Vowel laxing in Indonesian as a test case for interaction of morphological and syllabic structure

Daniel McCloy

Linguistic Phonetics Laboratory & Department of Linguistics & University of Washington

5pSC21

Background

- Vowels in closed syllables tend to be shorter than vowels in open syllables (MADDIESON 1985).
- Closed-syllable vowel *quality* changes (A.K.A. reduction or laxing) are widely attested, e.g., French (DELL 1995), Portuguese (REDENBARGER 2005), Thai (APILUCK 1996), and Klamath (BLEVINS 1993).
- ◆ Morpheme boundaries shown to influence closed-syllable reduction; in Ngayu Dajak (ISO 639-3: nij, AUSTRONESIAN, BORNEO), /toso + n/ "breast of ___" shows some vowel reduction, but less than tautomorphemic /toson/ "red squirrel" (BRUNELLE & RIEHL 2002).

Research Question

Is vowel reduction in Indonesian (ISO 639-3: ind, AUSTRONESIAN, INDONESIA) mitigated by morphemic structure?

Hypothesis

Morpheme boundary will interfere with resyllabification in condition E2 (see below) which will thus have a reduced vowel. Conditions E1 and E3 should pattern with the canonical unreduced condition (R1).

Methods

Four Indonesian males (age 20-21), Standard Indonesian L1.

Fully randomized word list: 75 distractors + 225 tokens per speaker (5 vowels \times 5 conditions \times 3 words per condition \times 3 repetitions).

Two reference conditions and three experimental conditions:

R1 CV]_{word} (canonical unreduced)

R2 CVC]_{word} (canonical reduced)

E1 CV+kan] (circumfixes ber-kan, me(N)-kan, memper-kan)

E2 CVC+an]_{word} (circumfixes pe-an, ke-an)

E3 CVCaN] (monomorphemic)

Theory predicts a single intervocalic C should syllabify into the onset of the following syllable; if so, all three experimental conditions should syllabify as CV.CaN, and V should manifest unreduced.

Stress is penultimate unless penult vowel is /ə/, so all experimental conditions have equivalent stress.

Segmentation in Praat (BOERSMA & WEENINK 2011)

- Measurements extracted from midpoint of modally voiced portion of vowel.
- Modal voicing := low cycle-to-cycle changes, minimal aperiodic noise, glottal pulses visible in high frequencies; this ensures reliable F1 measurements.
- ◆ Word-final vowels (condition R1), measurement was done at 50ms after the onset of modal voicing (if modally voiced portion exceeded 100ms) to minimize effect of diphthongization due to word-final lengthening.
- Modal-voiced portions shorter than the 25ms analysis window, and any measurements >2 s.d. from the vowel mean were re-measured by hand.

Pairwise t-tests (Bonferroni corrected) performed using R (R DEVELOPMENT CORE TEAM 2011).

Results

Tables 1-4: Bonferroni-corrected pairwise t-tests for /i/, /u/, /e/, and /o/. (All results for /a/ were non-significant and are not reported.)

- significant difference in either F1 or F2
- significant difference in both F1 and F2

Table 1: Pairwise t-tests for /i/

iC#	0.0000	0.0000	0.0014	0.2333	0.0001	0.0012	>0.05	>0.05
iC+an	0.0000	0.0000	0.0014	0.2553	0.0001	0.0012		
iCaN	>0.05	>0.05	>0.05	>0.05				
i+kan	0.0247	0.0029						
	F1	F2	F1	F2	F1	F2	F1	F2

Table 2: Pairwise t-tests for /u/

	u#		u+l	kan	uC	aN	uC-	+an
uC#	0.0000	0.0224	0.0007	>0.05	0.0000	>0.05	0.0173	>0.05
uC+an	0.0000	>0.05	>0.05	>0.05	>0.05	>0.05		
uCaN	0.0161	0.0064	>0.05	>0.05				
u+kan	0.0073	>0.05						
	F1	F2	F1	F2	F1	F2	F1	F2

Table 3: Pairwise t-tests for /e/

	e#		e+kan		eCaN		eC+an		
		#	0.1 Iran		200	aNI	200	1.020	
eC#	0.0000	0.0000	0.0287	0.0188	>0.05	>0.05	>0.05	>0.05	
eC+an	0.0430	>0.05	>0.05	>0.05	>0.05	>0.05			
eCaN	0.0005	0.0087	>0.05	>0.05					
e+kan	>0.05	>0.05							
	. Г1	ΓZ	Γ1 -	$\Gamma \mathcal{L}$		ΓΖ -	ГІ	ΓΖ -	

Table 4: Pairwise t-tests for /o/

oC#	0.0000	0.0000	>0.05	0.0000	0.0000	>0.05	0.0000	0.0089
~ "	0.0000	0.0000	. 0.05	0.0000	0.0000	. 0.05	0.0000	0.0000
oC+an	0.0000	0.0059	0.0000	>0.05	>0.05	>0.05		
oCaN	0.0000	0.0002	0.0000	>0.05				
o+kan	0.0008	>0.05						
	F1	F2	F1	F2	F1	F2	F1	F2

Figure 1: Formant values, means, and ±ô confidence regions

Figure 2: Illustration of "reduction score" technique

Figure 3: Reduction scores $(\pm\hat{\sigma})$ grouped by vowel

- /i/ iCaN patterns with i# (unreduced).
 i+kan falls in the middle, significantly different
 from the endpoints but not distinct from iCaN.
 iC+an patterns with iC# (reduced).
- /u/ u+kan, uCaN and uC+an pattern together, partway between (and significantly different from) the endpoints u# (unreduced) and uC# (reduced).
- /e/ e+kan patterns with e# (unreduced).
 eCaN and eC+an pattern with eC# (reduced).
- /o/ all conditions distinct except oCaN and oC+an.
- /a/ no significant differences found among any of the reference or experimental conditions.

Discussion

- Some results support hypothesis, others unexpected; no unified pattern across vowels.
- Trends suggest that within-category phonetic variation may index morphological information.
- Perceptual salience of differences unknown.
- ◆ Gradient vowel reduction → gradient syllabification?
- Future directions: duration; individual differences in production; perception study.

References

Apiluck, T. (1996). The mid central vowel [schwa] in Thai. Mon-Khmer Studies, 26, 65-78.

Blevins, J. (1993). Klamath Laryngeal Phonology. International Journal of American Linguistics, 59, 237-279.

Boersma, P., & Weenink, D. (2011). Praat: doing phonetics by computer. Retrieved from http://www.praat.org/

Brunelle, M., & Riehl, A. (2002). Vowel Laxing in Ngaju Dayak. Working Papers of the Cornell Phonetics Laboratory, 14, 1-15.

Dell, F. (1995). Consonant clusters and phonological syllables in French. Lingua, 95, 5-26.

Maddieson, I. (1985). Phonetic cues to syllabification. In V. A. Fromkin (Ed.), Phonetic Linguistics : Essays in Honor of Peter Ladefoged (pp. 203-221). Orlando: Academic Press.

R Development Core Team. (2011). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/

Redenbarger, W. J. (2005). Pre-Nasal Laxing in European Portuguese. Selected Proceedings of the 7th Hispanic Linguistics Symposium. Somerville, Mass.: Cascadilla Press.