whose right hand side consists of combination of terminals or terminals with nonterminal symbol.
- » Create a new nonterminal T_a for each terminal $a \in \Sigma$
- » For each T_a , add the rule $T_a \rightarrow a$
- » Ex1(continue), G":
- » $S \rightarrow aACa \mid aAa \mid aCa \mid aa$
- $A \rightarrow a \mid c \mid cC$
- $B \rightarrow c \mid cC$
- » $C \rightarrow cC \mid c$

Remove Mixed

» Now, by apply removeMixed(G":CFG), G":

$$S \rightarrow T_a A C T_a \mid T_a A T_a \mid T_a C T_a \mid T_a T_a$$

$$A \rightarrow a \mid c \mid T_c C$$

$$B \rightarrow c \mid T_c C$$

$$C \rightarrow T_c C \mid c$$

$$T_a \rightarrow a$$

$$T_c \rightarrow c$$

Remove Long

- » Def.: long is a rule whose right hand side consists of more than two nonterminal symbol.
- » R: A \rightarrow BCDE
- » By remove long, it will be:
- \rightarrow A \rightarrow BM₂
- $M_2 \rightarrow CM_3$
- $M_3 \rightarrow DE$
- » Ex1(continue), G":
- » $S \rightarrow aACa \mid aAa \mid aCa \mid aa$
- $A \rightarrow a \mid c \mid cC$
- $B \rightarrow c \mid cC$
- $\sim C \rightarrow cC \mid c$

Remove Long

```
» Ex1(continue), G''':
» S \rightarrow T_a ACT_a \mid T_a AT_a \mid T_a CT_a \mid T_a T_a
    A \rightarrow a \mid c \mid T_c C
>>
B \rightarrow c \mid T_c C
C \rightarrow T_c C \mid c
   T_a \rightarrow a
>>
      T_c \rightarrow c
>>
```

Remove Long

- » Now, by apply removeLong(G'': CFG), G'^v:
- $\rightarrow T_aS_1 \mid T_aS_3 \mid T_aS_4 \mid T_aT_a$
- $S_1 \rightarrow AS_2$ $S_2 \rightarrow CT_a$ $S_3 \rightarrow AT_a$ $S_4 \rightarrow CT_a$
- » A \rightarrow a | c | T_cC
- » $B \rightarrow c \mid T_c C$
- » $C \rightarrow T_c C \mid c$
- $T_a \rightarrow a$
- $T_c \rightarrow c$

Add Epsilon

» Finally, $atmostoneEps(G^{"}:CFG)$ does not apply in Ex1, $G^{"}=G^{"}$ since L does not contain ε (S is not nullable).

$$\rightarrow T_aS_1 \mid T_aS_3 \mid T_aS_4 \mid T_aT_a$$

$$S_1 \rightarrow AS_2$$
 $S_2 \rightarrow CT_a$ $S_3 \rightarrow AT_a$ $S_4 \rightarrow CT_a$

» A
$$\rightarrow$$
 a | c | T_cC

»
$$B \rightarrow c \mid T_c C$$

»
$$C \rightarrow T_c C \mid c$$

$$T_a \rightarrow a$$

$$T_c \rightarrow c$$

Example2

» Convert the following CFG to CNF:

$$S \rightarrow ABC$$

$$\rightarrow A \rightarrow aC \mid D$$

»
$$B \rightarrow bB \mid \epsilon \mid A$$

»
$$C \rightarrow Ac \mid \varepsilon \mid Cc$$

$$\rightarrow D \rightarrow aa$$

1-Remove epsilon

- $N = \{A, B, C\} So$
- » add $S \rightarrow AB | BC | AC, A \rightarrow a, B \rightarrow b, C \rightarrow c$
- » delete $B \rightarrow \varepsilon$, $C \rightarrow \varepsilon$
- » The result is:
- \rightarrow S \rightarrow ABC | AB | BC | AC
- \rightarrow A \rightarrow aC | D|a
- $\rightarrow B \rightarrow bB \mid A \mid b$
- » $C \rightarrow Ac \mid Cc \mid c$
- \rightarrow D \rightarrow aa

2- Remove units

 \rightarrow D \rightarrow aa

```
» S → ABC| AB|BC|AC

» A → aC | D |a (A → D, D → aa) remove A → D

add A → aa

» B → bB | A|b (B → A, A → aC|aa|a) remove B → A

add B → aC|aa|a

» C → Ac | Cc|c
```

