PAC-Bayesian Theory for Transductive Learning

Luc Bégin¹, Pascal Germain², François Laviolette², Jean-Francis Roy²

¹ Campus d'Edmundston Université de Moncton, Nouveau-Brunswick, Canada

² Département d'informatique et de génie logiciel Université Laval, Québec, Canada

Abstract: We propose a PAC-Bayesian analysis of the transductive learning setting by proposing a family of new bounds on the generalization error.

Inductive Learning

Training set We draw m examples i.i.d. from a distribution D on $\mathcal{X} \times \{-1, +1\}$:

$$S = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\} \sim D^m$$
.

Task of an inductive learner Using S, learn a classifier $h: \mathcal{X} \mapsto \{-1, +1\}$ that has a low generalization risk on new examples drawn according to D:

$$R_D(h) \stackrel{\text{def}}{=} \underbrace{\mathbf{E}}_{(x,y)\sim D} I[h(x) \neq y],$$

where I(a) = 1 if predicate a is true and 0 otherwise. The number of errors $mR_S(h)$ follows a **binomial distribution** with parameters m and $R_D(h)$.

TRANSDUCTIVE LEARNING (VAPNIK, 1998)

Training set We draw m examples without replacement from a full sample Z of N examples. The remaining examples form a set U of N-m examples.

Task of a transductive learner Using S and $U_{\mathcal{X}} = \{x_{m+1}, x_{m+2}, \dots, x_N\}$, learn a classifier $h: Z_{\mathcal{X}} \mapsto \{-1, +1\}$ that has a low risk on the examples from the set Z:

$$R_Z(h) \stackrel{\text{def}}{=} \frac{1}{N} \sum_{(x,y)\in Z} I[h(x) \neq y].$$

The number of errors $mR_S(h)$ follows a **hypergeometric distribution** of m draws among a population of size N containing $NR_Z(h)$ successes.

PAC-BAYESIAN BASICS

Given a hypothesis space \mathcal{H} of classifiers and a training set S, we consider a prior distribution P on \mathcal{H} and obtain a posterior distribution Q on \mathcal{H} by learning from S.

PAC-Bayesian (inductive) theory bounds the Gibbs risk $R_D(G_Q) \stackrel{\text{def}}{=} \underset{h \sim Q}{\mathbf{E}} R_D(h)$ from its empirical value $R_S(G_Q) \stackrel{\text{def}}{=} \underset{h \sim Q}{\mathbf{E}} R_S(h)$ and $\mathrm{KL}(Q \| P) \stackrel{\text{def}}{=} \underset{h \sim Q}{\mathbf{E}} \ln \frac{Q(h)}{P(h)}$.

Theorem 1 (inductive case) and Theorem 5 (transductive case) below are generic tools to derive various PAC-Bayesian bounds using any convex function $\mathcal{D}:[0,1]\times[0,1]\to\mathbb{R}$.

Inductive PAC-Bayesian Theory

Theorem 1 For any distribution D, for any set \mathcal{H} of classifiers, for any prior distribution P on \mathcal{H} , for any $\delta \in (0,1]$, and for any convex function \mathcal{D} , with probability at least $1-\delta$ over the choice of $S \sim D^m$, we have

$$\forall Q \text{ on } \mathcal{H} \colon \mathcal{D}(R_S(G_Q), R_D(G_Q)) \leq \frac{1}{m} \left[\text{KL}(Q \| P) + \ln \frac{\mathcal{I}_{\mathcal{D}}(m)}{\delta} \right],$$

where

$$\mathcal{I}_{\mathcal{D}}(m) \stackrel{\text{def}}{=} \sup_{r \in [0,1]} \left[\sum_{k=0}^{m} {m \choose k} r^k (1-r)^{m-k} e^{m\mathcal{D}(\frac{k}{m},r)} \right].$$

To express a computable bound, one needs to calculate the value of $\mathcal{I}_{\mathcal{D}}(m)$. A common choice is $\mathcal{D} = \mathcal{D}_{\mathrm{KL}}$.

Kullback-Leibler divergence between two Bernoulli distributions

$$\mathcal{D}_{\mathrm{KL}}(q,p) \stackrel{\text{def}}{=} q \ln \frac{q}{p} + (1-q) \ln \frac{1-q}{1-p} = H(q,p) - H(q),$$

where $H(q) \stackrel{\text{def}}{=} -q \ln q - (1-q) \ln (1-q)$ and $H(q,p) \stackrel{\text{def}}{=} -q \ln p - (1-q) \ln (1-p)$.

