

Department of Computer Applications

(An ISO – 9001: 2015 Certified & 'A' Grade accredited Institution by NAAC)

Artificial Intelligence Lab KCA 351: Session 2021-22

Experiment - No-8

I.Problem Statement : Write a program to demonstrate the
working of Bayesian network using heart disease dataset
"https://archive.ics.uci.edu/ml/machine-learningdatabases/heart-disease/processed.cleveland.data". Calculate
the probability of model =
BayesianModel([("A","B"),("B","C"),("C","RESULT")]) while
considering the following 14 attributes

- A. #3 (age)
- B. #4 (sex)
- C. #9 (cp)
- D. #10 (trestbps)
- E. #12 (chol)
- F. #16 (fbs)
- G. #19 (restecg)
- H. #32 (thalach)
- I. #38 (exang)
- J. #40 (oldpeak)
- K. #41 (slope)
- L. #44 (ca)
- M. #51 (thal)
- N. #58 (num) (the predicted attribute)

Department of Computer Applications

(An ISO – 9001: 2015 Certified & 'A' Grade accredited Institution by NAAC)

Artificial Intelligence Lab KCA 351: Session 2021-22

Program:

```
import numpy as np
import pandas as pd
import csv
from pgmpy.estimators import MaximumLikelihoodEstimator
from pgmpy.models import BayesianModel
from pgmpy.inference import VariableElimination
heartDisease = pd.read csv('heart.csv')
heartDisease = heartDisease.replace('?', np.nan)
print('Sample instances from the dataset are given below')
print(heartDisease.head())
print('\n Attributes and datatypes')
print(heartDisease.dtypes)
model= BayesianModel([('age','heartdisease'),('sex','heartdisease'),('exan
q', 'heartdisease'), ('cp', 'heartdisease'), ('heartdisease', 'restecg'), ('hear
tdisease','chol')])
print('\nLearning CPD using Maximum likelihood estimators')
model.fit(heartDisease, estimator=MaximumLikelihoodEstimator)
print('\n Inferencing with Bayesian Network:')
HeartDiseasetest infer = VariableElimination(model)
print('\n 1. Probability of HeartDisease given evidence= restecg')
q1=HeartDiseasetest infer.query(variables=['heartdisease'],evidence={'rest
ecg':1})
print(q1)
print('\n 2. Probability of HeartDisease given evidence= cp ')
q2=HeartDiseasetest infer.query(variables=['heartdisease'],evidence={'cp':
2 } )
print(q2)
```


Department of Computer Applications

(An ISO – 9001: 2015 Certified & 'A' Grade accredited Institution by NAAC)

Artificial Intelligence Lab KCA 351: Session 2021-22

Output:

Learning CPD using Maximum likelihood estimators

Inferencing with Bayesian Network:

1. Probability of HeartDisease given evidence= restecg

heartdisease	phi(heartdisease)
heartdisease(0)	0.1012
heartdisease(1)	0.0000
heartdisease(2)	0.2392
heartdisease(3)	0.2015
heartdisease(4)	0.4581
heartdisease(4) +	0.458

2. Probability of HeartDisease given evidence= cp

heartdisease	phi(heartdisease)
heartdisease(0)	0.3610
heartdisease(1)	0.2159
heartdisease(2)	0.1373
heartdisease(3)	0.1537
heartdisease(4)	0.1321

Department of Computer Applications

(An ISO – 9001: 2015 Certified & 'A' Grade accredited Institution by NAAC)

Artificial Intelligence Lab KCA 351: Session 2021-22

2.Problem Statement: Write a program to demonstrate the working of Bayesian network for the following graph:

- Calculate the probability of a burglary if John and Mary calls (0: True, 1: False)
- Calculate the probability of alarm starting if there is a burglary and an earthquake (0: True, 1: False)

Calculate the probability of alarm starting if there is a burglary and an earthquake (0: True, 1: False)

Department of Computer Applications

(An ISO – 9001: 2015 Certified & 'A' Grade accredited Institution by NAAC)