2- Remove units

»
$$S \rightarrow ABC/AB/BC/AC$$

»
$$A \rightarrow aC$$
 | aa |a

$$B \rightarrow bB \mid aC/aa|a|b$$

»
$$C \rightarrow Ac \mid Cc \mid c$$

$$\rightarrow D \rightarrow aa$$

3- Remove Mixed

»
$$S \rightarrow ABC/AB/BC/AC$$

»
$$A \rightarrow T_a C \mid T_a T_a \mid a$$

»
$$B \rightarrow T_b B \mid T_a C \mid T_a T_a \mid a \mid b$$

»
$$C \rightarrow AT_c \mid CT_c \mid c$$

$$D \to T_a T_a$$

4- Remove Long

$$\gg S \rightarrow AM_2/M_2/AC/AB$$

$$M_2 \rightarrow BC$$

»
$$A \rightarrow T_a C \mid T_a T_a \mid a$$

»
$$B \rightarrow T_b B \mid T_a C \mid T_a T_a \mid a \mid b$$

$$\rightarrow C \rightarrow AT_c \mid CT_c \mid c$$

$$D \to T_a T_a$$

$$T_a \rightarrow a$$

$$T_b \rightarrow b$$

$$T_c \rightarrow c$$

5- Add Epsilon: N/A

»
$$S \rightarrow AM_2 | \frac{M_2}{M_2} | BC | AC | AB$$

» $M_2 \rightarrow BC$

»
$$A \rightarrow T_aC \mid T_aT_a \mid a$$

»
$$B \rightarrow T_b B \mid T_a C \mid T_a T_a \mid a \mid b$$

»
$$C \rightarrow AT_c \mid CT_c \mid c$$

$$\rightarrow$$
 D \rightarrow T_aT_a

$$T_a \rightarrow a$$

$$T_b \rightarrow b$$

$$T_c \rightarrow c$$

Example3

- » Convert the following CFG to CNF:
- » A \rightarrow BAB | B | ϵ
- » B \rightarrow 00 | ϵ
- » 1- remove epsilon:
- \rightarrow BAB | B | BB | AB | BA
- $\rightarrow B \rightarrow 00$
- » 2- remove units:
- \rightarrow A \rightarrow BAB | 00 | BB | AB | BA
- $\rightarrow B \rightarrow 00$

» 3- remove mixed

»
$$A \rightarrow BC \mid T_0T_0 \mid BB \mid AB \mid BA$$

»
$$C \rightarrow AB, B \rightarrow T_0T_0, T_0 \rightarrow 0$$

» 4- Add epsilon (Optional, Generally this step is applicable for root variable i.e. S)

» A
$$\rightarrow$$
 BC | T₀T₀ | BB | AB | BA | ϵ

- \rightarrow C \rightarrow AB
- » $B \rightarrow T_0 T_0$
- $T_0 \rightarrow 0$

Example4

» Convert the following CFG to CNF:

$$S \to ABa$$

$$A \to aab$$

$$B \to Ac$$

Introduce new variables for the terminals:

$$T_a, T_b, T_c$$

$$S \to ABa$$

$$A \to aab$$

$$B \to Ac$$

$$S \to ABT_a$$

$$A \to T_a T_a T_b$$

$$B \to AT_c$$

$$T_a \to a$$

$$T_b \to b$$

Introduce new intermediate variable V_1 to break first production:

$$S \to ABT_{a}$$

$$A \to T_{a}T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

$$S o AV_1$$
 $V_1 o BT_a$
 $A o T_a T_a T_b$
 $B o AT_c$
 $T_a o a$
 $T_b o b$
 $T_c o c$

Introduce intermediate variable: V_2

$$S \rightarrow AV_1$$

$$V_1 \rightarrow BT_a$$

$$A \rightarrow T_a T_a T_b$$

$$B \to AT_c$$

$$T_a \rightarrow a$$

$$T_b \rightarrow b$$

$$T_c \rightarrow c$$

$$V_1 \rightarrow BT_a$$

$$A \rightarrow T_a V_2$$

$$V_2 \rightarrow T_a T_b$$

$$B \to AT_c$$

$$T_a \rightarrow a$$

$$T_b \rightarrow b$$

$$T_c \rightarrow c$$

Final grammar in Chomsky Normal Form:

Initial grammar

$$S \rightarrow ABa$$

$$A \rightarrow aab$$

$$B \rightarrow Ac$$

$$S \rightarrow AV_1$$

$$V_1 \rightarrow BT_a$$

$$A \rightarrow T_a V_2$$

$$V_2 \rightarrow T_a T_b$$

$$B \to AT_c$$

$$T_a \rightarrow a$$

$$T_b \rightarrow b$$

$$T_c \rightarrow c$$

Example5

» Convert the following CFG to CNF:

$$\rightarrow E + T$$

$$\rightarrow$$
 E \rightarrow T

$$T \to T * F$$

$$T \rightarrow F$$

$$F \rightarrow (E)$$

$$F \rightarrow id$$

1- Remove units

- » Remove $E \rightarrow T$, add $E \rightarrow T * F \mid F$
- » Remove $E \rightarrow F$, add $E \rightarrow (E) \mid id$
- » Remove $T \rightarrow F$, add $T \rightarrow (E) \mid id$
- » The result:
- » $E \rightarrow E + T \mid T * F \mid (E) \mid id$
- $T \rightarrow T * F \mid (E) \mid id$
- $F \rightarrow (E) \mid id$

2- Remove Mixed

3- Remove Long

```
» E \rightarrow E M_2 \mid T M_3 \mid T_1 M_4 \mid id
T \rightarrow T M_3 \mid T_1 M_4 \mid id
» F \rightarrow T_1 M_4 \mid id
M_2 \rightarrow T_+ T
M_3 \rightarrow T_* F
M_4 \rightarrow E T_1
T_{\downarrow} \rightarrow (
T_1 \rightarrow T_1
T_{+} \rightarrow +
T_* \rightarrow T_*
```

5- Add Epsilon: N/A

```
\rightarrow E M_2 \mid T M_3 \mid T_1 M_4 \mid id
T \rightarrow T M_3 \mid T_1 M_4 \mid id
» F \rightarrow T_1 M_4 \mid id
M_2 \rightarrow T_+ T
M_3 \rightarrow T_* F
M_4 \rightarrow E T_1
T_{\prime} \rightarrow (
T_1 \rightarrow T_1
T_{+} \rightarrow +
T_* \rightarrow T_*
```

» Thank you for various WEB Resources!!