With these definitions, the r's cancel out in each term of the inner sum of $\mathcal{I}_{\mathcal{D}_{\mathrm{KL}}}(m)$:

$$\mathcal{I}_{\mathcal{D}_{\mathrm{KL}}}(m) = \sup_{r \in [0,1]} \left[\sum_{k=0}^{m} {m \choose k} e^{-mH(\frac{k}{m})} \right] = \sum_{k=0}^{m} {m \choose k} \left(\frac{k}{m} \right)^{m} \left(1 - \frac{k}{m} \right)^{m-k} = \sum_{k=0}^{m} \alpha(k,m).$$

Corollary 4 With probability at least $1-\delta$ over the choice of $S \sim D^m$, we have

$$\forall Q \text{ on } \mathcal{H}: \qquad \text{a) } \mathcal{D}_{\mathrm{KL}}\left(R_S(G_Q), R_D(G_Q)\right) \leq \frac{1}{m} \left[\mathrm{KL}(Q||P) + \ln \frac{2\sqrt{m}}{\delta}\right],$$

$$\text{b) } R_D(G_Q) \leq R_S(G_Q) + \sqrt{\frac{1}{2m} \left[\mathrm{KL}(Q||P) + \ln \frac{2\sqrt{m}}{\delta}\right]}.$$

Transductive PAC-Bayesian Theory

Theorem 5 For any set Z of N examples, for any set \mathcal{H} of classifiers, for any prior distribution P on \mathcal{H} , for any $\delta \in (0,1]$, and for any convex function \mathcal{D} , with probability at least $1-\delta$ over the choice S of m examples among Z, we have

$$\forall Q \text{ on } \mathcal{H} \colon \mathcal{D}(R_S(G_Q), R_Z(G_Q)) \leq \frac{1}{m} \left[\text{KL}(Q||P) + \ln \frac{\mathcal{T}_{\mathcal{D}}(m, N)}{\delta} \right],$$

where

$$\mathcal{T}_{\mathcal{D}}(m, N) \stackrel{\text{def}}{=} \max_{K=0...N} \left[\sum_{k \in \mathcal{K}_{mNK}} \frac{\binom{K}{k} \binom{N-K}{m-k}}{\binom{N}{m}} e^{m\mathcal{D}(\frac{k}{m}, \frac{K}{N})} \right],$$

and $\mathcal{K}_{mNK} \stackrel{\text{def}}{=} \{ \max[0, K+m-N], \dots, \min[m, K] \}$. One can compute the value of this bound for **any** \mathcal{D} -function if m and N are not unreasonably large.

A \mathcal{D} -function for the Transductive Case In the inductive setting, we express $\mathcal{I}_{\mathcal{D}_{\mathrm{KL}}}(m)$ by a sum of terms $\alpha(k,m)$, To recover the same phenomenon, we suggest

$$\mathcal{D}_{\beta}^{\star}(q,p) \stackrel{\text{def}}{=} \frac{1}{\beta} \left[H(\beta) - pH(\beta \frac{q}{p}) - (1-p)H(\beta \frac{1-q}{1-p}) \right] = \mathcal{D}_{\text{KL}}(q,p) + \frac{1-\beta}{\beta} \mathcal{D}_{\text{KL}}\left(\frac{p-\beta q}{1-\beta},p\right).$$

Theorem 6 Let m and N be any integers such that $20 \le m \le N-20$, we have

$$\mathcal{T}_{\mathcal{D}_{m/N}^{\star}}(m,N) = \max_{K=0...N} \left[\sum_{k \in \mathcal{K}_{mNK}} \frac{\alpha(k,K) \alpha(m-k,N-K)}{\alpha(m,N)} \right] \leq 3 \ln(m) \sqrt{m(1-\frac{m}{N})}.$$

Corollary 7 With probability at least $1-\delta$ over the choice S of m examples among Z (such that $20 \le m \le N-20$), we have

$$\forall Q \text{ on } \mathcal{H}: \qquad \text{a) } \mathcal{D}_{m/N}^{\star} \left(R_{S}(G_{Q}), R_{Z}(G_{Q}) \right) \leq \frac{1}{m} \left[\text{KL}(Q \| P) + \ln \frac{3 \ln(m) \sqrt{m(1 - \frac{m}{N})}}{\delta} \right],$$

$$\text{b) } R_{Z}(G_{Q}) \leq R_{S}(G_{Q}) + \sqrt{\frac{1 - \frac{m}{N}}{2m} \left[\text{KL}(Q \| P) + \ln \frac{3 \ln(m) \sqrt{m(1 - \frac{m}{N})}}{\delta} \right]}.$$

BOUNDS ON THE RISK OF THE MAJORITY VOTE CLASSIFIER

To bound the risk of $B_Q(x) \stackrel{\text{def}}{=} \underset{c \in \{-1,+1\}}{\operatorname{argmax}} \left[\underset{h \sim Q}{\mathbf{E}} I(h(x) = c) \right]$, we use the factor two $R_Z(B_Q) \leq 2R_Z(G_Q)$ or the \mathcal{C} -bound $R_Z(B_Q) \leq 1 - \frac{(1 - 2R_Z(G_Q))^2}{1 - 2d_Q^z}$.