Artificial Intelligence Lab KCA 351: Session 2021-22

Program:

```
pip install pgmpy
import pgmpy. inference
import pgmpy. models
import networkx as nx
import pylab as plt
model = pgmpy. models . BayesianNetwork ([( ' Burglary ' , 'Alarm ') , ( '
Earthquake ' , 'Alarm ') ,
                                          ( 'Alarm ' , ' JohnCalls ') , (
'Alarm ' , 'MaryCalls ' ) ] )
# Define conditional probability distributions (CPD)
# Probability of burglary (True , False )
cpd burglary = pgmpy. factors . discrete .TabularCPD(" Burglary " , 2 , [[
0.001] , [0.999]])
# Probability of earthquake (True , False )
cpd earthquake = pgmpy. factors . discrete .TabularCPD("Earthquake" , 2 ,
[[0.002], [0.998]])
# Probability of alarm going of (True , False ) given a burglary and/or ea
rthquake
cpd alarm = pgmpy. factors . discrete .TabularCPD( 'Alarm ' , 2 , [[0.95 ,
0.94 , 0.29 , 0.001] , [0.05 , 0.06 , 0.71 , 0.999]] ,
                                                  evidence =['Burglary',
'Earthquake '] , evidence card =[2, 2])
# Probability that John calls (True , False ) given that the alarm has sou
nded
cpd john = pgmpy. factors . discrete .TabularCPD( ' JohnCalls ' , 2 , [[0.
90 , 0.05] , [0.10 , 0.95]] , evidence =['Alarm'] , evidence card =[2])
# Probability that Mary calls (True , False ) given that the alarm has sou
nded
cpd mary = pgmpy. factors . discrete .TabularCPD( ' MaryCalls ' , 2 , [[0.
70 , 0.01] , [0.30 , 0.99]] , evidence =['Alarm'] , evidence card =[2])
# Add CPDs to the network structure
model . add cpds ( cpd burglary , cpd earthquake , cpd alarm , cpd john ,
cpd mary)
# Check i f the model is valid , throw an exception otherwise
model . check model ()
# Print probability distributions
print ( ' Probability distribution , P( Burglary ) ')
print ( cpd burglary )
print ()
```


Department of Computer Applications

(An ISO – 9001: 2015 Certified & 'A' Grade accredited Institution by NAAC)

Artificial Intelligence Lab KCA 351: Session 2021-22

```
print ( ' Probability distribution , P(Earthquake ) ')
print ( cpd earthquake )
print ()
print ( ' Joint probability distribution , P(Alarm | Burglary , Earthquake
print ( cpd alarm )
print ()
print ( ' Joint probability distribution , P( JohnCalls | Alarm) ')
print ( cpd john )
print ()
print ( ' Joint probability distribution , P(MaryCalls | Alarm) ')
print (cpd mary) print () # Plot the model
nx. draw(model , with labels=True) plt . savefig ( ' alarm1 .png ') plt .
# Perform variable elimination for inference
# Variable elimination (VE) is a an exact inference algorithm in bayesian
infer = pgmpy. inference . VariableElimination (model)
# Calculate the probability of a burglary i f John and Mary calls (0: True
 , 1: False )
posterior probability = infer . query ([ ' Burglary '] , evidence={'JohnCa
lls ' : 0 , 'MaryCalls ' : 0})
# Print posterior probability
print ( ' Posterior probability of Burglary i f JohnCalls (True) and MaryC
alls(True ) ')
print ( posterior probability )
print ()
# Calculate the probability of alarm starting i f there is a burglary and
an earthquake (0: True , 1: False )
posterior probability = infer . query ([ ' Alarm '] , evidence= {' Burglar
y ' : 0 , 'Earthquake ' : 0})
# Print posterior probability
print ( ' Posterior probability of Alarm sounding i f Burglary (True) and
Earthquake(True ) ')
print ( posterior probability )
print ()
```


Department of Computer Applications

(An ISO – 9001: 2015 Certified & 'A' Grade accredited Institution by NAAC)

Artificial Intelligence Lab KCA 351: Session 2021-22

Output:

++
Burglary(0) 0.001
++ Burglary(1) 0.999 +
Probability distribution, P(Earthquake) +
Earthquake(0) 0.002 +
Earthquake(1) 0.998 +
Joint probability distribution, P(Alarm Burglary, Earthquake)
Burglary Burglary(0) Burglary(1) Burglary(1)
Earthquake Earthquake(0) Earthquake(1) Earthquake(0) Earthquake(1)
Alarm(0) 0.95 0.94 0.29 0.001
Alarm(1) 0.05 0.06 0.71 0.999
Posterior probability of Burglary if JohnCalls(TohnCalls Alarm +
JohnCalls(0) 0.9 0.05 ++ Burglary(1) 0.7158
JohnCalls(1) 0.1 0.95 ++
Finding Elimination Order: 0/0 [00:00 , ?it/s] oint probability distribution, P(MaryCalls Alarm) 0/0 [00:00<?, ?it/s]</td
Alarm Alarm(0) Alarm(1) Posterior probability of Alarm sounding if Burgl
MaryCalls(0) 0.7 0.01 Alarm phi(Alarm) +======+
MaryCalls(1) 0.3 0.99 Alarm(0) 0.9500
Alarm(1) 0.0500 ++