In the transductive setting, exact value of the expected disagreement $d_Q^z \stackrel{\text{def}}{=} \frac{1}{|Z|} \sum_{x \in Z_{\mathcal{X}}} \sum_{h_1 \sim Q} \sum_{h_2 \sim Q} I \left[h_1(x) \neq h_2(x) \right]$ is computed on the full sample!

EXPERIMENTS WITH D-FUNCTIONS 0.5 0.4 0.392 0.0 0.3 0.2 0.1 0.0 Kullback-Leibler D5, function ★ ★ 0.364 ★ 0.338 ♠ 0.329 ♠ 0.241 0.3 0.2 0.1 0.0 Quadratic Distance

Experiments on real data code: http://graal.ift.ulaval.ca/aistats2014/

Dataset information			Gibbs Classifier						Majority Vote Classifier			
			Observed Risk		Bounds of $R_Z(G_Q)$				Observed Risk		Bounds of $R_Z(B_Q)$	
Dataset	N	m/N	$R_S(G_Q)$	$R_Z(G_Q)$	Cor 7-(b)	Derbeko	Thm 5- $\mathcal{D}_{\mathrm{KL}}$	Thm 5- $\mathcal{D}_{m/N}^{\star}$	$R_S(B_Q)$	$R_Z(B_Q)$	2 - $\mathcal{D}_{m/N}^{\star}$	$\mathcal{C} ext{-}\mathcal{D}_{m/N}^{\star}$
car	1728	0.1	0.193	0.194	0.555	0.793	0.527	0.546	0.105	0.159	1.092	_
car	1728	0.5	0.179	0.181	0.418	0.496	0.418	$\boldsymbol{0.415}$	0.115	0.125	0.830	0.819
letter_AB	1555	0.1	0.146	0.149	0.469	0.718	0.437	0.457	0.000	0.017	0.914	0.961
letter_AB	1555	0.5	0.171	0.171	$\boldsymbol{0.402}$	0.485	0.401	0.399	0.000	0.001	0.797	0.626
mushroom	8124	0.1	0.202	0.202	0.486	0.609	0.471	0.482	0.000	0.000	0.964	0.966
mushroom	8124	0.5	0.205	0.205	0.439	0.479	0.438	0.438	0.000	0.000	0.875	$\boldsymbol{0.546}$
nursery	12959	0.1	0.169	0.168	0.404	0.504	0.389	0.399	0.009	0.016	0.798	0.692
nursery	12959	0.5	0.167	0.168	$\boldsymbol{0.357}$	0.391	0.356	0.356	0.010	0.012	0.711	0.379
optdigits	3823	0.1	0.208	0.213	0.533	0.703	0.513	0.527	0.000	0.077	1.055	-
optdigits	3823	0.5	0.210	0.211	$\boldsymbol{0.460}$	0.516	0.460	$\boldsymbol{0.458}$	0.026	0.042	0.917	0.793
pageblock	5473	0.1	0.199	0.201	0.495	0.642	0.476	0.490	0.048	0.063	0.979	0.992
pageblock	5473	0.5	0.208	0.208	0.448	0.497	0.448	0.447	0.057	0.059	0.894	0.697
pendigits	7494	0.1	0.209	0.210	0.499	0.629	0.481	0.495	0.023	0.051	0.989	0.997
pendigits	7494	0.5	0.215	0.215	$\boldsymbol{0.457}$	0.500	$\boldsymbol{0.455}$	0.456	0.041	0.045	0.912	0.706
segment	2310	0.1	0.206	0.207	0.558	0.769	0.533	0.550	0.000	0.059	1.101	-
segment	2310	0.5	0.206	0.206	$\boldsymbol{0.462}$	0.532	0.462	$\boldsymbol{0.460}$	0.014	0.016	0.920	0.834
spambase	4601	0.1	0.222	0.227	0.553	0.708	0.535	0.548	0.115	0.161	1.096	-
spambase	4601	0.5	0.225	0.226	0.488	0.539	0.489	$\boldsymbol{0.486}$	0.137	0.143	0.973	$\boldsymbol{0.961}$